

ING. ROBERTO ISAAC SUASTE MARTINEZ

INTRODUCCIÓN A LOS MICROCONTROLADORES

CONTENIDO

- INTRODUCCIÓN
- MICROCONTROLADORES
- LENGUAJES DE PROGRAMACIÓN
- SOFTWARE
- HARDWARE
- APLICACIONES

INTRODUCCIÓN

¿Qué es un CONTROLADOR?

CONTROLADOR

Es un dispositivo que se emplea para manipular uno o varios procesos.

Es Invariante en el Tiempo

Ha cambiado su IMPLEMENTACIÓN FÍSICA

- ► Hace 45 años → LÓGICA DISCRETA
- ▶ Hace 25 años → MICROPROCESADORES
- ▶ Actualidad → MICROCONTROLADORES

¿Qué es un MICROPROCESADOR?

MICROPROCESADOR

Circuito Integrado que contiene: CPU (Unidad Central de Proceso)

Unidad de Control

Interpreta Instrucciones

Bus de Datos

SISTEMA ABIERTO

¿Qué es un MICROCONTROLADOR?

MICROCONTROLADOR

Es una COMPUTADORA reducida a su mínima expresión, un Circuito Integrado

Se forma por:

- CPU (Unidad Central de Proceso)
- Memoria RAM
- Memoria ROM / EEPROM
- Líneas de Entrada y/o Salida
- Periféricos

SISTEMA CERRADO

MICROPROCESADOR VS MICROCONTROLADOR

Ventajas de los MICROCONTROLADORES

▶ FIABILIDAD

Disminuye el riesgo de conflictos, y se precisan menos ajustes.

REDUCCIÓN DE TAMAÑO

- ▶ Disminuye el volumen → mano de obra → menor tiempo de fabricación.
- Disminución de Costos

Ventajas de los MICROCONTROLADORES

FLEXIBILIDAD

Control Programado → para modificar solo se necesitan cambios en el programa.

MENOR CONSUMO DE ENERGÍA

Mayor Autonomía del Sistema

MICROCONTROLADORES

FABRICANTES IMPORTANTES

ATMEL

> AVR'S

ATMEGA328

TEXAS INSTRUMENTS

LAUNCHPAD

MICROCHIP

PIC's

Otros Fabricantes:

- FREESCALE
- RABBIT
- MOTOROLA

¿Qué es un PIC?

PIC

Pheripheral Interface Controller Controlador de Interfaz Programable

GAMAS DE PIC's

- 1. Gama Baja
- 2. Gama Media
- 3. Gama Alta

FAMILIAS DE PIC's

Gama Baja:

PIC12FXXX

Gama Media PIC16FXXX PIC18FXXX

• Gama Alta: PIC24FXXX dsPICXFXX PIC32XXXX

Qué microcontrolador emplear?

¿Qué características debo considerar para elegir un microcontrolador?

FABRICANTE:

- Amplia Documentación
 - Información Técnica (Hoja de Datos)
- Soporte Técnico
 - Resolución de Problemas
- Amplio Mercado
 - Facilidad de Adquisición
- Precio
 - Costo de Adquisición

REQUISITOS DE LA APLICACIÓN:

Procesamiento de Datos

- Velocidad de Respuesta Procesador/Oscilador
 4, 8, 20, 40, 120 MHz.
- Exactitud/ Precisión Número de Bits
 4, 8, 16, 32 Bits

Entradas y/o Salidas

DIP – Empaque Grande, Común
 4, 8, 18, 24, 40 Pines

SMD – Empaque Pequeño
 60 Pines

Módulos a Utilizar

• Tradicionales:

- TIMER's Temporizadores y Contadores
- PWM Modulación por Ancho de Pulso
- ADC Convertidor Analógico Digital
- USART Comunicación Serial
- I²C y SPI Comunicación Serial Síncrona.

Módulos a Utilizar

Lo Nuevo:

- Interfaz USB
- Tecnología mTouch y CapSense
- Comunicación ETHERNET embebida
- Módulos CAN
- Control de Cuadratura para Motores
- Procesamiento de Audio

Características Eléctricas

Voltaje de Trabajo

• 1.8 V − 3.3 V

LENGUAJES DE PROGRAMACIÓN

¿En que lenguaje programo?

Lenguajes de Programación

- Lenguaje C (Alto Nivel)
- Lenguaje Basic (Alto Nivel)
- Lenguaje Ensamblador (Bajo Nivel)

NIVEL	VENTAJAS	DESVENTAJAS	APLICACIONES
ALTO	MENOR # LINEAS DE CODIGO	CODIGO BASURALENTO	SENCILLAS
BAJO	MAYOR # LINEAS DE CODIGO	CODIGOS LIMPIOSRAPIDOS	ROBUSTAS

SOFTWARE

MPLAB IDE

MPLAB IDE Plataforma de Desarrollo Integral

FUNCIONES:

- Editor de texto
- Administrador de proyectos
- Compilar
- Enlazador
- Simular eventos
- Debuggear
- Programar

VENTAJAS:

- Software Gratuito
- Directo del Fabricante
- Constante Actualización
- Requerimientos del Sistema Mínimos
- Ayuda en Línea

HARDWARE

PROGRAMADORES

PICkit 2

PICkit 3

FUNCIONES:

- Programación ICSP por 5 Cables
- Debuggeo
- Fuente de Voltaje
- Conexión USB

Pin Description

- = Vpp/MCLR
- 2 = VDD Target
- 3 = Vss (ground)
- 4 = ICSPDAT/PGD
- 5 = ICSPCLK/PGC
- 6 = Auxiliary

TARJETAS ENTRENADORAS

- Nivel Básico
- Nivel Intermedio
- Nivel Avanzado
- Funciones Especiales

APLICACIONES

- Domótica
- Industria
- Militar
- Espacial
- Automotriz
- Automatización
- Educación
- Medicina
- Entretenimiento
- Hacking

Entre muchas otras...

GRACIAS POR SU ATENCION