${\rm Last\ name\ _}$	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 35 The Structure of Linear Operators.

Concepts & Notation

- (Sec. 5.3) permutation, $\det A$.
- (Sec. 6.2) characteristic value, characteristic vector, characteristic polynomial, diagonalizable linear operator.

Review

- 1. What is a *characteristic value* and a *characteristic vector* of a linear operator T from a vector space V over a field \mathbb{F} to itself?
- 2. What is the *characteristic space* associated with a characteristic value c of a linear operator T from a vector space V over a field \mathbb{F} to itself?
- 3. (Claim:) If matrices $A, B \in \mathbb{F}^{n \times n}$ are similar then $\det A = \det B$.
- 4. (Claim:) If T is a linear operator from a finite-dimensional vector space V over a field \mathbb{F} to itself, and \mathcal{B} and \mathcal{B}' are bases for V then $\det([T]_{\mathcal{B}}) = \det([T]_{\mathcal{B}'})$.
- 5. What is $\det T$?

The Structure of a Linear Operator

6. What is a diagonalizable linear operator T?

7. What is the *characteristic polynomial* of a matrix A? What does it tell us?

8. Find the characteristic polynomial for $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Find its roots (and thus the characteristic values for any linear transformation represented by A).

9. Find the corresponding characteristic vectors. (There is a small issue here. What is it?!?)

10. Does every matrix have characteristic values?

- 11. (Claim:) If T is a linear operator from a vector space V over a field \mathbb{F} to itself then $T^2 = T \circ T$ is also in $\mathcal{L}(V)$. And $T^k \in \mathcal{L}(V)$.
- 12. (Claim:) If $T \in \mathcal{L}(V)$ then $cT \in \mathcal{L}(V)$ (for $c \in \mathbb{F}$).
- 13. (Claim:) If $T, T' \in \mathcal{L}(V)$ then $T + T' \in \mathcal{L}(V)$.
- 14. (Claim:) If $T \in \mathcal{L}(V)$ and $p \in \mathbb{F}[x]$ then $p(T) \in \mathcal{L}(V)$.
- 15. (Claim:) If $T \in \mathcal{L}(V)$, $T(\alpha) = c\alpha$ (for $c \in \mathbb{F}$, $\alpha \in V$), and $p \in \mathbb{F}[x]$ then $p(T)(\alpha) = p(c)\alpha$.