Lecture 1 Overview, Introduction, Graph

Network and Graph

- Graph = Object + Connection/Relationship
- Node vertex
- Link edge

Isomorphism

intrinsic structure of two graphs are the same

Lecture 2 - Graph, big data verification

Path, Connected Graph, Connected Component

- Path: sequence of nodes with property (each consecutive pair) in sequence connected by a edge
- *shortest path

Concepts:

- · connected graph/connected component: subset, maximal
- bipartite graph: does not contain cycle with an odd number of nodes
- breadth-first-search(BFS): Search from one node to another

General study methodologies

- properties of nodes, links, graphs
- real world problems transformed into graph
- how to interference from properties(solve problems)

Clustering Coefficient

- importance of certain node
- clustering coefficient pf A = friend pairs of node A/total pair of connected nodes of node A

Pairs = {BC, BD, BE, CD, CE, DE}

Friend pairs = {CD}

The clustering coefficient of A is 1/6

Triadic Closure

(evolution along times increase)

• if who originally don't know each other, they have an increasing chance to get to know each other

Triadic Closure Verification using Big Data

how many number of common friend

- 1. identify the edge don't pair together.
- 2. find common friends
- 3. probability to be friends(with number of common friends)

at different time

(1,4)	2	*
(1,6)	3	
(2,3)	2	*
(2,5)	3	*
(3,4)	0 2	
(3,5) (4,6)	2	
(4,0)	2	

Common friends	0	1	2	3	4
Probability to	0	-	0.75	0.5	-
become friends					

social interpretation -> qualitative -> qualitative description

• relationship of nodes changes along time.

Structural Holes

- · After removing of which, makes the network become multiple connected components
- · access to non-interacting parts
- less redundancy, more social capital
- e.g. 1 node is also a component.

Embeddedness

- number of common neighbors of a link
- e.g. embeddedness of (A, B) = 2

Strong tie, weak tie

property of link

strong triadic closure

• (A, B) and (A, C) has strong tie, but there's no edge at all. so violate the strong triadic closure property.

• no common friend -> weak ties

Short cuts

connecting two nodes without which will lead to a long distance

bridge

after removal, number of connected components increases

Lecture 3 - Homophily, big data analysis

Homophily

- common
- selection and social influence

Measuring homophily

definition of similarity can be different in different problems

- degree of similarity
 - □ The number of nodes n = 9
 - □ The number of links e = 18
 - □ The ratio of red nodes p = 1/3
 - □ The ratio of white nodes q = 2/3
 - The number of links where the two end nodes have the

same color s = 13

o

- o more link with same color node, higher homophily
- o number of links(node color not same)/all links(s/e)
- o s/e vs. sum of ratio of different color nodes

Selection vs. Social Influence(mechanism)

selection:

• become friends because of common interests //affiliation network

social influence:

- join another club/organization together
- closure because of a common friend, but because of influence by a friend

3 types of closure

triadic closure Selection -> focal closure social influence -> membership closure

focal closure

- shared foci, connection
- more shared foci, higher chance of connection

Membership closure

- a friend has certain focus -> join the focus
- more friend in a focus, higher probability

big data analysis on origin of homophily

measure similarity: e.g. editor&wiki article: (X和Y都编辑的文章数量)/(X或Y中至少有一人编辑的文章数量)

Schelling Model

- agent live in a cell. 2 types of agents, x and o
- constraint: certain number of same-type neighbors

Lecture 4 - Small World

Small world problem

- median = 6
- six degree of seperation

Decentralized search

• every node can only see its neighboring nodes

decentralized search vs. breadth first search

- BFS: send to every friends, reach target
- DS: may fails to reach target person

phenomenon

- not straightforward
- network is quite sparse

limitation

no short path

Watts-Strogatz-Kleinberg model

The probability that two nodes have a random link is inverse proportional to their grid distance with exponent q.(q=2)

Verification with big data

optimal q

Lecture 5 - Core-Periphery Structure, Directed Graph, Web Structure

Core-periphery Structure

- importance of people
- not reflected in decentralized search
- social status can be reflected by network structure

Directed Graph

relationship with direction

strong connectivity

strong connected component

- 1. every node in subset has path to every other
- 2. subset is not part of some larger set with property that every node can reach every other

Bowtie Structure

How to obtain

SCC, IN, OUT

FS =
$$\{1, 8, 3, 4, 9, 14, 13, 15, 18, 5, 10, 16\}$$

BS = $\{1, 8, 3, 4, 9, 13, 14, 15, 18, 6, 7, 11, 12\}$
SCC = FS \cap BS = $\{1, 3, 4, 8, 9, 13, 14, 15, 18\}$
IN = BS $-$ SCC = $\{6, 7, 11, 12\}$
OUT = FS $-$ SCC = $\{5, 10, 16\}$

proof SCC: all nodes in SCC are connected, no bigger SCC

Lecture 6 PageRank

Hub and Authorities

auth(p) hub(p)----HITS algorithem

- input: directed graph
- initialization: for every p, auth(p)=1, hub(p)= 1
- authority update rule: auth(p) = sum of hub score of all page that point to it
- hub update rule: hub(p) = sum of authority score of all pages that it points to
- repeat

Information

- Auth(a) = sum of Hub(a-in)
- Hub(a) = sum of Auth(a-out)
 - Compute the authority and hub scores of the following graph, run for 3 rounds

Auth			Hub				
a	b	С	d	a	b	С	d
a=H[c]	b=H[a]+H[c]	c=H[d]	d=H[a]+H[b]	a=A[b]+A[d]	b=A[d]	c=A[a]+A[b]	d=A[c]
1	1	1	1	1	1	1	1
1	2	1	2				
				4	2	3	1
3	7	1	6				
				13	6	10	1
10	23	1	19				
,				42	19	33	1
33	75	1	61				
				136	61	108	1

PageRank

share

· outgoing links with equal share

Lecture 6 & 7 & 8 - Game Theory

Game Theory(Pure Strategy)

Your Partner

		Presentation	Exam
You	Presentation	90,90	86,92
	Exam	92,86	88,88

basic ingredients of game

- 1. set of participants
- 2. set of option(strategies)
- 3. received payoff situation
- 4. received payoff matrix

(Strictly) Best Response & (Strictly) Dominant strategy

- Best response: A's strategy can maximize A's payoff when response to one of B's strategy
- strict best response: uniqueness
- Dominant strategy: A's dominant strategy is the best response to every strategies of B
- Strictly dominant strategy: uniqueness
- Result
 - o If both have strictly dominant strategy, both will adopt them
 - Only A has strictly dominant strategy, A will adopt it and B will adopt the best response to this strictly dominant strategy

Nash Equibilrium

• best response to each other

 no onw can be better by unilaterally change his own strategy; though both can become better if both changes

Multiple Equilibria

- · need more information
- only narrow down the choice, but may not guarantee to predict

Mixed Strategies(no Nash Equilibrium)

- probability: randomness *distribution
- Expectation: E(X) = ap + b(1-p)
 - Expectation(A chose S1) = a1p+b1(1-p)
 - Expectation(A chose S2) = a2p+b2(1-p)
 - \circ Ex(A-S1) = EX(A-S2)
 - Expectation(B chose S3) = c1q+d1(1-q)
 - Expectation(B chose S4) = c2q+d2(1-q)
 - \circ Ex(B-S3) = EX(B-S3)
- set of probability distribution making the other player indifferent in choosing any his pure strategy

pure strategy vs. mixed strategy

- 1. Pure Strategy
- 2. Mixed Strategy: p & q

Pareto Optimality

• if there's no other choice of strategy in which all players receive payoff at least as high, at least one player receives a stritcly higher payoff

Social Optimality

• maximize sum of the players' payoffs

Lecture 9 & 10 - Network Traffic, Auction, Matching market

Game on Network Structure

Ingredients

- 1. Players: # of drives
- 2. Strategy set
- 3. Driver's Payoff: travel time(the less the better, depend on other's choice)

- 4. Equilibrium: no one has incentive to change
- 5. if anyone deviates, his pyoff will be: ...

Braess's Paradox

• Invest more resources may not get a good result

Auction

Ingredients in Game

- Participant: sellers and buyers
- Strategy: bid
- Payoff: for buyers: value of the object; for sellers: the paid price for object
- Equilibrium:the best response for each other

Matching

· perfect matching: every one has object satisfied

Market invisible hand

- players: sellers, buyers
- strategy: valuation, choice
- payoff: deal or not
- Payoff of seller a, b, c & buyer x, y, z
- social welfare: sum of everyone's payoff

The invisible hand of the market

- Consider as a game
- Players: sellers, buyers
- Strategy: valuation, choices
- Payoff: deal or not
- Payoff of
 - a: 1, b: 2, c: 1,
 - x: 0, y: 7, z: 1
 - Social welfare: 1+2+1+0+7+1 = 12

Not preferred sellers graph

Market-clearing prices

• Prices combination set that maximize the social welfare

Lecture 10 & 11 - Sponsered search market

Sponsered search market

combination of matching and auction

Concepts

- advertising slots
- clickthrough rate: expected click per hour on an ad slot
- advertiser's revenue per click: the expected revenue of every click
- advertiser's valuation: = clickthrough rate * revenue per click
- advertiser's payoff: (expected revenue price) * clickthrough rate

Clickthrough rate	3 slots	3 advertisers	Valuation per click		aluation of e ad slots	
5	Ad 1	Advertiser 1	15	75	45	15
3	Ad 2	Advertiser 2	8	40	24	8
1	Ad 3	Advertiser 3	5	25	15	5

Vickrey-Clareke-Groves(VCG) Mechanism

P(ij) = V(S,B-j) - B(S-i,B-j)

- buyer j bids true valuation and get slot i, payoff = v(ij)-p(ij)
- change to slot h, payoff = v(hj)-p(hj)
- need to show: v(ij)-p(ij) >= v(hj)-p(hj)
- translate to: v(ij) [V(S,B-j) V(S-i,B-j)] >= v(hj) [V(S,B-j) V(S-h,B-j)]
- which is: v(ij) + V(S-i, B-j) >= v(hj) + V(S-h, B-j)
- because we know: v(ij) + V(S-i, B-j) = V(S,B)
- and v(hj) + V(S-h, B-j) <= V(S,B)

Generalized Second-Price(GSP) Auction

payoff = v(i)r(i) - b(i+1)r(i)