INDIAN STATISTICAL INSTITUTE

M.Stat. 2nd Year

BAYESIAN INFERENCE

ASSIGNMENT II

- 1. Consider the linear regression model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where $\mathbf{y} = (y_1, \dots, y_n)'$ is the vector of observations on the "dependent" variable, $\mathbf{X} = ((x_{ij}))_{n \times p}$ is of full rank, x_{ij} being the values of the nonstochastic regressor variables, $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)'$ is the vector of regression coefficients and the components of $\boldsymbol{\epsilon}$ are independent, each following $N(0, \sigma^2)$. Consider the noninformative prior $\pi(\boldsymbol{\beta}, \sigma^2) \propto \frac{1}{\sigma^2}$, $\boldsymbol{\beta} \in \mathcal{R}^p$, $\sigma^2 > 0$.
 - (a) Find the $100(1-\alpha)\%$ HPD credible set for β .
- (b) Find the marginal posterior distribution of a particular β_j (j = 1, ..., p) and use it to find the $100(1 \alpha)\%$ HPD credible set for β_j .
- 2. Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$ variables where μ and σ^2 are both unknown. Consider the prior $\pi(\mu, \sigma^2) \propto 1/\sigma^2$. Show that the posterior predictive distribution of a future observation X_{n+1} is a t distribution with n-1 d.f., location \bar{X}_n and scale $(1+1/n)^{1/2}s$ where $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$.
- 3. Consider the setup of the theorem on asymptotic normality of posterior distribution (Theorem 4.2 of the book by Ghosh et al. (2006)), proved in the class for a proper prior.
- (a) Suppose that the prior is improper but there is an n_0 such that the posterior distribution of θ given x_1, \ldots, x_{n_0} is proper for a.e. (x_1, \ldots, x_{n_0}) . Show that the theorem holds also in this case.
- (b) In addition to the assumptions of Theorem 4.2, assume that the prior density $\pi(\theta)$ has a finite expectation. Proceeding as in the proof of Theorem 4.2 and using the assumption of finite expectation for π , show that

$$\int_{\mathcal{R}} |t| |\pi_n^*(t|X_1, \dots, X_n) - \frac{\sqrt{I(\theta_0)}}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2I(\theta_0)} |dt \to 0$$

with P_{θ_0} -probability one.

4. Suppose we have observations X_1, \ldots, X_n . Under model M_0, X_i are i.i.d. N(0,1) and under model M_1, X_i are i.i.d. $N(\theta,1), \theta \in \mathcal{R}$. Consider the noninformative prior $g_1(\theta) \equiv 1$ for θ under M_1 . Show that if we use training samples of size 2 and calculate the corresponding AIBF, the corresponding intrinsic prior will be N(0,1).

Bayesian variable selection based on g-prior in normal linear regression models

Consider the regression problem with response variable y and a set of potential predictor variables x_1, x_2, \ldots, x_p . Let $\mathbf{y}_n = (y_1, y_2, \ldots, y_n)'$ be a vector of observations on the response variable and $\mathbf{X}_n = (\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_p)$ be an $n \times p$ design matrix. Here \mathbf{x}_i is an $n \times 1$ vector of observations on the i^{th} regressor x_i and the j^{th} component of \mathbf{x}_i is associated with y_j , $i = 1, \ldots, p$, $j = 1, \ldots, n$. We assume, without loss of generality, that the columns of \mathbf{X}_n have been centered so that $\mathbf{1}'_n\mathbf{x}_i = 0$ for all i where $\mathbf{1}_n$ is a vector of 1's of length n. Let $\boldsymbol{\mu}_n$ denote $E(\mathbf{y}_n|\mathbf{X}_n)$ and assume

$$\mathbf{y}_n \sim N_n \left(\boldsymbol{\mu}_n, \sigma^2 I_n \right),$$

where σ^2 is unknown and I_n is the $n \times n$ identity matrix. We are interested in capturing the functional relationship, if any, between μ_n and \mathbf{X}_n .

We restrict our search within the class of normal linear models under which μ_n may be expressed as

$$\boldsymbol{\mu}_n = \mathbf{1}_n \beta_0 + \mathbf{X}_n \boldsymbol{\beta},\tag{1}$$

where β_0 is an intercept and $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_p)'$ is a vector of regression coefficients. Our problem is to select a subset of the potential predictor variables x_1, x_2, \dots, x_p . Thus we have a model selection problem and our model space, denoted by $\boldsymbol{\mathcal{A}}$, may be indexed by α , where each α consists of a subset of size $p(\alpha)$ $(1 \le p(\alpha) \le p)$ of $\{1, 2, \dots, p\}$, indicating which regressors

are included in the model. The model M_{α} corresponding to $\alpha \in \mathcal{A}$ may be expressed as a sub-model of (1),

$$M_{\alpha} : \boldsymbol{\mu}_n = \mathbf{1}_n \beta_0 + \mathbf{X}_{n\alpha} \boldsymbol{\beta}_{\alpha},$$
 (2)

where the intercept β_0 is common to all models, $\mathbf{X}_{n\alpha}$ is a sub-matrix of \mathbf{X}_n consisting of the $p(\alpha)$ columns specified by α and $\boldsymbol{\beta}_{\alpha}$ is the $p(\alpha)$ -dimensional vector of regression coefficients.

Bayesian model selection requires specification of prior distribution of the parameters $\boldsymbol{\theta}_{\alpha} = (\beta_0, \boldsymbol{\beta}_{\alpha}, \sigma^2) \in \Theta_{\alpha}$ under each model M_{α} and prior probabilities $p(M_{\alpha})$ of the models. Let $p(\mathbf{y}_n|\boldsymbol{\theta}_{\alpha}, M_{\alpha})$ denote the density of \mathbf{y}_n given $\boldsymbol{\theta}_{\alpha}$ under M_{α} and $p(\boldsymbol{\theta}_{\alpha}|M_{\alpha})$ denote the prior density of $\boldsymbol{\theta}_{\alpha}$ under M_{α} . Then the posterior probability of the model M_{α} , $\alpha \in \boldsymbol{\mathcal{A}}$, is given by

$$p(M_{\alpha}|\mathbf{y}_n) = \frac{p(M_{\alpha})m_{\alpha}(\mathbf{y}_n)}{\sum_{\alpha \in \mathcal{A}} p(M_{\alpha})m_{\alpha}(\mathbf{y}_n)},$$
(3)

where
$$m_{\alpha}(\mathbf{y}_n) = \int p(\mathbf{y}_n | \boldsymbol{\theta}_{\alpha}, M_{\alpha}) p(\boldsymbol{\theta}_{\alpha} | M_{\alpha}) d\boldsymbol{\theta}_{\alpha}$$
 (4)

is the marginal density of \mathbf{y}_n under M_{α} . In this paper, we consider the model selection procedure that selects the model with highest posterior probability.

A very popular conventional prior for the parameters β_{α} is the conjugate g-prior due to Zellner (1986) given in (6). In the present scenario, β_0 and σ^2 may be regarded as parameters common to all the models and the suggested default priors are

$$p(\beta_0, \sigma^2 | M_\alpha) = \frac{1}{\sigma^2} \tag{5}$$

$$\boldsymbol{\beta}_{\alpha}|\beta_0, \sigma^2, M_{\alpha} \sim N_{p(\alpha)}(\mathbf{0}, g\sigma^2(\mathbf{X}'_{n\alpha}\mathbf{X}_{n\alpha})^{-1})$$
 (6)

for some g > 0 (see, for example, Liang et al. (JASA, 2008), Section 2.1).

Given the priors (5) and (6), the marginal likelihood under the model M_{α} , $\alpha \in \mathcal{A}$, is given by

$$m_{\alpha}(\mathbf{y}_{n}) = \frac{\Gamma(n-1)/2}{\pi^{(n-1)/2}\sqrt{n} (1+g)^{p(\alpha)/2}} \times \left[(1-a)\sum_{i=1}^{n} (y_{i}-\overline{y})^{2} + a\mathbf{y}'_{n}(I_{n}-P_{n}(\alpha))\mathbf{y}_{n} \right]^{-(n-1)/2}$$
(7)

where a = g/(1+g) and $P_n(\alpha) = \mathbf{Z}_{n\alpha} [\mathbf{Z}'_{n\alpha} \mathbf{Z}_{n\alpha}]^{-1} \mathbf{Z}'_{n\alpha}$ is the projection matrix onto the span of $\mathbf{Z}_{n\alpha} = [\mathbf{1}_n, \mathbf{X}_{n\alpha}], \alpha \in \mathcal{A}$. The model selection rule is to choose the model M_{α} with highest posterior probability, that is, we choose the model M_{α} for which $p(M_{\alpha})m_{\alpha}(\mathbf{y}_n)$ is the largest among all $\alpha \in \mathcal{A}$.

- 5. Show that the marginal likelihood $m_{\alpha}(\mathbf{y}_n)$ under the model M_{α} in the above variable selection problem is given by (7) above.
- 6. Consider the example of hierarchical Bayesian analysis of the usual one-way ANOVA (Example 7.13 of the book by Ghosh et al. 2006, page 227) discussed in the class.

Take k=10 and $n_i=25$ for all i. Generate 10 samples, each of size 25, from 10 normal populations. Choose 10 different values of the poulation means $\theta_1, \ldots, \theta_{10}$ and a common value of the population variance. Choose the values of the hyperparameters $a_1, a_2, b_1, b_2, \mu_0, \sigma_0^2$ so that the corresponding priors are not very informative. Use the Gibbs sampling procedure to estimate the poulation means. Do the same for five different choices of $(a_1, a_2, b_1, b_2, \mu_0, \sigma_0^2)$.

Do the above (a) using WinBUGS and also (b) using your own code written in your favourite programming language such as R or Python.