HOME CHAPTERS LOGIN

20. UTM Coordinate System

🖶 Print

Shown below in Figure 2.21.1 is the southwest corner of a 1:24,000-scale topographic map published by the United States Geological Survey (USGS). Note that the geographic coordinates (40 45' N latitude, 77° 52' 30" W longitude) of the corner are specified. Also shown, however, are ticks and labels representing two plane coordinate systems, the Universal Transverse Mercator (UTM) system and the State Plane Coordinates (SPC) system. The tick labeled "4515" represents a UTM grid line (called a "northing") that runs parallel to and 4,515,000 meters north of, the equator. Ticks labeled "258" and "259" represent grid lines that run perpendicular to the equator and 258,000 meters and 259,000 meters east, respectively, of the origin of the UTM Zone 18 North grid. Unlike longitude lines, UTM "eastings" are straight and do not converge upon the Earth's poles. All of this begs the question, Why are multiple coordinate system grids shown on the map? Why aren't geographic coordinates sufficient?

Figure 2.21.1 Southwest corner of a USGS topographic map showing grid ticks and labels for three different coordinate systems, including the UTM coordinate system.

Credit: USGS. "State College quadrangle, Pennsylvania"

You can think of a plane coordinate system as the juxtaposition of two measurement scales. In other words, if you were to place two rulers at right angles, such that the "0" marks of the rulers aligned, you'd define a plane coordinate system. The rulers are called "axes." The absolute location of any point in the space in the plane coordinate system is defined in terms of distance measurements along the x (east-west) and y (north-south) axes. A position defined by the coordinates (1,1) is located one unit to the right, and one unit up from the origin (0,0). The UTM grid is a widely-used type of geospatial plane coordinate system in which positions are specified as eastings (distances, in meters, east of an origin) and northings (distances north of the origin).

By contrast, the geographic coordinate system grid of latitudes and longitudes consists of two *curved* measurement scales to fit the nearly-spherical shape of

The Nature of Geographic Information

Chapters

- ► Chapter 1: Data and Information
- ▼ Chapter 2: Scales and

Transformations

- 1. Overview
- 2. Scale
- 3. Scale as Scope
- 4. Map and Photo Scale
- 5. Graphic Map Scales
- 6. Map Scale and Accuracy
- 7. Scale as a Verb
- 8. Geospatial Measurement Scales
- 9. Coordinate Systems
- 10. Geographic Coordinate System
- 11. Geographic Coordinate Formats
- 12. Horizontal Datums
- 13. Geoids
- 14. Ellipsoids
- 15. Control Points and Datum Shifts
- 16. Coordinate Transformations
- 17. Plane Coordinate Transformations

the Earth. As you know, geographic coordinates are specified in degrees, minutes, and seconds of arc. Curved grids are inconvenient to use for plotting positions on flat maps. Furthermore, calculating distances, directions and areas with spherical coordinates are cumbersome in comparison with plane coordinates. For these reasons, cartographers and military officials in Europe and the U.S. developed the UTM coordinate system. UTM grids are now standard not only on printed topographic maps but also for the geospatial referencing of the digital data that comprise the emerging U.S. "National Map."

In this section of Chapter 2, you will learn to:

- 1. describe the characteristics of the UTM coordinate system, including its basis in the Transverse Mercator map projection; and
- 2. plot UTM coordinates on a map.

< 19. Map Projections

up

21. The UTM Grid and Transverse Mercator Projection

- 18. Datum
 Transformations
- 19. Map Projections
- 20. UTM Coordinate System
- 21. The UTM Grid and Transverse Mercator Projection
- 22. UTM Zone Characteristics
- 23. National Grids
- 24. State Plane Coordinate System
- 25. The SPC Grid and Map Projections
- 26. SPC Zone Characteristics
- 27. Map Projections
- 28. Geometric Properties Preserved and Distorted
- 29. Classifying Projection Methods
- 30. Summary
- 31.Bibliography
- ► Chapter 3: Census Data and Thematic Maps
- ► Chapter 4: TIGER, Topology and Geocoding
- Chapter 5: Land Surveying and GPS
- Chapter 6: National Spatial Data Infrastructure I
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

Navigation

• login

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

Navigation

- Home
- News
- About
- Contact Us
- People
- Resources
- Services
- Login

EMS

- College of Earth and Mineral Sciences
- Department of Energy and Mineral Engineering
- Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Online Geospatial Education Programs
- Renewable Energy and Sustainability Policy Program Office

iMPS in

 BA in Energy and Sustainability Policy Program Office Related Links

- Penn State
 Digital
 Learning
 Cooperative
- Penn State
 World Campus
- Web Learning
 @ Penn State

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

2217 Earth and Engineering Sciences Building, University Park, Pennsylvania, 16802

Privacy & Legal Statements | Copyright Information
The Pennsylvania State University © 2023