CINEMATICA

		1 DIMENSION		2 DIMENSIONES	
		media	instantanea	weg :ar	instantinea
V	el.	NW = PX/P4	n= 9×194	√~ = 2°1/8+	ς = ₄₅ /94
-)C -	01W = 71/P4	a = 84/87	am = 50/21	2 = 04+04
			C \.	0 17.7	. 4

$$\left[\omega = 2\pi J \left[V = \omega R\right] \frac{C_{SR}}{L} \right] = 2\pi r A = \pi r^{3} \pi r^{3}$$

DINAMICA

$$\left[\begin{array}{c} \mathcal{E}_{1-3} \mathcal{E} = -\mathcal{E}_{2-31} \end{array}\right] \left[\begin{array}{c} \mathcal{E}_{1-3} \mathcal{E}_{2-31} \end{array}\right] \left[\begin{array}{c} \mathcal{E}_{1-3} \mathcal{E}_{3-31} \end{array}\right]$$

ENERGIA

[dw=Fds cost] [w=A(ec+ep)] para F.cons: [W=Ae,=-Aep] [P== w] [P== v] [Ec= 1 mv2] scav: [Ep= mgh] muelle: [Ep= 1 kx2] para F.cons: [Em, = Emz]

(cuerda)

(cuerda)

(cuerda)

(cuerda)

$$V_{p} = \sqrt{\frac{E}{\mu}} \left[V_{p} = \sqrt{\frac{E}{\mu}} \right] \left[F = -Kx = -bv \right]$$

(cuerda)

 $V_{p} = \sqrt{\frac{E}{\mu}} \left[V_{p} = \sqrt{\frac{E}{\mu}} \right] \left[V_{p} = \sqrt{\frac{E}{\mu}} \right] \left[\frac{d^{2}y}{dx^{2}} = \frac{\mu}{Fr} \frac{d^{2}y}{dt^{2}} \right]$

(cuerda)

(c

Sistems De Partículas

Variación E con el tiempo - POTENCIA: [P= { NAMO AZ DX]