

ELC-10JT

High-density Signal Conditioners 10-RACK

THERMOCOUPLE TRANSMITTER

(field-programmable)

MODEL

10JT

MODEL & SUFFIX CODE SELECTION

/BN: No burnout /BL: Downscale burnout

ORDERING INFORMATION

Specify code number and variables. Default setting (table below) will be used if not otherwise specified. K thermocouple setting will be used if the input code is not specified.

- Code number (e.g. 10JT-2A6-R/BL)
- •Temperature range (e.g. 0 800°C)

INPUT CODE	DEFAULT		
1	PR	0 − 1600°C	
2	K	0 − 1000°C	
3	E	0 − 500°C	
4	J	0 − 500°C	
5	T	0 − 300°C	
6	B	0 − 1800°C	
7	R	0 − 1600°C	
8	S	0 − 1600°C	
N	N	0 − 1000°C	

RELATED PRODUCTS

•Programming unit (model: PU-2□)

Functions & Features

• Accepting direct input from a thermocouple and providing two standard process signals • Microprocessor based • Field-programmable T/C type and temperature range • Linearization • Burnout protection • High accuracy cold junction compensation • Loop testing via hand-held programmer PU-2□ • Optional second channel output available at the front terminals and at the Standard Rack connec-

tor • Fuse

Typical Applications

 Ideal for quick spare part • High-accuracy cold junction compensation benefits narrow span measurements • 0.1µA burnout sensing enables long distance transmission with minimum offset drifts • Electric furnace (isolation) • No burnout type can connect to a single T/C in parallel with a recorder

GENERAL SPECIFICATIONS

Construction: rack-mounted; terminal access via screw terminals at the front and via card-edge connector at the rear; terminal cover provided

Connection: M3.5 screw terminals (nickel-plated steel; torque ≤0.8 N·m) and card-edge connector

Housing material: flame-resistant resin (black) Power input: supplied from card-edge connector Power fuse: 0.5A

Isolation: input to output 1 to output 2 to power
Overrange output: approx. -10 - +120% at 1 - 5V
Adjustments: Programming Unit (model: PU-2□);
T/C type, temp. range, zero and span,
simulating output, etc.

Burnout protection: upscale standard; downscale or no burnout optional

Linearization: standard

Cold junction compensation: CJC sensor attached to the input terminals

Specifications subject to change without notice

Enlaircon Pty Ltd

Website: www.enlaircon.com.au Email: sales@enlaircon.com.au Phone: (612) 9909 0353 Facsimile: (612) 9909 0823 Postal Address: PO Box 697 Spit Junction NSW 2088 Australia

INPUT & OUTPUT

■INPUT: thermocouples Minimum span: 3mV

Zero suppression/elevation: max. 3 times span

Input resistance: 20kΩ minimum

Burnout sensing: 0.1μA Temperature range

T/C	USABLE RANGE		MIN. SPAN	
1/0	°C	°F	°C	°F
(PR)	0 to 1760	32 to 3200	370	670
K (CA)	-270 to +1370	-450 to +2500	75	140
E (CRC)	-270 to +1000	-450 to +1830	50	100
J (IC)	-210 to +1200	-350 to +2190	60	110
T (CC)	-270 to +400	-450 to +750	75	140
B (RH)	0 to 1820	32 to 3300	780	1440
R	-50 to +1760	-50 to +3200	360	680
S	-50 to +1760	-50 to +3200	380	700
N	-270 to +1300	-450 to +2370	110	200

Remark: For the temperatures that range below 0°C, the transmitter may partially not satisfy the described accuracy. Consult factory.

■OUTPUT 1

•DC Current: 4 – 20mA DC Load resistance: 600Ω maximum

•DC Voltage: 1-5V DC

Load resistance: 500Ω minimum

■OUTPUT 2: 1 – 5V DC

Load resistance: 5000Ω minimum

INSTALLATION

Power input: 24V DC ±10% (ripple 10% p-p max.)

approx. 60mA with voltage output 1 approx. 90mA with current output 1

Operating temperature: -5 to +55°C (23 to 131°F)
Operating humidity: 30 to 90% RH (non-condensing)

Mounting: Standard Rack 10BX□

Dimensions: $W25 \times H99 \times D180 \text{ mm} (0.98" \times 3.90" \times 7.09")$

See General Spec. Sheet Figure A-1.

Weight: 220 g (0.49 lbs)

Terminal assignment: See General Spec. Sheet Figure B-3.

PERFORMANCE in percentage of span

Accuracy: ±0.1%

Linearization accuracy: ±0.05%

Cold junction compensation error: ±0.5°C or ±0.9°F maximum (at 20°C ±10°C or 68°F ±18°F)

Temp. coefficient: $\pm 0.015\% / ^{\circ}C \ (\pm 0.008\% / ^{\circ}F)$ Response time: $\leq 0.8 \ seconds \ (0-90\%)$

Burnout response: ≤10 seconds

Line voltage effect: ±0.1% over voltage range Insulation resistance: ≥100MΩ with 500V DC Dielectric strength: 500V AC @1 minute

(input to output 1 to output 2 to power)

1500V AC @1 minute

(input or output or power to ground)

SCHEMATIC CIRCUITRY & CONNECTION DIAGRAM

