Name:

- (10pts) 1. Consider the polynomial x^3-7 in $\mathbb{Q}[x]$. Outside of \mathbb{Q} , this has a root $\sqrt[3]{7}$, so let's consider the extension field $\mathbb{Q}(\sqrt[3]{7})$. We can also consider the quotient ring $\mathbb{Q}[x]/\langle x^3-7\rangle$.
 - (a) In $\mathbb{Q}[x]/\langle x^3-7\rangle$, find the inverse of the coset $\langle x^3-7\rangle+x^2-x$. You should use the Euclidean algorithm (show all your steps) and explain why your answer is correct.

(b) Use your solution above to find the inverse of the element $-\sqrt[3]{7} + \sqrt[3]{7}^2$ in $\mathbb{Q}(\sqrt[3]{7})$. Briefly explain how you know your answer must be correct, even if you don't do any calculations in the field.