Linear Algebra

Chapter 6 Eigenvalues and Eigenvectors

Q1. (Eigenvalues and eigenvectors) Determine whether the vectors $\mathbf{v}_1 = (1, 2)$, $\mathbf{v}_2 = (3, 4)$, $\mathbf{v}_3 = (5, 6)$ are eigenvectors of the given matrix \mathbf{A} . If so, what are the eigenvalues?

$$\mathbf{A} = \begin{bmatrix} -2 & 3 \\ 4 & -1 \end{bmatrix}.$$

Q2. (Diagonalization) Verify the vectors $\mathbf{v}_1 = (1, -1, 1)$, $\mathbf{v}_2 = (1, 1, 0)$, $\mathbf{v}_3 = (1, 0, -1)$ are eigenvectors of the given matrix \mathbf{A} . Then find a diagonalization of the matrix.

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}.$$

Q3.	(Dia	ngonalizability)	Show that if	${f A}$ is diagon	nalizable, then	\mathbf{A}^2	is also	diagonalizable	<u>)</u> .
Q4.		envalues and ei							
	(a)	Find an example but distinct eiger		ces A and	B, such tha	t A	and B	have the sam	e eigenvectors
	(b)	Find an example but distinct eiger		ces A and	B, such that	at A	and B	have the sar	ne eigenvalues

Q5. (Diagonalizable matrix) Consider

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 4 & 0 \\ 5 & 5 & 5 & 5 & 5 \end{bmatrix}, \qquad \mathbf{P} = \begin{bmatrix} 1 & 0.1 & 0.01 & 0.001 & 0.0001 \\ 0 & 1 & 10 & 100 & 1000 \\ 0 & 0 & e & e^2 & e^3 \\ 0 & 0 & 0 & \pi & \sqrt{\pi} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Is ${\bf A}$ diagonalizable? Find the eigenvalues of ${\bf P}^{-1}{\bf A}^{2006}{\bf P}.$

Q6. (Diagonalizable matrix) Find eigenvalues and eigenvectors of the matrix $\mathbf{A} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. Write down the diagonalization of \mathbf{A} if it is diagonalizable.

Q7. (Diagonalizable matrix) Find eigenvalues and eigenvectors of the matrix $\mathbf{A} = \begin{bmatrix} 2 & 2 & -2 \\ -5 & 1 & 2 \\ -2 & 4 & -1 \end{bmatrix}$. Write down the diagonalization of \mathbf{A} if it is diagonalizable.

Q8. (Non-diagonalizable matrix) Find eigenvalues and eigenvectors of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$. Write down the diagonalization of \mathbf{A} if it is diagonalizable.