IN THE CLAIMS:

8

9

10

11

12

13

14

15

16

17

18

1

- 1. (Currently Amended) An alternating current type surface-discharge plasma 2 display panel comprising a facing pair of substrates and a plurality of ribs interposed between the 3 substrates so as to form a plurality of spaces,
- the plurality of spaces being provided with a phosphor layer and filled with discharge gas, so as to form a plurality of discharge spaces;
- 6 inside each of the discharge spaces, plural pairs of display electrodes covered by a
 7 dielectric layer being provided, the dielectric layer is made of two different sets of material,
 - the plasma display panel performing displaying by the following steps: 1) writing by an accumulation of electric charge in the dielectric layer, 2) applying a predetermined sustaining voltage between the pairs of display electrodes, 3) glow-discharging in selected discharge spaces in which the electric charge has been accumulated in the dielectric layer, and 4) converting ultraviolet light resulting from the glow-discharge into visible light by means of the phosphor layer,
 - wherein the dielectric layer is made by laminating at least the two different dielectric materials,
 - and wherein a the panel structure is set such that an equivalent electric field strength of 37V/cm Pa or more is generated in the selected discharge spaces, when the predetermined sustaining voltage is applied.
 - 2. (Original) The plasma display panel of Claim 1,
- wherein the discharge gas contains xenon, and the ultraviolet light contains more
 amount of xenon molecular line than an amount of xenon resonance) line on the spectrum.

. 2

52478,7800\PRICEJ\IRV\346384

(Currently Amended) An alternating current type surface-discharge plasma 1 3. display panel comprising a facing pair of substrates and a plurality of ribs interposed between the 2 3 substrates so as to form a plurality of spaces, the plurality of spaces being provided with a phosphor layer and filled with 4 5 discharge gas, so as to form a plurality of discharge spaces, 6 inside each of the discharge spaces, plural pairs of display electrodes are covered by a dielectric layer, being provided the dielectric layer is made of two different sets of material, 7 8 the plasma display panel performing displaying by the following steps: 1) writing by an accumulation of electric charge in the dielectric layer, 2) applying a predetermined 9 sustaining voltage between the pairs of display electrodes, 3) glow-discharging in selected 10 discharge spaces in which the electric charge has been accumulated in the dielectric layer, and 4) 11 converting ultraviolet light resulting from the glow-discharge into visible light by means of the 12 13 phosphor layer, wherein an amount of xenon contained in the discharge gas and filling pressure of 14 the discharge gas, a gap between the display electrodes, and a thickness and a permittivity of the 15 dielectric layer are set so that an equivalent electric field strength of 37V/cm • Pa or more is 16 generated in the selected discharge spaces, when the predetermined sustaining voltage is applied. 17 (Original) The plasma display panel of Claim 3, 1 4. wherein xenon contained in the discharge gas is in a range of 5% to 90 % 2

3

inclusive.

1	5.	(Original) The plasma display panel of Claim 4,
2		wherein the filling pressure of the discharge gas is in a range of 66.5KPa to
3	200KPa inclus	sive.
	•	
1	6.	(Currently Amended) The plasma display panel of Claim 3,
2		wherein the thickness of the dielectric layer is in a range of $3\mu m$ to $5\mu m$
3	inclusive, at a	point where a the pair of the display electrodes are opposing each other.
1	7.	(Currently Amended) The plasma display panel of Claim 6,
2		wherein the <u>dielectric</u> constant of the dielectric layer is 6 or more and less than 9.
1	8.	(Cancelled)
1	9.	(Previously Presented) The plasma display panel of Claim 3,
2		wherein the distance between the pairs of display electrodes is in a range of
3	20 μm to 90 μ	im inclusive, where the display electrodes are facing the discharge spaces.
1	10.	(Currently Amended) An alternating current type surface-discharge plasma
2	display panel	comprising a first plate and a second plate disposed parallel to each other, with a
3	plurality of ril	os interposed between the two plates so as to form a plurality of spaces,
4		the first plate having, on an inner surface, plural pairs of display electrodes
5	covered by a	dielectric layer, the dielectric layer is made of two different sets of material,
6		the second plate having, on an inner surface, a plurality of address electrodes,
7		the first plate and the second plate being disposed in such a manner that the
8	display electro	odes cross over the address electrodes,

9	each of the plurality of ribs being interposed between adjacent address electrodes,
10	and
11	each of the plurality of spaces being provided with a phosphor layer and filled
12	with discharge gas, so as to form discharge spaces,
13	the plasma display panel performing displaying the following steps: 1)
14	accumulating electric charge in the dielectric layer by performing writing-discharge between the
15	display electrodes and the address electrodes, 2) applying a predetermined sustaining voltage
16	between the pairs of display electrodes, 3) glow-discharging in selected discharge spaces in
17	which the electric charge has been accumulated in the dielectric layer, and 4) converting
18	ultraviolet light resulting from the glow-discharge into visible light by means of the phosphor
19	layer,
20	wherein a- the panel structure is set such that an equivalent electric field strength
21	of 37V/cm • Pa or more is generated in the selected discharge spaces, when the predetermined
22	sustaining voltage is applied.
1	11. (Currently Amended) An alternating current type surface-discharge plasma
. 2	display panel comprising a first plate and a second plate disposed parallel to each other, with a
3	plurality of ribs interposed between the two plates so as to form a plurality of spaces,
4	the first plate having, on an inner surface, plural pairs of display electrodes
5	covered by a dielectric layer, the dielectric layer is made of two different sets of material,
6	the second plate having, on an inner surface, a plurality of address electrodes,
7	the first plate and the second plate being disposed in such a manner that the
8	display electrodes cross over the address electrodes,

9	each of the plurality of ribs being interposed between adjacen	t address electrodes,
10	and	
11	each of the plurality of spaces being provided with a phosp	phor layer and filled
12	with discharge gas, so as to form discharge spaces,	•
13	the plasma display panel performing displaying by the	following steps: 1)
14	accumulating electric charge in the dielectric layer by performing writing-di	scharge between the
15	display electrodes and the address electrodes, 2) applying a predetermined sustaining voltage	
16	between the pairs of display electrodes, 3) glow-discharging in selected discharge spaces in	
17	which the electric charge has been accumulated in the dielectric layer, and 4) converting	
18	ultraviolet light resulting from the glow-discharge into visible light by means of the phosphor	
19	layer,	
20	wherein an amount of xenon contained in the discharge gas as	nd filling pressure of
21	the discharge gas, a gap between the display electrodes, and the thickness a	and a permittivity of
22	the dielectric layer are set so that an equivalent electric field strength of 37V	//cm • Pa or more is
23	generated in the selected discharge spaces, when the predetermined sustaining	g voltage is applied.
1	12-16. (Cancelled)	
1	17. (Previously Presented) The plasma display panel of Claim 11	,
2	wherein the distance between the pair of display electrodes is	in a range of 20 μm
3	to 90 µm inclusive, where the display electrodes are facing the discharge spa	ces.
1	18-25. (Cancelled)	

I	26.	(Previously Presented) A display unit comprising the alternating current type
2	surface-disch	arge plasma display panel of Claim 1, and a driving circuit for applying voltage to
3	every electro	de included in the plasma display panel.
1	27.	(Previously Presented) The plasma display panel of Claim 4,
2	_,,	wherein the distance between the pairs of display electrodes is in a range of
3	20 μm to 90 μ	um inclusive, where the display electrodes are facing the discharge spaces.
1	28.	(Previously Presented) The plasma display panel of Claim 5,
2		wherein the distance between the pairs of display electrodes is in a range of
3	20 μm to 90 μ	um inclusive, where the display electrodes are facing the discharge spaces.
1	29.	(Previously Presented) The plasma display panel of Claim 6,
2		wherein the distance between the pairs of display electrodes is in a range of
3	20 μm to 90 μ	um inclusive, where the display electrodes are facing the discharge spaces.
1	30.	(Previously Presented) The plasma display panel of Claim 7,
2		wherein the distance between the pairs of display electrodes is in a range of
3	20 μm to 90 μ	um inclusive, where the display electrodes are facing the discharge spaces.
1	31.	(Previously Presented) The plasma display panel of Claim 12,
2		wherein the distance between the pair of display electrodes is in a range of 20 μm
3	to 90 µm incl	usive, where the display electrodes are facing the discharge spaces.
		·

1	32.	(Previously Presented) The plasma display panel of Claim 13,
2		wherein the distance between the pair of display electrodes is in a range of 20 μm
3	to 90 µm incl	usive, where the display electrodes are facing the discharge spaces.
1	33.	(Previously Presented) The plasma display panel of Claim 14,
2		wherein the distance between the pair of display electrodes is in a range of 20 μm
3	to 90 μ m inclusive, where the display electrodes are facing the discharge spaces.	
1	34-39.	(Cancelled)
1	40.	(Previously Presented) The plasma display panel of Claim 17,
2		wherein forms of a pair of the display electrodes differ from each other.
1	41.	(Previously Presented) The plasma display panel of Claim 17,
2		wherein at least one of pair of the display electrodes has protrusions extending
3.	toward the ot	her display electrode.
. 1	42.	(Cancelled)
1	43.	(Currently Amended) The plasma display panel of Claim 17,
2		wherein the display electrodes are metal electrodes and the permittivity dielectric
3	constant of th	ne dielectric layer is 6 or more than 9 or less.
1	44.	(Cancelled)

- 1 45. (Previously Presented) The plasma display panel of Claim 17,
- wherein the display electrodes are made by stacking bus lines on transparent
- 3 electrodes, and the dielectric layer is thicker on the bus lines than on the transparent electrodes.
- 1 46. (Cancelled)
- 1 47. (Previously Presented) A display unit comprising the alternating current type 2 surface-discharge plasma display panel of Claim 2, and a driving circuit for applying voltage to 3 each electrode included in the plasma display panel.
- 1 48. (Previously Presented) A display unit comprising the alternating current type 2 surface-discharge plasma display panel of Claim 3, and a driving circuit for applying voltage to 3 each electrode included in the plasma display panel.
- 1 49. (Previously Presented) A display unit comprising the alternating current type 2 surface-discharge plasma display panel of Claim 10, and a driving circuit for applying voltage to 3 each electrode included in the plasma display panel.
- 1 50. (Previously Presented) A display unit comprising the alternating current type 2 surface-discharge plasma display panel of Claim 11, and a driving circuit for applying voltage to 3 each electrode included in the plasma display panel.

1	51. (New) An alternating current type surface-discharge plasma display panel	
2	comprising a facing pair of substrates and a plurality of ribs interposed between the substrates so	
3	as to form a plurality of spaces,	
4	the plurality of spaces being provided with a phosphor layer and filled with	
5	discharge gas including Xenon, so as to form a plurality of discharge spaces;	
6	inside each of the discharge spaces, plural pairs of display electrodes are covered	
7	by a dielectric layer;	
8	the plasma display panel providing a display by: 1) writing by an accumulation of	
9	electric charge in the dielectric layer, 2) applying a predetermined sustaining voltage between th	
10	pairs of display electrodes, 3) glow-discharging in selected discharge spaces in which the electri	
11	charge has been accumulated in the dielectric layer, and 4) converting ultraviolet light resulting	
12	from the glow-discharge into visible light by means of the phosphor layer,	
13	wherein the dielectric layer is made by laminating at least two different dielectric	
14	materials,	
15	and wherein a ratio of Xe excimer exceeds that of a Xe resonance line in the	
16	ultraviolet light when a predetermined sustaining voltage is applied.	
1	52. (New) The alternating current type surface-discharge plasma display panel of	
2	Claim 51 wherein a first dielectric material covers the display electrodes and a second dielectric	

3

material covers only a portion of the display electrodes.

(New) The alternating current type surface-discharge plasma display panel of 1 53. Claim 51 wherein 2 3 a first dielectric material is ZnO-B₂O₃-SO₂-K₂O-CuO and a second dielectric material is ZnO-B₂O₃-SiO₂-K₂O. 4 1 54. (New) The alternating current type surface-discharge plasma display panel of 2 Claim 51 wherein 3 one dielectric material has a dielectric constant within a range of 6-7 and the other dielectric material has a dielectric constant within a range of 11-13. 4 (New) The alternating current type surface-discharge plasma panel of Claim 51 1 55. 2 wherein one dielectric material is a PbO glass and the other dielectric material is a ZnO glass. (New) The alternating current type surface-discharge plasma panel of Claim 51 1 56. 2 wherein one dielectric material has a higher softening temperature than the other dielectric

3

material.