

Exercise 10A

Question 5:

(i) ABCD is a quadrilateral.

Now in right angled ∆ DBC,

$$DB^{2} = DC^{2} - CB^{2}$$

$$= 17^{2} - 8^{2}$$

$$= 289 - 64 = 225 \text{ cm}^{2}$$

$$DB = \sqrt{225} = 15 \text{ cm}$$

So, area of
$$\triangle DBC = \left(\frac{1}{2} \times 15 \times 8\right) \text{ cm}^2 = 60 \text{ cm}^2$$

Again, in right angled ADAB,

$$AB^{2} = DB^{2} - AD^{2}$$

$$= 15^{2} - 9^{2}$$

$$= 225 - 81 = 144 \text{ cm}^{2}$$

$$AB = \sqrt{144} = 12 \text{ cm}$$

area of
$$\triangle DAB = \left(\frac{1}{2} \times 12 \times 9\right) cm^2 = 54 cm^2$$

So, area of quadrilateral ABCD

RT
$$\perp$$
PQ
In right angled \triangle RTQ
RT² = RQ² - TQ²
= 17² - 8²
= 289 - 64= 225 cm²
RT = $\sqrt{225}$ = 15 cm

: Area of trapezium = $\frac{1}{2}$ (sum of parallel sides) x distance

between them

=
$$\frac{1}{2}$$
×(PQ + SR)×RT
= $\frac{1}{2}$ ×(16 + 8)×15
= $\left(\frac{1}{2}$ ×24×15 $\right)$ cm² = 180cm²

:. area of trapezium = 180 cm²

********* END ********