

REASONING MATHEMATICAL

Chapter I

LEVEL

ALGORITMIA SENSORIAL

REASONING MATHEMATICAL

indice

01. MotivatingStrategy 🕥

02. HelicoTheory

 \bigcirc

03. HelicoPractice

04. HelicoWorkshop

ALGORITMIA SENSORIAL

MOTIVATING STRATEGY

Las torres de Hanói se juega pasando todos los discos de la varilla ocupada a una de las otras varillas vacantes. Para lograr este objetivo, es necesario seguir tres simples reglas:

- 1. Solo se puede mover un disco cada vez.
- 2. Un disco de mayor tamaño no puede descansar sobre uno más pequeño que él mismo.
- 3. Solo puedes desplazar el disco que se encuentre arriba de cada varilla.
- ¿Cuántos movimientos como mínimo se deben realizar para cumplir pasar 6 discos?

ALGORITMIA SENSORIAL

Resumen

HELICO THEORY

ALGORITMIA SENSORIAL

¿Qué es el razonamiento inductivo?

Es aquella forma del pensamiento que nos permite encontrar ciertos patrones al observar situaciones similares entre sí, y formular conjeturas (conclusiones) a partir de ellas.

RECOMENDACIONES PARA RESOLVER ESTE TIPO DE EJERCICIOS...

SE ANALIZAN COMO MÍNIMO 3 CASOS PARTICULARES.

SE BUSCA RELACIONAR EL RESULTADO CON EL NÚMERO DE CASO QUE SE ANALIZA PARA HALLAR EL CASO GENERAL.

SABIENDO EL CASO GENERAL, SE HALLA EL CASO PEDIDO.

 \bigcirc

Problema 01

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

Halle el número total de palitos utilizados en el siguiente gráfico.

Resolución

Para calcular el total de palitos analizamos 3 casos:

N° de palitos

$$3 = 2^2 - 1$$

$$8 = 3^2 - 1$$

$$15 = 4^2 - 1$$

Total:
$$50^2 - 1$$

Respuesta

2499

Halle el número de palitos en el siguiente gráfico.

Resolución

N° de palitos

$$3 = 3 \left(\frac{1 \times 2}{2}\right)$$

$$9 = 3 \left(\frac{2 \times 3}{2}\right)$$

$$18 = 3 \left(\frac{3 \times 4}{2} \right)$$

$$Total = 3\left(\frac{20 \times 21}{2}\right)$$

Respuesta

630

Problema 03

Juan gusta dar incentivo a sus sobrinos por resolver problemas, cierto día propuso el siguiente problema: calcular suma de cifras del resultado

$$M = \underbrace{(999...999)^2}_{10) cifras}$$

¿Cuánto recibió el primero que resolvió?

Resolución

Suma de cifras

$$\underbrace{(9)^2}_{\text{1)cifra}} = 81$$

$$(99)^2 = 9801$$
(2) cifras

$$18 = 2(9)$$

$$(999)^2 = 998001$$
3 cifras

Suma de cifras de M: 10 (9)

Respuesta

90

N

Un entrenador tiene que elegir los jugadores que serán los que viajan a un evento internacional, para lo cual propone el siguiente problema:

AA+BB+CC=ABC

Si los "viajeros fueron A+B+C", ¿cuántos son elegidos?

Martin le propone a su amigo Juaquin a resolver el siguiente problema en el mínimo tiempo y así poder resolver muchos más. Indique cuántas palabras "VERANOS" se puede leer en el siguiente arreglo.

Resolución

N° de palabras

CASO 1:
$$V \rightarrow 1 = 2^{1-1}$$

CASO 2:
$$E E \rightarrow 2 = 2^{2-1}$$

TOTAL: =
$$2^{7-1}$$

Respuesta

Problemas Propuestos

 \bigcirc

 \bigcirc

Problema 06

Problema 07

Problema 08

Problema 09

Problema 10

HELICO WORKSHOP

Problema 07

Problema 08

0

Calcule el número total de palitos en siguiente castillo.

Calcule la suma de cifras de M.

Halle el total de palitos en la figura F(10).

Pepito debe a Luchito X+Y+Z soles, para lo cual le propone el siguiente ejercicio:

$$"XX + YY + ZZ = XYZ"$$

Con la condición que él tenga la certeza, ¿cuál es la deuda?

¿Cuál fue la respuesta del problema?