GridGraph - Specyfikacja

Skoczek Mateusz, Jędrzejewski Sebastian

 $29~\mathrm{marca}~2022$

Streszczenie
Dokument zawiera specyfikację funkcjonalną oraz implementacyjną dotyczącą projektu ${\it Grid-Graph}$

Spis treści

1	\mathbf{Spe}	cyfikacja funkcjonalna	2
	1.1	Cel projektu	3
	1.2	Opis funkcji	4
	1.3	Opis wywołania	5
		1.3.1 Tryb zapisu	5
		1.3.2 Tryb czytania	6
	1.4	Format danych wejściowych i wyjściowych	7
	1.5	Opis błędów	8
2	Spe	cyfikacja implementacyjna	10

Rozdział 1

Specyfikacja funkcjonalna

1.1 Cel projektu

Program GridGraph ma na celu wygenerowanie oraz zapis do pliku (lub na standardowe wyjście) grafu siatkowego o podanych paramentrach lub wczytanie grafu z pliku (lub ze standardowego wejścia) i sprawdzenie wybranych jego parametrów. Program działa w trybie wsadowym. Grafy są przedstawiane w plikach w postaci listy sąsiedztwa.

1.2 Opis funkcji

Program może działać w dwóch trybach: zapisu (write) i czytania (read).

W trybie zapisu program generuje graf o określonej przez użytkownika szerokości (ilości kolumn) (width), wysokości (ilości wierszy) (height), minimalnej (edge_weight_min) i maksymalnej (edge_weight_max) wagi krawędzi oraz minimalnej (edge_count_min) i maksymalnej (edge_count_max) ilości krawędzi wychodzących z jednego wierzchołka, a następnie zapisuje go w formie listy sąsiedztwa do pliku określonego przez użytkownika (lub wypisuje na standardowe wyjście).

Jeżeli graf zostanie pomyślnie zapisany do pliku (lub wypisany na standardowe wyjście), program zwróci 0. W przeciwnym wypadku zostanie wyświetlony komunikat błędu, a program zwróci 1.

W trybie czytania program wczytuje graf zapisany (w formie listy sąsiedztwa) w określonym przez użytkownika pliku (lub czyta ze standardowego wejścia), a następnie sprawdza określone przez użytkownika właściwości grafu:

- Spójność grafu (connectivity)
- Najkrótsza ścieżka z węzła A do innych węzłów (shortest_path_a) lub do określonego węzła B (shortest_path_a oraz shortest_path_b)

Jeżeli graf został wczytany oraz sprawdzony pomyślnie, zostanie wyświetlony wynik sprawdzania...

```
Przykład (graf spójny, ścieżka istnieje):
Connectivity: connected
Shortest path from 0 to 10 (weight): 0-3-4-6-9-10 (0.778)

Przykład (graf niespójny, ścieżka nie istnieje):
Connectivity: disconnected
Shortest path from 0 to 10 (weight): path does not exist
```

 \dots a następnie program zwróci 0. W przeciwnym wypadku zostanie wyświetlony komunikat błędu, a program zwróci 1

1.3 Opis wywołania

1.3.1 Tryb zapisu

```
Wywołanie:
```

./gridgraph --write/-w [argumenty]

Argumenty:

• --width/-xw (Szerokość grafu - liczba kolumn)

Typ: Liczba naturalna

Zakres: > 0

Wymagany: TAK

• --height/-xh (Wysokość grafu - liczba wierszy)

Typ: Liczba naturalna

Zakres: > 0

Wymagany: TAK

• --edge_weight_min/-Wmin (Minimalna waga pojedyńczej krawędzi)

Typ: Liczba rzeczywista

Zakres: <0, edge_weight_max>
Wymagany: NIE (domyślnie: 0)

• --edge_weight_max/-Wmax (Maksymalna waga pojedyńczej krawędzi)

Typ: Liczba rzeczywista

Zakres: <edge_weight_min, 1> Wymagany: NIE (domyślnie: 1)

 \bullet --edge_count_min/-Cmin (Minimalna liczba krawędzi wychodzących z jednego wierzchołka)^1

Typ: Liczba naturalna

Zakres: <0, edge_count_max>
Wymagany: NIE (domyślnie: 0)

• --edge_count_max/-Cmax (Maksymalna liczba krawędzi wychodzących z jednego wierzchołka)

Typ: Liczba naturalna

Zakres: <edge_count_min, 4> Wymagany: NIE (domyślnie: 4)

• --file/-f (Plik w którym ma zostać zapisany graf)

Typ: Ścieżka do pliku

Zakres: -

Wymagany: NIE (domyślnie: standardowe wyjście)

¹Program będzie dążył do utworzenia co najmniej edge_count_min krawędzi, ale nie może tego zagwarantować. Nie jest możliwe wygenerowanie więcej niż 2 krawędzi dla wierzchołków w narożnikach oraz więcej niż 3 dla wierzchołków bocznych. Nie jest możliwe także utworzenie krawędzi, jeżeli wszystkie wierzchołki wokół osiągnęły już swoją nominalną (wylosowaną z podanego przedziału) liczbę krawędzi.

Przykład:

```
./gridgraph -w -xw 6 -xh 6 --Wmin 0.65 --Wmax 0.2 -Cmax 3 -f "/home/user/graph"
```

Powyższy przykład ilustruje wywołanie programu, który generuje graf o 6 kolumnach i 6 wierszach, z wagami krawędzi mieszczącymi się w przedziale od 0.2 do 0.65, gdzie minimalna ilość krawędzi wychodzących z wierzchołka to 0, a maksymalna ilość krawędzi to 3. Program zapisuje graf w odpowiednim formacie do pliku o nazwie graph znajdującego się w /home/user.

1.3.2 Tryb czytania

Wywołanie:

```
./gridgraph --read/-r [argumenty]
```

Argumenty:

• --connectivity/-c (Sprawdza czy graf jest spójny, używając algorytmu BFS)

Typ: -

Zakres: -

Wymagany: NIE²

• --shortest_path_a/-Sa (Znajduje najkrótszą ścieżkę od wierzchołka A do pozostałych wierzchołków, używając algorytmu Dijkstry)

Typ: Liczba naturalna

Zakres: <0, ilość wierzchołków grafu>

Wymagany: NIE^{2 3}

• --shortest_path_b/-Sb (Znajduje najkrótszą ścieżkę od wierzchołka A do wierzchołka B, używając algorytmu Dijkstry)

Typ: Liczba naturalna

Zakres: <0, ilość wierzchołków grafu> / shortest_path_a

Wymagany: NIE²

• --file/-f (Plik z którego ma zostać wczytany graf)

Typ: Ścieżka do pliku

Zakres: -

Wymagany: NIE (domyślnie: standardowe wejście)

Przykład:

```
./gridgraph -r -c -Sa 0 -Sb 10 -f \home/user/graph"
```

Powyższy przykład ilustruje wywołanie programu, który czyta plik ze strukturą grafu o nazwie graph znajdujący się w /home/user, a następnie sprawdza czy ten graf jest spójny oraz wyznacza najkrótszą ścieżkę pomiędzy węzłami numer 0 i 10.

²Wymagany przynajmniej jeden

³Wymagane jeżeli shortest_path_b zostało zdefiniowane

1.4 Format danych wejściowych i wyjściowych

Dane wejściowe i wyjściowe przechowują graf w postaci listy sąsiedztwa. W pierwszej linijce znajdują się dwie liczby, które oznaczają odpowiednio liczbę kolumn i wierszy danego grafu. Każda następna linijka reprezentuje jeden wierzchołek, przy czym wierzchołki numerujemy od 0 od lewej do prawej. Zatem druga linijka w pliku zawiera numery wierzchołków, z którymi połączony jest wierzchołek numer 0, kolejna dotyczy wierzchołka numer 1 itd. Przy każdym numerze wierzchołka po dwukropku podana jest waga krawędzi pomiędzy tymi dwoma wierzchołkami.

Przykład:

2 2

```
1 :0.54 2 :0.78
0 :0.54 3 :0.12
0 :0.78 3 :0.89
1 :0.12 2 :0.89
```

Powyżej przedstawiona jest przykładowa zawartość pliku przechowującego graf. W pierwszej linijce można odczytać, że jest to graf o dwóch kolumnach i dwóch wierszach. W drugiej linijce przedstawiona jest informacja o tym, że wierzchołek numer 0 połączony jest z wierzchołkiem numer 1, a krawędź ta ma wagę 0.54. Istnieje również krawędź pomiędzy wierzchołkiem 0 a 2 o wadze 0.78. W trzeciej linijce znajdują się numery wierzchołków połączonych z wierzchołkiem numer 1 wraz z wagami itd.

1.5 Opis błędów

W przypadku błędu program wypisuje błąd na standardowy strumień błędów i zwraca 1. Komunikat błędów jest poprzecony słowem ERROR oraz nazwą trybu w nawiasie (np. (Write mode)), jeżeli błąd dotyczy konkretnego trybu.

Poniżej przedstawione są komunikaty generowane przez program, gdy ten wykryje błąd, wraz z ich wyjaśnieniem:

- WIDTH_NOT_POSITIVE_NUMBER Został wybrany argument width, ale nie została podana wartość lub wartość nie jest liczbą.
- **HEIGHT_NOT_POSITIVE_NUMBER** Został wybrany argument height, ale nie została podana wartość lub wartość nie jest liczbą.
- EDGE_WEIGHT_MIN_NOT_POSITIVE_NUMBER Został wybrany argument edge_weight_min, ale nie została podana wartość lub wartość nie jest liczbą (nieujemną).
- EDGE_WEIGHT_MAX_NOT_POSITIVE_NUMBER Został wybrany argument edge_weight_max, ale nie została podana wartość lub wartość nie jest liczbą (nieujemną).
- EDGE_COUNT_MIN_NOT_POSITIVE_NUMBER Został wybrany argument edge_count_min, ale nie została podana wartość lub wartość nie jest liczbą (nieujemną).
- EDGE_COUNT_MAX_NOT_POSITIVE_NUMBER Został wybrany argument edge_count_max, ale nie została podana wartość lub wartość nie jest liczbą (nieujemną).
- WIDTH_LOWER_OR_EQUAL_TO_ZERO Wartość argumentu width jest mniejsza lub równa 0 (musi być większa od 0).
- **HEIGHT_LOWER_OR_EQUAL_TO_ZERO** Wartość argumentu height jest mniejsza lub równa 0 (musi być większa od 0).
- EDGE_WEIGHT_MIN_LOWER_THAN_ZERO Wartość argumentu edge_weight_min jest mniejsza od 0 (musi być większa lub równa 0 i mniejsza lub równa edge_weight_max).
- EDGE_WEIGHT_MAX_GREATER_THAN_ONE Wartość argumentu edge_weight_max jest większa od 1 (musi być mniejsza lub równa 1 i większa lub równa edge_weight_min).
- EDGE_WEIGHT_MIN_GREATER_THAN_EDGE_WEIGHT_MAX Wartość argumentu edge_weight_min jest większa od edge_weight_max (musi być większa lub równa 0 i mniejsza lub równa edge_weight_max).
- EDGE_COUNT_MIN_LOWER_THAN_ZERO Wartość argumentu edge_count_min jest mniejsza od 0 (musi być większa lub równa 0 i mniejsza lub równa edge_count_max).
- EDGE_COUNT_MAX_GREATER_THAN_FOUR Wartość argumentu edge_count_max jest większa od 4 (musi być mniejsza lub równa 4 i większa lub równa edge_count_min).
- EDGE_COUNT_MIN_GREATER_THAN_EDGE_COUNT_MAX Wartość argumentu edge_count_min jest większa od edge_count_max (musi być większa lub równa 0 i mniejsza lub równa edge_count_max).
- SHORTEST_PATH_A_NOT_POSITIVE_NUMBER Został wybrany argument shortest_path_a, ale nie została podana wartość lub wartość nie jest liczbą (nieujemną).
- SHORTEST_PATH_B_NOT_POSITIVE_NUMBER Został wybrany argument shortest_path_b, ale nie została podana wartość lub wartość nie jest liczbą (nieujemną).

- SHORTEST_PATH_B_WITHOUT_SHORTEST_PATH_A_SPECIFIED Został wybrany argument shortest_path_a, ale nie został wybrany argument shortest_path_b.
- SHORTEST_PATH_B_EQUAL_TO_SHORTEST_PATH_A Argument shortest_path_b jest równy shortest_path_a (wartości argumentów muszą być różne od siebie).
- CHECKING_OPTIONS_NOT_SPECIFIED Nie została wybrana przynajmniej jedna opcja sprawdzająca (przynajmniej jedna wymagana).
- SHORTEST_PATH_A_GREATER_THAN_TOTAL_NUMBER_OF_VERTICES Wartość argumentu shortest_path_a jest większa niż całkowita liczba wierzchołków grafu.
- SHORTEST_PATH_B_GREATER_THAN_TOTAL_NUMBER_OF_VERTICES Wartość argumentu shortest_path_b jest większa niż całkowita liczba wierzchołków grafu.

Rozdział 2

Specyfikacja implementacyjna