PODS Lab 9: Parametric Significance Tests

Hamza Alshamy

Center for Data Science, NYU ha2486@nyu.edu

03/21/25

Z-test

Agenda

- T-test
 - ► Independent T-test Between-group
 - ► Paired T-test Within-group
 - Welch T-test
- Quiz + Discussion

Hypothesis Testing Framework

What is Hypothesis Testing? (A falsification approach)

- A statistical method used to make inferences about a population based on sample data.
- It helps us determine whether an observed effect is real or due to random chance.

► Hypothesis Testing Framework:

- **(a)** Formulate Null (H_0) and Alternative (H_1) Hypotheses
 - \blacktriangleright H_0 : Assumption of no effect or no difference.
 - \vdash H_1 : Assumption of an effect or a difference.
- **②** Choose a Significance Level (α)
 - ightharpoonup Common choices: $\alpha = 0.05, 0.01$.
- - Depends on data type and assumptions.
 - Examples: Z-test, T-test, KS test, Mann-Whitney U test.
- Compute P-value
 - ▶ **Reject** H_0 : If $p \le \alpha$ (statistically significant).
 - **Fail to reject** H_0 : If $p > \alpha$ (not enough evidence).

Parametric Tests

What do we mean by "parametric?"

Parametric Tests

- ► What do we mean by "parametric?"
 - Statistical tests that assume the data follow a specific distribution
 - Each of these parametric tests has a corresponding sampling distribution that their test statistics follow under the null hypothesis.

Parametric Tests

► What do we mean by "parametric?"

- Statistical tests that assume the data follow a specific distribution
- Each of these parametric tests has a corresponding sampling distribution that their test statistics follow under the null hypothesis.

Test	Test Statistic	Sampling Distribution (Under H_0)
Z-test	$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$	$\mathcal{N}(0,1)$ (Standard Normal)
T-test (One-sample)	$T = \frac{\bar{x} - \mu}{s / \sqrt{n}}$	Student's t-distribution with $df = n - 1$
ANOVA (F-test)	$F = \frac{\text{Between-group variance}}{\text{Within-group variance}}$	F-distribution with $df_1 = k - 1$, $df_2 = N - k$

Table: Parametric tests and their distributions

Z-test

Normal Distribution: Z-table

- **Use-case:** Use a Z-test when you want to assess whether a population mean μ is plausible given:
 - ightharpoonup A known population standard deviation σ

Z-score

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

- Algorithm:
 - Compute Z-score
 - 2 Look up the Z-score in a standard Z-table (Clickable link!).
 - Determine the corresponding probability to the Z-score (P-value)

Z-test: Example 1 – One-Tailed Test (H_a smaller than)

Example: Inferring the U.S. female population height (μ) from a sample (\bar{x})

Z-test 0000

- **Given:** $\sigma = 2$, $\bar{x} = 63$, n = 50, $\alpha = 0.01$
- **Hypotheses:**
 - \vdash $H_0: \mu = 64$ inches (5'4")
 - $ightharpoonup H_a: \mu < 64 \text{ inches}$

Z-test: Example 1 – One-Tailed Test (H_a smaller than)

Example: Inferring the U.S. female population height (μ) from a sample (\bar{x})

Z-test 0000

- **Given:** $\sigma = 2$, $\bar{x} = 63$, n = 50, $\alpha = 0.01$
- **Hypotheses:**
 - \vdash $H_0: \mu = 64$ inches (5'4")
 - \vdash H_a : μ < 64 inches
- Z-score:

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{63 - 64}{2 / \sqrt{50}} \approx -3.54$$

Z-test: Example 1 – One-Tailed Test (H_a smaller than)

Example: Inferring the U.S. female population height (μ) from a sample (\bar{x})

- Given: $\sigma = 2$, $\bar{x} = 63$, n = 50, $\alpha = 0.01$
- Hypotheses:
 - \vdash $H_0: \mu = 64$ inches (5'4")
 - $ightharpoonup H_a$: μ < 64 inches
- Z-score:

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{63 - 64}{2 / \sqrt{50}} \approx -3.54$$

- ▶ **P-value:** $P(Z \le -3.54) = 0.00020 < \alpha = 0.01 \Rightarrow \text{Reject } H_0$
- ▶ **Interpretation:** This provides evidence against H_0 and in favor of the claim that the population mean is less than 64 inches.

Z-test: Example 2 – One-Tailed Test (H_a greater than)

Example: Inferring the U.S. female population height (μ) from a sample (\bar{x})

- **▶ Given:** $\sigma = 2$, $\bar{x} = 63$, n = 50, $\alpha = 0.01$
- ► Hypotheses:
 - \vdash $H_0: \mu = 64 \text{ inches } (5'4")$
 - \blacktriangleright $H_a: \mu > 64$ inches
- Z-score:

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{63 - 64}{2 / \sqrt{50}} \approx -3.54$$

- ▶ **P-value:** $P(Z > -3.54) = 1 0.00020 = 0.9998 > \alpha = 0.01 \Rightarrow \text{Fail}$ to reject H_0
- ▶ **Interpretation:** We fail to reject H_0 and do **not** find statistical evidence for that mean height is greater than 64 inches.

Z-test: Example 3 – Two-Tailed Test (H_a : different than)

Example: Inferring the U.S. female population height (μ) from a sample (\bar{x})

- ▶ **Given:** $\sigma = 2$, $\bar{x} = 63$, n = 50, $\alpha = 0.01$
- ► Hypotheses:
 - \vdash $H_0: \mu = 64 \text{ inches } (5'4")$
 - \blacktriangleright $H_a: \mu \neq 64$ inches
- Z-score:

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{63 - 64}{2 / \sqrt{50}} \approx -3.54$$

► P-value:

$$P = 2 \times P(Z \ge |-3.54|) = 2 \times 0.00020 = 0.00040 < \alpha = 0.01 \Rightarrow \text{Reject } H_0$$

▶ Interpretation: We reject H_0 and find statistical evidence that the population mean is **not equal to** 64 inches.

Why Do We Need Another Parametric Test? - The t-test

Limitation of the Z-test: It requires knowing the population standard deviation (σ).

► Why is the t-test helpful?

- It does not require knowledge of the population standard deviation.
- It works well even with small sample sizes.

Common types of (two-sample) t-tests:

- Independent t-test (Between-group): Comparing two separate groups.
- Paired t-test (Within-group): Comparing two related measurements on the same units.
- Welch's t-test: Adjusts for unequal variances across groups.

Student's t-distribution; t-table

- The t-distribution has heavier ("fatter") tails compared to the normal distribution.
- It is governed by the number of degrees of freedom (DF).
- As DF increases, the t-distribution approaches the normal distribution.

Degrees of Freedom (DF) – Parameter for the t-distribution

- Degrees of Freedom (DF): The number of independent pieces of information available for estimating a parameter.
- When we estimate population values using the sample, we often "double dip"
 using the same data to estimate both the statistic and the variability around it.
- ► This constraint reduces how many values are truly free to vary, and that's what DF captures the independent pieces of information

Degrees of Freedom Formula

$$DF = n - k$$
 where:

- n: Number of independent observations in the sample.
- k: Number of estimated statistics (e.g., sample mean).

Degrees of Freedom (DF) – Example

- **Sample:** $X = \{x_1, x_2, ..., x_{41}\}$, Sample size: n = 41
- ► Suppose you're calculating the **population standard deviation**:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$

We usually **don't know** the true population mean μ , so we estimate it with the **sample mean** \bar{x} :

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

- ightharpoonup Because we used the sample data to estimate \bar{x} , we've "used up" 1 degree of freedom.
- So only n-1=40 values are truly free to vary that's the **degrees of freedom**.

(1) Independent t-test – Between-Group

- Use case: Used to compare the means of two independent groups.
 - If we draw two samples and their sample means are far apart, it may be unlikely they came from the same underlying population.

Test statistic: Independent t-test – Between-Group

$$t = \frac{\bar{X}_1 - \bar{X}_2}{SEM_{pooled}}$$

▶ Degrees of Freedom:

$$DF = n_1 + n_2 - 2$$

- ► Key Assumption:
 - Homogeneity of variance: The variability within each sample is similar
 only the means differ.
- Scenario: Group 1 receives a drug, Group 2 receives a placebo.

(2) Paired t-test – Within-group

▶ Use case: Used to compare means from the same group measured at two different times (e.g., before and after treatment), or under two related conditions.

Test statistic: Paired t-test - Within-group

$$t = \frac{\bar{D}}{SEM_D}$$
, where

- $ightharpoonup \bar{D}$: Mean of the paired differences
- ► $SEM_D = \frac{s_D}{\sqrt{n}}$: Standard error of the differences.
- **▶** Degrees of Freedom:

$$DF = n - 1$$
 (where *n* is the number of pairs)

Scenario: Measuring test scores of students before and after tutoring.

Use case: Used to compare the means of **two independent groups** when variances across groups are not homogeneous (most cases).

Test Statistc: Welch's T-test:

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Welch Degrees of Freedom

$$DF = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2}$$

Can have fractional DF.

Test	Test Statistic	Degrees of Freedom (DF)
Independent t-test (pooled variance)	$t = rac{ar{X}_1 - ar{X}_2}{SEM_{pooled}}$	$DF = n_1 + n_2 - 2$
Paired t-test (within-group)	$t=rac{ar{D}}{s_D/\sqrt{n}}$	DF = n - 1
Welch's t-test (unequal variance)	$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	Adjusted (Welch-Satterthwaite)

Quiz + Discussion