

智能优化算法

第2章 数学基础知识

- 2.1 数字图像数据
- 2.2 导数,梯度,散度
- 2.3 范数

2.1 数字图像数据

- > 数字图片,通过像机等拍摄获取,
- ➤ 数据类型: jpg, png, gif....
- ▶ 规则的格子构成的二维数据 x,y

2.1.1 数字图像的表示

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & \vdots & & \vdots \\ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \end{bmatrix}$$

这个表达式的右侧定义 了一幅数字图像。矩阵 中的每个元素称为图像像素。

- 1. 大小为 M*N的图像: 二维函数 f(x,y),
- 2. (x, y)为坐标, f(x, y)为坐标值, 也即像素值
- 3. 灰度图: M*N, f(i,j) = c 彩色图: M*N*3, f(i,j) = (r, g, b)
- 4. 其中,像素值的大小范围为[0, 255]的整数值

彩色图、灰度图、二值图

[r,g,b]--[0,255]

[c]--[0,255]

0,1

2.1.2 像素坐标系:

左图为,M*N图像的坐标系

- 1、坐标原点位于左上角
- 2、数据先沿×轴增加
- 3、然后再沿y轴增加
- 4、坐标轴为整数
- 5、matlab中原点为(1,1)

2.1.3 像素间的关系与距离

-

• 像素p(m,n)的相邻像素

4 $\mathbb{N}_4(p)$: (m+1, n), (m-1, n), (m, n+1), (m, n-1)

对角邻域 $N_D(p)$: (m+1, n+1), (m+1, n-1), (m-1, n+1), (m-1, n-1)

8邻域 $N_8(p): N_4(p) + N_D(p)$

下一页 上一页

像素间距离的度量

像素P(x, y), Q(s, t)间的距离

•欧氏距离:

$$D_e(p,q) = [(x-s)^2 + (y-t)^2]^{\frac{1}{2}}$$

•D4距离(城市街区距离):

$$D_4(p,q) = |x-s| + |y-t|$$

•D₈距离(棋盘距离):

$$D_8(p,q) = \max(|x-s|,|y-t|)$$

2.1.4 数字图像的 matlab命令

- 读取图像: I = imread('scene.jpg');
- 显示图像: imshow(I);
- 获取图像的大小: [m,n,r] = size(I);
- 彩图转灰度图: gray_I = rgb2gray(I);
- 图像数据类型转换: double(I);
- RGB转HSV: I_h=rgb2hsv(I);
- 彩色图转二值图像:
 thresh_I = graythresh(I);
 im2_I = im2bw(I, thresh_I);

2.2 图像数据的微分算子

标量定义: 只有大小,没有方向,常数

向量定义: 有大小, 也有方向

n维向量写成行的形式,称为行向量,记为

$$\boldsymbol{\alpha} = (a_1, a_2, \cdots, a_n),$$

写成列的形式, 称为列向量, 记为

$$\boldsymbol{\alpha} = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix}.$$

2.2.1 向量内积

向量内积:常数

$$\vec{i} = (1,0,0)$$
 $\vec{j} = (0,1,0)$ $\vec{k} = (0,0,1)$

$$a = (x_1, y_1, z_1) = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k},$$

 $b = (x_2, y_2, z_2) = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$

$$< a, b > = a \cdot b = x_1 y_1 + x_2 y_2 + x_3 y_3$$

对任意的 $x, y \in \mathbf{R}^n$,

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i.$$

投影

■ 内积: 二维向量A,B内积定义

$$A \cdot B = |A| |B| \cos \theta$$

■ 投影:假设B为单位向量, |B|=1,

$$A \cdot B = |A| \cos \theta$$

■ A与B的内积值等于A向B所在直线投影的矢量长度

坐标系与向量

- 右图中二维坐标系的基: $\vec{e}_1 = (1,0), \vec{e}_2 = (0,1)$
- 向量(3,2)完整表示为:

$$(3,2) = 3\vec{e}_1 + 2\vec{e}_2$$

- 在x轴方向的投影为3, 在y轴方向的投影为2
- 上式又可写为

$$(3,2) = <(3,2), \vec{e}_1 > \vec{e}_1 + <(3,2), \vec{e}_2 > \vec{e}_2$$

因此,对于
$$n$$
维向量 $\vec{a} = (a_1, a_2, \dots, a_n)$,

有
$$\vec{a} = \sum_{i=1}^{n} \langle \vec{a}, e_i \rangle e_i$$

2.2.2 矩阵

定义1 由 $m \times n$ 个数 $a_{ij}(i=1,2,\cdots,m;\ j=1,2,\cdots,n)$ 排成一个 m 行 n 列的矩形表称为一个 $m \times n$ 矩阵,记作

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

其中 a_{ii} 称为矩阵的第i行第j列的元素.

一般情况下,我们用大写字母A, B, C 等表示矩阵. $m \times n$ 矩阵A简记为 $A = (a_{ij})_{m \times n}$ 或记作 $A_{m \times n}$.

稀疏矩阵(Sparse Matrix)

定义: 矩阵中非零元素的个数远远小于矩阵元素的总数

$$\mathbf{M} = \begin{bmatrix} 2 & 0 & 0 & 0 & 6 & 0 & 0 & 7 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

稀疏矩阵示意图

存储方式:用三元组来表示,分别是(行号,列号,数值)


```
a = [1 1 1 2 3 3 4 5 6];
b = [1 5 8 3 3 7 6 4 2];
v = [2 6 7 1 2 3 8 5 9];
A = sparse(a, b, v);
```

矩阵内积

1. 矩阵 A, B 内积定义:对应元素相乘求和

$$\mathbf{A} \bullet \mathbf{B} = \sum_{ij} a_{ij} b_{ij}$$

2. 矩阵A的迹(trace): A的主对角线(从左上方至右下方的对角线)上各个元素的总和:

$$tr A = \sum_{i=1}^{n} A_{ii}.$$

矩阵分解

• 对称特征值分解,矩阵为方阵

假设 $A \in S^n$, 即 A 是实对称 $n \times n$ 矩阵。那么 A 可以因式分解为

$$A = Q\Lambda Q^T$$
,

其中 $Q \in \mathbf{R}^{n \times n}$ 是正交矩阵, 即满足 $Q^TQ = I$,

而 $\Lambda = \mathbf{diag}(\lambda_1, \dots, \lambda_n)$ $\lambda_i \in A$ 的特征值

矩阵 $A \in \mathbf{R}^{n \times n}$ 被称为正交矩阵的条件是

$$A^T A = I$$
, $\mathbb{P} A^{-1} = A^T$

• 奇异值分解: 矩阵为任意阶矩阵

假设 $A \in \mathbb{R}^{m \times n}$, rank A = r。那么 A 可以因式分解为

$$A = U\Sigma V^T$$
,

其中 $U \in \mathbf{R}^{m \times r}$ 满足 $U^T U = I$, $V \in \mathbf{R}^{n \times r}$ 满足 $V^T V = I$, $\Sigma = \mathbf{diag}(\sigma_1, \dots, \sigma_r)$ σ_i 则称为**奇异值**。

求 U,V,Σ 分别是什么?

如何求出分解后的三个矩阵? U,V,Σ

 \square 构造对称方阵: A^TA

□ 对其进行特征分解:

$$A^T A v_i = \lambda_i v_i$$
 $i \exists V' = [v_1 \cdots v_n]$

□同样构造对称方阵:

 $A A^T$

□ 对其进行特征分解:

 $AA^Tu_i = \lambda_i u_i$ $i \exists U' = [u_1 \cdots u_m]$

注:

矩阵与其转置矩 阵的特征值相同

如何求出分解后的三个矩阵? U,V,Σ

需要证明A分解的U,V为以上定义的U,V

$$:: A = U\Sigma V^T,$$

$$:: A = U\Sigma V^{T},$$

$$:: A^{T} = V\Sigma^{T}U^{T} \Rightarrow A^{T}A = V\Sigma^{2}V^{T}$$

:: A^TA的特征向量组V即是SVD中的V矩阵 同理 AA^T 的特征向量组U即是SVD中的U矩阵

$$\Sigma$$
: $\sigma_i = \sqrt{\lambda_i}$

注:

矩阵与其转置矩 阵的特征值相同

奇异值分解可以写成

$$A = \sum_{i=1}^r \sigma_i u_i v_i^T,$$

其中 $u_i \in \mathbb{R}^m$ 是左奇异向量, $v_i \in \mathbb{R}^n$ 是右奇异向量。

例: 求矩阵的SVD分解:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$$

首先求出 A^TA 和 AA^T

$$\mathbf{A^TA} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathbf{A}\mathbf{A}^{\mathbf{T}} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

下一页 上一页

进而求出 A^TA 的特征值和特征向量:

$$\lambda_1 = 3; v_1 = \left(rac{1/\sqrt{2}}{1/\sqrt{2}}
ight); \lambda_2 = 1; v_2 = \left(rac{-1/\sqrt{2}}{1/\sqrt{2}}
ight)$$

接着求 AA^T 的特征值和特征向量:

$$\lambda_1 = 3; u_1 = \begin{pmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix}; \lambda_2 = 1; u_2 = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{pmatrix}; \lambda_3 = 0; u_3 = \begin{pmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$$

用 $\sigma_i = \sqrt{\lambda_i}$ 直接求出奇异值为 $\sqrt{3}$ 和1.

$$A = U\Sigma V^T = \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

SVD的性质,矩阵的秩为k时

• 矩阵的奇异值个数很少,可如下逼近:

$$A_{m\times n} = U_{m\times m} \Sigma_{m\times n} V_{n\times n}^T \approx U_{m\times k} \Sigma_{k\times k} V_{k\times n}^T$$

2.2.3 导数与梯度

一阶导数定义:函数在某一点处切线的斜率

如果一个函数 f(x) 在 x_0 附近有定义, 而且存在极限

$$L = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

那么 f(x) 在 x_0 处可导且导数 $f'(x_0) = L$.

高阶导数定义:

如果函数的导数函数仍然可导,那么导数函数的导数是二阶导数,二阶导数函数的导数是三阶导数.一般地记为

$$f^{(n)}(x) = \frac{d}{dx}f^{(n-1)}(x)$$

或者进一步

$$f^{(n)}(x) = \frac{d^n}{dx^n} f(x)$$

一页 上一页

• 导数的链式求导法则:

$$y = f(u(x))$$

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

偏导数

假设二元函数 f(x,y) 在点 (x_0,y_0) 的某个邻域中有定义. 固定 $y=y_0$,使 x 在 x_0 附近变动, $f(x,y_0)$ 就成为x 的一元函数. 如果这个函数在 x_0 可导,即存在极限:

$$\frac{d}{dx} f(x, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}.$$

则称这个导数为f(x,y),在 (x_0,y_0) 关于变元x的偏导数.

记为
$$\frac{\partial f(x_0, y_0)}{\partial x}$$
, 或者 $\frac{\partial f}{\partial x}\Big|_{(x_0, y_0)}$. 或者 $f'_x(x_0, y_0)$.

梯度

梯度算子记号 ∇ :

函数的梯度:向量,其偏导数构成的向量:

$$\nabla = \frac{\partial}{\partial x_1} \vec{e}_1 + \frac{\partial}{\partial x_2} \vec{e}_2 + \dots + \frac{\partial}{\partial x_n} \vec{e}_n$$

对于可微函数 f(x,y,z)

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$

$$\nabla f(x, y, z) = (f_x, f_y, f_z)$$

灰度图像--梯度算子离散

• 大小为M*N的灰度数字图像定义:

$$f_{ij} = f(x_i, y_j), i = 1, \dots M, j = 1, \dots N$$

• 其梯度定义如下

$$\nabla f = (\nabla_x f, \nabla_y f) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$

x方向

一阶向前差分或者向后差分逼近

$$(\frac{\partial f}{\partial x})_{ij} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$\approx f(x_{i+1}, y_j) - f(x_i, y_j) \text{ (向前差分逼近)}$$

$$= f_{i+1j} - f_{ij}$$

$$(\frac{\partial f}{\partial x})_{ij} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$\approx f(x_i, y_j) - f(x_{i-1}, y_j) \text{(向后差分逼近)}$$

$$= f_{ij} - f_{i-1j}$$

$$(\frac{\partial f}{\partial y})_{ij} = \lim_{\Delta x \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

$$\approx f(x_i, y_{j+1}) - f(x_i, y_j) \text{(向前差分逼近})$$

$$= f_{ij+1} - f_{ij}$$

$$\approx f(x_i, y_j) - f(x_i, y_{j-1}) \text{(向后差分逼近})$$

$$= f_{ij} - f_{ij-1}$$

· 大小为M*N的灰度数字图像梯度定义:

$$\nabla f = ((\nabla f)_{ij}) = ((\nabla_x f, \nabla_y f)_{ij})$$

$$= [(f_{i+1j} - f_{ij}, f_{ij+1} - f_{ij})]$$

$$i = 2, \dots, M - 1;$$

$$j = 2, \dots, N - 1;$$

• f的维度为:M*N

 $\nabla_{\mathbf{x}}$ f的维度: M*N, $\nabla_{\mathbf{y}}$ f的维度: M*N

 ∇f 的维度: M*N*2

• 边界上的梯度:可将边界等值延拓,也可周期延拓

5	4	9	7	3	5	4
3	2	4	6	8	3	2
9	3	1	4	7	9	3
2	7	8	6	4	2	7
5	4	9	7	3	5	4
3	2	4	6	8	3	2

周期延拓

等值延拓

2	4	6	8	3
3	1	4	7	9
7	8	6	4	2
4	9	7	3	5

2	2	4	6	8	3	3
2	2	4	6	8	3	3
3	3	1	4	7	9	9
7	7	8	6	4	2	2
4	4	9	7	3	5	5
4	4	9	7	3	5	5

2.2.4 二阶微分算子

若函数f(x,y)二阶可微,其一阶微分为:

$$g = \nabla f = (f_x, f_y) = (g_1, g_2);$$

对应的二阶微分为:

$$\nabla \boldsymbol{g} = \begin{pmatrix} \boldsymbol{g}_{1x} & \boldsymbol{g}_{2x} \\ \boldsymbol{g}_{1y} & \boldsymbol{g}_{2y} \end{pmatrix}$$
$$= \begin{pmatrix} \boldsymbol{f}_{xx} & \boldsymbol{f}_{xy} \\ \boldsymbol{f}_{yx} & \boldsymbol{f}_{yy} \end{pmatrix}$$

又称为Hessian矩阵

散度算子

• 散度算子: div(f):

$$\operatorname{div}(f) = \nabla \cdot f$$
 注意f为向量,维度与梯度相同

• 给定函数 $f(x,y) = (f_1, f_2)$ $\operatorname{div}(f) = \nabla \cdot f$ $= (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) \cdot (f_1, f_2) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y}$

拉普拉斯算子

• 给定函数 g(x,y)

• Laplace 第子: $\Delta = \nabla \cdot \nabla$:

$$\Delta \mathbf{g} = \nabla \cdot \nabla \mathbf{g}$$

$$= \left(\frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{y}}\right) \cdot (\mathbf{g}_{x}, \mathbf{g}_{y})$$

$$= \operatorname{div}(\nabla \mathbf{g}) = \mathbf{g}_{xx} + \mathbf{g}_{yy}$$

图像f(x,y)Laplace 算子离散:向前差分—向后差分

$$\Delta f = f_{xx} + f_{yy}$$

$$= (f_{i+1j} - f_{ij}) - (f_{ij} - f_{i-1j}) + (f_{ij+1} - f_{ij}) - (f_{ij} - f_{ij-1})$$

$$= f_{i+1j} - 4f_{ij} + f_{i-1j} + f_{ij+1} + f_{ij-1}$$

	1	
1	-4	1
	1	

五点差分格式

2.3 范数定义

满足以下条件的函数 $f: \mathbf{R}^n \to \mathbf{R}$, $\operatorname{dom} f = \mathbf{R}^n$ 称为**范数**,

- f 是非负的: 对所有的 $x \in \mathbf{R}^n$ 成立 $f(x) \ge 0$,
- f 是正定的: 仅对 x = 0 成立 f(x) = 0,
- f 是齐次的: 对所有的 $x \in \mathbf{R}^n$ 和 $t \in \mathbf{R}$ 成立 f(tx) = |t|f(x),
- f 满足三角不等式: 对所有的 $x, y \in \mathbf{R}^n$ 成立 $f(x+y) \leq f(x) + f(y)$ 。

范数是对向量 x 的长度的度量;

$$||x||_2 = (x^T x)^{1/2} = (x_1^2 + \dots + x_n^2)^{1/2}.$$

距离的多种度量

• 欧几里得距离:两点间最短的距离(绿色线)

$$S_{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

• 曼哈顿距离: (红色线)

$$S_{AB} = |x_A - x_B| + |y_A - y_B|$$

• 切比雪夫距离:

$$S_{AB} = \max(|x_A - x_B|, |y_A - y_B|)$$

5	4	3	2	2	2	2	2
5	4	3	2	1	1	1	2
5	4	3	2	1	*	1	2
5	4	3	2	1	1	1	2
5	4	3	2	2	2	2	2
5	4	3	3	3	3	3	3
5	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5

常用范数

· L1范数:

$$||x||_1 = |x_1| + \cdots + |x_n|$$

· L2范数:

$$||x||_2 = (x^T x)^{1/2} = (x_1^2 + \dots + x_n^2)^{1/2}.$$

• 无穷范数:

$$||x||_{\infty} = \max\{|x_1|, \cdots, |x_n|\}$$

• Lp范数:

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}.$$

• 矩阵F范数:

$$||X||_F = (\mathbf{tr}(X^T X))^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2\right)^{1/2}.$$

例题

• 给定3*3灰度图片:

$$u = (u_{ij}), i = 1,2,3; j = 1,2,3$$

$$(1) \quad \mathbf{y(u)} = \parallel \nabla \mathbf{u} \parallel_2^2$$

(2)
$$\mathbf{y}(\mathbf{u}) = ||\nabla \mathbf{u}||_1$$

$$y = \|\nabla u\|_{2}^{2} = \left(\sqrt{\sum_{ij} (\nabla u_{ij})^{2}}\right)^{2} = \sum_{ij} (\nabla_{x} u_{ij})^{2} + (\nabla_{y} u_{ij})^{2}$$

$$= \sum_{ij} (u_{i+1j} - u_{ij})^{2} + (u_{ij+1} - u_{ij})^{2}$$

$$y = \|\nabla u\|_{1} = \sum_{ij} |\nabla_{x} u_{ij}| + |\nabla_{y} u_{ij}|$$

$$= \sum_{ij} |u_{i+1j} - u_{ij}| + |u_{ij+1} - u_{ij}|$$

$$= \sum_{ij} \sqrt{(\nabla_{x} u_{ij})^{2} + (\nabla_{y} u_{ij})^{2}}$$