Gauss Sums

Mark Sellke

This handout is based on A Classical Introduction to Modern Number Theory by Ireland and Rosen.

1 Quadratic Gauss Sums

Definition 1. For an odd prime p > 2 and integer a define the quadratic Gauss sum

$$g_a = \sum_{t \in \mathbb{Z}_p} \left(\frac{t}{p}\right) \zeta_p^{at}$$

where $\zeta_p = e^{\frac{2\pi i}{p}}$. Hence g_a is a complex number. (Note that $\left(\frac{0}{p}\right) = 0$ by definition.)

Exercise 1.1. Show $g_a = \left(\frac{a}{p}\right)g_1$.

Exercise 1.2. Show that $g_1 = \sum_t \zeta_p^{t^2}$.

Exercise 1.3. Show $g_1^2 = (-1)^{\frac{p-1}{2}}p$. If you know some Galois theory/algebraic number theory, try to explain why this makes sense.

At this point you might think that these things are boring, since we've just written $\sqrt{\pm p}$ in a funny way. However, here are a couple applications that might impress you.

Problem 1.4. Prove quadratic reciprocity for odd primes by considering g_1^q modulo q and using the preceding. Don't worry too much about being careful with rigor if that's an issue, we can talk about it.

Exercise 1.5 (If you're comfortable with finite fields...). Find which primes satisfy $\left(\frac{2}{p}\right) = 1$ by considering $\zeta_8 + \zeta_8^{-1}$ in the algebraic closure of \mathbb{F}_p and determining whether it actually lies in \mathbb{F}_p . Phrase the argument for the main case of QR using this idea. (You can think of $2\zeta_8 + 2\zeta_8^{-1}$ as a Gauss sum mod 8.)

Problem 1.6. Show that

$$\left| \sum_{t=k}^{\ell} \left(\frac{t}{p} \right) \right| < \sqrt{p} \log p.$$

2 Basics on Characters

To do more stuff we need to extend Gauss sums beyond the Legendre symbol. The important property of the Legendre symbol was the multiplicativity; this property defines a *character*.

Definition 2. A character on \mathbb{F}_p is a function

$$\chi: \mathbb{F}_p \to \mathbb{C}$$

such that $\chi(1) = 1$ and $\chi(ab) = \chi(a)\chi(b)$. The trivial character ε is 1 on all non-zero elements, but all other characters χ must satisfy $\chi(0) = 0$.

1

Nothing below is that exciting, so you might want to skim for now and go to the next section. You can use the below as a reference and think about things when they come up.

Exercise 2.1. Show that $\chi(a)$ is a p-1st root of unity, and $\chi(a^{-1}) = \overline{\chi(a)}$.

Exercise 2.2. If χ is non-trivial, then $\sum_t \chi(t) = 0$.

Exercise 2.3. Show that the characters form a group isomorphic to \mathbb{Z}_{p-1} . You can use the fact that \mathbb{F}_p^{\times} is like this.

Exercise 2.4. Show that for all a we have $\sum_{\chi \text{ is a character}} \chi(a) = 0$.

Exercise 2.5. Show that $N(x^n = a) := |\{x : x^n = a\}| = \sum_{\chi^n = \varepsilon} \chi(a)$

3 Gauss and Jacobi Sums

Definition 3. For a character χ , define $g_a(\chi) = \sum_t \chi(t) \zeta_p^{at}$. Let $g(\chi) = g_1(\chi)$.

Exercise 3.1. Show again that $g_a(\chi) = \chi(a)^{-1}g(\chi)$ and $|g(\chi)| = \sqrt{p}$, except that $g(\varepsilon) = p$.

Exercise 3.2. Use Gauss sums to show that $x^2+y^2=p$ has solutions for $p \equiv 1 \pmod 4$ and $x^2-xy+y^2=p$ has solutions for $p \equiv 1 \pmod 3$.

Now let's say we want to count solutions to an polynomial equation like $N(x^2+y^2=1)$. Since $N(x^2=a)=1+\left(\frac{a}{p}\right)$ we get

$$N(x^{2} + y^{2} = 1 = \sum_{a+b=1} \left(1 + \left(\frac{a}{p} \right) + \left(\frac{b}{p} \right) + \left(\frac{ab}{p} \right) \right).$$

For larger values of 2 we'd get a similar expression with more terms. But a miracle occurs:

Definition 4. For characters χ, λ let the *Jacobi sum* be

$$J(\chi,\lambda) = \sum_{a+b=1} \chi(a)\lambda(b).$$

Exercise 3.3. Suppose χ, λ are non-trivial. We have:

- 1. $J(\varepsilon, \varepsilon) = p$.
- 2. $J(\varepsilon, \chi) = 0$.
- 3. $J(\chi, \chi^{-1}) = -\chi(-1)$.
- 4. If $\chi \lambda \neq \varepsilon$ then $J(\chi, \lambda) = \frac{g(\chi)g(\lambda)}{g(\chi\lambda)}$.

Corollary 3.4. If $\chi, \lambda, \chi\lambda$ are non-trivial then $|J(\chi, \lambda)| = \sqrt{p}$.

Exercise 3.5. Find $N(x^2 + y^2 = 1)$.

Exercise 3.6. Show that $\left(\left(\frac{t}{p}\right), \left(\frac{t+1}{p}\right)\right) \in \{\pm 1\}^2$ is equidistributed up to O(1) error for large p.

Exercise 3.7. Show that $|N(x^3 + y^3 = 1) - p + 2| \le 2\sqrt{p}$.

Exercise 3.8 (ISL 2012). Show that $f(x,y) = x^2 + y^5$ is surjective mod p for all primes p > 100.

Remark. There's much more in Ireland and Rosen. They do similar square-root cancellation for longer sums $\sum_i a_i x_i^{e_i} = b$ by analyzing higher-order Jacobi sums; it's interesting that square-root cancellation is what you'd expect if the terms of these sums were "random." They also prove cubic/quartic reciprocity, and do lots of other things.