

Computer Simulation

Dr. Bardia Safaei

Chapter Seven: Random-Variate Generation

Purpose & Overview

- Understanding the generating process of samples from a specified distribution as input to our simulation model
 - □ Unlike the previous lecture, where the goal was to generate random numbers who follow the uniform distribution
- Explaining some widely-used techniques for generating random variates
 - □ Inverse-transform technique
 - □ Acceptance-rejection technique
- Many well-known simulators provide random-variate generators, but some may not
 - □ In this lecture you learn the essentials for developing routines for generating random variates if the simulator does not support it

Assumptions

- All of the techniques in this lecture consider the two following assumptions:
 - □ R_i is a previously generated random number readily available
 - □ R_i is uniformly distributed on [0,1]
 - Therefore, the PDF, and CDF of these numbers are defined as follows:
- With these R_is in one hand, and a specific statistical distribution in another, we generate variates, which support that intended distribution

$$f_R(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

$$F_R(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

Inverse-Transform Technique

- This technique is generally applicable to distributions that their CDF is reversable
 - □ You can simply obtain F^{-1} from F(x)
- Steps to take:
 - \square Produce $R_i \sim U[0,1]$
 - ☐ Use:
 - \square Find $x\mathbf{R_i} = \mathbf{F}(\mathbf{x}) \Rightarrow \mathbf{x} = \mathbf{F}^{-1}(\mathbf{R_i})$
 - Is it correct to put R, and F(x) equal?

- This technique enables us to sample data with various distributions, and generate similar numbers (x_i) with the same distribution
 - □ Exponential, Weibull, Uniform, triangular, and even empirical

Exponential Distribution (1)

Recall: the PDF, and CDF for the exponential distribution are defined as follows:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0\\ 0, & x < 0 \end{cases}$$

$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 1 - e^{-\lambda x}, x \ge 0\\ 0, & x < 0 \end{cases}$$

- \Box Where λ indicates the rate of events occurred in a time unit, and the average time between two consequent events is λ^{-1}
- Our goal here is to generate a set of random variates $\{x_1, x_2, x_3, ...\}$, who follow the exponential distribution

Exponential Distribution (2)

- The step by step guide for exponential variate generation via inverse-transform:
 - □ 1st step: Specify the CDF of the ultimate variates (x_i) , which you want to generate: $F(x) = 1 e^{-\lambda x}$, $x \ge 0$
 - □ **2**nd **step**: Place R equal to F(x): $F(x) = 1 e^{-\lambda x} = R$
 - Since x is a random variable, $1 e^{-\lambda x}$ is also a random variable, which we have named it as R
 - □ As we illustrate later, R follows the uniform distribution over [0,1] (as expected)
 - \square **3rd step:** Solving the equation to obtain x based on R

$$1 - e^{-\lambda x} = R \to e^{-\lambda x} = 1 - R \to -\lambda x = Ln(1 - R) \to x = -\frac{1}{\lambda} Ln(1 - R)$$

- This is called exponential variate generator function
- Independent from the distribution, the **variate generator function** is denoted with $x = F^{-1}(R)$

Exponential Distribution (3)

- 4th step: Based on how many variates you want to generate, you must produce R_is first
 - ☐ You can use the techniques you studied in lecture 6
 - \Box Then apply them to the variate generator function to obtain x_i s

$$x_i = F^{-1}(R_i) = -\frac{1}{\lambda} Ln(1 - R_i)$$

- To simplify the exponential variate generation, we can replace $1 R_i$ with R_i
 - □ Why?

$$x_i = -\frac{1}{\lambda} Ln(R_i)$$

Exponential Distribution (4)

- Does the generated x_i really follows the exponential distribution with using this equation?
 - \square Consider the CDF of an exponential distribution with $\lambda = 1$
 - \square Assume x_0 as a prespecified number
- Let's obtain the CDF for x_i (i = 1)

$$P(x_1 \le x_0) = P(R_1 \le F(x_0)) = F(x_0)$$
B

- How A is applicable?
 - $\square x_1 \le x_0$ if and only if $R_1 \le F(x_0)$
- How B is applicable?
 - □ Because $0 \le F(x_0) \le 1$, and R_1 is uniformly distributed on [0,1]

Figure: Inverse-transform technique for $F(x) = 1 - e^{-x}$

Example (1)

- Generate 200 variates x_i with distribution $exp(\lambda = 1)$
 - \square First, we produce 200 R_i~U(0,1)
 - These random numbers are shown in the following histogram

10 classes have been used for representing the frequency of numbers in every class

Histogram for 200 empirically generated R_i Random numbers $\sim U(0, 1)$

Theoritical representation of R_i Random numbers $\sim U(0, 1)$

Example (2)

Then we utilize the following equation:

$$x_i = -\frac{1}{\lambda} Ln(R_i) = -Ln(R_i)$$

The generated variates are illustrated in the following histogram

Histogram for 200 empirically produced x_i exponential variates $\sim exp(\lambda = 1)$ variates $\sim exp(\lambda = 1)$

Theoritical representation of x_i

Other Distributions (1)

- Now let's talk about producing variates for other distributions with employing the inverse-transform
 - □ Recall: The CDF of the targeted distribution must be **reversible**
- Uniform distribution:
 - □ The random variable X is uniformly distributed on [a,b] if:

$$x_i \sim U(a,b) \Rightarrow x_i = a + (b-a)R_i$$

- Where a, and b can get any values (a < b)
- Based on this equation, if R_i is selected from [0,1], x_i resides in [a,b]
- Weibull distribution (v = 0):

$$f(x) = \begin{cases} \frac{\beta}{\alpha^{\beta}} x^{\beta - 1} e^{-(x/a)^{\beta}}, & x \ge 0 \\ 0, & otherwise \end{cases} \qquad F(x) = 1 - e^{-\left(\frac{x}{\alpha}\right)^{\beta}}, x \ge 0$$

$$x_i = \alpha [-Ln(1 - R_i)]^{\frac{1}{\beta}}$$

Other Distributions (2)

- Triangular distribution:
 - □ The same process must be applied to its PDF:

$$f(x) = \begin{cases} x, & 0 \le x \le 1\\ 2 - x, & 1 < x \le 2\\ 0, & \text{otherwise} \end{cases}$$

$$F(x) = \begin{cases} 0, & x \le 0\\ \frac{x^2}{2}, & 0 < x \le 1\\ 1 - \frac{(2-x)^2}{2}, & 1 < x \le 2\\ 1, & x > 2 \end{cases}$$

Obtain the x_i equation in triangular distribution with inverse-transform technique

Empirical Continuous Distributions (1)

- When there isn't sufficient data, known theoretical distributions cannot be used for modeling and also generating random variates
- What approaches could be used here?
 - □ Resampling more data (if possible), and reaching a better understanding from the collected data
 - Then, try to suggest values for those areas with no data available based on the graphical presentation of the collected data
 - Also known as discrete approach
 - □ Interpolate between observed data points to fill in the gaps in the empirical CDF
 - This is where we want to focus in this section and produce random variates based on empirical continuous distribution

Empirical Continuous Distributions (2)

- Problem statement:
 - □ There is a small sample set (size n) composed of values you have observed
 - □ We want to know, if supposed to be other observed values in this set, what would they like be?
- The process:
 - Arrange your limited collected data from smallest to largest

$$y_1 \le y_2 \le y_3 \le \dots \le y_n$$

- □ Consider the gap between two numbers as an interval, and assign the probability 1/n to each interval
- □ Plot these values and draw a line between every two consequent points
 - This is your empirical CDF composed of segmented lines

Empirical Continuous Distributions (3)

- The process (Cont.):
 - □ Produce R_i, which is uniformly distributed on [0,1]
 - □ Determine the value of j according to $\frac{j-1}{n} < R_i \le \frac{j}{n}$
 - You can do this with either the CDF or a table composed of your gathered information
 - \square Calculate the value of x_i according to the following equation:

$$x_i = F^{-1}(R_i) = y_{j-1} + a_j \left[R_i - \frac{j-1}{n} \right]$$

- x_i is the value you want to produce, and y_j is the value you have already collected from the system
- a_i is indicating the slope of the jth segmented line in the CDF

$$a_j = \frac{y_j - y_{j-1}}{\frac{j}{n} - \frac{j-1}{n}} = \frac{y_j - y_{j-1}}{1/n}$$

Example (1)

- The speed of preparation for a group of firefighters have been measured and reported in minutes
 - 2.76
- 1.83
- 0.80
- 1.45
- 1.24
- We sort these data and insert them in a table as follows:

j	Interval (Hours)	Probability 1/n	Cumalative Probability, j/n	Slope, aj
1	$0.0 \le x \le 0.80$	0.2	0.20	4.00
2	$0.8 < x \le 1.24$	0.2	0.40	2.20
3	$1.24 < x \le 1.45$	0.2	0.60	1.05
4	$1.45 < x \le 1.83$	0.2	0.80	1.90
5	$1.83 < x \le 2.76$	0.2	1.00	4.65

- □ Since there are only 5 values, the probability of every interval is 1/5
- The slope of every segmented line is also calculated
 - These values are then used to plot the empirical CDF

Example (2)

- The CDF is now obtained
- How to generate a random variate based on this empirical CDF?
 - \square Assume $R_1 = 0.71$
 - \square R₁ lies between 0.6, and 0.8

$$0.6 = \frac{j-1}{n} < R_1 \le 0.8 = \frac{j}{n}$$

 $\hat{F}(x)$ (2.76, 1.0)(1.83, 0.80)0.8 Cumulative probability $R_1 = 0.71$ 0.6 0.4 (1.45, 0.60)0.6 (1.24, 0.40)0.2 (0.80, 0.20) $X_1 = 1.45 + 1.90(0.71 - 0.60) = 1.66$ 1.0 2.0 2.5 Response times

• Therefore, j = 4 and $a_4 = 1.90$

$$x_1 = y_{j-1} + a_j \left[R_i - \frac{j-1}{n} \right] = 1.45 + a_4 \left[0.71 - \frac{3}{5} \right] = 1.45 + 1.90 \times (0.71 - 0.6) = 1.66$$

Empirical Continuous Distribution with Large Sample Set (1)

- What if the number of samples is high?
 - □ We need a classification approach
 - Consider a number of intervals with identical length
 - Every interval embraces a number of samples
 - The cumulative frequency of every interval is indicated with c_j
- So, the only difference with the previous approach is in the frequency of observations in every interval
 - □ Previously, every interval was contained of only one sample (check out the table in slide 16)
 - Therefore, the probability of every interval was identical to others (1/n), and the cumulative frequency of the jth interval was j/n
 - □ In the new approach, intervals contain different number of samples
 - So, we use the actual cumulative frequency of every interval, which may not be equal to other intervals

Empirical Continuous Distribution with Large Sample Set (2)

- The process:
 - □ Produce R_i, which is uniformly distributed on [0,1]
 - \square Determine the value of j according to $c_{j-1} < R_i \le c_j$
 - \square Calculate the value of x_i according to the following equation:

$$x_i = F^{-1}(R_i) = y_{j-1} + a_j[R_i - c_{j-1}]$$

- x_i is the value you want to produce, and y_j is the value you have already collected from the system
- a_i is indicating the slope of the jth segmented line in the CDF

$$a_j = \frac{y_j - y_{j-1}}{c_i - c_{j-1}}$$

Example (1)

- Assume that the repairing time of a device has been measured in n=100 consecutive observations
 - □ These values are classified into 4 intervals and added in the following table

j	Interval (Hours)	Frequency	Relative Frequency	Cumulative Frequency, cj	Slope, aj
1	$0.25 \le x \le 0.5$	31	0.31	0.31	0.81
2	$0.5 < x \le 1.0$	10	0.10	0.41	5.0
3	$1.0 < x \le 1.5$	25	0.25	0.66	2.0
4	$1.5 < x \le 2.0$	34	0.34	1.00	1.47

- One of the differences between this table and the previous version is the lower bound of the 1st interval
 - □ Previously, since we built the intervals from the samples themselves, we put 0, but here we use the sample with minimum value

Example (2)

- Now we could depict the CDF from the table with drawing the segmented lines
- How to generate a random variate based on this empirical CDF?
 - \square Assume $R_1 = 0.83$
 - \square R₁ lies between 0.66, and 1.0

$$0.66 = c_3 < R_1 \le 0.8 = c_4$$

■ Therefore, j = 4, and $a_4 = 1.47$

$$x_1 = y_{j-1} + a_j [R_i - c_{j-1}] = 1.5 + 1.47[0.83 - 0.66] = 1.75$$

• Calculate x_2 , if $R_2 = 0.33$

Continuous Distributions without a Closed-Form Inverse

- A number of useful continuous distributions do not have a closed-form expression for their CDF or its inverse
 - □ Example: Normal, Gamma, and Beta distribution
- We are willing to approximate the inverse of CDF
 - Example: Simple approximation for the inverse of CDF in the standard normal distribution:
 Only 0.5% error

$$x_i = F^{-1}(R_i) \approx \frac{R_i^{0.135} - (1 - R_i)^{0.135}}{0.1975}$$

□ In the following table, the approximated inverse has been compared with the exact inverse based on their corresponding R_i values

	\			
R	Approximate Inverse	Exact Inverse		
0.01	[-2.3263]	-2.3373		
0.10	-1.2816	-1.2813		
0.25	-0.6745	-0.6713		
0.50	0.0000	0.0000		
0.75	0.6745	0.6713		
0.90	1.2816	1.2813		
0.99	2.3263	2.3373		

Discrete Distribution (1)

- Now let's concentrate on discrete distributions
- Random variates supporting all kinds of discrete distributions can be generated via inverse-transform technique
 - ☐ This could be done either numerically with table-lookup procedures, algebraically, or a formula
- Examples for distributions:
 - Empirical
 - Discrete uniform
 - □ Gamma

Discrete Distribution (2)

- Example:
 - □ Suppose that at the end of a working day, the number of shipments of a sailing company (X), on the loading dock of a port is either 0, 1, or 2
 - □ The probability distribution of the gathered data is as follows
 - Accordingly, the cumulative distribution is also calculated, and indicated in the 3^{rd} column

X	p(x)	F(x)
0	0.50	0.50
1	0.30	0.80
2	0.20	1.00

The CDF could be plotted based on this table, and according to $F(X) = P(X \le x)$

□ In order to take financial decisions, we have been asked to model the number of shipments (X) based on what we have observed

Discrete Distribution (3)

- Assume we want to find the random variate corresponding to $R_1 = 0.73$
 - \square First, find R₁ on the y-axis of F(X)
 - □ Draw a line to cut the 1st jump step
 - \square Find the corresponding x_1 to R_1 , which is 1
- You can also use a lookup table to find the corresponding x_i values
 - □ This table could be simply obtained from the previous CDF

$$x_i = \begin{cases} 0, & if \ R_i \le 0.5 \\ 1, & if \ 0.5 < R_i \le 0.8 \\ 2, & if \ 0.8 < R_i \le 1.0 \end{cases}$$

i	Input ri	Output xi
0	0.50	0
1	0.80	1
2	1.00	2

■ Since $r_1 = 0.5 < R_1 = 0.73 \le r_2 = 0.8$, $\rightarrow i = 2 \rightarrow x_i = 1$

Geometric Distribution

- Consider a geometric distribution with a success probability of P
 - ☐ The PMF of this distribution is:

$$p(x) = p(1-p)^x$$
, $x = 0, 1, 2, ...$ 0

- The CDF is given by: $F(x) = 1 (1 p)^{x+1}$
- Using the Inverse-Transform Technique:

$$X = \left\lceil \frac{\ln(1-R)}{\ln(1-p)} - 1 \right\rceil \qquad R \sim U[0,1]$$

□ This variate generator gives us geometric variates ≥ 0 , but sometimes we need geometric variates $\geq q$:

$$X = q + \left\lceil \frac{\ln(1-R)}{\ln(1-p)} - 1 \right\rceil \quad x_i \in \{q, q+1, q+2, \dots\}$$

Acceptance-Rejection Technique (1)

- Useful particularly when inverse CDF does not exist in closed form
- Let's discuss this technique using an example
 - \square Assume we want to generate random variates $X \sim U(1/4, 1)$
 - Follow these steps:
 - 1st: Generate a random number R~U[0,1]
 - 2^{nd} : If $R \ge 1/4$, it lies in the acceptable range
 - □ So, we accept R and assign it to x
 - \square Unless, if R < 1/4, it will be rejected
 - 3rd: Go back to step 1, and produce an other random number R
 - □ Of course, if you need another variate
- In acceptance-rejection, the number of accepts is always less or equal to the total number of generated Rs

Acceptance-Rejection Technique (2)

- For instance, in our example, with producing high enough random numbers R, approximately 1/4 of the total number of produced Rs will be rejected
 - □ Because they were less than 1/4
 - □ Only 3/4 will be accepted
- The process of variate generation using the AR technique is shown in the flowchart
 - □ While all of Rs do not meet the condition, a fraction of them (R') does
 - So, R' has the desired distribution
- Efficiency: heavily depends on the ability to minimize the number of rejections in the algorithm

Poisson Process (1)

Recall: The PDF of a random variable N supporting the Poisson distribution with $\alpha > 0$:

$$P(N=n) = \frac{e^{-\alpha}\alpha^n}{n!}$$
, $n = 0,1.2, ...$ $\alpha = \lambda t$

- Where n indicates the number of arrivals in the intended observation period
- Consider A_i as the interarrival between customer i, and i-1
 - \square These interarrivals follow the exponential distribution with rate λ
 - □ We know how to generate exponential variates with $x_i = -\frac{1}{\lambda} LnR_i$
- Now, we want to use this relation between Poisson and exponential distributions, to generate Poisson variates

Poisson Process (2)

- Assume N = n arrivals are supposed to happen in our observation period t
 - \square If we assume t to be a time unit ($\lambda = \alpha$), then:

$$A_1 + A_2 + A_3 + \dots + A_n \le 1 < A_1 + A_2 + A_3 + \dots + A_n + A_{n+1}$$

- □ This indicates that the n+1th customer arrives after our observation period (t=one time unit)
- □ So, n **MUST** meet this temporal condition
- Hence, let's generate a number of exponential A_i interarrivals with accordance to the above condition:

$$A_{i} = -\frac{1}{\lambda} LnR_{i} \quad \longrightarrow \quad \sum_{i=1}^{n} -\frac{1}{\lambda} LnR_{i} \le 1 < \sum_{i=1}^{n+1} -\frac{1}{\lambda} LnR_{i}$$

Poisson Process (3)

■ To simplify the unequal relation, multiply the sides by $-\lambda$

$$\left(\sum_{i=1}^{n} LnR_i\right) \ge -\lambda > \sum_{i=1}^{n+1} LnR_i$$

We know that sum of logarithms equals to logarithm of their multiplication

$$Ln\prod_{i=1}^{n}R_{i} \geq -\lambda > Ln\prod_{i=1}^{n+1}R_{i}$$

- Take e^{x} from both sides $\rightarrow e^{Ln \prod_{i=1}^{n} R_i} \ge e^{-\lambda} > e^{Ln \prod_{i=1}^{n+1} R_i}$
- We know $e^{Lnx} = x$: $\prod_{i=1}^{n} R_i \ge e^{-\lambda} > \prod_{i=1}^{n+1} R_i$

Poisson Process (4)

- Finally, according to what we have obtained, based on the question that is it possible to have n arrivals in a time unit, we can have an acceptance/rejection criterion
- Therefore, follow these steps to produce Poisson variates:
 - □ 1st step: Assign n=0 (no arrivals yet), and P=1 (a probability)

 - □ 3rd step: If $P < e^{-\lambda}$, the condition is met (P is actually the multiplication of previous R_i s)
 - n is accepted, and N is assigned with n
 - Otherwise, n is rejected, increase n by one, and return to step 2
- To produce a single Poisson variate, the above algorithm must be iteratively executed until an n is accepted

Example

- Generate 3 Poisson variates with $\lambda = 0.2$
 - □ First calculate $e^{-\lambda} = 0.8187$
 - ☐ Then generate a sequence of random numbers R~U[0,1]
 - You can use table A.1 in the textbook
 - ☐ Then, follow the algorithm:

Step 1. Set
$$n = 0, P = 1$$
.

Step 2.
$$R_1 = 0.4357, P = 1 \cdot R_1 = 0.4357.$$

Step 3. Since
$$P = 0.4357 < e^{-\alpha} = 0.8187$$
, accept $N = 0$.

Step 1–3.
$$(R_1 = 0.4146 \text{ leads to } N = 0.)$$

Step 1. Set
$$n = 0, P = 1$$
.

Step 2.
$$R_1 = 0.8353, P = 1 \cdot R_1 = 0.8353.$$

Step 3. Since
$$P \ge e^{-\alpha}$$
, reject $n = 0$ and return to Step 2 with $n = 1$.

Step 2.
$$R_2 = 0.9952, P = R_1R_2 = 0.8313.$$

Step 3. Since
$$P \ge e^{-\alpha}$$
, reject $n = 1$ and return to Step 2 with $n = 2$.

Step 2.
$$R_3 = 0.8004, P = R_1 R_2 R_3 = 0.6654.$$

Step 3. Since
$$P < e^{-\alpha}$$
, accept $N = 2$.

Poisson variates that we have generated

What if λ is high? (1)

- As we noticed, higher λ imposes more cost to the acceptance/rejection technique
 - □ Specially when $\lambda \ge 15$
 - An alternate approach is to use an approximation technique based on the standard normal distribution
- Set: $Z = \frac{N-\lambda}{\sqrt{\lambda}}$
 - □ Where Z is approximately a normally distributed variable with mean 0 and variance 1
- Generate standard normal variate Z (pair wise):

$$Z_1 = (-2 \ln R_1)^{1/2} \cos(2\pi R_2)$$
 Generate 2 random numbers, and $Z_2 = (-2 \ln R_1)^{1/2} \sin(2\pi R_2)$ get 2 standard normal variates

What if λ is high? (2)

- Z₁, and Z₂ are standard normal variates, which are totally independent
- But your Poisson variates have not been yet generated
 - □ To do so, set N equal to the following:

$$N = \left[\lambda + \sqrt{\lambda}Z - 0.5\right]$$

- \square For both Z_1 , and Z_2
- This equation has been obtained based on the conducted transformation in the previous slide
- Note: If $\lambda + \sqrt{\lambda}Z 0.5 < 0$, put N=0
- Not forget that this approximation technique is not an acceptance/rejection technique!

Non-Stationary Poisson Process (NSPP)

- Recall: a NSPP is a Poisson arrival process with an arrival rate that varies with time
 - Our goal here is to use a special case of acceptance/rejection technique known as thinning to produce exponentially distributed interarrivals with rate $\lambda(t)$, $0 \le t \le T$
- Idea behind thinning:
 - □ 1st step: Generate a **stationary** Poisson arrival process at the fastest rate, $\lambda^* = \text{Max } \lambda(t)$, assign t=0, and i=1
 - i indicates the ith event (or customer)
 - \square 2nd step: Generate an exponential variate E with rate λ^* , and put t=t+E
 - □ 3rd step: Generate R~U[0,1], if R $\leq \lambda(t)/\lambda^*$ \rightarrow assign $\tau_i = t$, i=i+1
 - \bullet τ_i is the arrival time of the ith NSPP event
 - □ 4th step: Return to step 2 (whether accepted or not)
- Where does thinning come with low efficiency?

Example

For the following NSPP, generate a random variate using the thinning technique

ر		t (min)	Mean Time Between Arrivals (min)	Arrival Rate λ(t) (#/min)
m C	\int	0	15	1/15
1 st 60 min	f	60	12	1/12
		120	7	1/7
) mi	\int	180	5	1/5
4 th 60 min	f	240	8	1/8
4		300	10	1/10
		360	15	1/15
		420	20	1/20
		480	20	1/20

Step 1:
$$\lambda^* = \max \lambda(t) = 1/5$$
, $t = 0$ and $t = 1$
Step 2: For random number R = 0.2130
E = -5ln(0.213) = 13.13
 $t = t + E = 13.13$ Within the 1st 60 min
Step 3: Generate R = 0.8830
 $\lambda(13.13)/\lambda^* = (1/15)/(1/5) = 1/3$
Since R>1/3, do not accept the arrival time
Step 2: For random number R = 0.5530
E = -5ln(0.553) = 2.96
 $t = t + E = 13.13 + 2.96 = 16.09$
Step 3: Generate R = 0.0240
 $\lambda(16.09)/\lambda^* = (1/15)/(1/5) = 1/3$
Since R<1/3, T₁ = t = 16.09
and $t = t + 1 = 2$

Variate Generation for Special Cases

- Among other distributions, there are special techniques used for variate generation, for instance:
 - □ Normal, and log-normal distributions
 - You can find out more in the textbook
 - ☐ The standard normal distribution, which we have already discussed
 - □ Beta distribution (which could be obtained from gamma distribution)
 - □ Erlang, and binomial distributions
 - Convolution technique is used: In this technique, to produce a random variate following an intended distribution, two or more random variables from another distribution are added up
 - □ For the Erlang distribution:

$$X = \sum_{i=1}^k X_i \longrightarrow X = \sum_{i=1}^k -\frac{1}{k\theta} \ln R_i = -\frac{1}{k\theta} \ln \left(\prod_{i=1}^k R_i \right)$$
 A sequence of R_is is used for a single X

Summary

- Principles of random-variate generation via:
 - Inverse-transform technique
 - The CDF of the target distribution must be reversible
 - Unless, we need another method
 - Acceptance-rejection technique
 - Discussed for Poisson and NSPP
 - Special cases
 - Convolution technique for Erlang variates
- These techniques are important for generating variates with continuous or discrete distributions to obtain appropriate inputs to be fed into our simulator