Fonte: Tanenbaum cap 1

Introdução

- Evolução dos SOs
- Tipos de Sistemas Operacionais
- Características dos sistemas operacionais

1^a Geração (+- 1945 – 1955)

- Primeiros computadores: válvulas
 - ENIAC (Eletronic Numerical Integrator and Computer)
 - cálculos balísticos
 - EDVAC (Electronic Discrete Variable Automatic Computer)
 - Uso: universidades e órgãos militares

1ª Geração

- Usuário é o programador e o operador da máquina
- SOs não existiam
 - Programador interagia diretamente com o HW
- Processamento serial 1 usuário e 1 programa por vez
 - Uso do computador precisava ser agendado (planilhas)
 - Tempo de configuração: carregar compilador, código fonte, ...
- Definição de categorias de programas similares (filas de jobs) = processamento em lote (batch)
 - Operador manipulava o HW p/ executar os jobs, controlava a atribuição do HW e o andamento dos jobs

2ª Geração (+- 1956 – 1965)

- Criação dos Transistores
 - Velocidade de processamento
- Criação das memórias magnéticas
 - Acesso mais rápido
- Primeiras LPs
 - Assembly e Fortran
- Cartão perfurado

2ª Geração

- Processamento em lote (batch)
 - Evolução → automatizar o andamento dos lotes de Jobs
 - Monitor residente
 - Interpretador de JCL
 - 1º "SO"
 - Sequenciamento automático de Jobs

JCL (Job Control Language)

- Proteção de memória
- Temporização
- Instruções privilegiadas
- Interrupções

3ª Geração (+- 1966 – 1980)

- Circuitos integrados (CIs)
 - Menor custo e dimensão
 - Desempenho
- Surgimento do SO Unix (em C)
- Sequenciamento automático de Jobs
 - Execução de apenas um job por vez!
 - Ideia: reduzir o desperdício de CPU devido ao I/O
 - Multiprogramação

Multiprogramação (1)

fitas magnéticas → discos

job queue job scheduling mecanismo de interrupção

multiprogramação

Multiprogramação (2)

- Objetivo: maximizar o uso da CPU
 - Sistema multiprogramado: Aproveita desperdício de tempo de CPU com operações de E/S
- Memória é particionada e vários jobs são carregados ao mesmo tempo

Sistema time-sharing

- Multiprogramação → time-sharing
- Usuário com ilusão de possuir máquina dedicada
 - Divisão do tempo de processamento entre os usuários (MUX do tempo de CPU)
 - Alternância
 - Time slice
 - Tempo de resposta é importante

4ª Geração (+- 1981 - 1990)

- Aperfeiçoamento dos CIs (LSI, VLSI, ...)
- Microcomputadores (PCs): família Intel
- Microsoft e DOS (Disk Operating System)
- Estações de trabalho (monousuárias)
 - Multitarefa
- Multiprocessadores
- SO de rede e distribuídos

5^a Geração (+- 1995(?) - ...)

- Arquitetura cliente-servidor
- Processamento distribuído
 - Multiprocessadores n\u00e3o convencionais
- Linguagem natural
- Segurança, gerência e desempenho do SO e da rede
- Consolidação dos sistemas de interfaces gráficas
 - Interação com usuários mais flexível

Data-centers/ cloud

5^a - 6^a Geração: ??

Sistemas embarcados, vestíveis, implantados, interconectados

Car Computer

Data Centers

watch Computer

Table Computing

Wearable Comp.

Embedded Computing

Tipos de sistemas operacionais

Mono x Multiprogramação

Sistema Monoprogramável/Monotarefa (1)

- Execução exclusiva de um único programa por vez
 - recursos dedicados
 - Execução sequencial
 - subutilização (memória, CPU, dispositivos de E/S)
 - CPU ociosa custo!

Sistema Monoprogramável/Monotarefa (2)

- Baixa complexidade de implementação
 - Não exige proteção de memória (apenas separa SO e usr)

Sistema Multiprogramável/Multitarefa (1)

- Objetivo: manter mais de um programa em execução "simultaneamente"
 - ilusão de que cada programa possui uma máquina dedicada

Sistema Multiprogramável/Multitarefa (2)

- Ideia: aproveitar o tempo ocioso da CPU durante a E/S
 - Maximização do uso do processador e da memória
 - Maior taxa de utilização do sistema como um todo
- Compartilhamento de recursos acesso concorrente
- Exige:
 - proteção de memória
 - mecanismo de interrupção

Sistema Multiprogramável/Multitarefa (3)

Vários programas competindo pelos recursos do sistema

Sistema Multiprogramável/Multitarefa (4)

Sistemas multiprogramáveis/multitarefa: gerência das aplicações

Sistemas em Batch

- Processamento em lote
 - Execução sequencial de jobs
- Sem interação com o usuário

Sistemas de Tempo Compartilhado

- Time slice
- Escalonamento + multiprogramação
- Modelos preemptivos e colaborativos

Sistemas de Tempo Real

- Restrições temporais
 - Sem time slice
 - Aplicações controlam o tempo de uso
- Hard real time x soft real time

Sistemas com Múltiplos Processadores (1)

- Sistemas com mais de uma CPU interligada
- Execução simultânea de programas
- Supre a dificuldade no desenvolvimento de processadores mais rápidos
- Ideal para sistemas que necessitam uso intensivo de CPU (CPU-bound)
 - ex. processamento científico

Sistemas com Múltiplos Processadores: características (2)

Escalabilidade aumento da capacidade computacional

Tolerância a falhas aumento da disponibilidade Balanceamento distribuição de carga

Sistemas com Múltiplos Processadores: classificação (3)

- Classificação em função:
 - da forma de comunicação entre CPUs
 - do grau de compartilhamento de memória e E/S

Sistemas fortemente acoplados x fracamente acoplados

Sistemas fortemente acoplados (tightly coupled) (1)

2 ou mais processadores compartilhando memória

- controle: um único SO
- usados em sistemas CPU-bound para processamento de solução de um único problema

Sistemas fortemente acoplados (tightly coupled) (2)

- bom desempenho
 - execução de tarefas em paralelo
- custo
 - compartilhamento vantagens e desvantagens
- Processadores podem ou n\u00e3o executar as mesmas tarefas
 - Assimétrico
 - Modelo master-slave
 - Cada processador recebe uma tarefa específica
 - Simétrico
 - Cada processador roda cópia idêntica do SO
 - Balanceamento de carga
 - Implementação mais complexa

Sistemas fracamente acoplados (*loosely coupled*) (1)

- 2 ou mais sistemas de computação conectados por linhas de comunicação
 - sistemas independentes, sem compartilhamento de memória ou clock

- comunicação: troca de mensagens
- agrega confiabilidade (redundância, autonomia)

Sistemas fracamente acoplados (*loosely coupled*) (2)

- acelera a computação
 - "subcomputações" podem rodar concorrentemente
 - sobrecarga de jobs → balanceamento de carga
- Processamento distribuído
 - SO de rede
 - usuários <u>conhecem</u> a localização dos recursos que estão utilizando; acessam máquinas remotas
 - cada máquina roda o seu próprio SO local
 - SO distribuído
 - usuários <u>não sabem</u> onde os seus programas estão executando, nem onde seus arquivos estão localizados
 - tudo é gerenciado pelo SO

Tipos de sistemas operacionais e suas características (1)

- Batch
 - Execução de tarefas sequenciais
- De rede
 - Acesso recursos em outros computadores
- Distribuído
 - Acesso transparente a recursos
- Multiusuário
 - Cada recurso possui um dono e regras de acesso
- Servidor
 - Gerência eficiente de recursos

Tipos de sistemas operacionais e suas características (2)

Desktop

GUI e suporte à interatividade

Móvel

Gestão de energia, conectividade e interação com sensores

Embarcado

 restrições quanto ao espaço de memória e consumo de energia

Tempo real

 restrições temporais; classificados como soft ou hard realtime