作弊此位

姓名

东南大学考试卷(A卷)

一. (20%) 已知矩阵 $M = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$, $\mathbb{C}^{2\times 2}$ 是复数域上的线性空间,定义其上的变换为:

 $f(X) = MX - XM, X \in \mathbb{C}^{2\times 2}.$

- 1. 证明: f 是 $\mathbb{C}^{2\times 2}$ 上的线性变换;
- 2. 求f 在基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵;

3. 分别求核空间 $\mathbf{K}(f)$ 及值域 $\mathbf{R}(f)$ 的一组基及维数;

4. 问: $\mathbb{C}^{2\times 2} = \mathbf{K}(f) \oplus \mathbf{R}(f)$? 并说明理由.

- 二. (16%) 设 $\mathbb{R}[x]_3$ **{** α 2 **+**x **¢** db,c, \in } \mathbb{R} 关于多项式的加法和数乘构成实数域 \mathbb{R} 上的线性空间. 设r \in \mathbb{R} ,记 V_r = {f(x) \in $\mathbb{R}[x]_3$ | f(r) = 0}.
 - 1. 证明: V_r 是 $\mathbb{R}[x]_3$ 的子空间;
 - 2. 分别求 V_0 , V_1 , $V_0 \cap V_1$, $V_0 + V_1$ 的一组基.

3. 设 $\mathbb{R}[x]_3$ 上内积 $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x)dx$, $f(x), g(x) \in \mathbb{R}[x]_3$, 求 V_0^{\perp} 的一组基.

三. (12%) 已知矩阵 $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$, 求 $M = \begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 的广义逆矩阵 M^+ .

四. (12%) 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 0 \\ -1 & 0 & -2 \end{pmatrix}$$
, 求 e^A 及 $\det(e^A)$.

五. (20%) 已知矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & a & 4 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 5 & 2 & 0 \\ 6 & c & b \end{pmatrix}.$$

1. 讨论 A 的 Jordan 标准形的可能形式;

2. 问: a, b, c 为何值时, A 相似于 B?

六. (20%) 证明题:

1. 设V 是n 维欧氏空间且 ω 是V 中非零向量,定义V 上的线性变换 f 为: $f(\alpha)=\alpha-\langle \alpha,\alpha\rangle$ α 证明: 若f 是V 上的正交变换,则 $\|\omega\|=\sqrt{2}$.

2. 设 A, B 为同阶 Hermite 阵,且 A 为正定阵. 证明:存在可逆阵 P,使得 P^HAP 与 P^HBP 均为对角阵.

3. 设 α , β 是n 维非零列向量,记 $A = \alpha \beta^{H}$,证明: $\|A\|_{F} = \|A\|_{2}$.

4. 设A为 Hermite 阵,证明:存在唯一的 Hermite 阵B,使得 $A=B^3$.