

Team 22: Smart Cricket Bat Bi-Weekly Update 3

Team members: Pablo Barron Gavin Dahl Jiakai Hu Nolapat Pipitvitayakul

TA: Fardeen Hasib Mozumder Sponsor: Pranav Dhulipala

Project description

- Problem: "Cricket practice equipment lacks effectiveness without the assistance and guidance of a coach"
- Solution proposal: "Create a device that will mount on the cricket bat and, through a user friendly app, gives real time feedback on the user's cricket swing i.e. efficiency and swing angle. Must be easy to use and set up"

Diagram of subsystems and interface

Subsystem Overview

- Android App: Will handle user interaction and communication between the MCU and the ML algorithm.
 The app receives data from the MCU via a bluetooth connection. The app will then send received data to ML algorithm to be processed
- Power: Contains the boost-converter, on-board lithium battery power supply, and recharging station
- ML Algorithm: Develop the ML algorithm for finding the specific characteristics of users swing
- Control: A sensing unit that will communicate the IMU values from the swing to the user app through an MCU with bluetooth capabilities

Project Timeline

Control System

Gavin Dahl

Accomplishments since last presentation 18 hr of effort	Ongoing progress/problems and plans until the next presentation
 MCU/App Integration Assembled control parts of PCB Basic tests performed to confirm it works as intended 	 PCB validation Housing Unit Design Start ML data collection

Control System

Gavin Dahl

- Left: Bluetooth
- Right: MCU
- ~2 sec delay in data transfer
- No gaps or inconsistencies in data

Android App

Pablo Barron

Accomplishments since last presentation: 4 Hrs	Ongoing progress/problems and plans until the next presentation
Have completed the app integration with the control subsystem. Proper data sending connection has been established.	 Will now begin validating connectivity and data sending Currently integrating with ML, but encountering difficulty due to Android Studio only liking TensorFlow Models

Android App

Power System

Accomplishments since 403 12 hr of effort	Ongoing progress/problems and plans until the next presentation			
 Assembled power parts of PCB Power/Control integration Able to power the MCU, IMU, and Bluetooth from the battery and collect data 	 Add battery charging circuit to the PCB design Order final PCB 			

Power System

Machine Learning

Accomplishments since last presentation:

- Transforming the .sav file to .tflite or Scikit-Learn Random Forest Model to be used by Android App
 Plans until next presentation:
 - More data gathering to increase accuracy

Execution plan

	9/2/2022	9/9/2022	9/16/2022	9/23/2022	9/30/2022	10/7/2022	10/14/2022	10/21/2022	10/28/2022	11/4/2022	11/11/2022	11/18/2022	11/25/2022	12/2/2022
Status Update 1														
Control System PCB														
Control System and App Communication														
Power System PCB Design														
App/Control System Itegration via Bluetooth														
Connection and Data sending Validation														
Status Update 2			1	Î										
PCB Fabrication and Assembly														
ML and App Intergration														
Make App "prettier" by using images and other details				75										
ML Data Collection														
Data Training with New Data														
Status Update 3														
PCB Testing and Validation														
Sensing Unit Housing Design														
Sensing Unit Handle Mount Design														
Validate ML with Real Time Swings														
Status Update 4														
Final PCB Manufacturing														
Sensing Unit Housing Manufacturing														
Sensing Unit Handle Mount Manufacturing				33										
Status Update 5														
Complete System Integration														
System Validation				1								je na jedi		
Final Design Presentation														
Final Demo														
Final Report							17.		12					

Not Started	Jiakai Hu
In Progress	Nolapat Pipitvitayakul
Completed	Pablo Barron
Behind Schedule	Gavin Dahl
	Everyone

Validation plan

Paragraph	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)
3.2.1.2	Sending Data via Android device	The app should be able to send and receive data	Upload the app to a simulated android phone and test by outputting data to a localized device to test data sending	UNTESTED	Pablo Barron
3.2.1.2	ML Algorithm Precision	The ML algorithm provides precise result of output data within small error range	g Give a set of test input and see if algorithm returns the hit positions precisely.	UNTESTED	Jiakai Hu
3.2.1.3	Communication Range	Communication between the sensing unit and app stays active for a distance of up to 100ft.		IN PROGRESS	Gavin Dahl Pablo Barron
3.2.1.4	Wireless Connection Stablilty	Connection between sensing unit and smartphone app does not drop.	Sensing unit connected to smartphone app via bluetooth, set to default mode, and left to run for 1 hour. Connection is monitored via smart phone app.	IN PROGRESS	Gavin Dahl Pablo Barron
3.2.1.4	Full Range of Motion	Sensing unit can measure the angle of the bat at a full 360°.		TESTED: Sensing unit tracks accurate degree of turn for all 3 axes	Gavin Dahl
3.2.1.5	Easy to Use GUI	The app is easily naviagble to allow any person, regardless of technical skills, to use our device		TESTED: App is able to run on physical device and does not crash	Pablo Barron
3.2.1.5	Operation Time	System operates continously on battery power for a minimum of 2 hours.	Sensing unit is turned on, set to defualt mode, and left to run for 2 hours. Power is monitored via a digital multimeter.	UNTESTED	Nolapat Pipitvitayakul
3.2.1.6	Detection Range	Sensing unit can detect vibrations from at least 38in away when mounted on a bat.		TESTED: Hits on the end of the bat are noticed by the IMU	Gavin Dahl
3.2.1.7	Detection Accuracy	Sensing unit is able to detect a collison between ball and bat on any area of the cricket bat.	Mount sensing unit on cricket bat, measure data from hits in a variety of areas	TESTED: Hitting any location (including edge cases) of the bat is noticed by the IMU	Gavin Dahl
3.2.1.8	Detection Sensitivity	Mount sensing unit to cricket bat, connect to PC via microUSB, and watch sensitivity Mount sensing unit to cricket bat, connect to PC via microUSB, and watch realtime data output of angle of bat and speed and compare to movements made in real life.		IN PROGRESS	Gavin Dahl
3.2.1.9	Ease of Use	System is easily attached to end of handle of the cricket bat, is easily connected to the app via bluetooth, and is easy to calibrated during first time start up calibrations. Whole process should take no more than 5 minutes.		IN PROGRESS	Full Team
3.2.3.1.1	Input Voltage (MCU)	The input voltage for our Beetle BLE board shall be between 5V - 8V.		TESTED: Boost Converter Output is 5V +- 0.1	Nolapat Pipitvitayakul
3.2.3.1.3	Battery Charging Voltage and Current	The sensing unit has a 3.7V 150mAh Lo-Pi batteries as its power supply. These can be charged through a microUSB cable that can supply 100mA of charge current with a 4.2V charge voltage. Use multimeter and osciloscope to validate voltage levels and charge current levels.		UNTESTED	Nolapat Pipitvitayakul
3.2.3.2.1	App Data Gathering via Bluetooth	The Android device should be able to recieve data from our MCU via bluetooth		TESTED: Connection Error with Bluetooth Socket	Pablo Barron
3.2.4.1	Thermal Resistance	The system should be able to operate in environments with tempatures ranging from 0°C to 85°C.	Use heating mechanism to raise tempature to 85°C and test systems functionalitly. Place system in cooling mechanism to lower tempature to 0°C and test systems.	IN PROGRESS	Gavin Dahl
3.2.4.2	Shock Tolerance	The IMU should be able to handle g shocks up to a max of 10,000g.	Test dropping IMU at differing heights and then use systems normal functionality to try to validate that IMU will still function after taking shocks more than 10,000	IN PROGRESS	Gavin Dahl

Parts Ordered

Part Description	Order Status				
3 x Bluno Ble Microcontroller	Part Received				
2 x HC-05 Bluetooth Module	Part Received				
3 x gy-521 IMU	Part Received				
1 x LiPo Battery 3.7V 150mah	Part Received				
12 x Capacitor	Part Received				
8 x Resistor	Part Received				
3 x Inductor	Part Received				
1 x Switching Voltage Regulators	Part Received				
1 x JST Right-Angle Connector TH 2-Pin	Part Received				

Questions?