华东理工大学 2019 - 2020 学年第一学期

《空间解析几何》课程期末考试试卷 A 2020.1.8

开课学院:理学院, 专业:数学类, 考试形式:闭卷, 所需时间 120 分钟

考生姓名:_		学号	学号:		班级:		任课教师: 杨勤民		
题序	_	=	Ξ	四	五	六	总	分	
得分									
评卷人		杨	堇	р	民				
-、填空题	(请将最	.简结果直扎	妾填在横线	赴, 每小	题5分, 共:	50分)			
1. 已知平	行四边升	形 <i>ABCD</i> 的	5 对角线 A	$\vec{C} = \vec{p}. \ \vec{B}\vec{I}$) = ā. 若用	向量 77和	d表示	向量 <u>—</u>	
$rac{\overrightarrow{BC}}$,则 \overrightarrow{AB}							q ve q	1 4 3 111	
ŕ							ار حا داد	, 1- ,\ D	
		,-2,6)和(份,则该线	、投的两个	、	全杯分別	
		\vec{a} , \vec{b} , \vec{c} 两两		角都为 $\frac{\pi}{3}$,	$\mathbb{E}\left \vec{a}\right = 1$	$, \left \vec{b} \right = 2,$	$\left \vec{c} \right = 1$	3,	
$\int \left \vec{a} + \vec{b} + \vec{c} \right $	=		_•						
$4. \ (\vec{a} + 2\vec{l}$	$\vec{c} - \vec{c}$) · [($(\vec{a} - \vec{b}) \times (\vec{a} - \vec{b})$	$2\vec{a} - \vec{b} - \vec{c}$)] =	$\vec{a} \times \vec{b} \cdot \vec{c}$.				
5. 平面 {	$x = -1 + 2$ $y = \lambda - 2$ $z = 1 + 2$	·λ 2μ 的普 2λ – μ	通方程为 .			<u>_</u> .			
		(1,-2,3) 的					<u>_</u> .		
7. 点 (1, -	-1,2) 到	直线 $\frac{x}{2} = \frac{y}{2}$	$\frac{-1}{-3} = \frac{z}{1} \notin$	为距离为 __		·			
		$\frac{-5}{3} = \frac{z - 7}{6}$							
9. 抛物线	$\begin{cases} z^2 = 2\\ x = 0 \end{cases}$	y 绕y轴旅	色转产生的	旋转面的	方程为			·	
10. 设 O	ABC 为·	一个四面个	本, 点 <i>L</i> , <i>M</i>	!,N 依次;	是 ΔABC 的	内三边 AI	B, BC, C	CA 的中	
、则在坐标	·系 [O; C	$\overrightarrow{OL}, \overrightarrow{OM}, \overrightarrow{ON}$	v] 中向量	\overrightarrow{AB} \overrightarrow{AC}	的坐标分	别为			
2		_·							
(请将以了	- 各题的	详细解答写	百在后面的	空白处或	试卷背面,	标明题号	, 不用扌	少题目)	

二、(10分) 设 M 是线段 AB 的中点,证明对于空间任意一点 P 有 $\overrightarrow{PM} = \frac{1}{2}(\overrightarrow{PA} + \overrightarrow{PB})$.

三、(10分) 若向量 \vec{c}_1 与 \vec{c}_2 不共线,证明 $\vec{c}_1 \times (\vec{c}_1 \times \vec{c}_2)$ 与 $\vec{c}_2 \times (\vec{c}_1 \times \vec{c}_2)$ 也不共线.

四、(10分) 设有两条直线 l_1 : $\begin{cases} x+y-z-1=0\\ 2x+y-z-2=0 \end{cases} \approx l_2$: $\begin{cases} x+2y-z-2=0\\ x+2y+2z+4=0 \end{cases}$. 求

(1) 这两条直线之间的距离; (2)这两条直线的公垂线的方程.

五、(10分) 求经过三条平行直线 x = y = z, x - 1 = y = z + 1, x = y + 1 = z - 1 的圆柱面的方程.

六、(10分) 设 \mathbb{R}^3 中定点P到定直线l的距离为 1. 一族球面中的每个球面都过点P,且截直线l得到的弦长都是定值 2. 问该球面族的球心的轨迹是什么类型的曲面?

华东理工大学 2019 - 2020 学年第一学期

《空间解析几何》课程期末考试试卷 B 2020.1.8

开课学	院: 理学院	: 理学院, 专业: 数学类,		考试形	考试形式: 闭卷,		所需时间 <u>120</u> 分钟		
考生姓名:		学号:			及:	任课教师: 杨勤民			
题序	_	=	三	四	五	六	总	分	
得分									
评卷人		杨	† 1	動	民				
一、填空是	须(请将 最	简结果直:	接填在横线	浅上, 每小	题5分,共	50分)			
1. 已知	一个正六	边形 ABCI	DEF 的两/	- 个相邻边 <i>E</i>	$\overrightarrow{AB} = \overrightarrow{u}, \ \overrightarrow{AB}$	· = v, 若用	向量i	7.和7表	
					7 =				
					, -8, 16), 贝			= 筌公占	
							M1 -	一寸刀爪	
							_		
3. 设两	个向量d为	和B的夹角	为 $\frac{n}{3}$, $ \vec{a} $	$=3, \vec{b} =$	= 4, 则以 2	$\vec{a} + \vec{b}, \ \vec{a} + \vec{b}$	$2\vec{b}$ 为木	目邻边的	
平行四边用	彡的两条对	角线的长	度分别为_		和_		·		
4. (2 <i>ā</i> -	$+\vec{b})\times(\vec{a}-$	$(-\vec{b}+2\vec{c})\cdot($	$\vec{a} - 2\vec{b} + \bar{c}$	· · · · · · · · · · · · · · · · · · ·	$\vec{a} \cdot (\vec{b} \times \vec{c})$				
	$\int x = u + v$,							
5. 曲面	$\bigg\{y=u-v$,的普通方	程为		·				
	z = 4uv					दच ४.			
6. 过点	(2,3,-1),	与向重 (3,	-2,1) 半年	丁的直线的	点向式方	柱为		·	
7. 在 z	轴上到两/	个平面 2x -	+3y+6z-	-6=0和3	3x - 6y - 2	z - 18 = 0	有相等	手距离的	
点的坐标>	j		<u> </u>	·					
					专面的方程				
9. 两条	直线 $\begin{cases} x + \\ 2x - \end{cases}$	2y + z - 1 = 0 $-y + z + 1 = 0$	$= 0 = 0$ $= 0$ $\begin{cases} 2x = 0 \end{cases}$	x - y - 2z - y + z + 1	$\begin{array}{c} -1 = 0 \\ 1 = 0 \end{array} \stackrel{>}{\sim}$	间的夹角>	5		
					∆ABC 的三				
取坐标系I	$[O;\overrightarrow{OA},\overrightarrow{OB}]$	$\overrightarrow{B}, \overrightarrow{OC}$], II[\overrightarrow{C}	$O; \overrightarrow{OL}, \overrightarrow{OM},$, ON]. 则为	人坐标系Ⅱ.	到I的仿射	坐标变	き換公式	
为 x' =	_ x + y	+ z, y	' = $x +$	+ y +	z, z' =	x +	y +	_ Z.	
仁之为公	1七夕 蹈丛	兴 伽彻 梦 9	ことにエル	りかりかむ	斗 半北二	七明旸旦	プロレ	小跖口\	

- 二、(10分) 证明 $\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{CA} \cdot \overrightarrow{BD} = 0$.
- 三、(10分) 证明 $[\vec{v}_1 \times (\vec{v}_1 \times \vec{v}_2)] \times [\vec{v}_2 \times (\vec{v}_1 \times \vec{v}_2)] = |\vec{v}_1 \times \vec{v}_2|^2 (\vec{v}_1 \times \vec{v}_2).$
- 四、(10分) 求光线 $\frac{x-1}{-1} = \frac{y-2}{1} = \frac{z+1}{2}$ 照在镜面 x+y+z+1=0 上所产生的反射光线的方程.
- 五、(10分) 求经过三条平行直线 x = y = z, x + 1 = y = z 1, x 1 = y + 1 = z 2 的圆柱面的方程.
- 六、(10分) 设 S 为 \mathbb{R}^3 中的抛物面 $z = \frac{1}{2}(x^2 + y^2)$, P = (a, b, c) 为 S 外一固定点,满足 $a^2 + b^2 > 2c$. 过 P 作 S 的所有切线. 证明: 这些切线的切点落在同一张平面上.

华东理工大学 2019 - 2020 学年第一学期 《空间解析几何》课程期末考试标准答案 A 2020.1.8

一、填空题 (每小题5分, 共50分)

1.
$$\frac{\vec{p}-\vec{q}}{2}$$
, $\frac{\vec{p}+\vec{q}}{2}$.

$$2. \quad (-1, 1, 1), \quad (5, -8, 16)$$

5.
$$3x + y - 2z + 5 = 0$$

6.
$$2x + y = 0$$

7.
$$\frac{\sqrt{91}}{7}$$
 或写为 $\sqrt{\frac{13}{7}}$

8.
$$\arcsin \frac{24}{49}$$

9.
$$x^2 + z^2 = 2y$$

10.
$$(0, 2, -2)$$
 $(-2, 2, 0)$

二、(10分)

证:由
$$M$$
是线段 AB 的中点知 $\overrightarrow{AM} = \overrightarrow{MB}$(5分

$$\frac{1}{2}(\overrightarrow{PA} + \overrightarrow{PB}) = \frac{1}{2}(\overrightarrow{PM} + \overrightarrow{MA} + \overrightarrow{PM} + \overrightarrow{MB}) = \frac{1}{2}(2\overrightarrow{PM} - \overrightarrow{AM} + \overrightarrow{MB}) = \overrightarrow{PM}. \quad \dots \quad (5\%)$$

三、(10分)

证:由
$$\vec{l}_1$$
与 \vec{l}_2 不共线知 $\vec{l}_1 \times \vec{l}_2 \neq \vec{0}$(2分)

$$[\vec{v}_1 \times (\vec{v}_1 \times \vec{v}_2)] \times [\vec{v}_2 \times (\vec{v}_1 \times \vec{v}_2)]$$

$$= \{\vec{v}_1 \cdot [\vec{v}_2 \times (\vec{v}_1 \times \vec{v}_2)]\}(\vec{v}_1 \times \vec{v}_2) - \{(\vec{v}_1 \times \vec{v}_2) \cdot [\vec{v}_2 \times (\vec{v}_1 \times \vec{v}_2)]\}\vec{v}_1 \dots (4\hat{\gamma})$$

$$= |\vec{v}_1 \times \vec{v}_2|^2 (\vec{v}_1 \times \vec{v}_2) \neq \vec{0}$$
(13)

因此 $\vec{v}_1 \times (\vec{v}_1 \times \vec{v}_2)$ 与 $\vec{v}_2 \times (\vec{v}_1 \times \vec{v}_2)$ 不共线.

四、(10分)

解:
$$l_1$$
 的方向向量为 $\vec{v}_1 = (1, 1, -1) \times (2, 1, -1) = (0, -1, -1)$.

在 l_1 上可取一点 $M_1(1,0,0)$.

$$l_2$$
的方向向量为 $\vec{v}_2 = \frac{1}{3}(1,2,-1) \times (1,2,2) = (2,-1,0)$.

在 l_1 上可取一点 $M_2(0,0,-2)$.

(1)这两条直线之间的距离为

$$\left| \overrightarrow{M_1 M_2} \cdot \frac{\overrightarrow{v}}{|\overrightarrow{v}|} \right| = \frac{|(-1, 0, -2) \cdot (-1, -2, 2)|}{|(-1, -2, 2)|} = 1. \tag{2}$$

| |V|| |V-1, -2, 2|| (2)设点 P(x, y, z) 为这两条直线的公垂线上任意一点,

则 $\overrightarrow{PM_1}$, $\vec{v_1}$, \vec{v} 共面, 因此 $(\overrightarrow{PM_1}, \vec{v_1}, \vec{v}) = 0$, 即 4x - y + z - 4 = 0.

$$\overrightarrow{PM_2}$$
, $\vec{v_2}$, $\vec{v_2}$, $\vec{v_1}$, $\vec{v_2}$, $\vec{$

$$PM_2$$
, V_2 , V 共間, 因此 $(PM_2, V_2, V) = 0$, P $2x + 4y + 5z + 10 = 0$.
故所求公垂线的方程为 $\begin{cases} 4x - y + z - 4 = 0 \\ 2x + 4y + 5z + 10 = 0 \end{cases}$
(2)的其他答案: (i) $\frac{x-1}{1} = \frac{y + \frac{4}{3}}{2} = \frac{z + \frac{4}{3}}{-2}$ (ii) $\begin{cases} y + z + \frac{8}{3} = 0 \\ 2x - y - \frac{10}{3} = 0 \end{cases}$
五、(10分)

解: 圆柱面的母线方向 \vec{l} 即为三条平行直线的方向. 即 $\vec{l} = (1,1,1)$.

与母线垂直的一个平面 π 为: x+y+z=0.

该平面与题设中的三条直线的交点分别为: O(0,0,0), P(1,0,-1), O(0,-1,1).

设点(x, y, z)为圆柱面的轴线上的任意一点,则该点到上述三个交点的距离相等,

$$\Re \sqrt{x^2 + y^2 + z^2} = \sqrt{(x-1)^2 + y^2 + (z+1)^2} = \sqrt{x^2 + (y+1)^2 + (z-1)^2},$$

化简得到轴线
$$L_0$$
 的方程为: $x-1=y+1=z$(5分)

再设点 (x, y, z) 为圆柱面上的任意一点,则该点到直线 L_0 的距离与圆柱面上的一点 O

到轴线的距离相等,即 $\frac{|(x-1,y+1,z)\times \vec{l}\,|}{|\vec{l}\,|} = \frac{|(0-1,0+1,0)\times \vec{l}\,|}{|\vec{l}\,|}$ 化简得到所求圆柱面的方程为 $x^2+y^2+z^2-xy-yz-zx-3x+3y=0.$ (5分)

注:
$$(x-y-2)^2 + (x-z-1)^2 + (y-z+1)^2 = 6$$

六、(10分)

上的固定点 O 的有向距离.

设球心坐标为
$$(x_0, y_0, z_0)$$
,则球面方程为 $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = (1 - x_0)^2 + y_0^2 + z_0^2$.

将1的参数方程代入上述球面方程得 $t^2 - 2z_0t + 2x_0 - 1 = 0$.

由截得的弦长为定值2知道,这个关于t的二次方程的两根之差等于2.

反之,当球心坐标 (x_0, y_0, z_0) 满足 $z_0^2 - 2x_0 = 0$ 时可求得相应的球面在直线 l 上截得的弦 长都是定值 2.

华东理工大学 2019 - 2020 学年第一学期 《空间解析几何》课程期末考试标准答案 B 2020.1.8

一、填空题 (每小题5分, 共50分)

1.
$$\vec{v} - \vec{u} \qquad -\vec{u} - \vec{v}$$

2.
$$(1, -2, 6), (3, -5, 11)$$

3.
$$3\sqrt{37}$$
 $\sqrt{13}$

5.
$$x^2 - y^2 - z = 0$$

6.
$$\frac{x-2}{3} = \frac{y-3}{-2} = \frac{z+1}{1}$$

7.
$$(0,0,6)$$
 $(0,0,-\frac{3}{2})$

8.
$$x^2 + y^2 + z^2 - 2y = 0$$

9.
$$\arccos \frac{4\sqrt{910}}{455}$$

二、(10分)

$$\mathtt{i}\mathbb{E}\colon \quad \overrightarrow{AB}\cdot\overrightarrow{CD}+\overrightarrow{BC}\cdot\overrightarrow{AD}+\overrightarrow{CA}\cdot\overrightarrow{BD}$$

$$= \overrightarrow{AB} \cdot (\overrightarrow{AD} - \overrightarrow{AC}) + (\overrightarrow{AC} - \overrightarrow{AB}) \cdot \overrightarrow{AD} - \overrightarrow{AC} \cdot (\overrightarrow{AD} - \overrightarrow{AB}) \tag{7.27}$$

$$= \overrightarrow{AB} \cdot \overrightarrow{AD} - \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AC} \cdot \overrightarrow{AD} - \overrightarrow{AB} \cdot \overrightarrow{AD} - \overrightarrow{AC} \cdot \overrightarrow{AD} + \overrightarrow{AC} \cdot \overrightarrow{AB} = 0 \dots (3 \hat{7})$$

三、(10分)

证法一: 左边=
$$[\vec{v}_1 \times (\vec{v}_1 \times \vec{v}_2)] \cdot (\vec{v}_1 \times \vec{v}_2)\vec{v}_2 - [\vec{v}_1 \times (\vec{v}_1 \times \vec{v}_2)] \cdot \vec{v}_2(\vec{v}_1 \times \vec{v}_2) \dots (5 分)$$

$$= 0\vec{v}_2 - (\vec{v}_1, \vec{v}_1 \times \vec{v}_2, \vec{v}_2)(\vec{v}_1 \times \vec{v}_2) \dots (2\hat{\mathcal{T}})$$

$$= (\vec{v}_1 \times \vec{v}_2) \cdot (\vec{v}_1 \times \vec{v}_2)(\vec{v}_1 \times \vec{v}_2) = 右边 \dots (2分)$$

证法二: 左边=
$$(\vec{v}_1 \cdot \vec{v}_2 \vec{v}_1 - \vec{v}_1 \cdot \vec{v}_1 \vec{v}_2) \times (\vec{v}_2 \cdot \vec{v}_2 \vec{v}_1 - \vec{v}_2 \cdot \vec{v}_1 \vec{v}_2) \dots (5分)$$

$$= -(\vec{v}_1 \cdot \vec{v}_2)^2 \vec{v}_1 \times \vec{v}_2 - (\vec{v}_1 \cdot \vec{v}_1)(\vec{v}_2 \cdot \vec{v}_2) \vec{v}_2 \times \vec{v}_1 \dots (2 \hat{n})$$

$$= [(\vec{v}_1 \times \vec{v}_2) \cdot (\vec{v}_1 \times \vec{v}_2)] \vec{v}_1 \times \vec{v}_2 = 右 边 \dots (2分)$$

四、(10分)

过
$$M_1$$
 垂直于镜面 π : $x+y+z+1=0$ 的直线 L_2 为 $\frac{x-1}{1}=\frac{y-2}{1}=\frac{z+1}{1}$(2分)

其参数方程为 x = 1+t, y = 2+t, z = -1+t. 代入镜面 π 的方程得到 t = -1. 与镜面 π 的交点在上述直线方程中对应参数t=-1,因此点 M_1 关于镜面 π 的对称

点 M_2 对应的参数为 $t = -1 \times 2 = -2$, 代入上述参数方程得到 M_2 的坐标为 (-1,0,-3). 光线 L_1 的参数方程为 x=1-t, y=2+t, z=-1+2t. 代入镜面 π 的方程得 到 $t=-\frac{3}{2}$. 即 L_1 与镜面 π 的交点 M_0 在上述直线方程中对应参数 $t=-\frac{3}{2}$, 代回 L_1 的 参数方程得到 M_0 的坐标为 $(\frac{5}{2},\frac{1}{2},-4)$ 所求反射光线为过 M_2 和 M_0 的直线: $\frac{x+1}{\frac{5}{2}+1} = \frac{y}{\frac{1}{2}} = \frac{z+3}{-4+3}$, 即 $\frac{x+1}{7} = \frac{y}{1} = \frac{z+3}{-2}$. (1分) 五、(10分) 解: 圆柱面的母线方向 \vec{l} 即为三条平行直线的方向, 即 $\vec{l} = (1,1,1)$. 与母线垂直的一个平面 π 为: x+v+z=0.

该平面与题设中的三条直线的交点分别为: O(0,0,0), P(-1,0,1), $Q(\frac{1}{2},-\frac{5}{2},\frac{4}{2})$.

设点(x, v, z)为圆柱面的轴线上的任意一点,则该点到上述三个交点的距离相等,

$$\mathbb{P} \sqrt{x^2 + y^2 + z^2} = \sqrt{(x+1)^2 + y^2 + (z-1)^2} = \sqrt{(x-\frac{1}{3})^2 + (y+\frac{5}{3})^2 + (z-\frac{4}{3})^2},$$

化简得到轴线 L_0 的方程为: $\begin{cases} x-z+1=0, \\ x-5y+4z-7=0. \end{cases}$

化成点向式方程得 $x+1=y+\frac{8}{5}=z$. (注: 圆心 $(-\frac{2}{15},-\frac{11}{15},\frac{13}{15})$, 半径 $\frac{7\sqrt{6}}{15}$)(5分)

再设点 (x,y,z) 为圆柱面上的任意一点,则该点到直线 L_0 的距离与圆柱面上的一点 O

到轴线的距离相等, 即
$$\frac{|(x+1,y+\frac{8}{5},z)\times l|}{1} = \frac{|(0+1,0+\frac{8}{5},0)\times l|}{1}$$

到轴线的距离相等,即 $\frac{|(x+1,y+\frac{8}{5},z)\times\vec{l}\,|}{|\vec{l}\,|} = \frac{|(0+1,0+\frac{8}{5},0)\times\vec{l}\,|}{|\vec{l}\,|}$ 化简得到所求圆柱面的方程为 $x^2+y^2+z^2-xy-yz-zx+\frac{2}{5}x+\frac{11}{5}y-\frac{13}{5}z=0.$...(5 分)

注:
$$(y-z+\frac{8}{5})^2+(z-x-1)^2+(x-y-\frac{3}{5})^2=\frac{98}{25}$$
.

六、(10分)

证:设这些切线的切点坐标为(x,y,z),则存在切线的方向向量(u,v,w)和相应的参数t

则该方程有二重实根, 因此 $\Delta = 0$, 即 $(au + bv - w)^2 = (u^2 + v^2)(a^2 + b^2 - 2c)$ (3分)

相应的二重根
$$t = \frac{w - au - bv}{u^2 + v^2} = \frac{a^2 + b^2 - 2c}{w - au - bv}.$$

由 (x, y, z) = (a, b, c) + t(u, v, w) 得 $t = \frac{x - a}{u} = \frac{y - b}{v} = \frac{z - a}{w}$

代入 S 的方程得 $(u^2 + v^2)t^2 + 2(au + bv - w)t + a^2 + b^2 - 2c = 0$.

因此有 $\frac{a^2 + b^2 - 2c}{w - au - bv} = \frac{x - a}{u} = \frac{y - b}{v} = \frac{z - c}{w} = \frac{z - c - a(x - a) - b(y - b)}{w - au - bv}....(3分)$

比较左右两端的分子得到 $a^2 + b^2 - 2c = z - c - a(x - a) - b(y - b)$,

即 ax + by - z - c = 0. 这说明所有切点都在平面 ax + by - z - c = 0上.....(2分)