Homework 2 for Math 173B - Winter 2025

1. Consider the Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, given by the probability distribution

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

- (a) Show that $\mathbb{E}(x) = \mu$.
- (b) Show that $Var(x) = \sigma^2$.

The next two questions are designed to help us 1) understand one of the "cost" functions associated with logistic regression, and 2) experiment with logistic regression and SGD.

2. Let z be a random variable drawn from a distribution where the CDF is given by

$$G_Z(z) = \frac{1}{1 + e^{-z}}. (1)$$

Consider the random variable

$$y := sign(a+z)$$

where $a \in \mathbb{R}$ is fixed and z is drawn according to the distribution above. (Here sign(x) = 1 when $x \ge 0$ and sign(x) = -1 when x < 0.)

- (a) Verify that $G_Z(z)$ satisfies the defining properties of a CDF.
- (b) Write $\mathbb{P}(y=1)$ and $\mathbb{P}(y=-1)$ in terms of the CDF above.
- (c) Deduce that the probability mass function associated with y is $p(y) = \frac{1}{1 + e^{-ay}}$, where $y = \pm 1$.
- (d) Suppose the random variables $y_1, y_2, ..., y_N$ satisfy $y_i = sign(a_i + z_i)$, where the a_i 's are fixed and the z_i 's are independently drawn from the distribution associated with (1). Deduce that

$$p(y_1, y_2, ..., y_N) = \prod_{i=1}^{N} \frac{1}{1 + e^{-a_i y_i}}.$$
 (2)

Recall that one way to think of certain classification problems is the following:

- Consider that you have some data $x_i \in \mathbb{R}^d$, i = 1,...,N. Each x_i is associated with class label y_i where y_i is either 1 or -1.
- You, as a data scientist observe labeled data points (x_i, y_i) , i = 1, ..., N.
- Loosely speaking, logistic regression assumes that the labels y_i are assigned randomly, according to the model

$$y_i = sign(w^T x_i + z_i),$$

with z_i being random, as in (1), and $w \in \mathbb{R}^d$ being a parameter vector to be found.

- Given the "training" data (x_i, y_i) , i = 1, ..., N, you'd like to be able to classify new data points x, i.e., you'd like to assign a class label y to them.
- Your strategy is, given x, to assign $y = sign(w^Tx)$.
- For this to potentially work, you need to first estimate the value of $w \in \mathbb{R}^d$. You will now derive an optimization function to find the best value of w given our data (x_i, y_i) , as well as an SGD algorithm for solving it.
- 3. Recall problem 2(d) but now with $a_i = w^T x_i$. In order to execute the strategy above, we will try to find the vector w that maximizes the probability of the observed class labels. That is, we seek w^* that maximizes

$$H(w) = \prod_{i=1}^{N} \frac{1}{1 + e^{-w^{T} x_{i} y_{i}}}.$$

- (a) Explain, in your own words, why maximizing H(w) makes sense.
- (b) Explain why this is equivalent to finding w^* that maximizes

$$\widetilde{F}(w) = \sum_{i=1}^{N} \log \left(\frac{1}{1 + e^{-w^T x_i y_i}} \right).$$

Hint: Take logs on both sides of the expression for H(w).

(c) Deduce that this is equivalent to finding w^* that minimizes

$$F(w) = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{-w^{T} x_{i} y_{i}} \right).$$

- (d) Derive an SGD algorithm for solving this problem. Make sure to specify what your random variables are, as well as your update steps.
- (e) For the SGD algorithm you derived, verify that $\nabla F(w) = \mathbb{E}_{i_t} \nabla f_{i_t}(w)$ by computing both.