HAIMLC701 AI & ML in Healthcare

2.0		AI, ML, Deep Learning and Data Mining Methods for Healthcare	10
	2.1	Knowledge discovery and Data Mining, ML, Multi classifier Decision Fusion, Ensemble	
		Learning, Meta-Learning and other Abstract Methods.	
	2.2	Evolutionary Algorithms, Illustrative Medical Application-Multiagent Infectious Disease	
		Propagation and Outbreak Prediction, Automated Amblyopia Screening System etc.	
	2.3	Computational Intelligence Techniques, Deep Learning, Unsupervised learning,	
		dimensionality reduction algorithms.	

Unsupervised Learning

- refers to the process of learning a model from unlabeled data means that input data (x) is supplied without output (y)
- Semi-supervised learning occurs when some output labels (y) are supplied
- For example, learning would be semi-supervised in a model learning to predict diabetic retinopathy from patient eye scans with partially labeled data
- Unsupervised learning can be resource consuming concerning time, money, and expertise
- Unsupervised learning is composed of two main problem concepts:
 - clustering and association

Clustering

- Clustering refers to the process of discovering relationships within the data
- Clustering is used for a variety of healthcare uses including the following
 - Grouping patients of similar profiles together for monitoring
 - Detecting anomalies or outliers in claims or transactions
 - Defining treatment groups based on medication or condition

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high <u>intra-class</u> similarity: cohesive within clusters
 - low <u>inter-class</u> similarity: <u>distinctive</u> between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric
 - Similarity is expressed in terms of a distance function, typically metric: d(i, j)
 - The definitions of distance functions are usually rather different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables
 - Weights should be associated with different variables based on applications and data semantics
- Quality of clustering:
 - There is usually a separate "quality" function that measures the "goodness" of a cluster.
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective

Considerations for Cluster Analysis

- Partitioning criteria
 - Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)
- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region) vs. nonexclusive (e.g., one document may belong to more than one class)
- Similarity measure
 - Distance-based (e.g., Euclidian, road network, vector) vs. connectivitybased (e.g., density or contiguity)
- Clustering space
 - Full space (often when low dimensional) vs. subspaces (often in highdimensional clustering)

Requirements and Challenges

- Scalability
 - Clustering all the data instead of only on samples
- Ability to deal with different types of attributes
 - Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering
 - User may give inputs on constraints
 - Use domain knowledge to determine input parameters
- Interpretability and usability
- Others
 - Discovery of clusters with arbitrary shape
 - Ability to deal with noisy data
 - Incremental clustering and insensitivity to input order
 - High dimensionality

Major Clustering Approaches

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion,
 e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS, FCM

<u>Hierarchical approach</u>:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, CAMELEON

Density-based approach:

- Based on connectivity and density functions
- Typical methods: DBSCAN, OPTICS, DenClue

Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

Partitioning Algorithms: Basic Concept

Partitioning method: Partitioning a database D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u>: Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

An Example of *K-Means* Clustering

Until no change

Example K- Means

Initial Centroids:

A1: (2, 10)

B1: (5, 8)

C1: (1, 2)

New Centroids:

A1: (2, 10)

B1: (6, 6)

C1: (1.5, 3.5)

Data Daints			Distance to					Cluster	New	
Da	Data Points			10	5	8	1	2	Cluster	Cluster
A1	2	10	0.00		3.	61	8.	06	1	
A2	2	5	5.00		4.	24	3.	16	3	
А3	8	4	8.49		5.	00	7.	28	2	
B1	5	8	3.61		0.	00	7.	21	2	
B2	7	5	7.07		3.	61	6.	71	2	
В3	6	4	7.	7.21		12	5.	39	2	
C1	1	2	8.06		7.	21	0.	00	3	
C2	4	9	2.	24	1.	41	7.	62	2	

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Current Centroids:

A1: (3.67, 9)

B1: (7, 4.33)

C1: (1.5, 3.5)

	Data Points		Distance to					Cluster	New	
Da			3.67	9	7	4.33	1.5	3.5	Cluster	Cluster
A1	2	10	1.94		7.	56	· 6.	52	1	1
A2	2	5	4.33		5.	04	1.	58	3	3
A3	8	4	6.62		1.	05	6.	52	2	2
B1	5	8	1.67		4.	18	5.	70	1	1
B2	7	5	5.21		0.	67	5.	70	2	2
В3	6	4	5.5	52	1.	05	4.	53	2	2
C1	1	2	7.4	19	6.	44	1.	58	3	3
C2	4	9	0.3	33	5.	55	6.0	04	1	1

Comments on the K-Means Method

- Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- Comment: Often terminates at a local optimal.
- Weakness
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify k, the number of clusters, in advance
 - Sensitive to noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

Association

- These methods extract rules that best explain perceived relationships between variables in data
- Association rule learning is historically best applied to online shopping checkout basket datasets gathered on users' purchasing habits
- Through analyzing transactional datasets, the probability of associations can be predicted
- In healthcare, in particular, associative symptoms can be understood to predict better and diagnose disease and adverse events
- Potential adverse effects based on medication and associative patient comorbidity pathways could lead to improved care and treatment pathways
- Three important metrics
 - Support is the value of absolute frequency
 - An association rule holds with support sup in dataset T if the sup % of transactions contain X U Y
 - This represents how popular an itemset is, as measured by the proportion of transactions in which an itemset appears
- sup = Pr (XUY) =count(X U Y)/total transaction count

Association

Confidence

- The confidence measure represents correlative frequency
- An association rule holds in dataset T with confidence conf if the conf % of transactions that contain X also contain Y
- This estimates how likely item Y is to occur or be present in the transactional dataset when item X occurs
- This is expressed as $\{X \rightarrow Y\}$ and measures the proportion of transactions with item X in which item Y also appears.
- conf = Pr(Y|X) = count(X U Y)/count(X)

Lift

- Lift determines how likely item Y is given that X occurs while accommodating for Y's popularity.
- Lift = Support (X U Y)/Support (X) * Support (Y)

Association rule learning is a data mining technique that identifies frequent patterns, connections and dependencies among different groups of items called itemsets in data.

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.)
 that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Basic Concepts: Frequent Patterns

Tid	Items bought		
10	Beer, Nuts, Diaper		
20	Beer, Coffee, Diaper		
30	Beer, Diaper, Eggs		
40	Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs, Milk		

- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X's support is no less than a minsup threshold

Basic Concepts: Association Rules

Tid	Items bought		
10	Beer, Nuts, Diaper		
20	Beer, Coffee, Diaper		
30	Beer, Diaper, Eggs		
40	Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs, Milk		

- Find all the rules X → Y with minimum support and confidence
 - support, s, probability that a transaction contains X \(\text{Y} \) Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

- Association rules: (many more!)
 - Beer → Diaper (60%, 100%)
 - Diaper → Beer (60%, 75%)

Apriori: A Candidate Generation & Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k
 frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 $Sup_{min} = 2$ **Itemset** sup {A} 2 {B} {C} 3 1st scan {D} {E} 3

	Itemset	sup
L_{1}	{A}	2
	{B}	3
	{C}	3
	{E}	3

L_2	Itemset	sup	
	{A, C}	2	
	{B, C}	2	•
	{B, E}	3	
	{C, E}	2	
	_		

sup {A, B} {A, C} 2 $\{A, E\}$ {B, C} {B, E} 3 {C, E}

 2^{nd} scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

3rd scan

Itemset	sup
{B, C, E}	2

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{\text{frequent items}\};
for (k = 1; L_k != \emptyset; k++) do begin
  C_{k+1} = candidates generated from L_k;
  for each transaction t in database do
     increment the count of all candidates in C_{k+1} that are
       contained in t
  L_{k+1} = candidates in C_{k+1} with min_support
  end
return \bigcup_k L_k;
```

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - *L*₃={*abc, abd, acd, ace, bcd*}
 - Self-joining: $L_3 * L_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L_3
 - $C_4 = \{abcd\}$

$$Rule: X \Rightarrow Y$$

$$Confidence = \frac{frq(X,Y)}{N}$$

$$frq(X)$$

- Here are a dozen sales transactions.
- The objective is to use this transaction data to find affinities between products, that is, which products sell together often.
- The support level will be set at 33 percent; the confidence level will be set at 50 percent.

Support is a measure of the number of times an item set appears in a dataset.

Confidence is a measure of the likelihood that an itemset will appear if another itemset appears.

Transactions List

1	Milk	Egg	Bread	Butter
2	Milk	Butter	Egg	Ketchup
3	Bread	Butter	Ketchup	
4	Milk	Bread	Butter	
5	Bread	Butter	Cookies	
6	Milk	Bread	Butter	Cookies
7	Milk	Cookies		
8	Milk	Bread	Butter	
9	Bread	Butter	Egg	Cookies
10	Milk	Butter	Bread	
11	Milk	Bread	Butter	
12	Milk	Bread	Cookies	Ketchup

1-item Sets	Frequency	
Milk	9	
Bread	10	
Butter	10	
Egg	3	
Ketchup	3	
Cookies	5	

Frequent 1-item Sets	Frequency	
Milk	9	
Bread	10	
Butter	10	
Cookies	5	

2-item Sets	Frequency	
Milk, Bread	7	
Milk, Butter	7	
Milk, Cookies	3	
Bread, Butter	9	
Butter, Cookies	3	
Bread, Cookies	4	

Frequent 2-item Sets	Frequency	
Milk, Bread	7	
Milk, Butter	7	
Bread, Butter	9	
Bread, Cookies	4	

1	Milk	Egg	Bread	Butter
2	Milk	Butter	Egg	Ketchup
3	Bread	Butter	Ketchup	
4	Milk	Bread	Butter	
5	Bread	Butter	Cookies	
6	Milk	Bread	Butter	Cookies
7	Milk	Cookies		
8	Milk	Bread	Butter	
9	Bread	Butter	Egg	Cookies
10	Milk	Butter	Bread	
11	Milk	Bread	Butter	
12	Milk	Bread	Cookies	Ketchup

3-item Sets	Frequency	
Milk, Bread, Butter	6	
Milk, Bread, Cookies	1	
Bread, Butter, Cookies	3	
Milk, Butter, Cookies	2	

Frequent 3-item Sets	Frequency	
Milk, Bread, Butter	6	

Frequent 3-Item Set = I => {Milk, Bread, Butter}

Non-Empty subset are

- {{Milk}, {Bread}, {Butter}, {Milk, Bread}, {Milk, Butter}, {Bread, Butter}}

How to form Association Rule...?

- For every non-empty subset S of I, the association rule is,
 - s → (I-s)
 - If support(I) / support(S) >= min_confidence

Non-Empty subset are

- {{Milk}, {Bread}, {Butter}, {Milk, Bread}, {Milk, Butter}, {Bread, Butter}}
- Min_Support = 30% and Min_Confidence = 60%

Rule 1: {Milk} → {Bread, Butter} {S=50%, C=66.67%}

- Support = 6/12 = 50%
- Confidence = Support (Milk, Bread, Butter)/Support(Milk) = $\frac{6/12}{9/12}$ = 6/9 = 66.67% > 60%
- Valid

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.
- Data reduction strategies
 - Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA) –project original data in smaller space
 - Attribute subset selection irrelevant/weakly relevant/ redundant attributes are detected and removed
 - Numerosity reduction replace the original data volume by alternative, smaller forms of data representation.
 - Parametric -Regression and log-linear models
 - Non-parametric -histograms, clustering, sampling, and data cube aggregation
 - Data compression

Data Reduction 1: Dimensionality Reduction

Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- The possible combinations of subspaces will grow exponentially

Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Dimensionality reduction techniques

- Wavelet transforms
- Principal Component Analysis
- Supervised and nonlinear techniques (e.g., feature selection)

Principal Component Analysis (PCA)

Definition

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

The number of principal components is less than or equal to the number of original variables.

Goals

- The main goal of a PCA analysis is to identify patterns in data
- PCA aims to detect the correlation between variables.
- It attempts to reduce the dimensionality.

Dimensionality Reduction

It reduces the dimensions of a d-dimensional dataset by projecting it onto a (k)-dimensional subspace (where k<d) in order to increase the computational efficiency while retaining most of the information.

Transformation

This transformation is defined in such a way that the first principal component has the largest possible variance and each succeeding component in turn has the next highest possible variance.

PCA Approach

- Standardize the data.
- Perform Singular Vector Decomposition to get the Eigenvectors and Eigenvalues.
- Sort eigenvalues in descending order and choose the k- eigenvectors
- Construct the projection matrix from the selected k- eigenvectors.
- Transform the original dataset via projection matrix to obtain a kdimensional feature subspace.

Applications of PCA:

- Interest Rate Derivatives Portfolios
- Neuroscience

PCA Approach

It involves the following steps:

- Construct the covariance matrix of the data.
- •Compute the eigenvectors of this matrix.
- •Eigenvectors corresponding to the largest eigenvalues are used to reconstruct a large fraction of variance of the original data.

Hence, we are left with a lesser number of eigenvectors, and there might have been some data loss in the process. But, the most important variances should be retained by the remaining eigenvectors.