

Giovanni Lugaresi

Automated Generation and Exploitation of Discrete Event Simulation Models for Decision Making in Manufacturing

Supervisor: Prof. Andrea MATTA Tutor: Prof. Giorgio COLOMBO

PhD Programme Coordinator: Prof. Daniele ROCCHI

CONTENTS

Introduction

- Industrial Relevance
- Real Time Simulation
- Thesis Contents
- Automated Model Generation
 - Problem Introduction
 - Scientific Relevance
 - Model Generation Basics
 - Model Tuning
- Testing Platform: Lab-scale Models
- Other activities in Doctoral Curriculum

CONTENTS

Introduction

INDUSTRIAL RELEVANCE

CHALLENGES

Unpredictable market demand

Complexity

Pressures on cost reduction

High-level of automation

M

Failures impact
Harder control
Longer lead times

...

OPPORTUNITIES

- ✓ Understanding emerging behaviors
- ✓ Evaluating alternative scenarios
- ✓ Affordable data analytics

INDUSTRIAL RELEVANCE

DIGITAL TWIN

"It is based on the idea that a **digital informational construct** about a physical system could be created as an **entity on its own**. This digital information would be a "twin" of the information that was embedded within the physical system itself and be **linked** with that physical system through the **entire lifecycle** of the system."

Grieves, Michael. "Origins of the digital twin concept." Florida Institute of Technology (2016).

INDUSTRIAL RELEVANCE

DIGITAL TWIN

source: Tao, Fei, et al. "Digital twin in industry: State-of-the-art." *IEEE Transactions on Industrial Informatics* 15.4 (2018): 2405-2415.

75%

of organizations that have implemented IoT Already Use Digital Twins or Plan to Within a Year 13%

of organizations that have Implemented IoT claim to already use Digital Twins

"by 2022, over

66%

of companies that have implemented IoT will have deployed at least one digital twin in production"

[Benoit Lheureux, Research vice president at Gartner]

source: Digital Twin Market Size, Share & Trends Analysis Report By End-use (Automotive & Transport, Retail & Consumer Goods, Agriculture, Manufacturing, Energy & Utilities), By Region, And Segment Forecasts, 2021 – 2028. Grand View Research.

source: Gartner study of IoT implementation conducted July 2018 through August 2018.

REAL-TIME SIMULATION

DISCRETE EVENT SIMULATION

- √ digital informational construct
- ✓ entity on its own.
- ✓ linked with the physical system
- ✓ active in the entire lifecycle of the system

DIGITAL TWIN FOR PRODUCTION PLANNING AND CONTROL

2018→ Short initial survey: 100+ papers

Lugaresi, Giovanni, and Andrea Matta. "Real-time simulation in manufacturing systems: Challenges and research directions." 2018 Winter Simulation Conference (WSC). IEEE, 2018.

REAL-TIME SIMULATION

REAL-TIME SIMULATION

RESEARCH TOPIC	WHY IS IT IMPORTANT
Data Management	 The existing approaches do not consider the real-time issues arising from big streams of data coming towards a centralized unit. Interfaces between different sources have to be defined. Data and standards (e.g., IEC 61499) are a central topic in I4.0-related research.
Adaptability	 Finding the simulation model that best fits the data (alignment). The simulator will be subject to very frequent changes.
PHD FOCUS	 RTS models may never reach the steady state. The performance measures may have to be computed in the warm-up phase.
Model Generation (e.g., generation from a data log)	In certain situations, a simulator might not even exist and has to be created.
Online Validation	 RTS loops require it to be done online. Transient phases become critical; it is not possible to use aggregate KPIs for validation.
Reactiveness (i.e. Fast-answering capabilities)	 Their development can further unlock new application scenarios for RTS. Recent research shows that it is possible to make use of multiple sub-models of the system to increase the accuracy of the model in predicting KPIs.

Lugaresi, Giovanni, and Andrea Matta. "Real-time simulation in manufacturing systems: Challenges and research directions." 2018 Winter Simulation Conference (WSC). IEEE, 2018.

THESIS CONTENTS

CONTENTS

Automated Model Generation

Manufacturing systems change frequently due to external drivers (e.g. demand, price uncertainty). Hence, <u>current simulation techniques are poor</u> as tools for <u>short-term decision making</u>.

By exploiting the data produced by the parts and resources, it is possible to achieve higher reactivity in the simulation model building phase.

PROCESS MINING

a novel discipline that is concerned with deriving useful insights from operational process execution logs:

- Process discovery: the automated recognition of a process model from what observed in the execution log.
- Conformance checking: analysis of the relation between the intended behavior of a process and the execution logs.
- Enhancement: techniques that take as input an event log and an existing model and produce as output an enhanced model.

Aalst, Wil. (2012). Distributed Process Discovery and Conformance Checking.

- Since process mining generates models, it has been soon connected with the generation of discrete event simulation models.
- Some software packages allow to import process mining results to construct a model.

MODEL GENERATION BASICS

MANUFACTURING SYSTEM

EVENT LOG:

Timestamp [s]	ID	Activity
1	1	S1
2	1	S2
2	2	S1
3	2	S2
4	3	S1

TRACES: **1** {S1, S2}

2 {S1, S2} ...

ACTIVITY RELATIONSHIPS: "Station 2 follows Station 1", ...

PARAMETERS (SYSTEM PROPERTIES)

Applications of Process Mining in manufacturing (selected):

Reference	Framework	Graph	Policies	Formal Model	Parameters
W.M.P. Van der Aalst., 2016	X	Χ			
A.K. Alves de Medeiros et al., 2006	X	Χ			
A.L. Wolf and J.E. Cook, 1995		Χ			
A. Rozinat et al., 2009	Χ				
Bergmann et al. 2015			Χ		
Farooqui et al. 2019				Χ	
Milde and Reinhart, 2019			Χ		Χ
Martin et al. 2015					Χ
Martin et al. 2016					Χ
Martin et al. 2017			Χ		Χ
Peter Denno et al. 2018		Χ			
Ferreira and Vasilyev 2015					Χ

Existing approaches of Model Tuning:

Highly sensitive to rare or wrong sequences of events;

X No relationship with performance estimation from the obtained model

A. Rozinat, R.S. Mans, M. Song, W. Van der Aalst. "Discovering simulation models." Information systems 34.3 (2009): 305-327.

NOTICE: Specific contributions aimed at DES for manufacturing are missing in the literature.

SCOPUS: 0 results for the query: "process mining" AND "manufacturing" AND "discrete event simulation" (15/06/2021)

Limitations of current approaches:

Industry produces a very large volume of data, more sensors means more data points. The result can be a graph of very little practical use. Such problem is known as the *spaghetti model* effect:

Example of a spaghetti model.

Source: Van Der Aalst, Wil. "Data science in action." Process mining. Springer, Berlin, Heidelberg, 2016. 3-23.

MODEL TUNING

MODEL GENERATION

(Traditional Process Mining)

MANUF. SYSTEM

Limitations of current approaches for model tuning:

Method	Advantages	Disadvantages		
"Traditional" Process Mining (alpha algorithm, heuristic mining) [1]	 Complete graph is easier to understand for users 	Almost all adjustments are manualForces a selection of nodes		
Fuzzy Mining [2]	 Correlation Measures among activities Simplified graph version can be obtained in a short time 	 Forces to choose a metric for clustering Ineffective on some types of graphs 		
Trace Clustering [3]	Selection of graphs with a lower complexity	 Clusters with a high importance might be excluded Separate views for all 		

Our approach aims to:	
Fully automated	
Multiple metrics can be defined and used	
No information loss	

Case ID	Activity Profile								
Case ID	A	В	С	D	Е	F	G	Н	I
1	1	1	0	1	1	1	1	0	1
2	1	1	1	1	1	0	1	0	1
3	1	1	0	1	1	1	1	0	1
4	1	1	1	1	0	0	0	1	1
5	1	1	1	1	1	0	1	1	0
6	1	1	0	1	0	0	0	1	1

^[1] Weijters, A. J. M. M., Wil MP van Der Aalst, and AK Alves De Medeiros. "Process mining with the heuristics miner-algorithm." Technische Universiteit Eindhoven, Tech. Rep. WP 166 (2006): 1-34.

^[2] Günther, Christian W., and Wil MP Van Der Aalst. "Fuzzy mining-adaptive process simplification based on multi-perspective metrics." *International conference on business process management.* Springer, Berlin, Heidelberg, 2007.

^[3] Song, Minseok, Christian W. Günther, and Wil MP Van der Aalst. "Trace clustering in process mining." International conference on business process management. Springer, Berlin, Heidelberg, 2008.

OVERVIEW

INPUT DATA				
S_N^{max}	Nodes complexity threshold			
S_A^{max}	Arcs complexity threshold			
X_{jk}	Connection matrix between activities j and k.			
k_{max}	Maximum number of iterations allowed.			
ζ	1 = self-loops allowed, 0 otherwise			
v_{in}, v_{out}	Maximum input/output arcs from a node			

DECISION VARIABLES							
β	Boolean vector such that $\beta_i=1$ if the <i>i</i> -th activity is considered for the inclusion in the network, $\beta_i=0$ otherwise; it represents the list of activities that are used in the network.						
Γ	Boolean matrix representing the activity, its elements are $\gamma_{ij}=1$ if event type I is followed by event type j.						
M	Boolean matrix. The values represent the clusteting. Hence, m_{ik} equals 1 if the i -th cluster includes the k -th activity.						

OBJECTIVE: Tune the model toward a reasonable size.

IDEA: Find the model that maximizes a score (How well does it represent systems features?):

$$R = \frac{Close\ Events(\ Reduced\ Model)}{Close\ Events(\ Full\ Model)}$$

→ 5 SCORES BASED ON: FREQUENCY, CAPACITY, EVENTS CLOSE IN TIME, ROUTING, LOOPS

R1: CAPACITY

$$R_1(\Omega) = r_1^{(A)} \frac{\sum\limits_{a \in \mathbb{A}} c_a}{\sum\limits_{a \in \mathbb{A}_0} c_a} + r_1^{(N)} \frac{\sum\limits_{n \in \mathbb{N}} \kappa_n}{\sum\limits_{n \in \mathbb{N}_0} \kappa_n}$$

R2: CONTEMPORARY EVENTS (BATCHING)

$$R_2(\Omega) = \frac{r_2^{(A)}}{|A|} \sum_{a \in A} (1 - \frac{e_a}{f_a}) + \frac{r_2^{(N)}}{|N|} \sum_{n \in N} (1 - \frac{\xi_n}{\phi_n})$$

R3: LOOPS

$$R_3(\Omega) = \frac{1}{|\mathbb{A}|} \sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} \gamma_{nm} \iota_{nm}$$

NODES $j \in \mathbb{N}$: • K_n : Capacity • ϕ_n : Frequency

 ξ_n : Contemporary Activities

• c_a : Capacity
• f_a : Frequency

 e_a : Contemporary Activities

R4: ROUTING

$$R_4(\Omega) = r_4^{(in)} \sum_{n \in \mathbb{N}} \sum_{x \in \mathbb{S}_n} \gamma_{nx} + r_4^{(out)} \sum_{n \in \mathbb{N}} \sum_{l \in \mathbb{P}_n} \gamma_{ln}$$

R5: FREQUENCY

$$R_5(\Omega) = r_5^{(A)} \frac{\sum\limits_{a \in \mathbb{A}} f_a}{\sum\limits_{a \in \mathbb{A}_0} f_a} + r_5^{(N)} \frac{\sum\limits_{n \in \mathbb{N}} \phi_n}{\sum\limits_{n \in \mathbb{N}_0} \phi_n}$$

TOTAL SCORE OF MODEL Ω :

$$\Phi(\Omega) = \sum_{i} w_i R_i(\Omega)$$

 γ_{ij} : node-arcs matrix

MODEL Ω: • ι_{ij} : Loops

 w_i : weight of i-th score

CONSTRAINTS

OBJECTIVE FUNCTION

Maximum Complexity

Clustering

Flow Constraints

max Ω	$\Phi(\Omega)$	
s.t.	$\sum_{i} \beta_{i} \leq S_{N}^{max}$	
	$\sum_{ij} \gamma_{ij} \leq S_A^{max}$	
	$\gamma_{ij} \leq \mathbf{M}\mathbf{X}\mathbf{M}^T$	$\forall i,j$
	$\sum_{i} m_{ik} \leq 1$	$\forall k$
	$\gamma_{ij} \leq \beta_i$	$\forall i, j$
	$\gamma_{ij} \leq \beta_j$	$\forall i,j$
	$\gamma_{ii} \leq \zeta$	$\forall i$
	$\sum_i \gamma_{ij} \leq u_{in}$	$\forall j$
	$\sum_{i} \gamma_{ij} \leq v_{out}$	$\forall i$
	J	

 \rightarrow Solution: Ω^* , model that maximizes the "adequacy" score.

→ MODEL SOLVED THROUGH A DEPTH-FIRST LOCAL SEARCH ALGORITHM 25

MODEL TUNING: SOLUTION METHOD

LOCAL SEARCH

Heuristic

MODEL TUNING: SOLUTION METHOD

NEIGHBORS GENERATION

Modes

Properties inheritance NEW ARC: (1,3)

AGGREGATION

PROPERTIES

NODES $j \in \mathbb{N}$

- Cn_i : Capacity
- f_i : Frequency
- ξ_i^N : Contemporary Activities
- [other]

ARCS $a_i \in A$

- Ca_i : Capacity
- f_i : Frequency
- ξ_j^A : Contemporary Activities
- [other]

PARAMETERS AND POLICIES

Parameters such as processing times are estimated with a **Kernel Density Estimation** (Gaussian).

Policies are inferred from the flow of parts (frequency). More complex rules (e.g., Machine Learning) can be applied.

$$\hat{p}_2 = \frac{f_2}{f_2 + f_3}$$

$$\hat{p}_3 = 1 - \hat{p}_2$$

MODEL CONVERSION

MANUFACTURING SYSTEM

^{*} further reduction may be applied

^{*}Schruben, Lee, and Enver Yucesan. "Transforming Petri nets into event graph models." Proceedings of Winter Simulation Confegence. IEEE, 1994.

VALIDATION: SIMULATED FLOW LINE

NOTICE: Validation can also be applied online! (Online Model Adaptation)

AV. ERROR = 4.7 %

VALIDATION: SIMULATED FLOW LINE

VALIDATION: REAL PRODUCTION LINE

LIMITATIONS AND FUTURE DEVELOPMENTS

LIMITATIONS

- Current work is limited by the hypothesis of single IDs
 - → Cannot use MSM in assembly/disassemly applications → EXTENSION FOR ASSEMBLY
- Limited information in the log translates in less descriptive models (e.g. reliability models)
- Log-preprocessing is still necessary (e.g., events with same timestamp are critical and are removed)
- Different system types might require ad-hoc parameter setting

FUTURE DEVELOPMENTS

- Investigate the value of prior information
- Arrival times estimation: comparison with other PM techniques
- Investigate Simulation-Optimization applications
- Definition of ad-hoc convertion rules toward ERGs, model tuning on ERGs [1].
- Investigation of **smarter inheritance rules** for nodes aggregation
- Understand the behavior with very large logs

[1] Enver Yücesan and Lee Schruben. Structural and behavioral equivalence of simulation models. ACM Transactions on Modeling and Computer Simulation (TOMACS), 2(1):82–103, 1992.

CONTENTS

Testing Platform: Lab-scale models of manufacturing systems

LAB-SCALE MODELS AS TESTING PLATFORM

New Laboratory for testing Real-Time Simulation based on the needs from the literature and considering I4.0 developments (e.g., Internet of Things, Cyber Physical Systems).

- Stations are controlled by LEGO® EV3® intelligent bricks.
- Each station has sensors for entrance checking, processing, blocking.
- Wooden circles tagged with red plates represent pallets/parts.

LAB-SCALE MODELS AS TESTING PLATFORM

TEST OF REAL-TIME SIMULATION

Simulation model to simulate and evaluate an optimal re-scheduling plan using re-planning rules from the recent literature (Arnaout, 2014).

SIMULATION DECISION SYSTEM STATE **Machine failure Demand change** Unplanned maintenance $C_{max}^{(L)}(RSR)$ $C_{max}^{(L)}(\pi^*)$ 10.1 % **IMPROVEMENT** Rescheduling

(alternative scheduling policies)

370

LAB-SCALE MODELS AS TESTING PLATFORM

TEST OF ONLINE MODEL GENERATION

Lugaresi, Giovanni, and Andrea Matta. "Automated Digital Twins Generation for Manufacturing Systems: a Case Study." INCOM Conference 2021, Budapest, Hungary.

CONTENTS

Conclusions

CONCLUSIONS

FUTURE DEVELOPMENTS

- Development of joint mining approaches → discovery of features of the system (e.g., maintenance policies)
- Using process mining to **enhance performance estimation** → support for approaches that need a model to estimate performance under specific scenarios.
- Extension of **model conversion techniques** \rightarrow connectors to software tools
- Collaboration with interested industrial partners to test the appraches within realistic settings (e.g., MES integration).
- Development of **online validation techniques** to «close the loop» in real-time.

IMPACT

- Real-time Simulation as online decision-support tool
- Digital Manufacturing: closer to real applications of digital twins
- New ways to test softwares and PPC technologies (labscale devices)

CONTENTS

Other Activities in Doctoral Curriculum

JOURNAL PAPERS

- **1. Giovanni Lugaresi**, Andrea Matta. *Automated manufacturing system discovery and digital twin generation.*<u>Published on Journal of Manufacturing systems</u>.
- 2. Giovanni Lugaresi, Vincenzo Alba, Andrea Matta. Real-time Simulation for Manufacturing Systems: a Framework Based on a Labscale Environment for Testing Production Planning and Control Research. Published on Journal of Manufacturing systems.
- 3. Giovanni Lugaresi, Andrea Matta. Automated simulation model generation for production systems with assembly operations. In submission to International Journal of Production Research.

Other research activity: robust optimization

- G. Lugaresi, E. Lanzarone, N. Frigerio, A. Matta; "A cardinality-constrained robust Part Type Selection model". <u>Work-in-progress</u>.
- **2. G. Lugaresi,** E. Lanzarone, N. Frigerio, A. Matta; "A robust cardinality-constrained model to address the machine loading problem". Published on Robotics and Computer-Integrated Manufacturing.

CONFERENCE PAPERS

- 1. G. Lugaresi and A. Matta. "A Remote Laboratory Experience in Teaching Discrete Event Simulation Modeling for Manufacturing Applications". 11th Conference on Learning Factories, 2021.
- 2. G. Lugaresi and A. Matta. "Discovery and digital model generation for manufacturing systems with assembly operations". Proceedings of the CASE 2021 conference.
- 3. G. Lugaresi and A. Matta. «Automated Digital Twins Generation for Manufacturing Systems: a Case Study". 17th IFAC Symposium on Information Control Problems in Manufacturing, 2021.
- **4. G. Lugaresi** and A. Matta. "Generation and Tuning of Discrete Event Simulation Models for Manufacturing Applications". Proceedings of the 2020 Winter Simulation Conference.
- **5. G. Lugaresi**, V. Alba, and A. Matta. "An Internet of Things Architecture for Lab-scale Prototypes of Real-Time Simulation." Proceedings of the CASE 2020 conference.
- **6. G. Lugaresi,** N. Frigerio, and A. Matta. "A New Learning Factory Experience Exploiting LEGO For Teaching Manufacturing Systems Integration." Procedia Manufacturing 45 (2020): 271-276.
- 7. G. Lugaresi, D. Travaglini, and A. Matta. "A LEGO® manufacturing system as demonstrator for a real-time simulation proof of concept." 2019 Winter Simulation Conference (WSC). IEEE, 2019
- 8. G. Lugaresi, et al. "Active learning experience in simulation class using a LEGO®-based manufacturing system." 2019 Winter Simulation Conference (WSC). IEEE, 2019.
- 9. G. Lugaresi, M. Zanotti, D. Tarasconi, A. Matta. *Manufacturing Systems Mining: Generation of Real-time Discrete Event Simulation Models.* 2019 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
- **10. G. Lugaresi,** Gianluca Aglio, Federico Folgheraiter, Andrea Matta. *Real-time Validation of Digital Models for Manufacturing Systems: a novel Signal-processing-based Approach.* 2019 IEEE 15th International Conference on Automation Science and Engineering.
- 11. G. Lugaresi, A. Matta; Real-time Simulation In Manufacturing Systems: Challenges And Research Directions; Proceedings of the 2018 Winter Simulation Conference.

TEACHING ACTIVITIES

- Teaching Assistant for the course "Tecnologia Meccanica e Qualità" [Industrial Engineering]: 2 academic years 2019-2020, 2020-2021.
- Teaching Assistant for the course "Intergrated Manufacturing Systems" [Mechanical Engineering]: 3 academic years 2018-2019, 2019-2020, 2020-2021.
- Tutor for the course "Tecnologia Meccanica e Qualità" [Ingegneria Gestionale]. 2 academic years: 2017-2018, 2018-2019.
- Teaching Assistant for the Passion in Action course "LEGO® FACTORY". 2 editions: Fall 2018, Spring 2019.
- Co-Supervisor of 12 M.Sc. students for 9 master theses:
 - 1. Davide Travaglini. Manufacturing system based on LEGO®-robotics: development of physical and digital models (2018).
 - 2. Marco Zanotti, Diego Tarasconi. *Process mining for manufacturing systems discovery* (2018).
 - 3. Federico Folgheraiter, Gianluca Aglio. Real-time validation of discrete event simulation models in a real-time framework: statistical techniques and harmonic analysis approach (2018).
 - 4. Vincenzo Valerio Alba. An IoT Architecture for Real-Time Simulation applications (2019).
 - 5. Luca Spada. Study and application of a dynamic condition-based maintenance policy (2020).
 - 6. Jacopo Barbieri. Development of an Industry 4.0 supply-chain integrated scheduling (2020).
 - 7. Sofia Gangemi, Giulia Gazzoni. Simulation-based Digital Twin Application in a highly automated Manufacturing Stystem (2021).
 - 8. Edoardo Passarin. Development and Implementation of Automated Online Model Generation Techniques (2021).
 - 9. Francesco Verucchi. Development of a Real-time Synchonized Discrete Event Simulation Model for Manufacturing Applications (2021)

STUDY PLAN

	Dept.	A.Y./sem.	Grade	Date	ECTS
Research Management	DMECC	2018/II	A (30)	2018	5
Prof. Urgo, Prof. Tolio					
Engineering Complex Systems with Big data and IOT	PHD	2018/II	A (30)	2018	5
Prof. Pernici					
Industrial Skills	PHD	2018/II	B (29)	2018	5
Prof. Biscari					
Python per il calcolo scientifico	DIMA	2018/II	A (30)	2021	5
Prof. Miglio					
Statistics in the big data era	DMECC	2019/I	B (29)	2019	5
Prof. Panagiotis					
Other courses					
Production Systems Control (DEIB)					
Prof. Ferrarini					
Autonomous Agents and Multi-agent Systems (DEIB)					
Prof. Amigoni					
Applied Statistics (DIMA)					
Prof. Secchi					

Requirements for MeccPhD: 20 ECTS

OTHER RESEARCH ACTIVITIES

Projects:

- 1. "FactoryBricks: Smart Learning @Home for the Management of Connected Factories" funded by EIT-Manufacturing (European Union, 2020).

 Role: project coordination.
- "FISVAL: Filiera Integrata e Sostenibile per la produzione di VALvole smart", funded by Regione Lombardia (2020-2021).
 Role: WP1 lead: development of scheduling algorithm.
- 3. "Development of lab-scale models of manufacturing systems" funded by Sme.UP (2018). Role: project coordination.
- 4. "Analysis of alternative layouts for the assembly of the GDI injector IHP10E" funded by Magneti Marelli (2018). Role: collaborator.
- 5. "RECAM: Rapid Reconfiguration of Flexible Production Systems through Capability based Adaptation, Auto configuration and Integrated tools for Production Planning", EUFP7 FOF, H2020 GRANT AGR. 680759 (2017-2018). Role: collaborator.

Related Publications:

- 1. M. Colledani, A. Yemane, **G. Lugaresi**, G. Borzi, D. Callegaro. A software platform for supporting the design and reconfiguration of versatile assembly systems. 51st CIRP Conference on Manufacturing Systems (CIRP CMS 2018).
- 2. M. Colledani, A. Yemane, **G. Lugaresi**, N. Frigerio, G. Borzi, A. Bassi, D. Callegaro. *A Decision Support Methodology for the Design of Reconfigurable Assembly Systems.* 16th IFAC Symposium on Information Control Problems in Manufacturing.
- 6. "Analysis of alternative layouts for the assembly of 81 and 85kw throttle body" funded by Magneti Marelli (2017). Role: collaborator.

Research Periods Abroad:

NO PERIODS ABROAD, DUE TO COVID-19 PANDEMIC.

Q&A

Selected References

G. Lugaresi and A. Matta. *Real-time simulation in manufacturing systems: Challenges and research directions.* 2018 Winter Simulation Conference (WSC), pp. 3319–3330, IEEE.

Günther, Christian W., and Wil MP Van Der Aalst. "Fuzzy mining-adaptive process simplification based on multi-perspective metrics." International conference on business process management. Springer, Berlin, Heidelberg, 2007.

- W. V. der Aalst. Process Mining Data Science in Action. Springer, second edition ed., 2016.
- M. Mesabbah and S. McKeever. *Presenting a hybrid processing mining framework for automated simulation model generation.* Winter Simulation Conference, pp. 1370–1381, IEEE, 2018.
- A. Rozinat, R.S. Mans, M. Song, W. Van der Aalst. "Discovering simulation models." Information systems 34.3 (2009): 305-327.

Monostori, László, et al. "Cyber-physical systems in manufacturing." Cirp Annals 65.2 (2016): 621-641.

Q&A

Big thanks to all the people who supported me in this adventure!

WWW.PHDCOMICS.COM