Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US2004/036492

International filing date: 03 November 2004 (03.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/516,734

Filing date: 04 November 2003 (04.11.2003)

Date of receipt at the International Bureau: 17 May 2008 (17.05.2008)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

"I(0) AND TVO VINCON("NINESE: PRESENTS: SHADE, CONTES

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

May 17, 2008

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/516,734
FILING DATE: November 04, 2003
RELATED PCT APPLICATION NUMBER: PCT/US04/36492

THE COUNTRY CODE AND NUMBER OF YOUR PRIORITY APPLICATION, TO BE USED FOR FILING ABROAD UNDER THE PARIS CONVENTION, IS *US60/516,734*

Certified by

Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office Approved for use through10/31/2002. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

Express Mail Label No.

INVENTOR(S)										
Given Name (first and middle [if any])	me (first and middle [if any]) Family N			(City and eit	Residence City and either State or Foreign Country)					
Sharon M.	Wahl	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		North Potomac, MD		U + + :				
Nancy	Vazquez-Ma		1aldonado		Chevy Chase, MD					
Teresa	Greenwell-V									
Additional inventors are being named on the separately numbered sheets attached hereto										
TITLE OF THE INVENTION (500 characters max)										
Methods and Compositions for the Inhibition of HIV-1 Replication										
Direct all correspondence to: CORRESPONDENCE ADDRESS										
	28410 → ,									
OR Type Custon	Type Customer Number here									
Firm <i>or</i> Individual Name	28410 PATENT TRADEMARK OFFICE									
Address										
Address										
City		State		ZIP						
Country		Telephone		Fax		· · ·				
	OSED APPLICA	TION PART	check all the	at apply)	·					
Specification Number of Pages	76		CD(s), Nun	nber						
Drawing(s) Number of Sheets										
Application Data Sheet. See 37 CFR 1.76										
METHOD OF PAYMENT OF FILING FEES	FOR THIS PRO\	ISIONAL AP	PLICATION FO	R PATENT						
Applicant claims small entity status.					FILING FEE AMOUNT (\$)	Ť				
I — ·	A check of morey order is enclosed to cover the ming fees									
The Commissioner is hereby authorized to charge filing fees or credit any overpayment to Deposit Account Number: 50-0548 \$160.00										
Payment by credit card. Form PTO-2038 is attached.										
The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.										
No.										
Yes, the name of the U.S. Government agency and the Government contract number are: NIDCR, NIH, Dept. Health and Human services										
Respectfully submitted			Date	11/04/2003						
TYPED or PRINTED NAME Jeffrey I. Auerbach			REGISTRATION NO. 32,							
TELEPHONE (301) 896-0600	•	cket Number:	035	14.160B						

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a provisional application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer. U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C. 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C. 20231.

Title of the Invention

Methods and Compositions for the Inhibition of HIV-1 Replication

Field of the Invention

5

10

20

25

This invention relates to methods and compositions for the attenuation of HIV-1 replication in human cells, and especially in human macrophages. The invention particularly concerns the use of inhibitors of P21 (CDKN1A) expression to attenuate such replication. The invention particularly concerns the use of antisense P21 oligonucleotides and/or 2-cyano-3,12-dioxooleana-1,9-dien-28-oic (CDDO) to attenuate such replication.

Statement of Governmental Interest

This invention was funded by the National Institutes of Health, Department of Health and Human Services. The United States Government has certain rights to this invention.

15 Background of the Invention

Human immunodeficiency virus-1 (HIV-1) is the causative agent of acquired immune deficiency syndrome (AIDS) and related disorders (Gallo, R.C. et al. (1983) "Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS)," Science 220(4599):865-7; Barre-Sinoussi, F. et al. "ISOLATION OF A T-LYMPHOTROPIC RETROVIRUS FROM A PATIENT AT RISK FOR ACQUIRED IMMUNE DEFICIENCY SYNDROME (AIDS)," (1983) Science 220:868-870; Gallo, R. et al. (1984) "FREQUENT DETECTION AND ISOLATION OF CYTOPATHIC RETROVIRUSES (HTLV-III) FROM PATIENTS WITH AIDS AND AT RISK FOR AIDS," Science 224:500-503; Teich, N. et al. (1984) "RNA TUMOR VIRUSES," Weiss, R. et al. (eds.) Cold Spring Harbor Press (NY) pp. 949-956).

T lymphocytes and macrophages expressing CD4 and the seven transmembrane chemokine co-receptors CXCR4 and CCR5 are susceptible to HIV-1 infection (Berger, E.A. et al. (1999) "CHEMOKINE RECEPTORS AS HIV-1 CORECEPTORS; ROLES IN VIRAL ENTRY, TROPISM, AND DISEASE," Annu. Rev. 5 Immunol. 17:657-700). In contrast to CD4⁺ lymphocytes, HIV-1 infected macrophages can resist cell death despite viral infection. Viruses that are shed from infected macrophages may serve as a reservoir for the infection of additional cells (Wahl, S.M. et al. (1996) In: MACROPHAGE FUNCTION IN HIV INFECTION, pages 303-336; Orenstein, J.W. (2001) "THE MACROPHAGE IN HIV INFECTION," 10 Immunobiology 204(5):598-602; Balestra, E. et al. (2001) "Macrophages: A CRUCIAL RESERVOIR FOR HUMAN IMMUNODEFICIENCY VIRUS IN THE BODY," J Biol. Regul. Homeost. Agents 15:272-276; Igarashi, T. et al. (2001) "MACROPHAGE ARE THE PRINCIPAL RESERVOIR AND SUSTAIN HIGH VIRUS LOADS IN RHESUS MACAQUES AFTER THE DEPLETION OF CD4+ T CELLS BY A HIGHLY 15 PATHOGENIC SIMIAN IMMUNODEFICIENCY VIRUS/HIV TYPE 1 CHIMERA (SHIV): IMPLICATIONS FOR HIV-1 INFECTIONS OF HUMANS,". Proc. Natl. Acad. Sci. U.S.A.98:658-663; Garbuglia, A.R. et al., (2001) "DYNAMICS OF VIRAL LOAD IN PLASMA AND HIV DNA IN LYMPHOCYTES DURING HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART): HIGH VIRAL BURDEN IN MACROPHAGES AFTER 1 YEAR OF 20 TREATMENT," J Chemother 13:188-194).

The persistence of HIV during highly active antiviral therapy, and poor susceptibility of macrophages to antiviral therapy (Igarashi, T. et al. (2001) "Macrophage Are The Principal Reservoir and Sustain High Virus Loads In Rhesus Macaques After The Depletion Of CD4+ T Cells By A Highly Pathogenic Simian Immunodeficiency Virus/HIV Type 1 Chimera (SHIV): Implications For HIV-1 Infections Of Humans," Proc Natl Acad Sci U S A 98:658-63; Garbuglia, A.R. et al. (2001) "Dynamics Of Viral Load in Plasma And HIV DNA in Lymphocytes During Highly Active Antiretroviral Therapy (HAART): High Viral Burden in Macrophages After 1 Year Of Treatment," J Chemother 13, 188-94) has intensified the interest in

25

30

characterizing the mechanisms underlying infection and replication in this cell population.

Attempts to treat HIV infection have focused on the development of drugs that disrupt the viral infection and replication cycle (see, Mitsuya, H. et al. (1991) "TARGETED THERAPY OF HUMAN IMMUNODEFICIENCY VIRUS-RELATED DISEASE," FASEB J. 5:2369-2381). Such intervention could potentially inhibit the binding of HIV to cell membranes, the reverse transcription of the HIV RNA genome into DNA, the exit of the virus from the host cell and infection of new cellular targets, or inhibition of viral enzymes (see, U.S. Patent No. 6,475,491). Thus, for example, 10 soluble CD4 has been developed in an effort to competitively block the binding of HIV to lymphocytes (Smith, D.H. et al. (1987) "BLOCKING OF HIV-1 INFECTIVITY BY A SOLUBLE, SECRETED FORM OF THE CD4 ANTIGEN," Science 238:1704-1707; Schooley, R. et al. (1990) "RECOMBINANT SOLUBLE CD4 THERAPY IN PATIENTS WITH THE ACQUIRED IMMUNODEFICIENCY SYNDROME (AIDS) AND AIDS-15 RELATED COMPLEX. A PHASE I-II ESCALATING DOSAGE TRIAL," Ann. Int. Med. 112:247-253; Kahn, J.O. et al. (1990) "THE SAFETY AND PHARMACOKINETICS OF RECOMBINANT SOLUBLE CD4 (RCD4) IN SUBJECTS WITH THE ACQUIRED IMMUNODEFICIENCY SYNDROME (AIDS) AND AIDS-RELATED COMPLEX. A PHASE 1 STUDY," Ann. Int. Med. 112:254-261; Yarchoan, R. et al. (1989) Proc. Vth Int. 20 Conf. on AIDS, p564, MCP 137). Similarly, the ability of antisense HIV-1 oligonucleotides to inhibit viral replication has been investigated (Maeda N et al. (1998) "INHIBITION OF HUMAN T-CELL LEUKEMIA VIRUS TYPE 1 REPLICATION BY ANTISENSE ENV OLIGODEOXYNUCLEOTIDE," Biochem Biophys Res Commun 243(1):109-112).

Unfortunately, although considerable effort has been expended to design effective therapeutics, no curative anti-retroviral drugs against AIDS currently exist. All available therapies are marred by substantial adverse side effects, and by the capacity of HIV to rapidly mutate into forms that are refractive to treatment (Miller, V. et al. (2001) "MUTATIONAL PATTERNS IN THE HIV GENOME AND CROSS-RESISTANCE FOLLOWING NUCLEOSIDE AND NUCLEOTIDE ANALOGUE DRUG

25

30

EXPOSURE," Antivir Ther. 6 Suppl 3:25-44; Lerma, J.G. et al. (2001) "RESISTANCE OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 TO REVERSE TRANSCRIPTASE AND PROTEASE INHIBITORS: GENOTYPIC AND PHENOTYPIC TESTING," J Clin Virol. 21(3):197-212; O'Brien, W.A. (2000) "RESISTANCE AGAINST REVERSE

5 TRANSCRIPTASE INHIBITORS," Clin Infect Dis. 30 Suppl 2:S185-92; Wain-Hobson, S. (1996) "RUNNING THE GAMUT OF RETROVIRAL VARIATION," Trends Microbiol. 4(4):135-41; Lange J. (1995) "COMBINATION ANTIRETROVIRAL THERAPY. BACK TO THE FUTURE," Drugs. 49 Suppl 1:32-40). Thus, a continuing need exists for safe and effective anti-HIV therapeutics. The present invention is directed to this and other needs.

Summary of the Invention

15

20

25

By monitoring virus production by multiple parameters including RNA, p24 antigen expression and ultra-structural detection of viral particles it has been possible to characterize the temporal events associated with the initial virusmacrophage encounter leading to massive viral replication. In parallel, macrophage changes in gene expression subsequent to virus-receptor interaction have been compared to uninfected cells by cDNA expression array. Analysis of 1200 genes at multiple intervals from initial HIV-1 binding through levels of massive replication (10-14 days) reveals a profile of gene modulation, which favored virus life cycle, and could influence recruitment and infection of additional HIV-1 host cells. One gene found to be consistently expressed following virus binding and re-expressed at the peak of HIV-1 replication is CDKN1A, also known as p21, Cip1 (Cdk interacting protein), or Waf1 (wild type p53- activated fragment), a protein associated with cell cycle regulation, anti-apoptotic response and cell differentiation (Dotto, G.P. (2000) "P21(WAF1/CIP1): MORE THAN A Break To The Cell Cycle?" Biochim Biophys Acta 1471: M43-56). Importantly, modulation of p21 in vitro results in suppression of viral replication, and implicated this cellular protein as an interventional target.

In contrast to CD4⁺ lymphocytes, HIV-1 infected macrophages typically resist cell death, support viral replication, and facilitate HIV-1 transmission. To elucidate how the virus comandeers macrophage intracellular machinery for its benefit, HIV-1 infected human monocyte-derived macrophages have been analyzed for viral-induced gene transcription by cDNA expression array. HIV-1 infection induces the transcriptional regulation of genes associated with host defense, signal transduction, apoptosis and cell cycle, including cyclin-dependent kinase inhibitor p21. CDKN1A/p21 expression follows a bimodal pattern with maximum levels occurring during HIV-1 replication. Treatment of macrophages with p21 anti-sense oligonucleotides inhibits HIV-1 replication. Furthermore, the synthetic triterpenoid and peroxisome proliferator-activated receptor g (PPARg) ligand, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), which influences p21 expression, drives a dose dependent suppression of viral replication. These data implicate p21 as a pivotal macrophage facilitator of viral replication. Moreover, regulators of p21, such as CDDO, provide an interventional approach to modulate HIV-1 replication.

5

10

15

20

25

30

This invention thus relates to methods and compositions for the attenuation of immunodeficiency virus replication in cells, and especially in macrophages. The invention particularly concerns the use of inhibitors of P21 (CDKN1A) expression to attenuate such replication. The invention particularly concerns the use of antisense P21 oligonucleotides and/or 2-cyano-3,12-dioxooleana-1,9-dien-28-oic (CDDO) to attenuate such replication.

In detail, the invention concerns a method of attenuating the transmission or infection of an immunodeficiency virus into a cell comprising providing to the cell an inhibitor of p21, wherein the inhibitor is provided in an amount and duration sufficient to cause an attenuation of at least 50% in the transmission or infection of the virus relative to an untreated cell. The invention particularly concerns the embodiments of such method wherein the immunodeficiency virus is a human immunodeficiency virus (HIV), and the cell is a human cell; wherein the immunodeficiency virus is a feline immunodeficiency virus (FIV), and the cell is a

feline cell; or wherein the immunodeficiency virus is a simian immunodeficiency virus (SIV), and the cell is a simian cell. .

The invention further provides a method of treating AIDS in an individual, comprising providing to HIV-1 infected cells of said individual an amount of a p21 inhibitor sufficient to attenuate the propagation of HIV, wherein said inhibitor is provided in an amount and duration sufficient to cause an attenuation of at least 50% in said propagation of HIV relative to untreated cells.

5

10

15

20

25

The invention particularly concerns the embodiments of such methods wherein the inhibitor of p21 is a polynucleotide, and especially wherein the polynucleotide is complementary to a portion of a p21 gene or p21 cDNA molecule.

The invention particularly concerns the embodiments of such methods wherein the p21 gene or p21 cDNA is of a human p21 gene or p21 cDNA molecule, or of a non-human animal or is a variant of a non-human p21 gene or p21 cDNA molecule.

The invention further concerns a method of treating AIDS in an individual, comprising providing to HIV-1 infected cells of the individual an amount of a p21 inhibitor sufficient to attenuate the propagation of HIV, wherein the inhibitor is provided in an amount and duration sufficient to cause an attenuation of at least 50% in the propagation of HIV relative to untreated cells.

The invention particularly concerns the embodiments of such methods wherein the polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:4 (and in particular wherein the polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:8 or SEQ ID NO.:10) or at least 10 contiguous nucleotides of SEQ ID NO.:6 (and in particular wherein the polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:7 or SEQ ID NO.:9).

The invention further concerns the embodiments of the above methods wherein the inhibitor of p21 is a protein or organic molecule other than a polynucleotide, and in particular concerns the embodiment of such method wherein the inhibitor is 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), or a salt or derivative thereof.

5

10

15

20

The invention further concerns a pharmaceutical composition comprising an inhibitor of p21 and an excipient or carrier, wherein the inhibitor is present in an amount sufficient to attenuate the propagation of HIV, wherein the inhibitor is present in the composition in an amount sufficient to cause an attenuation of at least 50% in the propagation of HIV relative to untreated cells.

The invention particularly concerns the embodiments of such composition wherein the inhibitor of p21 is a polynucleotide, and especially wherein the polynucleotide is complementary to a portion of a p21 gene or p21 cDNA molecule. The invention particularly concerns the embodiments of such compositions wherein the p21 gene or p21 cDNA is of a human p21 gene or p21 cDNA molecule, or of a non-human animal or is a variant of a non-human p21 gene or p21 cDNA molecule.

The invention particularly concerns the embodiments of such compositions wherein the polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:4 (and in particular wherein the polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:8 or SEQ ID NO.:10) or at least 10 contiguous nucleotides of SEQ ID NO.:6 (and in particular wherein the polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:7 or SEQ ID NO.:9).

The invention further concerns the embodiments of the above compositions wherein the inhibitor of p21 is a protein or organic molecule other than a polynucleotide, and in particular concerns the embodiment of such method wherein the inhibitor is 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), or a salt or derivative thereof.

Brief Description of the Figures

15

20

Figure 1A-1D illustrate the kinetics of HIV-1 infection in macrophages. Figure 1A: Macrophages are exposed to an R5 strain of HIV-1 for 90 min, washed, and total RNA extracted at the indicated time periods and examined by northern blot analysis with a ³²P-labeled cDNA probe for HIV-1 (Wahl, S.M. et al. (1991) "MACROPHAGE- AND ASTROCYTE-DERIVED TRANSFORMING GROWTH FACTOR BETA AS A MEDIATOR OF CENTRAL NERVOUS SYSTEM DYSFUNCTION IN ACQUIRED IMMUNE DEFICIENCY SYNDROME," J Exp Med 173:981-991). Bands of 9.1 and 4.3 and kb correspond to viral gag/pol and env mRNA respectively. 10 Figure 1B: Supernatants are collected from infected cultures and examined by ELISA for p24. Figure 1C: Macrophages are incubated for the indicated intervals after infection, fixed in gluteraldehyde and process for transmission EM. Original magnification 10,000 X. Ultrastuctural analysis of infected cells reveals virions Figure 1C and Figure 1D: in macrophages starting at day 7, a with increasing numbers per cell on day 10 as quantified by counting > 200 cells/time point (Figure 1D).

Figures 2A-2C illustrate HIV-induced alterations in macrophage transcriptome. Figure 2A: Distribution of transcription changes in macrophages 3-6 hr after exposure to HIV. Numbers represent % of total upregulated genes (134/1200) associated with the indicated categories in > 4 donors. Figure 2B Transcription related genes upregulated ≥ 2 fold after 3-6 hours in HIV-1 infected macrophages. Figure 2C: Signal transduction-related genes upregulated ≥ 2 fold above parallel cultures in descending order.

Figures 3A-3C demonstrate increased p21 (CDKN1A) gene expression in 25 HIV-1 infected macrophages. Figure 3A: Kinetic profile of p21 expression determined by cDNA expression array following HIV infection. Figure 3B: RPA analysis of total mRNA from uninfected and HIV-1 infected macrophages at the indicated time points confirms the enhanced gene expression for p21, with minimal effect on p53. **Figure 3C**: Graphic representation of densitometry analysis of RPA for p21 and p53 genes normalized to GAPDH.

5

10

15

20

25

Figures 4A-4D illustrate HIV-1 infected macrophages express increased p21 protein. Figure 4A: Overlay images from differential interference contrast (DIC) and immunofluorescence (Texas Red) for p21 labeling in uninfected (1, 2, & 3) and virus infected cells (4, 5 & 6), (original image 400X). At higher magnification (original 1000X, 3 & 6), infected macrophages express increased nuclear and cytoplasmic p21 protein when compared with control cells. Figure 4B: Densitometric fluorescence intensity analysis using confocal microscopy and Metamorph (Universal Imaging) analysis confirms enhanced nuclear and cytoplasmic p21 protein as represented by the signal intensity across equal line segments sampling nuclear or cytoplasmic regions. Figure 4C: Western blot analysis shows enhanced p21 protein expression in HIV-1 infected macrophages. HIV-1 infected cells show at least a two fold increase in p21 protein expression as indicated by densitometry analysis relative to uninfected cells (n=3). Figure 4D: Effect of p21 antisense oligonucleotides on HIV-1 replication in macrophages done in duplicate. p21 antisense oligonucleotides (oligo 1 and 2) and control oligonucleotide (oligo 3) were added at a concentration of 50 nM after infection and at the time of refeeding the cells. p24 levels were monitored by ELISA at day 12 (representative experiment).

Figures 5A-5D illustrate inhibition of HIV-1 replication in macrophages by CDDO and di-CDDO. Figure 5A: Macrophages were pre-treated with CDDO, di-CDDO or DMSO as a control for 45 min and then infected with HIV-1 BaL. Supernatants were collected on day 12 for p24 Ag analysis by ELISA and cells processed by TEM (Figure 5B; Figure 5C). Ultrastructural analysis demonstrates dramatically reduced numbers of infected cells and in the few remaining HIV positive celss, very few virions were identified in cultures treated with CDDO. Figure 5D: Cell lysates were generated from 12 days cultures and p21 immunoprecipitated and analyzed by western blot.

Figure 6 shows the results of siRNA for p21 and its effect on HIV infection.

Description of the Preferred Embodiments

5

The present invention relates to methods and compositions for the attenuation of HIV-1 replication in human cells, and especially in human macrophages. As used herein, such "attenuation" is preferably of a magnitude sufficient to mediate a reduction of at least 50%, more preferably 60%, most preferably 80%, or greater in the replication, propagation or transmission of HIV.

The present invention derives in part from the recognition that the

replication of human cells has been found to be tightly coordinated by the
expression and interaction of an array of cell cycle regulatory proteins. CDKN1A,
also known as p21Cip1 (Cdk interacting protein), or Waf1 (wild type p53activated fragment), is one of these proteins (Dotto, G.P. (2000)

"P21(WAF1/CIP1): MORE THAN A BREAK TO THE CELL CYCLE?," Biochim.

Biophys. Acta 1471:M43-M56). The loss of CDKN1A expression has been
observed in many tumor cells, suggesting a role for the protein in preventing
malignant progression. HIV-1 and P21 are discussed in U.S. Patents Nos.:
6,359,124; 5,965,722; 5,889,156; 6,548,657; 6,511,847; 6,489,163; 6,410,010;
6,379,965; 6,204,248; 6,133,444; 6,069,134; 5,866,698; 5,861,290; 5,834,440;
5,795,870; 5,766,882; 5,747,469; and 5,693,769.

Although macrophages express the requisite CD4 and chemokine coreceptors making them susceptible targets, and R5 viral variants are preferentially transmitted, it has remained a challenge to identify HIV-1 positive macrophages early after viral exposure in mucosal tissues (Schacker, T. et al.. (2001)

"PRODUCTIVE INFECTION OF T CELLS IN LYMPHOID TISSUES DURING PRIMARY AND EARLY HUMAN IMMUNODEFICIENCY VIRUS INFECTION," J Infect Dis 183:555-562) or in the absence of co-pathogens (Orenstein, J.M. et al. (1997)

"MACROPHAGES AS A SOURCE OF HIV DURING OPPORTUNISTIC INFECTIONS," Science 276:1857-1861). When exposed to HIV-1, monocyte-derived

macrophages (MDM) bind and/or internalize the virus, but the consequences of that interaction are ill defined. Whether the macrophages are triggered by this encounter to modify their phenotypic and functional repertoire or whether HIV-1 enters stealthily, and transiently remains unrecognized by the immune system, it is important to define the early stages when HIV-1 is gaining a foothold on the immune system and identify key signals which not only promote permissiveness for macrophage HIV-1 infection, but also promote replication.

)

5

10

25

One aspect of the present invention relates to the recognition that HIV-1 infection stimulates the expression of p21 (CDKN1A) protein in human macrophages (Vazquez, N. et al. (October 2002) "HIV-1 Enhancement of CDKN1A (p21) in Human Macrophages Is Associated with Viral Replication," 5th Intl. Workshop on HIV, Cells of Macrophage/Dendritic Lineage and Other Reservoirs, Rome, Italy).

The Vpr gene product of HIV-1 has been found to prevent cell proliferation 15 by activating p21 expression, suggesting that the upregulation of p21 by HIV-1 Vpr may have important consequences in HIV-1 pathogenesis (Chowdhury I.H. et al. (2003) "HIV-1 VPR ACTIVATES CELL CYCLE INHIBITOR P21/WAF1/CIP1: A POTENTIAL MECHANISM OF G2/M CELL CYCLE ARREST," Virol. 305:371-377). A similar relationship has been disclosed between p21 and HIV-1 Nef (Fackler, O.T. 20 et al. (2000) "P21-ACTIVATED KINASE 1 PLAYS A CRITICAL ROLE IN CELLULAR ACTIVATION BY NEF," Mol Cell Biol. 20:2619-2627; Hiipakka M et al. (2001) "INHIBITION OF CELLULAR FUNCTIONS OF HIV-1 NEF BY ARTIFICIAL SH3 DOMAINS," Virol. 286:152-159; Nunn MF et al. (1996) "HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 NEF ASSOCIATES WITH A MEMBER OF THE P21-ACTIVATED KINASE FAMILY," J Virol. 70:6157-6161; Renkema GH et al. (1999) "IDENTIFICATION OF THE NEF-ASSOCIATED KINASE AS P21-ACTIVATED KINASE 2," Curr Biol. 9:1407-1410).

Additionally, Clark, E. et al. disclosed that the treatments (such as gamma irradiation) that cause a loss of cell cycle control at the G₁/S checkpoint cause

HIV-1 infected cells to lose p21 function, and undergo apoptosis (Clark E *et al.* (2000) "Loss Of G(1)/S CHECKPOINT IN HUMAN IMMUNODEFICIENCY VIRUS TYPE 1-INFECTED CELLS IS ASSOCIATED WITH A LACK OF CYCLIN-DEPENDENT KINASE INHIBITOR p21/Waf1," J Virol. 74:5040-5052). Gomez, T. *et al.*

(http://www.retroconference.org/2002/Posters/13446.pdf; "CYTOPLASMIC P21 WAF1/CIP1 PROTECTS U937 PROMONOCYTIC CELLS FROM HIV MEDIATED APOPTOSIS") disclose that the administration of p21-antisense oligonucleotides to promonocytic cells suppressed p21 levels in the cells, and accelerated the death of the HIV-infected cells. The results are stated to indicate that p21 confers resistance to HIV-induced apoptosis in promonocytic cells, and to suggest a possible mechanism for the persistence of its infection in cells such as macrophages.

Antisense oligonucleotides of p21 have been used to affect cell-cycle transit in astrocytoma cells.(Jinbo Liu, et al. (2000) "ANTI-SENSE OLIGONUCLEOTIDE OF p21(WAF1/CIP1) PREVENTS INTERLEUKIN 4-MEDIATED

ELEVATION OF p27(KIP1) IN LOW GRADE ASTROCYTOMA CELLS," Oncogene 19:661-669). The oligonucleotides had the sequences:

SEQ ID NO:1: 5'-ucc gcg ccc agc ucc-3' and SEQ ID NO:2: 5'-ucc gcc cgc agc ucc-3'.

20

25

The present invention thus particularly concerns the use of one or more p21 inhibitors to prevent or attenuate the infection of additional host cells, and as such to provide a therapy for AIDS and its similar and feline counterparts.

As used herein, the term "p21 inhibitor" is intended to denote any of a variety of molecules that function to suppress or prevent p21 activity. Such inhibitors can be, for example, transcriptional inhibitors, such as promoter blockers RNAi molecules, antisense polynucleotides of the p21 gene or cDNA, or allelic or non-human species variants thereof. Alternatively, such molecules can comprise translational inhibitors of p21, molecules that inhibit or otherwise interfere with p21 function, etc.

As used herein, an allelic variant of a p21 polynucleotide is a polynucleotide having the sequence of a naturally occurring allele of the p21 gene or cDNA thereof, or of a non-naturally occurring polynucleotide that is 80% homologous, and more preferably 90% homologous, and most preferably comprises a sequence that has at least 12, and more preferably, at least 20 contiguous nucleotides that are identical in sequence to a portion of a naturally occurring p21 gene or cDNA. Examples of such sequences include NCBI accession Nos. BC000312 and BC013967. As used herein, a non-human species variant of a p21 polynucleotide is a polynucleotide having the sequence of the p21 gene or cDNA of a non-human animal, for example a mouse or rat. Examples of such sequences include NM 007669 and U24174.

Antisense molecules suitable for use in the present invention can be identified as polynucleotide molecules having a length of 10-250, or more preferably 10-150, and most preferably, 10-100 nucleotides that are complementary to a portion of **SEQ ID NO.:3** (the human p21 gene, see Xiong, Y. et al. (1993) "P21 IS A UNIVERSAL INHIBITOR OF CYCLIN KINASES," Nature 366:701-704 (1993); el-Deiry, W.S. et al. (1993) "WAF1, A POTENTIAL MEDIATOR OF P53 TUMOR SUPPRESSION," Cell 75:817-825 (1993); Harper, J.W. et al. (1993) "THE P21 CDK-INTERACTING PROTEIN CIP1 IS A POTENT INHIBITOR OF G1 CYCLIN-DEPENDENT KINASES," Cell 75:805-816) or allelic or non-human species variants thereof, especially the murine p21 gene (NM 007669).

SEQ ID NO.:3:

5

10

15

20

```
1
               gctgccgaag tcagttcctt gtggagccgg agctgggcgc ggattcgccg
           51
               aggcaccgag gcactcagag gaggtgagag agcggcggca gacaacaggg
25
          101
               gaccccgggc cggcggccca gagccgagcc aagcgtgccc gcgtgtgtcc
          151
               ctgcgtgtcc gcgaggatgc gtgttcgcgg gtgtgtgctg cgttcacagg
          201
               tgtttctgcg gcaggcgcca tgtcagaacc ggctggggat gtccgtcaga
          251
               acceatgegg cageaaggee tgeegeegee tetteggeee agtggacage
          301
               gagcagctga gccgcgactg tgatgcgcta atggcgggct gcatccagga
30
         351
               ggcccgtgag cgatggaact tcgactttgt caccgagaca ccactggagg
          401
               gtgacttcgc ctgggagcgt gtgcggggcc ttggcctgcc caagctctac
         451
               cttcccacgg ggccccggcg aggccgggat gagttgggag gaggcaggcg
```

```
501
                gcctggcacc tcacctgctc tgctgcaggg gacagcagag gaagaccatg
          551
                tggacctgtc actgtcttgt acccttgtgc ctcgctcagg ggagcaggct
          601
                gaagggtccc caggtggacc tggagactct cagggtcgaa aacggcggca
          651
                gaccagcatg acagatttct accactccaa acgccggctg atcttctcca
 5
          701
                agaggaagcc ctaatccgcc cacaggaagc ctgcagtcct ggaagcgcga
          751
                gggcctcaaa ggcccgctct acatcttctg ccttagtctc agtttgtgtg
          801
                tottaattat tatttgtgtt ttaatttaaa cacctcctca tgtacatacc
          851
                ctggccgccc cctgcccccc agcctctggc attagaatta tttaaacaaa
          901
                aactaggcgg ttgaatgaga ggttcctaag agtgctgggc atttttattt
10
          951
                tatgaaatac tatttaaagc ctcctcatcc cgtgttctcc ttttcctctc
         1001
                teceggaggt tgggtgggee ggetteatge eagetactte etectecea
         1051
                cttgtccgct gggtggtacc ctctggaggg gtgtggctcc ttcccatcgc
         1101
                tgtcacaggc ggttatgaaa ttcacccct ttcctggaca ctcagacctg
         1151
                aattetttt catttgagaa gtaaacagat ggeaetttga aggggeetea
15
         1201
                ccgagtgggg gcatcatcaa aaactttgga gtcccctcac ctcctctaag
         1251
                gttgggcagg gtgaccctga agtgagcaca gcctagggct gagctgggga
         1301
                cctggtaccc tcctggctct tgataccccc ctctgtcttg tgaaggcagg
         1351
                gggaaggtgg ggtcctggag cagaccaccc cgcctgccct catggcccct
         1401
                ctgacctgca ctggggagcc cgtctcagtg ttgagccttt tccctctttg
20
         1451
                gctcccctgt accttttgag gagccccagc tacccttctt ctccagctgg
         1501
                gctctgcaat tcccctctgc tgctgtccct cccccttgtc ctttcccttc
         1551
                agtaccetet cagetecagg tggetetgag gtgeetgtee caececeace
         1601
                cccagctcaa tggactggaa ggggaaggga cacacaagaa gaagggcacc
         1651
                ctagttctac ctcaggcagc tcaagcagcg accgcccct cctctagctq
25
         1701
                tgggggtgag ggtcccatgt ggtggcacag gcccccttga gtggggttat
         1751
                ctctgtgtta ggggtatatg atgggggagt agatctttct aggagggaga
         1801
                cactggcccc tcaaatcgtc cagcgacctt cctcatccac cccatccctc
         1851
                cccagttcat tgcactttga ttagcagcgg aacaaggagt cagacatttt
         1901
                aagatggtgg cagtagaggc tatggacagg gcatgccacg tgggctcata
30
         1951
                tggggctggg agtagttgtc tttcctggca ctaacgttga gcccctggag
         2001
                gcactgaagt gcttagtgta cttggagtat tggggtctga ccccaaacac
         2051
                cttccagctc ctgtaacata ctggcctgga ctgttttctc tcggctcccc
         2101
                atgtgtcctg gttcccgttt ctccacctag actgtaaacc tctcgagggc
         2151
                agggaccaca ccctgtactg ttctgtgtct ttcacagctc ctcccacaat
35
         2201
                gctgaatata cagcaggtgc tcaataaatg attcttagtg actttaaaaa
         2251
               aaaaaaaaa aaaaa
```

Preferred p21 inhibitors of the present invention thus include polynucleotide fragments of **SEQ ID NO: 4** (the antisense complement of **SEQ ID NO.:3**), or allelic or non-human species variants thereof:

SEQ ID NO.:4:

5	1	tttttttt	ttttttttt	aaagtcacta	agaatcattt	attgagcacc
	51	tgctgtatat	tcagcattgt	gggaggagct	gtgaaagaca	cagaacagta
	101	cagggtgtgg	tccctgccct	cgagaggttt	acagtctagg	tggagaaacg
	151	ggaaccagga	cacatgggga	gccgagagaa	aacagtccag	gccagtatgt
	201	tacaggagct	ggaaggtgtt	tggggtcaga	ccccaatact	ccaagtacac
10	251	taagcacttc	agtgcctcca	ggggctcaac	gttagtgcca	ggaaagacaa
	301	ctactcccag	ccccatatga	gcccacgtgg	catgccctgt	ccatagcctc
	351	tactgccacc	atcttaaaat	gtctgactcc	ttgttccgct	gctaatcaaa
	401	gtgcaatgaa	ctggggaggg	atggggtgga	tgaggaaggt	cgctggacga
	451	tttgaggggc	cagtgtctcc	ctcctagaaa	gatctactcc	cccatcatat
15	501	acccctaaca	cagagataac	cccactcaag	ggggcctgtg	ccaccacatg
	551	ggaccctcac	ccccacaget	agaggagggg	gcggtcgctg	cttgagctgc
	601	ctgaggtaga	actagggtgc	ccttcttctt	gtgtgtccct	teceetteca
	651	gtccattgag	ctgggggtgg	gggtgggaca	ggcacctcag	agccacctgg
	701	agctgagagg	gtactgaagg	gaaaggacaa	gggggaggga	cagcagcaga
20	751	ggggaattgc	agagcccagc	tggagaagaa	gggtagctgg	ggctcctcaa
	801	aaggtacagg	ggagccaaag	agggaaaagg	ctcaacactg	agacgggctc
	851	cccagtgcag	gtcagagggg	ccatgagggc	aggcggggtg	gtctgctcca
	901	ggaccccacc	ttccccctgc	cttcacaaga	cagagggggg	tatcaagagc
	951	caggagggta	ccaggtcccc	agctcagccc	taggctgtgc	tcacttcagg
25	1001	gtcaccctgc	ccaaccttag	aggaggtgag	gggactccaa	agtttttgat
	1051	gatgccccca	ctcggtgagg	ccccttcaaa	gtgccatctg	tttacttctc
	1101	aaatgaaaaa	gaattcaggt	ctgagtgtcc	aggaaagggg	gtgaatttca
	1151	taaccgcctg	tgacagcgat	gggaaggagc	cacacccctc	cagagggtac
	1201	cacccagcgg	acaagtgggg	aggaggaagt	agctggcatg	aagccggccc
30	1251	acccaacctc	cgggagagag	gaaaaggaga	acacgggatg	aggaggcttt
	1301	aaatagtatt	tcataaaata	aaaatgccca	gcactcttag	gaacctctca
	1351	ttcaaccgcc	tagtttttgt	ttaaataatt	ctaatgccag	aggctggggg
	1401	gcagggggcg	gccagggtat	gtacatgagg	aggtgtttaa	attaaaacac
	1451	aaataataat	taagacacac	aaactgagac	taaggcagaa	gatgtagagc
35	1501	gggcctttga	ggccctcgcg	cttccaggac	tgcaggcttc	ctgtgggcgg
	1551	attagggctt	cctcttggag	aagatcagcc	ggcgtttgga	gtggtagaaa
	1601	tc <u>tgtcatgc</u>	tggtetgeeg	cc gttttcga	ccctgagagt	ctccaggtcc

```
1651
                acctggggac ccttcagcct gctcccctga gcgaggcaca agggtacaag
         1701
                acagtgacag gtccacatgg tetteetetg etgteecetg cageagagea
                ggtgaggtge caggeegeet geeteeteee aacteateee ggeetegeeg
         1751
         1801
                gggccccgtg ggaaggtaga gcttgggcag gccaaggccc cgcacacgct
 5
         1851
                cccaggcgaa gtcaccetee agtggtgtet eggtgacaaa gtegaagtte
         1901
                categeteae gggeeteetg gatgeageee gecattageg cateaeagte
         1951
                geggeteage tgetegetgt ecaetgggee gaagaggegg eggeaggeet
                tgctgccgca tgggttctga cgg<u>acatccc</u> <u>cagccggttc</u> <u>tgacat</u>ggcg
         2001
                cetgeegeag aaacacetgt gaacgeagea cacaceegeg aacacgeate
         2051
10
         2101
                ctcgcggaca cgcagggaca cacgcgggca cgcttggctc ggctctgggc
                egeeggeeeg gggteeeetg ttgtetgeeg eegetetete aceteetetg
         2151
         2201
                agtgeetegg tgeeteggeg aateegegee eageteegge tecacaagga
         2251
                actgacttcg gcage
```

The murine p21 sequence is provided below:

15 **SEQ ID NO. 5**:

```
gagccgagag gtgtgagccg ccgcggtgtc agagtctagg ggaattggag
           51
                teaggegeag atecacageg atatecagae atteagagee acaggeacea
          101
                tgtccaatcc tggtgatgtc cgacctgttc cgcacaggag caaagtgtgc
                cgttgtctct teggtcccgt ggacagtgag cagttgcgcc gtgattgcga
         151
20
         201
                tgcgctcatg gcgggctgtc tccaggaggc ccgagaacgg tggaactttg
                acttegteae ggagaegeeg etggagggea acttegtetg ggagegegtt
         251
                cggageetag ggetgeecaa ggtetaeetg ageeetgggt eeegeageeg
         301
         351
                tgacgacctg ggaggggaca agaggcccag tacttcctct gccctgctgc
         401
                aggggccage teeggaggae caegtggeet tgtegetgte ttgeaetetg
25
                gtgtctgagc ggcctgaaga ttccccgggt gggcccggaa catctcaggg
         451
                ccgaaaacgg aggcagacca gcctgacaga tttctatcac tccaagcgca
         501
         551
                gattggtett etgeaagaga aaaceetgaa gtgeeeaegg gageeeegee
                ctcttctgct gtgggtcagg aggcctcttc cccatcttcg gccttagccc
         601
                tcactctgtg tgtcttaatt attatttgtg ttttaattta aacgtctcct
         651
30
         701
                gtatatacgc tgcctgccct ctcccagtct ccaaacttaa agttatttaa
                aaaaagaaca aaacaaaaca aaaaaaaacc aaaacaaaac aaacctaaat
         751
         801
                tagtaggacg gtagggccct tagtgtgggg gatttctatt atgtagatta
         851
               ttattattta agcccctccc aacccaagct ctgtgtttcc tataccggag
               gaacagtcct actgatatca acccatctgc atccgtttca cccaaccccc
         901
35
         951
               ctcccccat tccctgcctg gttccttgcc acttcttacc tgggggtgat
               ceteagacet gaatageact ttggaaaaat gagtaggact ttggggtete
         1001
         1051
               cttgtcacct ctaaggccag ctaggatgac agtgaagcag tcacagccta
```

```
1101
                gaacagggat ggcagttagg actcaaccgt aatatcccga ctcttgacat
         1151
                tgctcagacc tgtgaagaca ggaatggtcc ccactctgga tcccctttgc
                cacteetggg gageecacet etectgtggg tetetgeeag etgeecetet
         1201
         1251
                attttggagg gttaatctgg tgatctgctg ctcttttccc ccaccccata
 5
         1301
                cttccccttc tgcaggtcgg caggaggcat atctaggcac ttgccccaca
         1351
               gctcagtgga ctggaaggga atgtatatgc agggtacact aagtgggatt
               ccctggtctt accttaggca gctccagtgg caaccccctg cattgtgggt
         1401
         1451
               ctagggtggg tccttggtgg tgagacaggc ctcccagagc attctatggt
               gtgtggtggt gggggtgggc ttatctggga tggggacccc agttggggtt
         1501
10
         1551
               ctcagtgact teteceattt ettagtagea gttgtacaag gagecaggee
               aagatggtgt cttgggggct aagggagctc acaggacact gagcaatggc
         1601
               tgateettte teagtgttga atacegtggg tgteaaagea ettagtgggt
         1651
        1701
               ctgactccag ccccaaacat ccctgtttct gtaacatcct ggtctggact
         1751
               gtetaceett agecegeace ceaagaacat gtattgtgge teeeteeetg
15
        1801
               totocactoa gattgtaago gtotoacgag aagggacago accotgcatt
        1851
               gtecegagte eteacaceeg acceeaaage tggtgeteaa taaataette
        1901
               tcgatgatt
```

The antisense murine p21 sequence is provided below

SEQ ID NO. 6:

```
20
                aatcatcgag aagtatttat tgagcaccag ctttggggtc gggtgtgagg
                actcgggaca atgcagggtg ctgtcccttc tcgtgagacg cttacaatct
           51
                gagtggagac agggagggag ccacaataca tgttcttggg gtgcgggcta
          101
                agggtagaca gtccagacca ggatgttaca gaaacaggga tgtttggggc
         151
                tggagtcaga cccactaagt gctttgacac ccacggtatt caacactgag
         201
25
                aaaggatcag ccattgctca gtgtcctgtg agctccctta gcccccaaga
         251
                caccatcttg gcctggctcc ttgtacaact gctactaaga aatgggagaa
         301
         351
                gtcactgaga accccaactg gggtccccat cccagataag cccaccccca
                ccaccacaca ccatagaatg ctctgggagg cctgtctcac caccaaggac
         401
                ccaccctaga cccacaatgc agggggttgc cactggagct gcctaaggta
         451
30
               agaccaggga atcccactta gtgtaccctg catatacatt cccttccagt
         501
               ccactgagct gtggggcaag tgcctagata tgcctcctgc cgacctgcag
         551
         601
               aaggggaagt atggggtggg ggaaaagagc agcagatcac cagattaacc
         651
               ctccaaaata gaggggcagc tggcagagac ccacaggaga ggtgggctcc
         701
               ccaggagtgg caaaggggat ccagagtggg gaccattcct gtcttcacag
35
         751
               gtctgagcaa tgtcaagagt cgggatatta cggttgagtc ctaactgcca
         801
               tecetgttet aggetgtgae tgetteaetg teatectage tggeettaga
         851
               ggtgacaagg agaccccaaa gtcctactca tttttccaaa gtgctattca
```

```
901
                ggtctgagga tcacccccag gtaagaagtg gcaaggaacc aggcagggaa
         951
                tggggggagg ggggttgggt gaaacggatg cagatgggtt gatatcagta
         1001
                ggactgttcc tccggtatag gaaacacaga gcttgggttg ggaggggctt
         1051
                aaataataat aatctacata atagaaatcc cccacactaa gggccctacc
 5
                gtcctactaa tttaggtttg ttttgttttg gtttttttt gttttgtttt
         1101
         1151
                gttctttttt taaataactt taagtttgga gactgggaga gggcaggcag
         1201
                cgtatataca ggagacgttt aaattaaaac acaaataata attaagacac
         1251
                acagagtgag ggctaaggcc gaagatgggg aagaggcctc ctgacccaca
         1301
                gcagaagagg gcggggctcc cgtgggcact tcagggtttt ctcttgcaga
10
         1351
                agaccaatct gcgcttggag tgatagaaat ctgtcaggct ggtctgcctc
                egttttcggc cctgagatgt tccgggccca cccggggaat cttcaggccg
         1401
         1451
                ctcagacacc agagtgcaag acagcgacaa ggccacgtgg tcctccggag
         1501
                ctggcccctg cagcagggca gaggaagtac tgggcctctt gtcccctccc
         1551
                aggtegteae ggetgeggga eccagggete aggtagaeet tgggeageee
15
         1601
                taggeteega aegegeteee agaegaagtt geeeteeage ggegteteeg
         1651
                tgacgaagtc aaagttccac cgttctcggg cctcctggag acagcccgcc
         1701
                atgagegeat egeaateaeg gegeaaetge teaetgteea egggaeegaa
         1751
                gagacaacgg cacactttgc teetgtgegg aacaggtegg acateaceag
                gattggacat ggtgcctgtg gctctgaatg tctggatatc gctgtggatc
         1801
20
                tgcgcctgac tccaattccc ctagactctg acaccgcggc ggctcacacc
        1851
        1901
               tctcggctc
```

Of particular interest are antisense oligonucleotides that are have a nucleotide sequence of 10, and more preferably 20, nucleotides within the sequence 1751-1850 or 1351-1450 of SEQ ID NO.:6, or of variants or fragments thereof that possess the ability to inhibit p21 expression and/or HIV replication or 25 transmission. Such variants include oligonucleotides that are complementary to a corresponding region of the human p21 gene, or to non-human homologs as well as oligonucleotides that are composed of at least 10 of the nucleotide residues of 1751-1850 or 1351-1450 of SEQ ID NO.: 6. As an example, SEQ ID NO.:7: 5'-30 TGTCAGGCTGGTCTGCCTCC-3', is an antisense oligonucleotide of SEQ ID NO.: 6 (shown underlined in SEQ ID NO.: 6) that possesses the ability to inhibit p21 expression and/or HIV replication or transmission. An example of a variant of this sequence is the corresponding sequence of the human p21 antisense sequence: SEQ ID NO. 8: TGTCATGC TGGTCTGCCG CC, shown underlined in SEQ ID NO.:4).

35

As a further example, the antisense oligonucleotide, **SEQ ID NO.** 9: 5'-ACATCACCAGGATTGGACAT-3', is fragment of **SEQ ID NO.**: 6 (shown double underlined in **SEQ ID NO.**: 6) that possesses the ability to inhibit human p21 expression and/or HIV replication or transmission. An example of a variant of this sequence is the corresponding sequence of the human p21 antisense sequence: **SEQ ID NO.** 10: ACATCCCCAGCCGGTTCTGACAT, shown double underlined in **SEQ ID NO.**:4).

Additional examples of preferrred p21 inhibitors of the present invention include polynucleotide fragments of **SEQ ID NO.: 11** (the antisense complement of the promoter region of the p21 gene (**SEQ ID NO.:12**)) or allelic or non-human species variants thereof, as well as promoter blockers, and other transcriptional or translational represssors of the p21 gene.

SEQ ID NO.:11

- 1 accateceet teeteacetg aaaacaggea geecaaggae aaaatageea 15 51 ceageetett etatgeeaga geteaacatg ttgggacatg tteetgaegg
 - 101 ccagaaagcc aatcagagcc acagcctgct gcccaagcat gttcctggga
 - 151 agcaggcagc atagggatgg agggaggctc agcctggggg aacaagagtg
 - 201 cc

5

10

SEO ID NO.:12

- 20 1 ggcactcttg ttcccccagg ctgagcctcc ctccatccct atgctgcctg
 - 51 cttcccagga acatgcttgg gcagcaggct gtggctctga ttggctttct
 - 101 ggccgtcagg aacatgtccc aacatgttga gctctggcat agaagaggct
 - 151 ggtggctatt ttgtccttgg gctgcctgtt ttcaggtgag gaaggggatg
 - 201 gt

Additional examples of preferrred p21 inhibitors of the present invention include protein and other non-polynucleotide inhibitors of transcription, translation of the p21 gene, inhibitory p21 mimetics, or or inhibitors of the transport or processing of the expressed p21 gene product (SEQ ID NO.: 13).

SEQ ID NO.: 13:

- 1 MSEPAGDVRQ NPCGSKACRR LFGPVDSEQL SRDCDALMAG CIQEARERWN
- 51 FDFVTETPLE GDFAWERVRG LGLPKLYLPT GPRRGRDELG GGRRPGTSPA
- 101 LLQGTAEEDH VDLSLSCTLV PRSGEQAEGS PGGPGDSQGR KRRQTSMTDF
- 151 YHSKRRLIFS

5

20

25

Preferred inhibitors thus include triterpenoids, especially oleanane triterpenoids, and particularly the oleanane triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), and analogs thereof (see, for example, Stadheim, T.A. et al. (2002) "THE NOVEL TRITERPENOID 2-CYANO-3,12-DIOXOOLEANA-1,9-10 DIEN-28-OIC ACID (CDDO) POTENTLY ENHANCES APOPTOSIS INDUCED BY TUMOR NECROSIS FACTOR IN HUMAN LEUKEMIA CELLS," J Biol Chem. 277:16448-16455: Suh, N. et al. (1999) "A NOVEL SYNTHETIC OLEANANE TRITERPENOID, 2-CYANO-3,12-DIOXOOLEAN-1,9-DIEN-28-OIC ACID, WITH POTENT DIFFERENTIATING, ANTIPROLIFERATIVE, AND ANTI-INFLAMMATORY ACTIVITY," Cancer Res. 59:336-15 341). Also suitable are terivatives and salts of such compounds, for example, 1[2cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) (Place, W.A. et al. (2003) "The Novel Synthetic Triterpenoid, CDDO-Imidazolide, Inhibits Inflammatory Response and Tumor Growth in Vivo," Clinical Cancer Research 9:2798-2806).

Molecules that inhibit or otherwise interfere with p21 function include binding ligands of p21 protein, including antibodies, or fragments thereof that bind to p21 protein. Suitable antibodies may be derived from human antisera, from non-human mammalian origin, or may be monoclonal, recombinant, single-chain, or humanized. Antigen-binding fragments of such antibodies (e.g., Fab and F(ab)₂ fragments) may alternatively be employed. If desired, such administration can be provided in concert with other p21 inhibitors.

Compositions of the Present Invention

In one embodiment of the present invention, non-polynucleotide p21 inhibitors may be employed. Alternatively, or conjuctively, one or more of the

above-described p21 inhibitor molecules will comprise a polynucleotide or polynucleotide construct that may be administered to a recipient prior to the commencement of HIV infection, or subsequent to the onset of such infection. In accordance with the methods of the present invention, a single polynucleotide, polynucleotide construct, or composition comprising a polynucleotide or polynucleotide construct containing more than one polynucleotide sequence encoding one or more molecules may be administered. Alternatively, more than one polynucleotide, polynucleotide construct, or composition comprising a polynucleotide or polynucleotide construct, each containing polynucleotide sequences encoding one or more molecules may be co-administered or sequentially administered.

5

10

15

20

25

30

If the p21 inhibitor compound(s) of the present invention is/are administered as a pharmaceutical composition, such pharmaceutical composition can be formulated according to known methods for preparing pharmaceutical compositions, whereby the substance to be delivered is combined with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their preparation are described, for example, in Remington's Pharmaceutical Sciences, 16th Edition, A. Osol, Ed., Mack Publishing Co., Easton, Pa. (1980), and Remington's Pharmaceutical Sciences, 19th Edition, A. R. Gennaro, Ed., Mack Publishing Co., Easton, Pa. (1995).

The amount of a polynucleotide or polynucleotide construct or other p21 inhibitor included in such a composition depends on factors including the age and weight of the subject, the delivery method and route, the type of treatment desired, and the type of polynucleotide or polynucleotide construct or other p21 inhibitor being administered. In general, a composition of the present invention that includes polynucleotide or polynucleotide constructs will contain from about 1 ng to about 30 mg of such polynucleotide or polynucleotide construct, more preferably, from about 100 ng to about 10 mg of such polynucleotide or polynucleotide construct. Certain preferred compositions of the present invention may include about 1 ng of such polynucleotide or polynucleotide construct, about 5

5

10

15

20

25

30

ng of such polynucleotide or polynucleotide construct, about 10 ng of such polynucleotide or polynucleotide construct, about 50 ng of such polynucleotide or polynucleotide construct, about 100 ng of such polynucleotide or polynucleotide construct, about 500 ng of such polynucleotide or polynucleotide construct, about 1 μg of such polynucleotide or polynucleotide construct, about 5 μg of such polynucleotide or polynucleotide construct, about 10 µg of such polynucleotide or polynucleotide construct, about 50 µg of such polynucleotide or polynucleotide construct, about 100 µg of such polynucleotide or polynucleotide construct, about 150 µg of such polynucleotide or polynucleotide construct, about 200 µg of such polynucleotide or polynucleotide construct, about 250 µg of such polynucleotide or polynucleotide construct, about 300 µg of such polynucleotide or polynucleotide construct, about 350 µg of such polynucleotide or polynucleotide construct, about 400 μg of such polynucleotide or polynucleotide construct, about 450 μg of such polynucleotide or polynucleotide construct, about 500 µg of a polynucle-otide, about 550 µg of such polynucleotide or polynucleotide construct, about 600 µg of such polynucleotide or polynucleotide construct, about 650 µg of such polynucleotide or polynucleotide construct, about 700 µg of such polynucleotide or polynucleotide construct, about 750 μg of such polynucleotide or polynucleotide construct, about 800 µg of such polynucleotide or polynucleotide construct, about 850 µg of a polynucle-otide, about 900 µg of such polynucleotide or polynucleotide construct, about 950 µg of such polynucleotide or polynucleotide construct, about 1 mg of such polynucleotide or polynucleotide construct, about 5 mg of such polynucleotide or polynucleotide construct, about 10 mg of such polynucleotide or polynucleotide construct, about 15 mg of such polynucleotide or polynucleotide construct, about 20 mg of such polynucleotide or polynucleotide construct, about 25 mg of such polynucleotide or polynucleotide construct, or about 30 mg of such polynucleotide or polynucleotide construct.

Nucleic acids and/or polynucleotides and/or polynucleotide constructs of the present invention, e.g., plasmid DNA, derivatives of plasmid DNA, mRNA, linear DNA, viral genomes, or polynucleotide fragments contained therein may be formulated into any of the various compositions and may be used in any of the methods disclosed herein. As used herein, the term "polynucleotide fragment" refers to a polynucleotide that is either a portion of a gene, cDNA or RNA molecule, or a complement of such molecules, and which possesses a length of at least 10 nucleotide residues, at least 15 nucleotide residues, at least 20 nucleotide residues, at least 25 nucleotide residues, at least 35 nucleotide residues, at least 50 nucleotide residues, at least 75 nucleotide residues, at least 100 nucleotide residues, at least 150 nucleotide residues, or at least 200 nucleotide residues.

5

10

15

20

25

For aqueous compositions used in vivo, use of sterile pyrogen-free water is preferred. Such formulations will contain an effective amount of such polynucleotide or polynucleotide construct together with a suitable salt and/or auxiliary agent as disclosed herein, in order to prepare pharmaceutically acceptable compositions suitable for optimal administration to a vertebrate. Insoluble polynucleotides or polynucleotide constructs may be solubilized in a weak acid or weak base, and then diluted to the desired volume, for example, with an aqueous solution of the present invention. The pH of the solution may be adjusted as appropriate. In addition, a pharmaceutically acceptable additive can be used to provide an appropriate osmolarity.

As used herein a "salt" is a substance produced from the reaction between acids and bases which comprises a metal (cation) and a nonmetal (anion). Salt crystals may be "hydrated" i.e., contain one or more water molecules. Such hydrated salts, when dissolved in an aqueous solution at a ceratin molar concentration, are equivalent to the corresponding anhydrous salt dissolved in an aqueous solution at the same molar concentration. For the present invention, salts which are readily soluble in an aqueous solution are preferred.

The terms "saline" or "normal saline" as used herein refer to an aqueous solution of about 145 mM to about 155 mM sodium chloride, preferably about 154 mM sodium chloride. The terms "phosphate buffered saline" or PBS" refer to an aqueous solution of about 145 mM to about 155 mM sodium chloride, preferably

about 154 sodium chloride, and about 10 mM sodium phosphate, at a pH ranging from about 6.0 to 8.0, preferably at a pH ranging from about 6.5 to about 7.5, most preferably at pH 7.2.

5

10

15

20

25

Such compositions of the present invention may include one or more transfection facilitating materials that facilitate delivery of polynucleotides or polynucleotide constructs to the interior of a cell, and/or to a desired location within a cell. Examples of the transfection facilitating materials include, but are not limited to lipids, preferably cationic lipids; inorganic materials such as calcium phosphate, and metal (e.g., gold or tungsten) particles (e.g., "powder" type delivery solutions); peptides, including cationic peptides, targeting peptides for selective delivery to certain cells or intracellular organelles such as the nucleus or nucleolus, and amphipathic peptides, i.e. helix forming or pore forming peptides; basic proteins, such as histories; asialoproteins; viral proteins (e.g., Sendai virus coat protein); pore-forming proteins; and polymers, including dendrimers, starpolymers, "homogenous" poly-amino acids (e.g., poly-lysine, poly-arginine), "heterogenous" poly-amino acids (e.g., mixtures of lysine & glycine), copolymers, polyvinylpyrrolidinone (PVP), and polyethylene glycol (PEG). Furthermore, those auxiliary agents of the present invention which facilitate and enhance the entry of a polynucleotide or polynucleotide construct into vertebrate cells in vivo, may also be considered "transfection facilitating materials."

Certain embodiments of the present invention may include lipids as a transfection facilitating material, including cationic lipids (e.g., DMRIE, DOSPA, DC-Chol, GAP-DLRIE), basic lipids (e.g., steryl amine), neutral lipids (e.g., cholesterol), anionic lipids (e.g., phosphatidyl serine), and zwitterionic lipids (e.g., DOPE, DOPC).

Examples of cationic lipids are 5-carboxyspermylglycine dioctadecylamide (DOGS) and dipalmitoyl-phophatidylethanolamine-5-carboxy- spermylamide (DPPES). Cationic cholesterol derivatives are also useful, including {3 β-[N-N',N'-dimethylamino)ethane]-carbomoyl}-cholesterol (DC-Chol). Dimethyldioctdecyl-

ammonium bromide (DDAB), N-(3-aminopropyl)-N,N-(bis-(2-tetradecyloxyethyl))-N-methyl-ammonium bromide (PADEMO), N-(3-aminopropyl)-N,N-(bis-(2-dodecyloxyethyl))-N-methy- l-ammonium bromide (PADELO), N,N,N-tris-(2-dodecyloxy)ethyl-N-(3-amino)pro- pyl-ammonium bromide (PATELO), and N₁-(3-aminopropyl)((2-dodecyloxy)e- thyl)-N₂-(2-dodecyloxy)ethyl-1-piperazinaminium bromide (GALOE-BP) can also be employed in the present invention.

5

10

Non-diether cationic lipids, such as DL-1,2-dioleoyl-3-dimethylamin-opropyl-β-hydroxyethylammonium (DORI diester), 1-O-oleyl-2-oleoyl-3-dimethylaminopropyl-β-hydroxyethylammonium (DORI ester/ether), and their salts promote in vivo gene delivery. Preferred cationic lipids comprise groups attached via a heteroatom attached to the quaternary ammonium moiety in the head group. A glycyl spacer can connect the linker to the hydroxyl group.

Cationic lipids for use in certain embodiments of the present invention include DMRIE ((±)-N-(2-hydroxyethyl)-N,N-dimethyl-2-,3-bis(tetradecyloxy)-1-15 propanaminium bromide), and GAP-DMORIE ((+)-N-(3-aminopropyl)-N,Ndimethyl-2,3-bis(syn-9-tetradeceneyloxy)-1-pro- panaminium bromide), as well as (±)-N,N-dimethyl-N-[2-(sperminecarboxamido)et- hyl]-2,3-bis(dioleyloxy)-1propaniminium pentahydrochloride (DOSPA), (±)-N-(2-aminoethyl)-N,N-20 dimethyl-2,3-bis(tetradecyloxy)-1-propanimini- um bromide (β-aminoethyl-DMRIE or βAE-DMRIE) (Wheeler, et al., Biochim. Biophys. Acta 1280:1-11 (1996)), and (±)-N-(3-aminopropyl)-N,- N-dimethyl-2,3-bis(dodecyloxy)-1propaniminium bromide (GAP-DLRIE) (Wheeler, et al., Proc. Natl. Acad. Sci. USA 93:11454-11459 (1996)), which have been developed from DMRIE. Other 25 examples of DMRIE-derived cationic lipids that are useful for the present invention are (±)-N-(3-aminopropyl)-N,N-dimethyl-2,3-(bis-- decyloxy)-1propanaminium bromide (GAP-DDRIE), (±)-N-(3-aminopropyl)-N,- N-dimethyl-2,3-(bis-tetradecyloxy)-1-propanaminium bromide (GAP-DMRIE), (±)-N-((N"methyl)-N'-ureyl)propyl-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium 30 bromide (GMU-DMRIE), (±)-N-(2-hydroxyethyl)-N,N-dimeth-yl-2,3bis(dodecyloxy)-1-propanaminium bromide (DLRIE), and (\pm)-N-(2-hydroxyethyl)-N,N-dimethyl-2,3-bis-([Z]-9-octadecenyloxy)prop- yl-1-propaniminium bromide (HP-DORIE).

5

10

15

20

25

30

A cationic lipid that may be used in concert with the p21 inhibitor polynucleotide compositions of the present invention is a "cytofectin." As used herein, a "cytofectin" refers to a subset of cationic lipids which incorporate certain structural features including, but not limited to, a quaternary ammonium group and/or a hydrophobic region (usually with two or more alkyl chains), but which do not require amine protonation to develop a positive charge. Examples of cytofectins may be found, for example, in U.S. Patent No. 5,861,397. Cytofectins that may be used in the present invention, include DMRIE ((±)-N-(2-hydroxyethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-pr- opanaminium bromide), GAP-DMORIE ((±)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradeceneyloxy)-1-propanaminium bromide), and GAP-DLRIE ((±)-N-(3-aminopropyl)-N,N-dimethyl-2,3-(bis-dodecyloxy)-1-propanamini- um bromide).

The cationic lipid may be mixed with one or more co-lipids. The term "co-lipid" refers to any hydrophobic material which may be combined with the cationic lipid component and includes amphipathic lipids, such as phospholipids, and neutral lipids, such as cholesterol. Cationic lipids and co-lipids may be mixed or combined in a number of ways to produce a variety of non-covalently bonded macroscopic structures, including, for example, liposomes, multilamellar vesicles, unilamellar vesicles, micelles, and simple films. A preferred class of co-lipids are the zwitterionic phospholipids, which include the phosphatidylethanolamines and the phosphatidylcholines. Most preferably, the co-lipids are phosphatidylethanolamines, such as, for example, DOPE, DMPE and DPyPE. DOPE and DPyPE are particularly preferred. For immunization, the most preferred co-lipid is DPyPE, which comprises two phytanoyl substituents incorporated into the diacylphosphatidylethanolamine skeleton. The cationic lipid:co-lipid molar ratio may range from about 9:1 to about 1:9, or from about 4:1 to about 1:4, or from about 2:1 to about 1:2, or about 1:1. In order to maximize homogeneity, such

cationic lipid and co-lipid components may be dissolved in a solvent such as chloroform, followed by evaporation of the cationic lipid/co-lipid solution under vacuum to dryness as a film on the inner surface of a glass vessel (e.g., a Rotovap round-bottomed flask). Upon suspension in an aqueous solvent, the amphipathic lipid component molecules self-assemble into homogenous lipid vesicles. These lipid vesicles may subsequently be processed to have a selected mean diameter of uniform size prior to complexing with, for example, plasmid DNA according to methods known to those skilled in the art. For example, the sonication of a lipid solution is described in Felgner, P.L., *et al.* (1987) "LIPOFECTION: A HIGHLY EFFICIENT, LIPID-MEDIATED DNA-TRANSFECTION PROCEDURE," Proc. Natl. Acad. Sci. USA 84:7413-7417 and in U.S. Patent No. 5,264,618.

5

10

15

20

25

30

In some embodiments, such polynucleotide or polynucleotide construct(s) are combined with lipids by mixing, for example, a plasmid DNA solution and a solution of cationic lipid:co-lipid liposomes. Preferably, the concentration of each of the constituent solutions is adjusted prior to mixing such that the desired final plasmid DNA/cationic lipid:co-lipid ratio and the desired plasmid DNA final concentration will be obtained upon mixing the two solutions. For example, if the desired final solution is to be 2.5 mM sodium phosphate, the various components of the composition, e.g., plasmid DNA, cationic lipid:co-lipid liposomes, and any other desired auxiliary agents, transfection facilitating materials, or additives are each prepared in 2.5 mM sodium phosphate and then simply mixed to afford the desired complex. Alternatively, if the desired final solution is to be, e.g., 2.5 mM sodium phosphate, certain components of the composition, e.g., the auxiliary agent and/or cationic lipid:co-lipid liposomes, is prepared in a volume of water which is less than that of the final volume of the composition, and certain other components of the composition, e.g., the plasmid DNA, is prepared in a solution of sodium phosphate at a higher concentration than 2.5 mM, in a volume such that when the components in water are added to the components in the sodium phosphate solution, the final composition is in an aqueous solution of 2.5 mM sodium phosphate. For example, the plasmid DNA could be prepared in 5.0 mM sodium

phosphate at one half the final volume, the auxiliary agent and/or cationic lipid:co-lipid liposome is prepared in water at one half the final volume, and then these two elements are mixed together to produce the final composition. The cationic lipid:co-lipid liposomes are preferably prepared by hydrating a thin film of the mixed lipid materials in an appropriate volume of aqueous solvent by vortex mixing at ambient temperatures for about 1 minute. The thin films are prepared by admixing chloroform solutions of the individual components to afford a desired molar solute ratio followed by aliquoting the desired volume of the solutions into a suitable container. The solvent is removed by evaporation, first with a stream of dry, inert gas (e.g. argon) followed by high vacuum treatment.

5

10

30

A transfection facilitating material can be used alone or in combination with one or more other transfection facilitating materials. Two or more transfection facilitating materials can be combined by chemical bonding (e.g, covalent and ionic such as in lipidated polylysine, PEGylated polylysine) (Toncheva, V., et al. 15 (1998) "NOVEL VECTORS FOR GENE DELIVERY FORMED BY SELF-ASSEMBLY OF DNA WITH POLY(L-LYSINE) GRAFTED WITH HYDROPHILIC POLYMERS," Biochim. Biophys. Acta 1380(3):354-368), mechanical mixing (e.g., free moving materials in liquid or solid phase such as "polylysine+cationic lipids") (Gao, X. et al. (1996) "POTENTIATION OF CATIONIC LIPOSOME-MEDIATED GENE DELIVERY BY 20 POLYCATIONS," Biochemistry 35:1027-1036); Trubetskoy, V.S., et al. (1992) "CATIONIC LIPOSOMES ENHANCE TARGETED DELIVERY AND EXPRESSION OF EXOGENOUS DNA MEDIATED BY N-TERMINAL MODIFIED POLY(L-LYSINE)-ANTIBODY CONJUGATE IN MOUSE LUNG ENDOTHELIAL CELLS," Biochem. Biophys. Acta 1131:311-313), and aggregation (e.g., co-precipitation, gel forming such as in 25 cationic lipids+poly-lactide co-galactide, and polylysine+gelatin).

Other hydrophobic and amphiphilic additives, such as, for example, sterols, fatty acids, gangliosides, glycolipids, lipopeptides, liposaccharides, neobees, niosomes, prostaglandins and sphingolipids, may also be included in the compositions of the present invention. In such compositions, these additives may be included in an amount between about 0.1 mol % and about 99.9 mol % (relative

to total lipid). Preferably, these additives comprise about 1-50 mol % and, most preferably, about 2-25 mol %. Preferred additives include lipopeptides, liposaccharides and steroids.

5

10

15

20

25

30

In embodiments of the present invention in which non-polynucleotide p21 inhibitors are provided, such compounds can be formulated according to known methods for preparing such pharmaceutical compositions, whereby the substance to be delivered is combined with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their preparation are described, for example, in Remington's Pharmaceutical Sciences, 16th Edition, A. Osol, Ed., Mack Publishing Co., Easton, Pa. (1980), and Remington's Pharmaceutical Sciences, 19th Edition, A. R. Gennaro, Ed., Mack Publishing Co., Easton, Pa. (1995). The amount of such compounds included in such a composition depends on factors including the age and weight of the subject, the delivery method and route, the type of treatment desired, and the type of polynucleotide or polynucleotide construct or other p21 inhibitor being administered. In general, a composition of the present invention that includes such inhibitors will contain from about 1 ng to about 30 mg, and more preferably, from about 100 ng to about 10 mg of such inhibitor. Certain preferred compositions of the present invention may include about 1 ng of such inhibitor, about 5 ng of such inhibitor, about 10 ng of such inhibitor, about 50 ng of such inhibitor, about 100 ng of such inhibitor, about 500 ng of such inhibitor, about 1 µg of such inhibitor, about 5 μg of such inhibitor, about 10 μg of such inhibitor, about 50 μg of such inhibitor, about 100 μg of such inhibitor, about 150 μg of such inhibitor, about 200 μg of such inhibitor, about 250 μg of such inhibitor, about 300 μg of such inhibitor, about 350 μg of such inhibitor, about 400 μg of such inhibitor, about 450 μg of such inhibitor, about 500 μg of a polynucle-otide, about 550 μg of such inhibitor, about 600 µg of such inhibitor, about 650 µg of such inhibitor, about 700 μg of such inhibitor, about 750 μg of such inhibitor, about 800 μg of such inhibitor, about 850 µg of a polynucle-otide, about 900 µg of such inhibitor, about 950 µg of such inhibitor, about 1 mg of such inhibitor, about 5 mg of such inhibitor, about 10 mg of such inhibitor, about 15 mg of such inhibitor, about 20

mg of such inhibitor, about 25 mg of such inhibitor, or about 30 mg of such inhibitor.

Such compositions may be formulated into any of the various compositions and may be used in any of the methods disclosed herein. For aqueous compositions used in vivo, use of sterile pyrogen-free water is preferred. Such formulations will contain an effective amount of such inhibitor together with a suitable salt and/or auxiliary agent as disclosed herein, in order to prepare pharmaceutically acceptable compositions suitable for optimal administration to a vertebrate. Insoluble inhibitors may be solubilized in a weak acid or weak base, and then diluted to the desired volume, for example, with an aqueous solution of the present invention. The pH of the solution may be adjusted as appropriate. In addition, a pharmaceutically acceptable additive can be used to provide an appropriate osmolarity. Alternatively, lipids and lipid vehicles (as discussed above) may be used to facilitate the inhibitor administration. Other hydrophobic and amphiphilic additives, such as, for example, sterols, fatty acids, gangliosides, glycolipids, lipopeptides, liposaccharides, neobees, niosomes, prostaglandins and sphingolipids, may also be included in such compositions of the present invention. In such compositions, these additives may be included in an amount between about 0.1 mol % and about 99.9 mol % (relative to total lipid). Preferably, these additives comprise about 1-50 mol % and, most preferably, about 2-25 mol %. Preferred additives include lipopeptides, liposaccharides and steroids.

Pharmaceutical Compositions

5

10

15

20

25

The pharmaceutical composition of the present invention may be in the form of an emulsion, gel, solution, suspension, etc. In addition, the pharmaceutical composition can also contain pharmaceutically acceptable additives including, for example, diluents, binders, stabilizers, and preservatives. Administration of pharmaceutically acceptable salts of the polynucleotides described herein is preferred. Such salts can be prepared from pharmaceutically acceptable non-toxic bases including organic bases and inorganic bases. Salts derived from inorganic

bases include sodium, potassium, lithium, ammonium, calcium, magnesium, and the like. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, basic amino acids, and the like. Preferred salts include but are not limited to sodium phosphate, sodium acetate, sodium bicarbonate, sodium sulfate, sodium pyruvate, potassium phosphate, potassium acetate, potassium bicarbonate, potassium sulfate, potassium pyruvate, disodium DL-α-glycerol-phosphate, and disodium glucose-6-phosphate. "Phosphate" salts of sodium or potassium can be either the monobasic form, e.g., NaHPO₄, or the dibasic form, e.g., Na₂HPO₄, but a mixture of the two, resulting in a desired pH, is most preferred. The most preferred salts are sodium phosphate or potassium phosphate. As used herein, the terms "sodium phosphate" or "potassium phosphate," refer to a mixture of the dibasic and monobasic forms of each salt to present at a given pH.

5

10

15

20

25

30

Additional embodiments of the present invention are drawn to pharmaceutical compositions comprising one or more p21 inhibitor molecules and an auxiliary agent. The present invention is further drawn to methods to use such compositions, methods of making such compositions, and pharmaceutical kits. As used herein, an "auxiliary agent" is a substance included in a composition for its ability to enhance, relative to a composition which is identical except for the inclusion of the auxiliary agent, the effectiveness of a p21 inhibitor molecule. Auxiliary agents of the present invention include nonionic, anionic, cationic, or zwitterionic surfactant or detergents, with nonionic surfactant or detergents being preferred, chelators, DNAse inhibitors, agents that aggregate or condense nucleic acids, emulsifying or solubilizing agents, wetting agents, gel-forming agents, and buffers.

Suitable auxiliary agents include non-ionic detergents and surfactant such as poloxaners. Poloxamers are a series of non-ionic surfactant that are block copolymers of ethylene oxide and propylene oxide. The poly(oxyethylene) segment is hydrophillic and the poly(oxypropylene) segment is hydrophobic. The

physical forms are liquids, pastes or solids. The molecular weight ranges from 1000 to greater than 16000. The basic structure of a poloxaner is HO-- $[CH_2CH_2O]_x$ -- $[CH_2CHO(CH_3)]_y$ -- $[CH_2CH_2O]_x$ --H, where x and y represent repeating units of ethylene oxide and propylene oxide respectively. Thus, the propylene oxide (PO) segment is sandwiched between two ethylene oxide (EO) segments, (EO--PO--EO). The number of x's and y's distinguishes individual poloxamers. If the ethylene oxide segment is sandwiched between two propylene oxide segments, (PO--EO--PO), then the resulting structure is a reverse poloxaner. The basic structure of a reverse poloxamer is HO-- $[CH(CH_3)CH_2O)]_x$ -- $[CH_2CH_2O]_y$ -- $[CH_2C-HO(CH_3)]_x$ --H.

5

10

30

Poloxmers that may be used in concert with the methods and compositions of the present invention include, but are not limited to commercially available poloxamers such as Pluronic® L121 (avg. MW:4400), Pluronic® L101 (avg. MW:3800), Pluronic® L81 (avg. MW:2750), Pluronic® L61 (avg. MW:2000), 15 Pluronic® L31 (avg. MW: 1100), Pluronic® L122 (avg. MW:5000), Pluronic® L92 (avg. MW:3650), Pluronic® L72 (avg. MW:2750), Pluronic® L62 (avg. MW:2500), Pluronic® L42 (avg. MW:1630), Pluronic® L63 (avg. MW:2650), Pluronic® L43 (avg. MW: 1850), Pluronic® L64 (avg. MW:2900), Pluronic® L44 (avg. MW:2200), Pluronic® L35 (avg. MW:1900), Pluronic® P123 (avg. 20 MW:5750), Pluronic® P103 (avg. MW:4950), Pluronic® P104 (avg. MW:5900), Pluronic® P84 (avg. MW:4200), Pluronic® P105 (avg. MW:6500), Pluronic® P85 (avg. MW:4600), Pluronic® P75 (avg. MW:4150), Pluronic® P65 (avg. MW:3400), Pluronic® F127 (avg. MW: 12600), Pluronic® F98 (avg. MW: 13000), Pluronic® F87 (avg. MW:7700), Pluronic® F77 (avg. MW:6600), 25 Pluronic® F 108 (avg. MW: 14600), Pluronic® F98 (avg. MW: 13000), Pluronic® F88 (avg. MW:11400), Pluronic® F68 (avg. MW:8400), and Pluronic® F38 (avg. MW:4700).

Reverse poloxamers of the present invention include, but are not limited to Pluronic® R31R1 (avg. MW:3250), Pluronic® R 25R1 (avg. MW:2700), Pluronic® R17R1 (avg. MW:1900), Pluronic® R31R2 (avg. MW:3300),

Pluronic® R25R2 (avg. MW:3100), Pluronic® R17R2 (avg. MW:2150), Pluronic® R12R3 (avg. MW:1800), Pluronic® R31R4 (avg. MW:4150), Pluronic® R25R4 (avg. MW:3600), Pluronic® R22R4 (avg. MW:3350), Pluronic® R17R4 (avg. MW:3650), Pluronic® R25R5 (avg. MW:4320), Pluronic® R10R5 (avg. MW:1950), Pluronic® R25R8 (avg. MW:8850), Pluronic® R17R8 (avg. MW:7000), Pluronic® R10R8 (avg. MW:4550).

5

10

15

20

25

Other commercially available poloxamers include compounds that are block copolymer of polyethylene and polypropylene glycol such as Synperonic® L121, Synperonic® L122, Synperonic® P104, Synperonic® P105, Synperonic® P123, Synperonic® P85, and Synperonic® P94; and compounds that are nonylphenyl polyethylene glycol such as Synperonic® NP10, Synperonic® NP30, and Synperonic® NP5.

Suitable auxiliary agents include non-ionic detergents and surfactants such as Pluronic® F68, Pluronic® F77, Pluronic® F108, Pluronic® F127, Pluronic® P65, Pluronic® P85, Pluronic® P103, Pluronic® P104, Pluronic® P105, Pluronic® P123, Pluronic® L31, Pluronic® L43, Pluronic® L44, Pluronic® L61, Pluronic® L62, Pluronic® L64, Pluronic® L81, Pluronic® L92, Pluronic® L101, Pluronic® L121, Pluronic® R17R4, Pluronic® R25R4, Pluronic® R25R2, IGEPAL CA 630®, NONIDET NP-40, Nonidet® P40, Tween-20®, Tween-80®, Triton X-100®, Triton X-114.TM., Thesit®; the anionic detergent sodium dodecyl sulfate (SDS); the sugar stachyose; the condensing agent DMSO; and the chelator/DNAse inhibitor EDTA. Even more preferred are the auxiliary agents Nonidet® P40, Triton X-100®, Pluronic® F68, Pluronic® F77, Pluronic® F108, Pluronic® P65, Pluronic® P103, Pluronic® L31, Pluronic® L44, Pluronic® L61, Pluronic® L64, Pluronic® L92, Pluronic® R17R4, Pluronic® R25R4 and Pluronic® R25R2. Most preferred auxiliary agent is Pluronic® R25R2.

Optimal concentrations of auxiliary agents of the present invention are disclosed in U.S. Patent Application Publication No. 20020019358 and PCT Publication WO0180897A3. For example, in certain embodiments,

pharmaceutical compositions of the present invention comprise about 5 ng to about 30 mg of a suitable polynucleotide or a polynucleotide construct, and/or a non-polynucleotide p21 inhibitor, and about 0.001% (w/v) to about 2.0% (w/v) of Pluronic® R 25R4, preferably about 0.002% (w/v) to about 1.0% (w/v) of Pluronic® R 25R4, more preferably about 0.01% (w/v) to about 0.01% (w/v) of Pluronic® R 25R4, with about 0.01% (w/v) of Pluronic® R 25R4 being the most preferred; about 0.001% (w/v) to about 2.0% (w/v) of Pluronic® R 25R2, preferably about 0.001% (w/v) to about 1.0% (w/v) of Pluronic® R 25R2, more preferably about 0.001% (w/v) to about 0.1% (w/v) of Pluronic® R 25R2, with about 0.01% (w/v) of Pluronic® R 25R2, with about 0.01% (w/v) of Pluronic® R 25R2 being the most preferred.

5

10

15

20

25

30

Administration Of The Pharmaceutical Compositions Of The Present Invention

The pharmaceutical compositions of the present invention may be administered by any suitable means, for example, inhalation, or interdermally, intracavity (e.g., oral, vaginal, rectal, nasal, peritoneal, ventricular, or intestinal), intradermally, intramuscularly, intranasally, intraocularly, intraperitoneally, intrarectally, intratracheally, intravenously, orally, subcutaneously, transdermally, or transmucosally (i.e., across a mucous membrane) in a dose effective for the production of neutralizing antibody and resulting in protection from infection or disease. The present pharmaceutical compositions can generally be administered in the form of a spray for intranasal administration, or by nose drops, inhalants, swabs on tonsils, or a capsule, liquid, suspension or elixirs for oral administration. The pharmaceutical compositions may be in the form of single dose preparations or in multi-dose flasks. Reference is made to Remington's Pharmaceutical Sciences, Mack Publising Co., Easton, Pa., Osol (ed.) (1980).

Administration can be into one or more tissues including but not limited to muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, e.g., myocardium, endocardium, and pericardium; lymph nodes, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, or connective tissue. Furthermore, in the methods of

the present invention, the pharmaceutical compositions may be administered to any internal cavity of a mammal, including, but not limited to, the lungs, the mouth, the nasal cavity, the stomach, the peritoneal cavity, the intestine, any heart chamber, veins, arteries, capillaries, lymphatic cavities, the uterine cavity, the vaginal cavity, the rectal cavity, joint cavities, ventricles in brain, spinal canal in spinal cord, and the ocular cavities. Any mode of administration can be used so long as the mode results prophylactic or therapeutic efficacy. Methods to detect such a response include serological methods, e.g., western blotting, staining tissue sections by immunohistochemical methods, and measuring the activity of the polypeptide. Pharmaceutical DNA compositions and methods of their manufacture and delivery that may be used in accordance with the present invention are disclosed in US Patents Nos. 5,589,466; 5,620,896; 5,641,665; 5,703,055; 5,707,812; 5,846,946; 5,861,397; 5,891,718; 6,022,874; 6,147,055; 6,214,804; 6,228,844; 6,399,588; 6,413,942; 6,451,769, European Patent Documents EP1165140A2; EP1006796A1 and EP0929536A1; and PCT Patent Publications WO00/57917; WO00/73263; WO01/09303; WO03/028632; WO94/29469; WO95/29703; and WO98/14439.

10

15

Administration may be by needle injection, catheter infusion, biolistic injectors, particle accelerators (e.g., "gene guns" or pneumatic "needleless" injectors) Med-E-Jet (Vahlsing, H., et al. (1994) "IMMUNIZATION WITH PLASMID 20 DNA USING A PNEUMATIC GUN," J. Immunol. Methods 171:11-22), Pigjet (Schrijver, R.S. et al. (1997) "IMMUNIZATION OF CATTLE WITH A BHV1 VECTOR VACCINE OR A DNA VACCINE BOTH CODING FOR THE G PROTEIN OF BRSV," Vaccine 15:1908-1916), Biojector (Davis, H.L. et al. (1994) "DIRECT GENE 25 TRANSFER IN SKELETAL MUSCLE: PLASMID DNA-BASED IMMUNIZATION AGAINST THE HEPATITIS B VIRUS SURFACE ANTIGEN," Vaccine 12:1503-1509; Gramzinski, R., et al. (1998) "IMMUNE RESPONSE TO A HEPATITIS B DNA VACCINE IN AOTUS MONKEYS: A COMPARISON OF VACCINE FORMULATION, ROUTE, AND METHOD OF ADMINISTRATION," Mol Med 4:109-118), AdvantaJet (Lindmayer, I., et al. (1986) 30 "DEVELOPMENT OF NEW JET INJECTOR FOR INSULIN THERAPY," Diabetes Care

9:294-297), Medi-jector (Martins, J.K. *et al.* (1979) "MEDIJECTOR--A NEW METHOD OF CORTICOSTEROID-ANESTHETIC DELIVERY," J. Occup. Med. 21:821-824), gelfoam sponge depots, other commercially available depot materials (e.g., hydrogels), osmotic pumps (e.g., Alza minipumps), oral or suppositorial solid (tablet or pill) pharmaceutical formulations, topical skin creams, and decanting, use of polynucleotide coated suture (Qin, J.Y. *et al.* (1999) "GENE SUTURE--A NOVEL METHOD FOR INTRAMUSCULAR GENE TRANSFER AND ITS APPLICATION IN HYPERTENSION THERAPY," Life Sciences 65:2193-2203) or topical applications during surgery.

5

10

15

20

25

Thus, in one embodiment, administration is into muscle tissue, i.e., skeletal muscle, smooth muscle, or myocardium. Most preferably, the muscle is skeletal muscle. For polynucleotide constructs in which the polynucleotide or polynucleotide construct is DNA, the DNA can be operably linked to a cell-specific promoter that directs substantial transcription of the DNA only in predetermined cells. In certain embodiments, a polynucleotide construct, or composition comprising an polynucleotide or polynucleotide construct, is delivered to any tissue including, but not limited to those disclosed herein, such that the polynucleotide or polynucleotide construct is free from association with liposomal formulations and charged lipids. Alternatively, the polynucleotide, polynucleotide construct, or composition is delivered to a tissue other than brain or nervous system tissue, for example, to muscle, skin, or blood, in any composition as described herein.

Preferably, the pharmaceutical composition is delivered to the interstitial space of a tissue. "Interstitial space" comprises the intercellular, fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels.

Nucleic acid pharmaceutical compositions, preferably in the form of plasmid DNA, may be administered (especially by injection) into tissue and voltage pulses applied between electrodes disposed in the tissue, thus applying electric fields to cells of the tissue. The electrically-mediated enhancement covers 5 administration using either iontophoresis or electroporation in vivo. Suitable techniques of electroporation and iontophoresis are provided by Singh, J. et al. (1989) "TRANSDERMAL DELIVERY OF DRUGS BY IONTOPHORESIS: A REVIEW," Drug Des. Deliv. 4:1-12; Theiss, U. et al. (1991) "IONTOPHORESIS--IS THERE A FUTURE FOR CLINICAL APPLICATION?," Methods Find. Exp. Clin. Pharmacol. 10 13:353-359; Singh and Maibach (1993) "TOPICAL IONTOPHORETIC DRUG DELIVERY IN VIVO: HISTORICAL DEVELOPMENT, DEVICES AND FUTURE PERSPECTIVES," Dermatology. 187:235-238; Singh, P. et al. (1994) "IONTOPHORESIS IN DRUG DELIVERY: BASIC PRINCIPLES AND APPLICATIONS." Crit. Rev. Ther. Drug Carrier Syst. 11:161-213; Su, Y. et al. (1994) "SPHINGOSINE 1-15 PHOSPHATE, A NOVEL SIGNALING MOLECULE, STIMULATES DNA BINDING ACTIVITY OF AP-1 IN QUIESCENT SWISS 3T3 FIBROBLASTS," J. Pharm. Sci. 83:12-17; Costello, C.T. et al. (1995) "IONTOPHORESIS: APPLICATIONS IN TRANSDERMAL MEDICATION DELIVERY," Phys. Ther. 75:554-563; Howard, J.p. et al. (1995) "EFFECTS OF ALTERNATING CURRENT IONTOPHORESIS ON DRUG DELIVERY," Arch. Phys. Med. Rehabil. 76:463-466; Kassan, D.G. et al. (1996) "PHYSICAL 20 ENHANCEMENT OF DERMATOLOGIC DRUG DELIVERY: IONTOPHORESIS AND PHONOPHORESIS," J. Amer. Acad. Dermatol. 34:657-666; Riviere et al. (1997) "ELECTRICALLY-ASSISTED TRANSDERMAL DRUG DELIVERY," Pharm. Res. 14:687-697; Zempsky, W.T. et al. (1998) "IONTOPHORESIS: NONINVASIVE DRUG 25 DELIVERY," Amer. J. Anesthesiol. 25:158-162; Muramatsu, T. et al. (1998) "IN VIVO ELECTROPORATION: A POWERFUL AND CONVENIENT MEANS OF NONVIRAL GENE TRANSFER TO TISSUES OF LIVING ANIMALS," Int. J. Mol. Med. 1:55-62; Garrison J. (1998) "IONTOPHORESIS: AN ALTERNATIVE DRUG-DELIVERY SYSTEM," Med. Device Technol. 9:32-36; Banga A.K. et al. (1998) "ASSESSING THE 30 POTENTIAL OF SKIN ELECTROPORATION FOR THE DELIVERY OF PROTEIN- AND

GENE-BASED DRUGS," Trends Biotechnol. 16:408-412; Banga A.K. et al. (1999)

"IONTOPHORESIS AND ELECTROPORATION: COMPARISONS AND CONTRASTS," Int. J. Pharm. 179:1-19; Neumann E. et al. (1999) "FUNDAMENTALS OF ELECTROPORATIVE DELIVERY OF DRUGS AND GENES," Bioelectrochem. Bioenerg. 48:3-16; and Heiser, W.C. (2000) "OPTIMIZING ELECTROPORATION CONDITIONS FOR THE TRANSFORMATION OF MAMMALIAN CELLS," Methods Mol. Biol. 130:117-134.

5

10

15

20

25

30

The nature of the electric field generated in accordance with such methods is determined by the nature of the tissue, the size of the selected tissue and its location. The use of insufficient or excessive field strength is to be avoided. As used herein, a field strength is excessive if it results in the lysing of cells. A field strength is insufficient if it results in a reduction of efficacy of 90% relative to the maximum efficacy obtainable. The electrodes may be mounted and manipulated in many ways known in the art. The waveform of the electrical signal provided by the pulse generator can be an exponentially decaying pulse, a square pulse, a unipolar oscillating pulse train or a bipolar oscillating pulse train. The waveform, electric field strength and pulse duration are dependent upon the type of cells and the DNA that are to enter the cells via electrical-mediated delivery and thus are determined by those skilled in the art in consideration of these criteria. Any number of known devices may be used for delivering polynucleotides and generating the desired electric field. Examples of suitable devices include, but are not limited to, a single needle probe, a bipolar probe and a combination needle and plate probe. Alternatively, methods such as continuous-flow electroporation may be employed (See, U.S. Patents Nos. 6,485,961; 6,090,617; 6,074,605; 5,720,921; 5,612,207; and 5,098,843).

The compositions of the present invention can be lyophilized to produce pharmaceutical compositions in a dried form for ease in transportation and storage. The pharmaceutical compositions of the present invention may be stored in a sealed vial, ampule or the like. In the case where the pharmaceutical composition is in a dried form, the composition is dissolved or suspended (e.g., in sterilized distilled water) before administration. An inert carrier such as saline or phosphate

buffered saline or any such carrier in which the pharmaceutical compositions has suitable solubility, may be used.

5

10

15

20

25

Further, the pharmaceutical compositions may be prepared in the form of a mixed composition that contains one or more additional constituents so long as such additional constituents do not interfere with the effectiveness of the p21 inhibitor and the side effects and adverse reactions are not increased additively or synergistically. The pharmaceutical compositions of the present invention can be associated with chemical moieties which may improve the composition's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the pharmaceutical compositions, eliminate or attenuate any undesirable side effect of the pharmaceutical compositions, etc. Moieties capable of mediating such effects are disclosed in Remington's Pharmaceutical Sciences (1980).

Procedures for coupling such moieties to a molecule are well known in the art.

Determining an effective amount of a composition depends upon a number of factors including, for example, the chemical structure and biological activity of the substance, the age and weight of the subject, the precise condition requiring treatment and its severity, and the route of administration. Based on the above factors, determining the precise amount, number of doses, and timing of doses are within the ordinary skill in the art and will be readily determined by the attending physician or veterinarian.

In one embodiment, the pharmaceutical compositions of the present invention are administered free from association with liposomal formulations, charged lipids, or transfection-facilitating viral particles. In another embodiment, the compositions of the present invention are administered free from association with any delivery vehicle now known in the art that can facilitate entry into cells.

As used herein, "ex vivo" cells are cells into which the pharmaceutical compositions is introduced, for example, by transfection, lipofection, electroporation, bombardment, or microinjection. The cells containing the pharmaceutical compositions are then administered in vivo into mammalian tissue

- (see, for example, see Belldegrun, A., et al. (1993) "HUMAN RENAL CARCINOMA LINE TRANSFECTED WITH INTERLEUKIN-2 AND/OR INTERFERON ALPHA GENE(S): IMPLICATIONS FOR LIVE CANCER VACCINES," J. Natl. Cancer Inst. 85: 207-216; Ferrantini, M. et al. (1993) "Alpha 1-Interferon Gene Transfer Into
- METASTATIC FRIEND LEUKEMIA CELLS ABROGATED TUMORIGENICITY IN IMMUNOCOMPETENT MICE: ANTITUMOR THERAPY BY MEANS OF INTERFERON-PRODUCING CELLS," Cancer Research 53:1107-1112; Ferrantini, M. et al. (1994) "IFN-ALPHA 1 GENE EXPRESSION INTO A METASTATIC MURINE ADENOCARCINOMA (TS/A) RESULTS IN CD8⁺ T CELL-MEDIATED TUMOR
- 10 REJECTION AND DEVELOPMENT OF ANTITUMOR IMMUNITY. COMPARATIVE STUDIES WITH IFN-GAMMA-PRODUCING TS/A CELLS," J. Immunology 153:4604-4615; Kaido, T. et al. (1995) "IFN-ALPHA 1 GENE TRANSFECTION COMPLETELY ABOLISHES THE TUMORIGENICITY OF MURINE B16 MELANOMA CELLS IN ALLOGENEIC DBA/2 MICE AND DECREASES THEIR TUMORIGENICITY IN SYNGENEIC
- 15 C57BL/6 MICE," Int. J. Cancer 60: 221-229; Ogura, H. et al. (1990)

 "IMPLANTATION OF GENETICALLY MANIPULATED FIBROBLASTS INTO MICE AS
 ANTITUMOR ALPHA-INTERFERON THERAPY," Cancer Research 50:5102-5106;
 Santodonato, L. et al. (1996) "CURE OF MICE WITH ESTABLISHED METASTATIC
 FRIEND LEUKEMIA CELL TUMORS BY A COMBINED THERAPY WITH TUMOR CELLS
- 20 EXPRESSING BOTH INTERFERON-ALPHA 1 AND HERPES SIMPLEX THYMIDINE
 KINASE FOLLOWED BY GANCICLOVIR," Human Gene Therapy 7:1-10;
 Santodonato, L., et al. (1997) "LOCAL AND SYSTEMIC ANTITUMOR RESPONSE
 AFTER COMBINED THERAPY OF MOUSE METASTATIC TUMORS WITH TUMOR CELLS
 EXPRESSING IFN-ALPHA AND HSVTK: PERSPECTIVES FOR THE GENERATION OF
- 25 CANCER VACCINES," Gene Therapy 4:1246-1255; and Zhang, J.F. et al. (1996) "GENE THERAPY WITH AN ADENO-ASSOCIATED VIRUS CARRYING AN INTERFERON GENE RESULTS IN TUMOR GROWTH SUPPRESSION AND REGRESSION," Cancer Gene Therapy 3:31-38.

In the "local delivery" embodiment of the present invention, a pharmaceutical composition is administered *in vivo*, such that the p21 inhibitor is

incorporated into the local cells at the site of administration. The pharmaceutical compositions can be administered either within *ex vivo* cells or free of *ex vivo* cells or *ex vivo* cellular material. Preferably, the polynucleotide construct is administered free of *ex vivo* cells or ex vivo cellular material.

5

10

15

20

25

The pharmaceutical compositions can be solubilized in a buffer prior to administration. Suitable buffers include, for example, phosphate buffered saline (PBS), normal saline, Tris buffer, and sodium phosphate vehicle (100-150 mM preferred). Insoluble polynucleotides can be solubilized in a weak acid or base, and then diluted to the desired volume with a neutral buffer such as PBS. The pH of the buffer is suitably adjusted, and moreover, a pharmaceutically acceptable additive can be used in the buffer to provide an appropriate osmolarity within the lipid vesicle. Preferred salt solutions and auxiliary agents are disclosed herein.

A systemic delivery embodiment is particularly preferred for treating non-localized disease conditions. A local delivery embodiment can be particularly useful for treating disease conditions that might be responsive to high local concentration. When advantageous, systemic and local delivery can be combined. U.S. Patents Nos. 5,589,466, 5,693,622, 5,580,859, 5,703,055, and PCT publication WO94/29469 provide methods for delivering compositions comprising naked DNA, or DNA cationic lipid complexes to mammals.

Compositions used in of the present invention can be formulated according to known methods. Suitable preparation methods are described, for example, in Remington's Pharmaceutical Sciences, 16th Edition, A. Osol, ed., Mack Publishing Co., Easton, Pa. (1980), and Remington's Pharmaceutical Sciences, 19th Edition, A. R. Gennaro, ed., Mack Publishing Co., Easton, Pa. (1995), both of which are incorporated herein by reference in their entireties. Although the composition is preferably administered as an aqueous solution, it can be formulated as an emulsion, gel, solution, suspension, lyophilized form, or any other form known in the art. According to the present invention, if the composition is formulated other than as an aqueous solution, it will require resuspension in an aqueous solution

prior to administration. In addition, the composition may contain pharmaceutically acceptable additives including, for example, diluents, binders, stabilizers, and preservatives.

The present invention also provides kits for use in treating HIV infection comprising an administration means and a container means containing a pharmaceutical composition of the present invention. Preferably, the container in which the composition is packaged prior to use will comprise a hermetically sealed container enclosing an amount of the lyophilized formulation or a solution containing the formulation suitable for a pharmaceutically effective dose thereof, or multiples of an effective dose. The composition is packaged in a sterile container, and the hermetically sealed container is designed to preserve sterility of the pharmaceutical formulation until use. Optionally, the container can be associated with administration means and/or instruction for use.

5

10

15

20

25

The present invention also provides kits for use in diagnosing West Nile Fever comprising one or more container means containing a WN polynucleotide, a polynucleotide capable of hybridizing with a WN polynucleotide, and/or a polypeptide encoded by such polynucleotides.

Having now generally described the invention, the same will be more readily understood through reference to the following examples, which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

Example 1 Materials and Methods For The Analysis Of Temporal Events Associated With The Initial Virus-Macrophage Encounter

A. Purification Of Human Monocytes By Counterflow Centrifugal Elutriation

Human peripheral blood cells are obtained by leukapheresis from normal volunteers in the Department of Transfusion Medicine at the National Institutes of

Health (Bethesda, Maryland) and diluted in endotoxin-free PBS without Ca²⁺ and Mg²⁺ (BioWhittaker, Walkersville, Maryland) for density sedimentation. The monocytes in the mononuclear cell layer are purified by counterflow centrifugal elutriation within 4 hr after leukapheresis (Wahl, S.M. *et al.* (1984) "ISOLATION OF HUMAN MONONUCLEAR CELL SUBSETS BY COUNTERFLOW CENTRIFUGAL ELUTRIATION (CCE). II. FUNCTIONAL PROPERTIES OF B-LYMPHOCYTE-, T-LYMPHOCYTE-, AND MONOCYTE-ENRICHED FRACTIONS. Cell Immunol 85:384-395).

B. HIV-1 Infection Of Human Monocyte-Derived Macrophages

5

10

15

20

25

30

Monocytes are plated in 6 well plates (Corning Costar Corporation, Cambridge, Massachusetts), at 6 x 10⁶ cells/well or in Lab-Tek chamber slides (Naperville, Illinois) at 1.5 x 10⁶/chamber in Dulbecco's modified Eagle's medium (DMEM) with 2 mM L-glutamine and 10 µg/ml gentamicin (BioWhittaker). After adherence (4-6 hr at 37°C and 5% CO₂), 10% human AB-serum (Sigma, St. Louis, Missouri) is added to the culture medium. Cells are cultured 7 days to allow differentiation into macrophages before being infected with HIV-1_{Bal.} TCID₅₀ = 1000-5000 (Advanced Biotechnologies Inc., Columbia, Maryland) for 90 minutes at 37°C. The levels of endotoxin are below the limit of detection in virus preparations. Unbound virus is removed by washing the cells with media and refeeding with complete DMEM containing 10% human serum. Control populations of adherent macrophages are mock-infected and cultured in parallel. Every 3 to 4 days, half the medium is removed for virus assay and replaced with fresh complete medium for two weeks. Supernatant p24 antigen is assayed using the p24 core profile enzyme-linked immunosorbent assay (ELISA) kit (Perkin-Elmer Life Sciences, Wilmington, Delaware). As described below, in certain experiments, macrophages are pre-treated with 2-cyano-3,12-dioxooleana-1,9dien-28-oic acid (CDDO) or a CDDO analog (di-CDDO) for 45 minutes prior to exposure to HIV-1. Additionally, macrophages are treated with p21 anti-sense phosphorothioate oligonucleotides:

SEQ ID NO. 7: 5'-TGTCAGGCTGGTCTGCCTCC-3'(oligo 1), and

SEQ ID NO. 9: 5'-ACATCACCAGGATTGGACAT-3' (oligo 2)

or negative control oligonucleotide:

SEQ ID NO. 14: 5'-TGGATCCGACATGTCAGA-3' (oligo 3)

(sequence obtained from Dr. Argyrios N. Theofilopoulos, The Scripps Research Institute, La Jolla, California) after HIV-1 infection and at the time of refeeding the cultures and tested for viral replication at day 12. **SEQ ID NOS.** 7 and 9 are derived from the murine p21 antisense sequence, yet are effective in inhibiting human p21 expression and the replication and transmission of HIV.

10 C. Northern blot Analysis and RNase Protection Assay (RPA)

Total cellular RNA is extracted from adherent control or infected monocytes with the RNeasy minikit (Qiagen, Valencia, California) and analyzed by northern blot (Wahl, S.M. et al. (1998) "MYCOBACTERIUM AVIUM COMPLEX AUGMENTS MACROPHAGE HIV-1 PRODUCTION AND INCREASES CCR5 EXPRESSION. Proc Natl Acad Sci U S A 95:12574-12579) using an HIV-full length probe (NIH AIDS Research and Reference Reagent Program) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) (Gibco BRL, Gaithersburg, Maryland). For the RPA 3 µg of RNA is evaluated using the hStress tRiboquant Multi-Probe RPA system (BD Pharmingen, San Diego, California) and densities are normalized to the GAPDH gene using ImageQuant (Molecular Dynamics, Sunnyvale, California)

D. cDNA Expression Array

The Altlas human cDNA Expression Array 1.2 I (Clontech, Palo Alto,
California) (catalog # 7850-1) is performed using 5 μg of DNase digested total
RNA as described by Greenwell-Wild, T. *et al.*. (2002) "MYCOBACTERIUM AVIUM
INFECTION AND MODULATION OF HUMAN MACROPHAGE GENE EXPRESSION." J

Immunol 169:6286-6297. Gene expression in infected cells is compared with the corresponding control population from the same donor expressed as a ratio (fold change) after normalization to housekeeping genes. A total of seven different donors are analyzed.

E. Transmission Electron Microscopy (TEM)

5

10

15

20

25

Gluteraldehyde-fixed uninfected and infected cells are postfixed in OsO₄ dehydrated through graded ethanol and propylene oxide, embedded in Spurr's epoxy, and thick-and thin-sectioned. Thin sections are placed on copper grids, stained with uranyl acetate and lead citrate, and viewed in a Zeiss EM10 microscope (LEO Electron Microscope; Oberkochen, Germany).

F. Immunofluorescence microscopy

Uninfected and HIV-1 infected macrophages that have been cultured for twelve days are washed twice with PBS, fixed with 2% paraformaldehyde in PBS, washed and incubated in 100 mM glycine in PBS for 20 min, followed by 0.5% Triton-X-100 for 10 min and rinsed with PBS. Cells are then labeled with rabbit anti-p21 antibody at 5 μg/ml (Santa Cruz Biotechnology, Santa Cruz, California) in PBS containing 5% donkey serum (Jackson ImmunoResearch Laboratories, Inc., West Grove, Pennsylvania) for 1 hr, washed extensively, then incubated with Texas-Red conjugated secondary antibody at 3 μg/ml at room temperature (Molecular Probes, Eugene, Oregon.). Non-specific background is determined using an irrelevant rabbit isotype control antibody and secondary antibody alone at the same concentrations above. Images are captured using a Leica TCS-4D confocal microscope system with a Kr-Ar laser on a DMR upright microscope using a 40x, 1.0 numerical aperture objective. Fluorescence intensity analysis is performed using confocal microscopy and Metamorph analysis (Universal Imaging, Downington, Pennsylvania).

G. Immunoprecipitation and Western Blot Analysis

5

10

15

20

25

Whole cell lysates are generated using a lysis buffer that consisted of 1% Nonidet P-40, 150mM NaCl, 20mM Tris-HCl (pH, 7.5), 10mM NaF, 10mM NaPPi, 2.5 nM EDTA, 1 mM Na₃VO₄, 0.2 mM 3, 4 dicloroisocoumarin, 1mM phenylmethylsulfonyl fluoride, 100ug/ml chymostatin and 1X complete protease inhibitor (BoehringerMannheim, Indianapolis, IN). CDKN1A is immunoprecipitated from cell lysates using an anti-CDKN1A antibody conjugated to agarose (Santa Cruz Biotechnology) and incubated with constant rotation at 4°C for 2 hours. Immunoprecipitates are electrophoresed onto Tricine gels (Invitrogen,Carlsbad, California), transferred to nitrocellulose membrane and immunoblotted with anti-CDKN1A (BD Pharmingen). Immunoblots are developed using enhanced chemiluminescence and the Super-Signal substrate according to manufacturer's instructions (Pierce Chemical Co, Rockford, Illinois).

Example 2 Results Of The Analysis Of Temporal Events Associated With The Initial Virus-Macrophage Encounter

A. Kinetics of HIV-1 replication in adherent macrophages

Elutriated monocytes are adhered for 7 days, exposed to an R5 HIV_{BaL} for 90 minutes, washed and the kinetics of cellular and viral changes are monitored. HIV-1 RNA is typically detected on day 5, becoming increasingly apparent by 10-16 days after initial exposure to the virus (Figure 1A). In parallel, detectable p24 antigen becomes evident within 5 days, then increases dramatically (Figure 1B). Ultrastructurally, viral particles are not be seen in the adherent macrophages at day 1-5, although an increase in binucleated cells and then an increasing frequency of multinucleated cells can be observed (Figure 1C). Consistent with viral RNA and p24 antigen, virus is visibly detected by electron microscopy around day 7 (Figure 1C; Figure 1D) with ≥70% of the cells typically harboring large numbers of virions by day 10 (Figure 1C; Figure 1D). HIV-1 is being produced on the complex surfaces between cells, on the free surfaces and in cytoplasmic vacuoles

of the Golgi apparatus. Nonetheless, once the majority of cells are infected and large numbers of virions are present within and on the surface of the macrophages, p24 levels plateau, likely dependent on host factors.

B. Initial Gene Expression In HIV-1-Infected Macrophage Populations

5

10

15

20

25

30

To examine the host factors underlying viral propagation, transcriptional pathways that activated downstream of the CD4-HIV-1 co-receptor binding/signaling event are examined by cDNA expression arrays. Compared with the control mock-infected macrophage population, an early and transient gene expression profile occurs, followed by a delayed pattern that emerges in association with viral replication. Within 3-6 hours upregulated genes defined as exhibiting a ≥ 2 fold increase above baseline in ≥ 4 donors (134 of 1200) interrogated) are associated predominantly with signal transduction pathways (24%) and transcription (25%) (Figure 2), many consistent with downstream effects of engaging the G protein signaling pathway. Genes corresponding to the mitogen activated protein kinase (MAPK) family are increased, including p38 MAPK and MAPKAP-K2. In addition to genes involved in transcription and signal transduction, multiple genes associated with cell cycle, apoptosis, and cellular recruitment (Table 1), including chemokines (IL-8, MCP-1, and MRP14) involve viral replication (Lane, B.R. et al. (2001) "INTERLEUKIN-8 STIMULATES HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 REPLICATION AND IS A POTENTIAL NEW TARGET FOR ANTIRETROVIRAL THERAPY," J Virol 75:8195-8202; Cinque, P. et al. (1998) "ELEVATED CEREBROSPINAL FLUID LEVELS OF MONOCYTE CHEMOTACTIC PROTEIN-1 CORRELATE WITH HIV-1 ENCEPHALITIS AND LOCAL VIRAL REPLICATION," Aids 12:1327-1332; Strasser, F. et al. (1997) "ELEVATED SERUM MACROPHAGE INHIBITORY FACTOR-RELATED PROTEIN (MRP) 8/14 LEVELS IN ADVANCED HIV INFECTION AND DURING DISEASE EXACERBATION," J Acquir Immune Defic Syndr Hum Retrovirol 16:230-238) are upregulated. Enhanced surface adhesion molecules VNRA, CD11c, ICAM1, FNRA, CD44, ITGAE can influence HIV infection, virion interaction with the target cell and syncytium

formation (Shattock, R.J. *et al.* (1996) "ENHANCED HIV REPLICATION IN MONOCYTIC CELLS FOLLOWING ENGAGEMENT OF ADHESION MOLECULES AND CONTACT WITH STIMULATED T CELLS," Res Virol 147:171-179) and also an incorporation into HIV virions (Guo, M.M. *et al.* (1995) "HIV ACQUIRES FUNCTIONAL ADHESION RECEPTORS FROM HOST CELLS," AIDS Res Hum Retroviruses 11: 1007-1013).

5

Early HIV-1	Table 1 Upregulated Macrophage Geno	e Expression
GenBank Accession Number	Gene Description	Average Fold Increase (>4 of 8) Donors
	Cell Cycle/Apoptosis	
U13737	caspase-3	2.2
L29222	CDC-like kinase (CLK1)	2.1
AF071596	IEX-1L anti-death protein	2.1
M15796	proliferating cyclic nuclear antigen (PCNA)	2.1
X96586	FAN protein	2.1
U28014	caspase-4	2.1
Z23115	bcl-x	2.0
U09579	cyclin-dependent kinase inhibitor 1A (CDKN1A)	2.0
	Adhesion Molecules/Receptors	
M14648	vitronectin receptor alpha (VNRA)	3.3
M81695	CD11c antigen	2.5
	intercellular adhesion molecule 1	
J03132	(ICAM1)	2.5
X06256	fibronectin receptor alpha (FNRA)	2.5
D84657	photolyase/blue-light receptor homolog	2.5
X07979	fibronectin receptor beta (FNRB)	2.4
D13866	alpha I catenin	2.4
X01060	transferrin receptor	2.3
M59911	integrin alpha 3 (ITGA3)	2.3
M37722	fibroblast growth factor receptor 1	2.2
X72304	corticotropin releasing factor receptor 1	2.2
M59040	CD44 antigen	2.1
L25851	integrin alpha E (ITGAE)	2.1
M27492	IL-7 receptor type I	2.0
J04536	leukosialin	2.0
X01057	IL2R alpha	2.0
	Chemokines/Cytokines	2.0
Y00787	interleukin-8	9.7
M65291	interleukin-12 alpha	5.0

Table 1 Early HIV-1 Upregulated Macrophage Gene Expression		
GenBank Accession Number	Gene Description	Average Fold Increase (>4 of 8) Donors
M24545	monocyte chemotactic protein 1 (MCP-1)	4.0
X01394	tumor necrosis factor alpha (TNF alpha)	3.4
X06233	migration inhibitory factor-related protein 14 (MRP14)	3.3
M17733	thymosin beta 4	3.1
M92381	thymosin beta 4	3.0
X53655	neurotrophin-3 precursor	2.6
M21121	small inducible protein A5 (SCYA5)	2.3
M86492	glia maturation factor beta	2.2
	insulin-like growth factor binding	2.2
M31145	protein 1	2.2
X02530	interferon gamma-induced protein	2.1
M27288	oncostatin M (OSM)	2.1
14127200	T-lymphoma-invasion &	2.1
U16296	metastasis inducing (TIAMI)	2.0
M25667	neuromodulin	2.0
14123007		
1107710	Proteases/ Protease Inhibitors	
X07549	Cathepsin H	5.0
M11233	cathepsin D	3.0
X56692	C reactive protein	2.9
AF059244	cystatin related protein	2.8
105070	matrix metalloproteinase 9	
J05070	(MMP9)	2.8
X05562	procollagen alpha 2	2.5
M36717	ribonuclease/angiogenin inhibitor (RAI)	2.4
L23808		2.4
D00762	matrix metalloproteinase 12 proteasome C8	2.2
Z81326	proteasome C8 protease inhibitor 1alpha	2.1
X87212	cathepsin C	2.0
L40377	cytoplasmic antiprotease 2 (CAP2)	2.0
M23254	calpain 2	2.0
17123234		2.0
· · · · · · · · · · · · · · · · · · ·	Metabolism	
1102/00	dioxin inducible cytochrome p450	
U03688	(CYP1A1)	4.4
X06985	heme oxygenase 1 (HO-1)	4.2
U34683	glutathione synthetase	3.0
X07270	90-kDa heat-shock protein A	2.7
U29091	selenium binding protein	2.7
1.14505	neural amino acid transporter A	
L14595	(SATT)	2.6
M33374	NADH dehydrogenase 1b	2.5
D00099 /	Na+/K+ transporting ATPase	2.4

Table 1 Early HIV-1 Upregulated Macrophage Gene Expression			
GenBank Accession Number	Gene Description	Average Fold Increase (>4 of 8) Donors	
	alpha 1		
	ubiquitin conjugating enzyme		
M74524	(UBE2A)	2.3	
X91247	thioredoxin reductase	2.3	
X54079	27-kDa heat-shock protein	2.1	
M11717	70-kDa heat shock protein 1	2.1	
	xeroderma pigmentosum group G		
L20046	complementing protein	2.0	
	Alzheimer's disease amyloid A4		
Y00264	protein	2.0	

Although gene expression for caspases 3, 4 and 8 is increased, genes encoding factors that contribute to cellular resistance to apoptosis including IEX-1L and bcl-x (Wu, M.X. et al. (1998) "IEX-1L, AN APOPTOSIS INHIBITOR INVOLVED IN NF-KAPPAB-MEDIATED CELL SURVIVAL, Science 281:998-1001; 5 Antonsson, B. et al. (2000) "THE BCL-2 PROTEIN FAMILY," Exp Cell Res 256:50-57) are concurrently elevated (Table 1). As reported, IL-2 receptor mRNA is also enhanced in HIV-infected macrophages (Allen, J.B. et al. (1990) "Expression of interleukin 2 receptors by monocytes from patients with acquired immunodeficiency syndrome and induction of monocyte interleukin 2 receptors by 10 human immunodeficiency virus in vitro," J Clin Invest 85:192-199). Another gene upregulated in infected cells within hours and at day 1 is CYP1A1, previously associated with enhanced HIV-1 gene expression in vitro and with acceleration in the progression of AIDS mediated by an oxidative stress pathway Yao, Y. et al. (1995) "DIOXIN ACTIVATES HIV-1 GENE EXPRESSION BY AN OXIDATIVE STRESS 15 PATHWAY REQUIRING A FUNCTIONAL CYTOCHROME P450 CYP1A1 ENZYME," Environ Health Perspect 103:366-71). However, the augmented transcriptional activity for heme oxygenase-1 (HO-1) a multifunctional protein that plays a role in the regulation of cellular heme could protect these viral host cells against oxidative stress and is increased in PBMC of AIDS patients (Levere, R.D. et al. (1993) 20 "ELEVATED LEVELS OF HEME OXYGENASE-1 ACTIVITY AND MRNA IN PERIPHERAL

BLOOD ADHERENT CELLS OF ACQUIRED IMMUNODEFICIENCY SYNDROME PATIENTS," Am J Hematol 43, 19-23).

HO-1, together with increased glutathione synthetase (Table 1) may help provide a balance and protect the macrophage from oxidative stress generated by 5 the virus (Mialocq, P. et al. (2001) "OXIDATIVE METABOLISM OF HIV-INFECTED MACROPHAGES: THE ROLE OF GLUTATHIONE AND A PHARMACOLOGIC APPROACH," Pathol Biol (Paris) 49:567-571; Toborek, M. et al. (2003) "HIV-TAT PROTEIN INDUCES OXIDATIVE AND INFLAMMATORY PATHWAYS IN BRAIN ENDOTHELIUM," J Neurochem 84:169-179). Furthermore, transcription for the 10 host cell Tat binding protein (TBP-1) that interacts with viral Tat is rapidly elevated in HIV infected macrophages)Nelbock, P. et al. (1990) "A CDNA FOR A PROTEIN THAT INTERACTS WITH THE HUMAN IMMUNODEFICIENCY VIRUS TAT TRANSACTIVATOR," Science 248:1650-1653 (1990). In the early virus-induced transcriptional events, HIV-1 clearly enhances more genes than it suppresses since 15 only tripeptidyl peptidase I, a lysosomal serine protease with a minor endoprotease activity responsible for cleaving tripeptides from the N terminus of oligopeptides (Tomkinson, B. (1999) "Tripeptidyl peptidases: enzymes that count," Trends Biochem Sci 24:355-359) is reproducibly suppressed. Since this protein is involved in protein turnover, control of its expression in the host cell could benefit 20 the virus to ensure that infection is established.

C. Kinetics of HIV-1 Induced Gene Expression

The initial pattern of expression observed following binding of HIV-1 to macrophages in 4-7 donors, consistent with receptor engagement, is transient and by 24 hr, a restricted number of genes remain or are newly elevated (**Table 2**).

Genes Upreg	Table 2 ulated in Macrophages from Day 1-14 after H	IV-1 Infection
GenBank Accession Number	Gene Description	Fold Increase
-	Day 1	
M17733	thymosin beta 4	4.6
X15480	glutathione S-transferase pi	3.4
X12451	cathepsin L	3.0
M24545	monocyte chemotactic protein 1 (MCP-1)	2.7
L16785	nucleoside diphosphate kinase B	2.7
X93499	ras-related protein RAB-7	2.5
U07418	mutL protein homolog1 (MLH1)	2.4
M15796	proliferating cyclic nuclear antigen (PCNA)	2.4
M83234	nuclease sensitive element (NSEP)	2.3
D10495	protein kinase C delta	2.3
Z29678	microphthalmia-assoc. transc. factor(MITF)	2.3
X04106	calpain	2.3
X02920	alpha-1-antiproteinase	2.2
M19922	INT-2 proto-oncogene protein	2.2
L41816	calcium/calmodulin-dependent protein kinase I(camki)	2.2
X79067	EGF response factor 1	2.1
U18840	myelin-oligodendrocyte glycoprotein	2.1
U03688	CYP1B1	2.1
X69391	60S ribosomal protein L6 (RPL6)	2.1
M92381	thymosin beta-10	2.1
K02770	interleukin-1 beta	2.1
X06233	calgranulin B	2.0
M97796	inhibitor of DNA binding 2 protein	2.0
M59911	integrin alpha 3 (ITGA3)	2.0
AF055581	lnk adaptor protein	2.0
X67951	thioredoxin peroxidase 2 (TDPX2)	2.0
	Day 3	
D88378	proteasome inhibitor HPI31	8.3
D28118	ZNF 161	2.6
M26708	prothymosin alpha	2.1
05070	matrix metalloproteinase 9 (MMP9)	2.0
M29366	ERBB-3 receptor	2.0
U09579	CDKN1A	2.0
	Day 5	
M24545	monocyte chemotactic protein 1 (MCP-1)	2.3
M14631	guanine nucleotide-binding protein(GNAS)	2.2
X04106	calpain	2.1

Genes Upreg	Table 2 gulated in Macrophages from Day 1-14 after	HIV-1 Infection
GenBank Accession Number	Gene Description	Fold Increase
U07418	mutL protein homolog1 (MLH1)	2.1
	Day 7	
Y00796	integrin alpha L (ITGAL)	8.7
X15014	Ral A; GTP-binding protein	3.5
U09579	CDKN1A	3.5
L16785	nucleoside diphosphate kinase B	3.1
X01057	IL-2 receptor alpha	2.9
M29870	Rac1	2.5
M23619	high mobility group protein (HMG-I)	2.3
X93499	ras related protein RAB-7	2.3
U07418	mutL protein homolog1 (MLH1)	2.2
D28118	zinc finger protein 161 (ZNF161)	2.2
L25080	Ras homolog A (RhoA)	2.1
X08020	glutathione S-transferase mu1	2.0
	Day 14	
U09579	CDKN1A	7.9
U07418	mutL protein homolog1 (MLH1)	3.8
U48296	nuclear tyrosine phosphatase (PRL1)	3.7
U12779	MAPKAP Kinase 2	3.3
D15057	defender against cell death 1(DAD1)	3.2
J04111	jun proto-oncogene	3.1
L07597	S6KII alpha 1	3.1
M23619	high mobility group protein (HMG-I)	2.8
X69391	60s ribosomal protein L6	2.5
L25080	Ras homolog A (RhoA)	2.5
U12979	PC4	2.5
X08804	ras-related protein RAP-1B	2.4
M74524	ubiquitin-conjugating enzyme E2	2.2
M17733	thymosin beta 4	2.2
U28014	caspase 4	2.2
U51004	PKC inhibitor 1	2.2
U08316	S6KII alpha 3	2.0

Of considerable interest are the limited detectable alterations in gene expression in the cells between 3-5 days after infection, preceding evidence of viral replication. Concomitant with evidence of the HIV replicative cycle (**Figure 1**), a resurgence of gene expression begins to manifest (**Table 2**, days 7-14). Albeit the

majority of cells are maximally producing HIV by day 10-16 (Figure 1), only a limited repertoire of genes is upregulated compared to control macrophages (Table 2). Among these are several G-protein related molecules, which could reflect cellcell transmission and HIV-1 induced signaling. MutL protein homolog 1(MLH1), a component of the DNA mismatch repair gene (Modrich, P. (1997) "STRAND-SPECIFIC MISMATCH REPAIR IN MAMMALIAN CELLS," J Biol Chem 272:24727-30) is also increased consistently, not only within a few hours of encountering the virus (Table 1), but during the progression of infection (days 1, 5, 7 and 14) (Table 2). This protein could be playing a role in aiding to repair DNA damage after viral integration into the host and thus preserving genome stability to continue the viral life cycle. Furthermore, transcription of the anti-apoptotic gene DAD1 (Hong, N.A. et al. (2000) "MICE LACKING DAD1, THE DEFENDER AGAINST APOPTOTIC DEATH-1, EXPRESS ABNORMAL N-LINKED GLYCOPROTEINS AND UNDERGO INCREASED EMBRYONIC APOPTOSIS. Dev Biol 220:76-84) is enhanced at the peak of viral replication. Although the proteasome inhibitor HPI31 subunit (Table 2) is elevated at 3 days after infection, it is dramatically decreased during replication, consistent with evidence that proteasome activity is essential for viral maturation (Schubert, U. et al. (2000) "PROTEASOME INHIBITION INTERFERES WITH GAG POLYPROTEIN PROCESSING, RELEASE, AND MATURATION OF HIV-1 AND HIV-2," Proc Natl Acad Sci USA 97:13057-13062). This may reflect a tight control of the macrophage metabolism to regulate protein turnover at this late stage of infection to preserve integrity of viral protein or host cell factors necessary for efficient virion maturation and release (Schubert, U. et al. (2000) "PROTEASOME INHIBITION INTERFERES WITH GAG POLYPROTEIN PROCESSING, RELEASE, AND MATURATION OF HIV-1 AND HIV-2," Proc Natl Acad Sci USA 97:13057-13062).

5

10

15

20

25

30

D. Increased CDKN1A Gene And Protein Expression In Virus Infected Macrophages

One of the genes that exhibited a unique biphasic expression pattern is CDKN1A. Because it is rapidly upregulated following HIV-1 binding/entry and then again during the emergence of viral replication (Figure 3A), this gene is

selected for further study. RNAse protection assay (RPA) confirmed the rapid induction of CDKN1A (**Figure 3B**; **Figure 3C**), followed by maximum expression concomitant with viral infection with no corresponding changes in another cell cycle related gene p53. To further explore the relationship between viral infection and p21, p21 protein expression is examined by immunofluorescence. Not only increased nuclear, but also cytoplasmic p21 staining is observed in infected cells (**Figure 4A**; **Figure 4B**), consistent with enhanced protein expression in whole cell lysates detected by western blot (**Figure 4C**).

To determine whether the increased p21 influenced viral life cycle, the cells are treated with two distinct p21 anti-sense oligonucleotides (SEQ ID NO. 7 and SEQ ID NO. 9). Both oligonucleotides reduce viral replication as assessed by p24 levels, most evident at day 12 when untreated cells show substantial HIV-1 production. In contrast, a missense control oligonucleotide (SEQ ID NO. 13) did not suppress HIV-1 p24 (Figure 4D). The oligonucleotides have no negative effect on cell viability in infected or uninfected macrophage cultures as determined by cell number, morphology and ultrastuctural analysis. Moreover, the p21 oligos have no direct effect on macrophage CD4 nor CCR5.

E. Effect of CDDO on HIV-1 replication

5

10

15

20

25

The ability of p21 oligonucleotides to block HIV-1 replication prompted the exploration of potential therapeutically relevant mechanisms of modulating p21 to inhibit HIV-1. It has been reported that peroxisome proliferator-activated receptor gamma (PPARγ) ligands, one of which includes the synthetic triterpenoid CDDO, modulate p21 activity (Wang, Y. *et al.* (2000) "A SYNTHETIC TRITERPENOID, 2-CYANO-3,12-DIOXOOLEANA-1,9-DIEN-28-OIC ACID (CDDO), IS A LIGAND FOR THE PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA," Mol Endocrinol 14:1550-1556); Wakino, S. *et al.* (2001) "PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA LIGANDS INHIBIT MITOGENIC INDUCTION OF P21(CIP1) BY MODULATING THE PROTEIN KINASE CDELTA PATHWAY IN VASCULAR SMOOTH MUSCLE CELLS," J Biol Chem 276, 47650-47657). To examine the effect

of this synthetic triterpenoid, CDDO (0.1μM) and its derivative di-CDDO are added prior to, or at the time of, infection of macrophages with HIV-1, resulting in a dose dependent suppression in the release of the viral protein p24 Ag (**Figure 5A**). Without reducing cell viability or cell number, both CDDO and di-CDDO dramatically reduced the levels of detectable virus (**Figure 5B**; **Figure 5C**). Paradoxically, neither CDDO or di-CDDO decreases p21 protein levels concomitant with reducing HIV infection (**Figure 5D**). Moreover, p21 protein accumulates in uninfected cells, suggesting a post-translational effect on the p21 pathway.

Example 3 Analysis Of Gene Silencing

5

10

15

20

25

30

Gene silencing was carried out using SMARTpoolTM si RNA duplexes (Dharmacon), which targets CDKN1A. A non-specific si RNA pool (Dharmacon) was also utilize as a negative control. After preparing siRNA:Lipofectamine 2000 complexes cells were transfected according to manufacture's instructions (Invitrogen-Life Technologies). Macrophages were infected after four days of transfection.

The results obtained with the antisense oligonucleotides were confirmed using gene silencing technology. Macrophages treated with CDKN1A si RNA duplexes, show a reduction in HIV-1 replication as determined by p24 ELISA on 14 days supernatants. This is not the case if macrophages are treated with a non-specific si RNA duplexes control.

Example 4 Analysis Of Temporal Events Associated With The Initial Virus-Macrophage Encounter

The present invention demonstrates that HIV-1 infection promotes successful viral replication by modulating macrophage gene transcription. In comparison to previous studies, using viral envelope gp120 (Popik, W. et al. (2000) "EXPLOITATION OF CELLULAR SIGNALING BY HIV-1: UNWELCOME GUESTS WITH MASTER KEYS THAT SIGNAL THEIR ENTRY," Virology 276:1-6; Cicala, C. et

al. (2002) "HIV ENVELOPE INDUCES A CASCADE OF CELL SIGNALS IN NON-PROLIFERATING TARGET CELLS THAT FAVOR VIRUS REPLICATION," Proc. Natl. Acad. Sci. USA 99:9380-9385; Liu, Q.H. et al. (2000) "HIV-1 GP120 AND CHEMOKINES ACTIVATE ION CHANNELS IN PRIMARY MACROPHAGES THROUGH 5 CCR5 AND CXCR4 STIMULATION," Proc. Natl. Acad. Sci. USA 97:4832-4837), one aspect of the invention relates to the finding that intact, infectious R5 HIV-1 induces a cascade of events associated with reproducible alteration of gene transcription in primary macrophage hosts. Consistent with viral binding to CD4 and CCR5 seven transmembrane G protein receptors, viral initiated signal 10 transduction induces transcriptional changes. While the functional significance attributable to each of the 134 genes upregulated within hours after viral binding is complex, the data support an initial burst of transcriptional activity followed by a quiescent phase and a resurgence of new genes associated with viral replication. In addition to phosphorylation of p38 MAPK, HIV-1 enhanced gene expression of 15 p38 MAPK and downstream mediators, such as, MAPKAP-2, which may be critical in early post-entry and late stages of HIV-1 infection (Del Corno, M. et al. (2001) "HIV-1 GP120 AND CHEMOKINE ACTIVATION OF PYK2 AND MITOGEN-ACTIVATED PROTEIN KINASES IN PRIMARY MACROPHAGES MEDIATED BY CALCIUM-DEPENDENT, PERTUSSIS TOXIN-INSENSITIVE CHEMOKINE RECEPTOR 20 SIGNALING," Blood 98:2909-2916; Shapiro, L. et al. (1998) "ROLE OF P38 MITOGEN-ACTIVATED PROTEIN KINASE IN HIV Type 1 PRODUCTION IN VITRO," Proc. Natl. Acad. Sci. USA 95:7422-7426 (1998), and p38 MAPK also plays an important role in multiple aspects of the immune response (Dong, C. et al. (2002) "MAP KINASES IN THE IMMUNE RESPONSE," Ann. Rev. Immunol 20, 55-72 (2002). 25 MAPK also contributes to chemokine expression and recruitment of leukocytes, and inhibition of p38 MAPK reportedly also abrogates gp120-induced MMP9 in T cells (Misse, D. et al. (2001) "HIV-1 GLYCOPROTEIN 120 INDUCES THE MMP-9 CYTOPATHOGENIC FACTOR PRODUCTION THAT IS ABOLISHED BY INHIBITION OF THE P38 MITOGEN-ACTIVATED PROTEIN KINASE SIGNALING PATHWAY," Blood 30 98:541-547). MMP9, a member of the matrix metalloproteinase gene family is one of the genes expressed at day 3 after viral infection of macrophages that can

facilitate the migration of HIV-infected monocytes across the vascular endothelium (Dhawan, S. et al. (1995) "HIV-1 INFECTION ALTERS MONOCYTE INTERACTIONS WITH HUMAN MICROVASCULAR ENDOTHELIAL CELLS," J Immunol 154:422-432 (1995) and has been detected in the cerebrospinal fluids of HIV-1 patients (Sporer, 5 B. et al. (1998) "PRESENCE OF MATRIX METALLOPROTEINASE-9 ACTIVITY IN THE CEREBROSPINAL FLUID OF HUMAN IMMUNODEFICIENCY VIRUS-INFECTED PATIENTS," J. Infect. Dis. 178:854-857). Recruitment of viral host cells may also occur in response to increased MCP-1 expression consistent with the results obtained by other investigators (Mengozzi, M. et al. (1999) "HUMAN IMMUNODEFICIENCY 10 VIRUS REPLICATION INDUCES MONOCYTE CHEMOTACTIC PROTEIN-1 IN HUMAN MACROPHAGES AND U937 PROMONOCYTIC CELLS," Blood 93:1851-1857). Enhanced gene transcription for other inflammatory mediators associated with increased viral replication in macrophages and pathophysiology of HIV, including TNFα, IP-10, MRP14, IL-8 and LIF (Lane, B.R. et al. (2001) "INTERLEUKIN-8 15 STIMULATES HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 REPLICATION AND IS A POTENTIAL NEW TARGET FOR ANTIRETROVIRAL THERAPY," J Virol 75:8195-202; Strasser, F. et al. (1997) "ELEVATED SERUM MACROPHAGE INHIBITORY FACTOR-RELATED PROTEIN (MRP) 8/14 LEVELS IN ADVANCED HIV INFECTION AND DURING DISEASE EXACERBATION," J Acquir Immune Defic Syndr Hum Retrovirol 20 16:230-238); Kinter, A. et al. (2000) "CHEMOKINES, CYTOKINES AND HIV: A COMPLEX NETWORK OF INTERACTIONS THAT INFLUENCE HIV PATHOGENESIS," Immunol Rev 177:88-98; Agostini, C. et al. (2000) "CXC CHEMOKINES IP-10 AND MIG EXPRESSION AND DIRECT MIGRATION OF PULMONARY CD8+/CXCR3+ T CELLS IN THE LUNGS OF PATIENTS WITH HIV INFECTION AND T-CELL 25 ALVEOLITIS," Am J Respir Crit Care Med 162:1466-1473; Broor, S. et al. (1994) "STIMULATION OF HIV REPLICATION IN MONONUCLEAR PHAGOCYTES BY LEUKEMIA INHIBITORY FACTOR," J Acquir Immune Defic Syndr 7:647-654) were also reproducibly detected. Cell homeostasis and genomic stability may be aided by glutathione synthetase, heme oxygenase-1 and MLH1 ensuring the survival of 30 the macrophage to allow viral replication. Furthermore, reduction of lysosomal

enzyme activity can potentially enhance virus entry and infectivity in the host cell

(Fredericksen, B.L. *et al.* (2002) "INHIBITION OF ENDOSOMAL/LYSOSOMAL DEGRADATION INCREASES THE INFECTIVITY OF HUMAN IMMUNODEFICIENCY VIRUS," J Virol 76, 11440-11446).

5

10

15

20

25

Macrophages can co-exist with the virus for a prolonged time, during which they contribute to the pathogenesis of AIDS, acting as viral reservoirs and transmitting HIV-1 to neighboring cells. Although proapoptotic genes for caspase 3, 4 and 8 were upregulated within 3 hours after infection, the antiapoptotic genes bcl-x, DAD1 and IEX-1L (Wu, M.X. *et al.* (1998) "IEX-1L, AN APOPTOSIS INHIBITOR INVOLVED IN NF-KAPPAB-MEDIATED CELL SURVIVAL," Science 281:998-1001; Antonsson, B. *et al.* (2000) "The Bcl-2 protein family," Exp Cell Res 256:50-57; Hong, N.A. *et al.* (2000) "MICE LACKING DAD1, THE DEFENDER AGAINST APOPTOTIC DEATH-1, EXPRESS ABNORMAL N-LINKED GLYCOPROTEINS AND UNDERGO INCREASED EMBRYONIC APOPTOSIS," Dev Biol 220:76-84), were also increased by HIV-1. The balance between pro and anti-apoptotic genes must favor the survival of virus-infected macrophages *in vitro* and *in vivo*, as a strategy developed by the virus to prolong the life of the host for its uninterrupted cycle of replication.

As indicated above, following the initial HIV-1 induced burst of gene expression (6-24 hr), little evidence of transcriptional activity occurred until the onset of viral replication, when an increase in host molecules was again detected (day 7-14). The lack of induction of new host molecules during this interim period may allow the infected cells to escape immune surveillance while the virus initiates its life cycle to commence replication. Once ready to replicate, new transcription may be essential to facilitate the replicative process. For example the data indicate CDKN1A/p21 as a host molecule critical to viral replication in macrophages. CDKN1A is a cyclin-dependent kinase inhibitor induced during G1 cell cycle arrest by p53-dependent pathway following DNA damage, as well as p53-independent pathways involving growth factors

Dotto, G.P. (2000) "p21(WAF1/CIP1): MORE THAN A BREAK TO THE CELL CYCLE?," Biochim Biophys Acta 1471:M43-56; Ogryzko, V.V. et al. (1997) "WAF1 RETARDS S-PHASE PROGRESSION PRIMARILY BY INHIBITION OF CYCLIN-DEPENDENT KINASES," Mol Cell Biol 17, 4877-4882 (1997); Zeng, Y.X. et al. (1996) "REGULATION OF P21WAF1/CIP1 EXPRESSION BY P53-INDEPENDENT 5 PATHWAYS," Oncogene 12:1557-1564). Progressive upregulation of p21 mRNA and protein have also been associated with maturation of hematopoietic progenitor cells (Steinman, R.A. et al. (1998) "REGULATION OF P21(WAF1) EXPRESSION DURING NORMAL MYELOID DIFFERENTIATION," Blood 91:4531-4542), but its 10 connection with viral replication in macrophages has not been demonstrated. Increased p21 in skin lesions of human papillomavirus has been found to be further enhanced by HIV co-infection (Arany, I. et al. (1997) "p53, WAF1/CIP1 AND MDM2 EXPRESSION IN SKIN LESIONS ASSOCIATED WITH HUMAN PAPILLOMAVIRUS AND HUMAN IMMUNODEFICIENCY VIRUS," Anticancer Res 17:1281-1285). An 15 upregulation in CDKN1A induced in macrophages infected with the opportunistic bacteria, Mycobacterium avium (Greenwell-Wild, T. et al. (2002) "MYCOBACTERIUM AVIUM INFECTION AND MODULATION OF HUMAN MACROPHAGE GENE EXPRESSION," J Immunol 169:6286-6297 (2002) may also be linked to the increased susceptibility for HIV replication reported in these cells (Wahl, S.M. et 20 al. (1998) "Mycobacterium avium complex augments macrophage HIV-1 PRODUCTION AND INCREASES CCR5 EXPRESSION," Proc Natl Acad Sci USA 95:12574-12579). The specific role played by CDKN1A in HIV-1 macrophage infection has not been fully determined, however, it may either directly or indirectly enhance viral replication. Although originally described as a cell cycle 25 inhibitor, CDKN1A has more recently been associated with apoptosis, cytoplasmic regulation of nuclear import, and transcriptional regulation by its capacity to act as a transcriptional co-factor/adaptor molecule (Coqueret, O. (2003) "NEW ROLES FOR P21 AND P27 CELL-CYCLE INHIBITORS: A FUNCTION FOR EACH CELL COMPARTMENT?," Trends Cell Biol 13:65-70; LaBaer, J. et al. (1997) "New 30 FUNCTIONAL ACTIVITIES FOR THE P21 FAMILY OF CDK INHIBITORS," Genes Dev 11:847-862). In this regard, HIV-1 Tat is essential for efficient viral replication

and interacts with cAMP response element binding protein (CREB) and the transcriptional coactivator p300 (Hottiger, M.O. *et al.* (1998) "INTERACTION OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 TAT WITH THE TRANSCRIPTIONAL COACTIVATORS P300 AND CREB BINDING PROTEIN," J Virol 72:8252-8256), which can be stimulated by the coexpression of CDKN1A through a novel transcriptional repression domain on p300 (Snowden, A.W. *et al.* (2000) "A NOVEL TRANSCRIPTIONAL REPRESSION DOMAIN MEDIATES P21(WAF1/CIP1) INDUCTION OF P300 TRANSACTIVATION," Mol Cell Biol 20, 2676-2686). In addition, an increase in TBP-1 could be a strategy of the virus to ensure efficient regulation of viral transcription and replication. A causal relationship is thus established between HIV and induced p21 expression, which appears to support viral replication in macrophages.

5

10

While the initial enhancement of p21 gene expression likely represents a downstream consequence of CCR5/G protein signaling, the rise in gene 15 transcription could be due to either intracellular or extracellular viral signals. Definition of such factors may provide a means of altering host involvement in viral infection and replication kinetics, possibly in conjuction with antiviral therapy. The presence of p21 in the nucleus has been related to its cell cycle functions (Dotto, G.P. (2000) "P21(WAF1/CIP1): MORE THAN A BREAK TO THE 20 CELL CYCLE?" Biochim Biophys Acta 1471:M43-56) and the cytoplasmic localization of this protein has been implicated in controlling/preventing apoptosis of alveolar macrophages and during monocytic differentiation (Tomita, K. et al. (2002) "INCREASED P21(CIP1/WAF1) AND B CELL LYMPHOMA LEUKEMIA-X(L) EXPRESSION AND REDUCED APOPTOSIS IN ALVEOLAR MACROPHAGES FROM 25 SMOKERS," Am J Respir Crit Care Med 166:724-731; Asada, M. et al. (1999) "APOPTOSIS INHIBITORY ACTIVITY OF CYTOPLASMIC P21(CIP1/WAF1) IN MONOCYTIC DIFFERENTIATION," Embo J 18:1223-1234). Increased p21 protein in both nuclear and cytoplasmic compartments of HIV-1 infected macrophages may both generate a permissive environment for viral replication and prevent the death 30 of the host cells. The ability to dramatically suppress HIV-1 replication with the

5

10

15

20

25

30

p21 anti-sense oligonucleotides indicates that CDKN1A is critical in promoting viral replication. CDDO a synthetic oleanane triterpenoid with potent differentiating, anti-proliferative and anti-inflammatory activities (Suh, N. et al. (1999) "A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9dien-28-oic acid, with potent differentiating, antiproliferative, and antiinflammatory activity," Cancer Res 59:336-341) being developed as a chemotherapeutic agent for cancer Stadheim, T.A. et al. (2002) "THE NOVEL TRITERPENOID 2-CYANO-3,12-DIOXOOLEANA-1,9-DIEN-28-OIC ACID (CDDO) POTENTLY ENHANCES APOPTOSIS INDUCED BY TUMOR NECROSIS FACTOR IN HUMAN LEUKEMIA CELLS," J Biol Chem 277:16448-16455 (2002) may also inhibit HIV-1 via a p21-dependent pathway, possibly by a post-translational mechanism. CDDO has been recently identified as a member of a new class of nuclear PPARy ligands (Wang, Y. et al. (2000) "A synthetic triterpenoid, 2-cyano-3,12-dioxooleana-1,9dien-28-oic acid (CDDO), is a ligand for the peroxisome proliferator-activated receptor gamma," Mol Endocrinol 14:1550-1556), which reportedly reduces p21 protein expression (Wakino, S. et al. (2001) "PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA LIGANDS INHIBIT MITOGENIC INDUCTION OF P21(CIP1) BY MODULATING THE PROTEIN KINASE C δ PATHWAY IN VASCULAR SMOOTH MUSCLE CELLS," J Biol Chem 276:47650-47657). PPARy is a nuclear hormone receptor implicated in the gene regulation of lipid and glucose metabolism, cellular differentiation and control of macrophage inflammatory responses (Bar-Tana, J. (2001) "PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA (PPARGAMMA) ACTIVATION AND ITS CONSEQUENCES IN HUMANS," Toxicol Lett 120:9-19; Delerive, P. (2001) "PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS IN INFLAMMATION CONTROL," J Endocrinol 169:453-459). Natural and synthetic agonists of PPARy have been recently shown to inhibit retroviral replication (Hayes, M.M. et al. (2002) "PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA AGONISTS INHIBIT HIV-1 REPLICATION IN MACROPHAGES BY TRANSCRIPTIONAL AND POST-TRANSCRIPTIONAL EFFECTS," J Biol Chem 277:16913-16919) and although the target was not defined, some studies have implicated TNF- α in the PPAR γ -induced suppression of HIV (Skolnik, P.R. et al. (2002)

"STIMULATION OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS ALPHA AND GAMMA BLOCKS HIV-1 REPLICATION AND TNFALPHA PRODUCTION IN ACUTELY INFECTED PRIMARY BLOOD CELLS, CHRONICALLY INFECTED U1 CELLS, AND ALVEOLAR MACROPHAGES FROM HIV-INFECTED SUBJECTS," J Acquir Immune Defic 5 Syndr 31:1-10). Still unresolved is whether the antiviral effect of CDDO is mediated through this receptor entirely by its effect on p21 function by posttranslational modification (Scott, M.T. et al. (2000) "REVERSIBLE PHOSPHORYLATION AT THE C-TERMINAL REGULATORY DOMAIN OF P21(WAF1/CIP1) MODULATES PROLIFERATING CELL NUCLEAR ANTIGEN BINDING," J Biol Chem 10 275:11529-11537), through inhibition of NFκB (Straus, D.S. et al. (2000) "15-DEOXY-DELTA 12,14-PROSTAGLANDIN J2 INHIBITS MULTIPLE STEPS IN THE NF-KAPPA B SIGNALING PATHWAY," Proc Natl Acad Sci USA 97:4844-4849, modulation of p38 MAPK (Kim, J.Y. et al. (2002) "INVOLVEMENT OF P38 MITOGEN-ACTIVATED PROTEIN KINASE IN THE CELL GROWTH INHIBITION BY SODIUM 15 ARSENITE," J Cell Physiol 190:29-37 (2002) and/or the production of cytokines that regulate cellular and viral components, such as TGF-β (Li, C.Y. et al. (1995) "POTENTIAL ROLE OF WAF1/CIP1/P21 AS A MEDIATOR OF TGF-BETA CYTOINHIBITORY EFFECT," J Biol Chem 270:4971-4974; Wahl, S.M. et al. (1991) "Macrophage- and astrocyte-derived transforming growth factor beta 20 AS A MEDIATOR OF CENTRAL NERVOUS SYSTEM DYSFUNCTION IN ACQUIRED IMMUNE DEFICIENCY SYNDROME," J Exp Med 173:981-991). Comparison of genes upregulated by HIV in T lymphocytes (Corbeil, J. et al. (2001) "TEMPORAL GENE REGULATION DURING HIV-1 INFECTION OF HUMAN CD4+ T CELLS," Genome Res 11:1198-1204) with those identified in macrophage host also revealed an early 25 increase in genes associated with cellular defense. However, increased expression of proapoptotic transcripts, and inhibition of mitochondria and DNA repair genes is also observed, which could explain the unavoidable death pathway in HIV-1 infected T cells and survival of macrophage host. The differential gene expression and cell specific modulation of host protein function as a result of HIV-1 infection 30 in these cell populations may help better understand the reasons leading to HIVinduced apoptosis in T cells (Corbeil, J. et al. (2001) "TEMPORAL GENE

REGULATION DURING HIV-1 INFECTION OF HUMAN CD4+ T CELLS," Genome Res 11:1198-1204; Clark, E. et al. (2000) "Loss of G(1)/S CHECKPOINT IN HUMAN IMMUNODEFICIENCY VIRUS TYPE 1-INFECTED CELLS IS ASSOCIATED WITH A LACK OF CYCLIN-DEPENDENT KINASE INHIBITOR P21/Waf1. J Virol 74, 5040-5052), while allowing the macrophage to sustain a prolonged viral burden.

5

10

15

20

25

Since the macrophage represents a key target for HIV-1 infection and one of the major obstacles in eradicating the virus even during HAART (Igarashi, T. et al. (2001) "MACROPHAGE ARE THE PRINCIPAL RESERVOIR AND SUSTAIN HIGH VIRUS LOADS IN RHESUS MACAQUES AFTER THE DEPLETION OF CD4+ T CELLS BY A HIGHLY PATHOGENIC SIMIAN IMMUNODEFICIENCY VIRUS/HIV TYPE 1 CHIMERA (SHIV): IMPLICATIONS FOR HIV-1 INFECTIONS OF HUMANS," Proc Natl Acad Sci USA 98:658-663; Garbuglia, A.R. et al. (2001) "DYNAMICS OF VIRAL LOAD IN PLASMA AND HIV DNA IN LYMPHOCYTES DURING HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART): HIGH VIRAL BURDEN IN MACROPHAGES AFTER 1 YEAR OF TREATMENT," J Chemother 13:188-194, the above-described data analyzing the influence of HIV on the macrophage transcriptome reveals important insights into the pattern of host cell gene expression underlying viral success in this population. CDKN1A and other virus-regulated macrophage genes critical for HIV-1 replication provide mechanisms by which to target the macrophage reservoir and/or serve as prognostic markers of disease progression.

Finally, since anti-HIV therapy is limited by the side effects that have accompanied conventional anti-retroviral drugs, and the constant emergence of drug-resistant HIV strains, CDDO provides an important candidate drug to target HIV-1, particularly in conjunction with additional anti-viral therapy, to prevent or attenuate the infection of new viral hosts.

All publications and patent documents mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent document was specifically and individually indicated to be incorporated by reference.

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth.

5

SEQUENCE LISTING

5	<110>	NIDCR, National Institutes of Health Wahl, Sharon Greenwell-Wild, Theresa Vazquez-Maldonado, Nancy	
,	<120>	Methods and Compositions for the Inhibition of HIV-1 Replication $% \left(1\right) =\left(1\right) +\left(1\right) +\left$	
	<130>	03514.160	
10	<160> <120>	14 Methods and Compositions for the Inhibition of HIV-1 Replication	
	<130>	03514.160	
	<160>	14	
	<170>	PatentIn version 3.2	
15	<210>	1	
	<211>	15	
	<212>	DNA	
	<213>	Homo sapiens	
1	<400>	1	
20	uccgcgc	cca gcucc	15
	<210>	2	
	<211>	15	
	<212>	DNA	
	<213>	Homo sapiens	
25	44005	2	
23	<400>	2	<i>′</i>
	ucegeee	gca gcucc	15
	<210>	3	
	<211>	2265	
	<212>	DNA	
30	<213>	Homo sapiens	
	<400>	3	
		aag teagtteett gtggageegg agetgggege ggattegeeg aggeacegag gag gaggtgagag ageggeggea gaeaaeaggg gaeeeeggge eggeggeeea	60 120
		goc aagegtgeee gegtgtgtee etgegtgtee gegaggatge gtgttegegg	180
35		ctg cgttcacagg tgtttctgcg gcaggcgcca tgtcagaacc ggctggggat	240
		aga acceatgegg cageaaggee tgeegeegee tetteggeee agtggaeage	300
		tga geegegaetg tgatgegeta atggegggget geatecagga ggeeegtgag	360
		act tegaetttgt cacegagaca ceaetggagg gtgaettege etgggagegt	420
		gcc ttggcctgcc caagctctac cttcccacgg ggccccggcg aggccgggat	480
40		gag gaggcaggcg gcctggcacc tcacctgctc tgctgcaggg gacagcagag	540

600

```
gaagaccatg tggacctgtc actgtcttgt accettgtgc ctcgctcagg ggagcaggct
             gaagggtccc caggtggacc tggagactct cagggtcgaa aacggcggca gaccagcatg
                                                                                  660
             acagatttct accactccaa acgccggctg atcttctcca agaggaagcc ctaatccgcc
                                                                                  720
             cacaggaage etgeagteet ggaagegega gggeeteaaa ggeeegetet acatettetg
 5
             ccttagtctc agtttgtgtg tcttaattat tatttgtgtt ttaatttaaa cacctcctca
                                                                                  840
             tgtacatace etggeegeee eetgeeeeee ageetetgge attagaatta tttaaacaaa
                                                                                  900
             aactaggcgg ttgaatgaga ggttcctaag agtgctgggc atttttattt tatgaaatac
             tatttaaage eteeteatee egtgttetee tttteetete teeeggaggt tgggtgggee
                                                                                1020
             ggetteatge eagetaette eteeteecea ettgteeget gggtggtace etetggaggg
                                                                                1080
10
             gtgtggctcc ttcccatcgc tgtcacaggc ggttatgaaa ttcaccccct ttcctggaca
             ctcagacctg aattetttt catttgagaa gtaaacagat ggcactttga aggggcctca
             ccgagtgggg gcatcatcaa aaactttgga gtcccctcac ctcctctaag gttgggcagg
                                                                                1260
             gtgaccctga agtgagcaca gcctagggct gagctgggga cctggtaccc tcctggctct
                                                                                1320
             tgataccccc ctctgtcttg tgaaggcagg gggaaggtgg ggtcctggag cagaccaccc
15
             egectgeect catggeecet etgacetgea etggggagee egteteagtg ttgageettt
                                                                                 1440
             tecetetttg geteeeetgt acettttgag gageeecage taccettett etecagetgg
                                                                                1500
             gctctgcaat tcccctctgc tgctgtccct cccccttgtc ctttcccttc agtaccctct
             cagetecagg tggetetgag gtgeetgtee caeeeceaee eecageteaa tggaetggaa
             ggggaaggga cacacaagaa gaagggcacc ctagttctac ctcaggcagc tcaagcagcg
                                                                                1680
20
             accgccccct cctctagctg tgggggtgag ggtcccatgt ggtggcacag gcccccttga
                                                                                1740
             gtggggttat ctctgtgtta ggggtatatg atgggggagt agatctttct aggagggaga
             cactggcccc tcaaatcgtc cagcgacctt cctcatccac cccatccctc cccagttcat
                                                                                1860
             tgcactttga ttagcagcgg aacaaggagt cagacatttt aagatggtgg cagtagaggc
             tatggacagg gcatgccacg tgggctcata tggggctggg agtagttgtc tttcctggca
25
             ctaacgttga gcccctggag gcactgaagt gcttagtgta cttggagtat tggggtctga
                                                                                2040
             ccccaaacac cttccagete ctgtaacata ctggcctgga ctgttttctc tcggctcccc
                                                                                2100
             atgtgtcctg gttcccgttt ctccacctag actgtaaacc tctcgagggc agggaccaca
                                                                                2160
             ccctgtactg ttctgtgtct ttcacagctc ctcccacaat gctgaatata cagcaggtgc
                                                                                 2220
             2265
30
             <210>
                     4
             <211>
                     2265
             <212>
                     DNA
35
             <213>
                     Homo sapiens
             <400> 4
             ttttttttt tttttttt aaagtcacta agaatcattt attgagcacc tgctgtatat
             tcagcattgt gggaggagct gtgaaagaca cagaacagta cagggtgtgg tccctgccct
                                                                                 120
40
                                                                                 180
             cgagaggttt acagtctagg tggagaaacg ggaaccagga cacatgggga gccgagagaa
                                                                                 240
             aacagtccag gccagtatgt tacaggagct ggaaggtgtt tggggtcaga ccccaatact
             ccaagtacac taagcacttc agtgcctcca ggggctcaac gttagtgcca ggaaagacaa
                                                                                  300
             ctactcccag ccccatatga gcccacgtgg catgccctgt ccatagcctc tactgccacc
                                                                                 360
             atottaaaat gtotgactoo ttgttccgct gctaatcaaa gtgcaatgaa ctggggaggg
                                                                                 420
45
             atggggtgga tgaggaaggt cgctggacga tttgaggggc cagtgtctcc ctcctagaaa
                                                                                  480
             gatctactcc cccatcatat acccctaaca cagagataac cccactcaag ggggcctgtg
                                                                                 540
             ccaccacatg ggacceteae ceceacaget agaggagggg geggtegetg ettgagetge
                                                                                 600
             ctgaggtaga actagggtgc cettettett gtgtgteeet teeeetteea gteeattgag
                                                                                 660
             ctgggggtgg gggtgggaca ggcacctcag agccacctgg agctgagagg gtactgaagg
                                                                                 720
50
             gaaaggacaa gggggaggga cagcagcaga ggggaattgc agagcccagc tggagaagaa
                                                                                 780
             gggtagctgg ggctcctcaa aaggtacagg ggagccaaag agggaaaagg ctcaacactg
                                                                                 840
             agacgggctc cccagtgcag gtcagagggg ccatgagggc aggcggggtg gtctgctcca
                                                                                 900
             ggaccccacc ttccccctgc cttcacaaga cagaggggg tatcaagagc caggagggta
                                                                                 960
```

```
ccaggtcccc agetcagece taggetgtge teacttcagg gtcaccetge ccaacettag
             aggaggtgag gggactccaa agtttttgat gatgccccca ctcggtgagg ccccttcaaa
                                                                                1080
             gtgccatctg tttacttctc aaatgaaaaa gaattcaggt ctgagtgtcc aggaaagggg
                                                                                 1140
             gtgaatttca taaccgcctg tgacagcgat gggaaggagc cacacccctc cagagggtac
                                                                                 1200
 5
             cacccagegg acaagtgggg aggaggaagt agetggeatg aageeggeee acecaacete
                                                                                1260
             cgggagagag gaaaaggaga acacgggatg aggaggcttt aaatagtatt tcataaaata
                                                                                1320
             aaaatgccca gcactcttag gaacctctca ttcaaccgcc tagtttttgt ttaaataatt
             ctaatgccag aggctggggg gcagggggcg gccagggtat gtacatgagg aggtgtttaa
                                                                                1440
             attaaaacac aaataataat taagacacac aaactgagac taaggcagaa gatgtagagc
                                                                                1500
10
             gggcctttga ggccctcgcg cttccaggac tgcaggcttc ctgtgggcgg attagggctt
             cetettggag aagateagee ggegtttgga gtggtagaaa tetgteatge tggtetgeeg
                                                                                1620
                                                                                1680
             ccgttttcga ccctgagagt ctccaggtcc acctggggac ccttcagcct gctccctga
             gcgaggcaca agggtacaag acagtgacag gtccacatgg tcttcctctg ctgtcccctg
                                                                                 1740
             cagcagagea ggtgaggtge caggeegeet geeteeteee aacteateee ggeetegeeg
                                                                                 1800
15
             gggccccgtg ggaaggtaga gcttgggcag gccaaggccc cgcacacgct cccaggcgaa
                                                                                1860
             gtcaccctcc agtggtgtct cggtgacaaa gtcgaagttc catcgctcac gggcctcctg
                                                                                1920
             gatgcagece gecattageg cateacagte geggeteage tgetegetgt ccaetgggee
             gaagaggegg eggeaggeet tgetgeegea tgggttetga eggacateee eageeggtte
                                                                                2040
             tgacatggcg cctgccgcag aaacacctgt gaacgcagca cacacccgcg aacacgcatc
                                                                                2100
20
             ctcgcggaca cgcagggaca cacgcgggca cgcttggctc ggctctgggc cgccggcccg
                                                                                2160
             gggtcccctg ttgtctgccg ccgctctctc acctcctctg agtgcctcgg tgcctcggcg
                                                                                 2220
             aatccgcgcc cagctccggc tccacaagga actgacttcg gcagc
                                                                                 2265
25
             <210>
                     5
             <211>
                     1909
             <212>
                     DNA
             <213>
                    Mus musculus
30
             <400>
             gageegagag gtgtgageeg eegeggtgte agagtetagg ggaattggag teaggegeag
             atccacageg atatccagae attcagagee acaggeacea tgtccaatee tggtgatgte
                                                                                 120
             egacetgtte egeacaggag caaagtgtge egttgtetet teggteeegt ggacagtgag
                                                                                 180
                                                                                 240
             cagttgcgcc gtgattgcga tgcgctcatg gcgggctgtc tccaggaggc ccgagaacgg
35
             tggaactttg acttcgtcac ggagacgccg ctggagggca acttcgtctg ggagcgcgtt
             eggageetag ggetgeecaa ggtetaeetg ageeetgggt eeegcageeg tgaegaeetg
                                                                                 360
             ggagggaca agaggcccag tactteetet geeetgetge aggggeeage teeggaggac
                                                                                 420
             cacgtggcct tgtcgctgtc ttgcactctg gtgtctgagc ggcctgaaga ttccccgggt
                                                                                 540
             gggcccggaa catctcaggg ccgaaaacgg aggcagacca gcctgacaga tttctatcac
40
                                                                                 600
             tecaagegea gattggtett etgeaagaga aaaceetgaa gtgeeeaegg gageeeegee
                                                                                  660
             ctcttctgct gtgggtcagg aggcctcttc cccatcttcg gccttagccc tcactctgtg
             tgtcttaatt attatttgtg ttttaattta aacgtctcct gtatatacgc tgcctgccct
                                                                                 720
             780
             aaaacaaaac aaacctaaat tagtaggacg gtagggccct tagtgtgggg gatttctatt
                                                                                 840
45
             atgtagatta ttattatta agcccctccc aacccaagct ctgtgtttcc tataccggag
             gaacagtcct actgatatca acccatctgc atccgtttca cccaaccccc ctccccccat
                                                                                 960
             tecetgeetg gtteettgee aettettaee tgggggtgat eeteagaeet gaatageaet
                                                                                1020
             ttggaaaaat gagtaggact ttggggtctc cttgtcacct ctaaggccag ctaggatgac
                                                                                1080
             agtgaagcag tcacagccta gaacagggat ggcagttagg actcaaccgt aatatcccga
                                                                                 1140
50
             ctcttgacat tgctcagacc tgtgaagaca ggaatggtcc ccactctgga tcccctttgc
                                                                                 1200
                                                                                1260
             cactectggg gageceacet etectgtggg tetetgeeag etgeecetet attttggagg
             gttaatctgg tgatctgctg ctcttttccc ccaccccata cttccccttc tgcaggtcgg
                                                                                 1380
             caggaggcat atctaggcac ttgccccaca gctcagtgga ctggaaggga atgtatatgc
```

```
agggtacact aagtgggatt ccctggtctt accttaggca gctccagtgg caaccccctg
             cattgtgggt ctagggtggg tccttggtgg tgagacaggc ctcccagagc attctatggt
             gtgtggtggt gggggtgggc ttatctggga tggggacccc agttggggtt ctcagtgact
             teteceattt ettagtagea gttgtaeaag gageeaggee aagatggtgt ettggggget
 5
             aagggagete acaggacaet gagcaatgge tgateettte teagtgttga atacegtggg
                                                                                1680
             tgtcaaagca cttagtgggt ctgactccag ccccaaacat ccctgtttct gtaacatcct
                                                                                1740
             ggtctggact gtctaccett agccegcace ccaagaacat gtattgtgge tecetecetg
             tetecaetea gattgtaage gteteaegag aagggacage accetgeatt gteeegagte
                                                                                1860
             ctcacacccg accccaaage tggtgctcaa taaatacttc tcgatgatt
                                                                                1909
10
             <210>
             <211>
                     1909
             <212>
                    DNA
15
             <213>
                     Mus musculus
             <400>
             aatcatcgag aagtatttat tgagcaccag ctttggggtc gggtgtgagg actcgggaca
                                                                                  60
             atgcagggtg ctgtcccttc tcgtgagacg cltacaatct gagtggagac agggagggag
                                                                                  120
20
             ccacaataca tgttcttggg gtgcgggcta agggtagaca gtccagacca ggatgttaca
                                                                                  180
             gaaacaggga tgtttggggc tggagtcaga cccactaagt gctttgacac ccacggtatt
                                                                                  240
             caacactgag aaaggatcag ccattgctca gtgtcctgtg agctccctta gcccccaaga
                                                                                 300
             caccatettg geetggetee ttgtacaact getactaaga aatgggagaa gteactgaga
                                                                                 360
             accccaactg gggtccccat cccagataag cccaccccca ccaccacaca ccatagaatg
25
             ctctgggagg cctgtctcac caccaaggac ccaccctaga cccacaatgc agggggttgc
                                                                                 480
             cactggaget geetaaggta agaceaggga ateceaetta gtgtaeeetg catatacatt
                                                                                 540
             cccttccagt ccactgaget gtggggcaag tgcctagata tgcctcctgc cgacctgcag
                                                                                 600
             aaggggaagt atggggtggg ggaaaagagc agcagatcac cagattaacc ctccaaaata
             gaggggcage tggcagagae ccacaggaga ggtgggetee ccaggagtgg caaaggggat
                                                                                 720
30
             ccagagtggg gaccattcct gtcttcacag gtctgagcaa tgtcaagagt cgggatatta
                                                                                 780
             eggttgagte etaaetgeea teeetgttet aggetgtgae tgetteaetg teateetage
                                                                                 840
             tggccttaga ggtgacaagg agaccccaaa gtcctactca tttttccaaa gtgctattca
                                                                                 900
                                                                                 960
             ggtctgagga tcacccccag gtaagaagtg gcaaggaacc aggcagggaa tggggggggg
             ggggttgggt gaaacggatg cagatgggtt gatatcagta ggactgttcc tccggtatag
                                                                                1020
35
             gaaacacaga gcttgggttg ggaggggctt aaataataat aatctacata atagaaatcc
                                                                                1080
             1140
             gttttgtttt gttcttttt taaataactt taagtttgga gactgggaga gggcaggcag
                                                                                1200
             cgtatataca ggagacgttt aaattaaaac acaaataata attaagacac acagagtgag
             ggctaaggcc gaagatgggg aagaggcctc ctgacccaca gcagaagagg gcggggctcc
                                                                                1320
40
             cgtgggcact tcagggtttt ctcttgcaga agaccaatct gcgcttggag tgatagaaat
                                                                                1380
             ctgtcaggct ggtctgcctc cgttttcggc cctgagatgt tccgggccca cccggggaat
                                                                                1440
             etteaggeeg eteagaeace agagtgeaag acagegaeaa ggeeacgtgg teeteeggag
             etggeeeetg eageagggea gaggaagtae tgggeetett gteeeeteee aggtegteae
                                                                                1560
             ggctgcggga cccagggctc aggtagacct tgggcagccc taggctccga acgcgctccc
                                                                                1620
45
             agacgaagtt geeeteeage ggegteteeg tgacgaagte aaagtteeae egtteteggg
             cctcctggag acagecegee atgagegeat egeaateaeg gegeaactge teaetgteea
                                                                                1740
             cgggaccgaa gagacaacgg cacactttgc teetgtgegg aacaggtegg acatcaccag
                                                                                1800
             gattggacat ggtgcctgtg gctctgaatg tctggatatc gctgtggatc tgcgcctgac
                                                                                1860
             tocaattooc ctagactotg acacegegge ggeteacace teteggete
                                                                                1909
50
```

<210> 7 <211> 20

	<212> <213>	DNA Mus musculus					
ج	<400>	7					
5	tgtcagg	ctg gtctgcctcc					20
	<210>	8					
	<211>	20					
10	<212>	DNA					
	<213>	Homo sapiens					
	<400>	0					
		8 ctg gtctgccgcc					20
15	tyttaty	cty georgeogee					20
	<210>	9					
	<211>	20					
20	<212>	DNA					
20	<213>	Mus musculus					
	<400>	9					
		cag gattggacat					20
							-
25							
	<210>	10					
	<211>	23					
	<212>	DNA					
30	<213>	Homo sapiens					
50	<400>	10					
		cag ccggttctga	cat				23
2.5							
35	<210>	11					
	<211> <212>	202 DNA					
	<213>	Homo sapiens					
		capaciic					
40	<400>	11.					
	accatcc	cct tcctcacctg	aaaacaggca	gcccaaggac	aaaatagcca	ccagcctctt	60
		aga gctcaacatg					120
		gct gcccaagcat		agcaggcagc	atagggatgg	agggaggctc	180
45	agcctgg	ggg aacaagagtg	cc				202
, 5							
	<210>	12					
	<211>	202					
	<212>	DNA					
50	<213>	Homo sapiens					

	<400> 12
	ggcactcttg ttcccccagg ctgagcctcc ctccatccct atgctgcctg cttcccagga 60
	acatgettgg geageagget gtggetetga ttggetttet ggeegteagg aacatgteee 120
,	aacatgttga gctctggcat agaagaggct ggtggctatt ttgtccttgg gctgcctgtt 180
5	ttcaggtgag gaaggggatg gt 202
	<210> 13
	<211> 160
10	<212> PRT
	<213> 'Homo sapiens
	<400> 13
15	Met Ser Glu Pro Ala Gly Asp Val Arg Gln Asn Pro Cys Gly Ser Lys
	1 5 10 15
	Ala Cys Arg Arg Leu Phe Gly Pro Val Asp Ser Glu Gln Leu Ser Arg
	20 25 30
20	
	Asp Cys Asp Ala Leu Met Ala Gly Cys Ile Gln Glu Ala Arg Glu Arg
	35 40 45
	Trp Asn Phe Asp Phe Val Thr Glu Thr Pro Leu Glu Gly Asp Phe Ala
25	50 55 60
	Trp Glu Arg Val Arg Gly Leu Gly Leu Pro Lys Leu Tyr Leu Pro Thr
	65 70 75 80
30	Gly Pro Arg Arg Gly Arg Asp Glu Leu Gly Gly Gly Arg Arg Pro Gly
	85 90 95
	Thr Ser Pro Ala Leu Leu Gln Gly Thr Ala Glu Glu Asp His Val Asp
35	100 105 110
33	Tou Con Lou Con Cue Mha Lou Hal Day Ann Con Clu Clu Clu Ala Clu
	Leu Ser Leu Ser Cys Thr Leu Val Pro Arg Ser Gly Glu Gln Ala Glu 115 120 125
	100
	Gly Ser Pro Gly Gly Pro Gly Asp Ser Gln Gly Arg Lys Arg Arg Gln
40	130 135 140
	Thr Ser Met Thr Asp Phe Tyr His Ser Lys Arg Arg Leu Ile Phe Ser 145 150 155 160
	143 130 133 100
45	
	<210> 14
	<211> 18
	<212> DNA
50	<213> Mus musculus
50	<400> 14

tggatccgac atgtcaga

18

What Is Claimed Is:

5

- Claim 1. A method of attenuating the transmission or infection of an immunodeficiency virus into a cell comprising providing to said cell an inhibitor of p21, wherein said inhibitor is provided in an amount and duration sufficient to cause an attenuation of at least 50% in said transmission or infection of said virus relative to an untreated cell.
- Claim 2. The method of claim 1, wherein said immunodeficiency virus is human immunodeficiency virus (HIV), and said cell is a human cell.
 - Claim 3. The method of claim 1, wherein said inhibitor of p21 is a polynucleotide.
 - Claim 4. The method of claim 2, wherein said polynucleotide is complementary to a portion of a p21 gene or p21 cDNA molecule.
- 15 Claim 5. The method of claim 3, wherein said p21 gene or p21 cDNA is of a human p21 gene or p21 cDNA molecule.
 - Claim 6. The method of claim 5, wherein said polynucleotide comprises at least 10 contiguous nucleotides of **SEQ ID NO.:4**.
- Claim 7. The method of claim 6, wherein said polynucleotide comprises at least 10 contiguous nucleotides of **SEQ ID NO.:8** or **SEQ ID NO.:10**.
 - Claim 8. The method of claim 3, wherein said p21 gene or p21 cDNA is of a non-human animal or is a variant of a non-human p21 gene or p21 cDNA molecule.

- Claim 9. The method of claim 8, wherein said polynucleotide comprises at least 10 contiguous nucleotides of **SEQ ID NO.:6**.
- Claim 10. The method of claim 9, wherein said polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:7 or SEQ ID NO.:9.

5

15

- Claim 11. The method of claim 1, wherein said inhibitor of p21 is a protein or organic molecule other than a polynucleotide.
- Claim 12. The method of claim 11, wherein said inhibitor is 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), or a salt or derivative thereof.
 - Claim 13. A method of treating AIDS in an individual, comprising providing to HIV-1 infected cells of said individual an amount of a p21 inhibitor sufficient to attenuate the propagation of HIV, wherein said inhibitor is provided in an amount and duration sufficient to cause an attenuation of at least 50% in said propagation of HIV relative to untreated cells.
 - Claim 14. The method of claim 10, wherein said inhibitor of p21 is a polynucleotide.
- Claim 15. The method of claim 11, wherein said polynucleotide is complementary to a portion of a p21 gene or p21 cDNA molecule.
 - Claim 16. The method of claim 11, wherein said p21 gene or p21 cDNA is of a human p21 gene or p21 cDNA molecule.
 - Claim 17. The method of claim 16, wherein said polynucleotide comprises at least 10 contiguous nucleotides of **SEQ ID NO.:4**.

Claim 18.	The method of claim 17, wherein said polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:8 or SEQ ID NO.:10.
Claim 19.	The method of claim 11, wherein said p21 gene or p21 cDNA is of a non-human animal or is a variant of a non-human p21 gene or p21 cDNA molecule.
Claim 20.	The method of claim 19, wherein said polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:6 .
Claim 21.	The method of claim 20, wherein said polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:7 or SEQ ID NO.:9.
Claim 22.	The method of claim 13, wherein said inhibitor of p21 is a protein or organic molecule other than a polynucleotide.
Claim 23.	The method of claim 22, wherein said inhibitor is 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), or a salt or derivative thereof.
Claim 24.	A pharmaceutical composition comprising an inhibitor of p21 and an excipient or carrier, wherein said inhibitor is present in an amount sufficient to attenuate the propagation of HIV, wherein said inhibitor is present in said composition in an amount sufficient to cause an attenuation of at least 50% in said propagation of HIV relative to untreated cells.
Claim 25.	The composition of claim 24, wherein said inhibitor of p21 is a polynucleotide.

The composition of claim 25, wherein said polynucleotide is

complementary to a portion of a p21 gene or p21 cDNA molecule.

5

10

15

20

25

Claim 26.

5

10

15

20

Claim 27.	The composition of claim 25, wherein said p21 gene or p21 cDNA is of a human p21 gene or p21 cDNA molecule.
Claim 28.	The composition of claim 27, wherein said polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:4.
Claim 29.	The composition of claim 28, wherein said polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:8 or SEQ ID NO.:10.
Claim 30.	The composition of claim 25, wherein said p21 gene or p21 cDNA is of a non-human animal or is a variant of a non-human p21 gene or p21 cDNA molecule.
Claim 31.	The composition of claim 30, wherein said polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:6 .
Claim 32.	The composition of claim 31, wherein said polynucleotide comprises at least 10 contiguous nucleotides of SEQ ID NO.:7 or SEQ ID NO.:9.
Claim 33.	The composition of claim 24, wherein said inhibitor of p21 is a protein or organic molecule other than a polynucleotide.
Claim 34.	The composition of claim 33, wherein said inhibitor is 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), or a salt or

derivative thereof.

Abstract of the Invention

5

This invention relates to methods and compositions for the attenuation of HIV-1 replication in human cells, and especially in human macrophages. The invention particularly concerns the use of inhibitors of P21 (CDKN1A) expression to attenuate such replication. The invention particularly concerns the use of antisense P21 oligonucleotides and/or 2-cyano-3,12-dioxooleana-1,9-dien-28-oic (CDDO) to attenuate such replication.

Figure 1A

Days post HIV infection

Figure 1C

Figure 1D

Figure 2A

Figure 2B

v,

Figure 3B

Figure 4A

Figure 4C

Figure 4D

Figure 5A

Figure 5B

11/11

Figure 6