- 58 Compute the differential, or Jacobian matrix, and the Jacobian of the function $\underline{V}:\mathbb{R}^2\to\mathbb{R}^2$ defined by $\underline{V}(x,y)=(x\cos y,x\sin y)$. State where \underline{V} defines an orientation preserving local diffeomorphism, and where it defines an orientation reversing local diffeomorphism.
- 59 Repeat question 58 for $V(x, y) = (e^x \cos y, e^x \sin y)$.
- 60 Calculate the differential, or Jacobian matrix, and the Jacobian of the following transformations:
 - (a) $\underline{U}(u,v) = (x(u,v),y(u,v))$ where $x(u,v) = \frac{1}{2}(u+v)$ and $y(u,v) = \frac{1}{2}(u-v)$;
 - (b) $\underline{V}(r,\theta) = (x(r,\theta),y(r,\theta))$ where $x(r,\theta) = r\cos\theta$ and $y(r,\theta) = r\sin\theta$;
 - (c) $\underline{W}(r, \theta, \phi) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$.
- 61 Adapted from exam question 2009 (Section B) Q7:
 - (a) Let $\underline{V}: \mathbb{R}^n \to \mathbb{R}^n$ be a vector field. Give the definition of \underline{V} being differentiable at a point \underline{a} .
 - (b) Let $\underline{V}(x)$ and $\underline{W}(x)$ be two differentiable vector fields in \mathbb{R}^2 . Give formulae for the two differentials \underline{DV}_x and \underline{DW}_x .
 - (c) Use the chain rule to show that the differential of the composite map $\underline{U}(\underline{x}) := V(W)$ satisfies

$$D\underline{U}_x = D\underline{V}_W D\underline{W}_x \,.$$

- 62 Adapted from exam question 2018 (Section B) Q8:
 - (a) Given a vector field $\underline{u}(\underline{x}) = \underline{w}(\underline{v}(\underline{x}))$, use the chain rule to show that $D\underline{u}(\underline{x}) = D\underline{w}(\underline{v})D\underline{v}(\underline{x})$, and hence $J(\underline{u}) = J(\underline{w})J(\underline{v})$.
 - (b) Let

$$\underline{v}(\underline{x}) = (v_1, v_2) = (\cos y, \sin x)$$

 $\underline{w}(\underline{x}) = (w_1, w_2) = (x^2 + y^3, x^2y),$

and define $\underline{u}(\underline{x}) = \underline{w}(\underline{v}(\underline{x}))$. Use the result from part (a) to calculate $J(\underline{u})$. Verify your answer by direct substitution.

- 63 (a) Let $\underline{v}: \mathbb{R}^n \to \mathbb{R}^n$ be a vector field. Give the definition of \underline{V} being differentiable on an open set $U \subseteq \mathbb{R}^n$.
 - (b) For $\underline{x} = x\underline{e}_1 + y\underline{e}_2$, let $\underline{v} : \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$\underline{v}(\underline{x}) = (x^2 + y^2, x + y).$$

Using the definition of differentiability, show that \underline{v} *is differentiable on* \mathbb{R}^2 .

(c) Draw a diagram to show where \underline{v} defines an orientation preserving local diffeomorphism (on $U \subseteq \mathbb{R}^2$), and where \underline{v} defines an orientation reversing local diffeomorphism (on $V \subseteq \mathbb{R}^2$).