MANUAL SQL SERVER MANAGEMENT STUDIO – CARLOS JOSÉ TORRE GARCÍA

MANUAL, MODULO 7, Administración de Alta Disponibilidad y Recuperación De Desastres:

- 1. Conceptos De Alta Disponibilidad Y Recuperación De Desastres: A. Importancia De Alta Disponibilidad Y La Recuperación De
 - Desastres.
- Alta disponibilidad (HA) significa que el sistema está disponible de forma continua, incluso ante fallos de hardware, software o mantenimiento.
- Recuperación ante desastres (DR) se enfoca en restaurar la operación del sistema después de un fallo grave, como pérdida de datos o caída total del servidor.

¿Por qué son importantes?

- Garantizan continuidad del negocio.
- Evitan pérdidas económicas por caídas de servicio.
- Protegen la integridad y disponibilidad de los datos.
- Son requeridas para cumplir con normativas de seguridad y auditoría
 - B. Tipos De Soluciones De Alta Disponibilidad Y Recuperación De Desastres

SQL Server ofrece varias **soluciones técnicas** para HA y DR, adaptables según el nivel de criticidad y presupuesto:

1. Clustering (WSFC - Windows Server Failover Cluster)

- Ofrece alta disponibilidad a nivel de servidor.
- Si un nodo falla, otro toma su lugar automáticamente.
- Utiliza almacenamiento compartido

2. Always On Availability Groups

• Proporciona alta disponibilidad y recuperación ante desastres.

- Permite tener varias réplicas sincronizadas de bases de datos.
- Requiere **Windows Server Failover Cluster**, pero no usa almacenamiento compartido.
- Disponible en SQL Server Enterprise.

3. Database Mirroring (obsoleto pero aún usado en versiones antiguas)

- Copia una base de datos entre dos servidores.
- Requiere configuración de un testigo (modo de alta seguridad).

4. Log Shipping

- Copia y aplica backups de logs de transacciones a otro servidor.
- Ideal para recuperación ante desastres.
- No es en tiempo real (hay un pequeño retraso).

5. Backup y Restore

- Solución más básica de recuperación ante fallos.
- Implica restaurar una base de datos a partir de un respaldo (.bak).
- Se recomienda tener una política de backups automatizados y fuera del servidor principal.

6. Replicación

- Distribuye datos de una base a múltiples ubicaciones.
- Útil para disponibilidad de lectura o sincronización geográfica.

2. Soluciones De Alta Disponibilidad

SQL Server ofrece varias opciones para mantener la base de datos siempre disponible ante fallas. Las dos más comunes (y complementarias) son Always On Availability Groups y Database Mirroring (Espejo de Base de Datos).

A. Grupos De Disponibilidad De Always On

Always On Availability Groups (AG) es la solución más robusta y moderna para alta disponibilidad en SQL Server.

Características clave:

- Permite tener varias réplicas (hasta 8) de una o más bases de datos.
- Las réplicas pueden estar en modo sincrónico (alta disponibilidad) o asincrónico (recuperación ante desastres).
- Permite conmutación por error automática o manual.
- Admite **lecturas en las réplicas secundarias** (ideal para reportes).

Requisitos:

- SQL Server Enterprise Edition.
- Windows Server Failover Cluster (WSFC) configurado.
- Las bases de datos involucradas deben estar en modo FULL recovery.

Ventajas:

- Alta disponibilidad sin almacenamiento compartido.
- Réplicas geográficamente distribuidas.
- Uso eficiente para lectura secundaria (reportes, backups).

Ejemplo básico de configuración (esquema de pasos):

- 1. Crear un cluster WSFC.
- 2. Crear backups de las bases a incluir.
- 3. Crear el Availability Group.
- 4. Agregar réplicas con sus roles (principal/secundarias).
- 5. Validar que funcione la conmutación automática.

B. Espejos De Base De Datos

Es una tecnología más antigua pero aún utilizada en algunos entornos. Permite **replicar una única base de datos** entre dos servidores.

Modos de operación:

- Alto rendimiento (asincrónico): para escenarios donde la velocidad importa más que la seguridad.
- Alta seguridad (sincrónico): asegura que ambas copias estén sincronizadas.
- Alta seguridad con testigo: agrega un tercer servidor que permite conmutación automática.

Ventajas:

- Fácil de configurar.
- Alta disponibilidad real si se usa con testigo.
- Compatible con SQL Server **Standard** (aunque con más limitaciones).

Limitaciones:

- Solo funciona con una base de datos a la vez.
- Microsoft ha anunciado que está en desuso (deprecado) desde SQL Server 2016.
- No se puede leer desde la réplica (excepto con snapshots).

Ejemplo básico (pasos generales):

- 1. Poner base de datos en FULL recovery.
- 2. Crear backups y restaurar en el servidor espejo con NORECOVERY.
- 3. Configurar el espejo con ALTER DATABASE ... SET PARTNER =

COMPARACION:

Característica	Always On AG	Database Mirroring
¿Multibase de datos?		X Solo una
¿Lectura en réplica		X No
secundaria?		
¿Conmutación		
automática?	sincrónico)	
¿Modo de sincronización?	Sincrónico /	Sincrónico /
	Asincrónico	Asincrónico

¿En desuso (deprecated)?	X No	
¿Edición requerida?	Enterprise	Standard o
		Enterprise

3. Soluciones De Recuperaciones De Desastres

La **recuperación ante desastres (DR)** permite restaurar rápidamente los datos y el servicio ante eventos críticos como fallos del sistema, pérdida de datos, ataques, o desastres naturales.

A. Copias De Seguridad Y Restauración:

El respaldo y la restauración son la **base de toda estrategia de recuperación**. Sin backups, no hay forma de recuperar información en caso de pérdida.

Tipos de backups en SQL Server:

- 1. Completo (FULL)
 - Guarda toda la base de datos.

```
BACKUP DATABASE Tienda TO DISK = 'D:\backups\Tienda_Full.bak';
```

- 2. Diferencial (DIFFERENTIAL)
- Guarda solo los cambios desde el último backup completo.

```
BACKUP DATABASE Tienda TO DISK = 'D:\backups\Tienda_Diff.bak' WITH DIFFERENTIAL;
```

- 3. Log de transacciones (LOG)
- Guarda los cambios desde el último backup de log. Requiere modo de recuperación **FULL**.

```
BACKUP LOG Tienda TO DISK = 'D:\backups\Tienda_Log.trn';
```

Restauración:

```
-- Restaurar base completa
RESTORE DATABASE Tienda FROM DISK = 'D:\backups\Tienda_Full.bak' WITH NORECOVERY;

-- Restaurar log
RESTORE LOG Tienda FROM DISK = 'D:\backups\Tienda_Log.trn' WITH RECOVERY;
```

B. Replicacion De Bases De Datos

La **replicación** distribuye datos desde un servidor (publicador) hacia otros (suscriptores). Se usa tanto para alta disponibilidad como recuperación de desastres.

Tipos de replicación:

Tipo	Uso principal	Características
Snapshot	Lectura rápida, datos	Envío completo de datos cada
	estáticos	cierto tiempo
Transaccional	Alta precisión y	Envío casi en tiempo real
	frecuencia	
Merge	Sincronización	Ideal para entornos
	bidireccional	desconectados

Ventajas:

- Redundancia en tiempo real o casi real.
- Permite crear una réplica geográficamente alejada.
- Útil para balanceo de carga o sitios remotos.

C. Plan De Recuperacion De Desastres:

Un buen Plan de Recuperación ante Desastres (DRP) define qué hacer antes, durante y después de una falla grave para restaurar operaciones.

Elementos clave:

1. Evaluación de riesgos

 Identificar qué amenazas podrían afectar los datos: apagones, fallos de hardware, errores humanos, ciberataques.

2. Política de backups

 Frecuencia, tipos, ubicación (on-site y off-site), automatización.

3. Procedimientos documentados

- o Cómo restaurar una base de datos paso a paso.
- o Quién ejecuta el plan (responsables designados).

4. Pruebas periódicas

 Simular desastres y medir el tiempo de recuperación (RTO) y la cantidad de datos perdidos aceptables (RPO).

5. Infraestructura alternativa

 Tener servidores de contingencia o almacenamiento en la nube.

6. Comunicación de incidentes

 Cómo informar al equipo, usuarios o clientes si ocurre un desastre.