Lecture-6 (RISC and CISC)

Encoding of motructions :-

1) Fixed-length instruction encoding.

(Every instruction is represented wing some number of bytes.)

2 Variable- length instruction encoding.

hst 3 hst 2 hst 1 (complex (nimple operation) operation)

[different computer constructions is represented very different number of bytes.]

Different real-life processors:

1 BM 360/370 (1960-70)

2) VAX-11/780 (1970-80)

by DE((Digital Equipment (Oxyoration)

1985 - present

9 MIPS (1980-90)
MIPS Technologies (US)
(MIPS 32: A care study)

S SPARC (Schole Processor ARChitecture)
by Sun Microsytems

6) ARM Microcontroller

Apple A16 Browic (ARM-band)

Google pixel ->
Rualcomm Snepdragon 821
(ARM-band)

Two broad classification at instruction sets

Domplex Instruction
Set Computer

Reduced Instruction
Set Compter
[RISC]

- -> Instruction sets are
- -> Large number of

 addressing modes

 (R-R, R-M, M, M,, etc.)
- -> special-purpose registres and flogs.
- > Variable length instructions/ lomplext instruction encoding.
- -> Instruction decoding more complex
- -> (ontrol unit derign complex
- -> (omplex pipeline implementation.
- -> CISC Examples
 - O IBM 360/370
 - @ VAX-11/780
 - (3) Intel x86/Pentiam

Only CISC present today Because translation CISC > RISC

- 2 Reduced Instruction Set Architecture (RISC)
 - -> Widely und today.
 - -> LOAD-STORE Architecture.

Only LOAD and STORE instructions access memory.

All other instructions operate on processor registers.

- -> Efficient Pipelining bingle architecture.
- -> Fixed length histriction Encoding.
- -> RISC examples MIPS Family SPARC ARM

CISC -> RISC (onversion 3-

CISC

-> RISC

SUB My, (x1), (r2) LOAD Mg, (r1)

MUL M7, M4, M6 LOAD M9, (R2)

ST (M6), M7 SUB M4, M8, M9

MUL M7, M4, M6

ST (M6), M2

CASE (STUDY: MIPS 32 Architecture

1) MIPS32 Registers

@ MIRS 32 histruction (32 6 18)

Groups

-> Load and Store

-> Arithmetic and Logical

-> Tump and Branch -> Miscellaneaus (Ponditional MOVE, NOP) > Coprocessor instruction ((PO, (PI, CP2, (P3) Ultral Memory /
Exception Handling /
Reserved for future. B MIPS 32 Programming C (ode MIPS 32 Code $A = B+C; \longrightarrow [add $81, $82,$83]$ A=B+C-D; -> add \$t0,\$\$1,\$\$2 E=F+A; snb \$50,\$t0,\$\$3 add \$\$4,\$\$5,\$\$0

MIPS 32 Instruction Encocling

R-type (Register)

31 25 20 15 10 5 0

Op 60de rs re rd shamt funct

The struction Encocling

And Shamt funct

6-61t optode shift amount additional functions (opcode) add \$51, \$52, \$63 oub \$1, \$3, \$54 cla \$01, \$52,5 -> I-type (Immediate) Contains 16-bit immediate data field. 31 25 20 15 opcode rs rt Immediate 16-61t addi \$ to, \$s1, 188 > J-type (Jump) 31 25 Opcode humediate Data 26-61t jamp address i Label

j Label

(5) Addrewing Modes in MIRS 32

-> Register addring

-> Immediate addrewing

→ Index Addressing

→ Relative Addressing (16-bit affect + PC)