PROJECT 4:

PREDICTING DENGUE CASES

24th August 2023 Chloe, Nicole, Gloria

CONTENTS

Context & Problem Statement

04

Models, **Model Evaluation** 02

Methodology

Cost Benefit Analysis (CBA) 03 🕲

Exploratory Data Analysis (EDA)

Conclusion & Recommendations

CONTEXT

- Dengue fever major health threat in tropical regions like Singapore
- Wolbachia project to limit dengue virus transmission
- Complex factors influence dengue transmission - weather: rainfall and temperature
- Online search for dengue-related terms
 indicative of disease prevalence

ingapore

Dengue surge fuelled by more mosquitoes, reemergence of previously uncommon virus serotype: Experts

A worker wearing a face mask fumigates a construction site to prevent the spread of dengue fever in Singapore on Apr 17, 2020. (Photo: AFP/Roslan Rahman).

SINGAPORE: As dengue cases in Singapore continue to spike, the chance of a major outbreak this year looks to be an increasing possibility.

As of the week ending Apr 9, a total of 3,979 cases have been recorded this year. This is in contrast to a total of 5,258 cases in 2021.

PROBLEM STATEMENT

Part 1: Short-term prediction model

Develop a reasonably accurate model to **predict dengue case numbers for the subsequent 3 months** by using Climate data and Google search trends.

Having an accurate forecast of upcoming dengue cases would **allow mitigating actions to be taken by NEA**

Part 2: Cost-Benefit Analysis of Wolbachia Implementation

Perform a **cost-benefit analysis** of Project Wolbachia and determine the **decision threshold** for rolling out Project Wolbachia.

02

METHODOLOGY

METHODOLOGY

Workflow, Models and Metrics

DATASETS

Weekly Infectious Diseases Bulletin Dataset

Meteorological Services Singapore Weather Dataset

> Google Trends Dataset

Data Integration

Data Collection

Data Cleaning Data Correlation

Exploratory Data Analysis Feature Engineering

Feature Selection

Time Lags, Prediction Window Time Series Modelling

> Baseline: SARIMA

SARIMAX

Regression Modelling

4B

4A

Linear Reg

Decision Tree

Random Forest

Support Vector Machines

Model Evaluation

MAPE

RMSE

METHODOLOGY

Workflow, Models and Metrics

DATASETS

Weekly Infectious Diseases Bulletin Dataset

Meteorological Services Singapore Weather Dataset

> Google Trends Dataset

Data Integration

Data Collection

Data Cleaning Data Correlation

Exploratory Data Analysis Feature Engineering

Feature Selection

Time Lags, Prediction Window Time Series Modelling

> Baseline: SARIMA

SARIMAX

Regression Modelling

4B

4A

Linear Reg

Decision Tree

Random Forest

Support Vector Machines

Model Evaluation

MAPE

RMSE

DATA COLLECTION, CLEANING

Data Collection

- Data download was straightforward for: Diseases Dataset and Google Trends Dataset (Weekly granularity)
- For Weather Dataset, a function was created to concatenate all the months of daily weather data into a single dataframe

Data Cleaning

- Conversion of date-time format, setting date as index, resampling to weekly granularity
- Weather dataset: Imputing nulls using iterative imputer
- Dengue Cases dataset:
 Imputing nulls with mean of week before and after

METHODOLOGY

Workflow, Models and Metrics

DATASETS

Weekly Infectious Diseases Bulletin Dataset

Meteorological Services Singapore Weather Dataset

> Google Trends Dataset

Data Integration

Data Collection

Data Cleaning Data Correlation

Exploratory Data Analysis Feature Engineering

Feature Selection

Time Lags, Prediction Window Time Series Modelling

> Baseline: SARIMA

SARIMAX

Regression Modelling

4B

4A

Linear Reg

Decision Tree

Random Forest

Support Vector Machines

Model Evaluation

MAPE

RMSE

METHODOLOGY

Workflow, Models and Metrics

DATASETS

Weekly Infectious Diseases Bulletin Dataset

Meteorological Services Singapore Weather Dataset

> Google Trends Dataset

Data Integration

Data Collection

Data Cleaning Data Correlation

Exploratory Data Analysis Feature Engineering

Feature Selection

Time Lags, Prediction Window Time Series Modelling

> Baseline: SARIMA

SARIMAX

Regression Modelling

4B

4A

Linear Reg

Decision Tree

Random Forest

Support Vector Machines

Model Evaluation

MAPE

RMSE

FEATURE ENGINEERING

Feature Selection

- Feature engineering rainfall squared features due to complex relationships observed between rainfall and dengue
- Dropping features that display multicollinearity with other features

Time Lags, Prediction Window

- EDA Findings: Weather features take about
 3-8 weeks to impact dengue numbers
- Prediction window should be minimally
 12 weeks lead time
- **Lagging of our exogenous X-features** for 2 prediction windows:
 - 52 weeks (1 year) and
 - 12 weeks (3 months)
 - Additional 3 weeks for weather features

METHODOLOGY

Workflow, Models and Metrics

METHODOLOGY

Workflow, Models and Metrics

DATASETS

Weekly Infectious Diseases Bulletin Dataset

Meteorological Services Singapore Weather Dataset

> Google Trends Dataset

Data Integration

Data Collection

Data Cleaning Data Correlation

Exploratory Data Analysis Feature Engineering

Feature Selection

Lagging Data, Checking stationarity Time Series Modelling

> Baseline: SARIMA

4A

SARIMAX

Regression Modelling

4B

Linear Reg

Decision Tree

Random Forest

Support Vector Machines

Model Evaluation

MAPE

RMSE

O3
EXPLORATORY
DATA ANALYSIS
(EDA)

Dengue cases (2012-2022)

Dengue annual trend

Dengue: Time-series decomposition

Total dengue cases vs google trends

Dengue and Google Search trends

Total dengue cases vs rainfall, temperature and windspeeds

Correlations between weather data

Total dengue cases vs rainfall and temperature

Temperature and its effects on the Aedes mosquito

Survival, life cycle, feeding characteristics

15 to 30 deg: Lower mortality rates

32 degrees:

- Pupae development reduces to <1 day (from 4 days at 22 deg)
- Feeding frequency increases 2-fold (compared to at 24 deg)
- Extrinsic incubation period shortens to 7 days (from 12 days at 30 degrees)

Correlation of features to Dengue Cases (3mths)

MODELLING

Time Series Modelling

12 month predictions

Baseline: SARIMA

SARIMAX

3 month predictions

SARIMAX

Regression Modelling

3 month predictions

Linear Reg

Decision Tree

Random Forest

Support Vector Machines

MODELLING

Time Series Modelling

12 month predictions

Baseline: SARIMA

SARIMAX

3 month predictions

SARIMAX

Regression Modelling

3 month predictions

Linear Reg

Decision Tree

Random Forest

Support Vector Machines

STATIONARITY - "d"

```
# Check stationarity:
ad_fuller_result = adfuller(y_train['dengue_cases'])
print(f"p-value: {str(ad_fuller_result[1])}")
```

p-value: 0.026

- From the ADF test, p-value < 0.05
- The null hypothesis can be rejected
- Data can be deemed as stationary

$$"d" = 0$$

Autoregression, Moving Average - "p", "q"

"p": start_p=2, max_p=3

- geometric decay suggesting an AR model
- PACF shows **lag 2** dropping to fall within significance threshold

"q": start_q=1, max_q=10

- ACF shows initial lags as spikes that exceed significance threshold
- Test a range of 1-10 for order of 'q'

SEASONALITY - "m"

BASELINE SARIMA, SARIMAX - 52WKS

52-week prediction for 2022

Best model: (3,0,1)(1,0,0)[52]

- Model predicts initial spike, before graduating to the mean no of cases
- Forecasts are 57% accurate

	MAPE	RMSE
Train	1.47	268
Test	0.43	533

12-week prediction - Jan to Mar 2022

- Model able to predict early upward trend of the spike in the first quarter of 2022
- Forecasts are 69% accurate for Q1

	MAPE	RMSE
Train	1.39	269
Test	0.31	133

12-week prediction - Apr to Jun 2022

- Model able to predict a slight peak, but is ineffective in predicting the actual spike.
- Forecasts are 48% accurate for Q2

	MAPE	RMSE
Train	1.51	265
Test	0.52	696

12-week prediction - Jul to Sep 2022

- Model is able to better capture downward trends with higher accuracy.
- Forecasts are 93% accurate for Q3

	MAPE	RMSE
Train	1.59	311
Test	0.07	76

12-week prediction - Oct to Dec 2022

- Model able to predict the downward trend, although it may not be capturing the precise undulations within the trend.
- Forecasts are 86% accurate in Q4

	MAPE	RMSE
Train	1.5	300
Test	0.14	49

SARIMAX - COMBINED PLOT

Running 12-week prediction - Full 2022

- Stronger predictive capability for the shorter term 3 month intervals
- Achieves strong accuracy in predicting downwards trends
- More complex data inputs are required

AVG	MAPE	RMSE
Train	1.50	286
Test	0.26	137

MODELLING

Time Series Modelling

12 month predictions

Baseline: SARIMA

SARIMAX

3 month predictions

SARIMAX

Regression Modelling

3 month predictions

Linear Reg

Decision Tree

Random Forest

Support Vector Machines

LINEAR REGRESSION

Linear Regression Prediction of Dengue Cases - Jan to Mar 2022 MAPE: 0.3524

- -Model predicted some historical uptrends correctly.
- -Model managed to predict the initial uptrend in 2022.
- -Forecast accuracy 65% in 01 2022

	MAPE	RMSE
Train	1.03	225
Test	0.35	162

DECISION TREE

Decision Tree Prediction of Dengue Cases - Jan to Mar 2022 MAPE: 0.4550

- -Model predict some of historical trends well, especially the spike in 2020.
- -But it fail to predict the uptrend in Q1 2022.
- -Forecast accuracy 54% in Q1 2022

	MAPE	RMSE			
Train	0.74	166			
Test	0.46	194			

RANDOM FOREST

- -Model didn't seem to predict trend well.
- -Feature importance: dengue searches, max temperature, max wind speed
- -Forecast accuracy 51% in Q1 2022

	MAPE	RMSE		
Train	0.78 178			
Test	0.49	188		

SUPPORT VECTOR REGRESSION

- -Model didn't seem to predict trend well.
- -Forecast accuracy 58% in Q1 2022

	MAPE	RMSE
Train	0.73	243
Test	0.42	184

MODEL COMPARISON

Prediction of Dengue Cases - Jan to Mar 2022 Regression Models Comparison

MODEL EVALUATION SUMMARY

Models	RMSE	MAPE
SARIMA	Train: 268 Test: 533	Train: 1.47 Test: 0.43
SARIMAX	Train: 269 Test: 133	Train: 1.39 Test: 0.31
Linear Regression	Train: 225 Test: 162	Train: 1.03 Test: 0.35
Decision Tree	Train: 166 Test: 194	Train: 0.74 Test: 0.46
Random Forest	Train: 178 Test: 188	Train: 0.78 Test: 0.49
Support Vector Regression	Train: 243 Test: 184	Train: 0.73 Test: 0.42

05
COST BENEFIT
ANALYSIS

Cost of Dengue

Source: Stacy Soh et al

Lost time (DALYs)

Disability weights for different degrees of dengue (DF, DHF, hospitalisation vs outpatient).

Adjustment for age and local median life-expectancy

Economic costs

Costs of outpatient care and hospitalisation

Productivity loss (friction cost method)

Additional caregiving costs for children and elderly

Wolbachia costs

USD 22.7m (in 2010\$) steadystate annual cost

Reno and eqmt cost for mosquito pdn facilities

Operating costs and manpower costs

Cost of community engagement initiatives

Wolbachia efficacy

Source: NEA

Rolling release (Tampines, YS)

Up to 88% reduction in dengue cases

70% less dengue compared to similar areas without Wolbachia in the 2022 outbreak

Targeted release (CCK, BB)

Up to 53% reduction in dengue cases

Use lower limit of 50% for CBA

Cost per Dengue Incidence

Yea	ar /	Case prevention (40% efficacy)	Incidence prevention (40% efficacy)	Costs averted (40% efficacy)	Est'd DALYs (100%)	Total cases (100%)	Total incidences (100%)	Total economic costs (100%)	Expansion factor	Economic cost per incidence	DALYs per incidence	Lost-time in Days	Economic loss per lost day
201	0	1712	4362	7.760	250	4280.0	10905.0	19.4000	2.547897	1779.000459	0.022925	8.367721	212.602740
201	1	1708	4529	9.060	252	4270.0	11322.5	22.6500	2.651639	2000.441599	0.022257	8.123648	246.249185
201	2	1508	4387	9.400	242	3770.0	10967.5	23.5000	2.909151	2142.694324	0.022065	8.053795	266.047775
201	3	7203	21844	51.677	1282	18007.5	54610.0	129.1925	3.032625	2365.729720	0.023476	8.568577	276.093646
201	4	5753	19793	48.550	1139	14382.5	49482.5	121.3750	3.440466	2452.887384	0.023018	8.401657	291.952806
201	5	3618	11910	27.900	667	9045.0	29775.0	69.7500	3.291874	2342.569270	0.022401	8.176490	286.500585
201	6	4197	15413	36.400	842	10492.5	38532.5	91.0000	3.672385	2361.642769	0.021852	7.975865	296.098656
201	7	889	3466	7.470	168	2222.5	8665.0	18.6750	3.898763	2155.222158	0.019388	7.076746	304.549902
-> 201	8	1041	3441	7.680	173	2602.5	8602.5	19.2000	3.305476	2231.909329	0.020110	7.340308	304.062079
201	9	5130	17392	38.910	831	12825.0	43480.0	97.2750	3.390253	2237.235511	0.019112	6.975966	320.706197
202	10	11282	38255	84.110	1851	28205.0	95637.5	210.2750	3.390800	2198.666841	0.019354	7.064331	311.234949

Original findings (Stacy Soh et al)

Lost time: 7 days

Econ loss:

USD 311 (2010\$)

Expn factor: 3x

Assumptions

Lost time: 7 days

Econ loss per lost day: 300 (USD 2010\$)

Expansion factor: 3

Wolbachia annual cost: 22.7m (USD 2010\$)

Wolbachia efficacy: 0.5

Min annual dengue cases for Wolbachia to be cost effective: 7,200 cases

Total Dengue Cases by Year

Decision Threshold

derpred_cost	overpred_cost u	actual_if_underpred	${\sf actual_if_overpred}$	predictions
0.0	0.000000e+00	7142.857143	3846.153846	5000
925000.0	0.000000e+00	7500.000000	4038.461538	5250
2050000.0	0.000000e+00	7857.142857	4230.769231	5500
3175000.0	0.000000e+00	8214.285714	4423.076923	5750
4300000.0	0.000000e+00	8571,428571	4615.384615	6000
5425000.0	0.000000e+00	8928.571429	4807.692308	6250
6550000.0	0.000000e+00	9285.714286	5000.000000	6500
7675000.0	0.000000e+00	9642.857143	5192.307692	6750
0.0000088	0.000000e+00	10000.000000	5384.615385	7000
0.0	5.132692e+06	10357.142857	5576.923077	7250
0.0	4.526923e+06	10714.285714	5769.230769	7500
0.0	3.921154e+06	11071.428571	5961.538462	7750
0.0	3.315385e+06	11428.571429	6153.846154	8000
0.0	2.709615e+06	11785.714286	6346.153846	8250
0.0	2.103846e+06	12142.857143	6538.461538	8500
0.0	1.498077e+06	12500.000000	6730.769231	8750
0.0	8.923077e+05	12857.142857	6923.076923	9000
0.0	2.865385e+05	13214.285714	7115.384615	9250
0.0	0.000000e+00	13571.428571	7307.692308	9500
0.0	0.000000e+00	13928.571429	7500.000000	9750

MAPE: 0.3

Overprediction:

- Roll out Wolbachia when it is not costeffective
- Net loss:

Wolbachia cost - Econ benefit

Underprediction:

- Did not roll out Wolbachia when economic benefits would have exceeded costs
- Net loss:

Econ benefit - Wolbachia cost

Roll out Wolbachia when model prediction > 6000 cases.

Est'd net loss: USD 5.1m (2010\$)

06 CONCLUSION

CONCLUSION

- 1) Narrowed down an effective prediction window of 3 months, in order to strike a balance between:
 - Model accuracy
 - o Enabling sufficient lead time to act adapt to an outbreak prediction
- 2) Amongst the models tested, SARIMAX yields the lowest RMSE and MAPE on test data hence performed the best
- 3) Running 3-mth predictions highlighted our models effectiveness in predicting downward trends, and weaknesses in capturing upward trends.

Further steps

- 1) Improve model with more features
 - a) Circulating serotype
 - b) Serological information
 - c) Premises index
- 1) Improve Wolbachia CBA with more detailed cost breakdown
 - a) Fixed costs vs Variable costs
 - b) Choose between Rolling release / Targeted release
 - c) Compare Suppression and Replacement method

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

