1. Arithmetic Sequence Size

(There are many terms in this sequence?)

1.1. $\Omega(N) = N/2 \le x $	{ 1, 2, 3, 4, 5, 6,, N } ≤ ſ	N = O(N) # of terms a	re Θ(N)	for(int i=1; i<=N; i++);	
1.2. Ω(N) = N/4 <=	{ 0, 2, 4, 6, 8, 10, , N }	\leq N/2 = O(N) # of ter	rms are Θ(N)	for(int i=0; i<=N; i+=2);	
1.3. $Ω(N) = N/4 <= \{1, 3, 5, 7,, N\} \le N/2$ i.e O(N) many terms # of terms are Θ(N)				for(int i=1; i<=N; i+=2);	
1.4. $\Omega(N) = N/6 \le \{1, 4, 7, 10,, N\} \le N/3$ i.e. $O(N)$ # of terms are $\Theta(N)$			for(int i=1; i<=N; i+=3);		
1.5. $\Omega(N) = \{1, 1+k,$. $\Omega(N) = \{1, 1+k, 1+2k, 1+3k, 1+4k, 1+5k,, N\} \le N/k$ i.e. O(N) if k is a constant			for(int i=1; i<=N; i+=k);	
1.6. $\Omega(N/\log N) = \{1, 1 + \log N, 1 + 2 \log N, 1 + 3 \log N, 1 + 4 \log N, 1 + 5 \log N,, N\} \le N/\log N$ i.e. $O(N/\log N)$				K = log N; for(int i=1; i<=N; i+=k);	
1.7. $\Omega(\sqrt{N}) = \{1, 1 + \sqrt{N}, 1 + 2\sqrt{N}, 1 + 3\sqrt{N}, 1 + 4\sqrt{N}, 1 + 5\sqrt{N},, N\} \le N/\sqrt{N} = O(\sqrt{N})$ i.e. $\Theta(\sqrt{N})$			$K = \sqrt{N}$; for(int i=1; i<=N; i+=k);		
(int i=1; i<=N; i+=10); times	N/10 times	Similarly 		i=1; i<=N; i+=20); N/20	
for(int i=1; i<=N; i+= \sqrt{N}); N/ \sqrt{N} = \sqrt{N} ====> N = \sqrt{N} . \sqrt{N}					

2. Arithmetic Series and relatives Applications of 1+2+3+4+...+N = $\frac{N(N+1)}{2}$ If you don't remember this formula.

<u>Proof</u>

2.1	$\Omega(T^2) \le 1 + 2 + 3 + 4 + 5 + 6 + \dots T - 3 + T - 2 + T - 1 + T \le O(T^2)$	
2.2	$\Omega(N^2) \leq 1 + 2 + 3 + 4 + 5 + 6 + + \dots + N/2 + N/2 + 1 + \dots + N - 3 + N - 2 + N - 1 + N \leq O(N^2) \ ===> \Theta(N^2)$ $\Theta(N)$ $\Theta(N^2)$	for(int i=1; i<=N; i++) for(int j=1; j<=i; j++)
2.3	$\begin{split} \Omega(N^2) \leq & 1 + 2 + 3 + 4 + 5 + 6 + \dots (N/2 - 3) + (N/2 - 2) + (N/2 - 1) + N/2 & \leq O(N^2) & = = = > \Theta(N^2) \\ & \Theta(N) \\ & (1) 1 + (1,2) 2 + (1,2,3) 3 + (1,2,3,4) 4 + \dots + (1,2,3,4,N) N & \Theta(N^2) \end{split}$	for(int i=1; i<=N; i+=2) for(int j=1; j<=i; j++)
2.4	$\Omega(N^2) \leq 1 + 2 + 3 + 4 + 5 + 6 + \dots (N/3 - 3) + (N/3 - 2) + (N/3 - 1) + N/3 \qquad \leq O(N^2) = = = > \Theta(N^2)$ $\Theta(N)$ $(1)1 + (1,2)2 + (1,2,3,4)4 + \dots + (1,2,3,4,-,N/3) \mathbb{N}/3 \qquad \Theta(N^2)$	for(int i=1; i<=N; i+=3) for(int j=1; j<=i; j++)
2.5	$ \Omega(N) \leq 1 + 2 + 3 + 4 + 5 + 6 + \dots + \sqrt{N} \qquad <=O((\sqrt{N)^2)} \qquad \qquad \leq O(N) \qquad ====>\Theta(N) \qquad \qquad \Theta(N^{1/2}) \qquad \qquad \Theta(N^{1/2}) \qquad \qquad \Theta(N) \qquad \Theta(N) \qquad \Theta(N) \qquad \qquad \Theta(N) \qquad \Theta(N)$	for(int i=1; i<=N ^{1/2} ; i+=1) for(int j=1; j<=i; j++)
2.6	$\Omega((\log N)^2) \le 1+2+3+4+5+6+ \dots + \log N \le O((\log N)^2) \le \Theta(\log^2 N)$	for(int i=1; i<=N; i*=2) Θ(log N)

	$ (1)1+(1,2)2+_{(1,2,3)}3+_{(1,2,3,4)}4++_{(1,2,4,8,,N)}\log N = \Theta(\log^2 N) ===> $ $ (1)1+(1,2)2+_{(1,2,3)}3+_{(1,2,3,4)}4++_{(1,2,4,8,,N)}\log N $	for(int j=1; j<=i; j*=2) Example 2 for(int i=1; i<=log N; i++) for(j=1; j<=i; j++);
2.7	$\Omega(N^4) \le 1 + 2 + 3 + 4 + 5 + 6 + \dots + N^2 \qquad \le O(N^4) = = = > \Theta(N^4) $ $_{(1)1 + _{(1,2)}2 + _{(1,2,3)}3 + _{(1,2,3,4)}4 + \dots + _{(1,2,3,4\dots,N^3)}N^2} = \Theta(N^4) = = >$	for(int i=1; i<=N*N; i=1) $\Theta(N^2)$ for(int j=1; j<=i; j++)
2.8	$\Omega(N^6) \leq 1 + 2 + 3 + 4 + 5 + 6 + \dots + N^3 \leq O(N^6) \\ \qquad \qquad \qquad \Theta(N^3) \\ \qquad \qquad \qquad \qquad \qquad \qquad \Theta(N^3)$	for(int i=1; i<=N*N*N; i=1) for(int j=1; j<=i; j++)
2.9	$\Omega(N^{2k}) \le 1+2+3+4+5+6+ \dots + N^k <= O(N^k x N^k)$	
2.10	$\Omega(N^3) \leq 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + \dots + N^2 \leq O(N^3)$ ${}_{(1)1 + (1,2,3,4)2 + {}_{(1,2,3,\dots,9)}9 + {}_{(1,2,3,4\dots,16)}16 + \dots + {}_{(1,2,3,4\dots,N^3)}N^2} = \Theta(N^3)$	for(int i=1; i<=N; i=1) $\Theta(N)$ for(int j=1; j<=i*i; j++)
$2.11 \ \Omega(N^4) \le 1 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + \dots + N^3 \le O(N^4) \\ \qquad \qquad \Theta(N) $ $ \qquad \qquad \Theta(N^4) $ $ \qquad \qquad \Theta(N^4) $		for(int i=1; i<=N; i=1) for(int j=1; j<=i*i*i; j++)
2.12 \(\Omega)	$2(N^{k+1}) \le 1^k + 2^k + 3^k + 4^k + 5^k + 6^k + \dots + N^k $ <= $O(N^{k+1})$	

3. Some Examples

$$\sqrt{N}*\sqrt{N}=N$$
 for(int i=1; i*i<=N; i++) Sum++; O(\sqrt{N}) for(int i=1; i*i<=N*N; i++) Sum++; O(N) for(int i=1; i*i*i<=N*N; i++) Sum++; O(N^{1/3})

4. Geometric Sequence Size

- 4.1. $|\{N, N/2, N/4, N/8, N/2^4, N/2^5, N/2^6, ...8, 4, 2, 1\}| = \log_2 N$ for(int i=1; i<=N; i*=2) or for(int i=N; i*i>=1; i/=2)
- 4.2. $|\{N, N/3, N/9, N/27, N/3^4, N/3^5, N/3^6, ..., 3^3, 9, 3, 1\}| = \log_3 N$ for(int i=1; i<=N; i*=3) or for(int i=N; i*i>=1; i/=3)
 - $|\{N, N/5, N/25, N/125, N/5^4, N/5^5, N/5^6, ..., 5^3, 5^2, 5, 1\}| = \log_5 N$ for(int i=1; i<=N; i*=5) or or for(int i=N; i*i>=1; i/=5)
- 4.4. $|\{N, N/k, N/k^2, N/k^3, N/k^4, N/k^5, N/k^6, ..., k^3, k^2, k, 1\}| = \{\log_k N \}$ for(int i=1; i<=N; i*=2) or or for(int i=N; i*i>=1; i/=k)

Some formulas,

4.3.

1. $\log N^k = k \log N$ 2. $\log N^2 = 2 \log N = \log N + \log N$ 3. $\log^2 N = \log N \cdot \log N$

5. GEOMETRIC SERIES

O(by the largest term)

Any Geometric Series with multiplicand factor of greater than 2(if increasing) or smaller then ½ (for decreasing geometric series) is bounded above and below by the largest term. If it is an increasing Geometric series in that case it will be the last term, if it is a decreasing series it will be the first term. For any constant - ratio(multiplication factor greater than 2 the above inequality is valid).

5.1.
$$\Omega(N) = N < 1+2+4+8+16+32+... + N/4+N/2+N < 2N = O(N) ==> \Theta(N)$$

5.2.
$$\Omega(N) = N < 1+3+9+3^3+3^4+3^5+...+N/3^2+N/3+N < 2N = O(N) ==> \Theta(N)$$

5.3.
$$\Omega(N^2) = N^2 < 1+3+9+3^3+3^4+3^5+...+N^2/3^2+N^2/3+N^2 < 2N^2 = O(N^2)==>\Theta(N^2)$$

5.3.
$$N^3 < 1+5+5^2+5^3+5^4+5^5+...+N^3/5^2+N^3/5+N^3 < 2N^3 = O(N^3)$$

 $1+5+5^2+5^3+5^4+5^5+...+N^3/5^2+N^3/5+N^3 < 2N^3$

5.4.
$$N^{3/2} < 1+5+5^2+5^3+5^4+5^5+...+N^{3/2}/5^2+N^{3/2}/5+N^{3/2} < 2N^{3/2}$$

5.5.
$$N^{1/2} < 1+5+5^2+5^3+5^4+5^5+...+N^{1/2}/5^2+N^{1/2}/5+N^{1/2} < 2N^{1/2}$$

5.6.
$$N < 1+5+5^2+5^3+5^4+5^5+...+N/5^2+N/5+N < 2N$$

$$\log_a N = \frac{\log_b N}{\log_b a}$$
 => $\log_2 N = \log_{10} N / \log_{10} 2$ => $\log_2 N = 1/\log_{10} 2 . \log_{10} N$ Implies => $\log_a N = \log_b N$

Proof of Geometric Series?

$$\Omega(N) = N < 1+2+4+8+16+32+... + N/4+N/2+N < 2N = O(N) ==> \Theta(N)$$

Question 1

(Estimated Time 20 mins)

(Each proof contains 5 points)

Prove all the thetas (using halving technique or any way you like). Both find out its lower(Omega) and upper(Big O) bound by the same function so that you can declare it to be theta of the given function.

1.
$$1^2 + 2^2 + 3^2 + 4^2 + \dots + N^2 - \Theta(N^3)$$

2.
$$1+2+3+4+...+N^2-\Theta(N^4)$$

3.
$$1+3+5+7+9+...+(2N+1)-\Theta(N^2)$$

4.
$$2 + 4 + 6 + 8 + \dots + 2N - \Theta(N^2)$$

5.
$$1+2+3+4+...+(N/2)-\Theta(N^2)$$

6.
$$1+2+4+8+16+...+N^2 ---- \Theta(N^2)$$

Question 2

(Estimated Time 100 mins)

(35*2 = 70 Points)

```
2) What is the algorithm's complexity
What is the algorithm's complexity of the following
                                                                     of the following piece of code
piece of code - Sample Solution is in RED.
                                                                     int Sum=0;
int Sum=0:
                     // O(1) Time
                                                                     for(int i=0; i<N; i++)
for(int i=0; i<N; i++) //(1+1+1+...+1---N \text{ Times} = O(N)
                                                                      Sum++;
for(int j=0; j<N; j++) Sum++;
                                                                     for(int j=0; j<N; j++)
// (1+1+1+...+1) + (1+1 +... +1)+... + (1+1 +... +1) added N times
                                                                      Sum++;
                          +... + N
                    Ν
                                          = O(N^2)
Overall Complexity: O(1) + O(N) + O(N^2) + O(N^2) = O(N^2)
3)
                                                                     What is the algorithm's complexity of
What is the algorithm's complexity of the following
                                                                     the following piece of code
piece of code
                                                                     int Sum=0:
int Sum=0;
                                                                     for(int i=0; i< N; i++)
for(int i=0; i<N; i++)
                                                                      Sum++;
for(int j=0; j<N; j++)
                                                                     for(int j=0; j<N; j++)
  for(int k=0; k<N; k++)
                                                                      Sum++;
     Sum++;
                                                                     for(int k=0; k<N; k++)
                                                                      Sum++:
                                                                     for(int m=0; m<N; m++)
for(int i=0; i<N; i++)
                                                                      Sum++;
 for(int j=0; j<N; j++)
                                                                     for(int n=0; n<N; n++)
   for(int k=0; k<N; k++)
                                                                      Sum++;
     Sum++;
                                                                     for(int p=0; p<N; p++)
                                                                      Sum++:
5)
int Sum=0;
                                                                     int Sum=0;
for(int i=0; i<N; i++)
                                                                     for(int i=0; i<N; i+=2)
for(int j=0; j< i; j++)
                                                                      for(int j=0; j<i; j+=2)
  for(int k=0; k<j; k++)
                                                                        for(int k=0; k< j; k+=2)
     Sum++;
                                                                          Sum++;
int Sum=0;
                                                                     int Sum=0;
for(int i=1; i<N; i*=2)
                                                                     for(int i=1; i<N; i*=2)
for(int j=1; j<N; j*=2)
                                                                      Sum++;
      Sum++:
                                                                     for(int j=1; j<N; j*=2)
                                                                      Sum++;
```

```
9
                                                                     for(int i=1; i \le N*N; i+=2)
for(int i=1; i<=N*N; i+=2)
                                                                       Sum++;
  for(int j=1; j<N*N; j*=2)
      Sum++;
                                                                     for(int j=1; j<N*N; j*=2)
                                                                           Sum++;
11
                                                                     12
                                                                     for(int i=1; i<=N*N; i*=2)
for(int i=1; i<=N*N; i*=2)
                                                                           Sum++;
  for(int j=1; j<N*N; j*=2)
      Sum++;
                                                                     for(int j=1; j<N*N; j*=2)
                                                                           Sum++;
13
                                                                     14
int Sum=0;
                                                                     int Sum=0;
for(int i=1; i<=N; i*=2)
                                                                     for(int i=1; i<=N; i*=2)
for(int j=1; j<=N; j*=2)
                                                                     Sum++;
  for(int k=1; k<=N; k*=2)
                                                                     for(int j=1; j<=N; j*=2)
      Sum++;
                                                                           Sum++;
                                                                     for(int k=1; k<=N; k*=2)
                                                                           Sum++;
15
                                                                     16
        int sum,i,j;
                                                                     BE CAREFUL GEOMETRIC SERIES
         sum = 0;
                                                                     int sum,i,j;
        for (i=1;i<n;i=i*2)
                                                                     sum = 0;
                                                                     for (i=1; i<n; i=i*2)
        {
          for (j=0;j< n;++j)
                                                                       for (j=0; j < i; ++j)
          {
                sum++;
                                                                       {
           }
                                                                             sum++;
        }
                                                                        }
                                                                     18
BE CAREFUL GEOMETRIC SERIES
                                                                     int sum,i,j;
                                                                     sum = 0;
int sum,i,j;
                                                                     for (i=1; i<n; i=i*4)
sum = 0;
for (i=1; i<n; i=i*5)
                                                                       for (j=0; j< n; j+=3)
 for (j=0; j< i; j+=2)
 {
                                                                             sum++;
       sum++;
                                                                        }
  }
```

```
19 What will be the output (the value of Sum) of the
                                                                    20 What will be the output(the value of Sum) of the program
program asymptotically in BIG-O notation, I am
                                                                   asymptotically in BIG-O notation:
not asking here the complexity of loop rather the
asymptotic bound on the value of Sum:
                                                                   int Sum = 0;
                                                                    for(int i=1; i<=n; i*=2)
int Sum = 0;
for(int i=1; i<=n; i+=1)
                                                                    Sum+=i;
Sum+=i;
                                                                    cout<<Sum<<endl;
cout<<Sum<<endl;
21 What is the time complexity of the algorithm:
                                                                    22 What is the time complexity of the
                                                                    algorithm:
int Sum = 0;
                                                                    int Sum = 0;
for(int i=1; i<=n; i+=1)
                                                                    for(int i=1; i<n; i*=2)
 for(int j=1; j<=i; j++)
                                                                    for(int j=1; j<=i; j++)
    Sum++;
}
                                                                        Sum++;
                                                                    }
cout<<Sum<<endl;
                                                                    cout<<Sum<<endl;
40* Complexity of primeNumber function.
                                                                    41* Complexity of primeNumber function.
int sqrt(int N)
                                                                    int sqrt(int N)
{
                                                                    {
int d;
                                                                    int d;
 for(d=0; d*d<=N; d++) { }
                                                                     for(d=0; d*d <= N; d++){}
 return d-1;
                                                                     return d-1;
bool primeNumber(int n)
                                                                    bool primeNumber(int n)
{
        bool isPrime = true;
                                                                            bool isPrime = true;
        int lmt = (sqrt(n));
                                                                            for (int d=2; d \le sqrt(n);++d)
        for (int d=2; d <=lmt;++d)
                                                                                    if (n\%d==0)
        {
                if (n\%d==0)
                                                                                             return false;
                         return false;
        }
                                                                            return true;
        return true;
```

```
23 What is the time complexity of the algorithm:
                                                                       24
int f1(int n)
                                                                       What is the time complexity of the
{
                                                                       algorithm:
          int K=0;
                                                                       int f1(int n)
          for(int j=0; j*j<=n*n; j++) K++;
          return K;
                                                                                 int K=0;
                                                                                 for(int j=1; j*j<=n; j*=2)
                                                                                                              K++;
int main()
                                                                                  return K;
{
                                                                       int main()
         int Sum = 0, n;
         cin>>n;
         for(int i=1; i<=f1(n); i+=1)
                                                                                int Sum = 0;
                                                                               int n;
          for(int j=1; j<=i; j++) Sum++;
         cout<<Sum<<endl;
                                                                                cin>>n:
                                                                                for(int i=1; i<=f1(n); i+=1)
                                                                                   for(int j=1; j<=i; j++)
                                                                                                              Sum++;
                                                                                cout<<Sum<<endl;</pre>
25
                                                                       26
What is the time complexity of the algorithm:
                                                                       What is the time complexity of the
                                                                       algorithm:
int f1(int n)
          int K=0;
                                                                       int f1(int n)
 for(int j=1; j*j<=n; j++)
                                                                                 int K=0;
   K++;
                                                                                  for(int j=0; j*j<=n; j++)
                                                                                   K++;
 return K*K;
                                                                                return K;
int main()
                                                                       int main()
int Sum = 0;
                                                                                int Sum = 0;
int n;
                                                                                int n;
cin>>n;
int Terminator = f1(n);
                                                                                cin>>n;
for(int i=1; i<= Terminator; i+=1)
                                                                                int Terminator = f1(n);
                                                                                for(int i=1; i<=Terminator; i+=1)
 for(int j=1; j<=i; j++)
                                                                                 for(int j=1; j<=i; j++)
    Sum++;
                                                                                 {
 }
                                                                                    Sum++;
                                                                                 }
cout<<Sum<<endl;
                                                                                cout<<Sum<<endl;
27
                                                                       28
for (i=1;i<n;i=i*4)
                                                                       for (i=1;i<n;i=i*4)
{
       cout << i;
                                                                               cout << i;
        for (j=0;j< n;j=j+2)
                                                                               for (j=0;j<i; j=j+2)
        {
                 cout << j;
                                                                                        cout << j;
                 sum++
                                                                                        sum++
                                                                               cout << sum;
        cout << sum;
```

```
29
                                                                     30
for (i=1;i<=n*n;++i)
                                                                     for (i=1;i<=n*n*n;++i)
                                                                     {
      cout << i;
                                                                          cout << i;
        Sum=0;
                                                                            Sum=0;
        for (j=1; j<=i; ++j)
                                                                            for (j=1; j<=i; ++j)
                                                                            {
        {
                 Sum++;
                                                                                     Sum++;
                 cout << i;
                                                                                     cout << i;
                                                                            }
                                                                            cout << Sum;
        cout << Sum;
31
                                                                     for (i=1;i<=n*n*n; i*=2)
for (i=1;i<=n*n*n; i*=2)
                                                                          cout << i;
      cout << i;
                                                                            Sum=0;
        Sum=0;
                                                                            for (j=1;j<=n; j++)
        for (j=1;j<=i; j++)
                                                                            {
                                                                                     Sum++;
                 Sum++;
                                                                                     cout << i;
                 cout << i;
                                                                            }
                                                                            for (k=1;k<=n; k++)
        cout << Sum;
                                                                            {
                                                                                     Sum++;
                                                                                     cout << i;
                                                                            cout << Sum;
for (i=1;i<=n*n*n; i*=2)
                                                                     for (i=1;i<=n*n*n; i*=2)
{
      cout << i;
                                                                          cout << i;
        Sum=0;
                                                                            Sum=0;
        for (j=1;j<=i; j++)
                                                                            for (j=1;j<=i; j++)
                 Sum++;
                                                                                     Sum++;
                 cout << i;
                                                                                     cout << i;
        }
                                                                            }
                                                                            for (j=1;j<=n; j++)
        for (j=1;j<=n; j*=2)
        {
                                                                            {
                 Sum++;
                                                                                     Sum++;
                 cout << i;
                                                                                     cout << i;
        }
                                                                            }
        cout << Sum;
                                                                            cout << Sum;
```

```
35-36
                                                                           for (i=0; i<n; i=i+3)
 for (int i=1; i <= n; i = i * 2)
                                                                           {
                                                                                    cout << i;
          for (j = 1; j \le i; j = j * 2)
                                                                                    for (j=1; j<n; j=j*3)
                    cout<<"*";
                                                                                              cout << j;
                                                                                              sum++
                                                                                    }
 for (int i=1; i <= n; i = i * 2)
                                                                                    for (k=1;k< n;k=k*3)
          for (j = 1; j \le i; j = j * 2)
                   cout<<"*";
                                                                                              cout << j;
                                                                                              sum++
 for (int i=1; i <= n; i = i * 2)
                                                                                    }
          for (j = 1; j \le i; j = j * 2)
                   cout<<"*";
                                                                                    cout << sum;
for (int i=1; i <= n; i = i * 2)
                                                                           for (i=0; i<n; i=i+3)
         for (j = 1; j \le i; j = j * 2)
                                                                                    cout << i;
                                                                                    for (j=1; j<n; j=j*3)
                  cout<<"*";
                                                                                              sum++
        }
for(int i=0; i<=N; i++)
                                                                           for (k=1;k< n;k=k*3)
Sum++;
                                                                                    cout << j;
                                                                                    sum++
                                                                           cout << sum;
```

Question 3 Analyze the complexity Θ of the following functions in terms of N.

1*5+5 = 10 points

```
int f1(int N)
                                   int f2(int N)
                                                                         int f5(int N)
                                                                          int Count=0;
int Count = 0;
                                     int Count=0;
                                                                          for(int i=0; i<sqrt(f1(N) * f1(N)); i++)
                                     int C = f1(N);
for(int i = 1; i <= N; i*= 2)
                                                                              Count++:
 for(int j=1; j<= i; j++)
                                     for(int i=0; i<C; i++)
                                                                          return Count;
    Count++:
                                         Count++:
return Count;
                                     return Count;
}
                                   }
int f3(int N)
                                   int f4(int N)
                                                                         Int Sum = 0;
                                                                         int f6(int N)
 int Count=0;
                                     int Count=0;
 int C = \operatorname{sqrt}(f1(N));
                                     for(int i=0; i<f1(N) * f1(N); i++)
                                                                           if(N==1)
 for(int i=1; i<C; i*=2)
                                          Count++;
                                                                             return 1;
    Count++;
                                     return Count;
 return Count;
                                                                           Sum +=f1(N); Sum +=f2(N);
}
                                                                           Sum +=f3(N); Sum +=f4(N); Sum +=f5(N);
                                                                           return Sum:
```