DETFLOX

Netflix Prize

COMPLETED

Home

Rules

Leaderboard

Update

FAQ

Forum

Netflix Home

@ 1997-2009 Netflix, Inc. All rights reserved.

Netflix Viewing Recommendations

The Netflix Prize Contest

- GOAL: use training data to build a recommender system, which, when applied to qualifying data, improves error rate by 10% relative to Netflix's existing system
- PRIZE: first team to 10% wins \$1,000,000
 - Annual Progress Prizes of \$50,000 also possible

The Netflix Prize Contest

- PARTICIPATION:
 - 51051 contestants on 41305 teams from 186 different countries
 - 44014 valid submissions from 5169 different teams

Model Building and Submission Process

Why the Netflix Prize Was Hard

- Massive dataset
- Very sparse matrix only 1.2% occupied
- Extreme variation in number of ratings per user
- Statistical properties of qualifying and probe sets different from training set

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6	movie 7	movie 8	movie 9	movie 10	•	movie 17770
user 1			1		2							3
user 2		2		3	3			4				
user 3							5	3		4		
user 4	2				3			2				2
user 5		4				5			3			4
user 6			2									
user 7			2					4	2	3		
user 8	3	4				4						
user 9									3			
user 10			1		2							2
•••												
user 480189		4			3			3				

Dealing with Size of the Data

MEMORY:

- 2 GB bare minimum for common algorithms
- 4+ GB required for some algorithms
- need 64-bit machine with 4+ GB RAM if serious

• SPEED:

- Program in languages that compile to fast machine code
- 64-bit processor
- Exploit low-level parallelism in code (SIMD on Intel x86/x64)

Common Types of Algorithms

- Global effects
- Nearest neighbors
- Matrix factorization
- Restricted Boltzmann machine
- Clustering
- Etc.

Nearest Neighbors in Action

Matrix Factorization in Action

reduced-rank singular value decomposition (sort of)

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6	movie 7	movie 8	movie 9	movie 10	:	movie 17770
feature 1					A/A/A/A/ A/A/A/A/ A/A/A/A/							
feature 2							r					
feature 3		<	a r	ur	ıcn	0	t n	un	מח	ers	>	
feature 4												
feature 5												

eature 1	eature 2	eature 3	eature 4	feature 5
<u> </u>	Ţ	Ţ	Ţ	Ţ
	7	5		
) '	^	
	t	5	27.	
	2	ξ.	ΩĘ	
	2	5	Ε	
	7	2	בר	
	١	/		
	feature 1	feature feature	feature feature feature	bunch of feature feature feature feature

Matrix Factorization in Action

multiply and add features (dot product) for desired < user, movie > prediction

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6	movie 7	movie 8	movie 9	movie 10	movie 17770
user 1			1		2						3
user 2		2		3	3			4			
user 3							5	3		4	
user 4	2				3			2			2
user 5		4				5			3		4
user 6			2								
user 7			2					4	2	3	
user 8	3	4				4	?				
user 9									3		
user 10			1		2						2
user 480189		4			3			3			

Netflix Prize Progress: Major Milestones

Final Test Scores

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time						
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos										
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28						
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22						
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40						
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31						
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20						
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56						
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09						
8	<u>Dace</u>	0.8612	9.59	2009-07-24 17:18:43						
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51						
10	<u>BigChaos</u>	0.8623	9.47	2009-04-07 12:33:59						
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07						
12	BellKor	0.8624	9.46	2009-07-26 17:19:11						
Progr	Progress Prize 2008 - RMSE = 0.8627 - Winning Team: BellKor in BigChaos									
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22						
14	<u>Gravity</u>	0.8643	9.26	2009-04-22 18:31:32						
15	Ces	0.8651	9.18	2009-06-21 19:24:53						
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04						
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54						
18	J Dennis Su	0.8666	9.02	2009-03-07 17:16:17						
19	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54						
20	<u>acmehill</u>	0.8668	9.00	2009-03-21 16:20:50						
21	MonteCarlo	0.8669	8.99	2009-03-24 10:45:14						
22	IDEA2	0.8669	8.99	2009-03-25 15:37:59						
23	just_a_student	0.8675	8.92	2009-07-17 08:37:11						
24	<u>Howbert</u>	0.8677	8.90	2009-07-26 07:13:00						
25	My Brain and His Chain	0.8678	8.89	2008-09-30 02:19:47						

"That 20 minutes was worth a million dollars."

Models

- Netflix uses "straightforward statistical linear models" with a lot of data conditioning
- The most accurate algorithm in 2007 used an ensemble method of 107 different algorithmic approaches.
- "Our experience is that most efforts should be concentrated in deriving substantially different approaches, rather than refining a single technique. Consequently, our solution is an ensemble of many methods."
- Netflix Never Used its \$1m Algorithm!