Announcement

- Submit assignment 3 on CourSys
 - Do not hand in hard copy
 - Due Friday, 15:20:00

Caution: Assignment 4 will be due next
 Wednesday

Recursion Examples and Simple Searching

CMPT 125 Jan. 28

```
int sum(int arr[], int len) {
    int total = 0;
    for (int i = 0; i < len; i++) {
        total += arr[i];
    return total;
```

- Now, do it using recursion
- Steps:
 - 1) Base case: when array has length 1, just return the only element
 - 2) Assume your function can sum an array that has length len-1, and call the function inside itself
- New interpretation of "len": number of elements you want to sum

```
int sum(int arr[], int len) {
 // returns sum of first len elements of arr
 // base case
  if (len == 1) {
    return arr[0];
  // recursion
  return arr[len-1] + sum(arr, len-1);
```

```
int sum(int arr[], int len) {
  // returns sum of first len elements of arr
  // base case
  if (len == 1) {
                                                 len-2 len-1
    return arr[0];
                                    arr[0...len-2]
                                                  arr[len-1]
                                                  The first len-1
  // recursion
                                                  elements of array
  return arr[len-1] + sum(arr, len-1);
                                                Returns first len-1
                                                elements of array
```

https://en.wikipedia.org/wiki/Tower of Hanoi

- Move tower to the right slot
- Move disks one by one
- Bigger disks must always be below smaller disks

- Move tower to the right slot
- Move disks one by one
- Bigger disks must always be below smaller disks

- Recursive solution:
 - a. Base case: If N is 1, then move the disk from A to C
 - b. Otherwise:
 - Move (smallest) N-1 disks from A to B
 - Move (largest) 1 disk from A to C

- Recursive solution:
 - a. Base case: If N is 1, then move the disk from A to C
 - b. Otherwise:
 - Move (smallest) N-1 disks from A to B
 - Move (largest) 1 disk from A to C
 - Move (smallest) N-1 disks from B to C
- Organization:
 - a. At any time, A, B, and C may be labeled as "source", "spare", and "destination"

- Recursive solution: solve_ToH(N, src, des)
 - a. Base case: If N is 1, then move the disk from A to C
 - move(A,C);
 - b. Otherwise:
 - Move (smallest) N-1 disks from A to B
 - solve_ToH(N-1, A, B);
 - Move (largest) 1 disk from A to C
 - move(A,C);
 - Move (smallest) N-1 disks from B to C
 - solve_ToH(N-1, B, C);
- Organization:
 - a. At any time, A, B, and C may be labeled as "source", "spare", and "destination"

Introduction to Search Algorithms

- Linear Search Algorithm
- Linear Search Analysis + Implementations
- Divide and Conquer
- Binary Search Algorithm

Searching Overview

- It is often useful to find out whether or not an array contains a particular item
 - E.g., "Is Alice among your Facebook friends?"
 - E.g., "Find Bob's phone number."
- Two possible specifications:
 - A search can either return true or false
 - OR . . . the position of the item in the array (-1 for fail)

Searching Variations

- There are many possible search algorithms
 - o generally, want the one that finds the item the fastest
- Searching is one of those activities that can be done much more efficiently if the set is sorted ahead of time
 - Q. How does sorting make your searches easier?
- Best for unordered array is a linear search

Linear Search Algorithm

Strategy: Start with the first item and step through the array one element at a time, comparing each item with the target until either a match is found (return true / index) or all elements have been exhausted (return false / -1).

Q. What input results in the worst-case running time?

E.g., target = "Mercury":	Neptune	Uranus	Saturn	Jupiter	Mars	Earth	Venus	Mercury
E.g., target = "Pluto":	Neptune	Uranus	Saturn	Jupiter	Mars	Earth	Venus	Mercury

Linear Search in C

```
    Int LinearSearch(int arr[], int len, int target) {
    Repeat for all i from 0 to len-1
    Check the next element, arr[i]
    Algorithm:

            found if equal to target, so return position

    Not found, so return fail
```

Linear Search in C

```
int LinearSearch(int arr[], int len, int target) {
    for (int i = 0; i < len; i++) {

        // What's a good assertion?

    if (arr[i] == target) {
        return i;
     }

    return -1;
}</pre>
```

Linear Search Analysis

Worst case for linear search is linear time O(N)

 Intuition: You have to check all elements to confidently return false.

Best case?

You find the element at index 0

Q. What do you think is the average case?

Counting Comparisons

```
int LinearSearch(int arr[], int len, int target) {
   for (int i = 0; i < len; i++) {
     if (arr[i] == target) {
        return i;
     }

   return -1;
}</pre>
```

- Comparisons are relatively expensive elementary operations
- Use a sentinel to cut the comparisons in half
 - \circ It's still O(N), but with half the leading constant

Optimized Linear Search

```
int LinearSearch(int arr[], int len, int target)
    arr[len] = target;
                                                             Sentinel value
    int i = 0;
                                                          Signals the end of the
    while (arr[i] != target)
                                                                search
        i++;
                                                          And yes, assignment to
                                                           arr[len] is a side-
       (<u>i != len</u>)
                      return i;
                                                          effect that can have bad
                                                             consequences
    return -1;
                                        N+1
                                             Total Comparisons
                                             = N + 2
```

 Sentinel allows you to combine the element comparison and loop termination conditions

But is it really an improvement?

Big-O methods say that leading constants don't matter when comparing two algorithms

- they usually don't if the two algorithms have different Big-O running times
- E.g., 50000N + 300 vs $2N^2 3N + 1$

But they *do* matter when their Big-O growth rates are the same

- E.g., optimized program vs unoptimized
- E.g., fast machine vs slow machine

What if the array was ordered?

Think of searching a dictionary for a word?

- Strategy: Not one word at a time in sequential order starting from aardvark, etc.
- Strategy: Jump to where you estimate the word to be based on what you know about the alphabet.

Refine your jumps + hone in on the correct page quickly.

This is the main idea behind binary search.

Divide and Conquer

Generic Strategy (Paradigm):

- 1. **Divide:** Cut the array into 2 or more roughly equally sized pieces
- 2. **Conquer:** Use what you know about the pieces to solve the original problem

Binary Search

Strategy: Divide and Conquer

- 1. Examine the *middle* element of the array of candidates. This divides the array into two [roughly] equal halves.
- 2. Compare the middle element with the target.
 - If middle < target then throw out the first half.
 - But if middle > target then throw out second half.
- 3. Repeat 1-3 until middle == target (found!) or no candidates remain (fail!).

Binary Search

Requirements (Pre-Conditions):

Candidate array must be sorted

How to keep track of list of candidates?

- Use integers first and last for arr[first..last]
- Initially, first=0; last=len-1
- Middle element is at index (first+last)/2

Binary Search Code

int BinarySearch(int arr[], int len, int target) { Search candidate array arr[first..last] while not empty Compare with the middle element • Algorithm: found if equal to target, so return position throw out second half if greater than target OR throw out first half if lessithan target Not found, so return fail last.

Binary Search Code

```
int BinarySearch(int arr[], int len, int target) {
   int first = 0;
   int last = len-1;
   while(first <= last) {</pre>
          Q. What's a good assertion this time?
       int mid = (first+last) / 2;
       if (target == arr[mid]) return mid;
       if (target < arr[mid]) last = mid-1;
       else first = mid+1;
                                  first
                                           mid
                                                   last
   return -1;
                                 first
                                        last
                                              first
                                                    last
```

Analysis of Binary Search

What's the worst case on an array of length N?

 After one iteration, the possible candidates are [roughly] cut in half.

After *k* iterations, how many candidates remain?

• Roughly $N/2^k$

When do you run out of candidates?

- $2^k \ge N$
- i.e., after $k \ge \log_2 N$ iterations

Thus binary search runs in $O(\log N)$.

Linear Search vs Binary Search

		Lilleal SealCil	Billary Search
Even though the inner	N	(3+4N)	$(4 + 12 \log_2(N+1))$
•	1	7	16
loop of binary search is	3	15	28
more complex than	7	31	40
linear search, we	15	63	52
expect $O(\log N)$ to	100	403	88
outperform $O(N)$ as N	1000	4003	124
•	10 ⁶	4000003	244
gets large.	10 ⁹	4 x 10 ⁹	364

Linear Search Binary Search

Linear Search vs Binary Search

- Binary search has a fast running time.
- Disadvantages?
 - Harder to code
 - Requires the array be sorted
- Keeping the array sorted can be expensive!
 - Significantly more searching than update? Keep list sorted (slow) and use (fast) binary search
 - Significantly more update than search? Keep array unsorted (fast) and use (slow) linear search