Math 501 Homework (§6.4 Taylor's Theorem)

Problem 1. Show that $e^x > 1 + x$ for x > 0.

Solution. Let $I=(0,\infty]$ and $f(x)=e^x$ defined on $I\to\mathbb{R}$. Since $f^{(k)}(x)=e^x$ are all continuous and diffable on I, Taylor's Theorem states that $f(x)=P_1x+R_1x$ (for n=1).

Choose $x_0 = 0$, yielding

$$P_1(x) = e^0 + e^0 x = 1 + x$$

 $R_1(x) = \frac{e^c}{2!} x^2$.

Since, x>0 by definition, $0=x_0 < c < x$. Or $e^c>0$ and $R_1(x)>0$ impling that f(x)>1+x.