Measuring Umpire Consistency

David J. Hunter

January 11, 2018

- Consistency is more important than conformity.
- A consistent zone need not be rectangular, but should be convex.
- ► Consistency *within* a game is important.
- Different zones for LH and RH batters are OK.
- ▶ One egregiously bad call is worse/as bad as several marginally bad calls.

- Consistency is more important than conformity.
- ▶ A consistent zone need not be rectangular, but should be convex.
- ► Consistency *within* a game is important.
- Different zones for LH and RH batters are OK.
- ▶ One egregiously bad call is worse/as bad as several marginally bad calls.

- Consistency is more important than conformity.
- ▶ A consistent zone need not be rectangular, but should be convex.
- Consistency within a game is important.
- Different zones for LH and RH batters are OK.
- ▶ One egregiously bad call is worse/as bad as several marginally bad calls.

- Consistency is more important than conformity.
- ▶ A consistent zone need not be rectangular, but should be convex.
- Consistency within a game is important.
- Different zones for LH and RH batters are OK.
- ▶ One egregiously bad call is worse/as bad as several marginally bad calls.

- Consistency is more important than conformity.
- ▶ A consistent zone need not be rectangular, but should be convex.
- Consistency within a game is important.
- Different zones for LH and RH batters are OK.
- One egregiously bad call is worse/as bad as several marginally bad calls.

Define established ball and strike zones

Established Strike Zone: Convex Hull

Let H_I denote the open half-plane bounded by the line I. The convex hull of a set of points P is the set

$$S = \bigcap_{\{H_I \mid H_I \cap P = \emptyset\}} H_I^c$$

When *P* contains the locations of all called strikes, *S* is the *established strike zone*.

Established Strike Zone: Convex Hull

Established Ball Zone: α -Shape?

For $\alpha > 0$, let $B_{x,\alpha}$ denote the open ball in \mathbb{R}^2 of radius α centered at the point x. Given a set of points $P \subset \mathbb{R}^2$, two points $p_1, p_2 \in \mathbb{R}^2$ are α -neighbors if p_1 and p_2 lie on the boundary of some $B_{x,\alpha}$ such that $B_{x,\alpha} \cap P = \emptyset$.

The α -shape is the straight line graph formed by drawing line segments between α -neighbors.

- ightharpoonup α -neighbors are close together but next to big empty regions.
- ▶ The α -shape is the outline of the points P.
- ▶ Does not need to be convex or even simply-connected.
- For large α , the α -shape is the boundary of the convex hull.

Established Ball Zone: α -Shape?

Established Ball Zone: α -Hull

For $\alpha > 0$, let $B_{x,\alpha}$ denote the open ball in \mathbb{R}^2 of radius α centered at the point x. Given a set of points $P \subset \mathbb{R}^2$, the α -hull of P is the set

$$X = \bigcap_{\{B_{\mathsf{x},\alpha} \mid B_{\mathsf{x},\alpha} \cap P = \emptyset\}} B_{\mathsf{x},\alpha}^{\mathsf{c}}$$

When P contains the locations of all called balls, X is the *established* ball zone.

- ▶ Approaches convex hull $S = \bigcap_{\{H_I | H_I \cap P = \emptyset\}} H_I^c$ as $\alpha \to \infty$.
- Intuitively: hole punch.
- May not be simply connected for smallish α .

Established Ball Zone: α -Hull

Inconsistency Index Metric

S =established strike zone (convex hull of strikes)

 $X = \text{established ball zone } (\alpha - \text{hull of balls})$

$$\mathsf{inconsistency} = \frac{\mathsf{balls} \; \mathsf{in} \; S + \mathsf{strikes} \; \mathsf{in} \; X}{\mathsf{total} \; \mathsf{calls}}$$

- This is a per game metric.
- ► Compute separately for right-hand batters and left-hand batters and add.

Inconsistency Index Metric

S =established strike zone (convex hull of strikes)

 $X = \text{established ball zone } (\alpha - \text{hull of balls})$

$$inconsistency = \frac{balls in S + strikes in X}{total calls}$$

- This is a per game metric.
- Compute separately for right-hand batters and left-hand batters and add.

Choosing α

- lacktriangledown lpha too small: Ball zone has lots of components
- $ightharpoonup \alpha$ too large: Seems unfair to umpires
- $ightharpoonup \alpha$ way too large: Ball zone becomes simply connected
- $\sim \alpha = 0.5539$: 1/3 rule-book zone width

Correlations: observations

	Games	ZoneSize	Accuracy	BBrate	Krate	Incon
Games	1.00	-0.05	0.05	-0.03	0.30	-0.02
ZoneSize	-0.05	1.00	-0.49	-0.39	0.09	0.34
Accuracy	0.05	-0.49	1.00	-0.01	0.27	-0.65
BBrate	-0.03	-0.39	-0.01	1.00	-0.24	0.09
Krate	0.30	0.09	0.27	-0.24	1.00	-0.14
Incon	-0.02	0.34	-0.65	0.09	-0.14	1.00

- Walk rate uncorrelated to inconsistency, accuracy.
- ▶ Smaller zones tend to be more accurate and consistent.
- ▶ Inconsistency is moderately correlated with accuracy.

Correlations: observations

	Games	ZoneSize	Accuracy	BBrate	Krate	Incon
Games	1.00	-0.05	0.05	-0.03	0.30	-0.02
ZoneSize	-0.05	1.00	-0.49	-0.39	0.09	0.34
Accuracy	0.05	-0.49	1.00	-0.01	0.27	-0.65
BBrate	-0.03	-0.39	-0.01	1.00	-0.24	0.09
Krate	0.30	0.09	0.27	-0.24	1.00	-0.14
Incon	-0.02	0.34	-0.65	0.09	-0.14	1.00

- Walk rate uncorrelated to inconsistency, accuracy.
- Smaller zones tend to be more accurate and consistent.
- ▶ Inconsistency is moderately correlated with accuracy.

Correlations: observations

	${\tt Games}$	ZoneSize	Accuracy	BBrate	Krate	Incon
Games	1.00	-0.05	0.05	-0.03	0.30	-0.02
ZoneSize	-0.05	1.00	-0.49	-0.39	0.09	0.34
Accuracy	0.05	-0.49	1.00	-0.01	0.27	-0.65
${\tt BBrate}$	-0.03	-0.39	-0.01	1.00	-0.24	0.09
Krate	0.30	0.09	0.27	-0.24	1.00	-0.14
Incon	-0.02	0.34	-0.65	0.09	-0.14	1.00

- Walk rate uncorrelated to inconsistency, accuracy.
- Smaller zones tend to be more accurate and consistent.
- Inconsistency is moderately correlated with accuracy.

Accuracy vs. Inconsistency (r = -0.65)

Principal Component Analysis

```
Standard deviations (1, ..., p=5):
[1] 1.43 1.21 0.87 0.66 0.54
Rotation (n \times k) = (5 \times 5):
           PC1 PC2 PC3 PC4
                                     PC5
ZoneSize 0.495 -0.43 0.101 -0.642 0.39
Accuracy -0.626 -0.13 0.025 0.066 0.77
BBrate -0.089 0.68 -0.478 -0.536 0.10
Krate -0.179 - 0.56 - 0.784 - 0.019 - 0.21
Incon 0.568 0.16 -0.383 0.543 0.46
```

References

- Data from MLBAM.
- ▶ R packages: alphahull, pitchrx, baseballr
- ▶ Source code on GitHub: djhunter/inconsistency