UNIVALI – CIÊNCIA DA COMPUTAÇÃO EXERCÍCIOS DE FIXAÇÃO – UNIDADE 1 – GRAFOS 19/2

1) Considere o grafo orientado abaixo e assinale com "X" na tabela o resultado da análise de cada

situação proposta.

a3	Grafo	Vértices	Elementar	Não Elementar	Simples
a1 v ₂ a4 v ₃	Caminho	1,2,3,4,5			
	Caminho	2,1,4,5			
	Caminho	2,3,4,5,1			
	Caminho	1,2,2,3			
	Circuito	2,2			
\a9 a8	Circuito	3,4,5,1,2,1,3			
a6	Circuito	1,3,4,5,1			
(V ₅) ◀ a7 (V ₄)	Circuito	4,5,1,2,2,3,4			

2) Considere o grafo não orientado da figura abaixo, assinalando com (S)im ou (N)ão na tabela o

resultado da analise das situações propostas.

2 1 3	Descrição	Cadeia Elementar	Ciclo	Ciclo Elementar
	2,2			
	1,3,6,5,2,1			
	2,4,6,3,1,5,2			
	4,6,5,2,2,1,3			
	1,5,2,2,5,1			

3) Desenhe o grafo proposto ou justifique se tal grafo não pode existir:

	Descrição do grafo	
(1)	3 vértices de grau 1	
(2)	4 arestas ; 4 vértices com grau 1,2,3,4	
(3)	Grafo Simples ; 5 vértices com grau 4,4,4,2,2	

- 4) Considerando o grafo ao lado determine:
 - a) matriz de adjacência que o representa
 - b) matriz de incidência que o representa
 - c) lista de listas que o representa
 - d) Γ^{3} (x5) e Γ^{-3} (x5)
 - e) Γ^2 (x4) e Γ^{-2} (x4)
 - f) semigraus $d_e(x3)$ e $d_s(x3)$

5) Nos grafos abaixo existe Ciclo de Hamilton e/ou de Euler?? Se sim, indique a sequência de vértices.

UNIVALI – CIÊNCIA DA COMPUTAÇÃO EXERCÍCIOS DE FIXAÇÃO – UNIDADE 1 – GRAFOS 19/2

- 6) Responda e exemplifique:
 - a) O que é um grafo simples?
 - b) O que é um grafo completo?
 - c) O que é um grafo conexo?
 - d) Um grafo G (não orientado) que tem um ciclo incluindo todas as arestas é um ciclo de Euler?
- 7) Dado o grafo 2.1, veja entre os grafos 2.2 a 2.4 qual é subgrafo ou grafo parcial do original.

 Obs.: GRAFO PARCIAL é o grafo formado por todos os nós de um dado grafo, contendo um subconjunto de seus arcos (não está nos slides).

- 8) Desenhe os grafos direcionados abaixo e identifique os conjuntos de antecessores e sucessores:
 - a) G=(V,A) V={1,2,3,4,5} A={(1,2),(2,3),(1,4),(4,2),(4,5),(5,3)}
- b) G=(V,A) V={1,2,3,4,5,6}
 - $A = \{(1,2),(2,3),(1,4),(2,4),(3,4),(4,5),(5,3),(3,6),(5,6)\}$
- 9) Exemplifique um grafo fortemente conexo e um grafo desconexo, ambos com no mínimo 6 vértices. Obs: GRAFO DESCONEXO: se há pelo menos um par de vértices que não está ligado por nenhuma cadeia (não está nos slides).
- 10) Apresente 2 ciclos de Euler deste grafo:

