Лабораторная работа №5

Модель эпидемии (SIR)

Акопян Сатеник

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы	7
4	Выводы	15

Список таблиц

Список иллюстраций

3.1	Задаем переменные окружения в xcos	7
3.2	Модель SIR	8
3.3	Установить параметры блока мультиплексора	9
3.4	Установить параметры блока сумматора	9
3.5	Задать начальные значения в блоках интегрирования	10
3.6	Задать начальные значения в блоках интегрирования	10
3.7	Задать конечное время интегрирования в хсоз	11
3.8	Эпидемический порог модели SIR	11
3.9	Модель SIR	12
3.10	Параметры блока Modelica для модели SIR	13
3.11	Параметры блока Modelica для модели SIR	14
3.12	Эпидемический порог модели SIR	14

1 Цель работы

Целью данной лабораторной работы является реализовать модель SIR

2 Теоретическое введение

Модель SIR предложена в 1927 г. (W. O. Kermack, A. G. McKendrick).

Предполагается, что особи популяции размера N могут находиться в трёх различ- ных состояниях:

- S (susceptible, уязвимые) здоровые особи, которые находятся в группе риска и могут подхватить инфекцию;
- I (infective, заражённые, распространяющие заболевание) заразившиеся пере- носчики болезни;
- R (recovered/removed, вылечившиеся) те, кто выздоровел и перестал распространять болезнь (в эту категорию относят, например, приобретших иммунитет или умерших).

Внутри каждой из выделенных групп особи считаются неразличимыми по свой- ствам.

3 Выполнение лабораторной работы

1. Реализация модели в хсоѕ

В меню Моделирование, Задать переменные окружения зададим значения переменных β и ν (рис. 3.1).

Рис. 3.1: Задаем переменные окружения в хсоѕ

Готовая модель SIR представлена на (рис. 3.2) Первое уравнение модели задано верхним блоком интегрирования, блоком произведения и блоком задания коэффициента β. Блок произведения соединён с вы- ходами верхнего и среднего

блоков интегрирования и блоком коэффициента β , что реализует математическую конструкцию $s(t)i(t)\beta$.

Третье уравнение модели задано нижним блоком интегрирования и блоком задания коэффициента v. Для реализации математической конструкции vi(t) соеди- няем выход среднего блока интегрирования и вход блока задания коэффициента v, а результат передаём на вход нижнего блока интегрирования. Средний блок интегрирования и блок суммирования определяют второе уравнение модели, которое по сути является суммой правых частей первого и третьего уравнений. Для реализации соединяем входы верхнего и нижнего блоков интегрирования с входами блока суммирования, меняя при этом в его параметрах оба знака на минус. Выход блока суммирования соединяем с входом среднего блока интегрирования.

Рис. 3.2: Модель SIR

Меняем количество выходов мультиплексора до 3 (рис. 3.3)

Рис. 3.3: Установить параметры блока мультиплексора

Выходы трёх блоков интегрирования соединяем с мультиплексором. В параметрах верхнего и среднего блока интегрирования необходимо задать начальные значения s(0) = 0, 0.999 и i(0) = 0.001 (рис. 3.5, 3.6)

Рис. 3.4: Установить параметры блока сумматора

Рис. 3.5: Задать начальные значения в блоках интегрирования

Рис. 3.6: Задать начальные значения в блоках интегрирования

В меню Моделирование, Установка необходимо задать конечное время интегрирования, равным времени моделирования (в данном случае 30)

Рис. 3.7: Задать конечное время интегрирования в хсоѕ

Рис. 3.8: Эпидемический порог модели SIR

2. Реализация модели с помощью блока Modelica в xcos

Готовая модель SIR представлена на (рис. 3.9)

Для реализации модели с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f и MUX требуются блоки CONST_m — задаёт константу; MBLOCK (Modelica generic) — блок реализации кода на языке Modelica.

Рис. 3.9: Модель SIR

Параметры блока Modelica представлены на (рис. 3.10, 3.11). Переменные на входе ("beta", "nu") и выходе ("s", "i", "r") блока заданы как внешние ("E").

Рис. 3.10: Параметры блока Modelica для модели SIR

Рис. 3.11: Параметры блока Modelica для модели SIR

Результат моделирования совпал с результатом при реализации модели с помощью блоков интегрирования

Рис. 3.12: Эпидемический порог модели SIR

4 Выводы

В результате данной лабораторной работы, была реализована модель SIR.