Predictive Modeling of Melbourne Housing Prices Using Machine Learning

Term Project - Machine Learning Models

for Business Analytics

Presented by: Masfa and Sana

Date: 1st June 2025

Introduction

Objective:

• Predict housing prices in Melbourne using machine learning.

Why this matters:

Accurate predictions help buyers, sellers, and investors.

Methods used:

- Linear Regression
- Decision Tree Regressor
- Random Forest Regressor

Dataset Overview

Dataset source:

Melbourne Housing Dataset (Kaggle)

Size and structure:

- ~1,350 rows, 21 columns
- Target variable: Price

Selected features:

 Rooms, Bathroom, Landsize, BuildingArea, etc.

Models Used

• Linear Regression:

Simple, interpretable baseline model.

• Decision Tree Regressor:

Handles non-linear relationships and splits data into decision nodes.

Random Forest Regressor:

Ensemble of decision trees for improved accuracy and generalization.

Evaluation Metric

Metric: Mean Absolute Error (MAE)

- Measures average magnitude of prediction errors.
- MAE = mean(|actual predicted|)

Why MAE?

- Intuitive and scale-sensitive.
- Easy to compare across models.

Results

Feature Importance

Feature Insights from Random Forest:

- Landsize, Rooms, and Bathroom were most influential.
- Importance visualization highlights which features impact predictions the most.

Why it matters:

- Helps explain the model.
- Guides future data collection priorities.

Conclusion

Random Forest achieved the best predictive performance.

Linear Regression was useful as a baseline model.