Отчет по лабораторной работе №7

Дисциплина: Математическое моделирование

Выполнила Дяченко Злата Константиновна, НФИбд-03-18

Содержание

1	Цел	ь работь	ol																														5
2														6																			
3													7																				
4	Теоретические вводные данные											8																					
5	Вып	олнение	е л	ıa(бo	рa	ITC	pı	но	й	pa	ъб	οт	ы																			10
	5.1	Шаг 1																															10
	5.2	Шаг 2																															10
	5.3	Шаг 3																															11
	5.4	Шаг 4																															11
	5.5	Шаг 5																															11
	5.6	Шаг 6																															12
	5.7	Шаг 7	•		•		•	•			•		•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
6	Выв	оды																															14

Список таблиц

Список иллюстраций

Ľ 1	Moreover, was a report of the service	10
5.1	Математическая модель для первого случая	10
5.2	График распространения информации о товаре	10
5.3	Математическая модель для второго случая	11
5.4	График распространения информации о товаре во втором случае	11
5.5	Максимальная скорость распространения рекламы	12
5.6	Математическая модель для третьего случая	12
5.7	График распространения информации о товаре в третьем случае.	13

1 Цель работы

Изучить и построить модель рекламной кампании.

2 Задание

Построить график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.658 + 0.000081n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000085 + 0.23 n(t))(N-n(t))$$

3.
$$\frac{dn}{dt} = (0.85 \sin(t) + 0.83 \cos(t) n(t)) (N - n(t))$$

При этом объем аудитории N=1024, в начальный момент о товаре знает 7 человек. Для случая 2 определить, в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Объект и предмет исследования

Объектом исследования в данной лабораторной работе является модель рекламной кампании, а предметом исследования - графики распространения рекламы для трех случаев.

4 Теоретические вводные данные

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения

рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N-n(t))$$

5 Выполнение лабораторной работы

5.1 Шаг 1

Я построила модель для первого случая, когда $\alpha_1(t)>\alpha_2(t)$, с данными начальными условиями в Modelica. Увидеть это можно на Рисунке 1 (рис. 5.1).

```
model lab07_1
parameter Real al=0.658 "intensity of the advertising campaign";
parameter Real a2=0.000081 "intensity of information dissemination by clients";
parameter Real N=1024 "number of potential clients";
parameter Real n0=7 "number of clients now";
Real n(start=n0);
equation
der(n)=(al+a2*n)*(N-n);
end lab07_1;
```

Рис. 5.1: Математическая модель для первого случая

5.2 Шаг 2

Построила график распространения информации о товаре. График изображен на следующем рисунке (рис. 5.2)

Рис. 5.2: График распространения информации о товаре

5.3 Шаг 3

Построила модель для второго случая, когда $\alpha_1(t) < \alpha_2(t)$ (рис. 5.3)

```
model lab07_2
parameter Real al=0.000085 "intensity of the advertising campaign";
parameter Real a2=0.23 "intensity of information dissemination by clients";
parameter Real N=1024 "number of potential clients";
parameter Real n0=7 "number of clients now";
Real n(start=n0);
equation
der(n)=(a1+a2*n)*(N-n);
end lab07_2;
```

Рис. 5.3: Математическая модель для второго случая

5.4 Шаг 4

Построила график распространения информации о товаре, который изображен на Рисунке 4 (рис. 5.4)

Рис. 5.4: График распространения информации о товаре во втором случае

5.5 Шаг 5

Построив график $\frac{dn}{dt}$, смогла определить, в какой момент времени скорость распространения рекламы имеет максимальное значение. При шаге в 0.001 это момент времени 0.021

Рис. 5.5: Максимальная скорость распространения рекламы

5.6 Шаг 6

Построила модель для третьего случая (рис. 5.6)

```
model lab07_3

parameter Real a1=0.85 "*sin(t) is intensity of the advertising campaign";

parameter Real a2=0.83 "*cos(t) is intensity of information dissemination by clients";

parameter Real N=1024 "number of potential clients";

parameter Real n0=7 "number of clients now";

Real n(start=n0);

equation

der(n)=(al*Modelica.Math.sin(time)+a2*Modelica.Math.cos(time)*n)*(N-n);

end lab07_3;
```

Рис. 5.6: Математическая модель для третьего случая

5.7 Шаг 7

Построила график распространения информации о товаре, который изображена на Рисунке 7 (рис. 5.7). Эту модель можно назвать самой эффективной, так как число людей, знающих о товаре, достигает максимума намного быстрее, чем в первом и втором случаях.

Рис. 5.7: График распространения информации о товаре в третьем случае

6 Выводы

Я познакомилась с моделью рекламной кампании, рассмотрела ее для трех случаев, построив графики распространения информации о рекламе. Результаты работы находятся в репозитории на GitHub, а также есть скринкаст выполнения лабораторной работы.