MATH 102: IDEAS OF MATH

WORKSHEET 4

1. Modular Arithmetic

Question 1. What is congruent modulo? Discuss about ways of representing this concept?

Question 2. Let a, b, c, d and m be integers so that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Prove that

- $(1) \ a + c \equiv b + d(\mod m)$
- (2) $a + c \equiv b + d \pmod{m}$
- (3) $a \cdot c \equiv b \cdot d \pmod{m}$

Question 3. Give definition of prime and composite numbers.

Question 4. Let a,b,c be integers and p be a prime number. Prove the following

- (1) If $p \nmid a$, then gcd(p, a) = 1
- (2) If $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$
- (3) If $p \mid bc$, then $p \mid b$ or $p \mid c$

Question 5 (Modular cancellation law). Let a, b, k and m be integers. Prove that if $ak \equiv bk \pmod{m}$ and $\gcd(k, m) = 1$, then

$$a \equiv b \pmod{m}$$
.

Question 6. Discuss about Fermat's little theorem:

If a is an integer and p is a prime so that $p \nmid a$. Then,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Date: September 10, 2024.