eBridge_CPU_Log

May 22, 2021

1 eBridge - Data Preprocessing

1.1 Master of Science in Electronics - Emphasis on Embedded Systems

1.2 Costa Rica TEC

eBridge Github Page.

Our goal is to identify patterns on CPU load behaviors.

1.3 Data Preprocessing

First step is to load the libraries:

```
[1]: import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
```

1.3.1 Load the dataset

The code below is used to load the dataset.

The following commands allows to have a preview of the dataset.

[3]: CoreData.head()

```
[3]:
                      Time
                                1
                                     2
                                            3
                                                  4
    0 2021-05-16 09:05:42
                            100.0
                                   0.0
                                        100.0
                                                0.0
    1 2021-05-16 09:05:47
                              2.0
                                   0.4
                                          7.6
                                               19.0
    2 2021-05-16 09:05:52
                              0.8 0.6
                                         66.5
                                               20.5
    3 2021-05-16 09:05:57
                              1.0 1.8
                                         86.4 22.0
    4 2021-05-16 09:06:02
                              1.2 6.0
                                         86.1 16.9
```

Convert the time to timestamp

```
[4]: CoreData['Time'] = pd.to_datetime(CoreData['Time'])
[5]: CoreData.describe()
[5]:
                       1
                                      2
                                                    3
                                                                   4
     count
            27429.000000
                          27429.000000
                                         27429.000000
                                                       27429.000000
                                                           36.778326
    mean
               16.112563
                              21.412436
                                            34.877079
     std
               28.018721
                              30.115804
                                            37.343692
                                                           37.617364
                0.000000
                              0.000000
                                             0.000000
                                                            0.000000
    min
     25%
                0.200000
                              0.600000
                                             5.000000
                                                            5.200000
     50%
                2.000000
                              7.800000
                                            15.500000
                                                           16.900000
     75%
               16.100000
                              20.100000
                                            87.500000
                                                           87.800000
     max
              100.000000
                              92.200000
                                           100.000000
                                                           94.800000
[6]: CoreData['Time']
[6]: 0
             2021-05-16 09:05:42
     1
             2021-05-16 09:05:47
     2
             2021-05-16 09:05:52
     3
             2021-05-16 09:05:57
             2021-05-16 09:06:02
     27424
             2021-05-17 23:13:43
             2021-05-17 23:13:48
     27425
     27426
             2021-05-17 23:13:53
     27427
             2021-05-17 23:13:58
     27428
             2021-05-17 23:14:03
     Name: Time, Length: 27429, dtype: datetime64[ns]
[7]: # Create Box Plots for Dataset
     Core_Data = [CoreData['1'],CoreData['2'],
                   CoreData['3'],CoreData['4']]
     plt.figure(figsize=(20,12))
     g = sns.boxplot(data=Core_Data, linewidth=3.5).set(xlabel='Core Number',_
     →ylabel='CPU Load')
     plt.xticks(ticks = [0,1,2,3], labels = ['Core 1','Core 2','Core 3','Core 4'])
     plt.show()
```



```
[8]: # Scatter Plot
     import matplotlib.pyplot as plt
     import matplotlib.dates as md
     CoreData = CoreData[:999]
     plt.figure(figsize=(20,12))
     plt.plot(CoreData['Time'], CoreData['1'], label = "Core 1")
     plt.plot(CoreData['Time'], CoreData['2'], label = "Core 2")
     plt.plot(CoreData['Time'], CoreData['3'], label = "Core 3")
     plt.plot(CoreData['Time'], CoreData['4'], label = "Core 4")
     plt.xlabel('Time')
     ax=plt.gca()
     xfmt = md.DateFormatter('%H:%M:%S')
     ax.xaxis.set_major_formatter(xfmt)
     # Set the y axis label of the current axis.
     plt.ylabel('CPU Load')
     # Set a title of the current axes.
     plt.title('CPU Loads over time')
     # show a legend on the plot
     plt.legend()
     # Display a figure.
     plt.show()
```

```
#g=sns.lineplot(data=CoreData)
#(g.set_axis_labels("Time", "CPU Load"))
#plt.show()
```


[]: