

Università degli Studi di Firenze

Anno: 2024

Laboratorio di Algoritmi e Strutture Dati

Confronto metodi per calcolare LCS tra due stringhe

Federico Donati

Index

1	Introduzione	1
2	Algoritmo "forza-bruta"	1
3	Algoritmo ricorsivo 3.1 Lcs-recursive	3 3 4
4	Algoritmo iterativo	7
5	Conclusioni	11

1 Introduzione

In questa relazione analizzeremo vari metodi per calcolare LCS ("Longest Common Subsequence"), ovvero la sottosequenza più lunga comune a due sequenze. Ciò significa andare a risolvere il seguente problema:

Date 2 sequenze, $X=< x_1,...,x_m>eY=< y_1,...,y_n>$ trovare una sottosequenza comune ad X e Y di lunghezza massima.

Una sottosequenza di una sequenza è definita comme una sequenza privata di 0 o più dei suoi elementi.

Per farlo, utilizzeremo l'algoritmo "forza-bruta", l'algoritmo ricorsivo, l'algoritmo ricorsivo con memoization e infine l'algoritmo iterativo (bottom up).

Di ciascun metodo verrà fornita una spiegazione dell'algoritmo e del suo funzionamento, l'implementazione dell'algoritmo, e verranno eseguiti e descritti alcuni test che metteranno in evidenza le varie caratteristiche.

2 Algoritmo "forza-bruta"

Date due sequenze X e Y , l'algoritmo "forza-bruta" consiste nel controllare per ciascuna sottosequenza di X se essa è anche sottosequenza di Y, e ovviamente scegliere la più lunga.

Le sottosequenze di X da controllare sono quindi 2^m , con "m" lunghezza di X.

La complessità per controllare ogni sottosequenza è $\Theta(n)$, con "n" lunghezza di Y, che corrisponde a dover scorrere tutta la sequenza Y per ogni sottoseuenza di X.

Si arriva dunque ad una complessità di $\Theta(n * 2^m)$.

L'algoritmo "brute-force" può essere implementato in Python come segue:

```
def Lcs_bruteforce(X,Y):
    if len(X) == 0:
        return 0
    maxi = 0
    for i in range(0,len(X)):
        s = X[0:i] + X[i+1:len(X)]
        maxi = max(maxi, Lcs_bruteforce(s,Y))
    if X in Y:
        maxi = len(X)
    return maxi
```

Eseguiamo un test su due stringhe contenenti entrambe 12 caratteri casuali, e notiamo che già con una lunghezza così modesta il tempo impiegato è notevole (oltre 10 minuti su un computer portatile con processore Intel Core i5) e questo ci fa capire quanto inefficiente sia questo metodo, la cui complessità come descritto precedentemente contiene un termine che cresce esponenzialmente al crescere della lughezza della prima stringa.

Il seguente grafico (Figura 1)ci mostra il crescere del tempo impiegato al crescere della dimensione delle stringhe:

Come si può notare la crescita della funzione è molto ripida (dovuta alla complessità) e ciò testimonia l'inefficienza di questo algoritmo.

Tabella 1: Lcs brute-force test

Dim X e Y	tempo impiegato (s)
1	0.00
2	0.00
3	0.00
4	0.00
5	0.00
6	0.00
7	0.01
8	0.05
9	0.36
10	4.16
11	45.96
12	621.33

Figura 1: Test algoritmo brute-force

3 Algoritmo ricorsivo

3.1 Lcs-recursive

Un altro metodo che possiamo utilizzare per calcolare Lcs tra due stringhe è utilizzare un algoritmo ricorsivo, che si basa sul principio di programmazione dinamica "divide-et-impera".

Per arrivare a formulare questa soluzione dobbiamo innanzitutto definire una sottostruttura ottima; date due stringhe X e Y, denotiamo con X_i il prefisso di X con i elementi:

```
\langle x_1,...,x_i \rangle, e con Y_j il prefisso di Y con j elementi: \langle y_1,...,y_j \rangle.
```

A questo punto possiamo applicare il teorema secondo il quale date le sequenze

 $X = \langle x_1, ..., x_m \rangle$ e $Y = \langle y_1, ..., y_n \rangle$ sia $Z = \langle z_1, ..., z_k \rangle$ una qualsiasi LCS di X e Y:

- \diamond Se $x_m=y_n,$ allora $z_k=x_m=y_n$ e Z_{k-1} è una LCS di X_{m-1} e Y_{n-1}
- $\diamond \ x_m \neq y_n,$ allora $z_k \neq x_m$ implica che Z è una LCS di X_{m-1} e Y
- $\diamond\,$ Se $x_m \neq yn,$ allora $z_k \neq y_n$ implica che Z è una LCS di X e \mathbf{Y}_{n-1}

Nel caso in cui $x_m = y_n$ dovremo quindi esaminare un sottoproblema, altrimenti dovremo esaminarne due per giungere alla soluzione.

Questo porta ad una complessità pari a $\Theta(2^n)$, dove n è la lunghezza di X (=m lunghezza di Y). Risulta quindi che questo algoritmo è molto più efficiente rispetto a quello brute-force visto precedentemente (capitolo 2)

Non ci resta infine che calcolare la soluzione in modo ricorsivo:

$$c[i,j] = \begin{cases} 0 & \text{se } i = 0 \text{ o } j = 0 \text{ (X o Y è vuota)} \\ c[i-1,j-1]+1 & \text{se } i,j>0 \text{ e } x_i = y_j \\ \max(c[i,j-1],c[i-1,j]) & \text{se } i,j>0 \text{ e } x_i \neq y_j \end{cases}$$

Calcoliamo la lunghezza della soluzione ottima con la seguente implementazione in Python dell'algoritmo ricorsivo:

```
\begin{array}{c} \operatorname{def} \ \operatorname{Lcs\_recursive} (X,Y): \\ \operatorname{m=len} (X) \\ \operatorname{n=len} (Y) \\ \operatorname{if} \ \operatorname{m=0} \ \operatorname{or} \ \operatorname{n==0}: \\ \operatorname{return} \ 0 \\ \operatorname{if} \ X[\operatorname{m-1}] = Y[\operatorname{n-1}]: \\ \operatorname{return} \ 1 + \operatorname{Lcs\_recursive} (X[:-1],Y[:-1]) \\ \operatorname{else}: \\ \operatorname{return} \ \operatorname{max} (\operatorname{Lcs\_recursive} (X,Y[:-1]),\operatorname{Lcs\_recursive} (X[:-1],Y)) \end{array}
```

Verifichiamo l'andamento esponenziale $\Theta(2^n)$ dell' algoritmo ricorsivo per determinare Lcs tra due stringhe al crescere della dimensione delle due stringhe.

La dimensione delle due stringhe è la medesima, e cresce di 1 unità alla volta fino a 15.

Dimensione stringhe	Dimensione Lcs	Tempo impiegato (s)
1	0	0.00
2	0	0.00
3	0	0.00
4	0	0.00
5	0	0.00
6	0	0.00
7	1	0.00
8	0	0.00
9	0	0.03
10	1	0.07
11	1	0.23
12	2	0.60
13	2	2.85
14	1	12.62
15	2	45.35

Tabella 2: Dati con terza colonna troncata a due cifre decimali

Figura 2: Test algoritmo ricorsivo

Come mostrato dal grafico (Figura 2) questo algoritmo ha una complessità esponenziale $\Theta(2^n)$, con n(=m) lunghezza delle due stringhe X e Y.

L'algoritmo ricorsivo appena descritto tuttavia può generare chiamate ricorsive con stesso input che vengono ripetute andando a peggiorare l'efficienza della funzione, come mostrato dall'albero di ricorsione(figura 3).

Per questo possiamo realizzare un algoritmo che memorizza i risultati ottenuti per ogni input in una tabella per evitare di chiamare più volte la funzione ricorsiva con il medesimo input.

3.2 Lcs-recursive-memoization

L'alternativa proposta permette di ridurre il tempo di esecuzione dell'algoritmo evitando di ripetere chiamate ricorsive con stesso imput. vediamo un esempio di codice python che permette di implementare questo algoritmo con memoria:

Figura 3: Albero di ricorsione algoritmo LCS-recursive

```
def Lcs recursive memoization (X,Y):
        m=len(X)
        n=len (Y)
        lengths = [[-1] * (n+1) for in range(m+1)]
        return Lcs rec mem aux(X,Y,m,n,lengths)
   \begin{array}{ll} \textbf{def} & Lcs\_rec\_mem\_aux(X,Y,x\,,y\,,\,l\,e\,n\,s\,): \end{array}
        if \overline{x} = \overline{0} or \overline{y} = 0:
             {\tt return}\ 0
        if lens[x][y] >= 0:
10
             return lens[x][y]
12
        if X[x-1]==Y[y-1]:
             q=1 + Lcs rec mem aux(X,Y,x-1,y-1,lens)
14
             q = \max(q, Lcs rec mem aux(X, Y, x-1, y, lens), Lcs rec mem aux(X, Y, x, y-1, lens))
16
        lens[x][y]=q
        return q
```

La complessità di questo algoritmo è $\Theta(n*m)$,(con n dimensione di X e m dimensione di Y), ovvero quadratica $(\Theta(n^2))$ nel caso di stringhe di stessa dimensione. Possiamo notare quindi che questa modifica ha influito notevolmente sull'efficienza della funzione, come dimostra il seguente test eseguito su stringhe con dimensione uguale crescente a intervalli di 100 da 1 a 5000.

Tabella 3: Dati con terza co.	lonna troncata a	due cifre o	decimali
-------------------------------	------------------	-------------	----------

Dimensione stringhe	Dimensione Lcs	Tempo impiegato (s)
1	0	0.0
201	39	0.04
401	84	0.10
601	128	0.22
801	175	0.38
1001	219	0.58
1201	264	0.89
1401	309	1.21
1601	350	1.70
1801	393	2.00
2001	454	2.52

Continua nella pagina successiva

 ${\bf Tabella} \ 3-continua \ dalla \ pagina \ precedente$

Dimensione stringhe	Dimensione Lcs	Tempo impiegato (s)
2201	484	3.44
2401	525	5.28
2601	565	6.56
2801	626	6.75
3001	669	7.36
3201	721	9.10
3401	765	12.63
3601	800	13.20
3801	840	10.93
4001	889	11.15
4201	930	12.25
4401	978	13.50
4601	1005	15.42
4801	1075	16.28
5001	1104	17.70

Figura 4: Test algoritmo ricorsivo con memoization

Il grafico (figura4) mostra l'andamento quadratico dell'algoritmo.

4 Algoritmo iterativo

Nei capitoli precedenti abbbiamo analizzato algoritmi più o meno efficienti per il calcolo della lunghezza dell'LCS tra due stringhe di uguale dimensione X e Y. Vediamo ora un algoritmo iterativo che ci consente di stabilire la lunghezza dell'LCS e allo stesso tempo da quali caratteri è formata. L'algoritmo consiste nel rappresentare due tabelle c e b, dove rispettivamente verranno inseriti la lunghezza dell'LCS e il percorso eseguito per determinarla. La complessità di questo algoritmo è $\Theta(n^2)$.

Il codice dell'algoritmo è il seguente:

```
def LCS Length(X, Y):
        m = len(X)
        n = len(Y)
        b = \hbox{\tt [["" for \_ in } range(n)] } for \_ in \ range(m)]
        c = [[0 \text{ for } \_ \text{ in } range(n+1)] \text{ for } \_ \text{ in } range(m+1)]
        for i in range (1, m+1):
             c[i][0] = 0
        for j in range (n+1):
             c[0][j] = 0
        for i in range (1, m+1):
12
             for j in range (1, n+1):
                   if X[i-1] == Y[j-1]:
14
                       c[i][j] = c[i-1][j-1] + 1
b[i-1][j-1] = "
16
                   elif c[i-1][j] >= c[i][j-1]:
                        c[i][j] = c[i-1][j]
18
                       b[i-1][j-1] = "
                  else:
20
                       c\,[\,i\,]\,[\,j\,]\,=\,c\,[\,i\,]\,[\,j\,-1]
                        b[i-1][j-1] = "
22
        return c, b
```

c[i, j] (Tabella 4) contiene la lunghezza ottima di LCS per X_i e Y_j .

b[i, j] (Tabella 5) indica la strada seguita (il sottoproblema) per risolvere LCS di X_i e Y_j .

Se b[i, j] = \nwarrow , ho esteso LCS di un carattere $(x_i = y_j)$.

LCS contiene x_i (e y_i) in cui b[i, j] = \nwarrow .

Eseguiamo adesso un esempio con stringhe casuali di dimensione 12 per mostrare il funzionamento dell'algoritmo attraverso il seguente codice Python:

```
n_values = list(range(1, 12))
time_values = []
X = ''.join(random.choices(string.ascii_letters + string.digits, k=12))
4
Y=''.join(random.choices(string.ascii_letters + string.digits, k=12))
start_time = time.time()
c, b = LCS_Length(X, Y)
print("Matrice c:")
for row in c:
    print(row)
print("\nMatrice b:")
for row in b:
    print(row)
```

```
#print(Lcs_bruteforce(X,Y))
end_time = time.time()
elapsed_time = end_time - start_time
print(elapsed_time)
```

String X: "2GpBvhkb2YHA" String Y: "VlYchJMG6tbW"

LCS: "hb"

Tabella 4: output matrice c

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	1	1	1
0	0	0	0	0	0	0	0	1	1	1	1	1
0	0	0	0	0	0	0	0	1	1	1	1	1
0	0	0	0	0	0	0	0	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1	1	2	2
0	0	0	0	0	1	1	1	1	1	1	2	2
0	0	0	1	1	1	1	1	1	1	1	2	2
0	0	0	1	1	1	1	1	1	1	1	2	2
0	0	0	1	1	1	1	1	1	1	1	2	2

 \uparrow \uparrow \uparrow \leftarrow \uparrow \leftarrow \uparrow \leftarrow \uparrow \uparrow

Tabella 5: output matrice b

Con un input di 12 elementi il tempo impiegato è stato di 0.00 secondi, decisamente migliore rispetto all'algoritmo "brute-force" (capitolo 2) o all'algoritmo ricorsivo (capitolo 3.1 Vediamo adesso come si comporta l'algoritmo al crescere della dimensione delle stringhe. La dimensione delle due stringhe è la medesima, e cresce di 100 unità alla volta fino a 5000.

Tabella 6: Dati con terza colonna troncata a due cifre decimali

Dimensione stringhe	Dimensione Lcs	Tempo impiegato (s)
1	0	0.53
101	20	0.02
201	39	0.02
301	61	0.05
401	81	0.09
501	111	0.11
601	135	0.17
701	153	0.33
801	168	0.33
901	195	0.33
1001	222	0.38
1101	238	0.49
1201	260	0.66
1301	285	0.78
1401	306	0.75
1501	325	0.85
1601	351	0.92
1701	376	1.21
1801	403	1.36
1901	412	1.47
2001	433	1.42
2101	481	1.68
2201	491	1.91
2301	508	1.90
2401	528	2.17
2501	548	2.21

Continua nella pagina successiva

Tabella	6 -	continua	dalla	pagina	precedente
	_	00,000,000	~~~~~	pagoroa	procedure

Dimensione stringhe	Dimensione Lcs	Tempo impiegato (s)
2601	580	2.68
2701	589	2.88
2801	621	3.99
2901	638	3.16
3001	670	3.29
3101	687	3.63
3201	706	3.77
3301	722	4.00
3401	767	4.53
3501	778	4.57
3601	795	4.70
3701	822	5.30
3801	833	5.62
3901	869	6.18
4001	885	6.01
4101	907	6.96
4201	924	7.94
4301	961	8.53
4401	975	8.30
4501	1011	8.32
4601	1023	7.87
4701	1041	8.59
4801	1074	10.92
4901	1096	11.52
5001	1103	14.51

Alleghiamo il grafico (Figura 5) che ci mostra come la complessità tenda ad essere quadratica nel caso in cui m e n (ovvero la lunghezza rispettivamente delle due stringhe X e Y) coincidano, essendo pari a $\Theta(n*m)$.

Figura 5: Test algoritmo ricorsivo tabella

5 Conclusioni

Abbiamo analizzato 4 possibili algoritmi per calcolare Lcs, l'algoritmo "brute-force", che per efficienza è il peggiore tra quelli esaminati (complessità $\Theta(n*2^m)$), l'algoritmo ricorsivo, che migliora il precedente (complessità $\Theta(2^n)$), ma che nella sua versione con "memoization" riesce a raggiungere buone prestazioni (complessità $\Theta(n^2)$), e infine il migliore tra i menzionati, ovvero l'algoritmo iterativo (complessità $\Theta(n^2)$) che consente non solo di stabilire la lunghezza della LCS, ma anche i caratteri da cui è formata.