ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1 Матрицы и операции над ними

Прямоугольная таблица, состоящая из $m \times n$ элементов произвольной природы, называется матрицей. Матрицы обозначают прописными буквами латинского алфавита: A, B, C и т.д. и записывают в виде

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \text{ или } A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

или сокращенно

$$A = (a_{ij}), i = \overline{1, m}, j = \overline{1, n}.$$

 a_{ij} называют элементами матрицы, где i — номер строки, j — номер столбца, в которых стоит элемент. Если элементы матрицы числа, то матрицу называют числовой.

Количество строк и столбцов матрицы определяют ее *размерность*, т.е. матрица, состоящая из m строк и n столбцов, имеет размерность m на n: $A_{m \times n}$.

Две *матрицы равны*, если равны их размерности и равны соответствующие элементы этих матриц.

Матрица, все элементы которой равны нулю, называется *нулевой* и обозначается *O*.

Матрица, у которой число строк равно числу столбцов, называется *квадратной* матрицей. Квадратную матрицу, у которой n строк, называют матрицей порядка n. Элементы a_{11} , a_{22} , a_{33} , ..., a_{nn} квадратной матрицы образуют главную диагональ, элементы a_{1n} , a_{2n-1} , ..., a_{n1} — побочную диагональ.

Квадратная матрица, у которой все элементы, кроме элементов, стоящих на главной диагонали, равны нулю, *называется диагональной*.

Диагональная матрица, у которой каждый элемент главной диагонали равен единице, называется *единичной матрицей* и обозначается *Е*.

Действия над матрицами:

Транспонирование.

Замена строк матрицы соответствующими столбцами называется *транспонированием*. Транспонированную матрицу обозначают A^{T} .

Сложение матриц.

Суммой матриц A и B называется матрица C, каждый элемент которой равен сумме соответствующих элементов матриц A и B, т.е.

$$c_{ij} = a_{ij} + b_{ij}, i = \overline{1, m}, j = \overline{1, n}.$$

Сложение может быть выполнено только для матриц с одинаковой размерностью.

Умножение матрицы на число.

Произведением матрицы A и действительного числа λ называется матрица B, каждый элемент которой равен произведению соответствующего элемента матрицы A на число λ , т.е.

$$b_{ij} = a_{ij} \cdot \lambda, \ i = \overline{1, m}, \ j = \overline{1, n}.$$

Произведение матриц.

Матрица A называется согласованной с матрицей B, если число столбцов матрицы A равно числу строк матрицы B. Например, матрица $A_{m \times n}$ согласована с матрицей $B_{n \times k}$.

Умножение матрицы *A* на матрицу *B* может быть выполнено только тогда, когда матрица *A* согласована с матрицей *B*.

Произведением матрицы $A_{m \times n}$ на матрицу $B_{n \times k}$ называется матрица $C_{m \times k}$, каждый элемент которой c_{ij} равен сумме произведений элементов i-й строки матрицы A на соответствующие элементы j-го столбца матри-

цы
$$B$$
, т.е. $c_{ij} = \sum_{s=1}^{n} a_{is} \cdot b_{sj}, \ i = \overline{1, m}, \ j = \overline{1, k}.$

$$\overline{s=1}$$
Пример 1. Найти произведение матриц $A = \begin{pmatrix} 1 & -1 \\ 0 & -3 \\ 3 & -2 \end{pmatrix}$ и $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

Решение. Матрица $A_{3\times 2}$ согласована с матрицей $B_{2\times 2}$.

$$A \cdot B = \begin{pmatrix} 1 & -1 \\ 0 & -3 \\ 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + (-1) \cdot 3 & 1 \cdot 2 + (-1) \cdot 4 \\ 0 \cdot 1 + (-3) \cdot 3 & 0 \cdot 2 + (-3) \cdot 4 \\ 3 \cdot 1 + (-2) \cdot 3 & 3 \cdot 2 + (-2) \cdot 4 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ -9 & -12 \\ -3 & -2 \end{pmatrix}.$$

Ответ.
$$\begin{pmatrix} -2 & -2 \\ -9 & -12 \\ -3 & -2 \end{pmatrix}$$
.

В общем случае $AB \neq BA$. Если AB = BA, то матрицы A и B называют перестановочными.

Задания для аудиторной работы

1. Найти матрицу, транспонированную матрице *A*. Указать размерности обеих матриц.

2. Вычислить
$$A+B$$
, если $A=\begin{pmatrix}2&-3&4\\7&6&-5\\-1&8&9\end{pmatrix}$, $B=\begin{pmatrix}-1&3&-4\\-7&-5&5\\1&-8&-8\end{pmatrix}$.

3. Вычислить
$$3A + 4B - 2C$$
, если $A = \begin{pmatrix} 1 & 0 \\ 3 & -4 \\ 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 3 \\ 1 & -5 \end{pmatrix}$, $C = \begin{pmatrix} 3 & 4 \\ 1 & -3 \\ 8 & 6 \end{pmatrix}$.

4. Найти значения m и n, если известно, что: а) $A_{3\times 4}\cdot B_{4\times 5}=C_{m\times n}$;

$$\mathsf{G)} \ \ A_{2\times 3} \cdot B_{m\times n} = C_{2\times 6}.$$

5. Найти произведения АВ и ВА, если это возможно

a)
$$A = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 3 & 1 \\ 0 & 1 & 1 \\ -2 & 1 & 3 \end{pmatrix}$; 6) $A = \begin{pmatrix} 2 & 1 & -2 \\ 3 & -4 & 2 \\ 1 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 0 & -2 \end{pmatrix}$;

B)
$$A = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 4 & 1 \end{pmatrix}$; $C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & -1 & -3 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$.

6. Вычислить: a)
$$\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}^2$$
; б) $\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}^3$.

7. Найти
$$f(A)$$
, если $f(x) = x^2 - 2x$, $A = \begin{pmatrix} 4 & -3 \\ 9 & 1 \end{pmatrix}$.

Задания для индивидуальной работы

8. Вычислить
$$2A - 4B + 3E$$
, если $A = \begin{pmatrix} 1 & 1 & -8 \\ 1 & -4 & 0 \\ 2 & 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -2 & 0 \\ 3 & 1 & 4 \\ -1 & 0 & 0 \end{pmatrix}$.

9. Найти произведения АВ и ВА, если это возможно:

a)
$$A = \begin{pmatrix} 5 & 3 & 7 \\ -1 & 6 & -3 \\ 2 & -4 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & -1 & 3 \\ 4 & -2 & -6 \\ 2 & 0 & 3 \end{pmatrix}$; 6) $A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 3 & 1 & 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 1 & 0 \\ 3 & -2 \\ 4 & -1 \end{pmatrix}$.

10. Вычислить:
$$\begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}^2 .$$

11. Проверить справедливость равенства $(A + B)^2 = A^2 + 2A \cdot B + B^2$ для матриц $A = \begin{pmatrix} 3 & -1 \\ 5 & -6 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 \\ 8 & 3 \end{pmatrix}.$

12. Найти *f*(*A*), если:

a)
$$f(x) = x^2 - 2x$$
, $A = \begin{pmatrix} 4 & -3 \\ 5 & 1 \end{pmatrix}$; 6) $f(x) = 2x^2 - x + 5$, $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}$.

Ответы. 2. $E_{3\times 3}$. 3. $\begin{pmatrix} 1 & -12 \\ 15 & 6 \\ -6 & -29 \end{pmatrix}$. 5. a) $AB = \begin{pmatrix} -5 & 5 & 7 \\ 1 & -6 & 2 \\ -2 & 1 & 3 \end{pmatrix}$,

$$BA = \begin{pmatrix} -10 & 6 & 2 \\ -3 & 2 & 2 \\ -5 & 2 & 0 \end{pmatrix};$$
 6) $AB = \begin{pmatrix} 5 & 5 \\ 2 & -8 \\ 2 & 0 \end{pmatrix};$ B) $AB = \begin{pmatrix} 3 & 4 & 1 \\ -3 & -4 & -1 \\ 6 & 8 & 2 \end{pmatrix},$ $BA = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 1 \end{pmatrix};$ B) $AB = \begin{pmatrix} 3 & 4 & 1 \\ -3 & -4 & -1 \\ 6 & 8 & 2 \\ 2 & 0 \\ 3 & 4 & 1 \\ 6 & 8 & 2 \\ 6 & 8 & 2 \\ 6 & 8 & 2 \\ 6 & 8 & 2 \\ 6 & 8 & 2 \\ 7 & 1 & 1 & 1 \\ 6 & 8 & 2 \\ 7 & 1 & 1 & 1 \\ 6 & 8 & 2 \\ 7 & 1 & 1 & 1 \\ 6 & 8 & 2 \\ 7 & 1 & 1 & 1 \\ 6 & 8 & 2 \\ 7 & 1 & 1 & 1 \\ 7$

r)
$$AB = \begin{pmatrix} 12 \\ -1 \end{pmatrix}$$
. **6.** a) $\begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}$; б) $\begin{pmatrix} 16 & 29 \\ 29 & 74 \end{pmatrix}$. **7.** $\begin{pmatrix} -19 & -9 \\ 27 & -28 \end{pmatrix}$. **8.** $\begin{pmatrix} -5 & 10 & -16 \\ -10 & -11 & -16 \\ 8 & 6 & 3 \end{pmatrix}$

9. a)
$$AB = \begin{pmatrix} 18 & -11 & -24 \\ 14 & -11 & -48 \\ -6 & 6 & 33 \end{pmatrix}$$
, $BA = \begin{pmatrix} 27 & -6 & -22 \\ 10 & 24 & -28 \\ 16 & -6 & -11 \end{pmatrix}$; 6) $AB = \begin{pmatrix} 4 & -2 \\ 15 & 1 \end{pmatrix}$,

$$BA = \begin{pmatrix} 5 & 1 & 4 & 0 \\ 1 & 0 & 2 & -1 \\ -3 & -2 & 6 & -7 \\ 1 & -1 & 8 & -6 \end{pmatrix}.$$
 10.
$$\begin{pmatrix} -2 & 0 & 0 \\ 1 & -1 & 2 \\ 1 & 1 & 0 \end{pmatrix}.$$
 12. a)
$$\begin{pmatrix} -7 & -9 \\ 15 & -16 \end{pmatrix};$$

$$6) \begin{pmatrix} 16 & -16 & 11 \\ -8 & 23 & 7 \\ -5 & 13 & 19 \end{pmatrix}.$$

2 Определители

Основной числовой характеристикой квадратной матрицы является определитель (детерминант). Определитель квадратной матрицы A_{nxn} обозначают: Δ , det A, |A|.

Определитель первого порядка матрицы A_{1x1} равен ее элементу a_{11} : $\det A = a_{11}$.

Определитель второго порядка матрицы A_{2x2} записывают в виде $\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ и вычисляют по правилу:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Определитель третьего порядка матрицы A_{3x3} записывают в виде

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 и вычисляют по правилу:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 и вычисляют по правилу:
$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{13}a_{21}a_{32}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{22}a_{33}a_{31} + a_{21}a_{32}a_{33} + a_{22}a_{33}a_{31} + a_{21}a_{32}a_{32}a_{13} - a_{22}a_{33}a_{31}a_{32}a_{33} \end{vmatrix}$$

$$-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{32}a_{23}a_{11}.$$

 $\mathit{Muhopom}$ элемента a_{ij} определителя порядка n называется определитель порядка (n-1), полученный из данного вычеркиванием i-й строки и *і*-го столбца.

Минор элемента a_{ii} обозначают M_{ii} .

Алгебраическим дополнением элемента а_{іі} называется число

$$A_{ij} = \left(-1\right)^{i+j} \cdot M_{ij}.$$

Теорема Лапласа (теорема разложения). Значение определителя равно сумме произведений элементов некоторой строки (столбца) на их алгебраические дополнения.

Например, разложение определителя третьего порядка по элементам первой строки имеет вид:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot A_{11} + a_{12} \cdot A_{12} + a_{13} \cdot A_{13} =$$

$$= a_{11} \cdot \left(-1\right)^{1+1} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \cdot \left(-1\right)^{1+1} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \left(-1\right)^{1+1} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

$$\mathbf{\Pi} \mathbf{P} \mathbf{U} \mathbf{M} \mathbf{e} \mathbf{p} \mathbf{2}. \text{ Вычислить определитель} \begin{vmatrix} -2 & 3 & -5 & 4 \\ 2 & 0 & 3 & -1 \\ -1 & 2 & 4 & 0 \\ 3 & 1 & 2 & -1 \end{vmatrix}.$$

Решение. Вычислим определитель двумя способами. *I способ.* Разложим определитель по элементам второй строки:

$$\Delta = 2 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -5 & 4 \\ 2 & 4 & 0 \\ 1 & 2 & -1 \end{vmatrix} + 3 \cdot (-1)^{2+3} \begin{vmatrix} -2 & 3 & 4 \\ -1 & 2 & 0 \\ 3 & 1 & -1 \end{vmatrix} + (-1) \cdot (-1)^{2+4} \begin{vmatrix} -2 & 3 & -5 \\ -1 & 2 & 4 \\ 3 & 1 & 2 \end{vmatrix} =$$

$$= -2(-12 - 10) - 3(4 - 3 - 28) - (42 + 35) = 44 + 81 - 77 = 48.$$

II способ. Выполним следующие операции. Элементы четвертой строки умножим на (–3) и сложим с соответствующими элементами первой строки; затем элементы четвертой строки умножим на (–2) и сложим с элементами третьей строки. Получим определитель, равный данному, у которого во втором столбце все элементы, кроме четвертого, будут равны нулю.

$$\Delta = \begin{vmatrix} -2 & 3 & -5 & 4 \\ 2 & 0 & 3 & -1 \\ -1 & 2 & 4 & 0 \\ 3 & 1 & 2 & -1 \end{vmatrix} = \begin{vmatrix} -11 & 0 & -11 & 7 \\ 2 & 0 & 3 & -1 \\ -7 & 0 & 0 & 2 \\ 3 & 1 & 2 & -1 \end{vmatrix}.$$

Полученный определитель раскладываем по элементам второго столбца.

$$\Delta = 1 \cdot (-1)^{4+2} \begin{vmatrix} -11 & -11 & 7 \\ 2 & 3 & -1 \\ -7 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 10 & 7 \\ 0 & 0 & -1 \\ -3 & 6 & 2 \end{vmatrix} = (-1)(-1)^{2+3} \begin{vmatrix} 3 & 10 \\ -3 & 6 \end{vmatrix} = 18 + 30 = 48.$$

Чтобы получить нули во второй строке, надо элементы третьего столбца умножить на 2 и сложить с элементами первого столбца, затем умножаем элементы третьего столбца на 3 и складываем с элементами второго столбца.

Ответ. 48.

Задания для аудиторной работы

13. Вычислить определители:

a)
$$\begin{vmatrix} -1 & 3 \\ 2 & 4 \end{vmatrix}$$
; б) $\begin{vmatrix} 1 & -3 \\ 2 & -4 \end{vmatrix}$; в) $\begin{vmatrix} 0 & 3 \\ 0 & 5 \end{vmatrix}$; г) $\begin{vmatrix} 1 & 3 \\ 0 & 0 \end{vmatrix}$; д) $\begin{vmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{vmatrix}$.

14. Вычислить определители:a)
$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \\ 3 & 1 & 2 \end{vmatrix}$$
; $\begin{vmatrix} -3 & 4 & -5 \\ 0 & 2 & 2 \\ 2 & -1 & 0 \end{vmatrix}$.

15. Для данного определителя
$$\begin{vmatrix} 1 & -2 & 1 \\ 3 & 1 & -5 \\ 4 & -2 & 5 \end{vmatrix}$$
 найти M_{11} ; M_{23} ; M_{32} ; A_{12} ; A_{22} ; A_{31} .

16. Вычислить определители, используя теорему разложения:

a)
$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 2 & -1 & 0 \end{vmatrix}$$
;

17. Вычислить определители, используя их свойства:

a)
$$\begin{vmatrix} x^2 + a^2 & ax & 1 \\ y^2 + a^2 & ay & 1 \\ z^2 + a^2 & az & 1 \end{vmatrix}$$
;

18. Вычислить определители методом приведения их к треугольному виду:

a)
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 3 & 7 \\ -2 & -4 & -6 & 0 \end{vmatrix}$$
;

19. Вычислить определители:

a)
$$\begin{vmatrix} 2 & 1 & 5 & 1 \\ 3 & 2 & 1 & 2 \\ 1 & 2 & 3 & -4 \\ 1 & 1 & 5 & 1 \end{vmatrix}$$
;

$$6) \begin{vmatrix} 2 & 1 & 1 & 8 \\ 1 & -3 & -6 & 9 \\ 0 & 2 & 2 & -5 \\ 1 & 4 & 6 & 0 \end{vmatrix}.$$

Задания для индивидуальной работы

20. Вычислить определители:

а)
$$\begin{vmatrix} 2 & -1 \\ 3 & 5 \end{vmatrix}$$
; б) $\begin{vmatrix} 2 & 9 \\ -6 & 2 \end{vmatrix}$; в) $\begin{vmatrix} 5 & 0 \\ 2 & -3 \end{vmatrix}$; г) $\begin{vmatrix} 0 & -8 \\ 3 & 4 \end{vmatrix}$; д) $\begin{vmatrix} 4 & 6 \\ 2 & 3 \end{vmatrix}$; е) $\begin{vmatrix} -3 & 6 \\ 4 & -8 \end{vmatrix}$.

21. Объяснить данные равенства

a)
$$\begin{vmatrix} 2 & -1 & 3 \\ 0 & 0 & 0 \\ 3 & 4 & 1 \end{vmatrix} = 0$$

$$\begin{bmatrix} 1 & 4 & -1 \\ 2 & 4 & 12 \\ 3 & 1 & 4 \end{bmatrix} = 2 \begin{vmatrix} 1 & 4 & -1 \\ 1 & 2 & 6 \\ 3 & 1 & 4 \end{vmatrix};$$

a)
$$\begin{vmatrix} 2 & -1 & 3 \\ 0 & 0 & 0 \\ 3 & 4 & 1 \end{vmatrix} = 0;$$
 6) $\begin{vmatrix} 1 & 4 & -1 \\ 2 & 4 & 12 \\ 3 & 1 & 4 \end{vmatrix} = 2 \begin{vmatrix} 1 & 4 & -1 \\ 1 & 2 & 6 \\ 3 & 1 & 4 \end{vmatrix};$ B) $\begin{vmatrix} 1 & 1 & -3 \\ 2 & 2 & 5 \\ 1 & -2 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 1 & -3 \\ 2 & 2 & 5 \\ 0 & -3 & 7 \end{vmatrix};$

r)
$$\begin{vmatrix} 1 & 5 & -2 \\ 2 & -1 & 4 \\ 3 & 0 & -2 \end{vmatrix} = \begin{vmatrix} 1 & 5 & -2 \\ 0 & -11 & 8 \\ 3 & 0 & -2 \end{vmatrix}$$
;

22. Вычислить определители:

a)
$$\begin{vmatrix} -1 & 2 & 0 \\ 3 & 1 & 4 \\ 2 & -3 & 5 \end{vmatrix}$$
;

б)
$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ac & bc & c^2 + 1 \end{vmatrix}$$
.

23. Решить уравнения:

a)
$$\begin{vmatrix} \sin 8x & \sin 5x \\ \cos 8x & \cos 5x \end{vmatrix} = 0$$
; 6) $\begin{vmatrix} 3 & x & -4 \\ 2 & -1 & 3 \\ x+10 & 1 & 1 \end{vmatrix} = 0$; B) $\begin{vmatrix} 2 & -1 & 2 \\ 3 & 5 & 3 \\ 1 & 6 & x+5 \end{vmatrix} = 0$.

24. Решить неравенства:

a)
$$\begin{vmatrix} 3 & -2 & 1 \\ 1 & x & -2 \\ -1 & 2 & -1 \end{vmatrix}$$
 < 1; 6) $\begin{vmatrix} 2 & x+2 & -1 \\ 1 & 1 & -2 \\ 5 & -3 & x \end{vmatrix}$ > 0.

25. Вычислить определитель третьего порядка а) разложив его по элементам *і*-й строки; б) получив предварительно нули в *і*-ом столбце.

a)
$$\begin{vmatrix} 1 & -2 & 3 \\ 2 & 6 & -5 \\ 2 & 8 & 4 \end{vmatrix}$$
, $i = 2$; 6) $\begin{vmatrix} 1 & 4 & 5 \\ 2 & 3 & 1 \\ 7 & 5 & 2 \end{vmatrix}$, $i = 3$; B) $\begin{vmatrix} -1 & 2 & 4 \\ 1 & 5 & 7 \\ -8 & 3 & 6 \end{vmatrix}$, $i = 1$.

26. Вычислить определители:

a)
$$\begin{vmatrix} 7 & 3 & 2 & 6 \\ 8 & -9 & 4 & 9 \\ 7 & -2 & 7 & 3 \\ 5 & -3 & 3 & 4 \end{vmatrix}$$
; b) $\begin{vmatrix} -3 & 2 & 1 & 0 \\ 2 & -2 & 1 & 4 \\ 4 & 0 & -1 & 2 \\ 3 & 1 & -1 & 4 \end{vmatrix}$; b) $\begin{vmatrix} 1 & 1 & -2 & 0 \\ 3 & 6 & -2 & 5 \\ 1 & 0 & 6 & 4 \\ 2 & 3 & 5 & -1 \end{vmatrix}$; r) $\begin{vmatrix} 2 & 1 & 5 & 1 \\ 3 & 2 & 1 & 2 \\ 1 & 2 & 3 & -4 \\ 1 & 1 & 5 & 1 \end{vmatrix}$; d) $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$; e) $\begin{vmatrix} 2 & 1 & 1 & 8 \\ 1 & -3 & -6 & 9 \\ 0 & 2 & 2 & -5 \\ 1 & 4 & 6 & 0 \end{vmatrix}$.

Ответы. 14. a) 4; б) 30. **16.** a) -7; б) -8. **17.** a) a(x-y)(y-z)(x-z); б) -18. **18.** a) 48; б) 20. **19.** a) 54; б) -27. **22.** a) -31; б) $a^2 + b^2 + c^2 + 1$. **25.** a) 112; б) –42; в) 39. **26.** a) 150; б) 38; в) –205; г) 54; д) 16; е) 27.

3 Обратная матрица. Ранг матрицы

Квадратная матрица называется невырожденной, если ее определитель не равен нулю. Для нее существует обратная матрица A^{-1} . Справедливо равенство $A^{-1} \cdot A = A \cdot A^{-1} = E$, где E – единичная матрица.

Обратная матрица существует тогда и только тогда, когда матрица А невырожденная.

Обратную матрицу A^{-1} находят по формуле:

$$A^{-1} = \frac{1}{\det A} \cdot \tilde{A},\tag{1}$$

где матрица $ilde{A}$ называется *присоединенной* или *союзной* матрицей. $ilde{A}$ состоит из алгебраических дополнений элементов транспонированной

матрицы
$$A$$
. Например, если $A=\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ и $\det A\neq 0$, то формула

для A^{-1} будет иметь вид:

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}.$$

Пример 3. Найти матрицу, обратную матрице $A = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$.

Решение. Так как определитель матрицы $\det A = -2 \neq 0$ (проверьте самостоятельно), то матрица A^{-1} существует и единственна. Используя формулу (1), найдем матрицу A^{-1} .

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 1-2 \\ 0+1 \end{vmatrix} = 1; \qquad A_{12} = (-1)^{1+2} \begin{vmatrix} 3 & -2 \\ 1 & 1 \end{vmatrix} = -5; \qquad A_{13} = (-1)^{1+3} \begin{vmatrix} 3 & 1 \\ 1 & 0 \end{vmatrix} = -1;$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = -1; \qquad A_{22} = (-1)^{2+2} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = 3; \qquad A_{23} = (-1)^{2+3} \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = 1;$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & -1 \\ 1 & -2 \end{vmatrix} = -1; \qquad A_{32} = (-1)^{3+2} \begin{vmatrix} 2 & -1 \\ 3 & -2 \end{vmatrix} = 1; \qquad A_{33} = (-1)^{3+3} \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = -1.$$

Обратная матрица A^{-1} будет иметь вид: $A^{-1} = -\frac{1}{2} \cdot \begin{pmatrix} 1 & -1 & -1 \\ -5 & 3 & 1 \\ -1 & 1 & -1 \end{pmatrix}$.

Выполним проверку. По определению $A \cdot A^{-1} = A^{-1} \cdot A = E$. Найдем $A^{-1} \cdot A$

$$A^{-1} \cdot A = -\frac{1}{2} \cdot \begin{pmatrix} 1 & -1 & -1 \\ -5 & 3 & 1 \\ -1 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & 0 & 1 \end{pmatrix} = -\frac{1}{2} \cdot \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E.$$

Аналогично можно показать, что $A \cdot A^{-1} = E$.

Ответ.
$$A^{-1} = -\frac{1}{2} \cdot \begin{pmatrix} 1 & -1 & -1 \\ -5 & 3 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$
.

Элементарными преобразованиями матрицы являются:

- 1) транспонирование матрицы;
- 2) перестановка двух строк (столбцов) матрицы;
- 3) умножение всех элементов какой-либо строки (какого-либо столбца) на число, отличное от нуля;
- 4) сложение элементов какой-либо строки (какого-либо столбца) с соответствующими элементами другой строки (столбца) умноженными на некоторое число.

Рангом матрицы называется наивысший порядок отличного от нуля минора.

Элементарные преобразования не изменяют ранг матрицы.

Задания для аудиторной работы

27. Найти матрицы, обратные данным:

28. Решить матричные уравнения:

a)
$$\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$
 \cdot $X = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$; 6) $X \cdot \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$;
B) $\begin{pmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ 0 & -2 & 1 \end{pmatrix}$ \cdot $X = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix}$; $\Gamma \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ \cdot $X \cdot \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix} = \begin{pmatrix} 11 & -8 \\ 41 & -36 \end{pmatrix}$.

29. Найти ранг матриц методом окаймляющих миноров и указать один из базисных миноров:

a)
$$\begin{pmatrix} 3 & -1 & 2 \\ 4 & -3 & 3 \\ 1 & 3 & 0 \end{pmatrix}$$
; 6) $\begin{pmatrix} 3 & -1 & 2 \\ 4 & -3 & 3 \\ 1 & 3 & 2 \end{pmatrix}$.

30. Найти ранг матриц:

Задания для индивидуальной работы

31. Найти матрицы, обратные данным: a)
$$\begin{pmatrix} 12 & 1 \\ -3 & 5 \end{pmatrix}$$
; б) $\begin{pmatrix} 1 & 2 & -5 \\ 1 & -3 & 3 \\ 1 & 1 & -2 \end{pmatrix}$.

32. Решить матричные уравнения:

33. Решить матричное уравнение XA - 2B = E, если

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 9 & 0 \\ 3 & 4 & -1 \end{pmatrix}; B = \begin{pmatrix} 1 & 3 & -2 \\ -1 & 2 & 0 \\ 3 & -1 & -4 \end{pmatrix}.$$

34. Найти ранг матриц:

a)
$$\begin{pmatrix} 1 & -3 & 1 & -14 & 22 \\ -2 & 1 & 3 & 3 & -9 \\ -4 & -3 & 11 & -19 & 17 \end{pmatrix}$$
; $6 \begin{pmatrix} 2 & 1 & 3 & -1 \\ 3 & -1 & 2 & 0 \\ 1 & 3 & 4 & -2 \\ 4 & -3 & 1 & 1 \end{pmatrix}$; B) $\begin{pmatrix} 1 & 7 & 17 & 3 \\ 0 & 4 & 10 & 1 \\ 10 & 18 & 40 & 17 \\ 2 & 8 & 10 & 0 \end{pmatrix}$.

35. Найти ранг матрицы при различных значениях λ : $\begin{bmatrix} 1 & 2 & -1 & 0 \\ 3 & -1 & -2 & 2 \\ 2 & 3 & -1 & 0 \\ 1 & -1 & 0 & \lambda \end{bmatrix}$.

Ответы. 27. б) не существует; в)
$$\frac{1}{10}$$
 $\begin{pmatrix} 3 & 2 & -1 \\ -4 & -6 & 8 \\ 5 & 0 & -5 \end{pmatrix}$.

28. a)
$$\begin{pmatrix} -3 & 3 \\ -1 & 3 \end{pmatrix}$$
; б) $\begin{pmatrix} -2 & 2 \\ 1 & 2 \end{pmatrix}$; в) $\begin{pmatrix} 6 \\ -5 \\ -3 \end{pmatrix}$; г) $\begin{pmatrix} -12 & 11 \\ 7 & -5 \end{pmatrix}$. **29.** a) 2; б) 3.

31. a)
$$\frac{1}{63} \begin{pmatrix} 5 & -1 \\ 3 & 12 \end{pmatrix}$$
; б) $-\frac{1}{7} \begin{pmatrix} 3 & -1 & -9 \\ 5 & 3 & -8 \\ 4 & 1 & -5 \end{pmatrix}$ **30.** a) 3; б) 3.

31. a)
$$\frac{1}{63} \begin{pmatrix} 5 & 3 \\ -1 & 12 \end{pmatrix}$$
; 6) $-\frac{1}{27} \begin{pmatrix} -9 & -9 & -9 \\ 1 & 7 & -8 \\ 4 & 1 & -5 \end{pmatrix}$. **32.** a) $\frac{1}{10} \begin{pmatrix} 10 & 26 \\ -10 & -7 \end{pmatrix}$.

33.
$$A^{-1} = -\frac{1}{9} \begin{pmatrix} 9 & 0 & 0 \\ 2 & -1 & 0 \\ -19 & -4 & 9 \end{pmatrix}, X = -\frac{1}{9} \begin{pmatrix} 61 & 10 & -36 \\ 28 & -5 & 0 \\ 75 & 30 & -63 \end{pmatrix}.$$

35.
$$r = 3$$
 при $\lambda = 1$, $r = 4$ при $\lambda \neq 1$.

4 Системы линейных алгебраических уравнений. Метод Крамера. Метод обратной матрицы

Система вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1; \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2; \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

называется системой линейных алгебраических уравнений (СЛАУ). Числа $a_{ij},\ i=\overline{1,m},\ j=\overline{1,n}$ называют коэффициентами системы, числа b_i свободными членами.

Рассмотрим систему:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1; \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2; \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3. \end{cases}$$
 (2)

Систему (2) можно записать в виде матричного уравнения:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
 или $AX = B$.

Теорема. Система, состоящая из n уравнений и содержащая n неизвестных, имеет единственное решение тогда и только тогда, когда основная матрица системы является невырожденной, т.е det $A \neq 0$.

Если выполнены условия теоремы, то решение системы (2) можно найти по *формулам Крамера*:

$$x_1 = \frac{\Delta_1}{\Delta}; \ x_2 = \frac{\Delta_2}{\Delta}; \ x_3 = \frac{\Delta_3}{\Delta},$$

где $\Delta = \det A$; Δ_j , $j = \overline{1,3}$, получены из Δ заменой j-го столбца столбцом свободных членов.

Следствие. Если $\det A = 0$, то система либо несовместна, либо имеет бесконечно много решений.

Метод обратной матрицы.

Рассмотрим систему (2) как матричное уравнение

$$A \cdot X = B$$
.

Если матрица A невырожденная (det $A \neq 0$), то для нее существует обратная матрица A^{-1} . Умножив обе части уравнения $A \cdot X = B$ на матрицу A^{-1} слева, получим решение этого уравнения:

$$A^{-1}\cdot A\cdot X=A^{-1}\cdot B$$
 или $\left(A^{-1}\cdot A\right)\cdot X=A^{-1}\cdot B,$ $E\cdot X=A^{-1}\cdot B$ $X=A^{-1}B$

Пример 4. Решить методом обратной матрицы систему $\begin{cases} 2x + y - z = 0, \\ x + y + z = 3, \\ x - y = 1. \end{cases}$

Решение. Запишем систему в виде матричного уравнения AX = B, где

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}.$$

Найдем определитель матрицы А.

$$\det A = \begin{vmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = 2 + 1 + 2 = 5 \neq 0.$$

Т.к. $\det A \neq 0$, то для матрицы A существует обратная матрица A^{-1} . Найдем ее по формуле (1).

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 1; \qquad A_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = 1; \qquad A_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2;$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & -1 \\ -1 & 0 \end{vmatrix} = 1; \qquad A_{22} = (-1)^{2+2} \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = 1; \qquad A_{23} = (-1)^{2+3} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = 3;$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2; \qquad A_{32} = (-1)^{3+2} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = -3; \qquad A_{33} = (-1)^{3+3} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1;$$

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & -3 \\ -2 & 3 & 1 \end{pmatrix}.$$

Решение системы найдем по формуле $X = A^{-1}B$, т.е.

$$X = \frac{1}{5} \cdot \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & -3 \\ -2 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} = \frac{1}{5} \cdot \begin{pmatrix} 0+3+2 \\ 0+3-3 \\ 0+9+1 \end{pmatrix} = \frac{1}{5} \cdot \begin{pmatrix} 5 \\ 0 \\ 10 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}.$$

Ответ. x = 1, y = 0, z = 2.

Задания для аудиторной работы

36. Решить системы по формулам Крамера:

a)
$$\begin{cases} x+y=1; \\ x-y=2. \end{cases}$$
 6) $\begin{cases} x-3y+z=2, \\ 2x+y+3z=3, \\ 2x-y-2z=8. \end{cases}$ B) $\begin{cases} 3x+y+2z=-4, \\ x-2y-z=-1, \\ 2x+3y+2z=0. \end{cases}$

37. Решить системы матричным методом:

Задания для индивидуальной работы

38. Решить системы 1) по формулам Крамера; 2) матричным методом:

$$\begin{cases} 2x+4y+z=4,\\ 3x+6y+2z=4,\\ 4x-y-3z=1. \end{cases} \qquad \qquad \begin{cases} x-2y+4z=-12;\\ 2x+2z=-2;\\ 4x-2y-z=9. \end{cases}$$

$$\begin{cases} 2x-y+z=3;\\ -x+3y+2z=-2;\\ 4x-2y-z=9. \end{cases} \qquad \qquad \\ \begin{cases} x+2y+3z=6;\\ 3x+5y+2z=10. \end{cases} \end{cases}$$

$$\begin{cases} x+2y+3z=6;\\ 4x+y+4z=9;\\ 3x+5y+2z=10. \end{cases}$$

$$\begin{cases} 3x_1+5x_2-3x_3+2x_4=2;\\ 4x_1-2x_2+5x_3+3x_4=12;\\ 7x_1+8x_2-x_3+5x_4=9;\\ 6x_1+4x_2+5x_3+3x_4=8. \end{cases}$$

Ответы. 36. a)
$$\left(\frac{3}{2}; -\frac{1}{2}\right)$$
; б) (3; 0; -1); в) (0; 2; -3). **37.** a) (1; 2; 3); б) (2; 0; -2). **38.** a) (-2; 3; -4); б) (2; 1; -3); в) (2,4; 0,8; -1); г) (1; 1; 1); д) (1; 1; 1); е) (1; -1; 0; 2).

5 Системы линейных алгебраических уравнений. Метод Гаусса. Однородные системы

Теорема (Кронекера-Капелли). Для того чтобы система линейных алгебраических уравнений была совместной, необходимо и достаточно, чтобы ранг основной матрицы системы был равен рангу расширенной матрицы.

Решение системы *методом Гаусса* (*методом последовательных ис-ключений*) состоит из двух этапов: прямой и обратный ход метода Гаусса.

Прямой ход метода Гаусса заключается в том, что с помощью элементарных преобразований строк или используя правило «прямоугольника» расширенная матрица системы приводится к ступенчатому виду.

На втором этапе (обратный ход) из системы уравнений, соответствующей ступенчатой матрице, последовательно, начиная с последнего уравнения, находят (если это возможно) решение системы.

Пример 5. Решить систему методом Гаусса
$$\begin{cases} x-2y+z=3; \\ -2x+z=-1; \\ x+4y+3z=15. \end{cases}$$

Решение. Составим расширенную матрицу системы и с помощью элементарных преобразований строк приведем ее к ступенчатому виду:

$$\begin{pmatrix} 1 & -2 & 1 & 3 \\ -2 & 0 & 1 & -1 \\ 1 & 4 & 3 & 15 \end{pmatrix}^{(1)} \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & -4 & 3 & 5 \\ 0 & 6 & 2 & 12 \end{pmatrix}^{(2)} \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & -4 & 3 & 5 \\ 0 & 3 & 1 & 6 \end{pmatrix}^{(3)} \sim \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & -4 & 3 & 5 \\ 0 & 0 & 13 & 39 \end{pmatrix}^{(4)} \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & -4 & 3 & 5 \\ 0 & 0 & 1 & 3 \end{pmatrix} .$$

- (2): элементы первой и второй строки переписываем без изменений, а элементы третьей строки разделим на 2.
- (3): элементы первой строки переписываем без изменений, элементы второй строки (их переписываем в новую матрицу без изменений) умножаем на 3 и складываем с соответствующими элементами третьей строки, умноженными на 4 ($(-4) \cdot 3 + 3 \cdot 4 = 0$, $3 \cdot 3 + 1 \cdot 4 = 13$, $5 \cdot 3 + 6 \cdot 4 = 39$ получаем третью строку новой матрицы: 0; 0; 13; 39).
- (4): элементы первой и второй строки переписываем без изменений, а элементы третьей строки разделим на 13.

Полученной ступенчатой матрице соответствует система:

$$\begin{cases} x - 2y + z = 3; \\ -4y + 3z = 5; \\ z = 3. \end{cases}$$

Из последнего уравнения z=3. Подставим найденное значение z во второе уравнение: $-4y+3\cdot 3=5$, следовательно y=1. Полученные значения z и y подставим в первое уравнение: $x-2\cdot 1+1\cdot 3=3$. Отсюда x=2.

Ответ.
$$x = 2$$
, $y = 1$, $z = 3$.

Система линейных алгебраических уравнений называется *однородной*, если все свободные члены этой системы равны нулю.

Теорема. Однородная система, состоящая из n уравнений и содержащая n неизвестных, имеет ненулевое решение тогда и только тогда, когда основная матрица системы вырожденная, т.е. $\det A = 0$.

Пример 6. Решить систему уравнений
$$\begin{cases} 2x + 2y - z = 0, \\ 5x + 4y - 6z = 0, \\ 3x + 2y - 5z = 0. \end{cases}$$

Решение. Найдем определитель основной матрицы системы:

$$\begin{vmatrix} 2 & 2 & -1 \\ 5 & 4 & -6 \\ 3 & 2 & -5 \end{vmatrix} = 2 \cdot (4 \cdot (-5) - 2 \cdot (-6)) - 2 \cdot (5 \cdot (-5) - 3 \cdot (-6)) - 1 \cdot (5 \cdot 2 - 3 \cdot 4) = 0.$$

Т.к. определитель равен нулю, то система имеет ненулевое решение. Для решения системы воспользуемся методом Гаусса. Поскольку система однородная, то к ступенчатому виду будем приводить основную матрицу системы:

$$\begin{pmatrix} 2 & 2 & -1 \\ 5 & 4 & -6 \\ 3 & 2 & -5 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & -1 \\ 0 & -2 & -7 \\ 0 & -2 & -7 \end{pmatrix},$$

т.к. полученная матрица имеет две одинаковые строки (а, следовательно, соответствующая система имеет два одинаковых уравнения), то ее

можно записать в виде
$$\begin{pmatrix} 2 & 2 & -1 \\ 0 & -2 & -7 \end{pmatrix}$$
.

Полученной ступенчатой матрице будет соответствовать система уравнений:

$$\begin{cases} 2x+2y-z=0, \\ -2y-7z=0. \end{cases}$$

Система состоит из двух уравнений и содержит три переменные. Выразим переменные x и y через переменную z:

$$y = -\frac{7}{2}z$$
, $x = \frac{1}{2} \cdot (7z + z) = 4z$.

Обозначим z=2t , тогда $y=-7t, \ x=8t, \ t\in \mathbb{R}.$

Ответ: x = 8t, y = -7t, z = 2t, $t \in \mathbb{R}$.

Задания для аудиторной работы

39. Выяснить, совместна ли система уравнений, если она совместна, то найти ее решение:

a)
$$\begin{cases} x_1 + x_2 - x_3 = 1; \\ 2x_1 - x_2 + x_3 = 8; \\ x_1 + 4x_2 + 2x_3 = 1. \end{cases}$$
 6)
$$\begin{cases} x + 2y - z = 3; \\ 2x + 4y - 3z = 2; \\ 3x + 6y - 3z = -7. \end{cases}$$

B)
$$\begin{cases} x + y + z = 6; \\ 4x + y + 3z = 15; \\ 3x + 2y - z = 4; \\ 2x - y + z = 3. \end{cases}$$
$$\begin{cases} x_1 - x_2 + 2x_3 + 2x_4 = 0 \end{cases}$$

д)
$$\begin{cases} x_1 - x_2 + 2x_3 + 2x_4 = 2; \\ 3x_1 - 2x_2 - x_3 - x_4 = -1; \\ 5x_1 - 3x_2 - 4x_3 - 2x_4 = -4; \\ 7x_1 - 4x_2 - 7x_3 - 5x_4 = -7 \end{cases}$$

r)
$$\begin{cases} x_1 + x_2 + x_3 = 1; \\ x_1 + x_2 + 2x_3 = 1; \\ 2x_1 + 2x_2 + 4x_3 = 2. \end{cases}$$

40. Решить однородную систему линейных алгебраических уравнений:

a)
$$\begin{cases} x_1 + 7x_2 - 3x_3 = 0; \\ 3x_1 - 5x_2 + x_3 = 0; \\ 3x_1 + 4x_2 - 2x_3 = 0. \end{cases}$$
 B)
$$\begin{cases} x_1 + 3x_2 + 2x_3 = 0; \\ 2x_1 - x_2 + 3x_3 = 0; \\ 3x_1 - 5x_2 + 4x_3 = 5; \\ x_1 + 17x_2 + 4x_3 = 0. \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 - x_3 = 0; \\ 5x_1 + 4x_2 - 6x_3 = 0; \\ 3x_1 + 2x_2 - 5x_3 = 0. \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0; \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0; \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0; \\ x_1 + 8x_2 + 24x_3 - 19x_4 = 0. \end{cases}$$

Задания для индивидуальной работы

41. Выяснить, совместна ли система уравнений, если она совместна, то найти ее решение:

a)
$$\begin{cases} x_1 - 2x_2 - 3x_3 = -3; \\ 2x_1 + 6x_2 - 10x_3 = 0; \\ -3x_1 + 12x_2 + 3x_3 = 9. \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 1; \\ x_1 + x_2 + 2x_3 = 1; \\ x_1 + x_2 + 3x_3 = 2. \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 1; \\ x_1 + x_2 + 3x_3 = 2. \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 - 1 = 0; \\ x_1 + x_2 - x_3 - 7 = 0. \end{cases}$$

$$\begin{cases} x_1 + x_2 - x_3 - 7 = 0. \end{cases}$$

$$\begin{cases} x_1 + x_2 + 3x_3 + x_4 = 5; \\ x_1 + 3x_2 + 5x_3 - 2x_4 = 2; \\ x_1 + 5x_2 - 9x_3 + 8x_4 = 1; \\ 5x_1 + 18x_2 + 4x_3 + 5x_4 = 12. \end{cases}$$
 a)
$$\begin{cases} 3x_1 + 2x_2 + x_3 + 2x_4 + 3x_5 = 10; \\ 4x_1 + 2x_2 - 3x_3 + 2x_4 = 2; \\ 3x_1 + 2x_2 - 3x_3 + 4x_4 + 6x_5 = 2; \\ 4x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 = 2; \\ 4x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 = 2; \\ 4x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 = 7. \end{cases}$$

$$\begin{cases} 4x_1 - 3x_2 + 2x_3 = 9; \\ 2x_1 + 5x_2 - 3x_3 = 4; \\ 5x_1 + 6x_2 - 2x_3 = 18. \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 2; \\ 2x_1 - 3x_2 + 4x_3 = 3; \\ 4x_1 - 11x_2 + 10x_3 = 5. \end{cases}$$

$$\begin{cases} 4x_1 + 2x_2 - 3x_3 + 2x_4 = 3; \\ 2x_1 + 3x_2 - 2x_3 + 3x_4 = 2; \\ 3x_1 + 2x_2 - 3x_3 + 4x_4 = 1. \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 + x_3 + 4x_4 + 6x_5 = 2; \\ 4x_1 + x_2 + x_3 + 5x_4 + 7x_5 = 10; \\ x_1 + 9x_2 + 3x_3 + x_4 + x_5 = 7 \end{cases}$$

42. Решить однородную систему линейных алгебраических уравнений:

2. Решить однородную систему линейных алгебраических уравнени
$$\begin{cases} 5x_1 - 3x_2 + 4x_3 = 0; \\ 3x_1 + 2x_2 - x_3 = 0; \\ 8x_1 - x_2 + 3x_3 = 0. \end{cases}$$
 б)
$$\begin{cases} 3x_1 + 4x_2 - x_3 = 0; \\ x_1 - 3x_2 + 5x_3 = 0; \\ 4x_1 + x_2 + 4x_3 = 0. \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 2x_4 + x_5 = 0; \\ -x_1 - 2x_2 + x_3 + x_4 = 0; \\ x_1 + 2x_2 - 3x_3 - 7x_4 - 2x_5 = 0. \end{cases}$$
 г)
$$\begin{cases} x_1 + x_2 - x_3 - 2x_4 - 2x_5 = 0; \\ 2x_1 + 3x_2 - 2x_3 - 5x_4 - 4x_5 = 0; \\ x_1 - x_2 - x_3 - 2x_5 = 0; \\ x_1 - x_2 - x_3 - 2x_5 = 0. \end{cases}$$

Ответы. 39. а) (3; -1; 1); б) несовместна; в) (1; 2; 3); г) $(t; 1-t; 0), t \in \mathbb{R}$;

д)
$$(5t-5; 7t-7; t; 0), t \in \mathbb{R};$$

д)
$$(5t-5; 7t-7; t; 0), t \in \mathbb{R};$$
 e) $(2+t-m; 3-2t+m; t; m),$ $t, m \in \mathbb{R};$

40. B)
$$(-11t: -t: 7t)$$
, $t \in \mathbb{R}$:

40. B)
$$(-11t; -t; 7t), t \in \mathbb{R};$$
 Γ $(-7t + 8m; -6t + 5m; t; m), t, m \in \mathbb{R}.$

41. a) (2; 1; 1); в) несовм.; г)
$$\left(\frac{1}{5}(9-7t); \frac{1}{5}(1+2t); t\right)$$
, $t \in \mathbb{R}$; д) несовм.;

ж)
$$(6-26t+17m; -1+7t-5m; t; m), t, m \in \mathbb{R};$$

3)
$$(-5-8t-14m; -13-3t-9m; 43+10t+30m; 5t; 5m), t, m \in \mathbb{R}$$
.

42. a) (0; 0; 0); B)
$$(-2a-2b-c; a; -3b-c; b; c), a, b, c \in \mathbb{R}$$

6 Собственные значения и собственные векторы матрицы

Рассмотрим квадратную матрицу $A_{n \times n}$ и вектор-столбец $X_{n \times 1} \neq 0$.

Вектор X называется собственным вектором матрицы A, если существует такое действительное число $\lambda \neq 0$, что выполняется равенство

$$AX = \lambda X. (3)$$

Число λ называется собственным значением или собственным чис*пом* матрицы *A*.

Для нахождения собственных значений матрицы составляют характеристическое уравнение: $|A - \lambda E| = 0$.

Подставляя найденные значения в уравнение (3), находят собственные векторы матрицы A.

Пример 7. Найти собственные числа и собственные векторы матрицы

$$A = \begin{pmatrix} 8 & 5 & 3 \\ 0 & 2 & -6 \\ 0 & -1 & 1 \end{pmatrix}.$$

Решение. Запишем матрицу $A - \lambda E$.

$$A - \lambda E = \begin{pmatrix} 8 & 5 & 3 \\ 0 & 2 & -6 \\ 0 & -1 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 - \lambda & 5 & 3 \\ 0 & 2 - \lambda & -6 \\ 0 & -1 & 1 - \lambda \end{pmatrix}.$$

Составим характеристическое уравнение:

$$\begin{vmatrix} 8 - \lambda & 5 & 3 \\ 0 & 2 - \lambda & -6 \\ 0 & -1 & 1 - \lambda \end{vmatrix} = (8 - \lambda) \cdot ((2 - \lambda) \cdot (1 - \lambda) - 6) = (8 - \lambda) \cdot (\lambda^2 - 3\lambda - 4) = 0.$$

Решая полученное уравнение, получим $\lambda_1=8$, $\lambda_2=-1$, $\lambda_3=4$ — собственные значения матрицы А.

Для каждого из полученных собственных значений найдем собственные векторы матрицы *А*.

1) Если
$$\lambda = 8$$
, то $A - \lambda E = \begin{pmatrix} 8 - 8 & 5 & 3 \\ 0 & 2 - 8 & -6 \\ 0 & -1 & 1 - 8 \end{pmatrix} = \begin{pmatrix} 0 & 5 & 3 \\ 0 & -6 & -6 \\ 0 & -1 & -7 \end{pmatrix}$

и матричное уравнение выглядит:

$$\begin{pmatrix} 0 & 5 & 3 \\ 0 & -6 & -6 \\ 0 & -1 & -7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Этому уравнению соответствует однородная система линейных урав-

нений
$$\begin{cases} 5x_2 + 3x_3 = 0; \\ -6x_2 - 6x_3 = 0; \\ -x_2 - 7x_3 = 0. \end{cases}$$

Из второго уравнения $x_2 = -x_3$, тогда оставшиеся два уравнения будут

$$\begin{cases} -5x_3 + 3x_3 = 0; \\ x_3 - 7x_3 = 0; \end{cases} \Rightarrow \begin{cases} -2x_3 = 0; \\ -6x_3 = 0; \end{cases} \Rightarrow x_3 = 0, x_2 = 0, x_1 = m, m \in \mathbb{R}, m \neq 0.$$

меть вид:
$$\begin{cases} -5x_3 + 3x_3 = 0; \\ x_3 - 7x_3 = 0; \end{cases} \Rightarrow \begin{cases} -2x_3 = 0; \\ -6x_3 = 0; \end{cases} \Rightarrow x_3 = 0, x_2 = 0, x_1 = m, m \in \mathbb{R}, m \neq 0.$$
 Вектор $X_1 = \begin{pmatrix} m \\ 0 \\ 0 \end{pmatrix}, m \in \mathbb{R}, m \neq 0 - \text{собственный вектор матрицы } A.$

2) Если $\lambda = -1$, то получим однородную систему линейных уравнений:

$$\begin{cases} 9x_1 + 5x_2 + 3x_3 = 0; \\ 3x_2 - 6x_3 = 0; \Rightarrow \\ -x_2 + 2x_3 = 0; \end{cases} \Rightarrow \begin{cases} 9x_1 + 5x_2 + 3x_3 = 0; \\ -x_2 + 2x_3 = 0; \end{cases} \Rightarrow \begin{cases} x_1 = -\frac{13}{9}x_3; \\ x_2 = 2x_3; \end{cases}$$
$$\Rightarrow x_3 = 9k, x_2 = 18k, x_1 = -13k, k \in \mathbb{R}, k \neq 0.$$

Тогда вектор
$$X_2 = \begin{pmatrix} -13k \\ 18k \\ 9k \end{pmatrix}, \ k \in \mathbb{R}, \ k \neq 0 \ -$$
 собственный вектор матрицы A .

3) Если $\lambda = 4$, то получим однородную систему линейных уравнений:

$$\begin{cases} 4x_1 + 5x_2 + 3x_3 = 0; \\ -2x_2 - 6x_3 = 0; \\ -x_2 - 3x_3 = 0; \end{cases} \Rightarrow \begin{cases} 4x_1 + 5x_2 + 3x_3 = 0; \\ -x_2 - 3x_3 = 0; \end{cases} \Rightarrow \begin{cases} x_1 = 3x_3; \\ x_2 = -3x_3; \end{cases}$$
$$\Rightarrow x_3 = t, x_2 = -3t, x_1 = 3t, t \in \mathbb{R}, t \neq 0.$$

Тогда вектор $X_3=egin{pmatrix} 3t \\ -3t \\ t \end{pmatrix},\ t\in\mathbb{R},\ t\neq 0$ — собственный вектор матрицы A.

Otbet.
$$X_1 = \begin{pmatrix} m \\ 0 \\ 0 \end{pmatrix}, \ X_2 = \begin{pmatrix} -13k \\ 18k \\ 9k \end{pmatrix}, \ X_3 = \begin{pmatrix} 3t \\ -3t \\ t \end{pmatrix}, \ m, k, t \in \mathbb{R}, \ m \neq 0, k \neq 0, \ t \neq 0.$$

Задания для аудиторной работы

43. Для заданной матрицы A и векторов X_1 , X_2 , X_3 установить, какие из данных векторов являются собственными векторами матрицы A и найти их собственные значения, если:

a)
$$A = \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $X_3 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$;

6)
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$, $X_2 = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$, $X_3 = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$.

44. Найти собственные числа и собственные векторы матрицы А

Задания для индивидуальной работы

45. Для заданной матрицы A и векторов X_1 , X_2 , X_3 установить, какие из данных векторов являются собственными векторами матрицы A и найти их собственные значения, если:

a)
$$A = \begin{pmatrix} 5 & -4 \\ 6 & -5 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $X_3 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$;

6)
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $X_2 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$, $X_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.