Let's assume that T is an ω -categorical theory with countable model M and that $X: Mod(T) \to Set$ is a Δ -functor. For every $x \in X(M)$, we know there is an $a_x \in M$ (of some length) which is a support for x i.e. if $f,g:M \to N$ such that $f(a_x) = g(a_x)$ then X(f)(x) = X(g)(x).

Now for each $x \in X(M)$, consider a relation R_x which will be defined for all $N \in Mod(T)$.

$$R_x^N = \{ (f(a_x), X(f)(x)) \in N \times X(N) : f : M \to N \}.$$

Consider the class of structures

$$C = \{(N, X(N), \{R_x^N : x \in X(M)\}) : N \in Mod(T)\}.$$

Claim: C is an elementary class.

It suffices to show that if $\hat{N}_i=(N_i,X(N_i),\{R_x^{N_i}:x\in X(M)\})\in C$ for $i\in I$ and U is an ultrafilter on I then

$$R_x^{\prod_U \tilde{N}_i} = \prod_U R_x^{\tilde{N}_i}.$$

By Los, the inclusion right to left is clear. In the other direction, imagine that (\bar{a},\bar{x}) is in the left side. So there is some $f:M\to\prod_U N_i$ such that $f(a_x)=\bar{a}$ and $X(f)(x)=\bar{x}$. Using ω -categoricity and Los, ultrafilter often, \bar{a}_i has the same type as a_x . Let $f_i:M\to N_i$ send a_x to \bar{a}_i for those i's (M) is the prime model of T so such a map exists). Now the map $(\prod_U f_i)\circ\Delta$ agrees with f on a_x and so $\prod_U X(f_i)\circ\Delta$ agrees with X(f) on a_x . This means that ultrafilter often $X(f_i)(x)=x_i$ which is what we wanted.

Now we get to invoke conceptual completeness. Consider the forgetful functor $F:C\to Mod(T)$ sending \tilde{N} to N. This is certainly onto on objects; the only thing to check is that if $f:N\to N^U$ is an elementary map then this lifts to an embedding between \tilde{N} and $\prod_U \tilde{N}$. On X(N), let's have it act as X(f). Suppose now that $R_x(n,y)$ holds in \tilde{N} . There is some elementary $g:M\to N$ such that $g(a_x)=n$ and X(g)(x)=y. But then $f(g(a_x))=f(n)$ and X(f)(g(x))=X(f)(y) and so $R_x(f(a_x),X(f)(x))$ holds in $\prod_U \tilde{N}$.

In the other direction, if $R_x(f(n),X(f)(x))$ holds in \tilde{N}^U then consider the map $g:M\to N^U$ which witnesses this. Without loss, since M is the prime model of T we may assume that g maps M into f(N). Let $h=f^{-1}\circ g$ and apply the previous argument to see that $R_x(n,y)$ holds in N.

Now we have the assumptions of conceptual completeness and we conclude that the sort X is equivalent to one in T^{eq} and that all the R_x 's are definable in T^{eq} .