University of Ottawa School of Electrical Engineering and Computer Science CSI4142 Project Phase 2 2019

Ottawa Accidents Data Mart - Marking Schema

1. **(10 marks) Physical Design:** Create the physical schema of the data mart using the DBMS of your choice.

Fact Table created	5
Dimension Tables created	5

2. **(30 marks) Data staging**: Extract and transform the data and load all rows into the data mart.

High Level Data Staging Plan – 1 pager	5
Hour Dimension - data staged for 4 years - mapped to correct "exact" accident time in Accident dimension	2 3
Weather Dimension - data staged for Ottawa stations - contains hourly data from all relevant Ottawa stations, handling NULLs	3 2
Location dimension - parsing of collision location - neighborhoods added - linked to nearest weather station, with relevant climate data	2 1 2
Accident dimension - data staged for all accidents - integrity: road surface and environment checked against hourly weather for anomalies (e.g. dry versus rain)	3 2
Fact table - include measure(s): IsFatal - use of surrogate keys and ensuring referential integrity Comments of TA	2 3
Confinents of 1A	

3.	(30 marks) OLAP queries: Implement the following five types of queries by traversing the
	concept hierarchies. (Refer to Example 4.4 on page. 146 of the Data Mining textbook (3rd
	edition) by Han et. al. for a description of these operations.)

- Roll up		5
- Drill Down		5
- Slice		5
- Dice		5
- Top N		5
- Bottom N		5
Comments of TA		

4. (20 marks) Additional Work

Events dimension	
Toronto data	
Calgary data	
Toronto + Calgary data	
Other:	
	20
Comments of TA	
TOTAL	70
(The highest mark would be 90/70)	