Math 571 - Homework 6

Richard Ketchersid

Problem 0.1 (R:5:8). Suppose f' is continuous on [a, b] and $\epsilon > 0$. Show that there is $\delta > 0$ so that for all t such that $0 < |t - x| < \delta$ and all $a \le x \le b$

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \epsilon$$

This could be stated as f' is uniform continuity on [a,b] provided f' is continuous on [a,b]. Does this hold for vector valued functions?

Problem 0.2 (R:5:9). Suppose f is continuous on \mathbb{R} , and it is known that f'(x) exists for all $x \neq 0$ and $f'(x) \to 3$ as $x \to 0$. Must f'(0) exist?

Problem 0.3 (R:5:11). Suppose f is defined in a nbhd of x and f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$$

Show, by example, that the above limit can exist even if f''(x) does not.

Problem 0.4 (R:5:16). Suppose f is twice differentiable on $(0, \infty)$ and f'' is bounded on $(0, \infty)$, and $f(x) \to 0$ as $x \to \infty$. Show that $f'(x) \to 0$ as $x \to \infty$.

Problem 0.5 (R:5:22). Let $f:[a,b] \to [A,B]$ be differentiable on (a,b) and continuous on [a,b]. Here a,b,A, or B could be infinite, in which case we just identify something like $[-\infty,2]$ with the more usual notation $(-\infty,2]$. A point x is a **fixed** point of f iff f(x)=x.

- (a) Show that if $f'(t) \neq 1$ for all $t \in (a, b)$, then f can have at most one fixed point.
- (b) Show that $f(t) = t + (1 + e^t)^{-1}$ satisfies |f'(t)| < 1 and f has no fixed points.
- (c) Show that if there is A < 1 so that $|f'(t)| \le A$ for all $t \in (a, b)$, then f has a fixed point and moreover given any $x_0 \in (a, b)$ and taking $x_{n+1} = f(x_n)$ it turns out that $x_n \to x$ and f(x) = x is the unique fixed point of f.

Problem 0.6. Show that $f(x,y) = \sqrt{|xy|}$ is not differentiable at (0,0), but both partials $f_x(0,0)$ and $f_y(0,0)$ exist.