

Kapitel VII

ÜBERWACHTES LERNEN TEIL 1: NAÏVE BAYES

K

Suchen

Lernen/Schließen

Anwendungen

(un-)informiert

Logik

Computer Vision

lokal

Wahrscheinlichkeiten

Robotik

adversial

Überwacht

Ethik und Risiken

Mit Unsicherheit

Unüberwacht

- Bayes'sches Lernen
- Maximum-a-posteriori-Hypothese
- Maximum-likelihood-Hypothese
- Naïve-Bayes-Classifier
- Fazit, Beispiele

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, .008 of the entire population have this cancer.

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, .008 of the entire population have this cancer.

$$P(cancer) = 0,008$$
 $P(\neg cancer) = 0,992$ $P(+|cancer) = 0,98$ $P(-|cancer) = 0,02$ $P(+|\neg cancer) = 0,03$ $P(-|\neg cancer) = 0,97$

Hat der Patient Krebs?

- Wahrscheinlichkeitstheorie
 - Bayes'-Theorem / Gesetz

Testergebnis

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood } \cdot \text{prior}}{\text{evidence}}$$
Krebs

Wahrscheinlichkeitstheorie

$$P(cancer) = 0,008$$
 $P(\neg cancer) = 0,992$ $P(+|cancer) = 0,98$ $P(-|cancer) = 0,02$ $P(+|\neg cancer) = 0,03$ $P(-|\neg cancer) = 0,97$

$$P(cancer | +) = \frac{P(+ | cancer) \ P(cancer)}{P(+)}$$

$$P(cancer | +) = \frac{P(+ | cancer) \ P(cancer)}{P(+ | cancer) P(cancer) + P(+ | \neg cancer) P(\neg cancer)}$$

Wahrscheinlichkeitstheorie

$$P(cancer) = 0,008$$
 $P(\neg cancer) = 0,992$ $P(+|cancer) = 0,98$ $P(-|cancer) = 0,02$ $P(+|\neg cancer) = 0,03$ $P(-|\neg cancer) = 0,97$

$$P(cancer | +) = \frac{P(+ | cancer) \ P(cancer)}{P(+)}$$

$$P(cancer|+) = \frac{0,98 \quad 0,008}{0,98 \quad 0,008 \quad 0,992}$$

$$P(cancer|+) = \frac{0,00784}{0,00784 + 0,02976} \approx 0,21$$

Hat der Patient Krebs?

Wahrscheinlichkeitstheorie

$$P(cancer) = 0,008$$
 $P(\neg cancer) = 0,992$ $P(+|cancer) = 0,98$ $P(-|cancer) = 0,02$ $P(+|\neg cancer) = 0,03$ $P(-|\neg cancer) = 0,97$

$$P(\neg cancer \mid +) = \frac{P(+ \mid \neg cancer) \ P(\neg cancer)}{P(+)}$$

$$P(\neg cancer \mid +) = \frac{P(+ \mid \neg cancer) \ P(\neg cancer)}{P(+ \mid cancer)P(cancer) + P(+ \mid \neg cancer)P(\neg cancer)}$$

Wahrscheinlichkeitstheorie

$$P(cancer) = 0,008$$
 $P(\neg cancer) = 0,992$ $P(+|cancer) = 0,98$ $P(-|cancer) = 0,02$ $P(+|\neg cancer) = 0,03$ $P(-|\neg cancer) = 0,97$

$$P(\neg cancer \mid +) = \frac{P(+ \mid \neg cancer) \ P(\neg cancer)}{P(+)}$$

$$P(\neg cancer | +) = \frac{0,03}{0,98} \quad 0,008 \quad + 0,03 \quad 0,992$$

$$P(\neg cancer | +) = \frac{0,02976}{0,00784 + 0,02976} \approx 0,79$$

Der Vollständigkeit halber ...

MAP

- Die Maximum-A-Posteriori (MAP) Hypothese ist die Hypothese, die für gegebene / bekannte Daten am wahrscheinlichsten ist
- Im Beispiel gilt
 - P(cancer|+) = 0.21
 - $P(\neg cancer | +) = 0.79$
- Wahrscheinlichste Hypothese nach Vorliegen des Testergebnisses: der Patient hat keinen Krebs ...

MAP

 Die Reihenfolge der Hypothesen ist unabhängig von der Wahrscheinlichkeit für das Auftreten der Daten

$$P(x \mid y) = \frac{P(y \mid x) \ P(x)}{P(y)} = \frac{\text{likelihood } \cdot \text{prior}}{\text{evidence}}$$
Für alle Hypothesen gleich, vergleiche Faktor η

$$x_{MAP} = \underset{x \in X}{\operatorname{arg max}} \frac{P(y \mid x) \ P(x)}{P(y)} = \underset{x \in X}{\operatorname{arg max}} \ P(y \mid x) \ P(x)$$

• ML

 Wenn die Auftretenswahrscheinlichkeit für die Hypothesen gleich groß ist, gilt also

$$x_{\rm ML} = \arg \max P(y|x)$$

-P(y|x) wird auch als *likelihood* bezeichnet, daher ist $x_{\rm ML}$ Maximum-Likelihood (ML) Hypothese

Naïve Bayes (Classifier)

- "Lernverfahren" zur Klassifikation = Vorhersage eines Wertes
- Gegeben ist eine Menge von Beispielen mit Attributwerten $a_1, a_2, ..., a_n$ (z.B. Symptome)
- Für jedes Beispiel ist das Ergebnis (die Klasse) v bekannt
- Was ist die Klasse v^* für ein neues Beispiel?

- Naïve Bayes (Classifier)
 - Was ist die Klasse v^* für ein neues Beispiel?
 - Idee: $v^* = v_{\text{MAP}}$

$$v_{MAP} = \underset{v \in V}{\operatorname{arg max}} P(v \mid a_1, a_2, ..., a_n)$$

$$v_{MAP} = \arg\max_{v \in V} P(a_1, a_2, ..., a_n \mid v) P(v)$$

Wert?

Vorkommen von jedem v in den Trainingsdaten zählen ...

Wert?

Gemeinsames Vorkommen von jedem v und jeder Kombination a_1, \dots, a_n in den Trainingsdaten zählen ...

Wie oft kommt jede Kombination vor? ... zu selten!

Naïve Bayes (Classifier)

- Annahme:
 - a_1, \ldots, a_n sind unabhängig, wenn v bekannt ist
 - Die Auftretenswahrscheinlichkeit für a_1, \dots, a_n läßt sich als Produkt der Einzelauftretenswahrscheinlichkeiten ausdrücken

$$v_{MAP} = \underset{v \in V}{\arg \max} \ P(a_1, a_2, ..., a_n \mid v) \ P(v)$$

$$v_{NB} = \underset{v \in V}{\arg \max} \ P(v) \prod_i P(a_i \mid v)$$

Die Werte P(v) und $P(a_i|v)$ werden an Hand der Trainingsdaten geschätzt

- Naïve Bayes (Classifier)
 - Lernschritt:
 - Bestimme die Auftretenshäufigkeiten für alle v und alle Paare (a_i, v) ; speichere die Werte
 - Klassifikationsschritt:
 - Bestimme

$$v_{NB} = \underset{v \in V}{\operatorname{arg max}} P(v) \prod_{i} P(a_i \mid v)$$

anhand der gespeicherten Werte

Naïve Bayes (Classifier)

 $Naive_Bayes_Learn(examples)$

For each target value v_j

$$\hat{P}(v_j) \leftarrow \text{estimate } P(v_j)$$

For each attribute value a_i of each attribute a

$$\hat{P}(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$$

 $Classify_New_Instance(x)$

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in x} \hat{P}(a_i | v_j)$$

- Naïve Bayes (Classifier)
 - Beispiel: Ist "Tennis-Spielen" wahrscheinlich?
 - Attribute:
 - Vorhersage sonnig, bewölkt, regnerisch
 - Temperatur heiß, mild, kalt
 - Luft feucht, trocken
 - Wind windig, windstill
 - Ergebnis:
 - Tennis ja / nein

Naïve Bayes (Classifier)

– Beispiel: Ist "Tennis-Spielen" wahrscheinlich?

Day	Outlook	${\bf Temperature}$	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Naïve Bayes

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Naïve Bayes

–Beispiel: Ist "Tennis-Spielen" wahrscheinlich?

Aktuelle Vorhersage: sonnig, kalt, feucht, windig

$$v_{NB} = \underset{v \in V}{\operatorname{arg\,max}} P(v) \prod_{i} P(a_i \mid v)$$

$$P(\text{sonnig}|ja) = 2/9$$

$$P(\text{sonnig}|\text{nein}) = 3/5$$

$$P(kalt|ja) = 3/9$$

$$P(kalt|nein) = 1/5$$

$$P(feucht|ja) = 3/9$$

$$P(feucht|nein) = 4/5$$

$$P(windig|ja) = 3/9$$

$$P(windig|nein) = 3/5$$

P(ja)P(sonnig|ja)P(kalt|ja)P(feucht|ja)P(windig|ja) =

$$= \frac{9}{14} \cdot \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} = 0,005291005$$

P(nein)P(sonnig|nein)P(kalt|nein)P(feucht|nein)

$$P(\text{windig}|\text{nein}) = \frac{5}{14} \cdot \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} = 0,020571429$$

Klassifikation: nein (kein Tennis)

- Naïve Bayes (Classifier)
 - Fazit:
 - Nicht sehr kompliziert
 - Annahme in der Praxis selten "wirklich erfüllt"
 - Trotzdem sehr praxistauglich!

• Naïve Bayes (Classifier): Klausurthema

kNN	ANN	NB
ja	ja	nein
nein	ja	ja
ja	nein	ja
ja	ja	nein
ja	nein	ja
ja	ja	nein
nein	ja	nein
ja	ja	nein

• Naïve Bayes (Classifier): Klausurthema

kNN	ANN	NB	Nächste
ja	ja	nein	ja
nein	ja	ja	ja
ja	nein	ja	nein
ja ja	ja	nein	ja
ja	nein	ja	nein
ja	ja	nein	nein
nein	ja	nein	nein
ja	ja	nein	???

Naïve Bayes (Classifier): Klausurthema

kNN	ANN	NB	Nächste	v_{NB}
ja	ja	nein	ja	IV D
nein	ja	ja	ja	
ja	nein	ja	nein	Ко
ja	ja	nein	ja	NO
ja	nein	ja	nein	Sin
ja	ja	nein	nein	
nein	ja	nein	nein	WI
ja	ja	nein	555	

$$v_{NB} = \arg\max_{v \in V} P(v) \prod_{i} P(a_i \mid v)$$

Kommt NB dran?

Sind die Attribute wirklich unabhängig?

$$v_{\text{ja}} = p(\text{ja}) \cdot p(\text{kNN}|\text{ja}) \cdot p(\text{ANN}|\text{ja}) \cdot p(\text{NB}|\text{ja}) = \frac{3}{7} \cdot \frac{2}{3} \cdot \frac{3}{3} \cdot \frac{1}{3} = \frac{7}{189} \approx 0,095$$

 $v_{\text{nein}} = p(\text{nein}) \cdot p(\text{kNN}|\text{nein}) \cdot p(\text{ANN}|\text{nein}) \cdot p(\text{NB}|\text{nein}) = \frac{4}{7} \cdot \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{2}{4} = \frac{48}{448} \approx 0,107$