

Sofía Perini - sofiaperini9@gmail.com Juan Barriola - jmbarriola@gmail.com Andrés Farall - afarall@hotmail.com

Motivación

• ¿ Para Qué el Enfoque Estadístico ?

EXPERT OPINION

Contact Editor: Brian Brannon, bbrannon@computer.org

The Unreasonable Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

Tendencias en Ciencia de Datos

Predicción Versus Explicación

Programa

EEA20

- Participantes
- Insignias
- General
- Introducción: Inferencia Estadística.
- Lineal Simple y Múltiple
- Estadística Bayesiana
- Modelo Lineal Generalizado
- Regularización
- Modelos Aditivos y No Paramétricos
- Redes Neuronales Artificiales
- Supprt Vector Machines
- **Gradient Boosting** Machines

- Enfogues de la inferencia estadística
 - Modelado Estadístico
 - Significatividad Estadística (p-valor)
 - Máxima Verosimilitud e Inferencia Bayesiana.
- El problema de predicción.
 - Aprendizaje Supervisado
 - Medidas de Bondad de Ajuste
 - Trade-off sesgo-varianza
 - Sobreajuste

► Modelo de Regresión → Regresión lineal simple y múltiple.

- Estimación por Cuadrados Mínimos.
- Multicolinealidad.
- Transformaciones.
- Variables dummy. Interacción.
- Métodos de ajuste paso a paso.
- Alternativas Robustas

Modelos Lineales Generalizados (GLM)

Regresión logística.

Regresión de Cuantiles (QR)

Introducción a los Modelos Lineales Mixtos (LMM)

Regresión Lasso y Ridge

Regresión No Paramétrica

- Técnicas de suavizado
- Modelos Aditivos
- **Projection Pursuit Regression**

Redes Neuronales Artificiales Multicapa (ANN - MLP). Regresión,

Clasificación y Reducción de Dimensión (Autoencoders).

Regresión/Clasificación con SVM y Gradient Boosting (Xgboost).

Benchmarking, Comparación y selección de modelos: AIC, BIC, Enfoque

Multimodel, Model Tuning(Caret).

Objetivos Principales del Curso

- Ofrecer un enfoque Estadístico de las técnicas de Regresión
- Balancear el compromiso Explicación Vs. Predicción.
- Brindar herramientas aplicadas
- Posicionarse en un contexto científico e interdisciplinario
- Enseñar una amplia variedad de técnicas implementadas en R
- Utilizar conjuntos de datos reales
- No profundizar en la matemática sobre la cual se basan los métodos

"Un Modelo Lineal No Se Le Niega a Nadie"

- Avanzamos de lo simple a lo complejo.
- Un modelo simple sirve como "benchmark" contra el que comparar el resultado de modelos más complejos.
- Un modelo simple permite interpretar la mecánica de las relaciones entre variables.

El Contexto Tecnológico

- Capacidad de Cálculo
- Capacidad de Almacenamiento
- Velocidad en la Transmisión de Datos
- Ciencia de Datos
- Machine Learning
- Data Mining
- Big Data
- Optimización

Que pasó con la Capacidad de Cálculo?

Que pasó con la Capacidad de Almacenamiento?

Flash products

Que pasó con la Capacidad de Transmisión de Datos (Ancho de Banda) ?

Used International Bandwidth, 2002-2020

Porque R?

Que es Ciencia de Datos?

WordCloud de los Componentes de la Ciencia de Datos

Estadística

- Basada en la Teoría de Probabilidades.
- Formalizó el concepto de incertidumbre en las mediciones/estimaciones.
- Condicionada por la escacez de datos (N > 30 ?)
- Herramientas/conceptos básicos utilizados:
 - Modelo probabilístico
 - Población / Muestra
 - Variable Aleatoria
 - Verosimilitud
 - Inferencia
 - Significancia / P-valor
 - Intervalos de Confianza
 - Test de Hipótesis
 - Interpretabilidad

Componente Determinístico

Componente Aleatorio

Machine Learning

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Big Data

Figure 1

30

Data is growing at a 40 percent compound annual rate, reaching nearly 45 ZB by 2020

- Que hacer con volúmenes
- Data in zettabytes (ZB)
 50 INMENSOS de datos?
 - Como almacenarlos ?
 - Como modificar/crear/adaptar algoritmos para hacer eficaces (o aumentar la eficiencia) de los métodos de estimación/medición.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Data Mining

- Que patrones pueden extrarse de los datos ?
- Data Analysis y Analytics en gran escala
- Versión antigua del Data Science

Fuerza Bruta

- Optimización
- Random Optimization (Luus-Jaakola)
- Gradient Descent
- Newton-Rapson (Quasi)
- Simulated Annealing
- Optimización Lineal/Cuadrática con/sin restricciones (Simplex Like

Taxonomía Basica de los Métodos en la Ciencia de Datos

- Métodos Supervisados
 - Clasificación
 - CART
 - Support Vrctor Machines
 - Regresión
 - Modelos Lineales
 - Redes Neuronales
- Métodos No Supervisados
 - Análisis Factorial
 - Componentes Principales
 - Análisis de Correspondencia
 - Segmentación
 - K-medias
 - Clusterización Jerarquica
 - GMM

Supervisado Vs. No Supervisado

Regresión Vs. Clasificación

Sistema de Recomendaciones

Indiv.	Item 1	Item 2		Item j				Item p
1		3		9			2	
2	7	2			4			10
3			5			,		
4					8			3
5		1				7		
i			3	9				
N					7		4	

Indiv.	Item 1	Item 2		Item j					Item p
i*	?	6	?	?	?	8	?	3	?

GeoReferenciación Automática

