

Linguagem de Programação I

- Vetores e Matrizes -

Prof. Ulysses Santos Sousa ulyssessousa@ifma.edu.br

Aula 04

Roteiro

- Vetores
- Vetor de string
- Funções para manipulação de strings
- Matrizes

- Vetor é uma estrutura de dados capaz de armazenar vários dados do mesmo tipo.
- Por isso é denominada estrutura de dados homogênea.
- O tipo de dado que um vetor armazena é definido no momento da sua declaração.
- Os valores de um vetor são acessados através de índices.

• Estrutura

Índice	0	1	2	3	4
Elemento	30	29	43	12	18

O índice é a forma de fazer referência a cada um dos elementos do vetor, ou seja, é uma maneira de indicar a posição do elemento que estamos querendo utilizar naquele momento.

Na linguagem C, os índices iniciam de zero.

- Declaração
 - Sintaxe:

```
tipo_de_dado identificador[tamanho_vetor];
```

- Onde:
 - tipo_de_dado: tipo de dado (int, char, float etc);
 - identificador: nome do vetor;
 - tamanho_vetor: número total de posições do vetor.
- Exemplos:

```
int numeros[5];
char nome[40];
```

• Exemplo 1:

```
1 #include <stdio.h>
 2 #include <stdlib.h>
 4 int main()
 5 {
 6
      int numeros[5];
      int i
      numeros[0] = 30;
      numeros[1] = 29;
10
      numeros[2] = 43;
11
      numeros[3] = 12;
12
      numeros[4] = 18;
13
14
      for(i = 0; i < 5; i++)
15
          printf("Valor da posicao %d: %d\n", i, numeros[i]);
16
17
      return 0;
18
```

Exemplo 2:

```
1 #include <stdio.h>
 2 #include <stdlib.h>
 4 int main()
 5 {
 6
      int numeros[5];
      int i:
 8
      printf("Digite os numeros: ");
 9
       for(i = 0; i < 5; i++)
10
           scanf("%d", &numeros[i]);
11
      printf("Vetor:\n");
12
      for(i = 0; i < 5; i++)
           printf("Valor da posicao %d: %d\n", i, numeros[i]);
13
14
15
      return 0;
16}
```

• Inicialização (exemplo)

```
int vetor[5] = {10, 20, 30, 40, 50};
float n[] = {1.2, 2.3, 3.4, 4.5};
```

Vetor de String

- Na linguagem C, uma *string* é, na realidade, um vetor que armazena vários caracteres, terminando com o caractere '\0'.
- Logo, ao declararmos um vetor devemos lembrar de deixar um espaço reservado para o caractere '\0'.

- Vetor de String
 - Exemplo
 - char nome[9]

0	1	2	3	4	5	6	7	8
'E'	'd'	ʻu'	'c'	'a'	'c'	'a'	'o'	'\0'

- **char** O vetor declarado é do tipo **char**, ou seja, este vetor armazenará valores do tipo **char**.
- **nome[9]** O vetor armazenará até 8 caracteres, já que precisamos garantir uma posição para o caractere '\0'.

- Função gets()
 - Utilizada para realizar a leitura de uma string.
 - Essa função faz a leitura e coloca o terminador nulo ('\0') no final da *string*, assim que a tecla **<enter>** for pressionada.

Função gets()

```
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main()
5 {
6     char mensagem[50];
7     printf("Digite a mensagem: ");
8     gets(mensagem);
9     printf("A mensagem digitada foi: %s\n", mensagem);
10     system("pause");
11     return 0;
12 }
```

- Função strcpy()
 - Tem a função de copiar o valor de uma *string* para outra variável.
 - Sintaxe:
 - strcpy(copia, original);

- Função strcpy()
 - Exemplo:

```
1 #include <stdio.h>
 2 #include <stdlib.h>
 4 int main()
 5 {
 б
       char nome[20], copiaNome[20];
       printf("Digite a mensagem: ");
       qets(nome);
       strcpy(copiaNome, nome);
10
      printf("Conteudo da variavel copiaNome: %s \n", copiaNome);
11
       system("pause");
12
       return 0;
13 }
```

- Função strcmp()
 - Tem a função de realizar a comparação entre duas strings.
 - Após a comparação a função retorna o valor 0 (zero) se os valores comparados forem idênticos.
 - Sintaxe:
 - strcmp(string1, string2);

- Função strcmp()
 - Exemplo:

```
1 #include <stdio.h>
 2 #include <stdlib.h>
 4 int main()
 5 {
 б
      char nome1[20], nome2[20];
      printf("Digite a primeira mensagem: ");
      qets(nome1);
      printf("Digite a segunda mensagem: ");
10
      qets(nome2);
11
       if (strcmp(nome1, nome2)==0)
12
13
           printf("Conteudo das variaveis sao identicos = %s, %s\n",
14
                  nome1, nome2);
15
       }else{
16
           printf("Conteudo das variaveis sao diferentes %s, %s\n",
17
                  nome1, nome2);
18
19
       system("pause");
20
      return 0;
21 }
```

• Função strcat()

- Concatena uma *string* à outra, ou seja, acrescenta uma *string* ao final de outra.
- Recebe dois endereços de variáveis do tipo char e concatena a segunda na primeira.
- A segunda *string* não é alterada.
- Sintaxe:
 - Strcat(string1, string2)

Função strcat()

```
#include <stdlib.h>
#include <string.h>
int main()
    char mensagem[50], nome[20];
    gets (mensagem);
    gets (nome);
    strcat(mensagem, nome);
    printf("%s\n", mensagem);
    getchar();
    return 0;
```

- Semelhante aos vetores, as matrizes são estruturas de dados capazes de armazenarem vários dados do mesmo tipo.
- Porém, enquanto os vetores são estruturas unidimensionais, as matrizes podem ter duas ou mais dimensões.

Matrizes Bidimensionais

- Possuem duas ou mais linhas e duas ou mais colunas.
- Costumam ser representadas por meio de tabelas.
- Precisam de dois índices para que seus valores sejam acessados.

• Estrutura

		Índices de coluna					
		0	1	2			
	0	15.00	20.00	25.00			
Índices de linha	1	14.50	21.60	40.22			
	2	30.11	12.02	20.12			
	3	29.12	20.18	83.01			

- Declaração:
 - Sintaxe:

```
tipo_de_dado identificador[maxLin][maxCol];
```

- Onde:
 - tipo_de_dado: tipo de dado (int, char, float etc);
 - identificador: nome da matriz;
 - maxLin: total de linhas;
 - maxCol: total de colunas.
- Exemplo:

```
float dados[4][3];
```

Exemplo:

```
1 #include <stdio.h>
 2 #include <stdlib.h>
 3
 4 int main()
 5 {
 6
      float notas[2][3];
      int i, j;
 8
      for (i = 0; i < 2; i++)
 9
10
           printf("Digite as notas do aluno %d:\n", i + 1);
11
           for(j = 0; j < 3; j++)
12
13
               printf("nota %d: ", j + 1);
14
               scanf("%f", &notas[i][j]);
15
16
```

Exemplo (cont.):

```
17
       for (i = 0; i < 2; i++)
18
19
           printf("Aluno %d\n", i + 1);
20
           printf("Notas:\n");
21
           for (j = 0; j < 3; j++)
22
               printf("%f\n", notas[i][j]);
23
24
      system("pause");
25
      return 0;
26 }
```

• Inicialização (exemplo):

```
int matriz[2][3] = {{10, 20, 30}, {40, 50, 60}};
```

Matrizes de caracteres

• Exemplo:

```
char nome[] = "Programa"; // {'P','r','o', 'g', 'r', 'a', 'm', 'a','\0'};
char dias_semana[7][14] = {"Domingo", "Segunda-feira","Terça-feira","Quarta-feira","Sexta-feira","Sabado"};
```

Matrizes de caracteres

```
linhas
                      colunas
char dias_semana[7][14] = \{
                                "Domingo",
                                "Segunda-feira",
                                "Terça-feira",
                                "Quarta-feira",
                                "Quinta-feira",
                                "Sexta-feira",
                                "Sabado"
```

Matrizes de caracteres

char dias_semana[7][14] = $\{$

D	0	m	i	n	g	0							
S	е	gg	u	n	d	а	-	f	е	i	r	а	
Т	е	r	С	а	ı	f	е	i	r	а			
Q	u	а	r	t	а	-	f	е	i	r	а		
Q	u	i	n	t	а	-	f	е	i	r	а		
S	е	Х	t	а	-	f	е	i	r	а			
S	а	b	а	d	0								

}

Resumo

Vetor

• É uma estrutura indexada que armazena dados de um mesmo tipo (homogêneos).

Vetor de string

• É um vetor de caracteres que deve ser lido pela função gets().

Matriz

• É uma estrutura na qual vários dados podem ser armazenados, desde que eles sejam do mesmo tipo. Porém possui duas ou mais dimensões.

Referências

• MIZRAHI, V. V. Treinamento em Linguagem C. 2ª Edição. São Paulo: Person Prentice Hall, 2008.

• SANTANNA, Solimara Ravani de. Lógica de programação e automação. Curitiba: Livro Técnico, 2012. 144 p. ISBN 8563687340.