Стандартные функции системы CommonLisp

Классификация стандартных функций системы Common Lisp

Стандартные функции системы Common Lisp можно
разделить на следующие группы:
□ арифметические функции;
🗖 функции сравнения;
функции распознавания;
🖵 функции присваивания;
 функции обработки списков;
функции обработки строк;
функции ввода-вывода;
□ функции определения пользовательских функций

N	Функция	Значение функции, примеры
1	(MAX N1 N2 Nn)	Возвращает таксимальное из чисел N1Nn (MAX 5 -7 4)
2	(MIN N1 N2 Nn)	Возвращает минимальное из чисел N1Nn (MIN 5 -7 4)
3	(+ N1 N2 Nn]	Возвращает сумму чисел N1+N2++Nn (+ 2 3 4 -5) 4

N	Функция	Значение функции, примеры
4	(- N1 N2 Nn]	Возвращает разность между N1 и N2+N3++Nn (- 12 5 -2)
5	(* N1 N2 Nn)	Возвращает произведение чисел: N1*N2**Nn (* 3 4 5) 60
6	(/ N1 N2Nn)	Возвращает результат от деления N1 на произведение N2*N3**N4 (/ 12 5 -3) -0.8

N	Функция	Значение функции, примеры
7	(ABS N)	Возвращает абсолютное значение N
		(ABS -3)
		3
		(ABS 3)
		3

N	Функция	Значение функции, примеры
10	(SIGNUM N)	Возвращает знак числа: при N>=0 1, при N<0 - 1 (SIGNUM -0.2) 1 (SIGNUM 5) 0
11	(GCD N1 N2Nm)	Наибольший общий делитель чисел N1, N2,Nm (GCD 36 8 124 84)

N	Функция	Значение функции, примеры
12	(LCM N1 N2Nm)	Наименьшее общее кратное чисел N1, N2,Nm (LCM 36 16 96) 288
13	(MOD N M)	Остаток от целочисленного деления чисел N и M (MOD 36 84) 36
14	(REM N M)	Остаток от целочисленного деления чисел N и M (REM 36 84) 36

N	Функция	Значение функции, примеры
16	(NUMERATOR N)	Возвращает числитель дроби N (NUMERATOR 3/7)
17	(DENOMINATOR N)	Возвращает знаменатель дроби N (DENOMINATOR 3/7) 7

Стандартные битовые функции над целыми числами

N	Функция	Значение функции, примеры
1	(LOGAND N1 N2 Nm)	Битовое (логическое) И над целыми числами N1 N2 Nm (LOGAND 24 56 12)
2	(LOGIOR N1 N2 Nm)	Битовое (логическое) ИЛИ над целыми числами N1 N2 Nm (LOGIOR 24 56 12)
3	(LOGXOR N1 N2 Nm)	Битовое (логическое) исключающее ИЛИ над целыми числами N1 N2 Nm (LOGXOR 24 56 12)

Стандартные битовые функции над целыми числами

N	Функция	Значение функции, примеры
4	(LOGNOT N)	Битовое (логическое) отрицание целого числа N (LOGNOT 24568) 40967
5	(SHIFT N M)	Битовый сдвиг целого числа N на M разрядов влево (SHIFT 5 3) 40
6	(BITLENGTH N)	Число битов, требуемое для размещения числа N (BITLENGTH 28)

N	Функция	Значение функции, примеры
1	(EQUAL S1 S2) S1, S2 – S-выражения	T, если S1 равно S2, иначе NIL (EQUAL 'A 'A) T (EQUAL '(A B C) '(A B C)) T (EQUAL '(A B C '(C B A))
2	(MEMBER S L)	ПІВ Если S является элементом списка L, тогда значением функции будет часть списка L, начиная с первого вхождения S, иначе NIL (MEMDER 'A '(B C D)) NIL (MEMBER 'A '(B A D)) (A D)

N	Функция	Значение функции, примеры
3	(= N1 N2 Nn)	T, если N1=N2=N3=Nn, иначе NIL (= 5 9) NIL (= 3 3.0) T
4	(/= N1 N2Nn)	T, если N1=N2 и N2=N3 и т.д., иначе NIL (/= 5 9) Т (/= 4 4 - 7) NIL (/= 3 3.0) NIL (/= 6 2 6) Т

N	Функция	Значение функции, примеры
5	(< N1 N2 Nn)	T, если N1 <n2 (<="" -7)="" .д.,="" 3="" 3.0)="" 4="" 5="" 9)="" n2<n3="" nil="" nil<="" td="" и="" иначе="" т=""></n2>
6	(>N1 N2 Nn)	T, если N1>N2 иN2>N3 и т.д., иначе NIL (> 5 9) NIL (> 4 -7) T (> 3 3.0) NIL

N	Функция	Значение функции, примеры
7	(<= N1 n2 Nn)	T, если N1 <n2 (<="3" -7)="" 3.0)="" 9)="" n2<n3="" nil="" th="" и="" иначе="" т="" т.д.,="" т<=""></n2>
8	(>= N1 N2 Nn)	T, если N1>N2 и N2>N3 и т.д., иначе NIL (>= 5 9) NIL (>= 4 -7) T (>= 3 3.0) T

N	Функция	Значение функции, примеры
1	(NUMBERP S) S – S-выражение	T, если S - число, иначе NIL (NUMBERP 3.2) T (NUMBERP 'D) NIL
2	(INTEGERP S) S – S-выражение	T, если S — целое число, иначе NIL (NUMBERP 32) Т (NUMBERP 'D) NIL

N	Функция	Значение функции, примеры
3	(LISTP S)	T, если S - список, иначе NIL (LISTP 'DOG) NIL (LISTP '(A B C)) NIL (LISTP NIL) T
4	(NULL S)	T, если S - пустой список, иначе NIL (NULL NIL) T (NULL ()) T (NULL '(A B C)) NIL

N	Функция	Значение функции, примеры
5	(ZEROP S)	T, если S - нуль, иначе NIL (ZEROP 0) T (ZEROP 12) NIL (ZEROP 'DOG) NIL
6	(PLUSP S)	Т, если S - положительное число (PLUSP 12) Т (PLUSP -4) NIL (PLUSP 0) NIL (PLUSP 'DOG) NIL

N	Функция	Значение функции, примеры
7	(MINUSP S)	T, если S - отрицательное число (MINUSP 12) NIL (MINUSP -4) T (MINUSP 0) NIL (MINUSP 'DOG) NIL
8	(ODDP S)	T, если S - нечетное число, иначе NIL (ODDP 12) NIL (ODDP -41) Т (ODDP 0) NIL

N	Функция	Значение функции, примеры
9	(EVENP S)	T, если S - четное число, иначе NIL (EVENP 12) Т (EVENP -41) NIL (EVENP 0) Т
10	(ATOM S) S – S-выражение	Т, если S - атом, иначе NIL (ATOM 'KOT) Т (ATOM '(A B C)) NIL (ATOM NIL) Т

Стандартные логические функции

N	Функция	Значение функции, примеры
1	(NOT S)	NOТ возвращает T, если S имеет значение
		NIL, иначе NIL
		(NOT NIL)
		T
		(NOT 'FOO)
		NIL
		(NOT (EQUAL 'DOG 'CAT))
		T

Стандартные логические функции

N	Функция	Значение функции, примеры
2	(AND S1 S2 Sn)	AND слева направо вычисляет значения S1Sn и возвращает значение T, если все аргументы не NIL, иначе вычисление проводится до первого. (AND (EQ 'DOG 'CAT) (< 2 3)) NIL (AND (EQ 'DOG 'DOG) (< 2 3)) T
3	(OR S1 S2 Sn)	Вычисляются аргументы S1Sn слева направо, пока не будет получен результат, отличный от NIL, он и будет результатом работы OR. Если все результаты NIL, тогда функция OR возвращает NIL. (OR (EQ 'DOG 'CAT) (< 2 3)) Т (OR (EQ 'DOG 'CAT) (< 3 2)) NIL

Стандартные функции присваивания

N	Функция	Значение функции, примеры
2	(SETQ A1 S1 A2 S2An Sn)	Аргументы A1An квотируются и им присваиваются значения аргументов S1Sn (соответственно). SETQ возвращает последнее присвоенное значение (SETQ FOO '(D E F)) (D E F) FOO (D E F) (SETQ (SUM 5) 5 (SETQ SUM (+ 3 4) SQR (* SUM SUM)) 49 SUM 7 SQR 49

Стандартная функция COND

```
Функция COND ("CONDition" - "условие")
 является основным средством разветвления
  вычислений.
Структура условного выражения такова:
 (COND (P1 A1)
     (P2 A2)
    (PN AN) )
(P1 A1),...,(PN AN) - аргументы функции COND.
Pi – предикат, An – вызов функции.
```

Значение функции **COND** определяется следующим образом:

- 1. Выражения **Pi**, выполняющие роль предикатов, вычисляются последовательно слева направо (сверху вниз) до тех пор, пока не встретится выражение, значением которого не является **NIL** (заметим, что не требуется строгое **T**!).
- 2. Вычисляется выражение **Ai**, соответствующее этому предикату **Pi**, и полученное значение возвращается в качестве значения функции **COND**.
- 3. Если все **Pi (i=1,2,...,N)** возвращают **NIL**, то значением функции **COND** будет **NIL**.

Рекомендуется в качестве последнего **PN** использовать символ **T**, и соответствующее ему результирующее выражение будет вычисляться всегда в тех случаях, когда ни одно другое условие не выполняется. Хотя на самом деле **T** не является необходимым, так как тот же самый результат получится и без него.

Примеры вычисления функции **COND**. Пример 1.

```
$ (SETQ NUM -3) --> -3

$ (SETQ SIGN (COND ((PLUSP NUM) 'POSITIVE)
((MINUSP NUM) 'NEGATIVE)
((ZEROP NUM) 'ZERO)
('NONNUMBER) ) ) --> NEGATIVE
NEGATIVE
```

Пример вычисления функции **COND**. Пример 2.

Пусть требуется найти значение функции у=F(x) в зависимости от условия:

$$Y = \begin{cases} X^{2}, & ecnu & X \le 2, \\ X + 5, & ecnu & 2 < X < 6, \\ X - 2, & ecnu & X \ge 6 \end{cases}$$

```
(COND
((<= X 2) (SETQ Y (* X X)))
((and (> X 2) (< X 6)) (SETQ Y (+ X 5)
))
(T (SETQ Y (- X 2)))
```

Пример 2. Вычисление функции COND

```
$ (SETQ X 5)
5
$ (COND
( (<= X 2) (SETQ Y (* X X)))
((and (> X 2) (< X 6)) (SETQ Y (+ X 5)
(T (SETQ Y (- X 2)))
10
$
```