Домашнее задание I курса «Теория поля»

Авторы: $W_{IJ}K$

От: 17 марта 2021 г.

Содержание

1	Общие сведения	2
2	Первое задание	2
	T1	2
	T2	2
	T3	
	T4	

1 Общие сведения

Для кинематики полезно было бы ввести следующие величины

$$\gamma(v) = \gamma_v = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}, \qquad \beta(v) = \beta_v = \frac{v}{c}, \qquad \Lambda(v, OX) = \begin{pmatrix} \gamma_v & -\beta_v \gamma_v & 0 & 0\\ -\beta_v \gamma_v & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix},$$

где Λ – преобразование Лоренца, для которого, кстати, верно, что $\Lambda^{-1}(v) = \Lambda(-v)$.

Также преобразование Лоренца можно записать в виде

$$\begin{pmatrix} ct' \\ \mathbf{r}' \end{pmatrix} = \begin{pmatrix} \gamma & -\boldsymbol{\beta}_v \gamma \\ -\boldsymbol{\beta}_v \gamma & \mathbb{E} + \frac{\gamma_v - 1}{\beta_v^2} \boldsymbol{\beta} \otimes \boldsymbol{\beta} \end{pmatrix}$$
(1.1)

2 Первое задание

T1

Для начала запишем преобразование Лоренца для системы K':

$$t' = \gamma_{v_x} \left(t - \beta_x \frac{x}{c} \right), \qquad x' = \gamma_{v_x} (x - v_x t), \qquad y' = y, \qquad z' = z.$$

Аналогично перейдём к системе K'', выразив компоненты через их представление в системе K'

$$t'' = \gamma_{v_y'} \left(t' - \beta_{v_y'} \frac{y'}{c} \right), \qquad x'' = x', \qquad y'' = \gamma_{v_y'} (y' - v_y' t), \qquad z'' = z'.$$

Центр системы K'' неподвижен в координатах системы K'', соответственно

$$x'' = y'' = z'' = 0, \quad \Rightarrow \quad \begin{cases} x_{K''} = v_x t \\ y_{K''} = \gamma_{v_x}^{-1} v_y' t \end{cases},$$

что соответствет (x,y)[t] для координат центра системы K'' в системе K.

Теперь найдём движение центра системы K в системе K'', подставив значения x=y=0,

$$x_K'' = -\gamma_{v_x} v_x t, y_K'' = -\gamma_{v_y'} \gamma_{v_x} v_y' t, t_K'' = -\gamma_{v_y'} \gamma_{v_x} t.$$

Можно заметить, что

$$\gamma_{v_y'}\gamma_{v_x} \approx \gamma \left(\sqrt{v_x^2 + v_y'^2}\right) = \gamma_v, \qquad \beta_{v_x}, \beta_{v_y'} \ll 1.$$

Теперь нас интересует направление прямой $\|v - д$ вижения K'' в системе K:

$$\operatorname{tg} \varphi = \frac{v_y}{v_x} = \frac{\dot{y}_{K''}}{\dot{x}_{K''}} = \gamma_{v_x}^{-1} \frac{v_y'}{v_x}.$$

Угол же между осью x'' и движением центра системы K может быть найден, как

$$\operatorname{tg}(\theta + \varphi) = \frac{dy_K''}{dt''} / \frac{dx_K''}{dt''} = \gamma_{v_y'} \frac{v_y'}{v_x} = \gamma_{v_x} \gamma_{v_y'} \operatorname{tg} \varphi \approx \gamma_v \operatorname{tg} \varphi.$$

С другой стороны, раскрывая тангенс суммы, находим

$$\operatorname{tg} \theta + \operatorname{tg} \varphi = \gamma_v \operatorname{tg} \varphi (1 - \operatorname{tg} \varphi \operatorname{tg} \theta), \quad \Rightarrow \quad \operatorname{tg} \theta = \frac{(\gamma_v - 1) \operatorname{tg} \varphi}{1 + \gamma_v \operatorname{tg}^2 \varphi}.$$

T2

Аппроксимируем движение нИСО в моменты времени t и t+dt сопутствующими ИСО K' и K''. Пусть K – лабороторная система отсчета, K' – сопутствующая ИСО $\boldsymbol{v} \stackrel{\text{def}}{=} \boldsymbol{v}(t)$, а K'' – сопутствующая ИСО движущаяся относительно K со скоростью $\boldsymbol{v}(t+dt) = \boldsymbol{v} + d\boldsymbol{v}$. Далее для удобства будем считать, что K'' движется относительно K' со скоростью $d\boldsymbol{v}'$.

Проверим, что последовательное применеие $\Lambda(dv')\cdot \Lambda(v)$ эквивалентно $R(\varphi)\cdot \Lambda(v+dv)$, где $R(\varphi)$ – вращение в $\{xyz\}$. Для этого просто найдём

$$R(\varphi) = \Lambda(d\mathbf{v}') \cdot \Lambda(\mathbf{v}) \cdot \Lambda(\mathbf{v} + d\mathbf{v})^{-1}.$$

Пусть ось $x \parallel \boldsymbol{v}$, ось y выберем так, чтобы $d\boldsymbol{v} \in \{Oxy\}$. Теперь, согласно (1.1), считая $|\boldsymbol{v}| = \beta_1$, $d\boldsymbol{v}' = (\beta_x', \beta_y')^{\mathrm{T}}$ можем записать (пренебрегая слагаемыми β_x', β_y' второй и выше степени):

$$\Lambda(\boldsymbol{v}) = \left(\begin{array}{cccc} \gamma_1 & -\beta_1 \gamma_1 & 0 & 0 \\ -\beta_1 \gamma_1 & \gamma_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right), \quad \Lambda(d\boldsymbol{v}') = \left[\begin{array}{cccc} 1 & -\beta_x' & -\beta_y' & 0 \\ -\beta_x' & 1 & 0 & 0 \\ -\beta_y' & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

Теперь можем выразить $doldsymbol{v}'$ через $doldsymbol{v}$, считая $oldsymbol{r}_{\mathrm{f}}$ центром системы K''

$$\mathbf{r}_f' = \Lambda(d\mathbf{v}') \cdot \Lambda(\mathbf{v}) \mathbf{r}_f = (ct', 0, 0, 0)^{\mathrm{T}} \quad \Rightarrow \quad \beta(\mathbf{v} + d\mathbf{v})_x = \frac{\beta_1 + \beta_x'}{1 + \beta_1 \beta_x'}, \quad \beta(\mathbf{v} + d\mathbf{v})_y = \frac{\gamma_{\beta_1} \beta_y}{1 + \beta_1 \beta_x}.$$

где скорость находим аналогично первому номеру. Тут стоит заметить, что скоростью β_x можно было бы пренебречь в сравнении с β_1 , так как скорее всего первый порядок малось β_x не войдёт в ответ, однако хотелось бы в этом убедиться.

Зная $d\boldsymbol{v}$ можем найти $d\boldsymbol{v}'$:

$$\beta_x' = \gamma_{\beta_1}^2 \beta_x, \quad \beta_y' = \gamma \beta_y.$$

Но это на потом.

Через v, dv' теперь можем найти $\Lambda(v+dv)$, и посчитать обратную матрицу:

$$\Lambda^{-1}(\boldsymbol{v} + d\boldsymbol{v}) = \begin{bmatrix} \gamma_{\beta_1}(\beta_1\beta_x + 1) & \gamma_{\beta_1}(\beta_1 + \beta_x) & \beta_y & 0\\ \gamma_{\beta_1}(\beta_1 + \beta_x) & \gamma_{\beta_1}(\beta_1\beta_x + 1) & \frac{\beta_1\beta_y}{\gamma_{\beta_1}^{-1} + 1} & 0\\ \beta_y & \frac{\beta_1\beta_y}{\gamma_{\beta_1}^{-1} + 1} & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Наконец можем посчитать матрицу поворота, которая в первом приближении действительно не содержит β_x :

$$R(\varphi) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & -\frac{\beta_1 \beta_y'}{\sqrt{1 - \beta_1^2 + 1}} & 0\\ 0 & \frac{\beta_1 \beta_y'}{\sqrt{1 - \beta_1^2 + 1}} & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

что дейстительно соответствует повороту в плоскости $\{xy\}$ вокруг оси z с углом φ равным

$$\varphi = -\frac{\beta_y \beta_1}{\gamma_{\beta_1}^{-2} + \gamma_{\beta_1}^{-1}} = -\frac{\gamma_{\beta_1}^2}{\gamma_{\beta_1} + 1} \beta_1 \beta_y,$$

где φ малый, в силу малости β_y . Так вот, в результате поворота координатных осей меняются и любые векторы, неподвижные в неИСО, то есть искомая угловая скорость

$$\omega_z = -\frac{\gamma_{\beta_1}^2}{\gamma_{\beta_1}+1}\beta_1(\beta_y/\Delta t), \quad \Leftrightarrow \quad \boldsymbol{\omega} = -\frac{\gamma_{\beta_1}^2}{\gamma_{\beta_1}+1}\left[\boldsymbol{\beta}\times\dot{\boldsymbol{\beta}}\right] = \frac{\gamma_{\beta_1}^2}{\gamma_{\beta_1}+1}\left[\dot{\boldsymbol{\beta}}\times\boldsymbol{\beta}\right],$$

что и требовалось доказать

T3

Посмотрим на сопутствующую вращающемуся интерферометру в точке рассматриваемого луча. Для луча можем записать волновой вектор, как

$$\bar{k}'_{\pm} = \left(\frac{\omega}{c}, \pm n \frac{\omega}{c}, 0, 0\right),$$

где знак выбирается в соответсвии с направлением обхода. Считая, что ось Ox направлена вдоль вращения интерферометра в рассматриваемой точке

$$ck_{\pm} = \begin{bmatrix} \gamma & \gamma\beta & 0 & 0 \\ \gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \omega \\ \pm n\omega \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \omega\gamma(1 + \pm n\beta) \\ \omega\gamma(n \pm \beta) \\ 0 \\ 0 \end{pmatrix},$$

откуда

$$ck_{x,\pm} = \omega \gamma (n \pm \beta).$$

Можно заметить, что у света также зависит частота от направления двиения, судя по формуле выше, но в силу малости скорости вращения, это приведет только к оооочень медленной осцилляции в интерференции

$$I_{\text{инт}} = I_1 + I_2 + \langle (\boldsymbol{E}_{10} \cdot \boldsymbol{E}_{20}) \cos((\omega_2 - \omega_1)t + \ldots) \rangle,$$

так что по идее этим эффектом можно принебречь.

В силу различности k_+ и k_- можем найти разность хода

$$\Delta \varphi = \varphi_{+} - \varphi_{-} = 2\pi R \frac{\gamma \omega \beta}{c},$$

считая данной угловую скорость вращения интерферометра Ω приходим к выражению вида

$$\Delta \varphi = \frac{2\gamma}{c^2} \omega \Omega \pi R^2 \stackrel{\gamma \sim 1}{\approx} \frac{2\pi}{c^2} \omega \Omega R^2,$$

где $\gamma \approx 1$ для корректности результата, так как при расчете не учитывалось изменение метрики для неИСО.

T4

Теперь рассмотрим реакцию превращения электрона и позитрона в мюон и антимюон:

$$e^+ + e^- \to \mu^+ + \mu^-$$
.

Хотелось бы зная энергию стакивающихся частиц найти эффективную массу системы и энергии μ^{\pm} .

Для 4-импульса $p^i = (\mathscr{E}/c, \boldsymbol{p})$, для которого верно

$$c^{2}(2m_{\mu})^{2} \leqslant (p_{1}^{i} + p_{2}^{i})^{2} = \bar{p}_{1}^{2} + \bar{p}_{2}^{2} + 2\bar{p}_{1} \cdot \bar{p}_{2} = c^{2}2m_{e}^{2} + 2\left(\mathscr{E}_{1}\mathscr{E}_{2}/c^{2} - \boldsymbol{p}_{1} \cdot \boldsymbol{p}_{2}\right).$$

что приводит нас к неравенству

$$c^2(2m_\mu^2 - m_e^2) \leqslant \frac{1}{c^2} \mathcal{E}_1 \mathcal{E}_2 - \boldsymbol{p}_1 \cdot \boldsymbol{p}_2.$$

При равных энергия $\mathscr{E}_1=\mathscr{E}_2=\mathscr{E}$ и $\boldsymbol{p}_1=-\boldsymbol{p}_2$ верно, что

$$p_1^2 = \frac{\mathscr{E}^2}{c^2} - m^2 c^2,$$

тогда

$$c^2(2m_{\mu}^2-m_e^2)\leqslant \frac{1}{c^2}\mathscr{E}^2+\pmb{p}_1^2=\frac{2}{c^2}\mathscr{E}^2-m_e^2c^2,$$

таким образом

$$\mathscr{E} \geqslant m_{\mu}c^2, \quad T_{\text{порог}} = (m_{\mu} - m_e)c^2,$$

а эффективной массе системы соответствует ...

При налете на неподвижную частицу $\mathscr{E}_2 = m_e c$ и $\boldsymbol{p}_2 = 0$, тогда

$$(2m_{\mu}^2 - m_e^2)c^2 \leqslant \mathcal{E}_1 m_e, \quad \Rightarrow \quad \mathcal{E}_1 \geqslant \left(2\frac{m_{\mu}^2}{m_e} - m_e\right)c^2.$$

Соответсвенно для пороговой энергии верно

$$T_{\text{порог}} = \frac{2c^2}{m_e} \left(m_{\mu}^2 - m_e^2 \right),$$

а эффективной массе значение ...