Convolutional Autoencoders for Image Manipulation

Pavlos Protopapas Vincent Casser, Camilo Fosco

Institute for Applied Computational Science
Harvard

Structure

- Build an Autoencoder for MNIST
- 2. Extend to Variational Autoencoder (VAE)
- 3. Work with real-world images (faces)

What you'll (hopefully) take away

- How AE's and VAE's work
- How they are defined, trained and executed using keras
- How you could apply them to other vision tasks, such as
 - Denoising
 - Colorization
 - Segmentation
 - Completion
- Even if you can't follow the entire workshop, we will provide you with documented code that you can review later

[Colab] Start

Open: https://bit.ly/2FTFeif

Click Runtime -> Change runtime type... put GPU!

[Colab] Open: colab.research.google.com

1) File -> Open notebook...

2) Github -> harvard-iacs -> Harvard-IACS/2019-computefest

Open notebook VAE.ipynb

3) Runtime -> Change runtime type... put GPU

[Colab] Run first 3 cells. Ignore security warnings

0. Download required code and data

- [1] !git clone https://github.com/Harvard-IACS/2019-computefest.git
- Cloning into '2019-computefest'...
 remote: Enumerating objects: 16, done.
 remote: Counting objects: 100% (16/16), done.
 remote: Compressing objects: 100% (11/11), done.
 remote: Total 192 (delta 4), reused 11 (delta 2), pack-reused 176
 Receiving objects: 100% (192/192), 188.52 MiB | 30.22 MiB/s, done.
 Resolving deltas: 100% (64/64), done.
 Checking out files: 100% (29/29), done.
- [2] import os
 os.chdir("2019-computefest/Wednesday/auto_encoder")
- [3] !ls
- celeba README.md utils.py VAE_Solutions.ipynb models requirements.txt VAE Attendee.ipynb

[AWS] If you haven't yet...

If you don't have a HarvardKey, please claim a XID key here:

https://xid.harvard.edu

Register for a New XID Account

Edit Your XID Account

Change Your Password

Policy | FAQ | Contact Us | Privacy

© 2019 The President and Fellows of Harvard College

Policy I FAQ I Contact Us I Privacy
© 2019 The President and Fellows of Harvard College

[AWS] Launch JupyterHub

Go to: https://bit.ly/2RKwVMC

1) Download the Notebook

2) Open Canvas

3) Click "JupyterHub"

4) Upload VAE.ipynb

[Local] Work on your laptop

You can work directly on your laptop, but it won't be feasible to train.

If you haven't yet, clone the github repository:

git clone git@github.com:Harvard-IACS/2019-computefest.git

Follow the instructions in README.md.

You can open the notebook "VAE.ipynb" in a jupyter notebook instance.

Introduction to Keras Functional API

from keras.layers import Input, Dense

```
# This returns a tensor
inputs = Input(shape=(784,))

# a layer instance is callable on a tensor, and returns a tensor
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)
```

Layers are connected by referencing the previous layer at the end:

new_layer = keras.layers.Layer(arguments)(prev_layer)

Autoencoder: Recap

Architecture: Autoencoder

Implement Encoding Block

Implement Encoding Block

Implement Decoding Block

The relevant layers in keras are defined as:

keras.layers.UpSampling2D() keras.layers.Conv2D()

What you have to implement:

def define_decoder_block(x, num_filters):

define upsampling layer

define first convolutional layer with num filters

define second convolutional layer with num_filters

return result of second convolutional layer

Implement Decoding Block

The relevant layers in keras are defined as:

keras.layers.UpSampling2D() keras.layers.Conv2D()

Implementation could look like this:

def define_decoder_block(x, num_filters):

x = UpSampling2D()(x)

return x

Train AE on MNIST

Use L2 (or mean squared error, MSE) reconstruction loss for training: prediction f should be similar to input y

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

given predictions f and original image y.

Architecture: Autoencoder

Defining the full network

To the notebook!

Train AE on MNIST

You can run the training cell now, should take ~ 2 minutes to train.

After training:

- You can see that outputs are reasonably close to inputs
- Manifold visualization shows numbers somewhat separated despite having an unsupervised model!
- Learned representation with 2 numbers only
- However, results are blurry.

Variational Autoencoder: recap

VAE Architecture

VAE Architecture

VAE Losses

Output should be similar to Input (reconstruction loss)

MSE (L2)

Traditional Autoencoder loss Also often used: MAE (L1)

Proposal distribution should resemble a Gaussian (distribution loss)

KL-Divergence

Typical VAE add-on (KL-divergence)

Train VAE on MNIST

You can run the training cell now, should take ~ 2 minutes to train.

After training:

- You can see that outputs are reasonably close to inputs
- Manifold visualization are better separated than in the AE case
- Results are less blurry than before

CVAE Architecture

Conditioning data can represent known attributes of a given image, e.g. someone's hair color

CVAE Architecture: Alternative

Conditioning data can represent known attributes of a given image, e.g. someone's hair color

Train CVAE on CelebA

Training on CelebA takes much more time, for full convergence ~ 1 hour.

We provided pre-trained weights to load. Using the interactive widgets, you can change the facial attributes. Some work better than others.

AE vs VAE

When to use VAE's? Think about your application.

Rule of thumb: If you see ambiguity in the task yourself, i.e. inputs could have multiple reasonable (but visually distinct) outputs, a VAE will be more appropriate, because it captures

the stochasticity.

Other applications (AE)

Traditional Autoencoders

Variational Autoencoders

Denoising

Colorization

Segmentation

Image completion/removal

Final comments

- For simplicity, we used a basic architecture here. There are many best-practices that should be incorporated to improve quality.
- For many applications, a simple autoencoder can be sufficient.
- The size of the embedding should be carefully considered. If too large, the network will simply remember/forward the input.
- In some tasks (e.g. segmentation), the use of skip-connections makes sense and can greatly enhance the visual quality.
- GANs usually achieve a higher visual quality when synthesizing images than VAEs, but can be tricky to balance and train.

Thank you!

