

Data

Andlysis

Portfoliio Project Challenge
Lung Cancer Analytics:
Insights for Early Detection
& Prevention

2/21/2025

Tools Used: SQL & Power Bi

Problem Statement & Objectives

Problem Statement:

Lung cancer is one of the leading causes of death worldwide. Early detection and analysis of patient data can help in better diagnosis and treatment.

Objectives:

- Identify key risk factors from the dataset
- Analyze patient trends (e.g., age, gender, smoking history)
- Provide insights for early detection

Dataset Overview

Dataset Details:

Number of Records: 220632

Number of Columns: 24

Main Features (Columns):

- •Age (Patient's age)
- •Gender (Male/Female)
- •Smoking History (Yes/No)
- Coughing, Fatigue, Chest Pain, Weight Loss (Symptoms)
- Lung Cancer Diagnosis (Positive/Negative)

SQL Report

Basic Level Question & Answer

```
-- 1.Retrieve all records for individuals diagnosed with lung cancer
SELECT * FROM lung_cancer_analysis
WHERE Lung_Cancer_Diagnosis = 'Yes';
-- 2.Count the number of smokers and non-smokers
SELECT Smoker, COUNT(*) AS Count
FROM lung_cancer_analysis
GROUP BY Smoker;
-- 3.List all unique cancer stages present in the dataset
SELECT DISTINCT Cancer_Stage
FROM lung_cancer_analysis;
-- 4. Retrieve the average number of cigarettes smoked per day by smokers
SELECT AVG(Cigarettes_per_Day) AS Avg_Cigarettes_Per_Day
FROM lung_cancer_analysis
WHERE Smoker = 'Yes';
-- 5.Count the number of people exposed to high air pollution
SELECT COUNT(*) AS Count
FROM lung_cancer_analysis
WHERE Air_Pollution_Exposure = 'High';
```

ID	Country	Population_Size	Age	Gender	Smoker	Years_of_Smoking	Cigarettes_per_Day	Passive_Smoker	Family_History	Lung_Cancer_Diagnosis
26	Pakistan	225	40	Female	Yes	11	17	No	No	Yes
32	Nigeria	206	55	Male	Yes	9	8	No	Yes	Yes
33	Turkey	85	33	Male	Yes	4	12	No	Yes	Yes
93	UK	67	61	Male	Yes	14	28	No	No	Yes
106	Ethiopia	120	70	Male	Yes	7	21	No	No	Yes
157	Germany	83	72	Male	Yes	25	26	No	No	Yes
168	Indonesia	273	47	Female	No	0	0	Yes	No	Yes
188	Favnt	102	71	Male	Yes	36	7	Yes	No	Yes

Smoker	Count
Yes	11993
No	18364

Cancer_Stage
None
Stage 1
Stage 2
Stage 3
Stage 4

```
Avg_Cigarettes_Per_Day
17.3966
```

```
Count
7623
```



```
-- 6. Find the top 5 countries with the highest lung cancer deaths

SELECT Country, SUM(Annual_Lung_Cancer_Deaths) AS Total_Deaths

FROM lung_cancer_analysis

GROUP BY Country

ORDER BY Total_Deaths DESC

LIMIT 5;
```

-- 7.Count the number of people diagnosed with lung cancer by gender

```
SELECT Gender, COUNT(*) AS Count
FROM lung_cancer_analysis
WHERE Lung_Cancer_Diagnosis = 'Yes'
GROUP BY Gender;
```

-- 8.Retrieve records of individuals older than 60 who are diagnosed with lung cancer

```
SELECT * FROM lung_cancer_analysis
WHERE Age > 60 AND Lung_Cancer_Diagnosis = 'Yes';
```

Country	Total_Deaths
China	841800000
USA	156260000
Japan	94500000
India	85330000
Russia	73800000

Gender	Count
Female	471
Male	755

Age	Gender	Smoker	Years_of_Smoking	Cigarettes_per_Day	Passive_Smoker	Family_History	Lung_Cancer_Diagnosis
61	Male	Yes	14	28	No	No	Yes
70	Male	Yes	7	21	No	No	Yes
72	Male	Yes	25	26	No	No	Yes
71	Male	Yes	36	7	Yes	No	Yes
85	Male	Yes	40	26	No	No	Yes
66	Male	Yes	25	6	No	No	Yes
73	Male	Yes	27	24	No	No	Yes
72	Male	Yes	21	27	No	No	Yes
81	Male	Yes	31	17	No	Yes	Yes
64	Male	Yes	1	23	No	No	Yes
73	Male	Yes	25	26	Yes	No	Yes
64	Male	Yes	13	14	No	No	Yes
65	Male	No	0	0	No	No	Yes
63	Male	No	0	0	No	No	Yes
66	Male	Yes	8	10	No	No	Yes
68	Male	Yes	18	21	No	No	Yes

FROM lung_cancer_analysis

GROUP BY Cancer_Stage;

Futurion UPSKILLING INDIA

Intermediate Level Question & Answer

-- 1.Find the percentage of smokers who developed lung cancer

SELECT

(COUNT(CASE WHEN Lung_Cancer_Diagnosis = 'Yes' THEN 1 END) * 100.0 / COUNT(*)) AS Percentage_Smokers_Lung_Cancer

FROM lung_cancer_analysis

WHERE Smoker = 'Yes';

-- 2. Calculate the average survival years based on cancer stages

SELECT Cancer_Stage, AVG(Survival_Years) AS Avg_Survival_Years

-- 3.Count the number of lung cancer patients based on passive smoking

SELECT Passive_Smoker, COUNT(*) AS Count

FROM lung_cancer_analysis

WHERE Lung_Cancer_Diagnosis = 'Yes'

GROUP BY Passive_Smoker;

-- 4. Find the country with the highest lung cancer prevalence rate

SELECT Country, MAX(Lung_Cancer_Prevalence_Rate) AS Max_Prevalence

FROM lung_cancer_analysis

GROUP BY Country;

-- 5.Identify the smoking years' impact on lung cancer

SELECT Years_of_Smoking, COUNT(*) AS Lung_Cancer_Count

FROM lung_cancer_analysis

WHERE Lung_Cancer_Diagnosis = 'Yes'

GROUP BY Years_of_Smoking

ORDER BY Years_of_Smoking;

Years_of_Smoking	Lung_Cancer_Count
0	371
1	19
2	15
3	22
4	25
5	24
6	15
7	21
8	19
9	22
10	21
11	23
12	23
13	29
14	30
15	26
16	22
17	18
18	24
19	27
20	25
21	15
22	15
23	28
24	15
25	15
26	22
27	19
28	28
29	22

Percentage_Smokers_Lung_Cancer
7.12916

Cancer_Stage	Avg_Survival_Years
None	0.0000
Stage 1	5.7526
Stage 2	5.4583
Stage 3	5.3533
Stage 4	4.9969

Passive_Smoker	Count
No	870
Yes	356

Country	Max_Prevalence
China	2.5
Iran	2.5
Mexico	2.5
Indonesia	2.49
South Africa	2.5
India	2.5
Myanmar	2.5
Ethiopia	2.5
Nigeria	2.5
Egypt	2.5
Italy	2.5
France	2.5
Germany	2.5
Brazil	2.5
Turkey	2.5
Thailand	2.5
Japan	2.5
Pakistan	2.5
Philippines	2.5
Bangladesh	2.5
Russia	2.5
Vietnam	2.5
USA	2.5
DR Congo	2.5
UK	2.5

-- 6.Determine the mortality rate for patients with and without early detection

SELECT Early_Detection, AVG(Mortality_Rate) AS Avg_Mortality_Rate

FROM lung_cancer_analysis

GROUP BY Early_Detection;

Early_Detection	Avg_Mortality_Rate
No	3.0426683211544687
Yes	3.0168504303326364

-- 7.Group the lung cancer prevalence rate by developed vs. developing countries

SELECT Developed_or_Developing, AVG(Lung_Cancer_Prevalence_Rate) AS Avg_Prevalence_Rate

FROM lung_cancer_analysis

GROUP BY Developed_or_Developing;

Developed_or_Developing	Avg_Prevalence_Rate
Developing	1.5010629510477334
Developed	1.4977457511896655

Advanced Level Question & Answer

```
-- 1.Identify the correlation between lung cancer prevalence and air pollution levels

SELECT Air_Pollution_Exposure, AVG(Lung_Cancer_Prevalence_Rate) AS Avg_Prevalence

FROM lung_cancer_analysis

GROUP BY Air_Pollution_Exposure;
```

```
-- 2.Find the average age of lung cancer patients for each country

SELECT Country, AVG(Age) AS Avg_Age

FROM lung_cancer_analysis

WHERE Lung_Cancer_Diagnosis = 'Yes'

GROUP BY Country;

-- 3.Calculate the risk factor of lung cancer by smoker status, passive smoking, and family history
```

SELECT Smoker, Passive_Smoker, Family_History, COUNT(*) AS Risk_Factor

```
FROM lung_cancer_analysis
WHERE Lung_Cancer_Diagnosis = 'Yes'
GROUP BY Smoker, Passive_Smoker, Family_History;
```

-- 4. Rank countries based on their mortality rate

SELECT Country, AVG(Mortality_Rate) AS Avg_Mortality_Rate

FROM lung_cancer_analysis

GROUP BY Country

ORDER BY Avg_Mortality_Rate DESC;

-- 5.Determine if treatment type has a significant impact on survival years

SELECT Treatment_Type, AVG(Survival_Years) AS Avg_Survival_Years

FROM lung_cancer_analysis

GROUP BY Treatment_Type;

1.Air_Pollution_Exposure	Avg_Prevalence
Low	1.5027923439958084
Medium	1.5013670064874856
High	1.4955293191656858

	Country	Avg_Age
a	Pakistan	49.0286
Z	Nigeria	53.7959
	Turkey	51.5000
	UK	52.0784
	Ethiopia	54.8627
	Germany	53.1111
	Indonesia	53.8333
	Egypt	54.3023
	Iran	53.7692
	Russia	53.2619
	DR Congo	52.6304
	Mexico	52.4091
	Philippines	48.3750
	China	51.8140
	Vietnam	51.9600
	Thailand	50.9800
	Brazil	52.6818
	Japan	50.2045
	India	49.8214
	USA	49.5455
	South Africa	49.3455
	Bangladesh	53.3061
	Myanmar	46.1154
	France	50.8036
	Italy	52.6667

	Country	Avg_Mortality_Rate
1.	USA	3.5132196339434287
• •	Indonesia	3.4622527944969903
	India	3.4187858900738326
	Philippines	3.392479806138934
	Turkey	3.38390499194847
	Thailand	3.33034722222222
	Iran	3.3184412265758088
	South Africa	3.2666613672496028
	Myanmar	3.2632722731057453
	Ethiopia	3.213679401993355
	France	3.19890494296578
	Italy	3.159695885509839
	UK	3.1462077493816984
	Vietnam	3.13950495049505
	Nigeria	3.1382579564489115
	Bangladesh	2.9482555282555283
	DR Congo	2.7560225442834136
	Brazil	2.7512187247780457
	Mexico	2.726140939597315
	Egypt	2.7248720066061107
	Germany	2.7123656776263028
	China	2.655524590163935
	Japan	2.6114603174603177
	Russia	2.548861788617886
	Pakistan	2.149689075630253

	Smoker	Passive_Smoker	Family_History	Risk_Factor
3.	Yes	No	No	524
	Yes	No	Yes	92
	No	Yes	No	97
	Yes	Yes	No	210
	No	No	Yes	39
	No	No	No	215
	No	Yes	Yes	20
	Yes	Yes	Yes	29

	Treatment_Type	Avg_Survival_Years	
5.	None	0.0533	
	Chemotherapy	5.2525	
	Radiotherapy	5.4360	
	Surgery	5.4434	

09

-- 6.Compare lung cancer prevalence in men vs. women across countries

```
SELECT Country, Gender, AVG(Lung_Cancer_Prevalence_Rate) AS Avg_Prevalence
FROM lung_cancer_analysis
WHERE Lung_Cancer_Diagnosis = 'Yes'
GROUP BY Country, Gender;
```

-- 7. Find how occupational exposure, smoking, and air pollution collectively impact lung cancer rates

```
SELECT Occupational_Exposure, Smoker, Air_Pollution_Exposure, COUNT(*) AS Lung_Cancer_Count
FROM lung_cancer_analysis
WHERE Lung_Cancer_Diagnosis = 'Yes'
GROUP BY Occupational_Exposure, Smoker, Air_Pollution_Exposure;
```

-- 8.Analyze the impact of early detection on survival years

SELECT Early_Detection, AVG(Survival_Years) AS Avg_Survival_Years
FROM lung_cancer_analysis
WHERE Lung_Cancer_Diagnosis = 'Yes'
GROUP BY Early_Detection;

Country	Gender	Avg_Prevalence
UK	Male	1.6391176470588238
Ethiopia	Male	1.5140625
Germany	Male	1.3253125
Indonesia	Female	1.5930769230769226
Egypt	Male	1.357812499999999
Iran	Male	1.4803030303030307
Russia	Male	1.565416666666667
DR Congo	Female	1.4223809523809525
Mexico	Female	1.55055555555552
Indonesia	Male	1.4614285714285715
DR Congo	Male	1.6916
UK	Female	1.5117647058823533
Philippines	Female	1.518125
China	Male	1.5965517241379312
Vietnam	Female	1.6845833333333333
Thailand	Female	1.2742105263157892
Brazil	Male	1.7577272727272728
Japan	Male	1.62566666666668
Turkey	Female	1.51
India	Female	1.45666666666667
Thailand	Male	1.4396774193548387
USA	Male	1.4491891891891886
South Africa	Male	1.5802857142857143
Brazil	Female	1.62090909090909
Ethiopia	Female	1.4157894736842103
Philippines	Male	1.404
Nigeria	Female	1.58499999999997

Occupational_Exposure	Smoker	Air_Pollution_Exposure	Lung_Cancer_Count
No	Yes	Low	144
Yes	Yes	Medium	144
No	Yes	Medium	313
Yes	No	High	30
Yes	Yes	Low	63
No	Yes	High	125
No	No	Medium	126
No	No	High	67
Yes	No	Low	36
Yes	Yes	High	66
No	No	Low	61
Yes	No	Medium	51

Early_Detection	Avg_Survival_Years
No	5.3943
Yes	5.3382

Futurion
UPSKILLING INDIA

Power Bi

Visualization Reports

Futurion UPSKILLING INDIA

Lung Cancer Overview

Stage 3

Stage 4

8961

Total_Lung_Cancer_Cases

52.66

Avg_Age_Lung_Cancer

69.74

Percentage_Smokers_Cancer

3.05

Mortality Rate for Lung Canc...

Lung Cancer Cases by Country

Key insights

Lung Cancer Overview

Males exhibit a higher prevalence of lung cancer compared to females.

Smokers constitute the majority of diagnosed cases, reinforcing smoking as a major risk factor.

Countries with high air pollution levels report significantly higher lung cancer cases.

Smoking and Risk Factors Analysis

88K

Total_Smokers

8.18

Avg_Years_of_Smoking

34K High_Risk_Patients 0.28

Early_Detection_Rate

Passive Smoking Impact on Cancer Cases O.2M O.1M O.07M No Yes Passive_Smoker

Stage 3 Stage 2 Stage 4 Stage 1

key insights

Smoking & Risk Factors

Prolonged smoking duration directly correlates with advanced cancer stages.

Passive smokers also show a noticeable increase in lung cancer cases.

Air pollution and occupational exposure amplify lung cancer risk across regions.

Futurion JPSKILLING INDIA

Treatment & Survival Analysis

0.22
Avg Survival Years

8079
Total Annual Lung Cancer Deaths

Lung Cancer Prevalence Rate

1.50

0.50

Survival_Rate_Early_Detection

Mortality Rate vs. Treatment Type 80 75 75 75 60 40 20 Surgery Radiotherapy Chemotherapy Treatment_Type

key insights

Treatment & Survival Analysis

Early detection significantly improves survival rates, with Stage 1 patients having the highest longevity.

Mortality rates are higher in developing nations, emphasizing the need for better healthcare infrastructure.

Patients receiving advanced treatments show improved survival outcomes compared to those with basic treatment plans.

Conclusion & Recommendations

Key Findings & Insights:

- 1.Smoking remains the leading cause of lung cancer, with long-term smokers facing the highest risk.
- 2. Early detection significantly increases survival rates, as patients diagnosed at Stage 1 or 2 have better treatment outcomes.
- 3.Environmental factors like air pollution and occupational hazards contribute to rising lung cancer cases, especially in urban and industrial regions.
- 4.Developing countries have a higher mortality rate, mainly due to inadequate healthcare infrastructure and late diagnosis.
- **5.Advanced treatment methods improve survival**, but accessibility remains a challenge for lower-income populations.

Actionable Business Recommendations:

- ✓ Launch large-scale anti-smoking initiatives, including higher taxation on tobacco products and public awareness campaigns.
- Invest in Al-driven early screening programs to detect lung cancer in high-risk individuals before it progresses.
- ✓ Improve healthcare access in developing nations, ensuring affordable treatment and early intervention
- Strengthen industrial regulations and workplace safety policies to limit exposure to harmful pollutants.
- **Encourage research on innovative cancer treatments**, making cutting-edge therapies more accessible and cost-effective.

By implementing these strategies, we can reduce lung cancer cases, improve patient survival, and create a proactive approach to healthcare management.

References & Acknowledgments

Data Source:

•Lung Cancer Dataset – Includes patient demographics, smoking history, air pollution exposure, cancer diagnosis, treatment details, and survival outcomes.

Tools & Technologies Used:

- •SQL— Used for querying and analyzing patient data.
- •Power BI Created interactive dashboards and visualizations.

Acknowledgments:

This project was successfully accomplished under the expert guidance and invaluable support of **Futurion Tech and Sakshi Mogal Ma'am**, whose insights and mentorship played a crucial role in shaping the analysis and outcomes.

This analysis provides data-driven insights to improve early detection, risk assessment, and healthcare strategies for lung cancer prevention and treatment.