Response Letter

Dear Editor,

I am writing to respond to the reviewers' critical comments on our manuscript entitled, "Superabsorption of light by nanoparticles" NR-COM-08-2015-005468, which we aim for publication in Nanoscale.

I would like to thank the editor and two anonymous reviewers for their constructive comments, which helped us to improve the manuscript. Below, we address all comments point-by-point, discussing the subsequent modifications.

Reviewer #1 comments

1. The authors claimed Combined effect of these resonances is presented to produce the flat and relative broadband electric resonance response. Nevertheless, the broadened absorption band is not very broad. Is there any further way to predict a broadband light absorption. For instance, a broadband absorption in the whole visible spectral range. Maybe, a possible way of using the dispersed size scale nanoparticles should be added for improving the study.

This comment touches two aspects of broadband performance, namely, properties of a stanalone particle and in interaction with other particles. The first case, as it was correctly mentioned with the reviewer, has some limitations. We can design a band, which will be wider of a typical band for a given multipole, however, it's width is not extremly large. To illustrate this we have run an optimization with a goal to provide a prediction between multipole resonanses (Fig. 1).

Our observation is the following: while the separation is small enough compared to a multiple resonance width the optimizer was successful to find desings with electric and magnetic dipole. If the separation is large the absorption band splits into two. For large separation is is also possible to obtain two resonances of the electric dipole responce, located at predefined position (Fig. 1(e,f)). Still there are not so many possibilities here to design a good wideband. To control the bandwidth at a given spectral position we need to involeve relatively large particles. This leads to appearance of resonances (and absorbtion) out of the designed band.

To answer the second part of the comment, related to possiblity of usage of the pariticle array with dispered sizes, we designed two particles with best absorption effeciency at 475 nm and 525 nm and simulated them both with FDTD method using Lumerical FDTD Solutions. Sketch of the simulated system is in Fig. 2

We changed the manuscript "The stochastic algorithm utilized in our approach is very generic and the optimization can be repeated for any desired wavelength or wavelength range. As a result, one can design spectrally-selective absorbers or broadband absorbers with almost arbitrary prescribed properties."

2. To achieve super-absorption behavior, it is interesting to know what will happen when the multilayered nanoparticles are closely packed as the plasmonic crystal. As reported in the previous papers [ACS Applied Materials & Interfaces, 7, 49624968 (2015); Materials Letters 158, 262265 (2015); Applied Physics Letters, 104, 081116 (2014); Nanotechnology, 24, 155203 (2013)], the packed plasmonic crystals have been demonstrated to show broadband light coupling and confinement. Thereby, it would be interesting to show improved broadband light absorption based on the plasmonic crystal of this proposed multilayered nanoparticles.

We totally agree with the reviewer's statement. It seems that our manuscript was not clear enough at this point. ... However, as we compare final optimization results we conclude that To make it clearer we rewrite this part of the manuscript as follows:

"Some text"

Figure 1: Single particle desings for separation between dipole resonances of 20 nm (a-b) and 80 nm (c-f). Left column with figures (a,c,e) contains spectra of Mie efficiency for extinction (Qext), scattering (Qsca), absorption (Qabs, blue curve) and backscattering (Qbk). Right column (b,d,f) presents contibution of multipoles to the spectra (red and green stands for electric and magnetic dipoles, blue and cyan corresponds to quadrupole electric and magnetic modes, respectively). It is interesting to note that for 80 nm separation optimizer was able to find a desing with two resonances of a dipole mode (f). We suppose that the latter most likely has the same nature as the responce presented in Fig. 2(c,d) of the manuscript: there are several resonances of an electric dipole responce binded to different layers of the particle.

Figure 2: .

Reviewer #2 comments

- 1. As we can find from the manuscript, the highest absorption efficiency is achieved for a Si/Ag core-shell structure, which is not located in the super absorbing regime. Moreover, the authors also claimed that from practical aspect, the core-shell structure (not in the super absorbing regime) could be easier and cheaper to fabricate than three layered structure (in the super absorbing regime). Therefore, the authors should clearly clarify what are the advantages or significances of the super absorption nanoparticles?
- 2. In Fig. 2, we noticed a discontinuity at 80 nm. The authors explain it as the design supporting electric dipole and magnetic quadrupole has larger ACS. However, this explanation is not clearly to me since it is lacking physics behind this phenomenon. The authors should clarify why the magnetic quadrupole only plays a significant role in this small wavelength range.
- 3. In Fig. 3 (c), the authors observed a flat top of electric dipole resonance. They attributed this flat resonance to the excited several electric dipole resonances with close resonance frequencies. Nevertheless, as we can see in Fig. 3 (d), even without considering the resonances located in outer and inner shell, the resonance inside the core is much broader than the other two cases. The authors should explain this broadened resonance clearly.
- 4. Some sentences are not clear to me. For instance, there is a strong conterplay between the increased absorption for larger particles vs size for smaller particles. In summary, I do not think the manuscript is acceptable at its current stage.

Sincerely Yours, On behalf of the authors, Konstantin Ladutenko