A Home for All

Utilizing the Kaggle PetFinder Adoption Competition to Strategize Animal Intake

Caitlin Janson

December 14, 2020

Agenda

- Problem Statement
- Dataset
- Exploratory Data Analysis
- Statistical Analysis
- Model Development and Results
- Recommendations
- Dataset limitations
- Opportunities for future work

Problem Statement

The shelters are overpopulated and it seems nothing is working! The client needs to know how can they capitalized on trends to develop a more strategic business plan for adopting out a pet without:

- Bothering with "Marketed" descriptions resulting in disappointment and pet returns
- Taking the wrong pets to events when they'll be adopted even with minimal exposure
- Long term foster fees when a pet could be transferred to a different rescue and be adopted in under 90 days

Dataset Overview

This project utilizes the **Kaggle PetFinder Dataset**

- Targeted at increasing adoption speeds for homeless pets
- Contains over 10,000 animals, including cats and dogs
- Sourced from the Malaysian region
- Is primarily ordinal data (0,1,2,3) as placeholders for descriptive data (puppy, adolescent, adult, senior)

Exploratory Data Analysis- Adoption Speed

Exploratory Data Analysis- Age

Exploratory Data Analysis - Name

Exploratory Data Analysis- Breed

Exploratory Data Analysis - Adult Size

Exploratory Data Analysis - Fur Length

Exploratory Data Analysis - Color

Exploratory Data Analysis - The Listing

Exploratory Data Analysis - Fee

Exploratory Data Analysis - Health

- Health trends have less effect on adoption speed
 - o Puppies medical history has a large effect on how health relates to adoption speed
- When removing puppies from the dataset, health only matters for pre-existing medical conditions, which is unsurprising as every other health feature studied is changeable by a veterinarian

- 1.00

- 0.75

0.50

0.25

- 0.00

-0.25

Statistical Analysis

Model Development

	Accuracy Score			
	Same Day		No Same Day	
Model	Training	Validation	Training	Validation
Logistic Regression- Ibfgs, restricted features *	0.39208	0.37146	0.40754	0.38645
Logstic Regression - Ibfgs, all features	0.38579	0.39237	0.41541	0.37516
Logistic Regression - liblinear, all features	0.38579	0.39483	0.40369	0.37641
Naïve Bayes	0.23880	0.26568	0.33626	0.34003
Linear SVC	0.24918	0.36162	0.27247	0.24467
SVC	0.39071	0.40590	0.42099	0.44668
kNN	0.36885	0.39606	0.39698	0.41656
Random Forest	0.46940	0.47109	0.47571	0.48557
Light GBM	0.45027	0.46740	0.48130	0.47679

^{*} Features Included: Rescuer ID, pet age, first breed classification, amount of photos

^{**} Kaggle PetFinder Leadboard Winning Accuracy 0.45338

Logistic Regression

Logistic Regression - No Same Day Adoptions

Naive Bayes

Support Vector Classification

K Nearest Neighbors

Random Forest

Light GBM - Features Analysis

Light GBM

Model Results- All Pets

Model Results - No Same Day Adoptions

Recommendations

- 1. Focus more on which rescue has success with adopting out a specific type/breed of animal
- 2. The best chance of predicting a same day adoption is to use the logistic regression model using a liblinear solver.
- 3. The second step in analyzing a new pet during intake should be to run LinearSVC, and keep those pets who will be adopted in the first month if capacity is available.
- 4. To determine those pets who will require a more medium duration stays (<90 days), utilize the Naive Bayes model
- 5. To predict those pets who will require long term care, and possibly rehoming to an more targeted rescue, specialized training, etc. utilize the following models: SVC, kNN, Random Forest, or Light GBM.
- 6. An averaged prediction for all models can also be utilized.

Dataset Limitations

- 1. Understanding interactions between listings opening and closure- how is "adoption speed" defined. Are animals that go unadopted simply not updated listings?
- 2. Understanding how unique identifiers are assigned is it possible for a pet to change rescues and have multiple listings for the same animal with different outcomes?
- 3. Understanding how breed is determined for listings is it appearance based or DNA based?

Opportunities for Future Work

- 1. Repeat with pull from US PetFinder API and compare relationships
- 2. Explore rescuer specific models for each agency
- 3. Explore different relationships within the data breed, description, etc.
- 4. Explore area statistics and correlate to data: state legal policies with regards to animals, economic and housing statistics
- 5. Develop a model to reliably clean the "name" feature for application acros the entire dataset
- 6. Expand to study effects and reactions with adoption for cats
- Develop a predictor model based on location, rescue history, etc. to use fore ach pet's intake

Thank You

Caitlin Jansson

caitlinjejansson@gmail.com <u>Project GitHub Repository</u>

