Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

aTD224 W2W37

ited States partment of riculture

Natural Resources Conservation Service

Washington Basin Outlook Report June 1, 2001

Basin Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

Local Natural Resources Conservation Service Field Office

or Scott Pattee Water Supply Specialist Natural Resources Conservation Service 2021 E. College Way, Suite 214 Mt. Vernon, WA 98273-2873 (360) 428-7684 or Betty Schmitt Public Affairs Specialist Natural Resources Conservation Service 316 W. Boone Ave., Suite 450 Spokane, WA 99201-2348 (509) 323-2912

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all of its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require an alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue SW, Washington DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an Equal Opportunity provider and employer.

Washington Water Supply Outlook

June 2001

General Outlook

With relatively normal springtime weather including rain, sunshine, cold snaps and heat waves, overall conditions didn't change much in May. Federal agencies responsible for weather forecasts indicate the most probability for near normal temperature and precipitation conditions for the next 30-90 days. Current deficits in soil moisture and plant vigor have some officials concerned about potential fire danger, especially in Eastern Washington. This report will be the last published outlook for this water-year but will commence again in January 2002.

Snowpack

The June 1 statewide SNOTEL readings decreased dramatically from last month. Late season snow accumulations, that didn't have a chance to mature, melted off very rapidly. Only 13 of 55 SNOTEL sites still report having snowpack with the rest having melted out an average of 24 days early. Average water content at the 13 remaining sites is only 54% of average and most of them will melt out approximately one month earlier than normal.

BASIN	PERCENT	OF LAST YEAR	PERCENT	OF AVERAGE
Spokane Newman Lake Pend Oreille Okanogan		0		13 0 20 49
Methow		10		9
Wenatchee		35		36 39 36
Lower Yakima Ahtanum Creek	• • • • • • • •	25	• • • • • • • •	36
Walla Walla Lower Snake Cowlitz				0 0 53
Lewis	• • • • • • • •	6		26 49
Puyallup	• • • • • • • •			18 49 0
Snoqualmie		48		63 84 28
Baker		0	• • • • • • • •	38
Olympic Peninsula		0		0

Precipitation

During the month of May, the National Weather Service and Natural Resources Conservation Service climate stations reported varying precipitation totals throughout Washington river basins. The highest percent of average in the state was at Glenwood 2 WA. Glenwood reported 205% of average for a total of 1.52 inches. The average for this site is 0.74 inches for May. Basin averages for the water year remained steadfast at only 74% of average in Walla Walla river basins to 54% of average in Okanogan-Methow river basins. The highest individual site average for the water year was 83% of average at Mill Creek Dam near Walla Walla.

RIVER		MAY	WATER YEAR
BASIN	PERCENT	OF AVERAGE	PERCENT OF AVERAGE
Spokane		64	62
Colville-Pend Oreille .		60	57
Okanogan-Methow		36	54
Wenatchee-Chelan		94	59
Upper Yakima		99	60
Lower Yakima		68	57
Walla Walla		68	74
Lower Snake		50	
Cowlitz-Lewis		85	57
White-Green-Puyallup		88	64
Central Puget Sound		96	64
North Puget Sound		103	59
Olympic Peninsula		91	65

Reservoir

Seasonal reservoir levels in Washington vary greatly due to specific watershed management practices required in preparation for irrigation season, fisheries management and power generation. Reservoir storage in the Yakima Basin was 497,300-acre feet, 67% of average for the Upper Reaches and 182,900-acre feet, 94% of average for Rimrock and Bumping Lakes. Storage at the Okanogan reservoirs was 67% of average for June 1. The power generation reservoirs included the following: Coeur d'Alene Lake, 228,500 acre feet, 81% of average and 96% of capacity; Chelan Lake, 556,200 acre feet, 123% of average and 82% of capacity; and Ross Lake at 99% of average and 73% of capacity. Above average current storage at some reservoirs is associated with management efforts to buffer potential summer shortages. Below average storage can be attributed to below average seasonal snowmelt and precipitation to date.

BASIN	PERCENT OF CAR	PACITY	CURRENT SI	ORAGE AS
			PERCENT OF	` AVERAGE
Spokane		5		81
Colville-Pend Oreill	.e 76	5		139
Okanogan-Methow	51	l		67
Wenatchee-Chelan	82	2		123
Upper Yakima	60			67
Lower Yakima	79	9		94
North Puget Sound	74	1		99

Streamflow

June forecasts indicate a moderate decrease in most streams, reflecting the lack of sustained snowpack in the state. Forecasts vary from 92% of average for Mill Creek at Walla Walla to 33% of average for Bumping Lake and Kachees Lake inflows. June forecasts for some Western Washington streams include: Cedar River near Cedar Falls, 65%; Green River, 55%; and Skagit River, 56%. Some Eastern Washington streams include the Yakima River near Parker, 47%: Wenatchee River at Plain, 42%; and Spokane River near Post Falls, 45%. Volumetric forecasts are developed using current, historic and average snowpack, precipitation and streamflow data collected and coordinated by organizations cooperating with NRCS.

Most streamflows reported for May were below to near average across the state. The Cowlitz at Castle Rock had the highest flows with 99% of average. The Methow River near Pateros with 39% of average, was the lowest in the state. Other streamflows were the following percentage of average: the Priest River, 69%; the Spokane at Spokane, 62%; the Columbia below Rock Island Dam, 71%; the Le Elum near Roslyn, 86%; and the Snake River below Ice Harbor Dam, 61%.

BASIN PERCENT OF AVERAGE	
MOST PROBABLE FORECAST	
(50 PERCENT CHANCE OF EXCEEDENC	E)
Spokane 45-52 Colville-Pend Oreille 34-60 Okanogan-Methow 48-52 Wenatchee-Chelan 42-57 Upper Yakima 33-54 Lower Yakima 33-54 Walla Walla 83-92 Lower Snake 56 Cowlitz-Lewis 54-58 White-Green-Puyallup 55-56 Central Puget Sound 62-65 North Puget Sound 56-67 Olympic Peninsula 60	
STREAM PERCENT OF AVERAGE MAY STREAMFLOWS	
Pend Oreille Below Box Canyon 74 Kettle at Laurier 65 Columbia at Birchbank 54 Spokane at Long Lake 67 Similkameen at Nighthawk 60 Okanogan at Tonasket 54 Methow at Pateros 39 Chelan at Chelan 75	

For more information contact your local Natural Resources Conservation Service office.

BASIN SUMMARY OF SNOW COURSE DATA

JUNE 2001

SNOW COURSE	ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90	SNOW COURSE		NOITAV	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90
ALPINE MEADOWS PI		6/01/01		23.8	42.7	22.7	MORRISSEY RIDG		6100	6/01/01		6.6		10.7
BADGER PASS PILLO		6/01/01		8.9	12.6	20.9		PILLOW	5400	6/01/01		7.4	36.2	21.4
BARKER LAKES PILI		6/01/01		.0	1.7	10.0		PILLOW	4800	6/01/01		.0	.0	.0
BASIN CREEK PILLO		6/01/01		.0	.1	4.7	MOSQUITO RDG		5200	6/01/01		.0	11.8	16.0
BEAVER CREEK TRAI		5/30/01	0	.0	.0			PILLOW	4050	6/01/01		.0	1.6	.0
BEAVER PASS	3680	5/30/01	0	.0	9.3		MT. KOBAU	CAN.	5500	5/31/01	0	.0	1.2	5.0
BIG WHITE MTN (CAN. 5510	5/31/01	5	1.7	13.0	7.6	MOUNT GARDNER	PILLOW	2860	6/01/01		. 0	.0	.0
BLACK PINE PILLOW	7100	6/01/01		.0	. 3	2.4	N.F. ELK CR PI	LLOW	6250	6/01/01		.0	. 5	. 9
BLEWETT PASS#2PII	LLOW 4270	6/01/01	0	.0	- 0	.0	NEW HOZOMEEN L	AKE	2800	5/30/01	0	- 0	.0	
BRENDA MINE (CAN. 4450	6/01/01		.0	.0		NEZ PERCE CMP	PILLOW	5650	6/01/01		.0	. 0	.2
BROWN TOP	AM 6000	5/30/01	42	21.6	49.0		NOISY BASIN PI	LLOW	6040	6/01/01		11.5	25.8	30.2
BUMPING RIDGE PII	LLOW 4600	6/01/01		.0	12.4	6.3	NORTH FORK JOC	KO.	6330	5/29/01	22	10.9	17.7	26.3
BUNCHGRASS MDWPII	LLOW 5000	6/01/01		.0	12.9	15.4	OLALLIE MDWS	PILLOW	3960	6/01/01		13.0	36.1	30.0
CHICKEN CREEK	4060	5/30/01	0	.0	.0	.0	PARADISE PARK	PILLOW	5500	6/01/01		41.5	78.1	48.1
COMBINATION PILLO	W 5600	6/01/01		.0	. 0	.0	PARK CK RIDGE	PILLOW	4600	6/01/01	0	.0	11.7	5.2
COPPER BOTTOM PIL	LLOW 5200	6/01/01		.0	. 0	.0	PETERSON MDW P	ILLOW	7200	6/01/01		- 0	.2	2.7
CORRAL PASS PIL	LOW 6000	6/01/01		12.5	28.8	19.6	PIGTAIL PEAK	PILLOW	5900	6/01/01		12.9	30.6	37.5
COUGAR MTN. PII	LOW 3200	6/01/01		.0	.0	. 0	PIKE CREEK PIL	LOW	5930	6/01/01		- 0	- 8	7.9
DALY CREEK PILLOV	₹ 5780	6/01/01		.0	.0	- 0	POPE RIDGE	PILLOW	3540	6/01/01	0	.0	.0	- 0
DEVILS PARK	5900	5/30/01	35	17.2	33.4	31.8		PILLOW	4500	6/01/01		.0	6.8	1.1
DISCOVERY BASIN	7050	5/31/01	0	.0	- 0	4.2	•	PILLOW	4700	6/01/01		.0	- 0	- 0
	LLOW 3200	6/01/01		.0	12.1	6.1		PILLOW	4780	6/01/01		1.2	18.0	20.4
EMERY CREEK PILLO		6/01/01		.0	.0	. 0		PILLOW	1900	6/01/01	0	.0	1.6	. 0
	CAN. 5800	5/31/01	62	28.0	50.4	38.9	ROCKER PEAK PI		8000	6/01/01		2.1	3.7	13.2
	LLOW 3370	6/01/01	0	.0	3.3	5.0	SADDLE MTN PIL		7900	6/01/01		.0	2.8	17.5
FLATTOP MTN PILLO		6/01/01		14.3	30.9	34.4		PILLOW	4500	6/01/01		.0	- 0	.0
FREEZEOUT CK. TRA		5/30/01	0	• 0	.0			PILLOW	4200	6/01/01		- 0	2.8	1.3
FROHNER MDWS PILI		6/01/01		.0	• 0	1.2		PILLOW	6170	6/01/01		.0	.0	12.5
GRASS MOUNTAIN #2		5/26/01	0	.0			SAWMILL RIDGE		4700	5/26/01	0	- 0		16.6
GRAVE CRK PILLOW	4300	6/01/01		.0	.0	.0	SHEEP CANYON		4050	6/01/01		.0	26.5	11.6
	TLOW 6000	6/01/01		.0	.3	3.8	SILVER STAR MT		5600	5/28/01	34	13.8	28.1	16.1
	LLOW 5380	6/01/01		.0	.0	.0	SKALKAHO PILLO		7260	6/01/01		-0	4.2	15.8
HAND CREEK PILLOV		6/01/01		.0	.0	.0	SKOOKUM CREEK		3920	6/01/01		.0	.0	.0
	LLOW 6500	6/01/01		3.0	22.5	25.3		PILLOW	3400	6/01/01		• 0	4.2	. 0
HELL ROARING DIVI		5/31/01	1	.4	11.4	11.2		PILLOW	3100 6030	6/01/01		.0	.0	.0
HERRIG JUNCTION	4850	5/30/01		.0	.0	2.4	STAHL PEAK PIL		3860	6/01/01 6/01/01		7.6	23.7	27.3
HIGH RIDGE PII HOODOO BASIN PILI	LLOW 4980 LOW 6050	6/01/01 6/01/01		.0 8.9	1.4 20.4	.6 29.2	STAMPEDE PASS STEVENS PASS	PILLOW	4070	6/01/01		5.6	24.7	15.0 5.7
HUMBOLDT GLCH PIL		6/01/01		.0	.0	.0	STRYKER BASIN	PILLLOW	6180	5/30/01	11	.0 4.5	15.2	20.6
	LLOW 3200	6/01/01		.0	29.1	.0		PILLOW	5540	6/01/01		.0	.0	12.5
KRAFT CREEK PILLO		6/01/01		.0	.0	.0	SURPRISE LKS		4250	6/01/01		1.9	37.4	14.5
LESTER CREEK	3100	5/26/01	0	.0			TINKHAM CREEK		3000	6/01/01		.0	.1	.0
	LLOW 5240	6/01/01		.0	.0	.0		PILLOW	5530	6/01/01		.0	1.3	.0
	LLOW 3800	6/01/01		4.4	30.2	9.4		PILLOW	5310	6/01/01		.0	.0	6.0
	LOW 5140	6/01/01		.0	6.6	10.0	TV MOUNTAIN		6800	5/29/01	0	.0	.4	
	LLOW 5000	6/01/01	0	.0	.0	.0	TWELVEMILE PIL	LOW	5600	6/01/01		.0	.0	. 6
	LOW 6110	6/01/01		11.2	33.8	46.8	TWIN CAMP		4100	5/26/01	0	.0		
LUBRECHT PILLOW	4680	6/01/01		.0	.1	.0	TWIN LAKES PIL	LOW	6400	6/01/01		.0	6.3	25.8
	LLOW 5900	6/01/01		21.5	51.2	43.3	UPPER WHEELER		4400	6/01/01		.0	.0	.0
LYNN LAKE	4000	5/26/01	3	1.5			WARM SPRINGS P		7800	6/01/01		5.2	10.1	19.6
MEADOWS CABIN	1900	5/31/01	0	.0	.0			PILLOW	4200	6/01/01		.0	9.1	22.2
	LLOW 3240	6/01/01		.0	.0	. 0	WHITE PASS ES		4500	6/01/01		.0	2.5	4.6
· · · · · · · · · · · · · · · · · · ·	LLOW 4750	6/01/01		.0	.0		WHITE ROCKS MT		7200	6/01/01		.0	9.3	6.6
	LOW 6200	6/01/01		.0	. 0	- 0								

June 1, 2001 - SNOTEL Snow Melt Summary

based on 30-year average, snow-water-equivalent (SWE)

Natural Resources Conservation Service

Washington State Snow, Water and Climate Services

Program Contacts

Leonard Jordan State Conservationist W. 316 Boone Ave., Suite 450 Spokane, WA 99201-2348 phone: 509-323-2961

fax: 509-323-2979 leonard.jordan@wa.usda.gov

Betty Schmitt
Public Affairs Specialist
W. 316 Boone Ave., Suite 450
Spokane, WA 99201-2348

phone: 509-323-2912 fax: 509-323-2909 betty.schmitt@wa.usda.gov

Scott Pattee
Water Supply Specialist
2021 E. College Way, Suite 214
Mount Vernon, WA 98273-2873
phone: 360-428-7684
fax: 360-424-6172

Chris Pacheco Resource Conservationist National Water and Climate Center 101 SW Main St., Suite 1600 Portland, OR 97204-3224

phone: 503-414-3056 fax: 503-414-3101 cpacheco@wcc.nrcs.usda.gov

scott.pattee@wa.usda.gov

Helpful Internet Addresses

NRCS Snow Survey and Climate Services Homepages

Washington:

http://www.wa.nrcs.usda.gov/snow/snow.htm

Oregon:

http://crystal.or.nrcs.usda.gov/snowsurveys

Idaho:

http://idsnow.id.nrcs.usda.gov

National Water and Climate Center (NWCC):

http://www.wcc.nrcs.usda.gov

NWCC Anonymous FTP Server: ftp.wcc.nrcs.usda.gov

USDA-NRCS Agency Homepages

Washington:

http://www.wa.nrcs.usda.gov/nrcs

NRCS National:

http://www.ftw.nrcs.usda.gov

Spokane River Basin

*Based on selected stations

The June 1 forecasts for summer runoff within the Spokane River Basin are 45% of average near Post Falls and 52% at Long Lake. The forecast is based on a basin snowpack that is 13% of average and precipitation that is 62% of average for the water year. Precipitation for May was below normal at 64% of average. Streamflow on the Spokane River at Long Lake, was 67% of average for May. June 1 storage in Coeur d'Alene Lake, was 228,500-acre feet, 81% of average and 96% of capacity. Snowpack at Quartz Peak SNOTEL site melted out May 10th, almost a month early. Average temperatures in the Spokane basin were 2 degree above normal for May and 2 degrees below for the water year.

SPOKANE RIVER BASIN Streamflow Forecasts - June 1, 2001

		<<=======	Drier ====	== Future Co	onditions =	====== Wetter	=====>>	
Forecast Point	Forecast	=======		Chance Of	Exceeding *		=======	
	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
				=======================================			=========	===========
SPOKANE near Post Falls (2)	JUN-SEP	134	263	350	45	437	566	785
	JUN-JUL	111	232	315	46	398	519	692
SPOKANE at Long Lake (2)	JUN-JUL	227	360	450	52	540	673	859
	JUN-SEP	320	463	560	52	657	800	1082

SPOKAN Reservoir Storage (1	E RIVER BASIN 000 AF) - End				SPOK Watershed Snowp	ANE RIVER BASII ack Analysis -		001
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites		r as % of ======= Average
COEUR D'ALENE	238.5	228.5	215.5	280.5	SPOKANE RIVER	7	21	13
					NEWMAN LAKE	1	0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

Spokane River Basin Percent of Average June 1, 2001

Snowpack - 13% Precipitation - 62% Reservoir Capacity - 96%

⁽¹⁾ - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

Colville - Pend Oreille River Basins

*Based on selected stations

The June – September average forecast for the Kettle River streamflow is 60%, Colville at Kettle Falls is 43%, and Priest River near the town of Priest River is 34%. May streamflow was 72% of average on the Pend Oreille River, 54% on the Columbia at the International Boundary and 65% on the Kettle River. June 1 snow cover was 20% of average in the Pend Oreille Basin and 22% in the Kettle River Basin. Bunchgrass Meadows SNOTEL site melted out on May 25th, over a month early. Normally Bunchgrass would have 15.4 inches on June 1. Precipitation during May was 60% of average, bringing the year-to-date precipitation to 57% of average. Reservoir storage in Roosevelt and Banks lakes was reported to be 139% of average and 76% of capacity on June 1. Average temperatures were 2 degrees above normal for May and 2 degrees below for the water year.

Colville - Pend Oreille River Basins

Streamflow Forecasts - June 1, 2001

			=========				========	
		<<=====	Drier ====	== Future Co	ondítions =:	===== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	01101100 01 -	Exceeding * = Probable) (% AVG.)	30% (1000AF)	======= 10% (1000AF)	30-Yr Avg. (1000AF)
PEND OREILLE Lake Inflow (2)	JUN-JUL JUN-SEP	1218 1870	1966 2700	2474 3264	38 43	2982 3828	3730 4658	6449 7669
PRIEST near Priest (1,2)	JUN-JUL JUN-SEP	10.0	64 92	88 120	30 34	112 148	166 210	297 351
PEND OREILLE bl Box Canyon (2)	JUN-JUL JUN-SEP	607 1196	1726 2434	2487 3276	38 42	3248 4118	4367 5356	6543 7754
CHAMOKANE CREEK near Long Lake	JUL-AUG	1.04	1.25	1.40	45	1.55	1.76	3.12
COLVILLE at Kettle Falls	JUN-SEP JUN-JUL	0.4	10.6 6.0	17.6 11.9	43 40	25 17.8	35 27	41 30
KETTLE near Laurier	JUN-SEP JUN-JUL	307 295	427 390	508 455	60 60	589 520	709 615	851 758

COLVILLE - PEND O Reservoir Storage (100					COLVILLE - PEND OREILLE RIVER BASINS Watershed Snowpack Analysis - June 1, 2001				
Reservoir	Usable Capacity	*** Usa This Year	able Stora Last Year	age *** Avg	Watershed	Number of Data Sites	This Yea: ======= Last Yr	r as % of Average	
ROOSEVELT	5232.0	3843.0	2120.5	2851.0	COLVILLE RIVER	0	0	0	
BANKS	715.0	689.6	671.3	418.0	PEND OREILLE RIVER	42	34	20	
					KETTLE RIVER	1	13	22	

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

Okanogan - Methow River Basins

*Based on selected stations

Summer runoff average forecast for the Okanogan River is 49%, Similkameen River is 48%, Methow River is 50% and Salmon Creek is 52%. June 1 snow cover on the Okanogan was 49% of average and Methow was 9%. May precipitation in the Okanogan-Methow was a dismal 36% of average, with precipitation for the water year at 54% of average. May streamflow for the Methow River was 39% of average, 54% for the Okanogan River and 60% for the Similkameen. Snow-water content at Harts Pass SNOTEL was 3 inches. Average for this site is 25.3 inches on June 1. Combined storage in the Conconully Reservoirs was 12,100-acre feet, which is 51% of capacity and 67% of the June 1 average. Temperatures were slightly above normal for the past month and 1 degree above normal for the water year.

Okanogan - Methow River Basins

Streamflow Forecasts - June 1, 2001

	.=========			=========	=======================================		=========	=========
		<<======	Drier ====	== Future Co	onditions ==	===== Wetter	====>>	
Forecast Point	Forecast	========		= Chance Of E	Exceeding * =		=======	
	Period	90%	70%	50% (Most	Probable)	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
	.=========			=========	========	========	=======	=========
SIMILKAMEEN near Nighthawk (1)	JUN-JUL	109	282	360	48	438	611	755
	JUN-SEP	154	330	410	48	490	666	850
OKANOGAN near Tonasket (1)	JUN-JUL	101	317	415	49	513	729	848
	JUN-SEP	135	380	492	49	604	849	1005
CALMON GRAPH C11.	71701 7177	0.00	1 05	4 00	50	7.65	11 02	0.30
SALMON CREEK near Conconully	JUN-JUL	0.09	1.95	4.80	52	7.65	11.83	9.30
	JUN-SEP	0.1	2.2	5.3	52	8.4	13.0	10.2
METHOW RIVER near Pateros	JUN-SEP	159	229	277	50	325	395	555
METHOW RIVER Hear Faceros	JUN-JUL	148	209	250	51	291	352	486
	0.014-0.01	140	209	250	31	291	332	486
				 =============	 	 ====================================		=======================================

=======================================		=======	========					
OKANOGAN -	METHOW RIVER B	ASINS			OKANOGAN -	METHOW RIVER 1	BASINS	
Reservoir Storage	(1000 AF) - End	of May			Watershed Snowpa	ck Analysis -	June 1, 2	001
=======================================		========		.======	- 	=======================================		
Reservoir	Usable Capacity	*** Usa This Year	ble Storag Last Year	ge ***	Watershed	Number of Data Sites	This Yea	r as % of ====== Average
=======================================			=======	======		=======================================	=======	========
SALMON LAKE	10.5	7.0	7.6	9.0	OKANOGAN RIVER	6	40	49
CONCONULLY RESERVOIR	13.0	5.1	13.1	9.0	OMAK CREEK	1	0	0
					SANPOIL RIVER	0	0	0
					SIMILKAMEEN RIVER	0	0	0
					TOATS COULEE CREEK	0	0	0
					CONCONULLY LAKE	1	0	0
					METHOW RIVER	3	10	9

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

Okanogan-Methow River Basins Percent of Average June 1, 2001

Snowpack - 44% Precipitation - 54% Reservoir Capacity - 51%

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Wenatchee - Chelan River Basins

*Based on selected stations

Precipitation during May was 94% of average in the basin and 59% for the year-to-date. Runoff for Entiat River is forecast to be 50% of average for the summer. The June-September average forecast for Chelan River is 52%, Wenatchee River at Plain is 42% and Stehekin is 50%. Icicle, Stemilt and Squilchuck creeks are all expected to fall into the same forecast range. May average streamflows on the Chelan River were 75% and on the Wenatchee River 78%. June 1 snowpack in the combined Wenatchee basins was 38% of average. Reservoir storage in Lake Chelan was 556,200-acre feet, 123% of June 1 average and 82% of capacity. Lyman Lake SNOTEL had the most snow water with 21.5 inches of water. This site would normally have 43.3 inches on June 1. Temperatures were 1-2 degrees above normal for May and near normal for the water year.

Wenatchee - Chelan River Basins

Streamflow Forecasts - June 1, 2001

		<<======	 Drier ====:	== Future Co	onditions =	====== Wetter	=====>>	=======================================
Forecast Point	Forecast Period	======= 90% (1000AF)	70% (1000AF)		Probable)	30% (1000AF)	====== 10% (1000AF)	30-Yr Avg. (1000AF)
CHELAN RIVER near Chelan	JUN-SEP JUN-JUL	222 168	318 253	383 310	52 52	448 367	544 452	738 602
STEHEKIN near STEHEKIN	JUN-SEP JUN-JUL	167 111	231 163	275 199	50 47	319 235	383 287	548 422
ENTIAT RIVER near Ardenvoir	JUN-SEP	47	62	73	50	84	99	145
WENATCHEE at Plain	JUN-JUL JUN-SEP	144 159	210 243	255 300	43 42	300 357	366 441	600 718
STEMILT nr Wenatchee (miners in)	JUNE-SEP	30	57	75	54	93	120	138
ICICLE CREEK near Leavenworth	JUN-SEP JUN-JUL	73 60	97 83	113 98	57 57	129 113	153 136	198 172
=======================================				 -============		============	========	

WENATCHEE - CHELAN RIVER BASINS
Reservoir Storage (1000 AF) - End of May

WENATCHEE - CHELAN RIVER BASINS
Watershed Snowpack Analysis - June 1 2001

Reservoir Storage (1000 AF) - End of May Usable *** Usable Storage This Last Year Year CHELAN LAKE 676.1 556.2 457.8			watershed showpack Analysis - June 1, 2001					
Reservoir		This	Last	ge ***	Watershed	Number of Data Sites	This Year	r as % of
CHELAN LAKE	676.1	556.2	457.8	450.6	CHELAN LAKE BASIN	4	34	39
					ENTIAT RIVER	1	0	0
					WENATCHEE RIVER	6	35	36
					SQUILCHUCK CREEK	0	0	0
					STEMILT CREEK	1	0	0
					COLOCKUM CREEK	1	0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

Wenatchee-Chelan River Basins Percent of Average June 1, 2001

Snowpack - 38% Precipitation - 59% Reservoir Capacity - 82%

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Upper Yakima River Basin

*Based on selected stations

June 1 reservoir storage for the Upper Yakima reservoirs was 497,300-acre feet, 67% of average. Forecasts for the Yakima River at Cle Elum are 54% of average and the Teanaway River near Cle Elum is at 52%. Lake inflows are all forecasted to be much below average this summer. May streamflows within the basin were Yakima near Cle Elum at 85% and Cle Elum River near Roslyn at 86%. June 1 snowpack was 36% based upon 6 snow courses and SNOTEL readings within the Upper Yakima Basin. Precipitation was 99% of average for May and 60% year-to-date for water. Volume forecasts for the Yakima Basin are for natural flow. As such, they June differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Upper Yakima River Basin

Streamflow Forecasts - June 1, 2001

**************************************				==========	,		=========	-=========
		<<======	Drier ====	== Future Co	onditions ==	===== Wetter	====>>	
Forecast Point	Forecast Period	====== 90% (1000AF)	70% (1000AF)	50% (Most	Exceeding * = Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
KEECHELUS LAKE INFLOW	JUN-JUL JUN-SEP	9.0 12.8	18.2 24	25 31	48 50	31 38	40 49	51 62
KACHESS LAKE INFLOW	JUN-JUL JUN-SEP	3.0	10.1	15.0 16.9	33 33	19.9 23	27 31	45 52
CLE ELUM LAKE INFLOW	JUN-JUL JUN-SEP	47 55	71 84	88 104	44 44	105 124	129 153	201 239
YAKIMA at Cle Elum	JUN-JUL JUN-SEP	105 141	155 200	190 240	53 54	225 280	275 339	361 444
TEANAWAY near Cle Elum	JUN-JUL JUN-SEP	1.7 4.1	12.0 14.2	19.0 21	53 52	26 28	36 38	36 40
							=========	

				===========	===============
UPPER YAK	IMA RIVER BASI	N	UPPER	YAKIMA RIVER BA	ASIN
Reservoir Storage (1	000 AF) - End	of May	Watershed Snow	pack Analysis -	June 1, 2001
					=======================================
	Usable	*** Usable Storage ***		Number	This Year as % of
Reservoir	Capacity	This Last	Watershed	of	=======================================

Reservoir	Usable Capacity	*** Usa This Year	ble Storag Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year	
KEECHELUS	157.8	90.6	131.5	144.0	UPPER YAKIMA RIVER	7	28	38
KACHESS	239.0	166.0	236.5	218.0				
CLE ELUM	436.9	240.7	436.2	378.0				

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

(1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Upper Yakima River Basin Percent of Average June 1, 2001

Snowpack - 36% Precipitation - 60% Reservoir Capacity - 60%

Lower Yakima River Basin

*Based on selected stations

May average streamflows within the basin were: Yakima River near Parker, 66%; Naches River near Naches, 60%; and Yakima River at Kiona, 30%. June 1 reservoir storage for Bumping and Rimrock reservoirs was 182,900-acre feet, 94% of average. Forecast averages for Yakima River near Parker are 47%; American River near Nile, 40%; Ahtanum Creek, 45%; and Klickitat River near Glenwood, 54%. June 1 snowpack was 36% based upon 5 snow courses and SNOTEL readings within the Lower Yakima Basin. Precipitation was 68% of average for May and 57% year-to-date for water. Temperatures were 2 degrees above normal for the month and 1 degree below average for the water year. Volume forecasts for Yakima Basin are for natural flow. As such, they June differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Lower Yakima River Basin

Streamflow Forecasts - June 1, 2001

=======================================								
		<<======	Drier ====	== Future Co	onditions =	===== Wetter	====>>	
Forecast Point	Forecast			= Chance Of I				
	Period	90%	70%	50% (Most		30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
		========		=========	========		========	=========
BUMPING LAKE INFLOW	JUN-SEP	3.7	16.7	26	33	34	47	77
•	JUN-JUL	1.5	13.1	21	32	29	41	65
AMERICAN RIVER near Nile	JUN-SEP	13.7	21	26	40	31	38	65
	JUN-JUL	10.1	17.2	22	39	27	34	56
RIMROCK LAKE INFLOW	JUN-SEP	32	46	56	39	66	80	143
RIMROCK LAKE INFLOW					38	48	59	
	JUN-JUL	21	32	40	38	48	59	105
NACHES near Naches	JUN-SEP	94	151	190	45	229	286	424
money made	JUN-JUL	70	117	149	43	181	228	347
AHTANUM CREEK nr Tampico (2)	JUNE-SEP	8.5	13.6	17.0	45	20	26	38
	JUNE-JUL	7.4	11.9	15.0	44	18.1	23	34
YAKIMA near Parker	JUN-SEP	210	350	445	47	540	680	938
	JUN-JUL	155	270	348	47	426	541	749
KLICKITAT near Glenwood	TIDI TIDI	0.6	1.5.0	2.0	-1	24	2.0	2.0
KLICKITAT near Glenwood	JUN-JUN	9.6	15.8	20	51	24	30	39
	JUN-SEP	21	31	38	54	45	54	70
	=========			 ============		 		
LOWER YAKI	MA RIVER BASI	N			LOW	VER YAKIMA RIVE	ER BASIN	
D					Mark a walk and C	Consonale Applica		

Reservoir Storage (100	Reservoir Storage (1000 AF) - End of May						June 1, 2001
Reservoir	Usable Capacity	*** Usal This Year	ole Stora Last Year		Watershed	Number of Data Sites	This Year as % of
BUMPING LAKE	33.7	33.7	32.1	27.0			
RIMROCK	198.0	149.2	195.7	167.0			

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Walla Walla River Basin

*Based on selected stations

May precipitation was 68% of average, maintaining the year-to-date precipitation at 74% of average. Snowpack in the basin melted out about 20-days early. Streamflow forecasts have decreased slightly from last month but still remain the highest in the state at 83% of average streamflow in the South Fork Walla Walla River and 92% for Mill Creek. May streamflow was 89% of average for the Walla Walla River. Average temperatures were 2 degrees above normal for May and have averaged about 2 degrees below normal for the water year.

Walla Walla River Basin

	C+r	eamflow	Foregas	ta - Juna	e 1, 2001			
	501	eamiliow	FOLECAS					
			Drier ====	== Future (Conditions ==	===== Wetter	=====>>	
Forecast Point	Forecast	=======			Exceeding * =	.========	======	
	Period	90%	70%		Probable)	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
MILL CREEK at Walla Walla	JUNE-SEP	3.72	5.61	6.90	92	8.19	10.08	7.50
· · · · · · · · · · · · · · · · · · ·	JUNE-JUL	3.53	5.42	6.70	92	7.98	9.87	7.30
SF WALLA WALLA near Milton-Freewater		10.8	13.6	15.5	80	17.4	20	19.3
	JUN-SEP	21	25	27	83	30	33	3 3
WALLA WALLA	RIVER BAS	 [N			WAT	LA WALLA RIVE	R BASIN	=======================================
Reservoir Storage (1000						nowpack Analys		., 2001
						-=============	========	=========
	Usable		e Storage *			Numbe	r This	Year as % of
Reservoir	Capacity	This	Last		ershed	of		=========
	-	Year	Year A	vg		Data Si	tes Last	Yr Average
	=======		=========	==== =====			=========	=========

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

Walla Walla River Basin Percent of Average June 1, 2001

Snowpack - 0% Precipitation - 74%

WALLA WALLA RIVER

High Ridge 📮

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Lower Snake River Basin

*Based on selected stations

The June - September forecast is for 56% for Clearwater River at Spalding. The Snake and Grande Ronde rivers can expect summer flows to be about 50% of normal as well. May precipitation was 50% of average, bringing the year-to-date precipitation to 69% of average. Nine stations within the basin all reported a melt out of snowpack prior to June 1. May streamflow was 62% of average for Snake River below Lower Granite Dam and 78% for Grande Ronde River near Troy. Average temperatures were 3 degree above normal for May and remained 1 degree below normal for the water year.

Lower Snake River Basin

	Str	eamflow	Forecast	====== :s -	June	1, 200	 1	======:	=======	==============
		<<=====	 - Drier	====== == Fut	ture Co	onditions	======	= Wette:	:======:: : =====>>	
Forecast Point	Forecast Períod	90% (1000AF)	70% (1000AF)	50%	(Most	Exceeding 'Probable) (% AVG.)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
CLEARWATER at Spalding (1,2)	JUN-JUL JUN-SEP	2097 2367	2890 3216	1	3251 3602	54 56		3612 3988	4405 4837	5972 6405
LOWER & Reservoir Storage	SNAKE RIVER BAS: (1000 AF) - End					I Watershed		NAKE RIV		1, 2001
Reservoir	Usable Capacity	*** Usabl This Year	le Storage * Last Year A	* * vg	Water	shed		Numbe of Data S:	==:	s Year as % of
	=======================================			==== ==	LOWER	SNAKE, G	RANDE R	ONDE 9	() 0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) The value is natural flow actual flow may be affected by upstream water management.

Cowlitz - Lewis River Basins

*Based on selected stations

Forecasts for June – September streamflows within the basin are Lewis at Ariel; 58%, Cowlitz at Castle Rock; 54% of average. The Columbia at The Dalles is expected to remain about the same as last month at 52-54% of average. May average streamflow for Cowlitz River was 94% and 92% for Lewis River. May precipitation was 85% of average and the water-year average was 57%. June 1 snow cover for Cowlitz River was 53%, and Lewis River was 26% of average. Paradise Park SNOTEL reported the most water content for the basin with 41.5 inches. Average June 1 water content is 48.1 inches. Average temperatures were 1 degree above normal during May and have remained near average throughout the water year.

Cowlitz - Lewis River Basins

		.=======						========
	Stre	eamflow	Forecast	s - Jur	ne 1, 2001			
=======================================					G1/1/		========	========
		<<======	Drier ====	= Future	Conditions =	===== Wetter	====>>	
Forecast Point	Forecast	======	.=========	Chance O	Exceeding *		======	
	Períod	90%	70%		st Probable)	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000A)	7) (% AVG.)	(1000AF)	(1000AF)	(1000AF)
LEWIS at Ariel (2)	JUN-JUL	120	162	191	54	220	262	354
4	JUN-SEP	206	257	292	58	327	378	506
KLICKITAT near Glenwood	JUN-JUN	9.6	15.8	20	51	24	30	2.0
KLICKITAT hear Glenwood	JUN-SEP	21	31	38	54	45	54	3 9 70
•								, •
				.=======				=========
Reservoir Storage	- LEWIS RIVER BAS					TZ - LEWIS RIV. nowpack Analys		2001
**************************************	=======================================	========	.========	! :		=========	======================================	========
	Usable		le Storage **			Numbe	r This Y	ear as % of
Reservoir	Capacity	Thís Year	Last Year A		ershed	of Data Si	===== tes Last Y	
		iear	rear =====	'g :=== =====	.==========	Data 31	.es Last 1	r Average
				LEV	IS RIVER	4	6	26
				-		-		
				COV	NLITZ RIVER	7	38	51

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) The value is natural flow actual flow may be affected by upstream water management.

White - Green River Basins

*Based on selected stations

Summer runoff is forecast to be 55% of normal for the Green River below Howard Hanson Dam and 56% for the White River near Buckley. June 1 snowpack was 49% of average in both White River and Puyallup river basins and 37% in Green River Basin. Water content on June 1 at Corral Pass SNOTEL, at an elevation of 6,000 feet, was 12.5 inches. This site has a June 1 average of 19.6 inches. May precipitation was 88% of average, bringing the water year-to-date to 64% of average for the basins. Average temperatures in the area were near normal last month.

White - Green - Puyallup River Basins

			TOLCCUBC					
Barranak Bairah	Famanash				onditions =	===== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of : 50% (Most (1000AF)	Probable)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
WHITE near Buckley (1,2)	JUN-JUL JUN-SEP	76 117	110 160	125 180	56 56	140	174 243	225 320
GREEN below Howard Hanson (1,2)	JUN-JUL JUN-SEP	13.4 25	33 48	42 58	54 55	51 68	71 91	78 106

	REEN - PUYALLUP RIV age (1000 AF) - End				WHITE - GREEN Watershed Snowp	- PUYALLUP RIV ack Analysis -		
Reservoir	Usable Capacity	*** Usab] This Year	le Storage Last Year	*** Avg	Watershed	Number of Data Sites		r as % of
					WHITE RIVER	3	31	49
					GREEN RIVER	3	23	18
					PUYALLUP RIVER	3	31	49
Reservoir		This	Last		WHITE RIVER	of	Last Yr 31	Average 49

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

⁽¹⁾ - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

Central Puget Sound River Basins

*Based on selected stations

Forecast for spring and summer flows are: 65% for Cedar River near Cedar Falls; 62% for Rex River; 64% for South Fork of the Tolt River; and 64% for Cedar River at Cedar Falls. Basin-wide precipitation for May was 96% of average, bringing water-year-to-date to 64% of average. June 1 average snow cover in Tolt River Basin was 105%, Snoqualmie River Basin was 63%, and Skykomish River Basin was 84%. All sites within the Cedar River Basin had melted out by June 1. Olallie Meadows SNOTEL site at 3960 feet, had 13 inches of water content. Average June 1 water content is 30 inches at Olallie Meadows. May temperatures were near normal for the past month.

Central Puget Sound River Basins

Streamflow Forecasts - June 1, 2001

					=========		========	
		<<=====	Drier ====	== Future C	onditions =	===== Wetter	:====>>	
Forecast Point	Forecast	======		= Chance Of	Exceeding *	==========		
	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
CEDAR near Cedar Falls	JUN-JUL	**************************************	14.6	19.0	======================================	23	:=======: 30	29
CEDAR Real Cedal Falls			14.6					
•	JUN-SEP	10.6	18.4	24	65	29	37	37
REX near Cedar Falls	JUN-JUL	0.82	3.73	5.70	62	7.67	10.58	9.21
	JUN-SEP	1.6	5.2	7.6	62	10.0	13.6	12.3
CEDAR RIVER at Cedar Falls	JUN-JUL	5.6	10.3	13.5	64	16.7	21	21
CLDING KIVEK &C CCCAI I 4115	JUN-SEP		12.0	_	64	16.0	18.9	22
	JUN-SEP	9.1	12.0	14.0	64	16.0	18.9	22
SOUTH FORK TOLT near Index	JUN-JUL	2.31	3.32	4.00	64	4.68	5.69	6.30
	JUN-SEP	3.89	4.97	5.70	64	6.43	7.51	8.90

CENTRAL PUGET SOUND RIVER BASINS Reservoir Storage (1000 AF) - End of May					CENTRAL PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - June 1, 2001			
Reservoir	Usable *** Usable Storage *** Capacity This Last Year Year Avg				Watershed	Number of Data Sites		r as % of Average
3		========		======	CEDAR RIVER	4	0	0
					TOLT RIVER	2	56	105
					SNOQUALMIE RIVER	5	41	54
					SKYKOMISH RIVER	2	48	84

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

Central Puget Sound Basins Percent of Average June 1, 2001 ■Apine Meadous Skookum Creek 🔳 Snowpack - 73% **KING** Precipitation - 64% Olallie Meadows

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

North Puget Sound River Basins

*Based on selected stations

Forecast for Skagit River streamflow at Newhalem is 56% of average for the spring and summer period. May streamflow in Skagit River was 92% of average. Other forecast points included Baker River at 58% and Thunder Creek at 67% of average. Basin-wide precipitation for May was 103% of average, bringing water-year-to-date to 59% of average. June 1 average snow cover in Skagit River Basin was 28%, Baker River Basin was 40% and sites in the Nooksack River Basin had melted out. Rainy Pass SNOTEL, at 4,780 feet, had 1.2 inches of water content. Average June 1 water content is 20.4 inches at Rainy Pass. June 1 Skagit River reservoir storage was 99% of average and 74% of capacity. Average May temperatures were near normal for the basin and remain near average for the water year.

North Puget Sound River Basins

Streamflow Forecasts - June 1, 2001

						=========	========	=========
		<<======	Drier ====	== Future C	onditions =	===== Wetter	====>>	
Forecast Point	Forecast			= Chance Of i	Exceeding *	=======================================	======	
10100000 101110	Period	90%	70%		Probable)	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
THUNDER CREEK near Newhalem	JUN-JUL	* **** *******************************	100	109	 68	118	131	160
,	JUN-SEP	145	162	174	67	186	203	259
							_	
SKAGIT at Newhalem (2)	JUN-SEP	618	724	795	56	866	972	1418
BAKER RIVER near Concrete	JUN-JUL	233	261	280	57	299	327	490
,	JUN-SEP	389	405	416	58	427	443	717

NORTH PUGET : Reservoir Storage (10	NORTH PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - June 1, 2001							
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	age *** Avg	Watershed	Number of Data Sites	This Yea	r as % of Average
ROSS	1404.1	1025.4	975.0	1033.9	SKAGIT RIVER	3	33	28
DIABLO RESERVOIR	90.6	86.1	87.1	86.1	BAKER RIVER	5	0	38
GORGE RESERVOIR	9.8	8.0	8.1	8.3	NOOKSACK RIVER	2	0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period

North Puget Sound Basins Percent of Average June 1, 2001

Snowpack - 34%

Precipitation - 59%

Reservoir Capacity - 74%

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Olympic Peninsula River Basins

*Based on selected stations

Forecasted average runoff for streamflow in both the Dungeness River and Elwha River basins is 60%. Big Quilcene and Wynoochee rivers should expect below average runoff this summer also. May precipitation was 91% of average. Precipitation has accumulated at 65% of average for the water year. May precipitation at Quillayute was 7 inches. The thirty-year average for May is 5.25 inches. Limited snow surveys and long-term SNOTEL readings showed that most of the snowpack had melted prior to June 1. Temperatures were 1-2 degrees below average for the month and about 1 degree below average for the water year.

Olympic Peninsula River Basins

Streamflow Forecasts - June 1, 2001

	<<=====	Drier ====	== Future C	======== onditions =	====== Wetter	=====>>	==========	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	01101140 41	Probable)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
DUNGENESS near Sequim	jun-sep	49	56	61	60	66	73	102
	jun-jul	37	42	45	61	48	53	74
ELWHA near Port Angeles	JUN-SEP	155	176	190	60	204	225	319
	JUN-JUL	115	131	142	61	153	169	233

OLYMPIC PENINSULA RIVER BASINS OLYMPIC PENINSULA RIVER BASINS Watershed Snowpack Analysis - June 1, 2001 Number This Year as % of This Reservoir Capacity Last of Year Year Data Sites Last Yr Average OLYMPIC PENINSULA 0 ELWHA RIVER MORSE CREEK DUNGENESS RIVER QUILCENE RIVER WYNOOCHEE RIVER

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) The value is natural flow actual flow may be affected by upstream water management.

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

GLACIER PAGE 2001

North Cascades National Park Glacier Monitoring Program

The National Park Service began monitoring glaciers in North Cascades National Park in 1993. Goals for this program and additional data can be found at North Cascades National Park home page at http://www.nps.gov/noca/massbalance.htm.

The four glaciers monitored are located at the headwaters of four park watersheds, each with large hydroelectric operations (Figure 1). The glaciers represent a range in elevation from 8500 to 5700 feet, and a range in climatic conditions from maritime to continental. Methods include at least two visits annually to each glacier to measure winter accumulation and summer melt. Measurements are taken at a series of points down the centerline of each glacier (Table 1), then integrated across the entire glacier surface to determine annual mass balance for the entire glacier. Glaciers east of the hydrologic crest of the park (Silver and Sandalee) have recently had more positive mass balances than the west-side glaciers (Noisy, North Klawatti, South Cascade) due to their higher elevations, continental climate, and north aspects (Figure 2). Year to vear variation is also large, as net mass balance varied 11.5 ft/yr. between 1993 and 2000.

Figure 1. Glaciers monitored in North Cascades N.P.S. Complex.

		2001	1999	Average
	Elev.	Accumulation	Accumulation	Accumulation
C1==:==				
Glacier:	(feet)	(inches W.E.)	(inches W.E.)	(inches W.E.)
	6050	104	214	137
Noisy	6020	112	190	135
Creek	5940	102	165	120
	5800	94	167	117
	5650	96	171	117
	8450	82	189	127
Silver	7920	79	141	111
	7540	73	164	124
	7100	12	63	57
	7670	75	182	123
North	7300	86	191	122
Klawatti	6900	78	167	120
	6300	80	168	107
	6130	60	130	94
	7360	67	153	120
Sandalee	7100	80	185	138
	6810	76	152	119
	6530	71	214	147

Table 1. Snow water equivalent (W.E.) measured at monitored glaciers in late April/early May.

Table 1 presents this spring's winter accumulation data, along with average values and data from water year 1999, a year of heavy winter accumulation. Accumulation generally increases with elevation, but on steep slopes snow can be redistributed by wind and avalanches. This year's accumulation values are below the eight-year average. Winter balances are 80% of average for Noisy Glacier, 64% for Silver, 64% for North Klawatti, and 57% for Sandalee. The winter balance for Noisy Glacier is closer to the average because the Baker watershed recieves more snow than any other in the park.

Estimates of total glacial contribution to runoff for three watersheds are based on the mass balance measurements and GIS analysis to determine glacier area within 165 ft elevation bands (Table 2). Glaciers reduce the variation of flow in these watersheds by providing meltwater from ice in dry/warm years, and by storing water in wet/cool years. Glacial stream buffering capacity in these watersheds varies by as much as 100% annually. Magnitude of glacial contribution to streamflow is large, but varies by the amount of glacial cover in each watershed. Thunder Creek is 13% glaciated, while Baker River and Stehekin River are 6% and 3%, respectively (Post and others, 1971).

Relative importance of glacial contribution to streamflow increases from west to east. For example, glaciers annually contribute a higher percentage of meltwater to streamflow in the Stehekin watershed than in the Baker, despite the fact that the Baker is more glaciated. This is due to lower snowfall east of the hydrologic crest of the North Cascades. In this low accumulation year we anticipate that glacial contribution to summer runoff will be above average in these watersheds.

	Mean	Range		Percent Glacial Runoff to		
	Glacial	of Glacia	of Glacial Runoff		Runoff	
	Runoff	Minimum Maximum Minimum I		Maximum		
Noisy Creek Glacier	1.6	1.3	2.1			
Baker River Watershed	73	52	93	2.4	5.1	
North Klawatti Glacier	3.9	2.9	5.1			
Thunder Creek Watershed	101	80	135	15	30	
Sandalee Glacier	0.4	0.4	0.5			
Stehekin River Watershed	68	54	91	4.9	8.9	

Table 2. Glacial contribution to summer stream flow for three watersheds. Runoff units are thousands of acre-feet. Data from 1993-2000 except the Sandalee Glacier and Stehekin River Watershed (1995-2000).

Figure 2. Net annual mass balance for the five glaciers monitored in the North Cascades

Issued by

Released by

Pearlie S. Reed

Chief

Natural Resources Conservation Service

U.S. Department of Agriculture

Leonard Jordan
State Conservationist

Natural Resources Conservation Service

Spokane, Washington

The Following Organizations Cooperate with the Natural Resources Conservation Service in Snow Survey Work*:

Canada Ministry of the Environment

Investigations Branch, Victoria, British Columbia

State Washington State Department of Ecology

Washington State Department of Natural Resources

Federal Department of the Army

Corps of Engineers

U.S. Department of Agriculture

Forest Service

U.S. Department of Commerce

NOAA, National Weather Service

U.S. Department of Interior

Bonneville Power Administration

Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs

Local City of Tacoma

City of Seattle

Chelan County P.U.D.

Pacific Power and Light Company

Puget Sound Power and Light Company Washington Water Power Company

Snohomish County P.U.D. Colville Confederated Tribes

Spokane County Yakama Indian Nation Whatcom County Pierce County

Private Okanogan Irrigation District

Wenatchee Heights Irrigation District Newman Lake Homeowners Association

Whitestone Reclamation District

Washington Snow Survey Office 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873

FOR OFFICIAL USE ONLY

U. S. DEPT. OF AGRICULTURE NATIONAL AGRICUL. LIBRARY CURRENT SERIAL RECORDS ROOM 002 BELTSVILLE, MD 20705-2351

Washington Basin Outlook Report

Natural Resources Conservation Service Spokane, WA

