Modellare con reti TB

• Modellare un passaggio a livello con una rete di Petri

Soluzione

Aggiungere i tempi

• Modellare un passaggio a livello con una rete di Petri

Soluzione

Analisi

- È una soluzione corretta?
 - NO
- Perché si possono scontrare macchine e treni?
 - ipotesi non espresse o errori di specifica
 - Cosa succede se un secondo treno entra in R prima che il precedente esca da L?
 - Cosa succede se un secondo treno entra in R prima che il passaggio si sia riaperto completamente?

Tempo come concetto derivato

- Tempo = variabile associata ai gettoni (chronos)
- Predicati determinano la possibiltà di scatto di una transizione a partire dai valori dei gettoni (incluso il chronos)
- Le azioni determinano i valori dei gettoni creati (incluso il valore della variabile chronos)

 NOTA: Le azioni devono produrre lo stesso valore per i chronos di tutti i gettoni creati (birth date) e devono essere non minori dei valori dei chronos dei gettoni rimossi.

Semantiche temporali nelle ER nets

• chronos + assiomi 1,3 = WTS

chronos + assiomi 1, 2, 3 = MWTS

chronos + assiomi 1, 2, 3, 4, 5 = STS

• È possibile esprimerli?

Un modello completo: HLTPN (TER net)

- HLTPNs possono modellare:
 - Aspetti funzionali (high-level Petri nets: ER net)
 - Aspetti temporali (time Petri nets: TB net)
 - Dipendenze di aspetti funzionali da aspetti temporali
 - Dipendenze di aspetti temporali da aspetti funzionali

 Le reti HLTPN possono essere analizzate con gli stessi limiti delle reti TB

High-Level time Petri nets (HLTPNs)

Analisi di reti temporizzate

- · Analisi di raggiungibilità
 - · Enumerazione degli stati finiti raggiungibili
- · PROBLEMI:
 - Lo scatto di una transizione può produrre infiniti stati che si differenziano tra loro per il tempo associato ai gettoni prodotti (tempo di scatto)
 - · La rete può evolvere all'infinito
 - · Il tempo avanza...
- · L'albero di raggiungibilità è infinito!!
- Non è lo stessa problema delle reti non limitate, non si può usare l'albero di copertura

Analisi di raggiungibilità temporale per le reti TB

• Rappresentazione simbolica degli stati

- Uno stato simbolico rappresenta un insieme di possibili stati con in comune lo stesso numero di gettoni in ogni posto (marcatura P/T)
- Uno stato simbolico è una coppia [μ, C], dove
 - μ = marcatura simbolica: associa multiset di identificatori simbolici ai posti
 - C = vincoli: (dis)equazioni che rappresentano le relazioni tra gli identificatori simbolici

Funzioni temporali...

- Assumiamo che tft sia un intervallo con estremi inclusi esprimibili mediante espressioni lineari funzioni dei tempi dei token in ingresso e di tempi assoluti
 - tmint limite inferiore
 - tmax_t limite superiore

• $tf_{t}=\{X\mid X>=tmin_{t}\wedge X<=tmax_{t}\}$

Sample Reachability Tree

So Marcatura:
$$\mu$$
 (P1) = $\{\tau_1\}$ μ (P2) = $\{\tau_0\}$ μ (P3) = $\{\tau_0\}$ $C_0 := \mathbf{0} \le \tau_0 \land \tau_0 \le \mathbf{10} \land \tau_0 \le \tau_1 \land \tau_1 \le \tau_0 + \mathbf{15}$

S1 Marcatura:
$$\mu$$
 (P3) = $\{\tau_0\}$ μ (P4) = $\{\tau_2\}$ $C_1 := C_0 \land \tau_2 \le \tau_0 + 5 \land \tau_1 \le \tau_2$

S2 Marcatura:
$$\mu$$
 (P3) = { τ_0 } μ (P5) = { τ_3 } C_2 := $C_0 \wedge \tau_3 \geq \tau_1 + 8 \wedge \tau_3 \leq \tau_0 + 10$

S3 Marcatura:
$$\mu$$
 (P1) = $\{\tau_1\}$ μ (P2) = $\{\tau_0\}$ μ (P6) = $\{\tau_4\}$ $C_3 := C_0 \land \tau_4 \ge \tau_0 + 3 \land \tau_4 \le \tau_0 + 15 \land \tau_4 \ge \tau_1 \land (\tau_4 \le \tau_0 + 10 \lor \tau_1 > \tau_0 + 2)$

Inizializzazione

vincoli

Identificazione degli enabling Aggiornamento di marcatura e

Carlo Bellettini e Mattia Monga - Ingegneria del Software - 2022-23

Che cosa è successo?

Aggiornamento del constraint

 Allora lo scatto simbolico di una transizione t crea uno stato simbolico caratterizzato dal vincolo Cn:

$$C_{n} = C_{p} \wedge t_{n} \ge maxT \wedge t_{n} \ge tmin \wedge t_{n} \le tmax$$

$$\bigcap_{t_{S}} \left(tmax_{S} < tmin_{S} \vee tmax_{S} < maxT \vee tmax_{S} \ge t_{n}\right)$$

La soddisfacibilità del vincolo sopra stabilisce anche la abilitazione della transizione

Rivediamo il calcolo

So
$$\begin{aligned} & \textit{Marcatura: } \mu \ (P1) = \{\tau_i\} \quad \mu \ (P2) = \{\tau_0\} \quad \mu \ (P3) = \{\tau_0\} \\ & C_0 := \mathbf{0} \leq \tau_0 \ \land \ \tau_0 \leq \mathbf{10} \ \land \ \tau_0 \leq \tau_1 \ \land \ \tau_1 \leq \tau_0 + \mathbf{15} \end{aligned}$$

S1
$$\begin{aligned} & \text{Marcatura: } \mu \text{ } (P3) = \{\tau_0\} \quad \mu \text{ } (P4) = \{\tau_2\} \\ & C_1 := C_0 \land \quad \tau_1 \leq \tau_2 \quad \land \quad \tau_2 \leq \tau_0 + 5 \quad \land \quad \tau_1 \leq \tau_2 \end{aligned}$$

$$\wedge \ (\tau_2 \leq \tau_0 + 10 \lor \ldots) \land \ (\tau_2 \leq \tau_0 + 15 \lor \ldots)$$

Marcatura:
$$\mu$$
 (P3) = $\{\tau_0\}$ μ (P5) = $\{\tau_3\}$
 $C_2:=C_0 \wedge \tau_1 + 8 \leq \tau_3 \wedge \tau_3 \leq \tau_0 + 10 \wedge \tau_1 \leq \tau_3$

$$\wedge (\tau_3 \leq \tau_0 + 15 \vee \ldots)$$

S3
$$\begin{aligned} & \text{Marcatura: } \mu \ (P1) = \{\tau_1\} \quad \mu \ (P2) = \{\tau_0\} \quad \mu \ (P6) = \{\tau_4\} \\ & C_3 := C_0 \land \tau_4 \ge \tau_0 + 3 \land \tau_4 \le \tau_0 + 15 \land \tau_4 \ge \tau_1 \end{aligned}$$

$$\wedge (\tau_4 \leq \tau_0 + 10 \quad \forall \quad \tau_1 + 8 > \tau_0 + 10 \quad \forall \quad \tau_1 > \tau_0 + 10)$$

Aggiornamento del constraint

$$\tau_4 \le \tau_0 + 15 \wedge \tau_4 \ge \tau_1 \wedge \tau_4 \ge \tau_0 + 3 \wedge (\tau_1 > \tau_0 + 2 \vee \tau_4 \le \tau_0 + 10)$$

T1 aggiunge
$$\tau_1 \le \tau_n \land \tau_n \le \tau_0 + 5 \land \tau_n \ge \tau_4 \land (\tau_n \le \tau_0 + 10 \lor \tau_0 + 10 < \tau_1 + 8 \lor \tau_0 + 10 < \tau_4)$$

T2 aggiunge
$$\tau_1 + 8 \le \tau_n \land \tau_n \le \tau_0 + 10 \land \tau_n \ge \tau_4$$

T1 è abilitata se $\tau_4 \le \tau_0 + 5$

T2 è abilitata se $\tau_1 \le \tau_0 + 2$

abilitata solo T1 : $\tau_0 = 6$, $\tau_1 = 9$, $\tau_4 = 10$ abilitata solo T2 : $\tau_0 = 6$, $\tau_1 = 7$, $\tau_4 = 15$

abilitate entrambe: $\tau_0 = 6$, $\tau_1 = 7$, $\tau_4 = 10$ nessuna abilitata

(deadlock) : $\tau_0 = 6$, $\tau_1 = 9$, $\tau_4 = 17$

Carlo Bellettini e Mattia Monga - Ingegneria del Software - 2022-23

Cosa abbiamo?

- Non abbiamo una forma normale
 - quindi non possiamo confrontare stati e scoprire se li abbiamo già visitati
 - ALBERO infinito
- Possiamo verificare proprietà entro un limite finito di tempo:
 - bounded invariance
 - bounded liveness

Verso grafo aciclico (DAG)

• Se riusciamo a scordarci la storia di come arriviamo a un nodo è possibile "ritrovare" degli stati.

Possiamo sperare di arrivare a un grafo ciclico?

Semplificazione dei constraints

 Esprimere il constraint solo in termini della marcatura corrente, rimappando i constraint indiretti

S6

$$\begin{aligned} \textit{Marking:} \; \mu \; (\textit{P4}) &= \{\tau_{7}\} \quad \mu \; (\textit{P6}) = \{\tau_{4}\} \\ C_{6} &:= 0 \leq \tau_{0} \; \wedge \; \tau_{0} \leq 10 \; \wedge \; \tau_{0} \leq \tau_{1} \; \wedge \; \tau_{1} \leq \tau_{0} + 15 \; \wedge \\ \tau_{4} &\leq \tau_{0} + 15 \; \wedge \; \tau_{1} \leq \tau_{4} \; \wedge \; \tau_{4} \geq \tau_{0} + 3 \; \wedge \; \left(\tau_{4} \leq \tau_{0} + 10 \; \vee \; \tau_{1} > \tau_{0} + 2\right) \; \wedge \\ \tau_{7} &\leq \tau_{0} + 5 \; \wedge \; \tau_{4} \leq \tau_{7} \end{aligned}$$

Marking:
$$\mu$$
 (P4) = $\{\tau_2\}$ μ (P6) = $\{\tau_1\}$
 $C_6 := \tau_1 \ge 3 \land \tau_1 \le \tau_2 \land \tau_2 \le \tau_1 + 2 \land \tau_2 \le 15$

Algoritmo di Floyd

• B-A <= 5 e C-B <= 6

C-A <= 11 e posso eliminare B

• B-A<=5 e C-B<= -2 [B-C>=2]

C-A <= 3 e posso eliminare B

Algoritmo di Floyd

В

-2

posso eliminare B e mantenere i vincoli?

<=	Α	В	С
A	0	-2	?
В	5	0	0
С	?	6	0

a-b <= -2

b-c <= 0

 $m[ij] \le m[ik] + m[kj]$

В

11

Algoritmo di Floyd

posso eliminare B e mantenere i vincoli?

<=	Α	В	С	
A	0	5	?	
В	-2	0	0	
С	?	6	0	

<=	A	В	С
A	0	5	5
В	-2	0	0
С	4	6	0

The GasBurner example

... o solo una sua parte

Initial marking Initial constraint

 $IGNITE_PHASE_S\{T_0\}\ Ignition\{T_0\}\ Gas\{T_0\}\ NoFlame\{T_0\}$ $0 < T_0 < 10$

FlameOn FlameLightOn FlameLightOff2 $[IGNITE\ PHASE\ S+0.01, max(\{Flame+0.1, IGNITE\ PHASE\ S+0.01\})]$ [enab + 0.5, enab + 0.5][enab, enab + 100] with weak time semantic

[enab, NoGas + 0.1]FlameLightOff GasOff2 [enab + 2, enab + 2]

Relazione di inclusione tra stati

- Stato A è contenuto nello stato B se e solo se tutte le marcature rappresentate da A sono rappresentate anche da B
 - stesso assegnamento di timestamp
 - C_A implica C_B

Esempio di inclusione semplice

- Senza "inclusione" genererebbe infiniti stati (stessa marcatura ma con diversi vincoli)
 - C1: To ≥ 1
 - Cn: To ≥ n

Non è abbastanza per il gas burner

Tempi assoluti vs. Relativi

- Osservazione
 - Se le funzioni temporali non fanno riferimento a tempi assoluti
 - Per essere capace di identificare ciò che accade a partire da una marcatura bastano i constraint relativi tra i i timestamp

Esempio tempi relativi

- Mantenere i riferimenti ai tempi assoluti genererebbe infiniti stati
 - C1: 1≤T0≤11
 - Cn: n≤T0≤n+10

Dimenticando i tempi assoluti

Time Anonymous Timestamp

 Se il timestamp associato a un gettone in una marcatura M non verrà mai usato per stabilire come evolverà la rete a partire da quella marcatura, allora è possibile anonimizzare il tempo di tale gettone

Definition 2 (valid TA-replacement): Given a state S, a timestamp occurrence $T_i: p$ is replaceable with TA: p if and only if for each $S' = \langle M', C' \rangle \in \mathbf{R}(S)$ in which token $T_i: p$ is left (modulo timestamp renaming), for each symbolic enabling (en_s, t) in S' s.t. $en_s(p) = T_i, f_{t \lceil \neg \{p\} \rceil}$ is a well-defined erasure and

 $C' \wedge max(\{TL, lb_t(en_s)\}) \leq ub_t(en_s) \Leftrightarrow C' \wedge max(\{TL, lb_{t\lceil \neg \{p\} \rceil}(en_s)\}) \leq ub_{t\lceil \neg \{p\} \rceil}(en_s)$

Esempio di Time Anonymous

- In P2 si può creare uno "zero relativo"
 - C1: T0+1≤T1≤T0+11
 - Cn: T0+n≤T1≤T0+n+10

Time Anonymous

Final Graph

Inclusions

Relative Times

Anonymous Timestamp

Perdita di informazioni

- inclusione
 - possibile presenza di cammini non percorribili

Perdita di informazioni

- inclusione
 - possibile presenza di cammini non percorribili
- relative constraints
 - Perdita di relazioni precise tra stati

Information Loss

- inclusione
 - possibile presenza di cammini non percorribili
- relative constraints
 - Perdita di relazioni precise tra stati
- anonymous timestamps
 - Non sempre possibile verificare raggiungibilità di una marcatura definita da vincoli sui timestamp

Gas{T1;}IGNITE_PHASE_S{T0;}Ignition{TA;}NoFlame{TA;} TL-T0-1.5>=0 && TL-T0-1.8<=0 && TL-T1==0

Copertura temporale?

- Quale era il problema nell'uso della tecnica di copertura?
 - che i gettoni avevano una informazione che li rendeva distinguibili
- Ma i gettoni con tempo TA sono tutti "equivalenti" (anonimizzati) e quindi rappresentabili globalmente da un numero ω_{τA} (ο τ_A^ω)

