

HIGH PERFORMANCE CMOS DUAL OPERATIONAL AMPLIFIERS

- OUTPUT VOLTAGE CAN SWING TO **GROUND**
- **EXCELLENT PHASE MARGIN ON** CAPACITIVE LOADS
- GAIN BANDWIDTH PRODUCT: 3.5MHz
- STABLE AND LOW OFFSET VOLTAGE
- THREE INPUT OFFSET VOLTAGE **SELECTIONS**

DESCRIPTION

The TS272 devices are low cost, dual operational amplifiers designed to operate with single or dual supplies. These operational amplifiers use the ST silicon gate CMOS process allowing an excellent consumption-speed ratio. These series are ideally suited for low consumption applications.

Three power consumptions are available allowing to have always the best consumption-speed ratio:

- \Box I_{CC} = 10µA/amp.: TS27L2 (very low power)
- \Box I_{CC} = 150µA/amp.: TS27M2 (low power)
- ☐ I_{CC} = 1mA/amp.: TS272 (standard)

These CMOS amplifiers offer very high input impedance and extremely low input currents. The major advantage versus JFET devices is the very low input currents drift with temperature (see figure 2).

ORDER CODE

Part Number	Temperature Range	Package		
Fait Number	remperature Kange	N	D	Р
TS272C/AC/BC	0°C, +70°C	•	•	•
TS272I/AI/BI	-40°C, +125°C	•	•	•
TS272M/AM/BM	-55°C, +125°C	•	•	•
Example: TS272	ACN			

N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
P = Thin Shrink Small Outline Package (TSSOP) - only available

in Tape & Reel (PT)

PIN CONNECTIONS (top view)

November 2001 1/9

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	TS272C/AC/BC	TS272I/AI/BI	TS272M/AM/BM	Unit	
V _{CC} ⁺	Supply Voltage 1)	18				
V _{id}	Differential Input Voltage ²⁾		±18		V	
V _i	Input Voltage 3)	-0.3 to 18				
Io	Output Current for V _{CC} ⁺ ≥ 15V	±30				
I _{in}	Input Current	±5		mA		
T _{oper}	Operating Free-Air Temperature Range	0 to +70 -40 to +125 -55 to +125		°C		
T _{stg}	Storage Temperature Range	-65 to +150				

- 1. All values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input and the output voltages must never exceed the magnitude of the positive supply voltage.

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC} ⁺	Supply Voltage	3 to 16	V
V _{icm}	Common Mode Input Voltage Range	0 to V _{CC} ⁺ - 1.5	V

SCHEMATIC DIAGRAM (for 1/2 TS272)

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = +10V, V_{CC}^- = 0V, T_{amb} = +25°C (unless otherwise specified)

Symbol	Parameter		TS272C/AC/BC			3272I/A 72M/AI	Unit	
		Min.	Тур.	Max.	Min.	Тур.	Max.	
V _{io}	$\label{eq:local_control_control} \begin{split} & \text{Input Offset Voltage} \\ & \text{$V_O = 1.4$V}, \text{$V_{ic} = 0$V} \\ & & \text{$TS272C/I/M$} \\ & & \text{$TS272AC/AI/AM$} \\ & & \text{$TS272B/C/I/M$} \\ & & \text{$T_{min} \le T_{amb} \le T_{max}$} \\ & & \text{$TS272C/I/M$} \\ & & \text{$TS272AC/AI/AM$} \\ & & \text{$TS272B/C/I/M$} \\ \end{split}$		1.1 0.9 0.25	10 5 2 12 6.5 3		1.1 0.9 0.25	10 5 2 12 6.5 3	mV
DV _{io}	Input Offset Voltage Drift		2			2		μV/°C
l _{io}	Input Offset Current note $^{1)}$ $V_{ic} = 5V$, $V_{O} = 5V$ $T_{min} \le T_{amb} \le T_{max}$		1	100		1	200	pA
l _{ib}	Input Bias Current - see note 1 $V_{ic} = 5V$, $V_O = 5V$ $T_{min} \le T_{amb} \le T_{max}$		1	150		1	300	pA
V _{OH}	High Level Output Voltage $ V_{id} = 100 \text{mV}, \ R_L = 10 \text{k}\Omega $ $ T_{min} \leq T_{amb} \leq T_{max} $	8.2 8.1	8.4		8.2 8	8.4		V
V _{OL}	Low Level Output Voltage V _{id} = -100mV			50			50	mV
A _{vd}	Large Signal Voltage Gain V_{iC} = 5V, R_L = 10k Ω , V_o = 1V to 6V $T_{min} \le T_{amb} \le T_{max}$	10 7	15		10 6	15		V/mV
GBP	Gain Bandwidth Product $A_v = 40 dB$, $R_L = 10 k\Omega$, $C_L = 100 pF$, $f_{in} = 100 kHz$		3.5			3.5		MHz
CMR	Common Mode Rejection Ratio V _{iC} = 1V to 7.4V, V _o = 1.4V	65	80		65	80		dB
SVR	Supply Voltage Rejection Ratio V_{CC}^+ = 5V to 10V, V_0 = 1.4V	60	70		60	70		dB
I _{CC}	Supply Current (per amplifier) $A_{v} = 1, \text{ no load, } V_{o} = 5V$ $T_{min} \le T_{amb} \le T_{max}$		1000	1500 1600		1000	1500 1700	μΑ
Io	Output Short Circuit Current V _o = 0V, V _{id} = 100mV		60			60		mA
I _{sink}	Output Sink Current $V_0 = V_{CC}, V_{id} = -100 \text{mV}$		45			45		mA
SR	Slew Rate at Unity Gain $R_L = 10k\Omega$, $C_L = 100pF$, $V_i = 3$ to 7V		5.5			5.5		V/µs
φm	Phase Margin at Unity Gain $A_V = 40 dB$, $R_L = 10 k\Omega$, $C_L = 100 pF$		40			40		Degrees
K _{OV}	Overshoot Factor		30			30		%
e _n	Equivalent Input Noise Voltage $f = 1 \text{kHz}, R_s = 100\Omega$		30			30		<u>nV</u> √Hz
V _{o1} /V _{o2}	Channel Separation		120			120		dB

Maximum values including unavoidable inaccuracies of the industrial test.

TYPICAL CHARACTERISTICS

Figure 1 : Supply Current (each amplifier) versus Supply Voltage

Figure 2 : Input Bias Current versus Free Air Temperature

Figure 3a : High Level Output Voltage versus High Level Output Current

Figure 3b : High Level Output Voltage versus High Level Output Current

Figure 4a : Low Level Output Voltage versus Low Level Output Current

Figure 4b: Low Level Output Voltage versus Low Level Output Current

477

Figure 5 : Open Loop Frequency Response and Phase Shift

Figure 6 : Gain Bandwidth Product versus Supply Voltage

Figure 7: Phase Margin versus Supply Voltage

Figure 8 : Phase Margin versus Capacitive Load

Figure 9 : Slew Rate versus Supply Voltage

Figure 10 : Input Voltage Noise versus Frequency

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dimensions -	D :		Millimeters			Inches		
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α		3.32			0.131			
a1	0.51			0.020				
В	1.15		1.65	0.045		0.065		
b	0.356		0.55	0.014		0.022		
b1	0.204		0.304	0.008		0.012		
D			10.92			0.430		
E	7.95		9.75	0.313		0.384		
е		2.54			0.100			
e3		7.62			0.300			
e4		7.62			0.300			
F			6.6			0260		
i			5.08			0.200		
L	3.18		3.81	0.125		0.150		
Z			1.52			0.060		

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions		Millimeters			Inches	
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
а3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.020
c1			45°	(typ.)		
D	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.016		0.050
M			0.6			0.024
S		•	8° (max.)	•	•

PACKAGE MECHANICAL DATA

8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)

Dimensions	Dimensione		Millimeters			
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.05
A1	0.05		0.15	0.01		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.15
С	0.09		0.20	0.003		0.012
D	2.90	3.00	3.10	0.114	0.118	0.122
E		6.40			0.252	
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.025	
k	0°		8°	0°		8°
I	0.50	0.60	0.75	0.09	0.0236	0.030
L	0.45	0.600	0.75	0.018	0.024	0.030
L1		1.000			0.039	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com

