5

10

20

25

30

Rekombinante Impfstoffe und deren Verwendung

Die vorliegende Erfindung betrifft Fusionsmoleküle von Antigenen, die dafür kodierenden Nukleinsäuren und die Verwendung derartiger Fusionsmoleküle und Nukleinsäuren. Insbesondere betrifft die Erfindung Fusionsmoleküle, die ein Antigen und die Transmembranregion und cytoplasmatische Region eines MHC-Moleküls bzw. die cytoplasmatische Region eines MHC- oder eines SNARE-Moleküls umfassen.

15 Erfindungsgemäße Fusionsmoleküle sind für eine Vielzahl von Anwendungen verwendbar, einschließlich in Verfahren zur Induktion einer Immunreaktion in einem Säuger.

Antigen-spezifische T-Zell-Reaktionen werden durch antigene Peptide, die an die Bindungsgrube Glykoproteinen von des Haupt-Histokompatibilitätskomplexes (MHC) gebunden sind, als Teil Mechanismus des Immunsystems hervorgerufen, bei dem fremde Antigene identifiziert und eine Reaktion gegen sie ausgelöst wird. Die gebundenen antigenen Peptide interagieren mit T-Zell-Rezeptoren und modulieren so eine Immunreaktion. Die antigenen Peptide sind nicht-kovalent an bestimmte "Bindetaschen" gebunden, die von polymorphen Resten der Bindungsgrube des MHC-Proteins gebildet werden.

MHC Klasse II-Moleküle sind heterodimere Glykoproteine, die aus α - und β - Ketten bestehen. Die α 1- und β 1-Domänen dieser Moleküle falten sich zusammen und bilden eine Peptid-Bindungsgrube. Antigene Peptide binden an das MHC-Molekül durch Interaktion zwischen Anker-Aminosäuren auf dem Peptid und den α 1- und β 1-Domänen. Die Kristallstruktur des

menschlichen Klasse II-HLA-DR1-Komplexes mit einem Influenzavirus-Peptid zeigt, dass sich die N- und C-terminalen Enden des gebundenen Peptids aus der Bindungsgrube erstrecken, so dass der C-Terminus des Peptids nahe zum N-Terminus der β-Kette liegt [Brown, J.H. et al., 1993, Nature 364:33-39; Stern, L.J. et al., 1994, Nature 368:215-221]. MHC Klasse I-Moleküle besitzen andere Domänen-Organisationen als MHC Klasse II-Moleküle, jedoch im Allgemeinen eine ähnliche Struktur mit einer Peptid-Bindestelle oder -grube, die zu den Membrandomänen entfernt liegt [vgl. z.B. Rudensky, A.Y. et al., 1991, Nature 353:622-627].

10

15

20

25

Der anfängliche Schritt bei der Präsentation eines fremden Protein-Antigens ist die Bindung des nativen Antigens an eine Antigen-präsentierende Zelle (APC). Nach Bindung an APCs dringen Antigene in die Zellen ein, entweder durch Phagozytose, Rezeptor-vermittelte Endozytose oder Pinozytose. Derartige internalisierte Antigene sind in intrazellulären Membrangebundenen Vesikeln, die Endosome genannt werden, lokalisiert. Nach einer Endosomen-Lysosomen-Fusion werden die Antigene in kleine Peptide durch in den Lysosomen gelegene zelluläre Proteasen prozessiert. Die Peptide assoziieren mit den α- und β-Ketten von MHC Klasse II-Molekülen innerhalb dieser Lysosomen. Diese MHC Klasse II-Moleküle, die zuvor im rauen endoplasmatischen Retikulum synthetisiert worden waren, sequentiell an die Golgi-Komplexe und sodann an das lysosomale Kompartiment transportiert. Der Peptid-MHC-Komplex wird auf der Oberfläche von APCs für eine T- und B-Zell-Aktivierung präsentiert. Daher sind die Zugängigkeit von proteolytischen Prozessierungsstellen in dem Antigen, die Stabilität der resultierenden Peptide in den Lysosomen und die Affinitäten der Peptide für MHC-Moleküle bestimmende Faktoren für die Immunogenität eines spezifischen Epitops.

Rekombinante Impfstoffe haben in der Human- und Veterinärmedizin eine besondere Bedeutung als Wirkstoffe und Arzneimittel für die Prophylaxe und Therapie von Infektions- und Krebserkrankungen. Ziel einer Impfung mit

einem rekombinanten Impfstoff ist, gegen ein definiertes Antigen eine spezifische Immunreaktion zu induzieren, die präventiv oder therapeutisch gegen definierte Krankheiten wirksam ist.

5

10

15

20

25

30

Ein für die Effektivität eines rekombinanten Impfstoffs wesentlicher Faktor ist die optimale Stimulation von T-Lymphozyten des immunisierten Organismus. So belegt eine Reihe von tierexperimentellen Untersuchungen, dass für eine effektive Immuntherapie von Tumoren sowohl die optimale Stimulation von CD8+- als auch CD4+-Lymphozyten notwendig ist. Die bekannten Hauptformen von rekombinanten Vakzinen basieren auf rekombinanten Proteinen, synthetischen Peptidfragmenten, rekombinanten Viren und Nukleinsäureimpfstoffen auf DNA- bzw. RNA-Basis. In den letzten Jahren bekamen Impfstoffe auf DNA- und RNA-Nukleinsäurebasis eine sehr viele Ziele. zunehmende Bedeutung. Für unter anderem Tumorantigene, lässt sich jedoch mit rekombinanten Impfstoffen auf Nukleinsäurebasis eine nur sehr schlechte bis gar keine Stimulation von CD4+-Lymphozyten erreichen. Daher wurde eine Reihe gentechnischer Modifikationen entwickelt, mit der Absicht, die Immunogenität von rekombinanten Impfstoffen zu erhöhen. Hierbei sind bisher verschiedene Verfahren getestet worden, u.a. Verfremdung von Immunogenen durch Veränderung der Primärsequenz oder durch Fusion an Fremdepitope z.B. von Bakterien oder Viren [Lowenadler, B. et al., 1990, Eur. J. Immunol. 20: 1541-45; Clarke, B. E. et al., 1987, Nature 330: 381-84] und Herstellung von chimären Produkten, bestehend aus dem eigentlichen Antigen und immunmodulatorischen Proteinen wie z.B. Zytokinen [Ruckert, R. et al., 1998, Eur. J. Immunol. 28: 3312-20; Harvill, E. T., J. M. Fleming, und S. L. Morrison, 1996, J. Immunol. 157: 3165-70]. Impfstoffe, die auf Verfremdung basieren, induzieren zwar verstärkte Immunantworten, haben jedoch den großen Nachteil, dass die Immunstimulation gegen das Fremdepitop dominiert und dass Immunantworten gegen das eigentliche Vakzinetarget z.T. nur moderat bleiben.

Eine weitere attraktive Möglichkeit ist die Fusion mit Sequenzen von Proteinen, die eine Translokation des Proteins in degradierende Zellkompartimente erlauben sollen. Diese Modifikationen führen jedoch, wie mittlerweile bekannt, nur zu einer mäßig verbesserten Stimulation von CD4+-Lymphozyten und kaum zu einer Verstärkung von CD8+-Immunantworten [Wu, T. C. et al., 1995, Proc. Natl. Acad. Sci. U.S.A. 92: 11671-11675; Bonini, C. et al., 2001, J. Immunol. 166: 5250-57, Su, Z. et al., 2002, Cancer Res. 62: 5041-5048].

5

20

25

30

Somit wäre es wünschenswert, über Impfstoffe zu verfügen, die die Antigenpräsentation und damit die Immunogenität gegen ein bestimmtes Antigen deutlich erhöhen. Es wäre weiterhin wünschenswert, Impfstoffe systematisch so modifizieren zu können, dass eine maximale Immunantwort durch CD4+- und CD8+-Lymphozyten resultiert, ohne Fremdepitope einführen zu müssen.

Diese Aufgabe wird erfindungsgemäß durch den Gegenstand der Patentansprüche gelöst.

Erfindungsgemäß konnte festgestellt werden, dass Fusionsmoleküle, die Antigenmoleküle und Teile von Histokompatibilitätsantigenen umfassen, bei einer Verwendung als Impfstoffe eine um >100-fach gesteigerte Immunogenität gegenüber den unmodifizierten Antigenen aufweisen und dass überraschenderweise sowohl Immunantworten von CD4+- als auch CD8+-T-Lymphozyten in bisher noch nicht beschriebener Weise erhöht werden.

Die vorliegende Erfindung betrifft allgemein Fusionsmoleküle von Antigenmolekülen und die Verwendung derartiger Fusionsmoleküle.

In einem Aspekt betrifft die Erfindung ein Fusionsmolekül, das ein Antigen und die cytoplasmatische Region einer Kette eines MHC-Moleküls, bzw. ein Antigen, eine Transmembranregion und die cytoplasmatische Region einer Kette eines MHC-Moleküls umfasst. Vorzugsweise sind sowohl die Transmembranregion als auch die cytoplasmatische Region von einem MHC-Molekül abgeleitet. Weiterhin umfasst das Fusionsmolekül vorzugsweise keine MHC-Bindedomäne.

5

10

15

20

Die Erfindung betrifft ferner ein Fusionsmolekül, das ein Antigen und eine Kette eines MHC-Moleküls oder einen Teil davon umfasst, wobei der Teil mindestens die Transmembranregion und die cytoplasmatische Region der Kette des MHC-Moleküls umfasst. Vorzugsweise umfasst der Teil der Kette eines MHC-Moleküls nicht die MHC-Bindedomäne oder Teile davon. Somit wird insbesondere ein Fusionsmolekül bereitgestellt, das ein Antigen und den Teil einer Kette eines MHC-Moleküls umfasst, der im Wesentlichen der Sequenz der Transmembranregion in Verbindung mit der cytoplasmatischen MHC-Moleküls entspricht, wobei der Begriff Region eines "Transmembranregion in Verbindung mit der cytoplasmatischen Region" den Abschnitt einer Kette eines MHC-Moleküls betrifft, der mit dem N-terminalen Ende der Transmembranregion beginnt und mit dem C-terminalen Ende der cytoplasmatischen Region, insbesondere dem C-terminalen Ende der gesamten Kette des MHC-Moleküls abschließt. In dieser Ausführungsform Verbindung Transmembranregion mit der entspricht die der cytoplasmatischen Region der natürlich auftretenden Verbindung zwischen diesen Regionen.

- Weiterhin wird erfindungsgemäß ein Fusionsmolekül bereitgestellt, das ein Antigen und eine Kette eines MHC-Moleküls oder einen Teil davon umfasst, wobei bei dem Teil im Wesentlichen die gesamten N-terminalen extrazellulären Domänen des MHC-Moleküls fehlen.
- In einer besonders bevorzugten Ausführungsform bestehen die erfindungsgemäßen Fusionsmoleküle aus einer Fusion eines Antigens, gegebenenfalls mit einer Leitsequenz an seinem N-terminalen Ende, mit

einer Transmembranregion, vorzugsweise einer Transmembranregion einer Kette eines MHC-Moleküls, am C-terminalen Ende des Antigens und einer cytoplasmatischen Region einer Kette eines MHC-Moleküls am C-terminalen Ende der Transmembranregion.

5

10

15

20

25

In einer besonders bevorzugten Ausführungsform umfassen die erfindungsgemäßen Fusionsmoleküle eine Leitsequenz, vorzugsweise eine Peptidsequenz mit Eigenschaften eines Sekretionssignals, das insbesondere in der Lage ist, die Translokation eines Proteins oder Peptids durch eine Membran zu steuern. Als Leitsequenz kann das Sekretionssignal jedes Typ-I Transmembranproteins genutzt werden, wobei der Begriff Transmembranprotein" solche Transmembranproteine betrifft, deren C-Terminus imCytoplasma lokalisiert ist. In einer besonderes Ausführungsform ist die Leitsequenz von einer Kette eines MHC-Moleküls abgeleitet. Vorzugsweise befindet sich die Leitsequenz am N-terminalen Ende der erfindungsgemäßen Fusionsmoleküle.

In einem weiteren Aspekt betrifft die Erfindung ein Fusionsmolekül, wobei im Wesentlichen die gesamten N-terminalen extrazellulären Domänen eines MHC-Moleküls durch ein Antigen mit einer Leitsequenz an dessen N-terminalen Ende ersetzt sind.

In einem erfindungsgemäßen Fusionsmolekül ist vorzugsweise das Antigen an seinem N-Terminus kovalent mit dem C-Terminus einer Leitsequenz verbunden und der C-Terminus des Antigenmoleküls ist mit dem N-Terminus der Transmembranregion verbunden, die ihrerseits am C-Terminus mit dem N-Terminus der cytoplasmatischen Region eines MHC-Moleküls verbunden ist.

30 Somit weist das erfindungsgemäße Fusionsmolekül vorzugsweise folgende Anordnung auf: N-Terminus-Leitsequenz/Antigen/Transmembranregion/cytoplasmatische Region-C-Terminus.

In einer besonders bevorzugten Ausführungsform besteht das erfindungsgemäße Fusionsmolekül im Wesentlichen aus der Leitsequenz, dem Antigen, der Transmembranregion und der cytoplasmatischen Region.

5

20

25

30

In einer besonders bevorzugten Ausführungsform ist das Antigen ein Peptid, Polypeptid oder Protein und das erfindungsgemäße Fusionsmolekül ist ein Protein oder Polypeptid.

In einer Ausführungsform sind mehrere Antigene, die gleich oder 10 verschieden sein können, in dem erfindungsgemäßen Fusionsmolekül vorhanden, d.h. mindestens 2, vorzugsweise 2 bis 10, mehr bevorzugt 2 bis 5, noch mehr bevorzugt 2 bis 3, insbesondere 2 Antigene. Diese mehrfach gekoppelten Antigene können getrennt voneinander oder in Serie nacheinander, gegebenenfalls durch einen Linker getrennt, als 15 Tandemkonstrukte vorliegen. Vorzugsweise wird dadurch bei Verabreichung eine Immunreaktion gegen verschiedene Antigene ausgelöst.

Das Antigen kann vollständig oder verkürzt sein, d.h. es enthält nur einen Teil des natürlichen Proteins oder Polypeptids, das als Antigen dient.

Vorzugsweise sind die Leitsequenz und/oder die Transmembranregion der erfindungsgemäßen Fusionsmoleküle von MHC-Molekülen, insbesondere der Klasse I oder II abgeleitet. Mehr bevorzugt sind die Leitsequenz und/oder die Transmembranregion und/oder die cytoplasmatische Region der erfindungsgemäßen Fusionsmoleküle von MHC-Molekülen, insbesondere der Klasse I oder II abgeleitet.

Erfindungsgemäß können auch eine oder mehrere, vorzugsweise flexible Linkersequenzen (Verbindungssequenzen) in dem Fusionsmolekül vorhanden sein, die zwischen der Leitsequenz und dem Antigen, zwischen dem Antigen und der Transmembranregion und/oder zwischen der

Transmembranregion und der cytoplasmatischen Region liegen können. Vorzugsweise umfasst erfindungsgemäß eine Linkersequenz etwa 7 bis 20 Aminosäuren, besser etwa 8 bis 16 Aminosäuren, und insbesondere etwa 8 bis 12 Aminosäuren.

5

10

15

20

In erfindungsgemäßen Fusionsmolekülen ist die Linkersequenz vorzugsweise flexibel und hält so das damit verbundene Peptid nicht in einer einzigen, ungewünschten Konformation. Der Linker umfasst vorzugsweise vor allem Aminosäuren mit kleinen Seitenketten wie Glycin, Alanin und Serin, um eine Flexibilität zu ermöglichen. Vorzugsweise enthält die Linkersequenz keinen Prolinrest, der die Flexibilität hemmen könnte.

In einer weiteren Ausführungsform sind die Leitsequenz, das Antigen, die Transmembranregion und/oder die cytoplasmatische Region direkt ohne einen Linker miteinander verbunden.

Die Leitsequenz weist vorzugsweise die in SEQ ID NO: 2 gezeigte Sequenz oder eine davon abgeleitete Sequenz auf bzw. wird durch die in SEQ ID NO: 1 gezeigte Sequenz oder eine davon abgeleitete Sequenz kodiert. Die Transmembran-cytoplasmatische Region weist vorzugsweise die in SEQ ID NO: 4 bzw. 6 gezeigte Sequenz oder eine davon abgeleitete Sequenz auf bzw. wird durch die in SEQ ID NO: 3 bzw. 5 gezeigte Sequenz oder eine davon abgeleitete Sequenz kodiert.

In weiteren bevorzugten Ausführungsformen ist die Transmembrancytoplasmatische bzw. die ausschließlich cytoplasmatische Region von sequenzverwandten MHC-Molekülen (u.a. HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-DRa, HLA-DRb, HLA-DQa, HLA-DQb, HLA-DPa, HLA-DPb, CD1a, CD1b, CD1c) abgeleitet. Bevorzugte Transmembran-cytoplasmatische Regionen weisen eine Sequenz auf, ausgewählt aus der Gruppe bestehend aus den in SEQ ID NO: 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 dargestellten Sequenzen und davon abgeleiteten Sequenzen. In weiteren

Ausführungsformen weisen die ausschließlich cytoplasmatischen Regionen eine Sequenz auf, ausgewählt aus der Gruppe bestehend aus den in SEO ID NO: 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 dargestellten davon abgeleiteten Sequenzen. In weiteren Sequenzen und ist auch die Verwendung von Ausführungsformen abgewandelten Sequenzen, z.B. modifizierten oder orthologen Sequenzen aus anderen Organismen, vorgesehen. Besonders bevorzugt sind dabei Sequenzen, die am C-terminalen Ende eine Homologie von mehr als 60% zu den in SEQ ID NO: 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 gezeigten Sequenzen aufweisen.

In einer besonders bevorzugten Ausführungsform umfasst das erfindungsgemäße Fusionsmolekül die in SEQ ID NO: 12 bzw. 14 gezeigte Aminosäuresequenz oder eine davon abgeleitete Sequenz.

15

20

25

10

Weiterhin betrifft die Erfindung ein Fusionsmolekül, umfassend ein Antigen und ein SNARE-Protein (insbesondere Cis-golgi SNARE p28, VTI1b, Membrin, Pallidin, Syntaxin-5, Syntaxin-6, Syntaxin-7, Syntaxin-8, Syntaxin-10, SYNTAXIN-10a, Syntaxin-11, Syntaxin-12, Syntaxin-17, VAMP-2, VAMP-3, VAMP-4, VAMP-7, VAMP8, VTI1-a-beta, XP350893, LIP5 (SEQ ID NO: 43-63)) bzw. eine Sequenz, welche ein oder mehrere SNARE-Motive beinhaltet. Durch Fusion eines Antigens mit einem SNARE-Protein oder SNARE-Motiv (bevorzugt am C-Terminus des SNARE-Proteins oder -Motivs) kann der Transport des Antigens gezielt in ein definiertes Kompartiment erfolgen (z.B. Lysosomen und Endosomen). Durch einen derartigen gezielten Transport können ferner immunogene Epitope des Antigens in einem Kompartiment generiert und präsentiert werden, was experimentell feststellbar ist.

30 SNARE-Proteine sind membranständige Proteine, deren gemeinsames Merkmal das 60-70 Aminosäuren umfassende SNARE-Motiv ist. SNARE-Proteine sind funktionell in dem Transport und der Fusion von Vesikeln in

der Zelle involviert. Eukaryontische Organismen verfügen über eine Vielzahl verschiedener SNARE-Proteine, die mit unterschiedlichen Vesikelmembranen in der Zelle (u.a. Endosomen-, Lysosomen-, Golgi-, Plasmamembran) assoziiert sind. Die cytoplasmatischen Regionen der SNARE-Proteine üben eine Doppelfunktion aus. Zum einen dienen sie als "Trafficing"-Signale (Adressetiketten), die den Zielort des Proteins und der dazugehörigen Membran vorgeben. Zum anderen können die Domänen durch Hetero- und Homoassoziation (Zusammenlagerung) zur Verschmelzung unterschiedlicher Vesikel (z.B. Endosomen mit Lysosomen) beitragen.

10

15

20

25

30

5

Erfindungsgemäß können auch die SNARE-Antigen-Fusionsmoleküle Linkersequenzen zwischen dem SNARE-Anteil und dem Antigenanteil beinhalten. Ferner sind bezüglich des Antigens und der Linkersequenz der SNARE-Antigen-Fusionsmoleküle alle vorstehend beschriebenen Ausführungsformen umfasst. Bezüglich der SNARE-Antigen-Fusionsmoleküle umfasst ein Linker vorzugsweise 80-120 Aminosäuren. In einer besonderen Ausführungsform beinhaltet der Linker eine Transmembranregion. Somit betrifft die Erfindung Fusionsmoleküle, die ein SNARE-Protein oder ein SNARE-Motiv in Fusion mit einem Antigen oder einer Transmembranregion und einem Antigen umfassen. Solche Fusionsmoleküle sind beispielsweise in Abbildung 7 gezeigt.

In einem weiteren Aspekt betrifft die Erfindung Nukleinsäuren und Derivate davon, die für die oben beschriebenen Fusionsmoleküle kodieren und vorzugsweise diese Fusionsmoleküle exprimieren können. Im folgenden umfasst der Begriff "Nukleinsäure" auch die Derivate davon.

In einer besonders bevorzugten Ausführungsform umfasst die Nukleinsäure, die für ein erfindungsgemäßes Fusionsmolekül kodiert, die in SEQ ID NO: 11 bzw. 13 gezeigte Nukleinsäuresequenz oder eine davon abgeleitete Sequenz.

Die Erfindung betrifft auch Wirtszellen, die eine erfindungsgemäße Nukleinsäure enthalten.

Die Wirtszelle kann ferner eine Nukleinsäure umfassen, die für ein HLA-Molekül kodiert. In einer Ausführungsform exprimiert die Wirtszelle das HLA-Molekül endogen. In einer weiteren Ausführungsform exprimiert die Wirtszelle das HLA-Molekül rekombinant. Vorzugsweise ist die Wirtszelle nicht-proliferativ. In einer bevorzugten Ausführungsform ist die Wirtszelle eine Antigen-präsentierende Zelle, insbesondere eine dendritische Zelle, ein Monozyt oder ein Makrophage.

5

10

15

20

25

30

In einem weiteren Aspekt betrifft die Erfindung eine pharmazeutische Zusammensetzung, insbesondere eine Vakzine, die ein oder mehrere der erfindungsgemäßen Fusionsmoleküle und/oder eine oder mehrere der dafür kodierenden Nukleinsäuren und/oder eine oder mehrere der erfindungsgemäßen Wirtszellen umfasst.

In einem weiteren Aspekt wird erfindungsgemäß eine Verfahren zur Erhöhung der Menge an MHC/Peptid-Komplexen in einer Zelle bereitgestellt, wobei das Verfahren die Bereitstellung eines erfindungsgemäßen Fusionsmoleküls oder einer dafür kodierenden Nukleinsäure für die Zelle umfasst. Vorzugsweise befindet sich die Zelle in einem Lebewesen und das Verabreichung erfindungsgemäßen Verfahren umfasst die eines Fusionsmoleküls oder einer dafür kodierenden Nukleinsäure an das Lebewesen. In einer bevorzugten Ausführungsform ist die Zelle eine Antigenpräsentierende Zelle, insbesondere eine dendritische Zelle, ein Monozyt oder ein Makrophage.

In einem weiteren Aspekt wird erfindungsgemäß ein Verfahren zur Steigerung der Präsentation von Zelloberflächenmolekülen auf Zellen bereitgestellt, die in der Lage sind, Antigene zu präsentieren (wie B-Zellen und Makrophagen, im Allgemeinen "APC" genannt). Die Verstärkung der

Antigen-präsentierenden Aktivität solcher Zellen erfolgt durch Bereitstellung eines erfindungsgemäßen Fusionsmoleküls oder einer dafür kodierenden Nukleinsäure für die Zellen. Eine derartige Verstärkung der Antigenpräsentierenden Aktivität verstärkt wiederum vorzugsweise die primäre Aktivierung von T-Zellen, insbesondere von CD4+- und CD8+-Lymphozyten, die gegenüber dem Antigen reagieren. Vorzugsweise befindet sich die Zelle in einem Lebewesen und das Verfahren umfasst die Verabreichung eines erfindungsgemäßen Fusionsmoleküls oder einer dafür kodierenden Nukleinsäure an das Lebewesen.

10

15

20

25

30

In einem weiteren Aspekt wird erfindungsgemäß ein Verfahren zum Auslösen einer Immunreaktion bei einem Lebewesen bereitgestellt, wobei das Verfahren die Verabreichung eines erfindungsgemäßen Fusionsmoleküls und/oder einer dafür kodierenden Nukleinsäure und/oder einer erfindungsgemäßen Wirtszelle an das Lebewesen umfasst.

In einem weiteren Aspekt wird erfindungsgemäß ein Verfahren zur Stimulierung oder Aktivierung von T-Zellen, insbesondere CD4+- und CD8+- Lymphozyten, in vitro oder in einem Lebewesen, insbesondere einem Patienten, bereitgestellt, wobei das Verfahren die Bereitstellung für die T-Zellen bzw. Verabreichung an das Lebewesen eines erfindungsgemäßen Fusionsmoleküls und/oder einer dafür kodierenden Nukleinsäure und/oder einer erfindungsgemäßen Wirtszelle umfasst. Eine derartige Stimulierung oder Aktivierung äußert sich vorzugsweise in einer Expansion, cytotoxischen Reaktivität und/oder Zytokinausschüttung der T-Zellen.

In einem weiteren Aspekt wird ein Verfahren zur Behandlung, Vakzinierung oder Immunisierung eines Lebewesens bereitgestellt, wobei das Verfahren die Verabreichung eines erfindungsgemäßen Fusionsmoleküls und/oder einer dafür kodierenden Nukleinsäure und/oder einer erfindungsgemäßen Wirtszelle an das Lebewesen umfasst. Dabei werden insbesondere solche Antigene in dem erfindungsgemäßen Fusionsmolekül oder der dafür

kodierenden Nukleinsäure eingesetzt, die ohne die erfindungsgemäße Veränderung als für die beabsichtigte Behandlung, Vakzinierung oder Immunisierung wirksam bekannt sind.

Die vorstehend beschriebenen Verfahren eignen sich insbesondere für eine 5 Prophylaxe Behandlung oder von infektiösen Erkrankungen, die beispielsweise von Bakterien oder Viren verursacht werden. In bestimmten Ausführungsformen ist das erfindungsgemäß verwendete Antigen von einem infektiösen Erreger wie Hepatitis A, B, C, HIV, Mykobakterien, Malariaerreger, Erreger von SARS, Herpesvirus, Influenzavirus, Poliovirus bzw. von bakteriellen Erregern wie Chlamydien und Mykobakterien abgeleitet. Eine besonders nützliche Anwendung der vorliegenden Erfindung liegt in der Krebs-Immuntherapie oder -Vakzinierung, wo insbesondere eine Aktivierung von Tumorantigen-reaktiven T-Zellen verstärkt wird, wodurch die Aussicht für eine T-Zell-Immuntherapie oder -Vakzinierung gegen Tumorzellen verbessert wird.

10

15

20

25

30

In spezifischen Ausführungsformen ist das erfindungsgemäß verwendete Antigen ausgewählt aus der Gruppe bestehend aus den folgenden Antigenen: p53, vorzugsweise kodiert von der in SEQ ID NO: 66 gezeigten Sequenz, ART-4, BAGE, ss-Catenin/m, Bcr-abL CAMEL, CAP-1, CASP-8, CDC27/m, CDK4/m, CEA, CLAUDIN-12, c-MYC, CT, Cyp-B, DAM, ELF2M, ETV6-AML1, G250, GAGE, GnT-V, Gap100, HAGE, HER-2/neu, HPV-E7, HPV-E6, HAST-2, hTERT (oder hTRT), LAGE, LDLR/FUT, MAGE-A, vorzugsweise MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A5, MAGE-A6, MAGE-A7, MAGE-A8, MAGE-A9, MAGE-A10, MAGE-A11 oder MAGE-A12, MAGE-B, MAGE-C, MART- 1/Melan-A, MC1R, Myosin/m, MUC1, MUM-1, -2, -3, NA88-A, NF1, NY-ESO-1, NY-BR-1, p190 minor bcr-abL Pml/RARa, PRAME, Proteinase-3, PSA, PSM, RAGE, RU1 oder RU2, SAGE, SART-1 oder SART-3, SCGB3A2, SCP1, SCP2, SCP3, SSX, SURVIVIN, TEL/AML1, TPI/m, TRP-1, TRP-2, TRP-2/INT2, TPTE und WT, vorzugsweise WT-1, insbesondere kodiert von der in SEQ ID NO: 65 gezeigten Sequenz.

Detaillierte Beschreibung der Erfindung

5

10

15

20

25

30

Die Begriffe "Domäne" oder "Region" betreffen einen bestimmten Teil einer Aminosäuresequenz, der vorzugsweise mit einer bestimmten Funktion oder Struktur in Zusammenhang gebracht werden kann. Zum Beispiel weisen die α - und β -Polypeptide eines MHC-Klasse II-Moleküls zwei Domänen, $\alpha 1$, $\alpha 2$ bzw. $\beta 1$, $\beta 2$, eine Transmembranregion und eine cytoplasmatische Region auf. In ähnlicher Weise weist die α -Kette von MHC-Klasse I-Molekülen drei Domänen, $\alpha 1$, $\alpha 2$ und $\alpha 3$, eine Transmembranregion und eine cytoplasmatische Region auf.

In einer Ausführungsform wird bei einer Auswahl der Sequenz einer bestimmten Domäne oder Region für eine Deletion oder einen Einbau in ein erfindungsgemäßes Fusionsmolekül die gesamte Domäne oder Region umfasst. Um dieses sicherzustellen, kann die Sequenz der betreffenden Domäne oder Region verlängert sein, um Teile eines Linkers oder sogar Teile der benachbarten Domäne oder Region zu beinhalten. Der Begriff "im Wesentlichen" in Bezug auf eine Domäne oder Region ist in diesem Sinne zu verstehen.

Der Begriff "Transmembranregion" betrifft den Teil eines Proteins, der im Wesentlichen den sich in einer zellulären Membran befindlichen Anteil ausmacht und vorzugsweise einer Verankerung des Proteins in der Membran dient. Vorzugsweise ist erfindungsgemäß eine Transmembranregion eine Aminosäuresequenz mit einem einzelnen Durchtritt durch die Membran. in bestimmten Ausführungsformen auch Jedoch kann Transmembranregion verwendet werden, die mehr als einen Durchtritt durch die Membran aufweist. Die Transmembranregion wird im Allgemeinen 15-25 vorzugsweise hydrophobe ungeladene Aminosäuren aufweisen, die beispielsweise eine α-helikale Konformation einnehmen. Vorzugsweise ist die Transmembranregion von einem Protein, ausgewählt aus der Gruppe

bestehend aus MHC-Molekülen, Immunglobulinen, CD4, CD8, der CD3-ζ-Kette, der CD3-γ-Kette, der CD3-δ-Kette und der CD3-ε-Kette abgeleitet.

Typischerweise besteht die Transmembranregion im Fall der α - und β -Ketten des MHC Klasse II-Moleküls aus etwa 20 hydrophoben Aminosäuren, die mit dem Carboxy-terminalen Ende des Antigens verbunden sind. Diese Reste erlauben ein Überspannen der Membran durch das Protein. Die die Transmembranregion 6-32 den endet mit etwa Resten, cytoplasmatischen Schwanz umfassen, am Carboxy-terminalen Ende einer jeden dieser Ketten. Es wurde gezeigt, dass diese Transmembran- und cytoplasmatischen Regionen durch Sequenzen ersetzt werden können, die eine GPI-Bindung signalisieren, und dass die chimären GPI-verankerten Klasse II-Moleküle Membran-gebunden sind (Wettstein, D.A., J.J. Boniface, P.A. Reay, H. Schild und M.M. Davis, 1991, J. Exp. Med. 174:219-228). Solche Ausführungsformen sind erfindungsgemäß von dem Begriff "Transmembranregion" umfasst. GPI-gebundene Membran-Ankerdomänen wurden in einer Reihe von Proteinen definiert, einschließlich Verfallbeschleunigender Faktor (decay accelerating factor; DAF), CD59 und menschlicher placentaler alkalischer Phosphatase (HPAP) (Wettstein, D.A., J.J. et al., 1991, J. Exp. Med. 174:219-228). Zum Beispiel sind die 38 Carboxy-terminalen Aminosäuren von HPAP ausreichend für eine Funktion als Signalsequenz für eine Bindung von GPI. Falls die für diese Domäne kodierende DNA-Sequenz mit einem sekretierten Molekül, wie dem löslichen Teil der MHC Klasse II-α- oder -β-Kette verbunden wird, bildet sich ein Membran-gebundenes chimäres Molekül (Wettstein, D.A. et al., 1991, J. Exp. Med. 174:219-228) und ein derartiges Verfahren kann für die Verankerung von Fusionsmolekülen der Erfindung an eine Zellmembran eingesetzt werden.

10

15

20

25

Der Begriff "Haupt-Histokompatibilitätskomplex" und die Abkürzung "MHC" betreffen einen Komplex von Genen, der in allen Vertebraten auftritt. MHC-Proteine oder –Moleküle fungieren bei einer Signalgebung zwischen

Lymphozyten Antigen-präsentierenden Zellen und in normalen Immunreaktionen dadurch, dass sie Peptide binden und sie für eine mögliche Erkennung durch T-Zell-Rezeptoren (TCR) präsentieren. MHC-Moleküle binden Peptide in einem intrazellulären Prozessierungskompartiment und präsentieren diese Peptide auf der Oberfläche von Antigen-präsentierenden Zellen gegenüber T-Zellen. Die menschliche MHC-Region, auch als HLA bezeichnet, findet sich auf Chromosom 6 und beinhaltet die Klasse I-Region und die Klasse II-Region.

5

15

20

25

Der Begriff "MHC-Klasse I" oder "Klasse I" betrifft die Haupt-Histokompatibilitätskomplex-Klasse I-Proteine oder -Gene. Innerhalb der MHC-Klasse I-Region finden sich beim Menschen die HLA-A-, HLA-B-, HLA-C-, HLA-E-, HLA-F-, CD1a-, CD1b- und CD1c-Unterregionen.

Die α-Ketten der Klasse I sind Glykoproteine mit einem Molekulargewicht von etwa 44 kDa. Die Polypeptidkette ist etwas über 350 Aminosäurereste lang. Sie kann in drei funktionelle Regionen unterteilt werden: eine externe, eine transmembranöse und eine cytoplasmatische Region. Die externe Region ist 283 Aminosäurereste lang und in drei Domänen, α1, α2 und α3, unterteilt. Die Domänen und Regionen werden gewöhnlich von separaten Exons des Klasse I-Gens kodiert. Die transmembrane Region umspannt die Lipid-Doppelschicht der Plasmamembran. Sie besteht aus 23 zumeist hydrophoben Aminosäureresten, die in einer α-Helix angeordnet sind. Die cytoplasmatische Region, d.h. der dem Cytoplasma zugewandte Teil, der sich an die Transmembranregion anschließt, ist typischerweise 32 Aminosäurereste lang und hat die Fähigkeit, mit den Elementen des Cytoskeletts zu interagieren. Die α-Kette interagiert mit β2-Mikroglobulin und bildet so α - β 2-Dimere auf der Zelloberfläche.

Der Begriff "MHC-Klasse II" oder "Klasse II" betrifft die Haupt-Histokompatibilitätskomplex-Klasse II-Proteine oder -Gene. Innerhalb der MHC-Klasse II-Region finden sich im Menschen die DP-, DQ- und DR-

Subregionen für Klasse II- α -Ketten- und - β -Ketten-Gene (d.h. DP α , DP β , DQ α , DQ β , DR α und DR β).

5

10

15

20

25

30

Klasse II-Moleküle sind Heterodimere, die aus je einer α - und einer β -Kette bestehen. Beide Ketten sind Glykoproteine mit einem Molekulargewicht von 31-34 kDa (α) oder 26-29 kDa (β). Die Gesamtlänge der α-Ketten variiert von 229 bis 233 Aminosäureresten, die der β -Ketten von 225 bis 238 Resten. Sowohl α- als auch β-Ketten bestehen aus einer externen Region, einem einer transmembranösen Region und einem Peptid, verbindenden cytoplasmatischen Schwanz. Die externe Region besteht aus zwei Domänen, α 1 und α 2 oder β 1 und β 2. Das verbindende Peptid ist in α - und β -Ketten 13 Reste lang. Es verbindet die zweite Domäne mit bzw. transmembranösen Region, die sowohl in α- als auch in β-Ketten aus 23 Aminosäureresten besteht. Die Länge der cytoplasmatischen Region, d.h. der dem Cytoplasma zugewandte Teil, der sich an die Transmembranregion anschließt, variiert von 3 bis 16 Resten in α-Ketten und von 8 bis 20 Resten in β -Ketten.

Erfindungsgemäß betrifft der Begriff "Kette eines MHC-Moleküls" die α-Kette eines MHC-Klasse I-Moleküls bzw. die α- und β-Ketten eines MHC-Klasse II-Moleküls. Die α-Ketten eines MHC-Klasse I-Moleküls, von denen die erfindungsgemäßen Fusionsmoleküle abgeleitet sein können, umfassen die HLA-A-, -B- und -C-α-Ketten. Die α-Ketten eines MHC-Klasse II-Moleküls, von denen die erfindungsgemäßen Fusionsmoleküle abgeleitet sein können, umfassen HLA-DR-, -DP- und -DQ-α-Ketten, insbesondere HLA-DR1-, HLA-DR2-, HLA-DR4-, HLA-DQ1-, HLA-DQ2- und HLA-DQ8-α-Ketten und insbesondere α-Ketten, die von DRA*0101-, DRA*0102-, DQA1*0301- oder DQA1*0501-Allelen kodiert werden. Die β-Ketten eines MHC-Klasse II-Moleküls, von denen die erfindungsgemäßen Fusionsmoleküle abgeleitet sein können, umfassen HLA-DR-, -DP- und -DQ-β-Ketten, insbesondere HLA-DR1-, HLA-DR2-, HLA-DR4-, HLA-DQ1-, HLA-DQ2- und HLA-DQ8-β-Ketten

und insbesondere β-Ketten, die von DRB1*01-, DRB1*15-, DRB1*16-, DRB5*01-, DQB1*03- und DQB1*02-Allelen kodiert werden.

Der Begriff, "MHC-Bindedomäne" betrifft die "MHC-Klasse I-Bindedomäne" und "MHC-Klasse II-Bindedomäne".

5

10

15

20

25

30

Der Begriff "MHC-Klasse I-Bindedomäne" betrifft die Region eines MHC-Klasse I-Moleküls oder einer MHC-Klasse I-Kette, die für eine Bindung an ein antigenes Peptid notwendig ist. Eine MHC-Klasse I-Bindedomäne wird vorwiegend durch die α1- und α2-Domänen der MHC-Klasse I-α-Kette gebildet. Obwohl die α3-Domäne der α-Kette und β2-Mikroglobulin keine essentiellen Teile der Bindedomäne darstellen, sind sie vermutlich für eine Stabilisierung der Gesamtstruktur des MHC-Klasse I-Moleküls wichtig und daher schließt der Begriff "MHC-Klasse I-Bindedomäne" diese Regionen vorzugsweise ein. Eine MHC-Klasse I-Bindedomäne kann auch im Wesentlichen als die extrazelluläre Domäne eines MHC-Klasse I-Moleküls definiert werden, was sie von den Transmembran- und cytoplasmatischen Regionen unterscheidet.

Der Begriff "MHC-Klasse II-Bindedomäne" betrifft die Region eines MHC-Klasse II-Moleküls oder einer MHC-Klasse II-Kette, die für die Bindung an ein antigenes Peptid notwendig ist. Eine MHC-Klasse II-Bindedomäne wird vorwiegend durch die α1- und β1-Domänen der MHC-Klasse II-α- und -β-Ketten gebildet. Die α2- und β2-Domänen dieser Proteine sind vermutlich jedoch auch für eine Stabilisierung der Gesamtstruktur der MHC-Bindegrube wichtig und daher schließt der Begriff "MHC-Klasse II-Bindedomäne" erfindungsgemäß vorzugsweise diese Regionen ein. Eine MHC-Klasse II-Bindedomäne kann auch im Wesentlichen als die extrazelluläre Domäne eines MHC-Klasse II-Moleküls definiert werden, was sie von der Transmembran- und cytoplasmatischen Domäne unterscheidet.

Die genaue Anzahl an Aminosäuren in den verschiedenen MHC-Moleküldomänen oder -Regionen variiert abhängig von der Säugerspezies sowie zwischen Genklassen innerhalb einer Spezies. Bei einer Auswahl der Aminosäuresequenz einer bestimmten Domäne oder Region ist vielmehr die Aufrechterhaltung der Funktion der Domäne oder Region wichtig als die genaue strukturelle Definition, die auf der Anzahl von Aminosäuren basiert. Ferner ist dem Fachmann bekannt, dass die Funktion auch aufrechterhalten werden kann, wenn etwas weniger als die gesamte Aminosäuresequenz der ausgewählten Domäne oder Region verwendet wird.

10

15

20

25

30

5

Der Begriff "Antigen" betrifft ein Agens, gegen das eine Immunreaktion erzeugt werden soll. Der Begriff "Antigen" umfasst insbesondere Proteine, Peptide, Polysaccharide, Nukleinsäuren insbesondere RNA und DNA sowie Nukleotide. Der Begriff "Antigen" umfasst auch derivatisierte Antigene als erst durch Umwandlung (z.B. intermediär im Molekül, durch Komplettierung werdende - und sensibilisierende antigen mit Körpereiweiss) Sekundärsubstanz und konjugierte Antigene, die durch künstlichen Einbau von Atomgruppen (z.B. Isocyanate, Diazoniumsalze) eine neue konstitutive Spezifität aufweisen. In einer bevorzugten Ausführungsform ist das Antigen ein Tumorantigen, d.h. ein Bestandteil von Krebszellen, die dem Cytoplasma, der Zelloberfläche und dem Zellkern entstammen können, insbesondere diejenigen, die intrazellulär oder als Oberflächenantigene an Tumorzellen vorzugsweise vermehrt entstehenden Antigene. Beispiele sind das α1-Fetoprotein, Isoferritin Antigen, und karzinoembryonale Sulfoglykoprotein, α2-H-Ferroprotein und γ-Fetoprotein und verschiedene Virustumorantigene. In einer weiteren Ausführungsform ist das Antigen ein Virusantigen wie virale Ribonukleoproteine oder Hüllproteine. Insbesondere sollte das Antigen oder Peptide davon von MHC-Molekülen präsentiert werden und dadurch zur Modulation, insbesondere Aktivierung von Zellen CD8+-Lymphozyten, CD4+und vorzugsweise Immunsystems, des insbesondere über die Modulation der Aktivität eines T-Zell-Rezeptors fähig sein und somit vorzugsweise die T-Zell-Vermehrung induzieren.

Der Begriff "MHC/Peptid-Komplex" betrifft einen nicht-kovalenten Komplex der Bindedomäne eines MHC-Klasse I- bzw. MHC-Klasse II-Moleküls und eines MHC-Klasse I- bzw. MHC-Klasse II-Bindepeptids.

5

10

15

20

Der Begriff "MHC-Bindepeptid" oder "bindendes Peptid" betrifft ein Peptid, das an ein MHC-Klasse I- und/oder ein MHC-Klasse II-Molekül bindet. Im Fall von Klasse I-MHC/Peptid-Komplexen sind die Bindepeptide typischerweise 8-10 Aminosäuren lang, obwohl längere oder kürzere Peptide wirksam sein können. Im Fall von Klasse II-MHC/Peptid-Komplexen sind die Bindepeptide typischerweise 10-25 Aminosäuren lang und insbesondere 13-18 Aminosäuren lang, obwohl längere und kürzere Peptide wirksam sein können.

dafür kodierenden Fusionsmoleküle und die Erfindungsgemäße Nukleinsäuren können im Allgemeinen durch rekombinante DNA-Techniken Spaltung DNA wie Herstellung von Plasmid-DNA, mit Restriktionsenzymen, Ligation von DNA, Transformation oder Transfektion eines Wirts, Kultivierung des Wirts und Isolierung und Reinigung des exprimierten Fusionsmoleküls hergestellt werden. Solche Verfahren sind bekannt und z.B. in Sambrook et al., Molecular Cloning, (2. Auflage, 1989) beschrieben.

25

Für das Antigen kodierende DNA kann durch Isolation von DNA aus natürlichen Quellen oder durch bekannte Syntheseverfahren wie dem Phosphattriesterverfahren erhalten werden; vgl. z.B. Oligonucleotide Synthesis, IRL Press (M.J. Gait, Hrsg., 1984). Synthetische Oligonukleotide können auch mit Hilfe käuflich erhältlicher automatischer Oligonukleotid-Synthesegeräte hergestellt werden.

30

Die Anteile von MHC-Moleküle der erfindungsgemäßen Fusionsmoleküle entsprechen in Bezug auf die Aminosäuresequenz in geeigneter Weise natürlich vorkommenden MHC-Molekülen von Mensch, Maus oder anderen Nagern oder anderen Säugern oder sind Derivate davon.

Für MHC-Proteine kodierende DNA-Quellen sind bekannt, wie menschliche lymphoblastoide Zellen. Nach einer Isolierung kann das für das MHC-Molekül kodierende Gen oder ein interessierender Teil davon durch Polymerase-Kettenreaktion (PCR) oder andere bekannte Verfahren amplifiziert werden. Geeignete PCR-Primer für die Amplifikation des Gens für das MHC-Peptid können Restriktionsstellen an das PCR-Produkt anfügen.

10

15

20

25

5

Vorzugsweise werden erfindungsgemäß DNA-Konstrukte hergestellt, die für die Leitsequenz, die Transmembranregion und die cytoplasmatische Region die kodierende Nukleinsäuresequenzen umfassen und eine Restriktionsschnittstelle zwischen der Leitsequenz der und Transmembranregion enthalten, so dass im Wesentlichen jede für ein interessierendes Antigen kodierende Nukleotidsequenz in das Konstrukt eingebunden werden kann.

In einem bevorzugten Verfahren zur Herstellung erfindungsgemäßer Fusionsmoleküle werden DNA-Sequenzen so angeordnet, dass das Cterminale Ende der Leitsequenz an das N-terminale Ende des Antigens, das Naterminale Ende des Antigens an das Ende C-terminale Transmembranregion, und das C-terminale Ende der Transmembranregion an das N-terminale Ende der cytoplasmatischen Region gebunden ist. Wie werden vorzugsweise Restriktionsschnittstellen vorstehend erörtert. der Leitsequenz Anfang der zwischen das Ende und den Transmembranregion eingebaut, Wesentlichen so dass im iede Nukleinsäure, die für ein interessierendes Antigen kodiert, an die Nukleinsäuresequenz für die Transmembranregion gebunden werden kann.

30

Ein exprimiertes erfindungsgemäßes Fusionsmolekül kann isoliert und in an sich bekannter Weise gereinigt werden. Typischerweise wird das

Kulturmedium zentrifugiert und der Überstand sodann durch Affinitätsoder Immunoaffinitätsverfahren, umfassend die Verwendung von
monoklonalen Antikörpern, die an das exprimierte Fusionsmolekül binden,
gereinigt. Das Fusionsmolekül kann auch eine Sequenz enthalten, die die
Reinigung unterstützt, z.B. ein 6xHis-Tag.

5

10

15

20

25

30

Die Fähigkeit eines erfindungsgemäßen Fusionsmoleküls, die Aktivität eines T-Zell-Rezeptors zu modulieren (einschließlich Inaktivierung der T-Zell-Reaktionen) kann einfach durch einen in vitro-Test bestimmt werden. Typischerweise werden T-Zellen für die Tests durch transformierte T-Zelllinien bereitgestellt, wie T-Zell-Hybridome oder T-Zellen, die aus einem Säuger wie einem Menschen oder einem Nagetier wie einer Maus isoliert werden. Geeignete T-Zell-Hybridome sind frei verfügbar oder können in an sich bekannter Weise hergestellt werden. T-Zellen können in an sich bekannter Weise aus einem Säuger isoliert werden; vgl. z.B. Shimonkevitz, R. et al., 1983, J. Exp. Med. 158:303.

Bestimmung, ein erfindungsgemäßes geeigneter Test zur ob Ein Fusionsmolekül zur Modulation der Aktivität von T-Zellen fähig ist, erfolgt wie folgt durch die nachstehenden Schritte 1-4. T-Zellen exprimieren in geeigneter Weise einen Marker, der getestet werden kann und der T-Zell-Aktivierung oder Modulation der T-Zell-Aktivität nach Aktivierung anzeigt. So kann das Maus-T-Zell-Hybridom DO11.10, das Interleukin-2 (IL-2) bei einer Aktivierung exprimiert, verwendet werden. IL-2-Konzentrationen können gemessen werden, um zu bestimmen, ob ein spezifisches präsentierendes Peptid zur Modulation der Aktivität dieses T-Zell-Hybridoms fähig ist. Ein derartiger geeigneter Test erfolgt durch die nachstehenden Schritte:

1. T-Zellen werden z.B. aus einem interessierenden T-Zell-Hybridom oder durch Isolierung aus einem Säuger erhalten.

- 2. Die T-Zellen werden unter Bedingungen kultiviert, die eine Vermehrung erlauben.
- 3. Die wachsenden T-Zellen werden mit Antigen-präsentierenden Zellen in Kontakt gebracht, die ihrerseits mit einem erfindungsgemäßen Fusionsmolekül oder einer dafür kodierenden Nukleinsäure in Kontakt gebracht wurden.
- 4. Die T-Zellen werden auf einen Marker getestet, z.B. wird die IL-2-10 Produktion gemessen.

Die in den Tests verwendeten T-Zellen werden unter für eine Vermehrung geeigneten Bedingungen inkubiert. Zum Beispiel wird ein DO11.10-T-Zell-Hybridom geeigneterweise bei etwa 37°C und 5% CO₂ im Vollmedium (RPMI 1640, supplementiert mit 10% FBS, Penicillin/Streptomycin, L-Glutamin und 5 x 10-5 M 2-Mercaptoethanol) inkubiert. Serielle Verdünnungen des erfindungsgemäßen Fusionsmoleküls können getestet werden. T-Zell-Aktivierungssignale werden durch Antigen-präsentierende Zellen bereitgestellt, die mit dem geeigneten antigenen Peptid beladen worden waren.

15

20

25

30

Alternativ zu der Messung eines exprimierten Proteins wie IL-2 kann die Modulation der T-Zell-Aktivierung geeigneter Weise durch Veränderungen der Vermehrung von Antigen-abhängigen T-Zellen, wie gemessen durch bekannte Radiomarkierungsverfahren, bestimmt werden. Zum Beispiel kann ein markiertes (wie tritiert) Nukleotid in ein Testkulturmedium eingebracht werden. Das Einbringen eines derartigen markierten Nukleotids in die DNA dient als Messgröße für die T-Zell-Vermehrung. Dieser Test ist nicht für T-Zellen geeignet, die keiner Antigen-Präsentation für das Wachstum bedürfen, wie T-Zell-Hybridome. Der Test ist für die Messung der Modulation von T-Zell-Aktivierung durch Fusionsmoleküle im Fall von nicht-transformierten T-Zellen, die aus Säugern isoliert wurden, geeignet.

Fusionsmoleküls, eine erfindungsgemäßen Die Fähigkeit eines Immunreaktion zu induzieren, einschließlich eine Vakzinierung gegen eine Zielerkrankung zu ermöglichen, kann einfach durch einen in vivo-Test Zum Beispiel kann ein erfindungsgemäßes bestimmt werden. Fusionsmolekül oder eine dafür kodierende Nukleinsäure an einen Säuger wie eine Maus verabreicht werden und Blutproben aus dem Säuger zum Zeitpunkt der ersten Verabreichung und mehrfach in periodischen Zeiträumen danach (wie 1, 2, 5 und 8 Wochen nach Verabreichung des Fusionsmoleküls oder der dafür kodierenden Nukleinsäure) entnommen werden. Serum wird aus den Blutproben gewonnen und auf das Auftreten von durch die Immunisierung entstandenen Antikörpern getestet. Antikörper-Konzentrationen können bestimmt werden. Daneben können aus dem Blut bzw. aus lymphatischen Organen T-Lymphozyten isoliert werden und funktionell auf Reaktivitität gegen das Antigen bzw. von dem Antigen abgeleitete Epitope getestet werden. Alle dem Fachmann bekannten "Readout"-Systeme u.a. Proliferationsassay, Zytokinsekretion, zytotoxische Aktivität, Tetrameranalyse können hierbei verwendet werden.

5

10

15

20

25

Erfindungsgemäße Verfahren für die Induktion einer Immunreaktion, Lebewesens eine Vakzinierung eines gegen einschließlich der Zielerkrankung, können in Kombination mit bekannten Verfahren für die Induktion einer Immunreaktion verwendet werden. Zum Beispiel kann ein oder eine dafür kodierende Fusionsmolekül erfindungsgemäßes Nukleinsäure an ein Lebewesen in einer Anordnung oder Kombination mit der Verabreichung einer Vakzine-Zusammensetzung verabreicht werden, um die gewünschte Wirkung einer derartigen Vakzine-Zusammensetzung zu verstärken oder zu verlängern.

Der Begriff "abgeleitet" bedeutet erfindungsgemäß, dass ein bestimmter Gegenstand, insbesondere eine bestimmte Sequenz, in dem Objekt, von dem er abgeleitet ist, insbesondere einem Organismus oder Molekül, vorliegt. Im

WO 2005/038030 PCT/EP2004/011512 25

Fall von Nukleinsäureund Aminosäuresequenzen, insbesondere bestimmten Sequenzregionen, bedeutet "abgeleitet" außerdem, dass die betreffende Nukleinsäure- bzw. Aminosäuresequenz in Übereinstimmung mit den nachstehenden Definitionen von einer Nukleinsäurebzw. Aminosäuresequenz abgeleitet ist, die in dem Objekt vorliegt. Somit bedeutet der Begriff "von einem MHC-Molekül abgeleitete Sequenz oder Region", dass die Sequenz oder Region in einem MHC-Molekül vorliegt oder von einer Region, die in Sequenz oder einem MHC-Molekül vorliegt, in Übereinstimmung mit den nachstehenden Definitionen abgeleitet ist.

10

15

20

25

30

5

Eine Nukleinsäure ist erfindungsgemäß vorzugsweise Desoxyribonukleinsäure (DNA) oder Ribonukleinsäure (RNA). Nukleinsäuren umfassen erfindungsgemäß genomische DNA, cDNA, mRNA, rekombinant hergestellte und chemisch synthetisierte Moleküle. Eine Nukleinsäure kann erfindungsgemäß als einzelsträngiges oder doppelsträngiges und lineares oder kovalent kreisförmig geschlossenes Molekül vorliegen.

Eine von einer Nukleinsäuresequenz abgeleitete Sequenz oder der Begriff "von einer Nukleinsäuresequenz abgeleitete Sequenz" betrifft erfindungsgemäß homologe Sequenzen und Derivate der ersteren Sequenz.

Homologe Nukleinsäuresequenzen weisen erfindungsgemäß mindestens 40%, insbesondere mindestens 50%, mindestens 60%, mindestens 70%, mindestens 80%, mindestens 90% und vorzugsweise mindestens 95%, mindestens 98 oder mindestens 99% Identität der Nukleotide auf.

Eine Nukleinsäure ist insbesondere dann zu einer anderen Nukleinsäure "homolog", wenn die beiden Sequenzen der komplementären Stränge miteinander hybridisieren und ein stabiles Duplex eingehen können, wobei die Hybridisierung vorzugsweise unter Bedingungen erfolgt, die eine spezifische Hybridisierung zwischen Polynukleotiden erlauben (stringente Bedingungen). Stringente Bedingungen sind beispielsweise in Molecular

Cloning: A Laboratory Manual, J. Sambrook et al., Hrsg., 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989 oder Current Protocols in Molecular Biology, F.M. Ausubel et al., Hrsg., John Wiley & Sons, Inc., New York, beschrieben und betreffen beispielsweise die Hybridisierung bei 65°C in Hybridisierungspuffer (3,5 x SSC, 0,02% Ficoll, 0,02% Polyvinylpyrrolidon, 0,02% Rinderserumalbumin, 2,5mM NaH₂PO₄ (pH 7), 0,5% SDS, 2mM EDTA). SSC ist 0,15 M Natriumchlorid / 0,15 M Natriumcitrat, pH 7. Nach der Hybridisierung wird die Membran, auf die die DNA übertragen wurde beispielsweise in 2 x SSC bei Raumtemperatur und sodann in 0,1 - 0,5 x SSC/ 0,1 x SDS bei Temperaturen bis 68°C gewaschen.

5

10

15

20

25

Mit "Derivat" einer Nukleinsäure ist erfindungsgemäß gemeint, dass einzelne oder multiple Nukleotidsubstitutionen, -deletionen und/oder -additionen in der Nukleinsäure vorliegen. Weiterhin umfasst der Begriff "Derivat" auch eine chemische Derivatisierung einer Nukleinsäure an einer Base, einem Zucker oder Phosphat eines Nukleotids. Der Begriff "Derivat" umfasst auch Nukleinsäuren, die nicht in der Natur vorkommende Nukleotide und Nukleotidanaloga enthalten.

Die erfindungsgemäß beschriebenen Nukleinsäuren sind vorzugsweise isoliert. Der Begriff "isolierte Nukleinsäure" bedeutet erfindungsgemäß, dass die Nukleinsäure (i) in vitro amplifiziert wurde, zum Beispiel durch Polymerase-Kettenreaktion (PCR), (ii) rekombinant durch Klonierung produziert wurde, (iii) gereinigt wurde, zum Beispiel durch Spaltung und gelelektrophoretische Auftrennung, oder (iv) synthetisiert wurde, zum Beispiel durch chemische Synthese. Eine isolierte Nukleinsäure ist eine Nukleinsäure, die für eine Manipulierung durch rekombinante DNA-Techniken zur Verfügung steht.

Nukleinsäuren, die für Fusionsmoleküle kodieren, können erfindungsgemäß alleine oder in Kombination mit anderen Nukleinsäuren, insbesondere heterologen Nukleinsäuren, vorliegen. In bevorzugten Ausführungsformen

liegt eine Nukleinsäure funktionell in Verbindung mit Expressionskontrollsequenzen oder regulatorischen Sequenzen vor, die in Bezug zu der Nukleinsäure homolog oder heterolog sein können. Eine kodierende Sequenz und eine regulatorische Sequenz sind dann "funktionell" miteinander verbunden, falls sie derart kovalent miteinander verknüpft sind, dass die Expression oder Transkription der kodierenden Sequenz unter der Kontrolle oder unter dem Einfluss der regulatorischen Sequenz steht. Falls die kodierende Sequenz in ein funktionelles Protein translatiert werden soll, führt bei einer funktionellen Verbindung einer regulatorischen Sequenz mit der kodierenden Sequenz eine Induktion der regulatorischen Sequenz zu einer Transkription der kodierenden Sequenz, ohne dass es zu einer Leserasterverschiebung in der kodierenden Sequenz oder zu einem Unvermögen der kodierenden Sequenz kommt, in das gewünschte Protein oder Peptid translatiert zu werden.

15

20

10

5

Der Begriff "Expressionskontrollsequenz" oder "regulatorische Sequenz" umfasst erfindungsgemäß Promotoren, Enhancer und andere Kontrollelemente, die die Expression eines Gens steuern. In bestimmten erfindungsgemäßen Ausführungsformen sind die Expressionskontrollsequenzen regulierbar. Die genaue Struktur regulatorischen Sequenzen kann speziesabhängig oder zelltypusabhängig variieren, umfasst jedoch im Allgemeinen 5'-nicht-transkribierte und 5'nicht-translatierte Sequenzen, die an der Initiation der Transkription bzw. Translation beteiligt sind wie TATA-Box, Capping-Sequenz, CAAT-Sequenz Insbesondere umfassen 5'-nicht-transkribierte und ähnliches. Regulationssequenzen eine Promotorregion, die eine Promotorsequenz für transkriptionelle Kontrolle des funktionell verbundenen eine einschließt. Regulatorische Sequenzen können auch Enhancer-Sequenzen oder stromaufwärts gelegene Aktivatorsequenzen umfassen.

30

25

In einer bevorzugten Ausführungsform ist die Nukleinsäure erfindungsgemäß ein Vektor, gegebenenfalls mit einem Promotor, der die

Expression einer Nukleinsäure, z.B. einer Nukleinsäure, die für ein erfindungsgemäßes Fusionsmolekül kodiert, steuert. In einer bevorzugten Ausführungsform ist der Promoter ein T7-, T3- oder SP6-Promoter.

Der Begriff "Vektor" wird dabei in seiner allgemeinsten Bedeutung verwendet und umfasst jegliche intermediären Vehikel für eine Nukleinsäure, die es z.B. ermöglichen, die Nukleinsäure in prokaryontische und/oder in eukaryontische Zellen einzubringen und gegebenenfalls in ein Genom zu integrieren. Solche Vektoren werden vorzugsweise in der Zelle repliziert und/oder exprimiert. Ein intermediäres Vehikel kann z.B. für den Gebrauch bei der Elektroporation, beim Mikroprojektilbeschuss, bei der liposomalen Verabreichung, beim Transfer mit Hilfe von Agrobakterien oder bei der Insertion über DNA- oder RNA-Viren angepasst sein. Vektoren umfassen Plasmide, Phagemide, Bacteriophage oder Virusgenome.

15

20

25

30

10

5

Die Nukleinsäuren, die für ein erfindungsgemäßes Fusionsmolekül kodieren, körnnen für eine Transfektion von Wirtszellen eingesetzt werden. Mit Nukleinsäuren ist dabei sowohl rekombinante DNA wie auch RNA gemeint. Rekombinante RNA kann durch in vitro-Transkription von einer DNA-Matritze hergestellt werden. Sie kann des weiteren vor Applikation durch stabilisierende Sequenzen, Capping und Poly-Adenylierung modifiziert werden.

Der Begriff "Wirtszelle" betrifft erfindungsgemäß jede Zelle, die mit einer exogenen Nukleinsäure transformierbar oder transfizierbar ist. Der Begriff "Wirtszellen" umfasst erfindungsgemäß prokaryontische (z.B. E. coli) oder eukaryontische (z.B. dendritische Zellen, B-Zellen, CHO-Zellen, COS-Zellen, K562-Zellen, Hefezellen und Insektenzellen). Besonders bevorzugt sind Säugerzellen wie Zellen aus Mensch, Maus, Hamster, Schwein, Ziege und Primaten. Die Zellen können aus einer Vielzahl von Gewebetypen abgeleitet sein und umfassen primäre Zellen und Zelllinien. Spezifische Beispiele umfassen Keratinozyten, periphere Blutleukozyten, Stammzellen des

Knochenmarks und embryonale Stammzellen. In weiteren Ausführungsformen ist die Wirtszelle eine Antigen-präsentierende Zelle, insbesondere eine dendritische Zelle, ein Monozyt oder Makrophage. Eine Nukleinsäure kann in der Wirtszelle in einer einzigen oder in mehreren Kopien vorliegen und wird in einer Ausführungsform in der Wirtszelle exprimiert.

5

10

15

20

25

30

Der Begriff "Expression" wird erfindungsgemäß in seiner allgemeinsten Bedeutung verwendet und umfasst die Produktion von RNA oder von RNA und Protein. Er umfasst auch eine teilweise Expression von Nukleinsäuren. Des weiteren kann die Expression transient oder stabil erfolgen. Bevorzugte Expressionssysteme in Säugerzellen umfassen pcDNA3.1 und pRc/CMV (Invitrogen, Carlsbad, CA), die einen selektierbaren Marker enthalten wie ein Gen, das eine Resistenz gegenüber G418 verleiht (und somit eine Selektion stabil transfizierter Zelllinien ermöglicht), und die Enhancer-Promotor-Sequenzen von Cytomegalovirus (CMV).

Eine für ein erfindungsgemäßes Fusionsmolekül kodierende Nukleinsäure kann auch eine Nukleinsäuresequenz umfassen, die für ein MHC-Molekül, vorzugsweise für ein HLA-Molekül kodiert. Die Nukleinsäuresequenz, die für ein MHC-Molekül kodiert, kann auf demselben Expressionsvektor wie die Nukleinsäure, die für das Fusionsmolekül kodiert, vorliegen oder beide Nukleinsäuren können auf verschiedenen Expressionsvektoren vorliegen. Im letzteren Fall können die beiden Expressionsvektoren in eine Zelle cotransfiziert werden.

Eine von einer Aminosäuresequenz abgeleitete Sequenz oder der Begriff "von einer Aminosäuresequenz abgeleitete Sequenz" betrifft erfindungsgemäß homologe Sequenzen und Derivate der ersteren Sequenz.

Homologe Aminosäuresequenzen weisen erfindungsgemäß mindestens 40%, insbesondere mindestens 50%, mindestens 60%, mindestens 70%,

mindestens 80%, mindestens 90% und vorzugsweise mindestens 95%, mindestens 98 oder mindestens 99% Identität der Aminosäurereste auf.

"Derivate" eines Proteins oder Polypeptids oder einer Aminosäuresequenz im Sinne dieser Erfindung umfassen Aminosäure-Insertionsvarianten, Aminosäure-Deletionsvarianten und/oder Aminosäure-Substitutionsvarianten.

Aminosäure-Insertionsvarianten umfassen aminound/oder carboxyterminale Fusionen, sowie Insertionen von einzelnen oder mehreren Aminosäuren in einer bestimmten Aminosäuresequenz. Bei Aminosäure-Sequenzvarianten mit einer Insertion werden ein oder mehrere Aminosäurereste in eine vorbestimmte Stelle in einer Aminosäuresequenz eingebracht, obwohl eine zufällige Insertion mit geeignetem Screening des resultierenden Produkts auch möglich ist. Aminosäure-Deletionsvarianten sind durch das Entfernen von einer oder mehreren Aminosäuren aus der Sequenz charakterisiert. Aminosäure-Substitutionsvarianten zeichnen sich dadurch aus, dass wenigstens ein Rest in der Sequenz entfernt und ein anderer Rest an dessen Stelle eingefügt wird. Vorzugsweise befinden sich die Modifikationen an Positionen in der Aminosäuresequenz, die zwischen homologen Proteinen oder Polypeptiden nicht konserviert sind. Vorzugsweise werden Aminosäuren durch andere mit ähnlichen Eigenschaften, wie Hydrophobizität, Hydrophilizität, Elektronegativität, Volumen der Seitenkette und ähnliches. ersetzt (konservative Substitution). Konservative Substitutionen betreffen beispielsweise den Austausch einer Aminosäure durch eine andere, wobei beide Aminosäuren in derselben nachstehenden Gruppe aufgeführt sind:

- 1. kleine aliphatische, nicht-polare oder leicht-polare Reste: Ala, Ser, Thr (Pro, Gly)
- 2. negativ geladene Reste und ihre Amide: Asn, Asp, Glu, Gln
- 3. positiv geladene Reste: His, Arg, Lys

10

15

20

30

- 4. große aliphatische, nicht-polare Reste: Met, Leu, Ile, Val (Cys)
- 5. große aromatische Reste: Phe, Tyr, Trp.

10

15

20

25

30

Drei Reste sind aufgrund ihrer besonderen Rolle für die Proteinarchitektur in Klammern gesetzt. Gly ist der einzige Rest ohne eine Seitenkette und verleiht der Kette somit Flexibilität. Pro besitzt eine ungewöhnliche Geometrie, die die Kette stark einschränkt. Cys kann eine Disulfidbrücke bilden.

Die vorstehend beschriebenen Aminosäure-Varianten können leicht mit Hilfe von bekannten Peptidsynthesetechniken wie z.B. durch "Solid Phase Synthesis" (Merrifield, 1964) und ähnliche Verfahren oder durch rekombinante DNA-Manipulation hergestellt werden. Techniken, um Substitutionsmutationen an vorbestimmten Stellen in DNA einzubringen, die eine bekannte oder teilweise bekannte Sequenz besitzt, sind gut bekannt und umfassen z.B. M13-Mutagenese. Die Manipulation von DNA-Sequenzen zur Herstellung von Proteinen mit Substitutionen, Insertionen oder Deletionen und die allgemeinen rekombinanten Verfahren zur Expression von Proteinen z.B. in einem biologischen System (wie Säuger-, Insekten-, Pflanzen- und viralen Systeme) sind z.B. in Sambrook et. al. (1989) ausführlich beschrieben.

"Derivate" von Proteinen oder Polypeptiden umfassen erfindungsgemäß auch einzelne oder multiple Substitutionen, Deletionen und/oder Additionen jeglicher Moleküle, die mit dem Protein oder Polypeptid assoziiert sind, wie Kohlenhydrate, Lipide und/oder Proteine oder Polypeptide.

In einer Ausführungsform umfassen "Derivate" von Proteinen oder Polypeptiden diejenigen modifizierten Analoga, die durch Glykosylierung, Acetylierung, Phosphorylierung, Amidierung, Palmitoylierung, Myristolylierung, Isoprenylierung, Lipidierung, Alkylierung, Derivatisierung, Einbringen von Schutz-/Blockierungsgruppen, proteolytische Spaltung oder Bindung an einen Antikörper oder an einen anderen zellulären Liganden

entstehen. Derivate von Proteinen oder Polypeptiden können auch durch andere Verfahren wie beispielsweise durch chemische Spaltung mit Bromcyan, Trypsin, Chymotrypsin, Papain, V8-Protease, NaBH₂, Acetylierung, Formylierung, Oxidation, Reduktion oder durch metabolische Synthese in Gegenwart von Tunicamycin hergestellt werden.

5

15

20

25

30

Ferner erstreckt sich der Begriff "Derivat" auch auf alle funktionellen chemischen Äquivalente der Proteine oder Polypeptide.

Die vorstehend beschriebenen Derivate von Proteinen und Polypeptiden sind erfindungsgemäß von dem Begriff "Fusionsmolekül" umfasst, selbst wenn darauf nicht ausdrücklich verwiesen wird.

Die erfindungsgemäß beschriebenen pharmazeutischen Zusammensetzungen können therapeutisch für die Behandlung einer bereits bestehenden Erkrankung oder prophylaktisch als Vakzinen für die Immunisierung eingesetzt werden.

Der "Vakzine" betrifft erfindungsgemäß eine antigenische Zubereitung, die beispielsweise ein Protein, ein Peptid, eine Nukleinsäure oder ein Polysaccharid umfasst und die an einen Empfänger verabreicht wird, um dessen humorales und/oder zelluläres Immunsystem gegenüber einem oder mehreren Antigenen zu stimulieren, die in der Vakzinezubereitung vorliegen. Die Begriffe "Vakzinierung" oder "Immunisierung" betreffen den Vorgang einer Verabreichung einer Vakzine und der Stimulierung einer Immunreaktion gegenüber einem Antigen. Der Begriff "Immunreaktion" betrifft die Aktivitäten des Immunsystems, einschließlich Aktivierung und Proliferation von spezifischen cytotoxischen T-Zellen nach Kontakt mit einem Antigen.

Tiermodelle können für ein Testen einer immunisierenden Wirkung z.B. gegenüber Krebs bei Verwendung eines Tumor-assoziierten Antigens als

Antigen eingesetzt werden. Dabei können beispielsweise menschliche Krebszellen in eine Maus für die Schaffung eines Tumors eingebracht werden und eine erfindungsgemäße Nukleinsäure, die für ein erfindungsgemäßes Fusionsmolekül, umfassend das Tumor-assoziiertes Antigen, kodiert, kann verabreicht werden. Die Wirkung auf die Krebszellen (beispielsweise Verringerung der Tumorgröße) kann als Maß für die Wirksamkeit einer Immunisierung durch die Nukleinsäure gemessen werden.

10

15

20

25

30

Als Teil der Zusammensetzung für eine Immunisierung werden ein oder mehrere Fusionsmoleküle mit einem oder mehreren Adjuvanzien für eine Induktion einer Immunreaktion oder eine Erhöhung einer Immunreaktion verabreicht. Ein Adjuvans ist eine Substanz, die in ein Antigen eingebaut oder gemeinsam mit diesem verabreicht wird und die Immunreaktion verstärkt. Adjuvanzien können die Immunreaktion durch Bereitstellen eines Antigen-Reservoirs (extrazellulär oder in Makrophagen), Aktivierung von Makrophagen und Stimulierung bestimmter Lymphozyten verstärken. Adjuvanzien sind bekannt und umfassen in nicht begrenzender Weise Monophosphoryl-Lipid-A (MPL, SmithKline Beecham), Saponine wie QS21 (SmithKline Beecham), DQS21 (SmithKline Beecham; WO 96/33739), QS7, QS17, QS18 und QS-L1 (So et al., Mol. Cells 7:178-186, 1997), Adjuvans, vollständiges Freundsches Freundsches unvollständiges Adjuvans, Vitamin E, Montanid, Alaun, CpG-Oligonukleotide (vgl. Krieg et al., Nature 374:546-9, 1995) und verschiedene Wasser-in-Öl-Emulsionen, die aus biologisch abbaubaren Ölen wie Squalen und/oder Tocopherol hergestellt werden. Vorzugsweise werden die Fusionsmoleküle in einem Gemisch mit DQS21/MPL verabreicht. Das Verhältnis von DQS21 zu MPL beträgt typischerweise etwa 1:10 bis 10:1, vorzugsweise etwa 1:5 bis 5:1 und insbesondere etwa 1:1. Für eine Verabreichung an den Menschen sind DOS21 und MPL typischerweise in einer Vakzine-Formulierung in einem Bereich von etwa 1 µg bis etwa 100 µg vorhanden.

WO 2005/038030 PCT/EP2004/011512 34

Andere Stoffe, die eine Immunreaktion des Patienten stimulieren, können auch verabreicht werden. Zum Beispiel sind Zytokine bei einer Vakzinierung aufgrund ihrer regulatorischen Eigenschaften auf Lymphozyten verwendbar. Solche Zytokine umfassen z.B. Interleukin-12 (IL-12), von dem gezeigt wurde, dass es die schützenden Wirkungen von Vakzinen verstärkt (vgl. Science 268:1432-1434, 1995), GM-CSF und IL-18.

5

10

15

20

25

30

Das erfindungsgemäße Verfahren zur Induktion einer Immunreaktion in einem Säuger umfasst im Allgemeinen die Verabreichung einer wirksamen Menge eines erfindungsgemäßen Fusionsmoleküls und/oder einer dafür kodierenden Nukleinsäure, insbesondere in Form eines Vektors. Vorzugsweise wird DNA oder RNA, die für ein erfindungsgemäßes Fusionsmolekül kodiert, an einen Säuger zusammen mit einer DNA-Sequenz verabreicht, die für einen T-Zell-co-stimulierenden Faktor kodiert, wie ein für B7-1 oder B7-2 kodierendes Gen.

Der Begriff "T-Zell-co-stimulierender Faktor" betrifft hier ein Molekül, insbesondere ein Peptid, das zur Bereitstellung eines co-stimulierenden Signals fähig ist und dadurch eine Immunreaktion verstärkt, insbesondere die Vermehrung von T-Zellen in Gegenwart eines oder mehrerer erfindungsgemäßer Fusionsmoleküle aktiviert. Eine derartige Aktivierung der T-Zell-Vermehrung kann durch allgemein bekannte Tests bestimmt werden.

Diese Faktoren umfassen co-stimulierende Moleküle, die in Form von Proteinen oder Nukleinsäuren bereitgestellt werden. Solche co-stimulierenden Moleküle sind beispielsweise B7-1 und B7-2 (CD80 bzw. CD86), die auf dendritischen Zellen (DC) exprimiert werden und mit dem auf den T-Zellen exprimierten CD28-Molekül interagieren. Diese Interaktion stellt eine Co-Stimulierung (Signal 2) für eine Antigen/MHC/TCR-stimulierte (Signal 1) T-Zelle bereit, wodurch die Vermehrung der T-Zelle und die Effektorfunktion verstärkt wird. B7 interagiert auch mit CTLA4 (CD152) auf T-Zellen und Untersuchungen, die CTLA4- und B7-Liganden einbeziehen,

zeigen, dass die B7-CTLA4-Interaktion eine Antitumor-Immunität und CTL-Vermehrung verstärken kann (Zheng, P. et al., Proc. Natl. Acad. Sci. USA 95(11):6284-6289 (1998)).

B7 wird typischerweise nicht auf Tumorzellen exprimiert, so dass diese keine wirksamen Antigen-präsentierenden Zellen (APCs) für T-Zellen sind. Eine Induktion der B7-Expression würde ermöglichen, dass Tumorzellen wirksamer eine Vermehrung von cytotoxischen T-Lymphozyten und eine Effektorfunktion stimulieren. Eine Co-Stimulierung durch eine Kombination von B7/IL-6/IL-12 zeigte eine Induktion des IFN-gamma- und Th1-Zytokin-Profils in einer T-Zell-Population, was zu einer weiter verstärkten T-Zell-Aktivität führt (Gajewski et al., J. Immunol. 154:5637-5648 (1995)).

Eine vollständige Aktivierung von cytotoxischen T-Lymphozyten und eine vollständige Effektorfunktion erfordert eine Mitwirkung von T-Helferzellen durch die Interaktion zwischen dem CD40-Liganden auf den T-Helferzellen und dem CD40-Molekül, das von dendritischen Zellen exprimiert wird (Ridge et al., Nature 393:474 (1998), Bennett et al., Nature 393:478 (1998), Schönberger et al., Nature 393:480 (1998)). Der Mechanismus dieses costimulierenden Signals betrifft wahrscheinlich die Steigerung der B7- und assoziierten IL-6/IL-12-Produktion durch die dendritischen Zellen (Antigenpräsentierenden Zellen). Die CD40-CD40L-Interaktion komplementiert so die Interaktionen des Signals 1 (Antigen/MHC-TCR) und des Signals 2 (B7-CD28).

25

10

15

20

Erfindungsgemäß vorgesehen ist eine Verabreichung von Nukleinsäuren, Polypeptiden oder Proteinen und/oder Zellen. Eine Verabreichung von DNA und RNA ist bevorzugt.

In den Experimenten konnte gezeigt werden, dass im Vergleich zu dem nicht-modifizierten Antigen erfindungsgemäß eine 100-fach geringere Dosis des Impfstoffs ausreicht, um äquivalente oder stärkere Immunantworten zu

induzieren. Ein Problem bei der direkten Injektion von Nukleinsäure-Impfstoffen ist, dass die Dosis, die nötig ist, um Immunantworten zu induzieren, sehr hoch ist. Bei DNA-Impfstoffen ist die Ursache vermutlich hauptsächlich darin begründet, dass nur ein Bruchteil der Zellen injizierte DNA in den Kern aufnehmen. Bei RNA-Impfstoffen liegt das Problem vermutlich insbesondere darin, dass injizierte RNA sehr schnell durch RNAsen abgebaut wird.

Bei Verwendung der erfindungsgemäß modifizierten Impfstoffe ist zu erwarten, dass bei einer direkten Injektion von Nukleinsäuren, insbesondere RNA im Vergleich zu unmodifizierten Nukleinsäuren massiv höhere Immunantworten erhalten werden.

10

15

20

25

30

In einer bevorzugten Ausführungsform ist ein viraler Vektor für die Verabreichung einer Nukleinsäure, die für ein erfindungsgemäßes Fusionsmolekül kodiert, aus der Gruppe ausgewählt bestehend aus Adenoviren, Adeno-assoziierten Viren, Poxviren, einschließlich Vacciniavirus und attenuierten Poxviren, Semliki-Forest-Virus, Retroviren, Sindbis-Virus und Ty-Virus-ähnlichen Partikeln. Besonders bevorzugt sind Adenoviren und Retroviren. Die Retroviren sind üblicherweise replikationsdefizient (d.h. sie sind unfähig, infektiöse Partikel zu erzeugen).

Verschiedene Verfahren können eingesetzt werden, um erfindungsgemäß Nukleinsäuren in Zellen in vitro oder in vivo einzubringen. Solche Verfahren umfassen die Transfektion von Nukleinsäure-Kalziumphosphat-Präzipitaten, die Transfektion von Nukleinsäuren, die mit DEAE assoziiert sind, die Transfektion oder Infektion mit den vorstehenden Viren, die die interessierenden Nukleinsäuren tragen, die Liposomen-vermittelte Transfektion und ähnliches. In bestimmten Ausführungsformen ist eine Steuerung der Nukleinsäure an bestimmte Zellen bevorzugt. In solchen Ausführungsformen kann ein Träger, der für die Verabreichung einer Nukleinsäure an eine Zelle (z.B. ein Retrovirus oder ein Liposom) eingesetzt

wird, ein gebundenes Zielsteuerungsmolekül aufweisen. Zum Beispiel kann ein Molekül wie ein Antikörper, der für ein Oberflächenmembran-Protein auf der Zielzelle spezifisch ist, oder ein Ligand für einen Rezeptor auf der Zielzelle in den Nukleinsäureträger eingebaut oder daran gebunden werden. Falls eine Verabreichung einer Nukleinsäure durch Liposomen erwünscht ist, können Proteine, die an ein Oberflächenmembran-Protein binden, das mit der Endozytose assoziiert ist, in die Liposomenformulierung eingebaut werden, um eine Zielsteuerung und/oder Aufnahme zu ermöglichen. Solche Proteine umfassen Kapsid-Proteine oder Fragmente davon, die für einen bestimmten Zelltyp spezifisch sind, Antikörper gegen Proteine, die internalisiert werden, Proteine, die eine intrazelluläre Stelle ansteuern, und ähnliches.

10

15

20

25

Vorzugsweise werden die Nukleinsäuren zusammen mit stabilisierenden Substanzen wie RNA-stabilisierenden Substanzen verabreicht.

In einer Ausführungsform erfolgt die Verabreichung von Nukleinsäuren durch ex vivo-Verfahren, d.h. durch Entfernung von Zellen aus einem Patienten, genetische Veränderung der Zellen, und Wiedereinbringung der veränderten Zellen in den Patienten. Dies umfasst im Allgemeinen das Einbringen einer funktionellen Kopie eines Gens in die Zellen eines Patienten in vitro und die Rückführung der genetisch veränderten Zellen in den Patienten. Die funktionelle Kopie des Gens steht unter funktioneller Kontrolle von regulatorischen Elementen, die eine Expression des Gens in Zellen erlauben. Transfektionsden genetisch veränderten Transduktionsverfahren sind dem Fachmann bekannt. Erfindungsgemäß vorgesehen ist auch eine Verabreichung von Nukleinsäuren in vivo durch die Verwendung von Vektoren wie Viren und zielgesteuerten Liposomen.

30 Eine Verabreichung von Polypeptiden und Peptiden kann in an sich bekannter Weise erfolgen.

Der Begriff "Patient", "Individuum" oder "Lebewesen" bedeutet erfindungsgemäß Mensch, nicht menschlicher Primat oder ein anderes Tier, insbesondere Säugetier wie Kuh, Pferd, Schwein, Schaf, Ziege, Hund, Katze, Vögel wie Huhn oder Nagetier wie Maus und Ratte. In einer besonders bevorzugten Ausführungsform ist der Patient, das Individuum oder das Lebewesen ein Mensch.

Die erfindungsgemäßen therapeutischen Zusammensetzungen können in pharmazeutisch verträglichen Zubereitungen verabreicht werden. Solche Zubereitungen können gewöhnlich pharmazeutisch verträgliche Konzentrationen von Salzen, Pufferstoffen, Konservierungsstoffen, Trägern, ergänzenden immunitätssteigernden Stoffen wie Adjuvanzien (z.B. CpG-Oligonukleotide) und Zytokine und gegebenenfalls andere therapeutische Wirkstoffe enthalten.

15

20

25

30

10

5

Die erfindungsgemäßen therapeutischen Wirkstoffe können auf jedem herkömmlichen Weg verabreicht werden, einschließlich durch Injektion oder durch Infusion. Die Verabreichung kann beispielsweise oral, intravenös, intraperitoneal, intramuskulär, subkutan, intrakutan, transdermal, intralymphatisch, vorzugsweise durch Injektion in Lymphknoten, insbesondere Leistenlymphknoten, Lymphgefäße und/oder in die Milz, erfolgen.

Die erfindungsgemäßen Zusammensetzungen werden in wirksamen Mengen verabreicht. Eine "wirksame Menge" betrifft die Menge, die alleine oder zusammen mit weiteren Dosen eine gewünschte Reaktion oder eine gewünschte Wirkung erzielt. Im Fall einer Behandlung einer bestimmten Erkrankung oder eines bestimmten Zustands betrifft die gewünschte Reaktion die Hemmung des Krankheitsverlaufs. Dies umfasst die Verlangsamung des Fortschreitens der Erkrankung und insbesondere eine Unterbrechung des Fortschreitens der Erkrankung. Die gewünschte Reaktion bei einer Behandlung einer Erkrankung oder eines Zustands kann

auch die Verzögerung des Ausbruchs oder eine Verhinderung des Ausbruchs der Erkrankung oder des Zustands sein.

Eine wirksame Menge einer erfindungsgemäßen Zusammensetzung wird von dem zu behandelnden Zustand, der Schwere der Krankheit, den individuellen Parametern des Patienten, einschließlich Alter, physiologischer Zustand, Größe und Gewicht, der Dauer der Behandlung, der Art einer begleitenden Therapie (falls vorhanden), dem spezifischen Verabreichungsweg und ähnlichen Faktoren abhängen.

10

5

Die erfindungsgemäßen pharmazeutischen Zusammensetzungen sind vorzugsweise steril und enthalten eine wirksame Menge der therapeutisch wirksamen Substanz für die Erzeugung der gewünschten Reaktion oder der gewünschten Wirkung.

15

20

25

Die Dosen der erfindungsgemäßen Zusammensetzungen, die verabreicht werden, können von verschiedenen Parametern wie der Verabreichungsart, dem Zustand des Patienten, dem gewünschten Verabreichungszeitraum, usw. abhängen. Für den Fall, dass eine Reaktion bei einem Patienten bei einer anfänglichen Dosis unzureichend ist, können höhere Dosen (oder effektiv höhere Dosen, die durch einen anderen, stärker lokalisierten Verabreichungsweg erzielt werden) eingesetzt werden.

Im Allgemeinen werden für eine Behandlung oder für eine Erzeugung oder Erhöhung einer Immunreaktion Dosen des Tumor-assoziierten Antigens von 1 ng bis 1 mg, vorzugsweise von 10 ng bis 100 µg formuliert und verabreicht. Falls die Verabreichung von Nukleinsäuren (DNA sowie RNA) erwünscht ist, werden Dosen von 1 ng bis 0,1 mg formuliert und verabreicht.

Die erfindungsgemäßen pharmazeutischen Zusammensetzungen werden im Allgemeinen in pharmazeutisch verträglichen Mengen und in pharmazeutisch verträglichen Zusammensetzungen verabreicht. Der Begriff

"pharmazeutisch verträglich" betrifft ein nicht-toxisches Material, das nicht mit der Wirkung des aktiven Bestandteils der pharmazeutischen Zusammensetzung wechselwirkt. Solche Zubereitungen können gewöhnlich Salze, Pufferstoffe, Konservierungsstoffe, Träger und gegebenenfalls andere therapeutische Wirkstoffe enthalten. Bei einer Verwendung in der Medizin sollten die Salze pharmazeutisch verträglich sein. Nicht-pharmazeutisch verträgliche Salze können jedoch für die Herstellung pharmazeutisch verträglicher Salze davon verwendet werden und sind erfindungsgemäß umfasst. Solche pharmakologisch und pharmazeutisch verträglichen Salze umfassen in nicht begrenzender Weise diejenigen, die aus nachstehenden Säuren hergestellt werden: Chlorwasserstoff-, Bromwasserstoff-, Schwefel-, Salpeter-, Phosphor-, Malein-, Essig-, Salicyl-, und Citronen-, Ameisen-, Malon-, Bernsteinsäure ähnliches. Pharmazeutisch verträgliche Salze können auch als Alkalimetall- oder Erdalkalimetallsalze wie Natrium-, Kalium- oder Calciumsalze hergestellt werden.

10

15

20

25

30

Eine erfindungsgemäße pharmazeutische Zusammensetzung kann einen pharmazeutisch verträglichen Träger umfassen. Der Begriff "pharmazeutisch verträglicher Träger" betrifft erfindungsgemäß einen oder mehrere kompatible feste oder flüssige Füllstoffe, Verdünnungsmittel oder Kapselsubstanzen, die für eine Verabreichung an einen Menschen geeignet sind. Der Begriff "Träger" betrifft einen organischen oder anorganischen Bestandteil, natürlicher oder synthetischer Natur, in dem der aktive Bestandteil kombiniert wird, um eine Anwendung zu erleichtern. Die Bestandteile der erfindungsgemäßen pharmazeutischen Zusammensetzung sind gewöhnlich derart, dass keine Interaktion auftritt, die die gewünschte pharmazeutische Wirksamkeit wesentlich beeinträchtigt.

Vorzugsweise sind die Trägerstoffe sterile Flüssigkeiten wie Wasser oder Öle, einschließlich derjenigen, die sich von Erdöl, Tieren oder Pflanzen ableiten oder synthetischen Ursprungs sind, wie z.B. Erdnussöl, Sojabohnenöl,

Mineralöl, Sesamöl, Sonnenblumenöl und dergleichen. Salzlösungen und wässrige Dextrose- und Glycerinlösungen können auch als wässrige Trägerstoffe verwendet werden.

- Beispiele für Hilfs- und Trägerstoffe sind Acryl- und Methacrylderivate, 5 Alginsäure, Sorbinsäurederivate wie α-Octadecyl-ω-hydroxypoly(oxyethylen)-5-sorbinsäure, Aminosäuren und deren Derivate, insbesondere Aminverbindungen wie Cholin, Lecithin und Phosphatidylcholin, Gummi arabicum, Aromastoffe, Ascorbinsäure, Carbonate wie beispielsweise Natrium-, Kalium-, Magnesium-10 und Calciumcarbonat und -hydrogencarbonat, Hydrogenphosphate und Phosphate von Natrium, Kalium, Calcium und Magnesium, Carmellosenatrium, Dimeticon. Farbstoffe, Geschmacksstoffe, Puffersubstanzen, Konservierungsmittel, Verdickungsmittel, Weichmacher, Gelatine, Glucosesirupe, Malz, hochdisperses Siliziumdioxid, Hydromellose, 15 Benzoate, insbesondere Natrium- und Kaliumbenzoat, Macrogol, Magermilchpulver, Magnesiumoxid, Fettsäuren und deren Derivate und Salze wie Stearinsäure und Stearate. insbesondere Magnesium- und Calciumstearat, Fettsäureester sowie Monound Diglyceride von Speisefettsäuren, natürliche und künstliche Wachse wie 20 Bienenwachs, gelbes Wachs und Montanglycolwachs, Chloride, insbesondere Natriumchlorid, Polyvidon, Polyethylenglykole, Polyvinylpyrrolidon, Povidon, Öle wie Rizinusöl, Sojaöl, Kokosnussöl, Palmkernöl, Zucker und Zuckerderivate, insbesondere Mono- und Disaccharide wie Glucose, Fructose, Mannose, Galactose, Lactose, Maltose, Xylose, Saccharose, Dextrose und Cellulose und deren Derivate, Schellack, Stärke und 25 Stärkederivate, insbesondere Maisstärke, Talg, Talkum, Titandioxid, Weinsäure, Zuckeralkohole wie Glycerin, Mannit, Sorbit und Xylit und deren Derivate, Glykol, Ethanol und Gemische derselben.
- Vorzugsweise können die pharmazeutischen Zusammensetzungen zusätzlich auch Benetzungsmittel, Emulgatoren und/oder pH-puffernde Mittel enthalten.

die pharmazeutischen Ausführungsform können In einer weiteren Zusammensetzungen einen Resorptionsverstärker enthalten. Diese Resorptionsverstärker können, falls gewünscht, eine äquimolare Menge des Trägerstoffs in der Zusammensetzung ersetzen. Beispiele für solche Resorptionsverstärker umfassen in nicht begrenzender Weise Eucalyptol, N,N-Diethyl-m-toluamid, Polyoxyalkylenalkohole (wie Propylenglykol und N-Methyl-2-pyrrolidon, Isopropylmyristat, Polyethylenglykol), Dimethylformamid (DMF), Dimethylsulfoxid (DMSO), Dimethylacetamid (DMA), Harnstoff, Diethanolamin, Triethanolamin und dergleichen (siehe z.B. Percutaneous Penetration Enhancers, Hrsg. Smith et al. (CRC Press, 1995)). Die Menge an Resorptionsverstärker in der Zusammensetzung kann von den gewünschten zu erreichenden Wirkungen abhängen.

5

10

15

20

25

30

Ein Protease-Inhibitor kann in die erfindungsgemäße Zusammensetzung eingebaut werden, um einen Abbau eines Peptid- oder Proteinwirkstoffs zu vermeiden und dadurch die Bioverfügbarkeit zu erhöhen. Beispiele für Protease-Inhibitoren umfassen in nicht-begrenzender Weise Aprotinin, Leupepsin, Pepstatin, α2-Makroglobulin und Trypsin-Inhibitor. Diese Inhibitoren können alleine oder in Kombination verwendet werden.

Die erfindungsgemäßen pharmazeutischen Zusammensetzungen können mit einer oder mehreren Beschichtungen versehen sein. Vorzugsweise sind die festen oralen Darreichungsformen mit einer magensaftresistenten Beschichtung versehen oder liegen in Form einer magensaftresistenten, gehärteten Weichgelatinekapsel vor.

Die erfindungsgemäßen pharmazeutischen Zusammensetzungen können geeignete Pufferstoffe wie Essigsäure in einem Salz, Citronensäure in einem Salz, Borsäure in einem Salz und Phosphorsäure in einem Salz enthalten.

Die pharmazeutischen Zusammensetzungen können auch gegebenenfalls geeignete Konservierungsstoffe wie Benzalkoniumchlorid, Chlorbutanol, Parabene und Thimerosal enthalten.

Die pharmazeutischen Zusammensetzungen werden gewöhnlich in einer einheitlichen Dosisform dargeboten und können in an sich bekannter Weise hergestellt werden. Erfindungsgemäße pharmazeutische Zusammensetzungen können beispielsweise in Form von Kapseln, Tabletten, Lutschpastillen, Lösungen, Suspensionen, Sirupen, Elixieren oder als Emulsion vorliegen.

Zusammensetzungen, die für eine parenterale Verabreichung geeignet sind, umfassen gewöhnlich eine sterile wässrige oder nicht-wässrige Zubereitung des Wirkstoffs, die vorzugsweise mit dem Blut des Empfängers isotonisch ist. Verträgliche Träger und Lösungsmittel sind beispielsweise Ringer-Lösung und isotonische Natriumchloridlösung. Zusätzlich werden gewöhnlich sterile, fixierte Öle als Lösungs- oder Suspensionsmedium eingesetzt.

Die vorliegende Erfindung wird durch die nachstehenden Beispiele und Figuren ausführlich beschrieben, die ausschließlich der Erläuterung dienen und nicht begrenzend zu verstehen sind. Dem Fachmann sind aufgrund der Beschreibung und der Beispiele weitere Ausführungsformen zugänglich, die nicht über den Rahmen der Erfindung und den Umfang der anhängenden Ansprüche hinausgehen.

25

30

15

20

Kurze Beschreibung der Zeichnungen:

Abbildung 1: Schematische Darstellung eines erfindungsgemäßen Fusionsproteins. Das Fusionsprotein besteht aus einem N-terminal gelegenen Sekretionssignal, einer C-terminal lokalisierten Transmembranund cytoplasmatischen Domäne eines Histokompatibilitätsantigens und einer integrierten kompletten oder partiellen Sequenz eines Antigens.

Abbildung 2: Schematische Darstellung der Kassetten für die Expression von Fusionsproteinen. SP: Signalpeptid; MCS: multiple Klonierungsstelle; TM: Transmembrandomäne; MHC Tail: cytoplasmatischer Schwanz eines MHC-Moleküls; Antigen: Sequenz kodierend für ein Antigen, gegen das Immunantworten induziert werden sollen

5

10

15

20

25

30

Abbildung 3: Testen der Auswirkung unterschiedlicher RNA-Dosen auf die Frequenz antigenspezifischer CD4+-T-Lymphozyten.

1 x 10⁶ aufgereinigte CD4+-Lymphozyten wurden über 1 Woche mit 2 x 10⁵ DC kokultiviert, welche mit RNA in den angegebenen Mengen (0,1-10 µg RNA) per Elektroporation transfiziert worden waren. Am Tag 7 nach Stimulation wurde ein ELISPOT unter Standardbedingungen zum Nachweis Interferon-gamma-sezernierender T-Lymphozyten durchgeführt. Als Antigenpräsentierende Zellen wurden DCdesselben Spenders, überlappenden pp65-Peptiden (1,75 µg/ml) oder einem irrelevanten Kontrollpeptid beladen worden waren, verwendet. Für den Test wurden 3 x $2 \times 10^{4} DC$ für Effektoren mit 16 h koinkubiert. Standardentwicklung wurde die Anzahl der IFN-gamma-sezernierenden T-Lymphozyten mittels einer Software-basierten Videoauswertung bestimmt. Im Vergleich zu der CMVpp65standard-RNA zeigt sich eine massive Expansion von CD4+-Lymphozyten sowohl durch das CMVpp65-TM1- als auch durch das CMVpp65-TM2-Konstrukt.

Abbildung 4: Testen der Auswirkung unterschiedlicher RNA-Dosen auf die Frequenz Interferon-gamma-sezernierender CD8+-T-Lymphozyten. 1 x 10⁶ aufgereinigte CD8+-Lymphozyten wurden über 1 Woche mit 2 x 10⁵ DC kokultiviert, welche mit RNA in den angegebenen Mengen (0,1-10 μg RNA) per Elektroporation transfiziert worden waren. Am Tag 7 wurde ein Standard ELISPOT zum Nachweis IFN-gamma-sezernierender T-Lymphozyten gegen DC desselben Spenders durchgeführt, welche mit überlappenden pp65-Peptiden (1,75 μg/ml) oder einem irrelevanten

Kontrollpeptid beladen worden waren. Es wurden 3 x 10⁴ Effektoren mit 2 x 10⁴ DC für 16 h koinkubiert. Nach Standardentwicklung wurde die Anzahl der IFN-gamma-sezernierenden T-Lymphozyten mittels einer Softwarebasierten Videoauswertung bestimmt. Es zeigte sich eine massive Expansion von CD8+-Lymphozyten durch das CMVpp65-TM1- und das CMVpp65-TM2-Konstrukt. Selbst bei Verwendung von 100x geringeren Dosen (0,1 μg RNA) liegt die Frequenz der pp65-spezifischen CD8+-Lymphozyten noch über dem Hintergrund nach Stimulation durch mit NYESO-RNA transfizierten DC (Daten nicht gezeigt). Die Stimulation durch das CMVpp65standard-Konstrukt zeigte erst ab 2,5 μg eine Expansion von pp65-spezifischen Lymphozyten über das Niveau des Hintergrunds hinaus.

5

10

15

20

25

30

Abbildung 5: Dosis/Wirkungs-Profil für die Expansionskapazität verschiedener Immunogene auf Antigen-spezifische Lymphozyten. Die erfindungsgemäß modifizierten Immunogene weisen eine deutlich gesteigerte Potenz (>100x) und eine höhere maximale Wirkung auf.

Abbildung 6: Vergleichen der Test der Auswirkung von erfindungsgemäß modifizierten Immunogenen und Standardimmunogenen auf die Generierung von cytotoxischen Immunantworten. 1 x 10⁶ aufgereinigte CD8+-Lymphozyten wurden über 1 Woche mit 2 x 10⁵ DC kokultiviert, welche mit 10µg RNA per Elektroporation transfiziert worden waren. Am Tag 7 wurde ein Standard Cytochrom-Cytotoxizitästest gegen DC desselben Spenders durchgeführt, welche mit unterschiedlichen Konzentrationen überlappender pp65-Pepticle oder einem irrelevanten Kontrollpeptid beladen worden waren. Es wurden 15 x 10⁴ Effektoren mit 0,5 x 10⁴ DC für 4 h koinkubiert. Nach Messung des Überstandes im Counter wurde die spezifische Lyse berechnet, gemäß der Formel: Es zeigte sich eine starke Lyse durch CD8+-Lymphozyten, welche mit CMVpp65-TM1- und CMVpp65-TM2-Konstrukten stimuliert worden waren, die bis zu einer Konzentration von 10 nM des pp65-Peptid-Gemisches über dem Wert für das Kontrollpeptid lag (Daten nicht gezeigt). Durch das pp65-Peptid-Gemisch

wurden ebenfalls CD8+-Lymphozyten expandiert, die eine deutliche spezifische Lyse zeigten, aber nicht das Niveau von CMVpp65-TM1 und -TM2 erreichten. Durch das CMVpp65standard-Konstrukt konnte nur eine schwache Stimulation pp65-spezifischer cytotoxischer T-Zellen erreicht werden.

5

10

15

20

25

30

Abbildung 7: Schematische Darstellung der Kassetten für die Expression von Fusionsproteinen. CS: Klonierungsstelle; TM: Transmembrandomäne; SNARE: SNARE-Protein oder -Motiv; Antigen: Sequenz kodierend für ein Antigen, gegen das Immunantworten induziert werden sollen

Abbildung 8: In den Beispielen verwendete Sequenzen HLA-Klasse I-TM-CM: Transmembran-cytoplasmatische Region eines HLA-Klasse I-Moleküls; HLA-Klasse II-TM-CM: Transmembran-cytoplasmatische Region eines HLA-Klasse II-Moleküls

Abbildung 9: Sequenzen von Transmembran-cytoplasmatischen Regionen bzw. cytoplasmatischen Regionen von MHC-Molekülen. Die Sequenzen zeigen die Transmembran-cytoplasmatische Region bzw. nur die cytoplasmatische Region verschiedener HLA Moleküle. Die Transmembranregion ist unterstrichen und fett

Abbildung 10: Sequenzen von SNARE-Proteinen. Diese Sequenzen sind für eine Konstruktion der erfindungsgemäßen SNARE-Antigen-Fusionsmoleküle (N-SNARE-Antigen) geeignet

Abbildung 11: Stimulation naiver CD8+-T-Lymphozyten durch erfindungsgemäße Fusionskonstrukte. In Mikrotiterplatten wurden pro Well 1x10⁵ CD8+-Lymphozyten gegen 2 x 10⁴ DC, welche mit 20 μg CMVpp65-TM1 oder Kontroll-RNA transfiziert waren, stimuliert. Das Medium wurde mit IL-6 (1000 U/ml) und IL-12 (10 ng/ml) supplementiert. Am Tag +7 und +14 wurde mit aufgetauten transfizierten DC (2 x 10⁴ / Well)

restimuliert, wobei das Medium IL-2 (10 U/ml) und IL-7 (5 ng/ml) enthielt. Am Tag +21 wurden alle Populationen im ELISpot gegen Kontroll-Peptide (1,75µg/ml) und gegen pp65-überlappende Peptide (1,75µg/ml) getestet. Zwei der gegen CMVpp65-TM1 stimulierten Populationen (Pop.1, Pop.2) zeigten eine deutliche pp65-Reaktivität.

Beispiele:

Beispiel 1: Herstellung der modifizierten Vakzine

10

15

20

25

30

5

Für die Herstellung der modifizierten Vakzine wurde zunächst in einem Expressionsvektor, welcher die Transkription von RNA erlaubt, eine Kassette hergestellt, die die Expression von Fusionsgenen erlaubt. Hierfür wurde zunächst die Nukleinsäure, die für ein Signalpeptid eines HLA-Moleküls kodiert, aus menschlichen Lymphozyten amplifiziert und das Fragment als cDNA in einen Vektor kloniert (SEQ ID NO: 1 und 2). Die Klonierung wurde so durchgeführt, dass hinter der cDNA des Signalpeptids verschiedene Restriktionsenzym-Schnittstellen lagen und sich weitere Fragmente "inframe" in die Expressionskassette klonieren lassen. Als Vektoren wurden Plasmide ausgewählt, die über einen 5´-gelegenen RNA-Polymerase-Promoter T3, T7 bzw. SP6 eine in vitro-Expression von RNA erlauben. Als nächstes Fragment wurde eine cDNA in diesen Vektor kloniert, welche eine Transmembrandomäne und die cytoplasmatische Domäne eines HLA-Klasse I (SEQ ID NO: 3 und 4) bzw. eines Klasse II (SEQ ID NO: 5 und 6) Moleküls, einschließlich Stop-Codon kodiert. Die Klonierung wurde so durchgeführt, dass das entstehende Plasmid zwischen den beiden Fragmenten noch Restriktionsenzym-Schnittstellen zur Klonierung von Antigenen (SEQ ID NO: 7 und 8 und Abbildung 1) aufweist. In diese Expressionskassetten wurde als Modellantigen die für das humane Cytomegalovirus Phosphoprotein 65 (pp65) kodierende Sequenz (SEQ ID NO: 9 und 10) so einkloniert, dass ein HLA-ORF aus HLA-Signalsequenz, рр65 und durchgehender Transmembran- und cytoplasmatischer Domäne (SEQ ID NO: 11 und 12)

entstand. Für Kontrollexperimente wurde ein Vektor hergestellt, der die pp65-Sequenz mit einem STOP-Codon in demselben Ausgangsvektor ohne die besagten Fragmente enthielt. Für die weitergehenden Experimente wurden folgende Nukleinsäuren genutzt:

CMVpp65standard: unmod

unmodifizierte CMVpp65-Sequenz, Standard-

immunogen

5

10

15

20

25

30

CMVpp65-TM1: Fusionsnukleinsäure aus folgenden Fragmenten: HLA-Klasse I-Sekretionssignal, pp65-ORF und HLA-Klasse I-Transmembran- und cytoplasmatische Domäne (modifiziertes Immunogen).

CMVpp65-TM2: Fusionsnukleinsäure aus folgenden Fragmenten: HLA-Klasse I-Sekretionssignal, pp65-ORF und HLA-Klasse II-Transmembranund cytoplasmatische Domäne (modifiziertes Immunogen).

Beispiel 2: Testen der modifizierten Vakzine

Die drei Nukleinsäuren (CMVpp65standard, CMVpp65TM1, CMVpp65TM2) wurden als Immunogen in Stimulationsversuchen mit autologen DC's antigenpositiver Spender eingesetzt. Um CD4- und CD8-Immunantworten getrennt zu testen, wurden aufgereinigte CD4+- und CD8+-Lymphozyten genutzt. Als Read-Out wurde der Enzyme-linked-Immuno-Spot-Assay (ELISPOT) eingesetzt, der als Standardtest zur Quantifizierung IFN- λ sezernierender T-Zellen, anerkannt ist. Zum Testen der Effektorfunktion von CD8+-T-Lymphozyten wurde ein Standard-Chrom-Freisetzungstest benutzt. Autologe Monozyten oder DC's wurden mit pp65-RNA, CMVpp65-TM1- und Als transfiziert. Maximal-CMVpp65-TM2-Immunogenen Stimulationskontrolle wurden DC's mit überlappenden Peptiden für pp65 sowie mit Kontrollpeptid beladen. Die so behandelten DC's wurden über Nacht oder für 7 Tage mit CD4+- oder CD-8+-Lymphozyten koinkubiert. Das Read-Out erfolgte gegen autologe Monozyten oder DC's, die mit pp65-

überlappenden Peptiden oder einem CMV-Fibroblastenlysat gepulst worden waren. Bei der Untersuchung von CD4+-Immunantworten zeigte sich überraschenderweise, dass beide modifizierten Immunogene (CMVpp65-TM1 und CMVpp65-TM2) nicht nur eine gegenüber dem CMVpp65standard-Immunogen verstärkte Immunantwort auslösten, sondern auch eine maximal starke antigenspezifische IFN-gamma-Sekretion bei CD4+-Lymphozyten induzierten (Abbildung 3). Der Prozentsatz der antigenspezifischen CD4+-Zellen nach Stimulation durch die modifizierten pp65-Konstrukte war dabei gleich oder sogar höher als nach Stimulation mit pp65-überlappenden Peptiden. Wie erwartet, zeigte das CMVpp65standard-Immunogen keine relevante Stimulation von CD4+-Lymphozyten.

10

15

20

25

Ein noch überraschenderes Ergebnis ergab sich bei der Untersuchung von CD8-Immunantworten nach Stimulation mit den Immunogenen. Es ließ sich zeigen, dass die Verwendung der modifizierten Expressionskassetten zur Stimulation von CD8+-Lymphozyten ebenfalls zu einem Anteil spezifisch IFN-λ-sezernierender Zellen führte, welcher dem nach Stimulation mit pp65überlappenden Peptiden vergleichbar ist. Überraschenderweise waren auch die hierbei modifizierten RNA-Konstrukte den unveränderten CMVpp65standard-Immunogenen weit überlegen (Abbildungen 4 und 5). Die Ergebnisse im Zytotoxizitätsassay zeigten, dass beide Modifikationen zur einer bisher noch nicht beschriebenen drastischen Erhöhung der Cytotoxizität im Vergleich zu CMVpp65standard-RNA führten (Abbildung 6). Auch hierbei zeigte sich überraschenderweise eine Überlegenheit der modifizierten Immunogene gegenüber den überlappenden pp65-Peptiden.

Beispiel 3: Stimulation naiver CD8+-T-Lymphozyten durch HLA-Fusionsantigene

30 Um die Möglichkeit des Priming und der nachfolgenden Expansion von naiven CD8+-Lymphozyten durch die erfindungsgemäßen Fusionskonstrukte zu testen, wurden dendritische Zellen eines CMV-negativen Spenders mit

RNA des unmodifizierten CMVpp65, oder mit CMVpp65-TM1-RNA bzw. mit einer Kontroll-RNA (NY-Eso-1) transfiziert. Die transfizierten dendritischen Zellen wurden zur Stimulation von autologen CD8+-Lymphozyten eingesetzt. Es wurden 2 Restimulationen in wöchentlichem Abstand mit eingefrorenen transfizierten dendritischen Zellen durchgeführt. Zum Read-Out wurden am Tag +21 nach der ersten Stimulation alle Zell-Populationen in einem IFNy-ELISpot Assay gegen autologe dendritische Zellen getestet, welche entweder mit pp65-überlappenden Peptidern oder zur Kontrolle mit irrelevanten überlappenden Peptiden beladen waren. Hierbei wurde festgestellt, dass durch die Stimulation mit CMVpp65-TM1-RNA in zwei Fällen pp65-reaktive CD8+-T-Lymphozyten-Populationen generiert wurden (Abbildung 11). Stimulationen mit der dendritischen Zellen, die mit der unmodifizierten CMVpp65 RNA bzw. mit Kontroll-RNA transfizierte wurden, wiesen dagegen keine signifikante pp65-Reaktivität auf.

5

10.

15

20

25

30

Beispiel 4: Nutzung von HLA-Fusionsantigenen zur Stimulation von tumorzellreaktiven T-Lymphozyten

Um CD8+- und CD4+-T-Lymphozyten gegen definierte Tumorantigene expandieren zu können, wurden folgende Antigensequenzen als Inserts in erfindungsgemäße Fusionskonstrukte kloniert: das Tumorantigen TPTE (Koslowski et al., 2004, PMID 1534-2378), das Tumorantigen PRAME (Ikeda et al., 1997, PMID 9047241) in der Variante 1 (SEQ ID NO: 64), das Tumorantigen WT1 als Variante C (SEQ ID NO: 65) sowie das Tumorantigen p53 (SEQ ID NO: 66). Für die funktionelle Validierung wurden humane dendritische Zellen eines HLA* A 0201-positiven Spenders entweder mit WT1-HLA-TM1-RNA, mit unmodifizierter WT1-RNA oder irrelevanter Kontroll-RNA transfiziert und als Targetzellen benutzt. Nach Koinkubation mit WT1-reaktiven CD8+-T-Zellklonen für 8 oder 16 Stunden wurde IFNγ im Überstand quantifiziert. Es zeigte sich, dass nach Koinkubation mit WT1-HLA-TM1-transfizierten dendritischen Zellen die Sekretion um einen Faktor

- 6-9 höher lag im Vergleich zur Koinkubation nach Transfektion mit unmodifiziertem WT1.
- 5 In einer Serie von Experimenten wurden zusammenfassend mehrfach bestätigt folgende Resultate erzielt:
 - Die modifizierten Immunogene führen zu einer deutlich verstärkten Stimulation und Expansion von Antigen-spezifischen CD4+-Lymphozyten (gesteigerte Vermehrung von CD4+-Lymphozyten)
 - Die modifizierten Immunogene führen zu einer deutlich verstärkten Stimulation und Expansion von Antigen-spezifischen CD8+-Lymphozyten (gesteigerte Vermehrung von CD8+-Lymphozyten)

15

10

• Die modifizierten Immunogene führen zu einer deutlich verstärkten Zytokinausschüttung von Amtigen-spezifischen CD4+-Lymphozyten und CD8+-Lymphozyten (gesteigerte Zytokinausschüttung=gesteigerte Aktivierung)

20

30

- Die modifizierten Immunogene führen zu einer deutlich verstärkten cytotoxischen Reaktivität von Antigen-spezifischen CD8+-Lymphozyten (gesteigerter zytotoxischer Effekt)
- Die modifizierten Immunogene sind 100x potenter bezüglich der Expansion von Antigen-spezifischen CD8+-Lymphozyten
 - Die modifizierten Immunogene haben selbst bei 100x niedrigerer Dosis einen stärkeren Effekt auf die Expansion von Antigen-spezifischen CD4+-Lymphozyten als Standard-Immunogene

Zusammenfassend lässt sich also sagen, dass die erfindungsgemäßen Modifikationen eines Antigens in einer über 100-fach gesteigerten Potenz (Linksverschiebung der Dosis-Wirkungskurve) und einer drastisch erhöhten biologischen Wirksamkeit resultieren. Im Vergleich mit den bisher üblichen unmodifizierten Antigensequenzen lässt sich ein Immunogen generieren, das als Vakzine eine quantitativ und qualitativ höhere Wirksamkeit besitzt.

5

10

Ein wichtiges Resultat der Erfindung ist, dass gleichzeitig antigenspezifische CD4+- und CD8+-Lymphozyten optimal stimuliert und expandiert werden. Für die Wirksamkeit besonders von therapeutischen Vakzinen ist eine Stimulation der CD8+- und CD4+-Lymphozyten von entscheidender Bedeutung.

53 Patentansprüche

PCT/EP2004/011512

WO 2005/038030

5

15

25

- 1. Fusionsmolekül, das ein Antigen, eine Transmembranregion und die cytoplasmatische Region einer Kette eines MHC-Moleküls umfasst.
- 2. Fusionsmolekül nach Anspruch 1, wobei das Fusionsmolekül keine Bindedomäne einer Kette eines MHC-Moleküls umfasst.
- 3. Fusionsmolekül nach Anspruch 1 oder 2, wobei die 10 Transmembranregion von einem MHC-Molekül abgeleitet ist.
 - 4. Fusionsmolekül nach einem der Ansprüche 1 bis 3, wobei die Transmembranregion und cytoplasmatische Region eine Sequenz umfassen, die der Transmembranregion in Verbindung mit der cytoplasmatischen Region eines MHC-Moleküls entspricht.
 - 5. Fusionsmolekül nach einem der Ansprüche 1 bis 4, wobei das Fusionsmolekül zusätzlich eine Leitsequenz umfasst.
- 20 6. Fusionsmolekül nach Anspruch 5, wobei die Leitsequenz von einem MHC-Molekül abgeleitet ist.
 - 7. Fusionsmolekül nach Anspruch 5 oder 6, wobei das Fusionsmolekül folgende Anordnung aufweist: N-Terminus-Leitsequenz / Antigen / Transmembranregion / cytoplasmatische Region-C-Terminus, wobei die einzelnen Regionen gegebenenfalls durch Linkersequenzen voneinander getrennt sein können.
- 8. Fusionsmolekül nach einem der Ansprüche 1 bis 7, wobei das Antigen mehrere Antigene umfasst.

- 9. Nukleinsäure, die für ein Fusionsmolekül nach einem der Ansprüche 1 bis 8 kodiert.
- 10. Wirtszelle, die eine Nukleinsäure nach Anspruch 9 umfasst.

5

11. Pharmazeutische Zusammensetzung, die ein oder mehrere Fusionsmoleküle nach einem der Ansprüche 1 bis 8 und/oder eine oder mehrere Nukleinsäuren nach Anspruch 9 und/oder eine oder mehrere Wirtszellen nach Anspruch 10 umfasst.

10

- 12. Pharmazeutische Zusammensetzung nach Anspruch 11 in Form einer Vakzine.
- 13. Verfahren zur Erhöhung der Menge an MHC/Peptid-Komplexen in einer Zelle, wobei das Verfahren die Bereitstellung eines oder mehrerer Fusionsmoleküle nach einem der Ansprüche 1 bis 8 und/oder einer oder mehrerer Nukleinsäuren nach Anspruch 9 für die Zelle umfasst.
- 14. Verfahren zur Steigerung der Präsentation von Zelloberflächenmolekülen auf Zellen, die in der Lage sind, Antigene zu präsentieren, insbesondere B-Zellen und Makrophagen, wobei das Verfahren die Bereitstellung eines oder mehrerer Fusionsmoleküle nach einem der Ansprüche 1 bis 8 und/oder einer oder mehrerer Nukleinsäuren nach Anspruch 9 für die Zellen umfasst.

25

30

15. Verfahren nach Anspruch 13 oder 14, wobei die Erhöhung der Menge an MHC/Peptid-Komplexen oder Steigerung der Präsentation von Zelloberflächenmolekülen ihrerseits die primäre Aktivierung von T-Zellen, insbesondere von CD4+- und CD8+-Lymphozyten, die gegenüber dem Antigen reagieren, verstärkt.

- 16. Verfahren zum Auslösen einer Immunreaktion bei einem Lebewesen, wobei das Verfahren die Verabreichung eines oder mehrerer Fusionsmoleküle nach einem der Ansprüche 1 bis 8 und/oder einer oder mehrerer Nukleinsäuren nach Anspruch 9 und/oder einer oder mehrerer Wirtszellen nach Anspruch 10 an das Lebewesen umfasst.
- 17. Verfahren zur Stimulierung oder Aktivierung von T-Zellen, insbesondere CD4+- und CD8+-Lymphozyten, vorzugsweise in einem Lebewesen, wobei das Verfahren die Bereitstellung für die T-Zellen bzw. Verabreichung an das Lebewesen eines oder mehrerer Fusionsmoleküle nach einem der Ansprüche 1 bis 8 und/oder einer oder mehrerer Nukleinsäuren nach Anspruch 9 und/oder einer oder mehrerer Wirtszellen nach Anspruch 10 umfasst.
- 18. Verfahren zur Behandlung, Vakzinierung oder Immunisierung eines Lebewesens, wobei das Verfahren die Verabreichung eines oder mehrerer Fusionsmoleküle nach einem der Ansprüche 1 bis 8 und/oder einer oder mehrerer Nukleinsäuren nach Anspruch 9 und/oder einer oder mehrerer Wirtszellen nach Anspruch 10 an das Lebewesen umfasst.

5

10

Abb. 1

C-terminaler MHC-Klasse I- bzw. MHC-Klasse II-Schwanz

Kassetten mit Klonierungsstellen (MCS) zur Expression von erfindungsgemäßen MHC-Fusionsproteinen

Kassetten mit einklonierten Antigenen zur Expression von erfindungsgemäßen MHC-Fusionsproteinen

Abb.

BEST AVAILABLE COPY

Abb. 3

BEST AVAILABLE COPY

Abb. 4

Abb. 5

PCT/EP2004/011512

Kassetten mit Klonierungsstellen (CS) zur Expression von erfindungsgemäßen SNARE-Fusionsproteinen

Kassetten mit einklonierten Antigenen zur Expression von erfindungsgemäßen SNARE-Fusionsproteinen

Abb. 7

SEQ ID NO		
1	Signalpeptid (SecSignal)	ATGCGGGTCACGCCCCCGAACCCTCATCCTGCTGCTCTCGGGAGCCCTGGCCCTGACCG AGACCTGGGCCGGCTCC
2	Signalpeptid SecSignal	MRVTAPRTLILLSGALALTETWAGS
m	HLA-Klasse I- TM-CM	ATCGTGGGCATTGTTGCTGGCCTGGCCTGTCCTAGCAGTTGTGGTCATCGGAGCTGTGGTCGCTACTGTGTGTG
4	HLA-Klasse I- TM-CM	IVGIVAGLAVLAVVVIGAVVATVMCRRKSSGGKGGSYSQAASSDSAQGSDVSLTA
ഹ	HLA-Klasse II-TM-CM	CAGAGCAAGATGCTGAGTGGAGTCGGGGCTTTGTGGGCCCTGCTCTTCCTTGGGGCCGGGCTGTTCATCTACTTCAGGAATCA GAAAGGACACTCTGGACTTCAGCCAAGAGGATTCCTGAGCTGA
9	HLA-Klasse II-TM-CM	QSKMLSGVGGFVLGLLFLGAGLFIYFRNQKGHSGLQPRGF LS
7		CTGCAGGTCGACTCTAGAGGATCC
8		LQVDSRGS
ნ	pp65-Antigen	atggagtcgcggtcgccgttgtcccgaaatgatatccgtactgggtcccatttcggggcacgtgctgaaagccgtgttttagtcg cggcgatacgccggtgctgccgcagaacgcactctgcagaaqggtatccacqtacgctgagccactcgctgatctttgg tatcgcagtacacgccgactcgacgcactcgcaaacactcgcagacgacacactgcagggcaaacacgtgagcgag gtggagaacgtgcaacaccccagggcaaacactgccaatcagtgcacacactgtcgagcaaacacgggcaga gtggagaacgtgtcggtcaacgtgcaacacccagggccgaagcatctgcccaggaggccagagccagggcaaacactgggcaa gtggagaacgtgtcggtcaacgtcaacagtgcaacactacccgtcgggcgagaggccagaggccaaacactgggaac gctgccgctcaagatgctgaacaccccagggcaagatgtggcacacactacccgtcggggcgaaacacgggcaagatgtggaacacagggcggaacggggaagacgtgtgatcaacgtcaagatgtggcaagatgtggaaagatgtggaacagagggacgggaagacgggaagacgtgggaagaagagggaacgggaagacggtcgggaaagatgtggaaagaggtggaaagagggaacgggaagacgggaaagaggtggaaagaggggaaagaggttgggaaagaggggaaagaggtggaaagaggtggaaagagggaacgggaaagagggaaagaggtttagggaaagaggggaaagagggaaagaggtttaaagaaaa

Abb.

		gtccaccgtcgcgcccgaagaggacaccgacgaggattccgacaacgaaatccacaatccggccgtgttcacctggccgcctggcgcctggc aggccaccggccgccctggc aggccaccggccgcatcttctgggaccaccggccgccatcttctgggaccgccaccggccgccaccggcactcttctgggaagtggcagccggccg
10	pp65-Antigen	MESRGRRCPEMISVLGPISGHVLKAVESRGDTPVLPHETRLLQTGIHVRVSQPSLILVSQ YTPDSTPCHRGDNQLQVQHTYFTGSEVENVSVNVHNPTGRSICPSQEPMSIYVYALPLKM LNIPSINVHHYPSAAERKHRHLPVADAVIHASGKQMWQARLTVSGLAWTRQQNQWKEPDV YYTSAEVVEPTKDVALRHVVCAHELVCSMENTRATKMQVIGDQYVKVYLESFCEDVPSGKL FMHVTLGSDVEEDLTMTRNPQPFWRPHERNGFTVLCPKNMIIKPGKISHIMLDVAFTSHE HFGLLCPKSIPGLSISGNLLMNGQQIFLEVQAIRETVELRQYDPVAALFFFDIDLLLQRG PQYSEHPTFTSQYRIQGKLEYRHTWDRHDEGAAQGDDDVWTSGSDSDEELVTTERKTPRV TGGGAMAGASTSAGRKRKSASSATACTSGVMTRGRLKAESTVAPFEEDTDEDSDNEIHNPA VFTWPPWQAGILARNLVPMVATVQGQNLKYQEFFWDANDIYRIFAELEGVWQPAAQPKRR
11	SecSignal- pp65-Antigen- HLA-Klasse I- TM-CM	atgraggicacaggaccactatectgatetetetaggaagcettgaccagaactgacaggacctgacaggacctgaggacgetecettgaggacaggtcacaggatetaggatetaggatetaggatetaggaggacactetaggaggacactetaggaggacactetaggaggacacaggactetaggaggacacaggagacactetaggagacacaggatetagaggacacaggatetagagacaggacacaggatetagaggatetagagagacacaggatetagaggatetagaggacacaggatetagaggacacaggatetagaggacacaggatetagaggacacaggatetagaggacacaggatetagaggacacaggagacacaggatetagaggacacaggagacacaggagacacaggagacacaggagacacaggagacacaggatetagggagacacaggagagacacaggagagacacaggagagacacaggagagacacaggagagacacaggagagacacaggagagacacaggagagacacaggagagacacaggagagacacaggagagacacaggagagacacaggagagagacacaggagagagagagagagagagagagagagagagagagaga

		ATT SOUTH OF THE PARTY OF THE P
12	SecSignal- pp65-Antigen- HLA-Klasse I- TM-CM	MRVTAPRILILLISGALALTETWAGSLQVDSRGSTMESRGRRCPEMISVLGPISGHVLKA VESRGDTPVLPHETRLLQTGIHVRVSQPSLILVSQYTPDSTPCHRGDNQLQVQHTYFTGS EVENVSVNVHNPTGRSICPSQEPMSIYVYALPLKMLNIPSINVHHYPSAAERKHRHLPVA DAVIHASGKQMWQARLTVSGLAWTRQQNQWKEPDVYYTSAFVFPTKDVALRHVVCAHELV CSMENTRATKMQVIGDQYVKVYLESFCEDVPSGKLFMHVTLGSDVEEDLTMTRNPQPFMR PHERNGFTVLCPKNMIIKPGKISHIMLDVAFTSHEHFGLLCPKSIPGLSISGNLLMNGQQ IFLEVQAIRETVELRQYDPVAALFFFDIDLLLQRGPQXSEHPTFTSQYRIQGKLEYRHTW DRHDEGAAQGDDDVWTSGSDSDEELVTTERKTPRVTGGGAMAGASTSAGRKRKSASSATA CTSGVMTRGRLKAESTVAPEEDTDEDSDNEIHNPAVFTWPPWQAGILARNLVPMVATVQG QNLKYQEFFWDANDIYRIFAELEGVWQPAAQPKRRRHRQDALPGPCIASTPKKHRGGSIV
133	SecSignal- pp65-Antigen- HLA-Klasse II-TM-CM	atgoggtcactggaccctatccttatctgttgtcctggaatgatatccggactgggcctgggcgggggaggggaggggaggga
14	SecSignal- pp65-Antigen- HLA-Klasse II-TM-CM	MRVTAPRTLILLSGALALTETWAGSLQVDSRGSTMESRGRRCPEMISVLGPISGHVLKA VFSRGDTPVLPHETRLLQTGIHVRVSQPSLILVSQYTPDSTPCHRGDNQLQVQHTYFTGS EVENVSVNVHNPTGRSICPSQEPMSIYVYALPLKMLNIPSINVHHYPSAAERKHRHLPVA DAVIHASGKQMWQARITVSGLAWTRQQNQWKEPDVYYTSAEVFPTKDVALRHVVCAHELV

		THE PARTY WAS A STREET OF THE PARTY WAS A ST
		CSMENTRATKMOVIGDOIVKVILESFCEDVESGRIFMHVILGSDVEEDLIMIKNEQFFMK PHERNGFTVLCPKNMIIKPGKISHIMLDVAFTSHEHFGLICPKSIPGLSISGNILMNGQQ TETENGA TERMISTEDOVDDIA AT FEFDIDIIIODGEDOVSFHEMSOVRIOGKIRVRHTW
		LE LE VOATRE I VELKOI DE VAALE EE DI DILLIEGENGEGISTELE SEKRINGERINGEN. DRHDEGAAQGDDDVWISGSDSDEELVITERKI PRVIGGGAMAGASI SAGRKRKSASSATA
		CTSGVMTRGRLKAESTVAPEEDTDEDSDNEIHNPAVFTWPPWQAGILARNLVPMVATVQG QNLKYQEFFWDANDIYRIFAELEGVWQPAAQPKRRRHRQDALPGPCIASTPKKHRGGSQS KMISCYCCEVICIIFICACIFIYFPNOKGHSGLOPRGFIS
64	PRAME	l atqqaacqaa qqcqtttqtq qqqttccatt caqaqccqat acatcagcat gaqtqtgtgg
1	Variante 1	acaagcccac ggagacttgt ggagctggca
		tgccg
		gacacageca gaceetgaag geaatggtge aggeetggee
		ctccctctgg gagtgctgat gaagggacaa catcttcacc tggagacctt
		gaggttcgcc
		gtgctggatt tacggaagaa ctctcatcag gacttctgga ctgtatggtc
		421 gccagtctgt actcatttcc agagccagaa gcagctcagc ccatgacaaa gaagcgaaaa
		tgagcacaga ggcagagcag cccttcattc
		601 cgaaagaaaa atgtactacg cctgtgctgt aagaagctga agatttttgc aatgcccatg
		agatgatcct gaaaatggtg cagctggact ctattgaaga
		tacct
		aatctgcgta gactcctcct
		atategeeca gtteacetet eagtteetea
		actetttatt ttteettaga ggeegeetgg ateagttget
		961 atgaacccct tggaaaccct ctcaataact aactgccggc tttcggaagg ggatgtgatg
		1021 catctgtccc agagtcccag cgtcagtcag ctaagtgtcc tgagtctaag tggggtcatg
		taagteeega geeetteeaa getetgetgg
		acggatgatc
•		ttaagcttct
	-	tetgeettge agagteteet geageacete ategggetga geaatetgae
		tatectgtee ecetggagag ttatgaggae atecatggta eestecaeet
		gcctatctgc atgccaggct cagggagttg ctgtgtgagt tggggggggc
		tggcttagtg ccaaccctg
		1501 atcctgtgcc cctgtttcat gcctaac
65	WT1	1 atgggetecg acgtgeggga ectgaaegeg etgetgeeeg eegteeeete eetgggtgge
	Variante C	ggcggcggct gtgccctgcc tgtgagcggc gcggcgcagt gggcgccggt
		gegeeecegg gegettegge ttacgggteg ttggggeggee eegegeegee
		ccgccacccc cgccgccgcc gcctcactcc ttcatcaaac aggagccgag
		gtgcctgagc gccttcactg
		301 actggcacag ccggagcctg tcgctacggg cccttcggtc ctcctccgcc cagccaggcg

cctcgagage gcccagctac gcatgagat cccggtctat gaggacgcc ctggaatcag taaccacaca cagaggcatt atctgagacc ttttaagctg gtgtgacttc aaggagacat gtccgaccac cagctgtcgg	aacattttca ccaagcaatg cccaagtcca agcagctcct cccttcccag gacagccatg ggaaggaaat ggtgccctat ggtgaaggaaat ggtgccctat gtgaagactcc tcctgggaga cgaagctgcc tcctgggaga cgagctgccc tcctgggaga cgagctgccc tcctgggaga cgagctgccc
tgcccagctg tcgacggcac actcattcaa cggtgccgcc ctttgctgct aatgcatgac acgagagcga acggtgtctt tacggtcgca aaagacacca aaaagacacca aaaaagccctt tagtccgcca	tgagtcagga ccttgccgtc tcactgaaga cccctgcacc catcttctgt tgcattctgg tttgccaact ggcgctgccc ttatccgagt atagtgtggt acaccacct tcatcacact tcatcacact tttgtgcctg agcctcacca cctctcccca ggcgtgagga ggcgtgagga agcctcacca tttgtgcctg agcctcacca tttgtgcctg agcctcacca ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga ggcgtgagga
gegecectace acggteacet ttececaace cageageactg teceagettg ageacagggt atacacacge cegactettg ceaggetgea actggtgaga actggtgaga gaccagetca tgteagegaa tgteagegaa tgteagegaa tgteagegaa tgteagegaa tgteagegaa tgteagegaa	gagcececte gttetgteec gaacaatggt cecegegtgg tggcecetgt ctgggettet aacaagatgt cecegeceg gaggttgtga ceteageate acttttegac acttttegac acttttegac acttttegac acteteacaa gaggtgegtg aagaaagggg aagaaagggg aagaaagggg aagaaagggg gaggtgeetg aagaaagggg gaggtgeetg aagaaaggggg aagaaaggggg aagaaaggggg aagaaaggggg aagaaaggggg aagaaaaggggg aagaaaggggg aagaaaaggggg aagaaaaggggg aagaaaaggggg aagaacece ceceaaaaagg
gtttcctaac gggttacagc tgcggcgcag gctgggtgag cagctgcacc ccaatgaca aaagggccac ccaatacaga tggagtagcc ttggagtagcc ttgtcgttac ttctcgttca gtgtaaaact tcatacaggt gtttacaaact tcatacaggt	tectagegte tgaaaacaac ggaegatatt agaggetget ageccetc cetgecetc tgattecaca gcacatgacg tctggecet tgacagaaac tgacagaaac tgacagaaac tgacagaac tgacagaac tgacagaac tgacagaac tgacagaac tgacagaac ccgaagac ccgaagac ccgaagac ccgaagac tttcaccett gaatctccg actgcccaac tttcaccett cttggaact cctggaacc
aggccaggat tttogcaatca agcagggctc ccccaccga acaatttata gagccacctt tctgcggagc gacgtgtgcc gacgtgtgcc aacgaaggtt aaccattcca acaccaggac gacgaaggtt aacgaaggtt aaccattcca acaccaggac	cgcagtcaga aactacttcc tgctgtccc ccagaatgcc ccagaatgcc agggcagcta agcagtcaca agcagtcaca agcagtcaca agtatttgga agtattgga agtagagaaga ctaagca ctaagca c
tcatccggcc cagcccgcta ggtcacacgc cccatgggcc ggctgccaca tacagcagtg atgaacttag acgcccatcc aggatgtgc acggatgtgc acaggatgtg ctccacttac aaggactgtg acaggactgtg acaggactgtg acaggactgtg acaggactgtg ctgaaagaccc tgaaagaccc tgaaagaccc	atggaggagc gacctatga gatgatttga gatgaagctc acaccggcgg acacctaca cgctgctcag ttgcctgtgg gaccggctcag ttgcgtgtgg gatggtaatc gaccggcaca ccagggaatc gaccggcgca ccagggagca aaaccactgg agtggtaatc gaccggcgca ccagggagca aaaccactgg
361 421 481 541 601 661 721 781 961 1021 1081 1201 1201 1201	1 61 121 181 241 301 361 421 481 661 661 721 721 781 961 1021 1081
	ട പ്ര
	99

Abb. 9

SEQ ID	Typ	Name	Sequenz
15	MHC	HLA-A	PSSQPTIPIVGIIAGLVLFGAVITGAVVAAVMWRRKSSDRKGGSYSQAASSDSAQGSDVSLTACKV
16	MHC		GSYSQAASSDSAQGSDVSLTACKV
17	МНС	HLA-B	PSSQSTVPIVGIVAGLAVLAVVVIGAVVAAVMCRRKSSGGKGGSYSQAACSDSAQGSDVSLTA
18	MHC		GSYSQAACSDSAQGSDVSLTA
19	MHC	HLA-C	PSSQPTIPIVGIVAGLAVIAVLAVLGAMVAVVMCRRKSSGGKGGSCSQAASSNSAQGSDESLIACKA
20	MHC		SAQGSDESLIACKA
21	MHC	HLA-E	PASQPTIPIVGIIAGLVLLGSVVSGAVVAAVIWRKKSSGGKGGSYSKAEWSDSAQGSESHSL
22	MHC		GSYSKAEWSDSAQGSESHSL
23	MHC	HLA-F	OSPOPTIPIVGIVAGIVVLGAVVTGAVVAAVMM RKKSSDRNRGSYSQAAVTDSAQGSGVSLTANKV
24	MHC		RNRGSYSQAAVTDSAQGSGVSLTANKV
25	MHC	HLA-Dra	VVCALGLTVGLVGIIIGTIII KGLRKSNAAERRGPL
97	MHC		RKSNAAERRGPL
27	MHC	HLA-DRb	MLSGVGGFVLGLLFLAGLFIYFRNOKGHSGLQPRGFLS
28	MHC		GHSGLQPRGFLS
29	MHC	HLA-Dqa	VVCALGLSVGLMGIVVGTVFIIQGLRSVGASRHQGPL
30	MHC		VGASRHQGPL
31	MHC	HLA-DQb	MLSGIGGFVLGLIFLGLGLIIHHRSQKGLLH
32	MHC		RSQKGLLH
33	MHC	HLA-DPa	VLCALGLVIGIVGIVGIVIIIKSLRSGHDPRAQGTL
34	MHC		RSGHDPRAQGTL
32	MHC	HLA-DPb	TLTGAGGEVLGLIICGVGIFMHRRSKKVQRGSA
36	MHC		SKKVQRGSA
37	MHC	CD1a	FIILAVIVPLLLLIGLALWFRKRCFC
38	MHC		RKRCFC
39	MHC	CD1b	IVLAIIVPSLLLLLCLALWYMRRRSYQNIP
40	MHC		RRRSYQNIP
41	MHC	CD1c	WIALVVIVPLVILIVLVLWEKKHCSYQDIL
42	MHC		KKHCSYQDIL

SEQ ID	Typ	Name	Sequenz
43	SNARE	Cis-golgi	DLRKQARQLE NELDLKLVSF SKLCTSYSHS
		SNARE p28	SSQDRMFETM AIEIEQLLAR LTGVNDKMAE YTNSAGVPSL NAALMHTLQR HRDILQDYTH
			EFHKTKANFM AIRERENIMG SVRKDIESYK SGSGVNNRRT ELFLKEHDHL RNSDRLIEET
-			ISIAMATKEN MISQRGMIKS IHSKMNTLAN RFPAVNSLIQ RINLRKRRDS LILGGVIGIC
			TILLLYAFH
44	SNARE	VTI1b	MGASLTSPGT QEKLIRDFDE KQQEANKMLT QMEEELHYAP VSFHNPMMSK LQDYQKDLAQ
			FHLEARTMPG DRGDMKYGTY AVENEHMNRL QSQRAMLLQG TKSLGRATQE TDQIGSEISE
45	SNARE	Membrin	MDPLFQQTHK QVHEIQSCMG RLETADKQSV HIVENEIQAS IDQIFSRLER LEILSSKEPP
			NKRONARLRV DOLKYDVOHL OTALRNFQHR RHAREQOERO REELLSRTFT INDSDTTIPM
			DESLQFNSSL QKVHNGMDDL ILDGHNILDG LRTQRLTLKG TQKKILDIAN MLGLSNTVMR
			LIEKRAFODK YFMIGGMLIT CVVMFLVVQY LT
46	SNARE	Pallidin	MSVPGPSSPD GALTRPPYCL EAGEPTPGLS DISPDEGLIE DLIIEDKAVE QLAEGLLSHY
			LPDIQRSKQA LQELTQNQVV LLDTLEQEIS KFKECHSMLD INALFAEAKH YHAKLVNIRK
			EMIMIHEKTS KIKKRAIKIQ OKROKEELER EQOREKEFER EKOLTARPAK RM
47	SNARE	Syntaxin-5	MSCRDRIQEF LSACKSLQTR QNGIQTNKPA LRAVRQRSEF TLMAKRIGKD LSNTFAKLEK
			FDDKAVEIEE
			IVVSLQSKLA SMSNDFKSVL EVRTENLKQQ RSRREQFSRA PVSALPLAPN HLGGGAVVLG
			AESHASKDVA IDMMDSRTSQ QLQLIDEQDS YLQSRADTMQ NIESTIVELG SIFQQLAHMV
			KEQEETIQRI DENVLGAQLD VEAAHSEILK YFQSVTSNRW LMVKIFLILI VFFIIFVVFL
			A
48	SNARE	Syntaxin-6	MSMEDPFFVV KGEVQKAVNT AQGLFQRWTE LLQDPSTATR EEIDWTTNEL RNNIRSIEWD
			LEDLDETISI VEANPRKFNL DATELSIRKA FITSTRQVVR DMKDQMSTSS VQALAERKNR
•			QALLGDSGSQ NWSTGTTDKY GRLDRELQRA NSHFIEEQQA QQQLIVEQQD EQLELVSGSI
			GVLKNMSQRI GGELEEQAVM LEDFSHELES TQSRLDNVMK KLAKVSHMTS DRRQWCAIAI
			LEAVLLVVLI LELVL
49	SNARE	Syntaxin-7	MSYTPGVGGD PAQLAQRISS NIQKITQCSV EIQRTLNQLG TPQDSPELRQ QLQQKQQYTN
			QLAKETDKYI KEFGSLPTTP SEQRQRKIQK DRLVAEFTTS LTNFQKVQRQ AAEREKEFVA
			RVRASSRVSG SFPEDSSKER NLVSWESQTQ PQVQVQDEEI TEDDLRLIHE RESSIRQLEA
			DIMDINEIFK DLGMMIHEQG DVIDSIEANV ENAEVHVQQA NQQLSRAADY QRKSRKTLCI
			IILILVIGVA IISLIIWGLN H

		15,	,	
DPWFSTY RAVSTHO WLFEEPE DDLANLV EDPFEVV LEETIGI SIQVLKH	MSLEDPFFVV RGEVQKAVNT ARGLYQRWCE ILQESAAVGR EELDWTTNEL RNGLRSIEWD LEDLEETIGI VEANPGKFKL PAGDLQERKV FVERMREAVQ EMKDHMVSPT AVAFLERNNR EILAGKPAAQ KSPSDLLDAS AVSATSRYIE EQQATQQLIM DEQDQQLEMV SGSIQVLKHM SGRVGEELDE QGIMLDAFAQ EMDHTQSRMD GVIRKLAKVS HMTSDRRQWC AIAVLVGVLL	MKDRLAELLD LSKQYDQQFP DGDDEFDSPH EDIVFETDHI LESLYRDIRD IQDENQLLVA DVKRLGKQNA RFLTSMRRLS SIKRDTNSIA KAFRARGEVI HCKLRAMKEL SEAAEAQHGP HSAVARISRA QYNALTLTFQ RAMHDYNQAE MKQRDNCKIR IQRQLEIMGK EVSGDQIEDM FEQGKWDVFS ENLLADVKGR GPPTTRSRAA TANCCAWRAA IRDVHELFLQ MAVLVEKQAD TLNVIELNVO KTVDYTGOAK AQVRKAVQYE EKNPCRTLCC FCCPCLK	MSYGPLDMYR NPGPSGPQLR DFSSIIQTCS GNIQRISQAT AQIKNLMSQL GTKQDSSKLQ ENLQQLQHST NQLAKETNEL LKELGSLPLP LSTSEQRQQR LQKERLMNDF SAALNNFQAV QRRVSEKEKE SIARARAGSR LSAEERQREE QLVSFDSHEE WNQMQSQEDE VAITEQDLEL IKERETAIRQ LEADILDVNQ IFKDLAMMIH DQGDLIDSIE ANVESSEVHV ERATEQLQRA AYYQKKSRKK MCILVLVLSV IILILGLIIW LVYKTK MSEDEEKVKL RRLEPAIQKF IKIVIPTNLE RLRKHQINIE KYQRCRIWDK LHEEHINAGR TVQQLRSNIR EIEKLCLKVR KDDLVLLKRM IDPVKEEASA ATAEFLQLHL ESVEELKKQF NDEETLLQPP LTRSMTVGGA FHTTEAEASS QSLTQIYALP EIPQDQNAAE SRETLEADLI ELSQLVTDFS LLVNSQQEKI DSIADHVNSA AVNVEEGTKN LGKAAKYKLA ALPVAGALIG GMVGGPIGLL ACFKVAGIAA ALGGGVLGFT GGKLIQRKKQ KMMEKLTSSC PDLPSQTDKK	CS MSATAATAPP AAPAGEGGPP APPPNLTSNR RLQQTQAQVD EVVDIMRVNV DKVLERDQKL SELDDRADAL QAGASQFETS AAKLKRKYWW KNLKMMIILG VICAIILIII IVYFSS MSTGPTAATG SNRRLQQTQN QVDEVVDIMR VNVDKVLERD QKLSELDDRA DALQAGASQF
Syntaxin-8 MAP LIL PNP EII Syntaxin-10 MSL LED VSG VSG	SYNTAXIN-10a MSL LED ELL SGR	Syntaxin-11 MD DD H	Syntaxin-12 E C C I I Syntaxin-17 M N I I I I E E E E E E E E E E E E E E E	VAMP-2 MSP SEI VAMP-3 MST
SNARE S	SNARE	SNARE	SNARE	SNARE T
50	52	53	54 55	56

58	SNARE	VAMP-4	MPPKFKRHIN DDDVTGSVKS ERRNLLEDDS DEEEDFFLRG PSGPRFGPRN DKIKHVQNQV
			DEVIDVMPEN ITKVIERGER LDELQDKSES LSDNATAFSN RSKQLRRQMW WRGCKIKAIM
			ALVAAILLIV IIILIVMKYR T
59	SNARE	VAMP-7	MAILFAVVAR GITILAKHAW CGGNFLEVIE QILAKIPSEN NKLIYSHGNY LFHYICQDRI
			VYLCITDDDF ERSRAFNFLN EIKKRFQTTY GSRAQTALPY AMNSEFSSVL AAQLKHHSEN
			KGLDKVMETQ AQVDELKGIM VRNIDLVAQR GERLELLIDK TENLVDSSVT FKTTSRNLAR
			AMCMKNLKLT IIIIIVSIVE IYIIVSPLCG GFTWPSCVKK
90	SNARE	VAMP8	MEEASEGGGN DRVRNLQSEV EGVKNIMTQN VERILARGEN LEHLRNKTED LEATSEHFKT
			ISOKVARKEW WKNVKMIVLI CVIVFIIILF IVLFATGAFS
61	SNARE	VTI1-a-beta	MSSDFEGYEQ DFAVLTAEIT SKIARVPRLP PDEKKOMVAN VEKQLEEAKE LLEOMDLEVR
			EIPPOSRGMY SNRMRSYKQE MGKLETDFKR SRIAYSDEVR NELLGDDGNS SENQRAHLLD
			NTERLERSSR RLEAGYQIAV ETEQIGQEML ENLSHDREKI QRARERLRET DANLGKSSRI
			LIGMIRRGCS VKKQCNLSLA PKA
62	SNARE	XP350893	MRDRLPDLTA CRKNDDGDTV VVVEKDHFMD DFFHQVEEIR NSIDKITQYV EEVKKNHSII
			LSAPNPEGKI KEELEDLNKE IKKTANKIRA KLKAIEQSFD QDESGNRTSV DLRIRRIQHS
			VLSRKFVEAM AEYNEAQTLF RERSKGRIQR QLEITGRTTT DDELEEMLES GKPSIFTSDI
			ISDSQITRQA LNEIESRHKD IMKLETSIRE LHEMFMDMAM FVETQGEMIN NIERNVMNAT
			DYVEHAKEET KKAIKYQSKA RRVSLASKN
63	SNARE	LIPS	OMAALAPLPP LPAQFKSIQH HLRTAQEHDK RDPVVAYYCR LYAMQTGMKI DSKTPECRKF
			LSKLMDQLEA LKKQLGDNEA ITQEIVGCAX LENYALKMFL YADNEDRAGR FHKNMIKSFY
			TASLLIDVIT VFGELTDENV KHRKYARWKA TYIHNCLKEW GDSSSRPCWE LKKIMILKKM
		· ·	KMLEQPLCPL SQLSHHHLQL MTQQHAIRQL YWNTDSSGCT RSS

BEST AVAILABLE COPY

Abb. 11

410-1PCTST25.txt SEQUENCE LISTING

<110>	Johannes Gutenberg-Universität Mainz, vertreten durch den Präs	sidenten
<120>	Rekombinante Impfstoffe und deren Verwendung	
<130>	410-1PCT	ج
<150> <151>	DE 103 47 710.1 2003-10-14	•
<160>	66	
<170>	PatentIn version 3.1	
<210> <211> <212> <213>	1 78 DNA Homo sapiens	
<400> atgcgg	1 gtca cggcgccccg aaccctcatc ctgctgctct cgggagccct ggccctgacc	60
gagacc	tggg ccggctcc	78
<210> <211> <212> <213>	2 26 PRT Homo sapiens	
<400>	2	
Met Ar 1	g Val Thr Ala Pro Arg Thr Leu Ile Leu Leu Leu Ser Gly Ala 5 10 15	
Leu Al	a Leu Thr Glu Thr Trp Ala Gly Ser 20 25	
<210> <211> <212> <213>	3 168 DNA Homo sapiens	
<400> atcgtg	3 ggca ttgttgctgg cctggctgtc ctagcagttg tggtcatcgg agctgtggtc	60
gctact	gtga tgtgtaggag gaagagctca ggtggaaaag gagggagcta ctctcaggct	120
gcgtcc	agcg acagtgccca gggctctgat gtgtctctca cagcttga	168
<210> <211> <212> <213>	4 55 PRT Homo sapiens	
<400>	4	
Ile Va 1	l Gly Ile Val Ala Gly Leu Ala Val Leu Ala Val Val Ile 5 10 15	
Gly Al	a Val Val Ala Thr Val Met Cys Arg Arg Lys Ser Ser Gly Gly 20 25 30	

410-1PCTST25.txt

Lys Gly Gly Ser Tyr Ser Gln Ala Ala Ser Ser Asp Ser Ala Gln Gly 40 45Ser Asp Val Ser Leu Thr Ala 50 55 <210> 129 <211> <212> DNA <213> Homo sapiens <400> 5 cagagcaaga tgctgagtgg agtcgggggc tttgtgctgg gcctgctctt ccttggggcc 60 120 gggctgttca tctacttcag gaatcagaaa ggacactctg gacttcagcc aagaggattc 129 ctgagctga <210> 6 <211> 42 <212> PRT <213> Homo sapiens <400> 6 Gln Ser Lys Met Leu Ser Gly Val Gly Gly Phe Val Leu Gly Leu Leu 1 10 15 Phe Leu Gly Ala Gly Leu Phe Ile Tyr Phe Arg Asn Gln Lys Gly His 20 25 30 Ser Gly Leu Gln Pro Arg Gly Phe Leu Ser <210> 24

<211> <212> DNA

künstliche Sequenz <213>

<400> 7 ctgcaggtcg actctagagg atcc

<210> 8 <211> <212> 8

PRT künstliche Sequenz <213>

<400> 8

Leu Gln Val Asp Ser Arg Gly Ser 1 5

<210> 1683 <211> <212> DNA

Cytomegalovirus <213>

<400> 9 atggagtcgc gcggtcgccg ttgtcccgaa atgatatccg tactgggtcc catttcgggg 60

24

410-1PCTST25.txt

cacgtgctga	aagccgtgtt	tagtcgcggc	gatacgccgg	tgctgccgca	cgagacgcga	120
ctcctgcaga	cgggtatcca	cgtacgcgtg	agccagccct	cgctgatctt	ggtatcgcag	180
tacacgcccg	actcgacgcc	atgccaccgc	ggcgacaatc	agctgcaggt	gcagcacacg	240
tactttacgg	gcagcgaggt	ggagaacgtg	tcggtcaacg	tgcacaaccc	cacgggccga	30 O
agcatctgcc	ccagccagga	gcccatgtcg	atctatgtgt	acgcgctgcc	gctcaagatg	36O
ctgaacatcc	ccagcatcaa	cgtgcaccac	tacccgtcgg	cggccgagcg	caaacaccga	420
cacctgcccg	tagctgacgc	tgtgattcac	gcgtcgggca	agcagatgtg	gcaggcgcgt	48 O
ctcacggtct	cgggactggc	ctggacgcgt	cagcagaacc	agtggaaaga	gcccgacgtc	54 O
tactacacgt	cagcgttcgt	gtttcccacc	aaggacgtgg	cactgcggca	cgtggtgtgc	60 O
gcgcacgagc	tggtttgctc	catggagaac	acgcgcgcaa	ccaagatgca	ggtgataggt	66 O
gaccagtacg	tcaaggtgta	cctggagtcc	ttctgcgagg	acgtgccctc	cggcaagctc	72 O
tttatgcacg	tcacgctggg	ctctgacgtg	gaagaggacc	tgacgatgac	ccgcaacccg	78 O
caacccttca	tgcgccccca	cgagcgcaac	ggctttacgg	tgttgtgtcc	caaaaatatg	84 O
ataatcaaac	cgggcaagat	ctcgcacatc	atgctggatg	tggcttttac	ctcacacgag	90 O
cattttgggc	tgctgtgtcc	caagagcatc	ccgggcctga	gcatctcagg	taacctgttg	96 O
atgaacgggc	agcagatctt	cctggaggta	caagccatac	gcgagaccgt	ggaactgcgt	102 O
cagtacgatc	ccgtggctgc	gctcttcttt	ttcgatatcg	acttgctgct	gcagcgcggg	108 O
cctcagtaca	gcgagcaccc	caccttcacc	agccagtatc	gcatccaggg	caagcttgag	1140
taccgacaca	cctgggaccg	gcacgacgag	ggtgccgccc	agggcgacga	cgacgtctgg	1200
accagcggat	cggactccga	cgaagaactc	gtaaccaccg	agcgcaagac	gccccgcgtc	1260
accggcggcg	gcgccatggc	gggcgcctcc	acttccgcgg	gccgcaaacg	caaatcagca	1320
tcctcggcga	cggcgtgcac	gtcgggcgtt	atgacacgcg	gccgccttaa	ggccgagtcc	1380
accgtcgcgc	ccgaagagga	caccgacgag	gattccgaca	acgaaatcca	caatccggcc	1440
gtgttcacct	ggccgccctg	gcaggccggc	atcctggccc	gcaacctggt	gcccatggtg	1500
gctacggttc	agggtcagaa	tctgaagtac	caggaattct	tctgggacgc	caacgacatc	1560
taccgcatct	tcgccgaatt	ggaaggcgta	tggcagcccg	ctgcgcaacc	caaacgtcgc	1620
cgccaccggc	aagacgcctt	gcccgggcca	tgcatcgcct	cgacgcccaa	aaagcaccga	1680
ggt						1683

```
<210> 10
<211> 561
<212> PRT
<213> Cytomegalovirus
```

<400> 10

410-1PCTST25.txt

Pro Ile Ser Gly His Val Leu Lys Ala Val Phe Ser Arg Gly Asp Thr 20 25 30 Pro Val Leu Pro His Glu Thr Arg Leu Leu Gln Thr Gly Ile His Val Arg Val Ser Gln Pro Ser Leu Ile Leu Val Ser Gln Tyr Thr Pro Asp 50 60 Ser Thr Pro Cys His Arg Gly Asp Asn Gln Leu Gln Val Gln His Thr 65 70 75 80 Tyr Phe Thr Gly Ser Glu Val Glu Asn Val Ser Val Asn Val His Asn 90 95 Pro Thr Gly Arg Ser Ile Cys Pro Ser Gln Glu Pro Met Ser Ile Tyr $100 \hspace{1cm} 105 \hspace{1cm} 110$ Val Tyr Ala Leu Pro Leu Lys Met Leu Asn Ile Pro Ser Ile Asn Val 115 120 125 His His Tyr Pro Ser Ala Ala Glu Arg Lys His Arg His Leu Pro Val 130 140 Ala Asp Ala Val Ile His Ala Ser Gly Lys Gln Met Trp Gln Ala Arg 145 150 155 160 Leu Thr Val Ser Gly Leu Ala Trp Thr Arg Gln Gln Asn Gln Trp Lys
165 170 175 Glu Pro Asp Val Tyr Tyr Thr Ser Ala Phe Val Phe Pro Thr Lys Asp 180 185 190 Val Ala Leu Arg His Val Val Cys Ala His Glu Leu Val Cys Ser Met 195 200 205 Glu Asn Thr Arg Ala Thr Lys Met Gln Val Ile Gly Asp Gln Tyr Val 210 215 220 Lys Val Tyr Leu Glu Ser Phe Cys Glu Asp Val Pro Ser Gly Lys Leu 225 230 235 240 Phe Met His Val Thr Leu Gly Ser Asp Val Glu Glu Asp Leu Thr Met 245 250 255 Thr Arg Asn Pro Gln Pro Phe Met Arg Pro His Glu Arg Asn Gly Phe 260 270 Thr Val Leu Cys Pro Lys Asn Met Ile Ile Lys Pro Gly Lys Ile Ser 275 280 285

410-1PCTST25.txt

Ile Met Leu Asp Val Ala Phe Thr Ser His Glu His Phe Gly Leu 290 295 300 Leu Cys Pro Lys Ser Ile Pro Gly Leu Ser Ile Ser Gly Asn Leu Leu 305 310 315 Met Asn Gly Gln Gln Ile Phe Leu Glu Val Gln Ala Ile Arg Glu Thr 325 330 335 Val Glu Leu Arg Gln Tyr Asp Pro Val Ala Ala Leu Phe Phe Asp 340 345 350 Ile Asp Leu Leu Gln Arg Gly Pro Gln Tyr Ser Glu His Pro Thr 355 360 365 Phe Thr Ser Gln Tyr Arg Ile Gln Gly Lys Leu Glu Tyr Arg His Thr 370 380 Trp Asp Arg His Asp Glu Gly Ala Ala Gln Gly Asp Asp Asp Val Trp 385 395 400 Thr Ser Gly Ser Asp Ser Asp Glu Glu Leu Val Thr Thr Glu Arg Lys
405 410 . 415 Thr Pro Arg Val Thr Gly Gly Gly Ala Met Ala Gly Ala Ser Thr Ser 420 425 430 Ala Gly Arg Lys Arg Lys Ser Ala Ser Ser Ala Thr Ala Cys Thr Ser 435 440 445 Gly Val Met Thr Arg Gly Arg Leu Lys Ala Glu Ser Thr Val Ala Pro 450 460 Glu Glu Asp Thr Asp Glu Asp Ser Asp Asn Glu Ile His Asn Pro Ala 465 470 475 480 Val Phe Thr Trp Pro Pro Trp Gln Ala Gly Ile Leu Ala Arg Asn Leu 485 490 495 Val Pro Met Val Ala Thr Val Gln Gly Gln Asn Leu Lys Tyr Gln Glu 500 505 510 Phe Phe Trp Asp Ala Asn Asp Ile Tyr Arg Ile Phe Ala Glu Leu Glu 515 520 525 Gly Val Trp Gln Pro Ala Ala Gln Pro Lys Arg Arg Arg His Arg Gln 530 540 Asp Ala Leu Pro Gly Pro Cys Ile Ala Ser Thr Pro Lys Lys His Arg 545 550 555 560

410-1PCTST25.txt

Gly

<210>

11

1962 DNA künstliche Sequenz <400> 11 60 atgcgggtca cggcgccccg aaccctcatc ctgctgctct cgggagccct ggccctgacc 120 gagacctggg ccggctccct gcaggtcgac tctagaggat ccaccatgga gtcgcgcggt 180 cgccgttgtc ccgaaatgat atccgtactg ggtcccattt cggggcacgt gctgaaagcc 240 qtgtttagtc gcqqcgatac gccggtgctg ccgcacgaga cgcgactcct gcagacgggt 300 atccacgtac gcgtgagcca gccctcgctg atcttggtat cgcagtacac gcccgactcg 360 acgccatgcc accgcggcga caatcagctg caggtgcagc acacgtactt tacgggcagc 420 gaggtggaga acgtgtcggt caacgtgcac aaccccacgg gccgaagcat ctgccccagc 480 caggagccca tgtcgatcta tgtgtacgcg ctgccgctca agatgctgaa catccccagc 540 atcaacgtgc accactaccc gtcggcggcc gagcgcaaac accgacacct gcccgtagct 600 gacgctgtga ttcacgcgtc gggcaagcag atgtggcagg cgcgtctcac ggtctcggga 660 ctggcctgga cgcgtcagca gaaccagtgg aaagagcccg acgtctacta cacgtcagcg 720 ttcgtgtttc ccaccaagga cgtggcactg cggcacgtgg tgtgcgcgca cgagctggtt 780 tgctccatgg agaacacgcg cgcaaccaag atgcaggtga taggtgacca gtacgtcaag 840 gtgtacctgg agtccttctg cgaggacgtg ccctccggca agctctttat gcacgtcacg 900 ctgggctctg acgtggaaga ggacctgacg atgacccgca acccgcaacc cttcatgcgc 960 ccccacgagc gcaacggctt tacggtgttg tgtcccaaaa atatgataat caaaccgggc 1020 aagatctcgc acatcatgct ggatgtggct tttacctcac acgagcattt tgggctgctg 1080 tgtcccaaqa qcatcccggg cctgagcatc tcaggtaacc tgttgatgaa cgggcagcag 1140 atcttcctgg aggtacaagc catacgcgag accgtggaac tgcgtcagta cgatcccgtg gctgcgctct tcttttcga tatcgacttg ctgctgcagc gcgggcctca gtacagcgag 1200 1260 caccccacct tcaccagcca gtatcgcatc cagggcaagc ttgagtaccg acacacctgg **1320** gaccggcacg acgagggtgc cgcccagggc gacgacgacg tctggaccag cggatcggac 1380 tecgaegaag aactegtaac caeegagege aagaegeeee gegteaeegg eggeggegee atggcqggcg cctccacttc cgcgggccgc aaacgcaaat cagcatcctc ggcgacggcg 1440 tgcacqtcqq qcqttatqac acqcqgccgc cttaaggccg agtccaccgt cgcgcccgaa **1500** gaggacaccg acgaggattc cgacaacgaa atccacaatc cggccgtgtt cacctggccg 1560 **1620** ccctggcagg ccggcatcct ggcccgcaac ctggtgccca tggtggctac ggttcagggt cagaatctqa agtaccagga attcttctgg gacgccaacg acatctaccg catcttcgcc **1680** 1740 gaattqgaag gcgtatggca gcccgctgcg caacccaaac gtcgccgcca ccggcaagac

410-1PCTST25.txt

gc	cttgcccg	ggccatgcat	cgcctcgacg	cccaaaaagc	accgaggtgg	atccatcgtg	1800
99	cattgttg	ctggcctggc	tgtcctagca	gttgtggtca	tcggagctgt	ggtcgctact	1860
gt	gatgtgta	ggaggaagag	ctcaggtgga	aaaggaggga	gctactctca	ggctgcgtcc	1920
ag	cgacagtg	cccagggctc	tgatgtgtct	ctcacagctt	ga		1962

<210> 12 <211> 653

<213> künstliche Sequenz

<400> 12

Met Arg Val Thr Ala Pro Arg Thr Leu Ile Leu Leu Leu Ser Gly Ala 1 10 15

Leu Ala Leu Thr Glu Thr Trp Ala Gly Ser Leu Gln Val Asp Ser Arg 20 25 30

Gly Ser Thr Met Glu Ser Arg Gly Arg Arg Cys Pro Glu Met Ile Ser 35 40 45

Val Leu Gly Pro Ile Ser Gly His Val Leu Lys Ala Val Phe Ser Arg 50 60

Gly Asp Thr Pro Val Leu Pro His Glu Thr Arg Leu Leu Gln Thr Gly 65 70 75 80

Ile His Val Arg Val Ser Gln Pro Ser Leu Ile Leu Val Ser Gln Tyr 85 90 95

Thr Pro Asp Ser Thr Pro Cys His Arg Gly Asp Asn Gln Leu Gln Val 100 105 110

Gln His Thr Tyr Phe Thr Gly Ser Glu Val Glu Asn Val Ser Val Asn 115 120 125

Val His Asn Pro Thr Gly Arg Ser Ile Cys Pro Ser Gln Glu Pro Met 130 135 140

Ser Ile Tyr Val Tyr Ala Leu Pro Leu Lys Met Leu Asn Ile Pro Ser 145 150 155 160

Ile Asn Val His His Tyr Pro Ser Ala Ala Glu Arg Lys His Arg His 165 170 175

Leu Pro Val Ala Asp Ala Val Ile His Ala Ser Gly Lys Gln Met Trp 180 185 190

Gln Ala Arg Leu Thr Val Ser Gly Leu Ala Trp Thr Arg Gln Gln Asn 195 200 205

410-1PCTST25.txt

Gln Trp Lys Glu Pro Asp Val Tyr Tyr Thr Ser Ala Phe Val Phe Pro 210 220 Thr Lys Asp Val Ala Leu Arg His Val Val Cys Ala His Glu Leu Val 225 230 235 240 Cys Ser Met Glu Asn Thr Arg Ala Thr Lys Met Gln Val Ile Gly Asp 245 250 255 Gln Tyr Val Lys Val Tyr Leu Glu Ser Phe Cys Glu Asp Val Pro Ser 260 265 270 Gly Lys Leu Phe Met His Val Thr Leu Gly Ser Asp Val Glu Glu Asp 285 Leu Thr Met Thr Arg Asn Pro Gln Pro Phe Met Arg Pro His Glu Arg 290 295 300 Asn Gly Phe Thr Val Leu Cys Pro Lys Asn Met Ile Ile Lys Pro Gly 305 310 315 Lys Ile Ser His Ile Met Leu Asp Val Ala Phe Thr Ser His Glu His 325 330 335 Phe Gly Leu Cys Pro Lys Ser Ile Pro Gly Leu Ser Ile Ser Gly 340 345 Asn Leu Leu Met Asn Gly Gln Gln Ile Phe Leu Glu Val Gln Ala Ile 355 360 365 Arg Glu Thr Val Glu Leu Arg Gln Tyr Asp Pro Val Ala Ala Leu Phe 370 380 Phe Phe Asp Ile Asp Leu Leu Gln Arg Gly Pro Gln Tyr Ser Glu 385 390 395 400 His Pro Thr Phe Thr Ser Gln Tyr Arg Ile Gln Gly Lys Leu Glu Tyr 405 410 415 Arg His Thr Trp Asp Arg His Asp Glu Gly Ala Ala Gln Gly Asp Asp 420 425 430 Asp Val Trp Thr Ser Gly Ser Asp Ser Asp Glu Glu Leu Val Thr Thr 435 440 445 Glu Arg Lys Thr Pro Arg Val Thr Gly Gly Gly Ala Met Ala Gly Ala 450 455 460 Ser Thr Ser Ala Gly Arg Lys Arg Lys Ser Ala Ser Ser Ala Thr Ala 465 470 475 480

8/41

410-1PCTST25.txt

Cys Thr Ser Gly Val Met Thr Arg Gly Arg Leu Lys Ala Glu Ser Thr 485 490 495 Val Ala Pro Glu Glu Asp Thr Asp Glu Asp Ser Asp Asn Glu Ile His 500 505 510 Asn Pro Ala Val Phe Thr Trp Pro Pro Trp Gln Ala Gly Ile Leu Ala 515 520 525 Arg Asn Leu Val Pro Met Val Ala Thr Val Gln Gly Gln Asn Leu Lys 530 540 Tyr Gln Glu Phe Phe Trp Asp Ala Asn Asp Ile Tyr Arg Ile Phe Ala 545 550 555 560 Glu Leu Glu Gly Val Trp Gln Pro Ala Ala Gln Pro Lys Arg Arg 565 570 575 His Arg Gln Asp Ala Leu Pro Gly Pro Cys Ile Ala Ser Thr Pro Lys 580 585 590 Lys His Arg Gly Gly Ser Ile Val Gly Ile Val Ala Gly Leu Ala Val 595 600 605 Leu Ala Val Val Ile Gly Ala Val Val Ala Thr Val Met Cys Arg 610 625 Arg Lys Ser Ser Gly Gly Lys Gly Gly Ser Tyr Ser Gln Ala Ala Ser 625 630 635 640

Ser Asp Ser Ala Gln Gly Ser Asp Val Ser Leu Thr Ala 645

<210>

1923

künstliche Sequenz

<400> 13

atgcgggtca cggcgccccg aaccctcatc ctgctgctct cgggagccct ggccctgacc 60 gagacctggg ccggctccct gcaggtcgac tctagaggat ccaccatgga gtcgcgcggt 120 180 CGCCGttgtc Ccgaaatgat atccgtactg ggtcccattt cggggcacgt gctgaaagcc gtgtttagtc gcggcgatac gccggtgctg ccgcacgaga cgcgactcct gcaqacqqqt 240 atccacgtac gcgtgagcca gccctcgctg atcttggtat cgcagtacac gcccgactcg 300 acgccatgcc accgcggcga caatcagctg caggtgcagc acacgtactt tacgggcagc 360 gaggtggaga acgtgtcggt caacgtgcac aaccccacgg gccgaagcat ctgccccaqc 420 Caggagecca tgtegateta tgtgtaegeg etgeegetea agatgetgaa cateeceage 480 atcaacgtgc accactaccc gtcggcggcc gagcgcaaac accgacacct gcccgtagct 540

410-1PCTST25.txt

gacgctgtga	ttcacgcgtc	gggcaagcag	atgtggcagg	cgcgtctcac	ggtctcggga	600
ctggcctgga	cgcgtcagca	gaaccagtgg	aaagagcccg	acgtctacta	cacgtcagcg	660
ttcgtgtttc	ccaccaagga	cgtggcactg	cggcacgtgg	tgtgcgcgca	cgagctggtt	720
tgctccatgg	agaacacgcg	cgcaaccaag	atgcaggtga	taggtgacca	gtacgtcaag	780
gtgtacctgg	agtccttctg	cgaggacgtg	ccctccggca	agctctttat	gcacgtcacg	840
ctgggctctg	acgtggaaga	ggacctgacg	atgacccgca	acccgcaacc	cttcatgcgc	900
ccccacgagc	gcaacggctt	tacggtgttg	tgtcccaaaa	atatgataat	caaaccgggc	960
aagatctcgc	acatcatgct	ggatgtggct	tttacctcac	acgagcattt	tgggctgctg	1020
tgtcccaaga	gcatcccggg	cctgagcatc	tcaggtaacc	tgttgatgaa	cgggcagcag	1080
atcttcctgg	aggtacaagc	catacgcgag	accgtggaac	tgcgtcagta	cgatcccgtg	1140
gctgcgctct	tctttttcga	tatcgacttg	ctgctgcagc	gcgggcctca	gtacagcgag	1200
caccccacct	tcaccagcca	gtatcgcatc	cagggcaagc	ttgagtaccg	acacacctgg	1260
gaccggcacg	acgagggtgc	cgcccagggc	gacgacgacg	tctggaccag	cggatcggac	1320
tccgacgaag	aactcgtaac	caccgagcgc	aagacgcccc	gcgtcaccgg	cggcggcgcc	1380
atggcgggcg	cctccacttc	cgcgggccgc	aaacgcaaat	cagcatcctc	ggcgacggcg	1440
tgcacgtcgg	gcgttatgac	acgcggccgc	cttaaggccg	agtccaccgt	cgcgcccgaa	1500
gaggacaccg	acgaggattc	cgacaacgaa	atccacaatc	cggccgtgtt	cacctggccg	1560
ccctggcagg	ccggcatcct	ggcccgcaac	ctggtgccca	tggtggctac	ggttcagggt	1620
cagaatctga	agtaccagga	attcttctgg	gacgccaacg	acatctaccg	catcttcgcc	1680
gaattggaag	gcgtatggca	gcccgctgcg	caacccaaac	gtcgccgcca	ccggcaagac	1740
gccttgcccg	ggccatgcat	cgcctcgacg	cccaaaaagc	accgaggtgg	atcccagagc	1800
aagatgctga	gtggagtcgg	gggctttgtg	ctgggcctgc	tcttccttgg	ggccgggctg	1860
ttcatctact	tcaggaatca	gaaaggacac	tctggacttc	agccaagagg	attcctgagc	1920
tga						1923

```
<210> 14
<211> 640
<212> PRT
```

<400> 14

Met Arg Val Thr Ala Pro Arg Thr Leu Ile Leu Leu Ser Gly Ala 1 5 10 15

Leu Ala Leu Thr Glu Thr Trp Ala Gly Ser Leu Gln Val Asp Ser Arg 20 25 30

Gly Ser Thr Met Glu Ser Arg Gly Arg Arg Cys Pro Glu Met Ile Ser 35 40 45

<213> künstliche Sequenz

410-1PCTST25.txt

Val Leu Gly Pro Ile Ser Gly His Val Leu Lys Ala Val Phe Ser Arg 50 60 Gly Asp Thr Pro Val Leu Pro His Glu Thr Arg Leu Leu Gln Thr Gly 65 70 75 80 Ile His Val Arg Val Ser Gln Pro Ser Leu Ile Leu Val Ser Gln Tyr 85 90 95 Thr Pro Asp Ser Thr Pro Cys His Arg Gly Asp Asn Gln Leu Gln Val Gln His Thr Tyr Phe Thr Gly Ser Glu Val Glu Asn Val Ser Val Asn 115 120 125 Val His Asn Pro Thr Gly Arg Ser Ile Cys Pro Ser Gln Glu Pro Met 130 135 140 Ser Ile Tyr Val Tyr Ala Leu Pro Leu Lys Met Leu Asn Ile Pro Ser 145 150 155 160 Ile Asn Val His His Tyr Pro Ser Ala Ala Glu Arg Lys His Arg His 165 170 175 Leu Pro Val Ala Asp Ala Val Ile His Ala Ser Gly Lys Gln Met Trp 180 185 190 Gln Ala Arg Leu Thr Val Ser Gly Leu Ala Trp Thr Arg Gln Gln Asn 195 200 205 Gln Trp Lys Glu Pro Asp Val Tyr Tyr Thr Ser Ala Phe Val Phe Pro 210 215 220 Thr Lys Asp Val Ala Leu Arg His Val Val Cys Ala His Glu Leu Val 225 230 235 240 Cys Ser Met Glu Asn Thr Arg Ala Thr Lys Met Gln Val Ile Gly Asp 245 250 255 Gln Tyr Val Lys Val Tyr Leu Glu Ser Phe Cys Glu Asp Val Pro Ser 260 265 270 Gly Lys Leu Phe Met His Val Thr Leu Gly Ser Asp Val Glu Glu Asp 275 280 285 Leu Thr Met Thr Arg Asn Pro Gln Pro Phe Met Arg Pro His Glu Arg 290 295 300 Asn Gly Phe Thr Val Leu Cys Pro Lys Asn Met Ile Ile Lys Pro Gly 305 310 315

410-1PCTST25.txt

Lys Ile Ser His Ile Met Leu Asp Val Ala Phe Thr Ser His Glu His 325 330 335 Phe Gly Leu Leu Cys Pro Lys Ser Ile Pro Gly Leu Ser Ile Ser Gly 340 345 350 Asn Leu Leu Met Asn Gly Gln Gln Ile Phe Leu Glu Val Gln Ala Ile 355 360 365 Arg Glu Thr Val Glu Leu Arg Gln Tyr Asp Pro Val Ala Ala Leu Phe 370 380 Phe Phe Asp Ile Asp Leu Leu Gln Arg Gly Pro Gln Tyr Ser Glu 385 390 395 400 His Pro Thr Phe Thr Ser Gln Tyr Arg Ile Gln Gly Lys Leu Glu Tyr 405 410 415Arg His Thr Trp Asp Arg His Asp Glu Gly Ala Ala Gln Gly Asp Asp 420 430 Asp Val Trp Thr Ser Gly Ser Asp Ser Asp Glu Glu Leu Val Thr Thr 435 440 445 Glu Arg Lys Thr Pro Arg Val Thr Gly Gly Gly Ala Met Ala Gly Ala 450 455 460 Ser Thr Ser Ala Gly Arg Lys Arg Lys Ser Ala Ser Ser Ala Thr Ala 465 470 480 Cys Thr Ser Gly Val Met Thr Arg Gly Arg Leu Lys Ala Glu Ser Thr 485 490 495 Val Ala Pro Glu Glu Asp Thr Asp Glu Asp Ser Asp Asn Glu Ile His
500 510 Asn Pro Ala Val Phe Thr Trp Pro Pro Trp Gln Ala Gly Ile Leu Ala 515 520 Arg Asn Leu Val Pro Met Val Ala Thr Val Gln Gly Gln Asn Leu Lys 530 540 Tyr Gln Glu Phe Phe Trp Asp Ala Asn Asp Ile Tyr Arg Ile Phe Ala 545 550 555 560 Glu Leu Glu Gly Val Trp Gln Pro Ala Ala Gln Pro Lys Arg Arg Arg 565 570 575 His Arg Gln Asp Ala Leu Pro Gly Pro Cys Ile Ala Ser Thr Pro Lys 580 585 590

410-1PCTST25.txt

Lys His Arg Gly Gly Ser Gln Ser Lys Met Leu Ser Gly Val Gly 600 605

Phe Val Leu Gly Leu Leu Phe Leu Gly Ala Gly Leu Phe Ile Tyr Phe 610 620

Arg Asn Gln Lys Gly His Ser Gly Leu Gln Pro Arg Gly Phe Leu Ser 625 630 635

<210> 15

<211> 66 <212> PRT

<213> Homo sapiens

<400> 15

Pro Ser Ser Gln Pro Thr Ile Pro Ile Val Gly Ile Ile Ala Gly Leu 1 5 10 15

Val Leu Phe Gly Ala Val Ile Thr Gly Ala Val Val Ala Ala Val Met 20 25 30

Trp Arg Arg Lys Ser Ser Asp Arg Lys Gly Gly Ser Tyr Ser Gln Ala 35 40 45

Ala Ser Ser Asp Ser Ala Gln Gly Ser Asp Val Ser Leu Thr Ala Cys 50 60

Lys Val 65

<210> 16

<211> 24 <212> PRT

<213> Homo sapiens

<400> 16

Gly Ser Tyr Ser Gln Ala Ala Ser Ser Asp Ser Ala Gln Gly Ser Asp 1 10 15

Val Ser Leu Thr Ala Cys Lys Val 20

<210> 17

<211> 63

<212> PRT

<213> Homo sapiens

<400> 17

Pro Ser Ser Gln Ser Thr Val Pro Ile Val Gly Ile Val Ala Gly Leu

5 10 15

Ala Val Leu Ala Val Val Ile Gly Ala Val Val Ala Ala Val Met 20 25 30

PCT/EP2004/011512 WO 2005/038030

410-1PCTST25.txt

Cys Arg Arg Lys Ser Ser Gly Gly Lys Gly Gly Ser Tyr Ser Gln Ala 45

Ala Cys Ser Asp Ser Ala Gln Gly Ser Asp Val Ser Leu Thr Ala 50 60

<210>

18 21

<211> 21 <212> PRT

<213> Homo sapiens

<400>

Gly Ser Tyr Ser Gln Ala Ala Cys Ser Asp Ser Ala Gln Gly Ser Asp
10 15

Val Ser Leu Thr Ala

<210> 19

<211> 67 <212> PR

PRT

<213> Homo sapiens

<400> 19

Pro Ser Ser Gln Pro Thr Ile Pro Ile Val Gly Ile Val Ala Gly Leu
1 10 15

Ala Val Leu Ala Val Leu Gly Ala Met Val Ala Val Val 20 25 30

Met Cys Arg Arg Lys Ser Ser Gly Gly Lys Gly Gly Ser Cys Ser Gln 35 40 45

Ala Ala Ser Ser Asn Ser Ala Gln Gly Ser Asp Glu Ser Leu Ile Ala 50 60

Cys Lys Ala

<210> 20

<211> 14 <212> PRT

<213> Homo sapiens

<400>

Ser Ala Gln Gly Ser Asp Glu Ser Leu Ile Ala Cys Lys Ala 1 10

21 62 <210>

<211>

<212> PRT

<213> Homo sapiens

410-1PCTST25.txt

<400> 21

Pro Ala Ser Gln Pro Thr Ile Pro Ile Val Gly Ile Ile Ala Gly Leu
1 10 15

Val Leu Leu Gly Ser Val Val Ser Gly Ala Val Val Ala Ala Val Ile 20 25 30

Trp Arg Lys Lys Ser Ser Gly Gly Lys Gly Gly Ser Tyr Ser Lys Ala

Glu Trp Ser Asp Ser Ala Gln Gly Ser Glu Ser His Ser Leu 50 60

<210> 22

20 <211>

<212> PRT

<213> Homo sapiens

<400> 22

Gly Ser Tyr Ser Lys Ala Glu Trp Ser Asp Ser Ala Gln Gly Ser Glu
1 10 15

Ser His Ser Leu 20

<210> 23

<211> <212> 66 PRT

<213> Homo sapiens

<400> 23

Gln Ser Pro Gln Pro Thr Ile Pro Ile Val Gly Ile Val Ala Gly Leu
1 10 15

Val Val Leu Gly Ala Val Val Thr Gly Ala Val Val Ala Ala Val Met

Trp Arg Lys Lys Ser Ser Asp Arg Asn Arg Gly Ser Tyr Ser Gln Ala 45

Ala Val Thr Asp Ser Ala Gln Gly Ser Gly Val Ser Leu Thr Ala Asn 50 60

Lys Val 65

<210> 24 27

<211>

<212> PRT

<213> Homo sapiens

<400> 24

Arg Asn Arg Gly Ser Tyr Ser Gln Ala Ala Val Thr Asp Ser Ala Gln

```
410-1PCTST25.txt
                                                                15
Gly Ser Gly Val Ser Leu Thr Ala Asn Lys Val
20 25
<210> 25
<211> 37
<212> PRT
<213> Homo sapiens
<400> 25
Val Val Cys Ala Leu Gly Leu Thr Val Gly Leu Val Gly Ile Ile 1 10 15
Gly Thr Ile Phe Ile Ile Lys Gly Leu Arg Lys Ser Asn Ala Ala Glu
20 25 30
Arg Arg Gly Pro Leu
35
<210>
       26
<211>
<212> PRT
<213> Homo sapiens
<400> 26
Arg Lys Ser Asn Ala Ala Glu Arg Arg Gly Pro Leu
1 5 10
<210>
<211>
<212>
       27
38
       PRT
<213> Homo sapiens
<400> 27
Met Leu Ser Gly Val Gly Gly Phe Val Leu Gly Leu Leu Phe Leu Ala 1 5 10 15
Gly Leu Phe Ile Tyr Phe Arg Asn Gln Lys Gly His Ser Gly Leu Gln 20 25 30
Pro Arg Gly Phe Leu Ser 35
<210>
        28
<211>
<212>
       12
       PRT
       Homo sapiens
<213>
<400> 28
Gly His Ser Gly Leu Gln Pro Arg Gly Phe Leu Ser
1 10
<210> 29
```

```
410-1PCTST25.txt
<211> 37
<212> PRT
<213> Homo sapiens
<400> 29
Val Val Cys Ala Leu Gly Leu Ser Val Gly Leu Met Gly Ile Val Val 10 15
Gly Thr Val Phe Ile Ile Gln Gly Leu Arg Ser Val Gly Ala Ser Arg
His Gln Gly Pro Leu
35
<210>
        30
<211>
        10
<212>
        PRT
<213> Homo sapiens
<400> 30
Val Gly Ala Ser Arg His Gln Gly Pro Leu
1 5 10
<210>
<211>
<212>
        31
31
        PRT
<213> Homo sapiens
<400> 31
Met Leu Ser Gly Ile Gly Gly Phe Val Leu Gly Leu Ile Phe Leu Gly 1 10 15
Leu Gly Leu Ile Ile His His Arg Ser Gln Lys Gly Leu Leu His 20 25 30
<210> 32
<211> 8
<212> PRT
<213> Homo sapiens
<400> 32
Arg Ser Gln Lys Gly Leu Leu His
1
<210> 33
<211> 37
<212> PRT
<213> Homo sapiens
```

<400> 33

Val Leu Cys Ala Leu Gly Leu Val Leu Gly Leu Val Gly Ile Ile Val 10 15

Gly Thr Val Leu Ile Ile Lys Ser Leu Arg Ser Gly His Asp Pro Arg 20 25 30

410-1PCTST25.txt

```
Ala Gln Gly Thr Leu
35
<210>
       34
<211>
       12
<212> PRT
<213> Homo sapiens
<400> 34
Arg Ser Gly His Asp Pro Arg Ala Gln Gly Thr Leu
1 10
<210>
       35
33
<211> 33
<212> PRT
<213> Homo sapiens
<400> 35
Thr Leu Thr Gly Ala Gly Gly Phe Val Leu Gly Leu Ile Ile Cys Gly 10 15
Val Gly Ile Phe Met His Arg Arg Ser Lys Lys Val Gln Arg Gly Ser 20 25 30
Ala
<210> 36
<211> 9
<212> PRT
<213> Homo sapiens
<400> 36
Ser Lys Lys Val Gln Arg Gly Ser Ala
1 5
<210>
<211>
        37
26
<212>
        PRT
        Homo sapiens
<213>
<400> 37
Phe Ile Ile Leu Ala Val Ile Val Pro Leu Leu Leu Leu Ile Gly Leu 1 5 10 15
Ala Leu Trp Phe Arg Lys Arg Cys Phe Cys
<210> 38
<211> 6
<212> PRT
<213> Homo sapiens
 <400> 38
```

410-1PCTST25.txt

```
Arg Lys Arg Cys Phe Cys
1 5
<210> 39
<211> 30
<212> PRT
<213> Homo sapiens
<400> 39
Ile Val Leu Ala Ile Ile Val Pro Ser Leu Leu Leu Leu Leu Cys Leu
1 10 15
Ala Leu Trp Tyr Met Arg Arg Ser Tyr Gln Asn Ile Pro
20 25 30
<210> 40
<211> 9
<212> PRT
<213> Homo sapiens
<400> 40
Arg Arg Arg Ser Tyr Gln Asn Ile Pro
1 5
<210>
        41
<211>
        30
<212> PRT
<213> Homo sapiens
<400> 41
Trp Ile Ala Leu Val Val Ile Val Pro Leu Val Ile Leu Ile Val Leu
1 10 15
Val Leu Trp Phe Lys Lys His Cys Ser Tyr Gln Asp Ile Leu 20 25 30.
<210>
<211>
        42
10
<212> PRT
<213> Homo sapiens
<400> 42
Lys Lys His Cys Ser Tyr Gln Asp Ile Leu
1 5 10
<210>
        43
<211> 250
<212>
        PRT
<213> Homo sapiens
<400> 43
Met Ala Ala Gly Thr Ser Ser Tyr Trp Glu Asp Leu Arg Lys Gln Ala
1 10 15
```

410-1PCTST25.txt

Arg Gln Leu Glu Asn Glu Leu Asp Leu Lys Leu Val Ser Phe Ser Lys
20 25 30 Leu Cys Thr Ser Tyr Ser His Ser Ser Thr Arg Asp Gly Arg Arg Asp 45 Arg Tyr Ser Ser Asp Thr Thr Pro Leu Leu Asn Gly Ser Ser Gln Asp 50 60 Arg Met Phe Glu Thr Met Ala Ile Glu Ile Glu Gln Leu Leu Ala Arg 65 70 75 80 Leu Thr Gly Val Asn Asp Lys Met Ala Glu Tyr Thr Asn Ser Ala Gly 85 90 95 Val Pro Ser Leu Asn Ala Ala Leu Met His Thr Leu Gln Arg His Arg 100 105 110 Asp Ile Leu Gln Asp Tyr Thr His Glu Phe His Lys Thr Lys Ala Asn 115 120 125 Phe Met Ala Ile Arg Glu Arg Glu Asn Leu Met Gly Ser Val Arg Lys 130 140 Asp Ile Glu Ser Tyr Lys Ser Gly Ser Gly Val Asn Asn Arg Arg Thr 145 150 155 160 Glu Leu Phe Leu Lys Glu His Asp His Leu Arg Asn Ser Asp Arg Leu 165 170 175 Ile Glu Glu Thr Ile Ser Ile Ala Met Ala Thr Lys Glu Asn Met Thr 180 185 190 Ser Gln Arg Gly Met Leu Lys Ser Ile His Ser Lys Met Asn Thr Leu 195 200 205 Ala Asn Arg Phe Pro Ala Val Asn Ser Leu Ile Gln Arg Ile Asn Leu 210 215 220 Arg Lys Arg Arg Asp Ser Leu Ile Leu Gly Gly Val Ile Gly Ile Cys 235 240 Thr Ile Leu Leu Leu Leu Tyr Ala Phe His 245

272

<400> 44

Met Gly Ala Ser Leu Thr Ser Pro Gly Thr Gln Glu Lys Leu Ile Arg

<210> 44 <211> 128

<212> PRT <213> Homo sapiens

15

410-1PCTST25.txt 10 5

Asp Phe Asp Glu Lys Gln Gln Glu Ala Asn Lys Met Leu Thr Gln Met 20 25 30

Glu Glu Glu Leu His Tyr Ala Pro Val Ser Phe His Asn Pro Met Met 35 40 45

Ser Lys Leu Gln Asp Tyr Gln Lys Asp Leu Ala Gln Phe His Leu Glu 50 60

Ala Arg Thr Met Pro Gly Asp Arg Gly Asp Met Lys Tyr Gly Thr Tyr 65 70 75 80

Ala Val Glu Asn Glu His Met Asn Arg Leu Gln Ser Gln Arg Ala Met 85 90 95

Leu Leu Gln Gly Thr Lys Ser Leu Gly Arg Ala Thr Gln Glu Thr Asp 100 105 110

Gln Ile Gly Ser Glu Ile Ser Glu Glu Leu Gly Asn Gln Arg Asp Gln 115 120 125

45 212 <210>

1

Homo sapiens

<400> 45

Met Asp Pro Leu Phe Gln Gln Thr His Lys Gln Val His Glu Ile Gln 10 15

Ser Cys Met Gly Arg Leu Glu Thr Ala Asp Lys Gln Ser Val His Ile 20 25 30

Val Glu Asn Glu Ile Gln Ala Ser Ile Asp Gln Ile Phe Ser Arg Leu 35 40 45

Glu Arg Leu Glu Ile Leu Ser Ser Lys Glu Pro Pro Asn Lys Arg Gln
50 60

Asn Ala Arg Leu Arg Val Asp Gln Leu Lys Tyr Asp Val Gln His Leu 65 70 75 80

Gln Thr Ala Leu Arg Asn Phe Gln His Arg Arg His Ala Arg Glu Gln 85 90 95

Gln Glu Arg Gln Arg Glu Glu Leu Leu Ser Arg Thr Phe Thr Thr Asn 100 105 110

Asp Ser Asp Thr Thr Ile Pro Met Asp Glu Ser Leu Gln Phe Asn Ser 115 120 125

410-1PCTST25.txt

Ser Leu Gln Lys Val His Asn Gly Met Asp Asp Leu Ile Leu Asp Gly 130 140 His Asn Ile Leu Asp Gly Leu Arg Thr Gln Arg Leu Thr Leu Lys Gly 145 150 155 160 Thr Gln Lys Lys Ile Leu Asp Ile Ala Asn Met Leu Gly Leu Ser Asn 165 170 175 Thr Val Met Arg Leu Ile Glu Lys Arg Ala Phe Gln Asp Lys Tyr Phe 180 185 190 Met Ile Gly Gly Met Leu Leu Thr Cys Val Val Met Phe Leu Val Val 195 200 205 Gln Tyr Leu Thr 210

<210> <211> <212>

Homo sapiens

<400> 46

Met Ser Val Pro Gly Pro Ser Ser Pro Asp Gly Ala Leu Thr Arg Pro 1 10 15

Pro Tyr Cys Leu Glu Ala Gly Glu Pro Thr Pro Gly Leu Ser Asp Thr 20 25 30

Ser Pro Asp Glu Gly Leu Ile Glu Asp Leu Thr Ile Glu Asp Lys Ala 35 40 45

Val Glu Gln Leu Ala Glu Gly Leu Leu Ser His Tyr Leu Pro Asp Leu 50 55 60

Gln Arg Ser Lys Gln Ala Leu Gln Glu Leu Thr Gln Asn Gln Val Val 65 70 75 80

Leu Leu Asp Thr Leu Glu Gln Glu Ile Ser Lys Phe Lys Glu Cys His

Ser Met Leu Asp Ile Asn Ala Leu Phe Ala Glu Ala Lys His Tyr His 100 105 110

Ala Lys Leu Val Asn Ile Arg Lys Glu Met Leu Met Leu His Glu Lys 115 120 125

Thr Ser Lys Leu Lys Lys Arg Ala Leu Lys Leu Gln Gln Lys Arg Gln 130 140

410-1PCTST25.txt

Lys Glu Glu Leu Glu Arg Glu Gln Gln Arg Glu Lys Glu Phe Glu Arg 145 150 155 160

Glu Lys Gln Leu Thr Ala Arg Pro Ala Lys Arg Met 165 170

47

301

<210> <211> <212> PRT

Homo sapiens

<400> 47

Met Ser Cys Arg Asp Arg Thr Gln Glu Phe Leu Ser Ala Cys Lys Ser 1 10 15

Leu Gln Thr Arg Gln Asn Gly Ile Gln Thr Asn Lys Pro Ala Leu Arg 20 25 30

Ala Val Arg Gln Arg Ser Glu Phe Thr Leu Met Ala Lys Arg Ile Gly 35 40 45

Lys Asp Leu Ser Asn Thr Phe Ala Lys Leu Glu Lys Leu Thr Ile Leu 50 60

Ala Lys Arg Lys Ser Leu Phe Asp Asp Lys Ala Val Glu Ile Glu Glu 65 70 75 80

Leu Thr Tyr Ile Ile Lys Gln Asp Île Asn Ser Leu Asn Lys Gln Ile 85 90 95

Ala Gln Leu Gln Asp Phe Val Arg Ala Lys Gly Ser Gln Ser Gly Arg 100 105 110

His Leu Gln Thr His Ser Asn Thr Ile Val Val Ser Leu Gln Ser Lys 115 120 125

Leu Ala Ser Met Ser Asn Asp Phe Lys Ser Val Leu Glu Val Arg Thr 130 140

Glu Asn Leu Lys Gln Gln Arg Ser Arg Arg Glu Gln Phe Ser Arg Ala 145 150 155 160

Pro Val Ser Ala Leu Pro Leu Ala Pro Asn His Leu Gly Gly Ala 165 170 175

Val Val Leu Gly Ala Glu Ser His Ala Ser Lys Asp Val Ala Ile Asp 180 185 190

Met Met Asp Ser Arg Thr Ser Gln Gln Leu Gln Leu Ile Asp Glu Gln
195 200

PCT/EP2004/011512 WO 2005/038030

410-1PCTST25.txt
Asp Ser Tyr Ile Gln Ser Arg Ala Asp Thr Met Gln Asn Ile Glu Ser
210 215 220

Thr Ile Val Glu Leu Gly Ser Ile Phe Gln Gln Leu Ala His Met Val 225 230 235

Lys Glu Gln Glu Glu Thr Ile Gln Arg Ile Asp Glu Asn Val Leu Gly 245 250 255

Ala Gln Leu Asp Val Glu Ala Ala His Ser Glu Ile Leu Lys Tyr Phe 260 265 270

Gln Ser Val Thr Ser Asn Arg Trp Leu Met Val Lys Ile Phe Leu Ile 275 280 285

Leu Ile Val Phe Phe Ile Ile Phe Val Val Phe Leu Ala 290 295 300

<210> <211>

255

<213> Homo sapiens

<400> 48

Met Ser Met Glu Asp Pro Phe Phe Val Val Lys Gly Glu Val Gln Lys 1 10 15

Ala Val Asn Thr Ala Gln Gly Leu Phe Gln Arg Trp Thr Glu Leu Leu 20 25 30

Gln Asp Pro Ser Thr Ala Thr Arg Glu Glu Ile Asp Trp Thr Thr Asn 40 45

Glu Leu Arg Asn Asn Leu Arg Ser Ile Glu Trp Asp Leu Glu Asp Leu 50 60

Asp Glu Thr Ile Ser Ile Val Glu Ala Asn Pro Arg Lys Phe Asn Leu 70 75 80

Asp Ala Thr Glu Leu Ser Ile Arg Lys Ala Phe Ile Thr Ser Thr Arg 85 90 95

Gln Val Val Arg Asp Met Lys Asp Gln Met Ser Thr Ser Ser Val Gln 100 105 110

Ala Leu Ala Glu Arg Lys Asn Arg Gln Ala Leu Leu Gly Asp Ser Gly 125

Ser Gln Asn Trp Ser Thr Gly Thr Thr Asp Lys Tyr Gly Arg Leu Asp 130 140

Arg Glu Leu Gln Arg Ala Asn Ser His Phe Ile Glu Glu Gln Gln Ala

410-1PCTST25.txt 155 145 150 160

Gln Gln Gln Leu Ile Val Glu Gln Gln Asp Glu Gln Leu Glu Leu Val 165 170 175

Ser Gly Ser Ile Gly Val Leu Lys Asn Met Ser Gln Arg Ile Gly Gly 180 185 190

Glu Leu Glu Glu Gln Ala Val Met Leu Glu Asp Phe Ser His Glu Leu 195 200 205

Glu Ser Thr Gln Ser Arg Leu Asp Asn Val Met Lys Lys Leu Ala Lys 210 220

Val Ser His Met Thr Ser Asp Arg Gln Trp Cys Ala Ile Ala Ile 225 230 235 240

Leu Phe Ala Val Leu Leu Val Val Leu Ile Leu Phe Leu Val Leu 245 250 255

<210> <211> <212> 49

261

PRT Homo sapiens

<400> 49

Met Ser Tyr Thr Pro Gly Val Gly Gly Asp Pro Ala Gln Leu Ala Gln 1 10 15

Arg Ile Ser Ser Asn Ile Gln Lys Ile Thr Gln Cys Ser Val Glu Ile 20 25 30

Gln Arg Thr Leu Asn Gln Leu Gly Thr Pro Gln Asp Ser Pro Glu Leu 35 40

Arg Gln Gln Leu Gln Gln Lys Gln Gln Tyr Thr Asn Gln Leu Ala Lys
50 60

Glu Thr Asp Lys Tyr Ile Lys Glu Phe Gly Ser Leu Pro Thr Thr Pro 65 70 75 80

Ser Glu Gln Arg Gln Arg Lys Ile Gln Lys Asp Arg Leu Val Ala Glu

Phe Thr Thr Ser Leu Thr Asn Phe Gln Lys Val Gln Arg Gln Ala Ala 100 105 110

Glu Arg Glu Lys Glu Phe Val Ala Arg Val Arg Ala Ser Ser Arg Val 115 120 125

Ser Gly Ser Phe Pro Glu Asp Ser Ser Lys Glu Arg Asn Leu Val Ser 130 135

410-1PCTST25.txt

Trp Glu Ser Gln Thr Gln Pro Gln Val Gln Val Gln Asp Glu Glu Ile 145 150 155 160

Thr Glu Asp Asp Leu Arg Leu Ile His Glu Arg Glu Ser Ser Ile Arg 165 170 175

Gln Leu Glu Ala Asp Ile Met Asp Ile Asn Glu Ile Phe Lys Asp Leu 180 185 190

Gly Met Met Ile His Glu Gln Gly Asp Val Ile Asp Ser Ile Glu Ala 195 200

Asn Val Glu Asn Ala Glu Val His Val Gln Gln Ala Asn Gln Gln Leu 210 215 220

Ser Arg Ala Ala Asp Tyr Gln Arg Lys Ser Arg Lys Thr Leu Cys Ile 225 230 235 240

Ile Ile Leu Ile Leu Val Ile Gly Val Ala Ile Ile Ser Leu Ile Ile 245 250 255

Trp Gly Leu Asn His 260

50 236

<210> <211> <212> <213> PRT Homo sapiens

<400> 50

Met Ala Pro Asp Pro Trp Phe Ser Thr Tyr Asp Ser Thr Cys Gln Ile 1 10 15

Ala Gln Glu Ile Ala Glu Lys Ile Gln Gln Arg Asn Gln Tyr Glu Arg 20 25 30

Lys Gly Glu Lys Ala Pro Lys Leu Thr Val Thr Ile Arg Ala Leu Leu 35 40 45

Gln Asn Leu Lys Glu Lys Ile Ala Leu Leu Lys Asp Leu Leu Leu Arg 50 55

Ala Val Ser Thr His Gln Ile Thr Gln Leu Glu Gly Asp Arg Arg Gln 65 70 75 80

Asn Leu Leu Asp Asp Leu Val Thr Arg Glu Arg Leu Leu Leu Ala Ser 85 90 95

Phe Lys Asn Glu Gly Ala Glu Pro Asp Leu Ile Arg Ser Ser Leu Met 100 105 110

410-1PCTST25.txt

Ser Glu Glu Ala Lys Arg Gly Ala Pro Asn Pro Trp Leu Phe Glu Glu 115 125

Pro Glu Glu Thr Arg Gly Leu Gly Phe Asp Glu Ile Arg Gln Gln Gln 130 140

Gln Lys Ile Ile Gln Glu Gln Asp Ala Gly Leu Asp Ala Leu Ser Ser 145 150 155 160

Ile Ile Ser Arg Gln Lys Gln Met Gly Gln Glu Ile Gly Asn Glu Leu 165 170 175

Asp Glu Gln Asn Glu Ile Ile Asp Asp Leu Ala Asn Leu Val Glu Asn 180 185 190

Thr Asp Glu Lys Leu Arg Asn Glu Thr Arg Arg Val Asn Met Val Asp 195 200 205

Arg Lys Ser Ala Ser Cys Gly Met Ile Met Val Ile Leu Leu Leu Leu 210 220

Val Ala Ile Val Val Ala Val Trp Pro Thr Asn 225 230 235

51 200

PRT Homo sapiens

<400>

Met Ser Leu Glu Asp Pro Phe Phe Val Val Arg Gly Glu Val Gln Lys
5 10 15

Ala Val Asn Thr Ala Arg Gly Leu Tyr Gln Arg Trp Cys Glu Leu Leu 20 25 30

Gln Glu Ser Ala Ala Val Gly Arg Glu Glu Leu Asp Trp Thr Thr Asn 35 40 45

Glu Leu Arg Asn Gly Leu Arg Ser Ile Glu Trp Asp Leu Glu Asp Leu 50 60

Glu Glu Thr Ile Gly Ile Val Glu Ala Asn Pro Gly Lys Pro Ala Ala 65 70 75 80

Gln Lys Ser Pro Ser Asp Leu Leu Asp Ala Ser Ala Val Ser Ala Thr 85 90 95

Ser Arg Tyr Ile Glu Glu Gln Gln Ala Thr Gln Gln Leu Ile Met Asp 100 105 110

Glu Gln Asp Gln Gln Leu Glu Met Val Ser Gly Ser Ile Gln Val Leu 115 120 125

Lys His Met Ser Gly Arg Val Gly Glu Glu Leu Asp Glu Gln Gly Ile 130 140

Met Leu Asp Ala Phe Ala Gln Glu Met Asp His Thr Gln Ser Arg Met 145 150 155 160

Asp Gly Val Leu Arg Lys Leu Ala Lys Val Ser His Met Thr Ser Asp 165 170 175

Arg Arg Gln Trp Cys Ala Ile Ala Val Leu Val Gly Val Leu Leu Leu 180 190

Val Leu Ile Leu Leu Phe Ser Leu 195 200

<210> 52

<211> 249 <212> PRT

<213> Homo sapiens

<400> 52

Met Ser Leu Glu Asp Pro Phe Phe Val Val Arg Gly Glu Val Gln Lys 1 10 15

Ala Val Asn Thr Ala Arg Gly Leu Tyr Gln Arg Trp Cys Glu Leu Leu 20 25 30

Gln Glu Ser Ala Ala Val Gly Arg Glu Glu Leu Asp Trp Thr Thr Asn 35 40 45

Glu Leu Arg Asn Gly Leu Arg Ser Ile Glu Trp Asp Leu Glu Asp Leu 50 60

Glu Glu Thr Ile Gly Ile Val Glu Ala Asn Pro Gly Lys Phe Lys Leu 65 70 75 80

Pro Ala Gly Asp Leu Gln Glu Arg Lys Val Phe Val Glu Arg Met Arg 85 90 95

Glu Ala Val Gln Glu Met Lys Asp His Met Val Ser Pro Thr Ala Val 100 105 110

Ala Phe Leu Glu Arg Asn Asn Arg Glu Ile Leu Ala Gly Lys Pro Ala 115 120 125

Ala Gln Lys Ser Pro Ser Asp Leu Leu Asp Ala Ser Ala Val Ser Ala 130 140

Thr Ser Arg Tyr Ile Glu Glu Gln Gln Ala Thr Gln Gln Leu Ile Met

410-1PCTST25.txt 145 150 155

160

Asp Glu Gln Asp Gln Gln Leu Glu Met Val Ser Gly Ser Ile Gln Val 165 170 175

Leu Lys His Met Ser Gly Arg Val Gly Glu Glu Leu Asp Glu Gln Gly 180 185

Ile Met Leu Asp Ala Phe Ala Gln Glu Met Asp His Thr Gln Ser Arg 195 200 205

Met Asp Gly Val Leu Arg Lys Leu Ala Lys Val Ser His Met Thr Ser 210 220

Asp Arg Arg Gln Trp Cys Ala Ile Ala Val Leu Val Gly Val Leu Leu 225 230 235 240

Leu Val Leu Ile Leu Leu Phe Ser Leu 245

<210> 53

<211> 287

<212> PRT

<213> Homo sapiens

<400> 53

Met Lys Asp Arg Leu Ala Glu Leu Leu Asp Leu Ser Lys Gln Tyr Asp 10 10 15

Gln Gln Phe Pro Asp Gly Asp Asp Glu Phe Asp Ser Pro His Glu Asp 20 25 30

Ile Val Phe Glu Thr Asp His Ile Leu Glu Ser Leu Tyr Arg Asp Ile 35 40 45

Arg Asp Ile Gln Asp Glu Asn Gln Leu Leu Val Ala Asp Val Lys Arg 50 60

Leu Gly Lys Gln Asn Ala Arg Phe Leu Thr Ser Met Arg Arg Leu Ser 65 70 75 80

Ser Ile Lys Arg Asp Thr Asn Ser Ile Ala Lys Ala Phe Arg Ala Arg 85 90 95

Gly Glu Val Ile His Cys Lys Leu Arg Ala Met Lys Glu Leu Ser Glu 100 105 110

Ala Ala Glu Ala Gln His Gly Pro His Ser Ala Val Ala Arg Ile Ser 115 120 125

Arg Ala Gln Tyr Asn Ala Leu Thr Leu Thr Phe Gln Arg Ala Met His 130 135 140

410-1PCTST25.txt

Asp Tyr Asn Gln Ala Glu Met Lys Gln Arg Asp Asn Cys Lys Ile Arg 145 150 155 Ile Gln Arg Gln Leu Glu Ile Met Gly Lys Glu Val Ser Gly Asp Gln 165 170 175 Ile Glu Asp Met Phe Glu Gln Gly Lys Trp Asp Val Phe Ser Glu Asn 180 185 190 Leu Leu Ala Asp Val Lys Gly Arg Gly Pro Pro Thr Thr Arg Ser Arg 195 200 205 Ala Ala Thr Ala Asn Cys Cys Ala Trp Arg Ala Ala Ile Arg Asp Val 210 215 220 His Glu Leu Phe Leu Gln Met Ala Val Leu Val Glu Lys Gln Ala Asp 225 230 235 240 Thr Leu Asn Val Ile Glu Leu Asn Val Gln Lys Thr Val Asp Tyr Thr 245 250 255 Gly Gln Ala Lys Ala Gln Val Arg Lys Ala Val Gln Tyr Glu Glu Lys 260 265 270 Asn Pro Cys Arg Thr Leu Cys Cys Phe Cys Cys Pro Cys Leu Lys 285

Met Ser Tyr Gly Pro Leu Asp Met Tyr Arg Asn Pro Gly Pro Ser Gly 10 15

Pro Gln Leu Arg Asp Phe Ser Ser Ile Ile Gln Thr Cys.Ser Gly Asn 20 25 30

Ile Gln Arg Ile Ser Gln Ala Thr Ala Gln Ile Lys Asn Leu Met Ser

Gln Leu Gly Thr Lys Gln Asp Ser Ser Lys Leu Gln Glu Asn Leu Gln 50 60

Gln Leu Gln His Ser Thr Asn Gln Leu Ala Lys Glu Thr Asn Glu Leu 65 70 75 80

Leu Lys Glu Leu Gly Ser Leu Pro Leu Pro Leu Ser Thr Ser Glu Gln 85 90 95

<210> <211> <212>

Homo sapiens

<400>

410-1PCTST25.txt

Arg Gln Gln Arg Leu Gln Lys Glu Arg Leu Met Asn Asp Phe Ser Ala 100 105 110

Ala Leu Asn Asn Phe Gln Ala Val Gln Arg Arg Val Ser Glu Lys Glu 115 120 125

Lys Glu Ser Ile Ala Arg Ala Arg Ala Gly Ser Arg Leu Ser Ala Glu 130 135 140

Glu Arg Gln Arg Glu Glu Gln Leu Val Ser Phe Asp Ser His Glu Glu 145 150 155 160

Trp Asn Gln Met Gln Ser Gln Glu Asp Glu Val Ala Ile Thr Glu Gln
165 170 175

Asp Leu Glu Leu Ile Lys Glu Arg Glu Thr Ala Ile Arg Gln Leu Glu 180 185 190

Ala Asp Ile Leu Asp Val Asn Gln Ile Phe Lys Asp Leu Ala Met Met 195 200 205

His Asp Gln Gly Asp Leu Ile Asp Ser Ile Glu Ala Asn Val Glu 210 215 220

Ser Ser Glu Val His Val Glu Arg Ala Thr Glu Gln Leu Gln Arg Ala 225 230 235 240

Ala Tyr Tyr Gln Lys Lys Ser Arg Lys Lys Met Cys Ile Leu Val Leu 245 250 255

Val Leu Ser Val Ile Ile Leu Ile Leu Gly Leu Ile Ile Trp Leu Val 260 265 270

Tyr Lys Thr Lys 275

<210> <211> <212> 55 302

Homo sapiens

<400>

Met Ser Glu Asp Glu Glu Lys Val Lys Leu Arg Arg Leu Glu Pro Ala 1 10 15

Ile Gln Lys Phe Ile Lys Ile Val Ile Pro Thr Asn Leu Glu Arg Leu 20 25 30

Arg Lys His Gln Ile Asn Ile Glu Lys Tyr Gln Arg Cys Arg Ile Trp 35 40 45

410-1PCTST25.txt Asp Lys Leu His Glu Glu His Ile Asn Ala Gly Arg Thr Val Gln Gln 50 55 60 Leu Arg Ser Asn Ile Arg Glu Ile Glu Lys Leu Cys Leu Lys Val Arg 65 70 75 80 Lys Asp Asp Leu Val Leu Leu Lys Arg Met Ile Asp Pro Val Lys Glu 85 90 95 Glu Ala Ser Ala Ala Thr Ala Glu Phe Leu Gln Leu His Leu Glu Ser 100 105 110 Val Glu Glu Leu Lys Lys Gln Phe Asn Asp Glu Glu Thr Leu Leu Gln 125 Pro Pro Leu Thr Arg Ser Met Thr Val Gly Gly Ala Phe His Thr Thr 130 140 Glu Ala Glu Ala Ser Ser Gln Ser Leu Thr Gln Ile Tyr Ala Leu Pro 145 150 155 160 Glu Ile Pro Gln Asp Gln Asn Ala Ala Glu Ser Arg Glu Thr Leu Glu 165 170 175 Ala Asp Leu Ile Glu Leu Ser Gln Leu Val Thr Asp Phe Ser Leu Leu 180 185 190 Val Asn Ser Gln Gln Glu Lys Ile Asp Ser Ile Ala Asp His Val Asn 195 200 205 Ser Ala Ala Val Asn Val Glu Glu Gly Thr Lys Asn Leu Gly Lys Ala 210 215 220 Ala Lys Tyr Lys Leu Ala Ala Leu Pro Val Ala Gly Ala Leu Ile Gly 225 230 235 Gly Met Val Gly Gly Pro Ile Gly Leu Leu Ala Cys Phe Lys Val Ala 245 250 255 Gly Ile Ala Ala Leu Gly Gly Gly Val Leu Gly Phe Thr Gly Gly 260 265 270 Lys Leu Ile Gln Arg Lys Lys Gln Lys Met Met Glu Lys Leu Thr Ser 275 280 285 Ser Cys Pro Asp Leu Pro Ser Gln Thr Asp Lys Lys Cys Ser 290 295 300

<210> 56

<211> 116

<212> PRT

<213> Homo sapiens

410-1PCTST25.txt

<400>

Met Ser Ala Thr Ala Ala Thr Ala Pro Pro Ala Ala Pro Ala Gly Glu
10 15

Gly Gly Pro Pro Ala Pro Pro Pro Asn Leu Thr Ser Asn Arg Arg Leu 20 25 30

Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met Arg Val
35 40 45

Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Asp 50 60

Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu Thr Ser 65 70 75 80

Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Leu Lys Met Met 85 90 95

Ile Ile Leu Gly Val Ile Cys Ala Ile Ile Leu Ile Ile Ile Val $100 \hspace{1cm} 105 \hspace{1cm} 110$

Tyr Phe Ser Ser 115

<210>

100 PRT

<212> <213> Homo sapiens

<400>

Met Ser Thr Gly Pro Thr Ala Ala Thr Gly Ser Asn Arg Arg Leu Gln
1 10 15

Gln Thr Gln Asn Gln Val Asp Glu Val Val Asp Ile Met Arg Val Asn 20 25 30

Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu Asp Asp

Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu Thr Ser Ala 50 60

Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys Lys Met Trp Ala 65 70 75 80

Ile Gly Ile Thr Val Leu Val Ile Phe Ile Ile Ile Ile Ile Val Trp

Val Val Ser Ser 100

410-1PCTST25.txt

<210> 58 <211> 141 <212> PRT <213> Homo sapiens

<400> 58

Met Pro Pro Lys Phe Lys Arg His Leu Asn Asp As \dot{p} Asp Val Thr Gly 10 15

Ser Val Lys Ser Glu Arg Arg Asn Leu Leu Glu Asp Asp Ser Asp Glu 20 25 30

Glu Glu Asp Phe Phe Leu Arg Gly Pro Ser Gly Pro Arg Phe Gly Pro 35 40 45

Arg Asn Asp Lys Ile Lys His Val Gln Asn Gln Val Asp Glu Val Ile 50 60

Asp Val Met Pro Glu Asn Ile Thr Lys Val Ile Glu Arg Gly Glu Arg 65 70 75 80

Leu Asp Glu Leu Gln Asp Lys Ser Glu Ser Leu Ser Asp Asn Ala Thr 85 90 95

Ala Phe Ser Asn Arg Ser Lys Gln Leu Arg Arg Gln Met Trp Trp Arg 100 105 110

Gly Cys Lys Ile Lys Ala Ile Met Ala Leu Val Ala Ala Ile Leu Leu 115 120 125

Leu Val Ile Ile Ile Leu Ile Val Met Lys Tyr Arg Thr 130 135 140

<210> 59

<211> 220

<212> PRT

<213> Homo sapiens

<400> 59

Met Ala Ile Leu Phe Ala Val Val Ala Arg Gly Thr Thr Ile Leu Ala 1 10 15

Lys His Ala Trp Cys Gly Gly Asn Phe Leu Glu Val Thr Glu Gln Ile 20 25 30

Leu Ala Lys Ile Pro Ser Glu Asn Asn Lys Leu Thr Tyr Ser His Gly 35 40 45

Asn Tyr Leu Phe His Tyr Ile Cys Gln Asp Arg Ile Val Tyr Leu Cys 50 60

Ile Thr Asp Asp Asp Phe Glu Arg Ser Arg Ala Phe Asn Phe Leu Asn Glu Ile Lys Lys Arg Phe Gln Thr Thr Tyr Gly Ser Arg Ala Gln Thr Ala Leu Pro Tyr Ala Met Asn Ser Glu Phe Ser Ser Val Leu Ala Ala

Gln Leu Lys His His Ser Glu Asn Lys Gly Leu Asp Lys Val Met Glu 115 120 125

Thr Gln Ala Gln Val Asp Glu Leu Lys Gly Ile Met Val Arg Asn Ile 130 135 140

Asp Leu Val Ala Gln Arg Gly Glu Arg Leu Glu Leu Leu Ile Asp Lys 145 150 155 160

Thr Glu Asn Leu Val Asp Ser Ser Val Thr Phe Lys Thr Thr Ser Arg 165 170 175

Asn Leu Ala Arg Ala Met Cys Met Lys Asn Leu Lys Leu Thr Ile Ile 180 185 190

Ile Ile Ile Val Ser Ile Val Phe Ile Tyr Ile Ile Val Ser Pro Leu 195 200 205

Cys Gly Gly Phe Thr Trp Pro Ser Cys Val Lys Lys 210 220

<210> 60 <211> 100

<212> PRT <213> Homo sapiens

<400> 60

Met Glu Glu Ala Ser Glu Gly Gly Gly Asn Asp Arg Val Arg Asn Leu

5 10 15

Gln Ser Glu Val Glu Gly Val Lys Asn Ile Met Thr Gln Asn Val Glu 20 25 30

Arg Ile Leu Ala Arg Gly Glu Asn Leu Glu His Leu Arg Asn Lys Thr 35 40 45

Glu Asp Leu Glu Ala Thr Ser Glu His Phe Lys Thr Thr Ser Gln Lys 50 60

Val Ala Arg Lys Phe Trp Trp Lys Asn Val Lys Met Ile Val Leu Ile 65 70 75 80

Cys Val Ile Val Phe Ile Ile Ile Leu Phe Ile Val Leu Phe Ala Thr

95

410-1PCTST25.txt 85 90

Gly Ala Phe Ser

<210>

61 203 <211>

PRT

Homo sapiens

<400> 61

Met Ser Ser Asp Phe Glu Gly Tyr Glu Gln Asp Phe Ala Val Leu Thr 1 10 15

Ala Glu Ile Thr Ser Lys Ile Ala Arg Val Pro Arg Leu Pro Pro Asp 20 25 30

Glu Lys Lys Gln Met Val Ala Asn Val Glu Lys Gln Leu Glu Glu Ala 35 40 45

Lys Glu Leu Leu Glu Gln Met Asp Leu Glu Val Arg Glu Ile Pro Pro 50 60

Gln Ser Arg Gly Met Tyr Ser Asn Arg Met Arg Ser Tyr Lys Gln Glu 65 70 75 80

Met Gly Lys Leu Glu Thr Asp Phe Lys Arg Ser Arg Ile Ala Tyr Ser

Asp Glu Val Arg Asn Glu Leu Leu Gly Asp Asp Gly Asn Ser Ser Glu 100 105 110

Asn Gln Arg Ala His Leu Leu Asp Asn Thr Glu Arg Leu Glu Arg Ser 115 120 125

Ser Arg Arg Leu Glu Ala Gly Tyr Gln Ile Ala Val Glu Thr Glu Gln 130 140

Ile Gly Gln Glu Met Leu Glu Asn Leu Ser His Asp Arg Glu Lys Ile 145 150 155 160

Gln Arg Ala Arg Glu Arg Leu Arg Glu Thr Asp Ala Asn Leu Gly Lys 165 170 175

Ser Ser Arg Ile Leu Thr Gly Met Leu Arg Arg Gly Cys Ser Val Lys 180 185 190

Lys Gln Cys Asn Leu Ser Leu Ala Pro Lys Ala 195 200

<210> <211> 269

410-1PCTST25.txt

<212> PRT <213> Homo sapiens

<400> 62

Met Arg Asp Arg Leu Pro Asp Leu Thr Ala Cys Arg Lys Asn Asp Asp 1 10 15

Gly Asp Thr Val Val Val Val Glu Lys Asp His Phe Met Asp Asp Phe 20 25 30

Phe His Gln Val Glu Glu Ile Arg Asn Ser Ile Asp Lys Ile Thr Gln 35 4O 45

Tyr Val Glu Glu Val Lys Lys Asn His Ser Ile Ile Leu Ser Ala Pro 50 60

Asn Pro Glu Gly Lys Ile Lys Glu Glu Leu Glu Asp Leu Asn Lys Glu 65 70 75 80

Ile Lys Lys Thr Ala Asn Lys Ile Arg Ala Lys Leu Lys Ala Ile Glu 85 90 95

Gln Ser Phe Asp Gln Asp Glu Ser Gly Asn Arg Thr Ser Val Asp Leu 100 105 110

Arg Ile Arg Arg Thr Gln His Ser Val Leu Ser Arg Lys Phe Val Glu 115 120 125

Ala Met Ala Glu Tyr Asn Glu Ala Gln Thr Leu Phe Arg Glu Arg Ser 130 135 140

Lys Gly Arg Ile Gln Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr 145 150 155 160

Asp Asp Glu Leu Glu Glu Met Leu Glu Ser Gly Lys Pro Ser Ile Phe 165 170 175

Thr Ser Asp Ile Ile Ser Asp Ser Gln Ile Thr Arg Gln Ala Leu Asn 180 185 190

Glu Ile Glu Ser Arg His Lys Asp Ile Met Lys Leu Glu Thr Ser Ile 195 200 205

Arg Glu Leu His Glu Met Phe Met Asp Met Ala Met Phe Val Glu Thr 210 215 220

Gln Gly Glu Met Ile Asn Asn Ile Glu Arg Asn Val Met Asn Ala Thr 225 230 235 240

Asp Tyr Val Glu His Ala Lys Glu Glu Thr Lys Lys Ala Ile Lys Tyr 245 250 . 255

410-1PCTST25.txt

Gln Ser Lys Ala Arg Arg Val Ser Leu Ala Ser Lys Asn 260 265

<210> <211> <212> 63 222

PRT

<213> Homo sapiens

<400> 63

Gln Met Ala Ala Leu Ala Pro Leu Pro Pro Leu Pro Ala Gln Phe Lys 1 10 15

Ser Ile Gln His His Leu Arg Thr Ala Gln Glu His Asp Lys Arg Asp 20 25 30

Pro Val Val Ala Tyr Tyr Cys Arg Leu Tyr Ala Met Gln Thr Gly Met 35 40 45

Lys Ile Asp Ser Lys Thr Pro Glu Cys Arg Lys Phe Leu Ser Lys Leu 50 60

Met Asp Gln Leu Glu Ala Leu Lys Lys Gln Leu Gly Asp Asn Glu Ala 65 70 75 80

Ile Thr Gln Glu Ile Val Gly Cys Ala Leu Glu Asn Tyr Ala Leu Lys
85 90 95

Met Phe Leu Tyr Ala Asp Asn Glu Asp Arg Ala Gly Arg Phe His Lys 100 105 110

Asn Met Ile Lys Ser Phe Tyr Thr Ala Ser Leu Leu Ile Asp Val Ile 115 120 125

Thr Val Phe Gly Glu Leu Thr Asp Glu Asn Val Lys His Arg Lys Tyr 130 140

Ala Arg Trp Lys Ala Thr Tyr Ile His Asn Cys Leu Lys Glu Trp Gly 145 150 155 160

Asp Ser Ser Ser Arg Pro Cys Trp Glu Leu Lys Lys Ile Met Ile Leu 165 170 175

Lys Lys Met Lys Met Leu Glu Gln Pro Leu Cys Pro Leu Ser Gln Leu 180 185 190

Ser His His Leu Gln Leu Met Thr Gln Gln His Ala Ile Arg Gln 195 200 205

Leu Tyr Trp Asn Thr Asp Ser Ser Gly Cys Thr Arg Ser Ser 210 215 220

410-1PCTST25.txt

<210> 64 <211> 1527 <212> DNA <213> Homo sapiens	
<400> 64 atggaacgaa ggcgtttgtg gggttccatt cagagccgat acatcagcat gagtgtgtgg	60
acaagcccac ggagacttgt ggagctggca gggcagagcc tgctgaagga tgaggccctg	120
gccattgccg ccctggagtt gctgcccagg gagctcttcc cgccactctt catggcagcc	180
tttgacggga gacacagcca gaccctgaag gcaatggtgc aggcctggcc cttcacctgc	240
ctccctctgg gagtgctgat gaagggacaa catcttcacc tggagacctt caaagctgtg	300
cttgatggac ttgatgtgct ccttgcccag gaggttcgcc ccaggaggtg gaaacttcaa	360
gtgctggatt tacggaagaa ctctcatcag gacttctgga ctgtatggtc tggaaacagg	420
gccagtctgt actcatttcc agagccagaa gcagctcagc ccatgacaaa gaagcgaaaa	480
gtagatggtt tgagcacaga ggcagagcag cccttcattc cagtagaggt gctcgtagac	540
ctgttcctca aggaaggtgc ctgtgatgaa ttgttctcct acctcattga gaaagtgaag	600
cgaaagaaaa atgtactacg cctgtgctgt aagaagctga agatttttgc aatgcccatg	660
caggatatca agatgatcct gaaaatggtg cagctggact ctattgaaga tttggaagtg	720
acttgtacct ggaagctacc caccttggcg aaattttctc cttacctggg ccagatgatt	780
aatctgcgta gactcctcct ctcccacatc catgcatctt cctacatttc cccggagaag	840
gaagagcagt atatcgccca gttcacctct cagttcctca gtctgcagtg cctgcaggct	900
ctctatgtgg actctttatt tttccttaga ggccgcctgg atcagttgct caggcacgtg	960
atgaacccct tggaaaccct ctcaataact aactgccggc tttcggaagg ggatgtgatg	1020
catctgtccc agagtcccag cgtcagtcag ctaagtgtcc tgagtctaag tggggtcatg	1080
ctgaccgatg taagtcccga gcccctccaa gctctgctgg agagagcctc tgccaccctc	1140
caggacctgg tctttgatga gtgtgggatc acggatgatc agctccttgc cctcctgcct	1200
tccctgagcc actgctccca gcttacaacc ttaagcttct acgggaattc catctccata	1260
tctgccttgc agagtctcct gcagcacctc atcgggctga gcaatctgac ccacgtgctg	1320
tatcctgtcc ccctggagag ttatgaggac atccatggta ccctccacct ggagaggctt	1380
gcctatctgc atgccaggct cagggagttg ctgtgtgagt tggggcggcc cagcatggtc	1440
tggcttagtg ccaacccctg tcctcactgt ggggacagaa ccttctatga cccggagccc	1500
atcctgtgcc cctgtttcat gcctaac	1527
<210> 65 <211> 1296 <212> DNA <213> Homo sapiens <400> 65	
atgggctccg acgtgcggga cctgaacgcg ctgctgcccg ccgtcccctc cctgggtggc	60

410-1PCTST25.txt ggcggcggct gtgccctgcc tgtgagcggc gcggcgcagt gggcgccggt gctggacttt 120 gcgccccgg gcgcttcggc ttacgggtcg ttgggcggcc ccgcgccgcc accggctccg 180 ccgccacccc cgccgccgcc gcctcactcc ttcatcaaac aggagccgag ctggggcggc 240 300 gcggagccgc acgaggagca gtgcctgagc gccttcactg tccacttttc cggccagttc 360 actggcacag ccggagcctg tcgctacggg cccttcggtc ctcctccgcc cagccaggcg 420 tcatccggcc aggccaggat gtttcctaac gcgccctacc tgcccagctg cctcgagagc 480 cagcccgcta ttcgcaatca gggttacagc acggtcacct tcgacgggac gcccagctac 540 ggtcacacgc cctcgcacca tgcggcgcag ttccccaacc actcattcaa gcatgaggat cccatgggcc agcagggctc gctgggtgag cagcagtact cggtgccgcc cccggtctat 600 ggctgccaca ccccaccga cagctgcacc ggcagccagg ctttgctgct gaggacgccc 660 720 tacagcagtg acaatttata ccaaatgaca tcccagcttg aatgcatgac ctggaatcag atgaacttag gagccacctt aaagggccac agcacagggt acgagagcga taaccacaca 780 acgcccatcc tctgcggagc ccaatacaga atacacacgc acggtgtctt cagaggcatt 840 900 caggatgtgc gacgtgtgcc tggagtagcc ccgactcttg tacggtcggc atctgagacc agtgagaaac gccccttcat gtgtgcttac ccaggctgca ataagagata ttttaagctg 960 1020 tcccacttac agatgcacag caggaagcac actggtgaga aaccatacca gtgtgacttc aaggactgtg aacgaaggtt ttctcgttca gaccagctca aaagacacca aaggagacat 1080 1140 acaggtgtga aaccattcca gtgtaaaact tgtcagcgaa agttctcccg gtccgaccac ctgaagaccc acaccaggac tcatacaggt aaaacaagtg aaaagccctt cagctgtcgg 1200 tggccaagtt gtcagaaaaa gtttgcccgg tcagatgaat tagtccgcca tcacaacatg 1260 1296 catcagagaa acatgaccaa actccagctg gcgctt <210> 66 1179 <211> DNA Homo sapiens <400> 60 atggaggagc cgcagtcaga tcctagcgtc gagccccctc tgagtcagga aacattttca 120 gacctatgga aactacttcc tgaaaacaac gttctgtccc ccttgccgtc ccaagcaatg 180 gatgatttga tgctgtcccc ggacgatatt gaacaatggt tcactgaaga cccaggtcca 240 gatgaagctc ccagaatgcc agaggctgct ccccgcgtgg cccctgcacc agcagctcct 300 acaccggcgg cccctgcacc agccccctcc tggcccctgt catcttctgt cccttcccag aaaacctacc agggcagcta cggtttccgt ctgggcttct tgcattctgg gacagccaag 360 tctgtgactt gcacgtactc ccctgccctc aacaagatgt tttgccaact ggccaagacc 420 tgccctgtgc agctgtgggt tgattccaca ccccgcccg gcacccgcgt ccgcgccatg 480 gccatctaca agcagtcaca gcacatgacg gaggttgtga ggcgctgccc ccaccatgag 540 cgctgctcag atagcgatgg tctggcccct cctcagcatc ttatccgagt ggaaggaaat 600

410-1PCTST25.txt

ttgcgtgtgg	agtatttgga	tgacagaaac	acttttcgac	atagtgtggt	ggtgccctat	660
gagccgcctg	aggttggctc	tgactgtacc	accatccact	acaactacat	gtgtaacagt	720
tcctgcatgg	gcggcatgaa	ccggaggccc	atcctcacca	tcatcacact	ggaagactcc	780
agtggtaatc	tactgggacg	gaacagcttt	gaggtgcgtg	tttgtgcctg	tcctgggaga	840
gaccggcgca	cagaggaaga	gaatctccgc	aagaaagggg	agcctcacca	cgagctgccc	900
ccagggagca	ctaagcgagc	actgcccaac	aacaccagct	cctctcccca	gccaaagaag	960
aaaccactgg	atggagaata	tttcaccctt	cagatccgtg	ggcgtgagcg	cttcgagatg	1020
ttccgagagc	tgaatgaggc	cttggaactc	aaggatgccc	aggctgggaa	ggagccaggg	1080
gggagcaggg	ctcactccag	ccacctgaag	tccaaaaagg	gtcagtctac	ctcccgccat	1140
aaaaactca	tgttcaagac	agaagggcct	gactcagac			1179

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/62 C07K CO7K14/705 CO7K14/47 A61K38/17 A61K31/7088 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C07K IPC 7 A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. NGUYEN P ET AL: "Antigen-specific Α targeting of CD8+ T cells with receptor-modified T lymphocytes." GENE THERAPY, vol. 10, no. 7, April 2003 (2003-04), pages 594-604, XP002314391 ISSN: 0969-7128 the whole document X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but *A* document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of malling of the international search report 21 January 2005 14/02/2005 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

3

Schneider, P

		He 1/EP 2004/011512				
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.						
Calegory	Citation of document, with indication, where appropriate, of the relevant passages	Helevani to dain No.				
A	MARQUES ERNESTO T A JR ET AL: "HIV-1 p55Gag encoded in the lysosome-associated membrane protein-1 as a DNA plasmid vaccine chimera is highly expressed, traffics to the major histocompatibility class II compartment, and elicits enhanced immune responses." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 278, no. 39, 26 September 2003 (2003-09-26), pages 37926-37936, XP002314392 ISSN: 0021-9258 the whole document					
A	WETTSTEIN D A ET AL: "EXPRESSION OF A CLASS II MAJOR HISTOCOMPATIBILITY COMPLEX MHC HETERODIMER IN A LIPID-LINKED FORM WITH ENHANCED PEPTIDE-SOLUBLE MHC COMPLEX FORMATION AT LOW PH" JOURNAL OF EXPERIMENTAL MEDICINE, vol. 174, no. 1, 1991, pages 219-228, XP002314393 ISSN: 0022-1007 cited in the application the whole document					
A	WO 02/080851 A (AUGUST THOMAS; MARQUES ERNESTO JR; UNIV JOHNS HOPKINS) 17 October 2002 (2002-10-17) the whole document					
A	US 2002/151707 A1 (DESHPANDE SHRINKANT ET AL) 17 October 2002 (2002-10-17) the whole document					
Ρ,Α	MARGALIT A ET AL: "Chimeric beta2 microglobulin/CD3zeta polypeptides expressed in T cells convert MHC class I peptide ligands into T cell activation receptors: A potential tool for specific targeting of pathogenic CD8+ T cells" INTERNATIONAL IMMUNOLOGY, OXFORD UNIVERSITY PRESS, GB, vol. 15, no. 11, November 2003 (2003-11), pages 1379-1387, XP009039662 ISSN: 0953-8178 the whole document					
P,A	WO 2004/015395 A (NAT JEWISH MEDICAL AND RES CT) 19 February 2004 (2004-02-19) the whole document					

3

Information on patent family members

International Application No EP2004/011512

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 02080851	Α	17-10-2002	CA EP WO	2446462 A1 1385538 A2 02080851 A2	17-10-2002 04-02-2004 17-10-2002
US 2002151707	A1	17-10-2002	AU CA EP JP WO US	6331696 A 2224205 A1 0833930 A2 11507238 T 9640944 A2 6060309 A	30-12-1996 19-12-1996 08-04-1998 29-06-1999 19-12-1996 09-05-2000
WO 2004015395	A	19-02-2004	WO US	2004015395 A2 2004110253 A1	19-02-2004 10-06-2004

Internationales Aktenzeichen T/EP2004/011512 . KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 C12N15/62 C07K14/705 C07K14/47 A61K38/17 A61K31/7088 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C07K A61K C12N Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Α NGUYEN P ET AL: "Antigen-specific targeting of CD8+ T cells with receptor-modified T lymphocytes." GENE THERAPY, Bd. 10, Nr. 7, April 2003 (2003-04), Seiten 594-604, XP002314391 ISSN: 0969-7128 das ganze Dokument Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie X entnehmen 'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist * Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erfinderischer Täligkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichung en dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausoeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts

14/02/2005

Name und Postanschrift der Internationalen Recherchenbehörde

21. Januar 2005

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Schneider, P

		FI/EFZU	
C.(Fortsetz Kategorie*	zung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, sowelt erforderlich unter Angabe der in Betracht komm	enden Teile	Betr. Anspruch Nr.
A	MARQUES ERNESTO T A JR ET AL: "HIV-1 p55Gag encoded in the lysosome-associated membrane protein-1 as a DNA plasmid vaccine chimera is highly expressed, traffics to the major histocompatibility class II compartment, and elicits enhanced immune responses." JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 278, Nr. 39, 26. September 2003 (2003-09-26), Seiten 37926-37936, XP002314392 ISSN: 0021-9258 das ganze Dokument		
Α	WETTSTEIN D A ET AL: "EXPRESSION OF A CLASS II MAJOR HISTOCOMPATIBILITY COMPLEX MHC HETERODIMER IN A LIPID-LINKED FORM WITH ENHANCED PEPTIDE-SOLUBLE MHC COMPLEX FORMATION AT LOW PH" JOURNAL OF EXPERIMENTAL MEDICINE, Bd. 174, Nr. 1, 1991, Seiten 219-228, XP002314393 ISSN: 0022-1007 in der Anmeldung erwähnt das ganze Dokument		
A	WO 02/080851 A (AUGUST THOMAS; MARQUES ERNESTO JR; UNIV JOHNS HOPKINS) 17. Oktober 2002 (2002-10-17) das ganze Dokument		
A	US 2002/151707 A1 (DESHPANDE SHRINKANT ET AL) 17. Oktober 2002 (2002-10-17) das ganze Dokument		
P,A	MARGALIT A ET AL: "Chimeric beta2 microglobulin/CD3zeta polypeptides expressed in T cells convert MHC class I peptide ligands into T cell activation receptors: A potential tool for specific targeting of pathogenic CD8+ T cells" INTERNATIONAL IMMUNOLOGY, OXFORD UNIVERSITY PRESS, GB, Bd. 15, Nr. 11, November 2003 (2003-11), Seiten 1379-1387, XP009039662 ISSN: 0953-8178 das ganze Dokument		
P,A	WO 2004/015395 A (NAT JEWISH MEDICAL AND RES CT) 19. Februar 2004 (2004-02-19) das ganze Dokument		

im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
WO	02080851	A	17-10-2002	CA EP WO	2446462 A1 1385538 A2 02080851 A2	
US	2002151707	A1	17-10-2002	AU CA EP JP WO US	6331696 A 2224205 A1 0833930 A2 11507238 T 9640944 A2 6060309 A	29-06-1999
WO	2004015395	Α	19-02-2004	WO US	2004015395 A2 2004110253 A1	19-02-2004 10-06-2004