A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce

Wei Xiong Jiarui Yao Yuhui Xu Bo Pang Lei Wang Doyen Sahoo Junnan Li Nan Jiang Tong Zhang Caiming Xiong

Presenter: Yicheng Tao

July 4, 2025

Introduction

 ${\sf Background}$

Preliminaries

Method

Experiment

Introduction Background

Method

Experiment

Background and Related Works

Background

- ► Reinforcement learning algorithms have been widely used in post-training of LLMs for **mathematical reasoning** tasks.
- ▶ **GRPO** stands out for its success in training DeepSeek-R1, though it lacks a comprehensive justification of the algorithmic advantages.
- ▶ **RAFT** is one of the simplest and most interpretable baselines showing good empirical performance.

Background and Related Works

Data filtering in LLM Post-Training

- Discard candidates except for the top and bottom-ranked responses to reduce noise.
- Remove prompts that are too easy or too hard.
- ► Filter out responses with incorrect answers (RAFT).

LLM for Mathematical Reasoning

- Syntactic dataset and supervised fine-tuning.
- ▶ RL with verifier-based rewards.
- ► Complex reasoning strategies (Backward search, self-correction, etc.)

Overview

Revisiting RAFT and GRPO

- ► RAFT trains solely on positive samples, leading to a rapid reduction in policy entropy and eventually being surpassed by GRPO.
- ► GRPO implicitly filters out harmful prompts with all-negative responses, which contributes to most of the performance gain.

Reinforce-Rej

Motivated by the study with RAFT and Reinforce, a new Reinforce variant, *Reinforce-Rej*, which selectively filters out prompts with either all correct or all incorrect responses, is proposed. This method enjoys comparable final performance to GRPO, and demonstrates superior KL efficiency.

Introduction

Background

Preliminaries

Method

Experiment

RAFT: Reward-ranked fine-tuning

Data Collection

For a batch of prompts $\{x_1, x_2, \dots, x_M\}$, sample n responses $\{a_{i,1}, a_{i,2}, \dots, a_{i,n}\}$ for each x_i from the LLM.

Rejection Sampling

Let $r(x,a) \in \{-1,1\}$ be the binary reward function. Compute the reward for each response of x_i as $r_{i,j}, j=1,2,\ldots,n$. Retain only the responses with $r_{i,j}=1$ to form a dataset \mathcal{D} .

Model Fine-Tuning

Let π be the current policy. Maximize the log-likelihood over the selected dataset:

$$\mathcal{L}^{\mathsf{RAFT}}(\theta) = \sum_{(x,a) \in \mathcal{D}} \log \pi_{\theta}(a|x)$$

Policy Gradient and Reinforce

Learning Objective

Maximize the expectation of rewards gained by the policy model π_{θ} .

$$J(\theta) = \mathbb{E}_{x \sim d_0} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot|x)} r(x, a) \right] \tag{1}$$

With replay buffer and importance sampling:

$$J(\theta) = \mathbb{E}_{x \sim d_0} \left[\mathbb{E}_{a \sim \pi_{\theta_{\text{old}}}(\cdot|x)} \left[\frac{\pi_{\theta}(a|x)}{\pi_{\theta_{\text{old}}}(a|x)} r(x,a) \right] \right]. \tag{2}$$

With clipping techniques from PPO:

$$\mathcal{L}(\theta) = \frac{1}{|\mathcal{D}|} \sum_{x, a \in \mathcal{D}} \left[\min \left(\frac{\pi_{\theta}(a|x)}{\pi_{\theta_{\text{old}}}(a|x)} r(x, a), \operatorname{clip} \left(\frac{\pi_{\theta}(a|x)}{\pi_{\theta_{\text{old}}}(a|x)}, 1 - \epsilon, 1 + \epsilon \right) \cdot r(x, a) \right) \right]$$
(3)

Loss function for autoregressive models

Let a be a response from LLM, and $\{a_1, a_2, \ldots, a_n\}$ are the tokens.

$$\mathcal{L}(\theta) = \frac{1}{|\mathcal{D}|} \sum_{a} \frac{1}{|a|} \sum_{i=1}^{|a|} \left[\min\left(s_t(\theta) \cdot r(x, a), \mathsf{clip}(s_t(\theta), 1 - \epsilon, 1 + \epsilon) \cdot r(x, a)\right) \right], \quad (4)$$

where
$$s_t(\theta) = \frac{\pi_{\theta}(a_t|x, a_{1:t-1})}{\pi_{\theta_{\text{old}}}(a_t|x, a_{1:t-1})}$$
.

GRPO

The loss function of GRPO is similar to (4), with the reward r(x,a) replaced by advantage function $A_t(x,a)$ for the t-th token. For each prompt x, GRPO will sample n responses and compute the following advantage for the t-th token of the i-th response:

$$A_t(x, a_i) = \frac{r_i - \mathsf{mean}(r_1, \dots, r_n)}{\mathsf{std}(r_1, \dots, r_n)}.$$

This normalization serves to reduce the variance of the stochastic gradient.

Introduction

Background

Method

Experiment

RAFT++ and Reinforce-Rej

RAFT++

By adding an indicator function $\mathcal{I}\left(r(x,a) = \arg\max_i r(x,a_i)\right)$ to (4), we can obtain the loss function of RAFT++.

The indicator ensures that we only train on the response with the highest reward (positive samples).

Reinforce-Rej

The loss function of Reinforce-Rej is the same as (4), while the dataset is constructed by removing the prompts with either all correct or all incorrect responses.

Summary

Table 1: Comparison of the tricks used in different algorithms.

	Importance Sampling	Clipping	Reject Sampling	Advantage
RAFT	×	×	✓	×
RAFT++	\checkmark	\checkmark	\checkmark	×
Reinforce	\checkmark	\checkmark	×	×
GRPO	\checkmark	\checkmark	×	\checkmark
Reinforce-Rej	✓	✓	✓	×

- ► RAFT++ rejects all negative samples.
- ▶ Reinforce-Rej rejects all prompts with either all correct or all incorrect responses.

Introduction

Background

Preliminaries

Method

Experiment

Experiment Setup

Dataset and Models

- Numina-Math: 860k math problems with labeled ground-truth answers.
- Qwen2.5-Math-7B-base and LLaMA-3.2-3B-instruct.

Evaluation

- ▶ Benchmark: Math500, Minerva Math, Olympiad Bench.
- ► Use average@16 for evaluation.
- ▶ AIME2024 only contains 30 problems and the trend is noisy for all algorithms.

Main Result

Model	Algorithm	Math500	Minerva Math	Olympiad Bench	Average
Qwen2.5-Math-7B-base	Base	41.3	11.0	18.6	23.6
	RAFT	77.4	40.8	38.6	52.3
	RAFT++	80.2	44.9	43.3	56.1
	Iterative DPO	76.0	31.2	39.3	48.8
	Reinforce	80.1	40.7	40.9	53.9
	GRPO	81.3	45.5	42.2	56.3
	PPO	79.0	39.3	39.1	52.5
	Reinforce-Rej	81.9	44.2	43.1	56.4
LLaMA-3.2-3B-instruct	Base	26.3	7.4	5.5	13.1
	RAFT	46.1	17.6	13.9	25.9
	RAFT++	47.4	19.1	16.3	27.6
	Reinforce	45.9	13.7	13.0	24.2
	GRPO	49.2	19.3	16.8	28.4
	PPO	46.5	19	15.1	26.9
	Reinforce-Rej	50.1	19.3	16.1	28.5

► RAFT and RAFT++ approach deep RL methods with surprisingly small performance gap.

Effects of Distribution Correction and Clipping

- ► Although clipping may be infrequent, unbounded updates can lead to instability and degraded performance.
- ▶ RAFT++ achieves faster early-stage convergence but is surpassed by GRPO.

Effects of Clipping Higher

▶ Clipping higher leads to better performance with stable entropy loss.

- ► Learning from only positive samples leads to faster convergence and entropy collapse.
- ► Stable policy entropy enhances performance, which matches the observation in higher clipping experiment.

- ▶ Removing both all negative and all positive samples leads to better performance.
- ▶ Variance normalization is not a key contributor to performance.
- "Reinforce + Mean Zero" variant shows increased KL loss and does not improve rewards, indicating potential instability.

► The core strength of GRPO lies in rejecting low-quality (especially incorrect) samples, rather than normalization.

Introduction

Background

Preliminaries

Method

Experiment

- The utility of negative samples in RL-based LLM training is nuanced.
 - Rejecting all negative samples leads to faster convergence and entropy collapse.
 - ► Harmful prompts with all incorrect and all correct responses will degrade performance.
- ► The success of GRPO is not due to variance normalization, but rather the implicit filtering of negative samples.
- By adopting rejection sampling strategies, RAFT++ and Reinforce-Rej can serve as lightweight, interpretable, and effective baselines for future work on reward-driven LLM post-training.