Challenges

Anzo Teh Zhao Yang

December 21, 2016

1 Extra practice 1.

- 1. Let n=3k. If k is odd then k=2x+1 for some $x\in\mathbb{Z}$. Now 2|n=3(2x+1)=6x+3=2(3x+1)+1, so 2|1, contradiction. Hence k is even and write k=2y. Now $n=3k=3(2y)=6y=6\times y$ so 6|6y=n.
- 2. $a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}((a-b)^2+(b-c)^2+(c-a)^2)\geq 0$, so $ab+bc+ca\leq a^2+b^2+c^2=1$. On the other hand $0\leq (a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca=1+2ab+2bc+2ca$, so $2(ab+bc+ca)\geq -1$, or $ab+bc+ca\geq \frac{-1}{2}$.

2 Extra practice 2.

- 1. We show that p=3. Indeed, if 3|p then we must have p=3, and if $3 \nmid p$ we have $p \equiv \pm 1 \pmod{3}$ so $p^2+2 \equiv (\pm 1)^2+2=1+2=3 \equiv 0 \pmod{3}$. This means $3=p^2+2$, or $p=\pm 1$, contradiction. Hence p=3, and $p^3+2=3^3+2=29$ is a prime.
- 2. In first order number theory we could write $\exists L(\forall \epsilon [0 < \epsilon \rightarrow (\exists \delta [0 < \delta \land (\forall x [0 < x + \delta \land x < \delta \rightarrow 3x + \epsilon < L \land 3x < L + \epsilon])])])$. Notice that this is unnecessarily complicated and hardly readable but in first order number theory only constants, variables, parenthesis, $\exists, \forall, \land, \lor, <, =$ are allowed. We could have written as $\exists L(\forall \epsilon > 0(\exists \delta > 0(|x| < \delta \rightarrow |3x L| < \epsilon)))$.

We show that L=0 works (in fact, L=0 is the only number you should think of). For each ϵ , choose $\delta = \frac{\epsilon}{3}$. Then $|x| < \delta \to |x| < \frac{\epsilon}{3} \to 3|x| < \epsilon to|3x| < \epsilon$.

3 Extra practice 3.

- 1. Suppose such a,b exist. From a,b>0 we have $a^4=b^4+b+1>b^4+b>b^4$, so a>b, and since $a,b\in\mathbb{Z}$ we have $a\geq b+1$ by the discreteness property of the integers. Now $b^4+b+1=a^4\geq (b+1)^4=b^4+4b^3+6b^2+4b+1$, or $4b^3+6b^2+3b\leq 0$, contradicting that $b\geq 1$.
- 2. Let a, b, c be the side lengths, with c being the length of the hypothenuse. Given that $a^2 + b^2 = c^2$, we need to prove that one of a, b, c is divisible by 3. Suppose not, that $3 \nmid a, b, c$.

Then $a \equiv \pm 1 \pmod{3}$ and $a^2 \equiv 1 \pmod{3}$. Similarly $b^2 \equiv c^2 \equiv 1 \pmod{3}$. Now from $2 = 1 + 1 \equiv a^2 + b^2 = c^2 \equiv 1 \pmod{3}$, contradiction.

4 Extra practice 4.

1. Existence. We go by strong induction on each positive integer n. For n = 1, 2, 3, 4, 5 we can write them as 1, 2, 3, 1 + 3, 5, respectively.

Now let this statement to be true for $1, 2, \dots, k-1$ for some $k \geq 6$. Since the Fibanacci sequence F_i is unbounded and increasing, we can choose positive integer p such that p is the biggest positive integer with $F_p \leq k$. If $F_p = k$ we are done. Otherwise we have $F_p < k < F_{p+1} = F_p + F_{p-1}$, or $0 < k - F_p < F_{p-1}$. Now by our induction hypothesis, $k - F_p$ can be written as sum of distinct nonconsecutive Fibonacci numbers, namely $F_{i_1} + F_{i_2} + \dots + F_{i_x}$ for some $x \geq 1$, $i_1 < i_2 < \dots i_x$ and $i_{j+1} - i_j \geq 2$, $\forall j \in [1, x-1]$. But from $k - F_p < F_{p-1}$ we have $i_x < p-1$. Therefore $k = F_{i_1} + F_{i_2} + \dots + F_{i_x} + F_p$ with $p - i_x \geq 2$.

Uniqueness. We start with this claim:

Let $1 < i_1 < \cdots i_x$ be integers satisfying $i_{j+1} - i_j \ge 2$ for all $j \in [1, x-1]$. Then $F_{i_1} + F_{i_2} + \cdots + F_{i_x} < F_{i_x+1}$.

Proof: we proceed by induction. If x=1 then we obviously have $F_{i_1} < F_{i_1+1}$ as $i_1 \ge 2$ (recall that $F_1 = F_2 = 1$ and $F_0 = 0$). Let us suppose that $F_{i_1} + F_{i_2} + \cdots + F_{i_{x-1}} < F_{i_{x-1}+1}$. Then $F_{i_1} + F_{i_2} + \cdots + F_{i_x} < F_{i_{x-1}+1} + F_{i_x} \le F_{i_{x-1}} + F_{i_x} = F_{i_x+1}$ since $i_{x-1} \le i_x - 2$. This completes the induction proof.

Now we proceed with our main problem. Again we induct on n. For n=1 our only choice is $F_2=1$. Now let $1,2,\cdots k-1$ to be written uniquely as sum of distinct non-consecutive Fibonacci numbers for some $k\geq 2$. Let p be the greatest positive integer with $F_p\leq k$, so $F_p\leq k< F_{p+1}$. Now let $F_{i_1}+F_{i_2}+\cdots F_{i_x}$ for some $x\geq 1$ and F_{i_j} be distinct non-consecutive Fibonacci numbers, with $1< i_1<\cdots i_x$. If $i_x>p$ then $F_{i_x}\geq F_{p+1}>k$ which is impossible. If $i_x< p$ then from above $F_{i_1}+F_{i_2}+\cdots F_{i_x}< F_{i_x+1}\leq F_p\leq k$, again a contradition. Hence $p=i_x$ and $F_{i_1}+F_{i_2}+\cdots F_{i_{x-1}}=k-F_p$. If $k=F_p$ then we are done, since there is no way to write 0 as sum of positive integers. If $k>F_p$ then by induction hypothesis $k-F_p$ can be writen uniquely as sum of distinct non-consecutive Fibonacci numbers, so $F_{i_1},F_{i_2},\cdots F_{i_{x-1}}$ can be determined uniquely.

5 Extra practice 5.

1. Let x be any divisor of a-1. We claim that $x|n \Leftrightarrow x|\frac{a^n-1}{a-1}$. Indeed, since $a\equiv 1\pmod x$, we have $\frac{a^n-1}{a-1}=a^{n-1}+a^{n-2}+\cdots a+1\equiv 1+1+\cdots 1(n \text{ times})=n\pmod x$. So $\frac{a^n-1}{a-1}\equiv 0$ iff $n\equiv 0$, in modulo x, justifying the claim.

Now if $x=\gcd(n,a-1)$ then x|n,x|a-1 and by the claim above, $x|\frac{a^n-1}{a-1}$ so x is a commn divisor of $\frac{a^n-1}{a-1}$ and a-1, so $\gcd(n,a-1)\leq\gcd(\frac{a^n-1}{a-1},a-1)$. Similarly, if $x=\gcd(\frac{a^n-1}{a-1},a-1)$ then $x|\frac{a^n-1}{a-1}$ and x|a-1, so by the claim above x|n. Therefore $x=\gcd(\frac{a^n-1}{a-1},a-1)$ is the

common divisor of n and a-1, so $\gcd(\frac{a^n-1}{a-1},a-1) \leq \gcd(a-1,n)$. Combining the inequalties above yield $\gcd(\frac{a^n-1}{a-1},a-1) = \gcd(a-1,n)$.

2. We claim that $\gcd(n,n+k)=k, \forall k\in[1,20]$ by inducting on k. Now $\gcd(n,n+k)=\gcd(n,(n+k)-n)=\gcd(n,k)\leq k$. Therefore for base case k=1 we have $\gcd(n,n+1)\leq 1$ and since 1 divides both n+1 and n we have $\gcd(n,n+1)=1$. Now suppose that $\gcd(n,n+i)=i$ for some $1\leq i\leq 19$. Then $\gcd(n,n+i+1)>\gcd(n,n+i)=i$ so $\gcd(n,n+1+1)\geq i+1$. On the other hand we have justifies that $\gcd(n,n+i+1)\leq i+1$ as of above. Therefore $\gcd(n,n+i+1)=i+1$, completing the induction claim.

Now for all integers k with $1 \le k \le 20$ we have $\gcd(n, n+k) = k$ so k|n, k|n+k. This means 3|n,7|n and since $\gcd(3,7) = 1$, $\operatorname{lcm}(3,7) = 3 \times 7 = 21$ so 21|n and $\gcd(n,n+21) = 21 > 20 = \gcd(n,n+20)$. Notice that the problem is true if we replace 21 with any number that is not a prime power.

3. First, we show that $2^x - 1 | 2^{xy} - 1$, $\forall x, y \ge 0$. Indeed, $2^x \equiv 1 \pmod{2^x - 1}$ so $2^{xy} = (2^x)^y \equiv 1^y \equiv 1 \pmod{2^x - 1}$. Therefore, since $\gcd(a, b)$ divides both a and b, we have $2^{\gcd(a, b)} - 1$ divides both $2^a - 1$ and $2^b - 1$, and therefore $2^{\gcd(a, b)} - 1 \le \gcd(2^a - 1, 2^b - 1)$.

Now first suppose that a,b>0. To prove the other direction we need a corollary: for all odd positive integers x, if $x|2^a-1$ and $x|2^b-1$ then $x|2^{\gcd(a,b)}-1$. Let d be the minimum positive integer such that $x|2^d-1$ (this d exists because $x|2^{\phi(x)}-1$ by Euler-Fermat theorem). We show that for all k, $x|2^k-1 \Leftrightarrow d|k$. By Euclidean's remainder theorem we can write k=bd+r with $0 \le r < d$. Therefore $2^k = 2^{bd+r} = 2^{bd} \cdot 2^r = (2^d)^b \cdot 2^r = 1^b \cdot 2^r = 2^r$ pmodx. If r > 0, then by the minimality of d we have $2^r \not\equiv 1 \pmod{x}$ but if r = 0, $2^r = 1$. Thus $x|2^d-1 \Leftrightarrow x|2^r-1 \Leftrightarrow r=0 \Leftrightarrow d|k$.

Now let's proceed with our claim, and here we let $x=\gcd(2^a-1,2^b-1)$ (since 2 does not divide either of $2^a-1,2^b-1$ for a,b>0, $\gcd(2^a-1,2^b-1)$ is also odd, so the claim above applies to this x.) If we define d as of above, the smallest positive integer with $x|2^d-1$, then from $x|2^a-1$ $x|2^b-1$ we have d|a and d|b. This would imply d|pa+qb for all $p,q\in\mathbb{Z}$, and since there exists such p and q with $pa+qb=\gcd(a,b)$ by Euclidean algorithm, $d|\gcd(a,b)$. But this implies $x=\gcd(2^a-1,2^b-1)|2^{\gcd(a,b)}-1$, so $\gcd(2^a-1,2^b-1)\leq 2^{\gcd(a,b)}-1$. Summing the two inequalities we have $2^{\gcd(a,b)}-1=\gcd(2^a-1,2^b-1)$ for a,b positive.

In the case a = 0 then $2^{\gcd(a,b)} - 1 = 2^{\gcd(0,b)} - 1 = 2^b - 1 = \gcd(0,2^b - 1) = \gcd(2^0 - 1,2^b - 1) = \gcd(2^a - 1,2^b - 1)$. The case b = 0 is completely analogous.

6 Extra practice 6.

- 1. (a) Yes, since $1+2+3+6=12=2\times 6$.
 - (b) No, since $1+7=8 \neq 14$.
 - (c) Since $2^k 1$ is prime, all divisors of $n = 2^{k-1}(2^k 1)$ can be written in the form of ab with $a = 2^i$ for some i with $0 \le i \le k 1$ and $b \in \{1, 2^k 1\}$, due to the theorem of prime factorization. Therefore, the sum of divisors is

$$1 + (2^{k} - 1) + 2 + 2(2^{k} - 1) + \dots + 2^{k-1} + (2^{k-1})(2^{k} - 1)$$

= $(1 + 2^{k} - 1) + 2(1 + 2^{k} - 1) + \dots + 2^{k-1}(1 + 2^{k} - 1)$

$$= (1 + 2 + \dots + 2^{k-1})(1 + 2^k - 1)$$

= $(2^k - 1)(2^k)$
= $2(2^{k-1})(2^k - 1)$.

Hence this number is perfect.

2. We denote $p_1, p_2, \dots p_k$ as all the primes dividing either a or b or both. By theorem of prime factorization, we can write $a = \prod_{i=1}^k p_i^{a_i}$ and $b = \prod_{i=1}^k p_i^{b_i}$. Therefore $\gcd(a^n, b^n) = \gcd((\prod_{i=1}^k p_i^{a_i})^n, (\prod_{i=1}^k p_i^{b_i})^n) = \gcd(\prod_{i=1}^k p_i^{na_i}, \prod_{i=1}^k p_i^{nb_i}) = \prod_{i=1}^k p_i^{\min(na_i, nb_i)} = \prod_{i=1}^k p_i^{\min(a_i, b_i)} = (\prod_{i=1}^k p_i^{\min(a_i, b_i)})^n = (\gcd(a, b))^n$. Notice that we used the fact that $\min(nx, ny) = n \min(x, y)$ for $n \ge 0$ since if $x \le y$ then $nx = ny = n(x - y) \le 0$ so $nx \le ny$ and $\min(nx, ny) = nx = n \min(x, y)$. Similarly if $x \ge y$ then $\min(nx, ny) = ny = n \min(x, y)$.

7 Extra practice 7.

1. Fo clarity we denote b_i as the digit appended on the end of a_{i-1} to orm a_i . We split into several senarios:

Scenario 1. If $b_i \in \{0, 2, 4, 6, 8\}$ for infinitely many i, then a_i is even for such i, hence composite. If b_i is 0 or 5 for infinitely many i then for such i, $5|a_i$, hence composite.

Scenario 2. Suppose that scenario 1 didn't happen. Then there exists an N such that for all $k \geq N$ we have $b_k \in \{1,3,7\}$. Now further assume that for this scenario, $b_i \in \{1,7\}$ infinitely many times. Then there exists sequence $N \leq c_1 < c_2 < \cdots$ such that for all $i \in \mathbb{N}$, we have $b_{c_i} \in \{1,7\}$, so $b_{c_i} \equiv 1 \pmod{3}$. Now if $c_x < j < c_{x+1}$ for some $j, b_j = 3$ by our definition of this sequence. Also let $a_{c_1} \equiv g \pmod{3}$ for some $g \in \{0,1,2\}$. Now $a_{c_2} \equiv a_{c_1} + b_{c_1+1} + b_{c_1+2} + \cdots + b_{c_2} \equiv a_{c_1} + 3 + 3 + \cdots + 3 + 1 \equiv a_{c_1} + 1$ (we used the fact that for every integer n, n is equal to its sum of digits in modulo 3). Inductively, $a_{c_{i+1}} \equiv a_{c_i} + 1 \pmod{3}$ so $a_{c_{i+1}} \equiv a_{c_1} + i \equiv g + i \pmod{3}$. Now for all i = 3k - g for $g \geq 1$, a_{c_i} is divisible by 3, so is composite.

Scenario 3. Suppose that both scenarios 1 and 2 didn't happen, then there exists N such that for all $k \geq N$, $b_k = 3$. Let $m = a_N$, which ends with digit 3. If 3|m then $3|a_k$ for all $k \geq N$, so let's assume $3 \nmid m$. We can see that $\gcd(10,m) = 1$ since m is divisible by neither 2 nor 5. Now, by Euler's theorem, for all positive integers j, $10^{j\phi(m)} = (10^{\phi(m)})^j \equiv 1^j \equiv 1 \pmod{m}$, and we know the number $33 \cdots 3 = 3(\frac{10^{j\phi(m)}-1}{9}) = \frac{10^{j\phi(m)}-1}{3}$. is divisible by $m = \frac{10^{j\phi(m)}-1}{3}$.

since $m|10^{j\phi(m)}-1$ and gcd(m,3)=1. Now for all j, $a_{N+j\phi(m)}=a_N(10^{j\phi(m)})+\frac{10^{j\phi(m)}-1}{3}=m(10^{j\phi(m)})+\frac{10^{j\phi(m)}-1}{3}$ is divisible by m, hence is composite. Q.E.D.

2. We need this identity: The highest power of 2 that divides $3^{2^k} - 1$ is k + 2 for $k \ge 1$. Let's proceed by induction. If k = 1 then $3^{2^1} - 1 = 8 = 2^3 = 2^{1+2}$. Now suppose that the highest power of 2 dividing $3^{2^p} - 1$ is p + 2 for some $p \ge 1$. Then by induction hypothesis $3^{2^p} - 1 = c \cdot 2^{p+2}$ for some odd positive integer c. Now $3^{2^{p+1}} - 1 = (3^{2^p} - 1)(3^{2^p} + 1) =$

 $c \cdot 2^{p+2} \cdot (c \cdot 2^{p+2} + 2) = c^2 \cdot 2^{2p+4} + c \cdot 2^{p+3}$. Now $\frac{c^2 \cdot 2^{2p+4} + c \cdot 2^{p+3}}{2^{p+3}} = c^2 \cdot 2^{p+1} + c$. Since $p \ge 1$, $c^2 \cdot 2^{p+1}$ is even but c is odd, so $c^2 \cdot 2^{p+1} + c = \frac{c^2 \cdot 2^{2p+4} + c \cdot 2^{p+3}}{2^{p+3}}$ is an odd integer, and thus the highest power of 2 dividing $3^{2^{p+1}} - 1$, completing the claim.

Now for the main problem we proceed by inducting on k. For k=1,2,3 we can choose n=1, so that 3+5=8 is divisible by 2,4, and 8. Now suppose that for some $k\geq 3$, we can find n_k such that $2^k|3^{n_k}+5$. We want to prove that we can find n_{k+1} such that $2^{k+1}|3^{n_{k+1}}+5$. If $2^{k+1}|3^{n_k}+5$ then we can choose $n_{k+1}=n_k$. Otherwise, we can write $3^{n_k}+5=c\cdot 2^k$ for some odd c. Now choose $n_{k+1}=n_k+2^{k-2}$. Recall that by above the highest power of 2 dividing $3^{2^{k-2}}-1$ is k, so we can write $3^{2^{k-2}}-1$ as $d\cdot 2^k$ for some odd d. Therefore, $3^{n_{k+1}}+5=3^{n_k+2^{k-2}}+(3^{n_k})(3^{2^{k-2}})+5=(c\cdot 2^k-5)(d\cdot 2^k+1)+5=cd\cdot 2^{2k}-5d\cdot 2^k+c\cdot 2^k-5+5=cd\cdot 2^{2k}+(c-5d)\cdot 2^k=(2^{k+1})(cd\cdot 2^{k-1}+\frac{c-5d}{2})$. Now since $k\geq 3$, 2^{k-1} is an integer and since c and 5d are both odd, c-5d is even and therefore $\frac{c-5d}{2}$ is an integer. Therefore $cd\cdot 2^{k-1}+\frac{c-5d}{2}$ is an integer and $2^{k+1}|3^{n_{k+1}}+5$, completing the induction proof.

8 Extra practice 9.

1. Write z = a + bi and w = c + di for a, b, c, d real. Then:

```
(a) |z+w| = |(a+c)+(b+d)i| = \sqrt{(a+c)^2+(b+d)^2} while |z|+|w| = \sqrt{a^2+b^2}+\sqrt{c^2+d^2}. By Cauchy-Schrawz inequality we have (a^2+b^2)(c^2+d^2) \ge (ac+bd)^2. Therefore (\sqrt{(a+c)^2+(b+d)^2})^2 = (a+c)^2+(b+d)^2 = a^2+b^2+c^2+d^2+2ac+2bd \le a^2+b^2+c^2+d^2+2ac+bd| = a^2+b^2+c^2+d^2+2\sqrt{(ac+bd)^2} \le a^2+b^2+c^2+d^2+2\sqrt{(ac+bd)^2} \le a^2+b^2+c^2+d^2+2\sqrt{(a^2+b^2)(c^2+d^2)} = (\sqrt{a^2+b^2}+\sqrt{c^2+d^2})^2, so |z+w| = |(a+c)+(b+d)i| = \sqrt{(a+c)^2+(b+d)^2} \le \sqrt{a^2+b^2}+\sqrt{c^2+d^2} = |z|+|w|.
```

- (b) The right inequality is almost similar as above. For the left inequality, by (a) we have $|z| = |w + (z w)| \le |w| + |z w|$ so $|z| |w| \le |z w|$. Also $|w| = |z + (w z)| \le |z| + |w z| = |z| + |z w|$ (as |a| = |-a| for all $a \in \mathbb{C}$) so $|w| |z| \le |z w|$. Summing up both inequalities yield $||z| |w|| \le |z w|$.
- 2. On the Cartesian plane, denote A, B, C as the coordinate corresponding to a, b, c on complex plane. Then in vector form $b-a=\overrightarrow{AB}, \ a-c=\overrightarrow{CA}$ and $c-b=\overrightarrow{BC}$. It suffices to prove that A, B, C either all coincide or are the vertices of an equilateral triangle. Observe a-c and c-b cannot be zero (otherwise the quotient may not be defined) so $\frac{b-a}{c-b}=\frac{a-c}{c-b}\neq 0$, and b-a cannot be zero too. Thus no two point coincide.

Let's consider the case where A, B, C are not collinear. Now we show that $\angle BAC = \angle ACB$. In subsequent solution we will talk about arg of vector in modulo 2π . Now, $\arg(b-a) - \arg(a-c) = \arg(\frac{b-a}{a-c}) = \arg(\frac{a-c}{c-b}) = \arg(a-c) - \arg(c-b)$. Also notice that $\arg(b-a) - \arg(a-c)$ is the counterclockwise angle needed to make vector \overrightarrow{CA} parallel to (and heading the same direction with) \overrightarrow{AB} . Now, if A, B, C are in counterclowkwise order then $\arg(b-a) - \arg(a-c) = 2\pi i$

 $\pi-\angle BAC \text{ and } \arg(a-c)-\arg(c-b)=\pi-\angle ACB. \text{ Therefore } \angle BAC=\angle ACB. \text{ If } A,B,C$ are in clockwise order then $\arg(b-a)-\arg(a-c)=\pi+\angle BAC$ and $\arg(a-c)-\arg(c-b)=\pi+\angle ACB$. Therefore $\angle BAC=\angle ACB$. Now we have |BC|=|AB|, and $\frac{|AB|}{|CA|}=\frac{|CA|}{|BC|}$, or $|CA|^2=|AB|\cdot|BC|=|AB|\cdot|AB|=|AB|^2$, so |CA|=|AB|.

If A,B,C are collinear (which holds vacuously when any two of them coincide) then $\arg(b-a) - \arg(a-c)$ and $\arg(a-c) - \arg(c-b)$ are both 0 or π . If they are 0 then $\overrightarrow{AB},\overrightarrow{CA},\overrightarrow{BC}$ are all pointing to the same direction, which is impossible. If they are π , then \overrightarrow{AB} and \overrightarrow{BC} are pointing at the same direction while \overrightarrow{CA} pointing to the opposite direction. This means B is in between A and C and we have |CA| = |AB| + |BC|. Now $1 > \frac{|AB|}{|AB+BC|} = \frac{|AB|}{|CA|} = \frac{|CA|}{|BC|} = \frac{|AB+BC|}{|CA|} > 1$ since we assumed that |CA|, |AB|, |BC| > 0, contradiction.