Assignment. No.01

Assignment on Linear Regression:

The following table shows the results of a recently conducted study on the **correlation** of the number of **hours** spent **driving** with the **risk** of developing acute backache. **Find the equation of the best fit line for this data**.

Number of hours	Risk score
spent driving (x)	on a scale
	of 0-100
	(y)
10	95
9	80
2	10
15	50
10	45
16	98
11	38
16	93

Linear Regression

- Linear regression is a linear model, e.g. a model that assumes a linear relationship between the input variables (x) and the single output variable (y).
- More specifically, that y can be calculated from a linear combination of the input variables (x).
- When there is a single input variable (x), the method is referred to as **simple linear regression**.
- When there are multiple input variables, literature from statistics often refers to the method as multiple linear regression

Linear Regression

- In Linear regression **these two variables** are related through an equation , where exponent (power) of both these variables is **1**.
- Mathematically a linear relationship represents a straight line when plotted as a graph.
- A non-linear relationship where the exponent of any variable is not equals to 1 creates a curve.
- The general mathematical equation for a LR is as,
- y= ax+b
- where,
- y is the response variable
- x is the predictive variable
- a & b are the constants which are called the coeficient.

Steps to Establish Linear Regression

- A simple example of regression is predicting weight of aperson when his height is known. To do this we need to have the relationship between height and weight of a person.
- The steps to create the relationship is,
- carry out the experiment of gathering a sample of observed values of height & corresponding weight.
- - create the object of linear regression class.
- - Train the algorithm with dataset of X and y.
- - Get a summary of the relationship model to known the average error in prediction also called residuals.
- - To predict the weight of new Persons, use the **prediction() function.**

Simple Linear Regression

 Simple regression problem (a single x and a single y), the form of the model would be:

Constant

Coefficient

$$y = b0 + b1 * x1$$

Dependent variable (DV)

Independent variable (IV)

Simple Linear Regression

ANALYZING DATASET

Number of hours spent driving (x)	Risk score on a scale of 0-100 (y)
10	95
9	80
2	10
15	50
10	45
16	98
11	38
16	93

DV

IV

Simple Linear Regression

- LET's CODE!
- Prep your Data Preprocessing Template
 - Import Dataset
 - No need for Missing Data
 - Splitting into Training & Testing dataset
 - Keep Feature Scaling but least preffered here
- Co-relate <u>Hours Spent</u> with <u>Risk Score</u>
- Later carry out prediction
- Verify the Values of prediction
- Prediction on TEST SET

Algorithm

Algorithm:

- 1. Import the Required Packages
- 2. Read Given Dataset
- 3. Import the Linear Regression and Create object of it
- 4. Find the Accuracy of Model using Score Function
- 5. Predict the value using Regressor Object
- 6. Take input from user.
- 7. Calculate the value of y
- 8. Draw Scatter Plot

Python Packages Needed

Pandas:

- Data Analytics

Numpy:

- numeric Computing

Matplotlib.pyplot:

- Plotting graphs

Sklearn:

- Regression Classes