CSE40201 - Natural Language Processing Assignment 1 Distributional Word Representations

Student name: Nguyen Minh Duc Student ID: 20202026

1 Experimentation of Counting and PMI

In this section, we will discuss the changes in Spearmanr's correlation coefficient for three different values of context windows size: 1, 3, and 6. Please refer to Table 1, 2, and Figure 1 for more details.

\mathbf{w}	men.txt	simlex-999.txt
1	0.2099	0.0764
3	0.2243	0.0602
6	0.2379	0.0394

Table 1: Distributional Counting

\mathbf{w}	men.txt	simlex-999.txt
1	0.4653	0.2687
3	0.5340	0.2245
6	0.5423	0.1826

Table 2: Distributional Counting with Pointwise Mutual Information

Figure 1: Correlation trend

One could immediately observe that the correlation between our score and the human-annotated score in MEN data set is trending upwards, while the correlations between SimLex-999's score and ours are decreasing as w increases. This is a very interesting behavior since the algorithm should be able to learn better as the context window increases, but it performs worse on the SimLex-999 data set. Recall from the lecture that the MEN data set represents the "relatedness" between two words while the SimLex-999 data set represents the "closeness in meaning" between two terms [1]. This suggests that Distributional Counting can learn how related the words are better than the meaning of the words. This makes sense since we are counting the appearance of surrounding words, which tend to be related to the center word. The more related two words are, the more similar their surrounding words are. For example, "apple" and "orange" are related because they are fruits (suggesting that the word "fruit" appears many times around them). However, when it comes to meaning, they are different concepts with some overlapping in their definitions. This is why "apple" and "lemon" are given a score of 4.05, an average score in SimLex-999 where the maximum is about 9.8, while "apple" and "orange" are given of 43, a very high score in MEN where the maximum is 50. Another example that appears in both data sets could be "meat" and "bacon". In MEN, they receive a score of 44, almost the maximum, while they receive 5.8 out of 9.8 in SimLex-999. As w increases, the center word can "see" more context words, but they are further away, hence, might not have a similar meaning to the center words anymore. Therefore, it will be harder for our algorithm to capture the similarity in meanings if the vector representation is not meaningfully stable. On the other hand, the wider the center word's horizon is, the more context it can perceive, contributing to the relatedness between it and the context since they are still related to each other in a particular sentence.

2 Nearest neighbors of monster

In this section, we are asked to output the 10 nearest neighbors of the word "monster" for two different context window sizes 1 and 6. The results are as follows

Rank	The word
1	dragon
2	tyrant
3	creatures
4	monsters
5	jar
6	hornet
7	gangster
8	invaders
9	rhinoceros
10	robot

Table 3: Ten nearest neighbors of monster when w = 1

1 ev	/il
2 gia	ant
3 creat	tures
4 mon	sters
5 god	zilla
6 dra	gon
7 de	og
8 gh	ost
9 hor	ror
10 gi	irl

Table 4: Ten nearest neighbors of monster when w=6

As we can see from Table 3 and 4, the top 1 nearest neighbors of "monster" are consistent with our desired result, which are dragon and evil for w = 1 and w = 6 respectively. We can also see that the majority of words are very similar to "monster", with some strange outliers such as "girl" and "jar".

3 Part-of-speech tag analysis

In this section, we will investigate whether the set of nearest neighbors produced by our algorithm maintains the word's part-of-speech tag of the query word. Doing this requires preparing a set of query words with different part-of-speech tags, inflected forms, and different context window sizes. For this exercise, I experimented with two different sizes the same as in the assignment handout, and the following set of words:

Firstly, let's analyze the behavior when w = 1. Please refer to Table 5 for sets of nearest neighbors of verbs, Table 6 for nouns, Table 7 for adjectives, and Table 8 for prepositions.

Let's investigate table by table. In the verb category, the word "transport" and "transports" does not keep their part-of-speech tags as their nearest neighbors are mostly nouns. However, the remaining words behave as expected since the majority of their nearest neighbors are verbs with different inflected forms. The same thing applies to nouns and adjectives as well, where nearest neighbors still keep their tags the same as the query's with a few exceptions. As for the prepositions, the results are a bit weird as they include punctuations as one of their close neighbors, nevertheless, most of the neighbors are of the same category. Thus, nearest neighbors tend to preserve the query's tag.

Secondly, let's investigate the algorithm's behavior when w = 6. Please refer to Table 9 for sets of nearest neighbors of verbs, Table 10 for nouns, Table 11 for adjectives, and Table 12 for prepositions.

Again, let's go through these data table by table. In the verb category, the part-of-speech tags change completely, it does not seem to preserve the query's tag anymore when w=6. The nearest neighbors now consist of both verbs and nouns. The "relatedness" among them remains somewhat high since the output does indeed go with the queried word in a normal sentence. However, the difference in meaning between the query words and their nearest neighbors decreases dramatically. For example, the top 5 nearest neighbors of the word "eats" are "crustaceans, snails, eat, eating, feeds", among which three out of five words has totally different meaning from the original query words. The same is also true for the rest. In the nouns category, the nearest neighbors can still keep their query words' part-of-speech tags to some extent. More related words are added, but they tend to lose their original meanings. As for the adjectives, they could not maintain the part-of-speech tags as well as they do when w=1. They still maintain the tags when the query is "bigger", and "exceptionally", but for all other adjectives, they have totally different part-of-speech tags. The prepositions even suffer from a greater loss of part-of-speech tags. On average, only about 2 words in the top 5 nearest neighbors still keep the same tag as their query word.

query	Rank 1	Rank 2 Rank 3		Rank 4	Rank 5
transport	transportation	rail	reconnaissance	services	service
transports	battleships	citrouillestally-ho	1697	aruba	histoire
transporting	embarking	transported	hauling	hauled	dispose
transported	ejected	marched	deported	shipped	transporting
eat	eating	infect	buy	forget	disable
eats	pretended	drowned	gastropod	flies	plight
ate	eat	harass	greet	hungry	misunderstood
eaten	overlooked	worshipped	consumed	worn	regarded
eating	eat	fried	cooked	drinking	eaten
fly	migrate	go	flown	wander	come
flies	eats	wander	bounced	fishes	pulled
flew	flown	interceptor	crashed	defected	combat
flown	pumped	shipped	refloated	interned	overthrown
flying	flight	flights	raf	patrol	aircraft

Table 5: Nearest neighbors for verbs when w = 1

Table 9: We are strictly not sold verbs when $w=1$							
query	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5		
dog	dogs	cat	horse	rabbit	goat		
dogs	dog	cats	humans	cat	animals		
city	town	county	university	area	district		
cities	towns	villages	settlements	provinces	countries		
person	man	woman	persons	people	individuals		
people	students	men	households	families	approximately		
leaf	tree	trees	grove	yellow	plantations		
leaves	trees	tells	wife	gets	married		

Table 6: Nearest neighbors for nouns when w = 1

In conclusion, the algorithm produces nearest neighbors that tend to have the same part-of-speech tag as the query word when w is small, i.e., w=1. However, as w increases, i.e., w=6, the algorithm obtains a worse understanding of the meaning of each word, but its understanding of relationships among the words is better, which makes the algorithm produce illogical sense neighbors, hence, cannot preserve part-of-speech tags, but they are still related to each other to some extent.

4 Words with multiple senses analysis

In this section, we are going to analyze the behavior of multiple senses words as w is changing from w = 1 to w = 6. Please refer to Table 13 for w = 1, and Table 14 for w = 6 for the raw data obtained from the algorithm. In this section, I used the following set of words for analysis:

```
MULTIPLE_SENSES_WORDS=["bank", "cell", "apple", "apples", "axes", "frame", "light",
"well", "bat", "book", "break", "change", "date", "watch"]
```

Let's first investigate the case where w=1. The nearest neighbors of our list of words seem to produce the words with the commonly known meanings of each word. For example, we usually associate the bank as a financial institution where people deposit and withdraw money, which has a similar meaning/related to the produced nearest neighbors by our algorithm. The two "apple" words in this case produce words that are all related to fruits; The word "cell" provides biological meaning; The word "book" is a literature-related concept; And the word "change" means to make something different or to move to a different place according to our vector representations. However, there are words that our algorithm successfully captures the duality in their semantics.

query	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
big	little	huge	biggest	large	great
bigger	larger	worse	smaller	closer	broader
biggest	major	largest	greatest	main	big
good	bad	poor	better	excellent	useful
better	good	worse	poorly	poor	best
best	top	good	american	better	canadian
happy	pleased	afraid	hesitant	glad	worried
exceptional	extraordinary	outstanding	exemplary	remarkable	impressive
exceptionally	extraordinarily	extremely	unusually	very	sufficiently
far	much	considerably	slightly	significantly	lot
farther	curving	kilometers	deeper	kilometres	worse
further	some	any	these	into	their

Table 7: Nearest neighbors for adjectives when w = 1

Table 1. Treatest heighbors for adjectives when $w=1$						
query	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5	
as	is	was	by	for	with	
in	•	at	from	february	january	
on	at	for	as	with	in	
at	from	on	in	(,	
of	•	for	in	from	's	
to	would	not	't	will	can	
with	and	by	are	or	for	
up	out	down	off	back	away	

Table 8: Nearest neighbors for prepositions when w=1

For instance, the nearest neighbors of "light" contains both heavy and dark, which are related to two meanings of light. Last but not least, the representation of "well" produces confusing results, but it could still capture one meaning of it, the other five are prepositions. Therefore, with w = 1, our algorithm could correctly capture one meaning of such multiple senses words most of the time.

Secondly, let's start analyzing the case where w=6. The nearest neighbors of our list of words seem to be able to correctly capture the ambiguity of more words than in the previous case. For instance, it could capture both the financial and river meanings of "bank"; mass, and luminance for "light"; the tool for chopping, and mathematical meaning for "axes". Surprisingly, there are some words that our algorithm switches to another meaning for the entire nearest neighbors. For example, "apple" is no longer a fruit but a tech company; "bat" is no longer an animal, but a tool for playing baseball. Unfortunately, our algorithm still cannot capture the meaning of "well", maybe because it can be used as a preposition sometimes. As for the remaining words, the vector representation keeps the same meanings as in the previous case. In conclusion, with w=6, our nearest neighbor can successfully explore other meanings of multiple senses words.

References

[1] Professor Kim, Lecture 9, CSE40201 - Natural Language Processing, 2023.

query	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
transport	transportation	aircraft	rail	services	passenger
transports	convoy	leyte	boats	transporting	ships
transporting	carrying	transported	transport	supplies	cargo
transported	transporting	transport	prisoners	camps	supply
eat	eaten	eating	fish	food	insects
eats	crustaceans	snails	eat	eating	feeds
ate	eat	vegetables	mushrooms	eating	meat
eaten	vegetables	boiled	eat	meat	salad
eating	eat	meat	food	fruit	eaten
fly	flying	flight	aircraft	flies	plane
flies	beetles	larvae	fly	insects	geometridae
flew	flying	missions	squadron	aircraft	sorties
flown	aircraft	flew	bomber	squadron	flying
flying	aircraft	squadron	flight	air	fighter

Table 9: Nearest neighbors for verbs when w=6

query	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
dog	dogs	cat	boy	man	breed
dogs	cats	animals	dog	pigs	sheep
city	town	north	located	south	county
cities	towns	region	city	capital	areas
person	me	someone	your	subject	any
people	them	about	so	we	you
leaf	leaves	larvae	yellow	flowers	clusters
leaves	flowers	dark	tree	leaf	usually

Table 10: Nearest neighbors for nouns when w=6

query	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
big	show	rock	featured	black	tv
bigger	larger	faster	expensive	smaller	decent
biggest	largest	greatest	hosted	selling	hit
good	we	you	my	think	't
better	we	need	think	good	your
best	award	film	awards	music	won
happy	'm	wants	someone	everyone	're
exceptional	extraordinary	outstanding	talent	skills	skill
exceptionally	extremely	relatively	brittle	extraordinarily	clever
far	much	too	even	very	less
farther	inland	coastline	kilometers	orbit	southwestern
further	should	discussion	page	talk	do

Table 11: Nearest neighbors for adjectives when w=6

query	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
as	well	such	is	"	be
in	at	was	the	of	university
on	at	it	was	this	in
at	in	university	school	he	was
of	the	in	region	province	its
to	that	be	not	would	it
with	and	two	often	along	each
up	out	them	him	into	then

Table 12: Nearest neighbors for prepositions when w=6

query	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
bank	banks	insurance	company	corporation	banking
cell	cells	cellular	tissue	neuronal	protein
apple	chili	cherry	olive	plum	almond
apples	bananas	brains	kinds	israelis	olives
axes	facets	paths	phases	tributaries	concurrency
frame	frames	brick	two-story	tubing	rear
light	heavy	lights	bright	dark	radiation
well	poorly	be	been	however	there
bat	bats	crabs	rodents	jharkhand	equator
book	books	novel	album	film	story
break	breaks	hiatus	breaking	stay	come
change	changes	difference	changing	decrease	shift
date	dates	location	value	timing	name
watch	watches	want	deny	ignore	remember

Table 13: Nearest neighbors of multiple senses words when w=1

query	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
bank	banks	river	corporation	company	west
cell	cells	protein	proteins	membrane	cellular
apple	os	macintosh	microsoft	ios	mac
apples	oranges	sugarcane	fruits	fruit	citrus
axes	grind	angles	vectors	axe	flint
frame	roof	steel	rear	brick	frames
light	using	surface	water	dark	red
well	such	many	other	including	most
bat	bats	innings	batting	bowler	ball
book	published	books	written	wrote	story
break	off	trying	get	down	breaking
change	changes	process	your	need	different
date	dates	release	period	dating	days
watch	watching	someone	wait	everyone	online

Table 14: Nearest neighbors of multiple senses words when w=6