ECE 101 – Linear Systems

Problem Set #0 Solutions

(send comments/questions to psiegel@ucsd.edu)

1.48 Using Euler's relation, we have:

$$z_0 = r_0 e^{j\theta_0} = r_0 \cos \theta_0 + jr_0 \sin \theta_0 = x_0 + jy_0$$

Then z_1 through z_5 are:

(a)
$$z_1 = x_0 - jy_0$$

(b)
$$z_2 = \sqrt{x_0^2 + y_0^2}$$

(c)
$$z_3 = -x_0 - jy_0 = -z_0$$

(d)
$$z_4 = -x_0 + iy_0$$

$$\begin{array}{ll} \text{(a) } z_1 = x_0 - jy_0 & \text{(b) } z_2 = \sqrt{x_0^2 + y_0^2} \\ \text{(c) } z_3 = -x_0 - jy_0 = -z_0 & \text{(d) } z_4 = -x_0 + jy_0 \\ \text{(e) } z_5 = x_0 + jy_0 = z_0 \text{ (recall, } e^{j\theta} \text{ is periodic with period } 2\pi) \end{array}$$

Plots:

1.49 Once in polar form $re^{j\theta}$, the magnitude is given by r and angle given by θ .

(a)
$$2e^{j\pi/3}$$

(b)
$$5e^{j\pi}$$

(c)
$$5\sqrt{2}e^{j5\pi/4}$$

(a)
$$2e^{j\pi/3}$$

(d) $5e^{jtan^{-1}(4/3)} = 5e^{j53.13^{\circ}}$
(g) $2\sqrt{2}e^{-j5\pi/12}$

(e)
$$8e^{-j\pi}$$

(f)
$$4\sqrt{2}e^{j5\pi/4}$$

(g)
$$2\sqrt{2}e^{-j5\pi/12}$$

(h)
$$e^{-j2\pi/3}$$

$$(i) e^{j\pi/6}$$

Plot:

1.50

(a)
$$x = r \cos \theta$$
 and $y = r \sin \theta$

(b)
$$r = \sqrt{x^2 + y^2}$$
 and $\theta = \begin{cases} \arctan \frac{y}{x} & x \ge 0, \\ \arctan \frac{y}{x} + \pi & x < 0. \end{cases}$

Here we assume that the function arctan takes values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ as its argument ranges over $[-\infty,\infty]$.

(c) The values r and $\tan \theta$ alone do not uniquely determine x and y. Non-zero complex numbers z and -z have the same value of r and $\tan \theta$.

1.51 By Euler's relation, we have

(i)
$$e^{j\theta} = \cos \theta + j \sin \theta$$
 and (ii) $e^{-j\theta} = \cos \theta - j \sin \theta$

- (a) Summing (i) + (ii) yields $\cos \theta = \frac{1}{2} (e^{j\theta} + e^{-j\theta})$.
- (b) Subtracting (i) (ii) yields $\sin \theta = \frac{1}{2j} (e^{j\theta} e^{-j\theta})$.
- (c) Squaring (a) yields $\cos^2 \theta = \frac{1}{4} (e^{j2\theta} + 2 + e^{-j2\theta}) = \frac{1}{2} (1 + \cos 2\theta)$
- (d) Applying (b) yields

$$(\sin \theta)(\sin \phi) = -\frac{1}{4} (e^{j(\theta+\phi)} - e^{j(\theta-\phi)} - e^{-j(\theta-\phi)} + e^{-j(\theta+\phi)})$$
$$= \frac{1}{2} \cos(\theta - \phi) - \frac{1}{2} \cos(\theta + \phi).$$

(e) From Euler's relation: $e^{j(\theta+\phi)} = \cos(\theta+\phi) + j\sin(\theta+\phi)$. We can also write

$$\begin{split} e^{j(\theta+\phi)} &= e^{j\theta}e^{j\phi} \\ &= (\cos\theta+j\sin\theta)\left(\cos\phi+j\sin\phi\right) \\ &= (\cos\theta\cos\phi-\sin\theta\sin\phi)+j\left(\sin\theta\cos\phi+\cos\theta\sin\phi\right). \end{split}$$

Equating the real and imaginary parts of these two representations of $e^{j(\theta+\phi)}$ gives us the "sum identities":

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$

$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi.$$

1.52

(a)
$$zz^* = (re^{j\theta})(re^{-j\theta}) = r^2$$
.

(b)
$$\frac{z}{z^*} = \frac{re^{j\theta}}{re^{-j\theta}} = \frac{e^{j\theta}}{e^{-j\theta}} = e^{j2\theta}$$
.

(c)
$$z + z^* = x + jy + x - jy = 2x = 2Re\{z\}$$

(d)
$$z - z^* = x + jy - x + jy = 2jy = 2jIm\{z\}$$

(e)
$$(z_1+z_2)^* = (x_1+jy_1+x_2+jy_2)^* = (x_1+x_2)-j(y_1+y_2) = (x_1-jy_1)+(x_2-jy_2) = z_1^*+z_2^*$$

(f)

$$(az_1z_2)^* = (ar_1e^{j\theta_1}r_2e^{j\theta_2})^* = (ar_1r_2e^{j(\theta_1+\theta_2)})^*$$
$$= ar_1r_2e^{-j(\theta_1+\theta_2)} = ar_1e^{-j\theta_1}r_2e^{-j\theta_2} = az_1^*z_2^*.$$

(g)
$$Re(\frac{z_1}{z_2}) = \frac{1}{2} \left(\frac{z_1}{z_2} + (\frac{z_1}{z_2})^* \right) = \frac{1}{2} \left(\frac{z_1}{z_2} + \frac{z_1^*}{z_2^*} \right) = \frac{1}{2} \left[\frac{z_1 z_2 * 2 + z_1^* z_2}{z_2 z_2^*} \right].$$

1.53

(a)
$$(e^z)^* = (e^{x+jy})^* = (e^x e^{jy})^* = e^x e^{-jy} = e^{x-jy} = e^{z^*}$$

(b)
$$z_1 z_2^* + z_1^* z_2 = z_1 z_2^* + (z_1 z_2^*)^* = 2Re\{z_1 z_2^*\}.$$

Also,
$$Re\{z_1^*z_2\} = Re\{(z_1z_2^*)^*\} = Re\{z_1z_2^*\}.$$

(c)
$$|z| = |re^{j\theta}| = |r| = |re^{-j\theta}| = |z^*|$$
.

(c) $|z| = |re^{j\theta}| = |r| = |re^{-j\theta}| = |z^*|$. In words, taking the conjugate means flipping across the real axis; this negates the angle, but does not affect the magnitude.

(d)
$$|z_1 z_2| = |r_1 r_2 e^{j(\theta_1 + \theta_2)}| = |r_1 r_2| = |r_1| |r_2| = |z_1| |z_2|$$

(e)

$$Re\{z\} = x \le \sqrt{x^2 + y^2} = r = |z|$$
. Similarly, $Re\{z\} = x \ge -\sqrt{x^2 + y^2} = -r = -|z|$. $Im\{z\} = y \le \sqrt{x^2 + y^2} = r = |z|$. Similarly, $Im\{z\} = y \ge -\sqrt{x^2 + y^2} = -r = -|z|$.

(f) From (b) and (e),
$$|z_1z_2^* + z_1^*z_2| = |2Re\{z_1z_2^*\}| \le 2|z_1z_2^*| = 2|z_1z_2|$$
.

(g)

$$|z_1 + z_2|^2 = (z_1 + z_2)(z_1 + z_2)^*$$

$$= (z_1 + z_2)(z_1^* + z_2^*)$$

$$= z_1 z_1^* + z_1 z_2^* + z_2 z_1^* + z_2 z_2^*$$

$$= |z_1|^2 + 2Re\{z_1 z_2^*\} + |z_2|^2$$

From this and from (b), (c), (d), and (e), we get

$$|z_1|^2 - 2|z_1||z_2| + |z_2|^2 \le |z_1 + z_2|^2 \le |z_1|^2 + 2|z_1||z_2| + |z_2|^2$$

or

$$(|z_1| - |z_2|)^2 \le |z_1 + z_2|^2 \le (|z_1| + |z_2|)^2.$$

1.54 (a) Clearly, for $\alpha = 1$, we have

$$\sum_{n=0}^{N-1} \alpha^n = \sum_{n=0}^{N-1} 1 = N$$

For $\alpha \neq 1$, if we multiply the sum by $(1 - \alpha)$, we obtain:

$$(1-\alpha)\sum_{n=0}^{N-1}\alpha^n = \sum_{n=0}^{N-1}\alpha^n - \sum_{n=0}^{N-1}\alpha^{n+1} = 1-\alpha^N$$

since the α^1 through α^{N-1} terms cancel out. Dividing both sides by $(1-\alpha)$, we obtain the desired result:

$$\sum_{n=0}^{N-1} \alpha^n = \frac{1 - \alpha^N}{1 - \alpha}$$

(b) Since |a| < 1, we know that

$$\lim_{N \to \infty} \alpha^N = 0.$$

Referring to part (a), we

$$\sum_{n=0}^{\infty} \alpha^n = \lim_{N \to \infty} \sum_{n=0}^{N-1} \alpha^n = \lim_{N \to \infty} \sum_{n=0}^{N-1} \frac{1 - \alpha^N}{1 - \alpha} = \frac{1}{1 - \alpha}.$$

(c) Since |a| < 1, the identity in part (b) holds. We differentiate both sides of part (b) with respect to α to get

$$\frac{d}{d\alpha} \left(\sum_{n=0}^{\infty} \alpha^n \right) = \frac{d}{d\alpha} \left(\frac{1}{1-\alpha} \right).$$

Evaluating the derivatives, we get

$$\sum_{n=0}^{\infty} n\alpha^{n-1} = \frac{1}{(1-\alpha)^2}.$$

So,

$$\sum_{n=0}^{\infty} n\alpha^n = \frac{\alpha}{(1-\alpha)^2}.$$

(d) Again, since |a| < 1, the identity in part (b) holds. We use it to rewrite and evaluate the given summation as

$$\sum_{n=k}^{\infty} \alpha^n = \alpha^k \sum_{n=0}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha}.$$

1.55

(a)
$$\sum_{n=0}^{9} e^{j\pi n/2} = \frac{1 - e^{j\pi 10/2}}{1 - e^{j\pi/2}} = \frac{2}{1 - j} = \frac{2(1+j)}{(1-j)(1+j)} = 1 + j$$

(b) $\sum_{n=-2}^{7} e^{j\pi n/2} = \sum_{m=0}^{9} e^{j\pi(m-2)/2}$, using the substitution $m=n+2 \Rightarrow n=m-2$. This sum equals

$$e^{-j2\pi/2} \sum_{m=0}^{9} e^{j\pi m/2} = e^{-j2\pi/2} (1+j) = -(1+j).$$

(c) Here, use the result from Problem 1.54(b):

$$\sum_{n=0}^{\infty} (\frac{1}{2})^n e^{j\pi n/2} = \frac{1}{1 - \frac{1}{2}e^{j\pi/2}} = 0.8 + 0.4j$$

(d) $\sum_{n=2}^{\infty}(\frac{1}{2})^ne^{j\pi n/2}=(\frac{1}{2})^2e^{j2\pi/2}\sum_{m=0}^{\infty}(\frac{1}{2})^me^{j\pi m/2}$, using the substitution m=n–2 $\Rightarrow n=m+2$. This sume equals

=
$$(0.25)(-1)\sum_{m=0}^{\infty} (\frac{1}{2})^m e^{j\pi m/2} = (-0.25)(0.8 + 0.4j) = -0.2 - 0.1j$$

(e) Using the identity we proved in 1.51(a), we have

$$\sum_{n=0}^{9} \cos(\pi n/2) = \frac{1}{2} \sum_{n=0}^{9} e^{j\pi n/2} + \frac{1}{2} \sum_{n=0}^{9} e^{-j\pi n/2} = \frac{1}{2} (1+j) + \frac{1}{2} (1-j) = 1$$

1.56 (c)
$$\int_2^8 e^{j\pi t/2} dt = \frac{1}{j\pi/2} e^{j\pi t/2} \mid_2^8 = \frac{2}{j\pi} (e^{j4\pi} - e^{j\pi}) = -\frac{4}{\pi} j$$

(f) Using the identity from 1.51(b),

$$\int_0^\infty e^{-2t} \sin(3t) dt = \int_0^\infty \left[\frac{e^{-(2-3j)t} - e^{-(2+3j)t}}{2j} \right] dt = \frac{1/2j}{2-3j} - \frac{1/2j}{2+3j} = \frac{3}{13}$$