Project Documentation: Netflix Data Processing Pipeline

Project Overview

This project implements an ETL (Extract, Transform, Load) pipeline for cleaning and managing Netflix data using Informatica PowerCenter, Oracle SQL, and Python. The process loads raw data from a CSV file, applies necessary transformations, and stores the cleaned data in a target table while supporting SCD Type 1 updates for incremental changes.

1. Data Extraction and Loading (Informatica PowerCenter)

- **Source Data**: The raw dataset was downloaded from Kaggle in CSV format, containing information on Netflix movies and shows.
- **Data Transfer**: Using Informatica PowerCenter, we successfully loaded all 18,860 records from the CSV file into a staging table, src_netflix_data, in an Oracle database.

• Sql query to check count of records in the src_netflix_data after loading:

SELECT COUNT(*) as count src netflix FROM src netflix data

2. Data Transformation (Python)

After loading the raw data into the staging table, a Python script was executed to perform the following transformations:

- Null Removal: Removed any rows with null values in critical columns.
- **Data Type Conversion**: Converted data types to align with Oracle table specifications
- String Formatting: Standardized string fields for consistent casing and formatting.
- **Data Ordering**: Ordered the dataset based on specified columns to prepare it for analysis and reporting.
- Resulting Data:
 - Post-transformation, the dataset was reduced to 15,134 records, ready for loading into the target table.

3. Data Loading to Target Table

- Target Table: The cleaned data was loaded into the tgt_netflix_cleaned_data table in Oracle, ensuring it was ready for insert and update operations.
- Success Check: The data transfer to tgt_netflix_cleaned_data was successful, with all records appearing as expected.
- Sql query to show count of records in the tgt netflix cleaned data after executing python code:

select count(*) as count tgt netflix from tgt netflix cleaned data

4. Testing the ETL Pipeline

- Insert Test:
 - o A test row was inserted into the src netflix data table with the following values:

• **Result**: After running the ETL code, the new row appeared in tgt_netflix_cleaned_data, confirming the insert functionality.

```
select * from tgt_netflix_cleaned_data where title =
'Interstellar' and genres = 'Science Fiction'
```

```
    $\text{\text{URL}}$ URL
    $\text{\text{TITLE}}$ TYPE
    $\text{\text{GENRES}}$ GENRES
    $\text{\text{RELEASE_YEAR}}$ MOB_ID
    $\text{\text{IMDB_AVERAGE_RATING}}$ MOB_NUM_VOTES
    $\text{\text{AVAILABLE_COUNTRIES}}$

    1 Unknown Interstellar Movie
    Science Fiction
    2010 ab123456
    5.6
    1548796584 US
```

select count(*) as count_tgt_netflix from tgt_netflix_cleaned_data,
the number of records in the target table increased by one cause of inserted row

• Update Test:

O We updated the test row in src_netflix_data to verify if updates were reflected in the target table:

```
UPDATE src_netflix_data
SET release_year = 2014,
    imdb_average_rating = 9.8
WHERE imdb id = 'ab123456';
```

o **Result**: Running the code successfully updated tgt_netflix_cleaned_data, confirming that SCD Type 1 functionality for updates is working as intended.

select * from tgt_netflix_cleaned_data where title = 'Interstellar' and genres = 'Science Fiction'

5. Conclusion

This ETL process demonstrates a successful, reliable pipeline for loading, transforming, and maintaining Netflix data. It supports dynamic updates (SCD Type 1) in the target table, making it well-suited for data warehousing and business intelligence applications.

GitHub Repository

For further details and code, visit the GitHub repository: [https://github.com/SherifElshafeyy/Netflix-Data-Pipline]