

Contact

Ypenburgbocht 9-A303 2316 WB Leiden, Zuid-Holland Netherlands

Socials

robkras.com Kaggle: robkraseu GitHub: rbkrs

robkraseu@gmail.com +31 6 27390907

Languages

Dutch – Native English – Bilingual German – Limited French – Limited

Robin (R.P.M.) Kras

EDUCATION

Estimated finalisation Mid 2025

MSc Computer Science, Rijksuniversiteit Leiden

- Data Science & Artificial Intelligence specialization track

Dec 2023

BSc Computer Science, Vrije Universiteit Amsterdam

- Minor: Data Science

SKILLS

Programming: Python, C, C++, Assembly, SCALA

Technical skills: Keras, NumPy, Pandas, TensorFlow, PyTorch, (My)SQL, data manipulation, data visualization, machine learning, GIT, PowerPoint, web scraping, data mining, natural language processing

Personal skills: love of learning, time management, communication, leadership, management, excellent swimmer, adaptability

CERTIFICATES

English C1 Advanced

May 2018

Issued by Cambridge Assessment International Education

PROJECTS

Kaggle

Competition entries are regularly updated and stored on my domain (robkras.com).

Notable entries include:

Rainfall prediction (5/2529): rainfall(robkras.com)
Survival prediction (2331/15346): titanic(robkras.com)
House pricing prediction (37/3942): house-prices(robkras.com)

Machine Learning & Data Science

- Developed supervised learning models (XGBoost, kNN, Random Forest, Linear Regression) to predict rainfall and classify Titanic survival outcomes.
- **Optimized models** using GridSearchCV, achieving improved accuracy and efficiency.
- Engineered new features, handled missing data, and applied one-hot encoding & label encoding for categorical variables.
- Trained and fine-tuned deep neural networks using TensorFlow/Keras.

Data Processing & Analysis

- Conducted Exploratory Data Analysis (EDA) using Seaborn & Matplotlib to identify trends and correlations.
- Cleaned and preprocessed datasets using Pandas & NumPy, ensuring high-quality input data.
- Scaled numerical features using **StandardScaler** to improve model convergence.

Model Evaluation & Interpretability

- Assessed models with RMSE, R², MAE, accuracy, and ROC-AUC scores for performance benchmarking.
- Applied SHAP values for explainability and feature importance analysis.
- Used **SMOTE** to balance imbalanced datasets, improving prediction robustness.