

Laboratório - Configuração de Syslog e NTP

Topologia

Tabela de Endereçamento

Dispositivo	Interface	Endereço IP	Máscara de sub-rede	Gateway Padrão
R1	S0/0/0 (DCE)	10.1.1.1	255.255.255.252	N/D
R2	S0/0/0	10.1.1.2	255.255.255.252	N/D
	G0/0	172.16.2.1	255.255.255.0	N/D
PC-B	NIC	172.16.2.3	255.255.255.0	172.16.2.1

Objetivos

Parte 1: Implementar as Configurações Básicas do Dispositivo

Parte 2: Configurar o NTP

Parte 3: Configurar o Syslog

Histórico/Cenário

As mensagens de syslog geradas pelos dispositivos de rede podem ser coletadas e arquivadas em um Servidor syslog. As informações podem ser usadas para fins de monitoramento, depuração, identificação e solução de problemas. O administrador pode controlar onde as mensagens são armazenadas e exibidas. As mensagens de Syslog podem receber um carimbo de data/hora para análise da sequência dos eventos de rede; portanto, é importante sincronizar o relógio nos dispositivos de rede com um Servidor NTP (Network Time Protocol).

Neste laboratório, você configurará R1 como o Servidor NTP e R2 como um syslog e cliente NTP. O aplicativo do servidor syslog, como Tftp32d ou outro programa similar, executará em PC-B. Além disso, você controlará o nível de gravidade das mensagens de log coletadas e arquivadas no servidor syslog.

Observação: os roteadores usados nos laboratórios práticos CCNA são Roteadores de Serviços Integrados (ISRs) Cisco 1941 com software IOS Cisco versão 15.2(4) M3 (imagem universalk9). Podem ser usados outros roteadores e outras versões do Cisco IOS. Dependendo do modelo e da versão do Cisco IOS, os comandos disponíveis e a saída produzida podem ser diferentes dos mostrados nos laboratórios. Consulte a tabela Resumo das Interfaces dos Roteadores no final deste laboratório para obter os identificadores de interface corretos.

Observação: confira se os roteadores foram apagados e se não há configuração inicial. Se estiver em dúvida, entre em contato com o instrutor.

Recursos necessários

- 2 roteadores (Cisco 1941 com a versão 15.2(4)M3 do Cisco IOS, imagem universal ou semelhante)
- 1 PC (Windows 7, Vista ou XP com programa de emulação de terminal, por exemplo, Tera Term, e software Syslog, como tftpd32)
- Cabos de console para configurar os dispositivos Cisco IOS por meio das portas de console
- Cabos Ethernet e seriais, conforme mostrado na topologia

Parte 1: Implementar as Configurações Básicas do Dispositivo

Na parte 1, você configurará a topologia da rede e definirá as configurações básicas, como os endereços IP da interface, o roteamento, o acesso aos dispositivos e as senhas.

Etapa 1: Cabeie a rede conforme mostrado na topologia.

Etapa 2: Inicialize e recarregue os roteadores conforme o necessário.

Etapa 3: Defina as configurações básicas de cada Roteador.

- a. Use o console para se conectar ao roteador e entre no modo de configuração global.
- b. Copie a configuração básica a seguir e cole-a na configuração atual no roteador.

```
no ip domain-lookup
service password-encryption
enable secret class
banner motd #
Unauthorized access is strictly prohibited. (O acesso não autorizado é
estritamente proibido.) #
line con 0
password cisco
login
logging synchronous
line vty 0 4
password cisco
login
```

- c. Configure o nome do host conforme mostrado na topologia.
- d. Aplique os endereços IP às interfaces serial e Gigabit Ethernet, de acordo com a tabela de endereçamento e ative as interfaces físicas.
- e. Defina a velocidade do clock como 128000 para as interfaces seriais DCE.

Etapa 4: Configure o roteamento.

Habilite o RIPv2 nos roteadores. Adicione todas as redes ao processo RIPv2.

Etapa 5: Configure o PC-B.

Configure o endereço IP e o gateway padrão de PC-B de acordo com a tabela de endereçamento.

Etapa 6: Verifique a conectividade fim a fim.

Verifique se todos os dispositivos podem executar ping em todos os outros dispositivos na rede com êxito. Caso contrário, faça a identificação e solução de problemas até que haja conectividade fim a fim.

Etapa 7: Salve a configuração em execução na configuração de inicialização.

Parte 2: Configurar NTP

Na parte 2, você configurará R1 como o Servidor NTP e R2 como o cliente NTP de R1. O horário sincronizado é importante para as funções syslog e debug. Se a hora não estiver sincronizada, será difícil determinar qual evento de rede causou a mensagem.

Etapa 1: Exiba a hora atual.

Emita o comando **show clock** para exibir a hora atual em R1.

```
R1# show clock
*12:30:06,147 UTC Tue May 14 2013
```

Anote as informações referentes à hora atual exibida na tabela a seguir.

Data	
Tempo	
Fuso horário	

Etapa 2: Ajuste a hora.

Use o comando **clock set** para definir a hora em R1. Um exemplo de como definir a data e a hora é mostrado a seguir.

```
R1# clock set 9:39:00 05 july 2013
R1#
*Jul 5 09:39:00.000: %SYS-6-CLOCKUPDATE: System clock has been updated from 12:30:54
UTC Tue May 14 2013 to 09:39:00 UTC Fri Jul 5 2013, configured from console by console.
```

Observação: também é possível definir a hora com o comando **clock timezone** no modo de configuração global. Para obter mais informações sobre esse comando, pesquise o comando **clock timezone** em www.cisco.com para determinar a zona correspondente à sua região.

Etapa 3: Configure o mestre do NTP.

Configure R1 como o mestre de NTP com o comando **ntp master** stratum-number no modo de configuração global. Stratum number indica o número de saltos de NTP com relação a uma fonte de tempo autoritativa. Neste laboratório, o número 5 é o nível de stratum desse Servidor NTP.

```
R1(config) # ntp master 5
```

Etapa 4: Configure o cliente NTP.

a. Emita o comando **show clock** em R2. Registre a hora atual exibida em R2 na tabela a seguir.

Data	
Tempo	
Fuso horário	

 Configure R2 como cliente NTP. Use o comando ntp server para apontar para o endereço IP ou nome do host do Servidor NTP. O comando ntp update-calendar atualiza o calendário periodicamente com a hora do NTP.

```
R2(config) # ntp server 10.1.1.1
R2(config) # ntp update-calendar
```

Etapa 5: Verifique a configuração do NTP.

a. Use o comando show ntp associations para verificar se R2 tem uma associação de NTP com R1.

R2# show ntp associations

```
address ref clock st when poll reach delay offset disp *~10.1.1.1 127.127.1.1 5 11 64 177 11.312 -0.018 4.298 * sys.peer, # selected, + candidate, - outlyer, x falseticker, ~ configured
```

b. Emita show clock em R1 e R2 para comparar o carimbo de data e hora.

Observação: uma demora de alguns minutos poderá ocorrer antes que o carimbo de data e hora em R2 sincronize com R1.

```
R1# show clock
09:43:32.799 UTC Fri Jul 5 2013
R2# show clock
09:43:37.122 UTC Fri Jul 5 2013
```

Parte 3: Configurar o syslog

As mensagens de syslog dos dispositivos de rede podem ser coletadas e arquivadas em um Servidor syslog. Neste laboratório, Tftpd32 será usado como o software do Servidor syslog. O administrador de rede pode controlar os tipos de mensagens enviadas ao Servidor syslog.

Etapa 1: (Opcional) Instale o Servidor syslog.

Se ainda não houver um Servidor syslog instalado no PC, baixe e instale a versão mais recente de um Servidor syslog, como Tftpd32, no PC. A versão mais recente de Tftpd32 pode ser encontrada no seguinte link:

http://tftpd32.jounin.net/

Etapa 2: Inicie o Servidor syslog em PC-B.

Após a inicialização do aplicativo Tftpd32, clique na guia Servidor Syslog.

Etapa 3: Verifique se o serviço de carimbo de data e hora está habilitado em R2.

Use o comando **show run** para verificar se o serviço de carimbo de data e hora está habilitado para registro em R2.

```
R2# show run | include timestamp service timestamps debug datetime msec service timestamps log datetime msec
```

Caso contrário, use o comando a seguir para ativá-lo.

R2(config) # service timestamps log datetime msec

Etapa 4: Configure R2 para registrar mensagens no Servidor syslog.

Configure R2 para enviar as mensagens do Syslog ao servidor syslog, PC-B. O endereço IP do servidor syslog PC-B é 172.16.2.3.

```
R2(config) # logging host 172.16.2.3
```

Etapa 5: Exiba as configurações de registro padrão.

Use o comando **show logging** para exibir as configurações de registro padrão.

```
R2# show logging
Syslog logging: enabled (0 messages dropped, 2 messages rate-limited, 0 flushes, 0
overruns, xml disabled, filtering disabled)
No Active Message Discriminator.
No Inactive Message Discriminator.
    Console logging: level debugging, 47 messages logged, xml disabled,
                     filtering disabled
    Monitor logging: level debugging, 0 messages logged, xml disabled,
                     filtering disabled
    Buffer logging: level debugging, 47 messages logged, xml disabled,
                    filtering disabled
    Exception Logging: size (4096 bytes)
    Count and timestamp logging messages: disabled
    Persistent logging: disabled
No active filter modules.
    Trap logging: level informational, 49 message lines logged
        Logging to 172.16.2.3 (udp port 514, audit disabled,
              link up),
              6 message lines logged,
              O message lines rate-limited,
              0 message lines dropped-by-MD,
              xml disabled, sequence number disabled
              filtering disabled
```

VRF Name:

Logging Source-Interface:

Qual é o endereço IP do Servidor syslog? _	
Syslog utiliza qual protocolo e qual porta?	
O trap logging está ativado em qual nível?	

Etapa 6: Configure e observe o efeito do registro de níveis de gravidade em R2.

a. Use o comando **logging trap?** para determinar a disponibilidade dos vários níveis de armadilha. Durante a configuração de um nível, as mensagens enviadas para o Servidor syslog correspondem ao nível de interceptação (trapping) configurado e a todos os níveis inferiores.

```
R2(config) # logging trap ?
 <0-7>
              Logging severity level
 alerts
              Immediate action needed
                                            (severity=1)
 critical
             Critical conditions
                                             (severity=2)
 debugging
             Debugging messages
                                            (severity=7)
 emergencies System is unusable
                                             (severity=0)
 errors
             Error conditions
                                            (severity=3)
 informational Informational messages
                                             (severity=6)
 notifications Normal but significant conditions (severity=5)
 warnings
             Warning conditions
                                             (severity=4)
 <cr>
```

Se o comando **logging trap warnings** tiver sido emitido, quais níveis de gravidade de mensagens serão registrados?

b. Altere o nível de gravidade do registro para 4.

```
R2(config) # logging trap warnings
ou
R2(config) # logging trap 4
```

c. Crie a interface Loopback0 em R2 e observe as mensagens de log na janela do terminal e na janela do Servidor syslog em PC-B.

```
R2(config)# interface 10 0
R2(config-if)#
Jul 5 09:57:47.162: %LINK-3-UPDOWN: Interface Loopback0, changed state to up
Jul 5 09:57:48.162: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up
```


d. Remova a interface Loopback 0 em R2 e observe as mensagens de log.

```
R2(config-if)# no interface lo 0

R2(config)#

Jul 5 10:02:58.910: %LINK-5-CHANGED: Interface Loopback0, changed state to administratively down

Jul 5 10:02:59.910: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to down
```

No nível de gravidade 4,há alguma mensagem de log no Servidor syslog? Se houver alguma mensagem de log, explique o que ela diz e por quê.

e. Altere o nível de gravidade do registro para 6.

```
R2(config) # logging trap informational
```

ou

R2(config) # logging trap 6

- Apague as entradas de syslog no PC-B. Clique em Clear na caixa de diálogo Tftpd32.
- g. Crie a interface Loopback 1 em R2.

```
R2(config)# interface lo 1

Jul 5 10:05:46.650: %LINK-3-UPDOWN: Interface Loopback1, changed state to up

Jul 5 10:05:47.650: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback1, changed state to up
```

h. Remova a interface Loopback 1 de R2.

```
R2(config-if)# no interface lo 1
R2(config-if)#
Jul 5 10:08:29.742: %LINK-5-CHANGED: Interface Loopback1, changed state to administratively down
```

Jul 5 10:08:30.742: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback1, changed state to down

i.	Observe a saída do Servidor syslog. Compare esse resultado com os resultados do níve	ıl de
	interceptação (trapping) 4. O que você observa?	

Reflexão

Qual é o problema de se definir um nível de gravidade muito alto (número de nível mais baixo) ou muito baixo (número de nível mais alto) para syslog?

Tabela de Resumo das Interfaces dos Roteadores

Resumo das Interfaces dos Roteadores					
Modelo do Roteador	Interface Ethernet 1	Interface Ethernet 2	Interface Serial 1	Interface Serial 2	
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)	
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)	
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)	
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)	
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)	

Observação: para descobrir como o roteador está configurado, examine as interfaces para identificar o tipo de roteador e quantas interfaces ele tem. Não há como listar efetivamente todas as combinações de configurações para cada classe de roteador. Esta tabela inclui identificadores para as combinações possíveis de Ethernet e Interfaces seriais no dispositivo. Esse tabela não inclui nenhum outro tipo de interface, embora um roteador específico possa conter algum. Um exemplo disso poderia ser uma interface ISDN BRI. A string entre parênteses é a abreviatura legal que pode ser usada no comando do Cisco IOS para representar a interface.