Integração Numérica

Prof. Ana Isabel Castillo

May 15, 2025

Introdução à Integração Numérica

- Integração numérica calcula a integral de uma função por métodos aproximados.
- Usada quando a integral exata é difícil ou impossível (ex.: taxas de juros variáveis).
- Aplicações em finanças: precificação de opções, cálculo de VPL, análise de risco.
- **Exemplo**: Estimar o VPL de um projeto com fluxo de caixa contínuo $f(t) = 1000e^{-0.05t}$ de t = 0 a t = 5.

Método de Newton-Cotes

- Família de métodos que aproxima integrais via polinômios interpoladores.
- ► Inclui Trapézio (linear) e Simpson (parabólico).
- **Exemplo financeiro**: Preço de uma opção call via integração do payoff $\max(S_T K, 0)$ sob densidade log-normal.
- Trapézio é simples; Simpson é mais preciso para curvas não lineares (ex.: derivativos).

Regra dos Trapézios

- Aproxima a integral pela soma das áreas de trapézios.
- Fórmula:

$$\int_a^b f(x) dx \approx \frac{b-a}{2} (f(a) + f(b))$$

- **Exemplo**: Estimar a demanda acumulada $\int_0^5 (50-2t) dt$.
- ► Cálculo: f(0) = 50, f(5) = 40, então $\int_0^5 f(t) dt \approx \frac{5}{2}(50 + 40) = 225$.
- Em finanças: Útil para prever receita acumulada com base na demanda.

Regra 1/3 de Simpson

- Aproxima a integral usando parábolas.
- Fórmula:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

- **Exemplo**: Calcular $\int_0^2 (0.05 + 0.01t^2) dt$ (retorno acumulado com taxa variável).
- ► Cálculo: f(0) = 0.05, f(1) = 0.06, f(2) = 0.09. Então:

$$\int_0^2 f(t) dt \approx \frac{2}{6} (0.05 + 4 \cdot 0.06 + 0.09) \approx 0.1267$$

Mais preciso que Trapézio para funções não lineares, como taxas aceleradas.

Estudo do Erro na Integração Numérica

- O erro depende do método e da suavidade da função.
- Regra dos Trapézios: $E_T = -\frac{(b-a)^3}{12}f''(\xi)$
- ► Regra de Simpson: $E_S = -\frac{(b-a)^5}{2880} f^{(4)}(\xi)$
- **Exemplo**: Para $f(t) = 1000e^{-0.05t}$ em [0, 5], calcule o erro.
- ► Trapézio: $f''(t) = 2.5e^{-0.05t}$, $E_T \approx 10.42$. Simpson: $E_S \approx 0.03$.
- ► Em finanças: Erros altos podem levar a subestimar o VPL, afetando decisões de investimento.

Método	Erro Estimado
Trapézio	10.42
Simpson	0.03