Матрицы

М.Д. Малых, РУДН

2 октября 2022 г.

Содержание

1.	Матрицы	1
2.	Арифметические действия с матрицами	3
3.	Обратная матрица	8
4.	Определители	11
5.	Задания	13

1. Матрицы

Определение 1. Прямоугольную таблицу

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

содержащую m строк и n столбцов, называют матрицей размера на $m \times n$. Квадратные таблицы (n=m) называют квадратными матрицами; таблицы, состоящие из одного столбца (n=1), называют столбцами. Если элементами таблицы служат элементы некоторого кольца A, то говорят о матрице над кольцом A.

Это определение не является приемлемым с математической точки зрения, поскольку подводит одно понятие — матрица — под другое — таблица, ранее нигде не определенное. Оно призвано лишь пояснить, о чем идет речь.

Традиционно матрицы обозначаются большими буквами $A, B, \ldots,$ для уверенности над ними часто рисуют шляпку, напр., \hat{A}, \hat{B}, \ldots Элемент i-ой строки и j-го столбца матрицы \hat{A} традиционно обозначается той же буквой, а именно, как a_{ij} .

Задание матриц в Sage осуществляются тремя способами.

1. Построчно:

```
sage: matrix([[1,2],[3,4],[5,6]])

[1 2]

[3 4]

[5 6]
4
```

2. Путем преобразования списка (первые m элементов списка — первая строка и т.д.):

```
sage: matrix(2,3,[1,2,3,4,5,6])
[1 2 3]
[4 5 6]
```

3. Путем задания зависимости a_{ij} от i и j:

```
sage: matrix(2,3,lambda i,j: i+j^2)

[0 1 4]

[1 2 5]
8
```

Если правило — сложное, его можно задать отдельно:

```
def foo(i,j):
    if i==j:
        ans=2
    elif abs(i-j)==1:
```

ans=1

else:

ans=0

return ans

И тогда просто упомянуть его в качестве последнего аргумента:

```
sage: matrix(5,6,foo)

[2 1 0 0 0 0]

[1 2 1 0 0 0]

[0 1 2 1 0 0]

[0 0 1 2 1 0]

[0 0 0 1 2 1]
16
```

При необходимости, можно указать кольцо, из которого берутся элементы:

2. Арифметические действия с матрицами

Под суммой двух матриц одинакового размера понимают матрицу, элементы которой равны сумме элементов этих матриц. Иными словами, равенство

$$\hat{A} + \hat{B} = \hat{C}$$

означает, что

$$a_{ij} + b_{ij} = c_{ij}.$$

Под произведением матрицы на число понимают матрицу того же размера, элементами которой служат элементы исходной матрицы, умноженные на

это число. Иными словами, равенство

$$\lambda \hat{A} = \hat{B}$$

означает, что

$$\lambda a_{ij} = b_{ij}$$
.

Напр.,

Множество матриц одного размера образуют линейное пространство.

Определение 2. Множество L, в котором введено два действия: сложение элементов и их умножение на элемент кольца A, называют линейным пространством над кольцом A. При этом предполагают, что при упрощении выражений с элементами линейного пространства можно обращаться как с обычными векторами. Иными словами, для любых $a,b,c\in L$ и $\alpha,\beta,\gamma\in A$ верно:

- 1) a + b = b + a (коммутативность сложения);
- 2) a + (b + c) = (a + b) + c (ассоциативность сложения);
- 3) существует такой элемент $0 \in L$, что a+0=0+a=a (существование нуля);
- 4) для любого $a \in L$ существует такой элемент $b \in L$, что a+b=b+a=0 (существование противоположного элемента относительно сложения).
- 5) $1 \cdot a = a$;
- 6) $(\alpha \cdot \beta) \cdot c = \alpha \cdot (\beta \cdot c);$

7)
$$\alpha \cdot (b+c) = (\alpha \cdot b) + (\alpha \cdot c)$$

8)
$$(\beta + \gamma) \cdot a = (\beta \cdot a) + (\gamma \cdot a)$$
;

Пример 1. Строки длины 2 образуют линейное пространство. Его элементами будут

$$\hat{A}=(a_1,a_2),\ldots$$

При этом

$$\hat{0} = (0,0)$$

И

$$-\hat{A} = (-a_1, -a_2).$$

Пример 2. Множество всех многочленов кольца $A[x_1, \ldots, x_n]$, степень которых меньше заданного числа N, является линейным пространством над A. Напр., при N=1 это множество всех линейных многочленов

$$a_0 + a_1 x_1 + \cdots + a_n x_n$$
.

Чтобы указать один такой многочлен, нужно указать строку его коэффициентов

$$\hat{A} = (a_0, \dots, a_n).$$

При сложении двух многочленов, их строки скалываются, при умножении многочлена на элемент из A его строка тоже умножается на это число. Поэтому линейное пространство всех линейных многочленов кольца $A[x_1, \ldots, x_n]$ можно отождествить с линейным пространством строк длины n+1 над A.

Определение 3. Произведением двух квадратных матриц \hat{A} и \hat{B} одного размера называют матрицу \hat{C} того же размера, элементы которой вычислены по формуле

$$c_{ij} = \sum_{k} a_{ik} b_{kj}.$$

Словами: чтобы найти элемент произведения двух матриц, стоящей в iой стоке и j-ом столбце, следует умножить первый элемент i-ой строки

матрицы \hat{A} на первый элемент j-го столбца матрицы \hat{B} , второй элемент той же строки на второй элемент того же столбца и так далее, а потом все сложить.

Напр.,

Формула

$$c_{ij} = \sum_{k} a_{ik} b_{kj}.$$

все еще сохраняет смысл, если число столбцов в матрице \hat{A} равно числу строк в матрице \hat{B} . Напр.,

Множество квадратных матриц одного размера с так введенными сложением и умножением удовлетворяет всем аксиомам кольца, кроме одной, теперь

$$\hat{A}\hat{B} \neq \hat{B}\hat{A}.$$

Определение 4. Некоммутативное кольцо—множество M, на котором заданы две бинарные операции, называемые сложение (+) и умножение (\cdot) , со следующими свойствами, выполняющимися для любых $a,b,c\in M$:

- 1) a + b = b + a (коммутативность сложения);
- 2) a + (b + c) = (a + b) + c (ассоциативность сложения);
- 3) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (ассоциативность умножения);
- 4) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ и $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ (дистрибутивность);

- 5) существует такой элемент $0 \in M$, что a+0=0+a=a (существование нуля);
- 6) существует такой элемент $1 \in M$, что $a \cdot 1 = 1 \cdot a = a$ (существование единицы);
- 7) для любого $a \in M$ существует такой элемент $b \in M$, что a + b = b + a = 0 (существование противоположного элемента относительно сложения).

Пример 3. Множество матриц 2×2 образует кольцо, M_2 . Это кольцо не является коммутативным:

Нулем в этом кольце служит нулевая матрица

$$\hat{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

а единицей — единичная матрица

$$\hat{E} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Противоположный элемент вычисляется по формуле

$$-\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} -a_{11} & -a_{12} \\ -a_{21} & -a_{22} \end{pmatrix}$$

В этом кольце имеются делители нуля:

Пример 4. Множество матриц 3×3 образует некоммутативное кольцо M_3 . Нулем в этом кольце служит нулевая матрица

$$\hat{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

а единицей — единичная матрица

$$\hat{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

3. Обратная матрица

Рассмотрим кольцо квадратных матрицы $n \times n$ над полем k, которое далее будем обозначать как $M_n(k)$. С ненулевым элементом \hat{A} этого кольца можно связать два линейных уравнения:

$$\hat{A}\hat{X} = \hat{E}$$

И

$$\hat{Y}\hat{A} = \hat{E}.$$

Подчеркнем, что под решением уравнения

$$\hat{A}\hat{X} = \hat{E}$$

понимается квадратная матрица $\hat{X} \in M_n(k)$.

Хотя кольцо не является коммутативным, решения этих уравнений совпадают.

Теорема 1. Если уравнения $\hat{A}\hat{X} = \hat{E}$ и $\hat{Y}\hat{A} = \hat{E}$ имеют решения, то эти решения совпадают.

 \mathcal{A} оказательство. Умножим $\hat{A}\hat{X}=\hat{E}$ на решение второго уравнения, тогда

$$\hat{Y}\hat{A}\hat{X} = \hat{Y}\hat{E} = \hat{Y}$$

В силу ассоциативности умножения,

$$\hat{Y}\hat{A}\hat{X} = (\hat{Y}\hat{A})\hat{X} = \hat{E}\hat{X} = \hat{X}.$$

Отсюда
$$\hat{X} = \hat{Y}$$
.

Определение 5. Квадратную матрицу, которая удовлетворяет уравнениям

$$\hat{A}\hat{X} = \hat{E} \quad \text{и} \quad \hat{Y}\hat{A} = \hat{E},$$

называют обратной к матрице \hat{A} , ее обозначают как \hat{A}^{-1} .

Отыскание обратной матрицы сводится к решению n систем линейных уравнений в кольце $k[x_1, \dots x_n]$.

Пример 5. Обратим матрицу

$$A = \left(\begin{array}{cc} 2 & -1 \\ 1 & 3 \end{array}\right)$$

Для этого решим уравнение

$$AX = E$$

в Sage. Прежде всего, составим матрицу $\hat{L} = \hat{A}\hat{X} - \hat{E}$, полагая элементы \hat{X} — неизвестными:

sage:
$$X=matrix(2,2,x)$$

Матрица \hat{L} должна быть равна нулю, что дает 4 уравнения на 4 неизвестные:

```
sage: L.list()
                                                              46
[2*x11 - x21 - 1, 2*x12 - x22, x11 + 3*x21, x12 + 3*
                                                              47
   x22 - 1
Решим эту систему по методу Гаусса:
sage: K=QQ[x]
                                                              48
sage: D=tsolve(triangulation([K(1) for 1 in L.list()
                                                              49
   ]))
sage: D
                                                              50
\{x22: 2/7, x21: -1/7, x12: 1/7, x11: 3/7\}
                                                              51
и подставим найденные значения в матрицу \hat{X}
sage: X=matrix(2,2,[K(xx).subs(D) for xx in x])
                                                              52
sage: X
                                                              53
[ 3/7 1/7]
                                                              54
[-1/7
        2/7]
                                                              55
Проверка:
sage: A*X
                                                              56
[1 0]
                                                              57
```

Вычисление обратной матрицы реализовано в Sage над широким набором полей, поэтому далее мы будем пользоваться стандартной функцией. Напр.,

58

59

60

61

[0 1]

[1 0]

[0 1]

sage: X*A

Не всякая матрица имеет обратную.

4. Определители

Математики XVIII и XIX веков желали получить формулу для обратной матрицы, подобную той, что имеется для решения квадратного уравнения. С современной точки зрения найти формулу—значит решить уравнение $\hat{A}\hat{X}=\hat{E},$ оставив элементы матрицы \hat{A} буквами.

В случае кольца матриц 2×2 это приводит к системе 4 уравнений относительно $x_{11}, x_{12}, x_{21}, x_{22}$ над полем частных кольца $\mathbb{Q}[a_{11}, a_{12}, a_{21}, a_{22}]$:

Решим ее по методу Гаусса:

Нетрудно заметить, что знаменателем во всех 4 элементах служит одно и то же выражение. Вынося его за скобки, имеем относительно простую формулу

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$
(1)

Знаменатель этого выражения называют определителем (determinant) матрицы

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

В Sage имеется функция для его вычисления. Напр.,

Нет необходимости явно решать уравнение

$$\hat{Y}\hat{A} = \hat{E},$$

нам важно лишь, что при \hat{A} с буквенными элементами это уравнение имеет решение в поле частных кольца $\mathbb{Q}[a_{11},a_{12},a_{21},a_{22}]$. В силу теоремы 1 это решение совпадает с X.

Если определитель матрицы с числовыми элементами не равен нулю, то, как мы выяснили в прошлой лекции, это выражение дает некоторое решение уравнений

$$\hat{A}\hat{X} = \hat{E}$$

И

$$\hat{Y}\hat{A} = \hat{E}$$

В силу теоремы 1 всякое решение первого уравнения совпадает со всяким решением второго, лишь бы они оба существовали. Поэтому решение, которое получается по формуле (1)—единственное. Это и есть обратная матрица.

Теорема 2. Если определитель матрицы A размера 2×2 не равен нулю, то она имеет обратную, которую можно вычислить по формуле (1).

В случае матриц $n \times n$ наше рассмотрение сохраняет силу. Решая систему

$$\hat{A}\hat{X} = \hat{E},$$

в которой матрица \hat{A} имеет буквенные элементы, мы получим элементы матрицы X в виде отношения некоторых многочленов. Общий знаменатель этих дробей называют определителем матрицы \hat{A} и пишут

$$\hat{X} = \frac{1}{\det \hat{A}} \hat{P}(\hat{A}),$$

где элементы матрицы \hat{P} — многочлены из $\mathbb{Q}[a_{11},\ldots,a_{nn}]$. При этом доказательство теоремы 2 сохраняет свою силу.

Теорема 3. Если определитель матрицы A размера $n \times n$ не равен нулю, то она имеет обратную.

3амечание. Мы ввели определитель как знаменатель в X. Это, конечно, оставляет некоторый произвол в выборе мультипликативной константы. Для нормировки примем, что

$$\det \hat{E} = 1.$$

Изучение свойств определителей требует обсуждения разложения многочленов на множители.

Замечание. Мы полагаем, что теорема 3 будет применяться после того, как выражение для определителя будет найдено явно. Но доказать, что при любом n уравнение $\hat{A}\hat{X} = \hat{E}$ в поле частных кольца $\mathbb{Q}[a_{11}, \ldots, a_{nn}]$ имеет и притом единственное решение, можно и без применения реализации метода Гаусса.

5. Задания

Теоретические задания.

- 1) Дайте определение линейного пространства. Приведите пример линейного пространства.
- 2) Дайте определение некоммутативного кольца. Приведите пример такого кольца.
- 3) Для трех квадратных матриц докажите, что

$$(\hat{A}\hat{B})\hat{C} = \hat{A}(\hat{B}\hat{C}).$$

4) Для двух квадратных матриц \hat{A}, \hat{B} и столбца \hat{C} докажите, что

$$(\hat{A}\hat{B})\hat{C} = \hat{A}(\hat{B}\hat{C}).$$

5) Докажите, что делители нуля не имеют обратных матриц.

Практические задания.

1) Вычислите

$$\left(2\begin{pmatrix}1&2\\3&-4\end{pmatrix}+3\begin{pmatrix}-1&0\\1&3\end{pmatrix}\right)^2$$

2) Найдите квадрат матрицы 10×10 , если

$$a_{ij} = \begin{cases} 1 & i = j, \\ 5 & i = j \pm 1, \\ 0 & \end{cases}$$

3) Используя нашу реализацию метода Гаусса, найдите обратные для следующих матриц

a.)
$$\begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$$
, b.) $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & -1 \\ 1 & 2 & 5 \end{pmatrix}$ c.) $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & -1 \\ 3 & 5 & 2 \end{pmatrix}$

Сравните результат с тем, что получается в Sage при возведении матриц в степень -1.

4) Решите уравнение

$$\begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

5) Решите уравнение

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \hat{X} = \hat{E}$$

над полем частных кольца $\mathbb{Q}[a_{11}, \dots a_{33}].$

6) Решите уравнение

$$\hat{Y} \cdot \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \hat{E}$$

над полем частных кольца $\mathbb{Q}[a_{11}, \dots a_{33}]$.

- 7) Используя результаты двух последних задач, выпишите формулу для определителя матрицы размера 3×3 .
- 8) Вычислите определитель матрицы

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & -1 \\
3 & 5 & 2
\end{array}\right)$$

по вашей формуле. Сравните результат с тем, что возвращает стандартный метод **det** в Sage.

15