Національний технічний університет України «КПІ ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформаційних систем та технологій

Спеціальні розділи математики-2. Чисельні методи

Лабораторна робота № 3

Розв'язання систем лінійних алгебраїчних рівнянь (СЛАР) ітераційними методами. Метод простої ітерації. Метод Зейделя

3міст

l Теоретичні відомості	2
2 Завдання	3
3 Варіанти завдань	
4 Вимоги до звіту	

1 Теоретичні відомості

Ітераційними методами ε такі, що навіть у припущенні, що обчислення ведуться без округлень, дозволяють отримати розв'язок системи лише із заданою точністю. До таких методів відносяться метод простої ітерації (метод Якобі) та метод Зейделя.

Будемо розглядати системи вигляду

$$Ax = b, (1)$$

де $A(n \times n)$ - матриця системи, b - вектор правої частини, x - вектор розв'язку.

Метод простої ітерації

Систему Ax = b приводять до вигляду

$$x = Cx + d, (2)$$

де C - деяка матриця, для якої виконується

$$\alpha = \max_{i} \sum_{j=1}^{n} |c_{ij}| < 1 \text{ ado } \alpha = \max_{j} \sum_{i=1}^{n} |c_{ij}| < 1 \text{ ado } \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}^{2} < 1$$
 (3)

d - вектор-стовпець.

Умова (3) буде виконана, якщо матриця А ϵ матрицею з діагональною перевагою, для якої $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ або $|a_{jj}| > \sum_{j \neq i} |a_{ij}|$

Розглянемо спосіб зведення (1) до (2). Запишемо (1) у розгорнутій формі:

$$-\sum_{i=1}^{n} a_{ij} x_{j} + b_{i} = 0, i = \overline{1, n}$$
(4)

Якщо $a_{ii}\neq 0$ для всіх i, то можна (4) зобразити у вигляді

$$x_{i} = -\sum_{i=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_{j} - \sum_{i=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_{j} + \frac{b_{i}}{a_{ii}}, i = \overline{1, n}$$
(5)

Звідси отримуємо значення елементів матриці C та вектору d:

$$c_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}}, i \neq j \\ 0, i = j \end{cases} d_i = \frac{b_i}{a_{ii}}, i = \overline{1, n}$$

Запишемо розв'язок у матричному вигляді. Нехай матрицю A задано у вигляді:

$$A = A_1 + D + A_2,$$

де A_1 — нижня трикутна матриця з нульовою головною діагоналлю; D — діагональна матриця з a_{ii} на головній діагоналі; A_2 — верхня трикутна матриця з нульовою головною діагоналлю.

За припущенням $a_{ij}\neq 0$ для всіх i, існує D^{-1} . Тоді зображенню у формі (5) відповідає

$$x = -D^{-1}A_1x - D^{-1}A_2x + D^{-1}b$$

або

$$x = -D^{-1}(A_1 + A_2)x + D^{-1}b.$$

Якщо матриця A не забезпечує виконання (3), тобто не ϵ матрицею з діагональною перевагою, її приводять до такої за допомогою еквівалентних перетворень.

Виходячи з довільного вектора $x^{(0)}$ (можна взяти вектор b, або вектор b, поділений на діагональ матриці A) будують ітераційний процес:

$$x^{(k+1)} := Cx^{(k)} + d$$

або

$$x^{(k+1)} = -D^{-1}(A_1 + A_2)x^{(k)} + D^{-1}b$$

Критерій закінчення ітераційного процесу:

$$\max_{j} |x_{j}^{k+1} - x_{j}^{k}| < \varepsilon.$$

Метод Зейделя

Цей метод — модифікація методу простої ітерації. В цьому методі вже знайдені компоненти беруть у правій частині співвідношення з (n+1)-го наближення, а іншні — з n-го наближення:

$$x_i^{(k+1)} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{(k+1)} - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^{(k)} + \frac{b_i}{a_{ii}}, i = \overline{1, n}.$$

Або у матричному вигляді:

$$x^{(k+1)} = -D^{-1}A_1x^{(k+1)} - D^{-1}A_2x^{(k)} + D^{-1}b.$$

Умови застосування методу Зейделя, критерій закінчення ітерацій такі самі, як для методу простої ітерації.

2 Завдання

Якщо матриця не ϵ матрицею із діагональною перевагою, звести систему до еквівалентної, у якій ϵ діагональна перевага (виконати письмово, включити в звіт). Можна, наприклад, провести одну ітерацію метода Гауса, зкомбінувавши рядки з метою отримати нульовий недіагональний елемент у стовпчику.

Розробити програму, що реалізує розв'язання системи методом простої ітерації та методом Зейделя. Обчислення проводити з з кількістю значущих цифр m=6. Для кожної ітерації розраховувати нев'язку r=b-Ax, де x — отриманий розв'язок.

Розв'язати задану систему рівнянь за допомогою програмного забезпечення Mathcad. Навести результат перевірки: вектор нев'язки $r = b - Ax_m$, де x_m — отриманий у Mathcad розв'язок.

Порівняти корені рівнянь, отримані у Mathcad, із власними результатами за допомогою методу середньоквадратичної похибки.

3 Варіанти завдань

Система має вигляд (1).

№ вар.	Матриця	системи А				Е	Вектор правої	частини <i>b</i>
1-4	$(5,18+\alpha)$	1,12	0,95	1,32	0,83	($(6,19 + \beta)$	
	1,12	$4,28-\alpha$	2,12	0,57	0,91		3,21	
	0,95	2,12	$6,13 + \alpha$	1,29	1,57		$4,28-\beta$	
	1,32	0,57	1,29	$4,57-\alpha$	1,25		6,25	
	0,83	0,91	1,57	1,25	$5,21+\alpha$		$(4.95 + \beta)$	
	0.251	1 10	1				0 0 251 1	λ¢. 1
	$\alpha = 0.25k, \ k = N_{2} \epsilon a p - 1$					ļ	$\beta = 0.35k, \ k = 0.000$	<i>№вар</i> – 1
5-9	(3,81	0,25	1,28	$0.75 + \alpha$			4,21	
	2,25	1,32	$4,58 + \alpha$	0,49			$6,47 + \beta$	
	5,31	$6,28 + \alpha$	0,98	1,04			2,38	
	$9,39+\alpha$	2,45	3,35	2,28			$(10,48+\beta)$	
	$\alpha = 0.5k$	k = <i>№6ap</i> -	-5,			1	$\beta = 0.5k \; , \; k = N$	<i>№6ap</i> – 5

10	(212 012 121 022)	(11170)
10	(2,12 0,42 1,34 0,88)	$\left(11,172\right)$
	0,42 3,95 1,87 0,43	0,115
	1,34 1,87 2,98 0,46	0,009
	(0,88 0,43 0,46 4,44)	(9,349)
11-15	$8,30 2,62 + \alpha 4,10 1,90$	$\left(-10,65+\beta\right)$
	$3,92$ $8,45$ $8,78-\alpha$ $2,46$	12,21
	$3,77$ $7,21+\alpha$ $8,04$ $2,28$	$15,45-\beta$
	$(2,21 3,65-\alpha 1,69 6,99)$	(-8,35)
	$\alpha = 0.2k, k = N_2 \epsilon ap - 11$	$\beta = 0.2k, k = \mathcal{N}_{2} \epsilon ap - 11$
16	(1,00 0,42 0,54 0,66)	(0,3)
	0,42 1,00 0,32 0,44	0,5
	0,54 0,32 1,00 0,22	0,7
	(0,66 0,44 0,22 1,00)	(0,9)
17	(5,5 7,0 6,0 5,5)	(23)
	7,0 10,5 8,0 7,0	32
	6,0 8,0 10,5 9	33
	(5,5 7 9 10,5)	(31)
18	(6,59 1,28 0,79 1,195 -0,21)	(2,1)
	0,92 3,83 1,3 -1,63 1,02	0,36
	1,15 -2,46 5,77 2,1 1,483	3,89
	1,285 0,16 2,1 5,77 -18	11,04
	$\left[\begin{array}{cccc} 0,69 & -1,68 & -1,217 & 9 & -6 \end{array} \right]$	$\left(-0.27\right)$
19	(3,81 0,25 1,28 1,75)	(4,21)
	2,25 1,32 5,58 0,49	8,97
	5,31 7,28 0,98 1,04	2,38
	(10,39 2,45 3,35 2,28)	(12,98)
20	(6,92 1,28 0,79 1,15 -0,66)	(2,1)
	0,92 3,5 1,3 -1,62 1,02	0,72
	1,15 -2,46 6,1 2,1 1,483	3,87
	1,33 0,16 2,1 5,44 -18	13,8
	$\begin{bmatrix} 1,14 & -1,68 & -1,217 & 9 & -3 \end{bmatrix}$	$\left(-1,08\right)$
21	(7,03 1,22 0,85 1,135 -0,81)	(2,1)
	0,98 3,39 1,3 -1,63 0,57	0,84
	1,09 - 2,46 6,21 2,1 1,033	2,58
	1,345 0,16 2,1 5,33 -12	11,96
	$\begin{bmatrix} 1,29 & -1,23 & -0,767 & 6 & 1 \end{bmatrix}$	$\left(-1,47\right)$
22-31	$(8,30 2,62 + \alpha 4,10 1,90)$	$(-10,65+\beta)$
	$3,92$ 8,45 8,78 – α 2,46	12,21
	$\begin{bmatrix} 3,77 & 7,21+\alpha & 8,04 & 2,28 \end{bmatrix}$	$15,45-\beta$
	$\left(2,21 3,65-\alpha \qquad 1,69 \qquad 6,99 \right)$	$\left(\begin{array}{c} -8,35 \end{array}\right)$
	$\alpha = 0.2k, k = N_{2} \epsilon ap - 22$	$\beta = 0.2k, k = N_{2}eap - 22$
	•	

4 Вимоги до звіту

Звіт має містити:

- постановку задачі;
- вихідну систему рівнянь;
- письмовий етап приведення матриці до діагональної переваги (за необхідності);
- проміжні результати та кінцевий результат;
- результати перших трьох та останньої ітерацій методу, на кожній ітерації потрібно навести вектор нев'язки;
- копія розв'язку задачі у Mathcad; вектор нев'язки для цього розв'язку;
- порівняння власного розв'язку та розв'язку, отриманого у Mathcad; лістинг програми.