

Сегодня мы поговорим про RAID

RAID – Redundant Array of Independent (Inexpensive) Disks

Для чего нужен:

- Большая надёжность, чем у отдельных дисков,
- Большая вместимость, чем у отдельных дисков.

Статистика Backblaze по поломкам 4TB HDD в 2015 году

Модель	Число дисков	% поломавшихся	
HGST Deskstar 5K4000	2600	0.86%	
HGST Megascale 4000	7000	0.70%	
Seagate Desktop HDD.15	20900	3.31%	

https://www.backblaze.com/blog/hard-drive-reliability-q3-2015/

Оценки надёжности HDD и SSD

- MTBF Mean Time Between Failures
- RBER Raw Bit Error Rate
- UBER Uncorrectable Bit Error Rate

Оценки надёжности HDD и SSD

- MTBF Mean Time Between Failures
- RBER Raw Bit Error Rate
- UBER Uncorrectable Bit Error Rate

Для SSD S3710 Intel обещает

Reliability

- Uncorrectable Bit Error Rate (UBER):
 - 1 sector per 10^{^17} bits read
- Mean Time Between Failures (MTBF): 2 million hours
- End-to-End data protection

Означают ли эти числа, что в реальной жизни ошибки нам не встретятся? Что будет в ДЦ объёмом 10РВ, где стоит тысяча дисков?

RAIDO (stipe)

Данные разрезаются на последовательные куски длины N * B, каждый кусок разделяется на N частей, которые записываются на различные диски:

Диск 1

Диск N-1

Диск 0

RAID4

Массив состоит из N+1 дисков. На первых N дисках данные хранятся, как на RAIDO. На последнем диске каждый блок вычисляется как XOR соответствующих блоков на N дисках.

При потере любого диска массив остаётся работоспособным.

RAID4

Массив состоит из N+1 дисков. На первых N дисках данные хранятся, как на RAIDO. На последнем диске каждый блок вычисляется как XOR соответствующих блоков на N дисках.

При потере любого диска массив остаётся работоспособным.

Такой массив имеет концептуальный недостаток: диск с блоками чётности будет изнашиваться быстрее других дисков.

Уровни RAID

Уровни RAID

RAID0 (stripe)	 большая скорость линейных записи и чтения, оптимизирует случайные чтения, теряет все данные при поломке одного диска.
RAID1 (mirror)	 оптимизирует случайное чтение, скорость записи – как у одиночного диска, выживает при потере всех дисков, кроме одного, слишком расточителен.
RAID5	 оптимизирует случайное чтение, что со скоростью записи? позволяет потерять любой диск без потери работоспособности.
RAID6	Как RAID5, но вычисляет два разных блока чётности, поэтому выдерживает потерю любых двух дисков.
RAID10	Пары дисков объединяются в RAID1, затем поверх этих RAID1 собирается RAID0.
RAID0+1	Массив RAID1 поверх массивов RAID0.

Трудности с RAID

- (небольшая) При перезагрузке устройства могут поменять имена.
- (большая) Write holes.

Write holes

Запись на разные диски будет происходить в разное время.

Рассмотрим такой сценарий:

- начинается запись на RAID1,
- диск #0 обработал запрос на запись сектора,
- произошёл сбой питания,
- на диске #1 сектор остался без изменений.

Write holes

Аппаратный способ решения:

• BBU (Battery Backup Unit) в RAID-контроллерах.

Программные способы решения:

- write intent bitmap (linux md),
- checksumming + COW (ZFS),
- SSD journal: https://lwn.net/Articles/665299/.

Write intent bitmap, помимо исправления write holes, позволяет уменьшить время проверки и перестроения массива после аварийного выключения.

Скорость записи на RAID5

Из-за необходимости переживать аварийные выключения мы не имеем права одновременно изменять несколько блоков в одном страйпе. Значит, скорость записи на RAID5 получается такая же, как на одиночный диск.

Как сделать RAID6?

Немного предварительных сведений из алгебры:

- В кольце \mathbb{Z}_p остатков от деления целых чисел на р каждый ненулевой элемент обратим, т.е. \mathbb{Z}_p конечное поле.
- Если k поле и многочлен $P \in k[X]$ неприводим (не раскладывается в произведение многочленов меньшей степени), то кольцо k[X] / (P) остатков от деления на P будет полем.
- Для всякого простого числа р и натурального числа d существует многочлен $P \in \mathbb{Z}_p[X]$ степени d, неприводимый над \mathbb{Z}_p . Значит, существует конечное поле, содержащее p^d элементов.
- Каждый элемент поля $k[X] \ / \ (P)$ однозначно представляется в виде $a_{d-1}X^{d-1} + a_{d-2}X^{d-2} + \cdots + a_o$, где $a_i \in \mathbb{Z}_p$.
- Все поля, содержащие p^d элементов, изоморфны. Поэтому можно говорить о «поле из p^d элементов». Обозначим это поле $GF(p^d)$.

Как сделать RAID6?

Пример: GF(4).

Многочлен $X^2 + X^1 + 1$ неприводим над \mathbb{Z}_2 . Значит, GF(4) состоит из элементов 0, 1, x, x+1 со следующей таблицей умножения:

	0	1	x	x+1
0	0	0	0	0
1		1	х	x+1
X			x+1	1
x+1				х

На многочлен a_1x+a_0 с $a_i\in\mathbb{Z}_2$ можно смотреть, как на целое двухбитовое число. Сложение в GF(4) — это XOR таких чисел.

Как сделать RAID6?

Пересылаемые сообщения и многочлены.

Пусть мы собираемся переслать n байт данных a_{n-1} , a_{n-2} , ..., a_0 .

На каждый байт можно смотреть, как на число из $GF(2^8)$.

Из всех байт можно составить многочлен:

$$a_{n-1}, a_{n-2}, \dots, a_0 \iff X^n + a_{n-1}X^{n-1} + a_{n-2}X^{n-2} + \dots + a_0$$

Как сделать RAID6?

Пересылаемые сообщения и многочлены.

Пусть мы собираемся переслать n байт данных a_{n-1} , a_{n-2} , ..., a_0 .

На каждый байт можно смотреть, как на число из $GF(2^8)$.

Из всех байт можно составить многочлен:

$$a_{n-1}, a_{n-2}, \dots, a_0 \iff X^n + a_{n-1}X^{n-1} + a_{n-2}X^{n-2} + \dots + a_0$$

Для многочлена-сообщения M(X) в качестве байтов чётности добавим остаток от деления M(X) на некоторый заранее выбранный многочлен.

Как сделать RAID6?

Пусть задан многочлен-сообщение $M(X) = X^n + a_{n-1}X^{n-1} + a_{n-2}X^{n-2} + \dots + a_0$.

Как подобрать многочлен, остатки от деления на который объявить байтами чётности?

Как сделать RAID6?

Пусть задан многочлен-сообщение $M(X) = X^n + a_{n-1}X^{n-1} + a_{n-2}X^{n-2} + \dots + a_0$.

Как подобрать многочлен, остатки от деления на который объявить байтами чётности?

Код Рида-Соломона:

- **Факт**: группа обратимых элементов $GF(p^d)^{\times}$ является циклической.
- Пусть а порождающий элемент группы $GF(2^8)^{\times}$, и мы хотим добавить k байт чётности (k <= n). Тогда в качестве байт чётности надо добавить остаток от деления $M(X) * X^k$ на многочлен

$$g(X) = (X - 1) * (X - a) * (X - a^{2}) * ... * (X - a^{k-1})$$

Итак, если $M(X) * X^k \equiv r(X) \bmod g$, то передаваемым сообщением будет $M(X) * X^k + r(X)$.

Факт: Если в переданном сообщении $M(X) * X^k + r(X)$ изменить (или потерять) не больше, чем k коэффициентов, то исходное сообщение можно однозначно восстановить.

