Examples

* A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.
 - * Events:

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.
 - * Events:
 - * A :=The first toss results in heads.

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.
 - * Events:
 - * A := The first toss results in heads.
 - * B := The second toss results in tails.

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.
 - * Events:
 - * A :=The first toss results in heads.
 - * B := The second toss results in tails.
 - * C := The third toss results in heads.

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.
 - * Events:
 - * A :=The first toss results in heads.
 - * B := The second toss results in tails.
 - * C := The third toss results in heads.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.
 - * Events:
 - * A := The first toss results in heads.
 - * B := The second toss results in tails.
 - * C := The third toss results in heads.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A,B, and C independent events?

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.
 - * Events:
 - * A := The first toss results in heads.
 - * B := The second toss results in tails.
 - * C := The third toss results in heads.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A,B, and C independent events?

	Event	Probability
A	{hhh, hht, hth, htt}	1/2
В	{hth, htt, tth, ttt}	1/2
С	{hhh, hth, thh, tth}	1/2
A n B	{hth, htt}	1/4
$A \cap C$	{hhh, hth}	1/4
BnC	{hth, tth}	1/4
AnBnC	{hth}	1/8

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.
 - * Events:
 - * A := The first toss results in heads.
 - * B := The second toss results in tails.
 - * C := The third toss results in heads.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A,B, and C independent events?

Event		Probability
A	{hhh, hht, hth, htt}	1/2
В	{hth, htt, tth, ttt}	1/2
С	{hhh, hth, thh, tth}	1/2
ΑnB	{hth, htt}	$1/4 = \frac{1}{2} \times \frac{1}{2}$
AnC	{hhh, hth}	$1/4 = \frac{1}{2} \times \frac{1}{2}$
$B \cap C$	{hth, tth}	$1/4 = \frac{1}{2} \times \frac{1}{2}$
AnBnC	{hth}	1/8

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.
 - * Events:
 - * A := The first toss results in heads.
 - * B := The second toss results in tails.
 - * C := The third toss results in heads.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A,B, and C independent events?

	Event	Probability
A	{hhh, hht, hth, htt}	1/2
В	{hth, htt, tth, ttt}	1/2
С	{hhh, hth, thh, tth}	1/2
$A \cap B$	{hth, htt}	$1/4 = \frac{1}{2}$
AnC	{hhh, hth}	$1/4 = \frac{1}{2}$
BnC	{hth, tth}	$1/4 = \frac{1}{2}$
AnBnC	{hth}	$1/8 = \frac{1}{2}$

- * A fair coin (\mathfrak{h} = heads, \mathfrak{t} = tails) is tossed thrice.
 - * Sample space: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth\}$.
 - * Events:
 - * A := The first toss results in heads.
 - * B := The second toss results in tails.
 - * C := The third toss results in heads.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A,B, and C independent events?

	Event	Probability
A	{hhh, hht, hth, htt}	1/2
В	{hth, htt, tth, ttt}	1/2
С	{hhh, hth, thh, tth}	1/2
ΑnB	{hth, htt}	$1/4 = \frac{1}{2} \times \frac{1}{2}$
AnC	{hhh, hth}	$1/4 = \frac{1}{2} \times \frac{1}{2}$
BnC	{hth, tth}	$1/4 = \frac{1}{2} \times \frac{1}{2}$
AnBnC	{hth}	$1/8 = \frac{1}{2} \times \frac{1}{2} \times$