

HM5156 1.2A防反接线性锂离子电池充电芯片

描述

HM5156 是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。其底部带有散热片的SOP8封装与较少的外部元件数目使得HM5156成为便携式应用的理想选择。HM5156可以适合 USB 电源和适配器电源工作。

由于采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部隔离二极管。 热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度 加以限制。充电电压固定于 4.2V,而充电电流可通过一个电阻器进行外部设置。当充电 电流在达到最终浮充电压之后降至设定值 1/10 时,HM5156 将自动终止充电循环。

当输入电压(交流适配器或 USB 电源)被拿掉时,HM5156 自动进入一个低电流状态,将电池漏电流降至 1uA 以下。HM5156 在有电源时也可置于停机模式,以而将供电电流降至 55uA。HM5156 的其他特点包括欠压闭锁、自动再充电和两个用于指示充电、结束的 LED 状态引脚。

特点

- 锂电池正负极反接保护功能;
- 输出端短路保护,将供电电流降至为0电流;
- 输入电源电压过压保护;
- 高达 1200mA 的可编程充电电流
- 无需 MOSFET、检测电阻器或隔离二极管
- 用于单节锂离子电池、采用 SOP 封装的完整 线性充电器
- 恒定电流/恒定电压操作,并具有可在无过热 危险的情况下实现充电速率最大化的热调节 功能
- •精度达到±1%的4.2V预设充电电压
- 用于电池电量检测的充电电流监控器输出
- 自动再充电
- 充电状态双输出、无电池和故障状态显示
- C/10 充电终止
- 待机模式下的供电电流为 55uA
- 2.9V涓流充电器件版本
- 采用 8 引脚 SOP-PP 封装。

应用

- · 移动电话、PDA
- MP3、MP4播放器
- 数码相机
- 电子词典
- GPS
- 便携式设备、各种充电器

绝对最大额定值

- 输入电源电压 (Vcc): -0.3V~12V
- PROG: -0. 3V~Vcc+0. 3V
- BAT: -0.3V~12V
- $\overline{\text{CHRG}}$: -0.3V \sim 12V
- $\overline{\text{STDBY}}$: $-0.3V \sim 12V$
- CE: -0.3V~12V
- BAT 短路持续时间: 连续
- BAT 引脚电流: 1200mA
- PROG 引脚电流: 1100uA
- 最大结温: 150℃
- 工作环境温度范围: -40℃~100℃
- 贮存温度范围: -65℃~125℃
- 引脚温度 (焊接时间 10 秒): 260℃

完整的充电循环(1200mAh 电池)

典型应用

封装/订购信息

电特性

凡表注●表示该指标适合整个工作温度范围,否则仅指 T_A=25℃, Vcc=5V,除非特别注明。

符号	参数	条件		最小值	典型值	最大值	单位
V_{CC}	输入电源电压		•	4.5	5	10	V
V_{CC}	输入电源电压闭锁门限		•		7		V
I _{CC}	输入电源电流	充电模式, R_{PROG} = 1 K 特机模式(充电终止) 停机模式(R_{PROG} 未连接, V_{CC} < V_{BAT} ,或 V_{CC} < V_{UV})	•		150 55 55 55	500 100 100 100	μ A μ A μ A
V_{FLOAL}	稳定输出 (浮充) 电压	$0^{\circ} C \leqslant T_{A} \leqslant 85^{\circ} C$,		4. 158	4. 2	4. 242	V
I _{BAT}	BAT 引脚电流: (电流模式测试条件是 VBAT=3.9V)	R_{PROG} = $2K$,电流模式 R_{PROG} = $1K$,电流模式 待机模式, V_{BAT} =4.2 V 停机模式(R_{PROG} 未连接) 睡眠模式, V_{CC} = $0V$	•	0	500 1000 -2.5 ±1 -1	$ \begin{array}{r} -6 \\ \pm 2 \\ -2 \end{array} $	mA mA μ A μ A
I_{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}, R_{PROG} = 1 K$	•		100		mA
V_{TRIKL}	涓流充电门限电压	R _{PROG} =1K, V _{BAT} 上升		2.8	2.9	3.0	V
V_{UV}	Vcc欠压闭锁门限	从 V _{cc} 低至高	•	3.5	3.7	3.9	V
I_{BAT}	C/10 终止电流门限	$R_{PROG} = 2 K$ $R_{PROG} = 1 K$	•		50 100		mA mA
V _{PROG}	PROG 引脚电压	R _{PROG} =1.2K, 电流模式	•	0.9	1.0	1.1	V
$V_{\overline{\text{CHRG}}}$	CHRG 引脚输出低电压	$I_{\overline{\text{CHRG}}} = 5\text{mA}$			0.3	0.6	V
$V_{\overline{ ext{STDBY}}}$	STDBY 引脚输出低电平	$I_{\overline{\text{STDBY}}} = 5 \text{mA}$			0.3	0.6	V
ΔV_{RECHRG}	再充电电池门限电压	V _{FLOAT} -V _{RECHRG}		120	180	250	mV
T_{LIM}	限定温度模式中的结温				150		$^{\circ}$
R _{ON}	功率 FET "导通"电阻 (在 V _{CC} 与 BAT 之间)				650		mΩ

典型性能特征

引脚功能

GND (引脚 1): 直接接 GND

PROG (引脚 2): 恒流充电电流设置和充电电流监测端。从 PROG 管脚连接一个外部电阻到地端可以对充电电流进行编程。在预充电阶段,此管脚的电压被调制在 0.2V; 在恒流充电阶段,此管脚的电压被固定在 1V。在充电状态的所有模式,测量该管脚的电压都可以根据下面的公式来估算充电电流:

$$I_{BAT} = \frac{V_{PROG}}{R_{PROG}} \times 1000$$

GND (引脚 3): 电源地。

Vcc (引脚 4): 输入电压正输入端。

此管脚为内部电路供电脚。Vcc的变化范围在4.5V至7.0V之间,并应通过至少一个1UF电容器进行滤波。当Vcc电压超过7.0V左右芯片自动停止工作。当Vcc电压降至BAT引脚电压的30mV以内,HM5156进入停机模式,从而使BAT管脚的电流小于1uA。

BAT (引脚 5): 电池连接端。将电池的正端连接到此管脚。在芯片被禁止工作或者睡眠模式,BAT 管脚的漏电流小于 1uA。BAT 管脚向电池提供充电电流和 4.2V 的限制电压。此引脚需要接一个0805封装10UF或以上的电容器。

STDBY (引脚 6): 电池充电完成指示端。 当电池充电完成时 STDBY 被内部开关拉到 低电平,表示充电完成。除此之外,STDBY 管脚将处于高阻态。

CHRG (引脚 7)漏极开路输出的充电状态 指示端。当充电器向电池充电时,CHRG 管 脚被内部开关拉到低电平,表示充电正在进 行;否则 CHRG 管脚处于高阻态。

CE (引脚 8) 芯片使能输入端。高输入电平将使HM5156处于正常工作状态;低输入电平使HM5156处于被禁止充电状态。CE 管脚可以被 TTL 电平或者 CMOS 电平驱动。

方框图

工作原理

HM5156 是专门为一节锂离子或锂聚合物电池设计的线性充电器电路,利用芯片内部的功率晶体管对电池进行恒流和恒压充电。充电电流可以用外部电阻编程设定,最大持续充电电流可达 1.2A,不需另加阻流二极管和电流检测电阻。HM5156 包含两个漏极开路输出状态指示输出端,充电状态指示端 CHRG 和电池故障状态指示输出端 STDBY。芯片内部的功率管理电路在芯片的结温超过 150℃时自动降低充电电流,这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心芯片过热而损坏芯片或者外部元器件。这样,用户在设计充电电流时,可以不用考虑最坏情况,而只是根据典型情况进行设计就可以了,因在最坏情况下,HM5156会自动减小充电电流。

当输入电压大于电源低电压检测阈值和芯片使能输入端接高电平,HM5156 开始对电池充电, CHRG 管脚输出低电平,表示充电正在进

行。如果电池电压低于2.9V,充电器用小电流对电池进行预充电。当电池电压超过2.9V时,充电器采用恒流模式对电池充电,充电电流由 PROG管脚和 GND 之间的电阻 RPROG确定。当电池电压接近4.2V 电压,充电电流逐渐减小,HM5156进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束,CHRG端输出高阻态,STDBY端输出低电位。

充电结束阈值是恒流充电电流的 10%。当电池电压降到再充电阈值以下时,自动开始新的充电周期。芯片内部的高精度的电压基准源,误差放大器和电阻分压网络确保电池端调制电压的精度在 1% 以内,满足了锂离子电池和锂聚合物电池的要求。当输入电压掉电或者输入电压低于电池电压时,充电器进入低功耗的睡眠模式,电池端消耗的电流小于 1uA,从而增加了待机时间。如果将使能输入端 CE 接低电平,充电器停止充电。

充电电流的设定

充电电流是采用一个连接在 PROG 引脚与地之

间的电阻器来设定的。设定电阻器和充电电流 采用下列公式来计算:

根据需要的充电电流来确定电阻器阻值,

$$R_{PROG} = \frac{1000}{I_{BAT}}$$
 (误差±10%)

客户应用中,可根据需求选取合适大小的 R_{PROG} RPROG 与充电电流的关系确定可参考下表:

Rprog (k)	I _{BAT} (mA)
5	200
4	250
3	333
2	500
1.66	600
1.5	666
1.33	750
1.2	833
1	1000

充电终止

当充电电流在达到最终浮充电压之后降至设定值的 1/10 时,充电循环被终止。该条件是通过采用一个内部滤波比较器对 PROG 引脚进行监控来检测的。当 PROG 引脚电压降至200mV 以下,一旦平均充电电流降至设定值的1/10 以下,PTÍFÍ 充电被终止。充电电流被锁断,HM5156 进入待机模式。

在待机模式中,HM5156 对 BAT 引脚电压进行连续监控。如果该引脚电压降到 4.05V 的再充电电门限 (V_{RECHRG}) 以下,则另一个充电循环开始并再次向电池供应电流。

图 1 示出了一个典型充电循环的状态图。

充电状态指示器

HM5156有两个漏极开路状态指示输出端, CHRG 和 STDBY。当充电器处于充电状态时, CHRG 被拉到低电平,在其它状态,CHRG 处于 高阻态。当电池的温度处于正常温度范围之外, CHRG 和 STDBY 管脚都输出高阻态。

充电状态	红灯	绿灯	
	CHRG	STDBY	
正在充电状态	亮	灭	
电池充满状态	灭	亮	
BAT端接10u电容,无电池	绿灯亮, 红灯闪烁		
	T=1-4 S		

各种不同的充电指示状态请参考 HM5156使用注 意事项及 DEMO板说明书。

热限制

如果芯片温度升至约 150℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流.该功能可防止HM5156 过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏HM5156 的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

欠压闭锁

一个内部欠压闭锁电路对输入电压进行监控,并在 Vcc 升至欠压闭锁门限以上之前使充电器保持在停机模式。UVLO 电路将使充电器保持在停机模式。如果 UVLO 比较器发生跳变,则在 Vcc 升至比电池电压高 100mV 之前充电器将不会退出停机模式。

手动停机

在充电循环中的任何时刻都能通过置 CE 端为低电位或去掉 R_{PROG}(从而使 PROG 引脚浮置)来把HM5156 置于停机模式。这使得电池漏电流降至 1 μ A 以下,且电源电流降至 55 μ A 以下。重新将 CE 端置为高电位或连接设定电阻器可启动一个新的充电循环。

如果HM5156处于欠压闭锁模式,则 CHRG和 STDBY 引脚呈高阻抗状态:要么 Vcc 高出 BAT引脚电压的幅度不足 100mV,要么施加在 Vcc 引脚上的电压不足。

自动再启动

一旦充电循环被终止,HM5156立即采用一个具有 1.8ms 滤波时间($t_{RECHARGE}$)的比较器来对 BAT 引脚上的电压进行连续监控。当电池电压降至 4.05V(大致对应于电池容量的 80%至 90%)以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个满充电状态,并免除了进行周期性充电循环启动的需要。在再充电循环过程中,CHRG 引脚输出进入一个强下拉状态。

图 1: 一个典型充电循环的状态图

稳定性的考虑

在恒定电流模式中,位于反馈环路中的是PROG 引脚,而不是电池。恒定电流模式的稳定性受 PROG 引脚阻抗的影响。当 PROG 引脚上没有附加电容会减小设定电阻器的最大容许阻值。PROG 引脚上的极点频率应保持在 C_{PROG},则可采用下式来计算 R_{PROG}的最大电阻值:

$$R_{PROG} \le \frac{1}{2p \cdot 10^5 \cdot C_{PROG}}$$

对用户来说,他们更感兴趣的可能是充电电流,而不是瞬态电流。例如,如果一个运行在低电流模式的开关电源与电池并联,则从BAT 引脚流出的平均电流通常比瞬态电流脉冲更加重要。在这种场合,可在 PROG 引脚上采用一个简单的 RC 滤波器来测量平均的电池电流(如图 2 所示)。在 PROG 引脚和滤波电容器之间增设了一个 10k 电阻器以确保稳定性。

图 2: 隔离 PROG 引脚上的容性负载 和滤波电路

热考虑

由于 SOP8 封装的外形尺寸很小, 因此,需要采用一个热设计精良的 PC 板布局以 最大幅度地增加可使用的充电电流,这一点非 常重要。用于耗散 IC 所产生的热量的散热通路 从芯片至引线框架,并通过底部的散热片到达 PC 板铜面。PC 板铜面为散热器。散热片相连的 铜箔面积应尽可能地宽阔,并向外延伸至较大 的铜面积,以便将热量散播到周围环境中。至 内部或背部铜电路层的通孔在改善充电器的总 体热性能方面也是颇有用处的。当进行 PC 板布 局设计时,电路板上与充电器无关的其他热源 也是必须予以考虑的,因为它们将对总体温升和最大充电电流有所影响。

增加热调节电流

降低内部 MOSFET 两端的压降能够显著减少 IC 中的功耗。在热调节期间,这具有增加输送至电池的电流的作用。对策之一是通过一个外部元件(例如一个电阻器或二极管)将一部分功率耗散掉。

实例:通过编程使一个从 5V 交流适配器获得工作电源的HM5156 向一个具有 3.75V 电压的放电锂离子电池设置为 800mA 的满幅充电电流。假设 \mathbf{q}_{JA} 为 125°C/W,则在 25°C的环境温度条件下,充电电流近似为:

$$I_{BAT} = \frac{150^{\circ}C - 25^{\circ}C}{(5V - 3.75V) \cdot 125^{\circ}C/W} = 800mA$$

通过降低一个与 5V 交流适配器串联的电阻器 两端的电压(如图 3 所示),可减少片上功耗,从而增大热调整的充电电流:

$$I_{BAT} = \frac{150^{\circ}C - 25^{\circ}C}{(V_{S} - I_{BAT}R_{CC} - V_{BAT}) \bullet q_{IA}}$$

图 3: 一种尽量增大热调节模式充节电流的电路

利用二次方程可求出 I_{BAT}^{2} 。

$$I_{BAT} = \frac{(V_S - V_{BAT}) - \sqrt{(V_S - V_{BAT})^2 - \frac{4R_{CC}(150^{\circ}C - T_A)}{q_{JA}}}}{2R_{CC}}$$

取 R_{CC} =0.25 Ω 、 V_{S} =5V 、 V_{BAT} =3.75V 、 T_{A} =25 \mathbb{C} 且 q_{JA} = 125 \mathbb{C} /W ,我们可以计算出热调整的充电电流: I_{BAT} =948mA,结果说明该结构可以在更高的环境温度下输出 800mA 满幅充电.

虽然这种应用可以在热调整模式中向电池 输送更多的能量并缩短充电时间,但在电压模式中,如果 V_{CC} 变得足够低而使HM5156 处于低压降状态,则它实际上有可能延长充电时间。图 4 示出了该电路是如何随着 R_{CC} 的变大而导致电压下降的。

当为了保持较小的元件尺寸并避免发生 压降而使 R_{CC} 值最小化时,该技术能起到最佳 的作用。请牢记选择一个具有足够功率处理能 力的电阻器。

图 4: 充电电流与 Rcc 的关系曲线

Vcc旁路电容器

输入旁路可以使用多种类型的电容器。然而,在采用多层陶瓷电容器时必须谨慎。由于有些类型的陶瓷电容器具有自谐振和高 Q 值的特点,因此,在某些启动条件下(比如将充电器输入与一个工作中的电源相连)有可能产生高的电压瞬态信号。增加一个与 X5R 陶瓷电容器串联的 1.5 Ω 电阻器将最大限度地减小启动电压瞬态信号。

USB 和交流适配器电源

HM5156允许从一个交流适配器或一个USB端口进行充电。图 6 示出了如何将交流适配器与 USB电源输入加以组合的一个实例。一个 P沟道 MOSFET (MP1)被用于防止交流适配器接入时信号反向传入 USB端口,而一个肖特基二极管(D1)则被用于防止 USB 功率在经过 1K下拉电阻器时产生损耗。

一般来说,交流适配器能够提供比电流限值为 500mA 的 USB 端口大得多的电流。因此,当交流适配器接入时,可采用一个 N 沟道MOSFET(MN1)和一个附加的 10K 设定电阻器来把充电电流增加至 600mA。

图 6: 交流适配器与 USB 电源的组合

封装描述

字符	Dimensions In Millimeters Dimension		In Inches		
	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 050	0. 150	0. 004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
D1	3. 202	3. 402	0. 126	0. 134	
Е	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
E2	2. 313	2. 513	0. 091	0. 099	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	