Part I:

Data with Quarter Dummies and Structural Dummies:

```
SAS CODE:

PROC IMPORT OUT= WORK.bijesh

DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest

er II, Spring 2019\Econometric Methods\Homeworks\Homework 3\HW3-

DATA1_SEAS.tx

t"

DBMS=TAB REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

proc print;

run;
```

		The	SAS Sy	/ste	m			
Obs	QTR	HWIND	UNEMR	ST	Q1	Q2	Q3	Q4
1	1	104.63	5.63	1	1	0	0	0
2	2	103.53	5.46	1	0	1	0	0
3	3	97.3	5.63	1	0	0	1	0
4	4	95.96	5.6	1	0	0	0	1
5	1	98.83	5.83	1	1	0	0	0
6	2	97.23	5.76	1	0	1	0	0
7	3	99.06	5.56	1	0	0	1	0
8	4	113.66	5.63	1	0	0	0	1
9	1	117	5.46	1	1	0	0	0
10	2	119.66	5.26	1	0	1	0	0
11	3	124.33	5.06	1	0	0	1	0
12	4	133	5.06	1	0	0	0	1
13	1	143.33	4.83	1	1	0	0	0
14	2	144.66	4.73	1	0	1	0	0
15	3	152.33	4.46	1	0	0	1	0
16	4	178.33	4.2	1	0	0	0	1
17	1	192	3.83	0	1	0	0	0
18	2	186	3.9	0	0	1	0	0
19	3	188	3.86	0	0	0	1	0
20	4	193.33	3.7	0	0	0	0	1
21	1	187.66	3.63	0	1	0	0	0
22	2	175.33	3.83	0	0	1	0	0
23	3	178	3.93	0	0	0	1	0
24	4	187.66	3.96	0	0	0	0	1

1.

```
SAS Code:

proc reg data = bijesh;
model hwind = unemr q1 q2 q3;
run;
```


hwind = 367.74397 - 46.34188 unmer -1.56127q1 - 6.48665q2 - 7.78339q3 + e.

When, help wanted index is rising, there are a relatively large amount of position needing to be filled and can be interpreted as shortage of workers. Since fourth quarter is typically s period of increased retail activity, the labor shortage should be high and the help wanted index value should be high compared to other seasons. i.e. Help wanted index should have negative sign in comparison to fourth quarter and three seasons retain the predicted sign.

Looking at p-values, third quarter dummy (q3) is significantly different from zero but other are not at 5% level of significance but intercept and UNEMR are.

2.

```
SAS Code:
proc reg data = bijesh;
model hwind = unemr q1 q2 q3;
run;
test q1 = q2 = q3 = 0;
run;
```

Т	The SAS System											
The REG Procedure Model: MODEL1												
Test 4 Results	for [)ependent	Variable	HWIND								
Source	DF	Mean Square	F Value	Pr > F								
Numerator	Numerator 3 84.86107 2.72 0.0733											
Denominator	19	31.20154										

Looking at the p-value (0.0733) of F-test, the dummy variables are not significantly different than zero at 5% significance level. So, they should not be included in the equation.

3.

If the above model was estimated without seasonal dummy variables, the estimate would not answer the question whether different season affect help wanted index. Also, we would not be able to answer in which direction each season affect in the help wanted index. The seasonal dummy variable is omitted from the analysis.

4.

```
SAS Code:
I separated data into two files: (HW3-DATA1_SEAS1) one with seaonal dummy = 1 and
(HW3-DATA1_SEAS0) another with seasonal dummy = 0
Run Regression with variables which has seasonal dummy =1;
PROC IMPORT OUT= WORK.bijesh
            DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest
er II, Spring 2019\Econometric Methods\Homeworks\Homework 3\HW3-
DATA1 SEAS1.tx
            DBMS=TAB REPLACE;
     GETNAMES=YES;
     DATAROW=2;
RUN:
proc reg data = bijesh;
model hwind = unemr q1 q2 q3;
run;
Run Regression with variables which has seasonal dummy =0;
PROC IMPORT OUT= WORK.bijesh
            DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest
er II, Spring 2019\Econometric Methods\Homeworks\Homework 3\HW3-
DATA1 SEASO.tx
t"
            DBMS=TAB REPLACE;
     GETNAMES=YES;
     DATAROW=2;
RUN;
proc reg data = bijesh;
model hwind = unemr q1 q2 q3;
run;
Run Full Model with complete Data:
PROC IMPORT OUT= WORK.bijesh
            DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest
er II, Spring 2019\Econometric Methods\Homeworks\Homework 3\HW3-
DATA1 SEAS.tx
t"
            DBMS=TAB REPLACE;
     GETNAMES=YES;
     DATAROW=2;
RUN;
proc print;
proc reg data = bijesh;
model hwind = unemr q1 q2 q3 st;
run;
```

I would expect negative sign as first 16 observations (low value) has 1 and last 8 observations (high value) has 0 for structural change dummy.

Null Hypothesis: There is no structural Change. i.e. beta coefficients for UNEMR, Q1, Q2 and Q3 when seasonal dummy = 1 and that when seasonal dummy = 0 are equal.

 $Figure \ \ Regression \ model \ with \ seasonal \ dummy = 1 \ (left) \ and \ with \ seasonal \ dummy = 0 \ (right)$

Figure: Full model

 $SSE_U = 255.31476 + 131.08443 = 386.39919$

 $SSE_R = 592.82929$

Numerator df = 5

Denominator df = 24 - 10 = 14.

Fcalc = ((592.82929-386.39919)/5)/(386.39919/14) = 1.495873

Fcric (Prob = 0.05, N df = 5, D df = 14) = 2.96

Since, F-calc > F cric, we fail to reject null hypothesis. i.e. indicates no structural break.

5.

```
SAS Code:
proc reg data = bijesh;
model hwind = unemr q1 q2 q3 st;
run;
test st = 0;
run;
```

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: HWIND

Number of Observations Read	24
Number of Observations Used	24

	Analysis of Variance											
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F							
Model	5	31636	6327.29845	193.54	<.0001							
Error	18	588.46260	32.69237									
Corrected Total	23	32225										

Root MSE	5.71772	R-Square	0.9817
Dependent Mean	142.11750	Adj R-Sq	0.9767
Coeff Var	4.02324		

	Parameter Estimates												
Variable	DF	Parameter Standard Error		t Value	Pr > t								
Intercept	1	371.03952	11.68350	31.76	<.0001								
UNEMR	1	-47.30348	3.03032	-15.61	<.0001								
Q1	1	-1.39138	3.34426	-0.42	0.6823								
Q2	1	-6.36004	3.32515	-1.91	0.0718								
Q3	1	-7.72730	3.30586	-2.34	0.0312								
ST	1	1.82398	4.99077	0.37	0.7190								

The SAS System											
The REG Procedure											
Model: MODEL1											
Test 1 Results	for [Dependent	Variable	HWIND							
Source DF Square F Value Pr > F											
Source	DI.	Square	i value	Pr > F							
Numerator Numerator	1			0.7190							

 H_0 : $\beta_{st} = 0$ and H_a : $\beta_{st} \neq 0$,

The test with alternative hypothesis that the coefficient of the structural change dummy is zero is also not statistically significant as P-value is greater than 0.05. So we fail to reject null hypothesis.

6. Null Hypothesis: There is no structural break.

Alternative Hypothesis: There is seasonal break.

```
SAS Code:
Chow test without seasonal dummy variables:
proc autoreg data = bijesh;
model hwind = unemr/chow = (17);
run;

SAS Code:
Chow test with seasonal dummy variables:
proc autoreg data = bijesh;
model hwind = unemr q1 q2 q3/chow = (17);
run;
```

	The SAS System The AUTOREG Procedure										
	Ordinary Least Squares Estimates										
SSE			592.	82928	9 [)FE			19		
MSE			31	1.2015	4 F	Root MS	E		5.58583		
SBC			160.	96378	2 4	AIC .		155	.073513		
MAE		3.88			9 4	VICC		158	3.406847		
MAPE	MAPE			2.88260269		HQC			6.636203		
Durbir	-Wat	son	1.4008		8 T	Total R-Square			0.9816		
			Stru			ange Te					
Test	Bre	ak P	oint	Num	DF	F Den DF F Va					
Chow			17		5	1	4 ′	.50	.50 0.2532		
			Pa	ramet	er E	Estimate	es				
Vari	able	DF	Esti	mate	Sta	andard Error	t Valu		pprox Pr > t		
Inte	cept	1	367	.7440		7.2578	50.6	7	<.0001		
UNE	MR	1	-46	.3419		1.4686	-31.5	5 .	<.0001		
Q1		1	-1	.5613		3.2354	-0.4	3	0.6349		
Q2		1	-6	.4867		3.2308	-2.0	1	0.0591		
Q3		1	-7	.7834		3.2261	-2.4	1	0.0261		

			Th	ne SA	S	Systen	n			
			The A	AUTOF	REG	Proced	lure			
	(Ordi	nary	Least	Sqı	uares Es	stim	ates		
SSE			847.	41248	6 D)FE				22
MSE			38	3.5187	5 R	loot MS	E			6.20635
SBC			160.	00436	7 A	IC			157	.648259
MAE			5.0	66309	5 A	ICC			158	3.219688
MAPE			3.81	669697		HQC			158.273335	
Durbin-	Wats	son	1.5934		1 T	Total R-Square				0.9737
			Stru	ctural	Ch	ange Te	est			
Test	Bre	ak P	oint	Num	DF	Den D	FF	Val	lue Pr > F	
Chow			17		2	2	0	0.	96	0.3993
			Pa	ramet	er E	stimate	es			
Variable DF		DF	Estimate		Sta	Standard Error		alue	Approx Pr > t	
Interd	ept	1	364	.0475		7.8783	4	6.21		<.0001
UNEN	IR .	1	-46	.3965		1.6256	-2	8.54		<.0001

We fail to reject null hypothesis in both models indicating no structural break. The seasonal effect is not significant in the chow test for both models—with and without seasonal dummies. This result is also consistent with the model when seasonal dummy was included in the model instead of doing chow test. Both intercept and unemr are significant in both models. Chow test with seasonal variable is similar to the analysis on question 4.

Part II:

```
PROC IMPORT OUT= WORK.bm
            DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest
er II, Spring 2019\Econometric Methods\Homeworks\Homework 3\HW3-DATA2.xl
            DBMS=EXCEL REPLACE;
     RANGE="'FOOD COST$'";
     GETNAMES=YES;
     MIXED=NO;
     SCANTEXT=YES;
     USEDATE=YES;
     SCANTIME=YES;
RUN;
data bm; set bm;
y = y;
x = x;
sqx = x**2;
cubx = X**3;
run;
```

Total cost function:

$$Y = 134.65598 + 57.9702 X_1 - 11.02894 X_1^2 + 1.143 X_1^3 + e$$

	Parameter Estimates											
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t						
Intercept	Intercept	1	134.65598	44.80010	3.01	0.0061						
x	x	1	57.97021	29.97024	1.93	0.0650						
sqx		1	-11.02893	5.76461	-1.91	0.0677						
cubx		1	1.14312	0.33591	3.40	0.0023						

1. Marginal cost function is the first derivative of total cost function.

```
Y = 57.9702 - 2*11.02894 X_1 + 3*1.143 X_1^2 + e

Y_marginal = 57.9702 - 22.05788 X_1 + 3.429 X_1^2 + e
```

2. Average Cost Function: total cost divided by total unit of production i.e. X₁.

```
Y average = 134.65598/X_1 + 57.9702 - 11.02894X_1 + 1.143X_1^2 + e
```

3. CI = Parameter Estimates (β) \pm t-cric (df)* standard error.

```
t-cric(24) = 2.064 at alpha = 0.05/2. CI for \beta_2 = 57.97021 ± 2.064 * 29.97024 = [-3.885325, 119.8257] CI for \beta_3 = -11.02893 ± 2.064 * 5.76461 = [-22.92651, 0.8686457] CI for \beta_4 = 1.143118 ± 2.064 * 0.33591 = [0.44983, 1.836405]
```

4.

```
Ramsey RESET Test:

SAS Code:

proc autoreg data = bm;

model y = x sqx/reset;
run;
```

Null hypothesis: the model does not have omitted variable.

Alternative hypothesis: The model has omitted variable.

The SAS System The AUTOREG Procedure												
	Ordinary Least Squares Estimates											
	SSE			17104	.5631	DFE				25		
	MSE			684.	18252	Roc	t MSE	Ξ		26.15688		
	SBC	:		269.0	74261	AIC			26	65.077647		
	MAE			20.07	68933	AIC	С		26	66.077647		
	MAPE			7.3322	21229	HQC			26	66.299452		
	Durbin-Watson			1.3437		Total R-Square				0.9703		
				Powe	er RE	RESET Test SET Pr > F 3208 0.0055						
				4		'121 '917						
				Para	ametei	Esti	mates	5				
Variab	ole	DF	Estimat		ndard Error	.	'alue	Appro Pr >		Variable	Label	
Interce	ept	1	270.437	2 2	4.3040	'	11.13	<.000)1			
x		1	-39.546	50 1	0.4730		-3.78	0.000	9	X		
sqx		1	8.402	22	0.9449		8.89	<.000)1			

The P-value of RESET test for are not significantly different than zero as it is greater than 0.05. So we reject the null hypothesis which means the test is able to detect misspecification in the model. So, linear function would not be a good fit.

5.

```
proc autoreg data = bm;
model y = x sqx cubx/reset;
run;
```

Null hypothesis: the model does not have omitted variable.

Alternative hypothesis: The model has omitted variable.

The SAS System The AUTOREG Procedure												
			Ordi	nary Lea	st S	quar	es Est	timates	6			
	SSE	Ε		11537.4	473	DFE				24		
	MSI	E		480.72	697	Roo	t MSE			21.92549		
	SBO	0		261.381	542	AIC			25	6.052724		
	MAI	E		16.2005	518	AIC	С		25	7.791855		
	MAI	PE		5.99533	749	HQ(25	7.681797		
	Durbin-Watson			1.5174		Total R-Square				0.9800		
				Ramse	_	RESET Test						
				Power	RES							
				2		0.3307		_				
				3		0.5871						
				4	0.5	5906 0.6280		80				
				Param	neter	Esti	mates	;				
Varial	ble	DF	Estima	Stande E	dard Error		alue	Appro Pr >		Variable	Label	
Interc	ept	1	134.656	60 44.	8001		3.01	0.006	61			
x		1	57.970	29.	9702		1.93	0.065	0	X		
sqx		1	-11.028	39 5.	7646		-1.91	0.067	77			
cubx		1	1.143	31 0.	3359		3.40	0.002	23			

The P-value of RESET test are not significantly different than zero as they are greater than 0.05. So we fail to reject the null hypothesis which means the test is not able to detect any misspecification. Shows, quadratic function is a better fit.

6.

```
proc reg data = bm;
model y = x sqx cubx;
run;
test x = sqx = cubx = 0;
run;
```

Average cost function is not linear.

```
Ho: \beta_x = \beta_{sqx} = \beta_{cubx} = 0
```

H_a: At least one of them is different.

The SAS System The REG Procedure Model: MODEL1									
Source	DF	Mean Square	F Value	Pr > F					
Numerator	3	188070	391.22	<.0001					
Denominator	24	480.72697							

We reject null hypothesis. So, average cost is non-linear.

7: Original Cubic Cost Function and Log-log function outputs.

```
data bm; set bm;
y = y;
x = x;
lny = log(y);
lnx = log(x);
sqlnx = lnx**2;
run;
proc autoreg data = bm;
model y = x sqx cubx/reset;
run;

proc autoreg data = bm;
model lny = lnx sqlnx/reset;
run;
```


The SAS System											
The AUTOREG Procedure											
Ordinary Least Squares Estimates											
SSE		0.32244655		DFE				25			
MSE		0.01290		Root MSE				0.11357			
SBC		-35.535456		AIC				-39.53207			
MAE		0.09196309		AIC	AICC			-38.53207			
MAPE		1.62183883		HQC				-38.310265			
Durbin-Wat	son	1.4837		Tota	otal R-Square		are	0.9211			
		Ramsey's RESET Test									
		Power RE		SET	Pr:	Pr > F					
		2 19.6		6788	0.00	002					
		3	9.	9185	0.00	0.0008					
		4 6.3		3410	0.0029						
Parameter Estimates											
Variable	DF	Estima			tandard Error		alue	Approx Pr > t			
Intercept	1	5.5062		0.1	0.1434		8.38	<.0001			
Inx	1	-0.5080		0.2).2238		-2.27	0.0321			
sqlnx	1	0.4009		0.0783		5.12		<.0001			

In the original cubic function, the RESET test did not detect the omitted variable as the P-value is greater than 0.05. However, in the log-log model, the RESET test detect model misspecification as the P-value is less than 0.05 and there is room for improvement. So, I prefer original cubic function instead of log-log model.

```
SAS Code Compilation:
HW3-DATA1:
PROC IMPORT OUT= WORK.bijesh
            DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest
er II, Spring 2019\Econometric Methods\Homeworks\Homework 3\HW3-
DATA1 SEASO.tx
            DBMS=TAB REPLACE;
     GETNAMES=YES;
     DATAROW=2;
RUN;
proc print;
run;
proc reg data = bijesh;
model hwind = unemr q1 q2 q3;
test q1 = q2 = q3 = 0;
PROC IMPORT OUT= WORK.bijesh
            DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest
er II, Spring 2019\Econometric Methods\Homeworks\Homework 3\HW3-
DATA1 SEAS1.tx
t"
            DBMS=TAB REPLACE;
     GETNAMES=YES;
     DATAROW=2;
RUN:
proc print;
run;
proc reg data = bijesh;
model hwind = unemr q1 q2 q3;
test q1 = q2 = q3 = 0;
run;
PROC IMPORT OUT= WORK.bijesh
            DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest
er II, Spring 2019\Econometric Methods\Homeworks\Homework 3\HW3-
DATA1 SEAS.tx
t."
            DBMS=TAB REPLACE;
     GETNAMES=YES;
     DATAROW=2;
RUN:
proc print;
proc reg data = bijesh;
model hwind = unemr q1 q2 q3 st;
run;
test st = 0;
run;
proc autoreg data = bijesh;
model hwind = unemr q1 q2 q3/chow = (17);
run;
```

```
proc autoreg data = bijesh;
model hwind = unemr/chow = (17);
run;
proc print;
run;
SAS Code:
PART II:
PROC IMPORT OUT= WORK.bm
            DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest
er II, Spring 2019\Econometric Methods\Homeworks\Homework 3\HW3-DATA2.xl
            DBMS=EXCEL REPLACE;
     RANGE="'FOOD COST$'";
     GETNAMES=YES;
    MIXED=NO;
     SCANTEXT=YES;
     USEDATE=YES;
     SCANTIME=YES;
RUN;
proc print;
run;
data bm; set bm;
y = y;
x = x;
sqx = x**2;
cubx = X**3;
run;
proc print;
run;
proc reg data = bm;
model y = x sqx cubx;
run;
test x = 0;
test sqx = 0;
test cubx = 0;
test x = sqx = cubx = 0;
proc autoreg data = bm;
model y = x sqx/reset;
proc autoreg data = bm;
model y = x sqx cubx/reset;
data bm; set bm;
y = y;
x = x;
lny = log(y);
lnx = log(x);
sqlnx = lnx**2;
run;
proc autoreg data = bm;
model y = x sqx cubx/reset;
```

```
run;
proc autoreg data = bm;
model lny = lnx sqlnx/reset;
run;
```

AGEC5213: ECONOMETRIC METHODS Spring 2019

PROBLEM SET NO. 3 - due on March 27, 2019

Part I. (10 points). Consider the data set, *HW3-DATA1.txt*, to investigate the relationship between a help-wanted index (*HWIND*) and the level of unemployment (*UNEMR*, %). The data are quarterly data covering the period 2002-2007. Previously specified models assumed there was no seasonal influence on the help wanted index, other than that which would be captured by seasonal changes in the unemployment rate. Let us investigate whether this assumption is a reasonable one. Consider the model

$$HWIND_{i} = \beta_{0} + \beta_{1}UNEMR_{i} + \delta_{1}S_{1i} + \delta_{2}S_{2i} + \delta_{3}S_{3i} + e_{i}$$

where S_{1t} takes the value 1 for first-quarter observations and 0 otherwise, S_{2t} takes the value 1 for second-quarter observations (0 otherwise) and S_{3t} takes the value 1 for third-quarter observations (0 otherwise).

- 1) Report the estimated least-squares equation. Do the estimates of δ_1 , δ_2 and δ_3 have the expected signs? (**Hint**: the fourth-quarter is typically a period of increased retail activity) Are they significantly different from zero at a 5% level of significance?
- 2) Jointly test whether the seasonal dummy variables should be included in the equation. Use a 5% level of significance.
- 3) Suppose a student estimates above model without the seasonal dummy variables. What are the limitations do you expect from this estimation?
- 4) Suppose that a dummy variable taking the value 1 for the first 16 observations is included. If you suspect there has been a structural change such that a given level of *UNEMR*_t implies a higher value for *HWIND*_t during the last 8 observations, what sign do you expect on the coefficient of the dummy variable. Retaining the model with the seasonal dummies, and using a 5% significance level, test the hypothesis that the coefficient of the structural-change dummy is zero against the alternative that it has the sign you expected.
- 5) Redo the test with the alternative hypothesis that the coefficient of the structural-change dummy is non zero.
- 6) A better way to investigate the structural change between the first 16 quarters and the rest of the period is to use the Chow Test. Do the Chow Test with and without seasonal dummy variables, and compare these two results.

Part II. (10 points). Consider the following total cost function where y_i represents total cost for the t-th firm and x_i represents quantity of output.

$$y_t = \beta_1 + \beta_2 x_t + \beta_3 x_t^2 + \beta_4 x_t^3 + e_t$$

Data on a sample of 28 firms in the food processing industry are in the file HW3-DATA2.xls

- 1) Write down the marginal cost function corresponding to the above total cost function. What sign would you expect for β_4 ?
- 2) Write down the average cost function that corresponds to the above total cost function.
- 3) Find 95% confidence interval for the parameters β_2 , β_3 , β_4 .
- 4) Test whether the data suggest that a linear function will suffice.
- 5) Test whether the data suggest that a quadratic function will suffice.
- 6) What parameter restrictions imply a linear average cost function? Test these restrictions.
- 7) Estimate a log-log cost function of the form $\ln y_t = \alpha_1 + \alpha_2 \ln x_t + \alpha_3 (\ln x_t)^2 + e_t$. Does the RESET test suggest the log-log function is preferable to the original cubic cost function?