University of Illinois at Urbana Champaign Department of Electrical and Computer Engineering

ECE 464 - Power Electronics, Fall 2012 Practice Exam 1

Issued: September 28

This is a closed-book exam, you are allowed one sheet of notes. No calculators are allowed.

Unless otherwise specified, you may assume that all switches, diodes, capacitors and inductors are ideal.

Figure 1: Rectifier circuit

Problem 1 (30 points).

Consider the rectifier circuit of Fig.1. You may assume that the filter inductor L is sufficiently large such that $R/L << \omega$, and that the transformer and diodes are ideal.

- a) Sketch and dimension the input current i_s and the currents through diodes D_1 and D_2 under periodic steady-state conditions. Please label the magnitudes on the plot expressed in terms of parameters given in the problem.
- b) What is the power factor (seen by the ac voltage source) in this case?
- c) What is the distortion factor k_D and the displacement factor k_{θ} for this rectifier?

Figure 2: A version of the Sheppard-Taylor converter.

Problem 2 (30 points).

Figure 2 shows a version of power converter known as the Sheppard-Taylor topology. You may assume that V_{in} is positive, D < 0.5, and that all inductors and capacitors are large (i.e. they have small ripple). You may also assume that the converter operates in continuous conduction mode.

- a) Is the voltage V_{out} positive or negative in periodic steady state? Why? (Note: You should be able to determine this from simple observation rather than a detailed circuit analysis.)
- b) Find the voltage conversion ratio V_{in}/V_{out} in periodic steady state.
- c) In continous conduction mode, sketch the current through L_{in} and label the slopes.

Figure 3: SEPIC converter.

Problem 3 (40 points).

Shown in Fig. 3 is a power converter called a SEPIC converter. You may assume that the inductors and capacitors are large, such that the ripple current and voltages are small.

- a) What is the average voltage on the capacitor C_t ?
- b) What is the polarity of V_o ? (Note: you should be able to answer this question without detailed circuit calculations.)
- c) Find and expression for the V_{out} in terms of V_{in} and D.
- d) Now consider the following operating parameters: $V_{in}=10$ V, D=0.5, $P_{out}=20$ W, $f_{sw}=100$ kHz, $L_{in}=100~\mu H$. Carefully sketch the current through the inductor L_{in} and label the maximum and minimum values. You may ignore the voltage ripple on C_t and the current ripple in L_{out} in this analysis.
- e) Find the load resistance for which the converter is at the boundary between CCM and DCM operation in terms of D, L, and f_{sw} . Also, please numerically calculate the resistance value assuming the same converter parameters as given in d).