大模型和大数据

扫码了解更多

数据要求数量大, 多多益善

数据的分类:

- 一类是网页数据(web data),这类数据的获取最为方便,各个数据相关的公司比如百度、谷歌等每天都会爬取大量的网页存储起来。其特点是量级非常大,质量参差不齐。
- 第二类称之为专有数据(curated high-quality corpora),为某一个领域、语言、行业的特有数据。比如对话、书籍、代码、技术报告、论文考试等数据。这类数据比较难获取,如果在中国那么最优代表性的就应该是在我们的图书馆、国家数字档案馆、国家数字统计局等机构和地方。

专有数据优点:一种普遍观点认为"GPT、PaLM等模型的成功很大程度源自于其他模型难以企及的大量的、高质量的专有数据"。

网页数据优点:

- 网页数据的量级比公开数据大的多,仅用专有数据模型模型训练不到最佳效果:
- 网页数据有固定的格式,我们可以根据html上面的标签进行处理,而专有数据因为来源很杂,格式不统一等原因,甚至需要一份数据,一种处理方式很费时间。
- 大部分专有数据其实在网页数据中也能找到: 比如书籍数据,也可能在某些盗版书网站上就有网页版本的。

大模型有两种:

基座模型: GLM, gpt 具备语言理解能力, 但是不具备对话能力

通过QA问答训练

对话模型: chatGLM, chatGPT在基座模型的基础上,进行对话的专项训练

glm130B baichuan

对BLOOM大模型训练的时候使用了1321.89 GB数据,一共超过40+不同国家的语预语言,对于代码Code有10+不同的编程语言。

Sql不是客观语言,和数据库高度绑定,几乎没有通用性

为什么没有sql

PALM大模型数据来源

常见数据集

1 English CommonCrawl

使用模型: LLaMA(67%)、LaMDA、PaLM

下载地址 https://github.com/karust/gogetcrawl

2 Wikipedia

使用模型: LLaMA(4.5%)、GPT-NEOX(1.53%)、LaMDA、PaLM

下载地址 https://huggingface.co/datasets/wikipedia

3 C4

使用模型: LLaMA(15%)、LaMDA、PaLM 下载地址 <u>https://huggingface.co/datasets/c4</u>

4 Github

使用模型: LLaMA(4.5%)、GPT-NEOX(7.59%)、PaLM、OPT、GLM130B

下载地址 https://github.com/EleutherAl/github-downloader

美洲驼LLAMA数据

模型与数据参数量: 30B/65B 1.4T 300B tokens

数据下载地址

https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T

BLOOM

模型与数据参数量: 1.6TB 350B tokens

数据下载地址

https://docs.google.com/forms/d/e/1FAIpQLSdq50O1x4dkdGI4dwsmchFuNI0KCWEDiKUYxvd0r0_sl6FfAQ/viewform?pli=1

中文数据相对比较少

中文数据集

1中文文本分类数据集THUCNews http://thuctc.thunlp.org

2 清华大学NLP实验室开放数据集 http://thuocl.thunlp.org/

3 wiki百科中文 https://zh.wikipedia.org

4 WuDaoCorpora https://openi.pcl.ac.cn/BAAI/WuDao-Data/

5 Chinese book

https://link.zhihu.com/?target=https%3A//github.com/JiangYanting/Chinese_book_dataset

6千言 https://www.luge.ai/

Scaling Laws简单介绍就是:随着模型大小、数据集大小和用于训练的计算浮点数的增加,模型的性能会提高。并且为了获得最佳性能,所有三个因素**必须同时放大**。当不受其他两个因素的制约时,模型性能与每个单独的因素都有**幂律关系**

决定效果:模型参数量,数据集大小,计算量

- 模型表现和规模强相关,和模型的shape弱相关:规模包括模型参数量N(不包括 embedding)、数据集大小D和计算量C,模型shape指模型depth、width、number of selfattention heads
- 幂方法则:对于模型参数量N、数据集大小D和计算量C三个因素,如果其他两个充足的前提下,模型表现和第三个因素成幂方关系。实验曲线如下:

当同时增加数据量和模型参数量时,模型表现会一直变好。当其中一个因素受限时,模型表现随另外一个因素增加变好,但是会逐渐衰减。

Larger models require fewer samples to reach the same performance The optimal model size grows smoothly with the loss target and compute budget

扫码了解更多

计算量和模型参数之间的关系

在算力不足的情况下 小模型收敛的更快 但是大模型 效果上限更高(损失函数更小)

数据处理

分词粒度:

1.单词分词法:英文(空格分词),中文(jieba分词 or 分字)

2.单字分词法: 英文(字母),中文(分字)

3.子词分词法: BPE, WordPiece, Unigram

字词分词法: 有个词表, 根据词表来分词

词表生成: 根据训练数据生成

英文词表: est er ing

中文词表: 中国 人民币

从GPT-2开始一直到GPT-4,OpenAI一直采用BPE(Byte Pair Encoding)分词法。

假设我们有一个语料库,其中包含单词(pre-tokenization之后)—— old, older, highest, 和 lowest, 我们计算这些词在语料库中的出现频率。假设这些词出现的频率如下:

{ "old" : 7, "older" : 3, "finest" : 9, "lowest" : 4}

让我们在每个单词的末尾添加一个特殊的结束标记"</w>"。

{ "old</w>" : 7, "older</w>" : 3, "finest</w>" : 9, "lowest</w>" : 4}

Number	Token	Frequency
1		23
2	0	14
3	1	14
4	d	10
5	е	16
6	r	3
7	f	9
8	i	9
9	n	9
10	s	13
11	t	13
12	w	4 5138 @

扫码了解更多

迭代 1: 我们将从第二常见的标记 "e" 开始。 在我们的语料库中,最常见的带有 "e" 的字节对是 "e" 和 "s" (在finest和lowest两个词中),它们出现了 9 + 4 = 13 次。 我们将它们合并以形成一个新的token "es" 并将其频率记为 13。我们还将从单个token("e" 和 "s")中减少计数 13,从而我们知道剩余的 "e" 或 "s" token数。 我们可以看到 "s" 不会单独出现, "e" 出现了 3 次。 这是更新后的表格:

Number	Token	Frequency	
1		23	
2	0	14	
3	1	14	
4	d	10	
5	е	16 - 13 = 3	
6	r	3	
7	f	9	
8	i	9	
9	n	9	
10	S	13 - 13 = 0	
11	t	13	
12	w	4	
13	es	9 + 約平1 9 硅谷谷	

选取出现频率最高的合并 ol 10次 es 13次

迭代 2: 我们现在将合并token "es" 和 "t",因为它们在我们的语料库中出现了 13 次。 因此,我们有一个频率为 13 的新token "est",我们会将 "es" 和 "t"的频率减少 13。

Number	Token	Frequency	
1		23	
2	0	14	
3	1	14	
4	d	10	
5	е	16 - 13 = 3	
6	r	3	
7 f	f	9	
8	i	9	
9	n	9	
10	s	13 - 13 = 0	
11	t	13 - 13 = 0	
12	w	4	
13	es	9 + 4 = 13 - 13 = 0	
14	est	知乎 @硅	

迭代 3: 让我们现在考虑 "</w>" token, 我们看到字节对 "est" 和 "</w>" 在我们的语料库中出现了 13 次。

迭代 4: 查看其他token,我们看到字节对 "o" 和 "l" 在我们的语料库中出现了 7 + 3 = 10 次。

Number	Token	Frequency
1		23 - 13 = 10
2	0	14
3	1	14
4	d	10
5	е	16 - 13 = 3
6	r	3
7	f	9
8	i	9
9	n	9
10	s	13 - 13 = 0
11	t	13 - 13 = 0
12	w	4
13	es	9 + 4 = 13 - 13 = 0
14	est	13 - 13 = 0
15	est	#3子 @硅谷名

Number	Token	Frequency
1		23
2	0	14 - 10 = 4
3	1	14 - 10 = 4
4	d	10
5	е	16 - 13 = 3
6	r	3
7	f	9
8	i	9
9	n	9
10	s	13 - 13 = 0
11	t	13 - 13 = 0
12	w	4
13	es	9 + 4 = 13 - 13 = 0
14	est	13
15	ol	7+35坪100硅%

Number	Token	Frequency
1		10
2	0	4
3	Į.	4
4	е	3
5	r	3
6	f	9
7	i	9
8	n	9
9	w	4
10	est	13
11	old	投 手 @硅矿

假设单词的序列是

— ["the</w>","highest</w>","range</w>","in</w> — ","Seattle</w>"]。我们将遍历我们在语料库中找到的 — 所有token——从最长到最短,并尝试使用这些token替换 — 给定单词序列中的子字符串。最终,我们将遍历所有 — token,并且我们的子字符串将被替换为我们token列表中 — 已经存在的token组合。如果会留下几个子串(我们的模 — 型在训练中没有看到的词),我们将用unknown token替 — 换它们。

会准备一个大数据集, 生成字词

通过训练数据 得到了子词

字词:挨着一起出现,且频率较高

bpe 我我我我我我

Word-Piece

0 0 0

Word-Piece和BPE非常相似,BPE使用出现最频繁的组合构造子词词表,而Wordpiece使用出现概率最大的组合构造子词词表。换句话说,WordPiece每次选择合并的两个子词,通常在语料中以相邻方式同时出现。比如说 P(ed) 的概率比P(e) + P(d)单独出现的概率更大(可能比他们具有最大的互信息值),也就是两个子词在语言模型上具有较强的关联性。这个时候,Word-Piece会将它们组合成一个子词。

$$logP(t_z) - (logP(t_x) + logP(t_y)) = log(rac{P(t_z)}{P(t_x)P(t_y)})$$

扫码了解更多

Unigram

与BPE或者WordPiece不同,Unigram的算法思想是**从一个巨大的词汇表出发**,再**逐渐删除trim down其中的词汇**,直到size满足预定义。

开始很多字词 慢慢剔除

初始的词汇表可以采用所有预分词器分出来的词,再加上所有高频的子串。

每次从词汇表中删除词汇的**原则是使预定义的损失最小**。训练时,计算loss的公式为:

$$Loss = -\sum_{i=1}^{N} log \left(\sum_{x \in S(x_i)} p(x)
ight)$$

假设训练文档中的所有词分别为 $x_1; x_2, \ldots, x_N$,而**每个词tokenize的方法**是一个集合 $S(x_i)$ 。

当一个词汇表确定时,每个词tokenize的方法集合 $S(x_i)$ 就是确定的,而每种方法对应着一个概率 p(x) 。

如果从词汇表中删除部分词,则某些词的tokenize的种类集合就会变少,log(*)中的求和项就会减少,从而增加整体loss。

Unigram算法每次会从词汇表中挑出使得loss增长最小的10%~20%的词汇来删除。

一般Unigram算法会与SentencePiece算法连用。

扫码了解更多

我晚上吃面条

字词: 我晚上面条吃面条吃面

不同的分词结果: 我晚上吃面条 我晚上吃 面条 我晚上吃面 条

遍历所有子词,找到让Loss增加最少的字词 然后去掉 信息熵:混乱程度,越低越好

$$Loss = -\sum_{i=1}^{N} log \left(\sum_{x \in S(x_i)} p(x)
ight)$$

遍历所有句子,所有词 N词

子词x的概率p(x)

去除一个子词 Loss就会增加

各大LM用的tokenizer和对应的词汇表大小:

LM	Tokenizer	Vocabulary Size
BERT	Word-Piece	30k
ALBERT	Sentence-Piece	30k
RoBERTa	BPE	50k
XLM-RoBERTa	Sentence-Piece	30k
GPT	SpaCy	40k
GPT-2	BPE	50k
GPT-3	BPE	50k
GPT-3.5 (ChatGPT)	BPE	-
GPT-4	BPE	-
T5	Sentence-Piece	30k
Flan T5	Sentence-Piece	30k
BART	Word-Piece	50k

生成完子词之后,大模型一般还会添加一些特殊字符: 开始符 结束符

未登录词

模型特殊要求的词对于bert [cls] [sep]

不同的模型,使用不同的子词词表每个词对应一个ID

同一个子词 在不同的词表里 对应的id不一样

另外,有大佬做了各大LLM的词汇表大小和性能:

名称	词表长度↑	中文平均长 度↓	英文平均长 度↓	中文处理时 间↓	英文处理时 间↓
LLaMA	32000	62.8	32.8	02:09	01:37
BELLE	79458	24.3	32.1	00:52	01:27
MOSS	106072	24.8	28.3	07:08	00:49
GPT4	50281	49.9	27.1	00:07	00:08
BLOOM/Z	250680	23.4	27.6	00:46	01:00
ChatGLM	130344	23.6	28.7	00:26	00:39

分词方法

子词词表: 按长度从高到底排

看句子里面是否有子词,如果有,则分开,没有遍历下一个

123

字词: 我:1晚上:2吃面条:3

不同的分词结果: 我晚上吃面条 我晚上吃 面条 我晚上吃面 条

比如我训练的场景极度垂直,

我是否需要自己训练子词词表,分词器

1.需要训练:

会生成新的子词

- a.完全替换以前的词表(从基础模型开始,整个模型全部重新训练)
- b.补充以前的词表(只需要训练新的子词对应的embeding)
- 2.不训练词表:

专业词汇通过模型本身学习(建议:成本低,微调)

