1 Typical application description

1.1 I2C connection method

IP2366 can be used as a slave device. The MCU can read or set the voltage, current, power and other information of IP2366 through the I2C interface. The connection method of IP2366 I2C is as follows:

1.2 I2C Precautions

- IP2366 I2C device address: written as 0xEA, read as 0xEB. If you need to set it to another address, you can customize it;
- The I2C communication voltage of IP2366 is 3.3V. If the MCU terminal is 5V voltage, you need to add a level conversion chip to 3.3V;
- IP2366 INT application description: IP2366 will wake up when it detects that INT is high during sleep. After waking up, IP2366 actively pulls up INT. After 100ms, the MCU can perform I2C communication and register read and write operations; Before IP2366 enters sleep, it will switch to the input high resistance to detect the INT state. If it is high, it is considered that the MCU does not allow IP2366 to enter sleep, if it is low, then IP2366 enters sleep; after the MCU detects that INT is low, 16ms to stop accessing the IC;
- The I2C of IP2366 supports a maximum communication frequency of 250k. Considering the clock deviation, it is recommended that the MCU's I2C communication clock use 100k-200k;
- If you want to modify the value of a register in IP2366, you need to read out the value of the corresponding register first, and then after the bit that needs to be modified is summed or calculated, the calculated value is written to the register. Other unopened registers cannot be modified at will. The default value of the register is subject to the read value. The default value of different ICS may be different;
- IP2366 I2C communication is real-time data. After receiving the request, it needs to be interrupted for data preparation. The preparation time is long, so when the MCU communicates with I2C, it needs to determine whether the ACK is received after sending the address and increase the delay by 50us (refer to the I2C application example); it is recommended to read a single byte, 100k I2C communication frequency, and increase the delay by 1ms between each byte;
- At the end of the I2C read data, after the last byte is read, a NACK signal must be given, otherwise IP2366 will think that the data is still being read, and the next clock will continue to output the next data, resulting in the STOP signal cannot be received, and the last read error;
- Reserved registers cannot write data at will, and the original value cannot be changed, otherwise unexpected results will occur. The operation of the register must be carried out in accordance with read-modify-write, only the bits to be used are modified, and the values of other unused bits cannot be modified;
 - This document is only for IP2366 I2C model, other models are invalid;

1.3 I2C application example

After the IP2366 INT pin continues to be high for 100ms, the MCU can perform I2C communication. You can initialize the register first (only modify the register when you need to modify special functions, if you don't need to modify, you cannot write the register); then read the internal information of IP2366 (power, charge and discharge status, button status); and finally perform special operations (such as special indicators, charge and discharge management, fast charge request management); after the MCU detects that the INT is low, it needs to stop accessing I2C within 16ms. For example:

Figure 1: I2C Write 0x05

Figure 2: I2C Read 0x05

Actually, read back data from the 0x31 register:

Figure 3: I2C Read 0x31

2 Register list:

2.1 Read/write operation register

[0x00] SYS_CTL0 (charge enable register)

Bit(s)	Name	Description	R/w	rst
7	En_LOADOTP	Enable reset the register value after boot or wake up:	R/W	1
		0: Do not reset the register value		
		1: Reset the register value again		
		It is not recommended to modify this bit to 0. If it needs to be modified, the		
		software needs to reset the default value of the register regularly, such as after the		
		VINOk VBUOk signal is triggered.		
6	En_RESETMCU	MCU reset register	R/W	0
		Write 1: Reset the register to the default value, after reset, the bit will automatically		
		return to 0		
5	En_INT_low	When there is an exception, the INT is pulled down by 2MS, indicating that the MCU	R/W	0
		has an exception.		
		1: Enable		
		0: disable		
4	En_Vbus_SinkDPdM	Type-C port input DM DP fast charge is enabled	R/W	1
		1: Enable		
		0: disable		
3	En_Vbus_SinkPd	Type-C port input PD fast charge is enabled	R/W	1
		1: Enable		
		0: disable		
2	En_Vbus_SinkSCP	Type-C port input SCP fast charge is enabled	R/W	1
		1: Enable		
		0: disable		
1	Reserved		R	0
0	En_Charger	Charger Charging is enabled (not configurable after shutdown)	R/W	1
		1: Enable		
		0: disable		

[0x02] SYS_CTL2 (Vset full charge voltage setting)

Bit(s)	Name	Description	R/w	rst
7:0	Vset	Full voltage of a single battery	R/W	???
		Vset=N*10+2500mV (up to 4.4V)		

[0x03] SYS_CTL3 (Iset charging power or current setting)

Bit(s)	Name	description		rst
7:0	Iset	Maximum battery current limit (cannot be configured to be less than the stop-	R/W	0x61
		charge current)		
		lset=N*100mA (maximum 9.7A)		

[0x06] SYS_CTL6 (trickle charging current settings)

Bit(s)	Name	Description	R/w	rst
7:0	ltk	trickle charging current setting	R/W	0x04
		ltk=N*50mA		

[0x08] SYS_CTL8 (stop charging current and recharge threshold setting)

Bit(s)	Name	Description	R/w	rst
7:4	Istop	stop charging current setting	R/W	0x02
		lstop=N*50mA		
3:2	Vrch	recharging threshold	R/W	0x02
		00: There is no recharging function after full charge		
		01: VTRGT-N*0.05		
		10: VTRGT-N*0.1		
		11: VTRGT-N*0.2		
		VTRGT–full charge voltage		
		N–Number of battery cells in series		

-				
	4 0			
	1.()	Reserved		
	1.0	NUSCIVUU		

[0x09] SYS_CTL9 (standby enable and low voltage setting)

Bit(s)	Name	Description	R/w	rst
7	En_Standby	standby enable	R/W	1
		0: disable		
		1: Enable		
6	Standby	Write 1 to enter standby mode, valid once (bit7 must be enabled to write 1)	R/W	0
		0: Normal process		
		1: Enter standby mode immediately when not charging		
5	En_BAT_Low	5V low power shutdown enable	R/W	0
		0: disable		
		1: Enable (After enabling, the shutdown voltage is fixed at 5V, with only software		
		protection. And the voltage will also change when the trickle current is converted to		
		constant current)		
4:0	Reserved			

[0x0A] SYS_CTL10 (battery low voltage setting)

Bit(s)	Name		Description			R/w	rst
7:5	Set_BATlow	Battery low voltage s	ttery low voltage setting (Trickle current to constant current voltage will change			R/W	0x02
		accordingly 2.7V and	ordingly 2.7V and below only have software low power protection)				
		000: 2.50V * N	010: 2.70V * N	100: 2.90V * N	110: 3.10V * N		
		001: 2.60V * N	011: 2.80V * N	101: 3.00V * N	111: 3.20V * N		
		N: Number of battery	cells in series				
4:0	Reserved						

[0x0B] SYS_CTL11 (output enable register)

Bit(s)		Description	R/w	rst
7	En_Dc_Dc_Output	Discharge output is enabled (not output after shutdown)	R/W	1
		1: Enable		
		0: Do not enable		
6	En_Vbus_Src_DP_dM	C port output DP/DM fast charge is enabled	R/W	1
		1: Enable		
		0: Disable		
5	En_Vbus_SrcPd	C Port output PD fast charge is enabled	R/W	1
		1: Enable		
		0: disable		
4	En_Vbus_SrcSCP	C port output SCP fast charge is enabled	R/W	1
		1: Enable		
		0: disable		
3:0	Reserved			

[0x0C] SYS_CTL12 (output maximum power selection register)

Bit(s)	Name	Description	R/w	rst
7:5	Vbus_Src_Power	Vbus1 Output power selection:	R/W	0x05
		000:30W		
		001:45W		
		010:60W		
		011:65W		
		100:100W		
		101:140W		
4:0	Reserved			

More than 60W requires an Emark recognition circuit.

[0x0D] SELECT_PDO (select charging PDO gear)

Bit(s)	Name	Description	R/w	rst
7:3	Reserved		R/W	0
2:0	Pdo_select	selects the charging PDO mode	R	?
		000:5V		
		001:9W		
		010:12V		

	011:15V	
	100:20V	

You need to read the corresponding gear of 0x35 before you can select it. The maximum PD gear of the adapter is selected by default.

The configuration becomes invalid after this, and the adapter position needs to be re-identified and reconfigured.

[0x22] TypeC_CTL8 (TYPE-C mode control register)

Bit(s)	Name	Description	R/w	rst
7:6	Vbus_Mode_Set	Vbus CC mode selection	R/W	0
		00: UFP: Upstream Facing Port (device connected as a consumer)		
		01: DFP: Downstream Facing Port (device connected as a power source)		
		11: DRP: Dual Role Port (device can act as both a source and a consumer)		
5:0	Reserved			

	[0x23] TypeC_CTL9	(output Pdo current setting register)		
Bit(s)	Name	Description	R/W	rst
7	En_5VPdo_3A/2.4 A	5VPdo current setting	R/W	1
		1: 3A		
		0: 2.4 A		
6	En_Pps2Pdo_Iset	Pps2 Pdo current set enable	R/W	0
		1: Enable		
		0: disable		
		* After enabling, the output power and overcurrent are subject to the set Pdo		
		current, and the overcurrent is 1.1 times the set Pdo current.		
5	En_Pps1Pdo_Iset	Pps1 Pdo current set enable	R/W	0
		1: Enable		
		0: disable		
		* After enabling, the output power and overcurrent are subject to the set Pdo		
		current, and the overcurrent is 1.1 times the set Pdo current.		
4	En_20VPdo_Iset	20VPdo current set enable	R/W	0
		1: Enable		
		0: disable		
		* After enabling, the output power and overcurrent are subject to the set Pdo		
		current, and the overcurrent is 1.1 times the set Pdo current.		
3	En_15VPdo_Iset	15VPdo current set enable	R/W	0
		1: Enable		
		0: disable		
		* After enabling, the output power and overcurrent are subject to the set Pdo		
		current, and the overcurrent is 1.1 times the set Pdo current.		
2	En_12VPdo_Iset	12VPdo current set enable	R/W	0
		1: Enable		
		0: disable		
		* After enabling, the output power and overcurrent are subject to the set Pdo		
		current, and the overcurrent is 1.1 times the set Pdo current.		
1	En_9VPdo_Iset	9VPdo current set enable	R/W	0
		1: Enable		
		0: disable		
		* After enabling, the output power and overcurrent are subject to the set Pdo		
		current, and the overcurrent is 1.1 times the set Pdo current.		
0	En_5VPdo_Iset	5VPdo current set enable	R/W	0
		1: Enable		
		0: disable		

[0x24] TypeC_CTL10 (5VPdo current setting register)

Bit(s)	Name	Description	R/W	rst
7:0	5VPdo_Iset	5VPdo current setting	R/W	0x96
		5VPdo=20mA*N (default 3A,Max=3A)		

[0x25] TypeC_CTL11 (9VPdo current setting register)

Bit(s)	Name	Description	R/W	rst
7:0	9VPdo_Iset	9VPdo current setting	R/W	0x96

	9VPdo=20mA*N (default 3A,Max=3A)	

[0x26] TypeC_CTL12 (12VPdo current setting register)

Bit(s)	Name	Description	R/W	rst
7:0	12VPdo_Iset	12VPdo current setting	R/W	0x96
		12VPdo=20mA*N (default 3A,Max=3A)		

[0x27] TypeC_CTL13 (15VPdo current setting register)

Bit(s)	Name	Description	R/W	rst
7:0	15VPdo_lset	15VPdo current setting	R/W	0x96
		15VPdo=20mA*N (default 3A,Max=3A)		

[0x28] TypeC_CTL14 (20VPdo current setting register)

Bit(s)	Name	Description	R/W	rst
7:0	20VPdo_Iset	20VPdo current setting	R/W	0xFA
		20VPdo=20mA*N		
		(Default is 5A, emark needs to be recognized, Max=5A) if emark is not recognized,		
		3A		

[0x29] TypeC_CTL23 (Pps1 Pdo current setting register)

Bit(s)	Name	Description	R/W	rst
7:0	Pps1Pdo_Iset	Pps1 Pdo current setting	R/W	0x3C
		Pps1 Pdo=50mA*N		
		(Default is 5A, emark needs to be recognized, Max=5A) if emark is not recognized,		
		3A		

[0x2A] TypeC_CTL24 (Pps2 Pdo current setting register)

Bit(s)	Name	Description		rst
7:0	Pps2Pdo_Iset	Pps2 Pdo current setting	R/W	0x3C
		Pps2 Pdo=50mA*N		
		(Default is 5A, emark needs to be recognized, Max=5A) if emark is not recognized,		
		3A		

[0x2B] TypeC_CTL17 (output Pdo setting register)

Bit(s)		Description	R/w	rst
7	Reserved		R	R
6	En_Src_Pps2Pdo	Pps2 Pdo is enabled	R/W	1
		1: Enable		
		0: disable		
		* There is no Pps Pdo after disable		
5	En_Src_Pps1Pdo	Pps1 Pdo is enabled	R/W	1
	En_Src_Pps1Pdo	1: Enable		
		0: disable		
		* There is no Pps1 Pdo after disable		
4	En_Src_20VPdo	20VPdo enable	R/W	1
		1: Enable		
		0: disable		
		* There is no 20V Pdo after disable		
3	En_Src_15VPdo	15VPdo enable	R/W	1
		1: Enable		
		0: disable		
		* There is no 15V Pdo after disable		
2	En_Src_12VPdo	12VPdo enable	R/	ww
		1: Enable		1
		0: disable		
		* There is no 12V Pdo after disable		
1	En_Src_9VPdo	9VPdo is enabled	R/W	1
		1: Enable		
		0: disable		
		* There is no 9V Pdo after disable		
0	Reserved		R	R

[0x2C] TypeC_CTL18 (PDO plus 10mA current enable, needs to be configured together with the current setting register)

Bit(s)	Name	Description	R/w	rst
7:5	Reserved		R	R
4	En_20VPdo_add	20VPdo add 10mA current enable	R/W	0
		1: Enable		
		0: disable		
3	En_15VPdo_add	15VPdo add 10mA current enable	R/W	0
		1: Enable		
		0: disable		
2	En_12VPdo_add	12VPdo add 10mA current enable	R/W	0
		1: Enable		
		0: disable		
1	En_9VPdo_add	9VPdo add 10mA current enable	R/W	0
		1: Enable		
		0: disable		
0	En_5VPdo_add	5VPdo add 10mA current enable	R/W	0
		1: Enable		
		0: disable		

2.2 Read-only status indication register

A must-read section!!!

Multiple registers represent the same state. Each read of the lower 8-bit register will update the upper 8-bit and lower 8-bit data.

To read the register, you must read the lower 8 bits first and then the upper 8 bits to ensure that the same data is read.

The order of the two registers of **BAT** terminal voltage should be to read **0x50** first and then **0x51**.

[0x31] STATE_CTL0 (state of charge control register)

Bit(s)	Name	Description	R/W	rst
7: 6	Reserved		R	Χ
5	CHG_En	charging flag	R	Χ
		1: Charging state (VbusOk means charging state)		
		0: Non-charging state		
4	CHG_End	full state flag	R	Χ
		1: fully charged		
		0: charged not fully		
3	Output_En	discharge state Flag	R	Χ
		1: Discharge state and the output port has been opened, there is no abnormality		
		0: Discharge state, the output is not turned on or there is an abnormal discharge		
2:0	Chg_state	Chg state	R	Χ
		000: Standby		l
		001: Trickle		
		010: Constant current charging		l
		011: Constant voltage charging		l
		100: Charging is waiting (including when charging is not turned on, etc.)		
		101: Full state		
		110: Charging timeout		

[0x32] STATE CTL1 (state of charge control register)

	[0/25] 21/415_6151 (state of charge control register,		
Bit(s)	Name	Description	R/w	rst
7:6	Chg_State	Chg state	R	Χ
		00: 5V input charging		
		01: High voltage input fast charging		
5:0	Reserved		R	X

[0x33] STATE CTL2 (input Pd status control register)

Bit(s)	Name	Description	R/w	rst
7	Vbus_Ok	Vbus Ok	R	Χ
		1: Vbus has power		
		0: Vbus has no power		
6	Vbus_Ov	Vbus Ov	R	Χ
		1: Vbus input overvoltage		
		0: Vbus input without overvoltage		
5:3	Reserved			X
2:0	Chg_Vbus	charging voltage	R	Χ
		111: 20V Charging		
		110: 15V charging		
		101: 12V charging		
		100: 9V charging		
		011: 7V charging		
		010: 5V charging		

[0x34] TypeC_STATE (system status indication register)

Bit(s)	Name	Description	R/w	rst
7	Sink_Ok	Type-C Sink Input connection flag	R	Χ
		1: Valid		

		0: Invalid		
6	Src_Ok	Type-C Src output connection flag	R	Χ
		1: Valid		
		0: Invalid		
5	Src_Pd_Ok	Src_Pd_Ok Output connection flag	R	Χ
		1: Valid		
		0: Invalid		
4	Sink_Pd_Ok	Sink Pd Ok input connection flag	R	Χ
		1: Valid		
		0: Invalid		
3	Vbus_Sink_Qc_Ok	input fast charge valid flag	R	Χ
		Qc5Vand Pd5V are not counted as fast charge Ok		
		1: Valid		
		0: Invalid		
2	Vbus_Src_Qc_Ok	output fast charge valid flag	R	Χ
		Qc5V and Pd5V are not counted as fast charge Ok		
		1: Valid		
		0: Invalid		
1:0	Reserved			

[0x35] RECEIVED_PDO (receive PDO gear)

Bit(s)	Name	Description	R/w	rst
7:5	Reserved		R	R
4	PDO_20V	The device receives 20VPdo	R	Χ
		1: True		
		0: False		
3	PDO_15V	The device receives 15VPdo	R	Χ
		1: True		
		0: False		
2	PDO_12V	The device receives 12VPdo	R	Χ
		1: True		
		0: False		
1	PDO_9V	The device receives 9VPdo	R	Χ
		1: True		
		0: False		
0	PDO_5V	The device receives 5VPdo	R	Χ
		1: True		
		0: False		

[0x38] STATE_CTL3 (system overcurrent indication register)

Bit(s)	Name	Description	R/w	rst
7:6	Reserved		R	Χ
5	Vsys_Oc	Vsys outputs the overcurrent flag, you need to write 1 to clear 0	R	Χ
		1: Vsys output has a trigger overcurrent signal		
		0: Vsys output does not trigger overcurrent signal		
		The system continuously detects more than two overcurrent states within 600mS		
		and considers the overcurrent to be valid, and positions this flag at 1. The external		
		master can read this flag to determine whether there is an abnormal overcurrent;		
		from the occurrence of the overcurrent state to the system sleep, the time is about		
		1.5s, and this flag will remain at 1 after sleep, so the external master needs to read		
		the flag within this time and make corresponding processing, and then write 1 to		
		clear the flag to 0; if you need to judge that the overcurrent state is revoked, you		
		need to reopen the output port (register 0x22[7] First write 0 Write 1 again), and		
		then read the status flag.		
4	Vsys_Scdt	Vsys output short circuit flag, need to write 1 to clear 0	R	Χ
		1: Vsys output has a trigger short circuit signal		
		0: Vsys output does not trigger a short circuit signal		
		The system continuously detects more than two short-circuit states within 600mS		
		and considers the short-circuit to be valid, and positions this flag at 1. The external		
		master can read this flag to determine whether there is an abnormal short-circuit;		
		from the short-circuit state to the system sleep, the time is about 1.5s, after sleep,		

		this flag will be maintained at 1, so the external master needs to read the flag within this time and make corresponding processing, and then write 1 to clear the flag to 0; if you need to judge that the short-circuit state is revoked, you need to reopen the output port (register 0x22[7] first write 0 and then write 1), Then read the status flag.		
3:0	Reserved		R	l

[0x50] BATVADC_DAT0 (VBAT voltage register)

Bit(s)	Name	Description	R/W	rst
7:0	BATVADC[7:0]	Low 8bit of BATVADC data	R	Χ
		Voltage of VBATPIN		

[0x51] BATVADC_DAT1 (VBAT voltage register)

Bit(s)	Name	Description	R/W	rst
7:0	BATVADC[15:8]	High 8bit of BATVADC data	R	Χ
		Voltage of VBATPIN		
		VBAT=BATVADC (mV)		

[0x52] VsysVADC_DAT0 (Vsys voltage register)

Bit(s)	Name	Description	R/W	rst
7:0	VsysVADC[7:0]	Low 8bit Vsys voltage data	R	Χ
		Voltage of VsysPIN		

[0x53] VsysVADC_DAT1 (Vsys voltage register)

Bit(s)	Name	Description	R/W	rst
7:0	VsysVADC[15:8]	Vsys voltage data high 8bit	R	Χ
		VsysPIN voltage		
		Vsys=VsysVADC (mV)		

[0x69] TIMENODE1 (the first bit of the timestamp register) (the timestamp symbol is an ASCII character)

E	Bit(s)	Name	Description	R/W	rst
Γ	7:0	TimeNode1	The first ASCII symbol corresponds to the value	R	Χ

[0x6A] TIMENODE2 (the second bit of the timestamp register)

Bit(s)	Name	Description	R/W	rst
7:0	TimeNode2	The second ASCII symbol corresponds to the value	R	Χ

[0x6B] TIMENODE3 (the third bit of the timestamp register)

[over] :res = c (with a mile and or and a mile				
Bit(s)	Name	Description	R/W	rst
7:0	TimeNode3	The third ASCII symbol corresponds to the value	R	Х

[0x6C] TIMENODE4 (the fourth bit of the timestamp register)

Bit(s	Name	Description	R/W	rst
7:0	TimeNode4	The fourth ASCII symbol corresponds to the value	R	Χ

[0x6D] TIMENODE5 (the fifth bit of the timestamp register)

		1 0 7		
Bit(s)	Name	Description	R/W	rst
7:0	TimeNode5	The fifth ASCII symbol corresponds to the value	R	Χ

[0x6E] IBATIADC_DATO (BAT terminal current register)

Bit(s)	Name	Description	R/W	rst
7:0	IBATIADC[7: 0]	Battery terminal current Low 8bit	R	

[0x6F] IBATIADC_DAT1 (BAT terminal current register)

Bit(s)	Name	Description	R/W	rst
7:0	IBATIADC[15:8]	Cell terminal current	R	Χ
		high 8bits of BATIADC data		
		IBAT=IBATIADC(mA)		

[0x70] ISYS_IADC_DAT0 (IVsys terminal current register)

Bit(s)	Name	Description	R/W	rst
7:0	ISYSIADC[7:0]	IVsys terminal current	R	Χ
		VsysIADCV data low 8bit		

[0x71] IVsys_IADC_DAT1 (IVsys terminal current register)

Bit(s)	Name	Description	R/W	rst
7:0	IVsysIADC[15:8]	IVsys terminal current	R	Χ
		High 8bits of VsysIADCV data		
		IVsys= IVsysIADC (mA)		

[0x74] Vsys_POW_DAT0 (Vsys terminal power register)

	<u> </u>	· / · · · · · · · · · · · · · · · · · ·		
Bit(s)	Name	Description	R/W	rst
7:0	Vsvs POW ADC[7:0]	Vsys terminal power ADC data low 8bit	R	Χ

[0x75] Vsys_POW_DAT1 (Vsys terminal power register)

Bit(s)	Name	Description	R/W	rst
7:0	Vsys_POW_ADC[15:8]	Vsys terminal power ADC data in 8bits	R	Χ

[0x77] INTC_IADC_DAT0 (NTC output current register)

Bit(s)	Name	Description	R/w	rst
7	NTC_IADC_DAT	0: Output 20uA	R	Χ
		1: output 80uA		
6:0	Reserved			X

[0x78] VGPIO0_NTC_DAT0 (VGPIO0_NTC_ADC voltage register)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO0_DAT0[7:0]	VGPIO0 ADC data low 8bit	R	Χ

[0x79] VGPIO0_NTC_DAT1 (VGPIO0_NTC_ADC voltage register)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO0_DAT1	High0 ADC8High 8bits	R	Χ
	[15:8]	of VGPIO 0 ADC data0 VGPIO0 DAT=VGPIO0 ADC (mV)(0~3.3V)		

3 Version/revision history:

Version	date	Revision content	Draftsman/	
			revision person	
V1.00	2023-3-24	Modify standby EN wake-up;	IT555	
V1.10	2023-4-18	Added option to charge PDO Gear	IT555	
V1.11	2023-4-24	Delete I2C power reading function description (Read is not supported	IT555	
V1.12	2023-6-13	Added standby charging Battery Level Power Wake-up Instructions	IT555	
V1.13	2023-6-26	Low voltage gear Low support to 2.5V	IT555	