MAPSI – Cours 1 : Rappels de probabilités et statistiques

Nicolas Thome & Pierre Henri Wuillemin

LIP6 / ISIR - Sorbonne Université, France

- Fonctionnement de l'UE MAPSI
- 2 Variables aléatoires & probabilités : vocabulaire, définitions
- Description d'une population, d'un échantillon
- Variables multiples, loi jointe, conditionnelle
- Indépendance probabiliste
- 6 Conclusion

MAPSI: informations pratiques

- MAPSI : Méthodes et algorithmes de probabilité et statistique en informatique
 - Code UE: MU4IN601
- Calendrier :

```
\label{eq:https://cal.ufr-info-p6.jussieu.fr/master/} $\Rightarrow \textbf{Cocher M1-IMA}$
```

Ressopurces sur moodle :

```
https:
//moodle-sciences-24.sorbonne-universite.fr
```

- Répartition dans les groupes quasi-figée
- Mail & nouvelles fraiches pour les informations de dernière minute
- Mattermost (=slack gratuit) pour échanger sur les problèmes scientifiques
 - http://tiny.cc/M1DAC24 pour s'inscrire
 - Channel MAPSI

Règles de notation

Organisation:

- Cours : théorie & concepts, exemples
- TD : applications & calculs sur feuille
- TME : mise en oeuvre des méthodes sur des exemples concrets

Notation:

- Examen final: 50%
 - Questions sur des formulations analytiques + calcul
 - Questions algo/code
- Partiel: 35%
- Notes de participation (contrôle continu, CC) : 15%
 - Attention : l'essentiel de la note est constitué du travail effectué durant la séance
 - Soumission obligatoire du code de TME en fin de séance...
 - ... Et commentaires bienvenus pour faciliter la correction
- session 2 : max(rattrapage, 15% CC + 85% rattrapage)

Pourquoi faire MAPSI?

- Parce que c'est obligatoire
- Parce que c'est un bon rappel de statistiques pour...
 - Comprendre la littérature scientifique en générale
 - Comprendre comment fonctionne l'analyse de données
- Parce que c'est la porte d'entrée vers les sciences des données!

Pourquoi faire MAPSI?

- Parce que c'est obligatoire
- Parce que c'est un bon rappel de statistiques pour...
 - Comprendre la littérature scientifique en générale
 - Comprendre comment fonctionne l'analyse de données
- Parce que c'est la porte d'entrée vers les sciences des données!

Pourquoi faire MAPSI?

- Parce que c'est obligatoire
- Parce que c'est un bon rappel de statistiques pour...
 - Comprendre la littérature scientifique en générale
 - Comprendre comment fonctionne l'analyse de données
- Parce que c'est la porte d'entrée vers les sciences des données!

Faire le lien entre une situation réelle et un modèle Statistique

o avec un modèle paramétrique

Faire le lien entre une situation réelle et un modèle Statistique

o avec un modèle paramétrique

Faire le lien entre une situation réelle et un modèle Statistique

avec un modèle paramétrique

Faire le lien entre une situation réelle et un modèle Statistique

- avec un modèle paramétrique
- 2 avec un modèle agnostique

- Fonctionnement de l'UE MAPSI
- 2 Variables aléatoires & probabilités : vocabulaire, définitions
- 3 Description d'une population, d'un échantillor
- Variables multiples, loi jointe, conditionnelle
- 5 Indépendance probabiliste
- 6 Conclusion

Vocabulaire (1/3)

Définitions

- population (statistique): ensemble des objets (ou personnes) sur lesquels porte l'étude
- o individu : chaque élément de la population

Vocabulaire (2/3)

Définitions

- Caractères : critères d'étude de la population
- Modalités : les valeurs que peuvent prendre les caractères
- Caractère quantitatif ou Variable statistique : ensemble de modalités = des nombres + échelle mathématique
- Caractère qualitatif ou Variable catégorielle : caractère non quantitatif
- Caractère ordinal : les modalités sont ordonnées

Vocabulaire (3/3)

Définitions sur les variables statistiques

- Variable discrète : définie sur un espace discret (par exemple des entiers)
- Variable continue : définie sur un continuum (toutes les valeurs numériques d'un intervalle)

Effectifs, fréquences et distributions

Quelques définitions de statistiques

- X : caractère défini sur une population de N individus
- $\{x_1, \ldots, x_l\}$ modalités de X
- $N_i = \text{effectif de } x_i$ = nombre d'individus pour lesquels X a pris la valeur x_i
- fréquence ou effectif relatif : $f_i = \frac{N_i}{N}$
- distribution de X: ensemble des couples $\{(x_1, f_1), (x_2, f_2), \ldots\}$ Représentation usuelle sous forme de tableau

Statistiques = description d'un échantillon Probabilités = description d'une population.

Les événements : approche évènementielles

Notations ensemblistes:

- événements = sous-ensembles de Ω
- Ø = événement impossible
- $A \cup B =$ événement qui est réalisé si A ou B est réalisé
- $C \cap D$ = événement qui est réalisé si C et D sont réalisés
- $\overline{C \cup D}$ = complémentaire de $C \cup D$ dans Ω
 - = événement qui est réalisé ssi $C \cup D$ ne l'est pas
- $A \cap B = \emptyset$ = 2 événements qui ne peuvent se réaliser simultanément

Probabilités : approche évènementielle

Les événements : approche évènementielle

Définition des probabilités : le cas discret

Définition des probabilités (Kolmogorov)

- Ω = ensemble fini ou dénombrable d'événements élémentaires e_k, k ∈ K ⊆ N
- ullet $\mathcal{A}=\mathbf{2}^{|\Omega|}$ = ensemble des événements
- Mesure de probabilité : $\forall A \in \mathcal{A}, 0 \leq P(A) \leq 1$
- $P(\Omega) = 1$
- $A = \bigcup_{k \in L} A_k$, avec L ensemble dénombrable et, $\forall j, k \in L, j \neq k, A_j \cap A_k = \emptyset$, $P(A) = \sum_{i=1}^{n} P(A_k)$.
- ⇒ Les probabilités des événements élémentaires déterminent entièrement *P*

conséquence : $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Univers, Evènements et Variable Aléatoire (1/5)

Quelques définitions de probabilités

- Univers Ω : un ensemble dénombrable (fini ou infini)
- Evènement : un sous-ensemble de l'univers Ω
- Mesure de probabilité:
 une fonction qui associe à chaque évènement une valeur entre 0 et 1, la probabilité de Ω est 1, et la probabilité d'une union dénombrable d'évènements incompatibles (ensembles disjoints) est la somme de leurs probabilités.
- Espace probabilisé :
 un couple (Ω, P) où P est une mesure de probabilité sur Ω.
- Variable aléatoire

Univers, Evènements et Variable Aléatoire (2/5)

Variable aléatoire

Lorsqu'on est face à une expérience aléatoire, on s'intéresse plus souvent à une *valeur* attribuée au résultat qu'au résultat lui-même.

Exemples

- Lorsque l'on joue à un jeu de hasard on s'intéresse plus au gain que l'on peut obtenir qu'au résultat du jeu.
- Nombre de pannes dans un ensemble de systèmes plutôt que l'état exact des systèmes
- Solution : "traduire" l'univers en évènements "compréhensibles".
- \Rightarrow variable aléatoire : application de l'univers Ω vers un autre ensemble.

Univers, Evènements et Variable Aléatoire (3/5)

Exemple du lancer de dé

On lance un dé après avoir misé 1 *EUR*. Si le résultat est un 5 ou un 6 on double la mise, sinon perd la mise. Dans ce cas :

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Card $\Omega = 6$, et $\forall e \in \Omega, P(e) = \frac{1}{6}$
- Soit X la v.a. qui associe à tout résultat du dé un gain: X(1) = X(2) = X(3) = X(4) = -1 et X(5) = X(6) = (2-1) = 1 X est à valeur dans l'ensemble noté $\mathcal{X} = \{-1, 1\} \subset \mathbb{R}$, $X: \Omega \to \mathcal{X}$
- Question : Comment calculer la probabilité de gagner 1 EUR?
- Réponse : Définir une probabilité sur \mathcal{X} , notée \mathbb{P} , en retournant dans l'espace probabilisé $(\Omega, \mathcal{P}(\Omega), P)$ i.e. utiliser P(résultat du dé = 5 ou 6) pour estimer $\mathbb{P}(\{1\})$.

Univers, Evènements et Variable Aléatoire (3/5)

- $\Omega = \{1, 2, 3, 4, 5, 6\}$, Card $\Omega = 6$, et $\forall e \in \Omega, P(e) = \frac{1}{6}$
- Soit X la v.a. qui associe à tout résultat du dé un gain: X(1) = X(2) = X(3) = X(4) = -1 et X(5) = X(6) = (2-1) = 1 X est à valeur dans l'ensemble noté $\mathcal{X} = \{-1,1\} \subset \mathbb{R}, X : \Omega \to \mathcal{X}$
- Question : Comment calculer la probabilité de gagner 1 EUR?
- Réponse : Définir une probabilité P sur X, en retournant dans l'espace probabilisé (Ω, P(Ω), P), i.e. utiliser P(résultat du dé =5 ou 6) pour estimer P({1}).

Variable aléatoire à valeurs discrètes (4/5)

Définition Variable aléatoire à valeurs discrètes

Soit Ω un ensemble dénombrable, et P une mesure de probabilité sur Ω .

Soit Ω' , un ensemble discret. Une variable aléatoire est une fonction X de Ω muni de la mesure P vers Ω' .

Exemples

- Lancer d'un dé : Soit $\Omega = \{1, ..., 6\}$ muni de la probabilité uniforme P.
 - $X: i \mapsto \begin{cases} 1 \text{ si } i \text{ est pair} \\ 0 \text{ sinon} \end{cases}$
 - est une variable aléatoire de (Ω, P) vers $\Omega' = \{0, 1\}$.
- Lancer de deux dés :
 Soit Ω = {1,...,6}² muni de la probabilité uniforme P.
 - $X:(i,j)\mapsto i+j$
 - est une variable aléatoire de (Ω, P) vers $\Omega' = \{2, ..., 12\}$

Variable aléatoire à valeurs discrètes (5/5)

Définitions : Loi de probabilité

Soit (Ω, P) un espace probabilisé où Ω est dénombrable. Soit Ω' un ensemble discret, et X une v.a. de (Ω, P) vers Ω' .

• P_X définit une mesure de probabilité sur Ω' :

$$\forall E' \subset \Omega', \quad P_X(E') = P(X^{-1}(E'))$$

avec
$$X^{-1}(E') = \{\omega \in \Omega | X(\omega) \in E'\}$$

• L'ensemble des valeurs $P_X(\{\omega'\})$ pour $\omega' \in \Omega'$ s'appelle la *loi de probabilité* de X.

Notations

- L'événement $X \in]-\infty, a]$ sera noté par $X \leq a$
- L'événement $X \in]a, b]$ sera noté par $a < X \le b$
- L'événement $X \in \{a\}$ sera noté par X = a
- On a donc $P_X(B) = P(X^{-1}(B)) = P(X \in B)$

- 1 Fonctionnement de l'UE MAPS
- 2 Variables aléatoires & probabilités : vocabulaire, définitions
- 3 Description d'une population, d'un échantillon
- Variables multiples, loi jointe, conditionnelle
- Indépendance probabiliste
- 6 Conclusion

- A partir d'un échantillon
- En simplifiant les données continues
- Simplifiant les différentes dimensions, ...

- A partir d'un échantillon
- En simplifiant les données continues
- Simplifiant les différentes dimensions, ...

- A partir d'un échantillon
- En simplifiant les données continues
- Simplifiant les différentes dimensions, ...

- A partir d'un échantillon
- En simplifiant les données continues
- Simplifiant les différentes dimensions, ...

Moyennes: 0.56 0.59 0.47

- A partir d'un échantillon
- En simplifiant les données continues
- Simplifiant les différentes dimensions, ...

Moyennes: 0.56 0.59 0.47

Ou même une moyenne générale : 0.54

Description d'une population

Décrire parfaitement une population = connaître sa loi de probabilité

Exemples selon la nature des variables :

en continu:

en discret :

Description d'une population

Décrire parfaitement une population = connaître sa loi de probabilité

Problème général:

Comment déduire la loi sur la population si on ne connait qu'un échantillon?

Réponse dans les cours suivants...

Propriétés

Cas général :

- Une distribution somme à 1
- Une probabilité est toujours ≥ 0

Cas Continu:

- Chaque événement élémentaire a une proba = 0 (eg : proba d'avoir 40 ans)
- Mais proba d'être dans un intervalle ≥ 0 (eg : proba d'avoir entre 40 et 50 ans)

P(A) = surface délimitée par la **fonction de densité** dans la zone où les événements sont inclus dans A

Probabilités : les détails dans le cas continu

$$P(X \in I) = \int_{I} p(x) dx$$

avec P = proba et p = fonction de densité

 \implies connaître p = connaître P

intervalles] $-\infty$, x[\Longrightarrow fonction de répartition :

$$F(x) = P(X < x) = \int_{-\infty}^{x} p(y) dy$$

Discrétisation

Continu → Discret

Possibilité de discrétisation = regroupement par tranches Modélisation approximative, mais manipulation plus facile

Distribution des salaires en France

Distribution des salaires en France discrétisée

Caractéristiques d'une loi de probabilités (1/2)

Caractéristiques

Espérance mathématique ou moyenne : E(X)

$$X$$
 discrète : $E(X) = \sum x_k p_k$

$$X$$
 continue : $E(X) = \int x p(x) dx$

l'espérance mathématique n'existe pas toujours

Mode : Mo de P (pas toujours unique) :

$$X$$
 discrète : $p(Mo) = \max_k p(x_k)$

$$X$$
 continue : $p(Mo) = \max_{x} p(x)$

Propriétés de l'espérance

- E(aX + b) = aE(X) + b
- $\forall X, Y, E(X + Y) = E(X) + E(Y)$

Caractéristiques d'une loi de probabilités (2/2)

- variance : V(X) ou σ^2 :
 - X discrète : $\sigma^2 = \sum [x_k E(X)]^2 p_k$
 - X continue : $\sigma^2 = \int [x E(X)]^2 p(x) dx$
- moyenne des carrés des écarts entre les valeurs prises par X et son espérance E(X)
- écart-type : σ = racine carrée de la variance
- variance et donc écart-type n'existent pas toujours
- **Prop**: Y = aX + b, où a et b sont des nombres réels $V(Y) = a^2V(X)$
- Prop : $V(X) = E[X^2] E[X]^2$

Résumer les informations prépondérantes

Idées:

- Caractériser rapidement une distribution
- 2 Donner en quelques chiffres une idée approchée de l'ensemble de la distribution de probabilité.
- Espérance, variance + moments statistiques

Niveau du sol sur la planète

Quantiles (médianes, ...)

Médiane = 1650, Moyenne = 2000

Médiane d'une variable statistique continue

Médiane d'une variable statistique continue

- X : variable statistique continue
- Médiane = le nombre δ tel que les aires situées de part et d'autre de ce nombre dans l'histogramme représentant X sont égales

Médiane $M: P(X \leq M) \geq \frac{1}{2}$ et $P(X \geq M) \geq \frac{1}{2}$

World Median Ages

YOUNGEST: 1. Niger (15.1) 2. Uganda (15.5) 3. Mali (16) 4. Malawi (16.3) 5. Zambia (16.7) OLDEST: 1. Germany & Japan (46.1) 2. Italy (44.5) 3. Austria (44.3) 4. Virgin Islands (44.2)

Les quantiles

Quantile d'une variable discrète

- X: variable statistique discrète, modalités $\{x_1, \ldots, x_l\}$
- lacktriangle population de N individus ($N_i = \text{effectif de } x_i$)
- quantile d'ordre $\alpha = \delta$ tel que :

$$\sum_{i \in \{j: x_j < \delta\}} N_i \leq \alpha N \quad \text{et} \quad \sum_{i \in \{j: x_j > \delta\}} N_i \leq (1 - \alpha) N$$

Quantile d'une variable continue

- X : variable statistique continue
- quantile d'ordre α = le nombre δ tel que les aires situées de part et d'autre de ce nombre dans l'histogramme représentant X sont égales respectivement à $\alpha \times$ aire totale et $(1-\alpha) \times$ aire totale

- Fonctionnement de l'UE MAPSI
- Variables aléatoires & probabilités : vocabulaire, définitions
- Description d'une population, d'un échantillor
- 4 Variables multiples, loi jointe, conditionnelle
- Indépendance probabiliste
- 6 Conclusion

Loi de probabilité sur plusieurs variables aléatoires

 Chaque individu de la population est décrit sur plusieurs caractères

Exemples:

- Carte à jouer : Couleur (Trefle, Carreau, Coeur, Pique), Valeur (7, ..., Roi)
- Sportifs : Age (< 20, ..., > 50), Sport pratiqué (Natation...)

Loi jointe P(A,B) : décrire toutes les intersections possibles Exemple :

Sport \ Age	< 20	[20, 30[[30, 40[,	[40, 50[≥ 50
Natation	0.02	0.05	0.09	0.08	0.08
Jogging	0.10	0.15	0.10	0.07	0.05
Tennis	0.02	0.03	0.06	0.07	0.03

NB : l'ensemble de l'univers Ω somme toujours à 1

Loi marginale

Définition

La marginalisation consiste à projeter une loi jointe sur l'une des variables aléatoires.

Par exemple, extraire P(A) à partir de P(A, B).

$$P(A) = \sum_{i} P(A, B = b_i)$$

Sport \ Age	< 20	[20, 30[[30, 40[,	[40, 50[≥ 50	Marginale
Natation	0.02	0.05	0.09	0.08	0.08	0.32
Jogging	0.10	0.15	0.10	0.07	0.05	0.47
Tennis	0.02	0.03	0.06	0.07	0.03	0.21
						1

La marginale extraite ici correspond à P(Sport). La nouvelle loi somme toujours à 1.

Loi marginale

Définition

La marginalisation consiste à projeter une loi jointe sur l'une des variables aléatoires.

Par exemple, extraire P(A) à partir de P(A, B).

$$P(A) = \sum_{i} P(A, B = b_i)$$

Sport \ Age	< 20	[20, 30[[30, 40[,	[40, 50[≥ 50
Natation	0.02	0.05	0.09	0.08	0.08
Jogging	0.10	0.15	0.10	0.07	0.05
Tennis	0.02	0.03	0.06	0.07	0.03
Marginale	0.14	0.23	0.25	0.22	0.16

Probabilités conditionnelles (1/5)

Définition

la probabilité d'un événement A conditionnellement à un événement B, que l'on note P(A|B), est la probabilité que A se produise sachant que B s'est ou va se produire.

Rem : $P(A|\Omega) = P(A)$ puisqu'on sait que Ω sera réalisé

Problème : comment calculer P(A|B)?

Probabilités conditionnelles (2/5)

Exemple

- Tirer une carte parmi un jeu de 32 cartes
- $\Omega = \{32 \text{ cartes}\}$
- événements : A = tirer un roi B = tirer un cœur
- P(A|B) = ?

Interprétation de P(A|B)

Dans l'univers réduit B ($\Omega' = B$), quelle est la probabilité de A?

Probabilités conditionnelles (2/5)

Exemple

- Tirer une carte parmi un jeu de 32 cartes
- $\Omega = \{32 \text{ cartes}\}$
- événements : A = tirer un roi B = tirer un cœur
- P(A|B) = ?

Interprétation de P(A|B)

Dans l'univers réduit B ($\Omega' = B$), quelle est la probabilité de A?

- $\Omega' = B = coeur$ (8 cartes)
- P(A|B) = un roi parmi les coeur...

Probabilités conditionnelles (2/5)

Exemple

- Tirer une carte parmi un jeu de 32 cartes
- Ω = {32 cartes}
- événements : A = tirer un roi B = tirer un cœur
- P(A|B) = ?

Interprétation de P(A|B)

Dans l'univers réduit B ($\Omega' = B$), quelle est la probabilité de A?

- $\Omega' = B = coeur$ (8 cartes)
- P(A|B) = un roi parmi les coeur...

$$P(A|B) = \frac{1}{8}$$

Probabilités conditionnelles (3/5)

Théorème des probabilités totales :

En partant de la loi jointe

$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 ou $P(A,B) = P(A|B)P(B)$

Interprétation : l'observation conjointe de A et B (P(A, B)) correspond à l'observation de B ET à l'observation de A dans l'univers restreint B.

Probabilités conditionnelles (3/5)

Théorème des probabilités totales :

En partant de la loi jointe

$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 ou $P(A,B) = P(A|B)P(B)$

Interprétation : l'observation conjointe de A et B (P(A, B)) correspond à l'observation de B ET à l'observation de A dans l'univers restreint B.

Exemple: Roi de coeur = Observer un coeur ET observer un roi dans l'univers des coeurs

Probabilités conditionnelles (4/5)

Propriétés

- Réversible : P(A, B) = P(A|B)P(B) = P(B|A)P(A)
- Théorème de Bayes :

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Intégration des probabilités totales :

$$P(A) = \sum_{i} P(A, B = b_i) = \sum_{i} P(A|B = b_i)P(B_i)$$

Probabilités conditionnelles (5/5)

Tableau de probabilité conditionnelle :

		Natation	0.32
•	Sport : $P(S) =$	Jogging	0.47
		Tennis	0.21

Répartition des ages pour chaque sport :

- Propriété : chaque ligne somme à 1 (=chaque ligne est un univers à part)
- Questions : comment extraire la distribution des ages ? Comment obtenir la distribution jointe ?

- Fonctionnement de l'UE MAPSI
- 2 Variables aléatoires & probabilités : vocabulaire, définitions
- Description d'une population, d'un échantillon
- Variables multiples, loi jointe, conditionnelle
- Indépendance probabiliste
- 6 Conclusion

Indépendance probabiliste (1/3)

Définition de l'indépendance

deux événements A et B sont indépendants si :

$$P(A,B) = P(A) \times P(B)$$

Corrolaire : deux événements A et B sont indépendants si : P(A|B) = P(A) (avec P(B) > 0)

l'indépendance n'est pas une propriété du couple (A, B) mais du couple $(\{A, A^c\}, \{B, B^c\})$:

A et B sont indépendants $\Longrightarrow A$ et B^c indépendants $\Longrightarrow A^c$ et B indépendants $\Longrightarrow A^c$ et B^c indépendants

Indépendance probabiliste (2/3)

Démonstration:

A et B sont indépendants
$$\Longrightarrow P(A,B) = P(A) \times P(B)$$

$$P(A) = P(A,B) + P(A,B^c)$$

$$\Longrightarrow P(A,B^c) = P(A) - P(A,B)$$

$$= P(A) - P(A) \times P(B)$$

$$= P(A) \times [1 - P(B)]$$

$$= P(A) \times P(B^c)$$

Indépendance probabiliste (3/3)

Exemple

Qu'est ce qui est dépendant ou indépendant?

Indépendance (exemple)

Indépendance ou pas entre X et Y?

Cas 1:

	<i>y</i> ₁	y 2
<i>X</i> ₁	0.04	0.06
<i>X</i> ₂	0.36	0.54

Cas 3:

	<i>y</i> ₁	<i>y</i> ₂	y ₃
<i>X</i> ₁	0.07	0.24	0.16
<i>X</i> ₂	0.07	0.30	0.16

Cas 2:

	<i>y</i> ₁	y ₂
<i>X</i> ₁	0.1	0.2
<i>X</i> ₂	0.3	0.4

		<i>y</i> ₁	y ₂	<i>y</i> ₃
Cas 4:	<i>X</i> ₁	0.01	0.02	0.07
•	<i>X</i> ₂	0.09	0.18	0.63

Indépendance (exemple graphique)

Représentation d'une loi jointe $P(X_1, X_2)$

Indépendance (exemple graphique)

Représentation d'une loi jointe $P(X_1, X_2)$

Indépendance (exemple graphique)

Représentation d'une loi jointe $P(X_1, X_2)$

- Combien de variable pour modéliser la probabilité de voir son toit s'envoler?
 - Mois de l'année (12)
 - Catégorie des ouragans (6)
 - Type de construction (10)

- Combien de variable pour modéliser la probabilité de voir son toit s'envoler? $12 \times 6 \times 10 = 720$
 - Mois de l'année (12)
 - Catégorie des ouragans (6)
 - Type de construction (10)

- Combien de variable pour modéliser la probabilité de voir son toit s'envoler? $12 \times 6 \times 10 = 720$
 - Mois de l'année (12)
 - Catégorie des ouragans (6)
 - Type de construction (10)
- Combien de variable pour modéliser les probabilités de tirage de 3 dés (cumul)?

- Combien de variable pour modéliser la probabilité de voir son toit s'envoler? $12 \times 6 \times 10 = 720$
 - Mois de l'année (12)
 - Catégorie des ouragans (6)
 - Type de construction (10)
- Combien de variable pour modéliser les probabilités de tirage de 3 dés (cumul)?
 - Indépendance! Dés identiques = 6 valeurs
 - Dés différents = 3 × 6 = 18 valeurs
 - Dés non indépendants (?) $6 \times 6 \times 6 = 216$ valeurs

- Combien de variable pour modéliser la probabilité de voir son toit s'envoler? $12 \times 6 \times 10 = 720$
 - Mois de l'année (12)
 - Catégorie des ouragans (6)
 - Type de construction (10)
- Combien de variable pour modéliser les probabilités de tirage de 3 dés (cumul)?
 - Indépendance! Dés identiques = 6 valeurs
 - Dés différents = $3 \times 6 = 18$ valeurs
 - Dés non indépendants (?) $6 \times 6 \times 6 = 216$ valeurs
- Combien de variables pour modéliser les probabilités d'apparition de groupes de 3 mots (tri-grammes)? -Vocabulaire réduit à 10k mots-

- Combien de variable pour modéliser la probabilité de voir son toit s'envoler? $12 \times 6 \times 10 = 720$
 - Mois de l'année (12)
 - Catégorie des ouragans (6)
 - Type de construction (10)
- Combien de variable pour modéliser les probabilités de tirage de 3 dés (cumul)?
 - Indépendance! Dés identiques = 6 valeurs
 - Dés différents = $3 \times 6 = 18$ valeurs
 - Dés non indépendants (?) $6 \times 6 \times 6 = 216$ valeurs
- Combien de variables pour modéliser les probabilités d'apparition de groupes de 3 mots (tri-grammes)? -Vocabulaire réduit à 10k mots-
 - $10k^3 = 10^{12}$ valeurs (=4000 Go)

Caractéristiques d'une loi de probabilités

Propriétés de la variance

- $\bullet \forall X, Y, V(X + Y) = V(X) + V(Y) + 2cov(X, Y) \text{ où } :$
 - cov(X, Y) = covariance de X et Y

$$COV(X, Y) = E[(X - E[X])(Y - E[Y])]$$

si X et Y discrètes

$$COV(X, Y) = \sum_{i} \sum_{j} (x_i - E[X])(y_j - E[Y])P(X = x_i, \cap Y = y_j)$$

• si X et Y continues, de densité p(x, y),

$$cov(X, Y) = \iint [x - E(X)][y - E(Y)]p(x, y)dxdy$$

Estimateur sur un échantillon : $\{(x_1, y_1), \dots, (x_k, y_k), \dots, (x_N, y_N)\}$

$$cov(X, Y) = \frac{1}{N} \sum_{i} (x_k - \bar{x})(y_k - \bar{y})$$

Quantifier la dépendance entre X et Y

Définition : Coefficient de corrélation linéaire

Soit X, Y deux variables. Le coefficient de corrélation linéaire entre X et Y est :

$$r = \frac{\mathsf{cov}\left(X,\,Y\right)}{\sigma_X \sigma_Y},$$

où σ_X et σ_Y sont les écart-types des variables X et Y.

- Fonctionnement de l'UE MAPSI
- Variables aléatoires & probabilités : vocabulaire, définitions
- Description d'une population, d'un échantillor
- Variables multiples, loi jointe, conditionnelle
- Indépendance probabiliste
- **6** Conclusion

Résumé

Les 4 règles qui vont vous sauver la vie.

Probabilité :

$$\forall x \in \mathcal{X}, \quad 0 \le P(x) \le 1 \text{ et } \sum_{x \in \mathcal{X}} p(x) = 1$$

Marginalisation

$$P(X_1 = x_1) = \sum_{x_2,...,x_n} P(X_1 = x_1, X_2 = x_2,...)$$

Conditionnement :

$$P(X_1, X_2) = P(X_1|X_2)P(X_2)$$
 (et vice versa)

Indépendance : Si X₁ et X₂ sont indépendantes : P(X₁, X₂) = P(X₁)P(X₂)