Divide and Conquer-3

Department of Computer Science, Tsinghua University

The master method

The master method applies to recurrences of the form

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1$, $b \ge 1$ and f(n) is asymptotically positive.

Case 1:

- ▶ Compare f(n) with $n^{\log_b a}$
- ▶ Case 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$
 - f(n) grows polynomially slower than $n^{\log_b a}$ (by a n^{ε} factor)
 - Solution: $T(n) = \Theta(n^{\log_b a})$
- Ex. T(n) = 4T(n/2) + n $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n$ Case 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 0.5$ $\therefore T(n) = \Theta(n^2)$

Case 1:

Case 1

The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight $\Theta(n^{\log_b a})$

Case 2:

- ▶ Compare f(n) with $n^{\log_b a}$
- - f(n) and $n^{\log_b a}$ grow at similar rates.
 - Solution: $T(n) = \Theta(n^{\log_b a} \lg n)$
- ► Ex. $T(n) = 4T(n/2) + n^2$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2$ Case 2: $f(n) = \Theta(n^2)$ ∴ $T(n) = \Theta(n^2 \lg n)$

Case 2:

Case 2

The weight is approximately the same on each of the $\log_b n + 1$ levels. $T(n) = \Theta(n^{\log_b a} \lg n)$

Case 3:

- Compare f(n) with $n^{\log_b a}$
- ▶ Case 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor)
 - ▶ and f(n) satisfies the **regularity condition** that $af(n/b) \le cf(n)$ for some constant c < 1
 - Solution: $T(n) = \Theta(f(n))$
- ► Ex. $T(n) = 4T(n/2) + n^3$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3$ Case 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 0.5$ $4(n/2)^3 \le cn^3$ (reg. cond.) holds when c = 1/2∴ $T(n) = \Theta(n^3)$

Case 3:

Case 3

The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight $\Theta(f(n))$

One more example

Ex. $T(n) = 2T(n/2) + n \lg n$ $a = 2, b = 2 \Rightarrow n^{\log_b a} = n; f(n) = n \lg n$

Master method does not apply

In particular, the ratio $f(n)/n = \lg n$ is not asymptotically greater than n^{ε} for any positive constant ε

Summary

- Compare f(n) with $n^{\log_b a}$
- ▶ 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$
 - f(n) grows polynomially slower than $n^{\log_b a}$ (by a n^{ε} factor)
 - Solution: $T(n) = \Theta(n^{\log_b a})$
- $2 f(n) = \Theta(n^{\log_b a})$
 - f(n) and $n^{\log_b a}$ grow at similar rates.
 - Solution: $T(n) = \Theta(n^{\log_b a} \lg n)$
- ▶ 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor)
 - ▶ and f(n) satisfies the **regularity condition** that $af(n/b) \le cf(n)$ for some constant c < 1
 - Solution: $T(n) = \Theta(f(n))$

In-class Exercise

- True or False: if a divide-and-conquer algorithm A runs in T(n) = aT(n/b) + f(n)
 - $1) T(n) = \Omega(n^{\log_b a}).$
 - ▶ 2) if a > 1, the running time of A can be bounded by a logarithmic function (i.e., $T(n) = O(\lg n)$).
 - ▶ 3) When a < b and $f(n) = \theta(n)$, then $T(n) = \theta(n)$.

Matrix Multiplication

$$A = \begin{bmatrix} a_{ij} \end{bmatrix}, B = \begin{bmatrix} b_{ij} \end{bmatrix}$$

$$C = \begin{bmatrix} c_{ij} \end{bmatrix} = A \cdot B$$

$$i, j = 1, 2, \dots, n$$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Standard Algorithm

```
for i=1 to n

for j=1 to n

c_{ij}=0

for k=1 to n

c_{ij}=c_{ij}+a_{ik}\times b_{kj}
```

Running time = $\Theta(n^3)$

D&C Algorithm

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$
$$C = A \times B$$

$$r = ae + bg$$

$$s = af + bh$$

$$t = ce + dg$$

$$u = cf + dh$$

8 mults of $(n/2) \times (n/2)$ submatrices

4 adds of $(n/2) \times (n/2)$ submatrices

$$T(n) = 8T(n/2) + \theta(n^2) = \theta(n^3)$$

Strassen's idea (1969)

Reduce 8 mults to 7 mults

$$P_{1} = a(f - h)$$

$$P_{2} = (a + b)h$$

$$P_{3} = (c + d)e$$

$$P_{4} = d(g - e)$$

$$P_{5} = (a + d)(e + h)$$

$$P_{6} = (b - d)(g + h)$$

$$P_{7} = (a - c)(e + f)$$

$$r = P_{5} + P_{4} - P_{2} + P_{6}$$

$$s = P_{1} + P_{2}$$

$$t = P_{3} + P_{4}$$

$$u = P_{5} + P_{1} - P_{3} - P_{7}$$

Strassen's Algorithm

- 1. Divide: Partition A and B into $(n/2) \times (n/2)$ submatrices and form terms to be multiplied.
- **2.** Conquer: Perform 7 multiplications of $(n/2) \times (n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2) \times (n/2)$ submatrices.

$$T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2) = \Theta(n^{2.81})$$

Chapter Notes for Strassen's algorithm in practice.

Summary

- Master Method: three cases depending on the outcome of comparing f(n) with $n^{\log_b a}$.
- There are cases where the Master Method does not apply.
- Estimating efficiency using the Master Method can provide hints to design efficient D&C algorithms.

