Assignment 7

due midnight (Eastern Time), Monday, November 9, 2020

Prove all statements in the questions below. You must TeX your solutions and submit your writeup as a pdf at www.gradescope.com. You can submit it any time until the deadline.

Question 1. (Folland 5.1.8) Let (X, \mathcal{M}) be a measurable space, and let M(X) be the space of complex measures on (X, \mathcal{M}) . Then $||\mu|| = |\mu|(X)$ is a norm on $\mathcal{M}(X)$ that makes M(X) into a Banach space. (Use Theorem 5.1.).

Question 2. (Folland 5.1.11) If $0 < \alpha \le 1$, let $\Lambda_{\alpha}([0,1])$ be the space of Hölder continuous functions of exponent α on [0,1]. That is, $f \in \Lambda_{\alpha}([0,1])$ iff $||f||_{\Lambda_{\alpha}} < \infty$, where

$$||f||_{\Lambda_{\alpha}} = |f(0)| + \sup_{x,y \in [0,1], \ x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

- 1. $||\cdot||_{\Lambda_{\alpha}}$ is a norm that makes $\Lambda_{\alpha}([0,1])$ into a Banach space.
- 2. Let $\lambda_{\alpha}([0,1])$ be the set of all $f \in \Lambda_{\alpha}([0,1])$ such that

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \to 0 \text{ as } x \to y, \text{ for all } y \in [0, 1].$$

If $\alpha < 1$, $\lambda_{\alpha}([0,1])$ is an infinite-dimensional closed subspace of $\Lambda_{\alpha}([0,1])$. If $\alpha = 1$, $\lambda_{\alpha}([0,1])$ contains only constant functions.

Question 3. (Folland 5.2.20) If \mathcal{M} is a finite-dimensional subspace of a normed vector space \mathcal{X} , there is a closed subspace \mathcal{N} such that $\mathcal{M} \cap \mathcal{N} = \{0\}$ and $\mathcal{M} + \mathcal{N} = \mathcal{X}$.

Question 4. (Folland 5.2.24) Suppose that \mathcal{X} is a Banach space.

1. Let $\widehat{\mathcal{X}}$, $(\mathcal{X}^*)^{\wedge}$ be the natural images of \mathcal{X} , \mathcal{X}^* in \mathcal{X}^{**} , \mathcal{X}^{***} and let

$$\widehat{\mathcal{X}}^0 = \{ F \in \mathcal{X}^{***} : F | \widehat{X} = 0 \}.$$

Then

$$(\mathcal{X}^*)^{\wedge} \cap \widehat{\mathcal{X}}^0 = \{0\}$$

and

$$(\mathcal{X}^*)^{\wedge} + \widehat{\mathcal{X}}^0 = \mathcal{X}^{***}.$$

2. \mathcal{X} is reflexive iff \mathcal{X}^* is reflexive.