Analysis Group Intro Talk

Alex Rutar

University of St Andrews

January 25, 2021

1. Fractals and Dimension Theory

2. Dynamical Systems

Fractals and Dimension Theory

Fractals in Nature?

Images © Wikimedia commons

What properties do fractals have?

What properties do fractals have?

► Fine detail at small scales

What properties do fractals have?

- ► Fine detail at small scales
- (approximately?) composed of smaller copies of itself

What properties do fractals have?

- ► Fine detail at small scales
- (approximately?) composed of smaller copies of itself
- "fractal dimension" different than "topological dimension"

What properties do fractals have?

- ► Fine detail at small scales
- (approximately?) composed of smaller copies of itself
- "fractal dimension" different than "topological dimension"

But...no clear definition (most sensible attempts at definitions have exceptions)!

► Ternary representations with digits 0 and 2

- ► Ternary representations with digits 0 and 2
- ▶ Each level: 2^n intervals each with length $1/3^n$

- ► Ternary representations with digits 0 and 2
- **Each** level: 2^n intervals each with length $1/3^n$
 - ▶ therefore each layer has length $(2/3)^n \rightarrow 0$, therefore 'length' zero

- ► Ternary representations with digits 0 and 2
- **Each** level: 2^n intervals each with length $1/3^n$
 - ▶ therefore each layer has length $(2/3)^n \rightarrow 0$, therefore 'length' zero
- contains as many points [0,1]

- ► Ternary representations with digits 0 and 2
- **Each** level: 2^n intervals each with length $1/3^n$
 - ▶ therefore each layer has length $(2/3)^n \rightarrow 0$, therefore 'length' zero
- contains as many points [0,1]
 - 'bijection' taking ternary representations to binary representations

Finite set of maps f_i which "moves points closer together"

- \triangleright Finite set of maps f_i which "moves points closer together"
- Sierpinsky triangle

- \triangleright Finite set of maps f_i which "moves points closer together"
- Sierpinsky triangle
- Koch curve

- \triangleright Finite set of maps f_i which "moves points closer together"
- Sierpinsky triangle
- Koch curve
- Starting shape does not matter!

Koch Curve(s)

- ► Koch Curve(s)
 - Continuous curve (can be drawn without lifting pencil)

- Koch Curve(s)
 - Continuous curve (can be drawn without lifting pencil)
 - ▶ Infinite 'length' (each layer has length $(4/3)^n \to \infty$)

- Koch Curve(s)
 - Continuous curve (can be drawn without lifting pencil)
 - ▶ Infinite 'length' (each layer has length $(4/3)^n \to \infty$)
- how to distinguish the different curves?

Dimension

Manifold / smooth object: 'locally' looks like \mathbb{R}^n , so we say it has dimension n

Dimension

- Manifold / smooth object: 'locally' looks like \mathbb{R}^n , so we say it has dimension n
- general objects with no nice local structure? (zooming in does not make it smoother)

Dimension

- ▶ Manifold / smooth object: 'locally' looks like \mathbb{R}^n , so we say it has dimension n
- general objects with no nice local structure? (zooming in does not make it smoother)
- one idea: dimension as 'scaling property'

Square-cube law (surface area scales like 12) volume scales like

- Square-cube law (surface area scales like n^2 , volume scales like n^3)
- Scaling: given a square $[0,1]^2$, how many smaller squares does it take to cover?

- Square-cube law (surface area scales like n^2 , volume scales like n^3)
- Scaling: given a square $[0,1]^2$, how many smaller squares does it take to cover?
 - ▶ 4 squares with side length 1/2

- Square-cube law (surface area scales like n^2 , volume scales like n^3)
- Scaling: given a square $[0,1]^2$, how many smaller squares does it take to cover?
 - ▶ 4 squares with side length 1/2
 - $ightharpoonup n^2$ squares with side length 1/n

- Square-cube law (surface area scales like n^2 , volume scales like n^3)
- Scaling: given a square $[0,1]^2$, how many smaller squares does it take to cover?
 - ▶ 4 squares with side length 1/2
 - $ightharpoonup n^2$ squares with side length 1/n
- ► Cubes: n^3 cubes with side length 1/n

- Square-cube law (surface area scales like n^2 , volume scales like n^3)
- Scaling: given a square $[0,1]^2$, how many smaller squares does it take to cover?
 - ▶ 4 squares with side length 1/2
 - \triangleright n > 1 squares with side length 1/n
- Cubes: $n^{\mathfrak{G}}$ cubes with side length 1/n
- Generally: power-law for number of cubes to cover a set

- Square-cube law (surface area scales like n^2 , volume scales like n^3)
- Scaling: given a square $[0,1]^2$, how many smaller squares does it take to cover?
 - ▶ 4 squares with side length 1/2
 - $ightharpoonup n^2$ squares with side length 1/n
- ▶ Cubes: n^3 cubes with side length 1/n
- Generally: power-law for number of cubes to cover a set

This is known as the Box / Minkowski dimension

Box Dimension of Cantor Set

▶ Fix side length $1/n \approx 1/3^k$, need 2^k intervals

Box Dimension of Cantor Set

- Fix side length $1/n \approx 1/3^k$, need 2^k intervals
- ► Then $n^{\log 2/\log 3} \approx (3^{\log 2/\log 3})^k = 2^k$

Box Dimension of Cantor Set

- Fix side length $1/n \approx 1/3^k$, need 2^k intervals
- ► Then $n^{\log 2/\log 3} \approx (3^{\log 2/\log 3})^k = 2^k$
- ▶ Cantor set has dimension $\log 2/\log 3 \approx 0.630929754$

Box Dimension of Cantor Set

- Fix side length $1/n \approx 1/3^k$, need 2^k intervals
- ► Then $n^{\log 2/\log 3} \approx (3^{\log 2/\log 3})^k = 2^k$
- ► Cantor set has dimension $\log 2/\log 3 \approx 0.630929754$

Example: dimension distinguishes the general Koch curves

Many other types of dimension studied (Hausdorff, Packing, Assouad, L^q , ...)

- Many other types of dimension studied (Hausdorff, Packing, Assouad, L^q , ...)
- ► How to distinguish sets with dimensions?

- Many other types of dimension studied (Hausdorff, Packing, Assouad, L^q , ...)
- ► How to distinguish sets with dimensions?
- ► What (metric, topological, etc.) properties do dimensions influence, or influence dimensions?

- Many other types of dimension studied (Hausdorff, Packing, Assouad, L^q , ...)
- ► How to distinguish sets with dimensions?
- What (metric, topological, etc.) properties do dimensions influence, or influence dimensions?
- Connections to harmonic analysis, etc. (Projections of sets, Kakeya conjecture, ...)

Dynamical Systems

Images © Wikimedia commons

 System governed by some sort of time-dependent transformation (discrete, continuous)

- System governed by some sort of time-dependent transformation (discrete, continuous)
- ► Interested in: long term behaviour of the system from initial condition

- System governed by some sort of time-dependent transformation (discrete, continuous)
- Interested in: long term behaviour of the system from initial condition
 - describe trajectory based on initial conditions

- System governed by some sort of time-dependent transformation (discrete, continuous)
- Interested in: long term behaviour of the system from initial condition
 - describe trajectory based on initial conditions
 - where does the trajectory end up / spend most time?

Doubling Map

► Consider map $f(x) = 2x \pmod{1}$ on [0,1] ("doubling map")

Doubling Map

- ► Consider map $f(x) = 2x \pmod{1}$ on [0,1] ("doubling map")
- ► If *x* has binary expansion

$$0.b_1b_2b_3b_4...$$

then

$$f(x)=0.b_2b_3b_4\ldots$$

Doubling Map

- ► Consider map $f(x) = 2x \pmod{1}$ on [0,1] ("doubling map")
- ► If x has binary expansion

$$0.b_1b_2b_3b_4...$$

then

$$f(x)=0.b_2b_3b_4\ldots.$$

lacktriangle can study sequences $\{0,1\}^{\mathbb{N}}$ (as encoding points in [0,1])

▶ What do orbits $(x, f(x), f \circ f(x),...)$ look like?

- ▶ What do orbits $(x, f(x), f \circ f(x),...)$ look like?
- x rational

$$SC = \frac{P}{q}$$

$$2DC = \frac{2P (mdq)}{q}$$

$$\chi$$
 2π χ^2 χ^2 χ^2 χ^2

- ▶ What do orbits $(x, f(x), f \circ f(x),...)$ look like?
- x rational
 - binary expansion is periodic (ending repeats infinitely)

- ▶ What do orbits $(x, f(x), f \circ f(x),...)$ look like?
- x rational
 - binary expansion is periodic (ending repeats infinitely)
 - ▶ therefore orbit is finite

- ▶ What do orbits $(x, f(x), f \circ f(x),...)$ look like?
- x rational
 - binary expansion is periodic (ending repeats infinitely)
 - therefore orbit is finite
- ▶ What if x irrational? What does the orbit look like?

- ▶ What do orbits $(x, f(x), f \circ f(x),...)$ look like?
- x rational
 - binary expansion is periodic (ending repeats infinitely)
 - therefore orbit is finite
- ▶ What if x irrational? What does the orbit look like?
 - Point 0.0100011011000001010011100101110111... has dense orbit

- ▶ What do orbits $(x, f(x), f \circ f(x),...)$ look like?
- x rational
 - binary expansion is periodic (ending repeats infinitely)
 - therefore orbit is finite
- ▶ What if x irrational? What does the orbit look like?
 - Point 0.0100011011000001010011100101110111... has dense orbit

Theorem (Birkhoff Ergodic)

If f is 'ergodic', then 'most' orbits spend time in a region proportional to the 'size' of the region.

Theorem (Birkhoff Ergodic)

If f is 'ergodic', then 'most' orbits spend time in a region proportional to the 'size' of the region.

▶ $2x \pmod{1}$: if x is a randomly chosen point and [a, b] is an interval, then approximately n(b - a) of the points in

Theorem (Birkhoff Ergodic)

If f is 'ergodic', then 'most' orbits spend time in a region proportional to the 'size' of the region.

▶ $2x \pmod{1}$: if x is a randomly chosen point and [a, b] is an interval, then approximately n(b - a) of the points in

$$\{x, f(x), f \circ f(x), \dots, f^{(n-1)}(x)\}$$

are in [a, b].

with probability 1, a random point has dense orbit

Theorem (Birkhoff Ergodic)

If f is 'ergodic', then 'most' orbits spend time in a region proportional to the 'size' of the region.

▶ $2x \pmod{1}$: if x is a randomly chosen point and [a, b] is an interval, then approximately n(b - a) of the points in

$$\{x, f(x), f \circ f(x), \dots, f^{(n-1)}(x)\}$$

are in [a, b].

- with probability 1, a random point has dense orbit
- But there are many points without dense orbits!

► PDEs, modelling

- ► PDEs, modelling
- Number theory

- ▶ PDEs, modelling
- Number theory
 - Doubling map: properties of decimal expansions

- ► PDEs, modelling
- Number theory
 - Doubling map: properties of decimal expansions
 - ▶ Gauss map $x \mapsto 1/x \pmod{1}$: continued fractions

- ► PDEs, modelling
- Number theory
 - Doubling map: properties of decimal expansions
 - ▶ Gauss map $x \mapsto 1/x \pmod{1}$: continued fractions
- ▶ important tool in many other areas of maths / analysis