Modulação em amplitude

parte II

- > AMDSB-SC
- > SSB
- > FDM
- AMVSB

marcelo bj

Modulação em amplitude com portadora suprimida - AMDSB-SC

- Como já foi comentado anteriormente, a portadora c(t) que transporta a informação, é completamente independente do sinal de informação m(t).
 - > Assim, sua transmissão representa um gasto inútil de potência.
 - Na modulação AMDSB mais de 50% da potência é desperdiçado na transmissão da portadora.
 - Para eliminar esta desvantagem podemos suprimir a portadora utilizando a técnica da Modulação em Amplitude com Portadora Suprimida - AMDSB-SC.
- Neste tipo de modulação o sinal modulado é igual ao produto do sinal da portadora pelo sinal na banda base, isto é, o sinal mensagem, assim:

$$s(t) = m(t)c(t)$$

$$= A_c m(t) \cos(2\pi f_c t)$$

II marcelo bj

$$s(t) = A_c m(t) \cos(2\pi f_c t)$$

No domínio do tempo a modulação AMDSB-SC pode ser graficamente representada como abaixo:

Espectro de amplitude

Utilizando o teorema da modulação é fácil mostrar que o espectro de amplitude do sinal AMDSB-SC é dado por:

Não aparecem as raias correspondentes à portadora (portadora suprimida)

Largura de faixa: Bw = 2 W

am II marcelo bj

Modulação por um único tom

Sejam os sinais modulante [m(t)] e a portadora [c(t)] dados por:

$$m(t) = A_m \cos(2\pi f_m t)$$
 e $c(t) = A_c \cos(2\pi f_c t)$

Como a equação que descreve a modulação em amplitude com portadora suprimida é o produto de m(t) por c(t), então:

$$s(t) = A_m A_c \cos(2\pi f_m t) \cos(2\pi f_c t)$$

> Desenvolvendo a equação acima:

$$s(t) = \frac{A_m A_c}{2} cos[2\pi (f_c - f_m)t] + \frac{A_m A_c}{2} cos[2\pi (f_c + f_m)t]$$

 Observe que na equação acima aparece somente o sinal modulante deslocado em torno de ±f_c, a portadora não está presente na equação. Espectro unilateral de amplitude e de potência

> A potência total é a potência das bandas laterais:

$$P_T = \frac{(A_m A_c)^2}{8} + \frac{(A_m A_c)^2}{8} = \frac{(A_m A_c)^2}{4}$$

- · A potência está contida somente nas bandas laterais,
- Economiza potência em relação ao AMDSB.

m II marcelo bj

am II

narcelo bj

> Assim, as correntes \mathbf{i}_1 e \mathbf{i}_2 são: $i_1 = A[A_c \cos(2\pi f_c t) + m(t)] + B[A_c \cos(2\pi f_c t) + m(t)]^2$ $i_2 = A[A_c \cos(2\pi f_c t) - m(t)] + B[A_c \cos(2\pi f_c t) - m(t)]^2$ > Como a tensão na entrada do filtro passa-banda é: $v_S(t) = R\{i_1 - i_2\}$ > Então: $v_S(t) = 2ARm(t) + \underbrace{4BRA_c m(t) \cos(2\pi f_c t)}_{AMDSB-SC}$ > Na saída do filtro passa-banda tem-se o sinal AMDSB-SC. $e(t) = 4BRA_c m(t) \cos(2\pi f_c t)$

marcelo bi

Costas loop

- Facilita a aquisição da portadora e consequente demodulação do sinal mensagem.
 - > utilizado tanto em comunicação analógica como digital.
- Emprega os "circuitos com malha travada" (phase locked loop PLL) para recuperar a portadora.
- Ele utiliza dois circuitos PLL.
 - os sinais de controle nas entradas dos multiplicadores estão em quadratura.
 - as saídas dos multiplicadores, x_i(t) e x_Q(t) contêm um sinal de frequência baixa proporcional ao erro de fase entre os sinais de entrada e do VCO.
 - > este sinal de erro controla a frequência do VCO.

nas saídas dos filtros passa-baixa:

operando no modo de malha travada o sinal do VCO tem a mesma frequência do sinal de entrada.

n II marcelo bj 15

 $y_I(t) = \frac{m(t)}{2} \cos(\theta_i - \theta_o)$ $y_Q(t) = \frac{m(t)}{2} sen(\theta_i - \theta_o)$ > se a frequência do VCO é exatamente igual à frequência de entrada, então o erro de fase é nulo. $y_I(t) = \frac{m(t)}{2} \cos(0) = \frac{m(t)}{2}$ sinal demodulado

Modulador $FPBX \rightarrow s_1(t)$ Balanceado cos(2πf_ct) e(t) $cos(2\pi f_C t)$ 900 90° e₂(t) Modulador b(t) -FPBx $e_1(t) = a(t)cos(2\pi f_c t)$ $s_1(t) = \frac{1}{2} a(t)$ $e_2(t) = b(t)sen(2\pi f_c t)$ $s_2(t) = \frac{1}{2}b(t)$ $e(t) = e_1(t) + e_2(t)$

Modulação em quadratura

Modulação com banda lateral única - SSBSC Somente uma das bandas laterais (superior ou inferior) é utilizada para transmissão. * Ela pode ser obtida através da modulação AMDSB-SC através da eliminação de uma das bandas laterais por meio de filtros. Observe que a banda lateral inferior é uma réplica da superior. AMDSB-SC Assim, somente uma das bandas é transmitida nos sistemas SSB. A largura de banda utilizada é a metade dos sistemas AMDSB. A portadora também é suprimida. Descrições do sinal SSB: > No domínio da frequência. SSB-L No domínio do tempo (difícil). > Para facilidade: modulação por um único tom.

Modulação SSB por deslocamento de fase

A modulação SSB pode ser descrita pela seguinte equação:

$$s(t) = \frac{A_c}{2} \left\{ m(t) \cos(2\pi f_c t) \pm \hat{m}(t) \operatorname{sen}(2\pi f_c t) \right\}$$

- ${\blacktriangleright}$ ${\rightarrow}$ SSB com banda lateral superior.
- ightarrow + ightarrow SSB com banda lateral inferior.
 - $\hat{m}(t)$ é a transformada de Hilbert de m(t)

$$\hat{m}(t) = m(t) * \frac{1}{\pi t} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{m(\xi)}{t - \xi} d\xi$$

- A transformada de Hilbert, fisicamente, corresponde ao deslocamento de todas as componentes de frequência de m(t) por π/2 radianos.
- O diagrama de blocos na próxima página pode ser utilizado pra gerar o sinal SSB.
 marcelo bj

marcelo bi

Vantagens do sistema SSB sobre o AM convencional

❖ Economia na potência de transmissão:

➤ Menor transmissão de potência pela eliminação da portadora e de uma das bandas laterais.

➤ Importante em comunicações móveis.

❖ Largura de faixa:

➤ Bw_{SSB} = ½ Bw_{DSB} (possibilidade de dobrar o número de canais).

❖ Ruído:

➤ Quanto menor a largura de faixa, menor a potência de ruído introduzida.

❖ Desvantagens:

➤ Circuitos mais complexos.

➤ Frequências estáveis.

· Portanto apresenta custo maior

marcelo bi

Modulação com banda lateral vestigial - AMVSB ❖ Aplicação: Quando o sinal de informação contém componentes com frequências extremamente baixas. ➢ Exemplos: sinais de vídeo e telegráficos. ❖ Neste caso a modulação SSB não é apropriada por causa da dificuldade em se isolar uma das bandas laterais. ❖ Solução: ➢ utilizar um tipo de modulação intermediária entre a SSB e a DSB. ➢ Na modulação VSB uma das bandas laterais é transmitida integralmente e somente uma parte da outra (vestígio) é transmitida. ➢ Geração: por processo de filtragem. ❖ Espectro de Amplitude da modulação AMVSB.

apêndice am∥ marcelo bj 37 ₽ deslocador de fase para SSB

 Circuito de banda larga para produzir uma variação de fase constante de 90º para a geração da modulação SSB.

- \succ Este circuito é projetado para ser uma rede passa-tudo, com banda passante entre w_1 e w_2 .
 - w₂ = 1/R₂C₂ é a frequência de corte superior.
 - w₁ é estabelecida pelas outras constantes de tempo.

om II — massala hi

Costas loop

 nas saídas dos multiplicadores tem-se o produto do sinal modulado pelas saídas do VCO (em fase (I) e em quadratura (Q)):

$$\begin{split} x_I(t) &= m(t)\cos(w_o t + \theta_i)\cos(w_o t + \theta_o) = \frac{m(t)}{2}\left\{\cos(\theta_i - \theta_o) + \cos(2w_o t + \theta_o + \theta_i)\right\} \\ x_Q(t) &= m(t)sen(w_o t + \theta_i)sen(w_o t + \theta_o) = \frac{m(t)}{2}\left\{sen(\theta_i - \theta_o) + sen(2w_o t + \theta_o + \theta_i)\right\} \end{split}$$

na entrada do filtro de faixa estreita tem-se o produto dos dois sinais nas saídas dos filtros passa-baixa dos multiplicadores:

$$v_1(t) = \frac{m^2(t)}{4}\cos(\theta_i - \theta_o)sen(\theta_i - \theta_o)$$

$$v_1(t) = \frac{m^2(t)}{8} \left\{ sen(2(\theta_i - \theta_o)) + sen(0) \right\}$$

am II marcelo bj 39

* na saída do filtro de faixa estreita / entrada do VCO: $v_0(t) = \frac{m^2(t)}{8} sen(2(\theta_i - \theta_o))$ * como o erro de fase é muito pequeno, então, $v_0(t) \approx \frac{m^2(t)}{4} (\theta_i - \theta_o) = k(\theta_i - \theta_o)$ sinal de controle do vco (erro de fase)