Глава 23 Три знаменитых теоремы о конечных множествах

Эмануэль Шпернер

В этой главе мы затрагиваем основную тему комбинаторики— свойства и размеры специальных семейств \mathcal{F} подмножеств конечного множества $N=\{1,2,\ldots,n\}$. Начнем с двух классических утверждений в этой области: теорем Шпернера и Эрдёша— Ко— Радо. Оба эти результата много раз передоказывались, и каждый из них положил начало новому направлению комбинаторной теории множеств. Кажется, что обе теоремы естественно доказывать индукцией, однако приводимые ниже рассуждения имеют совершенно другой характер и являются в полном смысле слова вдохновляющими.

В 1928 году Эмануэль Шпернер поставил и решил следующую задачу [8]. Пусть задано множество $N=\{1,2,\ldots,n\}$. Назовем семейство $\mathcal F$ подмножеств множества N антицепью, если никакое множество из $\mathcal F$ не содержит другие множества этого семейства. Каков размер наибольшей антицепи? Ясно, что семейство $\mathcal F_k$ всех k-подмножеств множества N является антицепью, и $|\mathcal F_k|=\binom{n}{k}$. Выбирая максимальный биномиальный коэффициент (см. с. 20), находим, что существует антицепь размера $\binom{n}{\lfloor n/2 \rfloor}=\max_k\binom{n}{k}$. Теорема Шпернера утверждает, что антицепей большего размера нет.

Теорема 1. Размер наибольшей антицепи в n-множестве равен $\binom{n}{\lfloor n/2 \rfloor}$.

■ Доказательство. Из многих доказательств следующее (принадлежащее Дэвиду Лабеллу [7]) является, вероятно, самым коротким и изящным. Пусть \mathcal{F} — произвольная антицепь. Мы должны показать, что $|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}$. Ключ к доказательству состоит в рассмотрении \emph{yenu} подмножеств \varnothing = C_0 \subset C_1 \subset C_2 \subset \ldots \subset C_n = N, в которой $|C_i| = i$ при $i = 0, \ldots, n$. Сколько существует цепей? Ясно, что мы получим цепь, добавляя к пустому множеству последовательно элементы из N по одному, так что число цепей равно числу перестановок элементов множества N, а именно, n! Далее, пусть множество $A \in \mathcal{F}$. Сколько существует цепей, проходящих через A? Ответ снова прост. Чтобы получить часть цепи от \emptyset до A, мы должны добавлять к пустому множеству элементы множества A по одному, а затем, чтобы продолжить цепь от A до N, мы должны добавлять оставшиеся элементы из $N \setminus A$. Значит, если A содержит k элементов, то, рассматривая все пары таких отрезков цепи, мы находим, что число цепей, проходящих через A, равно k!(n-k)! Заметим, что если \mathcal{F} антицепь, то не существует цепей, проходящих через два различных множества A и B из \mathcal{F} .

Чтобы завершить доказательство, обозначим через m_k число k-множеств в \mathcal{F} , так что $|\mathcal{F}|=\sum_{k=0}^n m_k$. Тогда из наших рассуждений

следует, что число цепей, пересекающихся с антицепью \mathcal{F} , равно

$$\sum_{k=0}^{n} m_k \, k! \, (n-k)!,$$

и это выражение не может быть больше числа n! всех цепей. Значит,

$$\sum_{k=0}^n m_k rac{k!(n-k)!}{n!} \le 1,$$
 или $\sum_{k=0}^n rac{m_k}{{n \choose k}} \le 1.$

Заменяя в последней сумме все знаменатели наибольшим биномиальным коэффициентом, получаем

$$\frac{1}{\binom{n}{\lfloor n/2\rfloor}}\sum_{k=0}^n m_k \leq 1, \quad \text{ T. e. } \quad |\mathcal{F}| = \sum_{k=0}^n m_k \leq \binom{n}{\lfloor n/2\rfloor},$$

и доказательство закончено.

Наше второе утверждение имеет совершенно другую природу. Снова рассмотрим множество $N=\{1,\ldots,n\}$. Назовем семейство $\mathcal F$ подмножеств множества N пересекающимся, если любые два множества из $\mathcal F$ имеют по крайней мере один общий элемент. Несложно убедиться в том, что размер наибольшего пересекающегося семейства равен 2^{n-1} . Действительно, если $A\in\mathcal F$, то дополнение $A^c=N\setminus A$ имеет пустое пересечение с A и поэтому не может принадлежать $\mathcal F$. Отсюда вытекает, что пересекающее семейство содержит не более половины числа 2^n всех подмножеств, т.е. $|\mathcal F|\leq 2^{n-1}$. С другой стороны, семейство всех подмножеств, содержащих некоторый фиксированный элемент, например, семейство $\mathcal F_1$ всех подмножеств, содержащих 1, имеет объем $|\mathcal F_1|=2^{n-1}$, и задача решена.

Но теперь поставим следующий вопрос. Как велико может быть пересекающееся семейство \mathcal{F} , если все множества в \mathcal{F} имеют один и тот же размер, например, k? Назовем таким семейства пересекающимися k-семействами. Чтобы избежать тривиальных затруднений, предположим, что $n \geq 2k$, так как в противном случае любые два k-множества пересекаются и, следовательно, доказывать нечего! Используя предыдущую идею, мы, конечно, получим такое множество \mathcal{F}_1 , рассматривая все k-множества, содержащие некоторый фиксированный элемент множества N, например, 1. Ясно, что мы получим все множества, входящие в \mathcal{F}_1 , добавляя к 1 все (k-1)-подмножества множества $\{2,3,\ldots,n\}$, в силу чего $|\mathcal{F}_1| = \binom{n-1}{k-1}$. Можно ли найти большее пересекающееся семейство? Нет, и в этом состоит утверждение теоремы Эрдёша – Ко – Радо.

Теорема 2. Наибольший размер пересекающегося k-семейства в n-множестве равен $\binom{n-1}{k-1}$, если $n \geq 2k$.

Пауль Эрдёш, Чао Ко и Рихард Радо получили этот результат в 1938 году, но не публиковали его в течение последующих 23 лет [2]. Затем появилось много доказательств и вариантов теоремы 2, но следующее рассуждение, принадлежащее Дьюле Катона [5], особенно изящно.

Проверьте, что при четных n семейство всех $\frac{n}{2}$ -множеств, а при нечетных n два семейства всех $\frac{n-1}{2}$ - и $\frac{n+1}{2}$ -множеств, на самом деле суть единственные антицепи, на которых достигается максимальный размер!

Окружность C для n=6. «Жирные» дужки изображают дугу длины 3.

Лемма. Пусть $n \geq 2k$ и t различных дуг A_1, \ldots, A_t длины k таковы, что любые две дуги имеют общую дужку. Тогда $t \leq k$.

Для доказательства леммы заметим вначале, что любая из выделенных точек на окружности C является концом не более чем одной дуги. Действительно, пусть дуги A_i и A_j , $i \neq j$, имеют общую концевую точку v. Тогда эти дуги должны идти в разные стороны от v, так как они различны и имеют одинаковую длину. Но тогда A_i и A_j не могут иметь общих дужек, поскольку $n \geq 2k$.

Зафиксируем дугу A_1 . Так как любая дуга A_i ($i \geq 2$) имеет с A_1 общую дужку, то один из концов A_i является внутренней точкой A_1 . Как уже показано, все эти концевые точки должны быть разными. Поскольку A_1 имеет k-1 внутренних точек, число дуг, отличных от A_1 , не больше k-1. Значит, общее число дуг не превосходит k.

Теперь продолжим доказательство теоремы Эрдёша – Ко – Радо. Пусть \mathcal{F} — пересекающееся k-семейство. Рассмотрим, как и выше, окружность C с n точками и n дужками. Зададим произвольную циклическую перестановку $\pi=(a_1,a_2,\ldots,a_n)$ чисел $1,\ldots,n$ и, двигаясь по часовой стрелке, припишем числа a_i дужкам C. Найдем число множеств $A\in\mathcal{F}$, элементы которых приписаны k последовательным дужкам C. Так как \mathcal{F} — пересекающееся семейство, то согласно лемме существует не более k таких множеств. Это справедливо для любой циклической перестановки. Поэтому общее (по всем (n-1)! циклическим перестановкам n-множества) число появлений множеств семейства \mathcal{F} не превзойдет k(n-1)!

Сколько раз при этом появится фиксированное множество $A \in \mathcal{F}$? Понятно, что k-множество A появляется в π , если его элементы в цикловой записи π стоят подряд. Объединяя такую последовательность элементов множества A в новый элемент *, получим из π циклическую перестановку (n-k+1)-множества $N_A = \{*\} \cup N \setminus A$. Существует (n-k)! циклических перестановок множества N_A и k! возможных способов замены * последовательностью элементов множества A. Отсюда вытекает, что фиксированное k-множество A входит ровно в k!(n-k)! циклических перестановок, так что

$$|\mathcal{F}| \le \frac{k(n-1)!}{k!(n-k)!} = \frac{(n-1)!}{(k-1)!(n-1-(k-1))!} = \binom{n-1}{k-1}.$$

Обязательно ли в максимальных пересекающихся k-семействах каждое множество содержит один и тот же элемент? Это заведомо не так для n=2k. Например, при n=4 и k=2 семейство, состоящее из множеств $\{1,2\},\{1,3\},\{2,3\}$, тоже имеет размер $\binom{3}{1}=3$. Вообще, при n=2k мы получим максимальное пересекающееся k-семейство размера $\frac{1}{2}\binom{n}{k}=\binom{n-1}{k-1}$, произвольно включая в него по одному из каждой пары множеств, состоящей из k-множества A и его дополнения $N \setminus A$. Но для n>2k совокупность максимальных пересекающихся k-семейств состоит

Пересекающееся семейство для $n=4,\,k=2$

только из семейств множеств, содержащих фиксированный элемент. Читателю предлагается доказать это своими силами.

Наконец, обратимся к третьему утверждению, которое можно считать наиболее важной теоремой в теории конечных множеств: к теореме о выборе Филипа Холла, доказанной в 1935 году [3]. Из нее выросла современная теория паросочетаний. Эта теория имеет различные применения, часть из которых будет описана позднее.

Пусть X — конечное множество и A_1, \ldots, A_n — совокупность подмножеств множества X (не обязательно различных). Назовем последовательность x_1, \ldots, x_n системой различных представителей $\{A_1, \ldots, A_n\}$, если x_1, \ldots, x_n — различные элементы из X и $x_i \in A_i$ для всех i. Разумеется, такая система (сокращенно СРП) может и не существовать (например, если одно из множеств A_i пусто). Теорема Холла дает точные условия, при которых СРП существует.

Прежде чем формулировать теорему, приведем интерпретацию, объясняющую ее фольклорное название meopema о ceadъбах. Рассмотрим множество девушек $\{1,\ldots,n\}$ и множество X парней. Включение $x\in A_i$ означает, что девушка i и парень x не прочь пожениться, так что A_i есть множество всех возможных женихов девушки i. Тогда СРП соответствует коллективной свадьбе, когда каждая девушка выходит замуж за парня, который ей нравится.

Теперь сформулируем утверждение в терминах множеств.

Теорема 3. Пусть A_1, \ldots, A_n — совокупность подмножеств конечного множества X. Система различных представителей существует тогда и только тогда, когда объединение любых m множеств A_i содержит не менее m элементов при любом $m \in \{1, \ldots, n\}$.

Ясно, что условие теоремы необходимо: если объединение какихнибудь m множеств A_i содержит меньше m элементов, то эти множества нельзя представить различными элементами. Удивительно, что это очевидное условие является также достаточным.

Первоначальное доказательство Холла довольно сложное; позднее было предложено много других доказательств. Приведенное ниже доказательство (которое принадлежит Истерфилду [1] и переоткрыто Халмошем и Воханом [4]) кажется наиболее естественным.

П Доказательство. Используем индукцию по n. Для n=1 доказывать нечего. Пусть n>1; предположим, что система множеств $\{A_1,\ldots,A_n\}$ удовлетворяет условию теоремы, которое мы для краткости обозначим (H). При $1\leq \ell < n$ назовем совокупность ℓ множеств A_i критическим семейством, если их объединение имеет мощность ℓ . Будем различать два случая.

Случай 1: Критические семейства отсутствуют.

Выберем произвольный элемент $x\in A_n$. Удалим x из X и рассмотрим совокупность A'_1,\ldots,A'_{n-1} , где $A'_i=A_i\backslash\{x\}$. Так как критических семейств не существует, то объединение любых m множеств A'_i содержит не менее m элементов. Тогда по предположению индукции существует СРП x_1,\ldots,x_{n-1} совокупности $\{A'_1,\ldots,A'_{n-1}\}$, которая вместе с $x_n=x$ образует СРП для исходной совокупности.

«Коллективная свадьба»

 $\{B,C,D\}$ — критическое семейство

Случай 2: Критические семейства существуют.

Без ограничения общности предположим, что $\{A_1,\ldots,A_\ell\}$ — критическое семейство. Тогда $\bigcup_{i=1}^\ell A_i = \widetilde{X}$ и $|\widetilde{X}| = \ell$. Так как $\ell < n$, то по предположению индукции для совокупности A_1,\ldots,A_ℓ существует СРП. Перенумеруем элементы множества \widetilde{X} так, что $x_i \in A_i$ для всех $i \leq \ell$.

Рассмотрим теперь оставшиеся множества $A_{\ell+1},\ldots,A_n$ исходной совокупности и возьмем любые m из них. Согласно условию (H) объединение A_1,\ldots,A_l и этих m множеств содержит не менее l+m элементов. Поэтому выбранные m множеств содержат не менее m элементов из $X\backslash \widetilde{X}$. Другими словами, для семейства

$$A_{\ell+1}\backslash \widetilde{X}, \ldots, A_n\backslash \widetilde{X}$$

выполняется условие (H). Тогда по предположению индукции найдется СРП для $A_{\ell+1}, \ldots, A_n$, не содержащая элементов из \widetilde{X} . Вместе с x_1, \ldots, x_ℓ это дает СРП для всех множеств A_i .

Как мы упоминали, теорема Холла положила начало обширной теории паросочетаний [6]. Из многих вариантов и ответвлений приведем особенно привлекательное утверждение, которое читатель может попытаться доказать самостоятельно.

Пусть все множества A_1, \ldots, A_n имеют размер $k \geq 1$. Далее, пусть любой элемент содержится не более чем в k множествах. Тогда существуют такие k СРП, что для любого i все k представителей множества A_i различны u, следовательно, вместе образуют A_i .

Прекрасный результат, который может открыть новые горизонты свадебных возможностей.

Литература

- [1] EASTERFIELD T. E. A combinatorial algorithm. J. London Math. Soc., 21 (1946), 219–226.
- [2] ERDÓS P., Ko C., RADO R. Intersection theorems for systems of finite sets. Quart. J. Math. (Oxford), Ser. (2), 12 (1961), 313-320.
- [3] HALL P. On representatives of subsets. J. London Math. Soc., 10 (1935), 26-30.
- [4] HALMOS P. R., VAUGHAN H. E. The marriage problem. Amer. J. Math., 72 (1950), 214-215.
- [5] KATONA G. A simple proof of the Erdős-Ko-Rado theorem. J. Combinatorial Theory, Ser. B, 13 (1972), 183-184.
- [6] Lovász L., Plummer M. D. Matching Theory. Akadémiai Kiadó, Budapest, 1986; русский перевод: Ловас Л., Пламмер М. Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии. М., Мир, 1998.
- [7] LUBELL D. A short proof of Sperner's theorem. J. Combinatorial Theory, 1 (1966), 299.
- [8] Sperner E. Ein Satz über Untermengen einer endlichen Menge. Math. Zeitschrift, 27 (1928), 544-548.