CPE201 Digital Design

By Benjamin Haas

Class 6: More Gates, Timing, and Chips

NOT Timing

Truth tables:

а	b	AND
0	0	0
0	1	0
1	0	0
1	1	1

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

а	NOT
0	1
1	0

Example

If C = 1, what is the value at the other

AND Timing

Truth tables:

а	b	AND
0	0	0
0	1	0
1	0	0
1	1	1

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

а	NOT
0	1
1	0

Example

Draw the output waveform.

OR Timing

Truth tables:

а	b	AND
0	0	0
0	1	0
1	0	0
1	1	1

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

а	NOT
0	1
1	0

NAND Gates

- NAND = NOT AND
- AND with inverted output
- $C = \overline{AB} = (AB)'$

	A.B	
Α ———	↑ Ā.I	R
В ———	- A.I.	,

А	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

NAND Timing

A and B are both HIGH during these four time intervals. Therefore X is LOW.

Example

Draw the output waveform.

NOR Gates

- NOR NOT OR
- OR with inverted output
- $C = \overline{A + B} = (A + B)'$

А	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

NOR Timing

Example

Draw the output waveform

Why NAND and NOR?

- Universal gates (to be discussed later)
 - Any of the other gates (and more) can be built from NAND, NOR, and NOT
- Smaller sized implementations
- Faster logic

NAND and NOR Equivalents

А	В	A NAND B	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

А	В	A NOR B	
0	0	1	
0	1	0	
1	0	0	
1	1	0	
	0	0 0 0	

Foreshadowing..

XOR and XNOR

- Exclusive-OR and Exclusive-NOR
 - A combination of the logic already discussed

XOR

- Outputs a 1 when either of the inputs is 1 (exclusively one of the inputs is 1)
- Outputs a 0 otherwise
- C = B
- Example application: addit

20			
А	В	A XOR B	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

XOR Timing

XNOR

- Invert the output of XOR
- $C = \overline{AB} = (AB)'$

А	В	A XNOR B	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

XNOR Timing

Breadboards vs PCBs

PCBs

Through hole vs Surface Mount

Dual in-line package (DIP)

QFN

IC Packages

SSOP ($153 \times 193 \text{ mils}$)

LQFP $(7 \times 7 \text{ mm})$

FBGA bottom view $(4 \times 4 \text{ mm})$

Metric code		Imperial code		
0402	01005			
0603	-	0201		
1005	-	0402		
1608	-	0603		
2012	-	0805		
2520		1008		
3216		1206		
3225		1210		
4516		1806		
4532		1812		
5025		2010		
6332		2512		
	Actual			

size

Packages

Tape and Reel

Pick and Place/Wave Solder

Pins

Check the datasheet!

Example

Figure 5-1. LQFP64 package outline

Table 5-1. LQFP64 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	· —	0.17
c1	0.12	0.13	0.14
D	11.80	12.00	12.20
D1	9.90	10.00	10.10
E	11.80	12.00	12.20
E1	9.90	10.00	10.10
е	_	0.50	_
eB	11.25	_	11.45
L	0.45	_	0.75
L1		1.00	-
θ	0°	_	7°

Reading

- This lecture
 - Sections 3.4-3.6, 1.6
- Next lecture
 - Sections 3.7, 1.7, 4.1-4.2