Индустриальный семинар

Прогноз метрик

Элен Теванян

Руководитель направления алгоритмического анализа, X5 Tech

Вы не можете управлять тем, что не измеряете

Иерархия метрик

Метрики обучения моделей

Иераржия метрик

Метрики качества моделей

Метрики для сравнения моделей между собой

Метрики обучения моделей

X5 Tech

Иерархия метрик

Напрямую связаны с бизнес-метриками или влияют на них. Измеряются быстро.

Метрики для сравнения моделей между собой

X5 Tech

Иераржия метрик

Бизнес-метрики

Деньги или все, что напрямую связано с деньгами. Измеряются поздно и постфактум.

Прокси-метрики

Напрямую связаны с бизнес-метриками или влияют на них. Измеряются быстро, в пилотах.

Метрики качества моделей

Метрики для сравнения моделей между собой

Метрики обучения моделей

Другая классификация

Целевые

Показатели, на которое направлено изменение

Опережающие

Показатели, хорошо коррелируемые с целевой,

Guardrail

Показатели, на которые направленно влияет изменение, но не являющиеся целевыми. Рекомендуется за ними наблюдать и на их основе в том

Другая классификация

Целевые

Средний чек

Опережающие

Добавление товара в корзину

Guardrail

Время от входа в корзину до ее прохождения

Метрики тщеславия

X5 Tech

Метрики качества

Иерархия метрик

Бизнес-метрики

Деньги или все, что напрямую связано с деньгами. Измеряются поздно и постфактум.

Прокси-метрики

Напрямую связаны с бизнес-метриками или влияют на них. Измеряются быстро, в пилотах.

Метрики качества моделей

Метрики для сравнения моделей между собой

Метрики обучения моделей

Что измеряют в ритейле?

Что измеряют в ритейле?

Примеры из области CVM

- Средний РТО на клиента
- Частота покупок клиента
- LTV customer retention rate
- РТО в период действия кампании
- РТО при совершении целевого действия в период действия кампании
- Кол-во чеков в период действия кампании
- Средний чек в период действия кампании
- доп РТО на человека в кампании
- доп РТО по кампании
- чистый отклик в покупку в период действия кампании
- чистый отклик в целевое действие в период действия кампании
- валовый доход по кампании

X5 Tech

• Есть здоровый массив исторический данных

- Есть здоровый массив исторический данных
- Формализуются метрика и методология ее расчета

- Есть здоровый массив исторический данных
- Формализуются метрика и методология ее расчета
- Собирается выборка

- Есть здоровый массив исторический данных
- Формализуются метрика и методология ее расчета
- Собирается выборка
- Обучается модель

YTO NOA KANOTOM?

Модель

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism

Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models

Optimized Gradient Boosting algorithm through parallel processing, tree-pruning, handling missing values and regularization to avoid overfitting/bias

A graphical representation of possible solutions to a decision based on certain conditions

Bagging-based algorithm where only a subset of features are selected at random to build a forest or collection of decision trees

Gradient Boosting employs gradient descent algorithm to minimize errors in sequential models

XGBoost

Performance Comparison using SKLearn's 'Make_Classification' Dataset

(5 Fold Cross Validation, 1MM randomly generated data sample, 20 features)

LightGBM

• Level-wise: дерево строится рекурсивно до тех пор, пока не достигнута максимальная глубина

LightGBM

- Level-wise: дерево строится рекурсивно до тех пор, пока не достигнута максимальная глубина
- Leaf-wise: среди текущих листьев выбирается тот, чьё разбиение сильнее всего уменьшает ошибку

XGBoost vs LightGBM

- XGBoost разветвляет один уровень одновременно, LightGBM одну вершину
- Разработчики XGBoost добавили эту опцию в свою реализацию, но XGBoost LightGBM быстрее в 1.3 1.5 раза, чем XGB.

CatBoost

- Oblivious decision trees
- Ограничение: на одном уровне дерева используется один и тот же предикат

	CatBoost	LightGBM	XGBoost
Developer	Yandex	Microsoft	DMLC
Release Year	2017	2016	2014
Tree Symmetry	Symmetric	Asymmetric	Asymmetric
		Leaf-wise tree growth	Level-wise tree growth
Splitting Method	Greedy method	Gradient-based One-Side Sampling (GOSS)	Pre-sorted and histogram-based algorithm
Type of Boosting	Ordered	-	-
Numerical Columns	Support	Support	Support
Categorical Columns	Support	Support, but must use numerical columns	Supports, but must use numerical columns
	Perform one-hot encoding (default)	Can interpret ordinal category	Cannot interpret ordinal category, users
	Transforming categorical to numerical		must convert to one-hot encoding, label
	columns by border, bucket, binarized		encoding or mean encoding
	target mean value, counter methods		chedding of frican chedding
	available		
l			
Text Columns	Support	Do not support	Do not support
	Support Bag-of-Words, Naïve-Bayes or BM-		
	25 to calculate numerical features from		
	text data		
Missing values	Handle missing value	Handle missing value	Handle missing value
	_	_	
	Interpret as NaN (default)	Interpret as NaN (default) or zero	Interpret as NaN (tree booster) or zero
	Possible to interpret as error, or processed	Assign missing values to side that reduces	(linear booster)
	as minimum or maximum values	loss the most in each split	Assign missing values to side that reduces
	as illillillilli of illaxilliulli values	1033 the most in each split	
			loss the most in each split

Function	XGBoost	CatBoost	Light GBM
Important parameters which control overfitting	 learning_rate or eta optimal values lie between 0.01-0.2 max_depth min_child_weight: similar to min_child leaf; default is 1 	 Learning_rate Depth - value can be any integer up to 16. Recommended - [1 to 10] No such feature like min_child_weight I2-leaf-reg: L2 regularization coefficient. Used for leaf value calculation (any positive integer allowed) 	 learning_rate max_depth: default is 20. Important to note that tree still grows leaf-wise. Hence it is important to tune num_leaves (number of leaves in a tree) which should be smaller than 2^(max_depth). It is a very important parameter for LGBM min_data_in_leaf: default=20, alias= min_data, min_child_samples
Parameters for categorical values	Not Available	 cat_features: It denotes the index of categorical features one_hot_max_size: Use one-hot encoding for all features with number of different values less than or equal to the given parameter value (max – 255) 	categorical_feature: specify the categorical features we want to use for training our model
Parameters for controlling speed	 colsample_bytree: subsample ratio of columns subsample: subsample ratio of the training instance n_estimators: maximum number of decision trees; high value can lead to overfitting 	 rsm: Random subspace method. The percentage of features to use at each split selection No such parameter to subset data iterations: maximum number of trees that can be built; high value can lead to overfitting 	 feature_fraction: fraction of features to be taken for each iteration bagging_fraction: data to be used for each iteration and is generally used to speed up the training and avoid overfitting num_iterations: number of boosting iterations to be performed; default=100

X5 Tech

4TO NOA KANOTOM?

Валидация

4TO NOA KANOTOM?

Валидация. K-Fold

Training

Test

K = 10

YTO DOA KADOTOM?

Валидация. Walk Forward

Что под капотом?

Blocked Cross Validation

YTO DOA KADOTOM?

Неявное про метрику

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

X5 Tech

YTO DOA KADOTOM?

Неявное про метрику

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

WAPE =
$$\frac{\sum_{i,t} |y_{i,t} - \hat{y}_{i,t}|}{\sum_{i,t} |y_{i,t}|}$$

X5 Tech