### 1. Kinematics

**Decay rate and cross section** (Note:  $\mathcal{M}$  has a mass dimension of  $4 - N_i - N_f$ .)

decay rate (rest frame; 
$$\sqrt{s} = M_0$$
):  $d\Gamma = \frac{\overline{d\Pi^{N_f}}}{2M_0} \left| \mathcal{M}(M_0 \to \{p_1, p_2, \cdots, p_{N_f}\}) \right|^2$ , (1.1)

cross section (Lorentz invariant): 
$$d\sigma = \frac{\overline{d\Pi^{N_{\rm f}}}}{2E_A 2E_B v_{\rm Mol}} \left| \mathcal{M}(p_A, p_B \to \{p_1, p_2, \cdots, p_{N_{\rm f}}\}) \right|^2, \tag{1.2}$$

where  $\overline{\mathrm{d}\Pi^n}$  is n-particle Lorentz-invariant phase space with momentum conservation

$$\overline{d\Pi^n} := d\Pi_1 d\Pi_2 \cdots d\Pi_n (2\pi)^4 \delta^{(4)} \left( P_0 - \sum p_n \right); \quad d\Pi := \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}}. \tag{1.3}$$

At the CM frame, two-body phase-space are characterized by the final momentum  $\|p\|$  and given by

$$\overline{d\Pi^2} = \frac{\|\boldsymbol{p}\|}{4\pi\sqrt{s}} \frac{d\Omega}{4\pi} = \frac{\|\boldsymbol{p}\|}{8\pi\sqrt{s}} d\cos\theta = \frac{1}{16\pi} \sqrt{1 - \frac{2(m_1^2 + m_2^2)}{s} + \frac{(m_1^2 - m_2^2)^2}{s^2}} d\cos\theta$$
(1.4)

with  $\sqrt{s} = M_0$  or  $E_{\rm CM}$ ,  $\theta$  is the angle between initial and final motion, and

$$\|\boldsymbol{p}\| = \frac{\sqrt{s}}{2} \lambda^{1/2} \left( 1; \frac{m_1^2}{s}, \frac{m_2^2}{s} \right), \quad E_1 = \frac{s + m_1^2 - m_2^2}{2\sqrt{s}}, \quad E_2 = \frac{s - m_1^2 + m_2^2}{2\sqrt{s}}, \quad p_1 \cdot p_2 = \frac{s - (m_1^2 + m_2^2)}{2}.$$

**Mandelstam variables** For  $(k_1, k_2) \rightarrow (p_3, p_4)$  collision,

$$s = (k_1 + k_2)^2 = (p_3 + p_4)^2$$
,  $t = (p_3 - k_1)^2 = (p_4 - k_2)^2$ ,  $u = (p_3 - k_2)^2 = (p_4 - k_1)^2$ ;  
 $s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$ .

If the collision is with the "same mass"  $(m_A, m_A) \rightarrow (m_B, m_B)$ ,

$$s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2.$$

$$e \text{ collision is with the "same mass" } (m_A, m_A) \to (m_B, m_B),$$

$$t = m_A^2 + m_B^2 - s/2 + 2kp\cos\theta, \qquad (k_1 - k_2)^2 = 4m_A^2 - s,$$

$$u = m_A^2 + m_B^2 - s/2 - 2kp\cos\theta, \qquad (p_3 - p_4)^2 = 4m_B^2 - s,$$

$$m_A = (E, p) = B$$

$$k_1 = (E, k) = k_2 = (E, -k) = k_3 = (E, -k) = k_4 = (E, -k$$

$$k = \frac{\sqrt{s - 4m_A^2}}{2},$$
  $k_1 \cdot k_2 = \frac{s}{2} - m_A^2,$   $k_1 \cdot p_3 = k_2 \cdot p_4 = \frac{m_A^2 + m_B^2 - t}{2},$ 

$$p = \frac{\sqrt{s - 4m_B^2}}{2}, \qquad p_3 \cdot p_4 = \frac{s}{2} - m_B^2, \qquad k_1 \cdot p_4 = k_2 \cdot p_3 = \frac{m_A^2 + m_B^2 - u}{2}$$

Instead, if the collision is "initially massless"  $(0,0) \rightarrow (m_3, m_4)$ ,

$$t = (m_3^2 + m_4^2 - s)/2 + p\sqrt{s}\cos\theta,$$
  

$$u = (m_3^2 + m_4^2 - s)/2 - p\sqrt{s}\cos\theta,$$
  

$$p = (\sqrt{s}/2)\lambda^{1/2} (1; m_3^2/s, m_4^2/s).$$

$$p_{3} = (E_{3}, p)$$
  $B_{3}$ 

$$A \xrightarrow{k_{1} = (E, E)} \theta \xrightarrow{k_{2} = (E, -E)} A'$$

$$B_{4} \xrightarrow{p_{4} = (E_{4}, -p)}$$

#### 1.1. Fundamentals

Lorentz-invariant phase space

$$\int d\Pi = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2\sqrt{m^2 + \|\mathbf{p}\|^2}} = \int \frac{dp_0 d^3 \mathbf{p}}{(2\pi)^4} (2\pi) \, \delta\left(p_0^2 - \|\mathbf{p}\|^2 - m^2\right) \Theta(p_0)$$

$$\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2yz - 2zx = (x - y - z)^2 - 4yz;$$

$$\lambda(1;\alpha_1^2,\alpha_2^2) = (1 - (\alpha_1 + \alpha_2)^2)(1 - (\alpha_1 - \alpha_2)^2) = (1 + \alpha_1 + \alpha_2)(1 - \alpha_1 - \alpha_2)(1 + \alpha_1 - \alpha_2)(1 - \alpha_1 + \alpha_2).$$

$$\lambda^{1/2}\left(s;m_1^2,m_2^2\right) = s\,\lambda^{1/2}\left(1;\frac{m_1^2}{s},\frac{m_2^2}{s}\right); \qquad \qquad \lambda^{1/2}\left(1;\frac{m^2}{s},\frac{m^2}{s}\right) = \sqrt{1-\frac{4m^2}{s}},$$

$$\lambda^{1/2}\left(1;\frac{m_1^2}{s},\frac{m_2^2}{s}\right) = \sqrt{1-\frac{2(m_1^2+m_2^2)}{s}+\frac{(m_1^2-m_2^2)^2}{s^2}}, \qquad \lambda^{1/2}\left(1;\frac{m_1^2}{s},0\right) = \frac{s-m_1^2}{s}.$$

Two-body phase space If  $f(p_1^{\mu}, p_2^{\mu})$  is Lorentz invariant,  $f \equiv f(p_1^2, p_2^2, p_1^{\mu} p_{2\mu}) \equiv f(p_1, p_2, \cos \theta_{12})$ . Meanwhile,

Two-body phase space If 
$$f(p_1^{\mu}, p_2^{\mu})$$
 is Lorentz invariant,  $f \equiv f(p_1^2, p_2^2, p_1^{\mu} p_{2\mu}) \equiv f(p_1, p_2, \cos \theta_{12})$ . Meanwhile, 
$$\int d\Pi_1 d\Pi_2 = \int \frac{\mathrm{d}^3 \mathbf{p}_1}{(2\pi)^3} \frac{\mathrm{d}^3 \mathbf{p}_2}{(2\pi)^3} \frac{1}{2E_1 2E_2} = \int \frac{(4\pi) \, \mathrm{d} p_1 \, p_1^2}{(2\pi)^3} \frac{(2\pi) \, \mathrm{d} p_2 \, p_2^2 \, \mathrm{d} \cos \theta_{12}}{(2\pi)^3} \frac{1}{2E_1 2E_2} = \int \frac{\mathrm{d} E_+ \, \mathrm{d} E_- \, \mathrm{d} s}{128\pi^4}, \quad (1.5)$$
 with the replacement of the variables

$$E_{\pm} = E_1 \pm E_2, \qquad s = (p_1 + p_2)^2 = m_1^2 + m_2^2 + 2E_1E_2 - 2\|\boldsymbol{p}_1\|\|\boldsymbol{p}_2\|\cos\theta_{12};$$

$$\left| \frac{\mathrm{d}(E_+, E_-, s)}{\mathrm{d}(p_1, p_2, \cos \theta_{12})} \right| = \frac{4p_1^2 p_2^2}{E_1 E_2}, \qquad \left| \frac{\mathrm{d}(E_1, E_2, s)}{\mathrm{d}(p_1, p_2, \cos \theta_{12})} \right| = \frac{2p_1^2 p_2^2}{E_1 E_2}.$$

Therefore,

$$\int d\Pi_1 d\Pi_2 = \frac{1}{128\pi^4} \int_{(m_1 + m_2)^2}^{\infty} ds \int_{\sqrt{s}}^{\infty} dE_+ \int_{\min}^{\max} dE_-,$$
(1.6)

$$\cos \theta_{12} = \frac{E_{+}^{2} - E_{-}^{2} + 2(m_{1}^{2} + m_{2}^{2} - s)}{\sqrt{(E_{+} + E_{-})^{2} - 4m_{1}^{2}}\sqrt{(E_{+} - E_{-})^{2} - 4m_{2}^{2}}} \in [-1, 1]$$

$$\therefore \quad \left| E_{-} - \frac{m_1^2 - m_2^2}{s} E_{+} \right| \leq \sqrt{E_{+}^2 - s} \cdot \lambda^{1/2} \left( 1; \frac{m_1^2}{s}, \frac{m_2^2}{s} \right) = 2p \sqrt{\frac{E_{+}^2 - s}{s}}.$$

Two-body phase space with momentum conservation As a general representation in any frame,

$$\overline{d\Pi^2} = \frac{dp_1 d\Omega p_1^2}{16\pi^2} \frac{\delta(E_0 - \sqrt{m_1^2 + p_1^2} - \sqrt{m_2^2 + \|\mathbf{P}_0 - \mathbf{p}_1\|^2})}{E_1 E_2} = \frac{1}{8\pi} d\cos\theta_1 \frac{p_1^2}{E_0 p_1 - P_0 E_1 \cos\theta_1},$$
(1.7)

$$p_1 = \frac{(E_0^2 + m_1^2 - m_2^2 - P_0^2)P_0\cos\theta_1 + E_0\sqrt{\lambda(E_0^2, m_1^2, m_2^2) + P_0^4 - 2P_0^2(E_0^2 + m_1^2 - 2m_1^2\cos^2\theta_1 - m_2^2)}}{2(E_0^2 - P_0^2\cos^2\theta_1)}.$$
 (1.8)  
CM frame result is recovered by setting  $E_0 = \sqrt{s}$  and  $P_0 = 0$ .

CM frame result is recovered by setting  $E_0 = \sqrt{s}$  and  $P_0 =$ 

#### 1.2. Decay rate and Cross section

As 
$$\langle \text{out}|\text{in}\rangle = (2\pi)^4 \delta^{(4)}(p_i - p_f)\text{i}\mathcal{M}$$
 (for in  $\neq$  out) and  $\langle \boldsymbol{p}|\boldsymbol{p}\rangle = 2E_{\boldsymbol{p}}(2\pi)^3 \delta^{(3)}(\boldsymbol{0}) = 2E_{\boldsymbol{p}}V$  for one-particle state,
$$\frac{N_{\text{ev}}}{\prod_{\text{in}} N_{\text{particle}}} = \int d\Pi^{\text{out}} \frac{|\langle \text{out}|\text{in}\rangle|^2}{\langle \text{in}|\text{in}\rangle} = \int d\Pi^{\text{out}} \frac{(2\pi)^8 |\mathcal{M}|^2}{\prod_{\text{in}} (2E)V} \frac{VT}{(2\pi^4)} \delta^{(4)}(p_i - p_f) = VT \int \overline{d\Pi^{N_f}} \frac{|\mathcal{M}|^2}{\prod_{\text{in}} (2E)V}. \quad (1.9)$$

Therefore, decay rate (at the rest frame) is given by
$$d\Gamma := \frac{1}{T} \frac{dN_{\text{ev}}}{N_{\text{particle}}} = \frac{1}{T} V T \overline{d\Pi^{N_{\text{f}}}} \frac{|\mathcal{M}|^2}{(2E)V} = \frac{1}{2M_0} \overline{d\Pi^{N_{\text{f}}}} |\mathcal{M}|^2. \tag{1.10}$$

We also define Lorentz-invariant cross section 
$$\sigma$$
 by  $N_{\text{ev}} =: (\rho_A v_{\text{Møl}} T \sigma) N_B = (\rho_A v_{\text{Møl}} T \sigma) (\rho_B V)$ , or 
$$d\sigma := \frac{dN_{\text{ev}}}{\rho_A v_{\text{Møl}} T N_B} = \frac{V}{v_{\text{Møl}} T} V T \overline{d\Pi^{N_{\text{f}}}} \frac{|\mathcal{M}|^2}{2E_A 2E_B V^2} = \frac{1}{2E_A 2E_B v_{\text{Møl}}} \overline{d\Pi^{N_{\text{f}}}} |\mathcal{M}|^2.$$
 (1.11) where the Møller parameter  $v_{\text{Møl}}$  is equal to  $v_{\text{rel}}^{\text{NR}} = \|\boldsymbol{v}_A - \boldsymbol{v}_B\|$  if  $\boldsymbol{v}_A /\!\!/ \boldsymbol{v}_B$  (cf. Ref. [?]). Generally,

$$v_{\text{Møl}} := \frac{\sqrt{(p_A \cdot p_B)^2 - m_A^2 m_B^2}}{E_A E_B} = \frac{p_A \cdot p_B}{E_A E_B} v_{\text{rel}} = (1 - \boldsymbol{v}_A \cdot \boldsymbol{v}_B) v_{\text{rel}}, \tag{1.12}$$

$$v_{\text{rel}} = \sqrt{1 - \frac{(1 - v_A^2)(1 - v_B^2)}{1 - (v_A \cdot v_B)^2}} = \frac{\sqrt{\|v_A - v_B\|^2 - \|v_A \times v_B\|^2}}{1 - v_A \cdot v_B} = \frac{\lambda^{1/2}(s, m_A^2, m_B^2)}{s - (m_A^2 + m_B^2)} \neq v_{\text{rel}}^{\text{NR}}.$$
(1.13)

(Note that  $p_A \cdot p_B/E_A E_B = 1$  if  $\mathbf{p}_A = 0$  or  $\mathbf{p}_B = 0$ . Also, Each of  $v_{\rm rel}$ , VT, and  $E_A E_B v_{\rm Møl}$  is Lorentz invariant.)

# 2. Gauge theory

**SU(2)** Fundamental representation  $\mathbf{2} = (T^a)_{ij}$ , adjoint representation adj.  $= (\epsilon^a)^{bc}$ .\*1

$$T_a = \frac{1}{2}\sigma_a,$$
  $Tr(T_aT_b) = \frac{1}{2}\delta_{ab},$   $[T_a, T_b] = i\epsilon^{abc}T^c,$   $\epsilon^{abc}\epsilon^{ade} = \delta_{bd}\delta_{ce} - \delta_{be}\delta_{cd}$ 

Since  $\overline{\bf 2} = -(T^a)_{ij}^*$  has identities  $-\epsilon T^a \epsilon = -T^{a*}$  and  $-\epsilon (-T^{a*})\epsilon = T^a$ , we see that  $\epsilon^{ab} {\bf 2}^b$  transforms as  $\overline{\bf 2}^a$ :

$$\epsilon^{ab}\mathbf{2}^b \to \epsilon^{ab}[\exp{(\mathrm{i}g\theta^\alpha T^\alpha)}]^{bc}\mathbf{2}^c = \epsilon^{ab}[\exp{(\mathrm{i}g\theta^\alpha T^\alpha)}]^{bc}(\epsilon^{-1})^{cd}(\epsilon^{de}\mathbf{2}^e) = [\exp{(-\mathrm{i}g\theta^\alpha T^{\alpha*})}]^{ab}(\epsilon^{bc}\mathbf{2}^c). \tag{2.1}$$

**SU(3)** Fundamental representation  $\mathbf{3} = (\tau^a)_{ij}$ ,  $\overline{\mathbf{3}} = -(\tau^a)_{ij}^*$ ; adjoint representation adj.  $= \mathbf{8} = (f^a)^{bc}$ . Gell-Mann matrices:

$$\lambda_{1-8} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$
 (2.2)

$$\tau_a = \frac{1}{2}\lambda_a, \qquad \operatorname{Tr}(\tau_a \tau_b) = \frac{1}{2}\delta_{ab}, \qquad [\tau_a, \tau_b] = \mathrm{i} f^{abc} \tau^c, \qquad f^{ade} f^{bcd} + f^{bde} f^{cad} + f^{cde} f^{abd} = 0.$$

$$\mathbf{3}: \quad \phi_{a} \to [\exp(\mathrm{i}g\theta^{\alpha}\tau^{\alpha})]_{ab}\phi_{b} \simeq \phi_{a} + \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha}\phi_{b}$$

$$\phi_{a}^{*} \to [\exp(-\mathrm{i}g\theta^{\alpha}\tau^{\alpha*})]_{ab}\phi_{b}^{*} \simeq \phi_{a}^{*} - \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha*}\phi_{b}^{*}$$

$$\phi_{a}^{*} \to [\exp(-\mathrm{i}g\theta^{\alpha}\tau^{\alpha*})]_{ab}\phi_{b}^{*} \simeq \phi_{a}^{*} - \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha*}\phi_{b}^{*}$$

$$\phi_{a}^{*} \to [\exp(\mathrm{i}g\theta^{\alpha}\tau^{\alpha})]_{ab}\phi_{b}^{*} \simeq \phi_{a}^{*} + \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha*}\phi_{b}^{*}$$

$$\phi_{a}^{*} \to [\exp(\mathrm{i}g\theta^{\alpha}\tau^{\alpha})]_{ab}\phi_{b}^{*} \simeq \phi_{a}^{*} + \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha*}\phi_{b}^{*}$$

$$\phi_{a}^{*} \to [\exp(\mathrm{i}g\theta^{\alpha}\tau^{\alpha})]_{ab}\phi_{b}^{*} \simeq \phi_{a}^{*} + \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha*}\phi_{b}^{*}$$

<sup>\*1</sup> We do not distinguish sub- and superscripts for gauge indices.

# 3. Spinors

$$(\overline{\psi_1}\psi_2)^* = (\psi_2)^{\dagger} (\overline{\psi}_1)^{\dagger} = \overline{\psi_2}\psi_1. \tag{3.1}$$

# 4. Supersymmetry with $\eta = diag(+, -, -, -)$

**Convention** Our convention follows DHM (except for  $D_{\mu}$ ):

$$\begin{split} & \eta = \mathrm{diag}(1,-1,-1,-1); \quad \epsilon^{0123} = -\epsilon_{0123} = 1, \quad \epsilon^{12} = \epsilon_{21} = \epsilon^{\dot{1}\dot{2}} = \epsilon_{\dot{2}\dot{1}} = 1 \quad \left(\epsilon_{\alpha\beta}\epsilon^{\beta\gamma} = \epsilon^{\alpha\beta}\epsilon_{\beta\gamma} = \delta^{\alpha}_{\gamma}\right), \\ & \psi^{\alpha} = \epsilon^{\alpha\beta}\psi_{\beta}, \quad \psi_{\alpha} = \epsilon_{\alpha\beta}\psi^{\beta}, \quad \bar{\psi}^{\dot{\alpha}} = \epsilon^{\dot{\alpha}\dot{\beta}}\bar{\psi}_{\dot{\beta}}, \quad \bar{\psi}_{\dot{\alpha}} = \epsilon_{\dot{\alpha}\dot{\beta}}\bar{\psi}^{\dot{\beta}}; \\ & \sigma^{\mu}_{\alpha\dot{\alpha}} := (\mathbf{1},\boldsymbol{\sigma})_{\alpha\dot{\alpha}}, \qquad \sigma^{\mu\nu}{}_{\alpha}{}^{\beta} := \frac{\mathrm{i}}{4}(\sigma^{\mu}\bar{\sigma}^{\nu} - \sigma^{\nu}\bar{\sigma}^{\mu})_{\alpha}{}^{\beta}, ^{*2} \qquad \left(\sigma^{\mu}_{\alpha\dot{\beta}} = \epsilon_{\alpha\delta}\epsilon_{\dot{\beta}\dot{\gamma}}\bar{\sigma}^{\mu\dot{\gamma}\delta}, \quad \bar{\sigma}^{\mu\dot{\alpha}\beta} = \epsilon^{\dot{\alpha}\dot{\delta}}\epsilon^{\beta\gamma}\sigma^{\mu}_{\gamma\dot{\delta}}\right) \\ & \bar{\sigma}^{\mu\dot{\alpha}\alpha} := (\mathbf{1},-\boldsymbol{\sigma})^{\dot{\alpha}\alpha}, \quad \bar{\sigma}^{\mu\nu\dot{\alpha}}{}_{\dot{\beta}} := \frac{\mathrm{i}}{4}(\bar{\sigma}^{\mu}\sigma^{\nu} - \bar{\sigma}^{\nu}\sigma^{\mu})^{\dot{\alpha}}{}_{\dot{\beta}}, ^{*2} \\ & (\psi\xi) := \psi^{\alpha}\xi_{\alpha}, \quad (\bar{\psi}\bar{\chi}) := \bar{\psi}_{\dot{\alpha}}\bar{\chi}^{\dot{\alpha}}; \qquad \frac{\mathrm{d}}{\mathrm{d}\theta}(\theta\theta) := \theta_{\alpha} \quad [\mathrm{left\ derivative}]. \end{split}$$

Especially, spinor-index contraction is done as  $^{\alpha}{}_{\alpha}$  and  $_{\dot{\alpha}}{}^{\dot{\alpha}}$  except for  $\epsilon_{ab}$  (which always comes from left). Noting that complex conjugate reverses spinor order:  $(\psi^{\alpha}\xi^{\beta})^* := (\xi^{\beta})^*(\psi^{\alpha})^*$ ,

$$\begin{split} \bar{\psi}^{\dot{\alpha}} &:= (\psi^{\alpha})^*, \quad \epsilon^{\dot{\alpha}\dot{b}} := (\epsilon^{ab})^*, \qquad (\psi\chi)^* = (\bar{\psi}\bar{\chi}), \\ (\sigma^{\mu}_{\alpha\dot{\beta}})^* &= \bar{\sigma}^{\mu}{}_{\dot{\alpha}\beta} = \epsilon_{\beta\delta}\epsilon_{\dot{\alpha}\dot{\gamma}}\bar{\sigma}^{\mu\dot{\gamma}\delta}, \qquad (\sigma^{\mu\nu})^{\dagger\alpha}{}_{\beta} = \bar{\sigma}^{\mu\nu\dot{\alpha}}{}_{\dot{\beta}}, \qquad (\sigma^{\mu\nu}{}_{\alpha}{}^{\beta})^* = \bar{\sigma}^{\mu\nu\dot{\beta}}{}_{\dot{\alpha}} = \bar{\sigma}^{\mu\nu}{}_{\dot{\alpha}}{}^{\dot{\beta}} = \epsilon_{\dot{\alpha}\dot{\gamma}}\epsilon^{\dot{\beta}\dot{\delta}}\bar{\sigma}^{\mu\nu\dot{\gamma}}{}_{\dot{\delta}}, \\ (\bar{\sigma}^{\mu\dot{\alpha}\beta})^* &= \sigma^{\mu\alpha\dot{\beta}} = \epsilon^{\dot{\beta}\dot{\delta}}\epsilon^{\alpha\gamma}\sigma^{\mu}_{\gamma\dot{\delta}}, \qquad (\bar{\sigma}^{\mu\nu})^{\dagger}{}_{\dot{\alpha}}{}^{\dot{\beta}} = \sigma^{\mu\nu}{}_{\alpha}{}^{\beta}, \qquad (\bar{\sigma}^{\mu\nu\dot{\alpha}}{}_{\dot{\beta}})^* = \sigma^{\mu\nu}{}_{\beta}{}^{\alpha} = \bar{\sigma}^{\mu\nu\alpha}{}_{\beta} = \epsilon_{\beta\delta}\epsilon^{\alpha\gamma}\sigma^{\mu\nu}{}_{\gamma}{}^{\delta}. \end{split}$$

#### Contraction formulae

$$\begin{array}{lll} \theta^{\alpha}\theta^{\beta} &= -\frac{1}{2}(\theta\theta)\epsilon^{\alpha\beta} & \bar{\theta}^{\dot{\alpha}}\bar{\theta}^{\dot{\beta}} &= \frac{1}{2}(\bar{\theta}\bar{\theta})\epsilon^{\dot{\alpha}\dot{\beta}} & (\theta\xi)(\theta\chi) &= -\frac{1}{2}(\theta\theta)(\xi\chi) & (\theta\sigma^{\nu}\bar{\theta})\theta^{\alpha} &= \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\sigma}^{\nu})^{\alpha} \\ \theta_{\alpha}\theta_{\beta} &= \frac{1}{2}(\theta\theta)\epsilon_{\alpha\beta} & \bar{\theta}_{\dot{\alpha}}\bar{\theta}_{\dot{\beta}} &= -\frac{1}{2}(\bar{\theta}\bar{\theta})\epsilon_{\dot{\alpha}\dot{\beta}} & (\bar{\theta}\bar{\xi})(\bar{\theta}\bar{\chi}) &= -\frac{1}{2}(\bar{\theta}\bar{\theta})(\bar{\xi}\bar{\chi}) & (\theta\sigma^{\nu}\bar{\theta})\theta^{\dot{\alpha}} &= -\frac{1}{2}(\theta\sigma^{\nu})_{\dot{\alpha}}(\bar{\theta}\bar{\theta}) \\ \theta^{\alpha}\theta_{\beta} &= \frac{1}{2}(\theta\theta)\delta^{\alpha}_{\beta} & \bar{\theta}_{\dot{\alpha}}\bar{\theta}^{\dot{\beta}} &= \frac{1}{2}(\bar{\theta}\bar{\theta})\delta^{\dot{\alpha}}_{\dot{\beta}} & (\theta\sigma^{\mu}\bar{\theta})(\theta\sigma^{\nu}\bar{\theta}) &= \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\theta})\eta^{\mu\nu} \\ (\theta\sigma^{\mu}\bar{\sigma}^{\nu}\theta) &= (\theta\theta)\eta^{\mu\nu} & (\bar{\theta}\bar{\sigma}^{\mu}\sigma^{\nu}\bar{\theta}) &= (\bar{\theta}\bar{\theta})\eta^{\mu\nu} & (\sigma^{\mu}\bar{\theta})_{\dot{\alpha}}(\theta\sigma^{\nu}\bar{\theta}) &= \frac{1}{2}(\bar{\theta}\bar{\theta})(\sigma^{\mu}\bar{\sigma}^{\nu}\theta)_{\dot{\alpha}} \\ \sigma^{\mu}\bar{\sigma}^{\nu} &= \eta^{\mu\nu} - 2i\bar{\sigma}^{\mu\nu} & \sigma^{\mu}\bar{\sigma}^{\nu} &+ \sigma^{\nu}\bar{\sigma}^{\rho}\sigma^{\mu} &= 2(\sigma^{\mu}\eta^{\nu\rho} + \sigma^{\nu}\eta^{\mu\rho} - \sigma^{\rho}\eta^{\mu\nu}) \\ \bar{\sigma}^{\mu}\bar{\sigma}^{\nu} &= \eta^{\mu\nu} - 2i\bar{\sigma}^{\mu\nu} & \sigma^{\mu}\bar{\sigma}^{\nu} &= \tau^{\nu}\bar{\sigma}^{\rho}\bar{\sigma}^{\nu} &= 2i\bar{\sigma}_{\sigma}\epsilon^{\mu\nu\rho\sigma} \\ \mathrm{Tr}\left(\sigma^{\mu}\bar{\sigma}^{\nu}\right) &= \mathrm{Tr}\left(\bar{\sigma}^{\mu}\bar{\sigma}^{\nu}\right) &= 2\eta^{\mu\nu} & \bar{\sigma}^{\mu}\bar{\sigma}^{\rho}\bar{\sigma}^{\nu} &+ \bar{\sigma}^{\nu}\bar{\sigma}^{\rho}\bar{\sigma}^{\mu} &= 2i\bar{\sigma}_{\sigma}\epsilon^{\mu\nu\rho\sigma} \\ \bar{\sigma}_{\alpha\dot{\alpha}}\bar{\sigma}_{\dot{\beta}}^{\dot{\beta}} &= 2\delta^{\dot{\alpha}\dot{\beta}}_{\dot{\alpha}\dot{\beta}} & \bar{\sigma}^{\mu}\bar{\sigma}^{\nu}\bar{\sigma}^{\nu} &+ \bar{\sigma}^{\nu}\bar{\sigma}^{\rho}\bar{\sigma}^{\mu} &= -2i\bar{\sigma}_{\sigma}\epsilon^{\mu\nu\rho\sigma} \\ \bar{\sigma}_{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\beta}} &= 2\delta^{\dot{\alpha}\dot{\beta}}_{\dot{\alpha}\dot{\beta}} & \bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^$$

#### Superfields

<sup>\*2</sup>As the definition of  $\sigma^{\mu\nu}$  and  $\bar{\sigma}^{\mu\nu}$  are not unified in literature, they are not used in this CheatSheet except for this page.

#### 4.1. Lorentz symmetry as $SU(2) \times SU(2)$

#### 4.2. Derivative in superspace

$$y^{\mu} := x^{\mu} - \mathrm{i}(\theta \sigma^{\mu} \bar{\theta}) \tag{4.1}$$

$$\phi(y) = \phi(x) - i(\theta \sigma^{\mu} \bar{\theta}) \partial_{\mu} \phi(x) - \frac{1}{4} \theta^{4} \partial^{2} \phi(x)$$

$$\tag{4.2}$$

#### 4.3. Superfields

#### Chiral superfield

$$\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta^2 F(y) \tag{4.3}$$

$$= \phi(x) + \sqrt{2}\theta\psi(x) - i\partial_{\mu}\phi(x)(\theta\sigma^{\mu}\bar{\theta}) + F(x)\theta^{2} + \frac{i}{\sqrt{2}}(\partial_{\mu}\psi(x)\sigma^{\mu}\bar{\theta})\theta^{2} - \frac{1}{4}\partial^{2}\phi(x)\theta^{4}$$

$$(4.4)$$

$$\Phi^* = \phi^*(x) + \sqrt{2}\bar{\psi}(x)\bar{\theta} + F^*(x)\bar{\theta}^2 + i\partial_{\mu}\phi^*(x)(\theta\sigma^{\mu}\bar{\theta}) - \frac{i}{\sqrt{2}}[\theta\sigma^{\mu}\partial_{\mu}\bar{\psi}(x)]\bar{\theta}^2 - \frac{1}{4}\partial^2\phi^*(x)\theta^4$$
(4.5)

$$\Phi_{i}^{*}\Phi_{j} = \phi_{i}^{*}\phi_{j} + \sqrt{2}\phi_{i}^{*}(\theta\psi_{j}) + \sqrt{2}(\bar{\psi}_{i}\bar{\theta})\phi_{j} + \phi_{i}^{*}F_{j}\theta^{2} + 2(\bar{\psi}_{i}\bar{\theta})(\theta\psi_{j}) - i\left(\phi_{i}^{*}\partial_{\mu}\phi_{j} - \partial_{\mu}\phi_{i}^{*}\phi_{j}\right)\left(\theta\sigma^{\mu}\bar{\theta}\right) + F_{i}^{*}\phi_{j}\bar{\theta}^{2} \\
+ \left[\sqrt{2}\bar{\psi}_{i}\bar{\theta}F_{j} - \frac{i\left(\partial_{\mu}\phi_{i}^{*}\cdot\psi_{j}\sigma^{\mu}\bar{\theta} - \phi_{i}^{*}\partial_{\mu}\psi_{j}\sigma^{\mu}\bar{\theta}\right)}{\sqrt{2}}\right]\theta^{2} + \left[\sqrt{2}F_{i}^{*}\theta\psi_{j} + \frac{i\left(\theta\sigma^{\mu}\bar{\psi}_{i}\partial_{\mu}\phi_{j} - \theta\sigma^{\mu}\partial_{\mu}\bar{\psi}_{i}\phi_{j}\right)}{\sqrt{2}}\right]\bar{\theta}^{2} \\
+ \frac{1}{4}\left(4F_{i}^{*}F_{j} - \phi_{i}^{*}\partial^{2}\phi_{j} - (\partial^{2}\phi_{i}^{*})\phi_{j} + 2(\partial_{\mu}\phi_{i}^{*})(\partial^{\mu}\phi_{j}) + 2i(\psi_{j}\sigma^{\mu}\partial_{\mu}\bar{\psi}_{i}) - 2i(\partial_{\mu}\psi_{j}\sigma^{\mu}\bar{\psi}_{i})\right)\theta^{4} \tag{4.6}$$

$$\equiv \phi_i^* \phi_j + \sqrt{2} \phi_i^* (\theta \psi_j) + \sqrt{2} (\bar{\psi}_i \bar{\theta}) \phi_j + \phi_i^* F_j \theta^2 + 2 (\bar{\psi}_i \bar{\theta}) (\theta \psi_j) - 2 \mathrm{i} (\phi_i^* \partial_\mu \phi_j) (\theta \sigma^\mu \bar{\theta}) + F_i^* \phi_j \bar{\theta}^2 
+ \sqrt{2} (\bar{\psi}_i \bar{\theta} F_j + \mathrm{i} \phi_i^* \partial_\mu \psi_j \sigma^\mu \bar{\theta}) \theta^2 + \sqrt{2} (F_i^* \theta \psi_j - \mathrm{i} \theta \sigma^\mu \partial_\mu \bar{\psi}_i \phi_j) \bar{\theta}^2 
+ (F_i^* F_j + (\partial_\mu \phi_i^*) (\partial^\mu \phi_j) + \mathrm{i} \bar{\psi}_i \sigma^\mu \partial_\mu \psi_j) \theta^4$$
(4.7)

$$\Phi_i \Phi_j \Big|_{a^2} = -\psi_i \psi_j + F_i \phi_j + \phi_i F_j \tag{4.8}$$

$$\Phi_i \Phi_j \Phi_k \Big|_{\theta^2} = -(\psi_i \psi_j) \phi_k - (\psi_k \psi_i) \phi_j - (\psi_j \psi_k) \phi_i + \phi_i \phi_j F_k + \phi_k \phi_i F_j + \phi_j \phi_k F_i$$

$$(4.9)$$

$$e^{k\Phi} = e^{k\phi} \left[ 1 + \sqrt{2}k\theta\psi + \left( kF - \frac{k^2}{2}\psi\psi \right) \theta^2 - ik\partial_\mu\phi(\theta\sigma^\mu\bar{\theta}) + \frac{ik\left( \partial_\mu\psi + k\psi\partial_\mu\phi \right)\sigma^\mu\bar{\theta}\theta^2}{\sqrt{2}} - \frac{k}{4} \left( \partial^2\phi + k\partial_\mu\phi\partial^\mu\phi \right)\theta^4 \right]$$
(4.10)

# 5. Minimal Supersymmetric Standard Model

Gauge symmetry:  $SU(3)_{color} \times SU(2)_{weak} \times U(1)_Y$ 

Particle content:

(a) Chiral superfields

|                                                                                                                                | SU(3)         | SU(2)            | U(1)                                                                                                            | В                                                   | L       | scalar/spinor                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c}       Q_i \\       L_i \\       U_i^c \\       D_i^c \\       E_i^c \\       H_u \\       H_d \end{array} $ | $\frac{3}{3}$ | 2<br>2<br>2<br>2 | $   \begin{array}{r}     1/6 \\     -1/2 \\     -2/3 \\     1/3 \\     1 \\     1/2 \\     -1/2   \end{array} $ | $\begin{vmatrix} 1/3 \\ -1/3 \\ -1/3 \end{vmatrix}$ | 1<br>-1 | $ \begin{vmatrix} \tilde{q}_{\rm L}, q_{\rm L} & [\rightarrow (u_{\rm L}, d_{\rm L})] \\ \tilde{l}_{\rm L}, l_{\rm L} & [\rightarrow (\nu_{\rm L}, l_{\rm L})] \\ \tilde{u}_{\rm R}^{\rm c}, u_{\rm R}^{\rm c} \\ \tilde{d}_{\rm R}^{\rm c}, d_{\rm R}^{\rm c} \\ \tilde{e}_{\rm R}^{\rm c}, e_{\rm R}^{\rm c} \\ h_{\rm u}, \tilde{h}_{\rm u} & [\rightarrow (h_{\rm u}^+, h_{\rm u}^0)] \\ h_{\rm d}, \tilde{h}_{\rm d} & [\rightarrow (h_{\rm d}^0, h_{\rm d}^-)] \end{vmatrix} $ |

(b) Vector superfields

|               | SU(3) | SU(2) | U(1) | ino/boson                                                                                        |
|---------------|-------|-------|------|--------------------------------------------------------------------------------------------------|
| $g \\ W \\ B$ | adj.  | adj.  |      | $ \begin{vmatrix} \tilde{g}, g_{\mu} \\ \tilde{w}, W_{\mu} \\ \tilde{b}, B_{\mu} \end{vmatrix} $ |

Here, each of the column groups shows (from left to right) superfield name, charges for the gauge symmetries, other quantum numbers if relevant, and notation for corresponding fields (and SU(2) decomposition).

"c"-notation For scalars,  $\tilde{\phi}_R^c := \phi_R^* = C\phi_R C$  (because the intrinsic phase for C is +1 for quarks and leptons.)

For matter spinors,  $\psi_{R}^{c} := \bar{\psi}_{R}$  (and  $\psi_{R} = \bar{\psi}_{R}^{c}$ ); Dirac spinors are thus

$$\psi_{\mathbf{L}} = \begin{pmatrix} \psi_{\mathbf{L}} \\ 0 \end{pmatrix}, \quad \overline{\psi_{\mathbf{L}}} = \begin{pmatrix} 0 & \bar{\psi}_{\mathbf{L}} \end{pmatrix}, \quad \psi_{\mathbf{R}}^{\mathbf{c}} := \begin{pmatrix} \psi_{\mathbf{R}}^{\mathbf{c}} \\ 0 \end{pmatrix} = C \begin{pmatrix} 0 \\ \psi_{\mathbf{R}} \end{pmatrix} = C \psi_{\mathbf{R}}, \quad \overline{\psi_{\mathbf{R}}^{\mathbf{c}}} = \begin{pmatrix} 0 & \bar{\psi}_{\mathbf{R}} \end{pmatrix} = \begin{pmatrix} \bar{\psi}_{\mathbf{R}} & 0 \end{pmatrix} C = \overline{\psi_{\mathbf{R}}} C.$$

#### Superpotential and SUSY-terms

$$W_{\text{RPC}} = \mu H_{\text{u}} H_{\text{d}} - y_{\text{u}ij} U_i^{\text{c}} H_{\text{u}} Q_j + y_{\text{d}ij} D_i^{\text{c}} H_{\text{d}} Q_j + y_{\text{e}ij} E_i^{\text{c}} H_{\text{d}} L_j, \tag{5.1}$$

$$W_{\text{RPV}} = -\kappa_i L_i H_{\text{u}} + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^{\text{c}} + \lambda'_{ijk} L_i Q_j D_k^{\text{c}} + \frac{1}{2} \lambda''_{ijk} U_i^{\text{c}} D_j^{\text{c}} D_k^{\text{c}},$$
(5.2)

$$\mathcal{L}_{\text{SUSY}} = -\frac{1}{2} \left( M_3 \tilde{g} \tilde{g} + M_2 \tilde{w} \tilde{w} + M_1 \tilde{b} \tilde{b} + \text{H.c.} \right) - V_{\text{SUSY}}; \tag{5.3}$$

$$V_{\text{SUSY}}^{\text{RPC}} = \left( \tilde{q}_{\text{L}}^* m_Q^2 \tilde{q}_{\text{L}} + \tilde{l}_{\text{L}}^* m_L^2 \tilde{l}_{\text{L}} + \tilde{u}_{\text{R}}^* m_{U^c}^2 \tilde{u}_{\text{R}} + \tilde{d}_{\text{R}}^* m_{D^c}^2 \tilde{d}_{\text{R}} + \tilde{e}_{\text{R}}^* m_{E^c}^2 \tilde{e}_{\text{R}} + m_{H_u}^2 |h_{\text{u}}|^2 + m_{H_d}^2 |h_{\text{d}}|^2 \right)$$

$$+ \left( -\tilde{u}_{\text{R}}^* h_{\text{u}} a_{\text{u}} \tilde{q}_{\text{L}} + \tilde{d}_{\text{R}}^* h_{\text{d}} a_{\text{d}} \tilde{q}_{\text{L}} + \tilde{e}_{\text{R}}^* h_{\text{d}} a_{\text{e}} \tilde{l}_{\text{L}} + b H_{\text{u}} H_{\text{d}} + \text{H.c.} \right)$$

$$+ \left( -\tilde{u}_{\text{R}}^* h_{\text{d}}^* c_{\text{u}} \tilde{q}_{\text{L}} + \tilde{d}_{\text{R}}^* h_{\text{u}}^* c_{\text{d}} \tilde{q}_{\text{L}} + \tilde{e}_{\text{R}}^* h_{\text{u}}^* c_{\text{e}} \tilde{l}_{\text{L}} + \text{H.c.} \right),$$

$$(5.4)$$

$$V_{\text{SUSY}}^{\text{RPV}} = \left( -b_i \tilde{l}_{\text{L}i} H_{\text{u}} + \frac{1}{2} T_{ijk} \tilde{l}_{\text{L}i} \tilde{l}_{\text{L}j} \tilde{e}_{\text{R}k}^* + T_{ijk}' \tilde{l}_{\text{L}i} \tilde{q}_{\text{L}j} \tilde{d}_{\text{R}k}^* + \frac{1}{2} T_{ijk}'' \tilde{u}_{\text{R}i}^* \tilde{d}_{\text{R}j}^* \tilde{d}_{\text{R}k}^* + \tilde{l}_{\text{L}i}^* M_{Li}^2 H_{\text{d}} + \text{H.c.} \right) + \left( C_{ijk}^1 \tilde{l}_{\text{L}i}^* \tilde{q}_{\text{L}j} \tilde{u}_{\text{R}k}^* + C_i^2 h_{\text{u}}^* h_{\text{d}} \tilde{e}_{\text{R}i}^* + C_{ijk}^3 \tilde{d}_{\text{R}i} \tilde{u}_{\text{R}j}^* \tilde{e}_{\text{R}k}^* + \frac{1}{2} C_{ijk}^4 \tilde{d}_{\text{R}i} \tilde{q}_{\text{L}j} \tilde{q}_{\text{L}k} + \text{H.c.} \right),$$
(5.5)

$$(\lambda_{ijk} = -\lambda_{jik}, \lambda''_{ijk} = -\lambda''_{ikj}, \text{ and } C^4_{ijk} = C^4_{ikj}.)$$

We follow the notation of DHM [?, PhysRept] and Martin [?, v7] (but note that Martin uses (-,+,+,+)-metric) for RPC part and SLHA2 convention for RPV part.

#### 5.1. Scalar potential

The MSSM scalar potential has contributions from F-terms and D-terms:

$$V_{\rm SUSY} = F_i^* F_i + \frac{1}{2} D^a D^a; \qquad F_i = -W_i^* = -\frac{\delta W^*}{\delta \phi_i^*}, \qquad D^a = -g(\phi^* T^a \phi),$$
 where  $T_a$  corresponds to the gauge-symmetry generator relevant for each  $\phi$ . They are given by

$$-F_{h_{\mathrm{u}}^{*}}^{*} = \epsilon^{ab} \left( -\tilde{u}_{\mathrm{R}}^{**} y_{\mathrm{u}} \tilde{q}_{\mathrm{L}}^{bx} + \mu h_{\mathrm{d}}^{b} + \mu_{i}' \tilde{l}_{\mathrm{L}i}^{b} \right), \tag{5.7}$$

$$-F_{h_{d}^{*}}^{*} = \epsilon^{ab} \left( \tilde{e}_{R}^{*} y_{e} \tilde{t}_{L}^{b} + \tilde{d}_{R}^{**} y_{d} \tilde{q}_{L}^{bx} - \mu h_{u}^{b} \right), \tag{5.8}$$

$$-F_{\tilde{q}_{L_{i}}^{ax}}^{*} = \epsilon^{ab} \left( -y_{dji} h_{d}^{b} \tilde{d}_{Rj}^{**} + y_{uji} h_{u}^{b} \tilde{u}_{Rj}^{x*} - \lambda'_{kij} \tilde{d}_{Rj}^{x*} \tilde{l}_{Lk}^{b} \right), \tag{5.9}$$

$$-F_{\tilde{u}_{R}^{**}}^{**} = -y_{uij}h_{u}\tilde{q}_{Lj}^{x} + \frac{1}{2}\epsilon^{xyz}\lambda_{ijk}^{"}\tilde{d}_{Rj}^{y*}\tilde{d}_{Rk}^{z*}, \tag{5.10}$$

$$-F_{\tilde{q}_{Rk}^*}^* = y_{dij} h_d \tilde{q}_{Lj}^x + \lambda'_{jki} \tilde{l}_{Lj} \tilde{q}_{Lk}^x - \lambda''_{jik} \epsilon^{xyz} \tilde{u}_{Rj}^{y*} \tilde{d}_{Rk}^{z*},$$
(5.11)

$$-F_{\tilde{l}_{1,i}^{*}}^{*} = \epsilon^{ab} \left( -y_{eji} \tilde{e}_{Rj}^{*} h_{d}^{b} - \mu_{i}' h_{u}^{b} + \lambda_{ijk} \tilde{l}_{Lj}^{b} \tilde{e}_{Rk}^{*} + \lambda_{ijk}' \tilde{q}_{Lj}^{bx} \tilde{d}_{Rk}^{x*} \right), \tag{5.12}$$

$$-F_{\tilde{e}_{Ri}}^* = y_{eij} h_d \tilde{l}_{Lj} + \frac{1}{2} \lambda_{jki} \tilde{l}_{Lj} \tilde{l}_{Lk}. \tag{5.13}$$

$$D_{SU(3)}^{\alpha} = -g_3 \sum_{i=1}^{3} \left( \sum_{a=1,2} \tilde{q}_{Li}^{a*} \tau^{\alpha} \tilde{q}_{Li}^{a} - \tilde{u}_{Ri}^{*} \tau^{\alpha} \tilde{u}_{Ri} - \tilde{d}_{Ri}^{*} \tau^{\alpha} \tilde{d}_{Ri} \right), \tag{5.14}$$

$$D_{\text{SU}(2)}^{\alpha} = -g_2 \left[ \sum_{i=1}^{3} \left( \sum_{x=1}^{3} \tilde{q}_{\text{L}i}^{x*} T^{\alpha} \tilde{q}_{\text{L}i}^{x} + \tilde{l}_{\text{L}i}^{*} T^{\alpha} \tilde{l}_{\text{L}i} \right) + h_{\text{u}}^{*} T^{\alpha} h_{\text{u}} + h_{\text{d}}^{*} T^{\alpha} h_{\text{d}} \right],$$
 (5.15)

$$D_{\mathrm{U}(1)} = -g_1 \left( \frac{1}{6} |\tilde{q}_{\mathrm{L}}|^2 - \frac{1}{2} |\tilde{l}_{\mathrm{L}}|^2 - \frac{2}{3} |\tilde{u}_{\mathrm{R}}|^2 + \frac{1}{3} |\tilde{d}_{\mathrm{R}}|^2 + |\tilde{e}_{\mathrm{R}}|^2 + \frac{1}{2} |h_{\mathrm{u}}|^2 - \frac{1}{2} |h_{\mathrm{d}}|^2 \right). \tag{5.16}$$

Combining these, the full SUSY scalar potential is given by

$$V_{SUSY} + V_{SUSY} + V_{SUSY} = |h_u|^2 (|\mu|^2 + |\mu|^2) + |\mu|^2 |h_d|^2 + (\mu_1^* \mu_{L_1}^* h_d + H.c.) + \mu_1^{**} \mu_{J_1}^* \tilde{L}_{J_1} \tilde{L}_{J_2}$$

$$+ \left[ - y_{n,j} \mu^* h_n^* \tilde{u}_{h_1}^* \tilde{u}_{h_2}^* \tilde{u}_{h_2} - y_{n,j} \mu_h^* \tilde{u}_{h_3}^* \tilde{u}_{h_3}^* \tilde{u}_{h_4}^* \tilde{u}_{h_3}^* \tilde{u}_{h_4}^* \tilde{u}_{h_2}^* \tilde{u}_{h_2}^* + X_{h_j} \mu_h^* + X_{h_j} \mu_h^* h_h^* h_h^* \tilde{u}_{h_3}^* \tilde{u}_{h_3}^* \tilde{u}_{h_3}^* \tilde{u}_{h_4}^* + X_{h_j} \mu_h^* + X_{h_j} \mu_h^* h_h^* h_h^* \tilde{u}_{h_3}^* \tilde{u}_{h_3}^*$$

#### 5.2. SLHA convention

The SLHA convention [?] is different from our notation; the reinterpretation rules for the MSSM parameters are given in the right table (magenta color for objects in other conventions), while

 $\mu, b, m_{Q,L,H_{\mathrm{u}},H_{\mathrm{d}}}^2$ , RPV-trilinears ( $\lambda$ s and Ts) are in common.

| SLHA                                      |     | our notation                                                       | Martin/DHM               |
|-------------------------------------------|-----|--------------------------------------------------------------------|--------------------------|
| $(H_1,H_2)$                               | =   | $(H_{ m d},H_{ m u})$                                              |                          |
|                                           |     | $(y_{\mathrm{u,d,e}})^{\mathrm{T}}$                                |                          |
|                                           |     | $(a_{\mathrm{u,d,e}})^{\mathrm{T}}$                                |                          |
| $A_{ m u,d,e}$                            | =   | $(A_{\mathrm{u,d,e}})^{\mathrm{T}}$                                |                          |
| $m_{U^{\mathrm{c}},D^{\mathrm{c}},E_0}^2$ | . = | $(m_{U^{\mathrm{c}},D^{\mathrm{c}},E^{\mathrm{c}}}^{2})^{\dagger}$ |                          |
|                                           |     | $-M_{1,2,3}$                                                       |                          |
| $m_3^2$                                   | =   | b                                                                  |                          |
| $m_A^2$                                   | =   | $m_{A_0}^2$ (tree)                                                 |                          |
|                                           |     | $\kappa_i$                                                         | $=-\mu_i'$ (rarely used) |
| $D_i$                                     | =   | $b_i$                                                              |                          |
| $m_{\tilde{L}_i H_1}^{-1}$                | =   | $M_{Li}^2$                                                         |                          |
| ·                                         |     |                                                                    | ·                        |

In particular, the chargino/neutralino mass terms in RPC case are given by

$$\mathcal{L} \supset \left[ \frac{1}{2} \underline{M_1} \tilde{b} \tilde{b} + \frac{1}{2} \underline{M_2} \tilde{w} \tilde{w} - \mu \tilde{h}_u \tilde{h}_d - \frac{g_Y}{2\sqrt{2}} \left( h_u^* \tilde{h}_u - h_d^* \tilde{h}_d \right) \tilde{b} - \sqrt{2} g_2 \left( h_u^* T^a \tilde{h}_u + h_d^* T_a \tilde{h}_d \right) \tilde{w} \right] + \text{H.c.}$$

$$(5.19)$$

$$\rightarrow \frac{1}{2} \begin{pmatrix} \tilde{b} \\ \tilde{w} \\ h_{u}^{0} \\ h_{d}^{0} \end{pmatrix}^{T} \begin{pmatrix} -M_{1} & 0 & -m_{Z}c_{\beta}s_{w} & m_{Z}s_{\beta}s_{w} \\ 0 & -M_{2} & m_{Z}c_{\beta}c_{w} & -m_{Z}s_{\beta}c_{w} \\ -m_{Z}c_{\beta}s_{w} & m_{Z}c_{\beta}c_{w} & 0 & -\mu \\ m_{Z}s_{\beta}s_{w} & -m_{Z}s_{\beta}c_{w} & -\mu & 0 \end{pmatrix} \begin{pmatrix} \tilde{b} \\ \tilde{w} \\ h_{u}^{0} \\ h_{d}^{0} \end{pmatrix} \tag{5.20}$$

#### A. Mathematics

#### A.1. Matrix exponential

Excerpted from  $\S 2$  and  $\S 5$  of Hall 2015 [?]:

$$e^X := \sum_{m=0}^{\infty} \frac{X^m}{m!}$$
 (converges for any X),  $\log X := \sum_{m=1}^{\infty} (-1)^{m+1} \frac{(A-1)^m}{m}$  (conv. if  $||A-I|| < 1$ ). (A.1)

$$e^{\log A} = A \text{ (if } ||A - I|| < 1), \quad \log e^X = X \text{ and } ||e^X - 1|| < 1 \text{ (if } ||X|| < \log 2).$$
 (A.2)

Hilbert-Schmidt norm: 
$$||X||^2 := \sum_{i,j} |X_{ij}|^2 = \operatorname{Tr} X^{\dagger} X.$$
 (A.3)

Properties:

$$e^{(X^T)} = (e^X)^T$$
,  $e^{(X^*)} = (e^X)^*$ ,  $(e^X)^{-1} = e^{-X}$ ,  $e^{YXY^{-1}} = Y e^X Y^{-1}$ ,

$$\det \exp X = \exp \operatorname{Tr} X, \qquad \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{e}^{tX} = X \operatorname{e}^{tX} = \operatorname{e}^{tX} X \qquad \operatorname{e}^{(\alpha+\beta)X} = \operatorname{e}^{\alpha X} \operatorname{e}^{\beta X} \text{ for } \alpha, \beta \in \mathbb{C};$$

Baker-Campbell-Hausdorff:

$$e^{X}Ye^{-X} = Y + [X,Y] + \frac{1}{2!}[X,[X,Y]] + \frac{1}{3!}[X,[X,[X,Y]]] + \cdots;$$
 (A.4)

$$\log(e^X e^Y) = X + \int_0^1 dt \, g(e^{[X, e^{t[Y, Y]})} Y \qquad \left[ g(z) = \frac{\log z}{1 - z^{-1}} = 1 + \sum_{n=1}^\infty \frac{(-1)^{n+1} (z - 1)^n}{n(n+1)} \right]$$
(A.5)

$$=X+Y+\frac{1}{2}[X,Y]+\frac{1}{12}[X,[X,Y]]-\frac{1}{12}[Y,[X,Y]]+\cdots \quad \text{(Baker-Campbell-Hausdorff)}. \tag{A.6}$$