Chapitre 5 : Algèbre relationnelle INF3080 BASES DE DONNÉES (SGBD)

Guy Francoeur

Aucune reproduction sans autorisation

3 septembre 2019

UQÀM Département d'informatique

- 1. Matériel et droits
- 2. Au dernier cours
- 3. Algèbre relationnelle
- 4. Les opérations de bases
- 5. Les opérations de jointures
- 6. Les opérations ensemblistes

- 1. Matériel et droits
- 2. Au dernier cours
- 3. Algèbre relationnelle
- 4. Les opérations de bases
- 5. Les opérations de jointures
- 6. Les opérations ensemblistes

Matériel et droits

- ► Les droits de lecture sont accordés aux étudiants inscrits au cours INF3080-030 A2019 uniquement;
- ► Aucun droits pédagogique ou reproduction n'est accordé sans autorisation;

- 1. Matériel et droits
- 2. Au dernier cours
- 3. Algèbre relationnelle
- 4. Les opérations de bases
- 5. Les opérations de jointures
- 6. Les opérations ensemblistes

Retour sur les devoirs

- ► Questions

- 1. Matériel et droits
- 2. An dernier cours
- 3. Algèbre relationnelle
- 4. Les opérations de bases
- 5. Les opérations de jointures
- 6. Les opérations ensemblistes

Algèbre relationnelle - Origine et définition

L'informatique est très vivante et ça change vite. Par contre, 1970, E. F. Codd publie un article qui présente les fondements du modèle relationnel : A Relational Model of Data for Large Shared Data Banks

On nous présente dans cet article un nouveau paradigme et des solutions innovantes à de nombreux problèmes rencontrés dans les outils de gestion de données de l'époque.

Le modèle relationnel de Codd s'appuie sur :

- ▶ Les 12 règles de Codd : règles fondamentales à suivre pour créer un système de gestion de base de données relationnel (SGBDR);
- ► Algèbre relationnelle : qui devient le formalisme mathématique derrière le modèle relationnel;

Le langage SQL a été conçu à partir de l'Algèbre Relationnelle (AR).

Algèbre relationnelle - introduction

L'algèbre relationnelle (AR) est une partie autonome de la mathématique et attachée à l'étude d'ensembles. Cette algèbre est constituée d'un ensemble de règles et d'opérations formelles qui permettent de manipuler les relations (lié au modèle relationnel).

- Les opérations de bases;
- Les opérations de jointures;
- Les opérations ensemblistes;

- 1. Matériel et droits
- 2. Au dernier cours
- 3. Algèbre relationnelle
- 4. Les opérations de bases
- 5. Les opérations de jointures
- 6. Les opérations ensemblistes

Projection

Formalisme R = PROJECTION(R1, liste des attributs) Notation $R' = \prod_{a1,a2,...} R1$ Définition la relation R' correspond à la projection des attributs a_1 et a_2 de la relation R1

- ▶ Il est possible que le résultat soit sans clé primaire définie.
- ▶ Le résultat définit automatiquement une clé primaire par la composition de tous les attributs restants et élimine tous les doublons de tuples;

Projection

Client			
<u>pClient</u>	cCourriel		
1	2	Rogers	i@rogers.com
2	1	Fido	c@fido.com
3	2	Virgin	i@virgin.com
4	1	Videotron	i@videotron.ca

$$ightharpoonup R' = \prod_{pClient, cClient} Client$$

R'		
pClient cClient		
1	Rogers	
2 Fido		
3 Virgin		
4 Videotron		

Alias/Renommer

Formalisme R = ALIAS(R1, a1/a2)
Notation
$$R' = \rho_{a1/a2,...}R1$$

Définition la relation R' est structurellement identique à $R1$ à la différence où l'attribut $a1$ se nomme maintenant $a2$

▶ Utile pour renommer un attribut commun à deux relations;

Renommer

Client			
pClient	cCourriel		
1	2	Rogers	i@rogers.com
2	1	Fido	c@fido.com
3	2	Virgin	i@virgin.com
4	1	Videotron	i@videotron.ca

 $ightharpoonup R' =
ho_{cClient/Compagnie}Client$

$\mathbf{R'}$			
pClient	pLangue	Compagnie	cCourriel
1	2	Rogers	i@rogers.com
2	1	Fido	c@fido.com
3	2	Virgin	i@virgin.com
4	1	Videotron	i@videotron.ca

Sélection

Formalisme R = SELECTION(R1, condition)

Notation $R' = \sigma_{a1=1,...}R1$

Définition la relation R' correspond à la sélection des tuples de R respectant les conditions données.

- Les conditions sont déterminées par des opérateurs appliqués sur les valeurs des attributs $\{=, \neq, <, >, \geq, \leq, \cup, \cap, like\}$
- ▶ l'utilisation de fonction est possible;

Sélection

Client				
pClient pLangue cClient cCourriel				
1	2	Rogers	i@rogers.com	
2	1	Fido	c@fido.com	
3	2	Virgin	i@virgin.com	
4	1	Videotron	i@videotron.ca	

 $ightharpoonup R' = \sigma_{pLangue=1} Client$

\mathbf{R}'				
pClient pLangue cClient cCourriel				
2	1	Fido	c@fido.com	
4	1	Videotron	i@videotron.ca	

- 1. Matériel et droits
- 2. Au dernier cours
- 3. Algèbre relationnelle
- 4. Les opérations de bases
- 5. Les opérations de jointures
- 6. Les opérations ensemblistes

Jointure

Formalisme R = JOINTURE(R1, R2, condition d'égalité entre les attributs)

Notation $R' = R1 \bowtie_{condition} R2$

Définition la relation R' correspond à la sélection des tuples de R1 lié à R2 en utilisant les conditions fournies.

► Cette opération qui consiste à appliquer à la fois un produit cartésien et une sélection;

Jointure 1/2

Produit		
pProduit cProduit		
1	Pomme	
2	Fraise	

Commande			
<u>pCommande</u>	pArticle	nQuantité	
1	1	60	
2	2	30	
2	6	90	

 $ightharpoonup R' = Commande \bowtie_{pArticle=pProduit} Produit$

Jointure 2/2

 $ightharpoonup R' = Commande \bowtie_{pArticle=pProduit} Produit$

R'				
pCommande pArticle nQuantité pProduit cProduit				
1	1	60	1	Pomme
2	2	30	2	Fraise

Jointure naturelle

Formalisme $R = JOINTURE_NATURELLE(R1, R2)$

Notation $R' = R1 \bowtie R2$

Définition la relation R' correspond à la projection de R1 et R2 avec une sélection utilisant la clé* des relations impliquées.

- ▶ Une seule occurrence des attributs communs est projetée dans R';
- ▶ *ou tous attributs communs de même nom et de même domaine;

Jointure Naturelle 1/2

Produit			
pProduit cProduit			
1 Pomme			
2	Fraise		
3 Tomate			

Ferme			
pFerme	pProduit		
1	Éric	1	
2	Lyon	2	
3	Bayonne	1	

 $ightharpoonup R' = Ferme \bowtie Produit$

Jointure Naturelle 2/2

 $ightharpoonup R' = Ferme \bowtie Produit$

R'					
pFerme cFerme pProduit cProduit					
1	Éric	1	Pomme		
2	Lyon	2	Fraise		
3	Bayonne	1	Pomme		

- 1. Matériel et droits
- 2. Au dernier cours
- 3. Algèbre relationnelle
- 4. Les opérations de bases
- 5. Les opérations de jointures
- 6. Les opérations ensemblistes

Union

Formalisme R = UNION(R1, R2)

Notation $R' = R1 \cup R2$

Définition la relation R' correspond à l'union binaire des tuples R1 et R2.

- ▶ R1 et R2 ont la même structure (mêmes attributs);
- Les attributs ne sont pas doublés;
- ► Les tuples ne sont pas doublés;

Union 1/2

Joueur Hockey	
<u>pKey</u>	cName
1	Toews
2	Lemieux
3	Kotkaniemi

Joueur Soccer	
pKey	cName
1	Isco
2	Ronaldo
3	Messi

 $ightharpoonup R' = FHockey \cup JSoccer$

Union 2/2

R'	
pKey	cName
1	Toews
2	Lemieux
3	Kotkaniemi
1	Isco
2	Ronaldo
3	Messi

Intersection

Formalisme R = INTERSECTION(R1, R2)

Notation $R' = R1 \cap R2$

Définition la relation R' correspond à l'intersection binaire des tuples de R1 et R2.

- ▶ R1 et R2 ont la même structure (mêmes attributs);
- Les attributs ne sont pas doublés;
- ► Les tuples ne sont pas doublés;

Intersection 1/2

Joueur Hockey	
pKey	cName
1	Toews
2	Lemieux
3	Kotkaniemi
4	Fortunus
5	Bernier

Joueur Soccer	
pKey	cName
1	Isco
2	Ronaldo
3	Messi
4	Fortunus
5	Bernier

Intersection 2/2

 $ightharpoonup R' = FHockey \cap JSoccer$

R'	
pKey	cName
4	Fortunus
5	Bernier

Différence

Formalisme R = DIFFERENCE(R1, R2)

Notation R' = R1 - R2

Définition la relation R' correspond à la différence binaire des tuples de R1 moins R2.

- ▶ R1 et R2 ont la même structure (mêmes attributs);
- Les attributs ne sont pas doublés;

Produit

Formalisme
$$R = PRODUIT(R1, R2)$$

Notation
$$R' = R1 \times R2$$

Définition la relation R' correspond à la l'addition des attributs et à la combinaison des tuples de R1 et R2.

- ► Tous les attributs des relations sont ramenés;
- ightharpoonup Tous les tuples (combinaisons) sont dans le R';
- ightharpoonup a' = $R1_{(a_1..a_n)} + R2_{(a_1..a_n)}$
- ightharpoonup t' = $R1_{(t_1..t_n)} \times R2_{(t_1..t_n)}$

Algèbre relationnelle - résumé 1/2

Opérateur		Description
Projection	П	Choisir les attributs
Renommer	ρ	Renommer des attributs
Sélection	σ	Choisir les tuples
Jointure (C)	\bowtie	Jointure conditionnelle
Jointure (N)	\bowtie	Jointure naturelle (automatique)
Union	U	La fusion des relations
Intersection	\cap	Les tuples communs aux deux relations
Différence	-	Les tuples qui ne figurent pas dans l'autre
Produit	×	Produit cartésien de relations

Algèbre relationnelle - résumé 2/2

Opérateur		Exemple
Projection	П	$R' = \prod_{pClient, cClient} Client$
Renommer	ρ	$R' = \rho_{pClient/ClientNo}$
Sélection	σ	$R' = \sigma_{pClient=1}Client$
Jointure (C)	\bowtie	$R' = Login \bowtie_{Login.pUsager=Usager.pUsager} Usager$
Jointure (N)	\bowtie	$R' = Login \bowtie Usager$
Union	U	$R' = Client \cup Client Temporaire$
Intersection	\cap	$R' = Produit2018 \cap Produit2017$
Différence	_	R' = Produit2018 - Produit2019
Produit	×	$R' = Langue \times Client$