## Things You Just Gotta Know

## **Coordinate Systems**

We want to focus on vector-valued functions of coordinates.

$$\vec{V}(\mathbf{r}) = V_x(x, y)\hat{\mathbf{i}} + V_y(x, y)\hat{\mathbf{j}}.$$

Notice that a vector function uses the coordinate system twice. Once for the function's inputs, once for the vectors themselves.

## **Polar Coordinates**



We can also express the inputs to  $\vec{V}$  in polar coordinates,  $(\rho,\varphi).$ 

$$\vec{V}(\mathbf{r}) = V_{\rho}(\rho, \phi) \hat{\mathbf{i}} + V_{\phi}(\rho, \phi) \hat{\mathbf{j}}.$$

To extract the input functions, we take

$$V_{x} = \hat{i} \cdot \vec{V}$$
$$V_{y} = \hat{j} \cdot \vec{V}.$$

Alternatively, we can project  $\vec{V}$  onto the  $\hat{\rho},\hat{\varphi}$  axis:

$$\vec{V}(\textbf{r}) = V_{\rho}\left(\rho,\varphi\right)\hat{\rho} + V_{\varphi}\left(\rho,\varphi\right)\hat{\varphi},$$

and we extract

$$V_{\rho} = \hat{\rho} \cdot \vec{V}$$
$$V_{\Phi} = \hat{\phi} \cdot \vec{V}.$$

Notice that **r** is an abstract vector; we need to project it onto a basis.

For instance, we can take the position vector and project it onto the cartesian and polar axes:

$$\mathbf{s} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$$

$$= \rho \cos \phi \hat{\mathbf{i}} + \rho \sin \phi \hat{\mathbf{j}}$$

$$= \rho \hat{\rho}$$

$$= \sqrt{x^2 + y^2} \hat{\rho}$$

The main reason we avoided using the  $\hat{\rho}$ ,  $\hat{\varphi}$  axis up until this point is that  $\rho$  and  $\varphi$  are *position-dependent*, while the  $\hat{i}$ ,  $\hat{j}$  axis is position-independent.

Now, we must figure out the position-dependence of  $\hat{\rho}$  and  $\hat{\phi}$ :

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial \rho} d\rho + \frac{\partial \mathbf{r}}{\partial \phi} d\phi.$$

If we hold  $\phi$  constant, it must be the case that any change in  $\rho$  is in the  $\hat{\rho}$  direction. Therefore,

$$\begin{split} \hat{\rho} &= \frac{\frac{\partial r}{\partial \rho}}{\left\| \frac{\partial r}{\partial \rho} \right\|} \\ &= \frac{\cos \varphi \hat{i} + \sin \varphi \hat{j}}{\left| \cos \varphi \hat{i} + \sin \varphi \hat{j} \right|} \\ &= \cos \varphi \hat{i} + \sin \varphi \hat{j}. \end{split}$$

Similarly,

$$\hat{\Phi} = \frac{\frac{\partial \mathbf{r}}{\partial \phi}}{\left\| \frac{\partial \mathbf{r}}{\partial \rho} \right\|}$$

$$= \frac{-\rho \sin \phi \hat{\mathbf{i}} + \rho \cos \phi \hat{\mathbf{j}}}{\left\| -\rho \sin \phi \hat{\mathbf{i}} + \rho \cos \phi \hat{\mathbf{j}} \right\|}$$

$$= -\sin \phi \hat{\mathbf{i}} + \cos \phi \hat{\mathbf{j}}.$$

Thus, we can see that the  $\hat{\rho}$ ,  $\hat{\phi}$  axis is orthogonal.

$$\begin{aligned} \frac{\partial \hat{\rho}}{\partial \varphi} &= -\sin \varphi \hat{i} + \cos \varphi \hat{j} \\ &= \hat{\varphi}, \\ \frac{\partial \hat{\varphi}}{\partial \varphi} &= -\hat{\rho}, \\ \frac{\partial \hat{\varphi}}{\partial \rho} &= 0, \end{aligned}$$

and

$$\frac{\partial \hat{\rho}}{\partial \rho} = 0$$

Example (Velocity).

$$\begin{aligned} \mathbf{v} &= \frac{d\mathbf{s}}{dt} \\ &= \frac{d}{dt} \left( x \hat{\mathbf{i}} \right) + \frac{d}{dt} \left( y \hat{\mathbf{j}} \right). \end{aligned}$$

In the case of cartesian coordinates,  $\hat{i}$  and  $\hat{j}$  are constants.

$$= v_x \hat{i} + v_y \hat{j}$$

When we examine polar coordinates, since  $\hat{\rho}$  and  $\hat{\varphi}$  are position-dependent, we must use the chain rule.<sup>1</sup>

$$\mathbf{v} = \frac{d\mathbf{s}}{dt}$$

$$= \frac{d\rho}{dt}\hat{\rho} + \rho \frac{d\hat{\rho}}{dt}$$

$$= \frac{d\rho}{dt}\hat{\rho} + \rho \left( \frac{\partial \hat{\rho}}{\partial \rho} \frac{d\rho}{dt} + \underbrace{\frac{\partial \hat{\rho}}{\partial \phi}}_{=\hat{\phi}} \frac{d\phi}{dt} \right)$$

$$= \frac{d\rho}{dt}\hat{\rho} + \rho \frac{d\phi}{dt}\hat{\phi}$$

$$= \dot{\rho}\hat{\rho} + \rho \dot{\phi}\hat{\phi}.$$

Notice that  $\dot{\rho}$  is the radial velocity and  $\dot{\varphi}=\omega$  is the angular velocity.

## **Spherical Coordinates**



| Polar                                                                         | Cylindrical                                                      | Spherical                                                                             |
|-------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $\mathbf{s} = s(\rho, \phi)$                                                  | $\mathbf{s} = s(\rho, \phi, z)$                                  | $\mathbf{s} = s(r, \phi, \theta)$                                                     |
| $\left(\rho\cos\phi\right)$                                                   | $\rho \cos \phi$                                                 | $r\cos\phi\sin\theta$                                                                 |
| $\mathbf{s} = \begin{pmatrix} \rho \cos \phi \\ \rho \sin \phi \end{pmatrix}$ | $\mathbf{s} = \begin{pmatrix} \rho \sin \phi \\ z \end{pmatrix}$ | $\mathbf{s} = \begin{bmatrix} r \sin \phi \sin \theta \\ r \cos \theta \end{bmatrix}$ |

Here,  $^{\text{II}}$   $\phi$  denotes the polar angle and  $\theta$  denotes the azimuthal angle. Notice that  $\phi \in [0, 2\pi)$  and  $\theta \in [0, \pi]$ .

<sup>&</sup>lt;sup>I</sup>Note that  $\hat{\rho} = \hat{\rho}(\rho, \varphi)$  and  $\hat{\varphi} = \hat{\varphi}(\rho, \varphi)$ .

<sup>&</sup>lt;sup>II</sup>Physicists amirite?

We can see that  $\hat{\rho}$ ,  $\hat{\varphi}$ , and  $\hat{\theta}$  in spherical coordinates are also position-dependent.

$$\begin{split} \hat{r} &= \frac{\frac{\partial s}{\partial r}}{\left\|\frac{\partial s}{\partial r}\right\|} \\ &= \sin\theta\cos\varphi\hat{i} + \sin\theta\sin\varphi\hat{j} + \cos\theta\hat{k} \\ \hat{\varphi} &= \frac{\frac{\partial s}{\partial \varphi}}{\left\|\frac{\partial s}{\partial \varphi}\right\|} \\ &= -\sin\varphi\hat{i} + \cos\varphi\hat{j} \\ \hat{\theta} &= \frac{\frac{\partial s}{\partial \theta}}{\left\|\frac{\partial s}{\partial \theta}\right\|} \\ &= \cos\varphi\cos\theta\hat{i} + \cos\theta\sin\varphi\hat{j} - \sin\theta\hat{k} \end{split}$$