Ácidos

Todo ácido tem como primeiro Elemento o 'H'

Exemplos de ácidos → HCl, HNO₃, HF, HLi

Não se esqueça → Ácido é um composto molecular que quando jogado em meio aquoso sofre Ionização, liberando H⁺, o que faz com que ele gere energia

Por quê o ácido é um composto molecular? É simples: É pelos elementos que o formam; Observe:

HCI → Composto de Hidrogênio e de Cloro; Tanto o Hidrogênio quanto o Cloro são Ametais, e sempre que tem uma ligação entre ametais; é chamado de composto molecular

Para saber se uma molécula é composta por metais ou ametais é só olhar a legenda da tabela periódica

Lembre-se: **Ácidos são COMPOSTOS MOLECULARES** que quando em meio aquoso sofrem **IONIZAÇÃO**

Nomenclatura

Hidroácidos → Ácidos que não tem Oxigênio

Exemplos: HF, HLi, HCI, HI, HCN

Todo hidroácido termina com "ídrico", ou seja, viu que uma molécula começa com H; e não tem O, pode ter certeza que termina com ídrico

Exemplo: HF → Por apresentar H, é chamado de ácido; Por não ter Oxigênio, deve terminar em ídrico → Ácido Fluorídrico

O termo "**Fluor**" veio ao nome pelo fato de que HF, é composto por **Hidrogênio e Flúor**

Oxiácidos → Ácidos que tem Oxigênio

Exemplos: HNO₃, H₃ PO₄, H₂ CO₃

Nomenclatura dos oxiácidos;

Para saber a nomenclatura de um oxiácido e sua força; Devemos subtrair o Número de Oxigênios presentes no ácido pelo número de Hidrogênios

Exemplo: HNO₃

Número de O = 3; Número de H = 1 3 - 1 = 2

Depois de fazer a subtração, vamos a uma tabela

Resultado da subtração	Nomenclatura	
3	perico	
2	ico	
1	oso	
0	hipooso	

Como o resultado da Subtração do HNO₃ deu 2. Sua nomenclatura fica Ácido Nítrico

De onde o Nitr? Do elemento que está entre o H e o O; no caso 'N'

Classificação

Um ácido pode ser caracterizado como:

Monobase \rightarrow Quando só tem 1 Hidrogênio \rightarrow HCl Dibase \rightarrow Quando tem 2 Hidrogênios \rightarrow H₂ SO₄ Tribase \rightarrow Quando tem 3 Hidrogênios \rightarrow H₃ PO₄

Força:

Para os Hidroácidos basta saber que:

HCI, HBr, HI ← Ácidos Fortes HF ← Ácido Moderado Resto dos Hidroácidos ← Ácidos Fracos

Para Sabermos a força de um oxiácido; Fazemos o mesmo processo da Nomenclatura dele (Subtrair O de H)

Exemplo: H₂ SO₄

Quantidade de O = 4Quantidade de H = 2

Montando uma tabela:

Resultado da Subtração	Força do Oxiácido
3	Fortíssimo
2	Forte
1	Moderado
0	Fraco

Existem algumas poucas exceções a essa tabela, mas os principais são:

Todos os ácidos que tem P (fósforo), que no final da subtração deve ser somado um. Por exemplo H_3 PO_4 .

Número de O = 4Número de H = 3

$$4 - 3 = 1$$

Todavia, devemos somar mais um, ou seja:

$$1 + 1 = 2$$

H₃ PO₄ . → Força: Forte → Nome: Ácido fosfórico A outra exceção a essa tabela, é o H₂ CO₃ ; Que é considerado um ácido forte de nome ácido carbônico

Como funciona a Ionização de um ácido

Sempre que um ácido é jogado em água, você sabe que ele sofre ionização; Mas como isso funciona?

É simples; Sempre que a molécula é jogada na água, o Hidrogênio fica positivo, e o resto negativo. Observe

$$HCI(aq) \rightarrow H^+ + CI^-$$

E quando tem mais de um Hidrogênio? Simples também; Hidrogênio por Hidrogênio fica negativo

$$H_2$$
 SO₄ (aq) \rightarrow H⁺ + HSO₄ ⁻ HSO₄ ⁻ (aq) \rightarrow H⁺ + SO₄ ²⁻

E assim são as ionizações totais; Das totais para as parciais, a diferença é pouca; Você só pega a 1° etapa da Total; Por exemplo:

Faça a ionização parcial do H₂ SO₄

É só fazer isso: H_2 SO₄ (aq) \rightarrow H⁺ + HSO₄ ⁻

A outra etapa não existe na ionização parcial

Orto Piro e Meta

A molécula **Orto é o ácido Padrão**; Exemplos de Moléculas Orto: HCl, HBr, Hl, H₂ SO₄, H₃ PO₄; e muito mais...

A molécula Piro; Nada mais é que 2 Moléculas Orto - Uma água

Exemplo: Vamos fazer a Piromolécula do H₃ PO₄

Então, o que queremos é: $2H_3$ PO_4 - H_2 O Lembre-se que quando temos um número na frente de uma molécula inteira, significa que ela está multiplicando todos os índices (números pequenos)

No Caso do 2H₃ PO₄; Significa que estamos com essa molécula

H₆ P₂ O₈; Agora que temos 2H₃ PO₄. é só subtrair uma H₂ O

H₆ P₂ O₈ - H₂ O

Como a água tem 2 Hidrogênios e 1 Oxigênio, é só tirar 2H e 1O do $H_6\ P_2\ O_8$; Fica assim:

H₄ P₂ O₇

Agora vamos fazer metamolécula do mesmo ácido;

Como metamolécula é → Orto - Água

H₃ PO₄ - H₂ O

Como a água tem 2 Hidrogênios e 1 Oxigênio, é só tirar 2H e 1O do H_3 PO_4 ; Fica assim:

Uso dos ácidos

Os ácidos estão presentes no nosso cotidiano e nem notamos; Os principais ácidos têm funções no nosso dia-a-dia, e devemos sabê-las:

HCI(Ácido Muriático) → Presente no nosso suco gástrico; Utilizado em construções para tirar o "reboco"

HF → Ácido utilizado para corroer vidro

 H_3 CCOOH(Ácido acético) \rightarrow Principal componente do Vinagre HNO $_3$ (Ácido Nítrico) \rightarrow Utilizado na fabricação de Explosivos H_2 SO $_4$ (Ácido Sulfúrico) \rightarrow Provoca queimaduras com manchas pretas

H₂ CO₃ (Ácido Carbônico) → Presente no refrigerante

Não esqueça, que as chuvas ácidas também estão presentes no nosso cotidiano;

Quando ocorre uma chuva ácida em um ambiente sem poluição e sem raios e relâmpagos \rightarrow O ácido presente é o H_2 CO_3

Quando ocorre uma chuva ácida em ambiente poluído \rightarrow O ácido presente é H_2 SO_4 / HNO_3

Quando ocorre uma chuva ácida em ambientes sem poluição, mas com raios e relâmpagos \rightarrow HNO $_3$