

Outline

- 1. Accelerator design space exploration (DSE)
- 2. Taxonomy of DSE Tools
- 3. An overview of our approach
 - An optimization-driven mapper: CoSA
 - A search space transformation: VAESA
 - A differentiable formulation: DOSA
- 4. Challenges and opportunities

DSE-DRIVEN ARCHITECTURE DESIGN

- Architectural design should be done using DSE with:
 - Clearly defined objectives
 - A vast design space

Four key steps

Step #1: Define the design space and the objectives

Workload specs

TARGET WORKLOADS

Tensor Algebra

- Tensor algebra is a category of computation that can be expressed by symbols and operations of tensors
 - Example workloads:
 - Matrix-Matrix Mult, Conv, BLAS, ...

Algebraic expression:

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

Implementation:

```
for i in [0, I):
  for j in [0, J):
   for k in [0, K):
    C[i][j] +=
        A[i][k] * B[k][j]
        Matrix-Matrix Mult
```


TARGET WORKLOADS

Tensor Algebra

- Tensor Algebra is a category of computation that can be expressed by symbols and operations of tensors
 - Example workloads:
 - Matrix-Matrix Mult, Conv, BLAS, ...

Algebraic expression:

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

Implementation:

```
for i in [0, I):
  for j in [0, J):
   for k in [0, K):
    C[i][j] +=
        A[i][k] * B[k][j]

        Matrix-Matrix Mult
```

Properties

- 1. Known iteration space bounds
- 2. Regular memory access patterns
- 3. Repeated control flow

These properties give rise to many optimizations in accelerator DSE

Four key steps

Step #1: Define the design space and the objectives

Workload specs

Four key steps

Step #1: Define the design space and objectives

Workload specs

Mapping constraints

Metrics
Latency
Energy
Area
EDP

Objectives

Parameter	Value Range
# of PEs	1~64
# of MAC units	1~64
Accum. buffer size	0~1MB
Weight buffer size	0~1MB
Input buffer size	0~1MB
Global buffer size	0~32MB

Arch design space

Four key steps

Four key steps

Parameter	Value Range
# of PEs	1~64
# of MAC units	1~64
Accum. buffer size	0~1MB
Weight buffer size	0~1MB
Input buffer size	0~1MB
Global buffer size	0~32MB

Arch design space

Four key steps

Arch design space

of MAC units

Input buffer size

Accum. buffer size | 0~1MB

Weight buffer size | 0~1MB

Global buffer size 0~32MB

Four key steps

Four key steps

KEY CHALLENGES IN DSE

Large design space and costly evaluation

Parameter	Value Range
# of PEs	1~64
# of MAC units	1~64
Accum. buffer size	0~1MB
Weight buffer size	0~1MB
Input buffer size	0~1MB
Global buffer size	0~32MB

MappingSpace

EvaluationTime

Platform	Evaluation	
ITACIOITI	Time	
Timeloop	0.01s	
:FPGA	2 mins	
VCS	10 mins	
Power	6 hrs	
Analysis	01115	

Intractable

> 31T logical years

0.01s

~105

~1017

For more systematic and rapid DSE

A TAXONOMY OF ACCELERATOR EVALUATION TOOLS

Comparisons

Category	Tools	Fidelity	Modeling Speed
Polynomial Model	CoSA	Low	Very Fast
ML Model	PRIME	Medium	Fast†
Static Analysis	Timeloop, MAESTRO	Medium	Fast
Cycle-accurate Model	<u>ScaleSim</u>	High	Slow
RTL Simulation	FireSim, MagNet	Very High	Slow*

[†] Varies with ML model size

^{*} Varies with workload size

A TAXONOMY OF ACCELERATOR EVALUATION TOOLS

Supported features

Category	Dynamic behavior support	Data/training/ implementation free	Differentiable
Polynomial Model	No	Yes	Yes
ML Model	Yes	No	Yes
Static Analysis	No	Yes	No
Cycle-accurate Model	Yes	Yes	No
RTL Simulation	Yes	No	No

A TAXONOMY OF MAPPERS

Heuristic-Driven

Timeloop
Triton Marvel

- Easy to implement

Feedbackbased

AutoTVM Ansor
Halide Gamma
MindMapping

- More adaptive

- Costly
- Sample invalid space
- Hard to generalize

Constrained Optimization

Polly+Pluto TC
Tiramisu CoSA
IOOpt

- More sample efficient
- Limited use case

A TAXONOMY OF ACCELERATOR SEARCH STRATEGIES

Black-box **Gradient-based** Heuristic-Driven Optimization Optimization Bayesian Opt: GD: EDD DiffTune Interstellar Apollo Search-algorithm RL: Original Evolutionary Algo: ConfuciuX APN focused Space PRIME NAAS AutoSA CoexplorationNAS Design-space Latent VAESA focused Space - Perf model not needed - Lower evaluation cost Easy to implement

- High evaluation cost

- Limited DSE

Data hungry

OVIDIA

Our approach

Intractable

Our approach

^{*} Timeloop: A systematic approach to DNN accelerator evaluation. Parashar A, Raina P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the State of the State Emer J. ISPASS'19

A STATIC ANALYSIS TOOL

Timeloop/Accelergy

- Timeloop provides a flexible abstraction to define a wide range of applications, architectures and constraints
- Timeloop rapidly and accurately reports latency, energy, area using static analysis

^{*} Timeloop: A systematic approach to DNN accelerator evaluation. Parashar A, Raina P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indianal P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indiana P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indiana P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indiana P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, on the Indiana P, Shao YS, Chen YH, Ying YA, Mukkara A, Venkatesan R, Ying Ya, Emer J. ISPASS'19

Our approach

Intractable

AN OPTIMIZATION-DRIVEN MAPPER

 CoSA formulates the mapping decisions into a constrained optimization problem and solves it in one shot

AN OPTIMIZATION-DRIVEN MAPPER

Key idea: problem factor allocation

- An optimization variable can be used to represent all three mapping decisions
- CoSA optimizes the variable using the constraints and objectives formulated in mixed integer programming
- CoSA finds mappings that are 1.5x faster and 1.2x more energy-efficient while improving the time-to-solution by 90x

Our approach

Intractable

A ML-BASED SEARCH STRATEGY VAESA

 VAESA learns a low dimensional, continuous, reconstructible latent space to facilitate accelerator DSE using Variational Autoencoder (VAE)

A ML-BASED SEARCH STRATEGY

VAESA Inference

- The search algorithms are applied to the latent space and evaluated on the original search
- The latent space reduces the search complexity and provides a smoother performance surface
- Both Bayesian Optimization and Gradient Descent achieve better sample efficiency

Our approach

Our approach

A DIFFERENTIABLE DSE FORMULATION

DOSA

 DOSA explicitly expresses the latency and energy performance as a differentiable function of mappings to enable gradient-based optimization.

A DIFFERENTIABLE DSE FORMULATION

DOSA

- Hardware design configurations are derived from the optimized in the one-loop mapping first DSE.
- DOSA's differentiable analytical model accurately predicts the performance and addresses the generalizability issues of the data-driven counter parts.
- It further improves the search efficiency and QoR in DSE.

Our approach

Hardware
Design Space

X

Mapping Space

Evaluation Time

Significantly reduced DSE costs

Search Strategy:

ML-Based VAESA

Mapper:

Opt-Driven CoSA

Evaluation tool:

Static Anaysis
Timeloop/Accelergy

One-loop DSE:

Differentiable Formulation DOSA

Our approach

Hardware
Design Space

X

Mapping Space

Evaluation Time

Limited design insight

Search Strategy:

ML-Based VAESA

Mapper:

Opt-Driven CoSA

Evaluation tool:

Static Anaysis
Timeloop/Accelergy

One-loop DSE:

Differentiable Formulation DOSA

Our approach

OPEN CHALLENGES AND OPPORTUNITIES

#1 DSE for diverse workloads

- irregular
- input-dependent
- multi-tenant

#2 DSE for dynamic system components

- SW/OS schedulers
- caching/paging

#3 DSE for different execution models

- selection among cpu, vector, tensor units
- customization vs programmability tradeoffs

#4 DSE generalizability for new workloads and constraints

- no consensus on DSE tools
- no uniform abstraction
- high-quality data is limited

