07 Erstellung von Grafiken mit ggplot2 QUNIS

Martin Hanewald

2019-02-19

Packages

library(tidyverse) library(knitr) library(DT)

Überblick

Das Paket ggplot2 ist die meistgenutze Grafikbibliothek in R. Sein modularer Aufbau in aesthetics, coordinates und geometries erlaubt beliebige Freiheit in der Gestaltung von Plots.

Dataset

Datensatz midwest aus dem Package ggplot2 enthält Daten einer Volkszählung.

data(midwest) # Umwandlung einiger Variablen in Datentyp 'factor' midwest <- midwest %>% mutate_at(vars(county, state, inmetro, category), as.factor) # Show sample sample_n(midwest, 10) %>% DT::datatable(width = 700, options=list(scrollX = TRUE))

Show	Show 10 ▼ entries					Search:			
	PID 🌲	county 🔷	state 🌲	area 🔷	poptotal 🔷	popdensity 🔷	popwhite 👇	popbla	
1	691	HAMILTON	IN	0.024	108936	4539	106764		
2	705	KOSCIUSKO	IN	0.032	65294	2040.4375	64058		
3	2014	AUGLAIZE	ОН	0.024	44585	1857.70833	44225		
4	1278	WAYNE	MI	0.035	2111687	60333.9143	1212007	849	
5	742	TIPTON	IN	0.016	16119	1007.4375	15990		
6	1236	KALKASKA	MI	0.033	13497	409	13321		
7	3003	GREEN	WI	0.034	30339	892.323529	30173		
8	670	CARROLL	IN	0.022	18809	854.954545	18720		
9	2995	DOOR	WI	0.028	25690	917.5	25387		
10	2095	WOOD	ОН	0.037	113269	3061.32432	109303	1	
4								•	

Showing 1 to 10 of 10 entries

Next

Previous

Histogram QUNIS

Verteilung einer numerischen Variable

Distribution of Asian percentage per district

Quantilsplot

Vergleich einer Verteilung mit Normalverteilung

```
midwest %>%
    ggplot(aes(sample=percasian)) + geom_qq() + stat_qq_line()

midwest %>%
    ggplot(aes(sample=log10(percasian))) + geom_qq() + stat_qq_line()
```


Density plot

Distribution of Asian percentage per district

Boxplot / Dotplot

Verteilung einer numerischen Variable über mehrere Kategorien

```
midwest %>%
   ggplot(aes(x = state %>% fct_reorder(percollege), y = percollege, fill=state)) +
   geom_dotplot(binaxis = 'y', stackdir = 'center', dotsize=.6) +
   geom_boxplot(alpha = .3, outlier.size = 0) +
   labs(x = 'State', y = 'College education in percent of tot. pop.')
```


Scatterplot

Relation zwischen zwei numerischen Variablen

```
midwest %>%
    ggplot(aes(x=area, y=poptotal)) +
```



```
copyright by QUNIS
geom_point(alpha=.5, color='#a52dd7') +
geom_smooth(method="lm") +
scale_y_log10(labels= scales::comma) +
labs(x = 'Area', y = 'Total population',
     title='Population per Area',
     subtitle = 'in log scale')
```

Population per Area

Als facet-plot unterschieden nach state

```
midwest %>%
   ggplot(aes(x=area, y=poptotal)) +
   geom_point(alpha=.5, color='#a52dd7') +
   geom_smooth(method="lm") +
   scale_y_log10(labels= scales::comma) +
   labs(x = 'Area', y = 'Total population',
        title='Population per Area',
        subtitle = 'in log scale') +
   facet_wrap(vars(state))
```

Population per Area

Matrix-Scatterplot

```
library(GGally)

midwest %>%
    select(percollege, percbelowpoverty, percblack, percasian, inmetro) %>%
    GGally::ggpairs(mapping=aes(color=inmetro))
```


Barplots

```
ggplot(aes(state, fill = inmetro)) + geom_bar()
midwest %>%
   ggplot(aes(state, fill = inmetro)) + geom_bar(position='dodge')
```



```
scale_y_continuous(labels=scales::comma)

midwest %>%

ggplot(aes(state, fill = inmetro)) + geom_bar(position='fill') +
    scale_y_continuous(labels = scales::percent)
```


Timeseries

```
# Build a Time series data set
day <- Sys.Date() - 0:364
value <- runif(365) + seq(-140, 224)^2 / 10000
tsdata <- tibble(day, value)</pre>
```


Interaktivität mit ggplotly

```
library(plotly)
ggplotly(p)
```


Interaktivität mit dygraphs

```
library(dygraphs)
xtsdata <- tsdata %>%
   as.data.frame() %>%
   column_to_rownames("day") %>%
   xts::as.xts()
xtsdata %>% dygraph() %>% dyRangeSelector()
```


Weitere Beispiele

https://www.r-graph-gallery.com/