Colle 02

ADMISSION COMPRESSION COMMISSION ECHAPPEMEN

Tuyère à ouverture variable

Concours Banque PT SIA - 2011

Savoirs et compétences :

Présentation du système

Objectif On souhaite vérifier que le système permet de respecter le cahier des charges suivant :

- temps de réponse à 5% : 4 s au maximum;
- précision : l'erreur statique doit être nulle ;
- précision : l'erreur de traînage doit être inférieure à 1 mm pour une consigne de 25 mm s⁻¹.

Modélisation du comportement du vérin – hypothèse fluide compressible

Question 1 À partir des équations, compléter le schéma-blocs en indiquant les fonctions de transferts de chaque bloc.

Question 2 Modifier le schéma-blocs précédent pour intégrer l'effort résistant.

Question 3 Donner l'expression de la fonction de transfert du vérin $H_V(p) = \frac{X(p)}{Q(p)}$. On donnera le résultat sous la forme $H_V(p) = \frac{K_V}{p(1+a_2p^2)}$ en précisant les expression de K_V et a_2 .

$H_{st}(p) = \frac{1}{1 + \frac{K_{p}}{M_{sq}p^{2}}} = \frac{1}{1 + \frac{B}{K_{p} + M_{sq}p^{2}}} = \frac{1}{1 + \frac{B}{K_{p} + M_{sq}p^{2}}} = \frac{1}{1 + \frac{B}{V_{0}p}S^{2}\frac{1}{K_{F} + M_{sq}p^{2}}} = \frac{1}{1 + \frac{B}{V_{0}p}S^{2}\frac{1}{K_{F} + M_{sq}p^{2}}} = \frac{1}{1 + \frac{B}{V_{0}p}S^{2}\frac{1}{K_{F} + M_{sq}p^{2}}} = \frac{B}{1 + \frac{B}{V_{0}p}S^{2}\frac{1}{K_{0}p^{2}}} = \frac{B}{1 + \frac{B}{$

Validation du comportement du vérin

Question 4 Donner l'expression de la forme canonique de la fonction de transfert en boucle fermée $H_{BF}(p) = \frac{X(p)}{X_{ref}(p)}$. On donnera le résultat en fonction de K_C , K_U , K_D , K_p , K_V et a_2 .

Correction

$$H_{BF}(p) = \frac{X(p)}{X_{ref}(p)} = \frac{K_c K_p K_u K_D \frac{K_V}{p(1 + a_2 p^2)}}{1 + K_c K_p K_u K_D \frac{K_V}{p(1 + a_2 p^2)}}$$

$$H_{BF}(p) = \frac{1}{1 + \frac{p(1 + a_2 p^2)}{K_c K_p K_u K_D K_V}}$$

$$H_{BF}(p) = \frac{1}{1 + \frac{p}{K_c K_p K_u K_D K_V}} + \frac{a_2}{K_c K_p K_u K_D K_V} p^3$$

Prise en compte du débit de fuite

Question 5 Modifier le schéma-blocs précédent pour intégrer le débit de fuite.

Question 6 Donner l'expression de la fonction de transfert du vérin $H_V(p) = \frac{X(p)}{Q(p)}$. On donnera le résultat sous la forme $H_V(p) = \frac{K_V}{p\left(1+a_1p+a_2p^2+a_3p^3\right)}$ en précisant les expression de K_V , a_1 , a_2 et a_3 .

Correction

$$\begin{split} H_{B1}(p) &= \frac{\frac{B}{V_{0}p}}{1 + \frac{\delta B}{V_{0}p}} = \frac{\frac{1}{\delta}}{1 + \frac{V_{0}}{\delta B}p} \\ H_{v}(p) &= \frac{\frac{B}{\delta B + V_{0}p} S \frac{1}{K_{F} + M_{eq}p^{2}}}{1 + \frac{B}{\delta B + V_{0}p} S^{2} \frac{1}{K_{F} + M_{eq}p^{2}}p} \\ H_{v}(p) &= \frac{BS}{(\delta B + V_{0}p)(K_{F} + M_{eq}p^{2}) + BS^{2}p} \\ H_{v}(p) &= \frac{BS}{\delta BK_{F} + K_{F}V_{0}p + \delta BM_{eq}p^{2} + V_{0}M_{eq}p^{3} + BS^{2}p} \\ H_{v}(p) &= \frac{\frac{S}{\delta K_{F}}}{1 + \frac{K_{F}V_{0} + BS^{2}}{\delta BK_{F}}p + \frac{M_{eq}}{K_{F}}p^{2} + \frac{V_{0}M_{eq}}{\delta BK_{F}}p^{3}} \\ K_{v} &= \frac{S}{\delta K_{F}} \\ a_{1} &= \frac{K_{F}V_{0} + BS^{2}}{\delta BK_{F}} \\ a_{2} &= \frac{M_{eq}}{K_{F}} \\ a_{3} &= \frac{V_{0}M_{eq}}{\delta BK_{F}} \end{split}$$

Retour sur le cahier des charges

On donne la réponse à un échelon et à une rampe de pente $25\,\mathrm{mm\,s^{-1}}$.

Question 7 Le cahier des charges est-il vérifié?

Éléments de correction

- 1. ...
- 2. ...
- 3. ...

2