AMENDMENTS TO THE CLAIMS

This listing of the claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A spiral double-twisted structure suitable for a gabion unit of a gabion mesh, comprising:

[[i)] an n-th upper steel wire (A_n) and an n-th lower steel wire (B_n) which are paired with each other and rotated in one direction to form a front spiral twisted structure having a plurality of twists,

[[ii)]] a k-th transverse steel wire (C_k) which is transversely inserted between the n-th upper steel wire (A_n) and the n-th lower steel wire (B_n) of the front spiral twisted structure, and

[[iii)]] the n-th upper steel wire (A_n) and the n-th lower steel wire (B_n) which are rotated in a direction opposite to the one direction after passing over the k-th transverse steel wire (C_k) serving as a centerline, in order to form a rear spiral twisted structure <u>having a plurality of twists</u>, where k represents the relative <u>position positional</u> relationship among transverse steel wires and is a positive integer including 0, and n represents the relative <u>position positional</u> relationship among the upper and lower steel wires and is a positive integer including 0.

- (Currently Amended) A gabion unit including two longitudinal steel wires and one transverse steel wire, comprising:
- 1)—one <u>a</u> k-th spiral double-twisted structure including a k-th transverse steel wire (C_k) , the k-th spiral double-twisted structure being configured such that an n-th upper steel wire (A_n) and an n-th lower steel wire (B_n) are paired with each other and rotated in one direction to form a front spiral twisted structure having a plurality of twists, the k-th transverse steel wire (C_k) is transversely inserted between the n-th upper steel wire (A_n) and the n-th lower steel wire (B_n) of the front spiral twisted structure, and the n-th upper steel wire (A_n) and the n-th lower steel wire (B_n) are rotated in a direction opposite to the one direction after passing over the k-th transverse steel wire (C_k) serving as a centerline, in order to form a rear spiral twisted structure having a plurality of twists, where k represents the relative positional relationship among the transverse steel wires and is a positive integer including 0, and n represents the relative positional relationship among the upper and lower steel wires and is a positive integer including 0;
- [[2)]] two (k+1)-th spiral double-twisted structures including a (k+1)-th transverse steel wire (C_{k+1}) ; and
- [[3)]] one (k+2)-th spiral double-twisted structure including a (k+2)-th transverse steel wire (C_{k+2}), where k represents the relative position positional relationship among the transverse steel wires and is a positive integer including 0.

3. (Canceled)

- 4. (Currently Amended) The gabion unit as claimed in claim 2, wherein the (k+1)-th spiral double-twisted structure is formed [[in]] such a manner that:
- [[i)]] the n-th upper steel wire (A_n) is paired with an adjacent (n+1)-th lower steel wire (B_{n+1}) and an (n-1)-th upper steel wire (A_{n-1}) is paired with the n-th lower steel wire (B_n) , and the pairs of steel wires are then rotated in the one direction to form front spiral twisted structures, respectively.
- [[ii)]] the (k+1)-th transverse steel wire (C_{k+1}) is transversely inserted between the paired two longitudinal steel wires of each of the front spiral twisted structures, and
- [[iii]]) the paired two longitudinal steel wires are rotated in the direction opposite to the one direction after passing over the (k+1)-th transverse steel wire (C_{k+1}) serving as a centerline, in order to form a rear spiral twisted structure, where k represents the relative position positional relationship among the transverse steel wires and is a positive integer including 0, and n represents the relative position positional relationship among the upper and lower steel wires and is a positive integer including 0.
- (Currently Amended) The gabion unit as claimed in claim 1, wherein the (k+2)-th spiral double-twisted structure is formed [[in]] such a manner that:
- [[i)]] the n-th upper steel wire (A_n) is paired again with the n-th lower steel wire (B_n) and they are then rotated in the one direction to form a front spiral twisted structure,

[[ii)]] the (k+2)-th transverse steel wire (C_{k+2}) is transversely inserted between the paired upper and lower steel wires (A_n, B_n) of the front spiral twisted structure, and

[[iii)]] the paired upper and lower steel wires (A_n, B_n) are rotated again in the direction opposite to the one direction after passing over the (k+2)-th transverse steel wire (C_{k+2}) serving as a centerline, in order to form a rear spiral twisted structure, where k represents the relative position positional relationship among the transverse steel wires and is a positive integer including 0, and n represents the relative position positional relationship among the upper and lower steel wires and is a positive integer including 0.

6. (Currently Amended) A gabion mesh, comprising:

gabion units according to claim 2 consecutively and repeatedly coupled to one another both in a right and left direction and in a fore and aft direction.

7. (Canceled)

8. (Currently Amended) A gabion mesh, comprising:

gabion units according to claim 4 consecutively and repeatedly coupled to one another both in a right and left direction and in a fore and aft direction.

9. (Previously Presented) A gabion mesh, comprising:

gabion units according to claim 5 consecutively and repeatedly coupled to one another both in a right and left direction and in a fore and aft direction.

- 10. (New) The spiral double-twisted structure according to claim 1, wherein the spiral double-twisted structure is bisected by the k-th transverse steel wire (C_k) .
- 11. (New) The gabion unit according to claim 2, wherein the k-th spiral double-twisted structure is bisected by the (k+1)-th transverse steel wire (C_{k+1}) .