QUESTION ON ODD COHOMOLOGY OF $A^{[2]}$

SIMON KAPFER

Let A be a complex torus of dimension 2 and $A^{[2]}$ the Hilbert scheme of 2 points. It can be constructed as follows: Consider the direct product $A \times A$. Denote

$$b: \widetilde{A \times A} \to A \times A$$

the blow-up along the diagonal $\Delta \cong A$ with exceptional divisor E, so we have $i: E \to \widetilde{A \times A}$. Since the normal bundle of Δ in $A \times A$ is trivial, we have:

$$E \cong \Delta \times \mathbb{P}^1$$
.

The action of \mathfrak{S}_2 on $A \times A$ lifts to an action on $\widetilde{A \times A}$. We have the pushforward $i_*: H^*(E, \mathbb{Z}) \to H^*(\widetilde{A \times A}, \mathbb{Z})$.

The quotient by the action of \mathfrak{S}_2 is

$$\pi: \widetilde{A \times A} \to A^{[2]}.$$

Now, $A^{[2]}$ is a compact complex manifold with torsion-free cohomology. By [1], we have an exact sequence

$$0 \to \pi_*(H^k(\widetilde{A \times A}, \mathbb{Z})) \to H^k(A^{[2]}, \mathbb{Z}) \to \left(\frac{\mathbb{Z}}{2Z}\right)^{\alpha_k} \to 0.$$

Question 0.1. What is α_k for k = 1, ..., 8?

I think, the pushforward of a class $a \otimes 1 \in H^k(E, \mathbb{Z})$ is given by

$$\pi_*i_*(a\otimes 1)=\mathfrak{q}_2(a)|0\rangle\in H^{k+2}(A^{[n]},\mathbb{Z})$$

We know, that $\mathfrak{q}_2(1)|0\rangle$ is divisible by 2.

Problem 0.2. Let $a \in H^1(A, \mathbb{Z})$ and $b \in H^3(A, \mathbb{Z})$ basis elements. We can interpret $\mathfrak{q}_2(a)|0\rangle \in H^3(A^{[2]}, \mathbb{Z})$ and $\mathfrak{q}_2(b)|0\rangle \in H^5(A^{[2]}, \mathbb{Z})$ as classes concentrated on the exceptional divisor, that is, as elements of $\pi_*i_*H^*(E, \mathbb{Z})$. By Poincaré duality, the intersection matrix between $H^3(A^{[2]}, \mathbb{Z})$ and $H^5(A^{[2]}, \mathbb{Z})$ has determinant one. Now

$$\int_{A^{[2]}} (\mathfrak{q}_2(a)|0\rangle \cdot \mathfrak{q}_2(b)|0\rangle) = 2 \int_A (a \cdot b).$$

Moreover, $\mathfrak{q}_2(a)|0\rangle$ and $\mathfrak{q}_2(b)|0\rangle$ are orthogonal to any other element of the form $\mathfrak{q}_1(x)\mathfrak{q}_1(y)|0\rangle$ under the intersection pairing. It follows, that one of $\mathfrak{q}_2(a)|0\rangle$ and $\mathfrak{q}_2(b)|0\rangle$ should be divisible by 2. But which one?

Maybe [2] is useful to answer this question, but I don't yet understand all of it.

References

- 1. G. Menet, On the integral cohomology of quotients of complex manifolds.
- 2. B. Totaro, The integral cohomology of the Hilbert scheme of two points.

Date: December 3, 2015.