Introduction to Deep Learning for Computer Vision

Adhyayan '23 - ACA Summer School
Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

Lecture 1

Instructors

Instructors

Instructors

Credits:

- http://introtodeeplearning.com/
- https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55
- https://0space.org/c/2098-machine-learning-vs-deep-learning-examples-and-use-case
- http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1.html
- https://anjali-dl.blogspot.com/2020/03/importance-of-activation-functions.html

What is Deep Learning?

Lecture Schedule

Week 1:

- Perceptron, Multi-layer Perceptron, Activation and Loss Functions. Python and Numpy hands-on demo.
- Backpropagation, Batch Gradient Descent, SGD, Mini-batch SGD. Regularisation and Optimization.
 Introduction to PyTorch hands-on demo.
- Convolutional Neural Networks
- Popular CNN architectures. CNN Hands-on demo with PyTorch.
- Training NNs: Weight Init, Dropout, Learning Rate Scheduling, Early Stopping, Weight Decay, Data Augmentation and Normalization, Batch Norm.

Lecture Schedule

Week 1:

- Perceptron, Multi-layer Perceptron, Activation and Loss Functions. Python and Numpy hands-on demo.
- Backpropagation, Batch Gradient Descent, SGD, Mini-batch SGD. Regularisation and Optimization.
 Introduction to PyTorch hands-on demo.
- Convolutional Neural Networks
- Popular CNN architectures. CNN Hands-on demo with PyTorch.
- Training NNs: Weight Init, Dropout, Learning Rate Scheduling, Early Stopping, Weight Decay, Data Augmentation and Normalization, Batch Norm.

Week 2:

- Object Detection (R-CNN, Yolov3), Image Segmentation (FCN, U-Net)
- Unsupervised Learning and Generative Modelling: Autoencoder, VAE
- Self-Attention & ViT
- Adversarial Autoencoders, GANs, Diffusion (very brief overview)
- Assorted Topics: Self Supervised Learning (SimSiam, Contrastive Learning, Rotation Loss), Active learning

Grading Policy

- 1 Quiz after Week 1 (comprising of Week 1 syllabus) 50% weight.
- 1 Quiz after Week 2 (comprising of whole syllabus) 50% weight.

Course Website

https://github.com/SouBanerjee/ACA-Summer-School-IITK-CSE-DLCV

Why Deep Learning? And Why Now?

Why Deep Learning?

- Handcrafted features are expensive to engineer, delicate and unsuitable for scaling.
- Deep Learning attempts to learn the fundamental features directly from data.

- Big Data:
 - Larger datasets.
 - Easier storage facility.

- Big Data:
 - Larger datasets.
 - Easier storage facility.
- Hardware:
 - o GPUs!
 - Massively Parallelizable.

- Big Data:
 - Larger datasets.
 - Easier storage facility.
- Hardware:
 - o GPUs!
 - Massively Parallelizable.
- Software:
 - Improved Techniques
 - Better Models
 - Better Frameworks

Perceptrons

The Perceptron

Structural building block of deep learning.

The Perceptron

Structural building block of deep learning.

The Perceptron

Structural building block of deep learning.

Activation Functions

$$\hat{y} = \mathbf{g} (w_0 + \mathbf{X}^T \mathbf{W})$$

Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Note: All Activation functions are non-linear.

Importance of Activation Functions

 The purpose of Activation Functions is to introduce non-linearities in the network.

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

Perceptron: Example

We have:
$$w_0 = 1$$
 and $W = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g(w_0 + \boldsymbol{X}^T \boldsymbol{W})$$

$$= g\left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix}\right)$$

$$\hat{y} = g(1 + 3x_1 - 2x_2)$$

This is just a line in 2D!

Perceptron: Example

We have: $w_0 = 1$ and $W = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g(w_0 + X^T W)$$

$$= g\left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix}\right)$$

Assume we have input: $X = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

$$\hat{y} = g (1 + (3*-1) - (2*2))$$

= $g (-6) \approx 0.002$

Perceptron: Example

We have: $w_0 = 1$ and $W = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g(w_0 + \boldsymbol{X}^T \boldsymbol{W})$$

$$= g\left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix}\right)$$

$$\hat{y} = g(1 + 3x_1 - 2x_2)$$

This is just a line in 2D!

Building Neural Networks with Perceptrons!

Perceptron: Simplified

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called **Dense** Layers.

Single Layer Neural Network

Single Layer Neural Network

Deep Neural Network

Applying Neural Networks

Example Problem

- Will I pass this course?
- Let us start with a simple two-feature model.

 x_1 = Number of Lectures you attend x_2 = Marks you get in quizzes

Quantifying the Loss

The **Loss** of our Network measures the cost incurred from incorrect predictions.

Empirical Loss

The Empirical Loss measures the total loss over our entire dataset.

Also known as:
Objective
Function
$$J(W) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$

- Cost Function
- Empirical Risk

Predicted Actual

Binary Cross Entropy Loss

Cross Entropy Loss can be used with Models that output a probability

$$J(\mathbf{W}) = -\frac{1}{n} \sum_{i=1}^{n} \underline{y^{(i)} \log \left(f(x^{(i)}; \mathbf{W}) \right)} + (1 - \underline{y^{(i)}}) \log \left(1 - f(x^{(i)}; \mathbf{W}) \right)$$
Actual Predicted Actual Predicted

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output

Next Lecture: Training Neural Networks!