July 11, 2016 ISIT 2016

Information Decomposition on Structured Space

Mahito Sugiyama (Osaka Univ.) Hiroyuki Nakahara (RIKEN), Koji Tsuda (UTokyo)

Probability distribution on posets (partially ordered sets)

- ID 1: 1 1 0
- ID 2: 1 1 1
- ID 3: 1 1 0
- ID 4: 1 1 1
- ID 5: 1 1 0
- ID 6: 1 0 1
- ID 7: 1 0 1
- ID 8: 1 1 1
- ID 9: 1 0 0
- ID10: 0 1 0

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

ID10:

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

Upward = Pattern mining

η: Frequency

p: Probability

$$\eta(\{\bullet,\bullet\}) = p(\{\bullet,\bullet\}) + p(\{\bullet,\bullet,\bullet\})$$

Exponential p(x) = exp($\sum \theta(s)F_s(x) - \psi(\theta)$) family:

Triple for each node

Triple for each node

Α	В	A, B
0.3	0.4	0.2
0.5	0.6	0.2
_ 1.10 1.39 –1.79_		

Make a Poset from Data

Dataset ID 1: ID 2: 1 ID 3: 1 1 0 ID 4: 1 1 1 ID 5: 1 1 0 ID 6: 1 0 1 ID 7: ID 8: 1 1 1

ID 9: 1 0

ID10: 0 1

0

Make a Poset from Data

Remove Nodes with Probability 0

Dataset

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

Example on Real Data (kosarak)

features: 41,270

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0 ···

ID 4: 1 1 1

ID 5: 1 1 0

•

Total runtime: 4.95 seconds

nodes: 3,253 (Threshold: 10⁻⁵)

significant interactions: 583

Single feature: 537

Pairwise interactions: 41

Triple interactions: 5

Example on Real Data (accidents)

Total runtime: 4.95 seconds

significant interactions: 280 # features in each interaction is between 26 to 41

Conclusion

- We build information geometry for posets (partially ordered sets)
 - Natural connection between the information geometric dual coordinates and the partial order structure
- We can decompose a probability distribution and asses the significance of any-order interactions beyond pairwise interactions