III - Déterminant d'une matrice symplectique

Soit M dans $\mathcal{S}_{p_{2n}}$ que l'on décompose sous forme de matrice blocs :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \tag{**}$$

avec $A, B, C, D \in \mathcal{M}_n$. Dans toute cette partie, les matrices A, B, C, D sont les matrices de cette décomposition.

On suppose dans les questions 13 et 14 que D est inversible.

Montrer qu'il existe quatre matrices Q, U, V, W de M_n telles que :

$$\begin{pmatrix} I_n & Q \\ 0_n & I_n \end{pmatrix} \begin{pmatrix} U & 0_n \\ V & W \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

14. En utilisant la question 8, vérifier que BD⁻¹ est symétrique, puis que :

$$det(M) = det(A^{T}D - C^{T}B) = 1$$

Soient $P,Q \in \mathcal{M}_n$ telles que $P^\top Q$ soit symétrique et Q non inversible. On suppose qu'il existe deux réels différents s_1, s_2 et deux vecteurs V_1, V_2 non nuls dans \mathcal{E}_n tels que :

$$(Q - s_1 P) V_1 = (Q - s_2 P) V_2 = 0$$

Montrer que le produit scalaire (QV₁|QV₂) est nul.

On suppose dorénavant D non inversible.

Montrer que ker(B) ∩ ker(D) = {0}.

Soit m un entier, $1 \le m \le n$. Soient s_1, \ldots, s_m des réels non nuls et deux à deux distincts et V_1, \ldots, V_m des vecteurs non nuls de \mathcal{E}_n tels que :

$$(D - s_i B)V_i = 0 \text{ pour } i = 1, ..., m$$

- 17. Montrer que pour tout $i \in \{1, ..., m\}$, $DV_i \neq 0$ et que la famille $(DV_i, i = 1, ..., m)$ forme un système libre de \mathcal{E}_n .
- 18. En déduire qu'il existe un réel α tel que $D \alpha B$ soit inversible.
- Montrer alors que toute matrice de S_{p2n} est de déterminant égal à 1.