S4i APP3 – Évaluation formative

PHYSIQUE DES PORTES LOGIQUE - GIF470

1. Équations caractéristiques du MOSFET

(compétence 1)

Identifiez le régime d'opération et calculez le courant I_{DS} circulant dans les transistors MOSFET dont les propriétés et les tensions de polarisation sont données dans le tableau.

Complétez le tableau pour toute autre valeur manquante

Туре	KP	W	L	К	V _{to}	V _G	V D	Vs	Régime	i _D
	(μΑ/V²)	(µm)	(µm)	(mA/V²)	(V)	(V)	(V)	(V)	d'opération	(mA)
a) NMOS	100	50	1		0.5	1.5	6	1		
b) NMOS	?	200	2	2.5	0.75	5	7	2		
c) NMOS	75	?	2	1.5	0.5	-1.5	-3	-4.5		
d) PMOS	50	100	1		0.5	5	3	10		

2. Polarisation du transistor

- a) Un transistor NMOS (K = 0.4 mA/V², V_{to} = 1 V) est polarisé en saturation à i_D = 0.1 mA.
 - Quelle sont les gammes de tensions valides pour v_{GS} et v_{DS} ?
- b) Un transistor NMOS (K = 0.4 mA/V², V_{to} = 1 V) est polarisé comme sur la figure suivante à l'aide d'une résistance de 1 k Ω . Si le courant i_D = 0.5 mA, trouvez les tensions v_G et v_{DS} et identifiez le régime d'opération du transistor.

(compétences 1)

3. Inverseur (compétences 1)

Un inverseur a les caractéristiques et dimensions suivantes : $(W/L)_p=4.8\mu m/0.8\mu m,~(W/L)_n=2.4\mu m/0.8\mu m,~k'_n=120\mu A/V^2,~k'_p=60\mu A/V^2,~V_{tn}=|V_{tp}|=0.7V$ et $V_{DD}=3.5V$

- a) Est-ce que cet inverseur est bien équilibré (théoriquement) ?
- b) Quel est la résistance vue à la sortie de l'inverseur à $v_o = V_{OL}$? Et à $v_o = V_{OH}$?
- c) Quel est le courant circulant dans l'inverseur à $v_0 = V_{DD} 50 \text{ mV}$? Et à $v_0 = V_{DD}/2$?

4. Inverseur (compétences 2)

Considérez le même inverseur qu'au problème 3.

- a) Calculez V_{IH}, V_{IL}, NM_H et NM_L.
- b) Calculez t_{PHL} , t_{PLH} et t_P si l'inverseur a comme charge un inverseur identique et que la capacité de l'interconnexion est de 50 fF.

Considérez la capacité d'entrée de l'inverseur donnée par :

$$C_{inv} = 10 fF + 3.92 \frac{fF}{\mu m} (W_n + W_p) + 1.94 \frac{fF}{\mu m^2} (W_n \cdot L_n + W_p \cdot L_p)$$

5. Porte logique

- a) Trouvez W et L pour chaque transistor de la porte logique suivante pour que celle-ci possède dans le pire cas un délai de propagation équivalent à l'inverseur de référence bien équilibré ayant les caractéristiques suivantes: $(W/L)_n = 1\mu m/0.35\mu m$, $k'_n = 150\mu A/V^2$, $k'_p = 50\mu A/V^2$, $L_{min} = 0.35\mu m$.
- b) Trouvez la fonction Y et \overline{Y} de cette porte logique.

Aussi sur ce sujet :

- Exercice 14.1 de Sedra & Smith
- Sections 14.1.3 à 14.1.8

6. Chaine d'inverseurs

Considérez la chaine d'inverseur suivante où tous les inverseurs sont identiques :

Concevez une chaine d'inverseur (tous identiques) dont le signal de sortie sera l'inverse de la chaine précédente et mais dont le temps de propagation serait le même.