Have you ever wondered what Peppa Pig looks like from the front?

Notthingha	an AG Seminar May 19/202	.2
Buildings	as classifying spaces for toric	principal
	Kaveh Univ. of Pittsburgh	

joint with Chris Manon (UKY) & Boris Tsvelikhovsky (PiH)

· Review of toric varieties

$$C^* = C \setminus \{0\} \quad \text{multi- group} \qquad T = (C^*)^n \quad n - \text{dim. alg. torus}$$

$$N = \{Y : C^* \longrightarrow T\} \cong \mathbb{Z}^n \qquad t \longmapsto (t, \dots, t)$$

$$M = \{X : T \longrightarrow C^*\} \cong \mathbb{Z}^n \qquad \underbrace{(x_1, \dots, x_n) \longmapsto x_1, \dots, x_n}_{X}$$

Toric variety

. Generalize affine & proj. space

NR = NOR = R strictly convex o CNP rational polyhedral cone Z = {ocNR} , or noz face of both fan $\frac{1-1}{\sum} \times \frac{1-1}{\sum} \times \frac{1}{\sum}$ equiv. of Categories between cat of fans & Cat. of toric varieties. · σ∈ ∑ m Uσ affine toric var. C X5 · Fix xoe Uo ~~ T≅ Uo t → t·xo L T equiv. line budle Line budler T C x 2 & bi 4 Thm T-line bundles on Xz (1-1) T-inv. Cartier Lyunian of Z div. on Xz (1-1) cp:(1Σ1) - R int. piecewise linear $\bigcirc \ \ \varphi \colon \mathsf{Nn} [\Sigma] \longrightarrow \mathbb{Z}$ 2 Voe I P_ linear

 $\{E_{\bullet}^{\bullet}\}_{\rho \in \Sigma(1)}$ $E_{0} \rightarrow E_{0}^{\bullet} \rightarrow E_{1}^{\bullet} \rightarrow 0 \quad \text{in } E$ (1) = (1) + (1)

Klyachko's Compatibility Condition: · OEZ P.,..., Ps rays in o $\exists u_{\sigma} = \{u_{1},...,u_{r}\} \subset M \quad \text{Char. of } T \text{ smaller } row \}$ $E_{i}^{\rho} = \text{Span } \{h. \}$ 3 Bo = {b1,..., br} basis for E $E_i^p = Span_{\{b_i \mid \langle u_i, \nabla_p \rangle \geqslant i\}}$ • Key Obs.: E_{| Is} T-equiv. trivial → everywhere ind.

T-weight sections Example $X_{\Sigma} = \mathbb{CP}^2$ $E = TX_{\Sigma}$ $E = \mathbb{C}^2$ C_2 $\cdots = C_2$ $\Rightarrow \{0\} = \cdots$ $C_2 \qquad C_2 \Rightarrow \{0\} = \cdots$ $C_2 \qquad C_2 \Rightarrow \{0\} = \cdots$ Parliament of polytopes

•
Tits building (of a linear alg. gp. G)
Building: Certain (infinite) abstract
Simplicial Complex + distinguished (finite)
Sul-complexes (Called apartments) that
Satisfy centain axioms. arbitrary fields - Used in classification of s.s. alg. gps over 1
arbitrary fields
- Used in classification of s.s. alg. gps over
- Discrete analogue of symm. Spaces of lie
L. Ji "Buildings & their app. in geo. & top."
G G my G building
by Conj. Sends apt. to apt. transitively
transitively
., 50.01

Tits building/Sphenical buildings G/P Proj. var. G linear alg. gp. $\triangle(G)$ Simplexes $\stackrel{1-1}{\longleftrightarrow}$ P parabolic subgroups inclusion $\triangle_{Q} \subset \triangle_{P}$ rev. $P \subset Q$ Max. Simplexes (1-1) Borel subgroups (Chambers) apartments (1-1) max. tori . $H \subset G$ apt. of H = CoxeterComplex

of (G, H) $\Lambda'(H) = Cochar$ = Weyl chambers & their faces in $\Lambda'_{\mathbb{R}}(H)$ $\Delta(G)$ example of <u>spherical</u> building: each upt. a triangulation of a sphere Def: (Geo. realization of Tits building): B(G) = (infinite) union ofspheres (max. tori) glued along simplexes Corr. to the same para. Subgps. $\widetilde{B}(G) = \underline{Cone over} \quad Tits building}$ $= (infinite) \quad union \quad of \quad r-dim. \quad vec. \quad spaces \quad \Lambda_R(H)$ glued

Tits building of GL(r) E= Cr

-> off c ... C F = C Simplexes < P = Stab. of flag 0 7 * vertices (Subspaces in C max simp. Complete flags apts bases for C (up to scaling) $F_{i} = (F_{i} = F_{i} = F_{k})$ {b₁, --, b_r} c c simplex ∈ apt. if each F; is spanned by subset of {b, ..., br} flag is adapted to the basis

Tits buildings and 1-para. Subgroups $\gamma: \mathbb{C}^* \longrightarrow G$ 1-para. Subgroup $\frac{\text{Def.}}{\text{Tef.}} \gamma_1 \sim \gamma_2 \quad \text{if} \quad \lim_{t \to 0} \gamma_1(t) \gamma_2(t) \quad \text{exists}$ in G. • G = GL(E)7: C* --- GL(E) --- weight spaces & weights C1>...>Ck \mathbb{C}^* $E = \mathbb{C}^r$ flag {o} ← F₁ ← F₂ ← ··· ← F_k = E Fr = span of all weight vec. weight & Ci

• Prop. $\gamma_1 \sim \gamma_2 \iff \gamma_1$ have some weights & some flags.

gives a realization of r → Pr Tits building in terms 1-para. subgps. Prop. ~ Mumford (GIT book), K.-Manon {all 1-para-subgps} ~ ↔ Lattice pts $\widehat{\mathbb{R}}(G)$ Back to toric varieties: G reductive alg. gp. / (--- any alg. closed field works XZ T-toric variety Def. P toric principal G-bundle on XE P has a T-action Commuting with G-action. TCP56

t.*

Pt.X TCXZ P is T-equiv. trivial. · Biswas-Dey-Poddar:

Def. $\Phi: |\Sigma| \longrightarrow \widetilde{B}(G)$ Piecewise linear

 $\begin{array}{ccc}
& & & & & & & & \\
& & & & & & & \\
\hline
2 & & & & & & & \\
& & & & & & & \\
\end{array} \xrightarrow{\Lambda'(T) \cong Z'} (H_{\sigma}).$

Thm (K.-Manon ~ 2022)

(iso. classes)

toric principal G-bundles \leftarrow PL maps $\Phi: |\Sigma| \to \widehat{B}(G)$

Extends to equiv. of Categories.

Classification of Examples: Symp. or Orth. bundles

on toric varieties in terms of isotropic flags

· Question (Leonid Monin) Can we realize

B(G) as a "tropicalization" of Classifying space
BG?

Bruhat - Tits buildings / affine buildings

K discretely valued field

val: $K\setminus\{0\}$ \longrightarrow \mathbb{Z} valuation

e.g. (i) $K = \mathbb{C}((t))$ val = order of t $val(t^{a}(Const. + \cdots)) = a$ (2) $K = \mathbb{Q}_{p}$ val = p - adic valuation(3) $C = \{x \in K \mid val(x) > o\}$

m = {x ∈ K | val(x) > 0} mox. ideal

"(π) π uniformizer Spec(O) =

Spec(O) ~ two points O & η infinitesimal nghbd of oldeals m {0}

 $\mathbb{C}[t] \hookrightarrow \mathbb{C}[[t]] \longrightarrow \mathbb{A}^1 \leftarrow \operatorname{Spec}(\mathbb{C})$

. G reductive alg. gp. defined over O To G one Corresponds another building called Bruhat-Tits building of G motivation: classify red. gps over local fields. HCG max. torus ~ affine Coxeter Complex dieH=r triangulation of affine space Rr . Triangulation > Fundamental domains for WX Z, translations B-T building of GL(E): D-1 building of GL(E): (mod scalar Vertices: All lattices in $E = K^r$ multi)

Lattice = full rank O-module $\cong O^r \subset K$. affine Grassmannian of GL(r) = GL(r, K)

GL(r, O) - Apartments: Fix a basis B = {b,,...,br} Vertices in $A_B = \{\sum_{i=1}^{n} t_i^{\alpha_i} | \alpha_1, \dots, \alpha_n \in \mathbb{Z}\} \cong \mathbb{Z}^n$

 B_{aff} (GL(r)) = (infinite) union of affine spaces (\Longrightarrow bases in E=Kⁿ) gland along Common Simplexes.

Toric vec. bundles over toric schemes over DVR C Kempf-Munford et. al. Last Chop Torodial embeddings I Burgos Gil, Phillip	
Kempf-Munford et. al.	
Last Chop. Torodial embeddings I Burgos Gil, Phillip Than (Munford et. al. ~70) Sombra	
Burgos Gil, Phillip	on,
Thm (Munford et. al. ~70) Burgos Girlians	
Complete toric schemes Complete rat. poly.	
	•
(NR WEX	{۱ }
TICNEX {1}	
poly. Complex - finite collection of polyhed	7 44
R_{20} in $N_{R} \cong R^{\prime\prime}$	
R_{20} in $N_{R} \cong \mathbb{R}^{n}$ R_{20} in $N_{R} \cong \mathbb{R}^{n}$	

Thm. (K.-Manon-Tsvelikhovsky, 2022) or arxiv

(iso. classes)

Toric vec. bundles on Xrank r $\Phi: |T| \longrightarrow B_{aff}(GL(n))$

