Subset-Sum Hash Specification

Yossi Gilad, David Lazar, and Chris Peikert

Algorand, Inc.

September 3, 2021

1 Notation and Background

All logarithms are base two, i.e., $\log = \log_2$, unless otherwise indicated by a different subscript.

Binary strings. For a positive integer L, $\{0,1\}^{< L}$ denotes the set of binary strings of length strictly less than L (including the zero-length empty string ε), and $\{0,1\}^*$ denotes the set of all binary strings of any length. For binary strings u,v of any length, uv denotes their concatenation. For a binary string $x \in \{0,1\}^*$, $|x| \ge 0$ denotes its length in bits. For a positive integer e and a non-negative integer $z < 2^e$, $\langle z \rangle_e \in \{0,1\}^e$ denotes the little-endian representation of z as a binary string of exactly e bits.

Modular integers. For a positive integer q, $\mathbb{Z}_q := \mathbb{Z}/q\mathbb{Z}$ denotes the (abelian) ring of integers modulo q. Formally, \mathbb{Z}_q is the set of *cosets* of the form

$$c = \tilde{c} + q\mathbb{Z} := \{\dots, \tilde{c} - 2q, \tilde{c} - q, \tilde{c}, \tilde{c} + q, \tilde{c} + 2q, \dots\}$$

for some integer $\tilde{c} \in \mathbb{Z}$, with $\tilde{c} + q\mathbb{Z} = \tilde{c}' + q\mathbb{Z}$ if and only if q divides $\tilde{c} - \tilde{c}'$. In general, a coset can be represented by any of its elements, which might even differ from one location to the next. To avoid any ambiguity, this specification always requires a coset $c \in \mathbb{Z}_q$ to be externally read and written using its (unique) distinguished representative $\bar{c} \in \{0, 1, \dots, q-1\} \cap c$.

Vectors and matrices. Vectors are denoted by lower-case bold letters (e.g., \mathbf{a}), and matrices by upper-case bold letters (e.g., \mathbf{A}). In this specification, vector and matrix entries are always indexed starting from zero. A vector's *i*th entry is denoted by the same lower-case letter, but without boldface, and with a subscript i; e.g., x_i is the *i*th entry of \mathbf{x} . Similarly, the *i*th column of a matrix is denoted by the same letter, but in lower case, and with a subscript i; e.g., \mathbf{a}_i is the *i*th column of \mathbf{A} .

The set of n-dimensional vectors over a set X is denoted X^n . In particular, \mathbb{Z}_q^n is an (abelian) additive group, where the group operation is coordinate-wise addition (modulo q). Similarly, $X^{n\times m}$ denotes the set of n-by-m-dimensional matrices over X. For convenience, this specification sometimes uses standard vector and matrix operations (like sums and products) where they are well defined.

2 Compression Function Family

This section gives the mathematical definition of the subset-sum compression function family, which was first studied and popularized in early works like [IN89, Ajt96]. For specific parameters, the concrete security of the function against various kinds of (classical and quantum) cryptanalytic attacks is analyzed in a separate work.

2.1 Parameters

The subset-sum compression function family is parameterized by:

- a positive integer modulus $q \in \mathbb{N}$ (often taken to be a power of two);
- a positive integer dimension $n \in \mathbb{N}$;
- a positive integer input length $m \in \mathbb{N}$, where $m > n \log q$.

2.2 Function Definition

The compression function family for parameters q, n, m is defined as the collection

$$\mathcal{F}_{q,n,m} := \{ f_{\mathbf{A}} \colon \{0,1\}^m \to \mathbb{Z}_q^n : \mathbf{A} \in \mathbb{Z}_q^{n \times m} \},$$

where each function $f_{\mathbf{A}} \in \mathcal{F}_{q,n,m}$ is defined as

$$f_{\mathbf{A}}(\mathbf{x}) := \mathbf{A}\mathbf{x} = \sum_{i=1}^{m} x_i \cdot \mathbf{a}_i = \sum_{i:x_i=1} \mathbf{a}_i \in \mathbb{Z}_q^n.$$
 (2.1)

The latter summation explains the name "subset-sum hash": the output is the subset-sum of the columns of A indicated by the bits of the input x.

Observe that the condition $m > n \log q$ ensures that the functions in the family are *compressing*, i.e., the cardinality of their common domain $\{0,1\}^m$ is strictly larger than that of their common range \mathbb{Z}_q^n : $2^m > 2^{n \log q} = q^n$.

When $q=2^u$ is a power of two, $\ell:=n\log q=nu$ is called the *output length*, and $b:=m-\ell>0$ is called the *block length*. In this case, for any $\mathbf{y}\in\mathbb{Z}_q^n$, let $\langle\mathbf{y}\rangle\in\{0,1\}^\ell$ denote the representation of \mathbf{y} as an ℓ -bit string, obtained as the concatenation of the (u-bit, little-endian representations of the) distinguished representatives $\bar{y}_i\in\{0,1,\ldots,q-1\}$ of the coordinates y_i :

$$\langle \mathbf{y} \rangle := \langle \bar{y}_0 \rangle_u \langle \bar{y}_1 \rangle_u \cdots \langle \bar{y}_{n-1} \rangle_u \in \{0, 1\}^{\ell}.$$
 (2.2)

2.3 Security Properties

Conjectured properties. For appropriate parameters, the subset-sum compression function family $\mathcal{F}_{q,n,m}$ is conjectured to have the following security properties:

- Uninvertibility (UI): given uniformly random and independent $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\mathbf{y} \in \mathbb{Z}_q^n$, it is infeasible to find some $\mathbf{x} \in \{0,1\}^m$ such that $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{y}$.
- One-wayness (OW): given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\mathbf{y} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \in \mathbb{Z}_q^n$ (but not \mathbf{x} itself), where $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\mathbf{x} \in \{0,1\}^m$ are uniformly random and independent, it is infeasible to find some $\mathbf{x}' \in \{0,1\}^m$ (not necessarily different from \mathbf{x}) such that $f_{\mathbf{A}}(\mathbf{x}') = \mathbf{y}$.

- Second-preimage resistance (SPR): given uniformly random and independent $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\mathbf{x} \in \{0,1\}^m$, it is infeasible to find some $\mathbf{x}' \in \{0,1\}^m$ such that $\mathbf{x}' \neq \mathbf{x}$ and $f_{\mathbf{A}}(\mathbf{x}') = f_{\mathbf{A}}(\mathbf{x})$.
- Target-collision resistance (TCR): it is infeasible to choose some $\mathbf{x} \in \{0,1\}^m$ and then, given a uniformly random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, to find some distinct $\mathbf{x}' \in \{0,1\}^m \setminus \{\mathbf{x}\}$ such that $f_{\mathbf{A}}(\mathbf{x}) = f_{\mathbf{A}}(\mathbf{x}')$, i.e., $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}' \in \mathbb{Z}_q^n$.
- Collision resistance (CR): given a uniformly random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, it is infeasible to find distinct $\mathbf{x}, \mathbf{x}' \in \{0, 1\}^m$ such that $f_{\mathbf{A}}(\mathbf{x}) = f_{\mathbf{A}}(\mathbf{x}')$, i.e., $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}' \in \mathbb{Z}_q^n$.

Note that breaking CR is equivalent to finding a nonzero $\mathbf{z} \in \{-1,0,1\}^m \setminus \{\mathbf{0}\}$ such that $\mathbf{A}\mathbf{z} = \mathbf{0} \in \mathbb{Z}_q^n$. In one direction, given such \mathbf{x}, \mathbf{x}' , define $\mathbf{z} = \mathbf{x} - \mathbf{x}' \in \{-1,0,1\}^m \setminus \{\mathbf{0}\}$ and observe that $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{x}' = \mathbf{0}$. In the other direction, given such \mathbf{z} , let $\mathbf{x} \in \{0,1\}^m$ be 1 (respectively, 0) wherever \mathbf{z} is 1 (resp., 0 or -1), and similarly let $\mathbf{x}' \in \{0,1\}^m$ be 1 (respectively, 0) wherever \mathbf{z} is -1 (resp., 0 or 1). Then $\mathbf{z} = \mathbf{x} - \mathbf{x}'$, and since $\mathbf{0} = \mathbf{A}\mathbf{z} = \mathbf{A}(\mathbf{x} - \mathbf{x}')$, we have $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}'$, as desired.

It is well known that CR tightly implies TCR generically (i.e., for any compression function family), because breaking TCR immediately yields a collision. Moreover, TCR tightly implies SPR generically, because being able to find a collision with a uniformly random input (that is independent of $\bf A$) in particular means being able to find a collision with an input of one's choice (since that input may just be chosen uniformly). Furthermore, for parameters that yield significant compression (i.e., for $m \gg n \log q$), it is well known that SPR tightly implies OW generically, and that OW implies UI for the subset-sum family.

While none of the converse directions is known to hold generically, for the subset-sum family with significant compression, a *relaxed* form of UI implies CR, thus implying that all four security properties are closely related. Specifically, any attack that breaks CR with probability δ can be used to successfully attack relaxed-UI in essentially the same amount of time and with probability $\approx \delta/(2m)$, where in relaxed-UI the output x may be taken from $\{-1,0,1\}^m$ (it is not limited to $\{0,1\}^m$).

Non-conjectured properties. On the other hand, the family $\mathcal{F}_{q,n,m}$ is *not conjectured to have*, or is even *known not to have*, the following security properties:

• Unpredictability/Pseudorandomness: outputs of $f_{\mathbf{A}}$ on different inputs do not appear random or uncorrelated, even if parts of the corresponding inputs are unknown to the attacker. This is because $f_{\mathbf{A}}$ is linear:

$$f_{\mathbf{A}}(\mathbf{x} + \mathbf{x}') = \mathbf{A}(\mathbf{x} + \mathbf{x}') = \mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{x}' = f_{\mathbf{A}}(\mathbf{x}) + f_{\mathbf{A}}(\mathbf{x}'),$$

as long as $\mathbf{x}, \mathbf{x}', \mathbf{x} + \mathbf{x}' \in \{0, 1\}^m$, which is easy to arrange in many contexts. In particular, any 0 bits of \mathbf{x} can be changed to 1s by adding an \mathbf{x}' that is 1 in the suitable position(s), and 0 wherever \mathbf{x} is 1.

• Random oracle: for the same reasons as above, $f_{\mathbf{A}}$ does not "behave like a random oracle" in many of the ways that are typically expected. Therefore, it should not be used to instantiate a random oracle in any cryptosystems or protocols.

3 Hashing Arbitrary-Length Messages

The compression functions defined in Section 2 map a *fixed-length* m-bit input to an output of length $\ell := n \log q < m$. As is standard, a message of *arbitrary* length is hashed to a fixed-length output by invoking the compression function one or more times, using the Merkle–Damgård (MD) transform [Mer89, Dam89].

3.1 Padding

The transform uses the following padding method, which maps a binary string of any bounded length into a strictly longer one whose length is a multiple of the block length $b:=m-\ell>0$. Formally, for any positive integer e, define the padding function $\operatorname{pad}_{b,e}\colon\{0,1\}^{<2^e}\to\{0,1\}^*$ as

$$pad_{be}(x) = x10^{z} \langle |x| \rangle_{e}, \tag{3.1}$$

where $z \ge 0$ is the smallest non-negative integer for which |x| + 1 + z + e is a multiple of b. That is, $r := b \cdot \lceil k/b \rceil - k \in \{0, 1, \dots, b-1\}$, where k = |x| + 1 + e. Note especially that $\operatorname{pad}_{b,e}(x)$ unconditionally appends at least 1 + e bits to x, even if |x| itself is a multiple of b.

The purpose of the padding function is to produce a string whose length is a multiple of the block length, and so that the MD transform preserves collision resistance. That is, any collision in the full hash function immediately yields a collision in the underlying compression function.

3.2 Hash Functions

Fix subset-sum parameters q, n, m where $q = 2^u$ is a power of two for some positive integer u. Let $\ell := n \log q = nu$ be the output length in bits, and let $b := m - \ell > 0$ be the block length.

This specification defines two functions on arbitrary-length input strings: an "unsalted" mode that takes only the string as input, and a "salted" mode, originally defined in [HK06], that additionally takes a public salt value (which should typically be chosen uniformly at random, or pseudorandomly).

3.2.1 Unsalted Mode

For any matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ defining the compression function $f_{\mathbf{A}} \colon \{0,1\}^m \to \mathbb{Z}_q^n$ (Section 2) and a positive integer e > 0, define the unsalted hash function

$$H_{\mathbf{A},e} \colon \{0,1\}^{<2^e} \to \{0,1\}^{\ell}$$
 $H_{\mathbf{A},e}(x) := H'_{\mathbf{A}}(0^{\ell}, \operatorname{pad}_{b,e}(x)),$ (3.2)

where the chaining function $H'_{\mathbf{A}} \colon \{0,1\}^\ell \times \left(\bigcup_{i=0}^\infty \{0,1\}^{ib}\right) \to \{0,1\}^\ell$ is defined as

$$H'_{\mathbf{A}}(h, w) := \begin{cases} h & \text{if } w = \varepsilon \\ H'_{\mathbf{A}}(\langle f_{\mathbf{A}}(hu) \rangle, v) & \text{where } w = uv \text{ for } u \in \{0, 1\}^b. \end{cases}$$
(3.3)

(Recall that representation $\langle \mathbf{y} \rangle \in \{0,1\}^{\ell}$ for $\mathbf{y} \in \mathbb{Z}_q^n$ is defined in Section 2.2.)

3.2.2 Salted Mode

For any matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ defining the compression function $f_{\mathbf{A}} \colon \{0,1\}^m \to \mathbb{Z}_q^n$ (Section 2) and a positive integer e > 0, define the salted hash function

$$\tilde{H}_{\mathbf{A},e} \colon \{0,1\}^{<2^e} \underbrace{\times \{0,1\}^b} \to \{0,1\}^\ell$$

$$\tilde{H}_{\mathbf{A},e}(x,r) := \tilde{H}'_{\mathbf{A}}(0^\ell, \operatorname{pad}_{b,e}(0^b, x), r)$$
(3.4)

where the chaining function $\tilde{H}'_{\mathbf{A}}$: $\{0,1\}^\ell \times \left(\bigcup_{i=0}^\infty \{0,1\}^{ib}\right) \times \{0,1\}^b \to \{0,1\}^\ell$ is defined as

$$\tilde{H}'_{\mathbf{A}}(h,w,\underline{r}) := \begin{cases} h & \text{if } w = \varepsilon \\ \tilde{H}'_{\mathbf{A}}(\langle f_{\mathbf{A}}(h\underline{\tilde{u}})\rangle,v,\underline{r}) & \text{where } w = uv \text{ for } u \in \{0,1\}^b \underbrace{\text{and } \tilde{u} = u \oplus r}. \end{cases}$$
(3.5)

The only differences between the salted-mode functions $\tilde{H}_{\mathbf{A},e}$, $\tilde{H}'_{\mathbf{A}}$ and their corresponding unsalted-mode functions $H_{\mathbf{A},e}$, $H'_{\mathbf{A}}$ are depicted above with wavy underlines, and are as follows:

- 1. Each function $\tilde{H}_{\mathbf{A},e}, \tilde{H}'_{\mathbf{A}}$ takes an additional salt input $r \in \{0,1\}^b$, whose length is the block length.
- 2. The function $\tilde{H}_{\mathbf{A},e}(x,r)$ prepends an all-zeros block $0^b \in \{0,1\}^b$ to the input x (before padding it using $\mathrm{pad}_{b,e}$ and inputting the result to the appropriate chaining function, as in the unsalted case). Note that this prepended zeros block counts toward the total input length in the padding function.
- 3. The chaining function $\tilde{H}'_{\mathbf{A}}$ XORs each block $u \in \{0,1\}^b$ of the padded input—including the initial, prepended all-zeros block—with the salt value $r \in \{0,1\}^b$ (before inputting the result together with the previous chaining value h to the compression function, as in the unsalted case).

4 Concrete Instantiations

The fully specified hash functions are merely instantiations of the unsalted function $H_{\mathbf{A},e}$ (Equation (3.2)) and salted function $\tilde{H}_{\mathbf{A},e}$ (Equation (3.4)) for specific subset-sum parameters q,n,m, matrices $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, and input-length representation bit lengths e.

4.1 Deriving A

It is well known that for typical parameters, it is easy to generate a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ that is indistinguishable from uniformly random, together with some *known collisions* in the associated subset-sum compression function $f_{\mathbf{A}}$. This may allow the party that generated \mathbf{A} to violate the security of constructions that use this function. Therefore, it is very important to generate a random-looking \mathbf{A} in a "nothing up my sleeve" manner that is highly unlikely to admit any such backdoor.

Let $q=2^u, n, m$ be subset-sum parameters where u is a positive integer, and let XOF: $\{0,1\}^* \to \{0,1\}^\infty$ represent a suitable cryptographic *extendable-output function*, such as SHAKE-256. Then for any identifier $id \in \{0,1\}^*$, define the matrix $\mathbf{A}_{\text{XOF},id} \in \mathbb{Z}_q^{n \times m}$ as:

$$\mathbf{A}_{\mathrm{XOF},id} := \mathrm{pack}_{u,n,m} \big(\mathrm{XOF}(\langle u \rangle_{16} \, \langle n \rangle_{16} \, \langle m \rangle_{16} \, id)_{0,\dots,unm-1} \big) \in \mathbb{Z}_q^{n \times m}, \tag{4.1}$$

where $\operatorname{pack}_{u,n,m}\colon\{0,1\}^{unm}\to\mathbb{Z}_q^{n\times m}$ constructs its output matrix from its input string in row-major order, using u bits per entry. That is, for all $i=0,\ldots,n-1$ and $j=0,\ldots,m-1$, the distinguished representative of the (i,j)th entry $a_{i,j}\in\mathbb{Z}_q$ of $\mathbf{A}=\operatorname{pack}_{u,n,m}(w)$ has binary representation

$$\langle \bar{a}_{i,j} \rangle_u = w_{u(im+j),\dots,u(im+j)+(u-1)}$$
.

4.2 Concrete Parameters

The implemented functions are (unsalted) $H:=H_{\mathbf{A},e}$ and (salted) $\tilde{H}:=\tilde{H}_{\mathbf{A},e}$, where:

- the modulus $q = 2^{64}$, so $u = \log q = 64 = 2^6$;
- the dimension $n=8=2^3$, so the output length is $\ell=n\log q=512=2^9$;
- the input length $m = 1024 = 2^{10}$, so the block length is $b = m \ell = 512 = 2^9$;
- the representation length (of the hash input length) is $e = 128 = 2^7$;
- the extendable-output function is XOF = SHAKE-256;
- the matrix is $A := A_{XOF,id}$ where id is the ASCII representation of Algorand.

References

- [Ajt96] M. Ajtai. Generating hard instances of lattice problems. *Quaderni di Matematica*, 13:1–32, 2004. Preliminary version in STOC 1996.
- [Dam89] I. Damgård. A design principle for hash functions. In CRYPTO, pages 416–427. 1989.
- [HK06] S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized hashing. In *CRYPTO*, pages 41–59. 2006.
- [IN89] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset sum. *J. Cryptology*, 9(4):199–216, 1996. Preliminary version in FOCS 1989.
- [Mer89] R. C. Merkle. A certified digital signature. In CRYPTO, pages 218–238. 1989.