微介實驗二 GPIO輸出驅動LED及七段顯示器

日期:10月1日

報告者:陳韋翰

- 實驗內容
- 學習重點
- 實驗器材
- 元件原理及控制
- 實驗電路
- 軟體流程圖
- 程式設計

實驗內容

• 利用 8051 的 GPIO 輸出來控制 LED 以及四合一七段顯示器。

- 實驗內容
- 學習重點
- 實驗器材
- 元件原理及控制
- 實驗電路
- 軟體流程圖
- 程式設計

學習重點

- 熟悉組合語言中的基本指令。
- 了解使用8051驅動LED及七段顯示器的電路設計。
- 了解多合一七段顯示器之掃描驅動原理。

- 實驗內容
- 學習重點
- 實驗器材
- 元件原理及控制
- 實驗電路
- 軟體流程圖
- 程式設計

實驗器材

器材名稱		數量
AT89S51		1
12MHz石英震盪器		1
LED <u>極</u> 體		8
按壓開關		1
四合一七段顯示器		1
電晶體9012		4
電阻	470Ω	4
	1kΩ	8
	10kΩ	1
電容	20pF	2
	10μF	1

- 實驗內容
- 學習重點
- 實驗器材
- 元件原理及控制
 - 驅動 LED
 - 驅動七段顯示器
- 實驗電路
- 軟體流程圖
- 程式設計

- LED 正極接 VCC, 負極接 8051 的其中一個 pin (以 P1.0 為例)。
- 當 P1.0 為高電位 (High) 時 LED 不亮。
- 當 P1.0 為低電位 (Low) 時 LED 會亮。

• 為什麼不能用 8051 輸出高電位來驅動 LED?

- 驅動 LED 的電流約在 10mA ~ 20mA。
- 上拉電阻可避免輸入腳位在輸入懸空時因周 遭環境影響而變為不確定值
- 在 8051 的 P1、P2、P3內部有一個 30kΩ 的上拉電阻將輸入腳位保持在已知狀態。
- 所以要輸出到 10mA 是沒有辦法的。

• 因此,讓 8051 輸出低電位使電流流入來驅動 LED 是較好的設計。

- 實驗內容
- 學習重點
- 實驗器材
- 元件原理及控制
 - 驅動 LED
 - 驅動七段顯示器
- 實驗電路
- 軟體流程圖
- 程式設計

元件原理及控制 - 七段顯示器

- 七段顯示器是以 8 個 LED 所排列組合成的。
- 七段顯示器的電路構造可分為:
 - 共陽極 (common anode)
 - 共陰極 (common cathode)
 - 本實驗所用的七段顯示器為共陽極。

元件原理及控制 - 七段顯示器

- 驅動共陽極七段顯示器的方法
 - 將共陽極端接上 VCC。
 - 將七段顯示器的8個接腳接上電阻後, 接入8051的8個pin(如P1.0到P1.7)。
 - 如同驅動 LED 的方法,控制對應的 pin 的 High, Low 來控制七段顯示器。

元件原理及控制 - 四合一七段顯示器

- 四合一七段顯示器為四個七段顯示器共用 $a \sim g$ 以及 dp 腳,而每 個七段顯示器分別有一個驅動腳: $C_0 \sim C_3$
- •本實驗使用的共陽極七段顯示器,在 Co ~ C3接上 VCC時,就能控制對應的位數。

如果是共陽極四連七段顯示器,各段連接一 220Ω 限流電阻接地,而 D_3 、 D_2 、 D_1 、 D_0 任一腳接+5V,相對位數即會發亮。如果是共陰極四連七段顯示器,各段連接一 220Ω 限流電阻接+5V,而 D_3 、 D_2 、 D_1 、 D_0 任一腳接地,相對位數即會發亮。

(a) 元件

(b) 正面接脚圖

圖 8-3 四連七段顯示器

四合一七段顯示器 - 掃描驅動

- 要同時驅動四個七段顯示器,需使用掃描驅動原理
 - 以顯示0123為例。
 - 使四個七段顯示器分別輪流顯示0,1,2,3。
 - 雖然同一時間只有一個七段顯示器工作,但只要切換速度夠快,人眼看 起來就有如四個顯示器同時亮。

- 實驗內容
- 學習重點
- 實驗器材
- 元件原理及控制
- 實驗電路
- 軟體流程圖
- 程式設計

實驗電路 - 基本電路

實驗電路 - Reset電路

實驗電路 - LED跑馬燈

實驗電路 - 四合一七段顯示器

- 實驗內容
- 學習重點
- 實驗器材
- 元件原理及控制
- 實驗電路
- 軟體流程圖
- 程式設計

軟體流程圖 – LED跑馬燈

軟體流程圖 - 四合一七段顯示器

- 實驗內容
- 學習重點
- 實驗器材
- 元件原理及控制
- 實驗電路
- 軟體流程圖
- 程式設計

程式設計 – LED跑馬燈

```
ORG 00H
                                           ; start address 0
                  MOV A, #11111110B
                                           ; set A to 11111110B
3.
      LOOP:
                  MOV P1, A
                                           ; move A to P1
                  CALL DELAY
                                           ; delay 0.5 sec
5.
                  RL A
                                           ; rotate left
                  SJMP LOOP
                                           ; main loop
6.
```

程式設計 – LED跑馬燈

7.	DELAY:	MOV RO, #4	; loop 4 times
8.	LOOP1:	MOV R1, #250	; loop 250 times
9.	LOOP2:	MOV R2, #250	; loop 250 times
10.		DJNZ R2, \$; decrement R2 until 0
11.		DJNZ R1, LOOP2	; decrement R1 until 0
12.		DJNZ RO, LOOP1	; decrement R0 until 0
13.		RET	; return from
			subroutine
14.		END	; end of program

程式設計 - 四合一七段顯示器

```
; start address is 0
1.
                     ORG 00H
                     MOV DPTR, #TABLE
                                           ; DPTR point to TABLE
3.
                     MOV RO, #4
       START:
                                           ; 4 LED
                     MOV R1, #0
                                           ; table index
4.
5.
                     MOV R2, #0FEH
                                           ; LED drive pin
6.
                     MOV P2, R2
       LOOP:
                                           ; select LED
7.
                     MOV A, R1
                                           ; move R1 to A
                     MOVC A, @A+DPTR
8.
                                           ; get value from table
9.
                     MOV P1, A
                                           ; move value to P1
10.
                                           ; delay 0.5 ms
                     CALL DELAY
```

程式設計 - 四合一七段顯示器

11.		INC R1	; increase R1
12.		MOV A, R2	; move R2 to A
13.		RLA	; rotate A
14.		MOV R2, A	; move A back to R2
15.		DJNZ RO, LOOP	; decrement R0 until 0
16.		SJMP START	; jump to start
17.	DELAY:	MOV R3, #250	; loop 250 times
18.		DJNZ R3, \$; decrement R3 until 0
19.		RET	; return from subroutine

程式設計 - 四合一七段顯示器

20.	TABLE:	DB OCOH	; O
21.		DB 0F9H	; 1
22.		DB 0A4H	; 2
23.		DB OBOH	; 3
24.		END	; end of program

ABQ