Phase-Structure Grammar

HW 5 Language and Grammar

- 1. What is the Backus-Naur form of the grammar described as follows:
 - [1] a sentence is made up of a noun phrase followed by a verb phrase or a noun phrase followed by a verb phrase followed by a noun phrase.

แก้วทอง

- [2] a **noun phrase** is made up of a **noun**, an **adjective** followed by a **noun**, or an **article** followed by a noun.
- [3] a verb phrase is made up of a verb.
- [4] **articles** are *a* and *the*.
- [5] **adjectives** are *lengthy*, *boring*, and *inaccurate*.
- [6] **nouns** are *book*, *newspaper*, and *information*.
- [7] **verbs** are *reads* and *contains*.
 - a. the Backus-Naur form

```
1. (sentence) ::= (noun phrase) (verb phrase) (noun phrase) (verb phrase)
```

- 2. (noun phrase) ::= (noun) (adjective) (noun) | (article) (noun)
- 3.(verb phrase) ::= (verb)
- 4. (article) ::= a | the
- 5. (adjective) ::= lengthy | boring | inaccurate.
- 6. (nouns) ::= book | newspaper | information.
- 7. (verbs) ::= reads | contains.
 - b. Demonstrate "a lengthy book contains boring information"

```
а
            lengthy
                          book
                                       contains | boring
                                                             information
⟨article⟩ ⟨noun phrase⟩ ⟨verb phrase⟩ ⟨noun phrase⟩
⟨article⟩ ⟨adjective⟩
                         (noun)
                                                               (noun)
                                       (verbs)
                                                 (adjective)
```

2. Give the Backus-Naur form for the production of signed integers in decimal notation.(A signed integer is a nonnegative integer preceded by a plus sign or a minus sign, E.g. -5, 10, -10050) Sol.

```
⟨signed integer⟩ ::= ⟨sign⟩ ⟨integer⟩
⟨sign ⟩ ::= + | -
(integer ) ::= (digit) |(digit) (integer)
(digit) ::= 0 | 1 | ··· | 8 | 9
```

Construct a derivation tree for -981 using the grammar

- 3. Let G be the grammar with $V = \{p,q,r,s,\}; T = \{p,q,r\}; Starting symbol S; and$ productions are: $S \rightarrow pSr$, $S \rightarrow rqS$, $S \rightarrow rr$, $S \rightarrow pqr$
 - a. Construct derivation tree for rapparr

- b. Use top-down parsing to determine whether each of the following strings belongs to the language generated by the grammar.
- a) pri

rr	Yes
pqr	Yes

- b) rq c) pqrpqr
 - No
- d) prrrr
- No

Finite State Machines with no output

4. Construct the state table for the finite-state machine with the state diagram shown in figure

	f		æ	5	
State	Inp	ut	ıt İnpi		
	а	b	а	b	
S ₀	S ₀	S ₁	1	0	
S ₁	S ₁	S ₁	0	0	

Find the output string generated by the finite-state machine in figure and show the successive states and outputs in Table

a) input string is ababbb

		.6					
Input	а	b	а	b	b	b	-
State	S_0	S_0	S ₁	S_1	S_1	S ₁	S ₁
Output	1	0	0	0	0	0	-

b) input string is aaabb

b) input string is dadaba							
Input	а	а	а	b	b	-	
State	S_0	S ₀	S ₀	S ₁	S ₁	S ₁	
Output	1	1	1	0	0	-	

c) input string is baaaa

Input	b	а	а	а	а	-
State	S ₀	S ₁				
Output	0	0	0	0	0	-

5. **Construct the** state diagram for the finite-state machine with state table

State	1	f	{	3
	Inp	out	Inp	out
	а	b	а	b
S ₀	S ₁	S ₂	0	0
S_1	S_1	S ₂	0	1
S ₂	S ₁	S ₂	1	0

Find the output string generated by the finite-state machine in figure and show the successive states and outputs in Table

a) input string is abaabaa

Input	а	b	а	a	b	а	а	-
State	S_0	S_1	S ₂	S ₁	S_1	S ₂	S ₁	S ₁
Output	0	1	1	0	1	1	0	-

b) input string is babbbab

		.6						
Input	b	а	b	b	b	а	b	-
State	S_0	S ₂	S ₁	S ₂	S ₂	S ₂	S ₁	S ₂
Output	0	1	1	0	0	1	1	-

Set of Strings

6. Let $A=\{0,11\}$ and $B=\{00,01\}$. Find each of these sets.

a)	AB = {	000, 001, 1100, 1101	}
b)	BA = {	000, 0011, 010, 0111	}
c)	$A^2 = \{$	00, 011, 110, 1111	}
d)	B ³ = {	000000, 000001, 000101, 010100, 010000, 000100, 010101	}
e)	A UB = {	010001	}

7. Determine whether the string 0101000 is in each of these sets.

a)	{101}*	No
b)	{01}*{0}*	Yes
c)	{0}*{10}*{0}*	Yes
d)	{0}*{1}*{0}*	No

แก้วทอง

DFA Automata

HW 5 Language and Grammar

8. A finite-state automaton is given by a transition diagram

- a) Find its states
 - σ_0 , σ_1 , σ_2 , σ_3
- b) Fins its input symbols
- c) Find its initial state
- d) Find its accepting states

 σ_3

e) Do the input string below accept or not (Yes/No)

aaaaabba	No
abbbaabbb	No
babbaaaba	Yes
baaabaaba	Yes
рааараара	<u>res</u>

f) Write its annotated next-state table

State	f			
	Input			
	a	b		
σ_0	σ_1	σ_0		
σ_1	σ_1	σ_2		
σ_2	σ_3	σ_0		
σ_3	σ_1	σ_2		

9. A finite-state automaton is given by an annotated next-state table. For each automaton

	State	f	
		input	
		а	b
—	s0	S1	S0
	s1	S1	S2
	s2	S1	S3
0	S3	S1	SO

- Find its states s0, s1, s2, s3
- b) Find its input symbols

- c) Find its initial state
- d) Find its accepting states s3

e) Do the input string below accept or not (Yes/No)

aabbabba	
abbbaabb	
babbaaaa	
haaahaahha	

ccept of flot	١,
No	
Yes	
No	
No	

f) Draw its transition diagram

Language Recognition

10. Determine the set of bit strings recognized by the following deterministic finite-state automaton.

If the bit string end in 0 ,you end in state S_2 . If the bit string ends in 1, you end in state S_1 . Therefore, this automaton recognizes all bit strings that end in 0.

11. <u>Determine whether 01010001</u> belongs to each of these regular sets.

a) 01*0*	No
b) 0(11)*(01)*	No
c) 0(10)*0*1*	Yes
d) 0*10(0 ∪ 1)*	No
e) (01)*(11)*	No
f) 0*(10 U 11)*0*1	Yes
g) 0*(10)*11	No
h) 01(01 U 0)1*	No

12. Construct a deterministic finite-state automaton that recognizes the set of all bit strings such that the first bit is 0 and all remaining bits are 1's.

Turing Machines

13. Let T be the Turing machine defined by these five-tuples: (s0, 0, s1, 1, R), (s0, 1, s0, 0, R), (s0, B, s1, 0, R), (s1, 0, s0, 0, R), (s1, 1, s2, 0, R), (s1, B, s2, 1, L). If T is run on the following tape, beginning in initial position, what is the final tape when T halts?

14. Let T be the Turing machine defined by these five-tuples:

(s0, 0, s1, 1, R), (s0, 1, s0, 0, R), (s0, B, s1, 0, R), (s1, 0, s0, 0, R), (s1, 1, s2, 0, R), (s1, B, s2, 1, L). If T is run on the following tape, beginning in initial position, what is the final tape when T halts? S_0

