概率论与数理统计

第四十三讲双正态总体参数的假设检验

□ 一、问题的提出

当研究对象的外界条件发生变化时,需研究 外界条件的变化是否对其产生了影响!

练钢过程中不同操作方法对产品得率的影响 不同的光谱测试仪对金属含量测定的影响 不同制导方式对导弹落点精度的影响

设变化前的指标 $X \sim N(\mu_1, \sigma_1^2)$

变化后的指标 $Y \sim N(\mu_2, \sigma_2^2)$

影响的体现:

1)均值的变化 $\mu_1 - \mu_2$

例如炼钢问题、金属含量测定问题

2)方差的变化 σ_1^2/σ_2^2

例如导弹制导问题

□二、关于均值差的检验

在平炉上进行一项试验以确定改变操作方法是否会增加钢的得率。炼钢时除操作方法外其它条件尽可能相同,两种试验交替进行,各炼10炉,得结果如下

标准方法: $\bar{x} = 76.23$ $s_1^2 = 3.325$

建议方法: $\bar{y} = 79.43$ $s_2^2 = 2.225$

设两样本相互独立,分别来自正态总体 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$,其中 μ_1, μ_2, σ^2 均未知。

问建议的新方法能否提高得率? $(\alpha = 0.05)$

$$H_0: \mu_1 \ge \mu_2$$
 $H_1: \mu_1 < \mu_2$

注意: μ_1, μ_2, σ^2 的无偏估计分别为: \bar{X}, \bar{Y}, S_w^2

比较
$$\mu_1 - \mu_2$$
 比较 $\bar{X} - \bar{Y}$ 比较 $\frac{X - Y}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$

当
$$\mu_1 = \mu_2$$
 时

$$t = \frac{\bar{X} - \bar{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$
 (所要统计量)

如何确定拒绝域? t 取何值时对 H。有利?

答:t偏大于0时有利,拒绝域的形式为: $t \le C$

分析:
$$P(\left\{\frac{\bar{X} - \bar{Y}}{S_w \sqrt{1/n_1 + 1/n_2}} \le C \middle| \mu_1 \ge \mu_2\right\})$$

$$= P(\left\{\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{1/n_1 + 1/n_2}} \le C - \frac{(\mu_1 - \mu_2)}{S_w \sqrt{1/n_1 + 1/n_2}} \middle| \mu_1 \ge \mu_2\right\})$$

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$$

$$t_{\alpha}$$

故
$$C = t_{\alpha}(n_1 + n_2 - 2)$$

拒绝域为
$$\frac{\bar{X} - \bar{Y}}{S_w \sqrt{1/n_1 + 1/n_2}} \le t_\alpha (n_1 + n_2 - 2)$$

I类风险 $\leq \alpha$

查表 t_{0.05}(18)=-1.7341, 计算得 t=-4.295, 故拒绝 H₀

思考:1) $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$ 的拒绝域?

$$\frac{\overline{X} - \overline{Y}}{S_{w}\sqrt{1/n_{1} + 1/n_{2}}} \le t_{\alpha/2}(n_{1} + n_{2} - 2) \qquad \qquad \overline{X} - \overline{Y} \\ S_{w}\sqrt{1/n_{1} + 1/n_{2}} \ge t_{1-\alpha/2}(n_{1} + n_{2} - 2)$$

2) H₀: \(\mu_1 \le \mu_2 \) H₁: \(\mu_1 > \mu_2 \) 的拒绝域?

$$\frac{\bar{X} - \bar{Y}}{S_w \sqrt{1/n_1 + 1/n_2}} \ge t_{1-\alpha} (n_1 + n_2 - 2)$$

3) $H_0: \mu_1 - \mu_2 \ge \delta$ $H_1: \mu_1 - \mu_2 < \delta$ 的拒绝域?

$$\frac{\bar{X} - \bar{Y} - \delta}{S_{w} \sqrt{1/n_{1} + 1/n_{2}}} \le t_{\alpha} (n_{1} + n_{2} - 2)$$

4) 若 $\sigma_1^2 \neq \sigma_2^2$,如何检验?

当 $\sigma_1^2 \neq \sigma_2^2$ 但已知时,

$$U = \frac{\bar{X} - \bar{Y} - \delta}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}} \sim N(0,1) \left(\mu_1 - \mu_2 = \delta \right)$$

当 $\sigma_1^2 \neq \sigma_2^2$ 且均未知时如何办?

配对检验:为了比较两种方法、仪器等,常在相同的条件下作对比试验,得到一批成对观察值,由此做出推断。

例 有两台光谱仪用来测量材料中某种金属的含量,为鉴定它们的测量结果有无显著差异,制备了9件试块,分别用这两台仪器对每一试块测量一次,得到9对观测值如下:

x	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.0
У	0.10	0.21	0.52	0.32	0.78	0.59	0.68	0.77	0.89
z=x-y	0.10	0.09	-0.12	0.18	-0.18	0.11	0.12	0.13	0.11

问:能否认为两台仪器的测量结果有显著差异? $(\alpha = 0.01)$

$$H_0: \mu_1 = \mu_2 \quad H_1: \mu_1 \neq \mu_2$$

$$\sigma_1^2 \neq \sigma_2^2$$
 且未知

$$Z = X - Y \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2) \sim N(\mu, \sigma^2)$$

原问题 😂 单正态总体方差未知时 对均值的检验

 $H_0: \mu = 0 \quad H_1: \mu \neq 0$

原问题: $H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 \neq 0$

新问题: $H_0: \mu = 0$ $H_1: \mu \neq 0$

z 0.10 0.09 -0.12 0.18 -0.18 0.11 0.12 0.13 0.11

由单总体情况的结果,方差未知时对均值进 行双边检验的拒绝域为:

$$|t| = \left| \frac{\overline{z}}{S_z / \sqrt{n}} \right| \ge t_{1-\alpha/2} (n-1)$$

计算得: \bar{z} = 0.06, s_z = 0.1227, n = 9, |t| = 1.467, $t_{0.995}(8)$ = 3.3554 未落在拒绝域,故接受 H_0

□ 三、两总体下方差的假设检验

一台机床大修前曾加工了 $n_1 = 10$ 件零件,加工尺寸的样本方差 $S_1^2 = 2500$, 大修后加工了 $n_2 = 12$ 件零件,加工尺寸的样本方差 $S_2^2 = 400$.试问:机床大修后其加工精度是否有显著提高? ($\alpha = 0.01$)

假设大修前、后的加工样本分别来自总体

 $N(\mu_1, \sigma_1^2) \; \pi \Pi \; N(\mu_2, \sigma_2^2)$

需要检验: $H_0: \sigma_1^2 \le \sigma_2^2$, $H_1: \sigma_1^2 > \sigma_2^2$

数学问题:正态总体中 $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 均未知时检验 $H_0: \sigma_1^2 \le \sigma_2^2$, $H_1: \sigma_1^2 > \sigma_2^2$

样本方差 S_1^2 、 S_2^2 分别是 σ_1^2 、 σ_2^2 的无偏估计 当 H_0 真时 , S_1^2 / S_2^2 应偏小于 1

又 $\sigma_1^2 = \sigma_2^2$ 时 $\frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$,对给定的显著水平 α

其拒绝域为 $\frac{S_1^2}{S_2^2} \geq F_{1-\alpha}(n_1-1,n_2-1)$

计算得: $S_1^2 / S_2^2 = 6.25$, 查表得 $F_{0.99}(9,11) = 4.63$, 故拒绝 H_0

□思考

1) 正态总体中均 $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 未知时,

 $H_0: \sigma_1^2 \geq \sigma_2^2$, $H_1: \sigma_1^2 < \sigma_2^2$ 的拒绝域?

$$\frac{S_1^2}{S_2^2} \le F_{\alpha}(n_1 - 1, n_2 - 1)$$

2) 正态总体中均 $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 未知时,

$$H_0: \sigma_1^2 = \sigma_2^2$$
, $H_1: \sigma_1^2 \neq \sigma_2^2$ 的拒绝域?

$$\frac{S_1^2}{S_2^2} \le F_{\alpha/2} (n_1 - 1, n_2 - 1)$$
 $\implies \frac{S_1^2}{S_2^2} \ge F_{1-\alpha/2} (n_1 - 1, n_2 - 1)$