♦ Calculator Key-In

Each diagram shows a rectangle inscribed in an isosceles triangle with legs 5 and base 6. There are many more such rectangles. Which one has the greatest area?

To solve the problem, let *CDEF* represent any rectangle inscribed in isosceles $\triangle ABV$ with legs 5 and base 6. If we let OD = x and ED = y, then the area of the rectangle is 2xy. Our goal is to express this area in terms of x alone. Then we can find out how the area changes as x changes.

- 1. In right $\triangle VOB$, OB = 3 and VB = 5. Thus VO = 4 by the Pythagorean Theorem.
- 2. $\triangle EDB \sim \triangle VOB$ (Why?)
- 3. $\frac{ED}{VO} = \frac{DB}{OB}$ (Why?)
- 4. $\frac{y}{4} = \frac{3-x}{3}$ (By substitution in Step 3)
- 5. $y = \frac{4}{3}(3 x)$ (Multiplication Property of =)

6. Area of rectangle:
$$A = 2xy = 2x \cdot \frac{4}{3}(3 - x) = \frac{8x(3 - x)}{3}$$

Use the formula in Step 6 and a calculator to find the area for many values of x. Calculate 3 - x first, then multiply by x, then multiply by 8, and divide by 3.

x	Area
0	0
0.25	1.83333
0.5	3.33333
0.75	4.5
1	5.33333
1.25	5.83333
1.5	6
1.75	5.83333
2	5.33333
2.25	4.5
2.50	3.33333
2.75	1.83333
3	0

The table was used to make a graph showing how the area varies with x. Both the table and the graph suggest that the greatest area, 6 square units, occurs when x = 1.5.