Dr. Mohammad Nurul Huda Machine Learning book ecture - IV

organizing Maps (soms):

An artificial neural network (ANN) model important aspect is whether it needs guidance in learning or not.

Two learning categories

- Supervised learning

- Un supervised learning

Supervised learning:

a dipress f. Training phase: - Each input needs a desired output Labelled data Example: Multi layer perceptron

Unsupervised learning:

- No target results for the input data vectors

Example: Self organizing map (som)

Why som is needed?

- som can be used for clustering the input data

- som can be used to detect features inherent to the problem.

- Developed by Professor Kohonen.

- Competitive learning networks:

- Unsupervised blearning the such groups did

- Used for clustering input data - Used to detect speatures inherent to the problem.

- Can recognize or characterize inputs it has never encountered before.

- A categorization method Comment and method
- A neural network technique
- Unsupervised

Input and Output

· Training data: vectors, X - Vectors of length n

$$x_{11}$$
 x_{12} x_{21} x_{22} x_{2n} x_{31} x_{32} x_{3n} x_{3n}

P P distinct training vectors

Special beginning:

whether it exects guidance in icarning or not

Supervised leavning

- Vector components are real numbers

· Outputs

som ean be used for dustering the import, had malson - A vector, Y, of length m:

4, 42 13 -.. Ym

- Each of the prectors in the training data is classified as falling in one of m clusters or categories
- Which category does the training vector fall into ?
- · Generalization
 - For a new vector: (x1, x2, x3, ... xn)
 - Which of the m categories (clusters) does it fall into?

Network Architecture

Two layers of units

- Input: n units (length of training vectors)
- Output: m units (number of categories)
- · Input units full connected with weights to output units.
- · Intra-layer (lateral) Connections
 - Within output layer
 - No weight between these connections, but used in algorithm for updating weights.

[There is one weight vector of length n associated with each output unit]

Output Layer Topology

- View output in spatial manner - a 1D or 2D arrangement
- 1D arrangement
 - Topology defines which output layer units are neighbors with which others.
 - Have a function, D(t), which gives output unit neighborhood as a function of time (iterations) of the training algorithm.
 - 3 output units

D(t)=1 means update weight B and A if input maps onto B agion alice between 11.9 con

50M Algorithm

Initialize random small wo values to weights. step1:

step2:

While computational bounds are not exceeded do

- 1) select input vector 12
- 11) Comput the square of the Euclidean distance of is from neight vectors (Wi) associated with each output node

$$\sum_{k=1}^{n} \left(i_{\ell,k} - W_{j,k}(t) \right)^{2}$$

- 111) Select output node j* that has weight vector with minimum value from step 2
- IV) Update weights to all nodes within a topological distance given by D(t) from j*, using the weight update rule

V) Increment t

end while in the minute

Learning rate generally decreases with time: 0 < 1 (t) < 1 (t-1) < 1

Example:

Mir (E)):

Training samples

in: (1, 1, 0, 0)-

Number of training vectors N = 4

s Mile you melitering ofo

Olymnic grining .

iz: (0,0,0,1)

i3: (1,0,0,0)

14: (0,0,1,1)

(0,0.00)

input dimension n=4

tugtuo primari classify b two classes pine stebus plas

Network Architecture:

closes between a and 1 Categorization by Euclidean distance:

	€.0 11	12	13	(. 0) 4 . 0. 19 al	•
il	800	F 3	1. 3	8 0 1:21	
i 2	3	\circ			
i3	4	7	J	mi mashibu I)	

((1) [N - i] (1) [1] (1) (1) (1) (1)

class - II: (iz, i4)

Training samples

Eting taget

· Training samples

€ Let neighborhood, D(+) = Ocale land

121 (0,0,0,1)

· Learning rate

$$\eta(t) = 0.6$$
 When $1 \leqslant t \leqslant 4$

$$\eta(t) = 0.1$$
 When $9 \le t \le 12$

• Initial weight matrix (random values between 0 and 1)

•
$$d^2 = \left(\text{Euclidean distance} \right)^2 = \sum_{k=1}^{n} \left(i_{k,k} - W_{j,k}(t) \right)^2$$

(12. 14) (12. 14)

- 1. Training sample: i1
 - 2. Unit's distance $dr = (0.2-1)^{2} + (0.6-1)^{2} + (0.5-0)^{2} + (0.9-0)^{2}$ $= (0.86 \pm 1)^{2} + (0.6-1)^{2} + (0.5-0)^{2} + (0.9-0)^{2}$

Unit 2 distance
$$d^{2} = (0.8-1)^{2} + (0.4-1)^{2} + (0.7-0)^{2} + (0.3-0)^{2}$$

$$= 0.98$$

- 3. since 1-86 0.98, Unitz wins
 - 4. Update unit 2 weight vector of weight matrix $\begin{bmatrix}
 0.8 & 0.4 & 0.7 & 0.3 \\
 0.8 & 0.4 & 0.7 & 0.3
 \end{bmatrix} + \eta * \begin{bmatrix}
 1 & 1 & 0 & 0 \\
 0.2 & 0.6 & -0.7 & -0.3
 \end{bmatrix}$ $= \begin{bmatrix}
 0.8 & 0.4 & 0.7 & 0.3
 \end{bmatrix} + \begin{bmatrix}
 0.12 & 0.36 & -42 & -0.18
 \end{bmatrix}$ $= \begin{bmatrix}
 0.92 & 0.76 & 0.28 & 0.12
 \end{bmatrix}$

Second Weight Update: (1, 1, 0, 0) Weight Matrix: Weight Markix:

Unit 1 [0.2 0.6 0.5 0.9]

Unit 2 [0.92 0.76 0.28 0.12]

i4: (0,0,1,1) 2. Unit 1 distance $d^{2} = (0.2 - 0)^{2} + (0.6 - 0)^{2} + (0.9 - 1)^{2}$ = 0.66 $d^{2} = (0.92 - 0)^{2} + (0.76 - 0)^{2} + (0.28 - 0)^{2} + (0.12 - 1)^{2}$ Unitz distance = 2.2800) + (1-2.0) + (1-20) - 45 3. Since 2.28 > 0.66, Unit 1 wins. 4. Update Unit 1 weight vector of weight matrix [0.2 0.6 0.5 0.9] + n [[0 0 0 i] - [0.2 0.6 0.5 0.9]] $= \begin{bmatrix} 0.2 & 0.6 & 0.5 & 0.9 \end{bmatrix} + 0.6 \begin{bmatrix} -0.2 & -0.6 & -0.5 & 0.1 \end{bmatrix}$ xisting [10:08 10.24 0.20 0.96] New Height Matrix: 31.0- Unit 1 0.08 0.24 0.20 0.96 Unit 2 0.92 0.76 0.28 0.12

i xistam tagish win

Coite or or de or

Third Weight Update:

Weight Matrix: 10 10

Unit 1 [0.08 0.24 0.20 0.96]
$$i2: (0,0,0,1)$$

Unit 2 [0.92 0.76 0.28 0.12] $\#i3: (1,0,0,0)$
 $i4: (0,0,1,1)$

$$d^{2} = (0.08 - 1)^{2} + (0.24 - 0)^{2} + (0.20 - 0)^{2} + (0.96 - 0)^{2} = 1.87$$

Unit 2 distance

$$(1-d)^{2} = (0.92-1)^{2} + (0.76-0)^{2} + (0.28-0)^{2} + (0.12-0)^{2}$$

$$= 0.68$$

$$[0.92 \ 0.76 \ 0.28 \ 0.12] + \eta [[1,0,0,0] - [0.92 \ 0.76 \ 0.28^{412}]$$

$$= \begin{bmatrix} 0.92 & 0.76 & 0.28 & 0.12 \end{bmatrix} + 0.6 \begin{bmatrix} 1.0 & 0.0 \end{bmatrix} - \begin{bmatrix} 0.92 & 0.76 & 0.28 & 12 \end{bmatrix}$$

RED 20 0 DO CONT ETINITY THEIR WAN

Fourth	teight topd	ate:	21 50		it de					
	23190000 0	ing dat	Trai	ning	samples	ch cli	ida ni bat			
Summ	ary.			dara	lgaror.	nich	pairing			
170	time, t	i,	i.	13	14	D(t)	n (t)			
100	1	Unit 2		(1	5	0	0.6			
	2		Uniti	(0.	0.0.	0	0.6			
	3			Unitz	,0,5	0	0.6			
	4	0-1	5		Unit 1	orio kap	0.6			
		Winnir	g out	put u	nit		tin'I			
tugne Weight Matrix: -Unit 1 [,0.03 0.10 0.68 0.98]										
zinl) +	Unit 2	0.97	0.3	0 0.	1 / (0.05				
				(0)						
E. E = (01-0) + (2	After man	y iterati	ons (epoche	s) th	rough:	the data set			
320200	Isolaht 3	natrix	1 -41	5	nadath		al I Print			
After many iterations (epoches) through the data set Weight matrix Unit 1: 0 0 0.5 1.0										
76.2 3	(6-1) = (6-6) Unit	2 (1.0)	(0.5)	= 0	tonant	b Je i	in'd Leaning			
P 2 - 7 = 10 1-0	1+1/22	, c/ , 1	1		•	0.1	Horase not			
		11+10		1 13	moleit	F 45	1 /			
0 = (0-1-1)-1	F (7.0-1) 1-11	1 0				121 3	EAC COVER			
75.5 = (0-1)						1.0	1 4			
	11-22012	1 2 0V	of the L	£ 1	واو ال	(M. N.C.	twatus			

Find in which clusters the training data samples fall into?

Training data samples 11: (1,1,0,0) 12: (0,0,0,1)

13: (1,0,0,0)

14: (0,0,1,1)

Weight Matrin:

Input Network: Output Units

Unit 1 distance: d= (1-0)+(1-0)+(0-0.5)+(0-1.0)=3.25 For sample 11

[wirmer] Unit 2 distance: d= (1-1) + (1-0.5) + (0-0) + (0-0) = 0.25

[Winner] Unit. 1 distance: d= (0-0) + (0-0)+ (0-0.5)+(1-1.0)= 0.25 Unit 2 distance: d= (0-1.0)2+(0-5)2+(0-0)2+(1-0)= 2.25

Unit 1 distance: d= (1-0)+(0-0)+(0-0.5)+(0-1.0)=2.25 For sample 13

(winner) Unit 2 distance: d= (1-1.0)2+(0-0.5)2+(0-0)2+(0-0)=0.25

(Winner) Unit 1 distance: d=(0-0)+(0-0)+(1-0.5)+(1-1.0)=0.25 Unit 2 distance: d=(0-1.0)+(0-0.5)+(1-0)=3.25

Output: sample il, i3 in Unit 1 or class-II 12, i4 Unit 1 or class-I

Find in which clusters the new data sample (1,1,1,0) fall into

Data sample: (1,1,1,0)

Weight matrix:

Network:

Unit 1 distance:
$$d^2 = (1-0)^2 + (1-0)^2 + (1-0.5)^2 + (0-1.0)^2$$

 $= 1+1+0.25+1=3.25$
Unit 2 distance: $d^2 = (1-1.0)^2 + (1-0.5)^2 + (1-0)^2 + (0-0)^2$
 $= 0+0.25+1+0=1.25$

Therefore, new data sample (1,1,1,0) is in Unitz or classz