PREDICTING DIABETES RISK USING SVM

HRISHABH KULKARNI

Abstract

PROBLEM:

- Diabetes affects 2 in 10 adults globally, but early detection remains inconsistent.
- Current screening is often reactive (symptom-based) rather than data-driven.

GOAL

Predict diabetes risk using health/ lifestyle /demographic factors (BMI, age, exercise, nutrition).

DATASET:

NHIS 2022 has 35,115 observations

- Demographics: Age, Sex
- Biometrics: BMI
- Lifestyle: Exercise, Nutrition, Sleep

Background

<u>OBJECTIVE</u>: Find the optimal hyperplane that maximizes the margin between classes.

KEY TERMS:

- Support Vectors: Data points closest to the decision boundary
 Margin: Distance between hyperplane and nearest points (maximized during training)
- **LINEAR SVM** Draws a straight line to separate groups
- Key Hyperparameter: **Cost**: Controls Strictness
- RADIAL SVM Flexible, curved boundaries to wrap around clusters
- Key Hyperparameter: <u>Camma</u>: Controls Curviness
- POLYNOMIAL SVM Draws scribbled/ complex borders
- Key Hyperparameter: **Degree of polynomial**: Controls Complexity

HOW TO HANDLE CLASS IMBALANCE?

- Original data had 90% healthy vs 10% diabetic cases
- . Created balanced training set (1,376 each group)
- Prevents model from ignoring the minority class

Scatter plot shows the relationship between exercise minutes and vegetable servings, coloured by diabetes status.

Methodology

EXPLORATORY DATA ANALYTICS (EDA)

- 1) The density plot shows the distribution of BMI for individuals with and without diabetes.
- Individuals with diabetes tend to have higher BMI values compared to those without diabetes.

- 2) The histogram and density plot show the distribution of age for individuals with and without diabetes.
- The plot indicates that the peak diabetes risk occurs between the ages of 48 and 70 years.
- The rectangle highlights age range and the annotation emphasizes the highest risk range.
- This suggests that age is a significant factor in diabetes risk, with older individuals being more likely to have diabetes.

- 3) This plot tells me distribution of BMI based on gender.
- It also shows that dataset have higher number data related to men than women.

Results

EVALUATION METRICS

- The linear kernel SVM achieved the highest accuracy (63.14%) and sensitivity (79.66%) but had a longer training time (0.45 seconds).
- The radial kernel SVM had a similar sensitivity (80.15%) and a much shorter training time (0.06 seconds).
- The polynomial kernel SVM had the lowest accuracy (59.54%) but the highest sensitivity (82.57%) and a highest training time of 0.52 seconds.
- The linear kernel SVM is best for this dataset.

Model	Accura cy (%)	Trai n Erro r (%)	Test Erro r (%)	F1 (%)	AUC (%)	Prec isio n (%)	Recall (%)	Training Time (ms)	Specifici ty (%)	Sensitivit y
Linear	63.14	31.0	36.8 6	25.6 8	23.7 8	15.3 1	79.66	40	61.70	79.66
Radial	61.39	30.6 5	38.6 1	24.9	23.6	14.7 6	80.15	2	59.76	80.15
Polyno mial	59.54	30.4 5	40.4 6	24.6 0	23.2 4	14.4 6	82.57	42	57.53	82.57

IMPORTANT VARIABLE

- Same key predictors emerging as most important across all kernels.
- The most important predictors for every kernel SVM are:

AGE > BMI > EXECISE MINUTES > VEGETABLE SERVING > SLEEP HOURS

- Age and BMI are the <u>strongest predictors</u> among **Demographical** and **Biological** factor.
- SVM shows that Age and BMI are the most important predictors for diabetes status.

Conclusion

SVM DECISION BOUNDARY

- The decision boundary plots show the regions of predicted diabetes status based on BMI and age for each SVM kernel.
- The linear kernel SVM is good, then comes the radial and then the polynomial shows a clear separations between the two classes as the dataset is cluttered.
- The decision boundary captures non-linear separation between diabetic and non-diabetic.
- Several data points are on the wrong side of the decision boundary.
- Shows that data points are cluttered and overlapping.

- How Models predict Diabetes Risk:
- Higher Age and BMI → Higher Risk
 Screening Recommendations:

Screen all individuals aged 50+ with BMI ≥ 30

Use Linear SVM for fast, reliable, clear, clinic-based risk assessments.

- Insightful Priorities (Prioritize lifestyle counseling for those):
 Exercising < 150 mins/week
- Consuming < 3 vegetable servings/day– Model Recommendation:

Citations

[1] Lynn A. Blewett, Julia A. Rivera Drew, Miriam L. King, Kari C.W. Williams, Daniel Backman, Annie Chen, and Stephanie Richards. IPUMS Health Surveys: National Health Interview Survey, Version 7.4 [dataset]. Minneapolis, MN: IPUMS, 2024. https://doi.org/10.18128/D070.V7.4.

[2] H. Wickham et al., tidyverse: Easily Install and Load the 'Tidyverse', [Online]. Available: https://tidyverse.tidyverse.org/

[3] tictoc: Functions for timing R scripts, [Online]. Available: https://cran.r-project.org/web/packages/tictoc/index.html