Schluß-Regeln

Eine Schluß-Regel ist eine Paar

$$\langle \{f_1, \cdots, f_n\}, k \rangle$$

mit $f_1, \dots, f_n, k \in \mathcal{F}$.

 f_1, \dots, f_n : Prämissen.

k: Konklusion.

Schreibweise: $\frac{f_1 \quad \cdots \quad f_n}{k}$

Beispiele für Schluß-Regeln:

1. "Modus Ponens":

$$\frac{p \qquad p \to q}{q} \quad (MP)$$

2. "Modus Ponendo Tollens":

$$\frac{\neg q \qquad p \to q}{\neg p} (MPT)$$

3. "Modus Tollendo Tollens":

$$\frac{\neg p \qquad p \to q}{\neg q} (MTT)$$

Frage: Wann sind Schluß-Regeln korrekt?

Erfüllbarkeit

Geg.: $M = \{k_1, \dots, k_n\}$ Menge von Klauseln

1. **Frage**: Wann ist M Tautologie?

Formal: Wann gilt $\models k_1 \land \cdots \land k_n$?

Antwort:

$$\models M$$

g.d.w. $\models k_i$ für alle $i = 1, \dots, n$

g.d.w. k_i trivial für alle $i=1,\cdots,n$

Zufriedenstellende Antwort.

2. **Frage**: Wann ist M erfüllbar?

Formal: Wann gibt es Belegung \mathcal{I} so dass gilt:

 $eval(k_i, I) = true$ für alle $i = 1, \dots, n$?

Antwort ist schwieriger:

M unerfüllbar

g.d.w. aus M ist \perp herleitbar

g.d.w. $M \vdash \bot$

Wir benötigen den

Herleitungs-Begriff

zur Beantwortung der Frage.

Spezialfälle der Schnitt-Regel

1. Setze $k_1 := \emptyset$, l := p und $k_2 := \{q\}$:

$$\frac{\{\} \cup \{p\} \qquad \{\neg p\} \cup \{q\}}{\{\} \cup \{q\}}$$

Interpretation von Mengen als Disjunktionen liefert:

$$\frac{p \qquad \neg p \lor q}{q}$$

Berücksichtigung von $\neg p \lor q \leftrightarrow p \rightarrow q$ liefert:

$$\frac{p \qquad p \rightarrow q}{q}$$
 (Modus Ponens)

2. Setze $k_1 := \emptyset$, $l := \neg q \text{ und } k_2 := \{\neg p\}$:

$$\frac{\{\} \cup \{\neg q\} \qquad \{q\} \cup \{\neg p\}}{\{\} \cup \{\neg p\}}$$

Interpretation von Mengen als Disjunktionen liefert:

$$\frac{\neg q \qquad q \vee \neg p}{\neg p}$$

Berücksichtigung von $q \vee \neg p \leftrightarrow p \rightarrow q$ liefert:

$$\frac{\neg q \qquad p \rightarrow q}{\neg p} \quad (\textit{Modus Ponendo Tollens})$$

3.
$$\frac{\neg p \qquad p \rightarrow q}{\neg q}$$
 (Modus Tollendo Tollens)

Ist MTT Spezialfall der Schnitt-Regel?

Beweis-Begriff: $M \vdash f$

Vor.: $M \subseteq \mathcal{F}$, $f \in \mathcal{F}$.

Schreibweise: $M \vdash f \ (M \text{ beweist } f)$

Definition induktiv:

- 1. $M \vdash \top$
- 2. Wenn $f \in M$ ist, dann gilt $M \vdash f$.
- 3. Es gelte:
 - (a) $M \vdash k_1 \cup \{p\}$,
 - (b) $M \vdash \{\neg p\} \cup k_2$.

Dann gilt auch

$$M \vdash k_1 \cup k_2$$
.

Korrektheits-Satz: Es gilt:

$$M \vdash f \implies M \models f$$

Widerlegungs-Vollständigkeit

Theorem: (Widerlegungs-Vollständigkeit von G)

Sei
$$\{k_1, \dots, k_n\} \subseteq \mathcal{K}$$
. Dann gilt $\{k_1, \dots, k_n\} \models \bot \Rightarrow \{k_1, \dots, k_n\} \vdash \bot$.

Frage: Wann folgt f aus Klausel-Menge $\{k_1, \dots, k_n\}$?

Antwort: Falls gilt: $\{k_1, \dots, k_n\} \cup knf(\neg f) \vdash \bot$

Definition: Sei $k \in \mathcal{K}$, $M \subseteq \mathcal{K}$ und $l \in \mathcal{L}$.

$$\mathit{redukt}(k,l) := \left\{ \begin{array}{ll} \top & \mathsf{falls}\ l \in k; \\ k \backslash \{\overline{l}\} & \mathsf{falls}\ l \not\in k \ \mathsf{und}\ \overline{l} \in k; \\ k & \mathsf{sonst.} \end{array} \right.$$

 $Redukt(M, l) := \{ redukt(k, l) \mid k \in M \}.$

Satz: Ist
$$M \subseteq \mathcal{K}$$
 und $l \in \mathcal{L}$, so gilt $M \models \bot \Rightarrow Redukt(M, l) \models \bot$.

Satz: Ist $M \subseteq \mathcal{K}$, $f \in \mathcal{K}$ und $l \in \mathcal{L}$, so gilt: $Redukt(M, l) \vdash f \Rightarrow M \vdash f \text{ oder } M \vdash f \cup \{\overline{l}\}.$