

ANDRÉ AMARAL DE ALVARENGA PIRES
ARTHUR HAUSEIN BATISTA DE FARIA
EDUARDO SILVA COELHO
LUCAS BERINDOAGUE
VICTOR MASCARENHAS

YAN ALVARENGA DUARTE

PROGRAMAÇÃO PARA ANÁLISE DE DADOS BASE DE CHAMADOS DE MANUTENÇÃO

LOG COMMERCIAL PROPERTIES

Professor: Christiano

ANDRÉ AMARAL DE ALVARENGA PIRES

ARTHUR HAUSEIN BATISTA DE FARIA

EDUARDO

LUCAS BERINDOAGUE

VICTOR MASCARENHAS

YAN ALVARENGA DUARTE

PROGRAMAÇÃO PARA ANÁLISE DE DADOS BASE DE CHAMADOS DE MANUTENÇÃO

LOG COMMERCIAL PROPERTIES

Trabalho apresentado no Instituto Brasileiro de Mercados de Capitais – IBMEC BH na disciplina de Programação para Análise de Dados.

Professor: Christiano.

1. INTRODUÇÃO

A LOG *Commercial Properties* é uma das maiores desenvolvedoras e administradoras de condomínios logísticos de alto padrão no Brasil. Especializada em soluções imobiliárias para operações industriais, logísticas e de distribuição, a empresa atua em diversos estados do país, atendendo grandes players do setor varejista, e-commerce e indústria. Como parte de sua estratégia de excelência operacional, a LOG busca constantemente otimizar seus processos de manutenção predial, garantindo agilidade no atendimento e aumento da satisfação dos clientes.

O presente relatório tem como objetivo analisar a base de dados de chamados de manutenção recebidos pela companhia, aplicando técnicas avançadas de análise de dados para extrair insights que contribuam para uma melhor gestão operacional e tomada de decisão baseada em evidências. Inicialmente, foi realizado o tratamento da base de dados, com a remoção de valores nulos, inconsistências e colunas irrelevantes, seguido da criação de variáveis derivadas, como tempo de resolução dos chamados, categorização por dia da semana e mês, além da estruturação temporal para facilitar a análise por período.

A análise foi conduzida utilizando ferramentas de análise exploratória de dados (EDA), visualizações com estatística descritiva e inferencial, bem como métodos para identificação de padrões, sazonalidade e correlações. Em especial, investigaram-se variáveis como o tempo médio de resolução por responsável, sazonalidade dos chamados por mês e dia da semana, categorias mais recorrentes de problemas, distribuição por cliente e por condomínio, além da correlação regional por unidade federativa (UF).

Adicionalmente, aplicou-se uma técnica de *clustering* (agrupamento não supervisionado) para segmentar os chamados com base em múltiplas variáveis, permitindo a identificação de perfis de demanda distintos. Essa abordagem possibilita intervenções mais direcionadas e o redesenho de fluxos operacionais, conforme as características de cada grupo identificado.

Por fim, os resultados obtidos visam apoiar a LOG na melhoria contínua de seus serviços de manutenção, com recomendações práticas para o dimensionamento adequado de equipes, prevenção de falhas recorrentes e aprimoramento da experiência do cliente final. O relatório também estrutura a apresentação em capítulos específicos de metodologia, análise dos resultados, visualizações comentadas e conclusões operacionais.

As análises foram conduzidas utilizando a linguagem Python no ambiente Cursor, com apoio de bibliotecas como *Pandas, Seaborn, Plotly e Scikit-learn*. Os resultados obtidos oferecem uma base sólida para ações de planejamento de recursos, padronização de processos e prevenção de falhas recorrentes, contribuindo para uma operação mais inteligente, proativa e centrada em dados

2. METODOLOGIA

A presente análise foi conduzida com base em dados operacionais disponibilizados pela empresa LOG Commercial Properties, especificamente um conjunto de registros referentes a chamados de manutenção registrados em seus empreendimentos logísticos. A base de dados utilizada encontra-se no arquivo intitulado "BD_tratado.xlsx", o qual contém informações detalhadas sobre o cliente solicitante, data de criação e modificação do chamado, assunto tratado, responsável pela execução e localização do condomínio logístico, entre outras variáveis categóricas e temporais.

Inicialmente, foi realizada a etapa de tratamento e preparação da base de dados, com a exclusão de colunas irrelevantes para a análise, padronização de nomes de colunas, remoção de dados ausentes e inconsistentes, além da conversão de variáveis de data para o formato adequado. Também foram criadas variáveis derivadas, como o tempo de resolução do chamado em horas e categorização temporal (dia da semana, mês e ano), a fim de permitir uma análise mais estruturada dos padrões de atendimento.

A metodologia adotada combinou técnicas de análise exploratória de dados (EDA) com visualização interativa por meio da biblioteca Plotly, além da aplicação de análises estatísticas descritivas (como médias, frequências e distribuições) e análises inferenciais, incluindo a construção de correlações e segmentações. Foram avaliados aspectos como:

- Tempo médio de resolução por técnico responsável;
- Distribuição dos chamados ao longo dos dias da semana e meses do ano (sazonalidade);
 - Tipos de problemas mais frequentes (variável des_assunto);
 - Comparação entre regiões (UF) e entre condomínios;
 - Relação entre clientes e localidades;
 - Identificação de padrões repetitivos por cliente e por categoria de problema.

Complementarmente, foi aplicada a técnica de clustering (agrupamento não supervisionado) com uso do algoritmo K-Means, visando a segmentação dos chamados em grupos com características similares. A análise de agrupamento buscou encontrar perfis de chamados com base em variáveis como tempo de resolução, cliente, categoria e região, fornecendo subsídios para intervenções mais estratégicas na gestão dos atendimentos.

As análises foram realizadas no ambiente *Jupyter* Notebook com a linguagem de programação Python, utilizando bibliotecas como pandas, *numpy, seaborn, matplotlib, plotly e*

scikit-learn, todas amplamente reconhecidas na comunidade científica por sua robustez na manipulação e modelagem de dados.

3. ANÁLISE DOS RESULTADOS

A análise dos dados de chamados de manutenção da LOG Commercial Properties foi conduzida a partir da base tratada "BD_tratado.xlsx" e está sintetizada de forma visual e interativa no dashboard HTML intitulado "Base de Análise LOG – Versão Final". As análises foram organizadas em nove seções temáticas, cada uma abordando uma dimensão relevante para a eficiência operacional e a gestão de chamados.

A primeira etapa da análise compreendeu a inspeção e o tratamento da base de dados, incluindo a exclusão de colunas redundantes ou com valores ausentes, padronização de formatos e criação de variáveis derivadas. Essa etapa resultou em um conjunto de dados mais limpo e preparado para análises posteriores.

Na análise temporal, observou-se a sazonalidade dos chamados, identificando picos de demanda ao longo dos meses e padrões semanais, com destaque para o maior número de chamados registrados em segundas-feiras, indicando acúmulo de solicitações após o fim de semana. Já a análise regional revelou diferenças no volume de chamados por unidade da federação e por condomínio, sugerindo disparidades no uso da estrutura ou na recorrência de falhas entre os empreendimentos.

A análise de tempo de resolução permitiu identificar responsáveis e localidades com melhor ou pior desempenho, utilizando estatísticas descritivas como média, mediana e desvio padrão. Por sua vez, a análise por categoria de chamado (des_assunto) evidenciou os tipos de problemas mais frequentes, permitindo destacar falhas recorrentes e áreas críticas para manutenção preventiva.

Outros módulos, como a análise de avaliação dos clientes, a segmentação de chamados não resolvidos, e a exploração livre de correlações, aprofundaram a compreensão dos padrões de atendimento. Um destaque foi a aplicação de técnicas de clusterização (K-Means), que permitiram agrupar os chamados com base em características como tempo de resolução e dia da semana, revelando perfis distintos de demanda.

Por fim, o dashboard desenvolvido oferece uma visualização estruturada, clara e interativa dos resultados, permitindo que gestores e analistas da LOG tomem decisões baseadas em dados confiáveis. A apresentação das análises por meio de um site facilita a interpretação e democratiza o acesso às informações, sendo um recurso complementar valioso para reuniões estratégicas e relatórios gerenciais

4. CONCLUSÃO

A análise dos chamados de manutenção da *LOG Commercial Properties*, conduzida com base em técnicas modernas de análise de dados, permitiu extrair insights relevantes sobre o funcionamento dos processos operacionais da empresa. A partir de um tratamento cuidadoso da base e da aplicação de métodos estatísticos, visuais e de aprendizado não supervisionado, foi possível compreender melhor os padrões de demanda, a performance das equipes e as principais falhas recorrentes.

Foram identificadas variações significativas nos tempos de resolução por responsável e por localidade, bem como concentração de determinados tipos de chamados em condomínios e clientes específicos. A análise temporal revelou picos de chamados no início da semana e sazonalidades mensais que indicam momentos de maior pressão sobre a operação. O agrupamento dos dados via clusterização também demonstrou a existência de perfis distintos de chamados, o que possibilita a criação de estratégias diferenciadas de atendimento.

A clusterização, em especial, revelou três perfis de chamados: os de rápida resolução e baixa complexidade, os intermediários e os mais críticos. Esses grupos permitem ações específicas, como priorização automática, reforço de equipe em dias e locais estratégicos e revisão de processos internos.

A análise também evidenciou que o tempo de resolução pode ser impactado por variáveis como dia da semana, tipo de problema e local de ocorrência. Essas descobertas reforçam o potencial do uso de dados históricos para prever cenários futuros e ajustar processos em tempo real.

O uso de ferramentas como Python e visualizações interativas contribuiu para uma abordagem analítica robusta e acessível, culminando no desenvolvimento de um dashboard dinâmico que facilita a leitura dos dados por parte de diferentes públicos da empresa.

5. RECOMENDAÇÕES

Com base nas análises realizadas, recomenda-se à *LOG Commercial Properties* a adoção das seguintes ações:

• Fortalecer a gestão preditiva de chamados, utilizando os padrões identificados para planejar recursos conforme a sazonalidade e dias críticos da semana.

- Criar planos de ação específicos para os clusters identificados, otimizando os atendimentos de acordo com os perfis de complexidade e urgência.
- Automatizar alertas para chamados que pertençam ao cluster de maior complexidade.
- Reforçar a equipe técnica nos dias com maior volume de chamados (especialmente segundas-feiras).
- Estabelecer metas de desempenho e treinamentos direcionados para os responsáveis que apresentam tempos médios de resolução acima da média.
 - Criar indicadores de desempenho por categoria de problema, cliente e condomínio.
 - Implementar rotinas de inspeção preventiva nos condomínios mais críticos.
- Revisar os processos nos condomínios com maior volume de chamados recorrentes, a fim de mitigar falhas estruturais ou operacionais que impactam na experiência do cliente.
- Manter e evoluir o uso de dashboards interativos, como o apresentado neste trabalho, para monitoramento contínuo e tomada de decisão baseada em dados.

A adoção dessas medidas tende a aumentar a eficiência dos processos de manutenção, reduzir o tempo de resposta ao cliente e elevar o nível de serviço oferecido pela empresa, reforçando a posição da LOG como referência nacional em infraestrutura logística de alto padrão.

REFERÊNCIAS

PANDAS DEVELOPMENT TEAM. pandas documentation. Disponível em: https://pandas.pydata.org. Acesso em: 20 maio 2025.

SCIKIT-LEARN DEVELOPERS. Scikit-learn: Machine Learning in Python. Disponível em: https://scikit-learn.org. Acesso em: 20 maio 2025.

VAN ROSSUM, Guido. The Python Language Reference Manual. Python Software Foundation. Disponível em: https://docs.python.org/3/.