Information Management (IM)

2019-2020

CS1F Overview

• From now... Information Management

Dr. Craig Macdonald

Lecturer

Room S171, Lilybank Gardens

Email: Craig.Macdonald@glasgow.ac.uk

 After Oct. 29th – Professional Issues & Human Computer Interaction:

Dr. Julie Williamson

Lecturer

Rm 407, Sir Alwyn Williams building

Email: Julie.Williamson@glasgow.ac.uk

CS1F: Where & When

- Lectures:
 - Tuesdays & Thursdays 12-1
 - ▼ Venue: Main Building Kelvin Gallery
- Tutorials & Labs
 - O Start in Week 2, from 2nd October
 - O You have been allocated a lab/tutorial group
 - O Check your timetable for your tutorial group & location

CS1F & Routes

- You take CS1F if:
 - Normal Route: If you are studying 1st year Computing Science and taking CS1P
- \circ OR
 - Alternate Route: If you are in 2nd year and took CS1CT in first year (and not CS1F)
- o OR
 - Exceptional Route: You might exceptionally be taking CS1CT and CS1F
- o OR
 - o Faster Route: If you are in the first year of a "fast track degree"

CS1F Overview: When?

Week 1 - Week 6: Information Management

Week 6 - week 12: HCI & Professional Issues (PI)

Week 13: Exam

Week 14, 15, 16: Christmas Holiday

CS1F Assessment

Exam December 80% Practical Work Ongoing 20%

Resit Exam August 80%

For CS1F, this equates to

Information Management Practical is worth 8% =~ 8 hours

Professional Issues Contribution is worth 4%

Human Computer Interaction Practical is worth 8% =~ 8 hours

Moodle

- · Your gateway to all course information
 - o http://moodle2.gla.ac.uk
- Specific page for CS1F
 - o http://moodle2.gla.ac.uk/course/view.php?id=2890
 - Lecture notes
 - Assessed coursework
 - Additional reading material
 - News forum

Familiarisation Labs

Turn up to ONE of the following familiarisation labs $\underline{\text{this week}}$ (week 1)

They will be held in the Computer Labs @ Room 715 Boyd Orr Building:

Tuesday 24th (2-4) Wednesday 25th (10-12) Wednesday 25th (2-4)

You should bring your Student ID card

You will be issued with: (1) important lab documentation and (2) a lab worksheet for this week

What you will do in the lab:

- (1) Log in and find your way around Moodle (2) A short exercise (CS1CT or CS1P or FasterRoute) upto 1 hour

It is your job to turn upto an appropriate lab session

9

The Information Management Module

- **Aim**: to understand the ways in which databases contribute to the management of large amounts of data.
- Objectives:
 - o understand the *nature of applications* built using programs clustered around databases and other large collections of data.
 - o understand the overall *architecture* of a database management system.
 - o be able to carry out all the *operational tasks* of setting up and using a relational database.

The Information Management Module

- Another aim: to understand the mathematics necessary behind databases and how to manage and query them
- Objectives
 - o understand sets & relations
 - o understand relational algebra, SQL

6

Lectures

- IM Lectures from week 1 through to week 6
- Topics
 - O Issues in Data & Information Management
 - O Data Modelling and ER Diagrams
 - O Design & Implementation of a (Relational) Database Application
 - Querying a Database
 - O Sets, Relations, and Relational Algebra

Tutorials & Labs

• Tutorials & Labs will be closely linked to the practical assessment and the exam

Week	Lecture (Tue)	Lecture (Thu)	Tutorial	Lab	Hand in
1	Introduction	DB modelling		Familiarisation	
2	ER Diagrams	ER diagram con't	ER diagram		ER Diagram
3	ER to Tables	Relational Model & Integ	rity	Tables	
4	Sets	Relational Algebra	Sets		
5	Basic SQL & Patterns	More SQL		Populate and Query	
6	SQL Wrapup & Exam tech	HCI		Assess DB	DB report
7	HCI	HCI	Foodback		

Practical Assessment

See also 1F overview

- o worth 8% of 1F module mark
- involves designing, building, testing and reporting on a simple database system (using a MySQL database server)

Why are Databases Important?

- Databases are a key technology
 - O Used in a wide variety of applications to manage data
 - O Growing in importance amount of data we store is increasing
- Consider the management of all of Facebook's user accounts and data......
 - ▼ This is a lot of data and a lot of data management involved!

Understanding Databases

- On this course you will design, build, populate and query your own database using MySQL
- It is important you understand the theory, as well as how to use MySQL, so that you will easily be able to design, build and use other database applications in the future

What is data?				
data	52			
information	J Smith's score on the final exam is 52%			
knowledge	I've passed!			

Issues in managing data

 Consider the example of handling the billing & monitoring of all UK household telephone calls

Issues in managing data

- Consider the example of handling the billing & monitoring of all UK household telephone calls
 - OWhat kinds of data would you have to store?

Issues in managing data

- Consider the example of handling the billing & monitoring of all UK household telephone calls
 - O What kinds of data would you have to store?
 - ▼ People's names
 - x Addresses
 - ▼ Phone numbers
 - Post codes
 - ▼ Account Codes
 - Bank details
 - Money owed
 - ×

Issues in managing data

- Consider the example of handling the billing & monitoring of all UK household telephone calls
 - Can you think of any issues associated with managing all this data and the tasks associated with it?
 - × On paper?
 - x In filing cabinets?
 - x In spreadsheets or text documents?

Issues in managing data

- What about managing all of the data stored on Amazon?
 - x 20 million products available
 - Need to hold terabytes of data
 - **▼** 310 million users, with thousands of users active at the same time
 - Processing distributed around the world
 - × Need access to data for monitoring and looking for significant patterns
 - Reliability and security important
 - E.g. required by EU's General Data Protection Regulation (GDPR)

Managing Data

- If we have lots of data to store, we need a really good way to store that data
- We also need good ways to be able to access that data quickly and easily
- And we don't want lots of different versions of the data all over the place - we want to avoid REDUNDANCY

Managing Data

- Our data storage tool must provide these features:
 - Data definition (data structuring)
 - O Data entry (to add new data)
 - Data editing (to change existing data)
 - Querying (a means of extracting data by a description)
 - Persistence (data existing beyond a single operation or program invocation)

Strategies for Data Management 1

- A **program** where all the data is held in the program's memory
- But no data persistence between invocations of a program
- The data is reconstructed (or re-entered) at each invocation of the program

Strategies for Data Management 2

- **Files** of data on disk that can be accessed by different applications
 - Each application is responsible for its own representations of the data
 - O Difficult to coordinate between applications
 - O Might be different versions of the data

Strategies for Data Management 3

- Combine together all the functions of data storage and access for a related set of tasks, e.g.
 - handling student records
 - o stock control in a warehouse
 - o account management in a bank
- This is known as a

Database Management System (DBMS)

What is a database?

- A database (abbreviated DB) is an entity in which related data can be stored in a structured manner, with as little redundancy as possible
- A database gives users access to data, which they can view, enter, or update
 - o within the limits of the access rights granted to them
- It is viewable (and writable) by many users at the same time controlled concurrent access

An example database

Example table from a geographical database

town	county	population	County town?	Cathedral?
Welwyn Garden	Hertfordshire	40,570	no	no
St. Albans	Hertfordshire	123,800	no	yes
Hertford	Hertfordshire	2,023	yes	no
Durham	Durham	29,490	yes	yes

Boss says: "I want the county population details too, including Essex!"

Extended database

Redundancy: Information about Hertfordshire is duplicated: difficult to update

Add county details, including _without inconsistency

town	county	population	County town?	Cathedral?	County population	County size
Welwyn Garden	Hertfordshire	40,570	no	no	937,300	631
St. Albans	Hertfordshire	123,800	no	yes	937,300	631
Hertford	Hertfordshire	2,023	yes	no	937,300	631
Durham	Durham	29,490	yes	yes	132,681	295
	Essex				1,464,200	1,528

- Redundant information
 - Consider update "popul up to 1.04M"

We have information about the population of Essex as a whole but none about any individual town.

Databases avoid Redundancy (cont.)

- Ambiguity
 - Same thing with different name in different files
- Inconsistency
 - If data changes in one place it should also change in the other files is exists in
- Wasted effort
 - Data should be shared where possible to save time and effort

Databases avoid redundancy (2)

- Having data repeated in different places indicates poor relational database design
- The data relationships, inherent in a relational database, should allow you to:
 - o maintain a single data field, at one location.
 - Such that the database's relational model is then responsible for porting any changes, to that data field, across the database.
- E.g. a single table with Town & County-level details is a poor design

Controlled Concurrent Access

 Databases can have many users reading and writing at the same time

- We need to make sure that each view of the data is correct or *consistent* for each user
 - So that concurrent access does not cause incorrect updates
 - o Lets see an example...

Bank Account

• Imagine a bank's database of accounts

Customer	Balance (£)
Mr & Mrs Bloggs	100

 And the operation to withdraw £10 from a cash machine:

X = Get_balance();
Set balance(X-10);

• Now what happens if Mr & Mrs Bloggs both withdraw £10 *concurrently*, i.e. at exactly the same time?

Controlled Concurrent Access

- Databases can have many users reading and writing at the same time
 - We need to make sure that each view of the data is correct or consistent for each user
 - So that concurrent access does not cause incorrect updates
- DBMS have concurrent control software to ensure that several users updating the same data do so in a controlled manner
- This happens through *transactions*, which make concurrent database interactions appear to happen *independently* & *sequentially*

Database Management Systems

- A DBMS is the software that can provide features needed by many databases:
- 1. Sharing and integration of data
- 2. Multiple views of the same data
- 3. Controlled concurrent access
- 4. Management of security and integrity
- More on DBMS attributes on Thursday

Its good to read...

- A recommended textbook
- Database systems: the complete book. Garcia-Molina, Ullman, Widom. Pearson Education, 2013
 - Free eBook via University Library
 - Limited (9) copies online
 - 3 copies in the library
- I will always provide alternative reading material

Recommended Reading...

• Related to lecture 1

- o Garcia-Molina, Chapter 1
- Chapter 1 is available for free online at http://infolab.stanford.edu/~ullman/fcdb/ch1.pdf
- o Or: http://philip.greenspun.com/sql/introduction.html

• Related to lecture 2

- o Garcia-Molina, Chapter 4
 - × Sections 1 -1.5
- OR: from Mamčenko's notes http://gama.vtu.lt/biblioteka/Information Resources/i part of information resources.pdf pages 8 & 9