AKDENİZ UNIVERSITY CSE 211 – Digital Design

Name, Last name: Student No:

LAB03 Assignment

Your task is to design a decoder circuit that runs a 7-segment display. The circuit must show the numbers from 0 to 9 that is controlled with 4-bit input (ABCD). The steps you should do as follows.

- 1. Fill the truth table in page 2 based on the led statuses given in the picture above.
- 2. **Fill the Karnough Maps** on the page 3 to obtain the simplest Boolean function for each LED (from **a** to **g**) of the 7-segment display. We did first 3 LED (a,b,c) in the Lab class. Fill the karnough maps in page 3 and write the functions you obtained to the last raw of each K-Map table. For each rectangle use different colors on the rectangles to make the table easy to understand (Example tables is given in the first K-Map which is for Fa, Fb, Fc). (To add rectangle you can copy and paste existing ones)

PS: Upload the completed version of this file as a single .pdf file.

3. Finally, design the Boolean functions on Proteus Design Suite. (Use JUMPERS as we did in the lab!). Upload the project file. 7 Segment display must show all the digits (0-9) correctly corresponding to BCD input. A base design file is given in the assignment.

PS: Don't forget to fill your name and student number.

Truth Table

	Inputs			Outputs (Seven Segment Led Pins)							
Digit	A	В	С	D	a	b	с	d	e	f	g
0	0	0	0	0	1	1	1				
1	0	0	0	1	0	1	1				
2	0	0	1	0	1	1	0				
3	0	0	1	1	1	1	1				
4	0	1	0	0	0	1	1				
5	0	1	0	1	1	0	1				
6	0	1	1	0	1	0	1				
7	0	1	1	1	1	1	1				
8	1	0	0	0	1	1	1				
9	1	0	0	1	1	1	1				

AB CD	00	01	11	10		
00	1	1	1	1		
01	1	0	1	0		
11	X	X	X	X		
10	1	1	X	X		
$F_b = C'D' + CD + B'$						

AB CD	00		01		11		10	
00	1		1		1		0	
01	1		1		1		1	
11	X		X		X		X	
10	1		1		X		X	
$F_c = C' + D + B$								

AB CD	00	01	11	10	
00					
01					
11					
10					
$F_d =$					

AB CD	00	01	11	10	
00					
01					
11					
10					
$F_e =$					

AB CD	00	01	11	10	
00					
01					
11					
10					
$F_f =$					

AB CD	00	01	11	10		
00						
01						
11						
10						
$F_g =$						