Parte I

Control de tonos y ecualizador de fase

A lo largo de esta parte, se pondra foco en el circuito mostrado en la Figura 1, que se trata de un circuito de control de tonos.

Figura 1: Circuito de Control de Tonos

1. Transferencia

Al calcular la transferencia genericamente para cualquier valor de impedancias, y llamando a $R_2 = R_{21} + R_{22}$, el calculo de la transferencia se expresa como la ecuación (1).

$$H(s) = -\frac{20C_2^2K^2R_1R_2^2s^2 - 20C_2^2KR_1R_2^2s^2 - 10C_2^2R_1^2R_2s^2 - 100C_2^2R_1R_2^2s^2 + C_2K^2R_2^2s + 9C_2KR_2^2s - C_2R_1^2s - 31C_2R_1R_2s - 20C_2^2K^2R_1R_2^2s^2 - 20C_2^2KR_1R_2^2s^2 - 10C_2^2R_1^2R_2s^2 - 100C_2^2R_1R_2^2s^2 + C_2K^2R_2^2s - 11C_2KR_2^2s - C_2R_1^2s - 31C_2R_1R_2s - 20C_2^2K^2R_1R_2^2s^2 - 20C_2^2K^2R_1R_2^2s^2 - 10C_2^2R_1^2R_2s^2 - 100C_2^2R_1R_2^2s^2 + C_2K^2R_2^2s - 11C_2KR_2^2s - C_2R_1^2s - 31C_2R_1R_2s - 20C_2^2K^2R_1R_2^2s^2 - 20C_2^2K^2R_1R_2^2s^2 - 10C_2^2R_1^2R_2s^2 - 100C_2^2R_1R_2^2s^2 - 10C_2^2R_1R_2^2s^2 - 10C_2^2R_1R_2$$

Si reacomodamos de la siguiente manera:

$$H(s) = \frac{As^2 + Bs + C}{As^2 + Es + C}$$

$$A = 20C_2^2K^2R_1R_2^2 - 20C_2^2KR_1R_2^2 - 10C_2^2R_1^2R_2 - 100C_2^2R_1R_2^2 \approx -100C_2^2R_1R_2^2$$

$$B = C_2K^2R_2^2 + 9C_2KR_2^2 - C_2R_1^2 - 31C_2R_1R_2 - 10C_2R_2^2$$

$$C = -2R_1 - R_2$$

$$E = C_2K^2R_2^2 - 11C_2KR_2^2 - C_2R_1^2 - 31C_2R_1R_2$$

$$(1)$$

2. Análisis de frecuancia central

Para obtener la frecuencia central, basta con llevar a la ecuación de transferencia de la siguiente manera

$$H(s) = \frac{\left(\frac{s}{\omega_0}\right)^2 + \frac{s}{Q_z\omega_0} + 1}{\left(\frac{s}{\omega_0}\right)^2 + \frac{s}{Q_p\omega_0} + 1} \tag{2}$$

Por lo tanto;

$$\frac{1}{\omega_0^2} = \frac{A}{C}$$

$$\Rightarrow \omega_0 = \frac{\sqrt{2 + \frac{R_2}{R_1}}}{10C_2R_2} \Longrightarrow f_0 = \frac{\sqrt{2 + \frac{R_2}{R_1}}}{20\pi C_2R_2}$$

3. Análisis paramétrico

Si se analiza los factores de calidad correspondientes se obtiene:

$$\begin{split} Q_z &= \frac{C}{B\omega_0} \\ Q_z &= -\frac{10C_2\sqrt{R_1}R_2\sqrt{2R_1+R_2}}{C_2K^2R_2^2 + 9C_2KR_2^2 - C_2R_1^2 - 31C_2R_1R_2 - 10C_2R_2^2} \\ Q_p &= \frac{C}{E\omega_0} \\ Q_p &= -\frac{10C_2\sqrt{R_1}R_2\sqrt{2R_1+R_2}}{-C_2K^2R_2^2 + 11C_2KR_2^2 + C_2R_1^2 + 31C_2R_1R_2} \end{split}$$

por lo tanto, la ganancia para la frecuencia central del filtro quedará dada por:

$$A = \frac{R_1^2 + 31R_1R_2 + 10R_2^2}{R_1\left(R_1 + 31R_2\right)} \approx \frac{3R_1 + R_2}{3R_1} K = 0$$

$$A = \frac{R_1\left(R_1 + 31R_2\right)}{R_1^2 + 31R_1R_2 + 10R_2^2} \approx \frac{3R_1}{R_2 + 3R_1} K = 1$$

$$A = \frac{-K^2R_2^2 - 9KR_2^2 + R_1^2 + 31R_1R_2 + 10R_2^2}{-K^2R_2^2 + 11KR_2^2 + R_1^2 + 31R_1R_2} Expresado Parametricamente en K$$

Figura 2: Diagrama paramétrico

Figura 3: Respuesta en frecuencia paramétrica para una frecuencia dada

4. Análisis de singularidades

4.1. Análisis de Ceros

Si resolvemos la ecuación cuadrática para el nominador expresado en la ecuación (2), obtenemos que la expresión para econtrar los ceros de nuestro circuito, esta dada por:

$$C_{1,2} = \frac{-\frac{1}{Q_z \omega_0} \pm \sqrt{\left(\frac{1}{Q_z \omega_0}\right)^2 - 4\frac{1}{\omega_0^2}}}{2\frac{1}{\omega_0^2}}$$
$$\Rightarrow C_{1,2} = -\frac{\omega_0}{2Q_z} \pm \frac{\omega_0}{2} \sqrt{\frac{1}{Q_z^2} - 4}$$

4.2. Análisis de polos

De la misma manera que se procedió para encontrar los ceros en la subsección 4.1, los polos quedan determinados por:

$$\Rightarrow P_{1,2} = -\frac{\omega_0}{2Q_P} \pm \frac{\omega_0}{2} \sqrt{\frac{1}{Q_P^2} - 4}$$

4.3. Análisis de singularidades paramétricas

Si tenemos en cuenta, las expresiones para los pollos y los ceros obtenidas anteriormente, y una frecuencia central determinada, como por ejemplo la propuesta en la Figura 3, se podra hacer una analisis parametrico graficando como varían los polos y los ceros en un diagrama Imaginario/Real segun la variación de la resistencia R_2 .

Figura 4: Diagrama paramétrico de polos y ceros

Como se puede observar en la Figura 4, los polos y los ceros se superponen a partir de cierto valor de K. Graficando los polos y los ceros con K variando entre 0 < K < 0.5, se obtienen todos los ceros reales, copmo se puede observar en la Figura 5. Por otro lado, si se varía K entre 0.5 < K < 1, se puede observar que todos los polos son reales, como se observa en la Figura 6.

Figura 5: Diagrama paramétrico de polos y ceros con K variando de 0 a 0.5

Figura 6: Diagrama paramétrico de polos y ceros con K
 variando de 0.5a $1\,$