

Submitted by:

TAUQEER AHMAD

213070093

(Self Project)

PROBLEM STATEMENT : Numerically solve the Pao-Sah and Brews models for the following NMOSFET: L = 1 μ m, T_{OX} = 10nm, n+ poly-Si gate, choose N_A for target V_T of 0.8V, range of V_G and V_D sweeps is 0 – 5V. Plot transfer (I_D – V_G) characteristics for different V_D values and output (I_D – V_D) characteristics for different V_G > V_T values.

ANSWER: PAO SAH

Firstly I have plotted individual graphs and then with different values of Vd and Vg

Id VS Vgs(log scale)

Id VS Vgs (linear scale)

Id VS Vds (log scale)

BREWS

Id VS Vgs (log scale)

Id VS Vgs (linear scale)

Id VS Vds

Below are the graphs of ID-VG and ID-VD for different values for VD and VG using Pao Sah respectively

Below are the graphs of ID-VG and ID-VD for different values for VD and VG using Pao Sah respectively

ID-VD

Similarly, we can get the curves for **PMOS** also Below I have given the pao-sah model IG-VG curve

The reason for the sluggish nature of the graph is that the step size is chosen larger (as it takes less time to simulate) Using the same code we can get the other PMOS codes also