《数学1》试卷勘误说明

第一套

14 题题干更正为: $\int_{\frac{\sqrt{2}}{2}}^{1} \frac{\sqrt{1-x^2}}{x^2} dx = ()$ 。

23 题题干更正为: 已知函数 $z = e^{xy}$, $\Delta x = 0.1$, $\Delta y = 0.15$,则当 x = 1, y = 1 时的全微分为 ()。

25 题解析更正为: 空间曲线 $\begin{cases} x^2 + y^2 + z^2 = 6 \\ z = x^2 + y^2 \end{cases}$ 在点 (-1,1,2) 处的法平面的法向量为

 $\begin{vmatrix} i & j & k \\ -1 & 1 & 2 \\ 2 & -2 & 1 \end{vmatrix}$ = (5,5,0),在点(-1,1,2)处的法平面方程x+1+y-1=0, x+y=0,所以选 B。

30 题更换为:

已知 D是直线y=x与 $y=x^2$ 所围成的区域,则 $\iint_{\Omega} xydxdy = ($)。

A.
$$\frac{1}{12}$$

B.
$$-\frac{1}{12}$$

C.
$$\frac{1}{24}$$

D.
$$-\frac{1}{24}$$

答案: C。解析: $\iint_D xydxdy = \int_0^1 xdx \int_{x^2}^x ydy = \frac{1}{2} \int_0^1 (x^3 - x^5) dx = \frac{1}{24}$, 所以选 C。

31 题选项更正为:

$$A. \int_0^2 dx \int_x^{x-4} f(x,y) dy$$

B.
$$\int_0^2 dx \int_x^{4-x} f(x,y) dy$$

C.
$$\int_0^2 dx \int_{4-x}^x f(x,y) dy$$

D.
$$\int_{0}^{1} dx \int_{x=4}^{x} f(x,y) dy$$

31 **题解析更正为:** 由题目 Y 型区域,转化为 X 型区域,得 $\int_0^2 dx \int_x^{4-x} f(x,y) dy$,所以选 B。

32 题题干更正为: 由坐标面及 c 为 x = 2, y = 3, x + y + z = 4 所围成的角柱体的体积是 ()。

32 题解析更正为: 本题考查二重积分的应用,由坐标面及c为x=2,y=3,x+y+z=4所围成的角

柱体的体积 $V = \iint_{D} (4-x-y)d\sigma = \int_{0}^{1} dx \int_{0}^{3} (4-x-y)dy + \int_{1}^{2} dx \int_{0}^{4-x} (4-x-y)dy = \frac{55}{6}$,所以选 D.

41 题题干更正为: 设 $A = \begin{vmatrix} 1 & -1 & 3 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{vmatrix}$,则 $A_{21} - A_{22} + A_{23} = ($) 。

58 题答案更正为: B,解析正确。

62 题解析更正为: 由 $E(X) = \lambda$, $D(X) = \lambda$, $(\lambda > 0)$, 得 $E(X^2) = D(X) + E^2(X) = \lambda + \lambda^2$, 故 $E[(X-1)(X+3)] = E(X^2 + 2X - 3) = E(X^2) + 2E(X) - 3 = \lambda^2 + 3\lambda - 3 = 1$, 即 $\lambda^2 + 3\lambda - 4 = 0$, 得 $\lambda = 1$ 。

第二套

5 题解析更正为: 因为
$$f(x) = \begin{cases} x, & x \le 0, \\ \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n}, & f'_{-}(0) = 1, & f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{\frac{1}{n}}{x},$$
 而

$$\frac{1}{\frac{n}{n}} \le \frac{1}{x} \le \frac{1}{\frac{1}{n+1}} \to 1$$
, 因此 $f'_{+}(0)=1$, $f(x)$ 在 $x = 0$ 处可导,所以选 C。

 $\Delta = 36a^2 - 60b = 12(3a^2 - 5b) < 0$,所以 f'(x) > 0,f(x)在R上单调递增。而且

 $\lim_{x\to\infty} f(x) < 0$, $\lim_{x\to\infty} f(x) > 0$ 。由零点定理知, f(x) = 0 ,只有唯一实根。所以选 B。

11 **题解析更正为**:因为f(x)的一个原函数为 $x^2 \ln x$

则 $(x^2 \ln x)' = f(x) = 2 \ln x + x$,所以, $\int f'(x) dx = 2x \ln x + x + C$, 所以选 B。

21 题解析更正为:
$$\begin{cases} x^{2} + y^{2} + z^{2} = 50 \\ x + 2y + 3z = 4 \end{cases}$$
, 两端同时对 x 求偏导, 则
$$\begin{cases} 2x + 2y \frac{\partial y}{\partial x} + 2z \frac{\partial z}{\partial x} = 0 \\ 1 + 2 \frac{\partial y}{\partial x} + 3 \frac{\partial z}{\partial x} = 0 \end{cases}$$
,

得 $\frac{\partial z}{\partial x} = \frac{2x - y}{3y - 2z}$, 所以选 C。

23 题题干更正为: $(2xy - y^4 + 3)dx + (x^2 - 4xy^3)dy$ 在整个平面内的一个原函数 u = u(x, y) 为 ()。

32 题干更正为: 设曲线积分 $I = \int_C xy^2 dy - x^2 y dx$, C: 圆周 $x^2 + y^2 = a^2$ 在第一象限部分,取 逆时针方向,则 I = ()。

32 题解析更正为: 本题考查格林公式的应用,补充直线 $l_1: y=0, l_2: x=0$,与圆周 $x^2+y^2=a^2$ 构成封闭逆时针曲线,则应用格林公式

$$I = \int_{C} xy^{2} dy - x^{2} y dx = \iint_{D_{xy}} (x^{2} + y^{2}) d\sigma - \int_{A} xy^{2} dy - x^{2} y dx - \int_{A} xy^{2} dy - x^{2} y dx$$

$$I = \frac{\pi a^4}{8}$$
,所以选 C。

37 题题干更正为: 方程 $y'' = (y')^3 + y'$ 的通解为 ()。

37 题解析更正为: $y'' = (y')^3 + y'$, $y'' = 1 + (y')^2$, , 不显含 x , 令 y' = p(y) , 则

 $p\frac{dp}{dy}=p^3+p$,得arctan $p=y+C_1$,因此 $\frac{dy}{dx}=\tan(y+C_1)$,两端同时积分,得

 $\sin(y + C_1) = Ce^x, \text{ fill } C.$

40 题解析更正为: 令 $f_x(x,y)=0$, $f_y(x,y)=0$, 可知 (0,0) 为函数 f(x,y) 的驻点,且在该点处, $AC-B^2>0$,且 A>0,因此 $f(x,y)=x^2+y^2-3x^2y$ 在 (0,0) 点为极小值点,所以选 C。

44 题题干更正为: 已知方阵 A 为三阶方阵,第 1 行元素分别为 $a_{11}=1$, $a_{12}=2$, $a_{13}=-1$,且

$$A^* = \begin{bmatrix} -7 & -4 & 9 \\ 5 & 3 & -7 \\ 4 & 2 & -5 \end{bmatrix}, \quad \text{M} |A| = ().$$

65 题解析更正为: 这是一个几何概型,由于 $-1 \le a \le 1, -1 \le b \le 1,$ 所以 $S_{\Omega} = 4,$

又因为方程有实根,即 $\Delta=a^2-4b^2\geq 0$ \Rightarrow $(a-2b)(a+2b)\geq 0$,设 A="方程有实根",则 $S_A=2\times\frac{1}{2}\times1\times1=1,$ 故方程有实根的概率为 $P=\frac{1}{4}$ 。

第三套

17 题解析更正为: 因为 $\int_{-1}^{1} \frac{1}{x} dx$ 的原函数在区间(-1,0)及(0,1)均发散,所以选 A。

30 **题解析更正为:** 由 $\int_0^2 dx \int_x^{2x} f(x,y) dy$ 的两对上下限,恢复区域,再交换积分次序则,

$$\int_0^2 dx \int_x^{2x} f(x,y) dy = \int_0^2 dy \int_{\frac{y}{2}}^y f(x,y) dx + \int_2^4 dy \int_{\frac{y}{2}}^2 f(x,y) dx , 所以选 A.$$

32 **题解析更正为:** 本题考查二重积分的应用,平面 x=0, y=0, x+y=2 所围成的柱体被平面 z=0 及 抛物面 $x^2+y^2=6-z$ 所截得立体体积为 $V=\iint_{D_{xy}}(6-x^2-y^2)d\sigma=\int_0^2dx\int_0^{2-x}(6-x^2-y^2)dy=\frac{28}{3}$,

所以选 B。

33 **题题干更正为:** 设曲线积分 $I = \oint_{\mathcal{C}} (x + y) ds$, 其中 C : 圆周 $x^2 + y^2 = ax(a > 0)$, 则 I = ()。

35 题解析更正为: 当C为不通过原点且不包含原点的光滑且逆时针方向的闭曲线时,则由格林公式 $I = \oint_C \frac{xdy - ydx}{x^2 + 4v^2} = 0$, $\exists C$ 不通过原点但包含原点时,做一个包含原点的顺时针方向的椭圆

 L_1 : $x^2 + 4y^2 = r^2$, 因此由格林公式, $I = \oint_{C+C_1} \frac{xdy - ydx}{v^2 + 4y^2} - \oint_{C_1} \frac{xdy - ydx}{v^2 + 4y^2} = 0 + \pi = \pi$, 所 以选 C。

39 题更换为:

方程 $y'' = 1 + (y')^2$ 的通解为 ()。

A.
$$-\ln|\cos(x + C_1)| + C_2$$
 B. $\ln|\cos(x + C_1)| + C_2$

B.
$$\ln |\cos (x + C_1)| + C_2$$

C.
$$-\ln|\sin(x + C_1)| + C_2$$
 D. $\ln|\sin(x + C_1)| + C_2$

D.
$$\ln |\sin(x + C_1)| + C_2$$

答案: A。解析: 令 y' = p(x),则 $\frac{dp}{dx} = 1 + p^2$, $\frac{dp}{1 + p^2} = dx$, 两端同时积分,

 $\arctan p = x + C_1$, $p = \tan(x + C_1)$, 因此 $y = \int \tan(x + C_1) = -\ln|\cos(x + C_1)| + C_2$, 所以选 A.

53 **题解析更正为:** 由 |A+E|=0, |A+2E|=0, |A+3E|=0, 可知, A 的特征值为

 $\lambda_1=-1, \lambda_2=-2, \lambda_3=-3$,相似矩阵具有相同的特征值,所以 B 的特征值为 $\lambda_1=-1, \lambda_2=-2, \lambda_3=-3$,故 B

的相似对角形为
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$
 (形式不唯一,只要是主对角线上为 -1 , -2 , -3 就可以。)

第四套

9 **题解析更正为:** 因为 a_n > 0, $\{n=1,2,3\cdots\}$, $S_n=a_1+a_2+\cdots+a_n$,因此数列 $\big\{S_n\big\}$ 单调递增,若数列 $\left\{S_n\right\}$ 有界,因此 $\left\{S_n\right\}$ 极限存在,因此 $\lim_{r\to 0}a_n=0$,因此数列 $\left\{a_n\right\}$ 收敛,反之不是,如 $\left\{a_n=1\right\}$,则 $\left\{a_n=n\right\}$ 界,所以选B。

19 **题解析更正为:** 若 $\sum_{n=1}^{\infty} (|u_n| + |v_n|)$ 收敛,则由正项比较审敛法, $\sum_{n=1}^{\infty} |u_n|$ 与 $\sum_{n=1}^{\infty} |v_n|$ 都收敛,因此 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都绝对收敛,与已知矛盾,所以选 D。

22 **题解析更正为:** 对方程 $x - \int_1^{x+y} e^{-t^2} dt$ 两端同时对 x = 0 求导,且当 x = 0时,y = 1代入,则 $\frac{dy}{dx}\Big|_{x=0} = e - 1$,所以选 A。

37 题解析更正为: $\overrightarrow{div}A = div(xy - x^2, yz - z^2, xz - z^2) = P_x + Q_y + R_z = -x - y - z$,所以选 B。

70 **题解析更正为:** 由于
$$f_X(x) = \begin{cases} \int_0^x 4.8y(2-x)dy = 2.4x^2(2-x), 0 \le x \le 2, \text{ the } f_X(1) = 2.4.0, 0, \text{ the } f_X(1) = 2.4.0 \end{cases}$$

第五套

4 题解析更正为: 由导数在一点的定义,则 $\lim_{h\to 0} \frac{f(a+2h)-f(a-h)}{h} = 3f'(a)$,所以选 B。

16 题解析更正为: 曲线 $x = t, y = -t^2, z = t^3$ 在切点处的切向量为 $(1, -2t_0, 3t_0^2)$,且

$$(1,-2t_0,3t_0^2)\cdot(1,2,1)=0$$
 ,得 $t_0=1$ 或 $\frac{1}{3}$,当 $t_0=1$ 时,切线方程为 $\frac{x-1}{1}=\frac{y+1}{-2}=\frac{z-1}{3}$;当 $t_0=\frac{1}{3}$ 时,

切线方程为
$$\frac{x-\frac{1}{3}}{1} = \frac{y+\frac{1}{9}}{-\frac{2}{3}} = \frac{z-\frac{1}{27}}{\frac{1}{3}}$$
,所以选 B。

23 题解析更正为: $e^{x+y+z} = x^2 + y^2 + z^2$,两端对z求偏导得,则 $e^{x+y+z}(1+\frac{\partial y}{\partial z}) = 2y\frac{\partial y}{\partial z} + 2z$,整理

得
$$\frac{\partial y}{\partial z} = \frac{2z - e^{x+y+z}}{e^{x+y+z} - 2v}$$
,则所以选 D。

26 题 B 项更正为: 2。

34 题题干更正为: 设
$$I = \oint_L (x^2 + 4y^2) ds$$
,其中 L 为 $x^2 + y^2 = R^2$,则 $I = ($)。

46 题解析更正为: 设将矩阵分块后得,
$$A_1 = \begin{pmatrix} -4 & -3 \\ 3 & 2 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} -\frac{1}{5} & 0 \\ 0 & 10 \end{pmatrix}$, 则 $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$, 而

$$|A_1| = 1, |A_2| = -2, A_1^{-1} = \begin{pmatrix} 2 & 3 \\ -3 & -4 \end{pmatrix}, A_2^{-1} = \begin{pmatrix} -5 & 0 \\ 0 & \frac{1}{10} \end{pmatrix};$$
 \mathbb{Z} 为

$$A^{-1} = \begin{pmatrix} A_1^{-1} & 0 \\ 0 & A_2^{-1} \end{pmatrix}, |A| = |A_1||A_2| = -2,$$
,所以 $A^{-1} = \begin{pmatrix} 2 & 3 & 0 & 0 \\ -3 & -4 & 0 & 0 \\ 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & \frac{1}{10} \end{pmatrix}, |A^6| = |A|^6 = 64,$ 故选 D.

48 题题干更正为: 当 k= () 时,向量 β = (1, k, 5)能由 α_1 = (1, -3, 2), α_2 = (2, -1, 1) 线性表示。

62 题题干更正为: 设事件 A, B仅发生一个的概率为 0. 3,且 P(A) + P(B) = 0.5,则至少有一个不发生的概率为 ()。

第六套

3 题解析更正为:
$$f(x) = \begin{cases} \frac{\sin x}{|x|} & x \neq 0 \\ 1 & x = 0 \end{cases}$$
 $f(0) = 1$, $\lim_{x \to 0^{+}} \frac{\sin x}{x} = 1$, $\lim_{x \to 0^{-}} (-\frac{\sin x}{x}) = -1$,

因此
$$x = 0$$
 为函数 $f(x) = \begin{cases} \frac{\sin x}{|x|} & x \neq 0 \\ 1 & x = 0 \end{cases}$ 的跳跃间断点,所以选 C 。

- **9 题解析更正为:** B 选项是将 y = f(-x) 的图像与 y = f(x) 的图像关于 y 轴对称, 因此 $-x_0$ 为 f(-x) 的极大值点,从而 $-x_0$ 为 -f(-x) 的极小值点,所以选 B。
 - 11 **题 D 项**更正为: $\frac{1}{2\sqrt{2}}$ 。
 - 13 题题干更正为: 设 $\int f(x)dx = x^2 + C$,则 $\int x f(1-x^2)dx = ($)。
 - 17 题解析更正为: 设 $f(x) = \int_{1}^{x} e^{-t^2} dt$, 则

$$g(x) = \int_0^1 x^2 f(x) dt = \frac{1}{3} \int_0^1 f(x) dx^3 = \frac{1}{3} x^3 f(x) \Big|_0^1 - \frac{1}{3} \int_0^1 x^3 f'(x) dx = -\frac{1}{3} \int_0^1 x^3 e^{-x^2} dx = \frac{1}{6} (\frac{2}{e} - 1),$$
 所以姓 C.

32 题解析更正为:恢复区域并改变积分次序得,

$$\int_0^{2a} dx \int_{-\sqrt{2ax-x^2}}^{\sqrt{2ax}} f(x,y) dy = \int_{-a}^0 dy \int_{a-\sqrt{a^2-y^2}}^{a+\sqrt{a^2-y^2}} f(x,y) dx + \int_0^{2a} dy \int_{\frac{y^2}{2a}}^{2a} f(x,y) dx , \text{ MULL B.}$$

38 题解析更正为: $y'' - y' - 2y = e^{2x}$ 对应的齐次方程的特征方程为 $\lambda^2 - \lambda - 2 = 0$,特征根为

$$\lambda_1 = 2, \lambda_2 = -1$$
, 令特解为 $y_0 = Axe^{2x}$,则 $A = \frac{1}{3}$, 因此 $y'' - y' - 2y = e^{2x}$ 的通解为

$$y = C_1 e^{-x} + C_2 e^{2x} + \frac{1}{3} x e^{2x}$$
, 所以选 A。

40 题解析更正为: 显然 $C_1C_2xe^{2x}$ 是 y''-4y'+4y=0 的解,又因为 C_1C_2 本质上只是一个任意常数,因此 $C_1C_2xe^{2x}$ 是 y''-4y'+4y=0 的解,但不是方程的通解也不是特解,所以选 D。