FTN	SIIT	/ IIS
------------	------	-------

Statistika - test

25. IX 2018.

1. Iz špila 52 karte, izvučeno je 5 karata (bez vraćanja). Kolika je verovatnoća P(A), da je u izvučenih 5 karata 3 slike (slike su J, Q, K)? (Koristiti binomne koeficijente.)

P(A) =

2. Nezavisne slučajne promenljive X i Y imaju istu raspodelu $\mathcal{N}(m, \sigma)$.

Koju raspodelu ima slučajna promenljiva $Z = \left(\frac{X-m}{\sigma}\right)^2 + \left(\frac{Y-m}{\sigma}\right)^2$?

3. Za uzorak obeležja sa normalnom raspodelom testiranjem $H_0(m=m_0)$ protiv $H_1(m>m_0)$ odbačena je nulta hipoteza sa pragom značajnosti α . Da li se odbacuje nulta hipoteza testiranjem $H_0(m=m_0)$ protiv $H_1(m \neq m_0)$ sa istim pragom značajnosti α ?

DA NE Nekad DA, nekad NE

4. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $\hat{y}_i = a + bx_i$, $i = 1, 2, \dots, n$.

Koji znak stoji između $\sum\limits_{i=1}^n (y_i-\bar{y}_n)^2$ i $\sum\limits_{i=1}^n (\hat{y}_i-\bar{y}_n)^2$, gde je $\bar{y}=\sum_{i=1}^n y_i/n$?

 \leq \geq = Zavisi od y_i

5. Nacrtati Boxplot, naći IQR i korigovanu uzoračku varijansu uzorka (4,5,5,6,4,6,2,3,4,3).

Nejednakost Čebiševa i zakon velikih brojeva Čebiševa

Statistika - test

25. IX 2018.

Prezime: _____ Ime: ____ br.ind.: ____

1. Za događaje A i B u prostoru verovatnoće (Ω, \mathscr{F}, P) staviti znak =, \leq , \geq u polje gde važi, ostaviti prazno ako ništa od toga ne važi.

 $P(A) \ \ \, \bigsqcup P(A \cap (A \cup B)), \qquad P(A \cap B) \ \ \, \bigsqcup P(A) - P(B), \qquad P(A \, B) \ \ \, \bigsqcup P(A|B) \, P(B).$

2. Nezavisne slučajne promenljive X i Yimaju istu raspodelu $\mathcal{N}(0,1).$

Kolika je verovatnoća $P(X^2 + Y^2 < 4)$?

- 3. Za uzorak obeležja sa Uniformnom raspodelom $X: \mathcal{U}(0,\sqrt{3})$, koliko je $E(\bar{S}_{10}^2)$?
- 4. Vrši se testiranje nezavisnosti diskretnih obeležja X i Y tabelom kontigencije za uzorak u kome X uzima 5 mogućih vrednosti i Y uzima 3 moguće vrednosti sa $\alpha = 0.05$.

Sa kvantilima koje raspodele se poredi statistika $\theta = \sum_{sve\ \acute{c}elije} \frac{(ostvareno-o \acute{c}ekivano)^2}{o \acute{c}ekivano}$, gde se suma uzima po svih $5 \cdot 3 = 15$ ćelija?

Kako glasi komanda u R-u za dobijanje traženog kvantila?

Rekonstruisati uzorak $(x_1,...,x_5)$ čija je empirijska funkcija raspodele data levo:

Naći Modus uzorka *Mo* =

Numeričke karakteristike slučajne promenljive

FTN SIIT / IIS Prezime:	Statistika - test	Novi Sad, 25. IX 2018. br.ind.:
Za događaje A i viti prazno ako r —	B u prostoru verovatnoće (Ω, \mathscr{F}, P) staviti znak ništa od toga ne važi.), $P(A \cap B) \square P(A) + P(B) - P(A \cup B)$,	=, ≤, ≥ u polje gde važi, osta-
	jne promenljive X i Y imaju istu Poasonovu rasportnoća $P(X+Y>2)$?	odelu $\mathscr{P}(1)$.
3. Za prost slučajni	i uzorak obeležja sa Uniformnom raspodelom X	: $\mathscr{U}(0,1)$, koliko je $E(\bar{S}_{10}^2)$?
	e nezavisnosti diskretnih obeležja X i Y tabelom v vrednosti i Y uzima 3 moguće vrednosti sa $\alpha =$	
Sa kvantilima kopo svih $4 \cdot 3 = 12$	sve ćeli je	areno-očekivano) ² , gde se suma uzima

5. Nacrtati Boxplot, naći Medijanu i korigovanu uzoračku varijansu uzorka (4,5,5,6,4,6,2,3,4,3).

Kako glasi komanda u R-u za dobijanje traženog kvantila?

Intervali poverenja za očekivanje obeležja $X: \mathcal{N}(m,\sigma)$ i testiranje hipoteze $H_0(m=m_0)$