Naive_Bayes_on_Amazon_Reviews

June 8, 2018

```
In [1]: import sqlite3
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import plotly.plotly as py
        import plotly.graph_objs as go
        from sklearn.cross_validation import train_test_split
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import accuracy_score
        from sklearn.cross_validation import cross_val_score
        from collections import Counter
        from sklearn.metrics import accuracy_score
        from sklearn import cross_validation
        from sklearn.feature_extraction.text import TfidfTransformer
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.metrics import confusion_matrix
        from sklearn import metrics
        from sklearn.metrics import roc_curve, auc
        from nltk.stem.porter import PorterStemmer
        from sklearn.decomposition import TruncatedSVD
```

/usr/local/lib/python3.6/dist-packages/sklearn/cross_validation.py:41: DeprecationWarning:

This module was deprecated in version 0.18 in favor of the model_selection module into which a

1 Loading the Data and Sorting(Time-wise)

```
In [4]: final_data = pd.read_csv("final.csv")
    final_data = final_data.drop(["Text"], axis = 1)
    final_data = final_data.drop(final_data.columns[0], axis = 1)
    labels = final_data.Score
    final_data = final_data.sort_values("Time")
    final_data.shape
```

```
Out[4]: (364171, 10)
```

2 Train/Test Split(70-30)

```
In [0]: n = final_data.shape[0]
        train_size = 0.7
        train_set = final_data.iloc[:int(n*train_size)]
        test_set =final_data.iloc[int(n*train_size):]
        X_train = train_set.CleanedText
        y_train = train_set.Score
        X_test = test_set.CleanedText
        y_test= test_set.Score
In [0]: # Feature Importance(WordCloud Visualization)
In [0]: import matplotlib as mpl
        from wordcloud import WordCloud, STOPWORDS
        stopwords = set(STOPWORDS)
        \#mpl.rcParams['figure.figsize'] = (8.0,6.0)
                                                     \#(6.0,4.0)
        mpl.rcParams['font.size']=12
                                                     #10
        mpl.rcParams['savefig.dpi']=100
                                                     #72
        mpl.rcParams['figure.subplot.bottom']=.1
        def show wordcloud(data, title = None):
            wordcloud = WordCloud(
                background_color='white',
                stopwords=stopwords,
                max_words=200,
                max_font_size=40,
                scale=3,
                random_state=1 # chosen at random by flipping a coin; it was heads
            ).generate(str(data))
            fig = plt.figure(1, figsize=(8, 8))
            plt.axis('off')
            if title:
                fig.suptitle(title, fontsize=20)
                fig.subplots_adjust(top=2.3)
            plt.imshow(wordcloud)
            plt.show()
        show_wordcloud(final_data["CleanedText"])
```


In [0]: show_wordcloud(final_data[final_data.Score == "negative"]["CleanedText"], title = "Neg

Negative words

In [0]: show_wordcloud(final_data[final_data.Score == "positive"]["CleanedText"], title = "Pos

Positive words

3 Bag of words Vectorization

/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:475: DataConversionWarning:

Data with input dtype int64 was converted to float64 by StandardScaler.

4 Applying Naive Bayes

```
# empty list that will hold cv scores
cv_scores = []
my_cv = [(train,test) for train, test in TimeSeriesSplit(n_splits=10).split(X_train1)]
# perform 10-fold cross validation
for a in al:
   knn = MultinomialNB(alpha=a)
    scores = cross_val_score(knn, X_train1, y_train, cv = my_cv, scoring='accuracy')
   cv_scores.append(scores.mean())
# changing to misclassification error
MSE = [1 - x for x in cv_scores]
# determining best alpha
optimal_a = MSE.index(min(MSE))
n = al[optimal_a]
print('\nThe optimal hyperparameter alpha is %f.' % n)
# plot misclassification error vs alpha
plt.plot(al, MSE)
for xy in zip(al, np.round(MSE,3)):
   plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
plt.xlabel('Hyperparameter-alpha ')
plt.ylabel('Misclassification Error')
plt.show()
print("the misclassification error for each alpha value is : ", (np.round(MSE,3)))
```

The optimal hyperparameter alpha is 10000.000000.

the misclassification error for each alpha value is : [0.228 0.23 0.232 0.235 0.239 0.243 0.35]

5 Generating Confusion matrix and Classification report

```
****Test accuracy is 82.46
[[ 249 18832]
 [ 326 89845]]
            precision
                       recall f1-score
                                           support
  positive
                 0.43
                          0.01
                                    0.03
                                             19081
  negative
                 0.83
                          1.00
                                    0.90
                                             90171
                 0.76
                          0.82
                                    0.75
                                            109252
avg / total
In [0]: # Tf-idf Vectorization
In [0]: #TF-IDF
       tf_idf_vect = TfidfVectorizer(ngram_range=(1,2))
       X_train2 = tf_idf_vect.fit_transform(X_train)
       X_test2 = tf_idf_vect.transform(X_test)
In [0]: #Standardization
       from sklearn.preprocessing import StandardScaler
       sc= StandardScaler(with_mean=False)
       X_train2 = sc.fit_transform(X_train2)
       X_test2 = sc.transform(X_test2)
6 Applying Naive Bayes
In [0]: from sklearn.naive_bayes import MultinomialNB
       from sklearn.model_selection import TimeSeriesSplit
       import pylab as pl
       # empty list that will hold cv scores
       cv_scores = []
       my_cv = [(train,test) for train, test in TimeSeriesSplit(n_splits=10).split(X_train2)]
       # perform 10-fold cross validation
       for a in al:
           knn = MultinomialNB(alpha=a)
           scores = cross_val_score(knn, X_train2, y_train, cv = my_cv, scoring='accuracy')
           cv_scores.append(scores.mean())
```

changing to misclassification error

MSE = [1 - x for x in cv_scores]

```
# determining best alpha
optimal_a = MSE.index(min(MSE))
n = al[optimal_a]
print('\nThe optimal hyperparameter alpha is %f.' % n)

# plot misclassification error vs alpha
plt.plot(al, MSE)

for xy in zip(al, np.round(MSE,3)):
    plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')

plt.xlabel('Hyperparameter-alpha ')
plt.ylabel('Misclassification Error')
plt.show()

print("the misclassification error for each alpha value is : ", (np.round(MSE,3)))
```

The optimal hyperparameter alpha is 0.000010.

the misclassification error for each alpha value is : [0.173 0.182 0.199 0.229 0.284 0.386 0.886

7 Generating Confusion matrix and Classification report

```
In [0]: import itertools
        from sklearn.metrics import classification_report
       from sklearn.metrics import confusion_matrix
        acc = accuracy_score(y_test, pred, normalize=True) * float(100)
       x = nb.predict(X_train2)
        tr_acc = accuracy_score(y_train, x, normalize=True) * float(100)
        print('\n****Train accuracy is {:.2f}'.format(tr_acc))
       print('\n****Test accuracy is {:.2f}'.format(acc))
        print(confusion_matrix(y_test, pred))
       print("")
        target_names = ["positive", "negative"]
        print(classification_report(y_test, pred, target_names=target_names))
****Train accuracy is 99.79
****Test accuracy is 82.22
[[ 4264 14817]
 [ 4605 85566]]
             precision
                        recall f1-score
                                             support
                            0.22
                                      0.31
  positive
                  0.48
                                               19081
  negative
                  0.85
                            0.95
                                      0.90
                                               90171
avg / total
                 0.79
                            0.82
                                      0.79
                                              109252
```

8 Conclusion

For 'Bag of Words'

- Train accuracy is 85.46%
- Test accuracy is 82.46%

8.1 Confusion Matrix:

```
[[ 249 18832]
[ 326 89845]]
```

	Precision	recall	f1-score	support
positive	0.43	0.01	0.03	19081
negative	0.83	1.00	0.90	90171
avg/total	0.76	0.82	0.75	109252

For 'Tf-idf'

- Train accuracy is 99.79%
- Test accuracy is 82.22%

8.2 Confusion Matrix:

[[4264 14817] [4605 85566]]

	Precision	recall	f1-score	support
positive	0.48	0.22	0.31	19081
negative	0.85	0.95	0.90	90171
avg/total	0.79	0.82	0.79	109252

8.3 Important Words

8.3.1 Positive:

• 'product', 'use', 'great', 'movie'

8.3.2 Negative:

• 'product', disappoint', 'good', 'taste'