BMWG – Containerized Infrastructure Benchmarking

IETF 114 Hackathon July 22-23, 2022

Hackathon Plan

- Our draft main goal is to figure out container networking performance impacts by various resource options.
 - Draft:
 Considerations for Benchmarking Network Performance in Containerized Infrastructures
 https://tools.ietf.org/html/draft-dcn-bmwg-containerized-infra
 - Two main features
 - Verify container network performance with various network acceleration models
 - Verify performance impacts depending on different configuration settings

Hackathon Plan

What we have done so far in Hackathon

1. Models

- ✓ Kernel-space
- ✓ User-space (OVS DPDK, VPP)
- ✓ SmartNIC (SRIOV)
- ✓ Combined (SRIOV-VPP)

2. Configuration

- ✓ NUMA (CNF, vSwitch, NIC)
- ✓ Hugepages
- Service chains (multiple pods)

In this hackathon

eBPF Acceleration Model

 Net 	working Models in Containerized	1]	Inf	Fra	ast	ru	ıct	ur	e				8
<u>4.1</u> .	Kernel-space vSwitch Model .												9
<u>4.2</u> .	User-space vSwitch Model												<u>10</u>
<u>4.3</u> .	eBPF Acceleration Model												<u>10</u>
<u>4.4</u> .	Smart-NIC Acceleration Model												<u>12</u>
<u>4.5</u> .	Model Combination												<u>13</u>
 Per 	formance Impacts												<u>14</u>
<u>5.1</u> .	CPU Isolation / NUMA Affinity												<u>14</u>
<u>5.2</u> .	Hugepages												<u>15</u>
5.3.	Service Function Chaining												15

BMWG - Containerized Infrastructure Benchmarking

- Champion(s)
 - Younghan Kim <younghak at ssu.ac.kr>
 - Minh-Ngoc Tran <mipearlska1307 at dcn.ssu.ac.kr>
 - Hokeun Lim < limhk at dcn.ssu.ac.kr>
- Project(s)
 - Benchmarking performance of eBPF acceleration technique
- Specification(s)
 - https://datatracker.ietf.org/doc/html/draft-dcn-bmwg-containerized-infra

What got done

Using AF-XDP and OVS-DPDK vSwitch

 $NIC \leftrightarrow Userspace$

AF-XDP

- The new socket type available from Linux Kernel > 4.18
- Allows attached eBPF program in XDP hook at kernel NIC driver (native XDP mode) to transmit packet to userspace bypassing kernel network stack

$Userspace \leftrightarrow Container$

OVS-DPDK AF-XDP supported version

- An optional built version of OVS-DPDK vSwitch that support AF-XDP
- Can create AF-XDP Poll Mode Driver (PMD) ports that continuously poll packets from AF-XDP sockets
- Vhostuser ports and Virtio PMDs at application are used to transmit packets between container and host

What got done

Benchmarking Testbed – same with previous hackathons

Single node scenario
Multi nodes scenario

- eBPF Supported NIC: Intel X710
- AF-XDP supported kernel: Ubuntu 22.04 (kernel v5.15)
- · Pod multi-interfaces: Multus
- vSwtich supported CNI: Userspace CNI

What got done

Benchmarking Configuration

Hardware – Worker Node

CPU	Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz					
CPU	48 CPU cores * 2 NUMA nodes					
Memory	256GB: 32GB x 4DIMMs x 2 NUMA nodes @ 2400MHz					
NIC	Intel Corporation Ethernet Network Adapter X71-					
INIC	40Gbps					
Microcode	0x5003102					
Intel NIC	0x1572					
Device ID	0.00.10.7.2					
Intel NIC						
Firmware	6.01 0x800035cf 1.1747.0					
version						
BIOS setting	CPU Power and Performance Policy < Performance >					
	CPU C-state Disabled					
	CPU P-state Disabled					
	Intel(R) Hyper-Threading Tech Enabled					
	Turbo Boost Disabled					

Traffic Generator : T-Rex (v2.92)

Name	T-Rex						
Version	2.92						
Benchmark	T-Rex Non Drop Rate application (accepted						
method	percentage of drop rate is less than 0.1%)						

Software

Operating System	Ubuntu 22.04
Linux Kernel Version	5.15
GCC version	gcc version 4.8.5 20150623 (Red Hat 4.8.5-44)
DPDK version	21.11.1
Hugepages	1Gi

What we learned

- Benchmarking Performance Results vs OVS-DPDK, SRIOV, VPP (Single Pod)
 - OVS-AFXDP catches up with the performance of OVS-DPDK
 - But significantly lower behinds SRIOV and VPP
 - The reason might be at the limitation of vhostuser-virtioPMD path between container and vSwitch
 - VPP uses memif PMD (shared memory packet interface) which is a better performance method
 - → This result might not show true performance of AF-XDP-eBPF acceleration model
 → Using AF_XDP with VPP vSwitch and memif
 - → Using AF_XDP with VPP vSwitch and men interfaces might significantly improve the performance

Future Works

- Performance comparison with other XDP-eBPF acceleration model variations
 - VPP-AF-XDP
 - Cloud Native Data Plane (CNDP): A new cloud native userspace framework developed by Intel (first release April 2022) which utilizes AF-XDP and VPP
 - Cililum: eBPF based CNI

Differences at packet transmission routes between XDP socket and container Differences at East-West (E-W) traffic handling

Future Works

VPP-AFXDP

Use vSwitch pmd and memif

CNDP

Create afxdp socket at pod namespace

Cilium

Normal xdp at NIC driver and Socket Layer, CNI veth pair with pod

Future Works

OVS/VPP-AFXDP E-W using vSwitch

E-W using VPP network stack (Assumption: not yet described by official docs)

CNDP

E-W using eBPF at NW Socket Layer

Wrap Up

Team members:

Younghan Kim (SSU)

Minh Ngoc Tran(SSU)

Thanh Nguyen Nguyen (SSU)

Jangwon Lee (SSU)

Hokeun Lim (SSU)

Git repo:

https://github.com/SSU-DCN/bmwg-container-networking

Remote Hackathon from Seoul

Internet Infra System Technology Research Center – Soongsil University (IISTRC- SSU)