Semantics for the λ -calculus

Contents

Chapter 1. Definitions	5
1. Algebraic Theories	5
2. Algebras	5
3. Presheaves	6
4. λ -theories	6
Chapter 2. Lemmas	7
1. The endomorphism theory	7
2. The theory presheaf	8
3. The '+l' presheaf	8
4. Exponentiability of the theory presheaf	9
Chapter 3. Theorems	11
1. Scott's Representation Theorem	11
2. Locally cartesian closedness of the category of retracts	12
3. The Fundamental Theorem of the λ -calculus	12
Bibliography	17

CHAPTER 1

Definitions

1. Algebraic Theories

DEFINITION 1 (algebraic theory). We define an algebraic theory T to be a sequence of sets T_n indexed over $\mathbb N$ with for all $1 \le i \le n$ elements ("variables" or "projections") $x_{n,i}:T_n$ (we usually leave n implicit), together with a substitution operation

$$-\bullet$$
 $-: T_m \times T_n^m \to T_n$

for all m, n, such that

$$x_{j} \bullet g = g_{j}$$

$$f \bullet (x_{l,i})_{i} = f$$

$$(f \bullet g) \bullet h = f \bullet (g_{i} \bullet h)_{i}$$

for all $1 \leq j \leq l$, $f: T_l$, $g: T_m^l$ and $h: T_n^m$.

DEFINITION 2 (algebraic theory morphism). A morphism F between algebraic theories T and T' is a sequence of functions $F_n:T_n\to T'_n$ (we usually leave the n implicit) such that

$$F_n(x_j) = x_j$$

$$F_n(f \bullet g) = F_m(f) \bullet (F_n(g_i))_i$$

for all $1 \leq j \leq n$, $f: T_m$ and $g: T_n^m$.

REMARK 1. We can construct binary products of algebraic theories, with sets $(T \times T')_n = T_n \times T'_n$, variables (x_i, x_i) and substitution

$$(f, f') \bullet (g, g') = (f \bullet g, f' \bullet g').$$

In the same way, the category of algebraic theories has all limits.

2. Algebras

DEFINITION 3 (algebra). An algebra A for an algebraic theory T is a set A, together with an action

$$\bullet: T_n \times A^n \to A$$

for all n, such that

$$x_j \bullet a = a_j$$
$$(f \bullet g) \bullet a = f \bullet (g_i \bullet a)_i$$

for all $j, f: T_m, g: T_n^m$ and $a: A^n$.

DEFINITION 4 (algebra morphism). For an algebraic theory T, a morphism F between T-algebras A and A' is a function $F:A\to A$ such that

$$F(f \bullet a) = f \bullet (F(a_i))_i$$

for all $f: T_n$ and $a: A^n$.

Remark 2. The category of algebras has all limits. The set of a limit of algebras is the limit of the underlying algebras.

REMARK 3. Note that for an algebraic theory T, the T_n are all algebras for T, with the action given by \bullet .

3. Presheaves

DEFINITION 5 (presheaf). A presheaf P for an algebraic theory T is a sequence of sets P_n indexed over \mathbb{N} , together with an action

$$\bullet: P_m \times T_n^m \to P_n$$

for all m, n, such that

$$t \bullet (x_{l,i})_i = t$$
$$(t \bullet f) \bullet g = t \bullet (f_i \bullet g)_i$$

for all $t: P_l, f: T_m^l$ and $g: T_n^m$.

DEFINITION 6 (presheaf morphism). For an algebraic theory T, a morphism F between T-presheaves P and P' is a sequence of functions $F_n: P_n \to P'_n$ such that

$$F_n(t \bullet f) = F_m(t) \bullet f$$

for all $t: P_m$ and $f: T_n^m$.

We will write PT for the category of T-presheaves and their morphisms.

REMARK 4. The category of presheaves has all limits. The *n*th set \overline{P}_n of a limit \overline{P} of presheaves P_i is the limit of the *n*th sets $P_{i,n}$ of the presheaves in the limit diagram.

4. λ -theories

DEFINITION 7 (λ -theory). A λ -theory is an algebraic theory L, together with sequences of functions $\lambda_n: L_{n+1} \to L_n$ and $\rho_n: L_n \to L_{n+1}$, such that

$$\lambda(f) \bullet g = \lambda(f \bullet (g_1, \dots, g_m, x_{n+1}))$$

$$\rho(f \bullet g) = \rho(f) \bullet (g_1, \dots, g_m, x_{n+1})$$

for all $f: L_m$ and $g: L_n^m$. ((**TODO**): Fix)

DEFINITION 8 (β - and η -equality). We say that a λ -theory L satisfies β -equality (or that it is a λ -theory with β) if $\rho_n \circ \lambda_n = \mathrm{id}_{L_n}$ for all n. We say that is satisfies η -equality if $\lambda_n \circ \rho_n = \mathrm{id}_{L_{n+1}}$ for all n.

DEFINITION 9 (λ -theory morphism). A morphism F between λ -theories L and L' is an algebraic theory morphism F such that

$$F_n(\lambda_n(f)) = \lambda_n(F_{n+1}(f))$$

$$\rho_n(F_n(g)) = F_{n+1}(\rho_n(g))$$

for all $f: L_{n+1}$ and $g: L_n$.

Remark 5. The category of lambda theories has all limits, with the underlying algebraic theory of a limit being the limit of the underlying algebraic theories.

A λ -theory algebra or presheaf is a presheaf for the underlying algebraic theory.

Lemmas

1. The endomorphism theory

DEFINITION 10 (Endomorphism theory). Suppose that we have a category C and an object X:C, such that all powers X^n of X are also in C. The endomorphism theory E(X) of X is the algebraic theory given by $E(X)_n = C(X^n, X)$ with projections as variables $x_{n,i}:X^n\to X$ and a substitution that sends $f:X^m\to X$ and $g_1,\ldots,g_m:X^n\to X$ to $f\circ\langle g_i\rangle_i:X^n\to X^m\to X$.

Lemma 1. E(X) is indeed an algebraic theory.

PROOF. For $1 \leq j \leq l$, $f: E(X)_l$, $g: E(X)_m^l$ and $h: E(X)_n^m$, we have

$$x_j \bullet g = x_j \circ \langle g_i \rangle_i = g_j,$$

$$f \bullet (x_{l,i})_i = f \circ \langle x_{l,i} \rangle_i = f \circ \mathrm{id}_{X^l} = f$$

and

$$(f \bullet g) \bullet h = f \circ \langle g_i \rangle_i \circ \langle h_i \rangle_i = f \circ \langle g_i \circ \langle h_{i'} \rangle_{i'} \rangle_i = f \bullet (g_i \bullet h)_i.$$

DEFINITION 11 (Endomorphism λ -theory). Now, suppose that the exponential object X^X exists, and that we have morphisms back and forth $abs: X^X \to X$ and $app: X \to X^X$. Let, for $Y: C, \varphi_Y$ be the isomorphism $C(X \times Y, X) \xrightarrow{\sim} C(Y, X^X)$. We can give E(X) a λ -theory structure by setting, for $f: E(X)_{n+1}$ and $g: E(X)_n$,

$$\lambda(f) = abs \circ \varphi_{X^n}(f)$$
 $\rho(g) = \varphi_{X^n}^{-1}(app \circ g).$

Lemma 2. E(X) is indeed a λ -theory.

PROOF. Note that $\varphi: C(-\times X, X) \xrightarrow{\sim} C(-, X^X)$ is a natural isomorphism, so for $g: E(X)_n^m$, the following diagram commutes

$$C(X^{m} \times X, X) \xrightarrow{-\circ(\langle g_{i}\rangle_{i} \times \operatorname{id}_{X})} C(X^{n} \times X, X^{X})$$

$$\varphi_{X^{m}}^{-1} \nearrow \varphi_{X^{m}} \qquad \varphi_{X^{n}}^{-1} \nearrow \varphi_{X^{n}}$$

$$C(X^{m}, X^{X}) \xrightarrow{-\circ\langle g_{i}\rangle_{i}} C(X^{n}, X^{X})$$

and note that $\langle g_i \rangle_i \times \mathrm{id}_X = \langle g_1, \dots, g_m, x_{n+1} \rangle$. Then we have, for all $f : E(X)_m$

$$\lambda_m(f) \bullet g = abs \circ \varphi_{X^m}(f) \circ \langle g_i \rangle_i$$

$$= abs \circ \varphi_{X^n}(f \circ \langle g_1, \dots, g_m, x_{n+1} \rangle)$$

$$= \lambda_n(f \bullet (g_1, \dots, g_m, x_{n+1}))$$

and

$$\rho_n(f \bullet g) = \varphi_{X^n}^{-1}(app \circ f \circ \langle g_i \rangle_i)$$

$$= \varphi_{X^m}^{-1}(app \circ f) \circ \langle g_1, \dots, g_m, x_{n+1} \rangle$$

$$= \rho_m(f) \bullet (g_1, \dots, g_m, x_{n+1}).$$

2. LEMMAS

2. The theory presheaf

DEFINITION 12 (The theory presheaf). Let T be an algebraic theory. We can turn T into an T-presheaf T by setting $T_n = T_n$ and using the substitution from T:

$$\bullet: \tilde{T}_m \times T_n^m \to \tilde{T}_n.$$

Lemma 3. \tilde{T} is indeed a presheaf.

PROOF. For all $t : \tilde{T}_l, f : T_m^l$ and $g : T_n^m$,

$$t \bullet (x_{l,i})_i = t$$

and

$$(t \bullet f) \bullet g = t \bullet (f_i \bullet g)_i$$

because T is an algebraic theory.

LEMMA 4. Given an algebraic theory T and a T-presheaf Q, we have for all na bijection of sets

$$\varphi: PT(\tilde{T}^n, Q) \cong Q_n.$$

PROOF. Take $\varphi(f)=f_n(x_1,\ldots,x_n)$. Conversely, take $\varphi^{-1}(q)$ to be the presheaf morphism that sends $t:T_m^n$ to $q \bullet t : Q_m$. This is indeed a presheaf morphism, since for all $t : T_l^n$ and $f : T_m^l$,

$$\varphi^{-1}(q)(t \bullet f) = q \bullet t \bullet f = \varphi^{-1}(q)(t) \bullet f.$$

Now, for a presheaf morphism $f: T^n \to Q$ and $t: T_m^n$, we have

$$\varphi^{-1}(\varphi(f))(t) = f_n(x_1, \dots, x_n) \bullet t = f_n((x_1, \dots, x_n) \bullet t) = f_n(t_1, \dots, t_n) = f_n(t).$$

Conversely, given $q:Q_n$, we have

$$\varphi(\varphi^{-1}(q)) = q \bullet (x_1, \dots, x_n) = q.$$

which concludes the proof.

3. The '+l' presheaf

Let $\iota_{m,n}: T_m \to T_{m+n}$ denote the function that sends f to $f \bullet (x_{m+n,1}, \ldots, x_{m+n,m})$. Note that

$$\iota_{m,n}(f) \bullet g = f \bullet (g_i)_{i < m}$$

and

$$\iota_{m,n}(f \bullet g) = f \bullet g \bullet (x_i)_i = f \bullet (g_i \bullet (x_i)_i)_i = f \bullet (\iota_{m,n}(g_i))_i.$$

For tuples $x: X^m$ and $y: X^n$, let x+y denote the tuple $(x_1, \ldots, x_m, y_1, \ldots, y_n)$: X^{m+n} .

Definition 13 (The '+1' presheaf). Given a T-presheaf Q, we can construct a presheaf A(Q,l), given by $A(Q,l)_n = Q_{n+l}$. Then, for $q: A(Q,l)_m$ and $f: T_n^m$, the substitution is given by

$$q \bullet_{A(Q,l)} f = q \bullet_Q ((\iota_{n,l}(f_i))_i + (x_{n+i})_i)$$

Lemma 5. The +l presheaf is a presheaf

PROOF. We have, for $q: A(Q, l)_n$,

$$q \bullet_{A(Q,l)} (x_i)_i = q \bullet_Q ((\iota_{n,l}(x_i))_i + (x_{n+i})_i)$$
$$= q \bullet_Q ((x_i)_i + (x_{n+i})_i)$$
$$= q \bullet_Q (x_i)_i$$
$$= q.$$

We have, for $q: A(Q,k)_l$, $f: T_m^l$ and $g: T_n^m$,

$$q \bullet_{A(Q,k)} f \bullet_{A(Q,k)} g = q \bullet_{Q} ((\iota_{m,l}(f_{i}))_{i} + (x_{m+i})_{i}) \bullet_{Q} ((\iota_{n,l}(g_{i}))_{i} + (x_{n+i})_{i})$$

$$= q \bullet_{Q} (((\iota_{m,l}(f_{i}) \bullet_{T} ((\iota_{n,l}(g_{j}))_{j} + (x_{n+j})_{j}))_{i} + (x_{m+i} \bullet_{T} ((\iota_{n,l}(g_{j}))_{j} + (x_{n+j})_{j}))_{i}))$$

$$= q \bullet_{Q} ((f_{i} \bullet_{T} (\iota_{n,l}(g_{j}))_{j})_{i} + (x_{n+i})_{i})$$

$$= q \bullet_{Q} ((\iota_{n,l}(f_{i} \bullet_{T} g))_{i} + (x_{n+i})_{i})$$

$$= q \bullet_{A(Q,k)} (f_{i} \bullet_{T} g).$$

4. Exponentiability of the theory presheaf

Lemma 6. For all l, the presheaf \tilde{T}^l is exponentiable.

PROOF. We will show that A(-,l) constitutes a right adjoint to the functor $-\times \tilde{T}^l$. We will do this using universal arrows ([ML98], Chapter IV.1, Theorem 2 (iv)). To that end, we will need for all Q:PT a universal arrow $\varphi:A(Q,l)\times \tilde{T}^l\to Q$.

For $q: A(Q,l)_n = Q_{n+l}$ and $t: \tilde{T}_n^l$, we take $\varphi(q,t) = q \bullet_Q ((x_{n,i})_i + t)$. This is a presheaf morphism, since for all $q: A(Q,l)_m^l$, $t: \tilde{T}_m^l$ and $f: T_n^m$,

$$\begin{split} \varphi((q,t) \bullet_{A(Q,l) \times \tilde{T}^l} f) &= \varphi(q \bullet_{A(Q,l)} f, t \bullet_{\tilde{T}^l} f) \\ &= q \bullet_{A(Q,l)} f \bullet_Q ((x_i)_i + (t \bullet_{\tilde{T}^l} f)) \\ &= q \bullet_Q ((\iota_{n,l}(f_i))_i + (x_{n+i})_i) \bullet_Q ((x_i)_i + (t \bullet_{\tilde{T}^l} f)) \\ &= q \bullet_Q ((\iota_{n,l}(f_i) \bullet_T ((x_j)_j + (t \bullet_{\tilde{T}^l} f)))_i + (x_{n+i} \bullet_T ((x_j)_j + (t \bullet_{\tilde{T}^l} f)))_i) \\ &= q \bullet_Q ((f_i \bullet_T (x_j)_j)_i + ((t \bullet_{\tilde{T}^l} f)_i)_i) \\ &= q \bullet_Q ((f_i)_i + (t_i \bullet_{\tilde{T}} f)_i) \\ &= q \bullet_Q ((x_i \bullet_T f)_i + (t_i \bullet_T f)_i) \\ &= q \bullet_Q ((x_i)_i + t) \bullet_Q f \\ &= \varphi(q, t) \bullet_Q f. \end{split}$$

Now, given any presheaf Q': PT we need to show that any morphism $\psi: Q' \times \tilde{T}^l \to Q$ factors uniquely as $\varphi \circ (\tilde{\psi} \times \operatorname{id}_{\tilde{T}^l})$ for some $\tilde{\psi}: Q' \to A(Q, l)$. So, given such a ψ , and given $q: Q'_n$, we take $\tilde{\psi}(q) = \psi(\iota_{n,l}(q), (x_{n+i})_i)$

This is a presheaf morphism, since for all $q: Q'_m$ and $f: T_n^m$,

$$\tilde{\psi}(q \bullet f) = \psi(\iota_{n,l}(q \bullet f), (x_{n+i})_i)
= \psi(q \bullet (\iota_{n,l}(f_i))_i, (x_{n+i})_i)
= \psi((\iota_{m,l}(q), (x_{m+i})_i) \bullet_{Q' \times \tilde{T}^l} ((\iota_{n,l}(f_i))_i + (x_{n+i})_i))
= \psi(\iota_{m,l}(q), (x_{m+i})_i) \bullet_Q ((\iota_{n,l}(f_i))_i + (x_{n+i})_i)
= \tilde{\psi}(q) \bullet_{A(Q,l)} f.$$

Note that indeed $\varphi \circ (\tilde{\psi} \times id_{\tilde{T}^l}) = \psi$:

$$\varphi(\tilde{\psi}(q),t) = \varphi(\psi(\iota_{n,l}(q),(x_{n+i})_i),t)$$

$$= \psi(\iota_{n,l}(q),(x_{n+i})_i) \bullet ((x_i)_i + t)$$

$$= \psi(\iota_{n,l}(q) \bullet ((x_i)_i + t),(x_{n+i})_i \bullet ((x_i)_i + t))$$

$$= \psi(q \bullet (x_i)_i,(t_i)_i)$$

$$= \psi(q,t).$$

10 2. LEMMAS

Now, suppose that we have another $\tilde{\psi}': Q' \to A(Q, l)$ such that $\varphi \circ (\tilde{\psi}' \times \mathrm{id}_{\tilde{T}^l}) = \psi$. Then we have

$$\tilde{\psi}(q) = \psi(\iota_{n,l}(q), (x_{n+i})_i)
= (\varphi \circ (\tilde{\psi}' \times \operatorname{id}_{\tilde{T}^l}))(\iota_{n,l}(q), (x_{n+i})_i)
= \varphi(\tilde{\psi}'(\iota_{n,l}(q)), (x_{n+i})_i)
= \tilde{\psi}'(\iota_{n,l}(q)) \bullet ((x_i)_i + (x_{n+i})_i)
= \iota_{n,l}(\tilde{\psi}'(q)) \bullet ((x_i)_i + (x_{n+i})_i)
= \tilde{\psi}'(q) \bullet (x_i)_i
= \tilde{\psi}'(q),$$

so $\tilde{\psi}$ is unique, which completes the proof.

Now, this adjunction $- \times \tilde{T}^l \dashv A(-,l)$ induces a natural isomorphism

$$\varphi: PT(-\times \tilde{T}^l, \tilde{T}) \xrightarrow{\sim} PT(-, A(\tilde{T}, l))$$

LEMMA 7. For all $f: PT(\tilde{T}^n \times \tilde{T}^l, \tilde{T})$,

$$\varphi_{\tilde{T}^n}(f)(q) = f(\iota_{m,l}(q), (x_{m+i})_i)$$

Proof. (TODO)

LEMMA 8. For all $f: PT(\tilde{T}^n, A(\tilde{T}, l))$,

$$\varphi_{\tilde{T}^n}^{-1}(f)(q,t) = f(q) \bullet ((x_i)_i + t).$$

Proof. (TODO) \Box

CHAPTER 3

Theorems

1. Scott's Representation Theorem

Theorem 1. Any λ -theory L is isomorphic to the endomorphism λ -theory $E(\tilde{L})$ of \tilde{L} in the presheaf category of L.

PROOF. First of all, remember that \tilde{L} is indeed exponentiable and that $\tilde{L}^{\tilde{L}} = A(\tilde{L},1)$. Now, since L is a λ -theory, we have functions back and forth $\lambda: A(\tilde{L},1) \to \tilde{L}$ and $\rho: \tilde{L} \to A(\tilde{L},1)$. These are presheaf morphisms because for all $f: A(\tilde{L},1)_m$ and $g: \tilde{L}_m$ and $t: T_m^m$,

$$\lambda(f \bullet_{A(\tilde{L},1)} t) = \lambda(f \bullet_{\tilde{L}} ((\iota_{m,1}(t_i))_i + (x_{n+1}))) = \lambda(f) \bullet_{\tilde{L}} t$$

and

$$\rho(g \bullet_{\tilde{L}} t) = \rho(g) \bullet_{\tilde{L}} ((\iota_{m,1}(t_i))_i + (x_{n+1})) = \rho(g) \bullet_{A(\tilde{L}_{i,1})} t.$$

Therefore, $E(\tilde{L})$ is indeed a λ -theory.

For any presheaf Q and for any n, we have a bijection $PL(L^n, Q) \cong Q_n$. Then we have $\varphi : E(\tilde{L})_n \cong L_n$. This bijection is an isomorphism of λ -theories, since it preserves the x_i , \bullet , ρ and λ : for all $1 \leq j \leq n$, $f : E(\tilde{L})_m$, $g : E(\tilde{L})_{m+1}$ and $h : E(\tilde{L})_n^m$.

$$\varphi(x_j) = x_j(x_1, \dots, x_n)$$

$$= x_j;$$

$$\varphi(f \bullet h) = f \circ \langle h_i \rangle_i ((x_i)_i)$$

$$= f((h_i((x_j)_j))_i)$$

$$= f((x_i)_i \bullet (h_i((x_j)_j))_i)$$

$$= f((x_i)_i) \bullet (h_i((x_j)_j))_i$$

$$= \varphi(f) \bullet (\varphi(h_i))_i;$$

$$\varphi(\rho(f)) = \rho(f)((x_i)_i)$$

$$= \rho(f((x_i)_i)) \bullet (x_i)_i$$

$$= \rho(f((x_i)_i))$$

$$= \rho(\varphi(f));$$

$$\varphi(\lambda(g)) = \lambda(g)((x_i)_i)$$

$$= \lambda(\varphi(x_n(g)((x_i)_i))$$

$$= \lambda(g(\iota_{m,l}((x_i)_i) + (x_{m+1})))$$

$$= \lambda(g((x_i)_i))$$

$$= \lambda(\varphi(g)).$$

2. Locally cartesian closedness of the category of retracts

DEFINITION 14 (Category of retracts). The category of retracts for a λ -theory L is the category with objects $f: L_n$ such that $f \bullet f = f$ and it has as morphisms $g: f \to f'$ the terms $g: L_n$ such that $f' \bullet g \bullet f = g$. The object $f: L_n$ has identity element f, and we have composition $g \circ g' = g \bullet g'$. These are morphisms (**TODO**)

Lemma 9. The category of retracts is indeed a category.

Theorem 2. The category of retracts is locally cartesian closed (TODO).

3. The Fundamental Theorem of the λ -calculus

DEFINITION 15 (Λ). There is a special λ -theory, given by the λ -calculus itself. Λ_n is the set of λ -terms with n free variables, the x_i are the free variables, and \bullet is given by substitution. λ sends $f: \Lambda_{n+1}$ to $\lambda x_{n+1}, f$ and ρ sends $f: \Lambda_n$ to $\iota_{n,1}(f)x_{n+1}$ in Λ_n .

Lemma 10. Λ is indeed a λ -theory.

LEMMA 11. Λ is the initial λ -theory.

PROOF. Given a λ -theory L, we construct a morphism $f: \Lambda \to L$ by induction on the λ -terms. We set $f(x_i) = x_i$, $f(\lambda(t)) = \lambda(f(t))$ and $f(st) = \rho(f(s)) \bullet ((x_i)_i + (f(t)))$.

This is a λ -theory morphism because (**TODO**)

It is unique, since
$$(TODO)$$

DEFINITION 16 (Pullback of algebras). If we have a morphism of algebraic theories $f: T' \to T$, we have a functor $AT \to AT'$.

On objects, it sends a T-algebra A to a T'-algebra with set A and action $g \bullet_{T'} a = f(g) \bullet_T a$. This is a T'-algebra because **(TODO)**.

On morphisms, it sends $\varphi:A\to A$ to $\varphi:A\to A$. This is a T'-algebra morphism because for all $g:T'_n$ and $a:A^n$, we have

$$\varphi(g \bullet_{T'} a) = \varphi(f(g) \bullet_T a) = f(g) \bullet_T \varphi(a) = g \bullet_{T'} \varphi(a).$$

Lemma 12. This is indeed a functor.

Proof. (TODO)
$$\Box$$

DEFINITION 17 (Term algebra). Given an algebraic theory T, for every n, T_n together with the action operator $\bullet: T_m \times T_n^m \to T_n$ gives a T-algebra.

Lemma 13. T_n is indeed a T-algebra.

DEFINITION 18. For all n, we have a functor from lambda theories to Λ -algebras. It sends the λ -theory L to the L-algebra L_n and then turns this into a Λ -algebra via the morpism $\Lambda \to L$.

It sends morphisms $f: L \to L'$ to $f_n: L_n \to L'_n$. This is a Λ -algebra morphism because **(TODO)**

Lemma 14. This indeed constitutes a functor.

Proof. (TODO)
$$\Box$$

Remark 6. Note that for a monoid M, if we view M as a category, the category $[M^{op}, \mathbf{SET}]$ consists of sets with a right M-action.

DEFINITION 19 (The exponential object in the presheaf category). Given a monoid M, if we have two presheaves (sets with right M-actions) P and P', we have a set of M-equivariant maps

$$F_{P,P'} = \left\{ f: M \times P \rightarrow P' \mid \prod_{p:P,m,m':M} f(m,p)m' = f(mm',pm') \right\}$$

with a right M-action, given by fm'(m,p) = f(m'm,p). This is again M-equivariant because

$$fm'(m,p)m'' = f(m'm,p)m'' = f(m'mm'',pm'') = fm'(mm'',pm''),$$

so $F_{P,P'}$ is a presheaf.

Now, to show that $F_{P,P'}$ is the exponential object ${P'}^P$, we show that for any P, $F_{P,-}$ is the left adjoint of $- \times P$. So we need for all P' : PT, a universal arrow $\varphi : F_{P,P'} \times P \to P'$.

First of all, we have an evaluation map $\varphi: F_{P,P'} \times P \to P'$ given by $(f,p) \mapsto f(I,p)$ for I the unit of the monoid. This map is equivariant because for all m,

$$(f,p)m = (fm,pm) \mapsto fm(I,pm) = f(m,pm) = f(I,p)m.$$

Now, given any presheaf Q and any morphism $\psi: Q \times P \to P'$, take $\tilde{\psi}: Q \to F_{P,P'}$ given by $\psi(q)(m,p) = \psi(qm,p)$. This is equivariant because

$$\tilde{\psi}(q)m(m',p) = \tilde{\psi}(q)(mm',p) = \psi(qmm',p) = \tilde{\psi}(qm)(m',p)$$

and we have

$$\varphi(\tilde{\psi}(q), p) = \tilde{\psi}(q)(I, p) = \psi(q, p).$$

Now, suppose that we have $\tilde{\psi}': Q \to F_{P,P'}$ such that $\varphi \circ (\tilde{\psi}' \times id_P) = \psi$. Then for all q: Q, m: M and p: P,

$$\tilde{\psi}(q)(m,p) = \psi(qm,p) = \varphi(\tilde{\psi}'(qm),p) = \tilde{\psi}'(qm)(I,p) = \psi'(q)m(I,p) = \psi'(q)(m,p),$$

so $\tilde{\psi}$ is unique and $F_{P,P'}$ is an exponential object.

DEFINITION 20 (n-functional terms). Let A be a Λ -algebra. We define

$$A(n) = \{a : A \mid (\lambda x_2 x_3 \dots x_{n+1}, x_1 x_2 x_3 \dots x_{n+1}) \bullet a = a\}.$$

Definition 21. Take
$$\mathbf{1}_n = (\lambda x_1 \dots x_n, x_1 \dots x_n) \bullet () : A$$
.

Definition 22. We define composition as $a \circ b = (\lambda x_3, x_1(x_2x_3)) \circ (a, b)$ for a, b : A.

Lemma 15. This composition is associative.

DEFINITION 23 (The monoid of a Λ -algebra). Now we make A(1) into a monoid with unit $\lambda x_1, x_1$.

Lemma 16. This is indeed a monoid.

From here on, we will assume that Λ (and therefore, any λ -theory) satisfies β -equality.

LEMMA 17. For
$$a:A$$
, a is in $A(n)$ iff $\mathbf{1}_n \circ a = a$.

Proof.

$$\begin{aligned} \mathbf{1}_{n} \circ a &= (\lambda x_{3}, x_{1}(x_{2}x_{3})) \bullet (((\lambda x_{1} \dots x_{n}, x_{1} \dots x_{n}) \bullet ()), a) \\ &= (\lambda x_{3}, x_{1}(x_{2}x_{3})) \bullet (((\lambda x_{2} \dots x_{n+1}, x_{2} \dots x_{n+1}) \bullet a), x_{1} \bullet a) \\ &= ((\lambda x_{3}, x_{1}(x_{2}x_{3})) \bullet ((\lambda x_{2} \dots x_{n+1}, x_{2} \dots x_{n+1}), x_{1})) \bullet a \\ &= (\lambda x_{2}, (\lambda x_{3} \dots x_{n+2}, x_{3} \dots x_{n+2})(x_{1}x_{2})) \bullet a \\ &= (\lambda x_{2}x_{3} \dots x_{n+1}, x_{1}x_{2} \dots x_{n+1}) \bullet a. \end{aligned}$$

DEFINITION 24 (The presheaf category of a Λ -algebra). Let A be a Λ -algebra. If we view the monoid A(1) as a one-object category, we define the category PA to be the category of presheaves $[A(1)^{\text{op}}, \mathbf{SET}]$.

Definition 25 (The objects A(n) in PA). Given a:A(n) and b:A(1), we have

$$\mathbf{1}_n \circ (a \circ b) = (\mathbf{1}_n \circ a) \circ b = a \circ b,$$

so $a \circ b : A(n)$ and we have a right A(1)-action on A(n), which makes A(n) into an object in PA.

LEMMA 18. We have $A(1)^{A(1)} \cong A(2)$.

DEFINITION 26 (Endomorphism λ -theory of a Λ -algebra). PA borrows products from **SET**. Therefore, the algebraic theory E(A(1)) exists. Now note that A(1) is exponentiable and $A(1)^{A(1)} \cong A(2)$. Note that $A(2) \subseteq A(1)$ and that $(\lambda x_2 x_3, x_1 x_2 x_3) \bullet -$ gives a function from A(1) to A(2). This gives E(A(1)) a λ -theory structure.

Theorem 3. There exists an adjoint equivalence between the category of λ -theories, and the category of algebras of Λ .

PROOF. We will show that the functor $L \mapsto L_0$ is an equivalence of categories. It is essentially surjective, because L is isomorphic **(TODO)** to E(A(1)).

Now, given morphisms $f, f': L \to L'$. Suppose that $f_0 = f'_0$. Suppose that L and L' have β -equality. Then, given $l: L_n$, we have

$$f_n(l) = \rho^n(\lambda^n(f_n(l))) = \rho^n(f_0(\lambda^n(l))) = \rho^n(f_0'(\lambda^n(l))) = \rho^n(\lambda^n(f_n'(l))) = f_n'(l),$$
 so the functor is faithful.

The functor is full because a Λ -algebra morphism $f:A\to A'$ induces a morphism $f^*:PA'\to PA$ (TODO), and via left Kan extension we get a left adjoint $f_*:PA\to PA'$ with $f_*(A(1))\cong A'(1)$ (TODO). Now, f_* preserves (finite) products (TODO), so we have maps $PA(A(1)^n,A(1))\to PA'(A'(1)^n,A'(1))$ and so a map $E(A(1))\to E(A'(1))$ (TODO). This map, when restricted to a map $PA(1,A(1))\to PA'(1,A(1))$, and transported along the isomorphism $a\mapsto aI$ (TODO), is equal to f (TODO).

Lemma 19. The category of T-algebras has coproducts.

DEFINITION 27 (Theory of extensions). Let T be an algebraic theory and A a T-algebra. We can define an algebraic theory T_A called 'the theory of extensions of A' with $(T_A)_n = T_n + A$. The left injection of the variables $x_i : T_n$ gives the variables. Now, take $h : (T_n + A)^m$. Sending $g : T_m$ to $\varphi(g) := g \bullet h$ gives a T-algebra morphism $T_m \to T_n + A$ since

$$\varphi(f \bullet g) = f \bullet g \bullet h = f \bullet (g_i \bullet h) = f \bullet (\varphi(g_i))_i.$$

This, together with the injection morphism of A into $T_n + A$, gives us a T-algebra morphism from the coproduct: $T_m + A \to T_n + A$. We especially have a function on sets $(T_m + A) \times (T_n + A)^m \to T_n + A$, which we will define our substitution to be.

Lemma 20. T_A is indeed an algebraic theory.

Proof. (TODO)

Bibliography

 $[{\rm ML98}] \ \ {\rm Saunders} \ \ {\rm Mac} \ \ {\rm Lane}. \ \ {\it Categories for the working mathematician}, \ {\rm volume} \ \ 5 \ \ of \ \ {\it Graduate} \ \ {\it Texts in Mathematics}. \ \ {\rm Springer-Verlag}, \ {\rm New York}, \ {\rm second \ edition}, \ 1998.$