2.2: Axioms, Interpretations and Properties of Probability

Taylor

University of Virginia

Motivation

The sets are basically questions we can ask about something random...but how do we talk about the chances that those things will occur? A: we need a function that takes events as input, and as output gives us a number between 0 and 1. This is our probability function $P(\cdot)$.

Taylor (UVA) "2.2" 2 / !

Properties of P

Here are the rules any probability function has to satisfy;

- For any event A, $P(A) \ge 0$
- **2** P(S) = 1
- **1** let A_1, A_2, \ldots be a countably infinite collection of disjoint sets; then $P(A_1 \cup A_2 \cup \cdots) = \sum_{i=1}^{\infty} P(A_i)$

Taylor (UVA) "2.2" 3 /

Derived Properties

Here are some things you can make sure are true using only the stuff from the previous slide:

- $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i) \text{ if } A_1, \dots, A_n \text{ are all disjoint}$
- **3** P(A') = 1 P(A) for any A
- if $A \subset B$ then $P(A) \leq P(B)$
- **(in particular)** for any A, $P(A) \leq 1$
- for any A and B (not necessarily disjoint), $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Taylor (UVA) "2.2" 4 / 5

Note

Keep in mind that we are talking about a general $P(\cdot)$. In practice, you don't know it. However, every possibility must satisfy all these rules we have talked about.

Taylor (UVA) "2.2" 5 / 5