95	85	
ab abc abcd abcda abcda	1	

(ength) LPS: Largest Poefix which is also a Suffix

$$S = 'a'$$
 $S = 'aaaa'$
 $\Rightarrow LPS = 0$
 $LPS = 8.$

Brute Force

S: SoS1 S2 S3 S4 S5

8S	<u>SS</u>		
S0S1 S2 S3 S4	5,52535485	\Rightarrow	M-1
50515253	S2 S3 S4 S5	\Rightarrow	N-2
So S1 S2	S3 S4 S5	⇒	N-3
9,8,	3455		i I V
S _o	\$ 5		

of iterations = 1+2+3+---+N-1= $\frac{N(N-1)}{2}$

$TC: O(N^2)$

HIW: - Implement this.

* Given a string of length N, neturn the

LPS[i]: length of largest prefix which is also a suffix from inden o to i.

S: aabaaba LPS1): 0 L 01 2 3 4 0 1 2 3 4 5 6 7 8 S: aabacaaba Qui2 LPS[]: 0 1 0 1 0 1 2 3 4 # for every substring starting at i=0:O(N)11 Calculate the LPS. $\longrightarrow O(N^2)$ TC: O(N3) Tent] -> find the no. of occurrences
Pattern] -> find the no. of occurrences T: aabace > (M) $P: abac \Rightarrow \widehat{N}$ any random Character P+\$+T: abac\$aabace

LPS[]: 00100112340

T: aabacabac

P: abac

P+'s'+T: abac \$aabacabac

LPS []: 00100112341234

⇒ 2 occurences of P in T.

Steps:

1) Create LPS Array. > O((M+N)?)

2) If (LPS[i] == M) \Rightarrow O(N)

++ tunos

TC: 0 ((M+N)3)

* KMP (Knuth Morris Pratt) Algo. L. O(M+N): TC

8 wi2 S: abayaba LPS[]: 0010123

Duiz S: cacycaca LPS[]: 00101232

S:
$$S_0S_1S_2S_3S_4S_5...S_{i-y}S_{i$$

LPS[i] > 4

Qui2 (LPS[i]) max = LPS[i-1]+1

i = 23x = LPS[i-1] = LPS[22] = 11

x \	s(i) == s[x]	Xnew.
11	S[23] == S[11] X C!= e	⇒ x = LPS[x-1] = 5
5	S[23] == S[5] C != d X	$\Rightarrow x = LPS[m-1]$ $= LPS[4]$ $x = 2$
2	S[23] == S[2] $C == C$ $LPS[23] = X+1$ $= 3$	

LPS[23] = 3

Code

TC: 0(N)

At max thow many increasing steps > N At max thow many decreasing steps > N

TC: O(N)S: abcdefg | S: aaaaaaaaa

LPS: 0000000 | LPS: D12345678 O(N) O(N)

Pattern Matching TC: O(M+N) { Using KMP } SC: 0 (M+N) B. Given a string, count the no. et rotations that gives us the original string. S: abcd
bcda
cdab
dabc
abc s: abab abab abcd S= abacd 8: Laa bacda Cda<u>ba</u> abacd Brute force Rotate the String N times & in every rotation Check if it is equal to original string.

$$TC: O(N^2)$$

Approach 2 :-

S: abab

- 1) S: abab => Pattern S+S: abababab => Tens.
- 2) S: abcdS+S: $abcdabcd \Rightarrow \Box$

String S;

Tent => (S+S)

Pattern => S

P+'\$'+T: S\$(S+S)

Il Cuate LPS:

LPS[i] == lungth (Pattern) 1

Count ++;

s

S: abab => Pattern

T: S+S: abababab => Tens.

P: 8: abab

9+'\$'+T:- abab \$ abababab.

LPS: 0012012343434

ueturn Count -1;

— * — —