Priv.-Doz. Dr. S.-J. Kimmerle

WiSe 2021/22

Thursday, 18.11.2021

Homework 7: Complex numbers etc.

To submit: on Thursday, 25.11.2021, 9:30 a.m., online by the learning campus

Exercise 1 (4 pts.)

Which of the following functions $f: \mathbb{R} \to \mathbb{R}$ are continuous on \mathbb{R} ? Please give a justification!

Ja)
$$f(x) = 2x^5 + x - 1$$
 a) polynomials are continuous.
b) polynomials are continuous + the denominator never reaches zero. x^2 always >= 0, $y = 5$ lowest point.
c) exponential function is continuous + sin is continuous.
d) exponential function is continuous but $\cos^4 - 1$ is not. so it has multiple "holes"

- it has multiple "holes".

You may use that sin and cos are continuous on \mathbb{R} .

Exercise 2 (4 pts.)

Solve for x in \mathbb{C} the equations:

a)
$$x^2 - 10x + 4 = 0$$
 $x_1 = \frac{10 \pm \sqrt{100 - 4 \cdot 1 \cdot 4}}{2}$ $x_2 = 0,417$

b)
$$x^2 - 2\cos(a)x + 1 = 0$$
, a a fixed real number. $x_{1/2} = \frac{2 + 4 - 4 \cdot 1 \cdot 1}{2} \times 1 = 1$

$$1.\cos(0) = 1$$

2.
$$\cos(2) = -0.416$$
 $x_{3/4} = \frac{-0.832 \pm \sqrt{-0.832} - 4^{\circ}}{2} = \frac{-0.832 \pm \sqrt{-3.308}}{2}$

Proof that in the field $\mathbb C$ the associative property holds for the multiplication.

Exercise 4 (8 pts.)

a) Let
$$z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
.
Compute: $|z| = \sqrt{z\overline{z}}, \frac{1}{z}, 1 + z + z^2 + \dots + z^7$.

b) Let
$$z = \frac{12+5i}{2+3i}$$
.
Compute: Re(z), Im(z).

c) Let
$$z = \sum_{n=3}^{13} (12 + 2ni)$$
.
Compute: Re(z), Im(z).

$$x_3 = -0,416 + 0,909i$$

 $x_4 = -0,416 - 0,909i$