CS 447/647

TCP/IP Networking

What are the core Internet Protocols? (IP, ICMP, UDP, and ARP)

How is the Internet governed? (ICANN, ISOC and IGF)

How are standards developed? (RFC)

What are the 5 layers of the OSI Model?

What are the Protocol Data Units for the 5 layers?

What are some common protocols for each layer?

Common network utilities. (dig, telnet, nmap, ip, and nc)

References

Goralski, W. (2017). The Illustrated Network: How TCP/IP works in a modern network. Amsterdam: Elsevier.

https://learning.oreilly.com/library/view/the-illustrated-network/9780128110287

TCP/IP Networking

- Networking is important
- TCP/IP underpins the Internet
 - Web
 - o Email
 - Zoom (UDP)
- TCP/IP is flexible
 - OS Independent
 - Hardware Independent
 - Works on any size or topology

TCP/IP Networking & The Internet

- TCP/IP and the Internet have a shared history
 - TCP was created in 1974 by Vint Cerf
 - https://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf
- Progenitor was a network called ARPANET in 1969
 - In the 1980's in transitioned into the commercial Internet
- Collaboratively Managed
 - ICANN Internet Corporation for Assigned Names and Numbers
 - Enforcement Capabilities
 - Controls the allocation of IPs, domains and protocol ports.
 - ISOC Internet Society
 - Technical development through IETF Internet Engineering Task Force
 - IGF Internet Governance Forum
 - Created by the UN.
 - Used for policy-based discussions

Network standards and documentation

- RFCs Request for Comments
 - Protocol Standards
 - TFTP, SMTP, HTTP, DNS, etc.
 - Proposed Changes
 - SMTP Require TLS Option REQUIRETLS
 - https://www.rfc-editor.org/rfc/rfc8689.txt
 - Informational Bulletins
 - 50 years of RFCs
 - https://www.rfc-editor.org/rfc/rfc8700.txt
- RFCs can be assigned
 - BCP Best Current Practice
 - Network Time Protocol Best Current Practices
 - o STD Standard
 - FYI For Your Information

RFC Requirement Levels

Required: All systems must implement

Recommended: All systems should implement

Elective: Not required nor recommended

Limited Use: Used in certain situations, such as experimental

Not Recommended: Systems should not implement

Networking Basics

- IP Internet Protocol
 - o routes data from one machine to another
- ICMP Internet Control Message Protocol
 - Low-level support for IP error message, routing and debugging
 - o ping, traceroute
- ARP Address Resolution Protocol
 - Translates IP to hardware address (MAC)
- UDP User Datagram Packet
 - Unreliable one-way delivery
- TCP Transmission Control Protocol
 - Reliable full-duplex and error corrected conversations

TCP/IP Layering model

IPv4 and IPv6

- IPv4
 - 32 bit addresses
 - 4,294,967,296 addresses
 - NAT Network Address Translation
- IPv6
 - 128 bit addresses
 - IPsec built in authentication and encryption
 - No checksum
 - o 30% of google.com visits
- Adoption of IPv6 is slow
 - o Amazon, Bing, Wordpress, craigslist
 - Waiting for services to be IPv6 only
 - Cleaned up version of IPv4
 - Python2
 - 2010 to 2020

Packet Encapsulation

- Hardware
 - Ethernet, token ring, Infiniband, Omni-path
- Data travels as packets
 - Max length is dictated by the link layer (2)
 - Packet header has source and destination
 - Checksums, protocol options
 - Handling instructions (TTL)
 - Payload
- Encapsulation
 - Packets are added to by each layer by the sender
 - Each layer is removed by the receiver

Ethernet	IPv4	UDP	Application data	Ethernet
header	header	header		CRC
14 bytes	20 bytes	8 bytes	100 bytes	4 bytes

UDP packet (108 bytes)

IPv4 packet (128 bytes) Ethernet frame (146 bytes)

Ethernet Framing

- Adding extra bits to a packet
- Link layer adds headers to packets
 - Header contains addresses
 - Checksums
- Link layer adds separators between packets
- Two parts of link layer
 - Media Access Control Deals with hardware, puts packets onto the wire
 - Logical Link Control Ethernet framing

Physical

Data Link

Network

Transport

Maximum Transfer Unit

- Packet size is limited
 - Hardware
 - E1000 16,298 bytes
 - Protocol
 - Ethernet 1500 bytes

Network type	Maximum transfer unit
Ethernet	1,500 bytes (1,492 with 802.2 framing)
IPv6 (all hardware)	At least 1,280 bytes at the IP layer
Token ring	Configurable ^a
Point-to-point WAN links (T1, T3)	Configurable, often 1,500 or 4,500 bytes

a. Common values are 552; 1,064; 2,088; 4,508; and 8,232. Sometimes 1,500 to match Ethernet.

MTU

- IPv4 Packets are split to conform to the MTU
 - Test with
 - ping -s 4500 cs447.cse.unr.edu
- Fragmentation happens in-flight by routers
 - IPv6 moves this to the sender
 - 1,280 bytes
- Lowest MTU link can be found with "do not fragment" flag
 - o ICMP error response
 - Contains network info for lowest-MTU link
- TCP does automatic MTU discover
 - UDP does not

Packet Addressing

- MAC Address
 - Hardware
- IPv4 and IPv6 addresses
 - Software
- Hostnames
 - Humans

Hostnames

- Domain Name Server
 - A IPv4
 - o AAAA IPv6
 - o PTR IP to Hostname aka. Reverse lookup
- /etc/hosts
 - IP hostname hostname1 hostname2
- Lookup with dig
 - o dig A google.com
 - o dig A cs447.cse.unr.edu @8.8.8.8
 - o dig A cs477.cse.unr.edu @134.197.5.1

Ports

- IP is an address. IE: 127.0.0.1
- Port is a communication channel for an application
 - 0 1 65,535
- IP + Port = Socket
 - o 127.0.0.1:80 = HTTP
- /etc/services defines common network services
 - grep daytime /etc/services
- Ports < 1024 reserved for root

IPv4 Address Classes

Class	1 st byte ^a	Format	Comments
Α	1-127	N.H.H.H	Very early networks, or reserved for DoD
В	128-191	N.N.H.H	Large sites, usually subnetted, were hard to get
C	192-223	N.N.N.H	Were easy to get, often obtained in sets
D	224-239	_	Multicast addresses, not permanently assigned
Е	240-255	_	Experimental addresses

a. The value 0 is special and is not used as the first byte of regular IP addresses. The value 127 is reserved for the loopback address.

IPv4 Subnetting

network* /8 Class A Netwok Host Host Host Subnet Mask 255 0 0 0 Class B Netwok /16 Network Host Host Subnet Mask 255 255 0 0 Class C Netwok Network Network Host /24 Subnet Mask 255 255 255 0

CIDR

https://www.bogotobogo.com/DevOps/AWS/aws-VPC-Virtual-Private-Cloud-1-netmast-subnet -default-gateway-CIDR.php

IP address	Netmask	Network	Broadcast
128.138.243.100/16	255.255.0.0	128.138.0.0	128.138.255.255
128.138.243.100/24	255.255.255.0	128.138.243.0	128.138.243.255
128.138.243.100/26	255.255.255.192	128.138.243.64	128.138.243.127

IPv4 Subnetting

apt install ipcalc

Classless Inter-Domain Routing (CIDR)

- Splitting networks for routing purposes
- Example

Site has been given a block of eight class C addresses numbered 192.144.0.0 through 192.144.7.0

- 1 network of length /21 with 2,046 hosts, netmask 255.255.248.0
- 8 networks of length /24 with 254 hosts each, netmask 255.255.255.0
- 16 networks of length /25 with 126 hosts each, netmask 255.255.255.128
- 32 networks of length /26 with 62 hosts each, netmask 255.255.255.192

One route 192.144.0.0/21

Address Allocation

Name	Site	Region covered
ARIN APNIC AfriNIC LACNIC RIPE NCC	arin.net apnic.net afrinic.net lacnic.net ripe.net	North America, part of the Caribbean Asia/Pacific region, including Australia and New Zealand Africa Central and South America, part of the Caribbean Europe and surrounding areas

Special forms of IPv4 Addressing

Special Address	NetID	HostID	Example	Use
Network itself	Non-0	All zeros (0s)	192.168.14.0	Used by routers: on a host, means "some host," but it is not used.
Directed broadcast	Non-0	All ones (1s)	192.168.14.255	Destination only: used by routers to send to all host on this network.
Limited broadcast	All 1s	All 1s	225.255.255.255	Destination only: direct broad- cast when NetID is not known.
This host on this network	All 0s	All Os	0.0.0.0	Source only: used when host does not know its IPv4 address.
Specific host on this network	All 0s	Non-0	0.0.0.46	Destination only: defined, but not used
Loopback	127	Any	127.0.0.0	Destination only: packet is not sent out onto network.

Network Address Translation

- Made to deal with IPv4 exhaustion
- Private address spaces
- Border router translates between private and public

IP class	From	То	CIDR range
Class A	10.0.0.0	10.255.255.255	10.0.0.0/8
Class B	172.16.0.0	172.31.255.255	172.16.0.0/12
Class C	192.168.0.0	192.168.255.255	192.168.0.0/16

Routing

- Direct a packet to its destination
 - To reach network A
 - Send packets through machine C
 - Default route
 - Often the gateway assigned by DHCP

ip route show

redhat\$ netstat ·	-rn				
Destination	Genmask	Gateway	Fl	MSS	Iface
132.236.227.0	255.255.255.0	132.236.227.93	U	1500	eth0
default	0.0.0.0	132.236.227.1	UG	1500	eth0
132.236.212.0	255.255.255.192	132.236.212.1	U	1500	eth1
132.236.220.64	255.255.255.192	132.236.212.6	UG	1500	eth1
127.0.0.1	255,255,255,255	127.0.0.1	U	3584	10

ip route add 132.236.220.64/26 via 132.236.212.6 dev eth1 ip route add default via 132.236.227.1 dev eth0

Dynamic Host Control Protocol

- Enables automatic
 - IP Address
 - Netmask
 - Gateway
 - DNS Server configuration
- Offers a lease
 - Expires after a configurable amount of time
 - Must be renewed
- Software
 - Isc-dhcp-server
 - o dnsmasq simple

```
# global options
option domain-name "synack.net";
option domain-name-servers gw.synack.net;
option subnet-mask 255.255.255.0;
default-lease-time 600;
max-lease-time 7200;
subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.51 192.168.1.60;
    option broadcast-address 192.168.1.255;
    option routers gw.synack.net;
subnet 209.180.251.0 netmask 255.255.255.0 {
host gandalf {
    hardware ethernet 08:00:07:12:34:56;
    fixed-address gandalf.synack.net;
```


Basic Network Configuration

ip link set eth0 up

ip add 192.168.47.20/24 dev eth0

ip route add default via 192.168.47.1

Setup DNS Modify

/etc/resolv.conf

/etc/systemd/resolved.conf

Exercise

ifconfig # Old

ip addr # New

ping -r -c 5000 alpine.cse.unr.edu # Useful for checking for packet loss

apt install -y nmap telnet

nmap ponderosa.cse.unr.edu # Check for services

telnet mail.cse.unr.edu 25

telnet google.com 80

Exercise

```
#Working with application level protocols
#Daytime Protocol
#https://tools.ietf.org/html/rfc867 Port 13 UDP/TCP
#Time Protocol
#https://tools.ietf.org/html/rfc868 Port 37 UDP/TCP
#NIST maintains a set of servers. https://tf.nist.gov/tf-cgi/servers.cgi
apt install netcat #arbitrary TCP and UDP connections and listens
nc time-d-wwv.nist.gov <<< ""
```

ifconfig/arp/route Command	ip Command	
ifconfig	ip addr show #more information	
	ip link show #less information	
	Note: The show is the default on most versions of the ip command, so ip link should do the same thing as ip link show .	
ifconfig eth0 192.168.1.16 netmask 255.255.255.0 broadcast 192.168.2.255	ip addr add 192.168.1.16 /24 broadcast 192.168.2.255 dev eth0	
ifconfig eth0 promisc	ip link set eth0 promisc on	
ifconfig eth0 -promisc	ip link set eth0 promisc off	
ifconfig eth0 -arp	ip link set eth0 arp off	
ifconfig eth0 arp	ip link set eth0 arp on	
arp	ip neigh show #neigh = neighbor	
arp -i eth0 -d 192.169.1.11	ip neigh del 192.168.1.11 dev eth0	
route	ip route show	
route add -net 192.168.2.0 netmask 255.255.255.0 gw 192.168.1.100	ip route add 192.168.2.0/24 via 192.168.1.100	
route del -net 192.168.2.0 netmask 255.255.255.0 gw 192.168.1.100	ip route del 192.168.2.0/24 via 192.168.1.100	
route del default	ip route del default	
route add default gw 192.168.1.1	ip route add default via 192.168.1.1	