Exercise 8. Answer Sheet

Student's Name: Kohei Sato Student's ID: s1240010

Problem 1. Write pseudo-code for the Strassen's algorithm.

```
STRASSEN(A, B)
      n = A.rows
      let C be a new n*n matrices
      if n == 1
             C11 = a11*b11;
      else
             partition A, B, P in equations 4.9
             S1 = B12 - B22
             S2 = A11 + A12
             S3 = A21 + A22
             S4 = B21 - B11
             S5 = A11 + A22
             S6 = B11 + B22
             S7 = A12 - A22
             S8 = B21 + B22
             S9 = A11 - A21
             S10 = B11 + B12
             //Recursive
             P1 = STRASSEN(A11, S1)
             P2 = STRASSEN(S2, B22)
             P3 = STRASSEN(S3, B11)
             P4 = STRASSEN(A22, S4)
             P5 = STRASSEN(S5, S6)
             P6 = STRASSEN(S7, S8)
             P7 = STRASSEN(S9, S10)
             C11 = P5 + P4 - P2 + P6
             C12 = P1 + P2
             C21 = P3 + P4
             C22 = P5 + P1 - P3 - P7
      return C
```

Problem 2. Use Strassen's algorithm to compute the matrix product:

$$\begin{pmatrix} 1 & 3 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 4 & 2 \end{pmatrix}$$

Show your work below:

$$\binom{13}{15}\binom{69}{42} = \binom{C_{11}C_{12}}{C_{11}C_{22}}$$

$$S_1 = 8 - 2 = 6$$
, $S_2 = 1 + 3 = 4$
 $S_3 = 7 + 5 = 12$, $S_4 = 4 - 6 = -2$
 $S_5 = 1 + 5 = 6$, $S_6 = 6 + 2 = 8$
 $S_7 = 3 - 5 = -2$, $S_8 = 4 + 2 = 6$
 $S_9 = 1 - 7 = -6$, $S_{10} = 6 + 8 = 14$
 $P_1 = 1 \times 6 = 6$, $P_2 = 4 \times 2 = 8$, $P_3 = 12 \times 6 = 92$
 $P_4 = 5 \times -2 = -10$, $P_5 = 6 \times 8 = 48$, $P_6 = -2 \times 6$
 $P_7 = -6 \times 14 = -84$
 $C_{12} = 6 + 8 = 14$
 $C_{21} = 72 - 10 = 62$
 $C_{22} = 6 + 48 - 72 + 84 = 66$

Problem 3. Make two programs implementing the Recursive matrix multiplication and the Strassen's algorithm. Upload your code. Generate two random matrices A and B of size $n \times n$, multiply them using your programs and measure the time needed to get the result. Fill the following table:

Time needed to multiply two n×n matrices. (May depend on the programming language, computer, etc.)

Algorithm	n					
	32	64	128	256	512	1024
Recursive (sec)	0.053597927 0935	0.47684597969 1	4.14728307724	37.5658779144	371.939133167	4710.939133167
Strassen (sec)	0.005620956 4209	0.04133605957 03	0.34898781776 4	2.60540485382	21.2877118587	176.405590057

wlan-napt-001:Ex8 koheisato\$ python test.py
Input n:8
wlan-napt-001:Ex8 koheisato\$ python Recursive.py
0.00140023231506

wlan-napt-001:Ex8 koheisato\$ python makeMatrix.py
Input n:8
wlan-napt-001:Ex8 koheisato\$ python Strassen.py
0.000379085540771