All Experiments using Languerre Polynomial as Basis Functions

[[1. 1.09 1.08 1.34]

[1. 1.16 1.26 1.54]

[1. 1.22 1.07 1.03]

[1. 0.93 0.97 0.92]

[1. 1.11 1.56 1.52]

[1. 0.76 0.77 0.9]

[1. 0.92 0.84 1.01]

[1. 0.88 1.22 1.34]]

Cash Flow at time t = 3:

Cash-flow matrix at time 3

Path	t = 1	t = 2	t = 3
1			.00
2		-	.00
3	_	_	.07
4		-	.18
5		-	.00
6	_	-	.20
7		-	.09
8			.00

At time t = 2 Coefficients = [-3094.53010697, 5713.89537929, -3773.67662635, 1223.18245248]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.02	0.0133869	1.	0.02
2	0.0	0.	0.	0.
3	0.03	0.05010429	0.	0.0659232
4	0.13	0.17319321	0.	0.1695168
5	0.0	0.	0.	0.
6	0.33	0.18910104	1.	0.33
7	0.26	0.08276497	1.	0.26
8	0.0	0.	0.	0.

Cash Flow matrix at time t=2

Path	t=1	t=2	t=3
1		0.02	0.0
2		0.0	0.0
3		0.0	0.7
4		0.0	0.0
5		0.0	0.0
6		0.33	0.0
7		0.26	0.0
8		0.0	0.0

At time t = 1

Coefficients:

$[\ -9091.91659795,\ 16794.05861997,\ -11103.23289512,\ \ 3606.65973536]$

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.01	0.01839949	0	0.0188352
2		0.	0	0.
3		0.	0	0.06208383
4	0.17	0.21653033	0	0.15964414
5		0.	0	0.
6	0.34	0.31010703	1	0.34
7	0.18	0.17401594	1	0.18
8	0.22	0.01506496	1	0.22

Cash flow matrix at time t = 1

Path	t=1	t=2	t=3
1	0.0	0.02	0.0
2	0.0	0.0	0.0
3	0.0	0.0	0.7
4	0.0	0.0	0.0
5	0.0	0.0	0.0
6	0.34	0.0	0.0
7	0.18	0.0	0.0
8	0.22	0.0	0.0

Final Stopping Rule:

Paths	Time = 1	Time = 2	Time = 3
1	0	1.	0
2	0	0.	0
3	0	0.	1
4	0	0.	1
5	0	0.	0
6	1	0	0
7	1	0	0
8	1	0.	0

Optimal Price = 0.11543189689036804 (In simple basis function it was 0.1144)

Introducing the Gaussian Noise of Sigma = 0.2:

[[1.	1.11343978	1.13340296	1.36698591]
[1.	1.19068048	1.41736844	1.78457611]
[1.	1.23867356	1.17903336	1.04504003]
[1.	1.03560851	1.13502242	1.3634956]
[1.	1.1168677	1.85937596	1.70780791]
[1.	0.779318	0.82099096	1.15783301]
[1.	0.92590538	0.8445708	1.06621553]
[1.	0.90475507	1.26372151	1.34264561]]

Cash Flow matrix at time t = 3

Path	t=1	t=2	t=3
1			0.0
2			0.0
3			0.05175911
4			0.0
5			0.0
6			0.0
7			0.034
8			0.0

At time t = 2 Coefficients = [-3094.53010697, 5713.89537929, -3773.67662635, 1223.18245248]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.0	0.0	0	0.
2	0.0	0.0	0	0.
3	0.0	0.0	0	0.05175911
4	0.0	0.0	0	0.
5	0.0	0.0	0	0.
6	0.27900904	0.09065539	1	0.27900904
7	0.2554292	0.08260464	1	0.2554292
8	0.0	0.0	0	0.

Cash flow matrix at time t = 2:

Path	t=1	t=2	t=3
1		0.0	0.0
2		0.0	0.0
3		0.0	0.05175911
4		0.0	0.0
5		0.0	0.0
6		0.27900904	0.0
7		0.2554292	0.0
8		0.0	0.0

At time t = 1 Coefficients : [-9091.91659795, 16794.05861997, -11103.23289512, 3606.65973536]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.0	0.	0	0.
2	0.0	0.	0	0.
3	0.0	0.	0	0.04874466
4	0.065	0.38393835	0	0.
5	0.0	0.	0	0.
6	0.320682	0.1255111	1	0.320682
7	0.175	0.19920065	0	0.240553
8	0.19524493	0.10950071	1	0.19524493

Cash flow matrix at time t = 1:

Path	t=1	t=2	t=3
1	0.0	0.0	0.0
2	0.0	0.0	0.0
3	0.0	0.0	0.05175911
4	0.0	0.0	0.0
5	0.0	0.0	0.0
6	0.320682	0.0	0.0
7	0.0	0.2554292	0.0
8	0.19524493	0.0	0.0

Final Stopping Rule:

Paths	Time = 1	Time = 2	Time = 3
1	0	0	0
2	0	0	0
3	0	0	1
4	0	0	0
5	0	0	0
6	1	0	0
7	0	0	1
8	1	0	0

Manual Cross Checking: (Gamma = 0.94176)

Paths	diff1	Gamma * diff2	Gamma^2 * diff3	Stoping Rule
1	0.0	0.0	0.0	-
2	0.0	0.0	0.0	-
3	0.0	0.0	0.04873608	3
4	0.0606417157	0.0	0.0	1
5	0.0	0.0	0.0	-
6	0.302022432	0.262760	0.0	1
7	0.163960	0.24109056	0.03201984	2
8	0.183873	0.0	0.0	1

Optimal Price = 0.10000000000000000

Accuracy : 2 wrong prediction => 75 % accuracy

Gaussian Predicion with sigma = 0.6:

[[1.	1.20993179	1.75371182	1.96063962]
[1.	1.26962438	2.2039869	1.87847896]
[1.	1.87851098	1.37150358	1.31889186]
[1.	1.17555113	1.44712196	1.55477263]
[1.	1.42239849	2.25786685	1.61419144]
[1.	1.21605533	0.89513254	2.00467478]
[1.	1.58719376	2.93110567	1.43612848]
[1.	1.23806832	1.38557408	1.66104208]]

Cash Flow matrix at time t = 3

Path	t=1	t=2	t=3
1			0.0
2			0.0
3			0.0
4			0.0
5			0.0
6			0.0
7			0.0
8			0.0

At time t = 2 Coefficients = [-3094.53010697, 5713.89537929, -3773.67662635, 1223.18245248]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.0	0.0	0	0
2	0.0	0.0	0	0
3	0.0	0.0	0	0
4	0.0	0.0	0	0
5	0.0	0.0	0	0
6	0.20486746	0.11109279	1	0.20486746
7	0.0	0.0	0	0
8	0.0	0.0	0	0

Cash Flow Matrix at time t=2

Path	t=1	t=2	t=3
1		0.0	0.0
2		0.0	0.0
3		0.0	0.0
4		0.0	0.0
5		0.0	0.0
6		0.20486746	0.0
7		0.0	0.0
8		0.0	0.0

At time t = 1 Coefficients : [-9091.91659795, 16794.05861997, -11103.23289512, 3606.65973536]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.0	0.0	0	0.0
2	0.0	0.0	0	0.0
3	0.0	0.0	0	0.0
4	0.0	0.0	0	0.0
5	0.0	0.0	0	0.0
6	0.0	0.0	0	0.19293598
7	0.0	0.0	0	0.0
8	0.0	0.0	0	0.0

Cash Flow at time t = 1

Path	t=1	t=2	t=3
1	0.0	0.0	0.0
2	0.0	0.0	0.0
3	0.0	0.0	0.0
4	0.0	0.0	0.0
5	0.0	0.0	0.0
6	0.0	0.20486746	0.0
7	0.0	0.0	0.0
8	0.0	0.0	0.0

Final Stopping Rule:

Paths	Time = 1	Time = 2	Time = 3
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	1	0
7	0	0	0
8	0	0	0

Manual Cross Checking: (Gamma = 0.94176)

Paths	diff1	Gamma * diff2	Gamma^2 * diff3	Stoping Rule
1	0.0	0.0	0.0	-
2	0.0	0.0	0.0	-
3	0.0	0.0	0.0	-
4	0.0	0.0	0.0	-
5	0.0	0.0	0.0	-
6	0.0	0.192966624	0.0	2
7	0.0	0.0	0.0	-
8	0.0	0.0	0.0	-

Optimal Price = 0.100000000000000009

Accuracy: 0 wrong prediction => 100 % accuracy

Gaussian Predicion with sigma = 1:

[[1.	2.48151885	1.50961896	2.09427441]
[1.	2.05334654	1.60238537	3.52100738]
[1.	1.66599697	1.63350074	1.33373645]
[1.	1.92539639	1.98067561	0.96344852]
[1.	2.27563194	2.68070282	3.18124507]
[1.	1.44581574	1.7548213	1.76783921]
[1.	2.07006125	1.29450447	1.1010486]

1.41987375 5.48936929 3.22416844]]

Cash Flow matrix at time t = 3

[1.

Path	t=1	t=2	t=3
1			0.0
2			0.0
3			0.0
4			0.13655148
5			0.0
6			0.0
7			0.0
8			0.0

At time t = 2 Coefficients = [-3094.53010697, 5713.89537929, -3773.67662635, 1223.18245248]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.0	0.0	0	0
2	0.0	0.0	0	0
3	0.0	0.0	0	0
4	0.0	0.0	0	0.12859872
5	0.0	0.0	0	0
6	0.0	0.0	0	0.0
7	0.0	0.0	0	0
8	0.0	0.0	0	0

Cash Flow Matrix at time t=2

Path	t=1	t=2	t=3
1		0.0	0.0
2		0.0	0.0
3		0.0	0.0
4		0.0	0.12859872
5		0.0	0.0
6		0.0	0.0
7		0.0	0.0
8		0.0	0.0

At time t = 1 Coefficients : [-9091.91659795, 16794.05861997, -11103.23289512, 3606.65973536]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.0	0.0	0	0.0
2	0.0	0.0	0	0.0
3	0.0	0.0	0	0.0
4	0.0	0.0	0	0.12110913
5	0.0	0.0	0	0.0
6	0.0	0.0	0	0.0
7	0.0	0.0	0	0.0
8	0.0	0.0	0	0.0

Cash Flow Matrix at time t=1

Path	t=1	t=2	t=3
1	0.0	0.0	0.0
2	0.0	0.0	0.0
3	0.0	0.0	0.0
4	0.0	0.0	0.12859872
5	0.0	0.0	0.0
6	0.0	0.0	0.0
7	0.0	0.0	0.0
8	0.0	0.0	0.0

Final Stopping Rule:

Paths	Time = 1	Time = 2	Time = 3
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	1
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0

Manual Cross Checking: (Gamma = 0.94176)

Paths	diff1	Gamma * diff2	Gamma^2 * diff3	Stoping Rule
1	0.0	0.0	0.0	-
2	0.0	0.0	0.0	-
3	0.0	0.0	0.0	-
4	0.0	0.0	0.121109132	3
5	0.0	0.0	0.0	-
6	0.0	0.0	0.0	-
7	0.0	0.0	0.0	-
8	0.0	0.0	0.0	-

Optimal Price = 0.100000000000000009

Accuracy: 0 wrong prediction => 100 % accuracy

Increasing the number of Paths to 16: (8 extra paths added by an randomly generated path with variance of 0.1)

Longstaff Paper:

[[1.	1.09	1.08	1.34]	
[1.	1.16	1.26	1.54]	
[1.	1.22	1.07	1.03]	
[1.	0.93	0.97	0.92]	
[1.	1.11	1.56	1.52]	
[1.	0.76	0.77	0.9]	
[1.	0.92	0.84	1.01]	
[1.	0.88	1.22	1.34]	
[1.	1.0997	2955 1 .	.2098426	66	1.42786124]
[1.	1.3028	2465 1.	.3337935	54	1.54642148]
[1.	1.3081	1775 1.	1882748	32	1.05821046]
[1.	1.0022	5371 1 .	.2254208	88	1.06681238]
[1.	1.1759	2812 1 .	.6528071	18	1.72744582]
[1.	0.8993	1269 0.	.855762 3	3 3	0.95650906]
[1.	0.9397	596 0.	9215909	3	1.03515879]
[1.	0.9008	2674 1.	.2632358	88	1.41475168]]

A. Using Longstaff Coefficients:

Cash Flow Matrix at time t = 3:

Path	t=3	
1	0.0	
2	0.0	
3	0.7	
4	0.18	
5	0.0	
6	0.2	
7	0.09	
8	0.0	
9	0.0	
10	0.0	
11	0.042	
12	0.034	
13	0.0	

14	0.144
15	0.065
16	0.0

For time t=2:

Coefficients: [-2239.87598024, 4136.69651566, -2733.09043231, 887.0782914]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.02	0.0200694	0	0.
2	0.0	0.	0	0.
3	0.03	0.04641799	0	0.0659232
4	0.13	0.13890187	Θ	0.1695168
5	0.0	0.	Θ	Θ.
6	0.33	0.19323406	1	0.33
7	0.26	0.09520494	1	0.26
8	0.0	0.	Θ	Θ.
9	0.0	0.	Θ	0.
10	0.0	0.	0	0.
11	0.0	0.	0	0.03935572
12	0.0	0.	Θ	0.03125477
13	0.0	0.	Θ	0.
14	0.25	0.09275029	1	0.24423767
15	0.18	0.11817074	1	0.17840907
16	0.0	0.	Θ	Θ.

Cash Flow Matrix at time t = 2:

Paths	t=1	t=2	t=3
1		0	0.0
2		0	0.0
3		0	0.7
4		0	0.18
5		0	0.0
6		0.33	0.0

7	 0.26	0.0
8	 0	0.0
9	 0	0.0
10	 0	0.0
11	 0	0.042
12	 0	0.034
13	 0	0.0
14	 0.24423767	0.0
15	 0.17840907	0.0
16	 0	0.0

At time t = 1:

Coefficients:[-1723.47923186, 3185.06486082, -2106.88623773, 686.66193793]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.01	0.00482983	1	1.0e-02
2	0.0	0.	0	0.0
3	0.0	0.	0	6.20838328e-02
4	0.17	0.12381877	1	1.70000000e-01
5	0.0	0.	0	0.0
6	0.34	0.30008027	1	3.40e-01
7	0.18	0.12288012	1	1.80e-01
8	0.22	0.12384664	1	2.20e-01
9	0.001	-0.0200075	1	2.70450e-04
10	0.0	0.	0	0.
11	0.0	0.	0	3.70636402e-02
12	0.1	0.11858584	0	2.94344950e-02 0.0
13	0.0	0.	0	0.
14	0.201	0.12198031	1	2.00687310e-01
15	0.16	0.12476732	1	1.60240400e-01
16	0.2	0.12196722	1	1.99173260e-01

Cash Flow Matrix at time t = 1:

Paths	t=1	t=2	t=3
1	0.01	0	0.0
2	0.0	0	0.0
3	0.0	0	0.7
4	0.17	0	0.0
5	0.0	0	0.0
6	0.34	0.0	0.0
7	0.18	0.0	0.0
8	0.22	0	0.0
9	0.001	0	0.0
10	0.0	0	0.0
11	0.0	0	0.042
12	0.0	0	0.034
13	0.0	0	0.0
14	0.201	0.0	0.0
15	0.16	0.0	0.0
16	0.2	0	0.0

Optimal Price = 0.10000000000000000

Final Stopping Rule:

Paths	t=1	t=2	t=3
1	1	0	0
2	0	0	0
3	0	0	1
4	1	0	1
5	0	0	0
6	1	1	1
7	1	1	1
8	1	0	0
9	1	0	0
10	0	0	0
11	0	0	1

12	0	0	1
13	0	0	0
14	1	1	1
15	1	1	1
16	1	0	0

Gaussian Paths Prediction : (Noise of sigma = 0.2)

[[1.	1.23296184	1.09489692	1.69158642]
[1.	1.36941351	1.44845597	1.60094919]
[1.	1.226444	1.26601982	1.10929528]
[1.	1.17058925	1.13467595	1.23638033]
[1.	1.12599369	1.61979095	1.92744534]
[1.	0.9406163	0.85613236	0.95730729]
[1.	1.03080596	0.90414056	1.12997546]
[1.	1.09451694	1.23393434	1.36329816]
[1.	1.51070774	1.29510313	1.80364087]
[1.	1.39559217	1.78477954	1.57052059]
[1.	1.47210796	1.31940943	1.20264906]
[1.	1.08651136	1.33196722	1.36624595]
[1.	1.71249869	2.14646017	2.04578883]
[1.	1.13143053	0.866616	1.24396573]
[1.	1.05753806	1.11250837	1.09522624]
[1.	0.9610716	1.4232594	1.46694658]]

Cash Flow Matrix at time t = 3:

Path	t=3
1	0.0
2	0.0
3	0.0
4	0.0
5	0.0
6	0.143

7	0.0
8	0.0
9	0.0
10	0.0
11	0.0
12	0.0
13	0.0
14	0.0
15	0.00449574
16	0.0

For time t=2:

Coefficients: [-2239.87598024, 4136.69651566, -2733.09043231, 887.0782914]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.00510308	-0.02670134	1	0.00510308
2	0.0	0.	Θ	0.
3	0.0	0.	Θ	0.
4	0.0	0.	Θ	0.
5	0.0	0.	Θ	0.
6	0.24386764	0.09275197	1	0.24386764
7	0.19585944	0.10850184	1	0.19585944
8	0.0	0.	Θ	0.
9	0.0	0.	0	0.
10	0.0	0.	Θ	Θ.
11	0.0	0.	Θ	0.
12	0.0	0.	0	0.
13	0.0	0.	0	0.
14	0.233384	0.09377458	1	0.233384
15	0.0	0.	0	0.00449574
16	0.0	0.	0	0.

Cash Flow at time t=2:

Path	t = 1	t=2	t=3
1	-	0.00510308	0.0
2	-	0.0	0.0
3	-	0.0	0.0
4	-	0.0	0.0
5	-	0.0	0.0
6	-	0.24386764	0.0
7	-	0.19585944	0.0
8	-	0.0	0.0
9	-	0.0	0.0
10	-	0.0	0.0
11	-	0.0	0.0
12	-	0.0	0.0
13	-	0.0	0.0
14	-	0.233384	0.0
15	-	0.0	0.00449574
16	-	0.0	0.0

At time t = 1

Coefficients:[-1723.47923186, 3185.06486082, -2106.88623773, 686.66193793]

Paths	Exercise	Continuation	Stopping Rule	Value
1	0.0	0.0	Θ	0.00480588
2	0.0	0.0	Θ	0.0
3	0.0	0.0	Θ	0.0
4	0.0	0.0	Θ	0.0
5	0.0	0.0	Θ	0.0
6	0.1593837	0.12484539	1	0.1593837
7	0.07	0.09990151	0	0.18445258
8	0.00548306	-0.00633468	1	0.00548306
9	0.0	0.0	0	0.0
10	0.0	0.0	0	0.0

11	0.0	0.0	0	0.0
12	0.01348864	0.0130286	1	0.01348864
13	0.0	0.0	Θ	0.0
14	0.0	0.0	Θ	0.21979172
15	0.05	0.06782495	0	0.00423391
16	0.1389284	0.12598221	1	0.1389284

Cash Flow at time t=1:

Path	t = 1	t=2	t=3
1	0.0	0.00510308	0.0
2	0.0	0.0	0.0
3	0.0	0.0	0.0
4	0.0	0.0	0.0
5	0.0	0.0	0.0
6	0.1593837	0.0	0.0
7	0.0	0.19585944	0.0
8	0.00548306	0.0	0.0
9	0.0	0.0	0.0
10	0.0	0.0	0.0
11	0.0	0.0	0.0
12	0.01348864	0.0	0.0
13	0.0	0.0	0.0
14	0.0	0.233384	0.0
15	0.0	0.0	0.00449574
16	0.1389284	0.0	0.0

Optimal Price Gaussian Noise: 0.10000000000000009

Final Stopping Rule:

Path	t = 1	t=2	t=3
1	0	1	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0

6	1	0	0
7	0	1	0
8	1	0	0
9	0	0	0
10	0	0	0
11	0	0	0
12	1	0	0
13	0	0	0
14	0	1	0
15	0	0	1
16	1	0	0

Manual Checking: (Gamma = 0.94176)

Paths	diff1	Gamma * diff2	Gamma^2 * diff3	Stopping Rule
1	0.0	0.004805877	0.0	2
2	0.0	0.0	0.0	-
3	0.0	0.0	0.0	-
4	0.0	0.0	0.0	-
5	0.0	0.0	0.0	-
6	0.1593837	0.229664789	0.126828401	2
7	0.07	0.184452586	0.0	2
8	0.00548306	0.0	0.0	1
9	0.0	0.0	0.0	-
10	0.0	0.0	0.0	-
11	0.0	0.0	0.0	-
12	0.01348864	0.0	0.0	1
13	0.0	0.0	0.0	-
14	0.0	0.219791716	0.0	2
15	0.05	0.0	0.0039	3
16	0.1389284	0.0	0.0	1

Accuracy : 1 wrong prediction => 93.75 % accuracy

Conclusion : Languerre polynomial giving better accuracy than Simple basis function