Expansions of functions:

In this section we shall discuss expansions of functions into infinite series with the help of Maclaurin's theorem and Taylor's theorem.

Power Series:

An infinite series of the form

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + a_3(x - a)^3 + \dots + a_n(x - a)^n + \dots$$
 is called a power series in $(x - a)$, where the a_i 's are constants.

If a = 0 then a power series can be written as

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

Taylor's and Maclaurin's Series:

Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the **Taylor series generated by** f at x = a is,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots$$

If a = 0 then the **Maclaurin'sseries**of f is the Taylor's series generated by f at x = 0 is,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + xf'(0) + \frac{x^2}{2!} f''(0) + \dots$$

Remark:

Let f(x) be a differentiable function of order n at a point x = a then its Taylor's series expansion is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots$$

In above expansion if we substitute x - a = h then

$$f(a+h) = f(a) + f'(a) h + \frac{f''(a)}{2!} h^2 + \dots (*)$$

If h = x in above formula we get,

$$f(a + x) = f(a) + f'(a)x + \frac{f''(a)}{2!}x^2 + \cdots$$

If a = x in (*) formula we get,

$$f(x + h) = f(x) + f'(x) h + \frac{f''(x)}{2!} h^2 + \cdots$$

Which is the alternative form(another form) of the Taylor's series.

Maclaurin's expansion of some standard functions:

1.
$$f(x) = e^{x}$$
.
Here $f(x) = e^{x}$, $a = 0$ so $f(0) = 1$
 $f'(x) = e^{x}$, $f''(0) = 1$
 $f'''(x) = e^{x}$, $f'''(0) = 1$
 $f^{IV}(x) = e^{x}$, $f^{IV}(0) = 1$
 \vdots
 \vdots

So using Maclaurin's series expansion we get,

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{IV}(0) + \cdots$$
$$\therefore e^x = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots$$

If we replace by
$$x$$
 by $-x$ in above series expansion, we get
$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^n}{n!} + \dots$$

2.
$$f(x) = \sin x, \qquad \qquad \therefore f(0) = 0$$

$$f'(x) = \cos x, \qquad \qquad \therefore f'(0) = 1$$

$$f''(x) = -\sin x \therefore f''(0) = 0$$

$$f'''(x) = -\cos x \therefore f'''(0) = -1$$

$$f^{IV}(x) = \sin x \therefore f^{IV}(0) = 0$$

$$\vdots$$

$$\vdots$$

So using Maclaurin's series expansion we get,

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{IV}(0) + \cdots$$

$$\therefore \sin x = x - \frac{x^3}{3!} + \cdots$$

$$3. \ f(x) = \cos x, \therefore f(0) = 1$$

$$f'(x) = -\sin x, \qquad \therefore f'(0) = 0$$

$$f''(x) = -\cos x, : f^{''}(0) = -1$$

$$f'''(x) = \sin x : f'''(0) = 0$$

$$f^{IV}(x) = \cos x : f^{IV}(0) = 1$$
::

So using Maclaurin's series expansion we get,

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{IV}(0) + \cdots$$

$$\therefore \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

4.
$$f(x) = \log(1+x)$$
, $\therefore f(0) = 0$
 $f'(x) = \frac{1}{1+x}$, $\therefore f'(0) = 1$
 $f''(x) = -\frac{1}{(1+x)^2}$, $\therefore f''(0) = -1$
 $f'''(x) = \frac{2}{(1+x)^3}$, $\therefore f'''(0) = 2 = 2!$
 $f^{IV}(x) = -\frac{6}{(1+x)^4}$, $\therefore f^{IV}(0) = -6 = -3!$
 \vdots
 \vdots

So using Maclaurin's series expansion we get,

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{IV}(0) + \cdots$$

$$\therefore \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

If we replace x by -x in above series expansion, we get

$$f(x) = \log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$$

5.
$$f(x) = \sinh x = \frac{e^x - e^{-x}}{2}$$

So using standard expansions of e^x and e^{-x} , we get
$$f(x) = \sinh x$$

$$= \frac{1}{2} \left\{ 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots - \left[1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^n}{n!} + \dots \right] \right\}$$

$$= \frac{1}{2} \left\{ 2x + 2\frac{x^3}{3!} + \dots + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{(2n+1)}}{(2n+1)!} + \dots \right\}$$
Also $f(x) = \cosh x = \frac{e^x + e^{-x}}{2}$

$$= \frac{1}{2} \left\{ 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots + \left[1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^n}{n!} + \dots \right] \right\}$$

$$= \frac{1}{2} \left\{ 2 + 2 \frac{x^2}{2!} + \dots \right\} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

Summary:

Function	Maclaurin's Series expansion
$y = e^x$	$1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$
$y = e^{-x}$	1 2 <u> </u>
$y = \sin x$	$x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$
$y = \cos x$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$
$y = \log(1+x)$	$\left x - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n+1} - \frac{1}{n} + \dots \right $
$y = \log(1 - x)$	$-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots - \frac{x^n}{n} + \dots$
y = sinhx	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{(2n+1)}}{(2n+1)!} + \dots$
y = coshx	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$

Example:1 Find the Maclaurin's series expansion of $\tan x$.

Solution:Let
$$y = f(x) = tanx : y(0) = f(0) = 0$$

$$y_1 = f'(x) = sec^2x = 1 + tan^2x : y_1(0) = f'(0) = 1$$

$$= 1 + y^2$$

$$y_2 = f''(x) = 2yy_1 : y_2(0) = f''(0) = 2(0)(1) = 0$$

$$y_3 = f''^{(x)} = 2y_1^2 + 2yy_2 : y_3(0) = f'''(0) = 2(1) + 2 \cdot 0 = 2$$

$$y_4 = f^{IV}(x) = 6y_1y_2 + 2yy_3 : y_4(0) = f^{IV}(0) = 0$$

$$y_5 = f^V(x) = 6y_2^2 + 8y_1y_3 + 2yy_4 : y_5(0) = f^V(0) = 16$$

$$\vdots$$

$$\vdots$$

Now, by Maclaurin's series expansion, we have

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{IV}(0) + \cdots$$

$$\therefore \tan x = x + \frac{x^3}{3!}(2) + \frac{x^5}{5!}(16) + \cdots = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \cdots$$

Example:2Expand $\sec x$ in powers of x up to x^4 by Maclaurin's series.

Solution:Let
$$y = f(x) = \sec x \div y(0) = f(0) = 1$$

 $y_1 = \sec x \tan x = y \tan x \div y_1(0) = f'(0) = 0$
 $y_2 = y_1 \tan x + y \sec^2 x = y_1 \tan x + y^3 , \therefore y_2(0) = f''(0) = 1$
 $y_3 = y_2 \tan x + 2y_1 \sec^2 x + 2y \sec^2 x \tan x$
 $= y_2 \tan x + 2y_1 y^2 + 2y^3 \tan x, \qquad \therefore y_3(0) = f'''(0) = 0$
 $y_4 = 3y_2 y^2 + y_3 \tan x + 4y y_1^2 + 6y^2 y_1 \tan x + 2 y^5 , \therefore y_4(0) = 5$
 \vdots
 \vdots

Now, by Maclaurin's series expansion, we have

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{IV}(0) + \cdots$$

$$\therefore \sec x = 1 + \frac{x^2}{2!} + 5\frac{x^4}{4!} + \cdots$$

Example:3 Find the Maclaurin's series expansion of the function $y = \log(1 + \sin x)$.

Solution:Here
$$y = f(x) = \log(1 + \sin x)$$
: $f(0) = 0$

$$y_{1} = f'(x) = \frac{\cos x}{1 + \sin x} \qquad \qquad \therefore f'(0) = 1$$

$$y_{2} = f''(x) = \frac{(1 + \sin x)(-\sin x) - \cos^{2}x}{(1 + \sin x)^{2}}$$

$$y_{2} = -\frac{1}{1 + \sin x} \qquad \qquad \therefore f''(0) = -1$$

$$\vdots$$

$$\vdots$$

Now, by Maclaurin's series expansion, we have

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{IV}(0) + \cdots$$
$$\log(1 + \sin x) = x - \frac{x^2}{2!} + \cdots$$

Example: 4Arrange the following Polynomial in powers of x using Maclaurin's series $f(x) = 5 + (x + 3) + 7(x + 3)^2$.

Solution:Here
$$f(x) = 5 + (x + 3) + 7(x + 3)^2$$
, $\therefore f(0) = 71$
 $f'(x) = 1 + 14(x + 3)$, $\therefore f'(0) = 43$
 $f''(x) = 14$, $\therefore f''(0) = 14$
 $f'''(x) = 0$, $\therefore f'''(0) = 0$

Now, by Maclaurin's series expansion, we have

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{IV}(0) + \cdots$$

$$\therefore 5 + (x+3) + 7(x+3)^2 = 71 + 43x + 7x^2.$$

Example:5Expand $\log x$ in powers of (x-1) up to three power and hence evaluate $\log 1.1$ correct to four decimal places.

Solution:Here
$$(x) = \log x$$
, $a = 1 :: f(1) = 0$
 $f'(x) = \frac{1}{x}$, $\therefore f'(1) = 1$
 $f''(x) = -\frac{1}{x^2}$, $\therefore f''(1) = -1$
 $f'''(x) = \frac{2}{x^3}$, $\therefore f'''(1) = 2$
 \vdots

Now, by Taylor's series expansion, we have

$$f(x) = f(1) + (x - 1)f'(1) + \frac{(x - 1)^2}{2!}f''(1) + \cdots$$

$$\therefore \log x = (x - 1) \cdot 1 + \frac{(x - 1)^2}{2!}(-1) + \frac{(x - 1)^3}{3!} \cdot 2 + \cdots$$

$$\therefore \log x = (x - 1) - \frac{(x - 1)^2}{2!} + \frac{(x - 1)^3}{3} + \cdots$$

Now taking x = 1.1, we get

$$\log 1.1 = 0.09533.$$

Example: 6 Expand $2x^3 + 7x^2 + 1$ in powers of (x - 3) by using Taylor's series expansion.

Solution:Here
$$(x) = 2x^3 + 7x^2 + 1$$
, $a = 3$, $f(3) = 118$
 $f'(x) = 6x^2 + 14x$, $f'(3) = 96$
 $f''(x) = 12x + 14$, $f''(3) = 50$
 $f'''(x) = 12$, $f'''(x) = 0$, $f^{IV}(3) = 0$

Now, by Taylor's series expansion, we have

$$f(x) = f(3) + (x - 3)f'(3) + \frac{(x - 3)^2}{2!}f''(3) + \cdots$$

$$\therefore 2x^3 + 7x^2 + 1 = 118 + (x - 3) \cdot 96 + \frac{(x - 3)^2}{2!} \cdot 50 + \frac{(x - 3)^3}{3!} \cdot 12 + 0$$

$$= 118 + 96(x - 3) + 25(x - 3)^2 + 2(x - 3)^3.$$

Example:7Find the Taylor's series expansion of $\sin\left(x + \frac{\pi}{4}\right)$ in powers of x and hence find the value of $\sin 46^\circ$.

Solution:Here let $f(x) = \sin x$ and $h = \frac{\pi}{4}$

So using another form of Taylor's series we have

$$f(x+h) = f(h) + f'(h)x + \frac{f''(h)}{2!}x^2 + \cdots$$
(1)

Now
$$f(x) = \sin x$$
 , $f\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$

$$f'(x) = \cos x \quad , \qquad \qquad f'\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$f''(x) = -\sin x$$
, $f''\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$ and so on

Hence from equation (1), we have

$$\sin\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + x\left(\frac{1}{\sqrt{2}}\right) + \frac{x^2}{2!}\left(-\frac{1}{\sqrt{2}}\right) + \cdots$$

Consider $x = 1^{\circ} = 0.01745$,

$$\sin\left(1^{\circ} + \frac{\pi}{4}\right) = \sin 46^{\circ} = 0.71934.$$