ECE 447 Fall 2025

Lesson 11
Angle Modulation,
Part 1

SCHEDULE AND ADMIN

- Schedule
- Admin
 - Lab 3 Assignment. Due Lesson 14 specifically 15 Sep by 2359 via Gradescope upload.
 - HW2 coming next week
 - Skills Review graded. Working on the Labs and HW1...

• DSB-SC: Problem 4.2-7 in textbook

ANGLE MODULATION

- Where is the message in FM or PM? How does that look mathematically?
- What is the relationship between frequency and phase? Hint: in $\cos(\omega_c t + \theta_0)$, the phase $\theta_0 = \omega_c * \Delta t$ where Δt is the time shift
- Argument of a sinusoid is an angle (phase)
- If we plot $\omega_c t + \theta_0$ vs. t, we get a straight line
- $\frac{d(\omega_c t + \theta_0)}{dt} =$

ANGLE MODULATION

- Now consider a generalized sinusoidal signal: $\varphi(t) = A \cos \theta(t)$, where $\theta(t)$ is the generalized angle (not just a straight line)
- *Instantaneous* frequency: $\omega_i(t) = \frac{d\theta}{dt}$ and $\theta(t) = \int_{-\infty}^t \omega_i(\alpha) d\alpha$

ANGLE MODULATION

PM

Schedule and Admin

- $\theta(t) = \omega_c t + k_v m(t)$, where k_v is a constant
- $\varphi_{PM}(t) = A \cos[\omega_c t + k_v m(t)]$
- $\omega_i(t) = \frac{d\theta}{dt} = \omega_c k_p \dot{m}(t)$
- FM
 - ω_i varies linearly with m(t) or $\omega_i(t) = \omega_c + k_f m(t)$, where k_f is a constant
 - $\theta(t) = \int_{-\infty}^{t} \omega_i(\alpha) d\alpha =$
 - $\varphi_{FM}(t) = A \cos[\omega_c t + k_f \int_{-\infty}^{t} m(\alpha) d\alpha]$
- Power of FM or PM signals?

COMPUTER SIMULATIONS

Jupyter Notebook files on Teams