Live Session 2

- 1. Welcome and agenda review
- 2. Continuous vs Discrete data
- 3. Project Feedback and Next Steps
 - a. DMAIC overview, y=f(x)
 - b. Data Stratification Tree/Data Measurement Plan
 - c. SQL (Sigma Quality Level)
 - d. Soft Tools
- 4. Topic Review
 - a. Descriptive Statistics/Inferential Statistics
 - b. Hank the Handyman (process mapping)
 - variance, standard deviation
- 5. Assignments for next 2 weeks
- 6. Wrap up, feedback

Quiz #1

30 mins timed (track your own time), multiple choice, open book, open notes

Week 1

- DMAIC Overview
- Discrete and Continuous Data
- ✓ Sigma Quality Level (SQL)
- Operational Definitions
- Soft Tools (Describing data using graphs and tables, textbook chapter 2)
- ✓ Kappa technique

Week 2

- Mapping the Process
- Describing data numerically (focus on measures of center and spread, textbook Chapter 3)
- Improving the process

Discrete/Continuous Data

What is the benefit of using one versus the other?

DMAIC

Define: Identify the problem and the team's scope.

Measure: Develop data collection plan and implement it.

Analyze: Determine root causes; identify and verify critical variables.

Improve: Develop/select/pilot and then implement a solution.

Control: Put a control plan in place; ensure the problem stays fixed.

Define

Measure

Description:

Clearly identify the business problem / performance gap (output measure), customer, scope, goals and resources.

Key Concepts:

y = f(x)

Types of data

Descriptive statistics and soft tools

Project:

Complete Problem Definition Worksheet

Tools:

Process map

SIPOC

Descriptive statistics

Thought process map

Affinity diagram

Sigma Quality Level (SQL)

Description:

Validate your measurement system and collect baseline data.

Key Concepts:

Mapping a process/value-stream, forms of waste, measurement error, reproducibility, repeatability

Project:

Identify potential inputs, develop operational definitions, develop data measurement/collection plan, validate measurement system, collect baseline data, calculate SQL.

Tools:

Operational definitions

Kappa

Process map (detailed)

Data measurement plan

Data stratification tree

Histogram

Trend/line chart

Pareto chart

Fishbone (cause/effect) diagram

Week 1 Week 2

Project Next Steps - Measure Phase

- Incorporate Feedback on Problem Definition Worksheet
- Process Map (required for final project)
- Data Measurement Plan or Data Stratification Tree (required for final project)
- SQL baseline (required for final project)
- Soft Tools

Process Map

Benefits of a Process Map:

Keeps everyone on same page Highlights decision points Helps identify non-value-add steps

Gives everyone clear understanding of process Can be used as communication and training tool Gives a way to show improvement visually

Goal is to remove waste (non-value-added steps): This will improve efficiency and productivity

Data Stratification Tree

Questions About Process

Are orders impacted by the sales rep skill-levels (systems, product, pricing, listening, ability to follow the process)?

What % of the calls are order related?

Does the Sales Rep have the right skills to improve selling more orders?

Do new orders vary by month?

Do new orders change by the receptiveness of the customer?

Are orders impacted by call duration?

Are orders impacted by call wait time?

Are orders impacted by pricing issues?

Are orders impacted by whether or not the Sales Rep follows the written process?

Do new orders vary by the availability of the product (not on backorder)?

Do the current targets impact orders?

Stratification factors X Variables

Skill level

Type of call

Training

New Orders

(Output Y)

Time of year (mo.)

Customer attitude

Call duration

Wait time

Pricing Issue

Written process

No.of backorders

Target settings (calls, orders, revenue)

Measurements

•% of orders per Sales Rep by skill level type

•average & range of Sales Rep skill levels

•% type of call

•no. of hours of training per month

• total orders placed by month

•% new orders are of total orders

•% new order revenue of total revenue by month

•customer attitude rating by orde lype

•Average call duration for r

proper orders

Ans transferred to OB due to pricing issues

•mystery call /silent monitoring results (points per call)

•% of orders resulting in backorders

•calls, orders, total rev, rev per mo. per Sales Rep

Data Measurement Plan

Performance Measure	Data Source and Location	How Will Data Be Collected	Who Will Collect Data	When Will Data Be Collected	Target Sample Size
% of orders per Sales Rep by skill level typeaverage & range of Sales Rep skill levels	•Susie	•Develop rating scale & assess performance	•Susie	5/12	N/A
•% type of call	•Manual data collection	•Use data collection form	•All	5/11-6/2	1000 calls
•no. of hours of training per month	•John's training spreadsheet	•Manual data collection	•John	5/20	12 mo
total orders placed by month% new orders are of total orders% order revenue of total revenue by month	•IB performance reports	•Pull from repor	•Leanne	By 6/3	28 mo
•customer attitude rating by order type	•Manual data collectio	s la lection form	•All	5/11 - 6/2	500 orders
•Average call duration for new order vs. other	•Ma aldata ecti	se dat collection form	•All	5/11 - 6/2	500 orders
•wait time for each call	•Ob rfrom A team	•Aspect reports	•Leanne	tbd	tbd
•% of calls transferred to OB due to pricing issues	•Manual data collection	•Use data collection form	•All	5/11 - 6/2	1000 calls
•mystery call /silent monitoring results (points per call)	•Monthly mystery call results	Compile Pamela's data	•Leanne	By 6/3	30
•% of orders resulting in backorders	•Manual data collection	•Use data collection form	•All	5/11 - 6/2	500 orders
•calls, orders, total rev, per Sales Rep per month	•IB performance reports	•Pull from report	•Susie	By 6/3	28 mo
No. of inbound calls per day	•IB performance reports	•Pull from report	•Susie	By 6/3	28 mo
•order revenue per Sales Rep per month	•IB performance reports	•Pull from report	•Susie	By 6/3	28mo
Total revenue per month	•IB performance reports	•Pull from report	•Susie	By 6/3	28 mo
Revenue per month by product type	•SN report	•Pull from report	•Leanne	By 6/3	ytd

SQL: Sigma Quality Level Coursework Section 1.6

Identifying SQL

1.Defect opportunities per unit: D = 3

2.Units produced per day: U = 100

3. Total possible defects per day: $D \times U = 300$

4.Total actual defects: A = 20

5.Defect-per-opportunity rate: A \div DU = DPO = 6.7%

6.Defects per million opportunities (DPMO): DPO \times 1,000,000 = 67,000

7.SQL value (from SQL table) = 3

DPMO	S.Q.L.	Yield	DPMO	S.Q.L.	Yield	DPMO	S.Q.L.	Yield
934,000	0	6.60%	308,000	2	69.20%	6,210	4	99.40%
920,000	0.1	8.00%	274,000	2.1	72.60%	4,660	4.1	99.50%
900,000	0.2	10.00%	242,000	2.2	75.80%	3,460	4.2	99.70%
880,000	0.3	12.00%	212,000	2.3	78.80%	2,550	4.3	99.75%
860,000	0.4	14.00%	184,000	2.4	81.60%	1,860	4.4	99.81%
840,000	0.5	16.00%	158,000	2.5	84.20%	1,350	4.5	99.87%
810,000	0.6	19.00%	135,000	2.6	86.50%	960	4.6	99.90%
780,000	0.7	22.00%	115,000	2.7	88.50%	680	4.7	99.93%
750,000	8.0	25.00%	96,800	2.8	90.30%	480	4.8	99.95%
720,000	0.9	28.00%	80,800	2.9	91.90%	330	4.9	99.97%
690,000	1	31.00%	66,800	3	93.30%	230	5	99.98%
650,000	1.1	35.00%	54,800	3.1	94.50%	150	5.1	99.99%
610,000	1.2	39.00%	44,600	3.2	95.50%	100	5.2	99.99%
570,000	1.3	43.00%	35,900	3.3	96.40%	70	5.3	99.99%
540,000	1.4	46.00%	28,700	3.4	97.10%	40	5.4	99.996%
500,000	1.5	50.00%	22,700	3.5	97.70%	30	5.5	99.997%
460,000	1.6	54.00%	17,800	3.6	98.20%	20	5.6	99.998%
420,000	1.7	58.00%	13,900	3.7	98.60%	10	5.7	99.999%
382,000	1.8	61.80%	10,700	3.8	98.90%	8	5.8	99.999%
344,000	1.9	65.60%	8,190	3.9	99.20%	5	5.9	99.9995%
						3.4	6	99.9997%

What is a defect in your project?

SQL: Sigma Quality Level Coursework Section 1.6

A call center takes 1500 calls in a month. Customer wait times shouldn't be longer than 15 seconds. In addition, there should be no hang ups by customers before they get addressed. This month, the call center had 200 calls that had a wait longer than 15 seconds and 50 hang ups. What is the SQL for this month?

Identifying SQL

- 1. Defect opportunities per unit: D =
- 2. Units produced per timeframe: U =
- 3. Total possible defects per timeframe: $D \times U =$
- 4. Total actual defects in timeframe: A =
- 5. Defect-per-opportunity rate: A ÷ DU = DPO =
- 6. Defects per million opportunities (DPMO): DPO \times 1,000,000 =
- 7.SQL value (from SQL table) =

Breakouts

DPMO	S.Q.L.	Yield	DPMO	S.Q.L.	Yield	DPMO	S.Q.L.	Yield
934,000	0	6.60%	308,000	2	69.20%	6,210	4	99.40%
920,000	0.1	8.00%	274,000	2.1	72.60%	4,660	4.1	99.50%
900,000	0.2	10.00%	242,000	2.2	75.80%	3,460	4.2	99.70%
880,000	0.3	12.00%	212,000	2.3	78.80%	2,550	4.3	99.75%
860,000	0.4	14.00%	184,000	2.4	81.60%	1,860	4.4	99.81%
840,000	0.5	16.00%	158,000	2.5	84.20%	1,350	4.5	99.87%
810,000	0.6	19.00%	135,000	2.6	86.50%	960	4.6	99.90%
780,000	0.7	22.00%	115,000	2.7	88.50%	680	4.7	99.93%
750,000	8.0	25.00%	96,800	2.8	90.30%	480	4.8	99.95%
720,000	0.9	28.00%	80,800	2.9	91.90%	330	4.9	99.97%
690,000	1	31.00%	66,800	3	93.30%	230	5	99.98%
650,000	1.1	35.00%	54,800	3.1	94.50%	150	5.1	99.99%
610,000	1.2	39.00%	44,600	3.2	95.50%	100	5.2	99.99%
570,000	1.3	43.00%	35,900	3.3	96.40%	70	5.3	99.99%
540,000	1.4	46.00%	28,700	3.4	97.10%	40	5.4	99.996%
500,000	1.5	50.00%	22,700	3.5	97.70%	30	5.5	99.997%
460,000	1.6	54.00%	17,800	3.6	98.20%	20	5.6	99.998%
420,000	1.7	58.00%	13,900	3.7	98.60%	10	5.7	99.999%
382,000	1.8	61.80%	10,700	3.8	98.90%	8	5.8	99.999%
344,000	1.9	65.60%	8,190	3.9	99.20%	5	5.9	99.9995%
						3.4	6	99.9997%

Soft Tools

The tools we have discussed in this unit don't require many calculations but are just as powerful and effective as some of the statistical/analytical tools we'll learn about later.

Types of Statistics

Descriptive Statistics

Tool	What is it?	Textbook Reference	Example	Excel Function	
Measure of Center (Measure of Location)	A measure of the middle (or central portion) of the data set. 3 measures are: Mean = arithmetic average Median = middle value Mode = most frequent value	Discovering Stats 3e – pg.108-117	Data: 5 7 8 8 2	Mean = AVERAGE (data range) Median = MEDIAN (data range) Mode = MODE (data range)	
$ \mu = popul$ $ \bar{x} = sampl$	ation mean e mean		Mean = (5 + 7 + 8 + 8 + 2) /5 = 6 Median = 2, 5, 7, 8, 8 middle number =7 Mode = occurs two times = 8		

Measure of Variability (Measure of Dispersion or Spread)

 $\sigma = population$

s = sample

A measure of how the data is spread around the mean. 3 measures are: Range = difference between the

largest and the smallest data

Standard Deviation (sample) = measure takes into account each data point and its distance from the mean

Variance = standard deviation squared

Discovering Stats 3e pg.126-137

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Data: 5

8

8

Range = MAX (data range) – MIN (data range) **Standard deviation** (sample) = STDEV.S (data range)

Variance (sample) = VAR.S (data range)

Range = 2, 5, 7, 8, 8 ... largest – smallest = 8-2 = 6

Standard deviation = use Excel = 2.5495 **Variance** = standard deviation squared = 6.5

Using Excel DataAnalysis ToolpakSelect..... Data > Data Analysis > **Descriptive Statistics**

Input Range: ←----- raw data goes here

Output Range: ←-----where you want the answer

point

Hank the Handyman Variance and Standard Deviation

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{N - 1}}$$

where

 $s = the \, standard \, deviation$

 $x = each \ value \ in \ the \ sample$

 $\overline{x} = the \ mean \ of \ the \ values$

N = the number of values (the sample size)

Formulas in Excel:

Mean =AVERAGE(data range of cells in a column)

Median = MEDIAN(data range)

Mode = MODE.SNGL(data range)

Range = MAX (data range) - MIN(data range)

Standard deviation =STDEV.S(data range)

Variance = VAR.S(data range)

What's the difference between Variance and Standard Deviation?

Next two weeks

1. Project Next Steps - Measure Phase

Process Map
Data Stratification Tree OR Data Measurement Plan
Baseline SQL

2. Coursework BLT's:

- 2.5 Hank the Handyman: Mapping the Process
- 2.6 Hank the Handyman: Describing the Data
- 2.7 Hank the Handyman: Improving the Process
- 3.11 Alpha vs. Beta
- 3.12 Project Hypothesis Statements

3. Assignments:

Upcoming assignment:

ssignment: Homework #1: (worth 5 points)

Due 3 days after live session 3

LaunchPad Assignments

- Complete **LearningCurve** for Chapter **3**.
- Complete **StatTutor** (3 topics): Chapter **6**
 - Normal Distributions
 - The Standard Normal Distribution
 - Using the Standard Normal Table

Ouiz #1

Due 3 days after live session 2 Complete by midnight eastern