Human or AI

By: Zubeir Said

Problem Statement

Tthe scope of this project focuses on guestions and responses gathered from Reddit, which provides a diverse collection of conversational text which will then be asked of OpenAI. Once we ask the guestion to OpenAI we will pull down the response the AI produces and compare it to top ranked human generated response on reddit and compare to see if our NLP model can identify which response came from a human and which one came from chatgpt. The goal is to get a model be as accurate as possible in making this disinction amongst the two option, essentailly making an optimal binary classification model to achieve this. Success will be evaluated based on the model's accuracy in correctly classifying the responses, as well as its ability to generalize to unseen data. In an era where Al-generated content is becoming ubiquitous, distinguishing between human and machine-generated text is crucial. Our stakeholders come from a variety of sources such as reddit platform/users. journalist, media, and end users of user generated content and AI content.

In short:

- We want a model that guesses BOTH well
- Guessing one label better than the other is no good to us
- The highest possible accuracy is desired

The Data

Collected Reddit Data from the following Forums

- Tech Support
- Ask Philosophy
- Ask Culinary
- Ask Academia
- Ask Statistics

Looking at the Data: Vocab Count w/ Stopwords

<pre>word_frequency(data['reddit_question'],10)</pre>				<pre>word_frequency(data['human_response'],10)</pre>				word_frequency(data['		
	Word	Frequency			Word	Frequency			Word	Frequency
0	the	14094		0	the	10147		0	the	4728
1	1	12867		1	to	8887		1	to	4008
2	to	11258		2	а	6721		2	а	2942
3	and	9572		3	of	6149		3	is	2840
4	а	9498		4	and	5910		4	and	2647
5	of	7220		5	you	4960		5	of	2550
6	in	5589		6	is	4075		6	in	1591
7	is	5131		7	that	3668		7	that	1590
8	that	4514		8	in	3363		8	you	1516
9	it	4449		9	it	2423		9	it	1321

Looking at the Data: Vocab Count wo/ Stopwords

word_frequency(data['human_response'],10,True)

	Word	Frequency
0	would	852
1	like	795
2	questions	758
3	Please	715
4	make	709
5	see	641
6	get	588
7	one	577
8	think	504
9	read	461

word_frequency(data['chatgpt_response'],10,True)

	Word	Frequency
0	may	441
1	would	419
2	could	338
3	make	258
4	like	242
5	use	235
6	Yes,	222
7	answer	216
8	way	215
9	However,	213

Word Overlap

Word Overlap: Reddit Question vs. Human Response

Word Overlap: Reddit Question vs. ChatGPT Response

Word Overlap

Word Overlap: Reddit Question vs. Human Response

Word Overlap

Word Overlap: Reddit Question vs. Human Response

Word Overlap: Reddit Question vs. ChatGPT Response

Sentence Variety

Unique Word and Clause Usage

Average unique word ratio in reddit questions: 0.7699014300006813 Average unique word ratio in human responses: 0.8369412439804145 Average unique word ratio in chatGPT responses: 0.8692428037275195

Average number of clauses in reddit questions: 11.091174751607248 Average number of clauses in human responses: 8.26709526592636 Average number of clauses in chatGPT responses: 3.8664523670368207

Slang and Punctuation Usage

```
Average slang count in reddit questions: 0.007890122735242549

Average slang count in human responses: 0.010227936879018119

Average slang count in ChatGPT responses: 0.0008766803039158387

Average punctuation count in reddit questions: 20.8801870251315

Average punctuation count in human responses: 23.048509643483342

Average punctuation count in ChatGPT responses: 4.333430742255991
```

Modeling

- Used very low parameters to start off with
- Explored both CVEC and TFIDF
- Models looked at:
 - Logistic Regression
 - Bernoulli
 - Multinomial
 - o Bagging
 - o DTC
 - o SVM
 - Random Forest
 - ADA Boosting
 - Gradient Boosting

Logistic Regression TVEC

'cvec__max_features': [1000, 5000],

'cvec__min_df': [3, 5],

'cvec__max_df': [0.9, 0.95],

'cvec__ngram_range': [(1, 1), (1, 2)],

'cvec__stop_words': [stopwords]

TVEC Logistic Regression had a sensitivity of: 0.7821080602302923
TVEC Logistic Regression had a specificty of: 0.8336283185840708
TVEC Logistic Regression had a f1 score of: 0.80272727272727

Bernoulli CVEC

'cvec__max_features': [1000, 5000],

'cvec__min_df': [3, 5],

'cvec__max_df': [0.9, 0.95],

'cvec__ngram_range': [(1, 1), (1, 2)],

'cvec__stop_words': [stopwords]

TVEC Bernoulli had a sensitivity of: 0.5243578387953941

TVEC Bernoulli Regression had a specificty of: 0.9920353982300885

TVEC Bernoulli Regression had a f1 score of: 0.6843930635838149

Multinomial CVEC

'cvec__max_features': [1000, 5000],

'cvec__min_df': [3, 5],

'cvec__max_df': [0.9, 0.95],

'cvec__ngram_range': [(1, 1), (1, 2)],

'cvec__stop_words': [stopwords]

CVEC Multinomial Regression had a sensitivity of: 0.6935341009743136 CVEC Multinomial Regression had a specificty of: 0.8300884955752212 CVEC Multinomial Regression had a f1 score of: 0.744296577946768

Bagging with DTC

```
params_bag_dtc = {

'n_estimators' : [50, 100,150],

'base_estimator__max_depth' : [3, 5] ¶
}
```


Bagging with a base DTC had a sensitivity of: 0.48981399468556247 Bagging with a base DTC had a specificty of: 0.9336283185840708 Bagging with a base DTC had a f1 score of: 0.6294820717131474

Random Forest Classifier

```
rf_params = {

'n_estimators': [150,250],

'max_depth': [None, 3,]
}
```


RF had a sensitivity of: 0.7404782993799823 RF had a specificty of: 0.8769911504424779 RF had a f1 score of: 0.7946768060836502

SVM

SVM had a sensitivity of: 0.8184233835252436 SVM with a base LR had a specificty of: 0.8619469026548673 SVM with a base LR had a f1 score of: 0.7792813812412505

Ada Boosting

ABC with a base LR had a sensitivity of: 0.5119574844995571 ABC with a base LR had a specificty of: 0.9327433628318584

ABC with a base LR had a f1 score of: 0.6483454851374089

Best Model: Logistic Regression TVEC

```
params = {
    'tvec__max_features': [15000,20000],
    'tvec__min_df': [3],
    'tvec__max_df': [0.9, 0.95],
    'tvec__ngram_range': [(1, 5), (1, 4)],
    'tvec__stop_words': [None, 'english', nltk_stop]
}
```


TVEC Logistic Regression had a sensitivity of: 0.8184233835252436 TVEC Logistic Regression had a specificty of: 0.8619469026548673 TVEC Logistic Regression had a f1 score of: 0.8365776369397918

Conclusions

- Logistic seems to be the strongest when it comes to classification
- Does the best overall at predicting BOTH human and AI
- Would love to see what other types of boosting exists with Logistic Regression
- Would love to run thousands of n-estimators on decision trees
- Would have loved to have a ton more problem free data