Zastosowania Procesorów Sygnałowych Raport z zadania projektowego nr 3 Analiza widmowa Mateusz Miler 171577 31.05.2020

1. Przygotowanie sygnału testowego

Wyk.1. Wykres czasowy zawartości tablicy testsignal zawierającej próbki fragmentu nagrania klarnetu

Wyk.2. Widmo zawartości tablicy testsignal zawierającej próbki fragmentu nagrania klarnetu w skali liniowej (okno Hamminga) wykreślone przez CCS

Wyk.3. Widmo zawartości tablicy testsignal zawierającej próbki fragmentu nagrania klarnetu w skali logarytmicznej (okno Hamminga) wykreślone przez CCS

Na wykresie czasowym można zauważyć, że sygnał jest okresowy, czego się spodziewano. Pseudo-okres składa się z około 100 próbek, co przy szybkości próbkowania 48000 próbek/sekundę daje pseudo-okres T=100/48000=1/480=0,00208(3) sekundy. Częstotliwość podstawowa instrumentu wynosi zatem około f=480 Hz. Na wykresie widmowym można zauważyć prążek w okolicy 480 Hz, jednak wcale nie jest to prążek wiodący. Największy jest prążek pierwszy w częstotliwości około 100 Hz. Dla uzyskania dokładniejszych wyników wysokości instrumentu potrzebne są inne metody obliczeń.

2. Analiza widmowa sygnału

```
326  //zad 2 Analiza widmowa sygnału
327  copy((int*)testsignal, buffer_fft, N);
328  rfft((DATA*)buffer_fft, N, SCALE);
```

Rys.1. Kod kopiujący próbki do nowego buforu i wykonujący na nim FFT

```
//zad 2 Analiza widmowa sygnału
copy((int*)testsignal, buffer_fft, N);
rfft((DATA*)buffer_fft, N, SCALE);
Amrfft(buffer_fft, N);
```

```
206 //Oblicza widmo amplitudowe na podstawie zespolonego widma
207 //Nadpisuje probki widma z buffer
208 //buflen musi byc potegą liczby 2
209 //STRUKTURA BUFFER:
210 //dwie pierwsze probki to: składowa stala, składowa Nyquista: y(0)Re, y(nx/2)im
211 //pozostałe: y(1)Re, y(1)Im, y(2)Re, y(2)Im..
212 void Amrfft(int* buffer, unsigned int buflen)
213 {
         //uzyc w przypadku liczenia dokladnej amplitudy na probke
214
        //opcja 2. w skalowaniu
215
216
         //int pow;
217
        //log_2((DATA*)buflen, (LDATA*)pow, 1);
218
219
        int limit = buflen>>1;
220
        int re, im;
221
        int i;
222
        for(i = 0; i < limit; i++)</pre>
223
             //buffer[0] to usredniona wartosc sygnalu, skladowa stala
re = _smpy(buffer[2*i], buffer[2*i]);
im = _smpy(buffer[2*i+1], buffer[2*i+1]).
224
225
226
                    smpy(buffer[2*i+1], buffer[2*i+1]);
227
             buffer[i] = re + im; //mozemy dodac bez obawy przepelnienia, poniewaz sa to kwadraty liczb <1
228
229
230
        sqrt_16((DATA*)buffer, (DATA*)buffer, limit); //go tej operacji w temp mamy modul widma (jena polowa)
231
232
         //Skalowanie
233
        for(i = 0; i < limit; i++)
234
235
             //1. musimy uwzglednic druga (symetryczna) czesc widma
             buffer[i] = buffer[i]<<1;</pre>
236
237
             //2. ponizsze jesli chcielibysmy znac dokladna amplitude przypadająca na próbke
238
239
             //tutaj za mala precyzja i ucina 6 prazek z widma (dla danych klarnet)
//buffer[i] = buffer[i]>>(pow-1);
240
241
242
243
          //zerwowanie nadmiarowych probek
244
         for(i = limit; i < buflen; i++)</pre>
245
             buffer[i] = 0;
246 }
```

Rys.2. Kod kopiujący próbki do nowego buforu i wykonujący na nim FFT, a następnie za pomocą funkcji Amrfft zamienia widmo zespolone na widmo amplitudowe

Wyk.4. Widmo amplitudowe zawartości tablicy testsignal zawierającej próbki fragmentu nagrania klarnetu w skali liniowej wykreślone na podstawie "ręcznie" wypełnionej tablicy

Ilość prążków (6) jest taka sama jak w przypadku wykreślenia ich przez CCS. Rozdzielczość częstotliwościowa wynosi df = fs/N= 48000/2048 = 23,4375 Hz/próbkę. Pierwszy prążek widoczny jest na około 20 próbce, co daje częstotliwość f = 20*df = 468,75 Hz. Jest to zbliżona częstotliwość do odczytanej z wykresu widmowego wykreślonego przez CCS. Zauważono zniekształcenia pomiędzy 3 i 4 próbką. Prawdopodobnie ich przyczyną jest nieciągłość funkcji (po jej zapętleniu) i może być wygładzona odpowiednim oknem.

3. Zastosowanie funkcji okna

Wyk.5. Wykres czasowy okna Hamminga

```
336
             //zad 2 Analiza widmowa sygnału
     337
             copy((int*)testsignal, buffer fft, N);
             multiply(buffer fft, (int*)hamming, N);
     338
             rfft((DATA*)buffer_fft, N, SCALE);
     339
     340
             Amrfft(buffer_fft, N);
249 //Mnozy bufor inOut przez in i zapisuje w inOut
250 //Oba bufory mają dlugosc buflen
251 void multiply(int* inOut, int* in, unsigned int buflen)
252 {
253
       int i;
254
       for(i = 0; i < buflen; i++)
255
           inOut[i] = _smpy(inOut[i], in[i]);
256 }
```

Rys.3. Procedura wyznaczania widma amplitudowego rozszerzona o przemnożenie przez okno Hamminga

Wyk.6. Widmo amplitudowe zawartości tablicy testsignal zawierającej próbki fragmentu nagrania klarnetu w skali liniowej wykreślone na podstawie "ręcznie" wypełnionej tablicy oraz przemnożone wcześniej przez okno Hamminga

Wykres okna Hamminga wygląda na wykonany prawidłowo. Wartości nie przekraczają 1, skrajne krańce okna są większe od 0 oraz wstęgi rozkładają się wyraźnie płasko, co jest charakterystyczne dla tego okna. Pozbyto się "rozlewania widma" w okolicach prążków. Ilość prążków się zgadza, natomiast

ich amplituda zmalała, co skutkiem użycia okna. Jeśli do dalszych operacji potrzebne by były ich większe amplitudy, próbki można by przemnożyć jeszcze przez wartość większą od 1.

4. Wyszukiwanie maksimów w widmie

Nr	deltaO	deltaN	summit	Ilustracja	reakcja
1	+	+	0	//	,
2	+	+	+	nie ma	
3	+	_	0	Λ	prążek?
4	+	_	+	nie ma	F1 4-2-11
5	+	0	0	/	summit++
6	+	0	+	nie ma	
7	-	+	0	V	
8	-	+	+	nie ma	
9	-	-	0	//	
10	-	-	+	nie ma	
11	-	0	0	\	
12	-	0	+	nie ma	
13	0	+	0	\/	
14	0	+	+	//	summit = 0
15	0	-	0	\\	
16	0	-	+	/\	prążek? Else summit = 0
17	0	0	0	\	
18	0	0	+	/	summit++

Tab.1. Tabela prawdy ułatwiająca wyszukiwanie maksimum lokalnego

```
259 //Zwraca indeks pierwszego maksimum lokalnego odrozniajacego sie od szumu z tablicy buffer o dlugosci buflen
260 //maksimum lokalne musi byc wieksze od threshold (odrzucanie szumu)
261 //maksymalna szerokosc prażka - maxWidth
262 int maxIndex(int* buffer, unsigned int buflen, int threshold, int maxWidth)
263 {
264
        int i;
265
        int delta0 = 0; //poprzednia delta
        int deltaN = 0; //obecna delta
int summit = 0; //licznik szerokości szczytu
266
267
        for(i = 2; i < buflen; i++)
268
269
            delta0 = buffer[i-1] - buffer[i-2];
deltaN = buffer[i] - buffer[i-1];
270
271
272
273
             if(delta0 > 0)
274
             {
275
                 if(summit == 0)
276
277
                     if(deltaN == 0) summit++;
278
                     if (deltaN < 0)</pre>
279
                          if(buffer[i-1] > threshold) return i-1;
280
281
282
                 }
            }
283
284
285
             if(delta0 == 0)
286
                 if(deltaN > 0 && summit > 0) summit = 0;
288
                 if(summit > 0)
289
290
                     if(deltaN == 0) summit++;
291
                     if(deltaN < 0)
292
                          if(summit <= maxWidth && buffer[i-1] > threshold) return i-1-(summit>>1);
293
                          else summit = 0;
294
295
                     }
296
                 }
297
            }
298
299
        return 0;
300 }
```

Rys.4. Kod realizujący wyszukiwanie indeksu prążka zgodnie z wyżej przedstawioną tabelą prawdy

W pierwszej kolejności napisano funkcję odpowiedzialną za wyszukiwania pierwszego maksimum lokalnego (nie muszącym być koniecznie maksimum globalnym). Funkcję napisano na podstawie rozpisanej wyżej tabeli prawdy. Dzięki temu uniknięto "plątaniny w ifach" i poprawiono czytelność. Oprócz bufora i jego długości, funkcja jako dwa dodatkowe parametry przyjmuje *threshold* – wartość progową, poniżej której sygnał jest traktowany jako szum i nie jest możliwe przyjęcie go jako ekstremum – oraz maxWidth, która to określa maksymalną szerokość prążka na jego płaskim szczycie.

Kolejną funkcją była metoda zwracająca częstotliwość próbki na podstawie indeksu próbki w przebiegu widmowym. Funkcja ta działa jedynie dla szybkości próbkowania 48 kHz oraz stałego rozmiaru okna 2048. Dzięki takim ograniczeniom, udało się ją całkiem dobrze zoptymalizować, mimo procesora stałoprzecinkowego. Na początku próbowano zdefiniować funkcję jako typ long. Niestety nie działała ona poprawnie. Kolejnym etapem rozważań co do wyboru pojemnika na dane miał być unsigned int. Liczono tutaj na dodatkowy bit zapisu uwolniony z wartości ujemnych. Niestety, podobnie jak w przypadku longa, próba zakończyła się niepowodzeniem. Ostatecznie mnożenie kolejnych próbek przez fs/N = 48000/2048 = 375/16 [Hz/próbke] zrealizowano na intach poprzez rozbicie iloczynów i ilorazów na czynniki pierwsze. Dzielenia wykonywano poprzez przesunięcia bitowe, tym samym oszczędzając na cyklach zegara. Drabinka warunków else if pozwoliła uniknąć zbyt szybkich przepełnień oraz zachować dokładność wyników. Nie dało się tego zrobić za pomocą jednej komendy, co przedstawiono w późniejszej części raportu na fragmentach tabel porównawczych opracowanych w excelu. Tabele utworzono na podstawie wydruków (printf) specjalnie napisanej w tym celu funkcji testowej. Na załączonych zdjęciach widać porównanie 3 różnych kryteriów kwalifikacyjnych z funkcji freqIndex (REGUŁY). Czerwonym kolorem zaznaczono pozycje, w których odstępstwo wyliczonej częstotliwości od rzeczywistej jest większe niż 1Hz. Lewa tabela przedstawia warunki z początku "drabinki if" – sprawdzają się one dobrze dla małych indeksów próbek, jednak dla dużych, odchyłki sięgają nawet 300 Hz. Środkowa tabela przedstawia klasyfikator przystosowany do indeksów o większych wartościach. Wyraźnie widać na nim zaznaczone na czerwono odchyłki już na początku listy, za to przy dużych indeksach odchyłki rzędu 300 Hz zmalały do około 10 Hz. Ostatnia, prawa tabela, przedstawia drabinkę warunków w całości. Pierwsza błędna wartość ma indeks aż 103. Cały arkusz kalkulacyjny załączono również osobno do sprawozdania.

```
303 //Zwraca czestotliwosc prazka widma o indeksie index
304 //Do obliczen zalozono:
305 //szybkosc probkowania 48 kHz
306 //staly rozmiar FFT 2048
307 int freqIndex(int index)
308 {
309
       if (index <= 87) return (index*375)>>4;
310
       else if (index <= 174) return (((index*125)>>1)*3)>>3;
311
       else if (index <= 436) return (((index*75)>>3)*5)>>1;
312
       else if (index <= 699) return ((((index*25)>>1)*3)>>2)*5>>1;
313
       else if (index <= 1048) return ((((index*25)>>2)*5)>>2)*3;
       else if (index <= 1310) return ((((index*25)>>2)*3)>>2)*5;
314
       else if (index <= 1398) return ((((index*15)>>2)*5)>>2)*5;
315
316
       else return ((((index*15)>>3)*5)>>1)*5;
317 }
```

Rys.5. Funkcja zwracająca częstotliwość prążka na podstawie jego indeksu

```
319 //Drukuje czestotliwosc prazka o indksie indeks
320 //Do obliczen zalozono:
321 //szybkosc probkowania 48 kHz
322 //staly rozmiar FFT 2048
323 void printFreq(int index)
324 {
325
        int freq = freqIndex(index);
326
       if (freq < 0)
327
           freq -= 32767;
328
           printf("Czestotliwosc prazka o indeksie %d wynosi: 32767+%d\n", index, freq);
329
330
           //printf("=32767+%d\n", freq); //do porownania w excelu
331
       }
332
       else
333
334
           printf("Czestotliwosc prazka o indeksie %d wynosi: %d\n", index, freq);
335
           //printf("%d\n", freq); //do porownania w excelu
336
       }
337 }
```

Rys.6. Funkcja do testowania zwracanej częstotliwości próbki o indeksie index przez funkcję fregIndex

```
430
       //zad 4 Wyszukiwanie maksimów w widmie
431
       copy((int*)testsignal, buffer_fft, N);
432
       rfft((DATA*)buffer_fft, N, SCALE);
433
       Amrfft(buffer_fft, N);
434
435
       //Wypisanie pierwszego prażka
436
       int index = maxIndex(buffer_fft, N<<2, 987, 5);</pre>
437
       printf("Pierwszy prazek ma indeks: %d \n", index);
438
       int freq = freqIndex(index);
439
       printFreq(index);
440
441
       //Sprawdzenie pozostalych czestotliwosci
442
       int i;
443
       printf("\n");
444
       for(i = 0; i < 2048; i++)
445
           printFreq(i);
116
```

Rys. 7. Fragment kodu testujący napisane funkcje – wywołanie

```
☐ Console ♡

Widmo:ClO

Pierwszy prazek ma indeks: 19

Czestotliwosc prazka o indeksie 19 wynosi: 445
```

Rys.8. Zwrócony przez program indeks pierwszego prążka oraz jego częstotliwość

```
m = m + \frac{1}{2} \cdot \frac{\alpha - c}{\delta c - 26 + c} =
= 19 + \frac{1}{2} \cdot \frac{2360 - 1678}{2360 - 2 \cdot 8648 + 1678} = 18,974279
```

Rys.9. Ręcznie obliczona częstotliwość pierwszego prążka na podstawie próbek sąsiadujących

Częstotliwość zwrócona przez funkcję programu jest bardzo zbliżona do oczekiwanych 440 Hz – różnica 5 Hz. Po tak dokładnych obliczeniach możemy stwierdzić, że na klarnecie wybrzmiewał dźwięk A. Różnice mogą wynikać chociażby z ograniczonej rozdzielczości częstotliwościowej. Według obliczeń teoretycznych, rzeczywiste maksimum znajduje się między 18, a 19 próbką w punkcie 18,97 próbki licząc od początku sygnału. Należałoby jeszcze wspomnieć, że wyliczona parabola mogła się nieznacznie różnić od rzeczywistej, ze względu na wycieki widma (nie użyto okna, aby nie zniekształcić amplitudy w obliczeniach) oraz zaokrąglenia procesora (ograniczona precyzja Q15).

Poniżej przedstawiono fragmenty wcześniej omawianych tabel sporządzonych w excelu [załącznik].

eturn (inc	dex*375)>>4;			return ((((index*15)>>3)*5)>>1)*5;			if (index	<= 87) return (index*375)>>4		
									else if (index <= 174) return		25)>>1)*3)>>3;
		No.	GULY						else if (index <= 436) return		
									else if (index <= 699) return		
									else if (index <= 1048) retur	n ((((index	*251>>21*51>>21*3:
		.						_	else if (index <= 1310) retur		
		1									
		•							else if (index <= 1398) retur	n ((((index	19 >>2 -9 >>2 -9;
									else return ((((index*15)>>		
próbki		różnica	częstotliwosc program	nr próbki	częstotliwość dokładna		częstotliwosc program	nr próbki			ęstotliwosc program
1	23,4375	0,4375	23	1	23,4375	13,4375	10		23,4375	0,4375	
2	46,875	0,875	46	2	46,875	11,875	35		46,875	0,875	
3	70,3125	0,3125	70	3	70,3125	10,3125	60		70,3125	0,3125	
4	93.75	0.75		4			85			0.75	
5	117,1875	0,1875					110			0,1875	
6	140,625	0.625		6	221,2010		135		,	0.625	
7				-							
	164,0625	0,0625		- 1	164,0625		160			0,0625	
8	187,5	0,5		8			185	- 1		0,5	
9	210,9375	0,9375		9	/	,	200		,	0,9375	
10	234,375	0,375		10	234,375	9,375	225	10	234,375	0,375	
11	257,8125	0,8125	257	11	257,8125	7,8125	250	1:	257,8125	0,8125	:
12	281,25	0,25		12	281,25	6,25	275	11	281,25	0,25	
13	304.6875	0,6875		13			300	1		0.6875	
14	328,125	0,125		14		.,,	325	14		0,125	
15	351,5625	0,5625		15			350	15		0,5625	
16	375	0		16			375	10		0	
17	398,4375	0,4375		17			385	1		0,4375	
18	421,875	0,875		18			410	18		0,875	4
19	445,3125	0,3125		19		10,3125	435	19	445,3125	0,3125	4
20	468,75	0,75	468	20	468,75	8,75	460	20	468,75	0,75	4
21	492,1875	0,1875	492	21	492,1875	7,1875	485	2:	492,1875	0,1875	4
22	515,625	0,625		22			510	2:		0,625	
23	539.0625	0,0625		23			535	2		0,0625	
24	562,5	0,0025		24		2.5	560	24		0,5	
25	585,9375	0,9375		25			575	2.		0,9375	5
26	609,375	0,375		26			600	20	,	0,375	6
27	632,8125	0,8125		27			625	2		0,8125	
28	656,25	0,25	656	28	656,25	6,25	650	21	656,25	0,25	6
84	1968.75	0.75	1968	1 8	1 1968.75	8.7	1960	i ,	1968.75	0.75	
		-/				-/				-,	
85	1992,1875	0,1875		8					1992,1875	0,1875	
86	2015,625	0,625		8			2010		66 2015,625	0,625	
87	2039,0625	0,0625		8.					7 2039,0625	0,0625	
88	2062,5	0,5		8					8 2062,5	0,5	
89	2085,9375	23,9375	2062	8	9 2085,9375	10,937	2075	8	9 2085,9375	0,9375	
90	2109,375	0,375	2109	91	2109,375	9,37	2100	9	0 2109,375	0,375	
91	2132,8125	23,8125	2109	9:	1 2132,8125	7,812	2125	9	2132,8125	0,8125	
92	2156.25	0.25	2156	9:	2 2156.25	6,2	2150		2156.25	0.25	
93	2179,6875	23,6875		9:					3 2179,6875	0,6875	
94	2203.125	0.125		9			2200		14 2203,125	0,125	
95	2226,5625	23,5625		9:					5 2226,5625	0,5625	
96	2250	C		91					16 2250	0	
97	2273,4375	23,4375		9		13,437			7 2273,4375	0,4375	
98	2296,875	0,875	2296	98	2296,875	11,87	2285	9	8 2296,875	0,875	
99	2320,3125	24,3125		9:		10,312		9	9 2320,3125	0,3125	
100	2343.75	0.75		10				10		0.75	
101	2367,1875	24,1875		10				10		0,1875	
101	2390,625	0.625		10:			2385	10		0,1875	
103	2414,0625	24,0625		10:				10		1,0625	
104	2437,5	0,5		10				10		0,5	
105	2460,9375	23,9375		10				10		0,9375	
106	2484,375	0,375	2484	10	5 2484,375	9,37	2475	10	6 2484,375	0,375	
107	2507,8125	23,8125	2484	10	7 2507,8125	7,812	2500	10	7 2507,8125	0,8125	
108	2531,25	0,25	2531	100	3 2531,25	6,2	2525	10	18 2531,25	0,25	
109	2554,6875	23.6875		10				10		0,6875	
110	2578,125	0,125		110				11		0,125	
111								11			
	2601,5625	23,5625		11						0,5625	
112	2625	C		11:				11		0	
113	2648,4375	23,4375		11				11		0,4375	
114	2671,875	0,875	2671	114	4 2671,875	11,875	2660	11	4 2671,875	0,875	
115	2695,3125	24,3125		111				11		0,3125	
116	2718.75	0.75		110	5 2718.75			11		0.75	
117	2742,1875	24.1875		11		-,		11		0,1875	
118	2765,625	0,625		113			2760	11		0,625	
			2765	115	2789,0625	4.062	2785	1	9 2789,0625		
119	2789,0625	24,0625					2,00			1,0625	
120	2812,5	0,5	2812	120	2812,5	2,5	2810	12	10 2812,5	0,5	
			2812		2812,5	2,5	2810		10 2812,5		

2010	47109,375	234,375	46875	2010	47109,375	9,375	47100	2010	47109,375	9,375	47100
2011	47132,8125	257,8125	46875	2011	47132,8125	7,8125	47125	2011	47132,8125	7,8125	47125
2012	47156,25	281,25	46875	2012	47156,25	6,25	47150	2012	47156,25	6,25	47150
2013	47179,6875	304,6875	46875	2013	47179,6875	4,6875	47175	2013	47179,6875	4,6875	47175
2014	47203,125	328,125	46875	2014	47203,125	3,125	47200	2014	47203,125	3,125	47200
2015	47226,5625	351,5625	46875	2015	47226,5625	1,5625	47225	2015	47226,5625	1,5625	47225
2016	47250	0	47250	2016	47250	0	47250	2016	47250	0	47250
2017	47273,4375	23,4375	47250	2017	47273,4375	13,4375	47260	2017	47273,4375	13,4375	47260
2018	47296,875	46,875	47250	2018	47296,875	11,875	47285	2018	47296,875	11,875	47285
2019	47320,3125	70,3125	47250	2019	47320,3125	10,3125	47310	2019	47320,3125	10,3125	47310
2020	47343,75	93,75	47250	2020	47343,75	8,75	47335	2020	47343,75	8,75	47335
2021	47367,1875	117,1875	47250	2021	47367,1875	7,1875	47360	2021	47367,1875	7,1875	47360
2022	47390,625	140,625	47250	2022	47390,625	5,625	47385	2022	47390,625	5,625	47385
2023	47414,0625	164,0625	47250	2023	47414,0625	4,0625	47410	2023	47414,0625	4,0625	47410
2024	47437,5	187,5	47250	2024	47437,5	2,5	47435	2024	47437,5	2,5	47435
2025	47460,9375	210,9375	47250	2025	47460,9375	10,9375	47450	2025	47460,9375	10,9375	47450
2026	47484,375	234,375	47250	2026	47484,375	9,375	47475	2026	47484,375	9,375	47475
2027	47507,8125	257,8125	47250	2027	47507,8125	7,8125	47500	2027	47507,8125	7,8125	47500
2028	47531,25	281,25	47250	2028	47531,25	6,25	47525	2028	47531,25	6,25	47525
2029	47554,6875	304,6875	47250	2029	47554,6875	4,6875	47550	2029	47554,6875	4,6875	47550
2030	47578,125	328,125	47250	2030	47578,125	3,125	47575	2030	47578,125	3,125	47575
2031	47601,5625	351,5625	47250	2031	47601,5625	1,5625	47600	2031	47601,5625	1,5625	47600
2032	47625	0	47625	2032	47625	0	47625	2032	47625	0	47625
2033	47648,4375	23,4375	47625	2033	47648,4375	13,4375	47635	2033	47648,4375	13,4375	47635
2034	47671,875	46,875	47625	2034	47671,875	11,875	47660	2034	47671,875	11,875	47660
2035	47695,3125	70,3125	47625	2035	47695,3125	10,3125	47685	2035	47695,3125	10,3125	47685
2036	47718,75	93,75	47625	2036	47718,75	8,75	47710	2036	47718,75	8,75	47710
2037	47742,1875	117,1875	47625	2037	47742,1875	7,1875	47735	2037	47742,1875	7,1875	47735
2038	47765,625	140,625	47625	2038	47765,625	5,625	47760	2038	47765,625	5,625	47760
2039	47789,0625	164,0625	47625	2039	47789,0625	4,0625	47785	2039	47789,0625	4,0625	47785
2040	47812,5	187,5	47625	2040	47812,5	2,5	47810	2040	47812,5	2,5	47810
2041	47835,9375	210,9375	47625	2041	47835,9375	10,9375	47825	2041	47835,9375	10,9375	47825
2042	47859,375	234,375	47625	2042	47859,375	9,375	47850	2042	47859,375	9,375	47850
2043	47882,8125	257,8125	47625	2043	47882,8125	7,8125	47875	2043	47882,8125	7,8125	47875
2044	47906,25	281,25	47625	2044	47906,25	6,25	47900	2044	47906,25	6,25	47900
2045	47929,6875	304,6875	47625	2045	47929,6875	4,6875	47925	2045	47929,6875	4,6875	47925
2046	47953,125	328,125	47625	2046	47953,125	3,125	47950	2046	47953,125	3,125	47950
2047	47976,5625	351,5625	47625	2047	47976,5625	1,5625	47975	2047	47976,5625	1,5625	47975

5. Znajdywanie częstotliwości podstawowej metodą autokorelacji

Wyk.7. Wykres funkcji autokorelacji dla sygnału testsignal (klarnet) podzielonego przez 16

```
//zad 5 Znajdywanie czestotliwości podstawowej metoda autokorelacji
int i;
for (i = 0; i < N; i++)
    samples[i] = testsignal[i]>>4;
acorr((DATA*)samples, (DATA*)samples2, 2048, 2048, bias);
int index = maxIndex(samples2, N, 0, 5);
printf("Pierwsze maksimum koleracji wystepuje dla indeksu: %d \n", index);

Console 
Single Time -7 Single Time -8

Widmo:CIO

Pierwsze maksimum koleracji wystepuje dla indeksu: 109
```

Rys.10. Implementacja funkcji autokorelacji, znajdywanie jej maksimum oraz wypisanie indeksu wartości maksymalnej

Wykres funkcji autokorelacji składa się z symetrycznych powtarzalnych okresów – wraz z przesuwaniem się po sygnale sygnał jest coraz mniej skorelowany z poprzednim okresem i coraz mocniej skorelowany z następnym – stąd symetryczny kształt. Wartości mają tendencję malejącą,

ponieważ wyjeżdżamy poza granicę tablicy – kończą się próbki i sygnał zaczyna się coraz mocniej różnić – wartości spadają do zera. Wartość 109 próbek wydaje się być prawdziwa i jest zbliżona do tej szacowanej w pierwszym ćwiczeniu. Pseudo-okres składa się z 109 próbek, co przy szybkości próbkowania 48000 próbek/sekundę daje pseudo-okres T=109/48000=0,0022708(3) sekundy. Częstotliwość podstawowa instrumentu wynosi zatem około f = 48000/109 = 440,36 Hz, czyli dokładnie tyle ile wynosi częstotliwość dźwięku A, którego się spodziewaliśmy. Wyniki metodą autokorelacji okazały się dokładniejsze od metody widmowej.