Linear Subspace

Sunday, January 17, 2021

Subspace of $R^n \Rightarrow \text{ if we say } V \text{ is a subspace } f^n$ then $V \text{ is a } \text{ subset} \text{ of } R^n$

then V is a subset of R

Conditions for V to be a subspace of \mathbb{R}^n , then wis means $\underline{3}$ things

i) V contains the O vector $(\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix})$

- 2) if \vec{X} in V, then \vec{C} is also in \vec{V}
 - or if x vis a subspace of V closure under multiplication
- 3) if a in V and b in V, then a+b in V olosure under addition

$$V = \{0\} = \{0\}$$

- 2) contains me zero vector
- 3) $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ So V is a subspace of \mathbb{R}^3
- 2. $S = \begin{cases} \begin{cases} x_1 \\ 2c_2 \end{cases} \in \mathbb{R}^2 \end{cases} x_1 > 0 \end{cases}$
 - i) contains the zero vector
 - 2) $x \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ if c is the we are good
 - but if c is <0 then we are outside 4>0 so we are not in our subspace (5)
 - So, we are violating the condition of being a subspace
 So its not a subspace of \mathbb{R}^2
 - į, o
 - $\Rightarrow c_1 v_1 + c_2 v_2 + c_3 v_3$

linear combinations of (V1, V2, V3)

2) V = span (V1, V2, V3) is V valid subspace of tR

- i) if $C_1 = C_2 = C_3 = 0$, then span contains the zero vector $C_1 = C_1 + C_2 + C_2 + C_3 +$
- ⇒ a₁₁ V₁ + a₂₂ V₂ + a₃₃ V₃ } still a linear combination of V₁, V₂, V₃ with new arbitary constants
- 3) $C_1V_1 + C_2V_2 + C_3V_3 + C_1V_1 + C_2V_2 + C_3V_3$ $\Rightarrow C_{11}V_1 + C_{22}V_2 + C_{33}V_3$
- ⇒ So both 2), 3) are in U, so U is a subspace of Rn

If $) V = \text{Span} \left(\vec{V_1}, \vec{V_2}, \dots, \vec{V_n} \right)$ 2) All $\vec{V_1}, \vec{V_2}, \dots, \vec{V_n}$ are linearly independent

Basis of Subspace

2 V, , V2 ... Un 4

Then we can say: S is a basis of V

Basis: a minimum set of vectors that spans The subspace

So élypsu oue able to semone a vector from a span and still able to create the subspace then its not a basis.

There can be many basis for a space (R2)

Standard basis for \mathbb{R}^2 $\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$

And you can represent any vector in \mathbb{R}^2 by a combination of it \mathcal{E}_j

. Basis for U

= V,, V2 ... Span U Each vector in U is a wieque combination of those vectors

= U,, V2 ... are linearly undependent