Queues

What are they? Where are they used?

Queue - An abstract data type in which elements are added to the end and removed from the front.

The Priority Queue

Modeling and Simulation

Queues are F.I.F.O. lists.

First In First Out

Queues

• Queue A structure in which elements are added to the rear and removed from the front; a "first in, first out" (FIFO) structure

The Queue ADT

- Queues are lists
- Two main operations:
 - Enqueue
 - Dequeue

- Queue is: FIFO lis
- Implementation
 - Array
 - Linked-List

Originally

Queue is empty

Effects of Queue Operations

enqueue block2

front = block2 re

rear = block2

enqueue block3

front = block2 rear = block3

enqueue block5

front = block2 rear = block5

dequeue

front = block3 rear =

rear = block5

enqueue block4

front = block3

rear = block4

Queue

Queue Operations

- To enqueue an element x,
 - we increment currentSize and tail,
 - then set theArray[tail]=x.
- To dequeue an element,
 - we set the return value to theArray[head],
 - decrement currentSize, and
 - then increment head.
- checking for errors
 - whenever head or tail gets to the end of the array?
 - it is wrapped around to the beginning.
 - This is known as a **circular array** implementation

Wrap Around Solution

(a) There is no room at the end of the array

(b) Using the array as a circular structure, we can wrap the queue around to the beginning of the array

Comparing Queue Implementations

- Memory usage
 - Array-based:
 - takes the same amount of memory,
 - No matter how many slots use, proportional to current capacity
 - Link-based:
 - takes space proportional to actual size of the queue
 - each element requires more space than array
- Operation efficiency
 - All operations, for each approach, are O(1)
 - Except for the Constructors:
 - Array-based: O(N)
 - Link-based: O(1)

Applications using Queue

- Several of these uses are found in
 - **Graph** theory
 - When jobs are submitted to a printer,
 - they are arranged in order of arrival.
 - jobs sent to a line printer are placed on a queue.
 - Virtually every real-life line is (supposed to be) a queue.
 - For instance, lines at ticket counters are queues,
 - service is first-come first-served.
 - computer networks
 - the disk is attached to one machine, known as the **file server**.
 - Users on other machines are given access to files
 - on a first-come first-served basis