Représentation et analyse des systèmes dynamiques: Étude de synthèse

T. Miquel, A. Drouin, T. Druot, N. Monrolin 26 mai 2025

1	Modélisation de la dynamique longitudinale d'un avion				
	1.1 Notations				
	1.3 Paramètres				
_	2 Tutoriel				
3	Séance 1 : Analyse du modèle avion				
4	Séance 2 : Trim				
5	Séance 3 : Réponse longitudinale				

1 Modélisation de la dynamique longitudinale d'un avion

1.1 Notations

Nous considérons un avion évoluant selon le plan vertical comme représenté sur la figure 1.

FIGURE 1 – Avion évoluant dans le plan vertical

Nous noterons par la suite :

- x_G la position horizontale du centre de masse de l'avion exprimée en m;
- h_G l'altitude pression du centre de masse de l'avion, exprimée en m;
- m la masse de l'avion exprimée en kg et que nous supposerons constante;
- g l'accélération de la pesanteur : $g = 9.80665 \ m/s^2$;
- V_a la vitesse aérodynamique de l'avion exprimée en m/s;
- L (lift) la force de portance, exprimée en N et perpendiculaire à la vitesse V_a ;
- D (drag) la force de trainée, exprimée en N et orientée à l'opposé de la vitesse V_a ;
- F la force de poussée issue des réacteurs, exprimée en N;
- M le moment de tangage, exprimé en Nm
- α l'incidence aérodynamique de l'avion exprimée en rad;
- θ l'assiette de l'avion exprimée en rad;
- q la vitesse de tangage de l'avion exprimée en rad/sec:

$$q = \dot{\theta} \tag{1}$$

— γ la pente de l'avion exprimée en rad:

$$\gamma = \theta - \alpha \tag{2}$$

- S est surface portante de référence exprimée en m^2 ;
- \bar{c} la corde de référence de l'aile (en anglais : *Mean Aerodynamic Chord* ou MAC ¹) exprimée en m:
- d_{zf} la distance verticale (dans le repère avion) entre le centre de masse du moteur et le centre de masse de l'avion exprimée en m;

^{1.} https://en.wikipedia.org/wiki/Chord (aeronautics)

- I_{yy} est le moment d'inertie de l'avion autour de l'axe de tangage et est exprimé en $kg\,m^2$. C_s est la consommation spécifique du moteur. Elle exprime la force F qu'un moteur est capable de produire en contrepartie de sa consommation de carburant et est exprimée en $kq/s N^{-1}$.

1.2 Modèle d'état

Les équations de la dynamique du solide sont établies dans le repère aérodynamique. En utilisant les lois de la cinématique et de la dynamique du solide les équations suivantes peuvent

$$\begin{cases} \dot{\alpha} = q - \frac{L + F \sin(\alpha)}{mV_a} + \frac{g}{V_a} \cos(\gamma) \\ \dot{q} = \frac{d_{zf}F + M}{I_{yy}} \\ \dot{V}_a = \frac{F \cos(\alpha) - D}{m} - g \sin(\gamma) \\ \dot{\gamma} = q - \dot{\alpha} = \frac{L + F \sin(\alpha)}{mV_a} - \frac{g}{V_a} \cos(\gamma) \\ \dot{h}_G = V_a \sin(\gamma) \\ \dot{x}_G = V_a \cos(\gamma) \\ \dot{m} = -C_s F \end{cases}$$

$$(3)$$

Nous ferons par la suite les hypothèses suivantes :

$$\begin{cases}
 d_{zf} = 0 \\
 C_s = 0
\end{cases}$$
(4)

La portance L, la trainée D et le moment de tangage M ont les expressions suivantes :

$$\begin{cases}
L = \frac{1}{2}\rho(h_G) V_a^2 S C_L \\
D = \frac{1}{2}\rho(h_G) V_a^2 S C_D \\
M = \frac{1}{2}\rho(h_G) V_a^2 S \bar{c} C_m
\end{cases}$$
(5)

Les expressions des coefficients de portance C_L , de trainée C_D et du moment de tangage C_m sont développées dans le fichier aero_model.py tandis que la dynamique du vol est codée dans le fichier dynamic.py.

Nous définissons le vecteur d'état x et le vecteur de commande u comme suit :

$$\begin{cases}
\underline{x} = \begin{bmatrix} \alpha & q & V_a & \gamma & h_G & x_G \end{bmatrix}^T \\
\underline{u} = \begin{bmatrix} \delta_{trim} & \delta_{th} \end{bmatrix}^T
\end{cases}$$
(6)

Les équations ci-dessus peuvent se ré-écrire à l'aide du champ de vecteur $f(\underline{x},\underline{u})$:

$$\underline{\dot{x}} = f(\underline{x}, \underline{u}) \tag{7}$$

1.3 **Paramètres**

Les données des tables 1, ?? et 2 seront utilisées. Elles proviennent de l'ouvrage d'E. Roux ². En ce qui concerne la table 2, MTOW (Maximum Takeoff Weight) désigne la masse maximale au décollage et OWE (Operating Empty Weight) la masse à vide en ordre d'exploitation (carburant non inclus!).

^{2.} Élodie Roux, Avions civils à réaction : plan 3 vues et données caractéristiques, 2007. ISBN : 978-2-9529380-2-0, http://elodieroux.com/EditionsElodieRouxAvions.html

Équipe	Avion	Moteur	$F_0(N)$
Alpha	Airbus A-320	CFM 56-5A1	2×111205
Bravo	Boeing 737-800	CFM 56-7B24	2×106757
Charlie	Airbus A-319	CFM 56-5B5	2×97860
Delta	Airbus A-321	CFM 56-5B1	2 x 133446
Echo	Boeing 737-700	CFM 56-7B20	2×91633
Foxtrot	Boeing 737-300	CFM 56-3B1	2 x 88694

Table 1 – Table des motorisations

Avion	MTOW(kg)	OWE(kg)
Airbus A-320	73500	39733
Boeing 737-800	70534	41413
Airbus A-319	64000	39358
Airbus A-321	89000	47000
Boeing 737-700	60326	37648
Boeing 737-300	56473	31480

Table 2 – Table des masses

La masse m sera choisie entre la masse à vide en ordre d'exploitation et la masse maximale au décollage. Pour cela nous ferons varier le coefficient k_m de réglage de la masse entre 0.1 (on met quand même un peu de kérosène dans les réservoirs) et 1 :

$$m = (1 - k_m) \text{OWE} + k_m \text{MTOW où } 0.1 \le k_m \le 1$$
 (8)

2 Tutoriel

Deux tutoriaux, à réaliser *impérativement* avant le début des séances encadrées, sont disponibles à l'adresse suivante : http://recherche.enac.fr/~drouin/projet_synthese_1a/.

Le premier tutoriel vous présente la démarche d'analyse utilisée pendant le projet en l'appliquant au cas simple d'un pendule. Le second détaille le code fourni pour la simulation de l'avion.

3 Séance 1 : Analyse du modèle avion

Vous prendrez q=0 pour cette séance. Vous justifierez à posteriori ce choix une fois traitée la dernière question de cette séance.

- 1. Étudiez l'effet de l'incidence α et de l'angle de braquage δ_{trim} sur le coefficient de portance C_L . Indiquez si le modèle proposé par défaut prend en compte le décrochage de l'avion. Pour cela vous pourrez tracer le coefficient de portance C_L en fonction de l'incidence α (comprise entre $-10\frac{\pi}{180}$ rad à $+20\frac{\pi}{180}$ rad) lorsque δ_{trim} vaut $-12\frac{\pi}{180}$ rad puis $+7\frac{\pi}{180}$ rad.
- 2. Tracez la polaire aérodynamique $C_L = f(C_D)$ pour $\delta_{trim} = 0$. Vous pourrez pour cela faire varier l'incidence α et calculer la valeur de C_L et C_D pour chaque incidence. Dans un second temps, activez le modèle de décrochage en réglant l'attribut stall à True. Puis faites de même avec le modèle de traînée d'onde (effet de compressibilité sur la traînée) en règlant l'attribut wave_drag à True. Tracez la polaire pour deux nombres de Mach M = 0.6 et M = 0.8. Les polaires ainsi obtenues sont appelées polaires non équilibrées.
- 3. Étudiez l'effet de l'incidence α et de la marge statique m_s ³ sur le coefficient C_m de moment de tangage en G. Conclure quant à la réaction de l'avion en cas d'augmentation intempestive de l'incidence α (perturbation en incidence). Pour cela vous pourrez tracer le coefficient C_m du moment de tangage en fonction de α pour quatre valeurs de la marge statique m_s : 0.7, 0.2 0 et -0.3 lorsque $\delta_{trim} = 0$. Notez que la marge stattique m_s se régle via la méthode set static margin(.).
- 4. On appelle $\delta_{trim,e}$ la valeur de δ_{trim} permettant un vol stabilisé (q=0) et un moment de tangage nul $(C_m=0)$. Trouvez une expression de $\delta_{trim,e}$ en fonction des paramètres du modèle avion. Vous pourrez vous aider de l'équation suivante :

$$\begin{cases}
M = \frac{1}{2}\rho(h_G) V_a^2 S \bar{c} C_m \\
C_m = C_{m0} + C_{m\alpha} (\alpha - \alpha_0) + C_{m\delta_{trim}} \delta_{trim} + C_{mq} \frac{q l_t}{V_a} + C_{m\delta_m} \delta_m
\end{cases}$$
(9)

- Comment varie $\delta_{trim,e}$ avec la marge statique m_s ;
- Comment varie $\delta_{trim,e}$ en fonction de l'incidence d'équilibre que l'on notera α_e .

Pour cela vous pourrez calculer et tracer en fonction de l'incidence α la valeur $\delta_{trim,e}$ pour quatre valeurs de la marge statique la marge statique m_s : 0.7, 0.2 0 et -0.3.

- 5. On appelle coefficient de portance équilibrée C_{Le} la valeur du coefficient de portance C_L lorsque $\delta_{trim} = \delta_{trim,e}$. Étudiez l'effet de l'incidence d'équilibre α_e et de la marge statique m_s sur le coefficient de portance équilibrée C_{Le} . Pour cela pour pourrez tracer en fonction de α_e le coefficient de portance équilibrée C_{Le} pour deux valeurs de la marge statique : $m_s = 0.2$ et $m_s = 0.7$. Tracez la polaire équilibrée $C_{Le} = f(C_{De})$ pour deux valeurs de la marge statique.
- 6. Tracez la polaire équilibrée pour les deux valeurs précédentes de la marge statique. Indiquez :
 - Si la polaire équilibrée dépend de la marge statique;
 - La valeur de la finesse maximale.

^{3.} $m_s = r_{xf} - r_{xg}$ où r_{xf} est la position relative du foyer exprimée en pourcentage de corde aérodynamique moyenne (CAM) et r_{xg} est la position relative du centre de masse exprimée en pourcentage de corde aérodynamique moyenne (CAM). $r_{xg} = 0$ lorsque le centre de masse G est au bord d'attaque de la CAM, $r_{xg} = +1$ lorsque G est au bord de fuite de la CAM.

4 Séance 2 : Trim

Pour cette séance, vous donnerez successivement à l'altitude h_G , au nombre de Mach M_a , à la marge statique ms et au coefficient k_m de réglage de la masse de l'avion les valeurs suivantes :

```
 \begin{cases} h_G \in \{4000, 6000, 8000, 10000\} \text{ mètres} \\ M_a \in \{0.4, 0.6, 0.8\} \\ m_s \in \{0.2, 1\} \\ k_m \in \{0.1, 1\} \end{cases}
```

L'ensemble des points de trim est donc un ensemble constitué de $4 \times 3 \times 2 \times 2 = 48$ points.

- 1. Utilisez la méthode numérique de trim fournie dans le code Python pour déterminer les valeurs de α , δ_{trim} et δ_{th} correspondant à un vol en palier. Vous pourrez par exemple présenter les différentes valeurs de trim en fonction de l'altitude, paramétrées pour deux valeurs du nombre de Mach, 0.4 et 0.8 par exemple; vous pourrez associer une figure pour chaque valeur du couple {marges statique m_s , coefficient de réglage de la masse k_m }. Vous pourrez mettre en parallèle ces résultats avec ceux de la question précédente.
- 2. Utilisez la méthode numérique de trim fournie dans le code Python pour tracer les courbes de la poussée *nécessaire* au vol en palier en fonction du nombre de Mach, paramétrées pour deux valeurs de l'altitude, 4000 mètres et 10000 mètres par exemple; vous pourrez associer une figure pour chaque valeur du couple {marges statique m_s , coefficient de réglage de la masse k_m }.
- 3. Choisir arbitrairement un point de trim dans l'ensemble des points de trim proposés. Identifiez l'équation de sustentation dans les équations d'état (3). De quels paramètres dépend le coefficient de portance C_L ? En faisant l'hypothèse que l'incidence α est petite, établissez l'expression du coefficient de portance C_L à l'équilibre. Conclure quant à la technique de réglage de la vitesse de l'avion. Utilisez la valeur de C_L obtenue ainsi que les graphiques tracés lors de la première séance pour déterminer (approximativement) les valeurs de trim α_e et δ_{PHRe} . Comment obtenir la valeur de trim de la manette des gaz δ_{th} à partir de la polaire équilibrée?
- 4. Pour le point de trim précédemment étudié, vérifiez que le calcul numérique conduit aux mêmes résultats que la méthode graphique.
- 5. Comparez la trajectoire de l'avion sur 100s en utilisant d'une part le point de trim obtenu par le calcul numérique et d'autre part le point de trim obtenu par la méthode graphique. Vous pourrez à cette fin utiliser la fonction scipy.integrate.odeint de Python.

5 Séance 3 : Réponse longitudinale

- 1. Linéarisez numériquement le modèle d'état pour toutes les conditions de trim. Extraire des représentations d'état linéarisées $\{\mathbf{A},\mathbf{B}\}$ de dimension 6 (qui est la dimension du vecteur d'état $\begin{bmatrix} x_G & h_G & V_a & \alpha & \theta & q \end{bmatrix}^T$) les matrices \mathbf{A}_4 et \mathbf{B}_4 associées aux composantes $\begin{bmatrix} V_a & \alpha & \theta & q \end{bmatrix}^T$ du vecteur d'état et calculez numériquement les valeurs propres de la matrice \mathbf{A}_4 . Vous tracerez les valeurs propres pour toutes les conditions de trim en faisant varier successivement l'altitude h_G , le nombre de Mach M_a , la marge statique ms et la masse m (au travers les différentes valeurs du coefficient k_m de réglage de la masse). Comment varient les valeurs propres en fonction de ces différents paramètres?
 - Par la suite, vous choisirez un point de trim pour lequel toutes les valeurs propres de la matrice \mathbf{A}_4 sont à partie réelle strictement négative. Nous supposerons que l'avion rencontre à l'instant initial un cisaillement de vent. Ce cisaillement de vent d'expression $W_h\delta(t)$ où $\delta(t)$ est l'impulsion de Dirac a pour vitesse verticale $W_h=2$ m/s. En termes de simulation cela se traduit par un changement de l'incidence initiale : en notant α_e l'incidence de trim et V_{ae} la vitesse de trim, la nouvelle incidence initiale vaut maintenant $\alpha_e+\arctan\left(\frac{W_h}{V_{ae}}\right)$
- 2. Simulez et tracez la vitesse V_a , l'incidence α , l'assiette θ et la vitesse de tangage q de l'avion sur 240s en utilisant le modèle non linéaire puis le modèle linéarisé. Le modèle linéarisé reflète t-il correctement le comportement du modèle non linéaire? Quelle est la relation qui relie la période d'oscillation du modèle linéarisé et les valeurs propres de la matrice \mathbf{A}_4 ? Quel est le nom donné à ces oscillations à grande échelle de temps?
- 3. Réalisez les mêmes simulations sur 10s. Le modèle linéarisé reflète t-il correctement le comportement du modèle non linéaire? Quel est le nom donné à ces perturbations à petite échelle de temps?
- 4. Comparez les trajectoires obtenues sur 240s en utilisant le même modèle linéaire mais en choisissant un autre point de trim et en simulant le modèle non linéaire. Quelle conclusion tirez vous quant à la précision du modèle linéaire autour d'un point de trim différent de celui autour duquel il a été obtenu?
- 5. La Figure 2 donne des spécifications relatives à la phugoïde et à l'oscillation d'incidence ⁴. Pour le point de trim choisi, indiquez si votre aéronef est conforme aux spécifications. Dans la négative, quelles sont vos propositions pour obtenir les qualités de vol souhaitées?

^{4.} Christopher Beaverstock, Alireza Maheri, Thomas Richardson, Mark Lowenberg and Askin Isikveren, Methods for Conceptual Flight Control System Design, 47th AIAA Aerospace Sciences Meeting, 5-8 January 2009, Orlando, Florida, https://doi.org/10.2514/6.2009-1620

Figure 2 – Spécifications sur la phugoïde et l'oscillation d'incidence