Equivalence of CFGs and PDAs

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

05 March 2024

Outline

1 From CFG to PDA

2 From PDA to CFG

CFG = PDA

Theorem (Chomsky-Evey-Schutzenberger 1962)

The class of languages definable by Context-Free Grammars and Pushdown Automata coincide.

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\underline{S} \Rightarrow (\underline{S})$$

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\begin{array}{ccc} \underline{S} & \Rightarrow & (\underline{S}) \\ & \Rightarrow & (\underline{S}S) \end{array}$$

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\begin{array}{ccc} \underline{S} & \Rightarrow & (\underline{S}) \\ & \Rightarrow & (\underline{S}S) \\ & \Rightarrow & (\underline{S}SS) \end{array}$$

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\begin{array}{ccc} \underline{S} & \Rightarrow & (\underline{S}) \\ & \Rightarrow & (\underline{S}S) \\ & \Rightarrow & (\underline{S}SS) \\ & \Rightarrow & ((\underline{S})SS) \end{array}$$

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\begin{array}{ccc} \underline{S} & \Rightarrow & (\underline{S}) \\ & \Rightarrow & (\underline{S}S) \\ & \Rightarrow & (\underline{S}SS) \\ & \Rightarrow & ((\underline{S})SS) \\ & \Rightarrow & ((SS)SS) \end{array}$$

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\underline{S} \Rightarrow (\underline{S}) \\
\Rightarrow (\underline{S}S) \\
\Rightarrow (\underline{S}SS) \\
\Rightarrow ((\underline{S})SS) \\
\Rightarrow ((\underline{S})SS) \\
\Rightarrow (((\underline{S})S)SS)$$

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\underline{S} \Rightarrow (\underline{S}) \\
\Rightarrow (\underline{S}S) \\
\Rightarrow (\underline{S}SS) \\
\Rightarrow ((\underline{S})SS) \\
\Rightarrow ((\underline{S})SSS) \\
\Rightarrow (((\underline{S})S)SS) \\
\Rightarrow ((((\underline{S})S)SS) \\
\Rightarrow ((((\underline{S})S)SS))$$

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\begin{array}{ccc}
\underline{S} & \Rightarrow & (\underline{S}) \\
 & \Rightarrow & (\underline{S}S) \\
 & \Rightarrow & (\underline{S}SS) \\
 & \Rightarrow & ((\underline{S})SS) \\
 & \Rightarrow & (((\underline{S})S)SS) \\
 & \Rightarrow & ((((\underline{S})S)SS) \\
 & \Rightarrow & (((()\underline{S})SS) \\
 & \Rightarrow & (((()\underline{S})SS)) \\
 & \Rightarrow & (((())SS)
\end{array}$$

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\underline{S} \Rightarrow (\underline{S}) \\
\Rightarrow (\underline{S}S) \\
\Rightarrow (\underline{S}SS) \\
\Rightarrow ((\underline{S})SS) \\
\Rightarrow (((\underline{S})SS)SS) \\
\Rightarrow ((((\underline{S})S)SS) \\
\Rightarrow (((()\underline{S})SS)SS) \\
\Rightarrow (((()\underline{S})SS) \\
\Rightarrow (((())\underline{S}S) \\
\Rightarrow (((())SS) \\
\Rightarrow ((())SS) \\
\Rightarrow (()SS) \\
\Rightarrow (()SS)$$

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

Let G = (N, A, S, P) be a CFG. Assume WLOG that all rules of G are of the form

$$X \rightarrow cB_1B_2\cdots B_k$$

where $c \in A \cup \{\epsilon\}$ and $k \ge 0$.

- Idea: Define a PDA M that simulates a leftmost derivation of G on the given input.
- Define $M = (\{s\}, A, N, s, \delta, S)$ where δ is given by:

$$(s, c, X) \rightarrow (s, B_1 B_2 \cdots B_k),$$

whenever $X \to cB_1B_2 \cdots B_k$ is a production in G.

• *M* accepts by empty stack.

CFG to PDA

Leftmost sentential form of G

Corresponding configuration of M

Exercise

Construct a PDA for the CFG below.

CFG G₄

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & (\mathcal{SR} \mid \mathcal{SS} \mid \epsilon \\ \mathcal{R} & \rightarrow &) \end{array}$$

Simulate it on the input "((())())".

From PDA to CFG

Given a PDA M, how would you construct an "equivalent" context-free grammar from M?

From PDA to CFG

Given a PDA M, how would you construct an "equivalent" context-free grammar from M? One approach:

- First show that we can go over to a PDA M' with a single state.
- Then simulate M' by a CFG.

Simulating a single-state PDA by a CFG

If:

Then: add the rule $X \to aY_1Y_2 \cdots Y_k$ in G.

In particular, if $(s, c, \bot) \to (s, \alpha)$ we add $S \to c\alpha$ in G.

Start symbol?

Simulating a single-state PDA by a CFG

If:

Then: add the rule $X \to aY_1Y_2 \cdots Y_k$ in G. In particular, if $(s,c,\bot) \to (s,\alpha)$ we add $S \to c\alpha$ in G. Start symbol? \bot .

From PDA to single-state PDA

- Let $M = (Q, A, \Gamma, s, \delta, \bot, \{t\})$ be the given PDA which WLOG accepts by final state t and can empty its stack in t.
- Define $M' = (\{u\}, A, Q \times \Gamma \times Q, u, \delta', (s, \bot, t), \emptyset)$, which accepts by empty stack and where δ' is given by

$$(u, c, (p, A, r)) \rightarrow (u, (q_0B_1q_1)(q_1B_2q_2)\cdots(q_{k-1}B_kq_k))$$

whenever $(p, c, A) \rightarrow (q, (B_1B_2 \cdots B_k))$ is a transition of M, and $q_0 = q$ and $q_k = r$. In particular:

$$(u, c, (p, A, q)) \rightarrow (u, \epsilon)$$

if $(p, c, A) \rightarrow (q, \epsilon)$ is a transition of M.

Example to illustrate construction

PDA (acceptance by final state t) for $\{a^nb^n \mid n \ge 1\} \cup \{a^nc^n \mid n \ge 1\}$ $(s,a,\perp) \rightarrow (p,A\perp)$ $(p, a, A) \rightarrow (p, AA)$ $b, A/\epsilon$ $(p, b, A) \rightarrow (q, \epsilon)$ a, A/AA $(p,c,A) \rightarrow (r,\epsilon)$ $\bigcup_{\epsilon,\,-/\epsilon} \; (q,b,A) \;\; o \;\; (q,\epsilon)$ $(r,c,A) \rightarrow (r,\epsilon)$ $c, A/\epsilon$ $(q, \epsilon, \perp) \rightarrow (t, \epsilon)$ $(r, \epsilon, \perp) \rightarrow (t, \epsilon)$ $(t,\epsilon,-) \rightarrow (t,\epsilon)$

Correctness of construction

To show that L(M') = L(M), sufficient to show that:

Claim 1

In
$$M$$
, $(s, x, A) \stackrel{*}{\Rightarrow} (t, \epsilon, \epsilon)$ iff in $M'(u, x, (s, A, t)) \stackrel{*}{\Rightarrow} (u, \epsilon, \epsilon)$.

For this in turn, it is sufficient to show that:

Claim 2

$$(p, x, B_1B_2 \cdots B_k) \stackrel{n}{\Rightarrow} (q, \epsilon, \epsilon)$$
 in M iff exists q_0, \ldots, q_k such that $q_0 = p, \ q_k = q$, and $(u, x, (\langle q_0B_1q_1 \rangle \langle q_1B_2q_2 \rangle \cdots \langle q_{k-1}B_kq_k \rangle)) \stackrel{n}{\Rightarrow} (u, \epsilon, \epsilon)$

Proof is easy by induction on n.