Hace 2 días...

El operador módulo en lenguajes de programación...

$$n * (a / n) + a % n = a$$
División entera

Si
$$7/-15 = -1$$
 entonces $7\%-15 = -8$

$$Si 7/-15 = 0 entonces 7\%-15 = 7$$

Si nos mantenemos **siempre** en módulo -15 entonces todo funciona bien.

¿Si salimos de ese mundo?

$$56 / (7 \% -15) + 8 = \frac{1}{16}$$

Al menos $1 \equiv 16 \mod -15$

¿Si aplicamos otros módulos?

$$10 \% (7 \% -15) = {-6 \atop 3}$$

Aquí tenemos:

$$3 \not\equiv -6 \mod -15$$
 $3 \not\equiv -6 \mod 7$ $3 \not\equiv -6 \mod -8$

ONE-TIME PAD (OTP)

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Para enviar un mensaje de largo ℓ necesitaremos una llave de largo ℓ

¿Cómo decriptar?

Para formalizarlo necesitamos convertir mensajes, llaves y textos cifrados en arreglos de enteros

$$m= ext{HOLAMUNDO}$$
 $ar{m}=(7,15,11,0,12,21,13,3,15)$ $ar{k}= ext{SECRETKEY}$ $ar{k}=(19,4,2,18,4,20,10,4,25)$ $ar{c}= ext{ZSNRP\~NWHN}$ $ar{c}=(26,19,13,18,16,14,23,7,13)$

De la misma forma necesitamos hacer la conversión en la otra dirección

$$a = (4, 9, 4, 12, 16, 11, 15)$$
 $\bar{a} = \texttt{EJEMPLO}$

Naturalmente, siempre se cumple que $\overline{\overline{s}}=s$

Con esto definimos OTP en base a

$$Enc(k,m) = \overline{(ar{m} + ar{k}) \mod 27}$$

$$Dec(k,c) = \overline{(ar{c} - ar{k}) \mod 27}$$

Desde ahora supondremos que nuestros mensajes y llaves **son** arreglos de números

Definiremos OTP simplemente usando

$$Enc(k,m) = (m+k) \mod 27$$

$$Dec(k,c) = (c-k) \mod 27$$

$$Dec(k, Enc(k,m)) = ((m+k) \mod 27 - k) \mod 27$$

$$= (m + k - k) \mod 27 = m \mod 27 = m$$

Esquema criptográfico

Espacio de llaves, mensajes y textos cifrados

Un esquema es un triple (Gen, Enc, Dec)

Gen es una distribución de probabilidades sobre ${\cal K}$

Es decir, $Gen: \mathcal{K}
ightarrow [0,1]$ tal que $\sum_{k \in \mathcal{K}} \mathit{Gen}(k) = 1$

 $Enc: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$ es el algoritmo para encriptar

 $Dec: \mathcal{K} imes \mathcal{C} o \mathcal{M}$ es el algoritmo para decriptar

Esperamos que para un esquema criptográfico (Gen, Enc, Dec) se cumpla

 $orall k \in \mathcal{K} \, orall m \in \mathcal{M} : Dec(k, Enc(k, m)) = m$

En este caso diremos que el esquema es perfectamente correcto

¿Por qué perfectamente?

OTP: sobre $\{0,1,\ldots,N\}$ y mensajes de largo ℓ (OTP $^{N,\ell}$)

$$\mathcal{K} = \mathcal{M} = \mathcal{C} = \{0,\dots,N-1\}^\ell$$

Gen es la distribución uniforme sobre $\{0,\ldots,N-1\}^\ell$

$$Enc(k,m) = (m+k) \mod N$$

$$Dec(k,c) = (c-k) \mod N$$

¿Qué tan bueno es OTP?

¿Qué pasa si veo un mensaje cifrado c pasar?

Aquí un ejemplo:

```
c = "YFTGXEIWIWEHAGQGESLPNEFBGIYTBLMQZVTYHIUKWSHYR"
```

m = "ESTEMENSAJEESLITERALMENTEIMPOSIBLEDEDECRIPTAR"

k = "UNACLAVEINADIVINABLEYNISIQUIERAPORFUERZABRUTA"

Perfect Secrecy

¿Cuándo decimos que un esquema criptográfico es *perfectamente secreto?*

Pensemos en la idea de que si un atacante ve un texto cifrado *no gana información*.

Podríamos decir algo como lo siguiente:

"Al ver un texto cifrado c pasar, para el atacante el mensaje original m podría haber sido cualquiera"

¿Cómo formalizamos esto?

Dado un texto cifrado c_0 se cumple que

$$orall m_0 \in \mathcal{M}: egin{array}{c} \Pr_{k \sim Gen} \left[Enc(k,m_0) = c_0
ight] = rac{1}{|\mathcal{M}|} \end{array}$$

$$orall m_0 \in \mathcal{M}: egin{array}{c} \Pr_{k \, \sim \, Gen} \left[Enc(k, m_0) = c_0
ight] = rac{1}{|\mathcal{M}|} \end{array}$$

¿Cómo se calcula esta probabilidad?

Es simplemente la probabilidad de haber elegido una llave que encripte m_0 como c_0

$$\sum_{k \in \mathcal{K} | Enc(k,m_0) = c_0} Gen(k)$$

¿Qué pasa si el atacante tenía información previa sobre el mensaje?

Por ejemplo sabe que el mensaje puede ser "atacar ahora" o "emprender retirada"

Podría incluso estimar que atacarán con probabilidad 1/3

¿Cómo modelamos esto matemáticamente?

Supondremos que el atacante tiene una distribución de probabilidad \mathbb{D} sobre \mathcal{M}

Para cada distribución de probabilidad $\mathbb D$ sobre $\mathcal M$ y cada texto cifrado $c_0 \in \mathcal C$ se cumple que

$$egin{array}{ll} orall m_0 \in \mathcal{M}: & \Pr_{m \sim \mathbb{D}} & [m = m_0 \mid Enc(k,m) = c_0] & = & \Pr_{m \sim \mathbb{D}} [m = m_0] \ k \sim Gen \end{array}$$

Recordemos que
$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

$$rac{\mathbb{D}(m_0) \sum_{k \in \mathcal{K} | Enc(k,m_0) = c_0} Gen(k)}{\sum_{m \in \mathcal{M}} \sum_{k \in \mathcal{K} | Enc(k,m) = c_0} \mathbb{D}(m) Gen(k)} \quad \stackrel{?}{=} \quad \mathbb{D}(m_0)$$

¿Es $OTP^{N,\ell}$ perfectamente secreto?

- 1. Gen es la distribución uniforme $1/N^\ell$
- 2. Para cada c_0 y cada m_0 existe una única llave k tal que $Enc(k,m_0)=c_0$

Sea $c_0 \in \mathcal{C}$ un texto cifrado y m_0 un mensaje.

$$rac{\mathbb{D}(m_0) \sum_{k \in \mathcal{K} | Enc(k,m_0) = c_0} Gen(k)}{\sum_{m \in \mathcal{M}} \mathbb{D}(m) \sum_{k \in \mathcal{K} | Enc(k,m) = c_0} Gen(k)}$$

$$\frac{\mathbb{D}(m_0) \cdot 1/N^{\ell}}{\sum_{m \in \mathcal{M}} \mathbb{D}(m) \cdot 1/N^{\ell}} = \mathbb{D}(m_0)$$

¿Definiciones alternativas?

- 1. Dados dos mensajes y un texto cifrado, la probabilidad de que el texto cifrado haya sido generado por un mensaje o por el otro es la misma.
- 2. La probabilidad de ver cualquier texto cifrado sin conocimiento previo es la misma que la probabilidad de ver dicho texto cifrado conociendo el mensaje de antemano.
- 3. La distribución de probabilidad sobre los mensajes es independiente de la distribución de probabilidad sobre los textos cifrados.

Ejercicio: formalizar estas nociones

4 clases y ya tenemos un esquema perfecto...

Lamentablemente...

Hemos discutido en clases que pareciera molesto y/o poco razonable que la llave tenga que ser tan larga como el mensaje.

¿Cómo modificamos OTP para tener $|\mathcal{K}| < |\mathcal{M}|$ y seguir teniendo un esquema criptográfico *perfectamente secreto?*

No podemos 🤵

Teorema

Sean $\mathcal{M}, \mathcal{K}, \mathcal{C}$ espacios de mensajes, llaves y textos cifrados, respectivamente.

Si $|\mathcal{K}| < |\mathcal{M}|$, entonces no existe un esquema (Gen, Enc, Dec) que sea perfectamente secreto.

Así de simple.

Demostración

Supongamos que $|\mathcal{K}| < |\mathcal{M}| \le |\mathcal{C}|$ y sea (Gen, Enc, Dec) un esquema criptográfico

Sea $\mathbb D$ una distribución sobre $\mathcal M$ y $m_0 \in \mathcal M$ un mensaje tal que $\mathbb D(m_0) > 0$

Como $|\mathcal{K}|<|\mathcal{M}|\leq |\mathcal{C}|$, debe existir $c_0\in\mathcal{C}$ para el cual **ninguna** llave $k\in\mathcal{K}$ satisface $Enc(k,m_0)=c_0$

$$egin{aligned} egin{aligned} & \Pr \left[m = m_0 \mid Enc(k,m) = c_0
ight] & < & \mathbb{D}(m_0) = \Pr_{m \sim \mathbb{D}}[m = m_0] \ k \sim Gen \end{aligned}$$
 Adiós perfect secrecy...

Back to reality

OTP y la noción de Perfect Secrecy son fundamentales para entender lo que viene

Pero en la práctica vamos a buscar otras propiedades...

¿Bajo qué modelo de ataque es OTP seguro?

- 1. Texto cifrado (sólo veo c_0, c_1, \ldots)
- 2. Texto (yeo $(m_0, c_0), (m_1, c_1), \ldots$)
- 3. Te o plan gido (mando a encriptar m's)
- 4. Te to circado egido (mando a encriptar m's y a criptar s)