

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЕЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЙ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЩИОННЫЙ ИНСТИТУТ

(национальный исследовательский университет)»

Иститут №3 Направление подготовки: 27.04.04 Кафедра №301 Группа: МЗО-402Бки-20

Тема ВКР: Система управления аварийной посадкой летательного аппарата

Автор: Саид Ахмад Заки Алхабши Бин Саид Худ

Научный руководитель 1: к.т.н., доцент кафедры 301 Егоров Александр Александрович

Научный руководитель 2: к.т.н., доцент кафедры 301 Симонов Владимир Львович

Актуальность и Цель работы

Цель работы: Разработка прототипа системы аварийной управления посадкой летательного аппарата повышения ДЛЯ безопасности транспортов, авиационных используя интеллектуальную посадочную платформу.

Объект и предмет исследования

Объект исследования:

▶Безопасность авиационных перевозок

Предмет исследования:

▶Система, обеспечивающая максимально безопасную посадку самолета, который требует аварийной посадки из-за технических или человеческих ошибок.

Постановка задачи

- Разработать функциональную схему системы управления аварийной посадкой ЛА
- Разработать алгоритму функционирования системы управления аварийной посадкой ЛА
- Провести расчет расстояния, необходимого для приземления стандартной системой или с помощью интеллектуальной платформы.
- Моделировать системы управления аварийной посадкой с помощью Arduino
- Провести тестирование и проанализировать результаты экспериментов

Функциональная схема

Алгоритм функционирования

системы

Алгоритм функционирования системы (продолжение)

Натурное Моделирование системы

Результаты проведения экспериментов

Результаты проведения экспериментов (продолжение)

Возможные направления развития проекта

- Увеличить масштаб натурного моделирования
- Создать модель, используя более прочный материал, например, с помощью 3D-печатной машины.
- Сделать платформу подвижной, чтобы доказать результат расчетов.
- Использовать более совершенные датчики, приводы и микроконтроллеры, которые обеспечивают высочайшую производительность
- Использовать технологии искусственного интеллекта

Заключение

- Разработан функциональную схему, алгоритму функционирования.
- Проведен расчет расстояния, тестирование.
- Промоделирован системы управления аварийной посадкой с помощью Arduino.
 - ❖ Разработанная система управления аварийной посадкой летательного аппарата выполнять свою задачу в повышении качество аваиционной безопасности.

Благодарности

Большое спасибо:

- о Московскому Авиационному Институту
- о Кафедре 301 Московского Авиационного Института
- о Коллективу преподавателей и сотрудников кафедры 301 МАИ
- о Моим руководителям
- о Научному сотруднику института
- о Друзьям
- о Себе

Спасибо огромное за внимание!

