Sample size calculation and optimal design for regression-based test norming

Francesco Innocenti, Frans Tan, Math Candel, & Gerard van Breukelen

Department of Methodology and Statistics Maastricht University

IMPS 2022 - Bologna

Outline

- Introduction
- Research question
- Approaches to test norming
- Optimal and robust design
- Sample size calculation
- O Discussion

Normative data

 Norms facilitate the interpretation of subjects' performance on a test by directly comparing their scores with those of their peers

 Based on this information, decisions about individuals can be made (e.g. assignment to a treatment or remedial teaching)

Research question

To prevent mistakes in the assessment of individuals, **norms should be precise**, that is, not being strongly affected by sampling error in the sample on which the norms are based. How to **minimize sampling error** and **maximize precision** of the norms?

- Adopt an efficient approach to norming ⇒ regression-based approach
- ② Find a sample composition (e.g. which age groups to include) that maximizes precision of estimation of the norms ⇒ the optimal design
- Take a sufficiently large sample for the normative study ⇒ sample size calculation formulas

Maastricht University

Traditional approach to norming

- Split the sample drawn for norming into subgroups based on some relevant demographic factors (e.g. age and sex)
- 2 Compute the norm statistics of interest (e.g. mean and SD) within each subgroup

Age (years): 20-30, 31-40, 41-50, 51-60, 61-70, 71-80

- Pros: No model assumptions
- Cons: (1) **Inefficient** (Oosterhuis et al. [2016]), (2) norms are not necessarily based on relevant predictors, (3) categorization of continuous predictors, (4) no optimal design

Regression-based norming (1/2)

Several approaches (e.g. Lenhard et al. [2018]; Oosterhuis et al. [2016]; Sherwood et al. [2015]; Van Breukelen and Vlaeyen [2005]; Voncken et al. [019a,b]; Zachary and Gorsuch [1985]) but overall

- Pros: (1) Norms based on the whole sample, (2) it allows to identify relevant predictors, (3) categorization of continuous predictors not needed, and (4) optimal design
- Cons: The validity of the norms depends on model assumptions

Regression-based norming (2/2)

Van Breukelen and Vlaeyen [2005]:

- $oldsymbol{0}$ Sample N subjects from the reference population
- ② Fit $\mathbf{y}=\mathbf{X}\boldsymbol{\beta}+\boldsymbol{\epsilon}$, with $\boldsymbol{\epsilon}\sim N(0,\sigma^2)$, thus obtaining $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\sigma}}$ from the normative sample

To compare a **new individual** with the reference population:

- $\textbf{3} \ \, \mathsf{Compute} \ \, \mathsf{Z}\text{-score} \colon \ \, \hat{Z}_0 = \frac{Y_0 \hat{Y}_0}{\hat{\sigma}} = \frac{Y_0 \mathbf{x}_0^T \hat{\beta}}{\hat{\sigma}}$
- Compute PR-score: $\hat{PR}_0 = \Phi(\hat{Z}_0) \times 100$

 $\mathbf{x}_0 =$ individual's scores on the predictors, $\Phi\left(.\right) =$ cdf of the standard normal distribution

Sampling variances

Based on the delta method:

$$V\left(\hat{Z}_{0}\right) pprox rac{d\left(\mathbf{X},\xi\right)}{N} + rac{Z_{0}^{2}}{2\left(N-k-1
ight)}$$

$$V\left(\hat{PR}_{0}\right) \approx V\left(\hat{Z}_{0}\right) \times \left(100 \times \phi\left(Z_{0}\right)\right)^{2}$$

where

$$d(\mathbf{X}, \xi) = N\sigma^{-2}V(\hat{Y}_0) = N\mathbf{x}_0^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0$$

is the **standardized prediction variance**, ξ is the design of the normative sample, $k = \text{number of predictors}, \phi(.)$ is the pdf of the standard normal distribution, and \mathbf{x}_0 is the vector of the new individual's scores on the predictors.

• Simulation study: for $N \ge 300$ relative bias of $V(\hat{Z}_0) \in (-3\%, +3\%)$; for $N \ge 1600$ relative bias of $V(\hat{PR}_0) \in (-5\%, +5\%)$

Optimal design: Theory

- Design $\xi=$ joint distribution of the predictors in the normative sample given N, e.g. sex distribution and age distribution per sex level in the sample
- Optimal design $\xi^*=$ the joint distribution of the predictors in the normative sample that minimizes $V\left(\hat{Z}_0\right)$ and $V\left(\hat{PR}_0\right)$ given N
- \bullet But $V\left(\hat{Z}_{0}\right)$ and $V\left(\hat{PR}_{0}\right)$ depend on ξ only through

$$d\left(\mathbf{X}, \xi\right) = N\mathbf{x}_{0}^{T} \left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{x}_{0}$$

so a safe approach to find ξ^* is to **minimize the maximum** of $d(\mathbf{X}, \xi)$ over \mathbf{x}_0 (G-optimality, see e.g. Schwabe [1996])

• This is a safe approach because it minimizes the maximum of $V\left(\hat{Z}_{0}\right)$ and $V\left(\hat{PR}_{0}\right)$ over all possible combinations of the predictors $\left(\mathbf{x}_{0}\right)$

Maastricht University

Optimal design: Results

Let $\epsilon_i \sim N\left(0, \sigma^2\right)$

$$Y_i = \beta_0 + \frac{\beta_1 Age_i}{\beta_1 Age_i} + \beta_2 Sex_i + \epsilon_i \tag{1}$$

$$Y_i = \beta_0 + \beta_1 A g e_i + \beta_2 S e x_i + \beta_3 A g e_i^2 + \epsilon_i$$
 (2)

$$Y_i = \beta_0 + \beta_1 A g e_i + \beta_2 S e x_i + \beta_4 A g e_i S e x_i + \epsilon_i$$
 (3)

$$Y_i = \beta_0 + \beta_1 A g e_i + \beta_2 S e x_i + \beta_3 A g e_i^2 + \beta_4 A g e_i S e x_i + \epsilon_i$$
 (4)

$$Y_i = \beta_0 + \beta_1 A g e_i + \beta_2 S e x_i + \beta_3 A g e_i^2 + \beta_4 A g e_i S e x_i + \beta_5 A g e_i^2 S e x_i + \epsilon_i$$
 (5)

Maximin design

- The optimal design ξ^* depends on the assumed model, but at the design phase there is **uncertainty about the "true" model** (i.e. best fitting polynomial)
- A solution: Find the most robust design against misspecification of the model. Two alternative criteria:
 - Relative Efficiency (RE): ratio of $V\left(\hat{Z}_{0}\right)$ or $V\left(\hat{PR}_{0}\right)$ under ξ^{*} to $V\left(\hat{Z}_{0}\right)$ or $V\left(\hat{PR}_{0}\right)$ under ξ , given $N\Rightarrow$ RE maximin design = highest minimum relative efficiency across all plausible models
 - Efficiency: $(V(\hat{Z}_0))^{-1}$ or $(V(\hat{PR}_0))^{-1} \Rightarrow$ Absolute maximin design = highest minimum efficiency across all plausible models

Sample size calculation

- Sample size calculation formulas for the **optimal or maximin design** and for a subject with scores on the predictors (\mathbf{x}_0) such that $V\left(\hat{Z}_0\right)$ and $V\left(\hat{PR}_0\right)$ are maximum
- In practice, norms are used **to classify subjects' performance** on a test $(Z_t \text{ or } PR_t)$ relative to a chosen cut-off point $(Z_c \text{ or } PR_c)$ as "average" versus "below" or "above average", to make decisions
- This classification problem can be expressed as H_0 : "average" performance $Z_t=Z_c$ versus H_1 : "below average" performance $Z_t< Z_c$:
 - $N^*=$ to detect the smallest clinically relevant difference between subject's norm value and the cut-off point for decision making, given a pre-specified Type I error rate and statistical power

Sample size calculation: Power

- Choose: (i) the model for norming with k predictors, (ii) the cut-off point for decision making $(Z_c \text{ or } PR_c)$, (iii) the smallest clinically relevant difference δ between subject's norm value $(Z_t \text{ or } PR_t)$ and the cut-off point, (iv) the Type I error rate α and statistical power $1-\beta$
- For Z-scores, the required sample size is

$$N^* = \left[\frac{z_{1-\alpha} \left(k + 1 + \frac{Z_c^2}{2} \right)^{1/2} + z_{1-\beta} \left(k + 1 + \frac{Z_i^2}{2} \right)^{1/2}}{\delta} \right]^2$$

For PR-scores, the required sample size is

$$N^* = \left[\frac{z_{1-\alpha} \cdot 100 \cdot \phi\left(Z_{PR_c}\right) \left(k+1+\frac{Z_{PR_c}^2}{2}\right)^{1/2} + z_{1-\beta} \cdot 100 \cdot \phi\left(Z_{PR_t}\right) \left(k+1+\frac{Z_{PR_t}^2}{2}\right)^{1/2}}{\delta} \right]^2$$

Sample size calculation: Results

Type I error rate = 5%, Power = 80%

Sample size calculation: Precision

Alternative approach: $N^* =$ half the confidence interval width equals the pre-specified margin of error

- Choose: (i) the model for norming with k predictors, (ii) the Z-score or PR-score of interest (e.g. $Z_0=-2$ or $PR_0=5\%$), (iii) the desired margin of error τ , (iv) the confidence level $1-\alpha$
- 2 For Z-scores, the required sample size is

$$N^* = \left[\frac{z_{1-\alpha/2} \left(k + 1 + \frac{Z_0^2}{2} \right)^{1/2}}{\tau} \right]^2$$

For PR-scores, the required sample size is

$$N^* = \left[\frac{z_{1-\alpha/2} \cdot 100 \cdot \phi(Z_0) \cdot \left(k + 1 + \frac{Z_0^2}{2}\right)^{1/2}}{\tau} \right]^2$$

Conclusion

To maximize the precision of norms:

- A regression-based approach is recommended because more efficient than the traditional approach
- The sample composition should be as prescribed by the optimal design, if prior knowledge about best fitting polynomial is available
- If there is uncertainty about the model, efficient robust designs can be used instead of the optimal design
- Two approaches to determine the required sample size for the optimal/maximin design

Future research

Sample size calculation and optimal design for

- Multivariate regression-based norming (Van der Elst et al. [2017])
- Non-normality and heteroscedasticity: GAMLSS (Timmerman et al. [2021]; Voncken et al. [019a,b]), quantile regression (Sherwood et al. [2015]), cNORM (Lenhard et al. [2018]), Flexible discrete norming (Van der Ark et al., [2022])

References

- Innocenti, F., Tan, F., Candel, M., and Van Breukelen, G. (2021). Sample size calculation and optimal design for regression-based norming of tests and questionnaires. Psychological Methods, Advance online publication.
- Lenhard, A., Lenhard, W., Suggate, S., and Segerer, R. (2018). A continuous solution to the norming problem. Assessment, 25:112–125.
- Oosterhuis, H., Van der Ark, L., and Sijtsma, K. (2016). Sample size requirements for traditional and regression-based norms. Assessment, 23:191–202.
- Schwabe, R. (1996). Optimum designs for multi-factor models. Springer-Verlag, New York.
- Sherwood, B., Zhou, A., Weintraub, S., and Wang, R. (2015). Using quantile regression to create baseline norms for neuropsychological tests. Alzheimer's & dementia, 2:12–18.
- Timmerman, M., Voncken, L., and Albers, C. (2021). A tutorial on regression-based norming of psychological tests with gamlss. Psychological methods, 26:357–373.
- Van Breukelen, G. and Vlaeyen, J. (2005). Norming clinical questionnaires with multiple regression: The pain cognition list. Psychological Assessment, 17:336–344.
- Van der Elst, W., Molenberghs, G., Van Tetering, M., and Jolles, J. (2017). Establishing normative data for multi-trial memory tests: the multivariate regression-based approach. The Clinical Neuropsychologist, 31:1173–1187.
- Voncken, L., Albers, C., and Timmerman, M. (2019a). Improving confidence intervals for normed test scores: Include uncertainty due to sampling variability. Behavior Research Methods, 51:826–839.
- Voncken, L., Albers, C., and Timmerman, M. (2019b). Model selection in continuous test norming with gamlss. Assessment, 26:1329–1346.
- Zachary, R. and Gorsuch, R. (1985). Continuous norming: Implications for the wais-r. Journal of Clinical Psychology, 41:86–94.

Thank you for your attention!

francesco.innocenti@maastrichtuniversity.nl

