\square

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
```

#loading the data from csv file to a pandas dataframe
insurance_dataset = pd.read_csv('/content/insurance.csv')
insurance_dataset

		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520
	1333	50	male	30.970	3	no	northwest	10600.54830
	1334	18	female	31.920	0	no	northeast	2205.98080
	1335	18	female	36.850	0	no	southeast	1629.83350
	1336	21	female	25.800	0	no	southwest	2007.94500
	1337	61	female	29.070	0	yes	northwest	29141.36030
1338 rows × 7 columns								

First 5 rows of the dataset
insurance_dataset.head()

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

FInding no.of rows and columns
insurance_dataset.shape

(1338, 7)

Information about the dataset
insurance_dataset.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1338 entries, 0 to 1337 Data columns (total 7 columns): # Column Non-Null Count Dtype ----------0 age 1338 non-null int64 1338 non-null 1 sex 2 bmi object 1338 non-null float64 3 children 1338 non-null int64 4 smoker 1338 non-null 5 region 1338 non-null object object 6 charges 1338 non-null float64 dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB

#Checking the missing values
insurance_dataset.isnull().sum()

age 0 sex 0 bmi 0 children 9 smoker 0 charges 0 dtype: int64

Statsitical measures of the dataset
insurance_dataset.describe()

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

#Distribution of age value
sns.set()
plt.figure(figsize = (6,6))
sns.distplot(insurance_dataset['age'])
plt.title("Age Distribution")
plt.show()

<ipython-input-10-c8c9a2bbae5e>:4: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\frac{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

sns.distplot(insurance_dataset['age'])


```
#Gender column
sns.set()
plt.figure(figsize = (6,6))
sns.distplot(insurance_dataset['sex'])
plt.title("sex Distribution")
plt.show()
     <ipython-input-11-f1ce334ff304>:4: UserWarning:
     `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
     Please adapt your code to use either `displot` (a figure-level function with
     similar flexibility) or `histplot` (an axes-level function for histograms).
     For a guide to updating your code to use the new functions, please see
    https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
      sns.distplot(insurance_dataset['sex'])
     .-----
     ValueError
                                            Traceback (most recent call last)
     <ipython-input-11-f1ce334ff304> in <cell line: 4>()
          2 sns.set()
          3 plt.figure(figsize = (6,6))
     ---> 4 sns.distplot(insurance_dataset['sex'])
          5 plt.title("sex Distribution")
          6 plt.show()
                                  — 💲 1 frames 🗕
     /usr/local/lib/python3.10/dist-packages/pandas/core/series.py in __array__(self,
     dtype)
        891
                         dtype='datetime64[ns]')
        892
     --> 893
                    return np.asarray(self._values, dtype)
        894
        895
     ValueError: could not convert string to float: 'female'
     SEARCH STACK OVERFLOW
      1.0
      0.8
      0.6
      0.4
      0.2
# Gender Coulmn
plt.figure(figsize = (6,6))
sns.countplot(x = 'sex', data= insurance_dataset)
plt.title('Sex Distribution')
plt.show()
```


insurance_dataset['sex'].value_counts()

male 676 female 662 Name: sex dty

Name: sex, dtype: int64

#Bmi Distribution
sns.set()
plt.figure(figsize = (6,6))
sns.distplot(insurance_dataset['bmi'])
plt.title("BMI Distribution")
plt.show()

<ipython-input-14-31866dc3d15b>:4: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

 $\verb|sns.distplot(insurance_dataset['bmi'])|\\$

Normal BMI Range 18.5 to 24.9

```
#Children Distribution
plt.figure(figsize= (6,6))
sns.countplot(x = 'children', data = insurance_dataset)
plt.title('Children')
plt.show()
```



```
# Distribution for smoker
plt.figure(figsize= (6,6))
sns.countplot(x = 'smoker', data = insurance_dataset)
plt.title('Count of smokers')
plt.show()
```


insurance_dataset['smoker'].value_counts()

```
no 1064
  yes 274
  Name: smoker, dtype: int64

# Region Coulmn
plt.figure(figsize = (6,6))
sns.countplot(x = 'region', data= insurance_dataset)
plt.title('Region Distribution')
plt.show()
```



```
# Charges Coulmn
plt.figure(figsize = (6,6))
sns.countplot(x = 'charges', data= insurance_dataset)
plt.title('Charges Distribution')
plt.show()
```

```
Data Preprocessing
```

```
2.00

Encoding the categorical features bold text

1.75

# Encoding the sex column
insurance_dataset.replace({'sex':{'male' : 0, 'female' : 1}}, inplace = True)
```

insurance_dataset.replace({'smoker':{'yes' : 0, 'no' : 1}}, inplace = True)

Splitting Features and Target

Encoding Smoker Column

Encoding Region Column

```
X = insurance_dataset.drop(columns = 'charges', axis = 1)
Y = insurance_dataset['charges']
```

Splitting the data into training and testing data

```
X_train , X_test, Y_train, Y_test = train_test_split(X , Y, test_size = 0.2, random_state = 2)
print(X.shape, X_train.shape, X_test.shape)
(1338, 6) (1070, 6) (268, 6)
```

 $insurance_dataset.replace(\{'region': \{'southeast': 0, 'southwest': 1, 'northeast': 2, 'northwest': 3\}\}, inplace = True)$

Model Training

```
# Calling Linear Regression Model
regressor = LinearRegression()

regressor.fit(X_train, Y_train)

v LinearRegression
LinearRegression()
```

Model Evaluation

```
# Prediction on training data
training_data_prediction = regressor.predict(X_train)

# R Squared Value on training data
r2_train = metrics.r2_score(Y_train, training_data_prediction)
print("R Squared Value:" , r2_train)

R Squared Value: 0.751505643411174

# Prediction on testing data
testing_data_prediction = regressor.predict(X_test)

# R squared Value on testing data
r2_test = metrics.r2_score(Y_test, testing_data_prediction)
print("R Squared Value:" , r2_test)

R Squared Value: 0.7447273869684076
```

Builidng a Predictive System

```
input_data = (56,0,19.95,0,0,2)
```

11/4/23, 4:38 PM

```
#Chaning inp_data into a numpy array
input_data_as_numpy_array = np.asarray(input_data)

#Reshaping the array
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

#Predicting the cost
prediction = regressor.predict(input_data_reshaped)
print("The Cost of your Model Insurance is:", prediction)

The Cost of your Model Insurance is: [32457.19553961]
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but LinearRegression was warnings.warn(
```