Höhere Analysis I

Sommersemester 2015

Prof. Dr. D. Lenz

Blatt 6

Abgabe Dienstag 02.06.2015

- (1) Finden Sie jeweils ein Beispiel eines Hilbertraumes $(H, \langle \cdot, \cdot \rangle)$ und einer Teilmenge $A \subseteq H$ mit einem $x \in H \setminus A$, so dass gilt:
 - (a) A ist konvex aber nicht abgeschlossen und es gibt keine beste Approximation von x in A.
 - (b) A ist abgeschlossen aber nicht konvex und es gibt mehr als eine beste Approximation von x in A.
 - (c) A ist abgeschlossen aber nicht konvex und es gibt keine beste Approximation von x in A.

Können Sie in (c) auch ein Beispiel mit einem endlich dimensionalen Hilbertraum angeben?

- (2) Zeigen Sie, dass der Approximationssatz in ℓ^{∞} nicht gilt. <u>Hinweis:</u> Finden Sie eine Teilmenge von ℓ^{∞} , so dass es zu gegebenen $x \in \ell^{\infty}$ mehrere beste Approximationen gibt.
- (3) Gegeben sei ein Vektorraum X mit einem Semi-Skalarprodukt $\langle \cdot, \cdot \rangle$ und $N := \{x \in X \mid \langle x, x \rangle = 0\}$. Zeigen Sie, dass auf dem Quotientenraum X/N durch

$$\langle [x], [y] \rangle := \langle x, y \rangle$$

für Elemente $[x], [y] \in X/N$ ein Skalarprodukt definiert wird.

(4) Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum und $P: H \to H$ eine lineare Abbildung. Zeigen Sie folgende Aussage. Es ist P genau dann die orthogonale Projektion auf einen abgeschlossenen Unterraum, wenn $P = P^2$ und $\langle Pu, v \rangle = \langle u, Pv \rangle$ für alle $u, v \in H$ gilt.