chapter 2

Local Area Networks – An Introduction

CHAPTER OBJECTIVES

- Define server, LAN services, clients, and describe the role of each in a LAN.
- Describe a mainframe and terminal LAN configuration.
- Discuss peer-to-peer, client-dominant, client/server, and distributed processing LANs.
- Define cable types such as coaxial, twisted-pair, and fiber optic.
- Identify three types of wireless media.
- Describe how network interface cards work.
- Identify types of network interface cards.

TECHNOLOGY OVERVIEW

- LANs utilize specialized hardware and software.
 - Computers that function as servers and workstations.
 - Operating systems that provide services.
 - Network interface cards to connect to the LAN.
 - Cabling or wireless media.
 - Hubs, bridges, switches, routers, and other connectivity devices.

Physical Configuration of a Simple Local Area Network

SERVERS

 Server – a computer that connects to a LAN and has network operating system software installed to provide shared LAN services to clients on the network.

LAN SERVICES

- LAN Services define the personality of a local area network.
 - Example services include data storage and retrieval services, printing services, shared application access, centralized logon services, directory services, desktop management, and so on.

Basic Services on a Local Area Network

CLIENTS

 A LAN client is a computer that connects a user to the LAN services provided by a server's network operating system.

LAN CONFIGURATIONS

- Mainframes and Terminals computing functions are performed on the mainframe, and terminals supported data input and data viewing.
 - Because processing takes place at the mainframe, terminals are considered "dumb".
 - Mainframes deliver a fixed amount of computing power for given level of capital expenditure.
 - Upgrades to processing power are expensive.
 - Application development is expensive.
 - Mainframe technology has been adapted as storage area networking for data storage functions in today's LANs.

A Mainframe Network

LAN CONFIGURATIONS (cont'd)

- Peer-to-Peer LANs fill a business need for organizations that don't have a substantial need for centralized computing power on a dedicated mainframe or server.
 - With peer-to-peer LANs, each computer on the LAN acts as a peer to every other computer.
 - Each computer can provide services to and request services from every other computer on the LAN.
 - Peer computers are generally configured to belong to the same "workgroup"

Peer-to-Peer LAN

LAN CONFIGURATIONS (cont'd)

Client-dominant LANs

- Evolved during the 1980s from the single-user applications that were developed for individual PCs.
- Data storage on LAN servers provided centralized file access.
- Application processing and data manipulation took place on the client.
- Reduced the dependence on "sneaker-net" between users' PCs.

A Client-dominant Local Area Network

LAN CONFIGURATIONS (cont'd)

Client/Server LANs

- Some processing is performed at the client and some at the server.
- Server handles data access and storage.
- Only required information is copied to the client computer for data manipulation.
- Benefits to the LAN are reduced demand on the network media and better overall network performance.

A Client/Server Local Area Network

LAN CONFIGURATIONS (cont'd)

Distributed Processing LANs

- Data access and storage components are separated out from the data processing component of an application.
- Application processing is shared across several computers.
- Different components of an application can be installed on one or more servers.
- Logic built into the application allows all component modules to communicate.

LAN CONFIGURATIONS (cont'd)

- Distributed Processing LANs (cont'd)
 - Client component of the application doesn't care where the actual processing takes place.
 - This type of LAN scales well to growing processing demands.
 - Load sharing and redundancy provide improved performance.

Distributed Processing

LAN CONFIGURATIONS (cont'd)

- Connecting Computers to a LAN
 - Client computers require a workstation OS and an NOS client.
 - Servers require NOS installation and configuration.
 - Network administrator configures client software and hardware, server hardware and software, protocols, NICs, media, and connectivity devices.

MEDIA TYPES and CONNECTORS

Coaxial Cable

- Commonly referred to as "coax".
- Consists of two conductors separated by special insulating material.
- One conductor carries the signal and the other acts as a ground and as shielding.
- Was a common media choice for early Ethernet LANs.

MEDIA TYPES and CONNECTORS (cont'd)

- Coaxial Cable (cont'd)
 - Thicknet also known as thick Ethernet cabling
 provided data transmission rates up to 10
 Mbps over a distance of 500 meters and
 supported connectivity of 100 computers on a
 LAN segment.

The Characteristics of Thicknet Cabling

MEDIA TYPES and CONNECTORS (cont'd)

- Coaxial Cable (cont'd)
 - Thinnet also known as thin Ethernet was introduced in 1985 as an alternative to thicknet.
 - It was cheaper than thicknet.
 - Provided 10 Mbps but over a distance of only 185 meters.
 - 30 computers could attach to a LAN segment.

The Characteristics of Thinnet Cabling

MEDIA TYPES and CONNECTORS (cont'd)

Thinnet Connectors

 Thinnet uses BNC connectors to connect cabling to cabling, NICs to cabling, and connectivity devices to cabling.

BNC Connectors used with Thinnet Cabling

MEDIA TYPES and CONNECTORS (cont'd)

Twisted Pair Media

- Very popular in LAN installations.
- Consists of several pairs of twisted copper wires.
- Is available in both unshielded and shielded varieties – UTP and STP.

Common UTP Media Standards

TABLE 2.1
Common UTP Media
Standards

Media Type	Maximum Data Rate	Where Used
Cat 1 UTP	less than 1 Mbps	Home telephone lines
Cat 2 UTP	4 Mbps	4 Mbps Token Ring networks, older POTs lines—1983–1993
Cat 3 UTP	100 Mbps ^a	4 Mbps Token Ring networks, 10 Mbps Ethernet LANs, some 100 Mbps Ethernet LANs, and POTs lines installed after 1993
Cat 4 UTP	100 Mbps ^b	4 or 16 Mbps Token Ring networks, 10 Mbps Ethernet LANs, some 100 Mbps Ethernet LANs
Cat 5 UTP	1,000 Mbps ^c	4 or 16 Mbps Token Ring networks, 10 and 100 Mbps Ethernet LANs, 1 Gbps Ethernet LANs—with four pairs ATM at 155 Mbps, FDDI
Cat 5e UTP	1 Gbps	10, 100, and 1,000 Mbps Ethernet ATM at 155 Mbps
Cat 6 UTP	10 Gbps	High-speed multimedia applications over future Ethernet LANs with speeds greater than 1 Gbps

^a Category 3 can support 100 Mbps Ethernet LANs only if the NICs are 100BaseT4 NICs. The 100 means 100 Mbps, Base means a single communications channel, the T represents twisted pair, and the 4 designates four twisted pairs (eight wires total).

b Category 4 can also support 100 Mbps Ethernet only if the NICs are 100BaseT4.

^c Category 5 can only support 1 Gbps Ethernet when implemented as 1000BaseT4. This means 1,000 Mbps (1 Gbps), single channel, twisted pair, four pairs.

Unshielded Twisted-Pair Cabling

MEDIA TYPES and CONNECTORS (cont'd)

UTP Connectors

- UTP cabling is terminated with UTP 8-pin connectors.
- UTP connectors are commonly referred to as RJ-45 connectors.

UTP Cable Connectors

MEDIA TYPES and CONNECTORS (cont'd)

Shielded Twisted Pair

 Provides the same connectivity benefits as UTP, but STP adds two levels of shielding material to protect data transmissions from EMI (Electromagnetic Interference).

Shielded Twisted-Pair Cabling

MEDIA TYPES and CONNECTORS (cont'd)

STP Connectors

 Very much like UTP connectors, except STP connectors provide a ground casing to which the shielding of the STP cabling is connected.

STP Cable Connectors

Fiber-Optic Media

- Uses glass or plastic fibers to transmit pulses of light.
- Used where high data rates and large volumes of data transmissions are required.
- Typical implementations include two fiber-optic cables between source and destination devices – one for transmitting and one for receiving.
- FO media is not susceptible to EMI.
- FO media can support greater distances and higher transmission rates than copper cabling.

Examples of Fiber Optic Cabling

An Example of Fiber-Optic Cable Connectors

Wireless Media

- Does not require an electrical or optical conductor.
- Options include radio frequency, infrared, and microwave.

- Wireless Media Radio Frequency
 - Each LAN device has a transceiver and antenna.
 - Wireless LAN radio frequencies do not interfere with radio stations.
 - Radio frequencies are allocated by the KCC
 - Wireless devices use access points for connecting to a LAN.

RF Wireless LAN Devices on a Local Area Network

- Wireless Media Infrared
 - Uses light frequencies for data transmission.
 - Generally limited to very short distances.
 - Susceptible to many types of interference.
 - Can be used in point-to-point or broadcast transmissions.

- Wireless Media Microwave
 - Uses very high frequency radio waves for data transmission.
 - When used in LAN applications is generally implemented for transmissions between buildings.
 - Terrestrial microwave uses parabolic antennas to transmit data.

Terrestrial Microwave Data Communications

Wireless Connectors

- Wireless data transmissions don't use connectors that are analogous to the connectors used in coax, twisted-pair, and fiber optic cabling.
- Instead, wireless devices use antennas and transceivers to make connections between wireless devices.

NETWORK INTERFACE CARDS

Network Interface Card

- Also known as a network adapter, network card, or simply NIC.
- A NIC is the interface between a computer or other networking device and a LAN.
- NICs are available in various forms built in to a computer's motherboard, as a separate expansion card, as a PC card, as a USB device, etc.

Examples of Ethernet NICs

NETWORK INTERFACE CARDS (cont'd)

- Network Interface Card (cont'd)
 - Different transmission rates are available 10
 Mbps, 100 Mbps, 1000 Mbps, 10 Gbps, etc.
 - Different architectures are available Ethernet,
 Token Ring, FDDI (Fiber Distributed Data
 Interface), ATM (Asynchronous Transfer Mode),
 etc.

NETWORK INTERFACE CARDS (cont'd)

- What NICs do
 - NICs translate data from a computer into an acceptable format for the transmission medium.
 - NICs segment data into frames.
 - NICs provide the physical node address of a device.

NETWORK INTERFACE CARDS (cont'd)

NIC Characteristics

- NIC drivers allow a NIC to communicate with workstation operating systems and network operating systems.
- Many NICs have built in features that provide management capabilities and enhanced performance features.
- NIC management features include abilities such as the ability to turn on a PC's power via an external command.