FAT32

강대명(charsyam@naver.com)

FAT

- File Allocation Table
 - FAT Table 의 크기에 따라서 FAT12, 16, 32 등으로 구분할 수 있다.
- 0번, 1번 클러스터는 존재하지 않는다.

FAT 12, 16, 32 간단한 비교

구분	FAT12	FAT16	FAT32
사용 용도	플로피디스크(거의 안씀)	저용량 하드(거의 안씀) 2GB 이하	일반 하드(거의 안씀) 2TB ^{이하}
클러스터 표현 비트 수	12	16	32
최대 클러스터 개수	4,084	65,524	2^28
최대 볼륨 크기	16MB	2GB	2TB
파일의 최대 크기	볼륨 크기	볼륨 크기	4GB
디렉토리당 최대 파일 수	X	65,534	65,534
루트 디렉토리 파일 개수 제한 _ 루트 디렉토리가 하나의 클러 스터로 고정	O O MI	Olo Wil	억으

일반적인 클러스터 사이즈(현재는 보통 4k)

볼륨 크기	FAT32	NTF\$
32~64MB	512	512
64~128MB	1024	512
128~256MB	2048	512
256~512MB	4096	512
512MB~1GB	4096	1024
1GB~2GB	4096	2048
4GB~8GB	4096	4096
8~16GB	8192	4096
16~32GB	16084	4096
32GB~2TB	인식가능	4096

클러스터 크기에 따른 장단점

걘	장점	단점
클러스터 크기가 작을 경우	버려지는 용량이 작다. (클러스터 슬랙이 작아진다.)	FAT 사용량이 커진다. 하나의 파일을 표현할 때, 더 많은 FAT Table이 필요하다.
클러스터 크기가 클 경우	FAT 영역의 사용량이 줄어든다.	버려지는 영역(슬랙)이 크다.

FAT32 Volume 추상 Layout

VBR FAT1 FAT2 Data Blocks

• FAT 볼륨은 크게 VBR, FAT, Data Blocks 로 이루 어진다.

FAT16 Volume

UBR 예약영역 FAT1 FAT2 Root Dir 데이터 영역

• FAT16 에서 Root Directory 는 FAT2 바로 다음 에 존재.

FAT32 Volume

UBR 예약영역 FAT1 FAT2 데이터 영역 Root Dir 데이터 영역

- FAT32 에서 Root Directory 는 일반 디렉토리 영역이므로 데이터 영역의 어디에든 존재 가능.
- 단 보통은 FAT2 뒤에 둔다.(찾기 쉬움)

Boot Record FAT16 and FAT32

FAT16 BR

FAT16/32 공통 항목 --- Offset 0 ---

FAT32 BR

FAT16/32 공통 항목

FAT16 항목

Boot Code

Signature Ox55AA --- Offset 32 ---

--- Offset 60

Offset 89 ---

-- Offset 510 --

FAT32 항목

Boot Code

Signature 0x55AA

FAT 16/32 공통 영역

내용	시작 위치	사이즈	비고
Jump Boot Code(EB 3c 90)	0	3	
OEM Name	3	8	
Bytes Per Sector(512)	11	2	
Sector Per Cluster(8)	13	1	
Reserved Sector Count	14	2	FAT16: 1, FAT32: 32
Number of FATs(2)	16	1	
Root Dir Entry Count	17	2	FAT16: 512, FAT32: 0
Total Sector 16	19	2	FAT32: O, FAT16만의 값
Media	21	1	OxF8
FAT Size 16	22	2	FAT32: O
Sector Per Track	24	2	63
Number of Heads	26	2	255
Hidden Sector	28	4	32
Total Sector 32	32	4	FAT32 ⁸

FAT16 항목

LH2	시작 위치	사이즈	비고
Drive Number	36	1	Ox8O
Reserved1	37	1	0
Boot Signature	38	1	Ox29
Volume ID	39	4	
Volume Label	43	11	
File System Type	54	8	FAT16

FAT32 항목

내용	시작 위치	사이즈	비고
FAT Size 32	36	4	
Ext Flags	40	2	OxOO
File System Version	42	2	OxOO
Root Dir Cluster	44	4	2
File System Info	48	2	1
Boot Record Backup Sec	50	2	6
Reserved	52	12	0
Drive Number	64	1	1
Reserved1	65	1	0
Boot Signature	66	1	Ox29
Volume ID	67	4	
Volume Label	71	11	
File System Type	82	8	FAT32

FAT32 Volume

UBR 예약영역 FAT1 FAT2 데이터 영역 Root Dir 데이터 영역

- FAT32 에서 Root Directory 는 일반 디렉토리 영역이므로 데이터 영역의 어디에든 존재 가능.
- 단 보통은 FAT2 뒤에 둔다.(찾기 쉬움)

FAT32 Volume

```
00000000 EB 58 90 4D 53 44 4F 53-35 2E 30 00 02 08 0E 10 EX MSDOS5.0 · · · · ·
00000010 02 00 00 00 F8 00 00-3F 00 80 00 01 00 00 00 00 ------
00000020 01 00 20 00 F9 07 00 00-00 00 00 02 00 00 00 ····à·······
00000040 80 00 29 06 BB 16 44 4E-4F 20 4E 41 4D 45 20 20 ··) ·» ·DNO NAME
00000050 20 20 46 41 54 33 32 20-20 20 33 C9 8E D1 BC F4 FAT32
00000060 7B 8E C1 8E D9 BD 00 7C-88 4E 02 8A 56 40 B4 41 1 A.D. N. ·V@ A
00000070 BB AA 55 CD 13 72 10 81-FB 55 AA 75 0A F6 C1 01 | **UÍ·r··ûU*u·öÁ·
00000080 74 05 FE 46 02 EB 2D 8A-56 40 B4 08 CD 13 73 05 t.bF.ë-.V@'.1.s.
00000090 B9 FF FF 8A F1 66 0F B6-C6 40 66 0F B6 D1 80 E2 VV - Af - 4E0f - 4N - â
000000a0 3F F7 E2 86 CD C0 ED 06-41 66 0F B7 C9 66 F7 E1 2+â·ÎÀí·Af··Éf÷á
000000b0 66 89 46 F8 83 7E 16 00-75 38 83 7E 2A 00 77 32 f.Fø.~..u8.~*.w2
000000d0 00 E9 2C 03 A0 FA 7D B4-7D 8B F0 AC 84 C0 74 17 -é. · úl'l-8- · Àt-
000000e0 3C FF 74 09 B4 0E BB 07-00 CD 10 EB EE A0 FB 7D < vt · · · » · · Í · ëî û}
000000f0 EB E5 A0 F9 7D EB E0 98-CD 16 CD 19 66 60 80 7E eå ùleà í í í f · ~
00000100 02 00 0F 84 20 00 66 6A-00 66 50 06 53 66 68 10 ···· ·fi·fP·Sfh·
00000110 00 01 00 B4 42 8A 56 40-8B F4 CD 13 66 58 66 58 . · · · B · V@ · ôÍ · fXfX
00000120 66 58 66 58 EB 33 66 3B-46 F8 72 03 F9 EB 2A 66 fXfXë3f;Før ·ùë*f
00000130 33 D2 66 0F B7 4E 18 66-F7 F1 FE C2 8A CA 66 8B 30f · N · f ÷ ñbà · Êf ·
00000140 D0 66 C1 EA 10 F7 76 1A-86 D6 8A 56 40 8A E8 C0 Đ Á ê · ÷v · · Ö · VQ · è À
00000150 E4 06 0A CC B8 01 02 CD-13 66 61 0F 82 75 FF 81 | a · · i , · · i · fa · · uÿ ·
00000160 C3 00 02 66 40 49 75 94-C3 42 4F 4F 54 4D 47 52 A . f@Iu ABOOTMGR
000001b0 6D 6F 76 65 20 64 69 73-6B 73 20 6F 72 20 6F 74 move disks or ot
000001c0 68 65 72 20 6D 65 64 69-61 2E FF 0D 0A 44 69 73 her media. V··Dis
000001d0 6B 20 65 72 72 6F 72 FF-0D 0A 50 72 65 73 73 20 k errorv. Press
000001e0 61 6E 79 20 6B 65 79 20-74 6F 20 72 65 73 74 61 any key to resta
```

FSInfo Sector: FAT32 Only

• FAT 관련한 추가적인 정보를 가지고 있다.

내용	시작 위치	사이즈	비2
Lead Signature	0	4	Ox41615252
Reserved1	4	479	0
Struct Signature	484	4	Ox61417272
Free Cluster Count	488	4	현재 비어있는 클러스터 수 OxFFFFFFFF ^{라면} Free Cluster 를 직접 계산해약함. 항상 옳지 않음
Next Free Cluster	492	4	현재 비어있는 클러스터 번호. 할당이 필요할 때 따로 찻지않고 이 값을 이용할 수 있다. 항상 옳지 않음
Reserved2	496	12	0
Trail Signature	508	4	0xAA550000

FSInfo Sector

```
00000200 52 52 61 41 00 00 00 00-00 00 00 00 00 00 00 RRaA.....
00000230 00 00 00 00 00 00 00-00 00 00 00
                  0.0
                   00 00
00000250 00 00 00 00
        00 00
          00 00-00 00 00
                00
                 00
                   00 00
          00 00-00 00 00
                00 00
00000270 00 00 00 00
        00
         00
          00 00-00 00
               00
                00
                 00
00000280 00 00 00 00 00 00
          00 00-00 00 00
                00 00 00 00 00
00000290 00 00 00 00
        0.0
         0.0
          0.0
           00-00 00
               0.0
                0.0
                 00
                  0.0
000002a0 00 00 00 00 00 00
          00 00-00 00 00 00 00 00 00 00
000002b0 00 00 00 00
        00 00
           00-00 00 00
                00
                 00
                  00
                    00 00
          00
00 00-00 00 00 00 00 00 00 00
000002d0 00 00 00 00
        00 00
000002f0 00 00 00 00 00 00
          00 00-00 00 00 00 00 00 00 00
00000330 00 00 00 00 00 00
          00 00-00 00 00 00 00 00
                   00 00
000003e0 00 00 00 00 72 72 41 61-18 F8 03 00 01 02 00 00 ····rrAa·ø·
```

클러스터 위치 계산

- 클러스터는 2번 부터 시작한다. 다만 FAT 내부에 0, 1번 값은 존재한다.
- Bps
 - Bytes_Per_Sector
- Root_dir_sector
 - (Root_dir_entry_number * 32 + (bps 1))/bps
- First_data_sector
 - Reserved_sector_count + fat size * number_of_fats + root_dir_sector
- ClusterToSector
 - (Cluster-2) * sectors_per_cluster + first_data_sector

FAT Table

Media Type	Partition State	Cluster 2	Cluster 3
Cluster 4	Cluster 5	Cluster 6	Cluster 7
Cluster 8	Cluster 9	Cluster 10	Cluster 11
	•••	•••	

• FAT32에서 각 항문 4 bytes, FAT16 에서는 2 bytes

FAT 의 Cluster 연결 방식

Media Type	Partition State	3	4
of FF FF FF	Cluster 5	Cluster 6	Cluster 7
Cluster 8	Cluster 9	Cluster 10	Cluster 11

- Cluster 2 가 시작 주소인 경우 Cluster 연결 방식
 - 연결된 다음 클러스터 번호를 값으로 가짐, 마지막일 경우 OF FF FF

FAT 의 Cluster 연결 방식

• Root Dir의 클러스터 번호가 2라면... Root Dir의 크기는 2, 3, 4 해서 3개의 클러스터를 차지한다. 즉 2번, 3번, 4번 클러스터에 걸쳐서 루트 디렉토리가 존재한다.

FAT

```
00201c00 F8 FF FF 0F FF FF FF FF FF FF 0F 04 00 00 00 ØVŸ ·ŸŸŸŸŸŸŸ · · · ·
00201c20 FF FF FF 0F 0A 00 00 00-0B 00 00 0FF FF FF 0F VVV · · · · · · · · VVV ·
00201c30 OD 00 00 00 0E 00 00 00-FF FF FF 0F 10 00 00 00
00201c40 FF FF FF 0F 12 00 00 00-13 00 00 01 14 00 00 00 VVV · · · · · · · · · ·
00201c50 | 15 00 00 00 16 00 00 00-17 00 00 00 18 00 00 00
00201c60 19 00 00 00 1A 00 00 00-1B 00 00 00 1C 00 00 00
00201c70 | 1D 00 00 00 1E 00 00 00-1F 00 00 00 20 00 00 00
00201c80 21 00 00 00 22 00 00 00-23 00 00 00 24 00 00 00 !···"···#···$···
00201ca0 29 00 00 00 2A 00 00 00-2B 00 00 00 2C 00 00 00 0 ...*...+...
00201cb0 2D 00 00 00 2E 00 00 00-2F 00 00 00 30 00 00 00 ----/---/---
00201cc0 31 00 00 00 32 00 00 00-33 00 00 00 34 00 00 00 11...2...3...4...
00201cd0 35 00 00 00 36 00 00 00-37 00 00 00 38 00 00 00 5 · · · 6 · · · 7 · · · 8 · · ·
00201ce0|39 00 00 00 3A 00 00 00-3B 00 00 00 3C 00 00 00|9...:....
00201cf0 3D 00 00 00 3E 00 00 00-3F 00 00 00 40 00 00 00 |-...>...?...@...
00201d00 | 41 00 00 00 42 00 00 00-43 00 00 00 44 00 00 00 | A · · · B · · · C · · · D · · ·
00201d10 45 00 00 00 46 00 00 00-47 00 00 00 48 00 00 00 E...F...G...H...
00201d20|49 00 00 00 4A 00 00 00-4B 00 00 00 4C 00 00 00|I...J...K...L...
00201d30 4D 00 00 00 4E 00 00 00-4F 00 00 00 50 00 00 00 M···N···O···P···
00201d40 51 00 00 00 52 00 00 00-53 00 00 00 54 00 00 00 00 0 ···R···S···T···
00201d50 | 55 00 00 00 56 00 00 00-57 00 00 00 58 00 00 00 | U · · · V · · · W · · · X · · ·
00201d60 59 00 00 00 5A 00 00 00-5B 00 00 00 5C 00 00 00 Y · · · Z · · · [ · · · \ · · ·
00201d80 61 00 00 00 62 00 00 00-63 00 00 064 00 00 00 a...b...c..d...
00201d90 65 00 00 00 66 00 00 00-67 00 00 00 68 00 00 00 e...f...q...h...
00201da0 69 00 00 00 6A 00 00 00-6B 00 00 00 6C 00 00 00 i...i...k...l...
00201db0 6D 00 00 00 6E 00 00 00-6F 00 00 00 70 00 00 00 m · · · n · · · o · · · p · · ·
00201dc0 71 00 00 00 72 00 00 00-73 00 00 00 74 00 00 00 q...r..s..t...
00201de0 79 00 00 00 7A 00 00 00-7B 00 00 00 7C 00 00 00 y · · · z · · · { · · · | · · ·
00201df0 | 7D 00 00 00 7E 00 00 00-7F 00 00 00 80 00 00 | 1 · · · ~ · · · · · ·
```

문제1: 다음 FAT를 보고 연결된 블럭들을 분리하시오.

Media Type	Partition State	3	6
5	of FF FF FF	7	8
of FF FF FF	0	0	0
13	16	15	17
14	OF FF FF FF		

문제1: 다음 FAT를 보고 연결된 블럭들을 분리하시오.

Media Type	Partition State	3	6
5	of FF FF FF	7	8
of FF FF FF	0	0	0
13	16	15	17
14	of FF FF FF		

• 목록

- -2->3->6->7->8 (5 clusters)
- -4->5 (2 clusters)
- 12 -> 13 -> 16 -> 14 -> 15 -> 17(6 clusters)

FAT Entry의 상태 값

FAT16	FAT32	비고
0x0000	0x?000000	비어 있는 클러스터
Ox0001	Ox?000001	예약된 클러스터(미래에 사용할까 봐서 정의된 갑)
OxOOO2~ OxEEEF	ox?0000002 ~ ox?FFFFFEF	사용하고 있는 클러스터, 자신에게 연결된 다음 클 러스터의 번호
OxFFF0~ OxFFF6	ox?FFFFFF0~ ox?FFFFFF6	예약된 클러스터
0xFFF7	0x?FFFFFF7	불량 클러스터
OxFFF8~ OxFFFF	Ox?FFFFFFF Ox?FFFFFFF	해당 클러스터 체인의 마지막 클러스터

Data 영역

Root Dir	a.txt	bob.zip	DIR1(Dir)	•••	N
----------	-------	---------	-----------	-----	---

- 데이터 영역에는 디렉토리와 파일이 존재한다.
- 디렉토리는 디렉토리 엔트리라는 형태로 구성되어있다.

Data 영역 #1

2	3	4	5	6	7	8	9	•••	N

Root Dir	a.txt	bob.zip	DIR1(Dir)	•••	N
----------	-------	---------	-----------	-----	---

Name	Type	Start Cluster
Bob.zip	File	6
DIR1	Directory	8

Data 영역 #2

2	3	4	5	6	7	8	9	•••	N

Root Dir	a.txt	bob.zip	DIR1(Dir)	•••	N
----------	-------	---------	-----------	-----	---

Name	Type	Start Cluster
a.txt	File	4

Directory Entry

- Directory Entry는 하나당 32 bytes
 - 한 섹터당 16개

Directory Entry #1

LHS	시작 위치	사이즈	비고
Name	0	8	파일명, 기본적으로 파일이나 디렉토리 명은 최대 8자리만 가능, 대문자만 가능하고 빈 공간은 0x20(^{스페이스})로 채운다.
Ext	8	3	확장자 최대 3 ^{자리} , Name ^과 동일한 속성을 가진다.
Attribute	11	1	
NT Resource	12	1	예약값: O
Create Time Tenth	13	1	파일이 생성된 시각을 1/10초 단위로 기록한 항목
Create Time	14	2	
Create Date	16	2	
Last Access Date	18	2	최근 접근 날짜만 기록
First Cluster High 2 bytes	20	2	
Write Time	22	2	

Directory Entry #2

내용	시작 위치	사이즈	비고
Write Time	22	2	
Write Date	24	2	
First Cluster Low 2 Bytes	26	2	
Filesize	28	4	디렉 ^{토리} 면 O

- 첫 문자로 0x20은 올 수 없다.
- 첫 문자로 0x05를 제외한 0x20보다 적은 값도 올 수 없다.

Filename + Ext

- Filename 8Xt, Ext 3Xt
 - ─ 영어 대문자 A-Z
 - 아라비아 숫자 0~9
 - OS가 지원하는 문자(한글)

Filen	ime							Ext		
F	0	0						В	A	R
F	I	L	Е	D	Α	T	A	D	0	С
F	0	0								
F	0	0						A		

FileName[0] 의 의미

값	내용
OxE5	삭제된 데이터라는 것을 의미. 파일을 삭제하면 해당 디렉토리 엔트리 Filename[0]을 단순히 OxE5 ^{로 바꾼다} .
0x00	해당 디렉토리 엔트리가 비어있고, 뒤에도 모두 비어있다라는 의미, 그 뒤의 엔트리를 검색할 필요가 없음
OxO5	실제로는 OXE5 값인데 일본 문자(간지)의 첫 바이트 값이 OxE5라서 모두 삭제된 파일로 취급받기 때문에 OxO5를 일본어 문자의 OXE5를 표시하는데 사용함.
	즉 실제로 삭제된 파일 이름의 [O] 은 OxE5

FileName[0]

```
4D 41 47 45 53 20 20-4A 50 47 20 18 4D D7 BB
      46 F3 46 00 00 C7 B6-F3 46 03 00 11 46 00 00
                                                   óFóF··C¶óF···F··
                                       18 4D
                                                BB IMAGES
                                                   óFóF·· · óF
            46 00 00 20 B7-F3 46
                                 08 00 AA 0F
                                                00
                  53 32 20-4A 50
                                    20
                                       18
                                             D7
                                                BB | IMAGES2 JPG
      46 F3 46 00 00 CE B6-F3 46 09 00 72 24 00
                                                00 | 6F6F - - ζ6F - - r$ - -
                                                BB IMAGES3 JPG
            47 45 53 33 20-4A 50
                                 47 20
                                       18
                                             D7
            46 00 00 D1 B6-F3 46 0C 00 7C 2E
                                             00
                                                00 OFOF · · NUME
                  53 34 20-4A 50
                                 47 20
                                       18
                                             D7
               00 00 13 B7-F3 46 0F 00 07 1D 00
                                                00
            65 00 69 00 2E-00 70
                                 00 OF 00 03 64 00 AW-e-i-.-p
0b0 66 00 00 00 FF FF FF FF-FF FF 00 00 FF FF FF
   42 45 00 53 00 00 00 FF-FF FF FF 0F 00 23 FF FF BE·S···VVVV
                                 00 OF 00 23 4C
                                 00 00 4F 00 54 00 E · A · S · E · N
      30 2D 52 45 4C 7E 31-20 20 20 20 00 8F E3 BB 00-REL~1
130 F3 46 F3 46 00 00 34 84-57 44 FB 01 62 46 00 00 offor · · 4 · WDû · bF · ·
      C8 C0 20 00 F4 D3 54-B3 00 00 0F 00 CF FF FF
                                 00 00 FF FF FF FF
                                                00 ÓFÓF·-ê»ÓF
                                 00 02
       45 53 54 31 20 20 20-20 20
                                 20 10
                                       08 9B E9 BB
                                 00 02 00 00
                                             00 00 óFóF · · ê» óF
            20 00 F4 D3 54-B3 00 00 0F 00 CF FF FF
                                             FF FF
               FF FF FF FF-FF FF
                                 00 00
            FA B4 F5 7E 31-20 20
                                 20 10
                                       00 A1 EE
                                                00 ÓFÓF··ï»ÓF
                                 01 02
                                       00 00
                                             00
            45 54 45 31 20-20 20 20 10 08 A1 EE
```

삭제된 데이터

Ë.	내용
Deleted	사용자가 디렉토리를 볼 때 파일 네임 엔트리가 표시되지 않는 상태. 삭제되었다는 표시만 된 상 태, 파일 이름과 메타데이터가 일치하는 상태, 단순히 사용자가 Delete를 한 상태
Orphan	파일 이름과 메타데이터 구조 사이의 관계가 더 이상 정확하지 않다는 점을 제외하고는 Deleted 상태와 유사.
Unallocated	한 번이라도 할당된 적이 있는 파일 네임 엔트리를 가지고 있고 연관된 메타데이터 구조의 링크는 끊 기거나 재사용된 상태, 복구는 볼륨의 미할 당 영역에서 아직 재사용되지 않은 영역을 카빙함으로써 복구를 시도한다.
Overwritten	다른 파일에 재할당된 하나 이상의 데이터 유닛을 가지고 있음. 완전한 복구는 더 이상 불가능 하지만, 부분 복구는 가능할 수도 있다.

Attribute 값

속성	이를	내용
Ox01	Read Only	일기 전요 의 Lo
0x02	Hidden	파일을 숨긴다.
OxO4	System	운영체제에서 사용하는 파일
OxO8	Volume Label	이 파일의 이름이 볼륨 레이블이 됨
Ox10	Directory	디렉토리
0x20	Archive	파일
0xF0	LongFileName	Long File Name Entry

Create Time

속성	유효 범위	내용
*(second)	0 ~ 29	초를 기록한다 . 2 초당 1 을 증가
분(minute)	O ~ 59	Ë
^{시간} (Hour)	0 ~ 23	시간

•	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seconds				Minutes						Hour					

Create Date

속서	^{유효} 베위	내용
Day	1 ~ 31	
Month	1 ~ 12	
Year	O ~ 127	1980년 ^{부터 시작} : ^{최대} 1980 + 127 = 2107년

•	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Day			Month			Year									

Directory Entry Sample

```
000 49 4D 41 47 45 53 20 20-4A 50 47 20 18 4D D7 BB IMAGES JPG ·M×»
010 F3 46 F3 46 00 00 C7 B6-F3 46 03 00 11 46 00 00 OF6F..CT6F..F.
            4D 41 47 45 53 20 20-50 4E 47 20 18 4D D7 BB IMAGES PNG
            46 F3 46 00 00 20 B7-F3 46 08 00 AA 0F 00 00 of of ·····of······
             4D 41 47 45 53 32 20-4A 50 47 20
                                                                           18 4D D7
                                                                                            BB | IMAGES2 JPG
            46 F3 46 00 00 CE B6-F3 46 09 00 72 24 00 00 oF6F. Infr. rs.
             4D 41 47 45 53 33 20-4A 50 47 20 18 4E D7 BB IMAGES3 JPG ·N×»
            46 F3 46 00 00 D1 B6-F3 46 0C 00 7C 2E 00 00 6F6F · N96F
             4D 41 47 45 53 34 20-4A 50 47 20 18 4E D7 BB IMAGES4 JPG -N×»
            46 F3 46 00 00 13 B7-F3 46 0F 00 07 1D 00 00 of of of of of o
0a0 41 57 00 65 00 69 00 2E-00 70 00 0F 00 03 64 00 AW e.i..p...d
0c0 57 45 49 20 20 20 20 20-50 44 46 20 00 4E D7 BB WEI
0d0 F3 46 F3 46 00 00 07 B7-F3 46 11 00 4A 9B 1E 00 6F6F....6F..J...
0e0 42 45 00 53 00 00 00 FF-FF FF FF 0F 00 23 FF FF BE·S···ŸŸŸ
100 01 30 00 30 00 2D 00 52-00 45 00 0F 00 23 4C
            00 41 00 53 00 45 00-4E 00 00 00 4F 00 54 00 E.A.S.E.N...O.T.
120 30 30 2D 52 45 4C 7E 31-20 20 20 20 00 8F E3 BB 00-REL~1
130 F3 46 F3 46 00 00 34 84-57 44 FB 01 62 46 00 00 oFoF · 4 · WDû · bF · ·
             C8 C0 20 00 F4 D3 54-B3 00 00 0F 00 CF FF FF | åÈÀ -ôÓT3 - - - ÏŸŸ
160 E5 F5 C6 FA B4 F5 7E 31-20 20 20 10 00 9B E9 BB \a00e1\u00e10\u00e2\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\u00e10\
            180 54 45 53 54 31 20 20 20-20 20 20 10 08 9B E9 BB TEST1
             46 F3 46 00 00 EA BB-F3 46 00 02 00 00 00 of of -- ê » of
            C8 C0 20 00 F4 D3 54-B3 00 00 0F 00 CF FF FF | åÈÀ ·ôÓT³····ÏŸŸ
1c0 E5 F5 C6 FA B4 F5 7E 31-20 20 20 10 00 A1 EE BB \a0 \tilde{a} \tilde{c} \tilde{c} \tilde{c} \tilde{-1}
                        46 00 00 EF BB-F3 46 01 02 00 00 00 | oFoF...»oF.....
            45 4C 45 54 45 31 20-20 20 20 10 08 A1 EE
                                                                                            BB | åELETE1
1f0 F3 46 F3 46 00 00 EF BB-F3 46 01 02 00 10 00 00 oFoF. i>oF....
```

Long File Name(LFN)

- 유니코드(UTF-16) 방식으로 인코딩 됨
- 최대 255자
- 확장자가 3자 이상 가능
- 기존의 Short File Name 과 호환
- 기본의 Short File Name 보다 특수문자 허용 범위 가 넓음
- 하나의 LFN에 최대 13자를 저장할 수 있다.
 - **255자를 채울려면?**

Long File Name Entry

내용	시작 위치	사이즈	비고
Order	0	1	LFN ^의 정렬된 순번이 저장됨. 6번째 비트(Ox4O)이 1이면 마지막 해 당 파일의 마지막 LFN Entry임
Name1	1	10	UTF-16 ^{으로 한글자} 당 2 bytes를 ^{차지}
Attribute	11	1	OxOF
Type	12	1	0
Check Sum	13	1	Short File Name ^º l CheckSum
Name2	14	12	
First Cluster Low	26	2	O
Name3	28	4	10 + 12 + 4 = 26 으로 충 13자가 가능

SFN 과 LFN

Directory Entry 2 ^M	Order 항목 값
N ^{번째} LFN Entry(^{마지막})	0x40 N
•••	
2 nd LFN Entry	OxO2
1st LFN Entry	OxO1
의의 LFN을 가지는 SFN	해당사항업을

- LFN이 거꾸로 저장되어 있다.
- 즉 제대로 된 파일 이름은 1, 2, ..., N으로 문자열을 배열해야 한다.

LFN Sample

```
4D 41 47 45 53 20 20-4A 50 47 20 18 4D D7 BB
010 F3 46 F3 46 00 00 C7 B6-F3 46 03 00 11 46 00 00
                                                    óFóF··C¶óF···F··
            47 45 53 20 20-50 4E
                                  47 20
                                        18 4D
                                              D7
                                                 BB IMAGES
                                                    óFóF·· ·óF··ª
            46 00 00 20 B7-F3 46
                                  08 00 AA OF
                                              00
                                                 00
                  53 32 20-4A 50 47 20
                                        18
                                              D7
                                                 BB IMAGES2 JPG
                                           4D
      46 F3 46 00 00 CE B6-F3 46 09 00 72 24 00 00 oF6F. Infr. rs.
             47 45 53 33 20-4A 50
                                  47 20
                                        18 4E
                                              D7 BB IMAGES3 JPG
            46 00 00 D1 B6-F3 46 0C 00 7C 2E
                                              00
                                                 00 OFOF · · NUME
             47 45 53 34 20-4A 50 47 20
                                        18 4E
                                              D7
                                                 BB IMAGES4 JPG
            46 00 00 13 B7-F3 46 0F 00 07 1D 00
                                                 00
            65 00 69 00 2E-00 70
                                  00 OF 00 03 64 00 AW-e-i-.-p----d-
0b0 66 00 00 00 FF FF FF FF-FF FF 00 00 FF FF FF
   57 45 49 20 20 20 20 20-50 44 46 20 00 4E D7
   F3 46 F3 46 00 00 07 B7-F3 46 11 00 4A 9B 1E 00
    42 45 00 53 00 00 00 FF-FF FF FF 0F 00 23 FF FF
                                  00 OF 00 23 4C
      00 41 00 53 00 45 00-4E 00 00 00 4F 00 54 00
      30 2D 52 45 4C 7E 31-20 20 20 20 00 8F E3 BB
    F3 46 F3 46 00 00 34 84-57 44 FB 01 62 46 00 00 6F6F..4.WDû.bF..
   E5 C8 C0 20 00 F4 D3 54-B3 00 00 0F 00 CF FF FF | åÈÀ ·ôÓTº · · · ÏŸŸ
      FF FF FF FF FF FF FF-FF FF 00 00 FF FF FF
160 E5 F5 C6 FA B4 F5 7E 31-20 20 20 10 00 9B E9 BB aoxi0-1
       46 F3 46 00 00 EA BB-F3 46 00 02 00 00 00 00 ofoff. ê»óF
      45 53 54 31 20 20 20-20 20 20 10 08 9B E9 BB
       46 F3 46 00 00 EA BB-F3 46
                                  00 02 00 00 00 00 ofof.-e>of
      C8 C0 20 00 F4 D3 54-B3 00 00 0F 00 CF FF FF | åÈÀ ·ôÓT³····ÏŸŸ
                                        FF FF FF FF
             FF FF FF FF FF-FF FF
                                  00 00
      F5 C6 FA B4 F5 7E 31-20 20 20 10 00 A1 EE
                                                 BB | åõÆú´õ~1
                                                 00 ÓFÓF··ï»ÓF
                00 00 EF BB-F3 46
                                  01 02 00 00 00
             45 54 45 31 20-20 20 20 10 08 A1 EE
      46 F3 46 00 00 EF BB-F3 46 01 02 00 10 00 00 offor.isof
```

문제2: 증거 이미지에서 Root Dir의 내용을 분류하시오.

Sector 21 Cluster

- Sector의 크기는 512
 - 그렇지 않은 장비도 있을 수 있음.
- Cluster 는 여러 개의 Sector의 모음
 - 쓰기나 읽기 효율성을 높이기 위해서 좀 더 큰 블록 단위 를 이용함.

Cluster

	Cluster 1		Cluster 2		Cluster 3
Sector 1		Sector 1		Sector 1	
Sector 2		Sector 2		Sector 2	
Sector 3		Sector 3		Sector 3	
Sector 4		Sector 4		Sector 4	
Sector 5		Sector 5		Sector 5	
Sector 6		Sector 6		Sector 6	
Sector 7		Sector 7		Sector 7	
Sector 8		Sector 8		Sector 8	

파일 데이터(2048 bytes)

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 Sector 7 Sector 8

파일 데이터(4097 bytes)

	Cluster 1		Cluster 2
Sector 1		Sector 1	
Sector 2		Sector 2	
Sector 3		Sector 3	
Sector 4		Sector 4	
Sector 5		Sector 5	
Sector 6		Sector 6	
Sector 7		Sector 7	
Sector 8		Sector 8	

Unallocated Cluster

• 아직 파일등에서 사용하지 않는 Cluster

예약된 섹터

- 기본적으로 사용되지 않는 영역.
- 데이터를 은닉할 수 있는 영역.
 - 일반적인 경로로는 볼 수 없음.

FAT 에서 파일이 지워질 때

- 1. FAT Table을 따라서 할당된 FAT 영역을 0으로 변경
- 2. Directory Entry에서 파일명의 [0]번째 글자를 0xE5 로 바꾼다.
- 3. Directory Entry 에서 Cluster 위치의 상위 2 바이트를 0을 채운다.
 - 1. 파일 복구를 어렵게 하기 위한 정책
 - 2. 그래서 OxFFFF 보다 큰 위치에 있는 클러스터 부분은 찾기가 어렵다.

파일의 복구 원리

- 기본적으로 디스크 읽기/쓰기 성능을 높이기 위해서, 가능한 순차적인 클러스터로 할당됨
 - 사이즈는 Directory Entry 에 남아있음.
 - 사이즈만큼 순차적으로 읽어서 복구 가능한 경우가 많음

Fragment 된 파일의 복구는?

- 첫번째 클러스터내 크기라면 복구가 가능
 - 대용량 파일은?
- 결론은 잘 안된다는 얘기...

미할당 클러스터내의 데이터의 복구?

- 파일 복구의 원리가 그대로 적용된다.
- 카빙으로 데이터 영역을 통한 복구 시도가 가능
- 카빙
 - 모든 클러스터를 돌면서 파일 헤더를 발견해서 데이터 복 구를 시도함.
 - 대부분의 툴에서 이런 복구를 지원함.
 - 같은 이슈로 Fragment 된 파일의 복구는 힘듬.