

11

RAJARATA UNIVERSITY OF SRILANKA

FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General) Degree

Third Year Semester I Examination - October 2014

MAT 3208--Time Series

Answer all Questions

Time allowed: Two Hours

1)

- a) Define the term Time Series and give mathematical formulas for two decomposition time series models.
- b) Briefly explain the 4 component of time series.
- c) Explain the following terminology used in time series analysis.
 - (i) IID noise
 - (ii) Auto covariance function
 - (iii)Auto correlation function
 - (iv)Stationary process

2)

- a) What are the five methods of time series forecasting and give their formulas.?
- b) The following data shows sales of boats from 1980 through 1993, with data in thousands of boats.

year	Sales			
1980	105			
1981	126 101 107			
1982				
1983				
1984	103 79 80			
1985				
1986				
1987	85			
1988	90			
1989	80			
1990	75			

(i) Construct a graph for the time series. Does the overall trend appear to be upward or downward?

(ii) Construct 5-yearly moving average for this series.

(iii)Using the constant α =0.3, fit an exponentially smoothed curve to the original time series.

3)

a) Fit a straight line trend to the following series of cost of living index numbers in a certain city by using least square method.

Year	196	196	196	196	196	196	196	196	196	197
	1	2	3	4	5	6	7	8	9	0
Cost of living index no.	110	125	115	135	150	165	155	175	180	200

Faculty of Applied Science

b) In 1984, two forecasting models were used to predict annual sales for the period 1990–1999. The forecasts and actual sales are listed below. For each model, calculate MAD and MSE to determine which model worked best for the period 1990–1999.

Model 1 (linear model): $\hat{y}_t = 0.3987 + 0.2593x$

Model 2 (quadratic model): $\hat{y}_t = 0.8095 + 0.0539x + 0.0187x^2$

year	Year code	Actual sales		
	(x_i)			
1990	1	0.93		
1991	2	0.91		
1992	3	1.13		
1993	4	1.38		
1994	5	1.56		
1995	6	1.75		
1996	7	2.14		
1997	8	2.44		
1998	9	2.79		
1999	10	3.22		

4)

a) consider the AR(1) model,

$$X_{t} = \varphi X_{t-1} + Z_{t}, \quad t = 0,1,2,...$$

Where $Z_t \sim WN(0, \sigma^2)$ and $|\varphi| < 1$ and Z_t is uncorrelated with x_s for each s and t. Show that AR (1) is stationary.

b) Let X_t be defined by,

$$X_{t} = \sum_{j=1}^{q} (A_{j} cos \lambda_{j} t + B_{j} sin \lambda_{j} t), t = 0,1,2,...$$

Where $\lambda_1, \dots \lambda_n$ are constants and $A_1, \dots, A_q, B_1, \dots, B_q$ are independent, zero mean random variables all having variance σ^2 . Show that $\{X_t\}$ is a stationary process.

d) Write the following models in B notation, and state whether they are causal and/or invertible. Assume that $\sum_{t} \sim WN(0, \sigma^2)$.

$$\begin{split} \text{(i)} \ \ X_t - 0.2X_{t-1} &= Z_t \\ \text{(ii)} \ X_t &= Z_t + 0.7X_{t-1} - 0.2Z_{t-1} \\ \text{(iii)} X_t + 0.1X_{t-1} &= Z_t - 0.5Z_{t-1} \\ \text{(iv)} X_t - 0.5X_{t-1} &= Z_t + 0.3Z_{t-1} - 0.4Z_{t-2} \end{split}$$