

# 电子电路课程实验报告

学院: 电子信息工程学院

专业:电子信息工程

学号:1951706

姓名:黄锴康

完成时间: 2021/7/22

## 一、 实验室限定器件

#### 1.1 实验室材料清单

| 器件     | 标称值                 | 数量            | 封装      | 备注   |  |
|--------|---------------------|---------------|---------|------|--|
|        | 1k                  | 11            |         |      |  |
|        | 2k                  | 2k 1<br>10k 2 |         |      |  |
|        | 10k                 |               |         |      |  |
|        | 18k                 | 1             |         | 1%精度 |  |
|        | 20k                 | 4             | 1/4W,直插 |      |  |
|        | 39k<br>100k<br>180k | 1             |         |      |  |
| th 779 |                     | 2             |         |      |  |
| 电阻     |                     | 1             |         |      |  |
|        | 200k                | 2             |         |      |  |
|        | 300k                | 1             |         |      |  |
|        | 470k                | 1             |         |      |  |
|        | 910k                | 1             |         |      |  |
|        | 1.8M                | 1             |         |      |  |
|        | 9.1M                | 1             |         |      |  |

| 器件  | 标称值       | 数量 | 封装      | 备注        |  |
|-----|-----------|----|---------|-----------|--|
|     | 0.1μF     | 14 | 直插      |           |  |
| 电容  | 22μF/25V  | 3  | 铝电解,圆柱形 |           |  |
|     | 100μF/16V | 2  | 铝电解,圆柱形 |           |  |
| 二极管 | 1N41418   | 4  | DO-35   |           |  |
| 电位器 | 10k       | 2  | 3296    |           |  |
|     | MC14433   | 1  |         |           |  |
|     | ULN2003   | 1  |         |           |  |
| 集成片 | CD4511    | 1  | DIP 封装  |           |  |
|     | TL062     | 2  |         |           |  |
|     | TL431     | 1  |         |           |  |
| 双排针 |           | 1  | 直插      |           |  |
| 短路帽 |           | 5  |         |           |  |
| 电路板 | 60*34 孔   | 1  | 单面板     | 160*100mm |  |
|     |           |    |         |           |  |

### 1.2 金属膜电阻

实验室采用**金属膜色环电阻**,金属膜电阻外观特点是蓝色,并有五个色环。金属膜电阻 具有体积小、噪声低、稳定性好等优点,缺点是相对碳膜电阻成本较高,常用作紧密和高稳 定电路。由于实验板为洞洞板,所以电阻使用均为直插式。

## 1.3 电容选择

在本实验中我们使用了三种电容,一种是**独石电容(黄色)**,一种是**铝电解质电容**,还有一种是 **CBB 电容**。CBB 电容即是聚丙烯电容,其特点是稳定性好,用于要求较高的电路,

在本实验中我们将其接在 MC14433 芯片做**积分和调零电容**;独石电容具有可靠性高和电容量大等优点,在本电路中用作滤波和**旁路电容**。; 铝电解质电容是具有极性的电容,在接入电路时由需要注意电容极性的正负,带有极性的电容值较大,在本实验中用作电源滤波和交流调理电路滤波。

#### 1.4 集成片封装选择

具体芯片选择在后文详细阐释,这里谈谈芯片封装。实验室中选择 DIP 封装,即双直插封装。这是一种相对古老的封装,这类封装特点是焊接容易、散热性能较好,在面包板和洞洞板上焊接,但不适用高频放大器。



图 1.一种 DIP 封装外形图 (单位: mm)

## 二、 实验电路

#### 2.1 MC14433 芯片

MC14433 芯片具有外接元件少,输入阻抗高,功耗低,电源电压范围宽,精度高等特点,并且具有自动校零和自动极性转换功能,只要外接少量的阻容件即可构成一个完整的 A/D 转换器,其主要架构与引脚图如下:



### 2. 2 ULN2003A 芯片

ULN2003 是高耐压、大电流复合晶体管阵列,用于替代 MC1413。在本实验中用于做驱动。并且本芯片不需要接入电源,但要注意与其他芯片共地。



### 2. 3 CD4511 芯片

CD4511 芯片是 7 段译码器,用于驱动共阴 LED 显示器。具有 BCD 转换、消隐和锁存控制、七段译码和驱动等功能。

### **Connection Diagram**



#### **Truth Table**

| Inputs |    |    |   |   | Outputs |   |   |   |   |   |   |   |   |         |
|--------|----|----|---|---|---------|---|---|---|---|---|---|---|---|---------|
| LE     | BT | LT | D | C | В       | Α | a | b | C | d | е | f | g | Display |
| X      | Х  | 0  | Х | Х | X       | X | 1 | 1 | 1 | 1 | 1 | 1 | 1 | В       |
| X      | 0  | 1  | X | X | X       | X | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20,000  |
| 0      | 1  | 1  | 0 | 0 | 0       | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0       |
| 0      | 1  | 1  | 0 | 0 | 0       | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1       |
| 0      | 1  | 1  | 0 | 0 | 1       | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 2       |
| 0      | 1  | 1  | 0 | 0 | 1       | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 2       |
| 0      | 1  | 1  | 0 | 1 | 0       | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 4       |
| 0      | 1  | 1  | 0 | 1 | 0       | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 5       |
| 0      | 1  | 1  | 0 | 1 | 1       | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 6       |
| 0      | 1  | 1  | 0 | 1 | 1       | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 7       |
| 0      | 1  | 1  | 1 | 0 | 0       | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8       |
| 0      | 1  | 1  | 1 | 0 | 0       | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 9       |
| 0      | 1  | 1  | 1 | 0 | 1       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |         |
| 0      | 1  | 1  | 1 | 0 | 1       | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |         |
| 0      | 1  | 1  | 1 | 1 | 0       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |         |
| 0      | 1  | 1  | 1 | 1 | 0       | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |         |
| 0      | 1  | 1  | 1 | 1 | 1       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |         |
| 0      | 1  | 1  | 1 | 1 | 1       | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |         |
| 1      | 1  | 1  | X | X | X       | X | l |   |   |   |   |   |   |         |

x = Don't Care

\*Depends upon the BCD code applied during the 0 to 1 transition of LE.





### 2. 4 TL431 芯片

TL431 芯片是一个具有良好热稳定性能的三端可调分流基准源, 在实际应用中常用作齐纳二极管, 做稳压电路使用。



## 2.5 7段共阴数位管

本实验采用共阴数位管,3和8引脚接在一起,用作数位管使能控制端。



## 三、 电路布线与焊接

#### 3.1 元件布线

我在规划元件摆放的时候主要由以下原则: 1) 数字部分与模拟部分尽量分开。2) 元件间布线尽量减少交叉。3) 模拟地与数字地除在 AD 附近相连,其他地方分开。

在布线过程中,模拟电路部分布线交叉比较少,而且飞线用的也较少,但在数字部分飞线就增加了许多,尤其是数位管部分飞线较多,焊接难度较大。

参考其他同学布线设计后,我认为电路可以有以下改进的地方: 1) 电源应在电路中间的部分。因为大部分芯片都需要接入电源,位于中间可以减少飞线。2) 数位管位置应预留更多空位。数位管位于电路一角导致只能使用飞线连接。



#### 3.2 电路焊接

元器件的焊接难度最大的是对元器件的固定。由于焊接时必须将洞洞板倒置,因此焊接过程中元器件固定也是个问题,我使用镊子按着,但难免会有固定不稳的问题,因此如果电路板元器件和焊锡面在同一面将会降低焊接难度。

焊接过程要用电烙铁加热焊盘,然后缓慢送锡。若是锡条直接接触电烙铁,可能会导致锡只会熔化,而不会焊在焊盘上。正常焊接的焊点呈圆锥形,若是缺了一部分有可能导致接触不良、假焊等情况发生。

本次电路走线采用拖焊与飞线混合的方式走线。拖焊需要将要连接的焊盘, 先焊上锡, 再两个锡点中间送锡。尤为注意的是连接两点时只能让一个锡点处于液态, 否则不能将两个锡点连在一起。

## 四、 数据测量和处理

#### 4.1 直流电压测量

| 实际值     | 测量值     | 相对误差  | 量程   |
|---------|---------|-------|------|
| 1.499V  | 1.496 V | 0.001 |      |
| -0.602V | -0.602V | 0.000 | 2V   |
| -1.021V | -1.019V | 0.002 |      |
| 5.02V   | 4.92V   | 0.019 | _    |
| -4.99V  | -4.89V  | 0.020 | 20V  |
| 12.05V  | 11.74V  | 0.025 |      |
| 5.03V   | 4.86V   | 0.033 |      |
| 12.09V  | 11.78V  | 0.025 | 200V |
| 14.99V  | 14.68V  | 0.020 |      |

### 4.2 交流电压测量

| 实际值     | 测量值     | 相对误差  | 量程   |
|---------|---------|-------|------|
| 1.078V  | 1.076 V | 0.001 |      |
| -0.502V | -0.498V | 0.002 | 2V   |
| -1.021V | -1.018V | 0.001 |      |
| 5.52V   | 5.41V   | 0.021 |      |
| -5.49V  | -5.34V  | 0.018 | 20V  |
| 7.35V   | 7.14V   | 0.017 |      |
| 7.35V   | 7.10V   | 0.024 |      |
| 5.09V   | 11.78V  | 0.029 | 200V |
| 14.99V  | 14.68V  | 0.030 |      |

## 4.3 电阻测量

|       | 测量值   | 相对误差  | 量程   |
|-------|-------|-------|------|
| 0.498 | 0.492 | 0.014 |      |
| 0.998 | 0.992 | 0.006 | 2k   |
| 9.97  | 9.94  | 0.003 |      |
| 4.99  | 4.95  | 0.008 | 20k  |
| 90.8  | 90.3  | 0.005 |      |
| 46.9  | 46.7  | 0.004 | 200k |
| 465   | 464   | 0.002 |      |
| 1800  | 1794  | 0.003 | 2M   |

## 五、 误差分析

- 电阻分压电路因为电阻精度不够产生误差。
- 运算放大器是否表现为理想运放特性,即正相、反相输入端是否为零。
- 电路走线过程是否产生较大电阻,芯片引脚不稳以及导线虚焊、短路都会严重影响电路 正常工作。

## 六、 心得体会

#### 6.1 故障排查

在电路一开始上电时,我发现显示电路一直在跳动,并且跳动很有规律,因此我猜测电路 AD 转换模块工作频率不正常,在重新检查电路后我发现 MC14433 芯片的共地端焊接出现问题,我重新将数字地与模拟地接好,发现芯片正常工作,显示电路也正常显示。

在调整电阻测量电路的过程中,我发现电阻测量值与实际值相差很大,一开始我以为是基准电压问题,我重新检查电路后,发现我将 100kΩ的保护电阻接入测量电路,导致测量电路比例系数有误,重新接线后电阻测量基本没问题,而且误差在允许的范围内。

同时在帮助同学的过程中,也有一个很有意思的故障。一位同学的板子出现某个量程电阻测量值误差很大的情况,大量程测小电阻的误差很大,起初我们以为是电阻测量电路有问题,在更换电阻、芯片以及重新焊接后都没有解决故障,后来我们和老师顺着电路查看,发现是由于接入基准电压时滤波电路没有接好,只接了滤波电容而没有接滤波电阻。其实在之前也有很奇怪的现象,每次只有短接了接线帽,电压测量值才能精准显示,当时我们不以为意,实际上将接线帽短接就是将滤波电容接地,把电容累积的电荷放电,电路才能正常工作。当发现滤波电路的问题后,我们将先前的奇怪问题也一并解决了。

#### 6.2 心得与收获

- 电路是一个整体,电路部分功能出现问题可能原因是先前电路不稳而导致,在排查 故障的过程中一定要跟随信号检测。
- 在排除故障的过程中要合理使用仪器,示波器与万用表的欧姆档是很好检测电路故障的仪器。
- 在排除故障过程要熟悉电路,确保了解电路某部分正常工作情况。