MA 224 (Real Analysis)

Summary of Lectures - 5

Drawbacks of Riemann integral:

- (a) The Riemann integral of a real-valued function f is not defined if either the domain of f is not a closed (bounded) interval or f is not bounded in that domain.
 - (However, this is not a very serious drawback as extensions of Riemann integrals to improper integrals can be useful.)
 - Also, the class of Riemann integrable functions on an interval [a, b] is 'quite small' since a function $f:[a, b] \to \mathbb{R}$ is Riemann integrable iff $m^*(\{x \in [a, b] : f \text{ is discontinuous at } x\}) = 0$.
- (b) If $\{f_n\}$ is a sequence of Riemann integrable functions on [a,b] and if $f:[a,b]\to\mathbb{R}$ such that $f_n\to f$ pointwise on [a,b], then f need not be Riemann integrable on [a,b] and even if f is Riemann integrable on [a,b], it is not necessary that $\lim_{n\to\infty}\int_a^b f_n(x)\,dx=\int_a^b f(x)\,dx$.
- (c) The differentiation and the integration as inverse process of each other, as expressed by the fundamental theorem of calculus, no longer remains completely true with Riemann integral.
- (d) The integral formula using Riemann integral for the length of a continuously differentiable path in the plane \mathbb{R}^2 no longer remains valid for rectifiable paths in \mathbb{R}^2 .

Length of an interval: The length of an interval I in \mathbb{R} is defined by $\ell(I) = \left\{ \begin{array}{ll} b-a & \text{if } I \text{ is bounded with endpoints } a,b \text{ satisfying } a \leq b, \\ +\infty & \text{if } I \text{ is unbounded.} \end{array} \right.$

Lebesgue outer measure: The Lebesgue outer measure of a subset A of \mathbb{R} is defined by $m^*(A) = \inf \Big\{ \sum_{n=1}^{\infty} \ell(I_n) : A \subset \bigcup_{n=1}^{\infty} I_n, I_n \in \mathcal{F} \text{ for all } n \in \mathbb{N} \Big\},$

where \mathcal{F} is the class of all bounded (nonempty) open intervals in \mathbb{R} .

Thus the Lebesgue outer measure on \mathbb{R} is a set function $m^*: \mathcal{P}(\mathbb{R}) \to [0, +\infty]$.

Properties of m^* :

- (a) For every countable subset A of \mathbb{R} , $m^*(A) = 0$. In particular, $m^*(\emptyset) = 0$, $m^*(\mathbb{N}) = 0$, $m^*(\mathbb{Z}) = 0$, $m^*(\mathbb{Q}) = 0$ and $m^*(F) = 0$, where F is a nonempty finite subset of \mathbb{R} . However, $m^*(A)$ can be equal to 0 for some uncountable subset A of \mathbb{R} . An example can be found below.
- (b) For all $A, B \subset \mathbb{R}$ with $A \subset B$, $m^*(A) \leq m^*(B)$ (i.e. m^* is monotone).
- (c) For all $A \subset \mathbb{R}$ and for all $x \in \mathbb{R}$, $m^*(A + x) = m^*(A)$ (i.e. m^* is translation invariant).
- (d) For every sequence $\{A_n\}_{n=1}^{\infty}$ of subsets of \mathbb{R} , $m^* \Big(\bigcup_{n=1}^{\infty} A_n\Big) \leq \sum_{n=1}^{\infty} m^* (A_n)$ (i.e. m^* is countably subadditive).

In particular, m^* is finitely subadditive, *i.e.* if $A_1, ..., A_n \subset \mathbb{R}$, then $m^* \left(\bigcup_{i=1}^n A_i \right) \leq \sum_{i=1}^n m^*(A_i)$.

(e) For every interval I of \mathbb{R} , $m^*(I) = \ell(I)$.

The Cantor set: The Cantor (ternary or middle third) set C is obtained by successively removing from [0,1] the middle third open intervals. Thus if $F_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1], \ F_2 = [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1],$ and more generally $F_n = [0,\frac{1}{3^n}] \cup [\frac{2}{3^n},\frac{1}{3^{n-1}}] \cup \cdots \cup [\frac{3^{n-1}}{3^n},1]$ for all $n \in \mathbb{N}$, then $C = \bigcap_{n=1}^{\infty} F_n$. It can be shown that C is uncountable, closed, bounded and $m^*(C) = 0$. Moreover, $C = \left\{ \sum_{i=1}^{\infty} \frac{a_n}{3^n} : a_n \in \{0,2\} \text{ for all } n \in \mathbb{N} \right\}.$

Failure of countable additivity for m^* : We give examples below to show that m^* does not

satisfy the countable additivity (even, finite additivity) property on $\mathcal{P}(\mathbb{R})$.

In fact, it can be proved (in a similar way as the proof of the existence of Lebesgue non-measurable sets) that (in the presence of axiom of choice of set theory) it is impossible to define a set function $\mu: \mathcal{P}(\mathbb{R}) \to [0, +\infty]$ satisfying all the following properties:

- (a) For every sequence $\{A_n\}_{n=1}^{\infty}$ of pairwise disjoint subsets of \mathbb{R} , $\mu\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}\mu(A_n)$.
- (b) For all $A \subset \mathbb{R}$ and for all $x \in \mathbb{R}$, $\mu(A+x) = \mu(A)$.
- (c) For every interval I of \mathbb{R} , $\mu(I) = \ell(I)$.

Lebesgue measurable set: A subset E of \mathbb{R} is called Lebesgue measurable if for each $A \subset \mathbb{R}$, $m^*(A) = m^*(A \cap E) + m^*(A \cap E^c)$.

(The above condition for the Lebesgue measurability of a set is called the Carathéodory condition.) Since $m^*(A) \leq m^*(A \cap E) + m^*(A \cap E^c)$ for all $A, E \subset \mathbb{R}$, $E \subset \mathbb{R}$ is Lebesgue measurable iff $m^*(A) \geq m^*(A \cap E) + m^*(A \cap E^c)$ for all $A \subset \mathbb{R}$.

Remarks:

- (a) A subset E of \mathbb{R} is Lebesgue measurable iff E^c is Lebesgue measurable.
- (b) If $E \subset \mathbb{R}$ with $m^*(E) = 0$, then E is Lebesgue measurable.

Using the above two facts, we find that all countable subsets of \mathbb{R} and their complements are Lebesgue measurable. Thus, in particular, \emptyset , \mathbb{R} , \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are Lebesgue measurable.

Result: If E and F are Lebesgue measurable subsets of \mathbb{R} , then $E \cup F$, $E \cap F$ and $E \setminus F$ are Lebesgue measurable.

Hence if $E_1, ..., E_n$ are Lebesgue measurable subsets of \mathbb{R} , then $\bigcup_{i=1}^n E_i$ and $\bigcap_{i=1}^n E_i$ are Lebesgue measurable.

Result: If $E_1, ..., E_n$ are pairwise disjoint Lebesgue measurable subsets of \mathbb{R} and if $A \subset \mathbb{R}$, then $m^* \left(A \cap \left(\bigcup_{i=1}^n E_i \right) \right) = \sum_{i=1}^n m^* (A \cap E_i)$.

In particular, taking $A = \mathbb{R}$, we find that $m^* \Big(\bigcup_{i=1}^n E_i\Big) = \sum_{i=1}^n m^*(E_i)$ (i.e. m^* is finitely additive for Lebesgue measurable subsets of \mathbb{R}).

Result: If $\{E_n\}_{n=1}^{\infty}$ is a sequence of Lebesgue measurable subsets of \mathbb{R} , then $\bigcup_{n=1}^{\infty} E_n$ and $\bigcap_{n=1}^{\infty} E_n$ are Lebesgue measurable.

If moreover E_n (n = 1, 2, ...) are pairwise disjoint, then $m^* \Big(\bigcup_{n=1}^{\infty} E_n\Big) = \sum_{n=1}^{\infty} m^*(E_n)$ (i.e. m^* is countably additive for Lebesgue measurable subsets of \mathbb{R}).

Result: Every interval of \mathbb{R} is Lebesgue measurable.

Since every open set in \mathbb{R} is a countable union of open intervals in \mathbb{R} , it follows that every open set in \mathbb{R} is Lebesgue measurable. Consequently every closed set in \mathbb{R} is also Lebesgue measurable.

Lebesgue measure: If $\mathcal{M}(\mathbb{R})$ denotes the class of all Lebesgue measurable subsets of \mathbb{R} , then the set function $m = m^*|_{\mathcal{M}(\mathbb{R})} : \mathcal{M}(\mathbb{R}) \to [0, +\infty]$ is called the Lebesgue measure on \mathbb{R} .

Thus the Lebesgue measure of every Lebesgue measurable subset E of \mathbb{R} is $m(E) = m^*(E)$.

Lebesgue non-measurable set: There exists a subset N of [0,1] which is not Lebesgue measurable.

(The proof of the existence of a Lebesgue non-measurable subset of \mathbb{R} requires the use of axiom of choice of set theory.)

More generally, if $A \subset \mathbb{R}$ with $m^*(A) > 0$, then there exists a subset B of A which is not Lebesgue

measurable.

Remarks: If N is a Lebesgue non-measurable subset of \mathbb{R} , then there exists $X \subset \mathbb{R}$ such that $m^*(X) < m^*(X \cap N) + m^*(X \cap N^c)$. Thus $A = X \cap N$ and $B = X \cap N^c$ are disjoint subsets of \mathbb{R} such that $m^*(A \cup B) < m^*(A) + m^*(B)$.

Algebra of sets: A class \mathcal{A} of subsets of a nonempty set X is called an algebra of subsets of X (or, an algebra on X) if

- (a) $X \in \mathcal{A}$,
- (b) for every $A \in \mathcal{A}$, $A^c \in \mathcal{A}$, and
- (c) for all $A, B \in \mathcal{A}, A \cup B \in \mathcal{A}$.

 σ -algebra of sets: A class \mathcal{A} of subsets of a nonempty set X is called a σ -algebra of subsets of X (or, a σ -algebra on X) if

- (a) $X \in \mathcal{A}$,
- (b) for every $A \in \mathcal{A}$, $A^c \in \mathcal{A}$, and
- (c) for every sequence $\{A_n\}_{n=1}^{\infty}$ of sets in \mathcal{A} , $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Remarks:

- (a) In both the above definitions, condition (a) can be replaced by either the condition (a)' $\emptyset \in \mathcal{A}$, or the condition (a)" $\mathcal{A} \neq \emptyset$. Similarly the condition (c) in both the definitions can be replaced by the corresponding condition involving intersections.
- (b) Every σ -algebra on a nonempty set X is an algebra on X, but the converse need not be true as can be seen in an example below.
- (c) If \mathcal{A} is an algebra on a nonempty set X and if $A_1, ..., A_n \in \mathcal{A}$, then $A_1 \setminus A_2, \bigcup_{i=1}^n A_i, \bigcap_{i=1}^n A_i \in \mathcal{A}$.

Examples:

- (a) For every nonempty set X, $\{\emptyset, X\}$ and $\mathcal{P}(X)$ are σ -algebras on X.
- (b) If X is an infinite set, then $\{A \subset X : A \text{ is finite}\}$ is not an algebra on X.
- (c) If X is an infinite set, then $\{A \subset X : A \text{ is finite or } A^c \text{ is finite}\}$ is an algebra but not a σ -algebra on X.
- (d) If X is an uncountable set, then $\{A \subset X : A \text{ is countable or } A^c \text{ is countable}\}\$ is a σ -algebra on X.
- (e) $\mathcal{M}(\mathbb{R})$ is a σ -algebra on \mathbb{R} .

Intersection and union of σ -algebras: If $\{A_{\alpha}\}_{{\alpha}\in\Lambda}$ is a family of σ -algebras on a nonempty set X, then $\bigcap_{\alpha\in\Lambda} A_{\alpha}$ is a σ -algebra on X.

However, the union of two σ -algebras on a nonempty set X need not be a σ -algebra on X.

 σ -algebra generated by a class: If $S \subset \mathcal{P}(X)$, where X is a nonempty set, then

 $\bigcap \{ \mathcal{A} : \mathcal{A} \text{ is a } \sigma\text{-algebra on } X, \mathcal{S} \subset \mathcal{A} \}$ is the smallest $\sigma\text{-algebra on } X$ containing \mathcal{S} . It is called the $\sigma\text{-algebra on } X$ generated by \mathcal{S} and it is denoted by $\sigma(\mathcal{S})$.

Borel σ -algebra: If X is a metric space, then the σ -algebra on X generated by the class of all open subsets of X is called the Borel σ -algebra of X, which is denoted by $\mathcal{B}(X)$. Each set in $\mathcal{B}(X)$ is called a Borel subset of X.

Remarks: Note that $\mathcal{B}(\mathbb{R})$ is also generated by each of the classes $\{F \subset \mathbb{R} : F \text{ is closed in } \mathbb{R}\}$ and $\{(a,b): a,b \in \mathbb{R}, a < b\}$.

Result: Every Borel subset of \mathbb{R} is Lebesgue measurable (i.e. $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}(\mathbb{R})$).

Remarks: The method used in proving the above result is usually used in proving results involving

Borel sets. For example, in order to show that every Borel subset of \mathbb{R} has certain property P, it is sufficient to show that

- (a) $\{A \subset \mathbb{R} : A \text{ has property } P\}$ is a σ -algebra on \mathbb{R} , and
- (b) every open subset (or, every member of a generating class of $\mathcal{B}(\mathbb{R})$) of \mathbb{R} has property P.

Lebesgue measurable function: If E is a nonempty Lebesgue measurable subset of \mathbb{R} , then $f: E \to [-\infty, +\infty]$ is called Lebesgue measurable if $\{x \in E: f(x) > c\}$ is Lebesgue measurable for each $c \in \mathbb{R}$.

Result: If E is a nonempty Lebesgue measurable subset of \mathbb{R} and $f: E \to [-\infty, +\infty]$, then the following statements are equivalent.

- (a) f is Lebesgue measurable.
- (b) $\{x \in E : f(x) \le c\}$ is Lebesgue measurable for each $c \in \mathbb{R}$.
- (c) $\{x \in E : f(x) < c\}$ is Lebesgue measurable for each $c \in \mathbb{R}$.
- (d) $\{x \in E : f(x) \ge c\}$ is Lebesgue measurable for each $c \in \mathbb{R}$.

Result: If E is a nonempty Lebesgue measurable subset of \mathbb{R} and if $f: E \to [-\infty, +\infty]$ is Lebesgue measurable, then

- (a) $\{x \in E : f(x) = c\}$ is Lebesgue measurable for each $c \in [-\infty, +\infty]$, and
- (b) $\{x \in E : f(x) \in \mathbb{R}\}$ is Lebesgue measurable.

Remarks: If E is a nonempty Lebesgue measurable subset of \mathbb{R} , then a function $f: E \to [-\infty, +\infty]$ satisfying (a) above need not be Lebesgue measurable.

For example, consider a Lebesgue non-measurable set $N \subset (0,1)$ and define $f:(0,1) \to \mathbb{R}$ by $f(x) = \left\{ \begin{array}{ll} x & \text{if } x \in N, \\ -x & \text{if } x \in (0,1) \setminus N. \end{array} \right.$

Result: If E is a nonempty Lebesgue measurable subset of \mathbb{R} and $f: E \to \mathbb{R}$, then the following statements are equivalent.

- (a) f is Lebesgue measurable.
- (b) $f^{-1}((a,b))$ is Lebesgue measurable for all $a,b \in \mathbb{R}$ with a < b.
- (c) $f^{-1}(G)$ is Lebesgue measurable for every open set G in \mathbb{R} .
- (d) $f^{-1}(B)$ is Lebesgue measurable for every Borel set B in \mathbb{R} .

Examples of Lebesgue measurable functions:

- (a) If $E(\neq \emptyset) \in \mathcal{M}(\mathbb{R})$, then every continuous function $f: E \to \mathbb{R}$ is Lebesgue measurable.
- (b) If I is an interval of \mathbb{R} , then every monotonic (increasing or decreasing) function $f: I \to \mathbb{R}$ is Lebesgue measurable.
- (c) If $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$ then $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable.
- (d) If $f(x) = \begin{cases} \frac{1}{x} & \text{if } x(\neq 0) \in \mathbb{R}, \\ 1 & \text{if } x = 0, \end{cases}$ then $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable.

Almost everywhere concept: Let E be a nonempty Lebesgue measurable subset of \mathbb{R} . A property P(x), associated with points $x \in \mathbb{R}$, is said to hold almost everywhere (a.e.) on E (or, for almost all $x \in E$) if $m^*(\{x \in E : P(x) \text{ does not hold}\}) = 0$.

Example: If $f, g : \mathbb{R} \to \mathbb{R}$ are defined by f(x) = 0 for all $x \in \mathbb{R}$ and $g(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$ then f = g a.e. on \mathbb{R} .

Result: Let E be a nonempty Lebesgue measurable subset of \mathbb{R} and let $f, g : E \to [-\infty, +\infty]$ be

such that f = g a.e. on E. If f is Lebesgue measurable, then g is Lebesgue measurable.

Result: Let E be a nonempty Lebesgue measurable subset of \mathbb{R} and let $f, g : E \to [-\infty, +\infty]$ be Lebesgue measurable. Then the sets $\{x \in E : f(x) > g(x)\}$, $\{x \in E : f(x) \geq g(x)\}$ and $\{x \in E : f(x) = g(x)\}$ are Lebesgue measurable.

Combination of Lebesgue measurable functions: Let E be a nonempty Lebesgue measurable subset of \mathbb{R} .

- (a) If $f, g: E \to \mathbb{R}$ are Lebesgue measurable, then $f + g: E \to \mathbb{R}$ is Lebesgue measurable.
- (b) If $f, g : E \to [-\infty, +\infty]$ are Lebesgue measurable and if $\alpha \in \mathbb{R}$, then $\alpha f, f^2, fg : E \to [-\infty, +\infty]$ are Lebesgue measurable.
- (c) If $f_1, ..., f_n : E \to [-\infty, +\infty]$ are Lebesgue measurable, then $\max(f_1, ..., f_n) : E \to [-\infty, +\infty]$ and $\min(f_1, ..., f_n) : E \to [-\infty, +\infty]$ are Lebesgue measurable, where $\max(f_1, ..., f_n)(x) = \max\{f_1(x), ..., f_n(x)\}$ and $\min(f_1, ..., f_n)(x) = \min\{f_1(x), ..., f_n(x)\}$ for all $x \in E$.
- (d) If $f: E \to [-\infty, +\infty]$ is Lebesgue measurable, then $f^+: E \to [0, +\infty]$, $f^-: E \to [0, +\infty]$ and $|f|: E \to [0, +\infty]$ are Lebesgue measurable, where $f^+ = \max(f, 0)$, $f^- = \max(-f, 0)$ and $|f| = f^+ + f^-$.
- (e) If for each $n \in \mathbb{N}$, $f_n : E \to [-\infty, +\infty]$ is Lebesgue measurable, then $\sup_{n \in \mathbb{N}} f_n$ and $\inf_{n \in \mathbb{N}} f_n$ are Lebesgue measurable, where each of these two functions are defined pointwise.
- (f) For each $n \in \mathbb{N}$, let $f_n : E \to [-\infty, +\infty]$ be Lebesgue measurable and let $\lim_{n \to \infty} f_n(x)$ exist in $[-\infty, +\infty]$ for each $x \in E$. If $f(x) = \lim_{n \to \infty} f_n(x)$ for all $x \in E$, then $f : E \to [-\infty, +\infty]$ is Lebesgue measurable.

Characteristic function: Let X be a nonempty set and $A \subset X$. The characteristic function $\chi_A: X \to \mathbb{R}$ is defined by $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \in X \setminus A. \end{cases}$ If $E \subset \mathbb{R}$, then $\chi_E: \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable iff E is Lebesgue measurable.

Simple function: If E is a nonempty subset of \mathbb{R} , then a function $\varphi : E \to \mathbb{R}$ is called simple if $\operatorname{Range}(\varphi)$ is a finite set.

If $\varphi: E \to \mathbb{R}$ is simple with Range $(\varphi) = \{c_1, ..., c_n\}$, where $c_1, ..., c_n$ are distinct, and if $E_i = \{x \in E: \varphi(x) = c_i\}$ for i = 1, ..., n, then $E_1, ..., E_n$ are pairwise disjoint and $\varphi = \sum_{i=1}^n c_i \chi_{E_i}$, which is called the canonical representation of φ .

If E is a nonempty Lebesgue measurable subset of \mathbb{R} , then a simple function $\varphi: E \to \mathbb{R}$ with canonical representation $\varphi = \sum_{i=1}^{n} c_i \chi_{E_i}$ is Lebesgue measurable iff E_i is Lebesgue measurable for each $i \in \{1, ..., n\}$.

Remarks: If E is a nonempty subset of \mathbb{R} and $\varphi: E \to \mathbb{R}$ is a simple function, then φ can have more than one representation of the form $\varphi = \sum_{i=1}^m a_i \chi_{A_i}$ on E, where for $i = 1, ..., m, \ a_i \in \mathbb{R}$ and $A_i \subset E$ such that $A_1, ..., A_m$ are pairwise disjoint. (Note that $a_1, ..., a_m$ need not be distinct.) For example, consider $\varphi = 2\chi_{[0,2]} + 3\chi_{(2,3]} = 2\chi_{[0,1]} + 2\chi_{(1,2]} + 3\chi_{(2,3]}$ on [0,3].

Integral of non-negative simple Lebesgue measurable function: Let E be a nonempty Lebesgue measurable subset of \mathbb{R} and let $\varphi: E \to [0, +\infty)$ be simple Lebesgue measurable with canonical representation $\varphi = \sum_{i=1}^{n} c_i \chi_{E_i}$. The Lebesgue integral of φ over E is defined by

$$\int_{E} \varphi \, dm = \sum_{i=1}^{n} c_{i} m(E_{i}).$$

(We follow the convention that $0.(+\infty) = 0 = (+\infty).0.$)

Result: Let E be a nonempty Lebesgue measurable subset of \mathbb{R} and let $E_1, ..., E_m$ be pairwise disjoint Lebesgue measurable subsets of E. If $\varphi = \sum_{i=1}^{m} a_i \chi_{E_i}$ on E, where $a_1, ..., a_m$ are non-negative real numbers, then $\int_{E} \varphi \, dm = \sum_{i=1}^{m} a_i m(E_i)$.

Example: Let C denote the Cantor set and $\varphi:[0,1]\to\mathbb{R}$ be defined by

$$\varphi(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap C, \\ 2 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap C, \\ 3 & \text{if } x \in [0, 1] \setminus C. \end{cases}$$
Then
$$\int_{[0, 1]} \varphi \, dm = 3.$$

Integral of non-negative Lebesgue measurable function: Let E be a nonempty Lebesgue measurable subset of \mathbb{R} and let $f: E \to [0, +\infty]$ be Lebesgue measurable. The Lebesgue integral of f over E is defined by

$$\int_E f \, dm = \sup \Big\{ \int_E \varphi \, dm : \varphi : E \to [0, +\infty) \text{ is simple, Lebesgue measurable and } \varphi \le f \Big\}.$$

Remarks: If E is a nonempty Lebesgue measurable subset of \mathbb{R} and if $\varphi: E \to [0, +\infty)$ is simple, Lebesgue measurable, then the above definition for $\int_{-\infty}^{\infty} \varphi \, dm$ agrees with its earlier definition.

Monotone convergence theorem (MCT): Let E be a nonempty Lebesgue measurable subset of \mathbb{R} and let $f, f_n : E \to [0, +\infty]$ be Lebesgue measurable for each $n \in \mathbb{N}$. If $f_1(x) \leq f_2(x) \leq \cdots$ for almost all $x \in E$ and $f(x) = \lim_{n \to \infty} f_n(x)$ for almost all $x \in E$, then $\int_E f \, dm = \lim_{n \to \infty} \int_E f_n \, dm$.

Remarks: The conclusion of the MCT need not hold if the sequence $\{f_n\}_{n=1}^{\infty}$ is assumed to be decreasing (instead of increasing), i.e. if $f_1(x) \ge f_2(x) \ge \cdots$ for almost all $x \in E$. For example, consider $f_n = \chi_{[n,+\infty)}$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} f_n(x) = 0$ for all $x \in \mathbb{R}$ and $\int_{\mathbb{D}} \lim_{n \to \infty} f_n dm = 0 \neq 0$ $+\infty = \lim_{n \to \infty} \int_{\mathbb{D}} f_n \, dm.$

Integral of measurable function: Let E be a nonempty Lebesgue measurable subset of \mathbb{R} and let $f: E \to [-\infty, +\infty]$ be Lebesgue measurable. The Lebesgue integral of f over E is said to exist if at least one of $\int_E f^+ dm$ and $\int_E f^- dm$ is finite and in such case, we define the Lebesgue integral of f over E as $\int_E f dm = \int_E f^+ d\mu - \int_E f^- dm$.

Also, f is said to be Lebesgue integrable over E if (both) $\int_E f^+ dm < +\infty$ and $\int_E f^- dm < +\infty$.

Remarks: Let E be a nonempty Lebesgue measurable subset of \mathbb{R} and let $f: E \to [-\infty, +\infty]$ be Lebesgue measurable. If $f(x) \geq 0$ for all $x \in E$, then the above definition for $\int f dm$ agrees with its earlier definition and f is Lebesgue integrable over E iff $\int_E f \, dm < +\infty$.

Result: Let E be a nonempty Lebesgue measurable subset of \mathbb{R} and let $f, g : E \to \mathbb{R}$ be Lebesgue measurable functions such that the Lebesgue integrals $\int_E f \, dm$ and $\int_E g \, dm$ exist. Then

(a)
$$\int_{E} \alpha f \, dm = \alpha \int_{E} f \, dm$$
 if $\alpha \in \mathbb{R}$.

(b)
$$\int_{E}^{E} (f+g) dm = \int_{E}^{E} f dm + \int_{E}^{G} g dm$$
.

(a)
$$\int_{E} \alpha f \, dm = \alpha \int_{E} f \, dm \text{ if } \alpha \in \mathbb{R}.$$

(b) $\int_{E} (f+g) \, dm = \int_{E} f \, dm + \int_{E} g \, dm.$
(c) $\int_{E} f \, dm \leq \int_{E} g \, dm \text{ if } f \leq g \text{ a.e. on } E.$

(d) $\int_E f \, dm = \int_A f \, dm + \int_{E \backslash A} f \, dm$ if $A \subset E$ is Lebesgue measurable. Consequently, if f = g a.e. on E, then $\int_E f \, dm = \int_E g \, dm$.

Dominated convergence theorem (DCT): Let E be a nonempty Lebesgue measurable subset of \mathbb{R} and let $f, f_n : E \to [-\infty, +\infty]$ be Lebesgue measurable for each $n \in \mathbb{N}$ such that $\lim_{n \to \infty} f_n(x) = f(x)$ for almost all $x \in E$. If $g : E \to [0, +\infty]$ is Lebesgue integrable such that for each $n \in \mathbb{N}$, $|f_n(x)| \leq g(x)$ for almost all $x \in E$, then f, f_n $(n \in \mathbb{N})$ are Lebesgue integrable over E and $\int_E f \, dm = \lim_{n \to \infty} \int_E f_n \, dm$.

Lebesgue integral and Riemann integral: If $f:[a,b]\to\mathbb{R}$ is Riemann integrable, then f is Lebesgue integrable on [a,b] and $\int\limits_{[a,b]}f\,dm=\int\limits_a^bf(x)\,dx.$

(This result is useful in evaluating several Lebesgue integrals.)

However, the function $\chi_{\mathbb{Q}\cap[0,1]}:[0,1]\to\mathbb{R}$ is Lebesgue integrable but not Riemann integrable on [0,1].

Example: (Evaluation of Lebesgue integral) If $f(x) = \begin{cases} x^2 - x & \text{if } x \in \mathbb{Q} \cap [0, 1], \\ \cos x & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1], \end{cases}$ then f = g a.e. on [0, 1], where $g(x) = \cos x$ for all $x \in [0, 1]$. Since $g : [0, 1] \to \mathbb{R}$ is Riemann integrable, f is Lebesgue integrable on [0, 1] and $\int_{[0, 1]} f \, dm = \int_{[0, 1]} g \, dm = \int_{0}^{1} g(x) \, dx = \sin 1.$

Examples: (Application of MCT and evaluation of Lebesgue integral)

- (a) To evaluate the Lebesgue integral $\int_{[1,+\infty)} \frac{1}{x^2} dx$, we consider $f_n(x) = \begin{cases} \frac{1}{x^2} & \text{if } 1 \leq x \leq n, \\ 0 & \text{if } n < x < +\infty, \end{cases}$ for each $n \in \mathbb{N}$. Then by the MCT, we get $\int_{[1,+\infty)} \frac{1}{x^2} dx = \int_{[1,+\infty)} \lim_{n \to \infty} f_n dm = \lim_{n \to \infty} \int_{[1,+\infty)} f_n dm = \lim_{n \to \infty} \left(\int_{[1,n]} f_n dm + \int_{[n,+\infty)} f_n dm \right) = \lim_{n \to \infty} \left(\int_{1}^{n} f_n(x) dx + 0 \right) = \lim_{n \to \infty} (1 \frac{1}{n}) = 1.$
- (b) To evaluate the Lebesgue integral $\int_{(0,1]} \frac{1}{\sqrt{x}} dx$, we consider $f_n(x) = \begin{cases} 0 & \text{if } 0 < x < \frac{1}{n^2}, \\ \frac{1}{\sqrt{x}} & \text{if } \frac{1}{n^2} \le x \le 1, \end{cases}$ for each $n \in \mathbb{N}$. Then by the MCT, we get $\int_{(0,1]} \frac{1}{\sqrt{x}} dx = \int_{(0,1]} \lim_{n \to \infty} f_n dm = \lim_{n \to \infty} \int_{(0,1]} f_n dm = \lim_{n \to \infty} \int_{(0,1]} f_n dm = \lim_{n \to \infty} \left(\int_{(0,\frac{1}{n^2})} f_n dm + \int_{[\frac{1}{n^2},1]} f_n dm \right) = \lim_{n \to \infty} \left(0 + \int_{\frac{1}{n^2}}^1 f_n(x) dx \right) = \lim_{n \to \infty} 2(1 \frac{1}{n}) = 2.$

Example: (Application of DCT) We have $\lim_{n \to \infty} \frac{n\sqrt{x}}{1+n^2x^2} = 0$ for all $x \in [0,1]$, $\frac{n\sqrt{x}}{1+n^2x^2} \le \frac{1}{2\sqrt{x}}$ for all $x \in (0,1]$ and $\int_{[0,1]} \frac{1}{2\sqrt{x}} dx = 1 < +\infty$. Hence by the DCT, we obtain $\lim_{n \to \infty} \int_{0}^{1} \frac{n\sqrt{x}}{1+n^2x^2} dx = \lim_{n \to \infty} \int_{[0,1]} \frac{n\sqrt{x}}{1+n^2x^2} dx = \int_{[0,1]} \lim_{n \to \infty} \frac{n\sqrt{x}}{1+n^2x^2} dx = 0$.