

John R. Starr

Breiss Lab November 25th, 2024

Main Takeaway:

Testing many contexts – broadly defined – helps us understand:

- 1) ... how our judgments generalize.
- 2) ... how the grammar and other cognitive processes interact.

We're very judgmental...

Who all went to the party?

Who went to the party all?*

... about a lot of different things!

The <u>blim and blam</u> of life...

The <u>blam and blim</u> of life...

What kinds of judgments* do we create?

The key to the cabinets is...

SYNTACTIC

Colorless green ideas sleep furiously. **SEMANTIC**

blick vs. *bnick

PHONOLOGICAL

Do our judgments generalize to different contexts?

Testing judgments in context using...

a) ... multiple paradigms.

b) ... multiple structures.

c) ... multiple interactions between structures.

Phonotactic distinctions between non-words

Word-order preferences for binomials

Phonotactic distinctions between non-words

Marten van Schijndel

Draga Zec

Helena Aparicio

blick > bnick

The off-line story for phonotactics:

blick

bnick

Which word is more likely to be a word of English?

blick

+

bnick

+

... but is this how we process language?

The <u>on-line</u> story for phonotactics:

bnick

Missing the usual structure / context from everyday language.

What kinds of context might matter?

Embedded vs. Non-embedded SYNTACTIC

Single vs. Multiple DISCURSIVE sentences sentences

blick/*bnick vs. brift/*britf PHONOLOGICAL

EXPERIMENT 1

How do phonotactic distinctions arise in different <u>syntactic</u> contexts?

Experiment 1 design

• Self-paced reading experiment, where participants (N=62) read 27 experimental sentences:

1	2	3	4	5	6
		the	brick	smashed	through
		the	blick	smashed	through
		the	bnick	smashed	through

• 3 TARGETS: {real word, viable word, unviable word}

Experiment 1 design

• Self-paced reading experiment, where participants (N=62) read 27 experimental sentences:

Critical region!

	1	2	3 (4	5	6
MATRIX	Last	night	the	brick	smashed	through
EMBEDDED	1	hoped	the	blick	smashed	through
C-EMBEDDED	The	wall	the	bnick	smashed	through

- 3 TARGETS: {real word, viable word, unviable word}
- 3 STRUCTURES: {MATRIX, EMBEDDED, CENTER-EMBEDDED}

____ night ___ ___ ___ ___ ___ ___ ___

_____ the ____ the ____ ___ ___ ___

_____ through ____ ___

_____ the _____

_____ ___ ___ window

This is an example of a MATRIX clause with a VIABLE target.

This is an example of a MATRIX clause with a VIABLE target.

Answering two key questions:

1. How do we know when phonotactic distinctions surface?

A: We assume that distinctions surface when the viable non-word is read significantly faster than the unviable non-word.

- 2. When should distinctions surface?
 - A: <u>Distinctions should surface at or after the non-word</u>.

Experiment 1: LogRTs by Position

Experiment 1: LogRTs by Position

Regions 1-3, 6 look identical across structures!

- Regions 1-3, 6 look identical across structures!
- Delayed phonotactic distinctions for MATRIX clauses.

- Regions 1-3, 6 look identical across structures!
- Delayed phonotactic distinctions for MATRIX clauses.
- Immediate phonotactic distinctions for EMBEDDED clauses.

Experiment 1 discussion

 Phonotactic distinctions arise across the board, but...

- Timing of these distinctions differ by complexity of syntax:
 - Simpler syntax (matrix clauses) -> delayed judgments
 - Harder syntax (embedded clauses) -> immediate judgments

EXPERIMENT 2

How do phonotactic distinctions arise in different <u>discourse</u> contexts? (part 1)

Experiment 2 Design

• Participants (N=65) read a context sentence before the stimuli from Experiment 1:

A Discursive context:

	Context Type						
Meaningful	There was a disagreement in the courtroom.						
Random	There was a shimmer on the water.						

Experiment 2 Design

 Participants (N=65) read a context sentence before the stimuli from Experiment 1:

- 2 CONTEXTS: {MEANINGFUL, RANDOM}
- 2 TARGETS: {VIABLE, UNVIABLE}
- 2 STRUCTURES: {MATRIX, EMBEDDED}

• Immediate phonotactic distinctions in MATRIX clauses

- Immediate phonotactic distinctions in MATRIX clauses
- No evidence for phonotactic distinctions in EMBEDDED clauses

Experiment 2 discussion

- Phonotactic judgments only surface in MATRIX clauses; no phonotactic judgments surface for EMBEDDED clauses
- The type of context doesn't matter, but the presence of context appears to modulate whether phonotactic judgments surface
- ... or is this some artifact of reading two sentences (this Experiment) instead of one (Experiment 1)?

EXPERIMENT 3

How do phonotactic distinctions arise in different <u>discourse</u> contexts? (part 2)

Experiment 3 design

• Participants (N=40) read an experimental stimuli from Experiment 1 before the context sentence

- 2 TARGETS: {VIABLE, UNVIABLE}
- 2 STRUCTURES: {MATRIX, EMBEDDED}

Experiment 3 design

• Participants (N=40) read an experimental stimuli from Experiment 1 before the context sentence

[A]	
$ \mathbf{A} $	Discursive context:

	Context Type					
Meaningful	There was a disagreement in the courtroom.					
Random	There was a shimmer on the water.					

	Matrix Subject					Embedded Subject						
Viable	By	evening	the	spudge	made	a	You	realize	d the	spudge	made	a
Unviable	By	evening	the	psudge	made	a	You	realize	d the	psudge	made	a
	1	2	3	4	5	6	1	2	3	4	5	6

• 2 TARGETS: {VIABLE, UNVIABLE}

• 2 STRUCTURES: {MATRIX, EMBEDDED}

• 2 CONTEXTS: {MEANINGFUL, RANDOM}

The results should replicate Experiment 1, since there's no context!

Delayed phonotactic distinctions for MATRIX clauses.

- Delayed phonotactic distinctions for MATRIX clauses.
- Immediate phonotactic distinctions for EMBEDDED clauses.

Experiment 1

Experiment 3

The judgment patterns from Experiment 1 re-emerge!

Experiment 3 Discussion

- Replicates our original findings from Experiment 1:
 - Simpler syntax (matrix clauses) -> delayed distinctions
 - Harder syntax (embedded clauses) -> immediate distinctions
- The presence of a context sentence modulates how phonotactic distinctions surface in Experiment 2.

... but is that the full story?

Phonotactic distinctions appear, generally!

- But... is this just an onset thing?
 - Onsets are more resistant to modification
 - Onsets are more useful for disambiguation
 - Onsets are more salient to readers

EXPERIMENT 4

How do phonotactic distinctions arise in different phonological contexts?

Experiment 4 Design

 Same design as Experiment 1 (N=48), but with word-final phonological modifications instead of word-initial ones:

Critical region!

	1	2	3	4	5	6
MATRIX	Last	night	the	brick	smashed	through
EMBEDDED	1	hoped	the	brift	smashed	through
C-EMBEDDED	The	wall	the	britf	smashed	through

- 3 TARGETS: {real word, viable word, unviable word}
- 3 STRUCTURES: {MATRIX, EMBEDDED, CENTER-EMBEDDED}

We find no evidence for phonotactic distinctions...!

We find no evidence for phonotactic distinctions...!

We find no evidence for phonotactic distinctions...!

Experiment 4 Discussion

• No phonological distinctions surface between any TARGETS in any STRUCTURE, nor in any position.

- Non-words (VIABLE, UNVIABLE targets) appear to behave distinctly from regular words (REAL targets)
 - Possible cause: word-final modifications create issues for lexical access

Interim summary

Interim summary

- <u>Distinctions</u> (generally) surface for onsets...
 - ... but syntactic and discursive context greatly modulates how these distinctions pattern during processing.
- Distinctions don't surface for codas.
 - Maybe a result of lexical access issues?

• These results differ from the established literature.

Word-order preferences for binomials

Marten van Schijndel

A game to start us off:

My favorite fruit is

John forgot his ...

Pass the salt and ...

A game to start us off:

My favorite fruit is

John forgot his two ...

Pass the salt and ...

Binomial expressions, defined

Broadly, an expression of either form:
 X and Y
 OR
 X-Y

People (generally) have order preferences for binomials.

Examples:

black and white, alive and well, supply and demand hanky-panky, tick-tock, razzle-dazzle

What motivates ordering preferences?

- 1. Phonological factors:
 - 1. Syllable count/weight, onset/coda complexity, metrical structure, etc.
- 2. Semantic factors:
 - 1. Animacy, proximity, concreteness, etc.
- 3. Syntactic factors:
 - 1. Phrasal category, phrasal complexity, etc.

The foci of this section!

- 4. Other factors:
 - 1. Word frequency, direct experience, etc.

Why study binomials?

What motivates ordering preferences?

- 1. Phonological factors:
 - 1. Syllable count/weight, onset/coda complexity, metrical structure, etc.
- 2. Semantic factors:
 - 1. Animacy, proximity, concreteness, etc.
- 3. Syntactic factors:
 - 1. Phrasal category, phrasal complexity, etc.

- 4. Other factors:
 - 1. Word frequency, direct experience, etc.

Benor & Levy (2005); Mollin (2012); Morgan & Levy (2016); Ryan (2019)

11

Binomials help us probe how people use both abstract linguistic constraints and statistical experience to process language.

What kinds of binomials will we study?

What motivates ordering preferences? Non-word binomials 1. Phonological factors: (abstract knowledge) 1. Syllable count/weight, onset/coda complexity, metrical structure, etc. 2. Semantic factors: 1. Animacy, proximity, concreteness, etc. The foci of 3. Syntactic factors: this talk! 1. Phrasal category, phrasal complexity, etc. Irreversible binomials Other factors: 1. Word frequency, direct experience, etc. (statistical experience)

How have people studied binomials?

- Mostly, in <u>isolation</u> or <u>out-of-context</u>:
 - Forced-choice tasks:

salt and pepper

pepper and salt

• Rating tasks:

How natural is the following expression? pepper and salt

1

2

3

4

5

- Some place binomials in uncontrolled linguistic structures:
 - Teaching children what is right and wrong is a difficult task for parents.
 - I like to mix and match my clothing to create new outfits.

... but context matters!

The gap we fill:

How have people studied binomials?

- Mostly, in <u>isolation</u> or <u>out-of-context</u>:
 - Forced-choice tasks:

salt and pepper

pepper and salt

• Rating tasks:

How natural is the following expression?

pepper and salt

2

5

- Some place binomials in uncontrolled linguistic structures:
 - Teaching children what is <u>right and wrong</u> is a difficult task for parents.
 - I like to mix and match my clothing to create new outfits.

Bolinger (1962); Cooper & Ross (1975); Pinker & Birdsong (1979); Benor & Levy (2005); Mollin (2012); Morgan & Levy (2016); Ryan (2019)

How does context influence binomial ordering preferences that are motivated by...:

- 1. <u>abstract linguistic</u> <u>constraints?</u>
- 2. <u>statistical experience</u>?

NORMING STUDIES

What are the baseline ordering preferences for binomials outside of context?

Presented at AMLaP 2024!

Design of norming studies

• Two forced-choice tasks, where participants (N=30 for both) selected the preferred order for either:

28 attested nominal binomials (Norming Study 1)
 bread and butter butter and bread

32 non-word nominal binomials (Norming Study 2)
 pag and frappy frappy and pag

Results of norming studies

- Attested binomials:
 - 18 of 28 displayed *irreversible* order preferences (>96%)
- Non-word binomials:
 - 24 of 32 displayed *strong* ordering preferences (>70%)
- For our self-paced reading experiments, we used the 16 binomials that showed the strongest ordering preferences from these norming studies.

EXPERIMENT 5

How do ordering preferences arise for <u>irreversible binomials</u> in different contexts?

Presented at AMLaP 2024!

• Self-paced reading experiment, where participants (N=59) read 16 two-sentence passages:

• Self-paced reading experiment, where participants (N=59) read 16 two-sentence passages:

• Self-paced reading experiment, where participants (N=59) read 16 two-sentence passages:

 Self-paced reading experiment, where participants (N=59) read 16 two-sentence passages:

```
Yesterday morning We thought the bread and butter butter and bread fell off the counter.

1 2 3 X and Y Spill Spil
```

- 2 ORDERS: {preferred order, dispreferred order}
- 2 STRUCTURES: {MATRIX, EMBEDDED}
- 2 CONTEXTS: {No Context, After Context}

Answering two key questions, again:

- 1. How do we know when ordering preferences surface?
 - A: We assume that ordering preferences surface when the preferred order is read significantly faster than the dispreferred order.

- 2. When should ordering preferences surface?
 - A: Ordering preferences should surface after the conjunction of the binomial expression, as that is the earliest point of disambiguation.

1. Ordering preferences on the second spillover word in MATRIX x No Context.

1. Ordering preferences on the second spillover word in MATRIX x No Context.

1. Ordering preferences on the second spillover word in MATRIX x No Context.

- 1. Ordering preferences on the second spillover word in MATRIX x No Context.
- 2. No evidence for ordering preferences elsewhere for irreversible binomials.

Matrix Embedded Matrix Embedded

Matrix Embedded Matrix Embedded

Experiment 5 takeaway

 Despite strong ordering preferences for these expressions (>96%) in isolation, no evidence for ordering preferences arise when the expressions are embedded syntactically or discursively.

• ... so maybe these binomials are more reversible than we thought?

... but is that the full story?

 No evidence for ordering preferences based on statistical experience.

• What about ordering preferences based on abstract linguistic constraints?

EXPERIMENT 6

How do ordering preferences arise for non-word binomials in different contexts?

Presented at AMLaP 2024!

Experiment 6 Design

• Self-paced reading experiment, where participants (N=36) read 24 two-sentence passages:

1. Ordering preferences on the second noun in MATRIX x No Context.

- 1. Ordering preferences on the second noun in MATRIX x No Context.
- 2. Some weak effects that appear unrelated to any ordering preferences

- 1. Ordering preferences on the second noun in MATRIX x No Context.
- 2. Some weak effects that appear unrelated to any ordering preferences

- 1. Ordering preferences on the second noun in MATRIX x No Context.
- 2. Some weak effects that appear unrelated to any ordering preferences

Experiment 6 takeaways

1. Despite ordering preferences for these expressions (>70%) in isolation, no evidence for ordering preferences arise when the expressions are embedded syntactically or discursively

2. Processing costs of reading dispreferred orders from *abstract linguistic constraints* do not arise

DISCUSSION

Summary of phonotactic results:

- Experiment 1: Phonotactic distinctions are robust in different syntactic contexts, though their timing varies...
- Experiment 2, 3: ... but they don't arise in all cases, especially if syntax is complicated and a discourse is present.
- Experiment 4: Phonotactic distinctions do not arise for non-words with modified codas.

Summary of binomial results:

• Experiment 5: No evidence for ordering preferences when *irreversible binomials* are embedded syntactically or discursively.

• Experiment 6: No evidence for ordering preferences when *non-word binomials* are embedded syntactically or discursively.

What does all this mean?

- This goal of this talk is <u>not</u> to cast doubt on prior work.
 - These judgments have been robustly investigated for decades!*

- We show how context modulates established judgments.
 - Differences between experimental paradigms
 - High-level structure interacts with low-level structure
 - ... and there are often multiple interactions!
- What might be going on?

dzan lvvz mæg'novljə

OCCUPANT OF THE PARTY OF THE PA

dzan lvvz mæg'novljə

dzan lvvz mæg'novljə

Through pixel panes, their eager faces glow, A distant stage where voices still unite. Though space divide, the shared ideas still flow, And thought ignites from computer lights.

Through pixel panes, their eager faces *glow*, A distant stage where voices still <u>unite</u>. Though space divide, the shared ideas still *flow*, And thought <u>ignites</u> from computer <u>lights</u>.

Through pixel panes, their eager faces *glow*, A distant stage where voices still <u>unite</u>. Though space <u>divide</u>, the shared ideas still *flow*, And thought <u>ignites</u> from computer <u>lights</u>.

Through pixel panes, their eager faces *glow*, A distant stage where voices still <u>unite</u>. Though space <u>divide</u>, the shared ideas still *flow*, And thought <u>ignites</u> from computer <u>lights</u>.

Jon talk Calforna in Sowth.

Testing judgments in context using...

linguistic processes

a) ... multiple paradigms.

b) ... multiple structures.

c) ... multiple interactions between structures.

Acknowledgements

Thank you!

Processing time across total critical region (Experiment 1)

No significant differences in total processing!

Processing time across total critical region (Experiment 2)

No significant differences in total processing!