Scotogenic models

Peccei-Quinn as broken lepton number

Diego Restrepo

August 15, 2017

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on arXiv:1706.08240 In collaboration with Ernest Ma (UC-R) & Óscar Zapata (UdeA)

Table of Contents

- 1. Dark matter
- 2. Neutrino masses

Dark matter

Curic matter

In the high of the ACHS panalign

long havings

The Company of the ACHS panalign

2

 $\frac{1}{\Lambda}L \cdot HL \cdot H$ (1-loop)

Bonnet, et al, arXiv:1204.5862 [JHEP]

This work, arXiv:1308.3655 [JHEP]

 $\frac{1}{\Lambda}L \cdot HL \cdot H$ (1-loop)

This work, arXiv:1308.3655 [JHEP]

Radiative seesaw

E. Ma, hep-ph/0601225 [PRD]

Neutrino masses

Weinberg operator at one-loop

Weinberg operator at one-loop

Weinberg operator at one-loop

Inverse radiative seesaw

Scalar dark matter: Higgs portal

$SU(3)_c$	$SU(2)_L$	U(1) _Y	Z_2
1	2	-1/2	+1
1	1	+1	+1
1	2	+1/2	-1
1	2	-1/2	-1
1	1	0	-1
1	1	0	-1
	SU(3) _c 1 1 1 1 1 1	SU(3) $_c$ SU(2) $_L$ 1 2 1 1 1 2 1 2 1 1 1 1 1 1	1 2 -1/2 1 1 +1 1 2 +1/2

$$\mathcal{V} = M_S^2 \mathbf{S}^2 + \lambda_{SH} \mathbf{S}^2 \widetilde{H} \cdot H + \lambda_S \mathbf{S}^4$$

$$\lambda_{HS} \sim \begin{cases} 0.1 & \text{WIMP} \\ 10^{-9} & \text{FIMP} + \text{Sinflaton (Tenkanen)} \end{cases}$$

Tenkanen. arXiv:1607.01379 (JHEP)

Singlet-doublet fermion dark matter: Higgs portal

Name	$SU(3)_c$	$SU(2)_L$	U(1) _Y	Z_2
$L = (\nu_L e_L)^T$	1	2	-1/2	+1
$(e_R)^{\dagger}$	1	1	+1	+1
$(\hat{\Psi}_R)^{\dagger} = \left(\left(\psi_R^+ ight)^{\dagger} \; \left(\psi_R^0 ight)^{\dagger} ight)^{T}$	1	2	+1/2	-1
$\Psi_{L} = \left(\psi_{L}^0 \psi_{L}^- ight)^T$	1	2	-1/2	-1
N	1	1	0	-1
S	1	1	0	-1

Basis
$$\boldsymbol{\psi}^0 = \left(N, \psi_L^0, \left(\psi_R^0\right)^\dagger\right)^\intercal$$

$$\mathcal{M}_{\boldsymbol{\psi}^0} = \begin{pmatrix} M_N & -y c_\beta v/\sqrt{2} & y s_\beta v/\sqrt{2} \\ -y c_\beta v/\sqrt{2} & 0 & -M_D \\ y s_\beta v/\sqrt{2} & -M_D & 0 \end{pmatrix},$$

S. Horiuchi,

Singlet-doublet fermion dark matter: Higgs portal

Name	$SU(3)_c$	$SU(2)_L$	U(1) _Y	Z_2
$L = (\nu_L e_L)^T$	1	2	-1/2	+1
$(e_R)^{\dagger}$	1	1	+1	+1
$(\hat{\Psi}_R)^\dagger = \left(\left(\psi_R^+ ight)^\dagger \ \left(\psi_R^0 ight)^\dagger ight)^T$	1	2	+1/2	-1
$\Psi_{L} = \left(\psi_{L}^{0} \psi_{L}^{-} ight)^{T}$	1	2	-1/2	-1
N	1	1	0	-1
S	1	1	0	-1

Basis
$$\psi^0 = \left(N, \psi_L^0, (\psi_R^0)^{\dagger}\right)^T$$

$$\mathcal{M}_{\psi^0} = \begin{pmatrix} M_N & -y c_\beta v / \sqrt{2} & y s_\beta v / \sqrt{2} \\ -y c_\beta v / \sqrt{2} & 0 & -M_D \\ y s_\beta v / \sqrt{2} & -M_D & 0 \end{pmatrix},$$

S. Horiuchi,

Scalar dark matter: vector-like fermion portal

Name	$SU(3)_c$	$SU(2)_L$	U(1) _Y	Z_2
$L = (\nu_L \ e_L)^{T}$	1	2	-1/2	+1
$(e_R)^{\dagger}$	1	1	+1	+1
$(\psi_{R}^-)^\dagger$	1	1	+1	-1
ψ_{L}^-	1	1	-1	-1
S	1	1	0	-1

$$\mathcal{L} = M_{\psi} \left[\left(\psi_{R}^{-} \right)^{\dagger} \psi_{L}^{-} + \left(\psi_{L}^{-} \right)^{\dagger} \psi_{R}^{-} \right] +$$

$$+ h_{S} \left[S \left(e_{R} \right)^{\dagger} \psi_{R}^{-} + S \left(\psi_{L}^{-} \right)^{\dagger} e_{L} \right]$$

Klasen, Lamprea, Yaguna arXiv:1602.05137

Scalar dark matter: vector-like fermion portal

Name	$SU(3)_c$	$SU(2)_L$	U(1) _Y	Z_2
$L = (\nu_L \ e_L)^{T}$	1	2	-1/2	+1
$(e_R)^{\dagger}$	1	1	+1	+1
$(\psi_{R}^-)^\dagger$	1	1	+1	-1
ψ_{L}^-	1	1	-1	-1
S	1	1	0	-1

$$\mathcal{L} = M_{\psi} \left[\left(\psi_{R}^{-} \right)^{\dagger} \psi_{L}^{-} + \left(\psi_{L}^{-} \right)^{\dagger} \psi_{R}^{-} \right] +$$

$$+ h_{S} \left[S \left(e_{R} \right)^{\dagger} \psi_{R}^{-} + S \left(\psi_{L}^{-} \right)^{\dagger} e_{L} \right]$$

Klasen, Lamprea, Yaguna arXiv:1602.05137

Origin of the Z_2

Origin of the Z_2

Origin of the Z_2

Origin of the Z_2

leptonic U(1) symmetry: $m_{\nu} = 0$

Name	$SU(3)_c$	$SU(2)_L$	$U(1)_{Y}$	$U(1)_L$
$L = (\nu_L e_L)^T$	1	2	-1/2	-1
$(e_R)^{\dagger}$	1	1	+1	+1
$(\hat{\Psi}_R)^\dagger = \left(\left(\psi_R^+ ight)^\dagger \; \left(\psi_R^0 ight)^\dagger ight)^T$	1	2	+1/2	0
$\Psi_{ extsf{L}} = \left(\psi_{ extsf{L}}^0 \; \psi_{ extsf{L}}^- ight)^{T}$	1	2	-1/2	0
N	1	1	0	0
$S \in \mathbb{C}$	1	1	0	0

$$\mathcal{L} = \mathcal{L}_{SM} - M_S^2 S^* S - \lambda_{SH} S^* S \widetilde{H} \cdot H - \lambda_S (S^* S)^2$$

$$+ \left(M_N NN + M_D (\hat{\Psi}_R)^{\dagger} \Psi_L + h_L \Psi_L \cdot HN + h_R \hat{\Psi}_R \cdot HN^{\dagger} + h_{LS} L \cdot \Psi_L S + \text{h.c.} \right)$$

Anomalous leptonic U(1) symmetry: $m_{\nu}=0$

Name	$SU(3)_c$	$SU(2)_L$	U(1) _Y	$U(1)_L$
$L = (\nu_L e_L)^T$	1	2	-1/2	-1
$(e_R)^{\dagger}$	1	1	+1	+1
$(\hat{\Psi}_R)^{\dagger} = \left(\left(\psi_R^+ ight)^{\dagger} \; \left(\psi_R^0 ight)^{\dagger} ight)^{T}$	1	2	+1/2	0
$\Psi_{L} = \left(\psi_{L}^0 \psi_{L}^- ight)^T$	1	2	-1/2	0
N	1	1	0	0
$S\in\mathbb{C}$	1	1	0	0
σ	1	1	0	-2

$$\mathcal{L} = \mathcal{L}_{SM} - M_S^2 S^* S - \lambda_{SH} S^* S \widetilde{H} \cdot H - \lambda_S (S^* S)^2 + \lambda_{S\sigma} S^* S \sigma^* \sigma + (\mu SS \sigma + \text{h.c})$$

$$+ \left(M_N NN + M_D (\hat{\Psi}_R)^{\dagger} \Psi_L + h_L \Psi_L \cdot HN + h_R \hat{\Psi}_R \cdot HN^{\dagger} + h_{LS} L \cdot \Psi_L S + \text{h.c} \right)$$

$$+ V(\sigma).$$

Anomalous leptonic U(1) symmetry: $m_{\nu} \neq 0$

Name	$SU(3)_c$	$SU(2)_L$	U(1) _Y	Z_2
$L = (\nu_L \ e_L)^{T}$	1	2	-1/2	0
$(e_R)^{\dagger}$	1	1	+1	0
$(\hat{\Psi}_R)^\dagger = \left(\left(\psi_R^+ ight)^\dagger \; \left(\psi_R^0 ight)^\dagger ight)^{T}$	1	2	+1/2	-1
$\Psi_{ extsf{L}} = \left(\psi_{ extsf{L}}^0 \psi_{ extsf{L}}^- ight)^{T}$	1	2	-1/2	-1
N	1	1	0	-1
Re(S)	1	1	0	-1
$Im(\sigma)$	1	1	0	0

$$\mathcal{L} = \mathcal{L}_{SM} - M_S^2 S^* S - \lambda_{SH} S^* S \widetilde{H} \cdot H - \lambda_S (S^* S)^2 + \lambda_{S\sigma} S^* S v_{\sigma}^2 + (\mu SS v_{\sigma} + \text{h.c})$$

$$+ \left(M_N NN + M_D (\hat{\Psi}_R)^{\dagger} \Psi_L + h_L \Psi_L \cdot HN + h_R \hat{\Psi}_R \cdot HN^{\dagger} + h_{LS} L \cdot \Psi_L S + \text{h.c} \right)$$

Conclusions

Z₂ from global Peccei-Quinn symmetry:

- Mixed dark matter with Axion/WIMP or Axion/FIMP
- Lepton number violation controlled by splitting of real and imaginary parts of S.

