Chemins dans un graphe

On considère un graphe orienté G = (V, E) dont les sommets sont $V = \{0, 1, ..., n - 1\}$ et les arêtes E décrites par la donnée de la matrice d'adjacence $A=(a_{i,j})\in\mathcal{M}_n(\{0,1\})$ avec $(i,j) \in E \Leftrightarrow a_{i,j} = 1$. (Les lignes et colonnes seront ici indexés par les entiers de [0, n-1]).

$$G = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \widetilde{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Figure 1 – Graphe G, matrice d'adjacence A et matrice des sommets accessibles A.

On définit sur $\mathcal{M}_n(\{0,1\})$ deux opérations \oplus et \otimes par :

$$-C = A \oplus B = (c_{i,j}) \text{ où } c_{i,j} = \begin{cases} 0 & \text{si } a_{i,j} = b_{i,j} = 0 \\ 1 & \text{sinon.} \end{cases}$$

$$-D = A \otimes B = (d_{i,j}) \text{ où } d_{i,j} = \begin{cases} 0 & \text{si } a_{i,k}b_{k,j} = 0 \\ 1 & \text{sinon.} \end{cases}$$
On définit $A^{\otimes k}$ par récurrence en posant $A^{\otimes 0} = I_n$ et $A^{\otimes k+1} = A \otimes A^{\otimes k}$ pour $k \geq 0$.
On note $a_i^{(k)}$ l'élément d'indice (i, i) dans $A^{\otimes k}$

On note $a_{i,j}^{(k)}$ l'élément d'indice (i,j) dans $A^{\otimes k}$.

Montrer que $(I_n \oplus A)^{\otimes n} = I_n \oplus A \oplus A^{\otimes 2} \oplus A^{\otimes 3} \oplus \ldots \oplus A^{\otimes n}$.

Question 2

On choisit de représenter un élément de $M_n(\{0,1\})$ de type bool array array. Ecrire deux fonctions somme et produit qui calculent respectivement $A \oplus B$ et $A \otimes B$.

Question 3

On appelle matrice des sommets accessibles la matrice $A = (a'_{i,j}) \in \mathcal{M}_n(\{0,1\})$ définie par $a'_{i,j} = 1$ ssi le sommet j est accessible à partir du sommet i (c'est-à-dire s'il existe un chemin conduisant de i à j).

On conviendra qu'un sommet est toujours accessible à partir de lui-même.

Déduire de la question 1. une fonction accessible qui calcule la matrice des sommets accessibles d'un graphe. On cherchera à minimiser le nombre d'opérations sur les matrices.

Question 4

Définir une fonction chemins qui pour un couple de sommets (i, j) affiche tous les chemins allant du sommet i au sommet j. Les chemins affichés ne doivent comporter aucun cycle (on ne pourra donc passer qu'une et une seule fois par un sommet).