Pneumonia Detection

A DEEP LEARNING PROJECT BY VINAYAK MODGIL

Business Problem

- Pneumonia is an inflammatory disease caused by infection with viruses or bacteria in the lungs.
- Affects about 445 million (about 7% of the total population) and results in about 4.3 million deaths
- Can be lethal if not treated Can be treated if diagnosed during the early onset
- Can we use Deep Learning to detect Pneumonia?
- Can we use Deep learning to making informed medical decisions on other diseases?

Diagnosing Pneumonia

- Doctor's Expertise based on evaluating the patient and symptoms.
- X-ray imaging (The red portion in the image) – A Radiologist or a Physician.

Convolutional Neural Networks –The Solution

"Convolutional neural networks (CNNs) are effective tools for image understanding. They have outperformed human experts in many image understanding tasks" (Sarvamangala & Kulkarni, 2021).

Pneumonia Detection using Convolutional Neural Network (CNN)

CNN Working

Layer (type)	Output	Shape	Param #
conv2d_17 (Conv2D)	(None,	80, 80, 32)	896
max_pooling2d_17 (MaxPooling	(None,	40, 40, 32)	0
conv2d_18 (Conv2D)	(None,	40, 40, 63)	18207
max_pooling2d_18 (MaxPooling	(None,	20, 20, 63)	0
conv2d_19 (Conv2D)	(None,	20, 20, 128)	72704
max_pooling2d_19 (MaxPooling	(None,	10, 10, 128)	0
conv2d_20 (Conv2D)	(None,	10, 10, 128)	147584
max_pooling2d_20 (MaxPooling	(None,	5, 5, 128)	0
flatten_4 (Flatten)	(None,	3200)	0
dense_14 (Dense)	(None,	64)	204864
dense_15 (Dense)	(None,	128)	8320

Exploratory Data Analysis

- The data we trained the NN model on contain normal and pneumonia X-rays as the 2 class
- Test data balance: Normal = 37.4% Pneumonia=62.3%
- Train data balance: Normal = 25.7% Pneumonia=74.2%

Modelling

- Baseline Model
- Model structure (2 CNN layers, 2 Max Pool layers and 2 Dense layers
- Training Accuracy = 97%, val accuracy = 78.12& (Overfitting)
- Confusion Matrix The model does extremely well with detecting pneumonia but has limited functionality because of high false positive rate.

Best Model

loss	accuracy	val_loss	val_accurac y
0.007022	0.999726	0.097082	0.971246

- Model Structure: 1 CNN layer, 1 MaxPool layer, 2 Dense layers, Dropout layer.
- Talos for the params
- Talos ran 216 models and the best model parameters were:
- Activation-fnc (CNN and dense): relu, Dropout:0.25, Nodes(CNN):128, Nodes(Dense), Optimizer:adam

 "A recent publication estimated that by 2020, there will be 200 times more medical information than what a single individual would be able to read in his/her entire life" (Chumbita et al., 2020)

 The goal of the model was achieved with over 95% validation accuracy

 However, the accuracy could be further increased by adding additional CNN and dense layers to the model structure, and then using the best parameters from Talos

Further Studies

Thank You

