

PROJETO DE CIÊNCIA DE DADOS

André Noronha Igor Felippe Muzel

OBJETIVO GERAL

- Analisar dados relacionados a planos de saúde e pacientes
- Explorar padrões e relações entre variáveis
- Construir modelos preditivos para classificação e regressão

METODOLOGIA GERAL

- Pré-processamento e unificação dos dados
- Análise exploratória com visualizações gráficas
- Modelagem preditiva com classificação (LogReg, RF, LightGBM)
- Modelagem de regressão (ElasticNet, CatBoost, XGBoost)
- Avaliação com métricas: Accuracy, F1, R², MAE, RMSE

ANÁLISE INICIAL

- Dataset com mais de 12 milhões de linhas
- Variáveis: IMC, faixa etária, plano, sexo, linha de cuidado...
- Foco em estruturação e filtragem dos dados
- Primeira Observação: Grande quantidade de gestantes.

Figura 1: Distribuição por sexo (pacientes com DCNT)

ANÁLISE EXPLORATÓRIA

- Tratamento de outliers (boxplot)
- Correlação de variáveis
- Observação: Concentração nos planos Individuais familiares e UNIFAMILIA Empresarial

Figura 2: Relação entre Idade e Valor do Item por Plano

DCNT

- Prever DCNT
- Criação da variável alvo: doenca_cronica
- Palavras chave na coluna ds_cid
- Verifica a coluna faixa_imc
- doenca_cronica recebe o valor 1(crônico) e 0 (não crônico)

Figura 3: Criação da variável target

```
# Criar a variável alvo 'doenca_cronica'
cronico_por_cid = dcnt['ds_cid'].str.contains('diabetes|hipertens|obesidade', case=False, na=False)
cronico_por_imc = dcnt['faixa_imc'].str.contains('Obesidade', case=False, na=False)
dcnt['doenca_cronica'] = (cronico_por_cid | cronico_por_imc).astype(int)
```

PRÉ-PROCESSAMENTO (DCNT)

- Prepara os dados para que o algoritmo possam "entendê-los"
- Separação de X e Y
- ColumnTransformer
- train_test_split

Figura 4: Features e variável alvo

```
# Definir Features (X) e Alvo (y)
features = ['qt_altura_cm_x', 'faixa_etaria', 'plano_agrupado', 'sexo_legivel', 'ds_linha_cuidado']
X = dcnt[features]
y = dcnt['doenca_cronica']
```

Fonte: Autoria Própria (2025)

Figura 5: Pré-processamento

REGRESSÃO LOGÍSTICA

Motivo

• Recall: 0.51

• Precision: 0.60

• F1-Score: 0.55

• Accuracy: 0.59

Figura 6: Relatório de Classificação Regressão Logística

Relatório de	Classificação precision	~	ão: f1-score	support
0	0.58	0.67	0.62	63993
1	0.60	0.51	0.55	62675
accuracy			0.59	126668
macro avg	0.59	0.59	0.59	126668
weighted avg	0.59	0.59	0.59	126668

RANDOM FOREST

Motivo

• Recall: 0.75

• Precision: 0.83

• F1-Score: 0.79

• Accuracy: 0.80

Figura 7: Relatório de Classificação Random Forest

Relatório de	Classificação precision		Forest: f1-score	support
0	0.78	0.85	0.81	63993
1	0.83	0.75	0.79	62675
accuracy macro avg weighted avg	0.80 0.80	0.80 0.80	0.80 0.80 0.80	126668 126668 126668

LIGHTGBM

Motivo

• Recall: 0.71

• Precision: 0.83

• F1-Score: 0.77

• Accuracy: 0.79

Figura 8: Relatório de Classificação LightGBM

Relatório de	Classificação	LighGBM	l:	
	precision	recall	f1-score	support
0	0.75	0.86	0.80	63993
1	0.83	0.71	0.77	62675
accuracy			0.79	126668
macro avg	0.79	0.79	0.78	126668
weighted avg	0.79	0.79	0.78	126668

RESULTADOS

Figura 9: Modelo para Prever as DCNT's

CONCLUSÃO

Matrizes de Confusão Comparativas Modelo: Regressão Logística Modelo: Random Forest Modelo: LightGBM 42500 50000 - 50000 40000 45000 43110 20883 54397 9596 54959 9034 - 37500 40000 40000 35000 35000 - 32500 30000 30000 - 30000 - 25000 - 27500 31000 15583 47092 18093 44582 - 20000 - 20000 - 25000 - 15000 - 22500 - 10000 Não Crônico Crônico Não Crônico Não Crônico Crônico Crônico Previsto Previsto Previsto

Figura 10: Matriz de confusão

- Criação da variável target "custo_evitado"
- Divisão treino e teste 80/20
- CatBoost MAE = $0.42 \mid RMSE = 38 \mid R^2 = 0.99$
- XGBoost MAE = $0.64 \mid RMSE = 102 \mid R^2 = 0.96$
- ElasticNet MAE = $81 \mid RMSE = 298 \mid R^2 = 0.69$
- Melhor modelo: CatBoost com ajuste quase perfeito

Figura 11: Criação da variável target

```
# Calcular custo real a partir de 'faixa_gasto'
custo["custo_real"] = custo["faixa_gasto"].apply(midpoint).astype(float)

# Calcular valor médio por item e custo projetado
custo["vl_medio_item"] = custo["faixa_vl_item"].apply(midpoint).astype(float)
custo["custo_projetado"] = custo["vl_medio_item"] * custo["qt_item"]

# Gerar coluna 'custo_evitado'
custo["custo_evitado"] = custo["custo_projetado"] - custo["custo_real"]

# Evitar valores negativos
custo["custo_evitado"] = custo["custo_evitado"].clip(lower=0)
```

Fonte: Autoria Própria (2025)

Figura 12: Comparação de Métricas

- Criação da variável target "custo_evitado"
- CatBoost Principais variáveis: custo_real,
 vl_medio_item e custo_projetado
- XGBoost Principais variáveis: ohe__faixa_gasto_>10000 e faixa_vl_item_20000-48000]
- ElasticNet Principais variáveis: scale__custo_projetado, scale__vl_medio_item, scale__custo_real
- Melhor modelo: CatBoost com ajuste quase perfeito

Desempenho da predição do CatBoost:

- A maioria dos pontos está bem próxima da linha ideal.
- O modelo teve bom desempenho geral, com exceção de um ou outro desvio pontual.

Figura 14: CatBoost: Real vs Previsto

Desempenho da predição do XGBoost:

- Bom desempenho, com os pontos em geral próximos da linha ideal.
- Bom desempenho geral, mas com um erro grave em pelo menos uma amostra, indicando maior sensibilidade a outliers ou overfitting.

Figura 15: XGBoost: Real vs Previsto

Desempenho da predição do ElasticNet:

- Muitos pontos estão abaixo da linha ideal, ou seja, subestimando o custo real.
- O modelo tem dificuldade clara em prever valores altos
- ElasticNet está com desempenho inferior, especialmente em casos com custo elevado.
 Pode ser uma limitação do modelo linear em capturar relações mais complexas nos dados.

Figura 16: ElasticNet: Real vs Previsto

ElasticNet: Real vs Previsto

CONCLUSÕES - CUSTO EVITADO

- Faixa 18-34 anos apresentou o maior custo evitado médio (~R\$ 62), destacando-se fortemente entre os grupos.
- O grupo de jovens adultos se beneficia mais de intervenções que evitam custos, talvez por aderirem mais a programas de prevenção ou por terem maior risco de doenças evitáveis nessa fase.
- Idosos (65+) têm o menor custo evitado, o que pode indicar menor efetividade preventiva nessa população ou dificuldade de acesso/adesão.

Figura 17: Custo Evitado Médio por Faixa de Idade

CONCLUSÕES - CUSTO EVITADO

- Em todas as linhas, o custo projetado é maior do que o custo real.
- O impacto mais significativo é observado na linha das Gestantes.
- A menor diferença é em Diabetes, indicando ganho mais modesto.

Figura 18: Custo Evitado por LC

CONCLUSÕES - CUSTO EVITADO

- A maioria dos CIDs com maior custo evitado parece estar relacionada a gestação/parto.
- Isso confirma os achados anteriores: intervenções na linha de cuidado Gestantes são altamente efetivas em termos de economia.

Figura 19: Top 10 doenças com maior custo evitado

CONCLUSÃO FINAL - CUSTO EVITADO

Área	Insight principal	
Linha de Cuidado	Gestantes lideram em custo evitado médio e impacto real vs. previsto	
Faixa Etária	Adultos jovens (18-34) têm maior benefício médio das ações.	
Comparação de custos	Em todas as linhas há economia, mas varia em intensidade.	
Doenças com maior economia	Doenças obstétricas dominam o top 10 em custo evitado médio.	

Referências

COSTA, Felipe. **Prevendo números**: **entendendo métricas de regressão**. Medium, 28 set. 2019. Disponível em: https://medium.com/data-hackers/prevendo-n%C3%BAmeros-entendendo-m%C3%A9tricas-de-regress%C3%A3o-35545e011e70. Acesso em: 2 jul. 2025.

DATACAMP. **CatBoost Tutorial**: **A Machine Learning Library for Categorical Data**. Disponível em: https://www.datacamp.com/tutorial/catboost. Acesso em: 2 jul. 2025.

DATACAMP. **XGBoost in Python**: A Practical Guide. Disponível em: https://www.datacamp.com/tutorial/xgboost-in-python. Acesso em: 2 jul. 2025.

RISWANTO, Ujang. Step-by-Step Guide to Implementing Elastic Net Regression in Python. Medium, 2023. Disponível em: https://ujangriswanto08.medium.com/step-by-step-guide-to-implementing-elastic-net-regression-in-python-eff1757aad0a. Acesso em: 2 jul. 2025.