My title*

My subtitle if needed

First author Another author

March 11, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

```
# Remove rows with "10+"
air_quality_data <- air_quality_data[air_quality_data$air_quality_health_index != "10+",]
air_quality_data$air_quality_health_index <- as.numeric(air_quality_data$air_quality_health_
# Calculate the average Air Quality Health Index per year
average_aqi_by_year <- air_quality_data %>%
    group_by(year) %>%
    summarize(average_aqi = mean(air_quality_health_index))

# Summarize total deaths for each disease by year
total_deaths_by_year <- deaths_data %>%
    group_by(year, cause) %>%
    summarize(total_deaths = sum(total_deaths))

`summarise()` has grouped output by 'year'. You can override using the
`.groups` argument.
```

^{*}Code and data are available at: LINK.

Total Deaths by Year for Each Disease


```
# Plot for air quality data
ggplot(average_aqi_by_year, aes(x = as.factor(year), y = average_aqi)) +
   geom_line() + # for lines
   geom_point() + # for points
   labs(title = "Average Air Quality Health Index by Year",
        x = "Year",
        y = "Average Air Quality Index")
```

`geom_line()`: Each group consists of only one observation.
i Do you need to adjust the group aesthetic?

Average Air Quality Health Index by Year

[`]geom_smooth()` using formula = 'y ~ x'

Smoothed Average Air Quality Health Index by Year


```
# Merge datasets on 'year'
combined_data <- merge(deaths_data, average_aqi_by_year, by = "year")

# Plot scatter plot of mortality rates vs. air quality health index
ggplot(combined_data, aes(x = average_aqi, y = total_deaths)) +
    geom_point() +
    geom_smooth(method = "lm") +
    facet_wrap(~cause) +
    labs(title = "Scatter Plot of Mortality Rates vs. Air Quality Health Index",
        x = "Average Air Quality Health Index",
        y = "Total Deaths")</pre>
```

[`]geom_smooth()` using formula = 'y ~ x'

Scatter Plot of Mortality Rates vs. Air Quality Health Index


```
# Fit a Negative Binomial Model to the combined data
# Assuming the glm.nb() function is appropriate for your count data
# Load the MASS package for glm.nb
library(MASS)
```

Attaching package: 'MASS'

The following object is masked from 'package:dplyr':

select

```
# Fit the model
model <- glm.nb(total_deaths ~ average_aqi + factor(year) + factor(cause), data = combined_death
# Model Diagnostics
par(mfrow=c(2,2))
plot(model)</pre>
```



```
# Add Predictions to the combined data
# Note: predict() function might throw an error if there are new factor levels in the test so
# To prevent this, the newdata argument should only include levels that were present in the combined_data$predicted_deaths <- predict(model, newdata = combined_data, type = "response")
# Plot Observed vs. Predicted Deaths
ggplot(combined_data, aes(x = total_deaths, y = predicted_deaths)) +
geom_point() +
geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = "red") +
labs(x = "Observed Deaths", y = "Predicted Deaths") +
theme_minimal()</pre>
```



```
# Effect of AQHI on Predicted Deaths
ggplot(combined_data, aes(x = average_aqi, y = predicted_deaths, color = factor(year))) +
    geom_point() +
    geom_line(aes(group = factor(year))) + # Adding lines to connect points by year
    labs(x = "Average Air Quality Health Index", y = "Predicted Deaths") +
    theme_minimal() +
    facet_wrap(~cause)
```

`geom_line()`: Each group consists of only one observation.
i Do you need to adjust the group aesthetic?

`geom_line()`: Each group consists of only one observation.

i Do you need to adjust the group aesthetic?

`geom_line()`: Each group consists of only one observation.

i Do you need to adjust the group aesthetic?

`geom_line()`: Each group consists of only one observation.

i Do you need to adjust the group aesthetic?

1 Introduction

You can and should cross-reference sections and sub-sections. We use R Core Team (2023) and Wickham et al. (2019).

The remainder of this paper is structured as follows. Section 2....

2 Data

Some of our data is of penguins (?@fig-bills), from Horst, Hill, and Gorman (2020).

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

Talk way more about it.

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the number of seconds that the plane remained a loft. Then β_i is the wing length, both measured in millimeters.

$$y_i|\mu_i, \sigma \sim \text{Normal}(\mu_i, \sigma)$$
 (1)

$$\mu_i = \alpha + \beta_i + \gamma_i \tag{2}$$

$$\alpha \sim \text{Normal}(0, 2.5)$$
 (3)

$$\beta \sim \text{Normal}(0, 2.5)$$
 (4)

$$\gamma \sim \text{Normal}(0, 2.5)$$
 (5)

$$\sigma \sim \text{Exponential}(1)$$
 (6)

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

4 Results

Our results are summarized in Table 1.

Table 1: Explanatory models of flight time based on wing width and wing length

First model
-1.82
(7.77)
0.00
(0.00)
2127
9742.4
9759.4
-4868.184
2 4 4
2.44
First model
First model
First model -1.81
First model -1.81 (6.65)
First model -1.81 (6.65) 0.00
First model -1.81 (6.65) 0.00 (0.00)
First model -1.81 (6.65) 0.00 (0.00) 2127
First model -1.81 (6.65) 0.00 (0.00) 2127 9838.1

	First model
(Intercept)	-23.59
	(4.60)
year	0.02
	(0.00)
causeAll other forms of chronic ischemic heart disease	0.50
	(0.02)
causeMalignant neoplasms of trachea, bronchus and lung	0.35
	(0.02)
causeOther chronic obstructive pulmonary disease	0.00
	(0.02)
Num.Obs.	44
AIC	502.0
BIC	512.7
Log.Lik.	-244.986
RMSE	67.06

```
library(broom)
library(ggplot2)
# Tidy the model coefficients
first_model_tidy <- tidy(first_model) %>%
  mutate(model = "First Model")
poisson_model_tidy <- tidy(poisson_model) %>%
  mutate(model = "Poisson Model")
causes_model_tidy <- tidy(causes_model) %>%
  mutate(model = "Causes Model")
# Combine the coefficients into one data-frame
combined_coeffs <- bind_rows(first_model_tidy, poisson_model_tidy, causes_model_tidy)</pre>
# Create the coefficient comparison plot
ggplot(combined_coeffs, aes(x = term, y = estimate, color = model)) +
  geom_point() +
  geom_errorbar(aes(ymin = estimate - std.error, ymax = estimate + std.error), width = 0.2)
  facet_wrap(~ model, scales = "free", ncol = 1) +
  coord_flip() +
  theme_light() +
  labs(title = "Coefficient Comparison Across Models",
      x = "Term",
      y = "Estimate")
```

Coefficient Comparison /

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

5.2 Second discussion point

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In $\mathbf{?@fig\text{-}ppcheckandposteriorvsprior}\mathbf{-1}$ we implement a posterior predictive check. This shows...

In **?@fig-ppcheckandposteriorvsprior-2** we compare the posterior with the prior. This shows...

B.2 Diagnostics

?@fig-stanareyouokay-1 is a trace plot. It shows... This suggests...

?@fig-stanareyouokay-2 is a Rhat plot. It shows... This suggests...

References

- Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.
- Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020. *Palmerpenguins:* Palmer Archipelago (Antarctica) Penguin Data. https://doi.org/10.5281/zenodo.3960218.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.