Minimum Spanning Tree 01418231 Data Structure

https://www.cs.indiana.edu/~achauhan/Teaching/B403/LectureNotes/09-mst.html

Agenda

- ► What is Minimum Spanning Tree?
- Minimum Spanning Tree Algorithm
 - -Kruskal's algorithm
 - -Prim algorithm
 - Dijkstra's algorithm

Problem: Laying Telephone Wire

Wiring: Better Approach

Minimize the total length of wire connecting the customers

Minimum Spanning Tree

- Definition
 - ► A minimum-weight tree in a weighted graph which contains all of the graph's vertices.
- Called
 - ► MST, shortest spanning tree, SST

01418231: Data Structure

Powered By: Jirawan Charoensuk

Minimum Spanning Tree

- ► A minimum spanning tree is a subgraph of an undirected weighted graph G, such that
 - it is a tree (i.e., it is acyclic)
 - it covers all the vertices V
 - contains |V| 1 edges
- the total cost associated with tree edges is the minimum among all possible spanning trees

How Can We Generate a MST?

Minimum Spanning Tree Algorithm

Kruskal's algorithm

Prim algorithm

Dijkstra's algorithm

Kruskal's algorithm

Kruskal's algorithm

► Step 1

- Find the cheapest edge in the graph
 - (if there is more than one, pick one at random).

► Step 2

 Find the cheapest unmarked edge in the graph that doesn't close a colored or red circuit

► Step 3

- Repeat Step 2 until you reach out to every vertex of the graph
- Or you have N-1 colored edges, where N is the number of Vertices

Powered By: Jirawan Charoensuk

Kruskal's Algorithm

Kruskal's Algorithm

Kruskal's Algorithm

Example 2- Kruskal's Algorithm

Rearrange weight (Min -> Max)

$$3-5 = .18$$

$$1-7 = .21$$

$$6-7 = .25$$

$$0-2 = .29$$

$$0-7 = .31$$

$$0-1 = .32$$

$$4-3 = .34$$

$$4-5 = .40$$

$$4-7 = .46$$

$$0-6 = .51$$

$$4-6 = .51$$

$$0-5 = .60$$

Prim algorithm

- ► Step 0
 - Pick any vertex as a starting vertex. (Call it S)
- ► Step 1
 - Find the nearest neighbor of S (call it P1)
 - Mark both P1 and the edge SP1
- ► Step 2
 - Find the nearest cheapest uncolored neighbor to the red subgraph (i.e., the closest vertex to any red vertex).
 - Mark it and the edge connecting the vertex
- ► Step 3
 - Repeat Step 2 until all vertices are marked red

Example 2 - Prim's algorithm

Dijkstra's algorithm

Dijkstra Algorithm: Finding shortest paths in order

Find shortest paths from source s to all other destinations

Closest node to s is 1 hop away 2nd closest node to s is 1 hop away from s or w"

3rd closest node to s is 1 hop away from s, w", or χ

01418231: Data Structure

Powered By: Jirawan Charoensuk

Dijkstra's algorithm

Shortest path Start at 1

Example 2: Dijkstra's Algorithm

website

- Kruskal
 - http://students.ceid.upatras.gr/~papagel/project/kruskal.htm
- Prim
 - http://students.ceid.upatras.gr/~papagel/project/prim.htm
- Dijkstra
 - http://students.ceid.upatras.gr/~papagel/project/kef5_7_1.ht
 m

Question

