

Refine Search

Search Results -

Terms	Documents
(stem or hypocotyl) and L11	32

24 Sept 04
JF
09/386,6055

Database:

- US Pre-Grant Publication Full-Text Database
- US Patents Full-Text Database
- US OCR Full-Text Database
- EPO Abstracts Database
- JPO Abstracts Database
- Derwent World Patents Index
- IBM Technical Disclosure Bulletins

Search:

Refine Search

Recall Text
Clear
Interrupt

Search History

DATE: Friday, September 24, 2004 [Printable Copy](#) [Create Case](#)

Set Name	Query	Hit Count	Set Name
result set			

DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR

L12	(stem or hypocotyl) and L11	32	<u>L12</u>
L11	agrobacterium adj rhizogenes	179	<u>L11</u>
L10	l3	0	<u>L10</u>

DB=USPT; PLUR=YES; OP=OR

L9	(chimeric adj plant) and l5	34	<u>L9</u>
L8	(chimeric plant) and l5	493	<u>L8</u>
L7	(chimeric or chimera) and l5	302	<u>L7</u>
L6	chimer\$ and l5	307	<u>L6</u>
L5	l3 and (stem or hypocotyl)	503	<u>L5</u>
L4	(A. rhizogenes)	4665	<u>L4</u>
L3	agrobacterium adj rhizogenes	813	<u>L3</u>
L2	agrobacterium adj rhizogenesL1	0	<u>L2</u>
L1	rhizogenes	1449	<u>L1</u>

Terms	Documents
(stem or hypocotyl) and L11	32

Display Format:

[Previous Page](#) [Next Page](#) [Go to Doc#](#)

Hit List

Clear	Generate Collection	Print	Fwd Refs	Bkwd Refs
Generate OACS				

Search Results - Record(s) 31 through 32 of 32 returned.

31. Document ID: JP 63039595 A

L12: Entry 31 of 32

File: DWPI

Feb 20, 1988

DERWENT-ACC-NO: 1988-088333

DERWENT-WEEK: 198813

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Tropane alkaloid biosynthesis from Solanaceae plant - using plasmid held on agrobacterium rhizo-genes and culturing on liq. medium

PRIORITY-DATA: 1986JP-0181532 (August 1, 1986)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
<u>JP 63039595 A</u>	February 20, 1988		008	

INT-CL (IPC): A01G 1/00; A01H 1/00; A01N 63/00; C12N 5/00; C12N 15/00; C12P 17/10; C12R 1/91

Full	Title	Citation	Front	Review	Classification	Date	Reference				Claims	KMC	Draw. De
------	-------	----------	-------	--------	----------------	------	-----------	--	--	--	--------	-----	----------

32. Document ID: JP 59161306 A

L12: Entry 32 of 32

File: DWPI

Sep 12, 1984

DERWENT-ACC-NO: 1984-265864

DERWENT-WEEK: 198443

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Accelerating plant growth - by inoculating cultivated plant with Agrobacterium rhizogenes

PRIORITY-DATA: 1983JP-0034237 (March 1, 1983)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
<u>JP 59161306 A</u>	September 12, 1984		003	

INT-CL (IPC): A01G 7/06; A01N 63/02

Full	Title	Citation	Front	Review	Classification	Date	Reference				Claims	KMC	Draw. De
------	-------	----------	-------	--------	----------------	------	-----------	--	--	--	--------	-----	----------

Clear	Generate Collection	Print	Fwd Refs	Bkwd Refs	Generate OACS
-------	---------------------	-------	----------	-----------	---------------

[First Hit](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)[Generate Collection](#)[Print](#)

L12: Entry 22 of 32

File: DWPI

Jun 22, 1990

DERWENT-ACC-NO: 1990-235292

DERWENT-WEEK: 199706

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Prodn. of clone plants without using plant hormones - by transforming tobacco plants with *Agrobacterium rhizogenes* and incubating

PRIORITY-DATA: 1988JP-0316007 (December 14, 1988)

[Search Selected](#)[Search ALL](#)[Clear](#)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
<input type="checkbox"/> JP 02163016 A	June 22, 1990		000	
<input type="checkbox"/> JP 2568660 B2	January 8, 1997		005	A01H001/00

INT-CL (IPC): A01H 1/00; C12N 5/04

ABSTRACTED-PUB-NO: JP 02163016A

BASIC-ABSTRACT:

In prodn. of clone plants, pieces of organs of tobacco plants are transformed with bacteria of *Agrobacterium rhizogenes* and then incubated, and the shoots produced from the pieces are incubated.

Typically, the tobacco plant is *Nicotiana tabacum*. Pref. *Agrobacterium rhizogenes* MAFF03-01724, MAFF03-01725, MAFF03-01726, MAFF03-01727 is applied to leaves, stems or roots, esp. to leaves. Incubation of the transformant pieces is pref. effected in Murashige-Skoog (MS) medium.

USE/ADVANTAGE - A lot of clone plants are directly obtd. from organs (leaves, stems, roots) of tobacco plants in a short period of time, without use of plant hormones (auxin, cytokinin) and without formation of calluse.

ABSTRACTED-PUB-NO: JP 02163016A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg. 0/0

[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)

[First Hit](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)[Generate Collection](#)[Print](#)

L12: Entry 20 of 32

File: DWPI

Sep 13, 1990

DERWENT-ACC-NO: 1990-324158

DERWENT-WEEK: 199043

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Tanshinone prepns. - by culturing section of differentiation induce adventitious roots

Basic Abstract Text (2):

Pref. culture is hair roots transformed and induced by Ri plasmid retained by Agrobacterium rhizogenes are used. Tanshinones are secreted into medium, with solid or liq medium is used.

Basic Abstract Text (4):

In an example, shoot apex of *Salvia miliorrhiza* was treated with 75% etOH, sterilised H₂O, 10% Na-hypochlorite in order, then cut at ca. 2 mm, and cultured on kinetin, indole acetate added Murashige-Skoog (MS) solid medium. (A) Obtd. foliage was cut to apical buds and nodes and cultured on MS medium, then petioles were cultured on various concn. auxins and cytokinins added MS. Gamborg B5 (B5) medium at 25 deg.C for 4-8 weeks in dark place. Obtd. adventitious roots were subcultured. (B) Hair roots introduced by inoculation of Ri plasmid retaining Agrobacterium rhizogenes ATCC 15834 to the sterilised plants stems, leaves, petioles, etc. After 2-8 weeks, induced hair roots were implanted to claforan contg. MS solid medium and cultured for 1-2 weeks 2-3 times. The part of hair roots was implanted to MS medium, and shaking cultured at 25 deg.C in dark place for 4-8 hours. Grown wt. of culture were measured. Formed No. of adventitious roots wer ca. 10-100. Contents of tanshinone I was 0.013% (against dry wt.). Hair roots cultured in MS liq. medium was 1-4 g (fresh wt.). from 100 mg hair roots. Contents of tanshinones were analysed.

[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)

[First Hit](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#) [Generate Collection](#) | [Print](#)

L12: Entry 19 of 32

File: DWPI

Sep 23, 1990

DERWENT-ACC-NO: 1991-155208

DERWENT-WEEK: 199121

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Beta-carboline alkaloid prepn. - involves induction of rhizogenesis in Peganum harmala cells using virulent strain of Agrobacterium rhizogenes

Basic Abstract Text (1):

Beta-carboline alkaloids are obtd. using Peganum Harmala (wild rue) culture, having capability to synthesize alkaloids within whole plant. Rhizogenesis is induced into plant cells by infecting segments of hypocotyl of sterile seedlings with virulent strain Agrobacterium rhizogenes (strain A-4), carrying RI plasmid, and thus effecting transformation leading to formation of constantly growing rhizogeneous culture of high level of biosynthesis of beta-carbonyl alkaloids.

Standard Title Terms (1):

BETA CARBOLINE ALKALOID PREPARATION INDUCTION PEGANUM HARMALA CELL VIRULENT STRAIN AGROBACTERIUM RHIZOGENES

[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)

[First Hit](#)[Previous Doc](#)[Next Doc](#) / [Go to Doc#](#)[Generate Collection](#)[Print](#)

L12: Entry 16 of 32

File: DWPI

Sep 7, 1993

DERWENT-ACC-NO: 1993-316538

DERWENT-WEEK: 199340

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Transformant plant body of VINCA MINOR for cerebral blood stream improver
mfr. - produced by transformation with hair-root inducing gene (rol gene)

Basic Abstract Text (4):

In an example, the top of the stem (1 cm) of Vinca minor cultured in a greenhouse was sterilised with 10% Na hypochlorite, then planted in a solidified hormone-free MS medium to obtain an aseptic plant body. The top of the aseptic plant body (3 cm) was cut out and cultured once every month. Then the stem including the node (1 cm) was immersed for 5 mins. in a suspension of Agrobacterium rhizogenes MAFF03-01724 possessing pRi1724 including the rol gene region. Then, the stem was embedded in 1% agar-agar, and cultured at 25 deg.C under illumination for 3 days to allow infection with the bacterium. then, the infected stem piece was transplanted in a solidified MS medium contg. NAA at 1 mg/l, and bancomycin at 500 microg and calbenicilin at 500 microg/l to eliminate the bacteria. The stem was then incubated at 25 deg.C in darkness for 2 weeks to induce hair roots. Hair roots obtd. were cut out and cultured for one month in an MS medium contg. NAA at 1 mg/l, and young plant was reproduced. The young plant was then transplanted in a solidified hormone-free MS medium and cultured at 25 deg.C under illumination. A complete plant body was obtd. The obtd. plant body was subcultured in a solidified hormone-free MS medium for one monthact

[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)[Generate Collection](#)[Print](#)

L9: Entry 11 of 34

File: USPT

Jan 16, 2001

DOCUMENT-IDENTIFIER: US 6174724 B1

**** See image for Certificate of Correction ****

TITLE: Chimeric genes suitable for expression in plant cells

Detailed Description Text (122):

If desired, any DNA sequence may be modified by substituting certain bases for the existing bases. Such modifications may be performed for a variety of reasons. For example, one or more bases in a sequence may be replaced by other bases in order to create or delete a cleavage site for a particular endonuclease. As another example, one or more bases in a sequence may be replaced in order to reduce the occurrence of "stem and loop" structures in messenger RNA. Such modified sequences are within the scope of this invention.

Other Reference Publication (15):

Chilton et al. (1982) "Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells," Nature 295:432-434.

CLAIMS:

1. A chimeric plant-expressible gene, said gene comprising in the 5' to 3' direction:

(a) a promoter region derived from a gene that is naturally expressed in a plant cell and that is capable of effecting mRNA transcription in the selected plant cell to be transfected, operably linked to

(b) a structural DNA sequence encoding a polypeptide that permits the selection of transformed plant cells containing said chimeric gene by rendering said transformed plant cells resistant to an amount of an antibiotic that would be toxic to non-transformed plant cells, operably linked to

(c) a non-translated region of a gene naturally expressed in plant cells, said region encoding a signal sequence for polyadenylation of mRNA.

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: SSSPTA1600GXH

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

NEWS	1	Web Page URLs for STN Seminar Schedule - N. America
NEWS	2	"Ask CAS" for self-help around the clock
NEWS	3	BEILSTEIN enhanced with new display and select options, resulting in a closer connection to BABS
NEWS	4	BEILSTEIN on STN workshop to be held August 24 in conjunction with the 228th ACS National Meeting
NEWS	5	IFIPAT/IFIUDB/IFICDB reloaded with new search and display fields
NEWS	6	CAPLUS and CA patent records enhanced with European and Japan Patent Office Classifications
NEWS	7	The Analysis Edition of STN Express with Discover! (Version 7.01 for Windows) now available
NEWS	8	Pricing for the Save Answers for SciFinder Wizard within STN Express with Discover! will change September 1, 2004
NEWS	9	BIOCOMMERCE: Changes and enhancements to content coverage
NEWS	10	BIOTECHABS/BIOTECHDS: Two new display fields added for legal status data from INPADOC
NEWS	11	INPADOC: New family current-awareness alert (SDI) available
NEWS	12	New pricing for the Save Answers for SciFinder Wizard within STN Express with Discover!
NEWS	13	New display format, HITSTR, available in WPIDS/WPINDEX/WPIX
NEWS	14	STN Patent Forum to be held October 13, 2004, in Iselin, NJ
NEWS EXPRESS		JULY 30 CURRENT WINDOWS VERSION IS V7.01, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP), AND CURRENT DISCOVER FILE IS DATED 11 AUGUST 2004
NEWS HOURS		STN Operating Hours Plus Help Desk Availability
NEWS INTER		General Internet Information
NEWS LOGIN		Welcome Banner and News Items
NEWS PHONE		Direct Dial and Telecommunication Network Access to STN
NEWS WWW		CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 19:07:50 ON 24 SEP 2004

=> file .agbiotech

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	0.21	0.21

FILE 'CAPLUS' ENTERED AT 19:08:20 ON 24 SEP 2004
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'CABA' ENTERED AT 19:08:20 ON 24 SEP 2004
 COPYRIGHT (C) 2004 CAB INTERNATIONAL (CABI)

FILE 'AGRICOLA' ENTERED AT 19:08:20 ON 24 SEP 2004

FILE 'BIOSIS' ENTERED AT 19:08:20 ON 24 SEP 2004
 Copyright (c) 2004 The Thomson Corporation.

=> s agrobacterium rhizogenes
 L1 5289 AGROBACTERIUM RHIZOGENES

=> s stem or hypocotyl and l1
 L2 385616 STEM OR HYPOCOTYL AND L1

=> s (stem or hypocotyl) and l1
 L3 649 (STEM OR HYPOCOTYL) AND L1

=> s K599
 L4 30 K599

=> s l1 and l4
 L5 26 L1 AND L4

=> dup rem 15
 PROCESSING COMPLETED FOR L5
 L6 14 DUP REM L5 (12 DUPLICATES REMOVED)

=> d 1-14

L6 ANSWER 1 OF 14 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 1
 AN 2004:611695 CAPLUS
 TI Use of the tobacco feedback-insensitive anthranilate synthase gene (ASA2)
 as a selectable marker for legume hairy root transformation
 AU Cho, H.-J.; Brotherton, J. E.; Widholm, J. M.
 CS Department of Crop Sciences, ERML, University of Illinois, Urbana, IL,
 61801, USA
 SO Plant Cell Reports (2004), 23(1-2), 104-113
 CODEN: PCRPD8; ISSN: 0721-7714
 PB Springer GmbH
 DT Journal
 LA English
 RE.CNT 23 THERE ARE 23 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 2 OF 14 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on
 STN
 AN 2003:313612 BIOSIS
 DN PREV200300313612
 TI Stable transformation of *C. annuum* and *C. baccatum* explants inoculated
 with *A. rhizogenes* and *A. tumefaciens*.
 AU Valera, Luis [Reprint Author]; Phillips, Gregory C. [Reprint Author]
 CS Molecular Biology Program, New Mexico State University, Las Cruces, NM,
 88003, USA

SO grphilli@nmsu.edu
In Vitro Cellular & Developmental Biology Plant, (Spring 2003) Vol. 39,
No. Abstract, pp. 42-A. print.
Meeting Info.: Congress on In Vitro Biology. Portland, Oregon, USA. May
31-June 04, 2003. Society for In Vitro Biology.
ISSN: 1054-5476 (ISSN print).
DT Conference; (Meeting)
Conference; (Meeting Poster)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 2 Jul 2003
Last Updated on STN: 2 Jul 2003

L6 ANSWER 3 OF 14 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on
STN
AN 2002:474962 BIOSIS
DN PREV200200474962
TI Comparison of Capsicum baccatum and C. annuum for stable transformation
using **Agrobacterium rhizogenes**.
AU Valera, Luis; Phillips, Gregory C.
CS E-mail,
grphilli@nmsu.edu
SO In Vitro Cellular and Developmental Biology Animal, (Spring, 2002) Vol.
38, No. Abstract, pp. 139.A. print.
Meeting Info.: 2002 Congress on In Vitro Biology. Orlando, FL, USA. June
25-29, 2002.
ISSN: 1071-2690.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 11 Sep 2002
Last Updated on STN: 11 Sep 2002

L6 ANSWER 4 OF 14 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on
STN
AN 2002:410988 BIOSIS
DN PREV200200410988
TI Response of hairy roots of different soybean genotypes to Fusarium solani
f. sp. glycines.
AU Li, S.; Lygin, A.; Zernova, O.; Lozovaya, V. [Reprint author]; Hartman, G.
[Reprint author]; Widholm, J. [Reprint author]
CS Dept. Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
SO Phytopathology, (June, 2002) Vol. 92, No. 6 Supplement, pp. S47. print.
Meeting Info.: 2002 Annual Meeting of the American Phytopathological
Society. Milwaukee, WI, USA. July 27-31, 2002.
CODEN: PHYTAJ. ISSN: 0031-949X.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 31 Jul 2002
Last Updated on STN: 31 Jul 2002

L6 ANSWER 5 OF 14 CABO COPYRIGHT 2004 CABI on STN
AN 2002:63284 CABO
DN 20023004053
TI Structure and activity of a soybean Adh promoter in transgenic hairy roots
AU Preiszner, J.; VanToai, T. T.; Huynh, L.; Bolla, R. I.; Yen, H. H.
CS Department of Horticulture and Crop Science, Plant Biotechnology Program,
The Ohio State University, 590 Woody Hayes Dr, Columbus, OH 43210, USA.
vantaoi.1@osu.edu
SO Plant Cell Reports, (2001) Vol. 20, No. 8, pp. 763-769. 30 ref.

Publisher: Springer-Verlag. Berlin
ISSN: 0721-7714
CY Germany, Federal Republic of
DT Journal
LA English
ED Entered STN: 20020405
Last Updated on STN: 20020405

L6 ANSWER 6 OF 14 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 2
AN 2001:699876 CAPLUS
DN 136:390833
TI Influence of different strains of **Agrobacterium rhizogenes** on induction of hairy roots and artemisinin production in artemisia annua
AU Giri, Archana; Ravindra, Sarish T.; Dhingra, Vikas; Narasu, M. Lakshmi
CS Centre for Biotechnology, Jawaharlal Nehru Technological University, Hyderabad, 500 028, India
SO Current Science (2001), 81(4), 378-382
CODEN: CUSCAM; ISSN: 0011-3891
PB Current Science Association
DT Journal
LA English
RE.CNT 24 THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 7 OF 14 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 3
AN 2001:682963 CAPLUS
DN 136:382870
TI Disarming of wild type **Agrobacterium rhizogenes**
K599
AU Xiang, Taihe; Yang, Jianbo; Somers, David A.
CS Key Laboratory of Rice Genetics and Breeding of Agricultural Ministry, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Peop. Rep. China
SO Yichuan (2001), 23(4), 336-340
CODEN: ICHUDW; ISSN: 0253-9772
PB Yichuan Zazhi Bianjibu
DT Journal
LA Chinese

L6 ANSWER 8 OF 14 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2002:43482 CAPLUS
DN 136:246434
TI Enhanced podophyllotoxin production from **Agrobacterium rhizogenes** transformed cultures of Podophyllum hexandrum
AU Giri, Archana; Giri, C. C.; Dhingra, Vikas; Narasu, M. Lakshmi
CS Centre for Biotechnology, Jawaharlal Nehru Technological University, Hyderabad, 500 028, India
SO Natural Product Letters (2001), 15(4), 229-235
CODEN: NPLEEF; ISSN: 1057-5634
PB Harwood Academic Publishers
DT Journal
LA English
RE.CNT 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 9 OF 14 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2000:161473 CAPLUS
DN 132:190490
TI Transgene assay using stable **Agrobacterium rhizogenes** transformation of plant roots
IN Taylor, Christopher G.; Huang, Yong

PA Monsanto Co., USA
SO PCT Int. Appl., 19 pp.
CODEN: PIXXD2
DT Patent
LA English
FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000012735	A2	20000309	WO 1999-US19745	19990831
	WO 2000012735	A3	20010531		
	W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
	RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
	CA 2341324	AA	20000309	CA 1999-2341324	19990831
	AU 9962408	A1	20000321	AU 1999-62408	19990831
	EP 1119631	A2	20010801	EP 1999-949562	19990831
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	BR 9913651	A	20010925	BR 1999-13651	19990831
	JP 2002524056	T2	20020806	JP 2000-567721	19990831
PRAI	US 1998-98402P	P	19980831		
	WO 1999-US19745	W	19990831		

L6 ANSWER 10 OF 14 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 4
AN 2000:24187 CAPLUS
DN 132:205534
TI High-efficiency induction of soybean hairy roots and propagation of the
soybean cyst nematode
AU Cho, Hyeon-Je; Farrand, Stephen K.; Noel, Gregory R.; Widholm, Jack M.
CS Department of Crop Sciences, University of Illinois, Urbana, IL, 61801,
USA
SO Planta (2000), 210(2), 195-204
CODEN: PLANAB; ISSN: 0032-0935
PB Springer-Verlag
DT Journal
LA English
RE.CNT 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 11 OF 14 CABA COPYRIGHT 2004 CABI on STN DUPLICATE 5
AN 2000:70714 CABA
DN 20001609542
TI Expression of soybean cyst nematode resistance in transgenic hairy roots
of soybean
AU Narayanan, R. A.; Atz, R.; Denny, R.; Young, N. D.; Somers, D. A.
CS Department of Agronomy and Plant Genetics, University of Minnesota, St.
Paul, MN 55108, USA.
SO Crop Science, (1999) Vol. 39, No. 6, pp. 1680-1686. 49 ref.
ISSN: 0011-183X
DT Journal
LA English
ED Entered STN: 20000609
Last Updated on STN: 20000609

L6 ANSWER 12 OF 14 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on
STN

AN 2003:144250 BIOSIS
DN PREV200300144250
TI Induction of hairy roots with high transformation efficiency on soybean genotypes and propagation of the soybean cyst nematode.
AU Cho, Hyeon-Je [Reprint Author]; Farrand, Stephen K. [Reprint Author]; Widholm, Jack M. [Reprint Author]; Noel, Greg R.
CS Dept. of Crop Sciences, University of Illinois, Urbana, IL, USA
hjecho@uiuc.edu
SO Plant Biology (Rockville), (1999) Vol. 1999, pp. 102. print.
Meeting Info.: Annual Meeting of the American Society of Plant Physiologists. Baltimore, Maryland, USA. July 24-28, 1999. American Society of Plant Physiologists (ASPP).
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 19 Mar 2003
Last Updated on STN: 19 Mar 2003

L6 ANSWER 13 OF 14 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 6
AN 1997:195433 CAPLUS
DN 126:169072
TI Stable vindoline production in transformed cell cultures of Catharanthus roseus
AU O'Keefe, Barry R.; Mahady, Gail B.; Gills, Joell J.; Beecher, Christopher W. W.; Schilling, Alex B.
CS Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60612, USA
SO Journal of Natural Products (1997), 60(3), 261-264
CODEN: JNPRDF; ISSN: 0163-3864
PB American Chemical Society
DT Journal
LA English

L6 ANSWER 14 OF 14 CABA COPYRIGHT 2004 CABI on STN DUPLICATE 7
AN 90:93979 CABA
DN 19901147341
TI Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode
AU Savka, M. A.; Ravillion, B.; Noel, G. R.; Farrand, S. K.
CS USDA, ARS, Department of Plant Pathology, University of Illinois, 1102 South Goodwin Avenue, N519 Turner Hall, Urbana, IL 61801, USA.
SO Phytopathology, (1990) Vol. 80, No. 5, pp. 503-508. 37 ref.
ISSN: 0031-949X
DT Journal
LA English
ED Entered STN: 19941101
Last Updated on STN: 19941101

=> d his

(FILE 'HOME' ENTERED AT 19:07:50 ON 24 SEP 2004)

FILE 'CAPLUS, CABA, AGRICOLA, BIOSIS' ENTERED AT 19:08:20 ON 24 SEP 2004
L1 5289 S AGROBACTERIUM RHIZOGENES
L2 385616 S STEM OR HYPOCOTYL AND L1
L3 649 S (STEM OR HYPOCOTYL) AND L1
L4 30 S K599
L5 26 S L1 AND L4
L6 14 DUP REM L5 (12 DUPLICATES REMOVED)

=> s (chimera or chimeric) and 13

L7 34 (CHIMERA OR CHIMERIC) AND L3

=> dup rem 17

PROCESSING COMPLETED FOR L7

L8 19 DUP REM L7 (15 DUPLICATES REMOVED)

=> d 1-19

L8 ANSWER 1 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 1

AN 2002:533523 CAPLUS

DN 137:335211

TI The use of **Agrobacterium rhizogenes** transformed roots
to obtain transgenic shoots of the apple rootstock Jork 9

AU Pawlicki-Jullian, Nathalie; Sedira, Monika; Welander, Margareta

CS IUT Genie Biologique, Amiens, F-80025, Fr.

SO Plant Cell, Tissue and Organ Culture (2002), 70(2), 163-171

CODEN: PTCEDJ; ISSN: 0167-6857

PB Kluwer Academic Publishers

DT Journal

LA English

RE.CNT 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 2 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN

AN 2000:161473 CAPLUS

DN 132:190490

TI Transgene assay using stable **Agrobacterium rhizogenes**
transformation of plant roots

IN Taylor, Christopher G.; Huang, Yong

PA Monsanto Co., USA

SO PCT Int. Appl., 19 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000012735	A2	20000309	WO 1999-US19745	19990831
	WO 2000012735	A3	20010531		
	W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
	RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
	CA 2341324	AA	20000309	CA 1999-2341324	19990831
	AU 9962408	A1	20000321	AU 1999-62408	19990831
	EP 1119631	A2	20010801	EP 1999-949562	19990831
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	BR 9913651	A	20010925	BR 1999-13651	19990831
	JP 2002524056	T2	20020806	JP 2000-567721	19990831
PRAI	US 1998-98402P	P	19980831		
	WO 1999-US19745	W	19990831		

L8 ANSWER 3 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 2

AN 2000:203068 CAPLUS

DN 133:28497

TI How **Agrobacterium rhizogenes** triggers de novo root

formation in a recalcitrant woody plant: an integrated histological, ultrastructural and molecular analysis
AU Falasca, Giuseppina; Reverberi, Massimo; Lauri, Paola; Caboni, Emilia; De Stradis, Angelo; Altamura, Maria Maddalena
CS Dipartimento di Biologia Vegetale, Universita di Roma 'La Sapienza', Rome, I-00185, Italy
SO New Phytologist (2000), 145(1), 77-93
CODEN: NEPHAV; ISSN: 0028-646X
PB Cambridge University Press
DT Journal
LA English
RE.CNT 44 THERE ARE 44 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 4 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 3
AN 1998:173681 CAPLUS
DN 128:290944
TI A putative rolB gene homolog of the **Agrobacterium rhizogenes** TR-DNA has different morphogenetic activity in tobacco than rolB
AU Lemcke, Kai; Schmülling, Thomas
CS Allgemeine Genetik, Universität Tübingen, Tübingen, 72076, Germany
SO Plant Molecular Biology (1998), 36(5), 803-808
CODEN: PMBIDB; ISSN: 0167-4412
PB Kluwer Academic Publishers
DT Journal
LA English
RE.CNT 31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 5 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 4
AN 1997:468903 CAPLUS
DN 127:186302
TI The **Agrobacterium rhizogenes** rolB and rolC promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid aspen
AU Nilsson, Ove; Tuominen, Hannele; Sundberg, Björn; Olsson, Olof
CS The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
SO Physiologia Plantarum (1997), 100(3), 456-462
CODEN: PHPLAI; ISSN: 0031-9317
PB Munksgaard
DT Journal
LA English
RE.CNT 40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 6 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 5
AN 1996:149144 CAPLUS
DN 124:222580
TI Tissue-specific expression of the rolA gene mediates morphological changes in transgenic tobacco
AU Guivarc'h, Anne; Carneiro, Mauro; Vilaine, Francoise; Pautot, Véronique; Chriqui, Dominique
CS Lab. CEMV, Université Pierre et Marie Curie, Paris, F-75252, Fr.
SO Plant Molecular Biology (1996), 30(1), 125-34
CODEN: PMBIDB; ISSN: 0167-4412
PB Kluwer
DT Journal
LA English

L8 ANSWER 7 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1995:945358 CAPLUS

DN 124:46826
TI Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter
AU Elmayan, Taline; Tepfer, Mark
CS Laboratoire de Biologie Cellulaire, INRA, Versailles, 78026, Fr.
SO Transgenic Research (1995), 4(6), 388-96
CODEN: TRSEES; ISSN: 0962-8819
PB Chapman & Hall
DT Journal
LA English

L8 ANSWER 8 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 6
AN 1995:888603 CAPLUS
DN 123:310647
TI Genetic transformation of *Verticordia grandis* (Myrtaceae) using wild-type **Agrobacterium rhizogenes** and binary Agrobacterium vectors.
AU Stummer, B. E.; Smith, S. E.; Langridge, P.
CS Department of Plant Science, Faculty of Agricultural and Natural Resource Sciences, Waite Agricultural Research Institute, Adelaide University, Adelaide, South Australia, Australia
SO Plant Science (Shannon, Ireland) (1995), 111(1), 51-62
CODEN: PLSCE4; ISSN: 0168-9452
PB Elsevier
DT Journal
LA English

L8 ANSWER 9 OF 19 CABA COPYRIGHT 2004 CABI on STN
AN 94:103633 CABA
DN 19941608828
TI Histochemical localization of a **chimeric** gene (rolC-GUS) expression in zygotic embryos of transgenic tobacco plants
AU Aspuria, E. T.; Nagato, Y.; Uchimiya, H.
CS Institute of Molecular & Cellular Biosciences, Faculty of Agriculture, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan.
SO Annals of Botany, (1994) Vol. 73, No. 5, pp. 465-469. 25 ref.
ISSN: 0305-7364
DT Journal
LA English
ED Entered STN: 19941101
Last Updated on STN: 19941101

L8 ANSWER 10 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 7
AN 1993:401939 CAPLUS
DN 119:1939
TI Promotion of flowering and morphological alterations in *Atropa belladonna* transformed with a CaMV 35S-rolC **chimeric** gene of the Ri plasmid
AU Kurioka, Yuriko; Suzuki, Yoshihito; Kamada, Hiroshi; Harada, Hiroshi
CS Gene Exp. Cent., Univ. Tsukuba, Tsukuba, 305, Japan
SO Plant Cell Reports (1992), 12(1), 1-6
CODEN: PCRPD8; ISSN: 0721-7714
DT Journal
LA English

L8 ANSWER 11 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1991:529090 CAPLUS
DN 115:129090
TI Transformation by **Agrobacterium rhizogenes** and regeneration of transgenic shoots of the wild soybean *Glycine argyrea*
AU Kumar, V.; Jones, B.; Davey, M. R.
CS Dep. Bot., Univ. Nottingham, Nottingham, NG7 2RD, UK
SO Plant Cell Reports (1991), 10(3), 135-8

CODEN: PCRPD8; ISSN: 0721-7714
DT Journal
LA English

L8 ANSWER 12 OF 19 CABO COPYRIGHT 2004 CABI on STN
AN 91:43687 CABO
DN 19911620474
TI Use of **Agrobacterium rhizogenes** to create
chimeric apple trees through genetic grafting
AU Lambert, C.; Tepfer, D.
CS Laboratoire de Biologie Vegetale, Faculte des Sciences, 49035 Angers,
France.
SO Bio/Technology, (1991) Vol. 9, No. 1, pp. 80-83. 31 ref.
ISSN: 0733-222X
DT Journal
LA English
ED Entered STN: 19941101
Last Updated on STN: 19941101

L8 ANSWER 13 OF 19 AGRICOLA Compiled and distributed by the National
Agricultural Library of the Department of Agriculture of the United States
of America. It contains copyrighted materials. All rights reserved.
(2004) on STN
AN 91:43017 AGRICOLA
DN IND91014069
TI Functional analysis of the Sesbania rostrata leghemoglobin glb3 gene 5'
-upstream region in transgenic Lotus corniculatus and Nicotiana tabacum
plants.
AU Szabados, L.; Ratet, P.; Grunenberg, B.; De Bruijn, F.J.
CS Biological Research Center Institute of Plant Physiology, Szeged, Hungary
AV DNAL (QK725.P532)
SO The Plant cell, Oct 1990. Vol. 10, No. 2. p. 973-986 ill
Publisher: Rockville, Md. : American Society of Plant Physiologists.
ISSN: 1040-4651
NTE Includes references.
DT Article
FS U.S. Imprints not USDA, Experiment or Extension
LA English

L8 ANSWER 14 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 8
AN 1990:31568 CAPLUS
DN 112:31568
TI Use of a disarmed Ri plasmid vector in the analysis of transformed root
induction
AU McInnes, E.; Davey, M. R.; Mulligan, B. J.; Davies, K.; Sargent, A. W.;
Morgan, A. J.
CS Dep. Bot., Univ. Nottingham, Nottingham, NG7 2RD, UK
SO Journal of Experimental Botany (1989), 40(219), 1135-44
CODEN: JEBOA6; ISSN: 0022-0957
DT Journal
LA English

L8 ANSWER 15 OF 19 AGRICOLA Compiled and distributed by the National
Agricultural Library of the Department of Agriculture of the United States
of America. It contains copyrighted materials. All rights reserved.
(2004) on STN
AN 91:43033 AGRICOLA
DN IND91014085
TI Promoters of the rolA, B, and C genes of **Agrobacterium**
rhizogenes are differentially regulated in transgenic plants.
AU Schmulling, T.; Schell, J.; Spena, A.
CS Max-Planck-Institut fur Zuchungsforschung, Koln, Federal Republic of

Germany
AV DNAL (QK725.P532)
SO The Plant cell, July 1989. Vol. 1, No. 7. p. 665-670 ill
Publisher: Rockville, Md. : American Society of Plant Physiologists.
ISSN: 1040-4651
NTE Includes references.
DT Article
FS U.S. Imprints not USDA, Experiment or Extension
LA English

L8 ANSWER 16 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 9
AN 1989:491664 CAPLUS
DN 111:91664
TI Expression of a **chimeric** kanamycin resistance gene introduced
into the wild soybean Glycine canescens using a cointegrate Ri plasmid
vector
AU Rech, E. L.; Golds, T. J.; Husnain, T.; Vainstein, M. H.; Jones, B.;
Hammatt, N.; Mulligan, B. J.; Davey, M. R.
CS Dep. Bot., Univ. Nottingham, Nottingham, NG7 2RD, UK
SO Plant Cell Reports (1989), 8(1), 33-6
CODEN: PCRPD8; ISSN: 0721-7714
DT Journal
LA English

L8 ANSWER 17 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1989:226619 CAPLUS
DN 110:226619
TI Method for nutritional improvement of plants by introduction of
Bertholletia excelsa sulfur-rich 2 S seed storage protein gene
IN Sun, Samuel S. M.; Altenbach, Susan B.
PA Plant Cell Research Institute, Inc., USA
SO Eur. Pat. Appl., 11 pp.
CODEN: EPXXDW
DT Patent
LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 295959	A2	19881221	EP 1988-305580	19880617
EP 295959	A3	19900110		
R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE				
AU 8818100	A1	19881222	AU 1988-18100	19880617
AU 624329	B2	19920611		
JP 01091787	A2	19890411	JP 1988-152101	19880620
PRAI US 1987-65303		19870619		

L8 ANSWER 18 OF 19 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on
STN
AN 1997:344164 BIOSIS
DN PREV199799643367
TI Morphological changes in transgenic Populus carrying the RolC gene from
Agrobacterium rhizogenes.
AU Fladung, M. [Reprint author]; Muhs, H.-J.; Ahuja, M. R.
CS Federal Res. Centre Forestry Forest Products, Inst. Forest Genetics,
Sieker Landstr. 2, D-22927 Grosshansdorf, Germany
SO Silvae Genetica, (1996 (1997)) Vol. 45, No. 5-6, pp. 349-354. .
CODEN: SIGEAQ. ISSN: 0037-5349.
DT Article
LA English
ED Entered STN: 11 Aug 1997
Last Updated on STN: 11 Aug 1997

L8 ANSWER 19 OF 19 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved.
(2004) on STN
AN 2004:13372 AGRICOLA
DN IND43618977
TI The use of **Agrobacterium rhizogenes** transformed roots to obtain transgenic shoots of the apple rootstock Jork 9.
AU Pawlicki-Jullian, N.; Sedira, M.; Welander, M.
AV DNAL (QK725.P53)
SO Plant cell, tissue and organ culture, p. 163-171
ISSN: 0167-6857
NTE In the special issue: Adventitious regeneration / edited by T. Geier, M.B. Schroeder and G.J.M. de Klerk.
Includes references
DT Article
FS Non US
LA English

=> d his

(FILE 'HOME' ENTERED AT 19:07:50 ON 24 SEP 2004)

FILE 'CPLUS, CABA, AGRICOLA, BIOSIS' ENTERED AT 19:08:20 ON 24 SEP 2004
L1 5289 S AGROBACTERIUM RHIZOGENES
L2 385616 S STEM OR HYPOCOTYL AND L1
L3 649 S (STEM OR HYPOCOTYL) AND L1
L4 30 S K599
L5 26 S L1 AND L4
L6 14 DUP REM L5 (12 DUPLICATES REMOVED)
L7 34 S (CHIMERA OR CHIMERIC) AND L3
L8 19 DUP REM L7 (15 DUPLICATES REMOVED)

=> d 18 1-19 ibib

L8 ANSWER 1 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 1
ACCESSION NUMBER: 2002:533523 CAPLUS
DOCUMENT NUMBER: 137:335211
TITLE: The use of **Agrobacterium rhizogenes** transformed roots to obtain transgenic shoots of the apple rootstock Jork 9
AUTHOR(S): Pawlicki-Jullian, Nathalie; Sedira, Monika; Welander, Margareta
CORPORATE SOURCE: IUT Genie Biologique, Amiens, F-80025, Fr.
SOURCE: Plant Cell, Tissue and Organ Culture (2002), 70(2), 163-171
PUBLISHER: Kluwer Academic Publishers
DOCUMENT TYPE: Journal
LANGUAGE: English
REFERENCE COUNT: 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 2 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 2000:161473 CAPLUS
DOCUMENT NUMBER: 132:190490
TITLE: Transgene assay using stable **Agrobacterium rhizogenes** transformation of plant roots
INVENTOR(S): Taylor, Christopher G.; Huang, Yong
PATENT ASSIGNEE(S): Monsanto Co., USA
SOURCE: PCT Int. Appl., 19 pp.

DOCUMENT TYPE: CODEN: PIXXD2
 LANGUAGE: Patent
 FAMILY ACC. NUM. COUNT: English
 PATENT INFORMATION: 3

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000012735	A2	20000309	WO 1999-US19745	19990831
WO 2000012735	A3	20010531		
W:	AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM			
RW:	GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG			
CA 2341324	AA	20000309	CA 1999-2341324	19990831
AU 9962408	A1	20000321	AU 1999-62408	19990831
EP 1119631	A2	20010801	EP 1999-949562	19990831
R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO			
BR 9913651	A	20010925	BR 1999-13651	19990831
JP 2002524056	T2	20020806	JP 2000-567721	19990831
PRIORITY APPLN. INFO.:			US 1998-98402P	P 19980831
			WO 1999-US19745	W 19990831

L8 ANSWER 3 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 2
 ACCESSION NUMBER: 2000:203068 CAPLUS
 DOCUMENT NUMBER: 133:28497
 TITLE: How **Agrobacterium rhizogenes**
 triggers de novo root formation in a recalcitrant
 woody plant: an integrated histological,
 ultrastructural and molecular analysis
 AUTHOR(S): Falasca, Giuseppina; Reverberi, Massimo; Lauri, Paola;
 Caboni, Emilia; De Stradis, Angelo; Altamura, Maria
 Maddalena
 CORPORATE SOURCE: Dipartimento di Biologia Vegetale, Universita di Roma
 'La Sapienza', Rome, I-00185, Italy
 SOURCE: New Phytologist (2000), 145(1), 77-93
 CODEN: NEPHAV; ISSN: 0028-646X
 PUBLISHER: Cambridge University Press
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 REFERENCE COUNT: 44 THERE ARE 44 CITED REFERENCES AVAILABLE FOR THIS
 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 4 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 3
 ACCESSION NUMBER: 1998:173681 CAPLUS
 DOCUMENT NUMBER: 128:290944
 TITLE: A putative rolB gene homolog of the
Agrobacterium rhizogenes TR-DNA has
 different morphogenetic activity in tobacco than rolB
 Lemcke, Kai; Schmülling, Thomas
 AUTHOR(S): Allgemeine Genetik, Universitat Tubingen, Tubingen,
 72076, Germany
 CORPORATE SOURCE:
 SOURCE: Plant Molecular Biology (1998), 36(5), 803-808
 CODEN: PMBIDB; ISSN: 0167-4412
 PUBLISHER: Kluwer Academic Publishers
 DOCUMENT TYPE: Journal

LANGUAGE: English
REFERENCE COUNT: 31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 5 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 4
ACCESSION NUMBER: 1997:468903 CAPLUS
DOCUMENT NUMBER: 127:186302
TITLE: The **Agrobacterium rhizogenes** rolB and rolC promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid aspen
AUTHOR(S): Nilsson, Ove; Tuominen, Hannele; Sundberg, Bjorn; Olsson, Olof
CORPORATE SOURCE: The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
SOURCE: Physiologia Plantarum (1997), 100(3), 456-462
CODEN: PHPLAI; ISSN: 0031-9317
PUBLISHER: Munksgaard
DOCUMENT TYPE: Journal
LANGUAGE: English
REFERENCE COUNT: 40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 6 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 5
ACCESSION NUMBER: 1996:149144 CAPLUS
DOCUMENT NUMBER: 124:222580
TITLE: Tissue-specific expression of the rolA gene mediates morphological changes in transgenic tobacco
AUTHOR(S): Guivarc'h, Anne; Carneiro, Mauro; Vilaine, Francoise; Pautot, Veronique; Chriqui, Dominique
CORPORATE SOURCE: Lab. CEMV, Universite Pierre et Marie Curie, Paris, F-75252, Fr.
SOURCE: Plant Molecular Biology (1996), 30(1), 125-34
CODEN: PMBIDB; ISSN: 0167-4412
PUBLISHER: Kluwer
DOCUMENT TYPE: Journal
LANGUAGE: English

L8 ANSWER 7 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1995:945358 CAPLUS
DOCUMENT NUMBER: 124:46826
TITLE: Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter
AUTHOR(S): Elmayan, Taline; Tepfer, Mark
CORPORATE SOURCE: Laboratoire de Biologie Cellulaire, INRA, Versailles, 78026, Fr.
SOURCE: Transgenic Research (1995), 4(6), 388-96
CODEN: TRSEES; ISSN: 0962-8819
PUBLISHER: Chapman & Hall
DOCUMENT TYPE: Journal
LANGUAGE: English

L8 ANSWER 8 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 6
ACCESSION NUMBER: 1995:888603 CAPLUS
DOCUMENT NUMBER: 123:310647
TITLE: Genetic transformation of *Verticordia grandis* (Myrtaceae) using wild-type **Agrobacterium rhizogenes** and binary Agrobacterium vectors.
AUTHOR(S): Stummer, B. E.; Smith, S. E.; Langridge, P.
CORPORATE SOURCE: Department of Plant Science, Faculty of Agricultural and Natural Resource Sciences, Waite Agricultural

SOURCE: Research Institute, Adelaide University, Adelaide,
South Australia, Australia
Plant Science (Shannon, Ireland) (1995), 111(1), 51-62
CODEN: PLSCE4; ISSN: 0168-9452

PUBLISHER: Elsevier
DOCUMENT TYPE: Journal
LANGUAGE: English

L8 ANSWER 9 OF 19 CABA COPYRIGHT 2004 CABI on STN
ACCESSION NUMBER: 94:103633 CABA
DOCUMENT NUMBER: 19941608828
TITLE: Histochemical localization of a **chimeric**
gene (rolC-GUS) expression in zygotic embryos of
transgenic tobacco plants
AUTHOR: Aspuria, E. T.; Nagato, Y.; Uchimiya, H.
CORPORATE SOURCE: Institute of Molecular & Cellular Biosciences,
Faculty of Agriculture, University of Tokyo, Yayoi,
Bunkyo-ku, Tokyo 113, Japan.
SOURCE: Annals of Botany, (1994) Vol. 73, No. 5, pp.
465-469. 25 ref.
ISSN: 0305-7364
DOCUMENT TYPE: Journal
LANGUAGE: English
ENTRY DATE: Entered STN: 19941101
Last Updated on STN: 19941101

L8 ANSWER 10 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 7
ACCESSION NUMBER: 1993:401939 CAPLUS
DOCUMENT NUMBER: 119:1939
TITLE: Promotion of flowering and morphological alterations
in Atropa belladonna transformed with a CaMV 35S-rolC
chimeric gene of the Ri plasmid
AUTHOR(S): Kurioka, Yuriko; Suzuki, Yoshihito; Kamada, Hiroshi;
Harada, Hiroshi
CORPORATE SOURCE: Gene Exp. Cent., Univ. Tsukuba, Tsukuba, 305, Japan
SOURCE: Plant Cell Reports (1992), 12(1), 1-6
CODEN: PCRPD8; ISSN: 0721-7714
DOCUMENT TYPE: Journal
LANGUAGE: English

L8 ANSWER 11 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1991:529090 CAPLUS
DOCUMENT NUMBER: 115:129090
TITLE: Transformation by **Agrobacterium**
rhizogenes and regeneration of transgenic
shoots of the wild soybean Glycine argyrea
AUTHOR(S): Kumar, V.; Jones, B.; Davey, M. R.
CORPORATE SOURCE: Dep. Bot., Univ. Nottingham, Nottingham, NG7 2RD, UK
SOURCE: Plant Cell Reports (1991), 10(3), 135-8
CODEN: PCRPD8; ISSN: 0721-7714
DOCUMENT TYPE: Journal
LANGUAGE: English

L8 ANSWER 12 OF 19 CABA COPYRIGHT 2004 CABI on STN
ACCESSION NUMBER: 91:43687 CABA
DOCUMENT NUMBER: 19911620474
TITLE: Use of **Agrobacterium rhizogenes**
to create **chimeric** apple trees through
genetic grafting
AUTHOR: Lambert, C.; Tepfer, D.
CORPORATE SOURCE: Laboratoire de Biologie Vegetale, Faculte des
Sciences, 49035 Angers, France.

SOURCE: Bio/Technology, (1991) Vol. 9, No. 1, pp. 80-83. 31
ref.
ISSN: 0733-222X
DOCUMENT TYPE: Journal
LANGUAGE: English
ENTRY DATE: Entered STN: 19941101
Last Updated on STN: 19941101

L8 ANSWER 13 OF 19 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved.
(2004) on STN

ACCESSION NUMBER: 91:43017 AGRICOLA
DOCUMENT NUMBER: IND91014069
TITLE: Functional analysis of the *Sesbania rostrata* leghemoglobin *glb3* gene 5' -upstream region in transgenic *Lotus corniculatus* and *Nicotiana tabacum* plants.
AUTHOR(S): Szabados, L.; Ratet, P.; Grunenberg, B.; De Bruijn, F.J.
CORPORATE SOURCE: Biological Research Center Institute of Plant Physiology, Szeged, Hungary
AVAILABILITY: DNAL (QK725.P532)
SOURCE: The Plant cell, Oct 1990. Vol. 10, No. 2. p. 973-986
ill
Publisher: Rockville, Md. : American Society of Plant Physiologists.
ISSN: 1040-4651
NOTE: Includes references.
DOCUMENT TYPE: Article
FILE SEGMENT: U.S. Imprints not USDA, Experiment or Extension
LANGUAGE: English

L8 ANSWER 14 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 8
ACCESSION NUMBER: 1990:31568 CAPLUS
DOCUMENT NUMBER: 112:31568
TITLE: Use of a disarmed *Ri* plasmid vector in the analysis of transformed root induction
AUTHOR(S): McInnes, E.; Davey, M. R.; Mulligan, B. J.; Davies, K.; Sargent, A. W.; Morgan, A. J.
CORPORATE SOURCE: Dep. Bot., Univ. Nottingham, Nottingham, NG7 2RD, UK
SOURCE: Journal of Experimental Botany (1989), 40(219), 1135-44
CODEN: JEBOA6; ISSN: 0022-0957
DOCUMENT TYPE: Journal
LANGUAGE: English

L8 ANSWER 15 OF 19 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved.
(2004) on STN

ACCESSION NUMBER: 91:43033 AGRICOLA
DOCUMENT NUMBER: IND91014085
TITLE: Promoters of the *rolA*, *B*, and *C* genes of *Agrobacterium rhizogenes* are differentially regulated in transgenic plants.
AUTHOR(S): Schmülling, T.; Schell, J.; Spena, A.
CORPORATE SOURCE: Max-Planck-Institut für Züchtungsforschung, Köln, Federal Republic of Germany
AVAILABILITY: DNAL (QK725.P532)
SOURCE: The Plant cell, July 1989. Vol. 1, No. 7. p. 665-670
ill

Publisher: Rockville, Md. : American Society of Plant
 Physiologists.
 ISSN: 1040-4651
 NOTE: Includes references.
 DOCUMENT TYPE: Article
 FILE SEGMENT: U.S. Imprints not USDA, Experiment or Extension
 LANGUAGE: English

L8 ANSWER 16 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 9
 ACCESSION NUMBER: 1989:491664 CAPLUS
 DOCUMENT NUMBER: 111:91664
 TITLE: Expression of a **chimeric** kanamycin
 resistance gene introduced into the wild soybean
Glycine canescens using a cointegrate Ri plasmid
 vector
 AUTHOR(S): Rech, E. L.; Golds, T. J.; Husnain, T.; Vainstein, M.
 H.; Jones, B.; Hammatt, N.; Mulligan, B. J.; Davey, M.
 R.
 CORPORATE SOURCE: Dep. Bot., Univ. Nottingham, Nottingham, NG7 2RD, UK
 SOURCE: Plant Cell Reports (1989), 8(1), 33-6
 CODEN: PCRPD8; ISSN: 0721-7714
 DOCUMENT TYPE: Journal
 LANGUAGE: English

L8 ANSWER 17 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN
 ACCESSION NUMBER: 1989:226619 CAPLUS
 DOCUMENT NUMBER: 110:226619
 TITLE: Method for nutritional improvement of plants by
 introduction of *Bertholletia excelsa* sulfur-rich 2 S
 seed storage protein gene
 INVENTOR(S): Sun, Samuel S. M.; Altenbach, Susan B.
 PATENT ASSIGNEE(S): Plant Cell Research Institute, Inc., USA
 SOURCE: Eur. Pat. Appl., 11 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 295959	A2	19881221	EP 1988-305580	19880617
EP 295959	A3	19900110		
R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE				
AU 8818100	A1	19881222	AU 1988-18100	19880617
AU 624329	B2	19920611		
JP 01091787	A2	19890411	JP 1988-152101	19880620
PRIORITY APPLN. INFO.:			US 1987-65303	19870619

L8 ANSWER 18 OF 19 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on
 STN
 ACCESSION NUMBER: 1997:344164 BIOSIS
 DOCUMENT NUMBER: PREV199799643367
 TITLE: Morphological changes in transgenic *Populus* carrying the
RolC gene from ***Agrobacterium rhizogenes***
 AUTHOR(S): Fladung, M. [Reprint author]; Muhs, H.-J.; Ahuja, M. R.
 CORPORATE SOURCE: Federal Res. Centre Forestry Forest Products, Inst. Forest
 Genetics, Sieker Landstr. 2, D-22927 Grosshansdorf, Germany
 SOURCE: *Silvae Genetica*, (1996 (1997)) Vol. 45, No. 5-6, pp.
 349-354.
 CODEN: SIGEAQ. ISSN: 0037-5349.

DOCUMENT TYPE: Article
LANGUAGE: English
ENTRY DATE: Entered STN: 11 Aug 1997
Last Updated on STN: 11 Aug 1997

L8 ANSWER 19 OF 19 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2004) on STN

ACCESSION NUMBER: 2004:13372 AGRICOLA
DOCUMENT NUMBER: IND43618977
TITLE: The use of **Agrobacterium rhizogenes**
transformed roots to obtain transgenic shoots of the apple rootstock Jork 9.
AUTHOR(S): Pawlicki-Jullian, N.; Sedira, M.; Welander, M.
AVAILABILITY: DNAL (QK725.P53)
SOURCE: Plant cell, tissue and organ culture, p. 163-171
ISSN: 0167-6857
NOTE: In the special issue: Adventitious regeneration / edited by T. Geier, M.B. Schroeder and G.J.M. de Klerk.
Includes references
DOCUMENT TYPE: Article
FILE SEGMENT: Non US
LANGUAGE: English

=> d his

(FILE 'HOME' ENTERED AT 19:07:50 ON 24 SEP 2004)

FILE 'CAPLUS, CABA, AGRICOLA, BIOSIS' ENTERED AT 19:08:20 ON 24 SEP 2004
L1 5289 S AGROBACTERIUM RHIZOGENES
L2 385616 S STEM OR HYPOCOTYL AND L1
L3 649 S (STEM OR HYPOCOTYL) AND L1
L4 30 S K599
L5 26 S L1 AND L4
L6 14 DUP REM L5 (12 DUPLICATES REMOVED)
L7 34 S (CHIMERA OR CHIMERIC) AND L3
L8 19 DUP REM L7 (15 DUPLICATES REMOVED)

=> d 18 1-19 abs

L8 ANSWER 1 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 1
AB The apple rootstock Jork 9 was transformed using four different **Agrobacterium rhizogenes** virulent strains. The mannopine strain 8196 gave the best results in the production of **chimeric** plants compared to two agropine strains (A4 and 15834) and one cucumopine strain. Shoot regeneration was performed on both untransformed and transformed roots. Optimum combination and concentration of thidiazuron (TDZ) and α -naphthaleneacetic acid (NAA) was different between untransformed and transformed roots. From the transformed roots seven shoots were obtained and propagated as individual clones. All shoots from these clones rooted on a hormone-free medium contrary to untransformed shoots that did not root under similar culture conditions. Differences in the morphol. of the leaves and **stems** were observed between the clones. The transformed status of the different clones was verified with mannopine tests, PCR and Southern blot analyses. Five clones contained the mas1', the ORF 13 and the rolB genes, whereas two clones contained only the rolB gene.

L8 ANSWER 2 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN

AB A novel method is described for the screening of gene elements of interest using hairy roots of **chimeric** plants transformed with **Agrobacterium rhizogenes**. The method comprises obtaining an explant, inoculating the explant with *A. rhizogenes* strain K599 containing an exogenous genetic element capable of being transferred to the explant, culturing the inoculated explant in a manner permitting transgenic root development, and producing a stable **chimeric** plant with transgenic root tissue. This transgenic root tissue is available for testing of the functionality of the genetic element introduced therein by standard methodol. relevant to the genetic element being tested. Thus one can quickly and cheaply screen for a genetic element using this method of generating transgenic hairy roots. The method is exemplified by transformation of soybean and potato with kanamycin as the selectable agent.

L8 ANSWER 3 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 2
AB Adventitious rooting might be induced in recalcitrant woody genotypes by infection with **Agrobacterium rhizogenes**, and, in some cases, might also require exogenous auxin. The objective of the present study was to determine how agrobacteria trigger root formation in the **stem** of a recalcitrant woody microcutting, which cytol. events result from the combined presence of infection and exogenous auxin, and which types of roots are induced by infection. Microcuttings of a recalcitrant walnut (*Juglans regia*), infected or not with *A. rhizogenes* strain 1855, were cultured with either indolebutyric acid (IBA), IAA, or without exogenous hormones, to induce rhizogenesis. They were cytohistol. and ultrastructurally investigated at various times in culture. Southern blot and PCR analyses were performed to verify the frequency of transgenic, **chimeric** and bacterium-containing roots. The infection was sufficient per se to stimulate rhizogenesis. Rooting on the infected cuttings was enhanced by exogenous IBA, which accelerated and increased root meristemoid formation, in comparison with without-hormone treatment. Meristemoids were organized both directly by the cambial cells and indirectly by the callus, and showed a pluricellular origin. Inter and intracellular bacteria were observed in the **stem** throughout the culture period (30 days). They were preferentially present in the vessels, and mainly in those showing polyphenol deposition. In the infected IAA-treated cultures, a high level of secondary xylem formation occurred instead of rhizogenesis. Nontransformed roots were preferentially produced by the infected cuttings treated with the auxins. Bacterium-containing and **chimeric** roots were produced by infected cuttings independently of the treatment. Thus, in a recalcitrant walnut, nontransformed root meristemoids are stimulated by combining infection and exogenous indolebutyric acid. Furthermore, the persistence of bacteria in the **stem** during the culture and the pluricellular origin of the meristemoids explain the presence of the bacterium-containing and **chimeric** roots.

L8 ANSWER 4 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 3
AB **Agrobacterium rhizogenes** strains of the agropine type harbor on their Ri-plasmid two T-DNA, a left TL-DNA and a right TR-DNA. The *rolB* gene of the TL-DNA is the major factor in the pathogenesis of the hairy-root disease and its constitutive expression interferes profoundly with plant morphogenesis. The authors have tested whether the expression of its sequence related putative homolog from the TR-DNA (*rolBTR*) may cause also bacterial virulence or affect plant development. Unlike *rolB*, *rolBTR* is unable to induce root formation on tobacco leaf disks. Tobacco plants expressing a **chimeric** 35S::*rolTR* gene have reduced stature, off-shoots at the **stem** base and bent and wrinkled leaves with epinastic growth. 14 N-terminal amino acids which are absent in the *rolB* protein are indispensable to *rolBTR* protein activity. The characteristic tyrosine phosphatase super family motif CX5R is absent in

the rolBTR protein. For rolB this motif is possibly functionally relevant. It is concluded that the rolBTR gene product has morphogenic activity but is not a functional homolog of the rolB protein.

L8 ANSWER 5 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 4

AB Expression of the **Agrobacterium rhizogenes** rolB and rolC promoters was studied in transgenic hybrid aspen (*Populus tremula* + *P. tremuloides*) lines containing a **chimeric** fusion of either the rolB or the rolC promoter and the reporter gene uidA. The resultant GUS activity was monitored by histochem. anal. in aerial tissues as well as in developing roots. Both the rolC and rolB promoters were expressed in the phloem and in the root tips, which is similar to the expression pattern previously described for annual plants. However, a strong expression of the rolB promoter in the rays of the phloem and the cambial zone of the **stem**, and of the rolC promoter in groups of pericycle cells prior to and during lateral root initiation was unique for hybrid aspen. In both **stem** and root tissues, the expression of the rolB and rolC promoters was localized primarily in a subset of cells competent to form adventitious or lateral roots, suggesting that these cells might serve as the target for *A. rhizogenes* infection. The biol. significance of the cell-specific rol gene expression in establishing the hairy root disease is discussed.

L8 ANSWER 6 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 5

AB The spatial and temporal activity of the entire and individual promoter domains of the rolA gene of **Agrobacterium rhizogenes** was investigated and correlated with the distinctive features of the phenotypes of transgenic tobacco plants. The GUS assay was performed in the presence of an oxidative catalyst during the development of transgenic plants expressing **chimeric** genes containing the β -glucuronidase coding sequence under the control of the different promoter domains. In situ hybridization was also used on transgenic plants harboring rolA under the control of the entire or deleted promoter. This paper demonstrates for the first time that the entire rolA promoter, composed of domains, A, B and C, is silent in seeds, then activated at the onset of germination in the cotyledons and in the elongation zone of the radicle and is finally expressed throughout the vegetative and floral phases. Domains B+C, which were sufficient to induce wrinkled leaves and short internodes, were active in all the **stem** tissues, but only in the companion cells of the phloem strands of the leaves. Domain C, which specified a dwarf phenotype with normal leaves, was weakly expressed in the **stem** vascular bundles and in the leaf internal phloem. These results indicate that the vascular bundles are the primary targets for the generation of the short internode phenotype. Furthermore, the local expression of rolA in the **stem** vascular bundles induced a size reduction of the surrounding parenchyma cells, suggesting the existence of some diffusible factor(s) associated with the expression of the rolA gene.

L8 ANSWER 7 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN

AB In order to study the expression in plants of the rolD promoter of **Agrobacterium rhizogenes**, we have constructed **chimeric** genes placing the coding region of the gusA (uidA) marker gene under control of two rolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, the rolD-gus genes were expressed strongly in roots, and to much lower levels in **stems** and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity in rolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter with doubled domain B, 35S2-gus. The rolD-gus genes had a

distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.

L8 ANSWER 8 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 6
AB The susceptibility of *V. grandis* to **Agrobacterium rhizogenes** was shown by simultaneous wounding and inoculation of the **stems** of shoot explants with 4 wild-type strains of *A. rhizogenes*. Shoots inoculated with 3 of the 4 strains developed abnormal tissues containing the opine (agropine or mannopine) characteristic of the bacterial strain used. A regeneration system for *V. grandis* was developed, using leaf disks excised from the petiole region of micropropagated shoots. These disks were used for transformation studies using two plasmid vectors in either the wild-type *A. rhizogenes* strains or a non-oncogenic *A. tumifaciens* strain, LBA4404. The plasmid vectors (pBI121 and pKiwi) contained **chimeric** kanamycin resistance genes, neomycin phosphotransferase II (NPTII) and the bacterial β -glucuronidase (GUS) uidA gene. Leaf disks were inoculated by wounding and selected for growth on kanamycin-containing medium. Regenerated shoots were transferred to root induction medium containing kanamycin and those plants which produced roots were regarded as potential transformants. These plants were assayed for GUS activity and transformation was confirmed by Southern DNA hybridization and by PCR amplification of the GUS gene. These results represent the first report of transformation and subsequent regeneration of a plant from the economically important Myrtaceae.

L8 ANSWER 9 OF 19 CABA COPYRIGHT 2004 CABI on STN
AB Histochemical localization of the expression pattern of a construct consisting of the **Agrobacterium rhizogenes** rolC gene fused to a GUS reporter gene, by visualization of GUS activity, was analysed in developing embryos of transgenic tobacco plants. The results indicated that strong expression was localized mainly in the vascular cylinders of the cotyledons and central axis of the **hypocotyl**. Quantitative analysis indicated an increase of gene expression in embryos up to 20 days after pollination (DAP), but decreased at 30 DAP. Continuous increase of GUS activity was recorded up to 12 days after imbibition (DAI) in germinating seeds. The xylem cells were visualized following phloem differentiation in the cotyledons at 3 DAI.

L8 ANSWER 10 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 7
AB Kanamycin-resistant plants of belladonna (*A. belladonna*) were obtained after Agrobacterium mediated transformation. When a rolC gene, which is one of the loci located on Ri plasmid of **Agrobacterium rhizogenes**, was co-introduced with a kanamycin resistant (NPT II) gene under control of a cauliflower mosaic virus 35S promoter, the rolC gene was expressed strongly in leaves, flowers, **stems** and roots. The transformed plants exhibited dramatic promotion of flowering, reduced apical dominance, pale and lanceolated leaves and smaller flowers. On the other hand, when native rolC gene was co-introduced with NPT II, the transgenic plants obtained did not exhibit the altered phenotypes observed in 35S-rolC transformants, and the expression level of the rolC gene was much lower than in 35S-rolC transformants. These results suggest that the morphol. changes in transgenic *A. belladonna* were related to the degree of expression of the rolC gene.

L8 ANSWER 11 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN
AB *G. argyrea* accession G1420 was evaluated for its response to inoculation with *A. rhizogenes* strains LBA9402 and A4T, carrying wild type Ri plasmids, and by strains R1601 and A4TIII with engineered plasmids. **Hypocotyls** from young seedlings were the most responsive in producing roots at inoculation sites. Root production was also dependent on

bacterial concentration. Excised, cultured roots produced green nodular callus which regenerated shoots on SC2 medium containing 1.1 mg/L 6-benzylaminopurine and 0.005 mg/L indole-3-butyric acid. The transformed nature of the roots and of callus regenerating shoots was confirmed by the presence of opines and by dot blot anal. for Ri TL-DNA. Tissues regenerated from roots transformed by *A. rhizogenes* strains R1601 and A4TIII exhibited NPTII enzyme activity, confirming the stable integration and expression of the **chimeric** kanamycin resistance gene in transgenic tissues.

L8 ANSWER 12 OF 19 CABO COPYRIGHT 2004 CABI on STN
AB Rooting was induced in cut **stems** inoculated with *A. rhizogenes* in order to produce chimaeric plants with normal shoots but transformed roots. Mannopine was produced in the roots and translocated to the aerial parts. A single gene from the Ri TL-DNA (ORF 12 or rolC) was sufficient to produce root induction, suggesting that this gene could be permanently inserted into the genome of rootstock clones to improve rooting.

L8 ANSWER 13 OF 19 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2004) on STN
AB Expression of the *Sesbania rostrata* leghemoglobin *glb3* gene was analyzed in transgenic *Lotus corniculatus* and tobacco plants harboring **chimeric** *glb3-uidA* (*gus*) gene fusions to identify *cis*-acting elements involved in nodule-specific gene expression and general transcriptional control. A 1.9-kilobase fragment of the *glb3* 5'-upstream region was found to direct a high level of nodule-specific beta-glucuronidase (GUS) activity in *L. corniculatus*, restricted to the Rhizobium-infected cells of the nodules. The same fragment directed a low level of GUS activity in tobacco, restricted primarily to the roots and to phloem cells of the **stem** and petiole vascular system. A deletion analysis revealed that the region between coordinates -429 and -48 relative to the ATG was sufficient for nodule-specific expression. Replacement of the -161 to -48 region, containing the *glb3* CAAT and TATA boxes, with the heterologous truncated promoters delta-p35S and delta-pnos resulted in a loss of nodule specificity and reduction of GUS activity in *L. corniculatus* but a significant increase in tobacco, primarily in the roots. The same fragment could not direct nodule-specific expression when fused to a heterologous enhancer in *cis*. This region contains DNA sequences required, but not sufficient, for nodule-specific expression in *L. corniculatus* that function poorly or may be involved in promoter silencing in tobacco. By fusing further upstream fragments to the delta-p35S and delta-pnos promoters, two positive regulatory regions were delimited between coordinates -1601 and -670, as well as -429 and -162. The former region appears to function as a general enhancer because it significantly increased promoter activity in both orientations in *L. corniculatus* and tobacco. The latter region could enhance gene expression in both orientations in tobacco, but only in the correct orientation in *L. corniculatus*. These results show that efficient expression of the *S. rostrata* *glb3* gene in nodules is mediated by an ATG-proximal, tissue-specific element, as well as further 5'-upstream positive elements; that the *S. rostrata* *glb3* promoter is induced in a nodule-specific fashion in the heterologous legume *L. corniculatus*, suggesting a high degree of conservation of the relevant regulatory signals; and that the *S. rostrata* *lb* promoter is not silent in the nonlegume tobacco, but is expressed primarily in the roots.

L8 ANSWER 14 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 8
AB *Nicotiana glauca*, *N. tabacum*, *Solanum dulcamara* and *S. nigrum* were transformed by **Agrobacterium rhizogenes** strain BN1010 (TL-TR⁺). The TR-DNA stimulated agropine-pos. root induction and was transformation competent in the absence of the TL-DNA. An unusual pattern

of root induction was seen when **stem** explants were inoculated with this strain. Occasionally, agropine-pos. roots were induced at the inoculation sites, but prolific agropine-neg. roots were formed in profusion down the **stems**. The utility of BN1010 as an efficient co-integrating vector was demonstrated by the sep. transfer of a fragment containing rol ABC (BN1010::pEM15) and of a **chimeric** nopaline synthase-kanamycin resistance gene (BN1010::Neo) into plants. Root cultures of *S. dulcamara* transformed with BN1010::Neo had an unusual, pos. geotropic phenotype. Strain BN1010::pEM15 (rol ABC+D-TR+) incited more roots down **stem** explants than strain A4T. This indicates that rol D may act to suppress agropine-neg. root production in *N. glauca* and *N. tabacum*.

L8 ANSWER 15 OF 19 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2004) on STN

AB **Chimeric** genes containing the beta-glucuronidase reporter gene under the control of the rolA, B, and C promoters of **Agrobacterium rhizogenes** are expressed in a regulated manner in transgenic plants. The intergenic region separating the rolB and C genes represents a bidirectional promoter. This bidirectional promoter regulates transcription for both genes in a similar fashion in aerial organs of the plants, but in a distinct way in roots. Moreover, both rolB and C promoter activities differ from those characteristic of the rolA promoter. Thus, promoters of bacterial origin show differential expression in transgenic plants, and regulation of rol gene expression plays a role in the biological effects caused by the rolA, B, and C genes.

L8 ANSWER 16 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 9
AB Seedling **hypocotyl** explants of *G. canescens* were inoculated with

Agrobacterium rhizogenes carrying a **chimeric** neomycin phosphotransferase II (NPTII) gene cointegrated into the TL-DNA of pRiA4. Transformed roots produced shoots on B5-based medium with 10.0 mg/L 6-benzylaminopurine, 0.05 mg/L indole-butyric acid, and 50 µg/mL kanamycin. Cultured roots and regenerated plants expressed NPTII enzyme activity which was correlated with the presence of Ri TL-DNA and the structural sequence of the NPTII gene.

L8 ANSWER 17 OF 19 CAPLUS COPYRIGHT 2004 ACS on STN

AB A method is presented for improving the nutritive quality of higher plants by cloning into them an S-rich 2 S seed storage protein subunit gene from *B. excelsa* (Brazil nut). The gene is under the control of a heterologous promoter. A pARC12 derivative was constructed which contained the following: (1) the expression cassette in which the *B. excelsa* seed storage protein gene was linked to the phaseolin promoter and signal sequence; and (2) a **chimeric** nopaline synthase/neomycin phosphotransferase gene as a marker for transformed plant cells. This derivative was part of a binary Ti plasmid vector system of **Agrobacterium rhizogenes**. Bacteria containing both plasmids were inoculated into alfalfa **stem** segments, from which hairy roots were subsequently formed. These hairy roots were grown into calli and then regenerated into alfalfa plants which potentially carried the *B. excelsa* seed storage protein gene.

L8 ANSWER 18 OF 19 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on STN

AB We have employed the reporter gene rolC gene from **Agrobacterium rhizogenes** as a morphologically detectable marker system for investigating growth alterations in *Populus*. A hybrid aspen (*R. tremula* L. x *R. tremuloides* MICHx.) clone, Esch5, was transformed using different **chimeric** gene constructs including the rolC gene to study its effect on morphological and physiologically-conditioned parameters.

Mainly, transgenic aspen carrying the *rolC* gene under control of the cauliflower-mosaic-virus 35S-promoter and the light inducible *rbcS* promoter from potato were compared with controls. Other gene constructs, in which *rolC* expression is prevented by insertion of the transposable element *Ac* from maize were also included. Differences in growth parameters (e.g. plant height, *stem* diameter, number of leaves), and growth arrest and terminal bud formation were observed between the control and the 35S-*rolC* transgenic aspens. Evaluation of onset of dormancy in the autumn and flushing in the next spring revealed differences between untransformed controls and, in particular, the 35S-*rolC* transgenic plants. These tree-specific morphological and developmental characteristics are discussed in the light of the transferred foreign genes in aspen-*Populus*, a woody plant model system.

L8 ANSWER 19 OF 19 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2004) on STN

AB The apple rootstock Jork 9 was transformed using four different **Agrobacterium rhizogenes** virulent strains. The mannopine strain 8196 gave the best results in the production of **chimeric** plants compared to two agropine strains (A4 and 15834) and one cucumopine strain. Shoot regeneration was performed on both untransformed and transformed roots. Optimum combination and concentration of thidiazuron (TDZ) and (alpha)-naphthaleneacetic acid (NAA) was different between untransformed and transformed roots. From the transformed roots seven shoots were obtained and propagated as individual clones. All shoots from these clones rooted on a hormone-free medium contrary to untransformed shoots that did not root under similar culture conditions. Differences in the morphology of the leaves and *stems* were observed between the clones. The transformed status of the different clones was verified with mannopine tests, PCR and Southern blot analyses. Five clones contained the *mas1'*, the ORF 13 and the *rolB* genes, whereas two clones contained only the *rolB* gene.

=> d his

(FILE 'HOME' ENTERED AT 19:07:50 ON 24 SEP 2004)

FILE 'CAPLUS, CABA, AGRICOLA, BIOSIS' ENTERED AT 19:08:20 ON 24 SEP 2004
5289 S AGROBACTERIUM RHIZOGENES
L1 385616 S STEM OR HYPOCOTYL AND L1
L2 649 S (STEM OR HYPOCOTYL) AND L1
L3 30 S K599
L4 26 S L1 AND L4
L5 14 DUP REM L5 (12 DUPLICATES REMOVED)
L6 34 S (CHIMERA OR CHIMERIC) AND L3
L7 19 DUP REM L7 (15 DUPLICATES REMOVED)

=>

=> d 18 12

L8 ANSWER 12 OF 19 CABA COPYRIGHT 2004 CABI on STN
AN 91:43687 CABA
DN 19911620474
TI Use of **Agrobacterium rhizogenes** to create **chimeric** apple trees through genetic grafting
AU Lambert, C.; Tepfer, D.
CS Laboratoire de Biologie Végétale, Faculté des Sciences, 49035 Angers, France.

SO Bio/Technology, (1991) Vol. 9, No. 1, pp. 80-83. 31 ref.
ISSN: 0733-222X
DT Journal
LA English
ED Entered STN: 19941101
Last Updated on STN: 19941101

=> d his

(FILE 'HOME' ENTERED AT 19:07:50 ON 24 SEP 2004)

FILE 'CAPLUS, CABA, AGRICOLA, BIOSIS' ENTERED AT 19:08:20 ON 24 SEP 2004
L1 5289 S AGROBACTERIUM RHIZOGENES
L2 385616 S STEM OR HYPOCOTYL AND L1
L3 649 S (STEM OR HYPOCOTYL) AND L1
L4 30 S K599
L5 26 S L1 AND L4
L6 14 DUP REM L5 (12 DUPLICATES REMOVED)
L7 34 S (CHIMERA OR CHIMERIC) AND L3
L8 19 DUP REM L7 (15 DUPLICATES REMOVED)

=> s (chimeric plant) and l3
L9 5 (CHIMERIC PLANT) AND L3

=> dup rem l9
PROCESSING COMPLETED FOR L9
L10 3 DUP REM L9 (2 DUPLICATES REMOVED)

=> d l10 1-3

L10 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 1
AN 2002:533523 CAPLUS
DN 137:335211
TI The use of **Agrobacterium rhizogenes** transformed roots
to obtain transgenic shoots of the apple rootstock Jork 9
AU Pawlicki-Jullian, Nathalie; Sedira, Monika; Welander, Margareta
CS IUT Genie Biologique, Amiens, F-80025, Fr.
SO Plant Cell, Tissue and Organ Culture (2002), 70(2), 163-171
CODEN: PTCEDJ; ISSN: 0167-6857
PB Kluwer Academic Publishers
DT Journal
LA English
RE.CNT 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 2 OF 3 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2000:161473 CAPLUS
DN 132:190490

TI Transgene assay using stable **Agrobacterium rhizogenes**
transformation of plant roots

IN Taylor, Christopher G.; Huang, Yong

PA Monsanto Co., USA

SO PCT Int. Appl., 19 pp.
CODEN: PIXXD2

DT Patent
LA English

FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000012735	A2	20000309	WO 1999-US19745	19990831
	WO 2000012735	A3	20010531		

W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU,
 CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
 IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
 MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
 SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG,
 KZ, MD, RU, TJ, TM
 RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,
 ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG,
 CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
 CA 2341324 AA 20000309 CA 1999-2341324 19990831
 AU 9962408 A1 20000321 AU 1999-62408 19990831
 EP 1119631 A2 20010801 EP 1999-949562 19990831
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, LT, LV, FI, RO
 BR 9913651 A 20010925 BR 1999-13651 19990831
 JP 2002524056 T2 20020806 JP 2000-567721 19990831
 PRAI US 1998-98402P P 19980831
 WO 1999-US19745 W 19990831

L10 ANSWER 3 OF 3 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved.

(2004) on STN

AN 2004:13372 AGRICOLA

DN IND43618977

TI The use of **Agrobacterium rhizogenes** transformed roots to obtain transgenic shoots of the apple rootstock Jork 9.

AU Pawlicki-Jullian, N.; Sedira, M.; Welander, M.

AV DNAL (QK725.P53)

SO Plant cell, tissue and organ culture, p. 163-171

ISSN: 0167-6857

NTE In the special issue: Adventitious regeneration / edited by T. Geier, M.B. Schroeder and G.J.M. de Klerk.

Includes references

DT Article

FS Non US

LA English

=> d his

(FILE 'HOME' ENTERED AT 19:07:50 ON 24 SEP 2004)

FILE 'CPLUS, CABA, AGRICOLA, BIOSIS' ENTERED AT 19:08:20 ON 24 SEP 2004
 L1 5289 S AGROBACTERIUM RHIZOGENES
 L2 385616 S STEM OR HYPOCOTYL AND L1
 L3 649 S (STEM OR HYPOCOTYL) AND L1
 L4 30 S K599
 L5 26 S L1 AND L4
 L6 14 DUP REM L5 (12 DUPLICATES REMOVED)
 L7 34 S (CHIMERA OR CHIMERIC) AND L3
 L8 19 DUP REM L7 (15 DUPLICATES REMOVED)
 L9 5 S (CHIMERIC PLANT) AND L3
 L10 3 DUP REM L9 (2 DUPLICATES REMOVED)

=> d his

(FILE 'HOME' ENTERED AT 19:07:50 ON 24 SEP 2004)

FILE 'CPLUS, CABA, AGRICOLA, BIOSIS' ENTERED AT 19:08:20 ON 24 SEP 2004
 L1 5289 S AGROBACTERIUM RHIZOGENES
 L2 385616 S STEM OR HYPOCOTYL AND L1

L3 649 S (STEM OR HYPOCOTYL) AND L1
L4 30 S K599
L5 26 S L1 AND L4
L6 14 DUP REM L5 (12 DUPLICATES REMOVED)
L7 34 S (CHIMERA OR CHIMERIC) AND L3
L8 19 DUP REM L7 (15 DUPLICATES REMOVED)
L9 5 S (CHIMERIC PLANT) AND L3
L10 3 DUP REM L9 (2 DUPLICATES REMOVED)