Методы оптимизации Лекция 5: Выпуклые функции: непрерывность, дифференцируемость, L-гладкость

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

5 октября 2020 г.

Выпуклые функции и их свойства

- Выпуклые функции и их свойства
- Критерии выпуклости

- Выпуклые функции и их свойства
- Критерии выпуклости
- ▶ Операции, сохраняющие выпуклость

- Выпуклые функции и их свойства
- Критерии выпуклости
- ▶ Операции, сохраняющие выпуклость
- Неравенство Йенсена

▶ В критериях выпуклости фигурируют градиент и гессиан

- ▶ В критериях выпуклости фигурируют градиент и гессиан
- Однако вопрос их существования для выпуклой функции пока остался за кадром

- В критериях выпуклости фигурируют градиент и гессиан
- Однако вопрос их существования для выпуклой функции пока остался за кадром
- Но сначала надо изучить непрерывность выпуклой функции

- В критериях выпуклости фигурируют градиент и гессиан
- Однако вопрос их существования для выпуклой функции пока остался за кадром
- Но сначала надо изучить непрерывность выпуклой функции
- ▶ После чего рассмотрим дифференцируемость

- ▶ В критериях выпуклости фигурируют градиент и гессиан
- Однако вопрос их существования для выпуклой функции пока остался за кадром
- Но сначала надо изучить непрерывность выпуклой функции
- После чего рассмотрим дифференцируемость
- И в конце обсудим L-гладкость: одно из ключевых понятий для анализа численных методов

Единственность точки минимума

Если функция f строго выпукла, то локальный минимум достигается в единственной точке.

Единственность точки минимума

Если функция f строго выпукла, то локальный минимум достигается в единственной точке.

Единственность точки минимума

Если функция f строго выпукла, то локальный минимум достигается в единственной точке.

Доказательство

lacktriangle Пусть есть две точки $\mathbf{x}_1
eq \mathbf{x}_2$ таких что $f(\mathbf{x}_1) = f(\mathbf{x}_2)$ является минимумом

Единственность точки минимума

Если функция f строго выпукла, то локальный минимум достигается в единственной точке.

- lacktriangle Пусть есть две точки $\mathbf{x}_1
 eq \mathbf{x}_2$ таких что $f(\mathbf{x}_1) = f(\mathbf{x}_2)$ является минимумом
- Рассмотрим точку ${f z}$ из отрезка $[{f x}_1,{f x}_2]$ и значение $f({f z})<\lambda f({f x}_1)+(1-\lambda)f({f x}_2)=f({f x}_2)$

Единственность точки минимума

Если функция f строго выпукла, то локальный минимум достигается в единственной точке.

- lacktriangle Пусть есть две точки $\mathbf{x}_1
 eq \mathbf{x}_2$ таких что $f(\mathbf{x}_1) = f(\mathbf{x}_2)$ является минимумом
- Рассмотрим точку $\mathbf z$ из отрезка $[\mathbf x_1, \mathbf x_2]$ и значение $f(\mathbf z) < \lambda f(\mathbf x_1) + (1-\lambda)f(\mathbf x_2) = f(\mathbf x_2)$
- ▶ Тогда взяв λ достаточно близкое к 1 получим противоречие, с тем что \mathbf{x}_2 точка минимума

Теорема

Пусть $f:\mathcal{X}\to\mathbb{R}$ выпуклая функция и произвольная точка $\mathbf{a}\in\operatorname{relint}(\mathcal{X}).$ Тогда существует относительно открытая окрестность $\mathcal{O}(\mathbf{a})\subset\operatorname{dom}(f)$ и M>0 такие что

$$|f(\mathbf{x}) - f(\mathbf{a})| \le M \|\mathbf{x} - \mathbf{a}\|_2,$$

для любой точки $\mathbf{x} \in \mathcal{O}(\mathbf{a})$. Из этого неравенства следует непрерывность выпуклой функции в точках относительной внутренности.

Теорема

Пусть $f:\mathcal{X}\to\mathbb{R}$ выпуклая функция и произвольная точка $\mathbf{a}\in\operatorname{relint}(\mathcal{X}).$ Тогда существует относительно открытая окрестность $\mathcal{O}(\mathbf{a})\subset\operatorname{dom}(f)$ и M>0 такие что

$$|f(\mathbf{x}) - f(\mathbf{a})| \le M \|\mathbf{x} - \mathbf{a}\|_2,$$

для любой точки $\mathbf{x} \in \mathcal{O}(\mathbf{a})$. Из этого неравенства следует непрерывность выпуклой функции в точках относительной внутренности.

Теорема

Пусть $f:\mathcal{X}\to\mathbb{R}$ выпуклая функция и произвольная точка $\mathbf{a}\in\operatorname{relint}(\mathcal{X}).$ Тогда существует относительно открытая окрестность $\mathcal{O}(\mathbf{a})\subset\operatorname{dom}(f)$ и M>0 такие что

$$|f(\mathbf{x}) - f(\mathbf{a})| \le M ||\mathbf{x} - \mathbf{a}||_2,$$

для любой точки $\mathbf{x} \in \mathcal{O}(\mathbf{a})$. Из этого неравенства следует непрерывность выпуклой функции в точках относительной внутренности.

Доказательство

Рассмотрим частный случай

Теорема

Пусть $f:\mathcal{X}\to\mathbb{R}$ выпуклая функция и произвольная точка $\mathbf{a}\in\operatorname{relint}(\mathcal{X}).$ Тогда существует относительно открытая окрестность $\mathcal{O}(\mathbf{a})\subset\operatorname{dom}(f)$ и M>0 такие что

$$|f(\mathbf{x}) - f(\mathbf{a})| \le M \|\mathbf{x} - \mathbf{a}\|_2,$$

для любой точки $\mathbf{x} \in \mathcal{O}(\mathbf{a})$. Из этого неравенства следует непрерывность выпуклой функции в точках относительной внутренности.

- Рассмотрим частный случай
 - lacktriangleright открытое подмножество \mathbb{R}^n

Теорема

Пусть $f:\mathcal{X}\to\mathbb{R}$ выпуклая функция и произвольная точка $\mathbf{a}\in\operatorname{relint}(\mathcal{X}).$ Тогда существует относительно открытая окрестность $\mathcal{O}(\mathbf{a})\subset\operatorname{dom}(f)$ и M>0 такие что

$$|f(\mathbf{x}) - f(\mathbf{a})| \le M \|\mathbf{x} - \mathbf{a}\|_2,$$

для любой точки $\mathbf{x} \in \mathcal{O}(\mathbf{a})$. Из этого неравенства следует непрерывность выпуклой функции в точках относительной внутренности.

- Рассмотрим частный случай
 - $ightharpoonup \mathcal{X}$ открытое подмножество \mathbb{R}^n
 - ▶ $\mathbf{a} = 0$ и f(0) = 0

▶ Покажем, что $|f(\mathbf{x})| \le M \|\mathbf{x}\|_2$ для любого \mathbf{x} из окрестности 0.

- ▶ Покажем, что $|f(\mathbf{x})| \le M \|\mathbf{x}\|_2$ для любого \mathbf{x} из окрестности 0.
- ▶ Рассмотрим множество $B_{\infty}(r)=\{\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq r\}$ для такого r>0, что $B_{\infty}(r)\subset\mathcal{X}$

- ▶ Покажем, что $|f(\mathbf{x})| \le M \|\mathbf{x}\|_2$ для любого \mathbf{x} из окрестности 0.
- ▶ Рассмотрим множество $B_{\infty}(r)=\{\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq r\}$ для такого r>0, что $B_{\infty}(r)\subset\mathcal{X}$
- $m{\triangleright}\ B_{\infty}(r)$ есть выпуклая оболочка 2^n точек (каких?) $\mathbf{y}_1,\dots,\mathbf{y}_{2^n}$

- ▶ Покажем, что $|f(\mathbf{x})| \le M \|\mathbf{x}\|_2$ для любого \mathbf{x} из окрестности 0.
- ▶ Рассмотрим множество $B_{\infty}(r)=\{\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq r\}$ для такого r>0, что $B_{\infty}(r)\subset\mathcal{X}$
- $m{\triangleright}\ B_{\infty}(r)$ есть выпуклая оболочка 2^n точек (каких?) $\mathbf{y}_1,\dots,\mathbf{y}_{2^n}$
- ▶ Пусть $\mathbf{z} = \sum_{i=1}^k \alpha_i \mathbf{y}_i$ произвольная точка из $B_\infty(r)$

- ▶ Покажем, что $|f(\mathbf{x})| \le M \|\mathbf{x}\|_2$ для любого \mathbf{x} из окрестности 0.
- ▶ Рассмотрим множество $B_{\infty}(r)=\{\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq r\}$ для такого r>0, что $B_{\infty}(r)\subset\mathcal{X}$
- $m{\triangleright}\ B_{\infty}(r)$ есть выпуклая оболочка 2^n точек (каких?) $\mathbf{y}_1,\dots,\mathbf{y}_{2^n}$
- lacktriangle Пусть $\mathbf{z} = \sum_{i=1}^k lpha_i \mathbf{y}_i$ произвольная точка из $B_\infty(r)$
- ▶ Тогда $f(\mathbf{z}) \leq \sum_{i=1}^k \alpha_i f(\mathbf{y}_i) \leq \max_i f(\mathbf{y}_i)$

- ▶ Покажем, что $|f(\mathbf{x})| \le M \|\mathbf{x}\|_2$ для любого \mathbf{x} из окрестности 0.
- ▶ Рассмотрим множество $B_{\infty}(r)=\{\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq r\}$ для такого r>0, что $B_{\infty}(r)\subset\mathcal{X}$
- $m{\triangleright}\ B_{\infty}(r)$ есть выпуклая оболочка 2^n точек (каких?) $\mathbf{y}_1,\dots,\mathbf{y}_{2^n}$
- lacktriangle Пусть $\mathbf{z} = \sum_{i=1}^k lpha_i \mathbf{y}_i$ произвольная точка из $B_\infty(r)$
- lacktriangle Тогда $f(\mathbf{z}) \leq \sum_{i=1}^k lpha_i f(\mathbf{y}_i) \leq \max_i f(\mathbf{y}_i)$
- ightharpoonup С другой стороны $\{\mathbf y_1,\ldots,\mathbf y_{2^n}\}\subset B_\infty(r)$, а значит $\max_{\mathbf z\in B_\infty(r)}f(\mathbf z)\geq \max_i f(\mathbf y_i)$

- ▶ Покажем, что $|f(\mathbf{x})| \le M \|\mathbf{x}\|_2$ для любого \mathbf{x} из окрестности 0.
- ▶ Рассмотрим множество $B_{\infty}(r)=\{\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq r\}$ для такого r>0, что $B_{\infty}(r)\subset\mathcal{X}$
- $m{\triangleright}\ B_{\infty}(r)$ есть выпуклая оболочка 2^n точек (каких?) $\mathbf{y}_1,\dots,\mathbf{y}_{2^n}$
- ▶ Пусть $\mathbf{z} = \sum_{i=1}^k \alpha_i \mathbf{y}_i$ произвольная точка из $B_\infty(r)$
- lacktriangle Тогда $f(\mathbf{z}) \leq \sum_{i=1}^k lpha_i f(\mathbf{y}_i) \leq \max_i f(\mathbf{y}_i)$
- ▶ С другой стороны $\{\mathbf y_1,\dots,\mathbf y_{2^n}\}\subset B_\infty(r)$, а значит $\max_{\mathbf z\in B_\infty(r)}f(\mathbf z)\geq \max_i f(\mathbf y_i)$
- ▶ Значит $\max_{\mathbf{z} \in B_{\infty}(r)} f(\mathbf{z}) = \max_{i} f(\mathbf{y}_{i}) = L$

- ▶ Покажем, что $|f(\mathbf{x})| \le M \|\mathbf{x}\|_2$ для любого \mathbf{x} из окрестности 0.
- ▶ Рассмотрим множество $B_{\infty}(r)=\{\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq r\}$ для такого r>0, что $B_{\infty}(r)\subset\mathcal{X}$
- $m{\triangleright}\ B_{\infty}(r)$ есть выпуклая оболочка 2^n точек (каких?) $\mathbf{y}_1,\dots,\mathbf{y}_{2^n}$
- lacktriangle Пусть $\mathbf{z} = \sum_{i=1}^k lpha_i \mathbf{y}_i$ произвольная точка из $B_\infty(r)$
- lacktriangle Тогда $f(\mathbf{z}) \leq \sum_{i=1}^k lpha_i f(\mathbf{y}_i) \leq \max_i f(\mathbf{y}_i)$
- ▶ С другой стороны $\{\mathbf y_1,\dots,\mathbf y_{2^n}\}\subset B_\infty(r)$, а значит $\max_{\mathbf z\in B_\infty(r)}f(\mathbf z)\geq \max_i f(\mathbf y_i)$
- ▶ Значит $\max_{\mathbf{z} \in B_{\infty}(r)} f(\mathbf{z}) = \max_i f(\mathbf{y}_i) = L$
- ▶ Следовательно, $f(\mathbf{x}) \le L$ для всех точек $\mathbf{x} \in B_{\infty}(r)$, а значит и для всех $\mathbf{x} \in B_2(r) = \{\mathbf{x} \mid \|\mathbf{x}\|_2 \le r\} \subset B_{\infty}(r)$

▶ Рассмотрим $\mathbf{x} \neq 0 \in B_2(r)$ и $\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2} r \in \partial B_2(r)$

- ▶ Рассмотрим $\mathbf{x} \neq 0 \in B_2(r)$ и $\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2} r \in \partial B_2(r)$
- ▶ Тогда $\mathbf{x} \in [0, \mathbf{y}]$ и выполнено $f(\mathbf{x}) \leq \lambda f(\mathbf{y}) + (1 \lambda) \underbrace{f(0)}_{=0} \leq \lambda L = \frac{L}{r} \|\mathbf{x}\|_2 = M \|\mathbf{x}\|_2$

- ▶ Рассмотрим $\mathbf{x} \neq 0 \in B_2(r)$ и $\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2} r \in \partial B_2(r)$
- ▶ Тогда $\mathbf{x} \in [0, \mathbf{y}]$ и выполнено $f(\mathbf{x}) \leq \lambda f(\mathbf{y}) + (1 \lambda) \underbrace{f(0)}_{=0} \leq \lambda L = \frac{L}{r} \|\mathbf{x}\|_2 = M \|\mathbf{x}\|_2$
- ▶ Теперь покажем, что $f(\mathbf{x}) \ge -M \|\mathbf{x}\|_2$

- ▶ Рассмотрим $\mathbf{x} \neq 0 \in B_2(r)$ и $\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2} r \in \partial B_2(r)$
- ▶ Тогда $\mathbf{x} \in [0, \mathbf{y}]$ и выполнено $f(\mathbf{x}) \leq \lambda f(\mathbf{y}) + (1 \lambda) \underbrace{f(0)}_{=0} \leq \lambda L = \frac{L}{r} \|\mathbf{x}\|_2 = M \|\mathbf{x}\|_2$
- ▶ Теперь покажем, что $f(\mathbf{x}) \ge -M \|\mathbf{x}\|_2$
- lacktriangle Для этого заметим, что если $\mathbf{x} \in B_2(r)$, то и $-\mathbf{x} \in B_2(r)$

- ▶ Рассмотрим $\mathbf{x} \neq 0 \in B_2(r)$ и $\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2} r \in \partial B_2(r)$
- ▶ Тогда $\mathbf{x} \in [0, \mathbf{y}]$ и выполнено $f(\mathbf{x}) \leq \lambda f(\mathbf{y}) + (1 \lambda) \underbrace{f(0)}_{=0} \leq \lambda L = \frac{L}{r} \|\mathbf{x}\|_2 = M \|\mathbf{x}\|_2$
- lacktriangle Теперь покажем, что $f(\mathbf{x}) \geq -M \|\mathbf{x}\|_2$
- lacktriangle Для этого заметим, что если $\mathbf{x} \in B_2(r)$, то и $-\mathbf{x} \in B_2(r)$
- ▶ Тогда $0=f(0)=f\left(\frac{1}{2}\mathbf{x}-\frac{1}{2}\mathbf{x}\right)\leq \frac{1}{2}f(\mathbf{x})+\frac{1}{2}f(-\mathbf{x})$

- ▶ Рассмотрим $\mathbf{x} \neq 0 \in B_2(r)$ и $\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2} r \in \partial B_2(r)$
- ▶ Тогда $\mathbf{x} \in [0, \mathbf{y}]$ и выполнено $f(\mathbf{x}) \leq \lambda f(\mathbf{y}) + (1 \lambda) \underbrace{f(0)}_{=0} \leq \lambda L = \frac{L}{r} \|\mathbf{x}\|_2 = M \|\mathbf{x}\|_2$
- lacktriangle Теперь покажем, что $f(\mathbf{x}) \geq -M \|\mathbf{x}\|_2$
- lacktriangle Для этого заметим, что если $\mathbf{x} \in B_2(r)$, то и $-\mathbf{x} \in B_2(r)$
- ▶ Тогда $0 = f(0) = f\left(\frac{1}{2}\mathbf{x} \frac{1}{2}\mathbf{x}\right) \le \frac{1}{2}f(\mathbf{x}) + \frac{1}{2}f(-\mathbf{x})$
- $M f(\mathbf{x}) \ge -f(-\mathbf{x}) \ge -M \|\mathbf{x}\|_2$

- ▶ Рассмотрим $\mathbf{x} \neq 0 \in B_2(r)$ и $\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2} r \in \partial B_2(r)$
- ▶ Тогда $\mathbf{x} \in [0, \mathbf{y}]$ и выполнено $f(\mathbf{x}) \leq \lambda f(\mathbf{y}) + (1 \lambda) \underbrace{f(0)}_{=0} \leq \lambda L = \frac{L}{r} \|\mathbf{x}\|_2 = M \|\mathbf{x}\|_2$
- ▶ Теперь покажем, что $f(\mathbf{x}) \ge -M \|\mathbf{x}\|_2$
- lacktriangle Для этого заметим, что если $\mathbf{x} \in B_2(r)$, то и $-\mathbf{x} \in B_2(r)$
- ▶ Тогда $0 = f(0) = f\left(\frac{1}{2}\mathbf{x} \frac{1}{2}\mathbf{x}\right) \le \frac{1}{2}f(\mathbf{x}) + \frac{1}{2}f(-\mathbf{x})$
- $M f(\mathbf{x}) \ge -f(-\mathbf{x}) \ge -M \|\mathbf{x}\|_2$
- ▶ Таким образом, $|f(\mathbf{x})| \le M \|\mathbf{x}\|_2$

Доказательство: общий случай

ightharpoonup Пусть n размерность $\mathrm{dom}\,(f)$

- ightharpoonup Пусть n размерность $\mathrm{dom}\,(f)$
- ▶ Тогда $\operatorname{aff}\left(\operatorname{dom}\left(f\right)\right) = \mathbf{a} + \mathcal{V}$, где \mathcal{V} линейное подпространство размерности n

- ightharpoonup Пусть n размерность $\mathrm{dom}\,(f)$
- ▶ Тогда $\operatorname{aff}\left(\operatorname{dom}\left(f\right)\right)=\mathbf{a}+\mathcal{V}$, где \mathcal{V} линейное подпространство размерности n
- $ightharpoonup \mathcal V$ изоморфно $\mathbb R^n$, поэтому можно построить линейное биективное отображение $v:\mathbb R^n o \mathcal V$ выбором некоторого базиса в $\mathcal V$

- ightharpoonup Пусть n размерность $\mathrm{dom}\,(f)$
- ▶ Тогда $\operatorname{aff}\left(\operatorname{dom}\left(f\right)\right) = \mathbf{a} + \mathcal{V}$, где \mathcal{V} линейное подпространство размерности n
- $ightharpoonup \mathcal V$ изоморфно $\mathbb R^n$, поэтому можно построить линейное биективное отображение $v:\mathbb R^n o \mathcal V$ выбором некоторого базиса в $\mathcal V$
- ightharpoonup Рассмотрим отображение $h:\mathbb{R}^n o \mathrm{aff}\ (\mathrm{dom}\ (f))$ вида $h(\mathbf{y})=\mathbf{a}+v(\mathbf{y})$

- ightharpoonup Пусть n размерность $\mathrm{dom}\,(f)$
- ▶ Тогда $\operatorname{aff}\left(\operatorname{dom}\left(f\right)\right) = \mathbf{a} + \mathcal{V}$, где \mathcal{V} линейное подпространство размерности n
- $ightharpoonup \mathcal V$ изоморфно $\mathbb R^n$, поэтому можно построить линейное биективное отображение $v:\mathbb R^n o \mathcal V$ выбором некоторого базиса в $\mathcal V$
- ightharpoonup Рассмотрим отображение $h:\mathbb{R}^n o \mathrm{aff}\ (\mathrm{dom}\ (f))$ вида $h(\mathbf{y})=\mathbf{a}+v(\mathbf{y})$
- ▶ Применение отображения h^{-1} к множеству $\operatorname{relint}\left(\operatorname{dom}\left(f\right)\right)$ даст некоторое открытое подмножество $\mathcal Y$ в $\mathbb R^n$

- ightharpoonup Пусть n размерность $\mathrm{dom}\,(f)$
- ▶ Тогда $\operatorname{aff}\left(\operatorname{dom}\left(f\right)\right) = \mathbf{a} + \mathcal{V}$, где \mathcal{V} линейное подпространство размерности n
- $ightharpoonup \mathcal V$ изоморфно $\mathbb R^n$, поэтому можно построить линейное биективное отображение $v:\mathbb R^n o \mathcal V$ выбором некоторого базиса в $\mathcal V$
- ightharpoonup Рассмотрим отображение $h:\mathbb{R}^n o \mathrm{aff}\ (\mathrm{dom}\ (f))$ вида $h(\mathbf{y})=\mathbf{a}+v(\mathbf{y})$
- ▶ Применение отображения h^{-1} к множеству $\operatorname{relint}\left(\operatorname{dom}\left(f\right)\right)$ даст некоторое открытое подмножество $\mathcal Y$ в $\mathbb R^n$
- ▶ Более того, $h(0)=\mathbf{a}\in \mathrm{relint}\,(\mathrm{dom}\,(f))$, а значит $h^{-1}(\mathbf{a})=0\ni \mathcal{Y}$

- ightharpoonup Пусть n размерность $\mathrm{dom}\,(f)$
- ▶ Тогда $\operatorname{aff}\left(\operatorname{dom}\left(f\right)\right) = \mathbf{a} + \mathcal{V}$, где \mathcal{V} линейное подпространство размерности n
- $ightharpoonup \mathcal V$ изоморфно $\mathbb R^n$, поэтому можно построить линейное биективное отображение $v:\mathbb R^n o \mathcal V$ выбором некоторого базиса в $\mathcal V$
- ightharpoonup Рассмотрим отображение $h:\mathbb{R}^n o \mathrm{aff}\ (\mathrm{dom}\ (f))$ вида $h(\mathbf{y})=\mathbf{a}+v(\mathbf{y})$
- ▶ Применение отображения h^{-1} к множеству $\operatorname{relint}\left(\operatorname{dom}\left(f\right)\right)$ даст некоторое открытое подмножество $\mathcal Y$ в $\mathbb R^n$
- ▶ Более того, $h(0) = \mathbf{a} \in \operatorname{relint} (\operatorname{dom} (f))$, а значит $h^{-1}(\mathbf{a}) = 0 \ni \mathcal{Y}$
- ullet Определим функцию $g:\mathcal{Y} o \mathbb{R}$ в виде $g(\mathbf{y}) = f(\mathbf{a} + v(\mathbf{y})) f(\mathbf{a})$

- ▶ Пусть n размерность dom(f)
- ▶ Тогда $\operatorname{aff}\left(\operatorname{dom}\left(f\right)\right)=\mathbf{a}+\mathcal{V}$, где \mathcal{V} линейное подпространство размерности n
- $ightharpoonup \mathcal V$ изоморфно $\mathbb R^n$, поэтому можно построить линейное биективное отображение $v:\mathbb R^n o \mathcal V$ выбором некоторого базиса в $\mathcal V$
- ightharpoonup Рассмотрим отображение $h:\mathbb{R}^n o \mathrm{aff}\ (\mathrm{dom}\ (f))$ вида $h(\mathbf{y})=\mathbf{a}+v(\mathbf{y})$
- ▶ Применение отображения h^{-1} к множеству $\operatorname{relint}\left(\operatorname{dom}\left(f\right)\right)$ даст некоторое открытое подмножество $\mathcal Y$ в $\mathbb R^n$
- ▶ Более того, $h(0) = \mathbf{a} \in \operatorname{relint} (\operatorname{dom} (f))$, а значит $h^{-1}(\mathbf{a}) = 0 \ni \mathcal{Y}$
- ullet Определим функцию $g:\mathcal{Y} o\mathbb{R}$ в виде $g(\mathbf{y})=f(\mathbf{a}+v(\mathbf{y}))-f(\mathbf{a})$
- ▶ Заметим, что g(0) = 0 и g выпукла

ightharpoonup Обозначим $\mathbf{x}=\mathbf{a}+v(\mathbf{y})\in \mathrm{relint}\,(\mathrm{dom}\,(f))$, тогда $g(\mathbf{y})=f(\mathbf{x})-f(\mathbf{a})$

- lacktriangle Обозначим $\mathbf{x}=\mathbf{a}+v(\mathbf{y})\in \mathrm{relint}\,(\mathrm{dom}\,(f))$, тогда $g(\mathbf{y})=f(\mathbf{x})-f(\mathbf{a})$
- ▶ Теперь для завершения доказательства нужно показать, что для некоторого M>0

$$|g(\mathbf{y})| \le M ||v(\mathbf{y})||_2$$

- lacktriangle Обозначим $\mathbf{x}=\mathbf{a}+v(\mathbf{y})\in \mathrm{relint}\,(\mathrm{dom}\,(f))$, тогда $g(\mathbf{y})=f(\mathbf{x})-f(\mathbf{a})$
- ▶ Теперь для завершения доказательства нужно показать, что для некоторого M>0

$$|g(\mathbf{y})| \le M ||v(\mathbf{y})||_2$$

 \blacktriangleright Заметим, что отображение $\|v(\mathbf{y})\|$ есть некоторая норма в силу линейности v

- ullet Обозначим $\mathbf{x}=\mathbf{a}+v(\mathbf{y})\in \mathrm{relint}\,(\mathrm{dom}\,(f))$, тогда $g(\mathbf{y})=f(\mathbf{x})-f(\mathbf{a})$
- ▶ Теперь для завершения доказательства нужно показать, что для некоторого M>0

$$|g(\mathbf{y})| \le M ||v(\mathbf{y})||_2$$

- \blacktriangleright Заметим, что отображение $\|v(\mathbf{y})\|$ есть некоторая норма в силу линейности v
- ightharpoonup Значит в силу эквивалентности норм в \mathbb{R}^n достаточно показать, что найдётся M>0, что

$$|g(\mathbf{y})| \le M \|\mathbf{y}\|_2$$

для любого $\mathbf{y} \in \mathcal{O}(0)$.

- lacktriangle Обозначим $\mathbf{x}=\mathbf{a}+v(\mathbf{y})\in \mathrm{relint}\,(\mathrm{dom}\,(f))$, тогда $g(\mathbf{y})=f(\mathbf{x})-f(\mathbf{a})$
- ▶ Теперь для завершения доказательства нужно показать, что для некоторого M>0

$$|g(\mathbf{y})| \le M ||v(\mathbf{y})||_2$$

- ightharpoonup Заметим, что отображение $\|v(\mathbf{y})\|$ есть некоторая норма в силу линейности v
- ▶ Значит в силу эквивалентности норм в \mathbb{R}^n достаточно показать, что найдётся M>0, что

$$|g(\mathbf{y})| \le M \|\mathbf{y}\|_2$$

для любого $\mathbf{y} \in \mathcal{O}(0)$.

▶ Но мы уже показали это в самом начале доказательства!

▶ В граничных точках выпуклая функция может иметь разрыв

$$f(x) = \begin{cases} x^2, & -1 < x < 1 \\ 2, & x = 1, -1 \end{cases}$$

▶ В граничных точках выпуклая функция может иметь разрыв

$$f(x) = \begin{cases} x^2, & -1 < x < 1\\ 2, & x = 1, -1 \end{cases}$$

• Функция f называется полунепрерывной снизу в точке \mathbf{x}_0 , если для любого $y < f(\mathbf{x}_0)$ найдётся такая окрестность $\mathcal{O}(\mathbf{x}_0)$, что $y < f(\mathbf{x})$ для любого $\mathbf{x} \in \mathcal{O}(\mathbf{x}_0)$

▶ В граничных точках выпуклая функция может иметь разрыв

$$f(x) = \begin{cases} x^2, & -1 < x < 1\\ 2, & x = 1, -1 \end{cases}$$

lacktriangle Функция f называется полунепрерывной снизу в точке \mathbf{x}_0 , если для любого $y < f(\mathbf{x}_0)$ найдётся такая окрестность $\mathcal{O}(\mathbf{x}_0)$, что $y < f(\mathbf{x})$ для любого $\mathbf{x} \in \mathcal{O}(\mathbf{x}_0)$

Q: является ли функция выше полунепрерывной снизу?

▶ В граничных точках выпуклая функция может иметь разрыв

$$f(x) = \begin{cases} x^2, & -1 < x < 1\\ 2, & x = 1, -1 \end{cases}$$

• Функция f называется полунепрерывной снизу в точке \mathbf{x}_0 , если для любого $y < f(\mathbf{x}_0)$ найдётся такая окрестность $\mathcal{O}(\mathbf{x}_0)$, что $y < f(\mathbf{x})$ для любого $\mathbf{x} \in \mathcal{O}(\mathbf{x}_0)$

Q: является ли функция выше полунепрерывной снизу?

Определение

Выпуклая функция называется замкнутой, если её надграфик замкнутое множество.

▶ В граничных точках выпуклая функция может иметь разрыв

$$f(x) = \begin{cases} x^2, & -1 < x < 1\\ 2, & x = 1, -1 \end{cases}$$

• Функция f называется полунепрерывной снизу в точке \mathbf{x}_0 , если для любого $y < f(\mathbf{x}_0)$ найдётся такая окрестность $\mathcal{O}(\mathbf{x}_0)$, что $y < f(\mathbf{x})$ для любого $\mathbf{x} \in \mathcal{O}(\mathbf{x}_0)$

Q: является ли функция выше полунепрерывной снизу?

Определение

Выпуклая функция называется замкнутой, если её надграфик замкнутое множество.

Теорема

Выпуклая функция замкнута iff она полунепрерывна снизу

▶ В граничных точках выпуклая функция может иметь разрыв

$$f(x) = \begin{cases} x^2, & -1 < x < 1\\ 2, & x = 1, -1 \end{cases}$$

• Функция f называется полунепрерывной снизу в точке \mathbf{x}_0 , если для любого $y < f(\mathbf{x}_0)$ найдётся такая окрестность $\mathcal{O}(\mathbf{x}_0)$, что $y < f(\mathbf{x})$ для любого $\mathbf{x} \in \mathcal{O}(\mathbf{x}_0)$

Q: является ли функция выше полунепрерывной снизу?

Определение

Выпуклая функция называется замкнутой, если её надграфик замкнутое множество.

Теорема

Выпуклая функция замкнута iff она полунепрерывна снизу Замечание

Замкнутая выпуклая функция может иметь незамкнутую область определения, например f(x)=1/x, x>0

Разрывная замкнутая выпуклая функция

Разрывная замкнутая выпуклая функция

▶ Пусть
$$f(x,y) = \begin{cases} \frac{x^2}{y}, & (x,y) \in \mathcal{X} \\ 0, & (x,y) = (0,0) \end{cases}$$

Разрывная замкнутая выпуклая функция

▶ Пусть
$$f(x,y) = \begin{cases} \frac{x^2}{y}, & (x,y) \in \mathcal{X} \\ 0, & (x,y) = (0,0) \end{cases}$$

Разрывная замкнутая выпуклая функция

▶ Пусть
$$f(x,y) = \begin{cases} \frac{x^2}{y}, & (x,y) \in \mathcal{X} \\ 0, & (x,y) = (0,0) \end{cases}$$

 $\mathcal{X} = \{(x,y) \mid y \ge x^2\}$

Разрывная замкнутая выпуклая функция

▶ Пусть
$$f(x,y) = \begin{cases} \frac{x^2}{y}, & (x,y) \in \mathcal{X} \\ 0, & (x,y) = (0,0) \end{cases}$$

 $\mathcal{X} = \{(x,y) \mid y \ge x^2\}$

Свойства

▶ Разрывна в (0,0) так как $(x_n,x_n^2)\in\mathcal{X}$ и $(x_n,2x_n^2)\in\mathcal{X}$ такие что $x_n\to 0$ дают два различных значения f_n

Разрывная замкнутая выпуклая функция

- ▶ Пусть $f(x,y) = \begin{cases} \frac{x^2}{y}, & (x,y) \in \mathcal{X} \\ 0, & (x,y) = (0,0) \end{cases}$
- $\mathcal{X} = \{(x,y) \mid y \ge x^2\}$

- ▶ Разрывна в (0,0) так как $(x_n,x_n^2)\in\mathcal{X}$ и $(x_n,2x_n^2)\in\mathcal{X}$ такие что $x_n\to 0$ дают два различных значения f_n
- ▶ Выпукла при y>0 по критерию второго порядка (проверьте!)

Разрывная замкнутая выпуклая функция

- ▶ Пусть $f(x,y) = \begin{cases} \frac{x^2}{y}, & (x,y) \in \mathcal{X} \\ 0, & (x,y) = (0,0) \end{cases}$
- $\mathcal{X} = \{(x,y) \mid y \ge x^2\}$

- ▶ Разрывна в (0,0) так как $(x_n,x_n^2)\in\mathcal{X}$ и $(x_n,2x_n^2)\in\mathcal{X}$ такие что $x_n\to 0$ дают два различных значения f_n
- ▶ Выпукла при y>0 по критерию второго порядка (проверьте!)
- ▶ Выпукла при y = 0 по определению (проверьте!)

Разрывная замкнутая выпуклая функция

- ▶ Пусть $f(x,y) = \begin{cases} \frac{x^2}{y}, & (x,y) \in \mathcal{X} \\ 0, & (x,y) = (0,0) \end{cases}$
- $\mathcal{X} = \{(x,y) \mid y \ge x^2\}$

- ▶ Разрывна в (0,0) так как $(x_n,x_n^2)\in\mathcal{X}$ и $(x_n,2x_n^2)\in\mathcal{X}$ такие что $x_n\to 0$ дают два различных значения f_n
- ▶ Выпукла при y>0 по критерию второго порядка (проверьте!)
- ▶ Выпукла при y = 0 по определению (проверьте!)
- lacktriangle Непрерывна на \mathcal{X} , а значит и полунепрерывна снизу на \mathcal{X}

Разрывная замкнутая выпуклая функция

- ▶ Пусть $f(x,y) = \begin{cases} \frac{x^2}{y}, & (x,y) \in \mathcal{X} \\ 0, & (x,y) = (0,0) \end{cases}$
- $\mathcal{X} = \{(x,y) \mid y \ge x^2\}$

- ▶ Разрывна в (0,0) так как $(x_n,x_n^2)\in\mathcal{X}$ и $(x_n,2x_n^2)\in\mathcal{X}$ такие что $x_n\to 0$ дают два различных значения f_n
- ▶ Выпукла при y>0 по критерию второго порядка (проверьте!)
- ▶ Выпукла при y = 0 по определению (проверьте!)
- lacktriangle Непрерывна на ${\mathcal X}$, а значит и полунепрерывна снизу на ${\mathcal X}$
- Рассмотрим точку (0,0). Проверим, что для любого $u < f(x_0,y_0) = 0$ найдётся окрестность $\mathcal{O}((0,0)) \subset \mathcal{X}$, что $u < f(x,y) = \frac{x^2}{y}$, $(x,y) \in \mathcal{O}((0,0))$. Так как $\frac{x^2}{y} > 0$, то неравенство выполнено

Определение

Производная функции f по направлению \mathbf{d} в точке \mathbf{x} определяется как

$$f'(\mathbf{x}, \mathbf{d}) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}$$

Определение

Производная функции f по направлению ${f d}$ в точке ${f x}$ определяется как

$$f'(\mathbf{x}, \mathbf{d}) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}$$

Теорема

Пусть f выпуклая функция и $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ произвольная точка. Тогда для любого направления \mathbf{d} существует производная по направлению $f'(\mathbf{x},\mathbf{d})$.

Определение

Производная функции f по направлению ${f d}$ в точке ${f x}$ определяется как

$$f'(\mathbf{x}, \mathbf{d}) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}$$

Теорема

Пусть f выпуклая функция и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$ произвольная точка. Тогда для любого направления \mathbf{d} существует производная по направлению $f'(\mathbf{x}, \mathbf{d})$.

Доказательство

Определение

Производная функции f по направлению ${f d}$ в точке ${f x}$ определяется как

$$f'(\mathbf{x}, \mathbf{d}) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}$$

Теорема

Пусть f выпуклая функция и $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ произвольная точка. Тогда для любого направления \mathbf{d} существует производная по направлению $f'(\mathbf{x},\mathbf{d})$.

Доказательство

▶ Рассмотрим функцию $\varphi(\alpha) = \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}$

Определение

Производная функции f по направлению ${f d}$ в точке ${f x}$ определяется как

$$f'(\mathbf{x}, \mathbf{d}) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}$$

Теорема

Пусть f выпуклая функция и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$ произвольная точка. Тогда для любого направления \mathbf{d} существует производная по направлению $f'(\mathbf{x}, \mathbf{d})$.

Доказательство

- ▶ Рассмотрим функцию $\varphi(\alpha) = \frac{f(\mathbf{x} + \alpha \mathbf{d}) f(\mathbf{x})}{\alpha}$
- ▶ Пусть $0 < \alpha_1 \le \alpha_2$, обозначим $\lambda = \frac{\alpha_1}{\alpha_2}$ и в силу выпуклости f выполнено $f(\mathbf{x} + \alpha_1 \mathbf{d}) = f((1 \lambda)\mathbf{x} + \lambda(\mathbf{x} + \alpha_2 \mathbf{d})) \le (1 \lambda)f(\mathbf{x}) + \lambda f(\mathbf{x} + \alpha_2 \mathbf{d})$

▶ Тогда
$$\varphi(\alpha_1) = \frac{f(\mathbf{x} + \alpha_1 \mathbf{d}) - f(\mathbf{x})}{\alpha_1} \le \frac{(1 - \lambda)f(\mathbf{x}) + \lambda f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x})}{\alpha_1} = \frac{\lambda(f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x}))}{\alpha_1} = \frac{f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x})}{\alpha_2} = \varphi(\alpha_2)$$

- ▶ Тогда $\varphi(\alpha_1) = \frac{f(\mathbf{x} + \alpha_1 \mathbf{d}) f(\mathbf{x})}{\alpha_1} \le \frac{(1 \lambda)f(\mathbf{x}) + \lambda f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x})}{\alpha_1} = \frac{\lambda(f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x}))}{\alpha_1} = \frac{f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x})}{\alpha_2} = \varphi(\alpha_2)$
- ightharpoonup Таким образом, $\varphi(\alpha)$ неубывающая функция

▶ Тогда
$$\varphi(\alpha_1) = \frac{f(\mathbf{x} + \alpha_1 \mathbf{d}) - f(\mathbf{x})}{\alpha_1} \le \frac{(1 - \lambda)f(\mathbf{x}) + \lambda f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x})}{\alpha_1} = \frac{\lambda(f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x}))}{\alpha_1} = \frac{f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x})}{\alpha_2} = \varphi(\alpha_2)$$

- lacktriangle Таким образом, $\varphi(lpha)$ неубывающая функция
- ightharpoonup Далее рассмотрим $lpha_+>0$ и $lpha_-<0$ и обозначим $\lambda_1=rac{lpha_+}{lpha_+-lpha_-}$, $\lambda_2=rac{-lpha_-}{lpha_+-lpha_-}$ так что $\lambda_{1,2}\geq 0$ и $\lambda_1+\lambda_2=1$

- ▶ Тогда $\varphi(\alpha_1) = \frac{f(\mathbf{x} + \alpha_1 \mathbf{d}) f(\mathbf{x})}{\alpha_1} \le \frac{(1 \lambda)f(\mathbf{x}) + \lambda f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x})}{\alpha_1} = \frac{\lambda(f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x}))}{\alpha_1} = \frac{f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x})}{\alpha_2} = \varphi(\alpha_2)$
- lacktriangle Таким образом, $\varphi(lpha)$ неубывающая функция
- ightharpoonup Далее рассмотрим $lpha_+>0$ и $lpha_-<0$ и обозначим $\lambda_1=rac{lpha_+}{lpha_+-lpha_-}$, $\lambda_2=rac{-lpha_-}{lpha_+-lpha_-}$ так что $\lambda_{1,2}\geq 0$ и $\lambda_1+\lambda_2=1$
- ▶ Поскольку $\mathbf{x} = \lambda_1(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2(\mathbf{x} + \alpha_+ \mathbf{d})$ и функция f выпукла, то $f(\mathbf{x}) \leq \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$

- ▶ Тогда $\varphi(\alpha_1) = \frac{f(\mathbf{x} + \alpha_1 \mathbf{d}) f(\mathbf{x})}{\alpha_1} \le \frac{(1 \lambda)f(\mathbf{x}) + \lambda f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x})}{\alpha_1} = \frac{\lambda(f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x}))}{\alpha_1} = \frac{f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x})}{\alpha_2} = \varphi(\alpha_2)$
- lacktriangle Таким образом, $\varphi(lpha)$ неубывающая функция
- ightharpoonup Далее рассмотрим $lpha_+>0$ и $lpha_-<0$ и обозначим $\lambda_1=rac{lpha_+}{lpha_+-lpha_-}$, $\lambda_2=rac{-lpha_-}{lpha_+-lpha_-}$ так что $\lambda_{1,2}\geq 0$ и $\lambda_1+\lambda_2=1$
- ▶ Поскольку $\mathbf{x} = \lambda_1(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2(\mathbf{x} + \alpha_+ \mathbf{d})$ и функция f выпукла, то $f(\mathbf{x}) \le \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$
- ▶ Иначе $(\lambda_1 + \lambda_2)f(\mathbf{x}) \le \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$

- ▶ Тогда $\varphi(\alpha_1) = \frac{f(\mathbf{x} + \alpha_1 \mathbf{d}) f(\mathbf{x})}{\alpha_1} \le \frac{(1 \lambda)f(\mathbf{x}) + \lambda f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x})}{\alpha_1} = \frac{\lambda(f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x}))}{\alpha_1} = \frac{f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x})}{\alpha_2} = \varphi(\alpha_2)$
- lacktriangle Таким образом, $\varphi(lpha)$ неубывающая функция
- ightharpoonup Далее рассмотрим $lpha_+>0$ и $lpha_-<0$ и обозначим $\lambda_1=rac{lpha_+}{lpha_+-lpha_-}$, $\lambda_2=rac{-lpha_-}{lpha_+-lpha_-}$ так что $\lambda_{1,2}\geq 0$ и $\lambda_1+\lambda_2=1$
- ▶ Поскольку $\mathbf{x} = \lambda_1(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2(\mathbf{x} + \alpha_+ \mathbf{d})$ и функция f выпукла, то $f(\mathbf{x}) \le \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$
- ▶ Иначе $(\lambda_1 + \lambda_2) f(\mathbf{x}) \le \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$
- ▶ Или $\lambda_1(f(\mathbf{x} + \alpha_-\mathbf{d}) f(\mathbf{x})) \ge -\lambda_2(f(\mathbf{x} + \alpha_+\mathbf{d}) f(\mathbf{x}))$

- ▶ Тогда $\varphi(\alpha_1) = \frac{f(\mathbf{x} + \alpha_1 \mathbf{d}) f(\mathbf{x})}{\alpha_1} \le \frac{(1 \lambda)f(\mathbf{x}) + \lambda f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x})}{\alpha_1} = \frac{\lambda(f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x}))}{\alpha_1} = \frac{f(\mathbf{x} + \alpha_2 \mathbf{d}) f(\mathbf{x})}{\alpha_2} = \varphi(\alpha_2)$
- lacktriangle Таким образом, $\varphi(lpha)$ неубывающая функция
- ightharpoonup Далее рассмотрим $lpha_+>0$ и $lpha_-<0$ и обозначим $\lambda_1=rac{lpha_+}{lpha_+-lpha_-}$, $\lambda_2=rac{-lpha_-}{lpha_+-lpha_-}$ так что $\lambda_{1,2}\geq 0$ и $\lambda_1+\lambda_2=1$
- ▶ Поскольку $\mathbf{x} = \lambda_1(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2(\mathbf{x} + \alpha_+ \mathbf{d})$ и функция f выпукла, то $f(\mathbf{x}) \le \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$
- ▶ Иначе $(\lambda_1 + \lambda_2) f(\mathbf{x}) \le \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$
- ▶ Или $\lambda_1(f(\mathbf{x}+\alpha_-\mathbf{d})-f(\mathbf{x})) \geq -\lambda_2(f(\mathbf{x}+\alpha_+\mathbf{d})-f(\mathbf{x}))$
- lacktriangle Заменяя $\lambda_{1,2}$ на $lpha_{+,-}$ получим $lpha_+(f(\mathbf{x}+lpha_-\mathbf{d})-f(\mathbf{x})) \geq lpha_-(f(\mathbf{x}+lpha_+\mathbf{d})-f(\mathbf{x}))$

▶ Тогда
$$\varphi(\alpha_1) = \frac{f(\mathbf{x} + \alpha_1 \mathbf{d}) - f(\mathbf{x})}{\alpha_1} \le \frac{(1 - \lambda)f(\mathbf{x}) + \lambda f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x})}{\alpha_1} = \frac{\lambda(f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x}))}{\alpha_1} = \frac{f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x})}{\alpha_2} = \varphi(\alpha_2)$$

- lacktriangle Таким образом, $\varphi(lpha)$ неубывающая функция
- ▶ Далее рассмотрим $\alpha_+>0$ и $\alpha_-<0$ и обозначим $\lambda_1=\frac{\alpha_+}{\alpha_+-\alpha_-}$, $\lambda_2=\frac{-\alpha_-}{\alpha_+-\alpha_-}$ так что $\lambda_{1,2}\geq 0$ и $\lambda_1+\lambda_2=1$
- ▶ Поскольку $\mathbf{x} = \lambda_1(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2(\mathbf{x} + \alpha_+ \mathbf{d})$ и функция f выпукла, то $f(\mathbf{x}) \le \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$
- ▶ Иначе $(\lambda_1 + \lambda_2) f(\mathbf{x}) \le \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$
- ▶ Или $\lambda_1(f(\mathbf{x} + \alpha_-\mathbf{d}) f(\mathbf{x})) \ge -\lambda_2(f(\mathbf{x} + \alpha_+\mathbf{d}) f(\mathbf{x}))$
- ▶ Заменяя $\lambda_{1,2}$ на $\alpha_{+,-}$ получим $\alpha_{+}(f(\mathbf{x}+\alpha_{-}\mathbf{d})-f(\mathbf{x})) \geq \alpha_{-}(f(\mathbf{x}+\alpha_{+}\mathbf{d})-f(\mathbf{x}))$
- ▶ Откуда следует $\varphi(\alpha_-) \le \varphi(\alpha_+)$

▶ Тогда
$$\varphi(\alpha_1) = \frac{f(\mathbf{x} + \alpha_1 \mathbf{d}) - f(\mathbf{x})}{\alpha_1} \le \frac{(1 - \lambda)f(\mathbf{x}) + \lambda f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x})}{\alpha_1} = \frac{\lambda(f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x}))}{\alpha_1} = \frac{f(\mathbf{x} + \alpha_2 \mathbf{d}) - f(\mathbf{x})}{\alpha_2} = \varphi(\alpha_2)$$

- lacktriangle Таким образом, arphi(lpha) неубывающая функция
- ightharpoonup Далее рассмотрим $lpha_+>0$ и $lpha_-<0$ и обозначим $\lambda_1=rac{lpha_+}{lpha_+-lpha_-}$, $\lambda_2=rac{-lpha_-}{lpha_+-lpha_-}$ так что $\lambda_{1,2}\geq 0$ и $\lambda_1+\lambda_2=1$
- ▶ Поскольку $\mathbf{x} = \lambda_1(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2(\mathbf{x} + \alpha_+ \mathbf{d})$ и функция f выпукла, то $f(\mathbf{x}) \le \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$
- ▶ Иначе $(\lambda_1 + \lambda_2)f(\mathbf{x}) \le \lambda_1 f(\mathbf{x} + \alpha_- \mathbf{d}) + \lambda_2 f(\mathbf{x} + \alpha_+ \mathbf{d})$
- ▶ Или $\lambda_1(f(\mathbf{x} + \alpha_-\mathbf{d}) f(\mathbf{x})) \ge -\lambda_2(f(\mathbf{x} + \alpha_+\mathbf{d}) f(\mathbf{x}))$
- ▶ Заменяя $\lambda_{1,2}$ на $\alpha_{+,-}$ получим $\alpha_{+}(f(\mathbf{x}+\alpha_{-}\mathbf{d})-f(\mathbf{x})) \geq \alpha_{-}(f(\mathbf{x}+\alpha_{+}\mathbf{d})-f(\mathbf{x}))$
- ▶ Откуда следует $\varphi(\alpha_-) \le \varphi(\alpha_+)$
- ▶ В итоге, $\varphi(\alpha)$ неубывающая функция для $\alpha>0$ и ограничена снизу, таким образом существует предел $\lim_{\alpha\to+0}\varphi(\alpha)=f'(\mathbf{x},\mathbf{d})$

Выпуклость и однородность

Пусть функция f выпукла и $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$. Тогда

- $lacktriangledown f'(\mathbf{x}, \mathbf{d})$ выпукла по \mathbf{d}
- ▶ для любого $\lambda \ge 0$ выполнено $f'(\mathbf{x}, \lambda \mathbf{d}) = \lambda f'(\mathbf{x}, \mathbf{d})$

Выпуклость и однородность

Пусть функция f выпукла и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$. Тогда

- $lacktriangledown f'(\mathbf{x}, \mathbf{d})$ выпукла по \mathbf{d}
- ▶ для любого $\lambda \geq 0$ выполнено $f'(\mathbf{x}, \lambda \mathbf{d}) = \lambda f'(\mathbf{x}, \mathbf{d})$ Доказательство

Выпуклость и однородность

Пусть функция f выпукла и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$. Тогда

- $lacktriangledown f'(\mathbf{x}, \mathbf{d})$ выпукла по \mathbf{d}
- ▶ для любого $\lambda \geq 0$ выполнено $f'(\mathbf{x}, \lambda \mathbf{d}) = \lambda f'(\mathbf{x}, \mathbf{d})$ Доказательство
 - ▶ По определению $f'(\mathbf{x}, \lambda \mathbf{d}) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \lambda \alpha \mathbf{d}) f(\mathbf{x})}{\alpha} = \lambda \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \lambda \alpha \mathbf{d}) f(\mathbf{x})}{\alpha \lambda} = \lambda f'(\mathbf{x}, \mathbf{d})$

Выпуклость и однородность

Пусть функция f выпукла и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$. Тогда

- $lacktriangledown f'(\mathbf{x}, \mathbf{d})$ выпукла по \mathbf{d}
- ▶ для любого $\lambda \ge 0$ выполнено $f'(\mathbf{x}, \lambda \mathbf{d}) = \lambda f'(\mathbf{x}, \mathbf{d})$ Доказательство
 - ▶ По определению $f'(\mathbf{x}, \lambda \mathbf{d}) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \lambda \alpha \mathbf{d}) f(\mathbf{x})}{\alpha} = \lambda \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \lambda \alpha \mathbf{d}) f(\mathbf{x})}{\alpha \lambda} = \lambda f'(\mathbf{x}, \mathbf{d})$
 - Мспользуем определение $f'(\mathbf{x}, \lambda \mathbf{d}_1 + (1 \lambda) \mathbf{d}_2) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha(\lambda \mathbf{d}_1 + (1 \lambda) \mathbf{d}_2)) f(\mathbf{x})}{\alpha} = \lim_{\alpha \to +0} \frac{f(\lambda(\mathbf{x} + \alpha \mathbf{d}_1) + (1 \lambda)(\mathbf{x} + \alpha \mathbf{d}_2)) f(\mathbf{x})}{\alpha} \le \lim_{\alpha \to +0} \frac{\lambda f(\mathbf{x} + \alpha \mathbf{d}_1) + (1 \lambda) f(\mathbf{x} + \alpha \mathbf{d}_2) f(\mathbf{x})}{\alpha} = \lambda \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha \mathbf{d}_1) f(\mathbf{x})}{\alpha} + (1 \lambda) \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha \mathbf{d}_2) f(\mathbf{x})}{\alpha} = \lambda f'(\mathbf{x}, \mathbf{d}_1) + (1 \lambda) f'(\mathbf{x}, \mathbf{d}_2)$

Пусть f выпуклая функция и $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ произвольная точка. Тогда для любой точки $\mathbf{y} \in \mathrm{dom}\,(f)$ выполнено $f(\mathbf{y}) \geq f(\mathbf{x}) + f'(\mathbf{x}, \mathbf{y} - \mathbf{x})$

Пусть f выпуклая функция и $\mathbf{x}\in\mathrm{int}\,(\mathrm{dom}\,(f))$ произвольная точка. Тогда для любой точки $\mathbf{y}\in\mathrm{dom}\,(f)$ выполнено $f(\mathbf{y})\geq f(\mathbf{x})+f'(\mathbf{x},\mathbf{y}-\mathbf{x})$

Пусть f выпуклая функция и $\mathbf{x}\in\mathrm{int}\,(\mathrm{dom}\,(f))$ произвольная точка. Тогда для любой точки $\mathbf{y}\in\mathrm{dom}\,(f)$ выполнено $f(\mathbf{y})\geq f(\mathbf{x})+f'(\mathbf{x},\mathbf{y}-\mathbf{x})$

▶ По определению
$$f'(\mathbf{x}, \mathbf{y} - \mathbf{x}) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha} = \lim_{\alpha \to +0} \frac{f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) - f(\mathbf{x})}{\alpha}$$

Пусть f выпуклая функция и $\mathbf{x}\in\mathrm{int}\,(\mathrm{dom}\,(f))$ произвольная точка. Тогда для любой точки $\mathbf{y}\in\mathrm{dom}\,(f)$ выполнено $f(\mathbf{y})\geq f(\mathbf{x})+f'(\mathbf{x},\mathbf{y}-\mathbf{x})$

- ▶ По определению $f'(\mathbf{x}, \mathbf{y} \mathbf{x}) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha(\mathbf{y} \mathbf{x})) f(\mathbf{x})}{\alpha} = \lim_{\alpha \to +0} \frac{f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) f(\mathbf{x})}{\alpha}$
- lacktriangle В силу выпуклости f: $\lim_{lpha o +0} \frac{f((1-lpha)\mathbf{x} + lpha\mathbf{y}) f(\mathbf{x})}{lpha} \le \lim_{lpha o +0} \frac{(1-lpha)f(\mathbf{x}) + lpha f(\mathbf{y}) f(\mathbf{x})}{lpha} = f(\mathbf{y}) f(\mathbf{x})$

Пусть f выпуклая функция и $\mathbf{x}\in\mathrm{int}\,(\mathrm{dom}\,(f))$ произвольная точка. Тогда для любой точки $\mathbf{y}\in\mathrm{dom}\,(f)$ выполнено $f(\mathbf{y})\geq f(\mathbf{x})+f'(\mathbf{x},\mathbf{y}-\mathbf{x})$

- ▶ По определению $f'(\mathbf{x}, \mathbf{y} \mathbf{x}) = \lim_{\alpha \to +0} \frac{f(\mathbf{x} + \alpha(\mathbf{y} \mathbf{x})) f(\mathbf{x})}{\alpha} = \lim_{\alpha \to +0} \frac{f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) f(\mathbf{x})}{\alpha}$
- lacktriangle В силу выпуклости $f:\lim_{lpha o+0}rac{f((1-lpha)\mathbf{x}+lpha\mathbf{y})-f(\mathbf{x})}{lpha}\leq\lim_{lpha o+0}rac{(1-lpha)f(\mathbf{x})+lpha f(\mathbf{y})-f(\mathbf{x})}{lpha}=f(\mathbf{y})-f(\mathbf{x})$
- ▶ В итоге $f'(\mathbf{x}, \mathbf{y} \mathbf{x}) \le f(\mathbf{y}) f(\mathbf{x})$

Градиент и производная по направлению

Определение

Функция f является дифференцируемой в точке $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ если найдётся вектор \mathbf{g} такой что

$$\lim_{\mathbf{d}\to 0} \frac{f(\mathbf{x}+\mathbf{d}) - f(\mathbf{x}) - \langle \mathbf{g}, \mathbf{d} \rangle}{\|\mathbf{d}\|} = 0.$$

Этот вектор единственный (проверьте!) и называется градиентом.

Градиент и производная по направлению

Определение

Функция f является дифференцируемой в точке $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ если найдётся вектор \mathbf{g} такой что

$$\lim_{\mathbf{d}\to 0}\frac{f(\mathbf{x}+\mathbf{d})-f(\mathbf{x})-\langle\mathbf{g},\mathbf{d}\rangle}{\|\mathbf{d}\|}=0.$$

Этот вектор единственный (проверьте!) и называется градиентом.

Утверждение

Если f дифференцируема в точке ${\bf x}$, то для любого направления ${\bf d}$ выполнено $f'({\bf x},{\bf d})=\langle f'({\bf x}),{\bf d}\rangle.$

Определение

Пусть L>0. Функция f называется L-гладкой, если она дифференцируема и выполнено следующее неравенство

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_* \le L||\mathbf{x} - \mathbf{y}||,$$

для любых \mathbf{x}, \mathbf{y} . Норма $\|\cdot\|_*$ является сопряжённой нормой для $\|\cdot\|$

Определение

Пусть L>0. Функция f называется L-гладкой, если она дифференцируема и выполнено следующее неравенство

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_* \le L||\mathbf{x} - \mathbf{y}||,$$

для любых \mathbf{x}, \mathbf{y} . Норма $\|\cdot\|_*$ является сопряжённой нормой для $\|\cdot\|$

lacktriangleright L является константой Липшица для градиента

Определение

Пусть L>0. Функция f называется L-гладкой, если она дифференцируема и выполнено следующее неравенство

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_* \le L||\mathbf{x} - \mathbf{y}||,$$

для любых \mathbf{x}, \mathbf{y} . Норма $\|\cdot\|_*$ является сопряжённой нормой для $\|\cdot\|$

- lacktriangleright L является константой Липшица для градиента
- Интерес представляет минимально возможное L, при котором выполняется неравенство в определении

Определение

Пусть L>0. Функция f называется L-гладкой, если она дифференцируема и выполнено следующее неравенство

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_* \le L||\mathbf{x} - \mathbf{y}||,$$

для любых \mathbf{x}, \mathbf{y} . Норма $\|\cdot\|_*$ является сопряжённой нормой для $\|\cdot\|$

- lacktriangleright L является константой Липшица для градиента
- ightharpoonup Интерес представляет минимально возможное L, при котором выполняется неравенство в определении
- ightharpoonup На свойстве L-гладкости основан анализ многих численных методов

▶ Рассмотрим $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} - \mathbf{b}^{\top}\mathbf{x}$, где $\mathbf{A} \in \mathbf{S}^n$

- lacktriangle Рассмотрим $f(\mathbf{x}) = rac{1}{2}\mathbf{x}^{ op}\mathbf{A}\mathbf{x} \mathbf{b}^{ op}\mathbf{x}$, где $\mathbf{A} \in \mathbf{S}^n$
- lacktriangle Её градиент равен $f'(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$

- lacktriangle Рассмотрим $f(\mathbf{x}) = rac{1}{2}\mathbf{x}^{ op}\mathbf{A}\mathbf{x} \mathbf{b}^{ op}\mathbf{x}$, где $\mathbf{A} \in \mathbf{S}^n$
- lacktriangle Её градиент равен $f'(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$
- ▶ Тогда по определению

$$\|\mathbf{A}\mathbf{x} - \mathbf{b} - \mathbf{A}\mathbf{y} + \mathbf{b}\|_2 \le \|\mathbf{A}\|_2 \|\mathbf{x} - \mathbf{y}\|_2$$

- lacktriangle Рассмотрим $f(\mathbf{x}) = rac{1}{2}\mathbf{x}^{ op}\mathbf{A}\mathbf{x} \mathbf{b}^{ op}\mathbf{x}$, где $\mathbf{A} \in \mathbf{S}^n$
- lacktriangle Её градиент равен $f'(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$
- ▶ Тогда по определению

$$\|\mathbf{A}\mathbf{x} - \mathbf{b} - \mathbf{A}\mathbf{y} + \mathbf{b}\|_2 \le \|\mathbf{A}\|_2 \|\mathbf{x} - \mathbf{y}\|_2$$

так как для $\|\cdot\|_2$ выполнено $\|\cdot\|_* = \|\cdot\|_2$.

lacktriangle Функция f является $\|{f A}\|_2$ -гладкой

- lacktriangle Рассмотрим $f(\mathbf{x}) = rac{1}{2}\mathbf{x}^{ op}\mathbf{A}\mathbf{x} \mathbf{b}^{ op}\mathbf{x}$, где $\mathbf{A} \in \mathbf{S}^n$
- lacktriangle Её градиент равен $f'(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$
- ▶ Тогда по определению

$$\|\mathbf{A}\mathbf{x} - \mathbf{b} - \mathbf{A}\mathbf{y} + \mathbf{b}\|_2 \le \|\mathbf{A}\|_2 \|\mathbf{x} - \mathbf{y}\|_2$$

- lacktriangle Функция f является $\|{f A}\|_2$ -гладкой
- $\|\mathbf{A}\|_2 = \lambda_{\max}(\mathbf{A})$

- lacktriangle Рассмотрим $f(\mathbf{x}) = rac{1}{2}\mathbf{x}^{ op}\mathbf{A}\mathbf{x} \mathbf{b}^{ op}\mathbf{x}$, где $\mathbf{A} \in \mathbf{S}^n$
- lacktriangle Её градиент равен $f'(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$
- ▶ Тогда по определению

$$\|\mathbf{A}\mathbf{x} - \mathbf{b} - \mathbf{A}\mathbf{y} + \mathbf{b}\|_2 \le \|\mathbf{A}\|_2 \|\mathbf{x} - \mathbf{y}\|_2$$

- lacktriangle Функция f является $\|{f A}\|_2$ -гладкой
- $\|\mathbf{A}\|_2 = \lambda_{\max}(\mathbf{A})$
- ightharpoonup Покажем, что $\|\mathbf{A}\|_2$ действительно минимально возможное значение L

- lacktriangle Рассмотрим $f(\mathbf{x}) = rac{1}{2}\mathbf{x}^{ op}\mathbf{A}\mathbf{x} \mathbf{b}^{ op}\mathbf{x}$, где $\mathbf{A} \in \mathbf{S}^n$
- lacktriangle Её градиент равен $f'(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$
- ▶ Тогда по определению

$$\|\mathbf{A}\mathbf{x} - \mathbf{b} - \mathbf{A}\mathbf{y} + \mathbf{b}\|_2 \le \|\mathbf{A}\|_2 \|\mathbf{x} - \mathbf{y}\|_2$$

- lacktriangle Функция f является $\|{f A}\|_2$ -гладкой
- $\|\mathbf{A}\|_2 = \lambda_{\max}(\mathbf{A})$
- ightharpoonup Покажем, что $\|\mathbf{A}\|_2$ действительно минимально возможное значение L
- lacktriangle Пусть f L-гладкая, тогда рассмотрим вектор ${f z}$ такой что $\|{f z}\|_2=1$ и $\|{f A}{f z}\|_2=\|{f A}\|_2$

- lacktriangle Рассмотрим $f(\mathbf{x}) = rac{1}{2}\mathbf{x}^{ op}\mathbf{A}\mathbf{x} \mathbf{b}^{ op}\mathbf{x}$, где $\mathbf{A} \in \mathbf{S}^n$
- lacktriangle Её градиент равен $f'(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$
- ▶ Тогда по определению

$$\|\mathbf{A}\mathbf{x} - \mathbf{b} - \mathbf{A}\mathbf{y} + \mathbf{b}\|_2 \le \|\mathbf{A}\|_2 \|\mathbf{x} - \mathbf{y}\|_2$$

- lacktriangle Функция f является $\|{f A}\|_2$ -гладкой
- $\|\mathbf{A}\|_2 = \lambda_{\max}(\mathbf{A})$
- ightharpoonup Покажем, что $\|\mathbf{A}\|_2$ действительно минимально возможное значение L
- ightharpoonup Пусть f L-гладкая, тогда рассмотрим вектор ${f z}$ такой что $\|{f z}\|_2=1$ и $\|{f A}{f z}\|_2=\|{f A}\|_2$
- ▶ Тогда $\|\mathbf{A}\|_2 = \|\mathbf{A}\mathbf{z}\|_2 = \|f'(\mathbf{z}) f'(0)\|_2 \le L\|\mathbf{z} 0\|_2 = L$

- lacktriangle Рассмотрим $f(\mathbf{x}) = rac{1}{2}\mathbf{x}^{ op}\mathbf{A}\mathbf{x} \mathbf{b}^{ op}\mathbf{x}$, где $\mathbf{A} \in \mathbf{S}^n$
- lacktriangle Её градиент равен $f'(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$
- ▶ Тогда по определению

$$\|\mathbf{A}\mathbf{x} - \mathbf{b} - \mathbf{A}\mathbf{y} + \mathbf{b}\|_2 \le \|\mathbf{A}\|_2 \|\mathbf{x} - \mathbf{y}\|_2$$

- lacktriangle Функция f является $\|{f A}\|_2$ -гладкой
- $\|\mathbf{A}\|_2 = \lambda_{\max}(\mathbf{A})$
- ightharpoonup Покажем, что $\|\mathbf{A}\|_2$ действительно минимально возможное значение L
- ightharpoonup Пусть f L-гладкая, тогда рассмотрим вектор ${f z}$ такой что $\|{f z}\|_2=1$ и $\|{f A}{f z}\|_2=\|{f A}\|_2$
- ▶ Тогда $\|\mathbf{A}\|_2 = \|\mathbf{A}\mathbf{z}\|_2 = \|f'(\mathbf{z}) f'(0)\|_2 \le L\|\mathbf{z} 0\|_2 = L$
- lacktriangle Значит $\|\mathbf{A}\|_2$ действительно наименьшее значение L

Descent lemma

Пусть f L-гладкая функция. Тогда для любых пар \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Descent lemma

Пусть f L-гладкая функция. Тогда для любых пар \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Доказательство

$$f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt$$

Descent lemma

Пусть f L-гладкая функция. Тогда для любых пар \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Доказательство

$$f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt$$

$$f(\mathbf{y}) - f(\mathbf{x}) = \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle dt$$

Descent lemma

Пусть f L-гладкая функция. Тогда для любых пар \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Доказательство

$$f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt$$

- $f(\mathbf{y}) f(\mathbf{x}) = \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle dt$
- $|f(\mathbf{y}) f(\mathbf{x}) \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle| \le \int_0^1 |\langle f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle| dt \le \int_0^1 ||f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x})|| ||\mathbf{y} \mathbf{x}|| dt$

Descent lemma

Пусть f L-гладкая функция. Тогда для любых пар \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Доказательство

$$f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt$$

- $f(\mathbf{y}) f(\mathbf{x}) = \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle dt$
- $|f(\mathbf{y}) f(\mathbf{x}) \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle| \le \int_0^1 |\langle f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle| dt \le \int_0^1 ||f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x})|| ||\mathbf{y} \mathbf{x}|| dt$
- $\int_0^1 \|f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x})\| \|\mathbf{y} \mathbf{x}\| dt \le$ $\int_0^1 tL \|\mathbf{y} \mathbf{x}\|_2^2 dt = \frac{L}{2} \|\mathbf{y} \mathbf{x}\|_2^2$

L-гладкость и свойства гессиана

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

L-гладкость и свойства гессиана

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

Доказательство

1. Пусть f L-гладкая

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ightharpoonup Для любого направления ${f d}$ и lpha>0: $\|f'({f x}+lpha{f d})-f'({f x})\|_2\leq lpha L\|{f d}\|_2$

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $\|f''(\mathbf{x})\|_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ▶ Для любого направления \mathbf{d} и $\alpha > 0$: $\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2 \le \alpha L \|\mathbf{d}\|_2$
 - $\lim_{\alpha \to +0} \frac{\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2}{\alpha} = \|f''(\mathbf{x})\mathbf{d}\|_2 \le L\|\mathbf{d}\|_2$

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $\|f''(\mathbf{x})\|_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ▶ Для любого направления \mathbf{d} и $\alpha > 0$: $\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2 \le \alpha L \|\mathbf{d}\|_2$
 - $\lim_{\alpha \to +0} \frac{\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2}{\alpha} = \|f''(\mathbf{x})\mathbf{d}\|_2 \le L\|\mathbf{d}\|_2$
 - ▶ Так как это выполнено для любого ${\bf d}$, то $\|f''({\bf x})\|_2 \le L$

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $\|f''(\mathbf{x})\|_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ▶ Для любого направления \mathbf{d} и $\alpha > 0$: $\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2 \le \alpha L \|\mathbf{d}\|_2$
 - $\lim_{\alpha \to +0} \frac{\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2}{\alpha} = \|f''(\mathbf{x})\mathbf{d}\|_2 \le L\|\mathbf{d}\|_2$
 - lacktriangle Так как это выполнено для любого ${f d}$, то $\|f''({f x})\|_2 \leq L$
- 2. Пусть $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $\|f''(\mathbf{x})\|_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ▶ Для любого направления \mathbf{d} и $\alpha > 0$: $\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2 \le \alpha L \|\mathbf{d}\|_2$
 - $\lim_{\alpha \to +0} \frac{\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2}{\alpha} = \|f''(\mathbf{x})\mathbf{d}\|_2 \le L\|\mathbf{d}\|_2$
 - lacktriangle Так как это выполнено для любого ${f d}$, то $\|f''({f x})\|_2 \leq L$
- 2. Пусть $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}
 - ▶ По формуле Ньютона-Лейбница $f'(\mathbf{y}) f'(\mathbf{x}) = \int_0^1 f''(\mathbf{x} + t(\mathbf{y} \mathbf{x}))(\mathbf{y} \mathbf{x}) dt$

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ▶ Для любого направления \mathbf{d} и $\alpha > 0$: $\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2 < \alpha L \|\mathbf{d}\|_2$
 - $\lim_{\substack{\mathbf{x} \in \mathbb{R}^n \\ \mathbf{x} \in$
 - ▶ Так как это выполнено для любого **d**, то $||f''(\mathbf{x})||_2 \le L$
- 2. Пусть $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}
 - По формуле Ньютона-Лейбница
 - $f'(\mathbf{y}) f'(\mathbf{x}) = \int_0^1 f''(\mathbf{x} + t(\mathbf{y} \mathbf{x}))(\mathbf{y} \mathbf{x})dt$
 - $||f'(\mathbf{y}) f'(\mathbf{x})||_2 \le \left(\int_0^1 ||f''(\mathbf{x} + t(\mathbf{y} \mathbf{x}))||_2 dt \right) ||\mathbf{y} \mathbf{x}||_2 \le L ||\mathbf{y} \mathbf{x}||_2$

Утверждение

Утверждение

Пусть f дифференцируемая выпуклая функция и L>0. Тогда следующие условия эквивалентны:

ightharpoonup f является L-гладкой

Утверждение

- ightharpoonup f является L-гладкой
- $m{f}(\mathbf{y}) \leq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x}
 angle + rac{L}{2} \|\mathbf{y} \mathbf{x}\|_2^2$ для любых пар \mathbf{x}, \mathbf{y}

Утверждение

- ightharpoonup f является L-гладкой
- $\mathbf{y} = f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + rac{L}{2} \|\mathbf{y} \mathbf{x}\|_2^2$ для любых пар \mathbf{x}, \mathbf{y}
- ▶ $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2L} \|f'(\mathbf{x}) f'(\mathbf{y})\|_2^2$ для любых пар \mathbf{x}, \mathbf{y}

Утверждение

- ightharpoonup f является L-гладкой
- $m{y} = f(\mathbf{y}) \leq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + rac{L}{2} \|\mathbf{y} \mathbf{x}\|_2^2$ для любых пар \mathbf{x}, \mathbf{y}
- ▶ $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2L} \|f'(\mathbf{x}) f'(\mathbf{y})\|_2^2$ для любых пар \mathbf{x}, \mathbf{y}

Утверждение

- ightharpoonup f является L-гладкой
- $m{y} = f(\mathbf{y}) \leq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + rac{L}{2} \|\mathbf{y} \mathbf{x}\|_2^2$ для любых пар \mathbf{x}, \mathbf{y}
- ▶ $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2L} \|f'(\mathbf{x}) f'(\mathbf{y})\|_2^2$ для любых пар \mathbf{x}, \mathbf{y}
- $\langle f'(\mathbf{x}) f'(\mathbf{y}), \mathbf{x} \mathbf{y} \rangle \ge \frac{1}{L} \|f'(\mathbf{x}) f'(\mathbf{y})\|_2^2$
- $igwedge f(\lambda {f x}+(1-\lambda){f y}) \geq \lambda f({f x})+(1-\lambda)f({f y})-rac{L}{2}\lambda(1-\lambda)\|{f x}-{f y}\|_2^2$ для любых пар ${f x},{f y}$

Главное

Непрерывность выпуклых функций

Главное

- Непрерывность выпуклых функций
- ▶ Производная по направлению

Главное

- Непрерывность выпуклых функций
- ▶ Производная по направлению
- ightharpoonup L-гладкость выпуклых функций