Jinrui (Jerry) Gou

Computer Science and Engineering Tandon School of Engineering New York University

Tel: (347) 200 5159 Tel: +86 189 8325 3062 Email: jg6226@nyu.edu

EDUCATION New York University

Brooklyn, NY Ph.D. in Computer Science 09/2021-Present

Advisor: Professor Torsten Suel

Overall GPA: 3.97/4.0

M.S. in Computer Science 09/2019-05/2021

Overall GPA: 4.0/4.0

Sun Yat-Sen University

B.E. in Computer Science & Technology

Overall GPA: 90/100 (3.8/4.0) Mathematics Courses GPA: 95/100 Guangzhou, China 09/2015-06/2019

KNOWLEDGE

- Languages: C/C++, Python, SQL, AMPL/CPLEX, Latex, MATLAB, Bash, HTML5, JavaScript
- Tools: Scikit-learn, PyTorch, TensorFlow, Numpy, Matplotlib, TBB, AVX/AVX2, CUDA, OpenCL
- Courses Enrolled: Computer Architecture, Natural Language Processing, Machine Learning (Rank 1st in Class of 43 students), Deep Learning, Web Search Engines, Design & Analysis of Algorithms (Rank 1st in Class of 47 students), Network Design and Algorithms (Rank 2nd in Class of 20 students), Algorithmic Machine Learning and Data Science

RESEARCH EXPERIENCE

Ph.D. Research Assistant for Prof. Torsten Suel, NYU

09/2021-Present

- 1. Effective Candidate Generation and Threshold Estimation for Fast Top-K Query Processing
 - Build specialized first-layer index structures that storing high-scoring postings
 - Fine-tune the storage of index structures and fit them into main memory for fast access
 - Reduce cache line miss by utilizing bloom filter to speed up lookups
 - Implement the entire process with 2000+ lines C++ code to to provide high quality estimate of top-k threshold and promissing candidates documents
- 2. Graph Based Approximate Near-neighbor Search
 - Propose navigable graph that can preform greedy routing for nearest neighbor search
 - Design randomized algorithms of adding links between nodes in high dimension space to create effective navigable graphs
 - Explore and bound the max degree and average degree of navigable graphs with proof

Jinrui (Jerry) Gou page 2

- Write efficient code to compute distances between high dimensional points and create routing tree
- 3. Sparse Learned Index Structures Optimization
 - Expand documents by generating related questions, using LLM Llama 2
 - Improve document expansion quality by filtering unrelated questions
 - Train BERT model CoCondenser to predict score of terms in documents for better top-k query processing
 - Fuse the knowledge from cross-encoder to improve training by hard negatives and distillation

Graduate Research Assistant for Prof. Yong Liu, Networked Systems Lab, NYU

09/2019-05/2021

- 1. Realtime Mobile Network QoS Prediction:
 - Collect mobile 4G/LTE bandwidth traces in Metro Area of NYC
 - Develop models for realtime bandwidth prediction and network handoffs prediction
- 2. Joint Traffic Routing and Computation Server Placement in Edge Cloud Networks:
 - Develop quasi-convex optimization models to obtain optimal traffic routing and computation resource allocation to simultaneously balance the traffic and computation load distribution in edge cloud networks
 - Use AMPL/CPLEX and Python optimization packages to obtain numerical solutions for comparative case studies

PUBLICATIONS

- 1. Lifan Mei, **Jinrui Gou**, Yujin Cai, Houwei Cao, and Yong Liu, "Realtime mobile bandwidth and handoff predictions in 4G/5G networks", *Computer Networks, Feb 2022*.
- 2. Soyuj Basnet, **Jinrui Gou**, Antonio Mallia, and Torsten Suel, "DeeperImpact: Optimizing Sparse Learned Index Structures", in ReNeuIR at SIGIR 2024: The Third Workshop on Reaching Efficiency in Neural Information Retrieval.
- 3. Lifan Mei, **Jinrui Gou**, Jingrui Yang, Yujin Cai, and Yong Liu, "On Routing Optimization in Networks with Embedded Computational Services", *IEEE Transactions on Network and Service Management, accepted 2024*.
- 4. **Jinrui Gou**, Yifan Liu, Minghao Shao, and Torsten Suel, "Beyond Quantile Methods: Improved Top-K Threshold Estimation for Traditional and Learned Sparse Indexes", *submitted to IEEE International Conference on Big Data* 2024.
- 5. Haya Diwan, **Jinrui Gou**, Cameron Musco, Christopher Musco, and Torsten Suel, "Navigable Graphs for High-Dimensional Nearest Neighbor Search: Constructions and Limits", *submitted to NeurIPS 2024: Conference on Neural Information Processing Systems, under Review.*

TEACHING ASSISTANT EXPERIENCE

Teaching Assistant, ECE-GY 9343 Data Structures and Algorithms, NYU

Spring, Summer, Fall 2020

- Create homework questions, and grade homework submissions and exams;
- Help the professor answer students' questions on Piazza, and hold online TA office hours.