### AULA 5 – ZEROS REAIS DE FUNÇÕES REAIS (PARTE 2)

Prof. Gustavo Resque gustavoresqueufpa@gmail.com





# FASE 2: REFINAMENTO – MÉTODO DA POSIÇÃO FALSA

- Dadas as condições
  - f(x) seja contínua no intervalo [a,b]
  - f(a)f(b)<0</p>
  - f(x) tenha somente uma raiz no intervalo [a,b]
- Procede semelhante ao método da bissecção, entretanto ao invés de utilizar a média aritmética entre a e b, usa-se a média ponderada com os pesos |f(a)| e |f(b)|.

$$x = \frac{a|f(b)| + b|f(a)|}{|f(b)| + |f(a)|}$$

■ Uma vez que f(a) e f(b) tem sinais opostos:

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

#### FASE 2: REFINAMENTO – MÉTODO DA POSIÇÃO FALSA

#### Graficamente

• x é a intersecção entre o eixo  $\overrightarrow{0x}$  a reta r(x)que passa entre os pontos (a, f(a)) e (b, f(b)).



## FASE 2: REFINAMENTO – MÉTODO DA POSIÇÃO FALSA

As iterações ficam assim:



### FASE 2: REFINAMENTO – MÉTODO DA POSIÇÃO FALSA

#### **ALGORITMO 2**

Seja f(x) continua em [a, b] e tal que f(a)f(b) < 0.

- 1) Dados iniciais
  - a) intervalo inicial [a, b]
  - b) precisões  $\varepsilon_1$  e  $\varepsilon_2$
- 2) Se  $(b-a) < \varepsilon_1$ , então escolha para  $\overline{x}$  qualquer  $x \in [a, b]$ . FIM.

se 
$$|f(a)| < \varepsilon_2$$
  
ou se  $|f(b)| < \varepsilon_2$ 

escolha a ou b como x. FIM.

3) 
$$k = 1$$

$$4) \quad \mathbf{M} = \mathbf{f}(\mathbf{a})$$

5) 
$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

- 6) Se  $|f(x)| < \varepsilon_2$ , escolha  $\bar{x} = x$ . FIM.
- 7) Se Mf(x) > 0, faça a = x. Vá para o passo 9.
- 8) b = x
- 9) Se  $b a < \varepsilon_1$ , então escolha para  $\overline{x}$  qualquer  $x \in (a, b)$ . FIM.
- 10) k = k + 1. Volte ao passo 5.

# FASE 2: REFINAMENTO – MÉTODO DA POSIÇÃO FALSA

#### Exemplo 6

$$f(x) = x^3 - 9x + 3$$
  $I = [0, 1]$   $\varepsilon_1 = \varepsilon_2 = 5 \times 10^{-4}$ 

Aplicando o método da posição falsa, temos:

| Iteração | x          | f(x)                           | b – a      |
|----------|------------|--------------------------------|------------|
| 1        | .375       | 322265625                      | 1          |
| 2        | .338624339 | -8.79019964 × 10 <sup>-3</sup> | .375       |
| 3        | .337635046 | -2.25883909 × 10 <sup>-4</sup> | .338624339 |

E portanto  $\bar{x} = 0.337635046$  e  $f(\bar{x}) = -2.25 \times 10^{-4}$ .

### FASE 2: REFINAMENTO – MÉTODO DA POSIÇÃO FALSA

- Demonstração da convergência
  - Quando f(x) é derivável duas vezes e f''(x) não muda de sinal entre [a,b]
  - Podemos ver a convergência graficamente
  - Nesse caso,  $|a b| < \varepsilon$



- Seu estudo é mais importante pelos conceitos que introduzem os métodos seguintes que pela sua eficiência computacional
- Seja f(x) contínua num intervalo que contenha a raiz
- O MPF consiste em transformar f(x) = 0 em uma equação equivalente  $\varphi(x) = x$ 
  - Considerando que x é a reta x = y
- A partir de uma aproximação inicial  $x_0$  gerar aproximações para a raiz pela relação  $x_{k+1} = \varphi(x_k)$ 
  - Uma vez que  $\varphi(\xi)=\xi$  se, e somente se,  $f(\xi)=0$
- Transformando o problema de encontrar o zero de f(x) no problema de encontrar o ponto fixo de  $\varphi(x)$

#### Graficamente



#### Exemplo 7

Para a equação  $x^2 + x - 6 = 0$  temos várias funções de iteração, entre as quais:

a) 
$$\varphi_1(x) = 6 - x^2$$
;

b) 
$$\varphi_2(x) = \pm \sqrt{6 - x}$$
;

c) 
$$\varphi_3(x) = \frac{6}{x} - 1;$$

$$d) \quad \varphi_4(\mathbf{x}) = \frac{6}{\mathbf{x} + 1}.$$

#### Outro exemplo



■Entretanto não é sempre que o MPF converge



Entretanto não é sempre que o MPF converge



#### ■Teorema 2:

- •Seja  $\xi$  uma raiz da equação f(x)=0, isolada num intervalo I centrada em  $\xi$ .
- •Seja  $\varphi(x)$  uma função de iteração para a equação f(x)=0
- Se
  - $\varphi(x)$  e  $\varphi'(x)$  são contínuas em I
  - $|\varphi'(x)| \le M < 1, \forall x \in I$
  - $\mathbf{x}_0 \in I$
- Então a sequência  $\{x_k\}$  gerada por  $x_{k+1} = \varphi(x_k)$  converge para  $\xi$ .

#### Critérios de Parada:

$$|x_k - x_{k-1}| < \varepsilon$$

- Ou
- $f(x_k) < \varepsilon$

Uma coisa não implica a outra



#### **ALGORITMO 3**

Considere a equação f(x) = 0 e a equação equivalente  $x = \varphi(x)$ .

Supor que as hipóteses do Teorema 2 estão satisfeitas.

- 1) Dados iniciais:
  - a) x<sub>0</sub>: aproximação inicial;
  - b)  $\varepsilon_1$  e  $\varepsilon_2$ : precisões.
- 2) Se  $|f(x_0)| < \varepsilon_1$ , faça  $\bar{x} = x_0$ . FIM.
- 3) k = 1
- $4) \quad \mathbf{x}_1 = \varphi(\mathbf{x}_0)$

5) Se 
$$|f(x_1)| < \varepsilon_1$$
  
ou se  $|x_1 - x_0| < \varepsilon_2$  então faça  $\overline{x} = x_1$ . FIM.

- 6)  $x_0 = x_1$
- k = k + 1Volte ao passo 4.