Data Challenge

Department of Workforce Services
Workforce Research and Analysis

Data Challenge

Develop an algorithm (or use existing algorithms) to identify the set of *n* Utah
 Census Tracts in *k* contiguous clusters (having a minimum cluster unemployment rate of 6.5 percent) that maximizes the total population across all *n* Census Tracts.

Why?

- The federal government has special funds to help local areas with substantial unemployment (ASUs).
- An ASU is defined as a cluster of Census Tracts with a cluster unemployment rate of at least
 6.5 percent.
- Federal funding for programs to help these areas is distributed to the states based on the total population of the ASUs in the state.

Why?

 So – the state of Utah would like to identify the set of ASUs with maximum total population in order to maximize federal funding.

- We start with a map of all of Utah's Census Tracts.
- Each tract has three data points associated with it:
 - employment (e),
 - unemployment (u),
 - and population (p).

 We calculate the unemployment rate (ur) for each tract as follows:

$$u/(e+u)=ur$$

- We then identify which tracts on their own meet the $ur \ge 0.065$ criteria to be an ASU.
- All of these tracts will be included in a maximal solution.
- They might be what you would consider your "seed" tracts.

- Once we have those mapped, we can expand out a contiguous cluster (using queen contiguity) around each seed tract.
- The unemployment rate and total population must be re-calculated with each addition to make sure the cluster does not drop below 6.5 percent.
- If it does we remove that tract (or a different one if it results in higher total population).

Aggregate URate

6.53%

Aggregate 2015 Pop

91,202

Note:

 You can't just sum the unemployment rates as you add tracts to each cluster. You have to sum the components (i.e. u and e) and then recalculate the ur:

$$ur = \frac{\sum u_i}{\sum (u_i + e_i)}$$

- We continue this process by trial and error until we come up with a set of clusters each with an unemployment rate above 6.5 percent that has the maximum total population we can find.
- This is obviously very time consuming, and does not necessarily guarantee that we find the actual maximum possible outcome. In fact it's very likely that we don't.

The Data

The following files will be sent in an email:

Utah Census Tract CSV File:

UT_asu_exampleData.csv

- This file contains 588 records (Census tracts) each with a unique identifier ("geoid"), and data fields for population (pop), employment (emp), and unemployment (unemp).
- 2016 TIGER/Line Census Tract Shape File for Utah: tl 2016 49 tract.shp
 - This file contains the polygon paths for all of Utah's Census tracts (for determining spatial contiguity).
 - This file can be joined to the csv data on "Geoid".

Resources that may be helpful

Tableau Calculator:

 https://public.tableau.com/views/ASU_Calculator_example/ Dashboard1?:embed=y&:display_count=yes

Research Article and Pseudo Code:

"Redistricting Using Constrained Polygonal Clustering" - (Joshi et al., 2012)

 http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article= 1107&context=csearticles

Python Library of Spatially Constrained Clustering Algorithms:

clusterPy: http://www.rise-group.org/risem/clusterpy/

Submitting your answer

Include:

- your solution (i.e. the list of census tracts)
- your code
- an explanation of how it works
- and any info that we might need to run it.