Dernière mise à jour	Informatique	Denis DEFAUCHY
16/02/2023	7 - Matrices de pixels et images	Résumé

Informatique

7 Matrices de pixels et images

Résumé

Dernière mise à jour	Informatique	Denis DEFAUCHY
16/02/2023	7 - Matrices de pixels et images	Résumé

-	T		
Format sous python	Images au format BMP, gérées sous Python avec plt.imread sous forme d'array (numpy) de triplets d'entiers uint8 codés sur 8 bits (3 octets/pixel). Attention aux problèmes d'overflow dans les opérations +/ Une image est donc un array (IM pour l'exemple) de L lignes et C colonnes. Attention, $M[0,0]$ est le pixel en haut à gauche de l'image Ne pas utiliser $IM[0][0]$, mais bien $IM[0,0]$ – Sinon erreurs avec les slices		
Pixel	[R,G,B] (éventuellement $[R,G,B,A]$). Le	IM est un array contenant 3 entiers uint8 es bits « de gauche » des nombres entiers R, et ceux « de droite » les bits de poids faible $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Exemple	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
[255 0 0] [0 0 255] [0 255 0] [255 0 0] [0 255 0] [0 255 0] Création Attention, ne créer qu'un array ne fonctionne pas, il faut spécifier le type int8 :			
d'une image vierge	<pre>import numpy as np N1,Nc = 100,100 Image_Noire = np.zeros((N1,Nc,3),</pre>	dtype='uint8')	
Vierge	<pre>Image_Blanche = 255*np.ones((N1,N) Quelques out</pre>	-	
On	oublie scipy pour matplotlib	<pre>import matplotlib.pyplot as plt</pre>	
	p - On ramène le format en RGB même si	<pre>image = plt.imread("Nom.bmp")</pre>	
1	iplets) - Mise à jour pillow ? (cf. cours)	<pre>image = image[:,:,:3]</pre>	
Ouverture/Sauvegarde au format array		<pre>import numpy as np image = np.load("Nom.npy") np.save('Nom',image)</pre>	
Affichage		<pre>import matplotlib.pyplot as plt def f_affiche(image):</pre>	
Penser à balader la souris sur les pixels pour avoir les infos ligne (y), colonne (x) et triplet [R,G,B]		<pre>plt.figure() plt.imshow(image) plt.axis('off') plt.show()</pre>	
x=76.8 y=20.7 [232, 5, 0]		<pre>plt.pause(0.00001) f_affiche(image)</pre>	
Dimensions : lignes et colonnes		N1,Nc = image.shape[0:2]	
Accès à ui	n pixel à la ligne l (int) et colonne c (int)	<pre>Pixel = image[l,c]</pre>	
	Parcours des pixels	for c in range(Nc):	
	iliser (l,c) plutôt que (i,j) ou (y,x)	for l in range(Nl):	
Utilisation des slices (gain de temps vis-à-vis d'un for²		image[:,:] = [127,127,127]	
Accès aux entiers R, G et B		R,G,B = Pixel	
		odifie l'image en mémoire. Si on veut créer	
<pre>une copie pour garder l'image d'origine, écrire : image_2 = np.copy(image_1) Enregistrement plt.imsave("Image.bmp",image) sans afficher (dimensions de l'image =</pre>			
lignes colonnes) ou plt.savefig ("Image.png") en 640x480 après l'avoir affichée			
"Bires delemines, ou presidentify image spring / em ordered uprest unon unifice			

Dernière mise à jour	Informatique	Denis DEFAUCHY
16/02/2023	7 - Matrices de pixels et images	Résumé

Dernière mise à jour	Informatique	Denis DEFAUCHY
16/02/2023	7 - Matrices de pixels et images	Résumé

	Convolution		
Principe avec un noyau de dimensions 3x3	Im'	Noyau $K = \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix}$ à n lignes et n colonnes $\begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} & P_{15} \\ P_{21} & P_{22} & P_{23} & P_{24} & P_{25} \\ P_{31} & P_{32} & P_{33} & P_{34} & P_{35} \\ P_{41} & P_{42} & P_{43} & P_{44} & P_{45} \\ P_{51} & P_{52} & P_{53} & P_{54} & P_{55} \end{bmatrix}$; $P_{ij} = \begin{bmatrix} R_{ij}, G_{ij}, B_{ij} \end{bmatrix}$ Intérieurs $T = \begin{bmatrix} P'_{11} & P'_{12} & P'_{13} & P'_{14} & P'_{15} \\ P'_{21} & P'_{22} & P'_{23} & P'_{24} & P'_{45} \\ P'_{31} & P'_{32} & P'_{33} & P'_{34} & P'_{45} \\ P'_{41} & P'_{42} & P'_{43} & P'_{44} & P'_{45} \\ P'_{51} & P'_{52} & P'_{53} & P'_{54} & P'_{55} \end{bmatrix}$ Intérieurs $P'_{ij} = K * M_{ij} ; M_{ij} = \begin{bmatrix} P_{i-1,j-1} & P_{i-1,j} & P_{i-1,j+1} \\ P_{i,j-1} & P_{i,j-1} & P_{i,j+1} \\ P_{i+1,j-1} & P_{i+1,j} & P_{i+1,j+1} \\ P_{i+1,j-1} & P_{i+1,j-1} & K_{22}P_{i,j} + K_{23}P_{i,j+1} \\ + K_{31}P_{i+1,j-1} + K_{32}P_{i+1,j} + K_{33}P_{i+1,j+1} \\ K_{ij}P_{ij} = K_{ij} \begin{bmatrix} R_{ij}, G_{ij}, B_{ij} \end{bmatrix} = \begin{bmatrix} K_{ij}R_{ij}, K_{ij}G_{ij}, K_{ij}B_{ij} \end{bmatrix}$	
	Moyenneur Floutage Repoussage	$K = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $K = \begin{bmatrix} -2 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$	
	Laplacien Contours	$K = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
Filtres	Réhausseur	$K = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
	Gaussien 3x3	$K = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} V = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \Rightarrow K = \frac{V * V^{T}}{16}$	
	Gaussien 5x5	$K = \frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} V = \begin{bmatrix} 1 \\ 4 \\ 6 \\ 4 \\ 1 \end{bmatrix} \Rightarrow K = \frac{V * V^T}{256}$	
Gestion des bords	On peut les laisser à leur valeur d'origine, redimensionner l'image de sortie en les		
Normalisation	enlevant, ou traiter les formules au cas par cas Afin de maintenir une moyenne des RGB par convolution, on peut normaliser la matrice en divisant chacun de ses termes par la somme de tous ses termes		
Re limitation des résultats		dre des BMP par exemple et pour éviter l'overflow, on relimite les e R, G et B afin de les maintenir dans l'intervalle [0,255] avec une formule comme : $E = min(max(E,0),255)$	

Dernière mise à jour	Informatique	Denis DEFAUCHY
16/02/2023	7 - Matrices de pixels et images	Résumé

 R_{α}

 $R_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$

Rotation

Pour chaque pixel P(l,c) de l'image source, on trouve l'image P'(l',c') par rotation d'angle lpha et de centre $\mathcal{C}(l_c,c_c)$ dans l'image cible, à laquelle on applique le triplet RGB de P: Im'(l',c') = Im(l,c)

 $\overline{CP'} = R_{\alpha}\overline{CP} = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} l-lc \\ c-cc \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} \quad ; \quad \begin{bmatrix} l' \\ c' \end{bmatrix} = \begin{bmatrix} lc+\lfloor a \rfloor \\ cc+\lfloor b \rfloor \end{bmatrix}$ Cette méthode crée des trous, les coordonnées (l',c') ne tombant pas sur

100% des pixels de l'image cible

nverse

Pour chaque pixel P'(l',c') de l'image cible, on trouve l'antécédent P(l,c)par rotation d'angle $-\alpha$ et de centre ${lc\brack cc}$ dans l'image source, et on applique à P' le triplet RGB de P: Im'(l',c') = Im(l,c)

$$\overrightarrow{CP} = R_{-\alpha} \overrightarrow{CP'} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} l' - lc \\ c' - cc \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} ; \quad \begin{bmatrix} l \\ c \end{bmatrix} = \begin{bmatrix} lc + \lfloor a \rfloor \\ cc + \lfloor b \rfloor \end{bmatrix}$$
Prendre 1 pixels tous les n pixels. Risque d'effet d'aliasing (lignes visibles)

Pour limiter cet effet, appliquer un filtre moyenneur avant suppression par exemple

Réduction

Prendre la moyenne par paquets de nxn pixels, et ce tous les n pixels tous les n pixels en ligne et en colonne

Pixels à garder/modifier

Résultat intermédiaire

Cette méthode appliquée à de grandes images donne des résultats plus concluants que la précédente par une transition plus douce d'une couleur à l'autre

Dernière mise à jour	Informatique	Denis DEFAUCHY
16/02/2023	7 - Matrices de pixels et images	Résumé

