Choosing hyperparameters

- ► What are *hyperparameters*?
- ▶ Which hyperparameters have we encountered in the course so far?

- ▶ Hyperparametertuning is performed using a separate validation set or by cross-validation. Different loss functions or selection criteria may be used (MSE, AUC, misclassification rate, ...).
- The hyperparameter tuning is often referred to as a black-box optimization because we (usually) only calculate loss function values (with CV) and do not get to compute gradients.

What may be challenges with hyperparameter optimization?

Some challenges with hyperparameter optimization (Feurer and Hutter, Ch1):

- expensive evaluation of the model under study (large networks, large data sets)
- unclear which of possibly many hyperparameters that need to be selected carefully (refer to the discussion for xgboost)
- gradient of selection criterion with respect to the hyperparameters not (generally) available, and criterion not convex or smooth in the hyperparameters
- and the need for external validation or CV

Grid search vs iterative search

Surrogate methods

We will look at two types of surrogate models: Bayesian regression with Gaussian processes (in Bayesian optimization) and regression-type models in response surface methods (presented by group 2).

Bayesian optimization

Bayesian optimization is an iterative method - where we start with evaluating some loss function at some predefined set of points in the hyperparameter space. New position in the hyperparameter space are chosen iteratively.

Two key ingredients:

- a surrogate model (we will only look at Bayesian regression with Gaussian processes) to fit to the observed values of the loss function in the hyperparameter space
- ➤ an acquisition function to decide a new point in the hyperparameter space to evaluate next

Underlying idea: given some "observations" in the hyperparameter space, the task is to decide where to place a new point. We should try a point where:

- we expect a good value and/or
- we have little information so far

To do that we need information on both expected value *and* variance - or preferably the distribution of the loss function for your problem.

Multivariate normal distribution

The random vector $\mathbf{Y}_{p\times 1}$ is multivariate normal N_p with mean and (positive definite) covariate matrix Σ . The pdf is:

$$f(\mathbf{Y}) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}} \exp\{-\frac{1}{2} (\mathbf{Y} -)^T \Sigma^{-1} (\mathbf{Y} -)\}$$

The conditional distributions of the components are (multivariate) normal.

$$\mathbf{Y}_2 \mid (\mathbf{Y}_1 = \mathbf{Y}_1) \sim N_{p2}(\ _2 + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{Y}_1 - \ _1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}).$$

Gaussian processes

(Eidsvik 2017, page 6-7, note in TMA4265)

A Gaussian process is defined for

- \blacktriangleright times or locations x_i , $i=1,\ldots,n$ in \Re^d , where
- $ightharpoonup Y_i = Y(x_i)$ is a random variable at x_i
- ightharpoonup such that $\mathbf{Y}=(Y_1,\ldots,Y_n)$ is multivariate Gaussian.

The process is *first order (mean) stationary* if $\mathsf{E}(Y(x)) = \mu$ for all x, and this can be extended to depend on covariates.

The process is second order stationary if $Var(Y(t)) = \sigma^2$ for all x and the correlation Corr(Y(x), Y(x')) only depends on differences between x and x'.

The multivariate Gaussian distribution is defined by the mean and covariance alone.

Correlation functions

▶ We assume that points at positions close to each other have a stronger correlation than point far apart.

Power exponential or Gaussian kernel

$$\mathsf{Corr}(Y(x),Y(x')) = \exp(-\phi_G \|x-x'\|^2)$$

where the L2 distance is used and ϕ_G is a parameter that determine the decay in the correlations.

Matern-type kernel

$$\mathsf{Corr}(Y(x),Y(x^{\,\prime})) = (1+\phi_M\|x-x^{\prime}\|)\exp(-\phi_M\|x-x^{\prime}\|)$$

decay-describing parameter ϕ_M .

Figure 2: Random functions f drawn from a Gaussian process prior with a power exponential kernel. Each plot corresponds to a different value for the parameter α_1 , with α_1 decreasing from left to right. Varying this parameter creates different beliefs about how quickly f(x) changes with x.

Figure 4: Three different correlation functions.

From correlations into covariance matrix

For simplicty assume that d=1. The number of positions to consider is n.

To get from correlation function to a $n \times n$ covariance matrix first construct a $n \times n$ matrix of distances for each pair of positions, denote this \mathbf{H} .

For the Matern-type correlation function the covariance matrix can then be written

$$\Sigma = \sigma^2 (1 + \phi_M \mathbf{H}) \otimes \exp(-\phi_M \mathbf{H}))$$

where \otimes is elementwise multiplication.

Figure 1: Illustration of BayesOpt, maximizing an objective function f with a 1-dimensional continuous input. The top panel shows: noise-free observations of the objective function f at 3 points, in blue; an estimate of f(x) (solid red line); and Bayesian credible intervals (similar to confidence intervals) for f(x) (dashed red line). These estimates and credible intervals are obtained using GP regression. The bottom panel shows the acquisition function. Bayesian optimization chooses to sample next at the point that maximizes the acquisition function, indicated here with an "x."

Acquisition function: Expected improvement

(Frazier 2018 page 7)

Thought experiment:

- 1) we have evaluated our function at all possible points x, and must return a solution based on what we already have evaluated. If the evaluation is noise-less we need to return the point with the largest observed value f.
- 2) Correction: We may perform one more evaluation. If we choose x we observe f(x), and the best point before that was f_n^* . The improvement at the new observation is then

$$\max(f(x) - f_n^*, 0)$$

3) We define the expected improvement as

$$\mathsf{EI}_n(x) = \mathsf{E}_n[\max(f(x) - f_n^*, 0)]$$

where the expectation is taken at the posterior distribution given that we have evaluated f at n observations x_1,\ldots,x_n , and the posterior distribution is that f conditional on $x_1,\ldots,x_n,y_1,\ldots,y_n$ is normal with mean $\mu_n(x)$ and variance $\sigma_n^2(x)$.

4) How to evaluate the expected improvement? Integration by parts gives

$$\begin{split} \mathsf{EI}_n(x) &= \max(\mu_n(x) - f_n^*, 0)]) + \sigma_n(x) \phi(\frac{\max(\mu_n(x) - f_n^*, 0)}{\sigma_n(x)}) \\ &- \mathsf{abs}(\mu_n(x) - f_n^*) \Phi(\frac{\max(\mu_n(x) - f_n^*, 0)}{\sigma_n(x)}) \end{split}$$

- $\mu_n(x) f_n^*$ is expected proposed vs previously best
 - We choose to evaluate the point with the largest expected improvement

$$x_{n+1} = \operatorname{argmaxEI}_n(x)$$

Place a Gaussian process prior on f.

Observe f at n_0 points from some experimental design. Set $n=n_0$.

while $n \leq N$ do

Update the posterior on f with all available data

Let x_n be a maximizer of the acquisition function over x, computed using the current posterior

Observe $y_n = f(x_n)$

Increment n

end while

Return a solution: a point with largest $f(\boldsymbol{x})$ or the point with the largest posterior mean

Example (Kuhn and Silge, Ch 14, the example is for SVM) First just grid search to test what is best value for mtry data(Boston, package = "MASS") # first using a grid tune_grid <- expand.grid(</pre> mtry = (1:13)# ntree=seg(100,500,length=10)) # how to also include ntree? primary only mtry, how to define secon tune control <- caret::trainControl(</pre> method = "oob", # cross-validation #eller cv #number = 3, # with n foldsverboseIter = FALSE, # no training log allowParallel = FALSE # FALSE for reproducible results rf_tune <- caret::train(</pre> medv~crim+zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat, data=Boston, na.action=na.roughfix, trControl = tune control, tuneGrid = tune_grid, method = "rf", # rf is randomForest, checked at #vhttp://topepo.github.io/caret/train-models-by-to verbose = TRUE tuneplot <- function(x, probs = .90) {</pre> ggplot(x) +coord cartesian(ylim = c(quantile(x\$results\$RMSE, probs = probs), min(x\$results\$RMSE))) + theme bw()

tuneplot(rf tune)

rf_tune\$bestTune

```
## mtry
## 6 6
```

The R the function tune_bayes is available in the package tune, and requires that the analyses is done with a workflow. Default in the GP is exponential correlation function, but first we try the Matern.

tree_rec <- recipe(medv~crim+zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat, data = Boston)</pre>

```
tune_spec <- rand_forest( # parsnip interface to random forests models
    mode="regression",
    mtry = tune(),
    trees = tune(),

# min_n = tune()
) %>%

# set_mode("regression") %>%

# set_engine("ranger",objective="reg:rmse") # errors with ranger
    set_engine("randomForest") # randomforest ok

tune_wf <- workflow() %>%
    add_recipe(tree_rec) %>%
    add_model(tune_spec)

tune_param <- tune_spec%>%
    parameters%>%
    update(mtry=mtry(c(1L,13L)),trees=trees(c(100L,500L)))
```

```
vfold <- vfold_cv(Boston, v = 5)
# then trying BO
ctrl <- control_bayes(verbose = TRUE)
bayesres<- tune_bayes(tune_wf,
    resamples = vfold,
    #metrics = rmse,
    corr=list(type="matern",nu=5/2),
    #default in corr_mat(GPfit) is "exponential" power 1.95
    initial = 10,
    param_info = tune_param,
    iter = 10,
    objective=exp_improve(),
    control = ctrl
    )
dput(bayesres,"bayesres.dd")</pre>
```

```
## # A tibble: 10 x 9
##
      mtry trees .metric .estimator mean
                                          n std_err .config
                                                                      .iter
##
                                              <dbl> <chr>
                                                                      <int>
     <int> <int> <chr> <chr>
                                 <dbl> <int>
##
  1
         6
            204 rmse
                       standard
                                  3.16
                                          5
                                              0.231 Iter6
                                                                         6
## 2
         7
            315 rmse
                       standard
                                  3.17
                                              0.257 Iter10
                                                                         10
## 3
         6
            319 rmse
                       standard
                                3.19
                                          5
                                              0.254 Iter7
                                                                          7
                                                                          2
## 4
         6 210 rmse
                     standard 3.19
                                          5
                                             0.262 Iter2
## 5
         6 196 rmse
                     standard
                                3.20
                                          5 0.252 Preprocessor1_Model~
                                                                          0
         6 296 rmse
                                             0.256 Preprocessor1_Model~
## 6
                       standard
                                 3.22
                                          5
                                                                          0
## 7
        7
            204 rmse
                       standard
                                  3.22
                                          5
                                             0.287 Iter5
                                                                          5
## 8
         8 305 rmse
                                          5 0.280 Preprocessor1_Model~
                                                                          0
                       standard
                                  3.23
                                          5 0.271 Iter8
            333 rmse
                                  3.23
                                                                          8
## 9
        7
                       standard
## 10
         9 452 rmse
                       standard
                                  3.24
                                          5
                                             0.283 Preprocessor1_Model~
                                                                          0
```


Here we try the default exponential correlation.

```
bayesres2<- tune_bayes(tune_wf,</pre>
   resamples = vfold,
   #metrics = rmse,
   #corr=list(type="matern", nu=5/2),
   #default in corr_mat(GPfit) is "exponential" power 1.95
   initial = 10,
   param_info = tune_param,
   iter = 10,
   objective=exp_improve(),
   control = ctrl
 )
dput(bayesres2, "bayesres2.dd")
bayesres2=dget("bayesres2.dd")
show_best(bayesres2, n=10)
## # A tibble: 10 x 9
                                            n std_err .config
##
      mtry trees .metric .estimator mean
                                                                         .iter
##
     <int> <int> <chr> <chr>
                                  <dbl> <int> <dbl> <chr>
                                                                         <int>
##
  1
         7
            311 rmse
                        standard
                                   3.16
                                            5
                                              0.238 Iter9
                                                                             9
##
  2
         7
            122 rmse
                        standard
                                   3.18
                                            5 0.268 Iter10
                                                                            10
            101 rmse
                                   3.18
                                            5 0.248 Iter7
                                                                             7
## 3
         6
                        standard
## 4
         7
            102 rmse
                        standard
                                   3.18
                                            5 0.255 Iter4
                                                                             4
                                                                             0
## 5
         7 249 rmse
                        standard
                                   3.18
                                            5 0.270 Preprocessor1_Model~
##
  6
         7 500 rmse
                        standard
                                   3.19
                                            5 0.259 Iter3
                                                                             3
## 7
           278 rmse
                                            5
                                               0.255 Preprocessor1_Model~
                                                                             0
         6
                        standard
                                   3.19
## 8
         8 113 rmse standard
                                   3.19
                                            5 0.257 Preprocessor1_Model~
                                                                             0
                                                                             8
## 9
         6 164 rmse standard
                                 3.21
                                            5 0.258 Iter8
                                               0.290 Iter5
## 10
         7 101 rmse
                        standard
                                   3.21
                                            5
                                                                             5
autoplot(bayesres2, type="performance")
```


1 . 3 , 31 1

Suggested software

- ► R: DiceOptim (on CRAN)
- R: tune_bayes in tune (also CRAN)
- ▶ Python: Spearmint https://github.com/HIPS/Spearmint
- Python: GPyOpt https://github.com/SheffieldML/GPyOpt
- Python: GPFlow (Tensorflow) https://github.com/GPflow/GPflow and GPYTorch (PyTorch) https://github.com/cornellius-gp/gpytorch

Design of experiments and response surface methodology

Article presentation by group 2.

G. A. Lujan-Moreno, P. R. Howard, O. G. Rojas and D. C. Montgomery (2018): Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case- study. Expert Systems with Applications. 109, 195-205.