Course Name: Automata Models

Course Code: CAS 205 Instructor: Dr. AzzaTaha

Year: 2017-2018 (Fall Semester) Mid-Term Exam. (30-10-2017)

Time Allowed: 1.5 hrs.

Marks: 20

Model Answer

Ques	tion 1: Choose the correct a	(10 Marks)			
1.	If $A = \{1, 2, 3, 4, 5\}$ and B	$B = \{5, 6, 7\}$ then $ A \cap$	n B equals:		
	a. 5	b. 1	c. 7	d. 0	
2.	If $A = \{a, b, c\}$ then the po	wer set of A has			
	a. 6 elements	b. 9 elements	c. 8 elements	d. 3 elements	
3.	If $A = \{a, b, c\} \text{ and } B = \{a\}$, b, c, d}, which of the	e following is correct?		
	a. A is a proper subse	et of B.	c. B is a subset of A.		
	b. A and B are disjoin	nt.	d. B – $A = \phi$		
4.	If a given function f is bijective, then f is invertible.				
	a. True	b. False			
5.	Let g: $N \rightarrow N$, defined by	g(x) = 2x, then the fu	inction g has inverse.		
	a. True	b. False			
6.	If $L = \{a, bb\}$, then $aabb$	$\in L^*$			
	a. True	b. False			
7.	Consider the function h, h: $\{a, b, c\} \rightarrow \{1, 2, 3\}$, such that $h(a) = 1$, $h(b) = 3$ and $h(c) = 3$ then				
	the range of h is:				
0		b. {1, 2, 3}		d. {1, 3}	
8.	If $\Sigma = \{a, b, c\}$, $u = aaa$ and		=	1.0	
0	a. 6	b. 7	c. 8	d. 9	
9.	If $L = \{11, 10\}$, which of			1 1011	
10	a. 010	b. 1111	c. 1110	d. 1011	
10	If $L = {\lambda, 010, 10}$, which	_	_	4 010	
11	a. λ	b. 1010	c. 00	d. 010	
11	. If $L = \{a, aa, aaa,\}$ and $L.M$:	$1 \text{ NI} = \{\lambda, 0, 00, 000,$	}, which of the follow	ing sumgs is NOT in	
	a. aaa	b. baa	c. abb	d. aab	
12	Find L in: $\{\lambda, a, ab\}$. L =			a. aao	
12	a. $L = \{b, ba\}$				
	b. $L = \{b, ab\}$		d. $L = \{\lambda, b, ba\}$		
13	. Select a <i>correct</i> grammar t	to describe the languas			
	a. $S \rightarrow 00 \mid 01$	8	c. $S \rightarrow 0S \mid 1S$		
	b. $S \rightarrow \lambda \mid 00 \mid 01$		d. $S \rightarrow \lambda \mid 0S \mid 1S$		
14	. Select a <i>correct</i> grammar	· ·	.,}		
	a. $S \rightarrow aAa \mid \lambda$, $A -$			•	
	b. $S \rightarrow aAa$, $A \rightarrow bA$				
	c. $S \rightarrow aAa$, $A \rightarrow b$	Α λ			

d. $S \rightarrow aAa \mid \lambda$, $A \rightarrow bA$

15. Let $G = (\{A,S\}, \{a,b\}, P,S)$, where P consists of $S \to 1A1$, $A \to 0A \mid \lambda$, then G is a regular grammar.

a. True

b. False

16. Let $G = (\{D,S\}, \{0,1,2,...,9\}, P, S)$, where P is:

$$S \rightarrow D1 \mid D3 \mid D5 \mid D7 \mid D9$$

$$D \to \lambda \ | \ D0 \ | \ D1 \ | \ D2 \ | \ D3 \ | \ D4 \ | \ D5 \ | \ D7 \ | \ D8 \ | \ D9$$

Which of the following strings is NOT in L(G)?

a. 19

b. 7

c. 30

d. 11

17. Let $G = (\{A, S\}, \{0, 1\}, P, S)$, where P is: $S \rightarrow 1A1, A \rightarrow \lambda \mid 0A$, which of the following strings is NOT in L(G)?

a. λ

b. 11

c. 101

d. 100001

18. Select a *correct* grammar to describe the language $\{aa, aaaa, ..., a^{2n}, ...\}$

a. $S \rightarrow a \mid aS$

c. $S \rightarrow aa \mid aaS$

b. $S \rightarrow \lambda \mid a \mid aS$

d. S $\rightarrow \lambda \mid aa \mid aaS$

19. The Pigeonhole principal states that: if m objects are placed into n holes, where, then some holes contain at least 2 objects.

a. m > n

b. m \geq n

c. m < n

d. m \leq n

20. Let $G = (\{S, A, B\}, \{a, b\}, P_2, S)$, where P is: $S \to AB$, $A \to aA \mid a, B \to b \mid bB$, then G is a context-free grammar.

a. True

b. False

Question 2: (10 Marks)

1) Construct a grammar to describe the language $\{01^n : n \ge 1\}$, and then show by either a derivation or a parse tree that the string 01111 can be derived from the constructed grammar. (4 Marks) Answer: one possible correct grammar:

$$S \rightarrow 01A$$
, $A \rightarrow 1A \mid \lambda$

By derivation: $S \Rightarrow 01A \Rightarrow 011A \Rightarrow 0111A \Rightarrow 01111A \Rightarrow 01111\lambda \equiv 01111$ By parse tree:

2) Show that the language $\{\lambda, 01, 0101, ...\}$ is regular.

(2 Marks)

Answer: by either a regular grammar: $S \rightarrow \lambda \mid 01 \ S$ or by finite machine:

3) Design a finite state machine to describe the language $\{01w: w \in \{0, 1\}^*\}$ (2 Marks)

4) Consider the finite machine given by the table:

	a	b
Start p	p	q
q	p	r
Final r	p	r

Draw the transition graph for the machine, and then describe its language. (2 Marks)

 $L = \{ ubb: u \in \{a, b\}^* \}$