Лекция 5. Отбор энергии от электронного потока

Отбор энергии от одиночного электрона

 V_0 - скорость электрона на влете в зазор,

V – скорость электрона на вылете из зазора

Отбор энергии от электронов в плоском зазоре. Знаками + и – обозначена полярность напряжения, созданного на сопротивлении R в результате протекания наведенного тока

Энергия передается во внешнюю цепь в процессе движения электронов в продольном тормозящем электрическом поле

Отбор энергии от модулированного электронного потока.

Идеальная форма кривой конвекционного тока

Применение резонансных колебательных систем для отбора энергии от электронов

Полый резонатор, служащий для отбора энергии от модулированного по плотности электронного потока, и его эквивалентная схема

 u_0^- резонансная частота

V – частота колебаний

Высокочастотная мощность, поступающая в активную проводимость:

$$P = \frac{1}{2} U_m^2 G_{\text{полн}}$$

$$U_m = \frac{I_m}{\sqrt{G_{\text{полн}}^2 + B^2}}$$

Мощность, отбираемая от электронного потока:

$$P = \frac{1}{2} I_m^2 \frac{G_{\text{полн}}}{G_{\text{полн}}^2 + B^2}$$

Отбор энергии от электронного потока с помощью нерезонансных колебательных

Принципиальная схема нерезонансного выходного устройства с несколькими зазорами, включенными в линию задержки

Фазовый синхронизм электронов с бегущей электромагнитной волной:

$$v_0 \approx v_\phi$$