

Chain Rule $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Product Rule if y = uv then $\frac{dy}{dx} = \frac{du}{dx}v + \frac{dv}{dx}u$

Quotient Rule if $y = \frac{u}{v}$ then $\frac{dy}{dx} = \frac{\frac{du}{dx}v - \frac{dv}{dx}u}{v}$

Integration by Parts $\int \frac{dv}{dx} u \, dx = uv - \int \frac{du}{dx} v \, dx$

Rational Function Integration $\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + c$

Forces, Moments and Systems

Force given Acceleration F = ma

Force given Components (2D) $F = \sqrt{F_x^2 + F_y^2}$

Force's Angle from base Axis $\alpha = \tan^{-1} \left(\frac{F_y}{F_-} \right)$

 $\mathbf{Moment} \quad M = |F| \times \lambda$

System Equilibrium Equations $\sum F_x = 0$, $\sum F_y = 0$, $\sum M = 0$

Trusses

Degree of Indeterminacy M-2J+3= degree of inderterminacy

Torsion

Shear Strain at $r - \gamma_{\text{max}} = r\theta$

Shear Strain given L $\gamma_{\text{max}} = \frac{r\phi}{L}$

Shear Modulus Torsion Equation $\tau = Gr\theta$

Shear Stress at an internal radius ρ $\tau = \frac{\rho}{r} \tau_{\text{max}}$

Torsion Formula $\tau_{\text{max}} = \frac{T_r}{T_n}$

Torsional Rigidity Equation $\theta = \frac{T}{GI_P}$

Polar Moment of Inertia $I_P = \int_A \rho^2 dA$

Polar Moment of Inertia for a circle $I_P = \frac{\pi d^4}{32}$

Fluids

Shear Stress / Viscosity $\tau = \mu \frac{du}{du}$

Mass Density $\rho = \frac{m}{V}$

Specific Weight $w = \rho g$

Specific Gravity $\sigma = \frac{\rho}{\rho_{\text{strengted}}}$

Compressibility $K = \rho \frac{dp}{da}$

Pressure $p = \frac{F}{4}$

 ${\bf Pressure \ at \ Depth} \quad p = \rho gh + p_{\rm atm} = {\rm Gauge \ pressure} + {\rm Atmospheric \ Pressure}$

Resultant Hydrostatic Force $R = \rho g A \bar{y}$

Depth of Pressure $D = \sin^2(\phi) \frac{I_O}{A\bar{y}}$

Parallel Axis Theorem $I_O = I_G + A\bar{d}^2$

Buoyancy $R_n = \rho_n g V_n$

First Moment of Area $Q_{x/y} = \int_A (y/x) dA$

Position of a Centroid $\bar{x} = \frac{Q_y}{A}$, $\bar{y} = \frac{Q_x}{A}$

 ${\bf Mass\ Continuity\ Equation}\quad A_1\bar{u}_1=A_2\bar{u}_2=Q$

Mass flow of Fluid $\dot{m} = \rho A(v - u) \cos \theta$

 $\textbf{Jet Impact Equation} \quad v_{\text{normal}} = v \cos(\theta)$

Position, Motion and Acceleration

Newton's Second Law F = ma

The five suvat equations v = u + at

 $\begin{array}{l} s = ut + \frac{1}{2}at^2 \\ s = vt - \frac{1}{2}at^2 \\ s = \frac{t}{2}(u+v) \\ v^2 = u^2 + 2as \end{array}$

Velocity (Circular Motion) $v = \omega r$

Acceleration (Circular Motion) $a = \frac{mv^2}{r} = \omega^2 r$

Force (Circular Motion) $F = \frac{mv^2}{r} = m\omega^2 r$

 ${\bf Polar \ Velocity} \quad \vec{v} = \dot{r} \, \hat{e}_r + r \dot{\theta} \, \hat{e}_{\theta}$

Polar Acceleration $\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_{\theta}$

Polar Velocity to Cartesian Velocity $v_x = \dot{r}\cos\theta - r\dot{\theta}\sin\theta$, $v_y = \dot{r}\sin\theta + r\dot{\theta}\cos\theta$

Density of water: $1000kg/m^3$ Density of Sea water: $1025kg/m^3$ One Atmosphere: 101.325kPaDensity of Mercury: 13.5336