Scientific Notation and Linear Equations MATH 1511, BCIT

Technical Mathematics for Geomatics

September 7, 2017

Significant Digits

Determine the number of significant digits in the following measurements:

587*m* 890.8*m* 30.7° 800*km* 0.080*N* 0.0801*N* 0.0800*N*

Significant Digits

Determine the number of significant digits in the following measurements:

3 significant digits
4 significant digits
3 significant digits
1 significant digit*
2 significant digits [†]
3 significant digits
3 significant digits [‡]

^{*}Perhaps we are unlucky and there are actually 2 or 3 significant digits. One significant digit is the best guess based on the information that we have.

[†]Again there is an ambiguity here: it may be 3 significant digits.

[‡]Note here that it is important to add the zeroes in order to indicate the number of significant digits. There is a subtle difference between 0.8 and 0.800.

In order to deal with significant digits in a consistent manner, we use scientific notation. A number in scientific notation will always be of the form

$$p \times 10^n \tag{1}$$

where $n \in \mathbb{Z}$ and $p \in \{x \in \mathbb{R} | 1 \le x < 10\}$.

We use the EEX button on our calculator to input numbers in scientific notation.

Exercise 1: Express the following numbers in scientific notation; indicate the number of significant figures of each measurement.

- The radius of the earth is 6378.1km
- The speed of light is 299792458m/s
- The radius of Mars is 3397000m
- The radius of a red blood cell is 0.00034mm

exa	E	10 ¹⁸	1 000 000 000 000 000 000	
peta	Р	10 ¹⁵	1 000 000 000 000 000	
tera	Т	10 ¹²	1 000 000 000 000	
giga	G	10 ⁹	1 000 000 000	
mega	М	10 ⁶	1 000 000	
kilo	k	10 ³	1 000	
hecto	h	10 ²	100	
deca	da	10 ¹	10	
-		10°	1	
deci	d	10-1	0,1	
centi	С	10-2	0,01	
mili	m	10 ⁻³	0,001	
micro	μ	10 ⁻⁶	0,000 001	
nano	n	10 ⁻⁹	0,000 000 001	
pico	р	10 ⁻¹²	0,000 000 000 001	

Exercise 2: Solve the following problems.

- At sea level, atmospheric pressure is about 101300Pa. How many kPa is this?
- A weather satellite orbiting the Earth has a mass of 2200 kg.
 How many grams is this?
- A microbe has a diameter of $3\mu m$. How many mm is this?
- The mass of the moon is $7.346 \times 10^{22} kg$. Express this value in grams.
- The mass of an electron is $9.109 \times 10^{-31} kg$. Express this value in grams.

Exercise 3: Solve the following problems.

- The Moon travels about 2400000km in about 28 days in one rotation about the Earth. Express the Moon's velocity in m/s.
- A commercial jet with 230 passengers on a 2850km flight from Vancouver to Chicago averaged 765km/h and used fuel at a rate of 5650L/h.
 - How many hours was the flight?
 - How long, in seconds did it take to use 1.0L of fuel?
 - What was the fuel consumption in km/L?
 - What was the fuel consumption in L/passenger?

Equations

Exercise 4: Determine the solution set.

$$8 + x = 13
x^2 = 4
\frac{x}{1} = x
x + 2 = x
\frac{x-7}{x-7} = 1$$

Equations

Exercise 4: Determine the solution set.

$$8 + x = 13 \quad S = \{5\}$$

$$x^{2} = 4 \quad S = \{-2, 2\}$$

$$\frac{x}{1} = x \quad S = \mathbb{R}$$

$$x + 2 = x \quad S = \{\}$$

$$\frac{x - 7}{x - 7} = 1 \quad S = \mathbb{R} \setminus \{7\}$$

Linear Equations

An equation is said to be linear if the variable appears at most to the power of 1. Here are some examples,

$$8x - 6 = 12$$

 $3(p - 5) = 8$ (2)
 $4 - 3(t - 5) = 9t$

Linear Equations

An equation is said to be linear if the variable appears at most to the power of 1. Here are some examples,

$$8x - 6 = 12 \quad S = \left\{\frac{9}{4}\right\}$$

$$3(p - 5) = 8 \quad S = \left\{\frac{23}{3}\right\}$$

$$4 - 3(t - 5) = 9t \quad S = \left\{\frac{19}{12}\right\}$$
(3)

Doing the Same Thing to Both Sides I

Here is a proof that 1=2. Let a and b be some real numbers for which we know that they are not zero and that they are equal, so $a, b \neq 0$ and a = b. Then

$$a = b \qquad | \cdot a$$

$$a^2 = ab \qquad | -b^2$$

$$a^2 - b^2 = ab - b^2 \qquad | \text{factor}$$

$$(a+b)(a-b) = b(a-b) \qquad | \div (a-b)$$

$$a+b = b \qquad | \text{replace } a \text{ by } b$$

$$b+b = b \qquad | \text{simplify}$$

$$2b = b \qquad | \div b$$

$$2 = 1$$

Doing the Same Thing to Both Sides II

The key to solving equations is to do the same thing to both sides. Let A, B, D be any mathematical expressions. Then

$$A = B \tag{5}$$

is equivalent to

$$A + D = B + D$$

$$A - D = B - D$$

$$A \cdot D = B \cdot D$$

$$\frac{A}{D} = \frac{B}{D}$$
(6)

although for the latter two it is important that $D \neq 0$, otherwise the relevant function F applied to both sides is not injective.

Doing the Same Thing to Both Sides III

Are the following also equivalent to A = B?

$$A^{2} = B^{2}$$

$$|A| = |B|$$

$$\sqrt{A} = \sqrt{B}$$

$$(7)$$

Doing the Same Thing to Both Sides III

Are the following also equivalent to A = B?

$$A^2 = B^2$$
 no, use with caution
$$|A| = |B|$$
 no, use with caution (8)
$$\sqrt{A} = \sqrt{B}$$
 no, use with caution

Doing the Same Thing to Both Sides IV

Consider the following:

$$(x-1)^2 = 4$$
 $|x-1| = 4$
 $\sqrt{21-4x} = x$
(9)

Doing the Same Thing to Both Sides IV

Consider the following:

$$(x-1)^2 = 4$$
 $S = \{-1,3\}$
 $|x-1| = 4$ $S = \{-3,5\}$ (10)
 $\sqrt{21-4x} = x$ $S = \{3\}$

For the last equation, $S = \{3\}$ even though the corresponding quadratic equation $x^2 + 4x - 21 = 0$ has as its solutions $\{-7, 3\}$.

Linear Equations with Fractions

When the equation contains fractions, it is helpful to remember prime number factorization and the greatest common denominator.

$$\frac{p}{4} = \frac{7}{8} + \frac{2p}{3}
\frac{6y}{7} = \frac{4}{9}y - \frac{1}{4}$$
(11)

Linear Equations with Fractions

When the equation contains fractions, it is helpful to remember prime number factorization and the greatest common denominator.

$$\frac{p}{4} = \frac{7}{8} + \frac{2p}{3} \quad S = \left\{-\frac{21}{10}\right\}
\frac{6y}{7} = \frac{4}{9}y - \frac{1}{4} \quad S = \left\{-\frac{63}{104}\right\}$$
(12)

Cross-Multiplying I

Another excellent way to get rid of fractions is to cross-multiply. Cross-multiplying means that if $B, D \neq 0$ then the equation

$$\frac{A}{B} = \frac{C}{D} \tag{13}$$

is equivalent to the equation

$$A \cdot D = B \cdot C \tag{14}$$

Cross-Multiplying II

Here is an example.

$$\begin{array}{rcl} \frac{x+1}{x-7} & = & -\frac{3}{5} & | & \text{cross-multiply} \\ 5(x+1) & = & (-3)(x-7) & | & \text{expand} \\ 5x+5 & = & -3x+21 & | & +3x-5 \\ 8x & = & 16 & | & \div 8 \\ x & = & 2 \end{array} \tag{15}$$

Therefore, $S = \{2\}$.

Exercises Linear Equations

Exercise 5: Solve the following equations,

$$-7w = 15 - 2w$$

$$\frac{z}{5} = \frac{3}{10}z + 7$$

$$4(y - \frac{1}{2}) - y = 6(5 - y)$$

$$5(x + 3) + 9 = -2(x - 2) - 1$$
(16)

Exercises Scientific Notation

Exercise 6: Three resistors, having resistances of $4.98 \times 10^5 \Omega, 2.47 \times 10^4 \Omega$, and $9.27 \times 10^6 \Omega$, are wired in series. Find the total resistance, using

$$R = R_1 + R_2 + R_3 \tag{17}$$

Exercise 7: Find the equivalent resistance if the three resistors of the previous problem are wired in parallel, using

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \tag{18}$$

Exercises Conversion of Units

Exercise 8: String together pencils to cover the distance from the Earth to the Sun. How many trees do you need? Here is all the relevant information:

speed of light	300,000km/sec
light to reach Earth	8 min
weight of a pencil	8g
length of a pencil	7.5in
weight of tree used for pencils	2.4 tons
one inch	2.54cm

End of Lesson

Next Lesson: Quadratic Equations