

TTT4120 Digital Signal Processing Fall 2021

Lecture: Z-Transform - Introduction

Prof. Stefan Werner stefan.werner@ntnu.no Office B329

> Department of Electronic Systems © Stefan Werner

1

Lecture in course book*

- Proakis, Manolakis Digital Signal Processing, 4th Ed.
 - 3.1 The z-transform
 - 3.2 Properties of the z-transform
 - 3.3 Rational z-transforms

*Level of detail is defined by lectures and problem sets

2

Contents and learning outcomes

- Definition of z-transform and its existence
- Some properties of the z-transform
- Rational z-transforms: poles and zeros

3

3

Motivation

• Linear time-invariant system:

$$x[n]$$

$$e^{j\omega n}$$

$$y[n] = h[n] * x[n]$$

$$y[n] = e^{j\omega n} H(\omega)$$

$$X(\omega)$$

$$Y(\omega) = H(\omega)X(\omega)$$

- What if $h[n] = 2^n u[n]$?
 - System is unstable $\sum |h[n]|$ not finite
 - DTFT of h[n] does not exist
- Can we analyze such systems using a transform method while retaining the good properties of the DTFT?

4

Basic idea

- Capture the source of instability or inapplicability of the DTFT
- Apply the DTFT to the modified (captured) signal

5

5

Basic idea...

- Example: Suppose we have signal $x[n] = 2^n u[n]$
 - Problem is due to the exponential growth
 - Capture the signal by multiplying it by a decaying exponential stronger than the growing one, i.e., $r^{-n}x[n]$, r > 0
 - What values of r allow for a DTFT for $r^{-n}x[n]$?

$$\begin{split} \sum_{n=-\infty}^{\infty} x[n] r^{-n} e^{-j\omega n} &= \sum_{n=0}^{\infty} 2^n r^{-n} e^{-j\omega n} \\ &= \sum_{n=0}^{\infty} \left(2r^{-1} e^{-j\omega} \right)^n = \frac{1}{1 - 2r^{-1} e^{-j\omega}} \end{split}$$

Convergence if $\left|2r^{-1}e^{-j\omega}\right| < 1$ or r > 2

6

F

Basic idea...

• Define complex number $z = re^{j\omega}$ in previous expression

$$\sum_{n=0}^{\infty} 2^n r^{-n} e^{-j\omega n} = \sum_{n=0}^{\infty} 2^n z^{-n} = \frac{1}{1-2z^{-1}}, \forall |z| > 2$$

- Convergence has only to do with r = |z| and not ω
- We have a more general transform of the sequence x[n]

7

Definition of z-transform

• The z-transform of a discrete-time signal x[n] is

$$X(z) = \mathcal{Z}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

- Notation: $x[n] \stackrel{\mathcal{Z}}{\leftrightarrow} X(z)$ $x[n] = \mathcal{Z}^{-1}\{X(z)\}$
- Transforms x[n] into its complex-plane representation X(z)
- Transform only exists whenever power series converges
- Region of convergence (ROC) of X(z) is the set of all values of z for which X(z) attains a finite value

8

Definition of z-transform...

• Example: Z-transforms of finite-length sequences

$$x_{1}[n] = \{\underline{1}, 2, 5, 0, 1\}$$

$$= \delta[n] + 2\delta[n-1] + 5\delta[n-2] + \delta[n-4]$$

$$x_{2}[n] = \{1, \underline{2}, 5, 0, 1\}$$

$$x_{3}[n] = 2\delta[n]$$

- ROC for finite-length signals is entire z-plane, except possibly when $z \to 0$ or $z \to \infty$
 - either z^k or z^{-k} grow unbounded

9

9

Definition of z-transform...

• Example: Compute z-transforms of infinite-length sequences

$$x_1[n] = \left(\frac{1}{2}\right)^n u[n]$$

$$x_2[n] = -\left(\frac{1}{2}\right)^n u[-n-1]$$

Definition of z-transform...

11

Definition of z-transform...

- Observations for infinite-duration sequences:
 - z-transform expression alone does not uniquely specify the time-domain signal. ROC resolves ambiguity
 - ROC causal sequence is the exterior of a circle
 - ROC anti-causal sequence is the interior of a circle

ROC of z-transform

- In ROC of X(z), we have $|X(z)| < \infty$
- Using polar form of z, i.e., $z = re^{j\omega}$, we get

$$|X(z)| = \left| \sum_{n=-\infty}^{\infty} x[n] r^{-n} e^{-j\omega n} \right| \le \sum_{n=-\infty}^{\infty} \left| x[n] r^{-n} e^{-j\omega n} \right|$$
$$\le \sum_{n=1}^{\infty} \left| x[-n] r^n \right| + \sum_{n=0}^{\infty} \left| x[n] r^{-n} \right|$$

- Observations:
 - both series should converge, $ROC = ROC_1 \cap ROC_2$
 - for r sufficiently small, $r < r_1 < \infty$, first sum may converge
 - for r sufficiently large, $r > r_2$, second sum may converge

13

13

ROC of z-transform

• Example: Two-sided infinite-length sequences

$$x_1[n] = \left(\frac{1}{2}\right)^n u[n] - \left(\frac{1}{3}\right)^n u[-n-1]$$

$$x_2[n] = \left(\frac{1}{3}\right)^n u[n] - \left(\frac{1}{2}\right)^n u[-n-1]$$

$$X_1(z) =?, X_2(z) =?$$

From earlier: $\alpha^n u[n] \overset{\mathcal{Z}}{\leftrightarrow} \frac{1}{(1-\alpha z^{-1})'}$, ROC: $|z| > \alpha$ $-\alpha^n u[-n-1] \overset{\mathcal{Z}}{\leftrightarrow} \frac{1}{(1-\alpha z^{-1})'}$, ROC: $|z| < \alpha$

15

15

ROC of z-transform...

 $X_1(z)$ does not exist

 $X_2(z) = \frac{1}{1 - \frac{1}{3}z^{-1}} + \frac{1}{1 - \frac{1}{2}z^{-1}}$

16

Properties of the z-transform

- Linearity
- Time-shift
- Scaling
- Time-reversal
- Convolution
- Differentiation
- Initial value theorem

17

17

Properties of the z-transform...

• Linearity:

$$x_3[n] = a_1x_1[n] + a_2x_2[n] \overset{Z}{\leftrightarrow} X_3(z) = a_1X_1(z) + a_2X_2(z)$$
 for any constants a_1 and a_2

• ROC of $X_3(z)$ at least $\mathcal{R}_{X_1} \cap \mathcal{R}_{X_2}$ but can extend beyond intersection

• Example:
$$x_1[n] = (3 \cdot 2^n - 4 \cdot 3^n)u[n]$$

$$x_2[n] = (3 \cdot 2^n + 4 \cdot 3^n)u[n]$$

$$x_3[n] = x_1[n] + x_2[n]$$

Properties of the z-transform...

- Time-shift: $x[n-k] \stackrel{Z}{\leftrightarrow} z^{-k}X(z)$
- ROC of $z^{-k}X(z)$ same as X(z) except at z = 0 and $z \to \infty$
- Coefficient of z^{-n} becomes $z^{-(n+k)}$
- Example: $x[n] = \{1, 2, -1, 0, 3\}$ x[n+2]x[n-2]

19

19

Properties of the z-transform...

- Scaling: $a^n x[n] \stackrel{\mathcal{Z}}{\leftrightarrow} X(a^{-1}z)$
- If ROC of X(z) is $r_1 < |z| < r_2$, then ROC of $X(a^{-1}z)$ is $|a|r_1 < |z| < |a|r_2$
- Example: $x[n] = 2^n u[n]$

Properties of the z-transform...

- Time reversal: $x[-n] \stackrel{Z}{\leftrightarrow} X(z^{-1})$
- If ROC of X(z) is $r_1 < |z| < r_2$, then ROC of $X(z^{-1})$ is $1/r_2 < |z| < 1/r_1$
- Example: x[n] = u[-n]

21

21

Properties of the z-transform...

- Convolution: $x[n] = x_1[n] * x_2[n] \stackrel{\mathcal{Z}}{\leftrightarrow} X_1(z)X_2(z)$
- ROC at least the intersection of that of $X_1(z)$ and $X_2(z)$
- Many cases much easier to carry out in z-domain
- Example: $x_1[n] = \{\underline{1}, -1\}$ $x_2[n] = \{\underline{1}, 1\}$

Properties of the z-transform...

- Differentiation: $nx[n] \stackrel{\mathcal{Z}}{\leftrightarrow} z \frac{dX(z)}{dz}$
- · ROC convergence stays the same
- Example: $x[n] = na^n u[n]$
- Initial value theorem: $x[0] = \lim_{z \to \infty} X(z)$, x[n] causal

23

23

Rational z-transforms

• Family of transforms where X(z) can be represented as the ratio of two polynomials in z^{-1} (or z)

$$X(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + b_N z^{-N}}$$

$$= \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

$$= \frac{b_0}{a_0} \frac{\sum_{k=0}^{M} (b_k / b_0) z^{-k}}{\sum_{k=0}^{N} (a_k / a_0) z^{-k}} \qquad (a_0, b_0 \neq 0)$$

$$= \frac{b_0}{a_0} \frac{\prod_{k=1}^{M} (1 - z_k z^{-1})}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

Rational z-transforms...

$$X(z) = \frac{B(z)}{A(z)} = \frac{b_0}{a_0} \frac{\prod_{k=1}^{M} (1 - z_k z^{-1})}{\prod_{k=1}^{N} (1 - \frac{p_k}{p_k} z^{-1})}$$

- The zeros of X(z): values of z for which X(z) = 0, B(z) = 0
- The poles of X(z): values of z for which $X(z) \to \infty$, A(z) = 0
- If a_k and b_k real-valued \Rightarrow poles (zeros) are either real-valued or must occur in conjugate pairs
- Example: $x_1[n] = \{\underline{1}, 1, 1\}$ $x_2[n] = \{-1, -1, 1\}$

25

25

Rational z-transforms...

• Example (pole-zero plot):

$$x[n] = a^n u[n], a > 0 \stackrel{Z}{\leftrightarrow} X(z) = \frac{1}{1 - az^{-1}}$$

26

Rational z-transforms...

• Example (pole-zero plot):

$$x[n] = \left(\frac{5}{6}\right)^n \sin\left(\frac{\pi}{3}n\right) u[n] \stackrel{Z}{\leftrightarrow} X(z) = \frac{\frac{5}{6}\sin\left(\frac{\pi}{3}\right)z^{-1}}{\left(1 - \frac{5}{6}e^{\frac{j\pi}{3}}z^{-1}\right)\left(1 - \frac{5}{6}e^{-\frac{j\pi}{3}}z^{-1}\right)}$$

27

Rational z-transforms...

• Example (pole-zero plot):

$$x[n] = \begin{cases} a^n, 0 \le n \le M - 1 \overset{Z}{\leftrightarrow} X(z) = \frac{1 - (az^{-1})^M}{1 - az^{-1}} \end{cases}$$

28

Summary

Today:

- Z-transform and its existence (ROC)
- Properties of the z-transform
- Rational z-transforms: poles and zeros

Next:

- LTI systems: The system function, stability and causality
- Computation and sketching of frequency response function

29