GCN for Dependency Parsing

Outline

- 1. Background
- 2. Task Definition
- 3. Graph-based Dependency Parsing with Graph Neural Networks

1. Syntax

 The word syntax comes from the Greek syntaxis, meaning "setting out together or arrangement", and refers to the way words are arranged together.

```
1. 词类: n,分类, 计量, 所有格, adj,adv,v, conj ,prep,pron,art, num.
                                                                                                                                                     介宴 → adi. adv
                                                                                      陈述: 抓主干 SVO.SLP, 理核叶 DZB。5个简单句。
所有格
                                                                                     祈使: (you) Don't Do + O/L+P 感叹: how, what, 四
                                                                                                                                                           单n:S,O,P,同
                                                                             4. 并列句: 平2, 转3, 选3, 因3。
                                                                                                                                                     从句.
                                                                                       11, SOPT,两种情况, that, whether, if, 9个W。
   adj ...的
                                                                               从句 adj, 关系词, 代, that, who, whon, which, whose, 副, when, where, why
                                                                                     adv, 时6, 地2, 伴1, 原1, 让7, 条5, 目2, 结2, 方3。
                                                                             5. #: to do, doing, done. to+L+P n, adv Ling+P n, adv
    adv
                                                                             6.独: (with) S, + adj/adv/非 7. 特: there, it, 省, 例, 報
                                                                             8. 直间: 陈述, 一般, 特殊, 宾从。 ask sb to do sth
                                          there
                                                                             9. 主谓一致: 并, 名, 代, 其, number, percent
                                          在那儿
                                                     为什么
                                                                             10. 虚拟语气: if, as if, wish 往后推。332 (should) do
```

Jurafsky, Daniel, and James H. Martin. "Speech and Language Processing: An introduction to speech recognition, computational linguistics and natural language processing." *Upper Saddle River, NJ: Prentice Hall* (2008). http://www.sohu.com/a/74710386 356310

1.1 Part-Of-Speech

- Parts of speech (POS): word classes or syntactic categories
 - noun, verb, pronoun, preposition, adverb, conjunction, participle, and article
- Example: The Penn TreeBank

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	" or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	' or "
MD	modal	can, should	UH	interjection	ah oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	<i>IBM</i>	VBG	verb gerund	eating		sent-end punc	.!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;

1.2 Constituency Tree

• Constituency: abstraction for groups of words -> hierarchical graph.

PRP: Personal Pronoun

VBP: Verb Present

DT: Determiner

NN: Single or Mass Noun

S: Sentence

NP: Noun Phrase

VP: Verb Phrase

Pro: Pronoun

Det: Determiner

Nom: Nominal Noun

1.3 Dependency Tree

• Dependency: relation between a pair of words -> dependency tree.

Important property: DAG constrain (Directed Acyclic Graph) 5

2. Dependency Parsing via Graph Algorithm

Given

$s = w_1, \dots, w_n$	A sentence containing n words
G = (V, E)	The complete graph over the sentence s.
V	The set of nodes $(w_1,, w_n)$ and a root node)
E	The set of node edges $e = (i, j, r)$, where $w_i \xrightarrow{r} w_j$

• Find the best dependency tree \widehat{T} which has the highest score.

$$\widehat{T} = \underset{T \in G}{\operatorname{argmax}} score(T, s)$$

$$score(T,s) = \sum_{e \in T} score(e,s)$$

2. Dependency Parsing via Graph Algorithm

- Two steps for solving the problem:
 - 1) Compute scores for each edge. (*main focus of the paper)
 - 2) Infer dependency tree based on the estimated edge scores.
 - i. Search for optimal tree (without edge labels)
 - ii. Predict edge labels

3. The paper

Graph-based Dependency Parsing with Graph Neural Networks

Tao Ji, Yuanbin Wu, and Man Lan

Department of Computer Science and Technology,

East China Normal University

{taoji.cs}@gmail.com {ybwu,mlan}@cs.ecnu.edu.cn

3.1 Motivation

- Previous work has shown first-order relations can help learning.
 - Head and dependent vector.
- Introduce structure knowledge into node representations.
 - Especially high-order relations (e.g. grandparents)
 - Graph neural network to capture long-term dependencies.

3.2 Overview

Loss for predicting edge scores

Infer optimal tree given a complete graph with edge scores.

Encode high-order information and predict edge scores

Basic node representations

3.3 RNN Encoder

Score for edge $w_i \rightarrow w_i$

 $\sigma(i,j)$

Overview

Loss for predicting edge scores

Infer optimal tree given a complete graph with edge scores.

Encoding high-order information

Basic node representations

3.4 GNN Layers

• Encode three types of high-order information for edge (j,i)

- 1) The grey shadows indicate first-order information: parent -> children
- 2) The orange shadows are the second-order information.
- Multi-layer GCN is able to explicitly capture this high-order information.

3.4 GNN Layers (cont')

(c) Sibling

• Encode three types of high-order information for edge (j,i)

W_1 , B_1	Weights for updating the head vector
W_2 , B_2	Weights for updating the dependent vector
$lpha_{ij}^t$	Score for edge (i, j) at the t^{th} layer.
h_i^t	The head vector for node i at the t^{th} layer.
d_i^t	The dependent vector for node i at the t^{th} layer.
g	Non-linear activation function

14

3.4 GNN Layers – My understanding

- How to gather information of neighbors?
 - 1) Head nodes: gather information from neighbors' dependent nodes.
 - 2) Dependent nodes: gather information from neighbors' head nodes.

$$\int_{k}^{j} \int_{i}^{t} d_{i}^{t} d_{i}^{t-1} + B_{1}h_{j}^{t-1} d_{i}^{t} d_{i}^{t-1} + B_{1}h_{j}^{t-1} d_{i}^{t} d_{i}^{t-1} d_{$$

3.4 GNN Layers – My understanding (cont')

• Now, we want to capture the 2nd order information, how to propagate h_k to d_i via node h_i ?

1)
$$h_k \rightarrow d_m$$

- 2) $d_m \rightarrow h_j$
- 3) $h_j \rightarrow d_i$ for some word m

Conclusion: unable to directly capture the 2nd order information.

3.4 GNN Layers – My understanding (cont')

- How to solve this problem?
 - Shortcut from h_k to h_i .
 - 1) h_k to h_i . (shortcut update)
 - 2) h_i to d_i . (standard update)

3.4 GNN Layers – Put updating functions together

- Synchronous updates:
 - update h_i and d_i at the same time

$$\begin{cases} \boldsymbol{h}_{i}^{t} = g\left(W_{1} \sum_{j \in \mathcal{N}(i)} (\alpha_{ji}^{t} \boldsymbol{h}_{j}^{t-1} + \alpha_{ij}^{t} \boldsymbol{d}_{j}^{t-1}) + B_{1} \boldsymbol{h}_{i}^{t-1}\right) \\ \boldsymbol{d}_{i}^{t} = g\left(W_{2} \sum_{j \in \mathcal{N}(i)} (\alpha_{ij}^{t} \boldsymbol{h}_{j}^{t-1} + \alpha_{ji}^{t} \boldsymbol{d}_{j}^{t-1}) + B_{2} \boldsymbol{d}_{i}^{t-1}\right). \end{cases}$$

- Asynchronous updates:
 - updates h_i first, then update d_i

$$\begin{cases}
\boldsymbol{h}_{i}^{t-\frac{1}{2}} = g\left(W_{1} \sum_{j \in \mathcal{N}(i)} (\alpha_{ji}^{t} \boldsymbol{h}_{j}^{t-1} + \alpha_{ij}^{t} \boldsymbol{d}_{j}^{t-1}) + B_{1} \boldsymbol{h}_{i}^{t-1}\right) \\
\boldsymbol{d}_{i}^{t} = g\left(W_{2} \sum_{j \in \mathcal{N}(i)} (\alpha_{ij}^{t} \boldsymbol{h}_{j}^{t-\frac{1}{2}} + \alpha_{ji}^{t} \boldsymbol{d}_{j}^{t-1}) + B_{2} \boldsymbol{d}_{i}^{t-1}\right),
\end{cases}$$

3.4 GNN Layers – Edge scores

1. Soft scores:

$$\alpha_{ij}^t = \sigma^t(i,j) = P^t(i|j)$$

 $\sigma(i,j) = \text{Softmax}_i \left(\boldsymbol{h}_i^{\intercal} A \boldsymbol{d}_j + \boldsymbol{b}_1^{\intercal} \boldsymbol{h}_i + \boldsymbol{b}_2^{\intercal} \boldsymbol{d}_j \right)$

2. {0, 1} scores:

$$\alpha_{ij}^t = \begin{cases} 1, & i = \arg \max_{i'} P^t(i'|j) \\ 0, & \text{otherwise} \end{cases}$$

3. Top k scores:

$$\alpha_{ij}^{t} = \begin{cases} \text{Softmax}_{i} \left(\boldsymbol{h}_{i}^{\mathsf{T}} A \boldsymbol{d}_{j} + \boldsymbol{b}_{1}^{\mathsf{T}} \boldsymbol{h}_{i} + \boldsymbol{b}_{2}^{\mathsf{T}} \boldsymbol{d}_{j} \right), i \in \mathcal{N}_{k}^{t}(j) \\ 0, \text{ otherwise} \end{cases}$$

 $\mathcal{N}_k(j)$ top k neighbors with highest scores

4. Average:

$$\alpha_{ij}^t = \frac{1}{n}, \quad \forall j \in V, i \in V/\{j\}$$

Overview

Loss for predicting edge scores

Infer optimal tree given a complete graph with edge scores.

Encoding high-order information

Basic node representations

3.5 Decoding Optimal Tree

- Decoding optimal tree structure
 - Maximum Spanning Tree (MST) Algorithm— Chu-Liu Edmonds Algorithm

- Label prediction (classification):
 - Similar as computing edge scores.
 - Multi-Layer Perceptron to model P(r|i,j) for edge (i,j)
 - Input: representations for node i and j
 - Output: r = argmax P(r|i, j)

3.5.1 Maximum Spanning Tree (MST)

• Spanning Tree: A spanning tree T(V, E') of a directed graph G = (V, E) is a tree over G, which contains all of the nodes in G with minimum number of edges.

• MST: A MST is a spanning tree T(V, E') with highest edge weights.

3.5.2 Chu-Liu Edmonds Algorithm

- Initialization: for each v, choose the incoming edge with highest score.
- 2. Break cycles: subtract highest scores for all incoming edges, and merge nodes in cycles.
- 3. Split nodes, and delete edges according to Tree constrain.

Overview

Loss for predicting edge scores

Infer optimal tree given a complete graph with edge scores.

Encoding high-order information

Basic node representations

3.5.3 Learning Objective

- Loss for the output tree structure
 - Output from the model:
 - tree structure τ
 - probability of edge labels P(r|i,j)
 - Probability of edge $P^{\tau}(i|j)$
 - Ground truth: *T*

 $\mathcal{L}_0 = -\frac{1}{n} \sum_{(i,j,r) \in T} (\log P^{\tau}(i|j) + \log P(r|i,j))$

n: the number of edges in *T*

$$L = \lambda_1 \mathcal{L}_0 + \lambda_2 \mathcal{L}'$$

- Layer-wise loss
 - Edge scores $P^{t}(i|j)$ for each GCN layer

$$\mathcal{L}' = \sum_{t=1}^{\tau} \mathcal{L}_t = \sum_{t=1}^{\tau} -\frac{1}{n} \sum_{(i,j,r) \in T} \log P^t(i|j)$$

3.6 Experimental Results

- Unlabeled Attachment Score (UAS):
 - The percentage of words that have the corrected head.
- Labeled Attachment Score (LAS):
 - The percentage of words that have the corrected head and label.
- Unlabeled Complete Match (UCM):
 - The percentage of predicted **trees** that are completely corrected.
- Labeled Complete Match (LCM):
 - The percentage of predicted trees and labels are completely corrected.

3.6.1 Main Results

		Test	
Parser		UAS	LAS
(Chen and Manning, 2014)		91.8	89.6
(Dyer et al., 2015)		93.1	90.9
(Ballesteros et al., 2016)	\mid T	93.56	92.41
(Weiss et al., 2015)	1	94.26	91.42
(Andor et al., 2016)		94.61	92.79
(Ma et al., 2018) §		95.87	94.19
(Kiperwasser and Goldberg, 2016a) §		93.0	90.9
(Kiperwasser and Goldberg, 2016b)		93.1	91.0
(Wang and Chang, 2016)		94.08	91.82
(Cheng et al., 2016)	G	94.10	91.49
(Kuncoro et al., 2016)		94.26	92.06
(Zheng, 2017) §		95.53	93.94
(Dozat and Manning, 2017)		95.74	94.08
Baseline	G	95.68	93.96
Our Model §	G	95.97	94.31

Table 1: Results on the English PTB dataset. The § indicates parsers using high-order features. "T" represents transition-based parser, and "G" represents a graph-based parser.

3.6.2 Different Layers and Updating Methods

GNN	GNN	D	ev	Test		
Layer	Model	UAS	LAS	UAS	LAS	
l = 0	Baseline	95.58	93.74	95.68	93.96	
	$d \triangleright h$	95.75	93.84	95.83	94.15	
l = 1	$h \triangleright h$	95.78	93.80	95.91	94.12	
	$hd \triangleright h$	95.77	93.87	95.88	94.23	
	$d \triangleright h$	95.80	93.85	95.88	94.17	
l=2	$h \triangleright h$	95.77	93.83	95.85	94.13	
	$hd \triangleright h$	95.79	93.90	95.92	94.24	
	$d \triangleright h$	95.74	93.78	95.87	94.14	
l = 3	$h \triangleright h$	95.75	93.80	95.90	94.15	
	$hd \triangleright h$	95.71	93.82	95.93	94.22	

Table 2: Impact of l and different high-order information integration methods on PTB dataset. " $d \triangleright h$ " corresponds to the Equation 7, " $h \triangleright h$ " corresponds to the Equation 8.

GNN	GNN	D	ev	Test	
Layer	Model	UAS	LAS	UAS	LAS
l=2	Synch H-first D-first	95.79 95.88 95.78		95.92 95.97 95.95	94.24 94.31 94.27

Table 3: Impact of different GNN update methods on PTB dataset. "Synch" is our default synchronized setting (Equation 8). "H-first" is an asynchronous update method that first updates head word representation (Equation 9). Similarly, the "D-first" model first updates dependent word representation.

3.6.2 Different Layers and Updating Methods

Figure 3: (a) Parsing performance and speed of different layers of our $hd \triangleright h$ model on the test set. (b) Layer-wise training loss and development set's UAS of our 3-layer $hd \triangleright h$ model.

3.6.3 Different Scoring Functions

GNN	GNN	D	ev	Test	
Layer	Model	UAS	LAS	UAS	LAS
	All=1	95.71	93.73	95.76	94.07
l=2	Hard-1	95.69	93.70	95.80	94.13
$\iota = z$	Hard-2	95.73	93.78	95.90	94.20
	Hard-3	95.81	93.88	95.88	94.20
l=2	Soft	95.88	93.94	95.97	94.31

Table 4: Impact of different kinds of graph weights on PTB dataset. "All=1" means setting all weights to 1 (Equation 12), "Hard-k" means renormalization at the top-k weights of each node (Equation 11), "Soft" is our default model setting (Equation 8).

3.6.4 Error Analysis

Figure 4: Parsing performance of baseline and our best parser relative to length and graph factors.

References

- 1. Jurafsky, Daniel, and James H. Martin. "Speech and Language Processing: An introduction to speech recognition, computational linguistics and natural language processing." *Upper Saddle River, NJ: Prentice Hall* (2008).
- 2. Marcus, Mitchell, et al. "The Penn Treebank: annotating predicate argument structure." *Proceedings of the workshop on Human Language Technology*. Association for Computational Linguistics, 1994.
- 3. Ji, Tao, Yuanbin Wu, and Man Lan. "Graph-based dependency parsing with graph neural networks." *Proceedings of ACL*. 2019.