EE 2372 Test 2

9 problems, 100 points.

November 24, 1998

NAME

Closed book, closed notes, no calculators. Scratch paper will be provided, so do not use any of your own.

You are permitted pens or pencils, erasers, and a (non-calculator) watch. All other items are to be placed underneath your desk.

Please read the entire exam before beginning, and note point values. Some problems are more worthwhile than others.

Do not turn this page until instructed to do so.

Good luck!

Design a synchronous decade (0-9) counter using four JK flip-flops, four NOR gates, and four 16-1 multiplexers. Any erroneous (glitch) state must be reset to zero on the next clock cycle. The states are Q3Q2Q, Qo. (MSB) (LSB)

2. Can you make any gate you want, using only XOR gates and inverters? (Circle your answer.)

YES No

If you said yes, show how.

If you said no, why not?

3. What is this system doing?

Hint: Draw the Moore diagram.

4. Design a 3-bit synchronous Medula-6 counter, using D flip flops: Dz D, Do. (It counts 0-5 and starts ever.)

Use a Moore diagram

Write minimal SOP expressions for Dz D, Do

You don't need to draw the devices.

5. Your input is in Excess-3, and your problem is specified by the Mealy Diagram below. Design the complete system in minimal SOP form. Use the variable-entered map technique. Don't draw the sates, just write the minimal SDP expressions. gates, just write the minimal SDP expressions. Now, can you further reduce the gate count by Finding redundancies in the S and D expressions?

6. Make a Store-Toggle flip-flop with the following excitation table

Implement this using a T flip-flop and additional logic. (We will call the T flip-flop's input Ti to distinguish it from the T above.)

Fill in the state transition table below:

(Hint: For two lines, the correct answer is not unique. Pict any correct answer for those lines.) 7. Design a two-bit up/down counter.

The control input is; $\begin{cases} x=0 \Rightarrow count down \\ x=1 \Rightarrow count up$

The states are

QA = A = Most Significant Bit QB = B = Least Significant Bit

You can only use SR flip flops, XDR gates, and injerters.

8. Design a 4-bit ring counter with initialize and error correction. The only inputs are the clock and I, the initialize signal. The system outputs are:

1000

If the system enters any invalid state, it must return to 1000 on the next next clock cycle. The signal to do this is called E. Use D flip flops: D3 D2 D, Vo.

Use D flip flops: D3 D2 D, Vo.

Just write the equations for each D input - you don't need to draw them. Also write the equation for E.

9. Configure a 74154 decoder (see following pages) to implement the function F= ABCD+B+C.

