Genus theory characters and DDH

Jana Sotáková

University of Amsterdam/QuSoft

March 17, 2022

Joint work with Wouter Castryck and Frederik Vercauteren Breaking the decisional Diffie-Hellman problem for class group actions using genus theory

https://eprint.iacr.org/2020/151

Today

Want to study the CRS/CSIDH group action

$$E' = [\mathfrak{a}] \star E$$

- ▶ Given such E and E', what can we say about [a]?
- Attack the following problem:

Decisional Diffie-Hellman problem for isogeny group actions: Given elliptic curves E, E_A = [\mathfrak{a}] \star E, E_B = [\mathfrak{b}] \star E and an elliptic curve E', decide whether E' = E_{AB} = [$\mathfrak{a}\mathfrak{b}$] \star E.

Orders in imaginary quadratic fields

 \mathcal{O} order in an imaginary quadratic number field:

$$\mathcal{O} = \mathbb{Z}[\omega] = \{ a + b\omega : a, b \in \mathbb{Z} \}$$

for some ω satisfying a quadratic equation

$$x^2-tx+q=0$$

with discriminant $\Delta = t^2 - 4q < 0$.

Examples

Let p be a prime.

- ▶ the order $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ has discriminant $\Delta = -4p$.
- ▶ the order $\mathcal{O} = \mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$ has discriminant $\Delta = -p$ (if $p \equiv 3 \mod 4$).

Quadratic characters of the class group

Let \mathcal{O} be an order of discriminant Δ in an imaginary quadratic field.

Write $\Delta = -2^a \cdot \prod_{i=1}^r m_i^{e_i}$ for distinct odd primes m_i .

Theorem (Genus theory)

All quadratic characters of $CI(\mathcal{O})$ are given by (products of):

for every odd prime m_i:

$$\chi_m: \mathsf{CI}(\mathcal{O}) \to \{\pm 1\} \qquad [\mathfrak{a}] \mapsto \left(\frac{\mathsf{norm}(\mathfrak{a})}{m}\right)$$

where a is any representative of [a] satisfying gcd(m, norm(a)) = 1.

• Define $\delta: \mathfrak{a} \mapsto (-1)^{(\mathsf{norm}(\mathfrak{a})-1)/2} \qquad \varepsilon: \mathfrak{a} \mapsto (-1)^{(\mathsf{norm}(\mathfrak{a})^2-1)/8}$

if $\Delta = -4n$, extend the set of characters by

- 1. δ if $n \equiv 1, 4, 5 \pmod{8}$.
- 2. ε if $n \equiv 6 \pmod{8}$.
- 3. $\delta \varepsilon$ if $n \equiv 2 \pmod{8}$.

There is one relation between these characters:

$$\chi_{m_1}^{e_1} \cdot \dots \cdot \chi_r^{e_r} \cdot \delta^{\frac{b+1}{2} \mod 2} \cdot \varepsilon^{a \mod 2} \equiv 1$$
 on $CI(\mathcal{O})$

Endomorphisms

E elliptic curve over \mathbb{F}_q . The rational endomorphism ring

$$\mathsf{End}_{\mathbb{F}_q}(E) = \{ \mathbb{F}_q \text{-isogenies } \varphi : E \to E \} \cup \{ 0 \}.$$

Frobenius endomorphism: for E/\mathbb{F}_q , given as

$$\pi: E \longrightarrow E$$
$$(x,y) \longmapsto (x^q, y^q).$$

Fact: Elliptic curve
$$E/\mathbb{F}_q$$
 with $\#E(\mathbb{F}_q)=q+1-t$, then $t=\operatorname{tr} \pi$ and $\pi^2-t\pi+q=0$.

Endomorphism ring dichotomy

 E/\mathbb{F}_q elliptic curve. Frobenius satisfies

$$\pi^2 - t\pi + q = 0.$$

But $|t| \le 2\sqrt{q}$ so $t^2 - 4q \le 0$.

Theorem (Waterhouse, Theorem 4.1):1

1. If $t^2 - 4q < 0$ then $\mathbb{Q}(\pi)$ is an imaginary quadratic field and

$$\mathsf{End}_{\mathbb{F}_q}(E) \hookrightarrow \mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{t^2 - 4q})$$

as an order \mathcal{O} containing $\mathbb{Z}[\pi]$.

2. If $t^2 - 4q = 0$ then $\pi = \pm \sqrt{q} = \pm p^{n/2}$ and

$$\operatorname{End}_{\mathbb{F}_q}(E) \hookrightarrow B_{p,\infty}$$

as a maximal order \mathcal{O} in a quaternion algebra ramified only at p and ∞ .

¹Waterhouse's thesis: Abelian varieties over finite fields, 1969

CM action

E elliptic curve over \mathbb{F}_q with q+1-t points, $\Delta=t^2-4q\neq 0$, $\operatorname{End}_{\mathbb{F}_q}(E)=\mathcal{O}$ an order in an imaginary quadratic field $\mathbb{Q}(\pi)$ and \mathcal{O} contains $\mathbb{Z}[\pi]$.

Fact: Any (invertible) ideal \mathfrak{a} defines an isogeny of degree $\deg \varphi = \operatorname{norm}(\mathfrak{a})$:

$$\varphi: E \to [\mathfrak{a}] \star E$$
.

$$\mathcal{E}\!\ell\ell(\mathcal{O},t) = \{ \, \mathsf{elliptic} \; \mathsf{curves} \; E/\mathbb{F}_q \, : \, \mathsf{End}_{\mathbb{F}_q}(E) \cong \mathcal{O} \; \mathsf{and} \; \mathsf{tr}(\pi) = t \, \} / \cong_{\mathbb{F}_q} .$$

The main theorem of complex multiplication:

For any $E, E' \in \mathcal{E}\ell\ell(\mathcal{O}, t)$ there exists a unique class $[\mathfrak{a}] \in \mathsf{Cl}(\mathcal{O})$ such that

$$E'=[\mathfrak{a}]\star E.$$

The group $Cl(\mathcal{O})$ acts on $\mathcal{E}\ell\ell(\mathcal{O},t)$ freely and transitively* by $([\mathfrak{a}],E)\mapsto [\mathfrak{a}]\star E.$

Problems in isogeny-based cryptography

The main problem for group-action isogeny protocols:

Given two elliptic curves $E, E' = [\mathfrak{a}] \star E$ connected by a secret ideal class $[\mathfrak{a}]$, obtain $[\mathfrak{a}]$.

Computational Diffie-Hellman problem:

Given three elliptic curves $E, E_A = [\mathfrak{a}] \star E, E_B = [\mathfrak{b}] \star E$ connected by secret ideal classes $[\mathfrak{a}], [\mathfrak{b}],$ compute $E_{AB} = [\mathfrak{a}\mathfrak{b}] \star E$.

'Decisional Diffie-Hellman problem' for group-action isogeny protocols:

Given elliptic curves $E, E_A = [\mathfrak{a}] \star E, E_B = [\mathfrak{b}] \star E$ and an elliptic curve E', decide whether $E' = E_{AB} = [\mathfrak{a}\mathfrak{b}] \star E$.

Problem we start with:

Given two elliptic curves $E, E' = [\mathfrak{a}] \star E$ connected by a secret ideal class $[\mathfrak{a}]$, obtain non-trivial information about $[\mathfrak{a}]$.

Isogenies and pairings

Elliptic curves E, E', unknown isogeny $\varphi : E \to E'$. Take some m.

The (reduced) Tate pairing (assume that $\mu_m \subset \mathbb{F}_q$):

$$T_m:$$
 $E(\mathbb{F}_q)[m] \times E(\mathbb{F}_q)/mE(\mathbb{F}_q) \longrightarrow \mu_m \subset \mathbb{F}_q$ $(P,Q) \longmapsto T_m(P,Q)$

is a non-degenerate bilinear pairing compatible with isogenies:

$$T_m(\varphi(P), \varphi(Q)) = T_m(P, Q)^{\deg(\varphi)}.$$

More on the Tate pairing

Elliptic curves E, E', unknown isogeny $\varphi : E \to E'$. Take some m.

Non-degenerate bilinear pairing compatible with isogenies:

$$T_m(\varphi(P), \varphi(Q)) = T_m(P, Q)^{\deg(\varphi)}.$$

Self-pairings

There can be non-trivial self-pairings $T_m(P, P) \neq 1$;

Use discrete logs

From P and $\varphi(P)$, we get $\deg(\varphi) \pmod{m}$.

Problems

The isogeny $\varphi: E \to E'$ is secret.

Quadratic characters of the class group

Let \mathcal{O} be an order of discriminant Δ in an imaginary quadratic field. Write $\Delta = -2^a \cdot b$ with $b = \prod_{i=1}^r m_i^{e_i}$ for distinct odd primes m_i .

Theorem (Genus theory)

All quadratic characters of $CI(\mathcal{O})$ are given by (products of):

for every odd prime m_i:

$$\chi_m : \mathsf{CI}(\mathcal{O}) \to \{\pm 1\} \qquad [\mathfrak{a}] \mapsto \left(\frac{\mathsf{norm}(\mathfrak{a})}{m}\right)$$

where a is any representative of [a] satisfying gcd(m, norm(a)) = 1.

• Define
$$\delta: \mathfrak{a} \mapsto (-1)^{(\mathsf{norm}(\mathfrak{a})-1)/2} \qquad \varepsilon: \mathfrak{a} \mapsto (-1)^{(\mathsf{norm}(\mathfrak{a})^2-1)/8}$$

if $\Delta = -4n$, extend the set of characters by

- 1. δ if $n \equiv 1, 4, 5 \pmod{8}$.
- 2. ε if $n \equiv 6 \pmod{8}$.
- 3. $\delta \varepsilon$ if $n \equiv 2 \pmod{8}$.

There is one relation between these characters:

$$\chi_{m_1}^{e_1} \cdot \dots \cdot \chi_r^{e_r} \cdot \delta^{\frac{b+1}{2} \mod 2} \cdot \varepsilon^{a \mod 2} \equiv 1$$
 on $CI(\mathcal{O})$

Genus theory consequences

 \mathcal{O} imaginary quadratic order with discriminant Δ .

For every odd prime $m \mid \Delta$, there is a quadratic character

$$\chi_m: \mathsf{CI}(\mathcal{O}) \to \{\pm 1\} \qquad [\mathfrak{a}] \mapsto \left(\frac{\mathsf{norm}(\mathfrak{a})}{m}\right).$$

We can then write $\chi_m([\mathfrak{a}])$.

Non-trivial characters: whenever $\Delta \neq -m, -4m$ for a prime $m \equiv 3 \mod 4$.

No non-trivial characters for CSIDH or CSURF.

Almost always non-trivial characters for ordinary curves or supersingular curves with $p \equiv 1 \mod 4$.

Problem 2 taken care of.

Dealing with problem 1

Assume now *m* prime and *E* ordinary.

We assumed $E(\mathbb{F}_q)[m]$ cyclic. What if $E(F_q)[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$?

Denote $E(\mathbb{F}_q)[m^{\infty}] = \{P \in E(\mathbb{F}_q) : P \text{ has order a power of } m\}.$

Isogeny volcanoes

By a sequence of isogenies, we can replace E with \overline{E} with $\overline{E}(\mathbb{F}_q)[m^{\infty}]$ cyclic.

Isogeny volcano

Step back

 $E, E' \in \mathcal{E}\ell(\mathcal{O}, t)$ be elliptic curves with $E' = [\mathfrak{a}] \star E$.

If we have for an odd prime $m|\Delta$:

- ▶ such that χ_m is non-trivial, whenever $\Delta \neq -m, -4m$ for a prime $m \equiv 3 \mod 4$
- ▶ there is a pair of points $P \in E(\mathbb{F}_q)[m]$ and $P' \in E'(\mathbb{F}_q)[m]$ satisfying $P \mapsto kP'$, e.g. whenever $E(\mathbb{F}_q)$ cyclic or reducing by using volcanoes to this case
- ▶ and the self-pairing $T_m(P, P) \neq 1$ is non-trivial, then we can compute

$$\chi_m([\mathfrak{a}]) = \left(\frac{\mathsf{norm}(\mathfrak{a})}{m}\right)$$

just from the elliptic curves E and E'.

New exciting work

Castryck, Houben, Vercauteren, Wesolowski ia.cr/2022/345

- ▶ Play the same game for O-oriented curves
- Oriented curves form infinite volcanoes
- Fixable using 'distortion maps' and the Weil pairing

Conclusions

- 1. We can compute characters $\chi_m([\mathfrak{a}])$ and the even modulus characters $\delta, \epsilon, \delta\epsilon$, directly from the elliptic curves $E, E' = [\mathfrak{a}] \star E$.
- 2. Use any character χ to break DDH:

Given three elliptic curves E_A , E_B , E' with $E_A = [\mathfrak{a}] \star E_0$, $E_B = [\mathfrak{b}] \star E_0$ obtained by the Diffie-Hellman protocol, decide whether $E' = E_{AB} = [\mathfrak{a}\mathfrak{b}] \star E_0$.

- From E_A and E_0 compute $\chi([\mathfrak{a}])$,
- Compute the character from E' and E_B and check whether it is equal to $\chi([\mathfrak{a}])$.
- 3. The attack works in polynomial time in $\log p$ whenever Δ has a small factor: heuristically almost always,
- 4. Only use $\mathcal O$ with odd class group to avoid this attack \Rightarrow use CSIDH, CSURF.

Thanks for your attention!

Breaking the decisional Diffie-Hellman problem for class group actions using genus theory

Wouter Castryck and Jana Sotáková and Frederik Vercauteren

https://eprint.iacr.org/2020/151

jana-sotakova.github.io