Amendments to the Claims:

1. (Previously presented) A process for preparing a 3-phenyl(thio)uracil or 3-phenyldithiouracil of the formula I

where the variables are each defined as follows:

- R¹ is hydrogen, cyano, amino, C₁-C₆-alkyl, C₁-C₃-cyanoalkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, C₃-C₇-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl or phenyl-C₁-C₄-alkyl;
- R² and R³ are each independently hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl or C₃-C₆-haloalkynyl;
- X¹, X² and X³ are each independently oxygen or sulfur;
- Ar is phenyl, which may be mono- or polysubstituted by the following groups: hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl; and
- A is a radical derived from a primary or secondary amine or NH₂;

 comprising reacting a phenyl iso(thio)cvanate of the formula II

$$X^{1}=C=N_{Ar}$$
 N_{H}
 SO_{2}
 N_{A}
 N_{H}

where the variables X^1 , X^3 , A^2 and A^2 are each as defined above, with an enamine of the general formula III

$$\begin{array}{ccc}
R^{1a} & & \\
R^{2} & & \\
N & \\
N & \\
OR^{4} & & \\
R^{3} & & \\
\end{array}$$

where

R^{1a} is as defined above for R¹ with the exception of amino;

R², R³ and X² are each as defined above; and

R⁴ is C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkylthio-C₁-C₃-alkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₇-cycloalkyl, C₁-C₆-cyanoalkyl or benzyl which is itself unsubstituted or substituted on the phenyl ring by methyl, methoxy, methylthio, halogen, nitro or cyano;

in the presence of from 1.8 to 2.6 base equivalents per mole of the phenyl iso(thio)cyanate of the formula II;

and, if appropriate, in a further step, reacting the resulting 3phenyl(thio)uracil or 3-phenyldithiouracil of the formula I where R¹=R^{1a}, where R¹ is hydrogen, with an aminating agent of the formula IV

where L1 is a nucleophilic leaving group

to give a 3-phenyl(thio)uracil or 3-phenyldithiouracil of the formula I where R^1 = amino

- 2. (Original) The process according to claim 1, wherein the reaction is effected in the presence of a base which is selected from alkali metal and alkaline earth metal carbonates, alkali metal and alkaline earth metal alkoxides, alkali metal and alkaline earth metal hydrides and tertiary amines.
- 3. (Previously presented) The process according to claim 1, wherein the reaction is effected in a solvent comprising at least one aprotic polar solvent, and the aprotic polar solvent has a water content of from 0 to 0.5% by weight, based on the total amount of compound II, compound III and solvent.
- 4. (Original) The process according to claim 3, wherein the solvent comprises at least 50% by volume of an aprotic polar solvent selected from carboxamides, carboxylic esters, carbonates, nitriles and sulfoxides.
- 5. (Original) The process according to claim 4, wherein the solvent comprises at least 80% by weight of an aprotic polar solvent.
- 6. (Previously presented) The process according to claim 1, wherein from 0.9 to 1.3 mol of the enamine of the formula III are used per mole of the compound II.
- (Previously presented) The process according to claim 1, wherein a 3-phenyl-(thio)uracil or a 3-phenyldithiouracil, where R¹ is hydrogen, is prepared and this compound I is subsequently
 - (A) reacted with an aminating agent of the formula IV

 H_2N-L^1 IV

where \mathbf{L}^1 is a nucleophilically displaceable leaving group to obtain a compound of the formula I where

 $R^1\,$ is amino; and the variables $R^2,R^3,X^1,X^2,X^3,$ Ar and A are each as defined above;

(B) reacted with an alkylating agent of the formula V

where

or

R^{1b} is C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-haloalkynyl; and L² is a nucleophilically displaceable leaving group; to obtain a compound of the general formula I where R¹ is as defined for R^{1b}; and the variables R², R³ X¹, X², X³, Ar and A are each as defined above

8. (Previously presented) The process according to claim 1, wherein the phenyl iso(thio)cyanate of the formula II is described by the formula IIA

$$X^1 = C = N$$
 R^b
 R^a
 R^a

where

X¹, X³ and A are each as defined above and
R^a, R^b, R^c and R^d are each independently
hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloglyd

 (Original) The process according to claim 8, wherein, in formula IIA, R^a is halogen, cyano or trifluoromethyl; R^c is hydrogen or halogen; and

Rb and Rd are each hydrogen.

10. (Currently amended) The process according to claim 1, wherein the A radical is -NR 6 R 6 where the variables R 6 and R 6 are each defined as follows:

R⁵ and R⁶ are each independently

hydrogen, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl or C_2 - C_{10} -alkynyl, each of which may be unsubstituted or substituted by one of the following radicals:

 C_1 - C_4 -alkoxy, C_1 - C_4 -alkythio, CN, NO₂, formyl, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, C_1 - C_4 -dialkylaminocarbonyl, C_1 - C_4 -dialkylaminocarbonyl, C_1 - C_4 -alkylsulfinyl, C_3 - C_1 -ocycloalkyl, 3- to 8-membered heterocyclyl having from one to three heteroatoms selected from O, S, N and an NR 7 group

where R^7 is hydrogen, $C_1\text{-}C_6\text{-}alkyl,\,C_3\text{-}C_6\text{-}alkenyl or <math display="inline">C_3\text{-}C_6\text{-}alkynyl,}$ phenyl which may itself have 1, 2, 3 or 4 substituents selected from

halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-fluoroalkyl,

C₁-C₄-alkyloxycarbonyl, trifluoromethylsulfonyl, C₁-C₃-alkylamino, C₁-C₃-dialkylamino, formyl, nitro or cvano:

 $C_1\text{--}C_{10}\text{-}haloalkyl, C_2\text{--}C_{10}\text{-}haloalkenyl, C_2\text{--}C_{10}\text{-}haloalkynyl, C_3\text{--}C_8\text{--}cycloalkyl, } C_3\text{--}C_{10}\text{-}ocycloalkenyl, } 3\text{--} to 8\text{--}membered heterocyclyl having from one to three heteroatoms selected from O, S, N and an NR <math display="inline">^7$ group where R 7 is hydrogen, $C_1\text{--}C_6\text{-}alkyl, C_3\text{--}C_6\text{--}alkenyl or C_3\text{--}C_6\text{--}alkynyl, } phenyl or naphthyl.$

where C₃-C₈-cycloalkyl, C₃-C₁₀-cycloalkenyl, 3- to 8-membered heterocyclyl, phenyl or naphthyl, each may themselves have 1, 2, 3 or 4 substituents selected from halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-fluoroalkyl,

 C_1 - C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, formyl, C_1 - C_3 -alkylamino, C_1 - C_3 -dialkylamino, phenoxy, nitro or cyano; or

 R^5 and R^6 together form a saturated or partially unsaturated 5- to 8-membered nitrogen heterocycle which may have, as ring members, one or two carbonyl groups, thiocarbonyl groups and/or one or two further heteroatoms selected from O, S, N and an NR 7 group

where \mbox{R}^{7} is hydrogen, $\mbox{C}_{1}\mbox{-}\mbox{C}_{6}\mbox{-alkyl}$, $\mbox{C}_{3}\mbox{-}\mbox{C}_{6}\mbox{-alkynyl}$,

> and which may be substituted by C₁-C₄-alkyl, C₁-C₄-alkoxy and/or C₁-C₄-haloalkyl. √

11. (Original) The process according to claim 10, wherein R⁵ and R⁶ are each defined as follows:

R5 and R6 are each independently

hydrogen, C_1 - C_6 -alkyl which may if appropriate carry a substituent selected from the group consisting of halogen, cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylthio, C_3 - C_8 -cycloalkyl, furyl, thienyl,

1,3-dioxolanyl and phenyl which may itself optionally be substituted by halogen or C_1 - C_4 -alkoxy; C_2 - C_6 -alkonyl, C_2 - C_6 -alkynyl, C_3 - C_8 -cycloalkyl or phenyl

which may if appropriate carry 1 or 2 substituents selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -fluoroalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, nitro and C_1 - C_3 -dialkylamino;

naphthyl or pyridyl; or

 R^5 and R^6 together form a five-, six- or seven-membered saturated or unsaturated nitrogen heterocycle which may contain, as a ring member, one further heteroatom selected from N, O and an NR 7 group

where R^7 is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, and/or may be substituted by one, two or three substituents selected from C_1 - C_4 -alkyl and C_1 - C_4 -haloalkyl.

- 12. (Previously presented) The process according to claim 1, wherein $X^1,\,X^2$ and X^3 are each oxygen.
- 13. (Previously presented) The process according to claim 1, wherein R^1 is hydrogen, amino or C_1 - C_4 -alkyl.
- 14. (Previously presented) The process according to claim 1, wherein R^2 is hydrogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl.
- 15. (Previously presented) The process according to claim 1, wherein ${\sf R}^3$ is hydrogen.

16. (Canceled) /

17. (New) A process of claim 1, wherein R¹ is hydrogen, further comprising reacting said compound of Formula I wherein R1 is hydrogen with an alkylating agent of Formula V

$$R^{1b} - L^2$$
 V,

wherein L2 is a nucleophilically displaceable leaving group and

 $\label{eq:wherein R^{1b} is C_1-C_6-alkyl, C_1-C_6-haloalkyl, C_3-C_7-cycloalkyl, C_2-C_6-alkenyl, C_2-C_6-haloalkynyl, C_3-C_6-alkynyl or C_3-C_6-haloalkynyl.}$