

COMP 3234B Computer and Communication Networks

2nd semester 2023-2024 Link Layer (III)

Prof. C Wu

Department of Computer Science
The University of Hong Kong

Roadmap

Link layer

- Principles behind link-layer services (ILO1,2,3)
 - error detection and correction
 - multiple access protocols
 - link-layer addressing
- Implementation of various link-layer technologies (ILO2,3)
 - Ethernet
 - switches
 - 802.11 wireless LAN (WiFi)
 - etc.

Link-layer addressing

- Network-layer addressing
 - IP addresses
 - function: to get datagram to destination IP subnet
- Link-layer addressing
 - MAC (or LAN or physical) address
 - function: get frame from one interface to another physically-connected interface (in the same subnet)
- □ LAN (Local Area Network)
 - a computer network concentrated in a geographical area
 e.g., in a building, on a university campus
 - route: host→LAN→routers to Internet
 - different LAN technologies (link-layer technologies)
 Ethernet (dominant)

MAC address

MAC address

- 48 bit (6 byte) long, for most LANs usually expressed in hexadecimal notation
- each network adapter has a MAC address burned in NIC ROM (now possible to change via software)

Broadcast address = FF-FF-FF-FF-FF

MAC address

- MAC address is unique for every adapter, allocated/administrated by IEEE
 - manufacturer buys portion of MAC address space
- Analogy:
 - MAC address: HKID
 - IP address: postal address
- MAC address is flat (no hierarchy) → portability
 - can move LAN card from one LAN to another

IP hierarchical address not portable:

IP address depends on subnet to which node is attached

ARP: basics

- Address Resolution Protocol
 - resolves IP address to MAC address for nodes in the same LAN in order for a node to insert correct MAC address into frame destined to other nodes
- ☐ Each node (host, router) on LAN has an ARP table
 - ARP table: IP/MAC address mappings for nodes in the LAN
 - < IP address; MAC address; TTL>

TTL (Time To Live): time after which address mapping will expire (typically minutes to hours)

ARP: protocol

- ☐ A sends datagram to B in the same LAN (B's MAC address not in A's ARP table)
 - A broadcasts ARP query packet (a broadcast frame) containing B's IP address dest. MAC address = FF-FF-FF-FF-FF
 - all machines on LAN receive the ARP query packet
 - B replies an ARP response packet to A (a unicast frame) containing B's MAC address
 - A caches IP-to-MAC address pair in its ARP table until information expires

ARP is "plug-and-play":
nodes create ARP tables
themselves without intervention
from network administrator

Routing to another LAN

- A sends datagram to B in a different LAN via router R
 - A creates IP datagram with source A, destination B
 - A uses ARP to get R's MAC address for interface 111.111.111.110
 - A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram

two ARP tables in router R, one for each LAN

Routing to another LAN (cont'd)

- A's adapter sends frame
- R's adapter (on the left) receives frame
- R removes IP datagram from frame and sees it is destined to B
- R uses ARP to get B's MAC address in the right-hand side LAN

two ARP tables in router R, one for each LAN

Routing to another LAN (cont'd)

R creates frame containing A-to-B IP datagram and sends it to B

two ARP tables in router R, one for each LAN

Ethernet

- ☐ First widely used LAN technology, invented mid-70's
- "Dominant" wired LAN technology today
- ☐ Simpler, cheaper than other LAN technologies
- ☐ Kept up with speed race:

1973	1983	1995	1998	2002	2010	2018
3Mbps	10Mbps	100Mbps	1Gbps	10Gbps	&	200Gbps & 400Gbps

Ethernet topology

- Bus topology popular before mid 90s
 - all nodes in single collision domain (can collide with each other)
- ☐ Star topology hub-based (late 90s)
 - all nodes are still in a single collision domain
- Star topology switch-based (prevailing today)
 - each switch port connects to a separate Ethernet link (thus, not confined to a single collision domain)

bus topology

bus: coaxial cable

star topology

Ethernet frame structure

- Sending adapter encapsulates IP datagram (or other network-layer protocol packet) in Ethernet frame
 - Preamble: 8 bytes
 7 bytes with pattern 10101010 followed by one byte with pattern 10101011 used to synchronize receiver, sender clocks
 - Addresses: 6 bytes each if adapter receives frame with matching dest. address, or with broadcast address, it passes data in frame to network-layer protocol otherwise, adapter discards frame
 - Type: 2 bytes indicates higher layer protocol (mostly IP but others possible, e.g., ARP)
 - Data: 46 to 1500 bytes (Ethernet MTU)
 - CRC (Cyclic Redundancy Check Codes): 4 bytes
 CRC check: receiver computes CRC using all fields other than CRC and Preamble, and compares with what's carried in CRC field drop frame if not match

Ethernet's unreliable connectionless service

- Connectionless
 - no handshaking between sending and receiving adapters
- unreliable (not implementing rdt)
 - receiving adapter does not send ACKs or NAKs to sending adapter
 - datagrams can be dropped at link layer due to error depending on upper-layer protocols for rdt, e.g., TCP at transport layer

Ethernet's MAC protocol

- Bus/hub-based Ethernet: it needs a multiple access protocol
 - CSMA/CD with binary exponential backoff
- Switch-based Ethernet
 - CSMA/CD is used on half-duplex link, and is not needed on full-duplex link

Ethernet standards

- 802.3: specifications for link and physical layers, including many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 10Mbps/100Mbps/1Gbps/10Gbps/40Gbps/80Gbps/...
 - different physcial-layer media: 100BASE-TX, 10BASE-2, 100BASE-T, 1000BASE-LX, 10GBASE-T, etc.

the first number part: speed

BASE: baseband Ethernet (physical media only carries Ethernet traffic)

the last part: physical media, e.g., T for twisted-pair copper wire, X for fiber

Ethernet switch

Switches

- link-layer device
- receive, buffer, and forward Ethernet frames
 examine incoming frame's MAC address, selectively forward frame to one or more outgoing links
- transparent

hosts are unaware of presence of switches => host addresses a frame to another host (or router), rather than switch

Switches

- ☐ How does switch know that A' reachable via interface 4, B' reachable via interface 5?
 - each switch has a switch table, with each entry:

(MAC address of host, interface to reach host, time when the entry created)

MAC Address	Interface	Time
62-FE-F7-11-89-A3	4	9:32
7C-BA-B2-B4-91-10	5	9:36
	•••	•••

switch with six interfaces (1,2,3,4,5,6)

looks like a routing table! difference

- forwarding using MAC address
- constructed differently

Switch table

Switch table initially empty

MAC Address	Interface	Time

- Switch learns which hosts can be reached through which interfaces by received frames
 - for each incoming frame, store in the table the MAC address in the source addr. field, interface from which received, and the current time

MAC Address	Interface	Time
54-3E-87-21-91-B6	1	10:36

switch with six interfaces (1,2,3,4,5,6)

Delete entry if no frames received after some aging time

self-learning, plug-and-play

Switching

else flood

When a frame is received:

- 1. record switch table entry associated with sending host
- 2. look up switch table using MAC dest. address
- 3. if entry found for destination

```
then
{
  if dest. on link from which frame arrived
    then drop the frame
  else forward the frame on interface indicated
}

filtering
```

forwarding

forward on all but the interface on which the frame arrived

Interconnecting switches

Switches can be connected together

- Example: sending from A to G
 - how does S₁ know to forward frame destined to G via S₄ and S₃? self learning! (works exactly the same as in single-switch case)

Institutional network (a LAN)

Inside a large LAN, hosts can be connected using routers as well

Switches vs. Routers

Both store-and-forward devices and can be used for interconnections in LANs

Routers

- network-layer devices (examine network-layer headers)
- maintain routing tables, implement routing algorithms
- not plug-and-play
- suitable for larger LAN with thousands of hosts

Switches

- link-layer devices (examine link-layer headers)
- maintain switch tables, implement self-learning
- plug-and-play
- suffice for small network with a few hundreds of hosts

MPLS

- Multiprotocol Label Switching (MPLS)
- Initial goal: high-speed forwarding of selective IP datagrams based on *fixed length label* (instead of destination IP address)
 - fast lookup using fixed length identifier (rather than longest prefix matching)
 - borrowing ideas from Virtual Circuit (VC) approach (network-layer connection service)

MPLS

- ☐ Format of link-layer frame transmitted between MPLS-capable devices (e.g., routers)
 - RFC3032 defines format of MPLS header

MPLS-capable routers

- a.k.a. label-switched router
- forward packets to outgoing interfaces based only on label value (do not inspect IP address)
 - MPLS forwarding table different from IP forwarding table

MPLS usefulness

MPLS enables traffic management and flexibility

for example, use both destination and source addresses to route flows to same destination differently (traffic engineering)

MPLS usefulness (cont'd)

- Re-route flows quickly if link fails: pre-computed backup routes (e.g., useful for VoIP)
- MPLS can be used to implement VPN (virtual private network)
 - To implement a VPN for a customer, an ISP uses its MPLS-enabled network to connect together the customer's various networks

Data center network

Hundreds or thousands of interconnected hosts in a data center

Image from: https://www.google.com/about/datacenters/data-security/

Data center network (cont'd)

Data center network (cont'd)

- ☐ Rich interconnection among switches, racks:
 - increased throughput between racks (multiple routing paths possible)
 - increased reliability via redundancy

- Required Reading:
 - Computer Networking: A Top-Down Approach (8th Edition)
 Ch 6.4.1, 6.4.2, 6.4.3, 6.5, 6.6
- Acknowledgement:
 - Some materials are extracted from the slides created by Prof. Jim F. Kurose and Prof. Keith W. Ross for the textbook.