Programming Machine Learning Algorithms for HPC

Important dates

Dr. Pierrick Pochelu and Dr. Oscar J. Castro-Lopez

UNIVERSITÉ DU LUXEMBOURG

Exam

- 19 of November.
- Question with options.
- Content from the slides up to 12 of November.
- No open book.
- No phone.

1st project

- Implement parallel KNN for regression (with the tools we already reviewed).
- We will provide the sequential code.
- You will implement a parallel version of the algorithm.
- The parallel version should give the same results (output) as the sequential version.
- You will do a benchmark (at least 30 runs) and present the result of real time and also CPU time with average and standard deviation.
- Main things to highlight:
 - Approach you used to parallelize and why.
 - The speed-up gain in real time.

1st project

- Teams of max 3 people.
- Send us the code (or jupyter notebook, an easy way to run it).
- If its .py files put it in a zip folder.
- Put your name (or the team members name) on the file or the notebook.
- Explain your logic with code comments.
- Use the HPC of the university (Aion).
- Do not change the random seed of the code to replicate the results.
- Send the project results before 12 of November (sending later its possible but will remove 30% of the total score).

Projects 2 and 3

Same requirements and rules as the first project:

- 2. Ensemble of forecasters To be delivered by 26 of November.
- 3. Convolution training To be delivered by 03 of December.

Project 4

- Deliver a technical report of using a framework for parallel ML Horovod by 10 of December.
 - Teams of max 3 people.
 - 2 pages max.
 - Screenshots of the execution.
 - Report on speed of training.
- Follow the Horovod tutorial: https://ulhpc-tutorials.readthedocs.io/en/latest/deep_learning/horovod/
 - Use Tensorflow and Pytorch.
 - Use the cifar10 dataset and create a model to classify images.

Project 5

- Deliver a technical report of using a HuggingFace.
 - Teams of max 3 people.
 - 2 pages max.
 - Screenshots of the execution.
 - Report on speed of training.
- Follow the HuggingFace tutorial: https://ulhpc-tutorials.readthedocs.io/en/latest/deep-learning/huggingface/

Important dates

Deliverable	Date
1 st project - KNN	12 of November
Exam	19 of November
2 nd project – Ensemble of forecasters	26 of November
3 rd project – Convolution training	03 of December
4 th project - Horovod	10 of December
5 th project – HuggingFace	17 of December

Final score

- Exam 50 %
- Projects 50 %
 - Each project will be scored individually. Then averaged.

• Note: Homework and participation in class is also taken into account to increase the final score.