### Data Science for Neuroscience

The Brain as Inspiration, Model and Data Source

**Doctoral Thesis Defence** 

by

Chris Häusler







## Machine Learning and Neuroscience A Two Part & Two way relationship

#### 1. Neuroscientists use Machine Learning

#### 2. Cross Pollination

- Neuroscience to ML:
  - ANNs
  - Neuromorphic Hardware
  - Brain inspired computation (eg: Honeybee olfaction)
- ML to Neuroscience:
  - Hopfield for Associative memory
  - Slow Feature Analysis for Complex Cell organisation and Place cells
  - RBMs as a generalised representation learning framework and model for perceptual bistability

### The Brain as

#### - Inspiration

Advance the state-of-the-art through a novel training method for unsupervised Artificial Neural Networks called *Temporal Autoencoding* 

#### - Model

Hypothesise learning in visual cortex by applying *Temporal Autoencoding* to learn dynamic representations of natural image sequences.

#### - Data Source

Apply statistical and machine learning techniques to help better understand neural representation of movement in the human basal ganglia.

# The Brain as Inspiration

Temporal Autoencoding
Improves Generative Models of Time Series

# Restricted Boltzmann Machine (RBM)





#### Propogate Up



$$z = vW^{T} + b$$

$$h = \frac{\partial y}{\partial x} \longrightarrow [0, 1]$$

#### Propogate Down



$$v = W^T h + b$$

# Training RBMs

#### To Infinity?



#### Or just once?



$$\Delta \mathbf{w} = \varepsilon \ (\langle \mathbf{vh} \rangle^0 - \langle \mathbf{vh} \rangle^1)$$

# Generating with an RBM

```
00001223

011223

1123

1123

1123

1123

1123

1123

1123

1123

1123

1123

1123

1123

1123

1123

1123

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133

1133
```



[Hinton, et al. 2006]

# **Denoising Autoencoders**



# RBMs Through Time

#### Conditional RBM (CRBM)



#### Temporal RBM (TRBM)



# Training. Step 1



# Training. Step 3



#### Training. Step 2: Temporal Autoencoding (NEW)



#### Training. Step 2: Temporal Autoencoding (NEW)



| Step                     | Action                                                                                                                           |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1. Static RBM Training   | Constrain the static weights $\mathbf w$ using CD on single frame samples of the training data                                   |
| 2. Temporal Autoencoding | Constrain the temporal weights $\mathbf{w}_1$ to $\mathbf{w}_d$ using a denoising autoencoder on multi-frame samples of the data |
| 3. Model Finalisation    | Train all model weights together using CD on multi-frame samples of the data                                                     |

# Modelling Human Motion











# M3 forecasting competition



### The Brain as Model

Natural image sequences constrain dynamic receptive fields and imply a sparse code

# Learning from Natural Movies











~15000 20x20 Pixel Patches for 30 frames each

### 

# Static Receptive Fields



# Receptive Field Statistics





[Cadieu et al. 2012]



# Dynamic Receptive Fields



### Form and Motion

#### Temporal RBM (TRBM)







# A Sparse Encoding







Static Dynamic





# A Round Up

### Temporal Autoencoding

A new method for training temporal RBMs

Better performance for Generation & Prediction

### TRBMs for Dynamic Stimulus Encoding

Propose how neural dynamic RFs may emerge naturally from smooth image sequences

Learns a Temporally and Spatially Sparse Code

# Testament to Python

#### Data acquisition and Processing:

- numpy, pandas

#### **Statistical Analysis:**

- scipy, statsmodels

#### Modelling and Machine Learning:

- theano, scikit-learn, ipython parallel, scikitCVcluster

#### Data Visualisation and Story Telling:

matplotlib, prettyplotlib

### Thank You!

- Martin
- Manfred
- Alex
- Thomas + Jan for Kaggling and explaining things to me
- Michael Keeping the servers up and bringing me to Neuroinf
- Neuroinf
- Vanessa, Margret & Julia Unbelievable support
- Family for coming all the way from Australia and Austria to be here

# Questions?

### Autoencoders



#### Alternate View



[Bengio, et al. 2007]

## Autoencoders







### The Brain as Data Source

Investigating Movement Parameters in the Human Basal Ganglia

# Deep Brain Stimulation





[Wikipedia]

### The Data

- 4 Patients
- Recordings from Stimulator electrode
- Neural Signals
  - 4 Extracellular electrodes
  - LFP
- Movement Signals
  - Hand position (approximate, recorded with a Goniometer)

# Movements





# Neural Signals



# Neural vs Kinematic



### Correlation: Neural vs Kinematic



0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

# **Predicting Movement**





# **Predictive Features**

| Patient | Single Feature | Performance | Multiple Features           | Performance |
|---------|----------------|-------------|-----------------------------|-------------|
| 1       | Bua            | 0.48        | Bua, Beta, Gamma            | 0.61        |
| 2       | Theta          | 0.21        | Theta, Beta, Alpha          | 0.27        |
| 3       | Mua            | 0.84        | Mua, Very High Gamma, Gamma | 0.86        |
| 4       | Mua            | 0.64        | Mua                         | 0.64        |