Capítulo 2 - Modelagem em Teoria dos Grafos

1 Exemplo Introdutório

Serviços como o Google Maps oferecem a possibilidade de encontrar a "rota mais curta" entre dois pontos geográficos A e B. Essa noção de "mais curta" pode se referir à menor distância, menor tempo ou outras métricas (evitar pedágios, rodovias, etc). A modelagem desse problema naturalmente nos leva à teoria dos grafos.

2 Teoria dos Grafos

Um **grafo** é uma coleção de vértices (ou nós) conectados por arestas (ou arcos). As definições a seguir formalizam diferentes tipos de grafos.

Definição 2.1: Grafo Simples Não-Direcionado e Grafo Simples Direcionado

Seja V um conjunto. O par G=(V,E) é um **grafo simples não-direcionado** se e somente se:

$$E \subset \mathcal{P}(V)$$
 e $\forall a \in E, |a| = 2.$

O par G = (V, E) é um **grafo simples direcionado** se e somente se:

$$E \subseteq V^2$$
 e $\forall a = (a_1, a_2) \in E, \ a_1 \neq a_2.$

Definição 2.3: Vizinhança

O vértice v é vizinho de u se $uv \in E(G)$. A vizinhança de u é:

$$N_G(u) := \{ v \in V(G) \mid uv \in E(G) \}.$$

Definição 2.5: Caminhada, Trilha, Caminho

Uma sequência finita alternada de vértices e arestas é uma:

- Caminhada de comprimento n: pode repetir vértices e arestas.
- Trilha: uma caminhada sem repetição de arestas.
- Caminho: uma trilha sem repetição de vértices.

Definição 2.7: Grafo Ponderado

Um grafo ponderado é um triplo G = (V, E, c) tal que (V, E) é um grafo e $c : E \to \mathbb{R}$ é a função de custo associada às arestas.

Definição 2.8: Distância

A distância entre dois vértices a e b em G é:

$$\operatorname{dist}_G(a,b) := \min \left\{ \sum_{e \in E(w)} c(e) \mid w \text{ \'e uma caminhada de } a \text{ at\'e } b \right\}.$$

3 Modelagem do Problema da Conexão Mais Curta

Seja o grafo G = (V, E, c), onde:

- V representa interseções (cruzamentos) de ruas.
- E representa os trechos de rua (com direção, se necessário).
- $c: E \to \mathbb{R}_0^+$ representa o custo de percorrer cada trecho.

O problema de menor caminho entre dois pontos $A, B \in V$ é então:

Problema 2.9: Menor Caminho

Dado: Grafo G = (V, E, c) e dois vértices $A, B \in V$.

Determinar: Um caminho p de A até B tal que $c(p) = \operatorname{dist}_G(A, B)$.

4 Algoritmo de Dijkstra

Objetivo: Calcular $\operatorname{dist}_G(A, v)$ para todos $v \in V \setminus \{A\}$ e reconstruir o menor caminho até v.

Pseudocódigo do Algoritmo

- 1. Inicialize: $C \leftarrow \emptyset, \ O \leftarrow V, \ l(A) \leftarrow 0, \ l(v) \leftarrow \infty$ para $v \neq A$.
- 2. Enquanto $O \neq \emptyset$:
 - (a) Escolha $v \in O$ com menor l(v).
 - (b) Mova v para C, atualize $\operatorname{dist}_G(A, v) = l(v)$.
 - (c) Para cada vizinho $w \in N_G(v)$:

se
$$l(w) > l(v) + c(v, w)$$
 então $l(w) \leftarrow l(v) + c(v, w)$, $\operatorname{pre}_G(w) \leftarrow v$.

Ao final, $\operatorname{dist}_G(A,v)$ contém a menor distância de A a v, e $\operatorname{pre}_G(v)$ permite reconstruir o caminho.