To gain some intuition for this identity, one can think of f(x) as being a vector with uncountably many elements, indexed by a real vector x. In this (somewhat incomplete view), the identity providing the functional derivatives is the same as we would obtain for a vector $\theta \in \mathbb{R}^n$ indexed by positive integers:

$$\frac{\partial}{\partial \theta_i} \sum_{j} g(\theta_j, j) = \frac{\partial}{\partial \theta_i} g(\theta_i, i). \tag{19.47}$$

Many results in other machine learning publications are presented using the more general **Euler-Lagrange equation** which allows g to depend on the derivatives of f as well as the value of f, but we do not need this fully general form for the results presented in this book.

To optimize a function with respect to a vector, we take the gradient of the function with respect to the vector and solve for the point where every element of the gradient is equal to zero. Likewise, we can optimize a functional by solving for the function where the functional derivative at every point is equal to zero.

As an example of how this process works, consider the problem of finding the probability distribution function over $x \in \mathbb{R}$ that has maximal differential entropy. Recall that the entropy of a probability distribution p(x) is defined as

$$H[p] = -\mathbb{E}_x \log p(x). \tag{19.48}$$

For continuous values, the expectation is an integral:

$$H[p] = -\int p(x)\log p(x)dx. \tag{19.49}$$

We cannot simply maximize H[p] with respect to the function p(x), because the result might not be a probability distribution. Instead, we need to use Lagrange multipliers to add a constraint that p(x) integrates to 1. Also, the entropy increases without bound as the variance increases. This makes the question of which distribution has the greatest entropy uninteresting. Instead, we ask which distribution has maximal entropy for fixed variance σ^2 . Finally, the problem is underdetermined because the distribution can be shifted arbitrarily without changing the entropy. To impose a unique solution, we add a constraint that the mean of the distribution be μ . The Lagrangian functional for this optimization problem is

$$\mathcal{L}[p] = \lambda_1 \left(\int p(x) dx - 1 \right) + \lambda_2 \left(\mathbb{E}[x] - \mu \right) + \lambda_3 \left(\mathbb{E}[(x - \mu)^2] - \sigma^2 \right) + H[p] \quad (19.50)$$