FLATTENING METHOD OF RESIST

Patent number:

JP4330715

Publication date:

1992-11-18

Inventor:

UESUGI TAKESHI

Applicant:

OKI ELECTRIC IND CO LTD

Classification:

- international:

H01L21/027; H01L21/02; (IPC1-7): H01L21/027

- european:

Application number: Priority number(s): JP19910020292 19910122 JP19910020292 19910122

Report a data error here

Abstract of JP4330715

PURPOSE:To form an excellent, hardened and flattened film by a method wherein a substrate provided with a difference in level is coated with a resin whose thermally melting property is large, the resin is baked under pressurization and flattened, the flattened film is baked under a vacuum. CONSTITUTION:A resin whose thermally siting property is large is turned on a substrate 1 provided with a difference in level; a coating film 2 is formed. The substrate 1 on which the coating film 2 has been formed and which is provided with the difference in level is inserted into a hermetically sealed baking furnace 3. In a state that the inside of the baking furnace 3 has been pressurized to, e.g. 5 atm., a baking operation is performed at 200 deg.C for one minute by using a heater 3a. Thereby, the resin film 2 on the substrate 1 provided with the difference in level is changed to a well flattened film 4. When the flattened film 4 is used as a lower-layer film in a multilayer resist process, a baking operation is performed at 200 deg.C for five minutes by using the heater 3a while the inside of the hermetically sealed baking furnace 3 is set to a vacuum. Thereby, the generation of CO2 and H2O in a gaseous form is promoted from the resin, a thermal crosslinking operation is promoted, and it is possible to obtain a thermally hardened and well flattened film 5 faster than in an open baking furnace.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-330715

(43)公開日 平成4年(1992)11月18日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 1 L 21/027

7352-4M

H01L 21/30

361 X

審査請求 未請求 請求項の数1(全 5 頁)

(21)出願番号

特願平3-20292

(22)出願日

平成3年(1991)1月22日

(71)出願人 000000295

沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(72)発明者 上杉 毅

東京都港区虎ノ門1丁目7番12号 沖電気

工業株式会社内

(74)代理人 弁理士 菊池 弘

(54) 【発明の名称】 レジスト平坦化方法

(57)【要約】

【目的】 段差を有する基板上の塗布膜を速く熱硬化 し、良好な平坦化膜を形成することができるレジスト平 坦化方法を提供することを目的とする。

【構成】 段差を有する基板上に熱溶融性の大きい樹脂を回転塗布して塗布膜を形成し、密閉されたベーク炉内において、加圧下でベークを行い、塗布膜を平坦化し、次いで、真空下でベークを行って急速に熱硬化させるようにしたものである。

1

【特許請求の範囲】

【請求項1】 段差を有する基板上に、熱溶融性の大きい樹脂を塗布して塗布膜を形成する工程と、上記基板を、密閉したペーク炉内に挿入して加圧下でペークを行うことにより、上記塗布膜の平坦化膜を形成する工程と、密閉されたペーク炉内において、真空下でペークを行うことにより、上記平坦化膜を急速に熱硬化させる工程と、よりなるレジスト平坦化方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、段差を有する基板を 良好に平坦化できるようにしたレジスト平坦化方法に関 するものである。

[0002]

【従来の技術】近年、半導体装置の高集積化の要求が益々高まってきており、これにともない、微細パターン形成に関する技術的要請も益々厳しいものとなってきている。

【0003】特に、段差を有する基板上での微細パターン形成には、多層レジストプロセスが有利であり、これ 20 に用いる下層膜は平坦化の役目および基板のエッチングマスクとしての役目を担う。

【0004】多層レジストプロセスの下層膜平坦化に関しては、例えば、「Novolac ResinPlanarization Layer s for Multilayer Resist Imaging Systems」(ノボラックレジン プラナリゼーション フォ マルチレイヤレジスト イメージングシステム), J. Electrochem, Soc, Ud 133, No. 11, 1986, P2394~2398 T. R Pampal one 等に開示されるものがある。

【0005】この文献によれば、〇-クレゾールノボラック(以下、〇-CNと略す)のごとき、低温で熱溶融し、高温で熱架橋を開始する樹脂を用い、大気中で〇-CNの熱溶融温度でのベークと熱架橋温度でのベークといった2段階ベークプロセスにより、段差を有する基板を平坦化する下層膜を形成するというものであった。

[0006]

【発明が解決しようとする課題】しかし、以上述べた大気中での2段階ペークプロセスによる平坦化方法では、最適な平坦化に寄与する熱溶融温度が存在するものの、その温度で長時間ペークを行うと、熱硬化することか 40 ら、実際には、同時に熱架橋も開始している。

【0007】このため、段差を有する基板上において、 平坦化を向上させる熱溶融と、平坦化を抑制する熱架橋 といった競争反力が起こっており、十分に熱溶融性を大 きくすることができないため、十分な平坦化を行うこと ができなかった。

【0008】この発明は前記従来技術が持っている問題点のうち、平坦化を向上させる熱溶融と平坦化を抑制する熱架橋といった競争反力が同時に起こる点について解決したレジスト平坦化方法を提供するものである。

[0009]

【課題を解決するための手段】この発明は前記問題点を解決するために、レジスト平坦化方法において、段差を有する基板上に熱溶融性の大きい樹脂を塗布して形成した塗布膜を密閉されたペーク炉内において加圧下でベークを行って平坦化膜を形成する工程と、この平坦化膜を真空下でペークすることにより急速に熱硬化させる工程とを導入したものである。

2

[0010]

10 【作用】この発明によれば、レジスト平坦化方法において、以上のような工程を導入したので、段差を有する基板上に熱溶融性の大きい樹脂を塗布して塗布膜を形成して、密閉してベーク炉内で加圧してベークすることにより、塗布膜の平坦化が促進され、この平坦化膜を真空下でベークすることにより、樹脂から発生するガスを促進させ、熱架橋反応を促進することになり、その結果、平坦化膜を硬化させ、すぐれた平坦化膜を形成し、したがって、前記問題点が除去できる。

[0011]

0 【実施例】以下、この発明のレジスト平坦化方法の実施例について図面に基づき説明する。図1(a) ないし図1 (d) はその一実施例を説明するための工程説明図である。

【0012】まず、図1(a) に示すように、段差を有する基板1上に、O-CNのごとき、熱溶融性の大きい樹脂を回転して、塗布膜2を形成する。

【0013】この塗布膜2を形成した段差を有する基板 1を図1(b)に示すように、密閉されたベーク炉3内に 挿入し、このベーク炉3内を例えば、5.0気圧に加圧し た状態で、ヒータ3aにより、200℃1分のベークを 行う。

【0014】通常のオープンベーク炉であれば、例えば、O-CNは200℃での加熱では、熱溶融反応と、熱架橋反応といった平坦化を促進させる反応と、平坦化を抑制させる反応が競争的に起こっており、この熱架橋反応のために、樹脂自身の粘性を十分に下げることができず、結果として、十分な平坦化が行えない。

【0015】ところが、図1(b)のように、ベーク炉3内において、加圧下でベークを行った結果、樹脂自身の粘性を十分に下げることができ、段差凸部の樹脂が矢印A1で示すように、凹部へとフローする。したがって、段差を有する基板1上の樹脂膜2が図1(c)に示すように、良好な平坦化膜4となる。

【0016】次に、この理由について述べる。通常、樹脂の熱架橋反応時には、CO2やH2Oがガス状で発生すると考えられる。通常のオープンベーク炉であれば、CO2やH2Oがガス状として、炉外へ逃げることができ、熱架橋反応が経時的に進み、平坦化が抑制される。

【0017】また、ペーク温度を上げて行くと、さらに 50 熱架橋反応が促進されることになり、同様に平坦化が抑 3

制される結果となる。逆に、ベーク温度を下げた場合に は、熱架橋反応は抑制されるが、樹脂自身の熱溶融性も 小さいため、平坦化は向上しない。

【0018】しかし、密閉されたベーク炉で、加圧下で ベークを行った場合、CO2 やII2 Oがガス状として、 外部へ逃げることができず、CO2 やH2 Oの発生が抑 制され、結果として、熱架橋反応が抑制されることにな る。また、ベーク温度を上げて行くと、熱架橋反応が抑 制されるため、熱溶融性のみが大きくなり (一般に、液 り一層促進される。

【0019】以上述べたようにして、形成した平坦化膜 4を多層レジストプロセスの下層膜として使用する場合 には、この平坦化膜4を硬化させる必要がある。そこ で、次に、図1(d) に示すように、密閉されたペーク炉 3内を0.5 torrの真空下で、ヒータ3aにより、200 ℃5分のペークを行ったところ、樹脂からCO2 やH2 〇のガス状での発生が促進され、熱架橋反応を促進する ことができ、オープンベーク炉による熱硬化よりも速く 熱硬化した良好な平坦化膜5を形成することができる。 【0020】次に、この発明の第2の発明の実施例とし て、加圧時の密閉されたペーク炉3内の雰囲気は、空気 よりも、CO2 やH2 Oにして、加圧した方が熱架橋反

応はより抑制され、平坦化を向上させることができる。 【0021】さらに、第3の実施例として、雰囲気をガ ス状のECA(エチルセルゾルプアセテート)溶剤にし て加圧した場合には、熱溶融性がより促進され、平坦化 を向上させることができ、CO2, H2O, 溶剤を混合

した雰囲気トでも、同様の効果を発揮する。

[0022]

【発明の効果】以上、詳細に説明したように、この発明 によれば、段差を有する基板上に熱溶融性の大きい樹脂 を例えば回転塗布することにより形成した塗布膜を密閉 されたベーク炉内において、加圧下でベークを行うよう 体の熱粘性は温度を上げると小さくなる)、平坦化がよ 10 にしたので、熱架橋反応を抑制し、熱溶融反応を促進す ることになり、オープンベーク炉を使用するときよりも 良好な平坦化膜を形成できるという効果を奏する。ま た、この平坦化膜を熱硬化させるために、真空下でベー クを行っているので、熱架橋反応を促進し、オープンペ ーク炉を使用したときよりも、速く熱硬化した良好な平 坦化膜を形成できるという効果がある。

【図面の簡単な説明】

【図1】この発明のレジスト平坦化方法の一実施例の工 程説明図である。

20 【符号の説明】

- 1 基板
- 2 塗布膜
- 3 ペーク炉
- 3 a ヒータ
- 4.5 平坦化膜

[2]

本発明の工程説明図

【手続補正書】 【提出日】平成4年5月14日 【手統補正1】 【補正対象書類名】図面

【補正対象項目名】全図 【補正方法】変更 【補正内容】

【図1】

本形明の工程説明図

