Exemplo de implementação de um AG utilizado para encontrar o ponto máximo da função: f(x) = x2, com f(x) sujeita às seguintes restrições:

 $0 \le x \le 31$ x é inteiro

Observações:

Codificar x como vetor binário
Criar uma população inicial com 4 indivíduos
Aplicar Mutação com taxa de 1%
Aplicar Crossover com taxa de 60%
Usar seleção proporcional à aptidão (Roleta)
Por simplicidade, a aptidão será a própria função objetivo.
Usar 5 gerações.

Implemente (Utilizando a Linguagem de Programação que preferir) o AG tradicional:

Gerar a população inicial.

Avaliar cada indivíduo da população.

Enquanto critério de parada não for satisfeito faça

Selecionar os indivíduos mais aptos.

Criar novos indivíduos aplicando os operadores crossover e mutação.

Armazenar os novos indivíduos em uma nova população.

Avaliar cada cromossomo da nova população.

A partir das observações:

Cromossomo:

Cromossomos binários com 5 bits:

0 = 0000031 = 11111

Aptidão: Por simplicidade, a aptidão será a própria função objetivo.

Exemplo: aptidão(00011) = f(3) = 9

População Inicial:

É aleatória (mas quando possível, o conhecimento da aplicação pode ser utilizado para definir a população inicial).

População Inicial

Cromossomos	Х	f(x)	Prob. de seleção
A1 = 1 1 0 0 1	25	625	54,5 %
A2 = 0 1 1 1 1	15	225	19,6 %
A3 = 0 1 1 1 0	14	196	17,1 %
A4 = 0 1 0 1 0	10	100	8,7 %

Somatório da função fitness ou de aptidão $\sum f(x) = 1146$

$$p_i = \frac{f(x_i)}{\sum_{k=1}^{N} f(x_k)}$$

Probabilidade de seleção proporcional à aptidão

Seleção proporcional à aptidão

Crossover

O crossover é aplicado com uma dada probabilidade denominada taxa de crossover (60% a 90%). Se o crossover é aplicado os pais trocam suas caldas gerando dois filhos, caso contrário os dois filhos serão cópias exatas dos pais.

Mutação

A Mutação inverte os valores dos bits. A mutação é aplicada com dada probabilidade, denominada taxa de mutação (~1%), em cada um dos bits do cromossomo. A taxa de mutação não deve ser nem alta nem baixa, mas o suficiente para assegurar a diversidade de cromossomos na população.

A Primeira Geração:

Obs: Para o crossover: o ponto de corte é escolhido aleatoriamente.

Cromossomos	Х	f(x)	Prob. de seleção
A1 = 1 1 0 1 1	27	729	29,1 %
A2 = 1 1 0 0 1	25	625	24,9 %
A3 = 1 1 0 0 1	25	625	24,9 %
A4 = 1 0 1 1 1	23	529	21,1 %

A Segunda Geração:

Cromossomos	Х	f(x)
A1 = 1 1 0 1 1	27	729
A2 = 1 1 0 0 0	24	576
A3 = 1 0 1 1 1	23	529
A4 = 10101	21	441

Somatório da função fitness ou de aptidão $\sum f(x) = 2275$

A Terceira Geração:

Cromossomos	Х	f(x)
A1 = 1 1 0 1 1	27	729
A2 = 1 0 1 1 1	23	529
A3 = 0 1 1 1 1	15	225
A4 = 0 0 1 1 1	7	49

Somatório da função fitness ou de aptidão $\sum f(x) = 1532$

A Quarta Geração:

Cromossomos	Х	f(x)
A1 = 1 1 1 1 1	31	961
A2 = 1 1 0 1 1	27	729
A3 = 10111	23	529
A4 = 10111	23	529

Somatório da função fitness ou de aptidão $\sum f(x) = 2748$

A Quinta Geração:

Cromossomos	Х	f(x)
A1 = 1 1 1 1 1	31	961
A2 = 1 1 1 1 1	31	961
A3 = 1 1 1 1 1	31	961
A4 = 10111	23	529

Somatório da função fitness ou de aptidão $\sum f(x) = 3412$

Exercícios:

- 1. Implementar um AG utilizado para encontrar o ponto mínimo da função: $f(x) = x^2 3x + 4$, com f(x) sujeita às seguintes restrições:
 - Assumir que $x \in [-10, +10]$
 - Codificar X como vetor binário
 - Criar uma população inicial com 4 indivíduos
 - Aplicar Mutação com taxa de 1%
 - Aplicar Crossover com taxa de 60%
 - Usar seleção por torneio.
 - Usar 6 gerações.
 - Considere somente números inteiros
 - O programa deverá apresentar um relatório com a codificação de todos os indivíduos de cada população, bem como o resultado da função fitness de cada indivíduo. O programa também deve apresentar o somatório da função fitness de cada geração ou população.
- 2. Implementar um AG utilizado para encontrar o ponto máximo da função: $f(x) = -3x^2 + 100x 50$, com f(x) sujeita às seguintes restrições:
 - Assumir que $x \in [-20, +20]$
 - Codificar X como vetor binário
 - Criar uma população inicial com 4 indivíduos
 - Aplicar Mutação com taxa de 1%
 - Aplicar Crossover com taxa de 60%
 - Usar seleção por torneio.
 - Usar 6 gerações.
 - Considere somente números inteiros
 - O programa deverá apresentar um relatório com a codificação de todos os indivíduos de cada população, bem como o resultado da função fitness de cada indivíduo. O programa também deve apresentar o somatório da função fitness de cada geração ou população.
- 3. Implementar um AG utilizado para encontrar o ponto máximo da função: $f(x) = x sen(10\pi x) + 1,0 com f(x)$ sujeita às seguintes restrições:
 - Assumir que $x \in [-20, +20]$
 - Codificar X como vetor binário
 - Criar uma população inicial com 4 indivíduos
 - Aplicar Mutação com taxa de 1%

- Aplicar Crossover com taxa de 60%
- Usar seleção por torneio.
- Usar 6 gerações.
- Considere somente números inteiros
- O programa deverá apresentar um relatório com a codificação de todos os indivíduos de cada população, bem como o resultado da função fitness de cada indivíduo. O programa também deve apresentar o somatório da função fitness de cada geração ou população.
- 4. Implementar um AG utilizado para encontrar o ponto máximo da função: $f(x) = x^2 y^2 + 2xy 5$
 - Assumir que $x \in [-100, 100]$
 - Codificar X como vetor binário
 - Criar uma população inicial com 10 indivíduos
 - Aplicar Mutação com taxa de 1%
 - Aplicar Crossover com taxa de 60%
 - Usar seleção por torneio.
 - Usar 15 gerações.
 - Considere somente números inteiros
 - O programa deverá apresentar um relatório com a codificação de todos os indivíduos de cada população, bem como o resultado da função fitness de cada indivíduo. O programa também deve apresentar o somatório da função fitness de cada geração ou população.
- 5. Implementar um AG utilizado para encontrar o ponto mínimo da função: $f(x) = x^2 y^2 + 2xy 5$
 - Assumir que $x \in [-100, 100]$
 - Codificar X como vetor binário
 - Criar uma população inicial com 10 indivíduos
 - Aplicar Mutação com taxa de 1%
 - Aplicar Crossover com taxa de 60%
 - Usar seleção por torneio.
 - Usar 15 gerações.
 - Considere somente números inteiros
 - O programa deverá apresentar um relatório com a codificação de todos os indivíduos de cada população, bem como o resultado da função fitness de cada indivíduo. O programa também deve apresentar o somatório da função fitness de cada geração ou população.