En karakteristik af de regulære sprog

Et sprog L er regulært hvis og kun hvis

- L beskrives af et regulært udtryk
- L genkendes af en FA / NFA / NFA-Λ
- der ikke findes uendeligt mange strenge, der er parvist skelnelige mht. L

Skelnelighed (uge 15)

x og y er skelnelige mht. L hvis

```
\exists z \in \Sigma^* : (xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)
```

Hvis skelnelige strenge mht. L køres på en FA, der accepterer L, vil de ende i forskellige tilstande

Intuition bag FA-minimering:

hvis to strenge er uskelnelige mht. FA'ens sprog, er der ingen grund til at den skelner mellem dem!

Uskelnelighedsrelationen I_L

Definition:

Givet et sprog $L\subseteq \Sigma^*$, definer relationen I_i over Σ^* ved:

 $x I_1 y \Leftrightarrow x \text{ og } y \text{ er } uskelnelige \text{ mht. } L$

Relationer

En (binær) relation R over en mængde A er en delmængde af A×A

- Eksempler:
 - ≤ er en relation over mængden af reelle tal
 - I_I er en relation over Σ^*

■ Notation: $x R y \iff (x,y) \in R$

Ækvivalensrelationer

- R er en ækvivalensrelation hvis den er
 - refleksiv (∀x: x R x)
 - symmetrisk $(\forall x, y: x R y \Rightarrow y R x)$
 - transitiv $(\forall x,y,z: x R y \land y R z \Rightarrow x R z)$
- En ækvivalensrelation over A definerer en partitionering af A (og omvendt)

Notation: $[x] = \{y \mid x R y\}$ kaldes **ækvivalensklassen** for x mht. R

Egenskaber ved I,

I, er

- refleksiv $(\forall x: x I, x)$
- symmetrisk $(\forall x,y: x I_1 y \Rightarrow y I_1 x)$
- transitiv $(\forall x,y,z: x I_1 y \land y I_1 z \Rightarrow x I_1 z)$
- dvs. I_i er en ækvivalensrelation

- I_i partitionerer Σ^*
- [x] er mængden af strenge, der er uskelnelige fra x mht. L 6

Quiz!

$$L = \{0,1\}^*\{10\}$$

Beskriv ækvivalensklasserne for $I_{\scriptscriptstyle L}$

Hint: der er 3 ækvivalensklasser...

Hint: find en streng, der er skelnelig fra Λ ...

Hint: find en streng, der er skelnelig fra både Λ og 1...

•
$$X: \{\Lambda, 0\} \cup \{0,1\}^*\{00\}$$

$$= [\Lambda]$$

$$= [10]$$

en *repræsentant* for hver ækvivalensklasse

MyHill-Nerode-sætningen

L er regulært $\Leftrightarrow I_L$ har endeligt mange ækvivalensklasser

- " \Rightarrow ": (uge 15) hvis I_L har **u**endeligt mange ækvivalensklasser, så er L **ikke** regulært
- "⇐": Bevis følger...

Konstruktion af en FA fra I_L

• Givet et sprog $L\subseteq \Sigma^*$, antag I_L har endeligt mange ækvivalensklasser

• Vi kan definere en FA, hvor tilstandene er ækvivalensklasserne af I_L

Eksempel

- Ækvivalensklasserne for I_L når $L = \{0,1\}^*\{10\}$:
 - X: $\{\Lambda, 0\} \cup \{0,1\}^*\{00\}$
 - Y: {0,1}*{1}
 - *Z*: {0,1}*{10}

 $\blacksquare M_L: \qquad \begin{array}{c} & & \\ &$

Konstruktion af en FA fra I_L

Definer en FA:

$$M_L=(Q, \Sigma, q_0, A, \delta)$$
 hvor

- $Q = Q_L$ hvor Q_L er ækvivalensklasserne af I_L
- $q_0 = [\Lambda]$
- $A = \{ q \in Q \mid q \cap L \neq \emptyset \}$

 $\forall \delta(q, a) = p$ hvis q=[x] og p=[xa] for en streng x (δ er veldefineret idet $x I_L y \Rightarrow xa I_L ya$)

Påstand: $L(M_i) = L$

Quiz!

Antag ækvivalensklasserne for I_{L} er

- $X = \{x \in \{0,1\}^* \mid \text{antal 1'er i } x \text{ er lige}\}$
- $Y = \{x \in \{0,1\}^* \mid \text{ antal 1'er i } x \text{ er ulige}\}$ og $111 \in L$

Lav en FA, der accepterer L

Bevis for korrekthed af konstruktionen

- Påstand: L(M_L) = L
- Lemma: $\forall x,y \in \Sigma^*$: $\delta^*([x], y) = [xy]$

Bevis: induktion i strukturen af y...

- $\delta^*(q_0, x) = \delta^*([\Lambda], x) = [X]$ (følger af lemmaet og def. af q_0)
- $x \in L(M_L) \Leftrightarrow \delta^*(q_0, x) \in A \Leftrightarrow [x] \in A \Leftrightarrow [x] \cap L \neq \emptyset$
- $X \in L \implies [X] \cap L \neq \emptyset$ (da $x \in [x]$)
- $\blacksquare [x] \cap L \neq \emptyset \implies x \in L \quad \text{(bruger def. af } I_L\text{)}$
- dvs. $x \in L(M_L) \iff x \in L$

M_L er minimal!

- Lad n være antallet af ækvivalensklasser af I_L
- $lacktriangledown M_{\scriptscriptstyle L}$ har 1 tilstand for hver ækvivalensklasse af $I_{\scriptscriptstyle L}$
- Vælg en streng x, fra hver ækvivalensklasse
- For ethvert par $x_i, x_j, i \neq j$: x_i og x_j er skelnelige mht. L
- dvs. enhver FA der genkender L har mindst
 n tilstande (jfr. Første seminar)
- og M_L har netop n tilstande, så M_L er **minimal**!

Minimering af automater

- Man kan i visse tilfælde opnå en mindre FA ved at "slå tilstande sammen"...
- Kan vi gøre det systematisk?
- Vil den resulterende FA blive minimal?

En algoritme til FA-minimering

Fra MyHill-Nerode-sætningen kan vi udlede en algoritme, der

givet en vilkårlig FA $M=(Q, \Sigma, q_0, A, \delta)$, finder en **minimal** FA M_1 hvor $L(M_1)=L(M)$

To partitioner af Σ^*

#1 Ækvivalensklasserne af I_L (svarer til tilstandene i den minimale FA M_L)

#2 En opdeling af alle $x \in \Sigma^*$ efter værdien af $\delta^*(q_0, x)$ (svarer til tilstandene i den givne FA M) Definer for alle $q \in Q$:

$$L_q = \{ x \in \Sigma^* \mid \delta^*(q_0, x) = q \}$$

Kan vi konstruere #1 ud fra #2?

Eksempel

Fjern uopnåelige tilstande

- Ækvivalensklasserne af I_L indeholder alle mindst 1 streng
- Det er muligt at $L_q = \emptyset$ for en eller flere $q \in Q$ (hvis q er **uopnåelig** fra q_0)
- Vi har en algoritme, der kan fjerne uopnåelige tilstande fra en FA uden at ændre sproget
- Vi kan derfor antage at $L_q \neq \emptyset$ for alle $q \in Q$

Opnåelige tilstande

• Givet en FA $M=(Q, \Sigma, q_0, A, \delta)$

Lad R være den mindste mængde, der opfylder

•
$$q_0 \in R$$

 $\forall \forall q \in R, a \in \Sigma: \delta(q, a) \in R$

(ligner definitionen af Λ -lukning...)

R er mængden af opnåelige tilstande i M

Eksempel

R kan findes med en fixpunktsalgoritme:

- $\delta(2, a) = 4 \in R$
- fixpunkt er nu nået
 dvs. de opnåelige tilstande er 1,2,4

Forholdet mellem partition #1 og #2

- Fra 1. seminar: $\delta^*(q_0, x) = \delta^*(q_0, y) \Rightarrow x I_L y$
- Dvs. enhver L_q —mængde er helt indeholdt i én I_L -ækvivalensklasse
- Enhver ækvivalensklasse af I_L er derfor foreningen af en eller flere af L_a -mængderne
- Da $L_q \neq \emptyset$ er hver af disse foreninger **unik**
- Definition: $p \equiv q \Leftrightarrow L_p \text{ og } L_q \text{ er delmængder}$ af samme I_L -ækvivalensklasse
- Dvs. hvis $p \equiv q$, så svarer p og q til samme tilstand i den minimale automat!

Konstruktion af = (minimeringsalgoritmen)

Lad S være den mindste mængde, der opfylder:

- b) $(p \in A \land q \notin A) \lor (p \notin A \land q \in A) \Rightarrow (p, q) \in S$
- c) $(\exists a \in \Sigma: (\delta(p, a), \delta(q, a)) \in S) \Rightarrow (p, q) \in S$

Påstand: $p \neq q$ hvis og kun hvis $(p, q) \in S$

S kan beregnes med en fixpunktsalgoritme (i stil med opnåelige tilstande og Λ -lukning tidligere...)

Eksempel på FA-minimering

- 1. Fjern uopnåelige tilstande (ingen i denne FA)
- 2. Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- 3. Kombiner tilstande, der svarer til umærkede par

Bevis for korrekthed

Antag
$$p,q \in Q$$
, $x \in L_p$, $y \in L_q$
(dvs. $\delta^*(q_0, x) = p \text{ og } \delta^*(q_0, y) = q$)

Lemma: Følgende udsagn er ækvivalente:

- 5. $p \equiv q$
- 6. $x I_L y$
- 7. $\forall z \in \Sigma^*$: $\delta^*(p, z) \in A \iff \delta^*(q, z) \in A$

Bevis for korrekthed

- Påstand: $p \not\equiv q$ hvis og kun hvis $(p, q) \in S$
- Iflg. lemmaet:

$$p \neq q \iff (\exists z \in \Sigma^*: (\delta^*(p, z) \in A \land \delta^*(q, z) \notin A)$$
$$\lor (\delta^*(p, z) \notin A \land \delta^*(q, z) \in A))$$

- $p \neq q \Rightarrow (p, q) \in S$ (brug lemmaet, lav induktion i z)
- $(p, q) \in S \implies p \not\equiv q$ (brug lemmaet, lav induktion i S)

FA minimering i dRegAut Java-pakken

"pseudo-kode":

uformel mellemting mellem de matematiske definitioner og Java-koden

FA.findReachableStates(), version 1

```
Set findReachableStates() {
   R = \{ q_0 \}
   done = false
   while ¬done do
        done = true
        for each q \in R do
             for each a \in \Sigma do
                 p = \delta(q, a)
                 if p \notin R then
                     add p to R
                     done = false
   return R
```

FA.findReachableStates(), version 2

besøge hver tilstand flere gange

```
Set findReachableStates() {
   R = \emptyset
  pending = \{q_0\}
   while pending≠Ø do
      pick and remove an element q from pending
      add q to R
      for each c \in \Sigma do
          p = \delta(q, c)
          if p \notin R then add p to pending
   return R
                              Ved hjælp af pending undgår vi at
```

FA.minimize()

```
FA minimize() {
    phase 1: remove unreachable states
    phase 2a: divide into accept/reject states
    phase 2b: iteration
    phase 3: build resulting minimal automaton n
}
```

FA.minimize(), phase 2a

```
define some ordering on the states Q declare marks: a set of pairs (p,q) where p,q \in Q and p < q marks = \emptyset for each pair p,q \in Q where p < q do if \neg (p \in A \Leftrightarrow q \in A) then add (p,q) to marks
```

Mange muligheder for Javarepresentation af *marks...*

FA.minimize(), phase 2b

```
done = false
while ¬done do
   done = true
   for each pair p,q \in Q where p < q do
      if (p,q)∉ marks then
          for each a \in \Sigma do
              r = \delta(p, a)
              s = \delta(q, a)
              if r > s then swap r and s
              if (r,s) \in marks then
                 add (p,q) to marks
                 done = false
```

Kunne også laves smartere med en "pending" worklist...

FA.minimize(), phase 3

```
FA n = \text{new FA} with same alphabet as f
        but with no states or transitions yet
initialize empty maps old2new: f.Q \rightarrow n.Q and new2old: n.Q \rightarrow f.Q
for each r \in f. Q in order do
   if (s,r) \in marks for every s < r then
      add a new state p to n.Q
      add old2new(r) = p and new2old(p) = r
      if r∈ f.A then add p to n.A
   else
      add old2new(r) = old2new(s)
   if r = f.q_0 then set n.q_0 = old2new(r)
for each state p in n do
   add n.\delta(p,c) = old2new(f.\delta(new2old(p),c)) for each c \in \Sigma
```

Eksempel

```
Alphabet a = new Alphabet('0', '1');

RegExp r = new RegExp("0+(1*+01*+10*+001*01)*0*", a);

NFALambda n1 = r.toNFALambda();

NFA n2 = n1.removeLambdas();

FA n3 = n2.determinize();

System.out.println("Før:_"+n3.getNumberOfStates());

FA n4 = n3.minimize();

System.out.println("Efter:_"+n4.getNumberOfStates());
```

Før: 13 Efter: 1

Resume

- MyHill-Nerode-sætningen: endnu en karakteristik af de regulære sprog
- en algoritme til FA minimering
- en algoritme til at fjerne uopnåelige tilstande i en FA