Regression 1d. Mahfuzur Paker

Lecturer, Statistics

Content

- ► Simple linear regression
 - Regression Model
 - Analysis procedure
 - Goodness of fit
 - Prediction
 - Interpretations

- Regression analysis is a technique that studies the cause and effect relationship between two or more variables
- Assume or suspect a cause and effect relationship between variables
 - causal variables as independent variables
 - affected variables as dependent variables
- ▶ Regression analysis explains and predicts the changes in the magnitudes of dependent variable(s) in terms of independent variable(s).

Example 1:

- We know that, there is a positive relationship between income and expenditure, i.e. an increase in income increases expenditures.
- As increase in income causes an increase in expenditures, we took in come as independent variable (X) and expenditures as dependent variable (Y).
- And found a fitted regression model-

$$\hat{Y} = a + bX = 15000 + .78X$$

Where, Y= expenditure and X=income

Simple Linear Regression

Simple Linear Regression Model:

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

$$i = 1, 2, ..., n$$

Where,

Y= dependent variable

X= independent variable

α= Intercept

β= Slope

Regression coefficients (Parameters)

E= Error term (unexplained factor)

Simple Linear Regression

Estimating Parameters regression line:

One important objectives of regression analysis is to find estimates for α and β for a given model. There are several methods of estimating the parameters of a regression model. Such as:

- Graphical method
- Least square method

We will discuss here about the most commonly used method that is least square method for estimating the parameters of a regression model.

Estimation of Regression parameters

Least Square Estimates (LSE) of the parameters:

Let ${\it a}$ and ${\it b}$ are the least square estimates of ${\it \alpha}$ and ${\it \beta}$ respectively, then-

$$\widehat{\boldsymbol{\beta}} = b = \frac{cov(X,Y)}{v(X)} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$

And
$$\widehat{\alpha} = a = \overline{y} - b\overline{x} = \frac{\sum y}{n} - b\frac{\sum x}{n}$$

Thus the fitted regression line: $\hat{Y}_i = \hat{\alpha} + \hat{\beta}X$

Example 2:

No. of fami members, 2	
2	5
3	7
6	11
4	8
7	13
3	6

Fit a regression line of **y** on **x**. Interpret the estimates of the parameters. Find the value of R-square. Comment on your result. Estimate that how much monthly expenditure on food would occur if number of family members is 10.

Regression line

Estimated regression equation, $\hat{y} = a + bx$

Example 2:

No. of family members, X	Monthly expenditure on food (thousand taka), Y
2	5
3	7
6	11
4	8
7	13
3	6
6	12

No. of family members, x	Monthly expenditure on food x^2 xy (thousand taka), y
2	5
3	7
6	11
4	8
7	13
3	6
6	12

No. of family members, x	Monthly expenditure on food (thousand taka), y	x^2	ху
2	5	4	10
3	7	9	21
6	11	36	66
4	8	16	32
7	13	49	91
3	6	9	18
6	12	36	72
$\sum x = 31$	$\Sigma y = 62$	$\sum x^2 = 159$	$\sum xy = 310$

Estimates of the parameters:

$$b = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2} = \frac{7*310 - 31*62}{7*159 - 31^2} = 1.63$$

$$a = \frac{\sum y}{n} - b\frac{\sum x}{n} = \frac{62}{7} - 1.63 * \frac{31}{7} = 1.64$$

Estimated regression line:

$$\hat{y} = 1.64 + 1.63 x$$

Estimated regression line:

$$\hat{y} = 1.64 + 1.63 x$$

Interpretation:

a = 1.64 means, monthly expenditure on food (Y) is 1.64 (thousand taka) when no. of family members, i.e. X=0

b= 1.63 means, if number of family members is increased by 1 member (i.e. if 1 member is added), on average, monthly expenditure on food will increase by 1.63 (thousand taka)

X	у	x^2	xy	\hat{y}
2	5	4	10	=1.64+1.63*2 = 4.9
3	7	9	21	=1.64+1.63*3 = 6.53
6	11	36	66	=1.64+1.63*6 = 11.42
4	8	16	32	8.16
7	13	49	91	13.05
3	6	9	18	6.53
6	12	36	72	11.42
$\sum x = 31$	$\sum y = 62$	$\sum x^2 = 159$	$\sum xy = 310$	

Estimated regression equation, $\hat{y} = 1.64 + 1.63 x$

Prediction (For example data)

For x=10 (if number of family members is 10), then the estimated monthly expenditure on food -

$$\hat{y} = 1.64 + 1.63 * x = 1.64 + 1.63 * 10 = 17.93 (thousand taka)$$

Some other relevant calculation

Calculation of standard error of estimate:

$$s_e = \sqrt{\frac{\sum Y^2 - \hat{\alpha} \sum Y - \hat{\beta} \sum XY}{n - 2}}$$

Determine the standard error of b:

$$S_b = \frac{S_e}{\sqrt{\left(\sum X^2 - n\overline{X}^2\right)}}$$

Problem

For the following data set

X	13	16	14	11	17	9	13	17	18	12
Υ	6.2	8.6	7.2	4.5	9.0	3.5	6.5	9.3	9.5	5.7

Answer the following

- i. Plot the scatter diagram
- ii. Develop the estimating equation that best describe the data/ fit regression line of y on x / Fit regression line of y on x by LSM.
- iii. Predict Y for X= 10, 15, 20.
- iv. Calculate the standard error of estimate or estimate mean square error (MSE).
- v. Determine the standard error of b.

Goodness of fit

R-square:

Total variation = Explained variation + Unexplained variation

R-square interpretation:

Range: $0 \le R^2 \le 1$

If $\mathbb{R}^2 \to 0$: Poor fit i.e. the model is not strong or effective enough

If $\mathbb{R}^2 \to \mathbb{1}$: Good fit i.e. the model is strong or effective enough

 $R^2\%$ variation in dependent variable (Y) can be explained by the variation in independent variable (X).

Notice that, $r^2 = R^2$. (Coefficient of Determination)

Interpretation:

98.21% variation in monthly expenditure on food (Y) can be explained by the variation in no. of family members (X).

That means, the fitted model has a good fit to the data and capable of explaining almost all variation in the dependent variable Y.

Assumptions of Regression

Assumptions of Simple Linear Regression Model:

- X values are fixed
- 2. The relationship between X and Y is linear
- 3. $E_i \sim N(o, \sigma^2)$, i.e. error terms follows normal distribution with mean o and variance σ^2 .
- 4. X and ϵ are uncorrelated, i.e. $Corr(X, \epsilon) = r_{X\epsilon} = 0$

Steps of regression

Hypothesize a Model of Relationship

Estimation of Regression Equation

Goodness of fit test of the Model

Prediction

Uses of regression

Uses:

- 1. Estimate the relationship that exists, on average, between the dependent variable and the independent (explanatory) variable.
- Determine the effect of each of the explanatory variables on the dependent variable, controlling the effects of all other explanatory variables, if any.
- Predict the value of the dependent variable for a given or known value of the explanatory variable