COMPARING LOGISTIC REGRESSION, SVM, RANDOM FOREST, K-NN AND NAIVE-BAYES

Basic Machine Learning Final Project

By: Group 1

Contain

- Dataset Description
- Data Loading
- Data Preprocessing
- Predictive Model
- Summary

Dataset Description

- Dataset mengenai kanker payudara yang ada didapat melalui perhitungan terhadap gambar digital atas uji Aspirasi Jarum Halus (FNA) dari massa payudara. Data ini menggambarkan karakteristik dari inti sel
- Tujuan dibuatnya dataset ini adalah untuk mengidentifikasi jumlah kelas kanker yang jinak (benign) atau ganas (malignant)
- Sample ini dikumpulkan secara periodical atas laporan klinis dari Dr.
 Wolberg, oleh karena itu database ini mencerminkan pengelompokan secara kronologis

Data Loading

1. Loading dataset

0	842302	M	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.070
2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12
3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10
4	84358402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.104
	325	5530	1020	(553)	227	22	5550		5530	
564	926424	M	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.138
565	926682	М	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.097
566	926954	M	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05
567	927241	М	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15
568	92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00

2. Getting data information

```
In [3]: df.info()
0
   id
                             569 non-null
                                             int64
   diagnosis
                             569 non-null
                                             object
                                             float64
   radius mean
                             569 non-null
   texture mean
                             569 non-null
                                            float64
                            569 non-null
                                            float64
    perimeter mean
                                            float64
                            569 non-null
   area mean
                                             float64
    smoothness mean
                             569 non-null
                                            float64
   compactness mean
                            569 non-null
                                            float64
   concavity mean
                             569 non-null
                                             float64
    concave points mean
                             569 non-null
    symmetry mean
                             569 non-null
                                            float64
                                            float64
   fractal dimension mean
                            569 non-null
                                            float64
   radius se
                             569 non-null
                            569 non-null
                                            float64
   texture se
    perimeter se
                             569 non-null
                                            float64
                                            float64
   area se
                             569 non-null
                                             float64
   smoothness se
                             569 non-null
   compactness se
                            569 non-null
                                             float64
                            569 non-null
                                             float64
   concavity se
   concave points se
                             569 non-null
                                            float64
   symmetry se
                             569 non-null
                                            float64
   fractal dimension se
                            569 non-null
                                            float64
   radius worst
                             569 non-null
                                            float64
                            569 non-null
                                             float64
   texture worst
   perimeter worst
                             569 non-null
                                             float64
   area worst
                             569 non-null
                                             float64
   smoothness worst
                             569 non-null
                                            float64
   compactness worst
                            569 non-null
                                            float64
   concavity worst
                             569 non-null
                                            float64
   concave points worst
                             569 non-null
                                            float64
   symmetry worst
                             569 non-null
                                            float64
31 fractal dimension worst 569 non-null
                                             float64
32 Unnamed: 32
                                             float64
                             0 non-null
```

```
In [4]: df.isnull().sum()
  id
                                 0
   diagnosis
                                 0
   radius mean
   texture mean
   perimeter mean
   area mean
   smoothness mean
   compactness mean
   concavity mean
   concave points mean
   symmetry mean
  fractal dimension mean
  radius se
  texture se
   perimeter se
   area se
   smoothness se
   compactness se
   concavity se
   concave points se
   symmetry se
  fractal dimension se
   radius worst
   texture worst
   perimeter worst
   area worst
   smoothness worst
   compactness worst
   concavity worst
   concave points worst
  symmetry worst
  fractal dimension worst
                                 0
   Unnamed: 32
                               569
```

Data Preprocessing

Drop features

```
In [6]: df = df.drop('Unnamed: 32',axis = 1)
    df = df.drop('id',axis = 1)

In [8]: features = df.iloc[:,0:31]
    features = features.drop('diagnosis',axis = 1)
```

Checking and handling outliers

0 Not Outlier

Outlier

```
In [9]: from scipy import stats

z = np.abs(stats.zscore(features._get_numeric_data()))
not_outlier = df[(z < 3).all(axis = 1)]
print(not_outlier.shape)

(495, 31)

In [10]: pd_outlier = pd.DataFrame([])
pd_outlier["Notes"] = ["Not Outlier","Outlier"]
pd_outlier["Number of Observations"] = [not_outlier.shape[0], df.shape[0]-not_outlier.shape[0]]
pd_outlier</pre>
Out[10]:

Notes Number of Observations
```

495

74

Overcoming the existance outlier

Out[13]:

	December 10 Inches In	-7110-000 (8000 1900) (000 1800) (1900)
0	Not Outlier	495
1	Outlier	74

Notes Number of Observations

There is no different between standardized data and the original

3. Checking correlation matrix of each features


```
In [14]: corr1 = features std.corr()
            fig, ax = plt.subplots(figsize=(20, 20))
            sns.heatmap(corr1,annot=True,cmap=plt.cm.Reds,ax=ax)
-07
-5.0
```

4. Doing Principal Component Analysis (PCA) for reducing the features

Calculating n-PCA number

From the results above, it is found that there are 6 values of eigenvalues that exceed the value of 1. That means the ideal PC that can be formed is 6 pieces.

```
In [17]: from sklearn.decomposition import PCA
    pca = PCA(n_components=6)
    principalcomponents = pca.fit_transform(features_std) # using standardized data
    new_df = pd.DataFrame(principalcomponents)
    new_df.columns = ['PC1', 'PC2', 'PC3', 'PC4', "PC5", 'PC6']
    new_df
```

Out[17]:

	PC1	PC2	PC3	PC4	PC5	PC6
0	1160.142574	-293,917544	48.578398	-8.711975	32.000486	1.265415
1	1269.122443	15.630182	-35.394534	17.861283	-4.334874	-0.225872
2	995.793889	39.156743	-1.709753	4.199340	-0.486529	-2.652811
3	-407.180803	-67.380320	8.672848	-11.759867	7.115461	1.299436
4	930.341180	189.340742	1.374801	8.499183	7.613289	1.021160
		0.000	1000			1500
564	1414.126684	110.222492	40.065944	6.562240	-5.102858	-0.395424
565	1045.018854	77.057589	0.036669	-4.753245	-12.417863	-0.059637
566	314.501758	47.553525	-10.442407	-9.771881	-6.156213	-0.870726
567	1124.858115	34.129225	-19.742087	-23.660881	3.565133	4.088390
568	-771.527822	-88.643106	23.889032	2.547249	-14.717588	4.418123

569 rows × 6 columns

5. Rechecking correlation matrix

```
In [18]: # Checking new_df correlation features
    corr = new_df.corr()
    fig, ax = plt.subplots(figsize=(10, 10))
    sns.heatmap(corr,annot=True,cmap=plt.cm.Reds,ax=ax)
```

Out[18]: <AxesSubplot:>

Predictive Model

1. Prepare training and testing data

new_df['diagnosis'] = df['diagnosis'] In [19]: new df Out[19]: PC1 PC2 PC3 PC4 PC5 PC6 diagnosis 0 1160.142574 -293.917544 48.578398 -8.711975 32.000488 M 1.265415 1 1269.122443 17.861283 15.630182 -35.394534 -4.334874 -0.225872 M 995.793889 39.156743 -1.709753 4.199340 -0.466529 -2.652811 -67.380320 8.672848 -11.759867 -407.180803 7.115461 1.299436 930.341180 189.340742 1.374801 1.021160 8.499183 7.613289 -5.102856 -0.395424 1414.128884 110.222492 40.085944 6.562240 1045.018854 77.057589 0.038669 -4.753245 -12.417883 -0.059637 314.501756 47.553525 -10.442407 -9.771881 -8.156213 -0.870726 1124.858115 34.129225 -19.742087 -23.660881 3.565133 4.086390 -771.527622 -88.643106 23.889032 2.547249 -14.717588 4.418123 В

569 rows × 7 columns

```
In [22]: from sklearn.model_selection import train_test_split

x = new_df.iloc[:,:6]
y = new_df.iloc[:,-1]

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 12)
print(x_train.shape)
print(y_train.shape)
print(y_train.shape)
print(y_test.shape)

(455, 6)
(455,)
(114, 6)
(114,)
```

2. Logistic Regression

```
In [25]: from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import confusion_matrix, accuracy_score
    logreg = LogisticRegression()
    logreg.fit(x_train, y_train)

y_predict = logreg.predict(x_test)
    cm = confusion_matrix(y_predict, y_test)
    print(cm)
    print('\n')
    print(f'akurasi Logistic Regression : {logreg.score(x_test, y_test)*100} %')

[[65    4]
    [ 1    44]]

akurasi Logistic Regression : 95.6140350877193 %
```

3. Support Vector Machine

Linear kernel

```
In [23]: from sklearn import svm
         svm1 = svm.SVC(kernel = 'linear')
In [24]: svm1.fit(x_train,y_train)
Out[24]: SVC(kernel='linear')
In [25]: y_pred = svm1.predict(x_test)
In [26]: from sklearn.metrics import confusion_matrix, accuracy_score
         cm = confusion_matrix(y_pred, y_test)
         print(cm)
         print('\n')
         print(f'akurasi SVM linear kernel : {svm1.score(x_test, y_test)*100} %')
         [[65 6]
          [ 1 42]]
         akurasi SVM linear kernel : 93.85964912280701 %
         RBF Kernel
In [27]: svm2 = svm.SVC(kernel = 'rbf')
         svm2.fit(x_train,y_train)
         y_pred2 = svm2.predict(x_test)
         cm = confusion matrix(y pred2, y test)
         print(cm)
         print('\n')
         print(f'akurasi SVM rbf kernel : {svm2.score(x_test, y_test)*100} %')
         [[65 12]
          [ 1 36]]
         akurasi SVM rbf kernel : 88.59649122807018 %
```

Using GridSearch CV

```
In [29]: print('Best Parameter :', svm_grid.best_params_)
         print('Best Score :', svm_grid.best_score )
         Best Parameter : {'C': 0.1, 'gamma': 0.1, 'kernel': 'linear'}
         Best Score
                      : 0.9490607048594939
In [30]: svm3 = svm.SVC(C = 0.1 ,gamma = 0.1 ,kernel = 'linear')
         svm3.fit(x train, v train)
Out[30]: SVC(C=0.1, gamma=0.1, kernel='linear')
In [31]: y_pred3 = svm3.predict(x_test)
         cm = confusion matrix(y pred3, y test)
         print(cm)
         print('\n')
         print(f'akurasi SVM with tuning parameter : {svm3.score(x test, y test)*100} %')
         [[65 6]
         [ 1 42]]
         akurasi SVM with tuning parameter : 93.85964912280701 %
```

4. Random Forest

```
In [32]: from sklearn.ensemble import RandomForestClassifier
    rf = RandomForestClassifier()
    rf.fit(x_train,y_train)
    y_pred4 = rf.predict(x_test)
    cm = confusion_matrix(y_pred4, y_test)
    print(cm)
    print('\n')
    print(':', )
    print(f'akurasi Random Forest: {rf.score(x_test, y_test)*100} %')

[[66 7]
    [0 41]]

:
    akurasi Random Forest: 93.85964912280701 %
```

5. K Nearest Neighbor

```
In [33]: from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import accuracy_score

model = KNeighborsClassifier(n_neighbors = 5, weights = 'uniform', p = 2)
    model.fit(x_train, y_train)
    y_pred5 = model.predict(x_test)

cm = confusion_matrix(y_pred5, y_test)
    accuracy4 = accuracy_score(y_pred5, y_test)

print(cm)
    print('\n') # enter
    print(f'akurasi K-NN : {accuracy4*100} %')

[[64 10]
    [ 2 38]]

akurasi K-NN : 89.47368421052632 %
```

Using GridSearch CV

```
In [34]: from sklearn.model selection import GridSearchCV #mencari parameter optimal
         from sklearn.metrics import make scorer #mencari make score
         model = KNeighborsClassifier()
         scorer = make_scorer(accuracy_score, greater_is_better = True)
         parameters = [{'n_neighbors': [3,5,7,9,11,13,15,17],
                       'weights' : ['uniform', 'distance'],
                       'p' : [1,2]}]
         model_gscv = GridSearchCV(model, param_grid = parameters, scoring = scorer, cv = 5)
         model gscv.fit(x, v)
         print('Best Parameter :', model_gscv.best_params_)
         print('Best Score :', model_gscv.best_score_)
         Best Parameter : {'n_neighbors': 11, 'p': 1, 'weights': 'uniform'}
         Best Score : 0.9402577239559076
In [36]: model = KNeighborsClassifier(n neighbors = 11, weights = 'uniform', p = 1)
         model.fit(x_train, y_train)
         v pred6 = model.predict(x test)
         cm = confusion matrix(v pred6, v test)
         accuracy5 = accuracy_score(y_pred6, y_test)
         print(cm)
         print('\n') # enter
         print(f'akurasi K-NN with tuning parametes : {accuracv5*100} %')
         [[66 9]
         [ 0 39]]
         akurasi K-NN with tuning parametes: 92.10526315789474 %
```

6. Naive Bayes

```
In [37]: bayes_df = new_df

In [38]: from sklearn.preprocessing import LabelEncoder
    le = LabelEncoder()
    bayes_df['diagnosis'] = le.fit_transform(bayes_df["diagnosis"])
    bayes_df
```

out[38]:

	PC1	PC2	PC3	PC4	PC5	PC6	diagnosis
0	1160.142574	-293.917544	48.578398	-8.711975	32.000486	1.265415	- 1
1	1269.122443	15.630182	-35.394534	17.861283	-4.334874	-0.225872	1
2	995.793889	39.156743	-1.709753	4.199340	-0.486529	-2.652811	1
3	-407.180803	-67.380320	8.672848	-11.759867	7.115461	1.299436	1
4	930.341180	189.340742	1.374801	8.499183	7.613289	1.021160	ा
1000	5****	527	275	5000	Stee	200	***
564	1414.128884	110.222492	40.065944	6.562240	-5.102856	-0.395424	1
565	1045.018854	77.057589	0.036669	-4.753245	-12.417863	-0.059637	1
566	314.501756	47.553525	-10.442407	-9.771881	-8.158213	-0.870726	ा
567	1124.858115	34.129225	-19.742087	-23.660881	3.565133	4.086390	1
568	-771.527822	-88.643106	23.889032	2.547249	-14.717566	4.418123	0

569 rows × 7 columns

Notes:

```
1 >> M >> Malignant (Ganas)
0 >> B >> Benign (Jinak)
```

```
In [39]: x2 = bayes_df.iloc[:,:6]
         y2 = bayes_df.iloc[:,-1]
         x_train2, x_test2, y_train2, y_test2 = train_test_split(x2, y2, test_size = 0.2, random_state = 12)
         print(x_train2.shape)
         print(y train2.shape)
         print(x test2.shape)
         print(y_test2.shape)
         (455, 6)
         (455,)
         (114, 6)
         (114,)
In [40]: from sklearn.naive_bayes import GaussianNB
         model = GaussianNB()
         model.fit(x train2,y train2)
Out[40]: GaussianNB()
In [41]: y_pred7 = model.predict(x_test2)
         cm = confusion matrix(y pred7, y test2)
         accuracy6 = accuracy_score(y_pred7, y_test2)
         print(cm)
         print('\n') # enter
         print(f'akurasi Naive-Bayes : {accuracy6*100} %')
         [[62 13]
         [ 4 35]]
         akurasi Naive-Bayes : 85.08771929824562 %
```

Summary

kurasi Logi:	stic Regress	ion : 95.6	1403508771	93 X	akurasi Rando	m Forest: 93	.85964912	280701 %		
	precision	recall	f1-score	support		precision	recall	f1-score	support	
В	0.94	0.98	0.96	66	В	0.90	1.00	0.95	66	
М	0.98	0.92		48	M		-		48	
accuracy			0.96	114	accuracy			0.94	114	
macro avg		0.95	0.95	114	macro avg	0.95	0.93	0.94	114	
eighted avg		0.96	0.96	114	weighted avg	0.94	0.94	0.94	114	
kurasi SVM				1 %	akurasi K-NN					
	precision	recall	f1-score	support		precision	recall	f1-score	support	
В	0.92	0.98	0.95	66	В	0.86	0.97	0.91	66	
М		0.88		48	М	0.95	0.79		48	
accuracy			0.94	114	accuracy			0.89	114	
macro avg	0.95	0.93	0.94	114	macro avg	0.91	8.88	0.89	114	
eighted avg	0.94	0.94	0.94	114	weighted avg	0.90	0.89	0.89	114	
	rbf kernel :				akurasi K-NN					
	precision	recall	f1-score	support		precision	recall	f1-score	support	
В	0.84	0.98	0.91	66	В	0.88	1.00	0.94	66	
М		0.75		48	М		0.81		48	
accuracy			0.89	114	accuracy			0.92	114	
macro avg	0.91	0.87	0.88	114	macro avg	0.94	0.91	0.92	114	
eighted avg		0.89	0.88	114	weighted avg		0.92	0.92	114	
	with tuning			912280701 %	akurasi Naive					
	precision	recall	f1-score	support		precision	recall	f1-score	support	
			0.95		1921					
		0.00		66	0	0.83	0.94	0.88	66	
В	0.92	0.98		48	1	0.90		6.86	48	
В		0.98 0.88	0.92		90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.00	0.70.00000	0.73		48	
B M accuracy	0.92 0.98	0.88	0.92 0.94	114	accuracy			0.85	114	
В	8.92 8.98		0.92		90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.00	0.86		0.85 0.84		

Thank You ...