Maximum Submatrix Problem

Project 1 Report
Fundamental of Data Structure (2023 Fall)
Zhejiang University BY

Baolin Zhu

Student ID: 3220106026 Teacher: HongHua Gan

Accomplished on October 3, 2023

 $\begin{array}{c} {\rm Made} \\ {\rm With} \ {\rm L\!\!\!\!/} {\rm T}_{\rm \!\!\!\!E} {\rm \!\!\!\!\!X} \end{array}$

Contents

1	Intr	roduction	3
	1.1	Problem Description	3
	1.2	Problem Background	3
2	Alg	gorithm Specfication	4
	2.1	The Matrix Data Structure	4
	2.2	The First Algorithm	4
	2.3	The Second Algorithm	5
	2.4	The Third Algorithm	6
	2.5	Sketch of the Main Program	7
3	Tes	ting Results	8
	3.1	Test Data Generation	8
	3.2	Testing Environment	8
	3.3	Testing Results	8
4	Ana	alysis and Comments	9
	4.1	Time Complexity	9
		4.1.1 Line Chart of the Duration	9
		4.1.2 The First Algorithm	9
		4.1.3 The Second Algorithm	10
		4.1.4 The Third Algorithm	10
		4.1.5 Conclusion	10
	4.2	Space Complexity	10
A	Sou	arce Code	11
В	Use	er Manual	12
	B.1	Makefile	12
	B.2	Driver Program	12
\mathbf{C}	Rav	w Test Results	13
D	Dec	claration 1	16

Introduction

1.1 Problem Description

The Maximum Submatrix Sum Problem is a well-known problem in computer science and mathematics. It can be formally defined as follows: given an $N \times M$ matrix A, we want to find the submatrix B of maximal sum, where B is a contiguous rectangular subarray of A.

More specifically, we want to find i_1, i_2, j_1, j_2 such that $1 \le i_1 \le i_2 \le N$ and $1 \le j_1 \le j_2 \le M$, and the sum of the elements in the submatrix B defined by rows i_1 through i_2 and columns j_1 through j_2 is maximized. In other words, we seek to maximize the quantity

$$\sum_{i=i_1}^{i_2} \sum_{j=j_1}^{j_2} A_{ij}$$

where A_{ij} denotes the element in row i and column j of the matrix A.

1.2 Problem Background

The Maximum Submatrix Sum Problem is closely related to the Maximum Subsequence Sum Problem we learned from class, but with some key differences. In the Maximum Subsequence Sum Problem, we are given a sequence of numbers and we want to find a subsequence with the maximum sum. This problem can be efficiently solved using dynamic programming algorithms, such as Kadane's algorithm.

While Kadane's algorithm is not directly applicable to the Maximum Submatrix Sum Problem due to the added dimensionality, it serves as an inspiration. Various approaches and algorithms have been developed to tackle this problem efficiently. One common approach is to transform the two-dimensional problem into a one-dimensional problem by fixing one dimension and applying the maximum subsequence sum algorithm. This technique, known as the "2D Kadane's algorithm" or "2D prefix sum", can help identify the boundaries of the optimal submatrix.

Algorithm Specification

This chapter gives description of all the algorithms used for solving the problem with specifications of main data structures.

2.1 The Matrix Data Structure

The Matrix structure is simply a wrapper around an array of integers. It contains the numbers of rows and columns of the matrix, as well as a pointer to the array. I wrapped them in a structure for the convience of passing them around as function arguments. It also simplifies the memory management, input and output.

Here is the API of the Matrix structure:

Table	2.1:	API	of	the	Matrix	structure

Type Name		Arguments	Description
Matrix*	CreateMatrix	(int rows, int cols)	Create a matrix object
Matrix*	ReadMatrix	(Matrix *m, File *fp)	Read matrix elements
void	PrintMatrix	(Matrix *m, File *fp)	Print matrix elements
void	Free Matrix	(Matrix *m)	Free matrix object
Matrix*	CopyMatrix	(Matrix *m)	Copy matrix object
Matrix*	MaxSubmatrix	(Matrix *m)	Find the maximum submatrix

2.2 The First Algorithm

This is the most straightforward algorithm. It simply tries all possible pairs of rows and columns and computes the sum of the submatrix. It's pseudo-code is displayed on the next page.

One thing need to be careful is that this algorithm (and the following two algorithms) only works when there is at least one positive integer in the matrix. This is because we initialize maxSum to 0, for there is no negative infinity in C and we don't want to use INT_MIN because it's not portable and can cause overflow. The driver program will check if there is at least one positive integer in the matrix before calling the algorithm.

Algorithm 1: The First Algorithm

```
Input: A matrix A of size N \times M
    Output: The maximum submatrix B
 1 maxSum \leftarrow 0
 2 for Left \leftarrow 0 to M-1 do
        for Right \leftarrow maxLeft to M-1 do
 3
            \mathbf{for}\ Top \leftarrow 0\ \mathbf{to}\ N-1\ \mathbf{do}
 4
                 for Bottom \leftarrow maxTop \text{ to } N-1 \text{ do}
 5
 6
                      sum \leftarrow 0
                      for i \leftarrow maxTop \text{ to } maxBottom \text{ do}
 7
                          for j \leftarrow maxLeft to maxRight do
 8
                                                                                                           /* The main task */
                              sum \leftarrow sum + A_{ij}
 9
                          end
10
                     end
11
                     if sum > maxSum then
12
                          maxSum \leftarrow sum
13
                          maxLeft \leftarrow Left
14
15
                          maxRight \leftarrow Right
                          maxTop \leftarrow Top
16
                          maxBottom \leftarrow Bottom
17
                     end
                 \quad \text{end} \quad
19
            end
20
        \mathbf{end}
\mathbf{21}
22 end
23 Create and return the submatrix B
```

2.3 The Second Algorithm

We can improve the algorithm to avoid redundant computation. For example, when the right bound of the submatrix increases, we would like to reuse the sum of the left part of the submatrix.

In this algorithm, we use an temp array to store the sum of each row of the submatrix. The maximum submatrix is then between the maximum subarray of the temp array. As illustrated in Figure 2.1:

Figure 2.1: Illustration of the second algorithm

Algorithm 2: The Second Algorithm

```
Input: A matrix A of size N \times M
   Output: The maximum submatrix B
 1 maxSum \leftarrow 0
 2 Create an array temp of size N
 з for left \leftarrow 0 to M-1 do
        Clean the array temp
 4
        for right \leftarrow left to M-1 do
 5
 6
           for i \leftarrow 0 to N-1 do
            temp[i] \leftarrow temp[i] + A_{i,right}
                                                                                            /* Append new column */
 7
           \quad \text{end} \quad
 8
           for i \leftarrow 0 to N-1 do
 9
               sum \leftarrow 0
10
               for j \leftarrow i to N-1 do
11
                    sum \leftarrow sum + temp[j]
                                                                                                  /* The main task */
12
                    if sum > maxSum then
13
                        maxSum \leftarrow sum
14
                        maxLeft \leftarrow left
15
                        maxRight \leftarrow right
16
17
                        maxTop \leftarrow i
                        maxBottom \leftarrow j
18
                    end
19
               end
20
           end
21
       \mathbf{end}
\mathbf{22}
23 end
24 Create and return the submatrix B
```

2.4 The Third Algorithm

Noticing that the main task of the second algorithm is to find maximum subarray of the temp array, we can use the Kadane's algorithm to improve that part of the algorithm from $O(N^2)$ to O(N).

Algorithm 3: The Third Algorithm

```
Input: A matrix A of size N \times M
   Output: The maximum submatrix B
 1 maxSum \leftarrow 0
 2 Create an array temp of size N
 з for left \leftarrow 0 to M-1 do
        Clean the array temp
 4
        for right \leftarrow left to M-1 do
 5
 6
            for i \leftarrow 0 to N-1 do
               temp[i] \leftarrow temp[i] + A_{i,right}
 7
            \quad \mathbf{end} \quad
 8
            sum \leftarrow 0
 9
            top \leftarrow 0
10
            for i \leftarrow 0 to N-1 do
11
                 sum \leftarrow sum + temp[i]
                                                                                                /* Kadane's algorithm */
12
                if sum > maxSum then
13
                     maxSum \leftarrow sum
14
                     maxTop \leftarrow top
15
                     maxBottom \leftarrow i
16
17
                     maxLeft \leftarrow left
                     maxRight \leftarrow right
18
                 end
19
                if sum < 0 then
20
                     sum \leftarrow 0
21
                     top \leftarrow i+1
22
                end
23
\mathbf{24}
            \mathbf{end}
        \quad \text{end} \quad
25
26 end
27 Create and return the submatrix B
```

2.5 Sketch of the Main Program

The algorithm is just a library, so I wrote a driver program to run the algorithm and generate the report. It will run the algorithm at least once and stop when the total time is greater than 5 seconds.

Testing Results

3.1 Test Data Generation

I use rand() to generate random integers in the range [-100, 100] for elements of the matrix. The size of the matrix is specified by the teacher. For each size of the matrix, I generate five pieces of test data.

One thing to note is that there must be at least one positive integer in the matrix. The minimum size of our test data is 5×5 , and the probability of having a test case with no positive integer is $0.5^{25} \approx 2.3 \times 10^{-8}$. So we can safely ignore this case. The driver program will also check if there is at least one positive integer in the input data. If not, it will exit automatically.

3.2 Testing Environment

The program is compiled with clang 15 with target arm64-apple and -03 flag on macOS Ventura. The CPU is Apple M2.

3.3 Testing Results

The test results here is the average value of five pieces of each group of test data, so some statistics such as ticks may not be integers. But this makes the results unaffected by the randomness of the test data. Raw test result is appended to the Appendix C.

Here is the summary of the results:

	N	5	10	30	50	80	100
	Iterations(K)	4036481	199315.8	639.4	40.8	3.8	1
$O(N^6)$	Ticks	5000000	5000012	5004622.6	5032313	6279354.8	5536404.6
Version	Total Time(sec)	5	5.000012	5.0046226	5.032313	6.2793548	5.5364046
	Duration(sec)	1.24E-06	2.51E-05	7.83E-03	1.23E-01	1.65E+00	5.54E+00
	Iterations(K)	9876757.4	1487648.8	23522	3176.6	495.8	205.8
$O(N^4)$	Ticks	5000000.2	5000001.2	5000104	5000746.6	5006156	5010396.8
Version	Total Time(sec)	5.0000002	5.0000012	5.000104	5.0007466	5.006156	5.0103968
	Duration(sec)	5.06E-07	3.36E-06	2.13E-04	1.57E-03	1.01E-02	2.43E-02
	Iterations(K)	12877442	5894159	360422.4	62393.4	13770.8	7240.2
$O(N^3)$	Ticks	5000000.2	5000000	5000009.6	5000026.8	5000121.8	5000343.2
Version	Total Time(sec)	5.0000002	5	5.0000096	5.0000268	5.0001218	5.0003432
	Duration(sec)	3.88E-07	8.48E-07	1.39E-05	8.01E-05	3.63E-04	6.91E-04

Table 3.1: Summary of the Results

From the table we can see: when N doubles, the duration of the first algorithm increases nearly 64 times¹, the duration of the second algorithm increases nearly 16 times and the duration of the third algorithm increases nearly 8 times. So we can guess that the time complexity of the first algorithm is $O(N^6)$, of the second algorithm is $O(N^4)$ and of the third algorithm is $O(N^3)$. In the next chapter, let's plot the data and proof if our guess is correct.

 $^{^{1}}$ Because the test data size is small, you may not see the polynomial growth in the first few groups of data. But when N gets larger, the polynomial growth becomes obvious.

Analysis and Comments

In this chapter, I will plot and proof the time and space complexity of the three algorithms.

4.1 Time Complexity

4.1.1 Line Chart of the Duration

As you can see, there is huge performance difference between the three when N is large. The line chart of the first algorithm increases so fast that the other two lines are almost horizontal. So I use a log scale for the y axis in the line chart below:

From the chart we can see that the time complexity of these algorithms are polynomial. Using Excel, I linearly fitted the data after taking the logarithm, and the results are displayed in the table below:

Algorithm	R^2	
1	$\log_{10} t = 0.066N - 5.1196$	0.8958
2	$\log_{10} t = 0.047N - 5.7965$	0.9022
3	$\log_{10} t = 0.0342N - 6.2408$	0.9364

Take care of the argument of N. They are related to the power exponent of the complexity polynomial. We can easily guess there are multiple relations between them. The arguments approximate the time complexity of the algorithms. This discovery convinced me that our guess is correct. Proof of the time complexity is in the following subsection.

4.1.2 The First Algorithm

As described in the Algorithm 1, the main task is to compute the sum of the submatrix. Line 9 is an O(1) statement buried inside six nested for loops. All the loop size could be N, we must assume the worst case. So the time complexity is $O(N^6)$.

4.1.3 The Second Algorithm

We used prefix sum to improve the first algorithm, so the main task is now find maximum subarray of the temp array. Line 12 of Algorithm 2 is the main task, and it's inside four nested for loops, each can be N. So the time complexity is $O(N^4)$.

4.1.4 The Third Algorithm

We used Kadane's algorithm to improve the second algorithm. Remember that we proved that the time complexity of Kadane's algorithm is O(N) in class. So the time complexity of the third algorithm is $O(N^3)$. See line 12 of Algorithm 3.

4.1.5 Conclusion

The analysis above proved that the time complexity of the first algorithm is $O(N^6)$, of the second algorithm is $O(N^4)$ and of the third algorithm is $O(N^3)$. $O(N^6) > O(N^4) > O(N^3)$, so the third algorithm is the fastest. We can see each algorithm is faster than the previous one because reusing the result of the previous step can save a lot of time. This is the main idea of dynamic programming.

4.2 Space Complexity

In Algorithm 1, we only need to store the maxSum, and the number of other variables don't change with the size of the matrix. So the space complexity is O(1).

When it comes to Algorithm 2, we need to store the temp array. The size of the array is N, so the space complexity is O(N). The same goes for Algorithm 3.

So conclusions are here: the space complexity of the first algorithm is O(1), of the second and the third algorithm is O(N). As illustrated in the chart below:

	Space Used by Algorithm 1	Constant
	Space Used by Algorithm 2 and 3	
A Matrix of s	ize N	

Appendix A

Source Code

The source code is in the code directory. I've commented the source code using Doxygen-style comments and generated the documentation file using Doxygen. Please refer to the documentation file documents/doxygen.pdf for detailed comments.

- 1. gen.c: Test data generator.
- 2. main.c: Driver program.
- 3. mss.h, mss.c: Implementation of the algorithms.

And here is the statistics of the source code above using cloc tool:

Language	files	blank	comment	code
C C/C++ Header	3 1	21 9	191 63	326 18
SUM:	4	30	254	344

42% of the source code is well documented with Doxygen-style comments. This satisfies the requirement of the project.

Appendix B

User Manual

B.1 Makefile

There are five targets in the code/Makefile:

- 1. all: Run the target clean, gen_data and run.
- 2. gen_data: For each of the size of N, generate five pieces of test data. The test data will be in data/directory.
- 3. mss: Compile the driver program.
- 4. run: Compile and run the program through the test data and generate the report. Difference between each algorithms' result will be displayed using diff3.
- 5. clean: Clean the generated files and data files.

B.2 Driver Program

The algorithm is just a library with no main() function. So I wrote a driver program to run the algorithm and generate the report.

The driver program is mss. It takes two or three arguments:

- 1. data_file: The file containing the matrix data.
- 2. algorithm: The algorithm to use. It can be 1, 2 or 3.
- 3. iteration: If not specified, it will run the algorithm at least once and stop when the total time is greater than 5 seconds.

Usage:

./mss data_file algorithm [iteration]

Appendix C

Raw Test Results

Table C.1: Raw Test Results

Begin of Table						
Datasize	Algorithm	Iteration	Ticks	Total Time	Duration	
100	1	1	5660987	5.660987	5.660987	
100	2	202	5018513	5.018513	0.024844	
100	3	7457	5000378	5.000378	0.000671	
100	1	1	5534567	5.534567	5.534567	
100	2	206	5005830	5.005830	0.024300	
100	3	6822	5000405	5.000405	0.000733	
100	1	1	5495957	5.495957	5.495957	
100	2	207	5006043	5.006043	0.024184	
100	3	8273	5000112	5.000112	0.000604	
100	1	1	5494865	5.494865	5.494865	
100	2	207	5013220	5.013220	0.024218	
100	3	6959	5000216	5.000216	0.000719	
100	1	1	5495647	5.495647	5.495647	
100	2	207	5008378	5.008378	0.024195	
100	3	6690	5000605	5.000605	0.000747	
10	1	199688	5000002	5.000002	0.000025	
10	2	1477115	5000000	5.000000	0.000003	
10	3	6144195	5000000	5.000000	0.000001	
10	1	199721	5000018	5.000018	0.000025	
10	2	1510290	5000001	5.000001	0.000003	
10	3	5812301	5000000	5.000000	0.000001	
10	1	199129	5000011	5.000011	0.000025	
10	2	1479740	5000001	5.000001	0.000003	
10	3	6144876	5000000	5.000000	0.000001	
10	1	199303	5000025	5.000025	0.000025	
10	2	1489116	5000002	5.000002	0.000003	
10	3	5807918	5000000	5.000000	0.000001	
10	1	198738	5000004	5.000004	0.000025	
10	2	1481983	5000002	5.000002	0.000003	
10	3	5561505	5000000	5.000000	0.000001	
30	1	626	5000133	5.000133	0.007987	
30	2	23578	5000169	5.000169	0.000212	
30	3	357285	5000011	5.000011	0.000014	
30	1	659	5006499	5.006499	0.007597	
30	2	23794	5000086	5.000086	0.000210	
30	3	359447	5000008	5.000008	0.000014	
30	1	649	5003665	5.003665	0.007710	
30	2	23553	5000075	5.000075	0.000212	
30	3	348357	5000006	5.000006	0.000014	
30	1	649	5006525	5.006525	0.007714	
30	2	23690	5000142	5.000142	0.000211	

	Continuation of Table C.1					
Datasize	Algorithm	Iteration	Ticks	Total Time	Duration	
30	3	356017	5000016	5.000016	0.000014	
30	1	614	5006291	5.006291	0.008154	
30	2	22995	5000048	5.000048	0.000217	
30	3	381006	5000007	5.000007	0.000013	
50	1	40	5023702	5.023702	0.125593	
50	2	3182	5000975	5.000975	0.001572	
50	3	63281	5000015	5.000015	0.000079	
50	1	41	5034499	5.034499	0.122793	
50	2	3181	5000700	5.000700	0.001572	
50	3	60882	5000016	5.000016	0.000082	
50	1	41	5007455	5.007455	0.122133	
50	2	3193	5000249	5.000249	0.001566	
50	3	61067	5000031	5.000031	0.000082	
50	1	41	5050169	5.050169	0.123175	
50	2	3164	5000810	5.000810	0.001581	
50	3	68454	5000051	5.000051	0.000073	
50	1	41	5045740	5.045740	0.123067	
50	2	3163	5000999	5.000999	0.001581	
50	3	58283	5000021	5.000021	0.000086	
5	1	4082538	5000000	5.000000	0.000001	
5	2	9479643	5000000	5.000000	0.000001	
5	3	12471285	5000000	5.000000	0.000000	
5	1	3988896	5000000	5.000000	0.000001	
5	2	10117125	5000000	5.000000	0.000000	
5	3	12946018	5000001	5.000001	0.000000	
5	1	3973865	5000000	5.000000	0.000001	
5	2	10122368	5000001	5.000001	0.000000	
5	3	12902282	5000000	5.000000	0.000000	
5	1	4080377	5000000	5.000000	0.000001	
5	2	10128950	5000000	5.000000	0.000000	
5	3	12776740	5000000	5.000000	0.000000	
5	1	4056729	5000000	5.000000	0.000001	
5	2	9535701	5000000	5.000000	0.000001	
5	3	13290885	5000000	5.000000	0.000000	
80	1	4	6605185	6.605185	1.651296	
80	2	502	5010748	5.010748	0.009982	
80	3	14016	5000022	5.000022	0.000357	
80	1	4	6554565	6.554565	1.638641	
80	2	497	5009081	5.009081	0.010079	
80	3	12634	5000017	5.000017	0.000396	
80	1	3	5002091	5.002091	1.667364	
80	2	493	5004294	5.004294	0.010151	
80	3	13625	5000312	5.000312	0.000367	
80	1	4	6583925	6.583925	1.645981	
80	2	491	5001074	5.001074	0.010185	
80	3	14861	5000090	5.000090	0.000336	
80	1	4	6651008	6.651008	1.662752	
80	2	496	5005583	5.005583	0.010092	
80	3	13718	5000168	5.000168	0.000364	
	·		f Table		1	

The diff results of three algorithms are as follows, the output is truncated:

for file in data/100_0.txt data/100_1.txt data/100_2.txt data/100_3.txt data/100_4.txt data/10_0.txt data/10_1.txt data/10_2.txt data/10_3.txt data/10_4.txt data/30_0.txt data/30_1.txt data/30_2.txt data/30_3.txt data/30_4.txt data/50_0.txt data/50_1.txt data/50_2.txt data/50_3.txt data/50_4.txt data/5_0.txt data/5_1.txt data/5_2.txt data/5_3.txt data/5_4.txt data/80_0.txt data/80_1.txt data/80_2.txt data/80_3.txt

```
data/80_4.txt; do \
        echo "Running $file"; \
        ./mss file 1 >> file.1out; \setminus
        ./mss file 2 >> file.2out; \setminus
         ./mss file 3 >> file.3out; \setminus
        diff3 $file.1out $file.2out $file.3out; \
    done
Running data/100_0.txt
====
1:2c
  algorithm: 1
2:2c
  algorithm: 2
3:2c
  algorithm: 3
Running data/100_1.txt
====
1:2c
  algorithm: 1
2:2c
  algorithm: 2
3:2c
  algorithm: 3
Running data/100_2.txt
   All three algorithms output the same result matrix for each test case. Here is one example of data/5_0.txt.1out:
datafile: data/5_0.txt
algorithm: 1
MaxSubmatrix:
        -22
                 23
                            9
65
        -8
                  -58
                            87
        29
                 -60
                            -88
27
```

69

9

57

60

Appendix D

Declaration

I hereby declare that all the work done in this project titled "Maximum Submatrix Problem" is of my independent effort.