André Biedenkapp

Personal Information

Date of birth: 13.07.1992 Nationality: German

Work experience

Position held.....

Machine Learning Lab

Scientific Researcher

Past positions.

Machine Learning Lab

Student Assistant Assisting in the implementation of research projects

Chair of Computer Architecture

Student Assistant Maintenance of the mobile robots for the Hardware-Labcourse Albert-Ludwigs-University Freiburg 10.2015 - 09.2017

Albert-Ludwigs-University Freiburg

Since 10.2017

Albert-Ludwigs-University Freiburg

04.2014 - 09.2014

Research Interests

Dynamic Algorithm Configuration

Learning to Learn

Deep Reinforcement Learning

o Automated Machine Learning and Reinforcement Learning

[see, e.g., 1, 5, 6, 11, 12, 15, 16] [see, e.g., 9, 10] [see, e.g., 13, 23, 31]

[see, e.g., 4, 7, 14, 19]

Education

Summer School

PhD (Dr. rer. nat.)

Supervised by Prof. Frank Hutter and Prof. Marius Lindauer

Albert-Ludwigs-University Freiburg 2018 - 2022

Thesis: Dynamic Algorithm Configuration by Reinforcement Learning (Grade: Summa Cum Laude)

In: Lille, France

Reinforcement Learning Summer SCOOL (RLSS'19)

Topics: Reinforcement Learning and Bandits

Computer Science

Master of Science (M.Sc.), Final Grade: 1.2

Thesis: Per Instance Algorithm Configuration (Grade: 1.0)

Supervisor: Prof. Dr. Frank Hutter

Albert-Ludwigs-University Freiburg

2014 - 2017

July 2019

Computer Science

Bachelor of Science (B.Sc.)

Albert-Ludwigs-University Freiburg 2011 - 2014

Thesis: Data Analysis for the Selection of Recording Channels on Multielectrode-Arrays (Grade: 1.7)

Supervisor: Prof. Dr. Wolfram Burgard

Teaching Experience

Meta-Algorithmics & AutoML

Undergraduate lecture

04.2023

Guest Lecture as part of the "Artificial Intelligence Practice" course at the St. Andrews University

Dynamic Algorithm Configuration and Optimization

Seminar 10.2022 - 02.2023 Responsible for setting up the seminar. Jointly held with Prof. Frank Hutter and Dr. Noor Awad

Automated Machine Learning

Lab course 10.2022 – 02.2023

Responsible for setting up the lab course. Jointly held with Prof. Frank Hutter and Rhea Sukthanker

Teaching Assistant.....

Automated Machine Learning (Flipped Classroom)

Graduate course

04.2023 - 09.2023

Creation and grading of exercises & final project.

Automated Machine Learning (Flipped Classroom)

Graduate course

04.2022 – 09.2022

Creation and grading of exercises & final project.

Automated Machine Learning Massive Open Online Course (MOOC)

Graduate course

Published 04.2021

Creation of coding exercises. Involved in setting up the MOOC

Automated Machine Learning (Flipped Classroom)

Graduate course, Virtual 04.2021 – 09.2021

 $Creation \ and \ grading \ of \ exercises \ \& \ final \ project. \ Setting \ up \ online \ teaching \ through \ Zoom \ and \ GitHub \ classroom.$

Automated Machine Learning (Flipped Classroom)

Graduate course, Virtual 04.2020 – 09.2020

Creation and grading of exercises & final project. Setting up online teaching through Zoom and GitHub classroom.

Automated Machine Learning

Graduate course 04.2019 – 09.2019

Creation and grading of exercises $\&\ final\ project$

Machine Learning for Automated Algorithm Design

Graduate course 10.2018 - 03.2019

Creation and grading of exercises & final project

Machine Learning for Automated Algorithm Design

Graduate course 10.2017 - 03.2018

Creation and grading of exercises & final project

Hardware-Labcourse

Undergraduate course 04.2014 − 09.2014

Assisting students with practical exercises

Student Supervision

MSc Thesis

Florian Diederichs, Joint supervision with N. Awad 09.2022 – 02.2023

On the Applicability of Offline Reinforcement Learning for Dynamic Algorithm Configuration of Differential Evolution

MSc Thesis

Baohe Zhang, Joint supervision with R. Rajan, Published at AISTATS'21 04.2020 - 10.2020

On the Importance of Hyperparameter Optimization in Model-based Reinforcement Learning

MSc Project & Thesis

Gresa Shala, Published at PPSN'20 04.2019 - 05.2020

Learning to Optimize CMA-ES

MSc Thesis

Furkan Bozkurt 03.2019 – 11.2019

RL-DCBO: Reinforcement Learning Guided Dynamic Control for Bayesian Optimization

MSc Thesis

Theresa Eimer, Follow up work published at ICML'21 12.2018 – 09.2019

Improved Meta-Learning for Algorithm Control through Self-Paced Learning

MSc Thesis

Kevin Hättig 12.2018 – 09.2019

Model-Based Population Based Training

MSc Thesis

Oliver Brunner, Joint supervision with D. Speck at GKI-Freiburg Learning Domain-Independent Heuristics with Deep Neural Networks

11.2018 - 04.2019

MSc Project

Theresa Eimer & Kevin Hättig
Algorithm State Description for Algorithm Control

04.2018 - 12.2018

Publications

Google Scholar

₩DBLP

0000-0002-8703-8559

Thesis.

- [1] **A. Biedenkapp**. "Dynamic Algorithm Configuration by Reinforcement Learning". *Grade: Summa Cum Laude (best possible grade)*. PhD thesis. Freiburg, Germany: University of Freiburg, Department of Computer Science, Machine Learning Chair, Oct. 2022.
- [2] **A. Biedenkapp**. "Per Instance Algorithm Configuration". *Grade: 1.0 (best possible grade)*. Master's Thesis. Freiburg, Germany: University of Freiburg, Department of Computer Science, Machine Learning Chair, 2017.
- [3] A. Biedenkapp. "Data Analysis for the Selection of Recording Channels on Multielectrode-Arrays". Bachelor's Thesis. Freiburg, Germany: University of Freiburg, Department of Computer Science, Autonomous Intelligent Systems, Mar. 2014.

Journal & Conference Publications.....

- [4] G. Shala, **A. Biedenkapp**, F. Hutter, and J. Grabocka. "Gray-Box Gaussian Processes for Automated Reinforcement Learning". In: *Proceedings of the International Conference on Learning Representations (ICLR'23)*. Published online: iclr.cc, *Acceptance rate: 31.8%, Conference Rating: A**. 2023.
- [5] S. Adriaensen, **A. Biedenkapp**, G. Shala, N. Awad, T. Eimer, M. Lindauer, and F. Hutter. "Automated Dynamic Algorithm Configuration". In: *Journal of Artificial Intelligence Research (JAIR)* 75 (2022), pp. 1633–1699. DOI: https://doi.org/10.1613/jair.1.13922.
- [6] **A.** Biedenkapp*, N. Dang*, M. S. Krejca*, F. Hutter, and C. Doerr. "Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration". In: *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'22)*. **Joint first authorship**, *Conference Rating: A, Won the Best Paper Award (GECH track)*. ACM, July 2022.
- [7] J. Parker-Holder, R. Rajan, X. Song, **A. Biedenkapp**, Y. Miao, T. Eimer, B. Zhang, V. Nguyen, R. Calandra, A. Faust, F. Hutter, and M. Lindauer. "Automated Reinforcement Learning (AutoRL): A Survey and Open Problems". In: *Journal of Artificial Intelligence Research (JAIR)* 74 (2022). *Journal Rating: A*, pp. 517–568. DOI: https://doi.org/10.1613/jair.1.13596.
- [8] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, R. Sass, and F. Hutter. "SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization". In: Journal of Machine Learning Research (JMLR) MLOSS 23.54 (2022). Journal Rating: A*, pp. 1–9.
- [9] **A. Biedenkapp**, R. Rajan, F. Hutter, and M. Lindauer. "TempoRL: Learning When to Act". In: *Proceedings of the Thirty-eighth International Conference on Machine Learning. Acceptance rate:* 21.5%, Conference Rating: A*. July 2021, pp. 914–924.
- [10] T. Eimer, **A. Biedenkapp**, F. Hutter, and M. Lindauer. "Self-Paced Context Evaluation for Contextual Reinforcement Learning". In: *Proceedings of the Thirty-eighth International Conference on Machine Learning. Acceptance rate: 21.5%, Conference Rating: A**. July 2021, pp. 2948–2958.
- [11] T. Eimer, **A. Biedenkapp**, M. Reimer, S. Adriaensen, F. Hutter, and M. Lindauer. "DACBench: A Benchmark Library for Dynamic Algorithm Configuration". In: *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI'21)*. Acceptance rate: 19.3%, Conference Rating: A*. ijcai.org, Aug. 2021, pp. 1668–1674.

- [12] D. Speck*, A. **Biedenkapp***, F. Hutter, R. Mattmüller, and M. Lindauer. "Learning Heuristic Selection with Dynamic Algorithm Configuration". In: *Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS'21)*. **Joint first authorship**, *Acceptance rate:* ~30%, *Conference Rating:* A*. Aug. 2021, pp. 597–605.
- [13] B. Zhang, R. Rajan, L. Pineda, N. Lambert, **A. Biedenkapp**, K. Chua, F. Hutter, and R. Calandra. "On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning". In: *Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS'21). Acceptance rate: 29.8%, Conference Rating: A.* Apr. 2021.
- [14] J. KH Franke, G. Köhler, **A. Biedenkapp**, and F. Hutter. "Sample-Efficient Automated Deep Reinforcement Learning". In: *Proceedings of the International Conference on Learning Representations* (ICLR'21). Published online: iclr.cc, Acceptance rate: 28.7%, Conference Rating: A*. May 2021.
- [15] G. Shala*, **A. Biedenkapp***, N. Awad, S. Adriaensen, F. Hutter, and M. Lindauer. "Learning Step-Size Adaptation in CMA-ES". In: *Proceedings of the Sixteenth International Conference on Parallel Problem Solving from Nature (PPSN'20)*. **Joint first authorship**, *Conference Rating: A*. Sept. 2020, pp. 691–706.
- [16] **A. Biedenkapp**, H. F. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer. "Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework". In: *Proceedings of the European Conference on Artificial Intelligence (ECAI)*. Acceptance rate: 26.8%, Conference Rating: A. June 2020, pp. 427–434.
- [17] **A. Biedenkapp**, J. Marben, M. Lindauer, and F. Hutter. "CAVE: Configuration Assessment, Visualization and Evaluation". In: *Proceedings of the International Conference on Learning and Intelligent Optimization (LION'18)*. June 2018.
- [18] **A. Biedenkapp**, M. Lindauer, K. Eggensperger, C. Fawcett, H. Hoos, and F. Hutter. "Efficient Parameter Importance Analysis via Ablation with Surrogates". In: *Proceedings of the AAAI conference. Acceptance rate: 24.6%, Conference Rating: A**. Feb. 2017, pp. 773–779.

Workshop Publications & Preprints.....

- [19] G. Shala, **A. Biedenkapp**, F. Hutter, and J. Grabocka. "Gray-Box Gaussian Processes for Automated Reinforcement Learning". In: *Workshop on Meta-Learning (MetaLearn@NeurIPS'22)*. 2022.
- [20] G. Shala, S. Pineda Arango, **A. Biedenkapp**, F. Hutter, and J. Grabocka. "AutoRL-Bench 1.0". In: *Workshop on Meta-Learning (Meta-Learn@NeurIPS'22)*. 2022.
- [21] R. Sass, E: Bergman, **A. Biedenkapp**, F. Hutter, and M. Lindauer. "DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning". In: *Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML@ICML'22)*. 2022.
- [22] **A. Biedenkapp**, D. Speck, S. Sievers, F. Hutter, M. Lindauer, and J. Seipp. "Learning Domain-Independent Policies for Open List Selection". In: *Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL@ICAPS'22)*. 2022.
- [23] C. Benjamins, T. Eimer, F. Schubert, **A. Biedenkapp**, B. Rosenhan, F. Hutter, and M. Lindauer. "CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning". In: *Workshop on Ecological Theory of Reinforcement Learning (EcoRL@NeurlPS'21)*. Sept. 2021.
- [24] S. Izquierdo, J. Guerrero-Viu, S. Hauns, G. Miotto, S. Schrodi, A. Biedenkapp, T. Elsken, D. Deng, M. Lindauer, and F. Hutter. "Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization". In: Workshop on Automated Machine Learning (AutoML@ICML'21). May 2021.
- [25] S. Müller, **A. Biedenkapp**, and F. Hutter. "In-Loop Meta-Learning with Gradient-Alignment Reward". In: *AAAI workshop on Meta-Learning Challenges (MetaLearning@AAAI'21)*. Feb. 2021.

- [26] N. Awad, G. Shala, D. Deng, N. Mallik, M. Feurer, K. Eggensperger, A. Biedenkapp, D. Vermetten, H. Wang, C. Doerr, M. Lindauer, and F. Hutter. "Squirrel: A Switching Hyperparameter Optimizer Description of the entry by AutoML.org & IOHprofiler to the NeurIPS 2020 BBO challenge". In: arXiv:2012.08180 (Dec. 2020). Winning entry of the BBO Competition@NeurIPS'20 on a metalearnable search space.
- [27] **A. Biedenkapp**, R. Rajan, F. Hutter, and M. Lindauer. "Towards TempoRL: Learning When to Act". In: Workshop on Inductive Biases, Invariances and Generalization in RL (BIG@ICML'20). July 2020.
- [28] T. Eimer, A. Biedenkapp, F. Hutter, and M. Lindauer. "Towards Self-Paced Context Evaluation for Contextual Reinforcement Learning". In: Workshop on Inductive Biases, Invariances and Generalization in RL (BIG@ICML'20). July 2020.
- [29] **A. Biedenkapp**, H. F. Bozkurt, F. Hutter, and M. Lindauer. "Towards White-Box Benchmarks for Algorithm Control". In: *IJCAI 2019 DSO Workshop*. Aug. 2019.
- [30] M. Lindauer, M. Feurer, K. Eggensperger, **A. Biedenkapp**, and F. Hutter. "Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters". In: *IJCAI 2019 DSO Workshop*. Aug. 2019.
- [31] C. Benjamins, T. Eimer, F. Schubert, A. Mohan, **A. Biedenkapp**, B. Rosenhan, F. Hutter, and M. Lindauer. "Contextualize Me The Case for Context in Reinforcement Learning". In: *arXiv*:2202.04500 [cs.LG] (2022).
- [32] R. Rajan, J. L. B. Diaz, S. Guttikonda, F. Ferreira, **A. Biedenkapp**, and Frank Hutter. "MDP Playground: Controlling Dimensions of Hardness in Reinforcement Learning". In: *arXiv*:1909.07750v3 (Oct. 2020).
- [33] M. Lindauer, K. Eggensperger, M. Feurer, **A. Biedenkapp**, J. Marben, P. Müller, and F. Hutter. "BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters". In: *arXiv*:1908.06756 (Aug. 2019).

Blog Posts.

- [34] **A. Biedenkapp**, R. Rajan, F. Hutter, and M. Lindauer. "TempoRL Learning When to Act". In: *Personal Blog* (May 2022). URL: https://andrebiedenkapp.github.io/blog/2022/temporl/.
- [35] **A. Biedenkapp**, N. Dang, M. S. Krejca, F. Hutter, and C. Doerr. "Theory-Inspired Parameter Control Benchmarks for DAC". In: *Personal Blog* (May 2022). URL: https://andrebiedenkapp.github.io/blog/2022/gecco/.
- [36] N. Lambert, B. Zhang, R. Rajan, and **A. Biedenkapp**. "The Importance of Hyperparameter Optimization for Model-based Reinforcement Learning". In: https://bair.berkeley.edu/blog (Apr. 2021). URL: https://bair.berkeley.edu/blog/2021/04/19/mbrl/.
- [37] R. Rajan, **A. Biedenkapp**, T. F. Runge, and J. Franke. "AutoRL: AutoML in the Realm of Deep Reinforcement Learning". In: https://www.automl.org/automl-blog (Apr. 2021). URL: https://www.automl.org/blog-autorl.
- [38] A. Biedenkapp. "Learning Step-Size Adaptation in CMA-ES". In: https://www.automl.org/automl-blog (Aug. 2020). URL: https://www.automl.org/learning-step-size-adaptation-in-cma-es.
- [39] **A. Biedenkapp**. "Dynamic Algorithm Configuration". In: https://www.automl.org/automl-blog (Feb. 2020). URL: https://www.automl.org/dynamic-algorithm-configuration.
- [40] **A. Biedenkapp** and F. Hutter. "BOHB". In: https://www.automl.org/automl-blog (Aug. 2018). URL: https://www.automl.org/blog_bohb.
- [41] **A. Biedenkapp**, K. Eggensperger, M. Feurer, and F. Hutter. "2nd AutoML Challenge". In: https://www.automl.org/automl-blog (Aug. 2018). URL: https://www.automl.org/blog-2nd-automl-challenge.

Patents

- [42] A. Biedenkapp, G. Shala, S. Adriaensen, N. Awad, M. Lindauer, and F. Hutter. "Method and Device for Learning a Strategy and for Implementing the Strategy". U.S. pat. req. 17/305,586. Robert Bosch GmbH. July 9, 2021. Filed.
- [43] S. Müller, A. Biedenkapp, and F. Hutter. "Verbesserte Vorrichtung zum Anlernen von maschinellen Lernsysteme für Bildverarbeitung". German pat. DE202021100225. Robert Bosch GmbH. Feb. 12, 2021. URL: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE202021100225U1.
- [44] D. Speck, **A. Biedenkapp**, R. Matmüller, F. Hutter, and M. Lindauer. "Device and Method for Planning and Operation of a Technical System". U.S. pat. req. 17/242,790. Robert Bosch GmbH. Apr. 28, 2021. Filed.
- [45] D. Speck, **A. Biedenkapp**, R. Matmüller, F. Hutter, and M. Lindauer. "Device and Method for Planning and Operation of a Technical System". European pat. req. EP20178576.3 1203. Robert Bosch GmbH. *Also filed requests for US patent and CN patent*. June 1, 2020. URL: http://v3.espacenet.com/textdoc?IDX=EP3920103. Filed.
- [46] **A. Biedenkapp**, H. F. Bozkurt, F. Hutter, and M. Lindauer. "Method, Device and Computer Program for Adjusting a Hyperparameter". European pat. req. EP3748551. Robert Bosch GmbH. June 11, 2020. URL: http://v3.espacenet.com/textdoc?IDX=EP3748551. Filed.

Presentations

resentations	
Invited Talks & Competitively-Selected Tutorials	
Meta-Algorithmics & AutoML	
Invited Lecture (part of CS5011), University of St. Andrews, Scotland (online)	04.2023
Learning to Dynamically Optimise Algorithms	
Seminar on Advances in Probabilistic Machine Learning, Aalto University Helsinki, Finland (online	e) 11.2022
Dynamic Algorithm Configuration	
ELLIS Meetup Freiburg, Freiburg, Germany	03.2022
Advances of Dynamic Algorithm Configuration	
Bosch Center for Artificial Intelligence, Renningen, Germany	06.2021
Algorithm Configuration: Challenges, Methods and Perspectives	
IJCAI 2020 Tutorial	01.2021
Jointly with Prof. Marius Lindauer	
Algorithm Configuration: Challenges, Methods and Perspectives	
PPSN 2020 Tutorial	09.2020
Jointly with Prof. Marius Lindauer	
Challenges of Dynamic Algorithm Configuration Bosch Center for Artificial Intelligence, Renningen, Germany	03.2020
	03.2020
Dynamic Algorithm Configuration Institut für Informationsverarbeitung (TNT), University of Hannover	01.2020
	01.2020
Conference Presentations.	
The Genetic and Evolutionary Computation Conference	Online
GECCO (Oral, Joint video presentation with all authors)	07.2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration	0 "
International Conference on Machine Learning ICML (Poster)	Online 07.2021
TempoRL: Learning When to Act	01.2021

International Conference on Parallel Problem Solving from Nature Leiden PPSN (Poster), Netherlands 08.2020 Learning Step-SizeAdaptation in CMA-ES **European Conference on Artificial Intelligence** Santiago de Compostela ECAI (Oral), Spain 08.2020 Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework Learning and Intelligent OptimizatioN Conference Kalamata 06.2018 LION (Oral), Greece CAVE: Configuration Assessment, Visualization and Evaluation **AAAI Conference on Artificial Intelligence** San Francisco AAAI (Poster), California, USA 02.2017 Efficient Parameter Importance Analysis via Ablation with Surrogates Workshop Presentations..... Bridging the Gap Between Al Planning and Reinforcement Learning Online PRL@ICAPS'22 06.2022 Learning Domain-Independent Policies for Open List Selection Inductive Biases, Invariances and Generalization in Reinforcement Learning Online BIG@ICML'20 07.2020 Towards TempoRL: Learning When to Act **Data Science Meets Optimisation** Macau DSO@IJCAI'19, Macau (SAR), China 08.2019 Towards White-box Benchmarks for Algorithm Control

Scholarships, Honors and Awards

Best Paper Award

GECCO'22, Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration 2022
GECH Track

Best Reviewers (Top 10%)

ICML'21 2021

Black-Box Optimization Competiton@NeurIPS'20

1st place

Part of the AutoML & IOHprofiler Team, 1st place on a meta-learning friendly search space Leaderboard: https://bbochallenge.com/altleaderboard

2020

Dlask Day Outiniastian Cannatitan@NavelDC!20

Black-Box Optimization Competiton@NeurIPS'20

3rd place*

Part of the AutoML & IOHprofiler Team, Leaderboard: https://bbochallenge.com/leaderboard 2020
*Due to a bug the initial evaluation failed. After re-evaluation our team would have gotten the third place.

Professional Service

Organizer AutoML Conference - Online Experience Chair

2023, Jointly with Hayeon Lee, Mohammed Abdelfattah & Richard Song

COSEAL Chair

since August 2022, Jointly with Alexander Tornede and Lennart Schäpermeier

2nd AutoML Fall School

2022, Co-Organiser

ELLIS Unit Meetups Freiburg

since July 2022, Co-Organiser with Simon Ging

Journal Reviewing....

Journal of Artificial Intelligence Research

JAIR

2022

IEEE Transactions on Evolutionary Computation

TEVC

2022

Computational Intelligence

CI

2022

Journal of the Association for Computing Machinery

Journal of the ACM

2022, 2021

Program Committee Membership at Conferences

AAAI

2018

AutoML Conference

AutoML

2023, 2022

European Conference on Artificial Intelligence

AAAI Conference on Artificial Intelligence

ECAI

2020

European Workshop on Reinforcement Learning

EWRL

2022

International Conference on Machine Learning

ICML

2023, 2021, 2019

Neural Information Processing Systems

NeurIPS

2022, 2021

NeurIPS Datasets and Benchmarks

NeurIPS DBT

2021 (Track 1 & Track 2)

Program Committee Membership at Workshops.....

ALOE

ICLR Workshop on Agent Learning in Open-Endedness 2022

ICML Workshop on Automated Machine Learning

AutoML@ICML

2021, 2020, 2019, 2018

NeurIPS Workshop on Meta-Learning

2019

MetaLearn@NeurIPS

Programming Skills

Excellent: Python, Bash, LATEX

Good: C, C#, C++, Julia

Basic: Matlab, Java

Selected Open-Source Projects

GitHub Page: https://github.com/AndreBiedenkapp

https://github.com/automl/DAC

DAC

Role: Developer

DAC is the first dynamic algorithm configurator which enables configuration not only to specific problem instances but also at each time-step. To gain insights into the strengths and weaknesses of this reinforcement learning based configurator DAC comes with example white-box benchmarks.

https://qithub.com/automl/DACBench

DACBench

Role: Contributor

DACBench is a benchmark library for Dynamic Algorithm Configuration. Its focus is on reproducibility and comparability of different DAC methods as well as easy analysis of the optimization process.

https://github.com/automl/ParameterImportance

PyImp

Role: Developer

PyImp is an easy to use tool that helps developers to identify the most important parameters of their algorithms. Given the data of a configuration run with SMAC3, PyImp allows for usage of various parameter importance methods to determine which parameters have the most influence on the algorithms behaviour.

https://github.com/automl/SMAC3

SMAC3

Former Role: Contributor

Python implementation of SMAC (sequential model-based algorithm configuration). SMAC is a tool for automated algorithm configuration.

Languages

Native: German Fluent: English Basic: French