Prof. Cynthia Bortolotto

Lista 4

1. Let λ^* be the Lebesgue outer measure in \mathbb{R} . Show that if $\lambda^*(A) < \infty$ and

$$\lambda^*(A) = \sup\{\lambda^*(K), K \subset A \text{ compact}\}\$$

then, for every $E \subset \mathbb{R}$ it holds that

$$\lambda^{\star}(E) = \lambda^{\star}(E \cap A) + \lambda^{\star}(E \cap A^{c}).$$

2. Let μ be a measure as in the Riesz Representation Theorem. Assume, moreover, that for every Borel set A, it holds that

$$\mu(A) = \sup{\{\mu(K), K \subset A\}},$$

and that X is compact and $\mu(X) = 1$. Prove that there is a compact set $K \subset X$ such that $\mu(K) = 1$ but $\mu(H) < 1$ for every proper compact subset H of K.

- 3. Find the class of all compact sets of \mathbb{R} that are the support of a continuous function.
- 4. Define the distance between two points $(x_1, y_1), (x_2, y_2)$ in \mathbb{R}^2 to be

$$|y_1 - y_2|$$
 if $x_1 = x_2$
 $1 + |y_1 - y_2|$ if $x_1 \neq x_2$.

Show that this is a metric, and that the resulting metric space if locally compact. Moreover, show that for $f \in C_c(\mathbb{R}^2)$ (with respect to this metric), there are finitely many points x_1, \ldots, x_n for which $f(x, y) \neq 0$ for at least one y. In this case, define

$$\Lambda(f) = \sum_{j=1}^{n} \int_{\mathbb{R}} f(x_j, y) dy.$$

Consider the measure associated with this Λ given by the Riesz Representation Theorem. Prove that if E is the x-axis then $\mu(E) = \infty$ and $\mu(K) = 0$ for every compact $K \subset E$.

5. (Constructing the Cantor set) Let $C_0 = [0, 1]$. For $n \ge 1$, obtain C_n from C_{n-1} by removing the open middle third of every closed interval in C_{n-1} . Let

$$C = \bigcap_{n=0}^{\infty} C_n$$

be the Cantor set.

- (a) Describe C_1, C_2 explicitly. Show that every C_n is a finite union of closed intervals and that C is closed.
- (b) Prove that C is nowhere dense in [0,1], i.e., the interior of C is empty.
- (c) Prove that the Lebesgue measure of C is zero.
- (d) Show that C is uncountable.
- (e) Give the ternary expansion characterization: prove that

 $x \in C \iff x$ has a base-3 expansion using only digits 0 and 2.