Eigen-7

Title

Behaviors of a cantilever beam under concentrated loads at the free end

Description

Examine the static & dynamic behaviors of a cantilever beam.

Structural analysis model and load cases

Model

Analysis Type

3-D eigenvalue analysis

Unit System

m, tonf

Dimension

Length 5 m

Element

Solid element

Material

Concrete Modulus of elasticity E = $2.1 \times 10^6 \text{ tonf/m}^2$ Poisson's ratio ν = 0.167 Weight density γ = 2.4 tonf/m³

Boundary Condition

Nodes 1, 2, 3 and 4; Constrain all DOFs.

Load Case

A concentrated load, 1 tonf is applied to each of the nodes 41, 42, 43 and 44 at the free end. The load cases 1,2 and 3 represent the loads acting in the directions of X, Y and Z respectively.

Analysis Case

Self weight is converted to nodal masses automatically. Number of natural frequencies to be computed = 10

Results

Displacements (Solid element)

	Node	Load	DX (m)	DY (m)	DZ (m)	RX ([rad])	RY ([rad])	RZ ([rad])
-	41	CASE1	9.5054e-006	7.9524e-008	7.9524e-008	0.0000e+000	0.0000e+000	0.0000e+000
	42	CASE1	9.5054e-006	-7.9524e-008	7.9524e-008	0.0000e+000	0.0000e+000	0.0000e+000
	43	CASE1	9.5054e-006	7.9524e-008	-7.9524e-008	0.0000e+000	0.0000e+000	0.0000e+000
	44	CASE1	9.5054e-006	-7.9524e-008	-7.9524e-008	0.0000e+000	0.0000e+000	0.0000e+000
	41	CASE2	2.8510e-004	3.8100e-003	1.9129e-007	0.0000e+000	0.0000e+000	0.0000e+000
	42	CASE2	-2.8510e-004	3.8100e-003	-1.9129e-007	0.0000e+000	0.0000e+000	0.0000e+000
	43	CASE2	2.8510e-004	3.8100e-003	-1.9129e-007	0.0000e+000	0.0000e+000	0.0000e+000
	44	CASE2	-2.8510e-004	3.8100e-003	1.9129e-007	0.0000e+000	0.0000e+000	0.0000e+000
	41	CASE3	2.8510e-004	1.9129e-007	3.8100e-003	0.0000e+000	0.0000e+000	0.0000e+000
	42	CASE3	2.8510e-004	-1.9129e-007	3.8100e-003	0.0000e+000	0.0000e+000	0.0000e+000
	43	CASE3	-2.8510e-004	-1.9129e-007	3.8100e-003	0.0000e+000	0.0000e+000	0.0000e+000
	44	CASE3	-2.8510e-004	1.9129e-007	3.8100e-003	0.0000e+000	0.0000e+000	0.0000e+000

Eigenvalue Analysis Results (Solid element)

				E 1	CENV	ALUE	A M	ALYS	LC				
			F		GENV	Per		ALYS	15				
ļ	Mode No	-						Tolerance					
ļ		- (100))		(cycle/sec)		(86		7.0015 040					
ļ	1		,826542		,362535		,106809		45e-016				
ļ	2		,826542		,362535		,106809		82e-016				
ļ	3		,409943		,292010		0,018086		00e+000				
	4		,283594		,431056		0,018040		86e-016				
ļ	5		,283594		,431056		0,018040	-,	89e-016				
	6		,298137		,400983		0,006925		10e-012				
ļ	7		,298137		,400983		0,006925		43e-010				
	8		,975281		5,577768		0,006822		26e-010				
	9	1033	,675445	164	,514557		0,006078	1,72	40e-008				
	10	1631	,288670	259	9,627655		0,003852	5,46	85e-007				
	MODAL PARTIC					IPATION	MASSE	S(%) PR	INTOUT				
	Mode	TRA	N-X	TRA	N-Y	TRA	N-Z	ROT	N-X	ROT	N-Y	ROT	N-Z
	No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
	1	0,00	0,00	26,52	26,52	37,07	37,07	0,00	0,00	0,00	0,00	0,00	0,00
	2	0,00	0,00	37,07	63,59	26,52	63,59	0,00	0,00	0,00	0,00	0,00	0,00
	3	0,00	0,00	0,00	63,59	0,00	63,59	0,00	0,00	0,00	0,00	0,00	0,00
	4	0,00	0,00	10,43	74,02	9,33	72,92	0,00	0,00	0,00	0,00	0,00	0,00
	5	0,00	0,00	9,33	83,35	10,43	83,35	0,00	0,00	0,00	0,00	0,00	0,00
	6	0,00	0,00	4,99	88,34	1,65	85,00	0,00	0,00	0,00	0,00	0,00	0,00
	7	0,00	0,00	1,65	89,99	4,99	89,99	0,00	0,00	0,00	0,00	0,00	0,00
	8	84,80	84,80	0,00	89,99	0,00	89,99	0,00	0,00	0,00	0,00	0,00	0,00
	9	0,00	84,80	0,00	89,99	0,00	89,99	0,00	0,00	0,00	0,00	0,00	0,00
i e	10	0.00	84.80	1.36	91.35	2.00	91,99	0.00	0.00	0.00	0.00	0.00	0.00
	10	0,00	04,00	1,00	01,00	2,00	01,00	0,00	0,00		0,00		0,00

Comparison of Results

Displacements

			Unit: m	
Load Coco	NISA II	MIDAS/Civil	MIDAS/Civil	
Load Case	(Solid elements)	(Beam elements)	(Solid elements)	
LDC 1 (X direction)	9.505E-06	9.524E-06	9.505E-06	
LDC 2 (Y direction)	0.003810	0.003836	0.003810	
LDC 3 (Z direction)	0.003810	0.003836	0.003810	

Natural Periods

			Unit : sec
Natural Period	NISA II	MIDAS/Civil	MIDAS/Civil
Natural Ferrod	(Solid elements)	(Beam elements)	(Solid elements)
1 st mode	0.1068087	0.1067212	0.1068097
4 th mode	0.0180404	0.0177576	0.0180404
6 th mode	0.0069252	0.0067133	0.0069252
8 th mode	0.0068223	0.0068348	0.0068223

Reference

Tomas J.R. Hughes, "The Finite Element Method", Chapter 3