\subseteq

Introdução à Investigação Operacional 8ª aula T - Resumo

TEORIA DAS FILAS DE ESPERA

A distribuição Exponencial

Básico: Exponencial é contínua e Poisson é discreta!!!

$$T \sim Exp(\lambda)$$

$$\mu$$
 = Valor Médio = 1 / λ ;

$$σ$$
 = Desvio Padrão = 1 / $λ$;

$$\gamma_1$$
 = Coef. Assim. = +2

$$\gamma_2$$
 = Coef. Kurtosis = 9

Resumo – IIO – T8

A distr. Exponencial – propriedades:

Propriedade 1: A função densidade de probabilidade da distribuição Exponencial é estritamente **decrescente** (para $t \ge 0$).

Propriedade 2: A distribuição Exponencial não tem memória.

Propriedade 3: O *mínimo* de várias variáveis aleatórias independentes com distribuição Exponencial é uma variável aleatória com distribuição Exponencial.

Propriedade 4: A distribuição Exponencial está relacionada com a distribuição de Poisson. Se o intervalo de tempo entre chegadas consecutivas tiver distribuição Exponencial, com parâmetro λ , então **o** número de chegadas por unidade de tempo t tem uma distribuição de **Poisson**, com parâmetro $\mathbf{m} = \lambda \mathbf{t}$.

Propriedade 5: Na distribuição Exponencial(λ), para <u>todos</u> os valores positivos de t, verifica-se que P (T \leq t + Δ t | T > t) \approx λ Δ t, para pequenos Δt .

Propriedade 6: A distribuição Exponencial <u>não é</u> afetada pela agregação, ou desagregação. **Ruy Costa**

A distr. Exponencial – propriedades:

Soma de Exponenciais:

A **soma de k variáveis** aleatórias, independentes e identicamente distribuídas, com distribuição Exponencial (λ), é uma variável aleatória **Erlang-K** (Gama).

Se X_i v.a. i.i.d, $X_i \sim \text{Exponencial } (\lambda)$,

então
$$T \sim (X_1 + X_2 + ... + X_k) \sim \text{Erlang-k}(\lambda)$$
.

Como E [X] = 1 /
$$\lambda$$
 e Var [X] = 1 / λ^2 , é fácil constatar que E [T] = k / λ e Var [T] = k / λ^2 .

Pelo Teorema do Limite Central, se k for muito elevado, a distribuição Erlang-k tenderá para a distribuição Normal, tendo-se

$$T \sim (X_1 + X_2 + ... + X_k) \sim Normal(\mu = k / \lambda; \sigma^2 = k / \lambda^2).$$

X ~ Poisson (m)

Função de distribuição de probabilidade:

$$P_X(k) = P(X = k) = e^{-m} \cdot m^k / k!, k = 0, 1, 2, ...$$

$$\mu$$
 = Valor Médio = m;

$$\sigma^2$$
 = Variância = m;

(ou seja,
$$\mu = \sigma^2 = m$$
).

A distribuição de Poisson é uma das (poucas) distribuições estatísticas que goza da aditividade, isto é, a soma de variáveis aleatórias independentes com distribuição de Poisson é ainda uma variável aleatória de Poisson (com parâmetro igual à soma dos parâmetros das variáveis que foram somadas).

Pelo T.L.C., quando m é elevado poderemos aproximar a Distribuição de Poisson (m) da Distribuição Normal (com valor médio e variância iguais a m).

Resumo – IIO – T8 Hipóteses-base Proc. Nascimento e Morte

- ♦ **Hip.1:** Dado N(t) = n, a distribuição de probabilidade do tempo restante até ao próximo nascimento (chegada) é Exponencial com parâmetro λ_n (n = 0, 1, 2, ...).
- ♦ Hip.2: Dado N(t) = n, a distribuição de probabilidade do tempo restante até à próxima morte (final de atendimento) é Exponencial com parâmetro μ_n (n = 0, 1, 2, ...).
- ♦ Hip.3: Em cada instante só pode ocorrer ou um nascimento, ou uma morte.

Diagrama de transição correspondente ao processo de nascimento e morte:

Há um princípio fundamental: "taxa de entrada = taxa de saída" que estipula que, para qualquer estado do sistema (n = 0, 1, 2, ...), a taxa média de entradas é igual à taxa média de saídas.

Resumo – IIO – T8 O Processo de Nascimento e Morte

Probabilidades P₀, P₁, P₂, ..., P_n

Para simplificar a notação, designemos por

$$P_n = \frac{\lambda_0.\lambda_1.\lambda_2.....\lambda_{n-1}}{\mu_1.\mu_2.\mu_3.....\mu_n}.P_0$$

Assim, as probabilidades de equilíbrio são dadas por:

$$\mathbf{P}_{\mathbf{n}}=\mathbf{C}_{\mathbf{n}}\;\mathbf{P}_{\mathbf{0}}\;,\quad\text{para }\mathbf{n}=\mathbf{1,\,2,\,...}$$

Como o somatório das probabilidades tem que igualar 1. obtém-se:

$$P_0 = 1 / (1 + \sum_{n=1}^{\infty} C_n)$$

Resultados Gerais:

número médio de clientes no sistema

$$L = \sum_{n=0}^{\infty} n \cdot P_n$$

Se tivermos um sistema com s servidores, poderá haver s clientes que estarão a se atendidos, pelo que o

 número médio de clientes a aguardar atendimento na fila (comprimento médio da fila de espera):

$$L_{q} = \sum_{n=s}^{\infty} (n - s) \cdot P_{n}$$

♦ tempo médio no sistema, por cliente (incluindo a duração do atendimento):

W = L /
$$\overline{\lambda}$$
 Fórmula de Little

 λ designa a taxa média de chegadas, a longo prazo,

$$\overline{\lambda}$$
 = $\sum_{n=0}^{\infty} \lambda_n \cdot P_n$

◆ tempo médio a aguardar atendimento, por cliente (na fila de espera, exclui a duração do atendimento):

$$W_q = L_q / \overline{\lambda}$$

Resumo – IIO – T8 O Modelo M/M/1 - Revisão

Diagrama de transição:

Fator de utilização (ou intensidade de tráfego) :

$$\rho = \lambda / \mu$$

Fórmulas de Little

$$\mathbf{L} = \lambda \, \mathbf{W} \quad ; \qquad \mathbf{L}_{\mathbf{q}} = \lambda \, \mathbf{W}_{\mathbf{q}}$$

Taxa de desocupação do sistema, P_0 :

$$P_0 = 1 - \rho$$

Probabilidade de estarem exatamente n pessoas no

sistema
$$P_n$$

$$P_n = \rho^n \cdot P_0 = \rho^n \cdot (1 - \rho)$$

Probabilidade de estarem mais do que K pessoas no $P(n > K) = \rho^{K+1}$ sistema:

Número médio de clientes no sistema:

$$L = \rho / (1 - \rho)$$
, ou equivalentemente, $L = \lambda / (\mu - \lambda)$.

Tempo médio, por cliente, de permanência no sistema: $W = 1/(\mu - \lambda)$.

Relação entre o tempo médio de permanência de um cliente no sistema (W) e o tempo médio de espera na fila a aguardar o atendimento (W_q): $W = W_q + 1 / \mu$

Nota: $1/\mu$ = tempo médio gasto no serviço

Relação entre o número médio de clientes no sistema (L), o comprimento médio da fila (L_q):

$$L = L_q + \lambda / \mu = L_q + \rho$$

Atenção: L_q <u>não é</u> igual a L – 1, mas sim a L – ρ ! Seja W a va

Seja \mathcal{W} a variável aleatória que denota o tempo de permanência de um cliente no sistema, incluindo o atendimento

Não confundir **₩** com **W**!!!

$$W \sim Exponencial (\mu. (1 - \rho))$$

Probabilidade de um cliente estar mais do que t unidades de tempo no sistema (incluindo o atendimento): $P(\mathscr{W} > t) = e^{-\mu \cdot (1-\rho) \cdot t}$, para $t \ge 0$.

Probabilidade de um cliente estar mais do que t unidades de tempo na fila de espera a aguardar o início do atendimento $P(W_q > t) = \rho \cdot e^{-\mu \cdot (1-\rho) \cdot t}$, para $t \ge 0$.

Taxa de desocupação = P_0 = 1 - ρ = P(\mathcal{W}_q = 0)

Leituras de apoio:

Elementos de apoio às aulas de IIO – Teoria das Filas de Espera – ficheiro pdf pp. 177 a 194.

Disponível atividade semanal de apoio à aprendizagem no moodle!

Introdução à Investigação Operacional 9ª aula T - Resumo

As distribs Exponencial e de Poisson

Considere as v.a. independentes X1 \sim X2 \sim ... \sim Xn \sim Exponencial(λ = 0,1) e Y1 \sim Y2 \sim ... \sim Yn \sim Poisson(m = 2,3). Escolha a(s) opção(ões) adequada(s).

$$A - X1 + X2 + X3 \sim Exponencial(\lambda = 0,3)$$

$$\sqrt{B}$$
 - Mínimo(X1; X2; X3) ~ Exponencial(λ = 0,3)

$$D - X1 + X2 + X3 \sim Normal.$$

$$\sqrt{E}$$
 - X1 + X2 + ... + X30 ~ Normal.

$$\sqrt{F}$$
 - Y1 + Y2 ~ Poisson(m=4,6).

$$\sqrt{G}$$
 - Y1 + Y2 + ... + Y20 ~ Poisson(m = 46).

Compare com a(s) sua(s) opinião(ões)!

Resumo – IIO – T9

Modelos M/M/s, M/M/1/K com pop. infinita e fila <u>limitada</u>, M/M/s/K com pop. infinita e fila <u>limitada</u>

Diagramas de transição:

$$\mu_n = \begin{cases} n.\mu & \text{; } n=1,2,...\text{;} \\ s.\mu & \text{; } n \geq s+1 \end{cases}$$

M/M/1/K com pop infinita e fila limitada

M/M/s/K com pop infinita e fila limitada

Diagramas de transição:

Folha de Cálculo Hillier e Lieberman para vários Modelos

Resumo – IIO – T9

Modelo com tx de chegada e/ou tx de serviço dependente do estado

Assumamos, então, que S = 1 e que

$$\mu_n = n^c \cdot \mu_1$$
, para $n = 1, 2, ...$

$$\lambda_n = (n + 1)^{-b} \cdot \lambda_0$$
, para $n = 0, 1, 2, ...$

$$C_{n} = \frac{(\lambda_{0}/\mu_{1})^{n}}{(n!)^{b+c}} \quad \text{para } n = 1, 2, ...$$

$$P_{n} = C_{n} P_{0}, \quad \text{para } n = 1, 2, ...$$

$$P_{0} = 1/(1 + \sum_{n=1}^{\infty} C_{n})$$

$$P_n = C_n P_0$$
, para $n = 1, 2, ...$

$$P_0 = 1/(1 + \sum_{n=1}^{\infty} C_n)$$

$$L = \sum_{n=0}^{\infty} n.P_n \qquad \overline{\lambda} = \sum_{n=0}^{\infty} \lambda_n.P_n$$

Se $\rho = \lambda / \mu < 1$ um tal sistema poderá eventualmente atingir o estado de equilíbrio, sendo então válidos os seguintes resultados:

$$P_0 = 1 - \rho$$

Fórmula de Pollaczek-Khintchine:

$$L_{q} = \frac{\lambda^{2}\sigma^{2} + \rho^{2}}{2 (1-\rho)}$$

$$W_q = L_q / \lambda$$

$$L = \rho + L_q$$

$$W = W_a + 1/\mu$$

Leituras de apoio:

Elementos de apoio às aulas de IIO - Teoria das Filas de Espera (Modelos baseados na distr. Exponencial e Modelos envolvendo distr.s não exponenciais)- ficheiro pdf pp. 190 a 211.

Disponível atividade semanal de apoio à aprendizagem no moodle!

Introdução à Investigação Operacional 10^a aula T - Resumo

Resumo – IIO – T10 Modelos M/G/1, M/D/1 e M/E_k/1

Fórmula de Pollaczek-Khintchine:

$$L_{q} = \frac{\lambda^{2}\sigma^{2} + \rho^{2}}{2 (1-\rho)}$$

$$\sigma^{2} = 0$$

$$L_{q} = \frac{\lambda^{2}\sigma^{2} + \rho^{2}}{2}$$

$$\sigma^{2} = 1 / (k \mu^{2})$$

$$\sigma^{2} = (1/\mu)^{2}$$

Grande Variabilidade!

$$M/E_{k}/1$$
 $(k \mu^{2})$
 $1+k \lambda^{2}$

Situação intermédia

M/M/1

$$L_{q} = \frac{\rho^{2}}{(1-\rho)}$$

Variabilidade Nula!

Resumo – IIO – T10 Modelos com Disciplina Prioritária

Consideremos um **sistema "M/M/s"**, com as seguintes caraterísticas:

- existem **N** classes de prioridade (a classe 1 com prioridade mais elevada e a classe N com mais baixa prioridade). Os clientes são atendidos por ordem das suas classes de prioridade e, dentro da cada classe, por ordem de chegada;
- o processo de chegadas é Poissoniano, permitindo--se que a taxa de chegadas de clientes das várias classes possa ser diferente;
- as durações de atendimento são Exponenciais para cada classe, assumindo-se, adicionalmente, que a duração média de atendimento é igual para todas as classes.

Resumo – IIO – T10 Modelos com Disciplina Prioritária

Assumamos que as **prioridades são** "**não absolutas**" (*nonpreemptive priorities*), i.e., um cliente que está a ser atendido, não vê o seu atendimento interrompido pela chegada de um cliente com mais elevada prioridade.

O tempo de espera médio para um cliente da classe de prioridade k W_k , (incluindo a duração do atendimento) será dado por:

$$W_{k} = \frac{1}{A.B_{k-1}.B_{k}} + \frac{1}{\mu} , \text{ para Excell}_{2}, ..., N$$
Folha de Cálculo

Resumo – IIO – T10 Modelos com Disciplina Prioritária - Exercício FE12

Prioridades "absolutas" M/M/1:

Tempo de espera médio *total* para um cliente da classe de prioridade k, W_k:

$$W_k = \frac{1/\mu}{B_{k-1}.B_k}$$
, para k = 1, 2, ..., N

Número médio de clientes da classe de prioridade k no sistema, L_k :

$$L_k = \lambda_k \cdot W_k$$
, para $k = 1, 2, \dots N$.

Para mais de um servidor... Procedimento iterativo!

Resumo – IIO – T10 Modelos com Disciplina Prioritária - Exercício FE12

Prioridades "absolutas" M/M/s:

♦ Começar com os clientes de classe 1:

M/M/s com taxas $\lambda = \lambda_1$ e μ

Determinar W₁, L₁, ...

♦ Passar aos clientes das classes 1 + 2:

M/M/s com taxas
$$\lambda = \lambda_1 + \lambda_2$$
 e μ

Determinar W $\rightarrow \overline{W}_{1-2}$

$$\overline{W}_{1-2} = \frac{\lambda_1}{\lambda_1 + \lambda_2} \cdot W_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2} \cdot W_2 \longrightarrow W_2 \longrightarrow L_2, \dots$$

♦ Passar aos clientes das classes 1 + 2 + 3 ...

Resumo – IIO – T8 Filas Ilimitadas em Série

7

O importantíssimo **Teorema de Jackson**, garante-nos que:

Se

- 1) o processo de chegadas dos clientes a um sistema de espera for Poissoniano com taxa λ ,
- 2) as durações dos atendimentos dos servidores em cada estádio forem exponenciais, com parâmetro μ_{i} ,

е

então o processo de saídas dos clientes de cada estádio do sistema de espera é Poissoniano com taxa λ .

A possibilidade de se utilizar um modelo M/M/S para cada estádio, independentemente dos outros, é uma enorme simplificação.

Passa a ser válida a chamada **forma de produto** (*product form*):

$$P(\ N_1 = n_1 \land N_2 = n_2 \land \dots \land N_k = n_k\) \ = \ P_{n1} \cdot P_{n2} \cdot \dots \cdot P_{nk}$$

Os sistemas com filas com capacidade limitada <u>não</u> apresentam soluções na forma de produto!

Resumo – IIO – T8 Redes de Jackson

Uma Rede de Jackson é um sistema de k estádios onde o estádio i (i = 1, 2, ..., k) tem:

- 1) uma fila ilimitada;
- 2) os clientes chegam do exterior do sistema de acordo com um processo Poissoniano com parâmetro $\mathbf{a_i}$ e
- 3) $\boldsymbol{s_i}$ servidores, que asseguram uma distribuição de atendimento exponencial, com parâmetro μ_i .

Um cliente que deixe o estádio i segue para outro estádio j (j = 1, 2, ..., k e j \neq i) com probabilidade p_{ij}, ou partirá do sistema com probabilidade q_i = 1 - $\sum_{j=1}^{k} p_{ij}$.

Em situação de equilíbrio, cada estádio j de uma Rede de Jackson (j = 1, 2, ..., k) comporta-se como se fosse um sistema M/M/S independente, com taxa de chegadas λ_i :

$$\lambda_{j} = a_{j} + \sum_{j=1}^{k} \sum_{j\neq i} \lambda_{j}.pij, \quad com s_{j}.\mu_{i} > \lambda_{j}$$

- ♦ Número esperado de clientes na RJ : L = L₁ + L₂ + ... + L_k
- ♦ $P(N_1 = n_1 \land N_2 = n_2 \land ... \land N_k = n_k) = P_{n1} . P_{n2} P_{nk}$
- ◆ Como nem todos os clientes são obrigados a ir a todos os estádios, poderemos recorrer à Fórmula de Little,
 W = L / λ MAS com λ = a₁ + a₂ + ... + aょ.

Leituras de apoio:

Elementos de apoio às aulas de IIO – Teoria das Filas de Espera – ficheiro pdf pp. 208 a 219.

Disponível atividade semanal de apoio à aprendizagem no moodle!

