Problem Set #2, CHEM/BCMB 4190/6190/8189

1). The effect on the bulk magnetization vector, M, of a 90° (π /2) pulse applied along the "x" axis (90°_x) is shown below. Show what effect the following pulses would have: 90°_{xx}, 90°_{xy}, 180°_{v} , 270°_{x} , 270°_{-v}

2). Using Shoolery's rule for methylene groups, predict the ¹H chemical shift for the (equivalent) methylene protons of the following compound:

3). Using the Grant and Paul incremental system for alkanes, predict the ¹³C chemical shifts for all of the non-equivalent ¹³C nuclei in 2,2dimethylbutane (the actual shifts are; $\delta^{13}C^1=29.1$, $\delta^{13}C^2=30.6$, δ^{13} C²=36.9, and δ^{13} C⁴=8.9 ppm):

$$\begin{array}{c}
CH_{3} \\
C^{1}H_{3}-C^{2}-C^{3}H_{2}-C^{4}H_{3} \\
CH_{3}
\end{array}$$

- 4). In a 1% solution, the chemical shift of the hydroxyl ¹H of phenol is approximately 4.37 ppm. The chemical shift increases with concentration up to 7.45 ppm at 100%. Conversely, the chemical shift of the hydroxyl ¹H of o-hydroxyacetophenone is very high (12.05 ppm), and is invariant with concentration.
 - a. Why does the chemical shift of the ¹H of the hydroxyl of phenol change with concentration, and why does the chemical shift increase when the concentration increases?
 - b. Why is the chemical shift of the ¹H of the hydroxyl of *o*-hydroxyacetophenone so high? c. Why does the chemical shift of the ¹H of the hydroxyl
 - of o-hydroxyacetophenone not change with concentration?
- 5). If the longitudinal relaxation time for a given nucleus is 10 seconds, how long after a **180°** pulse will we have to wait until the magnitude of the z component of the bulk magnetization (M_z) is equal to 95% of the magnitude of the bulk magnetization before the pulse (M_0) ?

6). The following diagram represents the pulse sequence (experiment) used to measure T₁ for nuclei:

a. At point 'a', just before the first (180°_{x}) pulse, the magnitude of the longitudinal component of the bulk 13 C magnetization (M_{z}) is equal to the magnitude of the equilibrium magnitization (M_{o}) , as shown in the vector diagram at the right. Draw similar diagrams for points 'b', 'c', and 'd' showing the effects of the pulses and delays, assuming τ =0.0 seconds.

- b. After point 'd', if we record the FID (for τ =0.0 s) and perform a Fourier transform on it, what will the resulting signal look like (sketch the signal)?
- c. Draw sketches of the vector diagrams at points 'c' and 'd' and the Fourier transforms of the FIDs collected after point 'd' for increasing values of τ .
- d. At some value of τ (see question 'c'), the magnitude of the longitudinal component of the bulk magnitization is zero (M_z =0) at point 'c', and the Fourier transform of the FID reveals no signal. If T_1 is 10 seconds, at what value of τ does this occur?
- e. You find that when τ is 10s, there is no signal at point 'd'. What is T_1 ?
- f. In order to measure T_1 properly, we measure the amplitude of the signal (Fourier transform of the FID) as a function of τ and fit the data to the appropriate first order equation. We should wait for a time equal to at least $5T_1$ between successive experiments in order to allow for re-equilibration of the bulk magnetization. If T_1 is 10 s, and if we wait for $5T_1$ between experiments, how complete is the re-equilibration (assume τ =0, the acquisition time=0 and the 90° pulse width is also=0)?