



# Dynamic Ensemble Modeling Approach to Nonstationary Neural Decoding

Yu Qi, Bin Liu, Yueming Wang, Gang Pan

Zhejiang University, Nanjing University of Posts and Telecommunications qiyu@zju.edu.cn, bins@ieee.org, ymingwang@zju.edu.cn, gpan@zju.edu.cn

# **Problem and objective**

## Problem: Dynamic world and static models



#### Typical model training pipeline

- use a static modelassumes the data distribute
- assumes the data distribution is fixed and stable in time

It would fail if the assumption is not satisfied ...

## Brain signals are typical nonstationary data



# Main insights



# Method: Dynamic model ensemble (DyEnsemble)



# **Candidate model generation strategy**



## **Experiments**

#### Neural signal dataset

|       | # neuron | train data | test data |  |
|-------|----------|------------|-----------|--|
| Rat 1 | 22       | 200 s      | 100 s     |  |
| Rat 2 | 58       | 200 s      | 100 s     |  |



#### Model switching along with changing noises



#### Model switching along with task behaviors



During lever pressing, only a certain set of candidate models are selected.

#### Comparison with other approaches

Table 1: Correlation coefficient with different numbers of noisy neurons.

| Method                      | Rat 1               |                   | Rat 2               |                     |                     |                     |
|-----------------------------|---------------------|-------------------|---------------------|---------------------|---------------------|---------------------|
| Method                      | Original            | Noisy (#2)        | Noisy (#4)          | Original            | Noisy (#2)          | Noisy (#4)          |
| Kalman filter               | $0.777 \pm 0.000$   | $0.696 \pm 0.012$ | $0.560 \pm 0.009$   | $0.798 \pm 0.000$   | $0.580 \pm 0.039$   | $0.381 \pm 0.093$   |
| LSTM                        | $0.753 \pm 0.017$   | $0.687 \pm 0.033$ | $0.617{\pm}0.045$   | $0.846 {\pm} 0.021$ | $0.551 \pm 0.127$   | $0.338 \pm 0.050$   |
| Dual decoder                | $0.779 \pm 0.000$   | $0.694 \pm 0.010$ | $0.575 \pm 0.013$   | $0.803 \pm 0.000$   | $0.585 {\pm} 0.025$ | $0.387 \pm 0.030$   |
| DyEnsemble (w/o P, w/o D)   | $0.776 \pm 0.002$   | $0.684 \pm 0.014$ | $0.558 \pm 0.009$   | $0.798 \pm 0.002$   | $0.579 \pm 0.066$   | $0.377 \pm 0.155$   |
| DyEnsemble (P(0.1), w/o D)  | $0.780 \pm 0.008$   | $0.711 \pm 0.004$ | $0.557 \pm 0.035$   | $0.780 \pm 0.006$   | $0.665 \pm 0.024$   | $0.472 \pm 0.080$   |
| DyEnsemble-2 (P(0.1), D(2)) | $0.799 {\pm} 0.012$ | $0.735{\pm}0.006$ | $0.583 \pm 0.090$   | $0.788 \pm 0.009$   | $0.633 \pm 0.064$   | $0.516 \pm 0.092$   |
| DyEnsemble-5 (P(0.1), D(5)) | $0.775 \pm 0.015$   | $0.739 \pm 0.021$ | $0.671 {\pm} 0.039$ | $0.803 \pm 0.009$   | $0.584 \pm 0.035$   | $0.596 {\pm} 0.035$ |

\* w/o: without; P(k): weight perturbation with p=k; D(l): neuron dropout with l neurons dropped.