Yapay Öğrenmenin Matematiksel Temelleri

Nesim Matematik Köyü 1-7 Şubat 2021 Analitik Geometri https://mml-book.com

Yapay Öğrenmenin Matematiksel Temelleri

Konular

Doğrusal Cebir

Analitik Geometri

Matris Ayrışımları

Vector Kalkülüs

Olasılık Teorisi

En iyileme

Doğrusal Cebir

Vektör uzayları

Doğrusal Fonksyonlar

Matrisler

Analitik Geometri

Norm

İç çarpım

Uzunluk ve uzaklık

Açılar ve diklik (orthogonality)

Dik Tamamlayıcı (Orthogonal Complement)

Foksyonların iç çarpımları

Projeksyonlar ve Döndürme

Norm

Definition 3.1 (Norm). A norm on a vector space V is a function

$$\|\cdot\|: V \to \mathbb{R},$$
 (3.1)
 $\boldsymbol{x} \mapsto \|\boldsymbol{x}\|,$ (3.2)

which assigns each vector x its $length ||x|| \in \mathbb{R}$, such that for all $\lambda \in \mathbb{R}$ and $x, y \in V$ the following hold:

- Absolutely homogeneous: $\|\lambda x\| = |\lambda| \|x\|$
- $lacktriangle ext{ Triangle inequality: } \|x+y\|\leqslant \|x\|+\|y\|$
- Positive definite: $\|x\| \geqslant 0$ and $\|x\| = 0 \iff x = 0$

Example 3.2 (Euclidean Norm)

The Euclidean norm of $oldsymbol{x} \in \mathbb{R}^n$ is defined as

$$\|m{x}\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{m{x}^ op}m{x}$$

and computes the *Euclidean distance* of x from the origin. The right panel of Figure 3.3 shows all vectors $x \in \mathbb{R}^2$ with $||x||_2 = 1$. The Euclidean norm is also called ℓ_2 norm.

Example 3.1 (Manhattan Norm)

The *Manhattan norm* on \mathbb{R}^n is defined for $\boldsymbol{x} \in \mathbb{R}^n$ as

$$\|\boldsymbol{x}\|_1 := \sum_{i=1}^{n} |x_i|,$$
 (3.3)

where $|\cdot|$ is the absolute value. The left panel of Figure 3.3 shows all vectors $\boldsymbol{x} \in \mathbb{R}^2$ with $\|\boldsymbol{x}\|_1 = 1$. The Manhattan norm is also called ℓ_1 norm.

Norm ball

p-norm

 $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_N|^p)^{\frac{1}{p}}$

Üçgen eşitsizliği

Üçgen eşitsizliği

Nasıl Fonksyonlarla bir norm tanımlayabiliriz?

İç Çarpım

$$\boldsymbol{x}^{ op} \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i$$

n

Linear (Doğrusal) ve Bilinear (çiftdoğrusal) Fonksyon

Definition 2.15 (Linear Mapping). For vector spaces V, W, a mapping $\Phi: V \to W$ is called a *linear mapping* (or *vector space homomorphism/linear transformation*) if

$$\forall \boldsymbol{x}, \boldsymbol{y} \in V \,\forall \lambda, \psi \in \mathbb{R} : \Phi(\lambda \boldsymbol{x} + \psi \boldsymbol{y}) = \lambda \Phi(\boldsymbol{x}) + \psi \Phi(\boldsymbol{y}). \tag{2.87}$$

for all $x, y, z \in V, \lambda, \psi \in \mathbb{R}$ that

$$\Omega(\lambda x + \psi y, z) = \lambda \Omega(x, z) + \psi \Omega(y, z)$$

$$\Omega(x, \lambda y + \psi z) = \lambda \Omega(x, y) + \psi \Omega(x, z) .$$
(3.6)

İç çarpım (Inner Product)

Definition 3.2. Let V be a vector space and $\Omega: V \times V \to \mathbb{R}$ be a bilinear mapping that takes two vectors and maps them onto a real number. Then

- Ω is called *symmetric* if $\Omega(x, y) = \Omega(y, x)$ for all $x, y \in V$, i.e., the order of the arguments does not matter.
- Ω is called *positive definite* if

$$\forall x \in V \setminus \{0\} : \Omega(x, x) > 0, \quad \Omega(0, 0) = 0.$$
 (3.8)

symmetric

positive definite

İç çarpım (Inner Product)

Definition 3.3. Let V be a vector space and $\Omega: V \times V \to \mathbb{R}$ be a bilinear mapping that takes two vectors and maps them onto a real number. Then

- A positive definite, symmetric bilinear mapping $\Omega: V \times V \to \mathbb{R}$ is called an *inner product* on V. We typically write $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$ instead of $\Omega(\boldsymbol{x}, \boldsymbol{y})$.
- The pair $(V, \langle \cdot, \cdot \rangle)$ is called an *inner product space* or (real) *vector space* with inner product. If we use the dot product defined in (3.5), we call $(V, \langle \cdot, \cdot \rangle)$ a *Euclidean vector space*.

inner product space vector space with inner product

Pozitif tanımlı (positive definite) Matris

$$x^2 \ge 0$$

Pozitif tanımlı (positive definite) Matris

$$x^2 + 2x + 1 \ge 0$$

$9x_1^2 + 9x_2^2 \ge 0$

$$\left(3x_1 \quad 3x_2\right) \left(\frac{3x_1}{3x_2}\right) \ge 0$$

$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \ge 0$$

$$(x_1 \quad x_2) \begin{pmatrix} 9 & 6 \\ 6 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \ge 0 \qquad ?$$

$$(x_1 \quad x_2) \begin{pmatrix} 9 & 6 \\ 6 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \ge 0 \qquad ?$$

Example 3.4 (Symmetric, Positive Definite Matrices) Consider the matrices

$$m{A}_1 = egin{bmatrix} 9 & 6 \ 6 & 5 \end{bmatrix}, \quad m{A}_2 = egin{bmatrix} 9 & 6 \ 6 & 3 \end{bmatrix}.$$

 A_1 is positive definite because it is symmetric and

$$\boldsymbol{x}^{\mathsf{T}} \boldsymbol{A}_1 \boldsymbol{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 9 & 6 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix}$$

$$egin{aligned} oldsymbol{x}^{ op} oldsymbol{A}_1 oldsymbol{x} &= \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ &= 9x_1^2 + 12x_1x_2 + 5x_2^2 = 0 \end{aligned}$$

(3.13a)

than 0, e.g., for $x = [2, -3]^{\top}$.

 $=9x_1^2+12x_1x_2+5x_2^2=(3x_1+2x_2)^2+x_2^2>0$ (3.13b)for all $x \in V \setminus \{0\}$. In contrast, A_2 is symmetric but not positive definite because $\mathbf{x}^{\top} \mathbf{A}_2 \mathbf{x} = 9x_1^2 + 12x_1x_2 + 3x_2^2 = (3x_1 + 2x_2)^2 - x_2^2$ can be less

Genel olarak iç çarpımları nasıl tanımlarız?

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \left\langle \sum_{i=1}^{n} \psi_{i} \boldsymbol{b}_{i}, \sum_{j=1}^{n} \lambda_{j} \boldsymbol{b}_{j} \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{i} \left\langle \boldsymbol{b}_{i}, \boldsymbol{b}_{j} \right\rangle \lambda_{j} = \hat{\boldsymbol{x}}^{\mathsf{T}} \boldsymbol{A} \hat{\boldsymbol{y}},$$

$$A_{ij} := \langle oldsymbol{b}_i, oldsymbol{b}_i
angle$$

If $A \in \mathbb{R}^{n \times n}$ is symmetric, positive definite, then

defines an inner product with respect to an ordered basis B, where \hat{x} and \hat{y} are the coordinate representations of $x, y \in V$ with respect to B.

 $\langle oldsymbol{x}, oldsymbol{y}
angle = \hat{oldsymbol{x}}^ op oldsymbol{A} \hat{oldsymbol{y}}$

(3.14)

Uzaklık ve Uzunluk

$$\|oldsymbol{x}\| := \sqrt{\langle oldsymbol{x}, oldsymbol{x}
angle}$$

Cauchy - Schwarz Eşitsizliği

$$|\langle oldsymbol{x}, oldsymbol{y}
angle| \leqslant \|oldsymbol{x}\| \|oldsymbol{y}\|$$

Bu vektörün uzunluğu nedir?

$p=\infty$

Metrik ve uzaklık

Definition 3.6 (Distance and Metric). Consider an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then

$$d(\boldsymbol{x}, \boldsymbol{y}) := \|\boldsymbol{x} - \boldsymbol{y}\| = \sqrt{\langle \boldsymbol{x} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{y} \rangle}$$
(3.21)

$$d: V \times V \to \mathbb{R}$$
 $(\boldsymbol{x}, \boldsymbol{y}) \mapsto d(\boldsymbol{x}, \boldsymbol{y})$

Metric

- 1. d is positive definite, i.e., $d(x, y) \ge 0$ for all $x, y \in V$ and $d(x, y) = 0 \iff x = y$.
- 2. d is symmetric, i.e., $d(\boldsymbol{x}, \boldsymbol{y}) = d(\boldsymbol{y}, \boldsymbol{x})$ for all $\boldsymbol{x}, \boldsymbol{y} \in V$.
- 3. Triangle inequality: $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in V$.

Açı ve Diklik

 $\|oldsymbol{x}\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{oldsymbol{x}^ op oldsymbol{x}}$

By Cauchy Schwarz

Diklik

Definition 3.7 (Orthogonality). Two vectors \mathbf{x} and \mathbf{y} are *orthogonal* if and only if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, and we write $\mathbf{x} \perp \mathbf{y}$. If additionally $\|\mathbf{x}\| = 1 = \|\mathbf{y}\|$, i.e., the vectors are unit vectors, then \mathbf{x} and \mathbf{y} are *orthonormal*.

Dik?

Dik?

Definition 3.8 (Orthogonal Matrix). A square matrix $A \in \mathbb{R}^{n \times n}$ is an orthogonal matrix if and only if its columns are orthonormal so that

orthogonal matrix if and only if its columns are orthonormal so that
$$\mathbf{A} \mathbf{A}^{\top} - \mathbf{I} - \mathbf{A}^{\top} \mathbf{A}$$
(3.20)

which implies that

$$\boldsymbol{A}\boldsymbol{A}^{\top} = \boldsymbol{I} = \boldsymbol{A}^{\top}\boldsymbol{A}, \qquad (3.29)$$

 $\boldsymbol{A}^{-1} = \boldsymbol{A}^{\top}.$

(3.30)

Transformations by orthogonal matrices are special because the length of a vector \boldsymbol{x} is not changed when transforming it using an orthogonal matrix \boldsymbol{A} . For the dot product, we obtain

 $\|Ax\|^2 = (Ax)^{\mathsf{T}}(Ax) = x^{\mathsf{T}}A^{\mathsf{T}}Ax = x^{\mathsf{T}}Ix = x^{\mathsf{T}}x = \|x\|^2$. (3.31)

Definition 3.9 (Orthonormal Basis). Consider an n-dimensional vector space V and a basis $\{\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n\}$ of V. If

space
$$V$$
 and a basis $\{m{b}_1,\dots,m{b}_n\}$ of V . If $\langle m{b}_i,m{b}_i \rangle = 0 \quad \text{for } i \neq j$ (3.33)

(3.34)

 $\langle \boldsymbol{b}_i, \boldsymbol{b}_i \rangle = 1$

Orthogonal Complement (Dik tamamlayici)

$$oldsymbol{x} = \sum_{m=1}^{M} \lambda_m oldsymbol{b}_m + \sum_{j=1}^{D-M} \psi_j oldsymbol{b}_j^{\perp}, \quad \lambda_m, \ \psi_j \in \mathbb{R},$$

Dik Yansitma (Orthogonal Projection)

3.8 Orthogonal Projections

with basis vector b.

3.8 Orthogonal Projections

(a) Projection of $x \in \mathbb{R}^2$ onto a subspace U with basis vector \boldsymbol{b} .

3.8 Orthogonal Projections

(a) Projection of $x \in \mathbb{R}^2$ onto a subspace U with basis vector \mathbf{b} .

$$\pi_U(\boldsymbol{x}) = \boldsymbol{P}_{\pi} \boldsymbol{x}$$

$$\pi_U(oldsymbol{x}) = \lambda oldsymbol{b} = oldsymbol{b}\lambda = oldsymbol{b}^{ op} oldsymbol{x} = rac{oldsymbol{b}^{ op} oldsymbol{x}}{\|oldsymbol{b}\|^2} oldsymbol{x}$$

$$P_{\pi} = rac{oldsymbol{b}oldsymbol{b}^{'}}{\|oldsymbol{b}\|}$$

$$\pi_U(m{x}) = \sum_{i=1}^m \lambda_i m{b}_i = m{B} m{\lambda} \,, \ m{B} = [m{b}_1, \dots, m{b}_m] \in \mathbb{R}^{n imes m}, \quad m{\lambda} = [\lambda_1, \dots, \lambda_m]^ op \in \mathbb{R}^m$$

 $\langle \boldsymbol{b}_1, \boldsymbol{x} - \pi_U(\boldsymbol{x}) \rangle = \boldsymbol{b}_1^{\top}(\boldsymbol{x} - \pi_U(\boldsymbol{x})) = 0$

:
$$\langle \boldsymbol{b}_m, \boldsymbol{x} - \pi_U(\boldsymbol{x}) \rangle = \boldsymbol{b}_m^\top(\boldsymbol{x} - \pi_U(\boldsymbol{x})) = 0$$

 $\pi_U(\boldsymbol{x})$

 \boldsymbol{b}_1

$$oldsymbol{b}_1^{ op}(oldsymbol{x}-oldsymbol{B}oldsymbol{\lambda})=0$$

$$\vdots \ oldsymbol{b}_m^{ op}(oldsymbol{x}-oldsymbol{B}oldsymbol{\lambda})=0$$

 $\pi_U(\boldsymbol{x})$

$$egin{bmatrix} oldsymbol{b}_1^{^{ op}} \ oldsymbol{b}_m^{^{ op}} \end{array} egin{bmatrix} oldsymbol{a} - oldsymbol{B} oldsymbol{\lambda} \ oldsymbol{b}_m^{^{ op}} \end{array} egin{bmatrix} oldsymbol{a} - oldsymbol{B} oldsymbol{\lambda} \ oldsymbol{b} \end{array} = oldsymbol{0} \iff oldsymbol{B}^{ op}(oldsymbol{x} - oldsymbol{B} oldsymbol{\lambda}) = oldsymbol{0} \ oldsymbol{a} \end{array}$$

$$\iff B^{\top}B\lambda = B^{\top}x$$
.

$\boldsymbol{\lambda} = (\boldsymbol{B}^{\top}\boldsymbol{B})^{-1}\boldsymbol{B}^{\top}\boldsymbol{x}$

2. Find the projection $\pi_U(\mathbf{x}) \in U$. We already established that $\pi_U(\mathbf{x}) =$ $B\lambda$. Therefore, with (3.57)

3. Find the projection matrix
$$m{P}_{\pi}$$
. From (3.58), we can immediately see

 $\pi_U(\boldsymbol{x}) = \boldsymbol{B}(\boldsymbol{B}^{\top}\boldsymbol{B})^{-1}\boldsymbol{B}^{\top}\boldsymbol{x}$.

(3.58)

that the projection matrix that solves $P_{\pi}x = \pi_{U}(x)$ must be

$$\boldsymbol{P}_{\pi} = \boldsymbol{B} (\boldsymbol{B}^{\mathsf{T}} \boldsymbol{B})^{-1} \boldsymbol{B}^{\mathsf{T}}. \tag{3.59}$$