Evaluation I.

The question has 3 parts:

- i. Designing a zero knowledge proof (ZKP) for DLP
- ii. Show how to build a digital signature scheme using DLP and hach functions
- iii. Show how to design collision resistant hash functions based on the hardness of DLD

j. ZKP for DLP

Assuming an interactive colution is allowed, we can design a ZMP as . Prover (P) and Verifier (V) agree on a group Zp and generator g

· Prover proves knowledge of x (y=g^n modp)

1. P picks r ER ZP, sends t-g mod p to V 2. V sends to Pa drallenge CERZT Z= Chir C t=gr modp 3. P sends to V r= cx+r

4. V chears that q2= y .t . If it is true, accept/repeat. If false, reject.

Porameters.

Completeness: $q^z = q^{(cx+r)} = (q^x)^c \cdot q^r = q^c \cdot t$

= if prover knows x, Verifier will never reject.

Soundness: If prover does not known, it has to guess

But if P can guess or with > negal), it can quess x too (c and r are known). Which means it can solve DLP with snegly probability, which is contradiction

Zero-knowledge: . Assuming hardness of DLP, V cannot got x from y, g, p.

· to get x from Z, V needs r. but r is random, and Vorly knows t=grmrap. Due to DLP hardness, again V count get r.

2. Digital signature scheme based on ZKP above. This cannot be interactively done. We assume, by the Random Oracle Model, that outputs of hash fundious are seeningly vandom. Scheme: Users agree on group Zp, generator q, hash pundian H: {0,14* - 2p GEN': private key x & ZLp* public key $y = g^{N}$ SIGN! r Ex Zpt t = qr mod p c = H(tlm) [m = message] Z = Cn+r Send: missage (m) with signature (z,t) VERLEY: get C= H(tlm) verify y'.t = g2 3. Collision Resistant Hash Functions using DLP for group G of order p Let MERG generator q then S = < G, p, g, W> Given day H: Zp × Zp - D Zp, HS(x11x2) = qx1. 1x2 Collision Resistance of HS Consider collidary inputs: NI, NZ and N', NZ' (a) (b) (b) $(n_1 - n_1 n_1) \Rightarrow g^{n_1} \setminus N_2 = g^{n_1} \setminus N_2 \pmod{p}$ $g^{n_1} \setminus N_2 = g^{n_1} \setminus N_2 \pmod{p}$ gis a gereator so h= gt

 $\Rightarrow (x_1-x_1')=\pm(x_2'-x_2) \mod p-1$

This can be solved to get t. But that would wear

we have a solution to DCP N=qt modp, which is a contradiction

Don adversory frame, colliding reports with non-negligible Pr is

contradictory to hardness assumption of DLP.

For orbitrary H's: \(\gamma_0,19*\) - & ZP we use Merkle-Dangord Transform

Take L= log_(p)+1

1. B=[L] Pad x with 0 till l-1 / length of x

2. Set Zo = P-1

3 For i= 1... B compute Zi = H(Zi-1, Xi), Xi is the ith block

4. Return ZB

Collision resistance of H'S

For x,x, to collide, output is ZB for both.

→ I index i st Zi-1, Ki + Zi+1, Ki, but Zi= zi

· let it be the rightmost such index

. Then we have distinct collidary would but we know pr. of this

must be ne gligible.

 \Rightarrow Hordness of collision in H' = hardness of collision m H = DLP hardness.