Лекция №2. Вакуум и катоды

Вакуум – среда свободная от вещества

Постулаты физики вакуума:

- газ состоит из отдельных движущихся молекул:
- существует постоянное распределение молекул газа по скоростям;
- при движении молекул газа нет преимущественных направлений, пространство газовых молекул изотропно;
- температура газа величина, пропорциональная средней кинетической энергии его молекул;
- при взаимодействии с поверхностью твердого тела молекула газа адсорбируется.

Каждой адсорбированной стенкой сосуда молекуле соответствует одна десорбированная молекула с противоположным направлением вектора скорости, а суммарное изменение количества движения ΔК адсорбированной и десорбированной молекул равен

 $\Delta K = 2 \text{mvcos}\Theta$,

где Θ – угол между нормалью к поверхности и вектором скорости.

Под давлением газа понимают средний импульс ЛК передаваемый

Уравнение Менделеева-Клапейрона:

где N — число молекул;

т — масса одной молекулы;

М — масса газа, выраженная в тех же единицах, что и m, и численно равная его молекулярной массе;

R — универсальная газовая постоянная, численное значение которой зависит от выбранной системы единиц. В системе СИ: R= 8,3146 * 103 Дж/(К*кмоль), а давление измеряется в Паскалях (Па).

Единицы давления

	Паскаль (Ра, Па)	Бар (bar, бар)	Техническая атмосфера (at, aт)	Физическая атмосфера (atm, атм)	Миллиметр ртутного столба (мм рт. ст., mm Hg, Torr, торр)
1 Па	1 H/m ²	10 ⁻⁵	$10,197 \cdot 10^{-6}$	9,8692·10 ⁻⁶	$7,5006 \cdot 10^{-3}$
1 бар	105	1·10 ⁶ дин/см²	1,0197	0,98692	750,06
1 ат	98066,5	0,980665	1 кгс/см ²	0,96784	735,56
1 атм	101325	1,01325	1,033	1 атм	760
1 мм рт. ст.	133,322	1,3332·10 ⁻³	$1,3595 \cdot 10^{-3}$	1,3158·10 ⁻³	1 мм рт. ст.

$$\sum_{i=1}^{N} v_i^2$$

⁻ средняя квадратичная скорость теплового движения молекул.

Средняя квадратичная скорость молекул газа определяется температурой газа Т

$$u = \sqrt{\frac{3kT}{m}}$$
 где k=1,38*10⁻¹⁶эрг/К – постоянная Больцмана

Максвелловское распределение молекул газа по скоростям:

$$d n_{\nu} = 4n\pi v^2 \left(\frac{m}{2\pi kT} \right)^{3/2} \exp \left(\frac{mv^2}{2kT} \right) dv$$
 где dn_{r} – количество молекул, имеющих скорость от и до u+d u

Тепловое движение молекулы газа. 1,2,3 и т.д. – места столкновения с другими молекулами

Длина свободного пробега:

$$\lambda = \frac{1}{\sqrt{2}N_1\pi\sigma^2 \left(1 + \frac{C}{T}\right)}$$

где N₁ – молекулярная концентрация;

σ – эффективный диаметр молекулы;

Т – абсолютная температура;

С – постоянная, зависящая от рода газа

Значения средней длины свободного пробега молекул воздуха

Давление воздуха		Средняя длина сво	Средняя длина свободного пробега молекулы	
Па	мм. рт. ст.	воздуха при	1=25°C	
1*10 ⁵	750	6,2*10-8 м	~0,06 мкм	
1,333*102	1	4,6*10 ⁻⁵ м	46 мкм	
1*102	7,5*10-1	6,2*10-5 м	62 мкм	
1*10	7,5*10-2	6,2*10 ⁻⁴ м	0,6 мм	
1	7,5*10-3	6,2*10-3 м	6,2 мм	
1*10-1	7,5*10-4	6,2*10 ⁻² м	62 мм	
1*10-2	7,5*10-5	6,2*10 ⁻¹ м	620 мм	
1*10-3	7,5*10-6	6,2*100 м	6,2 м	
1*10-4	7,5*10 ⁻⁷	6,2*10 ¹ м	62 м	
1*10-5	7,5*10-8	6,2*10² м	620 м	
1*10-6	7,5*10-9	6,2*10 ³ м	6,2 км	

Степени вакуума в зависимости от трудности их достижения

Степень вакуума		Низкий	Средний	Высокий	Сверхвысокий
Область	Па	>10	10-10-1	$10^{-2} - 10^{-5}$	<10-5
давлений	мм. рт. ст.	>10-1	$10^{-1} - 10^{-3}$	10-4-10-7	<10-7

Технологическое оборудование, используемое для создания необходимого вакуума в ЭВП:

1. Термические установки водородного и вакуумного отжига деталей и узлов.

Предназначены для предварительного обезгаживания деталей и узлов, поступающих на сборку ЭВП, в среде водорода и вакууме при нагреве до температуры 700 - 800°С, в результате чего удаляется газ, растворенный в глубине материала.

- 2. Различного типа термическое оборудование для высокотемпературной пайки в среде водорода, формер-газе и вакууме, применяемые при сборке изделий для соединения предварительно изготовленных узлов.
- 3. Установки лазерной, электронно-лучевой и аргонно-дуговой сварки.

4. Гелевые течеискатели, с помощью которых производится проверка соединений на вакуумную плотность.

5. Откачные посты, обеспечивающие откачку изделий до давления ниже $5*10^{-7}$ мм рт. ст.

6. Технологические насосы, которые осуществляют докачку ЭВП, снятого с откачного поста, в процессе его дальнейшего изготовления, включающего в себя тренировку, технологический прогон и т.д. После окончания технологического процесса изготовления эти насосы отделяются от приборов при сохранении вакуума внутри его.

Прямонакальный катод

Катод косвенного накала

Термоэлектронная эмиссия

$$rac{m v_i^2}{2} \! \geq \! e \! arphi$$
 - Условие вылета электрона из катода

т – масса электрона

vп – проекция скорости электронов на нормаль к поверхности еφ – работа выхода.

Температурная зависимость плотности термоэмиссии электронов выражается уравнением Ричардсона – Дешмана:

js – максимальная плотность тока эмиссии (ток насыщения), A/cм²; A₀=120 A*cм⁻²*град⁻²;

T – температура эмитирующей поверхности катода, °К; k=8,62*10⁻⁵ эВ/К – постоянная Больцмана

Зависимость катодного тока от температуры при постоянном анодном напряжении

- ⊙ характеристическая температура;
- Б зона рабочих температур катода;
- А точка перехода из режима насыщения в режим пространственного заряда

Эмиссионные свойства некоторых металлов

Металл	Точка плавления, °К	Температура при давлении пара 10 ⁻⁷ мм рт. ст., °К	Работа выхода, еВ	Удельная эмиссия, A/см ²
W	3640	2520	4,54	4*10-1
Та	3270	2370	4,1	6*10-1
Re	3440	2430	4,7	26*10-1
Мо	2890	1970	4,15	5*10-3
С	4400	2030	4,35	20*10-3
Pt	2050	1650	5,4	2*10-8
Ni	1730	1070	4,1	5*10-9
Ba	1120	580	2,11	1*10-11

Отношение еф/Т для некоторых металлов

Металл	еф/Т, эВ/°К
тантал	1,72*10-3
вольфрам	1,77*10 ⁻³
ниобий	1,91*10 ⁻³
молибден	2,16*10-3

Зависимость плотности тока эмиссии металлопористого катода, покрытого пленкой осмия от температуры

- 1 эталонное значение зависимости
- 2 норма

Зависимость плотности тока эмиссии оксидного катода от температуры

- 1 эталонное значение зависимости
- 2 норма

