## Nancy, France, April 14th 2005



## Can a Higher-Order and a First-Order Theorem Prover Cooperate?

Christoph Benzmüller (Saarland U, Germany)

joint work with:

Volker Sorge (U Birmingham, UK)

Manfred Kerber (U Birmingham, UK)

Mateja Jamnik (U Cambridge, UK)

## Overview: Issues of this Talk



- Computer-supported Mathematics
- Automation of Mathematical Reasoning
- Automation of Higher-Order Theorem Proving (HOTP)
- Architectures supporting System Integrations
- Problem Libraries such as TPTP



© C.Benzmüller, 2005

# Computer Math: Representation Matters



- Computer-supported Mathematics / Mathematics Assistance Systems
- full automatization not realistic and only partly desireable
- support for collaboration mathematician and computer is needed
- interaction should be based on expressive languages
- fact: maths in practice uses higher-order constructs
- fact also: prominent proof assistents already support higher-order logic

#### • Example:

|                          | textbooks                                                                                                                          | higher-order logic                                                           | first-order logic                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|
| $\mathcal{P}(A)$         | $ \begin{cases} x   x \subseteq A \\ \mathcal{P}(\emptyset) \text{ is finite} \end{cases} $                                        | $ \lambda x.x \subseteq A \\ \operatorname{finite}(\mathcal{P}(\emptyset)) $ | $x \in \mathcal{P}(A) \Leftrightarrow x \subseteq A$ less nice |
| $\operatorname{Im}(F,A)$ | $\operatorname{Im}(F, A)  \left\{ y   \exists x . x \in A \land y = F(x) \right\}  \lambda y . \exists x . x \in A \land y = F(x)$ | $\lambda y.\exists x.x \in A \land y = F(x)$                                 | see TPTP (terrible)                                            |

# Computer Maths: Representation Matters



Start with higher-order representations in a mathematics assistance system lea: and combine higher-order and first-order (and propositional) reasoning (supported by tranformational mappings)



- Test Problems:
- 45 theorems on sets, relations, and functions
- taken from the TPTP domain "SET"
- also used in paper on Saturate system [GanzingerStuber-IJCAR-04]
- we added some problems that cannot be solved by any FOTP
- Conciseness of Higher-Order Representations:
- 45 problem formulations (required defintions + theorems) fit on 1,5 page
- not possible in first-order without  $\lambda$ -abstraction

# Computer Maths: Representation Matters



Examples of Basic Definitions on Sets and Relations

```
 \begin{array}{l} := \lambda x, A.[Ax] \\ \emptyset \\ := [\lambda x.\bot] \\ := \lambda A, B.[\lambda x.x \in A \land x \in B] \\ := \lambda A, B.[\lambda x.x \in A \lor x \in B] \\ := \lambda A, B.[\lambda x.x \in A \lor x \notin B] \\ := \lambda A, B.[\lambda x.x \in A \lor x \notin B] \\ \text{Meets}(\_,\_) \\ := \lambda A, B.[\exists x.x \in A \land x \notin B] \\ \text{Pair}(\_,\_) \\ := \lambda A, B.[\lambda u, v.u = x \land v \in B] \\ \text{Subrel}(\_,\_) \\ := \lambda A, B.[\lambda u, v.u \in A \land x \in B] \\ \text{Subrel}(\_,\_) \\ := \lambda A, B.[\lambda u, v.u \in A \land v \in B] \\ \text{IsRelOn}(\_,\_,\_) \\ := \lambda B, A, B.[\forall x, y.Rxy \Rightarrow Qxy] \\ \text{IsRelOn}(\_,\_) \\ := \lambda B, A, A, B.[\forall x, y.x \in A \land Rxy] \\ \end{array}
```

```
Display in UI as
A \times B
=
[(u, v)|u \in A \land v \in B\}
```

Examples of the Test Problems

```
SET670 + 3
                                                                                                                                                                                                                                                                                                                      (X \cup X) \cap (X \cup Z) = (X \cup Y) \cap (X \cup Z) 
                                                                                                                                                 \forall X, Y, Z. \text{Meets}(X, Y \cap Z) \Leftrightarrow \text{Meets}(X, Y) \vee \text{Meets}(X, Z)
                                                                                                                                                                                                                                       \forall X, Y.(X \cap Y = \emptyset) \Leftrightarrow (X \setminus Y = X)
                                                                   \forall x, y. \text{Subrel}(\text{Pair}(x, y), (\lambda u. \top) \times (\lambda v. \top))
\forall Z, R, X, Y. \text{IsRelOn}(R, X, Y) \Rightarrow \text{IsRelOn}(\text{RestrictRDom}(R, Z), Z, Y)
```

## Fairness of the Experiment



- Observation:
- complete encodings of set theory in higher-order (comprehension via  $\lambda$ -abstraction, Boolean and functional extensionality, ...)

٧s.

- incomplete and sometimes artificially tailored (useful lemmata) problem formulations in TPTP
- Example: TPTP171+3

|                      | 8                | $\forall X, Y, Z.X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)  \textbf{(8)}$                | Proof Goal:  |
|----------------------|------------------|-----------------------------------------------------------------------------------------------|--------------|
| derivable from 3,6   | 7                | $\forall B, C.B = C \Leftrightarrow (\forall x.x \in B \Leftrightarrow x \in C)$              |              |
|                      | 6)               | $\forall B, C.B \subseteq C \Leftrightarrow (\forall x.x \in B \Rightarrow x \in C)$          |              |
| derivable            | (5)              | $\forall B, C.B \cap C = C \cap B$                                                            |              |
| derivable from 1,3,6 | ( <del>4</del> ) | $\forall B, C.B \cup C = C \cup B$                                                            |              |
|                      | (3)              | $\forall B, C.B = C \Leftrightarrow (B \subseteq C \land C \subseteq B)$                      |              |
|                      | (2)              | $\forall B, C, x.x \in (B \cap C) \Leftrightarrow (x \in B \lor x \in C)$                     |              |
|                      | <u>(1)</u>       | <b>Assumptions:</b> $\forall B, C, x.x \in (B \cup C) \Leftrightarrow (x \in B \lor x \in C)$ | Assumptions: |

- Hence: Our Comparison is Unfair
- ightarrow our higher-order problem formulations are more general and non-tailored

## **HOTP** may outperform FOTP



- Observation not new:
- TPS [see papers on TPS]
- LEO [CADE-98,Benzmüller-PhD]
- OMEGA-OANTS [KI-01]
- others ...

#### New:

Combination of HOTP and FOTP may even perform better

#### Approach:

- Make use of complementary strenghts of both worlds
- Our HOTP of choice: LEO (extensional higher-order resolution)
- Our FOTP of choice: Bliksem [Nivelle-99]
- Our integration means of choice: \( \Omega ANTS \) [AIMSA-98,Sorge-PhD]

## SET171+3: A Motivating Example



#### Problem:

## $\forall B, C, D.C \cup (B \cap D) = (C \cup B) \cap (C \cup D)$

$$[\forall B,C,D.C \cup (B \cap D) = (C \cup B) \cap (C \cup D)]^F \qquad \downarrow \quad \text{def.-expansion, cnf} \\ \downarrow \quad B,C,D \text{ Skolem const.} \\ [(\lambda x.Bx \vee (Cx \wedge Dx)) = (\lambda x.(Bx \wedge Cx) \vee (Cx \wedge Dx))]^F \qquad \downarrow \quad \text{unification constraint} \\ [(Bx \vee (Cx \wedge Dx)) = ?((Bx \wedge Cx) \vee (Cx \wedge Dx))] \qquad \downarrow \quad x \text{ new Skolem constant} \\ [(Bx \vee (Cx \wedge Dx)) = ?((Bx \wedge Cx) \vee (Cx \wedge Dx))] \qquad \downarrow \quad x \text{ new Skolem constant} \\ [(Bx)^T \vee (Cx)^T \qquad \downarrow \quad B \text{-extensionality} \\ [Bx]^T \vee [Dx]^T \qquad \downarrow \quad \text{cnf. factor., subsumption} \\ [Cx]^F \vee [Dx]^F \qquad \text{within LEO or within FOTP?} \qquad \downarrow \quad \text{propositional reasoning} \\ \square$$

## SET624+3: Direct Mapping into FO



Problem:

 $\forall X,Y,Z.\mathrm{Meets}(X,Y\cap Z) \Leftrightarrow \mathrm{Meets}(X,Y) \vee \mathrm{Meets}(X,Z)$ 

26 FO-like clauses  $[\exists x.(Bx \land (Cx \lor Dx)) \Leftrightarrow ((\exists x.Bx \land Cx) \lor (\exists x.Bx \land Dx)]^F$  $[\forall X,Y,Z.\mathrm{Meets}(X,Y\cap Z)\Leftrightarrow \mathrm{Meets}(X,Y)\vee \mathrm{Meets}(X,Z)]^F$ ↓ cnf ↓ def.-expansion within LEO? within FOTP?

**8** 

## SET646+3: No Proof Search



Problem:

 $\forall x_{\alpha}, y_{\beta}. \text{Subrel}(\text{Pair}(x, y), (\lambda u_{\alpha}. \top) \times (\lambda v_{\beta}. \top))$ 

 $[\forall x,y. ext{Subrel}( ext{Pair}(x,y),(\lambda u. op) imes(\lambda v. op))]^F$ 

 $[orall x,y,u,v.(u=x\wedge v=x)\Rightarrow ((\lnot\bot)\land(\lnot\bot))]^F$  def.-expansion

 $[\bot]^T \vee [\bot]^T = \Box$ 

## SET611+3: Repeated Extensionality



Problem:

$$\forall A, B. (A \cap B = \emptyset) \Leftrightarrow (A \setminus B = A)$$

 $[\forall A, B.(A \cap B = \emptyset) \Leftrightarrow (A \setminus B = A)]^F$ 

def.-expansion

 $[\forall A, B. \quad (\lambda x.(Ax \land Bx)) = (\lambda x.\bot)$  $\Leftrightarrow (\lambda x.(Ax \land \neg Bx)) = (\lambda x.Ax)]^F$ 

.

cnf, A, B Skolem

 $(\mathbf{1}) \ [(\lambda x.(A\,x \wedge B\,x)) = (\lambda x.\bot)]^T \vee [(\lambda x.(A\,x \wedge \neg B\,x)) = (\lambda x.A\,x)]^T$ 

(2)  $[(\lambda x.(Ax \land Bx)) = (\lambda x.\bot)] \lor [(\lambda x.(Ax \land \neg Bx)) = (\lambda x.Ax)]$  $([(\lambda x.(Ax \land Bx)) = (\lambda x.\bot)]^F \lor [(\lambda x.(Ax \land \neg Bx)) = (\lambda x.Ax)]^F )$ 

↓ several rounds↓ of B&f-ext.↓ and cnf

inconsistent set of FO-like clauses

within LEO? within FOTP?

## HOTP-FOTP: Modeling in ΩANTS



#### $\Omega$ ANTS:

- distributed suggestion mechanism for interactive theorem proving
- blackboard architecture, supports redefinition of agents at run-time
- automation of proof search possible [Calculemus-00]



## HOTP-FOTP: Modeling in ΩANTS



#### OLD Solution

- HO-goal LEO(LEO-params)
- HO-goal Conjunction-of-FO-clauses LEO-with-partial-result(LEO-params)
- FO-goal FOTP(FOTP-params)

#### **NEW Solution**

- HO-goal LEO(LEO-params)
- \_ LEO+FOTP(LEO-partial-proof,FO-clauses,FO-proof,LEO-params)

### Experiments: Results (I)



|         |         | $\downarrow$ |         |         |         |         |         |       |         |          |          |         |         | $\downarrow$ |                     | $\downarrow$ |                     | $\downarrow$ |       |                     |        |           |        |
|---------|---------|--------------|---------|---------|---------|---------|---------|-------|---------|----------|----------|---------|---------|--------------|---------------------|--------------|---------------------|--------------|-------|---------------------|--------|-----------|--------|
| 630 + 3 | 624 + 3 | 623 + 3      | 615 + 3 | 614 + 3 | 612 + 3 | 611 + 3 | 609 + 3 | 607+3 | 606 + 3 | 601 + 3  | 580 + 3  | 171 + 3 | 143 + 1 | 096 + 1      | 086 + 1             | 076 + 1      | 067+1               | 066+1        | 017+1 | 014+4               |        | SET       |        |
| .44     | .67     | 1.00         | .67     | .67     | .89     | .44     | .89     | .67   | .78     | .22      | .44      | .67     | .67     | .56          | .22                 | .67          | .56                 | 1.00         | .56   | .67                 |        | Rat.      |        |
| 60.39   | .04     | -            | 109.01  | 157.88  | 113.33  | 60.20   | 161.78  | 65.57 | 62.02   | 168.40   | 14.71    | 108.31  | 68.71   | .03          | .04                 | .00          | .04                 | 1            | .03   | .01                 |        | Vampire 7 |        |
|         |         |              |         |         |         | EIR     |         |       |         |          |          |         |         | 1            | $\operatorname{TS}$ | 1            | $\operatorname{ST}$ | 1            | EXT   | $\operatorname{ST}$ | Strat. |           |        |
| 11      | 4942    | 43           | 38      | 38      | 41      | 996     | 37      | 22    | 21      | 145      | 25       | 36      | 37      | 1            | 4                   | 1            | 6                   | 1            | 3906  | 41                  | Cl.    | LEO       | i<br>) |
| .07     | 34.71   | 8.84         | .57     | .46     | .54     | 12.69   | .60     | .31   | .33     | 2.20     | .19      | .56     | .38     | -            | .01                 | -            | .02                 | -            | 57.52 | .16                 | Time   |           |        |
| 6       | 54      | 23           | 17      | 19      | 18      | 72      | 26      | 17    | 17      | 55       | 6        | 25      | 33      | 27           | 4                   | 10           | 13                  | 26           | 25    | 34                  | Cl.    |           |        |
| .08     | 9.61    | 9.54         | 3.59    | 4.34    | 3.95    | 32.14   | 6.50    | 7.79  | 10.8    | 4.96     | 2.73     | 4.75    | 7.93    | 7.99         | .01                 | .47          | .32                 | 6.80         | 8.54  | 6.76                | Time   |           |        |
| ∞       | 46      | 10           | 6       | 16      | 6       | 38      | 19      | 15    | 15      | <b>∞</b> | <b>∞</b> | 19      | 18      | 14           | N/A                 | 18           | 16                  | 20           | 16    | 19                  | FOcl   | LEO +     | ,      |
| 10      | .01     | .01          | .01     | .01     | .01     | .01     | 10      | .01   | .01     | .01      | .01      | .01     | .01     | .01          | N/A                 | .01          | .01                 | 10           | .01   | .01                 | FOtm   | FOTP      |        |
| 4       | 212     | 14           | 9       | 17      | 7       | 101     | 17      | 6     | 57      | 13       | 13       | 20      | 19      | 25           | N/A                 | 35           | 12                  | 56           | 74    | 7                   | GenCl  |           |        |

© C.Benzmüller, 2005

### Experiments: Results (II)



| $\downarrow$ |          | $\downarrow$ | $\downarrow$ | $\downarrow$        | $\downarrow$ | $\downarrow$ | $\downarrow$        |                     |                     |                     |                     |         | $\downarrow$ |         | $\downarrow$ |         |         |         |         |         |         |         |         |        |                 |
|--------------|----------|--------------|--------------|---------------------|--------------|--------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------|--------------|---------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|--------|-----------------|
| 770+4        | 764+4    | 753 + 4      | 752 + 4      | 747+4               | 741 + 4      | 724+4        | 716+4               | 686 + 3             | 684 + 3             | 683 + 3             | 680 + 3             | 673 + 3 | 672 + 3      | 671 + 3 | 670 + 3      | 669 + 3 | 657 + 3 | 651 + 3 | 649 + 3 | 648 + 3 | 647 + 3 | 646 + 3 | 640 + 3 |        | SET             |
| .89          | .56      | .89          | .89          | .89                 | 1.00         | .89          | .89                 | .56                 | .78                 | .22                 | .33                 | .78     | 1.00         | .78     | 1.00         | .56     | .22     | .44     | .33     | .56     | .56     | .56     | .22     |        | Rat.            |
| 1            | .02      | 1            | 1            | 1                   | 1            | 1            | -                   | .11                 | .33                 | .06                 | .07                 | 47.86   | -            | 218.02  | 1            | .34     | 1.44    | 63.88   | 63.77   | 64.22   | 64.21   | 59.63   | 70.41   |        | Vampire 7       |
| +            | EI       | -            | -            | $\operatorname{ST}$ | 1            | EXT          | $\operatorname{ST}$ | $\operatorname{ST}$ | $\operatorname{ST}$ | $\operatorname{ST}$ | $\operatorname{ST}$ | EIR     | EXT          | EIR     | EXT          | EI      | EIR     | Strat. | <del>&lt;</del> |
| -            | 9        | -            | -            | 34                  | -            | 154          | 39                  | 274                 | 275                 | 46                  | 185                 | 78      | 27           | 78      | 15           | 35      | 2       | 20      | 45      | 26      | 26      | 2       | 2       | C].    | LEO             |
| -            | .05      | 1            | 1            | .46                 | 1            | 2.75         | .45                 | 2.36                | 2.45                | .20                 | .88                 | .65     | .40          | .64     | .17          | .22     | .01     | .10     | .30     | .15     | .15     | .01     | .01     | Time   |                 |
| 1            | $\infty$ | 15           | 50           | 25                  | -            | 18           | 18                  | 46                  | 46                  | 35                  | 29                  | 14      | 30           | 7       | 17           | 35      | 2       | 11      | 29      | 14      | 13      | 2       | 2       | Ω.     |                 |
| 1            | .04      | 3.07         | 6.60         | 1.11                | 1            | 7.21         | 3.81                | 5.37                | 5.95                | 8.90                | 4.61                | 5.66    | .70          | 2.71    | .36          | .23     | .01     | .16     | 5.49    | .30     | .30     | .01     | .01     | Time   |                 |
| 1            | N/A      | 12           | 48           | 18                  | 1            | 15           | 18                  | 26                  | 26                  | 18                  | 18                  | 14      | 21           | 10      | 16           | N/A     | N/A     | 10      | 12      | 13      | 13      | N/A     | N/A     | FOcl   | LEO +           |
| 1            | N/A      | 10           | .01          | 10                  | 1            | 10           | .01                 | .01                 | .01                 | 10                  | .01                 | .01     | .01          | .01     | .01          | N/A     | N/A     | 10      | .01     | .01     | .01     | N/A     | N/A     | FOtm   | FOTP            |
| 1            | N/A      | 19           | 4363         | 10                  | 1            | 23           | 118                 | 46                  | 47                  | 24                  | 24                  | 16      | 14           | 14      | 6            | N/A     | N/A     | 11      | 16      | 16      | 15      | N/A     | N/A     | GenCl  |                 |
|              |          |              |              |                     |              |              |                     |                     |                     |                     |                     |         |              |         |              |         |         |         |         |         |         |         |         |        |                 |

© C.Benzmüller, 2005

# **HOTP-FOTP: Soundness and Completeness**



#### Soundness

- LEO's calculus is sound
- Bliksem's calculus is sound
- Crucial part:
- transformation from FO-like clause in LEO to real FO clauses in Bliksem must preserve satisfiability
- we use TRAMPs [Meier00] injective mapping

$$P(f(a)) \longrightarrow \mathbf{Q}^1_{\mathrm{pred}}(P, \mathbf{Q}^1_{\mathrm{fun}}(f, a))$$

#### Completeness

- LEO's calculus is Henkin complete (the implementation of LEO is not though)
- Completeness of the cooperative approach relies on the completeness of LEO



### **HOTP-FOTP: Problems**



### Generation of proof-objects

- How can we obtain a common proof object?
- solved since Tuesday (LPAR "programming session" with Volker)

Leibniz equality (and other definitions of equality)

Leibniz equality:

= can be defined as  $\lambda x.\lambda y.\forall P.P(x) \Rightarrow P(y)$ 

Example:

$$a = b \Rightarrow f(a) = f(b)$$

Primitive equality

$$[a=b]^{T}$$
$$[f(a)=f(b)]^{F}$$

Leibniz equality  $[P(a)]^F \vee [P(b)]^T$ 

$$[P(a)]^F \vee [P(b)]^T \ [Q(f(a))]^T \ [Q(f(b))]^F$$

refutable only in LEO 
$$P \leftarrow \lambda x.Q(f(x))$$

### Related Work



Denzinger/Fuchs [IJCAI-99]:

TECHS system

only cooperation of first-order systems

|                               |                   | •                 |            |                         |
|-------------------------------|-------------------|-------------------|------------|-------------------------|
| OMEGA and FOTPs HOL and FOTPs | interface between | TRAMP, generic    | [CADE-00]  | Andreas Meier           |
| HOL and FOTPs                 | between           | generic interface | [CADE-02]  | Joe Hurd                |
| Isabelle and Vampire          | between           | interface         | [IJCAR-04] | Jia Meng, Larry Paulson |

no calls to FOTP from within automated HO proof search

#### Summary



- Computer-supported Mathematics
- representation does matter
- Automation of Mathematical Reasoning
- higher-order may outperform first-order in certain domains
- Automation of Higher-Order Theorem Proving (HOTP)

cooperation with a first-order theorem proving (FOTP) is beneficial

- Architectures supporting System Integrations
- agent-based reasoning with OANTS
- Problem Libraries such as TPTP
- should support alternative (e.g. higher-order) problem representations



### And Finally ...



I can fully recommend TEX<sub>MACS</sub> as scientific editor



### A Short T<sub>E</sub>X<sub>MACS</sub> Demo



### Human-Oriented Problem Representation

Chris invites Jörg, Claus-Peter, and Erica to his Party.

He receives the following replies:

Jörg: "Claus-Peter or Erica will come"

Claus-Peter: "Either Jörg or Erica will come" Erica: "Either Jörg or Claus-Peter will come"

Theorem: Erica will be at the Party.

Formal Representation

Chris v. Erica

(Joerg & ~Erica) v. (~Joerg & Erica) (Joerg & ~Chris) v. (~Joerg & Chris)

"above axioms" |= Erica

 $\underline{\text{Theorem}}\colon\{\mathsf{Chris}\;\mathsf{v}.\;\;\mathsf{Erica},\;(\mathsf{Joerg}\;\&\;\;\widetilde{\mathsf{Erica}})\;\mathsf{v}.\;\;(\tilde{\;\;\;}\mathsf{Joerg}\;\&\;\;\mathsf{Erica}),\;(\mathsf{Joerg}\;\&\;\;\widetilde{\;\;\;}\mathsf{Chris})\;\mathsf{v}.\;\;(\tilde{\;\;\;}\mathsf{Joerg}\;\&\;\;\mathsf{Chris})\}|=$