Review

1. Information theory (entropy & gain)

Entropy

$$H(X) = -\sum_i P(X = x_i) \log_2 P(X = x_i)$$

Q: for a variable X of Bernoulli distribution Pr(X=1)=p, what is $\arg\min_p H(X)$ and $\arg\max_p H(X)$?

[Solution]: consider the coin-flip case...

	p(head)	Н	Interpretation
H_max	0.5	$-(0.5\log_2 0.5 + 0.5\log_2 0.5) = 1$	entropy measures uncertainty we are most uncertain about the outcome: there is a 50/50 chance the coin landing on head/tail
H_min	0.0 or 1.0	$-(0.0\log_2 0.0 + 1.0\log_2 1.0) = 0$	entropy measures uncertainty we are most certain about the outcome: the coin will definitely land on head/tail. The uncertainty is just 0 because there is no uncertainty about the outcome!

• Information gain

$$egin{aligned} G_{split} &= H_{ ext{parent}} - \overline{H_{ ext{children}}} \ &= H(X) - \sum_{i=1}^t rac{|X_i|}{|X|} H(X_i) \end{aligned}$$

Example (from https://homes.cs.washington.edu/~shapiro/EE596/notes/InfoGain.pdf): parent

(16 positive v.s. 14 negative)

children

Q: what is the information gain of this split?

$$H(S) = -\left(\frac{16}{30}\log\left(\frac{16}{30}\right) + \frac{14}{30}\log\left(\frac{14}{30}\right)\right)$$

$$H(S_1) = -\left(\frac{4}{17}\log\left(\frac{4}{17}\right) + \frac{13}{17}\log\left(\frac{13}{17}\right)\right)$$

$$H(S_2) = -\left(\frac{1}{13}\log\left(\frac{1}{13}\right) + \frac{12}{13}\log\left(\frac{12}{13}\right)\right)$$

$$G = H(S) - \left(\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)\right) = H(S) - \left(\frac{17}{30}H(S_1) + \frac{13}{30}H(S_2)\right)$$

2. KNNs

- o None-parametric, data-based,
- nearest neighbor (k=1)
- distance metrics:
 - most common: Euclidean distance

e.g. for data points
$$x_1=(a_1,b_1)$$
 and $x_2=(a_2,b_2)$, their distance is $\sqrt{(a_1-a_2)^2+(b_1-b_2)^2}$

o Issues: (test time, memory)

з. Decision trees

Stump:

pick a feature that best separates the data

- o Tree:
 - the algorithm: time complexity $O(mn^2\log n)$, where m,n are #features and #training data respectively.

rule of thumb:

- low complexity (the shallow is better than the deep)
- less overfitting (the balanced is better than the unbalanced)
 - If the tree is balanced and there are N nodes, what is the time complexity of making a prediction? $(O(\log n))$

4. Logistic Regressions

- decision boundary: $w^Tx + b = 0$
 - Normal direction (or model parameter): w (pointing towards the positive are)
 - lacktriangle Translation (or the bias/scalar term): b
 - lacktriangle Distance: 'The distance (signed) of any point x to the decision boundary is w^Tx+b ' (???)

o logistic classifier:

• Logit: wx + b

lacksquare sigmoid function: $\sigma(t)=rac{1}{1+exp(-t)}$, with domain $\mathbb R$ and range (0,1)

lacksquare Probability of x be positive: $p(y=1|x;w,b)=rac{1}{1+\exp(-(wx+b))}$

lacksquare Probability of x has label y: $p(y|x;w,b)=rac{1}{1+\exp(-(wx+b)y)}$

• prediction (logistic classification):

$$f(x) = \begin{cases} 1 & \text{if } p(y=1|x;w,b) \ge 0.5\\ -1 & \text{otherwise} \end{cases}$$
 (1)

- train a logistic classifier
 - loss function:

$$egin{aligned} L &= -\ln(ext{likelihood}) \ &= -\sum_{i=1}^n ln(1 + \exp(-y_i(w^Tx_i + b))) \ &rac{\partial L}{\partial w} = \sum_{i=1}^n -y_i x_i (1 - p(y_i|x_i)) \ &rac{\partial L}{\partial b} = \sum_{i=1}^n -y_i (1 - p(y_i|x_i)) \end{aligned}$$

Training: gradient descent...

Discussion Questions

1. **KNN**

Consider a training dataset $S_{training}$ = {(\mathbf{x}_i, y_i), i=1,2...8} where each data point (\mathbf{x}, y) has a feature vector $\mathbf{x} = [x_1, x_2]^T$ and the corresponding label $y \in \{-1, +1\}$. The points with the corresponding labels in the dataset are shown in the figure below. You are asked to predict the label of a point \mathbf{x}_{pred} = [1, 0]T. Use the k-nearest neighbors (k-NN) method under Euclidean distance.

• Determine the predicted label for \mathbf{x}_{pred} using the k- NN with k = 1, 3, 5. (Hint: 'to classify a new input x, examine the k-closest training data points to x and assign the object to the most frequently occurring classes')

[Solution]: first rank the training data points in the order from nearest to furthest from $x_{
m pred}$.

k	k-nearest neighbors	labels of the k-nearest neighbors	Prediction
1	x_6	{-1}	-1
3	x_6, x_2, x_5	{-1, +1, -1}	-1
5	x_6, x_2, x_5, x_4, x_7	{-1, +1, -1, +1, +1}	+1

2. Logistic Regression

The logic function ϕ serves as a proxy that translates the distances between the data points to the decision boundary into probabilities.

The sigmoid function is defined by: $\phi(ec{x}) = rac{1}{1+e^{-x}}$

The loss function of the logistic regression is defined by:

$$\mathcal{L}(\mathbf{w}, b) = -\sum_{i=1}^{n} \ln p(y_i | \mathbf{x}_i)$$
 (2)

Assume in a binary classification problem, we need to predict a binary label $y \in \{-1,1\}$ for a feature vector $\mathbf{x} = [x_0,x_1]^{\top}$. In logistic regression, we can reformulate the binary classification problem in a probabilistic framework: We aim to model the distribution of classes given the input feature vector $\mathbf{x} \in \mathbb{R}^k$. Therefore, the dataset can be summarized by $X = \{\mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_n\}^{n \times k}$

The partial derivatives of the parameters is given by

$$egin{aligned} rac{\partial \mathcal{L}(\mathbf{w},b)}{\partial \mathbf{w}} &= -\sum_{i=1}^n (1-p_i) y_i \mathbf{x}_i \ rac{\partial \mathcal{L}(\mathbf{w},b)}{\partial b} &= -\sum_{i=1}^n (1-p_i) y_i. \end{aligned}$$

Q1: What is the shape of $\frac{\partial \mathcal{L}(\mathbf{w},b)}{\partial \mathbf{w}}$ and $\frac{\partial \mathcal{L}(\mathbf{w},b)}{\partial b}$?

[Solution]: same as w; same as b

(Assignment 3) Q: In reality, we typically tackle this problem in a matrix form: First, we represent data points as matrices $X = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]^T$ and $Y = [y_1, y_2, \dots, y_n]^T$. Thus, the negative log-likelihood loss $\mathcal{L}(\mathbf{w}, b)$ can be formulated as:

$$\mathbf{p} = \operatorname{sigmoid}(Y \circ (X\mathbf{w} + b\mathbf{1})) \ \mathcal{L}(\mathbf{w}, b) = -\mathbf{1}^T \ln \mathbf{p}$$

where $\mathbf{1}=[1,1,\ldots,1]^T\in\mathbb{R}^n$ is a n-dimensional column vector, $\mathbf{p}=[p_1,p_2,\ldots,p_n]^T\in\mathbb{R}^n$ is a n-dimensional column vector, $\ln(\cdot)$ is an element-wise natural logarithm function, $\mathrm{sigmoid}(z)=\frac{1}{1+e^{-z}}$ is an element-wise sigmoid function, and \circ is an element-wise product operator

(Hint: how to express summation as matrix multiplications? Consider L2-norm: $\|v\|^2 = \sum_{i=1}^n v_i^2 = v^T v$)

Q2: What does **p** stand for? What is the shape of **p**? What is the shape of L(w, b)?

[Solution]: p_i stands for the probability that x_i has a label y_i ; it is not the real probability, but the probability that our model (with parameters w and b) predicts. \mathbf{p} is a column vector of size n. L is a scalar value.

3. Decision Boundary

We are given a classifier that performs classification in \mathbb{R}^2 (the space of data points with two features (x_1, x_2) with the following decision rule:

$$h(x_1, x_2) = \begin{cases} 1 & \text{if } x_1^2 + x_2^2 - 10 \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (3)

Draw the decision boundary of the classifier and shade the region where the classifier predicts 1. Make sure you have marked the x_1 and x_2 axes and the intercepts on those axes.

[solution]: the decision boundary is a circle ($x_1^2+x_2^2=10$). All points that fall outside the circle will be labeled as '1'.

Assignment 3

Q1: ...

Q2: logit -- wx + b (it doesn't matter just make sure the plot looks correct...)

Q3: see discussion question 2.

Q4: see the first review question.

From Last Week

	L1	L2	L
Loss function	$L_1 = \sum_{i=1}^N x_i w - y_i $ L_1=np.sum(np.abs(X@w-y))	$L_2 = \sum_{i=1}^N (x_i w - y_i)^2$ L_2=np.sum((X@w-y)**2)	$L = \sum lpha_k L_k$ where $\sum lpha_k = 1$
derivative $rac{\partial L}{\partial w}$	$egin{aligned} rac{\partial L_1}{\partial w} &= \sum_{i=1}^N x_i * sign(x_i w - y_i) \ &= X^T sign(Xw - y) \ & ext{L1_grad} = ext{X.T@np.sign(X@w-y)} \end{aligned}$	$egin{aligned} rac{\partial L_2}{\partial w} &= \sum_{i=1}^N 2x_i * (x_i w - y_i) \ &= 2X^T (Xw - y) \ ext{L2_grad} &= 2 * ext{X.T@(X@w-y)} \end{aligned}$	$rac{\partial L}{\partial w} = \sum lpha_k rac{\partial L_k}{\partial w}$
to find the optimal solution	$w_{t+1} = w_t - \lambda rac{\partial L1}{\partial w}$	$w^* = (X^T X)^{-1} X^T y$	$w_{t+1} = w_t - \lambda rac{\partial L}{\partial w}$