Advanced Statistics

F22 Data Science (Afternoon)

Quiz 04

Name & id: Marks: / 50

Note: Formulas are given on last page.

Q#1 /20

(a) A botanist is investigating the effect of different fertilizers on the growth of tomato plants. The increase in height (in centimeters) after four weeks for each fertilizer type is as follows:

Fertilizer Type	Observation 1	Observation 2	Observation 3	Observation 4	Observation 5	Observation 6
Fertilizer X	15	17	16	14	18	17
Fertilizer Y	20	22	19	21	23	24
Fertilizer Z	10	12	13	15	11	12
Fertilizer W	8	7	9	6	8	10

Using a One-Way ANOVA, analyze whether there are significant differences in plant height increase among the four fertilizers at a significance level of 0.05.

(b) Write a python code for part a.

Q#2 Two candies are selected at random from a jar containing 6 chocolate, 4 vanilla, and 5 strawberry candies. Let:

- X represent the number of chocolate candies drawn,
- Y represent the number of vanilla candies drawn.
- (a) Calculate the expected value of g(X,Y)=XY
- (b) Find the covariance of X and Y

/10

F(X,Y)		X				Row Totals
		0	1	2		
Υ	0	10/105	30/105	15/105		55/105
Υ	1	20/105	24/105	0		44/105
Υ	2	6/105	0	0		6/105
Column total	<u>.</u>	36/105	54/105	15/105		1

Q#3 You are a data analyst for a local bakery, "Sweet Delights," and you've been tracking the relationship between the number of cupcakes sold each day and the temperature outside. You collected data over a week, as shown in the table below:

Temperature (X)	Cupcakes Sold (Y)
15	30
20	50
25	80
30	100
35	120

- 1. Calculate the linear correlation coefficient "r" for the data above.
- 2. Based on your calculation, what does the value of "r" indicate about the relationship between temperature and cupcake sales? /10

Q#4 A city planner collects data on the time it takes to travel a certain distance based on traffic conditions:

Traffic Level (x)	Travel Time (y)
1	10
2	15
3	20
4	25
5	35

Find the regression equation and discuss what the slope indicates about the relationship between traffic levels and travel time.

/10

SST =
$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i..})^2$$

SSA =
$$n \sum_{i=1}^{k} (\overline{y}_{i,-} \overline{y}_{i,-})^2$$

SSE =
$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2$$

$$S_1^2 = \frac{\text{SSA}}{\text{k-1}}$$

$$S^2 = \frac{\text{SSE}}{\text{k(n-1)}}$$

$$f_{cal} = \frac{s_1^2}{s_2^2}$$

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$
$$= \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f(x, y)$$

$$\mu_{g}(X,Y) = E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) f(x, y)$$

$$\hat{y} = b_0 + b_1 x$$

$$\mathbf{b_1} = \frac{\mathsf{n}(\sum xy) - (\sum x)(\sum y)}{\mathsf{n}(\sum x^2) - (\sum x)^2}$$

$$\mathbf{b_0} = \overline{y} - \mathbf{b_1} \overline{x}$$

or

$$\mathbf{b}_0 = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{\mathsf{n}(\sum x^2) - (\sum x)^2}$$

$$\mathbf{r} = \frac{\mathsf{n}(\sum \mathsf{x}\mathsf{y}) - (\sum \mathsf{x})(\sum \mathsf{y})}{\sqrt{\mathsf{n}(\sum \mathsf{x}^2) - (\sum \mathsf{x})^2} \sqrt{\mathsf{n}(\sum \mathsf{y}^2) - (\sum \mathsf{y})^2}}$$

Table A.6 Critical Values of the F-Distribution

Tac	710 A.O O1	iucai yaiue	s of the r-	D18@100000		. 0	t _e		
				j	$f_{0.05}(v_1, v_2)$	2)			
v_2	1	2	3	4	v ₁ 5	6	7	8	9
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

Dr. Faisal Bukhari, PUCIT, PU, Lahore

Table A.6 (continued) Critical Values of the F-Distribution

	$f_{0.05}(v_1, v_2)$									
						'1				
v_2	10	12	15	20	24	30	40	60	120	∞
1	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.31
2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
8	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
$_{\infty}$	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

Dr. Faisal Bukhari, PUCIT, PU, Lahore