注意行为规范 遵守考场纪律.

哈工大各学院 2007 /2008 学年 秋季学期

考试时间 考试形式 班(学)号 120 分钟 闭

概率试 题

班(字)号 姓 名

题 号	_	 Ξ	四	五.	六	七	八	九	十	总	
分 数										分	

(注:需要用到的标准正态分布表,t-分布表见末页末尾处。)

- 一、填空题(每题3分,共计15分)
 - 1. 设事件A、B满足P(A) = 0.5,P(B) = 0.6, $P(B \mid A) = 0.6$,则 $P(A \cup B) =$ ______.
 - 2. 设事件 A,B,C 两两独立,且 $ABC = \emptyset$, $P(A) = P(B) = P(C) < \frac{1}{2} , \qquad P(A \cup B \cup C) = \frac{9}{16} , \qquad 则$ $P(A) = \underline{\hspace{1cm}}$
 - 3. 设随机变量 X 的概率密度为 $f_X(x) = \begin{cases} 2x, 0 < x < 1, \\ 0, &$ 其它 \end{cases} ,对 X 进行 三次独立重复观察,用 Y 表示事件 " $X \leq \frac{1}{2}$ " 出现的次数,则 P(Y=1) = ______.
 - 4. 已知一批零件的长度 $X\sim N(\mu,4)$, μ 未知,从中随机地抽取 16 个零件,得样本均值 x=30 ,则 μ 的置信度 0.95 的置信区间是
 - 在区间(0,1)中随机地取两个数,则事件"两数之差的绝对值小于 ¹/₂"的概率为______.

二、单项选择题(每题3分,共计15分)

•	•	X	,		
	1.	设 A,B 是两个事件,	$P(A) \neq P(B) > 0$	$\exists B \subset A$.	则一定成

1.	战 A, B 是两个事件,	$P(A) \neq P(B) > 0$,	且 B ⊂ A ,	则一定成立
	的是			

- (A) P(B | A) = 1; (B) P(A | B) = 1;
- (C) $P(B \mid A) = 1$; (D) $P(A \mid B) = 0$.

2. 设 A, B, C 三个事件两两独立,则 A, B, C 相互独立的充分必要条

- (A) A与BC独立:
- (B) AB与A∪C独立;
- (C) $AB \ni AC$ 独立; (D) $A \cup B \ni A \cup C$ 独立.
- 3. 设随机变量 X 的概率密度函数为 $f(x) = \frac{1}{2}e^{-x}$,则对随机变量

X 与X,下列结论成立的是_

- (A)相互独立; (B) 分布相同;
- (C) 不相关:
- (D) 同期望.
- 4. 设随机变量 X 服从参数为 $\frac{1}{3}$ 的指数分布, $Y \sim U(0,6)$,且

 $\rho_{XY} = \frac{1}{3}$,根据切比晓夫不等式有:

 $P(-4 \le X - Y \le 4) \ge \underline{\hspace{1cm}}$

- (A) $\frac{1}{8}$;
- (B) 5 8

(C) $\frac{1}{4}$;

- 5. 设 X_1, X_2, \dots, X_n 是 总 体 $X \sim N(\mu, \sigma^2)$ 的 样 本 , $EX = \mu$,

 $DX = \sigma^2$, \overline{X} 是样本均值, S^2 为样本方差, S^{*2} 为样本二阶中 心矩,则______.

班(学)号 姓名:

(A)
$$\overline{X} \sim N(\mu, \sigma^2)$$
; (B) $\frac{(n-1)S^{*2}}{\sigma^2} \sim \chi^2(n-1)$;

(C)
$$\frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$
 是 σ^2 的无偏估计; (D) \overline{X} 与 S^2 相互独

立.

三、(10分)今从装有白球3个,黑球3个的甲箱子中任取2个,然后将这2个球放入装2个白球3个黑球的乙箱中,再从乙箱中任取1个球,求(1)从乙箱中取到1个白球的概率;(2)已知从乙箱中取到1个白球,求从甲箱子中取出的两个球是白球的概率.

$$f(x,y) = \begin{cases} 4xy, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{ } \sharp ' \stackrel{\cdot}{\succeq} \end{cases},$$

求 Z = X + Y 的概率密度 $f_Z(z)$.

五、 $(10\, eta)$ 已知随机变量 X 和 Y 分别服从 $N\left(1,3^2\right)$ 和 $N\left(0,4^2\right)$,且 X 和 Y 的相关系数 $\rho_{XY}=-\frac{1}{2}$,设 $Z=\frac{X}{3}+\frac{Y}{2}$ 求 (1) EZ 和 DZ ; (2) ρ_{XZ} .

六、(14分)设总体 X 的分布函数为

$$F(x;\alpha,\beta) = \begin{cases} 1 - \left(\frac{\alpha}{x}\right)^x, & x > \alpha, \\ 0, & x \le \alpha \end{cases}$$

其中未知参数 $\alpha>0,\beta>1$. 而 X_1,X_2,\cdots,X_n 为来自总体 X 的简单随机样本.

- (1) 当 $\alpha = 1$ 时, 求未知参数 β 的矩估计和极大似然估计;
- (2) 当 $\beta = 2$ 时,求未知参数 α 的极大似然估计.

七、(6 分) 设(X,Y)在 $G = \{(x,y) | 1 \le x \le 3, 1 \le y \le 3\}$ 服从均匀分布,

求: (1) 随机变量U = |X - Y|的概率密度 f(u); (2) EU.

