Kapitel 9

Integration in \mathbb{R}^n

Im Eindimensionalen hatten wir mit dem Integral

$$\int_{a}^{b} f(x)dx$$

den Flächeninhalt unter dem Graphen von f berechnet. Wir suchen nach einer Verallgemeinerung mit der z.B. Volumen unter dem Graphen einer Funktion von zwei Variablen berechnet werden kann.

can't understand word, page 207 middle

Erinnerung: Das bestimmte Riemann-Integral einer Funktion f(x) über einem Intervall ist [a,b]:

$$I = \int_{a}^{b} f(x)dx$$

Das Integral I war als Grenzwert der Riemannschen Ober- und Untersumme definiert (falls diese Grenzwerte jeweils existieren und übereinstimmten).

Das Konstruktionsprinzip für Bereichsintegrale ist analog. Aber der Definitionsbereich D ist komplizierter. Wir betrachten zunächst den Fall zweier Variablen, n=2, und einen Definitionsbereich $D\subset\mathbb{R}^2$ der Form

$$D = [a_1, b_1] \times [a_2, b_2] \subset \mathbb{R}^2$$

d.h. Dist ein kompakter Quader (Rechteck). Sei $f:D\to\mathbb{R}$ eine beschränkte Funktion.

Definition 9.1

Mann nennt $Z = \{(x_0, x_1, \dots, x_n), (y_0, y_1, \dots, y_m)\}$ eine Zerlegung des Quaders $D = [a_1, b_1] \times [a_2, b_2]$ falls gilt

$$a_1 = x_0 < x_1 \dots < x_n = b_1$$

 $a_2 = y_0 < y_1 \dots < y_m = b_2$

- 1. WHERE IS NUMBER 1??
- 2. Die Feinheit einer Zerlegung $Z \in Z(D)$ ist

$$||Z|| := \max_{i,j} \{|x_{i+1} - x_i|, |y_{j+1} - y_j|\}$$

3. Für eine vorgegebene Zerlegung Z, nennt man die Mengen

$$Q_{ij} := [x_i, x_{i+1}] \times [y_j, y_{j+1}]$$

die Teilquader der Zerlegung Z. Das Volumen des Teilquaders Q_{ij} ist

$$vol(Q_{ij}) := (x_{i+1} - x_i)(y_{j+1} - y_j)$$

4. Für beliebige Punkte $\xi_{ij} \in Q_{ij}$ der jeweiligen Teilquader nennt man

$$R_f(Z) := \sum_{i,j} f(\xi_{ij}) \operatorname{vol}(Q_i j)$$

eine Riemannsche Summe zur Zerlegung Z

5. Analog zum Integral einer Variablen heissen für eine Zerlegung ${\cal Z}$

$$U_{f}(Z) := \sum_{i,j} \inf_{\mathbf{X} \in Q_{ij}} f(\mathbf{X}) \operatorname{vol}(Q_{i}j)$$
$$O_{f}(Z) := \sum_{i,j} \sup_{\mathbf{X} \in Q_{ij}} f(\mathbf{X}) \operatorname{vol}(Q_{i}j)$$

die Riemannsche Untersumme bzw. Riemannsche Obersumme von f(x)

Bemerkung 9.2

1. Es gilt

$$U_f(Z) \le R_f(Z) \le O_f(Z)$$

d.h. eine Riemannsche Summe zur Zerlegung Z liegt stets zwischen der Unter und Obersumme dieser Zerlegung.

2. Entsteht eine Zerlegung \mathbb{Z}_2 aus der Zerlegung \mathbb{Z}_1 durch Hinzunahme weiterer Zwischenpunkte x_i und/oder y_j , so gilt

$$U_f(Z_2) \ge U_f(Z_1)$$
 und $O_f(Z_2) \le O_f(Z_1)$

Für zwei beliebige Zerlegungen $\mathbb{Z}_1, \mathbb{Z}_2$ gilt stets

$$U_f(Z_1) \le O_f(Z_2)$$

Definition 9.3

Sei $f:D\to\mathbb{R}$ beschränkt

1. Das Riemannsche Unterintegral bzw. Riemannsche Oberintegral der Funktion f(x) über D ist

$$U_{f} := \sup \left\{ U_{f}\left(z\right) : z \in Z\left(D\right) \right\} := \int_{\underline{D}} f(x) d\mu$$
$$O_{f} := \inf \left\{ O_{f}\left(z\right) : z \in Z\left(D\right) \right\} := \int_{D} f(x) d\mu$$

$$O_{f} := \inf \left\{ O_{f}\left(z\right) : z \in Z\left(D\right) \right\} := \int_{D} f(x) d\mu$$

2. Die Funktion f(x) nennt man Riemann - integrierbar über D, falls Unter und Oberintegral übereinstimmen. Das Riemann Integral von f(x) über D ist

$$\int_{D} f(x)d\mu = \int_{D}^{-} f(x)d\mu = \int_{D} f(x)d\mu$$

Bemerkung

In höheren Dimensionen, n>2, ist die Vorgehensweise analog. Schreibweise: Für $n=2,\,n=3$

$$\int_{D} f(x,y) d\mu \text{ bzw. } \int_{D} f(x,y,z) d\mu$$

oder auch

$$\int\limits_{D} f\left(x,y\right) dxdy \text{ bzw. } \int\limits_{D} f\left(x,y,z\right) dxdydz$$

oder

$$\int\limits_{D} f dx dy \text{ bzw. } \int\limits_{D} f dx dy dz$$

Satz 9.4 (Elementare Eigenschaften des Integrals)

1. <u>Linearität:</u> Seien $f,g:D\to\mathbb{R}$ beschränkt und R integrabel, $\alpha,\beta\in\mathbb{R}$. Dann sind $\alpha f,\,f+g$ Riemann-Integrabel

$$\int_{D} (\alpha f + \beta g) d\mu = \alpha \int_{D} f d\mu + \beta \int_{D} g d\mu$$

2. Monotonie: Gilt $f(x) \leq g(x), \forall x \in D$, so folgt

$$\int\limits_{D} f d\mu \le \int\limits_{D} g d\mu$$

3. Positivität: Gilt für alle $x \in D$, $f(x) \ge 0$ (d.h. f(x) ist nicht negativ), so folgt

$$\int\limits_{D}fd\mu\geq0$$

4. Abschätzung

$$\left| \int_{D} f(x) d\mu \right| \le \sup_{x \in D} |f(x)| \text{vol}(D)$$

5. Sind D_1, d_2, D Quader, $D = D_1 \cup D_2$ und $\operatorname{vol}(D_1 \cap D_2) = 0$, so ist f genau dann über D integrierbar, falls f über D_1 und über D_2 integrierbar ist und es gilt

$$\int\limits_{D} f d\mu = \int\limits_{D_1} f d\mu + \int\limits_{D_2} f d\mu$$

(Gebietsadditivität)

9.1 Der Satz von Fubini

According to the notes it should be 9.2, which one is right??

Wie kann man das Riemann-Integral konkret berechnen? Der Satz von Fubini hilft uns.

Satz 9.5 (Satz von Fubini)

Sei $Q = [a, b] \times [c, d] \in \mathbb{R}^2$ und sei $f \in C^0(Q)$. Dann gilt

$$\int_{Q} f d\mu = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

d.h. das Integral von f über Q kann iterativ durch 1—dimensionale Integration bestimmt werden.

Beispiel 9.6

1. Sei f(x,y) = 2x + 2yx, $Q = [0,1] \times [-2,2]$

$$\int_{Q} f d\mu = \int_{-2}^{2} \left(\int_{0}^{1} (2x + 2yx) dx \right) dy$$

$$= \int_{-2}^{2} \left(x^{2} + yx^{2} \Big|_{0}^{1} \right) dy$$

$$= \int_{-2}^{2} (1 + y) dy = y + \frac{y^{2}}{2} \Big|_{-2}^{2} = 4$$

Oder:

$$\int_{0}^{1} \left(\int_{-2}^{2} (2x + 2yx) \, dy \right) dx$$

$$= \int_{0}^{1} \left(2xy + y^{2}x \Big|_{-2}^{2} \right) dx$$

$$= \int_{0}^{1} \left[(4x + 4x) - (-4x + 4x) \right] dx$$

$$= \int_{0}^{1} 8x dx = 4x^{2} \Big|_{0}^{1} = 4$$

2.

$$\int_{0}^{1} \int_{0}^{2\pi} (e^x \sin y) \, dy dx$$
$$= \int_{0}^{1} \left(-e^x \cos y \Big|_{0}^{2\pi} \right) dx$$
$$= \int_{0}^{1} 0 dx = 0$$

Oder:

$$\int_{0}^{2\pi} \left(\int_{0}^{1} e^{x} \sin y dx \right) dy$$

$$= \int_{0}^{2\pi} \left(\sin y e^{x} \Big|_{0}^{1} \right) dy$$

$$= \int_{0}^{2\pi} (e - 1) \sin y dy$$

$$= -(e - 1) \cos y \Big|_{0}^{2\pi} = 0$$

Geometrische Deutung

Not sure about the text size...

In der Skizze ergibt sich als Volumen der markierten Schicht bei festem x und sehr kleinen Dicke dx näherungsweise das Volumen

$$\left(\int_{c}^{d} f(x,y) \, dy\right) dx$$

Das Aufaddieren sämtlicher Schichtvolumen entspricht gerade der Integration über die Variable x, d.h. für das gesuchte Volumen gilt

$$V = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

Bis jetzt können wir nur Integrale über achsenparallel rechteckige bzw. quaderförmige Bereiche berechnen.

Das reicht für viele praktische Aufgaben nicht aus. Meist ist der Integrationsbereich D verbogen oder zumindest anders begrenzt.

Die meisten praktischen Aufgaben lassen sich auf die Integration über sogenannte Normalbereiche zurückführen.

Definition 9.10

1. Eine Teilmenge $D\subset\mathbb{R}^2$ heisst ein Normalbereich bezüglich der x-Achse bzw. bezüglich der y-Achse falls es stetige Funktionen g,h bzw. $\overline{g},\overline{h}$ gibt mit

$$D = \{(x, y) \mid a \le x \le b, \text{ und } g(x) \le y \le h(x)\}$$

bzw.

$$D = \{(x, y) \mid \overline{a} \le x \le \overline{b}, \text{ und } \overline{g}(x) \le y \le \overline{h}(x)\}$$

Beispiel

Kreise und Rechtecke sind Normalbereiche bzgl. beider Achsen

Über Normalbereiche lässt sich sehr bequem integrieren

Die markierte Scheibe bei y=const. mit kleiner Dicke dx besitzt näherungsweise das Volumen

$$V(x) = \left(\int_{g(x)}^{f(x)} f(x, y) \, dy\right) dx$$

Nun braucht man V(x) nur noch über [a, b] zu integrieren

$$V = \int_{a}^{b} \left(\int_{g(x)}^{h(x)} f(x, y) \, dy \right) dx$$

Satz 9.11

1. Ist f(x) stetig auf einem Normalbereich

$$D = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \text{ und } g(x) \le y \le h(x)\}$$

so gilt

$$\int_{D} f(x)d\mu = \int_{a}^{b} \left(\int_{g(x)}^{h(x)} f(x, y) dy \right) dx$$

2. bzw. falls

$$D = \{(x, y) \in \mathbb{R}^2 \mid \overline{a} \le x \le \overline{b}, \text{ und } \overline{g}(x) \le y \le \overline{h}(x)\}$$

so gilt

$$\int_{D} f(x)d\mu = \int_{\overline{a}}^{\overline{b}} \left(\int_{\overline{q}(x)}^{\overline{h}(x)} f(x,y) dx \right) dy$$

Beispiel 9.12

1. Sei
$$f(x,y) = x - y$$

$$\int_{D} f d\mu = \int_{x=0}^{x=1} \int_{y=0}^{y=\sqrt{1-x^2}} (x-y) \, dy dx$$

$$= \int_{0}^{1} \left(xy - \frac{y^2}{2} \Big|_{0}^{\sqrt{1-x^2}} \right) dx$$

$$= \int_{0}^{1} \left(x\sqrt{1-x^2} - \frac{1-x^2}{2} \right) dx$$

$$= \int_{0}^{1} x\sqrt{1-x^2} dx - \frac{1}{2} \int_{0}^{1} 1 - x^2 dx$$

$$= \frac{1}{2} - \frac{2}{3} = \frac{1}{3}$$

$$\int_{0}^{1} x\sqrt{1-x^{2}} dx \quad u = 1-x^{2}$$

$$du = -2x dx$$

$$= -\frac{1}{2} \int_{0}^{1} \sqrt{u} du = -\frac{1}{2} \cdot \frac{2}{3} u^{\frac{3}{2}} \Big|_{0}^{1} = \frac{1}{3}$$

$$\int_{D} f d\mu = \frac{1}{3} - \frac{1}{3} = 0$$

2. Sei D das durch die Gerade g(x) = x + 2 und die Parabel $b(x) = 4 - x^2$ missing content?? page begrenzte Gebiet

Schnittpunkte:

$$x + 2 = 4 - x^{2}$$
$$x^{2} + x - 2 = 0$$
$$(x - y)(x + 2)$$

Zu Berechnung des Doppelintegrals zerlegen wir das Gebiet in Streifen parallel zur y-Achse. Für festes x variiert y von g(x)=x+2 bis $h(x)=4-x^2$

$$\int_{D} x d\mu = \int_{-2}^{1} \left(\int_{x+2}^{4-x^{2}} x dy \right) dx$$

$$= \int_{-1}^{2} x \left(4 - x^{2} - x + 2 \right) dx$$

$$= \int_{-1}^{2} \left(2x - x^{3} - x^{2} \right) dx$$

$$= \left(2x - \frac{x^{4}}{4} - \frac{x^{3}}{3} \right)_{-1}^{2}$$

$$= \left(4 - 4 - \frac{8}{3} \right) - \left(1 - \frac{1}{4} + \frac{1}{9} \right) = -\frac{127}{36}$$

3. Sei D:

$$\int_{D} f d\mu = \int_{-1}^{1} \left(\int_{x=y^{2}}^{1} f dx \right) dy$$

(*= Zerlegung des Gebietes in Streifen parallel zur x-Achse) oder mit Zerlegung in Streifen parallel zur y-Achse

$$\int_{D} f d\mu = \int_{x=0}^{1} \left(\int_{y=-\sqrt{x}}^{y=\sqrt{x}} f(x,y) dy \right) dx$$

Manchmal muss man D zerlegen.

4. Bestimme $\int\limits_{D}xdxdy$ wobe
iD von $y^2=4x$ und y=2x-4 begrenzt wird.

Schnittpunkte P_1, P_2 :

$$4x = y^{2} = (2x - 4)^{2}$$

$$\Rightarrow (2x - 4)^{2} = 4x \dots$$

$$\Rightarrow x = 1 \text{ und } x = 4$$

$$P_{1} = (1, -2) \qquad P_{2} = (4, 4)$$

Zerlegung des Gebiets in Streifen parallel zur y-Achse

$$\int_{D} x d\mu = \int_{0}^{1} \left(\int_{-2\sqrt{x}}^{2\sqrt{x}} x dy \right) dx + \int_{1}^{4} \left(\int_{y=2x-4}^{2\sqrt{x}} x dy \right) dx = \dots = 14.4$$

Wenn wir von aussen nach y integrieren, brauchen wir keine Unterteilung

$$\int_{D} x d\mu = \int_{y=-2}^{y=4} \left(\int_{y=\frac{y^{2}}{4}}^{\frac{y}{2}+2} x dx \right) dy$$

$$= \int_{-2}^{4} \left(\left(\frac{x^{2}}{2} \right) \Big|_{\frac{y^{2}}{4}}^{\frac{y}{2}+2} \right) dy$$

$$= \frac{1}{2} \int_{-2}^{4} \left(\left(\frac{y}{2} + 2 \right)^{2} - \frac{y^{4}}{16} \right) dy$$

Beispiel für das An dem der Integrationsreihenfolge Beispiel

1.

$$\int_{0}^{1} \int_{1}^{e^{y}} f(x, y) dx dy$$

x=1 und $x=e^y\Rightarrow y=\ln x\Leftrightarrow 1=\ln x\Leftrightarrow x=e$

$$\int_{1}^{e} \int_{y=\log x}^{y=1} f(x,y) dy dx$$

2. Berechne

$$\int_{0}^{1} \int_{x}^{1} e^{y^{2}} dy dx$$

Man kann das Integral $\int_a^b e^{y^2} dy dx$ nicht direkt berechnen, weil man kein explizit Stammfunktion für e^{y^2} finden kann. Man kann sich die Reihenfolge der Zerlegung beliebig heraussuchen damit die Rechnung möglichst einfach wird.

$$\int_{x=0}^{x=1} \int_{y=x}^{y=1} e^{y^2} dy dx = \int_{y=0}^{y=1} \int_{x=0}^{x=y} e^{y^2} dx dy$$
$$= \int_{0}^{1} \left[x e^{y^2} \Big|_{x=0}^{x=y} \right] dy$$
$$= \int_{0}^{1} y e^{y^2} dy = \left. \frac{e^{y^2}}{2} \right|_{0}^{1} = \frac{1}{2} (e - 1)$$

Bemerkung 9.13

1. Das Integral

$$A = \int\limits_{D} 1 d\mu$$

$$IX-13$$

ergibt die Fläche von D. Für einen Normalbereich bzgl. der $x-{\rm Achse}$ erhalten wir daraus die bekannte Formel

$$A = \int_{a}^{b} \int_{g(x)}^{h(x)} 1 dy dx = \int_{a}^{b} (h(x) - g(x)) dx$$

2. Interpretiert man $\rho(x,y)$ als ortabhängige Flächendichte, so erhält man mit

$$m = \int_{D} \rho(x, y) \, d\mu$$

die Masse von D

Definition 9.14

Eine Teilmenge $D\subset\mathbb{R}^3$ heisst Normalbereich, falls es eine Darstellung

$$D = \left\{ \left. (x,y,z) \in R^3 \right| a \le x \le b; g(x) < y < h(x); \varphi\left(x,y\right) \le z \le \psi\left(x,y\right) \right\}$$
 gibt.

(Vertauscht man die Rollen von x,y und z so entstehen weitere Mengen, die auch Normalbereiche genannt werden.)

Satz 9.15

Sei $D \subset \mathbb{R}^3$ ein Normalbereich mit Darstellung wie oben, und $f:D \to \mathbb{R}$ stetig. Dann gilt

$$\int\limits_{D} f d\mu = \int\limits_{a}^{b} \int\limits_{g(x)}^{h(x)} \int\limits_{\varphi(x,y)}^{\psi(x,y)} f\left(x,y,z\right) dz dy dx$$

 $z=arphi\left(x,y\right)$ und $z=\psi\left(x,y\right)$ stellen die "Grund-" und Deckelfläche von D dar.

Der Normalbereich A ist die senkrechte Projektion von D in die x-y Ebene. Dessen "Grund-" und "Deckelkurve" sind durch y=g(x) und y=h(x) gegeben.

Bemerkung 9.16

Das Integral

$$V = \int\limits_{D} 1 d\mu \text{ für } D \subset \mathbb{R}^3$$

ergibt das Volumen von D. Für einen Normalbereich

$$D = \{(x, y, z) \mid a \le x \le b, g(x) \le y \le h(x), \varphi(x, y) \le z \le \psi(x, y)\}$$

erhält man

$$V = \int\limits_{a}^{b} \int\limits_{g(x)}^{h(x)} \int\limits_{\varphi(x,y)}^{\psi(x,y)} 1 dz dy dx = \int\limits_{a}^{b} \int\limits_{g(x)}^{h(x)} \psi\left(x,y\right) - \varphi\left(x,y\right) dy dx$$

9.2 Substitutionsregel

Häufig sind kartesische Koordinaten für die Berechnung von Integralen eher ungeignet. z.B. wenn man Symmetrien bezüglich gewisser Punkte oder Achsen ausnutzen will.

Wir behandeln als nächstes Variablentransformationen vom Typ $\Phi:\mathbb{R}^n\to\mathbb{R}^n$ und verallgemeinern die eindimensionale Substitutionsregel:

$$\int_{\varphi(a)}^{\varphi(b)} f(x)dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt$$

mit f stetig, $x=\varphi(t)$ $\varphi:[a,b]\to I$ stetig differenzierbar, I= Intervall. Zunächst erinnern wir uns an die lineare Algebra:

Das Bild des Einheitsquadrats/-würfels unter der linearen Abbildung

$$\Phi: \mathbb{R}^n \to \mathbb{R}^n$$

$$\vec{x} \to A\vec{x} \quad A \in \mathbb{R}^{n \times n}$$

ist ein Parallelogramm mit Fläche $|\det A|$

Dies bleibt wahr, wenn man zur affin-linearen Abbildung $\Phi(\vec{x}) = A\vec{a} + \vec{b}$ betrachtet, es kommt ja nur ein Verschiebung dazu

Nun betrachten wir eine differenzierbare nichtlineare Transformation $\Phi : \mathbb{R}^n \to \mathbb{R}^n$. Dann gilt, zumindest nahe eines festen Punktes $\vec{x} \in \mathbb{R}^n$:

$$\Phi(x) \approx \Phi(x_0) + d\Phi(x_0) (\vec{x} - \vec{x_0})$$

Die rechte Seite stellt gerade eine Abbildung vom Typ $A\vec{x} + \vec{b}$ dar, wobei die Jacobi-Matrix $d\Phi\left(x_0\right) \in \mathbb{R}^n \times \mathbb{R}^n$ die Rolle von A (und $\Phi\left(x_0\right)$ von \vec{b}) übernimmt. Damit ist der lokale Flächenverzerrungsfaktor von Φ gegeben durch $|\det d\Phi\left(x_0\right)|$ d.h. den Betrag der Jacobi- oder Funktionaldeterminante. Die lokale Flächenverzerrung muss bei der Substitution in Integralen berücksichtigt werden und zwar in der Form

"
$$d\vec{x} = |\det d\Phi (\vec{y})|d\vec{y}$$
", falls $\vec{x} = \Phi (y)$

Geometrische Darstellung in \mathbb{R}^2

Die Flächen der einander entsprechenden markierten Vierecke unterscheiden sich gerade um den Faktor $|\det d\Phi\left(x_1\right)|$ bzw. $|\det d\Phi\left(x_2\right)|$

Substitutionsregel

Satz 9.17

Sei $U,V\subset\mathbb{R}^n$ offen, $\Phi:U\to V$ bijektiv, stetig diff., det $d\Phi\left(\vec{y}\right)\neq0\ \forall\vec{y}\in U$, sowie $f:V\to\mathbb{R}$ stetig. Dann gilt

$$\int_{V} f(\vec{x}) d\mu (\vec{x}) = \int_{\Phi(U)=V} f(\Phi(\vec{y})) |\det d\phi (y)| d\mu$$

Beispiel 9.18

1. Berechne $\iiint\limits_V d\mu$, wobei

$$\bigvee_{\downarrow} \qquad = \ \Big\{ \left. (x,y,z)^t \right| x^2 + y^2 + z^2 \le 1, x,y,z \ge 0 \Big\}$$
 Kugeloktanten

Es ist einfacher in Kugelkoordinaten zu rechnen

chopped content, page 233 middle to bottom

$$\Phi(r, \theta, \psi) = \begin{pmatrix} r \cos \theta \cos \psi \\ r \sin \theta \cos \psi \\ r \sin \psi \end{pmatrix}$$

Die Transformation Φ ist auf ganz \mathbb{R}^3 definiert und mit

$$U = [0,1] \times \left[0,\frac{\pi}{2}\right] \times \left[0,\frac{\pi}{2}\right]$$

gilt

$$\begin{split} &\Phi\left(U\right)=V\\ &\det\left(d\Phi\right)=r^{2}\cos\psi\\ &\operatorname{vol}\left(V\right)=\int\limits_{V}^{}d\mu\left(\vec{x}\right)=\int\limits_{0}^{1}\int\limits_{0}^{\frac{\pi}{2}}\int\limits_{0}^{\frac{\pi}{2}}r^{2}\cos\psi d\psi d\theta dr=\frac{\pi}{2} \end{split}$$

2. Berechne das Integral

$$\iint\limits_{D} x dx dy \text{ wobei } D = \text{Viertelkreis}$$

$$\int\limits_{x=0}^{1} \int\limits_{y=0}^{\sqrt{1-x^2}} x dy dx = \int\limits_{0}^{1} \left(x u \Big|_{0}^{\sqrt{1-x^2}}\right) dx$$

$$= \int\limits_{0}^{1} x \sqrt{1-x^2} dx$$

$$= \int\limits_{0}^{1} \frac{u^{1/2}}{2} du = -\frac{1}{2} \cdot \frac{u^{3/2}}{3/2} \Big|_{0}^{1}$$

mit $1 - x^2 = u$, -2xdx = du Oder:

$$\iint\limits_{D} x dx dy \qquad \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} r\cos\theta \\ r\sin\theta \end{array}\right)$$

$$dx dy = r dr d\theta$$

$$\int_{0}^{\pi/2} \int_{0}^{1} r^{2} \cos \theta dr d\theta = \int_{0}^{\pi/2} \cos \theta \left(\left. \frac{r^{3}}{3} \right|_{0}^{1} \right) d\theta$$
$$= \frac{1}{3} \int_{0}^{\pi/2} \cos \theta d\theta = -\frac{1}{3} \sin \theta \Big|_{0}^{\pi/2} = -\frac{1}{3}$$

3. Die Substitutionsregel in mehreren Variablen ist manchmal auch nützlich zur Berechnung von Integralen in einer Variable. Zunächst möchten wir das Integral

$$I = \int_{0}^{\infty} e^{-x^2} dx$$

berechnen. Wir berechnen I durch Berechnung eines Flächenintegrals wie folgt. Es gilt

$$I^{2} = \left(\int_{0}^{\infty} e^{-x^{2}} dx\right)^{2}$$

$$= \lim_{R \to \infty} \left(\int_{0}^{R} e^{-x^{2}} dx\right) \left(\int_{0}^{R} e^{-y^{2}} dy\right)$$

$$= \lim_{R \to \infty} I_{R}$$

für

$$I_R = \int_{[0,R] \times [0,R]} e^{-(x^2 + y^2)} dx dy$$

Bezeichnet K_{ρ} den Viertelkreis im 1. Quadrant mit Radius r, so gilt

$$\int_{K_R} e^{-(x^2+y^2)} dx dy \le I_R \int_{K_{\sqrt{2}R}} e^{-(x^2+y^2)} dx dy$$

Die Integrale über K_{ρ} berechnet man nun über Polarkoordinaten

$$\int_{K_{\theta}} e^{-(x^2+y^2)} dx dy = \int_{0}^{\rho} \int_{0}^{\pi/2} e^{-r^2} r dr d\theta = \frac{\pi}{4} \left(1 - e^{\rho^2} \right)$$

und somit gelten die Abschätzungen

$$\frac{\pi}{4} \left(1 - e^{-R^2} \right) \le I_R \le \frac{\pi}{4} \left(1 - e^{-2R^2} \right)$$

und es gilt schliesslich

$$\lim_{R \to \infty} I_R = \frac{\pi}{4}$$

d.h.

$$I^2 = \lim_{R \to \infty} I_R = \frac{\pi}{4}$$

d.h.

$$I = \frac{\sqrt{\pi}}{2} = \int\limits_{0}^{\infty} e^{-x^2} dx$$

9.3 Der Satz von Green

Wir erinnern uns: Sei $\Omega \subset \mathbb{R}^2$, ist $V: \Omega \to \mathbb{R}^2$ ein C'-Vektorfeld mit Potential f, so folgt

$$\operatorname{rot}(v(x)) = \operatorname{rot}(\nabla f(x)) = 0 \qquad \forall x \in \mathbb{R}^2$$

wobei

$$\operatorname{rot}\left(v\left(x,y\right)\right) = \frac{\partial v_{2}}{\partial x}\left(x,y\right) - \frac{\partial v_{1}}{\partial y}\left(x,y\right)$$

so ist

$$rot v = \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} = 0$$

in wei Dimensionen eine notwendige Bedingung für die Existenz eines Potentials.

Die Bedingung ${\rm rot}(v)=0$ ist sogar eine hinreichende Bedingung, falls das Gebiet Ω einfach zusammenhängend ist. In diesem Fall

$$\oint_{\gamma} v = \int_{\gamma} \nabla f ds = f(\gamma(1)) - f(\gamma(0)) = 0$$

für alle geschlossene Weg γ und für einen nichtgeschlossenen Weg γ

$$\int_{\gamma} v = \int_{\gamma} \nabla f ds = f(\gamma(1)) - f(\gamma(0))$$

d.h. falls das Vektorfeld ein Gradientenfeld ist, ist das Integral $\int\limits_{\gamma}v$ eine Funktion der Endpunkte.

Anders gesagt, es gibt Fälle wo ein Wegintegral (d.h. ein Integral auf einem eindimensionalen Objekt mithilfe einer 0-dimensionalen Menge) berechnet werden kann.

Bemerkung

Auch für Funktionen einer Variable: Falls F' = f ist, dann gilt

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Hauptsatz der Integralrechnung einer Variable

Frage

Gibt es auch Fälle wo ein zweidimensionales Integral mithilfe einer eindimensionalen Menge berechnet werden kann?

Die Antwort ist genau der Inhalt des Satzes von Green

Satz 9.19 (Green)

Sei $\Omega \in \mathbb{R}^2$ ein Gebiet, dessen Rand $\partial \Omega$ eine stückweise C' Parameterdarstellung hat. Sei U eine offene Menge mit $\Omega \subset U$ und sei

$$f = \frac{\partial Q}{\partial x}(x, y) - \frac{\partial P}{\partial y}(x, y)$$

wobei $P, Q \in C'(U)$. Dann gilt

$$\iint\limits_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) d\mu = \int\limits_{\partial \Omega} P dx + Q dy$$

wobei $\partial\Omega$ so parametrisiert wird, dass Ω zur Linken des Randes liegt.

Anders gesagt:

Sei V=(P,Q) ein C' Vektorfeld auf dem Gebiet U. Sei $\Omega\subset U$ ein Gebiet, dessen rand $\partial\Omega$ ein Stückweise C' Parameterdarstellung hat. Die parametrisierung von Ω sei so gewählt dass Ω stets links zur Durchlaufrichtung liegt. Dann gilt

$$\int\limits_{\partial\Omega}Vds=\int\limits_{\partial\Omega}Pdx+Qdy=\iint\limits_{\Omega}\operatorname{rot}\left(V\right)d\mu$$

Bevor wir die Idee des Beweises geben, geben wir einige Beispiele und Anwendungen

Beispiel 9.20

1. Wir betrachten das Vektorfeld

$$F(x,y) = (y+3x, y-2x)$$

und wir möchten dieses Kraftfeldes entlang der im Gegenuhrzeigersinn durchlaufenen Ellipse $\gamma:4x^2+y^2=4$ bestimmen. Die Arbeit ist

$$\int_{\gamma} F d\vec{s} = \int_{\gamma} P dx + Q dy$$

$$= \int_{\gamma} (y + 3x) dx + (2y - x) dy$$
Green $\rightarrow = \iint_{\Omega} \frac{\partial (2y - x)}{\partial x} - \frac{\partial (y + 3x)}{\partial y}$

$$= \iint_{\Omega} -1 - 1 d\mu = -2 \iint_{\Omega} d\mu$$

$$= -2 \cdot (\text{Flächeninhalt von Ellipse } 4x^2 + y^2 = 4)$$

Can't understand the result, page 242 top

2. Berechne das Wegintegral

$$\int_{\partial\Omega} \left(5 - xy - y^2\right) dx - \left(2xy - x^2\right) dy$$

wobei Ω das Quadrat mit Eckpunkten (0,0),(0,1),(1,1),(1,0) im Gegenuhrzeigersinn ist

$$\int_{\partial A} (5 - xy - y^2) dx - (2xy - x^2) dy$$

$$= \iint_{\Omega} \left[\frac{\partial}{\partial x} (2xy - x^2) - \frac{\partial}{\partial y} (5 - xy - y^2) \right] d\mu$$

$$= \iint_{\Omega} (2y - 2x) - (-x - 2y) d\mu$$

$$= 3 \iint_{\Omega} d\mu = \int_{0}^{1} \int_{0}^{1} x dx dy = \frac{3}{2}$$

3. Mittels des Satzes von Green können wir den Flächeninhalt eines Gebiets mithilfe eines Wegintegrals berechnen. Und zwar

Flächeninhalt(
$$\Omega$$
) = $\iint_{\Omega} d\mu = \iint_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) d\mu$

wobei Pund Q Funktionen mit $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$ sind. Zum Beispiel können wir

$$Q(x,y) = \frac{1}{2}x$$
$$P(x,y) = -\frac{1}{2}x$$

nehmen. Daraus folgt, dass

$$F(\Omega) = \frac{1}{2} \int_{\partial \Omega} -y dx + x dy$$

Als ein Beispiel können wir verifizieren dass der Flächeninhalt des Kreises $x^2+y^2\leq 4$ gleich 4π ist.

Betrachte die Parameterdarstellung $\gamma\left(\theta\right)=(2\cos\theta,2\sin\theta),\,\theta\in\left[0,2\pi\right]$ des Randes $\partial\Omega$

$$\begin{split} F\left(\Omega\right) &= \iint\limits_{\Omega} d\mu = \frac{1}{2} \int\limits_{\partial\Omega} -y dx + x dy \\ &= \frac{1}{2} \int\limits_{0}^{2\pi} \left(-2\sin\theta\right) \left(-2\sin\theta\right) + \left(2\cos\theta\right) \left(2\cos\theta\right) d\theta \\ &= \frac{1}{2} \int\limits_{0}^{2\pi} 4 \left(\sin^2\theta + \cos^2\theta\right) d\theta = 2 \cdot 2\pi = 4\pi \end{split}$$