		Tipo de Prova Teste 2	Ano letivo 2016/2017	Data 09-06-2017
P.PORTO st		^{Curso} Licenciatura em Segurança Informática de Redes de Computadores		Hora 13:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____Nome: __Proposta de Resolução_____

Questão	1	2	3	4	5	6	TOTAL
Cotação	1,5+1,5+1,5	1,5+1,5+1,5	1,5	1,5+1,7	1,5+1,8	1,5+1,5	20

- 1. Considere o grafo representado ao lado:
 - a) Classifique o grafo e indique o grau de cada um dos seus vértices.

O grafo é não orientado, simples, ponderado, conexo e completo.

grau(1)=grau(2)=grau(3)=grau(4)=3.

b) Justifique que o grafo é de Hamilton.

O grafo B é de Hamilton, uma vez que um grafo simples que possui n=4 vértices e todos os seus vértices têm grau 3, portanto, maior ou igual a n/2=2.

c) Indique todos circuitos de Hamilton possíveis e o respetivo custo.

O grafo tem $\frac{(n-1)!}{2} = \frac{3!}{2} = 3$ circuitos de Hamilton que são:

- 1, 2, 3, 4, 1 com custo 12+8+11+20=51
- 1, 3, 2, 4, 1 com custo 10+8+12+20=50
- 1, 3, 4, 2, 1 com custo 10+11+12+12=45
- 2. Usando o Algoritmo de Euclides, determine:
 - a) mmc(252,113);

Temos que:

- $252 = 113 \times 2 + 26$
- $113 = 26 \times 4 + 9$
- $26 = 9 \times 2 + 8$
- $9 = 8 \times 1 + 1$

Portanto,

mdc(252,113)=mdc(113,26)=mdc(26,9)=mdc(8,1))=mdc(9,8)=1

Por outro lado,

$$mdc(252,113) \times mmc(252,113)=252 \times 113$$

 $\Leftrightarrow 28476 = 1 \times mmc(252,113)$
 $\Leftrightarrow mmc(252,113)=28476$

b) os inteiros s e t (coeficientes de Bézout) tais que mdc(252,113) = 252 s + 113 t; Temos que:

$$1 = 9 - 8 \times 1$$

$$= 9 - (26 - 9 \times 2) \times 1 = 9 \times 3 - 26 \times 1$$

$$= (113 - 26 \times 4) \times 3 - 26 \times 1 = 113 \times 3 - 26 \times 13$$

$$= 113 \times 3 - (252 - 113 \times 2) \times 13 = 113 \times 29 - 252 \times 13$$

Logo, os coeficientes de Bézout são s=-13 e t=29.

c) resolva, se possível a congruência, $113x \equiv 1 \mod 252$.

Como mdc(113,252)=1 temos que 113 admite inverso modulo 252.

Pela alínea anterior temos que

$$113 \times 29 - 252 \times 13 = 1 \Leftrightarrow 113 \times 29 = 252 \times 13 + 1 \Leftrightarrow 113 \times 29 \equiv 1 \mod 252$$
 A solução é $x = 29$.

ESTG-PR05-Mod013V2 Página1de4

P.PORTO	ESCOLA	Tipo de Prova Teste 2	Ano letivo 2016/2017	Data 09-06-2017
		Curso Licenciatura em Segurança Informática de Redes de Computadores		Hora 13:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____ Nome: ___Proposta de Resolução_____

3. Escreva a sequência de números pseudo-aleatórios gerada por $x_{n+1} = (7x_n + 3) \mod 11$, com raíz $x_0 = 1$. A sequência de números pseudo-aleatórios gerada é: 1, 10, 7, 8, 4, 9, 0, 3, 2, 6.

$$x_1 = (7x_0 + 3) \mod 11 = (7 \times 1 + 3) \mod 11 = 10 \mod 11 = 10$$
 $x_2 = (7x_1 + 3) \mod 11 = (7 \times 10 + 3) \mod 11 = 73 \mod 11 = 7$
 $x_3 = (7x_2 + 3) \mod 11 = (7 \times 7 + 3) \mod 11 = 52 \mod 11 = 8$
 $x_4 = (7x_3 + 3) \mod 11 = (7 \times 8 + 3) \mod 11 = 4$
 $x_5 = (7x_4 + 3) \mod 11 = (7 \times 4 + 3) \mod 11 = 9$
 $x_6 = (7x_5 + 3) \mod 11 = (7 \times 9 + 3) \mod 11 = 0$
 $x_7 = (7x_6 + 3) \mod 11 = (7 \times 0 + 3) \mod 11 = 3$
 $x_8 = (7x_7 + 3) \mod 11 = (7 \times 3 + 3) \mod 11 = 2$
 $x_9 = (7x_8 + 3) \mod 11 = (7 \times 2 + 3) \mod 11 = 6$
 $x_{10} = (7x_9 + 3) \mod 11 = (7 \times 6 + 3) \mod 11 = 1$

>x=1; x=pmodulo(7*x+3,11)	>x=pmodulo(7*x+3,11)	>x=pmodulo(7*x+3,11)	>x=pmodulo(7*x+3,11)
x =	X =	x =	x =
10.	4.	3.	6.
	>x=pmodulo(7*x+3,11)		
>x=pmodulo(7*x+3,11)	x =	>x=pmodulo(7*x+3,11)	>x=pmodulo(7*x+3,11)
x =		x =	x =
	9.		
7.		2.	1.
>x=pmodulo(7*x+3,11)	>x=pmodulo(7*x+3,11)		
x =	X =		
8.	0.		

- **4.** Considere a função encriptadora $f(n) = (7n + 3) \mod 26$ e $A \leftrightarrow 0, ..., Z \leftrightarrow 25$.
 - a) Encripte a mensagem "MD".

$$f(M) = f(12) = (7 \times 12 + 3) \mod 26 = 9 \longrightarrow J$$

 $f(D) = f(3) = (7 \times 3 + 3) \mod 26 = (21 + 3) \mod 26 = 24 \longrightarrow Y$

A mensagem encriptada é JY.

>pmodulo((7*12+3),26)	>pmodulo((7*3+3),26)
ans =	ans =
Q	24.
J.	

b) Sabendo que x=15 é a solução de $7x\equiv 1 \mod 26$, escreva a função de desencriptação e desencripte a mensagem "ZA".

$$p = (7n + 3) \mod 26 \Leftrightarrow 7n = (p - 3) \mod 26 \Leftrightarrow 15 \times 7 = 15(p - 3 + 26) \mod 26$$

 $\Leftrightarrow n = 15(p + 23) \mod 26$

Logo, $f^{-1}(n) = 15(n+23) \mod 26$.

```
f^{-1}(Z) = f^{-1}(25) = 15(25 + 23) \mod 26 = 15 \times 48 \mod 26 = 720 \mod 26 = 18 \longrightarrow S
f^{-1}(A) = f^{-1}(0) = 15(0 + 23) \mod 26 = 15 \times 23 \mod 26 = 345 \mod 26 = 7 \longrightarrow H
```

A mensagem encriptada é SH.

Tinenbagein enemptada e bri.		
>pmodulo(15*(25+23),26)	>pmodulo(15*(0+23),26)	
ans =	ans =	
18.	7.	

ESTG-PR05-Mod013V2 Página 2

		Tipo de Prova Teste 2	Ano letivo 2016/2017	Data 09-06-2017
P.PORTO		^{Curso} Licenciatura em Segurança Informática de R Computadores	edes de	Hora 13:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____Nome: ___Proposta de Resolução_____

- **5.** Considere o sistema RSA com $m=43\times 59=2537$ e a=13.
 - a) Encripte a mensagem "AZ".

```
u(AZ) = u(0025) = 0025^{13} \mod 2537 = 1433
```

A mensagem encriptada é 1433.

```
--->x=0025;

--->x_new=1;

--->for k=1:13

--->x_new=pmodulo(x*x_new,2537);

--->end

--->x_new

x_new =

1433.
```

b) Desencripte a mensagem "1105".

```
Determinar b tal que ab \mod n = 1:
13b \mod (42 \times 58) = 1 \Leftrightarrow 13b \mod 2436 = 1 \Leftrightarrow \exists k \in \mathbb{Z} : 13b - 1 = 2436k \Leftrightarrow \exists k \in \mathbb{Z} : 13b - 2436k = 1
Temos
2436 = 187 \times 13 + 5
13 = 5 \times 2 + 3
5 = 3 \times 1 + 2
3 = 2 \times 1 + 1
Então
1 = 3 - 2 \times 1
\Leftrightarrow 1 = 3 - (5 - 3 \times 1) \times 1 = 3 \times 2 - 5 \times 1
\Leftrightarrow 1 = (13 - 5 \times 2) \times 2 - 5 \times 1 = 13 \times 2 - 5 \times 5
\Leftrightarrow 1 = 13 \times 2 - 5 \times (2436 - 13 \times 187) = 13 \times 937 + 2436 \times (-5)
Logo b=937
```

 $1105^{937} \mod 2537 = 69$

```
-->x=1105

x =

1105.

-->x_new=1

x_new =

1.

-->for k=1:(937)

--> x_new=pmodulo(x*x_new,2537);

-->end

-->x_new

x_new =

69.
```

ESTG-PR05-Mod013V2
Página 3

		Tipo de Prova Teste 2	Ano letivo 2016/2017	Data 09-06-2017
P.PORTO st		^{Curso} Licenciatura em Segurança Informática de Redes de Computadores		Hora 13:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____ Nome: ___Proposta de Resolução___

6. Considere rede constituída por 5 páginas web A, B, C, D, E com os links mostrados na imagem abaixo:

Suponha que, em cada passo, escolhemos de forma aleatória um link da página web onde estamos.

a) Escreva a matriz de transição do processo Markov subjacente.

A matriz de transição é:

$$T = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{3} & 1 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{3} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

b) Calcule a probabilidade, de começando na página A, 5 passos depois estar na página D, A e C?

$$\text{\'e necess\'ario calcular } T^5 \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \text{ Usando o Scilab obteve-se} \begin{bmatrix} 0.1388889 \\ 0.4201389 \\ 0.0208333 \\ 0.4201389 \\ 0 \end{bmatrix}$$

A probabilidade de estar:

- em D é aproximadamente 42%,
- em A é aproximadamente 14%
- e em C é aproximadamente 2%.

>T^5	>T^5*[1 0 0 0 0]'
ans =	ans =
0.1388889	0.1388889
0.4201389 0.1111111 0.2939815 0.0416667 0.25	0.4201389
0.0208333 0.1909722 0.0902778 0.2291667 0.1145833	0.0208333
0.4201389 0.1111111 0.2939815 0.0416667 0.25	0.4201389
0. 0. 0. 0.	0.

Bom Trabalho Eliana Costa e Silva Flora Ferreira