Eigenvalues and Eigenvectors

gaotang

Fall 2021

1 General concept

• Definition

Let V be a vector space of dimension n, and let $T:V\to V$ be a linear transformation

The scalar $\lambda \in \mathbb{R}$ is an eigenvalue of T if there is a non-zero vector $v \in V$ such that

$$T(v) = \lambda v;$$

such a vector is called an eigenvector of T, with corresponding eigenvalue λ .

- The geometric intuition for eigenvector is that some special vectors in the domain of T such that would only stretch itself when doing matrix multiplication with a certain matrix. Such vectors are called eigen vectors and the degree of "stretching" is called eigenvalues.
- The set

$$E_{\lambda} = \{ v \in V : T(v) = \lambda v \}$$

is called the *eigenspace* corresponding to λ . Eigenspace is a subspace of V because it contains the zero vector, and closed under vector addition and scalar multiplication

• Definition

The characteristic polynomial of the linear transformation $T: V \to V$ is the polynomial f_T (which we write here in the variable λ) given by

$$f_T(\lambda) = det(\lambda I - T),$$

where $I:V\to V$ is the identity transformation. Here we are thinking of $\lambda I-T$ as a new linear transformation from V to V, defined by

$$(\lambda I - T)(v) = \lambda v - T(v)$$
 for all $v \in V$

• The above definition leads us a systematic way of finding eigenvalues. If v is an eigenvector of T with corresponding eigenvalue λ , then,

$$(\lambda I - T)(v) = 0$$

since here we assume the nonzero eigenvector exists, then the linear transformation $\lambda I - T$ has a nontrivial kernel, hence it is not invertible, and we thus have

$$det(\lambda I - T) = 0$$

Conversely, reversing the arugment shows that if the determinant is 0, then λ is an eigenvalue of T. This shows that the eigenvalues of T are just the roots of the characteristic polynomial of T

• Definition

Let λ be an eigenvalue of T.

The algebraic multiplicity "almu(λ)" of λ is the number of times that λ occurs as a root of the characteristic polynomial f_T of T; that is, the largest power of the root.

The geometric multiplicity "gemu(λ)" of λ is the dimension of the corresponding eigenspace E_{λ}

• Definition - Diagonalization

A linear transformation $T: V \to V$ of the finite-dimensional vector space V is said to be diagonalizable if there there is a basis B of V such that $[T]_B$ is diagonal. A square matrix A is said to be diagonalizable if the linear transformation T_A is diagonalizable, or equivalently if A is similar to a diagonal matrix

2 Understanding of the concept

- Eigenvectors that are of distinct eigenvalues are linearly independent
- The intersection of two eigenvectors that have distinct eigenvalues is only the zero vector
- we can think about diagonalizable matrix means that the matrix is the \mathcal{B} -matrix, where the basis is just the eigenbasis. In other words, the direct sum of all eigenspaces equals the vector space.
 - Two important theorems to bridge the gap:
 - if $\mathcal{B} = (v_1, \dots, v_n)$ is a basis of V and $\lambda_1, \dots, \lambda_n \in \mathbb{R}$, then

$$[T]_{\mathcal{B}} = \begin{bmatrix} \lambda_1 & & \\ & \dots & \\ & & \lambda_n \end{bmatrix}$$
 if and only if $T(v_i) = \lambda_i v_i$ for all $1 \le i \le n$

- T is diagonalizable if and only if there is a basis \mathcal{B} of V consisting of eigenvectors of T. (Such a basis of V is called an *eigenbasis* of T)
- Similarly, we have theorems for just a $n \times n$ matrix A.
 - * if the $n \ge n$ matrix $P = [\vec{v}_1 \cdots \vec{v}_n]$ is invertible and if $\lambda_1, \dots, \lambda_n \in \mathbb{R}$, then

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & & \\ & \dots & \\ & & \lambda_n \end{bmatrix} \text{ if and only if } A\vec{v}_i = \lambda_i \vec{v}_i \text{ for all i}$$

- * A is diagonalizable if and only is there is a basis \mathcal{B} of \mathbb{R}^n consisting of eigenvectors of A. (Again, such basis of \mathbb{R}^n is called an *eigenbasis* for A)
- In Summary of above's theorems, we finally bridge the gap between diagonizalition and eigenvectors/eigenvalues through the idea of similarity and (eigen)basis. Hence, we have the following understanding:

To diagonalize a linear transformation $T: V \to V$ means to find a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is diagonal. Similarly, to diagonalize a square matrix A means to factor A as $A = PDP^{-1}$ where D is diagonal

 Another interpretation of the lemma of eigenspace spans the vector space is:

The $n \times n$ matrix A is diagonalizable if and only if the sum of the geometric multiplicities of the eigenvalues of A is n. Equivalently, the $n \times n$ matrix A is diagonalizable if and only if the sum of the algebraic multiplicities of the eigenvalues of A is n and additionally for each eigenvalue λ of A, the algebraic and geometric multiplicities of λ are equal.

Note: The set of eigenvalues are also called the spectrum

- Similar to abstract vector space we have studied before, we can apply eigenbasis/diagonalization on linear spaces.
- Suppose $\lambda_1, \ldots, \lambda_r$ are distinct eigenvalues of the $n \times n$ matrix A, and for each $1 \leq k \leq r$ let \mathcal{B}_k be a basis of the subspace

$$E_{\lambda_k} = \{ \vec{v} \in \mathbb{R}^n : A\vec{v} = \lambda_k \vec{v} \}$$

Then, the set $\mathcal{B} = \mathcal{B}_1 \bigcup \cdots \bigcup \mathcal{B}_r$ is linearly independent

- Two useful theorems:
 - an $n \times n$ matrix with n distinct eigenvalues must be diagonalizable

- If A is a diagonizable $n\ge n$ matrix with only one eigenvalue, then A is already a diagonal matrix
- \bullet For all similar $n \times n$ matrices A and B, they have the same
 - characteristic polynomial
 - eigenvalues
 - determinant
 - trace
- Some interesting examples given a square matrix A that is:
 - invertible but not diagonalizable $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
 - diagonalizable but not invertible $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
 - neither diagonalizable nor invertible $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
 - both diagonalizable and invertible $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$