AES Advanced Encryption Standards

AES

- NIST Request New Algorithm in 1997
- AES is proposed by Dr. Joan Daemen and Dr. Vincent Rijmen, Belgium
- NIST Select AES (Rijndael) in 2001
- AES Replaces DES and 3DES

The AES Cipher

- Not Feistel Cipher
- Uses Modular Polynomial Arithmetic GF(28)

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

Plaintext Block Size 16 Byte
Variable Key Size 16 24 32 Byte

Number of Rounds <u>10</u> 12 14 Round

Round Key Size <u>16</u> 16 16 Byte

Input Preparation

AES Structure

- Round Steps
 - Substitute Bytes
 - Shift Rows
 - Mix Columns
 - Add Round Key
- All Rounds is Similar Except the Last (3 Steps)

Output Construction

out ₀	out ₁ out ₂	out ₃	out ₄	out ₅	out ₆	out ₇		out ₁₅
------------------	-----------------------------------	------------------	------------------	------------------	------------------	------------------	--	-------------------

Description

- Substitute Bytes
- Shift Rows
- Mix Columns
- Add Round Key

- Substitute Bytes
 - Substitution using AES S-Box Per Single Byte
- Shift Rows
 - Simple Permutation
- Mix Columns
 - Substitution on GF(28) Per Column (4 Bytes)
- Add Round Key
 - Simple XOR with the Scheduled Key

- All Stages Is Reversible
 - Substitute Bytes uses Inverse AES S-Box
 - Shift Rows uses Opposite Shift Operations
 - Mix Columns uses Inverse Arithmetic in GF(28)
 - Add Round Key uses XOR (Reversible)

Substitute Bytes

Substitute Bytes – One Byte Example

Substitute Bytes – One Byte Example

Substitute Bytes – Block Example

EA	04	65	85
83	45	5D	96
5C	33	98	В0
F0	2D	AD	C5

87	F2	4D	97
EC	6E	4C	90
4A	C3	46	E7
8C	D8	95	A6

Shift Rows

Row	Shift for Encryption	Shift for Encryption
0	Circulate Left 0 Byte	Circulate Right 0 Byte
1	Circulate Left 1 Byte	Circulate Right 1 Byte
2	Circulate Left 2 Byte	Circulate Right 2 Byte
3	Circulate Left 3 Byte	Circulate Right 3 Byte

Shift Rows – Block Example

87	F2	4D	97	87	F2	4D	97
EC	6E	4C	90	 6E	4C	90	EC
4A	C3	46	E7	 46	E7	4A	C3
8C	D8	95	A6	A6	8C	D8	95

Row	Shift for Encryption	Shift for Encryption
0	Circulate Left 0 Byte	Circulate Right 0 Byte
1	Circulate Left 1 Byte	Circulate Right 1 Byte
2	Circulate Left 2 Byte	Circulate Right 2 Byte
3	Circulate Left 3 Byte	Circulate Right 3 Byte

Mix Columns

Mix Columns

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

$$\begin{split} S_{0,j}^{'} &= \left(2 \cdot S_{0,j} \right) \oplus \left(3 \cdot S_{1,j} \right) \oplus S_{2,j} \oplus S_{3,j} \\ S_{1,j}^{'} &= S_{0,j} \oplus \left(2 \cdot S_{1,j} \right) \oplus \left(3 \cdot S_{2,j} \right) \oplus S_{3,j} \\ S_{2,j}^{'} &= S_{0,j} \oplus S_{1,j} \oplus \left(2 \cdot S_{2,j} \right) \oplus \left(3 \cdot S_{3,j} \right) \\ S_{3,j}^{'} &= \left(3 \cdot S_{0,j} \right) \oplus S_{1,j} \oplus S_{2,j} \oplus \left(2 \cdot S_{3,j} \right) \end{split}$$

Multiplication Performed in GF(28)

Mix Columns Example

$$\begin{bmatrix} 02 & 03 & 01 & 01 \end{bmatrix} \times \begin{bmatrix} 87 \\ 6E \\ 46 \\ A6 \end{bmatrix} = (02 \times 87) \oplus (03 \times 6E) \oplus (01 \times 46) \oplus (01$$

$$= (02 \times 87) \oplus (03 \times 6E) \oplus (01 \times 46) \oplus (01 \times A6)$$

=47

Inverse Mix Columns

Inverse Mix Columns

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

Inverse Mix Columns Example

$$\begin{bmatrix}
0E & 0B & 0D & 09 \\
09 & 0E & 0B & 0D \\
0D & 09 & 0E & 0B \\
0B & 0D & 09 & 0E
\end{bmatrix} \bullet \begin{bmatrix}
47 & 40 & A3 & 4C \\
37 & D4 & 70 & 9F \\
94 & E4 & 3A & 42 \\
ED & A5 & A6 & BC
\end{bmatrix}$$

$$\begin{bmatrix}
0E & 0B & 0D & 09 & 0E
\end{bmatrix} \times \begin{bmatrix}
47 \\
37 \\
94 \\
ED
\end{bmatrix} = \begin{bmatrix}
87 & F2 & 4D & 97 \\
6E & 4C & 90 & EC \\
46 & E7 & 4A & C3 \\
A6 & 8C & D8 & 95
\end{bmatrix}$$

$$= (0E \times 47) \oplus (0B \times 37) \oplus (0D \times 94) \oplus (09 \times ED)$$

$$= 87$$

Multiplication Performed in GF(28)

Mix Column Transformations

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Add Round Key

\$0,0	$s_{0,1}$	s _{0,2}	s _{0,3}
s _{1,0}	$s_{1,1}$	s _{1,2}	s _{1,3}
S _{2,0}	S _{2,1}	S _{2,2}	\$2,3
S _{3,0}	83,1	S _{3,2}	83,3

$w_{\rm i}$	$w_{\scriptscriptstyle ext{i+1}}$	w_{i+2}	w_{i+3}

\$0,0	\$0,1	\$0,2	50,3
s' _{1,0}	<i>s</i> _{1,1}	s' _{1,2}	\$1,3
s' _{2,0}	s' _{2,1}	s' _{2,2}	s' _{2,3}
s' _{3.0}	s' _{3,1}	s' _{3,2}	s' _{3,3}

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

EB	59	8B	1B
40	2E	A1	C3
F2	38	13	42
1E	84	E7	D2

Description


```
//key length 16
//n rounds 10
//n words = (10+1)*4 = 44
KeyExpansion (byte key[16], word w[44])
    word temp
    for (i = 0; i < 4; i++)
             w[i] = (key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]);
    for (i = 4; i < 44; i++)
             //\text{temp} = q(w[i - 1])
             temp = w[i - 1];
             if (i \mod 4 = 0)
                   temp = SubWord (RotWord (temp)) xor Rcon[i/4];
             w[i] = w[i - 4] \text{ xor temp}
      }
```

AES Key Expansion - g()

```
//temp = g(w[i - 1])
temp = w[i - 1];
if (i mod 4 = 0)
    temp = SubWord (RotWord (temp)) xor Rcon[i/4];
```

- RotWord: [b0, b1, b2, b3] → [b1, b2, b3, b0]
- SubWord: Byte Substitution using AES S-Box
- Rcon[j] = (RC[j], 0, 0, 0)

j	1	2	3	4	5	6	7	8	9	10
RC[j]	01	02	04	08	10	20	40	80	1B	36

```
Where RC[1] = 1 and RC[j] = RC[j] \times 2 in GF(2^8)
```

AES Theoretical Topics

Description

AES Theoretical Topics

AES S-Box Construction

AES S-Box Construction

1. Create Empty S-Box 16x16 Byte

- 2. Fill S-Box
 - row 0 with $\{00\} \rightarrow \{0F\}$
 - **.** . . .
 - row 15 with $\{F0\} \rightarrow \{FF\}$

3. Replace Each Byte with its Multiplicative inverse in GF(28) (Consider 00→00)

AES S-Box Construction

4. Apply Following Formula to Each Byte Bit

$$b' = b_i \oplus b_{(i+4) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+6) \bmod 8} \oplus b_{(i+7) \bmod 8} \oplus c_i$$
$$c = (c_7 c_6 c_5 c_4 c_3 c_2 c_1 c_0) = (01100011)$$

Alternatively

$$\begin{bmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

AES S-Box Example

- {95}
- $\{95\}^{-1}$ in $GF(2^8) = \{8A\}$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \oplus \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Apply the Transformation to {8A} → {2A}

Inverse AES S-Box Construction

1. Create Empty S-Box 16x16 Byte

2. Fill S-Box

- row 0 with $\{00\} \rightarrow \{0F\}$
- row 1 with $\{10\} \rightarrow \{1F\}$
- **.** . . .
- row 15 with {F0}→{FF}

Inverse AES S-Box Construction

3. Apply Following Formula to Each Byte Bit

$$b' = b_{(i+2) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+7) \bmod 8} \oplus d_i$$
$$d = (d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0) = (00000101)$$

Alternatively

$$\begin{bmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Inverse AES S-Box Construction

 Replace Each Byte with its Multiplicative inverse in GF(2⁸) (Consider 00→00)

S-Box Transformation

Γο	0	1	0	0	1	0	1	$\lceil 1 \rceil$	0	0	0	1	1	1	1		$\lceil 1 \rceil$	0	0	0	0	0	0	0
1	0	0		X4770	200		0	193		0	0	0	1	1	1		0	1	0	0	0	0	0	0
0	1	0	0	1	0	0	1	1	1	1	0	0	0	1	1		0	0	1	0	0	0	0	0
1	0	1	0	0	1	0	0	1	1	1	1	0	0	0	1	_	0	0	0	1	0	0	0	0
0	1	0	1	0	0	1	0	1	1	1	1	1	0	0	0	375	0	0	0	0	1	0	0	0
0	0	1	0	1	0	0	1	0	1	1	1	1	1	0	0		0	0	0	0	0	1	0	0
1	0	0	1	0	1	0	0	0	0	1	1	1	1	1	0		0	0	0	0	0	0	1	0
0	1	0	0	1	0	1	0_	_0	0	0	1	1	1	1	1_		0	0	0	0	0	0	0	1_

AES Implementation on 8 Bit Processors

AES Implementation on 8 Bit Processors

- Substitutes Bytes → Bytes
 Transformation using S-Box (16x16 Byte)
- Shift Rows → Bytes Transposition
- Add Round → Bytes XOR
- Mix Columns
 - → Simple **Bytes** Shift
 - → Condition
 - → Bytes XOR

$$S'_{0,j} = (2 \cdot S_{0,j}) \oplus (3 \cdot S_{1,j}) \oplus S_{2,j} \oplus S_{3,j}$$

$$S'_{1,j} = S_{0,j} \oplus (2 \cdot S_{1,j}) \oplus (3 \cdot S_{2,j}) \oplus S_{3,j}$$

$$S'_{2,j} = S_{0,j} \oplus S_{1,j} \oplus (2 \cdot S_{2,j}) \oplus (3 \cdot S_{3,j})$$

$$S'_{3,j} = (3 \cdot S_{0,j}) \oplus S_{1,j} \oplus S_{2,j} \oplus (2 \cdot S_{3,j})$$

Mix Columns Simplification for 8 Bits Processors

Consider
$$(3 \cdot S_{i,j}) = (2 \cdot S_{i,j}) \oplus S_{i,j}$$
 and $S_{i,j} \oplus S_{i,j} = 0$

$$S_{0,j}^{'} = (2 \cdot S_{0,j}) \oplus (2 \cdot S_{1,j}) \oplus S_{1,j} \oplus S_{2,j} \oplus S_{3,j} \quad \text{then add} \quad S_{0,j} \oplus S_{0,j}$$

$$S_{1,j}^{'} = S_{0,j} \oplus (2 \cdot S_{1,j}) \oplus (2 \cdot S_{2,j}) \oplus S_{2,j} \oplus S_{3,j} \quad \text{then add} \quad S_{1,j} \oplus S_{1,j}$$

$$S_{2,j}^{'} = S_{0,j} \oplus S_{1,j} \oplus (2 \cdot S_{2,j}) \oplus (2 \cdot S_{3,j}) \oplus S_{3,j} \quad \text{then add} \quad S_{2,j} \oplus S_{2,j}$$

$$S_{3,j}^{'} = (2 \cdot S_{0,j}) \oplus S_{0,j} \oplus S_{1,j} \oplus S_{2,j} \oplus (2 \cdot S_{3,j}) \quad \text{then add} \quad S_{3,j} \oplus S_{3,j}$$

Define
$$Tmp = S_{0,j} \oplus S_{1,j} \oplus S_{2,j} \oplus S_{3,j}$$

$$S_{0,j}^{'} = S_{0,j} \oplus Tmp \oplus \left[2 \cdot \left(S_{0,j} \oplus S_{1,j} \right) \right]$$

$$S_{1,j}^{'} = S_{1,j} \oplus Tmp \oplus \left[2 \cdot \left(S_{1,j} \oplus S_{2,j} \right) \right]$$

$$S_{2,j}^{'} = S_{2,j} \oplus Tmp \oplus \left[2 \cdot \left(S_{2,j} \oplus S_{3,j} \right) \right]$$

$$S_{3,j}^{'} = S_{3,j} \oplus Tmp \oplus \left[2 \cdot \left(S_{3,j} \oplus S_{0,j} \right) \right]$$

Mix Columns Simplification for 8 Bits Processors

Define Lookup Table of 256 Entry $\Rightarrow X 2[i] = (2 \cdot x)$

$$S_{0,j}^{'} = S_{0,j} \oplus Tmp \oplus X 2 \left[S_{0,j} \oplus S_{1,j} \right]$$

$$S_{1,j}^{'} = S_{1,j} \oplus Tmp \oplus X 2 \left[S_{1,j} \oplus S_{2,j} \right]$$

$$S_{2,j}^{'} = S_{2,j} \oplus Tmp \oplus X 2 \left[S_{2,j} \oplus S_{3,j} \right]$$

$$S_{3,j}^{'} = S_{3,j} \oplus Tmp \oplus X 2 \left[S_{3,j} \oplus S_{0,j} \right]$$