Азбука халтурщика-АRМатурщика

разработка встраиваемых систем основы бытовой автоматики, систем управления и сбора данных

© ruOpenWrt

© HackSpace «Чебураторный завод»

© Консорциум хоббитов России

22 ноября 2014 г.

Оглавление

B	ведение	8
Ι	Основы электроники	9
1	Линейные схемы на пассивных элементах, основы электротехники	11
2	Симуляция и расчет схем в ngSPICE	12
3	3.2 Библиотеки элементов	13
4	Простейшие полупроводниковые элементы 4.1 Оптоэлектроника	14 14

O.	РГЛАВЛЕНИЕ	2
	4.2 Схемы на биполярных транзисорах	14 14
5	Операционные усилители	15
6	Источники питания 6.1 Батарейное питание 6.2 Линейные стабилизаторы 6.3 Импульсные преобразователи на ШИМ-контроллерах 6.4 Цепи защиты и гашения кондуктивных помех	16 16 16 16
7	Цифровая электроника	17
8	Компьютерные интерфейсы	18
	8.1 Поколение 90х: COM, LPT, ISA 8.1.1 Резервный программатор AVR "пять проводков" 8.2 Сеть CAN 8.3 Интерфейсные модули USB 8.3.1 Универсальный высокоскоростной конвертер FTDI FT2232H 8.3.2 JTAG-адаптер 8.3.3 Отладочный модуль CAN 8.4 Интерфейсные модули Ethernet	19 19 19 19 19 19 19
9	8.1 Поколение 90х: COM, LPT, ISA 8.1.1 Резервный программатор AVR "пять проводков" 8.2 Сеть CAN 8.3 Интерфейсные модули USB 8.3.1 Универсальный высокоскоростной конвертер FTDI FT2232H 8.3.2 ЈТАG-адаптер 8.3.3 Отладочный модуль CAN	19 19 19 19 19 19

11 Электропривод и исполнительные устройства	22
II Основы конструирования РЭС	23
12 Пакеты моделирования на основе OpenFOAM	2 4
13 Обеспечение теплового режима	25
14 Электромагнитная совместимость 14.1 Кондуктивные помехи	
III Технология РЭС	27
III Технология РЭС 15 Трассировка плат и подготовка производства в КіСАD 15.1 Технология ЛУТ (Лазерный УТюг)	28 28 28

D

ОГЛАВЛЕНИЕ	۷
16.5 Автогенерация конструкторской докуметации	
17 Эксплуатация станочного оборудования	31
18 Основы ЧПУ и цифрового производства 18.1 САМ-пакеты для FreeCAD	32 32
IV Основы теории систем автоматического управления	33
19 Математический аппарат 19.1 Передаточная функция 19.2 Устойчивость САУ 19.3 Сети Петри 19.4 Автоматы Маркова	34 34
20 Релейное управление	35
21 Пропорциональные САУ	36
22 ПИДп-регуляторы	37

ОГЛАВЛЕНИЕ	I
OI JIADJIETIVIE	•

V Разработка ПО для встраиваемых систем	38
23 Вспомогательные скрипты на языке Python	39
23.1 Установка под ШWindows	41
23.2 Дополнительные материалы	
24 Make: управление сборкой проектов	43
25 VCS: системы контроля версий	44
25.1 CVS	44
25.2 Subversion	
25.3 Git	
25.3.1 GitHub	44
$f 26$ Основы Си и C_+^+	45
26.0.2 Установка MinGW (win32)	45
26.1 Особенности C_+^+ в embedded	
27 LLVM и разработка собственных компиляторов	46
27.1 Лексический и синтаксический анализ	46
27.2 Применение flex/bison для разбора текстовых форматов данных	46
27.3 Компилятор Паскаля	
28 Сборка кросс-компилятора GNU toolchain	47

ОГЛАВЛЕНИЕ	6
VI Микроконтроллеры Cortex-Mx	48
VII Периферия	49
VIII Встраиваемый emLinux	50
29 cross	51
$30~\mathrm{BuildRoot}$	52
31 Особенности OpenWrt	53
32 Библиотека SDL 32.1 Реализация microGUI	54 . 54
33 Приложения для X Window	55
34 Программирование сетевых приложений	56
35 Сборка кросс-компиляторя GNU мальтийским крестом	57

ОГЛАВЛЕНИЕ		7

IX IDE ©ECLIPSE	58
Х Подготовка публикаций в РТБХ	59
35.1 Установка MikTeX (win32)	63
35.2 Структура документа	63
35.2.1 Заголовочный файл или блок	63
35.2.2 Стили документа	63
35.2.3 Пакеты	63
35.2.4 Автор и название	63
35.2.5 Верстка титульных страниц	63
35.2.6 Оглавление	
35.3 Верстка слайдов	
35.4 Список литературы и цитирование	
35.5 Команды секционирования: часть, глава, раздел,	
35.6 Таблицы	
35.7 Формулы	
35.8 Перекрестные ссылки и гипессылки	
35.9 Листинги скриптов и текстовых данных	
35.10Подготовка иллюстраций	
35.10.1 Графики GNUPLOT	
35.10.2 Схемы и графы в GraphViz	63
Литература	6 4

 $O\Gamma ЛABЛЕНИЕ$ 8

Введение

Первоначально этот материал задумывался как комплект документации к платам BlackSwift и VoCore, но постепенно превратился в толстенный учебник для студентов ВУЗов и научных работнков по специлизациям, связанным с применением цифровой электроники и компьютерной техники.

Большой упор был сделан на использование открытого некоммерческого программного обеспечения, с целью удешевления учебного процесса, уменьшения себестоимости ваших проектов 1 , и стимулирования вашего участия в развитии этих программных пакетов.

Лицензия на эту книгу пока не выбрана, так что она пока просто пишется в духе OpenSource: любой может использовать ее часть, изменять или дополнять, до тех пор, пока не накладываются какие-либо административные, финансовые или юридические ограничения на распространение и развитие оригинальной версии или ее открытых форков.

Приглашаем всех желающих участвовать в развитии этого учебного пособия на форум ruOpenWrt, нам нужна обратная связь по качеству материала, результаты тестирования на вас или ваших студентах, дополнения и замечания.

¹ вряд ли ли у вас окажется лишняя пачка килобаксов на покупку пары коммерческих САПР, по крайней мере пока ваш стартап не взлетит в Top\$100K

Часть I Основы электроники

Здесь идет список ссылок на онлайн лекции в $\mathrm{edX},$ Coursera, и т.п.

Линейные схемы на пассивных элементах, основы электротехники

Симуляция и расчет схем в ngSPICE

KiCAD

- 3.1 Отрисовка схем в КіСАО
- 3.2 Библиотеки элементов
- 3.3 Передача схемы в ngSPICE

Простейшие полупроводниковые элементы

- 4.1 Оптоэлектроника
- 4.2 Схемы на биполярных транзисорах
- 4.3 Схемы на на полевых транзисорах

Операционные усилители

Источники питания

- 6.1 Батарейное питание
- 6.2 Линейные стабилизаторы
- 6.3 Импульсные преобразователи на ШИМ-контроллерах
- 6.4 Цепи защиты и гашения кондуктивных помех

Цифровая электроника

Компьютерные интерфейсы

- 8.1 Поколение 90х: COM, LPT, ISA
- 8.1.1 Резервный программатор AVR "пять проводков"
- 8.2 Сеть CAN
- 8.3 Интерфейсные модули USB
- 8.3.1 Универсальный высокоскоростной конвертер FTDI FT2232H
- 8.3.2 JTAG-адаптер
- 8.3.3 Отладочный модуль CAN

ПЛИС

Датчики

Электропривод и исполнительные устройства

Часть II

Основы конструирования РЭС

Пакеты моделирования на основе OpenFOAM

Обеспечение теплового режима

Электромагнитная совместимость

- 14.1 Кондуктивные помехи
- 14.2 Компоновочные модели и оптимизация кабельной сети

Часть III Технология РЭС

Трассировка плат и подготовка производства в KiCAD

- 15.1 Технология ЛУТ (Лазерный УТюг)
- 15.2 Технология фоторезиста
- 15.3 Формат Gerber и подготвка промышленного производства

FreeCAD

- 16.1 Чертеж
- 16.2 Эскиз
- 16.3 Деталь
- 16.4 Сборка
- 16.5 Автогенерация конструкторской докуметации
- 16.6 Скрипты и пользовательские расширения

Эксплуатация станочного оборудования

Основы ЧПУ и цифрового производства

18.1 CAM-пакеты для FreeCAD

Часть IV

Основы теории систем автоматического управления

Математический аппарат

- 19.1 Передаточная функция
- 19.2 Устойчивость САУ
- 19.3 Сети Петри
- 19.4 Автоматы Маркова

Релейное управление

Пропорциональные САУ

ПИДп-регуляторы

Часть V

Разработка ПО для встраиваемых систем

Вспомогательные скрипты на языке Python

Название языка произошло вовсе не от вида пресмыкающихся. Автор назвал язык в честь популярного британского комедийного телешоу 1970-х «Летающий цирк Монти Пайтона». Впрочем, всё равно название языка чаще ассоциируют именно со змеёй, нежели с передачей — пиктограммы файлов в KDE или в Microsoft Windows и даже эмблема на сайте http://www.python.org (до выхода версии 2.5) изображают змеиные головы.

Python¹ — высокоуровневый язык программирования общего назначения, ориентированный на повышение производительности разработчика и читаемости кода.

Руthon удобно применять для написания различных вспомогательных скриптов. Часто его используют при разработке сложных программных систем для написания первых версий. В процессе работы над большими программами часто перерабатываются большие объемы кода, поэтому для ускорения разработки требуется максимально высокоуровневый язык. После того как архитектура программы стабилизируется, узким местом становится производительность, и программу переписывают на более низкоуровневом компилируемом языке, чаще всего C_+^+ .

Написание программ упрощают:

- объектно-ориентированное программирование облегчает разработку программ, позволяет переопределить стандартные операторы для пользовательских типов данных, упрощая синтаксис
- динамическая типизация не требуется заранее упределять переменные, они создаются простым присваиванием
- обработка исключений для секции кода можно определить обработчик ошибок
- **высокоуровневые структуры данных** списки, словари (набор элементов ключ:значение), очереди
- богатая стандартная библиотека и множество дополнительных библиотек на все случаи

 $^{^{1}}$ в оригинале читается **па́йтон**, но давно русифицировался как **пито́н**

23.1 Установка под ШWindows

Customize Python Add python exe to PATH Next Finish

23.2 Дополнительные материалы

- [1] Г. Россум, Ф.Л.Дж. Дрейк, Д.С. Откидач, Язык программирования Python
- [2] Аллен Дауни Думать на языке Python: Думать как компьютерный специалист

Make: управление сборкой проектов

VCS: системы контроля версий

- 25.1 CVS
- 25.2 Subversion
- 25.3 Git
- 25.3.1 GitHub

Основы Си и C_+^+

26.0.2 Установка MinGW (win32)

26.1 Особенности C_+^+ в embedded

LLVM и разработка собственных компиляторов

- 27.1 Лексический и синтаксический анализ
- 27.2 Применение flex/bison для разбора текстовых форматов данных
- 27.3 Компилятор Паскаля

Сборка кросс-компилятора GNU toolchain

Часть VI

Микроконтроллеры Cortex-Mx

Часть VII

Периферия

Часть VIII

Встраиваемый emLinux

cross

BuildRoot

Особенности OpenWrt

Библиотека SDL

32.1 Реализация microGUI

Приложения для X Window

Программирование сетевых приложений

Сборка кросс-компиляторя GNU мальтийским крестом

Часть IX

IDE ©ECLIPSE

Часть Х

Подготовка публикаций в ІАТЕХ

LaTeX (по-русски произносится **латéx**) — наиболее популярный набор макрорасширений (или макропакет) системы компьютерной вёрстки Т_ЕX, который облегчает набор сложных документов. В типографском наборе форматируется как LATeX.

Главная идея I^ATEX состоит в том, что авторы должны думать о содержании, о том, что они пишут, не беспокоясь о конечном визуальном облике (печатный вариант, текст на экране монитора или что-то другое). Готовя свой документ, автор указывает логическую структуру текста (разбивая его на главы, разделы, таблицы, изображения), а I^ATEX решает вопросы его отображения. Так содержание отделяется от оформления. Оформление при этом или определяется заранее (стандартное), или разрабатывается для конкретного документа.

В практическом смысле использование ІАТЕХ позволяет (в порядке уменьшения важности):

- с помощью макросов и ТеХ-программирования реализовывать любые стили и самую сложную верстку, существует множество готовых пакетов для верстки графических химических формул, разнообразных схем, транскрипционных знаков, внезапно электронных схем, цветных листингов и т.п.
- автоматизировать работу с документами: пересобирать выходные файлы через Make, генерировать части документов с помощью своих скриптов²
- получить выходой документ в .pdf .html .txt .PostScript .djvu ...с кликабельными ссылками, анимированными, а иногда и интерактивными элементами
- не использовать файлы документов в закрытом формате

¹ копипаста https://ru.wikipedia.org/wiki/LaTeX

 $^{^{2}}$ отчеты, стандартные формы, результаты работы любых программ

- легко держать набор файлов в VCS
- не покупать текстовый процессор

Особенно важен пункт про сложную верстку: она всегда нужна в крупных технических публикациях, особенно в учебной литературе, или отчетных работах. Вам обязательно понадобиться вставлять графики экспериментальных данных, тематически специфичные схемы, листинги, выходные данные работы ваших пограмм и т.п.

Традиционно L^AT_EX любим математиками, и всеми кто готовит публикации с большим количеством формул и перекрестных ссылок: после небольшого обучения формулы вводятся с листа со скоростью набора текста, особенно если ваш редактор умеет автодополнение, и никакой мышиной возьни.

Естественно всякие чисто автоматические вещи типа автонумерации ссылок и формул, сборки оглавлений и индексов, цветовая подсветка синтаксиса в листингах программ, размещение плавающих иллюстраций и т.п. выполняются автоматически ТеХ-процессором в пакетном режиме, и на выходе получается красивый печатный или электронный (.pdf) документ.

Единственная область, не удобная в I^AT_EX-верстке — создание сложных таблиц. Для этого были созданы визуальные редакторы, позволяющие отрисовать структуру таблицы мышью, а затем заполнить готовый шаблон данными.

35.1 Установка MikTeX (win32) 35.2Структура документа 35.2.1Заголовочный файл или блок 35.2.2Стили документа 35.2.3Пакеты 35.2.4Автор и название 35.2.5Верстка титульных страниц 35.2.6 Оглавление 35.3Верстка слайдов 35.4 Список литературы и цитирование 35.5 Команды секционирования: часть, глава, раздел,... 35.6 Таблицы

35.7

Формулы

Литература

[1] Г. Россум, Ф.Л.Дж. Дрейк, Д.С. Откидач, М. Задка, М. Левис, С. Монтаро, Э.С. Реймонд, А.М. Кучлинг, М.-А. Лембург, К.-П. Йи, Д. Ксиллаг, Х.Г. Петрилли, Б.А. Варсав, Дж.К. Ахлстром, Дж. Роскинд, Н. Шеменор, С. Мулендер.

Язык программирования Python. / 2001 - 454 с.

Руthon является простым и, в то же время, мощным интерпретируемым объектноориентированным языком программирования. Он предоставляет структуры данных высокого уровня, имеет изящный синтаксис и использует динамический контроль типов, что делает его идеальным языком для быстрого написания различных приложений, работающих на большинстве распространенных платформ. Книга содержит вводное руководство, которое может служить учебником для начинающих, и справочный материал с подробным описанием грамматики языка, встроенных возможностей и возможностей, предоставляемых модулями стандартной библиотеки. Описание охватывает наиболее распространенные версии Python: от 1.5.2 до 2.0.

- © Stichting Mathematisch Centrum, 1990–1995
- © Corporation for National Research Initiatives, 1995–2000

 \mathcal{L} \mathcal{L}

- © BeOpen.com, 2000
- © Д.С. Откидач, 2001
- [2] Аллен Дауни

Думать на языке Python: Думать как компьютерный специалист версия 1.1.24+Kart (Python 3.2), перевод версия 1.06