Министерство образования и науки Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Российский государственный университет нефти и газа(НИУ) имени И. М. Губкина»

Кафедра «Автоматизированные системы управления»

Дисциплина «Моделирование систем»

ОТЧЕТ

по лабораторной работе №1 «Статистический анализ одномерных выборок»

Выполнил:

Кононенко Богдан

Группа АА-19-05

Преподаватель: Степанкина О.А.

- 1. Провести предварительный анализ данных, включающий:
- оценку числовых характеристик (по 2 в каждой из групп; оформить в виде таблицы);
 - графический анализ;
- предварительное заключение о законе распределения каждой случайной величины.

Считывание выборок

```
file = 'ms-data1.xlsx';
A=xlsread(file);
```

Оценка числовых характеристик

% ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ

```
mat_ozh = mean(A);
mediana = median(A);
sr_otkl = std(A);
sr_oshibka = std(A)/sqrt(length(A));
moda = mode(A);
dispersia = var(A);
axscess = kurtosis(A);
assim = skewness(A);
```

int = abs(min(A)) + abs(max(A));

1	2	3	4	5	6	7	
5,00	5,75	7,13	6,78	7,20	4,98	9,98	мат ожидание
5,00	5,60	6,79	6,84	7,58	5,00	10,00	медиана
7,13	5,01	5,06	3,05	6,34	2,23	2,42	ср отклонение
0,32	0,22	0,23	0,14	0,28	0,10	0,11	ср ошибка
7,46	-1,18	3,19	0,15	0,92	3,00	9,00	мода
2,93	2,81	3,21	2,89	1,82	2,80	2,84	эксцесс
0,02	0,28	0,14	-0,04	-0,06	0,35	0,06	коэфф ассиметрии
50,80	25,08	25,63	9,32	40,24	4,99	5,86	дисперсия
5	6	7	7	7	5	10	Среднее

1. Графический анализ выборок

% ГРАФИЧЕСКИЙ АНАЛИЗ

% построение гистограммы, т.е. дискретного аналога ненормированной функции распределения

subplot(1,4,1);

h = histogram(x); % гистограмма

subplot(1,4,2);

plot(ksdensity(x),'-r','LineWidth',3) % плотность распределения

% ПРЕДВАРИТЕЛЬНОЕ ЗАКЛЮЧЕНИЕ:

% 1 выборка нормальное распределение

% 2 выборка нормальное распределение

% 3 выборка нормальное распределение

% 4 выборка нормальное распределение

% 5 выборка равномерное распределение

% 6 выборка нормальное распределение

% 7 выборка нормальное распределение

2. Провести проверку на выбросы. В случае выброса – повторить п.1, дополнить таблицу.

Проверка на выбросы

Выброс — в статистике результат измерения, выделяющийся из общей выборки.

B = rmoutliers(A) обнаруживает и удаляет выбросы из данных в векторе, матрице, таблице или расписании.

- Если А строка или вектор-столбец, rmoutliers обнаруживает выбросы и удаляет их.
- Если А матрица, таблица, или расписание, rmoutliers обнаруживает выбросы в каждом столбце или переменной А отдельно и удаляет целую строку.

```
% ПРОВЕРКА НА ВЫБРОСЫ
% выброс
A = rmoutliers(B)
x=A(:,n);
subplot(1,3,3);
h = histogram(x);
```


Обновление данных:

1	2	3	4			7	
5,00	5,75	7,13	6,78	7,20	4,98	9,98	мат ожидание
5,00	5,60	6,79	6,84	7,58	5,00	10,00	медиана
7,13	5,01	5,06	3,05	6,34	2,23	2,42	ср отклонение
0,32	0,22	0,23	0,14	0,28	0,10	0,11	ср ошибка
7,46	-1,18	3,19	0,15	0,92	3,00	9,00	мода
2,93	2,81	3,21	2,89	1,82	2,80	2,84	эксцесс
0,02	0,28	0,14	-0,04	-0,06	0,35	0,06	коэфф ассиметрии
50,80	25,08	25,63	9,32	40,24	4,99	5,86	дисперсия
5	6	7	7	7	5	10	Среднее

3. Проверить каждую выборку на принадлежность к закону распределения, о котором было сделано предположение в пункте 1, используя критерии хи-квадрат и Колмогорова-Смирнова.

Проверить каждую выборку на принадлежность к закону распределения.

В данном случае критерий Колмогорова используется для проверки гипотезы о принадлежности наблюдаемой выборки нормальному закону, параметры которого оцениваются по этой самой выборке методом максимального правдоподобия. То есть, проверяется сложная гипотеза и в качестве оценок параметров нормального закона используются выборочные оценки среднего и дисперсии.

Одновыборочный критерий проверки нормальности Колмогорова-Смирнова основан на максимуме разности между кумулятивным распределением выборки и предполагаемым кумулятивным распределением:

$$D_n = \sup_{x} |F_n(x) - F(x)|$$

 $F_n(x)$ - кумулятивное распределение выборки

F(x) - ожидаемое кумулятивное распределение (с известными параметрами)

Если **D** статистика Колмогорова-Смирнова значима, то гипотеза о том, что соответствующее распределение нормально, должна быть отвергнута.

Выводимые значения вероятности основаны на предположении, что среднее и стандартное отклонение нормального распределения известны априори и не оцениваются из данных.

Однако на практике обычно параметры вычисляются непосредственно из данных.

y=normcdf(x,mean(x),std(x)); % возвращает кумулятивную функцию распределения (cdf) стандартного нормального распределения, вычисляемого в значениях в х

$$CDF = [x y];$$

k1 = kstest(x,CDF,0.01); % возвращает тестовое решение для нулевой гипотезы что данные в векторном х прибывает из стандартного нормального распределения, против альтернативы, что она не прибывает из такого распределения, с помощью одновыборочного критерия Колмогорова-Смирнова. Результат h 1 если тест отклоняет нулевую гипотезу на 5%-м уровне значения или 0 в противном случае.

Eсли критерий = 0, то мы можем принять гипотезу о нормальном распределении, иначе (=1) - отклонить.

(H0 – выборка подчиняется нормальному закону распределения, H1 – опровержение предположения о нормальности)

У стандартного нормального распределения почти все значение находятся в пределах ± 3 (правило трех сигм). Таким образом, мы получили относительную разность в частотах для одной группы. Нам нужна обобщающая мера. Просто сложить все отклонения нельзя — получим 0 (догадайтесь почему). Пирсон предложил сложить квадраты этих отклонений.

$$\chi_n^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

Это и есть знамений критерий Хи-квадрат Пирсона. Если частоты действительно соответствуют ожидаемым, то значение критерия будет относительно не большим (т.к. большинство отклонений находится около нуля). Но если критерий оказывается большим, то это свидетельствует в пользу существенных различий между частотами.

«Большим» критерий Пирсона становится тогда, когда появление такого или еще большего значения становится маловероятным. И чтобы рассчитать такую вероятность, необходимо знать распределение критерия при многократном повторении эксперимента, когда гипотеза о согласии частот верна.

CDF1=@(z)cdf('norm',z,mean(x),std(x)); % нормальная функция распределения

h1 = chi2gof(x,'cdf',CDF1); % возвращает тестовое решение для нулевой гипотезы что данные в векторном х прибывает из нормального распределения со средним значением и отклонением, оцененным от х, использование критерия согласия Хи-квадрат.

Если Хи кв. =0, то мы можем принять гипотезу о нормальном распределении, иначе (=1) - отклонить.

(Н0 – выборка подчиняется нормальному закону распределения,Н1 – опровержение предположения о нормальности)

Параметры законов распределения:

[a,b,a_int,b_int]=unifit(x) % для равномерного

[muhat,sigmahat,muci,sigmaci] = normfit(x) % для нормального

Cm	Предположение о Законе	Параметры	Хи кв.	KC.	
1	норм	(5,00; 7,12)		0	✓
2	норм	(5,75; 5)	(0	✓
3	норм	(7,13; 5,06)	(0	✓
4	норм	(6,78;3,05)	(0	✓
5	равномерн	(-3,96;17,67)		1	~
6	норм			1 1	X
7	норм			1 1	X

Для выборок 1-4 нормальный закон распределения был подтверждён, а для 6-7 – нет.

4. Можно ли в качестве оценки математического ожидания использовать округленное до целого среднее значение?

1	2	3	4	5	6	7	
5,00	5,75	7,13	6,78	7,20	4,98	9,98	мат ожидание
5	6	7	7	7	5	10	Среднее

Математическое ожидание — это ни что иное, как среднее арифметическое наблюдаемых значений интересующего нас признака.

5. Для нормально распределенных случайных величин проверить: $\mu 1 = \mu 2$; s 2 1 = s 2 2.

1	2	3	4	
5,0	5,8	7,1	6,8	мат ожидание
50,8	25,1	25,6	9,3	дисперсия

Можем заметить, что выборки 3 и 4 имеют близкие мат.ожидания, значит, у них пик графика будет находиться примерно на одной линии по оси ОХ, но так как дисперсии не равны, то графики будут располагаться на разной высоте по ОУ.

Выборки 2 и 3 имеют схожие дисперсии, но разные мат.ожидания, значит, графики будут находиться примерно на одной высоте по ОУ, но их пик будет находиться на разных координатах по оси ОХ.

- 6. Проверить однородность тех же (п. 3) выборок, используя критерии
 - Колмогорова-Смирнова,
 - Мана-Уитни или Уилкоксона

Проверить однородность выборок

Исходя из предыдущего пункта, попарно объединим 3 и 2 выборки, а также 3 и 4.

Гипотезы об однородности выборок – это гипотезы о том, что рассматриваемые выборки извлечены из одной и той же генеральной совокупности.

Пусть имеются две независимые выборки, произведенные из генеральных совокупностей с неизвестными теоретическими функциями распределения $F_1(x) \ _{\rm H} F_2(x)$

Проверяемая нулевая гипотеза имеет вид H_0 : $F_1(x) = F_2(x)$ против конкурирующей $H_1: F_1(x) \neq F_2(x)$. Будем предполагать, что функции $F_1(x)$ и $F_2(x)$ непрерывны и для оценки используем статистику Колмогорова — Смирнова.

Критерий Колмогорова-Смирнова использует ту же самую идею, что и критерий Колмогорова. Однако различие заключается в том, что в критерии Колмогорова сравнивается эмпирическая функция распределения с теоретической, а в критерии Колмогорова-Смирнова сравниваются две эмпирические функции распределения.

Статистика критерия Колмогорова-Смирнова имеет вид:

$$\lambda' = \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \cdot \max |F_{n_1}(x) - F_{n_2}(x)|$$

где $F_{n_1}(x)$ и $F_{n_2}(x)$ — эмпирические функции распределения, построенные по двум выборкам с объемами n_1 и n_2 .

Гипотеза H_0 отвергается, если фактически наблюдаемое значение статистики λ' больше критического λ'_{kp} , т.е. $\lambda' > \lambda'_{kp}$, и принимается в противном случае.

При малых объемах выборок $(n_1,n_2\leq 20)$ критические значения λ'_{kp} для заданных уровней значимости критерия можно найти в специальных таблицах. При $n_1,n_2\to\infty$ (а практически при $n_1,n_2\geq 50$) распределение статистики λ' сводится к распределению Колмогорова для статистики λ . В этом случае гипотеза H_0 отвергается на уровне значимости α , если фактически наблюдаемое значение λ' больше критического λ_α , т.е. $\lambda'>\lambda_\alpha$, и принимается в противном случае.

```
%Критерий Колмогорова-Смирнова kstest_3_4 = kstest2(A(:,3),A(:,4)); disp("Однородность выборок 3 и 4 п К.-С"); disp(kstest_3_4); kstest_3_2 = kstest2(A(:,3),A(:,2)); disp("Однородность выборок 3 и 2 п К.-С"); disp(kstest_3_2);
```

H0: Проверяется гипотеза H_0 : выборки однородны, т. е. извлечены из одной и той же генеральной совокупности.

Результат: выборки 2,3,4 однородны

Ранговые критерии однородности основаны на использовании номеров наблюдений в вариационном ряду, полученном после упорядочивания объединенной выборки объема Номер, который получает наблюдение в упорядоченной выборке, называется его рангом и обозначается дальше метками.

Предлагаемые ниже критерии состоятельны при проверке гипотезы неоднородности, когда неоднородность порождается различием в параметре положения распределений. Для случая двух выборок альтернативные гипотезы можно записать в виде:

$$H_{11}: F_1(x) = F_2(x-\mu), \ \mu \neq 0$$
 — распределения сдвинуты относительно друг друга; $H_{12}: F_1(x) = F_2(x-\mu), \ \mu > 0$ — второе распределение сдвинуто влево по отношению к первому; $H_{13}: F_1(x) = F_2(x-\mu), \ \mu < 0$ — второе распределение сдвинуто вправо по отношению к первому,

```
%Критерий Мана-Уитни или Уилкоксона
[p,h] = ranksum(A(:,3),A(:,4));
disp("Однородность выборок 3 и 4 по Мана-Уитни или
Уилкоксона");
disp(p);
disp(h);

[p,h] = ranksum(A(:,3),A(:,2));
disp("Однородность выборок 3 и 2 по Мана-Уитни или
Уилкоксона");
disp(p);
disp(h);
```

Н0: Между выборками существуют лишь случайные различия по уровню исследуемого признака.

H1: Между выборками существуют неслучайные различия по уровню исследуемого признака.

p>0 вторая выборка сдвинута влево по отношению к первой p<0 вторая выборка сдвинута вправо по отношению к первой p=0 сдвинуты по отношению друг к другу

	N9	N:	μ1=	s21=	Критерий КС.		Ранговый кр.	
СТ		СТ	μ2	s22	Выбрана НО?		Выбрана Н0?	
						h	p=0.40	
	3	4	✓	X	1	=0	65	
						h	p=1.18	
	3	2	X	✓	1	=1	25e-05	

<u>Результат</u>: Выборки 3 и 4 имеют случайно схожие различия, а выборки 3 и 2 взяты из одной генеральной совокупности со сдвигом 1.1825e-05.