Interactive Digital Photomontage

Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn,
Brian Curless, David Salesin, Michael Cohen
University of Washington (US), Microsoft Research (US), 2004.

Ugo Schiapparelli, Axel Wolski

Aurelie Bugeau 17/11/2017 Advanced Methods for Image Processing

Introduction

- Interactive photomontage framework
- A wide variety of objectives
- Algorithms using:
 - Graph-cut optimization
 - Gradient-domain fusion

Photomontage framework presentation

Composite

- Current photomontage result
- Adding intermediate results to the set of source images
- Selection of objectives

Source

- Initial images
- User can scroll through the source images
- Possibility to select the part of the source image he wants

Objectives

Image objective can be applied <u>globally</u> to the entire image or <u>locally</u> to only a few pixels.

- Designated color
- Minimum/maximum :
 - Luminance
 - Contrast
 - Likelihood
 - Difference
- Designated image

Seam objective is always specified globally across the entire image.

- Colors
- Colors & gradients
- Colors & edges

Brushes

Single-image brush :

- Use more frequently
- Between the current composite and each of the source images independently

Multi-image brush :

- All source images are fused together to obtain best locally and globally result.
- This operation can take significant time

Algorithms use

- Graph-cut optimization, Boykov et. al [2001]
 - Find the best seam
 - But artifacts may still exist
- Gradient-domain fusion, Fattal et. al [2002]
 - Use color gradients rather than sources of color
 - Smooth out color differences between juxtaposed image regions
 - Use discretisation of the Poisson equation to make best-fit image

Differents applications & results

Selective Composites

Extended depth of field

Relighting

Stroboscopic visualization of movement Clean-plate production

Panoramic stitching

Conclusions

- Advantages:
 - Easily and quickly to use
 - A wide variety of applications
- Drawbacks:
 - Need similar images
- Future:
 - Apply this approach to other type of data (2.5D layered images, 3D volumes, ...)
 - Many more applications could use this approach

References

- A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker and A. Colburn, "Interactive Digital Photomontage", SIGGRAPH, 2004 http://kneecap.cs.berkeley.edu/papers/photomontage/photomontage.pdf
- http://grail.cs.washington.edu/projects/photomontage/
- Documentation of photomontage framework
 http://grail.cs.washington.edu/projects/photomontage/release/photodocs/index.html
- Graph Cuts https://moodle1.u-bordeaux.fr/pluginfile.php/304243/mod_resource/content/2/GraphCuts.pdf
- Y. Boykov and M.-P. Jolly, "Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images", ICCV, 2001 http://www.csd.uwo.ca/~yuri/Papers/iccv01.pdf
- R. Fattal, D. Lischinski and M. Werman, "Gradient domain high dynamic range compression", SCSE, 2002 http://www.cs.huji.ac.il/~danix/hdr/hdrc.pdf
- Poisson https://moodle1.u-bordeaux.fr/pluginfile.php/271243/mod_resource/content/0/Poisson.pdf