This article is mainly extracted from David Cox's Toric Varieties Chap6.1 with some detailed added.

Def. Let D be a Cartier divisor on a complete normal variety X. $W = \Gamma(X, \mathcal{O}_X(D))$ is finite-dimension.

- a) This divisor D and the line bundle $\mathcal{O}_X(D)$ are **very ample** when D has no base-points and $\varphi_D = \varphi_{\mathcal{O}_X(D),W}: X \to \mathbb{P}(W^{\wedge})$ is a closed embedding.
- b) D and $\mathcal{O}_X(D)$ are **ample** when kD is very ample for some integer k > 0.

Basepoint Free Divisor. Consider the toric variety X_{Σ} of a complete fan Σ in $N_{\mathbb{R}} \cong \mathbb{R}^n$ and let $D = \sum_{\rho} a_{\rho} D_{\rho}$ be a torus-invariant Cartier divisor on X_{Σ} . We have the global sections

$$\Gamma\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)\right) = \bigoplus_{m \in P_D \cap M} \mathbb{C} \cdot \chi^m$$

where $P_D \subset M_{\mathbb{R}}$ is the polytope defined by

$$P_D = \left\{ m \in M_{\mathbb{R}} : \left\langle m, u_\rho \right\rangle \ge -a_\rho, \forall \rho \in \Sigma(1) \right\}$$

We first study when $D = \sum_{\rho} a_{\rho} D_{\rho}$ is basepoint free. For every $\sigma \in \Sigma$, there is $m_{\sigma} \in M$ with

$$\langle m_{\sigma}, u_{\rho} \rangle = -a_{\rho}, \rho \in \sigma(1)$$

Furthermore, D is uniquely determined by the Cartier data $\{m_{\sigma}\}_{\sigma\in\Sigma(n)}$ since Σ is complete.

Prop. The following are equivalent:

- a) D has no basepoints, i.e., $\mathcal{O}_{X_{\Sigma}}(D)$ is generated by global sections.
- b) $m_{\sigma} \in P_D, \forall \sigma \in \Sigma(n).$

Pf:

First suppose that D is generated by global sections and take $\sigma \in \Sigma(n)$. The T_N -orbit corresponding to σ is a fixed point p of the T_N -action, and by the Orbit-Cone Correspondence,

$$\{p\} = \bigcap_{\rho \in \sigma(1)} D_{\rho}$$

There is a global section s such that p is not in the support of the divisor of zeros $div_0(s)$ of s. Since

 $\Gamma\left(X_{\Sigma},\mathcal{O}_{X_{\Sigma}}(D)\right)$ is spanned by χ^m for $m\in P_D\cap M$, we can assume that s is given by χ^m for some $m\in P_D\cap M$.

The divisor of zeros of s is

$$div_0(s) = D + div(\chi^m) = \sum_{\rho} (a_{\rho} + \langle m, u_{\rho} \rangle) D_{\rho}$$

The point p is not in the support of $div_0(s)$ yet lies in D_ρ for every $\rho \in \sigma(1)$. This forces $a_\rho + \langle m, u_\rho \rangle = 0, \rho \in \sigma(1)$. Since σ is n-dimension, we conclude that.

For this converse, take $\sigma \in \Sigma(n)$. Since $m_{\sigma} \in P_D$, the character $\chi^{m_{\sigma}}$ gives a global section s whose divisor of zeros is $div_0(s) = D + div(\chi^{m_{\sigma}})$. The support of $div_0(s)$ misses U_{σ} , so that s is nonvanishing on U_{σ} . Then we done since the U_{σ} cover X_{Σ} .

Eg: the fan for the Hirzebruch surface \mathcal{H}_2

$$D = D_4, D' = D_2 + D_4$$

For divisor D, in σ_1 , we calculate $m_{\sigma_1} = [x \ y]$ (variable x,y are temporary),

$$\begin{split} \left\langle m_{\sigma_1}, u_2 \right\rangle &= 0, \left\langle m_{\sigma_1}, u_3 \right\rangle = 0 \\ \Rightarrow \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 \right) \wedge \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \right) \\ \Rightarrow m_{\sigma_1} &= \begin{bmatrix} 0 & 0 \end{bmatrix} \end{split}$$

In σ_2 , we calculate $m_{\sigma_2} = [x \ y]$,

$$\begin{split} \left\langle m_{\sigma_2}, u_3 \right\rangle &= 0, \left\langle m_{\sigma_2}, u_4 \right\rangle = -1 \\ \Rightarrow \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \right) \wedge \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -1 \right) \\ \Rightarrow m_{\sigma_2} &= \begin{bmatrix} 0 & 1 \end{bmatrix} \end{split}$$

In σ_3 , we calculate $m_{\sigma_3} = [x \quad y]$,

$$\langle m_{\sigma_3}, u_4 \rangle = -1, \langle m_{\sigma_3}, u_1 \rangle = 0$$

$$\Rightarrow \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -1 \right) \land \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = 0 \right)$$

$$\Rightarrow m_{\sigma_3} = \begin{bmatrix} 2 & 1 \end{bmatrix}$$

In σ_4 , we calculate $m_{\sigma_4} = [x \quad y]$,

$$\begin{split} \left\langle m_{\sigma_4}, u_1 \right\rangle &= 0, \left\langle m_{\sigma_4}, u_2 \right\rangle = 0 \\ \Rightarrow \left(\begin{bmatrix} x & \mathcal{Y} \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = 0 \right) \wedge \left(\begin{bmatrix} x & \mathcal{Y} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 \right) \\ \Rightarrow m_{\sigma_4} &= \begin{bmatrix} 0 & 0 \end{bmatrix} \end{split}$$

So we have

$$\psi_D = \begin{cases} \langle [0 & 0], n \rangle, n \in \sigma_1 \\ \langle [0 & 1], n \rangle, n \in \sigma_2 \\ \langle [2 & 1], n \rangle, n \in \sigma_3 \\ \langle [0 & 0], n \rangle, n \in \sigma_4 \end{cases}$$

Then

$$\begin{split} P_D &= \left\{ m \in M_{\mathbb{R}} : \left\langle m, u_\rho \right\rangle \geq -a_\rho, \rho \in \Sigma(1) \right\} \\ &= \left\{ m \in M_{\mathbb{R}} : \left\langle m, u_1 \right\rangle \geq 0, \left\langle m, u_2 \right\rangle \geq 0, \left\langle m, u_3 \right\rangle \geq 0, \left\langle m, u_4 \right\rangle \geq -1 \right\} \\ &= \left\{ \begin{bmatrix} 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \end{bmatrix} \right\} \end{split}$$

For divisor D', in σ_1 , we calculate $m_{\sigma_1} = [x \ y]$,

$$\begin{split} \left\langle m_{\sigma_1}, u_2 \right\rangle &= -1, \left\langle m_{\sigma_1}, u_3 \right\rangle = 0 \\ \Rightarrow \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -1 \right) \wedge \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \right) \\ \Rightarrow m_{\sigma_1} &= \begin{bmatrix} 0 & -1 \end{bmatrix} \end{split}$$

In σ_2 , we calculate $m_{\sigma_2} = [x \quad y]$,

$$\begin{split} \left\langle m_{\sigma_2}, u_3 \right\rangle &= 0, \left\langle m_{\sigma_2}, u_4 \right\rangle = -1 \\ \Rightarrow \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \right) \wedge \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -1 \right) \\ \Rightarrow m_{\sigma_2} &= \begin{bmatrix} 0 & 1 \end{bmatrix} \end{split}$$

In σ_3 , we calculate $m_{\sigma_3} = [x \quad y]$,

$$\begin{split} \left\langle m_{\sigma_3}, u_4 \right\rangle &= -1, \left\langle m_{\sigma_3}, u_1 \right\rangle = 0 \\ \Rightarrow \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -1 \right) \wedge \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = 0 \right) \\ \Rightarrow m_{\sigma_3} &= \begin{bmatrix} 2 & 1 \end{bmatrix} \end{split}$$

In σ_4 , we calculate $m_{\sigma_4} = [x \quad y]$,

$$\begin{split} \left\langle m_{\sigma_4}, u_1 \right\rangle &= 0, \left\langle m_{\sigma_4}, u_2 \right\rangle = -1 \\ \Rightarrow \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = 0 \right) \wedge \left(\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -1 \right) \\ \Rightarrow m_{\sigma_4} &= \begin{bmatrix} -2 & -1 \end{bmatrix} \end{split}$$

So we have

$$\psi_{D} = \begin{cases} \langle [0 & -1], n \rangle, n \in \sigma_{1} \\ \langle [0 & 1], n \rangle, n \in \sigma_{2} \\ \langle [2 & 1], n \rangle, n \in \sigma_{3} \\ \langle [-2 & -1], n \rangle, n \in \sigma_{4} \end{cases}$$

Then

$$\begin{split} P_D &= \left\{ m \in M_{\mathbb{R}} : \left\langle m, u_\rho \right\rangle \geq -a_\rho, \rho \in \Sigma(1) \right\} \\ &= \left\{ m \in M_{\mathbb{R}} : \left\langle m, u_1 \right\rangle \geq 0, \left\langle m, u_2 \right\rangle \geq -1, \left\langle m, u_3 \right\rangle \geq 0, \left\langle m, u_4 \right\rangle \geq -1 \right\} \\ &= \left\{ \begin{bmatrix} 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \end{bmatrix} \right\} \end{split}$$

Very Ample Polytopes. Let $P \subseteq M_{\mathbb{R}} \simeq \mathbb{R}^n$ a full dimensional lattice polytope with facet presentation

$$P = \{m \in M_{\mathbb{R}}: \langle m, u_F \rangle \ge -a_F, F \in facets\}$$

This gives the complete normal fan Σ_P and the toric variety X_P . Write

$$P \cap M = \{m_1, \dots, m_s\}$$

A vertex $m_i \in P$ corresponds to a maximal cone

$$\sigma_i = Cone(P \cap M - m_i)^{\vee} \in \Sigma_P(n)$$

 $D_P = \sum_F a_F D_F$ is Cartier since $\langle m_i, u_F \rangle = -a_F$ when $m_i \in F$. P is **very ample** if for every vertex $m_i \in P$, the semigroup $\mathbb{N}(P \cap M - m_I)$ is saturated in M.

Prop. Let X_P and D_P be as above. Then:

- a) D_P is ample and basepoint free.
- b) If $n \ge 2$, then kD_P is very ample for every $k \ge n 1$.
- c) D_P is very ample if and only if P is a very ample polytope.

Support Functions and Convexity. Let $D = \sum_{\rho} a_{\rho} D_{\rho}$ be a Cartier divisor on a complete toric variety X_{Σ} . Support function $\varphi_D: N_{\mathbb{R}} \to \mathbb{R}$ is determined by the following properties:

- φ_D is linear on each cone $\sigma \in \Sigma$.
- $\varphi_D(u_\rho) = -a_\rho$ for all $\rho \in \Sigma(1)$.

The explicit formula for $\varphi_D|_{\sigma}$ is given by $\varphi_D(u) = \langle m_{\sigma}, u \rangle, \forall u \in \sigma$.

Def. Let $S \subseteq N_{\mathbb{R}}$ be convex. A function $\varphi: S \to \mathbb{R}$ is convex if

$$\varphi(tu + (1-t)v) \ge t\varphi(u) + (1-t)\varphi(v)$$

for all $u, v \in S, t \in [0,1]$.

Lemma. For the support function φ_D , the following are equivalent:

- a) φ_D is convex
- b) $\varphi_D(u) \leq \langle m_{\sigma}, u \rangle, u \in N_{\mathbb{R}}, \sigma \in \Sigma(n)$
- c) $\varphi_D(u) = \min_{\sigma \in \Sigma(n)} \langle m_{\sigma}, u \rangle, u \in N_{\mathbb{R}}$
- d) For every wall $\tau = \sigma \cap \sigma'$, there is $u_0 \in \sigma' \setminus \sigma$ with $\varphi_D(u_0) \leq \langle m_{\sigma}, u_0 \rangle$.

Lemma. Let Σ be a fan and $D = \sum_{\rho} a_{\rho} D_{\rho}$ be a Cartier divisor on X_{Σ} . Then

$$P_D = \{ m \in M_{\mathbb{R}} : \varphi_D(u) \leq \langle m, u \rangle, \forall u \in |\Sigma| \}$$

Thm. Assume Σ is complete and let φ_D be the support function of a Cartier divisor $D = \sum_{\rho} a_{\rho} D_{\rho}$ on X_{Σ} . Then the following are equivalent:

a) D is a basepoint free.

- b) $m_{\sigma} \in P_D, \forall \sigma \in \Sigma(n)$.
- c) $P_D = Conv(m_\sigma: \sigma \in \Sigma(n))$.
- d) $\{m_{\sigma}: \sigma \in \Sigma(n)\}$ is the set of vertices of P_D
- e) $\varphi_D(u) = \min_{m \in P_D} \langle m, u \rangle, \forall u \in N_{\mathbb{R}}$
- f) $\varphi_D(u) = \min_{\sigma \in \Sigma(n)} \langle m_{\sigma}, u \rangle, \forall u \in N_{\mathbb{R}}.$
- g) $\varphi_D: N_{\mathbb{R}} \to \mathbb{R}$ is convex.

Pf:

The equivalences $(a) \Leftrightarrow (b)$ and $(f) \Leftrightarrow (g)$ were proved. Furthermore,

$$\varphi_D \text{ is convex} \Leftrightarrow \varphi_D(u) \leq \langle m_{\sigma}, u \rangle, \forall \sigma \in \Sigma(n), u \in N_{\mathbb{R}}$$
$$\Leftrightarrow m_{\sigma} \in P_D, \forall \sigma \in \Sigma(n)$$

This proves $(g) \Leftrightarrow (b)$, so that (a),(b),(f),(g) are equivalent.

 $(b)\Rightarrow (e).$ $m_{\sigma}\in P_{D}$ and $\varphi_{D}(u)=\min_{\sigma\in\Sigma(n)}\langle m_{\sigma},u\rangle$. Combining these, we obtain

$$\varphi_D(u) \leq \min_{m \in P_D} \langle m, u \rangle \leq \min_{\sigma \in \Sigma(n)} \langle m_\sigma, u \rangle = \varphi_D(u)$$

The implication $(e) \Rightarrow (g)$ follows since the minimum of a compact set of linear functions is convex. So $(a) \Leftrightarrow (b) \Leftrightarrow (e) \Leftrightarrow (f) \Leftrightarrow (g)$.

Consider (d). The implications $(d) \Rightarrow (c) \Rightarrow (b)$ are clear. For $(b) \Rightarrow (d)$, take $\sigma \in \Sigma(n)$. Let u be in the interior of σ and set $a = \varphi_D(u)$. $H_{u,a} = \{m \in M_{\mathbb{R}}: \langle m, u \rangle = a\}$ is a supporting hyperplane of P_D and

$$H_{u,a} \cap P_D = \{m_\sigma\}$$

This implies that m_{σ} is a vertex of P_D . Conversely, let $H_{u,a}$ be a supporting hyperplane of a vertex $v \in P_D$. This means $\langle m,n \rangle \geq a$ for all $m \in P_D$, with equality iff m=v. Since (b) holds, we also have (e), (f). By (e), $\varphi_D(u)=\min_{m \in P_D} \langle m,u \rangle = \langle m,v \rangle = a$. Combining this with (f), we obtain

$$\varphi_D(u) = \min_{\sigma \in \Sigma(n)} \langle m_{\sigma}, u \rangle = a$$

Hence $\langle m_{\sigma}, u \rangle = a$ must occur for some $\sigma \in \Sigma(n)$, which forces $v = m_{\sigma}$.

Consider the example above again, \mathcal{H}_2 .

 φ_D is convex, D is basepoint free

 $\varphi_{D'}$ is not convex, D is not basepoint free

Ampleness and Strict Convexity. Cartier divisor $D = \sum_{\rho} a_{\rho} D_{\rho}$ on X_{Σ} is ample. The Cartier data $\{m_{\sigma}\}_{\sigma \in \Sigma(n)}$ of D satisfies

$$\langle m_{\sigma}, u \rangle = \varphi_D(u), \forall u \in \sigma$$

Lemma. For the support function φ_D the following are equivalent:

- a) φ_D is strictly convex.
- b) $\varphi_D(u) < \langle m_{\sigma}, u \rangle, \forall u \notin \sigma, \sigma \in \Sigma(n).$
- c) For every wall $\tau = \sigma \cap \sigma'$, there is $u_0 \in \sigma' \setminus \sigma$ with $\varphi_D(u_0) < \langle m_\sigma, u_0 \rangle$
- d) φ_D is convex and $m_{\sigma} \neq m_{\sigma'}$, when $\sigma \neq \sigma'$ in $\Sigma(n)$ and $\sigma \cap \sigma'$ is wall.
- e) φ_D is convex and $m_{\sigma} \neq m_{\sigma'}$, when $\sigma \neq \sigma'$ in $\Sigma(n)$.
- f) $\langle m_{\sigma}, u_{\rho} \rangle > -a_{\rho}, \forall \rho \in \Sigma(1) \setminus \sigma(1) \text{ and } \sigma \in \Sigma(n)$
- g) $\varphi_D(u+v) > \varphi_D(u) + \varphi_D(v)$, $\forall u,v \in N_{\mathbb{R}}$ not in the same cone of Σ .

Thm. Assume that φ_D is the support function of a Cartier divisor $D = \sum_{\rho} a_{\rho} D_{\rho}$ on a complete toric variety X_{Σ} . Then D is $ample \Leftrightarrow \varphi_D$ is strictly convex

Furthermore, if $n \ge 2$ and D is ample, then kD is very ample for all $k \ge n - 1$..