Boundary value problems

Martin van Sint Annaland, Edwin Zondervan, Ivo Roghair

m.v.sintannaland@tue.nl

Chemical Process Intensification Process Systems Engineering, Eindhoven University of Technology

Solver and goal-seek

Excel comes with a goal-seek and solver function. For Excel 2010:

- Install via Excel ⇒ File ⇒ Options ⇒ Add-Ins ⇒ Go (at the bottom) => Select solver add-in. You can now call the solver screen on the 'data' menu ('Oplosser' in Dutch)
 - . Select the goal-cell, and whether you want to minimize. maximize or set a certain value
 - . Enter the variable cells: Excel is going to change the values in these cells to get to the desired solution
 - . Specify the boundary conditions (e.g. to keep certain cells
 - . Click 'solve' (possibly after setting the advanced options).

Today's outline

Solution techniques in Excel Solver and goal-seek

Goal-seek: a simple example

Goal-Seek can be used to make the goal-cell to a specified value by changing another cell:

. Open Excel and type the following:

	А	В
1	×	3
2	f(x)	=-3*B1^2-5*B1+2
3		

- . Go to Data ⇒ What-If Analysis ⇒ Goal Seek... Set cell: B2
 - . To value: 0
- . By changing cell: B1 OK. You find a solution of 0.333

>000

Solver: a simple example

The solver is used to change the value in a goal-cell, by changing the values in 1 or more other cells while keeping boundary conditions:

. Use the following sheet:

ı		A	В	С
ı	1		×	f(x)
	2	x1	3	=2*B2*B3-B3+2
ı	3	x2	4	=2*B3-4*B2-4

- Go to Data ⇒ Solver
 - Goalfunction: C1 (value of: 0)
 - Add boundary condition: C2 = 0
 - By changing cells: \$B\$1:\$B\$2 (you can just select the cells)
- Solve You will find R1=0 and R2=2

Soundary value problems

ihooting me

What is an ODE?

Algebraic equation:

$$f(y(x), x) = 0$$
 e.g. $-\ln(K_{eq}) = (1 - \zeta)$

· First order ODE:

$$f\left(\frac{dy}{dx}(x), y(x), x\right) = 0$$
 e.g. $\frac{dc}{dt} = -kc^n$

Second order ODE:

$$f\left(\frac{d^2y}{dx^2}(x), \frac{dy}{dx}(x), y(x), x\right) = 0 \quad \text{e.g.} \quad \mathcal{D}\frac{d^2c}{dx^2} = -\frac{kc}{1 + Kc}$$

Solution technic

.....

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P in Pa T in K. Experimental data is given:

	re. Expen
P [mmHg]	T [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C.
- Give an initial guess

 Convert all values to proper units (hint: use
 e.g. = CONVERT(A2."mmHg"."Pa"))
- Compute In Pesp and In Pcorr
- Compute (In P_{exp} In P_{corr})², and sum this column
- Start the solver, and minimize the sum by changing cells for A, B and C.

Boundary value problems Shooting in 00000000

About second order ODEs

Very often a second order ODE can be rewritten into a system of first order ODEs (whether it is handy depends on the boundary conditions!)

In general

Consider the second order ODE:

$$\frac{d^2y}{dx^2} + q(x)\frac{dy}{dx} = r(x)$$

Now define and solve using z as a new variable:

$$\frac{dy}{dx} = z(x)$$

$$\frac{dz}{dx} = r(x) - q(x)z(x)$$

Importance of boundary conditions

The nature of boundary conditions determines the appropriate numerical

- method. Classification into 2 main categories:
 - Initial value problems (IVP) We know the values of all y_i at some starting position x_s , and it is desired to find the values of y_i at some final point x_i .

 Boundary value problems (BVP) Boundary conditions are specified at more than one x. Typically, some of the BC are specified at x_s and the remainder at x_f .

BVP: example in Excel

Consider a chemical reaction in a liquid film layer of thickness δ :

$$\mathcal{D} \frac{d^2c}{dx^2} = k_Rc \text{ with } c(x=0) = C_{A,i,\perp} = 1$$
 (interface concentration) $c(x=\delta) = 0$ (bulk concentration)

Question: compute the concentration profile in the film layer

Step 1: Define the system of ODEs This second-order ODE can be rewritten as a system of first-order ODEs, if we

define the flux
$$q$$
 as:

$$q = -D \frac{dc}{dx}$$

Now, we find:

The boundary conditions for the

Shooting method

How to solve a BVP using the shooting method:

- · Define the system of ODEs
- · Provide an initial guess for the unknown boundary condition
- . Solve the system and compare the resulting boundary condition to the expected value
- · Adjust the guessed boundary value, and solve again. Repeat until convergence.
 - · Of course, you can subtract the expected value from the computed value at the boundary, and use a non-linear root finding method

BVP: example in Excel

Solving the two first-order ODEs in Excel. First, the cells with constants:

	A	В	C
1	CAiL	1	ml/m3
2	D	1e-8	m2/s
3	kR	10	1/s
4	delta	1e-4	m
5	N	100	
- 6	4.	-DA/DE	

Now, we program the forward Euler (explicit) schemes for c and q below:

	A	В	С
10	×	c	q
11	0	=B1	10
12	=A11+\$B\$6	=B11+\$B\$6*(-1/\$B\$2*C11)	=C11+\$B\$6*(-\$B\$3*B11)
13	=A12+\$B\$6	=B12+\$B\$6*(-1/\$B\$2*C12)	=C12+\$B\$6*(-\$B\$3*B12)

111	=A110+\$B\$6	=B110+\$B\$6*(-1/\$B\$2*C110)	=C110+\$B\$6*(-\$B\$3*B110)

onennon

BVP: example in Excel

- We now have profiles for c and q as a function of position x.
- The concentration c(x = δ) depends (eventually) on the boundary condition at the interface q(x = 0)
- We can use the solver to change q(x = 0) such that the concentration at the bulk meets our requirement: c(x = δ) = 0

hooting met ooooeoo

BVP: example in Matlab

The ODE function is solved via ode45, after setting a number of initial and boundary conditions:

```
function f = RunBUV(bcq.ps)
[x,cq] = oded5(@BVPODE.[0 ps.delta],[1 bcq], [], ps);
f = cq(end,1) - 0;
plotyy(x,cq(:,1),x,cq(:,2));
return;
```

Note the following:

- We use the interval $0 < x < \delta$
- Boundary conditions are given as: c(x=0)=1 and $q(x=0)= \log_{1}$, which is given as an argument to the function (i.e. changable from 'outside'!)
- The function returns f, the difference between the computed and desired concentration at x = δ.

ooting meth

BVP: example in Matlab

return

We first program the system of ODEs in a separate function:

$$\begin{split} \frac{dc}{dx} &= -\frac{1}{D}q \\ \frac{dq}{dx} &= -k_Rc \\ \\ \frac{function}{dx} &= f(xtt) = gvpode(t,x,ps) \\ \frac{dxt(t) - 1/ps. D + x(2)}{dxt(2) - ps. kR + x(1)}; \\ \frac{dxt(x) - ps. kR + x(1)}{dxt + dxt}; \end{split}$$

Note that we pass a variable (type: struct) that contains required parameters: ps.

Shooting r

BVP: example in Matlab

Finally, we should solve the system so that we obtain the right boundary condition $q = \log_q \operatorname{such} \operatorname{that} c(x = \delta) = 0$. We can use the built-in function fizero to do this

```
% Parameter definition
ps.D=1e-0;
ps.M=10;
ps.d=1a-te-4;
% Solve for flux boundary condition (initial guess: 0)
opt = optimest('Display', 'iter');
flux = fser(GRumNP', O, opt, ps);
```

Compare with the analytical solution:

$$q = k_L E_A C_{A,i,L}$$
 with

$$E_A = \frac{Ha}{\tanh Ha}$$
 (Enhancement factor)

$$\frac{1}{\tanh Ha} = \frac{\sqrt{k_R D}}{L}$$
 (Hatta number)

$$k_L = \frac{D}{T}$$
 (mass transfer coefficient)