Multi-Level Logic Optimization - Node Optimization

Simplification

- Represent each node in two level form
- Use espresso to minimize each node
- Several simplification procedures which vary only in the size of don't care constructed
 - don't care set empty
 - subset of don't care

Simplification

Don't care

- External DC
- Internal DC (derived from the structure)
 - (1) Satisfiability DC (SDC)
 - (2) Observability DC (ODC)

Satisfiability Don't Care

Satisfiability DC (to all nodes)

Ex:
$$x = ab$$

 $y = a'b'$
 $f = x'y'+a$
 $\therefore x \oplus ab = x(ab)'+x'(ab)$

• Why?

Expand the Boolean space of PI to include intermediate variables $B^n \rightarrow B^{n+m}$

In general, SDC =
$$\sum (y_i \cdot f_i' + y_i' \cdot f_i)$$

Observability Don't Care

Observability DC (to certain intermediate node)

$$\frac{\delta f}{\delta x}$$
 f is sensitive to the value of x

$$(\frac{\delta f}{\delta x})$$
' f is not sensitive to the value of x x is observable at f if $\frac{\delta f}{\delta x} \neq 0$

(Note $\frac{\delta f}{\delta x}$ is a function of the inputs)

Example

$$u = ab+xc'+x'b'$$

 $x = a'b+ac'$

$$\left(\frac{\delta u}{\delta x}\right)' = u_x \cdot u_x + u_x \cdot u_x'$$

$$u_x = ab + c'$$

 $u_x = ab + b'$

$$(\frac{\delta u}{\delta x})' = u_x \cdot u_x + u_x' \cdot u_x'$$

= $(ab+b'c') + a'bc$ (the ODC of x)

$$\mathbf{u} = \mathbf{ab} + \mathbf{xc'} + \mathbf{x'b'}$$

 $\mathbf{a} = 1 \ \mathbf{b} = 1$ => $\mathbf{u} = 1 \cdot 1 + \mathbf{xc'} + \mathbf{x'b'} = 1$
 $\mathbf{b} = 0 \ \mathbf{c} = 0$ => $\mathbf{u} = \mathbf{a} \cdot 0 + \mathbf{x} \cdot 1 + \mathbf{x'} \cdot 1 = 1$
 $\mathbf{a} = 0 \ \mathbf{b} = 1 \ \mathbf{c} = 1$ => $\mathbf{u} = 0 \cdot 1 + \mathbf{x} \cdot 0 + \mathbf{x'} \cdot 0 = 0$

Observability Don't Care

ODC relative to x is

$$ODC_{x} = \prod \left(\frac{\delta f_{i}}{\delta x} \right)^{T}$$

$$f_{i} \in output$$

• Including the external DC

$$\Pi \left(\left(\frac{\delta f_i}{\delta x} \right)^i + D_{xi} \right)$$

$$f_i \in \text{output}$$

• In general, the complete DC is too large solutions:

filter the DC

=> subset "support" filter

Standard Script of SIS

sweep constant propagation, remove buffer

eliminate –l collapse; node has < 1000 cubes

simplify espresso for each node

eliminate –l

sweep

eliminate 5 value > 5

simplify

resub –a algebraic div

gkx –abt 30 -a generate all kernel –b the best kernel inter

-t value saved

resub –a; sweep

gcx –bt 30 -b the best cube -t the value saved

resub –a; sweep

gkx –abt 10

resub –a; sweep

gcx -bt 10

resub –a; sweep

.

Boolean Difference and ODC for Logic Network of Simple Gates

Controlling and Non-controlling Values of Simple Gates

- Given a **simple gate** (i.e. AND, OR, NAND, NOR), a **controlling** value on an input determines the output of the gate independent of the other inputs
- Given a **simple gate** (i.e. AND, OR, NAND, NOR), a **non-controlling** value on an input cannot determine the output of the gate independent of the other inputs
- Example:
 - 0 is a controlling value for AND gate1 is non-controlling value for AND gate
 - 0 is a controlling value for NAND gate
 1 is non-controlling value for NAND gate
 - 1 is a controlling value for OR gate
 0 is non-controlling value for OR gate
 - 1 is a controlling value for NOR gate
 0 is non-controlling value for NOR gate

Boolean Difference of Simple Gates

- Non-controlling value of a side input is merely a specialization of the Boolean difference of an on-input to the simple gate
- a is an on-input and b is a side input

a
b

$$\frac{\partial f}{\partial a} = b$$
a
b

$$\frac{\partial g}{\partial a} = \bar{b}$$

ODC of Simple Gates

- Controlling value of a side input is merely a specialization of ODC of an on-input to the simple gate
- a is an on-input and b is a side input

• ODC = complement of Boolean difference

Example of Computing Boolean Difference of *ff*

- (C = 0 and D=x) or (C = x and D=0)=> C' + D'
- E = 1=> E
- Boolean Difference (ff) = (C' + D') E
 (conditions of side inputs are anding)

Example of Computing ODC of ff

- (C = 1 and D=1) => C D
- E = 0=> E'
- ODC (ff) = CD + E' (conditions of side inputs are oring)
- (ODC (ff))' = Boolean Difference (ff) = (C' + D') E

Incompleteness of Don't Cares

Example

$$Z = 0 1 \implies a + b < 3$$

 $Z = 0 0 \implies a + b = 3$
 $Z = 1 0 \implies a + b > 3$

Equivalence

\mathcal{X}_2	x_1	x_0	z_1 z_0
0	0	0	0 1
$\overset{\circ}{0}$	$\ddot{0}$	1	$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$
Ŏ	Ĭ	$\overline{0}$	$0 ilde{1}$
\mathbf{O}	1	1	0 0
1	0	0	1 0
1	0	1	1 0
1	1	0	1 0
1	1	1	1 0

Input values 000, 001, and 010 are equivalent with respect to \boldsymbol{B} .

{000,001,010} forms an equivalence class.

The other equivalent classes are: {011} and {100,101,110,111}

Boolean Relation Formulation

If x', x" are input values indistinguishable from the outputs of B, they are interchangeable output values for A.

$X_2 X_1 X_0$
{000,001,010}
{000,001,010}
{000,001,010}
{000,001,010}
{000,001,010}
{011}
{000,001,010}
{011}
{011}
{100,101,110,111}
{011}
{100,101,110,111}
{100,101,110,111}
{100,101,110,111}
{100,101,110,111}
{100,101,110,111}

Example

The optimal implementation of the following relation $R \subseteq B^2 \times B^2$

a b	x y
$\overline{0}$ 0	0 0, 0 1 0 1, 1 0
0 1	0 1, 1 0
1 1	1 1
1 0	1 0

ba	0	1
0	00	10
1	01	11

ba	0	1
0	00	10
1	10	11

b ^a	0	1
0	01	10
1	10	11

Problems

- 1. How to find a multiple-output sub-network?
- 2. How to utilize Boolean Relations for minimization?
 - full set of Boolean Relation
 - subset of Boolean Relation