IAP cas-esm2

This repository contains the model source code and scripts for the IAP CCPP project. The initial code commit is based on tarfiles received in early 2020 by Lulin from Institute of Atmospheric Physics (IAP).

Resources

- Description and Climate Simulation Performance of CAS-ESM Version 2 paper
- CCPP Documentation
- CCPP Codebases
 - CCPP Physics
 - CCPP Framework
 - CCPP Single Column Model (SCM)
- CAM5 Scientific Documentation
- CCPP SCM Documentation

The Community Earth System Model (CESM) Coupler infrastructure is used and the CESM1.0 documentation can be useful.

• CESM1.0 Documenation

Building and Running the Model

Prerequisites

- C and Fortran Compiler
- NetCDF
- MPI

Build

After cloning the repository retrieve CCPP Framework and CCPP-Physics repos.

```
$ git submodule update --init --recursive
```

Setup Machine

Make sure the machine being used is listed under <code>scripts/ccsm_utils/Machines/</code> as <code>Macros.mach</code> where <code>mach</code> is the name of the machine If the machine in not listed the user will need to create the setup for a new machine by following the CESM1.0 Porting to a new machine documentation. The file <code>Macros.mach</code> sets variables like <code>FFLAGS</code> so if the user wants to switch compilers they will need to modify these flags. NOTE: The NetCDF macro values will most likely need to be updated by the user using the output from the <code>nc-config</code> and <code>nf-config</code> executables.

Setup and Build Case

```
Setup environment variables that aren't handled in Macros.mach
$ export DIN LOC ROOT=path/to/iap/inputdata
Variables that are used by every user can be updated in Macros.mach
$ export NETCDF PATH=$NETCDF
Switch to CCPP to run CCPP Framework Prebuild steps
$ ./switch to ccpp.sh
$ cd scripts
Switch to CCPP saSAS scheme, run CCPP Framework Prebuild steps
$ ./switch to sasas ccpp.sh
$ cd scripts
User can also run without CCPP
$ ./switch to no ccpp.sh
$ cd scripts
Choose case from list of avaible cases
$ ./create newcase -list
The following is an example of the FAMIPC5 FD14 case on Derecho
$ ./create newcase \
   -case FAMIPC5 FD14 \
   -compset FAMIPC5 \
   -res fd14 fd14 \
   -mach derecho \
    -din loc root csmdata path/to/inputdata
User might need to give ./configure the correct permissions to run
$ chmod +x [base directory]/models/atm/cam/bld/configure
$ cd FAMIPC5 FD14
$ ./configure -case
NOTE: On Derecho the NetCDF C and Fortran builds are in different locations.
  1. File scripts/ccsm utils/Machines/Macros.derecho was changed to handle
    NetCDF environment variables when C and Fortran installs are in different
     locations
$ ./FAMIPC5 FD14.derecho.build
NOTE: During this process the pio library might fail to build. The build does
 not fail gracefully, meaning if you fix the issue reported in the log, the
 user might need to clean the build and try again. The user might need to go
 to the BUILD/pio/ directory and manually run ./configure to find why the
 build process is failing. The configure.status file will not be created
 until ./configure successfully runs.
  - File models/utils/pio/configure was changed to handle when NetCDF C and
   NetCDF Fortran are installed in different directories.
   Variables netcdf c ROOT and netcdf fortran ROOT will be automatically set
   if they are not defined.
  - Once the user has debugged the cause they can edit
    `scripts/ccsm utils/Machines/env machopts.[machine name] for a more
```

Run Case

permanent fix.

The bash script will handle the setup and running of the code and is preferable to manually running mpiexec but that option is explained below.

```
To edit the namelists before running the user may need to change to the
run directory, for instanct to edit the number of days to run change
the stop n value in drv in
$ cd [SCRATCH DIR]/FAMIPC5 FD14/run
$ emacs drv in
Run as bash script from [project dir]/scripts/FAMIPC5 directory using an
interactive node if needed
$ ./FAMIPC5 FD14.derecho.run
OR
Submit as batch script after modifying to match the user's system
$ qsub ./FAMIPC5 FD14.derecho.run
ΩR
Change to scratch directory with the testcase run directory, create directory
for timing and checkpoint information to be written to, run testcase
$ cd [scratch directory]/FAMIPC5 FD14/run
$ mkdir -p timing/checkpoints
$ mpiexec -np 128 ./ccsm.exe &> log.txt
```

Directory Structure

Note, the whole directory structure is not shown, just a few directories important for this project.

Using CCPP Physics in IAP

Scheme Tables

IAP Schemes Added to CCPP Physics

Zhang-McFarlane convection scheme

CCPP Physics Scheme Name

IAP's Zhang-McFarlane deep convection scale-aware Simplified Arakawa-Schubert (sa-SAS) deep convection

Adding a CCPP Physics Scheme to IAP

The build system is setup to build all .F90, .f90, .F, .f files in the modules/atm/iap/src/physics directory so the easiest way to make sure CCPP physics files are compiled is to bring them over to that directory. The user could also instead edit the models/atm/cam/bld/configure file but this is much more complicated.

The following instructions follow the procedure for adding sa-SAS deep convection but can be generalized to other CCPP Physics schemes.

Steps

• Create copy of physics scheme files. There will need to be slight changes to get it working with IAP's physics.

```
$ cd models/atm/iap/src/physics
$ cp sascnvn.F sascnvnr.F
```

• Create a symlink from models/atm/iap/ccpp/physics/phyics/foo.F90 into models/atm/iap/src/physics

```
$ cd models/atm/iap/src/physics
$ ln -s ../../ccpp/physics/physics/foo.F90 .
```

• Check corresponding foo.meta file for dependencies are create symlinks for those as well. For the sascnvnr.F file two additional dependency files were needed. The following was use

```
$ ln -s ../../ccpp/physics/physics/sascnvnr.F .
$ ln -s ../../ccpp/physics/physics/machine.F .
$ ln -s ../../ccpp/physics/physics/funcphys.f90 .
$ ln -s ../../ccpp/physics/physics/physcons.F90 .
```

- Add the symlinked files in the models/atm/iap/src/physics directory to .gitignore
- Mapping arguments Every CCPP physics scheme will have a corresponding .meta file that lists the subroutines and lists the details of the arguments. Every subroutine should have two additional arguments for the error code and message.

Function	Argument	Details
sascnvnr_run	grav	gravitational acceleration
	ср	specific heat of dry air at constant pressure
	hvap	latent heat of evaporation/sublimation
	rv	ideal gas constant for water vapor
	fv	(rv/rd) - 1 $(rv = ideal gas constant for water vapor)$
	t0c	temperature at 0 degree Celsius
	rgas	ideal gas constant for dry air
	cvap	specific heat of water vapor at constant pressure
	cliq	specific heat of liquid water at constant pressure
	eps	rd/rv
	epsm1	(rd/rv) - 1
	im	horizontal loop extent
	km	number of vertical levels
	jcap	number of spectral wave trancation used only by

Argument	Details
	sascnvn
delt	physics timestep
delp	air pressure difference between midlayers
prslp	mean layer pressure
psp	surface pressure
phil	geopotential at model layer centers
qlc	ratio of mass of cloud water to mass of dry air plus vapor (without condensates) in the convectively
	transported tracer array
qli	ratio of mass of ice water to mass of dry air plus vapor
<u> </u>	(without condensates) in the convectively transported
	tracer array
q1	water vapor specific humidity updated by physics
t1	temperature updated by physics
u1	zonal wind updated by physics
v1	meridional wind updated by physics
cldwrk	cloud work function
rn	deep convective rainfall amount on physics timestep
kbot	index for cloud base
ktop	index for cloud top
kcnv	deep convection: 0=no, 1=yes
islimsk	landmask: sea/land/ice=0/1/2
dot	layer mean vertical velocity
ncloud	number of cloud condensate types
ud	(updraft mass flux) * delt
dd	(downdraft mass flux) * delt
dt	(detrainment mass flux) * delt
cnvw	moist convective cloud water mixing ratio
cnvc	convective cloud cover
qlcn	mass fraction of convective cloud liquid water
qicn	mass fraction of convective cloud ice water
W	vertical velocity for updraft
cf	convective cloud fraction for microphysics
cnv	detrained mass flux
cnv	tendency of cloud water due to convective microphysics
clcn	convective cloud volume fraction
cnv	ice fraction in convective tower
cnv	droplet number concentration in convective detrainment
cnv	crystal number concentration in convective detrainment
mp	choice of microphysics scheme
mp	choice of Morrison-Gettelman microphysics scheme
clam	entrainment rate coefficient for deep convection
с0	convective rain conversion parameter for deep convection

Function

Function	Argument	Details
	c1	convective detrainment conversion parameter for deep
		convection
	betal	downdraft fraction reaching surface over land for deep
		convection
	betas	downdraft fraction reaching surface over water for deep
		convection
	evfact	convective rain evaporation coefficient for deep
		convection
	evfactl	convective rain evaporation coefficient over land for
		deep convection
	pgcon	reduction factor in momentum transport due to deep
		convection induced pressure gradient force
sascnvnr_init		No arguments and empty routine
sascnvnr_finalize		No arguments and empty routine

• Call Graph With CCPP: when running with CCPP tphysbc. F90 calls CCPP physics instead of functions from convect deep. F90.

flowchart TD A["physpkg.F90: phys_run1()"] --> B B["tphysbc.F90: tphysbc()"] --> C C["API file generated by ccpp_prebuild_config.py: ccpp_physics_run()"] --> D D[run suite IAP test.xml: calls CCPP physics schemes] --> E E[zm convr.F90, sascnvr.F, etc.]

• Original Call Graph Without CCPP: when running without CCPP tphysbc. F90 calls functions from convect deep. F90.

flowchart TD A["physpkg.F90: phys_run1()"] --> B B["tphysbc.F90: tphysbc()"] --> C C["convect_deep.F90: convect_deep_tend()"] --> D D["zm_conv_intr.F90: zm_conv_tend()"] --> E E["zm_conf.F90: zm_conv(), zm_conv_evap(), momtran(), convtran()"]

• In case's scratch run directory edit the atm_in namelist file. Change the namelist group phys_ctl_in's deep_scheme variable. This walkthrough is describing adding the deep convection scheme sa-SAS so to test it change it to deep_scheme = 'sasAS'

Bringing CCPP Physics into IAP

- make a copy of the desired CCPP physics scheme, it will need to be modified to match the types of the IAP host variables. If foo.F90 was copied to foor.F90, make sure that all the modules and subroutines in foor are renamed to foor.
- modify the SCHEME_FILES variable in the ccpp_prebuild_config.py file to have the new scheme file. In this case ccpp/physics/physics/sascnvnr.F was addded, which was a copy of sascnvn.F
- the kind types will be different so in the .meta file change kind_phys to shr_kind_r8 and in the .F/.F90 file comment out and add like the following:

```
! use machine , only : kind_phys
use shr kind mod, only: kind phys => shr kind r8
```

- the control variable was an integer in one scheme and a character string in the IAP one, those had to be modified
- start running <code>ccpp_prebuild_config.py</code> and debugging the differences in types. The .meta files are read for the types and the prebuild will describe the difference with the host model. Change the type in both the .meta file and the .F/.F90 file.

```
# foo.meta
[bar]
  standard_name = bar_value
  long_name = bar value
  type = real
  kind = shr kind r8 # originally kind kind phys
```

- There will probably be variables that the ccpp physics will need that are not provided by the host IAP model or are called by a different name. These scheme variables need to be matched to the host variables that are provived by the files defined in the variable VARIABLE DEFINITIONS FILE in ccpp prebuild config.py.
 - The Single Column Model (SCM) is a host model that supports the CCPP Physics schemes. A scheme from the CCPP Physics will already be defined in one of the SCM's SCHEME_FILES. A user can copy a variables definition from one of the SCM's VARIABLE DEFINITION FILES.
 - To set the variable the physics scheme needs to a variable provided by the host model the user can set it in the host model. An example of this is in models/atm/iap/src/physics/physics_types.F90. After calling ccpp physics run local variables are set to CCPP variables.
 - Another way to is to define sascnvnr_pre.F, sascnvnr_pre.meta and sascnvnr_post.F, sascnvnr_post.meta files. As subroutine variables these would take CCPP variables whose data need to be copied to the hostmodel or set by the hostmodel. The files could then load variables from IAP modules and set and/.or conversion to CCPP variables as needed./

ZM CCPP Complient Notes

The following is a rough guide for how the IAP's ZM convection scheme was modified to be make its <u>physics parameterizations CCPP compliant</u>.

The IAP's version of zm_conv.F90, found in models/atm/iap/src/physics/, and is a near identical version of CAM's zm_conv.F90, found in models/atm/cam/src/physics/cam/zm_conv.F90. A copy of the ZM convection scheme was made CCPP complient and named zm_convr.F90 and can be found in a fork of the CCPP Physics repository, in the branch feature/iap_dom.

The following files were added to CCPP Physics

files	.meta file	from
cldwat_ccpp.F90	no	physics/cam/cldwat.F90
<pre>iap_ptend_sum.F90</pre>	no	<pre>physics/cam/physics_types.F90</pre>
<pre>iap_state_update.F90</pre>	no	<pre>physics/cam/physics_types.F90</pre>
zm_conv_all_post.F90	yes	
zm_conv_common.F90	no	
zm_conv_convtran.F90	yes	
zm_conv_evap.F90	yes	

illes	.meta me	Irom
zm_conv_evap_post.F90	yes	
zm_conv_momtran.F90	yes	
<pre>zm_conv_momtran_post.F90</pre>	yes	
zm_convr.F90	yes	physics/cam/zm_conv.F90
zm_convr_post.F90	yes	

moto filo

files

This CCPP complient ZM version is then brought back into the IAP physics as an example of how to integrate CCPP physics scheme into IAP's. The CCPP complient ZM version is tested in ccpp IAP test test1 cap.F90

from

#ifdef CCPP macros have been added to the following files in models/atm/iap/src/physics

```
files
                                              changes
./initindx.F90
                      use physics register, only: convect deep register
./buffer.F90
                      real(r8), allocatable, target, dimension(:,:) :: &
                      pblht, tpert, tpert2, qpert2
                      real(r8), allocatable, target, dimension(:,:,:) :: &
                      qpert
./cam diagnostics.F90
                      use phys control, only: cam physpkg is
                      public: diag tphysbc
                      character(len=16) :: deep scheme
                      ZM case to add variables using cam_history's addfld
                      subroutine diag tphysbc for output
./tphysbc.F90
                      cam out, cam in arguments to tphysbc subroutine
                      use ccpp data, only: phys int ephem
                      use ccpp static api, only: ccpp physics run
                      use ccpp types, only: ccpp t
                      call ccpp physics run and copy data back to IAP vars
                      - do this for convect deep tend, convect deep tend2
./runtime opts.F90
                      call cldwat readnl ccpp(nlfilename)
                      subroutine zmconv readnl
./physpkg.F90
                      this file provides the interface for CAM physics packages
                      subroutines in the physpkg module are
                      -phys inidat
                      - phys init
                      -phys run1
                      - phys run1 adiabatic or ideal
                      -phys run2
                      -phys final
                      - cdata init: added by CCPP
                      CCPP adds arguments to phys {init, run1, final} routines
```

files

./physics_types.F90

changes

Adds subroutines

- interstitial_ephemeral_create
- interstitial_ephemeral_reset
- interstitial persistent associate
- interstitial_persistent_create
- interstitial persistent init
- -physics_global_init