COMP 6651: Assignment 9

Fall 2020

Submission through Moodle is due by November 22nd at 23:55

- 1. Recall that a language L belongs to the class \mathcal{NP} if there exists a polynomial time verification algorithm A and a constant d such that for every $x \in \{0,1\}^*$
 - if $x \in L$ then there exists y such that $|y| \leq |x|^d$ and A(x,y) = 1;
 - if $x \notin L$ then for every y with $|y| \leq |x|^d$ we have A(x,y) = 0.
 - (a) On a test, Alex mistakenly forgot to specify the second item (if $x \notin L...$). Alex's definition defines another class of languages, $Alex \mathcal{NP}$. Determine the class $Alex \mathcal{NP}$. Give a simple description of this class. Prove your answer.
 - (b) Another student, Joana, mistakenly forgot to specify the first item (if $x \in L...$). Joana's definition defines another class of languages, $Joana \mathcal{NP}$. Determine the class $Joana \mathcal{NP}$. Give a simple description of this class. Prove your answer.
 - (c) Another student, Steve, replaced both items with the following: for every $x \in \{0,1\}^*$ there exists y such that $x \in L$ if and only if $|y| \leq |x|^d$ and A(x,y) = 1. This is again an incorrect definition of \mathcal{NP} . This definitions gives another class of languages, $Steve \mathcal{NP}$. Determine the class $Steve \mathcal{NP}$. Give a simple description of this class. Prove your answer.
- 2. Let G = (V, E) be a simple undirected graph. Recall that a set $S \subseteq V$ is called a *vertex cover* if every edge has at least one endpoint in S, i.e., $\forall \{u, v\} \in E$ we have $\{u, v\} \cap S \neq \emptyset$. The Minimum Vertex Cover problem (MVC) asks to find a vertex cover of minimum size for a given graph G.
 - (a) State the optimization version, decision version, and search version of MVC.
 - (b) Let MVC DEC denote the decision version of MVC. Recall that $CLIQUE = \{\langle G, k \rangle : G \text{ has a clique of size at least } k\}$ is the decision version of the Maximum Clique problem. Show that $CLIQUE \leq_p MVC DEC$. Give a reduction and prove its correctness and that it runs in polynomial time.
- 3. Recall that a simple undirected graph G = (V, E) is k-colorable if there exists a coloring $c : V \to \{1, 2, ..., k\}$ such that for every edge $\{u, v\} \in E$ we have $c(u) \neq c(v)$. Define $k COL = \{\langle G \rangle : G \text{ is } k\text{-colorable}\}$. Prove that $3 COL \leq_p 4 COL$. Give a reduction and prove its correctness and that it runs in polynomial time.