

Liaison de données

- 1. Caractéristiques / Fonctions
 - 2. Gestion de liaison multipoint
 - 3. Contrôle de flux
 - 4. Reprise sur erreurs
 - 5. Contrôle d'erreurs
 - 6. Protocole BSC
 - 7. Protocole HDLC

Détection d'erreurs

 Principe de base : ajout de bits de contrôle aux bits de données qui munit l'unité de données à envoyer d'une caractéristique qui sera vérifiée à la réception

Codes détecteurs :

- Contrôle sur un caractère par ajout de bit de parité :
 VRC (Vertical Redundancy Checking)
- Contrôle sur un bloc de caractères par ajout d'un caractère de parité : LRC (Longitudinal Redundancy Checking)
- Contrôle sur une trame (ou bloc) par ajout d'un code cyclique calculé par une division polynômiale : CRC (Cyclic Redundancy Check) ou FCS (Frame Check Sequence)

Codes détecteurs d'erreurs (VRC)

- Technique du « bit de parité » (VRC, Vertical Redundancy Check)
 - Ajout d'un bit de contrôle à la séquence binaire à transmettre telle que la somme des bits transmis soit paire (ou impaire, on parle alors de parité « impaire »)
 - Exemple : 0 1 0 1 0 0 0 Données P

Codes détecteurs d'erreurs (LRC)

- Technique du LRC (Longitudinal Redundancy Check)
 - Technique du bit de parité complétée par un octet de contrôle calculé avec la parité des bits de même rang de chaque caractère
 - Possibilité de corriger <u>une</u> erreur (cf. plus loin distance de hamming)
 - Exemple (lettres codées en ASCII 7 bits) :

	Т	E	S	Т	LRC
Bit 1	1	1	1	1	0
Bit 2	0	0	0	0	0
Bit 3	1	0	1	1	1
Bit 4	0	0	0	0	0
Bit 5	1	1	0	1	1
Bit 6	0	0	1	0	1
Bit 7	0	1	1	0	0
VRC	1	1	0	1	1

Train binaire transmis: T1 E1 S0 T1 0 0 1 0 1 1 0 1

Codes détecteurs d'erreurs (CRC)

- Code cyclique CRC (Cyclic Redundancy Check) (aussi appelé code polynomial)
- Principe général
 - On considère un bloc de k bits à transmettre comme un polynôme de degré (k-1) appelé P(x)

Si $b_n ... b_\theta$ est la suite de bits à transmettre alors $P(x) = b_n x^n + b_{n-1} x^{n-1} + ... + b_\theta x^\theta$

- Les bits de contrôle (CRC) correspondent au reste de la division de $x^r * P(x)$ par G(x) où G(x) est appelé polynôme générateur de degré r

$$R(x) = Reste(x^r * P(x) / G(x)) où r = degré(G(x))$$

 Le polynôme G(x) est connu a priori par l'émetteur et le récepteur (plusieurs polynômes G(x) ont été normalisés : CRC-12, CRC-16,...)

Codes détecteurs d'erreurs (CRC, suite)

Exemple: on souhaite transmettre la séquence 1 1 0 1 1 1

On suppose le polynôme générateur $G(x) = x^2 + x + 1$

$$x^r * P(x) = x^2 * (x^5 + x^4 + x^2 + x + 1) = 1 1 0 1 1 1 0 0$$

Message transmis = 1 1 0 1 1 1 1 1

Détection et correction d'erreurs

Objectifs:

- Effectuer une détection d'erreurs mais également proposer une correction des erreurs
- (Réseaux) Eviter des retransmissions d'information en cas d'erreurs
- (Sécurité) Localiser des modifications apportées à des documents

Principes :

- Redondance d'information
- Effectuer des hypothèses sur le nombre d'erreurs probables et les possibilités de correction
- Exemple : Code de Hamming (1950)

Code de Hamming

- Mot (ou mot de code) = { ensemble de bits à transmettre : données + contrôle }
- Information reçue = { ensemble de mots }
- Distance de Hamming = nombre de bits qui diffèrent entre deux mots de code
- Propriétés :

On note « dh » la distance minimale de Hamming

- Nb d'erreurs détectables = dh-1 bits
- Nb d'erreurs corrigeables = (dh-1)/2 bits

Exemple: Hamming(7,4)

- Mot de code = 4 bits de données + 3 bits de parité
- 1 bit de donnée intervient dans le calcul (d'au moins)
 2 bits de parité
- Distance de Hamming min = 3
 - Possibilité de détecter 1 ou 2 bits d'erreur
 - Possibilité de corriger 1 bit d'erreur

P1= D1 \(\phi D2 \(\phi D3 \)
P2= D2 \(\phi D3 \\ \phi D4 \\ \phi D1 \)

Exemple: Hamming(7,4)

D1	D2	D3	D4	P1	P2	P3
0	0	1	0	1	1	1

D1	D2	D3	D4	P1	P2	P3
0	1	1	0	0	0	1

0000 000	1000 101
0001 011	1001 110
0010 111	1010 010
0011 100	1011 001
0100 110	1100 011
0101 101	1101 000
0110 001	1110 100
0111 010	1111 111

Hamming(7,4): Cherchez l'erreur...

• Hypothèse : il n'y a pas plus d'une erreur dans le mot reçu

ER	MOT EMIS	MOT RECU
	D1 D2 D3 D4 P1 P2 P3	ELEMENTS ERRONES
D1	1001110	0 0 0 1 X 1 X
D2	0101101	0 0 0 1 X X 1
D3	0011100	0 0 0 1 X X X
D4	000000	0 0 0 1 0 X X
P1	0001011	0001111
P2	0010111	0010101
P3	0100110	0100111

Liaison de données

- 1. Caractéristiques / Fonctions
 - 2. Gestion de liaison multipoint
 - 3. Contrôle de flux
 - 4. Reprise sur erreurs
 - 5. Contrôle d'erreurs
 - 6. Protocole BSC
 - 7. Protocole HDLC

Panorama des protocoles de liaison

Protocole BSC

- Binary Synchronous Communication (ou « BiSync »)
 - − IBM (~70)
- Protocole synchrone orienté caractères (l'unité d'information est le caractère)
 - Encodage des caractères avec code ASCII ou EBCDIC
 - Découpage des messages en blocs de caractères
- Mode point à point ou multipoint
- Half-duplex

BSC : caractères de contrôle

Formatage de blocs

- SOH (Start Of Heading): début d'en-tête
- STX (Start of TeXt): début de texte
- ETB (End of Bloc): fin de bloc (qui n'est pas le dernier bloc d'un message)
- ETX (End Of TeXt): fin de texte

Contrôle de l'échange

- ACK / NACK : Acquittement positif / négatif
- ENQ (Enquiry): Demande d'établissement d'échange
- EOT (End Of Transmission): Fin de transmission (met la ligne à l'état disponible)

Synchronisation

SYN : caractère de synchronisation pour transmission synchrone

Transparence et extension

DLE (Data Link Escape): caractère d'échappement

BSC : caractères de contrôle

- Découpage des messages en blocs
- Structure d'un bloc
 - Début de bloc (STX)
 - Contenu du bloc
 - Fin de bloc (ETB ou ETX)
 - Contrôle de bloc (BCC ("Block Check Character"))
 (Ex. ASCII : LRC d'1 caractère, EBCDIC : CRC de 2 caractères)

BSC : illustration échange de données

SYN SYN <caractère de contrôle>SYN SYN
SYN <caractère de début><caractère de contrôle> SYN SYN

SYNSYN SOH <en-tête> ETB BCC SYN SYN SOH <en-tête> STX <texte> ETB BCC SYN SYN SOH <en-tête> STX <texte> ETX BCC

SYN SYN STX <texte> ETB BCC SYN SYN STX <texte> ETX BCC

SYN SYN DLE STX <texte transparent> DLE ETB BCC SYN SYN DLE STX <texte transparent> DLE ETX BCC

BSC: acquisition de la voie (1)

Demande et acceptation de début de transmission

Cas de collision d'ouverture
 L'une des deux stations s'efface

BSC: acquisition de la voie (2)

Invitation à émettre (Scrutation, « polling »)
 Nom de la station secondaire en majuscule

Invitation à recevoir (Sélection, « selecting »)
 Nom de la station secondaire en minuscule

– Acceptation : ACK0

– Rejet : NAK

BSC: illustration multipoint

Liaison de données

- 1. Caractéristiques / Fonctions
 - 2. Gestion de liaison multipoint
 - 3. Contrôle de flux
 - 4. Reprise sur erreurs
 - 5. Contrôle d'erreurs
 - 6. Protocole BSC
 - 7. Protocole HDLC

Protocole HDLC

- High-level Data Link Control
 - Normalisé par l'ISO
- Protocole synchrone orienté bit (trames structurées en champs avec des codes de contrôle sous forme de séquences de bits)
- Contrôle de flux par anticipation
- Liaison point à point ou multipoint
- A la base de nombreux protocoles de niveau 2

HDLC: les modes de fonctionnement

- Deux catégories de configuration
 - Non équilibré (unbalanced) : 1 primaire et N secondaires
 - Equilibré (balanced) : 2 terminaux d'égal à égal
- Trois modes de fonctionnement (mode d'échange)
 - NRM (Normal Response Mode)
 - Configuration non équilibrée dans laquelle seul le primaire peut initier les transferts de données (*polling*)
 - ARM (Asynchronous Response Mode)
 - Configuration non équilibrée dans laquelle les secondaires peuvent émettre sans autorisation du primaire
 - ABM (Asynchronous Balanced Mode)
 - Configuration équilibrée dans laquelle chacune des deux stations peut initier la transmission (mode le plus répandu)

HDLC: format des trames

HDLC: types de trames

- Le protocole HDLC distingue 3 types de trames
 - Les trames d'information (I) Information frames
 Données de la couche réseau
 Eventuellement des acquittements (piggybacking)
 - Les trames de supervision (S) Supervisory frames
 Supervision de l'échange des données (prêt ou non prêt à recevoir, rejet, acquittements)
 Pas de donnée
 - Les trames non numérotées (U) Unnumbered frames
 Gestion de la liaison (établissement, libération)

HDLC: types de trames (2)

	B7	В6	B5	B4	В3	B2	B1	В0
Trame I		N(R)		P/F	N(S)			0
Trame S	N(R)			P/F	type 0			1
Trame U	type		P/F	ty	pe	1	1	

Format étendu (16 bits) :

	B7	В6	B5	B4	В3	B2	B1	В0	B7	В6	B5	B4	В3	B2	B1	В0
I	N(R)						P/F	N(S)					0			
S	N(R)					P/F	0 0 0 0 type 0				0	1				
U	0	0	0	0	0	0	0	P/F	type		U	ty	pe	1	1	

HDLC: les principales commandes

Trame I

Trame d'information

Trame S

- RR : Receive Ready type 00
 Prêt à recevoir la trame d'information N(R)
- RNR : Receive Not Ready type 01
 Non prêt à recevoir. Acquittement des trames jusqu'à N(R)-1
- REJ : Reject type 10
 Accusé de réception négatif.
 Demande de retransmission des trames à partir de N(R)
- SREJ : Selective Reject type 11
 Accusé de réception négatif.
 Demande de retransmission de la trame N(R)

HDLC: les principales commandes (2)

Trame U

- SNRM : Set Normal Response Mode type 100P0011
 Commande d'activation de mode.
- SARM : Set Asynchronous Response Mode type 000P1111
 Commande d'activation de mode.
- SABM : Set Asynchronous Balanced Mode type 001P1111
 Commande d'activation de mode.
- DISC : Disconnect type 010P0011
 Commande de déconnexion.
- UA: Unnumbered Acknowledgment type 011F0011
 Réponse. Accusé de réception d'une trame non numérotée (U).
- FRMR : Frame Reject type 100F0111
 Réponse. Réception d'une trame non acceptée (raison du rejet dans le champ données de la trame).

HDLC: établissement et libération de connexion

Déconnexion

HDLC : échange de données

Acquittements individuels

HDLC : échange de données

Acquittements cumulatifs

HDLC: contrôle de flux

Go Back N

Selective Reject

Expiration temporisateur

Expiration temporisateur

Variantes du protocole HDLC

- Link Access Procedure/Protocol, Balanced (LAPB)
 - Réseau WAN X.25
- Link Access Procedure/Protocol, D-Channel (LAPD)
 - Réseau WAN RNIS
- Logical Link Control (LLC) IEEE 802.2
 - Réseaux locaux IEEE 802
- Point to Point Protocol (PPP) sur liaison série IETF
 - Ex. Réseau d'accès à un ISP via modem v90/v92

Analogies protocoles liaison et transport

- Des analogies peuvent être faites entre les protocoles de la couche liaison (ex. HDLC) et les protocoles de niveau transport (ex. TCP) :
 - Numérotation de trames
 - Acquittements
 - Timer de retransmission
 - Fenêtre d'émission
 - Contrôle d'erreurs

Mais

- Liaison = traitement local
- Transport = traitement de bout en bout

