עבודה עצמית 7

שאלה 1 לכל אחד של המשחקים שני שחקנים סכום אפב הבאים. מצאו את הערך של המשחק והאסטרטגיות האופטימליות.

(N

I	L	R
T	-1	-4
В	-3	3

(2

I	L	R
T	5	8
В	5	1

()

I	L	R
T	5	4
B	2	3

(†

I II	L	R
T	4	2
B	2	9

(n

I	L	R
T	5	4
B	5	6

(1

I	L	R
T	7	7
B	3	10

שאלה 2 נתון המשחק הבא בצורה אסטרטגית.

I	L	R
T	1,0	-1, 1
B	0, 1	0,0

 $.\big[\frac{1}{2}(L),\frac{1}{2}(R)\big]$, $\big[\frac{1}{2}(T),\frac{1}{2}(B)\big]$ הוכיחו של היחיד היחיד משקל היחיד של המשחק הוא

פתרונות

שאלה 1

()

(4

(1)

(1

 $\mathbf{v}=-rac{5}{3}$ באסטרטגיות מעורבות: ערך של המשחק

 $.\left[\frac{2}{3}(T),\frac{1}{3}(B)\right]$:1 אסטרטגיות אופטימלית או

 $\left[rac{7}{9}(L),rac{2}{9}(R)
ight]$:2 אסטרטגיות אופטימלית של אופטימלית

 ${f v}=5$ ערך של המשחק באסטרטגיות מעורבות:

 $.\big[x^*(T),(1-x^*)(B)|x^*\in \left[\frac{4}{7},1\right]\big]$:1 אסטרטגיות אופטימלית של שחקן אחקן

L:2 אסטרטגיות אופטימלית של

 $\mathbf{v}=4$:ערך של המשחק באסטרטגיות מעורבות

T:1 אסטרטגיות אופטימלית של אסטרטגיות

R:2 אסטרטגיות אופטימלית של

 $m .v=rac{32}{9}$ ערך של המשחק באסטרטגיות מעורבות:

 $.\left[\frac{7}{9}(T),\frac{2}{9}(B))\right]$:1 אסטרטגיות אופטימלית של אופטימלית אופטימלית א

 $.\left[\frac{7}{9}(L),\frac{2}{9}(R))\right]$ ים שחקן של אופטימלית אופטימלימל אופטימלית אופטימלית אופטימלית אופטימלית אופטימלית אופטימלית אופ

 $\mathbf{v}=5$:ערך של המשחק באסטרטגיות מעורבות

 $.\big[x^*(T),(1-x^*)(B)|x^*\in[0,\frac{1}{2}]\big]$:1 אסטרטגיות אופטימלית של אופטימלית אופטימלימית אופטימלית אופטימלית אופטימלית אופטימלית אופטימלית אופטימלית אופטימלית אופטימלית אופטימ

L:2 אסטרטגיות אופטימלית של אחקן

 $\mathbf{v}=7$:ערך של המשחק באסטרטגיות מעורבות

T:1 אסטרטגיות אופטימלית של אסטרטגיות

 $-\left[y^*(L),(1-y^*)(R)|y^*\in [rac{3}{7},1]
ight]$:2 אסטרטגיות אופטימלית של אחקן

פונקצית הועלת של שחקן 1: שאלה 2

$$U_1(x,y) = xy - x(1-y) = 2xy - x$$
.

$$U_2(x,y) = x(1-y) + (1-x)y = -2xy + x + y.$$

$$s_1^*(y) = \{x \in [0,1] | U_1(x,y) \ge U_1(z,y) \forall z \in [0,1] \}$$
.

 $.U_1(x,y) = x(2y-1)$

 $:\!\!x$ לכל לy קבוע כפונקציה ליניארית של

x=1 -ב מקסימום ב- לפונקציה ש מקסימום ב- $y>rac{1}{2}$

.x=0ב- מקסימום שלילי לפונקציה שלילי שלילי השיפוע $\Leftarrow y < \frac{1}{2}$ אם א

 $x \in [0,1]$ אם בכל מקסימום שווה אפס לפונקציה שווה אפס השיפוע שווה לפונקציה לפונקציה לכן

$$s_1^*(y) = \begin{cases} 1 & y > \frac{1}{2} \\ 0 & y < \frac{1}{2} \\ [0, 1] & y = \frac{1}{2} \end{cases}.$$

 $s_2^*(x) = \{ y \in [0,1] | U_2(x,y) \ge U_2(x,z) \forall z \in [0,1] \}$.

 $.U_2(x,y) = -2xy + x + y = y(-2x+1) + x$ ינט איניארית של פפונקציה ליניארית א קבוע כפונקציה ליניארית א

y=1 -ב מקסימום יש לפונקציה $\overset{\cdot}{\Leftarrow}$ השיפוע חיובי $\overset{\cdot}{\Leftarrow}$ אם $x<\frac{1}{2}$

.y=0ב- מקסימום שלילי לפונקציה שלילי שלילי השיפוע $\Leftarrow x>\frac{1}{2}$ אם א

 $y \in [0,1]$ אם בכל מקסימום שווה אפס אלפונקציה אפס אפסימום בכל אווה אפס א

$$s_2^*(x) = \begin{cases} 1 & x > \frac{1}{2} \\ 0 & x < \frac{1}{2} \\ [0, 1] & x = \frac{1}{2} \end{cases}.$$

ו- $x^*=\frac{1}{2}\in s_1^*(y)$ שיווי משקל אם ורק אם $x^*\in s_2^*(x)$ ו- $x^*\in s_1^*(y)$ אם ורק אם ורק אם $x^*=(x^*=\frac{1}{2},y^*=\frac{1}{2})$ לכן $y^*=\frac{1}{2}\in s_2^*(x)$