

Online Learning Application Project Presentation

Gottschling Daniel - 11123625

Floris Fabio Marco - 10811227

Parenti Carolina – 10797066

Roberto Sonzini Gobbi - 10794845

Singh Karanbir - 10865124

Overview

Pricing problem with multiple products and inventory constraint

At each round $t \in T$:

The company chooses which types of product to sell and set price pi for each type of product

A buyer with a valuation for each type of product arrives

The buyer buys a unit of each product with price smaller than the product valuation

Requirement 1.1 Single product stochastic environment with no inventory constraint

AGENT

UCB1 agent

PARAMETERS

Time horizon: T = 10000

Prices: $pi \in [0,1]$

VALUATION DISTRIBUTION

At each round the valuation is sampled from: $X \sim \mathcal{N}(0,5,\,1)$

BASELINE

Price chosen by solving the following linear programming:

$$p_j=1-F(v_j)$$

$$\max_{x_j \in [0,1]} \sum_{j=1}^K v_j \cdot p_j \cdot x_j$$

$$\sum_{j=1}^K x_j = 1$$

Requirement 1.1 Single product stochastic environment with no inventory constraint

Requirement 1.2

Single product stochastic environment with inventory constraint

PARAMETERS

• Time horizon: T = 10000

• Prices: pi ∈ [0,1]

Budget: 45% T

AGENT

Pulls the arm that solve the following LP:

$$\max_{x_j \in [0,1]} \sum_{j=1}^P \mathrm{UCB}_j \cdot x_j$$

$$\sum_{j=1}^P \mathrm{LCB}_j \cdot x_j \leq
ho$$

$$\sum_{j=1}^P x_j = 1$$

VALUATION DISTRIBUTION

At each round the valuation is sampled from

$$X \sim \mathrm{Beta}(1,1)$$

BASELINE

Price chosen by following the following LP:

$$\max_{x_j \in [0,1]} \sum_{j=1}^K v_j \cdot p_j \cdot x_j$$

$$\sum_{j=1}^K x_j = 1$$

$$\sum_{j=1}^K p_j \cdot x_j \leq
ho$$

Requirement 1.2 Single product stochastic environment with inventory constraint

Requirement 1.2 Single product stochastic environment with inventory constraint

Requirement 2

Multiple product stochastic environment with inventory constraint

AGENT

- Combinatorial- UCB
- To extend the inventory constraint we modified the standard Combinatorial-UCB with UCB-like

BASELINE

Price chosen by solving the following LP

$$\max_{x_{ij} \in [0,1]} \sum_{i=1}^N \sum_{j=1}^P v_j \cdot p_{ij} \cdot x_{ij}$$

$$\sum_{j=1}^P x_{ij} = 1 \quad ext{per } i = 1, \dots, N$$

$$\sum_{i=1}^{N}\sum_{j=1}^{P}p_{ij}\cdot x_{ij}\leq
ho$$

PARAMETERS

• Time horizon: T = 10000

Prices: pi ∈ [0,1]

Budget: 75% T

Number of products: N=3

VALUATION DISTRIBUTION

At each round the valuation is sampled from

$$X \sim \mathcal{N}(0.5, 1^2)$$

$$Y \sim \mathrm{Beta}(3,2)$$

$$Z \sim \mathrm{Beta}(2,20)$$

Requirement 2 Multiple product stochastic environment with inventory constraint

Budget

10000

8000

Requirement 2 Multiple product stochastic environment Inventory constraint

Requirement 3

Best-of-both-worlds algorithms with a single product with inventory constraint

AGENT

- Multiplicative Pacing
- EXP3 as regret minimizer

BASELINE

Price chosen by solving the following LP

$$egin{aligned} ar{F}(v_j) &= rac{1}{w} \sum_{t'=t-w+1}^t F_{t'}(v_j) \ p_j &= 1 - ar{F}(v_j) \ \min_{x \in [0,1]^K} - \sum_{j=1}^K v_j \cdot p_j \cdot x_j \ \sum_{j=1}^K x_j &= 1 \ \sum_{j=1}^K p_j \cdot x_j &\leq
ho \end{aligned}$$

PARAMETERS

Time horizon: T = 10000

• Prices: pi ∈ [0,1]

Budget: 50% T

• Learning rate EXP3: $\sqrt{\frac{\log K}{KT}}$

• Learning rate Multiplicative pacing: $\frac{1}{\sqrt{T}}$

VALUATION DISTRIBUTION

At each round the valuation is sampled from

Adversarial

$$X \sim \mathrm{Beta}(a,b)$$

Stationary

$$X \sim \mathcal{N}(0,\!5,\,1)$$

ADVERSARIAL ENVIRONMENT

ADVERSARIAL ENVIRONMENT

STATIONARY ENVIRONMENT

Requirement 4 Best-of-both-worlds with multiple products with inventory constraint

PARAMETERS

• Time horizon: T = 10000

• Prices: pi ∈ [0,1]

Budget: 75% T

Number of products: N=3

STATIONARY ENVIRONMENT

At each round the valuation is sampled from (mean and covariance fixed for all the rounds): $\mu \sim \mathcal{U}[0.4, 1.0]^N$

$$egin{aligned} \mu &\sim \mathcal{U}[0.4, 1.0] \ A &\sim \mathrm{Uniform}[0, 1]^{N imes N} \ \Sigma &= AA^ op + 0.05 \cdot I_N \ X &\sim \mathcal{N}(\mu, \Sigma) \end{aligned}$$

HIGHLY NON-STATIONARY ENVIRONMENT

A sequence of correlated valuations for each type of product that changes quickly over time

At each round the valuation is sampled from (mean and covariance change at each round) $\mu \sim \mathcal{U}[0.4, 1.0]^N$

$$egin{aligned} A &\sim ext{Uniform}[0,1]^{N imes N} \ \Sigma &= AA^ op + 0.05 \cdot I_N \ X &\sim \mathcal{N}(\mu,\Sigma) \end{aligned}$$

Requirement 4 Best-of-both-worlds with multiple products with inventory constraint

AGENT

- Multiplicative pacing agent for multiple product
- A different EXP3 agent for each product is used as a regret minimizer

BASELINE

At every round the chosen price is the one that maximises the following LP:

$$\max_{x_{ij} \in [0,1]} \sum_{i=1}^N \sum_{j=1}^P v_j \cdot \bar{p}_j \cdot x_{ij}$$

$$\sum_{j=1}^P x_{ij} = 1 \quad orall i = 1, \ldots, N$$

$$\sum_{i=1}^N \sum_{j=1}^P ar{p}_j \cdot x_{ij} \leq
ho$$

Requirement 4 Best-of-both-worlds with multiple products with inventory constraint

ADVERSARIAL ENVIRONMENT

Requirement 4 Best-of-both-worlds with multiple products with inventory constraint

ADVERSARIAL ENVIRONMENT

Requirement 4 Best-of-both-worlds with multiple products with inventory constraint

STATIONARY ENVIRONMENT

Requirement 5 Slightly non-stationary environments with multiple products and inventory constraint

SLIGTHLY NON-STATIONARY ENVIRONMENT

- Rounds are partitioned in intervals of different sizes
- In each interval the distribution of products valuations is chosen randomly between the following:

$$X_1 \sim \mathcal{U}(0,1)$$

$$X_2 \sim \mathrm{Beta}(4,2)$$

$$X_3 \sim \mathrm{Beta}(2,4)$$

$$X_4 \sim \mathcal{N}(0.5, 1^2)$$

PARAMETERS

• Time horizon: T = 10000

• Prices: pi ∈ [0,1]

Budget: 75% T

Number of products: N=3

• Window size: w= $50\sqrt{T}$

Requirement 5 Slightly non-stationary environments with multiple products and inventory constraint

AGENT

- Combinatorial- UCB with sliding window
- To extend the inventory constraint we modified the standard Combinatorial-UCB with UCB-like

BASELINE

For **each interval** chooses the price that maximises the following LP:

$$\max_{x_{ij} \in [0,1]} \sum_{i=1}^N \sum_{j=1}^P v_j \cdot p_{ij} \cdot x_{ij}$$

$$\sum_{j=1}^P x_{ij} = 1 \quad ext{per } i = 1, \dots, N$$

$$\sum_{i=1}^{N}\sum_{j=1}^{P}p_{ij}\cdot x_{ij}\leq
ho_{ij}$$

Comparison in slightly non-stationary environment

Requirement 5
Slightly non-stationary environments with multiple products and inventory constraint

