

COMP3055 Machine Learning

Topic 3 – Data Collection

Ying Weng 2024 Autumn

Data Mining Process Model

CRoss Industry Standard Process for Data Mining (CRISP-DM)

Industry Standard

The most popular data mining methodology model according to KDNuggets.com

Step 1: Business Understanding

- Define the problem
- Choose a machine learning model(s)
- Estimate project cost
- Estimate project completion time
- Address legal issues
- Develop a maintenance plan

Step 2: Data Understanding

Step 3: Data Preprocessing

- Noisy data
 - Locate duplicate records
 - Locate incorrect attribute values
 - Smooth data
- Missing data
 - Discard records with missing values
 - Replace missing real-valued items with the class mean
 - Replace missing values with values found within highly similar instances
- Data transformation
 - Data normalization
 - Data type conversion
 - Attribute and instance selection

Step 4: Modeling

- Choose training and test data
- Designate a set of input attributes
- If learning is supervised, choose one or more output attributes
- Select learning parameter values
- Train the model

Step 5: Evaluation

- Statistical analysis
- Heuristic analysis
- Experimental analysis
- Human analysis

Measures of Effectiveness of the Model

Accuracy

Percentage of total predictions that were correct

Return on investment

Cost-benefit ratios

Explanation

Able to justify intuition

Validation

Automated checking of correctness, indexes

Step 6: Deployment

- Apply the model to real world usage
- Apps, API, etc.
- Regularly update the model with new data
- ...

You Need Collect Data before Learning Starts!

What is Data?

Attributes

Collection of data objects and their associated attributes

An **attribute** is a property or characteristic of an object Objects

- Examples: eye color of a person, temperature, etc.
- Attribute is also known as variable, field, characteristic, or feature

A **collection of attributes** describe an object

 Object is also known as record, point, case, sample, entity, or instance

_	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
_	10	No	Single	90K	Yes

Types of Attributes

There are different types of attributes

Nominal

Examples: ID numbers, eye color, zip codes

Ordinal

 Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}

Interval

 Examples: calendar dates, temperatures in Celsius or Fahrenheit.

Ratio

Examples: temperature in Kelvin, length, time, counts

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another.	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ^2 test
Ordinal	The values of an ordinal attribute provide enough information to order objects.	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists.	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests
Ratio	For ratio variables, both differences and ratios are meaningful.	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Discrete and Continuous Attributes

Discrete attribute

- Has only a finite or countable set of values.
- Examples: zip codes, number of employees, or sale counts.
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes.

Continuous attribute

- Has real numbers as attribute values.
- Examples: temperature, stock prices, or net income.
- Continuous attributes are typically represented as floating-point variables.

Types of Data

Record

- Data matrix
- Transaction data

Graph

- Social networks
- Molecular structures

Ordered

- Spatial data
- Temporal data
- Sequential data
- Genetic sequence data

We often deal with a mixture of different types data

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Data Matrix

- If data objects have the same fixed set of numeric attributes, the data objects can be thought of as points in a multidimensional space, where each dimension represents a distinct attribute.
- Such data set can be represented as an m by n matrix, where there are m rows (one for each object) and n columns (one for each attribute).

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Transaction Data

- A special type of record data, where
 - Each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples:

- Representation of HTML Links
- Social Networks

Ordered Data

Genomic sequence data

Obtaining Data

Data sources

- Obtained directly from owner: text file or relational database.
- Collect public available data: web.

Unstructured VS. structured

- Text file: can be unstructured or structured.
- Relational database: structured.
- Web: unstructured.
- Need to structure the data if necessary.

Data need to be cleaned

Tools for data collection and cleaning

Python, R, Excel, SQL, etc.

Text Files

- Most companies use proprietary software to store data that can be exported into text files.
 - Usually with .txt extension.
 - Sometimes with .csv extension
- Commonly used text file format
 - Fixed-width: each attribute value starts and stops a fixed positions (columns) in the lines.
 - Delimited: there is a delimiter character, usually a tab, space, or comma, that separates different values in the lines.
 - CSV: comma separated values

12/18/2007 7223 F	Transactions.txt - N	lotepad			_ • X	Transactions.txt - Notepad
12/18/2007 7223 F	<u>File</u> <u>Edit</u> Format	<u>∕</u> iew <u>H</u> elp				File Edit Format View Help
12/26/2007 2/41 M S N WA USA Food Canned Foods Canned Tuna 4	12/18/2007 12/20/2007 12/21/2007 12/21/2007 12/22/2007 12/22/2007 12/23/2007 12/25/2007 12/25/2007 12/25/2007 12/26/2007 12/26/2007	7223 7841 8374 9619 1900 6696 9673 354 1293 7938 9357	Gender F M F F M F M M M	Marital Statu S M M S M S M S M M M S M	Y Y N Y	CA USA Food Snack Foods Snack Foods 5 CA USA Food Produce Vegetables 5 \$14.9 WA USA Food Snack Foods Snack Foods 3 OR USA Food Snack Foods Snack Foods 3 OR USA Food Snacks Candy 4 \$4.44 CA USA Drink Beverages Carbonated Beverages CA USA Food Deli Side Dishes 3 \$4.31 USA Food Frozen Foods Breakfast Foods 4 \$13.31 USA Food Canned Foods Canned Soup 6 \$7.32 WA USA Non-Consumable Household Cleaning Supp CA USA Non-Consumable Health and Hygiene Pain CA USA Food Snack Foods Snack Foods 3 CA USA Food Snack Foods Snack Foods 3 CA USA Food Baking Goods Baking Goods 5 WA USA Food Canned Foods Canned Tuna 4

CSV Example

- Yahoo stock price historical data
 - Example: Sina stock price from Jan 1st, 2016 to Jan 1st 2017
 - http://finance.yahoo.com/quote/SINA/history?period1=1451577600& period2=1483200000&interval=1d&filter=history&frequency=1d

CSV Example

- Manual download from Yahoo
 - http://chart.finance.yahoo.com/table.csv?s=SINA&a=0&b=1&c= 2016&d=0&e=1&f=2017&g=d&ignore=.csv
 - Save to local disk as csv file, e.g. "table.csv"
 - Use Python to read csv file
- Automatically download from Yahoo
 - Use Python for both downloading and reading

```
# Load Yahoo stock price for Sina
import numpy as np
# URL for SINA from Jan 1st 2016 to Jan 1st 2017
# url = "table.csv"
url = "http://chart.finance.yahoo.com/table.csv?s=SINA&a=0&b=1&c=2016&d=0&e=1&f=2017&g=d&ignore=.csv"
# load the CSV file as a numpy matrix
dataset = np.genfromtxt(url, dtype=None, skip_header=1, delimiter=",")
print(dataset[0])
```

Relational Database

- A relational database is a set of related tables, where each table is a rectangular arrangement of fields and records.
 - Rows corresponding to records.
 - Columns corresponding to fields.
 - Primary key contains unique values to index data.
 - Foreign key links tables and can contain duplicate values.
- Python allows you to import data from many database packages
 - You may need to install drive for different database, e.g. MySQLdb for MySQL database, before use.
- Basic steps
 - Make connection with host name, user name, password, database name, etc.
 - Create a cursor to the connected database
 - Execute SQL queries and fetch the data through the cursor
 - Close the database

Relational Database

```
import MySQLdb
db = MySQLdb.connect(host="localhost", # your host, usually localhost
user="john", # your username
passwd="megajonhy", # your password
db="jonhydb") # name of the data base
# you must create a Cursor object. It will let
# you execute all the queries you need
cur = db.cursor()
# Use all the SQL you like
cur.execute("SELECT * FROM YOUR TABLE NAME")
# print all the first cell of all the rows
for row in cur.fetchall():
    print row[0]
db.close()
```

Data from the Web

- Web sites containing data are structured in all sorts of ways, and the steps required to collect the data for analysis vary greatly.
- No matter the server side is a program or file, what the client side received (and the browser shows) are all files.
 - Usually in HTML (hypertext markup language) format.
 - HTML uses tags for displaying various items on the web page.

HTML File and Representation

- Most html tags control font, color, images, actions, etc., which are not related to the content of data.
- The layout of html is often controlled using table (old fashion) or CSS (Cascading Style Sheets, new fashion).
- Tablet data are normally put inside table tag, but many data we are interested are not in the table.

Web Crawling

- Find out the patterns of URL, e.g.
 - http://finance.yahoo.com/q?s=SINA
 - actual address: http://finance.yahoo.com/q
 - Parameter: s=SINA
 - name=value pairs separated by &
- Write a program to generate the URLs and download.
 - By changing parameters and name=value pairs
- Sometimes need to find and download the URLs inside a web page (spidering).
 - URLs normally start with "http" in raw html files.
- Parsing the web pages to collect useful data
 - Identify where the useful data is in a web page.
 - Finding patterns to help the program auto locate the data by looking at raw html files.
 - Use Python Regular Expression to locate the data according to the pattern.

Unstructured Data Parsing

Regular Expression

- Python, Java, etc.
- Find patterns from the "unstructured" data, including text file, HTML file, or other files.
- Define such patterns using regular expression grammar.
- Read files into a string. The processing engine will extract data from the string that meets this pattern.
- More on this using Python later!

```
import urllib.request
import re

url="http://google.com"

# regular expression for locating title
these_regex=b"<title>(.+?)</title>"
pattern=re.compile(these_regex)

# load the url
with urllib.request.urlopen(url) as response:
    html = response.read()

# find the pattern in the downloaded file
titles=re.findall(pattern, html)
print(titles)
```

Any Questions?

