CS6220 Data Mining Fall 2014 Homework 2, Wei Luo

1. Clustering Evaluation

The clusters and ground truth label can be summarized as:

	cluster	1	2	3	4
ĺ	labels	{2,2,2,2,2,4}	{3,3,3,3,3,1}	{1,1,1,4,1}	{4,4,4}

$$purity = \frac{1}{20} * (5 + 5 + 4 + 3) = 0.85$$

$$TP = \binom{5}{2} + \binom{5}{2} + \binom{4}{2} + \binom{3}{2} = 29$$

$$TP = \binom{5}{2} + \binom{5}{2} + \binom{4}{2} + \binom{3}{2} = 29$$

$$FP = 5 + 5 + 4 = 14$$

$$FN = 4 + 0 + 0 + 7 = 11$$

$$TN = 5 * 14 + 1 * 10 + 5 * 8 + 1 * 4 + 4 * 3 = 136$$

precision:
$$P = \frac{TP}{TP + FP} = \frac{29}{29 + 14} = 0.6744$$

recall:
$$R = \frac{TP}{TP + FN} = \frac{29}{29 + 11} = 0.725$$

precision:
$$P = \frac{TP}{TP+FP} = \frac{29}{29+14} = 0.6744$$

recall: $R = \frac{TP}{TP+FN} = \frac{29}{29+11} = 0.725$
F-measure: $F_1 = \frac{2PR}{P+R} = \frac{2*0.6744*0.725}{0.6744+0.725} = 0.6988$
For clusters C and ground true labels Ω :

For clusters
$$C$$
 and ground true labels Ω :
$$I(\Omega,C) = \frac{1}{20}\log\frac{20*1}{5*6} + \frac{4}{20}\log\frac{20*4}{5*5} + \frac{5}{20}\log\frac{20*5}{5*6} + \frac{5}{20}\log\frac{20*5}{5*6} + \frac{1}{20}\log\frac{20*5}{5*6} + \frac{1}{20}\log\frac{20*1}{5*6} + \frac{1}{20}\log\frac{20*1}{5*5} + \frac{3}{20}\log\frac{20*3}{5*3} = 0.9909$$

$$H(\Omega) = -(\frac{5}{20}\log\frac{5}{20} + \frac{5}{20}\log\frac{5}{20} + \frac{5}{20}\log\frac{5}{20} + \frac{5}{20}\log\frac{5}{20} + \frac{5}{20}\log\frac{5}{20}) = 1.3863$$

$$H(C) = -(\frac{6}{20}\log\frac{6}{20} + \frac{6}{20}\log\frac{6}{20} + \frac{5}{20}\log\frac{5}{20} + \frac{3}{20}\log\frac{3}{20}) = 1.3535$$
Normalized Mutual Information: $NMI(\Omega,C) = \frac{I(\Omega,C)}{\sqrt{H(\Omega)H(C)}} = 0$

$$H(\Omega) = -\left(\frac{5}{20}\log\frac{5}{20} + \frac{5}{20}\log\frac{5}{20} + \frac{5}{20}\log\frac{5}{20} + \frac{5}{20}\log\frac{5}{20} + \frac{5}{20}\log\frac{5}{20}\right) = 1.3863$$

$$H(C) = -\left(\frac{6}{20}\log\frac{20}{20} + \frac{20}{20}\log\frac{20}{20} + \frac{5}{20}\log\frac{5}{20} + \frac{20}{20}\log\frac{5}{20}\right) = 1.3535$$

Normalized Mutual Information:
$$NMI(\Omega, C) = \frac{I(\Omega, C)}{\sqrt{H(\Omega)H(C)}} = 0.7234$$

2. Understanding and comparing different clustering algorithms.

- (1) run the code with commands like:
- > python k_means.py dataset1.txt
- > python emp.y dataset2.txt
- > python dbscan.py dataset3.txt 0.3 10

Where the first parameter (dataset*.txt) is the file name of the dataset. For DBSCAN, the second parameter is eps, the third parameter is minPts

(2) The purity and NMI of each algorithm for each dataset is:

		dataset1.txt	dataset2.txt	dataset3.txt
K-means	Purity	1.000000	0.965000	0.820000
	NMI	1.000000	0.869672	0.319923
DBSCAN	Purity	1.000000	0.965000	1.000000
	NMI	1.000000	0.922051	1.000000
EM	Purity	1.000000	1.000000	0.880000
	NMI	1.000000	1.000000	0.472501

In DBSCAN algorithm, I used

$$eps = 0.7, minPts = 15$$
 for dataset1

$$eps = 0.9, minPts = 5$$
 for dataset2

$$eps = 0.3, minPts = 10$$
 for dataset3

The cluster result as scatter plot is:

