Questions Summary & Overview :: 2025

CCE 221 :: Digital Logic Design

Source code is **available on GitHub**. Made with **typst typesetting**.

Legends

- Bold texts mark importance.
- \uparrow mark represents repentance amount in the previous questions,
- while, single \uparrow mark represents appearance.
- Strike-through refers to out of syllabus.
- Highlighted texts are something I didn't find in materials, so help me to find it:)

By no means, this is any sorts of suggestions. Just a quick overview!

Nothing more, nothing less:)

And yah, can be **inaccurate!** Feel free to **criticize**.

Contents

1	Binary System	3
	1.1 Definitions	3
	1.2 Thoery + implementation	3
2	Boolean Algebra and Logic Gates	3
	2.1 Thoery + implementation	3
3	Simplification of Boolean Functions	3
	3.1 Definitions	3
	3.2 Thoery + implementation	3
4	Combinational Logic	4
	4.1 Thoery	4
	4.2 Logical implementation	4
5	Combinational Logic with MSI and LSI	4
	5.1 Definitions	4
	5.2 Thoery + implementation	4
6	Sequential Logic	5
	6.1 Definitions	5
	6.2 Thoery + implementation	5
7	Registers, Counters and the Memory Unit	5
	7.1 Definition	5
	7.2 Thoery	5
8	Register-Transfer Logic	6
	8.1 Definition	6
	8.2 Thoery	6

Revision 01

Try to directly open the file from Rising Flare, to avoid missing any updates.

1 Binary System

Not really that important, but still you can read...

In our mid, r-1's complement was required!

1.1 Definitions

1. Flat and dual-in-line package (Mahbub sir)

1.2 Thoery + implementation

- 1. Number base conversion (decimal, binary, octal, hexa or **base-n**) $\stackrel{1}{\leftarrow}$
- 2. complements (r's and r-1's)
- 3. substruction with r's complement
- 4. Advantages and disadvantages of digital techniques over analog techniques 🜟

2 Boolean Algebra and Logic Gates

2.1 Thoery + implementation

- 1. Basic theorems and properties of bool algebra \checkmark
 - basic therorem :: postulates
 - Operator precedence
 - Venn Diagram
 - Boolean functions
 - Algebric manupulation
- 2. Canonical and standard forms
 - Minterm & Maxterm examples
 - Sum of Maxterm
 - Product of Maxterm
 - ► Example 2-5

 - · Standard Form

3 Simplification of Boolean Functions

3.1 Definitions

- 1. Prime implicants
- 2. Essential prime implicants

3.2 Thoery + implementation

- 1. 2-3-4-5-6 Variable Maps (Simplification) ★
 - Find prime implicants and essential prime implicants using K-map.
- 2. Don't care condition \checkmark
 - "An expression with the minimum number of literals is not necessarily unique." $\uparrow \uparrow \uparrow$
- 3. Tabular Method 👉
 - Simplify Don't Care Condition using Tabular Method.

4 Combinational Logic

For Mahbub sir's part, it's recommended to solve exercise problems from both books.

4.1 Thoery

- 1. Design procedures (x7 steps)
- 2. Universal Gate (definition) $\stackrel{1}{\leftarrow}$

4.2 Logical implementation

- 1. Adders
 - · Half adder
 - · Full adder
- 2. Subtractors
 - · Half subtractor
 - · Full subtractor
- 3. BCD to excess-3
- 4. Analysis procedure $\uparrow \uparrow$
- 5. Multilevel NAND and NOR implementation \checkmark
- 6. implementation with universal Gates
- 7. XOR & XNOR
- 8. Parity

5 Combinational Logic with MSI and LSI

For Mahbub sir's part, it's recommended to solve exercise problems from both books.

5.1 Definitions

- 1. Adder 🐈
- 2. Decoder 👉
- 3. Binary parallel adder
- 4. Programmable read only memory (ROM) ψ

5.2 Thoery + implementation

- 1. Carry propagation
 - Look ahead carry generator
- 2. Decimal adder
 - BCD adder 🐈
- 3. Magnitude comparator \star
- 4. Decoder & Demultiplexer +
 - Decoder with enable (E) input
- 5. Encoder & Multiplexer $\uparrow \uparrow$
- 6. Boolean function implementation
- 7. Read-only memory (ROM)
 - Combinational logic implementation
 - Types of ROM
- 8. Programmable logic array (PLA)

6 Sequential Logic

6.1 Definitions

- 1. Sequencial logic
- 2. Flip flop $\stackrel{1}{\leftarrow}$
- 3. Synchronous vs asynchronous circuits \checkmark

6.2 Thoery + implementation

- 1. Combinational vs sequential circuits \checkmark
- 2. Clocked RS flip-flop \checkmark
- 3. Clocked D flip-flop \checkmark
- 4. Clocked JK flip-flop +
- 5. Clocked T flip-flop
- 6. Triggering of flip-flops
 - Master-slave flip-flop
 - Edge-triggered flip-flop

For the following topics, it's recommended to watch YouTube videos.

"Sequential Circuits" by Neso Academy is a good one.

Also there're some recommended ones from **Mahbub sir** (link availabe on **\bigcites** \tau or Classroom).

- 7. Analysis of clocked sequential circuits
 - Example of a sequential circuit
 - State table 👉
 - State diagram 👆
 - State equation
- 8. State reduction
 - State assignment
- 9. Design procedure

7 Registers, Counters and the Memory Unit

Go through Rising Flare's progress for capturing exact tables and figures.

7.1 Definition

- Register
- 2. Bidirectional shift register \star
- 3. Binary ripple counter 🐈

7.2 Thoery

- 1. Registers
 - 4 bit register with parallel load \rightarrow
 - register with parallel load (D flip-flops) 🛧
 - Block diagram of a sequential circuit
 - Example 7-1
- 2. Shift register

- Serial transfer from register A to register B 👉 👉
- Bidirectional shift register with parallel load
- 4-bit Bidirectional shift register with parallel load
- 3. Serial addition \uparrow
- 4. Ripple counter (asynchronous counter) *
- 5. BCD Ripple counter (asynchronous counter) +
- 6. Synchronous counter
 - 4-bit synchronous binary counter
- 7. Johnson counter (construction) $\stackrel{?}{\leftarrow}$
- 8. The memory unit
- 9. Examples of Random Access Memory (RAM)
 - · Memory cell
 - Integrated circuit memory
 - Magnetic core memory

8 Register-Transfer Logic

From this chapter we actually need to know only simple statements.

Don't skip statements,

and get overloaded with the details!

8.1 Definition

- 1. Register
- 2. Binary information
- 3. Microoperation
- 4. MBR (previous chapter)

8.2 Thoery

- 1. Microoperation types
- 2. Interregister transfer
 - Fig 8-2
 - Table 8-1
 - Fig 8-3
- 3. Memory transfer
- 4. Arithmetic, logic and shift microoperations
 - Basics and statements
 - ► Table 8-2
 - Logic microoperation
 - ► Table 8-3
 - Shift microoperation
- 5. Overflow

Nobody can go back and start a new beginning, but anyone can start today and make a new ending.