

AI야, 진짜 뉴스를 찾아줘! AI 경진대회

2021.01.29

닉네임이제일어려워 팀

목 차

I. EDA

- 1. 경진대회 주제 분석
- 2. 데이터 EDA
- 3. 데이터 시각화

Ⅱ. 문제 해결을 위한 접근

- 1. 데이터 전처리
- 2. 모델 소개
- 3. Method of KoBERT Fine-tuning

III. 실험

- 1. Fine-tuning (Classification)
 - 1) input = 뉴스 제목 + 내용
 - 2) input = 뉴스 내용
- 2. Fine-tuning (Next Sentence Prediction)
- 3. Model 성능 비교 및 결과 분석
- 4. Input 길이에 따른 성능 비교 실험

IV. 대회 종료 이후 추가 실험

- 1. 성능 개선 실험
- 2. 수행 속도 개선 실험

V. 결론

1. 요약

DACON DATA TO VALUE

1. 경진대회 주제 분석

과제 선정 배경

CULTURE CREATOR

'사실 정보'와 '광고'가 혼재된 온/오프라인 뉴스 기사의 지속적으로 증가하고 있으며.

범람하는 정보의 홍수 속에서, 고객에게 "진짜 정보"를 제공할 필요성 증대

과제 소개

ptype=pub

INVESTMENT
CULTURE
CREATOR

AI 뉴스 필터링 알고리즘 개발을 통해, 고객이 필요로 하는 "진짜 뉴스"만 제공할 수 있는 기반 마련

출처 : 공개된 데이터 명세 https://dacon.io/competitions/official/235658/talkboard/401869?page=1&dtype=recent&

train_csv.query('info == "1"').head(20)

가짜 뉴스 = 광고성 문구

데이터의 사용 목적 : 가짜뉴스 판별

컬럼 사용 O

컬럼 사용 X

3. 데이터 시각화

진짜 가짜 개수

진짜 뉴스 개수 : 71813 가짜 뉴스 개수 : 46932

진짜 뉴스와 가짜 뉴스의 비율 확인

뉴스 내용에 특수문자가 포함되는 비율

가짜 뉴스가 특수문자를 더 많이 포함

3. 데이터 시각화

진짜 가짜 문장 길이 비교

광고성 문구의 길이는 0~50자 이내에 집중적으로 분포

제목과 가짜뉴스 데이터

	title	content	info
1	[마감]코스닥 기관 678억 순매도	"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개	1
2	[마감]코스닥 기관 678억 순매도	하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시	1
16	롯데·공영 등 7개 TV 홈쇼핑들, 동행세일 동참	"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개	1
17	롯데·공영 등 7개 TV 홈쇼핑들, 동행세일 동참	하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시	1
42	13년만에 늦깎이 개발 '양주 회천' 봄볕 드나	"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개	1
43	13년만에 늦깎이 개발 '양주 회천' 봄볕 드나	하이스탁론, 선취수수료 없는 뭘 0.4% 최저금리 상품 출시	1
57	BMW코리아, 온라인 한정판 `M340i 퍼스트 에디션` 출시	"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개	1
58	BMW코리아, 온라인 한정판 `M340i 퍼스트 에디션` 출시	하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시	1
60	온라인 결제株, 코로나19 사태로 최대 수혜를?	온라인결제 관련주가 코로나19 사태의 최대 수혜주라는 평가가 나왔다. 언택트 소비	1
61	온라인 결제株, 코로나19 사태로 최대 수혜를?	한편, 스탁론에 대한 관심이 날로 높아지고 있다. 모처럼 잡은 투자기회를 놓치지 않	1
62	온라인 결제株, 코로나19 사태로 최대 수혜를?	"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개	1
63	온라인 결제株, 코로나19 사태로 최대 수혜를?	하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시	1
68	거래소 "이에스브이 실질심사 대상 결정 조사기간 연장"	"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개	1
69	거래소 "이에스브이 실질심사 대상 결정 조사기간 연장"	하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시	1
89	백화점의 역설코로나에도 전남도민들은 소비 늘렸다	"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개	1
90	백화점의 역설코로나에도 전남도민들은 소비 늘렸다	하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시	1
92	▶ 2차전지 향후 전망과 종목	고수의 관심종목 무료 카톡방 바로가기	1
93	▶ 2차전지 향후 전망과 종목	미국의 자율주행 및 전기차 기업인 테슬라가 역사상 신고가를 달성하면서 전기차에 대한	1
94	▶ 2차전지 향후 전망과 종목	다음에 바로 갈 2차전지주 받아보기	1
95	▶ 2차전지 향후 전망과 종목	하지만 대부분의 투자자들은 삼성SDI, LG화학, 일진머티리얼즈 등이 이미 선제적이	1
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

제목과 가짜 뉴스는 한 눈에 구별이 가능

1. 데이터 전처리 – 조사 사용 여부

- 한국어 처리 Task에서는 품사를 분리 후 조사를 제외하고 사용하는 경우가 많음
- 그러나 뉴스 내용을 분석한 결과 조사도 가짜 뉴스를 구분하는 특징이 될 수 있다고 판단

진짜 뉴스

	Concent	
0	[이데일리 MARKETPOINT]15:32 현재 코스닥 기관 678억 순매도	
3	종합 경제정보 미디어 이데일리 - 무단전재 & 재배포 금지	
4	전국적인 소비 붐 조성에 기여할 예정	
5	[이데일리 권오석 기자] 중소벤처기업부(이하 중기부)는 대한민국 동행세일에 7개 T	
6	대한민국 동행세일은 라이브 커머스, 언택트 콘서트, O2O 행사 연계 등 비대면이라	
118696	양수금액은 89억4565만원이며 이는 총자산대비 11.54%, 자기자본대비 13.8	
118719	[헤럴드경제=증권부] 모나리자는 사업다각화를 위해 위생용품 제조판매업체인 중원 주식	
118720	[헤럴드경제=증권부] 모나리자는 사업다각화를 위해 위생용품 제조판매업체인 중원 주식	
118721	양수금액은 89억4565만원이며 이는 총자산대비 11.54%, 자기자본대비 13.8	
118722	양수금액은 89억4565만원이며 이는 총자산대비 11.54%, 자기자본대비 13.8	

1 "실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개 1 2 하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시 1 16 "실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개 1 17 하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시 1 42 "실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개 1		content	11110
16"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개117하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시142"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개1118740미 FDA 임상3상 허가 임박. 문고 따블로 갈 바이오 황제주.1118741똑똑해진 소비자한국도 이젠 소형차 시대1118742똑똑해진 소비자한국도 이젠 소형차 시대11187432020년 한국 TV 2대중 1대 인터넷 연결된다1	1	"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개	
17하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시142"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개1118740미 FDA 임상3상 허가 임박. 문고 따블로 갈 바이오 황제주.1118741똑똑해진 소비자한국도 이젠 소형차 시대1118742똑똑해진 소비자한국도 이젠 소형차 시대11187432020년 한국 TV 2대중 1대 인터넷 연결된다1	2	하이스탁론, 선취수수료 없는 윌 0.4% 최저금리 상품 출시	1
42 "실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개 1 118740 미 FDA 임상3상 허가 임박. 문고 따블로 갈 바이오 황제주. 1 118741 똑똑해진 소비자한국도 이젠 소형차 시대 1 118742 똑똑해진 소비자한국도 이젠 소형차 시대 1 118743 2020년 한국 TV 2대중 1대 인터넷 연결된다 1	16	"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개	
118740미 FDA 임상3상 허가 임박. 문고 따블로 갈 바이오 황제주.1118741똑똑해진 소비자한국도 이젠 소형차 시대1118742똑똑해진 소비자한국도 이젠 소형차 시대11187432020년 한국 TV 2대중 1대 인터넷 연결된다1	17	하이스탁론, 선취수수료 없는 윌 0.4% 최저금리 상품 출시	1
118740미 FDA 임상3상 허가 임박. 문고 따블로 갈 바이오 황제주.1118741똑똑해진 소비자한국도 이젠 소형차 시대1118742똑똑해진 소비자한국도 이젠 소형차 시대11187432020년 한국 TV 2대중 1대 인터넷 연결된다1	42	"실적기반" 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개	
118741똑똑해진 소비자한국도 이젠 소형차 시대1118742똑똑해진 소비자한국도 이젠 소형차 시대11187432020년 한국 TV 2대중 1대 인터넷 연결된다1			
118742 똑똑해진 소비자한국도 이젠 소형차 시대 1 118743 2020년 한국 TV 2대중 1대 인터넷 연결된다 1	118740	미 FDA 임상3상 허가 임박. 묻고 따블로 갈 바이오 황제주.	
118743 2020년 한국 TV 2대중 1대 인터넷 연결된다 1	118741	똑똑해진 소비자한국도 이젠 소형차 시대	
	118742	똑똑해진 소비자한국도 이젠 소형차 시대	
118744 2020년 한국 TV 2대중 1대 인터넷 연결된다 1	118743	2020년 한국 TV 2대중 1대 인터넷 연결된다	1
	118744	2020년 한국 TV 2대중 1대 인터넷 연결된다	

뉴스 내용에서 조사의 개수

✓ 가짜 뉴스 조사의 개수는 대부분 0 ~ 5자 사이에 위치

DACON

DATA TO VALUE

1. 데이터 전처리 – 형태소 단위 Tokenizer

- 뉴스의 제목과 내용을 각각 형태소 단위로 Tokenize 진행
- 토큰화 된 Sentence의 길이는 제목이 0~40자, 내용은 0~80자에 대부분 위치
- 광고성 문구는 Sentence의 첫 부분만 확인해도 대부분 한 눈에 구분이 가능한 특징을 가짐

- ✓ 형태소 단위 Tokenize 진행 후의 문장의 길이를 Input length로 선언
- ✓ 제목 + 내용의 길이는 120자에 대부분 위치
- ✓ Input length의 길이를 128자로 지정

DATA TO VALUE

2. 모델 소개

Model name: Google BERT

- Transformer Model Encoder 기반
- 다양한 자연어 처리(NLP) Task에서 가장 좋은 성능을 보임
- 최근 연구되는 NLP Model은 대부분 BERT Model 기반
- Pre-training Model을 Fine-Tuning 해서 다양한 NLP Task에서 사용 가능

Pre-training Fine-Tuning NSP Mask LM Mask LM Start/End Span C T, ... T, T, SEP, T, ... T,

그림. BERT의 Pre-training, Fine-Tuning의 Architecture [1]

그림 설명

- Pre-training과 Fine-Tuning 모두 동일한 Architecture를 사용
- Pre-trained model parameters를 사용하여 Fine-Tuning 진행
- Pre-trained model에 Layer를 추가하여 Fine-Tuning 진행
- Fine-Tuning 진행 시, model의 모든 parameter가 미세 조정됨

2. 모델 소개

1) BERT Model의 사용 이유?

- BERT는 문맥에 따라 <mark>동음이의어를 판단</mark>할 수 있어 문장의 이해도가 높음
- 사전 훈련된 Pre-trained language model을 사용함으로써 목적에 따라 Fine-tuning 진행 시 적은 Epoch로도 좋은 성능을 보임

2) KoBERT : 한국어 BERT Model

- Bert Model을 한국어로 훈련시킨 Model
- Bert-Multilingual Model에 비해 한국어 NLP task 성능이 뛰어남
- SK T-Brain에서 제공한 한글 위키 + 뉴스 텍스트 기반으로 훈련시킨 한국어 Pre-trained Bert Model

- ❖ BERT Model과 KoBERT Model 성능 비교
- ❖ 주제 : 네이버 영화 리뷰 감정 분석 데이터를 이용한 감정 분류

Model	Model 설명	Accuracy
BERT Model (multilingual cased)	다양한 언어를 지원하는 BERT Model	0.875
KoBERT	한국어로 훈련시킨 BERT Model	0.901

- 데이터 출처: https://github.com/SKTBrain/KoBERT
 네이버 영화 리뷰 감정 분석 데이터: 영화 리뷰 데이터를 긍정 또는 부정으로 분류하는 목적으로 만든 데이터셋

Class

DACON DATA TO VALUE

3. Method of KoBERT Fine-tuning

Method: Pre-trained KoBERT Model을 두 가지 방식의 Fine-tuning 진행

- 1) 주어진 단일 Sentence가 진짜 뉴스 또는 가짜 뉴스인지 구분하는 Single Sentence Classification Task 수행
- 2) 두 문장 A, B가 주어질 때 B가 A의 뒤에 오는 것이 적절한지 구분하는 Sentence Pair Classification Task 수행

1) Single Sentence Classification Tasks [1]

2) Sentence Pair Classification Tasks [1]

1. Fine-tuning (Single Sentence Classification Tasks)

- 1-1. Classification (input = 뉴스 제목 + 내용)
 - Input으로 뉴스 제목 + 내용을 사용하여 Fine-tuning 진행

Train only 1 Epoch

- Validation Accuracy = 0.9761
- Validation Loss = 0.0648

1. Fine-tuning (Single Sentence Classification Tasks)

- 1-2. Classification (input = 뉴스 내용)
 - Input으로 뉴스 <mark>내용</mark>만 사용하여 Fine-tuning 진행

Train only 1 Epoch

- Validation Accuracy = 0.9806
- Validation Loss = 0.0552

2. Fine-tuning (Sentence Pair Classification Tasks)

첫번째 문장은 뉴스 제목, 두번째 문장은 뉴스 내용으로 사용

Input

Train only 1 Epoch

- Validation Accuracy = 0.9810
- Validation Loss = 0.0484

실험

3. Model 성능 비교 및 결과 분석

성능 비교

- Case 2 Model이 Case 1 Model에 비해 성능 향상
- Case 3 Model이 Case 2 Model에 비해 성능 향상

결과 분석

✓ 뉴스 제목은 광고성 문구에 해당되지 않아 모델이 진짜 뉴스라고 판단

Case	Model	val loss	val accuracy
1	Single Sentence Classification (input = 뉴스제목 + 내용)	0.0648	0.9761
2	Single Sentence Classification (input = 뉴스 내용)	0.0552	0.9806
3	Sentence Pair Classification	0.0484	0.9810

1. Case 1, Case 2 결과 분석

- Single Sentence Classifier(뉴스 제목 + 내용)은 <mark>내용의 진위 여부</mark>에 따라

 - 2) Title(진짜 뉴스) + 가짜 뉴스 Content -> 진짜 뉴스 + 가짜 뉴스가 섞여 Model의 판별 성능에 영향을 미침 두 가지 경우로 판단
- 결과적으로 Single Classifier Model에서 뉴스 제목은 적합하지 않은 데이터로 분석됨

2. Case 2, Case 3 결과 분석

- Sentence Pair Classification Model은 두 문장 A, B가 주어질 때, B가 A의 뒤에 오는 것이 적합한지의 여부를 예측함
- A는 뉴스 Title, B는 뉴스 Content로 지정하며, 이 경우 내용의 진위 여부에 따라
 - 1) Title(진짜 뉴스) IsNext? 진짜 뉴스 Content
 - 2) Title(진짜 뉴스) **IsNext?** 가짜 뉴스 Content 두 가지 경우로 판단
- 결과적으로 Case 3 Model은 뉴스 제목, 뉴스 내용 데이터를 사용하는 것이 적합하며, 다른 Model에 비해 <mark>좋은 성능을</mark> 보임

DACON

DATA TO VALUE

실험

4. Input 길이에 따른 성능 비교 실험

성능 비교

- 공통적으로 Input length가 길수록 수행시간이 늘어남
- 뉴스 Title이 사용되는 경우 Input length가 32이면 성능이 하락함
- Case 1 ~ 3의 경우 Input length가 길수록 성능이 향상됨
- Case 4 ~ 9의 경우 성능의 큰 차이가 없음
- Sentence Pair Classification Model이 다른 모델에 비해 성능이 대부분 우수함

결과 분석

- 형태소 단위 Tokenizer를 적용한 이후 뉴스 Title, Content의 길이는 각각 0 ~ 40, 0 ~ 80자에 위치하고 있음
- Case 1 ~ 3의 경우 Input length가 짧을수록 Title 문장이 모두 사용되고, Content 문장에서 사용될 토큰이 줄어들 확률이 높아지며 예측에 어려움이 발생하며 Input length가 길어질수록 Content 문장의 토큰이 많이 사용되며, 성능이 향상됨
- Case 4 ~ 6의 경우 Content의 길이가 대부분 0 ~ 80자에 위치하고 있으며, Sentence의 앞부분만 확인해도 진짜 뉴스와 구분되는 <mark>광고성 문구의 특성</mark> 때문에 Input length에 관계없이 3가지 경우 모두 비슷한 성능을 보임
- Case 7의 경우 Case 1과 같이 Content 문장에서 사용될 토큰이 줄어들 확률이 높아져 성능 하락
- Case 8 ~ 9의 경우 성능의 큰 차이는 없지만, Case 8의 성능과 수행 시간을 고려하여 최종 Model로 선택

Case	Model	Input length	val loss	val acc
1	Single Sentence	32	0.2142	0.9120
2	Classification	64	0.0756	0.9749
3	(input = 뉴스제목+내용)	128	0.0648	0.9761
4	Single Sentence	32	0.0515	0.9800
5	Classification	64	0.0631	0.9795
6	(input = 뉴스내용)	128	0.0552	0.9806
7		32	0.0603	0.9789
8	Sentence Pair Classification	64	0.0422	0.9848
9		128	0.0484	0.9810

Case	Model	Input Iength	Test Set 수행 시간	GPU	
8	Sentence Pair Classification	64	3분 8초	NVIDIA TITAN RTX	
9	Sentence Pair Classification	128	6분 2초	nvidia titan rtx	

대회 종료 이후 추가 실험

1. 성능 개선 실험

Weight decay?

- Regularization의 대표적인 기법이며 Generalization을 개선하여 Model의 일반화 성능을 높일 수 있음
- Weight들의 값이 증가하는 것을 제한함으로써, 모델의 복잡도를 감소시키는 기법으로 Overfitting을 방지하는 기법으로 사용됨
- Weight decay는 L2 regularization과 동일하며 L2 penalty로도 부름
- L2 규제는 loss function에 가중치에 대한 L2노름의 제곱을 더하여 사용

실험 조건 및 결과 분석

- 최종적으로 제출한 모델을 기준으로, weight decay를 제거 후 실험 (기존 Model은 $\lambda = 0.01$ 지정)
- 실험 결과 Weight decay를 적용하지 않은 Model이 성능이 우수함
- 광고성 문구는 진짜 뉴스와 같은 구어체가 아니기 때문에 Generalization 작업이 필요하지 않음
- L2 regularization 적용 시 오히려 성능이 하락하는 모습을 보임

Case	Model	Model 구분	Weight decay 적용 여부	val loss	val accuracy
1	KoBERT	최종 제출 Model	$O(\lambda = 0.01)$	0.0422	0.9848
2	KoBERT	추가 실험 Model	x	0.0153	0.9945

⋄ L2 노름 :
$$||w||_2 = \sqrt{\sum_{i=1}^n |w_1|^2}$$

* L2 규제 :
$$E(w) = E_0(w) + \frac{1}{2}\lambda \sum_{i=1}^n |w_i|^2$$

loss function + L2 노름의 제곱

대회 종료 이후 추가 실험

2. 수행 속도 개선 실험

KoELECTRA : BERT Model의 수행 속도와 계산 비용 문제를 개선한 ELECTRA Model 의 한국어 Model

- BERT Model을 바탕으로 GAN의 메커니즘을 적용하여 훈련시킨 Model
- 기존의 BERT 모델에 비해 빠른 수행 속도와 좋은 성능을 보임
- Fine-tuning 과정은 KoBERT Model과 동일하게 사용
- 경진대회 기간이 끝나 TestSet의 Score를 확인하지 못함

			SQuAD 1.1 dev		SQuAD 2.0 dev		SQuAD 2.0 test	
Model	Train FLOPs	Params	EM	F1	EM	F1	EM	F1
BERT-Base	6.4e19 (0.09x)	110M	80.8	88.5	_	_	_	_
BERT	1.9e20 (0.27x)	335M	84.1	90.9	79.0	81.8	80.0	83.0
SpanBERT	7.1e20 (1x)	335M	88.8	94.6	85.7	88.7	85.7	88.7
XLNet-Base	6.6e19 (0.09x)	117M	81.3	_	78.5	_	_	_
XLNet	3.9e21 (5.4x)	360M	89.7	95.1	87.9	90.6	87.9	90.7
RoBERTa-100K	6.4e20 (0.90x)	356M	_	94.0	_	87.7	_	_
RoBERTa-500K	3.2e21 (4.5x)	356M	88.9	94.6	86.5	89.4	86.8	89.8
ALBERT	3.1e22 (44x)	235M	89.3	94.8	87.4	90.2	88.1	90.9
BERT (ours)	7.1e20 (1x)	335M	88.0	93.7	84.7	87.5	_	_
ELECTRA-Base	6.4e19(0.09x)	110M	84.5	90.8	80.5	83.3	_	_
ELECTRA-400K	7.1e20 (1x)	335M	88.7	94.2	86.9	89.6	_	_
ELECTRA-1.75M	3.1e21 (4.4x)	335M	89.7	94.9	88.0	90.6	88.7	91.4

[▶] BERT Model과 ELECTRA Model의 Parameter와 성능을 비교한 표[2]

실험 결과

Case	Model	Model 구분	Weight decay 적용 여부	Input length	val loss	val accuracy	Test Set 수행 시간	GPU
1	KoBERT	최종 제출 Model	$O(\lambda = 0.01)$	64	0.0422	0.9848	3분 8초	NVIDIA TITAN RTX
2	KoBERT	추가 실험 Model	Χ	64	0.0153	0.9945	3분 8초	NVIDIA TITAN RTX
3	KoELECTRA	추가 실험 Model	$O(\lambda = 0.01)$	64	0.0486	0.9861	2분 38초	NVIDIA TITAN RTX
4	KoELECTRA	추가 실험 Model	Х	64	0.0122	0.9949	2분 38초	NVIDIA TITAN RTX

결 론

- 제공된 데이터에서 뉴스 title, content, ord 컬럼을 사용
- 광고성 문구의 특성을 고려해 <mark>특수 문자와 조사를 제거 하지 않고,</mark> 형태소 단위 Tokenize를 적용
- KoBERT Model을 사용함으로써 기존의 BERT Model 보다 한국어 처리 Task에 좋은 성능을 보임
- Input length는 32일 때 대체적으로 낮은 성능을 보임
- Input length가 64와 128일 때 서로 비슷한 성능을 보이나, 수행시간을 고려하여 Input length를 64로 지정
- Classification Model에선 뉴스 Content만을 사용하는 방법이 Title + Content을 사용한 방법보다 성능이 향상됨
- Classification Model에 비해 Sentence Pair Classification Model의 성능이 대체적으로 우수
- 최종 Model은 Input length = 64인 Sentence Pair Classification Model을 사용
- TestSet에 대한 최종 Model의 Score는 0.9883의 성능을 보임
- 대회 종료 이후 weight decay를 사용하지 않는 추가 실험에서 성능이 월등히 향상됨을 확인
- KoBERT Model와 비교할 때 비슷한 성능을 보이지만, 수행 시간이 더 빠른 KoELECTRA Model을 사용 가능함을 확인함

감사합니다!

