Листок 11. Теория сложности, продолжение.

Определение 1 EXP — класс языков, разрешимых на ДМТ за время $2^{\text{poly}(n)}$. NEXP — класс языков, разрешимых на НМТ (для которых существует алгоритм проверки сертификата) за время $2^{\text{poly}(n)}$.

Определение 2 Пусть $A - \kappa$ ласс языков. Класс $\mathbf{P}^A - \kappa$ ласс языков, для которых существует полиномиальный детерминированный алгоритм, который может обращаться κ оракулу из класса A.

- ML 59. Покажите, что если P = NP, то EXP = NEXP.
- [ML 60.] Докажите, что существует язык, для которого любой алгоритм, работающий время $O(n^2)$ решает его правильно на менее, чем на половине входов какой-то длины, но этот язык распознается алгоритмом, работающим время $O(n^3)$.
- **ML 61.** Докажите, что:
 - (a) $\mathbf{DSpace}[n^3] \not\subseteq \mathbf{DSpace}[n^2];$
- (6) $\mathbf{NSpace}[n^3] \not\subseteq \mathbf{NSpace}[n^2]$.
- ML 62. Унарным назвается язык, все слова которого состоят из одного символа. Докажите, что если все унарные языки из NP лежат в P, то EXP = NEXP.
- [ML 63.] Пусть существует **NP**-полный унарный язык (все слова которого, состоят только из одного символа). Докажите, что $\mathbf{P} = \mathbf{NP}$ (подсказка: придумайте алгоритм для задачи SAT).
- **ML 64.** Покажите, что:
 - $\overline{(a) \mathbf{P}^{\mathbf{P}}} = \mathbf{P};$
- (б) язык GNI (пар неизоморфных графов) лежит в **P^{NP}**.
- **ML 65.** Покажите, что:
- (a) $P \subseteq NP \cap coNP$;
- (6) $NP \subseteq EXP$.

ML 23.

Задача Поста состоит в следующем: есть доминошки n видов $\left[\frac{s_1}{t_1}\right], \left[\frac{s_n}{t_n}\right], s_i$ и t_i — конечные строки, есть неограниченный запас доминошек каждого вида, доминошки переворачивать нельзя. Требуется определить, можно ли составить несколько доминошек так, чтобы в верхней и нижней их половине читалась одна и та же строка, такие последовательности доминошек будем называть согласованными. Докажите, что задача Поста алгоритмически неразрешима.

ML 33. Теперь секвенцией будем называть $\Gamma \vdash \Delta$, где Γ и Δ — это списки предикатных формул.

Добавим в секвенциальное счисление четыре новых правила которые соответствуют кванторам (см. табличку).

В правилах ($\forall \vdash$) и ($\vdash \exists$), A(t/x) обозначает, что в формуле A переменная x заменяется на терм t, при этом для каждого вхождения переменной x никакие переменные терма t не должны попасть в область действия кванторов по одноименным переменным (в формуле A). Например для формулы $\forall y \ P(x,y)$ вместо x нельзя подставить f(y).

А в других двух правилах A(y/x) означает, что в формуле A мы заменили все вхождения x на переменную y, при этом переменная y должна быть свежей то есть не входить ни в A, ни в другие формулы из секвенции.

Докажите корректность секвенциального исчисления (покажите, что если секвенция $\Gamma \vdash \Delta$ выводима, то в любой интерпретации либо хотя бы одна формула из Γ ложна, либо хотя бы одна формула из Δ истинна).

 $[ML\ 40.]$ Пусть T — замкнутая формула в некоторой сигнатуре, и пусть существует интерпретация со сколь угодно большим носителем, в которой данная формула истинна. Докажите, что существует интерпретация с бесконечным носителем, в которой данная формула истинна.

ML 50. Будет ли теория $\mathrm{Th}((\mathbb{N},<,=))$ конечно аксиоматизируемой.

[ML 55.] Пусть функции $f,g:\{0,1\}^* \to \{0,1\}^*$ можно посчитать с использованием $O(\log(n))$ памяти (память считается только на рабочих лентах, входная лента доступна только для чтения, а по выходной ленте головка машины Тьюринга движется только слева направо). Докажите, что функцию f(g(x)) можно также посчитать с использованием $O(\log(n))$ памяти.

ML 58. Докажите, что:

(a) что число n простое тогда и только тогда, когда для каждого простого делителя q числа n-1 существует $a \in \{2,3,\ldots,n-1\}$ при котором $a^{n-1} \equiv 1 \pmod n$, а $a^{\frac{n-1}{q}} \not\equiv 1 \pmod n$;