(3)

Name: G. Rama Krishna

Branch: EEE-3B

Pin : 20 K 45 A 0 2 40

Draw a decision tree diagram to predict number of hours to play based on weather conditions like outlook, temperature, humidity, windy, consider dataset shown below.

Outlook	Temperature	+humi dity	windy	Hours to play
Rainy	Hot	High	Jalse	25
Rainy	Hot	High	True	30
overcast	Hot	High	Jalse	46
Sunny	Cool	High	-Jalse	45
Sunny	Cool	Normal	Jalse	52
overcast	Cool	Normal	True	43
Rainy	rild	High	False	35
Rainy	Cool	Normal	False	38
Dunny	Mild	Normal	Jalse	46
Rainy	mild	Normal	True	48
overcast	mild	High	True	52
evercast	Hot	Normal	False	44
Sunny	Mild	High	Jrue	30
Sunny	Cool	Normal	True	23

Termination criteria: CV <= 10% or minimum number of samples

Calculating mean, standard deviation (SD), co-effecient of variation (CV)

Mean =
$$\frac{51}{n} = \frac{557}{14} = 39.78$$

$$SD = \sqrt{\frac{2(x - mean)^2}{n}} = 9.67$$

$$CV = \frac{SD}{mean} \times 100 = \frac{9.67}{39.78} \times 100 = 24.30$$

Now, data set is split into different attributes. The SD of each branch is calculated

and the result SDR (standard deviation reduction) is calculated

Outlook

Outlook	mean	SD	CV	n	w(V)
Rainy	35.2	8-7	24.7	5	5)14
overcast	46.25	4.03	8.72	4	4/14
Sunny	39.2	12.2	81.0	5	5/14

Temperature

Temperature	mean	30	CV	2	(v)
+let	36-25	10.34	30.6	4	4/14
Cool	39	12-14	31-1	4	4/14
mild	42-6	8.38	19-65	6	6/14

SDR (temperature) = SD- SD(temperature) = 9-69-10-01 = -0-34

Humidity

funidity	mean	SD	cv	n	w(v)
High	37.51	10-11	26-92	7	71/14
Normal	42	9.4	22-4	+	7/14

Windy

Windy	mean	SD	CV	n	(V) w
True	37.6	11-6	30.8	6	6114
False	41.3	8-41	20.3	8	8/114

The value that has highest SDR is considered as root node (i) decision node)

Considering termination criteria

(V is 101. of (V is (N & +1))

overcast has CV of 8.1 which is less than threshold value. Therefore, we need not to go for further splitting

we need to split sunny of rainy columns

outlook

Outlook	Temperature	Humidity	windy	Hours played
Cunny	Mild	High	False	45
Dunny	Cool	Normal	False	52
Sunny	Cool	Normal	True	23
Sunny	Mild	Normal	Jacke	46
Sunny	Mild	High	True	30

: Mean = 39.2, SD=12.2; CV= 310

Temperature:

Temperature	Mean	SD	CV	n	W(Y)
mild	40.3	8.96	22.23	3	315
Cold	37-5	20.50	54.66	2	215

SD (Temperature) = 3/5 x 8.96 + 3/5 x 20.5 = 13.576

SDR (Jemperature) = SD- SD(Temperature) = 12-2-13-576 = -1.37

Humidity

Humidity	mean	SD	CV	n	w(v)
High	37.5	10 6	28-26	2	1/5
Normal	40.3	115.30	37-96	3	315

SD (humidity) = 2/5 × 10.6 + 3/5 × 15.3 = 13.44

SDR (humidity) = SD - SD (humidity) = 12-2 - 13-44 = -1-22

windy

windy	mean	SD	CV	n	w(v)
false	47-66	3-78	7.94	3	315
True	26.5	4.94	18-65	2	215

SD (windy) = 3/5 x 3-78+ 2/5 x 4-94 = 4-23

SDR(windy) = SD-SD (windy) = 12.2-4.23 = 7.97

In outlook; among temperature, humidity and windy SDR value is high for windy SDR=7.97

Then check for CV value,

both True of false satisfy the CV value

Rainy

Outlook	Temperature	Humidity	Windy	Hours played
Rainy	Hot	fligh	False	25
Rainy	Hot	High	True	30
Rainy	mild	High	false	35
Rainy	Cool	Normal	false	38
Rainy	mild	Normal	True	48

Mean = 35.2, SD= 8.7, CV= 24.7

Temperature

Temperature	mean	SD	CV	n	w(v)
Hot	2705	3-53	12.83	2	215
mild	41.5	9-19	22.144	2	215
Cool	38	0	0		1/5

 $SD(\text{deniperature}) = \frac{2}{5} \times 3.53 + \frac{2}{5} \times 9.19 + \frac{1}{5} \times 0 = 5.088$

SDR (demperature) = SD-SD (demperature) = 8.7-5.088 = +3.612

Humidity

Humidity	mean	SD	CV	7	W(V)
fligh	36	5	16.66	3	315
Normal	43	7.07	16-44	2	215

SD(Humidity) = 3/5 ×5 + 2/5 × 7.07 = 5-828

SDR(Humidity) = SD-SD (Humidity) = 87-5.828 = 2.872

windy

windy	mean	SD	CV	n	ω(v)
False	32-66	6-80	20.85	3	315
True	39	12:72	32-5	2	215

SD (windy) = 315 x 6 80 + 215 x 12.72 = 9.168

SDR (windy) = SD - SD (windy) = 8-7-9-168 = -0-468

Among; temperature, humidity of windy. the SDR value is high for temperature (i.e., 3.612). Then check for CV value of hot, mild and cold satisfy the CV value.

Decision tree diagram to predict number of hours to play based on weather conditions

