

# ISD Cortex<sup>™</sup>-M0 ChipCorder ISD9160 Datasheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of ISD ChipCorder microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

Publication Release Date: Nov 17, 2011 Revision V1.22



# Table of Contents-

|   |      | TABLE OF CONTENTS                          | 2  |
|---|------|--------------------------------------------|----|
| 1 | GEN  | IERAL DESCRIPTION                          | 3  |
| 2 | FEAT | TURES                                      | 4  |
| 3 | PAR  | T INFORMATION AND PIN CONFIGURATION        | 7  |
|   | 3.1  | Pin Configuration                          | 7  |
|   |      | 3.1.1 ISD9160 LQFP 48 pin                  | 7  |
|   |      | 3.1.2 Pin Description                      |    |
| 4 | BLO  | CK DIAGRAM                                 | 12 |
| 5 | APPL | LICATION DIAGRAM                           | 13 |
| 6 | ELEC | CTRICAL CHARACTERISTICS                    | 14 |
|   | 6.1  | Absolute Maximum Ratings                   | 14 |
|   | 6.2  | DC Electrical Characteristics              | 15 |
|   | 6.3  | AC Electrical Characteristics              |    |
|   |      | 6.3.1 External 32kHz XTAL Oscillator       |    |
|   |      | 6.3.2 Internal 49.152MHz Oscillator        |    |
|   |      | 6.3.3 Internal 10 kHz Oscillator           |    |
| 7 | PAC  | KAGE DIMENSIONS                            | 20 |
|   |      | 7.1.1 48L LQFP (7x7x1.4mm footprint 2.0mm) | 20 |
| 8 |      | DERING INFORMATION                         |    |
| 9 | REVI | ISION HISTORY                              | 22 |
|   |      | IMPORTANT NOTICE                           | 23 |



#### 1 GENERAL DESCRIPTION

The ISD9160 is a system-on-chip product optimized for low power, audio record and playback with an embedded ARM® Cortex™-M0 32-bit microcontroller core.

The ISD9160 embeds a Cortex™-M0 core running up to 50 MHz with 145K-byte of non-volatile flash memory and 12K-byte of embedded SRAM. It also comes equipped with a variety of peripheral devices, such as Timers, Watchdog Timer (WDT), Real-time Clock (RTC), Peripheral Direct Memory Access (PDMA), a variety of serial interfaces (UART, SPI/SSP, I²C, I²S), PWM modulators, GPIO, Analog Comparator, Low Voltage Detector and Brown-out detector.

The ISD9160 comes equipped with a rich set of power saving modes including a Deep Power Down (DPD) mode drawing less than  $1\mu A$ . A micro-power 10KHz oscillator can periodically wake up the device from deep power down to check for other events. A Standby Power Down (SPD) mode can maintain a real time clock function at less than  $10~\mu A$ .

For audio functionality the ISD9160 includes a Sigma-Delta ADC with 80dB SNR performance coupled with a Programmable Gain Amplifier (PGA) capable of a maximum gain of 61dB to enable direct connection of a microphone. Audio output is provided by a Differential Class D amplifier (DPWM) that can deliver  $1W^1$  of power to an  $8\Omega$  speaker.

The ISD9160 provides eight analog enabled general purpose IO pins (GPIO). These pins can be configured to connect to an analog comparator, can be configured as analog current sources or can be routed to the SDADC for analog conversion. They can also be used as a relaxation oscillator to perform capacitive touch sensing.

Release Date: Nov 17, 2011 Revision V1.22

- 3 -

<sup>&</sup>lt;sup>1</sup> We suggest implementing thermal protection by utilizing the Temperature Alarm; for details please refer to Temperature Alarm in Design Guide.



#### 2 FEATURES

#### Core

- ARM® Cortex™-M0 core runs up to 50MHz.
- One 24-bit System tick timer for operating system support.
- Supports a variety of low power sleep and power down modes.
- Single-cycle 32-bit hardware multiplier.
- NVIC (Nested Vector Interrupt Controller) for 32 interrupt inputs, each with 4-levels of priority.
- Serial Wire Debug (SWD) support with 2 watchpoints/4 breakpoints.

#### Power Management

- Wide operating voltage range from 2.5V to 5.5V.
- Power management Unit (PMU) providing four levels of power control.
- Deep Power Down (DPD) mode with sub micro-amp leakage (<1μA).
- Wakeup from Deep Power Down via dedicated WAKEUP pin or timed operation from internal low power 10kHz oscillator.
- Standby mode with limited RAM retention and RTC operation (<10µA).</li>
- Wakeup from Standby can be from any GPIO interrupt, RTC or BOD.
- Sleep mode with minimal dynamic power consumption.
- 3V LDO for operation of external 3V devices such as serial flash.

#### Flash EPROM Memory

- 145K bytes Flash EPROM for program code and data storage.
- 4KB of flash can be configured as boot sector for ISP loader.
- Support In-system program (ISP) and In-circuit program (ICP) application code update
- 1K byte page erase for flash
- Configurable boundary to delineate code and data flash.
- Support 2 wire In-circuit Programming (ICP) update from SWD ICE interface

#### SRAM Memory

12K bytes embedded SRAM.

#### Clock Control

- One high speed and two low speed oscillators providing flexible selection for different applications. No external components necessary.
- Built-in trimmable oscillator with range of 16-50MHz. Factory trimmed within 1% to settings of 49.152MHz and 32.768MHz. User trimmable with in-built frequency measurement block (OSCFM) using reference clock of 32kHz crystal or external reference source.
- Ultra-low power (<1uA) 10kHz oscillator for watchdog and wakeup from power-down or sleep operation.
- External 32kHz crystal input for RTC function and low power system operation.

#### GPIO

- Four I/O modes:
  - Quasi bi-direction
  - Push-Pull output
  - Open-Drain output
  - Input only with high impendence
- TTL/Schmitt trigger input selectable.
- I/O pin can be configured as interrupt source with edge/level setting.
- Switchable pull-up.

#### Audio Analog to Digital converter

- Sigma Delta ADC with configurable decimation filter and 16 bit output.
- 80dB Signal-to-Noise (SNR) performance.
- Programmable gain amplifier with 32 steps from -12 to 35.25dB in 0.75dB steps.
- Boost gain stage of 26dB, giving maximum total gain of 61dB.



- Input selectable from dedicated MIC pins or analog enabled GPIO.
- Programmable biquad filter to support multiple sample rates from 8-32kHz.
- DMA support for minimal CPU intervention.

#### Differential Audio PWM Output (DPWM)

- Direct connection of speaker
- 1W drive capability into 8Ω load.
- High efficiency 88%
- Configurable up-sampling to support sample rates from 8-32kHz.
- DMA support for minimal CPU intervention.

#### Timers

- Two timers with 8-bit pre-scaler and 24-bit resolution.
- Counter auto reload.

#### Watch Dog Timer

- Default ON/OFF by configuration setting
- Multiple clock sources
- 8 selectable time out period from micro seconds to seconds (depending on clock source)
- WDT can wake up power down/sleep.
- Interrupt or reset selectable on watchdog time-out.

#### RTC

- Real Time Clock counter (second, minute, hour) and calendar counter (day, month, year)
- Alarm registers (second, minute, hour, day, month, year)
- Selectable 12-hour or 24-hour mode
- Automatic leap year recognition
- Time tick and alarm interrupts.
- Device wake up function.
- Supports software compensation of crystal frequency by compensation register (FCR)

#### PWM/Capture

- Built-in up to two 16-bit PWM generators provide two PWM outputs or one complementary paired PWM outputs.
- The PWM generator equipped with a clock source selector, a clock divider, an 8-bit pre-scaler and Dead-Zone generator for complementary paired PWM.
- PWM interrupt synchronous to PWM period.
- 16-bit digital Capture timers (shared with PWM timers) provide rising/falling capture inputs.
- Support Capture interrupt

#### UART

- UART ports with flow control (TX, RX, CTS and RTS)
- 8-byte FIFO.
- Support IrDA (SIR) and LIN function
- Programmable baud-rate generator up to 1/16 of system clock.

## SPI

- Master up to 20 Mbps / Slave up to 10 Mbps.
- Support MICROWIRE/SPI master/slave mode (SSP)
- Full duplex synchronous serial data transfer
- Variable length of transfer data from 1 to 32 bits
- MSB or LSB first data transfer
- 2 slave/device select lines when used in master mode.
- Hardware CRC calculation module available for CRC calculation of data stream.
- DMA support for burst transfers.

#### I2C

- Master/Slave up to 1Mbit/s
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master).

Release Date: Nov 17, 2011



- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- Programmable clock allowing versatile rate control.
- I2C-bus controller supports multiple address recognition.

#### I<sup>2</sup>S

- Interface with external audio CODEC.
- Operate as either master or slave.
- Capable of handling 8, 16, 24 and 32 bit word sizes
- Mono and stereo audio data supported
- I<sup>2</sup>S and MSB justified data format supported
- Two 8 word FIFO data buffers are provided, one for transmit and one for receive
- Generates interrupt requests when buffer levels cross a programmable boundary
- Supports DMA requests, for transmit and receive

#### Brown-out detector

- With 8 levels: 2.1V, 2.2V, 2.4V, 2.5V, 2.625V, 2.8V, 3.0V, and 4.6V
- Supports time-multiplex operation to minimize power consumption.
- Supports Brownout Interrupt and Reset option
- Built in Low Dropout Voltage Regulator (LDO)
  - Capable of delivering 30mA load current.
  - Configurable for output voltage of 1.8V, 2.4V, 3.0V and 3.3V
  - Eight GPIO (GPIOA<7:0>) operate from LDO voltage domain allowing direct interface to, for example, 3V SPI Flash.
  - Can be bypassed and voltage domain supplied directly from system power.

#### Additional Features

- Over temperature alarm. Can generate interrupt if device exceeds safe operating temperature.
- Temperature proportional voltage source which can be routed to ADC for temperature measurements.

- 6 -

- Digital Microphone interface.
- Operating Temperature: -40C~85C
- Package:
  - All Green package (RoHS)
    - LQFP 48-pin

Release Date: Nov 17, 2011

Revision V1.22



#### 3 PART INFORMATION AND PIN CONFIGURATION

# 3.1 Pin Configuration

# 3.1.1 ISD9160 LQFP 48 pin



#### 3.1.2 Pin Description

The ISD9160 is a low pin count device where many pins are configurable to alternative functions. All General Purpose Input/Output (GPIO) pins can be configured to alternate functions as described in the table below.

| Pin No.    |          |          | A 14 |             |
|------------|----------|----------|------|-------------|
| LQFP<br>48 | Pin Name | Pin Type | CFG  | Description |

Release Date: Nov 17, 2011



| Pin No.    |           |          | A14        |                                                                                                             |  |  |  |
|------------|-----------|----------|------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| LQFP<br>48 | Pin Name  | Pin Type | Alt<br>CFG | Description                                                                                                 |  |  |  |
| 1          | WAKEUP    | I        |            | Pull low to wake part from deep power down                                                                  |  |  |  |
|            | PB.7      | A/I/O    | 0          | General purpose input/output pin, analog capable; Port B, bit 7                                             |  |  |  |
| 2          | I2S_SDO   | 0        | 1          | Serial Data Output for I2S interface                                                                        |  |  |  |
|            | CMP7      | AIO      | 2          | Configure as relaxation oscillator for capacitive touch sensing                                             |  |  |  |
|            | PB.6      | A/I/O    | 0          | General purpose input/output pin, analog capable; Port B, bit 6                                             |  |  |  |
| 3          | I2S_SDI   | I        | 1          | Serial Data Input for I2S interface                                                                         |  |  |  |
| 3          | CMP6      | AIO      | 2          | Configure as relaxation oscillator for capacitive touch sensing                                             |  |  |  |
|            | SPI_MOSI1 | 0        | 3          | Master Out, Slave In channel 1 for SPI interface                                                            |  |  |  |
|            | PB.5      | A/I/O    | 0          | General purpose input/output pin, analog capable; Port B, bit 5                                             |  |  |  |
| 4          | PWM1B     | 0        | 1          | PWM channel 1 complementary output pin                                                                      |  |  |  |
| 7          | CMP5      | AIO      | 2          | Configure as relaxation oscillator for capacitive touch sensing                                             |  |  |  |
|            | SPI_MISO1 | I        | 3          | Master In, Slave Out channel 1 for SPI interface                                                            |  |  |  |
|            | PB.4      | A/I/O    | 0          | General purpose input/output pin, analog capable; Port B, bit 4                                             |  |  |  |
| 5          | PWM0B     | 0        | 1          | PWM channel 0 complementary output pin                                                                      |  |  |  |
|            | CMP4      | AIO      | 2          | Configure as relaxation oscillator for capacitive touch sensing                                             |  |  |  |
|            | SPI_MOSI0 | 0        | 3          | Master Out, Slave In channel 0 for SPI interface                                                            |  |  |  |
|            | PB.3      | A/I/O    | 0          | General purpose input/output pin, analog capable; Port B, bit 3                                             |  |  |  |
| 6          | I2C_SDA   | I/O      | 1          | Serial Data, I2C interface                                                                                  |  |  |  |
|            | CMP3      | AIO      | 2          | Configure as relaxation oscillator for capacitive touch sensing                                             |  |  |  |
|            | SPI_MISO0 | 1        | 3          | Master In, Slave Out channel 0 for SPI interface                                                            |  |  |  |
|            | PB.2      | A/I/O    | 0          | General purpose input/output pin, analog capable; Port B, bit 2                                             |  |  |  |
| 7          | I2C_SCL   | I/O      | 1          | Serial Clock, I2C interface                                                                                 |  |  |  |
|            | CMP2      | AIO      | 2          | Configure as relaxation oscillator for capacitive touch sensing                                             |  |  |  |
|            | SPI_SCLK  | I/O      | 3          | Serial Clock for SPI interface                                                                              |  |  |  |
|            | PB.1      | A/I/O    | 0          | General purpose input/output pin, analog capable; Port B, bit 1. Triggers external interrupt 1 (EINT1/IRQ3) |  |  |  |
| 8          | MCLK      | 0        | 1          | Master clock output for synchronizing external device                                                       |  |  |  |
|            | CMP1      | AIO      | 2          | Configure as relaxation oscillator for capacitive touch sensing                                             |  |  |  |
|            | SPI_SSB1  | 0        | 3          | Slave Select Bar 1 for SPI interface                                                                        |  |  |  |
| 9          | PB.0      | A/I/O    | 0          | General purpose input/output pin, analog capable; Port B, bit 0. Triggers external interrupt 0 (EINT0/IRQ2) |  |  |  |
|            | SPI_SSB1  | 0        | 3          | Slave Select Bar 1 for SPI interface                                                                        |  |  |  |



| Pin No.    |                 |          | <b>A1</b>  |                                                                                                      |
|------------|-----------------|----------|------------|------------------------------------------------------------------------------------------------------|
| LQFP<br>48 | Pin Name        | Pin Type | Alt<br>CFG | Description                                                                                          |
|            | СМРО            | AIO      | 2          | Configure as relaxation oscillator for capacitive touch sensing                                      |
|            | SPI_SSB0        | I/O      | 3          | Slave Select Bar 0 for SPI interface                                                                 |
| 10         | VCCD            | Р        |            | Main Digital Supply for Chip. Supplies all IO except analog, Speaker Driver and PA<7:0>              |
| 11         | VREG            | Р        |            | Logic regulator output decoupling pin. A 1µF capacitor returning to VSSD must be placed on this pin. |
| 12         | NC              |          |            | Should remain unconnected.                                                                           |
| 13         | NC              |          |            | Should remain unconnected.                                                                           |
|            | PA.15           | I/O      | 0          | General purpose input/output pin; Port A, bit 15                                                     |
| 14         | TM1             | I        | 1          | External input to Timer 1                                                                            |
|            | SDIN            | I        | 2          | Sigma Delta bit stream input for digital MIC mode                                                    |
|            | PA.9            | I/O      | 0          | General purpose input/output pin; Port A, bit 9                                                      |
| 15         | UART_RX         | ı        | 1          | Receive channel of UART                                                                              |
|            | I2S_BCLK        | I/O      | 2          | Bit Clock for I2S interface                                                                          |
|            | PA.8            | I/O      | 0          | General purpose input/output pin; Port A, bit 8                                                      |
| 16         | UART_TX         | 0        | 1          | Transmit channel of UART                                                                             |
|            | I2S_FS          | 1/0      | 2          | Frame Sync Clock for I2S interface                                                                   |
| 17         | VCCSPK          | Р        |            | Power Supply for PWM Speaker Driver                                                                  |
| 18         | SPK+            | 0        |            | Positive Speaker Driver Output                                                                       |
| 19         | VSSSPK          | P        |            | Ground for PWM Speaker Driver                                                                        |
| 20         | SPK-            | 0        |            | Negative Speaker Driver Output                                                                       |
| 21         | VCCSPK          | P        |            | Power Supply for PWM Speaker Driver                                                                  |
| 22         | RESETN          | ı        |            | External reset input. Pull this pin low to reset device to initial state. Has internal weak pull-up. |
| 23         | ICE_DAT         | I/O      |            | Serial Wire Debug port data pin. Has internal weak pull-up.                                          |
| 24         | ICE_CLK         | I        |            | Serial Wire Debug port clock pin. Has internal weak pull-up.                                         |
| 25         | VSSD            | Р        |            | Digital Ground.                                                                                      |
| 26         | PA.7            | I/O      | 0          | General purpose input/output pin; Port A, bit 7                                                      |
| 20         | I2S_SDO         | 0        | 1          | Serial Data Out for I2S interface                                                                    |
| 27         | PA.6 <b>I/O</b> |          | 0          | General purpose input/output pin; Port A, bit 6                                                      |
|            | I2S_SDI         | I        | 1          | Serial Data In for I2S interface                                                                     |
| 28         | PA.5            | I/O      | 0          | General purpose input/output pin; Port A, bit 5                                                      |
| 20         | I2S_BCLK        | I/O      | 1          | Bit Clock for I2S interface                                                                          |



| Pin No.    |           |     | A 1: |                                                                                                        |  |  |  |  |
|------------|-----------|-----|------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| LQFP<br>48 | CFG       |     |      | Description                                                                                            |  |  |  |  |
| 29         | PA.4      | I/O | 0    | General purpose input/output pin; Port A, bit 4                                                        |  |  |  |  |
| 29         | I2S_FS    | I/O | 1    | Frame Sync Clock for I2S interface                                                                     |  |  |  |  |
|            | PA.3      | I/O | 0    | General purpose input/output pin; Port A, bit 3                                                        |  |  |  |  |
| 30         | SPI_MISO0 | I   | 1    | Master In, Slave Out channel 0 for SPI interface                                                       |  |  |  |  |
|            | I2C_SDA   | I/O | 2    | Serial Data, I2C interface                                                                             |  |  |  |  |
| 31         | PA.2      | I/O | 0    | General purpose input/output pin; Port A, bit 2                                                        |  |  |  |  |
| 31         | SPI_SSB0  | I/O | 1    | Slave Select Bar 0 for SPI interface                                                                   |  |  |  |  |
| 32         | VDD33     | Р   |      | LDO Regulator Output. If used, a 1µF capacitor must be placed to ground. If not used then tie to VCCD. |  |  |  |  |
|            | PA.1      | I/O | 0    | General purpose input/output pin; Port A, bit 1                                                        |  |  |  |  |
| 33         | SPI_SCLK  | I/O | 1    | Serial Clock for SPI interface                                                                         |  |  |  |  |
|            | I2C_SCL   | I/O | 2    | Serial Clock, I2C interface                                                                            |  |  |  |  |
|            | PA.0      | I/O | 0    | General purpose input/output pin; Port A, bit 2                                                        |  |  |  |  |
| 34         | SPI_MOSI0 | 0   | 1    | Master Out, Slave In channel 0 for SPI interface                                                       |  |  |  |  |
|            | MCLK      | 0   | 2    | Master clock output.                                                                                   |  |  |  |  |
| 35         | VCCLDO    | Р   |      | Power Supply for LDO, should be connected to VCCD                                                      |  |  |  |  |
|            | PA.14     | 1/0 | 0    | General purpose input/output pin; Port A, bit 14                                                       |  |  |  |  |
| 36         | SDCLK     | 0   | 1    | Clock output for digital microphone mode.                                                              |  |  |  |  |
|            | SDCLKn    | 0   | 2    | Inverse Clock output for digital microphone mode.                                                      |  |  |  |  |
|            | PA.13     | I/O | 0    | General purpose input/output pin; Port A, bit 13                                                       |  |  |  |  |
| 37         | PWM1      | 0   | 1    | PWM1 Output.                                                                                           |  |  |  |  |
| 37         | SPKM      | 0   | 2    | Equivalent to SPK                                                                                      |  |  |  |  |
|            | I2S_BCLK  | I/O | 3    | Bit Clock for I2S interface                                                                            |  |  |  |  |
|            | PA.12     | I/O | 0    | General purpose input/output pin; Port A, bit 12                                                       |  |  |  |  |
| 38         | PWM0      | 0   | 1    | PWM0 Output.                                                                                           |  |  |  |  |
| 00         | SPKP      | 0   | 2    | Equivalent to SPK+                                                                                     |  |  |  |  |
|            | I2S_FS    | I/O | 3    | Frame Sync Clock for I2S interface                                                                     |  |  |  |  |
| 39         | XO32K     | 0   |      | 32.768kHz Crystal Oscillator Output                                                                    |  |  |  |  |
| 40         | XI32K     | I   |      | 32.768kHz Crystal Oscillator Input. Max Voltage 1.8V                                                   |  |  |  |  |
| 41         | VSSA      | AP  |      | Ground for analog circuitry.                                                                           |  |  |  |  |
| 42         | VMID      | 0   |      | Mid rail reference. Connect 4.7µF to VSSA.                                                             |  |  |  |  |
| 43         | MIC+      | Al  |      | Positive microphone input.                                                                             |  |  |  |  |



| Pin No.    |           |              | A 14       |                                                  |
|------------|-----------|--------------|------------|--------------------------------------------------|
| LQFP<br>48 | Pin Name  | Pin Type     | Alt<br>CFG | Description                                      |
| 44         | MIC-      | Al           |            | Negative microphone input.                       |
| 45         | MICBIAS   | AO           |            | Microphone bias output.                          |
| 46         | VCCA      | AP           |            | Analog power supply.                             |
|            | PA.11     | I/O          | 0          | General purpose input/output pin; Port A, bit 11 |
| 47         | I2C_SCL   | <b>I/O</b> 1 |            | Serial Clock, I2C interface                      |
| 47         | I2S_SDO   | <b>O</b> 2   |            | Serial Data Out I2S interface                    |
|            | UART_CTSn | I            | 3          | UART Clear to Send Input.                        |
|            | PA.10     | I/O          | 0          | General purpose input/output pin; Port A, bit 10 |
| 48         | I2C_SDA   | I/O          | 1          | Serial Data, I2C interface                       |
| 40         | I2S_SDI   | I            | 2          | Serial Data In I2S interface                     |
|            | UART_RTSn | 0            | 3          | UART Request to Send Output.                     |

Note:

Pin Type I=Digital Input, O=Digital Output; AI=Analog Input; P=Power Pin; AP=Analog Power

Release Date: Nov 17, 2011 Revision V1.22

- 11 -



# 4 BLOCK DIAGRAM



Figure 4-1 ISD9160 Block Diagram



# 5 APPLICATION DIAGRAM





# 6 ELECTRICAL CHARACTERISTICS

# 6.1 Absolute Maximum Ratings

| SYMBOL                                    | PARAMETER           | MIN     | MAX     | UNIT |
|-------------------------------------------|---------------------|---------|---------|------|
| DC Power Supply                           | VDD-VSS             | -0.3    | +6.0    | V    |
| Input Voltage                             | VIN                 | VSS-0.3 | VDD+0.3 | V    |
| Oscillator Frequency                      | 1/t <sub>CLCL</sub> | 0       | 40      | MHz  |
| Operating Temperature                     | TA                  | -40     | +85     | °C   |
| Storage Temperature                       | TST                 | -55     | +150    | °C   |
| Maximum Current into V <sub>DD</sub>      |                     | -       | 120     | mA   |
| Maximum Current out of V <sub>SS</sub>    |                     |         | 120     | mA   |
| Maximum Current sunk by a I/O pin         |                     |         | 35      | mA   |
| Maximum Current sourced by a I/O pin      |                     |         | 35      | mA   |
| Maximum Current sunk by total I/O pins    |                     |         | 100     | mA   |
| Maximum Current sourced by total I/O pins |                     |         | 100     | mA   |

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability of the device.

Release Date: Nov 17, 2011

- 14 - Revision V1.22



# 6.2 DC Electrical Characteristics

(VDD-VSS=3.3V, TA = 25 $^{\circ}$ C, F<sub>OSC</sub> = 49.152 MHz unless otherwise specified.)

|                                   |                                     | ,    | SPECIFIC | ATION     |          |                                            |  |
|-----------------------------------|-------------------------------------|------|----------|-----------|----------|--------------------------------------------|--|
| PARAMETER                         | SYM.                                | MIN. | TYP.     | MAX.      | UNI<br>T | TEST CONDITIONS                            |  |
| Operation voltage                 | $V_{DD}$                            | 2.5  |          | 5.5       | V        | V <sub>DD</sub> =2.5V ~ 5.5V up to 50 MHz  |  |
| Power Ground                      | V <sub>SS</sub><br>AV <sub>SS</sub> | -0.3 |          |           | V        |                                            |  |
| Analog Operating Voltage          | $AV_{DD}$                           | 0    |          | $V_{DD}$  | V        |                                            |  |
| Analog Reference Voltage          | Vref                                | 0    |          | $AV_{DD}$ | V        |                                            |  |
|                                   | I <sub>DD1</sub>                    |      | 24.8     |           | mA       | V <sub>DD</sub> = 5.5V,<br>Enable all IP.  |  |
| Operating Current Normal Run Mode | I <sub>DD2</sub>                    |      | 19.7     |           | mA       | V <sub>DD</sub> =5.5V,<br>disable all IP   |  |
| @ 49.152 MHz                      | I <sub>DD3</sub>                    |      | 23.6     |           | mA       | V <sub>DD</sub> = 3V,<br>enable all IP     |  |
|                                   | $I_{DD4}$                           |      | 18.3     |           | mA       | V <sub>DD</sub> = 3V,<br>disable all IP    |  |
|                                   | I <sub>DD5</sub>                    |      | 18.8     |           | mA       | $V_{DD} = 5.5V$ ,<br>Enable all IP.        |  |
| Operating Current Normal Run Mode | I <sub>DD6</sub>                    |      | 15.0     |           | mA       | V <sub>DD</sub> = 5.5V,<br>Disable all IP. |  |
| @ 32.768Mhz                       | I <sub>DD7</sub>                    |      | 17.6     |           | mA       | V <sub>DD</sub> = 3V,<br>Enable all IP.    |  |
|                                   | I <sub>DD8</sub>                    |      | 13.8     |           | mA       | V <sub>DD</sub> = 3V,<br>Disable all IP.   |  |



|                                   | 1                  |      | 1      | I                                             |
|-----------------------------------|--------------------|------|--------|-----------------------------------------------|
|                                   | I <sub>DD9</sub>   | 12.5 | mA     | $V_{DD} = 5.5V$                               |
|                                   |                    |      |        | enable all IP                                 |
| Operating Current                 | I <sub>DD10</sub>  | 10.3 | mA     | $V_{DD} = 5.5V$ ,                             |
| Normal Run Mode                   | -0010              |      |        | disable all IP                                |
| @ 12.288MHz                       | I <sub>DD11</sub>  | 11.4 | mA     | $V_{DD} = 3V$                                 |
|                                   | 10011              |      | 11.7   | enable all IP                                 |
|                                   | I <sub>DD12</sub>  | 9    | mA     | $V_{DD} = 3V$ ,                               |
|                                   | 10012              |      | 1117 ( | disable all                                   |
|                                   | I <sub>DD13</sub>  | 9.7  | mA     | $V_{DD} = 5.5V$ ,                             |
|                                   | 10013              | 0.7  | 1117 ( | Enable all IP.                                |
| Operating Current                 | I <sub>DD14</sub>  | 8.1  | mA     | $V_{DD} = 5.5V,$                              |
| Normal Run Mode                   | 10014              | 0.1  | 1117 ( | Disable all IP.                               |
| @ 4.9152Mhz                       | I <sub>DD15</sub>  | 8.7  | mA     | $V_{DD} = 3V$ ,                               |
|                                   | פוטטי              | 0.7  | 1117 \ | Enable all IP.                                |
|                                   | I <sub>DD16</sub>  | 7.0  | mA     | $V_{DD} = 3V$ ,                               |
|                                   | 10016              | 7.0  | 1117 ( | Disable all IP.                               |
| Operating Current                 | I <sub>IDLE1</sub> | 10   | mA     | V <sub>DD</sub> = 5.5V                        |
| Operating Current Sleep Mode      | IDLET              | 10   | III    |                                               |
| Gleep Wode                        | I <sub>IDLE1</sub> | 9    | <br>mA | V <sub>DD</sub> = 3.3V                        |
|                                   | IDLE1              | 3    | IIIA   |                                               |
| On anoting Comment                | I <sub>IDLE1</sub> | 10   | mA     | V <sub>DD</sub> =5.5V                         |
| Operating Current Deep Sleep Mode | IIDLE1             | 10   | ША     |                                               |
| Deep Sleep Mode                   | I                  | 8    | mA     | V <sub>DD</sub> = 3.3V                        |
|                                   | I <sub>IDLE1</sub> | 0    | IIIA   |                                               |
|                                   | 1                  | 3    | uA     | V <sub>DD</sub> =3.3V 32K running with RTC    |
| Standby Power down                | I <sub>IDLE1</sub> | 3    | uA     |                                               |
| mode(SPD)                         |                    | 4    |        | V <sub>DD</sub> = 3.3V 10K running            |
|                                   | IDLE1              | 1    | uA     |                                               |
|                                   |                    | 500  |        | V <sub>DD</sub> =3.3V Wakeup with10K          |
| Operating Current                 | I <sub>IDLE1</sub> | 500  | nA     | ·                                             |
| Deep Power down mode(DPD)         |                    |      |        | V <sub>DD</sub> = 3.3V wakeup with wakeup pin |
|                                   | I <sub>IDLE1</sub> |      | nA     |                                               |
|                                   |                    |      |        | I .                                           |



| Input Current PA, PB (Quasi-bidirectional mode)                  | I <sub>IN1</sub>               | -60                | -                  | +15                            | μА                    | $V_{DD} = 5.5V$ , $V_{IN} = 0V$ or $V_{IN}=V_{DD}$ |
|------------------------------------------------------------------|--------------------------------|--------------------|--------------------|--------------------------------|-----------------------|----------------------------------------------------|
| Input Current at /RESET [1]                                      | I <sub>IN2</sub>               | -55                | -45                | -30                            | μΑ                    | $V_{DD} = 3.3V, V_{IN} = 0.45V$                    |
| Input Leakage Current PA, PB                                     | $I_{LK}$                       | -2                 | -                  | +2                             | μА                    | $V_{DD} = 5.5V, 0 < V_{IN} < V_{DD}$               |
| Logic 1 to 0 Transition Current PA~PB (Quasi-bidirectional mode) | I <sub>TL</sub> <sup>[3]</sup> | -650               | -                  | -200                           | μА                    | V <sub>DD</sub> = 5.5V, V <sub>IN</sub> <2.0V      |
| Input Low Voltage PA, PB (TTL                                    | V <sub>IL1</sub>               | -0.3               | -                  | 0.8                            | V                     | $V_{DD} = 4.5V$                                    |
| input)                                                           | V IL1                          | -0.3               | -                  | 0.6                            | V                     | V <sub>DD</sub> = 2.5V                             |
| Input High Voltage PA, PB (TTL                                   | V <sub>IH1</sub>               | 2.0                | -                  | V <sub>DD</sub><br>+0.2        | V                     | V <sub>DD</sub> = 5.5V                             |
| input)                                                           | V IH1                          | 1.5                | -                  | $V_{DD} + 0.2$ $V_{DD} = 3.0V$ | V <sub>DD</sub> =3.0V |                                                    |
| Input Low Voltage XT1[*2]                                        | W                              | 0                  | -                  | 0.8                            | V                     | $V_{DD} = 4.5V$                                    |
|                                                                  | V <sub>IL3</sub>               | 0                  | -                  | 0.4                            | V                     | $V_{DD} = 3.0V$                                    |
| Input High Voltage XT1 <sup>[*2]</sup>                           | V <sub>IH3</sub>               | 3.5                | -                  | V <sub>DD</sub><br>+0.2        | ٧                     | V <sub>DD</sub> = 5.5V                             |
| Imput riigir voitage ATT                                         |                                | 2.4                | -                  | V <sub>DD</sub><br>+0.2        |                       | V <sub>DD</sub> = 3.0V                             |
| Input Low Voltage X32I <sup>[*2]</sup>                           | $V_{IL4}$                      | 0                  | -                  | 0.4                            | V                     |                                                    |
| Input High Voltage X32I <sup>[*2]</sup>                          | $V_{IH4}$                      | 1.7                | <b>*</b>           | 2.5                            | V                     | ~                                                  |
| Negative going threshold                                         | .,                             | 0.5                |                    | 0.01/                          | 14                    |                                                    |
| (Schmitt input), /REST                                           | V <sub>ILS</sub>               | -0.5               |                    | 0.3V <sub>DD</sub>             | V                     |                                                    |
| Positive going threshold                                         |                                |                    |                    | V <sub>DD</sub> +0.            |                       |                                                    |
| (Schmitt input), /REST                                           | V <sub>IHS</sub>               | 0.7V <sub>DD</sub> | -                  | 5                              | V                     |                                                    |
| Hysteresis voltage of PA~PB(Schmitt input)                       | V <sub>HY</sub>                |                    | 0.2V <sub>DD</sub> |                                | ٧                     |                                                    |



| Source Current PA, PB                      | I <sub>SR11</sub>  | -300 | -370 | -450 | μΑ | $V_{DD} = 4.5V, V_{S} = 2.4V$                 |
|--------------------------------------------|--------------------|------|------|------|----|-----------------------------------------------|
| Quasi-bidirectional Mode)                  | I <sub>SR12</sub>  | -50  | -70  | -90  | μΑ | $V_{DD} = 2.7V, V_{S} = 2.2V$                 |
| ·                                          | I <sub>SR12</sub>  | -40  | -60  | -80  | μА | V <sub>DD</sub> = 2.5V, V <sub>S</sub> = 2.0V |
|                                            | I <sub>SR21</sub>  | -20  | -24  | -28  | mA | $V_{DD} = 4.5V, V_{S} = 2.4V$                 |
| Source Current PA, PB (Push-<br>pull Mode) | I <sub>SR22</sub>  | -4   | -6   | -8   | mA | $V_{DD} = 2.7V, V_{S} = 2.2V$                 |
|                                            | I <sub>SR22</sub>  | -3   | -5   | -7   | mA | $V_{DD} = 2.5V, V_{S} = 2.0V$                 |
| Sink Current PA, PB                        | I <sub>SK1</sub>   | 10   | 16   | 20   | mA | $V_{DD} = 4.5V, V_{S} = 0.45V$                |
| (Quasi-bidirectional and Push-             | I <sub>SK1</sub>   | 7    | 10   | 13   | mA | $V_{DD} = 2.7V, V_{S} = 0.45V$                |
| pull Mode)                                 | I <sub>SK1</sub>   | 6    | 9    | 12   | mA | $V_{DD} = 2.5V, V_{S} = 0.45V$                |
| Brownout voltage with BOV_VL [2:0] =000b   | V <sub>BO2.1</sub> |      | 2.15 |      | V  |                                               |
| Brownout voltage with BOV_VL [2:0] =001b   | V <sub>BO2.2</sub> |      | 2.25 |      | ٧  |                                               |
| Brownout voltage with BOV_VL [2:0] =010b   | V <sub>BO2.4</sub> |      | 2.45 |      | V  |                                               |
| Brownout voltage with BOV_VL [2:0] =011b   | V <sub>BO2.5</sub> |      | 2.55 |      | V  |                                               |
| Brownout voltage with BOV_VL [2:0] =100b   | V <sub>BO2.7</sub> |      | 2.7  |      | >  |                                               |
| Brownout voltage with BOV_VL [2:0] =101b   | V <sub>BO2.8</sub> |      | 2.8  |      | ٧  |                                               |
| Brownout voltage with BOV_VL [2:0] =110b   | V <sub>BO3.0</sub> |      | 3.0  |      | ٧  |                                               |
| Brownout voltage with BOV_VL [2:0] =111b   | V <sub>BO4.5</sub> |      | 4.55 |      | ٧  |                                               |
| Hysteresis range of BOD voltage            | $V_{BH}$           |      | -    |      | mV | V <sub>DD</sub> = 2.5V~5.5V                   |

#### Notes:

<sup>1. /</sup>REST pin is a Schmitt trigger input.

<sup>2.</sup> Crystal Input is a CMOS input.

<sup>3.</sup> Pins of P0, P1, P2, P3 and P4 can source a transition current when they are being externally driven from 1 to 0. In the condition of  $V_{D0}$ =5.5V, 5he transition current reaches its maximum value when Vin approximates to 2V .



# 6.3 AC Electrical Characteristics

# 6.3.1 External 32kHz XTAL Oscillator

| PARAMETER             | CONDITION        | MIN. | TYP.   | MAX. | UNIT                 |
|-----------------------|------------------|------|--------|------|----------------------|
| Input clock frequency | External crystal | -    | 32.768 | -    | kHz                  |
| Temperature           | -                | -40  | -      | 85   | $^{\circ}\mathbb{C}$ |
| $V_{DD}$              | -                | 2.5  | -      | 5.5  | V                    |

# 6.3.2 Internal 49.152MHz Oscillator

| PARAMETER                     | CONDITION                                  | MIN. TYP. |  | MAX. | UNIT |
|-------------------------------|--------------------------------------------|-----------|--|------|------|
| Supply voltage <sup>[1]</sup> | -                                          | 2.5 -     |  | 5.5  | V    |
| Center Frequency              | -                                          | - 49.152  |  |      | MHz  |
| Calibrated Internal Oscillate | +25°C; V <sub>DD</sub> =5V                 | -         |  |      | %    |
| Frequency                     | -40°C~+85°C;<br>V <sub>DD</sub> =2.5V~5.5V | <b>\</b>  |  |      | %    |

## 6.3.3 Internal 10 kHz Oscillator

| PARAMETER                     | CONDITION                                  | MIN. | TYP. | MAX. | UNIT |
|-------------------------------|--------------------------------------------|------|------|------|------|
| Supply voltage                |                                            | 2.5  | -    | 5.5  | V    |
| Center Frequency              |                                            | -    | 10   | -    | kHz  |
| Calibrated Internal Oscillato | +25°C; V <sub>DD</sub> =5V                 |      | -    |      | %    |
| Frequency                     | -40°C~+85°C;<br>V <sub>DD</sub> =2.5V~5.5V |      | -    |      | %    |

Notes:

<sup>1.</sup> Internal operation voltage comes from LDO.



## 7 PACKAGE DIMENSIONS

## 7.1.1 48L LQFP (7x7x1.4mm footprint 2.0mm)



Release Date: Nov 17, 2011

- 20 - Revision V1.22



# **8 ORDERING INFORMATION**





# 9 REVISION HISTORY

| VERSION | DATE         | PAGE/<br>CHAP. | DESCRIPTION                                                                                                                                                                  |
|---------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V0.1    | May 25, 2011 | -              | First Release.                                                                                                                                                               |
| V1.01   | Sep 6, 2011  | -              | <ul> <li>Add better description of EINT0/1 and PB0/1 interrupts.</li> <li>Unify the naming of capacitive touch sensing.</li> </ul>                                           |
| V1.10   | Sep 30, 2011 | -              | <ul> <li>Revise the level value of Brown-out detector in Feature.</li> <li>Correct the maximum voltage of DC Power Supply in section 6.1 Absolute Maximum Ratings</li> </ul> |
| V1.22   | Nov 17, 2011 | -              | <ul><li>Update DC spec.</li><li>Add ordering information.</li></ul>                                                                                                          |



## **Important Notice**

Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for applications wherein failure of Nuvoton products could result or lead to a situation where personal injury, death or severe property or environmental damage could occur.

Nuvoton customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.