3D-CMCC-FEM

3D-CMCC-FEM v5.5 main characteristics and applicability

- Simulate stand growth and development under current and future environmental conditions
- Bio-chemical, Bio-physical, Process-Based Model
- Couple the **Process-Based** models' **robustness** of the layer and cohort models
- Variable temporal scale(daily to annual)
- Variable **spatial** scale (1ha to x Km²)
- Management (thinning, harvest, replanting)

3D-CMCC-FEM forest structure:

- Consider the canopy horizontal cell coverage trough algorithms that take into account the forest density (trees/ha)
- Can simulates a mixed forest composed by different cohorts, species, diameter and height classes as simultaneously composed by evergreen/deciduous species (note: currently naturally changes in species composition is not simulated)
- Compute and quantify the effects of this **heterogeneity** also into the daily soil water balance (i.e. evapotranspiration, soil evaporation or rain interception)

3D-CMCC-FEM Biophysical processes:

- SURFACE ALBEDOS
- RADIATIVE TRANSFER
- SENSIBLE HEAT AND LATENT HEAT FLUXES
- SOIL AND SNOW TEMPERATURE

3D-CMCC-FEM <u>Hydrological processes</u>:

- CANOPY TRANSPIRATION
- CANOPY INTERCEPTION
- SOIL EVAPORATION
- SNOW
- SURFACE RUNOFF AND INFILTRATION
- SOIL WATER CONTENT

3D-CMCC-FEM Biochemical processes:

- CANOPY PHOTOSYNTHESIS
- AUTOTROPHIC RESPIRATION
- C ALLOCATION
- PHENOLOGY
- VEGETATION STRUCTURE
- LITTERFALL

Model's C core logic structure

Input/output model data and simulation options

Currently output provided as .txt files

Year,x,y,Age,Species,Management,N,Stool,AvDBH,Height 1950,0,0,29,Fagussylvatica,T,1326,0,5.961357466,8.814479638

1996

1996

1996

1996

1996

1996

1996

Stand data for model initialization

X,Y,LANDUSE,LAT,LON,CLAY_PERC,SILT_PERC,SAND_PERC,SOIL_DEPTH,FR,FN0,FNN,M0,LITTERC 0,0,F,55.29,11.38,15.33,21.59,63.08,180,0.90,0.5,0.5,0.2,-9999,-9999,-9999,-9999,-

1.3088088

2.2823964

2.1834018

2.281104

2.3972112

2.3097006

2.2666446

2.4256368

3.5293662

3.7351908

2.7856098

2.8225296

3.913029

3.573513

20

29

Year Month n days Rg f Ta f Tmax Tmin RH f Ts f Precip SWC WS f 1996 1.011096 -3.6090625 -3.302 -9999 1.332 -9999 -4.086 93.6399526015545 1996 1.0734138 -3.331708333333333 -2.63 -3.723 90.3779847933055 -9999 1.13 1.4199408 -5.3066875 -3.492 -6.291 99.2751001746145 0.032 -9999 1996 1.5142032 -6.81502083333333 -6.18-7.298 99.7222269427755 -9999 1996 1.3848732 -4.58025 -2.718-6.599 98.1872053425175 -9999 0.291 -9999 1996 1.2437874 -2.4601875 -2.993 95.4609050296131 1.118 -9999 1996 0.6736788 -1.7243751.154 -3.356 94.7818497205114 -9999 2.373 -9999 1.583577 0.2525625 1.565 -0.911 100 -9999 0.906 -9999 -9999 -9999 0.8853246 -0.02877083333333333 0.503 -0.553 100 -9999 0.474 -9999 -9999 0.5837922 -0.628541666666667 0.331 -1.098 0.804 -9999 1996 0.8660754 100 1.092 -9999 -0.5542083333333333 -0.068 -0.967 -9999 1996 0.6812334 0.731 99.9784985124904 -9999 0.969 0.178541666666667 -0.333 1996 1.8782874 0.993979166666667 2.341 -0.122 99.6951326527565 0.833 1996 14 1.6573896 -0.5615208333333333 1.371 -1.415 100 -9999 0.295 -9999 -9999 1996 -9999 -9999 1.2636 -2.43466666666667 -1.468 -2.884 100 -9999 0.545 -9999 -2.341 -9999 1.0278684 -2.7741875 -3.236 100 - 9999 0.522 -9999 - 9999 17 0.6174108 -2.30297916666667 -2.059-2.661 100 -9999 0.4 -9999 -9999 1996 1.1812914 -2.017145833333333 -1.443-2.544 100 -9999 0.515 -9999 -9999

-0.724

-2.265

-4.634

-2.72

-3.6

-3.224

-4.566

-4.615

-4.443

-3.634

-3.344

-5.098

-4.296

-5.163

-5.346

-5.77

100

-5.717

-6.285

-5.031

-7.232

-7.248

-5.515

-7.516

-7.825

-9999

90.4072451907435

86.5034915790072

90.1515955744099

94.0612062814829

100

0.786

85.415256828771

85.3798298986317

89.2121215009884

98.2368807949429

99.8886247872708

99.8809831068128

-9999

-9999

-9999

-9999

-9999

-9999

-9999

0.728

0.637

0.753

0.89

2.428

-9999

-9999

-9999

-9999

-9999

-9999

-9999

-9999

-9999

-9999

-9999

1.974

0.256

-9999

-9999

-9999

0.293

0.048

0.47

Climate forcing data

-1.6066875

-2.5606875

-2.7654375

-3.4424375

-5.1308125

-4.96322916666667

-4.83754166666667

-4.072645833333333

-6.225583333333333

-5.64322916666667

-5.129958333333333

-6.17510416666667

Simulated GPP vs GPP- Eddy Covariance data

Collalti et al.2016

Simulated GPP vs GPP- Eddy Covariance data Simulated DBH vs measured DBH

Collalti et al. in preparation

NPP UNDER CLIMATE CHANGE AND MANAGEMENT

MANAGEMENT VS. NO MANAGEMENT UNDER CLIMATE CHANGE

CARBON WOODY STOCKS

GRAZIE PER L'ATTENZIONE!

