Modelo Computacional para Intervalos de Confianza en Precios de Activos Financieros

Luis Ernesto Amat Cárdenas C-312

13 de abril de 2025

Resumen

Español: Presentamos un modelo computacional que estima intervalos de confianza para precios de activos financieros y commodities mediante un paseo aleatorio pseudo-log-Laplace. La validación mediante backtesting muestra que el modelo mantiene coberturas cercanas al $95\,\%$ para horizontes de 5 días en commodities, aunque su precisión disminuye para activos más volátiles como Bitcoin.

English: We present a computational model that estimates confidence intervals for financial assets and commodities prices using a pseudo-log-Laplace random walk. Back-testing validation shows the model maintains 95 % coverage for 5-day horizons in commodities, though accuracy degrades for more volatile assets like Bitcoin.

1. Estado del Arte

El modelo clásico para precios de activos [1] supone:

$$S_n = S_0 \exp\{X_1 + \dots + X_n\} \tag{1}$$

donde $X_i \sim \mathcal{N}(\mu, \sigma^2)$. Una generalización común es:

$$S_n = S_0 \prod_{i=1}^n Y_i, \quad Y_i \sim \text{Lognormal}$$
 (2)

Estos modelos fallan al capturar colas pesadas y dependencia serial observadas en mercados reales [2].

2. Modelo Pseudo-log-Laplace

2.1. Hipótesis

Se ha encontrado evidencia a favor de que, para commodities, los rendimientos diarios X_i siguen una distribución de Laplace:

$$f_X(x) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right) \tag{3}$$

Validado mediante:

- Prueba KS (p > 0.05 para commodities)
- Q-Q plots (Figura 1)

También se asume independencia.

Es importante notar que la suma de variables que distribuyen Laplace no distribuye Laplace. Por lo que se deben realizar ajustes a la hora de hacer predicciones analíticas para este modelo.

Figura 1: Comparando los datos reales contra la distribución con los parámetros estimados

2.2. Algoritmo para generar los Intervalos de Confianza (CI)

- 1. Verificar que la variable distribuye (o al menos parece distribuir) Laplace
- 2. Estimación de parámetros por MLE
- 3. Simulación de trayectorias
- 4. Cálculo de intervalos (no paramétrico)

3. Validación

Metodología:

- \blacksquare Para cada día t, calcular CI para t+1:t+5
- Contar violaciones (precios fuera del CI)
- Calcular ratio de cobertura

Activo	3 días	5 días
Petróleo	99.0%	93.2%
Azúcar	95.1%	94.5%
BTC	89.3%	82.7%

Cuadro 1: Cobertura observada de CI

Resultados para $\alpha = 0.05$:

Los resultados se degradan a partir de 10 días. Nótese que para $\alpha=0.05,$ el resultado 99 % significa que el CI calculado no se ajusta lo suficiente al precio. O sea, que es demasiado pesimista.

4. Conclusión

El modelo:

- Proporciona coberturas precisas para commodities
- Degrada progresivamente con el horizonte temporal
- Menos potente para activos no-Laplace (e.g. BTC)

Aplicaciones:

- Gestión de riesgo en trading
- Cálculo de márgenes de seguridad (stop-loss)

Referencias

- [1] Ross, S.M. (2013). Simulation. 5th ed. Academic Press.
- [2] Sharpe, M. LOGNORMAL MODEL FOR STOCK PRICES. UCSD.