Kevin White

11/8/2021

208 9:00AM 11/8/2021

Yeying Chen 9:00AM 11/8/2021

The Area of the Base & Sides

```
syms r h
Area_Base = pi*r^2
```

Area_Base = πr^2

Area_Side =
$$(2*pi*r)*h$$

Area_Side = $2\pi h r$

Total Area of Cylinder

Area_2vars = 2*Area_Base+Area_Side

Area_2vars = $2\pi r^2 + 2h\pi r$

Area in terms of R

Vol=pi*r^2*h

 $Vol = \pi h r^2$

my_h=solve(Vol==1000,h)

my_h =

 $\frac{1000}{r^2 \, \pi}$

Area=subs(Area_2vars,h,my_h)

Area =

$$2 \pi r^2 + \frac{2000}{r}$$

ezplot(Area, [0 6])

Step 6

radius =

```
assume(r, 'real')
assume(r>0)
A_prime=diff(Area,r)
A_prime = 4\pi r - \frac{2000}{r^2}
r_critical=solve(A_prime==0,r)
r_critical = \left(\frac{500}{\pi}\right)^{1/3}
assume(r>r_critical)
simplify(A_prime>0)
ans = symtrue
radius=r_critical
```

height=subs(my_h,r,radius)

height =

$$\frac{1000}{\pi \left(\frac{500}{\pi}\right)^{2/3}}$$

subs(subs(Vol,r,radius),h,height)

ans =
$$1000$$

Area of full rectangle:

$$subs(subs(Vol,r,radius),h,height) + vpa(radius*radius*height)$$

ans = 1318.309886183790671537767526745

Area unised is:

vpa(radius*radius*height)

ans = 318.30988618379067153776752674503