CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INFORMATICA

FOGLIO DI ESERCIZI 7- GEOMETRIA E ALGEBRA LINEARE 2016/17

Esercizio 7.1. [8.1] Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione definita da $T(x_1, x_2, x_3) = (x_1^2, x_2, 2x_3)$. Stabilire se T è lineare.

Esercizio 7.2. [8.2] Verificare che la funzione determinante definita sull'insieme delle matrici $M_{2\times 2}$ a valori in \mathbb{R} non è lineare.

Esercizio 7.3. [8.3] Stabilire se esiste una applicazione lineare $T: \mathbb{R}^2 \to \mathbb{R}^2$ tale che

$$T(1,2) = (3,0), T(2,7) = (4,5), T(1,5) = (1,4)$$

Esercizio 7.4. [8.4] Stabilire se esiste una applicazione lineare $T: \mathbb{R}^2 \to \mathbb{R}^2$ tale che

$$T(1,2) = (3,0),$$
 $T(2,4) = (5,0),$ $T(0,1) = (1,1)$

Esercizio 7.5. [8.5] Determinare una applicazione lineare $T: \mathbb{R}^2 \to \mathbb{R}^2$ tale che

$$T(1,1) = (1,2), T(0,2) = (4,4)$$

Esercizio 7.6. [v. 8.6] Sia $T: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione definita da T(x,y) = (x+y,2x,x-y).

- a) Verificare che T è lineare.
- b) Determinare Nucleo e Immagine di T.
- d) Determinare T(1,2).

Esercizio 7.7. [v. 8.7] Sia $T: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare definita sulla base canonica di \mathbb{R}^2 nel seguente modo: $T(e_1) = (1, 2, 1), \ T(e_2) = (1, 0, -1).$

- a) Esplicitare T(x, y).
- c) Stabilire se (3, 4, 1) appartiene a Im(T).

Esercizio 7.8. [8.11] Sia $T: \mathbb{R}^4 \to \mathbb{R}^5$ la funzione lineare definita da

$$T(x_1, x_2, x_3, x_4) = (x_1 - x_2, x_1 + x_2, x_2, x_2 + 3x_3, -x_1 - x_2)$$

- a) Trovare una base del nucleo N(T) e una base dell'immagine Im(T).
- b) Dire se T è iniettiva e/o suriettiva.
- c) Per quali valori di $k \in \mathbb{R}$ il vettore $v_k = (k, 2, 1 k, 4, -2)$ appartiene all'immagine di T?

Esercizio 7.9. [8.12] Sia $T: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare definita da:

$$T(x_1, x_2, x_3) = (2kx_1 - x_2, x_2 + kx_3, x_1 + x_2 - x_3, x_1 - x_2)$$

- a) Trovare le dimensioni del nucleo e dell'immagine di T al variare del parametro reale k.
- b) Stabilire per quali valori di k il vettore v = (3, 3, 1, 0) appartiene all'immagine di T.

Esercizio 7.10. [8.17]

a) Verificare che le relazioni

$$T(1,1,1) = (-1,2), \quad T(0,1,1) = (0,4), \quad T(1,1,0) = (2,1)$$

definiscono un'unica applicazione lineare T da \mathbb{R}^3 a \mathbb{R}^2 .

- b) Scrivere la matrice rappresentativa di T rispetto alla basi canoniche.
- c) Trovare basi di Im(T) e di N(T).

Esercizio 7.11. /8.30/ Sia $T: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare definita da T(x) = Ax, con

$$A = \begin{bmatrix} 1 & 0 & -1 & 1 \\ -2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix}.$$

- a) Stabilire se T invertibile.
- b) Trovare basi del nucleo e dell'immagine di T.

Esercizio 7.12. [8.16] Si consideri il seguente endomorfismo di \mathbb{R}^4

$$T(x, y, z, w) = (-x + z, 2y, x - 2z, w)$$

a) Si determino le dimensioni di immagine e nucleo di T e si stabilisca se T è invertibile.

b) Si determini l'inversa T^{-1} .

Esercizio 7.13. [8.34] Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita ponendo

$$f(x,y,z) = (x+y-2z, 3x-z, 2x-y+z)$$

e sia $g:\mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita ponendo

$$g(x, y, z) = (x + z, x - y + z, y)$$

Si trovino le dimensioni dei nuclei delle applicazioni lineari $g \circ f$ e $f \circ g$.

Esercizio 7.14. [8.32] Si consideri la funzione lineare $T: \mathbb{R}^4 \to \mathbb{R}^4$ definita dalla matrice

$$\begin{bmatrix} 2k & 0 & 2 & 1 \\ k & 0 & 1 & 1 \\ k - 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- a) Si dica se esistono valori del parametro reale k per i quali T è iniettiva o suriettiva.
- b) Si calcoli la dimensione del nucleo N(T) e dell'immagine Im(T) al variare di k.

Esercizio 7.15. [8.15] Sia T l'endomorfismo di \mathbb{R}^3 così definito:

$$T(x_1, x_2, x_3) = (2x_1 + x_3, -2x_1 + x_2 + x_3, x_2 + 2x_3).$$

- a) Scrivere la matrice associata a T rispetto alle basi canoniche e determinare il nucleo e l'immagine di T.
- b) Stabilire se T è iniettiva. Trovare, al variare del parametro reale k, tutti i vettori v tali che T(v) = (3, 3, k).

Esercizio 7.16. [8.9] Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da

$$A = \begin{bmatrix} -3 & 1 & 0 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

Determinare l'immagine attraverso T del piano π : x + 2y = 0.

Esercizio 7.17. [8.22] Sia $T: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare tale che

$$T(x,y) = (kx + 4y, x + ky, y)$$

dove $k \in \mathbb{R}$ è un parametro reale.

Stabilire se T è iniettiva e/o suriettiva al variare del parametro k.

Esercizio 7.18. [8.23] Sia $T: \mathbb{R}^4 \to \mathbb{R}^4$ l'applicazione lineare definita dalla matrice

$$A = M(T) = \begin{bmatrix} 5k & 1 & 3k+4 & 0 \\ k+1 & 0 & 0 & 0 \\ 3 & k+5 & 1 & k+3 \\ 2k^2 & 0 & k & 0 \end{bmatrix}$$

- a) Discutere l'iniettività e suriettività di T al variare del parametro reale k.
- b) Determinare la dimensione di immagine e nucleo di T al variare di k.

Esercizio 7.19. [8.24] Sia $T: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare tale che

$$T(x, y, z, w) = (-x - y + z + w, -x + 2y - z, -x + y + 3z - 3w)$$

- a) Determinare la matrice A associata a T rispetto alla base canonica.
- b) Determinare la dimensione e una base dello spazio vettoriale $Im(T) \subseteq \mathbb{R}^3$.
- c) Determinare la dimensione e una base dello spazio vettoriale $N(T) \subseteq \mathbb{R}^4$

Esercizio 7.20. [8.26] Sia $T: \mathbb{R}^3 \to \mathbb{R}^2$ l'applicazione lineare definita da

$$T(x, y, z) = (x - y, 2x - 3y)$$

- a) Dire se T è iniettiva e/o suriettiva.
- b) Trovare le dimensioni del nucleo e dell'immagine di T.

Esercizio 7.21. [8.53] Sia $\mathcal{E} = \{e_1, e_2, e_3\}$ la base canonica di \mathbb{R}^3 . Sia $T : \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare tale che:

$$T(e_1) = 3e_1 - e_2 + e_3$$
, $T(e_2) = e_2 - e_3$, $T(e_3) = 2T(e_1) + T(e_2)$

- a) Si calcoli la matrice associata a T rispetto ad \mathcal{E} .
- b) Trovare basi del nucleo e dell'immagine di T e stabilire se T è invertibile.