1 Ohniska kuželoseček

1.1 Konstrukce s imaginárními elementy

Poznámka

Všimněme si, že projektivita dvou soumístných soustav určuje jednoznačně pár samodružných elementů, ale opačně ne. Pokud však vezmeme involuci, tak ta už má jednoznačnou korespondenci involuce s párem samodružných elementů.

Příklad (Konstrukce)

Je-li dána projektivita soumístných bodových soustav na přímce, určete involuci, která má tytéž samodružné body. (Totéž duálně.)

Řešení (Duální)

Zvolíme pomocnou kružnici procházející daným bodem. Převedeme soustavy na bodové soustavy na kružnici. Vezmeme direkční přímku za poláru a najdeme k ní (přes tečny) pól. Nyní uvažujme involuci se středem v tomto bodě. Obraz v hledané involuci najdeme tak, že vzor převedeme na kružnici, zobrazíme v této involuci, a vrátíme zpět.

Poznámka

Pokud direkční přímka vyjde mimo kružnici, budou samodružné body komplexní a pól najdeme tak, že leží na polárách k bodům (pólům) ležícím na dané poláře.

$m V\check{e}ta~1.1$

Pro eliptickou involuci (bodových soustav na přímce) existují právě dva body v rovině, z nichž se tato involuce promítá absolutní involucí (to znamená involucí kolmic).

 $D\mathring{u}kaz$

Pro eliptickou involuci se její páry rozdělují. Tedy nad úsečkami vzor – obraz si uděláme Thaletovy kružnice a hledané body budou jejich průsečíky.

Definice 1.1

Body z předchozí věty se nazývají pomocné body eliptické involuce.

Poznámka (Platí)

Absolutní involuce je eliptická involuce, jejíž samodružné přímky jsou imaginární. Nazývají se izotropické přímky a jejich směry jsou [0:1:i] a [0:1:-i].

Izotropické body leží na každé kružnici v rovině. Každá izotropická přímka je kolmá sama na sebe (v reálném skalárním součinu, z definice absolutní involuce)

1.2 Ohnisko středových kuželoseček

Důsledek

Pokud kuželosečka není kružnice, pak izotropické body na ní neleží, tedy z každého izotropického bodu k takové kuželosečce existují 2 tečny (? 4 imaginární přímky). Lze ukázat, že ze 6 průsečíků těchto 4 přímek jsou vždy dva reálné.

Definice 1.2 (Ohnisko)

Těmto dvěma bodům budeme říkat ohniska dané kuželosečky.

Věta 1.2

Bod je ohniskem kuželosečky ⇔ involuce sdružených polár indukovaná v tomto bodě kuželosečkou je involuce absolutní.

 $D\mathring{u}kaz$

Samodružné přímky involuce sdružených polár jsou právě tečny z tohoto bodu.

Věta 1.3

- 1. Kuželosečka má 2 ohniska (E, F) (pro kružnici splývající), jsou umístěna symetricky podle středu na jedné z os kuželosečky. Ohniska jsou samodružné body involuce bodů na této ose, jejíž páry jsou vyťaty sdruženými kolmými polárami. A tedy i páry tečna+jejich normála (kolmice v bodě dotyku = pól tečny).
- 2. Každé z ohnisek je pomocným bodem eliptické involuce, kterou na druhé ose vytínají sdružené kolmé poláry (a tedy i dvojice tečna+normála).
- 3. Každá kružnice opsaná trojúhelníku danému druhou osou a sdruženými kolmými polárami protíná původní osu v ohniscích. (Vyplývá z předchozí části.)

 $D\mathring{u}kaz$

Bez důkazu.

Definice 1.3 (Hlavní osa, vedlejší osa)

Ose z předchozí věty se říká hlavní osa, druhé pak vedlejší.

```
Příklad (Konstrukce)
Dány osy elipsy s vrcholy, najděte ohniska.
```

Řešení (Podobné hledání hyperoskulační kružnice.)

K spojnici hlavního a vedlejšího vrcholu umíme najít pól (průsečík tečen = kolmic na osy). Z tohoto pólu vedeme kolmici, čímž jsme získali dvojici kolmých sdružených polár, tedy použijeme předchozí větu, bod 3.

Totéž pro hyperbolu: na hlavní ose máme zadané vrcholy, na vedlejší náhradní body.

Řešení

Polára bude tentokrát průsečík "těch druhých dvou kolmic v hlavním a vedlejším vrchole", neboť pomocné body jsou takové, že přesně tento bod leží na asymptotě (tečně v nevlastním bodě).

1.3 Ohnisko paraboly

Definice 1.4 (Ohnisko)

(Stejná.) Ohnisko paraboly je reálný průsečík izotropických tečen.

Tuto definici splňují 2 body: vlastní ohnisko F a nevlastní ohnisko = střed = směr průměrů = směr osy.

Poznámka

Polára vlastního ohniska = řídící přímka.

Věta 1.4

- 1. Bod je ohniskem paraboly ⇔ involuce sdružených polár v tomto bodě je involuce absolutní. (Tj. sdružené poláry v F jsou vzájemně kolmé.)
- 2. Spojnice vlastního a nevlastního ohniska = osa paraboly, vlastní ohnisko půlí každou úsečku vyťatou na ose sdruženými kolmými polárami (speciálně tečnou a její normálou).

Příklad (Konstrukce)

Zkonstruujte ohnisko paraboly zadané 4 tečnami.

Řešení

Najdeme osu a bod dotyku na libovolné nevrcholové tečně. Z něj vedeme kolmici a použijeme předchozí větu bod 2.

Věta 1.5

Ohnisko jsou pro kuželosečku 2 podmínky.

Důkaz

Ohnisko zadává 2 izotropické tečny, tedy 2 podmínky.

Poznámka

2ohniska + 1 bod (mimo osu = jejich spojnice) nezadávají jednoznačně kuželosečku, zadávají však jednoznačně elipsu a hyperbolu. A tyto dvě kuželosečky se v daném bodu protínají kolmo (úhel mezi tečnami).

2 Analytická geometrie

Definice 2.1 (Projektivní prostor, geometrický bod, aritmetický zástupce)

(Reálný) projektivní prostor dimenze n je množina

 $\mathbb{R}P^n = \{\langle v \rangle, v \in \mathbb{R}^{n+1} \setminus \mathbf{o}\} = \text{množina všech přímek (procházejících počátkem) v } \mathbb{R}^{n+1}.$

Prvek $\langle v \rangle \in \mathbb{R}P^n$ se nazývá geometrický bod a v jeho aritmetický zástupce

Poznámka (Platí)

 $\langle v \rangle = \langle w \rangle$ (tj. stejné geometrické body) $\Leftrightarrow \exists \alpha \in \mathbb{R} \setminus \{0\} : w = \alpha \cdot v$ (tj. aritmetičtí zástupci se liší pouze násobkem $\neq 0$).

Definice 2.2 (Homogenní souřadnice)

Je-li $v=(x_0,\ldots,x_n)\in\mathbb{R}^{n+1}\setminus\{\mathbf{o}\}$, pak homogenní souřadnice geometrického bodu $\langle v\rangle$ jsou $[x_0:\ldots:x_n]$.

Poznámka

Jsou určeny až na násobek $\neq 0$.

Definice 2.3 (Projektivní přímka, projektivní rovina, projektivní prostor)

 $\mathbb{R}P^1$ říkáme projektivní p
říkáme projektivní rovina. $\mathbb{R}P^3$ říkáme projektivní prostor.

Poznámka (Značení)

Místo $\langle a \rangle$ budeme psát A.

 $\mathbb{R}P^1$: Dva body A, B jsou totožné \Leftrightarrow vektory a, b jsou lineárně závislé.

 $\mathbb{R}P^2$: Tři body A, B, C leží na jedné přímce (po dvou různé) $\Leftrightarrow a, b, c$ jsou lineárně závislé (po dvou lineárně nezávislé), tj. leží v jedné rovině.

 $\mathbb{R}P^3$: Čtyři body A,B,C,Dleží v rovině $\Leftrightarrow a,b,c,d$ jsou lineárně závislé, tj. leží v jednom prostoru.

Obecně $\mathbb{R}P^n$: n+1 bodů A_0, \ldots, A_n leží v n-1-dimenzionálním projektivním prostoru \Leftrightarrow vektory a_0, \ldots, a_n leží v nadrovině v \mathbb{R}^{n+1} (jsou lineárně závislé).

Poznámka

Procesu "zakážeme o a ztotožníme násobky" říkáme projektivizace.

Definice 2.4 (Projektivní rozšíření afinního prostoru, vlastní bod, nevlastní bod)

Projektivní rozšíření afinního prostoru \mathbb{R}^n na projektivní prostor $\mathbb{R}P^n$ (= kanonické vnoření \mathbb{R}^n do $\mathbb{R}P^n$) je zobrazení, které bodu $[x_1, \ldots, x_n]$ přiřadí $[1:x_1:\ldots:x_n]$ a vektoru (x_1, \ldots, x_n) přiřadí $[0:x_1:\ldots:x_n]$.

Prvním říkáme body vlastní, druhým nevlastní.

TODO?

Definice 2.5 (Homogenní souřadnice přímky)

V $\mathbb{R}P^2$ zavádíme homogenní souřadnice přímky $a_0x_0 + a_1x_1 + a_2x_2 = 0$ jako homogenní trojici $(a_0:a_1:a_2)$.

Poznámka

Opět určeny až na násobek $\neq 0$.

Například

(0:1:0) je osa y, (0:0:1) je osa x, (1:0:0) je nevlastní přímka.

Příklad (Hledání průsečíku dvou přímek) TODO?

Příklad (Incidence bodů)

 $X = [x_0 : x_1 : x_2], a = (a_0 : a_1 : a_2). X \in a \Leftrightarrow a_0x_0 + a_1x_1 + a_2x_2 = 0.$

Důsledek

Lze zaměnit bod za přímku \implies dualita.

Tj. například spojnice bodů se počítá stejně jako průsečík přímek.

Poznámka (Trik na nalezení spojnice (/průsečíku))

Dány body $Y = [y_0 : y_1 : y_2], Z = [z_0 : z_1 : z_2].$ Chceme rovnici jejich spojnici: $X \in a = YZ \Leftrightarrow a_0x_0 + a_1x_1 + a_2x_2 = 0$ pro hledané souřadnice $(a_0 : a_1 : a_2) \Leftrightarrow$ vektory X, Y a Z jsou závislé \Leftrightarrow det $((X|Y|Z)^T) = 0 \Leftrightarrow$

$$\Leftrightarrow (y_1 \cdot z_2 - y_2 \cdot z_1) \cdot x_0 + (-y_0 \cdot z_2 + y_2 \cdot z_0) \cdot x_1 + (y_0 \cdot z_1 - y_1 \cdot z_0) \cdot x_2 = 0.$$

2.1 Dvojpoměr

Definice 2.6 (Dvojpoměr)

Dvojpoměr 4 vektorů v rovině a, b, c, d, po dvou lineárně nezávislých, ale po třech lineárně závislých (tj. BÚNO $c = \alpha_1 a + \beta_1 b, d = \alpha_2 \cdot a + \beta_2 b$) definujeme jako $(abcd) := \frac{\alpha_2 \cdot \beta_1}{\alpha_1 \cdot \beta_2} \in \mathbb{R}$.

Poznámka

Zřejmě tato hodnota nezávisí na volbě (nenulového) násobku každého vektoru.

Dvojpoměr 4 bodů $A,B,C,D\in\mathbb{R}P^n$ ležících na jedné přímce definujeme jako

$$(ABCD) := (abcd).$$

Tvrzení 2.1 (Už jsme si dokázali)

A,B,C,Djsou čtyři různé $\implies (ABCD) \neq 0,1,\infty.$ (Např. $C=A \vee B=D \Leftrightarrow (ABCD)=0.)$

$$A, B, C, D \ vlastni \implies (ABCD) = \frac{(ABC)}{(ABD)}$$
.

 $A, B, C \ vlastni, \ D \ nevlastni \implies (ABCD) = (ABC).$

Věta o 4 determinantech (pro $A, B, C, D \in \mathbb{R}P^1$):

$$(ABCD) = \frac{(a_0 \cdot c_1 - a_1 \cdot c_0) \cdot (b_0 \cdot d_1 - b_1 \cdot d_0)}{(a_0 \cdot d_1 - a_1 \cdot d_0) \cdot (b_0 \cdot c_1 - b_1 \cdot c_0)}.$$

Definice 2.7 (Harmonická čtveřice)

$$(ABCD) = -1$$

Příklad (Pak jsme počítali. V jednu chvíli nám vyšlo:) Parametrizace přímky procházející A,B je $t_1\cdot A+t_2\cdot B$, kde například $t_1+t_2=1$; lépe $t\cdot A+(1-t)\cdot B$.

Definice 2.8 (Projektivní souřadný systém (PSS))

Projektivní souřadný systém v $\mathbb{R}P^n$ je (n+1)-tice různých bodů $A_0, \ldots, A_n \in \mathbb{R}P^n$. Pak $\forall X \in \mathbb{R}P^n$ definujeme souřadnice bodu X vůči PSS (A_0, \ldots, A_n) jako homogenní (n+1)-tici $[x_0:\ldots:x_n]$ takovou, že $x=\sum_{i=0}^n x_i\cdot a_i$.

TODO!!! (Projektivita na $\mathbb{R}P^n$: je dána regulární maticí $(n+1) \times (n+1)$ určenou až na násobek $\neq 0$ (píšeme $A \sim k \cdot A$, pro $k \neq 0$).)

TODO!!! (Ukázání si, že taková matice zachovává dvojpoměr.)

TODO!!! (Projektivita je dána svými hodnotami na n+2 bodech.)

TODO!!! (A mnoho dalšího.)

2.2 Samodružné body projektivit

Definice 2.9 (Samodružný bod projektivity)

 $\langle \mathbf{v} \rangle \in \mathbb{R}P^n$ je samodružný bod projektivity dané matic
í $A \equiv \langle A \cdot \mathbf{v} \rangle = \langle \mathbf{v} \rangle.$

Poznámka

 $\Leftrightarrow \exists \lambda \in \mathbb{R}(\mathbb{C}) \setminus \{0\} : A \cdot \mathbf{v} = \lambda \cdot \mathbf{v} \qquad (\Leftrightarrow (A - \lambda E) \cdot \mathbf{v} = \mathbf{o} \Leftrightarrow p_A(\lambda) = \det(A - \lambda E) = 0)$

 $\Leftrightarrow \lambda \neq 0$ je vlastním číslem matice A
 o \neq v je vlastním vektorem matice A příslušným vlastním
u číslu $\lambda.$

Poznámka

Matice projektivity je regulární, tedy nemá vlastní číslo nula.

TODO? (Hromada lineární algebry.)

2.3 Klasifikace projektivit na projektivní přímce

Poznámka

Klasifikace projektivit na projektivní přímce podle možných Jordanových tvarů:

- $J_A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$ $\forall \lambda_1, \lambda_2, \lambda \in \mathbb{R} \setminus \{0\}$. Pro $\lambda = 1$ je to identická projektivita. Pro $\lambda \neq 1$ má dva reálné samodružné body.
- $J_A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ $\forall \lambda \in \mathbb{R} \setminus \{0\}$. Tehdy má jediný samodružný bod (a ten je reálný). Navíc je podobná matici $\begin{pmatrix} \lambda & \lambda \\ 0 & \lambda \end{pmatrix}$, což je násobek $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- $J_A = \begin{pmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{pmatrix}$ $\forall \lambda \in \mathbb{C} \backslash \mathbb{R}$. Tehdy má dva komplexní samodružné body.

Důsledek

To dokazuje větu ze zimního semestru ($\exists 2/1/0 \text{ samodružné body projektivity soustav}$).

2.4 Charakteristika projektivity

Poznámka (Opakování zimního semestru)

Jsou-li S,T samodružné body projektivity na $\mathbb{R}P^1$, pak její charakteristika je číslo w=(XX'ST) pro libovolný pár $X\mapsto X'$.

Věta: Hodnota w nezávisí na volbě bodu X.

Věta 2.2

Hodnota w nezávisí na volbě bodu X, a je-li projektivita dána maticí A, platí

$$w = \frac{\operatorname{tr} A + \sqrt{D}}{\operatorname{tr} A - \sqrt{D}}, \qquad D := (\operatorname{tr} A)^2 - 4 \det A.$$

Důkaz

Pro dvojpoměr platí (věta o čtyřech determinantech)

$$(XX'ST) = \frac{[XS] \cdot [X'T]}{[XT] \cdot [X'S]}, \qquad [AB] = \begin{vmatrix} a_0 & b_0 \\ a_1 & a_2 \end{vmatrix}.$$

Pro danou A spočítejme její vlastní čísla: $p_A(\lambda) = \lambda^2 - (\operatorname{tr} A) \cdot \lambda + \det A$, tj. $\lambda_{1,2} = \frac{\operatorname{tr} A \pm \sqrt{D}}{2}$.

Pak pro samodružné body platí: S'=S, T'=T, tedy $\mathbf{s}'=A\cdot\mathbf{s}=\lambda_1\cdot\mathbf{s},$ $\mathbf{t}'=A\cdot\mathbf{t}=\lambda_2\cdot\mathbf{t}.$ Pak

$$[\mathbf{x}'\mathbf{s}] = [\mathbf{x}'\frac{1}{\lambda_1}\mathbf{s}'] = \frac{1}{\lambda_1}[\mathbf{x}'\mathbf{s}'] = \frac{1}{\lambda_1} \cdot |A| \cdot [\mathbf{x}\mathbf{s}], \quad [\mathbf{x}'\mathbf{t}] = \ldots = \frac{1}{\lambda_2} \cdot |A| \cdot [\mathbf{x}\mathbf{t}].$$

Dosadíme:
$$w = \frac{[\mathbf{x}\mathbf{s}] \cdot \frac{1}{\lambda_2} \cdot |A| \cdot [\mathbf{x}\mathbf{t}]}{[\mathbf{x}\mathbf{t}] \cdot \frac{1}{\lambda_1} \cdot |A| \cdot [\mathbf{x}\mathbf{s}]} = \frac{\lambda_1}{\lambda_2} = \frac{\operatorname{tr} A + \sqrt{D}}{\operatorname{tr} A - \sqrt{D}}.$$

2.5 Involuce

Poznámka (Opakování zimního semestru)

Involuce je projektivita soumístných soustav splňující $w=-1 \Leftrightarrow \forall X: X''=X \Leftrightarrow \exists X: X''=X.$

Definice 2.10 (Involuce)

Involuce je projektivita (na $\mathbb{R}P^n$) daná maticí A, která splňuje $A^2 \sim E$.

Věta 2.3

Nechť matice $A \in \mathbb{R}^{2 \times 2}$ zadává neidentickou projektivitu na $\mathbb{R}P^1$ $(A \not\sim E)$. Pak NáPoJE:

- 1. $A^2 \sim E$ (je to involuce);
- 2. tr A = 0;
- 3. w = -1.

□ Důkaz

Pišme
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Pak $A^2 = \begin{pmatrix} a^2 + bc & (a+d) \cdot b \\ (a+d) \cdot c & bc + d^2 \end{pmatrix}$.

"1. \Longrightarrow 2.": $A^2 \sim E$ máme, chceme trA=a+d=0. Předpoklad nám dává $(a+d)\cdot b=0=(a+d)\cdot c$. Pro spor $(a+d)\neq 0$. Pak b=c=0 a $A=\mathrm{diag}(a,d)$, tedy $\mathrm{diag}(a^2,d^2)\sim\mathrm{diag}(1,1)$, tedy $a^2=d^2$, tj. $a=\pm d$. Takže buď a+d=0 nebo $A\sim E$. 4.

"2. \Longrightarrow 1.": předpokládáme a+d=0. Pak ale $A^2=\operatorname{diag}(a^2+bc,bc+d^2)\stackrel{a=-d}{=}\operatorname{diag}(a^2+bc,a^2+bc)\sim E$.

"2.
$$\Leftrightarrow$$
 3.": $w=\frac{\operatorname{tr} A+\sqrt{D}}{\operatorname{tr} A-\sqrt{D}}$, tedy pro $\operatorname{tr} A=0$ je $w=-1$, a pokud $w=-1$, pak $\operatorname{tr} A+\sqrt{D}=-\operatorname{tr} A+\sqrt{D}$, tedy $\operatorname{tr} A=0$. (Přitom $D=(\operatorname{tr} A)^2-4\det A=-4\det A\neq 0$.)

Důsledek

Stará definice involuce sedí s tou novou.

2.6 Parabolická involuce

Poznámka

Parabolická involuce odpovídá singulární matici A, která splňuje trA=0.

$$A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \implies c = \frac{-a^2}{b}.$$

$$\tilde{A} = \begin{pmatrix} a^2 & ba \\ -a^2 & -ab \end{pmatrix} \implies \begin{pmatrix} a^2 & ba \\ -a^2 & -ab \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} b \cdot (ax_0 + bx_1) \\ -a \cdot (ax_0 + bx_1) \end{pmatrix} \sim \begin{pmatrix} b \\ -a \end{pmatrix}$$

Důsledek

Tedy parabolická involuce zobrazuje všechny body do jednoho bodu.

Poznámka

Klasifikace involucí na $\mathbb{R}P^1$ podle Jordanova tvaru:

- $J_A \sim \text{diag}(1,-1) \implies p_A(\lambda) = \lambda^2 + \det A = \lambda^2 a^2$, tedy 2 reálné samodružné body, tj. hyperbolická involuce;
- $J_A=\operatorname{diag}(\lambda,\overline{\lambda}) \implies p_A(\lambda)=\lambda^2+\det A=\lambda^2+a^2$, tedy 2 imaginární body, tj. eliptická involuce.
- $J_A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, tj. parabolická involuce.

3 Projektivity na $\mathbb{R}P^2$

Například (Známé projektivity)

Všechny eukleidovské shodnosti. Všechny afinity (násobení bodu v \mathbb{R}^2 regulární maticí). Tj. i stejnolehlosti.

Poznámka (Působení projektivity na přímku)

Nechť je dána projektivita dána maticí A (3×3 regulární). Na bodech $x \mapsto Ax$. Na přímkách tedy $p^T \mapsto p^T A^{-1}$, protože projektivita zachovává incidenci.

Důsledek

Projektivita na $\mathbb{R}P^2$ má samodružné body a samodružné přímky. (A jsou to vlastní vektory matice A a A^{-T} .)

Věta 3.1

Nechť A má n různých vlastních čísel. Označme v_1, \ldots, v_n vlastní vektory A (odpovídající $\lambda_1, \ldots, \lambda_n$) a u_1, \ldots, u_n vlastní vektory A^T (odpovídající stejným $\lambda_1, \ldots, \lambda_n$). Pak pro $i \neq j : \langle u_i, v_i \rangle = 0$.

Důkaz

$$\lambda_j \cdot \langle u_j, v_i \rangle = \lambda_j \mathbf{u}_j^T \cdot \mathbf{v}_i = (\lambda_j \mathbf{u}_j)^T \cdot \mathbf{v}_i = (A^T \cdot \mathbf{u}_j)^T \cdot \mathbf{v}_i = \mathbf{u}_j^T \cdot A \cdot \mathbf{v}_i = \mathbf{u}_j^T \cdot (\lambda_i \mathbf{v}_i) = \lambda_i \mathbf{u}_j^T \cdot \mathbf{v}_i = \lambda_i \cdot \langle u_j, v_i \rangle \xrightarrow{i \neq j} \langle u_j, v_i \rangle = 0.$$

Důsledek

 \Box

Jsou-li $\mathbf{u}_1, \dots, \mathbf{u}_n$ samodružné přímky a $\mathbf{V}_1, \dots, \mathbf{V}_n$ samodružné body projektivity, pak $i \neq j \implies \mathbf{V}_i \in \mathbf{u}_j$.

Definice 3.1 (Silně a slabě samodružná)

Samodružná přímka je silně samodružná, pokud se každý její bod zobrazí sám na sebe, a slabě samodružná v opačném případě.

Samodružný bod je silně samodružný, pokud se každá jím procházející přímka zobrazí sama na sebe, a slabě samodružný v opačném případě.

Poznámka

Přímka/bod je silně samodružná/-ý právě tehdy, pokud příslušný vlastní podprostor má dimenzi ≥ 2 (tj. existují 2 lineárně nezávislé vlastní vektory).

3.1 Klasifikace projektivit na $\mathbb{R}P^2$

Poznámka (Hrubá klasifikace)

Jordanovy buňky mohou být buď 3, 2 nebo 1.

Poznámka (Podpřípady)

3 buňky:

- $J_{1a} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$ (3 různá reálná vlastní čísla). \Longrightarrow 3 slabě samodružné body a 3 slabě samodružné přímky.
- $J_{1b} = \operatorname{diag}(\lambda_1, \overline{\lambda_1}, \lambda_2)$, kde λ_1 je komplexní číslo, které není reálné, a λ_2 je reálné číslo. Je podobná s maticí $\operatorname{diag}(R_{\varphi}, \lambda_2)$, rotace + stejnolehlost (= spirální podobnost). 1 slabě samodružný bod a 1 slabě samodružná přímka.
- $J_{1c} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_2) \sim \operatorname{diag}(\lambda_1', 1, 1)$. Jeden silně a jeden slabě samodružný bod, jedna silně a jedna slabě samodružná přímka. Toto zobrazení je perspektivní (nebo také středová) kolineace.
- $J_{1d} = \operatorname{diag}(\lambda_1, \lambda_1, \lambda_1) \sim E$ je identita.

2 buňky:

- $J_{2a} = \operatorname{diag}\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \lambda\right)$, kde $\lambda \neq 1$. 2 slabě samodružné přímky a 2 slabě samodružné body. Je to stejnolehlost složená s elací (tj. s osovou afinitou, kde směr je rovnoběžný s osou).
- $J_{2b} = \operatorname{diag}\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1\right)$. 1 silně samodružná přímka a jeden silně samodružný bod.

1 buňka:

• $J_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ (to je jediná až na podobnost matice se 3 Jordanovy buňky). Jeden slabě samodružný bod a jedna slabě samodružná přímka.

TODO? (definice bilineární formy; antisymetrické a symetrické BL formy; (jednoznačný) rozklad na symetrickou a antisymetrickou část; kvadratická forma (g_2) určená BL formou g neboli její symetrickou částí g_s ; zpětná rekonstrukce g_s z g_2 ; polární báze (to je ta, ve které je matice kvadratické formy diagonální); Sylvestrův zákon setrvačnosti; signatura; Sylvestrovo kritérium; regulární matice má počet nul v signatuře nulový a opačně)

Definice 3.2 (Vrchol symetrické bilineární formy)

Vrchol symetrické bilineární formy g na \mathbb{R}^n je množina

$$V(g) := \{ \mathbf{u} \in \mathbb{R}^n | \forall \mathbf{v} \in \mathbb{R}^n : g(\mathbf{u}, \mathbf{v}) = 0 \}.$$

Poznámka

Ekvivalentně $g(\mathbf{v}, \mathbf{u}) = 0$. Maticově $\forall \mathbf{v} : \mathbf{u}^T G \mathbf{v} = 0 \Leftrightarrow \mathbf{u}^t \cdot G = \mathbf{o}$ nebo $G \cdot \mathbf{u} = \mathbf{o}$.

Čili $V(g) = \operatorname{Ker} G$.

4 Kvadriky

Definice 4.1 (Kvadrika)

Kvadrika v $\mathbb{R}P^n$ určená kvadratickou formou g_2 (na \mathbb{R}^{n+1}) je množina

$$Q_g := \{ \langle \mathbf{u} \rangle \in \mathbb{R}P^n | g_2(\mathbf{u}) = 0 \}.$$

 $Nap \check{r} \hat{\imath} k lad$

TODO?

$$G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

je formálně reálná kuželosečka (nemá reálné body).

TODO?

Důsledek

Kvadrika na $\mathbb{R}P^n$ je dána symetrickou maticí $(n+1)\times(n+1)$ určenou až na násobek $\neq 0$.

Důsledek

Kvadrika v $\mathbb{R}P^2$ je určena symetrickou maticí 3×3 , tedy 6 čísly, až na násobek, tedy o jedno číslo méně, tj. 5 čísly.

Důsledek

 $X=\langle \mathbf{x}\rangle\in Q_g\Leftrightarrow x^T\cdot G\cdot x=0,$ tedy zadání 5 bodů je stejné jako zadání 5 lineárních rovnic (o 6 neznámých).

Definice 4.2 (Regulární kvadrika, singulární kvadrika)

Kvadrika je regulární/singulární, pokud její matice vůči libovolné bázi je regulární/singulární.

Poznámka

To je ekvivalentní s nulou/nenulou v počtu nul v signatuře matice.

Definice 4.3 (Vrchol kvadriky)

Vrchol kvadriky je množina $V(Q) := \{X | \mathbf{x} \in V(g) = \text{Ker } G\}.$

4.1 Polární vlastnosti kvadrik

Definice 4.4 (Polárně sdružené body)

Body $X, Y \in \mathbb{R}P^n$ jsou polárně sdružené vzhledem ke kvadrice $Q_F \equiv F(x, y) = 0$.

 $\begin{aligned} & Pozn\acute{a}mka \\ & \text{Ekvivalentně} \ x^T \cdot A \cdot y = 0. \end{aligned}$

Ze symetričnosti F je symetrická i polární sdruženost.

Definice 4.5 (Singulární a regulární bod kuželosečky)

Bod $Y \in \mathbb{R}P^n$ je singulární bod kvadriky $Q_F \equiv Y$ je polárně sdružený se všemi body v $\mathbb{R}P^n$ (vůči Q_F). Ostatní body se nazývají regulární.

Poznámka

Singulární bod musí být sdružený sám se sebou, tedy leží na příslušné kvadrice.

Množina všech singulárních bodů kvadriky Q_F tvoří podprostor v $\mathbb{R}P^n$. (Lze jednoduše ověřit na aritmetických zástupcích.)

Singulární body existují ⇔ kvadrika je singulární.

Množina singulárních bodů je vrchol kvadriky.

Důsledek

Pro regulární kvadriky (a právě pro ně) je $V(Q_F) = \emptyset$.

Pozor

Zde zadefinovaný vrchol nemá nic společného s vrcholem paraboly (či elipsy).

Poznámka

Označení pochází z vrcholu kuželu / -ové plochy.

Poznámka (Definice)

Dimenze prázdné množiny je -1.

Tvrzení 4.1

Projektivní dimenze $V(Q_F)$ je rovna (n+1) - h(A) - 1 = n - h(A).

Tvrzení 4.2

Je-li $X \in V(Q_F)$ a Y libovolný bod kvadriky Q_F . Pak celá přímka $XY \subset Q_F$.

Důkaz

$$X \in V(Q_F) \Leftrightarrow \forall Z \in \mathbb{R}^n : F(X, Z) = 0,$$

 $Y \in Q_F \Leftrightarrow F(Y, Y) = 0.$

Vezmeme libovolný bod na přímce XY: označme $aX + bY = \langle ax + by \rangle$.

$$F(aX + bY, aX + bY) = a^{2}F(X, X) + 2abF(X, Y) + b^{2}F(Y, Y) = 0 + 0 + 0 = 0.$$

Tvrzení 4.3

 Q_F libovolná kvadrika v $\mathbb{R}P^n$, S libovolný podprostor v $\mathbb{R}P^n \implies Q_F \cap S$ je také kvadrika (v S).

Důkaz

 $F|_S$ je stále kvadratická forma.

Důsledek

 $V(Q_F)$ je také kvadrika.

Definice 4.6 (Doplněk)

Je-li S podprostor $\mathbb{R}P^n$, doplňkem prostoru S v $\mathbb{R}P^n$ nazveme podprostor $T \subset \mathbb{R}P^n$ splňující $S \cap T = \emptyset \wedge S$ má maximální možnou dimenzi.

Pozn'amka

Zase je to symetrická vlastnost dvou podprostorů.

Pro projektivní dimenzi platí $\dim_p S + \dim_p T = n - 1$.

Definice 4.7 (Podstava kvadriky)

Podstava kvadriky Q_F je její průnik s libovolným podprostorem T, který je doplňkem $V(Q_F)$.

Důsledek

Podstava je regulární kvadrika.

 $D\mathring{u}kaz$

Je to průnik s podprostorem a neobsahuje singulární body.

Důsledek (Strukturální věta pro kvadriky)

Každá kvadrika sestává z podprostorů, které spojují body podstavy s vrcholem.

Poznámka

Speciálním případem je regulární kvadrika, která je celá svou podstavou.

Definice 4.8 (Polární nadrovina, pól)

Buď $P \in \mathbb{R}P^n$ bod, který není singulárním bodem Q_F (tj. buď P je regulárním bodem Q_F nebo $P \notin Q_F$). Pak polární nadrovina ϱ_P bodu P je $\varrho_P = \{X \in \mathbb{R}P^n | F(P,X) = 0\}$. P se pak nazývá pólem této nadroviny.

Poznámka

 ϱ_P je nadrovina, protože $X \in \varrho_P \Leftrightarrow p^T \cdot A \cdot x = 0$ a $p^T \cdot A$ je nenulový.

Poznámka

Platí:

- Q_F regulární $\Longrightarrow \varrho_P$ je definována pro každý bod $P \in \mathbb{R}P^n$;
- Q_F je singulární $\Longrightarrow \varrho_P$ není definována pro $P \in V(Q_F)$, ale pro všechny ostatní body platí $V(Q_F) \subset \varrho_P$.

Definice 4.9 (Tečná nadrovina)

Tečná nadrovina je polární nadrovina pro případ, že $P \in Q_F$ (tj. že P je regulárním bodem Q_F).

Definice 4.10 (Tečna)

Tečna ke kvadrice Q_F je přímka, která buď leží celá na kvadrice (ale ne celá v $V(Q_F)$), anebo má s kvadrikou společný právě jeden (regulární) bod.

Poznámka (Platí, ale těžké dokázat)

Všechny tečny v daném bodě leží v tečné nadrovině.

Poznámka (Platí)

 $P \in \varrho_Q \Leftrightarrow Q \in \varrho_P$. (Ze symetrie polární sdruženosti.)

```
P\check{r}\acute{\imath}klad Určete tečný keQ_Fz bodu P. \begin{tabular}{l} \check{R}\check{e}\check{s}en\acute{\imath} \\ Ur\check{c}\acute{m}e\ \varrho_P\ a\ průsečíky\ \varrho_P\cap Q_F\ lež\acute{\imath}\ na\ hledaných\ tečnách. \end{tabular} Kuželosečka dána rovnicí x^2-y^2+4xy+4x+2y+3=0. Určete tečny z bodů [-1,-1], [-3,0],\ [0,-2].
```

Definice 4.11 (Vnitřní bod, vnější bod)

Bod neležící na kuželosečce je vnitřní/vnější, pokud z něj nevedou/vedou tečny.

5 Klasifikace kvadrik

5.1 Maximální podprostory na kvadrice

Věta 5.1 (Bez důkazu)

Mějme kvadriku v $\mathbb{R}P^n$ se signaturou (p,q,r). BÚNO $p \geqslant q$. Potom

- maximálni (projektivní) dimenze podprostoru neprotínajícího Q_F je p-1;
- maximální (projektivní) dimenze podprostoru ležícího na Q_F je q+r-1=n-p.

Definice 5.1 (Projektivní typ kvadriky)

Číslo n-p nazýváme projektivní typ kvadriky.

Například

Pro:

-1 p = n + 1: projektivní typ je $n - (n + 1) = -1 \implies Q_F$ obsahuje jen \emptyset , ale ne body, tedy $Q_F = \emptyset$ (formálně reálná kvadrika);

0 p = n: na Q_F leží body, ale ne přímky;

1 p = n - 1: na Q_F leží přímky, ale ne roviny;

•••

5.2 Projektivní klasifikace kvadrik

První určujeme regulární/singulární. Pak (pokud je singulární) najdeme vrchol a podstavu (ta je regulární). Tedy nás zajímá hlavně klasifikace regulárních kvadrik.

Definice 5.2 (Oválná, přímková, (+ klasifikace))

Pro regulární kvadriky máme tyto možnosti:

pro	(p, q, r)	projektivní typ	název
	(n+1, 0, 0)	-1	formálně reálná
	(n,1,0)	0	oválná (body, ale ne přímky)
$n \geqslant 3$	(n-1, 2, 0)	1	přímková (občas také typ hyperboloid)
$n \geqslant 5$	(n-2, 3, 0)	2	

Poznámka

Oválná v $\mathbb{R}P^2 = \{\text{elipsa, parabola, hyperbola}\}.$

5.3 Afinní klasifikace kvadrik

Definice 5.3 (Středová kvadrika, nestředová kvadrika, střed kvadriky, směr osy)

Regulární kvadrika je

- středová, je-li pól nevlastní nadroviny vlastní bod; (Tomuto bodu říkáme střed kvadriky.) (To je právě tehdy, není-li nevlastní rovina tečná.)
- nestředová (osová, paraboloid), je-li pól nevlastní nadroviny nevlastní bod. (Tomuto bodu říkáme směr osy.) (To je právě tehdy, je-li nevlastní rovina tečná.)

Definice 5.4 (Značení)

$$A = [F]_K = \begin{pmatrix} a_{00} & a_{01} \dots a_{0n} \\ a_{01} \dots a_{0n} & B \end{pmatrix} = \begin{pmatrix} c & \mathbf{b} \\ \mathbf{b} & B \end{pmatrix}.$$

Věta 5.2

 Q_F je středová $\Leftrightarrow B$ je regulární, pak $S = [1:s_1:\ldots:s_n]$ je střed \Leftrightarrow

$$\Leftrightarrow (a_{01} \dots a_{0n}|B) \cdot (1, s_1, \dots, s_n)^T = \mathbf{o}.$$

 $(Q_F \ je \ nest \check{r}edov \acute{a} \Leftrightarrow B \ je \ singul \acute{a}rn \acute{i}), \ pak \ S = [0:s_1:\ldots:s_n] \ je \ sm \check{e}r \ osy \Leftrightarrow$

$$\Leftrightarrow B \cdot (s_1, \ldots, s_n)^T = \mathbf{o}.$$

 $D\mathring{u}kaz$

"Pro nestředové": $S = [0:s_1:\ldots:s_n]$ je pólem nevlastní nadroviny $\Leftrightarrow \forall [0:x_1:\ldots:x_n]$ platí

$$(0, x_1, \dots, x_n) \cdot A \cdot (0 : s_1 : \dots : s_n)^T = 0 \Leftrightarrow$$

$$\Leftrightarrow (x_1, \dots, x_n) \cdot B \cdot (s_1, \dots, s_n)^T = 0(\forall (x_1, \dots, x_n)) \Leftrightarrow B \cdot (s_1, \dots, s_n)^T = \mathbf{0},$$

přičemž $(s_1, \ldots, s_n) \neq \mathbf{o}$, tedy B je singulární. Opačně, pokud B je singulární, pak existuje takové $(s_1, \ldots, s_n) \neq \mathbf{o}$, které to splňuje.

"Pro středové": první část je jen negací již dokázaného. Pak $S=[1:s_1:\ldots:s_n]$ je pólem nevlastní nadroviny \Leftrightarrow

$$\forall (x_1, \dots, x_n) : (0, x_1, \dots, x_n) \cdot A \cdot (1, s_1, \dots, s_n)^T \Leftrightarrow$$

$$\Leftrightarrow (x_1, \dots, x_n) \cdot (a_{01} \dots a_{0n} | B) (1, s_1, \dots, s_n)^T = 0 (\forall (x_1, \dots, x_n)) \Leftrightarrow$$

$$\Leftrightarrow (a_{01} \dots a_{0n} | B) \cdot (1, s_1, \dots, s_n)^T = \mathbf{o}.$$

Poznámka

$$(a_{01} \dots a_{0n}|B) \cdot (1, s_1, \dots, s_n)^T = \mathbf{o} \Leftrightarrow S = -B^{-1} \cdot (a_{01}, \dots, a_{0n})^T.$$

Poznámka

B je taktéž matice kvadriky (o dimenzi menší), která vznikne průnikem původní kvadriky s nevlastní nadrovinou (n_{∞}) . A proto Q_F je středová/nestředová $\Leftrightarrow Q_F \cap n_{\infty}$ je regulární/singulární.

Pro singulární kvadriky nelze definovat středová/nestředová, ale platí V_Q je jeden bod ("střed") $\Leftrightarrow B$ je regulární. (A naopak V_Q je alespoň přímka $\Leftrightarrow B$ je singulární.)

Poznámka (Jemnější dělení)

Jak rozlišit hyperbolu ($|Q_F \cap n_{\infty}| = 2$) od elipsy $(Q_F \cap n_{\infty} = \emptyset)$?

Začneme v $\mathbb{R}P^1$ přehledem možných případů:

- 1. Regulární kvadriky:
 - Signatura (2,0,0): $x_0^2 + x_1^2 = 0$ nemá řešení, tedy je to formálně reálná kvadrika a je středová.
 - Signatura (1,1,1): $x_0^2 = x_1^2$ má právě dvě řešení = naše kvadrika jsou dva body. V této podobě je středová, ale když máme $x_0^2 2x_0x_1 = 0$, pak je jedno z řešení nevlastní bod a kvadrika je nestředová.
- 2. Singulární kvadriky:

- Signatura (1,0,1): buď $x_0^2=0$ nebo $x_1^2=0$, tedy buď 1 nevlastní nebo 1 vlastní bod.
- Signatura (0, 0, 2): celá přímka.

Tvrzení 5.3

Přehled kvadrik v $\mathbb{R}P^2$:

1. Regulární:

- Signatura (3,0,0): formálně reálná kvadrika.
- Signatura (2,1,0): oválná. Středové můžou být dvě sign B = (2,0,0), tj. Q_F ∩ n =
 Ø, je elipsa, sign B = (1,1,0) je pak hyperbola. Nestředová je pak parabola.

2. Singulární:

- Signatura (2,0,1): Pokud je B regulární, pak je to jeden vlastní bod. V opačném případě je to jeden vlastní bod.
- Signatura (1, 1, 1): Pokud je B regulární, pak jsou to dvě různoběžky. V opačném případě jsou to dvě rovnoběžky.
- Signatura (1,0,2): Obsahuje-li B něco, pak je to 1 vlastní přímka. V opačném případě je to nevlastní přímka
- Signatura (0,0,3): $cel\acute{y} prostor$.

TODO!!!?

5.4 Metrická klasifikace pro regulární kvadriky

Poznámka

Směry os jsou vlastní vektory matice B.

Navíc B je symetrická, tj. B má reálná vlastní čísla a reálné vlastní vektory a navíc B je diagonalizovatelná \implies existuje n vlastních vektorů (tj. lze vždy najít bázi z vlastních vektorů); lze najít dokonce ortonormální bázi z vlastních vektorů.

Definice 5.5 (Délky poloos)

$$a_i = \sqrt{\frac{-c'}{\lambda_i}},$$

kde $c' = c - \mathbf{b}^T \cdot B^{-1} \cdot \mathbf{b}, c$ je levý horní prvek A a \mathbf{b} je zbytek prvního sloupce (řádku) A.

U hyperboly jedna z délek os vyjde ryze komplexní.

Poznámka

Když nalezneme vlastní čísla, tak jsme hned dostali signaturu (znamínka vlastních čísel).

Definice 5.6 (Kanonická rovnice kvadriky středové)

$$\sum_{1}^{n} \frac{\mathbf{x}_{i}^{\prime 2}}{a_{i}^{2}} = 1,$$

kde a_i jsou délky poloos a \mathbf{x}'_i jsou nové souřadnice.

Důsledek

Odpovídá matici v diagonálním tvaru.

Tvrzení 5.4 (Ohnisková vzdálenost)

$$e^2 = a_1^2 - a_2^2.$$

Důsledek

Umíme spočítat ohniska (jako $\mathbf{S} + \frac{e}{2} \cdot \frac{\mathbf{v}_i}{|\mathbf{v}_i|}$)

Poznámka (Nestředové)

Je-li Q nestředová, pak A je regulární, ale B není. Tedy jedním z vlastních čísel B je nula a jeho vlastní vektor je směr osy.

Definice 5.7 (Kanonická rovnnice kvadriky nestředové)

$$\sum_{i=1}^{n-1} \lambda_i \cdot x_i'^2 + 2b_n'' \cdot x_n' = 0,$$

kde b_n'' je poslední složka vektoru $\mathbf{b}'' = U^T \cdot \mathbf{b}$, přičemž \mathbf{b} je vektor z matice A bez B a rohového členu (stejně jako v délkách poloos) a $U = (\mathbf{v}_1 | \dots | \mathbf{v}_n)$, kde \mathbf{v}_i jsou normované vlastní vektory a \mathbf{v}_n přísluší 0.

21