Using, Choosing and Abusing Transistors

Ray Crampton, Feb 2019

WARNING WARNING WARNING WARNING

Rules of thumb, assumptions and mixed-quality analogies to come!

BAD ANALOGIES

JUST BECAUSE ONE ARGUMENT RESEMBLES ANOTHER, DOESN'T MEAN THAT CATS CAN FLY IN SPACE.

Common Types of Transistors

BJT – Base/Emitter/Collector FETs – Gate/Drain/Source

Control Terminal

Transistor as a Switch Plumbing Analogy

Falstad.com simulation of NPN Switch

 $\mathsf{led} + 10 + 0 + 0.01\%0 \Delta w + 528 + 304 + 528 + 400 + 0\%0 \Delta w + 528 + 400 + 400 + 400 + 400 + 400 + 384 + 400 + 288 + 0 + 2 + 100 + 2.5 + 2.5 + 0 + 0.5\%0 \Delta t + 496 + 288 + 528 + 288 + 0 + 1 + -4.998025122489524 + 3.4649934824506973e + 10 + 100\%0 \Delta v + 416 + 288 + 480 + 288 + 480 + 288 + 480 + 288 + 480 + 288 + 496 + 288 + 496 + 288 + 496 + 288 + 400$

BJT: PNP vs NPN

"High Side" vs "Low Side"

http://falstad.com/circuit/circuitjs.html?cct=\$+1+0.000005+3.9121283998153213+59+5+43%0Aw+176+128+176+112+0%0Aw+64+112+176+112+0%0Aw+48+416+48+432+0%0Aw+48+432+0%0Aw+48+448+432+0%0Aw+48+448+448+48+464+0%0A368+64+112+64+80+0+0%0Aw+-64+432+48+432+0%0Aw+-64+112+64

64+112+0+0+40+5+0+0+0.5%0Aw+176+272+176+304+0%0Aw+176+192+176+208+0%0Ar+176+128+176+192+0+1000%0A162+176+208+176+272+2+default-

160+1-0+0-0.1%0AW+176+336+176+432+0-0.0AW+176+322+48+4322+0-0.0AW+176+322+48+4322+0-0.0AW+176+322+48+320+0-1.5 10+100%0Ar+64+320+128+320+0+3300%0AW+128+320+144+320+0%0AW+64+320+0%0AW+496+176+512+176+0%0Ar+4324-176+0+3300%0Av+416+416+416+416+420+2+100+2.5+2.5+3.141592653589793+0 5%0AW+544+432+0%0AW+544+384+544+432+0%0AW+544+384+544+432+0%0A162+544+320+544+384+2+064ault-1

ed+1+0+0+0+0.01%0Ar+544+224+544+288+0+1000%0Aw+544+192+544+208+0%0Av+304+432+304+112+0+0+40+5+0+0+0.5%0Aw+304+112+432+112+0%0Aw+304+432+116+432+0%0A0+6432+112+432+0%0A368+384+176+324+10+0%0Aw+416+16+176+384+176+324+10+0+0%0Aw+416+176+324+10+0+0%0Aw+416+176+34+128+544+112+0%0Aw+544+128+0%0Aw+544+284+176+0%0Aw+544+128+544+112+0%0Aw+544+16+176+324+176+0%0Aw+544+16+176+324+176+0%0Aw+544+16+176+324+176+0%0Aw+544+16+176+324+176+0%0Aw+544+16+176+324+176+0%0Aw+544+16+176+324+176+0%0Aw+544+176+0%0Aw+544+176+0%0Aw+544+176+0%0Aw+544+176+0%0Aw+544+176+0%0Aw+544+176+0%0Aw+544+176+176+0%0Aw+544+17

Complementary Bipolar

http://falstad.com/circuit/circuitjs.html?cct=\$+1+0.000005+3.9121283998153213+59+5+43%0At+224+320+272+320+0+1+0.5705218733467872+0.6402159636357576+100%0Ar+160+320+224+320+0+1000%0Aw+224+208+240+208+0%0Ar+160+208+224+208+0+10000%0Ar+384+272+384+336+0+1000%0Aw+272+224+272+240+0%0A368+64+256+64+224+0+0%0At+240+208+272+208+0+-144.930305908661726+-1.0493037549963447e-

9+10000%0Aw+272+240+272+20%0AR+272+192+272+144+00+40+5+0+0+0.5%0Aw+272+272+304+0%0Aw+272+272+384+272+0%0Ar+384+192+384+272+0+1000%0AR+384+192+384+144+0+0+40+5+0+0+0.5%0Ag+384+336+384+368+0%0Aw+160+208+128+208+0%0Aw+128+208+128+272+0%0Aw+128+272+128+320+0%0Aw+160+320+128+320+0%0AR+64+272+0+27

BJT Motor or LED Driver Example

BJT Photodiode Example

BJT Speaker Driver Example

BJT Relay Example

Common Bipolar Pinouts

Typical Breadboard Application

Key Bipolar Transistor Specs

OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage (Note 2) ($I_C = 1.0 \text{ mAdc}$, $I_B = 0$)	V _{(BR)CEO}	40	1	Vdc

Collector-emitter Breakdown Voltage

Maximum operating C-E should be 20-50% lower

Collector Current - Continuous	I _C	200	mAdc

Maximum continuous collector current

You should be below this with some margin ~20%

SMALL-SIGNAL CHARACTERISTICS			
Current – Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz) 2N3903 2N3904	250 300	-	MHz

- f_T frequency at which gain falls to 1
- Should be > 100x your operating frequency
- Avoid super high frequency transistors (1GHz!)

W. Shockley 1947 Nobel Prize 1956

BJT vs FET as a Switch

J. E. Lilienfeld 1925

Current Controlled

Voltage Controlled

FET vs BJT in Operation

led+1+0+0+0.01%0Ar+208+112+208+176+0+1000%0Aw+208+240+208+272+0%0Ag+80+384+80+400+0%0A368+80+272+80+240+0+0%0Aw+80+272+80+288+0%0Aw+320+272+320+288+0%0A368+320+272+320+240+0+0%0Ag+320+384+320+400+0%0Aw+448+240+448+272+0%0Ar+448+112+448+176+0+1000%0A162+448+176+448+240+2+default-

led+1+0+0+0.01%0Aw+448+304+448+384+0%0Av+320+384+320+288+0+2+100+2.5+2.5+0+0.5%0At+416+288+448+288+0+1+-4.999808758737633+1.049998087170923e-9+100%0Ar+336+288+400+288+0+10+0.00%0Aw+400+288+416+288+0%0Aw+336+288+320+288+0%0AR+448+112+448+64+0+0+40+5+0+0+0.5%0Ag+448+384+448+400+0%0Aw+208+304+208+384+0%0Ag+208+384+208+400+0%0AR+208+112+208+64+0+0+0+0+0+5+0+0+0.5%0Af+160+288+208+288+32+1.5+1%0A

MOSFETs: NMOS vs PMOS

CMOS Output

MOSFET Examples

FET Example

Key MOSFET Specs

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage	($V_{GS} = 0$, $I_D = 10 \mu Adc$)	V _{(BR)DSS}	60	-	Vdc

Drain-Source Breakdown Voltage

Maximum operating D-S should be 20-50% lower

ON CHARACTERISTICS (Note 1)					
Gate Threshold Voltage	$(V_{DS} = V_{GS}, I_D = 1.0 \text{ mAdc})$	V _{GS(th)}	0.8	3.0	Vdc

Gate threshold voltage

You should be well above/below this

Static Drain-Source On-Resistance	(V _{GS} = 10 Vdc, I _D = 0.5 Adc) (V _{GS} = 4.5 Vdc, I _D = 75 mAdc)	r _{DS(on)}	1 1	5.0 6.0	Ω
Drain-Source On-Voltage	$(V_{GS} = 10 \text{ Vdc}, I_D = 0.5 \text{ Adc})$ $(V_{GS} = 4.5 \text{ Vdc}, I_D = 75 \text{ mAdc})$	V _{DS(on)}	1 1	2.5 0.45	Vdc

On-Voltage

Should be low enough

MOSFET Schematic Symbols

- There are many, many variations on these
- FETs of the same type (P vs N) behave similar to each other
- Be aware but don't fret over it too much

"Common Emitter/Source" Inverts

Same on the High Side

led+1+0+0+0.01%0Ar+36+432+336+432+236*432+2+0.02%0Ag*432+312+432*344+0%0A1+432*446*432*312+0+1000%0A162*432+306*432*446+2+0elault led+1+0+0+0.01%0AR+432+336+432+240+0+0+40+5+0+0+0.5%0AR+592+352+592+256+0+0+40+5+0+0.5%0A162+592+384+592+464+2+defaultled+1+0+0+0.01%0Ar+592+464+592+528+0+1000%0Ag+592+528+592+560+0%0Af+544+368+592+368+33+1.5+0.02%0Aw+544+368+432+368+0%0A

Transistors as Amplifiers

A More Accurate NPN Model

β (aka h_{fe}) is the "current gain" of the device

A Bad Common Emitter Amplifier

 $http://falstad.com/circuit/circuitjs.html?cct=\$+1+0.000005+16.13108636308289+60+15+53\%0Ar+208+272+272+272+0+75000\%0At+272+272+320+272+0+1+-\\18.713788175122275+0.528820044743417+100\%0Ag+320+288+320+320+000AR+320+160+320+112+0+0+0+0+0.5\%0Ar+320+160+320+256+0+10000\%0AR+208+272+160+272+0+1+80+1+1+0+0.5\%0AO+320+\\256+448+256+0\%0Ao+5+32+0+4614+3.999999999999999+0.0001+0+2+5+3\%0Ao+6+32+0+4614+19.99999997799996+0.0001+0+1\%0A$

A Bias Tee

A Mediocre CE Amplifier

0.6202998006592448%0At + 304 + 224 + 336 + 224 + 0 + 1 + 0.4226432803100168 + 0.6906075355751219 + 100%0Ar + 176 + 224 + 304 + 224 + 0 + 2300%0Ag + 336 + 240 + 336 + 272 + 0%0Ar + 336 + 128 + 128 + 336 + 128 + 336 + 128 + 336 + 128 + 336 + 128 + 336 + 128 + 128 + 336 + 128

Problems with this amplifier

Problems

- Gain will vary too much with β (h_{fe}) variation
- Linearity isn't very good
- Input dynamic range is poor
- Circuit needs fine-tuning per transistor used

Emitter Resistor

- Gain ~= -Rc/Re
- Improved distortion
- Improved dynamic range
- Less sensitive to individual transistor characteristics

Example circuits

Example circuits

A more accurate FET model

FETs vs BJTs – Which is best?

Questionable generalizations!	Bipolar (BJT)	FET (MOSFET)
Speed	×	⊘
Gate/base current	×	\bigcirc
On-state voltage drop	\bigcirc	×
Low voltage circuits, esp when controlling high current	\bigcirc	×
Ease of selection/application	(?)	(?) 🔀

Practical guidance/tendencies:

- Low power, low voltage -> bipolar
- High current -> FET
- High efficiency switching supplies -> FET

Go-to Transistors

Bipolar – the workhorse for enthusiasts

- 2N3904 NPN, 40V, 200mA, 300MHz f_T
- 2N3906 PNP, -40V. 200mA, 250MHz f_T
- TIP120 NPN, 60V, 5A

MOSFETs

- Probably don't want to stock FETs
- Wanna play? 2N7000, 2N7002 NMOS