1.1 什么是单片机

2015/8/31

L

- 1.1 什么是单片机
- 计算机的组成(由匈牙利科学家冯·诺依曼定义)
 - ●运算器;
 - ●控制器;
 - ●存储器;
 - ●输入输出设备。

将上述四种功能部件集中到一块芯片上,就构成了单片的微型计算机,简称单片机。

我们日常接触的计算机的种类大致可分三种:

- ▶微型计算机系统
 - 微处理器 + 大容量内存 + 巨大容量外存 + I/O接口 + 外设,装置在机箱中构成;
- ▶单板机系统
 - 微处理器+小容量存储器(RAM&ROM)+I/O接口, 装置在印刷电路板上构成;
- ▶单片机系统
 - 微控制器(MCU) + 少量存储器(RAM/ROM/Flash) + I/O端口 + 其它资源,集成在一块芯片上构成。

1.2 单片机的发展过程及趋势

第一阶段 (1971~1974)

- ●1971-11: Intel 4004,集成2000只晶体管,配RAM、ROM以及移位寄存器;
- ●1972-04: Intel 8008、FairChild的F4等。

此阶段拉开了单片机研制的序幕

第二阶段 (1974~1978)

●以Intel 8048为代表的8位单片机,集成8位CPU, 并行I/O口,8位定时器、计数器,寻址范围不大 于4K,无串行口。

此阶段可定义为初级单片机阶段

第三阶段 (1978~1983)

●代表产品:

Intel MCS-51、Motorola 6801、Zilog Z8等;

●特点:片内集成RAM/ROM且可扩充,最大可扩充容量达64K、串口、多级中断处理、16位定时/计数器等。

此阶段为高性能单片机阶段。

第四阶段(1983~九十年代中期)

●由于Intel公开了MCS-51内核,8位单片机稳定、高速发展,同时16位单片机开始出现,另外以AVR/PIC等为代表的RISC指令集结构的单片机出现。 此阶段为单片机高速发展时期

现阶段

- ●处理器:
 - ▶众多公司在MCS-51内核的基础上推出了功能扩充型的单片机,8位单片机空前繁荣(Atmel、SST、TI、Philip等知名公司均有全系列的8位单片机产品,并不断更新换代)。
 - ▶16/32位单片机普及(ARM内核为代表),并在中、高端 应用中大量使用。

●典型代表:

▶三星公司的S3C44B0X, NXP(原Philips)的 LPC2000系列, Intel公司的XScal, Atmel的AT91系列等ARM内核的处理器。

此阶段为单片机全面发展时期

开发环境

●众多公司推出了各种编译及仿真环境。如Franklin C51、SDCC、Keil C51等。目前最常用的是Keil C51集成开发环境。

良好的开发工具为单片机应用的普及铺平道路。

单片机的发展趋势

- 1、单片机性能不断提高
 - ●单片机性能随芯片集成度的不断提高而提高:
 - ▶执行效率不断提高;
 - ▶片上外设不断增加,或者说集成度不断提高。
 - ●新型单片机不断出现

单片机的发展趋势

- 2、新技术不断应用到单片机领域中
 - ●将已在微型机、16位/32位单片机等成熟应用的先进技术,下移到单片机上,不断推动单片机技术、性能的发展。主要特点包括:
 - ▶指令系统采用RISC结构,提高代码执行效率;
 - > 采用流水线技术取指令,提高运算速度;
 - ▶扩大存储器容量,增加I/O端口等片上外设;
 - ▶针对高级(C)语言设计指令集,提高编译效率和执行速度;
 - ▶增加通信接口,如以太网、I²C、CAN总线等,提高通信能力;

单片机的发展趋势

- 3、向低功耗、宽电压、高速、高可靠性发展
 - ●功耗可低至µA级;
 - ●供电电压可宽至1.8V~7V;
 - ●采用多种芯片监控技术,确保可靠运行;
 - ●工作温度范围更宽。

单片机的发展趋势

- 4、满足应用系统不断提高的单片化需求
 - ●集成更多的片上外设;
 - ●按应用系统需求更细地划分芯片系列;
 - ●采用多种在线编程技术,方便系统开发。

单片机的发展趋势

- 5、单片机应用网络化需求不断提高
 - ●提供多种通信接口;
 - ●物联网应用要求单片机具有接入网络的能力;

1.3 单片机的特点及应用场合

- 1、单片机的特点
 - ●性价比高;
 - ●可靠性高;
 - ●通信接口丰富,易于扩展多系统通信;
 - ●开发成本/门槛低。

- 2、单片机的应用领域
 - ●工业自动化;
 - ●智能化仪表;
 - ●各种机器人;
 - ●民用消费类电子产品;
 - ●汽车、航空、导航与武器装备;
 - ●数据处理及终端设备;
 - ●通信设备.....

1.4 单片机与嵌入式系统

嵌入式系统定义

●IEEE关于嵌入式系统的定义
IEEE(国际电气和电子工程师协会)定义嵌入式系统是"用于控制、监视或者辅助操作机器和设备的装置"(原文为Devices used to control, monitor, or assist the operation of equipment, machinery or plants)。

嵌入式系统定义

●国内关于嵌入式系统的定义 嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可裁减,以适应应用系统对功能、可 靠性、成本、体积、功耗严格要求的专用计算机 系统。

对比上述嵌入式系统的定义,可见单片机应用系统是典型的嵌入式系统!

1.5 MCS-51系列单片机

● MCS-51单片机主要分为基本型(51)和增强型(52)

系列	型号	片内存储器容量		片外存储器 寻址范围		I/O端口 引脚数		中断	定时器/
		ROM	RAM	ROM	RAM	并口	串口	源	计数器
51 子 系 列	8031, 80C31	无	128 字节	64KB	64KB	32个 端口 引脚	1个全 双工 UART	5	2个 16位 定时器/ 计数器
	8051, 80C51	4KB ROM							
	8751, 87C51	4KB EPROM							
	8951, 89C51	4KB Flash							
52 子 系 列	8032, 80C32	无	256 字节					6	3个 16位 定时器/ 计数器
	8052, 80C52	8KB ROM							
	8752 , 87C52	8KB EPROM							
	8952, 89C52	8KB Flash							