Advanced Approximation Algorithms

(CMU 15-854B, Spring 2008)

Lecture 20: Embeddings into Trees and L1 Embeddings

March 27 2008

Lecturer: Anupam Gupta Scribe: Aaron Roth

1 Recap

Recall from last time, that we are studying the *sparsest cut* problem. We are given:

- A graph G = (V, E) with positive edge weights c_e for each $e \in E$.
- A set of pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$ with associated demands D_i between them.

We wish to output a cut S that minimizes sparsity:

$$\Phi(S) = \frac{c(E(S, \bar{S}))}{D(S, \bar{S})}$$

where $c(E(S, \bar{S}))$ is the sum of the weights of the edges that cross the cut, and $D(S, \bar{S})$ is the sum of the demands of the pairs (s_i, t_i) that are separated by the cut.

We recall that optimizing over the set of cuts is equivalent to optimizing over ℓ_1 metrics, and is NP-hard. Instead, we may optimize over the set of all metrics. In this lecture, we bound the gap introduced by this relaxation by showing how these metrics embed into ℓ_1 with low distortion.

From last time, we have a theorem of Bourgain:

Theorem 1.1 (Bourgain 85 [1]). Any n point metric d admits an α -distortion embedding into ℓ_p for any $1 \le p \le \infty$ with $\alpha = O(\log n)$.

This embedding is into 2^n dimensions, however! Fortunately, Linial, London, and Rabinovich [3] proved that it is possible to get such an embedding into online $O(\log^2 n)$ dimensions.

In this lecture, we will show a somewhat weaker result: We will achieve an $\alpha = O(\log n)$ embedding into ℓ_1 using $\operatorname{poly}(n, d_{\max}/d_{\min})$ dimensions, where d_{\max} is the maximum distance between any two points according to metric d, and d_{\min} is the minimum distance. We note that d_{\max}/d_{\min} could potentially be exponentially large – but we won't worry about this detail.

2 What is an Embedding?

Definition 2.1. An exact embedding of a metric space (V, d) into ℓ_1 is a mapping $f: V \to \mathbb{R}^k$ such that for all $x, y \in V$, $d(x, y) = ||f(x) - f(y)||_1$,

In the following examples, we will consider graphs, and the corresponding shortest-path metric on vertices, and consider the embedding of these metrics into ℓ_1 .

Figure 1: In this example, the line graph would be embedded as: $\{0, 1, 4, 9, 11\}$

2.1 Examples

2.2 A Line

Consider a line graph G = (V, E) with vertices $V = \{1, ..., n\}$ and edges $E = \{(1, 2), (2, 3), ..., (n-1, n)\}$. This is easily embedded exactly into ℓ_1 over \mathbb{R}^1 . The embedding may be defined recursively: f(1) = 0, $f(i) = f(i-1) + d_G(i-1, 1)$.

2.3 A Tree

Consider a tree T=(V,E) on n vertices. This can be embedded exactly into ℓ_1 over \mathbb{R}^{n-1} , which can be seen by induction. As the base case, when |V|=2, T is a line graph, which we have seen can be embedded into ℓ_1 over \mathbb{R}^1 . Given a tree $T_k=(V_k,E_k)$ with k vertices, we may remove a leaf v^* and the corresponding edge (u^*,v^*) to obtain the tree $T_{k-1}=(V_{k-1},E_{k-1})$, and inductively embed this into ℓ_1 , using the embedding $f:V_{k-1}\to\mathbb{R}^{k-2}$. Let $g:V_k\to\mathbb{R}^{k-1}$ be defined as follows: For every $v\in V_{k-1}$, let g(v)=(f(v),0). Let $f(v^*)=(f(u^*),d_{T_k}(v^*,u^*))$. Clearly, the ℓ_1 distances between any two vertices in V_{k-1} have not changed in this new embedding (since we have simply added a 0 in the new coordinate of all such vertices). Finally, the ℓ_1 distance between any vertex $v\in V_{k-1}$ and v^* is $d(v,u^*)=d(u^*,v^*)=d(v,v^*)$, since there is a unique path between any pair of vertices in a tree.

Given two trees T=(V,E), T'=(V,E') over the same vertex set, we may define a new metric $d(u,v)=d_T(u,v)+d_{T'}(u,v)$ (Recall that metrics form a vector space). The new metric d also has an exact embedding into ℓ_1 . To see this, let $f:V\to\mathbb{R}^d$ be an exact embedding of d_T , and $f':V\to\mathbb{R}^d$ be an exact embedding of $d_{T'}$. The metric d() has the embedding $g:V\to\mathbb{R}^{2d}$ defined by g(u)=f(u).f'(u), the concatenation of f and f'. Since ℓ_1 distance is additive, we therefore have $||g(u)-g(v)||_1=||f(u)-f(v)||_1+||f'(u)-f'(v)||_1=d_T(u,v)+d_{T'}(u,v)$ as desired.

Similarly, it is easily seen that the metric $\alpha d_T u, v$ for all $\alpha > 0$ exactly imbeds into ℓ_1 : given an embedding of d_T , we may simply scale all coordinates by α .

Combining these two facts, we have the following observation:

Proposition 2.2. For any set of trees T_1, \ldots, T_n over the same vertex set, and for all constants $c_1, \ldots, c_n \geq 0$, the metric

$$d(u,v) = \sum_{i=1}^{n} c_i d_{t_i}(u,v)$$

embeds exactly into ℓ_1 *.*

3 The Embedding Result

We will write \mathcal{D} to denote a probability distribution on the set of spanning trees on a fixed vertex set V. Going forward, we will concern ourselves with the metric d defined by this distribution:

$$\hat{d}(u,v) = \mathbf{E}_{T \sim \mathcal{D}}[d_T(u,v)]$$

Proposition 3.1. \hat{d} *embeds exactly into* ℓ_1 .

Proof. This follows directly from proposition 2.2 and the linearity of expectation. Simply set $c_i = \mathbf{Pr}_{\mathcal{D}}[T_i]$.

Because we embed sums of two metrics as the concatenations of the embedding of each metric, \hat{d} will embed into a space of dimension proportional to the size of the support of \mathcal{D} . Therefore, in designing such embeddings, we would like \mathcal{D} to have small support. We will prove the following theorem using tree embeddings, due to Fakcheroenphol, Rao, and Talwar: [2]

Theorem 3.2. Given any metric d on V, there exists a distribution \mathcal{D} over spanning trees of V such that for all $u, v \in V$:

$$d(u, v) \leq \mathbf{E}_{T \sim \mathcal{D}}[d_T(u, v)] \leq O(\log n) \cdot d(u, v)$$

Actually, we will prove something slightly stronger. For all $u, v \in V$:

- 1. $\mathbf{E}_{T \sim \mathcal{D}}[d_T(u, v)] \leq O(\log n)d(u, v)$, and
- 2. For all $T \in \text{Support}(\mathcal{D})$, $d_T(u, v) \geq d(u, v)$.

To prove this theorem, we will use the low diameter decomposition covered in a previous lecture. As a reminder:

Theorem 3.3 (Low diameter decomposition). Given a metric (V, d), and a parameter r, we can construct a random partition of $V = C_1 \uplus \ldots \uplus C_t$ such that the following two properties hold:

- 1. (Low diameter) For all $u, v \in C_i$, $d(u, v) \leq r$.
- 2. (Low cut probability):

$$\mathbf{Pr}[x, y \text{ separated by the partition}] \leq \frac{4d(x,y)}{r} \log \left(\frac{|B(x,2r)|}{|B(x,r/4)|} \right)$$

where B(x,r) denotes the ball around point x of radius r.

We construct the embedding \hat{d} with the following recursive algorithm, which takes as input a pair (U, i) where $U \subseteq V$ is a set of vertices of diameter at most i, and returns a rooted tree (T, r).

TreeEmbed(U, i):

- 1. Apply the low-diameter decomposition to (U, d) with the parameter $r \to 2^{i-1}$ to get the partition C_1, \ldots, C_t .
- 2. Recurse: Let $(T_j, r_j) \leftarrow \text{TreeEmbed}(C_j, i-1)$. As a base case, when C_i is a single point, simply return that point.
- 3. For every tree T_j with j > 1, add the edge (r_1, r_j) with weight 2^i . This is a new tree which we denote T.
- 4. Return the tree/root pair (T, r_1) .

Recall that since the low diameter decomposition is randomized, this algorithm defines a distribution over trees, as desired.

We rescale so that for all $u, v \in V$, $d(u, v) \ge 1$ and $d(u, v) \le \delta = 2^{\delta}$. We may therefore draw from the distribution defining \hat{d} by calling TreeEmbed (V, δ) .

Claim 3.4 (Claim 1). For all
$$u, v \in V$$
, $\hat{d}(u, v) \geq d$.

Proof. Fix x and y, and let i be such that $d(x,y) \in (2^{i-1},2^i)$. Consider the invocation of TreeEmbed(U,i) such that $x \in U$. First, we examine the case in which $y \in U$. By the definition of the low diameter decomposition, since $d(x,y) > 2^i$, x and y will fall into separate parts of the partition, and so we will have $\hat{d}(x,y) \geq 2^i$, the length of the edge placed between partition subtrees. In the case in which $y \notin U$, then it must be that x and y have been separated at a higher level of the recursion, i', and so are separated by a higher subtree edge. Therefore, $\hat{d}(x,y) \geq 2^{i'} > 2^i$.

Claim 3.5. For all
$$x, y \in V$$
:

$$\hat{d}(x,y) \leq d(x,y) \cdot O(\log n)$$

Proof. We begin the proof with two easy subclaims Suppose $(T, r) \leftarrow \text{TreeEmbed}(U, i)$:

- 1. Claim 1: $d_T(r,x) \leq 2^{i+1}$ for all $x \in U$. This holds because x is in some partition with diameter at most 2^i by definition of the low diameter decomposition, and is possibly separated from the root r by an intertree edge of weight 2^i .
- 2. Claim 2: If $x, y \in U$, then $d_T(x, y) \leq 2 \cdot 2^{i+1}$. This is immediate from the previous claim, since each x and y is at distance at most 2^{i+1} from r, and distances are symmetric.

We now have from the definition:

$$\begin{split} \hat{d}(x,y) & \leq & \sum_{i=\delta}^{0} \mathbf{Pr}[(x,y) \text{ separated at level i}] \cdot 4 \cdot 2^{i} \\ & \leq & \sum_{i=\delta}^{0} \frac{d(x,y)}{2^{i-1}} \cdot \log \left(\frac{|B(x,2^{i})|}{|B(x,2^{i-3})|} \right) \cdot 2^{i} \cdot 4 \\ & = & 8d(x,y) \sum_{i=0}^{\delta} (\log(|B(x,2^{i})|) - \log(|B(x,2^{i-3})|)) \\ & = & 8d(x,y) (\log(|B(x,2^{\delta})|) + \log(|B(x,2^{\delta-1})|) + \log(|B(x,2^{\delta-2})|) \\ & \leq & 24d(x,y) \log n \end{split}$$

where the first inequality follows from our subclaims, the second follows from the definition of the low diameter decomposition, and the last equality follows from observing that we have a telescoping sum.

We note that we have defined a distribution \mathcal{D} with a huge support, but with a bit more work, it is possible to show that a distribution over $O(n \log n)$ trees suffices.

4 Concluding Remarks

Recall that in order to solve sparsest cut, we really wished to solve for:

$$\Phi^* = \min_{\mu \in \ell_1} \frac{C \cdot \mu}{D \cdot \mu}$$

the minimization over ℓ_1 metrics (we *really* want the minimal cut metric, but we showed this was equivalent to the minimum ℓ_1 metric). However, solving this problem is NP hard, and so we solved instead for:

$$\lambda^* = \min_{d \text{ a metric}} \frac{C \cdot d}{D \cdot d}$$

the minimization over all metrics, which can be expressed as a linear program. In this lecture, we showed that this creates at worst a $\log n$ gap (and in fact, this is tight).

Can we do better by minimizing over something else? How about ℓ_2 metrics? Unfortunately, the set of ℓ_2 metrics is not convex, and so we can't minimize over it efficiently. How about ℓ_2^2 , the space of squared ℓ_2 metrics? This set is convex, but unfortunately gives an even worse gap $(\approx n)$. In fact, these aren't even metrics – they don't satisfy the triangle inequality.

How about, then, $C = \ell_2^2 \cap$ metrics? It is possible to optimize over C with an SDP, and indeed, this gives the best known factor approximation, of $\sqrt{\log n} \cdot (\log \log n)$.

References

- [1] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space. *Israel Journal of Mathematics*, 52(1):46–52, 1985.
- [2] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree metrics. *Journal of Computer and System Sciences*, 69(3):485–497, 2004.
- [3] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. *Combinatorica*, 15(2):215–245, 1995.