1. Integral domain, prime ideal and maximal ideal

- (1) Let R be an integral domain. Prove that units in the polynomial ring R[x] are units of R.
- (2) Is there an integral domain containing exactly 10 elements?
- (3) Find the quotient field of the power series ring R[|x|].
- (4) Find integral domains among the rings $R = \mathbb{F}_5[x]/(x^2 + x + 1)$ and $S = \mathbb{F}_3[x]/(x^2 + x + 1)$.
- (5) Determine maximal ideals of $\mathbb{Z}[x]$ and F[|x|] where F is a field.
- (6) Prove that $m = (x + y^2, y + x^2 + 2xy^2 + y^4) \subset \mathbb{C}[x, y]$ is a maximal ideal.
- (7) Consider the ideal $I = (y^2 + x^3 17)$ of $R = \mathbb{C}[x, y]$. Find generators of all maximal ideals in the quotient ring R/I.
- (8) Show that $\mathbb{Z}_3[x]/(x^2+x+1)$ is not a field.
- (9) How many elements are in Z[i]/(3+i)? Give reason.
- (10) Let $R = \{f : \mathbb{R} \longrightarrow \mathbb{R} | f \text{ is a continuous function} \}$. Show that $I = \{f \in R | f(0) = 0\}$ is a maximal ideal of R.
- (11) Show that $\mathbb{Z}[i]/(1-i)$ is a field. How many elements does this field have?
- (12) In $\mathbb{Z}_5[x]$, let $I = (x^2 + x + 2)$. Find multiplicative inverse of 2x + 3 + I in $\mathbb{Z}_5[x]/I$.
- (13) In $\mathbb{Z}[x]$ let $I = \{f(x) \in \mathbb{Z}[x] | f(0) \text{ is an even integer } \}$. Prove that I = (2, x). Is I a prime ideal of $\mathbb{Z}[x]$? Is I a maximal ideal? How many elements does $\mathbb{Z}[x]/I$ have?
- (14) Prove that (2+2i) is not a prime ideal in $\mathbb{Z}[i]$.
- (15) Prove that (3) is a maximal ideal in $\mathbb{Z}[i]$.