A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 2EG

Bookmark

Show all steps: ON

Problem

If H is a subgroup of a group G, let X designate the set of all the left cosets of H in G. For each element $a \in G$, define $p_a: X \to X$ as follows:

$$p_{\alpha}(xH) = (\alpha x)H$$

Prove that $h: G \to S_X$ defined by $h(a) = p_a$ is a homomorphism.

Step-by-step solution

Step 1 of 3

Assume that G be a group and H be its subgroup. Consider that X is the set of all the left cosets of H in G. Define a mapping, for some $a \in G$, $p_a: X \to X$ by

$$p_a(xH) = (ax)H$$

Objective is to prove that the mapping $h: G \to S_x$ defined by $h(a) = p_a$ is a homomorphism.

If G and H are two groups, a homomorphism from G to H is a function $f: G \to H$ such that for any two elements a, b in G,

$$f(ab) = f(a)f(b)$$

Comment

Step 2 of 3

Let $x, y \in G$. Then $h(xy) = p_{xy}$.

Let $p_x, p_y \in S_X$. Then

$$(p_x p_y)(aH) = p_x(p_y(aH))$$

$$= p_x((ya)H)$$

$$= (xya)H$$

$$= p_{xy}(aH).$$

That is, $p_x p_y = p_{xy}$. Use this condition in $h(xy) = p_{xy}$ and get,

$$h(xy) = p_{xy}$$

$$= p_x p_y$$

$$= h(x)h(y).$$

Comment

Step 3 of 3

Hence, the mapping $h: G \to S_X$ defined by $h(a) = p_a$ is a homomorphism.

Comment