Rapport final du projet de Graphes et Recherche opérationnelle

Maxence Ahlouche Martin Carton

Maxime Arthaud Thomas Forgione

Korantin Auguste Thomas Wagner

Enseeiht

17 décembre 2013

Introduction

Blabla

Shifumi

Équilibre de Nash

Équilibre de Nash : jouer de manière aléatoire.

- Chaines de Markov : bat aisément un humain qui joue « normalement ».
- Variantes : reviennent au Shifumi classique si le nombre d'éléments est impair.

Duopole: principe

Nos stratégies :

- Stackelberg en moyenne $x = \frac{3-y}{2}$
- Stratégie pénalisante
- Stratégie évolutive
- Stratégie polynomiale f(0) = 1.125 f(0.75) = 0.75 f(1.5) = 0.75

Duopole : résultats

Stratégie	Gain minimal	Gain moyen	Gain maximum	
cooperatif*	561.56	978.59	1123.88	
noncooperatif*	380.79	877.10	1317.08	
stackelberg*	498.00	797.42	1132.44	
palkeo	694.54	986.94	1123.88	
Pénalise	419.12	860.12	1124.70	
Pénalise variante	421.22	896.10	1123.88	
Stackelberg en moyenne	492.11	923.94	1123.88	
Stackelberg en moyenne (variante)	531.85	800.61	1262.25	
gklmjbse	561.56	832.41	1135.33	
poly	561.82	1011.24	1123.88	
killer**	0.00	773.86	1133.09	
cooperatifmixte**	698.67	990.58	1123.88	
agressivemieux**	3.15	750.64	1126.18	
best_strategie**	322.67	881.00	1262.81	

TABLE: Résultats des différentes stratégies sur 1000 tours

Voyageur de commerce

Énoncé

Chercher un chemin passant par tous les sommets, de longueur minimale.

- cycle hamiltonien de coût minimal
- NP-complet
- méthodes approchées

Résolution approchée

Heuristiques

Aller sur le nœud le plus près

Recherche locale

Métaheuristiques

- Recherche locale itérée
- Recherche tabou
- Recuit simulé
- Algorithmes génétiques
- Colonies de fourmis

Gare de péage

$$\bullet$$
 $\times [12] = random() < p_{ch}$

•
$$x[1] = random() < lambda$$

$$\bullet$$
 $d_{12} = x[1] * d_{121} * (d_{21} <= d_{81})$

$$d_{23} = (x[2] > 0)$$

$$\bullet$$
 $d_{32} = x[3] * (1 - d_{43})$

$$0 d_{311} = x[3] * d_{43}$$

$$\qquad \qquad \bullet \quad \text{x[10]} = \textit{random()} < \frac{1}{\rho_{\textit{cb}}/\mu_{\textit{cb}} + (1-\rho_{\textit{cb}})/\mu_{\textit{ncb}}}$$

Simplexe - Présentation du problème

$$\left\{ \max_{\substack{x \in \mathbb{R}^n \\ Ax \leqslant b}} f(x) \right.$$

Exemple

	P_1	P_2	<i>P</i> ₃	P_4	stock
R_A	2	4	5	7	72
R_B	1	1	2	2	17
R_C	1	2	3	3	24
bénéfice	7	9	18	17	

Simplexe - Simplification du problème

Transformation des contraintes d'inégalité en égalité

Exemple

	P_1	P_2	P_3	P_4	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	stock
R_A	2	4	5	7	1	0	0	72
R_B	1	1	2	2	0	1	0	17
R_C	1	2	3	3	0	0	1	24
bénéfice	7	9	18	17	0	0	0	

Simplexe - Algorithme

Algorithme

Tant qu'il y a un élément strictement positif sur la première ligne à_ajouter = indice de la colonne dont le gain est maximal à_retirer = $\underset{i}{\operatorname{argmin}} \frac{\operatorname{matrice}[i, \operatorname{stock}]}{\operatorname{matrice}[i, \operatorname{à_ajouter}]}$ mettre à_ajouter dans la base et retirer à_retirer de la base mettre à jour le reste de la matrice Fin Tant que

Cas difficiles

- Cas où l'ensemble de départ vide
- Cas où $(0,0) \notin C$
- Cas de dégénérescence

UA 5 Robots

- Suivi de mur
- Algorithme de Dijkstra
- Algorithme A*

Suivi de mur

Un capteur ultrasonique à gauche Un capteur ultrasonique frontale

- Si distance frontale < minima : on pivote à droite.
- Sinon:
 - Si distance latérale > distance voulue + marge : coupe le moteur de de gauche
 Sinon il est actif
 - Si distance latérale < distance voulue marge : coupe le moteur de droite
 Sinon il est actif

Algorithme de Dijkstra

Si le robot connaît le plan du labyrinthe l'algorithme de dijkstra suffit.