Laboratorio di Programmazione

Esercitazione su temi d'esame

31 Maggio 2019

1. Memoization (15 Luglio 2014)

La procedura 11cs3 determina la lunghezza della sottosequenza comune più lunga (LLCS) di tre stringhe:

Trasforma la procedura 11cs3 in un programma Java che applica opportunamente la tecnica top-down di memoization.

2. Programmazione in Java (15 Luglio 2014)

Come è noto dall'algebra lineare, una matrice quadrata Q si dice *simmetrica* se coincide con la propria trasposta, ovvero se $Q_{ij} = Q_{ji}$ per tutte le coppie di indici della matrice. Scrivi un metodo statico in Java per verificare se l'argomento è una matrice simmetrica — assumendo che tale argomento rappresenti una matrice *quadrata*.

Per quanto possibile, struttura il codice in modo tale da ridurre al minimo il numero di confronti effettuati dal programma nei casi in cui la matrice sia effettivamente simmetrica.

3. Oggetti in Java (9 Settembre 2015)

Il modello della scacchiera realizzato dalla classe Board per affrontare il rompicapo delle n regine deve essere integrato introducendo due nuovi metodi: <code>isFreeRow(int)</code>, che dato un indice di riga i compreso fra 1 e la dimensione n della scacchiera, restituirà true se e solo se nella riga i non c'è alcuna regina; addQueen(String), che svolge la stessa funzione di addQueen(int,int) ma ricevendo come argomento la codifica della posizione tramite una stringa di due caratteri, una lettera per la colonna e una cifra per la riga secondo le convenzioni consuete. Inoltre, addQueen e removeQueen non devono modificare lo stato della scacchiera se l'operazione è inconsistente perché due regine verrebbero a trovarsi sulla stessa casella oppure perché nella posizione data non c'è una regina da rimuovere. Per esempio, il metodo statico listofCompletions, definito sotto a destra, stamperà tutte le soluzioni del rompicapo, se ve ne sono, compatibili con una disposizione iniziale di regine che non si minacciano reciprocamente. In base a quanto specificato sopra, modifica opportunamente la classe Board.

```
Board( int n ) // costruttore
                                                public static void listOfCompletions( Board b ) {
                                                  int n = b.size(); int q = b.queensOn();
                                                   if (q == n) {
void addQueen( int i, int j )
                                                    System.out.println( b.arrangement() );
void removeQueen( int i, int j )
                                                   } else {
                                                     int i = 1;
int size()
                                                     while ( !b.isFreeRow(i) ) {
int queensOn()
                                                                      // ricerca di una riga libera
                                                       i = i + 1:
boolean underAttack( int i, int j )
String arrangement()
                                                     for ( int j=1; j<=n; j=j+1 ) {
                                                       if ( ! b.underAttack(i,j) ) {
boolean isFreeRow( int i )
                                                         b.addQueen( i, j );
                                                         listOfCompletions( b );
void addQueen( String pos )
                                                         b.removeQueen( i, j );
                                                  }}}
// esempio: b.addQueen( "b6" )
```

4. Ricorsione e iterazione (4 Luglio 2016)

Dato un *albero di Huffman*, il metodo statico shortestCodeLength determina la lunghezza del più corto fra i codici di Huffman associati ai caratteri che compaiono in un documento di testo. Più specificamente, la visita dell'albero, finalizzata alla determinazione di tale lunghezza, è realizzata attraverso uno schema iterativo. Completa la definizione del metodo shortestCodeLength riportata nel riquadro.

5. Programmazione in Java (5 Settembre 2016)

Dato un *array* di numeri (double) con almeno due elementi, il metodo statico closestPair ne restituisce una coppia la cui differenza in valore assoluto è minima. La coppia è rappresentata da un array ordinato di due elementi. Esempio:

closestPair(new double[] $\{0.3, 0.1, 0.6, 0.8, 0.5, 1.1\}$) $\rightarrow \{0.5, 0.6\}$ Definisci in Java il metodo statico closestPair.