

General information

Designation

PLA (lubricated), Polylactide / Polylactic acid (Lubricated)

Tradenames

Ingeo, Latilub

Typical uses

Fabrics, filters, membranes, nonwovens, twine, sanitary products, textile applications

Composition overview

Compositional summary

(CH(CH3)CO2)n + lubricant. The lactic acid is produced from sugar (dextrose) with plant starch origins e.g. corn, wheat, sugar beets and sugar cane.

Material family	Plastic (thermoplastic, semi-crystalline)				
Base material	PLA (Polylactic acid / polylactide)				
Additive	Anti-friction/wear lubricant				
Renewable content	95 %				
Polymer code	PLA-L				

Composition detail (polymers and natural materials)

Polymer	95	%
Silicone (lubricant)	5	%

Price

Price	* 2,94	-	3,96	EUR/kg
Price per unit volume	* 3,65e3	-	5,07e3	EUR/m^3

Physical properties

·					
Density	1,24e3	-	1,28e3	kg/m^3	

Mechanical properties

The contract properties				
Young's modulus	2,9			GPa
Specific stiffness	2,27	-	2,34	MN.m/kg
Yield strength (elastic limit)	51	-	59	MPa
Tensile strength	* 51	-	59	MPa
Specific strength	40,4	-	46,9	kN.m/kg
Elongation	4,5			% strain
Elongation at yield	2,5			% strain
Compressive modulus	* 2,83	-	2,97	GPa
Compressive strength	* 61,3	-	70,9	MPa
Flexural modulus	* 2,83	-	2,97	GPa
Flexural strength (modulus of rupture)	* 73,8	-	86,1	MPa
Shear modulus	* 1,06	-	1,12	GPa
Shear strength	* 30,6	-	35,4	MPa

Critical materials risk

GRANTA EDUPACK				
Bulk modulus	* 2,77	-	2,91	GPa
Poisson's ratio	0,33			
Shape factor	5			
Hardness - Vickers	* 15,7	-	17,3	HV
Hardness - Shore D	* 73	-	80	
Elastic stored energy (springs)	451	-	597	kJ/m^3
Fatigue strength at 10^7 cycles	* 20,4	-	23,6	MPa
Impact & fracture properties				
Fracture toughness	* 3,24	_	3,92	MPa.m^0.5
Toughness (G)	* 3,65	_	5,26	kJ/m^2
Impact strength, notched 23 °C	3,5		-, -	kJ/m^2
Impact strength, unnotched 23 °C	20			kJ/m^2
Thermal properties				
Melting point	* 135	_	181	°C
Glass temperature	* 55	_	60	°C
Heat deflection temperature 0.45MPa	50		00	°C
Heat deflection temperature 0.43MPa	50			°C
Vicat softening point	60			°C
Maximum service temperature	* 40		60	°C
Minimum service temperature	* -45	_	-12	°C
Thermal conductivity	* 0,12	_	0,15	W/m.°C
Specific heat capacity	* 1,18e3	_	1,21e3	J/kg.°C
Thermal expansion coefficient	* 68	_	78	µstrain/°C
Thermal shock resistance	* 235	_	287	°C
Thermal distortion resistance	* 0,00162	_	0,0021	MW/m
	0,00102	-	0,0021	101007111
Electrical properties				
Electrical resistivity	* 2,7e16	-	4,3e17	µohm.cm
Electrical conductivity	* 4,01e-16	-	6,39e-15	%IACS
Dielectric constant (relative permittivity)	* 3,1	-	3,2	
Dissipation factor (dielectric loss tangent)	* 0,00909	-	0,01	
Dielectric strength (dielectric breakdown)	* 3	-	6,2	MV/m
Magnetic properties				
Magnetic type	Non-magn	etic		
Optical, aesthetic and acoustic properties				
Refractive index	* 1,44	-	1,46	
Transparency	Opaque			
Acoustic velocity	1,51e3	-	1,53e3	m/s
Mechanical loss coefficient (tan delta)	* 0,0124		0,0164	

GRANTA EDUPACK								
Contains >5wt% critical elements?	No							
Absorption & permeability								
Water absorption @ 24 hrs	* 0,1	_	0,13	%				
Water absorption @ sat	* 0,7	-	1	%				
Humidity absorption @ sat	* 0,21	_	0,3	%				
Water vapor transmission	9,5			g.mm/m².day				
Permeability (O2)	* 16	-	17	cm ³ .mm/m ² .day.atm				
Processing properties								
Polymer injection molding	Accepta	ble						
Polymer extrusion	Excellen	ıt						
Polymer thermoforming	Accepta	ble						
Linear mold shrinkage	0,2			%				
Melt temperature	* 170	-	240	°C				
Mold temperature	* 10	-	25	°C				
Molding pressure range	* 55,2	-	103	MPa				
Durability								
Water (fresh)	Accepta	ble						
Water (salt)	Accepta							
Weak acids	Accepta							
Strong acids	Unacceptable							
Weak alkalis	Acceptable							
Strong alkalis		Unacceptable						
Organic solvents	Limited (
Oxidation at 500C	Unacce	otable						
UV radiation (sunlight)	Good							
Flammability	Highly fla	ammal	ble					
Oxygen index	* 19	-	21	%				
Primary production energy, CO2 and water								
Embodied energy, primary production (virgin grade)	* 47,8	-	52,6	MJ/kg				
Sources								
Estimated from sources including Institute for Prospective Technological		2007	E0 6	M I/Ica				
Embodied energy, primary production (typical grade) CO2 footprint, primary production (virgin grade)	* 47,4 * 2,43	-	52,6 2,68	MJ/kg				
Sources Estimated from sources including Institute for Prospective Technological:	,	- 2007: Ec		kg/kg				
CO2 footprint, primary production (typical grade)	* 2,41	-	2,68	kg/kg				
Processing energy, CO2 footprint & water				- 2				
Polymer extrusion energy	* 5,65	_	6,23	MJ/kg				
Polymer extrusion CO2	* 0,424	_	0,467	kg/kg				
Polymer molding energy	* 13,5	_	14,9	MJ/kg				
Polymer molding CO2	* 1,01	_	1,12	kg/kg				
1 Oymor molaring OOZ	1,01	_	1,14	ng/ng				

GRANTA EDUPACK

Coarse machining energy (per unit wt removed)	* 0,839	-	0,925	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0,0629	-	0,0694	kg/kg
Fine machining energy (per unit wt removed)	* 4,1	-	4,52	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0,307	-	0,339	kg/kg
Grinding energy (per unit wt removed)	* 7,73	-	8,52	MJ/kg
Grinding CO2 (per unit wt removed)	* 0,58	-	0,639	kg/kg

Recycling and end of life

Recycle	√			
Embodied energy, recycling	* 16,2	-	17,9	MJ/kg
CO2 footprint, recycling	* 0,826	-	0,911	kg/kg
Recycle fraction in current supply	* 0,1	-	1,1	%
Downcycle	√			
Combust for energy recovery	√			
Heat of combustion (net)	* 18,9	-	19,9	MJ/kg
Combustion CO2	* 1,8	-	1,9	kg/kg
Landfill	√			
Biodegrade	√			

Notes

Other notes

PLA is a renewable thermoplastic polyester manufactured from plants such as sugarcane, corn and tapioca. PLA can be amorphous or semi-crystalline. Various blends of D and L enantiomers are available, making available a broader range of properties.

Links

ProcessUniverse			
Producers			
Shape			