Estructuras Algebraicas para la Computación

Mariam Cobalea

Universidad de Málaga Dpto. de Matemática Aplicada

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

1 / 60

Tema 1: Preliminares

- 1.1 Teoría axiomática de cojuntos
- 1.2 Cardinalidad
- 1.3 Relaciones de orden
- 1.4 Leyes de composición. Estructuras algebraicas

Tema 1: Preliminares

Cardinalidad

• 1.2 Cardinalidad

- Nociones básicas.
- Conjuntos finitos.
- Conjuntos infinitos.
- Conjuntos numerables y no numerables.
- Comparación de cardinales. Teoremas fundamentales.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

7 / 60

Cardinalidad

Definición (Conjuntos equipotentes)

Se dice que el conjunto A es **equipotente** al conjunto B si existe una función biyectiva $f: A \rightarrow B$. Se escribe $A \approx B$.

Ejemplo 1 Son equipotentes los conjuntos

$$\textit{A} = \{000, 001, 010, 100, 011, 101, 110, 111\} \quad \textit{y} \quad \textit{B} = \{0, 1, \cdots, 7\}$$

Ejercicio Sea *X* un conjunto con 10 elementos.

Consideramos los conjuntos

$$A = \{Y \subseteq X \mid Y \text{ tiene 7 elementos}\}$$

$$B = \{Z \subseteq X \mid Z \text{ tiene 3 elementos}\}$$

Demuestra que $A \approx B$.

Teorema

Sean A. B v C conjuntos cualesquiera. Se verifica:

- $\mathbf{A} \approx \mathbf{A}$
- **a** Si $A \approx B$, entonces $B \approx A$
- **3** Si $A \approx B$ v $B \approx C$, entonces $A \approx C$.

Demostración: Trivial a partir de las propiedades de las funciones biyectivas:

- La identidad es una biyección.
- 2 La inversa de un función biyectiva es también un función biyectiva.
- 1 La composición de biyecciones tambien es biyección.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación

Estructuras Algebraicas para la Computación

Cardinalidad

- \gt Este teorema nos dice que dada una colección \mathcal{S} de conjuntos, la relación \approx es una relación de equivalencia en S.
- > En cada clase de equivalencia estarán los conjuntos equipotentes.
- > A cada clase de equivalencia se le asigna un objeto: el cardinal de cada elemento en la clase.
- \triangleright De esta forma, a los conjuntos $\{1\}, \{a\}, \ldots$ que tienen un elemento se les asigna el cardinal 1;
 - a los conjuntos $\{1,2\}, \{a,b\}, \cdots$ que tienen dos elementos se les asigna el cardinal 2; ...
 - a los conjuntos $\{1, 2, ..., n\}, \{a_1, a_2, ..., a_n\}, \cdots$ que tienen n elementos se les asigna el cardinal n; ...

Cardinalidad

Para algunos conjuntos, como los del Ejemplo 1,

$$A = \{000, 001, 010, 100, 011, 101, 110, 111\}$$
 y $B = \{0, 1, 2, 3, 4, 5, 6, 7\}$ ser equipotentes, significa tener el mismo número de elementos.

- En estos conjuntos el cardinal coincide con la idea intuitiva de 'tamaño' del conjunto.
- Sin embargo, no siempre ocurre esto.
- Podemos encontrar conjuntos equipotentes que no tienen el mismo 'tamaño'.

Cardinalidad

Podemos encontrar conjuntos equipotentes que no tienen el mismo 'tamaño'.

Ejemplo 2 Sea $E = \{x \in \mathbb{Z} \mid x \text{ es par } \}$. La función

$$\begin{array}{cccc} f & : & \mathbb{Z} & \rightarrow & E \\ & x & \mapsto & 2x \end{array}$$

nos permite afirmar que \mathbb{Z} tiene el **mismo** cardinal que E.

(iii A pesar de que E tiene la mitad de los elementos de \mathbb{Z} !!)

A continuación, estudiaremos la manera de diferenciar estos dos tipos de conjuntos.

Conjuntos Finitos

Definición (Conjunto finito (I))

Se dice que un conjunto A es **finito** si existe un número natural n, tal que se puede establecer una biyección entre el conjunto $\mathbb{N}_n = \{1, 2, \dots, n\}$ y el conjunto A. Este entero n se llama cardinal de A. Se denota |A| = n.

(Para
$$A = \emptyset$$
, $|A| = 0$)

■ Establecer una biyección entre $\{1, 2, ..., n\}$ y un conjunto A equivale a *contar* el número de elementos de A.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

9 / 60

Cardinalidad

Conjuntos Finitos: Propiedades

- Las propiedades de los conjuntos finitos ya se han estudiado en Matemática Discreta.
- Recordamos algunas de estas propiedades.

Teorema (Principio de Dirichlet)

Sean A y B conjuntos finitos tales que |A| = n > m = |B|. Entonces no existe una función inyectiva $f: A \to B$.

Cardinalidad

Conjuntos Finitos: Propiedades

Teorema (Regla de la suma)

Sean A y B conjuntos finitos disjuntos. Entonces

$$A \cup B$$
 es finito $y |A \cup B| = |A| + |B|$

Corolario

Si A_1, \ldots, A_m son conjuntos finitos y disjuntos dos a dos, entonces

$$\bigcup_{i=1}^m A_i \quad es \ finito \quad \mathbf{y} \quad |\bigcup_{i=1}^m A_i| = |A_1| + \cdots + |A_m|$$

Teorema (Principio de Inclusión-Exclusión)

Sean A y B conjuntos finitos. Entonces $A \cup B$ es finito y

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

11 /

Cardinalidad

Conjuntos Finitos: Propiedades

Teorema (Principio de Inclusión-Exclusión (I))

Sean A_1, A_2, \ldots, A_k conjuntos finitos no vacíos. Entonces

$$\Big|\bigcup_{j=1}^{k} A_{j}\Big| = \sum_{j=1}^{k} (-1)^{j+1} \sum_{1 \leq i_{1} < \dots < i_{j} \leq k} \Big| A_{i_{1}} \cap \dots \cap A_{i_{j}} \Big|$$
 (1)

Corolario (Principio de Inclusión-Exclusión (II))

Si A_1, \ldots, A_k son subconjuntos no vacíos de un conjunto finito A, entonces $\left|\bigcap_{i=1}^k \overline{A_j}\right| = |A| - \left|\bigcup_{i=1}^k A_j\right| \tag{2}$

n Cobalea (UMA) Estructuras Aleebraicas para la Computación 10 / 60 Mariam Cobalea (UMA) Estructuras Aleebraicas para la Computación

Conjuntos Finitos: Propiedades

Teorema (Regla del Producto)

Sean A y B conjuntos finitos tales que |A| = n y |B| = m. Entonces $A \times B$ es finito $y |A \times B| = n \cdot m$.

Teorema

Sean A_1, \ldots, A_k conjuntos finitos, con $|A_i| = n_i$. Entonces $A_1 \times \cdots \times A_k$ es finito y $|A_1 \times \cdots \times A_k| = n_1 \cdots n_k$, donde $n_i = |A_i|$ $i: 1, \dots, k$.

Estructuras Algebraicas para la Computación

Estructuras Algebraicas para la Computación

Cardinalidad

Conjuntos Finitos

Teorema

Sean A y B conjuntos finitos con |A| = n y |B| = m. Existen m^n funciones de A en B.

$$|B^A| = |B|^{|A|}$$

Corolario

Si A es un conjunto finito, entonces $|\mathcal{P}(A)| = 2^{|A|}$. Es decir, en A hay $2^{|A|}$ subconjuntos distintos.

Cardinalidad

Conjuntos Infinitos

Definición (Conjunto infinito (I))

Se dice que un conjunto A es infinito si no es finito (es decir, si no existe un número natural $n \in \mathbb{N}$ tal que se puede establecer una bivección entre el conjunto $\{1, 2, ..., n\}$ y el conjunto A).

- ◆ Para probar que un conjunto A es infinito usando la definición (I) se debe establecer que no existe ninguna bivección de $\{1, 2, \dots, n\}$ en A para ningún *n*.
- Esta prueba puede ser muy dificil debido a que hay que descartar infinitas posibilidades.

Cardinalidad

Conjuntos infinitos

Teorema

 \mathbb{N} es un conjunto infinito.

Demostración:

- \succ Veamos que no existe un número natural n tal que se pueda establecer una biyección del conjunto $\{1, 2, ..., n\}$ al conjunto \mathbb{N} .
- \rightarrow Sea *n* cualquier elemento de \mathbb{N} y sea *f* cualquier función de $\{1, 2, \dots, n\}$ en \mathbb{N} .
- ightharpoonup Se considera $k = 1 + \max\{f(0), \dots, f(n)\}$
- ightharpoonup Entonces $k \in \mathbb{N}$, pero para cada $x \in \{1, 2, ..., n\}$, $f(x) \neq k$.
- \rightarrow De ahí, f no puede ser sobreyectiva y, por tanto, no es biyectiva.
- \succ Ya que n y f se eligen arbitrariamente, concluimos que \mathbb{N} es infinito.

Estructuras Algebraicas para la Computación

Conjuntos Finitos e Infinitos

Definición (I)

Se dice que un conjunto A es finito si existe un número natural n, tal que se puede establecer una biyección $f \colon \mathbb{N}_n = \{1,2,\ldots,n\} \to A$. Se dice que un conjunto A es infinito si no es finito

Definición (II)

Se dice que un conjunto A es **infinito** si existe una función inyectiva $f: A \rightarrow A$ tal que $f(A) \subset A$.

Un conjunto A es finito si no es infinito.

- ullet La definición (I) establece explícitamente cómo reconocer un conjunto finito.
- La definición (II) establece explícitamente cómo reconocer un conjunto infinito.
- ullet Se puede demostrar que las definiciones (I) y (II) son equivalentes.
- Usaremos la definición que sea más conveniente.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

17 / 60

Cardinalidad

Conjuntos infinitos

 Usaremos la definición (I) para demostrar que un conjunto es finito y la definición (II) para mostrar que un conjunto es infinito.

Definición (I)

Se dice que un conjunto A es finito si existe un número natural n, tal que se puede establecer una biyección $f \colon \mathbb{N}_n = \{1, 2, \dots, n\} \to A$. Se dice que un conjunto A es infinito si no es finito.

Definición (II)

Se dice que un conjunto A es **infinito** si existe una función inyectiva $f: A \rightarrow A$ tal que $f(A) \subset A$.

Un conjunto A es finito si no es infinito.

Cardinalidad

Conjuntos infinitos

Usando la definición (II) podemos dar una demostración más corta del teorema anterior.

Teorema

 \mathbb{N} es un conjunto infinito.

Demostración:

 \succ La función $f: \mathbb{N} \to \mathbb{N}$ definida por

$$f(n) = 2n$$

es inyectiva y se cumple que

$$f(\mathbb{N}) \subset \mathbb{N}$$

 \succ Por lo tanto, \mathbb{N} es un conjunto infinito.

Mariam Cobalea (UM

Estructuras Algebraicas para la Computación

10 / 6

Cardinalidad

Conjuntos infinitos

Ejemplo Sea el alfabeto $\Sigma = \{a, b\}$. Entonces Σ^* es infinito.

Solución:

- ightharpoonup En efecto, sea $f: \Sigma^* \to \Sigma^*$ definida por f(w) = aw.
- \succ Esta función es inyectiva y su imagen es un subconjunto propio de Σ^* , $f(\Sigma)$ es el subconjunto de las cadenas que empiezan con la letra a.
- \succ Luego, Σ^* es infinito.

Conjuntos infinitos

Teorema

Sea A' un subconjunto de A. Si A' es infinito, entonces A es infinito.

Demostración:

- \succ Si A' es infinito, entonces existe una función inyectiva $f:A'\to A'$ tal que $f(A')=A''\subset A'$.
- ightharpoonup Para mostrar que A es infinito, definimos g:A o A como sigue:

$$g(x) = \begin{cases} f(x) & \text{si } x \in A' \\ x & \text{si } x \in A - A' \end{cases}$$

- \succ Entonces g es inyectiva y la imagen de g no incluye el conjunto no vacío A' A''.
- > Esto establece que A es infinito.

Corolario

Cada subconjunto de un conjunto finito es finito.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

21 / 6

Cardinalidad

Conjuntos infinitos

Teorema

Sea $f: A \rightarrow B$ una función inyectiva. Si A es un conjunto infinito, entonces B es infinito.

Teorema

Sean A y B conjuntos, tales que A es infinito y $B \neq \emptyset$. Entonces

- $\mathcal{P}(A)$ es infinito,
- \bullet $A \cup B$ es infinito,
- \bullet A \times B es infinito,

Demostración:

① Definimos la función $f: A \to \mathcal{P}(A)$

$$f(\mathbf{x}) = \{\mathbf{x}\}$$

Claramente, f es inyectiva y, del teorema anterior, deducimos que $\mathcal{P}(A)$ es infinito.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación

Cardinalidad

Conjuntos infinitos

Teorema

Sean A y B conjuntos, tales que A es infinito y $B \neq \emptyset$. Entonces

- \circ $\mathcal{P}(A)$ es infinito,
- \bullet $A \cup B$ es infinito,
- \bullet A \times B es infinito,

Demostración:

9 Por ser $B \neq \emptyset$, podemos elegir un elemento $b \in B$, y definimos la función

$$f: A \to A \times B, \qquad f(x) = (x, b)$$

Ya que $\ A$ es infinito y $\ f$ es inyectiva, se sigue del teorema anterior que $\ A \times B$ es infinito.

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

23 / 6

Cardinalidad

Conjuntos numerables

- La técnica usada para establecer el cardinal de un conjunto infinito es esencialmente la misma que se usó para conjuntos finitos.
- Para los conjuntos finitos, cada conjunto de la forma {1,2,...,n} se usa como un 'conjunto standard' con el que otros conjuntos son comparados mediante una biyección.
- Así pues, un conjunto finito tiene cardinal n si y solo si hay una biyección de $\{1, 2, ..., n\}$ en A.
- Cada vez que introducimos un nuevo número cardinal infinito α elegimos un conjunto standard S apropiado y afirmamos:

El conjunto A tiene cardinal α si hay una biyección del conjunto S en el conjunto A.

Conjuntos numerables

- \succ Hemos demostrado que el conjunto $\mathbb N$ es infinito.
- > Ya que ningún número natural puede ser el cardinal de N. debemos introducir un conjunto standard para $|\mathbb{N}|$.
- \succ Se elige el propio $\mathbb N$ como conjunto standard y denotamos por \aleph_0 el cardinal de \mathbb{N} .

Definición

Se dice que un conjunto A tiene cardinal \aleph_0 , si existe una función biyectiva de \mathbb{N} en A. Se escribe $|A| = \aleph_0$.

Estructuras Algebraicas para la Computación

Cardinalidad

Conjuntos numerables

La existencia de biyección de \mathbb{N} o algún conjunto $\{1, 2, ..., n\}$ en Asugiere la idea de contar los elementos de A, incluso aunque el proceso de recuento pudiera ser interminable.

Definición

Se dice que un conjunto A es infinito numerable si existe una biyección de N en A.

El conjunto A se llama numerable si es finito o infinito numerable.

En otro caso, se dice que el conjunto A es no numerable.

• Si A es un conjunto infinito numerable, $|A| = \aleph_0$.

Cardinalidad

Conjuntos numerables

- Si A es infinito y $A \approx \mathbb{N}$, tambien tenemos que $\mathbb{N} \approx A$.
- Luego podemos demostrar que un conjunto A es infinito numerable encontrando
 - una biyección $f: \mathbb{N} \to A$ o bien
 - ② una biyección $f: A \rightarrow \mathbb{N}$
- Algunos autores consideran $\mathbb{N} = \{0, 1, 2, 3, ..., n, ...\}$ y al conjunto $\{1, 2, 3, ..., n, ...\}$ lo denotan \mathbb{Z}^+ .
- Los conjuntos $\{0, 1, 2, 3, ..., n, ...\}$ y $\{1, 2, 3, ..., n, ...\}$ son equipotentes, va que la función $f: \{0, 1, 2, 3, ..., n, ...\} \rightarrow \{1, 2, 3, ..., n, ...\}$ dada por f(n) = n + 1 es biyecctiva.
- Ambos conjuntos tienen el mismo cardinal: \aleph_0 .

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación

Cardinalidad

Conjuntos numerables

Eiemplos

• Sea $k \in \mathbb{Z}$, $k \neq 0$. Demuestra que el conjunto $k\mathbb{Z}^+$ es numerable. Solución:

• Sea $k \in \mathbb{Z}$, $k \neq 0$. La función $f : \mathbb{Z}^+ \to k\mathbb{Z}^+$ definida

$$f(x) = kx$$

es una biyección.

Luego, $k\mathbb{Z}^+$ es numerable y $|k\mathbb{Z}^+| = |\mathbb{Z}^+|$.

ullet En particular, el conjunto \mathbb{Z}^- de los enteros negativos, es decir, $(-1)\mathbb{Z}^+$, es un conjunto numerable.

Conjuntos numerables

Ejemplos

9 Determina el cardinal del conjunto $A = \{1, \frac{1}{2}, \frac{1}{3}, \dots\} = \{\frac{1}{n} \mid n \in \mathbb{Z}^+\}.$

Solución:

- **2** La función $f: \mathbb{Z}^+ \to A$ definida $f(n) = \frac{1}{n}$, establece una biyección entre \mathbb{Z}^+ y A.
 - Por lo tanto, $|A| = |\mathbb{Z}^+| = \aleph_0$, A es numerable.

Ejercicio Halla el cardinal de los conjuntos siguientes:

$$A = \{10, 20, 30, 40, \ldots\}, \qquad B = \{6, 7, 8, 9, \ldots\}, \qquad C = \left\{c_n = \frac{2n}{n+6} \mid n \in \mathbb{N}\right\}$$

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

29 / 6

Cardinalidad

Conjuntos numerables

Para avanzar un poco más en nuestro estudio de los conjuntos numerables, introducimos algunos conceptos que nos servirán para simplificar las demostraciones.

- Decimos que un conjunto se puede *enumerar* si sus elementos se pueden listar.
- Esta lista puede ser finita o infinita; y pueden ocurrir repeticiones(es decir, no todas las entradas de la lista deben ser distintas).
- Si una lista enumera el conjunto A, entonces cada entrada de la lista es un elemento de A y cada elemento de A aparece como una entrada de la lista.

Se formalizan estos conceptos como sigue.

Cardinalidad

Conjuntos numerables

Definición

Un segmento inicial de \mathbb{N} es el conjunto \mathbb{N} o un conjunto de los n primeros números naturales, $\mathbb{N}_n = \{0, 1, 2, \dots, n-1\}.$

Definición

Sea A un conjunto. Una enumeración de A es una función sobreyectiva f de un segmento inicial de $\mathbb N$ en A.

- Si f es inyectiva tambien (y por tanto, biyectiva), entonces f es una enumeración sin repeticiones.
- Si f no es inyectiva, entonces f es una enumeración con repeticiones.

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computació

21 / 6

Cardinalidad

Conjuntos numerables

- Cuando presentamos una enumeración f, la función se especifica normalmente dando la secuencia $\langle f(0), f(1), f(2), \dots \rangle$.
- Nos referiremos a f como una función enumeración.

Ejemplo

Si $A = \{a, b, c\}$, entonces $\langle b, c, b, a \rangle$ y $\langle c, b, a \rangle$ son enumeraciones de A; la primera con repeticiones y la segunda sin repeticiones.

ariam Cobalea (UMA) Estructuras Algebraicas para la Computación 30 / 60 Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 32 / 60

Conjuntos numerables

Teorema

Un conjunto A es numerable si y sólo si existe una enumeración de A.

Ejemplo

• Dado cualquier alfabeto finito Σ , el conjunto Σ^* es infinito numerable.

Esto se puede demostrar exponiendo los elementos de Σ^* en un orden standard.

En particular, si $\Sigma = \{0,1\}$ y 0 precede a 1 en el orden 'alfabético' de Σ , entonces la enumeración de Σ^* en el orden standard es

$$\langle \lambda, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \rangle$$

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

33 / 6

Cardinalidad

Conjuntos numerables

Ejemplos

 $\mbox{\bf @}$ El conjunto de los números racionales positivos \mathbb{Q}^+ es infinito numerable.

Solución:

- ✓ Claramente \mathbb{Q}^+ no es finito, ya que podemos establecer una función inyectiva de los naturales \mathbb{N} en \mathbb{Q}^+ .
- ✓ Demostramos que \mathbb{Q}^+ es numerable mostrando una enumeración con repeticiones.
- ✓ El orden de la enumeración se especifica en un grafo dirigido.

Cardinalidad

Conjuntos numerables

- \checkmark Todo número racional positivo es el cociente p/q de dos enteros positivos.
- ✓ Se escriben los números racionales positivos enumerando los de denominador 1 en la primera fila, los de denominador 2 en la segunda fila, y así sucesivamente.

	1	2	3	4	5	
1	1/1	2/1	3/1	4/1	5/1	•••
2	1/2	2/2	3/2	4/2		
3	1/3	2/3	3/3	4/3		
4	1/4	2/4	3/4			
5	1/5	2/5				
6	1/6					
:						

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

25 / 6

Conjuntos numerables

- ✓ Para enumerar \mathbb{Q}^+ en una sucesión se empieza por el racional positivo con p+q=2, seguido de aquellos con p+q=3, continuando con aquellos con p+q=4, como se muestra en la figura.
- ✓ El orden de la enumeración se especifica en el grafo dirigido

	1		2		3		4		5	
1	1/1		2/1	\rightarrow	3/1		4/1	\rightarrow	5/1	
	↓	7		~		7		~		
2	1/2		2/2		3/2		4/2			
		~		7		~		7		
3	1/3		2/3		3/3		4/3			
	\downarrow	7		~		7				
4	1/4		2/4		3/4					
		1		7						
5	1/5		2/5							
	\downarrow	7								
6	1/6									

am Cobalea (UMA) Estructuras Algebraicas para la Computación

Conjuntos numerables

Teorema

La unión de dos conjuntos numerables es un conjunto numerable. Si A_1 y A_2 son conjuntos numerables, entonces $A_1 \cup A_2$ es un conjunto numerable.

Demostración: El orden de la enumeración se especifica en el grafo dirigido

Ejercicio Demuestra que $\mathbb Q$ es un conjunto numerable.

Mariam Cobalea (UM

Estructuras Algebraicas para la Computación

37 / 6

Teorema

Sean A y B conjuntos numerables. Entonces:

 \bullet A \times B es numerable,

Conjuntos numerables

Si A es finito, B^A es numerable.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

0 / 60

Conjuntos numerables

Teorema

La unión de una colección numerable de conjuntos numerables es numerable.

Demostración: El orden de la enumeración se especifica en el grafo dirigido

Conjuntos numerables

Ejemplos Son numerables los siguientes conjuntos:

- \bullet \mathbb{Z}^n
- 2 Qⁿ
- ullet El conjunto de todos los polinomios de grado n con coeficientes racionales.
- El conjunto de todos los polinomios con coeficientes racionales.
- ullet El conjunto de todas las matrices $n \times m$ con componentes racionales.
- El conjunto de todas las matrices de dimensión finita arbitraria con componentes racionales.

Mariam Cobalea (UMA)

structuras Algebraicas para la Computación

38 / 6

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

Conjuntos numerables

Teorema

Cada conjunto infinito contiene un subconjunto infinito numerable.

Demostración:

> Se eligen sucesivamente los elementos

$$a_0 \in A$$
, $a_1 \in A - \{a_0\}$, $a_2 \in A - \{a_0, a_1\}$, ..., $a_{k+1} \in A - \{a_0, a_1, \ldots, a_k\}$, ...

> Siguiendo así, podemos construir una secuencia sin repeticiones

$$a_0, a_1, \ldots, a_n, \ldots$$

que será infinita, pues cada uno de los conjuntos $A - \{a_0, a_1, \dots, a_k\}$ es infinito.

> Si no lo fuesen, el conjunto A se podría obtener como unión de conjuntos finitos

$$A = (A - \{a_0, a_1, \ldots, a_k\}) \cup \{a_0, a_1, \ldots, a_k\}$$

Conjuntos numerables

Teorema

Si B es un conjunto numerable no vacío y $A \subseteq B$, entonces A es numerable.

Del teorema anterior se puede deducir que:

- ✓ Un conjunto dado no vacío S es numerable si y solo si S tiene el mismo cardinal que un subconjunto de \mathbb{Z}^+ .
- ✓ Así, es suficiente que exista una función inyectiva $f: S \to \mathbb{Z}^+$ (no necesariamente una biyección), para afirmar que S es numerable, ya que $S \approx f(S)$ (es decir, |S| = |f(S)| y f(S) es numerable.)

Conjuntos no numerables

Teorema (Cantor)

El subconjunto de números reales [0,1] no es numerable.

Demostración:

- > Para demostrar que [0,1] no es numerable, debemos mostrar que ninguna función $f: \mathbb{N} \to [0, 1]$ es sobreyectiva.
- ightharpoonup Sea $f: \mathbb{N} \to [0,1]$ una función cualquiera. Se colocan los elementos $f(1), f(2), \dots$ en una lista usando la representación decimal para cada valor f(n):

$$f(1) = 0, x_{11}x_{12}x_{13}...$$

$$f(2) = 0, x_{21}x_{22}x_{23}...$$

$$f(3) = 0, x_{31}x_{32}x_{33}...$$

donde x_{nj} es el j -ésimo dígito en la expansión decimal de f(n).

Conjuntos no numerables

Demostración:(cont.)

 \rightarrow Ahora especificamos un número real $v \in [0, 1]$ como sigue:

- > El número v está determinado por los dígitos en la diagonal.
- ightharpoonup Claramente, $y \in [0, 1]$.
- > Sin embargo, y difiere de cada f(n) al menos en un dígito de la expansión (a saber, el n-ésimo dígito).
- \rightarrow Por lo tanto, $y \neq f(n)$ para cualquier n.
- ightharpoonup Y se concluye que la función $f: \mathbb{N} \to [0,1]$ no es sobreyectiva.
- > Por lo tanto, no es una enumeración de [0,1].
- \triangleright Puesto que la función f era arbiraria, esto establece que $|[0,1]| \neq \aleph_0$.

Conjuntos no numerables

- La técnica de demostración del teorema anterior se conoce como el método de diagonalización de Cantor.
- Esencialmente esta técnica empieza con una lista infinita en la que cada elemento de la lista tiene una descripción infinita.
- Despues se construye un objeto distinto a cada elemento de la lista.

Esta técnica tiene muchas variaciones y se aplica frecuentemente en teoría de la computabilidad.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

45 / 6

Conjuntos no numerables

Teorema

El conjunto $\mathcal{P}(\mathbb{N})$ es no numerable.

Demostración: (Método de diagonalización de Cantor)

- ightharpoonup Supongamos que $\mathcal{P}(\mathbb{N})$ es infinito numerable, es decir, existe una biyección $f:\mathbb{N} o \mathcal{P}(\mathbb{N})$
- \succ Entonces $\mathcal{P}(\mathbb{N})$ se podría enumerar

$$\mathcal{P}(\mathbb{N}) = \{S_1, S_2, ..., S_n, ...\}$$

 $n \mapsto f(n) = S_n$

Cardinalidad

Conjuntos no numerables

Demostración:(cont.)

ightharpoonup Por ejemplo, podríamos tener la función $f \colon \mathbb{N} \to \mathcal{P}(\mathbb{N})$

$$f(1) = \{3,5,7\}$$

$$f(2) = \{2,4,6,8,...\}$$

$$f(3) = \emptyset$$

$$f(4) = \{1,2,3,4,5,6,...\}$$

$$f(5) = \{1,2\}$$

$$\vdots$$

- ightharpoonup En algunos casos $j \in f(j)$. En nuestro ejemplo, $2 \in f(2)$ y $4 \in f(4)$.
- \gt Sin embargo, $1 \notin f(1)$, $3 \notin f(3)$ y $5 \notin f(5)$.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

17 / 6

Cardinalidad

Conjuntos no numerables

Demostración:(cont.)

- $ightharpoonup ext{Volviendo a nuestra supuesta función biyectiva } f\colon \mathbb{N} \to \mathcal{P}(\mathbb{N}), \text{ consideramos el subconjunto } \mathbf{D} = \{n \in \mathbb{N} \mid n \not\in f(n)\}$
- ightharpoonup Por ser f sobreyectiva, D será la imagen de algún $k \in \mathbb{N}$.
- ightharpoonup Luego $\mathbf{D} = S_k$, para algún $k \in \mathbb{N}$.
- \succ Ahora nos preguntamos si este $k \in S_k$
 - Si $k \in S_k$, entonces $k \notin \mathbf{D}$, por la definición de \mathbf{D} . Pero $\mathbf{D} = S_k$. Luego, $k \notin S_k$. (Contradicción)
 - Si $k \notin S_k$, entonces $k \in \mathbf{D}$, por la definición de \mathbf{D} . Pero $\mathbf{D} = S_k$. Luego, $k \in S_k$. (Contradicción)
- ightharpoonup Llegamos a contradicción, esto nos dice que la suposición $extbf{\emph{D}} = extsf{\emph{S}}_k$ es un error.
- $ightharpoonup m{D}
 otin f(\mathbb{N})$ y la hipótesis de que f es biyectiva es incorrecta.
- ightharpoonup Por lo tanto, $\mathcal{P}(\mathbb{N})$ es no numerable.

Conjuntos no numerables

- Los conjuntos [0,1] y $\mathcal{P}(\mathbb{N})$ son ejemplos de conjuntos infinitos pero no numerables.
- En la siguiente sección se desarrollarán herramientas para demostrar que tienen el mismo cardinal.
- Elegimos [0,1] como el "conjunto standard" para esta cardinalidad y damos la siguiente definición:

Definición

Un conjunto A tiene cardinal \aleph_1 si hay una biyección de [0,1] en A.

Al cardinal de [0,1] también se le denota c ya que el conjunto [0,1] se llama un contínuo.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

40 / 6

Conjuntos no numerables

Ejemplos de conjuntos de cardinal \aleph_1

• Sea $a,b \in \mathbb{R}$ con a < b. El intervalo cerrado [a,b] tiene el mismo cardinal que [0,1], ya que la función $h \colon [0,1] \to [a,b]$ definida

$$h(x)=(b-a)\cdot x+a$$

es biyectiva (inyectiva y sobreyectiva).

Conjuntos no numerables

Ejemplos de conjuntos de cardinal ℵ₁

② El intervalo abierto (0,1) tiene el mismo cardinal que [0,1], puesto que la función $f:[0,1] \to (0,1)$ definida

$$\begin{cases} f(0) &= \frac{1}{2} \\ f(\frac{1}{n}) &= \frac{1}{n+2} & n \in \mathbb{Z}^+ \\ f(x) &= x & x \in [0,1] - \{0,1,\frac{1}{2},\frac{1}{3},\dots,\frac{1}{n},\dots\} \end{cases}$$

es biyectiva.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

51 /

Conjuntos no numerables

Ejemplos de conjuntos de cardinal \aleph_1

ullet El conjunto ${\mathbb R}$ de los números reales tiene cardinal $\, oldsymbol{lpha}_1.$

Consideramos la función $g \colon (0,1) \to \mathbb{R}$ definida

$$g(x) = \frac{(\frac{1}{2} - x)}{x(1-x)}$$

y demostramos que es biyectiva.

Comparación de números cardinales

A continuación,

- se definen las relaciones \prec y \prec sobre los números cardinales y
- se demuestra que tienen propiedades similares a las de las relaciones de orden usuales sobre los números reales.

Definición

Sean A y B conjuntos cualesquiera. Se dice que:

- $|A| \leq |B|$ si existe una función inyectiva de A en B.
- $|A| \prec |B|$ si existe una función inyectiva $f: A \rightarrow B$, pero no existe ninguna función biyectiva de A en B.

Es decir, $|A| \prec |B|$ si y sólo si $|A| \leq |B|$ y $|A| \neq |B|$

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

52 / 6

Comparación de números cardinales

Teorema (Zermelo)

Sean los conjuntos $\mbox{\em A}$ $\mbox{\em y}$ $\mbox{\em B}.$ Se verifica una de las tres:

$$(1) \quad |A| \prec |B|$$

(2)
$$|A| = |B|$$

$$(3) \quad |B| \prec |A|$$

Teorema (Cantor-Schröder-Bernstein)

Sean A y B dos conjuntos cualesquiera. Si se verifica que $|A| \leq |B|$ y $|B| \leq |A|$, entonces |A| = |B|.

- Este teorema proporciona un potente mecanismo para demostrar que dos conjuntos tienen el mismo cardinal.
- ullet Primero construimos una función inyectiva f:A o B y luego otra función inyectiva g:B o A .

Cardinalidad

Comparación de números cardinales

Ejemplo

• Demostramos que |[0,1]| = |(0,1)| dando una función inyectiva de uno en otro, como sigue:

(i)
$$f: (0,1) \to [0,1]$$
 definida $f(x) = x$

(ii)
$$g: [0,1] \to (0,1)$$
 definida $g(x) = \frac{x}{2} + \frac{1}{4}$

Análogamente, podemos demostrar que

$$|\mathcal{P}(\mathbb{N})| = |[0,1]| = \aleph_1$$

3
$$|\mathcal{F}(\mathbb{N}, \mathbb{N})| = |[0, 1]| = \aleph_1$$

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

55 / 6

Comparación de números cardinales

Teorema

Sea A un conjunto finito. Entonces $|A| \prec \aleph_0 \prec \aleph_1$

Demostración:

- ightharpoonup Sea |A|=n. Se define la función $f\colon\{1,2,...,n\}\to\mathbb{N}, \ f(n)=n$
- ightharpoonup Por ser f inyectiva, $|A| \leq |\mathbb{N}|$.
- $ightharpoonup |A|
 eq |\mathbb{N}|$, por ser A finito.
- \succ A continuación, observamos que la función $\ g\colon \mathbb{N} \to [0,1]$

$$g(n)=\frac{1}{n+1}$$

es inyectiva.

- ightharpoonup Por tanto, $|\mathbb{N}| \leq |[0,1]|$.

Comparación de números cardinales

Teorema

Sea A un conjunto infinito. Entonces $\aleph_0 \leq |A|$

Demostración:

- > Por un teorema anterior, sabemos que si A es infinito, entonces contiene un subconjunto A' que es numerable.
- ightharpoonup Claramente, la función $f: A' \to A$

$$f(x) = x, x \in A'$$

es invectiva.

- ightharpoonup Luego, $|A'| \leq |A|$.
- ightharpoonup Y ya que $|A'| = \aleph_0$, podemos concluir que $\aleph_0 \prec |A|$.

Estructuras Algebraicas para la Computación

Cardinalidad

Comparación de números cardinales

Teorema (Cantor)

Sea A un conjunto cualquiera. Entonces $|A| \prec |\mathcal{P}(A)|$.

Demostración:

ightharpoonup Claramente, $|A| \leq |\mathcal{P}(A)|$, pues la función f definida

$$f: A \to \mathcal{P}(A)$$
 $f(x) = \{x\}$

es invectiva.

- \rightarrow Ahora queda demostrar que $|A| \neq |\mathcal{P}(A)|$. Para ello mostraremos que no existe ninguna función sobreyectiva de A en $\mathcal{P}(A)$.
- \succ Supongamos que **g** es cualquier función de A en $\mathcal{P}(A)$

Comparación de números cardinales

Demostración: (cont.)

- \rightarrow Supongamos que **q** es cualquier función de A en $\mathcal{P}(A)$ y consideramos el conjunto $\mathbf{Y} = \{ \mathbf{x} \in \mathbf{A} \mid \mathbf{x} \notin \mathbf{g}(\mathbf{x}) \} \in \mathcal{P}(\mathbf{A}).$
- > Si la función **q** es sobrevectiva, entonces debe existir un elemento $\mathbf{v} \in A$, tal que $\mathbf{q}(\mathbf{v}) = \mathbf{Y}$.
- > Sin embargo, la existencia de este **v** nos lleva a contradicciones.
- \succ En efecto, para este \mathbf{v} se cumplirá que: $\mathbf{v} \in \mathbf{Y}$, ó bien $\mathbf{v} \notin \mathbf{Y}$.
 - Si $\mathbf{v} \in \mathbf{Y}$, entonces de la definición del subconjunto \mathbf{Y} se deduce que $\mathbf{y} \notin \mathbf{g}(\mathbf{y})$, lo que contradice la afirmación de que $\mathbf{g}(\mathbf{y}) = \mathbf{Y}$.
 - Análogamente, si $\mathbf{v} \notin \mathbf{Y}$, entonces la definición de \mathbf{Y} implicaría que $\mathbf{y} \in \mathbf{g}(\mathbf{y})$, lo cual también contradice la suposición $\mathbf{g}(\mathbf{y}) = \mathbf{Y}$.
- ightharpoonup Concluimos que no existe un $\mathbf{y} \in A$ tal que $\mathbf{g}(\mathbf{y}) = \mathbf{Y}$.
- ightharpoonup Luego, **g** no puede ser sobrevectiva y, por tanto, $|A| \prec |\mathcal{P}(A)|$.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación

Comparación de números cardinales

- A partir de este teorema podemos afirmar que los conjuntos infinitos pueden tener cardinales distintos.
- Basta con seleccionar un conjunto infinito A y comparar su cardinal con el de su conjunto potencia.
- Así, el proceso de formación de conjuntos potencia nos lleva a una jerarquía de números cardinales infinitos, podemos construir un conjunto infinito numerable de números cardinales, siendo cada uno de ellos inferior al siguiente:

$$|A| \prec |\mathcal{P}(A)| \prec |\mathcal{P}(\mathcal{P}(A))| \prec \dots$$

- Una consecuencia de esta jerarquía es que no existe ningún cardinal infinito máximo.
- No obstante, existe un cardinal infinito mínimo: el cardinal de N.