Introduzione a NumPy e Pandas in Python

Ambiente virtuale e pip

Per gestire in modo sicuro le dipendenze di un progetto Python si crea un **ambiente virtuale**. Questo è un albero di directory isolato che contiene un'installazione specifica di Python e i pacchetti necessari, evitando conflitti di versione con altri progetti 1 . Ad esempio, creando un nuovo ambiente con il modulo venv (python -m venv mia_env) si ottiene una copia autonoma dell'interprete Python 2 . Dopo la creazione, è necessario **attivare** l'ambiente (su Windows eseguendo mia_env\Scripts\activate, su Unix source mia_env/bin/activate) in modo che i comandi successivi (come python o pip) agiscano all'interno di questo ambiente 3 4 . Una volta attivo, si usano **pip** (il gestore pacchetti di Python) per installare librerie aggiuntive dal Python Package Index (PyPI) 4 . In Visual Studio Code si può aprire il terminale integrato e digitare questi comandi, garantendo che l'ambiente attivo venga riconosciuto dall'editor.

```
# Crea un nuovo ambiente virtuale Python
python -m venv mia_env

# Attiva l'ambiente virtuale
# Windows:
mia_env\Scripts\activate
# Linux/Mac:
source mia_env/bin/activate

# Installa librerie all'interno dell'ambiente
pip install pandas numpy
```

- L'ambiente virtuale *isola* le librerie del progetto, evitando conflitti di versioni.
- pip installa pacchetti dal repository PyPI nell'ambiente attivo 4.
- Utilizzare un ambiente per ciascun progetto semplifica la **gestione delle dipendenze**.
- Ricordarsi di attivare l'ambiente (cambierà il prompt) prima di lanciare Python o Jupyter.

Jupyter Notebook

Un **notebook Jupyter** è un'applicazione web open-source per scrivere codice in modo interattivo 5. Ogni notebook consiste in celle di **codice** (ad es. Python) e celle di testo (Markdown) che possono includere spiegazioni, immagini o equazioni. Questo formato è molto usato in data science perché permette di alternare codice eseguibile a risultati (grafici, tabelle) con spiegazioni narrative. I notebook sono ideali per l'analisi esplorativa dei dati (EDA), visualizzazione e documentazione dei passaggi, rendendo il lavoro trasparente e riproducibile 6. 7. Ad esempio, il tutorial Databricks spiega che Jupyter permette di "mostrare il lavoro" combinando codice, annotazioni e immagini 7. In Visual Studio Code è possibile aprire file .ipynb con estensione Jupyter, eseguendo celle direttamente nell'editor; alternativamente si avvia jupyter notebook dal terminale per lavorare nel browser.

```
# Esempio di cella in Jupyter
print("Benvenuti nel Jupyter Notebook!")
```

- Ambiente interattivo: codice e risultati appaiono cella per cella.
- Combinazione di **codice, annotazioni e grafici** facilita la documentazione del flusso di lavoro
- I notebook sono eseguibili passo-passo ed esportabili (HTML, PDF, ecc.), utili per condividere analisi 7 .
- Supportano pacchetti Python scientifici (NumPy, Pandas, Matplotlib) e kernel multipli.

NumPy: array e operazioni

NumPy è la libreria fondamentale per il calcolo numerico in Python 8 . **NumPy** fornisce array multidimensionali (ndarray) e operazioni vettoriali ad alte prestazioni. In pratica, sostituisce i loop Python lenti con operazioni interne ottimizzate su interi array. Il sito ufficiale descrive NumPy come una libreria "open source...che aggiunge supporto a grandi matrici e array multidimensionali insieme a una vasta collezione di funzioni matematiche di alto livello" 8 . Si creano array da liste Python (ad es. np.array([1,2,3])), impostando forma (shape) e tipo di dato. Questi array hanno attributi come ndim, shape e supportano l'indicizzazione/slicing simile alle liste Python. Le operazioni aritmetiche (somma, moltiplicazione, etc.) vengono applicate elemento-per-elemento in modo vettoriale.

- Gli array NumPy hanno forma fissa (shape) e possono contenere elementi numerici omogenei.
- Le operazioni come arr + 10 o arr1 * arr2 si applicano **elementwise** senza scrivere loop.
- **Broadcasting**: NumPy estende automaticamente array di forma minore per renderli compatibili nelle operazioni ⁹ .
- Indici e slicing: si accede con arr[i], arr[i:j], o con slicing multi-dimensionale.

Serie e DataFrame

In Pandas le due strutture dati principali sono **Series** e **DataFrame** ¹⁰ ¹¹ . Una *Series* è un array monodimensionale con un indice etichettato: si può pensare a una Series come a una colonna di dati (ad esempio una colonna di un foglio di calcolo). Un *DataFrame* è una tabella bidimensionale (righe e colonne), simile a un foglio di calcolo o a una tabella SQL: ha un indice di riga e nome di colonna etichettati, e ciascuna colonna può avere un tipo di dato diverso ¹² . In pratica, un DataFrame è

composto da più Series combinate. Pandas è costruito su NumPy, rendendo queste strutture estremamente efficienti su dataset di grandi dimensioni ¹³. Le Series e i DataFrame permettono operazioni di indicizzazione intelligenti: è possibile accedere alle righe/colonne tramite etichette (.loc) o posizioni intere (.iloc). Ad esempio, per un DataFrame df, df['Nome'] restituisce la Series corrispondente alla colonna "Nome", mentre df.loc[0] o df.iloc[0] restituisce la prima riga ¹⁴.

```
import pandas as pd
# Creazione di una Series da lista (con indice personalizzato)
s = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
print("Series:")
print(s)
# Creazione di un DataFrame da dizionario
df = pd.DataFrame({
    'Nome': ['Alice', 'Bob', 'Charlie'],
    'Età': [25, 30, 22]
})
print("\nDataFrame:")
print(df)
# Indicizzazione e slicing
print("\nElemento della Series con indice 'b':", s['b'])
print("Prima riga del DataFrame con .loc:\n", df.loc[0])
print("Prime due righe con slicing:\n", df.iloc[0:2])
```

- **Creazione**: Series da lista, dizionario, array NumPy; DataFrame da dizionario di liste/array, da file CSV/Excel, ecc.
- Indicizzazione: accesso facilitato con etichette (.loc) o posizioni (.iloc) 14 .
- È possibile selezionare colonne singole (df['col']), più colonne (df[['col1', 'col2']]) o righe intere.
- Slicing e filtraggio permettono di ottenere subset del DataFrame (ad es. df [0:5] per prime 5 righe, o con condizioni complesse).

Importazione ed esportazione di dati (CSV, Excel)

Pandas semplifica la lettura e la scrittura di dati strutturati. I file CSV (Comma-Separated Values) sono testi grezzi separati da virgole, largamente usati perché leggibili da qualsiasi applicazione 15. Con pd.read_csv('file.csv') si carica un CSV in un DataFrame. Analogamente, pd.read_excel('file.xlsx') (richiede la libreria openpyxl o simili installata) importa dati da fogli Excel in un DataFrame 16 . Le funzioni to_csv() e to_excel() permettono l'esportazione dal DataFrame verso file su disco. Ad esempio, si può salvare un DataFrame come CSV: df.to_csv('output.csv', index=False), e come Excel: |df.to_excel('output.xlsx', index=False). Queste funzioni supportano molte opzioni (delimitatori diversi, fogli multipli, encoding, ecc.). È importante prestare attenzione agli header e agli indici (i parametri header , index).

```
import pandas as pd

# Leggi un CSV in un DataFrame
df_csv = pd.read_csv('dati.csv') # file CSV di esempio
print("Prime righe di dati.csv:")
print(df_csv.head())

# Esporta DataFrame su CSV
df_csv.to_csv('dati_output.csv', index=False)

# Leggi un file Excel (foglio "Foglio1")
df_excel = pd.read_excel('dati.xlsx', sheet_name='Foglio1')
print("\nPrime righe di dati.xlsx:")
print(df_excel.head())

# Esporta DataFrame su Excel
df_excel.to_excel('dati_output.xlsx', index=False)
```

- pd.read_csv() e pd.read_excel() importano dati in DataFrame (rispettivamente CSV ed Excel) 15 16.
- df.to_csv() e df.to_excel() esportano i dati su file.
- Possibilità di specificare fogli (sheet_name), separatori (sep), encoding (encoding), righe di header, colonne da leggere (usecols), ecc.
- I dati importati mantengono tipologie (numeri, stringhe, date) e indici che si possono personalizzare.

Filtri, selezioni e condizioni

Pandas consente di filtrare i dati di un DataFrame usando condizioni booleane su colonne. Ogni confronto (>, <, ==, !=, ecc.) applicato a una Series genera una Series di valori booleani. Ad esempio, df['Età'] > 18 restituisce una Series True/False per ogni riga. Si può quindi passare questa condizione per ottenere le righe che la soddisfano: df[df['Età'] > 18] ritorna un DataFrame con solo le righe dove l'età è maggiore di 18. In generale, l'espressione df[condizione] effettua un filtro sulle righe. Nel tutorial vediamo un esempio simile: df[df['Salary'] > 60000] seleziona dipendenti con salario alto 17. Si possono combinare più condizioni usando operatori logici bitwise di NumPy: & (AND), | (OR), ~ (NOT). Per esempio, df[(df['Età'] > 18) & (df['Genere'] == 'F')] seleziona le donne maggiorenni.

```
import pandas as pd

df = pd.DataFrame({
    'Nome': ['Anna', 'Luca', 'Maria', 'Giovanni'],
    'Età': [23, 17, 35, 29]
})

# Seleziona righe con condizione booleana (Età >= 18)
maggiorenni = df[df['Età'] >= 18]
print("Ragazzi maggiorenni:")
print(maggiorenni)
```

```
# Usa .loc con condizione e selezione di colonne
nomi_maggiorenni = df.loc[df['Età'] >= 18, ['Nome']]
print("\nNomi di età >= 18:")
print(nomi_maggiorenni)
```

- Filtri booleani: si usa df [condizione] dove condizione è un array di True/False sulla stessa lunghezza di df .
- .loc permette di combinare filtro righe e selezione colonne: df.loc[condizione, ['col1','col2']].
- È possibile concatenare condizioni multiple con & (and) e | (or) invece di and , or .
- Pandas supporta anche il metodo df.query("Età > 18 and Genere == 'F'") per query in sintassi stringa.

Operazioni su colonne e righe

Un DataFrame Pandas consente di manipolare facilmente righe e colonne. Le **colonne** sono in sostanza Series: si possono creare nuove colonne semplicemente assegnando a df['Nuova'] una Series o una lista. Ad esempio, df['C'] = df['A'] + df['B'] aggiunge una colonna C ottenuta dalla somma di A e B. Per cancellare una colonna si usa df.drop('Colonna', axis=1). Allo stesso modo, df.drop(3, axis=0) elimina la riga con indice 3. Inoltre, si possono rinominare etichette di colonne o righe con df.rename({vecchio: nuovo}, axis=1) o axis=0 lla. I DataFrame permettono operazioni vettoriali su intere colonne: per esempio df['A'] * 2 raddoppia tutti i valori di A. Si possono applicare funzioni elementwise alle colonne (ad es. tramite df['A'].map(lambda x: ...) o df.apply()). Dal tutorial vediamo un caso in cui viene aggiunta la colonna "Salary" llustrando quanto sia facile creare nuove colonne a partire dai dati esistenti.

```
import pandas as pd
df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [10, 20, 30]
print("DataFrame originale:")
print(df)
# Aggiungi una nuova colonna come combinazione di altre
df['C'] = df['A'] + df['B'] # somma colonna A e B
print("\nDopo aver aggiunto colonna C:")
print(df)
# Rimuovi la colonna B
df.drop('B', axis=1, inplace=True)
print("\nDopo aver rimosso la colonna B:")
print(df)
# Rinominare una colonna
df_renamed = df.rename(columns={'A': 'Alpha', 'C': 'Sum'})
```

```
print("\nDopo il rename delle colonne:")
print(df_renamed)
```

- Operazioni aritmetiche si propagano su intere colonne (es. df['col'] + 5 aggiunge 5 a ogni riga).
- Creare/Modificare colonne: df['Nuova'] = ...; Cancellare colonne: df.drop('col', axis=1).
- **Righe**: df.drop(index, axis=0) o uso di .loc / .iloc per selezionare/sovrascrivere righe.
- Rinominare colonne o indici con df.rename(), ad es. df.rename(columns={'A':'a'})
- Si possono usare df.apply() o df.applymap() per applicare funzioni a righe/colonne o a tutti gli elementi.

Join e Merge fra DataFrame

Pandas supporta l'unione di DataFrame (join/merge) come farebbe un database SQL ¹⁹. Il metodo principale è pd.merge(df1, df2, on=chiave, how='inner'), che combina due DataFrame sul campo comune chiave. Per default effettua un *inner join* (mantiene solo le chiavi comuni) ¹⁹ ²⁰. Ad esempio, unendo due DataFrame sulla colonna "id", i record con lo stesso id vengono fusi in una singola riga. Specificando how='outer' si ottiene una *union* completa (unisce tutte le chiavi, riempiendo con NaN quelle mancanti) ²¹. Esistono anche join di tipo left e right per usare tutte le chiavi rispettivamente del DataFrame sinistro o destro ²² ²³. In alternativa, è possibile usare df1.join(df2) che unisce per indice. Per concatenare DataFrame in senso verticale (append di righe) o orizzontale (affiancamento di colonne) si usa pd.concat([df1, df2], axis=0) o axis=1. In sintesi, con merge/join/concat Pandas offre vari modi per unire e affiancare i dati.

```
import pandas as pd
df1 = pd.DataFrame({
    'id': [1, 2, 3],
    'Nome': ['A', 'B', 'C']
})
df2 = pd.DataFrame({
    'id': [2, 3, 4],
    'Valore': [100, 200, 300]
})
# Inner merge sui campi 'id' (soltanto chiavi comuni)
merged_inner = pd.merge(df1, df2, on='id', how='inner')
print("Inner merge su 'id':")
print(merged_inner)
# Outer merge (tutte le chiavi)
merged_outer = pd.merge(df1, df2, on='id', how='outer')
print("\nOuter merge su 'id' (tutte le chiavi):")
print(merged_outer)
```

ullet pd.merge() unisce come JOIN SQL: chiavi comuni e tipi (inner/outer/left/right) 19 20 .

- Con inner join (how='inner') rimangono solo le chiavi presenti in entrambi i DF 20.
- Con outer join si mantengono tutte le chiavi, inserendo NaN dove mancano valori 21 .
- df1.join(df2) unisce per indice di riqa; pd.concat() concatena per righe o colonne.
- Utile per combinare dati da diverse sorgenti correlati da una colonna chiave (es. ID).

Raggruppamenti (groupby)

Il metodo groupby() consente di raggruppare le righe di un DataFrame in base ai valori di una (o più) colonna, per poi applicare funzioni di aggregazione ²⁴. Non si tratta di un semplice ordinamento, ma di *suddividere* il DataFrame in subset e poi *applicare* calcoli su ogni gruppo. Ad esempio, con df.groupby('Team')['Score'].mean() otteniamo la media dei punteggi per ogni squadra (Team). Il tutorial spiega che raggruppando su "Località" si ottengono aggregazioni separate per ciascuna città ²⁴. Si può aggregare con funzioni come mean(), sum(), count(), oppure passare dizionari a .agg({'col': [funzioni]}) per più operazioni contemporaneamente. Il risultato è un oggetto GroupBy o DataFrame raggruppato a più livelli, a seconda del numero di chiavi di raggruppamento.

```
import pandas as pd

df = pd.DataFrame({
    'Team': ['A', 'A', 'B', 'B', 'A'],
    'Score': [10, 15, 10, 20, 25]
})

# Raggruppa per 'Team' e calcola la media dei punteggi
mean_score = df.groupby('Team')['Score'].mean()
print("Media dei punteggi per team:")
print(mean_score)

# Raggruppa e applica più aggregazioni
agg = df.groupby('Team').agg({'Score': ['sum', 'count']})
print("\nSomma e conteggio dei punteggi per team:")
print(gg)
```

- df.groupby('col') crea un oggetto GroupBy che divide i dati per i valori unici di 'col'.
- Le funzioni di aggregazione (mean(), sum(), count(), ecc.) calcolano statistiche per ciascun gruppo.
- È possibile raggruppare per più colonne contemporaneamente (df.groupby(['col1','col2'])).
- Esito: di solito una Series o DataFrame con indici gerarchici corrispondenti ai gruppi.
- Fondamentale per sintesi dati: ad es. calcolare totali o medie raggruppate.

Pivot Table

Una **pivot table** è una tabella riepilogativa che raggruppa dati in uno schema "matrice" con righe e colonne multiple, aggregando valori. In Pandas si ottiene con pd.pivot_table(df, index=..., columns=..., values=..., aggfunc=...). Questa funzione consente di ricreare tabelle crociate simili a Excel. In pratica si specifica l'indice (righe), le colonne, il campo da aggregare e la funzione di aggregazione (ad es. somma, media). Ad esempio, con pd.pivot_table(df, values='Value',

index='City', columns='Category', aggfunc='sum') si ottiene la somma dei valori per ogni combinazione di città e categoria. GeeksforGeeks osserva che pivot_table() "allows us to create a pivot table to summarize and aggregate data" 25 . È utile con dataset grandi: si possono anche gestire i NaN con fill_value e aggiungere margini (totali).

```
import pandas as pd
df = pd.DataFrame({
    'City': ['Roma', 'Roma', 'Milano', 'Milano', 'Bologna'],
    'Category': ['A', 'B', 'A', 'B', 'A'],
    'Value': [100, 150, 80, 120, 200]
})
# Crea tabella pivot (somma dei valori per City e Category)
pivot = pd.pivot_table(df, values='Value', index='City', columns='Category',
aggfunc='sum')
print("Tabella pivot (somma):")
print(pivot)
# Con parametro fillna per sostituire NaN
pivot_fill = pd.pivot_table(df, values='Value', index='City',
columns='Category', aggfunc='sum', fill_value=0)
print("\nTabella pivot con fill_value=0:")
print(pivot_fill)
```

- pd.pivot_table() | crea una tabella stile Excel riassumendo e aggregando i dati 25 .
- Parametri chiave: index (righe del pivot), columns (colonne del pivot), values (campo numerico da aggregare), aggfunc (media, somma, ecc.).
- Si possono includere più livelli di indice o colonne (liste).
- fill_value | sostituisce i valori mancanti (NaN) risultanti dal pivot.
- Utile per trasformare dati lunghi in riepiloghi incrociati (sum, average, count, ecc.).

Dati mancanti (NaN)

I valori nulli o **mancanti** in Pandas sono rappresentati come NaN (Not a Number, tipo float). Gestire i NaN è fondamentale per analizzare i dati puliti. Pandas offre metodi dedicati: con df.dropna() si eliminano righe (o colonne) contenenti NaN, mentre df.fillna(valore) riempie i NaN con un valore specifico (come 0 o la media di una colonna). Come evidenziato nella guida, "i DataFrame forniscono metodi per gestire i valori mancanti o NaN, inclusa la rimozione o il riempimento" 26 . Spesso si calcola la media di una colonna (ignorando i NaN) e si usa con fillna(). Ecco un esempio: df.dropna() cancella tutte le righe con almeno un NaN, mentre df.fillna(df.mean()) sostituisce ogni NaN con la media della colonna corrispondente.

```
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'A': [1, np.nan, 3],
    'B': [4, 5, np.nan]
```

```
})
print("DataFrame originale con NaN:")
print(df)

# Rimuovi righe con NaN

df_drop = df.dropna()
print("\nDopo dropna():")
print(df_drop)

# Sostituisci NaN con 0

df_fill = df.fillna(0)
print("\nDopo fillna(0):")
print(df_fill)

# Sostituisci NaN con media delle colonne
df_mean = df.fillna(df.mean())
print("\nDopo fillna con media delle colonne:")
print(df_mean)
```

- dropna(): elimina righe (o colonne, con axis=1) che contengono NaN.
- fillna(valore): sostituisce i NaN con il valore scelto (es. 0, media, mediana, o metodo di forward/backfill).
- Utilità: evitiamo errori negli algoritmi che non gestiscono bene i NaN e completiamo il dataset prima di calcoli statistici.
- Verifiche: df.isna() o df.notna() individuano valori NaN nei dati.

Statistiche descrittive

Pandas offre funzioni rapide per ottenere statistiche riassuntive di un DataFrame o di una Series. Ad esempio, df.mean(), df.std(), df.min(), df.max() restituiscono rispettivamente media, deviazione standard, minimo e massimo per ciascuna colonna numerica. Il metodo df.describe() è particolarmente comodo: genera un sommario completo delle statistiche di central tendency e dispersione per il DataFrame ²⁷. Secondo la documentazione, describe() "genera statistiche descrittive che includono tendenza centrale, dispersione e forma della distribuzione" ²⁷. Nel caso numerico, fornisce count, mean, std, min, percentili (25%, 50%, 75%) e max. In un tutorial Pandas, vengono citati metodi come .mean() e .std() proprio per il calcolo rapido delle statistiche fondamentali.

```
import pandas as pd

df = pd.DataFrame({
    'A': [10, 20, 30, 40],
    'B': [5, 5, 5, 5]
})
print("Media colonna A:", df['A'].mean())
print("Deviazione standard colonna A:", df['A'].std())

# Statistiche descrittive riassuntive
```

```
print("\nStatistiche descrittive con describe():")
print(df.describe())
```

- df['col'].mean() e df['col'].std() calcolano media e deviazione standard di una colonna.
- df.count() conta i valori non nulli; df.min(), df.max(), df.median(), ecc. forniscono altre statistiche basilari.
- df.describe() riepiloga count, mean, std, min, percentili (25%, 50%, 75%), max per ogni colonna numerica 27.
- Questi metodi ignorano automaticamente i NaN nei calcoli.
- Utile per individuare dati anomali e comprendere la distribuzione delle variabili.

Ordinamento, ridenominazione e trasformazioni

Infine, Pandas consente di **ordinare** facilmente i dati e di trasformare le etichette. Per ordinare un DataFrame in base ai valori di una colonna si usa df.sort_values(by='col'); la documentazione spiega infatti che sort_values() "ordina lungo l'asse specificato in base ai valori" 28 . Si può scegliere l'ordine crescente/decrescente (ascending=False) e posizionare i NaN all'inizio o fine (na_position). Per ordinare per indice si usa df.sort_index(). Per **rinominare** colonne o righe si utilizza df.rename(): ad esempio df.rename(columns={'A':'alpha','B':'beta'}) restituisce un nuovo DataFrame con colonne rinominate (18). Infine, le **trasformazioni** dei dati possono avvenire con metodi come (apply()) o (applymap()). Ad esempio, (df['A'].apply(lambda x: x*10) moltiplica ogni elemento di A per 10. Anche le funzioni per la manipolazione di stringhe o date possono essere applicate alle colonne tramite (.str) o .dt.

```
import pandas as pd
df = pd.DataFrame({
    'C': [3, 1, 2],
    'D': ['x', 'y', 'z']
}, index=[2, 0, 1])
print("DataFrame originale:")
print(df)
# Ordinamento per colonna 'C'
df_sorted = df.sort_values(by='C')
print("\nOrdinato per 'C':")
print(df_sorted)
# Rinomina colonne
df_renamed = df.rename(columns={'C': 'ColonnaC', 'D': 'ColonnaD'})
print("\nColonne rinominate:")
print(df_renamed)
# Trasformazione valori di colonna con apply
df['C_times_10'] = df['C'].apply(lambda x: x*10)
```

print("\nValori di C moltiplicati per 10 (con apply):")
print(df)

- Ordinamento: df.sort_values(by='col') ordina il DataFrame in base a una (o più) colonne 28 . Con ascending=False otteniamo ordine decrescente.
- Ridenominazione: df.rename(columns={vecchio:nuovo}) cambia i nomi delle colonne (o index={} per le righe) 18.
- **Trasformazioni**: df.apply() applica una funzione per righe o colonne; df.applymap() applica elemento-per-elemento.
- Possiamo anche modificare il tipo delle colonne con df.astype() o gestire formati di stringhe/datario con str e .dt .
- 1 2 3 4 12. Ambienti Virtuali e Pacchetti Documentazione Python 3.13.7

https://docs.python.org/it/3.13/tutorial/venv.html

5 6 7 Che cos'è un notebook Jupyter?

https://www.databricks.com/it/glossary/jupyter-notebook

8 NumPy - Wikipedia

https://it.wikipedia.org/wiki/NumPy

⁹ Tutorial Numpy: Array & Broadcasting - La scienza dei dati

https://lascienzadeidati.altervista.org/tutorial-numpy-array-broadcasting/

10 12 13 Pandas: la libreria Python per l'Analisi dei Dati | Visualitics

https://visualitics.it/pandas-python/

11 14 17 26 DataFrame vs Series in Pandas - GeeksforGeeks

https://www.geeksforgeeks.org/pandas/dataframe-vs-series-in-pandas/

15 Pandas Read CSV

https://www.w3schools.com/python/pandas/pandas_csv.asp

pandas.read_excel — pandas 2.3.3 documentation

https://pandas.pydata.org/docs/reference/api/pandas.read_excel.html

pandas.DataFrame.rename — pandas 2.3.3 documentation

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rename.html

19 20 21 22 23 Python basics: unire due DataFrame di Pandas | 1week4

https://www.1week4.com/it/python/pandas-dataframe-merge/

24 Python Pandas: Aggregazione dati con GroupBy – Appunti di programmazione

https://antoiovi.wordpress.com/python-pandas-aggregazione-dati-con-groupby/

²⁵ Pandas.pivot_table() - Python - GeeksforGeeks

https://www.geeksforgeeks.org/python/python-pandas-pivot_table/

27 pandas.DataFrame.describe — pandas 2.3.3 documentation

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.describe.html

²⁸ pandas.DataFrame.sort values — pandas 2.3.3 documentation

 $https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html\\$