

Safety Interlocks and Discrete Control
Integration Procedure for the
Acutrol3000 Motion Control System

**Technical Manual** 

TM-9385 A



This page intentionally left blank.



Safety Interlocks, Status, and Discrete Control
Integration Procedure for the
Acutrol3000 Motion Control System

**Technical Manual** 

TM-9385 A

Date Prepared: 5/20/2005



Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Acutronic.

© 2005 Acutronic USA, Inc. All rights reserved.

Acutrol and ACT 2000 are registered trademarks of Jung Technologies Holding AG

US Patent Number 5,463,393

Inductosyn is a registered trademark of Ruhle Companies, Inc.

NI-488 and NI-488.2 are trademarks of National Instruments Corporation.

Other product names are trademarks of their respective manufacturers. Company names listed are trademarks or trade names of their respective companies.



#### **Table of Contents**

| 1     | Introduction                                | 5  |
|-------|---------------------------------------------|----|
| 1.1   | System Level Overview                       | 6  |
| 1.2   | Discrete I/O Topology                       | 7  |
| 1.3   | Configuration Features                      | 8  |
| 2     | System Interlock Planning                   | 12 |
| 2.1   | Gathering Information                       |    |
| 2.2   | Acutrol3000 Default Configuration           |    |
| 3     | Setting Up Interlocks                       | 15 |
| 3.1   | Input Signal Conditioning                   |    |
| 3.2   | Servo Interlock Configuration               |    |
| 3.2.1 | Servo Interlock Configuration Panel         | 18 |
| 3.2.2 | Servo Interlock Examples                    |    |
| 3.3   | Optional I/O Utilization                    | 23 |
| 3.3.1 | Auxiliary Servo Interlocks                  | 23 |
| 3.3.2 | General Purpose I/O Pin options             | 23 |
| 3.3.3 | Drive Enable Options                        | 24 |
| 3.3.4 | Master Interlock                            | 25 |
| 3.3.5 | Software Detected Fault Indication          | 25 |
| 4     | Discrete Output Controls                    | 26 |
| 4.1   | Discrete Output GPIO Pin Configuration      | 26 |
| 4.2   | Discrete Output Control Panel Configuration | 29 |
| 5     | Discrete Status                             | 31 |
| 5.1   | Interlock (Fault) Status                    | 31 |
| 5.2   | Discrete Output Status                      | 31 |
| 5.3   | System Status                               | 31 |
| 5.3.1 | Status Monitor Operation                    | 32 |
| 5.3.2 | Additional Status Access                    | 33 |
| 5.4   | AIM Status                                  |    |
| 5.5   | Identifying Faults using the Status Panel   |    |
| 5.5.1 | GUI⇔RT Command/Communication Faults         |    |
| 5.5.2 | Servo Fault Identification                  | 35 |



## **Appendices**

| Appendix A –Discrete Input Connector (Interlock Configuration Work Sheet) | 38 |
|---------------------------------------------------------------------------|----|
| Appendix B – AIM Interlock Test Register (Axis Interlock Work Sheet)      | 40 |
| Appendix C – GPD[X] Pin Default I/O Direction                             | 41 |
| Appendix D – Transition Module Jumper Summary                             | 42 |
| Appendix E – Servo A Output Connector                                     | 43 |
| Appendix F – Servo B Output Connector                                     | 44 |
| Appendix G – Discrete Output Connector                                    | 45 |
| Appendix H – Transducer Drive and Feedback Connector                      | 47 |
| Appendix I – Optical Encoder/RS232 Connector                              | 48 |
| Appendix J - Component Side Transition Panel Assembly                     | 49 |
| Appendix K - Solder Side Transition Panel Assembly                        | 50 |
| Appendix L - Acutrol3000 Discrete I/O Overall Structure                   | 52 |



## **Figures**

| Figure 1. Top-level Discrete Control               | 6  |
|----------------------------------------------------|----|
| Figure 2. Acutrol3000 Discrete I/O Structure       | 7  |
| Figure 3. Setup/Miscellaneous/GPIO                 | 8  |
| Figure 4. Controls/Discrete Controls               | g  |
| Figure 5. Controls/Configure Intlk                 | 11 |
| Figure 6. Controls/Activate Servo                  | 11 |
| Figure 7.x Opto-Isolator Input Logic Level Options | 16 |
| Figure 8. Controls/Configure Intlk                 |    |
| Figure 9. Status/Interlock Fail                    |    |
| Figure 10. Drive Enable Delays                     | 20 |
| Figure 11.x Controls/Configure Intlk               | 22 |
| Figure 12.x Setup/Miscellaneous/GPIO               | 26 |
| Figure 13. Controls/Discrete Controls              | 27 |
| Figure 14. Status/Interlock Fail                   | 31 |
| Figure 15. Status/System – Top Level               | 32 |
| Figure 16.x Status System (Example)                | 33 |
| Figure 17. Status/AIM                              | 34 |
| Figure 18. Status/GUI                              | 36 |
| Figure 19.x Status/System                          | 36 |
| Tables                                             |    |
| Table 1. Acutrol3000 Discrete Input Connector      |    |
| Table2. Interlock Fault (Default Configuration)    |    |
| Table 3. Input Logic Voltage Levels                |    |
| Table 4. Input Voltage Jumper Options              |    |
| Table 5. Aux Servo INTLK Jumper Options            |    |
| Table 6. GPD4 Jumper Options                       |    |
| Table 7 GPD5 lumper Options                        | 2/ |



This page intentionally left blank.



#### 1 Introduction

This manual provides documentation to configure the discrete I/O signals that are used to implement the failsafe servo interlocks and status (inputs), and to programmatically control relay closures (outputs) of the Acutrol3000 motion controller. A transition module provides the hardware connection between the AIM signal connectors and the legacy Acutrol Act2000 connector interface on the back of the Acutrol3000 chassis. This hardware also provides conditioning of signals as required, and routes signals between the individual axis boards (AIMs) and the consolidated system connectors.

The discrete control of output relay closures is addressed in this document because these features use the same hardware and configuration/command panels as the interlocks. Finally, the status monitoring features of the Acutrol3000 are documented and provide a means to observe the operational state of discrete signals as they relate to interlock and relay control.

### 1.1 System Level Overview

Figure 1 is a top-level block diagram of the safety interlock and discrete control sub-systems. The rectangular blocks identify the various Operator Interface panels used to configure and control the discrete system functions. The rectangles with rounded corners represent the hardware modules, which implement the digital logic and external interface circuitry.

The safety interlocks may be configured directly using ACL commands or more generally the system integrator will use the GUI interface and the associated configuration/control panels. Once the interlocks are configured and verified, the configuration state must be saved to preserve the system configuration. The default (saved) configuration state is restored whenever the system is booted. Interlock logic in the Axis Interface Module autonomously monitors the controller and system safety interlocks and opens the servo of all affected axes in the event of a fault.





### 1.2 Discrete I/O Topology

This section provides an overview of the operation of discrete processes in the Acutrol3000 as they relate to safety interlocks and discrete relay control. Figure 2 shows the signal interconnection/flow of a typical discrete signal as it processes through the various hardware sub-systems and the logic of the associated hardware circuitry.

Each AIM board has eight (8) General Purpose I/O pins (GPIO0-7). Pins 6 and 7 are dedicated to providing discrete I/O using the BNC connectors Digital IO/1, 2 respectively, which are located on the Acutrol3000 front panel.

The remaining six (6) pins are used as inputs for safety interlocks or as outputs for discrete relay control. The direction of each pin is programmed independently, but must be done in concert with the Transition module, which mandates a default use of the GPIO pins. This default configuration is defined in section 2.2 Acutrol3000 Default Configuration. There is some flexibility using jumpers on the Transition panel to trade off inputs and outputs depending on system requirements. In general, there are four GPIO pins per axis used for inputs, and the remaining two are used for discrete control outputs. The system specific configuration can be documented by using the table in Appendix B.



Figure 2. Acutrol3000 Discrete I/O Structure

## 1.3 Configuration Features

The typical structure of a discrete I/O signal is shown in Figure 2 (above and in Appendix-L at the end of this document in a larger format). The diagram is divided into three sections: **Acutrol/GUI** (interface/software), **Axis Interface Module** (programmable logic), and **Transitional Panel** (I/O hardware). Communication between the Supervisor and the hardware is via programmed I/O registers in the Axis Interface Module (AIM). This is because the logic, which implements the fail-safe interlock testing and discrete control, is implemented in the FPGA circuitry of the AIM.

The first section of Figure 2 is defined as **Acutrol/GUI** and represents the Acutrol Command Language interface that provides access to the hardware for configuration and control. All of the panels in the GUI use ACL commands to configure, control, and monitor I/O functions.

The **AIM** group implements the programmable logic of each GPD(X) pin, which includes the direction and the multiplex signal selection. The configurable failsafe interlock logic that tests for servo faults is also implemented in the AIM. This is accomplished using the **Setup/Miscellaneous/GPIO** panel in the Graphical User Interface (GUI).



Figure 3. Setup/Miscellaneous/GPIO

**OUTPUTS**: If a pin is configured as an output then the corresponding multiplexed signal is output to the GPIO pin. Generally, the signal, which is selected for output, is a user-defined bit from the AIM PROGOUT register. This register can be programmatically altered on a bit by bit basis by using either the ACL command [Configure:Discrete] or the Discrete Control panel **Controls/Discrete Controls** in the GUI.





Figure 4. Controls/Discrete Controls

The **Transition Module** is the third section in the discrete I/O structure, and consists of the hardware programming jumpers, opto-isolated inputs, and output relays located on the Transition panel.

Depending on the particular GPIO pin and the configuration options, jumpers on the rear panel of the Acutrol3000 chassis may be change to accommodate input/output requirements. Most of the routinely changed option jumpers are accessible by removing the cover plate above the sub-D connectors on the rear panel of the Acutrol3000 chassis.

The GPIO input buffer always looks at the logic state of the pin and reports this state to the Fail-safe interlock test logic. This is true even if the GPIO pin is setup as an output. If the state of the pin (as an output) is not used in the interlock test, it is still logic corrected and will report the status of the pin.

**INPUT**: When a GPIO pin is used to input an interlock signal, the output of the corresponding opto-isolated input is routed though the Transition panel to the AIM. The AIM contains digital logic, which implements the fail-safe testing of the GPIO pin in question. A total of sixteen discrete signals are configured for testing in the fail-safe logic of the AIM.





Figure 5. Controls/Configure Intlk

Each bit is configured using the Controls/Configure Intlk panel.

This panel provides the means to configure the logical sense of the interlock signal, and to enable it in the interlock test. The enabled options include Immediate test, delayed by  $T_a$  or delayed by  $T_b$ . If the bit Enable Mode is "Disabled", then it is only used for status in the system.

The user name for the interlock signal can be entered in the GUI keyboard and transferred to the User Name control to customize the status nomenclature of this bit and consequently the name that is displayed in the Interlock Fail status panel.

**FAULT**: A fault is tested/detected only if an axis is servoed. When a fault occurs, the Drive Enable signals (DE0, DE1) are de-asserted causing the system to immediately disable the drive or power amplifier, removing power from the motor/drive(s). Detecting a fault also causes the Interlock Fail Status to be latched, the servo loop to be 'opened', the "Disable" control/indicator on the GUI front panel to flash, and a fault to be reported in the status.

**SERVO**: The Servo Interlock Control panel **Controls/Activate servo** is used to Open and Close interlocks, whenever a fault occurs, the servo state is forced open and the latched fault prevents re-closing the servo. A Reset button is provided to clear the fault, and allow the axis to be servoed again.

# ACUTPODIC



Figure 6. Controls/Activate Servo



## 2 System Interlock Planning

## 2.1 Gathering Information

The first step in setting up interlocks is to identify the interlock states that are required for each individual axis and those that are used globally.

Safety interlock states are most easily handled when they are implemented as a floating relay or floating switch closure. Equally simple to handle is a signal that has two discrete voltage states corresponding to **safe** and **failed** operational status. States that are in a **safe** state, only after the system has been servoed, can be accommodated by specifying a delayed test for that interlock.

Sensors such as PTC thermistors can also be used, but may require some care to ensure compatibility between the opto-isolator activation currents, the supply voltage, and the thermal switch characteristics.

Other sensors may require additional signal conditioning to set thresholds, and/or establish compatible discrete states representing safe and unsafe conditions.

Interlocks should be designed so that they are fail-safe. In general, this means that an interruption of current flowing into the input circuitry of Acutrol should be interpreted as a fault. The Ideal interlock sensor supplies a voltage/current while the state is safe, and removes the voltage/current to indicate a fault. If this precaution is taken, the most common wiring faults (a broken wire, a short between wires, or a short to ground) will generally be detected by the interlock circuitry.

## 2.2 Acutrol3000 Default Configuration

The Acutrol3000 is built and configured to a default state. The software settings are saved in the configuration files of the GUI and real-time computers. The hardware configuration is defined by the default jumper settings in the schematics and assembly drawings of the various printed circuit boards.

The primary circuit board that dictates the use of the available discrete I/O signals is the Transition Module. Refer to the assembly drawing 1201E03A and the board schematic 1201E03S for details of the default jumper settings.

The Transition module consolidates signals to/from multiple AIM boards and provides an Interlock Input connector (J2) that is compatible with the legacy Acutrol ACT2000 MIS J5 connector. Table 1 in Appendix-A lists the partitioning of the opto-isolated inputs for axis specific and global interlocks. Also shown is the mapping of pins from the 37 pin sub-D connector to a 34-pin ribbon connector. The Signal Source identifies the default use of GPDx (General Purpose Discrete) and other paths to route signals through the Transition module to the AIM module(s).



Each axis has fail-safe interlock logic in the corresponding Axis Interface Module to test for a fault and initiate a hardware abort. The 16 discrete signals that make up the hardware interlock register are summarized in Table 2 below. A blank version of this table is found in Appendix-B and can be used as a work sheet. Table 2 shows the default configuration for the 16 interlock bits.

| Table 2 INTERLOCK FAULT (Default Configuration)                |                            |              |         |                |                    |           |
|----------------------------------------------------------------|----------------------------|--------------|---------|----------------|--------------------|-----------|
| REGISTE                                                        | R NAME: FAIL_STATUS2       |              |         |                |                    |           |
| Project#_                                                      |                            | Axis         |         | Date//         | -                  |           |
|                                                                |                            |              |         |                | INTERLOCK S        | SOURCE    |
| Bit#                                                           | User Signal Name           | Enable Mode* | Logic   | Status Name    | Local States       | Multiplex |
| 0                                                              | INTLK1                     | Disabled     | INVERT  | INTLK_STATUS0  | GP_IN0             | MIR0      |
| 1                                                              | INTLK2                     | Disabled     | INVERT  | INTLK_STATUS1  | GP_IN1             | MIR1      |
| 2                                                              | INTLK3                     | Disabled     | INVERT  | INTLK_STATUS2  | GP_IN2             | MIR2      |
| 3                                                              | Relay1 (dedicated)         | Disabled     | INVERT  | INTLK_STATUS3  | GP_IN3             | MIR3      |
| 4                                                              | Relay2 (opt. Global3)      | Disabled     | INVERT  | INTLK_STATUS4  | GP_IN4             | MIR4      |
| 5                                                              | INTLK4 (opt. Relay3)       | Disabled     | INVERT  | INTLK_STATUS5  | GP_IN5             | MIR5      |
| 6                                                              | Power Amp Acknowledge      | DelayA       | NON-INV | INTLK_STATUS6  | PA_ACK0            | MIR8      |
| 7                                                              | Global1 (opt ServoB PAFIt) | Disabled     | INVERT  | INTLK_STATUS7  | INTLK1             | MIR9      |
| 8                                                              | Global2 (opt ServoB PAAck) | Disabled     | INVERT  | INTLK_STATUS8  | INTLK2             | MIR10     |
| 9                                                              | Master INTLK/ Front Panel  | Immediate    | NON-INV | INTLK_STATUS9  | MASTER_INTLK       | MIR11     |
| 10                                                             | AIM - DMA Sync Fault       | Immediate    | NON-INV | INTLK_STATUS10 | AIM - DMA_SYNO     | C_ERROR   |
| 11                                                             | AIM-RT Software Watchdog   | Immediate    | NON-INV | INTLK_STATUS11 | AIM - SW_WD_F.     | AULT      |
| 12                                                             | AIM - 10 kHzCLK_WDOG       | Immediate    | NON-INV | INTLK_STATUS12 | AIM - 10 kHzCLK    | _WDOG     |
| 13                                                             | Serial Data Link           | Disabled     | NON-INV | INTLK_STATUS13 | AIM - SDL_FAIL     | <u> </u>  |
| 14                                                             | Servo Intlk Link           | Disabled     | NON-INV | INTLK_STATUS14 | AIM - SIL Servo Ir | ntlk Link |
| 15                                                             | AIM - 10K_LOCK_FAULT       | Immediate    | NON-INV | INTLK_STATUS15 | AIM - 10K_LOCK     | FAULT     |
| * Enable mode options : Disabled, Immediate, Delay1, or Delay2 |                            |              |         |                |                    |           |

Bits 1-9 are system specific; although, most systems have an acknowledgement from the axis drive (bit-6), and a Master interlock control (bit-9) is general required in for facility safety. All other undefined bits are disabled from the interlock test, and the logic is inverted to prevent indicating a failed state in the Fault Status register.

Bits 10-15 are used for hardware testing of the internal states of the Axis Interface Module.

- Bit 10 detects a coherency error in the current DMA transfer of analog measurement data from the AIM FIFO to the Axis Control Processor (ACP) memory.
- Bit 11 reports the occurrence of a watch-dog fault which is detected whenever the ACP RT thread fails to reset a re-triggerable one-shot in the logic of the AIM hardware.
- Bit 12 is the result of a hardware test in the AIM that verifies that the 10 KHz reference is present on the signal line that links the master AIM to the slave AIM(s).
- Bit 13 is reserved for future use when expanded discrete I/O is required. The associated hardware is currently not available.



- Bit 14 Servo Interlock Link may be used to interlock specific axes together such that 'all or none' operation can be easily implemented. This feature is defined in detail in section 3.2.1 Servo Interlock Configuration Panel.
- Bit 15 is active in slave AIM boards, and indicates a fault if the slave
   10 KHz is not able to maintain lock with the master AIM.

All enabled faults that occur after an axis has been servoed are considered catastrophic and results in opening the servo of one or more axes.



## 3 Setting Up Interlocks

## 3.1 Input Signal Conditioning

Discrete interlock signals are normally input via the opto-isolated inputs in the Discrete Input connector (J2) on the back of the Acutrol3000 chassis. Signals are also input as PA Ack, PA Fault, and/or auxillary servo Intlk1,2 located in the ServoA,B connectors on the rear panel of the Acutrol3000.

The input logic levels that may be used for the two voltage ranges are defined in Table 3.

| Input Configuration | Logic "0"       | Logic "1"      |
|---------------------|-----------------|----------------|
| 24 Volt Logic       | -6 to +3 V DC   | +9 to +38 V DC |
| 5 Volt Logic        | -6 to +1.2 V DC | +3 to +10 V DC |

Table 3. Input Logic Voltage Levels

Care must be taken to ensure that a positive voltage is applied to the anode (A) terminal relative to the cathode (C) terminal for proper/safe operation.

Interlock signals/closures can be input in any of four basic configurations as defined in the following jumper Table 4 and in the Figures 7.x below:

| Input Signal Conditioning           | Jumper A | Jumper B | Jumper C |
|-------------------------------------|----------|----------|----------|
| 24 Volt Logic                       |          |          |          |
| 5 Volt Logic                        |          | Х        |          |
| Floating Closure (Acutrol +5V, Gnd) | X        |          | Х        |
| Common Closures (Acutrol +5 V)      |          |          | Х        |

Table 4. Input Voltage Jumper Options

# ACUTPOPIC







## ACUTPONIC



Note: each input can be configured independently as identified in the diagrams above. The jumper numbers are identified in Table 1 (Appendix A) for each input, and the system integrator is encouraged to use this table and the axis Interlock Test Register summary in Appendix B as work sheets for planning the layout of system interlocks.



### 3.2 Servo Interlock Configuration

This section describes the controls on the **Controls/Configure Interlock** panel and shows by example, the typical implementation of various interlock signals.

#### 3.2.1 Servo Interlock Configuration Panel

The Controls/Configure Interlock panel is used principally by the Configurer during system integration. This panel is generally hidden from the User and may be required by the Administrator (customer) to make text preference adjustments or to implement facility interlocks in the field.



Figure 8. Controls/Configure Intlk

Whenever entering this panel (as is the case for most panels in the GUI) the current configuration state is queried to fill all of the controls/indicators with current/correct information. Even though the configuration for one bit is displayed at a time, the data for all of the bits of the specified axis are queried. This means that multiple bits can be modified without requiring that the changes be entered after each bit configuration; however, one must be sure to Enter changes before selecting a different axis or leaving this configuration panel to avoid loosing the pending changes.



The Axis indicator identifies which axis is being configured and the selected axis can be changed using the AXIS SELECT and STATUS BAR at the bottom of the screen.

Clearly the setup of fail-safe interlocks in the hardware of the Axis Interface Modules is done independently for each axis. Consolidation of axis and system signals is accomplished in the circuitry of the Transition panel and provides Acutrol Act2000 compatibility.



To configure a specific interlock bit, first step to the appropriate interlock bit using the Bit# selection control. The selection range of the Bit# is form 0 to 15.



The System Name indicator identifies the source for the interlock test signal.

# ACUTPONIC



The User Name control provides the means to customize the interlock bit name for the application. Text may be

entered using a USB keyboard if one is available, or it may be entered using the GUI touch keyboard (**Kbd** button in the display toolbar at the top of the screen). Descriptive text is saved with the RT computer configuration and is integrated into the Interlock Fail status display.



The Logic Sense control allows for inversion of the interlock signal to make it compatible with the fault test logic and/or status indication. To configure this control, first determine the logic sense of the raw interlock signal

after passing through the opto-isolation input circuitry. If this is not consistent with proper interlock behavior then select the alternate sense in the Logic Sense pick box. Fail-safe interlock signal convention requires current flow to represent a safe condition; these signals do not require inversion for proper

operation. Be sure to verify the sense of an interlock signal by operating the physical sensor (if possible) and monitoring the indicated state in the Status/Interlock Fail status display. A red lighted indicator implies the interlock is in the if the faulted state; status indication is inconsistent with the sensor then the Logic Sense may be reversed. Be sure to verify that the latched Servo Fault has been reset to avoid confusion.



Figure 9. Status/Interlock Fail



Disabled Immediate Delay A ✓ Delay B

The **Enable Mode** control provides the means to specify the method that the AIM logic uses to test the interlock bit whenever an axis is first servoed.

- Disabled means that the bit is not used in the Interlock test; it is still
  accessible for status monitoring. The High/Low servo gain selection
  is an example where the status is used to control another function
  but does not affect the safety interlock test.
- Immediate mode is selected whenever an interlock bit must be satisfied both initially and during normal servo operation. A typical example is a motor over-temp interlock.
- Delay A, Delay B test modes are used when an interlock bit may not be satisfied at the time that the axis servo is activated. The interlock test is delayed by the time defined in Delay A or Delay B control beginning at the time that the servo "CLOSE" is initiated.



Delays are all scaled in seconds and have

a command resolution of 0.1 seconds.

All delays are referenced to the time that the servo "CLOSE" is initiated for the axis; this is also the instant that the drive enable **DE1** is asserted. The Drive Enable Delay **DE Delay** specifies the delay of **DE0** after **DE1**.



Figure 10. Drive Enable Delays

Drive Enables **DE0** and **DE1** are output through relay buffers to the instrumentation outside the Acutrol3000 chassis and are generally used to automatically enable servo related processes such as turning ON/Off electrical/hydraulic power sources (**DE1**) or enabling power amplifier/drives (**DE0**).



A hardware connection (link) in the AIM Sync connector provides a "wired-OR" logic signal that has the option to link two or more AIMs. This signal is called the Servo Interlock Link and its logic state is reported to the failsafe

interlock structure on Bit14 for fault testing. Enabling the **Intlk Link** control on an axis allows the axis (servo enabled state) to participate in the interlock. The logic of this interlock signal is as follows: *All axes, whose Intlk Link is enabled, must be servoed for a safe operating state to be indicated. Or* 



inversely, if any of the axes has a fault, then the Servo Interlock Link interlock will report a fault. Whether or not an axis shuts down when this interlock signal indicates a faulted state is solely dependent on the configuration of the Servo Interlock Link for each axis. Bit14 must be enabled in the interlock test for each axis that is to be linked and the test mode must be a delayed test so that all axes have a chance to servo before testing.



#### 3.2.2 Servo Interlock Examples

In the following example panel, Axis 1 Interlock BIT0 is configured as an axis interlock string consisting of three series connected switches which include a CW position limit, CCW position limit, and a (home) position stow lock. This circuit is connected to Axis1-INTLK1 input on the Discrete Input connector on the back of the Acutrol3000 chassis. If any of the switches in the string is opened, a fault is indicated and servo operation is immediately terminated on this axis. The string interlock is fail-safe logic by definition and does not require inversion. Because the axis could be in a position limit while unservoed, the fault test is delayed by two seconds to give the servo a chance to move the axis away from the limit and into a safe operating zone where the position limit switch/string is satisfied.



Figure 11.1 Controls/Configure Intlk

In this second example, Bit6 inputs the Power Amp Acknowledge signal form a power amplifier. The use of a 2 second **DE Delay** is required to allow the power amplifier AC power to be enabled by **DE1** relay closure, and to give the DC bus a chance to stabilize. The time difference (3.0-2.0=1.0) between **Delay A** and **DE Delay** leaves 1 second for the amplifier to acknowledge proper/safe operation before a fault is detected. If for any reason, the power amplifier removes the Power Amp Acknowledge, a fault will be detected and the axis will be unservoed immediately.



Figure 11.2 Controls/Configure Intlk



### 3.3 Optional I/O Utilization

As stated earlier, the use of General Purpose I/O pins has a default configuration, which utilizes four pins for input and two pins for output. This arrangement satisfies a large percentage of system configuration requirements. However, a system may require that an axis deviate from this default configuration by trading off the mix of inputs and outputs. Configuration options are programmed in the Transition panel using jumpers and in the AIM by programming configuration registers using the GUI or ACL commands. The sections below describe the configuration options for three specific signal groups.

#### 3.3.1 Auxiliary Servo Interlocks

The Auxiliary Servo connector on the AIM contains two opto-isolated inputs that are routed to the fail-safe interlock register for fault testing. These signals are Intlk1 and Intlk2, which correspond to bits 7 and 8 respectively in the AIM Interlock Test Register, see Appendix B.

These signals can be configured via jumpers to return signals from either Global Interlocks in the digital input connector or to return ServoB Power Amp Acknowledge/Fault signals. ServoB connector is generally used whenever a system has two independent motor/drives for an axis; the default jumper configuration connects to the Global Interlock signals. The Jumper settings are defined in Table 5 below:

| Jumper<br>Number | Position "A"  | Position "B"             |
|------------------|---------------|--------------------------|
| JPX15<br>JPX16   | Global INTLK1 | ServoB PA Fault          |
| JPX17<br>JPX18   | Global INTLK2 | ServoB PA<br>Acknowledge |

Table 5. Aux Servo INTLK Jumper Options

Note: The "X" in the jumper designation corresponds to the AIM number.

#### 3.3.2 General Purpose I/O Pin options

Two General Purpose Discrete pins can be used in various ways and are configured in the hardware of the Transition panel using jumper plugs. Whenever these pins are configured as outputs, they are connected to relays which provide software controlled contact closures in the Discrete I/O connector (J1) on the back of the Acutrol3000 chassis. Whenever one of these pins is configured as an input, then it can be jumpered to an optoisolated input and controlled by signals connected to the Discrete Input Connector (J2) also on the back of the chassis.



GPD4 is configured as an output by the default installation of jumper JPx04-B and controls the state of AlMx Relay2 closure. Each AlM/axis has independent control of its corresponding Relay2 closure. Alternatively, installing JPx04-A connects GPD4 to the Global INTLK3 opto-isolated input. Any combination if axes can be configured as inputs and connected to this input as a safety interlock. Axes not connected as inputs can still be used to control its corresponding relay closure. Under all circumstances, care must be taken to ensure that GPD4 pins are properly configured as inputs before JPx04 is set to the input position (A).

| Option                   | JPx04 | GPD4   |
|--------------------------|-------|--------|
| Global INTLK3            | Α     | Input  |
| AlMx-Relay2<br>(default) | В     | Output |

Table 6. GPD4 Jumper Options

GPD5 is configured as an input by default with the installation of jumper JPx05-A. In this configuration, AIMx-INTLK4 is connected to GPD5 independently for each corresponding AIM/axis. A link option is provided to connect multiple GPD5 pins to a selected interlock input and function as a global interlock. The *master* axis that sources the INTLK4 input is installed with jumpers JPx05-A and JPx05-C; the *slave* axes have only JPx05-C installed.

GPD5 can be configured as an output and connect to AlMx-Relay3 by the installation of a jumper in JPx05-D (other jumpers A, B, and C should be removed). Be sure to set the jumper prior to changing the direction of the GPDx pin to an output to prevent a hardware gate conflict.

| Option                      | JPx05 | GPD5   |
|-----------------------------|-------|--------|
| AIMx-INTLK4 (default)       | А     | Input  |
| AIMx-INTLK4 (global master) | A & C | Input  |
| AIMx-INTLK4 (global slave)  | С     | Input  |
| AlMx-Relay3                 | D     | Output |

Table 7. GPD5 Jumper Options

#### 3.3.3 Drive Enable Options

Whenever an axis is servoed, the Drive Enable1 (DE1) signal is asserted immediately for that axis. If a Drive Enable delay is programmed in the **Controls/Config Interlock** panel, then the Drive Enable0 (DE0) will be asserted after the corresponding delay has timed out. In the Transition panel logic, the Drive Enable signals are the source for controlling the axis servoed relays. Jumpers JP5-A and JP5-B are provided on the back of the Acutrol3000 chassis to select which of the DE0 or DE1 signals should be used to control the Axis Servoed relays.



The default configuration for JP5-A & B is not installed and the axis servoed relays are normally controlled by the DE0 signals. Installing JP5-A causes the Axis servoed relays to be controlled by the corresponding DE1. Installing JP5-B causes the Any/All Axis Servoed relays to be controlled by DE1 signals.

#### 3.3.4 Master Interlock

The Master Interlock is considered one of the most important interlocks in the system and is required to participate in the safety interlock structure. The logic sense of the Master Interlock requires that a signal (current) be applied to the input to ensure a fail-safe testing of this signal. The logic can not be reversed nor can this input be disabled or by-passed; even if the test is disabled in the AIM interlock fault circuitry, a software status test monitors the state of the Master Interlock and prevents any axis from being servoed if the Master Interlock is in a failed state.

The Master Interlock is actually a combination of the safe state of the optoisolated Master Interlock input and the Front Panel Disable control; both of these must be satisfied to allow the system to be servoed.

A Master Interlock Output Relay provides a closure that can be used with external circuitry/logic to enable/disable system level operations. For example, running the hydraulic pump can be prevented if the Acutrol FP Disable button is in the depressed position. The closure logic of the Master Interlock Control relay can be inverted by installing JP5-C; the default is to produce a closure whenever the composite Master Interlock is in the failed state.

#### 3.3.5 Software Detected Fault Indication

When an axis is servoed, the FP Disable control is lighted. Whenever this control is flashing it is an indication that a fault was detected in the system and an axis was shut down. When the fault was detected by hardware, the FP Disable indicator will always flash. If the fault is detected by a software test, the FP Disable indicator will flash depending on the configuration of the jumper JP5-D. This jumper is installed by default and permits the indication of both hardware and software detected faults. If JP5-D is removed, then only hardware faults will flash the FP Disable control.

After a fault, the latched interlock fault state may be cleared and an axis servoed again. Assuming the reason for the fault has been remedied, the axis will continue to be servoed, and the flashing FP Disable light should automatically stop flashing and continue in the lighted state.



### 4 Discrete Output Controls

This section describes the GUI controls that allow a system operator to change the state of discrete processes in the system. The Acutrol3000 controls external devices by providing programmatic control of relay closures which are output on the Discrete I/O connector on the back of the chassis. A typical example of such a discrete control is a "Brake OFF Override" required on a system that automatically clamps the axis whenever it is not servoed.

### 4.1 Discrete Output GPIO Pin Configuration

A maximum of three discrete relay outputs can be configured for each axis. Relay1and Relay2 are enabled in the hardware by default, and are controlled by the respective state of bits 0 and 1 of the PROGOUT register. Alternately, Relay3 can be added at the expense of INTLK4 for each axis. Since relays are connected to specific GPIO pins, the bit in the PROGOUT register that can be configured to control a relay is restricted to the GPIO multiplex selection options. The options for each relay output is summarized in Table 8 below:

| Relay # | GPIO PIN | Default<br>PROGOUT Bit | Optional PROGOUT  Bit Selection |
|---------|----------|------------------------|---------------------------------|
| 1       | 3        | 0                      | 0, 3, 6, 9, 12, 15              |
| 2       | 4        | 1                      | 1, 4, 7, 10, 13                 |
| 3*      | 5        | -                      | 2, 5, 8, 11, 14                 |

Table 8. PROGOUT Bit Options

The panel below is used to change the configuration of the GPIO pins. This panel was first presented in section 1.3 Configuration Features without the configuration controls visible. These controls are normally hidden from the User to avoid inadvertent changes and must be enabled to adjust the GPIO configuration. This is accomplished by logging on as the Configurer in the **Setup/System/Security Level** panel.



Figure 12.1 Setup/Miscellaneous/GPIO

<sup>\*</sup> See section 3.3.2 to configure relay.



If a grayed control needs to be changed, then it can be enabled for change by selecting the corresponding GPIO-BIT# and then selecting from the Enable pick box the Signal ENABLED I/O Enabled option. The controls associated with this GPIO pin should appear normal and allow the require modifications. In this example, GPIO-Bit4 (which is normally grayed) has been enabled for change.



Figure 12.1 Setup/Miscellaneous/GPIO

The multiplexed output of the direction of the GPIO pin can now be changed and Enter[ed] making the change in the RT configuration environment. Remember that configuration changes in the RT computer are made permanent by saving the RT system configuration in the Setup/System/SaveRestore panel.

The general rule for configuring the disabled state of the controls for the User profile is as follows: For GPIO-Bit0 through Bit5, the *direction control* should always be disabled and the *multiplex control* for pins configured as outputs should also be disabled. The multiplex signal selected on an input pin, is not used in the input process, thus it is available to be redirected by one of the Digital I/O pins to a front panel BNC.

After all configuration changes have been made, it is important to return controls to their original/appropriate disable state and to save the enabled state using the Save GUI control. To make the multiplex, direction, and enable/disable configuration permanent, enable the GUI Flash Update in the Setup/System/SaveRestore System File Transfer panel, and reboot the GUI computer. The GUI save and flash update procedure is not required if the current control enable configuration was not actually altered.



The default direction for the General Purpose Discrete I/O pins which is compatible with the default configuration of the Transition module is summarized in Table 9 below:

| GPD [X]<br>Pin | Default I/O<br>Direction | Default MPX<br>Selection |
|----------------|--------------------------|--------------------------|
| GPD0           | IN*                      | LO                       |
| GPD1           | IN*                      | LO                       |
| GPD2           | IN*                      | LO                       |
| GPD3           | OUT*                     | PGOUT0*                  |
| GPD4           | OUT*                     | PGOUT1*                  |
| GPD5           | IN*                      | LO                       |
| GPD6           | OUT                      | LO                       |
| GPD7           | OUT                      | LO                       |

Table 9. GPD(X) Default Configuration

Table entries followed with a "\*" are normally disabled in the User profile.

### 4.2 Discrete Output Control Panel Configuration

The **Controls/ Discrete Controls** panel provides the User with six (6) programmable **Function Buttons**, which are configured to control discrete functions in the system. Each button sets the desired state of the associated relay closure. The use of this panel for discrete control is very simple and provides the visual



queues including Boolean text to clearly define the function and its current state. Refer to the Operator Interface User Guide TM-9388 for details of normal use.

The configuration process is very flexible in that any of the six buttons can be independently enabled and configured. Nominally one button is set to control one relay on a specific AIM board; however, a button can be configured to control the associated relay of "AII" axes/AIMs present in the system.

Note that the control of a relay is done indirectly through the PROGOUT register as described in Section 1.1 System Level Overview. Each button can be configured to control the state of any of the 16 bits in the AIM PROGOUT register which in turn must be configured as the source for controlling the associated GPIO (output) pin and relay (see previous section).

The **Controls/Discrete Controls** panel as shown below has the configuration controls exposed so that changes can be made to the button configuration. These controls are normally hidden from the User to avoid inadvertent changes and must be enabled to adjust the Discrete Control configuration by logging on as the Configurer in the **Setup/System/Security Level** panel.



Figure 13. Controls/Discrete Controls

To change the configuration of a Discrete Control Button, ensure that the **Changes Enabled** control is selected. Controls that were grayed should become active. When a **PROGOUT** control is set to "N.U." (Not Used), the discrete control button is disabled and the associated controls are hidden.

## ACUTPONIC

Select a bit in the **PGOUT** pick-box to enable/define an association between the Function Button and the PROGOUT register.

From the **Axis** control, select the Axis/AIM that is to control the Transition panel relay of interest. At this point it is appropriate to verify that toggling the Function Button changes the corresponding relay and the system function operates as expected.

The Descriptive Text indicator/control always displays the text that corresponds to the queried state of the associated PROGOUT register bit. When attempting to change the custom text, first ensure that the button is in the state that corresponds to the appropriate physical state of the controlled process. Do not change the text if the **Function Button** is flashing; this condition must be cleared by the **Query** or **Enter** operation. Next, select the GUI touch keyboard (**Kbd** button in the display toolbar at the top of the screen) and enter the appropriate text in the touch keyboard. Transfer this text to the (green) Descriptive Text control by touching the control. Toggle the **Function Button** then **Enter** to select the other discrete state. Edit the text for this function state and transfer it to the Descriptive Text control as before. A USB keyboard cannot be used for this text entry operation. Test the Function Button and verify that the correct text is indicated for the corresponding functional operation in the system.

After all configuration changes have been made, it is important to save the configuration of the **Axis** and **PGOUT** controls and the **Descriptive Text** indicator using the Save GUI control. To make these changes permanent, enable the GUI Flash Update found in the **Setup/System/SaveRestore** System File Transfer panel, and reboot the GUI computer.

Since the discrete control relays are connected to external hardware, it is important that the power on state be defined and applied whenever the system boots. The relays are inactive during the boot process and are guaranteed not to produce transient closures during this process. The power up state can be set to either "open" or "closed" contacts and are preserved by saving the real time configuration with the system in the default state; the preferred state is for a relay contact to default to the "open" contact state. Configuration changes in the RT computer are made permanent by saving the RT system configuration in the **Setup/System/SaveRestore** panel.

**EXAMPLE:** In the example panel above, the upper left button is used to remotely control the AC power of the power amplifier. The power is currently ON as indicated by the lighted button and Bit-0 of the PROGOUT register is active; the actual value of Bit-0 is a logic "0" because the relays in the Transition panel are powered from the +5 volt supply and are active when pulled to ground by a PGIO pin. From the default configuration of the GPIO pin, described in the previous section, GPIO-3 is connected to Relay1 on Axis1 and provides the closure on pins 7 and 26 of the Discrete Output connector J1 on the back of the Acutrol3000 chassis see Appendix.

The relays used in the Transition Panel provide a Form-A contact with a rating of 100 V DC at 0.5 Amps.



#### 5 Discrete Status

#### 5.1 Interlock (Fault) Status

The Interlock Fault Status (IFS) consists of one 16-bit status word per axis, which is dedicated to reporting the fail-safe servo operation of the hardware interlocks. Live status is reported whenever an axis is not servoed, and the Servo Fault (Abort) state has been reset. If an axis is servoed and a hardware fault is detected, the fault state is captured and reported in the Interlock (Fault) Status word.



Figure 14. Status/Interlock Fail

#### 5.2 Discrete Output Status

#### 5.3 System Status

System status is managed in the Acutrol3000 using the protocols of the IEEE488.2 Instrumentation Interface standard. The Top Level Status (STB) corresponds to the Status Byte register and summarizes the major subsystems of the controller. These are indented at the first level in the illustration below and include System Interlock, Axis Control Processor, Supervisor, Remote Interface, and Standard Event sub-systems. Under each sub-system summary there are either lower level summary words or discrete status words. The size of all discrete status words is 16 bits and generally a bit defines a unique state or event in the system.

## ACUTPONIC



Figure 15. Status/System – Top Level

A detailed description of monitoring status via the IEEE interface is described in TM-8004 ACUTROL 3000 Command Language Programming Manual and in the IEEE488.2-1987 Instrumentation Interface Standard.

#### 5.3.1 Status Monitor Operation

The Supervisor reviews the discrete status of the entire control system on each processing frame and updates Condition Registers that reflect the live status of the system. In the GUI **Status/System** panel, there is a control (visible in the figure above) that selects either the live status of the selected Condition Register or the latched status of the corresponding Event Register. The default mode in the GUI is to display the latched Event status and the associated controls. An Event Register records the occurrence of a change of state of any of the bits in the associated Condition Register.

The "Displaying Condition Registers" control is selected to view status bits that change dynamically/routinely such as the **AxDYN: +Rate Limit**. These status bits are of the type that come and go during the normal operation of the system, and do not usually include system states that are considered faults, which result in interrupting the servo.

Captured transient states are displayed by selecting the "Display Event Registers" control. An additional control is made visible on the GUI panel that permits resetting all of the Event Registers allowing future events to be captured.

When traversing through the status tree after the occurrence of a system fault, the Event Registers should be selected so that a transient fault can be identified. A typical example is a software detected Rate Trip fault whose live status is cleared when the velocity of the axis fall below the trip threshold.

Fig 16.1 Normal operation (live status)



Fig 16.2 System Interlock Fault detected



Fig 16.3 Software Fault detected on axis1

AXES 2 AXIS 3



Fig 16.4 Rate Trip fault identified



#### 5.3.2 Additional Status Access

The discrete status words and the associated bit functionality is described in detail in Appendix B of the Command Language Programming Manual TM-8004. The Condition Registers and the Event Registers can be read via the IEEE422.2 or any of the supported interfaces using the ACL command:

ACL :Status:ESR? < register ID>, < bit #>

Also, the status registers have supervisor variable numbers and can be read using the ACL command:

:Read:Variable? <variable>

or selecting and displaying a status variable in a readout window in the GUI (hexadecimal format).

#### 5.4 AIM Status

The Axis Interface Module Status reports the state of the internal registers of the AIM. The registers provide an unaltered view-port into the operation of the FPGA logic. A set of 17 registers may be examined for each axis and the types of registers fall into (3) categories: status, configuration, and controls.



Figure 17. Status/AIM

This manual does not provide exhaustive explanations of the aim status because most of the relevant information from the AIM registers, necessary for setting up or operating a system, is processed into either the Fail Status or the System status. The principal use of these registers is for advanced system integration and/or as a development debug tool.

#### 5.5 Identifying Faults using the Status Panel

The **Status** panel of the GUI provides a structured approach to identify the source of an operational fault.

#### 5.5.1 GUI⇔RT Command/Communication Faults

If a fault occurs as a result of GUI-RT command/communication, the GUI will automatically switch to the **Status/GUI** panel to alert the operator and identify the nature of the fault. If the fault is the result of a RT parsing or execution error, then a message from the RT COMPUTER will be reported in the status window. If the error is detected in the GUI then a GUI error message will be reported in the status window identifying the reason for the error, and a program location number to facilitate debugging. Selecting Help on the top menu bar while the **Status/GUI** panel is selected will display a list of GUI error messages identifying the operation that caused the fault.



Figure 18. Status/GUI

Whenever a GUI error is detected, the communication with the RT computer is suspended. After the operator has had a chance to read the message, pressing the "Clear Error" control should clear the error; the GUI communication should resume.

If an error occurs immediately after returning to the panel that caused the error in the first place, and the cycle seems to repeat, it may be necessary to temporarily cancel the auto query feature. The **Status/GUI** panel provides a control to disable this feature; select "Auto Query OFF", return to the suspect panel and fix bad data that caused the problem. Remember to return to the **Status/GUI** panel and re-enable the auto query feature.

#### 5.5.2 Servo Fault Identification

While an axis is servoed, the Acutrol3000 performs software and fail-safe hardware safety test. If a fault is detected, the associated axis will be shut down and the GUI will indicate a failure by flashing the axis servo indicator at the bottom of the screen (also the Disable button on the front panel will be flashing). The **Status** panel is used to identify the source of the fault.

Select the **Status/Interlock Fail** panel, if a fault is indicated then it is likely that the indicated hardware interlock is the reason for the system shutdown. Resolving the hardware condition should enable normal operation. To servo the axis, reset the fault by pressing the "Reset Servo Faults" control and reenabling the axis servo.

If there are no faults on the **Status/Interlock Fail** panel, then the fault was not detected by the fail-safe interlock hardware, but rather it was detected by a software safety test. To find the software-detected fault, switch to the **Status/System** panel, select the Top Level Status, and display the Event Status Registers. The active bit status indicators (bright red) will identify the sub-systems that have reported a fault. All sub-systems reporting a fault should be checked. Select a sub-system summary status and identify the next level down summary status or status word.



Figure 19.1 Status/System - SI Summary

Select the status word that indicates a fault and locate the source of the fault. In some cases more that one fault will be reported but usually one fault is the obvious source of a problem and the other faults are subordinate.



Figure 19.2 Status/System - SwFault

Keep following the fault indications until the reported status is at the bit level and the suspect source of the fault is indicated. If the indicated fault does not seem like the probable cause of the system shutdown, back up and follow another path of the status tree.



Figure 19.3 Status/System – Max Rate Fault

In this example, the Top Level status indicates a fault in the System Interlock Summary status, which in turn revels a fault in the Software Fault summary. Selecting the Software Fault (AxSWFAULT) status word indicated that a Maximum Rate Fault (Rate Trip) has occurred.

Note that the System Status panel above identifies the supervisor variable name as "0-S\_EREG\_A1SWFAULT". The breakdown of this name is as follows:

- 0→ axis 0 or Supervisor
- S → Status
- EREG → Event Register
- A1 → Axis 1
- SWFAULT → refers to the software detected servo fault register.

The Summary of Status registers is defined in detail in TM-8004 Acutrol3000 ACL Programming Manual.



### 6 Appendix A – Discrete Input Connector (Interlock Configuration Work Sheet)

| Table 1 Acutrol3000 Digital Input Connector Project |         |         |                    |                    |                     |   |          |
|-----------------------------------------------------|---------|---------|--------------------|--------------------|---------------------|---|----------|
| Transition Module                                   | Connect |         | A2K counterpart is |                    | Customer            |   | DATE//   |
|                                                     | Pin N   | umber   |                    |                    | Config <sup>3</sup> |   |          |
| User Interlock Name                                 | Ribbon  | "D-Sub" | Signal Name        | Signal Source      | Jumpers             | : | Comments |
|                                                     | 1       | 1       | GND                | Gnd                |                     |   |          |
|                                                     | 2       | 20      | GND                | Gnd                |                     |   |          |
|                                                     | 3       | 2       | AIM1-Intlk1-A      | GPD0               | JP100               |   |          |
|                                                     | 4       | 21      | AIM1-Intlk1-C      | AIM(1) J8-Pin39    | АВС                 |   |          |
|                                                     | 5       | 3       | AIM1-Intlk2-A      | GPD1               | JP101               |   |          |
|                                                     | 6       | 22      | AIM1-Intlk2-C      | AIM(1) J8-Pin40    | АВС                 |   |          |
|                                                     | 7       | 4       | AIM1-Intlk3-A      | GPD2               | JP102               |   |          |
|                                                     | 8       | 23      | AIM1-Intlk3-C      | AIM(1) J8-Pin41    | АВС                 |   |          |
|                                                     | 9       | 5       | AIM1-Intlk4-A      | GPD5               | JP103               | 4 |          |
|                                                     | 10      | 24      | AIM1-Intlk4-C      | AIM(1) J8-Pin44    | АВС                 | 1 |          |
|                                                     | 11      | 6       | AIM2-Intlk1-A      | GPD0               | JP200               |   |          |
|                                                     | 12      | 25      | AIM2-Intlk1-C      | AIM(2) J8-Pin39    | АВС                 |   |          |
|                                                     | 13      | 7       | AIM2-Intlk2-A      | GPD1               | JP201               |   |          |
|                                                     | 14      | 26      | AIM2-Intlk2-C      | AIM(2) J8-Pin40    | АВС                 |   |          |
|                                                     | 15      | 8       | AIM2-Intlk3-A      | GPD2               | JP202               |   |          |
|                                                     | 16      | 27      | AIM2-Intlk3-C      | AIM(2) J8-Pin41    | АВС                 |   |          |
|                                                     | 17      | 9       | AIM2-Intlk4-A      | GPD5               | JP203               | 1 |          |
|                                                     | 18      | 28      | AIM2-Intlk4-C      | AIM(2) J8-Pin44    | АВС                 |   |          |
|                                                     | 19      | 10      | AIM3-Intlk1-A      | GPD0               | JP300               |   |          |
|                                                     | 20      | 29      | AIM3-Intlk1-C      | AIM(3) J8-Pin39    | АВС                 |   |          |
|                                                     | 21      | 11      | AIM3-Intlk2-A      | GPD1               | JP301               |   |          |
|                                                     | 22      | 30      | AIM3-Intlk2-C      | AIM(3) J8-Pin40    | АВС                 |   |          |
|                                                     | 23      | 12      | AIM3-Intlk3-A      | GPD2               | JP302               |   |          |
|                                                     | 24      | 31      | AIM3-Intlk3-C      | AIM(3) J8-Pin41    | АВС                 |   |          |
| _                                                   | 25      | 13      | AIM3-Intlk4-A      | GPD5               | JP303               | 1 |          |
|                                                     | 26      | 32      | AIM3-Intlk4-C      | AIM(3) J8-Pin44    | АВС                 | ı |          |
|                                                     | 27      | 14      | Global INTLK1-A    | Opto on AUX Servo  | JP1                 | 4 |          |
|                                                     | 28      | 33      | Global INTLK1-C    | Intlk 1            | АВС                 | 4 |          |
| _                                                   | 29      | 15      | Global INTLK2-A    | Opto on AUX Servo  | JP2                 | 4 |          |
|                                                     | 30      | 34      | Global INTLK2-C    | Intlk 2            | АВС                 | 4 |          |
|                                                     | 31      | 16      | Global INTLK3-A    | GPD4               | JP3                 | 2 |          |
|                                                     | 32      | 35      | Global INTLK3-C    | AIM J8-Pin43       | АВС                 |   |          |
|                                                     | 33      | 17      | Master INTLK -A    | Input on Aux Servo | JP4                 |   |          |
|                                                     | 34      | 36      | Master INTLK -C    | Pin 20 (all axes)  | АВС                 |   |          |
|                                                     |         | 18      | +5 V (Fused)       |                    |                     |   |          |
|                                                     |         | 37      | HSP                | Host Sync/Freeze   |                     |   |          |
|                                                     |         | 19      | GND                |                    |                     |   |          |

<sup>1.</sup> The default configuration for the GPD5 I/O pin is to input the INTLK4 signal for use as a discrete interlock for each axis. GPD5 can alternately be used as a Global interlock input or as an output to control the state of Relay closure #3.

<sup>2.</sup> The default configuration for GPD4 is as an output, which controlls the state of Relay 2. Optionally, GPD4 can input Global Interlock 3 on an axis by axis basis.

<sup>3.</sup> These Jumpers are used to configure the Opto isolated inputs for one of three cases: 24 volt logic, 5 volt logic, and floating closure (5 Volts supplied by Acutrol)

<sup>4.</sup> The default configuration for the Aux Servo Intlk1,2 opto isolated inputs is to be used as global interlocks. Current revision of the Transition Board requires that the aux-servo opto input be configured for 5 volt operation for these global inputs. Optionally, these inputs can be connected to the Servo B connector and used as classical power amplifier interlocks for a second drive/motor.





# 7 Appendix B – AIM Interlock Test Register (Axis Interlock Work Sheet)

| REGISTE    | R NAME: FAIL_STATUS2     |              |         |                |                    |           |
|------------|--------------------------|--------------|---------|----------------|--------------------|-----------|
| Project# _ |                          | Axis         |         | Date//         | _                  |           |
|            |                          |              |         |                | INTERLOCK S        | OURCE     |
| Bit#       | User Signal Name         | Enable Mode* | Logic   | Status Name    | Local States       | Multiplex |
| 0          |                          |              |         | INTLK_STATUS0  | GP_IN0             | MIR0      |
| 1          |                          |              |         | INTLK_STATUS1  | GP_IN1             | MIR1      |
| 2          |                          |              |         | INTLK_STATUS2  | GP_IN2             | MIR2      |
| 3          |                          |              |         | INTLK_STATUS3  | GP_IN3             | MIR3      |
| 4          |                          |              |         | INTLK_STATUS4  | GP_IN4             | MIR4      |
| 5          |                          |              |         | INTLK_STATUS5  | GP_IN5             | MIR5      |
| 6          |                          |              |         | INTLK_STATUS6  | PA_ACK0            | MIR8      |
| 7          |                          |              |         | INTLK_STATUS7  | INTLK1             | MIR9      |
| 8          |                          |              |         | INTLK_STATUS8  | INTLK2             | MIR10     |
| 9          |                          |              |         | INTLK_STATUS9  | MASTER_INTLK       | MIR11     |
| 10         | AIM - DMA Sync Fault     | Immediate    | NON-INV | INTLK_STATUS10 | AIM - DMA_SYNC     | _ERROR    |
| 11         | AIM-RT Software Watchdog | Immediate    | NON-INV | INTLK_STATUS11 | AIM - SW_WD_F      | AULT      |
| 12         | AIM - 10 kHzCLK_WDOG     | Immediate    | NON-INV | INTLK_STATUS12 | AIM - 10 kHzCLK    | _WDOG     |
| 13         | Serial Data Link         | Disabled     | NON-INV | INTLK_STATUS13 | AIM - SDL_FAIL     |           |
| 14         | Servo Intlk Link         | Disabled     | NON-INV | INTLK_STATUS14 | AIM - SIL Servo Ir | ntlk Link |
| 15         | AIM - 10K_LOCK_FAULT     | Immediate    |         | INTLK_STATUS15 | AIM - 10K_LOCK_    | FAULT     |



# 8 Appendix C – GPD[X] Pin Default I/O Direction

| GPD[X] | Default I/O |        |        |        |
|--------|-------------|--------|--------|--------|
| Pin    | Direction   | Axis 1 | Axis 2 | Axis 3 |
| GPD0   | IN          |        |        |        |
| GPD1   | IN          |        |        |        |
| GPD2   | IN          |        |        |        |
| GPD3   | OUT         |        |        |        |
| GPD4   | OUT         |        |        |        |
| GPD5   | IN          |        |        |        |
| GPD6   | OUT         |        |        |        |
| GPD7   | OUT         |        |        |        |



## 9 Appendix D – Transition Module Jumper Summary

| Jumper<br>Number |              | Location       | Function/Name                         | Options/Notes                                        | Schematic |
|------------------|--------------|----------------|---------------------------------------|------------------------------------------------------|-----------|
| JP100            | None         | RAP-L          | AIM1 - Opto Intlk1                    | A, B, C jumpers, see section 3.1                     | Page<br>2 |
| JP101            | None         | RAP-L          | AIM1 - Opto Intlk2                    | A, B, C jumpers, see section 3.1                     | 2         |
| JP102            | None         | RAP-L          | AIM1 - Opto Intlk3                    |                                                      | 2         |
| JP102<br>JP103   | None         | RAP-L<br>RAP-L | AlM1 - Opto Intlk4                    | A, B, C jumpers, see section 3.1                     | 2         |
| JP200            | None         | RAP-L<br>RAP-L | AlM2 - Opto Intlk1                    | A, B, C jumpers, see section 3.1                     | 2         |
| JP200            | None         | RAP-L          | AIM2 - Opto Intlk2                    | A, B, C jumpers, see section 3.1                     | 2         |
| JP201            | None         | RAP-L<br>RAP-L | •                                     | A, B, C jumpers, see section 3.1                     | 2         |
|                  |              |                | AIM2 - Opto Intlk3                    | A, B, C jumpers, see section 3.1                     | 2         |
| JP203<br>JP300   | None<br>None | RAP-L<br>RAP-L | AIM2 - Opto Intlk4                    | A, B, C jumpers, see section 3.1                     | 2         |
|                  |              |                | AIM3 - Opto Intlk1                    | A, B, C jumpers, see section 3.1                     | 2         |
| JP301            | None         | RAP-L          | AIM3 - Opto Intlk2                    | A, B, C jumpers, see section 3.1                     |           |
| JP302            | None         | RAP-L          | AIM3 - Opto Intlk3                    | A, B, C jumpers, see section 3.1                     | 2         |
| JP303            | None         | RAP-L          | AIM3 - Opto Intlk4                    | A, B, C jumpers, see section 3.1                     | 2         |
| JP1              | None         | RAP-L          | Global - Intlk1                       | A, B, C jumpers, see section 3.1                     | 2         |
| JP2              | None         | RAP-L          | Global - Intlk2                       | A, B, C jumpers, see section 3.1                     | 2         |
| JP3              | None         | RAP-L          | Global - Intlk3                       | A, B, C jumpers, see section 3.1                     | 2         |
| JP4              | None         | RAP-L          | Master - Intlk4                       | A, B, C jumpers, see section 3.1                     | 2         |
| JP8              | IN           | INT            |                                       | Interlock driver enable                              | 2         |
| JP12             | None         | INT            | Host Sync Pulse                       | Header to Sync Connector (future use)                | 2         |
| JP104            | В            | RAP-R          | GPD4 Config                           | AIM1 GPD4, Global Intlk3, Relay2                     | 3         |
| JP204            | В            | RAP-R          | GPD4 Config                           | AIM2 GPD4, Global Intlk3, Relay2                     | 3         |
| JP304            | В            | RAP-R          | GPD4 Config                           | AIM3 GPD4, Global Intlk3, Relay2                     | 3         |
| JP105            | Α            | RAP-R          | GPD5 Config                           | AIM1 GPD5, Global Intlk3, Relay2                     | 3         |
| JP205            | Α            | RAP-R          | GPD5 Config                           | AIM2 GPD5, Global Intlk3, Relay3                     | 3         |
| JP305            | Α            | RAP-R          | GPD5 Config                           | AIM3 GPD5, Global Intlk3, Relay4                     | 3         |
| JP5              | D            | INT            | · · · · · · · · · · · · · · · · · · · | DE* (sel/mode), Master Invert, FP Fault Indication   |           |
| JP6              | A, B         | INT            | •                                     | r+/- 12 Volts internal or external In/Out via Header | 5         |
| JP7              | Α            | INT            |                                       | 80.5 Hz clock to generate                            | 4         |
| JP9              | Α            | INT            | AIM Axis2 Enable                      | Spare1 I/O (required for auto axis enable)           | 4         |
| JP10             | Α            | INT            | AIM Axis3 Enable                      | Spare3 I/O (required for auto axis enable)           | 4         |
| JP11             | None         | INT            | Spare2 I/O                            | No function at this time                             | 4         |
| JPx15            | Α            | INT            | INTLK1-Cathode                        | AIM1 Global INTLK1 or ServoB PA Fault                | 7, 9, 11  |
| JPx16            | Α            | INT            | INTLK1-Anode                          | AIM1 Global INTLK1 or ServoB PA Fault                | 7, 9, 11  |
| JPx17            | Α            | INT            | INTLK2-Cathode                        | AIM1 Global INTLK2 or ServoB PA Ack                  | 7, 9, 11  |
| JPx18            | Α            | INT            | INTLK2-Anode                          | AIM1 Global INTLK2 or ServoB PA Ack                  | 7, 9, 11  |
| JPx06            | IN           | INT            | FRDL                                  | Fine Resolver Drive High                             | 8, 10, 12 |
| JPx07            | IN           | INT            | FRDH                                  | Fine Resolver Drive Lo                               | 8, 10, 12 |
| JPx08            | OUT          | INT            | GND                                   | Fine Sine Feedback Shield                            | 8, 10, 12 |
| JPx09            | OUT          | INT            | GND                                   | Fine Cosine Feedback Shield                          | 8, 10, 12 |
| JPx10            | OUT          | INT            |                                       | N.U.                                                 | 8, 10, 12 |
| JPx11            | IN           | INT            | CSFS                                  | Coarse Sine Feedback Shield                          | 8, 10, 12 |
| JPx12            | IN           | INT            | GCCF                                  | Ground Coarse Cosine Feedback                        | 8, 10, 12 |
| JPx13            | IN           | INT            | GCSF                                  | Ground Coarse Sine Feedback                          | 8, 10, 12 |
| JPx14            | IN           | INT            | CCFS                                  | Coarse Cosine Feedback Shield                        | 8, 10, 12 |



### 10 Appendix E – Servo A Output Connector

Acutrol3000 Servo A Output Connector

Chassis Transition Module

Connector Axis1 - J12. Axis2 – J22, Axis3 – J32

ACT2000 counterpart is ECP J2

| Ribbon | Sub "D" Signal Name |                      | Signal Source                                  |
|--------|---------------------|----------------------|------------------------------------------------|
| 1      | 1                   | GND                  |                                                |
| 2      | 14                  | GND                  |                                                |
| 3      | 2                   | ServoA Out 1 Hi      | Aux Servo-Pin3 (AIM- AOC5)                     |
| 4      | 15                  | ServoA Out1 Lo       | GND                                            |
| 5      | 3                   | ServoA Out 2 Lo      | GND                                            |
| 6      | 16                  | ServoA Out 2 Hi      | Aux Servo-Pin6 (AIM-AOC6)                      |
| 7      | 4                   | GND                  |                                                |
| 8      | 17                  | GND                  |                                                |
| 9      | 5                   | ServoA PA Fault0 (c) | Aux Servo-Pin9                                 |
| 10     | 18                  | ServoA PA Fault0 (a) | Aux Servo-Pin10                                |
| 11     | 6°                  | (Aux) INTLK1 (c)     | Aux Servo-Pin11 / ServoB-Pin5 / Global INTLK1  |
| 12     | 19°                 | (Aux) INTLK1 (a)     | Aux Servo-Pin12 / ServoB-Pin18 / Global INTLK1 |
| 13     | 7                   | ServoA PA ACK0 (c)   | Aux Servo-Pin13                                |
| 14     | 20                  | ServoA PA ACK0 (a)   | Aux Servo-Pin14                                |
| 15     | 8°                  | (Aux) INTLK2 (c)     | Aux Servo-Pin15 / ServoB-Pin7 / Global INTLK2  |
| 16     | 21°                 | (Aux) INTLK2 (a)     | Aux Servo-Pin16 / ServoB-Pin20 / Global INTLK2 |
| 17     | 9*                  | PA ENBL0 (+)         | Aux Servo-Pin17 / ServoB-Pin9                  |
| 18     | 22*                 | PA ENBL0 (-)         | Aux Servo-Pin18 / ServoB-Pin22                 |
| 19     | 10*                 | PA ENBL1 (+)         | AIM60-Pin58 / ServoB-Pin10                     |
| 20     | 23*                 | PA ENBL1 (-)         | AIM60-Pin58 / ServoB-Pin23                     |
| 21     | 11                  | -                    | (Spare Pins)                                   |
| 22     | 24                  | -                    | (Spare Pins)                                   |
| 23     | 12                  | -                    | (Spare Pins)                                   |
| 24     | 25                  | -                    | (Spare Pins)                                   |
| 25     | 13                  | -                    | (Spare Pins)                                   |
| 26     | -                   | -                    | (Spare Pins)                                   |

<sup>\*</sup> Also being used/routed to the same Pin on Servo B connector.

<sup>°</sup> these signals are routed to:

<sup>-</sup> Servo B connector

<sup>-</sup> jumpers which allow them to be configured as axis or global Interlock input signals (Global INTLK 1 & 2)



## 11 Appendix F - Servo B Output Connector

Acutrol3000 Servo B Output Connector

Chassis Transition Module

Connector Axis1 - J13. Axis2 - J23, Axis3 - J33

ACT2000 counterpart is (none)

| Ribbon | Sub "D" | Signal Name          | Signal Source                                  |  |
|--------|---------|----------------------|------------------------------------------------|--|
| 1      | 1       | GND                  | GND                                            |  |
| 2      | 14      | GND                  | GND                                            |  |
| 3      | 2       | ServoB Out 1 Hi      | AIM60-Pin33 (AOC3)                             |  |
| 4      | 15      | ServoB Out1 Lo       | GND                                            |  |
| 5      | 3       | ServoB Out 2 Lo      | GND                                            |  |
| 6      | 16      | ServoB Out 2 Hi      | AIM60-Pin34 (AOC4)                             |  |
| 7      | 4       | GND                  | GND                                            |  |
| 8      | 17      | GND                  | GND                                            |  |
| 9      | 5°      | ServoB PA FAULT0 (c) | Aux Servo-Pin11 /ServoA-Pin6 / Global INTLK1   |  |
| 10     | 18°     | ServoB PA FAULT0 (a) | Aux Servo-Pin12 / ServoA-Pin19 / Global INTLK1 |  |
| 11     | 6       |                      |                                                |  |
| 12     | 19      |                      |                                                |  |
| 13     | 7°      | ServoB PA ACK0 (c)   | Aux Servo-Pin15 / ServoA-Pin8 / Global INTLK2  |  |
| 14     | 20°     | ServoB PA ACK0 (a)   | Aux Servo-Pin16 / ServoA-Pin21 / Global INTLK2 |  |
| 15     | 8       |                      |                                                |  |
| 16     | 21      |                      |                                                |  |
| 17     | 9       | PA ENBL0 (+)         | Aux Servo-Pin17 / ServoA-Pin9 (PA ENBL0)       |  |
| 18     | 22      | PA ENBL0 (-)         | Aux Servo-Pin18 / ServoA-Pin22 (PA ENBL0)      |  |
| 19     | 10      | PA ENBL1 (+)         | AIM60-Pin58 (DE1) / ServoA-Pin10 (PA ENBL1)    |  |
| 20     | 23      | PA ENBL1 (-)         | AIM60-Pin58 (DE1) / ServoA-Pin23 (PA ENBL1)    |  |
| 21     | 11      |                      | (Spare Pins)                                   |  |
| 22     | 24      |                      | (Spare Pins)                                   |  |
| 23     | 12      |                      | (Spare Pins)                                   |  |
| 24     | 25      |                      | (Spare Pins)                                   |  |
| 25     | 13      |                      | (Spare Pins)                                   |  |
| 26     | -       | -                    | -                                              |  |
|        |         |                      |                                                |  |

<sup>°</sup> these signals are routed to jumpers which allows to configer them as axis or global Interlock input signals (DIC --> Global INTLK 1 & 2)



### 12 Appendix G – Discrete Output Connector

Acutrol3000 Digital Output Connector Chassis Transition Module Connector J1 ACT2000 counterpart is MIS-J1 (26 pins)

|    | umber   | 0: 111                       | 0: 10            |
|----|---------|------------------------------|------------------|
|    | "D-Sub" | Signal Name                  | Signal Source    |
| 1  | 1       | GND                          |                  |
| 2  | 20      | GND                          |                  |
| 3  | 2       | AIM1 Servoed-A               | AIM1-DE0         |
| 4  | 21      | AIM1 Servoed-B               |                  |
| 5  | 3       | AIM2 Servoed-A               | AIM2-DE0         |
| 6  | 22      | AIM2 Servoed-B               |                  |
| 7  | 4       | AIM3 Servoed-A               | AIM3-DE0         |
| 8  | 23      | AIM3 Servoed-B               |                  |
| 9  | 5       | Any AIM Servoed-A            | DE0/DE1          |
| 10 | 24      | Any AIM Servoed-B            |                  |
| 11 | 6       | All AIM Servoed-A            | AIM1-2-3-DE0/1   |
| 12 | 25      | All AIM Servoed-B            |                  |
| 13 | 7       | AIM1-Relay1-A                | GPD3 (PGOUT3)    |
| 14 | 26      | AIM1-Relay1-B                | AIM(1)60-Pin42   |
| 15 | 8*      | AIM1-Relay2-A GPD4 (PGOUT4   |                  |
| 16 | 27*     | AIM1-Relay2-B AIM(1)60-Pin43 |                  |
| 17 | 9**     | AIM1-Relay3-A                | GPD5 (PGOUT5)    |
| 18 | 28**    | AIM1-Relay3-B                | AIM(1)60-Pin44   |
| 19 | 10      | AIM2-Relay1-A                | GPD3 (PGOUT3)    |
| 20 | 29      | AIM2-Relay1-B                | AIM(2)60-Pin42   |
| 21 | 11*     | AIM2-Relay2-A                | GPD4 (PGOUT4)    |
| 22 | 30*     | AIM2-Relay2-B                | AIM(2)60-Pin43   |
| 23 | 12**    | AIM2-Relay3-A GPD5 (PGOUT5)  |                  |
| 24 | 31**    | AIM2-Relay3-B                | AIM(2)60-Pin44   |
| 25 | 13      | +5 V (Fused)                 |                  |
| 26 | 32      | GND                          |                  |
| 27 | 14      | AIM3-Relay1-A                | GPD3 (PGOUT3)    |
| 28 | 33      | AIM3-Relay1-B                | AIM(3)60-Pin42   |
| 29 | 15*     | AIM3-Relay2-A                | GPD4 (PGOUT4)    |
| 30 | 34*     | AIM3-Relay2-B                | AIM(3)60-Pin43   |
| 31 | 16**    | AIM3-Relay3-A GPD5 (PGOUT5)  |                  |
| 32 | 35**    | AIM3-Relay3-B                | AIM(3)60-Pin44   |
| 33 | 17      | Master CNTL-Relay-A          | Front Panel/     |
| 34 | 36      | Master CNTL-Relay-B          | Master Interlock |
| 35 | 18      |                              | (Spare Pins)     |
| 36 | 37      |                              | (Spare Pins)     |
| 37 | 19      |                              | (Spare Pins)     |



- \* This relay output can be sacrificed to provide an additional optical Global input using Global INTLK3 as an input. This is a jumper option on the chassis transition module.
- \*\* This relay output can be sacrificed to provide an additional optical Global or single axis input using GPD5. This is a jumper option on the chassis transition module.



## 13 Appendix H - Transducer Drive and Feedback Connector

Acutrol3000 DRV - FBK Chassis Transition Module Connector Axis1 – J11, Axis2 – J21, Axis3 – J31 ACT2000 counterpart is ECP J1 (40 pin)

| Pin N  | umber   |              |                                           |                          |
|--------|---------|--------------|-------------------------------------------|--------------------------|
| Ribbon | "D-Sub" | Signal Name  | Description                               | Signal Source            |
| 1      | 1       | GND          | Cable Shield (Drain)                      |                          |
| 2      | 20      | GND          | Inductosyn Drive Shield                   |                          |
| 3      | 2       | INDH         | Inductosyn Drive HI                       | AIM(1)60-Pin3            |
| 4      | 21      | INDL         | Inductosyn Drive LO                       | AIM(1)60-Pin4            |
| 5      | 3       | FRDL         | Fine Resolver Drive LO                    | AIM(1)60-Pin5            |
| 6      | 22      | FRDH         | Fine Resolver Drive HI                    | AIM(1)60-Pin6            |
| 7      | 4       | GND          | Fine Resolver Drive Shield                |                          |
| 8      | 23      | GND          | Analog Power common                       |                          |
| 9      | 5       | AV (+)       | V+ Analog Power                           | AIM(1)60-Pin8 / exnterna |
| 10     | 24      | AV(-)        | V- Analog Power                           | AIM(1)60-Pin9 / external |
| 11     | 6       | GND          | Analog Power Shield                       | ,                        |
| 12     | 25      | GND (Jumper) | Fine Sind Feedback Shield (Open)          |                          |
| 13     | 7       | FSFBKH       | Fine Sine Feedback HI                     | AIM(1)60-Pin11           |
| 14     | 26      | FSFBKL       | Fine Sine Feedback LO                     | AIM(1)60-Pin12           |
| 15     | 8       | GND          | Control Line common                       | ·                        |
| 16     | 27      | GND (Jumper) | Fine Cosine Feedback Shield (Open)        |                          |
| 17     | 9       | FCFBKH       | Fine Cosine Feedback HI                   | AIM(1)60-Pin14           |
| 18     | 28      | FCFBKL       | Fine Cosine Feedback LO                   | AIM(1)60-Pin13           |
| 19     | 10      |              |                                           | , ,                      |
| 20     | 29      |              |                                           |                          |
| 21     | 11      | GND          | Ground                                    |                          |
| 22     | 30      | GND (Jumper) | coarse Sine Feedback Shield               |                          |
| 23     | 12      | CSFBKH       | Coars Sine Feedback HI                    | AIM(1)60-Pin17           |
| 24     | 31      | CSFBL        | Coarse Sine Feedback LO                   | AIM(1)60-Pin18           |
| 25     | 13      | CCFBKL       | Coarse Cosine Feedback LO                 | AIM(1)60-Pin19           |
| 26     | 32      | CCFBKH       | Coarse Cosine Feedback HI                 | AIM(1)60-Pin20           |
| 27     | 14      | GND (Jumper) | Coarse Cosine Feedback Shield (installed) |                          |
| 28     | 33      | GND          | Coarse Resolver Drive Shield              |                          |
| 29     | 15      | CRDH         | Coarse Resolver Drive HI                  | AIM(1)60-Pin5            |
| 30     | 34      | CRDL         | Coarse Resolver Drive LO                  | AIM(1)60-Pin6            |
| 31     | 16      | ANALOGL0     | Analog Input 0 LO                         | AIM(1)60-Pin22           |
| 32     | 35      | ANALOGH0     | Analog Input 0 HI                         | AIM(1)60-Pin21           |
| 33     | 17      | GND          | Analog Input 0 Shield                     | ` '                      |
| 34     | 36      | GND          | Analog Input 1 Shield                     |                          |
|        | 18      | ANALOGH1     | Analog Input 1 HI                         | AIM(1)60-Pin23           |
|        | 37      | ANALOGL1     | Analog Input 1 LO                         | AIM(1)60-Pin24           |
|        | 19      |              | <u> </u>                                  | ` '                      |



## 14 Appendix I – Optical Encoder/RS232 Connector

Optical Encoder/RS232 Connector Acutrol3000 Chassis Transition Module Connector J3

| 1         1         GND           2         14         +5 Volts           3         2         AQuad         AIM(1)60-Pin49           4         15         Bquad         AIM(1)60-Pin50           5         3         Eref         AIM(1)60-Pin51           6         16         GND           7         4         Rx         AIM(1)60-Pin59           8         17         Tx         AIM(1)60-Pin60           9         5         GND           10         '8         + 5 Volts           11         6         AQuad         AIM(2)60-Pin60           12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24                                                           |        |         |             |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-------------|----------------|
| 2         14         + 5 Volts           3         2         AQuad         AIM(1)60-Pin49           4         15         Bquad         AIM(1)60-Pin50           5         3         Eref         AIM(1)60-Pin51           6         16         GND           7         4         Rx         AIM(1)60-Pin59           8         17         Tx         AIM(1)60-Pin60           9         5         GND           10         '8         + 5 Volts           11         6         AQuad         AIM(2)60-Pin60           12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin60           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12                                                        | Ribbon | Sub "D" | Signal Name | Signal Source  |
| 3         2         AQuad         AIM(1)60-Pin49           4         15         Bquad         AIM(1)60-Pin50           5         3         Eref         AIM(1)60-Pin51           6         16         GND           7         4         Rx         AIM(1)60-Pin59           8         17         Tx         AIM(1)60-Pin60           9         5         GND           10         '8         + 5 Volts           11         6         AQuad         AIM(2)60-Pin49           12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin60           20         23         Bquad         AIM(3)60-Pin51           21         11         Eref         AIM(3)60-Pin51           22         24         GND <td< td=""><td>1</td><td>1</td><td>GND</td><td></td></td<> | 1      | 1       | GND         |                |
| 4         15         Bquad         AIM(1)60-Pin50           5         3         Eref         AIM(1)60-Pin51           6         16         GND           7         4         Rx         AIM(1)60-Pin59           8         17         Tx         AIM(1)60-Pin60           9         5         GND           10         '8         + 5 Volts           11         6         AQuad         AIM(2)60-Pin49           12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59                                                             | 2      | 14      | + 5 Volts   |                |
| 5         3         Eref         AIM(1)60-Pin51           6         16         GND           7         4         Rx         AIM(1)60-Pin59           8         17         Tx         AIM(1)60-Pin60           9         5         GND           10         '8         + 5 Volts           11         6         AQuad         AIM(2)60-Pin49           12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                               | 3      | 2       | AQuad       | AIM(1)60-Pin49 |
| 6         16         GND           7         4         Rx         AIM(1)60-Pin59           8         17         Tx         AIM(1)60-Pin60           9         5         GND           10         '8         + 5 Volts           11         6         AQuad         AIM(2)60-Pin49           12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                         | 4      | 15      | Bquad       | AIM(1)60-Pin50 |
| 7         4         Rx         AIM(1)60-Pin59           8         17         Tx         AIM(1)60-Pin60           9         5         GND           10         '8         + 5 Volts           11         6         AQuad         AIM(2)60-Pin49           12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                                                            | 5      | 3       | Eref        | AIM(1)60-Pin51 |
| 8         17         Tx         AIM(1)60-Pin60           9         5         GND           10         '8         + 5 Volts           11         6         AQuad         AIM(2)60-Pin49           12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                                                                                                                    | 6      | 16      | GND         |                |
| 9         5         GND           10         '8         + 5 Volts           11         6         AQuad         AIM(2)60-Pin49           12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                                                                                                                                                                             | 7      | 4       | Rx          | AIM(1)60-Pin59 |
| 10         `8         + 5 Volts           11         6         AQuad         AIM(2)60-Pin49           12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                               | 8      | 17      | Tx          | AIM(1)60-Pin60 |
| 11       6       AQuad       AIM(2)60-Pin49         12       19       Bquad       AIM(2)60-Pin50         13       7       Eref       AIM(2)60-Pin51         14       20       GND         15       8       Rx       AIM(2)60-Pin59         16       21       Tx       AIM(2)60-Pin60         17       9       GND         18       22       + 5 Volts         19       10       AQuad       AIM(3)60-Pin49         20       23       Bquad       AIM(3)60-Pin50         21       11       Eref       AIM(3)60-Pin51         22       24       GND         23       12       Rx       AIM(3)60-Pin59         24       25       Tx       AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9      | 5       | GND         |                |
| 12         19         Bquad         AIM(2)60-Pin50           13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                     | 10     | .8      | + 5 Volts   |                |
| 13         7         Eref         AIM(2)60-Pin51           14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11     | 6       | AQuad       | AIM(2)60-Pin49 |
| 14         20         GND           15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12     | 19      | Bquad       | AIM(2)60-Pin50 |
| 15         8         Rx         AIM(2)60-Pin59           16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13     | 7       | Eref        | AIM(2)60-Pin51 |
| 16         21         Tx         AIM(2)60-Pin60           17         9         GND           18         22         + 5 Volts           19         10         AQuad         AIM(3)60-Pin49           20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14     | 20      | GND         |                |
| 17     9     GND       18     22     + 5 Volts       19     10     AQuad     AIM(3)60-Pin49       20     23     Bquad     AIM(3)60-Pin50       21     11     Eref     AIM(3)60-Pin51       22     24     GND       23     12     Rx     AIM(3)60-Pin59       24     25     Tx     AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15     | 8       | Rx          | AIM(2)60-Pin59 |
| 18     22     + 5 Volts       19     10     AQuad     AIM(3)60-Pin49       20     23     Bquad     AIM(3)60-Pin50       21     11     Eref     AIM(3)60-Pin51       22     24     GND       23     12     Rx     AIM(3)60-Pin59       24     25     Tx     AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16     | 21      | Tx          | AIM(2)60-Pin60 |
| 19       10       AQuad       AIM(3)60-Pin49         20       23       Bquad       AIM(3)60-Pin50         21       11       Eref       AIM(3)60-Pin51         22       24       GND         23       12       Rx       AIM(3)60-Pin59         24       25       Tx       AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17     | 9       | GND         |                |
| 20         23         Bquad         AIM(3)60-Pin50           21         11         Eref         AIM(3)60-Pin51           22         24         GND           23         12         Rx         AIM(3)60-Pin59           24         25         Tx         AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18     | 22      | + 5 Volts   |                |
| 20       23       Bquad       AIM(3)60-Pin50         21       11       Eref       AIM(3)60-Pin51         22       24       GND         23       12       Rx       AIM(3)60-Pin59         24       25       Tx       AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19     | 10      | AQuad       | AIM(3)60-Pin49 |
| 22     24     GND       23     12     Rx     AIM(3)60-Pin59       24     25     Tx     AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20     | 23      | Bquad       | AIM(3)60-Pin50 |
| 23 12 Rx AIM(3)60-Pin59<br>24 25 Tx AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21     | 11      | Eref        | AIM(3)60-Pin51 |
| 24 25 Tx AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22     | 24      | GND         |                |
| 24 25 Tx AIM(3)60-Pin60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23     | 12      | Rx          | AIM(3)60-Pin59 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24     | 25      | Tx          | i ' '          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25     | 13      | HSP         |                |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |         |             |                |



### 15 Appendix J - Component Side Transition Panel Assembly

This drawing shows the location and default position for the programming jumpers that that are accessible on the back panel of the Acutrol3000 chassis after removal of the jumper access cover.





#### 16 Appendix K - Solder Side Transition Panel Assembly

This drawing shows the location and default position for the programming jumpers that that are accessible from the inside of the Acutrol3000 chassis after removal of the top cover.





### 17 Appendix L - Acutrol3000 Discrete I/O Overall Structure



TM-9385-A Safety Interlocks, Status, and Discrete Control Integration Procedure / June 05 / HOWARD HAVLICSEK

Page 52