# HCMS-235x

# CMOS Extended Temperature Range 5 x 7 Alphanumeric Display



# **Data Sheet**



## **Description**

This sunlight viewable 5 x 7 LED four-character display is contained in 12 pin dual-in-line packages designed for displaying alphanumeric information. The display is designed with on-board CMOS integrated circuits. Two CMOS ICs form an on-board 28-bit serial-in/parallel-out shift register with constant current output LED row drivers. Decoded column data is clocked into the on-board shift register for each refresh cycle. Full character display is achieved with external column strobing.

## **Typical Applications**

- Avionics
- Communication systems
- Fire control systems
- Radar systems

#### **Features**

- On-Board low power CMOS IC
  Integrated shift register with constant current LED drivers
- Wide operating temperature range -55°C to +100°C
- Compact glass ceramic 4 character package Series X-Y stackable
- Sunlight viewable
- 5 x 7 LED matrix displays full ASCII set
- Character height of 5.0 mm (0.20 inch)
- Wide viewing angle
  X Axis = ±50°
  - Y Axis =  $\pm 65^{\circ}$
- Usable in night vision lighting applications

#### **Package Dimensions**





| PIN | FUNCTION      | PIN | FUNCTION        |
|-----|---------------|-----|-----------------|
| 1   | COLUMN 1      | 7   | DATA OUT        |
| 2   | COLUMN 2      | 8   | VB              |
| 3   | COLUMN 3      | 9   | V <sub>DD</sub> |
| 4   | COLUMN 4      | 10  | CLOCK           |
| 5   | COLUMN 5      | 11  | GROUND          |
| 6   | INT. CONNECT* | 12  | DATA IN         |

\* DO NOT CONNECT OR USE

#### NOTES:

- 1. DIMENSIONS IN MILLIMETERS (INCHES).
- 2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS  $\pm~0.38~\text{mm}~(\pm~0.015).$
- 3. CHARACTERS ARE CENTERED WITH RESPECT TO LEADS WITHIN  $\pm$  0.13 mm ( $\pm$  0.005).
- 4. LEAD MATERIAL IS COPPER ALLOY, SOLDER DIPPED.

## **Absolute Maximum Ratings**

| Parameter                                                                         | Value                                          |
|-----------------------------------------------------------------------------------|------------------------------------------------|
| Supply Voltage V <sub>DD</sub> to Ground                                          | -0.3 V to 7.0 V <sup>[1]</sup>                 |
| Data Input, Data Output, V <sub>B</sub>                                           | $-0.3\mathrm{V}$ to $\mathrm{V}_{\mathrm{DD}}$ |
| Column Input Voltage, V <sub>COL</sub>                                            | –0.3 V to V <sub>DD</sub>                      |
| Free Air Operating Temperature Range, T <sub>A</sub>                              | −55°C to +100°C                                |
| Storage Temperature Range, T <sub>s</sub>                                         | −55°C to +100°C                                |
| Maximum Allowable Package Power Dissipation, $P_D^{[2,3]}$ at $T_A = 71^{\circ}C$ | 1.31 Watts                                     |
| Through-the-Wave Solder Temperature [4]                                           | 250°C for 3 secs. max.                         |
| Solder Dipping Temperature [4]                                                    | 260°C for 5 secs. max.                         |
| ESD Protection @ 1.5 k $\Omega$ , 100 pF                                          | $V_Z = 4 \text{ kV}$                           |

#### Notes:

- 1. Maximum duration 2 seconds.
- 2. Maximum allowable power dissipation is derived from  $V_{DD} = 5.25 \text{ V}, V_B = 2.4 \text{ V}, V_{COL} = 3.5 \text{ V}, 20 \text{ LEDs ON per character}, 20\% DF.$
- 3. HCMS-2353 derate above 71°C at 23 mW/°C,  $R\theta_{J-A} = 45$ °C/W. Derating based on  $R\theta_{PC-A} = 35$ °C/W per display for printed circuit board assembly.
- 4. 1.59 mm (0.063") Below Body

## **Recommended Operating Conditions**

## Over Operating Range (-55°C to + 100°C)

| Parameter                    | Symbol                 | Min. | Тур. | Max  | Units |
|------------------------------|------------------------|------|------|------|-------|
| Supply Voltage               | $V_{DD}$               | 4.75 | 5.00 | 5.25 | V     |
| Data Out Current, Low State  | l <sub>OL</sub>        |      |      | 1.6  | mA    |
| Data Out Current, High State | loн                    |      |      | -0.5 | mA    |
| Column Input Voltage         | $V_{COL}$              | 2.75 | 3.0  | 3.5  | V     |
| Setup Time                   | t <sub>SETUP</sub>     | 10   |      |      | ns    |
| Hold Time                    | t <sub>HOLD</sub>      | 25   |      |      | ns    |
| Clock Pulse Width High       | twh(clock)             | 50   |      |      | ns    |
| Clock Pulse Width Low        | t <sub>WL(CLOCK)</sub> | 50   |      |      | ns    |
| Clock High to Low Transition | t <sub>THL</sub>       |      |      | 200  | ns    |
| Clock Frequency              | f <sub>CLOCK</sub>     |      |      | 5    | MHz   |

## **Electrical Characteristics**

## Over Operating Range (-55°C to + 100°C)

| Parameter                                     | Symbol               | Test Conditions                                          | Min | Тур.* | Max                | Units  |
|-----------------------------------------------|----------------------|----------------------------------------------------------|-----|-------|--------------------|--------|
| Supply Current, Dynamic <sup>[1]</sup>        | I <sub>DDD</sub>     | f <sub>CLOCK</sub> = 5 MHz                               |     | 6.2   | 7.8                | mA     |
| Supply Current, Static <sup>[2]</sup>         | I <sub>DDDSoff</sub> | $V_B = 0.4 \text{ V}$ , Data and Clock = $0.4 \text{ V}$ |     | 1.8   | 26                 | mA     |
|                                               | $I_{DDDSon}$         | $V_B = 2.4 \text{ V}$ , Data and Clock = 0.4 V           |     | 2.2   | 6.0                |        |
| Column Input Current                          | I <sub>COL</sub>     | $V_B = 0.4 V$                                            |     |       | 10                 | μΑ     |
|                                               |                      | $V_B = 2.4 \text{ V}$                                    |     | 500   | 650                | mA     |
| Input Logic High Data, V <sub>B</sub> , Clock | V <sub>IH</sub>      | V <sub>DD</sub> = 4.75 V                                 | 2.0 |       |                    | V      |
| Input Logic Low Data, V <sub>B</sub> , Clock  | V <sub>IL</sub>      | V <sub>DD</sub> = 5.25 V                                 |     |       | 0.8                | V      |
| Input Current                                 | lį                   | V <sub>DD</sub> = 5.25 V                                 |     |       |                    |        |
| Data                                          |                      | $V_{l}^{[3]} = 2.4 \text{ V (Logic High) or}$            | -46 | -60   | -103               | μΑ     |
| Clock, V <sub>B</sub>                         |                      | $V_{I}^{[3]} = 0.4 \text{ V (Logic Low)}$                | -92 | -120  | -206               |        |
| Data Out Voltage                              | V <sub>OH</sub>      | V <sub>DD</sub> = 4.75 V                                 | 2.4 | 4.2   |                    | V      |
|                                               |                      | $I_{OH} = -0.5 \text{ mA}$                               |     |       |                    |        |
|                                               |                      | $I_{COL} = 0 \text{ mA}$                                 |     |       |                    |        |
|                                               | $\overline{V_{OL}}$  | V <sub>DD</sub> = 5.25 V                                 |     | 0.2   | 0.4                | V      |
|                                               |                      | $I_{OL} = 1.6 \text{ mA}$                                |     |       |                    |        |
|                                               |                      | $I_{COL} = 0 \text{ mA}$                                 |     |       |                    |        |
| Power Dissipation Per Package <sup>[4]</sup>  | P <sub>D</sub>       | $V_{DD} = 5.0 \text{ V}$                                 |     | 668   |                    | mW     |
|                                               |                      | $V_{COL} = 3.5 V$                                        |     |       |                    |        |
|                                               |                      | 17.5% DF                                                 |     |       |                    |        |
|                                               |                      | $V_B = 2.4 \text{ V}$                                    |     |       |                    |        |
|                                               |                      | 15 LEDs ON per Character                                 |     |       |                    |        |
| Thermal Resistance                            | Rθ <sub>J-PIN</sub>  |                                                          |     | 10    |                    | °C/W   |
| IC Junction-to-Pin [5]                        |                      |                                                          |     |       |                    |        |
| Leak Rate                                     |                      |                                                          |     |       | 5x10 <sup>-8</sup> | cc/sec |

<sup>\*</sup>All typical values specified at  $V_{DD} = 5.0 \text{ V}$  and  $T_A = 25$ °C.

#### Notes:

- 1. IDD Dynamic is the IC current while clocking column data through the on-board shift register at a clock frequency of 5 MHz, the display is not illuminated.
- 2. IDD Static is the IC current after column data is loaded and not being clocked through the on-board shift register.
- V<sub>I</sub> represents the input voltage to an input pin.
  Four characters are illuminated with a typical ASCII character composed of 15 dots per character.
- 5. IC junction temperature  $T_J$  (IC) =  $(P_D)(R\theta_{J-PIN} + R\theta_{PC-A}) + T_A$ .

# Optical Characteristics at $T_A = 25\,^{\circ}C$

## **High Performance Green HCMS-2353**

| Description                                                        | Symbol             | Test Condition                                                                                         | Min. | Typ.* | Max. | Units |
|--------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|------|-------|------|-------|
| Peak Luminous Intensity per LED <sup>[6]</sup> (Character Average) | I <sub>vPEAK</sub> | $V_{DD} = 5.0 \text{ V}$ $V_{COL} = 3.5 \text{ V}$ $V_{B} = 2.4 \text{ V}$ $T_{i} = 25^{\circ}C^{[7]}$ | 2400 | 3000  |      | μcd   |
| Dominant Wavelength <sup>[8,9]</sup>                               | $\lambda_{d}$      |                                                                                                        |      | 574   |      | nm    |
| Peak Wavelength                                                    | $\lambda_{PEAK}$   |                                                                                                        |      | 568   |      | nm    |

#### Yellow HCMS-2351

| Description                                                           | Symbol              | <b>Test Condition</b>                                                              | Min  | Typ.* | Max. | Units |
|-----------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------|------|-------|------|-------|
| Peak Luminous Intensity per<br>LED <sup>[6]</sup> (Character Average) | I <sub>v</sub> peak | $V_{DD} = 5.0V$<br>$V_{COL} = 3.5 V$<br>$V_{B} = 2.4V$<br>$Ti = 25^{\circ}C^{[7]}$ | 1600 | 2400  |      | μcd   |
| Dominant Wavelength [8,9]                                             | $\lambda_{d}$       |                                                                                    |      | 585   |      | nm    |
| Peak Wavelength                                                       | λρεακ               |                                                                                    |      | 583   |      | nm    |

<sup>\*</sup>All typical values specified at  $V_{DD} = 5.0 \text{ V}$  and  $T_A = 25^{\circ}\text{C}$  unless otherwise noted.

#### Notes:

- 6. These LED displays are categorized for luminous intensity, with the intensity category designated by a letter code on the back of the package.
- 7. T<sub>i</sub> refers to the initial case temperature of the display immediately prior to the light measurement.
- 8. Dominant wavelength,  $\lambda_d$ , is derived from the CIE Chromaticity Diagram, and represents the single wavelength which defines the color of the device
- $9. \ Categorized \ for \ color \ with \ the \ color \ category \ designated \ by \ a \ number \ on \ the \ back \ of \ the \ package.$

## **Switching Characteristics**

OFF (NOT ILLUMINATED)



| Parameter                           | Condition                   | Тур. | Max. | Units |
|-------------------------------------|-----------------------------|------|------|-------|
| f <sub>clock</sub> CLOCK Rate       |                             |      | 5    | MHz   |
| t <sub>PLH</sub> , t <sub>PHL</sub> | $C_L = 15 pF$               |      | 105  | ns    |
| Propagation Delay                   | $R_L = 2.4 \text{ k}\Omega$ |      |      |       |
| CLOCK to DATA OUT                   |                             |      |      |       |
| t <sub>OFF</sub>                    |                             |      |      |       |
| $V_B$ (0.4 V) to                    |                             | 4    | 5    | μs    |
| Display OFF                         |                             |      |      |       |
| t <sub>ON</sub>                     |                             |      |      |       |
| $V_B$ (2.4 V) to                    |                             | 1    | 2    |       |
| Display ON                          |                             |      |      |       |
|                                     |                             |      |      |       |

#### **Electrical Description**

The display contains four 5 x 7 LED dot matrix characters and two CMOS integrated circuits, as shown in Figure 1. The two CMOS integrated circuits form an on-board 28 bit serial-in/parallel-out shift register that will accept standard TTL logic levels. The Data Input, pin 12, is connected to bit position 1 and the Data Output, pin 7, is connected to bit position 28. The shift register outputs control constant current sinking LED row drivers. A logic 1 stored in the shift register enables the corresponding LED row driver and a logic 0 stored in the shift register disables the corresponding LED row driver.

The electrical configuration of these CMOSIC alphanumeric displays allows for an effective interface to a display controller circuit that supplies decoded character information. The row data for a given column (one 7 bit byte per character) is loaded (bit serial) into the on-board 28 bit shift register with high to low transitions of the Clock input. To load

decoded character information into the display, column data for character 4 is loaded first and the column data for character 1 is loaded last in the following manner. The 7 data bits for column 1, character 4, are loaded into the on-board shift register. Next, the 7 data bits for column 1, character 3, are loaded into the shift register, shifting the character 4 data over one character position. This process is repeated for the other two characters until all 28 bits of column data (four 7 bit bytes of character column data) are loaded into the on-board shift register. Then the column 1 input, V<sub>COL</sub> pin 1, is energized to illuminate column 1 in all four characters. This process is repeated for columns 2, 3, 4 and 5. All V<sub>COL</sub> inputs should be at logic low to insure the display is off when loading data. The display will be blanked when the blanking input VB, pin 8, is at logic low regardless of the outputs of the shift register or whether one of the V<sub>COL</sub> inputs is energized. Refer to Application Note 1016 for drive circuit information.



Figure 1. Display block diagram.

#### **ESD Susceptibility**

The display has an ESD susceptibility ratings of CLASS 3 of MIL-STD-883E, HBM. It is recommended that normal CMOS handling precautions be observed with these devices.

#### **Soldering and Post Solder Cleaning**

These displays may be soldered with a standard wave solder process using either an RMA flux and solvent cleaning or an OA flux and aqueous cleaning. For optimum soldering, the solder wave temperature should be 245 °C and the dwell time for any display lead passing through the wave should be 1.5 to 2 seconds. For more detailed information, refer to Application Note 1027, Soldering LED Components.

#### **Contrast Enhancement**

When used with the proper contrast enhancement filters, the display is readable in sunlight.

Refer to Application Note 1029, Luminous Contrast and Sunlight Readability of the HDSP-235X Series Alphanumeric Displays for Sunlight Viewable Applications, for information on contrast enhancement for sun-light and daylight ambient. Refer to Application Note 1015, Contrast Enhancement Techniques for LED Displays, for information on contrast enhancement in moderate ambients

#### **Night Vision Lighting**

When used with the proper NVG/DV filters, HCMS-235x display may be used in night vision lighting applications. For a list of NVG/DV filters and a discussion on night vision lighting technology, refer to Application Note 1030, LED Displays and Indicators and Night Vision Imaging System Lighting.

#### **Controller Circuits, Power Calculations, and Display Dimming**

Refer to Application Note 1016, Using the HDSP-2000 Alphanumeric Display Family, for information on controller circuits to drive these displays, how to do power calculations, and a technique for display dimming.



Figure 2. Peak column current vs. column voltage at  $T_A = 25$ °C.

