

EM506 - RESISTÊNCIA DOS MATERIAIS II 1º Semestre de 2014 – Turma B PROVA I - 28/04/2014

ROVA I - 28/04/2014

Professor: José Ricardo P. Mendes

NOME DO ALUNO:	RA:	Assinatura:	

INSTRUÇÕES:

- 1. A prova é sem consulta;
- 2. A duração da prova é de 1h e 50min;
- 3. Qualquer dado que o aluno julgar necessário e que não tenha sido fornecido deve ser assumido;
- 4. Preencha com suas respostas o Quadro de Respostas (no verso)
- 5. Devolver a folha de questões e as resoluções (papel almaço);

QUESTÕES:

- **1.** (1,0) Determinar:
 - a) As tensões principais;
 - b) A tensão de cisalhamento máxima no plano;
 - c) A tensão normal média.

Justificar sua resposta, no papel almaço, utilizando o Círculo de Mohr.

Figura da questão 1.

- **2.** (1,5) Um vaso de pressão, de raio interno r e espessura de parede t, é fabricado a partir de um tubo soldado com ângulo de hélice φ e equipado com duas placas de extremidade conforme a figura. Se a pressão interna do vaso é p, determine:
 - a) A tensão normal perpendicular à solda;
 - b) A tensão de cisalhamento paralela a solda

Dados: r = 4 ft; $t = \frac{1}{2}$ in; $\varphi = 38^{\circ}$ e p = 200 psi

Figura da questão 2.

- **3.** (2,5) Fecha-se um vaso de pressão colando uma chapa circular na extremidade, conforme mostrado na figura. Supondo que o vaso suporte uma pressão interna de 750 kPa. Determinar:
 - a) A tensão de cisalhamento média na cola;
 - b) O estado de tensão na parede.

kip: quilolibra ksi: quilolibra por polegada quadrada

 $\tau = Tr/J$ $J = \pi/2(c_o^4 - c_i^4)$ 1ft = 12in = 0,3048m

11b=4,448N

- **4.** (2,5) Um tubo de parede fina, com raio r = 4 in e espessura $t = \frac{1}{4}$ in, é fabricado com uma liga fundida, de alumínio, com limite de resistência à tração e compressão de 36 ksi e 84 ksi, respectivamente. Determine o maior valor admissível do torque que pode ser aplicado ao tubo, de acordo com as duas teorias de falha por fratura, utilizando um fator de segurança de 1,5.
- 5. (2,5) Durante a perfuração de um poço de petróleo, um determinado ponto da coluna de perfuração, ponto A, está sob um carregamento combinado devido a uma força de tração $P = 70 \ kips$ e a um torque $T = 6 \ kip.ft$. A coluna de perfuração, no ponto A, possui um diâmetro externo de $4,0 \ in$ e um diâmetro interno de $3,640 \ in$. Determine a tensão cisalhante máxima no ponto A na superfície da coluna de perfuração. Informações adicionais: a tensão radial no ponto A é zero e o limite de escoamento em tração desta coluna de perfuração é $95 \ ksi$.

Quadro de Respostas

(PREENCHIMENTO OBRIGATÓRIO)						
Questão 1:	(a) σ ₁	ksi ksi		ksi aksi		
Questão 2:	(a)	ksi	(b)	_ ksi		
Questão 3:	(a)	MPa	(b) σ ₁	_MPa (Tangencial) _MPa (Longitudinal)		
Questão 4:		_kip.in	kip.in			
Questão 5:	ks	ï				