Citation Information for: Can existing data on WNV infection in birds and mosquitos explain strain replacement?

Morgan P. Kain^{1†}, Benjamin M. Bolker^{1,2}

¹Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, Canada, L8S 4K1

²Department of Mathematics and Statistics, McMaster University, 1280 Main St. West, Hamilton, ON, Canada, L8S 4L8

†Correspondence author. LSB-215 1280 Main St. West Hamilton, ON L8S 4K1

E-mail: kainm@mcmaster.ca

Notes on methodological decisions and oddities found in data extraction and full citation list sorted by data type

Titer and Survival

(Brault et al., 2004)

- * An error bar on titer when there appeared to be only one surviving bird
- * Overlapping error bars due to a lack of jitter. Measured carefully to connect error to the appropriate means
- * No dates given for host capture (or dates overlooked if given).
- * After-hatch-year birds
- * No sex given

(Brault et al., 2007)

- * After-hatch-year birds
- * No sex given

(Brault et al., 2011)

- * An error bar on titer when there appeared to be only one surviving bird
- * Overlapping error bars due to a lack of jitter. Measured carefully to connect error to the appropriate means
- * No dates given for host capture (or dates overlooked if given).
- * No age given
- * No sex given

(Clark et al., 2006)

- * Birds were determined to be hatch-year birds by weight and plumage
- * No sex given

(Duggal et al., 2014)

- * Infection profiles of individual birds received from Dr. Nisha Duggal
- * SW03 genotypes treated as genotypes of WN02 and NY2001 treated as NY99 (see main text)

- * No age given
- * No sex given

(Fang and Reisen, 2006)

- * An error bar on titer when there appeared to be only one surviving bird
- * Range given for titer dose. Used center of range in analysis.
- * Death of birds from days 6-7 given as a total. Assumed 1/2 died each day
- * No age given
- * No sex given

(Grubaugh et al., 2015)

- * An error bar on titer when there appeared to be only one surviving bird
- * No dates given for host capture (or dates overlooked if given).
- * No age given
- * No sex given

(Guerrero-Sánchez et al., 2011)

- * Overlapping error bars due to a lack of jitter. Measured carefully to connect error to the appropriate means
- * Some instances of data description in text not matching appropriately to data depicted in figure.

Used data from figure

- * No dates given for host capture (or dates overlooked if given).
- * Adult birds
- * No sex given

(Kilpatrick et al., 2010)

- * Hatch-year birds, 3-5 weeks old
- * No sex given

(Kilpatrick et al., 2013)

- * An error bar on titer when there appeared to be only one surviving bird
- * Hatch-year and after-hatch year birds

* No sex given

(Kinney et al., 2006)

- * No dates given for host capture (or dates overlooked if given).
- * Hatch-year birds

(Kipp et al., 2006)

- * No dates given for host capture (or dates overlooked if given)
- * No age given
- * No sex given

(Komar et al., 2003)

- * Some oddities in the calculation of ranges.
- * No age given
- * Mixture of Males and Females. Sex given for some individual-level data not used in this study (titer in organs)

(Komar et al., 2005)

- * No age given
- * No sex given

(Langevin et al., 2005)

- * No dates given for host capture (or dates overlooked if given).
- * No age given
- * No sex given

(Langevin et al., 2014)

- * An error bar on titer when there appeared to be only one surviving bird
- * Overlapping error bars due to a lack of jitter. Measured carefully to connect error to the appropriate means
- * After-hatch year birds
- * No sex given

(Melian et al., 2014)

- * No dates given for host capture (or dates overlooked if given).
- * No age given
- * No sex given

(Nemeth et al., 2006)

- * No dates given for host capture (or dates overlooked if given).
- * Range given for titer dose. Used center of range in analysis.
- * Most birds needle injected while a single bird was orally injected. Removed orally injected bird because it was at odds with the rest of the experiment.
- * Juvenile birds
- * No sex given

(Nemeth et al., 2009)

- * Error bar on titer when there appeared to be only one surviving bird
- * Range given for titer dose. Used center of range in analysis.
- * Death of birds from days 5-9 given as a total. Assumed even mortality
- * Adult birds
- * No sex given

(Nemeth et al., 2011)

- * No age given, but at least > 6 months old based on elapsed time between capture and experimentation
- * No sex given

(Oesterle et al., 2009)

- * Nestlings (8-17 days post-hatch)
- * No sex given

(Owen et al., 2006)

- * No mention of mortality. Activity levels were listed as not being affected, and given other language assumed no birds died.
- * Combined all data from migrant and control birds because of no direct manipulation by the

authors

- * Hatching-year birds
- * No sex given (Authors include a statement that the species used in this study are monomorphic)

(Owen et al., 2012)

- * Adult birds
- * 15 females and 20 males

(Reisen and Fang, 2007)

- * No age given
- * No sex given

(Reisen and Hahn, 2007)

- * No dates given for host capture (or dates overlooked if given).
- * No age given
- * No sex given

(Reisen et al., 2005)

- * Death of House Finches in Figure 3B given as a total over the whole study duration. Due to too large of a time window left these data out. For sample size weighting for titer model death assumed to take place in the last 3 days of data, where the lack of data past certain day taken as complete mortality
- * Death of some birds from days 4-7 given as a total. Assumed even mortality
- * $< 0.3 \log 10$ titer units given. Used 0.3
- * No dates given for host capture (or dates overlooked if given).
- * No age given (Mosquitos were allowed to feed on adult birds in one trial, but it is unclear if the experimental birds were also adults)
- * No sex given

(VanDalen et al., 2013)

- * Adult birds
- * No sex given

(Worwa et al., 2015)

- * Hatching-year birds
- * No sex given

(Ziegler et al., 2013)

- * No dates given for host capture (or dates overlooked if given).
- * Adolescent birds (>6 months)
- * No sex given

Bird to Mosquito and Mosquito to Bird Transmission

(Anderson et al., 2012)

- * Range given for titer dose. Used center of range in analysis.
- * Virus retrieved from mosquitos by allowing them to feed on suckling mice

(Bolling et al., 2012)

* control used from control and coinfected

(Ciota et al., 2013)

Ciota, Alexander T, Chin, Pamela A, & Kramer, Laura D. (2013). The effect of hybridization of Culex pipiens complex mosquitoes on transmission of West Nile virus. Parasit Vectors, 6, 305.

- * sample size given as 65-75. Used 70
- * data from hybrids given. Just used non-hybrids

(Danforth et al., 2015)

* Virus retrieved from mosquitos using capillary tube method (20 min of feeding)

(Dodson et al., 2011)

- * Multiple studies averaged
- * control used from control and nutritionally deprived

(Dodson et al., 2014)

* control used from control and coinfected

(Dohm et al., 2002)

- * Titer converted to transmission probability using the fitted relationship using the data in Moudy et al. 2007
- * Reported transmission given as dissemination with the note that at least 90% of mosquitos with disseminated virus are able to transmit (Turell et al. 2000, 2001).

(Ebel et al., 2005)

(Goddard et al., 2002)

(Goenaga et al., 2015)

* Virus retrieved by collecting saliva using capillary tube method

(Hanley et al., 2005)

(Johnson et al., 2003)

* Titer converted to transmission probability using the fitted relationship using the data in Moudy et al. 2007

(Kilpatrick et al., 2008)

- * Range given for titer dose. Used center of range in analysis.
- * Transmission converted to Transmission | Infection
- * Virus retrieved by collecting saliva using capillary tube method

(Moudy et al., 2007)

- * Transmission converted to Transmission | Infection
- * Data from intrathoracic inoculation of Culex pipiens excluded
- * Virus retrieved by collecting saliva using capillary tube method

(Moudy et al., 2009)

- * Range given for titer dose. Used center of range in analysis.
- * Virus retrieved by collecting saliva using capillary tube method

(Reisen et al., 2005)

- * Range given for log10 dose. Used center of range
- * Range given for sample size. Used center of range

```
(Reisen et al., 2006a)
```

- * Range given for titer dose. "Fed on sparrow at peak viremia". Taken as 6.5 (could be off and also more variable)
- * Virus retrieved by collecting saliva using capillary tube method

(Reisen et al., 2006)

(Richards et al., 2007)

(Richards et al., 2014)

(Sardelis and Turell, 2001)

(Sardelis et al., 2001)

* Transmission converted to Transmission | Infection

(Tiawsirisup et al., 2005)

* Transmission converted to Transmission | Infection

(Turell et al., 2000)

(Turell et al., 2001)

(Vanlandingham et al., 2004)

(Vanlandingham et al., 2007)

(Vanlandingham et al., 2008)

(Worwa et al., 2015)

* Transmission converted to Transmission | Infection

JEV

(Gould et al., 1962)

(MACKENZIE-IMPOINVIL et al., 2015)

(Muangman et al., 1972)

(Van Den Hurk et al., 2003)

Case Study data for mosquito to bird ratio, bird community composition, mosquito bite preference

(Hamer et al., 2009)
* Odd confidence intervals given binomial error distribution
(Simpson et al., 2012)
* Some oddities with confidence intervals
(Loss et al., 2009)
(Ruiz et al., 2010)
(Newman et al., 2011)

Seroprevalence Data

Using the search algorithm <West Nile Virus Seroprevalence> in google scholar we located 12 studies within the first 80 hits that presented seroprevalence data for WNV. These studies included:

(Bell et al., 2006)

* North Dakota and Minnesota, 2003-2005

(Bernard et al., 2001)

* New York, 2000

(Beveroth et al., 2006)

* Illinois, 2002-2004

(Chaves et al., 2016)

* Mexico, 2012

(Dusek et al., 2009)

* Many locations along east coast and midwest, 2001-2003

(Komar, 2001)

* New York, 2000

(Komar et al., 2005)

* Louisiana, 2002

(Loss et al., 2009)

* Illinois, 2005-2006

(O'Brien et al., 2010)

* Nebraska, 2008

(Reisen et al., 2004)

* California, 2003

(Reisen et al., 2006b)

* California, 2004

(Ringia et al., 2004)

* Illinois, 2002

References

Anderson, J. F., A. J. Main, G. Cheng, F. J. Ferrandino, and E. Fikrig 2012. Horizontal and vertical transmission of West Nile virus genotype NY99 by *Culex salinarius* and genotypes NY99 and WN02 by *Culex tarsalis*. *The American Journal of Tropical Medicine and Hygiene* 86(1), 134–139.

Bell, J. A., C. M. Brewer, N. J. Mickelson, G. W. Garman, and J. A. Vaughan 2006. West nile virus epizootiology, central red river valley, north dakota and minnesota, 2002–2005. *Emerg Infect Dis* 12(8), 1245–1247.

Bernard, K. A., J. G. Maffei, S. A. Jones, E. B. Kauffman, G. Ebel, A. Dupuis 2nd, K. A. Ngo,
D. C. Nicholas, D. M. Young, P.-Y. Shi, et al. 2001. West nile virus infection in birds and mosquitoes, new york state, 2000. *Emerging infectious diseases* 7(4), 679.

- Beveroth, T. A., M. P. Ward, R. L. Lampman, A. M. Ringia, and R. J. Novak 2006. Changes in seroprevalence of west nile virus across illinois in free-ranging birds from 2001 through 2004. *The American journal of tropical medicine and hygiene* 74(1), 174–179.
- Bolling, B. G., F. J. Olea-Popelka, L. Eisen, C. G. Moore, and C. D. Blair 2012. Transmission dynamics of an insect-specific flavivirus in a naturally infected *Culex pipiens* laboratory colony and effects of co-infection on vector competence for West Nile virus. *Virology* 427(2), 90–97.
- Brault, A. C., C. Y. Huang, S. A. Langevin, R. M. Kinney, R. A. Bowen, W. N. Ramey, N. A. Panella, E. C. Holmes, A. M. Powers, and B. R. Miller 2007. A single positively selected West Nile viral mutation confers increased virogenesis in American crows. *Nature Genetics* 39(9), 1162–1166.
- Brault, A. C., S. A. Langevin, R. A. Bowen, N. A. Panella, B. J. Biggerstaff, B. R. Miller, and N. Komar 2004. Differential virulence of West Nile strains for American crows. *Emerging Infectious Diseases* 10(12), 2161.
- Brault, A. C., S. A. Langevin, W. N. Ramey, Y. Fang, D. W. Beasley, C. M. Barker, T. A. Sanders, W. K. Reisen, A. D. Barrett, and R. A. Bowen 2011. Reduced avian virulence and viremia of West Nile virus isolates from Mexico and Texas. *The American Journal of Tropical Medicine and Hygiene* 85(4), 758–767.
- Chaves, A., J. Sotomayor-Bonilla, O. Monge, A. Ramírez, F. Galindo, R. E. Sarmiento-Silva,
 G. A. Gutiérrez-Espeleta, and G. Suzán 2016. West nile virus in resident birds from yucatan,
 mexico. *Journal of wildlife diseases* 52(1), 159–163.
- Ciota, A. T., P. A. Chin, and L. D. Kramer 2013. The effect of hybridization of *Culex pipiens* complex mosquitoes on transmission of West Nile virus. *Parasites & Vectors 6*, 305.
- Clark, L., J. Hall, R. McLean, M. Dunbar, K. Klenk, R. Bowen, and C. A. Smeraski 2006. Susceptibility of greater sage-grouse to experimental infection with West Nile virus. *Journal of Wildlife Diseases* 42(1), 14–22.

- Danforth, M. E., W. K. Reisen, and C. M. Barker 2015. Extrinsic incubation rate is not accelerated in recent California strains of West Nile virus in *Culex tarsalis* (Diptera: Culicidae). *Journal of Medical Entomology* 52(5), 1083–1089.
- Dodson, B. L., G. L. Hughes, O. Paul, A. C. Matacchiero, L. D. Kramer, and J. L. Rasgon 2014.Wolbachia enhances West Nile virus (wnv) infection in the mosquito *Culex tarsalis*. *PLoS Neglected Tropical Diseases* 8(7), e2965.
- Dodson, B. L., L. D. Kramer, and J. L. Rasgon 2011. Larval nutritional stress does not affect vector competence for West Nile virus (WNV) in *Culex tarsalis*. *Vector-Borne and Zoonotic Diseases* 11(11), 1493–1497.
- Dohm, D. J., M. L. O'Guinn, and M. J. Turell 2002. Effect of environmental temperature on the ability of *Culex pipiens* (Diptera: Culicidae) to transmit West Nile virus. *Journal of Medical Entomology* 39(1), 221–225.
- Duggal, N. K., A. Bosco-Lauth, R. A. Bowen, S. S. Wheeler, W. K. Reisen, T. A. Felix, B. R. Mann, H. Romo, D. M. Swetnam, and A. D. Barrett 2014. Evidence for co-evolution of West Nile Virus and house sparrows in North America. *PLoS Neglected Tropical Diseases* 8(10), e3262.
- Dusek, R. J., R. G. McLean, L. D. Kramer, S. R. Ubico, A. P. Dupuis, G. D. Ebel, and S. C. Guptill 2009. Prevalence of west nile virus in migratory birds during spring and fall migration. *The American journal of tropical medicine and hygiene* 81(6), 1151–1158.
- Ebel, G. D., I. Rochlin, J. Longacker, and L. D. Kramer 2005. *Culex restuans* (Diptera: Culicidae) relative abundance and vector competence for West Nile virus. *Journal of Medical Entomology* 42(5), 838–843.
- Fang, Y. and W. K. Reisen 2006. Previous infection with West Nile or St. Louis encephalitis viruses provides cross protection during reinfection in house finches. *The American Journal of Tropical Medicine and Hygiene* 75(3), 480–485.

- Goddard, L. B., A. E. Roth, W. K. Reisen, and T. W. Scott 2002. Vector competence of California mosquitoes for West Nile virus. *Emerging Infectious Diseases* 8(12), 1385–1391.
- Goenaga, S., J. L. Kenney, N. K. Duggal, M. Delorey, G. D. Ebel, B. Zhang, S. C. Levis, D. A. Enria, and A. C. Brault 2015. Potential for co-infection of a mosquito-specific flavivirus, nhumirim virus, to block West Nile Virus transmission in mosquitoes. *Viruses* 7(11), 5801–5812.
- Gould, D. J., H. C. Barnett, and W. Suyemoto 1962. Transmission of japanese encephalitis virus by culex gelidus theobald. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 56(5), 429–435.
- Grubaugh, N. D., D. R. Smith, D. E. Brackney, A. M. Bosco-Lauth, J. R. Fauver, C. L. Campbell, T. A. Felix, H. Romo, N. K. Duggal, and E. A. Dietrich 2015. Experimental evolution of an RNA virus in wild birds: evidence for host-dependent impacts on population structure and competitive fitness. *PLoS Pathogens* 11(5), e1004874.
- Guerrero-Sánchez, S., S. Cuevas-Romero, N. M. Nemeth, M. Trujillo-Olivera, G. Worwa,
 A. Dupuis, A. C. Brault, L. D. Kramer, N. Komar, and J. G. Estrada-Franco 2011. West Nile virus infection of birds, Mexico. *Emerging Infectious Diseases* 17(12), 2245–2252.
- Hamer, G. L., U. D. Kitron, T. L. Goldberg, J. D. Brawn, S. R. Loss, M. O. Ruiz, D. B. Hayes, and E. D. Walker 2009. Host selection by *Culex pipiens* mosquitoes and West Nile virus amplification. *The American Journal of Tropical Medicine and Hygiene* 80(2), 268–278.
- Hanley, K. A., L. B. Goddard, L. E. Gilmore, T. W. Scott, J. Speicher, B. R. Murphy, and A. G. Pletnev 2005. Infectivity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors. *Vector-Borne and Zoonotic Diseases* 5(1), 1–10.
- Johnson, B., T. Chambers, M. Crabtree, J. Arroyo, T. Monath, and B. Miller 2003. Growth characteristics of the veterinary vaccine candidate ChimeriVaxTM-West Nile (WN) virus in *Aedes* and *Culex* mosquitoes. *Medical and Veterinary Entomology* 17(3), 235–243.

- Kilpatrick, A. M., A. P. Dupuis, G.-J. J. Chang, and L. D. Kramer 2010. Dna vaccination of American robins (*Turdus migratorius*) against West Nile virus. *Vector-Borne Zoonot 10*(4), 377–380.
- Kilpatrick, A. M., M. A. Meola, R. M. Moudy, and L. D. Kramer 2008. Temperature, viral genetics, and the transmission of West Nile virus by *Culex pipiens* mosquitoes. *PLoS Pathogens* 4(6), e1000092.
- Kilpatrick, A. M., R. J. Peters, A. P. Dupuis, M. J. Jones, P. Daszak, P. P. Marra, and L. D. Kramer 2013. Predicted and observed mortality from vector-borne disease in wildlife: West Nile virus and small songbirds. *Biological Conservation* 165, 79–85.
- Kinney, R. M., C. Y.-H. Huang, M. C. Whiteman, R. A. Bowen, S. A. Langevin, B. R. Miller, and A. C. Brault 2006. Avian virulence and thermostable replication of the North American strain of West Nile virus. *Journal of General Virology* 87(12), 3611–3622.
- Kipp, A. M., J. A. Lehman, R. A. Bowen, P. E. Fox, M. R. Stephens, K. Klenk, N. Komar, and M. L. Bunning 2006. West Nile virus quantification in feces of experimentally infected American and fish crows. *The American Journal of Tropical Medicine and Hygiene* 75(4), 688–690.
- Komar, N. 2001. West nile virus surveillance using sentinel birds. *Annals of the New York Academy of Sciences* 951(1), 58–73.
- Komar, N., S. Langevin, S. Hinten, N. Nemeth, E. Edwards, D. Hettler, B. Davis, R. Bowen, and M. Bunning 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. *Emerging Infectious Diseases 9*(3), 311–322.
- Komar, N., N. A. Panella, S. A. Langevin, A. C. Brault, M. Amador, E. Edwards, and J. C. Owen 2005. Avian hosts for West Nile virus in St. Tammany Parish, Louisiana, 2002. *The American Journal of Tropical Medicine and Hygiene* 73(6), 1031–1037.

- Langevin, S. A., R. A. Bowen, W. K. Reisen, C. C. Andrade, W. N. Ramey, P. D. Maharaj,
 M. Anishchenko, J. L. Kenney, N. K. Duggal, and H. Romo 2014. Host competence and helicase activity differences exhibited by West Nile viral variants expressing NS3-249 amino acid polymorphisms. *PLoS ONE* 9(6), e100802.
- Langevin, S. A., A. C. Brault, N. A. Panella, R. A. Bowen, and N. Komar 2005. Variation in virulence of West Nile virus strains for house sparrows (*Passer domesticus*). *The American Journal of Tropical Medicine and Hygiene* 72(1), 99–102.
- Loss, S. R., G. L. Hamer, E. D. Walker, M. O. Ruiz, T. L. Goldberg, U. D. Kitron, and J. D. Brawn 2009. Avian host community structure and prevalence of West Nile virus in Chicago, Illinois. *Oecologica* 159(2), 415–424.
- MACKENZIE-IMPOINVIL, L., D. Impoinvil, S. Galbraith, R. Dillon, H. Ranson, N. Johnson, A. Fooks, T. Solomon, and M. Baylis 2015. Evaluation of a temperate climate mosquito, *Ochlerotatus detritus* (= *Aedes detritus*), as a potential vector of Japanese encephalitis virus. *Medical and Veterinary Entomology* 29(1), 1–9.
- Melian, E. B., S. Hall-Mendelin, F. Du, N. Owens, A. M. Bosco-Lauth, T. Nagasaki, S. Rudd, A. C. Brault, R. A. Bowen, and R. A. Hall 2014. Programmed ribosomal frameshift alters expression of West Nile Virus genes and facilitates virus replication in birds and mosquitoes. *PLoS Pathogens 10*(11), e1004447.
- Moudy, R. M., M. A. Meola, L.-L. L. Morin, G. D. Ebel, and L. D. Kramer 2007. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by *Culex* mosquitoes. *The American Journal of Tropical Medicine and Hygiene* 77(2), 365–370.
- Moudy, R. M., B. Zhang, P.-Y. Shi, and L. D. Kramer 2009. West Nile virus envelope protein glycosylation is required for efficient viral transmission by *Culex* vectors. *Virology* 387(1), 222–228.

- Muangman, D., R. Edelman, M. J. Sullivan, and D. J. Gould 1972. Experimental transmission of japanese encephalitis virus by culex fuscocephala. *The American Journal of Tropical Medicine and Hygiene* 21(4), 482–6.
- Nemeth, N., B. Thomsen, T. Spraker, J. Benson, A. Bosco-Lauth, P. Oesterle, J. Bright, J. Muth, T. Campbell, and T. Gidlewski 2011. Clinical and pathologic responses of American crows (*Corvus brachyrhynchos*) and fish crows (*C. ossifragus*) to experimental West Nile virus infection. *Veterinary Pathology* 48(6), 1061–1074.
- Nemeth, N. M., D. C. Hahn, D. H. Gould, and R. A. Bowen 2006. Experimental West Nile virus infection in eastern screech owls (*Megascops asio*). *Avian Diseases* 50(2), 252–258.
- Nemeth, N. M., P. T. Oesterle, and R. A. Bowen 2009. Humoral immunity to West Nile virus is long-lasting and protective in the house sparrow (*Passer domesticus*). *The American Journal of Tropical Medicine and Hygiene 80*(5), 864–869.
- Newman, C. M., F. Cerutti, T. K. Anderson, G. L. Hamer, E. D. Walker, U. D. Kitron, M. O. Ruiz, J. D. Brawn, and T. L. Goldberg 2011. *Culex* flavivirus and West Nile virus mosquito coinfection and positive ecological association in Chicago, United States. *Vector-Borne and Zoonotic Diseases* 11(8), 1099–1105.
- O'Brien, V. A., C. U. Meteyer, W. K. Reisen, H. S. Ip, and C. R. Brown 2010. Prevalence and pathology of west nile virus in naturally infected house sparrows, western nebraska, 2008. *The American journal of tropical medicine and hygiene* 82(5), 937–944.
- Oesterle, P. T., N. M. Nemeth, K. VanDalen, H. Sullivan, K. T. Bentler, G. R. Young, R. G. McLean, L. Clark, C. Smeraski, and J. S. Hall 2009. Experimental infection of cliff swallows (petrochelidon pyrrhonota) with varying doses of West Nile virus. *The American Journal of Tropical Medicine and Hygiene* 81(6), 1159–1164.
- Owen, J., F. Moore, N. Panella, E. Edwards, R. Bru, M. Hughes, and N. Komar 2006. Migrating birds as dispersal vehicles for West Nile virus. *EcoHealth* 3(2), 79–85.

- Owen, J. C., A. Nakamura, C. A. Coon, and L. B. Martin 2012. The effect of exogenous corticosterone on West Nile virus infection in northern cardinals (*Cardinalis cardinalis*). *Veterinary Research* 43(1), 34.
- Reisen, W., Y. Fang, and V. Martinez 2005. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. *Journal of Medical Entomology* 42(3), 367–375.
- Reisen, W., H. Lothrop, R. Chiles, M. Madon, C. Cossen, L. Woods, S. Husted, V. Kramer, and J. Edman 2004. West nile virus in california. *Emerging infectious diseases 10*, 1369–1378.
- Reisen, W. K. and Y. Fang 2007. Does feeding on infected mosquitoes (Diptera: Culicidae) enhance the role of song sparrows in the transmission of arboviruses in California? *Journal of Medical Entomology* 44(2), 316–319.
- Reisen, W. K., Y. Fang, H. D. Lothrop, V. M. Martinez, J. Wilson, P. O'Connor, R. Carney,
 B. Cahoon-Young, M. Shafii, and A. C. Brault 2006a. Overwintering of West Nile virus in southern California. *Journal of Medical Entomology* 43(2), 344–355.
- Reisen, W. K., Y. Fang, H. D. Lothrop, V. M. Martinez, J. Wilson, P. O'Connor, R. Carney,
 B. Cahoon-Young, M. Shafii, and A. C. Brault 2006b. Overwintering of west nile virus in southern california. *Journal of Medical Entomology* 43(2), 344–355.
- Reisen, W. K., Y. Fang, and V. M. Martinez 2006. Vector competence of *Culiseta incidens* and *Culex thriambus* for West Nile Virus 1. *Journal of the American Mosquito Control Association* 22(4), 662–665.
- Reisen, W. K. and D. C. Hahn 2007. Comparison of immune responses of brown-headed cowbird and related blackbirds to West Nile and other mosquito-borne encephalitis viruses. *Journal of Wildlife Diseases* 43(3), 439–449.

- Richards, S. L., S. L. Anderson, and C. C. Lord 2014. Vector competence of *Culex pipiens quin-quefasciatus* (Diptera: Culicidae) for West Nile virus isolates from Florida. *Tropical Medicine and International Health* 19(5), 610–617.
- Richards, S. L., C. N. Mores, C. C. Lord, and W. J. Tabachnick 2007. Impact of extrinsic incubation temperature and virus exposure on vector competence of *Culex pipiens quinquefasciatus* say (Diptera: Culicidae) for West Nile virus. *Vector-Borne and Zoonotic Diseases* 7(4), 629–636.
- Ringia, A. M., B. J. Blitvich, H.-Y. Koo, M. Van de Wyngaerde, J. D. Brawn, and R. J. Novak 2004. Antibody prevalence of west nile virus in birds, illinois, 2002. *Emerg Infect Dis* 10(6), 1120–4.
- Ruiz, M. O., L. F. Chaves, G. L. Hamer, T. Sun, W. M. Brown, E. D. Walker, L. Haramis, T. L.
 Goldberg, and U. D. Kitron 2010. Local impact of temperature and precipitation on West
 Nile virus infection in *Culex* species mosquitoes in northeast Illinois, USA. *Parasites & Vectors* 3(1), 1.
- Sardelis, M. R. and M. J. Turell 2001. *Ochlerotatus j. japonicus* in Frederick County, Maryland: discovery, distribution, and vector competence for West Nile virus. *Journal of the American Mosquito Control Association* 17(2), 137–141.
- Sardelis, M. R., M. J. Turell, D. J. Dohm, and M. L. O'Guinn 2001. Vector competence of selected North American *Culex* and *Coquillettidia* mosquitoes for West Nile virus. *Emerging Infectious Diseases* 7(6), 1018.
- Simpson, J. E., P. J. Hurtado, J. Medlock, G. Molaei, T. G. Andreadis, A. P. Galvani, and M. A. Diuk-Wasser 2012. Vector host-feeding preferences drive transmission of multi-host pathogens: West Nile virus as a model system. *Proceedings of the Royal Society of London B: Biological Sciences* 279(1730), 925–933.

- Tiawsirisup, S., K. B. Platt, R. B. Evans, and W. A. Rowley 2005. A comparision of West Nile Virus transmission by *Ochlerotatus trivittatus* (coq.), *Culex pipiens* (L.), and *Aedes albopictus* (skuse). *Vector-Borne and Zoonotic Diseases* 5(1), 40–47.
- Turell, M. J., M. O'Guinn, and J. Oliver 2000. Potential for New York mosquitoes to transmit West Nile virus. *The American Journal of Tropical Medicine and Hygiene* 62(3), 413–414.
- Turell, M. J., M. L. O'Guinn, D. J. Dohm, and J. W. Jones 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. *Journal of Medical Entomol*ogy 38(2), 130–134.
- Van Den Hurk, A., D. Nisbet, R. Hall, B. Kay, J. Mackenzie, and S. Ritchie 2003. Vector competence of australian mosquitoes (Diptera: Culicidae) for Japanese encephalitis virus. *Journal of Medical Entomology* 40(1), 82–90.
- VanDalen, K. K., J. S. Hall, L. Clark, R. G. McLean, and C. Smeraski 2013. West Nile virus infection in American robins: new insights on dose response. *PLoS ONE* 8(7), e68537.
- Vanlandingham, D. L., C. E. McGee, K. A. Klinger, N. Vessey, C. Fredregillo, and S. Higgs 2007. Relative susceptibilties of South Texas mosquitoes to infection with West Nile virus. *The American Journal of Tropical Medicine and Hygiene* 77(5), 925–928.
- Vanlandingham, D. L., C. E. McGee, K. A. Klingler, S. E. Galbraith, A. D. Barrett, and S. Higgs 2008. Comparison of oral infectious dose of West Nile virus isolates representing three distinct genotypes in *Culex quinquefasciatus*. *The American Journal of Tropical Medicine and Hygiene* 79(6), 951–954.
- Vanlandingham, D. L., B. S. Schneider, K. Klingler, J. Fair, D. Beasley, J. Huang, P. Hamilton, and S. Higgs 2004. Real-time reverse transcriptase–polymerase chain reaction quantification of West Nile virus transmitted by *Culex pipiens quinquefasciatus*. *The American Journal of Tropical Medicine and Hygiene 71*(1), 120–123.

- Worwa, G., S. S. Wheeler, A. C. Brault, and W. K. Reisen 2015. Comparing competitive fitness of West Nile Virus strains in avian and mosquito hosts. *PLoS ONE 10*(5), e0125668.
- Ziegler, U., J. Angenvoort, D. Fischer, C. Fast, M. Eiden, A. V. Rodriguez, S. Revilla-Fernández,
 N. Nowotny, J. G. de la Fuente, and M. Lierz 2013. Pathogenesis of West Nile virus lineage 1
 and 2 in experimentally infected large falcons. *Veterinary Microbiology* 161(3), 263–273.