- **1.3** Предполагая, что удельное сопротивление воздуха постоянно и равно $\rho = 2.9 \cdot 10^{13} \ Om \cdot m$, найдите силу тока I утечки с поверхности Земли через атмосферу к ионосфере. Оцените время разрядки τ Земли вследствие существования тока утечки.
- **1.4** Удивительно, но, несмотря на ток утечки, электрический заряд Земли с течением времени практически не меняется. Следовательно, должен существовать ток подзарядки планеты, который компенсирует ее разрядку с течением времени. Основной механизм подзарядки Земли осуществляется в результате грозовой активности в атмосфере.

При зарождении грозового фронта в результате электризации капелек воды в восходящих потоках воздуха в атмосфере образуются области положительного (в верхней части облака) и отрицательного (в его нижней части) зарядов . Считайте, что эти области накопления зарядов имеют форму шара радиуса $r \approx 0.10 \, \kappa M$. Расстояние между этими областями примите равным $H = 5.0 \, \kappa M$, а расстояние от нижнего края грозового облака до земли $h \approx 1.0 \, \kappa M$. Известно, что при напряженности электрического

поля $E_{\rm l}=3.0\frac{\kappa B}{c_{M}}$ (и более) наступает пробой воздуха, при котором

он становится проводником. Примем, что в этот момент ударяет молния. Оцените, при каком минимальном заряде q_{\min} заряженной области облака в Землю может ударить молния? В данном пункте считайте поверхность Земли хорошим

проводником.

1.5 Считая, что при ударе мощной молнии, длящемся $\tau_2 = 40\,\text{мc}$ средняя сила тока $I_2 = 200\,\text{кA}$, и что грозы на планете в течение года происходят равномерно, оцените среднее количество ударов молний в Землю на Земле в течение суток.

Подсказка. Потенциал заряженного шара радиуса R и имеющего заряд д равен

$$\varphi = \frac{q}{4\pi\varepsilon_0 R}.$$

<u>Задание 2.</u> «Ваттметр»

Существует множество хитроумных устройств, измеряющих мощность в цепи постоянного тока. Принцип их работы сводится к тому, чтобы каким-либо способом перемножить ток и напряжение на нагрузке. Мы предлагаем Вам рассмотреть наиболее простую схему такого устройства, состоящую из резисторов, вольтметра и двух диодов.

2.1. Сначала разберемся с диодом. Этот полупроводниковый прибор является нелинейным элементом, т.е. сила тока не пропорциональна напряжению. В данной задаче диоды будут включаться в прямом направлении. В этом случае можно считать, что сила тока пропорциональна квадрату напряжения:

$$I_D = kU_D^2,$$

где k – известный коэффициент.

_

 $^{^{1}}$ Механизм разделения зарядов в восходящих потоках очень сложен и в данной задаче не рассматривается.

- **2.1.1** Рассмотрим участок цепи, состоящей из последовательно включенного диода и резистора с сопротивлением R (рис. 1). Разность потенциалов на участке равна $\Delta \varphi$. Определите силу тока, текущего в этом участке.
- **2.1.2** Определите разность потенциалов на резисторе $\Delta arphi_{\scriptscriptstyle R}$.

2.1.3 Покажите, что если выполняется условие:

$$kR\Delta\varphi <<1$$
,

то сила тока в таком участке $I \approx k(\Delta \varphi)^2$, а разность потенциалов на резисторе $\Delta \varphi_{\scriptscriptstyle R} \approx Rk(\Delta \varphi)^2$.

Воспользуйтесь формулой приближенного вычисления:

$$(1+x)^{\alpha} \approx 1 + \alpha x \quad x << 1.$$

2.2 Схема ваттметра представлена на рис.2. Устройство состоит из двух участков с диодами (AE и BF), резистора R_1 и вольтметра. Сопротивление резистора R, гораздо больше сопротивления нагрузки ($R >> R_H$). Кроме того, выполняется условие пункта 1.3: $kR\Delta \varphi << 1$. Вольтметр — идеальный, т.е. обладает очень большим сопротивлением.

2.2.1 Напряжение в цепи равно U , сила тока, текущего в нагрузке, равна I . Выберем потенциал нижнего проводника равным нулю ($\varphi_0 = 0B$), а потенциал второго проводника,

Рис.2

идущего от источника напряжения, $\varphi_{\rm l} = U$ (точка A на рис. 2). Определите потенциалы точек B , C и D .

2.2.2 Определите разность потенциалов между точками C и D. Преобразуйте, полученное выражение к виду:

$$U_V = \xi IU$$
.

Выразите коэффициент ξ через k, R, R_1 и R_H .

- **2.2.3** Покажите, что при малом сопротивлении резистора $R_{\rm l}$ по сравнению с сопротивлением нагрузки ($R_{\rm l} << R_{\rm H}$), коэффициент ξ не зависит от $R_{\rm H}$, а определяется только характеристиками элементов ваттметра.
- **2.2.4** Определите относительную погрешность η измерения мощности в приближении, описанном в предыдущем пункте.

7