1 Smooth Manifolds

Ex. 1 — Show that equivalent definitions of locally Euclidean spaces are obtained if, instead of requiring U to be homeomorphic to an open subset of \mathbb{R}^n , we require it to be homeomorphic to an open ball in \mathbb{R}^n , or to \mathbb{R}^n itself.

Answer (Ex. 1) — Let $\phi: U \to \tilde{U}$ where $p \in U \subset M$ and $\tilde{U} \subset \mathbb{R}^n$. Since \tilde{U} is open, we can find an open ball around $\phi(p)$ (denoted $B_r(\phi(p))$ for some r > 0) such that $B_r(\phi(p)) \subset \tilde{U}$. We know $p \in \phi^{-1}(B_r(\phi(p)))$ and is open since ϕ and ϕ^{-1} is continuous. Therefore, the map $\phi': \phi^{-1}(B_r(\phi(p))) \to B_r(\phi(p))$ is a homeomorphism. Using this along with the fact that open balls are of course open sets in \mathbb{R}^n , we obtain that requiring U to be homeomorphic to open subsets of \mathbb{R}^n or open balls of \mathbb{R}^n makes no difference.

Next, consider a ball $B_r(x)$ centered at $x \neq 0$ of radius r > 0. The function $f: B_r(x) \to B_r(0)$ translates this ball to the origin via $z \mapsto z - x$. This map is clearly bijective and linear (so it is differentiable and so, continuous) with a continuous inverse, thus it is a homeomorphism. Therefore, it suffices to consider to balls centered at the origin. Now, consider the map $g: B_r(0) \to B_1(0)$ defined by $z \mapsto z/r$ which is clearly still a homeomorphism. Now, consider a map $\pi: B_1(0) \to \mathbb{R}^n$ defined by $x \mapsto (\tan(\pi|x|/2)x)$.

Ex. 2 — Show that any topological subspace of a Hausdorff space is Hausdorff, and any finite product of Hausdorff spaces is Hausdorff.

Answer (Ex. 2) — Let A be a subspace of a Hausdorff space T. Let $x \neq y \in A$, since $x, y \in T$, then there exist open sets U, V in T such that $x \in U$, $y \in V$ and $V \cap U = \emptyset$. Since $x \in U$ and $x \in A$, then $x \in U \cap A$ and similarly, for $y \in V \cap A$ and since $U \cap A \subset U \cap A$ and similarly for V, we have that $U \cap A \cap V \cap A = \emptyset$. Therefore, since $U \cap A$ and $V \cap A$ are open sets in A, we have the existence of two disjoint sets which contain x and y so that A is also Hausdorff. A similar proof follows for finite products except we take the product of the disjoint sets i.e. if $U_1 \times \ldots \times U_n$ is our space, then take disjoint sets from each U_i and product them together.

Ex. 3 — Show that any topological subspace of a second countable space is second countable, and any finite product of second countable spaces is second countable.

Answer (Ex. 3) — Let A be a subspace of the second countable space T. Since a basis of A can be given by $B_i = \{A \cap T_i : T_i \in \{T_i\}\}$, we can simply let $\{T_i\}$ be our countable basis of T. Thus, A is second countable. Note if $U_1 \times \ldots \times U_n$ is a finite

product of second countable space, its basis is given by $B = \{U_{1_i} \times ... \times U_{n_i} : i \in \mathbb{N}, U_{k_i} \text{ is the } i \text{th basis element of } U_k\}$. From this, choosing the appropriate basis yields the fact that $U_1 \times ... \times U_n$ is second countable.

Ex. 4 — Show that \mathbb{P}^n is Hausdorff and second countable, and is therefore a topological n-manifold.

Answer (Ex. 4) — Let $x \neq y \in \mathbb{P}^n$. We show there exists $U, V \in \mathbb{P}^n$ such that $U \cap V = \emptyset$ with $x \in U$ and $y \in V$. Since $x \neq y$, we have that $\varphi_i[x] \neq \varphi_i[y]$ for any $1 \leq i \leq (n+1)$. Note $\varphi_i[x]$ and $\varphi_i[y]$ are points in \mathbb{R}^n and so we can abuse the fact that \mathbb{R}^n is Hausdorff. There exist open $U' \subset \mathbb{R}^n$ and $V' \subset \mathbb{R}^n$ disjoint sets that contain $\varphi_i[x]$ and $\varphi_i[y]$ respectively. Using the fact that φ_i is a homeomorphism, we get that $U := \varphi_i^{-1}(U')$ and $V := \varphi_i^{-1}(V')$ are disjoint and they contain x and y respectively. Furthermore, U and V are open since their images are open. Thus, \mathbb{P}^n is Hausdorff.

It is left to show that \mathbb{P}^n is second countable. We know that all of the U_i 's for $i=1,\ldots,n+1$ cover \mathbb{P}^n . Let $\{X_i\}_{i=1}^{n+1}=\{\phi_i(U_i)\}_{i=1}^{n+1}$. Each $X_i\subset\mathbb{R}^d$ which is second countable, so each X_i as a subspace is second countable. Let $\{Y_{i_j}\}_{j=1}^{\infty}$ be a countable basis for X_i . We claim,

$$M := \bigcup_{i=1}^{n+1} \{ \phi_i^{-1}(Y_{i_j}) : j = 1, 2, 3 \dots \}$$

is a countable basis of \mathbb{P}^n . Clearly M is countable because each $\bigcup_{j=1}^{\infty} \phi_i^{-1}(Y_{i_j})$ is countable and the finite union of countable sets is countable. Let O be an open set of \mathbb{P}^n . Then note $O = \bigcup_{i=1}^{n+1} (U_i \cap O)$. Note, each $\phi_i(U_i \cap O)$ can be written as a countable union of elements of $\{Y_{i_j}\}$ and so $U_i \cap O$ can be written as a countable union of elements of $\{\phi_i^{-1}(Y_{i_j}): j=1,2,3,\ldots\}$. Thus, we can write each $U_i \cap O$ as a countable union of elements of M and so we can write $\bigcup_{i=1}^{n+1} (U_i \cap O)$ as a countable union of elements of M. Since M only contains open sets of \mathbb{P}^n (i.e. cannot generate a topology bigger than M), we have that M is a countable basis of \mathbb{P}^n as wanted.

Ex. 5 — Let M be a topological manifold. Two smooth atlases for M determine the same maximal smooth atlas if and only if their union is a smooth atlas.

Answer (Ex. 5) — Let \mathcal{X}, \mathcal{Y} be two smooth maximal smooth at lases containing \mathcal{A} and \mathcal{B} respectively. Let \mathcal{A} and \mathcal{B} be two smooth at lases for M such that $\mathcal{A} \cup \mathcal{B}$ is a smooth at las for M. Since $\mathcal{A} \subset \mathcal{X}$, it follows $(\mathcal{A} \cup \mathcal{B}) \cap \mathcal{X} \neq \emptyset$. Thus, if \mathcal{X} is to be the unique maximal smooth at last determined by \mathcal{A} , we must have that $\mathcal{A} \cup \mathcal{B} \subset \mathcal{X}$. For if this were not the case, we would have the existence

of a chart smoothly compatible with \mathcal{A} which is not in \mathcal{X} . Similarly, we obtain $\mathcal{A} \cup \mathcal{B} \subset \mathcal{Y}$. From the uniqueness of both \mathcal{X} and \mathcal{Y} , we obtain $\mathcal{X} = \mathcal{Y}$ i.e. \mathcal{A} and \mathcal{B} determine the same smooth atlas. Now, suppose instead \mathcal{A} and \mathcal{B} determine the same maximal smooth atlas \mathcal{X} . Let $(U, \phi) \in \mathcal{A}$ and $(V, \psi) \in \mathcal{B}$. Since $(V, \psi) \in \mathcal{X}$, it follows (U, ϕ) and (V, ψ) are smoothly compatible. Similarly, the converse holds i.e. every chart in \mathcal{A} is smoothly compatible with charts in \mathcal{B} . Thus, $\mathcal{A} \cup \mathcal{B}$ is a smooth atlas.

- **Ex.** 6 If k is an integer between 0 and $\min(m, n)$, show that the set of $m \times n$ matrices whose rank is at least k is an open submanifold of $M(m \times n, \mathbb{R})$.
- **Ex.** 7 By identifying \mathbb{R}^2 with \mathbb{C} in the usual way, we can think of the unit circle \mathbb{S}^1 as a subset of the complex plane. An angle function on a subset $U \subset \mathbb{S}^1$ is a continuous function $\theta: U \to \mathbb{R}$ such that $e^{i\theta(p)} = p$ for all $p \in U$. Show that there exists an angle function on an open subset $U \subset \mathbb{S}^1$ if and only if $U \neq \mathbb{S}^1$. For any such angle function, show that (U, θ) is a smooth coordinate chart for \mathbb{S}^1 with its standard smooth structure.
- **Ex. 8** Let 0 < k < n be integers, and let $P, Q \subset \mathbb{R}^n$ be the subspaces spanned by (e_1, \ldots, e_k) and (e_{k+1}, \ldots, e_n) , respectively, where e_i is the *i*th standard basis vector. For any k-dimensional subspace $S \subset \mathbb{R}^n$ that has the trivial intersection with Q, show that the coordinate representation $\phi(S)$ constructed in the example on Grassmannian manifolds is the unique $(n-k) \times k$ matrix B such that S is spanned by the columns of the matrix $\binom{I_k}{B}$, where I_k denotes the $k \times k$ identity matrix.