Physically Based Rendering: Phong BRDF

Carlos Fuentes

What's Physically Based Rendering?

- Physically Based Rendering aka PBR are techniques
 focused on understanding of physics that are used to
 model how light and materials (that have different
 physical properties) interacts.
- Since this interactions are sometimes very complex and happens in a very fine level, **statistical models** are often used to manage this complexity.

A model for light and material interaction

- Material and light interactions are described mathematically using a Bidirectional Scattering Distribution Function aka BSDF.
- This functions describes how light scatters upon contact with a surface based on surface properties
- Actually this functions are an **statistical model** to describe how **likely** the light is scattered in a specific **outgoing direction**.

Bidirectional Scattering Distribution Functions

- **BSDF** sounds complicated but it really means:
 - Bidirectional refers that light comes in one direction and goes out in other direction
 - Scattering means that light coming from one direction can be splitted into a range of outgoing directions
 - O **Distribution** refers to scattered light is described by an statistical distribution function. This functions describes how **likely** the light is **scattered** in certain outgoing direction based on physical properties of the surface

Bidirectional Reflectance Distribution Functions

- BSDFs are composed of two other functions:
 - Bidirectional Reflectance Distribution Functions aka BRDF
 are the part of BSDF that describes how light is reflected
 - Bidirectional Transmittance Distribution Functions aka
 BTDF are the part of BSDF that describes how light is
 transmitted through a surface
- We aim to model commonly encountered surfaces so, we will ignore BTDFs and focus on BRDFs

Radiometry fundamentals

- In radiometry (science of measurement amounts of light),
 measurements are taken with respect to the unit
 hemisphere surrounding a point in a surface.
- We want to measure amount of light going through one direction $\boldsymbol{\omega}$. (Note that direction $\boldsymbol{\omega}$ can be expressed using two angles $\boldsymbol{\phi}$ and $\boldsymbol{\theta}$ aka **spherical coordinates**)

Radiometry fundamentals: Solid Angle

- Radiometry measures light passing through a **solid angle**
- A solid angle is an extension of **2D angle** to **3D**.
- Plane Angle (θ) is an arc length (1) on a circle divided by radius (r)

$$\circ \quad heta = rac{l}{r}$$

- The length of a circle is $2\pi r$ so a circle has 2π radians
- **Solid angle** (□) is an area on a sphere divided by radius squared

$$\circ \quad \Omega = \frac{A}{r^2}$$

• The area of a sphere is $4\pi r^2$ so a sphere has 4π steradians (sr)

Radiometry fundamentals: Differential Solid Angle

- Generic solid angles has no limitations about shape.
- Some of lighting equations are integrals around a
 hemisphere so we are specially interested in differential
 solid angles
- You can see a differential solid angle as the small square
 area on the unit sphere defined by differential angles dφ
 and dθ in spherical coordinates

Radiometry fundamentals: Radiance and Irradiance

- Irradiance (E_i) measures light arriving at a small surface area from all incoming directions.
- Radiant exitance (E_0) measures light leaving a small surface area to all outgoing directions.
- Incoming Radiance (L_i) measures incoming light passing through a solid angle from a specific direction
- Outgoing Radiance (L_o) measures outgoing light passing through a solid angle from a specific direction

BRDF: Definition

BRDF is the ratio of the outgoing radiance
 (leaving a small surface area) to the differential
 incoming irradiance (arriving to the same surface

area from a differential solid angle):

$$BRDF = \frac{L_o}{\delta E_o}$$

BRDF: Solid angle projection

 We can rewrite differential irradiance in terms of incoming radiance L_i arriving at dw_i solid angle and then projected into our small surface area:

$$\delta Ei = L_i \cdot cos\theta_i \cdot dwi$$

 Similar to what happens with Lambert, projection of solid angle means scaling by cosθ_i from surface normal to light direction.

The Rendering Equation

- For rendering, we aim to use BRDF to compute **outgoing illumination** from a small surface point into a specific outgoing direction, usually the view direction.
- We can rewrite BRDF equation to compute **outgoing illumination** from one differential incoming direction

$$L_o = BRDF \cdot L_i \cdot cos\theta_i \cdot dwi$$

• And, finally, for all possible incoming directions

Incoming light Outgoing light
$$L_o = \sum_{\Omega} BRDF \cdot L_i \cdot cos heta_i \cdot dwi$$

Physically based BRDF constraints

 $1.\quad$ Helmholtz Reciprocity rule: If we change incoming and outgoing directions we obtain the same BRDF

2. **Energy conservation law:** The total reflected light from a single incoming direction can not exceed the amount of light arrived \Rightarrow The sum of the BRDF times projected outgoing solid angle is less or equal to 1.

$$\int_{out} BRDF \cdot cos\theta_o \cdot dw_o \le 1$$

Acquiring BRDFs

- There are a lot of BRDFs. Each of them are used to
 describe different physical phenomena: fresnel
 reflections, subsurface scattering, microgeometry, etc.
- BRDFs can be **captured** using sensitive instruments
- BRDFS can also be analytic models. Analytic statistical models are commonly used in video games

Gonioreflectometer

Lambert and Phong BRDF

Can we use Lambert and Phong functions as a BRDF for modelling reflections?

$$L_o = BRDF \cdot L_i \cdot cos\theta_i \cdot dwi$$

Our shading equation

$$L_o = (C_d + (V \cdot R)^n) \cdot L_i \cdot (N \cdot L)$$

• So, diffuse **Lambert BRDF**

$$BRDF_{lambert} = C_d$$

And specular Phong BRDF

$$BRDF_{phong} = (V \cdot R)^n$$

Energy conserving Phong

• Lambert and Phong are not energy conserving. Can we multiply them by a **normalization factor** to ensure energy conservation? Remember **energy conservation** means:

$$\int_{Out} BRDF \cdot cos\theta_o \cdot dw_o \le 1$$

Lambert

$$\int_{out} C_d \cdot \cos\theta_o \cdot dw_o \le 1 \Rightarrow C_d \cdot \pi \le 1$$
$$\Rightarrow Normalization = \frac{1}{\pi}$$

Energy conserving Phong

Phong

$$\int_{out} (V \cdot R)^n \cdot \cos \theta_o \cdot dw_o \le 1$$

$$\Rightarrow Normalization = \frac{n+2}{2\pi}$$

So, our final Render Equation with energy conservation factors is

$$L_o = \left(\frac{C_d}{\pi} + \frac{n+2}{2\pi} \cdot (V \cdot R)^n\right) \cdot L_i \cdot (N \cdot L)$$

How much light is reflected?

• Following **energy conservation** rules we know that when

light arrives to a surface:

- Some light is **reflected**
- Some light is **absorbed**
- Some light is **transmitted**
- But, what's the amount of light reflected?

Fresnel effect

- The amount of light reflected depends only on
 - The refractive index of the surface
 - The light incoming angle: Light arriving at glancing angles (perpendicular

to normal) is reflected more \Rightarrow **Fresnel effect**

Fresnel effect

Fresnel equations: Dielectrics

- Fresnel equations depends on surface types:
 - Dielectrics: glass, plastic, ceramics. Transmits electricity
 but without conducting it. Having n₁, n₂ refractive
 indexes (n₁ is usually the air)
 - Parallel polarized light

$$r_{\parallel} = \frac{n_1 cos\theta_2 - n_2 cos\theta_1}{n_1 cos\theta_2 + n_2 cos\theta_1}$$

- Perpendicular polarized light $r_{\perp} = \frac{\overline{n_1 cos \theta_1 n_2 cos \theta_2}}{\overline{n_1 cos \theta_1 + n_2 cos \theta_2}}$
- Unpolarized light

$$r = \frac{r_\perp^2 + r_\parallel^2}{2}$$

Fresnel equations: Metals

• **Conductors:** metals. Don't transmits light, absorbs some light transferred as heat. The amount of absorbed light is modelled using an **absorption coefficient k**.

$$r_{\parallel}^{2} = \frac{(n^{2} + k^{2})cos\theta_{1} * 2 - 2ncos\theta_{1} + 1}{(n^{2} + k^{2})cos\theta_{1} * 2 + 2ncos\theta_{1} + 1}$$

Perpendicular polarized light
$$r_{\perp}^2 = \frac{(n^2 + k^2)cos\theta_1 * 2 - 2ncos\theta_1 + cos\theta_1^2}{(n^2 + k^2)cos\theta_1 * 2 + 2ncos\theta_1 + cos\theta_1^2}$$

Schlick's approximation

- Fresnel equations are too complex to use for rendering
- Plotting fresnel equation $R_f(\theta_i)$ from incidence angle θ_i
 - \circ $R_f(0^\circ)$ (perpendicular to surface normal) depends of each material
 - $\mathbf{R_f(\theta_i)}$ remains stable until 60^0 - 70^0 where fresnel begins an approach to 1 until 90° (glancing angles)
- Schlick approximation

$$R_f(\theta_i) \approx R_f(0^o) + (1 - R_f(0^o))(1 - \cos\theta_i)^5$$

• Where $R_f(0^o) = \left(\frac{n-1}{n+1}\right)^2$ and **n** is the index of refraction

Fresnel as specular color

Our Render equation with fresnel is

$$L_o = \left(\frac{C_d}{\pi} + \frac{n+2}{2\pi} \cdot R_f(\theta_i) \cdot (V \cdot R)^n\right) \cdot L_i \cdot (N \cdot L)$$

- where C_d (diffuse color) and n (shininess) and $R_f(0^\circ)$ are material properties.
- $R_f(0^\circ)$ is represented as a color, like a **specular color**
- $R_f(0^\circ)$ is grayscale for dielectrics and can be colored for metals. It can be computed from databases like <u>this</u>

Material	$F(0^{\circ})$ (Linear)	$F(0^{\circ})$ (sRGB)	Color
Water	0.02,0.02,0.02	0.15,0.15,0.15	
Plastic / Glass (Low)	0.03,0.03,0.03	0.21,0.21,0.21	
Plastic High	0.05,0.05,0.05	0.24,0.24,0.24	
Glass (High) / Ruby	0.08,0.08,0.08	0.31,0.31,0.31	
Diamond	0.17,0.17,0.17	0.45,0.45,0.45	
Iron	0.56,0.57,0.58	0.77,0.78,0.78	
Copper	0.95,0.64,0.54	0.98,0.82,0.76	
Gold	1.00,0.71,0.29	1.00,0.86,0.57	
Aluminum	0.91,0.92,0.92	0.96,0.96,0.97	
Silver	0.95,0.93,0.88	0.98,0.97,0.95	

Combine diffuse and specular

• From **energy conservation rule** we know that the more specular the less diffuse reflection

$$C_d + R_f(\theta_i) \le 1$$

• So, energy conservation rule could be easily accomplished using diffuse color

$$C'_d = C_d \cdot (1 - R_f(\theta_i))$$

• But this brokes **Helmholtz Reciprocity rule** for diffuse BRDF because $R_f(\theta_i)$ depends only on incoming light. We can use $R_f(0^\circ)$ as an approximation without this dependency

$$C'_d = C_d \cdot (1 - R_f(0^o))$$

Engine integration

Replace phong shading equation for Normalised Phong BRDF with Fresnel equation

$$L_o = \left(\frac{C_d \cdot (1 - R_f(0^o))}{\pi} + \frac{n+2}{2\pi} \cdot R_f(\theta_i) \cdot (V \cdot R)^n\right) \cdot L_i \cdot (N \cdot L)$$

- Note: For the moment, in our final shading equation, keep adding ambient color as a constant light from environment
- Note: Is usual to find implementations without π divisions, they are compensated in diffuse and specular colors.

Expected results

- Using energy conserving Phong will help you to create scenes with **coherent lighting** and without empirical tweek of K_d and K_s constants.
- Fresnel effect is visible at **glancing angles** and is more visible on dielectric objects

References

- Useful links for learning more about BRDFs and Normalized Phong
 - BRDFs by Chuck Moidel <u>here</u>
 - An Introduction to BRDF-Based Lighting by Chris Wynn <u>here</u>
 - The Rendering Equation and BRDFs <u>here</u>
 - Phong energy conservation <u>here</u>
 - About Fresnel equations <u>here</u>