CHAPTER 6

GRAPH THEORY

HOMEWORK

- Again, all homework is from the Exercises
 - No problems are from the Review Exercises
- Section 6.1, (p. 271), #5-10, 17-18, 22, 27-28, 46-48
- Section 6.2, (p. 281), #20-21, 28-38, 39, 41
- Section 6.3, (p. 296), #I-7
- Section 6.5, (p. 300), #1-3, 7-9, 13-14, 24-25
- Section 6.6, (p. 305), #1-7
- Section 6.7, (p. 311), #6-9, 18-24

VOCABULARY TO KNOW

- Vertex
- Edge
- Path
 - List of edges on a "tour" from one vertex to another
- Graph
 - Set of vertices (This is V below)
 - Set of edges (This is E below)
 - Written G = (V, E)
 - V and E must be finite

TYPES OF GRAPHS

- Undirected Graph
- Directed Graph
 - Also called a digraph
 - Edges have directions
 - This is symbolized by arrows
- Weighted Graph
 - The edges have weights (numbers) on them

SHAPE DOESN'T MATTER; ONLY V AND E MATTER

The city map from the text

The bottom can be redrawn

MORE VOCABULARY

- Incident
 - A vertex at the end (or beginning) of an edge
 - The vertex is incident on the edge
 - An edge that ends (or begins) at a vertex
 - The edge is incident on the vertex
- Loop
 - An edge incident on only one vertex
- Isolated vertex
 - Has no incident edges
- Parallel edges
 - Two (or more) edges that connect the same two vertices

A DIRECTED GRAPH

- This graph is directed
- It has 7 edges
- It has 6 vertices
- It has a loop

- Notice that you can only follow the arrows on a directed edge
 - You can't go backward

SIMPLE GRAPHS AND CYCLES

- A simple graph is a graph with
 - No loops
 - No parallel edges
- We will most frequently look at simple graphs
- A simple path is a path from one vertex to another that has no repeated edges
- A cycle is a simple path that
 - Starts and ends at the same vertex, and
 - Has at least one edge

THE N HYPERCUBE

- We have 2ⁿ processors
- Each processor is labeled with 0, 1, 2, ..., 2ⁿ-1
 - The numbers are written in binary
- To make the graph
 - The processors are the vertices
 - The edges connect processors whose labels differ by only one bit
- A hypercube is useful for parallel computing

A RECURSIVE DESCRIPTION

• Base cases

A RECURSIVE DESCRIPTION

Duplicate the picture

- Connect vertices with the same labels
- Add a 0 to the beginning of each vertex label on the left
- · Add a I to the beginning of each vertex label on the right

THE RESULTING PICTURE

Only one connecting vertex is drawn

COMPLETE GRAPHS

- A complete graph has an edge between each pair of vertices
 - It's a graph with "every" possible edge
- We call them K_n , where n is the number of vertices
- Here are two pictures of K₄

Notice that K_n has n(n-1)/2 edges

BIPARTITE GRAPHS

- A bipartite graph is one where
 - You can break the vertex set into two parts, and
 - All vertices go from one set to the other
- · Here is a picture of a bipartite graph

A GRAPH THAT IS NOT BIPARTITE

- This graph is not bipartite
- If so, the vertices can be put into two sets, V and W
 - Edges only go from one set to the other
- How about C, F, and I?
- You need three sets; two won't do

A COMPLETE BIPARTITE GRAPH

- A complete bipartite graph is one where
 - the graph is bipartite, and
 - every possible edge between the vertex sets is in the graph
- We write this as K_{m,n}
 - m is the number of vertices in one vertex set
 - n is the number of vertices in the other

A SUBGRAPH

- Start with a graph
- Choose some edges from the original graph
- Choose all vertices incident on those edges
 - This restriction is so the subgraph is actually a graph
- This is a subgraph of the original graph

A CONNECTED GRAPH

- A graph is connected if there is a path between every pair of vertices
- The graph on the left is connected; the one on the right is not

The graph on the right has two components

THE DEGREE OF A VERTEX

- The degree of a vertex is the number of edges that are incident on the edge
- Special case
 - If there is a loop, this adds 2 to the degree instead of I

THE KÖNIGSBERG BRIDGES AGAIN

- Euler Cycles
 - An Euler cycle is a cycle that contains all edges and all vertices
- Theorem 6.2.17
 - If a graph has an Euler cycle, then every vertex has even degree
- So the Königsberg has no Euler cycle
- The converse is also true (Theorem 6.2.18)
 - If a graph is connected and every vertex has even degree, then the graph has an Euler cycle

PROOF OF THEOREM 6.2.18

- The Theorem is
 - If a graph is connected and every vertex has even degree, then the graph has an Euler cycle
- The proof will be induction on the number of edges
- Suppose G has I edge and every vertex has even degree
 - What can G look like?
- Suppose G has 2 edges, is connected, and every vertex has even degree
 - What can G look like?
 - We don't actually need this second case, but it makes us familiar with the theorem

THEOREM 6.2.18

- The inductive step is
 - Assume that any connected graph with fewer than n edges and even degree for every vertex has an Euler cycle
 - Show that any connected graph with n edges and even degree for every vertex has an Euler cycle
- So now assume that G is connected and it has at least two edges
 - The induction hypothesis is that any connected graph with fewer than n edges and ever vertex having even degree has an Euler cycle
- Since G has at least two edges it contains a picture like this
- We create a new graph by changing that picture to
- Call the new graph H

CONTINUING THE PROOF OF THE THEOREM

- How is H different from G?
 - What did we do the number of vertices?
 - What did we do to the number of edges?
 - What did we do the degrees of vertices in H?
- I show that H has I or 2 connected components

CONTINUING THE PROOF OF THE THEOREM

- Let v be any vertex in G except v₁
- Since G is connected, there is a path in G from v to v₁
- Let P₁ be the part of the path that has its edges in H
- P₁ must end at v₁, v₂, or v₃ in G
- There are three possibilities for the path in H
 - If it ends at v_1 , then, v is in v_1 's component
 - If it ends at v_2 , then, v is in v_2 's component
 - This is also true if v was chosen to be v₂ and the path in G was v₂-v₁
 - If it ends at v_3 , then, v is in v_3 's component, which is the same as v_1 's component
- This shows that H every vertex in H is in either in v₁ or v₂'s component
- So H has either one or two components

FINISHING THE PROOF OF THE THEOREM

- If H has one component, then it has an Euler cycle
 - Why is that?
- So, then G has essentially that same Euler cycle
 - We change the new edge back to its original two edges
- If H has two components, each has an Euler cycle
 - We can assume the first starts and ends at v₁
 - We can also assume the second starts and ends at v₂
 - We modify it by changing (v_1, v_3) to (v_1, v_2) (v_2, v_3)
- Either way, we get an Euler cycle in G

AN INTERESTING IDEA

- Theorem: In a graph with m edges and n vertices, the sum of the degrees of the vertices is 2m
 - This is easy to see since each edge is counted twice
 - It's counted for each vertex it has
- Corollary: A connected graph has an even number of vertices of odd degree
 - Break the vertices into two sets
 - Even degree vertices, odd degree vertices
 - Sum the degrees of the odd vertices
 - The sum is even (by the theorem) so the sum of the degrees of the odd vertices must be even too

DOMINOES

• Here is a picture of a domino

- Each side can have 0-6 dots
- Suppose a set of dominoes contains all 49 dominoes
- Question: Can we arrange the dominoes in a circle so that adjacent dominoes have the same number of dots?
- To get the graph
 - The numbers 0, ..., 6 are the vertices
 - The edges are "the dominoes"
 - There is an edge between every pair of vertices and a loop at each vertex

THE DOMINO CIRCLE

- What is the degree of each vertex?
- Also notice that the graph is connected
- The theorem guarantees that there is an Euler cycle
- That shows how to arrange the dominoes in a circle

REPRESENTATIONS OF GRAPHS IN SOFTWARE

- A graph can be represented by
 - An adjacency matrix
 - An incidence matrix
 - A linked list of vertices, with other linked lists showing the edges

A PROGRAM TO FIND THE SHORTEST PATH IN A GRAPH

Let's look at the program

HOMEWORK

- Again, all homework is from the Exercises
 - No problems are from the Review Exercises
- Section 6.1, (p. 271), #5-10, 17-18, 22, 27-28, 46-48
- Section 6.2, (p. 281), #20-21, 28-38, 39, 41
- Section 6.3, (p. 296), #I-7
- Section 6.5, (p. 300), #1-3, 7-9, 13-14, 24-25
- Section 6.6, (p. 305), #1-7
- Section 6.7, (p. 311), #6-9, 18-24