Algorithms

Lesson #5: BFS

(Based on slides by Prof. Dana Shapira)

Graph

- A graph is a pair (V, E), where
 - V is a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges $\subseteq (V \times V)$
- If edge pairs are ordered, the graph is directed, otherwise undirected.

Paths

- Path
 - sequence of vertices $\{v_0, v_1, ..., v_p\}$ where $(v_i, v_{i+1}) \in E$
- Simple path

• If no vertex in the path appears more than

once

Cycles

- Circuit
 - A path $\{v_0, v_1, ..., v_p\}$ where $v_0 = v_p$.
- Simple circuit
 - If no vertex, other than the start-end vertex, appears more than once, and the start-end vertex does not appear elsewhere

in the circuit

• Adjacency Lists.

• Adjacency Matrix.

	1	2	3	4
1	0	1 0 1 0	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

Breadth-First Search & Depth-First Search

Objective: Visit all the vertices of the graph, by following the edges

For each node u:

BFS: Visit all the nodes reachable from u before continuing with nodes reachable from v1

DFS: Visit all the nodes reachable from v1 before continuing with v2

Keep some info about the search process - will be useful for applications

Breadth-first Search

- Input: Graph G = (V, E), directed or undirected, and source vertex $s \in V$.
- Output:

for all $v \in V$

- d[v] = distance from s to v.
- $\pi[v] = u$ such that (u, v) is the last edge on shortest path from s to v.
- Builds *breadth-first tree* with root *s* that contains all reachable vertices.
- Colors the vertices to keep track of progress.
 - White Undiscovered.
 - Gray Discovered but not finished.
 - **Black** Finished.

BFS for Shortest Paths

Finished

Discovered

o Undiscovered

```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
             do color[u] \leftarrow white
               d[u] \leftarrow \infty
                \pi[u] \leftarrow \mathsf{NULL}
   color[s] \leftarrow gray
6 d[s] \leftarrow 0
7 \pi[s] \leftarrow \text{NULL}
8 Q \leftarrow \Phi
    enqueue(Q,s)
10 while Q \neq \Phi
11
             do u \leftarrow dequeue(Q)
12
                          for each v in Adj[u]
13
                                        do if color[v] = white
14
                                                     then color[v] \leftarrow gray
15
                                                             d[v] \leftarrow d[u] + 1
16
                                                             \pi[v] \leftarrow u
17
                                                             enqueue(Q,v)
                          color[u] \leftarrow black
18
```


Example

Let G be the following graph:

What is BFS(G,A)? BFS(G,D)?

BFS correctness

Let G = (V,E) be a graph and $s \in V$.

- $\delta(s,v)$ the shortest path distance from s to v (the minimum number of edges).
 - $\delta(s,v) = \infty$ if there is no path from s to v.

Theorem:

- 1. During its execution, BFS discovers every vertex $v \in V$ that is reachable from s.
- 2. Upon termination, $d[v] = \delta(s,v)$.
- 3. For all reachable vertices v except for s, one of the shortest paths from s to v is a shortest path from s to $\pi[v]$ followed by the edge $(\pi[v],v)$.

BFS correctness

Lemma 1: \forall edge $(u,v) \in E$, $\delta(s,v) \leq \delta(s,u) + 1$

Lemma 2: Upon termination of BFS: $\forall v \in V, d[v] \ge \delta(s,v)$.

BFS correctness

- Lemma 3: If the queue Q contains vertices $\langle v_1, ... v_r \rangle$ where v_1 and v_r are Q's head and tail, then:
 - $d[v_r] \le d[v_1] + 1$
 - $d[v_i] \le d[v_{i+1}] \text{ for } i=1,2,..,r-1$

Corollary: If vertex v_i was enqueued before vertex v_j during BFS, then $d[v_i] \le d[v_j]$ when v_j is enqueued.

- By contradiction, assume that there is a vertex v such that $d[v] \neq \delta(s, v)$, and choose v with minimum $\delta(s, v)$. Using Lemma $2 d[v] > \delta(s, v)$.
 - $v \neq s$, since $d[s] = 0 = \delta(s,s)$.
 - v is reachable from s for otherwise $\delta(s,v)=\infty \ge d[v]$.

Let *u* be the vertex immediately preceding *v* on a shortest path from *s* to *v*.

• $\delta(s,v) = \delta(s,u)+1$. $\Rightarrow \delta(s,u) < \delta(s,v) \Rightarrow$ from minimality $\delta(s,v)$, $d[u] = \delta(s,u)$.

*
$$d[v] > \delta(s,v) = \delta(s,u) + 1 = d[u] + 1$$

Consider now the time when *u* is dequeued. Vertex *v* is either white, gray, or black.

- v is white: then in line 15 d[v]=d[u]+1 which contradicts *.
- v is gray: There exists $w \in V$ that was dequeued before $u \Rightarrow$

d[v]=d[w]+1. but $d[w] \le d[u]$ (corollary) $\Rightarrow d[v] \le d[u]+1$ which contradicts *.

• v is black: v was already dequeued $\Rightarrow d[v] \leq d[u]$ (corollary) thus d[v] < d[u] + 1 which contradicts *.

$$\Rightarrow d[v] = \delta(s,v)$$

• If $\pi[v]=u$, then d[v]=d[u]+1. Thus, we obtain the shortest path from s to v by taking a shortest path from s to $\pi[v]$ and then traversing the edge $(\pi[v],v)$.

- For a graph G = (V, E) with source s, the *predecessor subgraph* of G is $G_{\pi} = (V_{\pi}, E_{\pi})$ where
 - $V_{\pi} = \{ v \in V : \pi[v] \neq \text{NULL} \} \cup \{ s \}$
 - $E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} \{s\} \}$
- The predecessor subgraph G_{π} is a breadth-first tree if:
 - V_{π} consists of the vertices reachable from s and
 - for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called *tree edges*. $|E_{\pi}| = |V_{\pi}| 1$.

After performing BFS we can print the vertices on the shortest path from s to v in linear time: