

## How Much Water is There on Proxima Cen B?

ABSCICON — APRIL 28 2017

## Rodrigo Luger

with Rory Barnes, Russel Deitrick, Peter Driscoll, Thomas Quinn, David Fleming, Benjamin Guyer, Diego McDonald, and the VPL Team

### **Water Loss**



Luger and Barnes (2015)











ABSCICON - APRIL 28, 2017















## **Conclusions**

# Proxima Cen b is not habitable

## **Conclusions**

## Proxima Cen b is not habitable

(Just kidding.)

ABSCICON — APRIL 28, 2017

# Can we really say this with any confidence?



## **Uncertainties matter**



### **Data matters**



### **Priors matter**



Mulders et al. (2015)

### **Maximum Likelihood**



# The Bayesian Approach



# Framing the problem

Priors & data

$$\mathbf{x} = \{M_{\star}, t_{\star}, f_{\text{sat}}, t_{\text{sat}}, \beta_{\text{xuv}}, a, M_p, M_{\text{H}}^0, M_{\text{H}_2\text{O}}^0\}$$

Model outputs

22

$$\mathbf{y}(\mathbf{x}) = \{L_{\star}, L_{\text{xuv}}, M_{\text{H}}, M_{\text{H}_2\text{O}}, M_{\text{O}_2}\}$$

ABSCICON — APRIL 28, 2017

# Framing the problem

Priors & data

$$\mathbf{x} = \{M_{\star}, t_{\star}, f_{\text{sat}}, t_{\text{sat}}, \beta_{\text{xuv}}, a, M_p, M_{\text{H}}^0, M_{\text{H}_2\text{O}}^0\}$$

Model outputs

$$\mathbf{y}(\mathbf{x}) = \{L_{\star}, L_{\text{xuv}}, M_{\text{H}}, M_{\text{H}_2\text{O}}, M_{\text{O}_2}\}$$

Likelihood Function

$$\ln \mathcal{L}(\mathbf{x}) = -\frac{1}{2} \left[ \frac{(L_{\star}(\mathbf{x}) - L_{\star})^2}{\sigma_{L_{\star}}^2} + \frac{(L_{\text{xuv}}(\mathbf{x}) - L_{\text{xuv}})^2}{\sigma_{L_{\text{xuv}}}^2} \right] + \ln \text{Prior}(\mathbf{x}) + C$$

Markov Chain Monte Carlo (MCMC)

$$\ln \mathcal{L}(\mathbf{x}) \to P(M_{\mathrm{H_2O}})$$

23

ABSCICON — APRIL 28, 2017

## **Stellar Evolution**



Posterior samples

## **Water Evolution\***



\*Not marginalized over population synthesis outputs  $(M_{H_2O}^0 = 5 \text{ Oceans}, M_H^0 = 0)$ 

\*\*Inefficient O2 sinks



# Conclusions (For real this time)

We must account for the **uncertainty** on all model inputs.

We must correctly account for all **prior information.\***\*A flat prior is **not** uninformative!

We need **robust posterior distributions** to assess habitability.

This will be an **incremental**, iterative problem.