Trabalho - Macromodelo de Amplificador de Tensão

Prof. Tiago Oliveira Weber 2018

1 Descrição

1.1 Macromodelo amplificador

Considere a utilização de um sensor que possa ser modelado como uma fonte de tensão e uma resistência em série. Imagine que, para um determinado valor do mensurando, a tensão de saída do sensor seja 1 mV e a resistência série seja $10~\Omega$.

É seu interesse que essa tensão de 1 mV seja amplificada para um valor de 1V (para que seja mais fácil medí-la com um ADC posteriormente). Para tal, você usará o macromodelo de um amplificador de tensão. Esse, por sua vez, estará conectado a uma resistência de carga de $10k\ \Omega$.

Utilize o macromodelo de um amplificador de tensão que contenha:

- fonte de tensão controlada por tensão com ganho A_{VO}
- resistência de entrada (R_{entrada})
- resistência de saída (R_{saída})

Para definir o ganho A_{VO} , utilize a relação desejada entre saída e entrada de tensão no amplificador. Após, preencha a tabela a seguir, onde o ganho total é a razão entre a tensão na carga dividida pela tensão na fonte que representa o sensor.

$R_{\rm entrada} (\Omega)$	$R_{saida}(\Omega)$	Ganho Total (calculado)	Ganho Total (simulado)
10	100k		
10	10		
10k	10		
100k	10		

Faça simulações do tipo **ponto de operação** para verificar seus resultados em um simulador elétrico.

O que é possível concluir a partir destes resultados?

1.2 Simulação Transiente

Mantenha a mesma configuração utulizada na última linha da tabela anterior, mas faça o sensor ter uma tensão de saída senoidal com as seguintes características:

- amplitude = 0.1 V
- frequência = 1kHz
- offset = 0

Faça duas simulações transientes em um simulador elétrico (mostrando a tensão de saída na resistência de carga):

- uma simulação fazendo a fonte de tensão do modelo do amplificador ser do tipo "fonte de tensão controlada por tensão" (como na etapa anterior)
- uma simulação fazendo a fonte de tensão do modelo do amplificador ser do tipo "arbitrary behavioral voltage source", com tensão limitada em +5 V e em -5 V.

Para os dois casos, o ganho da fonte deverá ser o obtido da etapa anterior. Qual é o máximo valor de entrada possível no sensor antes que o amplificador sature no segundo caso?

Comente os resultados.