T6 - Estudo da espetroscopia e da fluorescência

Daniela Jordão Licenciatura em Engenharia Física, Faculdade de Ciências da Universidade do Porto 18 de Novembro de 2021

Resumo

Os objetivos da experiência passam por identificar os espetros óticos da lâmpada fluorescente, da lâmpada de descarga de Crypton e da lâmpada de Sódio com três espetrómetros diferentes (espetrómetro de desvio constante, espetrómetro digital de infravermelhos e um espetrómetro digital de ultravioletas.. Pretendeu-se, ainda, determinar curvas de transmitância em função do comprimento de onda de uma fonte de espetro contínuo, usando filtros de várias cores. Por fim, determinou-se a relação de decaimento da fluorescência com o tempo e o tempo caraterístico de desexcitação associado.

Os espetros óticos foram identificados de forma coerente nos 3 espetrómetros, apresentando desvios de não mais de 5% entre valores medidos com o espetrómetro de desvio constante e os restantes. Verifica-se a sensibilidade de cada um dos espetrómetros digitais para gamas de maior ou menor comprimento de onda, de acordo com a sua especialidade. Verificou-se com o espetrómetro UV-VIS a seleção da luz absorvida/transmitida pelos filtros de acordo com a sua cor e o comprimento de onda da radiação em questão. Observou-se o decaimento exponencial da fluorescência e determinou-se o tempo caraterístico de excitação para três amostras com tempos de excitação diferentes, com valores entre 0,072 ms e 0,0732 ms.

1 Introdução teórica

Um espetro corresponde à representação da intensidade luminosa em função da frequência ou do comprimento de onda da radiação. Este é resultante das transições eletrónicas nos átomos de um dado elemento quando sujeito a absorção/emissão de energia, sendo característico desse mesmo elemento. Tal permite identificá-lo e até mesmo estudar alterações à sua composição.

1.1 Fontes luminosas

Existem fontes de espetro contínuo, de espetro discreto e de espetro limitado. Focar-se-á o estudo nas fontes de espetro discreto, como o caso das lâmpadas de descarga em gases rarefeitos e das lâmpadas fluorescentes, e nas fontes de espetro contínuo, particularmente na lâmpada de halogéneo.

1.2 Medidas de espetroscopia

Ás técnicas radiométricas permitem caracterizar fontes luminosas, quantificando a energia emitida através da(s) cor(es) emitidas. Cada cor está associada a um frequência e, por isso, a um valor de energia. Assim sendo, caracteriza-se a energia de uma fonte através da sua frequência ou do seu comprimento de onda (inverso da frequência). Usar-se-á, nesta análise, uma representação em função do comprimento de onda. Para associar as cores emitidas aos respetivos comprimentos de onda recorre-se à seguinte classificação, onde os comprimentos de onda são dados em nanómetros.

$$360 < \text{Violeta} < 460 < \text{Azul} < 490 < \text{Verde} < 560 < \text{Amarelo} < 590 < \text{Laranja} < 610 < \text{Vermelho} < 770$$

As cores exibidas pelos filtros caracterizam os comprimentos de onda que estes deixam passar. Por exemplo, um filtro que exiba a cor vermelho, absorve os feixes de comprimentos de onda inferiores, transmitindo apenas os feixes de comprimentos de onda na zona correspondente ao vermelho. Assim, os filtros são utilizados para decompor a luz nas suas várias componentes.

Carateriza-se a interação da luz com superfícies materiais à luz de propriedades como a transmitância, refletância e absorvância. Tal como os nomes indicam, estas propriedades referem-se à fração de intensidade da luz que é transmitida,

refletida e absorvida, respetivamente, num determinado meio a um determinado comprimento de onda, em relação à intensidade da luz incidente. Tais propriedades são dadas numericamente pelas seguintes relações.

Transmitância :
$$T(\lambda) = \frac{I_T(\lambda) - I_0(\lambda)}{I_{REF}(\lambda) - I_0(\lambda)}$$
 (1)

Refletância :
$$R(\lambda) = \frac{I_R(\lambda) - I_0(\lambda)}{I_{REF}(\lambda) - I_0(\lambda)}$$
 (2)

Absorvância:
$$A(\lambda) = -\log_{10}(T(\lambda))$$
 (3)

1.3 Fluorescência

A fluorescência define-se como a emissão de luz de vida curta - entre 10^{-9} s a 10^{-3} s - despoletada pela excitação de átomos através de fotões. Os átomos são excitados por luz de comprimento de onda adequado e, uma vez extinta esta iluminação, a intensidade da radiação fluorescente decai, seguindo a lei exponencial 4, em que τ corresponde ao tempo caraterístico de desexcitação.

$$I(t) = I_0 \exp(-\frac{t}{\tau}) \tag{4}$$

Fazendo o logaritmo da expressão 4 é possível obter a relação linear 5 que, ao ser demonstrada experimentalmente, permite determinar o tempo caraterístico de desexcitação.

$$\log(I) = -\frac{t}{\tau} + \log(I_0) \tag{5}$$

Geralmente, o tempo caraterístico de desexcitação nesta experiência encontra-se entre os $3.9~\mathrm{ms}$ e $4.9~\mathrm{ms}$.

2 Método experimental

2.1 Espetroscopia

O material utilizado foi:

- Fontes luminosas (lâmpada fluorescente, lâmpada de descarga de crypton e lâmpada de sódio)
- Espetrómetro de desvio constante
- Espetrómetro digital que deteta na zona dos ultravioletas e do visível (UV-VIS)
- Espetrómetro outro que deteta na zona do visível e na zona dos infravermelhos (VIS-NIR)
- Software SpectraScan com fibras óticas de captação de luz e software ScanSci
- Suportes para fixação de amostras

Após um registo inicial do espetro de radiação ambiente nas condições em que se realizaria a experiência - luz da sala acesa - com os espetrómetros digitais, procedeu-se à observação e registo dos espetros da lâmpada fluorescente, da lâmpada de sódio e da lâmpada de descarga de crypton com todos os espetrómetros. De seguida, procedeu-se ao registo dos espetros emitidos por uma fonte quando a luz emitida atravessa filtros cor-de-rosa, amarelo, vermelho e verde. Deveria ter-se usado uma fonte de espetro contínuo, de forma a observar melhor a influência de cada filtro no espetro observado mas, por erro dos experimentalistas, utlizou-se uma fonte de espetro discreto. Estes registos foram realizados com ambos os espetrómetros digitais, mantendo a fonte a uma distância constante de $(15,00\pm0,05)$ cm em relação ao detetor e o suporte dos filtros a meia distância fonte-detetor.

¹ Valores geralmente obtidos pelos vários grupos que realizam a experiência, fornecidos pelo docente da unidade curricular

2.2 Fluorescência

O material utilizado foi:

- Caixa com amostra de vidro dopado, LED e fotodetetor
- \bullet Software $Lab \, View$

A montagem experimental encontra-se representada na figura² 1

Figura 1: Esquema de montagem para observação do fenómeno de fluorescência no vidro dopado

Nesta parte do procedimento, fez-se variar os parâmetros "tempo de excitação", "sampling rate"e "número de pontos" de modo a visualizar de forma mais clara possível o decaimento exponencial esperado. Procedeu-se à gravação de vários perfis mantendo constante a combinação de parâmetros mais satisfatória.

3 Análise de dados

3.1 Radiação Ambiente

Uma vez que todas as medições foram feitas com a luz da sala acesa (que emite radiação), determinou-se o espetro da radiação ambiente, de modo a poder descartar possíveis efeitos do mesmo nas medições seguintes. Ao contrário do que se esperava, este espetro apresenta picos em torno de comprimento de onda igual a 600 nm. Por lapso, não foi registado o espetro de radiação ambiente com o espetrómetro UV-VIS. Assim sendo, para se poder comparar espetros medidos com os dois espetrómetros de forma igualitária, decidiu-se não subtrair a radiação ambiente dos dados medidos. Esta decisão tem implicações no erro associado aos espetros analisados sendo, no entanto, a decisão mais acertada para uma análise comparativa mais fiável.

Figura 2: Espetro de radiação ambiente determinada com o VIS-NIR

²Imagem retirada do protocolo "Espetroscopia e fluorescência" de Laboratórios de Física 3

3.2 Espetros de fontes luminosas

Os dados obtidos com os espetrómetros digitais estão representados nos gráficos seguintes, seguidos de uma tabela de comparação com as medições feitas com o espetrómetro de desvio constante. Apresenta-se o erro de cada medição feita com o espetrómetro de desvio constante em relação àquelas obtidas com espetrómetros digitais, sendo estas últimas tidas como valor de referência, por apresentarem menos incerteza. Notar-se-á que todos os erros apresentados se mostram por excesso, revelando uma deteção de comprimentos de onda superiores com o espectómetro de desvio constante em relação aos espetrómetros digitais, para uma mesma risca.

Em cada um dos gráficos, escolheram-se picos bem definidos e calculou-se a largura a meia altura de cada um deles, de modo a determinar a resolução dos espetrómetros. Calculou-se a média e o desvio padrão destes valores e obtiveram-se os seguintes valores para a resolução.

$$M$$
édia = 4,968 nm
Desvio padrão = 1,268 nm

3.2.1 Lâmpada de sódio

Figura 3: Lâmpada de Sódio

LÃMPADA DE SÓDIO					
	DC	UVVIS	ERRÓ (UVVIS)	VISNIR	ERRO (VISNIR)
VIOLETA	-	-	-	-	-
AZUL	-	-	-	-	-
VERDE	-	-	-	-	-
AMARELO	572,5	-	-	546,547	5%
LARANJA	593,0	589,509	0,6%	590,388	0,4%
VERMELHÖ	620,5	-	-	612,986	1%

Figura 4: Tabela de comparação entre os 3 espetrómetros em medições com a lâmpada de sódio

Analisando os gráficos da figura 3, verifica-se a existência de picos em torno dos mesmo comprimentos de onda, cujos valores correspondem às cores das riscas visualizadas com o espetrómetro de desvio constante. A concordância entre os 3 espetrómetros é garantida a menos de 5%. No entanto, com o espetrómetro VIS-NIR foi possível identificar as 3 riscas visualizadas, contrariamente ao espetrómetro UV-VIS que apenas permitiu visualizar a risca de maior intensidade. Tal pode dever-se à menor sensibilidade do UV-VIS para comprimentos de onda mais elevados (na zona dos laranja).

3.2.2 Lâmpada de descarga - Crypton

Figura 5: Lâmpada de Descarga - Crypton

LÂMPADA DE CRYPTON					
	DC	UVVIS	ERRÓ (UVVIS)	VISNIR	ERRO (VISNIR)
VIOLETA	432,0	431,440	0,1%	-	-
	433,0	-	-	-	-
	439,5	-	-	-	-
	449,0	-	-	-	-
AZUL	454,0	-	-	-	-
VERDE	563,0	556,616	1%	557,704	0,9%
AMARELO	593,5	586,659	1%	588,704	0,9%
LARANJA	609,0	-	-	-	-
	614,5	-	-	-	-
VERMELHO	629,5	-	-	-	-
	654,0	-	-	-	-

Figura 6: Tabela de comparação entre os 3 espetrómetros em medições com a lâmpada de descarga de Crypton

O espetro visualizado com o espetrómetro de desvio contante mostra-se bastante completo, com riscas de todas as cores. Algumas riscas visualizadas com este espetrómetro mostravam-se pouco intensas, correspondendo a picos de baixa intensidade (equiparados a ruído) nos espetros determinados com os espetrómetros digitais.

As riscas mais intensas, por sua vez, apresentam elevada concordância (menos de 1%) com os picos representados nos gráficos 7. Neste caso, determinou-se uma risca com o espetrómetro UV-VIS que não se detetou com o espetrómetro VIS-NIR uma vez que tal ocorreu para comprimento de onda reduzido, estando concordante com a sensibilidade de VIS-NIR perto dos ultravioleta. Verificam-se ainda riscas na zona dos infravermelhos de elevada intensidade que foram, por isso, detetadas não só pelo VIS-NIR, mas também pelo UV-VIS.

3.2.3 Lâmpada fluorescente

Figura 7: Lâmpada fluorescente

LAMPADA FLUÓRESCENTE					
	DC	UVVIS	ERRÓ (UVVIS)	VISNIR	ERRO (VISNIR)
VIOLETA	437,5	436,431	0,2%	-	-
AZUL	489,0	486,652	0,5%	-	-
VERDE	546,0	545,778	0,04%	545,256	0,1%
AMARELO	589,0	587,066	0,3%	586,596	0,4%
LARANJA	591,2	-	-	593,753	0,9%
VERMELHO	591,2	-	-	-	-
	599,5	-	-	-	-
	615,0	611,308	0,6%	612,570	0,4%
	635,5	630,404	0,8%	630,375	0,7%

Figura 8: Tabela de comparação entre os 3 espetrómetros em medições com a lâmpada fluorescente

Mais uma vez se identificam riscas com o espetrómetro de desvio constante que não são devidamente representadas nos perfis obtidos com espetrómetros digitais, pelas razões anteriormente referidas. Encontram-se novamente picos para valores de comprimento de onda mais baixos no espetro obtido com o UV-VIS que não se encontram no espetro obtido com o VIS-NIR (e vice-versa). No entanto, na zona dos vermelhos, existem duas riscas observadas que não têm pico correspondente nos espetros dos espetrómetros digitais. Tal deve-se à fraca intensidade destas riscas, que se apresentam como ruído. Note-se, ainda assim, que as riscas comuns aos três espetros obtidos apresentam elevada concordância, com erros novamente inferiores a 1%.

3.3 Transmitância e absorvância de uma fonte

Um erro experimental - utilização de uma lâmpada fluorescente (cujo espetro emitido é discreto) no lugar de uma lâmpada de halogéneo (cujo espetro emitido é contínuo) - não permitiu a obtenção das curvas pretendidas. Pretendia-se estudar uma fonte de espetro contínuo, onde a transmitância e absorção são adequadamente visíveis. Ao usar uma fonte de espetro discreto os resultados experimentais ficaram comprometidos, obtendo-se curvas representativas pouco satisfatórias. Ainda assim, analisar-se-ão os perfis obtidos, discutindo os resultados criticamente.

3.3.1 UV-VIS

Optou-se por representar uma comparação entre o espetro obtido sem qualquer filtro e os espetros obtidos com os filtros. Tal como se esperava, encontraram-se picos mais intensos nas zonas de comprimento de onda correspondente à cor do filtro estudado e a diminuição (e até extinção) de picos nas restantes zonas do espetro. Estes resultados confirmam que os filtros absorvem radiações de cor diferente da sua e transmitem radiações de cor igual à sua.

Figura 9: Comparação entre espetros da luz emitida pela lâmpada fluorescente com e sem filtro - UV-VIS

No entanto, os gráficos de transmitância e absorvância são algo anómalos, apresentando valores não físicos nomeadamente valores de transmitância superiores a 100% e valores de absorvância negativos e superiores a 1, não permitindo o cálculo da densidade ótica máxima dos filtros.

Figura 10: UV-VIS

Ainda assim, pode determinar-se o comprimento de onda para o qual a densidade ótica é máxima tomando o pico de amplitude máxima e selecionando o comprimento de onda correspondente. Assim sendo, conclui-se que o máximo ocorre para os valores de comprimento de onda representados em nanómetros na tabela 1.

Filtro	λ
Amarelo	430
Vermelho	430
Verde	610

Tabela 1: Valores de comprimento de onda para os quais ocorre um máximo de absorvância

Mais uma vez, os valores obtidos são anómalos pois não é esperado que filtros de cores diferentes apresentem absorvância máxima para o mesmo valor de comprimento de onda.

3.3.2 **VIS-NIR**

Novamente, representou-se a comparação entre o espetro obtido sem qualquer filtro e os espetros obtidos com os filtros. Ao contrário do que se esperava, nos gráficos da figura 11 não é possível observar o comportamento esperado, uma vez que os espetros não alteram a sua configuração perante diferentes filtros. Verificam-se apenas flutuações da intensidade dos picos já observados.

Figura 11: Comparação entre espetros da luz emitida pela lâmpada fluorescente com e sem filtro - VIS-NIR

Mais uma vez, os valores numéricos dos gráficos de transmitância e absorvância não têm significado físico, pelas razões acima mencionadas.

Figura 12: VIS-NIR

3.4 Decaimento temporal da fluorescência

Os dados a seguir apresentados foram obtidos pelo grupo 5 da PL5 de Laboratórios de Física 3, uma vez que os dados obtidos pelo grupo da experimentalista revelaram erros bastante elevados, não sendo benéfica a sua apresentação neste relatório.

Representou-se, para 3 tempos de excitação diferentes (1000 ms, 1050 ms e 1100 ms) o perfil obtido (com zoom perto da zona de decaimento para melhor observação) da intensidade em função do tempo. Uma vez que o decaimento deveria seguir a lei exponencial 4, traçou-se o gráfico de $\log(I)$ em função do tempo, de modo a obter uma relação linear. Realizou-se um ajuste e traçou-se o gráfico de resíduos correspondente.

Figura 13: Gráficos para análise do decaimento temporal da fluorescência com tempo de excitação igual a 1000 ms

Figura 14: Gráficos para análise do decaimento temporal da fluorescência com tempo de excitação igual a 1050 ms

Figura 15: Gráficos para análise do decaimento temporal da fluorescência com tempo de excitação igual a 1100 ms

O gráficos de resíduos dos gráficos das figuras 13c e 14c mostram uma distribuição aleatória de valores, indicando a

boa qualidade do ajuste linear. No entanto, os resíduos do gráfico 15c mostram-se já tendenciosos. A análise dos resíduos permite, ainda, inferir sobre a razão sinal/ruído uma vez que o valor absoluto máximo de resíduos é indicativo do tamanho das flutuações que o sinal medido apresenta em relação à tendência. Nos três casos obteve-se um valor percentual de resíduo máximo de apenas 2%, revelando uma relação sinal/ruído satisfatória.

Para cada caso de tempo de excitação diferente, determinou-se o tempo caraterístico de desexcitação, τ . Partindo da expressão 5 pode afirmar-se a seguinte igualdade (em que m corresponde ao declive do gráfico para o qual se quer determinar τ)

$$m = -\frac{1}{\tau} \tag{6}$$

Assim, basta atentar nas expressões de ajuste dos gráficos das figuras 13b, 14b e 15b e determinar este tempo caraterístico. Os valores determinados estão representados na tabela 2, bem como as suas incertezas³. Não se encontrou nenhuma relação entre o tempo caraterístico de desexcitação e o tempo de excitação utilizado na medição.

Tempo de excitação (ms)	τ (s)
1000	$0,0732 \pm 0,0006$
1050	$0,072 \pm 0,001$
1100	$0,073 \pm 0,004$

Tabela 2: Tempo caraterístico de desexcitação determinado para cada valor de tempo de excitação

4 Discussão e conclusões

Na medição dos espetros das três fontes luminosas verificou-se que o espetrómetro de desvio constante está em concordância com os espetrómetros digitais, com erro inferior a 5%, sendo estes últimos mais fiáveis uma vez que as riscas por estes medidas pertenciam sempre ao intervalo de comprimentos de onda correspendentes à cor previamente visualizada.

Verificou-se ainda que o espetrómetro de desvio constante induz um erro sistemático por excesso na deteção de comprimentos de onda, erro que pode ser atribuído à "idade" do equipamento. Como já foi referido, os resultados obtidos nos espetros com filtros são anómalos. Tal pode dever-se à escolha inadequada dos parâmetros de aquisição ou até a alterações significativas dos mesmos no decorrer da experiência, mas deve-se, principalmente, à utilização de uma fonte de espetro discreto no lugar de uma fonte de espetro contínuo, que não permite uma observação tão eficaz das frequências às quais ocorre transmissão/absorção num dado filtro. Caso as curvas de absorvância e transmitância tivessem os perfis esperados, ter-se-ia medido o valor máximo de absorvância para cada filtro e para cada espetrómetro, de modo a calcular uma média que caracterizasse com precisão a absorvância dos filtros utilizados.

O cálculo do tempo caraterístico de desexcitação tem uma incerteza intrínseca associada, resultante do ruído proveniente do sinal medido, o que força a aplicação de um ajuste linear a uma série de dados dispersos. As incertezas associadas aos declives destes ajustes são de 0,7 %, 2% e 6%, respetivamente. Note-se que a incerteza superior corresponde precisamente ao conjunto de dados cujos resíduos apresentam uma tendência. Os valores obtidos para o tempo caraterístico apresentam-se uma ordem de grandeza superiores aos valores esperados, o que representa um resultado peculiar uma vez que os fatores de erro experimental nesta parte do procedimento são quase inexistentes.

A razão sinal/ruído determinada foi bastante satisfatória, com um resíduo percentual máximo entre a "banda" de pontos dispersos e o ajuste de apenas 2%.

Como já foi referido, os dados do decaimento temporal da fluorescência presentes neste relatório correspondem aos dados de outro grupo. Os resultados obtidos com o primeiro conjunto de dados mostravam valores de tempo caraterísticos duas ordens de grandeza superiores ao valor esperados. Ao compará-los com os resultados agora obtidos conclui-se que o principal fator de erro na primeira realização da experiência foi o reduzido intervalo de tempo de excitação (500 ms). Assim sendo, é possível afirmar que um maior tempo de excitação leva à produção de resultados mais exatos (ainda que bastante longe do valor esperado). No entanto, apesar de se ter à disposição, neste relatório, medidas para três valores diferentes de tempos de excitação (1000 ms, 1050 ms e 1100 ms), não foi possível observar nenhuma tendência específica na variação do tempo caraterístico com o tempo de excitação. Para melhor caraterizar esta variação, deviam ter sido realizadas mais medidas em que o tempo de excitação é variado. Em relação à razão sinal/ruído determinada com os dados originais, a razão apresentada neste relatório é uma ordem de grandeza inferior, pelo que se conclui que maior tempo de excitação torna o ruído mais desprezável.

 $^{^3}$ Incertezas calculadas através da seguinte expressão $u(\tau) = \frac{u(m)}{m^2}$

5 Referências

[1] Protocolo de Laboratório de Física III: Espetroscopia e fluorescência