Online HW 7: Parallels

Bart Snapp and Brad Findell

 $March\ 24,\ 2019$

Contents

Vertical Angles																	3
Parallel Lines .																	5

Vertical Angles

Proofs updated.

Fix note: Below are three different proofs. Please consider them separately. And in each proof, which of the details should be included, and which should be omitted?

Problem 1 Point P is the intersection of lines m and n. Prove that $\angle 1 \cong \angle 3$.

Fix note: When students write equations about linear pairs, they often write two equations for non-overlapping linear pairs—which doesn't help. The figure above is intended to help avoid that dead end, but it would be worthwhile to discuss that dead end anyway.

(a) $\angle 1 \cong \angle 3$ because they are both (complementary/supplementary/opposite / congruent) to $\angle 2$.

Detail: First write down equations about linear pairs of angles:

$$m \angle 1 + m \angle 2 = 180^{\circ}$$

$$m \angle 3 + m \angle 2 = 180^{\circ}$$

By comparing the two equations, some students will see clearly that $m\angle 1 = m\angle 3$. A more formal approach would be to do some algebra.

Author(s): Brad Findell

- (b) A rotation of $(90^{\circ}/180^{\circ}/360^{\circ})$ about P maps m onto itself, maps n onto itself, and swaps $\angle 1$ and $\angle 3$. Because rotations preserve angle measures, it must be that $\angle 1 \cong \angle 3$.
 - Detail: Line m is the union of two opposite rays with endpoint P. Check that the 180° rotation about P swaps these opposite rays. The same idea holds for line n so that together the sides of $\angle 1$ become the sides of $\angle 3$ and vice versa.
- (c) Reflecting about the (bisector/ supplement/ opposite) of $\angle 2$ swaps $\angle 1$ and $\angle 3$. Because reflections preserve angle measures, it follows that $\angle 1 \cong \angle 3$. Detail: The reflection swaps the two rays that are the sides of $\angle 2$. Because reflections take lines to lines, that reflection must swap not just the rays but lines m and n.

Parallel Lines

Proofs updated.

Parallel postulate (uniqueness of parallels): Given a line and a point not on the line, there is exactly one line through the given point parallel to the given line.

Theorem 1. A 180° rotation about a point on a line takes the line to itself.

Proof Suppose point P is on line k. The point cuts the line into two opposite rays. A 180° rotation about P swaps the two opposite rays, thereby mapping the line onto itself.

Theorem 2. A 180° rotation about a point not on a line takes the line to a parallel line.

Proof Let O be a point not on line l. Let P be an arbitrary point on R(l), the rotated image of l. To show that R(l) is parallel to l, it is sufficient to show that P cannot lie also on l.

Because P is on R(l), there is a point Q on l such that P = R(Q). The rotated image of \overrightarrow{OQ} is \overrightarrow{OP} , and because $\angle QOP$ is 180° , it follows that Q, O, and P are collinear. Call that line k. We know line k is distinct from l because O is on k but not on l. Now, if P were on l, then points P and Q would be on two distinct lines, k and l, contradicting the assumption that on two points there is a unique line. The theorem is proved.

Theorem 3. If two parallel lines are cut by a transversal alternate interior angles (and corresponding angles) are congruent.

Author(s): Brad Findell

Proof Given that parallel lines m and n are cut by transversal k, prove that alternate interior angles are congruent.

- (a) Let B and C be the intersections of transversal k with lines m and n, respectively. Let P be the midpoint of \overline{BC}
- (b) Rotate 180° about P, which takes k to itself.
- (c) The rotation maps B to C and C to B because distances are preserved.
- (d) The rotation maps m to a parallel line through C, which must be (k/m/n) by the uniqueness of parallels.
- (e) The rotation maps n to (k/m/n) by the same reasoning.
- (f) The rotation swaps $\angle 2$ and $(\angle 1/\angle 2/\angle 3/\angle 4)$. These alternate interior angles must be congruent because the rotation preserves angle measures.

Theorem 4. If two parallel lines are cut by a transversal corresponding angles (and alternate interior angles) are congruent.

Proof Given that parallel lines m and n are cut by transversal k, prove that corresponding angles are congruent.

- (a) Let B and C be the intersections of transversal k with lines m and n, respectively.
- (b) Translate to the right along line k by distance BC, which takes k to itself.
- (c) The translation maps B to C, and it maps m to (k/m/n) because the translation maintains parallels, and there is a unique parallel to m through C.
- (d) The translation maps $\angle 1$ to $(\angle 1/\angle 2/\angle 3/\angle 4)$. These corresponding angles must be congruent because the translation preserves angle measures.

Theorem 5. If two lines are cut by a transversal so that alternate interior (and corresponding) angles are congruent, then the lines are parallel.

7