LABORATORIUM NR 11

Wyszukiwanie wzorca w tekście

Zadanie ALZ.11.1 Rozważmy tekst T = bbbbab oraz wzorzec P = bbba. Załóżmy, że tablice indeksujemy od 1, czyli np. dla wzorca P mamy:

pozycja	1	2	3	4
znak	b	b	b	a

- a) Prefiks P_3 wzorca P to bbb. Jaki jest maksymalny prefiks właściwy P_3 , który jest jego sufiksem?
- b) Funkcja prefiksowa $\pi: \{1, 2, 3, 4\} \rightarrow \{0, 1, 2, 3\}$ określona jest następująco:

$$\pi(i) \doteq \max\{k : k < i \text{ oraz } P_k \text{ jest sufiksem } P_i\}.$$

Innymi słowy, $\pi(i)$ jest maksymalną długością prefiksu wzorca P będącego właściwym sufiksem P_i . Wyznacz funkcję prefiksów dla wzorca P = bbba.

c) Jakie znaki tekstu i wzorca będą porównane ze sobą w czasie działania algorytmu naiwnego i algorytmu Knutha-Morrisa-Pratta, jeżeli danymi wejściowymi będą wzorzec P i tekst T?

Zadanie ALZ.11.2 (2,5 pkt) Zmodyfikuj algorytm Knutha-Morrisa-Pratta tak, aby wyszukiwał w tekście T danego wzorca X w przy założeniu, że każdy znak zapytania '?' w tekście T może odpowiadać dowolnemu znakowi, a następnie zaimplementuj tę modyfikację.

Zadanie ALZ.11.3 ((1+2+2)+2* pkt) Zaimplementuj i porównaj algorytmy (ich czas działania) wyszukiwania wzorca w tekście:

- a) oczywisty algorytm (1 pkt);
- b) algorytm Rabina-Karpa (2 pkt);
- c) algorytm Knutha-Morrisa-Pratta (2 pkt);
- d) oraz algorytm wykorzystujący automat skończony (+2 pkt)

na przykładowym wzorcu i tekście podanych w pliku wzorzec-tekst.txt pod adresem http://inf.ug.edu.pl/~zylinski/dydaktyka/AiSD/wzorzec-tekst.txt.

Uwaga. Należy ignorować znaki zmiany wiersza we wzorcu i w tekście. Program powinien wypisywać pozycje, na których znaleziono wystąpienie wzorca.