Baumautomaten: Abschlusseigenschaften und Algorithmen

Edgar Schmidt

Seminarvortrag bei Prof. Dr. Wim Martens

Universität Bayreuth

30. April, 2014

Outline

1. Abschlusseigenschaften

2. Algorithmen

Theorem 1:
Die Klasse von regulären Baumsprachen ist abgeschlossen unter:

Theorem 1:
Die Klasse von regulären Baumsprachen ist abgeschlossen unter:

Vereinigung

Theorem 1:
Die Klasse von regulären Baumsprachen ist abgeschlossen unter:

Vereinigung

Komplement

Theorem 1:
Die Klasse von regulären Baumsprachen ist abgeschlossen unter:

Vereinigung

Komplement

Schnitt

Gegeben: Zwei Baumautomaten A₁ und A₂

Gesucht: $L(A) = L(A_1) \cup L(A_2)$

Gegeben: Zwei Baumautomaten A, und A,

Gesucht: $L(A) = L(A_1) \cup L(A_2)$

Algorithmus:

Bildung des Produktautomaten, der akzeptiert, wenn mindestens ein Automat akzeptiert

$$\begin{array}{ccc} & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{t} q_t & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{f} q_f & (q_f, q_t) \xrightarrow{X} q_t \\ (q_f, q_t) \xrightarrow{X} q_t \\ (q_f, q_t) \xrightarrow{X} q_t \end{array}$$

Automat A₁ sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{t} q_t & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{f} q_f & (q_t, q_t) \xrightarrow{X} q_t \\ (q_t, q_t) \xrightarrow{X} q_t \\ (q_t, q_t) \xrightarrow{X} q_t \end{array}$$

Automat A, sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t,q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{t}{\rightarrow} q_t & (q_t,q_f) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{f}{\rightarrow} q_f & (q_f,q_t) \stackrel{X}{\rightarrow} q_t \\ (q_f,q_f) \stackrel{X}{\rightarrow} q_t \end{array}$$

Automat A₁ sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{t} q_t & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{f} q_f & (q_f, q_t) \xrightarrow{X} q_t \\ (q_f, q_t) \xrightarrow{X} q_t \\ (q_f, q_t) \xrightarrow{X} q_f \end{array}$$

Automat A, sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t,q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{t}{\rightarrow} q_t & (q_t,q_f) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{f}{\rightarrow} q_f & (q_f,q_t) \stackrel{X}{\rightarrow} q_t \\ (q_f,q_f) \stackrel{X}{\rightarrow} q_t \end{array}$$

Automat A₁ sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{t} q_t & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{f} q_f & (q_f, q_t) \xrightarrow{X} q_t \\ (q_f, q_t) \xrightarrow{X} q_t \\ (q_f, q_f) \xrightarrow{X} q_f \end{array}$$

Automat A, sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t,q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{t}{\rightarrow} q_t & (q_t,q_f) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{f}{\rightarrow} q_f & (q_f,q_t) \stackrel{X}{\rightarrow} q_t \\ (q_f,q_f) \stackrel{X}{\rightarrow} q_t \end{array}$$

Automat A₁ sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{t} q_t & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{f} q_f & (q_f, q_t) \xrightarrow{X} q_t \\ (q_f, q_t) \xrightarrow{X} q_t \\ (q_f, q_f) \xrightarrow{X} q_f \end{array}$$

Automat A₁ sei wie folgt definiert:

X q

Automat A_1 sei wie folgt definiert: $X = Q_t$ Q_t Q_t

Automat A₁ sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{t} q_t & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{f} q_f & (q_f, q_t) \xrightarrow{X} q_t \\ (q_f, q_f) \xrightarrow{X} q_f \end{array}$$

 $X q_{\iota}$

$$\begin{array}{ccc} \boldsymbol{\epsilon} & \boldsymbol{q}_t' & \boldsymbol{(q_t',q_t')} \xrightarrow{\boldsymbol{X}} \boldsymbol{q}_t' \\ \boldsymbol{\epsilon} \xrightarrow{\boldsymbol{f}} \boldsymbol{q}_t' & \boldsymbol{(q_t',q_f')} \xrightarrow{\boldsymbol{X}} \boldsymbol{q}_f' \\ \boldsymbol{\epsilon} \xrightarrow{\boldsymbol{f}} \boldsymbol{q}_f' & \boldsymbol{(q_f',q_t')} \xrightarrow{\boldsymbol{X}} \boldsymbol{q}_f' \\ \boldsymbol{(q_f',q_t')} \xrightarrow{\boldsymbol{X}} \boldsymbol{q}_f' \\ \boldsymbol{(q_f',q_f')} \xrightarrow{\boldsymbol{X}} \boldsymbol{q}_f' \end{array}$$

Automat A₁ sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t, q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{t}{\rightarrow} q_t & (q_t, q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{f}{\rightarrow} q_f & (q_f, q_t) \stackrel{X}{\rightarrow} q_t \\ (q_f, q_t) \stackrel{X}{\rightarrow} q_t \end{array}$$

 $X q_{\iota}$

$$\begin{array}{cccc} \epsilon & t & (q_t',q_t') \xrightarrow{X} q_t' \\ \epsilon & \xrightarrow{f} q_t' & (q_t',q_f') \xrightarrow{X} q_f' \\ \epsilon & \xrightarrow{f} q_f' & (q_f',q_t') \xrightarrow{X} q_f' \\ & (q_f',q_f') \xrightarrow{X} q_f' \end{array}$$

Automat A₁ sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t, q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{t}{\rightarrow} q_t & (q_t, q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{f}{\rightarrow} q_f & (q_f, q_t) \stackrel{X}{\rightarrow} q_t \\ (q_f, q_f) \stackrel{X}{\rightarrow} q_t \end{array}$$

 $X q_{\iota}$

$$\begin{array}{cccc} \epsilon & t & (q_t',q_t') \xrightarrow{X} q_t' \\ \epsilon & q_t' & (q_t',q_t') \xrightarrow{X} q_t' \\ \epsilon & q_t' & (q_t',q_t') \xrightarrow{X} q_t' \\ & (q_t',q_t') \xrightarrow{X} q_t' \\ & (q_t',q_t') \xrightarrow{X} q_t' \end{array}$$

Automat A₁ sei wie folgt definiert:

$$\begin{array}{ccc} (\mathbf{q}_t, \mathbf{q}_t) & \overset{X}{\rightarrow} \mathbf{q}_t \\ \boldsymbol{\epsilon} & \overset{t}{\rightarrow} \mathbf{q}_t & (\mathbf{q}_t, \mathbf{q}_f) & \overset{X}{\rightarrow} \mathbf{q}_t \\ \boldsymbol{\epsilon} & \overset{f}{\rightarrow} \mathbf{q}_f & (\mathbf{q}_f, \mathbf{q}_t) & \overset{X}{\rightarrow} \mathbf{q}_t \\ (\mathbf{q}_f, \mathbf{q}_f) & \overset{X}{\rightarrow} \mathbf{q}_f \end{array}$$

 $X q_{\iota}$

$$\begin{array}{cccc} \epsilon & t & (q_t',q_t') \xrightarrow{X} q_t' \\ \epsilon & \xrightarrow{f} q_t' & (q_t',q_f') \xrightarrow{X} q_f' \\ \epsilon & \xrightarrow{f} q_f' & (q_f',q_t') \xrightarrow{X} q_f' \\ & (q_f',q_f') \xrightarrow{X} q_f' \end{array}$$

Automat A₁ sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t, q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{t}{\rightarrow} q_t & (q_t, q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{f}{\rightarrow} q_f & (q_f, q_t) \stackrel{X}{\rightarrow} q_t \\ (q_f, q_t) \stackrel{X}{\rightarrow} q_t \end{array}$$

 $X q_{\iota}$

$$\begin{array}{cccc} \epsilon & t & (q_t',q_t') \xrightarrow{X} q_t' \\ \epsilon & \xrightarrow{f} q_t' & (q_t',q_f') \xrightarrow{X} q_f' \\ \epsilon & \xrightarrow{f} q_f' & (q_f',q_t') \xrightarrow{X} q_f' \\ & (q_f',q_f') \xrightarrow{X} q_f' \end{array}$$

Automat A₁ sei wie folgt definiert:

$$\begin{array}{ccc} & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{t} q_t & (q_t, q_t) \xrightarrow{X} q_t \\ \epsilon \xrightarrow{f} q_f & (q_f, q_t) \xrightarrow{X} q_t \\ (q_f, q_f) \xrightarrow{X} q_t \end{array}$$

 $X q_{\iota}$

Automat A₂ sei wie folgt definiert: x q_f

$$\begin{array}{cccc} \epsilon & t & (q_t',q_t') \xrightarrow{X} q_t' \\ \epsilon & \xrightarrow{f} q_t' & (q_t',q_f') \xrightarrow{X} q_f' \\ \epsilon & \xrightarrow{f} q_f' & (q_f',q_t') \xrightarrow{X} q_f' \\ & (q_f',q_f') \xrightarrow{X} q_f' \end{array}$$

Die Konstruktion:

Die Konstruktion:

Die Konstruktion:

$$(q_t, q_t') (q_f, q_f') (q_f, q_f')$$

Die Konstruktion:

$$(q_t, q_t')$$
 (q_f, q_f') (q_f, q_f') (q_t, q_t')

Die Konstruktion:

$$(q_t,q_t')$$
 (q_t,q_t') (q_t,q_t') (q_t,q_t') (q_t,q_t') (q_t,q_t')

Die Konstruktion:

Für die Zustandsübergänge gilt:

$$\begin{array}{c} (\epsilon,\epsilon) \xrightarrow{t} (q_t,q_t') \\ (\epsilon,\epsilon) \xrightarrow{f} (q_f,q_f') \end{array}$$

Für die Zustandsübergänge gilt:

$$\begin{array}{l} (\epsilon,\epsilon) \xrightarrow{f} (q_{t},q_{t}') \\ (\epsilon,\epsilon) \xrightarrow{f} (q_{t},q_{t}') \\ ((q_{t},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} ($$

Für die Zustandsübergänge gilt:

$$\begin{array}{l} (\epsilon,\epsilon) \xrightarrow{f} (q_{t},q_{t}') \\ (\epsilon,\epsilon) \xrightarrow{f} (q_{t},q_{t}') \\ ((q_{t},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} ($$

Eigenschaften:

 → benötigt Vollständigkeit (d.h. Für alle Zustand-Symbol-Kombinationen gibt es einen Zustandsübergang)

- → benötigt Vollständigkeit
 (d.h. Für alle Zustand-Symbol-Kombinationen gibt es einen Zustandsübergang)
- → Vollständigkeit und Determinismus bleiben erhalten

- → benötigt Vollständigkeit
 (d.h. Für alle Zustand-Symbol-Kombinationen gibt es einen Zustandsübergang)
- → Vollständigkeit und Determinismus bleiben erhalten
- → P-TIME

Gegeben: Vollständiger Baumautomat A_1 Gesucht: $L(A) = T(F) - L(A_1)$, wobei T(F) := Menge aller Bäume

Gegeben: Vollständiger Baumautomat A,

Gesucht: $L(A) = T(F) - L(A_1)$, wobei

T(F) := Menge aller Bäume

Algorithmus:

Komplementieren der Finalzustände

Wir erinnern uns an den Automaten von der Vereinigung:

$$\begin{array}{l} (\epsilon,\epsilon) \xrightarrow{t} (q_{t},q_{t}') \\ (\epsilon,\epsilon) \xrightarrow{f} (q_{f},q_{f}') \\ ((q_{t},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} (q_{t},q_{t}') \\ ((q_{t},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} ($$

Und fertig:

$$\begin{array}{c} (\epsilon,\epsilon) \xrightarrow{f} (q_{t},q_{t}') \\ (\epsilon,\epsilon) \xrightarrow{f} (q_{f},q_{f}') \\ ((q_{t},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} (q_{t},q_{t}') \\ ((q_{f},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} (q_{t},q_{t}') \\ ((q_{t},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} (q_{t},q_{t}') \\ ((q_{t},q_{t}'),(q_{f},q_{t}')) \xrightarrow{X} (q_{t},q_{t}') \\ ((q_{t},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} (q_{t},q_{t}') \\ ((q_{f},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} (q_{t},q_{t}') \\ ((q_{f},q_{t}'),(q_{f},q_{t}')) \xrightarrow{X} (q_{f},q_{t}') \\ ((q_{f},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} (q_{t},q_{t}') \\ \end{array}$$

$$\begin{aligned} &((q_{t},q_{f}'),(q_{f},q_{t}')) \xrightarrow{X} (q_{t},q_{f}') \\ &((q_{t},q_{f}'),(q_{t},q_{f}')) \xrightarrow{X} (q_{t},q_{f}') \\ &((q_{t},q_{t}'),(q_{f},q_{f}')) \xrightarrow{X} (q_{t},q_{f}') \\ &((q_{f},q_{f}'),(q_{f},q_{t}')) \xrightarrow{X} (q_{f},q_{f}') \\ &((q_{f},q_{f}'),(q_{t},q_{f}')) \xrightarrow{X} (q_{t},q_{f}') \\ &((q_{f},q_{t}'),(q_{f},q_{f}')) \xrightarrow{X} (q_{f},q_{f}') \\ &((q_{t},q_{f}'),(q_{f},q_{f}')) \xrightarrow{X} (q_{t},q_{f}') \\ &((q_{t},q_{f}'),(q_{f},q_{f}')) \xrightarrow{X} (q_{t},q_{f}') \end{aligned}$$

Eigenschaften:

→ benötigt Vollständigkeit & Determinismus

- → benötigt Vollständigkeit & Determinismus
- → Vollständigkeit und Determinismus bleiben erhalten

- → benötigt Vollständigkeit & Determinismus
- → Vollständigkeit und Determinismus bleiben erhalten
- → P-TIME für DTFA

- → benötigt Vollständigkeit & Determinismus
- → Vollständigkeit und Determinismus bleiben erhalten
- → P-TIME für DTFA
- → EXP-TIME für NTFA

Gegeben: Zwei Baumautomaten A, und A,

Gesucht: $L(A) = L(A_1) \cap L(A_2)$

Gegeben: Zwei Baumautomaten A₁ und A₂

Gesucht: $L(A) = L(A_1) \cap L(A_2)$

Algorithmus:

Bildung des Produktautomaten, aber Akzeptanz nur wenn genau beide Automaten akzeptieren

Wir erinnern uns an A₁:

$$\begin{array}{ccc} & & (q_t,q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{t}{\rightarrow} q_t & (q_t,q_f) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{f}{\rightarrow} q_f & (q_f,q_t) \stackrel{X}{\rightarrow} q_t \\ (q_f,q_f) \stackrel{X}{\rightarrow} q_f \end{array}$$

Wir erinnern uns an A₁:

$$\begin{array}{ccc} & (q_t,q_t) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{t}{\rightarrow} q_t & (q_t,q_f) \stackrel{X}{\rightarrow} q_t \\ \epsilon \stackrel{f}{\rightarrow} q_f & (q_f,q_t) \stackrel{X}{\rightarrow} q_t \\ (q_f,q_f) \stackrel{X}{\rightarrow} q_f \end{array}$$

Automat A₂:

$$\begin{array}{ccc} \boldsymbol{\epsilon} & \boldsymbol{q}_t', \boldsymbol{q}_t') \overset{X}{\rightarrow} \boldsymbol{q}_t' \\ \boldsymbol{\epsilon} \overset{f}{\rightarrow} \boldsymbol{q}_t' & \boldsymbol{(q_t', q_f')} \overset{X}{\rightarrow} \boldsymbol{q}_f' \\ \boldsymbol{\epsilon} \overset{f}{\rightarrow} \boldsymbol{q}_f' & \boldsymbol{(q_f', q_t')} \overset{X}{\rightarrow} \boldsymbol{q}_f' \\ \boldsymbol{(q_f', q_t')} \overset{X}{\rightarrow} \boldsymbol{q}_f' \\ \boldsymbol{(q_f', q_f')} \overset{X}{\rightarrow} \boldsymbol{q}_f' \end{array}$$

Dies war unser Vereinigungs-Produkt:

$$\begin{array}{l} (\epsilon,\epsilon) \xrightarrow{f} (q_{t},q_{t}') \\ (\epsilon,\epsilon) \xrightarrow{f} (q_{t},q_{t}') \\ ((q_{t},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} ($$

Und dies ergibt sich als Schnitt-Produkt:

$$\begin{array}{l} (\epsilon,\epsilon) \xrightarrow{f} (q_{t},q_{t}') \\ (\epsilon,\epsilon) \xrightarrow{f} (q_{t},q_{t}') \\ ((q_{t},q_{t}'),(q_{t},q_{t}')) \xrightarrow{X} ($$

Eigenschaften:

→ benötigt Vollständigkeit

- → benötigt Vollständigkeit
- → Determinismus und Vollständigkeit bleiben erhalten

- → benötigt Vollständigkeit
- → Determinismus und Vollständigkeit bleiben erhalten
- → P-TIME

Wir nutzen eine Kodierung um unbeschränkt verzweigte Bäume durch binär verzweigte darstellen zu können:

Wir nutzen eine Kodierung um unbeschränkt verzweigte Bäume durch binär verzweigte darstellen zu können:

→ Extension Kodierung ext mit Extension Operator @

Die Konstruktion:

Die Konstruktion:

Die Konstruktion(2):

Die Konstruktion(2):

Auf alle Bäume eines Baumautomaten angewandt:

→ Bijektion zweier Baumsprachen

Auf alle Bäume eines Baumautomaten angewandt:

→ Bijektion zweier Baumsprachen

Sie ist weiterhin:

→ Bijektion zwischen regulären Baumsprachen

Auf alle Bäume eines Baumautomaten angewandt:

→ Bijektion zweier Baumsprachen

Sie ist weiterhin:

→ Bijektion zwischen regulären Baumsprachen

Es gilt somit:

L(A) ist regulär $\Leftrightarrow ext(L(A))$ regulär

Auf alle Bäume eines Baumautomaten angewandt:

→ Bijektion zweier Baumsprachen

Sie ist weiterhin:

→ Bijektion zwischen regulären Baumsprachen

Es gilt somit:

L(A) ist regulär $\Leftrightarrow ext(L(A))$ regulär

Außerdem:

→ Komplexität der Kodierung ist PTIME

Abschluss unter unbeschränkt verzweigten Bäumen

Theorem 2:
Die Klasse von regulären unbeschränkt verzweigten Baumsprachen ist

Vereinigung

abgeschlossen unter:

Komplement

Schnitt

Abschluss unter unbeschränkt verzweigten Bäumen

Theorem 2:

Die Klasse von regulären unbeschränkt verzweigten Baumsprachen ist abgeschlossen unter:

Vereinigung

Komplement

Schnitt

→ gilt, da ext-Kodierung eine Bijektion der regulären Baumsprachen ist

Outline

1. Abschlusseigenschaften

2. Algorithmen

Gegeben: Ein Automat A und ein Baum t

Gesucht: Ist $t \in L(A)$?

Gegeben: Ein Automat A und ein Baum t

Gesucht: Ist $t \in L(A)$?

Algorithmus für binär verzweigte Bäume: Berechne "bottom-up" alle erreichbaren Zustände

Gegeben: Ein Automat A und ein Baum t

Gesucht: Ist $t \in L(A)$?

Algorithmus für binär verzweigte Bäume: Berechne "bottom-up" alle erreichbaren Zustände

Komplexität:

→ PTIME

$$\begin{array}{ccc}
\epsilon & \xrightarrow{a} q_{1} \\
q_{1} & \xrightarrow{b} q_{1} \\
q_{1} & \xrightarrow{b} q_{2} \\
q_{2} & \xrightarrow{b} q_{f} \\
(q_{2}, q_{2}) \xrightarrow{a} q_{1}
\end{array}$$

$$\begin{array}{ccc}
\epsilon & \xrightarrow{a} q_{1} \\
q_{1} & \xrightarrow{b} q_{1} \\
q_{1} & \xrightarrow{b} q_{2} \\
q_{2} & \xrightarrow{b} q_{f} \\
(q_{2}, q_{2}) \xrightarrow{a} q_{1}
\end{array}$$

$$\begin{array}{ccc} \epsilon & \stackrel{a}{\rightarrow} q_{1} \\ q_{1} & \stackrel{b}{\rightarrow} q_{1} \\ q_{1} & \stackrel{b}{\rightarrow} q_{2} \\ q_{2} & \stackrel{b}{\rightarrow} q_{f} \\ (q_{2}, q_{2}) \xrightarrow{a} q_{1} \end{array}$$

$$\begin{array}{ccc}
\epsilon & \xrightarrow{a} q_{1} \\
q_{1} & \xrightarrow{b} q_{1} \\
q_{1} & \xrightarrow{b} q_{2} \\
q_{2} & \xrightarrow{b} q_{f} \\
(q_{2}, q_{2}) \xrightarrow{a} q_{1}
\end{array}$$

$$\begin{array}{ccc}
\epsilon & \xrightarrow{a} q_{1} \\
q_{1} & \xrightarrow{b} q_{1} \\
q_{1} & \xrightarrow{b} q_{2} \\
q_{2} & \xrightarrow{b} q_{f} \\
(q_{2}, q_{2}) \xrightarrow{a} q_{1}
\end{array}$$

$$\begin{array}{ccc}
\epsilon & \xrightarrow{a} q_{1} \\
q_{1} & \xrightarrow{b} q_{1} \\
q_{1} & \xrightarrow{b} q_{2} \\
q_{2} & \xrightarrow{b} q_{f} \\
(q_{2}, q_{2}) \xrightarrow{a} q_{1}
\end{array}$$

$$\begin{array}{ccc}
\epsilon & \xrightarrow{a} q_{1} \\
q_{1} & \xrightarrow{b} q_{1} \\
q_{1} & \xrightarrow{b} q_{2} \\
q_{2} & \xrightarrow{b} q_{f} \\
(q_{2}, q_{2}) \xrightarrow{a} q_{1}
\end{array}$$

$$\begin{array}{ccc}
\epsilon & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{b} q_f \\
(q_2, q_2) \xrightarrow{a} q_1
\end{array}$$

Automat A wie folgt definiert:

$$\begin{array}{ccc}
\epsilon & \xrightarrow{a} q_{1} \\
q_{1} & \xrightarrow{b} q_{1} \\
q_{1} & \xrightarrow{b} q_{2} \\
q_{2} & \xrightarrow{b} q_{f} \\
(q_{2}, q_{2}) \xrightarrow{a} q_{1}
\end{array}$$

q, ist in der Zustandsmenge der Wurzel enthalten

Gegeben: Ein Automat A

Gesucht: Ist $L(A) \neq \emptyset$?

Gegeben: Ein Automat A

Gesucht: Ist $L(A) \neq \emptyset$?

Algorithmus für binär verzweigte Bäume: Suche einen Weg zum akzeptierenden Zustand (vgl. Erreichbarkeit in Graphen!)

Gegeben: Ein Automat A

Gesucht: Ist $L(A) \neq \emptyset$?

Algorithmus für binär verzweigte Bäume: Suche einen Weg zum akzeptierenden Zustand (vgl. Erreichbarkeit in Graphen!)

Komplexität:

→ PTIME

3	\xrightarrow{a} 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	^a → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	$\stackrel{\text{b}}{\rightarrow} 101$
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	\xrightarrow{a} 101	(101,100)	^b → 110
100	<u>a</u> → 100	110	\xrightarrow{a} 110	(110,100)	<u>b</u> 100

3	\xrightarrow{a} 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	^a → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	$\stackrel{\text{b}}{\rightarrow} 101$
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	^a → 101	(101,100)	b 110
100	^a → 100	110	<u>a</u> → 110	(110,100)	<u>b</u> 100

3	^a → 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{b}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	^a → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	$\stackrel{\text{b}}{\rightarrow} 101$
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	^a → 101	(101,100)	b 110
100	<u>a</u> → 100	110	<u>a</u> → 110	(110,100)	<u>b</u> 100

3	\xrightarrow{a} 001	100	\xrightarrow{a} 011	(001,001)	$\xrightarrow{b} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	\xrightarrow{b} 100
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	\xrightarrow{b} 101
010	\xrightarrow{a} 010	101	^a → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	^b 101
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	\xrightarrow{a} 101	(101,100)	\xrightarrow{b} 110
100	^a → 100	110	^a → 110	(110,100)	<u>b</u> 100

3	\xrightarrow{a} 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	^a → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	$\stackrel{\text{b}}{\rightarrow} 101$
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	\xrightarrow{a} 101	(101,100)	b 110
100	<u>a</u> → 100	110	\xrightarrow{a} 110	(110,100)	<u>b</u> 100

3	\xrightarrow{a} 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	<u>a</u> → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	^b → 101
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	^a → 101	(101,100)	<u>b</u> 110
100	^a → 100	110	<u>a</u> → 110	(110,100)	<u>b</u> 100

3	\xrightarrow{a} 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	<u>a</u> → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	^b 101
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	^a → 101	(101,100)	<u>b</u> 110
100	^a → 100	110	\xrightarrow{a} 110	(110,100)	<u>b</u> 100

3	^a → 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	\xrightarrow{a} 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	^b 101
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	\xrightarrow{a} 101	(101,100)	<u>b</u> 110
100	\xrightarrow{a} 100	110	\xrightarrow{a} 110	(110,100)	<u>b</u> 100
100		110		,	_

3	^a → 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	^a → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	^b 101
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	^a → 101	(101,100)	<u>b</u> 110
100	^a → 100	110	\xrightarrow{a} 110	(110,100)	<u>b</u> 100

3	$\stackrel{a}{\rightarrow} 001$	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	\xrightarrow{a} 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	\xrightarrow{b} 101
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	\xrightarrow{a} 101	(101,100)	<u>b</u> 110
100	^a → 100	110	<u>a</u> → 110	(110,100)	<u>b</u> 100

3	$\stackrel{a}{\rightarrow} 001$	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	<u>a</u> → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	^b 101
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	\xrightarrow{a} 101	(101,100)	<u>b</u> 110
100	^a → 100	110	\xrightarrow{a} 110	(110,100)	<u>b</u> 100

3	\xrightarrow{a} 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	<u>a</u> → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	$\stackrel{\text{b}}{\rightarrow} 101$
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	\xrightarrow{a} 101	(101,100)	<u>b</u> 110
100	^a → 100	110	\xrightarrow{a} 110	(110,100)	<u>b</u> 100

3	\xrightarrow{a} 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	\xrightarrow{a} 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	\xrightarrow{a} 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	\xrightarrow{a} 001	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	\xrightarrow{a} 010	101	<u>a</u> → 101	(110,110)	<u>b</u> 110
010	\xrightarrow{a} 100	101	\xrightarrow{a} 110	(111,111)	^b 101
100	\xrightarrow{a} 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	\xrightarrow{a} 010	110	\xrightarrow{a} 101	(101,100)	<u>b</u> 110
100	<u>a</u> → 100	110	\xrightarrow{a} 110	(110,100)	<u>b</u> 100

Nicht-Leerheitsproblem

Erreicht dieser "Zähler" den Finalzustand 111?

010 100
011
101
110
101
111
110
100

Nicht-Leerheitsproblem

Erreicht dieser "Zähler" den Finalzustand 111?

3	^a → 001	100	\xrightarrow{a} 011	(001,001)	$\stackrel{\text{b}}{\rightarrow} 001$
001	\xrightarrow{a} 001	011	\xrightarrow{a} 011	(010,010)	$\stackrel{\text{b}}{\rightarrow} 010$
001	^a → 010	011	\xrightarrow{a} 101	(100,100)	$\stackrel{\text{b}}{\rightarrow} 100$
001	^a → 100	011	\xrightarrow{a} 110	(011,011)	$\stackrel{\text{b}}{\rightarrow} 011$
010	$\stackrel{a}{\rightarrow} 001$	101	\xrightarrow{a} 011	(101,101)	$\stackrel{\text{b}}{\rightarrow} 101$
010	<u>a</u> → 010	101	<u>a</u> → 101	(110,110)	<u>b</u> 110
010	^a → 100	101	\xrightarrow{a} 110	(111,111)	<u>b</u> 101
100	<u>a</u> → 001	110	\xrightarrow{a} 011	(101,110)	<u>b</u> 111
100	$\stackrel{a}{\rightarrow} 010$	110	^a → 101	(101,100)	<u>b</u> 110
100	<u>a</u> → 100	110	<u>a</u> → 110	(110,100)	<u>b</u> 100

Nicht-Leerheitsproblem

Erreicht dieser "Zähler" den Finalzustand 111?

```
\stackrel{\text{b}}{\rightarrow} 001
                                              100
                                                           \xrightarrow{a} 011
                                                                                      (001,001)
              \xrightarrow{a} 001
                                                                                                                  \stackrel{\text{b}}{\rightarrow} 010
                                                           \xrightarrow{a} 011
                                                                                      (010,010)
             \xrightarrow{a} 001
001
                                              011
                                                                                                                 \stackrel{\text{b}}{\rightarrow} 100
             \xrightarrow{a} 010
                                                           \xrightarrow{a} 101
                                                                                      (100,100)
001
                                              011
                                                                                                                 \stackrel{\text{b}}{\rightarrow} 011
                                                                                      (011,011)
                                                          \xrightarrow{a} 110
001
             \stackrel{a}{\rightarrow} 100
                                              011
                                                                                                                  \xrightarrow{b} 101
                                                                                      (101,101)
                                                           \xrightarrow{a} 011
010
             \xrightarrow{a} 001
                                              101
                                                                                      (110,110)
                                                           \xrightarrow{a} 101
                                                                                                                  <u>b</u> 110
010
             \stackrel{a}{\rightarrow} 010
                                              101
                                                                                      (111,111)
                                                                                                                  \stackrel{\text{b}}{\rightarrow} 101
             \stackrel{a}{\rightarrow} 100
                                                           \xrightarrow{a} 110
010
                                              101
                                                                                \rightarrow (101,110)
             \stackrel{a}{\rightarrow} 001
                                                          \xrightarrow{a} 011
                                                                                                                  <u></u> → 111
100
                                              110
                                                                                                                 <u>b</u> 110
                                                                                      (101,100)
             \stackrel{a}{\rightarrow} 010
100
                                              110
                                                          \xrightarrow{a} 101
                                                                                      (110,100)
                                                           \xrightarrow{a} 110
                                                                                                                  <u>b</u> 100
100
             \stackrel{a}{\rightarrow} 100
                                              110
```

[→] Es gibt einen Weg zu 111

Algorithmen für binäre Baumautomaten sind in PTIME

→ über *ext*-Operator können unbeschränkt

verzweigte Automaten binär kodiert werden

- Algorithmen für binäre Baumautomaten sind in PTIME
 - → über ext-Operator können unbeschränkt verzweigte Automaten binär kodiert werden
 - → ext-Kodierung überträgt die Problemstellung:

- → über ext-Operator können unbeschränkt verzweigte Automaten binär kodiert werden
- → ext-Kodierung überträgt die Problemstellung:
- $-L(A) \neq \emptyset \Leftrightarrow ext(L(A)) \neq \emptyset$
- $-t \in L(A) \Leftrightarrow ext(t) \in ext(L(A))$

- → über ext-Operator können unbeschränkt verzweigte Automaten binär kodiert werden
- → ext-Kodierung überträgt die Problemstellung:
- $-L(A) \neq \emptyset \Leftrightarrow ext(L(A)) \neq \emptyset$
- $-t \in L(A) \Leftrightarrow ext(t) \in ext(L(A))$
- → Komplexität der Kodierung ist auch in PTIME

- → über ext-Operator können unbeschränkt verzweigte Automaten binär kodiert werden
- → ext-Kodierung überträgt die Problemstellung:
- $-L(A) \neq \emptyset \Leftrightarrow ext(L(A)) \neq \emptyset$
- $-t \in L(A) \Leftrightarrow ext(t) \in ext(L(A))$
- → Komplexität der Kodierung ist auch in PTIME
- => Algorithmen behalten ihre Komplexität und gelten auch für unbeschränkt verzweigte Bäume

Endlichkeit:

Gegeben: Ein Automat A

Gesucht: Ist L(A) endlich?

Endlichkeit:

Gegeben: Ein Automat A

Gesucht: Ist L(A) endlich?

Ein Algorithmus:

- → Finde nützliche Zustände, d.h. Zustände, die in einem akzeptierenden Lauf erscheinen
- → Suche nach Schleifen

Komplexität:

→ PTIME

Universalität:

Gegeben: Ein Automat A

Gesucht: Ist L(A) die Sammlung aller binär

verzweigten Bäume über das Alphabet (A)?

Universalität:

Gegeben: Ein Automat A

Gesucht: Ist L(A) die Sammlung aller binär

verzweigten Bäume über das Alphabet (A)?

Ein Algorithmus:

- → Determinisiere A
- → Vervollständige und bilde Komplement
- → Untersuche Leerheit

Komplexität:

- → EXPTIME für NFTA
- → PTIME für DFTA

Enthaltensein:

Gegeben: Zwei Automaten A und B

Gesucht: Ist $L(A)\subseteq L(B)$?

Enthaltensein:

Gegeben: Zwei Automaten A und B

Gesucht: Ist $L(A)\subseteq L(B)$?

Betrachte folgendes Problem:

$$\rightarrow L(A) \cap \overline{L(B)} = \emptyset$$
?

Komplexität:

- → EXPTIME für NFTA
- → PTIME für DFTA

Gleichheit:

Gegeben: Zwei Automaten A und B

Gesucht: Ist L(A)=L(B)?

Gleichheit:

Gegeben: Zwei Automaten A und B

Gesucht: Ist L(A)=L(B)?

Betrachte folgende Probleme:

- $\rightarrow L(A)\subseteq L(B)$?
- $\rightarrow L(B)\subseteq L(A)$?

Komplexität:

- → EXPTIME für NFTA
- → PTIME für DFTA

Leerheit des Schnittes:

Gegeben: Automaten A₁,...,A_n

Gesucht: Ist der Schnitt aller Automaten Ø?

Leerheit des Schnittes:

Gegeben: Automaten A₁,...,A_n

Gesucht: Ist der Schnitt aller Automaten Ø?

Ein Algorithmus:

- → Bilde Produktautomaten
- → Untersuche Leerheit

Komplexität:

→ EXPTIME

Zusammenfassung

- → Binäre und unbeschränkt verzweigte Baumautomaten sind unter Vereinigung, Schnitt und Komplement abgeschlossen
- → Extension Operator Kodierung als Mittel zur Darstellung von unbeschränkt verzweigten Baumautomaten durch binär verzweigte
- → Algorithmen und Komplexität einiger Probleme:
 - Basistermproblem
 - Nicht-Leerheitsproblem
 - Endlichkeit
 - Universalität
 - Enthaltensein
 - Gleichheit
 - Leerheit des Schnittes

Quellen

Für formale Erläuterungen und Beweise siehe:

Hubert Comon, et al.

Tree Automata Techniques and Applications, 2007.

https://gforge.inria.fr/frs/download.php/10994/tata.pdf

Vielen Dank für die Aufmerksamkeit!