ASIDE: Architectural Separation of Instructions and Data in Language Models (arxiv)

Key Highlights

問題

- **核心問題**:大型語言模型缺乏指令(應執行的操作)和數據(應處理的內容)之間 的架構分離,這使得它們易受到提示注入攻擊,其中嵌入在數據中的惡意指令被錯 誤地執行
- 現有方法及限制:
 - 。目前的方法依賴於提示工程、對抗訓練或注入檢測
 - 。這些方法在提示/訓練層面運作,而不是在架構層面
 - ° 先前的工作(Wu等人的ISE)使用可學習的偏移向量,但顯示出不一致的改進
 - 。 現有模型對於標記不論其功能角色,都使用相同的嵌入

解決方案

- 提議方法:ASIDE(架構分離指令-數據嵌入)——對數據標記嵌入應用固定的90 度正交旋轉,同時保持指令標記嵌入不變
- **靈感**:基於發現標記嵌入展示出低秩結構,表明指令和數據可以居住在相同嵌入空間的不同線性子空間中
- 理論基礎:使用等斜旋轉(具體為II/2旋轉),以塊對角方式應用於嵌入維度,創造 出架構上不同的表示而不增加可學習參數

實驗

- 性能:ASIDE在多個模型(Llama 2/3.1, Qwen 2.5, Mistral)中將指令-數據分離(SEP分數)提升了12.3-44.1個百分點,同時保持了可比的效用分數
- **安全結果**:在直接和間接提示注入基準(TensorTrust,Gandalf,Purple,RuLES,BIPIA,構造化查詢)上成功率一致地降低
- 限制:需要在輸入時知道標記的功能角色;僅評估了單次迭代交互;實驗中未使用任何特定於安全性的訓練數據

創新

- 新奇架構方法:首個在嵌入層通過固定的幾何變換強制指令-數據分離的方法
- 無參數解決方案:實現分離而不增加可訓練參數,與先前的方法不同
- 機理洞察:從第一層展示出完美的線性可分性並減少數據標記中的指令概念的虛假激活
- 可普遍性:適用於多個模型架構和大小,而無需架構特定修改

評論/批評

• 有限範圍:僅針對預定義標記角色的場景;不處理動態角色推斷或多輪交互

• **評估差距**:未與特定於安全性的訓練方法或安全環境解決方案進行比較;僅限於單次迭代交互

• 旋轉選擇:雖然90度旋轉效果很好,但其他幾何變換尚未徹底探討

• 有力證據:論文通過干預實驗和多個模型與基準的全面分析提供了令人信服的因果

證據

Comprehensive Analysis

Abstract

・摘要

- 。本摘要介紹了ASIDE,一種新穎的建築解決方案,用以改進大語言模型 (LLMs)對抗提示注入攻擊的安全性。
- 。其主要創新是對數據標記嵌入應用正交旋轉,以創建彼此不同的表示,在嵌入 層面上將指令與數據分開。
- 。這種方法不需要額外的參數,並在顯著提高對提示注入攻擊的魯棒性的同時, 保持模型性能。
- 。該方法解決了當前LLMs中的一個基本漏洞——指令與數據之間缺乏明確區分。
- 。 它展示了在多個模型中有效性,且不需要專門的安全訓練。

1 Introduction

以下是這份說明的翻譯,使用了傳統中文:

• 這個介紹提出了大型語言模型(LLMs)中指令-數據分離的問題,並提出一種新的架構解決方案,稱為ASIDE。

識別到的問題:-當前的LLMs無法可靠地區分指令(決定模型行為)和數據(應該被處理)-這種缺乏分離使模型容易受到例如提示注入和系統消息提取的攻擊-現有的緩解策略(提示設計,微調)是不足夠的

提出的解決方案 - ASIDE(架構上分離指令-數據嵌入): - 根據令牌的功能角色(指令vs. 數據)創建兩個不同的嵌入表示 - 對數據令牌嵌入應用固定的正交旋轉 - 可以整合到現有模型中而無需從頭重新訓練 - 只需要修改前向傳遞和標準的指令調整

主要優點: 1. 從第一層起可靠地判斷令牌的功能角色 2. 改善指令-數據分離評分,同時保持模型實用性 3. 提高抗提示注入攻擊的穩健性 4. 能夠在多個模型系列(Llama,Qwen,Mistral)中保持一致

• 這篇論文將ASIDE定位為超越先前質性研究的一種原則性架構解決方案,以解決 LLMs中的基本安全性和可靠性問題。 "Current LLM architectures lack a built-in mechanism that would distinguish which part of their input constitutes instructions, and which part constitutes data. Instead, the two roles are generally distinguished indirectly, e.g., by natural language statements within the prompt, or by special tokens."

目前的LLM架構缺乏內建機制來區分輸入中屬於指令的部分和屬於數據的部分。相反, 這兩者的角色通常是間接區分的,例如通過提示中的自然語言語句或特殊標記。

"We propose a new architectural element, ASIDE (Architecturally Separated Instruction-Data Embeddings), that enforces the separation between instructions and data on the level of model architecture rather than just on the level of input prompts or model weights."

我們提出了一個新的架構元素,ASIDE(架構上分離的指令-數據嵌入),它強制在模型架構層面區分指令和數據,而不僅僅是在輸入提示或模型權重層面。

"ASIDE assigns each input token one of two embedding representations based on its functional role (instruction or data). ASIDE can be integrated into existing language models without a need for repeating their pretraining."

ASIDE根據每個輸入標記的功能角色(指令或數據)為其分配兩種嵌入表示之一。 ASIDE可以集成到現有的語言模型中,而無需重複其預訓練。

2 Related work

第2節摘要:相關研究

- 此部分回顧了大型語言模型(LLMs)的現有漏洞和當前的防禦機制,並確定了作者的 ASIDE 方法在更廣泛的研究範圍內的位置。
- 主要識別的漏洞:
 - 提示注入、目標劫持、提示竊取和數據泄漏
 - 。根本原因:當前模型中缺乏適當的指令-數據分離
- 現有的防禦方法:
 - ∘ 提示工程 編寫更好的提示以抵抗攻擊
 - · 基於優化的方法 對抗性訓練和斷路方法
 - · **注入檢測** 識別惡意輸入
 - 系統級解決方案 外部保護系統(與本研究無關)

• 研究差距和貢獻:

- 。作者指出,儘管在其他領域取得成功,但對指令-數據分離的架構解決方案在 很大程度上仍缺失。
- 雖然先前的工作使用嵌入級變換(例如位置編碼的旋轉),但這些尚未應用於 安全性。

· ASIDE的方法定位:

- 。 對數據標記嵌入應用固定的正交旋轉
- 。 將基於旋轉的方法擴展到安全領域
- 。相比最相似的工作(Wu 等人在2024年提出的ISE)使用可學習的偏移向量,ASIDE聲稱在不增加參數的情況下在更深層實現更好的分離
- 本節說明了ASIDE通過為提升LLMs內部的指令-數據分離提供一種架構性的、無參數的解決方案,填補了現有的空白。

"Like us, Zverev et al. (2025) argue that a crucial factor towards such vulnerabilities is the lack of instruction-data separation in current models."

與我們類似,Zverev 等人(2025年)認為當前模型中的指令數據分離不足是導致此類漏洞的一個關鍵因素。

"ASIDE addresses this gap by applying a fixed orthogonal rotation to data token embeddings, extending rotation-based methods to the safety domain without adding parameters or sacrificing performance."

ASIDE 通過對數據標記嵌入應用固定正交旋轉來彌補這一空缺,將基於旋轉的方法擴展 到安全領域而不增加參數或犧牲性能。

"We find that this linear offset strategy is less effective at separating instruction and data representations in deeper layers compared to rotations (see Section 6). ASIDE achieves stronger empirical separation without introducing additional parameters."

我們發現,與旋轉相比,這種線性偏移策略在分離深層的指令和數據表示方面效果較差(見第6節)。ASIDE 在不引入額外參數的情況下實現了更強的實證分離。

3 Architecturally Separated Instruction-Data Embeddings

摘要

 本節介紹了 ASIDE (Architecturally Separated Instruction-Data Embeddings),這是一種新穎的方法,用於在大型語言模型中對標記進行編碼, 並在嵌入層級區分指令標記和數據標記。

創新點: - ASIDE 不需要為指令和數據學習不同的嵌入(這會使參數翻倍),而是對數據標記嵌入應用 **固定的正交旋轉**,同時保持指令標記嵌入不變。 - 這種方法利用標記嵌入的低秩結構,在相同的嵌入空間中將指令和數據放在不同的線性子空間。

技術實現: - 指令標記使用標準嵌入: $E[token_index]$ 。 - 數據標記使用旋轉後的嵌入: $R(E[token_index])$,其中 R 是一個固定的 $\pi/2$ 旋轉矩陣。 - 旋轉是通過簡單的 [[0,-1],[1,0]] 轉換在每組2維中進行。

優勢: - **沒有額外的參數** 與標準模型相比。 - **事後整合** 可能 - 可以對現有的預訓練模型進行改造,而無需重新從頭訓練。 - **與模型架構無關** - 適用於任何使用標記嵌入的模型。 - 修改後只需微調,不需完全重新訓練。

訓練過程: - 修改正向傳播過程,以包括數據標記的有條件旋轉。 - 在數據集上進行微調,其中標記角色(指令 vs. 數據)得到區分。

• 該方法假設標記角色在輸入時已知(例如通過標籤或不同的輸入來源),並且可以 擴展到通過額外的正交變換處理多於兩個功能類別。

圖像摘要: - 無

"At the core of ASIDE lies the idea that instructions and data should have different representations. A natural place to enforce this in a language model is at the level of token embeddings: if a token's functional role (instruction or data) can be read off from its embeddings, the model can easily maintain this distinction in the later layers' representations."

在ASIDE的核心理念是指令和數據應該有不同的表示。在語言模型中,自然的一個地方是在詞元嵌入的層級處執行這一點:如果詞元的功能角色(指令或數據)可以從其嵌入中讀出,模型就能容易地在後續層的表示中保持這種區分。

"ASIDE exploits this insight by a specific construction: the representations of data tokens differ from those of instruction tokens by a fixed orthogonal rotation. This construction overcomes both shortcomings mentioned above: no additional trainable parameters are added compared to a standard model, and the representation learned from standard pretraining or instruction-tuning can be reused."

ASIDE通過一個特定的構造利用了這個洞見:數據詞元的表示與指令詞元的表示是由一個固定的正交旋轉來區分的。這個構造克服了上述的兩個缺點:與標準模型相比,沒有增加額外的可訓練參數,而且從標準預訓練或指令微調中學到的表示可以被重用。

"Because ASIDE only modifies the embedding layer's forward pass (rather than the embeddings themselves), it can also be integrated post hoc into any pretrained LLM."

因為ASIDE僅修改嵌入層的正向傳播(而不是嵌入本身),它也可以在任何預訓練的大型語言模型中事後集成。

4 Experiments: Instruction-data separation

- 本節介紹了ASIDE(自適應指令和數據嵌入分離)模型的首次實驗評估,該模型使用條件令牌嵌入。
- 該實驗重點測試模型在指令跟隨任務中區分指令和數據的能力。
- 本節分為三部分:訓練方法論(4.1)、評估框架(4.2)和結果討論(4.3)。
- 這似乎是在設立一個對照研究,用於驗證 ASIDE 方法是否能夠在語言模型任務中 有效地分離不同類型的輸入內容。

5 Experiments: Safety

這部分介紹了旨在評估ASIDE方法如何改進大型語言模型(LLM)安全性的安全實驗。 作者測試了通過ASIDE實現的更好的指令-數據分離是否能轉化為增強的防範「提示注 入」攻擊。 他們使用先前訓練的模型進行了兩種類型的實驗,以評估模型對間接和直接提 示注入的魯棒性。 假設是改進的分離將導致更好的安全性結果。

'A primary motivation for increasing instruction-data separation is to address the safety of LLM applications.'

主要動機增加指令與數據的分離是為了應對大規模語言模型應用的安全問題。

'ASIDE, which demonstrates a substantial improvement in separation, also boosts the model's robustness to prompt injections.'

ASIDE展示了在分離方面的顯著改進,同時也提高了模型對提示注入的魯棒性。

'We perform two sets of experiments on the models trained in Section 4 to evaluate their robustness against indirect and direct prompt injections.'

我們對在第4節中訓練的模型進行了兩組實驗,以評估它們對間接和直接提示注入的魯棒性。

6 Analysis

部分摘要

- 本節介紹了ASIDE方法在語言模型中改善指令與數據分離機制的分析。
- 作者使用可解釋性技術和表示分析來理解ASIDE如何修改模型的內部處理。
- 主要實驗集中在Llama 3.1 8B模型。
- 附錄中提供了來自其他模型的補充實驗和結果,據報導這些結果在不同模型架構中展示了一致的發現。

7 Summary and Discussion

簡要總結

• 本節概述了 ASIDE,一種針對語言模型的架構修改,通過使用基於角色的不同嵌入表示來增強指令數據的分離。

• 其關鍵創新是在前向傳播過程中對數據標記應用 90 度旋轉,這在計算上是高效的 且不需要額外的參數。

主要貢獻: - ASIDE 比標準架構實現了更強的指令數據分離,而不需要特殊防禦提示或安全對齊。 - 該方法被視為邁向更安全、更可靠的大型語言模型(LLMs)的一個有希望的步驟。

限制和未來工作: - 90 度旋轉只是其中一種可能的方法;應該探索其他基於角色條件的嵌入方法。 - 研究未包含現有的安全訓練技術,這些技術可能與 ASIDE 互補。 - 該工作僅限於單輪交互;多輪對話和模型生成指令的場景仍是未解決的難題。

作者將 ASIDE 定位為一種對訓練數據和優化選擇保持中立的架構解決方案,有潛力補充現有的安全方法。

"ASIDE's main idea is to use two different embedding representations for any token, depending on whether the token is part of the instructions or the data."

ASIDE的主要理念是對任何標記使用兩種不同的嵌入表示,取決於該標記是指令的一部分還是數據的一部分。

"In practice, we achieve this conditional embedding mechanism by a simple and efficient modification of the forward pass, applying a 90-degree rotation to non-executable (data) tokens."

在實踐中,我們通過簡單且高效的修改前向傳遞來實現這種條件嵌入機制,對不可執行的 (數據)標記應用90度旋轉。

"ASIDE-enabled models achieve much stronger instruction-data separation than models with a standard architecture, even without specific defense prompts or additional safety alignment."

ASIDE支持的模型比具有標準架構的模型實現更強的指令-數據分離,甚至在沒有特定的防禦提示或額外的安全對齊的情況下。

References

No references found.