# SuperviZ



# How Fast Does Malware Leveraging EternalBlue Propagate? The case of WannaCry and NotPetya

#### SOTERN TEAM - IRISA, IMT ATLANTIQUE

Do Duc Anh NGUYEN (Presenter)

oleme eleke Oklee fo

Pierre ALAIN

pierre.alain@irisa.fr

Fabien AUTREL

- fabien.autrel@imt-atlantique.fr

Ahmed BOUABDALLAH

- ahmed.bouabdallah@imt-atlantique.fr

do-duc-anh.nguven@imt-atlantique.fr

Jérôme FRANÇOIS

jerome.francois@uni.lu

Guillaume DOYEN

- guillaume.doyen@imt-atlantique.fr

SecSoft Workshop 2024, Saint-Louis USA, June 28, 2024

## **Outline**

- Introduction
  - Context
  - Background: WannaCry and NotPetya
- Experiments
  - Environment Setup and Measurement Method
  - Observation on the NotPetya Sample
  - Observation on the WannaCry Sample
- Conclusion and Future Works

August 6, 2024

## **Outline**

- Introduction
  - Context
  - Background: WannaCry and NotPetya
- Experiments
  - Environment Setup and Measurement Method
  - Observation on the NotPetya Sample
  - Observation on the WannaCry Sample
- Conclusion and Future Works

#### Context

Malware is a contraction of *malicious* and soft*ware* aims to damages to information systems

ightarrow Especially dangerous when the worm ability is enabled to spread

## EternalBlue exploit [1]

Allows attackers to execute a remote code on the infected hosts by sending specially crafted Server Message Block version 1 (SMBv1) packets to unpatched Windows systems

WannaCry and NotPetya are two malware example that leverage EternalBlue to install a backdoor to deliver their payload

→ Demand ransom after encrypting victims' data

[1] Z Liu et al. "Working mechanism of eternalblue and its application in ransomworm", International Symposium on Cyberspace Safety and Security, 2022

 Introduction
 Experiments
 Conclusion and Future Works

 ○●○○○
 ○○○○○○○○○
 ○○○

# **Background: WannaCry and NotPetya**

Before exploitation, they send SMBv1 packets to a target to check existence

- Vulnerability: based on response of target to an invalid request
- Infection: based on value of a field in responses
  - → The backdoor modifies value the field

| Characteristics    | WannaCry            | NotPetya              |
|--------------------|---------------------|-----------------------|
| SMB field          | Multiplex ID = 0x81 | Reserved = 0x11       |
| Propagation method | EternalBlue         | EternalBlue           |
|                    |                     | EternalRomance        |
|                    |                     | Collected credentials |

Introduction

Experiments 000000000 Conclusion and Future Works

#### **Problematic**

Many malware detection and mitigation methods [2] but mostly local-only decisions





 $\rightarrow$  Long reaction time



Conflict detection in I2NSF [4]

→ Follow polynomial complexity

To propose effective solution, understanding of malware propagation strategies is important

 $\Rightarrow$  Current analysis do not cover knowledge of propagation behavior at scale

Introduction

Experiments 0000000000 Conclusion and Future Works

#### Contribution

#### Our contribution

- $\blacksquare$  Conduct experiments on a 50-host network  $\to$  study WannaCry and NotPetya propagation behavior
- Measurement of propagation speed
- Discussion on their propagation strategies
- → Providing meaningful insights on malware propagation in a local network

Introduction

## **Outline**

- Introduction
  - Context
    - Background: WannaCry and NotPetya
- 2 Experiments
  - Environment Setup and Measurement Method
  - Observation on the NotPetya Sample
  - Observation on the WannaCry Sample
- Conclusion and Future Works

## **Environment Setup**

#### **Environment setup**

- GNS3 provides network simulation
- 50 Windows 7 hosts (2GB of RAM and 1 vCPU) start from 10.0.0.1 to 10.0.0.50
- The PC1 contains malware binaries
- An Ubuntu machine counts the number of infection
- Two samples are selected
- $\rightarrow$  A star topology can maximize the propagation speed

For accurate speed measurement, place a monitor at each host



## **Measurement Method**

#### Two processes run on startup

- Check availability of hosts' IP address
  - if they are ready for connection
  - if they reboot
- Detect a malware process

#### Different detection is used

- mssecsvc is the first process of the WannaCry sample
  - → Monitor running process name
- The normal process rundl132.exe is used to run the NotPetya sample
  - → Monitor a full command: rundll32.exe c:\Windows\notpetyafilename.dll,#1

### **Assumption**: The starting time t = 0 when the PC1 first reports

#### Each experiment is repeated 10 times

→ More results from the WannaCry experiments are exposed

# Average time for each host infected by NotPetya

## Total average time to infect 50 hosts



Total average time: 1454.08  $\pm$  6.31 s (95% CI) CI: Confidence Interval

- Strategy: Complete scan then explore
- Sequential scan: prefix /24 ( $\sim$ 3 s / IP address) + 5 min delay
- → After 1200 s, the 2nd host is infected
- Then,  $\sim$ 4.97 s / host  $\rightarrow$  Increases linearly
- The order of infected hosts: 10.0.0.1 to 10.0.0.50
  - $\rightarrow$  Follows the order of scanning
- The PC1 infected 49 hosts (no competition)

# Average time for each host infected by WannaCry

## Total average time to infect 50 hosts



Total average time: 836.11  $\pm$  62.48 s (95% CI)

- Strategy: Scan while exploring
- Sequential scan: prefix /24
  - $\rightarrow$  After 60-250s s, the 2nd host is infected
  - $\rightarrow$  > The infection time if only a 2-host network is considered ( $\sim\!50~\text{s})$
- Then epidemic spread, but not exponential increase
  - → Perhaps 50 hosts are not enough
- The order of infected hosts: Random
- Some hosts reboot due to srvnet.sys

## **Number of Infected Hosts in Each 100-Second Period**

#### How did the speed change?



- Speed increases in the first 700 seconds
- Speed slows down in the 8th period
  - → The number of infectors and remaining hosts affect the speed

# **Number of Attempted and Effective Infectors**

How infectors compete with each other?



#### Definition

- Effective infector: The first one sending malware binary
- Attempted infector: Executed incomplete exploitation

- mean<sub>attempted\_infectors</sub> = 18
- mean<sub>sum\_effective\_infectors</sub> = 25
  - $\rightarrow$  At least one host is infected by a new infector

# **Average Distance of IP Addresses Between Infectors and Victims**

How the propagation strategy affects the infection order?



Example: distance 10.0.0.1 and 10.0.0.9 = 8

Observation

Due to sequential scan, most effective infectors have low IP

- 2nd-14th infection: Closer victim is infected
  - $\rightarrow$  New infectors are more effective than older one
- After 14th infection: Father victims is infected
  - $\rightarrow$  Old infectors become effective in infecting higher IP victim

## **Infection Time of Effective Infectors**

What is the time needed to protect a system?



We compute

- The time to infect  $t2i(i) = t_{victim} t_{infector\_i}$
- Empirical CDF of t2i for 490 infections in 10 repetitions

Observation:  $\sim$  20% of infections  $\leq$  50 s

ightarrow Save  $\sim$  80% of hosts if the reaction time  $\leq$  50 seconds

CDF: Cumulative distribution function

#### **Discussion**

#### WannaCry propagate faster than the NotPetya

| Characteristics        | WannaCry             | NotPetya       |
|------------------------|----------------------|----------------|
| Scanning behavior      | Sequential           | Sequential     |
| Propagation strategies | Parallel to the scan | After the scan |
| Competitors            | ✓                    | ×              |

#### The results imply that

- Mitigating malware propagation is challenging
- Propagation speed of the WannaCry increase non-linearly
  - $\rightarrow$  The need for reducing reaction time
- ⇒ Determine the time interval to deploy appropriate mitigation

## **Outline**

- Introduction
  - Context
    - Background: WannaCry and NotPetya
- Experiments
  - Environment Setup and Measurement Method
  - Observation on the NotPetya Sample
  - Observation on the WannaCry Sample
- Conclusion and Future Works

## **Conclusion and Future Works**

A dynamic analysis of WannaCry and NotPetya is presented to

- Understand their propagation behavior
- Measure their propagation speed

#### The results present

- Challenges for detection and mitigation solutions
- Large confidence intervals
  - ightarrow A dynamic propagation strategy that may vary

#### Future works

- 1000 hosts and > 10 repetitions
- Propose a fast mitigation approach
  - Leverages microservices and Intent-Based Networking (IBN) systems
  - Opportunistic approach that synchronizes microservices' behavior to autonomously react

# Question

Thank you for listening. Any question?

Experiments

August 6, 2024

#### References I

- [1] Zian Liu et al. "Working mechanism of eternalblue and its application in ransomworm". In: <u>International Symposium on Cyberspace Safety and Security</u>. Springer. 2022, pp. 178–191.
- [2] S Sibi Chakkaravarthy et al. "A survey on malware analysis and mitigation techniques". In: <u>Computer Science Review</u> 32 (2019), pp. 1–23.
- [3] Daniele Bringhenti et al. "Automated Firewall Configuration in Virtual Networks". In: <u>IEEE Transactions on Dependable and Secure Computing</u> 20.2 (2023), pp. 1559–1576. DOI: 10.1109/TDSC.2022.3160293.
- [4] Do Duc Anh Nguyen et al. "A Robust Approach for the Detection and Prevention of Conflicts in I2NSF Security Policies". In: NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium. 2023,
  - pp. 1–7. DOI: 10.1109/NOMS56928.2023.10154304.

## **EternalBlue Exploitation**

Unpatched Windows versions from XP to 8.1 are vulnerable

- Allows SMB connection without authentication
- Wrongly compute the heap allocation size of SMB requests
- Constant memory addresses used by the (Hardware Abstraction Layer) HAL module, has execution privilege