Математическая статистика.

Андрей Тищенко @AndrewTGk 2024/2025

Лекция 10 января

Преамбула

Статистика. Мнения о появлении этого слова:

- 1. Статистиками в Германии назывались люди, собирающие данные о населении и передающие их государству.
- 2. В определённый день в Венеции народ выстраивался для выплаты налогов (строго фиксированных, в зависимости от рода действий). Государство собирало данные обо всём населении. Это происходило до появления статистиков в Германии, поэтому мы будем считать, что статистика пошла из Венеции.

Задача статистики— по результатам наблюдений построить вероятностную модель наблюдаемой случайной величины.

Основные определения

Определение

Однородной выборкой объёма n называется случайный вектор $X=(X_1,\ldots,\,X_n)$, компоненты которого являются независимыми и одинаково распределёнными. Элементы вектора X называются <u>элементами</u> выборки.

Определение

Если элементы выборки имеют распределение $F_{\xi}(x)$, то говорят, что выборка соответствует распределению $F_{\xi}(x)$ или порождена случайной величиной ξ с распределением $F_{\xi}(x)$.

Определение

Детерминированный вектор $x=(x_1,\ldots,x_n)$, компоненты которого x_i являются реализациями соответствующих случайных величин X_i ($i=\overline{1,n}$), называется реализацией выборки.

Уточнение

Если X — однородная выборка объёма n, то его реализацией будет вектор x, каждый элемент x_i которого является значением соответствующей ему случайной величины (элемента выборки) X_i .

Определение

Выборочным пространством называется множество всех возможных реализаций выборки

$$X = (X_1, \dots, X_n)$$

Пример

У вектора $X=(X_1,\ldots,\ X_{10})$ каждый элемент X_i которой порождён случайной величиной $\xi\sim U(0,\ 1)$, выборочным пространством является \mathbb{R}^{10} (так как X_i может принять любое значение на \mathbb{R})

Определение

Обозначим $x_{(i)}$ — i-ый по возрастанию элемент, тогда будет справедливо:

$$x_{(1)} \leqslant x_{(2)} \leqslant \dots \leqslant x_{(n)}$$

Обозначим $X_{(k)}$ случайную величину, реализация которой при каждой реализации x выборки X принимает значение $x_{(k)}$. Тогда последовательность $X_{(1)},\ldots,\,X_{(n)}$ называется вариационным рядом выборки.

Определение

Случайная величина $X_{(k)}$ называется k-ой порядковой статистикой выборки.

Определение

Случайные величины $X_{(1)},\ X_{(n)}$ называются эстремальными порядковыми статистиками.

Определение

Порядковая статистика $X_{([n\cdot p])}$ называется выборочной квантилью уровня p, где $p\in[0,\ 1]$

Определение

Пусть каждый элемент выборки X объёма п имеет распределение $F_{\xi}(x)$. Эмпирической функцией распределения такой выборки называется

$$\hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \leqslant x)$$

I — индикаторная функция. $I = \begin{cases} 1, \text{ если аргумент верен} \\ 0, \text{ иначе} \end{cases}$

Пусть x_1, \ldots, x_n — реализация выборки X_1, \ldots, X_n

Свойства $\hat{F}_n(x)$

1.
$$\forall x \in \mathbb{R}$$
 $E\hat{F}_n(x) = E\left(\frac{1}{n}\sum_{k=1}^n I(X_k \leqslant x)\right) = \frac{1}{n}\sum_{k=1}^n EI(X_k \leqslant x) = P(X_1 \leqslant x) = F_{\xi}(x)$

2. По усиленному закону больших чисел (УЗБЧ)

$$\forall x \in \mathbb{R} \quad \hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \leqslant x) \xrightarrow[n \to \infty]{\text{II. H.}} EI(X_k \leqslant x) = F_{\xi}(x)$$

Гистограмма

Разбить $\mathbb R$ на (m+2) непересекающихся интервала. Рассматриваются $x_{(1)},\ldots,\ x_{(m)}$

Название	Обозначение	Формула
Количество интервалов	m	_
Размах выборки	r	$r = x_{(m)} - x_{(1)}$
Ширина интервала	Δ	$\Delta = \frac{r}{m}$
Количество попаданий на i -ый интервал	$ u_i$	_
Частота попаданий на <i>i</i> -ый интервал	h_i	$h_i = rac{ u_i}{\Delta}$

Лекция 17 января

Определение

Пусть $X_1, \ldots, X_n \sim F(x, \theta)$. <u>k</u>-ым начальным выборочным моментом называется

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i^k, \ k \in \mathbb{N}$$

Выборочным средним называется:

$$\hat{\mu}_1 = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

Определение

k-ым центральным выборочным моментом называется

$$\hat{\nu}_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k, \ k = 2, \ 3, \dots$$

$$\hat{
u}_2 = S^2 = rac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$
 называется выборочной дисперсией

Пусть $(x_1,\ y_1),\ldots,\ (x_n,\ y_n)$ соответствует распределению $F(x,\ y,\ \theta)$

Определение

Выборочной ковариацией называется

$$\hat{K}_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Определение

Выборочным коэффициентом корреляции называется

$$\hat{\rho}_{xy} = \frac{\hat{K}_{xy}}{\sqrt{S_x^2 S_y^2}}$$

Свойства выборочных моментов

1.
$$E\hat{\mu}_k = E\left(\frac{1}{n}\sum_{i=1}^n X_i^k\right) = \frac{1}{n}\sum_{i=1}^n EX_i^k = EX_1^k = \mu_k$$

2.
$$E\overline{X} = m_x$$

3.
$$\mathcal{D}\hat{\mu}_k = \mathcal{D}\left(\frac{1}{n}\sum_{i=1}^n x_i^k\right) = \frac{1}{n^2}\sum_{i=1}^n \mathcal{D}X_i^k = \frac{1}{n}\mathcal{D}X_i^k = \frac{1}{n}\left(EX_1^{2k} - (EX_1^K)^2\right) = \frac{1}{n}(\mu_{2k} - \mu_k^2)$$

4.
$$\mathcal{D}\overline{x} = \frac{\sigma_{x_1}^2}{n}$$

5. По УЗБЧ

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i^k \xrightarrow[n \to \infty]{\text{II. H.}} E\hat{\mu}_k = \mu_k$$

$$\hat{\nu}_k \xrightarrow[n \to \infty]{\text{II. H.}} \nu_k$$

6. По ЦПТ

$$\frac{\hat{\mu}_k - \mu_k}{\sqrt{\frac{\mu_{2k} - \mu_k^2}{n}}} \xrightarrow[d]{n \to \infty} U, \ U \sim N(0, \ 1)$$
$$\frac{\sqrt{n}(\overline{x} - m_{x_1})}{\sigma} \xrightarrow[n \to \infty]{d} U$$

7.
$$ES^2 = E\left(\frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2\right) = \frac{n-1}{n}\sigma^2$$

8.
$$E\hat{K}_{xy} = \frac{n-1}{n} cov(x, y)$$

Определение

Оценкой $\hat{\theta}$ параметра θ , называется функция:

$$\hat{ heta} = T(x_1, \ldots, \ x_n)$$
, не зависящая от $heta$

Например, отвратительная оценка среднего роста людей в аудитории.

$$\hat{m} = \frac{2x_2 + 5x_5 + 10x_{10}}{3}$$

Определение

Оценка $\hat{\theta}$ называется несмещённой, если $E\hat{\theta}=\theta$ для любых возможных значений этого параметра.

Определение

Оценка $\hat{\theta}(x_1,\ldots,x_n)$ называется асимптотически несмещённой оценкой θ , если

$$\lim_{n\to\infty} E\hat{\theta}(x_1,\ldots,x_n) = \theta$$

$$\lim_{n \to \infty} ES^2 = \lim_{n \to \infty} \frac{n-1}{n} \sigma^2 = \sigma^2$$

Определение

Несмещённой выборочной (или исправленной) выборочной дисперсией называется

$$\tilde{S}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Оценки

$$\hat{m}_{1} = \frac{x_{1} + x_{2} + x_{3}}{3}$$

$$\hat{m}_{2} = \frac{\sum_{i=1}^{10} x_{i}}{10}$$

$$\hat{m}_{3} = \overline{x} = \frac{\sum_{i=1}^{n} x_{i}}{n}$$

Являются несмещёнными.

Определение

Оценка $\hat{\theta}(x_1,\ldots,x_n)$ называется:

Состоятельной оценкой θ , если

$$\hat{\theta}(x_1,\ldots,x_n) \xrightarrow[n\to\infty]{p} \theta$$

Сильно состоятельной оценкой, если

$$\hat{\theta}(x_1,\ldots,x_n) \xrightarrow[n\to\infty]{\text{II. H.}} \theta$$

Определение

Пусть $\hat{\theta}$ — несмещённая оценка параметра θ . Если $\mathcal{D}\hat{\theta}\leqslant\mathcal{D}\theta^*$, где θ^* — любая несмещённая оценка параметра θ . Тогда $\hat{\theta}$ называется эффективной оценкой параметра θ .

R-эффективные оценки

Рассматриваем выборку $X_1, \ldots, X_n \sim f(x, \theta), \ \theta \in \Theta \subseteq \mathbb{R}^1$. Назовём модель $(S, f(x, \theta))$ регулярной, если она удовлетворяет следующим условиям:

1. $\forall x \in S$ функция $f(x, \theta) = f(x_1, \ldots, x_n, \theta) > 0$ и дифференцируема по θ .

2.
$$\frac{\delta}{\delta\theta} \int_{S} f(x, \theta) dx = \int_{S} \frac{\delta}{\delta\theta} f(x, \theta) dx = \frac{\delta}{\delta\theta} \int_{S} T(x) f(x, \theta) dx = \int_{S} \frac{\delta}{\delta\theta} T(x) f(x, \theta) dx$$

Пусть $\hat{\theta} = T(x) = T(x_1, \ldots, x_n)$ — несмещённая оценка параметра θ :

$$\int\limits_{S} \frac{\delta}{\delta \theta} f(x,\;\theta)\, dx = 0,\;$$
 так как не зависит от θ

$$\int_{S} \frac{\delta}{\delta \theta} T(x) f(x, \theta) dx = \frac{\delta}{\delta \theta} \theta = 1$$

Определение

Информацией Фишера о параметре θ , содержащейся в выборке $X_1,\ldots,\ X_n$ называется величина

$$I_n(\theta) = E\left(\frac{\delta \ln (f(x, \theta))}{\delta \theta}\right)^2 = \int_{S} \left(\frac{\delta \ln (f(x, \theta))}{\delta \theta}\right)^2 f(x, \theta) dx$$

Неравенство Рао-Крамера

Если $S,\ f(x,\ \theta)$ — регулярная модель и $\hat{\theta}$ — несмещённая оценка $\theta,$ то

$$\mathcal{D}(\hat{\theta}) \geqslant \frac{1}{I_n(\theta)}$$

Докажем это неравенство.

Неравенство Коши-Буняковского

$$\left(\int \varphi_1(x)\varphi_2(x)\,dx\right)^2 \leqslant \int \varphi_1^2(x)\,dx\int \varphi_2^2(x)\,dx$$

Пользуясь этим:

$$\int_{S} \frac{\delta}{\delta \theta} f(x, \theta) dx = \int_{S} \frac{\delta f(x, \theta)}{\delta \theta} \frac{f(x, \theta)}{f(x, \theta)} dx = \int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 0$$

$$\int_{S} \frac{\delta}{\delta \theta} T(x) f(x, \theta) dx = \int_{S} T(x) \frac{\delta}{\delta \theta} f(x, \theta) \frac{f(x, \theta)}{f(x, \theta)} dx = \int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 1$$

Применяя неравенство Коши-Бунякоского:

$$1 = \int_{S} \left(T(x) - \theta \right) \frac{\delta \ln \left(f(x, \theta) \right)}{\delta \theta} f(x, \theta) dx \leq \underbrace{\int_{S} \left(T(x) - \theta \right)^{2} f(x, \theta) dx}_{= \mathcal{D}\hat{\theta}} \cdot \underbrace{\int_{S} \left(\frac{\delta \ln \left(f(x, \theta) \right)}{\delta \theta} \right)^{2} f(x, \theta) dx}_{= I_{n}(\theta)}$$

Получили

$$1 \leqslant \mathcal{D}(\theta) \cdot I_n(\theta) \Rightarrow \mathcal{D}(\theta) \geqslant \frac{1}{I_n(\theta)}$$

Определение

Оценка $\hat{\theta}$ называется \underline{R} -эффективной, если $E\hat{\theta}=\theta$ и $\mathcal{D}\hat{\theta}=\frac{1}{I_n(\theta)}$

Лекция 24 января

Замечание 1

$$I_n(\theta) = \mathcal{D}\left(\frac{\delta \ln f(x,\, heta)}{\delta heta}\right)$$

Замечание 2

$$I_{n}(\theta) = nI_{1}(\theta)$$

$$f(x, \theta) = f(x_{1}, \dots, x_{n}, \theta) = \prod_{i=1}^{n} f(x_{i}, \theta)$$

$$E\left(\frac{\delta \ln f(x, \theta)}{\delta \theta}\right)^{2} = E\left(\sum_{i=1}^{n} \frac{\delta \ln f(x_{i}, \theta)}{\delta \theta}\right)^{2} = \sum_{i \neq j} E\left(\frac{\delta \ln f(x_{i}, \theta)}{\delta \theta} \cdot \frac{\delta \ln f(x_{j}, \theta)}{\delta \theta}\right) + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \sum_{i \neq j} \left(\frac{E\left(\frac{\delta \ln f(x_{i}, \theta)}{\delta \theta}\right) \cdot E\left(\frac{\delta \ln f(x_{j}, \theta)}{\delta \theta}\right)}{\delta \theta}\right) + nE\left(\frac{\delta \ln f(x_{j}, \theta)}{\delta \theta}\right)^{2} = nE\left(\frac{\delta \ln f(x_{j}, \theta)}{\delta \theta}\right)^{2} = nI_{1}(\theta)$$

Замечание 3

Пример: $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$

Рассмотрим оценку $\hat{\theta} = \overline{X}$, её дисперсия $\mathcal{D}\overline{X} = \frac{\sigma^2}{n}$. Посчитаем информацию Фишера:

$$I_1(\theta) = E\left(\frac{\delta \ln f(x,\theta)}{\delta \theta}\right)^2 = E\left(\frac{\delta}{\delta \theta} \ln \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\theta)^2}{2\sigma^2}}\right)\right)^2 = E\left(\frac{\delta}{\delta \theta} \ln \left(\frac{1}{\sqrt{2\pi}\sigma}-\frac{(x-\theta)^2}{2\sigma^2}\right)\right)^2 = E\left(\frac{x-\theta}{\sigma^2}\right)^2 = \frac{1}{\sigma^4}E(x-\theta)^2 = \frac{\sigma^2}{\sigma^4} = \frac{1}{\sigma^2} \Rightarrow I_n(\theta) = \frac{n}{\sigma^2}$$
 Знаем, что $\mathcal{D}\hat{\theta} \geqslant \frac{1}{nI_1(\theta)} = \frac{\sigma^2}{n} = \mathcal{D}(\overline{X}) \Rightarrow$ оценка $\hat{\theta} = \overline{X}$ является R-эффективной.

Критерий эффективности $X_1,\ldots,X_n\sim F_\xi(x,\,\theta),\;\theta\in\Theta\subset\mathbb{R}^1$ выполнены условия регулярности, то есть

$$\int T(x) \frac{\delta f(x, \theta)}{\delta \theta} dx = \frac{\delta}{\delta \theta} \int T(x) f(x, \theta) dx = E \hat{\theta}$$

Определение

Функцией вклада выборки X_1, \ldots, X_n называется

$$U(x, \theta) = \sum_{i=1}^{n} \frac{\delta \ln f(x_i, \theta)}{\delta \theta}$$

Пусть $0 < U(x, \theta) < \infty$.

 $\hat{\theta} = T(x_1, \dots, x_n)$ — R-эффективная оценка $\theta \Leftrightarrow \hat{\theta} - \theta = a(\theta)U(x, \theta)$, где $a(\theta) = \mathcal{D}\hat{\theta}$ Доказательство \Rightarrow :

Пусть $\hat{\theta} - \theta = a(\theta)U(x, \theta) \Rightarrow \hat{\theta}$ — R-эффективная оценка θ .

Посчитаем математическое ожидание частей равенства:

$$E(\hat{\theta} - \theta) = a(\theta)EU(x, \theta) = a(\theta) \int \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 0$$

Посчитаем дисперсию частей:

$$\mathcal{D}(\hat{\theta} - \theta) = a^2(\theta)\mathcal{D}U(x, \theta) = \underbrace{a^2(\theta)}_{=(\mathcal{D}(\hat{\theta}))^2} I_n(\theta) \Rightarrow \mathcal{D}(\hat{\theta}) = (\mathcal{D}(\hat{\theta}))^2 I_n(\theta) \Rightarrow 1 = \mathcal{D}(\theta)I_n(\theta)$$

Значит оценка является R-эффективной.

Доказательство ←:

Пусть $\hat{\theta}$ — R-эффективная оценка $\Rightarrow \hat{\theta} - \theta = a(\theta)U(x, \theta)$. Хотим доказать, что $\rho(\hat{\theta}, U(x, \theta)) = 1$. Для подсчёта корреляции нужно посчитать ковариацию:

$$\operatorname{cov}(\hat{\theta},\ U(x,\ \theta)) = E(\hat{\theta} - \theta)U(x,\ \theta) = E\hat{\theta}U(x,\ \theta) - \theta \underbrace{EU(x,\ \theta)}_{\hat{\theta}} =$$

$$= \int_{S} T(x)U(x, \theta)f(x, \theta) dx = \int_{S} T(x)\frac{\delta \ln f(x, \theta)}{\delta \theta}f(x, \theta) dx = 1$$

Так как $\hat{\theta}$ — R-эффективная оценка, то $\mathcal{D}\hat{\theta}=\frac{1}{I_n(\theta)}$. Знаем, что $\mathcal{D}U(x,\;\theta)=I_n(\theta)$, тогда:

$$\rho(\hat{\theta}, U(x, \theta)) = \frac{\text{cov}(\hat{\theta}, U(x, \theta))}{\sqrt{D\hat{\theta}DU(x, \theta)}} = \frac{1}{\sqrt{\frac{I_n(\theta)}{I_n(\theta)}}} = 1 \Rightarrow$$
$$\Rightarrow \hat{\theta} = c_1 + c_2 U(x, \theta)$$

$$E\hat{\theta}=c_1+Ec_2U(x,\;\theta)=c_1+0=\theta,$$
 так как оценка эффективная $\mathcal{D}\hat{\theta}=c_2^2I_n(\theta)=\frac{1}{I_n(\theta)}\Rightarrow c_2^2=\frac{1}{I_n^2}\Rightarrow c_2=\frac{1}{I_n}=\mathcal{D}\hat{\theta}=a(\theta).$ Итак, $\hat{\theta}=\theta+a(\theta)U(x,\;\theta)\Rightarrow\hat{\theta}-\theta=U(x,\;\theta).$

Метод моментов

 $X_1, \ldots, X_n \sim F_{\varepsilon}(x, \theta), \ \theta \in \Theta \subset \mathbb{R}^k$

$$\exists \mu_j < \infty, \ j = \overline{1, \ k} \quad \underbrace{\mu_j}_{=\mu_j(\theta)} = E\xi^j = \int_{-\infty}^{+\infty} x^j f(x, \ \theta) \, dx = 1$$

Тогда можно получить систему уравнений:

$$\begin{cases} \hat{\mu_1} = \mu_1(\theta) \\ \vdots \\ \hat{\mu_n} = \mu_n(\theta) \end{cases} \tag{1}$$

Если система уравнений (1) однозначно разрешима относительно $\theta_1, \ldots, \theta_k$, то решения $\hat{\theta_1}, \ldots, \hat{\theta_k}$ называется равной $\theta_1, \ldots, \theta_k$ по методу моментов.

Пример

 $X_1,\dots,\; X_n \sim N(heta_1,\; heta_2^2),\; heta=(heta_1,\; heta_2^2)$, тогда:

$$\begin{cases} \hat{\mu_1} = \frac{1}{n} \sum_{i=1}^{n} x_i = \theta_1 \Rightarrow \hat{\theta_1} = \overline{X} \\ \hat{\mu_2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 = \theta_2^2 + \theta_1^2, \ (E\xi^2 = \mathcal{D}\xi + (E\xi)^2) \Rightarrow \hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 = \overline{X}^2 \end{cases}$$

Метод максимального правдоподобия (ММП)

Определение

Функцией правдоподобия называется функция

$$L(x_1,\dots,\,x_n,\,\theta)=egin{cases} \prod\limits_{i=1}^n f(x_i,\,\theta),\ \text{если}\ \xi$$
 — непрерывная случайная величина $\prod\limits_{i=1}^n P(\xi=x_i,\,\theta),\ \text{если}\ \xi$ — дискретная случайная величина

Определение

Реализацией оценки максимального правдоподобия (ОМП) называется значение $\hat{\theta} \in \Theta$, такое что:

$$\hat{\theta} = \operatorname{argmax} L(x_1, \ldots, x_n, \theta), \ \text{где } \theta \in \Theta$$

Для нахождения точки максимума нужно взять частные производные по всем составляющим θ от функции правдоподобия. Однако считать производную произведения нам впадлу, поэтому мы введём следующую вещь:

Определение

Функция $\ln L(x_1, \ldots, x_n, \theta)$ называется логарифмической функцией правдоподобия. Итак, получаем систему уравнений:

$$\begin{cases} \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_1} = 0 \\ \vdots \\ \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_k} = 0 \end{cases}$$

Логарифм монотонный, поэтому его argmax совпадёт с argmax функции $L(x_1,\ldots,x_n,\ \theta)$ (НАУКА!).

Пример

Для Гауссовской величины $N(\theta_1, \ \theta_2^2)$:

$$L(x_1, \dots, x_n, \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-\theta^1)^2}{2\theta_2^2}} = \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\frac{1}{\theta_2}\right)^n e^{-\frac{(x-\theta_1)^2}{2\theta_2^2}}$$

Логарифмируем:

$$\ln L(x_1, \dots, x_n, \theta) = \ln \left(\frac{1}{\sqrt{2\pi}}\right)^n - n \ln \theta_2 - \frac{\sum_{i=1}^n (x_i - \theta_1)^2}{2\theta_2^2}$$

Возьмём частные производные:

$$\begin{cases} \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_1} = \frac{\sum_{i=1}^{n} (x_i - \hat{\theta}_1)}{\hat{\theta}_2^2} \\ \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_2} = -\frac{n}{\hat{\theta}_2} + \frac{\sum_{i=1}^{n} (x_i - \hat{\theta}_1)^2}{\hat{\theta}_2^3} \end{cases}$$

Посчитаем $\theta_1, \ \theta_2$:

$$\begin{cases} \sum_{i=1}^{n} (x_i - \hat{\theta}_1) = 0 \Rightarrow \hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{X} \\ -n\hat{\theta}_2^2 + \sum_{i=1}^{n} (x_i - \overline{x})^2 = 0 \Rightarrow \hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \end{cases}$$