Algebra WiSe 17/18 Kurzskript (Ohne Beweise und Beispiele)

Prof. Scheithauer Mitschrift von Daniel Kallendorf Danke an Sandra Kühne für ihre Mitschriften

Version vom 21. März 2018

Inhaltsverzeichnis

1 Wiederholung

Satz 1.1. Seien $\mathfrak{a} \subset A$, dann

- a) \mathfrak{a} ist Primideal $\Leftrightarrow A/\mathfrak{p}$ ist Integritätsbereich (nullteilerfrei)
- b) \mathfrak{a} ist maximales Ideal $\Leftrightarrow A/\mathfrak{a}$ ist ein Körper.

Bemerkung. Insbesondere ist jedes maximale ideal prim.

Definition 1.2. Sei $A \neq \emptyset$. Eine **Relation** auf A ist eine Teilmenge $R \subset A \times A$. R heißt **partielle Ordnung** wenn

- a) $\forall a \in A \text{ gilt } (a, a) \in R \text{ (Reflexivität)}$
- b) $\forall a, b, c \in A$ gilt $(a, b) \in R$ und $(b, c) \in R$, so gilt auch $(a, c \in R)$ (Transitivität)
- c) $\forall a, b \in A \text{ mit } (a, b \in R) \text{ und } (b, a) \in \mathbb{R}, \text{ dann gilt } a = b. \text{ (Antisymmetrie)}$

Ist R eine partielle Ordnungn auf A so schrieben wir für $(a,b) \in R$ auch $a \leq b$.

Zwei Elemente $a, b \in A$ heißen **vergleichbar**, wenn $a \le b$ oder $b \le a$ ist.

Eine Teilmenge $B \subset A$ heißt **Kette**, wenn für alle $a, b \in B$ gilt, dass $a \leq b$ oder $b \leq a$.

Lemma 1.3. Sei $A \neq \emptyset$ partielle geordnet. Hat jede Kette $B \neq \emptyset$ in A eine obere Schranke in A, d.h. es gibt ein $a \in A$, sodass $b \leq a$ für alle $b \in B$., so besitzt A ein maximales Element.

Theorem 1.4. Sei $A \neq 0$ ein Ring, dann besitzt A ein maximales Ideal.

Korollar 1.5. Sei A ein Ring und $I \subsetneq A$ ein Ideal, dann ist I in einem maximalen Ideal enthalten.

Korollar 1.6. Sei A ein Ring und $a \in A \setminus A^*$. Dann ist a in einem maximalen Ideal enthalten.

1.1 Lokale Ringe

Definition 1.7. Ein Ring A mit nur eine maximalen Ideal \mathfrak{m} heißt lokaler Ring und A/\mathfrak{m} heißt Restklassenkörper von A.

Satz 1.8. Sei A ein Ring und $\mathfrak{m} \neq A$ eine Ideal in A. Ist $jedes\ x \in A \setminus +m$ eine Einheit, si ist A ein lokaler Ring mit maximalen Ideal \mathfrak{m} .

Satz 1.9. Sei A ein Ring und $\mathfrak{m} \subset A$ eine maximales Ideal, sodass jedes Element m eine Einheit in A ist. Dann ist A ein lokaler Ring.

1.2 Radikale

Satz 1.11. Sei A eine Ring und $N = \{a \in A \mid a \text{ ist nilpotent}\}$. Dann ist N ein Ideal in A und A/N enthält keine nilpotenten $Elemente \neq 0$.

Definition 1.12. Das Ideal $N = \{a \in A \mid a \text{ ist Nilpotent}\}$ heißt das **Nilikal** von A.

Definition 1.13. Sei A ein Ring dann nennt man $J = \{x \in A \mid \forall y \in A : 1 - xy \text{ ist Einheit}\}$ das **Jacobsonradikal**.

Satz 1.14. Sei A eine Ring, dann ist

- a) das Nilradikal von A der Schnitt aller Primideal von A.
- b) das Jacobsonradikal von A der Schnitt aller Maximalen Ideale von A.

Definition 1.15. Sei A ein Ring und $\mathfrak{a} \subset A$ ein Ideal in A. Dann wird

$$r(a) := \{ x \in A \mid x^n \in \mathfrak{a} \text{ für ein } n > 0 \}$$

als **Radikal** von \mathfrak{a} bezeichnet. (auch Rad (\mathfrak{a}) , $\sqrt{\mathfrak{a}}$)

Satz 1.16. Sei a, b ein Ideal, dann gilt

- $a) \ \mathfrak{a} \subseteq r(\mathfrak{a})$
- b) $r(r(\mathfrak{a})) = r(\mathfrak{a})$
- $c)\ r(\mathfrak{a}\mathfrak{a}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$
- $d) \ r(\mathfrak{a}) = A \Leftrightarrow \mathfrak{a} = A.$
- $e) r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$

1.2.1 Operationen auf Radikalen

Definition 1.17. Sein A ein Ring.

a) Seien $\mathfrak{a}, \mathfrak{b} \subset A$ Ideale in A. Dann ist

$$a + b =: \{x + y \mid x \in \mathfrak{a}, y \in \mathfrak{b}\}\$$

ein Ideal in A.

b) Analog: Sei $(\mathfrak{a}_i)_{i\in I}$ eine Familie von Idealen in A, für eine Indexmenge I. Dann ist

$$\sum_{i \in I} \mathfrak{a}_i =: \left\{ \sum_{i \in I} x_i \mid x_i \in \mathfrak{a}_i \text{ und fast alle } x_i = 0 \right\}$$

ein Ideal in A.

c) Sei $(\mathfrak{a}_i)_{i\in I}$ eine Familie von Idealen in A, für eine Indexmenge I. Dann ist der Schnitt

$$\bigcap_{i \in I} \mathfrak{a}_i$$

ein Ideal in A.

d) Seien $\mathfrak{a}, \mathfrak{b} \subset A$ Ideal in A. Dann ist

$$\mathfrak{ab} = \left\{ \sum_{i=1}^{n} a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b}, n \in \mathbb{N} \right\}$$

ein Ideal in A.

Satz 1.18. Die Operationen Summe, Durchschnitt und Produkt auf Idealen sind kommutativ und Assoziativ und es gilt das Distributivgesetz.

Definition 1.19. Sei A ein Ring. Zwei Ideale $\mathfrak{a}, \mathfrak{b} \subseteq A$ heißen **teilerfremd**, wenn $\mathfrak{a} + \mathfrak{b} = A = (1)$.

Satz 1.20. Sei A ein Ring, $\mathfrak{a}, \mathfrak{b} \subset A$ Ideale in A. Dann sind äquivalent:

- a) a, b sind Teilerfremd
- b) Es gibt ein $x \in \mathfrak{a}, y \in \mathfrak{b}, sodass x + y = 1.$

Satz 1.21. Sei A ein Ring und seinen $\mathfrak{a}_1,...,\mathfrak{a}_n$ paarweise teilerfremde Ideal in A. Dann gilt

- a) Jedes \mathfrak{a}_i ist teilerfremd zu $\prod_{\substack{j=1\\j\neq i}}^n \mathfrak{a}_j$.
- b) Es gilt

$$\prod_{i=1}^n \mathfrak{a}_i = \bigcap_{i=1}^n \mathfrak{a}_i$$

3

Definition 1.22. Sei A ein Ring und seinen $\mathfrak{a}_i,....,\mathfrak{a}_n$ Ideale in A. Wir definieren die Abbildung

$$\phi:A\to \prod_{i=1}^n (A/\mathfrak{a}_i)$$

$$a\mapsto (a+\mathfrak{a}_1,...,a+\mathfrak{a}_n)$$

Proposition 1.23. a) ϕ ist ein Ringhomomorphismus und

$$\operatorname{Kern}(\phi) = \bigcap_{i=1}^{n} \mathfrak{a}_i$$

b) ϕ ist genau dann surjektiv, wenn die \mathfrak{a}_i paarweise disjunkt sind. Insbesondere ist

$$A/\prod_{i=1}^n \mathfrak{a}_i \simeq \prod_{i=1}^n A/\mathfrak{a}_i$$

1.3 Ringe von Brüchen

Definition 1.24. Sei A ein Ring. Eine Teilmenge $S \subset A$ heißt **multiplikativ** abgeschlossen, wenn

- a) Für alle $s, t \in S$ gilt, dass $st \in S$
- b) $1 \in S$.

Bemerkung 1.25. Auf $A \times S$ wird durch

$$(a,s) \sim (b,t) \Leftrightarrow (at-bs)u = 0$$
 für ein $u \in S$

eine Äquivalenzklasse definiert.

Für die Transitivität wird die multiplikative Abgeschlossenheit von S benötigt.

Die Äquivalenzklassen von (a, s) wird mit a/s bezeichnet.

Die Menge der Äquivalenzklassen wir als $S^{-1}A$ geschrieben.

Definition 1.26. Seien $a/s, b/t \in S^{-1}A$. Man definiert

- a/s + b/t := (at + bs)/st
- $a/s \cdot b/t := ab/st$

Definition 1.27. Diese Verknüpfungen sind wohldefiniert und versehen $S^{-1}A$ mit einer Ringstruktur.

 $S^{-1}A$ wird als der **Ring der Brüche** von A bezüglich S bezeichnet.

Korollar 1.29. Die Abbildung

$$\varphi_S: A \to S^{-1}A$$
$$a \mapsto a/1$$

hat folgende Eigenschaften:

- a) φ_S ist ein Ringhomomorphismus. (i.A. nicht injektiv)
- b) Sei $s \in S$, dann ist $\varphi_S(s)$ eine Einheit in $S^{-1}A$.
- c) $\operatorname{Kern}(\varphi_S) = \{ a \in A \mid as = 0 \text{ für ein } s \in S \}.$
- d) Jedes Element in $S^{-1}A$ ist der Form $\varphi_S(a)\varphi_S(s)^{-1}$ für ein $a \in A$, $s \in S$.

Satz 1.30. Seien A, B Ringe und $S \subset A$ multiplikativ abgeschlossen. Sei $g: A \to B$ ein Ringhomomorphismus, der 1)-3) aus erfüllt, dann gibt es einen eindeutigen Isomorphismus $h: S^{-1}A \to B$ mit $h \circ \varphi_S = g$.

$$A \xrightarrow{g} B$$

$$\downarrow^{\varphi_S} \xrightarrow{h}$$

$$S^{-1}A$$

Definition 1.31. Sei A ein Integritätsbereich und $S = A \setminus \{0\}$. Dann nennt man $S^{-1}A$ den **Quotientenkörper**

Lemma 1.32. Der Quotientenkörper ist ein Körper, φ_S ist injektiv und wir können A mit seinem Bild in $S^{-1}A$ identifizieren.

Definition 1.33. Sei A ein Ring. Sei \mathfrak{p} ein Primideal in A. Man schreibt $A_{\mathfrak{p}}$ für $S^{-1}A$ und nennt $A_{\mathfrak{p}}$ die **Lokalisierung** von A bezüglich \mathfrak{p} .

Lemma 1.34. Sei A ein Ring. Sei \mathfrak{p} ein Primideal in A. Dann ist $S = A \setminus \mathfrak{p}$ multiplikativ Abgeschlossen.

Lemma 1.35. Sei $A = \mathbb{Z}$ und $p \in \mathbb{Z}$ eine Primzahl. Dann ist $\mathbb{Z}_{(p)} = \{m/n \mid m/n \in \mathbb{Q}, p \not | n\}$.

Satz 1.36. Sei A ein Ring und $S \subset A$ multiplikativ abgeschlossen. Dann ist

- a) Ist I ein Ideal in A so ist auch $S^{-1}I = \{a/s \mid a \in I\}$ ein Ideal in $S^{-1}A$
- b) Die Ideale in $S^{-1}A$ sind der Form $S^{-1}I$, wobei I ein Ideal in A ist.
- c) Sind I, J Ideal in A, dann gilt

$$S^{-1}(I+J) = S^{-1}I + S^{-1}J$$

$$S^{-1}(I \cap J) = S^{-1}I \cap S^{-1}J$$

$$S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$$

1.4 Integritätsbereiche und Hauptidealringe

Definition 1.37. Sei A ein Ring. Ein Ideal der Form (a) = Aa heißt **Hauptideal**.

Definition 1.38. Ein Ring A heißt **Hauptidealring**, wenn jede Ideal in A Hauptideal ist.

Definition 1.39. Ein Ring A heißt **euklidisch**, wenn es eine Abbildung

$$\lambda: A \setminus \{0\} \to \mathbb{N}_0$$

gibt, sodass zu je zwei Elementen $a,b\in A$ mit $b\neq 0$ Elemente $q,r\in A$ existieren mit a=qb+r wobei $\lambda(r)<\lambda(b)$ oder r=0.

Satz 1.41. Sei A ein euklidischer Ring. Dann ist A ein Hauptidealring.

Definition 1.42. Sei A ein Ring und seinen $a, b \in A$. $d \in A$ heißt **Größter gemeinsamer Teiler** von a und b, wenn gilt

- a) d|a und d|b.
- b) Wenn es $g \in A$ gibt mit g|a und g|b, dann muss g|d.

Wir schreiben $d = \gcd(a, b) = (a, b)$

Definition 1.43. Sei A ein Ring und seinen $a, b \in A$. $d \in A$ heißt kleinstes gemeinsames Vielfaches von a und b, wenn gilt

- a) a|v und b|v.
- b) Wenn es $g \in A$ gibt mit a|g und b|g, dann muss v|v.

Wir schreiben v = lcm(a, b) = (a, b)

Satz 1.44. Sei A ein Hauptidealring und seien $a, b \in A$. Dann existiert ein $d = \gcd(a, b)$ und $v = \operatorname{lcm}(a, b)$ von a, b und es gilt

- a) (a) + (b) = (d)
- b) $(a) \cap (b) = (v)$

Definition 1.45. Sei A in Integritätsbereich. Zwei Elemente $a,b\in A$ heißen assoziiert, wenn

- a|b und b|a.
- (äquivalent) a = bu für ein $u \in A^*$.
- (äquivalent) (a) = (b).

Man schreibt dann $a \sim b$.

Definition 1.46. Sei A in Integritätsbereich. Ein Element $p \in A$ heißt **prim**, **Primelement**, wenn

- $p \notin A^*$, $p \neq 0$ und aus p|ab folgt p|a oder p|b.
- (äquivalent) $p \neq 0$ und (p) ist Primideal.

Definition 1.47. Sei A in Integritätsbereich. $c \in A$ heißt **irreduzibel** oder **unzerlegbar**, wenn

- a) für $c \notin A^*$ und $c \neq 0$ aus c = ab folgt, dass $a \in A^*$ oder $b \in A^*$.
- b) (äquivalent) für $c \neq 0$ für alle $a \in A$ gilt, dass aus $(c) \subset (a)$ folgt, dass (a) = A oder (a) = (c).

Satz 1.48. Sei A ein Integritätsbereich und $p \in A$ prim. Dann ist p irreduzibel.

Satz 1.49. Sei A ein Hauptidealring und Integritätsbereich. Dann gilt für $c \in A$ $c \ prim \Leftrightarrow c \ irreduzibel$

Definition 1.50. Ein Integritätsbereich heißt faktoriell, wenn

- a) Jedes $a \in A \setminus A^*$, $a \neq 0$ zerfällt in ein Produkt von irreduziblen Elementen.
- b) Die Zerlegung ist bis auf Reihenfolge und Einheiten eindeutig. D.h.

D.h. wenn $a = c_1 \cdot ... \cdot c_m = d_1 \cdot ... \cdot d_n$ mit c_1, d_1 irreduzibel, so folgt m = n und es gibt $\pi \in S_n$ mit $c_1 \sim d_{\pi(i)}$ für alle i = 1, ..., n.

Bemerkung 1.51. Die Eindeutigkeit der Faktorisierung impliziert, dass es irreduzibles Element in einem faktoriellen Integritätsbereich prim ist.

Lemma 1.52. Sei A ein Hauptidealring und S eine nichtleere Menge von Idealen in A. Dann hat S ein maximales Element (bezüglich \subset)

Theorem 1.53. Sei A ein Integritätsbereich. Ist A ein Hauptidealring, so ist A faktoriell.

1.5 Inverse und direkte Limiten

Definition 1.54. Man nennt I eine unter \leq **partiell geordnete Menge**, wenn für alle $x, y, z \in I$ gilt

- a) $x \leq x$.
- b) Aus $x \leq y$ und $y \leq z$ folgt $x \leq z$.
- c) Aus $x \leq y$ und $y \leq x$ folgt x = y.

Definition 1.55. Für jedes $i \in I$ sei A_i ein Ring und sei für jedes Paar $i, j \in I$ mit $i \leq j$ die Abbildung $f_{ij} : A_j \to A_i$ ein Ringhomomorphismus, sodass

- a) $f_{ii} = \mathrm{id}_{A_i}$ für alle $i \in I$
- b) $f_{ik} = f_{ij} \circ f_{jk}$ falls $i \leq j \leq k$.

Dann nennt man das System $(A_i, f_{ij})_{i,j \in I}$ projektives System von Ringen.

Definition 1.56. Ein Ring A zusammen mit dem Homomorphismus $f_i: A \to A_i$, sodass $f_i = f_{ij} \circ f_j$ für $i \leq j$ heißt **projektiver Limes** oder **inverser Limes** des Systems (A_i, f_{ij}) , wenn folgende universelle Eingenschaft erfüllt ist:

Sind $h_u: B \to A_i$ für alle $i \in I$ Ringhomomorphismen mit $h_i = f_{ij} \circ h_j$ für $i \leq j$, so existiert genau ein Ringhomomorphismus $h: B \to A$ mit $h_i = f_i \circ h$ für alle $i \in I$.

Bemerkung 1.57. Falls ein projektiver Limes existiert, so ist er bis auf kanonische Isomorphie eindeutig:

Sind (A, f_i) und (B, h_i) projektive Limiten von (A_i, f_{ij}) , so gibt es Homomorphismen $h: B \to A$ und $g: A \to B$, die die oben beschrieben Verträglichkeitsbedingungen erfüllen.

Durch Zusammensetzen dieser Homomorphismen erhalten wir Abbildungen Die Eindeutigkeitsbedingung Impliziert nun, dass $g \circ h = \mathrm{id}_B$ und $h \circ g = \mathrm{id}_A$.

Man schreibt auch $A = \varprojlim_{i \in I} A_i$ für den projektiven Limes des Systems (A_i, f_{ij}) .

Satz 1.59. Sei $x \in \mathbb{Z}_p$. Dann ist

- $a) \ x \in \mathbb{Z}_p^* \Leftrightarrow p \not| x$
- b) Ist $x \neq 0$, so lässt sich x eindeutig schreiben als $x = p^n u$ mit $u \in \mathbb{Z}_p^*$ und $n \geq 0$.

Definition 1.60. Sei $x \in \mathbb{Z}_p$, $x \neq 0$. Schreibe $x = p^n u$ mit $u \in \mathbb{Z}_p^*$. Dann heißt

$$n = \nu_p(x)$$

die p-adische Bewertung von x.

Man setzt $\nu_p(0) = \infty$.

Man bezeichnet $|x|_p = p^{-\nu_p(x)}$ als den p-adischen Betrag.

Lemma 1.61. Für die p-adische Bewertung gilt:

- a) $\nu_p(xy) = \nu_p(x) + \nu_p(y)$
- b) $\nu_p(x+y) \ge \inf \{ \nu_p(x), \nu_p(y) \}$

Satz 1.62. \mathbb{Z}_p ist ein Integritätsbereich.

Der Quotientenkörper \mathbb{Q}_p von \mathbb{Z}_p wird als Körper der p-adischen Zahlen bezeichnet

 \mathbb{Q}_p kann auch (analytisch) als Vervollständigung von \mathbb{Q} bezüglich des p-adischen Betrage konstruiert werden.

Definition 1.63. Man nennt I eine unter \leq **gerichtete Menge**, wenn für alle $x, yz \in I$ gilt

- a) $x \leq x$
- b) Aus $x \leq y$ und $y \leq z$ folgt $x \leq z$
- c) Für alle x, y exitsiert ein $z \in I$ mit $x \le z, y \le z$

Definition 1.64. Für jedes $i \in I$ sei ein Ring A_i und für jedes Paar $i, j \in I$ mit $i \leq j$ sei ein Ringhomomorphismus $f_{ij} : A_i \to A_j$ gegeben, mit

- a) $f_{ii} = \mathrm{id}_{A_i}$ für alle $i \in I$
- b) $f_{ik} = f_{jk} \circ f_{ij}$ für alle $i \leq j \leq k$

$$A_i \xrightarrow{f_{ij}} A_j \xrightarrow{f_{jk}} A_k$$

Ein solches System (A_j, f_{ij}) heißt **induktives System** von Ringen.

Definition 1.65. Ein Ring A zusammen mit dem einem Homomorphismus $f_i: A_i \to A$, sodass gilt $f_i = f_j \circ f_{ij}$ für $i \leq j$ heißt **induktiver Limes** oder **direkter Limes** des Systems (A_i, f_{ij}) , wenn folgende Universelle Eigenschaft erfüllt ist:

Ist B ein Ring, und sind $h_i:A_i\to B,\ i\in I$ Ringhomomorphismen mit $h_i=h_j\circ f_{ij}$ für $i\leq j$, so existiert genau ein Ringhomomorphismus $h:A\to B$ mit $h_i=h\circ f_i$ für alle $i\in I$.

Lemma 1.66. Falls ein indktiver Limes existiert, so ist er eindeutig.

2 Polynomringe

2.1 Polynome mit einer Variable

Sei in diesem Abschnitt A ein Ring.

Definition 2.1. Sei A[X] die Menge der Folgen $(a_0, a_1, ...,)$ mit $a_i \in A$ und $a_i = 0$ für fast alle $i \in \mathbb{N}$.

Die Elemente dieser Menge heißen Polynome.

Definition 2.2. A[X] ist ein Ring mit

$$(a_0, a_1, ...,) + (b_0, b_1, ...) = (a_0 + b_0, a_1 + b_1, ...)$$

 $(a_0, a_1, ...,) \cdot (b_0, b_1, ...) = (c_0, c_1, ...)$

 $mit c_n = \sum_{k=0}^n a_{n-k} b_k.$

Das Nullelement ist 0 = (0,0,...) und 1 = (1,0,0,...) ist das Neutrale Element der Multiplikation.

Definition 2.3. A[X] wird als der **Polynomring** in der **Variablen** X bezeichnet.

- **Proposition 2.4.** a) Die Abbildung $A \to A[X], a \mapsto (a, 0, 0, ...)$ ist ein Injektiver Ringhomomorphismus und A ist Unterring von A[X].
 - b) Sei X = (0, 1, 0, ...). Dann ist $X^n = (0, 0, ..., 0, 1, 0, ...)$ an *n*-ter Stelle und $aX^n = (0, ..., 0, a, 0, ...)$.
 - c) Polynome lassen sich schreiben als

$$(a_0, a_1, ...) = \sum_{i=0}^{n} a_i X^i$$

d) Dann gilt für Addition und Multiplkation:

$$\sum_{k} a_k X^k + \sum_{k} b_k X^k = \sum_{k} (a_k + b_k) X^k \left(\sum_{k} a_k X^k \right) \left(\sum_{k} b_k X^k \right) = \sum_{k} c_k X^k$$

mit $c_k = \sum_{i+j=k} a_i b_j$.

Definition 2.5. a) Für ein Polynom $f = \sum_k a_k X^k$ heißt a_k der k-te Koeffizient von f.

b) Für $f \neq 0$ heißt

$$\deg(f) = \max\{i \mid a_i \neq 0\}$$

der **Grad** von f. (Falls f = 0, dann ist deg $f := -\infty$)

- c) Der Koeffizient a_n mit $n = \deg(f)$ heißt **Führender Koeffizient** von f.
- d) Ist der führende Koeffizient $a_n = 1$, so heißt f normiert

Theorem 2.6. Seien $f, g \in A[X]$.

- a) Dann ist $\deg(f+g) \leq \max(\deg(f), \deg(g))$ und $\deg(fg) \leq \deg(f) + \deg(g)$.
- b) Sind die führenden Koeffizienten von f oder g keine Nullteiler, so idt $\deg(fg) = \deg(f) + \deg(g)$.

Korollar 2.7. A ist genau dann Integritätsbereich wenn A[X] Integritätsbereich ist

In diesem Fall gilt $A[X]^* = A^*$.

Satz 2.8. Sei $f: A \to B$ ein Ringhomomorphismus und $b \in B$. Dann gibt es genau einen Homomorphismen $\varphi_A: A[X] \to B$ mit $\varphi_B|_{A} = \varphi$ und $\varphi_b(X) = b$.

Lemma 2.10. Es gilt I ist Primideal in $A \Leftrightarrow I[X]$ ist Primideal in A[X].

Theorem 2.11. Sei $g \in A[X]$, $g \neq 0$ mit führendem Koeffizient $b_n \in A^*$ und sei $f \in A[X]$.

Dann existieren eindeutige Polynome $q, r \in A[X]$ mit f = qg + r mit $\deg(r) < \deg(g)$.

Korollar 2.12. Sei K ein Körper. Dann ist K[X] ein euklidischer Ring unter der deg-Abbildung und somit ein Hauptidealring. Die Einheiten sind die konstruieren Polynome.

Satz 2.13. Sei A ein Integritätsbereich. Dann ist

A[X] ist Hauptidealring $\Leftrightarrow A$ ist Körper

2.2 Nullstellen von Polynomen

Definition 2.14. Sei $f \in A[X]$, $f \neq 0$. $a \in A$ heißt **Nullstelle** von f, wenn f(a) = 0.

Satz 2.15. Sei $f \in A[X]$, $f \neq 0$ und $a \in A$. Dann gilt

 $a \text{ ist Nullstelle von } f \Leftrightarrow (x-a)|f$

Satz 2.16. Sei $f \in A[X]$, $f \neq 0$ ein Polynom das eine Nullstelle in A hat. Dann gibt es paarweise verschiedene Elemente $a_1, ..., a_m \in A$ und $n_1, ..., n_m \in \mathbb{N}$ und ein Polynom $g \in A[X]$, welchen keine Nullstellen in A hat, sodass

$$f = g \prod_{i=1}^{m} (x - a_i)^{n_i}$$

ist.

Es gilt

$$\sum_{i=1}^{m} n_i \le \deg(f)$$

Definition 2.17. Lässt sich $f \in A[X]$, $f \neq 0$ schreiben als

$$f = c \prod_{i=1}^{m} (x - a_i)^{n_i}$$

mit $c, a_1, ..., a_m \in A$ und $n_1, ..., n_m \in \mathbb{N}$, dann sag man f zerfällt in Linear-faktoren.

Satz 2.18. Sei A ein Integritätsbereich. Dann hat $f \in A[X]$ mit $f \neq 0$ höchsten $n = \deg(f)$ verschiedene Nullstellen in A.

Korollar 2.19. Sei A ein unendlicher Integritätsbereich und $f \in A[X]$, $f \neq 0$. Dann gibt es ein $a \in A$ mit $f(a) \neq 0$.

Satz 2.21. Sei G_1 zyklische Gruppe der Ordnung n_1 , G_2 zyklische Gruppe der Ordnung n_2 .

Sein n_1, n_2 Teilerfremd, so ist $G_1 \times G_2$ zyklisch.

Theorem 2.22. Sei K ein Körper und $G \subset K^*$ Untergruppe. Ist G endlich, so ist G zyklisch.

Korollar 2.23. Ist K endlicher Körper, so ist K^* zyklisch.

 $\textbf{Satz 2.24.} \ \textit{Sie A ein faktorieller Integritätsbereich mit Quotientenk\"{o}rper \ K. } \\ \textit{Sei}$

$$f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_i X^1 + a_0$$

ein Polynom in K[X].

Ist b = c/d eine Nullstelle von f in K mit teilerfremden c, d, so gilt

$$c|a_0 \ und \ d|a_n$$

Definition 2.25. Sei $f \in A[X]$, $f \neq 0$. Ist $a \in A$ eine Nullstelle von f, so gibt es ein $n \in \mathbb{N}$ mit

$$(x-a)^n|f$$
$$(x-a)^{n-1} \not|f$$

Dann heißt n die Vielfachheit oder Multiplizität von a und man nennt a eine n-fache Nullstelle von f.

Definition 2.26. Die Abbildung

$$D: A[X] \to A[X]$$

$$\sum_{j=0}^{n} a_j X^j \mapsto \sum_{j=1}^{n} j a_j X^{j-1}$$

Man schreibt f' := D(f).

Lemma 2.27. Seien $f, g \in A[X]$, $a, b \in A$ Für die Ableitung D gilt

a)
$$D(af + bg) = aD(f) + bD(g)$$
 (Linearität)

b)
$$D(fg) = (Df)g + f(Dg)$$
 (Produktregel)

Satz 2.28. Sei $f \in A[X]$, $f \neq 0$. Sei $a \in A$ eine Nullstelle von f. Dann gilt

a hat Vielfachheit
$$1 \Leftrightarrow f'(a) \neq 0$$

Definition 2.29. Die Abbildung

$$\chi: \mathbb{Z} \to A$$
$$n \mapsto n \cdot 1$$

Ist ein Ringhomomorphismus und

$$Kern(\chi) = (n) = n\mathbb{Z}$$

für ein $n \in \mathbb{Z}$, $n \ge 0$.

n heißt die **Charakteristik** von A und man schreibt n = char(A).

Lemma 2.30. Ist A ein Integritätsbereich, so ist n = 0 oder n ist prim.

Satz 2.31. Sei K ein Körper und $f \in K[X]$ $f \neq const$, dann gilt

a) Ist char(K) = 0, so gilt

$$\deg(f') = \deg(f) - 1$$

b) Ist char(K) = p > 0, so gilt

$$\deg(f') \le \deg(f) - 1$$

Weiterhin gilt

$$f' = 0 \Leftrightarrow f(X) = g(X^p) \text{ für ein } g \in K[X]$$

2.3 Polynome mehrerer Veränderlicher

Definition 2.32. Sei A ein Ring. Dann ist der <u>Polynomring in mehreren Variablen</u> $A[X_1,...,X_n]$ induktiv definiert als

$$\begin{split} A[X_1,X_2] &:= A[X_1][X_2] \\ A[X_1,...,X_n] &:= A[X_1,...,X_{n-1}][X_n] \end{split}$$

und ein Polynom $f \in A[X_1,...,X_n]$ lässt sich schrieben als

$$f = \sum_{i_1, \dots, i_n} \underbrace{a_{i_1 \dots i_n}}_{\in A} X_1^{i_1} \dots X_n^{i_n}$$

Definition 2.33. Die Elemente $X_1^{i_1}...X_n^{i_n} \in A[X_1,...,X_n]$ heißen <u>primitve</u> Monome.

Definition 2.34. Der Grad des Polynoms $f \in A[X_1,...,X_n]$ ist definiert als

$$\deg(f) = \max \left\{ \sum_{j=1}^{n} i_j \mid a_{i_1 \dots i_n} \neq 0 \right\}$$

falls $f \neq 0$ und sonst $= -\infty$.

Definition 2.35. Ein Polynom $f \in A[X_1, ..., X_n]$ heißt homogen vom Grad m, falls alle Monome in f Grad m haben.

Satz 2.36. Sei $\varphi: A \to B$ ein Ringhomomorphismus und $b_1, ..., b_n \in B$. Dann existiert genau ein Ringhomomorphismus $\psi: A[X_1, ..., X_n] \to B$ mit $\psi|_A = \varphi$ und $\psi(X_i) = b_i$ für alle i.

Satz 2.37. Sei B ein Ring und $A \subset B$ ein Unterring. Seien $b_1, ..., b_n \in B$. Die Inklusion $\iota : A \hookrightarrow B$ lässt sich eindeutig fortsetzen zu einem Homomorphismus $\varphi : A[X_1, ..., X_n] \to B$ mit $\varphi|_A = \iota$ und $\varphi(X_j) = b_j$.

Korollar 2.38. Sei B ein Ring und $A \subset B$ ein Unterring. Seien $b_1, ..., b_n \in B$. Dann ist $A[b_1, ..., b_n]$ der Kleinste Unterring von B der A und $b_1, ..., b_n$ enthält.

Korollar 2.39. Ist $\varphi: A[X_1,...,X_n] \to B$ mit $\varphi(X_j) = b_j$ injektiv, so ist $A[b_1,...,b_n]$ isomorph zu $A[X_1,...,X_n]$.

Definition 2.40. Ist $\varphi: A[X_1,...,X_n] \to B$ mit $\varphi(X_j) = b_j$ injektiv, so nennt man die b_j algebraisch unabhängig.

Ist φ nicht injektiv, so heißen die b_i algebraisch abhängig.

Satz 2.41 (?? für mehrere Variablen). Sei A ein Ring

A ist Integritätsbereich \Leftrightarrow A[X₁,...,X_n] ist Integritätsbereich

Satz 2.42. Sei A Integritätsbereich. Dann gilt

$$A^* = A[X_1, ..., X_n]^*$$

Satz 2.43. Es war einmal ein Integritätsbereich A. Der Integritätsbereich A hatte unendliche Teilmengen $T_1, ..., T_n \subset A$ als Freunde.

Dann kam ein nettes $f \in A[X_1,...,X_n]$ für welches $f(t_1,...,t_n) = 0$ für alle $t_1 \in T_1,...,t_n \in T_n$ war.

Der Held wusste sofort, dass f = 0 gellten musste.¹

Definition 2.44. Sei $I \neq \emptyset$ ein Indexmenge. Dann bezeichnet $\mathbb{N}^{(I)}$ die Menge der Form $(a_i)_{i \in I}$ mit $a \in \mathbb{N}_0$ und $a_i = 0$ für fast alle $i \in I$. Die Addition auf $\mathbb{N}^{(I)}$ ist definiert durch

$$(a_i)_{i \in I} + (b_i)_{i \in I} = (a_i + b_i)_{i \in I}$$

mit neutralem Element $0 = (0)_{i \in I}$.

Definition 2.45. Für Indexmengen I ist $A[(X_i)_{i\in I}]$ definiert als die Menge der Abbildungen $\varphi: \mathbb{N}^{(I)} \to A$ mit $\varphi(\alpha) = 0$ für fast alle $\alpha \in \mathbb{N}^{(I)}$, mit Addition und Multiplikation

$$(f+g)(\alpha) = f(\alpha) + g(\alpha)$$

$$(fg)(\alpha) = \sum_{\substack{\beta + \gamma = \alpha \\ \beta, \gamma \in N(I)}} f(\beta)g(\gamma)$$

Dann ist $A[(X_i)_{i\in I}]$ ein Ring mit neutralem Element der Addition $0=0(\alpha)$ und der Multiplikation $e(\alpha)=1$ falls $\alpha=0$ und $e(\alpha)=0$ sonst.

Bemerkung. Einem Element $a \in A$ ordnen wir die Abbildung ζ mit

$$\zeta(\alpha) \begin{cases} a &= \alpha = 0 \\ 0\alpha \neq 0 \end{cases}$$

Dies liefert eine Einbettung von A in $A[(X_i)_{i \in I}]$ mit

$$X^{\alpha}(\beta) = \begin{cases} 0 & \beta \neq \alpha \\ 1 & \beta = \alpha \end{cases}$$

 $^{^{1}}$ by Sandra

Für ein beliebiges $f \in A[(X_i)_{i \in I}]$ ist dann

$$\zeta = \sum_{\alpha \in \mathbb{N}^{(I)}} f(\alpha) X^{\alpha}$$

und es gilt $X^{\alpha}X^{\beta}=X^{\alpha+\beta}$ und für $f=\sum f(\alpha)X^{\alpha}$ $g=\sum g(\alpha)X^{\alpha}$ ist

$$f + g = \sum (f(\alpha) + g(\alpha))X^{\alpha}$$
(1)

$$f \cdot g = \sum h(\alpha) X^{\alpha} \text{mit } h(\alpha)$$

$$= \sum_{\beta + \gamma = \alpha} f(\beta) g(\gamma)$$
 (2)

Bemerkung 2.46. Für jedes $j \in I$ setzen wir $e_j = (b_i)_i$ mit $b_j = 1$, $b_i = 0$ f+r $j \neq i$.

Dann könne wir ein beliebiges $\alpha = (a_i)_i$ schreiben als $\alpha = \sum a_i e_i$. Wir definieren $X^{e_i} := X_i$. Dann ist

$$X^{\alpha} = X^{\sum a_i e_i} = \prod X^{a_i e_i} = \prod X_i^{a_i}$$

Die X^{α} sind die primitiven Monome in den Variablen X_i und die Elemente aus $A[(X_i)_{i\in I}]$ lass sich eindeutig schreiben als

$$\sum_{\alpha \in \mathbb{N}^{(I)}} c_{\alpha} \prod X_i^{a_i}$$

mit eindeutig bestimmten Koeffizienten c_{α} die fast alle verschwinden.

2.4 Bewertungen

Definition 2.47. Sei K ein Körper. Ein **Betrag** auf K ist eine Abbildung

$$|\cdot|:K\to\mathbb{R}$$

mit

- a) $|x| \ge 0$ und $|x| = 0 \Leftrightarrow x = 0$
- b) |xy| = |x| |y|
- c) $|x + y| \le |x| |y|$

Definition 2.48. Ein Betrag $|\cdot|$ heißt **Archimedisch**, wenn es $x, y \in K$ gibt, sodass

$$|x+y| > \max\{|x|\,|y|\}$$

bzw **nicht-archimedisch**, wenn für alle x,y gilt, $\mathrm{dass}|x+y| \leq \mathrm{max}\{|x|\,,|y|\}.$

Satz 2.49. Sei $|\cdot|$ ein nicht-archimedischer Betrag auf K. Ist $|x| \neq |y|$, so gilt

$$|x+y| = \max\{|x|, |y|\}$$

Definition 2.50. Sei A ein Integritätsbereich. Eine **Bewertung** auf A ist eine Abbildung

$$\nu: A \to \mathbb{R} \cup \{\infty\}$$

mit

- a) $\nu(a) = \infty \Leftrightarrow a = 0$
- b) $\nu(ab) = \nu(a) + \nu(b)$
- c) $\nu(a+b) \ge \min{\{\nu(a), \nu(b)\}}$

Satz 2.51. Sei A ein Integritätsbereich und $\nu: A \to \mathbb{R} \cup \{\infty\}$ eine Bewertung auf A.

a) ν kann zu einer Bewertung auf dem Quotientenkörper K von A fortgesetzt werden, durch

$$\nu(a/b) = \nu(a) - \nu(b)$$

b) Sei $c \in \mathbb{R}$ und c > 1. Dann definiert

$$|x| = c^{-\nu(x)}$$

einen neiht-archimedischen Betrag auf K.

Theorem 2.53 (Lemma von Gauß). Sei A in Integritätsbereich mit Quotientenkörper K und sei $\nu: A \to \mathbb{R} \cup \infty$ eine Bewertung auf A. Setze ν fort zu einer Bewertung auf K durch

$$\nu(a/b) = \nu(a) - \nu(b)$$

Für $f = \sum a_j X^j \in K[X]$ definieren wir

$$\nu(f) = \min\{\nu(a_i)\}\$$

für $f \neq 0$ und $\nu(0) = \infty$.

Dann ist ν eine Bewertung auf K[X].

2.5 Der Satz von Gauß

Definition 2.54. Sei A ein faktorieller Integritätsbereich mit Quotientenkörper K.

Ein Polynom

$$f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_o \in A_{\lceil X \rceil}$$

heißt **primitiv**, wenn für seine Koeffizienten gilt: $gcd(a_0, ..., a_n) = 1$.

Äquivalent dazu $\nu_p(f) = 1$ für alle Primelemente $p \in A$.

Ein Polynom $f \in K[X]$, $f \neq 0$ lässt sich schreiben als $f = c\tilde{f}$ mit $\tilde{f} \in A[X]$ primitiv und $c \in K$.

Satz 2.55. Sei A ein faktorieller Integritätsbereich mit Quotientenkörper K und $f \in A[X]$ primitiv mit $\deg(f) \geq 1$.
Dann gilt

f ist irreduzibel in $A[X] \Leftrightarrow f$ ist irreduzibel in K[X]

Bemerkung. Sei A wie Oben, $f \in A[X]$, nicht zwingend Primitiv mit $\deg(f) \ge 1$ und f irreduzible in K[X], dann ist firreduzible in A[X].

Theorem 2.56 (Satz von Gauß). Sei A ein faktorieller Integritätsbereich. Dann ist auch A[X] ein faktorieller Integritätsbereich.

Korollar 2.57. Sie K ein Körper, dann ist $K[X_1,...,X_n]$ ein faktorieller Integritätsbereich.

2.6 Der Hilbertsche Basissatz

Theorem 2.59 (Hilbertscher Basissatz). Sei A ein noetherscher Ring. Dann ist auch A[X] noethersch.

 $\operatorname{Danf} \operatorname{\ddot{u}il} f = \sum_{a_i X^i \in A[X]} \operatorname{sei} b_n(f) = a_n.$

$$b_n(f+g) = n_b(f) + b_n(g)$$
$$b_n(af) = ab_n(f)$$

für alle $f, g \in A[X]$ und $a \in A$.

Die Menge $I(n) := b_n(I_n)$ ist ein Ideal in A und es gilt

$$I(0) \subset I(1) \subset \dots$$

den $f \in I_n$ impliziert $Xf \in I_{n+1}$. Dann ist $b_n(f) = b_{n+1}(Xf) \in I(n+1)$. Da A noethersch ist wird jede Folge stationär. Also gibt es $m \in \mathbb{N}$, mit

$$I(m) = I(m+1) = \dots$$

Für jedesn=0,1,... wähle Polynome f_{n_j} , sodass I(n) von den Koeffizienten $b_n(f_{n_j})$ erzeugt wird.

Dann wird I von den f_{n_j} über A[X] erzeugt:

Sei $f \in I$ vom Grad t.

• Ist $t \leq m$, so hat

$$f - \sum_{t} a_{t_j} f_{t_j} \in I$$

 $Grad \leq t - 1$.

Nach endlich vielen Schritten hat man f als Linearkombination der f_{n_j} dargestellt.

• Ist t > m, so reduziert man den Grad von f durch

$$f - \sum a_{t_j} X^{t-m} f_{m_j} \in I$$

2.7 Eigenschaften von Polynomringen

Sei A ein Ring.

- a) A Integritätsbereich $\Leftrightarrow A[X_1,...,X_n]$ Integritätsbereich. Dann gilt $A[X-1,...,X_n]^* = A^*$.
- b) (Gauss) A faktorieller Integritätsbereich $\Leftrightarrow A[X_1,...,X_n]$ faktorieller Integritätsbereich.
- c) (Hilbert) A noethersch $\Leftrightarrow A[X_1,...,X_n]$ noethersch.
- d) Sei A zusätzlich Integritätsbereich, dann ist A Körper $\Leftrightarrow A[X]$ Hauptidealring.

2.8 Irreduziblitätskriterien

Theorem 2.60 (Eisenstein). Sei A ein faktoriell Integritätsbereich mit Quotientenkörper K = Q(A).

Sei

$$f = a_n X^n + \dots + a_0 \in A[X]$$

 $mit \deg(f) = n \ge 1$. Sei $p \in A$ prim $mit \ p|a_i \ f\ddot{u}r \ i = 0, ..., n-1 \ und \ a \not |a_n| und p^2 \not |a_0|$.

Dann ist f irreduzibel in K[X].

Ist f zusätzlich primitiv, so ist f auch irreduzibel in A[X].

Satz 2.62 (Reduktionskriterium). Sei A ein faktorieller Integritätsbereich mit Quotientenkörper K, $p \in A$ prim und $d = a_n X^n + ... + a_0$ ein Polynom in A[X] mit $\deg(f) \geq 1$ und $\neq a_n$. Sei

$$\pi: A[X] \to (A/(p))[X]$$

und $\pi(f)$ irreduzible in (A/(p))[X], dann ist f irreduzible in K[X].

2.9 Symmetrische Polynome

Definition 2.64. Für $f \in A[X_1,...,X_n]$ und $\sigma \in S_n$ sei

$$\sigma(f) = \sigma(f(X_1, ..., X_n)) := f(X_{\sigma(1)}, ..., X_{\sigma(n)})$$

Dies liefert eine Operation von S_n auf $A[X_1,...,X_n]$.

Bemerkung 2.65. Insbesondere gilt für $\sigma, \tau \in S_n$, dass $(\sigma \tau)(f) = \sigma(\tau(f))$.

Definition 2.66. Die Polynome in $A[X_1,...,X_n]^{S_n}$ (invariant unter S_n) werden als **symmetrische Polynome** bezeichnet.

Proposition 2.67. Die Gruppenoperationen $\sigma \in S_n$ sind Automorphismen auf $A[X_1,...,X_n][X]$.

Satz 2.68. a) $A[X_1,...X_n]^{S_n}$ enthält A und ist ein Unterring von $A[X_1,...,X_n]$.

b) S_n operiert auf $A[X_1,...,X_n][X]$ durch

$$\sigma\left(\sum_{j=0}^{n} a_j X^j\right) = \sum_{j=0}^{n} \sigma(a_j) X^j$$

c) Sei $f = (X - X_1)(X - X_2)...(X - X_n)$. Dann ist

$$f = X^n + \sum_{j=1}^{n} (-1)^j s_j X^{n-j}$$

für eindeutig bestimmte Polynome $s_j \in A[X_1, ..., X_n]$

$$d) \sigma(f) = f$$

Definition 2.69. Sei $f \in [X - 1, ..., X_n][X], \sigma \in S_n$. Dann bezeichnet man die s_j in

$$f = \sigma(f) = \sigma\left(X^n + \sum_{j=1}^n (-1)^j s_j X^{n-j}\right)$$

als elementarsymmetrische Polynome.

Lemma 2.70. Die elementarsymmetrischen Polynom sind symmetrisch, d.h. $\sigma(s_j) = s_j$. Sie sind gegeben durch

$$s_1 = X_1 + X_2 + \dots + X_n s_2 = X_1 X_1 + X_1 X_3 + \dots + X_1 X_n + X_2 X_3 + \dots + X_{n-1} X_n$$

$$= \sum_{i \le j} X_i X_j \vdots$$

$$s_n = X_1 \dots X_n$$

Satz 2.71. Die Polynome s_j sind homogen vom Grad j.

Definition 2.72. Das Monom $X_1^{i_1}...X_n^{i_n} \in A[X_1,...,X_n]$ hat Grad $i_1+...+i_n$. Für den **Grad** $\deg(f)$ für $f \in A[X_1,...,X_n]$ ist das Maximum über den Grad der Monome.

Definition 2.73. Das Monom $X_1^{i_1}...X_n^{i_n} \in A[X_1,...,X_n]$ hat Gewicht $i_1+2i_2+...+ni_n$.

Das Gewicht gew(f) für $f \in A[X_1,...,X_n]$ ist das Maximum über das Gewicht der Monome.

Theorem 2.74. a) Sei $f \in A[X_1,..,X_n]^{S_n}$ mit $\deg(f) = d$. Dann gibt es eine Polynom $g \in A[X_1,...,X_n]$ mit $\gcd(g) \leq d$, sodass $f = g(s_1,...,s_n)$.

b) Ist f zusätzlich homogen, so hat jedes Monom Gewicht d.

Theorem 2.75. Sie elementarsymmetrischen Polynome $s_1, ..., s_n \in A[X - 1, ..., X_n]$ sind algebraisch unabhängig über A.

Definition 2.77. Sei $f \in A[X]$ ein normiertes Polynom vom Grad n. Dann ist die **Diskriminante** von f definiert als

$$D(f) := d_n(-c_1, c_2, -c_3, ..., (-1)^n c_n) \in A$$

Dabei ist $d_n \in \mathbb{Z}[X-1,...,X_n]$ mit

$$d_n(s_1, ..., s_n) := \prod_{i \le j} (X_i - X_j)^2$$

Satz 2.78. Sei $f \in A[X]$ ein normiertes Polynom. Ist

$$f = \prod_{i=1}^{n} (X - \alpha i)$$

eien Faktorisierung von f in einem Oberring $B \supset A$, dann ist

$$D(f) = \prod_{i \le j} (\alpha_i - \alpha_j)^2$$

Satz 2.79. Ist $B \supset A$ ein Integritätsbereich so gilt

 $D(f) = 0 \Leftrightarrow f \text{ hat Mehrfache Nullstellen in } B$

3 Körpererweiterungen

3.1 Grundbegriffe

Definition 3.1. Sei L ein Körper, $K \subset L$ heißt **Teilkörper** von L, wenn K abgeschlossen beglich Addition und Multiplikation ist und unter diesen Operationen selbst wieder Körper ist.

Definition 3.2. Sei K ein Körper. Sei $L \supset K$ selbst wieder Körper, dann bezeichnet man L als **Erweiterungskörper** von K und spricht von der **Körpererweiterung** L/K.

Definition 3.3. Sei L/K eine Körpererweiterung. Dann heißt der Körper M mit $K \subset M \subset L$ **Zwischenkörper** der Erweiterung L/K.

Definition 3.4. Sei L/K eine Körpererweiterung und $M \subset L$. Dann bezeichnet man mit K(M) den **kleinsten Teilkörper** von L, der $K \cup M$ enthält. Man sagt, dass K(M) durch Adjunktion von M zu K entsteht.

Proposition 3.5. Sei L/K eine Körpererweiterung und $M \subset L$. Dann besteht K(M) aus allen Elementen der Form

$$\frac{f(a_1, ..., a_n)}{g(a_1, ..., a_n)}$$

mit $f, g \in K[X_1, ..., X_n], g(a_1, ..., a_n) \neq 0$ und $a_1, ..., a_n \in M$.

Proposition 3.6. Für jedes $a \in K(M)$ gibt es eine endliche Teilmenge $M' \subset M$, sodass $a \in K(M')$.

Definition 3.7. Sei K ein Körper. Sei

$$\mathbb{Z} \xrightarrow{\phi} K$$
$$n \mapsto n \cdot 1$$

Dann ist $\operatorname{Kern}(\phi) = (n)$ für ein eindeutiges $n \in \mathbb{N}$. n wird als **Charakteristik** von K bezeichnet.

Korollar 3.8. Sei K ein Körper, dann ist char(K) = 0 oder prim.

Proposition 3.10. Ist K ein Teilkörper von L, so gilt

$$char(K) = char(L)$$

Definition 3.11. Sei K ein Körper. Dann heißt

$$P := \bigcap_{L \text{ Teilk\"{\"{o}}rper von } K} L$$

der **Primkörper** von K.

Satz 3.12. Sei K ein Körper und P der Primkörper von K. Dann gilt

a)
$$\operatorname{char}(K) = p \ \text{für } p > 0, \ p \ \text{prim} \Leftrightarrow P \stackrel{\sim}{=} F_p$$

b)
$$\operatorname{char}(K) = 0 \Leftrightarrow P \stackrel{\sim}{=} \mathbb{Q}.$$

Definition 3.13. Ist K ein Teilkörper von L, sokönnen wir L als Vektorraum über K auffassen.

Die Dimension diese Vektorrausm heißt \mathbf{Grad} von L über K.

$$[L:K] := \dim_K(L)$$

Definition 3.14. Die Erweiterung L/K heißt **endlich**, wenn $[L:K] < \infty$.

Proposition 3.15. Ist L endlich und K kein Teilkörper von L, so gilt

$$|L| = |K|^m$$

mit m = [L : K].

Theorem 3.16 (Gradsatz). Seien $K \subset L \subset M$ Körpererweitungen. Dann gilt

$$[M:K] = [M:L][L:K]$$

Ist $(x_i)_{i\in I}$ eine Basis von L/K und $(y_j)_{j\in J}$ eine Basi von M/L, so ist $(x_iy_j)_{(i,j)\in I\times J}$ eine Basis von M/K.

3.2 Algebraische Körpererweiterungen

Definition 3.17. Sei L/K eine Körpererweiterung. $\alpha \in L$ heißt **algebraische** über K, wenn es ein Polynom $g \in K[X] \setminus 0$ gibt, mit $g(\alpha) = 0$. Äquivalent:Der Homomorphismus $K[X] \to L, f \mapsto f\alpha$ hat nicht trivialen Kern.

Definition 3.18. Ist $\alpha \in L$ nicht algebraisch, so nennt man es <u>transzendent</u>.

Definition 3.19. Der Körper L heißt <u>algebraisch</u> über K, wenn alle $\alpha \in A$ algebraisch sind.

Definition 3.21. Sei L/K eine Körpererweiterung und $\alpha \in L$ algebraisch über K. Sei $m_{\alpha,K} \in K[X]$ normiert und erzeuge den Kern von $\varphi : K[X] \to L, f \mapsto f(\alpha)$.

Man nennt es das Minimalpolynom in α über K.

Korollar 3.22. $m_{\alpha,K}$ ist eindeutig und irreduzibel.

Satz 3.23. Sei L/K eine Körpererweiterung und $a \in L$ algebraisch über K. Sei $\varphi: K[X] \to L, g \mapsto g(\alpha)$ und $\operatorname{Im}(\varphi) = K[\alpha]$. Dann induziert φ eine Isomorphismus

$$K[X]/(m_{\alpha,K}) \stackrel{\sim}{=} K[\alpha]$$

Insbesondere ist $K[\alpha]$ Körper und es gilt

$$[K[\alpha]:K] = \deg(m_{\alpha,K})$$

Satz 3.25. Eine endliche Körpererweiterung L/K ist algebraisch.

Definition 3.26. Eine Körpererweiterung heißt <u>einfach</u>, wenn es $\alpha \in L$ gibt mit $L = K(\alpha)$.

Definition 3.27. Eine Körpererweiterung heißt endlich erzeugt, wenn es endlich viele Element $\alpha_1, ..., \alpha_n$ gibt sodass $L = K(\alpha_1, ..., \alpha_n)$.

Satz 3.28. Sei $L = K(\alpha_1, ..., \alpha_n)$ eine endlich erzeugte Körpererweiterung und $\alpha_1, ..., \alpha_n$ algebraisch über K. Dann gilt

- a) $L = K(\alpha_1, ..., \alpha_n))K[\alpha_1, ..., \alpha_n]$
- b) L ist endlich und somit insbesondere algebraische Erweiterung von K.

Korollar 3.29. Sei L/K eine Körpererweiterung. Dann sind äquivalent

- a) L/K ist endlich
- b) L wird über K von endlich vielen Elementen erzeugt.
- c) L ist eine endlich erzeugte algebraische Erweiterung.

Korollar 3.30. Sei L/K eine Körpererweiterung. Dann sind äquivalent

- a) L/K ist algebraisch.
- b) L wird über K von algebraisch Elementen erzeugt.

Satz 3.31. Seien $K \subset L \subset M$ Körpererweiterungen, sei L/K algebraisch und $\alpha \in M$ algebraisch über L.

Dann ist α algebraisch über K.

Insbesondere:

M/K ist algebraisch $\Leftrightarrow L/K$ ist algeraisch über M/L

Definition 3.32. Sei L/K eine Körpererweiterung. Dann ist

$$L_{alg} := \{ a \in L \mid a \text{ algebraisch "uber } K \}$$

der algebraische Abschluss von L in K.

Korollar 3.33. Seien $a, b \in L$ algebraisch über K. Dann ist K(a, b) algebraisch über K.

Also ist auch $a - b \in K(a, b)$ algebraisch über K und falls $b \neq 0$ auch $ab^{-1} \in K(a, b)$.

3.3 Der algebraische Abschluss eines Körpers

Satz 3.35 (von Kronecker). Sei K ein Körper $f \in K[X] \setminus K$. Dann gibt es eine algebraische Erweiterung L/K sodass f eine Nullstelle in L

Ist f irreduzibel, so kann man L = K[X]/(f) setzen.

Definition 3.36. Ein Körper K heißt **algebraisch abgeschlossen** wenn jedes Polynom $f \in K[X] \setminus K$ eine Nullstelle in K hat. (Äquivalent: f zerfällt in Linearfaktoren)

Satz 3.37. Ein Körper K ist genau dann algebraisch abgeschlossen wenn es keine echte algebraische Erweiterung L/K zulässt.

Theorem 3.38. Sei K ein Körper. Dann gibt es einen algebraische abgeschlossen Körper L mit $K \subseteq L$.

Satz 3.39. Sei K ein Körper, dann gibt es einen algebraisch abgeschlossenen Körper \overline{K} , der K enthält und algebraisch über K ist. \overline{K} wird als der algebraische Abschluss von K bezeichnet.

Korollar 3.40. Seien L, L' algebraische Abschlüsse des Körpers K, dann ist $L \cong L'$.

Satz 3.41. Sei K ein Körper und $K' = K(\alpha)$ eine einfache algebraische Körpererweiterung von K und $\sigma: K \to L$ ein Homomorphismus. Dann gilt

a) Ist $\sigma': K' \to L$ ein Homomorphismus der σ fortsetzt, so ist $\sigma'(\alpha)$ Nullstelle von

$$\sigma'(m_{\alpha,K}) = \sigma(m_{\alpha,K})$$

Satz 3.42. Sei K ei Körper $K' = K(\alpha)$ eine einfache algebraische Erweiterung von K und $\sigma: K \to L$ ein Körperhomomorphismus.

a) Ist $\sigma': K' \to L'$ ein Homomorphismus, der σ Fortsetzt, so ist $\sigma'(\alpha)$ Nullstelle von $\sigma(m_{\alpha,K}) = \sigma'(m_{\alpha,K})$. b) Es gibt zu jeder Nullstelle $\beta \in L$ von $\sigma(m_{\alpha,K})$ genau eine Fortsetzung $\sigma' : K' \to L'$ von σ mit $\sigma'(\alpha) = \beta$.

Theorem 3.43 (Fortsetzungssatz). Sei K ein Körper, L ein algebraisch abgeschlossener Körper und $\sigma: K \to L$ ein Körperhomomorphismus. Sei K'/K eine algebraische Körpererweiterung.

Dann lässt sich σ fortsetzen zu einem Homomorphismus $\sigma': K' \to L$. Ist K' zusätzlich abgeschlossen und L algebraisch über $\sigma(K)$, so ist jedes Fortsetzung σ' von σ ein Isomorphismus.

Korollar 3.44. Sei K ein Körper und seien \overline{K}_1 und \overline{K}_2 algebraische Abschlüsse von K. Dann gibt es einen Isomorphismus $\sigma: \overline{K}_1 \to \overline{K}_2$ der die Identität auf K fortsetzt.

3.4 Zerfallskörper

Definition 3.46. Seien K/L und L'/K Körpererweiterungenund sien $\sigma: L \to L'$ ein Homomorphismus.

 σ wird als K-Homomorphismus ($\sigma|_K = \operatorname{id}|_K$) bezeichnet, wenn σ eine Fortsetzung der Identität auf K ist.

Definition 3.47. Sei L/K eine Körpererweiterung und $F \subset K[X] \setminus K$ eine Menge nicht-konstanter Polynome.

Eine Erweiterung L/K heißt **Zerfällungskörper** von F, über K, wenn

- a) Jedes $f \in K$ zerfällt in Linearfaktoren über L
- b) Die Körpererweiterung L/K wird con Nullstellen der $f \in F$ erzeugt.

Lemma 3.48. Sei \overline{K} ein algebraischer Abschluss von K und M die Menge der Nullstellen der Polynome von F in \overline{K} . Dann ist $L = K(M) \subset \overline{K}$ ein Zerfällungskörper von F.

Satz 3.49. Sei $F \subset K[X] \setminus K$ und seine L_1 und L_2 zwei Zerfällungskörper von F über K. Sei $\sigma: L_1 \to \overline{L}_2$ ein K-Homomorphismus in einen algebraischen Abschluss von L_2 .

Dann gilt $\sigma(L_1) = L_2$.

Korollar 3.50. Sei $F \in K[X] \setminus K$ und seien L_1 und L_2 Zerfällungskörper von F über K.

Dann gibt es einen K-Isomorphismus $L_1 \rightarrow L_2$

Theorem 3.51. Sei L/K eine algebraische Körpererweiterung. Dann sind äquivalent:

a) L ist der Zerfällungskörper einer Menge nicht-konstanter Polynome in K[X].

- b) Ist $\sigma: L \to \overline{L}$ ein K-Homomorphismus, so gilt $\sigma(L) = L$.
- c) Jedes irreduzible Polynom $f \in K[X]$, das mindestens eine Nullstelle hat zerfällt in L vollständig in Linearfaktoren.

Definition 3.52. Eine algebraische Körpererweiterung L/K die eine der Bedingungen von \ref{Matter} erfüllt heißt **normal**.

Satz 3.53. Sei L/K eine normale Körpererweiterung und $K \subset M \subset L$ ein Zwischenkörper. Dann ist auch L/M normal.

3.5 Separabel Körpererweiterungen

In diesem Abschnitt bezeichne K ein Körper.

Definition 3.55. Ein Polynom $f \in K[X]$ heißt **separabel**, wenn f nur einfache Nullstellen in einem algebraischen Abschluss \overline{K} von K hat. (Dies ist unabhängig von der Wahl von \overline{K})

Satz 3.56. Sei $f \in K[X]$ irreduzible, dann

$$f \ separabel \Leftrightarrow f' \neq 0$$

Definition 3.57. Sei L/K eine algebraische Körpererweiterung. $a \in L$ heißt separabel über K, wenn $m_{a,K}$ separabel ist.

Definition 3.58. Sei L/K eine algebraische Körpererweiterung. L heißt **separabel** über K, wenn jedes $a \in L$ separabel über K ist

Satz 3.59. Sei char(K) = 0 und L/K eine algebraische Körpererweiterung. Dann ist L/K separabel.

Definition 3.60. Sei L/K eine algebraische Körpererweiterung und \overline{K} der algebraische Abschluss von K.

Der **Separabilitätsgrad** $[L:K]_S$ von L über K ist definiert als

$$[L:K]_S := \left| \operatorname{Hom}_K(L, \overline{K}) \right|$$

Diese Definition ist unabhängig von \overline{K} .

Satz 3.61. Sei K(a)/K eien einfach algebraische Körpererweiterung. Dann gilt

- a) Der Separabilitätsgrad $[K(a):K]_S$ ist gleich der Anzahl der verschiedenen Nullstellen von $M_{a,K}$ in einem algebraischen Abschluss \overline{K} von K.
- b) aist genau dann separabel über K, wenn $[K(a):K]_S = [K(a),K]$.

Theorem 3.62 (Gradsatz der Separabilität). Sei $K \subset L \subset M$ algebraische Körpererweiterungen. Dann gilt

$$[M:K]_S = [M:L]_S[L:K]_S$$

Satz 3.63. Sei L/K eine endliche Körpererweiterung. Dann gilt

$$[L:K]_S \leq [L:K]$$

Theorem 3.64. Sei L/K eine endliche Körpererweiterung. Dann sin äquivalent

- a) L/K ist separabel.
- b) Es gibt über K separabele Elemente $a_1,...,a_n \in L$, sodass $L = K(a_1,...a_n)$.
- c) $[L:K]_S = [L:K]$

Satz 3.65. Sei $f \in K[X] \setminus K$ separabel. Dann ist auch der Zerfällungskörper von f über K separabel.

Korollar 3.66. Sei L/K eine algebraische Körpererweiterung und $M \subset L$, sodass L = K(M). Dann sind äquivalent

- a) L/K ist separabel
- b) Alle $a \in M$ sind separabel über K.

Ist ein dieser Bedingungen erfüllt, so gilt

$$[L:K]_S = [L:K]$$

Korollar 3.67. Seien $K \subset L \subset M$ algebraische Körpererweiterungen. Dann gilt M/K ist genau dann separabel, wenn M/L und L/K separabel sind.

Theorem 3.68 (Satz vo primitiven Element). Sei L/K einen endliche separable Körpererweiterung. Dann gibt es ein $a \in L$, sodass L = K(a)

3.6 Endliche Körper

Definition 3.69. Sei p eine positiv Primzahl. Dann ist $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ ein Körper mit p Elementen und $\operatorname{char}(\mathbb{F}_p) = p$.

Satz 3.70. Sei F ein endlicher Körper, dann ist $\operatorname{char}(F) = p > 0$ und F enthält $q = p^n$ Elemente, wobei $n = [F : \mathbb{F}_p]$.

F ist der Zerfällungskörper des Polynoms X^q-X über \mathbb{F}_p . Die Erweiterung F/\mathbb{F}_p ist normal.

Theorem 3.71. Sei p eine positive Primzahl. Dann gibt es zu jedem positiven $n \in \mathbb{N}$ einen Erweiterungskörper $\mathbb{F}_q/\mathbb{F}_p$ mit $q=p^n$ Elementen. \mathbb{F}_q ist bis auf Isomorphie eindeutig charakterisiert, als der Zerfällungskörper von X^q-X über \mathbb{F}_p und besteht aus den q Nullstellen. dieses Polynoms. Jeder endliche Körper ist isomorph zu genau einem Körper des Typs \mathbb{F}_q .

Bemerkung 3.72. Wir können di Körper \mathbb{F}_q auch Konstruieren, indem wir die Nullstellen eines irreduziblen Polynoms zu \mathbb{F}_p adjungiert.

Satz 3.73. Sei $n \in \mathbb{N}$. Dann gibt es ein irreduzibles Polynom f mit $\deg_{\mathbb{F}_p}(f) = n$.

Satz 3.75. Sei F eine endlicher Körper und K/F eine algebraische Erweiterung. Dann ist K/F normal und separabel.

Definition 3.76. Sei F_q mit $q=p^n$ ein endlicher Körper. Dann ist die Abbildung

$$\operatorname{Fr}: F_q \to F_q$$
$$x \mapsto x^p$$

ein F_p -Automorphismus von F_q . Diese wir als **Frobenius-Automorphismus** bezeichnet.

Theorem 3.77. Seiq = p^n , dann ist die Gruppe $\operatorname{Aut}_{F_p}(F_q)$ zyklisch mit Ordnung n. Und $\operatorname{Aut}_{F_p}(F_q) = \langle \operatorname{Fr} \rangle$ wird vom Frobenius-Automorphismus erzeugt.

4 Galois-Erweiterungen

Definition 4.1. Eine algebraische, normale, separabele Körpererweiterung L/K heißt **Galoiserweiterung**.

Definition 4.2. Man bezeichnet $\operatorname{Aut}_K(L)$ als **Galoisgruppen** von L/K und schreibt G(L/K) für $\operatorname{Aut}_K(L)$.

Satz 4.4. Sei L/K eine normale Körpererweiterung und $f \in K[X]$ irreduzible. Dann permutiert $\mathrm{Aut}_K(L)$ die Nullstellen von f transitiv.

Satz 4.5. Sei L/K eine normale Körpererweiterung dann gilt

$$|\operatorname{Aut}_K(L)| = [L:K]_S = |\operatorname{Hom}_K(L,\overline{K})|$$

Satz 4.6. Sei L/K eine endliche Galois-Erweiterung. Dann ist

$$[L:K] = |G(L/K)|$$

Definition 4.7. Sei L ein Körper und G eine Untergruppe von $\mathrm{Aut}_K(L)$. Dann ist

$$L^G := \{ x \in L \mid g(x) = x \forall g \in G \}$$

ein Teilkörper von L. Dieser wird als **Fixkörper** von G bezeichnet.

Satz 4.8. Sei L/K eine Galois-Erweiterung. Dann sit der Fixkörper von G(L/K) genau K.

Satz 4.9. Sei L ein Körper und H eine endliche Untergruppe von $\mathrm{Aut}_K(L)$. Dann ist L/L^H eine endliche Galois-Erweiterung mit Galoisgruppe H und

$$[L:L^H] = |H|$$

Bemerkung 4.10. Für $a \in L$ ist $m_{a,L^H} = f_a$ in der Notation des Beweises.

Theorem 4.11 (Hauptsatz der Galoistheorie). Sei L/K eine endliche Galois-Erweiterung. Sei U die Menge der Untergruppen von G(L/K) und Z die Menge der Zwischenkörper von L/K. Dann sind die Abbildungen

$$\begin{split} \Phi: Z \to U & \Psi: U \to Z \\ M \mapsto G(L/M) & H \mapsto L^H \end{split}$$

zueienander inverse Bijektionen. Für einen Zwischenkörper M von L/K ist die Erweiterung M/K normal genau dann wenn G(L/M) normal in G(L/K) ist. In diesem Fall ist

$$G(L/K) \to G(M/K)$$

 $\sigma \mapsto \sigma|_M$

eine surjektiver Gruppenhomomorphismus mit $\operatorname{Kern}() = G^0(L/M)$. Dieser induziert einen Isomorphismus

$$G(M/K) \stackrel{\sim}{=} G(L/K)/G(L/M)$$

Satz 4.12. Sei L/K eine endliche Galois-Erweiterung. Seien L_1, L_2 Zwischenkörper von L/K die zu Untergruppen H_1 und H_2 von G(L/K) korrespondieren. Dann gilt für $\sigma \in G(L/K)$

$$\sigma(L_1) = L_2 \Leftrightarrow \sigma H_1 \sigma^{-1} = H_2$$

Satz 4.13 (Translationssatz). Seien L/K und M/K Körpererweiterungen, sodass L und M in einem Gemeinsamen Erweiterungskörper von K enthalten sind.

Ist L/K eine endliche Galois-Erweiterung, so ist auch L/K eine endliche Galois-Erweiterung und die Abbildung

$$G(L\cdot M/M)\to G(L/K)$$

$$\sigma\mapsto \sigma|_L$$

 $definiert\ einen\ Isomorphismus$

$$G(L \cdot M/M) \cong G(L/L \cap M)$$

 $(Dabei\ ist\ L\cdot M\ das\ Kompositum\ L\cdot M:=L(M)=M(L))$

Theorem 4.14 (Produktsatz). Seien L_1/K und L_2/K endliche Galois-Erweiterungen, sodass L_1 und L_2 in einem gemeinsamen Erweiterungskörper enthalten sind. Dann ist $L_1 \cdot L_2/K$ eine endliche Galois-Erweiterung und die Abbildung

$$G(L_1 \cdot L_2/K) \to G(L_1/K) \times G(L_2/K)$$

 $\sigma \mapsto (\sigma|_{L_1}, \sigma|_{L_2})$

definiert einen injektiven Gruppenhomomorphismus. Ist $L_1 \cap L_2 = K$, so ist die Abbildung ein Isomorphismus.

Theorem 4.15. Sei L/K eine endliche Galois-Erweiterung und sei a ein primitives Element, d.h. L = K(a). Sei außerdem $H \subset G(L/K)$. Dann ist

$$L^H = K(a_0, ..., q_1)$$

wobei die a_i die Koeffizienten von

$$f = \prod_{\sigma \in H} (X - \sigma(a)) = \sum_{i=0}^{n} a_i X^i$$

sind.

4.1 Die Galoisgruppe einer Gleichung

In diesem Abschnitt sei K ein Körper

Definition 4.16. Sei f ein separabeles Polynom und L ein Zerfällungskörper von f über K. Dann ist L/K einen endliche Galois-Erweiterung und G(L/K) eird in diesem Falls als **Galoisgruppe von** f **über** K bezeichnet.

Satz 4.17. Sei $f \in K[X] \setminus K$ separabel und vom Grad n mit Zerfällungskörper L über K.

Seien $a_1, ..., a_n$ die Nullstellen von f in L. Dann definiert die Abbildung

$$G(L/K) \to S(\{a_1, ..., a_n\})$$

 $\sigma \mapsto \sigma|_{\{a_1, ..., a_n\}}$

einen injektiven Gruppenhomomorphismus. Insbesondere gilt |G(L/K)| |n!. f ist genau dann irreduzible über K wenn G(L/K) transitiv auf dem Nullstellen on f operiert.

Korollar 4.18. Sei L/K eine endliche Galoiserweiterung vom Grad n. Dann ist G(L/K) eine Untergruppe von S_n .

Definition 4.22. Sei $L = K(X_1, ..., X_n)$ der Quotientenkörper von $K[X_1, ..., X_n]$. Die Element von L sin die rationalen Funktionen f/g mit $f, g \in K[X_1, ..., X_n]$ und $g \neq 0$.

 S_n operiert durch Permutationen der X_i auf L.

 $M = L^{S_n}$ wird als Körper der symetrischen rationalen Funktionen bezeichnet. Die Erweiterung L/M ist eine endliche Galois-Erweiterung mit Galoisgruppe S_n .

Satz 4.23. Sei G eine endliche Gruppe, dann gibt es eine Galois-Erweiterung L/K mit $G(L/K) \stackrel{\sim}{=} G$.

4.2 Kreisteilugspolynome

In diesem Abschnitt sei K ein Körper und \overline{K} ein algebraischer Abschluss von K.

Definition 4.24. Die Nullstellen des Polynom $X^n - 1$ $n \ge 0$ werden als n-te **Einheitswurzeln** in \overline{K} bezeichnet.

Proposition 4.25. Die *n*-ten Einheitswurzeln bilden einer Untergruppe U_n von \overline{K}^* .

Ist $\operatorname{char}(K) = 0$ oder $\operatorname{char}(K) \not| n$, so haben $X^n - 1$ und seine Ableitung nX^{n-1} keine gemeinsamen Nullstellen. Also ist $X^n - 1$ separabel.

In diesem Fall ist $|U_n| = n$.

Falls char(K) = p > 0 und p|n, so schreibt man $n?mp^r$ mit (m, p) = 1.

Dann ist

$$(X^m - 1)^{p^r} = X^n - 1$$

Die Nullstellen von X^m-1 stimmen mit den Nullstellen von X^n-1 überein und $U_m=U_n$.

Satz 4.26. Sei K ein Körper und $n \in \mathbb{Z}$, n > 0 mit $\operatorname{char}(K) \not| n$, dann ist U_n eine zyklische Gruppe der Ordnung n.

Definition 4.27. $\xi \in U_n$ heißt **primitive** n-te Einheitswurzel, wenn ξ die Gruppe U_n erzeugt.

Satz 4.28. Seien $m, n \in \mathbb{Z}$, m, n > 0 mit (m, n) = 1 und K ein Körper mit $\operatorname{char}(K) \neq |mn|$.

Dann ist die Abbildung

$$U_m \times U_n \to U_{mn}$$

 $(\xi, \eta) \mapsto \xi \eta$

ein Isomorphismus von Gruppen.

Definition 4.29. Für $n \in \mathbb{Z}$, n > 0 definiert

$$\varphi(n) = |(Z/n\mathbb{Z})^*|$$

die Eulersche φ -Funktion.

Lemma 4.30. Ist p eine Primzahl, so gilt

$$\varphi(p^k) = p^k - p^{k-1} = p^k (1 - \frac{1}{p})$$

Satz 4.31. Seien $m, n \in \mathbb{Z}$ mit m, n > 0 und (m, n) = 1. Dann ist

$$\varphi(mn) = \varphi(m)\varphi(n)$$

Satz 4.32. Sei $n \in \mathbb{Z}$, n > 0. Ein Element a erzeugt die additive zyklische Gruppe $\mathbb{Z}/n\mathbb{Z}$ genau dann wenn a eine Einheit in $\mathbb{Z}/n\mathbb{Z}$ ist.

Satz 4.33. Sei K ein Körper und $n \in \mathbb{Z}$, $n \ge 0$ mit $\operatorname{char}(K) \not | n$. Dann enthält U_n genau $\varphi(n)$ primitive n-te Einheitswurzeln.

Ist ξ primitive n-te Einheitswurzel, so ist ξ^r genau dann primitive n-te Einheitswurzel, wenn (r, n) = 1 ist.

Satz 4.34. Sei char(K) \not n und ξ eine primitive Einheitswurzel. Dann ist $K(\xi)$ der Zerfällungskörper von $X^n - 1$. Außerdem ist $K(\xi)/K$ eine endliche Galois-Erweiterung.

Definition 4.35. Falls $K=\mathbb{Q}$ ist so heißt $\mathbb{Q}(\xi)$ der n-te Kreisteilungskörper.

Theorem 4.36. Sei $\xi \in \overline{\mathbb{Q}}$ eine primitive n-te Einheitswurzel. Dann ist $\mathbb{Q}(\xi)/\mathbb{Q}$ eine endliche Galois-Erweiterung mit

$$[\mathbb{Q}(\xi):\mathbb{Q}]=\varphi(n)$$

Satz 4.37. Seien $\xi_m, \xi_n \in \overline{\mathbb{Q}}$ primitive m-te bzw n-te Einheitswurzeln mit (m,n)=1. Dann ist

$$\mathbb{Q}(\xi_m) \cap \mathbb{Q}(\xi_n) = \mathbb{Q}$$

Satz 4.38. Sei $\xi \in \overline{K}$ eine primitive n-te Einheitswurzel mit char(K) n. Dann gilt

- a) $K(\xi)$ ist der Zerfällungskörper des separablen Polynom $X^n 1$ über K. Und die Erweiterung $K(\xi)/K$ ist eine endliche Galois-Erweiterung mit $Grad \leq \varphi(n)$ und abelscher Galoisgruppe.
- b) Zu jedem $\sigma \in G(K(\xi)/K)$ gibt es <u>eine</u> positive ganze Zahl, $r(\sigma)$ mit $\sigma(\xi) = \xi^{r(\sigma)}$, wobei die Restklasse $r(\sigma) \in \mathbb{Z}/n\mathbb{Z}$ eine Einheit ist, die unabhängig von der Wahl von ξ eindeutig durch σ bestimmt ist.

Und die Abbildung

$$G(K(\xi)/K) \to (\mathbb{Z}/n\mathbb{Z})^*$$

$$\sigma \mapsto \overline{r(\sigma)}$$

 $ist\ ein\ injektiver\ Gruppenhomomorphismus.$

Korollar 4.39. Sei $\xi \in \overline{\mathbb{Q}}$ eine primitive n-te Einheitswurzel. Dann ist $\mathbb{Q}(\xi)/\mathbb{Q}$ eine endliche Galois-Erweiterung mit Galoisgruppe $(\mathbb{Z}/n\mathbb{Z})^*$.

Wir zeigen nun, dass sich jede endliche abelsche Gruppe als Galoisgruppe über $\mathbb Q$ realisieren lässt.

Theorem 4.40 (Dirichlet). Sei $a, b \in \mathbb{Z}$ mit a, b > 0 und (a, b) = 1. Dann enthält $\{a + nb \mid n \in \mathbb{Z}\}$ unendlich viele Primzahlen.

Theorem 4.41. Sei G eine endliche abelsche Gruppe. Dann gibt es eine endliche Galoiserweiterung K/\mathbb{Q} mit $G(K/\mathbb{Q}) \cong G$.

Theorem 4.42 (Kronecker-Weber). Sei K/\mathbb{Q} eine endliche Galoiserweiterung mit abelscher Galoisgruppe. Dann ist K in einem Kreisteilungskörper enthalten.

Definition 4.43. Sei $n \in \mathbb{Z}$, n > 0 und $\operatorname{char}(K) / n$. Seien $\xi_1, ..., \xi_m$ mit $m = \varphi(n)$ die primitiven n-ten Einheitswurzeln in \overline{K} . Dann heißt

$$\Phi_{n,K} = \prod_{i=1}^{m} (X - \xi_i)$$

das n-te **Kreisteilungspolynom** über K.

Im Fall $K = \mathbb{Q}$ schreiben wir Φ_n für $\Phi_{n,K}$.

Satz 4.44. a) $\Phi_{n,K}$ ist ein normiertes separables POlynom über K vom Grad $\phi(n)$

- b) Für $K = \mathbb{Q}$ gilt $\Phi_n \in \mathbb{Z}[X]$ und Φ_n ist irreduzibel in $\mathbb{Z}[X]$ und in $\mathbb{Q}[X]$.
- c) $X^n 1 = \prod_{d|n} \Phi_{d,K}$

Satz 4.45. Sei $n \in \mathbb{Z}$, n > 0 und p prim mit $p \nmid n$. Sei e die Ordnung von p in $(\mathbb{Z}/n\mathbb{Z})^*$. Dann zerfällt Φ_{n,\mathbb{F}_p} in $\varphi(n)/e$ verschiedene Faktoren vom Grad e über \mathbb{F}_p .

Bemerkung 4.47. Sei p eine ungerade Primzahl. Dann ist $(\mathbb{Z}/p^n\mathbb{Z})^*$ zyklisch der Ordnung p^n-p^{n-1} .

Für p = 2 ist

$$\begin{split} &(\mathbb{Z}/2\mathbb{Z})^* = 1 \\ &(\mathbb{Z}/4\mathbb{Z})^* = \mathbb{Z}/2\mathbb{Z} \\ &(\mathbb{Z}/2^n\mathbb{Z})^* = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z} \text{ für } n \geq 3 \end{split}$$

5 Moduln

5.1 Definitionen

Definition 5.1. Sei R ein Ring. Ein **Linksmodul** über R ist eine abelsche Gruppe M mit einer Abbildung

$$R \times M \to M$$

sodass

$$a(x + y) = ax + ay$$
$$(a + b)x = ax + bx$$
$$a(bx) = (ab)x$$
$$1x = x$$

für alle $a, b \in R$ und $x, y \in M$.

Definition 5.2. Seien M', M R-Moduln. Eine Abbildung

$$f: M \to M'$$

heißt R-linear oder Modulhomomorphismus, wenn

$$f(x+y) = f(x) + f(y)$$
$$f(ax) = af(x)$$

für alle $a \in R$ und $x, y \in M$.

Definition 5.4. Sei ; ein R-Modul. Ein Untermodul von M ist eine Untergruppe N von M, die Invariant unter Operstionen von R ist, d.h. $ax \in N$ für alle $a \in R$, $x \in N$.

5.2 Faktormoduln

Definition 5.6. Sei M ein R-Modul und $N \subset M$ ein Untermodul, so erhält man auf der **Faktorgruppe** M/N eine R-Modulstruktur. Mit a(x+N)=ax+N für $x \in M$, $a \in R$ wird M/N als **Faktormodul** bezeichnet. Die Abbildung $\pi: M \to M/N$, $x \mapsto x+N$ ist ein Modulhomomorphismus.

Theorem 5.7. Seien M, M' R-Moduln, $f: M \to M'$ ein Modulhomomorphismus und $N \subset \operatorname{Kern}(f)$ ein Untermodul von M. Dann gibt es eine eindeutigen Homomorphismus $\overline{f}: M/N \to M'$, sodass

Satz 5.8. Sei M ein R-Modul und N ein Untermodul. Dann insuziert die Projektion $\pi: M \to M/N$ eine Bijektion zwischen den Untermoduln von M die N enthalten und den Untermoduln von M/N.

5.3 Direkte Summen und Produkte

Definition 5.9. Sei $(M_i)_{i \in I}$ eine Familie von R-Moduln. Dann ist das **Modul-Produkt**

$$\prod_{i \in I} M_i = \{(x_i)_{i \in I} \mid x_i \in M_i\}$$

ein R-Modul und

$$\bigoplus_{i \in I} M_i = \{(x_i)_{i \in I} \mid x_i \in M_i \text{ und fast alle } x_i = 0\}$$

ein Untermodul. Dieser wird als direkte Summe bezeichnet.

5.4 Erzeugendensysteme und Basen

Definition 5.10. Sei M ein R-Modul. Eine Familie $(x_i)_{i \in I}$ von Element in M heißt **Erzeugendensystem** von M über R, wenn

$$m = \sum_{i \in I} Rx_i$$

ist.

Besitzt M ein endliches Erzeugendensystem, so heißt M endliche erzeugt oder endlicher R-Modul.

Ein Familie $(x_i)_{i \in I}$ heißt **linear unabhängig**, wenn aus

$$\sum_{i \in I} a_i x_i = 0$$

(mit fast alle $a_i = 0$) folgt, dass alle $a_i = 0$ sind.

Definition 5.11. Ein linear unabhängiges Erzeugendensystem wird als **Basis** bezeichnet.

In diesem Falls lässt sich jedes $x \in M$ schreiben als

$$x = \sum_{i \in I} a_i x_i$$

mit eindeutig bestimmtem $a_i \in R$. In diesem Fall heißt M frei.

Satz 5.12. Sei R ein Ring mit $1 \neq 0$ und M ein R-Modul. Sind $(v,...,v_m)$ und $(w_1,...,w_n)$ zwei R-Basen von M, so ist m=n.

5.5 Exakte Sequenzen

Definition 5.13. Eine Folge von R-Moduln und R-linearen Abbildungen

$$\dots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \dots$$

heißt **exakt bei** M_i , wenn $\text{Im}(f_i) = \text{Kern}(f_{i+1})$.

Definition 5.14. Eine Sequenz heißt **exakte Sequenz**, wenn sie an jedem M_i exakt ist.

Definition 5.15. Ein kurze exakte Sequenz ist eine Sequenz der Form

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

Exakheit bedeuet hierbei, dass f injektiv, g surjektiv und Im(f) = Kern(g).

Definition 5.17. Sei

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

eine kurze exakte Sequenz von R-Moduln.

Die Sequenz spaltet, wenn es einen Untermodul $N\subset M$ mit $M=N\oplus \mathrm{Kern}(g)$ gibt.

Satz 5.18. Sei

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

eine kurze exakte Sequenz von R-Moduln.

Dann sind äquivalent:

- a) Die Sequenz spaltet (Es gibt einen Untermodul $N\subset M$ mit $M=N\oplus \mathrm{Kern}(g)$)
- b) Es gibt eine R-lineare Abbildung $s: M'' \to M$ mit $g \circ s = \mathrm{id}_{M'}$
- c) Es gibt eine R-lineare Abbildung $t: M \to M'$ mit $t \circ f = \mathrm{id}_{M'}$

Satz 5.19. Sei $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ eine kurze exakte Sequenz von R-Moduln.

Ist M'' frei, so spaltet die Sequenz $M \stackrel{\sim}{=} M' \oplus M''$.

Korollar 5.20. Sei

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

eine kurze exakte Sequenz von R-Moduln. Sind M' und M" frei, so ist M frei.

5.6 Endlich erzeugbare Moduln

Definition 5.21. Ein R-Modul M heißt **endlich erzeugbar**, wenn M ein endliches Erzeugendensystem hat.

Äquivalent: Es gibt einen surjektiven Homomorphismus $\mathbb{R}^n \to M$.

Satz 5.23. Sei

$$0 \to M'' \xrightarrow{f} M \xrightarrow{g} \to 0$$

eine kurze Exakte Sequenz von R-Moduln. Dann gilt

- a) Ist M endlich erzeugt, so auch M''.
- b) Sind M' und M'' endlich erzeugt, so auch M.

Satz 5.24. Seien $M_1, ..., M_n$ R-Moduln und sei $M = \bigoplus_{i=1}^n M_i$. Dann ist M genau dann endlich erzeugt, wenn alle M_i endlich erzeugt sind.

Definition 5.25. Ein R-Modul heißt **noethersch**, wenn jeder Untermodul von M endlich erzeugbar ist.

Satz 5.26. Sei M ein R-Modul. Dann sind äquivalent:

- a) M ist noethersch.
- b) Jede aufsteigende Kette von Untermoduln wird stationär.

 $c) \ \ \textit{Jede nichtleere Teilmenge von Untermoduln von M hat ein maximales} \\ Element$

Satz 5.27. Sei

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

eine kurze exakte Sequenz von R-Moduln. Dann ist M genau dann noethersch, wenn M' und M'' noethersch sind.

Satz 5.28. Seien $M_1, ..., M_n$ R-Moduln und sei $M = \bigoplus_{i=1}^n M_i$. Dann ist M genau dann noethersch, wenn jedes M_i noethersch ist.

Satz 5.29. Sei R ein noetherscher Ring und M ein endlich erzeugbarer R-Modul. Dann ist M noethersch.

6 Ganze Ringerweiterungen

6.1 Definitionen und Eigenschaften

Definition 6.1. Sei B ein Ring und $A \subset B$ ein Unterring. $x \in B$ heißt **ganz** über A, wenn es ein normiertes $f \in A[X]$ mit f(x) = 0 gibt.

Satz 6.2. Sei B ein Ring, $A \subset B$ ein Unterring und $x \in B$. Dann sind äquivalent:

- a) x ist ganz über A.
- b) Der Ring A[x] ist ein endlich erzeugter A-Modul.
- c) Der Ring A[x] ist ein einem Unterring $C \subset B$ enthalten, sodass C ein endlich erzeugter A-Modul ist.

Korollar 6.3. Sei B ein Ring und A ein Unterring.

- a) Sind $x_1,...,x_n \in B$ ganz über A, so ist $A[x_1,...,x_n]$ ein endlich erzeugter A-Modul.
- b) Sei B ein Unterring eines Rings C. Ist B ein endlich erzeugter A-Modul und $y \in C$ ganz über B, so ist y ganz über A.

Definition 6.4. Sei B ein Ring und $A \subset B$ ein Unterring. Dann nennt man

$$\overline{A} := \{ x \in B \mid x \text{ ist ganz "uber } A \}$$

die ganze Hülle von A in B.

Satz 6.5. Sei B ein Ring und $A \subset B$ ein Unterring. Dann ist die ganze Hülle \overline{A} von A über B ein Unterring von B.

Definition 6.6. Ist $\overline{A} = B$, so heißt B ganz über A.

Satz 6.7. Seien $A \subset B \subset C$ Ringerweiterungen. Ist C ganz über B und B ganz über A, so ist auch B ganz über A.

Definition 6.8. Ein Integritätsbereich heißt **ganz abgeschlossen**, wenn er ganz abgeschlossen in seinem Quotientenkörper ist.

Satz 6.9. Sei A ein faktorieller Integritätsbereich. Dann ist A ganz abgeschlossen.

Satz 6.10. Sei A ein Integritätsbereich mit Quotientenkörper K und sei A ganz abgeschlossen in K. Sei L/K ein algebraisch Körpererweiterung. Dann ist $\alpha \in L$ genau dann ganz über A, wenn $m_{\alpha,K} \in A[X]$ liegt.

6.2 Dedekindringe

Definition 6.11. Ein Integritätsbereich A heißt **Dedekindring**, wenn

- a) A noethersch
- b) A ist ganz abgeschlossen
- c) Jedes Primideal $\neq 0$ ist maximal.

Definition 6.12. Ein algebraischer Zahlkörper K ist eine endliche Erweiterung von \mathbb{Q} .

Definition 6.13. Die ganze Hülle von \mathbb{Z} in K wird als **Ring der ganzen Zahlen** in K bezeichnet. Man schreibt diesen als

$$O_K := \{ a \in K | \exists f \in \mathbb{Z}[X] \text{ normiert mit } f(a) = 0 \}$$

Theorem 6.14. Sei K ein algebraischer Zahlkörper. Dann ist O_K ein Dedekindring.

Theorem 6.16. Sei A ein Dedekindring, $I \neq 0$ und $I \neq A$ ein Ideal in A. Dann gilt

$$I = P_1...P_n$$

 $mit\ eindeutigen\ Primidealen\ P_i.$

6.3 Der Noethersche Normalisierungssatz

Der Noethersche Normalisierungssatz impliziert den Hilbertschen Nullstellensatz und ist daher für die algebraische Geometrie von großer Bedeutung.

Theorem 6.17. Sei K ein Körper und $B = [b_1, ..., b_n]$ endlich erzeugter Ring. Dann existieren Elemente $x_1, ..., x_r \in B$, die algebraisch unabhängig über K sind, sodass B als Modul endlich erzeugt über $K[x_1, ..., x_r]$ ist.

Satz 6.18. Sei $A \subset B$ eine Ringerweiterungen, B ganz über A und seien A und B Integritätsbereiche.

Dann ist A genau dann Körper, wenn B Körper ist.

Theorem 6.19. Sei L/K eine Körpererweiterung und $L = K[x_1, ..., x_n]$ für geeignete $x_1, ..., x_n \in L$. Dann ist L/K endlich.

Satz 6.20. Sei K ein Körper und $\mathfrak{m} \subset K[X_1,...,X_n]$ ein maximales Ideal. Dann ist L/K mit $L=K[X_1,...,X_n]/\mathfrak{m}$ eine endliche Körpererweiterung.

6.4 Anfänge der algebraischen Geometrie

Definition 6.21. Sei K ein beliebiger Körper.

$$A^n = A_K^n := \{(a_1, ..., a_n) \mid a_i \in K\}$$

 A^n wird als n-dimensionaler affiner Raum bezeichnet.

Definition 6.22. Für $F \in K[x_1,...,x_n]$ definiert man

$$V(F) := \{ p \in A^n \mid F(p) = 0 \}$$

die V???-Menge.

Für $S \subset K[X_1, ..., X_n]$ sei

$$V(S) := \{ p \in A^n \mid F(p) = 0 \forall F \in S \} = \bigcap_{F \in S} V(F)$$

Definition 6.24. Eine Teilmenge $Y \subset A_n$ heißt algebraisch, wenn y = V(S) für ein $S \subset K[X_1, ..., X_n]$ ist.

Satz 6.25. Sei $S \subset K[X_1,...,X_n]$ und I = (S) das erzeugte Ideal. Dann gilt

$$V(S) = V(I)$$

Definition 6.26. Sei K ein Körper und $n \in \mathbb{N}$, dann ist \mathbb{A}^n_K die Menge der Algebraischen Mengen in K^n .

Satz 6.28. Die Abbildung

$$V: \left\{\begin{matrix} Ideale \ in \\ K[X_1,...,X_n] \end{matrix}\right\} \rightarrow \left\{Algebraische \ Teilmengen \ von \ \mathbb{A}^n_K \right\}$$

hat folgende Eigenschaften

- a) $V(0) = \mathbb{A}_{K}^{n}, V(K[X_{1},...,X_{n}]) = \emptyset$
- b) Wenn $I \subset J$, dann gilt $V(J) \subset V(I)$.

- c) Für das Produkt gilt: $V(IJ) = V(I \cap J) = V(I) \cup V(J)$
- d) Für die Summe gilt: $V(\sum_i J_i) = \bigcap_i V(J_i)$

Satz 6.29. Die Abbildung I

$$I: \{Algebraische \ Teilmengen \ von \ \mathbb{A}^n_K\} \rightarrow \left\{ \begin{matrix} Ideale \ in \\ K[X_1,...,X_n] \end{matrix} \right\}$$

$$M \mapsto \{f \in K[x_1,...,x_n] \mid f(p) = 0 \forall p \in M\}$$

hat folgende Eigenschaften:

- a) Sei $M \subset N$, dann gilt $I(M) \supset I(N)$
- b) Für eine beliebige Teilmenge $M \subset \mathbb{A}^n_K$ gilt

$$M \subset V(I(M))$$

Gleichheit gilt genau dann wenn M algebraisch ist.

c) Für ein Ideal $J \subset K[X_1, ..., X_n]$ gilt

$$J \subset I(V(J))$$

Definition 6.30. Sei eine Menge \mathbb{A}^n_K abgeschlossen wenn sie algebraisch ist und deren Komplemente offen.

Die erzeugte Topologie wird als Zariski-Topologie bezeichnet.

Satz 6.32. Seien $a_1,...,a_n \in K$. Dann ist

$$J = (X_1, a_1, x_2 - a_2, ..., X_n - a_n)$$

maximal in $K[X_1,...,X_n]$ und K ist isomorph zu $K[X_1,...,X_N]/J$

Theorem 6.33 (Schwacher Nullteilersatz). Sei K algebraisch abgeschlossen und

$$J \subsetneq K[X_1, ..., X_n]$$

Dann ist $V(J) \neq \emptyset$.

Theorem 6.34 (Hilbertscher Nullstellensatz). Sei K algebraisch abgeschlossen und J ein Ideal in $K[X_1,...,X_n]$. Dann gilt

$$I(V(J)) = \text{rad}(J) = \{ f \in K[X_1, ..., X_n] \exists n > 0 : \text{id } f^n \in J \}$$