====第二章练习====

1、设有观测值向量 $L=[L_1, L_2, L_3]^T$ 的方差阵为:

$$D_{I} = \begin{bmatrix} 0.8 & 0.2 & 0.1 \\ 0.2 & 0.7 & 0.3 \\ 0.1 & 0.3 & 1.0 \end{bmatrix}$$

试写出 L_1 , L_2 及 L_3 的方差及协方差 $\sigma_{L_1L_2}$ 、 $\sigma_{L_1L_2}$ 、 $\sigma_{L_1L_2}$ 。

2、已知观测值向量L=[L₁, L₂, L₃]^T的权阵为:

$$P_{\mathcal{I}} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

又知单位权方差 σ_0^2 =32/5, 试求协因数阵 Q_L 与协方差阵 D_L 。

- 3、 设测站点的平面位置由角度 θ 和距离S给出,已知其中误差 $\sigma_{\theta}=\pm20$, $\sigma_{s}=\pm0.10m^{2}$,相关系数 $\rho=0.50$ 。
- $Z = \begin{bmatrix} \theta \\ S \end{bmatrix}$ 的协方差阵 D_Z :
- (2) 设单位权方差 σ_0^2 =0.0010 m^2 ,试求向量Z的协因数 Q_Z 和权阵 P_Z 。
- 4、在某测站上观测三个方向各5测回,得观测值 l_{1i} , l_{2i} , l_{3i} (i =1, 2, 3, 4, 5)如下:

l_1	l_2	l_3	
(° ' ")	(° ′ ″)	(° ' ")	
20 10 30	61 18 19	125 08 42	
20 10 29	61 18 17	125 08 40	
20 10 32	61 18 16	125 08 41	
20 10 33	61 18 21	125 08 39	
20 10 29	61 18 20	125 08 38	

试求观测值 l_1 , l_2 , l_3 的方差与其各协方差的估值。

5、已知相关观测值 ^{2,1} 的方差阵:

$$D_{\mathcal{I}} = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}$$

及单位权方差 $\sigma_0^2=2$,试求权阵 P_L 及权 P_1 , P_2 。

6、在测站A上以等精度观测了三个方向得观测值 l_1 , l_2 , l_3 (见图2—1),其方差均为 σ^2 ,试 求角度 α , β 和 γ 的方差及其协方差。

图2一1

 $L = [L_1, L_2, L_3]^T$ 7、设有观测值向量 3.1 ,其协方差阵为:

$$D_{\mathcal{I}} = \begin{bmatrix} 6 & -1 & -2 \\ -1 & 4 & 1 \\ -2 & 1 & 2 \end{bmatrix}$$

试求函数F=L₁+3L₂-2L₃的方差。

8、在高级水准点A,B间(其高程无误差)进行水准测量,如图2—2.路线长 S_1 =2km, S_2 =6km, S_3 =4km,设每公里观测高差的中误差为 σ_{low} = ± 1.0 mm 。试求将闭合差 σ = $(H_B - H_A) - (h_1 + h_2 + h_3)$,按距

离成比例分配后 P_1 至 P_2 点间高差的中误差。(提示: $\hat{h_2} = h_2 + \frac{\alpha S_2}{[S]}, [S] = S_1 + S_2 + S_3$

图2-2

9、在图2—3中,令方向观测值 $l=\begin{bmatrix}l_1,l_2\\ , ..., &l_{10}\end{bmatrix}^T$ 的协因数阵为 $Q_{I}=I$,试求角度观测值 L_{i} 的协因数阵。

图2一3

10、为了计算三角形地块的面积,量测了三角形ABC的一边长及其高,得观测值及其中误差为 $a\pm\sigma_a, h_a\pm\sigma_k$ (见图2-4),试求三角形面积的中误差 σ_s 。

图2-4

- 11、设用长为30m的钢尺量得正方形地块的一边边长为 a =72.518m,其中误差 $^{\sigma_a}$ = $^{\pm 0.051m}$,如果钢尺的实际长度短了0.020m,试求该正方形地块的实际面积 $^{S'}$ 及其中误差 $^{\sigma_{S'}}$ 。
- 12、有一梯形地块ABCD,其尺寸如图2-5所示(无误差),为求出距离A点为d处梯形的高h,测得距离d=20m,其中误差为 $\sigma_{a}=\pm 1.6cm$,试求计算值h及其中误差 σ_{k} 。(提示:先要以A点为原点,设立直角坐标系,列出CD边的直线方程式)

图2一4

13、设由已知水准点A,B,C,D对待定点E点的高程进行水准测量(见图2–5),得独立观测高程值及其相应的权为:

编号	观测高程 (m)	权 P_i
1	218. 342	2
2	218. 295	3
3	218. 361	1
4	218. 308	3

图2-5

如果权为2的观测高程其相应的中误差为0.030m, 试求E点高程及其中误差。

14、设 乌 点及 乌 点的坐标为:

$$\begin{cases} X_1 = 1000.00m \\ Y_1 = 1000.00m \end{cases} \begin{cases} X_2 = 1800.00m \\ Y_2 = 1500.00m \end{cases}$$

$$\begin{bmatrix} 3 & 2 & 2 & 0 \\ 2 & 4 & -1 & 3 \\ 2 & -1 & 6 & -2 \\ 0 & 3 & -2 & 8 \end{bmatrix} (cm)^{2}$$

向量 $[X_1,Y_1,X_2,Y_2]^T$ 的协方差阵为:

- 1) 试求坐标差函数 $\Delta X = X_2 X_1$ 与 $\Delta Y = Y_2 Y_1$ 的协方差阵;
- 2) 求两点间边长 $S = \sqrt{\Delta X^2 + \Delta Y^2}$ 与坐标方位角 $T = \arctan(\Delta Y / \Delta X)$ 的协方差阵。

15、2.3.53 在图2-6的单一水准路线中,A,B点为已知水准点, P_1,P_2 为待定点,观测各段高差得观测值 h_1,h_2,h_3 ,其路线长度为 S_1,S_2,S_3 。设每公里观测高差为单位权观测,水准路线的闭合差为 $\omega = H_A + h_1 + h_2 + h_3 - H_B$,试求任一段高差的最佳估值 $\hat{h_i}$ 。(提示:以第二段高差观测值 h_2 及计算值 $h_2 = H_B - h_1 - h_3 - H_A$,取加权平均值求 $\hat{h_2}$ 为例)

图2-6

- 16、某一距离分成三段各往返测量一次,其结果列于下表。若令1km距离往返测量平均值的权为单位权,试求
 - (1) 该距离的最佳估值;
 - (2) 单位权中误差(1km往返高差平均值的中误差);
 - (3) 全长一次测量中误差;
 - (4) 全长平均值的中误差;
 - (5) 第二段一次测量的中误差。

观测值见下表:

段号		往测		返测
	(m)		(m)	
		1000.		1000.
1	009		007	
		2000.		2000.
2	011		009	
		3000.		3000.
3	008		010	

- 17、设图2-7是由直径为AB的半圆,矩形ABCE及三角形ECD组成的地块:
 - (1) 试将地块面积S表示成三个独立变量 X_1, X_2 及 X_3 的函数;

(2) 已知独立观测值 $X_1=50m, X_2=20m, X_3=30m$,其方差分别为 $\sigma_{X_1}^2=0.0016m^2$, $\sigma_{X_2}^2=0.004m^2$, $\sigma_{X_3}^2=0.0009m^2$,试求该地块面积S及其中误差 σ_{S} 。

图2一7

L = 18、设有相关观测值 n,1 的两组线形函数 ,

$$Z = K \underset{t,1}{L} + K_{o}$$

$$Y = F \underset{s,n}{L} + F_{o}$$

$$s,1} + F_{s,1}$$

 $\Omega = \Delta + \varepsilon \qquad \Delta \qquad \varepsilon$ 已知L的综合误差为 $\frac{n,1}{n}$ $\frac{n,1}{n}$, 式中 $\frac{n,1}{n}$ 分别为观测值L的偶然误差与系统误差,L的方差 阵为 $D_{\mathcal{I}}$,

$$D_{L} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_{2}^{2} & \dots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n1} & \dots & \sigma_{n}^{2} \end{bmatrix}$$

试求Z的综合方差阵 $D_{ZZ} = E(\Omega_Z, \Omega_Z^T)$ 及Z与Y的综合协方差阵 $D_{ZY} = E(\Omega_Z, \Omega_Y^T)$ 。