Foundations of Data Science and Machine Learning – *Homework 3*Isaac Martin

Last compiled February 14, 2023

Exercise 3. Find the mapping $\varphi(\mathbf{x})$ that gives rise to the polynomial kernel

$$K(\mathbf{x}, \mathbf{y}) = (x_1 x_2 + y_1 y_2)^2.$$

Proof: Consider the map $\varphi:\mathbb{R}^2\to\mathbb{R}^3$ defined $\varphi(x_1,x_2)=(x_1^2,x_2^2,\sqrt{2}x_1x_2)$. Interestingly, this is similar to the map one considers from a polynomial ring $R[x_1,x_2]$ to its 2^{nd} Veronese subring $R[x_1^2,x_1x_2,x_2^2]$. We then have that

$$\varphi(\mathbf{x}) \cdot \varphi(\mathbf{y})^{T} = (x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}x_{2}) \cdot (y_{1}^{2}, y_{2}^{2}, \sqrt{2}y_{1}y_{2})$$

$$= x_{1}^{2}y_{1}^{2} + x_{2}^{2}y_{2}^{2} + 2x_{1}y_{1}x_{2}y_{2}$$

$$= (x_{1}y_{1} + x_{2}y_{2})^{2},$$

hence φ gives rise to the desired kernel.