Filter Summary Report: CG,Test,simple,Z2,Z4

Generated by MacAnalog-Symbolix

December 20, 2024

Contents

1 Examined H(z) for CG Test simple Z2 Z4: $\frac{Z_4(Z_2g_m+1)}{2Z_2g_m+2}$

 $H(z) = \frac{Z_4 (Z_2 g_m + 1)}{2Z_2 g_m + 2}$

- 2 HP
- 3 BP
- **3.1 BP-1** $Z(s) = \left(\infty, R_2, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$

Parameters:

Q:
$$C_4R_4\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$

Parameters:

Q:
$$C_4R_4\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$
Qz: 0
Wz: None

3.3 BP-3 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$

Parameters:

Q:
$$C_4R_4\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$
Qz: 0
Wz: None

 $H(s) = \frac{L_4 R_4 s}{2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$

$$H(s) = \frac{L_4 R_4 s}{2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

$$H(s) = \frac{L_4 R_4 s}{2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

3.4 BP-4
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

Parameters:

Q:
$$C_4R_4\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$
Qz: 0
Wz: None

3.5 BP-5
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

Parameters:

Q:
$$C_4R_4\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$
Qz: 0
Wz: None

3.6 BP-6
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

Parameters:

Q:
$$C_4R_4\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$
Qz: 0
Wz: None

3.7 BP-7
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

Parameters:

Q:
$$C_4 R_4 \sqrt{\frac{1}{C_4 L_4}}$$

wo: $\sqrt{\frac{1}{C_4 L_4}}$
bandwidth: $\frac{1}{C_4 R_4}$

$$H(s) = \frac{L_4 R_4 s}{2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

$$H(s) = \frac{L_4 R_4 s}{2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

$$H(s) = \frac{L_4 R_4 s}{2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

$$H(s) = \frac{L_4 R_4 s}{2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_4}{2}$$

Qz: 0 Wz: None

3.8 BP-8
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_4 s}{2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$

Parameters:

Q:
$$C_4 R_4 \sqrt{\frac{1}{C_4 L_4}}$$

wo: $\sqrt{\frac{1}{C_4 L_4}}$
bandwidth: $\frac{1}{C_4 R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$
Qz: 0

Wz: None

4 LP

5 BS

5.1 BS-1
$$Z(s) = \left(\infty, R_2, \infty, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{R_4}{L_4}$ K-LP: $\frac{R_2}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.2 BS-2 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \frac{R_4(C_4 L_4 s^2 + 1)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4}$$
 wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth:
$$\frac{R_4}{L_4}$$
 K-LP:
$$\frac{R_4}{2}$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + R_4}{2C_4 L_4 s^2 + 2C_4 R_4 s + 2}$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + R_4}{2C_4 L_4 s^2 + 2C_4 R_4 s + 2}$$

K-HP:
$$\frac{R_4}{2}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.3 BS-3
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{R_4}{L_4}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.4 BS-4
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \frac{R_4(C_4 L_4 s^2 + 1)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{R_4}{L_4}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{1}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.5 BS-5
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{R_4}{L_4} \\ \text{K-LP:} \ \frac{R_4}{2} \\ \text{K-HP:} \ \frac{R_4}{2} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + R_4}{2C_4 L_4 s^2 + 2C_4 R_4 s + 2}$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + R_4}{2C_4 L_4 s^2 + 2C_4 R_4 s + 2}$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + R_4}{2C_4 L_4 s^2 + 2C_4 R_4 s + 2}$$

5.6 BS-6
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{R_4}{L_4}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.7 BS-7
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{R_4}{L_4}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.8 BS-8
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{R_4}{L_4}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

6 **GE**

7 AP

$$H(s) = \frac{C_4 L_4 R_4 s^2 + R_4}{2C_4 L_4 s^2 + 2C_4 R_4 s + 2}$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + R_4}{2C_4 L_4 s^2 + 2C_4 R_4 s + 2}$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + R_4}{2C_4 L_4 s^2 + 2C_4 R_4 s + 2}$$

8 INVALID-NUMER

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, R_2, \infty, R_4, \infty, \infty)$

$$H(s) = \frac{R_4}{2}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, R_2, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{1}{2C_4 s}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, R_2, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_4}{2C_4R_4s + 2}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, R_2, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 R_4 s + 1}{2C_4 s}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, R_2, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{2C_4 s}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, R_2, \infty, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$

$$H(s) = \frac{L_4 s}{2C_4 L_4 s^2 + 2}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, R_2, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{2C_4 s}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, R_2, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{2C_4 L_4 s^2 + 2}$$

10.9 INVALID-ORDER-9 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, R_4, \infty, \infty\right)$

 $H(s) = \frac{R_4}{2}$

10.10 INVALID-ORDER-10 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$

 $H(s) = \frac{1}{2C_4 s}$

10.11 INVALID-ORDER-11 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

 $H(s) = \frac{R_4}{2C_4R_4s + 2}$

10.12 INVALID-ORDER-12 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

 $H(s) = \frac{C_4 R_4 s + 1}{2C_4 s}$

10.13 INVALID-ORDER-13 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$

 $H(s) = \frac{C_4 L_4 s^2 + 1}{2C_4 s}$

10.14 INVALID-ORDER-14 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$

 $H(s) = \frac{L_4 s}{2C_4 L_4 s^2 + 2}$

10.15 INVALID-ORDER-15 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

 $H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{2C_4 s}$

10.16 INVALID-ORDER-16 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$

 $H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{2C_4 L_4 s^2 + 2}$

10.17 INVALID-ORDER-17 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, R_4, \infty, \infty\right)$

 $H(s) = \frac{R_4}{2}$

10.18 INVALID-ORDER-18 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$

 $H(s) = \frac{1}{2C_4 s}$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{2C_4R_4s + 2}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{2C_4 s}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, L_4s + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{2C_4 s}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s}{2C_4 L_4 s^2 + 2}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{2C_4 s}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \infty, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{2C_4 L_4 s^2 + 2}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{2}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{1}{2C_4 s}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{2C_4R_4s + 2}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{2C_4 s}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{2C_4 s}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 s}{2C_4 L_4 s^2 + 2}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{2C_4 s}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{2C_4 L_4 s^2 + 2}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{2}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{1}{2C_4 s}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{2C_4R_4s + 2}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{2C_4 s}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{2C_4 s}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s}{2C_4 L_4 s^2 + 2}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{2C_4 s}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{2C_4 L_4 s^2 + 2}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{2}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{1}{2C_4 s}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{2C_4R_4s + 2}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{2C_4 s}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{2C_4 s}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 s}{2C_4 L_4 s^2 + 2}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{2C_4 s}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{2C_4 L_4 s^2 + 2}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \infty, \ R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4}{2}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \infty, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{1}{2C_A s}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4}{2C_4R_4s + 2}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(\infty, \ \frac{L_{2s}}{C_2 L_2 s^2 + 1} + R_2, \ \infty, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{2C_4 s}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{2C_4 s}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 s}{2C_4 L_4 s^2 + 2}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{2C_4 s}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{2C_4 L_4 s^2 + 2}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{2}$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{1}{2C_4 s}$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{2C_4R_4s + 2}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{2C_4 s}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, L_4s + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{2C_4 s}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s}{2C_4 L_4 s^2 + 2}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{2C_4 s}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{2C_4 L_4 s^2 + 2}$$

11 PolynomialError