પ્રશ્ન 1(અ) [3 ગુણ]

બ્લોકચેનમાં Private key અને Public key નો તફાવત આપો.

જવાબ:

બાબત	Private Key	Public Key
હેતુ	Transaction sign કરવા માટે	Verification માટે ઉપયોગ
શેરિંગ	ગુપ્ત રાખવી જોઈએ	બધાને આપી શકાય
รเห	Data decrypt કરે, signature બનાવે	Data encrypt sरे, signature verify sरे
માલિકી	ફક્ત માલિક જ જાણે	બધા access કરી શકે

• **Private Key**: ગુપ્ત mathematical code જે ownership સાબિત કરે

• **Public Key**: ખુલ્લું address જેથી બીજા transaction મોકલી શકે

• **સુરક્ષા**: Private key ગુમાવવી = પૈસા હંમેશ માટે ગુમાવવા

મેમરી ટ્રીક: "Private છે Personal, Public છે Posted"

પ્રશ્ન 1(બ) [4 ગુણ]

Distributed Ledger ને વિગતવાર સમજાવો.

જવાબ:

Distributed Ledger એ database છે જે ઘણી જગ્યાએ અને ઘણા લોકોમાં વહેંચાયેલું હોય છે.

મુખ્ય લક્ષણો:

લક્ષણ	นญ์า
Decentralized	કોઈ એક control point નથી
Synchronized	બધી copies updated રહે છે
Transparent	બધા participants જોઈ શકે છે
Immutable	સહેલાઈથી બદલાતું નથી

આકૃતિ:

- ફાયદા: Intermediaries નાબૂદ કરે, trust વધારે, fraud ઓછું
- કામ: બધા participants પાસે records ની identical copies હોય

મેમરી ટ્રીક: "Distributed = વિભાજિત પણ સમાન"

પ્રશ્ન 1(ક) [7 ગુણ]

Blockchain વ્યાખ્યાયિત કરો. Blockchain ની એપ્લિકેશનો અને મર્યાદાઓનાં વર્ણન કરો.

જવાબ:

Blockchain વ્યાખ્યા: Transaction records ધરાવતા blocks નો chain જે cryptography વાપરીને જોડાયેલા હોય.

એપ્લિકેશન કોષ્ટક:

क्षेत्र	એપ્લિકેશન	ફાયદો
Finance	Cryptocurrency, payments	ઝડપી, સસ્તી transfers
Healthcare	Patient records	સુરક્ષિત, accessible data
Supply Chain	Product tracking	પારદર્શિતા, authenticity
Real Estate	Property records	Fraud prevention
Voting	Digital elections	પારદર્શી, tamper-proof

મર્યાદાઓ કોષ્ટક:

મર્યાદા	અસર
Scalability	ધીમી transaction processing
Energy Usage	વધુ electricity વપરાશ
Complexity	Users માટે સમજવું મુશ્કેલ
Regulation	કાયદાકીય અસ્પષ્ટતા
Storage	વધતો data size ની સમસ્યા

આર્કિટેક્ચર આકૃતિ:

- **સુરક્ષા**: Cryptographic linking થી tampering મુશ્કેલ
- **પારદર્શિતા**: બધા transactions network participants ને દેખાય

મેમરી ટ્રીક: "Blocks Chained = Blockchain, Apps ઘણી = Limits ઘણી"

પ્રશ્ન 1(ક) OR [7 ગુણ]

ટૂંકી નોંધ લખો: બ્લોકચેનમાં CAP Theorem

જવાબ:

CAP Theorem કહે છે કે distributed systems એ 3 properties માંથી માત્ર 2 જ simultaneously guarantee કરી શકે.

CAP Components sìષ્ટક:

Property	વર્ણન	ઉદાહરણ
Consistency	બધા nodes પાસે same data	બર્યાને જગ્યાએ same balance દેખાય
Availability	System હંમેશા response આપે	Network કદી down ન જાય
Partition Tolerance	Network failures છતાં કામ કરે	Nodes disconnect થયા છતાં function કરે

Blockchain Trade-offs:

વાસ્તવિક ઉપયોગ:

Blockchain Type	પસંદ કરે	ત્યાગ કરે
Bitcoin	Consistency + Partition	Availability
Ethereum	Consistency + Partition	Availability
Private Networks	Consistency + Availability	Partition Tolerance

- અસર: Blockchain designers એ કયા property sacrifice કરવી તે choose કરવું પડે
- **Trade-off**: Distributed networks માં perfect systems અશક્ય

મેમરી ટ્રીક: "કમ્પ્લીટ સિસ્ટમ શક્ય નથી - 3 માંથી 2 જ પસંદ કરો"

પ્રશ્ન 2(અ) [3 ગુણ]

બ્લોકચેનનાં Data Structure સમજાવો.

જવાબ:

Blockchain Data Structure transaction data ધરાવતા linked blocks ધાયેલું હોય છે.

Block Structure sìves:

Component	હેતુ
Block Header	Metadata રાખે છે
Previous Hash	Previous block સાથે link કરે
Merkle Root	બધા transactions નો summary
Timestamp	Block કયારે બન્યો તેની માહિતી
Transactions	વાસ્તવિક data/transfers

Visual Structure:

• Linking: દરેક block previous block ને hash વાપરીને point કરે

• Integrity: એક block બદલાવવાથી આખી chain ટૂટી જાય

મેમરી ટ્રીક: "Header હોય છે, Transactions વાત કરે છે"

પ્રશ્ન 2(બ) [4 ગુણ]

Decentralization ના ફાયદા શું છે?

જવાબ:

Decentralization इायहा:

ફાયદો	સમજૂતી
No Single Point of Failure	એક node fail થયા છતાં network ચાલુ રહે
Censorship Resistance	કોઈ authority transactions block કરી શકે નહિ
Transparency	બધા participants સમાન માહિતી જુએ છે
Reduced Costs	Intermediary fees નાબૂદ થાય
Trust	Central authority પર trust કરવાની જરૂર નથી

સરખામણી આકૃતિ:

• **સુરક્ષા**: Multiple copies થી data loss અટકે

• **લોકશાહી**: બધા participants ને સમાન અધિકાર

• મજબૂતાઈ: Individual failures સામે system ટકે

મેમરી ટ્રીક: "વિકેન્દ્રિત = ટકાઉ, લોકશાહી, પ્રત્યક્ષ"

પ્રશ્ન 2(ક) [7 ગુણ]

Public બ્લોકચેન અને Private બ્લોકચેન વચ્ચે તફાવત કરો.

જવાબ:

વ્યાપક સરખામણી:

બાબત	Public Blockchain	Private Blockchain
Access	બધા માટે ખુલ્લું	ખાસ users માટે મર્યાદિત
Permission	Permission ની જરૂર નથી	Permission આવશ્યક
Control	Decentralized	Centralized control
Speed	ધીમું (consensus જરૂરી)	ઝડપી (ઓછા validators)
Security	ઊંચી (ઘણા validators)	મધ્યમ (ઓછા validators)
Cost	Transaction fees જરૂરી	ઓછી operational costs
Transparency	સંપૂર્ણ પારદર્શિતા	મર્યાદિત પારદર્શિતા
ઉદાહરણ	Bitcoin, Ethereum	Hyperledger, R3 Corda

Network આર્કિટેક્ચર:

ઉપયોગ કેસો:

увіғ	શ્રેષ્ઠ છે
Public	Cryptocurrencies, public records
Private	Banking, supply chain, healthcare

• Trade-offs: Public વધુ security આપે, Private વધુ control આપે

• પસંદગી: Transparency vs. privacy ની જરૂરિયાત પર નિર્ભર

મેમરી ટ્રીક: "Public = લોકોનું, Private = મંજૂરીવાળું"

પ્રશ્ન 2(અ) OR [3 ગુણ]

યોગ્ય આકૃતિ સાથે બ્લોક ચેઇનના Core Components નાં વર્ણન કરો.

જવાબ:

મુખ્ય Components:

Component	รเห
Blocks	Transaction data store ระ
Hash Functions	Unique fingerprints બનાવે
Digital Signatures	Transaction authenticity verify કરે
Consensus Mechanism	Valid transactions પર સંમતિ કરે
Peer-to-Peer Network	બધા participants ને connect કરે

System આર્કિટેક્ચર:

- **એકીકરણ**: બધા components મળીને security માટે કામ કરે
- **હેતુ**: દરેક component ખાસ blockchain function serve કરે

મેમરી ટ્રીક: "Blocks બનાવે, Hash પકડે, Signatures સુરક્ષિત કરે"

પ્રશ્ન 2(બ) OR [4 ગુણ]

Permissioned blockchain ને વ્યાખ્યાયિત કરો અને વિગતવાર સમજાવો.

જવાબ:

Permissioned Blockchain વ્યાખ્યા: એવી blockchain જેમાં participation માટે network administrators પાસેથી સ્પષ્ટ permission જરૂરી હોય.

લક્ષણો કોષ્ટક:

લક્ષણ	นย์ฯ
Access Control	ફક્ત approved users જ join કરી શકે
Validation Rights	પસંદગીના nodes જ transactions validate કરે
Governance	Central authority network manage કરે
Privacy	Transaction details private હોઈ શકે

Permission સ્તરો:

- ફાયદા: બહેતર privacy, regulatory compliance, ઝડપી processing
- **ગેરફાયદા**: ઓછું decentralized, administrators પર trust આવશ્યક

મેમરી ટ્રીક: "Permission = Participation માટે મંજૂરી"

પ્રશ્ન 2(ક) OR [7 ગુણ]

Sidechain ને સંક્ષિપ્તમાં સમજાવો.

જવાબ:

Sidechain વ્યાખ્યા: Main blockchain સાથે connected અલગ blockchain જે chains વચ્ચે asset transfer કરવાની સુવિધા આપે.

Sidechain આર્કિટેક્ચર:

ફાયદા અને લક્ષણો:

બાબત	ફાયદો
Scalability	Main chain નો load ઘટાડે
Experimentation	નવા features સુરક્ષિત રીતે test કરે
Specialization	ખાસ use cases માટે optimized
Interoperability	અલગ અલગ blockchains ને connect કરે

Transfer Process:

પગલું	ક્રિયા
1. Lock	Main chain પર assets lock કરાય
2. Proof	Cryptographic proof generate કરાય
3. Release	Sidechain પર equivalent assets release કરાય
4. Use	Sidechain પર assets ઉપયોગ કરાય
5. Return	Assets પાછા લાવવા માટે reverse process

વાસ્તવિક ઉદાહરણો:

Sidechain	હેતુ
Lightning Network	ઝડપી Bitcoin payments
Plasma	Ethereum scaling
Liquid	Bitcoin trading

• સુરક્ષા: Secure main chain સાથેનું connection જાળવે

• **લવચિકતા**: દરેક sidechain ના અલગ rules હોઈ શકે

• નવીનતા: Blockchain ecosystem વિસ્તરણ માટે

મેમરી ટ્રીક: "Side સહાય કરે, Main જાળવે"

પ્રશ્ન 3(અ) [3 ગુણ]

Consensus Mechanism ને વ્યાખ્યાયિત કરો અને કોઈપણ એકને વિગતવાર સમજાવો.

જવાબ:

Consensus Mechanism વ્યાખ્યા: એક protocol જે ખાતરી કરે કે બધા network participants blockchain ની current state પર સંમત હોય.

Proof of Work (PoW) સમજૂતી:

Component	รเห
Mining	જટિલ mathematical puzzles solve કરવું
Competition	Miners વચ્ચે પહેલા solve કરવાની સ્પર્ધા
Verification	Network solution verify કરે
Reward	Winner ને cryptocurrency reward મળે

PoW Process:

• **સુરક્ષા**: Computational work થી tampering મોંઘું બને

• **ดียเละย**า: Bitcoin Proof of Work consensus ๆเฯะ

મેમરી ટ્રીક: "Consensus = સામાન્ય બુદ્ધિ, Work = જીવ"

પ્રશ્ન 3(બ) [4 ગુણ]

બ્લોકચેનમાં Forking શા માટે જરૂરી છે? બ્લોકચેનમાં વિવિધ પ્રકારના Forks ની યાદી બનાવો.

જવાબ:

Forking કેમ જરૂરી:

કારણ	હેતુ
Upgrades	Blockchain માં નવા features add કરવા
Bug Fixes	Security vulnerabilities સુધારવા
Rule Changes	Consensus rules modify કરવા
Community Disagreement	Consensus ન મળે ત્યારે split કરવા

Forks ના પ્રકારો:

Fork Type	વર્ણન	Compatibility
Soft Fork	Rules tight કરે	Backward compatible
Hard Fork	Rules સંપૂર્ણ બદલે	Backward compatible नथी
Accidental Fork	અસ્થાયી split	આપોઆપ resolve થાય
Contentious Fork	Community disagreement	કાયમી split

Fork વિઝ્યુઅલાઈઝેશન:

- અસર: Forks થી નવી cryptocurrencies બની શકે
- **G**ียเ**๔ะย**เ้: Bitcoin Cash (hard fork), Ethereum updates (soft forks)

મેમરી ટ્રીક: "Fork = ભવિષ્યના વિકલ્પો, Rules જાળવાય"

પ્રશ્ન 3(ક) [7 ગુણ]

Bitcoin Mining શું છે? Bitcoin Mining નાં કામકાજ, મુશ્કેલી અને ફાયદાઓ વિશે વિગતવાર જણાવો.

જવાબ:

Bitcoin Mining વ્યાખ્યા: Computational puzzles solve કરીને Bitcoin blockchain માં નવા transactions add કરવાની પ્રક્રિયા.

Mining Process:

પગલું	ક્રિયા	વિગતો
1. Collection	Pending transactions ભેગા કરવા	Mempool માંથી
2. Block Creation	નવો block બનાવવો	Transactions સામેલ કરવા
3. Puzzle Solving	સાચો nonce શોધવો	Trial and error
4. Verification	Network solution check કરે	Block validate sरे
5. Addition	Chain માં block add કરવો	કાયમી record
6. Reward	Miner ને Bitcoin મળે	હાલમાં 6.25 BTC

Mining Workflow:

Difficulty Adjustment:

ыма	પદ્ધતિ
Target Time	દરેક block માટે 10 મિનિટ
Adjustment Period	દરેક 2016 blocks (~2 અઠવાડિયા)
Auto-Regulation	Blocks ઝડપી આવે તો વધારે
હેતુ	Consistent block time જાળવવું

Mining ના ફાયદા:

ફાયદો	વર્ણન
Financial Reward	Successful mining માટે Bitcoin કમાવવું
Network Security	વધુ miners = વધુ secure network
Transaction Processing	Bitcoin transfers શક્ય બનાવવું
Decentralization	Central authority ની જરૂર નથી

• Energy: Mining માં નોંધપાત્ર electricity જરૂરી

• Competition: વધુ miners સાથે difficulty વધે

• **Hardware**: Specialized ASIC miners સૌથી કાર્યક્ષમ

મેમરી ટ્રીક: "Mining = પૈસા, Math, Maintenance"

પ્રશ્ન 3(અ) OR [3 ગુણ]

Soft fork અને Hard fork નો તફાવત આપો.

જવાલ:

Fork સરખામણી:

બાબત	Soft Fork	Hard Fork
Compatibility	Backward compatible	Backward compatible નથી
Rules	Rules વધુ સખત બનાવે	Rules સંપૂર્ણ બદલે
Node Updates	જૂના nodes માટે વૈકલ્પિક	બધા nodes માટે ફરજિયાત
Chain Split	કાયમી split નથી	કાયમી split કરી શકે
Consensus	Implement કરવું સરળ	Majority agreement જરૂરી
ઉદાહરણો	SegWit (Bitcoin)	Bitcoin Cash, Ethereum Classic

વિઝ્યુઅલ રજૂઆત:

- **જોખમ**: Hard forks community split કરી શકે અને competing currencies બનાવી શકે
- **સુરક્ષા**: Soft forks સામાન્ય રીતે સુરક્ષિત અને ઓછા disruptive

મેમરી ટ્રીક: "Soft = સમાન દિશા, Hard = મોટો તફાવત"

પ્રશ્ન 3(બ) OR [4 ગુણ]

બ્લોકચેનની દુનિયામાં Finality નાં શું મહત્વ છે?

જવાબ:

Finality વ્યાખ્યા: એક વાર transaction confirm થઈ ગયા પછી તે reverse કે alter ન થઈ શકે તેની ગેરંટી.

મહત્વ કોષ્ટક:

બાબત	મહત્વ
Trust	Users ને વિશ્વાસ કે transactions કાયમી છે
Business Use	Companies completed transactions પર ભરોસો કરી શકે
Legal Certainty	Courts blockchain records enforce કરી શકે
Settlement	Financial institutions payments clear કરી શકે

Finality ના પ્રકારો:

увіч	นถุน	સમય
Probabilistic	સમય સાથે વધુ certain બને	Bitcoin: ~1 કલાક
Absolute	તુરંત guarantee	કેટલીક private chains
Economic	Reversal ની કિંમત ખૂબ વધારે	Network પ્રમાણે વિવિધ

Finality Process:

- **Bitcoin**: 6 confirmations સામાન્ય રીતે final ગણાય
- **Ethereum**: Proof of Stake સાથે ઝડપી finality તરફ જતું
- **પડકાર**: Speed અને security વચ્ચે સંતુલન

મેમરી ટ્રીક: "Final = હંમેશ માટે, મહત્વપૂર્ણ = પાછું ન બદલાય"

પ્રશ્ન 3(ક) OR [7 ગુણ]

બ્લોકચેનમાં 51% attack શું છે? ટૂંકમાં સમજાવો.

જવાબ:

51% Attack વ્યાખ્યા: જ્યારે કોઈ એક entity network ની 50% થી વધુ mining power અથવા validators ને control કરે અને blockchain manipulate કરી શકે.

Attack પદ્ધતિ:

પગલું	Attacker नी क्रिया	અસર
1. Control	>50% mining power મેળવવું	Network પર dominance
2. Double Spend	ગુપ્ત chain બનાવવી	Alternative history તૈયાર કરવી
3. Execute	લાંબી chain release કરવી	Network fake version accept કરે
4. Profit	Coins બે વાર spend કરવા	Victims પાસેથી ચોરી

Attack વિઝ્યુઅલાઈઝેશન:

શક્ય Attacks:

Attack Type	વર્ણન
Double Spending	સમાન coins બે વાર spend કરવા
Transaction Reversal	Confirmed transactions cancel કરવા
Mining Monopoly	બીજા miners નું કામ block કરવું
Censorship	ખાસ transactions prevent કરવા

બચાવના પદ્ધતિઓ:

પદ્ધતિ	કેવી રીતે મદદ કરે
Decentralization	Mining ઘણા participants માં વહેંચવું
High Hash Rate	Attack ને economically અશક્ય બનાવવું
Proof of Stake	Attackers ના staked coins ગુમાવવા
Monitoring	Suspicious mining activity detect કરવી

વાસ્તવિક ઉદાહરણો:

Blockchain	સ્થિતિ
Bitcoin	કદી સફળ attack નથી થયો
Ethereum Classic	ઘણી વખત attack થયો
નાની Altcoins	Low hash rate થી વધુ vulnerable

- કિંમત: મુખ્ય networks પર attack અત્યંત મોંઘું
- શોધ: Attacks સામાન્ય રીતે ઝડપથી detect થાય
- **Recovery**: Networks countermeasures implement કરી શકે

મેમરી ટ્રીક: "51% = બહુમતીની બદમાશી, Control = કોલાહલ"

પ્રશ્ન 4(અ) [3 ગુણ]

વિવિદ્ય પ્રકારના Hyperledger પ્રોજેક્ટ્સનાં વર્ણન કરો.

જવાબ:

Hyperledger Project Types:

Project	હેતુ	Use Case
Fabric	Modular blockchain platform	Enterprise applications
Sawtooth	Scalable blockchain suite	Supply chain, IoT
Iroha	Mobile-focused blockchain	Identity management
Indy	Digital identity platform	Self-sovereign identity
Besu	Ethereum-compatible client	Public/private Ethereum
Burrow	Smart contract platform	Permissioned networks

Project વર્ગીકરણ:

- ફોકસ: Enterprise અને business blockchain solutions
- Open Source: બધા projects મુફ્તમાં ઉપલબ્ધ

મેમરી ટ્રીક: "Hyper = High Performance, Ledger = Large Enterprise"

પ્રશ્ન 4(બ) [4 ગુણ]

Blockchain અને Bitcoin નો તફાવત આપો.

જવાબ:

વ્યાપક સરખામણી:

ыыа	Blockchain	Bitcoin
લ્યાખ્યા	Technology/Platform	Digital Currency
અવકાશ	વ્યાપક concept	Specific application
હેતુ	Record keeping system	Peer-to-peer payments
Applications	ઘણા industries	મુખ્યત્વે financial
લવચિકતા	Customize કરી શકાય	Fixed protocol
સર્જક	ઘણા contributors	Satoshi Nakamoto
શરૂઆત	Concept સમય સાથે વિકસ્યો	2009 માં launch

સંબંધ આકૃતિ:

મુખ્ય તફાવતો:

ပူချ်	Blockchain	Bitcoin
увіг	Infrastructure	Application
ઉપયોગ	બહુવિધ હેતુઓ	ફક्त currency
ફેરફારો	બદલી શકાય	Protocol fixed

• સમાનતા: Blockchain ઈન્ટરનેટ જેવું, Bitcoin email જેવું

• નિર્ભરતા: Bitcoin ને blockchain જોઈએ, પણ blockchain ને Bitcoin જરૂરી નથી

મેમરી ટ્રીક: "Blockchain = બિલ્ડિંગ બ્લોક, Bitcoin = ખાસ ઇંટ"

પ્રશ્ન 4(ક) [7 ગુણ]

ટૂંકી નોંધ લખો: Merkle Tree

જવાબ:

Merkle Tree વ્યાખ્યા: Binary tree structure જેમાં દરેક leaf transaction hash દર્શાવે અને દરેક internal node તેના children નો hash ધરાવે.

Structure અને Components:

Component	વર્ણન
Leaf Nodes	Individual transaction hashes
Internal Nodes	બે child nodes નો hash
Root Hash	આખા tree નો single hash
Path	Leaf થી root સુધીનો route

Merkle Tree આકૃતિ:

બાંધકામ પ્રક્રિયા:

પગલું	ક્રિયા
1	દરેક transaction ને અલગ અલગ hash કરવું
2	Hashes ને pair કરીને together hash કરવા
3	Single root સુધી pairing ચાલુ રાખવું
4	Block header मां root hash store કરવો

ફાયદા કોષ્ટક:

ફાયદો	સમજૂતી
Efficiency	બધા data download કર્યા વગર ઝડપી verification
Security	કોઈપણ change તુરંત detect થાય
Scalability	Verification time constant રહે
Storage	Block header માં ફક્ત root hash જરૂરી

Verification Process:

વાસ્તવિક ઉપયોગ:

Use Case	Application
Bitcoin	Transaction verification
Git	Version control
IPFS	Distributed storage
Certificate Transparency	SSL certificate logs

• શોધકર્તાં: Ralph Merkle (1988) ના નામ પરથી

• **કાર્યક્ષમતા**: O(log n) complexity સાથે verification

• **સુરક્ષા**: કોઈપણ transaction સાથે છેડછાડ કરવાથી root hash બદલાય

મેમરી ટ્રીક: "Merkle = ઘણા મળીને એક, Tree = વિશ્વસનીય"

પ્રશ્ન 4(અ) OR [3 ગુણ]

Hash pointer વિશે ટૂંકમાં ચર્ચા કરો અને Merkle tree માં તેનો ઉપયોગ કેવી રીતે થાય છે.

જવાબ:

Hash Pointer વ્યાખ્યા: Data structure જેમાં data નું location અને તે data નો cryptographic hash બંને હોય.

Components:

Component	હેતુ
Pointer	Data ક્યાં stored છે તે બતાવે
Hash	Data બદલાયો નથી તે સાબિત કરે
Combination	Data ને integrity check સાથે link કરે


```
Root Hash Pointer

/
Hash Ptr AB Hash Ptr CD

/
/ \ / \
Hash A Hash B Hash C Hash D

|
| | | |
TX A TX B TX C TX D
```

Merkle Tree માં ઉપયોગ:

Level	Hash Pointer Function	
Leaf Level	Transaction ને point કરે, transaction hash ધરાવે	
Internal Nodes	Children ને point કરે, combined hash ધરાવે	
Root	Tree structure ને point કરે, overall hash ધરાવે	

• **Verification**: Tree structure માં કોઈપણ change detect કરી શકે

• Navigation: Tree structure ની કાર્યક્ષમ traversal માટે

મેમરી ટ્રીક: "Hash Pointer = સ્થાન + Verification"

પ્રશ્ન 4(બ) OR [4 ગુણ]

બ્લોકચેનમાં Hashing શું છે? Bitcoin માં તે કેવી રીતે ઉપયોગી છે?

જવાબ:

Hashing વ્યાખ્યા: Mathematical function જે input data ને fixed-size characters ના string માં convert કરે.

Hashing Properties:

Property	นย์า
Deterministic	સમાન input હંમેશા સમાન output આપે
Fixed Size	Output હંમેશા સમાન length (SHA-256 માટે 256 bits)
Avalanche Effect	નાનો input change = સંપૂર્ણ અલગ output
One-way	Original input શોધવા માટે reverse કરી શકાતું નથી
Collision Resistant	સમાન output આપતા બે inputs શોધવું અત્યંત મુશ્કેલ

Bitcoin માં ઉપયોગ:

Use Case	હેતુ	
Block Linking	દરેક block માં previous block નો hash હોય	
Mining	Difficulty requirement પૂરો કરતો hash શોધવો	
Transaction IDs	દરેક transaction માટે unique identifier	
Merkle Root	Block માં બધા transactions નો summary	
Addresses	Public keys માંથી Bitcoin addresses બનાવવા	

Hashing Process:

- **Algorithm**: Bitcoin SHA-256 hashing વાપરે
- **સુરક્ષા**: Blockchain ને tamper-evident બનાવે
- કાર્યક્ષમતા: Compute અને verify કરવું ઝડપી

મેમરી ટ્રીક: "Hash = Fingerprint, Bitcoin = Hashing પર આધારિત"

પ્રશ્ન 4(ક) OR [7 ગુણ]

Classic Byzantine generals problem અને Practical Byzantine Fault Tolerance ને વિગતવાર સમજાવો.

જવાબ:

Byzantine Generals Problem: Distributed systems માં unreliable participants સાથે consensus achieve કરવાની classic computer science સમસ્યા.

સમસ્થાનું Scenario:

Element	વર્ણન	
Generals	Network nodes	
City	System state દર્શાવે	
Attack Plan	Consensus decision	
Traitors	Malicious/faulty nodes	
Communication	Nodes વચ્ચે messages	

સમસ્યા વિઝ્યુઅલાઈઝેશન:

Practical Byzantine Fault Tolerance (pBFT):

pBFT Algorithm ના તબક્કાઓ:

તબક્કો	ક્રિયા	હેતુ
Pre-prepare	Leader proposal broadcast કરે	Consensus round શરૂ કરવો
Prepare	Nodes validate કરે અને agreement broadcast કરે	બધાને proposal દેખાડવું
Commit	Nodes decision પર commit કરે	Consensus finalize કરવું

pBFT Process Flow:

Fault Tolerance:

બાબત	क्षभता
Maximum Faulty Nodes	1/3 સુધી faulty nodes સહન કરી શકે
Network Requirement	Synchronous અથવા partially synchronous
Message Complexity	દરેક consensus માટે O(n²) messages
Finality	તુરંત finality મળે

Applications:

System	ઉપયોગ	
Hyperledger Fabric	Consensus mechanism	
Tendermint	Byzantine fault tolerant consensus	
Zilliqa	Practical Byzantine fault tolerance	

- ફાયદો: ઝડપી finality, permissioned networks માટે સાટું
- મર્યાદા: ઊંચો communication overhead, સારી રીતે scale કરતું નથી

મેમરી ટ્રીક: "Byzantine = ખરાબ અભિનેતા, pBFT = વ્યાવહારિક ઉકેલ"

પ્રશ્ન 5(અ) [3 ગુણ]

બ્લોકચેનમાં cryptocurrency wallets ની યાદી બનાવો અને સમજાવો.

જવાબ:

Cryptocurrency Wallet प्रકारो:

Wallet Type	વર્ણન	Security Level
Hardware Wallet	Keys store કરતા physical device	ખૂબ ઊંચી
Software Wallet	Computer/phone પર application	મધ્યમ થી ઊંચી
Paper Wallet	કાગળ પર છપાચેલી keys	ઊંચી (સુરક્ષિત રીતે stored હોય તો)
Web Wallet	Online wallet service	મધ્યમ
Brain Wallet	યાદ રાખેલી keys	વિવિધ

Storage પદ્ધતિઓ:

પદ્ધતિ	Accessibility	Security
Hot Wallet	હંમેશા online	ઓછી security
Cold Wallet	Offline storage	વધુ security

Wallet કામો:

- મુખ્ય મુદ્દો: Wallets coins store કરતા નથી, coins access કરવાની keys store કરે
- Backup: હંમેશા wallet seed phrase નો backup રાખવો

મેમરી ટ્રીક: "Wallet = Key Keeper, Coin Container નથી"

પ્રશ્ન 5(બ) [4 ગુણ]

ERC-20 ટોકનના ફાયદા અને ગેરફાયદા લખો.

જવાબ:

ERC-20 Token વ્યાખ્યા: Ethereum blockchain પર tokens બનાવવા માટેનો standard protocol.

ફાયદા:

ફાયદો	લાભ
Standardization	બધા tokens સમાન રીતે કામ કરે
Interoperability	બધા Ethereum wallets સાથે compatible
Easy Development	નવા tokens બનાવવા સરળ
Wide Support	Exchanges અને services દ્વારા support
Smart Contract Integration	DeFi protocols સાથે interact કરી શકે

ગેરફાયદા:

ગેરફાયદા	સમસ્યા	
Gas Fees	Network congestion દરમિયાન મોંઘા transactions	
Scalability	Ethereum ની transaction throughput દ્વારા મર્યાદિત	
Security Risks	Smart contract bugs થી token loss	
Centralization	ઘણા tokens નું centralized control	
Environmental Impact	ઊંચો energy consumption	

સરખામણી કોષ્ટક:

બાબત	ફાયદો	ગેરફાયદા
Adoption	બહોળો સ્વીકાર	Market oversaturation
Development	બનાવવા સરળ	Scam tokens બનાવવા પણ સરળ
Functionality	Standard features	મર્યાદિત customization

• **ઉપયોગ**: Cryptocurrency tokens બનાવવા માટે સૌથી લોકપ્રિય standard

• **ઉદાહરણો**: USDT, LINK, UNI એ ERC-20 tokens છે

મેમરી ટ્રીક: "ERC-20 = Easy અને Expensive"

પ્રશ્ન 5(ક) [7 ગુણ]

dApps નો ઉપયોગ શેના માટે થાય છે? dApps ના ફાયદા અને ગેરફાયદા સમજાવો.

જવાબ:

dApps વ્યાખ્યા: Decentralized Applications જે blockchain networks પર central authority વગર run થાય.

dApps ઉપયોગ વર્ગીકરણ:

ပူချ်	ઉદાહરણો	હેતુ
DeFi	Uniswap, Compound	Financial services
Gaming	CryptoKitties, Axie Infinity	Blockchain games
Social Media	Steemit, Minds	Censorship-resistant platforms
Marketplaces	OpenSea, Rarible	NFT trading
Governance	Aragon, DAOstack	Decentralized organizations
Storage	Filecoin, Storj	Distributed file storage

dApp આર્કિટેક્ચર:

ફાયદા:

ફાયદો	વર્ણન
Censorship Resistance	કોઈ એક control point નથી
Transparency	Code ਅਜੇ data publicly verifiable
Global Access	વિશ્વભરમાં restrictions વગર ઉપલબ્ધ
No Downtime	ઘણા nodes માં distributed
User Ownership	Users પોતાના data અને assets control કરે
Trustless	Intermediaries પર trust કરવાની જરૂર નથી

ગેરફાયદા:

ગેરફાયદા	વર્ણન
Poor User Experience	જટિલ interfaces, ધીમા transactions
Scalability Issues	મર્યાદિત transaction throughput
High Costs	દરેક interaction માટે gas fees
Technical Complexity	Non-technical users માટે મુશ્કેલ
Regulatory Uncertainty	અસ્પષ્ટ કાયદાકીય સ્થિતિ
Energy Consumption	ઊંચો environmental impact
Immutable Bugs	Smart contract errors સહેલાઈથી fix ન કરી શકાય

Development પડકારો:

પડકાર	અસર
Gas Optimization	Transaction costs minimize કરવા જોઈએ
Security Auditing	Hacks અટકાવવા માટે જરૂરી
User Onboarding	Mainstream users આકર્ષવું મુશ્કેલ
Scalability Solutions	Layer 2 અથવા alternative chains જોઈએ

લોકપ્રિય dApp Platforms:

Platform	લક્ષણો
Ethereum	સૌથી વધુ સ્થાપિત, સૌથી વધુ fees
Binance Smart Chain	ઓછી fees, વધુ centralized
Polygon	Ethereum Layer 2, ઝડપી અને સસ્તું
Solana	ઊંચી throughput, નવું ecosystem

- **લવિષ્ય**: બહેતર user experience અને ઓછી costs તરફ જતું
- અપનાવણ: હજુ પણ early stage પણ ઝડપથી વધી રહ્યું

મેમરી ટ્રીક: "dApps = Decentralized પણ મુશ્કેલ"

પ્રશ્ન 5(અ) OR [3 ગુણ]

Tokenized અને token less બ્લોકચેનને વિગતવાર સમજાવો.

જવાબ:

Tokenized Blockchain:

લક્ષણ	વર્ણન
વ્યાખ્યા	Native cryptocurrency token સાથેની blockchain
Token હેતુ	Network participation incentivize sस्यो
ઉદાહરણો	Bitcoin (BTC), Ethereum (ETH)
કામ	Transaction fees ચૂકવવા, miners/validators ને reward આપવા

Token-less Blockchain:

લક્ષણ	વર્ણન
લ્યાખ્યા	Native cryptocurrency વગરની blockchain
Access	Permission-based participation
ઉદાહરણો	Hyperledger Fabric, R3 Corda
કામ	Record keeping, process automation

સરખામણી કોષ્ટક:

બાબત	Tokenized	Token-less
Incentive Model	Economic rewards	Permission-based
Access	Tokens હોય તો કોઈપણ	Restricted access
Governance	Token holder voting	Centralized control
Use Case	Public networks	Private/enterprise
Security	Economic game theory	Traditional security

આર્કિટેક્ચર તફાવતો:

- પસંદગી: Public participation જોઈએ કે private control તેના પર નિર્ભર
- ટ્રેન્ડ: મોટાભાગની public blockchains tokenized, મોટાભાગની private token-less

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Token = Public Participation, Token-less = Private Permission"

પ્રશ્ન 5(બ) OR [4 ગુણ]

Hyperledger ના ફાયદા અને ગેરફાયદા લખો.

જવાબ:

Hyperledger વ્યાખ્યા: Enterprise-grade blockchain solutions develop કરવા માટેનું open-source collaborative framework.

ફાયદા:

ફાયદો	นต์า
Enterprise Focus	Business use cases भाटे design
Modular Architecture	જરૂર પ્રમાણે components customize કરી શકાય
Privacy	Confidential transactions શક્ય
Performance	ઊંચી transaction throughput
Governance	Professional development standards
No Cryptocurrency	Regulatory crypto issues อเด้
Permissioned Network	કોણ participate કરી શકે તેનું control

ગેરફાયદા:

ગેરફાયદા	વર્ણન
Centralization	Public blockchains કરતાં ઓછું decentralized
Complexity	Implement કરવા માટે technical expertise જરૂરી
Limited Adoption	Ethereum કરતાં નાનું ecosystem
Vendor Lock-in	Specific technology providers પર નિર્ભરતા
Scalability	હજુ પણ કેટલીક scaling challenges
No Token Economy	Crypto incentives leverage કરી શકાતું નથી

Hyperledger Projects સરખામણી:

Project	શક્તિઓ	મર્યાદાઓ
Fabric	Mature, flexible	Complex setup
Sawtooth	Scalable	ઓછું documentation
Iroha	Simple, mobile-friendly	મર્યાદિત features

Use Case યોગ્યતા:

સારું છે	આદર્શ નથી
Supply chain tracking	Public cryptocurrencies
Healthcare records	સંપૂર્ણ decentralized systems
Banking consortiums	High-frequency trading
Government systems	Anonymous transactions

• **લક્ષ્ય**: મોટી enterprises અને consortiums

• **ลนา้ร**์: Linux Foundation ผูเวเ backed

ਮੇਮਰੀ ਟ੍ਰੀs: "Hyperledger = High Performance, Low Publicity"

પ્રશ્ન 5(ક) OR [7 ગુણ]

Smart contract સમજાવો. Smart contract ની વિવિધ એપ્લિકેશન્સ લખો.

જવાબ:

Smart Contract વ્યાખ્યા: Self-executing contracts જેના terms સીધા code માં લખાયેલા હોય અને blockchain પર આપોઆપ enforce થાય.

મુખ્ય લક્ષણો:

લક્ષણ	વર્ણન
Automated	Conditions પૂરી થાય ત્યારે આપોઆપ execute
Immutable	Deployment પછી બદલી શકાતું નથી
Transparent	Code publicly visible
Trustless	Intermediaries ની જરૂર નથી
Deterministic	સમાન input હંમેશા સમાન output

Smart Contract Workflow:

Industry หมเย่ Applications:

Industry	Application	ફાયદો
Finance	Automated loans, insurance claims	ઝડપી processing, ઓછી costs
Real Estate	Property transfers, rental agreements	ફ્રોડ ઘટાડવું, instant settlements
Supply Chain	Product tracking, quality assurance	પારદર્શિતા, automated compliance
Healthcare	Patient consent, insurance claims	Privacy protection, automated payouts
Entertainment	Royalty distribution, content licensing	Fair payment, transparent accounting
Gaming	In-game assets, tournaments	True ownership, automated prizes

ખાસ Smart Contract ઉદાહરણો:

Application	Function	Platform
Uniswap	Automated token trading	Ethereum
Compound	Lending અને borrowing	Ethereum
CryptoKitties	Digital pet ownership	Ethereum
Chainlink	Oracle data feeds	Multiple platforms
Aave	Flash loans	Ethereum

Development Platforms:

Platform	Language	લક્ષણો
Ethereum	Solidity	સૌથી mature ecosystem
Binance Smart Chain	Solidity	ઓછી fees, ઝડપી
Cardano	Plutus	Academic approach
Solana	Rust	High performance

ફાયદા:

ફાયદો	Traditional Contract	Smart Contract
Speed	દિવસો થી અઠવાડિયા	મિનિટો થી કલાકો
Cost	ઊંચી legal fees	ઓછી gas fees
Trust	Intermediaries જરૂરી	Trustless execution
Accuracy	Human error શક્ય	Coded precision

મર્યાદાઓ:

મર્યાદા	વર્ણન
Code Bugs	Errors થી financial loss
Oracle Problem	Real-world data મેળવવાની મુશ્કેલી
Immutability	Deployment પછી fix કરવું મુશ્કેલ
Gas Costs	Congested networks પર મોંઘું
Legal Status	અસ્પષ્ટ regulatory framework

વાસ્તવિક અસર:

ક્ષેત્ર	પરિવર્તન
DeFi	Smart contracts ні \$100+ billion locked
NFTs	નવા digital ownership models
DAOs	Decentralized governance systems
Insurance	Parametric insurance products

• **લવિષ્ય**: IoT, Al અને traditional business systems સાથે integration

• વિકાસ: વધુ user-friendly development tools તરફ જતું

મેમરી ટ્રીક: "Smart Contract = Self-executing, સમસ્યાઓ હલ કરે"