Seminar 2

Exercise 1 Let \mathscr{F} be a family of convex sets in \mathbb{R}^n , which is directed w.r.t. inclusion, i.e.,

$$\forall A, B \in \mathscr{F}, \exists C \in \mathscr{F} : A \cup B \subseteq C.$$

Prove that the union of the family \mathscr{F} , i.e., the set $\bigcup_{S \in \mathscr{F}} S$, is convex.

Solution. Let $x,y\in\bigcup_{S\in\mathscr{F}}S$ and $t\in[0,1]$. Then there exist $X,Y\in\mathscr{F}$ such that $x\in X$ and $y\in Y$. The family \mathscr{F} being directed, we can find $Z\in\mathscr{F}$ such that $X\cup Y\subseteq Z$. Since S is convex and $x,y\in Z$, it follows that $(1-t)x+ty\in Z\subseteq\bigcup_{S\in\mathscr{F}}S$. Thus $\bigcup_{S\in\mathscr{F}}S$ is convex. \square

Exercise 2 Let $(M_i)_{i\in\mathbb{N}}$ be a sequence of convex sets in \mathbb{R}^n , which is ascending, i.e.,

$$M_i \subseteq M_{i+1}, \ \forall i \in \mathbb{N}.$$

Prove that $\bigcup_{i=1}^{\infty} M_i$ is a convex set.

Solution. Obviously, the family $\mathscr{F} := \{M_i \mid i \in \mathbb{N}\}$ is directed. Thus, the conclusion follows by Exercise 1.

Exercise 3 Prove that for any set $S \subseteq \mathbb{R}^n$ the following assertions are equivalent:

 1° S is convex.

2° $(\alpha + \beta)S = \alpha S + \beta S$ for all $\alpha, \beta \in \mathbb{R}$ with $\alpha \beta \geq 0$.

Solution. $1^{\circ} \Rightarrow 2^{\circ}$. Under the assumption that S is convex, let $\alpha, \beta \in \mathbb{R}$ with $\alpha\beta \geq 0$. If $\alpha + \beta = 0$, then $\alpha = 0$ and $\beta = 0$, thus the equality $(\alpha + \beta)S = \alpha S + \beta S$ obviously holds. Suppose now that $\alpha + \beta \neq 0$. The inclusion $(\alpha + \beta)S \subseteq \alpha S + \beta S$ is obvious. For the converse inclusion consider any points $x, y \in S$. Since S is convex and $\frac{\alpha}{\alpha + \beta} \in [0, 1]$, it follows that

$$\alpha x + \beta y = (\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} x + \frac{\beta}{\alpha + \beta} y \right) \in (\alpha + \beta) S.$$

Hence $\alpha S + \beta S \subseteq (\alpha + \beta)S$. This yields finally that $(\alpha + \beta)S = \alpha S + \beta S$.

 $1^{\circ} \Rightarrow 2^{\circ}$. Assume that for any $\alpha, \beta \in \mathbb{R}$ with $\alpha\beta \geq 0$ the equality $(\alpha + \beta)S = \alpha S + \beta S$ holds. It follows that for any $x, y \in S$ and $t \in [0, 1]$, we have $(1-t)x+ty \in (1-t)S+tS = S$. Thus S is convex.

Exercise 4 Give an example of a non-convex set $S \subseteq \mathbb{R}^n$ satisfying the condition 2S = S + S.

Solution. Let $S:=\mathbb{Q}^n$ be the set consisting of all vectors in \mathbb{R}^n having all the coordinates rational numbers. Clearly $2\mathbb{Q}^n\subseteq\mathbb{Q}^n+\mathbb{Q}^n\subseteq\mathbb{Q}^n=2(\frac{1}{2}\mathbb{Q}^n)\subseteq 2\mathbb{Q}^n$, so S+S=2S. On the other hand, for $x:=0_n,\ y:=e^1$, and $t:=1/\sqrt{2}$, we have $x,y\in S$ and $t\in[0,1]$, but $(1-t)x+ty=(1/\sqrt{2},0,\ldots,0)\notin\mathbb{Q}^n=S$. Thus S is not convex.

Exercise 5 Let $C \subseteq \mathbb{R}^n$ be a cone, that is, a set that is stable under multiplication by nonnegative real numbers:

$$\mathbb{R}_+ \cdot C := \{ \alpha x \mid \alpha \in \mathbb{R}, \ \alpha \ge 0, x \in C \} \subseteq C.$$

Prove that the following assertions are equivalent:

 1° C is convex.

$$2^{\circ} C + C \subseteq C$$
.

Solution. $1^{\circ} \Rightarrow 2^{\circ}$. Assume that 1° holds, i.e., C is convex. Then we have $\frac{1}{2}C + \frac{1}{2}C \subseteq C$. Since C is a cone, we can deduce that $C + C = 2(\frac{1}{2}C + \frac{1}{2}C) \subseteq 2C \subseteq \mathbb{R}_+ \cdot C \subseteq C$.

 $2^{\circ} \Rightarrow 1^{\circ}$. Assume that 2° holds and consider any $x, y \in C$ and $t \in [0, 1]$. Since C is a cone, it follows that $\{(1 - t)x, ty\} \subseteq \mathbb{R}_+ \cdot C \subseteq C$, hence $(1 - t)x + ty \in C + C$. By 2° we obtain that $(1 - t)x + ty \in C$. Thus C is convex.