LATEX: What? Why? and How?

CSCE 595 Presentation

Brad Burkman

Louisiana School for Math, Science, and the Arts

University of Louisiana at Lafayette

31 January 2020

- Overview
- 2 Examples
- Opening Property of the Pro
- Questions

Outline

- Overview
 - Procedural Markup Language
 - History, Motivation
 - Examples in GitHub Repo
- 2 Examples
 - Math
 - Tables
 - Code
 - Graphs
 - Graphing
- 3 Powerful Techniques
 - Code Output can be LATEX Input
- Questions

Procedural Markup Language

$$\frac{b^2 - 4ac}{2a}$$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- NOT WYSIWIG, "What You See Is What You Get"
- Steep Learning Curve
- Open Source, Free "Free as in Free Speech and Free Beer"
- Lots of user-created libraries and packages
- Programming Language Stuff

History

- Donald Knuth, T_EX, 1978
- Leslie Lamport, LATEX, 1983
- Last Stable Release, LATEX2 ϵ , 1994
- MathType (WYSIWIG GUI for Word), 1987

Why make TEX? Appendices to The TEXBook

- A. Answers to All the Exercises
- B. Basic Control Structures
- C. Character Codes
- D. Dirty Tricks
- E. Example Formats
- F. Font Tables
- G. Generating Boxes from Formulas
- H. Hyphenation
 - I. Index
- J. Joining the TEXCommunity

Writing Beautifully

From Donald Knuth's Mathematical Writing, 1989

"I look forward to the day when a Pulitzer Prize will be given for the best computer program of the year."

"I'm thinking of running a contest for the best Pascal program that is also a sonnet."

Examples in GitHub Repo

- This Presentation
- Paper in ACL Format
- Poster
- Book

Outline

- Overview
 - Procedural Markup Language
 - History, Motivation
 - Examples in GitHub Repo
- Examples
 - Math
 - Tables
 - Code
 - Graphs
 - Graphing
- 3 Powerful Techniques
 - Code Output can be LATEX Input
- Questions

Math

Equations

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sup_{i=1}^n f(x^*_i) \det x$$

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

 $\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f(x^*_i) \left(x^*_i \right) dx$

$$\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

Aligned Equations

$$e^{3x+4} = 2$$

$$3x + 4 = \ln 2$$

$$e^{3x+4} &= 2 \cdot x$$

$$e^{3x+4} &= 2 \cdot x$$

$$3x+4 &= \ln 2 \cdot x$$

$$3x+4 &= \ln 2 \cdot x$$

$$3x &= \ln 2 - 4 \cdot x$$

$$x &= \frac{\ln 2 - 4}{3}$$

Tabular Environment

Teacher		Course	Period	Course	Period
Emily	Allen	EN300.1	13	EN300.3	14
Scott	Atkins	PH240L.1	12	PH120.2	13
Robert	Dalling	PH320.1	13	PH350.1	14
Leo	Eisenlohr	FL170.1	13	FL270.1	14
Victor	Feske	EH122.1	13	EH122.2	14

```
\begin{tabular}{11|1c1c}
\multicolumn{2}{c}{Teacher}
```

& Course & Period & Course & Period \cr\hline Emily & Allen & EN300.1 & 13 & EN300.3 & 14 \cr

\end{tabular}

Tables with Math

$$2x + 15y = 6$$

 $3x - 4y < 12$

```
\begin{tabular}{*5{@{\hspace{4pt}}}>{$}r<{$}}}
2x &+& 15y &=& 6 \cr
3x &-& 4y &<& 12 \cr
\end{tabular}
```



```
Listing 1: Default Style
```

```
import math
# Comment

def stuff():
    for a in range (10):
        for b in range (10):
            if math.gcd(a,b)==1:
                 print (a, b)
```

stuff()

Listing 2: Formatted No Color

```
import math
2 # Comment
def stuff():
for a in range (10):
for b in range (10):
if math.gcd(a,b)==1:
print (a, b)
stuff()
```


Listing 3: Typical Colors

```
import math
2 # Comment
def stuff():
for a in range (10):
for b in range (10):
if math.gcd(a,b)==1:
print (a, b)
stuff()
```


Listing 4: UL Colors

```
import math
2 # Comment
def stuff():
for a in range (10):
for b in range (10):
if math.gcd(a,b)==1:
print (a, b)
stuff()
```


TikZ

Graphics Package for LATEX

TikZ ist kein Zeichenprogramm

"TikZ is not a graphing program."

Graphs: Fall 2018 #L3


```
\begin{tikzpicture}[x=15mm, y=15mm]
   \node [circle, draw, label=left:$s$]
    (s) at (0,0) {};
```


\foreach \from/\to/\weight in {s/t
/10, s/y/-8, t/x/1, y/x/9, y/z/2}
 \draw [-triangle 60] (\from) -- (\
to) node [midway, rectangle, fill=
white] {\weight};

\foreach \from/\to/\weight in {t/y
/2, y/t/3, x/z/-4, z/x/6}
 \draw [bend right=20, -triangle
60] (\from) to node [midway,
rectangle, fill=white] {\weight} (\

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{r}$$

This series does not converge.

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{r}$$

This series does not converge.

Source of my confusion: In our work, n is finite.

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} = \sum_{r=1}^{n} \frac{1}{r}$$

This series does not converge.

Source of my confusion: In our work, n is finite.

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} = \sum_{r=1}^{n} \frac{1}{r}$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} = \sum_{r=1}^{n} \frac{1}{r}$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} = \sum_{r=1}^{n} \frac{1}{r}$$

$$\frac{dy}{dx} = y$$
, (0,1) $\frac{dy}{dx} = \frac{1}{x}$, (1,0)

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} = \sum_{r=1}^{n} \frac{1}{r}$$

$$\frac{dy}{dx} = y$$
, (0,1) $\frac{dy}{dx} = \frac{1}{x}$, (1,0) (1,1)

Outline

- Overview
 - Procedural Markup Language
 - History, Motivation
 - Examples in GitHub Repo
- 2 Examples
 - Math
 - Tables
 - Code
 - Graphs
 - Graphing
- Powerful Techniques
 - Code Output can be LATEX Input
- Questions

Code Output can be LATEX Input

```
vrite = open("Graph03.tex","w")
_{2} Max = 20000
_{3} s = 0.0
4 for i in range (1, Max+1,1):
5 a = 1/float(i)
_{6} s += a
<sup>7</sup> if i%400==2:
     write.write ("\\fill (%d,%f)
    circle (2pt); n" \% (i,s)
```

Brad Burkman (LSMSA / UL)

 $_{10} s = 0.0$

LATEX: What? Why? and How?

```
1\fill
        (2,1.500000) circle (2pt);
2 \fill
        (402, 6.574911)
                          circle
                                   (2pt);
3 \fill
        (802,7.264948) circle
                                   (2pt);
4 \fill
        (1202,7.669374)
                                    (2pt);
                            circle
5 \fill
        (1602, 7.956536)
                                    (2pt);
                           circle
6 \fill
        (2002, 8.179367)
                            circle
                                    (2pt);
7 \fill
        (2402, 8.361481)
                                    (2pt);
                            circle
8\fill
        (2802, 8.515483)
                                    (2pt);
                            circle
∘ \fill
        (3202, 8.648903)
                                    (2pt);
                            circle
10 \fill
        (3602, 8.766599)
                                    (2pt);
                            circle
11 \fill
        (4002, 8.871890)
                                    (2pt);
                            circle
12 \fill
        (4402,8.967144)
                                    (2pt);
                            circle
_{13} \setminusfill
        (4802, 9.054108)
                                    (2pt);
                            circle
```

```
begin{tikzpicture}[x=0.004mm,y=5.5mm]
linput{Graph03}
lyath (20000,10.5) node [right] {
   Partial Sum};
lyath [black] (12000,10) circle (6pt)
lyath node [above left] {$(12000,10)$};
```


LATEX Input is Plain Text

- Code Output can be LATEX Input
- Structured Documents
 - Multi-File
 - Chapters, Sections, Subsections
 - Table of Contents
 - Index
 - Bibliography
- Git
 - Version Control
 - Collaboration

Outline

- Overview
 - Procedural Markup Language
 - History, Motivation
 - Examples in GitHub Repo
- 2 Examples
 - Math
 - Tables
 - Code
 - Graphs
 - Graphing
- 3 Powerful Techniques
 - Code Output can be LATEX Input
- Questions

Questions?

