Lecture 2

The linear geostatistical model

- 1. Formulation of linear geostatistical models and assumptions.
- 2. Brief introduction to Gaussian processes.
- 3. Understanding the nugget effect.
- 4. Parameter estimation via the maximum likelihood method.

Where we observe matters

 $ightharpoonup Y_i = ext{lead concentration in a moss sample (ppm)}$

 $ightharpoonup Y_i = \text{lead concentration in a moss sample (ppm)}$

$$Y_i = \alpha + S(x_i) + Z_j$$

 $ightharpoonup Y_i = \text{lead concentration in a moss sample (ppm)}$

$$Y_i = \alpha + S(x_i) + Z_j$$

 $ightharpoonup Z_i \sim N(0, \tau^2)$

 $ightharpoonup Y_i = \text{lead concentration in a moss sample (ppm)}$

$$Y_i = \alpha + S(x_i) + Z_i$$

- $ightharpoonup Z_i \sim N(0, \tau^2)$
- ▶ We assume that S(x) is a stationary and isotropic Gaussian process, i.e.

$$Cov(S(x), S(x')) = \sigma^2 \rho(u), \quad u = ||x - x'||.$$

 $ightharpoonup Y_i = \text{lead concentration in a moss sample (ppm)}$

$$Y_i = \alpha + S(x_i) + Z_j$$

- $ightharpoonup Z_i \sim N(0, \tau^2)$
- ▶ We assume that S(x) is a stationary and isotropic Gaussian process, i.e.

$$Cov(S(x), S(x')) = \sigma^2 \rho(u), \quad u = ||x - x'||.$$

▶ How do we choose $\rho(\cdot)$?

 $ightharpoonup Y_i = \text{lead concentration in a moss sample (ppm)}$

$$Y_i = \alpha + S(x_i) + Z_j$$

- $ightharpoonup Z_i \sim N(0, \tau^2)$
- ▶ We assume that S(x) is a stationary and isotropic Gaussian process, i.e.

$$Cov(S(x), S(x')) = \sigma^2 \rho(u), \quad u = ||x - x'||.$$

- ▶ How do we choose $\rho(\cdot)$?
- ightharpoonup Example: $\rho(u) = \exp\{-u/\phi\}$

The theoretical variogram (continued)

$$v(u) = \tau^2 + \sigma^2(1 - \rho(u))$$

The theoretical variogram (continued)

$$v(u) = \tau^2 + \sigma^2(1 - \rho(u))$$

The scale of the spatial correlation

The scale of the spatial correlation

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

 $ightharpoonup K_{\kappa}(\cdot)$: modified Bessel function of order κ

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

- $ightharpoonup K_{\kappa}(\cdot)$: modified Bessel function of order κ
- Interpretation

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

- $ightharpoonup K_{\kappa}(\cdot)$: modified Bessel function of order κ
- ► Interpretation
 - \blacktriangleright κ determines smoothness of underlying Gaussian process

$$\kappa > r \to S(x)$$
 is r times differentiable

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

- $ightharpoonup K_{\kappa}(\cdot)$: modified Bessel function of order κ
- Interpretation
 - \triangleright κ determines smoothness of underlying Gaussian process

$$\kappa > r \to S(x)$$
 is r times differentiable

lackbox ϕ determines scale of the spatial correlation

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

- $ightharpoonup K_{\kappa}(\cdot)$: modified Bessel function of order κ
- Interpretation
 - \triangleright κ determines smoothness of underlying Gaussian process

$$\kappa > r \to S(x)$$
 is r times differentiable

- $ightharpoonup \phi$ determines scale of the spatial correlation
- Special cases
 - $ightharpoonup = 0.5 \text{ gives } \rho(u) = \exp\{u/\phi\}$
 - $k \to \infty$ gives $\rho(u) = \exp\{(u/\phi)^2\}$

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

- $ightharpoonup K_{\kappa}(\cdot)$: modified Bessel function of order κ
- ► Interpretation
 - \triangleright κ determines smoothness of underlying Gaussian process

$$\kappa > r \to S(x)$$
 is r times differentiable

- lackbox ϕ determines scale of the spatial correlation
- Special cases
 - $ightharpoonup = 0.5 \text{ gives } \rho(u) = \exp\{u/\phi\}$
 - $k \to \infty$ gives $\rho(u) = \exp\{(u/\phi)^2\}$
- ▶ Often sufficient to choose amongst $\kappa = 0.5, 1.5, 2.5$

1. Measurement error

- 1. Measurement error
- 2. Small scale spatial correlation

- 1. Measurement error
- 2. Small scale spatial correlation

$$Y_{i} = \alpha + S(x_{i}) + Z(x_{i})$$

$$cor\{Z(x), Z(x')\} = \begin{cases} \delta & \text{if } ||x - x'|| < u^{*} \\ 0 & \text{if } ||x - x'|| \ge u^{*} \end{cases}$$

- 1. Measurement error
- 2. Small scale spatial correlation

$$Y_{i} = \alpha + S(x_{i}) + Z(x_{i})$$

$$cor\{Z(x), Z(x')\} = \begin{cases} \delta & \text{if } ||x - x'|| < u^{*} \\ 0 & \text{if } ||x - x'|| \ge u^{*} \end{cases}$$

If $u^* < u_{min}$ then $Z(x_i)$ is pure noise.

Getting initial parameter estimates

- ▶ Widely used, but not recommended except for initial analysis.
- $\theta = (\sigma^2, \phi, \tau^2)$
- ► Weighted least squares criterion:

$$W(\theta) = \sum_{k} n_{k} [\hat{v}(u_{k}) - v(u_{k}; \theta)]^{2}$$

Getting initial parameter estimates

- ▶ Widely used, but not recommended except for initial analysis.
- $\theta = (\sigma^2, \phi, \tau^2)$
- ▶ Weighted least squares criterion:

$$W(\theta) = \sum_{k} n_{k} [\hat{v}(u_{k}) - v(u_{k}; \theta)]^{2}$$

ightharpoonup Arbitrary binning and upper limit for u_k .

Getting initial parameter estimates

- ▶ Widely used, but not recommended except for initial analysis.
- $\theta = (\sigma^2, \phi, \tau^2)$
- ► Weighted least squares criterion:

$$W(\theta) = \sum_{k} n_{k} [\hat{v}(u_{k}) - v(u_{k}; \theta)]^{2}$$

- ightharpoonup Arbitrary binning and upper limit for u_k .
- Standard errors not available.

Maximum likelihood estimation

Maximum likelihood estimation

- ▶ Multivariate Gaussian distribution: $Y \sim MVN(D\beta, \sigma^2R + \tau^2I)$.
 - ▶ D matrix of covariates: $[D]_{ik} = d_k(x_i)$
 - ▶ R matrix of spatial correlation: $[R]_{ij} = \rho(u_{ij})$, with $u_{ij} = ||x_i x_j||$.

Maximum likelihood estimation

- ▶ Multivariate Gaussian distribution: $Y \sim MVN(D\beta, \sigma^2R + \tau^2I)$.
 - ▶ D matrix of covariates: $[D]_{ik} = d_k(x_i)$
 - ▶ R matrix of spatial correlation: $[R]_{ij} = \rho(u_{ij})$, with $u_{ij} = ||x_i x_j||$.
- Fitting process
 - 1. Initialise β , e.g. using ordinary least squares.
 - 2. Initialise θ , e.g. using the empirical variogram
 - 3. Maximize

$$I(\theta) = \log\{f(y; \beta, \theta)\}\$$

where $f(\cdot; \beta; \theta)$ denotes the density of the multivariate Gaussian distribution.