Marking scheme: final exam(MTH 113M)

- 1. (a) Show that $\{1, 2+x, x+x^2\}$ is a linearly independent subset of $P_2(\mathbb{R})$.
 - (b) Let $V = \{(x_1, x_2, x_3, x_4, x_5) \mid x_1 2x_2 + 3x_3 x_4 + 2x_5 = 0\}$. Extend the linearly independent subset $S = \{(1, 0, -1, 0, 1), (0, 1, 1, 3, 1)\}$ of V to a basis of V. (4+7)

Solution: (a) Let $a_0, a_1, a_2 \in \mathbb{R}$ such that $a_0 + a_1(2+x) + a_2(x+x^2) = 0$ implies

$$a_0 + 2a_1 = 0$$
, $a_1 + a_2 = 0$, $a_2 = 0$.

(2)

Therefore $a_i = 0$ for all i. Hence $\{1, 2 + x, x + x^2\}$ is a linearly independent subset of $P_2(\mathbb{R})$. (2)

Alternate solution: The part $a_i = 0$ for all i can also be done by substituting different values of x (2)

(b) We note that $V = \{(2x_2 - 3x_3 + x_4 - 2x_5, x_2, x_3, x_4, x_5) \mid x_2, x_3, x_4, x_5 \in \mathbb{R}\}$ has basis

$$\{(2,1,0,0,0),(-3,0,1,0,0),(1,0,0,1,0),(-2,0,0,0,1)\}.$$

(3)

Note that $(2x_2 - 3x_3 + x_4 - 2x_5, x_2, x_3, x_4, x_5) \in \text{Span}(S)$ if and only if

$$x_2 = b$$
, $x_3 = b - a$, $x_4 = 3b$, $x_5 = a + b$,

for some a, b. (2)

Hence $(1,0,0,1,0), (-2,0,0,0,1) \in V$ but not in Span(S) and are linearly independent. Therefore

$$S' = \{(1, 0, -1, 0, 1), (0, 1, 1, 3, 1), (1, 0, 0, 1, 0), (-2, 0, 0, 0, 1)\}\$$

is an extension of S to a basis of V. (2)

Other method:

- Basis of V is $\{(2,1,0,0,0), (-3,0,1,0,0), (1,0,0,1,0), (-2,0,0,0,1)\}$ (3)
- $S \cup (2, 1, 0, 0, 0)$ is a L.I. subset of V. (2)
- By considering (1,0,0,1,0), $S \cup \{(2,1,0,0,0),(1,0,0,1,0)\}$ is a required basis of V that extends S. (2)
- 2. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x,y,z) = (x+z,x+y+2z,2x+y+3z). Find the rank of T.
 - (b) Find the nullity of the matrix $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 1 & 5 & -2 \end{bmatrix}$. (6 + 5)

Solution: (a) (i)
$$R(T) = \text{Span}(\{T(e_1), T(e_2), T(e_3)\})$$
 (1) (ii)

$$T(e_1) = (1, 1, 2), T(e_2) = (0, 1, 1), T(e_3) = (1, 2, 3)$$
. (2)

Since

$$(1,2,3) = (1,1,2) + (0,1,1)$$

and
$$\{(1,1,2),(0,1,1)\}$$
 is L.I. Hence $r(T)=2$.

- (b) Here $3R_2 = R_1 + R_3$ and R_1, R_3 are linearly independent gives rank is two. (3)
- Given matrix is 3×4 , hence nullity is also two. (2)
- 3. (a) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Show that T is one-one if and only if T is onto.
 - (b) Show that any finite orthogonal set of non-zero vectors in an inner product space is a linearly independent set. (5+5)

Solution: (a) T is one-one if and only if
$$N(T) = 0$$
. Hence T is one-one if and only if $n(T) = 0$.

By rank nullity theorem, this is equivalent to r(T) = n or T is onto. (2)

(b) Let $\{v_1, v_2, \dots, v_n\}$ be an orthogonal set. Let $a_1, a_2, \dots, a_n \in \mathbb{R}$ such that $a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$. (2)

Then

$$0 = \langle a_1 v_1 + a_2 v_2 + \dots + a_n v_n, v_i \rangle = a_i \langle v_i, v_i \rangle$$

Since $\langle v_i, v_i \rangle \neq 0$, we must have $a_i = 0$ for all i. (3)

4. Determine the value(s) of a, for which the given linear system has i) NO solution, ii) a unique solution and iii) infinite number of solutions.

$$x + 2y + 3z + w = 4,$$

$$2x + 5y + 5z + 2w = 6,$$

$$2x + (a^{2} - 6)z + 2w = a + 20,$$

$$3x + 7y + 8z + 4w = 10.$$

(10)

Solution:

$$\begin{bmatrix} 1 & 2 & 3 & 1 & | & 4 \\ 2 & 5 & 5 & 5 & 2 & | & 6 \\ 2 & 0 & (a^2 - 6) & 2 & | & a + 20 \\ 3 & 7 & 8 & 4 & | & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 & | & 4 \\ 0 & 1 & -1 & 0 & | & -2 \\ 0 & -4 & (a^2 - 12) & 0 & | & a + 12 \\ 0 & 1 & -1 & 1 & | & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 & | & 4 \\ 0 & 1 & -1 & 0 & | & -2 \\ 0 & 0 & (a^2 - 16) & 0 & | & a + 4 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

(5)

Here Rank(A) =
$$\begin{cases} 3, & a^2 - 16 = 0 \\ 4, & a^2 - 16 \neq 0 \end{cases}$$
 (2)

$$Rank(A|b) = \begin{cases} 3, & a^2 - 16 = a + 4 = 0\\ 4, & \text{otherwise} \end{cases}$$
 (2)

Hence we have Unique solution if $a^2 - 16 \neq 0$, No solution if a = 4, infinitely many solutions if a = -4. (1)

- 5. (a) Describe the orthogonal complement of $U = \{(x, y, z, w) \in \mathbb{R}^4 : x + y = 0, z + w = 0\}$ (denoted U^{\perp}) with respect to the standard inner product of \mathbb{R}^4 .
 - (b) Consider $V = \text{Span}\{(1,1,0), (-1,1,1)\}$ as a subspace of \mathbb{R}^3 . Find the orthogonal projection of (1,0,1) onto V.

Solution: (a) (i) Basis of
$$U$$
 is given by $\{(1, -1, 0, 0), (0, 0, 1, -1)\}.$ (2)

(ii)
$$U^{\perp} = \{(x, y, z, w) \mid \langle (x, y, z, w), (1, -1, 0, 0) \rangle = \langle (x, y, z, w), (0, 0, 1, -1) \rangle = 0 \}.$$
 (2)

(iii)Therefore

$$U^{\perp} = \{(x, x, y, y) \mid x, y \in \mathbb{R}\}$$

- (2)
- (b) (i) Orthonormal basis of V is given by $\{\frac{1}{\sqrt{2}}(1,1,0), \frac{1}{\sqrt{3}}(-1,1,1)\}.$ (3)
- (ii) Orthogonal projection of (1,0,1) onto V is

$$\langle (1,0,1), \frac{1}{\sqrt{2}}(1,1,0) \rangle \frac{1}{\sqrt{2}}(1,1,0) + \langle (1,0,1), \frac{1}{\sqrt{3}}(-1,1,1) \rangle \frac{1}{\sqrt{3}}(-1,1,1) = (\frac{1}{2},\frac{1}{2},0).$$

(3)

- 6. Let $U = \{(x, y, z, w) \in \mathbb{R}^4 : z = 0\}$ and $V = \{(x, y, z, w) \in \mathbb{R}^4 : x + z = y + w = 0\}$.
 - (i) Give an example of an onto linear transformation $T: U \to V$.
 - (ii) Does there exists a one-one and onto linear transformation $T: U \to V$. Justify your answer.
 - (iii) Does there exist a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^4$ such that N(T) = U and R(T) = V? Justify your answer. (4+4+4)

Solution: Basis of U is given by $\{u_1 = (1,0,0,0), u_2 = (0,1,0,0), u_3 = (0,0,0,1)\}$ and basis of V is given by $\{v_1 = (1,0,-1,0), v_2 = (0,1,0,-1)\}$. (3)

- (i) Define $T:U\to V$ such that $T(u_1)=v_1,$ $T(u_2)=v_2$ and $T(u_3)=0$. Then $T(au_1+bu_2+cu_3)=av_1+bv_2$ is an onto linear map. (3)
- (ii) Since $\dim(U) = 3$ and $\dim(V) = 2$. Any linear transformation $T: U \to V$, must satisfy $n(T) + r(T) = \dim(U)$. Since $\dim(U) = 3$, $r(T) \le 2$, we must have $n(T) \ge 1$. Hence T cannot be one-one. (3)
- (iii) There does not exist such linear transformation because $\dim(U) = n(T) = 3$, $\dim(V) = r(T) = 2$ with $T : \mathbb{R}^4 \to \mathbb{R}^4$. Any such T does not satisfy n(T) + r(T) = 4.
- 7. (a) Show that $\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{bmatrix}$ is not diagonalizable.
 - (b) Let $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 2 & 2 & 2 \end{pmatrix}$. Find a real matrix Q such that $Q^{-1}AQ$ is a diagonal matrix. Justify your answer. (5+7)

Solution: (a) (i)
$$\det(A - \lambda I) = (3 - \lambda)(1 - \lambda)^2$$
. Therefore eigenvalues of A are 1, 3. (1)

(ii) We first note that
$$A-3I=\begin{bmatrix} -2 & 3 & 0\\ 0 & -2 & 3\\ 0 & 0 & 0 \end{bmatrix}$$
 and it has rank two. Hence $N(A-3I)$ is one dimensional.

(iii) Next,
$$A - I = \begin{bmatrix} 0 & 3 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$
 is also of rank two, hence $N(A - I)$ also has dimension one. (1)

- (iv) Therefore there exists only two L.I. eigenvectors of A. This gives that A is not diagonalizable. (1)
- (b) Here eigenvalues are 1, 2, 3. (1)

We have $A-I=\begin{pmatrix}1&-1&0\\-1&1&0\\2&2&1\end{pmatrix}$ and (x,y,z) is in the kernel of A-I if and only if x=y and

$$2x + 2y + z = 0$$
. Hence it is the span of $(1, 1, -4)$. (2)

We also have $A - 3I = \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 2 & 2 & -1 \end{pmatrix}$ and (x, y, z) is in the kernel of A - 3I if and only if x + y = 0

and
$$2x + 2y - z = 0$$
. Hence an eigenvector corresponding to the eigenvalue 3 is $(1, -1, 0)$. (2)

We also have $A-2I=\begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 2 & 2 & 0 \end{pmatrix}$ and (x,y,z) is in the kernel of A-2I if and only if x=y=0.

Hence an eigenvector corresponding to the eigenvalue 2 is (0,0,1). (1) (basically 2+2+1 marks for finding three L.I. eigenvectors)

For
$$Q = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ -4 & 1 & 0 \end{bmatrix}$$
 (1)

we have

$$Q^{-1}AQ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

(1)

- 8. Let $A \in M_{n \times n}(\mathbb{R})$ be an invertible matrix.
 - (a) Show that every eigenvalue of A is non-zero.
 - (b) Using (a), show that λ^{-1} is an eigenvalue of A^{-1} if λ is an eigenvalue of A.
 - (c) Show that A^{-1} is diagonalizable if A is diagonalizable.

(2+2+2)

Solution: (a) For an invertible matrix A, Av = 0 will imply v = 0. An eigenvector by definition must be non-zero. Therefore every eigenvalue of A is non-zero. (2)

Alternate solution: $\lambda_1 \lambda_2 \cdots \lambda_n = \det(A)$ and $\det(A) \neq 0$ implies $\lambda_i \neq 0$) (2) (b) Let $\{v_1, v_2, \cdots, v_n\}$ be a L.I. set of eigenvectors of A with eigenvalues λ_i . Then $Av_i = \lambda_i v_i$ if and only if $A^{-1}v_i = \frac{1}{\lambda_i}v_i$, here λ_i are non-zero by (a). (2)

Alternate solution: $Av_i = \lambda_i v_i$ and $\lambda_i \neq 0$ implies $\frac{1}{\lambda_i} v_i = A^{-1} v_i$) (2)

(c) Hence $\{v_1, v_2, \dots, v_n\}$ is a L.I. set of eigenvectors of A^{-1} . Hence A^{-1} is diagonalizable.

Alternate solution: $QAQ^{-1} = D$ and A invertible implies $QA^{-1}Q^{-1} = D^{-1}$. Therefore A^{-1} is diagonalizable. (2)

9. Let A be an $m \times n$ matrix, that is, as a linear map $A : \mathbb{R}^n \to \mathbb{R}^m$. Let N(A) be the null space of A and Row(A) be the row space of A. Show that $N(A) \oplus \text{Row}(A) = \mathbb{R}^n$. (6)

Solution: We note that $v \in N(A)$ if and only if Av = 0. This is equivalent to say that v is orthogonal to Row(A). Hence $N(A) \subseteq Row(A)^{\perp}$ (3)

We now prove that $\dim(N(A)) = \dim(\text{Row}(A)^{\perp})$.

Note that $\dim(\text{Row}(A)^{\perp}) = n - \dim(\text{Row}(A)) = n - r(A) = n(A)$. Hence $N(A) = \text{Row}(A)^{\perp}$ and $N(A) \oplus \text{Row}(A) = \mathbb{R}^n$.