Bioinformatics II Winter Term 2016/17

Chapter 1: Organization, Overview, Background on Perception

Jun.-Prof. Dr.-Ing. Thomas Schultz

URL: http://cg.cs.uni-bonn.de

E-Mail: schultz@cs.uni-bonn.de

Office: Friedrich-Ebert-Allee 144, 53113 Bonn

October 25, 2016

1.1 Organization

Lecture Times and Exam

Lecture

- B-IT Building, Marschallsaal
- Tuesday 9:30-11:00

Exercises

- Two practical projects, consisting of small weekly assignments
- Will be due on Dec 6 and Jan 31
- You need 50% of the points to be admitted to the final exam

Credit

3 ECTS, written exam at end of semester

People

• Lecture:

Jun.-Prof. Dr. Thomas Schultz

schultz@cs.uni-bonn.de

• Exercises:

Michael Ankele

ankele@cs.uni-bonn.de

Shekoufeh Gorgi Zadeh

gorgi@cs.uni-bonn.de

Webpage

- Lecture webpage:
 - http://cg.cs.uni-bonn.de/bioinf
 - Lecture notes / slides as PDF
 - Homework assignments
 - Password protected:
 - User name: bioinf
 - Password: bioinf-ws2016

1.2 Course Contents

Agenda

Introduction to Visual Computing for Biology

- First half: Visualization in Biology
 - Color and Perception
 - Visualizing Multidimensional Data
 - Graph Visualization
 - Visualization Design
 - Example Applications

Second half: Biomedical Image Analysis

- Biological Imaging Modalities
- Image Registration
- Image Segmentation
- Statistical Image Analysis

Visualization: What?

Some example results from our Visualization group here in Bonn:

Visualization: Why?

"The ability to take data - to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it - that's going to be a hugely important skill in the next decades."

Hal R. Varian

"The best thing about being in visualization is that you get to play In everyone's backyard."

John W. Tukey

Visualization vs. Statistics

In 1973, Francis Anscombe constructed the "Anscombe Quartet", illustrating how different

data with the same mean, variance, and linear regression can turn out to be when it is visualized

Defining Visualization

- Definition by Oxford English Dictionary:
 - to visualize: to form a mental vision, image, or picture (of something not visible or present to sight, or of an abstraction); to make visible to the mind or imagination.
- In the words of Robert Spence (2007):
 - Visualization is solely a human cognitive activity and has nothing to do with computers
 Footnote: R. Spence, Information Visualization, Prentice Hall 2007
- To be more precise:
 - This lecture deals with computer-supported data visualization

Motivating Visualization

- Motivation by Friedhoff and Kiley:
 - The standard argument to promote scientific visualization is that today's researchers must consume ever higher volumes of numbers that gush, as if from a fire hose, out of supercomputer simulations or highpowered scientific instruments. If researchers try to read the data, usually presented as vast numeric matrices, they will take in the information at snail's pace. If the information is rendered graphically, however, they can assimilate it at a much faster rate.

Footnote: R.M. Friedhoff and T. Kiely, **The Eye of the Beholder,** Computer Graphics World, Vol. 13.8, p. 46, August 1990

Defining and Motivating Visualization

- Definition and motivation by Munzner:
 - Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively. Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

Footnote: T. Munzner, Visualization Analysis and Design, A K Peters, 2015

Visualization in Biology

- Benefits pointed out by Nielsen et al.:
 - Given the importance of human interpretation particularly in the early hypothesis generation stages of biological research, visual tools also provide a valuable complement to automated computational techniques in enabling us to derive scientific insight from large-scale genomic data sets. Visual and automated approaches are particularly powerful when used in combination, such that a user can seamlessly inspect and perform computations on their data, iteratively refining their analyses.

Footnote: C. Nielsen et al., **Visualizing Genomes: Techniques and Challenges,** Nature Methods 2010

Goals of Visualization

- Analysis leading to insight
 - Extract information from data
 - Discover new knowledge, generate hypotheses
- Communication and education
 - Present findings to others and discuss them
 - Teach non-experts

Steering

- Interactively control and drive simulations or longer-term measurements
- Fast data analysis, get to insight sooner

Color and Perception

- Learn the basics of human (visual) perception
 - Different ways of representing color
 - Attentive vs. pre-attentive perception

Visualizing Multidimensional Data

- Learn how to deal with data that has more than three dimensions
 - Using suitable visualization techniques
 - Using dimensionality reduction

Graph Visualization

 Learn how to visualize trees and general graph structures

Example Applications

 See how these techniques contribute to biological insight

[Meyer et al. 2009]: Comparative Genomics

[Hermann et al. 2014]: Exploring Anatomical Variability

Imaging in Biology

- Light microscopy
- Electron microscopy
- Magnetic Resonance Imaging

3D Image Segmentation

Learn to **segment** images using

- Gaussian Mixture Models
- Markov Random Fields

3D Image Registration

Learn to **register** images

- Spatial transformations
- Cost functions
- Optimization methods

CT/MRI Registration

Alignment of different scans

Statistical Image Analysis

Learn how to perform statistical hypothesis testing to get scientific insight from images

- t-Tests
- Family-wise error correction

Blue areas: Significantly reduced FA in Lupus patients 23

Preliminaries

- Beside teaching you specific techniques, I would like to train your ability to
 - solve real-world problems
 - on a clear theoretical basis

Programming

Mathematics

- I assume you have basic knowledge about
 - Programming (ideally in Python)
 - Calculus and linear algebra

Learning Goals

- Learn about important visualization and image processing techniques and how they apply to biology
- Solve small problems in visualization and image analysis, work in small teams and present your results
- Prepare for a potential lab, seminar, or MSc
 thesis in the field

1.3 Background on Perception

What is Color?

Artist's view:
 Circle of hues, with mixing of white or black

Naming Color

Color is a perception

- Out of 210 colors, 8

 names were consistently
 used by at least 75% of
 subjects
- Most people called monitor red "orange"
- Most set "pure green"
 around 514nm, about
 30% of the population set
 it around 525nm
- Subjects typically agree on "pure yellow" within 2nm

[Post and Greene 1986]

Visual Illusions

Color Impairment

- About 8% of the male and about 1% of the female population suffer from some kind of impaired color vision
 - Most common: Red/green weakness
 - Should keep this in mind when designing visualizations

Color is not that important after all...

Source: www.xkcd.org

Color vs. Wavelength

Subtractive Color Mixing

Additive Color Mixing

Anatomy of the Eye

The Blind Spot

Close your right eye!

Anatomy of the Retina

The retina

- Transduces lightenergy intoelectrical impulses
- Performs initial encoding / processing
- Is counted as part of the brain

Rods vs. Cones

The retina has approx. 120 million rods and

5 million cones

Rods:

- Used for night (scotopic) vision
- Achromatic
- Peripheral vision
- Less acuity

Cones:

- Require strong illumination (photopic vision)
- Chromatic
- Central vision
- Higher acuity

Human Visual System

Each hemisphere processes information from the opposite half of the visual field

Ventral vs. Dorsal Stream

- Two-streams hypothesis of higher-level vision:
 - Dorsal stream ("where")
 - Guiding behavior
 - Relatively fast
 - High temporal resolution
 - Input from full retina
 - Ventral stream ("what")
 - Recognition and visual memory
 - Relatively slow
 - High spatial resolution
 - Input mostly from fovea
 - Conscious perception

Trichromacy

- Color vision is possible due to presence of three different types of cones
 - Respond more strongly to different parts of the spectrum (short/medium/long)
 - Human color perception is fundamentally three-dimensional
 - Eye projects continuous light intensity $I(\lambda)$ onto three numbers, e.g., $S = \int s(\lambda)I(\lambda)d\lambda$

Opponent Colors

Opponent Color Theory

- First proposed by Ewald Hering (around 1900)
- Six elementary colors that form three pairs:
 - Black-white, red-green, yellow-blue
- Supported by
 - Naming (greenish blue vs. reddish green)
 - Cross-cultural naming (languages with few color words)
 - Neuroanatomy

Luminance

 Luminance = objective physical measure of the amount of visible light

$$L = \int V(\lambda)I(\lambda)d\lambda$$

- Unit: candela / square meter
- $-V(\lambda)$ = luminous efficiency ¹⁰⁰
 - Combined sensitivities of S/M/L receptors
- Defined by Commission
 Internationale de
 l'Éclairage (CIE) based on experiments with standard human observers

Luminance vs. Color

"Colors are only symbols. Reality is to be found in luminance alone..."
(Pablo Picasso)

Poor People on Shore

Typically, luminance is the key to object recognition and colors are merely perceived as object attributes.

Importance of Color

 Color can be helpful to quickly tell apart different types of objects, especially if they are similarly shaped

Recoding Luminance to Color

 Object detection becomes hard (or even impossible) when mapping the black-white axis onto a color axis (e.g., yellow-blue)

Brightness

- Brightness = subjective amount of a light from a self-luminous object in a darkened room
 - Related to luminance roughly according to a power law: $B \approx L^n$
 - Power *n* depends on size of object, $n \approx 0.3 \dots 0.5$
 - Similar power laws have been found to approximate perception of loudness, smell, taste, heaviness, force, and touch
 - Motivates use of logarithmic unit decibel to measure sound pressure

Monitor Gamma

• The relationship between pixel voltage on a CRT monitor and luminance also follows a power law: $L = V^{\gamma}$

- Typically, $\gamma \approx 2.2$, leading to an approximately linear relationship between V and B
- Modern LCDs are built to have similar γ
- To ensure correct color reproduction, monitor gamma has to be calibrated

Weber-Fechner Law

 Just Noticable Differences (JNDs) are proportional to baseline brightness

Illustration: Weber-Fechner Law

Lightness

- **Lightness** = subjective reflectance of a surface
 - Do we perceive an object as dark or bright?
 - Depends on many factors apart from luminance
 - In different environments, the same luminance can be perceived as "black" or as "white"
 - Lightness constancy
- The eye can only see a contrast ratio of 1:1000, but can adapt over eight orders of magnitude
 - Iris opens and closes (factor 16-64)
 - Bleaching of photopigment
 - Switchover rods vs. cones
 - Full adaptation bright to dark:
 Up to 30 minutes

Lightness Illusions

 Perceived lightness is influenced by complex factors such as surface orientation, shadows and positions of light sources

Contrast Vision

- Lightness constancy is partly achieved by perceiving contrast rather than luminance
 - Neural mechanism: Lateral inhibition
 - Receptive field with center/surround structure

Contrast Illusions

Hermann grid

 Lateral inhibition stronger in the periphery (try to stare directly at one of the spots at the intersection between grid lines)

Contrast Vision: Mathematical Model

 We can approximate the perceived local contrast by convolving an image with a "Difference of Gaussians" (DoG):

$$f(x) = \alpha_1 e^{-\left(\frac{x}{w_1}\right)^2} - \alpha_2 e^{-\left(\frac{x}{w_2}\right)^2} \quad (w_1 < w_2)$$
Baseline responding

Mach Bands

Simultaneous Contrast

Contrast Sensitivity

 The Campbell-Robson Contrast Sensitivity
 Function reflects our higher contrast sensitivity at medium spatial frequencies

Color Contrast Sensitivity

- Our sensitivity for color contrast is lower than for luminance contrast
 - Exploited in image compression: More bits allocated to luminance than to color

Contrast Crispening

 Sensitivity for small changes is best around the background intensity

Cornsweet Illusion

 HVS extrapolates edge information

Perceived luminance distribution

Color Constancy

- Color constancy is even more complex than lightness constancy
 - Colors are perceived to be relatively stable under a wide range of incident spectra
 - Color adaptation and color contrast contribute
 - "Reference white" in scene might play a role

Color Adaptation

Color Contrast

How Would You Call This Slides's Background Color?

How Would You Call This Slides's Background Color?

Brown

- Dark shades of yellow / yellowish orange are perceived as brown
 - Opposed to dark shades of red / green / blue
 - Brown is not part of the spectrum,
 but perceived as a distinct color
 - Perception of brown requires
 presence of other colors (e.g., white) for reference

Important for visualization:

 When encoding class membership using color, dark and light shades of yellow and orange might not be recognized as belonging together

Summary: Color Perception

- Color perception is...
 - a highly complex and subjective process
 - trichromatic, recoded to black/white, red/green, yellow/blue
- Luminance is...
 - most important for recognizing shapes etc.
 - perceived logarithmically (brightness)
- Lightness and color constancy are achieved...
 - by adaptation and contrast perception
 - using high-level information (shape, illumination etc.)
- Visualization should not assume that human visual system performs objective measurements