



ඉශ්

## මුලදුවනය හා සංයෝග පුමාණනය



(C-12, O-16, N-14, Ca-40, K-39, S-32, P-31, Al-27, Mg-24, Li-7)

- 1. H<sub>2</sub>SO<sub>4</sub>
  - I. 120
- II. 98
- III. 46
- IV. 57.5

- 2.  $C_6H_{12}O_6$ 
  - I. 120
- II. 360
- III. 180
- IV. 46

- 3.  $CO(NH_2)_2$ 
  - I. 120
- II. 60
- III. 50
- IV. 52.5

- 4. H<sub>2</sub>O<sub>2</sub>
  - I. 34
- II. 98
- III. 46
- IV. 57.5

- 5. CH<sub>3</sub>COOH
  - I. 120
- II. 98
- III. 46
- IV. 60

- 6. CaCO<sub>3</sub>
  - I. 46
- II. 56
- III. 100
- IV. 106

7.  $Ca(NO_3)_2$ 

I. 88

II. 98

III. 100

IV. 102

8. Na<sub>2</sub>SO<sub>4</sub>

I. 119

II. 142

III. 180

IV. 160

9. KOH

I. 120

II. 60

III. 56

IV. 52.5

10.  $(NH_4)_2SO_4$ 

I. 132

II. 100

III. 120

IV. 110

11.  $CaCl_2$ 

I. 110

II. 111

III. 100

IV. 120

12.  $K_2CO_3$ 

II. 138

II. 112

III. 118

IV. 120

13.  $CO(NH_2)$ 

III. 120

II. 60

III. 50

IV. 52.5

14.  $(NH_4)_3PO_4$ 

II. 149

II. 151

III. 164

IV. 143

2) පහත සදහන් රසායනික සංයෝග වල මවුලික ස්කංධ ගණනය කරන්න

| I.   | AlCl <sub>3</sub>                                                                                        |
|------|----------------------------------------------------------------------------------------------------------|
| II.  | $Mg_3N_2$                                                                                                |
| III. | $Na_2C_2O_4$                                                                                             |
| IV.  | KCN                                                                                                      |
| V.   | Li <sub>2</sub> CO <sub>3</sub>                                                                          |
|      |                                                                                                          |
|      | හත සඳහන් මූලදුවෘ පුමාණයන්හි ඇති මවුල සංඛ්‍යා ගණනය කර එහි<br>අති පරමාණු පුමාණ ඒවා ඉදිරියෙන් ලියා දක්වන්න. |
| (i)  | Na -69 g (Na-23)                                                                                         |
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |

| (ii) Ca - 160 g (Ca - 40) |        |
|---------------------------|--------|
| (iii) S- 8 g (S - 32)     |        |
| (iv) O- 2 g (O-16)        | Dage 4 |
| Niranga Prasad Gamage     | Page 4 |

| (v) N - | 7 g (N-14) |  |
|---------|------------|--|
|         |            |  |
|         |            |  |
|         |            |  |
|         |            |  |
|         |            |  |
|         |            |  |
|         |            |  |
|         |            |  |
|         |            |  |

+ සංයෝගයක මවුලයක් යනු සාපේක්ෂ අණුක ස්කන්ධයට සමාන ස්කන්ධයක් ......ගත් විට අගයයි.

උදා :- ජලයෙහි (  $H_2O$  ) සා:අ:ස් 18 වන අතර ජලය 18 g කිරා ගත්විට ජල මවුලයක් ලැබේ.

- → සංයෝගයක් සැලකූ විට එය සෑදී ඇත්තේ අණු මගින් වන අතර සෑම සංයෝගයකම 1 mol ක් තුල අණූ ඇවගාඩිරෝ සංඛ්‍යාවක් පවතී.
- → පහත සඳහන් එක් එක් සංයෝග වල දී ඇති ස්කන්ධය තුල ඇති මවුල ගණන හා අණු ගණන ගණනය කරන්න.

(C-12, H-1, O-16 Na-23, Cl-35.5, S-32, Ca-



| (ii)  | NaCl - (29.25 g)                                  |  |
|-------|---------------------------------------------------|--|
| (iii) | H <sub>2</sub> SO <sub>4</sub> - (49 g)           |  |
| (iv)  | යූරියා 12 g - (CO (NH <sub>2</sub> ) <sub>2</sub> |  |



මවුල ගණන් පිළිබඳ දැනුම තව දුරටත් වර්ධනය කර ගැනීමට පහත සඳහන් ගණනය කිරීම් වල නිරත වන්න.

- 1. C, 3 mol ක ස්කන්ධය සොයන්න.
- 2. එතිල් මධ්‍යසාරය (  $C_2H_5OH$  ) 3 mol ස්කන්ධය හා එහි ඇති අණු ගණන ගණනය කරන්න.
- 3.  $Ca \ C_2 \ 2.3 \ mol \ ක ස්කන්ධය ගණනය කරන්න. ( <math>Ca 40$  , C 12 )
- 4. NO<sub>2</sub> 23 g ඇති අණු ගණන ගණනය කරන්න . ( N 14, O 16 )

$$CaCO_3 \longrightarrow CaO + CO_2$$

- (i)  $CaCO_3$  100 g ක් සම්පූර්ණයෙන්ම තාප වියෝජනයක් සෑදෙන CaO හා  $CO_2$  ස්කන්ධය කොපමණ ද?
- (ii)  $CO_2$  1.32 g පිටවීමට රත් කළ යුතු  $CaCO_3$  ස්කන්ධය හා සෑදෙන CaO ස්කන්ධය ගණනය කරන්න.

6. පොටෑසියම් පර්මැංගනේට් රත් කළ විට පහත සඳහන් පුතිකිුයාව සිදුවේ.

$$2KMnO_4 \longrightarrow KMnO_4 + MnO_2 + O_2$$

ඉහත පුතිකියාවට අනුව ඔක්සිජන් මවල 03 ක් ලබා ගැනීමට රත් කළ යුතු  $KMnO_4$  මවල පුමාණය කොපමණ ද?

20) පහත සංයෝග යුගල අතුරෙන් ස්කන්ධය අනුව ඔක්සිජන් පුතිශතය ආසන්නම සමාන වන සංයෝග යුගලය වනුයේ (2007)දෙසැම්බර්)

$$(H = 1 \quad C = 12 \quad N = 14 \quad O = 16)$$

- (i) CH3OH හා NH4OH
- (ii) NH4OH හා HNO3

(iii) HNO<sub>3</sub> හා H<sub>2</sub>CO<sub>3</sub>

- (iv) CH<sub>3</sub>OH to H<sub>2</sub>CO<sub>3</sub>
- 21) පහත දැක්වෙන අණු යුගල අතුරෙන් සමාන අණුක ස්කන්ධ සහිත යුගලය වන්නේ (2011 දෙසැම්බර්)

$$(H = 1, C = 12, N = 14, O = 16)$$

- N<sub>2</sub>සහ CO (ii) CH<sub>4</sub> සහ NH<sub>3</sub> (iii) N<sub>2</sub> සහ H<sub>2</sub> (iv) O<sub>2</sub> සහ NO (i)
- 22) CaCO<sub>3</sub> රත්කළ විට සිදුවන පුතිකියාව පහත සමීකරණයෙන් දැක්වේ

$$CaCO_3$$
 CaO +  $CO_2$ 

මෙම සමීකරණයට අනුව CaCO3, 50 Kg කින් ලැබෙන CaO පුමාණය කොපමණ ද? ( 2005 දෙසැම්බර් )

$$(Ca = 40, C = 12, O = 16)$$

- (1)
- 50 Kg (2) 55 Kg (3) 28 Kg (4) 22 Kg
- 23) කැල්සියම් කාබනේට් රත් කල විට කැල්සියම් ඔක්සයිඩ් සහ කාබන් ඩයොක්සයිඩ් බවට වියෝජනය වීම පහත සඳහන් තුලිත රසායනික සමීකරණයෙන් දැක්වේ [ Ca = 40, C = 12, O = 16]

$$CaCO_3 \longrightarrow CaO + CO_2$$

මෙම සමීකරණයට අදාළ ව පුකාශ කිහිපයක් පහත දැක්වේ

A. කැල්සියම් කාබනේට් හි සුතු ස්කන්ධය 100 ක් වේ

- B. කැල්සියම් ඔක්සයිඩ් 112 g ක් ලබා ගැනිමට කැල්සියම් කාබනේට් 200 g රත් කල යුතුය
- C. කැල්සියම් කාබනේට්  $200~\mathrm{g}$  ක් රත් කල විට කාබන්ඩයොක්යිඩ්  $44~\mathrm{g}$  ක්

මේවා අතුරෙන් නිවැරදි පුකාශය වන්නේ

- I. A , B ,හා C යන සියල්ලම
- II. A හා B පමණි

- III. A හා C පමණි
- IV. B හා C පමණි
- 24) ජලය 9g ක අන්තර්ගත ජල අණු සංඛ්යාව නිවැරදිව පුකාශිත වරණය තෝරන්න( H = 1 , O = 16, ඇවගැඩිරෝ නියතය  $6.022 \times 10^{22} \text{ mol}^{-1}$  ) (2009 දෙසැම්බර්)
  - (1)  $6.022 \times 10^{23}$

(2)  $18/9 \times 6.022 \times 10^{23}$ 

(3)  $9/18 \times 6.022 \times 10^{23}$ 

- (4)  $9x18x6.022x10^{23}$
- 25) යූරියා  $CO(NH_2)_2$  අණුවක අඩංගු කාබන් ඔක්සිජන් නයිට්රජන් හා හයිඩ්රජන් පරමාණු සංඛ්යා පිළිවෙලින් (2009 දෙසැම්බර්)
  - (1) 1 1 1 හා 2 වේ
- 2 2 2 හා 4 වේ (2)
- (3)
- 1 1 2 හා 4 වේ (4) 1 1 2 හා 2 වේ
- 26) නුණුගල් ( $CaCO_3$ ) නියැදියක් නියත ස්කන්ධයකට එළඹෙන තෙක් රත්කීරීමෙන් ලැබුණු හුණ (CaO ) ස්කන්ධය 28g කි ඊට අනුරූප ව කාබන්ඩයොක්සයිඩ් (CO<sub>2</sub>) පිටවීමෙන් නියැදියේ සිදුවන ස්කන්ධය අඩුවීම කොපමණ ද? (2008 දෙසැම්බර්)(C = 12, O = 16, Ca = 40)

| 1. | 22 | g      |
|----|----|--------|
| •  |    | $\sim$ |

27) නිල් පැහැති සප්ල කොපර් සල්ෆේට් ( $CuSO_4.5H_2O$ ) වාතයේ රත් කිරීමෙන් සුදු පැහැති නිර්ප්ලීය කොපර් සල්ෆේට් (  $\mathrm{CuSO_4}$  ) ලබා ගැනීමට අදාළ තුළිත රසායනික සමීකරණය පහත දැක්වේ (2007 දෙසැම්බර්)

$$CuSO_4$$
 5H<sub>2</sub>O  $\longrightarrow$   $CuSO_4$  + 5H<sub>2</sub>O

නිර්ප්ලිය කොපර් සල්ෆේට්  $16~\mathrm{g}$  ක් ලබා ගැනීමට අවශ $\mathrm{s}$  සප්ල කොපර් සල්ෆේට් වල ස්කන්ධය කොපමණ ද?( Cu = 64, S = 32 O = 16

$$H = 1$$
)

28) පහත සංයෝග යුගල අතුරෙන් ස්කන්ධය අනුව ඔක්සිප්න් පුතිශ (2007 ලදසැම්බර් ආසන්නම සමාන වන සංයෝග යුගලය වනුයේ

$$(H = 1 \quad C = 12 \quad N = 14 \quad O = 16)$$

- (ii) CH<sub>2</sub>OH හා NH<sub>4</sub>OH
- NH<sub>4</sub>OH හා HNO<sub>3</sub> (ii)

(iii) HNO<sub>3</sub> හා H<sub>2</sub>CO<sub>3</sub>

(iv) CH<sub>3</sub>OH to H<sub>2</sub>CO<sub>3</sub>

29) පහත දැක්වෙන අණු යුගල අතුරෙන් සමාන අණුක ස්කන්ධ ඇති යුගලය වන්නේ ( H = 1 , C = 12 , N = 14 , O = 16) (2007 දෙසැම්බර්)

N<sub>2</sub> සහ CO (i)

(iii) N<sub>2</sub> සහ H<sub>2</sub>

CH3 සහ NH3 (ii)

(iv) O<sub>2</sub> සහ NO

30) ඉලෙක්ටෝන ඉවත් කිරීමෙන් පමණක් උච්චවායු විනසාසය ළඟා කරගන්න මුලදුවූ ඇතුලත් වනුයේ කවර පිළිතුරේ ද?(2006 දෙසැම්බර්)

H Li, C (i)

(iii) H, F, CL

(ii) Na, K, Ca

(iv) C, O, N

31) CaCO3 රත්කළ විට සිදුවන පුතිකියාව පහත සමීකරණයෙන් දැක්වේ

$$CaCO_3$$
  $\longrightarrow$   $CaO + CO_2$ 

මෙම සමීකරණයට අනුව  $CaCO_3$ , 50~Kg කින් ලැබෙන CaO පුමාණය කොපමණ ද? ( Ca=40~, C=12~, O=16~) (2006~ දෙසැම්බර්)

I. 50 Kg

III. 28 Kg

II. 55 Kg

IV. 22 Kg

32) 
$$CaCO_3 \longrightarrow CaO + CO_2$$
  
(  $Ca = 40 \quad C = 12 \quad O = 16$  )

මෙහි දක්වා ඇති තොරතුරු අනුව පහත ඒවායින් ඔබට නිගමනය කළ නොහැකි කරුණ වන්නේ(2005 දෙසැමිබර්)

- I. එය තුලිත සමීකරණයක් බවය
- II. කැල්සියම් කාබනේටි වියෝජනය කිරීමට තදින් රත් කළ යුතු බවය
- III. කැල්සියම් කාබනේටි ග්රැම් 100 කින් කාබන් ඩයොක්සයිඩ් ග්රැම් 44 ක් සදෙන බවය
- IV. කැල්සියම් කාබනේට් ග්රැම් 10 කින් කැල්සියම් ඔක්සයිඩ් ග්රැම් 5.6 ක් සදෙන බවය
- 33) කැල්සියම් කාබනේට් රත් කල විට කැල්සියම් ඔක්සයිඩ් සහ කාබන් සයොක්සයිඩ් බවට වියෝජනය වීම පහත සඳහන් තුලිත රසායනික සමීකරණයෙන් දැක්වේ [ Ca = 40 , C = 12 , O = 16 ] (2004 දෙසැම්බර්)

$$CaCO_3 \longrightarrow CaO + CO_2$$

මෙම සමීකරණයට අදාළ ව පුකාශ කිහිපයක් පහත දැක්වේ

- A. කැල්සියම් කාමනේට් හි සූතු ස්කන්ධය 100 ක් වේ
- B. කැල්සියම් ඔක්සයිඩ් 112 g ක් ලබා ගැනීමට කැල්සියම් කාමනේට් 200 g රත් කල යුතුය
- C. කැල්සියම් කාබනේටි  $200~{
  m g}$  ක් රත් කල විට කාබන්ඩයොක්සයිඩ්  $44~{
  m g}$  ක් ලැබේ

මේවා අතුරෙන් නිවැරදි පුකාශය වන්නේ

(1) A , B ,හා C යන සියල්ලම

(2) A හා B පමණි

(3) A හා C පමණි

- (4) B හා C පමණි
- සන NaOH 4g ක් යොදා පහත සඳහන් පුතිකුියාව සිදු කිරීමේ දී පිට වු 15. තාප පුමාණය 7kj විය (Na=23, O = 16, H=1)

 $NaOH(s) + HNO_3(aq) \longrightarrow NaNO_3(aq) + H_2O(1)$ 

එම පුතිකියාවට අනුව NaOH මවුලයක් පුතිකියා වීම ආශිුත තාප විපර්යාසය කොපමණ ද? ( 2010 දෙසැම්බර් )

- $(1)0.7 \text{ kjmol}^{-1}$  (2)  $70 \text{ kjmol}^{-1}$  (3)  $700 \text{ kjmol}^{-1}$  (4)  $7000 \text{ kjmol}^{-1}$
- 16.  $HNO_3$  94.5 g ක අඩංගු විය යුතු  $HNO_3$  අණු ගණන විය යුත්තේ
  - 6.022 x10<sup>23</sup> x 94.5 (ii)
- (i)  $6.022 \times 10^{23} \times 63$

94.5

(iii)  $3 \times 6.022 \times 10^{23}$ 

- (iv)  $6.022 \times 10^{23}$
- 17. 0.25 mol ක ස්කන්ධය විය යුත්තේ ( H-1 , S 32 , O 16 )
  - (i)
- 24.5 g (ii) 98 g (iii) 49 g (iv) 50 g

63

