## Algoritmos de Minimización de NFA a DFA: Teoría y Métodos

Exploraremos los algoritmos esenciales para la minimización de NFA a DFA. Analizaremos los métodos teóricos y enfoques prácticos. Descubriremos herramientas y aplicaciones clave en este campo.



## ¿Qué son NFA y DFA? Una breve introducción

### NFA (Autómata Finito No Determinista)

Un NFA permite múltiples transiciones. Puede estar en varios estados a la vez.

## DFA (Autómata Finito Determinista)

Un DFA tiene una única transición. Está en un solo estado en cada momento.

## **bset Construction**



## Algoritmo de Subconjuntos: La base de la conversión

1

#### Inicio

Crear el estado inicial del DFA.

2

#### **Transiciones**

Calcular transiciones para cada subconjunto.

3

## Repetir

Añadir nuevos estados al DFA.

4

#### **Final**

Marcar los estados finales del DFA.

## **DFA Minimization**

```
D (DFA,:), lil:)):)::=c):(ot)1:-300)+:1235110)

D (DFA,:), lii:)):)::=d):b=(s=1000)+:233,36))

D (DFA,)), ll:))::=d)st)=(1:2300)+:1235.04)
```

minimizations

```
D (DFA,:), l:l:)):)::=c):(0t)1=1200) +:133,41))

D (DFA,:), lil:):)::=d):b=(s=1000) +:232,600)

D (DFA,)), l:))::=d)st)=(2=2000) +12925.04)
```

Rapplis tesh't cod bow mil mominetpons it deaft expeddelts.

## Minimización de DFA: Eliminando estados redundantes

1 Identificar

Buscar estados equivalentes.

**Combinar** 

Unir los estados redundantes.

3 Optimizar

Reducir la complejidad del autómata.



| ath  | Ws | ste | St | ate | 0  | 8   | 1   | 2   | 3   |   |  |
|------|----|-----|----|-----|----|-----|-----|-----|-----|---|--|
| a, a | 10 | 1.4 | 10 | 1.7 |    | 5.9 | 3/2 | 521 | 57  | ( |  |
| ·, 2 |    |     |    | 3.5 |    | 3.3 | 1/2 | 683 | 57  | ( |  |
| , a  |    | 1.3 | 64 | 1.7 | 58 | 3.5 | 5/2 | 586 | 57  | ( |  |
| 4    | 61 | 3.6 | 64 | 3.3 | 71 | 6.6 | 3/3 | 551 | 51  | - |  |
| F, 4 | 67 | 1.1 | 96 | 1.6 | 87 | 4.2 | 8/5 | 565 | 67  | - |  |
| F, 4 | 08 | 1.9 |    | 1.9 | 74 | 9.3 | 3/2 | 323 | 6.2 | - |  |
| , a  | 06 | 3.7 | 96 | 1.4 | 34 | 1.5 | 4/5 | 333 | 67  | - |  |
| , a  | 04 | 3.1 | 64 | 3.6 | 31 | 3.9 | 2/3 | 309 | 0.7 |   |  |
| ,5   | 02 | 3.1 | 98 | 0.7 | 33 | 0.2 | 3/5 | 308 | 07  | - |  |
| a    | 03 | 4.9 | 99 | 0.2 | 34 | 9.6 | 3/2 | 989 | 01  | ( |  |
| , a  | 07 | 3.3 | 96 | 3.3 | 34 | 9.7 | 3.1 | 915 | 6.3 | ( |  |
| , a  | 05 | 0.9 | 96 | 0.2 | 75 | 0.2 | 71  | 903 | 8.1 | ( |  |
| , 3  | 04 | 6.6 | 94 | 4.1 | 78 | 9.6 | 3/4 | 944 | 6.9 | 4 |  |
| , a  | 55 | 0.1 | 33 | 4.5 | 74 | 2.1 | 2/1 | 630 | 9.2 | 1 |  |
| , a  | 24 | 6.7 | 98 | 6.7 | 47 | 4.1 | 8/5 | 800 | 3.5 | ( |  |
| , a  | 27 | 6.2 | 68 | 3.5 | 33 | 6.1 | 8/6 | 399 | 4.4 | ( |  |
| , a  | 87 | 8.3 | 38 | 6.7 | 34 | 4.1 | 3/5 | 500 | 5.5 | - |  |
| a    | 64 | 8.1 | 95 | 4.4 | 42 | 41  | 2/6 | 332 | 6.2 | ( |  |
| , a  | 99 | 5.5 | 94 | 3.5 | 94 | 51  | 3/5 | 934 | 87  |   |  |
| , a  | 76 | 3.7 | 32 | 3.5 | 33 | 8.1 | 3/6 | 352 | 6.3 |   |  |

Deterministic Finte Automation (DFA)

## Método de la Tabla de Distinguibilidad: Un enfoque práctico

| Estado A | Estado B | ¿Distinguibles? |
|----------|----------|-----------------|
| q1       | q2       | Sí/No           |
| q3       | q4       | Sí/No           |

Este método utiliza una tabla. Se identifican los estados distinguibles. Esto facilita la minimización del DFA.

## Ejemplos paso a paso: NFA a DFA minimizado



## NFA to DFA IIFA tto sacect milimilinnattio

















## Herramientas y software para la conversión y minimización



### **JFLAP**

Software educativo para teoría de autómatas.



#### **Online Tools**

Convertidores y minimizadores en línea.



#### Libraries

Implementaciones en lenguajes de programación.





# Conclusión: Importancia y aplicaciones de los algoritmos

## Compilación

Análisis léxico y sintáctico.

#### Reconocimiento

Patrones en textos y datos.

#### Diseño

Protocolos de comunicación.