4 Manifolds: Definitions

§ 4.1 Topological Spaces

Definition 4.1 (Topological space). Let X be any set and $\mathcal{T} = \{U_i : i \in I\}$ be a *collection* of subsets of X. The pair (X, \mathcal{T}) is a **topological space** if \mathcal{T} satisfies

- (i) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
- (ii) $\bigcup_{j \in I} U_j \in \mathcal{T}$ where J is a subcollection of I. Here, union can be infinite.
- (iii) $\bigcap_{k \in K} U_k \in \mathcal{T}$ where K is a *finite* subcollection of I.

Here U_i are called the **open set** and \mathcal{T} is said to give a **topology** to X.

Remark. Do you remember the definition of open sets in analysis?

- (i) U is open if all point of U is an *interior* point of U.
- (ii) $x \in U$ is an *interior* point of U if there exists some *neighborhood* N(x) of x such that $N(x) \in U$.
- (iii) The *neighborhood* of x with radius r is $N_r(x) = \{y \in U \mid d(x,y) < r\}$.

The definition of open set requires the concept of **metric space**.

Example 4.2. Example of topologies.

- (1) Let X be a set and \mathcal{T} be the collection of all subsets of X. This gives **discrete topology** to X.
- (2) Let *X* be a set and $\mathcal{T} = \{\emptyset, X\}$. This gives **trivial topology** to *X*.
- (3) Let $X = \mathbb{R}$ and \mathcal{T} be all open intervals and their unions. This defines a **usual topology** to \mathbb{R} . This can be extended to \mathbb{R}^n .

Remark. A subset *A* of *X* is *closed* if its complement in *X* is an open set $X - A \in \mathcal{T}$.

Definition 4.3 (Metric). A metric $d: X \times X \to \mathbb{R}$ is a map that satisfies

- (i) d(x, y) = d(y, x)
- (ii) $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$
- (iii) $d(x,y) + d(y,z) \ge d(x,z)$ (triangle inequality)

for $x, y, z \in X$.

Definition 4.4 (Metric space and metric topology). If X is endowed with a metric d, X is made into a topological space whose open sets are given by *open discs*, $U_{\epsilon}(x) = \{y \in X \mid d(x,y) < \epsilon\}$ and their possible unions. Then \mathcal{T} is called a **metric topology** and (X, \mathcal{T}) a **metric space**.

Definition 4.5 (Relative topology). Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Then $\mathcal{T} = \{U_i : i \in I\}$ induces the **relative topology** in A by

$$\mathcal{T}' = \{ U_i \cap A \mid U_i \in \mathcal{T} \}$$

Definition 4.6 (Continuous map). Let X and Y be topological spaces. A map $f: X \to Y$ is **continuous** if the inverse image of an open set in Y is an open set in X.

Definition 4.7 (Neighborhood). N is a **neighborhood**¹ of a point $x \in X$ if $N \subseteq X$ and N contains at least one open set U_i which contains x.

Definition 4.8 (Hausdorff space). A topological space (X, \mathcal{T}) is a **Hausdorff space** if: for $x, x' \in X$, there exist neighbors U_x of x and $U_{x'}$ of x' such that $U_x \cap U_{x'} = \emptyset$.

Exercise 4.9. Prove the following statements.

- (1) \mathbb{R} with the usual topology is a Hausdorff space.
- (2) Every metric space is a Hausdorff space.

§ 4.2 Introductory Topology

Definition 4.10 (Compactness). Let *X* be a set.

- (1) A family $\{A_i\}$ of subsets of X is called a **covering** of X if $\bigcup_{i \in I} A_i = X$. If all the A_i happen to be the open sets of the topology \mathcal{T} , the covering is called an **open covering**.
- (2) The set *X* is **compact** if: for every open covering $\{U_i : i \in I\}$, there exists finite subcovering $\{U_i : j \in I \subseteq I\}$.

Theorem 4.11 (Heine-Borel theorem). For a subset $X \subseteq \mathbb{R}^n$, X is compact if and only if X is closed and bounded.

Remark. A point in \mathbb{R}^n is compact.

¹The neighborhood needs not be an open set.

Definition 4.12 (Connectedness).

- (a) A topological space X is **connected** if it cannot be written as $X = X_1 \cup X_2$ where X_1 and X_2 are both open and $X_1 \cap X_2 = \emptyset$.
- (b) A topological space is **arcwise connected** if for any points $x, y \in X$ there exists a continuous map $f: [0,1] \to X$ such that f(0) = x and f(1) = y.
- (c) A **loop** in a topological space X is a continuous map $f:[0,1] \to X$ such that f(0)=f(1). If any loop in X can be continuously shrunk to a point, then X is called **simply connected**.

Example 4.13.

- (a) \mathbb{R} is arcwise connected while $\mathbb{R} \{0\}$ is not. Meanwhile, both \mathbb{R}^n and $\mathbb{R}^n \{0\}$ are arcwise connected for $n \geq 2$.
- (b) S^n is arcwise connected. S^1 is not simply connected while S^n ($n \ge 2$) is simply connected. The n-dimensional torus

$$T^n = \underbrace{S^1 \times \cdots \times S^1}_n$$

is arcwise connected but not simply connected.

(c) $\mathbb{R}^2 - \mathbb{R}$ is not arcwise connected. $\mathbb{R}^2 - \{0\}$ is arcwise connected but not simply connected. However, $\mathbb{R}^3 - \{0\}$ is both arcwise connected and simply connected.

Topology is about classifying the spaces (are they equal or different?). In topology, two figures are *equivalent* if it can be deformed continuously from one to the other.

Definition 4.14 (Homeomorphisms). Let X_1 and X_2 be topological spaces. A map $f: X_1 \to X_2$ is a **homeomorphism** if it is continuous and has an inverse $f^{-1}: X_2 \to X_1$ which is also continuous. Then, X_1 and X_2 are **homeomorphic**. In other words,

$$\exists f: X_1 \rightarrow X_2, g: X_2 \rightarrow X_1$$
 s.t. $f \circ g = \mathrm{id}_{X_1}$ and $g \circ f = \mathrm{id}_{X_1}$

Remark. Homeomorphisms give equivalence relations, which divide all topological spaces into equivalence classes(Is it possible to deform one space into other by a homeomorphism).

Exercise 4.15.

- (1) $X = \{1, 1/2, \dots, 1/n\} \subseteq \mathbb{R}$ is not closed in \mathbb{R} .
- (2) $Y = X \cup \{0\}$ is closed in \mathbb{R} .
- (3) *Y* is compact.

Proof.

(1) Firstly, *X* is not open because it is a set of isolated points. Considering the complement of *X*,

$$(-\infty,0] \cup (1,\infty) \cup (1/2,1) \cup (1/3,1/2) \cup \cdots$$

Since $\mathbb{R} - X$ contains accumulation point 0, $(-\infty, 0]$ makes it not open. Therefore, X is not closed.

- (2) Trivial from (1).
- (3) Heine-Borel theorem (theorem 4.11).

Exercise 4.16. Show that these two figures are homeomorphic. Show that those linked rings are separable (or deformable into separated rings) in \mathbb{R}^4 .

Proof. Let two rings in separated and linked forms be (A, B) and (A', B'), respectively. If we take homeomorphisms from A to A' and B to B' and combine them, separated rings and linked rings are homeomorphic.

Existence of homotopy. Consider a homotopy $\{0,1\} \times (S^1 \sqcup S^1) \to \mathbb{R}^4$, where the image of $(0,\bullet,\bullet): S^1 \sqcup S^1 \to \mathbb{R}^4$ denotes separated rings and $(1,\bullet,\bullet): S^1 \sqcup S^1 \to \mathbb{R}^4$ denotes linked rings. Assuming separated and linked rings are embedded in $\mathbb{R}^3 \times \{0\}$, we can use the fourth coordinate to lift one of the two rings in separated rings to the $(\bullet,\bullet,\bullet,\bullet,1)$ plane. Move it over to the corresponding ring on the linked ring and move it back to $(\bullet,\bullet,\bullet,\bullet,0)$ plane.