Aluno(a):	Matrícula:
Curso:	Data:/

1^a AP – Eletromagnetismo aplicado

- 1°) A partir do ponto A(-1,0,3) em direção ao ponto B(2,-5,-3), Calcule:
 - a) O vetor V_{AB} . (0,75)
 - b) O modulo de V_{AB} . (0,75)
 - c) O vetor unitário de V_{AB}. (0,5)
- 2°) Determine se o campo $X(x, y) = \left(\frac{1}{x^2}, 3e^{3y}\right)$ é um campo gradiente. (2,0)
- 3°) Os valores de k para os quais o campo vetorial $V(x, y, z) = (y^2 + x^2, k^2xy + z, y + z)$ tem rotacional nulo são? (2,0)
- 4°) A partir do tronco de cilindro $x^2 + y^2 \le 81$, centrado na origem e com altura igual a duas vezes o raio, determine:
 - a) Os limites de integração. (0,5)
 - b) O volume do cilindro. (0,75)
 - c) A massa do cilindro com densidade $\delta(x^2 + y^2)$. (0,75)
- 5°) O professor Acélio recebeu uma encomenda para a impressão 3D de uma pokebola. Porém, a energia acabou durante a impressão. Coincidentemente a impressão parou com uma altura igual ao raio da pokebola.
 - a) Determine os limites de integração em coordenadas esféricas, levando em conta que a pokebola completa seria centrada na origem do plano cartesiano. (0,5)
 - b) Determine o volume da pokebola impressa. (0,75)
 - c) Determine a massa da pokebola impressa sabendo que $(x^2 + y^2 + z^2 \le 25)$ e a densidade do PLA é dada por $\delta(x^2 + y^2 + z^2)$. (0,75)