Advanced statistical methods

Frédéric Pascal

CentraleSupélec, Laboratory of Signals and Systems (L2S), France frederic.pascal@centralesupelec.fr http://fredericpascal.blogspot.fr

MSc in Data Sciences & Business Analytics
CentraleSupélec / ESSEC
Oct. 2nd - Dec. 20th, 2017

Part A

Reminders of probability theory and mathematical statistics

Part A: Contents

- I. Random Variables / Vectors
- II. Convergences
- III. Essential theorems
 - SLLN and CLT
 - Slutsky theorem and the Delta-method
- IV. Gaussian-related distributions
 - Gamma and Beta distributions
 - \mathbf{Z}^2 , Student-t and F- distributions
 - Student Theorem

Key references of Part A

- Jacod, Jean, and Philip Protter. Probability essentials. Springer Science & Business Media, 2004.
- Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, 2013. (More Advanced!!!)
- Support for the course of probabilities (in french) on my website: http://fredericpascal.blogspot.fr/p/teaching-activities.html
- + many many references...

I. Random Variables / Vectors

II. Convergences

III. Essential theorems

IV. Gaussian-related distributions

Random Variables (r.v.) / Vectors (r.V.)

Let X (resp. \mathbf{x}) a random variable (resp. vectors). Denote by P or P_{θ} its probability :

- P(X = x) or $P_{\theta}(X = x)$ for the discrete case
- f(x) or $f_{\theta}(x)$ for the continuous case (with PDF)

Some other notations:

- E[.] or $E_{\theta}[.]$ (resp. V[.] / $V_{\theta}[.]$) stands for the statistical expectation (resp. the variance)
- i.i.d. \rightarrow Independent (denoted \bot) and Identically Distributed, i.e. same distribution and $X \bot Y \iff$ for any measurable functions h and g, E[g(X)h(Y)] = E[g(X)]E[h(Y)].
- n-sample $(X_1,...,X_n) \iff X_1,...,X_n$ are i.i.d.
- PDF, CDF and iff resp. means Probability Density Function, Cumulative Distribution Function and "if and only if"

I. Random Variables / Vectors

II. Convergences

III. Essential theorems

IV. Gaussian-related distributions

Convergences

Multivariate case

Let $(\mathbf{x})_{n \in \mathbb{N}} \in \mathbb{R}^d$ a sequence of r.V. and $(\mathbf{x}) \in \mathbb{R}^d$ defined on the same probability space (Ω, \mathcal{A}, P) , then

- Almost Sure CV: $\mathbf{x}_n \xrightarrow[n \to \infty]{a.s} \mathbf{x} \iff \exists N \in \mathcal{A} \text{ such that } P(N) = 0 \text{ and}$ $\forall \omega \in N^c$, $\lim \mathbf{x}_n(\omega) = \mathbf{x}(\omega)$
- CV in probability: $\mathbf{x}_n \xrightarrow[n \to \infty]{P} \mathbf{x} \iff \forall \varepsilon > 0, \lim_{n \to \infty} P(\|\mathbf{x}_n \mathbf{x}\| \ge \varepsilon) = 0$ where $\|\mathbf{x}\| = \left(\sum_{i=1}^d x_i^2\right)^{1/2}$ for $\mathbf{x} \in \mathbb{R}^d$. $\mathbf{x}_n \xrightarrow{P} \mathbf{x} \iff$ each component converges in probability.
- CV in \mathcal{L}^p : Let $p \in \mathbb{N}^*$, $\mathbf{x}_n \xrightarrow{\mathcal{L}^p} \mathbf{x} \iff (\mathbf{x})_{n \in \mathbb{N}}$, $\mathbf{x} \in \mathcal{L}^p$ and $E[\|\mathbf{x}_n - \mathbf{x}\|_{\mathcal{L}^p}^p] \xrightarrow[n \to \infty]{} 0.$

Convergence in distribution

- CV in distribution: $\mathbf{x}_n \xrightarrow[n \to \infty]{dist.} \mathbf{x}$ if for any continuous and bounded function g, one has $\lim_{n \to \infty} E[g(\mathbf{x}_n)] = E[g(\mathbf{x})]$.
- ⚠ The CV in distribution of a sequence of r.V. is stronger than the CV of each component!

How to characterise the CV in distribution?

Theorem (Levy continuity Theorem)

Let $\varphi_n(u) = E\left[\exp(iu^t\mathbf{x}_n)\right]$ and $\varphi(u) = E\left[\exp(iu^t\mathbf{x})\right]$ the characteristic functions of \mathbf{x}_n and \mathbf{x} . Then,

$$\mathbf{x}_n \xrightarrow[n \to \infty]{dist.} \mathbf{x} \iff \forall u \in \mathbb{R}^d, \varphi_n(u) \xrightarrow[n \to \infty]{} \varphi(u).$$

Proposition (a.s., P, dist. convergences)

$$\mathbf{x}_n \xrightarrow[n \to \infty]{} \mathbf{x} \Longrightarrow h(\mathbf{x}_n) \xrightarrow[n \to \infty]{} h(\mathbf{x})$$
, if h is a continuous function

Discussion on the cv hierarchy...

- I. Random Variables / Vectors
- II. Convergences
- III. Essential theorems
 - SLLN and CLT
 - Slutsky theorem and the Delta-method

IV. Gaussian-related distributions

SLLN and **CLT**

Theorem (Strong (Weak) Low of Large Numbers)

Let $(\mathbf{x}_n)_{n \in \mathbb{N}^*}$ a sequence of i.i.d. r.V. in \mathbb{R}^d s.t. $E[|\mathbf{x}_1|] < +\infty$. Let $\mu = E[\mathbf{x}_1]$ the expectation of \mathbf{x}_1 . Then,

$$\overline{\mathbf{x}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \xrightarrow[n \to \infty]{a.s,P} \mu.$$

Theorem (Central Limit Theorem)

Let $(\mathbf{x}_n)_{n\in\mathbb{N}^*}$ a sequence of i.i.d. r.V. in \mathbb{R}^d s.t. $E[|\mathbf{x}_1|^2]<+\infty$. Let $\mu=E[\mathbf{x}_1]$ and $\Sigma=E\left[\mathbf{x}_1\mathbf{x}_1^t\right]-E[\mathbf{x}_1]E[\mathbf{x}_1]^t$ the covariance matrix of \mathbf{x}_1 . Let $\bar{\mathbf{x}}_n=\frac{1}{n}\sum_{i=1}^n\mathbf{x}_i$ the empirical mean. Then,

$$\sqrt{n}(\overline{\mathbf{x}}_n - \mu) \xrightarrow[n \to \infty]{dist.} \mathcal{N}(\mathbf{0}, \Sigma).$$

Slutsky theorem

Theorem (Slutsky theorem)

Let $(\mathbf{x}_n)_{n\in\mathbb{N}^*}$ a sequence of r.V. in \mathbb{R}^d that cv in dist. to \mathbf{x} . Let $(\mathbf{y}_n)_{n\in\mathbb{N}^*}$ a sequence of r.V. in \mathbb{R}^m (defined on the same proba. space as $(\mathbf{x}_n)_{n\in\mathbb{N}^*}$) that cv a.s. (or in P, or in dist.) towards a constant \mathbf{a} . Thus, the sequence $(\mathbf{x}_n,\mathbf{y}_n)_{n\in\mathbb{N}^*}$ cv in dist. towards (\mathbf{x},\mathbf{a}) , $(\mathbf{x}_n,\mathbf{y}_n)$ $\xrightarrow[n\to\infty]{dist.}$ (\mathbf{x},\mathbf{a})

Remark (Important Applications of Slutsky (IAS))

Under previous assumptions, one has:

$$1 x_n + y_n \xrightarrow[n \to \infty]{dist.} x + a if m = d$$

3
$$\mathbf{x}_n/\mathbf{y}_n \xrightarrow[n \to \infty]{dist.} \mathbf{x}/a \text{ if } m=1, a \neq 0$$

Delta-method

Theorem (Delta-method)

Let $(\mathbf{x}_n)_{n \in \mathbb{N}^*}$ a sequence of r.V. in \mathbb{R}^d and θ a (deterministic) vector of \mathbb{R}^d . Let $h: \mathbb{R}^d \mapsto \mathbb{R}^m$ a function that is differentiable (at least) at point θ .

Let us denote
$$\frac{\partial h}{\partial \theta^t}(\theta)$$
 the $m \times d$ matrix s.t. $\left(\frac{\partial h_i}{\partial \theta_j}(\theta)\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq d}}$ and

$$\frac{\partial h^t}{\partial \theta}(\theta) = \left(\frac{\partial h}{\partial \theta^t}(\theta)\right)^t \text{ its transpose. Assume that } \sqrt{n}(\mathbf{x}_n - \theta) \xrightarrow[n \to \infty]{dist.} \mathbf{x}. \text{ Then}$$

$$\sqrt{n}(h(\mathbf{x}_n) - h(\theta)) \xrightarrow[n \to \infty]{dist.} \frac{\partial h}{\partial \theta^t}(\theta) \mathbf{x}.$$

Particular case:

If
$$\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$
, then $\sqrt{n} (h(\mathbf{x}_n) - h(\theta)) \xrightarrow{dist.} \mathcal{N} \left(\mathbf{0}, \frac{\partial h}{\partial \theta^t}(\theta) \mathbf{\Sigma} \frac{\partial h^t}{\partial \theta}(\theta) \right)$

I. Random Variables / Vectors

II. Convergences

III. Essential theorems

IV. Gaussian-related distributions

- Gamma and Beta distributions
- χ^2 , Student-t and F- distributions
- Student Theorem

Gamma and Beta distributions

Definition (Gamma distribution)

Let p > 0 et $\lambda > 0$. A real-valued r.v. $X \sim \Gamma(p, \lambda)$ if its PDF is defined as

$$f(x) = \frac{\lambda^p}{\Gamma(p)} x^{p-1} \exp(-\lambda x) \mathbf{1}_{\mathbb{R}^+}(x),$$

where $\Gamma(x) = \int_0^{+\infty} t^{x-1} \exp(-t) dt$ for $x \in \mathbb{C}$ s.t. $\Re e(x) > 0$. Also $\Gamma(x+1) = x\Gamma(x)$ $(n \in \mathbb{N}^*, \Gamma(n) = (n-1)!)$. If $X \sim \Gamma(p,\lambda)$ and a > 0, then $aX \sim \Gamma(p,\lambda/a)$

Proposition (Beta distributions)

- **1** Let $Y \sim \Gamma(q, \lambda)$ and $X \sim \Gamma(p, \lambda)$ 2 independent r.v. Thus,
 - $X + Y \sim \Gamma(p + q, \lambda)$,
 - X + Y and $\frac{X}{X+Y}$ (resp. X + Y and $\frac{X}{Y}$) are independent
 - Distributions of $\frac{X}{X+Y}$ and $\frac{X}{Y}$ do NOT depend on λ . It resp. corresponds to **Beta distributions of** 1^{st} and 2^{nd} kind, denoted $\beta^1(p,q)$ and $\beta^2(p,q)$. PDF...

Gamma and Beta distributions

Definition (Beta PDFs)

$$\begin{cases} \beta^{1}(p,q) : f(x) = \frac{x^{p-1}(1-x)^{q-1}}{\beta(p,q)} 1\!\!1_{[0,1]}(x), \\ \\ \beta^{2}(p,q) : f(x) = \frac{x^{p-1}}{(1+x)^{p+q}\beta(p,q)} 1\!\!1_{\mathbb{R}^{+}}(x), \end{cases}$$

with
$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$
.

Proposition

- If $U \sim \beta^1(p,q)$, $\frac{U}{1-U} \sim \beta^2(p,q)$,
- If $V \sim \beta^2(p, q)$, $\frac{V}{1+V} \sim \beta^1(p, q)$,
- If $V \sim \beta^2(p, q)$, $\frac{1}{V} \sim \beta^2(q, p)$.

χ^2 , Student-t and Fisher (or F) distributions

Definition (χ^2 dist.)

Let $(X_n)_{n\in\mathbb{N}^*}$ a sequence of i.i.d. real-valued r.v. $\sim \mathcal{N}(0,1)$. Thus,

- $\sum_{i=1}^{K} X_{i}^{2}$ follows a χ^{2} -distribution with k d.o.f., (denoted $\chi^{2}(k)$).
- $X_1^2 \sim \Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\sum_{i=1}^k X_i^2 \sim \Gamma\left(\frac{k}{2}, \frac{1}{2}\right)$

Definition (Student-*t* and *F*- distributions)

- 1 If $X \sim \mathcal{N}(0,1)$, $Y \sim \chi^2(k)$, and X, Y independent, then $T = \frac{X}{\sqrt{(Y/k)}}$ follows a Student-t dist. with k d.o.f. (denoted t(k)).
- 2 If p and q are integers, if $X \sim \chi^2(p)$, $Y \sim \chi^2(q)$, and X, Y are independent, then $F = \frac{X/p}{Y/q}$ follows a F-dist. with p and q d.o.f., (denoted F(p, q)).

Student Theorem

Theorem (Student theorem)

Let $(X_n)_{n\in\mathbb{N}^*}$ a sequence a real-valued i.i.d. r.v. $\sim \mathcal{N}(\mu, \sigma^2)$. Then, one has:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

$$R_n = \sum_{i=1}^n (X_i - \overline{X}_n)^2 \sim \sigma^2 \chi^2 (n-1).$$

 \overline{X}_n and R_n are independent.

4 If
$$S_n = \sqrt{\frac{R_n}{n-1}}$$
, then $T_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \sim t(n-1)$.

Proof

Some elements...

Some applications

Estimate unknown parameters??

- A1 Mean estimation: $(X_1, \dots, X_n) \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$
 - σ^2 known
 - σ^2 unknown
- A2 Variance estimation: $(X_1, \dots, X_n) \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$
 - μ known
 - $\blacksquare \mu$ unknown
- A3 Variance comparison (test) between two independent samples:

$$(X_1, \dots, X_n) \stackrel{iid}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$$
 and $(Y_1, \dots, Y_n) \stackrel{iid}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$

- lacksquare μ_X and μ_Y known
- lacksquare μ_X and μ_Y unknown

Possible answers with confidence intervals

A1 Based on $\hat{\mu} = \bar{X}_n$...

- $I_n = \left[\bar{X}_n \pm \frac{1,96\sigma}{\sqrt{n}}\right]$ is an exact 95%-confidence interval
- $\tilde{I}_n = \left[\bar{X}_n \pm \frac{1,96\hat{\sigma}_n}{\sqrt{n}} \right]$ is an asymptotic 95%-confidence interval. OR use

$$T_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n} \sim t(n-1) \Rightarrow \hat{I}_n = \left[\bar{X}_n \pm \frac{a_{n-1}S_n}{\sqrt{n}}\right]$$

is an exact 95%-confidence interval

Possible answers with confidence intervals

A2 Based on ...

$$R_n^* = \sum_{i=1}^n (X_i - \mu)^2 \sim \sigma^2 \chi^2(n) \Rightarrow I_n = \left[\frac{n\hat{\sigma}_n^2}{b_n}, \frac{n\hat{\sigma}_n^2}{a_n} \right]$$

is an exact 95%-confidence interval with $\hat{\sigma}_n^2 = R_n^*/n$.

$$R_n = \sum_{i=1}^n (X_i - X_n)^2 \sim \sigma^2 \chi^2(n-1) \Rightarrow \hat{I}_n = \left[\frac{(n-1)\hat{\sigma}_n^2}{b_{n-1}}, \frac{(n-1)\hat{\sigma}_n^2}{a_{n-1}} \right]$$

is an exact 95%-confidence interval with $\hat{\sigma}_n^2 = R_n/(n-1)$

→ Loss when unknowns are present..., i.e. length of CI increases...

Possible answers with confidence intervals

A3 Based on ...

$$R_{n,X}^* = \sum_{i=1}^n (X_i - \mu_X)^2 \sim \sigma_X^2 \chi^2(n) \,, R_{m,Y}^* = \sum_{i=1}^m (Y_i - \mu_Y)^2 \sim \sigma_Y^2 \chi^2(m)$$

$$\frac{R_{n,X}^*}{R_{m,Y}^*} \sim F(n,m) \Rightarrow \frac{\sigma_X^2}{\sigma_Y^2} \in \left[\frac{1}{b_{n,m}} \frac{\hat{\sigma}_{n,X}^2}{\hat{\sigma}_{m,Y}^2}, \frac{1}{a_{n,m}} \frac{\hat{\sigma}_{n,X}^2}{\hat{\sigma}_{m,Y}^2}\right]$$

with
$$\hat{\sigma}_{n,X}^2 = R_{n,X}^*/n$$
 and $\hat{\sigma}_{m,Y}^2 = R_{m,Y}^*/m$

■ Same thing for μ_X and μ_Y unknown...