LECTURER: Nghia Duong-Trung

MACHINE LEARNING

Introduction to Machine Learning	1
Clustering	2
Regression	3
Support Vector Machines	4
Decision Trees	5
Genetic Algorithms	6

UNIT 6

GENETIC ALGORITHMS

STUDY GOALS

- Know the definitions and terms used for evolutionary algorithms including Genetic Algorithms (GA)
- Comprehend the important concepts of GA
- Understand the main phases of GA
- Apply GA for the Knapsack problem
- Implement GA in Python

Evolution approaches:

- Genetic algorithms: simulates the reproduction of individuals in a population in order to solve a specific optimization problem.
- Swarm algorithms: Simulate the movement of a group of animals toward a specific target.
- Ant Colony algorithms: simulate the communication between insects to find the shortest path between their nest and the food source.

Example: Evolutionary biology

Genetic algorithms (GA):

- Biological genetics: An individual in a population is made-up of cells encoded by genes (DNA) in chromosomes.
- GA in Machine Learning:
 - are inspired by the biological genetic evolution of living organisms
 - to find the **optimum** or near-optimum solutions
 - By iteratively exploring possible solutions
 - DNA and chromosome are encoded as bits

Organization of DNA in a eukaryotic cell

Chromosome representation in Genetic Algorithms

GENETIC ALGORITHMS

Basic terms:

- Individual: any possible solution
- Population: group of all individuals within an investigation problem
- Fitness: target function that we are optimizing (each individual has a fitness)

The output of the genetic algorithm is a quantity

Basic process:

- It starts from a population of randomly generated individuals and happens in generations.
- In each generation, the fitness of every individual in the population is evaluated, multiple individuals are selected (based on their fitness), and modified to form a new population.
- Next-generation competes with each other, the process goes on until the perfect program is evolved.
- The new population is used in the next iteration of the algorithm.
- The algorithm terminates when either a maximum number of generations has been produced, or a satisfactory fitness level has been reached for the population.

INTRODUCTION

GA Phases

- Initialization
- Evaluation
- Selection
- Crossover
- Mutation

The five phases in Genetic Algorithms

Crossover phase:

- Function: Mixing of the genes from parent's pair of chromosomes
- Effect: the child shares the characteristics of both parents
- Crossover point: random point in the chromosome, where the gene thread are cut and exchanged
- Types:
 - Single-point crossover: one locus is selected
 - Multiple-point crossover: a set of crossover points are selected

Single-point crossover in genetic algorithms

Multiple-point crossover in genetic algorithms

5.2 GENETIC ALGORITHM PHASES

Mutation phase

- Function: flipping of random genes at arbitrary location(s) in an individual chromosome
- Effect: prevent falling into local optimum solutions too quickly
- Types of changes:
 - Deletion
 - Insertion
 - Re-arrangement

Mutation in genetic algorithms

6.3 GENETIC ALGORITHM EXAMPLE

Knapsack Problem

- Given:
 - A set of items, each has weight and value
 - A knapsack of a max capacity
- Problem:
 - Select a subset of items so that
 - The total value is as large as possible
 - Total weight ≤ max capacity

An example of genetic algorithms: Knapsack problem

THE KNAPSACK PROBLEM

W: 7kg

V: 5€

W: 2kg

V: 4€

V: 7€

W: 1kg

W: 9kg

V: 2€

15kg

0	1	1	0	W: 3kg	V: 11€
1	1	0	1	18kg	0€

W: 7kg	W: 2kg	W: 1kg	W: 9kg
V: 5€	V: 4€	V: 7€	V: 2€

An initial population is 8 solutions.

0	1	0	1	V: 6€
0	0	0	1	2
1	1	1	1	0
0	1	1	1	13
0	0	1	1	9
0	0	0	0	0
0	1	1	0	11
0	0	0	1	2

W: 7kg	W: 2kg	W: 1kg	W: 9kg
V: 5€	V: 4€	V: 7€	V: 2€

Randomly select 2 solutions and they compete with each other. The winner becomes a parent.

0	1	0	1	V: 6€
0	0	0	1	2
1	1	1	1	0
0	1	1	1	13
0	0	1	1	9
0	0	0	0	0
0	1	1	0	11
0	0	0	1	2

W: 7kg	W: 2kg	W: 1kg	W: 9kg
V: 5€	V: 4€	V: 7€	V: 2€

Randomly select 2 solutions and they compete with each other. The winner becomes a parent.

0	1	0	1	V: 6€
0	0	0	1	2
1	1	1	1	0
0	1	1	1	13
0	0	1	1	9
0	0	0	0	0
0	1	1	0	11
0	0	0	1	2

Crossover

0	1	0	1
0	0	1	1

Mutation

0	1	1	1
0	0	0	1
0	1	1	0
0	0	0	1

Repeat to have the same amount as the initial population

6.3 GENETIC ALGORITHM IN PYTHON

Definitions:

Kcap – Max capacity

POP_SIZE – Number of solutions

GEN_MAX – Number of generations

NUM_ITEMS – Number of items

initialization() – Creating an initial population

fitness() – Measuring the fitness of an individual evolution() – Selection, crossover, mutation

Main function of genetic algorithm in python def main(): import random KCap = 30; POP SIZE = 30; GEN MAX = 50; NUM ITEMS = 15 ITEMS = [(random.randint(0,20),random.randint(0,20)) for x in range (0, NUM ITEMS)] generation = 1 #Generation counter population = initialization(POP_SIZE, NUM_ITEMS) for g in range(0,GEN_MAX): totalFitness = 0for i in population: totalFitness += fitness(i, ITEMS, KCap) print(totalFitness) population = evolution(population) generation += 1 population = sorted(population, key=lambda ind: fitness(ind, ITEMS, KCap), reverse=True) print(population[0])

REVIEW STUDY GOALS

- Know the definitions and terms used for evolutionary algorithms including Genetic Algorithms (GA)
- Comprehend the important concepts of GA
- Understand the main phases of GA
- Apply GA for the Knapsack problem
- Implement GA in Python

SESSION 6

GENETIC ALGORITHMS

TRANSFER TASKS

Implement the main() function of GA for solving the Knapsack Problem with the following inputs:

- Max carry weight: M = 30
- Number of available items: n = 7,
- Each item has random weight $(0 \le w \le 15)$ and value $(0 \le v \le 10)$
- Number of randomly generated chromosomes: m = 10
- Number of generations: G = 100

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

LEARNING CONTROL QUESTIONS

- 1. Genetic, swarm and ant colony algorithms are examples
- of _____ algorithms.
 - a) population-based
 - b) metaheuristic
 - c) optimization
 - d) all of the options are true.

2. Genetic algorithms consist of five main phases in this order:

- a) (1) Initialization, (2) crossover, (3) evaluation, (4) selection of the fittest, and (5) mutation of the genetic structure.
- b) (1) Initialization, (2) evaluation, (3) selection of the fittest, (4) crossover, and (5) mutation of the genetic structure.
- c) (1) Initialization, (2) mutation of the genetic structure, (3) crossover, (4) evaluation, and (5) selection of the fittest.
- d) (1) Initialization, (2) selection of the fittest, (3) evaluation, (3) crossover, and (4) mutation of the genetic structure.

LEARNING CONTROL QUESTIONS

- 3. The ____ can help to escape local optimum solution in the population.
 - a) mutation phase
 - b) crossover phase
 - c) evaluation phase
 - d) selection phase

4. In genetic algorithms, each chromosome represents

• • •

- a) ... the optimal solution for the domain problem.
- b) ... the fitness of a specific solution for the domain problem.
- c) ... a part of the solution for the domain problem.
- d) ... a possible solution for the domain problem.

- 5. Genetic algorithms_____ the finding of the optimal solution for a given problem.
 - a) guarantee
 - b) are not established for
 - c) do not guarantee
 - d) none of these

LIST OF SOURCES

Text:

Chaiyaratana, N., & Zalzala, A. M. S. (1997). Recent developments in the evolution strategies of genetic algorithms: Theory and applications. *Research Report. ACSE Research Report 666*.

Gad, A. (2018). Genetic algorithm implementation in Python. https://towardsdatascience.com/genetic-algorithm-implementation-in-python-5ab67bb124a6
Genetic programming (2023, February 13). In Wikipedia. Retrieved, February 22, 2023, from https://en.wikipedia.org/wiki/Genetic_programming
Sammut, C. (2011). Genetic and evolutionary algorithms. In C. Sammut & G. I. Webb(Eds.), Encyclopedia of machine learning. Springer Science & Business Media.

Sivanandam S.N., Deepa S.N. (2008). Classification of Genetic Algorithm. Pp 105-129. Springer. https://doi.org/10.1007/978-3-540-73190-0_5
Zöller, T. (2022). Course Book – Machine Learning. IU International University of Applied Science.

Images:

File: Darwin's_finches_by_Gould.jpg (February 20, 2023). *In Wikipedia Commons, the free media repository*. Retrieved, February 22, 2023, from https://en.wikipedia.org/wiki/Evolution
File: Eukaryote_DNA-en.svg (January 20, 2023). *In Wikipedia Commons, the free media repository*. Retrieved, February 22, 2023, from https://en.wikipedia.org/wiki/Chromosome
File: Genetic_programming_subtree_crossover.gif. (February 13, 2023). *In Wikipedia Commons, the free media repository*. Retrieved, February 22, 2023, from https://en.wikipedia.org/wiki/Genetic_programming
Zöller (2022, p. 132).

Zöller (2022, p. 133).

Zöller (2022, p. 134).

Zöller (2022, p. 135).

Zöller (2022, p. 136).

