Chapitre 1

Calcul matriciel

1.1 Matrices

Une matrice est un tableau rectangulaire qui permet d'emmagasiner de l'information.

Aliment Magasin	M_1	M_2	M_3	M_4	M_5
A ₁ Fromage cheddar (par kg)	6,40	5,96	5,98	6,58	6,05
A_2 Crème glacée (par ℓ)	0,96	1,13	1,10	1,05	1,06
A ₃ Céréales préparées (par kg)	2,30	2,21	2,30	2,30	2,34
A_4 Jus de tomate (par ℓ)	0,87	0,80	0,83	0,81	0,85
A ₅ Pommes McIntosh (par kg)	1,20	1,17	1,00	0,93	0,96
A ₆ Laitue Iceberg (par unité)	0,74	0,72	0,62	0,60	0,84
A_7 Boeuf haché (par kg)	5,38	4,63	5,38	5,29	4,80
A ₈ Jambon cuit (par kg)	7,29	7,90	6,43	5,46	6,27

On utilise habituellement une notation à double indice pour s'y retrouver parmi les éléments d'une matrice. Disons A une matrice de format $m \times n$, c.-à-d. ayant m lignes et n colonnes

$$A = [a_{ij}]$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Les opérations effectuées avec les matrices peuvent être vues comme des moyens de transformer cette information.

Il y a trois opérations de base avec les matrices numériques :

- ADDITION DE MATRICES : soient $A = [a_{ij}], B = [b_{ij}],$ de format $m \times n$, alors on a $A + B = [c_{ij}],$ où $c_{ij} = a_{ij} + b_{ij}.$
- MULTIPLICATION PAR UN SCALAIRE : soient $A = [a_{ij}]$ et r un scalaire 1 , alors on a $rA = [c_{ij}]$, où $c_{ij} = ra_{ij}$.
- PRODUIT DE MATRICES : soit $A = [a_{ij}]$, de format $m \times n$, et soit $B = [b_{ij}]$, de format $n \times p$, alors on a $AB = [c_{ij}]$, de format $m \times p$, où $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$.

 $^{1.\ \,}$ Un scalaire est un nombre. Dans ce cours, les scalaires seront presque toujours des nombres réels.

1.1. MATRICES 3

Exemple 1.1.1 Soit $A = \begin{bmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{bmatrix}$, de format 3×3 , et

 $B = \begin{bmatrix} x \\ y' \\ z \end{bmatrix}$, de format 3×1 , alors on obtient la matrice AB, de format 3×1 ,

$$AB = \begin{bmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{bmatrix} \begin{bmatrix} x \\ y' \\ z \end{bmatrix}$$
$$= \begin{bmatrix} ax + by + cz \\ a'x + b'y + c'z' \\ a''x + b''y + c''z \end{bmatrix}$$

Exemple 1.1.2

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 7 & 7 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 4 & 6 \end{bmatrix}$$

N.B. L'exemple précédent indique que le produit matriciel n'est pas commutatif.

1.2 Produit de matrices

Définition 1.2.1

1) MATRICE LIGNE d'ordre n (vecteur ligne)

$$X = \left[\begin{array}{cccc} x_1 & x_2 & \dots & x_n \end{array} \right]$$

2) MATRICE COLONNE d'ordre n (vecteur colonne)

$$Y = \left[egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array}
ight]$$

3) LE PRODUIT SCALAIRE d'une matrice ligne X d'ordre n par une matrice colonne Y d'ordre n, noté XY ou $X\cdot Y$, est le nombre réel

$$XY = x_1y_1 + x_2y_2 + \ldots + x_ny_n$$

N.B. Notation : $XY = \sum_{k=1}^{n} x_k y_k$.

Exemple 1.2.2 Soient
$$X = \begin{bmatrix} 2 & 4 & 7 \end{bmatrix}, Y = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}$$
, on obtient

$$XY = \begin{bmatrix} 2 & 4 & 7 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}$$
$$= 2 \cdot 3 + 4 \cdot 0 + 7 \cdot (-2)$$
$$= -8$$

On peut formuler le produit matriciel à l'aide du produit scalaire.

Lemme 1.2.3 Soient $A = [a_{ij}]$, de format $m \times n$, et $B = [b_{ij}]$, de format $n \times p$. Alors le produit AB est la matrice $C = [c_{ij}]$ de format $m \times p$, où c_{ij} est le produit scalaire de la i-ème ligne de A avec la j-ème colonne de B:

$$c_{ij} = [\text{i-ème ligne de } A] \begin{bmatrix} j\text{-ème colonne} \\ de \\ B \end{bmatrix}$$

$$= \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix}$$

$$= \sum_{k=1}^{n} a_{ik} b_{kj}$$

Le concept de combinaison linéaire est fondamental. Nous le voyons ici pour les matrices.

Définition 1.2.4 Soient A_1, \ldots, A_k des matrices de même format. Prendre une **combinaison linéaire** de ces matrices, c'est choisir des scalaires c_1, \ldots, c_k et effectuer la somme

$$c_1A_1 + \ldots + c_kA_k$$

Notation : $\sum_{i=1}^{k} c_k A_k$.

Exemple 1.2.5 Soient
$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, A_5 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, A_6 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$$
 On a

que toute matrice de format 3×2 est une combinaison linéaire de

$$A_1, A_2, A_3, A_4, A_5, A_6$$
. En effet, disons $A = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$, on a

$$A = aA_1 + bA_2 + cA_3 + dA_4 + eA_5 + fA_6$$

c.-à-d.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} + e \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} + f \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Exemple 1.2.6 On peut voir une combinaison linéaire dans un produit scalaire :

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{bmatrix} = 1 \cdot 6 + 2 \cdot 7 + 3 \cdot 8 + 4 \cdot 9 + 5 \cdot 10 = 130$$

Le produit matriciel est très lié aux combinaisons linéaires. On peut le voir d'abord dans les systèmes d'équations linéaires.

Exemple 1.2.7 Considérons le système

$$X = ax + by + cz$$

$$Y = a'x + b'y + c'z$$

$$Z = a''x + b''y + c''z$$

qu'on peut exprimer sous forme matricielle

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ a'x + b'y + c'z \\ a''x + b''y + c''z \end{bmatrix} = \begin{bmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{bmatrix} \begin{bmatrix} x \\ y' \\ z \end{bmatrix} (1.1)$$

Notons qu'on a

$$\begin{bmatrix} ax + by + cz \\ a'x + b'y + c'z \\ a''x + b''y + c''z \end{bmatrix} = \begin{bmatrix} ax \\ a'x \\ a''x \end{bmatrix} + \begin{bmatrix} by \\ b'y \\ b''y \end{bmatrix} + \begin{bmatrix} cz \\ c'z \\ c''z \end{bmatrix}$$
$$= x \begin{bmatrix} a \\ a' \\ a'' \end{bmatrix} + y \begin{bmatrix} b \\ b' \\ b'' \end{bmatrix} + z \begin{bmatrix} c \\ c' \\ c'' \end{bmatrix}$$

Ainsi, la relation (1.1) peut être formulée de la façon suivante, qui met en évidence une combinasion linéaire :

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = x \begin{bmatrix} a \\ a' \\ a'' \end{bmatrix} + y \begin{bmatrix} b \\ b' \\ b'' \end{bmatrix} + z \begin{bmatrix} c \\ c' \\ c'' \end{bmatrix}$$

On peut ensuite voir le lien entre le produit matriciel et les combinaisons linéaires de façon plus générale à l'aide des matrices partitionnées. La technique des matrices partitionnées aura pour nous un intérêt plutôt théorique pour nous aider à raisonner sur les matrices.

Définition 1.2.8 Une sous-matrice d'une matrice A est une matrice obtenue de A en enlevant un certain nombre de lignes et de colonnes de A.

N.B. A est une sous-matrice de A.

Exemple 1.2.9 Soit

$$A = \left[\begin{array}{rrrr} 2 & -1 & -2 & 4 \\ 21 & -2 & 40 & 5 \\ 1 & 0 & 0 & 3 \end{array} \right]$$

En enlevant la 2e ligne et la 4e colonne on obtient

$$\left[\begin{array}{ccc} 2 & -1 & -2 \\ 1 & 0 & 0 \end{array}\right]$$

qui est une sous-matrice de A. En enlevant la 1re ligne, la 3e ligne et la 3e colonne de A on obtient

$$\begin{bmatrix} 21 & -2 & 5 \end{bmatrix}$$

qui est une autre sous-matrice de A.

Définition 1.2.10 Partitionner une matrice, c'est la subdiviser en sous-matrices à l'aide de traits horizontaux et verticaux de façon à obtenir une « matrice de matrices ».

Exemple 1.2.11 Soit

$$A = \begin{bmatrix} 2 & 7 & 8 & -9 \\ 11 & 21 & -5 & 0 \\ 8 & 4 & 2 & 7 \\ -15 & 47 & 55 & 99 \end{bmatrix}$$

On peut partitionner A de la façon suivante

$$\begin{bmatrix} 2 & 7 & 8 & -9 \\ 11 & 21 & -5 & 0 \\ \hline 8 & 4 & 2 & 7 \\ -15 & 47 & 55 & 99 \end{bmatrix}$$

qu'on peut identifier avec la matrice de matrices suivante

$$\begin{bmatrix} 2 & 7 \\ 11 & 21 \end{bmatrix} & \begin{bmatrix} 8 \\ -5 \end{bmatrix} & \begin{bmatrix} -9 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 8 & 4 \\ -15 & 47 \end{bmatrix} & \begin{bmatrix} 2 \\ 55 \end{bmatrix} & \begin{bmatrix} 7 \\ 99 \end{bmatrix} \end{bmatrix}$$

1.2. PRODUIT DE MATRICES

11

N.B. ► Il est parfois utile de considérer une matrice partitionnée en elle-même:

$\lceil 2 \rceil$	7	8	-9
11	21	-5	0
8	4	2	7
$\lfloor -15 \rfloor$	47	55	99

$$\begin{bmatrix}
7 & 8 & | -9 \\
21 & | -5 & | 0 \\
4 & 2 & | 7 \\
5 & | 47 & | 55 & | 99
\end{bmatrix}$$

$$\begin{bmatrix}
[2] & [7] & [8] & [-9] \\
[11] & [21] & [-5] & [0] \\
[8] & [4] & [2] & [7] \\
[-15] & [47] & [55] & [99]
\end{bmatrix}$$

▶ Technique de matrices partitionnées pour multiplier deux matrices.

Considérons

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 3 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 2 & 2 & 3 \end{bmatrix}, AB = \begin{bmatrix} 6 & 5 & 3 & 6 \\ 6 & 5 & 3 & 6 \\ 5 & 1 & 2 & 1 \end{bmatrix}$$

Considérons les partitions suivantes :

$$A: \left[\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right], B: \left[\begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right]$$
$$\left[\begin{bmatrix} 1 & 2 & 2 \end{bmatrix} & \begin{bmatrix} 3 \end{bmatrix} \right]$$

Considérons

$$\begin{bmatrix} \begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} & \begin{bmatrix} 3 \end{bmatrix} \end{bmatrix} =$$

$$\begin{bmatrix} \begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} \\ \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 3 & 1 \\ 5 & 3 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} + \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix}$$

$$\begin{bmatrix}
6 & 5 & 3 \\
6 & 5 & 3
\end{bmatrix}
\begin{bmatrix}
6 \\
6
\end{bmatrix}$$

$$\begin{bmatrix}
5 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
1
\end{bmatrix}$$

Or,

$$AB = \begin{bmatrix} 6 & 5 & 3 & 6 \\ 6 & 5 & 3 & 6 \\ 5 & 1 & 2 & 1 \end{bmatrix} \quad (!)$$

On peut maintenant mettre en évidence un lien étroit entre le produit matriciel et les combinaisons linéaires. Ce lien nous sera très utile.

Soit $A = [a_{ij}]$, de format $m \times n$, et $B = [b_{ij}]$, de format $n \times p$. Partitionnons A en elle-même et B en ses lignes :

$$B = \begin{bmatrix} \frac{b_{11} & \dots & b_{1p}}{b_{21} & \dots & b_{2p}} \\ \vdots & & \vdots \\ \hline b_{n1} & \dots & b_{np} \end{bmatrix} = \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_n \end{bmatrix}$$

de sorte que A peut être vue comme une matrice $m \times n$ de matrices 1×1 et B peut être vue comme une matrice $n \times 1$ de matrice lignes $1 \times n$. On effectue le produit AB en utilisant ces partitions (les formats des partitions étant compatibles) et on obtient

$$AB = \begin{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} & \dots & \begin{bmatrix} a_{1n} \\ a_{2n} \end{bmatrix} \\ \vdots & & \vdots \\ \begin{bmatrix} a_{m1} \end{bmatrix} & \dots & \begin{bmatrix} a_{mn} \end{bmatrix} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_n \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}L_1 + a_{12}L_2 + \dots + a_{1n}L_n \\ a_{21}L_1 + a_{22}L_2 + \dots + a_{1n}L_n \\ \vdots \\ a_{m1}L_1 + a_{m2}L_2 + \dots + a_{mn}L_n \end{bmatrix}$$

Ainsi on a

la *i*-e ligne de
$$AB = a_{i1}L_1 + a_{i2}L_2 + \ldots + a_{in}L_n$$

Proposition 1.2.12 Chaque ligne du produit matriciel AB est une combinaison linéaire des lignes de B où les scalaires utilisés sont les éléments de la ligne correspondante de A.

N.B. Chaque colonne du produit matriciel AB est une combinaison linéaire des colonnes de A où les scalaires utilisés sont les éléments de la colonne de B correspondante. (exercice)

1.3 Matrices particulières

Quelques types de matrices ont des propriétés remarquables.

▶ matrices nulles :

$$\mathbf{0}_{m\times n} = \left[\begin{array}{ccc} 0 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{array} \right]$$

► matrices (carrées) identité :

$$I_n = I_{n imes n} = \left[egin{array}{cccc} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ dots & \ddots & & dots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{array}
ight]$$

► matrices (carrées) diagonales :

$$\begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & a_{(n-1),(n-1)} & 0 \\ 0 & 0 & \dots & 0 & a_{nn} \end{bmatrix}$$

▶ matrices (carrées) triangulaires supérieures : $a_{ij} = 0$ quand i > j,

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & a_{(n-1),(n-1)} & a_{(n-1),n} \\ 0 & 0 & \dots & 0 & a_{nn} \end{bmatrix}$$

1.3. MATRICES PARTICULIÈRES

▶ matrices (carrées) triangulaires inférieures : $a_{ij} = 0$ quand i < j,

17

$$\begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots \\ a_{(n-1),1} & a_{(n-1),2} & \dots & a_{(n-1),(n-1)} & 0 \\ a_{n1} & a_{n2} & \dots & a_{(n-1),n} & a_{nn} \end{bmatrix}$$

▶ transposée d'une matrice : la transposée d'une matrice A de format $m \times n$, notée A^T , est la matrice de format $n \times m$ obtenue de A en interchangeant les lignes et les colonnes de $A: A = [a_{ij}], A^T = [b_{ij}], b_{ij} = a_{ji}$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 7 & 9 & 10 & -3 \\ -1 & 4 & 5 & 0 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & 7 & -1 \\ 2 & 9 & 4 \\ 3 & 10 & 5 \\ 4 & -3 & 0 \end{bmatrix}$$

 \blacktriangleright matrices (carrées) symétriques : $A=A^T$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 0 \\ 3 & 0 & 4 \end{bmatrix} = A^T$$

	/		newe /	iui./	/	/ /	/ /	Janie /	/ /	/ /	/ /	/	10/	10/	mg/
	* A		newes Sing	ituju ses	THE MAN TO SERVE	. / 27	Mon	Mon.	Oues Comp	o di	Sept &	Shey	3000	ST S	VIIICA
Amos	0	388	727	1530	497	874	362	600	843	1128	1495	745	934	707	238
Chibougamau	388	0	363	1039*	725	407	640	700	515	608*	906	724	617	574	626
Chicoutimi	727	363	0	649*	662	217	693	464	211	264*	543	451	313	367	964
Gaspé	1530	1039*	649*	0	1124	999	1169	930	700	431	567*	915	818	831	1605
Hull	497	725	662	1124	0	482	208	207	451	736	1096	347	525	331	479
La Tuque	874	407	217	999	482	0	513	294	242	601	760	318	344	167	969
Mont-Laurier	362	640	693	1169	208	513	0	238	482	767*	1134	384	572	345	533
Montréal	600	700	464	930	207	294	238	0	253	539*	904	147	334	142	675
Québec	843	515	211	700	451	242	482	253	0	312	652	240	102	135	918
Rimouski	1128	608*	264*	431	736	601	767	539	312	0	325*	527	387	442	1203
Sept-Îles	1495	906	543	567*	1096	760	1134	904	652	325*	0	886	754	779	1579
Sherbrooke	745	724	451	915	347	318	384	147	240	527	886	0	158	158	816
St-Georges	934	617	313	818	525	344	572	334	102	387	754	158	0	233	1009
Trois-Rivières	707	574	367	831	331	167	345	142	135	442	779*	158	233	0	799
Ville-Marie	238	626	964	1605	479	969	533	675	918	1203	1579	816	1009	799	0

Tableau 1.5. Distances routières en kilomètres

1.3. MATRICES PARTICULIÈRES

19

lacktriangle matrices (carrées) idempotentes : $A^2=A$

$$A = \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right]$$

▶ matrices (carrées) nilpotentes (d'indice $k, k \geq 1$) : $A \neq \mathbf{0}_{n \times n}, A^k = \mathbf{0}_{n \times n}$ et $A^i \neq \mathbf{0}_{n \times n}, 0 < i < k$.

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 est nilpotente d'indice 2.

$$A = \begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$$
 est nilpotente d'indice 2.

 \blacktriangleright matrices (carrées) involutives : $A^2 = I_n$

$$A = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

1.4 Matrices inversibles

Définition 1.4.1 Soit une matrice carrée A de format $n \times n$. On dit que A est **inversible** si il existe au moins une matrice carrée B de même format telle que $AB = I_n$ et $BA = I_n$.

N.B. Si A est inversible, il y a une seule matrice B telle que $AB = I_n$ et $BA = I_n$, et ce B est appelée l'inverse de A, noté A^{-1} . En effet, disons B, C tels que $AB = I_n$ et $BA = I_n$ et $AC = I_n$ et $CA = I_n$, alors on obtient $B = BI_n = B(AC) = (BA)C = I_nC = C$.

L'intérêt des matrices inversibles est de faciliter les calculs algébriques. Par exemple, dans un système d'équations linéaires sous forme matricielle,

$$AX = K$$

si A est une matrice inversible on obtient

$$A^{-1}AX = A^{-1}K$$
$$I_nX = A^{-1}K$$
$$X = A^{-1}K$$

Il y a une seule solution possible et on a une expression algébrique directe qui donne la solution. Malheureusement, le calcul de A^{-1} à partir de A est la plupart du temps « long », même pour une machine (relativement).