Lógica Secuencial Sincrónica

Circuitos Secuenciales

FIGURA 5-1

Diagrama de bloques de un circuito secuencial

Lógica Secuencial Sincrónica

Circuitos Secuenciales Sincrónicos

FIGURA 5-2 Circuito secuencial sincrónico con reloj

Latch S-R

FIGURA 5-3
Latch SR con compuertas NOR

• Latch S'-R'

a) Diagrama lógico

b) Tabla de función

FIGURA 5-4

Latch SR con compuertas NAND

• Latch S'-R' con Control

FIGURA 5-5		
Latch SR con	entrada de	control

C	S	R	Siguiente estado de Q
0	X	X	Sin cambio
1	0	1	Sin cambio
1	0	1	Sin cambio $Q = 0$; estado restablecido $Q = 1$; estado establecido
1	1	0	Q = 1; estado establecido
1	1	1	Indeterminado

b) Tabla de función

Latch D

a) Diagrama lógico

Sin cambio

Siguiente estado de Q

Q = 0; estado restablecido Q = 1; estado establecido

FIGURA 5-6

Latch D

b) Tabla de función

C D

Símbolos Gráficos

FIGURA 5-7 Símbolos gráficos de latches

Sensibilidad a niveles y a flancos

FIGURA 5-8 Respuesta al reloj en un latch y un flip-flop

Flip Flop D Maestro Esclavo

FIGURA 5-9
Flip-flop D amo-esclavo

FIGURA 5-10 Flip-flop tipo *D* disparado por borde positivo

a) Borde positivo

b) Borde negativo

FIGURA 5-11

Símbolo gráfico para el flip-flop D disparado por borde

• Flip Flop J-k

a) Diagrama de circuito

b) Símbolo gráfico

FIGURA 5-12 Flip-Flop *JK*

$$D = JQ' + K'Q$$

Flip Flop T

a) Con un flip-flop JK

FIGURA 5-13 Flip-Flop *T*

b) Con un flip-flop ${\cal D}$

c) Símbolo gráfico

$$D = T \oplus Q = TQ' + T'Q$$

Tablas de Transición

Tabla 5-1 *Tablas características de flip-flops*

Flip-F	Flip-Flop <i>JK</i>				
J - K	Q(t+1)				
0 0 0 1 1 0 1 1	Q(t) 0 1 $Q'(t)$	Sin cambio Restablecer Establecer Complementar			

Flin-Flon T

111p-110p <i>D</i>			
D	Q(t+1)		
0	0	Restablecer	
1	1	Establecer	

Flin-Flon D

	Tilp-Hop I			
T	Q(t+1)			
0	$Q(t) \\ Q'(t)$	Sin cambio Complementar		

Ecuación Característica Flip Flop D

$$Q(t+1) = D$$

Ecuación Característica Flip Flop J-k

$$Q(t+1) = JQ' + K'Q$$

Ecuación Característica Flip Flop T

$$Q(t+1) = T \oplus Q = TQ' + T'Q$$

Flip-Flops con Reset asíncrono

Flip-Flops con Reset asíncrono

b) Símbolo gráfico

R	C	D	Q	Q'
0	X	X 0	0	1
1	\uparrow	0	0	1
1			1	

c) Tabla de función

FIGURA 5-14

Flip-flop D con restablecimiento asincrónico

FIGURA 5-15
Ejemplo de circuito secuencial

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = A'(t)x(t)$$

$$A(t+1) = Ax + Bx$$

$$B(t+1) = A'x$$

$$y(t) = [A(t) + B(t)]x'(t)$$

$$y = (A + B)x'$$

Tabla de Estados

Tabla 5-2 *Tabla de estados para el circuito de la figura 5-15*

		Siguiente estado	Salida	
Α	В	X	A B	у
0	0	0	0 0	0
0	0	1	0 1	0
0	1	0	0 0	1
0	1	1	1 1	0
1	0	0	0 0	1
1	0	1	1 0	0
1	1	0	0 0	1
1	1	1	1 0	0

Tabla de Estados

Tabla 5-3 *Segunda forma de la tabla de estados*

Estado actual	Siguiente estado		Salida	
	x = 0	x = 1	x = 0	x = 1
AB	AB	AB	у	у
00	00	01	0	0
01	00	11	1	0
10	00	10	1	0
11	00	10	1	0

Diagrama de Estados

FIGURA 5-16
Diagrama de estados del circuito de la figura 5-15

Ecuaciones de Estado y Ecuación de Salida

$$D_A = Ax + Bx$$

$$D_B = A'x$$

$$y = (A + B)x'$$

$$D: Q(t+1) = D_Q.$$