Investigating Disentanglement in β -VAE within a Linear Gaussian Setting

Minh Vu (Joint work with Shuangqing Wei and Xiaoliang Wan)

January 19, 2024

Overview

β -VAE Model:

- β-VAE (Higgins et al. 2017) integrates encoder and decoder components for efficient dimension reduction and data compression.
- The encoder maps input data into a lower-dimensional latent space, and the decoder reconstructs the original data.
- Aims for a balance between compression efficiency and reconstruction accuracy, crucial for applications like image or signal processing.

Role of Disentanglement:

- Ensures each dimension in the latent space corresponds to a specific and independent factor of variation in the data.
- Enhances understanding of the latent space dynamics, enabling precise control over individual factors without affecting others.

Linear Gaussian Framework

Figure: Markov chain diagram of the β -VAE model with an additional generative transition $\mathbf{Y} = g(\mathbf{V})$.

Consider a linear Gaussian setting represented by the generative model $(\{v_i\}_{i=1}^s, \mathbf{Y})$, where the input $\mathbf{Y} \in \mathbb{R}^n$ is defined as:

$$\mathbf{Y} = \sum_{i=1}^{s} v_{i} \Gamma_{i} + \tilde{\mathbf{Z}}$$

$$= \Gamma \mathbf{V} + \tilde{\mathbf{Z}}$$
(1)

- $\Gamma \in \mathbb{R}^{n \times s}$: A matrix formed by concatenating s independent eigenvectors Γ_i , each corresponding to a standard basis vector in \mathbb{R}^n .
- $\tilde{\mathbf{Z}} \in \mathbb{R}^n$: The noise follows a Gaussian distribution of $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$, where $\sigma^2 < 1$.

Linear Gaussian Framework

The encoding and decoding processes are defined as follows:

$$X = BY + W$$

$$\hat{Y} = A\hat{X} + Z$$
(2)

Here,

- $\mathbf{B} \in \mathbb{R}^{m \times n}$: The encoding matrix.
- $W \in \mathbb{R}^m$: The encoder noise follows a Gaussian distribution of $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_W)$, where $\mathbf{\Sigma}_W$ is a positive definite matrix.
- $\mathbf{A} \in \mathbb{R}^{n \times m}$: The decoding matrix.
- $\hat{\pmb{X}} \in \mathbb{R}^m$: A sample drawn from the latent variable distribution $\mathcal{N}(\pmb{0}, \pmb{I}_m)$.
- $Z \in \mathbb{R}^n$: The decoder noise follows a Gaussian distribution of $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_Z)$, where $\mathbf{\Sigma}_Z$ is a diagonalized positive definite matrix.

$\gamma\lambda$ -VAE Loss Function

The loss function for the $\gamma\lambda$ -VAE in a linear Gaussian setting is presented as follows:

$$\mathcal{L}_{\gamma\lambda\text{-VAE}} = \mathbb{E}_{\mathbf{Y}}[D_{\mathsf{KL}}[q_{\mathbf{X}|\mathbf{Y},\phi}(\mathbf{x}|\mathbf{y})||p_{\mathbf{X}}(\mathbf{x})]]$$

$$-\gamma \mathbb{E}_{\mathbf{X},\mathbf{Y},\phi}[\log p_{\hat{\mathbf{Y}}|\hat{\mathbf{X}},\theta}(\hat{\mathbf{Y}} = \mathbf{y}|\hat{\mathbf{X}} = \mathbf{x})]$$

$$+\lambda \mathbb{E}_{\mathbf{Y}}[\|\mathbf{Y} - \mathbf{A}\mathbf{X}\|^{2}]$$

$$= \frac{1}{2} \Big[\text{Tr}(\mathbf{B}\boldsymbol{\Sigma}_{\mathbf{Y}}\mathbf{B}^{\mathsf{T}} + \boldsymbol{\Sigma}_{\mathbf{W}}) - \log |\boldsymbol{\Sigma}_{\mathbf{W}}| - m \Big]$$

$$-\frac{\gamma}{2} \Big(\mathbf{A}^{\mathsf{T}}\boldsymbol{\Sigma}_{\mathbf{Z}}^{-1}\boldsymbol{\Sigma}_{\mathbf{Y}}\mathbf{B}^{\mathsf{T}} + \boldsymbol{\Sigma}_{\mathbf{Z}}^{-1}\mathbf{A}\mathbf{B}\boldsymbol{\Sigma}_{\mathbf{Y}} - \boldsymbol{\Sigma}_{\mathbf{Z}}^{-1}\boldsymbol{\Sigma}_{\mathbf{Y}}$$

$$-\mathbf{A}^{\mathsf{T}}\boldsymbol{\Sigma}_{\mathbf{Z}}^{-1}\mathbf{A}(\mathbf{B}\boldsymbol{\Sigma}_{\mathbf{Y}}\mathbf{B}^{\mathsf{T}} + \boldsymbol{\Sigma}_{\mathbf{W}}) \Big] - n \log(2\pi) - \log |\boldsymbol{\Sigma}_{\mathbf{Z}}| \Big)$$

$$+ \lambda \operatorname{Tr}[(\mathbf{I}_{n} - \mathbf{A}\mathbf{B})\boldsymbol{\Sigma}_{\mathbf{Y}}(\mathbf{I}_{n} - \mathbf{A}\mathbf{B})^{\mathsf{T}} + \mathbf{A}\boldsymbol{\Sigma}_{\mathbf{W}}\mathbf{A}^{\mathsf{T}}]. \tag{3}$$

Problem Formulation for (s, n, m) = (3, 4, 3)

Figure: Scenarios Illustrating Generative Factor Relationships for Disentanglement Study: Independence, Linear Dependence of v_1 and v_2 with Independence of v_3 , and Linear Dependence of v_2 and v_3 on v_1 .

Configurations of Generative Factors

1. Independence of Generative Factors:

We independently sample each of the three generative factors, v_1 , v_2 , and v_3 , from their respective Gaussian distributions: $\mathcal{N}(0, \sigma_{v_1}^2)$, $\mathcal{N}(0, \sigma_{v_2}^2)$, and $\mathcal{N}(0, \sigma_{v_3}^2)$.

- 2. Linear Dependence of v_1 and v_2 , with Independence of v_3 : We independently sample v_1 and v_3 from Gaussian distributions, specifically $\mathcal{N}(0,\sigma^2_{v_1})$ and $\mathcal{N}(0,\sigma^2_{v_3})$, respectively. Introducing a scaling factor, denoted as α , we calculate v_2 using the equation $v_2 = \alpha v_1 + z_2$, where $z_2 \sim \mathcal{N}(0,\sigma^2_{z_2})$.
- 3. Linear Dependence of v_2 and v_3 on v_1 :

 We sample v_1 from a Gaussian distribution: $v_1 \sim \mathcal{N}(0, \sigma_{v_1}^2)$.

 Introducing scaling factors α and β , we calculate v_2 and v_3 using the equations $v_2 = \alpha v_1 + z_2$ and $v_3 = \beta v_1 + z_3$, where $z_2 \sim \mathcal{N}(0, \sigma_{z_2}^2)$ and $z_3 \sim \mathcal{N}(0, \sigma_{z_3}^2)$.

Configurations of Generative Factors

1. Independence of Generative Factors:

$$\mathbf{\Sigma}_{\mathbf{V}} = \begin{bmatrix} \sigma_{\nu_1}^2 & 0 & 0 \\ 0 & \sigma_{\nu_2}^2 & 0 \\ 0 & 0 & \sigma_{\nu_3}^2 \end{bmatrix}$$

2. Linear Dependence of v_1 and v_2 , with Independence of v_3 :

$$\mathbf{\Sigma}_{\mathbf{V}} = \begin{bmatrix} \sigma_{v_1}^2 & \alpha \sigma_{v_1}^2 & 0\\ \alpha \sigma_{v_1}^2 & \alpha^2 \sigma_{v_1}^2 + \sigma_{z_2}^2 & 0\\ 0 & 0 & \sigma_{v_3}^2 \end{bmatrix}$$

3. Linear Dependence of v_2 and v_3 on v_1 :

$$\mathbf{\Sigma}_{\mathbf{V}} = \begin{bmatrix} \sigma_{\mathbf{v}_1}^2 & \alpha \sigma_{\mathbf{v}_1}^2 & \beta \sigma_{\mathbf{v}_1}^2 \\ \alpha \sigma_{\mathbf{v}_1}^2 & \alpha^2 \sigma_{\mathbf{v}_1}^2 + \sigma_{\mathbf{z}_2}^2 & \alpha \beta \sigma_{\mathbf{v}_1}^2 \\ \beta \sigma_{\mathbf{v}_1}^2 & \alpha \beta \sigma_{\mathbf{v}_1}^2 & \beta^2 \sigma_{\mathbf{v}_1}^2 + \sigma_{\mathbf{z}_3}^2 \end{bmatrix}$$

Disentanglement Metric \mathcal{I}_m

Objective: Introduce a disentanglement metric based on mutual information, denoted as \mathcal{I}_m , to evaluate disentanglement in the three specified scenarios, where m is the latent variable dimension.

Formulation of metric \mathcal{I}_3 :

1. For (s, n, m) = (3, 4, 3), partition the set of 3 generative factors, $V_3 = \{v_1, v_2, v_3\}$, into three distinct groups: v_{s_1} , v_{s_2} , and v_{s_3} .

$$v_{s_1} \subset \mathcal{V}_3, v_{s_2} \subset \mathcal{V}_3, v_{s_3} \subset \mathcal{V}_3$$

$$v_{s_1} \cup v_{s_2} \cup v_{s_3} = \mathcal{V}_3$$

$$v_{s_1} \cap v_{s_2} \cap v_{s_3} = \emptyset$$

$$(4)$$

There are a total of 27 partitions that satisfy the conditions outlined in system (4), considering scenarios where a group of generative factors may be empty.

- $v_{s_1} = \{v_1\}, v_{s_2} = \{v_2\}, \text{ and } v_{s_3} = \{v_3\}$
- $v_{s_1} = \{v_1\}, v_{s_2} = \{v_2, v_3\}, \text{ and } v_{s_3} = \emptyset$
- $v_{s_1} = \{v_1, v_2, v_3\}, v_{s_2} = \emptyset$, and $v_{s_3} = \emptyset$

Disentanglement Metric \mathcal{I}_3 Formulation

- 2. i. Evaluate latent variables' effectiveness in capturing and representing generative factors by aggregating mutual information $I(x_i; v_{s_i})$ for $i \in \{1, 2, 3\}$.
 - ii. Quantify the mutual information between two groups among the three (e.g., $I(v_{s_1}; v_{s_2})$, $I(v_{s_1}; v_{s_3})$, $I(v_{s_2}; v_{s_3})$) to address potential correlations among generative factor groups.
 - iii. Subtract mutual information values between groups from the sum to formulate metric \mathcal{I}_3 , preventing overlapping information among generative factor groups.

Note: If the group of generative factors v_{s_i} is empty, any mutual information involving v_{s_i} with another group or latent variable should be excluded from the computation.

Disentanglement Metric \mathcal{I}_3 Formulation

For distinct values of i, j, and k chosen from the set $\{1, 2, 3\}$, we consider 3 following cases:

- None of the groups are empty: $v_{s_i}, v_{s_j}, v_{s_k} \neq \emptyset$
- One group is empty: $v_{s_i}, v_{s_i} \neq \emptyset$ and $v_{s_k} = \emptyset$
- Two groups are empty: $v_{s_i} \neq \emptyset$ and $v_{s_j} = v_{s_k} = \emptyset$

So, the formula for \mathcal{I}_3 is defined as follows:

$$\mathcal{I}_{3} = \begin{cases}
\sum_{m=1}^{3} I(x_{m}; v_{s_{m}}) - \sum_{i < j} I(v_{s_{i}}; v_{s_{j}}) & \text{if Case 1} \\
I(x_{i}; v_{s_{i}}) + I(x_{j}; v_{s_{j}}) - I(v_{s_{i}}; v_{s_{j}}) & \text{if Case 2} \\
I(x_{i}; v_{s_{i}}) & \text{if Case 3}
\end{cases}$$
(5)

Criteria for Disentanglement using Metric \mathcal{I}_3

3. For each partition, we compute \mathcal{I}_3 . After evaluating all 27 partitions, the \mathcal{I}_3 score is determined by selecting the highest among the 27 computed scores:

$$\mathcal{I}_3 \text{ Score} = \max \left\{ \mathcal{I}_3^{(i)} \middle| 1 \le i \le 27 \right\} \tag{6}$$

The successful disentanglement, as measured by the \mathcal{I}_3 metric, is achieved when the highest \mathcal{I}_3 score corresponds to the partition that accurately characterizes the relationships among the given generative factors.

- Independence of Generative Factors: $v_{s_1} = \{v_1\}, v_{s_2} = \{v_2\}, \text{ and } v_{s_3} = \{v_3\}$
- Linear Dependence of v_1 and v_2 , with Independence of v_3 : $v_{s_1} = \{v_1, v_2\}, v_{s_2} = \{v_3\}, \text{ and } v_{s_3} = \emptyset$
- Linear Dependence of v_2 and v_3 on v_1 : $v_{s_1} = \{v_1, v_2, v_3\}, v_{s_2} = \emptyset$, and $v_{s_3} = \emptyset$

SAP Score (Kumar et al. 2018)

Calculation Steps:

- 1. Construct a score matrix **S** of size $m \times s$, where m represents the latent variables, and s denotes the generative factors.
- 2. Compute each $S_{i,j}$, the ij-th entry of matrix **S**, with the given formula:

$$S_{i,j} = \left[\frac{\operatorname{cov}(x_i, v_j)}{\sqrt{\operatorname{var}(x_i)}\sqrt{\operatorname{var}(v_j)}}\right]^2 \tag{7}$$

- Identify the two highest-scoring entries for each generative factor.
- 4. Calculate the mean difference between these top two entries across all generative factors:

SAP score =
$$\frac{1}{s} \sum_{i=1}^{s} \left(S_{i(i),j} - S_{i'(i),j} \right)$$
 (8)

Here,
$$i^{(j)} = \arg \max_{i} S_{i,j}$$
 and $i'^{(j)} = \arg \max_{i \neq i^{(j)}} S_{i,j}$.

Numerical Simulation Configuration Across Scenarios

- 1. Utilize two arrays of hyperparameters: $\gamma = [0.98, 1.02]$ and $\lambda = [-0.02, 0.02]$, each incremented by 0.01. For each (γ, λ) pair, seek the optimal solution $(\mathbf{A}_{\text{opt}}, \mathbf{B}_{\text{opt}}, \mathbf{\Sigma}_{\mathbf{Z}_{\text{opt}}}, \mathbf{\Sigma}_{\mathbf{W}_{\text{opt}}})$ for the $\gamma\lambda$ -VAE loss function, adhering to a constraint of a 5% reconstruction error tolerance. Employ the Blahut-Arimoto algorithm to iteratively adjust the encoder and decoder until convergence is achieved.
 - Update the encoder $\phi^{(t+1)} = \left(\mathbf{B}^{(t+1)}, \boldsymbol{\Sigma}_{\boldsymbol{W}}^{(t+1)}\right)$ $\mathbf{B}^{(t+1)} = \left[\mathbf{I}_{m} + \left[\mathbf{A}^{(t)}\right]^{\mathsf{T}} \left(\gamma \left[\boldsymbol{\Sigma}_{\boldsymbol{z}}^{(t)}\right]^{-1} + 2\lambda \mathbf{I}_{n}\right) \mathbf{A}^{(t)}\right]^{-1} \left[\mathbf{A}^{(t)}\right]^{\mathsf{T}} \left(\gamma \left[\boldsymbol{\Sigma}_{\boldsymbol{z}}^{(t)}\right]^{-1} + 2\lambda \mathbf{I}_{n}\right)$ $\boldsymbol{\Sigma}_{\boldsymbol{W}}^{(t+1)} = \left[\mathbf{I}_{m} + \left[\mathbf{A}^{(t)}\right]^{\mathsf{T}} \left(\gamma \left[\boldsymbol{\Sigma}_{\boldsymbol{z}}^{(t)}\right]^{-1} + 2\lambda \mathbf{I}_{n}\right) \mathbf{A}^{(t)}\right]^{-1}$ (9)
 - ullet Update the decoder $oldsymbol{ heta}^{(t)} = \left(oldsymbol{\mathsf{A}}^{(t+1)}, oldsymbol{\Sigma}_{oldsymbol{\mathsf{Z}}}^{(t+1)}
 ight)$

$$\mathbf{A}^{(t+1)} = \left(\mathbf{\Sigma}_{\mathbf{Y}}^{-1} + \left[\mathbf{B}^{(t+1)}\right]^{\mathsf{T}} \left[\mathbf{\Sigma}_{\mathbf{W}}^{(t+1)}\right]^{-1} \mathbf{B}^{(t+1)}\right)^{-1} \left[\mathbf{B}^{(t+1)}\right]^{\mathsf{T}} \left[\mathbf{\Sigma}_{\mathbf{W}}^{(t+1)}\right]^{-1}$$

$$\mathbf{\Sigma}_{\mathbf{Z}}^{(t+1)} = \left(\mathbf{\Sigma}_{\mathbf{Y}}^{-1} + \left[\mathbf{B}^{(t+1)}\right]^{\mathsf{T}} \left[\mathbf{\Sigma}_{\mathbf{W}}^{(t+1)}\right]^{-1} \mathbf{B}^{(t+1)}\right)^{-1}$$

$$(10)$$

Numerical Simulation Configuration Across Scenarios

2. Determine the covariance of the joint distribution of \boldsymbol{X} and \boldsymbol{V} , denoted as $\boldsymbol{\Sigma}_{\boldsymbol{X},\boldsymbol{V}}$ as follows:

$$\mathbf{\Sigma}_{oldsymbol{X},oldsymbol{V}} = \mathbf{B}_{\mathsf{opt}} \mathbf{\Gamma} \mathbf{\Sigma}_{oldsymbol{V}}$$

- 3. Compute \mathcal{I}_3 and SAP scores.
- 4. Evaluate if \mathcal{I}_3 and SAP successfully capture disentanglement for the given pair of (γ, λ) .
- 5. After considering all pairs of (γ, λ) , calculate the **disentanglement success rates** for both metrics. The success rate is determined by the number of successful disentanglements over the total 25 (γ, λ) pairs, expressed as a percentage.

Numerical Results for (s, n, m) = (3, 4, 3)

Figure: Independent Sub-groups in Generative Factors: 3 for Scenario 1, 2 for Scenario 2, and 1 for Scenario 3.

Metrics	Scenario 1	Scenario 2	Scenario 3
\mathcal{I}_3	16%	64%	100%
SAP	40%	92%	92%

Table: Disentanglement success rates for three scenarios.

Hypothesis

Hypothesis

Let G() denote the number of independent sub-groups hidden in the generative factors.

- i. If $|G(V_j)| < m$, we anticipate that our metric \mathcal{I}_m will outperform SAP. This expectation becomes more pronounced as the gap or difference between the two sides increases.
- ii. Conversely, when $|G(V_j)| \ge m$, we expect a reversal in the performance order between SAP and our metric compared to the previous case.

Numerical Results for (s, n, m) = (5, 5, 4)

Figure: Independent Sub-groups in Generative Factors: 3 for Scenario 1, 2 for Scenario 2, and 1 for Scenario 3.

Metrics	Scenario 1	Scenario 2	Scenario 3
\mathcal{I}_4	44%	60%	56%
SAP	52%	20%	4%

Table: Disentanglement success rates for three scenarios.

Conclusion

- If the number of independent sub-groups in the generative factors is significantly lower than the dimension of the latent space, the mutual information-based metric \mathcal{I}_m is anticipated to outperform the correlation-based metric SAP.
- ullet One limitation of metric \mathcal{I}_m is its computational cost, particularly when the dimensions of generative and latent variables increase, resulting in a higher number of partitions.

References

- Higgins, Irina et al. (2017). "beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework". In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=Sy2fzU9gl.
- Kumar, Abhishek, Prasanna Sattigeri, and Avinash Balakrishnan (2018). Variational Inference of Disentangled Latent Concepts from Unlabeled Observations. arXiv: 1711.00848 [cs.LG].