國立虎尾科技大學機械設計工程系機械工程實驗(二)熱流力實驗

實驗 5. 溫度與散熱實驗

指導教授: 周 榮 源 老 師

班級:四設四乙

學 生: 詹耀賢 41023241

陳瑨維 41023228

葉桓亞 41023240

莊雨薰 41023203

陳靚芸 41023205

組 別: 第5組

中華民國 113 年 11 月 5 日星期二

目錄

實驗	目的	2
儀器	與設備	3
實驗	·原理	4
實驗	步驟	5
實驗	·結果	6
參考	文獻	8

一、實驗目的

在許多科學和工程應用中,理解熱的傳遞過程至關重要。無論是在電子設備的設計、建築節能、機械散熱,還是熱管理系統的優化中,都需要透過散熱來控制物體的溫度。因此,溫度與散熱實驗是一種基礎的熱學實驗,目的是研究不同材料或物體的散熱行為及其影響因素。

不同電壓或電流下,加熱片所產生不同功率及光照度,觀溫度的 變化,所得到照度的數據在填入表中,以得出結果。

二、儀器與設備

- 1.T-type 熱電偶線數條
- 2. 水銀溫度計乙支
- 3. 加熱片乙片
- 4. 鋁合金散熱片乙個
- 5. 導熱膏乙罐(共用)
- 6. 多功能電表(FLUKE 87-5)乙台
- 7. 多功能電表(FLUKE 287)乙台
- 8. 直流電源供應器(Agilent U8002A)兩台
- 9. 三孔延長線乙條
- 10. 銲槍乙支(含銲錫及耗材、電線等)
- 11. 照度計乙台

三、實驗原理

散熱器的工作原理是熱量從發熱設備產生傳至散熱器再傳到空 氣等物質,其中熱量通過熱力學中的熱量傳遞進行傳遞。而熱量的傳 遞方式主要有熱傳導、熱對流和熱輻射,如當物質與物質接觸時只要 存在溫差,就會發生熱量傳遞,直到各處溫度相同為止。散熱器即是 利用這一點,如採用良好的導熱材料,大表面積的鰭片狀結構以增加 發熱設備與散熱器到空氣等物質的接觸面積與導熱速度。

Table 1 Specifications of 3W LED (HT-R178BPV)						
Product Specification (Ta =25°C)						
Specification						
Total Flux Typical 140 lm @700						
Correlated Color Temperature	3000K~9000K @700mA 3.03-4.23V @700mA					
$V_{\mathtt{F}}$						
I_R	HT standard					
Absolute Maximum Ratings (Ta =25°C)						
Parameter	Rating	Unit				
DC Forward Current	800	mA				
Peak Pulsed Forward Current	1000	mA				
Reverse Voltage	5	V				

四、實驗步驟

將加熱片至於盒子內,引線遷出,接至電供,調整電壓及電流 (3.0V,0.01A),輸入後加熱片會發光,將光照測量器遮住杯口測量 光照,同時在縫隙內插入探針測量杯中溫度,然後可以得到溫度及光照度,重複相同步驟,測量不同電壓急電流下的數據,總共需要三組。將 LED 正(+)接腳一端接電源供應器之正極,另一端負(-)接腳接電源供應器之負極。

打開電源供應器之電源開關,依照實驗表格之數值設定電流 [之 大小,並以兩台多功能電表(FLUKE

87-5)K-type 熱電偶線,同時量測 LED 上下兩面之溫度,等到溫度穩定後將所得數據記錄於表格中。

在量測溫度之同時,以照度計量測照度值,並記錄於表格中。 依照表格中之公式計算其餘項目之數值,完成整份表格。

將 LED 緊貼於 HS 之平面端,注意 K-type 熱電偶線之結球必須剛好保持在上下兩面之間微微接觸,以測得此位置之溫度值。並重覆步驟直至完成所有電流 I 設定值之實驗量測,將數據記錄於表格中。

五、實驗結果

實驗數據

	(符温度)	意定後冉	紀録製振)								
	LED	3~5 W	(Air Cooling)	Ta=	25						
	電流 (I)	電壓(V)	Input Power	Ts	Tb	溫差(ΔT)	熱阻 (Rth=(Ts-Ta)/W)	照度 (I)	效率 (I/W)		
	mΑ	V	W=V*I	$^{\circ}$ C	೦ೆ	$^{\circ}$	°C/W	Lm	%		
	10	3	0.03	28.5			116.6666667	6.004	200		
	10	3.3	0.033	28.8			115.1515152	6.534	198		
	10	3.9	0.039	32.4			189.7435897	6.862	175		
(註:上表之電流或電壓僅供參考・實際之電流或電壓數據以操作電源供應器時所設定之數值為準!)											

第一組實驗(3V,0.01A):

第二組實驗

第三次實驗

六、參考資料

無