



#### Advanced annotation

Konstantin Zaitsev

August 27<sup>th</sup>, 2021. Tomsk / My hotel room



#### Our setup

- Address is the same https://ctlab.itmo.ru/rstudio-sbNN/
- Folder scrna-seq
- File advanced-annotation.R



# Lets first load the object

```
library(Seurat)
library(Matrix)
library(MAST)
library(ggplot2)
library(dplyr)
library(fgsea)
seurat <- readRDS("blood_seurat.rds")</pre>
```



#### Calculating averaged expression

```
average <- AverageExpression(seurat)$SCT
averageLog <- log2(as.matrix(average) + 1)
colnames(averageLog) <- paste0("Cluster ", colnames(average))
write.table(averageLog, "average_log.tsv", sep="\t", col.names=NA, quote=F)</pre>
```



#### **Phantasus**

- Phantasus that you used yesterday for bulk RNA-seq can be used for single-cell
- We will look at averaged expression within the clusters
- https://ctlab.itmo.ru/phantasus/

Feedback is welcome!



#### Lets do it

- Download average\_log.tsv -> Open it in phantasus
- More -> Export





#### Lets do it

- Download average\_log.tsv -> Open it in phantasus (https://ctlab.itmo.ru/phantasus/)
- Open dataset -> My computer -> average\_log.tsv





# Lets open averaged table in phantasus





#### Tools -> create calculated annotation





#### Tools -> create calculated annotation





#### Filter out some genes

- Lets filter genes by average expression
- Tools -> Filter (Add, field = gene\_max, switch to top, amount = 2000, close)





#### Filtered matrix looks like this





#### Lets look at some immunological markers

 Lets search for these genes: CD19 CD79A CD79B CD14 CD3E GNLY PRF1 FCGR3A SELL CCR7 ITGAX ITGAM HLA-DRA CD8A CD8B CD4 PTPRC





#### Let's cluster

 Then tools -> clustering -> hierarchical clustering -> Cluster (columns)





#### Now we can tell "who is who"

You can adjust the height of the clustering





# Cell lineage defines similarity of clusters

- Clusters 2, 5 are CD14+ monocytes (based on CD14 expression), and cluster 13 are CD16 (FCGR3a expression). Cluster 2, 5 and 13 are from myeloid cell lineage (3 clusters on the left)
- Clusters 6, 8 and 9 are B cell based on CD79 expression (3 clusters in the middle)
- Clusters 0, 1, 3, 4, 7, 10, 11, 12 are T cells and NK cells (CD3 and cytotoxic markers)
- Clusters 14 and 15 are some sort of outliers





#### Saving heatmaps

- Create new heatmap only of selected genes (Ctrl + X)
- Saving heatmaps is a good thing
- File -> Save Image (Ctrl + S) -> Choose Filename -> Choose format
   (I prefer svg, svg can be open in browser) -> hooray

While this heatmap is not something you will necessarily put in the paper, but it is ok for supplement or any kind of presentation where you present single-cell RNA-seq data



#### Differential expression

In bulk RNA-seq we compared groups of several samples (same cell type, same condition, same treatment) between each other. In single-cell RNA-seq we will compare cell groups against each other:

- One cluster against the other
- One cluster against all the other clusters (marker identification)
- One condition against the other (almost bulk RNA-seq)
- Same cell type in different conditions



- Based on the previous investigation we have 2 clusters of CD8 T cells: 3 and 11, which are close to each other
- Lets figure out what's the difference



```
FeaturePlot(seurat, features=c("CD3D", "CD4", "CD8A", "PRF1"), ncol = 4)
```





```
VlnPlot(seurat, features=c("CD3D", "CD4", "CD8A", "PRF1"), ncol = 4, pt.size = 0.02)
```





- We will compare population using differential expression
- This will generate a table with many important fields



#### MAST test

Finak et al. Genome Biology (2015) 16:278 DOI 10.1186/s13059-015-0844-5

Genome Biology

#### METHOD

**Open Access** 

CrossMark



Greg Finak<sup>1†</sup>, Andrew McDavid<sup>1†</sup>, Masanao Yajima<sup>1†</sup>, Jingyuan Deng<sup>1</sup>, Vivian Gersuk<sup>2</sup>, Alex K. Shalek<sup>3,4,5,6</sup>, Chloe K. Slichter<sup>1</sup>, Hannah W. Miller<sup>1</sup>, M. Juliana McElrath<sup>1</sup>, Martin Prlic<sup>1</sup>, Peter S. Linsley<sup>2</sup> and Raphael Gottardo<sup>1,7\*</sup>

#### **Abstract**

Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable. We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features. We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is available at https://github.com/RGLab/MAST.

**Keywords:** Bimodality, Cellular detection rate, Co-expression, Empirical Bayes, Generalized linear model, Gene set enrichment analysis



#### Differential expression

```
de_03_vs_11 <- FindMarkers(
   seurat, assay="SCT", ident.1 = 3, ident.2 = 11,
   test="MAST", logfc.threshold = 0, min.pct = 0
)
write.table(de_03_vs_11, "de_03_vs_11.tsv", sep="\t", col.names=NA, quote=F)</pre>
```



#### Differential expression

```
head(de_03_vs_11)
```

```
## CCL5 1.115608e-113 3.0218880 0.992 0.048 1.787427e-109
## NKG7 1.339048e-107 3.0873554 0.978 0.071 2.145422e-103
## CST7 1.276064e-98 1.9549712 0.958 0.008 2.044509e-94
## GZMA 1.080751e-82 2.0257942 0.914 0.032 1.731579e-78
## RPS8 4.496728e-76 -0.6880436 1.000 1.000 7.204657e-72
## RPS6 1.542867e-75 -0.6595797 1.000 1.000 2.471982e-71
```

- avg\_logFC average log fold change
- p\_val p value (bad)
- p\_val\_adj p value adjusted for multiple hypothesis (good)
- pct.1 % of cell in the first group (cluster 3) that have non-zero expression values of gene
- pct.2 % of cell in the first group (cluster 11) that have non-zero expression values of gene



# Differential expression: visualized

```
topGenes <- head(rownames(de_03_vs_11))
VlnPlot(seurat, topGenes, pt.size = 0.02, idents=c(3, 11), ncol=6)</pre>
```





# Differential expression: visualized - non RPL\RPS

```
topGenes <- head(rownames(de_03_vs_11)[!grepl("^RPS|^RPL", rownames(de_03_vs_11))])
VlnPlot(seurat, topGenes, pt.size = 0.02, idents=c(3, 11), ncol=6)</pre>
```





#### Differential expression

In single-cell RNA-seq we will compare cell groups against each other:

- One cluster against the other (we just did it)
- One cluster against all the other clusters (marker identification) (we did it in the first part)
- One condition against the other (almost bulk RNA-seq)
- Same cell type in different conditions



# Cd8 T cell investigation

- We got two clusters, run DE and know whats different
- What's next?



#### Pathway enrichment

By marker expression we know:

- Cluster 3 is (activated ?) Cd8 T cells
- Cluster 11 is (naïve/memory?) Cd8 T cells

Is there a pathway that drive these transcriptional changes?

Is there a set of differentially expressed genes between these two groups?



#### Let's save top genes

```
de_03_vs_11$gene <- rownames(de_03_vs_11)

top50 <- de_03_vs_11 %>% top_n(50, avg_logFC) %>% pull(gene)
top200 <- de_03_vs_11 %>% top_n(200, avg_logFC) %>% pull(gene)
bottom50 <- de_03_vs_11 %>% top_n(50, -avg_logFC) %>% pull(gene)
bottom200 <- de_03_vs_11 %>% top_n(200, -avg_logFC) %>% pull(gene)

writeLines(top50, "top_50.txt")
writeLines(top200, "top_200.txt")
writeLines(bottom50, "bottom_50.txt")
writeLines(bottom200, "bottom_200.txt")
```



#### msigdb

- Lets open top50.txt
- Lets search for the pathways
- http://software.broadinstitute.org/gsea/msigdb/annotate.jsp



# msigdb

http://software.broadinstitute.org/gsea/msigdb/annotate.jsp

| Input Gene Identifiers                     | Compute Overlaps                                                                                                             | Compendia Expression Profiles                                                                            |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| (case sensitive)                           | [about the MSigDB collections]                                                                                               | Profiles                                                                                                 |
| TRGC2 \$ SRGN AHNAK NEAT1 PPP2R5C \$100A11 | H: hallmark gene sets C1: positional gene sets C2: curated gene sets CGP: chemical and genetic perturbations                 | GTEx compendium Human tissue compendiun (Novartis) Global Cancer Map (Broad Institute) NCI-60 cell lines |
| CYTOR<br>CCL4<br>ZEB2                      | CP: canonical pathways CP:BIOCARTA: BioCarta gene sets CP:KEGG: KEGG gene sets                                               | (National Cancer Institute) display expression profile                                                   |
| SYNE2<br>CTSW<br>CD74<br>HLA-DRB1          | CP:PID: PID gene sets     CP:REACTOME: Reactome gene sets     CP:WIKIPATHWAYS: WikiPathways gene sets                        | Gene Families show gene families                                                                         |
| HLA-DPB1<br>KLF6<br>KLRB1<br>IFNG          | C3: regulatory target gene sets MIR: microRNA targets                                                                        | NDEx Biological Network<br>Repository                                                                    |
| FGFBP2<br>TRGC1<br>GZMB                    | MIR:MIR_Legacy: legacy microRNA targets     MIR:MIRDB: MIRDB microRNA targets     TFT: all transcription factor targets      | query NDEx                                                                                               |
| CMC1<br>PMAIP1<br>LGALS1<br>TRDC           | <ul> <li>TFT:GTRD: GTRD transcription factor targets</li> <li>TFT:TFT_Legacy: legacy transcription factor targets</li> </ul> |                                                                                                          |
| GNLY<br>IFIT2                              | C4: computational gene sets  CGN: cancer gene neighborhoods  CM: cancer modules                                              |                                                                                                          |
| Species: Human ▼                           | C5: ontology gene sets G0: Gene Ontology                                                                                     |                                                                                                          |



# msigdb results

http://software.broadinstitute.org/gsea/msigdb/annotate.jsp

| Gene Set Name [# Genes (K)]              | Description                                                                                          | # Genes<br>in Overlap<br>(k) | k/K | p-value 🔁            | FDR<br>q-value       |
|------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|-----|----------------------|----------------------|
| HALLMARK_ALLOGRAFT_REJECTION [200]       | Genes up-regulated during transplant rejection.                                                      | 10                           |     | 6.6 e <sup>-14</sup> | 3.3 e <sup>-12</sup> |
| HALLMARK_COMPLEMENT [200]                | Genes encoding components of the<br>complement system, which is part of the<br>innate immune system. | 6                            |     | 1.9 e <sup>-7</sup>  | 4.74 e <sup>-6</sup> |
| HALLMARK_IL2_STAT5_SIGNALING [199]       | Genes up-regulated by STAT5 in response to IL2 stimulation.                                          | 5                            |     | 5.08 e <sup>-6</sup> | 5.2 e <sup>-5</sup>  |
| HALLMARK_INTERFERON_GAMMA_RESPONSE [200] | Genes up-regulated in response to IFNG [GeneID=3458].                                                | 5                            |     | 5.2 e <sup>-6</sup>  | 5.2 e <sup>-5</sup>  |
| HALLMARK_TNFA_SIGNALING_VIA_NFKB [200]   | Genes regulated by NF-kB in response to TNF [GeneID=7124].                                           | 5                            |     | 5.2 e <sup>-6</sup>  | 5.2 e <sup>-5</sup>  |
| HALLMARK_APOPTOSIS [161]                 | Genes mediating programmed cell death (apoptosis) by activation of caspases.                         | 3                            | •   | 1.09 e <sup>-3</sup> | 9.05 e <sup>-3</sup> |
| HALLMARK_HYPOXIA [200]                   | Genes up-regulated in response to low oxygen levels (hypoxia).                                       | 3                            | •   | 2.02 e <sup>-3</sup> | 1.44 e <sup>-2</sup> |
| HALLMARK_INTERFERON_ALPHA_RESPONSE [97]  | Genes up-regulated in response to alpha interferon proteins.                                         | 2                            |     | 6.59 e <sup>-3</sup> | 4.12 e <sup>-2</sup> |



- Lets open top 200 genes upregulated in activated T cells
- Lets search for hits in GeneQuery
- https://ctlab.itmo.ru/genequery/searcher/



| GeneQuery <sup>α</sup>                                                                                     |                                                   |              |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------|
| Database species:                                                                                          | Homo Sapiens    Mus Musculus    Rattus Norvegicus |              |
| Query species:                                                                                             | Homo Sapiens    Mus Musculus    Rattus Norvegicus |              |
| Gene list (separated by newline/whitesp                                                                    | ace/tab)                                          |              |
| JAK1 ARID5B GLIPR1 NEU1 IRF1 SRSF7 ADGRE5 TUBA4A IDS UTRN IFIT2 MCL1 DUSP2 IER5 TYROBP DUSP1 JUN IER3 ATF3 |                                                   |              |
| Search                                                                                                     | Ru                                                | ın example → |



| ‡ Experiment title                                                                                                                                           | Module | log <sub>10</sub> (adj.p <sub>value</sub> ) | Overlap  | GSE      | GMT      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------|----------|----------|----------|
| Nave-like Yellow-Fever specific CD8 T cells and reference CD8 T cell subsets in humans                                                                       | 3      | -60.92                                      | 92/399   | GSE65804 | •        |
| Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease                                                                   | 6      | -49.51                                      | 66/194   | GSE42057 | •        |
| MicroRNA regulate immune pathways in T-cells in multiple sclerosis (MS)                                                                                      | 4      | -49.09                                      | 78/307   | GSE43592 | •        |
| Comparison of transcriptional profiles of CD4+ and CD8+ T cells from HIV-infected pateints and uninfected control group                                      | 5      | -45.61                                      | 81/422   | GSE6740  | •        |
| Phenotype, Function and Gene Expression Profiles of PD-1 high CD8 T cells in Healthy Human Adults                                                            | 6      | -45.29                                      | 79/344   | GSE26495 | •        |
| Distinct, non-overlapping gene panels of peripheral blood gene expression predict response to infliximab therapy in rheumatoid arthritis and Crohn's disease | 10     | -43.25                                      | 58/171   | GSE42296 | •        |
| Identification and characterization of human Natural Killer (NK) lineage restricted progenitors                                                              | 2      | -41.67                                      | 139/1581 | GSE60448 | •        |
| Absence of significant overlap in transcriptional patterns between operationally tolerant liver and kidney recipients                                        | 10     | -40.23                                      | 59/186   | GSE22707 | <b>④</b> |
| Gene expressions of CD4+T cells in each developmental stages                                                                                                 | 3      | -39.76                                      | 84/558   | GSE61697 | •        |
| Lack of effect in desensitization with intravenous immunoglobulin and rituximab in highly-sensitized patients                                                | 8      | -39.13                                      | 49/126   | GSE31729 | •        |
|                                                                                                                                                              |        |                                             |          |          |          |











## Pathway enrichment



Enrichment score function



Empirical null distribution

from random sets

P-value & Normalized Enrichment Score (NES)



#### **FGSEA**

## Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize, gseaParam, : There are ties ## The order of those tied genes will be arbitrary, which may produce unexpected results.

```
## Warning in fgseaMultilevel(pathways = keggSymbolHuman, stats = ranks, minSize ## = 15, : For some pathways, in reality P-values are less than 1e-10. You can set ## the `eps` argument to zero for better estimation.
```

# ITsMOre than a UNIVERSIT

#### **FGSEA**

head(fgseaRes)

```
##
                                                                             pathway
## 1:
                                            ABC transporters - Homo sapiens (human)
## 2: AGE-RAGE signaling pathway in diabetic complications - Homo sapiens (human)
## 3:
                                     AMPK signaling pathway - Homo sapiens (human)
## 4:
                                     Acute myeloid leukemia - Homo sapiens (human)
## 5:
                                          Adherens junction - Homo sapiens (human)
## 6:
                            Adipocytokine signaling pathway - Homo sapiens (human)
                                                        NES size
##
           pval
                              log2err
                                               ES
                      padi
## 1: 0.4209651 0.6034636 0.07850290 0.4777742
                                                              27
                                                  1.035083
## 2: 0.2212518 0.4129938 0.10797236 0.4679309
                                                              76
                                                  1.184923
## 3: 0.4228650 0.6034636 0.06863256 0.3906820
                                                  1.026653
                                                              97
## 4: 0.1552795 0.3431176 0.19991523 -0.4178300 -1.195955
                                                              60
## 5: 0.2455882 0.4315751 0.10208011 0.4765087
                                                  1.176408
                                                              60
## 6: 0.2336874 0.4240420 0.10714024
                                       0.4872912
                                                              53
                                                  1.182400
##
                                       leadingEdge
## 1:
                             TAP1, ABCA2, TAP2, ABCG1
## 2:
             TNF, TGFB1, JUN, MAPK1, CDC42, PIK3R1, ...
## 3: PPP2R5C, PIK3R1, PPP2R2B, RAB8A, RAB14, AKT1, ...
## 4:
              LEF1, MYC, TCF7, NFKB1, PIM2, STAT5A, ...
```



#### Using fgsea

```
topPathwaysUp <- fgseaRes[ES > 0 & padj < 0.01, ][head(order(pval), n=10), pathway]
topPathwaysDown <- fgseaRes[ES < 0 & padj < 0.01, ][head(order(pval), n=10), pathway]
topPathways <- c(topPathwaysUp, rev(topPathwaysDown))</pre>
```



# Using fgsea

| Pathway                                                          | Gene ranks                                | NES   | pval    | padj    |
|------------------------------------------------------------------|-------------------------------------------|-------|---------|---------|
| Natural killer cell mediated cytotoxicity - Homo sapiens (human) | per services of minimal file              | 2.07  | 2.5e-08 | 3.5e-06 |
| Phagosome - Homo sapiens (human)                                 | <b></b>                                   | 2.06  | 4.1e-08 | 3.8e-06 |
| Antigen processing and presentation - Homo sapiens (human)       | <b>—</b> 11                               | 2.07  | 1.0e-07 | 7.0e-06 |
| Regulation of actin cytoskeleton - Homo sapiens (human)          | <b></b>                                   | 1.95  | 1.5e-07 | 8.1e-06 |
| Graft-versus-host disease - Homo sapiens (human)                 | harana a                                  | 2.06  | 2.8e-07 | 1.2e-05 |
| Herpes simplex infection - Homo sapiens (human)                  |                                           | 1.92  | 3.1e-07 | 1.2e-05 |
| Epstein-Barr virus infection - Homo sapiens (human)              |                                           | 1.85  | 4.8e-07 | 1.6e-05 |
| Tuberculosis - Homo sapiens (human)                              | primera – – i rettirdi ili                | 1.95  | 5.2e-07 | 1.6e-05 |
| Th1 and Th2 cell differentiation - Homo sapiens (human)          | <b></b>                                   | 1.97  | 7.0e-07 | 1.9e-05 |
| Allograft rejection - Homo sapiens (human)                       | ■ 1 • • • · · · · · · · · · · · · · · · · | 1.99  | 1.6e-06 | 4.0e-05 |
| Ribosome - Homo sapiens (human)                                  | 0 5000 10000                              | -2.89 | 1.0e-10 | 2.7e-08 |



# Using fgsea

plotEnrichment(keggSymbolHuman[["T cell receptor signaling pathway - Homo sapiens (human)
ranks) + labs(title="T cell receptor signaling pathway - Homo sapiens (human)")





#### Summary

- We have many ways to annotate gene sets, if it's hard to annotate by markers
- Differential expression is one of key ways to do that
- Once we have differential expression results we have many ways to annotate transcriptional differences with the pathways



# Questions?