AHA: Eksammens presentationer.

Martin Sig Nørbjerg

 $\mathrm{June}\ 11,\ 2022$

Results.

Definition 0.1. Let $f: \mathbb{R} \to \mathbb{R}$ or $f: \mathbb{R} \to \mathbb{C}$, then it's called 2π periodic if $f(\theta + 2\pi) = f(\theta) \ \forall \theta \in \mathbb{R}$.

Definition 0.2. Fourier rækken skrives

$$f(\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\theta) + b_n \sin(n\theta)], \quad a_i, b_i \in \mathbb{R}$$

$$f(\theta) = \sum_{n=-\infty}^{\infty} c_n e^{in\theta}$$

Skrives på komplex form som $f(\theta)=\sum_{n=-\infty}^\infty c_n \mathrm{e}^{in\theta}$ hvor $c_0=\frac{a_0}{2}$ og $c_n=\frac{1}{2}(a_n+sign(n)ib_n)$ for $n\in\mathbb{Z}$

Remark 1. koefficienterne har formen

$$c_k = \frac{1}{2\pi} \int_{-ni}^{pi} f(\theta) e^{-ik\theta} d\theta$$

og tilsvarende

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(n\theta) d\theta$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin(n\theta) d\theta$$

for $n\in\mathbb{N}$ Og såfremt ϕ_n definieres som $\frac{1}{\sqrt{2\pi}}\mathrm{e}^{inx}$ er

$$c_n = \frac{1}{\sqrt{2\pi}} \langle f, \phi_n \rangle$$

Definition 0.3. En 2π periodisk funktion f kaldes intergrabel hvis

$$\int_{-\pi}^{\pi} |f(\theta)| \, d\theta < \infty$$

for intergrable f er

$$\int_{-\pi}^{\pi} f(\theta) e^{-ik\theta} d\theta$$

veldefinieret for alle $k \in \mathbb{Z}$.

Remark 2. Hvis g er ulige st. $g(\theta) = -g(-\theta)$, så er

$$b_n = 0$$

for $n \in \mathbb{N}$ ellers hvis g lige så er

$$a_n = 0$$

for $n \in \mathbb{N}$

Theorem 0.4 (Bessel's ulighed). lad f være 2π periodisk, og Riemann integrable, så gælder

$$\sum_{n=-\infty}^{\infty} \left| c_n \right|^2 \le \frac{1}{2\pi} \int_{-\pi}^{pi} \left| f(\theta) \right|^2 d\theta$$

Lemma 0.5 (Reimann-Lebesgues). f Riemann integrable og 2π periodisk \Longrightarrow

$$\lim_{n \to +\infty} c_n = 0$$

Definition 0.6. En funktion $f:[a,b]\to\mathbb{C}$ kaldes **stykvis kont.** hvis f er kont. på [a,b] untagen endeligt mange punkter. x_1,x_2,x_k hvor grænserne for højre og venstre eksister. f kaldes **stykvis glat** hvis f og f' er stykvis kont. på [a,b]

Definition 0.7. Partial summen af orden N definieres som:

$$S_N^f(\theta) = \sum_{n=-N}^N c_n e^{in\theta}$$

Remark 3. Det bemærkes at

$$S_N^f(\theta) = \int_{-\pi}^{\pi} f(\theta + \phi) D_N(\phi) d\phi$$

hvor $D_N = \frac{1}{2\pi} \sum_{n=-N}^N \mathrm{e}^{in\theta}$ er den såkaldte dirichlet kerne.

Theorem 0.8. Lad f være 2π periodisk og stykvis glat. så gælder det at

$$\lim_{n\to\infty}S_n^f(\theta)=\frac{1}{2}[f(\theta-)+f(\theta+)],\theta\in[-\pi,\pi]$$

specielt gælder det at f kont i θ medføre at:

$$\lim_{n \to \infty} S_n^f(\theta) = f(\theta)$$

Proposition 0.9. Lad f kont. og stykvis glat på $[-\pi, \pi]$, så gælder det at

$$c'_n = inc_n$$

hvilket giver os en mulighed for at beregne kvotienterne for den afledte fourier række

Remark 4. Derudover giver dette resultat af fourier rækken for f konvergere både absolut og uniformt i dette tilfælde på $[-\pi, \pi]$.

Proposition 0.10. Cauchy-Schwarz ulighed giver at for to reelle følger $\{a_n\}$ og $\{b_n\}$ gælder at

$$\sum_{n} a_n b_n \le \left(\sum_{n} a_n^2\right)^{\frac{1}{2}} \left(\sum_{n} b_n^2\right)^{\frac{1}{2}}$$

Proposition 0.11 (Weierstrass' M-test). lad $f_n: A \to \mathbb{C}$ for $n \in \mathbb{Z}$. Hvis der findes en følge $M_n \in (0,\infty)$ st. $|f_n(x)| \leq M_n$ for $x \in A$, $n \in \mathbb{Z}$ og $\sum_{n \in \mathbb{Z}} M_n \leq \infty$, så konvergere

$$\sum_{n\in\mathbb{Z}} f_n(x)$$

uniformt på A.

Theorem 0.12. Suppose f is 2π periodic and peicewise continues, with forier coef. $a_n, b_n c_n$ and let $F(\theta) = \int_0^{\theta} f(\phi) d\phi$. If $c_0 = 0$ (this is the same as $a_0 = 0$), then $\forall \theta$ we have

$$F(\theta) = C_0 + \sum_{n \neq 0} \frac{c_n}{in} e^{in\theta} = C_0 + \sum_{n=1}^{\infty} \left(\frac{a_n}{n} \sin(n\theta) - \frac{b_n}{n} \cos(n\theta) \right)$$

Where

$$C_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(\theta) d\theta$$

Definition 0.13. Gibbs phenomenon: as one adds more and more terms the paritals shums overshoot and undershoot f near the discontinuity.

Definition 0.14.

$$L^{2}(a,b) = \{ f \int_{a}^{b} |f(x)|^{2} dx < \infty \}$$

hvor intergralet er det såkaldte lebesgue intergrale.

Theorem 0.15. $L^2(a,b)$ er et hilbertrum (fuldstændigt normeret vektorum)

Theorem 0.16 (Sætningen om domineret konvergens). Lad $D \subseteq \mathbb{R}^k$ være et område. Antag, at $\{g_n\}_{n\in\mathbb{N}}$, er en følge af funktioner på D og at phi, g er funktioner på D, således

i) $\phi(\mathbf{x}) \geq 0$ og $\int_{\mathcal{D}} \phi(\mathbf{x}) d\mathbf{x} < \infty$ (Her er dx det såkaldte lebesgue mål)

ii) $|g_n(\mathbf{x})| \le \phi(\mathbf{x})$, for alle $\mathbf{x} \in D$, $n \in \mathbb{N}$.

iii) $g_n(\mathbf{x}) \to g(\mathbf{x})$ for alle $\mathbf{x} \in D$.

så gælder det at

$$\int_D g_n(\mathbf{x}) d\mathbf{x} \to \int_D g(\mathbf{x}) d\mathbf{x}$$

Definition 0.17. Følgende vektorrum spiller en stor rolle:

$$L^{1}(\mathbb{Z}) = \{x = \{x_{n}\}_{n \in \mathbb{Z}} \mid ||x||_{1} := \sum_{n \in \mathbb{Z}} |x_{n}| < \infty \}$$

$$L^{1}(\mathbb{Z}) = \{x = \{x_{n}\}_{n \in \mathbb{Z}} \mid ||x||_{2} := \left(\sum_{n \in \mathbb{Z}} |x_{n}|^{2}\right)^{1/2} < \infty \}$$

$$L^{\infty}(\mathbb{Z}) = \{x = \{x_{n}\}_{n \in \mathbb{Z}} \mid ||x||_{\infty} := \sup_{n} |x_{n}| < \infty \}$$

Remark 5. Det kan vises at $L^1(\mathbb{Z}) \subset L^2(\mathbb{Z}) \subset L^\infty(\mathbb{Z})$, bemærk at det her er over $\mathbb{Z}!$ og at $L^2(\mathbb{Z})$ er et hilbertrum.

Definition 0.18. Kroneckers delta følge:

$$\delta_n = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Definition 0.19. Lad y = T(x), hvor $T: V \to V$ være et diskrettids system.

- Systemet kaldes lineært hvis $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for alle $\alpha, \beta \in \mathbb{C}, x, y \in V$
- Systemet kaldes tidsinvariant, hvis

$$y' = T(x')$$
 hvor $\{x'_n = x_{n-k}y'_n = y_{n-k}\}$

for alle $k \in \mathbb{Z}$

• Systemet kaldes BIBO-stabilt (bounded-in, bounded-out) hvis

$$x \in L^{\infty}(\mathbb{Z}) \implies y = T(x) \in L^{\infty}(\mathbb{Z})$$

• Systemet kaldes hukommelsesløst hvis for x, x' gælder at

$$x_k = x'_k \implies T(x)_k = T(x')_k$$

• Systemet kaldes kausal hvis det for x, x' og $k \in \mathbb{Z}$ gælder at:

$$1_{-\infty,\dots,k}x = 1_{-\infty,\dots,k}x' \implies 1_{-\infty,\dots,k}T(x) = 1_{-\infty,\dots,k}T(x')$$

hvor
$$(1_{-\infty,\dots,k}x)_l = \begin{cases} x_l, & l \le k \\ 0, & l > k \end{cases}$$
 for $l \in \mathbb{Z}$

Definition 0.20. Lad $T:V\to V$ være både lineært og tidsinvariant, så definieres impulsresponsen som $h=T(\delta).$

Remark 6. Vi har

$$y = T(x) = T\left(\sum_{k \in \mathbb{Z}} x_k \delta_{n-k}\right) = \sum_{k \in \mathbb{Z}} x_k T(\delta_{n-k}) = \sum_{k \in \mathbb{Z}} x_k h_{n-k} = h * x$$

1 | Fourierrækker

Lad $f:[a,b]\to\mathbb{C}$ være en stykvis kontinuert funktion, så benytter vi notationen

$$f(x-) := \lim_{h \to 0-} f(x-h)$$
 og $f(x+) := \lim_{h \to 0+} f(x-h)$

bemærk at det selvfølgeligt skal gælde at $x \in [a, b]$.

Lemma 1.1. Lad $D_N = \frac{1}{2\pi} \sum_{n=-N}^{N} e^{in\phi}$ (dirichlet kernen) og

 $S_N^f = \sum_{n=-N}^N c_n e^{in\phi}$ (Fourier partial summen) så er

$$D_N(\phi) = \frac{1}{2\pi} \frac{e^{i(N+1)\phi} - e^{-iN\phi}}{e^{i\phi} - 1}$$
(1.1)

og

$$\int_{-\pi}^{0} D_N(\theta) d\theta = \int_{0}^{\pi} D_N(\theta) d\theta = \frac{1}{2}$$

$$\tag{1.2}$$

og

$$S_N^f(\theta) = \int_{-\pi}^{\pi} f(\theta + \phi) D_N(\phi) d\phi \tag{1.3}$$

Remark 7. Skal (1.3) dette forståes som en slags endelig konvolution?

Theorem 1.2. Lad $f(\theta)$ være en 2π -periodisk og stykvis glat funktion. Så gælder det, at

$$\lim_{N \to \infty} S_N^f(\theta) = \frac{1}{2} [f(\theta-) + f(\theta+)], \ \textit{for} \ \theta \in [-\pi, \pi]$$

specielt gælder det at hvis f er kont. i θ , så gælder.

$$\lim_{N \to \infty} S_N^f(\theta) = f(\theta)$$

Proof. Vi har,

$$\frac{1}{2}f(\theta-) = f(\theta-)\int_{-\pi}^{0} D_N(\theta)d\theta \text{ og } \frac{1}{2}f(\theta+) = f(\theta+)\int_{0}^{\pi} D_N(\theta)d\theta$$

per ligning (1.2). Så

$$S_{N}^{f}(\theta) - \frac{1}{2} \left[f(\theta -) + f(\theta +) \right] \stackrel{(a)}{=} \int_{-\pi}^{0} \left[f(\theta + \phi) - f(\theta -) \right] D_{N}(\phi) d\phi + \int_{0}^{\pi} \left[f(\theta + \phi) - f(\theta +) \right] D_{N}(\phi) d\phi$$

$$\stackrel{(b)}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\phi) \left[e^{i(N+1)\phi} - e^{-iN\phi} \right] d\phi = c_{-N-1} - c_{N}$$

hvor (a) følger af ligning (1.3) og (b) af ligning (1.1), og funktionen g definieres som

$$g(\phi) = \begin{cases} \frac{f(\theta+\phi) - f(\theta-)}{\mathrm{e}^{i\phi} - 1}, & -\pi < \phi < 0\\ \frac{f(\theta+\phi) - f(\theta+)}{\mathrm{e}^{i\phi} - 1}, & 0 < \phi < \pi \end{cases}$$

Funktion g er stykvis glat for $\phi \neq 0$ (hvis $\phi = 0$, får vi et problem i brøken), da f er stykvis glat. Vi har derudover at

$$\lim_{\phi \to 0+} g(\phi) = \lim_{\phi \to 0+} \frac{f(\theta+\phi) - f(\phi+)}{\mathrm{e}^{i\phi} - 1} \stackrel{(c)}{=} \lim_{\phi \to 0+} \frac{f'(\theta+\phi)}{i\mathrm{e}^{i\phi}} = \frac{f'(\theta)}{i}$$

hvor (c) følger af l'Hopitalz regel og tilsvarende at

$$\lim_{\phi \to 0-} g(\phi) = \frac{f'(\theta-)}{i}$$

så g er stykvist kontinuert og dermed Riemann intergrabel på $[-\pi,\pi]$. i følge Reimann-Lebesgues lemma gælder det derfor, at

$$C_N := \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\theta) \mathrm{e}^{-iN\theta} d\theta \to 0 \text{ når } N \to \pm \infty$$

og vi har derfor at

$$S_N^f(\theta) - \frac{1}{2} \left[f(\theta-) + f(\theta+) \right] = c_{-N-1} - c_N \to 0$$
når $N \to \infty$

Hvilket afslutter beviset.

DFT, herunder FFT

Definition 2.1. Lad $\mathbf{x} = [x_0, x_1, \dots, x_{N-1}]^T \in \mathbb{C}^n$, så er den diskrete fouriertransformation (DFT) er en invertibel lineær transformation

$$\mathbf{F}:\mathbb{C}^n \to \mathbb{C}^n$$

 ${\it defineret som}$

Fineret som
$$\mathbf{F}(\mathbf{x})_k = X_k = \sum_{n=0}^{N-1} x_n W_N^{kn} \text{ for } k = 0, 1, \dots, N-1$$

Lemma 2.2. Givet $[x_0, x_1, \dots, x_{N-1}]^T$, så gælder det for $0 \le L \le N$, at

$$y_n = x_{\langle n-L \rangle_N} \stackrel{DFT}{\longleftrightarrow} Y_k = X_k e^{-2\pi i k L/N}$$

Theorem 2.3. Givet $\mathbf{x} = [x_0, x_1, \dots x_{N-1}]^T$ og $\mathbf{y} = [y_0, y_1, \dots y_{N-1}]^T$, så gælder det at

$$\mathbf{z} = \mathbf{x} \circledast \mathbf{y} \overset{DFT}{\longleftrightarrow} Z_k = X_k Y_k$$

Proof. Vi har,

$$Z_{k} = \sum_{n=0}^{N} z_{n} e^{-2\pi i k n/N}$$

$$= \sum_{n=0}^{N} \left(\sum_{m=0}^{N-1} x_{m} y_{< n-m>_{N}} \right) e^{-2\pi i k n/N}$$

$$= \sum_{m=0}^{N-1} x_{m} \left(\sum_{n=0}^{N} y_{< n-m>_{N}} e^{-2\pi i k n/N} \right)$$

$$\stackrel{(a)}{=} \sum_{m=0}^{N-1} x_{m} \left(e^{-2\pi i k m/N} Y_{k} \right)$$

$$= \left(\sum_{m=0}^{N-1} x_{m} e^{-2\pi i k m/N} \right) Y_{k} = X_{k} Y_{k}$$

hvor (a) følger af lemmaet.

Remark 8. Filtertoeri ect. fungere altså derfor i dette DFT setup.

Bemærk at FFT'en gør det muligt at reducere fra $O(N^2)$ operationer til $O(N\log(N))$

Fremgangs måde for FFT Givet $\mathbf{x} = [x_0, x_1, \dots x_{N-1}]^T$, hvor N er lige. Så har vi

$$X_k = \sum_{n=0,2,\dots,N-2} x_k e^{-2\pi i k n/N} + \sum_{n=1,3,\dots,N-1} x_k e^{-2\pi i k n/N}$$

sætter vi

$$x_m^0 = x_{2m}, \quad m = 0, 1, \dots, \frac{N}{2} - 1$$

 $x_l^1 = x_{2l+1}, \quad l = 0, 1, \dots, \frac{N}{2} - 1$

så fåes

$$X_k = \sum_{m=0}^{\frac{N}{2}-1} x_m^0 e^{-2\pi i k m/N} + \sum_{l=0}^{\frac{N}{2}-1} x_k e^{-2\pi i k l/N}$$
$$= X_k^0 + e^{2\pi i k/N} X_k^1, \text{ for } k = 0, 1, \dots, N-1$$

Dette er en sum af to n/2 punkts DFT'er. Det smarte er nu at X_k^0 og X_k^1 er $\frac{N}{2}$ -periodiske. Desuden har vi for $W_N=\mathrm{e}^{-2\pi i/N}$:

$$W_N^{k+\frac{N}{2}} = W_N^k \cdot W_N^{\frac{N}{2}} = -W_N^k$$

da $W_N^{\frac{N}{2}}=\mathrm{e}^{2\pi i\left(\frac{N}{2}\right)/2}=\mathrm{e}^{-i\pi}=-1.$ Det gælder derfor at:

$$X_k = X_k^0 + W_N^k X_k^1, \quad k = 0, 1, \dots, \frac{N}{2} - 1$$

$$X_{k+\frac{N}{2}} = X_k^0 - W_N^k X_k^1, \quad k = 0, 1, \dots, \frac{N}{2} - 1$$

Vi får altså $X_{k+\frac{N}{2}}$ "gratis".

3 | DTS og filterteori

Et lineært tidsinvariant system y = T(x), beskrevet ved y = h * x, hvor h er impulsresponsen $h = T(\delta)$ Hvad er det for et delta?. Vi definier er den såkaldte DTFT (discrete-time fourier transform) af følgen $x = \{x_n\}_{n \in \mathbb{Z}}$, som

$$X(e^{i\omega}) = \sum_{n \in \mathbb{Z}} x_n e^{-in\omega}$$

hvis $x \in L^2(\mathbb{Z})$, så an vi definiere den inverse transform som:

$$x_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{iN}) e^{in\omega} d\omega$$

Vi tager nu DTFT af impuls responsen $h = T(\delta)$:

$$H(e^{i\omega}) = \sum_{n \in \mathbb{Z}} h_n e^{-in\omega},$$

og givet $x \in L^2(\mathbb{Z})$, lader vi

$$X(e^{i\omega}) = \sum_{n \in \mathbb{Z}} x_n e^{-in\omega},$$

 $H(e^{i\omega})$ kaldes for frekvens responsen af filtret.

Proposition 3.1. For y = h * x gælder det at $Y(e^{i\omega}) = H(e^{i\omega})X(e^{i\omega})$ Proof.

$$Y(e^{i\omega}) = \sum_{n \in \mathbb{Z}} y_n e^{-in\omega}$$

$$= \sum_{n \in \mathbb{Z}} \left(\sum_{k \in \mathbb{Z}} x_k h_{n-k} \right) e^{-in\omega}$$

$$= \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} x_k e^{-ik\omega} h_{n-k} e^{-i(n-k)\omega}$$

$$= \sum_{k \in \mathbb{Z}} x_k e^{-ik\omega} \left(\sum_{n \in \mathbb{Z}} h_{n-k} e^{-i(n-k)\omega} \right)$$

$$= X(e^{i\omega}) H(e^{i\omega})$$

Men da vi har ligheder hele vejen igennem kan vi vende processen om. Det vil sige at vi kan designe et 2π -periodisk filter $H(e^{i\omega})$, med ønskede egenskaber. Også definere H, et entydigt linært tidsinvariant system T

Allpass filtre

Et filter h kaldes allpass, hvis $\left|H(\mathrm{e}^{i\omega})\right|=1.$ Lady=h*x. Det gælder at

$$||y||_{2}^{2}\stackrel{(a)}{=}\frac{1}{2\pi}\left||Y|\right|^{2}=\frac{1}{2\pi}\left||H\cdot X|\right|^{2}=\frac{1}{2\pi}\left||X|\right|^{2}\stackrel{(a)}{=}\left||X|\right|_{2}^{2}$$

hvor vi har benyttet parsevals ligning for at få lighed (a) og (a). Allpass filtre bevare altså $||\cdot||_2$ -normen (energi?).

4 | Foldning og Fourierintergraler

Definition 4.1. For $f,g:\mathbb{R}\to\mathbb{C}$ definieres foldningen af f og g som

$$f * g(x) := \int_{-\infty}^{\infty} f(y)g(x - y)dy = \int_{-\infty}^{\infty} f(x - y)g(y)dy$$

såfremt intergralet eksistere.

Remark 9. Bemærk at her tolkes $\int_{-\infty}^{\infty} h(x)dx$ som $\lim_{n,m\to\infty} \int_{-n}^{m} h(x)dx$

Theorem 4.2. Lad $g \in L^1(\mathbb{R})$ med $\int_{-\infty}^{\infty} g(x)dx = 1$ definier

$$\alpha = \int_{-\infty}^{0} g(x)dx, \quad \beta = \int_{0}^{\infty} g(x)dx$$

Antag, at f er stykvis kont. og begrænset. Da gælder, at

$$\lim_{\varepsilon \to 0+} f * g_{\varepsilon}(x) = \alpha f(x+) + \beta f(x-), \ hvor \ x \in \mathbb{R}$$

specielt gælder det at hvis f er kont, $i x \in \mathbb{R}$ er

$$\lim_{\varepsilon \to 0+} f * g_{\varepsilon}(x) = f(x), \ hvor \ x \in \mathbb{R}$$

Proof. Bemærk at $\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{\infty} g_{\varepsilon}(x)dx$ for alle $\varepsilon > 0$. Dette giver os

$$f * g_{\varepsilon}(x) - \alpha f(x+) - \beta f(x-) = \int_{-\infty}^{0} \left[f(x-y) - f(x+) \right] g_{\varepsilon}(y) dy$$
$$+ \int_{0}^{\infty} \left[f(x-y) - f(x-) \right] g_{\varepsilon}(y) dy$$

ved at benytte ligning (??). Givet $\delta > 0$, så vælges c > 0 således $|f(x-y) - f(x-)| < \delta$ for 0 < y < c. Vi har,

$$\left| \int_0^c \left[f(x-y) - f(x-y) \right] g_{\varepsilon}(y) dy \right| \le \delta \int_0^c \left| g_{\varepsilon}(y) \right| dy = \delta \int_0^{c/\varepsilon} \left| g(y) \right| dy$$
$$\le \delta \int_0^\infty \left| g(y) \right| dy \to 0$$

når $\delta \to 0$, lad nu $m \in \mathbb{R}$ således at $|f(x)| \leq M$ for alle $x \in \mathbb{R}$ (f er jo antaget til at være begrænset) så gælder det at

$$\left| \int_{c}^{\infty} \left[f(x - y) - f(x -) \right] g_{\varepsilon}(y) dy \right| \leq 2M \int_{c}^{\infty} \left| g_{\varepsilon}(y) \right| dy$$
$$\leq 2M \int_{c/\varepsilon}^{\infty} \left| g(y) \right| dy \to 0$$

når $\varepsilon \to 0+$ hvilket medfører at

$$\int_0^\infty \left[f(x-y) - f(x-) \right] g_\varepsilon(y) dy \to 0 \text{ når } \varepsilon \to 0+$$

og tilsvarende ses at

$$\int_{-\infty}^{0} \left[f(x-y) - f(x+) \right] g_{\varepsilon}(y) dy \to 0 \text{ når } \varepsilon \to 0+$$

dette medfører at

$$f * g_{\varepsilon}(x) - \alpha f(x+) - \beta f(x-) \to 0$$
 når $\varepsilon \to 0+$

Remark 10. Vi har $\alpha f(x+) + \beta f(x-) = (\alpha + \beta) f(x) = f(x)$ hvis f er kont. i x.

5 | Plancherels ligning

Vi betragter en glat f
kt. f med komp. støtte. Den opfylder, $\hat{f} \in L^1(\mathbb{R})$, samt
 $f, \hat{f} \in L^2(\mathbb{R})$, idet

$$\int_{-\infty}^{\infty} |f(x)|^2 dx \le \sup_{x \in \mathbb{R}} |f(x)| \int_{-\infty}^{\infty} |f(x)| dx < \infty$$
$$\int_{-\infty}^{\infty} |f(\hat{\xi})|^2 d\xi \le \sup_{\xi \in \mathbb{R}} |f(\hat{x})| \int_{-\infty}^{\infty} |f(\hat{x})| d\xi < \infty$$

for g "af samme type som" f:

$$\begin{split} 2\pi\langle f,g\rangle &= 2\pi \int_{-\infty}^{\infty} f(x)\overline{g(x)}dx = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \hat{f}(\xi)\mathrm{e}^{ix\xi}\ d\xi\right)\overline{g(x)}\ dx \\ &= \int_{-\infty}^{\infty} \hat{f}(\xi) \int_{-\infty}^{\infty} \overline{\mathrm{e}^{-ix\xi}g(x)}\ dx\ d\xi \\ &= \int_{-\infty}^{\infty} \hat{f}(\xi)\overline{\hat{g}(\xi)}\ d\xi = \langle \hat{f},\hat{g}\rangle. \end{split}$$

Special tilfælde f = g, får vi **Plancherels ligning**:

$$2\pi ||f||^2 = 2\pi \langle f, f \rangle = \langle \hat{f}, \hat{f} \rangle = ||\hat{f}||^2$$

Vi udvider nu til $L^2(\mathbb{R})$. For et generelt $f \in L^2(\mathbb{R})$ vælger vi en følge $\{f_n\}_{n \in \mathbb{N}}$ af glatte fkt. med komp. støtte, hvor $||f - f_n|| \to 0$, når $n \to \infty$. Vi definiere så

$$\hat{f} = \lim_{n \to \infty} \hat{f}_n$$
 (grænseværdi i $L^2(\mathbb{R})$)

Det giver mening da $\{f_n\}_{n\in\mathbb{N}}$, nødvendigsvis er en Cauchy-følge i $L^2(\mathbb{R})$, pga. konvergensen $f_n\to f$, og i følge Plancherels ligning

$$\left|\left|\hat{f}_n - \hat{f}_m\right|\right|^2 = 2\pi \left|\left|f_n - f_m\right|\right|^2 \to 0 \text{ når } n, m \to \infty$$

Altså er $\{\hat{f}_n\}_{n\in\mathbb{N}}$ en Cauchy-følge i det fuldstændige rum $L^2(\mathbb{R})$. Grænseværdien $\lim_{n\to\infty}\hat{f}_n:=\hat{f}$, eksistere altså i $L^2(\mathbb{R})$, (da der er tale om en Cauchy følge.)

Heraf følger det at Plancherels ligning holder for alle $f \in {}^{2}(\mathbb{R})$, idet:

$$||f||_2^2 = \lim_{n \to \infty} ||f_n||^2 = 2\pi \lim_{n \to \infty} ||\hat{f}_n||^2 = 2\pi ||\hat{f}||^2$$

Plancherels ligning har mange anvendelser eksempelvis kan vi vise at et allpass filter bevare L^2 normen. Et filter h kaldes allpass, hvis $\left|H(\mathrm{e}^{i\omega})\right|=1$. Lad y=h*x. Det gælder at

$$||y||_{2}^{2}\stackrel{(a)}{=}\frac{1}{2\pi}\left||Y|\right|^{2}=\frac{1}{2\pi}\left||H\cdot X|\right|^{2}=\frac{1}{2\pi}\left||X|\right|^{2}\stackrel{(a)}{=}\left||X|\right|_{2}^{2}$$

hvor vi har benyttet parsevals ligning for at få lighed (a) og (a). Allpass filtre bevare altså $||\cdot||_2$ -normen (energi?).

6 | Korttids-Fouriertransformen, herunder spektogrammer.