MODELO DE REGRESIÓN LOGISTICA

La regresión logística es un método estadístico que trata de modelar la probabilidad de una variable cualitativa binaria (dos posibles valores) en función de una o más variables independientes. La principal aplicación de la regresión logística es la creación de modelos de clasificación binaria.

Se llama regresión logística simple cuando solo hay una variable independiente y regresión logística múltiple cuando hay más de una. Dependiendo del contexto, a la variable modelada se le conoce como variable dependiente o variable respuesta, y a las variables independientes como regresores, predictores o features.

Un estudio quiere establecer un modelo que permita calcular la probabilidad de averiguar si Mujeres indias pime de 21 años o más que viven en Phoenix, la quinta ciudad más grande del estado de Arizona en EE.UU padecen o no diabetes, los datos usados para la investigacion se conservan en los Institutos Nacionales de Diabetes, Enfermedades Digestivas y Renales de EE.UU.. La variable objetivo se especifica como "resultado"; está codificada como: 1 si el resultado de la prueba de diabetes indica positivo y 0 si el resultado de la prueba de diabetes indica negativo.

Variables

Embarazos: Número de embarazos

Glucosa: Glucosa.

PresiónArterial: Presión arterial. BloodPressure

SkinThickness: Grosor de la piel

Insulina: Insulina.

IMC: Índice de masa corporal.

DiabetesPedigreeFunction: una función que calcula la probabilidad de tener diabetes según la edad de las personas y sus antecedentes familiares diabéticos.

Edad: Edad (años)

Resultado: Información sobre si la persona tiene diabetes o no. Tener la enfermedad (1) o no (0)

Para esta investigación de llevaran a acabo los siguientes procesos:

- 1. Exploratory Data Analysis
- 2. Data Preprocessing
- 3. Model & Prediction

- 4. Model Evaluation
- 5. Model Validation: Holdout
- 6. Model Validation: 10-Fold Cross Validation
- 7. Prediction for A New Observation

```
In [ ]: # Importar Librerias
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        pd.options.display.max_seq_items = 2000
        import seaborn as sns
        import os # directorios de trabajo
        from sklearn.preprocessing import RobustScaler
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classi
        from sklearn.model_selection import train_test_split, cross_validate
        from sklearn.metrics import roc_curve, auc
        pd.set_option('display.max_columns', None)
        pd.set_option('display.float_format', lambda x: '%.3f' % x)
        pd.set_option('display.width', 500)
In [ ]: # Definir functiones
        def outlier_thresholds(dataframe, col_name, q1=0.05, q3=0.95):
            quartile1 = dataframe[col_name].quantile(q1)
            quartile3 = dataframe[col_name].quantile(q3)
            interquantile_range = quartile3 - quartile1
            low_limit = quartile1 - 1.5 * interquantile_range
            up_limit = quartile3 + 1.5 * interquantile_range
            return low_limit, up_limit
        def check_outlier(dataframe, col_name):
            low_limit, up_limit = outlier_thresholds(dataframe, col_name)
            if dataframe[(dataframe[col_name] < low_limit) | (dataframe[col_name] > up_limi
                return True
            else:
                return False
        def replace_with_thresholds(dataframe, variable):
            low_limit, up_limit = outlier_thresholds(dataframe, variable)
            dataframe.loc[(dataframe[variable] < low_limit), variable] = low_limit</pre>
            dataframe.loc[(dataframe[variable] > up_limit), variable] = up_limit
In [ ]: # Establecer directorio de trabajo (working directory) e importar el Dataframe forb
        os.getcwd()
Out[]: 'c:\\Users\\USUARIO\\OneDrive\\Documentos\\Uibero Ing de Software\\8 SEMESTRE\\Int
        eligencia_artificial-main'
In [ ]: # Mostrar los Archivos que hay en el ditrectorio de trabajo
```

```
os.listdir()
```

```
Out[]: ['.git',
          '1. Introduccion.ipynb',
          '2. Numpy.ipynb',
          '3. PandasForbes.ipynb',
          'Aactividad 1.docx',
          'caracteristicas de vinos.csv',
          'cluster k-means.html',
          'cluster_k-means.ipynb',
          'cluster_k-significa.pdf',
          'Diabetes',
          'Explicacion del modelo kmeans.ipynb',
          'Forbes',
          'forbes23.ipynb',
          'forbes23AarbolDecisiones.ipynb',
          'image-1.png',
          'image.png',
          'inteligencia-artificial-metodos-tecnicas-y-aplicaciones.pdf',
          'ipynb',
          'Kmeansforbes2023',
          'Mall_Customers.csv',
          'modelo Kmeans forbes 2023.docx',
          'ModelodeRegresionLogistica.ipynb',
          'Project kmeans customer.ipynb',
          'pruebaforbes.ipynb']
```

Exploratory Data Analysis - Análisis exploratorio de datos

```
In [ ]: # Importar La base de datos
diabetes = pd.read_csv(r"C:\Users\USUARIO\OneDrive\Documentos\Uibero Ing de Softwar
diabetes.head()
```

Out[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes Pedigree Fu
	0	6	148	72	35	0	33.600	
	1	1	85	66	29	0	26.600	
	2	8	183	64	0	0	23.300	
	3	1	89	66	23	94	28.100	
	4	0	137	40	35	168	43.100	
	4							•

```
In [ ]: # muestra las columnas del DataFrame.
print(diabetes.columns)
```

Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI',
'DiabetesPedigreeFunction', 'Age', 'Outcome'], dtype='object')

Target Analysis - Análisis del objetivo de la investigacion

```
In [ ]: diabetes["Outcome"].value_counts() # Outcome = resultado de si tiene o no la enfer
```

```
print(100 * diabetes["Outcome"].value_counts() / len(diabetes)) # formula para sabe
sns.countplot(x="Outcome", data=diabetes) # se grafica
plt.show()
```

Outcome

0 65.104

34.896

Name: count, dtype: float64

c:\Users\USUARIO\AppData\Local\Programs\Python\Python311\Lib\site-packages\seaborn\ oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be remov ed in a future version. Use isinstance(dtype, CategoricalDtype) instead if pd.api.types.is categorical dtype(vector): c:\Users\USUARIO\AppData\Local\Programs\Python\Python311\Lib\site-packages\seaborn_ oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be remov ed in a future version. Use isinstance(dtype, CategoricalDtype) instead if pd.api.types.is_categorical_dtype(vector): c:\Users\USUARIO\AppData\Local\Programs\Python\Python311\Lib\site-packages\seaborn_ oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be remov ed in a future version. Use isinstance(dtype, CategoricalDtype) instead

segun la grafica hay en la poblacion de indias pime 65.104 = 0 que no son diabeticas y 34.896 indias pime que padecen la enfermedad = 1

Feature'ların Analizi - Análisis de características

```
diabetes["BloodPressure"].hist(bins=20) # caracteristica BloodPressure = presión d
plt.xlabel("BloodPressure")
```

```
plt.show()

def plot_numerical_col(dataframe, numerical_col): # se hace histogramacon todas La
    dataframe[numerical_col].hist(bins=20)
    plt.xlabel(numerical_col)
    plt.show()

for col in diabetes.columns: # se grafica
    plot_numerical_col(diabetes, col)
```


In []: cols = [col for col in diabetes.columns if "Outcome" not in col]
for col in cols: se reviasn datos estadisticos de las caracteristicas o columnas
plot_numerical_col(diabetes, col)
diabetes.describe().T

n	75%	50%	25%	min	std	mean	count	
17.0	6.000	3.000	1.000	0.000	3.370	3.845	768.000	Pregnancies
199.(140.250	117.000	99.000	0.000	31.973	120.895	768.000	Glucose
122.0	80.000	72.000	62.000	0.000	19.356	69.105	768.000	BloodPressure
99.0	32.000	23.000	0.000	0.000	15.952	20.536	768.000	SkinThickness
846.0	127.250	30.500	0.000	0.000	115.244	79.799	768.000	Insulin
67.1	36.600	32.000	27.300	0.000	7.884	31.993	768.000	ВМІ
2.4	0.626	0.372	0.244	0.078	0.331	0.472	768.000	DiabetesPedigreeFunction
81.(41.000	29.000	24.000	21.000	11.760	33.241	768.000	Age
1.0	1.000	0.000	0.000	0.000	0.477	0.349	768.000	Outcome
•								4

Target vs Features - Objetivo de la investigacion frente a las características

```
In [ ]: diabetes.groupby("Outcome").agg({"Pregnancies" : "mean"}) # se agrupan los resultad

def target_summary_with_num(dataframe, target, numerical_col): # se define la funci
    print(dataframe.groupby(target).agg({numerical_col: "mean"}) , end="\n\n\n") #

for col in cols: # se aplica el cilco for para todas las columnas
    target_summary_with_num(diabetes, "Outcome", col)
```

Pregnancies

Outcome

0 3.298 1 4.866

Glucose

Outcome

0 109.9801 141.257

BloodPressure

Outcome

0 68.184 1 70.825

SkinThickness

Outcome

0 19.664 1 22.164

Insulin

Outcome

0 68.792 1 100.336

BMI

Outcome

0 30.304 1 35.143

DiabetesPedigreeFunction

Outcome

0 0.430 1 0.550

Age

Outcome

0 31.190 1 37.067

Pregnancies = mujeres india pime embarazadas segun los esultados 22.164 = 1 son diabeticas y 3.298 = 0 no padecen la enfermedad.

Glucose segun los resultados de las mujeres indias pime 141.257 = 1 son diabeticas, y 109.980 = 0 no padecen la enfermedad.

BloodPressure (Presión arterial) en mujeres indias pime segun el resultado 70.825 = 1 son diabeticas y 68.184 = 0 no padecen la enfermedad.

SkinThickness (Grosor de la piel) en mujeres indias pime segun el resultado 22.164 = 1 son diabeticas y 19.664 = 0 no padecen la enfermedad.

Insulin (insulina) en mujeres indias pime segun el resultado 100.336 = 1 son diabeticas y 68.792 = 0 no padecen la enfermedad.

BMI (IMC: indice de masa corporal) en mujeres indias pime segun el resultado 35.143 = 1 son diabeticas y 30.304 = 0 no padecen la enfermedad.

DiabetesPedigreeFunction (calcula la probabilidad de tener diabetes según la edad de las personas y sus antecedentes familiares diabéticos) en mujeres indias pime segun el resultado 0.550 = 1 son diabeticas y 0.430 = 0 no padecen la enfermedad.

Age (edad) en mujeres indias pime segun el resultado 37.067 = 1 son diabeticas y 31.190 = 0 no padecen la enfermedad.

Data Preprocessing (Preprocesamiento de datos)

```
diabetes.shape # tamaño de los datos 768 filas y 9 columnas
Out[]: (768, 9)
In [ ]: diabetes.isnull().sum() # verificar si hay valores nulos con isnull y sum
                                   0
Out[]: Pregnancies
        Glucose
                                   0
        BloodPressure
                                   0
        SkinThickness
                                   0
        Insulin
        BMI
        DiabetesPedigreeFunction
                                   0
                                   0
        Age
                                    0
        Outcome
        dtype: int64
In [ ]: for col in cols: # se sique verificando datos
            print(col, ": ", check_outlier(diabetes, col))
       Pregnancies: False
       Glucose : False
       BloodPressure : False
       SkinThickness: False
       Insulin : True
       BMI : False
       DiabetesPedigreeFunction : False
       Age: False
       Age: False
```

C:\Users\USUARIO\AppData\Local\Temp\ipykernel_5688\1864853897.py:20: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '-439.5' has dtype incompatible with int64, please explicitly cast to a compatible dtype first.

dataframe.loc[(dataframe[variable] < low_limit), variable] = low_limit</pre>

Out[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFu
	0	0.600	0.752	0.000	0.375	-0.240	0.172	
	1	-0.400	-0.776	-0.333	0.188	-0.240	-0.581	
	2	1.000	1.600	-0.444	-0.719	-0.240	-0.935	
	3	-0.400	-0.679	-0.333	0.000	0.499	-0.419	
	4	-0.600	0.485	-1.778	0.375	1.081	1.194	
	4							>

Model & Prediction - Modelo y Prediccion

```
In []: y = diabetes["Outcome"]

X = diabetes.drop(["Outcome"], axis=1)

log_model = LogisticRegression().fit(X, y)

log_model.intercept_
log_model.coef_

y_pred = log_model.predict(X)
```

Model Evaluation - Evaluación del modelo

```
In []:
    def plot_confusion_matrix(y, y_pred):
        acc = round(accuracy_score(y, y_pred), 2)
        cm = confusion_matrix(y, y_pred)
        sns.heatmap(cm, annot=True, fmt=".0f")
        plt.xlabel("y_pred")
        plt.ylabel("y")
        plt.title("Accuracy Score: {0}".format(acc), size=10)
        plt.show()

    plot_confusion_matrix(y, y_pred)

    print(classification_report(y, y_pred))
```


Los valores de la diagonal principal 446 y 156 se corresponden con los valores estimados de forma correcta por el modelo, tanto los verdaderos positivos_TP, como los verdaderos negativos_TN. La otra diagonal, por tanto, representa los casos en los que el modelo "se ha equivocado 112 falsos negativos_FN, 54 falsos positivos_FP.

Accuracy (Exactitud) macro avg (macropromedio) muestra el rendimiento promedio entre clases y trata cada clase como igualmente importante. weighted avg (promedio ponderado) la contribución de cada clase al promedio se pondera por su tamaño.

```
In []: # Accuracy (Exactitud): 0.78 de todos los ejemplos positivos reales que existen, ¿c
# correctamente que eran positivos?: 0.78 representa el porcentaje de predicciones

# Precision: 0.74 se refiere a lo cerca que está el resultado de una predicción del
# positivos previstos, ¿qué porcentaje es realmente positivo?.

# Recall (Recordar o sensibilidad): 0.58 representa la tasa de verdaderos positivos
# todos los ejemplos positivos reales que existen, ¿cuántos de ellos predije correc
```

```
# F1-score (Puntuación F1): 0.65 es la "media armónica" de precisión y sensibilidad
# el rendimiento de un modelo de clasificación..

# ROC Permite comparar diferentes modelos para identificar cual otorga mejor rendim
# AUC El área debajo de la curva puede ser utilizado como resumen de la calidad del
# rendimiento del modelo. Cuanto más esté hacia la izquierda la curva, más área hab
# ende, mejor será el clasificador.

y_prob = log_model.predict_proba(X)[:, 1]
roc_auc_score(y, y_prob)
# 0.83939
```

Out[]: 0.8393955223880598

Model Validation: Holdout - Modelo de Validacion

	precision	recall	f1-score	support
0	0.77	0.92	0.84	97
1	0.79	0.53	0.63	57
accuracy			0.77	154
macro avg	0.78	0.72	0.73	154
weighted avg	0.78	0.77	0.76	154

```
In []: # Before (Antes)
# Accuracy (Exactitud): 0.78
# Precision: 0.74
# Recall (Recordar o sensibilidad): 0.58
# F1-score (Puntuación F1): 0.65

# After (después)
# Accuracy (Exactitud): 0.77
# Precision: 0.79
# Recall (Recordar sensibilidad): 0.53
# F1-score (Puntuación F1): 0.63
```

```
In [ ]: # Model Validation: 10-Fold Cross Validation - Validación cruzada de 10 veces
```

y = diabetes["Outcome"]

```
X = diabetes.drop("Outcome", axis=1)
        log_model = LogisticRegression().fit(X, y)
        cv_results = cross_validate(log_model, X, y,
                                   cv=5,
                                   scoring=["accuracy", "precision", "recall", "f1", "roc_a
In [ ]: # Before (antes)
        # Accuracy Exactitud: 0.78
        # Precision: 0.74
        # Recall (Recordar o sensibilidad): 0.58
        # F1-score (puntuación F1): 0.65
        # After (después)
        # Accuracy (Exactitud): 0.77
        # Precision: 0.79
        # Recall (Recordar o sensibilidad): 0.53
        # F1-score (puntuación F1): 0.63
        # Validation After (Validacion antes)
        cv_results["test_accuracy"].mean() # test de Exactitud com la media
        # Accuracy: 0.77
        cv_results["test_precision"].mean() # test de Precision com La media
        # Precision: 0.71
        cv_results["test_recall"].mean() # test de Recordar o sensibilidad com La media
        # Recall: 0.57
        cv_results["test_f1"].mean() # test de puntuación F1 com La media
        # F1-score: 0.63
```

Out[]: 0.8327295597484277

ROC AUC: 0.83

Prediction for A New Observation - Predicción para una nueva observación

```
In [ ]: X.columns
        random_user = X.sample(1, random_state=45)
        log_model.predict(random_user)
```

cv_results["test_roc_auc"].mean() # test de el modelo y su rendimiento com la media

Out[]: array([1], dtype=int64)