Домашно 2

Александър Гуров 3 януари 2023 г.

Задача 2

$$\Phi(x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4) = (4x_1 - 3x_2 + x_3 + 2x_4)e_1 + (x_1 - x_2 + x_3 + x_4)e_2 + (x_1 - 2x_3 + qx_4)e_3 + (px_1 + x_2 - 5x_3 - 3x_4)e_4$$

Съставяме матрица спрямо (e_1, e_2, e_3, e_4) :

$$\begin{pmatrix} 4 & -3 & 1 & 2 \\ 1 & -1 & 1 & 1 \\ 1 & 0 & -2 & q \\ p & 1 & -5 & -3 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

Намираме базиса на $ker(\Phi)$ чрез векторите с координати (x_1, x_2, x_3) спрямо базиса (e_1, e_2, e_3) , които са от $ker(\Phi)$, тоест отиват в $\vec{0}$.

$$\begin{pmatrix} 4 & -3 & 1 & 2 \\ 1 & -1 & 1 & 1 \\ 1 & 0 & -2 & q \\ p & 1 & -5 & -3 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = 0$$

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 4 & -3 & 1 & 2 \\ 1 & 0 & -2 & q \\ p & 1 & -5 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -3 & -2 \\ 0 & 1 & -3 & q - 1 \\ 0 & 1 + p & -p - 5 & -p - 3 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 0 & q + 1 \\ 0 & 0 & 2p - 2 & p - 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 2p - 2 & p - 1 \\ 0 & 0 & 0 & q + 1 \end{pmatrix}$$

І-ви случай: q = -1, p = 1

$$\left(\begin{array}{ccccc}
1 & -1 & 1 & 1 \\
0 & 1 & -3 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \sim \left(\begin{array}{ccccc}
1 & 0 & -2 & -1 \\
0 & 1 & -3 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Съставяме ФСР с независими променливи $e_3 = m, e_4 = n$:

$$e_1=2m+n, e_2=3m+2n, e_3=m, e_4=n$$
 При $m=1:(2,3,1,0)$ При $n=1:(1,2,0,1)$

Базис на
$$ker(\Phi):\left(\begin{array}{cccc} 2 & 3 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{array} \right)$$

$$dim(ker(\Phi)) + dim(im(\Phi)) = m$$

Чрез водещите единици на базиса на $ker(\Phi)$ съставяме базиса на $im(\Phi)$.

Базис на
$$im(\Phi): \left(\begin{array}{cccc} 4 & 1 & 1 & 1 \\ -3 & -1 & 0 & 1 \end{array} \right)$$

II-ри случай: $q \neq -1, p = 1$

$$\left(\begin{array}{cccc} 1 & -1 & 1 & 1 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & q+1 \end{array}\right) \sim \left(\begin{array}{cccc} 1 & 0 & -2 & -1 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \sim \left(\begin{array}{cccc} 1 & 0 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Съставяме Φ CP с независима променлива $e_3 = m$:

$$e_1=2m, e_2=3m, e_3=m, e_4=0$$
 При $m=1:(2,3,1,0)$ Базис на $ker(\Phi):(2,3,1,0)$

Базис на
$$im(\Phi): \left(egin{array}{cccc} 4 & 1 & 1 & 1 \\ -3 & -1 & 0 & 1 \\ 2 & 1 & q & -3 \end{array} \right)$$

III-ти случай: $q = -1, p \neq 1$

$$\begin{pmatrix}
1 & -1 & 1 & 1 \\
0 & 1 & -3 & -2 \\
0 & 0 & 2p - 2 & p - 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & -2 & -1 \\
0 & 1 & -3 & -2 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Съставяме Φ CP с независима променлива $e_3=m$:

$$e_1 = 0, e_2 = -m, e_3 = m, e_4 = -2m$$

При
$$m=1:(0,-1,1,-2)$$
 Базис на $ker(\Phi):(0,-1,1,-2)$

Базис на
$$im(\Phi): \left(egin{array}{cccc} 4 & 1 & 1 & p \\ -3 & -1 & 0 & 1 \\ 1 & 1 & -2 & -5 \end{array} \right)$$

IV-ти случай: $q \neq -1, p \neq 1$

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 2p-2 & p-1 \\ 0 & 0 & 0 & q+1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Не съществува базис на $ker(\Phi)$.

Базис на
$$im(\Phi): \left(egin{array}{cccc} 4 & 1 & 1 & p \\ -3 & -1 & 0 & 1 \\ 1 & 1 & -2 & -5 \\ 2 & 1 & q & -3 \end{array} \right)$$