

Binary Search Trees (BST)

- A BST is a *binary tree* that (if not empty) also follows the following *storage rule* regarding its nodes' items:
 - For any node **n** of the tree, every item in **n**'s LST, if not empty, is *less than* the item in n
 - \bullet For any node **n** of the tree, every item in **n**'s **RST**, if not empty, is **greater than** the item in **n**

NOTE: any node implies rule must hold not just for the overall tree but also for each and every subtree

NOTE: Enforcement of the rule requires that the nodes' items can be compared with the usual comparison operators \langle , \rangle , == etc. (i.e., can be arranged in a single line, from small to large)

Caveat Storage rule for defining BST can differ (points valid under a certain definition may be invalid under other definitions):

- > LST items → less than or equal, RST items → greater than this is used by textbo
- > LST items → less than, RST items → greater than or equal
- > LST items → less than or equal, RST items → greater than or equal

Binary Search Trees (BST)

Searching

- Due to the ordering of nodes (based on the values of items at the nodes), searching for a target value in a BST can be greatly faster than in a simple binary tree with no ordering
 - We know that all items in the LST are less than the root's item and all items in the RST are greater than the root's item
 - We compare the target value with that of root's item and make a better informed decision based on the result of the comparison
 - > Such decision making works only if the specified storage rule is enforced → without the rule, a match could be found anywhere in the tree

```
Binary Search Trees E.g.: IntSet using a BST
We can implement the IntSet ADT we saw using a BST
class IntSet
public:
   struct btNode
     int data;
     btNode* left;
     btNode* right;
  bool contains(int anInt) const;
   bool add(int anInt);
   bool remove(int anInt);
   . . .
private:
                        Items are stored in
  btNode* root_ptr;
                           a tree; tree is to be
                          maintained as a BST
};
```

Binary Search Trees E.g.: IntSet using a BST Querying Containment

- The public member function **contains** determines whether a BST contains a target item **anInt**
 - bool contains(int anInt) const;
- Because the items in a BST are ordered according to the <u>rule</u> listed on the first slide, <u>contains</u> doesn't have to inspect every item in the BST to ascertain containment
 - Let cursor be a local pointer (initialized to the root pointer) used to keep track of the current search position in the BST
 - cursor will move through the BST in search of anInt
 - cursor will use the <u>rule</u> to always move along the path where anInt might occur (the next slide elaborates this)

Binary Search Trees E.g.: IntSet using a BST Querying Containment

- There are *four* possibilities at each search position:
 - **cursor** becomes **0**, indicating that we've moved off the bottom of the tree
 - > Run out of nodes where a match can be found
 - return false;
 - anInt is smaller than the item at cursor node
 - > anInt can only occur in the *left* subtree of the BST rooted at **cursor** node
 - > cursor = cursor->left;
 - anInt is *larger* than the item at cursor node
 - > anInt can only occur in the *right* subtree of the BST rooted at **cursor** node
 - > cursor = cursor->right;
 - anInt is equal to the item at cursor node
 - > Match of anInt found
 - > return true;
- It is straightforward to implement **contains** with a loop

4

Binary Search Trees E.g.: IntSet using a BST Adding an Item

- The public member function add inserts an entry anInt (received as a parameter) into a BST
 - * bool add(int anInt);
- The add function first deals with the special case in which the tree is *empty*

```
root_ptr = new btNode;
root_ptr->data = anInt;
root_ptr->left = root_ptr->right = 0;
```

- If the tree is *not empty*, the function searches the tree to see if a spot for adding anInt as a leaf can be found
 - ◆ Again, let local pointer **cursor** (initialized to the root pointer) be used to keep track of the current search position in the BST

6

Binary Search Trees E.g.: IntSet using a BST Adding an Item

- If anInt is equal to the data at cursor node
 - Entry already exists
 - > return false;

•

583811111111383111111111111111

Binary Search Trees E.g.: IntSet using a BST Adding an Item

- If anInt is *less than* the data at cursor node
 - Check the **left** field at **cursor** node
 - > If it's 0, create a new node containing anInt and make the left field of cursor node point to it (and task is done):

```
cursor->left = new btNode;
cursor->left->data = anInt;
cursor->left->left = cursor->left->right = 0;
```

> If it's **not** 0, move the cursor to the **left** and continue the search for a correct spot to insert the entry:

```
cursor = cursor->left;
```


Binary Search Trees E.g.: IntSet using a BST Adding an Item

- If anInt is greater than the data at cursor node
 - Check the right field at cursor node
 - > If it's 0, create a new node containing anInt and make the right field of cursor node point to it (and task is done):

```
cursor->right = new btNode;
cursor->right->data = anInt;
cursor->right->left = cursor->right->right = 0;
```

> If it's *not* 0, move the cursor to the *right* and continue the search for a correct spot to insert the entry:

```
cursor = cursor->right;
```

(

Binary Search Trees E.g.: IntSet using a BST Removing an Item

- The public member function **remove** removes a specified item **anInt** (if exists) from a BST
 - bool remove(int anInt);
- To implement **remove** *directly* entails *many special cases* to be dealt with and a *precursor* (similar to that used when removing an item from a singly linked list) be maintained
 - ◆ We will (next) consider a popular *indirect* way
 - > (often referred to as the "usual standard way" or something similar)
 - It uses two helper functions (next)

Removing a Node Helper Functions

(Each receives, among others, root pointer of BST as reference parameter bst_root)

- bst remove | BST may be empty or non-empty
 - If the target anInt was in the BST, then anInt has been removed, bst_root now points to the root of the new (smaller) BST, and the function returns true
 - If the target **anInt** was not in the BST, then the BST is unchanged, and the function returns false
- bst_remove_max | For non-empty BST only
 - The *largest item* in the BST has been removed, and bst_root now points to the root of the new (smaller) BST
 - ◆ A copy of item removed is returned via a *reference parameter*

15

Binary Search Trees

Removing a Node **bst_remove** Helper

- bst_remove has a recursive implementation to remove the target anInt
 - ◆ Tree could be empty → function simply returns false
 - ◆ Target anInt could be less than the root → make a recursive call to the left
 - > bst_remove(bst_root->left, anInt);
 - ◆ Target anInt could be greater than the root → make a recursive call to the right
 - > bst_remove(bst_root->right, anInt);
 - ◆ Target **anInt** could be *equal* to the root → ... (next)

16

Target Equal to Root

- If root node's value is equal to target anInt, we have a match
- To remove this node, we have to consider two situations:
 - ◆ Root has no children or only 1 child
 - > (both children are empty or only 1 child is non-empty)
 - ♦ Root has two children
 - > (both children are non-empty)

17

Binary Search Trees Removing a Node bst_remove Helper

Target Equal to Root Root Has No Children or Only 1 Child

- In this case we can delete the root node and make 0 (if no children) or the root of the non-empty child (if only 1 child) the new root node
- This requires three steps: (1st and 3rd steps are identical for the different cases)

	Has No Children	Has Only Left Child	Has Only Right Child
0	old_bst_root = bst_root;		
2	bst_root = 0;	<pre>bst_root = bst_root->left;</pre>	<pre>bst_root = bst_root->right;</pre>
6	delete old_bst_root;		

18

Binary Search Trees

Removing a Node bst_remove Helper

Target Equal to Root and Root Has 2 Children

- In this case we have to delete the root node and make an *appropriate child* the new root node
- We'll replace root w/ the node w/ the largest value in LST
 - Call bst_remove_max on the LST
 - > Have it remove the node with the largest value from the LST
 - > Have it set **bst_root->data** (passed as *reference parameter*) equal to the largest value (that was in the node removed from the LST)
 - bst_remove_max(bst_root->left, bst_root->data);

We could just as well

replace root w/ the node w/ the smallest value in RST by calling a corresponding bst_remove_min on the RST

19

Dinary Canal Trace Pamoving a Nada

Binary Search Trees Removing a Node bst_remove_max Helper

Outline of (Recursive) Algorithm

- If (tree has *no right child*) // largest item @ root (base case)
 - ◆ Copy root node's data into the **data**-field reference parameter
 - Delete root node and make left child (may be 0) the new root
 - (using 3 steps similar to that given for bst_remove)
- Else // tree has *right child* (largest item not @ root)
 - Make recursive call to delete largest item from RST
 - > Passing along the **data**-field *reference parameter*
 - (side effect to be delivered via the parameter is fulfilled in base case above)

Binary Search Trees Balanced vs Unbalanced

- There is no requirement that a BST be full, complete, balanced, *etc*.
 - Only that the rule listed on the first slide be met
- That means it is possible to have a BST that's very unbalanced (for instance, only a single node in the LST but 1000 nodes in the RST)

2.1

222111112222211111222222

Binary Search Trees Balanced vs Unbalanced

- If the tree (and the subtrees) has drastically more nodes to one side over the other, the performance improvement in searching is diminished
 - ◆ In the worst case, it's no better than a linked list
- It'd be ideal if the node counts are equal (or within 1 node) for each and every corresponding subtree pair, . . .

(often described as weight-balanced, more on this to come)

... so that each decision roughly cuts in half the number of nodes that remain to be searched

Binary Search Trees Balanced vs Unbalanced

- A *weight-balanced* BST is one in which each subtree has either the same number of nodes as the other or is off by only 1 node
 - ◆ This property holds for any node in the tree
- This type of tree offers the best performance improvement for searches
 - Each decision "prunes" as many nodes as possible
- However, it is typically too expensive to maintain a weight-balanced BST
 - (motivates *height-balanced* BSTs such as AVL trees)

25

Textbook Readings

- Chapter 10
 - ♦ Section 10.5