

PRACOWNIA FIZYCZNA 1

Instytut Fizyki - Centrum Naukowo Dydaktyczne Politechnika Śląska

P1-M2. Wyznaczanie przyspieszenia ziemskiego przy pomocy wahadła matematycznego*

Zagadnienia

Siła grawitacji. Przyspieszenie ziemskie, jednostka, zależność wartości od szerokości geograficznej i wysokości nad poziomem morza. Wahadło matematyczne. Zależność okresu drgań od długości wahadła matematycznego.

1 Układ pomiarowy

Układ pomiarowy jest przedstawiony na rysunku 1. W podstawie urządzenia osadzona jest kolumna z poprzeczką, na której zawieszono wahadło matematyczne. Długość wahadła można zmieniać za pomocą pokrętła. Odczytuje się ją ze skali milimetrowej naniesionej na kolumnę, względem białego paska narysowanego na obciążniku. Czasomierz wykorzystuje złącze optoelektroniczne - fotokomórkę, umieszczoną na wsporniku o regulowanym położeniu. Pomiarowi podlega czas N wahnięć wahadła w funkcji długości wahadła. Ilość wahnięć oraz zakres zmian długości wahadła ustala prowadzący.

Fig. 1: Schemat układu pomiarowego

2 Pomiary

- 1. Ustalić początkową długość wahadła.
- 2. Odchylić kulkę o kąt mniejszy niż 7° od położenia równowagi w płaszczyźnie prostopadłej do wiązki światła fotokomórki.
- 3. Zmierzyć czas N wahnięć wahadła.
- 4. Pomiar powtórzyć pieciokrotnie.
- 5. Czynności $1 \div 4$ wykonać dla innych długości wahadła (ilość pomiarów ustala prowadzący).

Lp.	L, cm	t, s						
		1	2	3	4	5		
1.								

 $^{^*}$ Opracowanie: dr inż. Alina Domanowska

3 Opracowanie wyników pomiarów

- 1. Dla każdej długości wahadła, obliczyć wartości \sqrt{L} oraz średnie wartości mierzonego czasu N wahnięć.
- 2. Obliczyć statystyczną niepewność typu $u_a(t_{sr})$, jako odchylenie standardowe wartości średniej, pomożone przez odpowiedni współczynnik Studenta Fishera.
- 3. Zakładając jednakową dokładność każdego z pomiarów na poziomie 3 cyfr znaczących, obliczyć niepewność pomiarową $u_b(t)$.
- 4. Obliczyć niepewności całkowite średnich czasów $u(t_{sr}) = \sqrt{u_a^2(t_{sr}) + u_b^2(t)}$.
- 5. Dla każdej długości wahadła obliczyć okres jego drgań $T=t_{sr}/N$.
- 6. Korzystając z prawa propagacji niepewności obliczyć niepewności wyznaczonych okresów drgań.
- 7. Wyniki wpisać do tabeli:

Lp.	L, m	\sqrt{L}, \sqrt{m}	t_{sr} , s	$u(t_{sr})$, s	T, s	u(T), s
1.						

- 8. Sporządzić wykres zależności T(L). Nanieść słupki niepewności.
- 9. Sporządzić wykres zależności $T(\sqrt{L})$. Nanieść słupki niepewności.
- 10. Metodą regresji liniowej wyznaczyć współczynniki prostej $T(\sqrt{L})$ i ich niepewności standardowe. Zaznaczyć prostą na wykresie. Czy prosta wychodzi poza słupki niepewności?
- 11. Na podstawie współczynnika nachylenia prostej, wyznaczonego w punkcie 10, i w oparciu o równanie ruchu, wyznaczyć przyśpieszenie ziemskie g.
- 12. W oparciu o prawo przenoszenia niepewności, obliczyć niepewność wyznaczonej wartości \boldsymbol{g} .
- 13. Obliczyć niepewność rozszerzoną.
- 14. Przeprowadzić test zgodności otrzymanej wartości z wartością przyspieszenia ziemskiego obliczoną dla szerokości geograficznej i wysokości nad poziomem morza dla Gliwic.