

Etude et conception avion **2**^e **Partie**

Michel MARTIN

Midsel MARTIN

Etude et conception avio

Introduction

- Conception avion
 - Répondre au marché
 - Intégrer les stratégies compagnies aériennes
 - Schuttle
 - Hub

Mais

- ne doit pas engendrer des investissements lourds
- doit tenir compte du contexte géographique

Plan du cours

1. Etude de la mission

- Etude de la route
- Profil de vol
- Calcul du carburant
- Payload range
- Cas des vol ETOPS

2. Contraintes opérationnelles

- Aéroport: Dimensions taxiways, résistance et longueur de piste
- Performances ascensionnelles
- Pneus et freins

Etude et conception avion

TD et travail personnel

• Etude avion

- 20 groupes de 4
- 4 TD dirigés en ½ promotion
- Analyse et rédaction d'un document écrit
- Présentation orale pendant 4 TD (2 par ½ promo) vendredi 12/12
 - 10 mn par groupe
- Remise du document écrit

\subseteq

Calcul du carburant

- Roulage (\mathbf{r}):
- <u>Consommation d'étape</u> (c) : du début de décollage jusqu'au point d'atterrissage
- Réserve de route (RR): En général 5% c
- <u>Réserve de dégagement</u> (**RD**): 200NM (370km) au niveau des études générales
- <u>Réserve finale</u> (**RF**): 30 mn de vol à la vitesse d'attente

Qparking (Carburant mini au parking) = $\mathbf{r} + \mathbf{c} + \mathbf{RR} + \mathbf{RD} + \mathbf{RF}$ **QDEC** (Carburant mini au décollage) = $\mathbf{c} + \mathbf{RR} + \mathbf{RD} + \mathbf{RF}$

Etude et conception avion

Calcul de la mission

Calcul du carburant

- Calcul de la consommation (c)
 - Equation de Bréguet Leduc

$$\mathbf{R} = \frac{a.M.L/D}{SFC} \ln \frac{\mathbf{m}_{\text{in }it}}{m_{fin}}$$

- $-m_{init} = masse initiale$
- $-m_{fin} = masse finale$

Midsel MARTIN

tude et conception avion

Calcul du carburant

- Réduire la consommation (3/6)
 - Minimiser la masse (**m**)

Etude et conception avion

Calcul de la mission

Calcul du carburant

- Réduire la consommation (4/6)
 - Minimiser la masse (m)

$$m_{fin} = m_{avion} + charge + carburant restant$$

$$\mathbf{c} = m_{\text{fin}} (e^{\text{R/RASU}} - 1)$$

$$\Rightarrow m_{\text{fin}} + \mathbf{c} = m_{\text{fin}} \cdot e^{\text{R/RASU}}$$

$$m_{\text{init}} = m_{\text{fin}} \cdot e^{\text{R/RASU}}$$

Etude et conception avion

Calcul du carburant

- Réduire la consommation (5/6)
 - Minimiser la masse (m)

$$m_{\text{init}} = m_{\text{fin}}.K$$
 $K = \text{constante} = e^{R/RASU}$

Soit:

$$dm_{\text{init}} = dm_{\text{fin}}.K$$

$$dm_{init} = dm_{fin} + dc \implies dc = dm_{fin} (K-1)$$

- RASU = 15000 NM et
$$dm_{fin} = 1t$$

 $R = 3000 \text{ NM} \Rightarrow K = e^{R/RASU} = 1,221 \Rightarrow dc = 0,221 \text{ t}$

Payload Range

- Masses maximales de structure
 - décollage: MMSD (MTOW)
 - atterrissage: MMSA (MLW)
 - sans carburant: MMSC (MZFW)
- Volumes limites
 - Volume cabine
 - Volume soute
 - Volume des réservoirs

Michel MARTIN

Etude et conception avion

$ilde{\Xi}$

Payload Range

- 1. $m_{d\acute{e}c} = m_{base} + charge + carburant_{d\acute{e}c} \le MMSD$
- 2. $m_{att} = m_{base} + charge + carburant_{déc} consommation \leq MMSA$
- 3. $msc = m_{base} + charge \le MMSC$
- 4. consommation + réserves + roulage ≤ Capacité réservoirs

Michel MARTIN

Etude et conception avion

Calcul de la mission

Payload Range

Carburant _{pkg}≤ Capacité Réservoirs (Cr)

$$R = \frac{aM.L/D}{SFC.g} \ln(1 + \frac{c_{\text{max}}}{k + ch \arg e})$$

 C_{max} = cste \Rightarrow si charge diminue, R augmente

R_{max} quand charge = 0 Préciser k en 2015

$$Cmax = \left[Cr - \left(r + RF + RD\right)\right] \frac{1}{1,05}$$

VOL ETOPS

• La quantité de carburant embarquée pour les vols ETOPS ≥ :

le roulage

- + la consommation d'étape 1 (vol normal) du décollage jusqu'au point le plus critique
- + la consommation d'étape 2, pour le scénario critique de panne, depuis ce point critique jusqu'à 1500ft à la verticale du terrain de déroutement
- + une attente de 15 mn + une approche + un atterrissage complet
- + la consommation de l'APU (environ 150 kg/h) depuis la panne

Etude et conception avion

2. Contraintes opérationnelles

Midsel MARTIN

Œ

Etude et conception avion

A 380

20 compagnies aériennes 60 aéroports

Fabricants d'équipements d'assistance au

Sociétés d'assistance au sol Autorités de l'Aviation Civile

Associés à la conception

Avec le concours

⇒ Eviter les investissements trop lourds

Michel MARTIN

Dimensions parking et voies de circulation

• Largeurs piste

	Code letter					
Code Number	Α	В	С	D	E	F
1 ^a	18 m	18 m	23 m	_	_	_
2ª	23 m	23 m	30 m	_	_	_
3	30 m	30 m	30 m	45 m	_	_
4	_	_	45 m	45 m	45 m	60 m

 $^{^{\}rm o}$ The width of a precision approach runway should be not less than 30 m where the code number is 1 or 2.

Michel MARTIN ENAC

Performances ascensionnelles

- Pente minimum γ_{amin}
 - Cas de l'obstacle O₁
 - Calcul de la pente minimum verticale O₁
 - hauteur de l'obstacle O_1 + 35ft $\Rightarrow \gamma_a \%$ réelle avion
 - Ajouter + 0,8% (bi), + 0,9% (tri), + 1% (quadri) à la pente précédente pour le calcul de la masse minimum.

Si γ_a % réelle avion = 3% Bimoteur γ_a % (calcul masse) = 3,8%

Etude et conception avion

Contraintes opérationnelles

Performances ascensionnelles

- Pente minimum γ_{amin}
 - − Cas de l'obstacle O₁
 - Calcul de la pente minimum verticale O₁
 - hauteur de l'obstacle O₁ + 35ft ⇒ γ_a % réelle avion
 - Ajouter + 0,8% (bi), + 0,9% (tri), + 1% (quadri) à la pente précédente pour le calcul de la masse minimum.

Si γ_2 % réelle avion = 3%

Bimoteur γ_a % calcul masse = 3,8%

Etude et conception avion

Contraintes opérationnelles

Performances ascensionnelles

- Pente minimum segment 2
 - Avec ou sans obstacle

Bimoteur	Trimoteur	quadrimoteur
2,4%	2,7%	3%

Midsel MARTIN

Etude et conception avion

Contraintes opérationnelles

Pneus et Freins

- Pneus
 - Limitation vitesse de roulement
 - \Rightarrow Limitation vitesse décollage \Rightarrow L_{max}
- Freins

- Capacité d'absorption des freins

Etude et conception avion

Contraintes opérationnelles

	Fin du cours	TO A SALES OF BELL AND
Michel M./ ENAC Boot Herman in Ch	Etude et conception avion	

\subseteq

Annexe 1 – Equation Bréguet-Leduc

$$d\mathbf{R} = \mathbf{V}_{\mathbf{a}} d\mathbf{t}$$
 avec $\mathbf{V}_{\mathbf{a}} = \mathbf{a}.\mathbf{M}$

Vitesse du son : **a** Nombre de Mach : **M**

$$C_{\text{horaire}} = -\frac{dm}{dt}$$
(variation de masse par unité de temps)

or
$$C_{\text{horaire}} = SFC \times F$$

SFC (Specific Fuel Consumption)

Midel MARTIN

Etude et conception avion

Bréguet-Leduc

Annexe 1 – Equation Bréguet-Leduc

• Vitesse stabilisée

$$F = \frac{mg}{L/D}$$

$$-\frac{dm}{dt} = SFC \frac{mg}{L/D}$$

$$dt = -\frac{L/D}{SFC.g} \frac{dm}{m}$$

$$dR = aM.dt = -aM \frac{L/D}{SFC.g} \frac{dm}{m}$$

$$\mathbf{R} = \frac{aM.L/D}{SFC.g} \ln \frac{\mathbf{m}_{in\ it}}{m_{fin}}$$

 m_{init} = masse initiale m_{fin} = masse finale

Equation de Bréguet – Leduc

Etude et conception avion

Bréguet-Leduc

