EMTH211 Tutorial 12 Problems

Attempt the following problems before the tutorial and show your work to your tutor.

Problem 1

Consider the simple linear regression model

$$\mathbf{y} = b_0 + b_1 \mathbf{x} + \mathbf{e}.$$

with data vectors $\mathbf{x} = (1, 2, 3, 4)^{\mathsf{T}}$ and $\mathbf{y} = (1, 2, 3, 8)^{\mathsf{T}}$. Compute (without using Matlab)

- (i) the OLS estimators \hat{b}_0 and \hat{b}_1 .
- (ii) the R^2 of the regression.
- (iii) the 95% confidence interval for b_1 based on the estimator \hat{b}_1 .

Problem 2

Consider the simple linear regression model

$$\mathbf{y} = b_0 + b_1 \mathbf{x} + \mathbf{e}.$$

Check that

- (i) the mean of the fitted values $\overline{\hat{\mathbf{y}}}$ equals the mean of the dependent variable $\overline{\mathbf{y}}$.
- (ii) SSE equals $\|\widehat{b}_1\widetilde{\mathbf{x}}\|^2$.

In-tutorial problems

Problem 3

Define an interval for a regression slope b_1 as follows. Generate a random number u between 0 and 1. If u < 0.95, take the interval $(-\infty, \infty)$. Otherwise take the empty interval. Explain why this is a 95% confidence interval for b_1 .

Problem 4 (Matlab)

The the data in the table below show the effect of reaction temperature on molecular weight in the production of a class of plastic material. The data consist of 8 measurements each of two variables: ${\bf x}$ being the reaction temperature (in °C) and ${\bf y}$ being the average molecular weight. Consider the linear regression

$$\mathbf{y} = b_0 + b_1 \mathbf{x} + \mathbf{e}.$$

Compute with Matlab

- (i) the OLS estimators \hat{b}_0 and \hat{b}_1 .
- (ii) Plot the data and the regression line in the same figure.
- (iii) the goodness of fit coefficient \mathbb{R}^2 .
- (iv) the 95% confidence interval for b_1 based on \hat{b}_1 .

Reaction Temp (°C)	Average molecular weight
165	800
178	905
188	1185
207	1520
220	2078
235	2423
251	2657
260	2901

Table of the t-distribution

cum. prob	t.50	t.75	t.80	t .85	t .90	t.95	t.975	t.99	t .995	t.999	t.9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
	Confidence Level										