

Automation and Control Chair, Kiel University

Reduced Order Observer Design for Nonlinear Systems

Sundarapandian, V. (2006)

Presenter: Tailei Wang

Adviser: Dr. Alexander Schaum

Seminar on Selected Topics in Systems and Control, February 6th, 2023

Content

- 1. Problem statement
- 2. Reduced order observer design
- 3. Problem extension i
- 4. Problem extension ii
- 5. An example

Problem statement

To design a reduced order observer for nonlinear systems

The form of nonlinear plants to be considered

$$\begin{bmatrix} \dot{x}_m \\ \dot{x}_u \end{bmatrix} = \begin{bmatrix} F_1(x_m, x_u) \\ F_2(x_m, x_u) \end{bmatrix}$$
 (1)

$$y = x_m \tag{2}$$

where $x_m \in \mathbb{R}^p$ and $x_n \in \mathbb{R}^{n-p}$

Reduced order exponential observer

$$\dot{z}_u = G\left(z_u, y\right) \tag{3}$$

where $z_u \in \mathbb{R}^{n-p}$

Following conditions should be satisfied:

(01) If
$$z_u(0) = x_u(0)$$
, then $z_u(t) = x_u(t)$ for all $t \ge 0$.

(O2) If
$$z_u(0) - x_u(0) \in B_{\delta}(0)$$
, then $z_u(t) - x_u(t) \in B_{\epsilon}(0)$ for all $t \ge 0$.

(O3)
$$||z_u(t) - x_u(t)|| \le M \exp(-\alpha t) ||z_u(0) - x_u(0)||$$
, $M, \alpha > 0$ for all $t \ge 0$.

Reduced order observer design

Linearization

Linearize at equilibrium x=0

$$\begin{bmatrix} \dot{x}_{m} \\ \dot{x}_{u} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_{m} \\ x_{u} \end{bmatrix} + \begin{bmatrix} \phi(x_{m}, x_{u}) \\ \psi(x_{m}, x_{u}) \end{bmatrix}$$
(4)
$$y = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} x_{m} \\ x_{u} \end{bmatrix}$$
(5)

- Preconditions for the existence of reduced order exponential observers^[1]
 - **(H1)** The equilibrium x = 0 of the system (4) is Lyapunov stable.
- **(H2)** The pair (A_{22}, A_{12}) is detectable.

Remark for **(H1)**: see the discussion regarding the difference between linear and nonlinear systems in [1, p.20].

Remark for (H2): see Theorem 1.9 in [1, p.14].

^[1] A. Schaum. Selected topics in Systems and Control. https://www.control.tf.uni-kiel.de/en/teaching/winter-term/seminar-selected-topic-in-automatic-control.

Reduced order observer design

Correction term

Full order Luenberger observer

$$\dot{z} = G(z, y) \triangleq F(z) + L[CorrTerm]$$

= $F(z) + L[y - z]$

Candidate reduced order observer a

[CorrTerm] =
$$y - z_m$$

then $z_u = F_2(y, z_u) + L[y - z_m]$?

Candidate reduced order observer b

Note that
$$\dot{y} = \dot{x}_m = F_1(x_m, x_u)$$

[CorrTerm] $= \dot{y} - \hat{x_m}$
then $\dot{z_u} = F_2(y, z_u) + L[\dot{y} - F_1(y, z_u)]$ (6)

Reduced order observer design

Error dynamics

Candidate reduced order observer b

$$\dot{z}_{u} = F_{2}(y, z_{u}) + L[\dot{y} - F_{1}(y, z_{u})]$$
After linearization,
$$\dot{z}_{u} = A_{21}y + A_{22}z_{u} + \psi(y, z_{u}) + L[\dot{y} - A_{11}y - A_{12}z_{u} - \phi(y, z_{u})]$$
In the plant (4), $\dot{x}_{u} = A_{21}y + A_{22}x_{u} + \psi(y, x_{u})$

Error dynamics

The estimation error e is defined by $e \triangleq z_u - x_u$, then it follows that

$$\dot{e} = (A_{22} - LA_{12}) e + \psi (y, e + x_u) - \psi (y, x_u) - L [\phi (y, x_u + e) - \phi (y, x_u)]$$
(8)

Note that the linearization matrix $(A_{22} - LA_{12})$ should be Hurwitz.

(H2) The pair (A_{22}, A_{12}) is detectable.

Remove the derivative of the measurement vector y

Candidate reduced order observer b

$$\dot{z}_{u} = F_{2}(y, z_{u}) + L[\dot{y} - F_{1}(y, z_{u})]$$

Construct a new estimator state

$$\begin{aligned} \zeta_{u} &= z_{u} - Ly \\ \text{then} \\ \dot{\zeta}_{u} &= F_{2} \left(y, \zeta_{u} + Ly \right) - LF_{1} \left(y, \zeta_{u} + Ly \right) \\ z_{u} &= \zeta_{u} + Ly \end{aligned} \tag{9}$$

Theorem

Consider a nonlinear plant (1) that satisfies **(H1)** and **(H2)**. Linearize the plant equations at the origin, we obtain the equivalent form for the plant given by (4). Let observer gain L be any matrix such that $A_{22} - LA_{12}$ is Hurwitz. Then we can construct a reduced order observer of the form (9) and (10), with the estimator state z_u . If the pair (A_{22}, A_{12}) is observable, the convergence speed can be assigned arbitrarily.

Problem extension ii

A generalized form of nonlinear plants

The form to be considered

$$\dot{x} = f(x)$$

 $y = Cx$
where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^p$

Introduce a coordinate transformation

$$\xi = \begin{bmatrix} \xi_m \\ \xi_u \end{bmatrix} = Tx = \begin{bmatrix} C \\ Q \end{bmatrix} x$$
where $\xi_m \in \mathbb{R}^p$ and $\xi_u \in \mathbb{R}^{n-p}$

• Get a new state space

$$\begin{bmatrix} \dot{\xi}_{m} \\ \dot{\xi}_{u} \end{bmatrix} = \begin{bmatrix} F_{1}(\xi_{m}, \xi_{u}) \\ F_{2}(\xi_{m}, \xi_{u}) \end{bmatrix}$$

$$y = \xi_{m}$$

$$(12)$$
where $F(\xi) = f(T^{-1}\xi)$

A nonlinear pendulum

Plant equations

$$\dot{x}_1 = x_2
\dot{x}_2 = -\sin(\omega_0^2 x_1)
y = x_1$$

Solution

Verify (H1)

Consider the total energy function as a candidate Lyapunov function:

$$V(x_1, x_2) = \frac{1}{\omega_0^2} \left[1 - \cos\left(\omega_0^2 x_1\right) \right] + \frac{1}{2} x_2^2 \to P.D.$$

 $\dot{V} = 0 \to S.N.D.$

Verify (H2)

By linearizing around the origin, one gets:

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
 and $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \omega_0^2 & 0 \end{bmatrix}$.
 \Rightarrow The pair (A_{22}, A_{12}) is observable.

A nonlinear pendulum

Solution

- Verify (H1)
- Verify (H2)
- Observer design

The linearized error dynamics is given by:

$$\dot{e} = (A_{22} - LA_{12}) e.$$

To place the error pole, we get the characteristic equation based on the linearization matrix:

$$A_{22} - LA_{12} = -L \rightarrow sI_{1\times 1} - (-L) = 0$$

 $\Rightarrow s = -I$

One can take the observer gain as $L=5\omega_0$,

then the reduced order exponential observer is given by:

$$\dot{\zeta}_2 = -\sin\left(\omega_0^2 y\right) - 5\omega_0\left(\dot{\zeta}_2 + 5\omega_0 y\right),$$

$$z_2 = \zeta_2 + 5\omega_0 y.$$

A nonlinear pendulum

Simulation

Figure 1: Simulation diagram

A nonlinear pendulum

Simulation

Figure 2: The convergence process in the observer

Reduced Order Observer Design for Nonlinear Systems

Sundarapandian, V. (2006)

Contact data

Presenter: Tailei Wang

Adviser: Dr. Alexander Schaum

Electrical Vehicule Propulsion and Control

Faculty of Engineering

Kiel University

https://master-epico.ec-nantes.fr

★ tailei.wang@stu.uni-kiel.de