Les milieux supraconducteurs

TIPE 2017-2018 << MILIEUX : INTERACTIONS, INTERFACES, HOMOGÉNÉITÉ, RUPTURES>>

Plan:

- Physique des milieux magnétiques
- ▶ Théorie de London
 - a) Étude phénoménologique
 - b) Résolution numérique
- ▶ Théorie BCS : approche quantique
- Illustration expérimentale de la lévitation magnétique

Physique des milieux magnétiques :

Rappel : moment magnétique : Au niveau atomique :

Un électron tournant autour du noyau crée un moment magnétique orbital : mo

Le moment magnétique (atomique) m tient compte des deux contributions $\overrightarrow{m} = \overrightarrow{m_0} + \overrightarrow{m}$

Un électron tournant sur lui-même (spin) crée un moment magnétique de spin : m

Aimantation M:

$$\vec{M} = \frac{1}{\Delta \tau} \sum_{i} \vec{m_i}$$

Le degré d'aimantation est le moment magnétique par unité de volume

Milieux paramagnétiques, ferromagnétiques et diamagnétiques :

Milieux paramagnétiques :

Absence de champ magnétique

Présence de champ magnétique

-Milieux ferromagnétiques :

Aimantation permanente ou de longue durée

Aimant

Clou à base de fer

-Milieux diamagnétiques :

Aimantation opposée au champ inducteur généralement très faible

Milieux conducteurs et supraconducteurs :

Exemple: mercure

Théorie de London:

Etude phénoménologique : Application de la RFD à un porteur de charge q dans un supraconducteur soumis à l'action d'un champ électromagnétique (E,B) :

$$m\frac{\mathrm{d}\,\mathbf{v}}{\mathrm{d}\,t} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

En régime quasi stationnaire, le champ magnétique à l'intérieur d'un supraconducteur satisfait à l'équation différentielle suivante :

$$\Delta \mathbf{B} = \frac{1}{\lambda_L^2} \mathbf{B}$$

► Résolution numérique :

$$\frac{\mathrm{d}^2 \mathbf{B}}{\mathrm{d} z^2} - \frac{1}{\lambda_L^2} \mathbf{B} = \mathbf{0}$$

Résultats:

$$B(z)$$
 $B(0)$

$$\mathbf{B}(z) = \mathbf{B}(0) \exp\left(-\frac{z}{\lambda_L}\right)$$

$$\lambda_L = \left(\frac{m_e}{\mu_0 n_s e^2}\right)^{1/2} \sim \left(\frac{0.91 \times 10^{-30}}{4\pi \times 10^{-7} \times 10^{28} \times 1.6^2 \times 10^{-38}}\right)^{1/2} = 53 \text{ nm}$$

Théorie BCS : approche quantique

Formation d'une paire de Cooper

Illustration expérimentale:

- Matériel requis :
 - ► Azote liquide refroidit à 30K près
 - ▶ Aimant
 - Matériau supraconducteur

À T>TC

À T<Tc

