〈데이터분석과기계학습 1주차〉 **강의 소개 및 개론**

인공지능융합공학부 데이터사이언스전공 곽찬희

강의소개 - 데이터 분석과 기계학습

- 강의 목표
 - ✓ 기계 학습의 원리를 정확히 이해하고, 실제 데이터 분석에 적용할 수 있다
 - ✓ 머신러닝 + 데이터분석
- 대상: 데이터사이언스 전공
 - ✓ 단, 복수전공, 부전공, 연계전공은 수강 가능

- 난이도
 - ✓ 파이썬에 익숙함
 - ✓ 데이터 분석 관련 과목 수강함
 - ✓ 머신러닝 기본 지식 있음

질문이 있을 땐

- Ecampus 질문 게시판
 - ✓ 쪽지 확인 어려움 (알림 안 뜸)
- E-mail (chk @ kangnam . ac . Kr)
 - ✓ 메일로 질문을 보낼 때엔 다음과 같은 규칙을 준수해주시기 바랍니다.(아래 내용 복사해서 쓰세요. 형식을 갖추지 않은 메일은 답장하지 않습니다.)

제목: [과목이름] 질문요지 간단히

내용:

안녕하세요,

저는 ***수업을 수강하는 **학과 ***입니다.

이러이러한 질문이 있어서 메일 드렸습니다.

감사합니다.

***드림

평가기준

• 프로젝트 진행 90%

✓ 1차: 20%

✓ 2차: 30%

✓ 3차: 40%

✓ 미제출 시 0점

✓ 늦은 제출은 받지 않습니다 (시간을 충분히 드립니다).

• 출석 10%

- ✓ 출석 미달 시 F이므로 출석에 유의!
- ✓ 수강 후 출석체크가 되었는지 반드시 확인 (당일에는 반영이 안될 수도 있습니다.)
- ✓ 지각(수강시간 미달) -1점, 결석(수강 안 함) -3점

프로젝트

• 1차 내용

- ✓ 분석 대상 선정 및 분석 계획 수립
- √ 주제 선정
- ✓ 이 분석이 가치를 가지는 이유 설명
- ✓ 데이터 수집 계획 (수집이 완료되었다면 수집된 데이터 설명)
- ✓ PPT1장 발표 (5분)

프로젝트

・2차

- ✓ 분석 진행 및 데이터분석
- ✓ 이 단계에서는 완벽하지 않아도 다양한 시도가 중요
- ✓ 무엇이 가장 좋은 길일지 고민하기
- ✓ 코드 발표 (with 시각화. 10분. Notebook 형태로)

프로젝트

- 3차
 - ✓ Hyperparameter 최적화
 - ✓ Model Validation
 - ✓ 보고서(PPT 혹은 Notebook)로 만들기
 - ✓ 발표! (10분)

프로젝트 기타 사항

- 개인 혹은 2인 팀을 구성해서 진행할 수 있음
- 주제는 자유롭게 선택함
- 머신러닝/딥러닝 요소와 데이터 분석 요소 모두 포함되어야 함
- 각 단계별 자료를 github에 올려야 함
- 발표

성적

- 성적최대비율
 - ✓ A 50 %
 - ✓ B 50 %
 - ✓ 학교 정책에 따라 다를 수 있음
- 이러면 성적이 당연히 안 좋겠죠?
 - ✓ 과제를 내지 않거나,
 - ✓ 과제를 대애애애애충 내거나
 - ✓ 출석이 매우 미달이거나…
- 상대평가

교재

- 머신러닝 교과서 세바스챤 라시카, 바히드 미자리리 저 (길벗)
 - ✓ 교재가 아니더라도 정말 알찬 책이니, 한번쯤 공부하면 좋겠습니다.

머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로 최신 넘파이, 사이 킷런, 텐서플로 2로 배우는 머신 러닝, 딥러닝 핵심 알고

바로구매 39,600원 구매 예스24 N Pay 1% 인터넷 교보문고 New 1% 39,600원 구매 알라딘 N Pay 1% 39,600원 구매 39,600원 구매 인터파크 도서 N📨 6% 영풍문고 N Pay 6% 39,600원 구매 도서11번가 39,600원 구매 귀넥츠북 N Pay 1% 39,600원 구매 31,680원 구매 (e북) 예스24 N Pay 1% (e북) 알라딘 N Pay 1% 31,680원 구매 ●북 인터넷 교보문고 New 1% 31,680원 구매 (e북) 리디북스 N Pay 1% 35,200원 | 구매 35,200원 구매 (무) 네이버 시리즈

실습환경구성

- 실습은 제 컴퓨터 기준으로…
 - ✓ Windows 10 + Anaconda + Chrome + JupyterLab + Google Colab (Optional)

• Chrome 이 기본 브라우저가 아니면 실행이 되지 않을 수 있습니다.

1. 컴퓨터는 데이터에서 배운다

인공지능, 머신러닝, 딥러닝…

- 인공지능: 지능을 인공적으로 만듦
- 머신러닝: 데이터에서 지식을 배움(학습)
- 딥러닝: 인공 신경망(Artificial Neural Network) 이 깊은 단계까지 복합적으로 연결됨

머신러닝의 종류

- 머신러닝의 세 가지 종류
 - ✓ 지도 학습 (Supervised Learning)
 - ✓ 비지도 학습 (Unsupervised Learning)
 - ✓ 강화 학습 (Reinforced Learning)

✔ 그림 1-1 머신 러닝의 세 가지 학습 종류

지도 학습의 특징

- 지도 학습
 - ✓ 레이블(Label)된 훈련 데이터를 학습한 모델이 미래 데이터에 대해 예측하는 것

- Label?
 - ✓ Label의 존재에 따라 지도/비지도 결정
 - ✓ 정답표
- 분류 (Classification)와
 회귀(Regression)로 나뉨

지도 학습 1 - 분류: 클래스 레이블 예측

- 분류란?
 - ✓ 과거의 관측을 근거로 새로운 샘플(데이터, 사례 등)의 범주형 클래스 레이블을 예측
- 분류의 종류
 - ✓ 이진 분류 (binary classification): 0 or 1 / 홀 or 짝 / 흑 or 백 / 짜 or 짬 / 부먹 or 찍먹…
 - ✓ 다중 분류 (multiclass classification): 학년 (1, 2, 3, 4), 군대 계급 ···
- 결정 경계 (decision boundary)
 - ✓ 클래스를 구분하는 경계

지도 학습 2 - 회귀: 연속적인 출력 값 예측

- 회귀 (regression) 란?
 - ✓ 예측 변수 (predictor variable, 또는 설명변수 explanatory variable, 또는 입력 input) 와 연속적인 반응 변수 (response variable, 또는 출력 outcome, 타깃 target)가 주어졌을 때 출력 값을 예측하는 변수 사이의 관계를 찾음
 - √ 예) 키, 얼굴

- 선형회귀의 예
 - ✓ 입력 x 와 타깃 y 가 주어졌을 때,
 직선과 점들 사이 거리가 최소가 되는 직선

강화 학습

- · 강화 학습 (reinforced learning)
 - √ 환경과 상호 작용하여 시스템 (에이전트, agent)의 성능을 향상시키는 것이 목적
 - ✓ 보상 (reward) 함수로 행동이 얼마나 좋은지 판단

비지도학습

- 비지도 학습?
 - ✓ 레이블되지 않거나 구조를 알 수 없는 데이터를 학습하여 정보나 지식을 추출
- 군집 (Clustering, 또는 비지도 분류)
 - ✓ 사전 정보 없이 쌓여 있는 그룹 정보를 의미 있는 서브그룹 (subgroup) 또는 클러스터 (cluster)로 조직하는 탐색적 데이터 분석 기법

비지도학습 - 차원 축소: 데이터 압축

- 차원 축소 (dimensionality reduction)
 - ✓ 고차원의 데이터를 정보가 유지되는 선에서 더 작은 차원의 부분 공간 (subspace) 로 변환

기본 용어와 표기법

- 데이터셋은 다음으로 구성
 - ✓ 행(row)
 - ✓ 열(column) 혹은 특성(feature)

머신 러닝 용어

- 훈련 샘플: 데이터셋을 나타내는 테이블 행
- 훈련: 모델 피팅(model fitting) 혹은 파라미터 추정(parameter estimation)
- 특성(x): 예측변수, 변수, 입력, 속성, 공변량
- 타깃(y): 결과, 출력, 반응 변수, 종속 변수, 레이블,
- 손실함수(loss function): 비용함수(cost function).

머신러닝 시스템 구축 로드맵

1. 전처리

- 데이터가 머신러닝 알고리즘에 사용될 수 있도록 정리하고 정제하는 작업
 - ✓ 특성을 [0, 1] 범위로 변환
 - ✓ 표준 정규 분포 (standard normal distribution) 로 변환
 - ✓ 중복된 정보를 갖는 경우 차원 축소 시행
 - ✓ 훈련셋과 테스트셋을 나눔

2. 예측 모델 훈련과 선택

- 여러 알고리즘을 비교할 척도가 필요
 - ✓ 정확도 (accuracy) 가 대표적
- 교차 검증 기법 (cross validation)
 - ✓ 훈련셋을 다시 훈련셋과 검증셋으로 나눔

Original Set		
Training		Testing
Training	Validation	Testing

- 하이퍼파라미터(hypterparameter) 튜닝
 - ✓ 알고리즘의 세부 조건을 바꿔가며 최적의 모델 도출

3. 모델을 평가하고 본 적 없는 샘플로 예측

• 이전에 본 (사용한) 데이터를 이용한 변환(Transformation), 차원 축소(Dimension Reduction), 특성 추출(Feature Extraction) 등을 새로운(테스트) 데이터에도 동일하게 적용해야 함

• 그렇지 않으면 과도하게 긍정적인 결과 도출

• Sklearn 에서 fit_transform 과 transform 의 차이

