Testing

Contents

Data	2
Raw Data	2
Cleaning The Data	2
Daily Data	2
Plots	3
Total	3
Per Day	10
Time Series Analysis	13

Data

Raw Data

```
#political shocks
raw_truths <- read.csv(here("data/political_data", "trump_all_truths.csv"))
raw_tweets <- read.csv(here("data/political_data", "tweets.csv"))

#market prices
raw_ONEQ <- read.csv(here("data/market_data", "ONEQ.csv"))
raw_SMI <- read.csv(here("data/market_data", "SMI.csv"))
raw_SPY <- read.csv(here("data/market_data", "SPY.csv"))
raw_VTHR <- read.csv(here("data/market_data", "VTHR.csv"))
raw_VTI <- read.csv(here("data/market_data", "VTI.csv"))
raw_VGK <- read.csv(here("data/market_data", "VGK.csv"))
raw_DAX <- read.csv(here("data/market_data", "DAX.csv"))
raw_ASHR <- read.csv(here("data/market_data", "ASHR.csv"))

raw_SPYy <- read.csv(here("data/market_data", "Spyqyahoo.csv")) #yahoo</pre>
```

Cleaning The Data

```
#political shocks
truths <- 1
tweets <- 1

#market prices #only cleaning dates for the time being
raw_ONEQ$timestamp = as.POSIXct(raw_ONEQ$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_SMI$timestamp = as.POSIXct(raw_SMI$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_SPY$timestamp = as.POSIXct(raw_SPY$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_VTHR$timestamp = as.POSIXct(raw_VTHR$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_VTI$timestamp = as.POSIXct(raw_VTI$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_VGK$timestamp = as.POSIXct(raw_VGK$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "UCT")
raw_DAX$timestamp = as.POSIXct(raw_DAX$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "UCT")
raw_ASHR$timestamp = as.POSIXct(raw_ASHR$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "UCT") #fix time.</pre>
```

Daily Data

Plots

Total

SPY Price Over Time


```
#ONEQ
ggplot(raw_ONEQ, aes(x = timestamp, y = close)) +
  geom_point(color = "blue", size = 0.01) +
  geom_line(aes(group=1), color="blue", linewidth=0.05) +
  labs(title = "ONEQ Price Over Time",
```

ONEQ Price Over Time

SMI Price Over Time

VTHR Price Over Time

ASHR Price Over Time

Per Day

SPY alpha Price April 9th

6.275 6.250 6.225 6.200 Fine April 9th 6.275 6.200 Time

Warning: Removed 3 rows containing missing values or values outside the scale range
('geom_point()').

Time Series Analysis

acf(log(day_SPY_0409\$close))

Series log(day_SPY_0409\$close)

pacf(log(day_SPY_0409\$close))

Series log(day_SPY_0409\$close)

acf(log(raw_SPY\$close))

Series log(raw_SPY\$close)

pacf(log(raw_SPY\$close))

Series log(raw_SPY\$close)


```
AR1 = arima(day_SPY_0409$close,c(1,0,0),method="ML")

AR2 = arima(day_SPY_0409$close,c(2,0,0),method="ML")

AR3 = arima(day_SPY_0409$close,c(3,0,0),method="ML")

table1 = export_summs(AR1,AR2,AR3, model.names = c("AR1","AR2","AR3"), digits = 4)

## Warning in FUN(X[[i]], ...): tidy() does not return p values for models of

## class data.frame; significance stars not printed.

## Warning in FUN(X[[i]], ...): tidy() does not return p values for models of

## class data.frame; significance stars not printed.

## Warning in FUN(X[[i]], ...): tidy() does not return p values for models of

## class data.frame; significance stars not printed.

huxtable::caption(table1) <- "AR Estimations"

huxtable::set_width(table1, 0.8)
```

```
AR1res = as.numeric(AR1$residuals)

AR1res_lagged <- lag(AR1res, 1)

iidcheck1 = lm(AR1res ~ AR1res_lagged)

AR2res = as.numeric(AR2$residuals)

AR2res_lagged <- lag(AR2res, 1)

iidcheck2 = lm(AR2res ~ AR2res_lagged)

AR3res = as.numeric(AR3$residuals)

AR3res_lagged <- lag(AR3res, 1)

iidcheck3 = lm(AR3res ~ AR3res_lagged)
```

Table 1: AR Estimations

	AR1	AR2	AR3
ar1	0.9983	1.0884	1.0919
	(0.0020)	(0.0504)	(0.0506)
intercept	517.4887	516.8318	517.3178
	(19.5350)	(18.7930)	(19.1239)
ar2		-0.0902	-0.1336
		(0.0505)	(0.0746)
ar3			0.0399
			(0.0506)
nobs	390	390	390
sigma	1.2932	1.2880	1.2869
logLik	-656.5286	-654.9411	-654.6302
AIC	1319.0572	1317.8822	1319.2604
BIC	1330.9556	1333.7468	1339.0912
nobs.1	390.0000	390.0000	390.0000

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

Table 2: Checking Residuals

	AR1 Residuals	AR2 Residuals	AR3 Residuals
(Intercept)	0.1102	0.1092	0.1135
	(0.0655)	(0.0655)	(0.0654)
AR1res_lagged	0.0799		
	(0.0506)		
AR2res_lagged		-0.0054	
		(0.0508)	
AR3res_lagged			-0.0078
			(0.0508)
N	389	389	389
R2	0.0064	0.0000	0.0001

^{***} p < 0.001; ** p < 0.01; * p < 0.05.