Mutually Controlled Routing with Independent ISPs

Ratul Mahajan

Microsoft Research

David Wetherall Tom Anderson

Intel Research

University of Washington University of Washington

Conflict in Internet routing today

ISPs simultaneously cooperate and compete in a contractual framework

Paths are usually decided

by upstream ISPs

q ISPs have little control over incoming traffic

End-to-end paths can be longer than necessary

A real incident

Paths are longer than necessary because ATT unilaterally controls paths

Goal: Provide joint control over routing

Constraints due to ISP independence

- Be individually beneficial ("win-win")
- Not require ISPs to disclose sensitive info
- Enable ISPs to optimize for their criteria

Retain contractual framework and low overhead

On protocol design in systems with competing interests

"The most important change in the Internet architecture over the next few years will probably be the development of a new generation of tools for management of resources in the context of multiple administrations."

-- David Clark, 1988

Our solution: Wiser

Operates in shortest-path routing framework

- Downstream ISPs advertise "agnostic" costs
- Upstream ISPs select paths based on their own and received costs

Problems with vanilla shortest-path routing

Can be easily gamed

- ISPs can lie about their costs
- ISPs may ignore others' costs

May not be win-win

- ISPs' costs may be incomparable

Normalize costs so no ISP dominates

Monitoring the behavior of upstream ISPs

Downstream ISPs monitor the ratio of average cost of paths used and average announced cost Contractually limit this ratio

Wiser across multiple ISPs

Con Salbdaiptadisabecoststsvihidealtringhyateidigediatestsactor

Going from BGP to Wiser

Simple, backward-compatible extensions

- Embed costs in non-transitive BGP communities
- Border routers jointly compute normalization factors and log cost usage
- Slightly modified path selection decision

Retains today's contractual framework

Benefits even the first two ISPs that deploy it

A prototype in XORP is publicly available

Evaluation

What is the benefit of *Wiser*?

How much can ISPs gain by cheating?

What is the overhead of *Wiser*?

Methodology:

- Combine measured data and realistic models
- Topology: city-level maps of 65 ISPs

Some paths are very long with BGP

%	length inflation	
50	1.0	
10	1.4	
5	2.0	
1	5.9	

Wiser paths are close to optimal

%	length inflation	
	BGP	Wiser
50	1.0	1.0
10	1.4	1.1
5	2.0	1.2
1	5.9	1.5

Wiser requires less capacity to handle failures

Wiser limits the impact of cheating

Dishonest ISP

Honest ISP

ISP gain (%) relative to BGP

two honest ISPs (Wiser)

one dishonest ISP (no constraints) one dishonest ISP (Wiser)

Overhead of Wiser

Implementation complexity

- Two implementations: XORP and SSFNet (simulator)
- Less than 6% additional LoC (base ~ 30k)

Computational requirements

- 15-25% higher than BGP for normal workload

Convergence time

 Higher than BGP but acceptable even for large failures

Routing message rate

Comparable to BGP

Concluding thoughts

Wiser provides joint control over routing to ISPs

Competing interests don't lead to significant efficiency loss in Internet routing

Evidence that practical protocols can harness competing interests

ratul | nsdi | '07