On the number of types in sparse graphs

Michał Pilipczuk

based on joint work with Sebastian Siebertz and Szymon Toruńczyk

Institute of Informatics, University of Warsaw, Poland

ANR DeLTA meeting

Bordeaux, December 5th, 2018

Part 1: Sparsity

• Q: What does it mean that a graph is sparse?

- **Q**: What does it mean that a graph is **sparse**?
 - Positive ex: Bounded max degree, planar, bounded treewidth, ...

- Q: What does it mean that a graph is sparse?
 - Positive ex: Bounded max degree, planar, bounded treewidth, ...
 - Negative ex: Cliques, bicliques, ...

- Q: What does it mean that a graph is sparse?
 - Positive ex: Bounded max degree, planar, bounded treewidth, ...
 - Negative ex: Cliques, bicliques, ...
- **Attempt 1.** Edge density bounded by a constant:

$$density(G) := \frac{|E(G)|}{|V(G)|} \leqslant c.$$

- Q: What does it mean that a graph is sparse?
 - Positive ex: Bounded max degree, planar, bounded treewidth, ...
 - Negative ex: Cliques, bicliques, ...
- **Attempt 1.** Edge density bounded by a constant:

$$density(G) := \frac{|E(G)|}{|V(G)|} \leqslant c.$$

• **Note**: density(*G*) is half of the average degree.

- Q: What does it mean that a graph is sparse?
 - Positive ex: Bounded max degree, planar, bounded treewidth, ...
 - Negative ex: Cliques, bicliques, ...
- Attempt 1. Edge density bounded by a constant:

$$\operatorname{density}(G) \coloneqq \frac{|E(G)|}{|V(G)|} \leqslant c.$$

- **Note**: density(*G*) is half of the average degree.
- **Problem**: Take a clique of size n plus $n^2 n$ isolated vertices.

- Q: What does it mean that a graph is sparse?
 - Positive ex: Bounded max degree, planar, bounded treewidth, ...
 - Negative ex: Cliques, bicliques, ...
- Attempt 1. Edge density bounded by a constant:

$$\mathsf{density}(\mathit{G}) \coloneqq \frac{|\mathit{E}(\mathit{G})|}{|\mathit{V}(\mathit{G})|} \leqslant c.$$

- **Note**: density(G) is half of the average degree.
- **Problem**: Take a clique of size n plus $n^2 n$ isolated vertices.
 - This has density $< \frac{1}{2}$.

- Q: What does it mean that a graph is sparse?
 - Positive ex: Bounded max degree, planar, bounded treewidth, ...
 - Negative ex: Cliques, bicliques, ...
- Attempt 1. Edge density bounded by a constant:

$$\mathsf{density}(\mathit{G}) \coloneqq \frac{|\mathit{E}(\mathit{G})|}{|\mathit{V}(\mathit{G})|} \leqslant c.$$

- **Note**: density(*G*) is half of the average degree.
- **Problem**: Take a clique of size n plus $n^2 n$ isolated vertices.
 - This has density $< \frac{1}{2}$.
 - Issue: Although the density is small, contains a dense substructure.

$$\max_{H\subseteq G}\left\{\mathsf{density}(H)\right\}\leqslant c.$$

• Attempt 2. Every subgraph of G has bounded edge density:

$$\max_{H\subseteq G}\left\{\mathsf{density}(H)\right\}\leqslant c.$$

Remark: Essentially equivalent to degeneracy or arboricity.

$$\max_{H\subseteq G}\left\{\mathsf{density}(H)\right\}\leqslant c.$$

- Remark: Essentially equivalent to degeneracy or arboricity.
 - A graph G is d-degenerate if V(G) can be ordered so that every vertex has $\leqslant d$ smaller neighbors.

$$\max_{H\subseteq G}\left\{\mathsf{density}(H)\right\}\leqslant c.$$

- Remark: Essentially equivalent to degeneracy or arboricity.
 - A graph G is d-degenerate if V(G) can be ordered so that every vertex has $\leqslant d$ smaller neighbors.
- **Problem**: Take a clique K_n with each edge subdivided once.

$$\max_{H\subseteq G}\left\{\mathsf{density}(H)\right\}\leqslant c.$$

- Remark: Essentially equivalent to degeneracy or arboricity.
 - A graph G is d-degenerate if V(G) can be ordered so that every vertex has $\leqslant d$ smaller neighbors.
- **Problem**: Take a clique K_n with each edge subdivided once.
 - In every subgraph of this graph, the number of edges is at most twice the number of vertices.

$$\max_{H\subseteq G} \left\{ \mathsf{density}(H) \right\} \leqslant c.$$

- Remark: Essentially equivalent to degeneracy or arboricity.
 - A graph G is d-degenerate if V(G) can be ordered so that every vertex has $\leqslant d$ smaller neighbors.
- **Problem**: Take a clique K_n with each edge subdivided once.
 - In every subgraph of this graph, the number of edges is at most twice the number of vertices.
 - Issue: We see a dense structure "at depth" 1.

$$\max_{H\subseteq G} \left\{ \mathsf{density}(H) \right\} \leqslant c.$$

- Remark: Essentially equivalent to degeneracy or arboricity.
 - A graph G is d-degenerate if V(G) can be ordered so that every vertex has $\leqslant d$ smaller neighbors.
- **Problem**: Take a clique K_n with each edge subdivided once.
 - In every subgraph of this graph, the number of edges is at most twice the number of vertices.
 - Issue: We see a dense structure "at depth" 1.
 - If we are looking for a structurally robust notion of sparsity, morally this example should be dense.

• Need: notion of embedding that looks at constant "depth".

- Need: notion of embedding that looks at constant "depth".
- Graph H is a **minor** of G if there is a **minor model** ϕ of H in G.

- Need: notion of embedding that looks at constant "depth".
- Graph H is a **minor** of G if there is a **minor model** ϕ of H in G.
 - Model ϕ maps vertices $u \in V(H)$ to pairwise disjoint connected subgraphs $\phi(u)$ of G, called **branch sets**.

- Need: notion of embedding that looks at constant "depth".
- Graph H is a **minor** of G if there is a **minor model** ϕ of H in G.
 - Model ϕ maps vertices $u \in V(H)$ to pairwise disjoint connected subgraphs $\phi(u)$ of G, called **branch sets**.
 - If $uv \in E(H)$, then there should be an edge between $\phi(u)$ and $\phi(v)$.

- Need: notion of embedding that looks at constant "depth".
- Graph H is a **minor** of G if there is a **minor model** ϕ of H in G.
 - Model ϕ maps vertices $u \in V(H)$ to pairwise disjoint connected subgraphs $\phi(u)$ of G, called **branch sets**.
 - If $uv \in E(H)$, then there should be an edge between $\phi(u)$ and $\phi(v)$.
- Graph H is a depth-d minor of G if H has a minor model in G where each branch set has radius at most d.

- Need: notion of embedding that looks at constant "depth".
- Graph H is a **minor** of G if there is a **minor model** ϕ of H in G.
 - Model ϕ maps vertices $u \in V(H)$ to pairwise disjoint connected subgraphs $\phi(u)$ of G, called **branch sets**.
 - If $uv \in E(H)$, then there should be an edge between $\phi(u)$ and $\phi(v)$.
- Graph H is a depth-d minor of G if H has a minor model in G where each branch set has radius at most d.
 - Note: Depth-0 minors are exactly subgraphs.

- Need: notion of embedding that looks at constant "depth".
- Graph H is a **minor** of G if there is a **minor model** ϕ of H in G.
 - Model ϕ maps vertices $u \in V(H)$ to pairwise disjoint connected subgraphs $\phi(u)$ of G, called **branch sets**.
 - If $uv \in E(H)$, then there should be an edge between $\phi(u)$ and $\phi(v)$.
- Graph H is a depth-d minor of G if H has a minor model in G where each branch set has radius at most d.
 - Note: Depth-0 minors are exactly subgraphs.
- Idea: Replace subgraphs with shallow minors in the definition.

• **Note**: Sparsity is a property of a graph class, not of a single graph.

- **Note**: Sparsity is a property of a graph class, not of a single graph.
- Notation: $C \nabla d = \{ depth-d \text{ minors of graphs from } C \}$.

- **Note**: Sparsity is a property of a graph class, not of a single graph.
- **Notation**: $C \nabla d = \{ \text{depth-}d \text{ minors of graphs from } C \}$.
 - \bullet Ex: $\mathcal{C} \triangledown 0$ is the closure of \mathcal{C} under subgraphs.

- **Note**: Sparsity is a property of a graph class, not of a single graph.
- **Notation**: $C \nabla d = \{ \text{depth-}d \text{ minors of graphs from } C \}$.
 - \bullet Ex: $\mathcal{C} \triangledown 0$ is the closure of \mathcal{C} under subgraphs.

Bounded expansion

A class of graphs $\mathcal C$ has **bounded expansion** if for every $d \in \mathbb N$ there exists $c \in \mathbb N$ such that density $(H) \leqslant c$ for all $H \in \mathcal C \triangledown d$.

- Note: Sparsity is a property of a graph class, not of a single graph.
- **Notation**: $C \nabla d = \{ \text{depth-}d \text{ minors of graphs from } C \}$.
 - Ex: $C \nabla 0$ is the closure of C under subgraphs.

Bounded expansion

A class of graphs $\mathcal C$ has **bounded expansion** if for every $d \in \mathbb N$ there exists $c \in \mathbb N$ such that density $(H) \leqslant c$ for all $H \in \mathcal C \nabla d$.

Nowhere dense

A class of graphs C is **nowhere dense** if for every $d \in \mathbb{N}$ there exists $t \in \mathbb{N}$ such that $K_t \notin C \nabla d$.

Equivalently, $C \nabla d \neq Graphs$ for all $d \in \mathbb{N}$.

- Note: Sparsity is a property of a graph class, not of a single graph.
- **Notation**: $C \nabla d = \{ \text{depth-}d \text{ minors of graphs from } C \}$.
 - Ex: $C \nabla 0$ is the closure of C under subgraphs.

Bounded expansion

A class of graphs $\mathcal C$ has **bounded expansion** if for every $d \in \mathbb N$ there exists $c \in \mathbb N$ such that density $(H) \leqslant c$ for all $H \in \mathcal C \nabla d$.

Nowhere dense

A class of graphs C is **nowhere dense** if for every $d \in \mathbb{N}$ there exists $t \in \mathbb{N}$ such that $K_t \notin C \nabla d$.

Equivalently, $C \nabla d \neq Graphs$ for all $d \in \mathbb{N}$.

• **Intuition**: At every constant depth we see a sparse class, but the parameters can deteriorate with increasing depth.

- Note: Sparsity is a property of a graph class, not of a single graph.
- **Notation**: $C \nabla d = \{ \text{depth-}d \text{ minors of graphs from } C \}$.
 - Ex: $C \nabla 0$ is the closure of C under subgraphs.

Bounded expansion

A class of graphs $\mathcal C$ has **bounded expansion** if for every $d \in \mathbb N$ there exists $c \in \mathbb N$ such that density $(H) \leqslant c$ for all $H \in \mathcal C \nabla d$.

Nowhere dense

A class of graphs C is **nowhere dense** if for every $d \in \mathbb{N}$ there exists $t \in \mathbb{N}$ such that $K_t \notin C \nabla d$.

Equivalently, $C \nabla d \neq Graphs$ for all $d \in \mathbb{N}$.

- **Intuition**: At every constant depth we see a sparse class, but the parameters can deteriorate with increasing depth.
- Note: Nowhere dense classes are also sparse.

- Note: Sparsity is a property of a graph class, not of a single graph.
- **Notation**: $C \nabla d = \{ \text{depth-}d \text{ minors of graphs from } C \}$.
 - Ex: $C \nabla 0$ is the closure of C under subgraphs.

Bounded expansion

A class of graphs $\mathcal C$ has **bounded expansion** if for every $d \in \mathbb N$ there exists $c \in \mathbb N$ such that density $(H) \leqslant c$ for all $H \in \mathcal C \nabla d$.

Nowhere dense

A class of graphs C is **nowhere dense** if for every $d \in \mathbb{N}$ there exists $t \in \mathbb{N}$ such that $K_t \notin C \nabla d$.

Equivalently, $C \nabla d \neq Graphs$ for all $d \in \mathbb{N}$.

- **Intuition**: At every constant depth we see a sparse class, but the parameters can deteriorate with increasing depth.
- Note: Nowhere dense classes are also sparse.
 - If $H \in \mathcal{C} \nabla d$, then H has $\mathcal{O}_{\varepsilon,d}(|V(H)|^{1+\varepsilon})$ edges, for any $\varepsilon > 0$.

Hierarchy of sparsity

Figure by Felix Reidl

Theory of sparsity

• Developed by Nešetřil and Ossona de Mendez since 2005.

Theory of sparsity

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph Sparsity presents the field as of 2012.

Theory of sparsity

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph *Sparsity* presents the field as of 2012.
 - More recent lecture notes: https://www.mimuw.edu.pl/~mp248287/sparsity/

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph Sparsity presents the field as of 2012.
 - More recent lecture notes: https://www.mimuw.edu.pl/~mp248287/sparsity/
- Many concepts appeared already much earlier.

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph Sparsity presents the field as of 2012.
 - More recent lecture notes: https://www.mimuw.edu.pl/~mp248287/sparsity/
- Many concepts appeared already much earlier.
 - Earliest definition of nowhere denseness: Podewski and Ziegler in 1976.

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph Sparsity presents the field as of 2012.
 - More recent lecture notes: https://www.mimuw.edu.pl/~mp248287/sparsity/
- Many concepts appeared already much earlier.
 - Earliest definition of nowhere denseness: Podewski and Ziegler in 1976.
- In summary:

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph Sparsity presents the field as of 2012.
 - More recent lecture notes: https://www.mimuw.edu.pl/~mp248287/sparsity/

- Many concepts appeared already much earlier.
 - Earliest definition of nowhere denseness: Podewski and Ziegler in 1976.

In summary:

 Bounded expansion and nowhere denseness are fundamental concepts that have multiple equivalent characterizations.

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph Sparsity presents the field as of 2012.
 - More recent lecture notes: https://www.mimuw.edu.pl/~mp248287/sparsity/

- Many concepts appeared already much earlier.
 - Earliest definition of nowhere denseness:
 Podewski and Ziegler in 1976.

- Bounded expansion and nowhere denseness are fundamental concepts that have multiple equivalent characterizations.
 - This talk: neighborhood complexity

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph Sparsity presents the field as of 2012.
 - More recent lecture notes: https://www.mimuw.edu.pl/~mp248287/sparsity/

- Many concepts appeared already much earlier.
 - Earliest definition of nowhere denseness:
 Podewski and Ziegler in 1976.

- Bounded expansion and nowhere denseness are fundamental concepts that have multiple equivalent characterizations.
 - This talk: neighborhood complexity
 - Friday: uniform quasi-wideness

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph Sparsity presents the field as of 2012.
 - More recent lecture notes: https://www.mimuw.edu.pl/~mp248287/sparsity/

- Many concepts appeared already much earlier.
 - Earliest definition of nowhere denseness:
 Podewski and Ziegler in 1976.

- Bounded expansion and nowhere denseness are fundamental concepts that have multiple equivalent characterizations.
 - This talk: neighborhood complexity
 - Friday: uniform quasi-wideness
- Each characterization yields a different viewpoint and a tool.

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph Sparsity presents the field as of 2012.
 - More recent lecture notes: https://www.mimuw.edu.pl/~mp248287/sparsity/
- Reporting and common or in the common of the
- Many concepts appeared already much earlier.
 - Earliest definition of nowhere denseness:
 Podewski and Ziegler in 1976.

- Bounded expansion and nowhere denseness are fundamental concepts that have multiple equivalent characterizations.
 - This talk: neighborhood complexity
 - Friday: uniform quasi-wideness
- Each characterization yields a different viewpoint and a tool.
- Applications in combinatorics, algorithms, and logic.

- Developed by Nešetřil and Ossona de Mendez since 2005.
 - Monograph Sparsity presents the field as of 2012.
 - More recent lecture notes: https://www.mimuw.edu.pl/~mp248287/sparsity/

- Many concepts appeared already much earlier.
 - Earliest definition of nowhere denseness: Podewski and Ziegler in 1976.

- Bounded expansion and nowhere denseness are fundamental concepts that have multiple equivalent characterizations.
 - This talk: neighborhood complexity
 - Friday: uniform quasi-wideness
- Each characterization yields a different viewpoint and a tool.
- Applications in combinatorics, algorithms, and logic.
- Nowhere denseness delimits tractability for many basic problems.

 Our definition of sparsity is based on local contractions, so we should study local problems in this framework.

- Our definition of sparsity is based on local contractions, so we should study local problems in this framework.
- What (meta-)class of problems is famously local?

- Our definition of sparsity is based on local contractions, so we should study local problems in this framework.
- What (meta-)class of problems is famously local?

FO model-checking

- Our definition of sparsity is based on local contractions, so we should study local problems in this framework.
- What (meta-)class of problems is famously local?

FO model-checking

Input Relational structure \mathbb{M} , FO sentence φ **Question** Does $\mathbb{M} \models \varphi$?

• **Trivial**: an $\mathcal{O}(n^{\|\varphi\|})$ -time algorithm.

- Our definition of sparsity is based on local contractions, so we should study local problems in this framework.
- What (meta-)class of problems is famously local?

FO model-checking

- **Trivial**: an $\mathcal{O}(n^{\|\varphi\|})$ -time algorithm.
- **Goal**: runtime $f(\|\varphi\|) \cdot n^c$ for a constant c and some function f.

- Our definition of sparsity is based on local contractions, so we should study local problems in this framework.
- What (meta-)class of problems is famously local?

FO model-checking

- **Trivial**: an $\mathcal{O}(n^{\|\varphi\|})$ -time algorithm.
- **Goal**: runtime $f(\|\varphi\|) \cdot n^c$ for a constant c and some function f.
 - ullet Called **fixed-parameter tractable**, or **FPT**, parameterized by $\|\varphi\|$.

- Our definition of sparsity is based on local contractions, so we should study local problems in this framework.
- What (meta-)class of problems is famously local?

FO model-checking

- **Trivial**: an $\mathcal{O}(n^{\|\varphi\|})$ -time algorithm.
- **Goal**: runtime $f(\|\varphi\|) \cdot n^c$ for a constant c and some function f.
 - ullet Called **fixed-parameter tractable**, or **FPT**, parameterized by $\|\varphi\|$.
- No such algorithm on general structures, unless $FPT = AW[\star]$.

- Our definition of sparsity is based on local contractions, so we should study local problems in this framework.
- What (meta-)class of problems is famously local?

FO model-checking

- **Trivial**: an $\mathcal{O}(n^{\|\varphi\|})$ -time algorithm.
- **Goal**: runtime $f(\|\varphi\|) \cdot n^c$ for a constant c and some function f.
 - ullet Called **fixed-parameter tractable**, or **FPT**, parameterized by $\|\varphi\|$.
- No such algorithm on general structures, unless FPT = AW[*].
- FPT algorithms for structures whose Gaifman graphs have bounded degree, are planar, *H*-minor-free, ...

FO model-checking dichotomy

Theorem

[Grohe et al., Dvořák et al.]

Let ${\mathcal C}$ be a monotone graph class (closed under taking subgraphs). Then:

- If $\mathcal C$ is nowhere dense, then FO model-checking can be done in time $f(\varphi) \cdot n^{1+\varepsilon}$ on structures with Gaifman graphs from $\mathcal C$, for any $\varepsilon > 0$.
- If $\mathcal C$ is somewhere dense, then FO model-checking is AW[\star]-complete on structures with Gaifman graphs from $\mathcal C$.

FO model-checking dichotomy

Theorem

[Grohe et al., Dvořák et al.]

Let ${\mathcal C}$ be a monotone graph class (closed under taking subgraphs). Then:

- If $\mathcal C$ is nowhere dense, then FO model-checking can be done in time $f(\varphi) \cdot n^{1+\varepsilon}$ on structures with Gaifman graphs from $\mathcal C$, for any $\varepsilon > 0$.
- If $\mathcal C$ is somewhere dense, then FO model-checking is AW[\star]-complete on structures with Gaifman graphs from $\mathcal C$.
- Nowhere denseness exactly characterizes monotone classes where
 FO model-checking is tractable from the parameterized viewpoint.

FO model-checking dichotomy

Theorem

[Grohe et al., Dvořák et al.]

Let $\mathcal C$ be a monotone graph class (closed under taking subgraphs). Then:

- If $\mathcal C$ is nowhere dense, then FO model-checking can be done in time $f(\varphi) \cdot n^{1+\varepsilon}$ on structures with Gaifman graphs from $\mathcal C$, for any $\varepsilon > 0$.
- If $\mathcal C$ is somewhere dense, then FO model-checking is AW[\star]-complete on structures with Gaifman graphs from $\mathcal C$.
- Nowhere denseness exactly characterizes monotone classes where
 FO model-checking is tractable from the parameterized viewpoint.
- Provides a natural barrier for locality-based methods.

• Initially introduced for kernelization algorithms on sparse graphs.

- Initially introduced for kernelization algorithms on sparse graphs.
- Suppose we have a graph G and a subset of vertices $A \subseteq V(G)$.

- Initially introduced for kernelization algorithms on sparse graphs.
- Suppose we have a graph G and a subset of vertices $A \subseteq V(G)$.
- For fixed $r \in \mathbb{N}$, define the following equivalence relation on V(G):

$$u \sim_r v \Leftrightarrow B_r(u) \cap A = B_r(v) \cap A,$$

where $B_r(u) = \{w : \operatorname{dist}(u, w) \leqslant r\}.$

- Initially introduced for kernelization algorithms on sparse graphs.
- Suppose we have a graph G and a subset of vertices $A \subseteq V(G)$.
- For fixed $r \in \mathbb{N}$, define the following equivalence relation on V(G):

$$u \sim_r v \Leftrightarrow B_r(u) \cap A = B_r(v) \cap A,$$

where $B_r(u) = \{w : \operatorname{dist}(u, w) \leq r\}.$

• How many equivalence classes may \sim_r have?

- Initially introduced for kernelization algorithms on sparse graphs.
- Suppose we have a graph G and a subset of vertices $A \subseteq V(G)$.
- For fixed $r \in \mathbb{N}$, define the following equivalence relation on V(G):

$$u \sim_r v \Leftrightarrow B_r(u) \cap A = B_r(v) \cap A,$$

where $B_r(u) = \{w : \operatorname{dist}(u, w) \leq r\}.$

- How many equivalence classes may \sim_r have?
 - In general, even $2^{|A|}$.

Theorem

Let C be a class of graphs, $G \in C$, $A \subseteq V(G)$, and $r \in \mathbb{N}$.

- If \mathcal{C} has bounded expansion, then $\operatorname{index}(\sim_r) \leqslant c|A|$ for some constant c depending only on \mathcal{C} and r.
- If \mathcal{C} is nowhere dense, then $\operatorname{index}(\sim_r) \leqslant c|A|^{1+\varepsilon}$ for any $\varepsilon > 0$ and some constant c depending on $\mathcal{C}, r, \varepsilon$.

Theorem

Let C be a class of graphs, $G \in C$, $A \subseteq V(G)$, and $r \in \mathbb{N}$.

- If \mathcal{C} has bounded expansion, then $\operatorname{index}(\sim_r) \leqslant c|A|$ for some constant c depending only on \mathcal{C} and r.
- If \mathcal{C} is nowhere dense, then $\operatorname{index}(\sim_r) \leqslant c|A|^{1+\varepsilon}$ for any $\varepsilon > 0$ and some constant c depending on $\mathcal{C}, r, \varepsilon$.
- If C is somewhere dense and monotone, then for some r there is an example from C yielding $2^{|A|}$ classes.

Theorem

Let C be a class of graphs, $G \in C$, $A \subseteq V(G)$, and $r \in \mathbb{N}$.

- If \mathcal{C} has bounded expansion, then $\operatorname{index}(\sim_r) \leqslant c|A|$ for some constant c depending only on \mathcal{C} and r.
- If \mathcal{C} is nowhere dense, then $\operatorname{index}(\sim_r) \leqslant c|A|^{1+\varepsilon}$ for any $\varepsilon > 0$ and some constant c depending on $\mathcal{C}, r, \varepsilon$.
- If C is somewhere dense and monotone, then for some r there is an example from C yielding $2^{|A|}$ classes.
- Now: Proof for r = 1 and bounded expansion classes.

• Procedure:

- Procedure:
 - Start with H = G.

• Procedure:

- Start with H = G.
- As long as there exists $u \notin A$ with $N(u) \cap A$ having a nonedge vw, contract u onto v.

• Procedure:

- Start with H = G.
- As long as there exists $u \notin A$ with $N(u) \cap A$ having a nonedge vw, contract u onto v.

Procedure:

- Start with H = G.
- As long as there exists $u \notin A$ with $N(u) \cap A$ having a nonedge vw, contract u onto v.
- Finally, remove all vertices outside A.

Procedure:

- Start with H = G.
- As long as there exists $u \notin A$ with $N(u) \cap A$ having a nonedge vw, contract u onto v.
- Finally, remove all vertices outside A.
- **Obs**: The obtained H is a depth-1 minor of G, thus H has $\leq d|A|$ edges, where d is the bound on edge density in $C \nabla 1$.

Procedure:

- Start with H = G.
- As long as there exists $u \notin A$ with $N(u) \cap A$ having a nonedge vw, contract u onto v.
- Finally, remove all vertices outside A.
- **Obs**: The obtained H is a depth-1 minor of G, thus H has $\leq d|A|$ edges, where d is the bound on edge density in $\mathbb{C}\nabla 1$.
 - Cor: At most d|A| vertices got contracted.

• Procedure:

- Start with H = G.
- As long as there exists $u \notin A$ with $N(u) \cap A$ having a nonedge vw, contract u onto v.
- Finally, remove all vertices outside A.
- **Obs**: The obtained H is a depth-1 minor of G, thus H has $\leq d|A|$ edges, where d is the bound on edge density in $\mathbb{C}\nabla 1$.
 - **Cor**: At most d|A| vertices got contracted.
- After contractions, every vertex outside of A sees a clique in A.

• Procedure:

- Start with H = G.
- As long as there exists $u \notin A$ with $N(u) \cap A$ having a nonedge vw, contract u onto v.
- Finally, remove all vertices outside A.
- **Obs**: The obtained H is a depth-1 minor of G, thus H has $\leqslant d|A|$ edges, where d is the bound on edge density in $C \nabla 1$.
 - **Cor**: At most d|A| vertices got contracted.
- After contractions, every vertex outside of A sees a clique in A.
- **Need**: The number of cliques in H is linear in |A|.

• **Obs**: H has a vertex of degree $\leq 2d$, and the same holds for every subgraph of H.

- **Obs**: H has a vertex of degree $\leq 2d$, and the same holds for every subgraph of H.
- **Procedure**: Iteratively remove a vertex of degree $\leq 2d$.

- **Obs**: H has a vertex of degree $\leq 2d$, and the same holds for every subgraph of H.
- **Procedure**: Iteratively remove a vertex of degree $\leq 2d$.

- **Obs**: H has a vertex of degree $\leq 2d$, and the same holds for every subgraph of H.
- **Procedure**: Iteratively remove a vertex of degree $\leq 2d$.

- **Obs**: H has a vertex of degree $\leq 2d$, and the same holds for every subgraph of H.
- **Procedure**: Iteratively remove a vertex of degree $\leq 2d$.
- **Obs**: Deleting every vertex removes at most 2^{2d} cliques.

- **Obs**: H has a vertex of degree $\leq 2d$, and the same holds for every subgraph of H.
- **Procedure**: Iteratively remove a vertex of degree $\leq 2d$.
- **Obs**: Deleting every vertex removes at most 2^{2d} cliques.
- Cor: H contains at most $2^{2d} \cdot |A|$ cliques.

- **Obs**: H has a vertex of degree $\leq 2d$, and the same holds for every subgraph of H.
- **Procedure**: Iteratively remove a vertex of degree $\leq 2d$.
- **Obs**: Deleting every vertex removes at most 2^{2d} cliques.
- Cor: H contains at most $2^{2d} \cdot |A|$ cliques.
- Conclusion: \sim_1 has at most $(2^{2d} + d + 1) \cdot |A|$ classes.

- **Obs**: H has a vertex of degree $\leq 2d$, and the same holds for every subgraph of H.
- **Procedure**: Iteratively remove a vertex of degree $\leq 2d$.
- **Obs**: Deleting every vertex removes at most 2^{2d} cliques.
- Cor: H contains at most $2^{2d} \cdot |A|$ cliques.
- Conclusion: \sim_1 has at most $(2^{2d} + d + 1) \cdot |A|$ classes.
 - $\leq |A|$ for vertices of A;

- **Obs**: H has a vertex of degree $\leq 2d$, and the same holds for every subgraph of H.
- **Procedure**: Iteratively remove a vertex of degree $\leq 2d$.
- **Obs**: Deleting every vertex removes at most 2^{2d} cliques.
- Cor: H contains at most $2^{2d} \cdot |A|$ cliques.
- Conclusion: \sim_1 has at most $(2^{2d} + d + 1) \cdot |A|$ classes.
 - $\leq |A|$ for vertices of A;
 - $\leq d|A|$ for vertices contracted onto A;

- **Obs**: H has a vertex of degree $\leq 2d$, and the same holds for every subgraph of H.
- **Procedure**: Iteratively remove a vertex of degree $\leq 2d$.
- **Obs**: Deleting every vertex removes at most 2^{2d} cliques.
- Cor: H contains at most $2^{2d} \cdot |A|$ cliques.
- Conclusion: \sim_1 has at most $(2^{2d} + d + 1) \cdot |A|$ classes.
 - $\leq |A|$ for vertices of A:
 - $\leqslant d|A|$ for vertices contracted onto A;
 - $\leq 2^{2d} |A|$ for vertices seeing a clique after contractions.

Part 2: Stability and types

• Let $\delta(\bar{x}, \bar{y}) \in \mathsf{FO}(\Sigma)$ and let $\mathbb M$ be a Σ -structure.

• Let $\delta(\bar{x}, \bar{y}) \in \mathsf{FO}(\Sigma)$ and let $\mathbb M$ be a Σ -structure.

δ -ladder

A δ -ladder of length k in \mathbb{M} is pair of tuple sequences

$$ar{\mathsf{a}}_1,\ldots,ar{\mathsf{a}}_k\in\mathbb{M}^{ar{\mathsf{x}}}\qquad ext{and}\qquad ar{b}_1,\ldots,ar{b}_k\in\mathbb{M}^{ar{\mathsf{y}}}$$

such that for all $i,j \in \{1,\ldots,k\}$ we have

$$\mathbb{M} \models \varphi(\bar{a}_i, \bar{b}_j)$$
 if and only if $i \leqslant j$.

• Let $\delta(\bar{x}, \bar{y}) \in \mathsf{FO}(\Sigma)$ and let \mathbb{M} be a Σ -structure.

δ -ladder

A δ -ladder of length k in \mathbb{M} is pair of tuple sequences

$$ar{a}_1,\ldots,ar{a}_k\in\mathbb{M}^{ar{x}}$$
 and $ar{b}_1,\ldots,ar{b}_k\in\mathbb{M}^{ar{y}}$

such that for all $i, j \in \{1, \dots, k\}$ we have

$$\mathbb{M} \models \varphi(\bar{a}_i, \bar{b}_j)$$
 if and only if $i \leqslant j$.

• **Def**: a class of structures \mathcal{C} is **stable** if for every formula δ there is a finite bound on the length of δ -ladders in structures from \mathcal{C} .

• Let $\delta(\bar{x}, \bar{y}) \in \mathsf{FO}(\Sigma)$ and let $\mathbb M$ be a Σ -structure.

δ -ladder

A δ -ladder of length k in \mathbb{M} is pair of tuple sequences

$$ar{a}_1,\ldots,ar{a}_k\in\mathbb{M}^{ar{x}}\qquad ext{and}\qquadar{b}_1,\ldots,ar{b}_k\in\mathbb{M}^{ar{y}}$$

such that for all $i,j \in \{1,\ldots,k\}$ we have

$$\mathbb{M} \models \varphi(\bar{a}_i, \bar{b}_j)$$
 if and only if $i \leqslant j$.

- **Def**: a class of structures \mathcal{C} is **stable** if for every formula δ there is a finite bound on the length of δ -ladders in structures from \mathcal{C} .
- Intuition: One cannot define arbitrary long linear orders.

 Goal: Study complexity of theories (classes of models defined by sets of sentences) and find delimiting conditions for structural properties.

- **Goal**: Study complexity of theories (classes of models defined by sets of sentences) and find delimiting conditions for structural properties.
- **Stability** is one of key conditions.

- **Goal**: Study complexity of theories (classes of models defined by sets of sentences) and find delimiting conditions for structural properties.
- Stability is one of key conditions.
- Pioneered by Morley and Shelah.

- **Goal**: Study complexity of theories (classes of models defined by sets of sentences) and find delimiting conditions for structural properties.
- Stability is one of key conditions.
- Pioneered by Morley and Shelah.
- Motivation: Question about the number of types.

• Let Σ be a signature, let \mathbb{M} be a Σ -structure, and let $A \subseteq \mathbb{M}$.

• Let Σ be a signature, let \mathbb{M} be a Σ -structure, and let $A \subseteq \mathbb{M}$.

δ -type

For an FO formula $\delta(\bar{x}, \bar{y})$ and $\bar{a} \in \mathbb{M}^{\bar{x}}$, the δ -type of \bar{a} on A is

$$\operatorname{tp}_{\delta}(\bar{\mathsf{a}}/\mathsf{A}) = \left\{ \bar{\mathsf{b}} \in \mathsf{A}^{\bar{\mathsf{y}}} \colon \mathbb{M} \models \delta(\bar{\mathsf{a}}, \bar{\mathsf{b}}) \right\}.$$

• Let Σ be a signature, let \mathbb{M} be a Σ -structure, and let $A \subseteq \mathbb{M}$.

δ -type

For an FO formula $\delta(\bar{x}, \bar{y})$ and $\bar{a} \in \mathbb{M}^{\bar{x}}$, the δ -type of \bar{a} on A is

$$\operatorname{tp}_{\delta}(\bar{\mathsf{a}}/\mathsf{A}) = \left\{\bar{\mathsf{b}} \in \mathsf{A}^{\bar{\mathsf{y}}} \colon \mathbb{M} \models \delta(\bar{\mathsf{a}},\bar{\mathsf{b}})\right\}.$$

• **Example**: If Σ is the signature of graphs and $\delta(x,y) = \text{"dist}(x,y) \leqslant r$ ", then $\operatorname{tp}_{\delta}(a/A) = B_r(a) \cap A$.

• Let Σ be a signature, let \mathbb{M} be a Σ -structure, and let $A \subseteq \mathbb{M}$.

δ -type

For an FO formula $\delta(\bar{x}, \bar{y})$ and $\bar{a} \in \mathbb{M}^{\bar{x}}$, the δ -type of \bar{a} on A is

$$\operatorname{tp}_{\delta}(\bar{\mathsf{a}}/\mathsf{A}) = \left\{ \bar{\mathsf{b}} \in \mathsf{A}^{\bar{\mathsf{y}}} \colon \mathbb{M} \models \delta(\bar{\mathsf{a}}, \bar{\mathsf{b}})
ight\}.$$

- **Example**: If Σ is the signature of graphs and $\delta(x,y) = \text{"dist}(x,y) \leqslant r$ ", then $\operatorname{tp}_{\delta}(a/A) = B_r(a) \cap A$.
- \bullet For a set of formulas Δ we put

$$\operatorname{tp}_{\Delta}(\bar{a}/A) = (\operatorname{tp}_{\delta}(\bar{a}/A))_{\delta \in \Delta} \qquad \text{and} \qquad \operatorname{tp}(\bar{a}/A) = \operatorname{tp}_{\mathsf{FO}(\Sigma)}(\bar{a}/A).$$

• Let Σ be a signature, let \mathbb{M} be a Σ -structure, and let $A \subseteq \mathbb{M}$.

δ -type

For an FO formula $\delta(\bar{x}, \bar{y})$ and $\bar{a} \in \mathbb{M}^{\bar{x}}$, the δ -type of \bar{a} on A is

$$\operatorname{tp}_{\delta}(\bar{\mathsf{a}}/\mathsf{A}) = \left\{ \bar{\mathsf{b}} \in \mathsf{A}^{\bar{\mathsf{y}}} \colon \mathbb{M} \models \delta(\bar{\mathsf{a}}, \bar{\mathsf{b}}) \right\}.$$

- **Example**: If Σ is the signature of graphs and $\delta(x,y) = \text{"dist}(x,y) \leqslant r$ ", then $\operatorname{tp}_{\delta}(a/A) = B_r(a) \cap A$.
- ullet For a set of formulas Δ we put

$$\operatorname{tp}_{\Delta}(\bar{a}/A) = (\operatorname{tp}_{\delta}(\bar{a}/A))_{\delta \in \Delta} \qquad \text{and} \qquad \operatorname{tp}(\bar{a}/A) = \operatorname{tp}_{\mathsf{FO}(\Sigma)}(\bar{a}/A).$$

Theorem

A theory $\mathbb T$ is stable if and only if for some infinite cardinal κ , for every model $\mathbb M$ of $\mathbb T$ and set $A\subseteq \mathbb M$ with $|A|\geqslant \kappa$, the number of types over A has the same cardinality as A.

Part 3: Sparsity and types

Theorem

 $[\mathsf{Adler} \ \mathsf{and} \ \mathsf{Adler}, \ \mathsf{after} \ \mathsf{Podewski} \ \mathsf{and} \ \mathsf{Ziegler}]$

Let ${\mathcal C}$ be a monotone class of finite graphs.

Then ${\mathcal C}$ is stable if and only if ${\mathcal C}$ is nowhere dense.

Theorem

[Adler and Adler, after Podewski and Ziegler]

Let ${\mathcal C}$ be a monotone class of finite graphs.

Then C is stable if and only if C is nowhere dense.

• Idea: Transfer tools and ideas between sparsity and stability.

Theorem

[Adler and Adler, after Podewski and Ziegler]

Let ${\mathcal C}$ be a monotone class of finite graphs.

Then C is stable if and only if C is nowhere dense.

- Idea: Transfer tools and ideas between sparsity and stability.
- ullet Neighborhood complexity \longleftrightarrow Types for distance formulas

Theorem

[Adler and Adler, after Podewski and Ziegler]

Let ${\mathcal C}$ be a monotone class of finite graphs.

Then C is stable if and only if C is nowhere dense.

- Idea: Transfer tools and ideas between sparsity and stability.
- ullet Neighborhood complexity \longleftrightarrow Types for distance formulas
- What about types w.r.t arbitrary formulas?

Theorem

[Adler and Adler, after Podewski and Ziegler]

Let ${\mathcal C}$ be a monotone class of finite graphs.

Then C is stable if and only if C is nowhere dense.

- Idea: Transfer tools and ideas between sparsity and stability.
- ullet Neighborhood complexity \longleftrightarrow Types for distance formulas
- What about types w.r.t arbitrary formulas?

Theorem

[Adler and Adler, after Podewski and Ziegler]

Let ${\mathcal C}$ be a monotone class of finite graphs.

Then C is stable if and only if C is nowhere dense.

- Idea: Transfer tools and ideas between sparsity and stability.
- Neighborhood complexity ←→ Types for distance formulas
- What about types w.r.t arbitrary formulas?

Theorem

[P, Siebertz, Toruńczyk]

Let $\mathcal C$ be a class of finite Σ -structures, $\mathbb M \in \mathcal C$, $A\subseteq \mathbb M$, and $\delta(\bar x,\bar y)\in \mathsf{FO}$.

- If $\mathcal C$ has bounded expansion, then the number of δ -types over A is at most $c|A|^{|\bar x|}$, where c depends on $\mathcal C$ and δ .
- If $\mathcal C$ is nowhere dense, then for any $\varepsilon>0$ the number of δ -types over A is at most $c|A|^{|\bar x|+\varepsilon}$, where c depends on $\mathcal C,\delta,\varepsilon$.

Theorem

[Adler and Adler, after Podewski and Ziegler]

Let $\mathcal C$ be a monotone class of finite graphs.

Then C is stable if and only if C is nowhere dense.

- Idea: Transfer tools and ideas between sparsity and stability.
- ullet Neighborhood complexity \longleftrightarrow Types for distance formulas
- What about types w.r.t arbitrary formulas?

Theorem

[P, Siebertz, Toruńczyk]

Let $\mathcal C$ be a class of finite Σ -structures, $\mathbb M \in \mathcal C$, $A\subseteq \mathbb M$, and $\delta(\bar x,\bar y)\in \mathsf{FO}$.

- If $\mathcal C$ has bounded expansion, then the number of δ -types over A is at most $c|A|^{|\bar x|}$, where c depends on $\mathcal C$ and δ .
- If $\mathcal C$ is nowhere dense, then for any $\varepsilon>0$ the number of δ -types over A is at most $c|A|^{|\bar x|+\varepsilon}$, where c depends on $\mathcal C,\delta,\varepsilon$.
- We now sketch the proof for graph classes of bounded expansion and $|\bar{x}|, |\bar{y}| = 1$.

Closing A

• Let r be the locality radius of δ .

Closing A

- Let r be the locality radius of δ .
- **Step 1**: Close *A* so that vertices $u \notin A$ have small *r*-projections.

Closing A

- Let r be the locality radius of δ .
- **Step 1**: Close A so that vertices $u \notin A$ have small r-projections.
- r-projection of u onto A:
 vertices of A reachable from u by an A-avoiding paths of length ≤ r.

Closing A

- Let r be the locality radius of δ .
- **Step 1**: Close A so that vertices $u \notin A$ have small r-projections.
- r-projection of u onto A:
 vertices of A reachable from u by an A-avoiding paths of length ≤ r.
- **Fact**: There exists $B \supseteq A$ such that
 - $|B| \leqslant c|A|$ and
 - every r-projection of $u \notin B$ onto B has size $\leq c$.

Classifying by projections

• Cor: We may assume that r-projections onto A are of constant size.

Classifying by projections

- **Cor**: We may assume that *r*-projections onto *A* are of constant size.
- **Fact**: The number of different such *r*-projections is $\leq c|A|$.

Classifying by projections

- **Cor**: We may assume that *r*-projections onto *A* are of constant size.
- **Fact**: The number of different such *r*-projections is $\leq c|A|$.
- **Ergo**: It suffices do bound the number of types for each possible distance-*r* projection by a constant.

Locality

Feferman-Vaught Lemma

For every formula $\delta(x,y) \in \mathsf{FO}(\Sigma)$ there exists $r \in \mathbb{N}$ and a finite set of formulas Δ such that the following holds.

Let G be a graph, u be a vertex, and A and S be subsets of vertices such that every path of length $\leq r$ from u to A passes through S. Then

 $\operatorname{tp}_{\delta}(u/A)$ is determined by $\operatorname{tp}_{\Delta}(u/S)$.

Locality

Feferman-Vaught Lemma

For every formula $\delta(x,y) \in \mathsf{FO}(\Sigma)$ there exists $r \in \mathbb{N}$ and a finite set of formulas Δ such that the following holds.

Let G be a graph, u be a vertex, and A and S be subsets of vertices such that every path of length $\leq r$ from u to A passes through S. Then

$$\operatorname{tp}_{\delta}(u/A)$$
 is determined by $\operatorname{tp}_{\Delta}(u/S)$.

• If S is the r-projection of u on A, then S r-separates u from A.

Locality

Feferman-Vaught Lemma

For every formula $\delta(x,y) \in \mathsf{FO}(\Sigma)$ there exists $r \in \mathbb{N}$ and a finite set of formulas Δ such that the following holds.

Let G be a graph, u be a vertex, and A and S be subsets of vertices such that every path of length $\leq r$ from u to A passes through S. Then

$$\operatorname{tp}_{\delta}(u/A)$$
 is determined by $\operatorname{tp}_{\Delta}(u/S)$.

- If S is the r-projection of u on A, then S r-separates u from A.
- The number of Δ -types on S of constant size is constant.

• Research programme

- Research programme
- Sparsity: Wealth of tools and problems with combinatorial and algorithmic motivation.

- Research programme
- Sparsity: Wealth of tools and problems with combinatorial and algorithmic motivation.
- **Stability**: Wealth of structural insight and abstract techniques accumulated over the years.

- Research programme
- Sparsity: Wealth of tools and problems with combinatorial and algorithmic motivation.
- **Stability**: Wealth of structural insight and abstract techniques accumulated over the years.
- Transfer techniques, ideas, and guestions between the two.

- Research programme
- Sparsity: Wealth of tools and problems with combinatorial and algorithmic motivation.
- **Stability**: Wealth of structural insight and abstract techniques accumulated over the years.
- Transfer techniques, ideas, and questions between the two.
 - So far, successful transfer from stability to sparsity.

- Research programme
- Sparsity: Wealth of tools and problems with combinatorial and algorithmic motivation.
- **Stability**: Wealth of structural insight and abstract techniques accumulated over the years.
- Transfer techniques, ideas, and questions between the two.
 - So far, successful transfer from stability to sparsity.
 - Goal: Results on stable graph classes, beyond sparsity.

- Research programme
- Sparsity: Wealth of tools and problems with combinatorial and algorithmic motivation.
- **Stability**: Wealth of structural insight and abstract techniques accumulated over the years.
- Transfer techniques, ideas, and questions between the two.
 - So far, successful transfer from stability to sparsity.
 - Goal: Results on stable graph classes, beyond sparsity.
- Thank you for your attention!