本节内容

中央处理器

指令流水线 基本概念 性能指标

本章总览

指令流水的定义

一条指令的执行过程可以分成多个阶段(或过程)。 根据计算机的不同,具体的分法也不同。

取指 分析 执行

特点:每个阶段用到的硬件不一样。

取指:根据PC内容访问主存储器,取出一条指令送到IR中。

分析: 对指令操作码进行译码, 按照给定的寻址方式和地址字段中的

内容形成操作数的有效地址EA,并从有效地址EA中取出操作数。

执行:根据操作码字段,完成指令规定的功能,即把运算结果写到通用寄存器或主存中。

设取指、分析、执行3个阶段的时间都相等,用t表示 ,按以下几种执行方式分析n条指令的执行时间:

1. 顺序执行方式 总耗时T = n×3t = 3nt

取指k 分析k 执行k 取指k+1 分析k+1 执行k+1

传统冯·诺依曼机采用顺序执行方式,又称串行执行方式。

优点:控制简单,硬件代价小。

缺点: 执行指令的速度较慢, 在任何时刻, 处理机中只有一条指令在执行, 各功能部件的利用率很低。

指令流水的定义

1. 顺序执行方式 总耗时T = n×3t = 3nt

取指k	分析k	执行 k	取指k+1	分析 k+1	执行 <i>k</i> +1	
-----	-----	--------	-------	--------	----------------	--

传统冯·诺依曼机采用顺序执行方式,又称串行执行方式。

优点:控制简单,硬件代价小。

缺点: 执行指令的速度较慢, 在任何时刻, 处理机中只有一条指令在执行, 各功能部件的利用率很低。

2. 一次重叠执行方式 总耗时T = 3t + (n-1)×2t = (1+2n)t

				取指k+2	分析 <i>k</i> +2	执行 <i>k</i> +2
		取指k+1	分析 k+1	执行 <i>k</i> +1	-O ^C	-0(
取指k	分析k	执行k		-1/2/	100	- 1/2 NO

优点:程序的执行时间缩短了1/3,各功能部件的利用率明显提高。

缺点: 需要付出硬件上较大开销的代价,控制过程也比顺序执行复杂了。

指令流水的定义

1. 顺序执行方式 总耗时T = n×3t = 3nt

取指k 分析k 执行k 取指k+1 分析k+1 执行k+1

传统冯·诺依曼机采用顺序执行方式,又称串行执行方式。优点:控制简单,硬件代价小。 缺点:执行指令的速度较慢,在任何时刻,处理机中只有一条指令在执行,各功能部件的利用率很低。

2. 一次重叠执行方式 总耗时T = 3t + (n-1)×2t = (1+2n)t

		,0°C		取指 <i>k</i> +2	分析 <i>k</i> +2	执行 <i>k</i> +2	
		4,	取指k+1	分析 <i>k</i> +1	执行 <i>k</i> +1	ZŽŽŽ.	
	取指k	分析k	执行k				- t

3. 二次重叠执行方式 总耗时T = 3t + (n-1)×t = (2+n)t

				1.	_
		取指k+2	分析 <i>k</i> +2	执行 <i>k</i> +2	
***	取指 <i>k</i> +1	分析 <i>k</i> +1	执行 <i>k</i> +1	>	X
取指k	分析k	执行k		_	

与顺序执行方式相比,指令的执行时间缩短近2/3。这是一种理想的指令执行方式,在正常情况下,处理机中同时有3条指令在执行。

优点:程序的执行时间缩短了1/3,

各功能部件的利用率明显提高。

缺点: 需要付出硬件上较大开销

的代价,控制过程也比顺序执行

复杂了。

注:也可以把每条指令的执行过程分成4个或5个阶段,分成5个阶段是比较常见的做法。

流水线的表示方法

1. 指令执行过程图

指令序列↑

第k+2条指令I_{k+2} 第k+1条指令I_{k+1} 第k条指令I_k

		取指k+2	分析 <i>k</i> +2	执行 <i>k</i> +2
	取指k+1	分析 <i>k</i> +1	执行 <i>k</i> +1	
取指k	分析k	执行k	1	
-22		-%\	-%\	

主要用于分析指令执行过程以及影响流水线的因素(见下一个视频)

2. 时空图

- 1. 吞吐率 2. 加速比 3. 效率

1. 吞吐率 吞吐率是指在单位时间内流水线所完成的任务数量,或是输出结果的数量。 设任务数为n; 处理完成n个任务所用的时间为 T_k

则计算流水线吞吐率(TP)的最基本的公式为 $TP = \frac{n}{T_k}$

理想情况下,流水线的时空图如下:

当连续输入的任务n→∞时,得最大吞吐率为 TP_{max} =1/ Δt 。

$$T_k = (k+n-1) \Delta t$$

流水线的实际吞吐率为

$$TP = \frac{n}{(k+n-1)\Delta t}$$

一条指令的执行分为k个阶段,每个阶段耗时 Δt ,一般取 Δt =一个时钟周期

一完成同样一批任务,**不使用流水线所用的时间与使用流水线所用的时间**之比。 2. 加速比

设 T_0 表示不使用流水线时的执行时间,即顺序执行所用的时间; T_k 表示使用流水线时的执行时间

则计算流水线加速比(
$$S$$
)的基本公式为 $S = \frac{T_0}{T_k}$ 当连续输入的任务 $n \to \infty$ 时,最大加速比为 $S_{\max} = k$ 。

理想情况下,流水线的时空图如下:

SI n-1n n-1n 3 n-1n n-1n 0 $k\Delta t$ $(n-1)\Delta t$ $(k+n-1)\Delta t$

单独完成一个任务耗时为 $k\Delta t$,则 顺序完成n个任务耗时 $T_0 = nk \Delta t$

$$T_k = (k+n-1) \Delta t$$

实际加速比为

$$S = \frac{kn\Delta t}{(k+n-1)\Delta t} = \frac{kn}{k+n-1}$$

一条指令的执行分为k个阶段,每个阶段耗时 Δt ,一般取 Δt =一个时钟周期

3. 效率 流水线的设备利用率称为流水线的效率。

在时空图上,流水线的效率定义为完成n个任务占用的时空区有效面积与n个任务所用的时间与k个流水段所围成的时空区总面积之比。

则流水线效率(E)的一般公式为 $E = \frac{n$ 个任务占用k时空区有效面积 $= \frac{T_0}{kT_k}$

理想情况下,流水线的时空图如下:

当连续输入的任务 $n\to\infty$ 时,最高效率为 $E_{\text{max}}=1$ 。

一条指令的执行分为k个阶段,每个阶段耗时 Δt ,一般取 Δt =一个时钟周期

本节回顾

