Forecasting Truck Sales using SARIMA

Time Series Analysis and Predictive Modeling

- Nevil Hitesh Mehta

Agenda

Introduction

Data Overview

Data Pre-Processing

Model Development

- Train-Test Split
- Time Series Decomposition
- Rolling Statistics
- Stationarity Test
- ACF & PACF Plots
- SARIMA (Manual & Automatic)

Future Sales Forecast

Introduction

Purpose: To forecast future sales of Velocity Wheels (Truck)

Tools Used: Python

Model Implemented: SARIMA

Importance of Forecasting Sales in Business:

- Informed Decision-Making: Accurate forecasts guide strategic planning and resource allocation, mitigating risks.
- Optimal Inventory Control: Predicting demand prevents overstocking and stockouts, enhancing customer satisfaction.
- Enhanced Operational Efficiency: Streamlined logistics and supplier management improve order processing and performance.

Data Overview

Source: Dataset has been downloaded from Kaggle

Weblink: https://www.kaggle.com/datasets/willianoliveiragibin/velocity-wheels

First 5 rows of Dataset are as follows:

5	Month-Year	Number_Trucks_Sold
0	03-jan.	155
1	03-Feb	173
2	03-mar.	204
3	03-Apr	219
4	03-May	223

Data Pre-Processing

- Checking the shape of data type
- Checking presence of null values
- Formatting the Date column
- Removing unnecessary columns

df.shape (144, 2)

Data Pre-Processing: Formatting Date Column

```
def convert to mm yyyy(Month Year):
      year,month = Month Year.split('-')
      cleaned month = month.strip('.').capitalize()[:3]
      full year = '20' + year
      full date = f'{cleaned month}{full year}'
      return pd.to datetime(full date, format = '%b%Y').strftime('%Y-%m')
    df['Date'] = df['Month-Year'].apply(convert to mm yyyy)
    print(df)
₹
        Month-Year Number Trucks Sold
                                           Date
           03-jan.
                                   155 2003-01
            03-Feb
                                        2003-02
           03-mar.
                                        2003-03
            03-Apr
                                   219 2003-04
            03-May
                                   223 2003-05
    139
            14-Aug
                                        2014-08
            14-Sep
    140
                                   704 2014-09
            14-0ct
    141
                                   639 2014-10
                                   571 2014-11
    142
           14-nov.
    143
            14-Dec
                                   666 2014-12
    [144 rows x 3 columns]
```

Data Pre-Processing: Removing Unnecessary Columns

[11] df = df.iloc[:,[1,0]]						
df.head()						
∑ *		Date	Number_Trucks_Sold			
	0	2003-01	155			
	1	2003-02	173			
	2	2003-03	204			
	3	2003-04	219			
	4	2003-05	223			

Train-Test Split

Split ratio taken here is 70:30

```
# Train-Test split

train_data = df[:101]
 test_data = df[101:144]

train_data = train_data.set_index('Date')
```

train_data				
Numb	per_Trucks_Sold			
Date				
2003-01	155			
2003-02	173			
2003-03	204			
2003-04	219			
2003-05	223			
2011-01	437			
2011-02	440			
2011-03	548			
2011-04	590			
2011-05	656			
101 rows × 1 columns				

Time Series: EDA

- Crucial step in understanding time series characteristics.
- Helps in identifying trends, patterns and anomalies.
- Helps in identifying Seasonality and Stationarity.
- Key steps in EDA for time series data include:
 - **Visualization:** Plotting the time series to understand general trends.
 - **Descriptive Statistics:** Calculating metrics like mean, variance, and autocorrelation.
 - Rolling Statistics: Find the rolling mean and std.deviation to identify the trend.
 - **Stationarity Tests:** Checking if the statistical properties of the series are constant over time.

EDA: Visualization

Descriptive Statistics

train_data.describe()				
Nu				
count	101.000000	11.		
mean	337.148515			
std	122.009949			
min	152.000000			
25%	231.000000			
50%	309.000000			
75 %	419.000000			
max	656.000000			

Rolling Statistics

Calculations performed on a time series dataset over a fixed window of observations.

Useful for understanding trends and patterns over time.

Common Rolling Statistics:

- Rolling Mean: The average of values within a specified window that moves across the data.
- Rolling Standard Deviation: Measures the variability of values within the window. It provides insights into the volatility of the data over time.
- Rolling Variance: Similar to the rolling standard deviation but provides the squared variability within the window.

Rolling Statistics

```
# Rolling Statistics
from matplotlib.ticker import MaxNLocator
rolling mean = train data['Number Trucks Sold'].rolling(window = 12).mean() # 12 period rolling mean
rolling std = train data['Number Trucks Sold'].rolling(window = 12).std() # 12 period rolling standard deviation
# Plotting the values
plt.figure(figsize = (10,6))
plt.plot(train data['Number Trucks Sold'], label = 'Original')
plt.plot(rolling mean, label = 'Rolling Mean', color = 'red')
plt.plot(rolling_std, label = 'Rolling Standard Deviation', color = 'black')
plt.title('Rolling Mean & Standard Deviation')
truncated labels = [str(label)[:4] for label in train data.index] # Truncate to first 7 characters
plt.xticks(train data.index, truncated labels, rotation=45) # Rotate for readability
ax = plt.gca() # Gets current axis
ax.xaxis.set major locator(MaxNLocator(nbins=8))
plt.legend()
plt.show()
```

Rolling Statistics

Stationarity Test

Used to determine whether a time series data exhibits stationarity.

Stationary Series: Mean and Variance do not change with time.

Augmented Dickey Fuller (ADF) Test is used in this case.

Test Criteria : p-value (typically < 0.05) indicates that the series is stationary.

Stationarity Test

```
# Stationarity Test

from statsmodels.tsa.stattools import adfuller
```

```
def adf_test(series):
    result = adfuller(series)
    print('ADF Statistics: {}'.format(result[0]))
    print('p-value: {}'.format(result[1]))
    if result[1] <= 0.05:
        print('Strong evidence against the null hypothesis. Hence, null hypothesis is rejected indicating data is stationery.')
    else:
        print('Weak evidence against the null hypothesis. Hence, null hypothesis is accepted indicating data is not stationery.')

adf_test(train_data['Number_Trucks_Sold'])

ADF Statistics: 0.9103273316294213
    p-value: 0.9932236315543095
Weak evidence against the null hypothesis. Hence, null hypothesis is accepted indicating data is not stationery.</pre>
```

Differencing

Technique used for making a series stationary.

It removes any trends or seasonality present in the series.

For this we subtract the current observation from previous one.

Types of Differencing:

- **First Differencing**: The difference between consecutive data points (e.g., Yt-Y(t-1)) to remove linear trends.
- **Seasonal Differencing**: The difference between observations separated by a seasonal period (e.g., Yt-Y(t-12)), where 12 is the seasonal length) to remove seasonal patterns.

Differencing helps stabilize the mean and variance, making the data suitable for modeling.

1st Differencing

```
# Since our data is seasonal so we will need to do 12 months differencing
train_data['Trucks_12_diff'] = train_data['Number_Trucks_Sold']-train_data['Number_Trucks_Sold'].shift(12)
train_data.head(15)
```

[]	train_data.head(15)						
₹		Number_Trucks_Sold	Trucks_1st_diff	Trucks_2nd_diff	Trucks_12_diff		
	Date						
	2003-01	155	NaN	NaN	NaN		
	2003-02	173	18.0	NaN	NaN		
	2003-03	204	31.0	13.0	NaN		
	2003-04	219	15.0	-16.0	NaN		
	2003-05	223	4.0	-11.0	NaN		
	2003-06	208	-15.0	-19.0	NaN		
	2003-07	228	20.0	35.0	NaN		
	2003-08	228	0.0	-20.0	NaN		
	2003-09	188	-40.0	-40.0	NaN		
	2003-10	165	-23.0	17.0	NaN		
	2003-11	152	-13.0	10.0	NaN		
	2003-12	182	30.0	43.0	NaN		
	2004-01	160	-22.0	-52.0	5.0		
	2004-02	185	25.0	47.0	12.0		
	2004-03	217	32.0	7.0	13.0		

2nd and 3rd Differencing

```
train_data['Trucks_2nd_12_diff'] = train_data['Trucks_12_diff']-train_data['Trucks_12_diff'].shift(12)
adf test(train data['Trucks 2nd 12 diff'].dropna()) ?
ADF Statistics: -2.256908311627945
p-value: 0.1862425827745111
Weak evidence against the null hypothesis. Hence, null hypothesis is accepted indicating data is not stationery.
train data['Trucks 3rd 12 diff'] = train data['Trucks 2nd 12 diff']-train data['Trucks 2nd 12 diff'].shift(12)
adf test(train data['Trucks 3rd 12 diff'].dropna())
ADF Statistics: -5.266988473215438
p-value: 6.407011676003551e-06
Strong evidence against the null hypothesis. Hence, null hypothesis is rejected indicating data is stationery.
```

Differencing: Insights

1st Differencing (p-value = 0.058):

• The p-value is close to 0.05, but slightly above it. While technically, this suggests the series is not yet stationary, it's quite close to being stationary.

2nd Differencing (p-value = 0.18):

• The p-value increases, which suggests that the second differencing is making the series less stationary.

3rd Differencing (p-value < 0.05):

 The p-value finally drops below 0.05, indicating stationarity. But this might indicate we've over-differenced the data, potentially removing too much of the original signal.

Hence, we go with 1st Differencing, since it is closer to p-value

Autocorrelation Function (ACF)

- Measures the correlation between observations of a time series separated by different time lags.
- Help in identifying the strength of correlation between current values and past values in the time series.
- Diagnosing whether the series is stationary or contains trends or seasonality.
- Determine the order of moving average (MA) components in ARIMA and SARIMA models.

Example is provided below.

Img: https://statisticsbyjim.com/time-series

Autocorrelation Function (ACF)

How the ACF Works:

- The ACF calculates the correlation of a time series with itself at various lags.
 - Lag 1: The correlation between the current value and the value 1 time step earlier.
 - Lag 2: The correlation between the current value and the value 2 time steps earlier, and so on.
- The correlations range between -1 and +1:
 - +1: Perfect positive correlation (the current and lagged values move in the same direction).
 - -1: Perfect negative correlation (the current and lagged values move in opposite directions).
 - **0**: No correlation (the lagged values have no linear relationship with the current values).

Autocorrelation Function (ACF): Interpretation

Significant Spikes: Spikes in the ACF plot outside the confidence bounds (often shown as a shaded area) indicate significant autocorrelation at that lag.

- **Gradual Decline**: A slow decay in the ACF indicates non-stationarity or the presence of a trend.
- **Seasonality**: Peaks at regular intervals suggest seasonality (e.g., a spike at lag 12 for monthly data with yearly seasonality).

White Noise: If all points in the ACF plot fall within the confidence interval, the time series is likely white noise, meaning it has no significant autocorrelation and is unpredictable.

Partial Autocorrelation Function (PACF)

- Measures the correlation between a time series and its lagged values.
- Unlike ACF, PACF controls for intermediate lags.
- Isolates the **direct relationship** between the current observation and a specific lag.
- How PACF works?
 - At lag 1, PACF = ACF (no previous lags to account for).
 - At lag 2, PACF measures correlation between Yt and Yt-2 after removing effect of Yt-1.
 - Continues for higher lags by controlling for all shorter lags.
- Identifies autoregressive (AR) order in ARIMA models.
- Img: geeksforgeeks

Autocorrelation Function (ACF) Plot

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

Partial Autocorrelation Function (PACF) Plot

SARIMA Model

- Seasonal Autoregressive Integrated Moving Averages (SARIMA)
- Extension of the ARIMA model.
- Captures both non-seasonal and seasonal patterns in time series data.
- Key Components of SARIMA
 - p, d, q: Non-seasonal ARIMA components.
 - **p**: Number of autoregressive terms (AR).
 - **d**: Differencing to make data stationary (I).
 - **q**: Number of moving average terms (MA).
 - o P, D, Q, s: Seasonal ARIMA components.
 - P: Number of seasonal autoregressive terms.
 - D: Seasonal differencing.
 - Q: Number of seasonal moving average terms.
 - **s**: Length of the seasonal cycle (e.g., 12 for monthly data with yearly seasonality).

Manual Detection of Parameters

For Non-Seasonal Model:

- ACF is decaying exponentially.
- In PACF we have 1 significant spike.
- Value of d = 2 (As we saw, we needed to difference it twice in non-seasonal).
- Hence, we will consider AR(1) model (p = 1, q = 0)

For Seasonal Model:

- D = 1 (Considering value of p = 0.058 as satisfactory)
- No seasonalities are found in ACF, PACF plots, we will go with P = 0, Q = 0.
- S = 12 for accounting monthly data

```
from statsmodels.tsa.statespace.sarimax import SARIMAX
# Prediction using manual detection of SARIMA parameters
# For non-seasonal model, as stated above we will go with AR(1) model
p,d,q = 1,2,0
P,D,Q,s = 0,1,0,12
sarima model = SARIMAX(train data['Number Trucks Sold'], order = (p,d,q), seasonal order = (P,D,Q,s))
sarima model fit = sarima model.fit(disp = False)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred to
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model.py:473: ValueWarning: No frequency information was provided, so inferred t
  self. init dates(dates, freq)
# Forecasting
n test = len(test data['Number Trucks Sold'])
forecast = sarima model fit.forecast(steps = n test)
```

```
[ ] # Finding RMSE
from sklearn.metrics import mean_squared_error

test_actual = test_data['Number_Trucks_Sold'].values
test_predicted = forecast.values
rmse = np.sqrt(mean_squared_error(test_actual, test_predicted))
print(f"Root Mean Squared Error (RMSE): {rmse}")
Root Mean Squared Error (RMSE): 302.70261731074197
```

```
import matplotlib.pyplot as plt
plt.figure(figsize = (10,6))
plt.plot(train data.index, train data['Number Trucks Sold'].values, label='Train Data')
plt.plot(test data.index, test actual, label='Test Data')
plt.plot(test data.index, test predicted, label='Predicted Test Data', linestyle='--')
plt.legend(loc='upper left')
plt.title('SARIMA Model Forecast vs Actual Test Data')
ax = plt.gca() # Gets current axis
ax.xaxis.set major locator(MaxNLocator(nbins=12))
plt.show()
```



```
# Trying to find best values using iterations for m = 12
import itertools
from statsmodels.tsa.statespace.sarimax import SARIMAX
import warnings
# Ignore warnings related to statsmodels convergence
warnings.filterwarnings("ignore")
series = train data['Number Trucks Sold']
# Define the range of parameters to test
p = d = q = range(0, 3)
P = D = Q = range(0, 3)
m = 12
# Create a list with all combinations of p, d, q, P, D, Q values
param combinations = list(itertools.product(p, d, q, P, D, Q))
# Initialize variables to store the best parameters and AIC
best aic = float("inf")
best params = None
```

```
# Loop through all parameter combinations
for params in param combinations:
        # Extract parameters
        non seasonal order = (params[0], params[1], params[2])
        seasonal order = (params[3], params[4], params[5], m)
        # Fit SARIMA model
        model = SARIMAX(series,
                        order=non seasonal order,
                        seasonal order=seasonal order,
                        enforce stationarity=False,
                        enforce invertibility=False)
        results = model.fit(disp=False)
        # Compare AIC values
        if results.aic < best aic:
            best aic = results.aic
            best params = (non seasonal order, seasonal order)
        # Print current combination and AIC
        print(f"SARIMA{non_seasonal_order}x{seasonal_order} - AIC: {results.aic}")
    except Exception as e:
        print(f"Error for SARIMA{non seasonal order}x{seasonal order}: {e}")
        continue
```

```
# Print the best combination of parameters and its AIC
print("\nBest Model:")
print(f"SARIMA{best_params[0]}x{best_params[1]} - AIC: {best_aic}")
```

```
SARIMA(2, 2, 2)x(2, 2, 0, 12) - AIC: 433.2283031800341

SARIMA(2, 2, 2)x(2, 2, 1, 12) - AIC: 424.418387587633

SARIMA(2, 2, 2)x(2, 2, 2, 12) - AIC: 411.2543575593715

Best Model:

SARIMA(2, 1, 1)x(0, 1, 2, 12) - AIC: 12.0
```

```
# Prediction using auto detection of SARIMA parameters by for loop
# Here we take the best model given by m = 12 as it has the lowest AIC

p,d,q = 2,1,1

P,D,Q,s = 0,1,2,12

sarima_model2 = SARIMAX(train_data['Number_Trucks_Sold'], order = (p,d,q), seasonal_order = (P,D,Q,s))
sarima_model2_fit = sarima_model2.fit(disp = False)
```

```
# Forecasting

n_test = len(test_data['Number_Trucks_Sold'])
forecast = sarima_model2_fit.forecast(steps = n_test)

# Finding RMSE
from sklearn.metrics import mean_squared_error

test_actual = test_data['Number_Trucks_Sold'].values
test_predicted2 = forecast.values
rmse = np.sqrt(mean_squared_error(test_actual, test_predicted2))
print(f"Root Mean Squared Error (RMSE): {rmse}")

Root Mean Squared Error (RMSE): 67.40059180983118
```

```
plt.figure(figsize = (10,6))
  plt.plot(train_data.index, train_data['Number_Trucks_Sold'].values, label='Train_Data')
  plt.plot(test_data.index, test_actual, label='Test_Data')
  plt.plot(test_data.index, test_predicted2, label='Predicted Test_Data', linestyle='--')
  plt.legend(loc='upper_left')
  plt.title('SARIMA Model Forecast vs Actual Test_Data')
  ax = plt.gca() # Gets_current_axis
  ax.xaxis.set_major_locator(MaxNLocator(nbins=12))
  plt.show()
```


Forecasting Future Data

Findings

RMSE Error through Manual Detection: 302.702

RMSE Error through Auto Detection: 67.4

Percentage Error Reduction: 77.73%

Forecast made for next 2 yrs using Auto detection of SARIMA Model parameters.

Advantages of Auto Detection

Integrating Automation helps in improving prediction by reducing error

Auto detection iterated through 729 combinations by taking a couple of mins!

Manual Detection would have been a lot time consuming as well as error-prone.

```
p import itertools

p = d = q = range(0, 3)
P = D = Q = range(0, 3)
m = 4

# Create a list with all combinations of p, d, q, P, D, Q values
param_combinations = list(itertools.product(p, d, q, P, D, Q))
len(param_combinations)
729
```

Thank You