课程基本信息								
课例编号	2020QJ11WLRJ035	学科	物理	年级	高二	学期	上学期	
课题	电磁感应现象及应用 (第二课时)							
教科书	书名: 物理必修(第三册)							
	出版社:人民教育出版社			出版日期: 2019 年 4 月				
教学人员								
	姓名	单位						
授课教师	董立芳	北京市第一六一中学						
指导教师	黎红 张瑞萍	西城教育研修学院、北京市第一六一中学						

教学目标

教学目标:

- 1.了解电磁感应现象发现的重大历史意义和电磁感应现象的广泛应用。
- 2. 体会科学、技术对人类文明的推动作用。

教学重点:

电磁感应现象的应用。

教学难点:

电磁感应现象的应用。

	电幽恩	型					
教学过程							
时间	教学环节	主要师生活动					
3 分钟	环节一:引入	本节一: 引入 上节课我们通过实验探究,得到了产生感应电流的条件,这节课 在此基础上,我们通过实验来了解电磁感应现象在实际生产、生活中 的具体应用。 回顾产生感应电流的条件及如何使磁通量变化。 练习:在铁芯 P 上绕着两个线圏 A 和 B。如果线圏 A 中电流 i 与 时间 t 的关系如图所示的甲、乙、丙、丁四种情况,那么哪种情况可 以观察到线圏 B 中有感应电流?					

环节

电

磁

感

应现

象

的应用

环节二: 电磁感应现象的应用

1、展示并演示学生设计实验一、二,引入电磁感应现象的应用 ——发电机

介绍世界上最早的发电机——法拉第圆盘发电机及历史故事。介绍我国的三峡大坝水利发电站。

2、展示并演示学生设计实验三,引入电磁感应现象的应用—— 变压器

- 3、介绍电磁感应现象的其他应用
 - (1) 电磁炉
- (2) 无线充电器
- (3) 其他: 金属探测器、自发电手电筒、一卡通、磁悬浮列车

环节三: 有趣的电磁感应现象

视频播放几种利用电磁感应现象制作的有趣的小实验, 激发学习

环

	JI:	W 据 和 b b
	节一	 兴趣和热情。
	三	
5分	; 	
钟	有	
	趣	
	的	
	电	
	磁	
	感亡	
	应	
	现	
	象	
		环节四:课堂小结
		通过本节课的学习,我们看到,大到发电机(电能产生的装置)、
		再到变压器(能量传递的装置),最后到各种工业、农业、生活中的
		用电设备,都离不开电磁感应现象。
		电磁感应现象在从科学到技术的转变过程中! 不断改变人类社
1 /\		会,造福人类!
1分		由于法拉第的伟大贡献,他被尊称为"电学之父"、"交流电之
钟	环	父"!
	节	根据法拉第的电磁感应现象制造的最早的发电机这个新生的"婴
	四	儿",已经成长为改变世界面貌的"巨人"。它开辟了人类社会的电气
	; ;	化时代。已经成为当今社会不可或缺的一项技术。如果今天还有人问
	课	这有什么用?相信同学们都可以给她满意的答案!
	堂	
	小	
	结	