Continuous-Time Dynamic Network Embeddings

1 CONTINUOUS-TIME DYNAMIC NETWORK EMBEDDINGS - NGUYEN ET AL.

1.1 Goals

- Describe a general framework for incorporating temporal information into network embedding methods
- Methods for learning time-respecting embeddings from continuous-time dynamic networks
- TLDR: Describes a temporal walk strategy

1.2 Preliminaries

• ...

1.3 Challenges

- **General & Unifying Framework**: general framework for incorporating temporal dependencies in node embedding and deep graph models that leverage random walks
- Continuous-Time Dynamic Networks: timedependent network representation for continuous-time dynamic networks
- Effectiveness: Must outperform baselines

1.4 Previous Work / Citations

- Static Snapshot Graphs:
 - each static snapshot graph represents all edges that occur between a user-specified discrete-time interval (e.g., day or week)
 - Refs: [57, 59, 63, 64]
 - Drawbacks:
 - * Noisy approximation on continuous time
 - * Selecting appropriate granularity
- This Work:
 - Random Walks
 - Supports **graph streams** (edges come and go live)
 - Any work using random walks can benefit from the proposed methods

1.5 Definitions

- Continuous-Time Dynamic Network: $G = (V, E_T, T)$
 - E_T edges at continuous times (actually events)
- **Temporal Walk**: temporal walk represents a temporally valid sequence of edges traversed in increasing order of edge times
- Temporal Neighborhood: $\Gamma_t(v) = \{(w, t') \mid e = (v, w, t') \in E_T \land \mathcal{T}(e) > t\}$
 - Neighbors of a node v at time t

- Nodes may appear multiple times (multiple edge events)

1.6 Outline / Structure

- Random Walks
 - Changes walk space \mathbb{S} to \mathbb{S}_T
- Goal: $f: V \to \mathbb{R}^D$: mapping nodes in G to D-dimensional time-dependent feature representation
 - For ml tasks such as link prediction
- Temporal Walks:
 - Require starting time (Randomly samples or from a randomly samples edge)
 - Edges from further time may be less predictive (so bias wisely)
 - Has min length ω
- Biasing the walks
 - Unbiased: Pr(e) = 1/N

 - Biased: Used a distribution based on time Favor newer edges: $\Pr(e) = \frac{\exp[\mathcal{T}(e) t_{\min}]}{\sum_{e' \in E_T} \exp[\mathcal{T}(e') t_{\min}]}$
 - * Exp dist with t_min as starting time
- Biasing Neighbor selection: Uniform or Biased (bias for time difference for example)
 - Walk bias van be reused based on $\tau(v)$
- Temporal Context Windows:
 - Window count: $\beta = \sum_{i=1}^{k} |S_{t_i}| \omega + 1$
 - * Number of walks that can be derived from the window with size ω
- node2vec approach for

1.7 Evaluation

- Try different versions of network (2 main components to swap)
- Baselines: node2vec [26], DeepWalk [52], and LINE [65].,
- Datasets from NetworkRepository [58].

1.8 Code

- https://github.com/LogicJake/CTDNE
- https://stellargraph.readthedocs.io/en/stable/demos/link-prediction/ctdne-link-prediction.html?highligi

1.9 Resources

• ...