Линейный Анализ

Коченюк Анатолий

6 октября 2020 г.

0.1 Введение

Трифанов Александр Игоревич
Два модуля: аналитическая геометрия, линейная алгебра
Отчётность: дз, кр, лабы, рубежное тестирование, экзамен
дз (16 штук(8 в модуль) по 2 баллв)
кр (4 (2 в модуль) 5 баллов)
лаба (1-2 по 5 баллов)
рубежный тест (1)

Глава 1

I курс

1.1 Матрицы и операции над ними

Определение 1. Матрица – прямоугольная таблицв чисел

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots, \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

 $a_{i,j} \in \mathbb{R}$ – элементы матрицы

$$a_{11}, a_{12}, \dots, a_{1n}$$
 – строка 1

$$a_{12}, a_{22}, a_{32}, \dots, a_{m2}$$
 – столбец 2

 a_{ij} – элемент на пересечении i-той строки и j-того столбца

В матрице выше m строк и n столюцов. $A_{m \times n}$ – обозначение

Замечание. $n=m \implies A_{n \times n}$ – квадратная матрица

 $\{a_{ii}\}_{i=1}^n$ – диагональ матрицы $A_{n \times n}$

Замечание. $A = \|a_{ij}\| \ B = \|b_{ij}\|$

Замечание. $A = B \iff$

- одинаковые размеры
- $\forall i, j a_{ij} = b_{ij}$

Операции с матрицами:

1. Умножение на число:

$$B = \alpha \cdot A \iff \forall i, j \quad b_{ij} = \alpha \cdot a_{ij}$$

2. Сложение:

Пусть A, B – одинакового размера

$$A + B = C$$
: $c_{ij} = a_{ij} + b_{ij} \forall i, j$

Замечание. $\triangleleft \mathbb{O} : \mathbb{O} + A = A + \mathbb{O} = A$

О − полностью состоит из нулей

Свойства:

- коммутативность сложения (следует из коммутативности сложения чисел) A+B=B+A
- ассоциативность (-||-|)(A+B)+C=A+(B+C)
- дистрибутивность $\alpha(A+B) = \alpha A + \alpha B$
- $\forall A A = -1 \cdot A : A + (-A) = \mathbb{O}$ противоположный элемент по сложению
- 3 Умножение матриц

Пусть $A_{m \times l}, B_{l \times n}$

$$C = A \cdot B$$
 $c_{ij} = \sum_{k=1}^{l} a_{ik} \cdot b_{kj} = C_{m \times n}$

Замечание. $A \cdot B \neq B \cdot A$

Для квадратных матриц вводится такое понятие, как коммутатор

$$[AB] = A \cdot B - B \cdot A$$

Пример.
$$A \cdot D = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 9 & 12 & 15 \\ 4 & 5 & 6 \end{bmatrix}$$

Замечание. $\triangleleft I:A\cdot I=I\cdot A=A$

Замечание.
$$\triangleleft I : A$$

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Свойства:

4

- некоммутативность $A \cdot B \neq B \cdot A$
- ассоциативность $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

- дистрибутивность 1A(B+C) = AB + AC
- \bullet дистрибутивность $2 \alpha(AB) = (\alpha A)B = A(\alpha B)$

Определение 2. $\triangleleft N \neq \mathbb{O}: \quad N^k = N \cdot N \cdot \ldots \cdot N = \mathbb{O}$

N — нильпотентная матрица, k — её порядок нильпотентности

Пример. $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

Определение 3. Идемпотентной матрица называется, если $N^k = I$

k – порядок идемпотентности

Пример. $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

4 Транспонирование

$$A_{m \times n} = ||a_{ij}||$$
 Пусть $B = A^T = ||b_{ij}|| \implies b_{ij} = a_{ji}$

Свойства:

- $\bullet \ (\alpha \cdot A)^T = \alpha \cdot A^T$
- $\bullet \ (A+B)^T = A^T + B^T$
- $(AB)^T = B^T \cdot A^T$ проверить для себя

Замечание. $A: A = A^T$ – симметричная/симметрическая матрица. Любая квадратная матрица с симметричными относительно диагонали элементами.

 $A: \quad A = -A^T$ – антисимметричная матрица. На главной диагонали стоят нули

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{bmatrix}$$
 — верхняя треугольная. Транспонированная — нижняя треугольная матрица

1.2 Определитель

$$\exists \ A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n_1} & a_{n_2} & \dots & a_{nn} \end{bmatrix}$$

Определение 4. Определитель – это число

$$\Box A_{1x1} = (a_{11})$$
 $\det A \equiv |A| = a_{11}$

$$\exists A_{2x2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \det A = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

$$\Box A_{3x3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

 $\det A = a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} - a_{13} \cdot a_{22} \cdot a_{31} - a_{11} \cdot a_{23} \cdot a_{32} - a_{33} \cdot a_{21} \cdot a_{12}$

Мнемоническое правило для случая с тремя:

берём диагонали в одну сторону c + в другую c - ...

Пример.
$$\Box A = \begin{bmatrix} 1 & -3 & -1 \\ -2 & 7 & 2 \\ 3 & 2 & -4 \end{bmatrix}$$

$$\det A = -28 - 18 + 4 - (-21 + 4 - 24) = -1$$

$$\sphericalangle \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2k} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m_1} & a_{m_2} & \dots & a_{mk} & \dots & a_{mk} \end{bmatrix}$$

Определение 5. Дополнительный минор элемента a_{ij} – определитель матрицы, полученной из исходно1 вычёркиванием i-ой строки и j-го столбца.

Обозначение: M_{ij}

Утверждение 1 (Рекуррентная формула вычисления определителя). $\det A = \sum_{i=1}^n (-1)^{i+j} a_{i+j} \cdot M_{ij}$, где j – номер любого столбца. Эта формула называется разложением определителя по j-ому столбцу.

$$\det A = \sum_{i=1}^n (-1)^{i+j} a_{ij} M_{ij}$$
 – разложение по $i\text{-}\textsc{o}\/$ строке

 $\sphericalangle (-1)^{i+j} M_{ij} = \mathcal{A}_{ij}$ – алгебраическое дополнение элемента a_{ij}

Пример.
$$\begin{bmatrix} 1 & -3 & -1 \\ -2 & 7 & 2 \\ 3 & 2 & -4 \end{bmatrix} = A$$

$$\det A = (-1)^{1+3} \cdot (-1) \cdot \begin{vmatrix} -2 & 7 \\ 3 & 2 \end{vmatrix} + (-1)^{2+3} \cdot 2 \cdot \begin{vmatrix} 1 & -3 \\ 3 & 2 \end{vmatrix} + (-1)^{3+3} \cdot (-4) \cdot \begin{vmatrix} 1 & -3 \\ -2 & 7 \end{vmatrix} = 0$$

$$=25-22-4=-1$$

Пример.

Пример.
$$\begin{vmatrix} 1 & -1 & 3 & 4 \\ -1 & 4 & 0 & -1 \\ 3 & 0 & 0 & -3 \\ 4 & -1 & -3 & 1 \end{vmatrix} = (-1)^{3+1} \cdot 3 \cdot \begin{vmatrix} -1 & 3 & 4 \\ 4 & 0 & -1 \\ -1 & -3 & 1 \end{vmatrix} + (-1)^{3+4} \cdot (-3) \cdot \begin{vmatrix} 1 & -1 & 3 \\ -1 & 4 & 0 \\ 4 & -1 & -3 \end{vmatrix} =$$

Пример.
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 5 & 6 \\ 0 & 0 & 3 & 7 \\ 0 & 0 & 0 & 2 \end{vmatrix} = 1 \cdot 2 \cdot 3 \cdot 2 = 12$$

В нижних (верхних) треугольных матрицах определитель – просто произведение элементов

Свойства определителя:

$$1. \begin{vmatrix} 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \end{vmatrix} = 0$$

$$\begin{vmatrix}
a_1 & a_2 & \dots & a_n \\
b_1 & b_2 & \dots & b_n \\
\dots & \dots & \dots
\end{vmatrix} = - \begin{vmatrix}
b_1 & b_2 & \dots & b_n \\
a_1 & a_2 & \dots & a_n \\
\dots & \dots & \dots
\end{vmatrix}$$

$$3. \begin{vmatrix} \dots & \dots & \dots \\ a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \\ \dots & \dots & \dots & \dots \end{vmatrix} = \begin{vmatrix} \dots & \dots & \dots & \dots \\ a_1 & a_2 & \dots & a_n \\ \alpha_1 \cdot a_1 + b_1 & \alpha_2 \cdot a_2 + b_2 & \dots & \alpha_n \cdot a_n + b_n \\ \dots & \dots & \dots & \dots \end{vmatrix}$$

4. $\det(A^T) = \det(A)$ (всё, что работает со строчками, работает и со столбцами)

$$5. \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} + c_1 & \dots \\ a_{21} & a_{22} & \dots & a_{2i} + c_2 & \dots \\ \dots & \dots & \dots & \dots \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots \\ a_{21} & a_{22} & \dots & a_{2i} & \dots \\ \dots & \dots & \dots & \dots \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \dots & c_1 & \dots \\ a_{21} & a_{22} & \dots & c_2 & \dots \\ \dots & \dots & \dots & \dots \end{vmatrix}$$

$$\det(A+B) \neq \det(A) + \det(B)$$

6.
$$\begin{vmatrix} \dots & \dots & \dots \\ \alpha a_1 & \alpha a_2 & \dots & \alpha a_n \\ \dots & \dots & \dots \end{vmatrix} = \alpha \begin{vmatrix} \dots & \dots & \dots \\ a_1 & a_2 & \dots & a_n \\ \dots & \dots & \dots \end{vmatrix}$$

$$Пример. \begin{vmatrix}
1280 \\
2848 \\
1184 \\
3072
\end{vmatrix} : 32$$

TODO —

1.3 Лекция 1 - Метод аналитической геометрии

метод – метод координат.

Замечание. Система координат на плоскости – две координатные линии

Определение 6. Система координат называется декартовой, если

- 1. Углы между координатными линиями прямые
- 2. Масштабы на осях одинаковые

Полярная система координат:

