kaggle

Тематическое моделирование

Виталий Радченко

Kyiv Kaggle Trainings

- **Тема** условное распределение на множестве терминов, p(w|t) вероятность (частота) термина w в теме t
- Тематика документа условное распределение, p(w|t) вероятность (частота) термина w в теме t
- **Тематическая модель** автоматически выявляет латентные темы по наблюдаемым частотам терминов в документах p(w|t)

Введение Задачи

- 1. Классификация и категоризация документов
- 2. Автоматическое аннотирование документов
- 3. Автоматическая суммаризация коллекций
- 4. Тематическая сегментация документов

- 1. Семантический поиск информации
- 2. Визуализация тематической структуры коллекции
- 3. Анализ динамики развития тем
- 4. Тематический мониторинг новых поступлений
- 5. Рекомендации новых документов пользователям
- 6. Поиск научной информации
- 7. Побдор экспертов, рецензентов, исполнителей проектов
- 8. Агрегирование новосных потоков
- 9. Аннотация генома и другие задачи биоинформатики

Постановка задачи и подготовка данных Подготовка данных

Предварительная очистка текстов:

- Удаление форматирование переносов
- Удаление обрывочной и нетекстовой информации
- Исправление опечаток
- Слияние слишком коротких текстов

Постановка задачи и подготовка данных Подготовка данных

Форматирование словаря:

- Приведение слов к нормальной форме
- Выделение терминов
- Удаление стоп-слов и слишком редких слов

Постановка задачи и подготовка данных Базовые предположения

- Порядок документов не важен
- Порядок терминов не важен
- ullet Каждая пара (d,w) связана с некоторой темой $t\in T$
- Гипотеза условной независимости:

$$p(w|t,d) = p(w|t)$$

Постановка задачи и подготовка данных Вероятностный процесс

Документ d - это смесь распределений p(w|t) с весами p(t|d):

$$p(w|d) = \sum_{t \in T} p(w|t) \cdot p(t|d)$$

Постановка задачи и подготовка данных Постановка задачи

Дано:

- W словарь терминов(слов или сочетаний)
- D коллекция текстовых документов $d \subset D$
- n_{dw} сколько раз термин w встретился в документе d

Найти:

• Параметры вероятностной тематической модели

$$p(w|d) = \sum_{t \in T} \phi_{wt} \cdot \theta_{td}$$

- $\phi_{wt} = p(w|t)$ вероятность терминов w в каждой теме t
- $\theta_{td} = p(t|d)$ вероятность темы t в документе d

Матричное разложение

Принцип максимального правдоподобия

Наблюдаемые частоты терминов в документах:

$$\hat{p}(w|d) = \frac{n_{dw}}{n_d}$$

Вероятнотсная тематическая модель:

$$p(w|d) = \sum_{t \in T} \phi_{wt} \cdot \theta_{td}$$

Матричное разложение Принцип максимального правдоподобия

Максимизируется логарифм правдоподобия:

$$\begin{cases} \sum\limits_{d \in D} \sum\limits_{w \in d} n_{dw} \ln \sum\limits_{t \in T} \phi_{wt} \cdot \theta_{td} \rightarrow \max_{\phi, \theta} \\ \sum\limits_{w \in W} \phi_{wt} = 1 \quad \phi_{wt} \geq 0 \\ \sum\limits_{t \in T} \theta_{td} = 1 \quad \theta_{td} \geq 0 \end{cases}$$

Матричное разложение Принцип максимального правдоподобия

Что бы из множества решений выбрать наиболее подходящее, вводится критерий регуляризации $R(\Phi, \Theta)$

$$\begin{cases} \sum\limits_{d \in D} \sum\limits_{w \in d} n_{dw} \ln \sum\limits_{t \in T} \phi_{wt} \cdot \theta_{td} + R(\Phi, \Theta) \rightarrow \max_{\Phi, \Theta} \\ \sum\limits_{w \in W} \phi_{wt} = 1 \quad \phi_{wt} \geq 0 \\ \sum\limits_{t \in T} \theta_{td} = 1 \quad \theta_{td} \geq 0 \end{cases}$$

Регуляризированный EM-алгоритм Общее представление

$$\begin{cases} p_{tdw} = \underset{t \in T}{\mathsf{norm}} (\phi_{wt} \theta_{td}) \\ \phi_{wt} = \underset{w \in W}{\mathsf{norm}} (\sum_{d \in D} n_{dw} \cdot p_{tdw} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}}) \\ \theta_{td} = \underset{t \in T}{\mathsf{norm}} (\sum_{w \in d} n_{dw} \cdot p_{tdw} + \theta_{td} \frac{\partial R}{\partial \theta_{td}}) \end{cases}$$

Операция нормировки вектора

$$\operatorname{norm}_{t \in T}(x_t) = \frac{\max\{x_t, 0\}}{\sum_{s \in T} \max\{x_s, 0\}}$$

Регуляризированный EM-алгоритм Примеры

1. PLSA, вероятностный латентный семантический анализ

$$R(\Phi,\Theta)=0$$

2. LDA, латентное размещение Дирихле

$$R(\Phi,\Theta) = \sum_{t,w} (eta_w - 1) \cdot \ln \phi_{wt} + \sum_{d,t} (lpha_t - 1) \cdot \ln heta_{td}$$

где $eta_{\mathsf{w}} > \mathsf{0}, lpha_{t} > \mathsf{0}$ - параметры регуляризатора

Регуляризация тематических моделей Аддитивная регуляризация тематических моделей

Максимизация правдоподобия с k регуляризаторами R_i :

$$\sum_{d,w} n_{dw} \ln \sum_{i=1}^k \tau_i R_i(\Phi,\Theta) \to \max_{\Phi\Theta}$$

где τ_i - коэффициенты регуляризации Типы регуляризаторов:

- для учета дополнительных данных
- для получения решения Φ,Θ с задаными свойствами

Регуляризация тематических моделей Разделение тем на предметные и фоновые

- Предметные темы S содержат термины предметной области
- Фоновые темы В содержат слова общей лексики

Регуляризация тематических моделей

Разделение тем на предметные и фоновые

- Предметные темы S разреженные, существенно различные
- Фоновые темы В существенно отличные от нуля

Регуляризация тематических моделей Регуляризатор сглаживания фоновых тем

- ullet Распределения ϕ_{wt} близки к заданому распределению eta_{w}
- ullet Распределения $heta_{td}$ близки к заданому распределению $lpha_t$

$$\begin{split} R(\Phi, \Theta) &= \beta_0 \sum_{t \in B} \sum_{w \in W} \beta_w \ln \phi_{wt} + \\ &+ \alpha_0 \sum_{d \in D} \sum_{t \in B} \alpha_t \ln \theta_{td} \rightarrow \max \end{split}$$

где α_0, β_0 - коэффициенты регуляризации

Регуляризация тематических моделей Регуляризатор сглаживания фоновых тем

- ullet Распределения ϕ_{wt} далеки от заданого распределения eta_{w}
- ullet Распределения $heta_{td}$ далеки от заданого распределения $lpha_t$

$$\begin{split} R(\Phi, \Theta) &= -\beta_0 \sum_{t \in B} \sum_{w \in W} \beta_w \ln \phi_{wt} - \\ &- \alpha_0 \sum_{d \in D} \sum_{t \in B} \alpha_t \ln \theta_{td} \rightarrow \max \end{split}$$

где α_0, β_0 - коэффициенты регуляризации

Регуляризатор декоррелирирования тем Лексическое ядро

- Лексическое ядро темы множество терминов, отличающее ее от других тем.
- Минимизируем ковариации между вектор-столбцами ϕ_t :

$$R(\Phi) = -rac{ au}{2} \sum_{t
eq s \in T} \sum_{s \in T \setminus t} \sum_{w \in W} \phi_{wt} \phi_{ws} o \max$$

где т - коэффициент регуляризации

Регуляризатор декоррелирирования тем Регуляризатор для отбора тем

• Разреживаем распределение

$$p(t) = \sum_{d} p(d)\theta_{td}$$

максимизируя KL-дивергенцию между p(t) и равномерным распределением:

$$R(\Theta) = - au \sum_{t \in S} \ln \sum_{d \in D} p(d) heta_{td} o \max$$

где т - коэффициент регуляризации

Регуляризатор декоррелирирования тем Дивергенция Кульбака-Лейблера

• Расстояние между распределениями $P = (p_i)_{i=1}^n$ и $Q = (q_i)_{i=1}^n$:

$$\mathit{KL}(P||Q) = \sum_i p_i \ln \frac{p_i}{q_i}$$

• Связь с принципом максимума правдоподобия

$$\sum_{i=1}^n p_i \ln \frac{p_i}{q_i(\alpha)} \to \min_{\alpha} \Leftrightarrow \sum_{i=1}^n p_i \ln q_i(\alpha) \to \max_{\alpha}$$

Мультимодальная тематическая модель Выделение модальностей

Выявляет тематику документов p(t|d), терминов p(t|w) и токенов других модальностей:

p(t|author), p(t|time), p(t|URL), p(t|user)...

Внутренние критерии качества тематических моделей Перплексия

Перплексия коллекции D для языковой модели p(w|d) (чем меньше, тем лучше):

$$\mathcal{P}(d) = \exp\left(-\frac{1}{n} \sum_{d \in D} \sum_{w \in d} n_{dw} \ln p(w|d)\right)$$

Внутренние критерии качества тематических моделей Меры интерпритируемости тем

Тема интерпритируема, если по топовым словам темы эксперт может определить, о чем эта тема, и дать ее название

- Метод интрузий
 - В список топоповых слов внедряется лишнее слово
 - Измеряется доля ошибок экспертов при его определении

Внутренние критерии качества тематических моделей Когерентность

 Когерентность темы t — средняя поточечная взаимная информация топ-слов темы (pointwise mutual information, PMI):

$$PMI_t = \frac{2}{k(k-1)} \sum_{i=1}^{k-1} \sum_{j=i}^{k} PMI(w_i, w_j)$$

где w_i — i-термин в порядке убывания ϕ_{wt} , k=10

- $PMI(u,v) = \ln \frac{|D|N_{uv}}{N_u N_v}$ поточечная взаимная информация
- N_{uv} число документов, в которых термины u,v хотя бы один раз встречаются рядом (в окне 10 слов)
- N_u число документов, в которых и встречается хотя бы один раз

Внешние критерии качества тематических моделей

Способы оценивания близости запроса q и документа d

• Косинусная мера(чем больше, тем ближе):

$$\cos(q,d) = \frac{\sum_{t} p(t|q)p(t|d)}{\left(\sum_{t} p(t|q)^{2}\right)^{1/2} \left(\sum_{t} p(t|d)^{2}\right)^{1/2}}$$

• Расстояние Хеллингера (чем меньше, тем ближе):

$$H^{2}(q,d) = \frac{1}{2} \sum_{t} (\sqrt{p(t|d)} - \sqrt{p(t|q)})^{2}$$

• KL-дивергенция (чем меньше, тем ближе):

$$KL(q,d) = \sum_{t} p(t|q) \ln \frac{p(t|q)}{p(t|d)}$$

LDA	ARTM
Очень популярный	Молодой
Множество модифицкаций для	Мощный аппарат регуляризато-
разных задач	ров для модифицирования мо-
	дели
Для каждого усложнения нужно	Одна реализация для разных за-
искать реализацию	дач
Нужно настраивать гиперпара-	Нужно настраивать параметры
метры	регуляризации

Реализация в Python

gensim для LDA	BigARTM для ARTM
Есть функционал для решения	Специализированная библиоте-
разных задач анализа текстов	ка для тематического моделиро-
	вания
Проще в использовании	Больше возможностей, но чуть-
	чуть больше кода
Дольше обучается	Быстрее обучается
Больше форматов данных, са-	Можно импортировать данные
мый понятный — UCI Bag of	в формате UCI Bag of Words, но
Words	vowpal wabbit формат проще

Материалы

- 1. Курс "Поиск структруры в данных на курсере"
- 2. Вероятностные тематические модели (курс лекций, К.В.Воронцов)

Спасибо за внимание!