Optional homework for topic solved in Lecture 2:

(Energy, power, LTI system response to a signal, moving average filter)

Matlab I:

- o Using energy thresholding create simple voice activity detector
 - Set the free parameters (threshold, length of moving average filter -MA) experimentally using a *development* signal in a file *DSVowels.wav*
 - o Then record your own short *test* recording of speech (approx. 20s). It should contain several pauses a be recorded in a silent environment (VAD is based upon an assumption that the speech is louder than the noise). Using this recording, verify the functionality of your VAD.
 - o Algorithm:
 - o Subtract the magnitude shift of the signal (average value, mean())
 - o Compute the instantaneous power of the signal $(p[n] = s[n]^2)$
 - o Smooth the power waveform using MA filter of length about L=1000
 - Impulse response of the MA: $h[n]=(1/L)\cdot(u[n]-u[n-L])$,
 - Use commands *conv()* or *filter()* to apply the filtering,
 - Note that: MA filtering introduces shift into the power waveform, specifically L/2 samples
 - o Determine some suitable threshold. Where is the smoothed instantaneous power greater that the threshold, the speech signal is considered active.
 - o Visualize the results (see figure for inspiration)
- Evaluation criteria
 - o Functionality/runable + correctness of solution
 - o Comments in code
 - o Originality
 - o Effective code (fast)

