Теория параллелизма. Лабораторная работа 2.

Студент: Зайчикова В. О. Группа: 23930

Описание вычислительного узла:

<u>Вид:</u> СРU

<u>Наименование модели:</u> Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz

 Потоки на ядро:
 2

 Ядра на сокет:
 20

 Сокеты:
 2

 СРИ тах МНz:
 3900.0000

<u>CPU min MHz:</u> 1000.0000

Наименование сервера: ProLiant XL270d Gen10

NUMA узлы:

<u>Количество:</u> 2

1. NUMA node0

CPU(s): 0-19,40-59 Память узла: 385636 МВ Свободно: 235586 МВ

2. NUMA node1

CPU(s): 20-39,60-79 Память узла: 387008 МВ Свободно: 250225 МВ

Операционная система: Ubuntu 22.04.5 LTS

Задание 1.

	Количество потоков									
	1	2	2	4	1	7				
	T ₁		S ₂	T ₄	S ₄	T ₇	S ₇			
20000	0,649	0,391	1,66	0,207	3,135	0,115	5,643			
40000	2,576	1,273	2,024	0,669	3,851	0,411	6,268			

	Количество потоков									
	8		16		20		40			
	T ₈	S ₈	T ₁₆	S ₁₆	T ₂₀	S ₂₀	T ₄₀	S ₄₀		
20000	0,096	6,76	0,059	12,98	0,05	12,725	0,045	13,245		
40000	0,33	7,806	0,171	15,064	0,149	17,289	0,14	18,4		

Замеры времени

Замеры ускорения

<u>Вывод:</u> Программа демонстрирует хорошую масштабируемость, особенно для больших размеров матриц. Ускорение близко к линейному для большого числа потоков, что свидетельствует об эффективной параллелизации. Однако для максимальной производительности рекомендуется выбирать оптимальное число потоков, учитывая размер задачи и аппаратные возможности системы. Дальнейшая оптимизация может быть направлена на уменьшение накладных расходов при работе с малым числом потоков.

Результаты показывают, что увеличение числа потоков до 40 продолжает давать прирост производительности, но с определённого момента (например, после 20 потоков) прирост становится менее значительным. Это может указывать на то, что дальнейшее увеличение числа потоков не приведёт к существенному улучшению.

Задание 2.

		Количество потоков									
		1	2	4	7	8	16	20	40		
omp	Тр	1	0.161	0.144	1.134	1.131	0.094	0.1	0.1		
atomic	Sp	-	6,211	6,944	7,463	7,634	10,638	10,000	10,417		
local	Тр	1	1,997	3,840	6,704	7,540	14,809	17,612	25,341		
variable	Sp	-	0,501	0,260	0,149	0,133	0,068	0,057	0,039		

<u>Вывод:</u> Программа численного интегрирования демонстрирует высокую эффективность параллелизации, особенно при использовании 2–16 потоков. Ускорение значительно превышает линейное, что свидетельствует об удачной реализации и эффективном использовании ресурсов процессора. Однако при увеличении числа потоков свыше 16 прирост производительности замедляется, а время выполнения даже немного возрастает, что указывает на необходимость выбора оптимального числа потоков (например, 8–16) для данной задачи. Дальнейшая оптимизация может быть направлена на уменьшение накладных расходов при работе с большим числом потоков.

Задание 3.3.1. (serial) finished in 0.601682333 *(20000)* and 2.394930201 *(40000)*

Sp		Количество потоков								
		2	4	8	16	20	32	40		
static	20000	1.901	2.166	6.879	7.626	14.949	11.624	18.708		
	40000	1.980	2.329	4.296	7,540	8.907	12.445	11.421		
dynamic	20000	1.912	3.023	5.712	7.540	15.000	18.174	18.429		
	40000	1.877	3.394	4.923	11.919	12.679	10.364	11.663		

Замеры ускорения

3.2. (serial) finished in 78.85126006 (20000) and 274.420889841 (40000)

Sp		Количество потоков									
		2	4	8	16	20	32	40			
static	20000	1.901	2.166	6.879	7.626	14.949	11.624	18.708			
	40000	1.980	2.329	4.296	7,540	8.907	12.445	11.421			
dynamic	20000	1.912	3.023	5.712	7.540	15.000	18.174	18.429			
	40000	1.877	3.394	4.923	11.919	12.679	10.364	11.663			

Замеры ускорения

