Нормирования и валюации

11 декабря 2023 года

Кольца валюации

ОПРЕДЕЛЕНИЕ: Пусть A — целостное кольцо. Оно называется кольцом валюации, если для всякого $x \neq 0 \in \operatorname{Frac}(A)$ один из элементов x, x^{-1} лежит в A.

Кольца валюации

ОПРЕДЕЛЕНИЕ: Пусть A — целостное кольцо. Оно называется кольцом валюации, если для всякого $x \neq 0 \in \text{Frac}(A)$ один из элементов x, x^{-1} лежит в A.

ПРЕДЛОЖЕНИЕ: Пусть $I, J \subset A$ — два идеала кольца валюации. Тогда либо $I \subseteq J$, либо $J \subseteq I$. В частности, A — **локальное кольцо.** ДОКАЗАТЕЛЬСТВО: Если $a \in I$ и $b \in J$, то либо a/b либо $b/a \in A$.

Кольца валюации

ОПРЕДЕЛЕНИЕ: Пусть A — целостное кольцо. Оно называется кольцом валюации, если для всякого $x \neq 0 \in \text{Frac}(A)$ один из элементов x, x^{-1} лежит в A.

ПРЕДЛОЖЕНИЕ: Пусть $I, J \subset A$ — два идеала кольца валюации. Тогда либо $I \subseteq J$, либо $J \subseteq I$. В частности, A — **локальное кольцо.** ДОКАЗАТЕЛЬСТВО: Если $a \in I$ и $b \in J$, то либо a/b либо $b/a \in A$.

ЗАМЕЧАНИЕ: Если A — кольцо валюации, то на группе значений $\Gamma := \operatorname{Frac}(A)^{\times}/A^{\times}$ есть естественный полный порядок: элемент называется неотрицательным, если он приходит из элемента $A \subset \operatorname{Frac}(A)$. Максимальный идеал A — прообраз положительного конуса $\Gamma_{>0} \subset \Gamma$.

Кольца валюации

ОПРЕДЕЛЕНИЕ: Пусть A — целостное кольцо. Оно называется кольцом валюации, если для всякого $x \neq 0 \in \operatorname{Frac}(A)$ один из элементов x, x^{-1} лежит в A.

ПРЕДЛОЖЕНИЕ: Пусть $I, J \subset A$ — два идеала кольца валюации. Тогда либо $I \subseteq J$, либо $J \subseteq I$. В частности, A — **локальное кольцо.** ДОКАЗАТЕЛЬСТВО: Если $a \in I$ и $b \in J$, то либо a/b либо $b/a \in A$.

ЗАМЕЧАНИЕ: Если A — кольцо валюации, то на группе значений $\Gamma := \operatorname{Frac}(A)^{\times}/A^{\times}$ есть естественный полный порядок: элемент называется неотрицательным, если он приходит из элемента $A \subset \operatorname{Frac}(A)$. Максимальный идеал A — прообраз положительного конуса $\Gamma_{>0} \subset \Gamma$.

ПРЕДЛОЖЕНИЕ: Отображение валюации ν : Frac $(A)^{\times} \to \Gamma$ удовлетворяет $\nu(xy) = \nu(x) + \nu(y)$ и $\nu(x+y) \geqslant \min(\nu(x), \nu(y))$.

Вполне упорядоченные группы

ОПРЕДЕЛЕНИЕ: Пусть X — упорядоченное множество. Подмножество $C \subset X$ называется конусом, если $\forall c \in C \ \forall x \geqslant c : x \in C$.

Вполне упорядоченные группы

ОПРЕДЕЛЕНИЕ: Пусть X — упорядоченное множество. Подмножество $C \subset X$ называется конусом, если $\forall c \in C \ \forall x \geqslant c : x \in C$.

ПРЕДЛОЖЕНИЕ: Пусть Γ — счетная вполне упорядоченная группа, и всякий конус в ней имеет вид $\Gamma_{\geqslant c} = \{x \in \Gamma : x \geqslant c\}$. Тогда $\Gamma \simeq \mathbb{Z}$. **ДОКАЗАТЕЛЬСТВО:** Для элемента $g \in \Gamma$ обозначим i(g) элемент такой, что $\Gamma_{>g} = \Gamma_{\geqslant i(g)}$. Вложим \mathbb{Z} в Γ , отправив k в $i^k(0)$, тогда i(x) = x+1. Рассмотрим конус $C = \{x : \forall k \ x > i^k(0)\}$, пусть он равен Γ_{ω} . Тогда $\omega - 1 \geqslant \omega$, противоречие. Значит, это вложение — изоморфизм. \blacksquare

Вполне упорядоченные группы

ОПРЕДЕЛЕНИЕ: Пусть X — упорядоченное множество. Подмножество $C \subset X$ называется конусом, если $\forall c \in C \ \forall x \geqslant c : x \in C$.

ПРЕДЛОЖЕНИЕ: Пусть Γ — счетная вполне упорядоченная группа, и всякий конус в ней имеет вид $\Gamma_{\geqslant c} = \{x \in \Gamma : x \geqslant c\}$. Тогда $\Gamma \simeq \mathbb{Z}$.

ДОКАЗАТЕЛЬСТВО: Для элемента $g \in \Gamma$ обозначим i(g) элемент такой, что $\Gamma_{>g} = \Gamma_{\geqslant i(g)}$. Вложим $\mathbb Z$ в Γ , отправив k в $i^k(0)$, тогда i(x) = x+1. Рассмотрим конус $C = \{x : \forall k \ x > i^k(0)\}$, пусть он равен Γ_ω . Тогда $\omega-1\geqslant \omega$, противоречие. Значит, это вложение — изоморфизм. \blacksquare

ПРЕДЛОЖЕНИЕ: Пусть Γ — счетная вполне упорядоченная группа, в которой всякая возрастающая последовательность подконусов в $\Gamma_{\geqslant 0}$ стабилизируется. Тогда $\Gamma \simeq \mathbb{Z}$.

ДОКАЗАТЕЛЬСТВО: Для всякой положительной убывающей последовательности $\{c_k\}$ стабилизируется последовательность конусов $\{\Gamma_{\geqslant c_k}\}$, значит стабилизируется и $\{c_k\}$. Рассмотрим произвольный подконус $C \subset \Gamma_{\geqslant 0}$, не имеющий вида $\Gamma_{\geqslant c}$. Для всякого элемента $c_k \in C$ можно найти элемент $c_{k+1} \in C$ такой, что $c_{k+1} < c_k$. Раз таких последовательностей нет, то и конусов таких нет; а тогда см. выше.

Кольца дискретной валюации

ЗАМЕЧАНИЕ: Если ν — валюация на поле, то $\mathfrak{O}_{\nu} = \{k \in K : \nu(k) \ge 0\}$ есть подкольцо. Это кольцо валюации, и его валюация как кольца валюации совпадает с исходной.

ПРЕДЛОЖЕНИЕ: Идеалы кольца валюации взаимно-однозначно соответствуют конусам в $\Gamma_{\geqslant 0}$.

Кольца дискретной валюации

ЗАМЕЧАНИЕ: Если ν — валюация на поле, то $\mathfrak{O}_{\nu} = \{k \in K : \nu(k) \ge 0\}$ есть подкольцо. Это кольцо валюации, и его валюация как кольца валюации совпадает с исходной.

ПРЕДЛОЖЕНИЕ: Идеалы кольца валюации взаимно-однозначно соответствуют конусам в $\Gamma_{\geqslant 0}$.

ОПРЕДЕЛЕНИЕ: Валюация называется **дискретной**, если ее группа значений изоморфна \mathbb{Z} .

Кольца дискретной валюации

ЗАМЕЧАНИЕ: Если ν — валюация на поле, то $\mathfrak{O}_{\nu} = \{k \in K : \nu(k) \ge 0\}$ есть подкольцо. Это кольцо валюации, и его валюация как кольца валюации совпадает с исходной.

ПРЕДЛОЖЕНИЕ: Идеалы кольца валюации взаимно-однозначно соответствуют конусам в $\Gamma_{\geqslant 0}$.

ОПРЕДЕЛЕНИЕ: Валюация называется **дискретной**, если ее группа значений изоморфна \mathbb{Z} .

TEOPEMA: Кольца **дискретной** валюации, **нетеровы** кольца валюации, и локальные кольца **главных идеалов** — **одно и то же.**

ДОКАЗАТЕЛЬСТВО: Построим валюацию на локальном кольце главных идеалов. Максимальные идеалы порождены неразложимыми элементами, значит в A такой один с точностью до обратимых. Значит, произвольный элемент A имеет вид ua^n , где u обратим. Положим $\nu(ua^n)=n$. Теперь утверждение является буквальным переводом лемм с прошлого слайда. \blacksquare

Геометрический смысл колец валюации

ОПРЕДЕЛЕНИЕ: Пусть A — произвольное кольцо, $\mathfrak{m} \subset A$ максимальный идеал с полем вычетов k. Тогда $\mathfrak{m}/\mathfrak{m}^2$ — k-векторное пространство, и называется оно кокасательным пространством к Spec A в \mathfrak{m} и обозначается $T_{\mathfrak{m}}^*$.

Геометрический смысл колец валюации

ОПРЕДЕЛЕНИЕ: Пусть A — произвольное кольцо, $\mathfrak{m} \subset A$ максимальный идеал с полем вычетов k. Тогда $\mathfrak{m}/\mathfrak{m}^2$ — k-векторное пространство, и называется оно кокасательным пространством к Spec A в \mathfrak{m} и обозначается $T_{\mathfrak{m}}^*$.

ПРЕДЛОЖЕНИЕ: Кокасательное пространство кольца валюации не **более чем одномерно.**

ДОКАЗАТЕЛЬСТВО: Пусть $x,y\neq 0\in T^*_{\mathfrak{m}}$. Пусть $\tilde{x},\ \tilde{y}$ — их прообразы в \mathfrak{m} , и $\tilde{x}=a\tilde{y}$ для $a\in A$. Тогда $a\not\in\mathfrak{m}$, и $x=\bar{a}y$, где $\bar{a}\in k=a$ mod \mathfrak{m} .

Геометрический смысл колец валюации

ОПРЕДЕЛЕНИЕ: Пусть A — произвольное кольцо, $\mathfrak{m} \subset A$ максимальный идеал с полем вычетов k. Тогда $\mathfrak{m}/\mathfrak{m}^2$ — k-векторное пространство, и называется оно кокасательным пространством к Spec A в \mathfrak{m} и обозначается $T_{\mathfrak{m}}^*$.

ПРЕДЛОЖЕНИЕ: Кокасательное пространство кольца валюации **не более чем одномерно.**

ДОКАЗАТЕЛЬСТВО: Пусть $x,y\neq 0\in T^*_{\mathfrak{m}}$. Пусть $\tilde{x},\ \tilde{y}$ — их прообразы в \mathfrak{m} , и $\tilde{x}=a\tilde{y}$ для $a\in A$. Тогда $a\not\in\mathfrak{m}$, и $x=\bar{a}y$, где $\bar{a}\in k=a$ mod \mathfrak{m} .

ПРИМЕР: Локальное кольцо **гладкой** точки кривой — кольцо валюации. Кокасательное пространство **двойственно** касательной к кривой в этой точке.

Геометрический смысл колец валюации

ОПРЕДЕЛЕНИЕ: Пусть A — произвольное кольцо, $\mathfrak{m} \subset A$ максимальный идеал с полем вычетов k. Тогда $\mathfrak{m}/\mathfrak{m}^2$ — k-векторное пространство, и называется оно кокасательным пространством к Spec A в \mathfrak{m} и обозначается $T_{\mathfrak{m}}^*$.

ПРЕДЛОЖЕНИЕ: Кокасательное пространство кольца валюации **не более чем одномерно.**

ДОКАЗАТЕЛЬСТВО: Пусть $x,y\neq 0\in T^*_{\mathfrak{m}}$. Пусть $\tilde{x},\ \tilde{y}$ — их прообразы в $\mathfrak{m},\$ и $\tilde{x}=a\tilde{y}$ для $a\in A$. Тогда $a\not\in\mathfrak{m},\$ и $x=\bar{a}y,\$ где $\bar{a}\in k=a$ mod $\mathfrak{m}.$

ПРИМЕР: Локальное кольцо **гладкой** точки кривой — кольцо валюации. Кокасательное пространство **двойственно** касательной к кривой в этой точке.

ПРИМЕР: Пусть A — локальное кольцо точки (0;0) на плоскости, или на особой кривой $y^2 = x^2 + x^3$. Тогда $x/y \in \operatorname{Frac}(A)$, но ни x/y, ни $y/x \notin A$.

Геометрический смысл колец валюации

ОПРЕДЕЛЕНИЕ: Пусть A — произвольное кольцо, $\mathfrak{m} \subset A$ максимальный идеал с полем вычетов k. Тогда $\mathfrak{m}/\mathfrak{m}^2$ — k-векторное пространство, и называется оно кокасательным пространством к Spec A в \mathfrak{m} и обозначается $T_{\mathfrak{m}}^*$.

ПРЕДЛОЖЕНИЕ: Кокасательное пространство кольца валюации **не более чем одномерно.**

ДОКАЗАТЕЛЬСТВО: Пусть $x,y\neq 0\in T^*_{\mathfrak{m}}$. Пусть $\tilde{x},\ \tilde{y}$ — их прообразы в \mathfrak{m} , и $\tilde{x}=a\tilde{y}$ для $a\in A$. Тогда $a\not\in\mathfrak{m}$, и $x=\bar{a}y$, где $\bar{a}\in k=a$ mod \mathfrak{m} .

ПРИМЕР: Локальное кольцо **гладкой** точки кривой — кольцо валюации. Кокасательное пространство **двойственно** касательной к кривой в этой точке.

ПРИМЕР: Пусть A — локальное кольцо точки (0;0) на плоскости, или на особой кривой $y^2 = x^2 + x^3$. Тогда $x/y \in \operatorname{Frac}(A)$, но ни x/y, ни $y/x \notin A$.

ПРИМЕР: Рассмотрим бесконечную цепочку колец: $k \subset k[x] \subset k[\sqrt{x}] \subset \cdots \subset k[x^{1/2^m}] \subset \cdots$. Ее объединение обозначается $k[x^{1/2^\infty}]$. Это **ненетерово** кольцо валюации, его кокасательное пространство **нульмерно**, а группа значений изоморфна $\{n/2^m: n, m \in \mathbb{Z}, m \geqslant 0\}$.

Нормирования и валюации

ОПРЕДЕЛЕНИЕ: Пусть K — поле. Нормированием называется отображение $|\cdot|: K \to \mathbb{R}_{\geqslant 0}$ такое, что (1) $|x| = 0 \Leftrightarrow x = 0$; (2) |xy| = |x||y|; (3) $|x+y| \leqslant |x| + |y|$.

ОПРЕДЕЛЕНИЕ: Если верна более сильная аксиома (3') $|x + y| \le \max(|x|,|y|)$, нормирование называется **неархимедовым**.

Нормирования и валюации

ОПРЕДЕЛЕНИЕ: Пусть K — поле. Нормированием называется отображение $|\cdot|: K \to \mathbb{R}_{\geqslant 0}$ такое, что (1) $|x| = 0 \Leftrightarrow x = 0$; (2) |xy| = |x||y|; (3) $|x+y| \leqslant |x| + |y|$.

ОПРЕДЕЛЕНИЕ: Если верна более сильная аксиома (3') $|x + y| \le \max(|x|,|y|)$, нормирование называется **неархимедовым.**

ОПРЕДЕЛЕНИЕ: Пусть Γ — упорядоченная абелева группа. Отображение $\nu: K \to \Gamma \cup \{\infty\}$ называется **валюацией**, если (1) $\nu(x) = \infty \Leftrightarrow x = 0$; (2) $\nu(xy) = \nu(x) + \nu(y)$; (3) $\nu(x+y) \geqslant \min(\nu(x), \nu(y))$.

ЗАМЕЧАНИЕ: Если $\Gamma \subset \mathbb{R}$, а ν — валюация, то $|x|_{\nu} = e^{-\nu(x)}$ — неархимедово нормирование.

Нормирования и валюации

ОПРЕДЕЛЕНИЕ: Пусть K — поле. Нормированием называется отображение $|\cdot|: K \to \mathbb{R}_{\geqslant 0}$ такое, что (1) $|x| = 0 \Leftrightarrow x = 0$; (2) |xy| = |x||y|; (3) $|x+y| \leqslant |x| + |y|$.

ОПРЕДЕЛЕНИЕ: Если верна более сильная аксиома (3') $|x + y| \le \max(|x|,|y|)$, нормирование называется **неархимедовым.**

ОПРЕДЕЛЕНИЕ: Пусть Γ — упорядоченная абелева группа. Отображение $\nu: K \to \Gamma \cup \{\infty\}$ называется **валюацией**, если (1) $\nu(x) = \infty \Leftrightarrow x = 0$; (2) $\nu(xy) = \nu(x) + \nu(y)$; (3) $\nu(x+y) \geqslant \min(\nu(x), \nu(y))$.

ЗАМЕЧАНИЕ: Если $\Gamma \subset \mathbb{R}$, а ν — валюация, то $|x|_{\nu} = e^{-\nu(x)}$ — неархимедово нормирование.

ПРИМЕР: Если X — аффинная кривая, всякая точка $x \in X$ определяет валюацию на поле функций k(X): $\nu_x(f)$ есть порядок полюса f в x.

ПРИМЕР: Если p — простое число, p-адическая валюация на $\mathbb Q$ определяется как $\nu(n/p^km)=k$, где m,n не делятся на p.

Места

ОПРЕДЕЛЕНИЕ: Нормирование определяет метрику d(x,y) = |x-y|, а потому и топологию. Если она дискретна, нормирование называется **тривиальным.** Нормирования, определяющие одинаковую топологию, называются **эквивалентными.** Классы эквивалентности нормирований называются **местами.**

Места

ОПРЕДЕЛЕНИЕ: Нормирование определяет метрику d(x,y) = |x-y|, а потому и топологию. Если она дискретна, нормирование называется **тривиальным.** Нормирования, определяющие одинаковую топологию, называются **эквивалентными.** Классы эквивалентности нормирований называются **местами.**

TEOPEMA: (A. M. Островский, 1916) Нетривиальные места поля \mathbb{Q} это стандартный модуль и p-адические нормирования. \blacksquare

Места

ОПРЕДЕЛЕНИЕ: Нормирование определяет метрику d(x,y) = |x-y|, а потому и топологию. Если она дискретна, нормирование называется **тривиальным.** Нормирования, определяющие одинаковую топологию, называются **эквивалентными.** Классы эквивалентности нормирований называются **местами.**

TEOPEMA: (A. M. Островский, 1916) Нетривиальные места поля \mathbb{Q} это стандартный модуль и p-адические нормирования. \blacksquare

TEOPEMA: Нетривиальные места поля $\mathbb{F}_p(t)$ это deg и π -адические нормирования для всех неприводимых многочленов $\pi \in \mathbb{F}_p[t]$.

TEOPEMA: Нетривиальные места поля k(t), **тривиальные на** k, это deg и π -адические нормирования для всех неприводимых многочленов $\pi \in k[t]$.

Места

ОПРЕДЕЛЕНИЕ: Нормирование определяет метрику d(x,y) = |x-y|, а потому и топологию. Если она дискретна, нормирование называется **тривиальным.** Нормирования, определяющие одинаковую топологию, называются **эквивалентными.** Классы эквивалентности нормирований называются **местами.**

TEOPEMA: (A. M. Островский, 1916) Нетривиальные места поля \mathbb{Q} это стандартный модуль и p-адические нормирования. \blacksquare

TEOPEMA: Нетривиальные места поля $\mathbb{F}_p(t)$ это deg и π -адические нормирования для всех неприводимых многочленов $\pi \in \mathbb{F}_p[t]$.

TEOPEMA: Нетривиальные места поля k(t), **тривиальные на** k, это deg и π -адические нормирования для всех неприводимых многочленов $\pi \in k[t]$.

ЗАМЕЧАНИЕ: Таким образом, множество мест данного поля весьма похоже на спектр его кольца целых.

Пространства Римана-Зариского

ОПРЕДЕЛЕНИЕ: Пусть $k \subset K$ — расширение полей. **Пространством Римана—Зариского** K над k называется множество подколец (не обязательно дискретной) валюации в K, содержащих k. **Базой топологии** на нем служат множества колец, содержащих фиксированное подмножество $S \subset K$.

Пространства Римана-Зариского

ОПРЕДЕЛЕНИЕ: Пусть $k \subset K$ — расширение полей. **Пространством Римана—Зариского** K над k называется множество подколец (не обязательно дискретной) валюации в K, содержащих k. **Базой топологии** на нем служат множества колец, содержащих фиксированное подмножество $S \subset K$.

ПРИМЕР: Пусть C — алгебраическая кривая над k, и k(C) — ее поле функций. Пространство Римана—Зариского K/k состоит из тривиального нормирования, и из p-адических нормирований для точек $p \in C$. Оно изоморфно **гладкой проективной модели** кривой C с топологией Зариского, **тривиальное** нормирование при этом соответствует **общей точке.**

Пространства Римана-Зариского

ОПРЕДЕЛЕНИЕ: Пусть $k \subset K$ — расширение полей. **Пространством Римана—Зариского** K над k называется множество подколец (не обязательно дискретной) валюации в K, содержащих k. **Базой топологии** на нем служат множества колец, содержащих фиксированное подмножество $S \subset K$.

ПРИМЕР: Пусть C — алгебраическая кривая над k, и k(C) — ее поле функций. Пространство Римана—Зариского K/k состоит из тривиального нормирования, и из p-адических нормирований для точек $p \in C$. Оно изоморфно гладкой проективной модели кривой C с топологией Зариского, тривиальное нормирование при этом соответствует общей точке.

ЗАМЕЧАНИЕ: Уже для полей функций поверхностей пространство Римана—Зариского не изоморфно никакой схеме. Однако в некотором смысле оно неособо, и может служить более слабой версией разрешения особенностей.