CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

ANALYSIS OF CANONICAL SEQUENTIAL NETWORKS

State transition
$$Y_0 = x'y_1' + xy_0'$$

$$Y_1 = xy_0'y_1' + x'y_0'y_1 + xy_0y_1 + x'y_0y_1'$$
 Output
$$z_0 = y_1'$$

$$z_1 = y_0$$

• STATE-TRANSITION AND OUTPUT FUNCTIONS:

PS	Inp		
$y_1 y_0$	x = 0	x = 1	
00	01	11	01
01	11	00	11
10	10	01	00
11	00	10	10
	Y_1Y_0		$z_{1}z_{0}$
	N	S	Output

• CODES:

\boldsymbol{x}	x	$z_1 z_0$	z	y_1y_0	s
0	a	00	\overline{c}	00	S_0
1	b	01	d		S_1
		10	e	10	S_2
		_ 11	f	11	S_3

HIGH-LEVEL SPECIFICATION:

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{c, d, e, f\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_2$

Functions: The state-transition and output functions

PS	x(t) = a	x(t) = b	
$\overline{S_0}$	S_1	S_3	d
S_1	S_3	S_0	f
S_2	S_2	S_1	c
S_3	S_0	S_2	e
	N	\overline{S}	z(t)

State Diagram

PS	x(t) = a	x(t) = b	
S_0	S_1	S_3	d
S_1	S_3	S_0	f
S_2	S_2	S_1	c
S_3	S_0	S_2	e
	N	S	z(t)

PROPAGATION DELAY x to z_0 :

For x changes $0 \rightarrow 1$ and z_0 changes $1 \rightarrow 0$

CLK

EXAMPLE: DESIGN

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{A, B, C, D\}$

Initial state: s(0) = A

Functions: The state-transition and output functions

PS	Input			
	x = a	x = b	x = c	
\overline{A}	C,0	B, 1	B,0	
B	D , ${\sf 0}$	B , ${\sf 0}$	A , $oldsymbol{1}$	
C	A,0	D , $oldsymbol{1}$	D , ${\sf 0}$	
D	B , ${\sf 0}$	A,0	D, 1	
		NS, z		

• CODING:

ın	input code					
\boldsymbol{x}	x_1	x_0				
\overline{a}	0	1				
$a \\ b$	1	0				
\boldsymbol{c}	1	1				

_	State code			
	s	y_1	y_0	
_	\overline{A}	0	0	
	B	1	0	
	C	0	1	
	D	1	1	

STATE-TRANSITION AND OUTPUT FUNCTIONS

PS	Input			
	x = a	x = b	x = c	
\overline{A}	C,0	B, $f 1$	B,0	
B	D, 0	B , ${f 0}$	A,1	
C	A,0	D , $oldsymbol{1}$	D , ${\sf 0}$	
D	B , ${\sf 0}$	A,0	D, 1	
		$\overline{NS, z}$		

In	Input code				
\boldsymbol{x}	x_1	x_0			
\overline{a}	0	1			
b	1	0			
c	1	1			

$$Y_1 = Y_0 = z =$$

Gate level design of the system:

SR FLIP-FLOP

Figure 8.20: SR FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)				
	00	01	10	11
0	0	0	1	-
1	1	0	1	-
	NS	S =	Q(t)	+1)

Q(t+1) = Q(t)R'(t) + S(t) restriction: $R(t) \cdot S(t) = 0$

JK FLIP-FLOP

Figure 8.21: JK FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)				
	00	01	10	11
0	0	0	1	1
1	1	0	1	0
	NS	S =	$\overline{Q(t)}$	+1)

$$Q(t+1) = Q(t)K'(t) + Q'(t)J(t)$$

T (Toggle) FLIP-FLOP

Figure 8.22: T FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)	T(t)		
	0	1	
0	0	1	
1	1	0	
	NS	= Q(t+1)	

$$Q(t+1) = Q(t) \oplus T(t)$$

Clicker Question

What does the whole circuit do?

- a) It works as a T FlipFlop
- b) It works as a D Flip Flop
- c) It works as a combinational invertor
- d) It is not a valid circuit
- e) It works as a combinational buffer

EXAMPLE: ANALYSIS

$$T_A = T_B = z(t) =$$

• STATE-TRANSITION AND OUTPUT FUNCTIONS

PS	Input							
Q_AQ_B	x_1x_0					x_1	x_0	
	00	01	10	11	00	01	10	11
00	00	00	00	00	0	0	1	1
01	01	01	11	11	0	0	0	0
10	10	11	10	11	0	0	1	1
11	11	10	01	00	0	0	0	0
	Q_AQ_B					2	z	
		NS				Out	put	

• CODING:

			_			
	Q_B			x_1	x_0	x
0	0	S_0	-	0	0	\overline{a}
0	1	S_1			1	
1	0 1 0	S_2		1	0	c
1	1	S_3		1	1	d

HIGH-LEVEL DESCRIPTION:

Input: $x(t) \in \{a, b, c, d\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: The state-transition and output functions

PS	x					5	\overline{r}	
	a	b	c	d	\overline{a}	b	c	d
$\overline{S_0}$	S_0	S_0	S_0	S_0	0	0	1	1
S_1	S_1	S_1	S_3	S_3	0	0	0	0
S_2	S_2	S_3	S_2	S_3	0	0	1	1
S_3	S_3	S_2	S_1	S_3 S_3 S_0	0	0	0	0
	NS					, ,	Z	

EXAMPLE: ANALYSIS

$$J_A = K_A = I_B = K_B = I_B$$

$$z =$$

$$Q_A(t+1) =$$

$$Q_B(t+1) =$$

• STATE-TRANSITION AND OUTPUT FUNCTIONS

PS	N	Output	
	x = 0	x = 1	z
Q_AQ_B	Q_AQ_B	Q_AQ_B	
00	10	00	1
01	00	01	0
10	11	11	1
11	01	01	1

• STATE CODING

Q_B	S
0	S_0
1	S_1
0	S_2
1	S_3
	0

HIGH-LEVEL DESCRIPTION

Input: $x(t) \in \{0, 1\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: The state-transition and output functions

PS	Inp		
	x = 0	x = 1	
$\overline{S_0}$	S_2	S_0	1
S_1	S_0	S_1	0
S_2	S_3	S_3	1
S_3	S_1	S_1	1
	N	z	

State Diagram

EXAMPLE: DESIGN MODULO-5 COUNTER

USE T FLIP-FLOPS

Input: $x(t) \in \{0, 1\}$

Output: $z(t) \in \{0, 1, 2, 3, 4\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3, S_4\}$

Initial state: $s(0) = S_0$

Functions: Counts modulo-5, i.e.,

(0,1,2,3,4,0,1,2,3,4,0...),

State Diagram:

z	z_2	z_1	z_0
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0

PS	Inp	out	Input		
$Q_2Q_1Q_0$	$x = 0 \mid x = 1$		x = 0	x = 1	
000	000	001	000	001	
001	001	010	000	011	
010	010	011	000	001	
011	011	100	000	111	
100	100	000	000	100	
	N	S	T_2T	T_1T_0	

sm - STATE MAP

~

T_{2} .		J	\mathcal{C}		
T_2 :	0	0	0	0	
	0	0	1	0	
	-	-	-	-	\mathbf{v}_1
$\bigcirc 2$	0	1	-	-	ľ
			6	0	-

$$T_1: \frac{x}{0 \ 0 \ 1 \ 0} Q_1$$

$$Q_2 \ 0 \ 0 \ - \ - \ Q_0$$

$$T_2 = xQ_2 + xQ_1Q_0$$

$$T_1 = xQ_0$$

$$T_0 = xQ_2'$$

