Lista 1 de Análise de Regressão

Alex dos Santos Lima, RA:230560

13 de Agosto de 2021

Resolução da lista (1) de Análise de Regressão.

Nesta resolução iremos usar o seguinte livro com os exercícios. Abaixo teremos a lista 1 com os exercícios da quinta edição do livro-texto: "Kutner, Nachtsheim, Neter and Li (2005). Applied Linear Statistical Models. Fifth Edition, McGraw-Hill" (KNNL2005).

- 1.6; 1.7; 2.4; 2.52; 2.64
- 1.6) Consider the normal error regression model (1.24). Suppose that the parameter values are $\beta_0 = 200, \beta_1 = 5.0$, and $\sigma = 4$.
 - a. Plot this normal error regression model in the fashion of Figura 1.6. Show the distributions of Y for X=10, 20, and 40.
 - b. Explain the meaning of the parameters β_0 and β_1 . Assume that the scope of the model includes X=0.
- 1.7) In a simulation exercise, regression model (1.1) applies with $\beta_0 = 100, \beta_1 = 20$, and $\sigma^2 = 25$. An observation on Y will be made for X = 5.
 - a. Can you state the exact probability tha Y will fall between 195 and 205? Explain.
 - b. If the normal error regression model (1.24) is applicable, can you now state the exact probability that Y will fall between 195 and 205? If so, state it.
- 2.4) Refer to **Grade point average** Problem 1.19.
 - a. Obtain a 99 percent confidence interval for β_1 . Interpret your confidence interval. Does it include zero? Why might the director of admissions be interested in whether the confidence interval includes rero?
 - b. Test, using the test statistic t^* , whether or not a linear association exists between student's ACT score (X) and GPA at the end of the freshman year (Y). Use a level of significance of .Ol. State the alternatives, decision rule, and conclusion.
 - c. What is the P-value of your test in part (b)? How does it support the conclusion reached in part (b)?
- 2.52) Derive the expression in (2.22b) for the variance of b_0 , making use of (2.31). Also explain how variance (2.22b) is a special case of variance (2.29b).
- 2.64) Refer to the **SENIC** data set in Appendix C.1 and Project 1.45. Using R^2 as the criterion, which predictor variable accounts for the largest reduction in the variability of the average length of stay?

Fazendo a tradução e resolvendo os exercícios logo abaixo.

1.6) Considerar o modelo de regressão de erro normal (1.24). Suponha que os valores dos parâmetros são $\beta_0=200, \beta_1=5, 0, e \sigma=4.$

a. Plotar este modelo de regressão de erro normal à modelo da Figura 1.6. Mostrar as distribuições de Y por $X=10,\,20,\,\mathrm{e}\,40.$

Resposta:

Seja o modelo de erro normal de regressão linear simple .

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Onde: Y_i é a observação da resposta do i

 X_i é uma constante conhecida, o nivel da variável preditora no i

 β_0 e β_1 são parametros

 ϵ_i são independente em $N(0, \sigma^2)$

 $i=1,\ldots,n$

Então temos:

$$Y_i = 200 + 5X_i + \epsilon_i$$

Sendo $X_i, i=1,2,3$ para $X_1=10, X_2=20, X_3=40$

onde ϵ_i são independente em $N(0, \sigma^2) = N(0, 16)$ com $\sigma = 4$.

Da distribuição de probabilidade qual á média é a esperança :

$$E[Y_i] = 200 + 5X_i$$

Figura 1: Distribuição da esperança de cada valor e sua média

b. Explicar o significado dos parametros β_0 e β_1 . Assumir que o âmbito do modelo inclui X=0.

Resposta:

O β_0 é o intercepto do modelo de regressão linear simples, ou seja, quando X assume 0 (zero). O valor de Y é exatamente igual a 0 e temos que $\beta_0 = 200$.

Desta maneira, β_1 é coeficiente angular do modelo de regressão linear simples, ou seja, a cada incremento unitário em X aumentamos β_1 unidade(s) em X, logo o $\beta_1 = 5, 0$.

- 1.7) Num exercício de simulação, o modelo de regressão (1.1) aplica-se com $\beta_0 = 100, \beta_1 = 20$, e $\sigma^2 = 25$. Uma observação sobre Y será feita por X = 5.
 - a. Pode indicar a probabilidade exacta de Y cair entre 195 e 205? Explique.

Resposta:

Não, podemos fazer porque não é definido uma definição para o modelo.

b. Se o modelo de regressão de erro normal (1,24) for aplicável, pode agora indicar a probabilidade exacta de Y cair entre 195 e 205? Em caso afirmativo, declare-o.

Resposta:

Sendo assim a fórmula logo abaixo é calculada com probabilidade de valores da média μ , como Y não é media para cair entre 195 e 205. Sendo assim a função de densidade conjunta é dada pela probabilidade que cálculo o valor centrado na média é essa.

$$f_i = \frac{1}{\sqrt{2\pi\sigma}} exp \left[-\frac{1}{2} \left(\frac{Y_i - \beta_0 - \beta_1 X_i}{\sigma} \right)^2 \right]$$

Logo vamos usar outra fórmula que faz os cálculos entre dois valores. Vamos agora assumir um erro na distribuição normal em ϵ . Sendo a probabilidade da distribuição de Y para cada valor de X=x e para normal com média e variância dada. Para X=5 testem aos valores da esperança $E[X]=\beta_0+\beta_1X=100+20*5=200$ e $\sigma^2=25$ respectivamente. A exata probabilidade seguir.

$$P(195 \le Y \le 205) = P\left(\frac{195 - 200}{5} \le \frac{X - \mu}{\sigma} \le \frac{205 - 200}{5}\right)$$
$$= P(-1 \le Z \le 1) = 2 * P(Z \le 1) - 1 = 0.6826$$

Pela tabela da normal.

A probabilidade exata de Y cair entre 195 e 205 é quando o valor esperado seja X=5 em E[Y]=200. Sim, pode cair com uma probabilidade de 0.68

2.4) Consultar **Média de pontos** Problema 1.19.

O banco de dados em **Média de pontos** do Problema 1.19.

Table 1: Conjunto de dados com as 6 primeiras linhas

3.897 21 3.885 14 3.778 28 2.540 22 3.028 21 3.865 31	V1	V2
3.778 28 2.540 22 3.028 21	3.897	21
2.540 22 3.028 21	3.885	14
3.028 21	3.778	28
0.020 21	2.540	22
3.865 31	3.028	21
	3.865	31

a. Obter um intervalo de confiança de 99 por cento por β_1 . Interprete o seu intervalo de confiança. Inclui zero? Porque estaria o director de admissões interessado em saber se o intervalo de confiança intervalo inclui zero?

Resposta:

Um intervalo d
de 100(1 – $\alpha)\%$ de confiança para β_1 é dado pe
la seguinte formula:

$$100(1-\alpha)\% = \left[\hat{\beta}_1 - t_{n-2,\alpha/2} \sqrt{\frac{S^2}{\sum_{i=1}^n (X_i - \overline{X})^2}}; \hat{\beta}_1 + t_{n-2,\alpha/2} \sqrt{\frac{S^2}{\sum_{i=1}^n (X_i - \overline{X})^2}}\right]$$

Em que S^2 é descrito pela seguinte fórmula logo abaixo

$$S^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y})^{2}}{n-2}$$

Vamos cálcular o valor de $t_{n-2,\alpha/2} = t_{120-2,\frac{0.01}{2}} = t_{118,5*10^{-3}}$

Como encontrar $t_{n-2,\alpha/2}$

$$P(-t_{n-2,\alpha/2} < T < t_{n-2,\alpha/2}) = 1 - \alpha$$

$$P(-t_{n-2,\alpha/2} < T < t_{n-2,\alpha/2}) = 1 - 0.99 = 0.01$$

Com esses valores aqui visto na tabela de t

Gral de liberdade = 118

Probabilidade para um teste bicaudal =0.995

P(-2.618137 < T < 2.618137) = 0.01

Desvio padrão:

 $\sigma = 0.01277$

Estatísitca do teste t:

$$t_{(1-\frac{\alpha}{2},n-2)} = 2.6181$$

O nível de significância.:

 $\alpha = 99\%$

Calcálo do modelo ajustado em Regressão Linear Simples:

$$Y_i = 2.114 + 0.0388X_i$$

Table 3: Estatística da Regressão Linear Simples.

-	Estimativa	S. Q. dos Erros	t value	$\Pr(> t)$
(β_0)	2.1140	0.3209	6.59	0.0000
β_1	0.0388	0.0128	3.04	0.0029

99% I.C. para
$$\beta_1: b_1 - t_{(1-\frac{\alpha}{2},n-2)}s(b_1) \le \beta_1 \le b_1 + t_{(1-\frac{\alpha}{2},n-2)}s(b_1) = 0.00538 \le \beta_1 \le 0.07226$$

 $t(.995; 118) = 2.61814, .03883 \le 2.61814(.01277))$

No intervalo do I.C. caso seja incluído zero, o β_1 pode ser zero e $\beta_1=0$

$$b_1 == 0.00538 \le \beta_1 \le 0.07226$$

Interpretação do Intervalo de Confiança para β_1 :

Se repetirmos o experimento com n=120 e os mesmos valores fixos de X dessa amostra e um número muito grande de vezes, o intervalo assim construído cobrirá o verdadeiro valor de β_1 em 99% das amostras. Assim, caso inclui o 0, X no caso os pontos médios podam não ter uma importância estatisticamente para estimar Y sendo a resposta de interesse. Estamos dizemos com basamento com no intervalo de confiança com 99% por cento.

b. Teste, utilizando a estatística do teste t^* , quer exista ou não uma associação linear entre a pontuação ACT do estudante (X) e GPA no final do ano de caloiro (Y). Utilizar um nível de significância de 0.01. Indique as alternativas, a regra da decisão e a conclusão.

Resposta:

1.O nível de significância:

$$\alpha = 0.01$$

2. Hipóteses para ser testada

 $H_0:\beta_1=0$

 $H_1:\beta_1 \neq 0$

3. Estatística do Teste

Resultado através do modelo ajustado em (a) onde 0.03883 é a soma dos quadrados da regressão para o valor do β_1 testando quando o $\beta_1=0$ na hipótese nula e alternativa temos que $\beta_1\neq 0$, e no dominador é somatória dos quadrados médio dos erros sendo 0.01277. $T_0=\frac{b_1-\beta_{10}}{s(b_1)}=\frac{b_1}{s(b_1)}=\frac{(0.03883-0)}{0.01277}=3.04072$

4. Interpretação da questão b)

Decisão: Rejeita H_0 se $|T_0| > t_{(1-\frac{\alpha}{2},n-2)}, 3.04$

Se $|t_{(0.995,118)}^*| \leq 2.618137$ concluimos H_0 , de outra forma H_a , Concluimos H_a

O que faz rejeitar H_0

A um nível de significância de 1% porcento, considerando o teste t, rejeitamos a hipótese nula, ou seja, X é estatisticamente significante para estimar Y.

c. Qual é o P-valor do seu teste em parte (b)? Como é que apoia a conclusão alcançada em parte (b)?

Resposta:

Table 4: Anova para valor-p							
	Gral de L.	Soma S. Q.	Média dos S. Q	Valor de F	Pr(>F)		
β_1	1	3.59	3.59	9.24	0.0029		
Residuals	118	45.82	0.39				

Cálcular o p-valor ele é calculado na saida do modelo ajustado em (a);

Como p-valor=0.00291 < 0.01, o que concluimos que devemos rejeitar H_0

(2.52) Derivar a expressão em (2.22b) para a variação de b_0 , fazendo uso de (2.31). Explicar também como variande (2.22b) é um caso especial de variância (2.29b).

Resposta:

A expressão em (2.22b) é essa logo abaixo.

$$\sigma^{2} \{b_{0}\} = \sigma^{2} \left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum (X_{i} - \overline{X})^{2}} \right]$$

Resolvando temos que.

$$\sigma^{2} \{b_{0}\} = \sigma^{2} \{\overline{Y} - b_{1}\overline{X}\} = \sigma^{2} \{\overline{Y}\} + \overline{X}^{2} \sigma^{2} \{b_{1}\} - 2\overline{X}\sigma \{\overline{Y}, b_{1}\}$$

$$= \frac{\sigma^{2}}{n} + \overline{X} \frac{\sigma^{2}}{\sum (X_{i} - \overline{X})^{2}} - 0$$

$$= \sigma^{2} \left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum (X_{i} - \overline{X}^{2})} \right]$$

Na expressão da variânça em (2.22b) é

$$\sigma^{2} \{b_{0}\} = \sigma^{2} \left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum (X_{i} - \overline{X})^{2}} \right]$$

e a variânça em (2.29b) é

$$\sigma^2 \left\{ \hat{Y_H} \right\} = \sigma^2 \left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum (X_i - \overline{X})^2} \right]$$

Em (2.22b) a função de $\sigma^2\{b_0\}$ monótonas decrescentes em S_{XX} , por exemplo, num desenho experimental em que S_{XX} forem os maiores possíveis valores de X ao definir um tamanho da amostra possível com os valores de X_{min} e X_{max} , por linearidade, parece ser razoável fixar o valor de X como X_{mim} em metade e X_{max} na outra metade. Agora em (2.29b) a variância da questão é a predição de uma nova observação, tanto podemos querer predizer o valor para um nível de X_h presente no experimento como para um novo nível de predição. No caso de $E[Y_h]$ temos uma quantidade determinística que só é desconhecida por não sabermos os valores de β_0 e β_1 . Assim, $\sigma\{Y_h\} \to 0$ quadno $n \to \infty$, pois $\hat{\beta_0}$ e $\hat{\beta_1}$ são consistentes. Sendo assim divide-se o problema de predição nos casos de parâmetros: conhecidos; e desconhecidos.

2.64) Consultar o conjunto de dados **SENIC** no Apêndice C.1 e Projecto 1.45. Usando R^2 como critério, que prevê a maior redução na variabilidade da duração média da estadia?

Resposta:

Sendo assim, os maiores R^2 que prevê a maior redução na variablidade são esses logo abaixo.

Taxa de infecção: $R^2 = 0,2846$

Instalações: $R^2 = 0.1264$

X-raio: $R^2 = 0,1463$

Usando o coeficiente de determinação o \mathbb{R}^2 sendo a formula logo abaixo.

Calculando usando o \mathbb{R}^2

$$r^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{\sum_{i=1}^{n} e_{i}^{2} / (n-1)}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} / (n-1)}$$

Banco de daddos em **SENIC** no Apêndice C.1 e Projecto 1.45

Table 5: Conjunto de dados com as 6 primeiras linhas

V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
7.13	55.7	4.1	9.0	39.6	279	2	4	207	241	60
8.82	58.2	1.6	3.8	51.7	80	2	2	51	52	40
8.34	56.9	2.7	8.1	74.0	107	2	3	82	54	20
8.95	53.7	5.6	18.9	122.8	147	2	4	53	148	40
11.20	56.5	5.7	34.5	88.9	180	2	1	134	151	40
9.76	50.9	5.1	21.9	97.0	150	2	2	147	106	40

Códigio usado para realizer a Lista 1

Código usado na questão 1.6

Gráficos de pontos

```
 \label{eq:b0} \begin{array}{l} \bullet \quad b0 = 200; b1 = 5 \\ \bullet \quad sigma = 4 \\ \bullet \quad e = rnorm(3, \; sd = sigma) \\ \bullet \quad x = c(10,20,40); y = b1*x + b0 + e \\ \bullet \quad plot(y, \; main = "Gráfico \; dos \; pontos \; 10, \; 20, \; e \; 40." \; , \\ \quad xlab = "Valores \; observados \; em \; X", \\ \quad ylab = "Valores \; observados \; em \; y") \end{array}
```

Código usado na questão 1.7

Gráfico da normal

```
x <- seq(-3, 3, length = 501)</li>
plot(x, dnorm(x), axes = FALSE, type = 'l', xlab = '',ylab ="); abline(h = 0)
x <- 0; lines(c(0, 0), c(dnorm(x), -0.01))</li>
x <- -1; lines(c(-1, 0), c(dnorm(x), dnorm(x))) arrows(-1, dnorm(x), 0, dnorm(x), code= 3, length = 0.1) text(0.2, 0.2, expression(italic(mu))) text(-0.5, 0.26, expression(italic(sigma)))</li>
```

Código uado na questão 2.4

Leitura do conjunto de dados

- NO banco de dados em Média de pontos do Problema 1.19
 dados1 <- read.table("~/dados1.txt", quote=""", comment.char="")
- knitr::kable(head(dados1), caption = "Conjunto de dados com as primeira linhas")

Biblioteca usada para resover a questão 2.4

- library(readxl)
- library(readr)
- library(gdata)

Leitura de conjunto de dados em Média de pontos do Problema 1.19

```
• dados1 <- read.table("~/dados1.txt", quote=""", comment.char="")
```

Ajuste do modelo de Regressão Linear Simples

- fit <- lm(dados1\$V1~dados1\$V2)
- a<-summary(fit)
- apha <- 0.995
- tvalor<- qt(apha, df= 120-2)

- intvl<- confint(fit, level = apha,df = fit\$df) aqui alpha= 0.99 pegamos 1-0.99=0.01
- $s2 <- sum((dados1$V1-mean(dados1$V1))^2)$

b)

- intervalo <- confint(fit, level = 0.01, df = fit\$df)
- alfa <-1-(0.01/2) obtendo o alpha
- ttab<-qt(alfa,df=120-2) obtendo o valor do t tabelado

Questão 2.64

Leiturado do conunto de dados para questão 2.64

- dados <- read.table(" \sim /dados.txt", quote=""", comment.char="")
- dados <- dados [,-(1)] retirando uma coluna de index
- knitr::kable(head(dados),caption = "Conjunto de dados com as primeiras linhas")

Cálculo do R²

- dados <- read.table("~/dados.txt", quote=""", comment.char="")
- dados <- dados[,-(1)]
- anv<- anova(lm(dados))
- sy <- summary(lm(dados))
- y < -dados V2
- x <- c(dados V4)
- beta1 <- cor(y, x) * sd(y) / sd(x)
- beta0 <- mean(y) beta1 * mean(x)
- $y_{chapeu} < -beta0 + beta1*x$
- y_barra <- mean(y)
- r_quadrado <- sum((y_chapeu-y_barra)^2)/sum((y-y_barra)^2)