PROCESSO DE SEPARAÇÃO MAGNÉTICA

Problema

Nossa solução parte da problemática envolvendo o processo de separação de materiais magnéticos pelo departamento de metais do IPT. O objetivo desta é trazer a automação industrial para esse processo que era feito de forma manual.

Indústria 4.0

Indústria 4.0 busca automatizar e interconectar sistemas para tornar processos produtivos mais eficientes e econômicos. Automação permite reduzir custos, aumentar produtividade e melhorar ambiente de trabalho. Resultados positivos impulsionam desenvolvimento econômico e social global.

Solução IoT

Nossa solução contempla o conceito de Internet of Things por meio de uma aplicação mobile que consegue controlar todo o processo de separação de metais em que nosso braço robótico atua.

Braço Robótico

Nesse braço robótico há um eletroímã que é capaz de passar por três etapas da separação no seu envelope rotacional.

Microcontrolador

Utilizamos o Raspberry Pi
Pico como microcontrolador
a fim de permitir que um
telefone controlador, o
braço robótico e o
eletroímã estejam
conectados em um servidor
para construir a
comunicação entre esses
três elementos.

Eletroímã

Através do controle do sistema do aplicativo, o eletrímã, que fica na haste do braço mecânico, é capaz de mudar relativamente sua intensidade magnética para cada grau de composição do mineral.

Processo

Separação magnética

Um ímã atrai as partículas magnéticas presentes na amostra magnética, permitindo sua separação.

Limpeza

O ímã com as partículas magnéticas é submerso em uma bandeja com água, permitindo que as partículas não magnéticas sejam removidas por meio da agitação da água

Coleta

As partículas magnéticas que ficaram aderidas ao ímã são transferidas para uma bandeja.