# Предсказание пульсаров на основе датасета HTRU2

•••

Артём Давыдов Группа 205

#### Постановка задачи

Одним из объектов исследования современной астрофизики являются пульсары - космические источники электромагнитного излучения, быстро вращающиеся вокруг своей оси. Сигналы от пульсаров приходят на Землю в виде периодических импульсов, которые отслеживаются с помощью телескопов.

Однако такой метод поиска затруднен ложными срабатываниями телескопов на другие сигналы, которые не относятся к пульсарам.

#### Процесс поиска пульсаров

Процесс поиска является очень долгим. Его можно разбить на 2 этапа:

- 1. Сбор данных с радиотелескопа и первичная обработка, в результате которой каждый пульсар изображается точкой на графике (пример-справа)
- 2. Далее для отсеивания ложных срабатываний делается, как правило, визуальная проверка.

Для ускорения второго этапа может быть использовано машинное обучение.



#### Набор данных (DataSet)

Набор данных называется HTRU2, он представляет собой 17898 различных сигналов, которые были зарегистрированы телескопами, из них:

- 1. 16259 ложных срабатываний
- 2. 1639 истинных срабатываний

Каждому пульсару соответствует строка из 8 чисел, каждое из которых - это интегральные характеристики двух кривых - интегрированного профиля и DM-SNR кривой.

#### Кривые с данными





#### DM u SNR

• по мере дисперсии DM. При всех недостатках этого метода он является основным. Для подавляющего большинства пульсаров расстояние определено только таким образом. Измерение времени запаздывания сигналов на разных частотах позволяет определить меру дисперсии для данного пульсара:

$$\Delta t = rac{2\pi e^2}{m_e c} \left(rac{1}{\omega_1^2} - rac{1}{\omega_2^2}
ight) DM,$$

где  $m_e$  — масса электрона, e — его заряд, c — скорость света,  $\omega_{1,2}$  — измеряемые частоты. Поскольку

$$DM = \int\limits_0^L n_e dl = ar{n_e} L,$$

$$SNR = \frac{P_{signal}}{P_{noise}}$$

## Что за данные мы имеем?

1. Меап(среднее значение) М(х)  $M(X) = \int_{-\infty}^{\infty} x f_X(x) dx$ 

2. Standard deviation (стандартное отклонение) 
$$\sigma(x)$$
  $\sigma(X) = \sqrt{\int\limits_{-\infty}^{+\infty} \left(x - \int\limits_{-\infty}^{+\infty} x f_X(x) dx\right)^2} f_X(x) dx$ 

$$\int_{-\infty}^{\infty} \left( x - \int_{-\infty}^{\infty} x f_X(x) dx \right)^4 f_X(x) dx$$

3. Excess kurtosis (коэффициент эксцесса) Ek(x)
$$Ek(X) = \frac{\int_{-\infty}^{\infty} \left(x - \int_{-\infty}^{\infty} x f_X(x) dx\right)^3 f_X(x) dx}{\left[\int_{-\infty}^{\infty} \left(x - \int_{-\infty}^{\infty} x f_X(x) dx\right)^2 f_X(x) dx\right]^2} - 3$$

4. Skewness (коэффициент асимметрии) As(x)
$$As(X) = \frac{\int_{-\infty}^{\infty} \left(x - \int_{-\infty}^{\infty} x f_X(x) dx\right)^3 f_X(x) dx}{\left[\int_{-\infty}^{\infty} \left(x - \int_{-\infty}^{\infty} x f_X(x) dx\right)^2 f_X(x) dx\right]^{\frac{3}{2}}}$$

#### Методы решения поставленной задачи

Для решения задачи будет использоваться обычная полносвязная нейронная сеть (Dense-слои), количество нейронов в которых подбирается (примерно) так, чтобы не было переобучения (не слишком много). На выходе должен быть 1 нейрон, т.к. рассматриваемая задача - задача бинарной классификации.

| Layer (type)        | Output Shape | Param #   |  |
|---------------------|--------------|-----------|--|
| dense_3 (Dense)     | multiple     | 144       |  |
| dropout_2 (Dropout) | multiple     | 0         |  |
| dense_4 (Dense)     | multiple     | 544       |  |
| dropout_3 (Dropout) | multiple     | 0         |  |
| dense_5 (Dense)     | multiple     | 33        |  |
| Total params: 721   |              | .======== |  |

Total params: 721
Trainable params: 721
Non-trainable params: 0

#### Возможные проблемы

При решении задачи с помощью нейронных сетей могут возникнуть следующие проблемы:

- 1. Данные сильно несбалансированы: "не пульсаров" гораздо больше, чем пульсаров. Поэтому нейронная сеть может научиться говорить, что всегда "не пульсар"
- 2. Слишком мало самих данных: всего 17898 пульсаров, а на каждый пульсар приходится только 8 характеристик.

#### Методы решения озвученных проблем

Чтобы решить указанные выше проблемы были использованы следующие методы:

- 1. Для несбалансированных данных, согласно статье [1], используется метод "пересчета веса класса", при этом вес класса "пульсар" становится больше веса класса "не пульсар". И сети становится невыгодно выдавать на выходе все ответы "не пульсар"
- 2. Чтобы увеличить количество данных, согласно статье [2], используется метод "Feature engineering", который на основе имеющихся данных, с помощью стандартных математических операций, составляет новые данные. Это также помогает обнаружить скрытые закономерности в данных.

#### Обучение и проверка работы сети

Исходные данные были разбиты на 3 группы:

- 1. 80% на обучение сети
- 2. 10% на проверку
- 3. 10% на тест

Работа была проведена с 3-мя типами данных:

- 1. Обычные данные из HTRU2 без применения методов "Feature engineering"
- 2. Центированные данные из HTRU2 без применения методов "Feature engineering"
- 3. Данные с применением метода "Feature engineering"

#### Сравнение результатов с пересчетом веса класса и без

#### Данные без пересчета веса класса



#### Данные с пересчетом веса класса

loss: 0.20917624711324384
accuracy: 0.975419

всего 27 "пульсаров"
всего 1763 "не пульсаров"
не пульсар предсказанный как не пульсар: 1722
не пульсар предсказанный как пульсар: 41
пульсар предсказанный как не пульсар: 3
пульсар предсказанный как пульсар: 24
количество правильных ответов 1746 из 1790



#### Обучение на "сырых" данных





#### Применение нормализации

Нормализация данных выполняется в соответствии с формулой

$$z = \frac{x \! - \mu}{\sigma}$$

Необходимость нормализации обусловлена тем, что изначальные данные имеют сильный разброс в значениях: отличия на 2-3 порядка, что может негативно сказаться точности работы сети. Для этого большинство колонок были приведены к распределению со средним значением 0 и стандартным отклонением 1.

# После применения центровки можем увидеть промежуточные итоги



#### Сравнение Confusion matrix для двух случаев

#### Нормализованные данные



#### Ненормализованные данные



Predicted label

### Применение метода feature engineering

| Item_ID | Item_Weight | Item_Price | Price_per_Weight |
|---------|-------------|------------|------------------|
| FDA15   | 9.3         | 249.81     | 26.86            |
| DRC01   | 5.9         | 48.27      | 8.15             |
| FDN15   | 17.5        | 141.62     | 8.09             |
| FDX07   | 19.2        | 182.10     | 9.48             |

## В нашем случае

|        | MeanIP     | StdIP     | ExckurtIP | SkewIP    | MeanDMSNR | StdDMSNR  | ExckurtDMSNR | SkewDMSNR  | new_signals.MEAN(signals.StdDMSNR) |
|--------|------------|-----------|-----------|-----------|-----------|-----------|--------------|------------|------------------------------------|
| number |            |           |           |           |           |           |              |            |                                    |
| 0      | 140.562500 | 55.683782 | -0.234571 | -0.699648 | 3.199833  | 19.110426 | 7.975532     | 74.242225  | 19.110426                          |
| 1      | 102.507812 | 58.882430 | 0.465318  | -0.515088 | 1.677258  | 14.860146 | 10.576487    | 127.393580 | 15.252106                          |
| 2      | 103.015625 | 39.341649 | 0.323328  | 1.051164  | 3.121237  | 21.744669 | 7.735822     | 63.171909  | 18.196718                          |
| 3      | 136.750000 | 57.178449 | -0.068415 | -0.636238 | 3.642977  | 20.959280 | 6.896499     | 53.593661  | 19.568731                          |
| 4      | 88.726562  | 40.672225 | 0.600866  | 1.123492  | 1.178930  | 11.468720 | 14.269573    | 252.567306 | 11.468720                          |
| 5      | 93.570312  | 46.698114 | 0.531905  | 0.416721  | 1.636288  | 14.545074 | 10.621748    | 131.394004 | 33.296463                          |
| 6      | 119.484375 | 48.765059 | 0.031460  | -0.112168 | 0.999164  | 9.279612  | 19.206230    | 479.756567 | 32.433255                          |
| 7      | 130.382812 | 39.844056 | -0.158323 | 0.389540  | 1.220736  | 14.378941 | 13.539456    | 198.236457 | 17.301946                          |
| 8      | 107.250000 | 52.627078 | 0.452688  | 0.170347  | 2.331940  | 14.486853 | 9.001004     | 107.972506 | 17.726237                          |
| 9      | 107.257812 | 39.496488 | 0.465882  | 1.162877  | 4.079431  | 24.980418 | 7.397080     | 57.784738  | 21.537289                          |
| 10     | 142.078125 | 45.288073 | -0.320328 | 0.283953  | 5.376254  | 29.009897 | 6.076266     | 37.831393  | 29.009897                          |
| 11     | 133.257812 | 44.058244 | -0.081060 | 0.115362  | 1.632107  | 12.007806 | 11.972067    | 195.543448 | 25.233969                          |
| 12     | 134.960938 | 49.554327 | -0.135304 | -0.080470 | 10.696488 | 41.342044 | 3.893934     | 14.131206  | 30.485614                          |

23.118350

31.576347

117.945312 45.506577

138.179688 51.524484 -0.031852

0.325438

0.661459

0.046797

2.836120

6.330268

82.475592

26.143310

26.786372

21.577881

8.943212

5.155940

# После применения feature engineering можем сравнить работу сети для 3-ёх случаев



# Сравнение Confusion matrix для трёх случаев

Нормализованные данные с feature engineering Ненормализованные данные

loss: 0.2177614570329975
accuracy: 0.9743017

всего 27 "пульсаров"
всего 1763 "не пульсаров"
не пульсар предсказанный как не пульсар: 1720
не пульсар предсказанный как пульсар: 43
пульсар предсказанный как пульсар: 3
пульсар предсказанный как пульсар: 24
количество правильных ответов 1744 из 1790







#### Итоги

- 1. Изменение веса класса дает существенное улучшение результатов.
- 2. Применение центровки не дает существенных изменений.
- 3. Применение Feature Engineering даёт ухудшение результатов, поскольку он более пригоден для датасетов с несколькими сущностями, имеющими так называемые дочерние-родительские отношения, например одна таблица с данными о клиентах, которые делают транзакции, другая таблица с теми покупками, которые могут быть приобретены через эти транзакции.

#### Список использованной литературы

- 1. [1] www.tensorflow.org/tutorials/structured\_data/imbalanced\_data
- $2. \quad [2]$  medium.com/dataexplorations/tool-review-can-featuretools-simplify-the-process-of-feature-engineering-5d165100b0c3