Lógica de Predicados 2014/2

Profa: Daniela Scherer dos Santos daniela.santos37@ulbra.edu.br

Qual o valor Lógico de uma proposição simples?

Qual o valor Lógico de uma proposição simples?

Exemplo: Linux é um software livre.

Qual o valor Lógico de uma proposição simples?

Exemplo: Linux é um software livre.

1 ou V : se a proposição for verdadeira;

0 ou F : se a proposição for falsa.

Qual o valor Lógico de uma proposição simples?

Exemplo:
Linux é um software livre. (V)

1 ou V : se a proposição for verdadeira;

0 ou F : se a proposição for falsa.

Qual o valor Lógico de uma proposição simples?

Exemplo:
Linux é um software livre. (V)

1 ou V : se a proposição for verdadeira;

0 ou F : se a proposição for falsa.

Qual o valor lógico de uma proposição COMPOSTA?

Qual o valor lógico de uma proposição COMPOSTA?

Exemplo:

Windows é um sistema operacional, e Pascal é uma linguagem de programação.

Qual o valor lógico de uma proposição COMPOSTA? Exemplo:

Windows é um sistema operacional, • Pascal é uma linguagem de programação.

Podemos atribuir um valor lógico (V ou F) para cada uma das proposições simples e através da TABELA VERDADE verificamos o valor lógico de toda a proposição composta.

É uma tabela que descreve os valores lógicos de uma proposição em termos das possíveis combinações dos valores lógicos das proposições componentes e dos conectivos usados.

O valor lógico de qualquer proposição composta depende unicamente dos valores lógicos das suas proposições simples.

TABELA VERDADE da negação: ~

Exemplo:

p: Linux é um software livre.

~p: Linux não é um software livre.

р	~p
V	F
F	V

Tabela Verdade da CONJUNÇÃO: A

- a) Windows é um sistema operacional, e Pascal é uma linguagem de programação. (V)
- b) Windows é um sistema operacional, e Pascal é uma planilha eletrônica.(F)
- c) Windows é um editor de textos, e Pascal é uma linguagem de programação.(F)
- d) Windows é um editor de textos, e Pascal é uma planilha eletrônica.(F)

Tabela Verdade da DISJUNÇÃO: 🗸

р	q	p ∨ q
V	V	V
V	F	V
F	V	V
F	F	F

- a) Windows é um sistema operacional, ou Pascal é uma linguagem de programação. (V)
- b) Windows é um sistema operacional, ou Pascal é uma planilha eletrônica.(V)
- c) Windows é um editor de textos, ou Pascal é uma linguagem de programação.(<mark>V</mark>)
- d) Windows é um editor de textos, ou Pascal é uma planilha eletrônica.(F)

Tabela Verdade da DISJUNÇÃO EXCLUSIVA: OR exclusivo = XOR (∨)

р	q	p XOR q
V	V	F
V	F	V
F	V	V
F	F	F

p XOR q, se lê: "*p* ou *q*, mas não ambos", cujo valor lógico é a verdade somente quando p é verdadeira ou q é verdadeira, mas não quando p e q são ambas verdadeiras.

Exemplo: Mário é alagoano ou gaúcho.

Como não é possível Mário ser alagoano e gaúcho, então usamos a disjunção exclusiva.

Tabela Verdade da CONDICIONAL: →

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

- a) Se o Windows é um sistema operacional, então Pascal é uma linguagem de programação. (V)
- b) Se o Windows é um sistema operacional, então Pascal é uma planilha eletrônica.(F)
- c) Se o Windows é um editor de textos, então Pascal é uma linguagem de programação.(V)
- d) Se o Windows é um editor de textos, então Pascal é uma planilha eletrônica.(V)

Tabela Verdade da BICONDICIONAL: ↔

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

- a) Windows é um sistema operacional se e somente se Pascal é uma linguagem de programação. (V)
- b) Windows é um sistema operacional, se e somente se Pascal é uma planilha eletrônica.(F)
- c) Windows é um editor de textos, se e somente se Pascal é uma linguagem de programação.(F)
- d) Windows é um editor de textos, se e somente se Pascal é uma planilha eletrônica.(V)

Passos para a construção:

- 1) determinar o número de linhas da tabela;
- 2)observar a precedência entre os conectivos;
- 3)aplicar as operações lógicas (conjunção, disjunção, condicional, bicondicional, disjunção exclusiva ou negação) que o problema exigir.

Passos para a construção:

- 1) determinar o número de linhas da tabela:
 - o número de linhas depende do número de proposições simples presentes → n° de variáveis;
 - número de linhas = 2ⁿ
 - em que n é o número de proposições simples envolvidas (variáveis)

```
para a proposição composta p \rightarrow p v q:
```

```
n° linhas = 2<sup>n</sup>
```

$$n^{\circ}$$
 linhas = 2^{2}

Passos para a construção:

2)observar a precedência de operadores:

```
para a proposição composta p → p v q:
```

v tem prioridade sobre →
Portanto, primeiramente deve-se determinar
o valor lógico de p v q para na sequência
determinar o valor lógico de toda a
proposição composta p → p v q

- (1) negação (~)
- (2) conjunção E (∧)
- (3) disjunção OU (v)
- (4) condicional (\rightarrow)
- (5) bicondicional (\leftrightarrow)

Passos para a construção:

3)construir a tabela verdade e aplicar as operações lógicas que o problema exigir.

para a proposição composta p → p v q :

р	q	
V	V	
V	F	
F	V	
F	F	

Passos para a construção:

3)construir a tabela verdade e aplicar as operações lógicas que o problema exigir.

para a proposição composta $p \rightarrow p v q$:

р	q	pvq	
V	V	V	
V	F	V	
F	V	V	
F	F	F	

Passos para a construção:

3)construir a tabela verdade e aplicar as operações lógicas que o problema exigir.

para a proposição composta $p \rightarrow p v q$:

p	q	p v q	$p \rightarrow p v q$
V	V	V	V
V	F	V	V
F	V	V	V
F	F	F	V

Referências:

- 1. Maria Lucia Pozzatti Flores. Lógica de Predicados. Canoas: ULBRA. 2003. Reeditado 2005.
- 2. GERSTING, J.L. Fundamentos Matemáticos para Ciência da Computação. 5a edição. Rio de Janeiro: LTC.2003.

