Modellierung und Simulation einer Virusausbreitung

Robert Haas

Vortrag an der OTH Regensburg

2. Dezember 2024

Virusausbreitung

Robert Haas

Allgemeines

Simulationsergebnisse

Inhalt

Überblick

SIR-Modell

Modellannahmen

Herleitung

Anfangswertproblem für das SIR-Modell

Weitere Erkenntnisse zum Modell

Varianten des SIR-Modells

Numerische Methoden

Allgemeines Lösungsverfahren

Konvergenzordnung und ein elementares Verfahren

Runge-Kutta-Verfahren

Numerische Lösung

Simulation

Simulationsergebnisse

Vergleich der Methoden

Endwerte der Simulation

Allgemeines

Einführung

► Mathematische Modellierung von Epidemien: Aufmerksamkeit seit Corona

Überblick

Allgemeines

elementares Verfahren

Simulationsergebnisse

Vergleich der Methoden

Endwerte der Simulation

Einführung

► Mathematische Modellierung von Epidemien:

► Geschichte dieses Forschungsgebiets älter

Aufmerksamkeit seit Corona

Überblick

SIR-Modell

Modellannahmi

Herleitung

Anfangswertproblem für d SIR-Modell

Veitere Erkenntnisse

Varianten des SIR-Model

Numerische

/lethoden

Allgemeines

Konvergenzordnung un

nge-Kutta-Verfahren

inge-redica-verialitei

umerische ösung

imulation

Simulation Simulationsergebnisse

Vergleich der Methoden

ndwerte der Simulatio

4□ > 4回 > 4 = > 4 = > ■ 900

Einführung

- ► Mathematische Modellierung von Epidemien: Aufmerksamkeit seit Corona
- ► Geschichte dieses Forschungsgebiets älter
- ► Beispiel: Arbeiten von Kermack und McKendrick, [Kermack und McKendrick, 1927]

Robert Haas

Überblick

SIR-Model

Modellanna

lerleitung

SIR-Modell

Veitere Erkenntnisse :

odeli

lumerische

/lethoden

Allgemeines

Lösungsverfahre

nvergenzordnung und ei mentares Verfahren

Runge-Kutta-Verfahren

lumerische

imulation

Simulation
Simulationsergebnisse

Vergleich der Methoden

Indwerte der Simulation

Endwerte der Simulatio

Mathematische Modellierung von Epidemien:

Beispiel: Arbeiten von Kermack und McKendrick,

► Determistische Modelle und stochatische Modelle

Geschichte dieses Forschungsgebiets älter

[Kermack und McKendrick, 1927]

Aufmerksamkeit seit Corona

Überblick

SIR-Modell

Modellannahr

lerleitung

Anfangswertproblem für d

Veitere Erkenn

/--:---- J-- CID M-J-

Numerische

Methoden

Allgemeines Lösungsverfah

V

ementares Verfahren

Runge-Kutta-Verfahren

Numerische

imulation

imulation

Vergleich der Methoden

ndwerte der Simulatio

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

Robert Haas

Überblick

Allgemeines

Vergleich der Methoden

Mathematische Modellierung von Epidemien: Aufmerksamkeit seit Corona

- Geschichte dieses Forschungsgebiets älter
- Beispiel: Arbeiten von Kermack und McKendrick, [Kermack und McKendrick, 1927]
- Determistische Modelle und stochatische Modelle
- Beispiele: SIS-Modell, SIR-Modell, SEIR-Modell

▶ Susceptible individuals S: Nicht infizierte, gesunde Personen, die infiziert werden können: S = S(t)

Oberblick

SIR-Modell

Madallanak

Herleitung

1erieitung N=6======bl==

Veitere Erkenntnis

Modell

Varianten des SIR-Modells

Numerische

Methoden

Allgemeines

onvergenzordnung und e

inge-Kutta-Verfahren

umerische Sung

Simulation

Simulation Simulationsergebnisse

Vergleich der Methoden

Endwerte der Simulation

 Susceptible individuals S: Nicht infizierte, gesunde Personen, die infiziert werden können: S = S(t)
 Infectious individuals I: Infizierte Personen, die andere

Personen anstecken können: I = I(t)

.. Überblick

SIR-Modell

Herleitung

Heriellung

SIR-Modell

eitere Erkenntniss

Varianten des SIR-Modells

Numerische

Methoden

Allgemeines

Lösungsverfahren

ivergenzordnung und e nentares Verfahren

ge-Kutta-Verfahren

lumerische .ösung

imulation

imulation

Simulationsergebnisse Vergleich der Methoden

ndwerte der Simulation

ndwerte der Simulation

 Susceptible individuals S: Nicht infizierte, gesunde Personen, die infiziert werden können: S = S(t)
 Infectious individuals I: Infizierte Personen, die andere

▶ **Removed individuals R:** Durch Heilung oder Tod vom Infektionsgeschehen entfernte Personen: R = R(t)

Personen anstecken können: I = I(t)

Oberblick

SIR-Modell

Modellannah

Herleitung

Antangswertproblem fur SIR-Modell

Veitere Erkenn

Modell

Varianten des SIK-Modells

Numerische Methoden

Allgemeines

onvergenzordnung und ein

nge-Kutta-Verfahren

ınge-Kutta-Verfahren

umerische ösung

Simulation

Simulationsergebnisse

Vergleich der Methoden

dwerte der Simulation

(A1) Jede Person kann mit jeder anderen Person in Kontakt

Modellannahmen

Allgemeines

elementares Verfahren

Simulationsergebnisse

Vergleich der Methoden Endwerte der Simulation

Modells.

(A1) Jede Person kann mit jeder anderen Person in Kontakt

(A2) N sehr groß \rightarrow Anwendbarkeit eines deterministischen

Veitere Erkenntnisse zun

anten des SIR-Modell

ımerische

Allgemeines Lösungsverfahren

> nvergenzordnung und ei mentares Verfahren

nge-Kutta-Verfanre

LÖSUNG Simulation

simulation Simulationsergebr

Vergleich der Methoden

Endwerte der Simulation

Modells.

Differentialrechnung.

(A1) Jede Person kann mit jeder anderen Person in Kontakt

(A2) N sehr groß \rightarrow Anwendbarkeit eines deterministischen

(A3) S, I, R reellwertige Funktionen \rightarrow Anwendbarkeit von

Allgemeines

Herleitung

Anfangswertproblem für o SIR-Modell

Veitere Erkenntnis Aodell

Varianten des SIR-Modells

Numerische

Methoden

Allgemeines Lösungsverfahre

Losungsverfahren Konvergenzordnung ur

ementares Verfahren unge-Kutta-Verfahren

umerische

mulation

mulation

Vergleich der Methoden

gleich der Methoden werte der Simulation

- (A1) Jede Person kann mit jeder anderen Person in Kontakt treten.
- (A2) N sehr groß \rightarrow Anwendbarkeit eines deterministischen Modells.
- (A3) S, I, R reellwertige Funktionen \rightarrow Anwendbarkeit von Differentialrechnung.
- (A4) Eine Person kann jede Phase der Kette $S \rightarrow I \rightarrow R$ durchlaufen.

Uberbli

SIR-Modell

Modellannahmen

Herleitung

Anfangswertproblem für d SIR-Modell

Weitere Erkeni Modell

Varianten des SIR-Model

umerische lethoden

Allgemeines

Lösungsverfahre

nvergenzordnung und e mentares Verfahren

nge-Kutta-Verfahr

umerische

Simulation

Simulation

mulationsergeb

Vergleich der Methoden

verte der Simulation

- (A1) Jede Person kann mit jeder anderen Person in Kontakt treten.
- (A2) N sehr groß \rightarrow Anwendbarkeit eines deterministischen Modells.
- (A3) S, I, R reellwertige Funktionen \rightarrow Anwendbarkeit von Differentialrechnung.
- (A4) Eine Person kann jede Phase der Kette $\mathbf{S} \rightarrow \mathbf{I} \rightarrow \mathbf{R}$ durchlaufen.
- (A5) Am Ende $(t \to \infty)$ befinden sich alle Personen entweder in der Gruppe **S** oder **R**.

Vergleich der Methoden

(A1) Jede Person kann mit jeder anderen Person in Kontakt treten.

- (A2) N sehr groß \rightarrow Anwendbarkeit eines deterministischen Modells.
- (A3) S, I, R reellwertige Funktionen \rightarrow Anwendbarkeit von Differentialrechnung.
- (A4) Eine Person kann jede Phase der Kette $S \rightarrow I \rightarrow R$ durchlaufen.
- (A5) Am Ende $(t \to \infty)$ befinden sich alle Personen entweder in der Gruppe **S** oder **R**.
- (A6) Die Lebenszeiten in I sind expontialverteilt: $I \sim \text{Exp}(\gamma)$.

Modells.

(A3) S, I, R reellwertige Funktionen \rightarrow Anwendbarkeit von Differentialrechnung.

(A2) N sehr groß \rightarrow Anwendbarkeit eines deterministischen

(A1) Jede Person kann mit jeder anderen Person in Kontakt

- (A4) Eine Person kann jede Phase der Kette $S \rightarrow I \rightarrow R$ durchlaufen.
- (A5) Am Ende $(t \to \infty)$ befinden sich alle Personen entweder in der Gruppe **S** oder **R**.
- (A6) Die Lebenszeiten in I sind expontialverteilt: $I \sim \text{Exp}(\gamma)$.
- (A7) S(t) + I(t) + R(t) = N = const.

Herleitung

Gleichung für S

Virusausbreitung

Robert Haas

Überblick

SIR-Modell

Modellannahmen

Herleitung

Anfangswertproblem für das

SIR-Modell

Modell

arianten des SIR-Modells

Numerische Methoden

Allgemeines

Konvergenzordnung und elementares Verfahren

ge-Kutta-Verfahren

umerische Ssung

Simulation

Simulationsergebnisse

Vergleich der Methoden Endwerte der Simulation

Herleitung

Gleichung für S

▶ Annahme (A1): Jede Person aus **S** kann mit jeder Person aus **I** in Kontakt treten. Relative Häufigkeit des Kontakts: I(t)/N, für Ansteckung: $\beta S(t)I(t)/N$.

Robert Haas

. Jberblick

SIR-Modell

Modellannahmer

Herleitung

Anfangswertproblem für das SIR-Modell

Weitere Erkenntnisse zum

Varianten des SIR-Modells

Numerische

Methoden

Allgemeines Lösungsverfahre

Lösungsverfahren Konvergenzordnu

> imentares verranren inge-Kutta-Verfahren

ımerische

.ösung

Simulation

Simulationsergebnisse

Vergleich der Methoden

Endwerte der Simula

- ▶ Annahme (A1): Jede Person aus **S** kann mit jeder Person aus **I** in Kontakt treten. Relative Häufigkeit des Kontakts: I(t)/N, für Ansteckung: $\beta S(t)I(t)/N$.

Robert Haas

SIR-Modell

SIR-Modell

Herleitung

Anfangswertproblem für das SIR-Modell

Weitere Erkenntnisse zum

Varianten des SIR-Modells

Numerische

Methoden

Allgemeines

Lösungsverfahre

nvergenzordnung und ei mentares Verfahren

nge-Kutta-Verfahren

umerische sung

Simulation

Simulationsergebnisse

Vergleich der Methoden

ergieich der Methoden Endwerte der Simulation

- ► Annahme (A1): Jede Person aus **S** kann mit jeder Person aus I in Kontakt treten. Relative Häufigkeit des Kontakts: I(t)/N, für Ansteckung: $\beta S(t)I(t)/N$.
- $ightharpoonup \frac{\mathrm{d}}{\mathrm{d}t}S(t) = -\beta S(t)\frac{I(t)}{N}$

Gleichung für *I*

Herleitung

Allgemeines

Simulationsergebnisse

- Annahme (A1): Jede Person aus S kann mit jeder Person aus I in Kontakt treten. Relative Häufigkeit des Kontakts: I(t)/N, für Ansteckung: βS(t)I(t)/N.

Gleichung für I

Annahme (A6): Zu t > 0 bleibt eine Person aus I mit Wahrscheinlichkeit $e^{-\gamma t}$ infiziert.

CID M. J.I

SIR-Modell

Modellannahm

Herleitung

SIR-Modell

Modell

Varianten des SIR-Modells

Numerische Methoden

Allgemeines

Lösungsverfahrer

ementares Verfahren

unge-Kutta-Verfahren

Numerische Lösung

Simulation

imulationse

Vergleich der Methoden

dwerte der Simulation

- Annahme (A1): Jede Person aus S kann mit jeder Person aus I in Kontakt treten. Relative Häufigkeit des Kontakts: I(t)/N, für Ansteckung: βS(t)I(t)/N.

Gleichung für I

- Annahme (A6): Zu t > 0 bleibt eine Person aus I mit Wahrscheinlichkeit $e^{-\gamma t}$ infiziert.
- Für die relative Häufigkeit gilt dann $\frac{I(t)}{I_{Ref}} = e^{-\gamma t}$.

SIR-Modell

Modellannahmen

Herleitung

Anfangswertproblem für das SIR-Modell

Modell

Varianten des SIR-Modells

Numerische

Methoden

Allgemeines Lösungsverfahre

> onvergenzordnung und ein ementares Verfahren

unge-Kutta-Verfahren

Numerische Lösung

Simulation

Simulationsergebnisse

Vergleich der Methoden

dwerte der Simulation

- Annahme (A1): Jede Person aus S kann mit jeder Person aus I in Kontakt treten. Relative Häufigkeit des Kontakts: I(t)/N, für Ansteckung: βS(t)I(t)/N.

Gleichung für I

- Annahme (A6): Zu t > 0 bleibt eine Person aus I mit Wahrscheinlichkeit $e^{-\gamma t}$ infiziert.
- Für die relative Häufigkeit gilt dann $\frac{I(t)}{I_{Ref}} = e^{-\gamma t}$.
- ▶ Dann ist $I(t) = e^{-\gamma t} I_{Ref}$ bzw. $\frac{dI(t)}{dt} = -\gamma I(t)$.

Uberblick

SIR-Modell

..

Herleitung

Anfangswertproblem für das SIR-Modell

Weitere Erkenntnisse zum Modell

/arianten des SIR-Modells

Numerische

Allgemeines

Lösungsverfahre

mentares Verfahren

itunge-rtutta-verianien

Lösung

Simulation

Simulationsergebnisse Vergleich der Methoden

- Annahme (A1): Jede Person aus S kann mit jeder Person aus I in Kontakt treten. Relative Häufigkeit des Kontakts: I(t)/N, für Ansteckung: βS(t)I(t)/N.

Gleichung für I

- Annahme (A6): Zu t > 0 bleibt eine Person aus I mit Wahrscheinlichkeit $e^{-\gamma t}$ infiziert.
- Für die relative Häufigkeit gilt dann $\frac{I(t)}{I_{Ref}} = e^{-\gamma t}$.
- ▶ Dann ist $I(t) = e^{-\gamma t}I_{Ref}$ bzw. $\frac{dI(t)}{dt} = -\gamma I(t)$.
- Personen, die **S** verlassen, addiert man zu $\frac{dI(t)}{dt}$ hinzu.

CID M I I

SIR-Modell

Herleitung

Anfangswertproblem für das SIR-Modell

Weitere Erkenntnisse zu Modell

Varianten des SIR-Modells

Methoden

Allgemeines Lösungsverfahre

Losungsverfahren Konvergenzordnur

ementares verranren unge-Kutta-Verfahren

Numerische Lösung

Simulation

Simulationsergebnisse

Vergleich der Methoden

Endwerte der Simulation

System der Differentialgleichungen

$$\frac{\mathrm{d}}{\mathrm{d}\,t}S(t) = -\beta S(t)\frac{I(t)}{N},\tag{1}$$

$$\frac{\mathrm{d}}{\mathrm{d}\,t}I(t) = \beta S(t)\frac{I(t)}{N} - \gamma I(t),\tag{2}$$

$$\frac{\mathsf{d}}{\mathsf{d}\,t}R(t) = \gamma I(t). \tag{3}$$

....

SIR-Modell

lodellannanr

Anfangswertproblem für das SIR-Modell

Weitere Erkenntnisse zum Modell

Varianten des SIR-Modells

lethoden

Allgemeines Lösungsverfahren

entares Verfahren

nerische

imulation

Simulationsergebnisse Vergleich der Methoden

System der Differentialgleichungen

$$\frac{\mathrm{d}}{\mathrm{d}\,t}S(t) = -\beta S(t)\frac{I(t)}{N},\tag{1}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}I(t) = \beta S(t)\frac{I(t)}{N} - \gamma I(t), \tag{2}$$

$$\frac{\mathrm{d}}{\mathrm{d}\,t}R(t) = \gamma I(t). \tag{3}$$

Anfangsbedingungen

$$I(0) = N_I \ge 0, \tag{4}$$

$$S(0) = N - N_I \ge 0, \tag{5}$$

$$R(0) = N_R = 0 (6)$$

Anfangswertproblem für das SIR-Modell

Simulationsergebnisse

Die Größe $\mathcal{R}_0=\beta/\gamma$ heißt **Basisreproduktionszahl**. Ist $\mathcal{R}_0<1$, klingt das Infektionsgeschehen ab. Ist $\mathcal{R}_0>1$ siehe [Statista, 2023], nimmt das Infektionsgeschehen zu.

SIR-Modell

11 12

Anfangswertproblem für das

Weitere Erkenntnisse zum Modell

Varianten des SIR-Modell

. . .

vumensch Methoden

Allgemeines

onvergenzordnung un

ınge-Kutta-Verfahren

umerische

Simulation

Simulationsergebnisse

Vergleich der Methoden

Endwerte der Simula

Die Größe $\mathcal{R}_0=\beta/\gamma$ heißt **Basisreproduktionszahl**. Ist $\mathcal{R}_0<1$, klingt das Infektionsgeschehen ab. Ist $\mathcal{R}_0>1$ siehe [Statista, 2023], nimmt das Infektionsgeschehen zu.

Analytische Charakterisierung

Das System (1) - (3) ist

CID M. J.II

SIR-Modell

iviodellannar

Herleitung

Weitere Erkenntnisse zum

Modell

Numorischo

Methoden

Allgemeines Lösungsverfahre

Konvergenzordnung und ei

ge-Kutta-Verfahren

ımerische sung

imulation

imulation imulationseri

Vergleich der Methoden

gleich der Methoden dwerte der Simulation

Die Größe $\mathcal{R}_0 = \beta/\gamma$ heißt **Basisreproduktionszahl**. Ist $\mathcal{R}_0 < 1$, klingt das Infektionsgeschehen ab. Ist $\mathcal{R}_0 > 1$ siehe [Statista, 2023], nimmt das Infektionsgeschehen zu.

Analytische Charakterisierung

Das System (1) - (3) ist

▶ ein System gewöhnlicher Differentialgleichungen,

Weitere Erkenntnisse zum

Modell

Die Größe $\mathcal{R}_0 = \beta/\gamma$ heißt **Basisreproduktionszahl**. Ist $\mathcal{R}_0 < 1$, klingt das Infektionsgeschehen ab. Ist $\mathcal{R}_0 > 1$ siehe [Statista, 2023], nimmt das Infektionsgeschehen zu.

Analytische Charakterisierung

Das System (1) - (3) ist

- ein System gewöhnlicher Differentialgleichungen,
- ▶ ist nichtlinear.

Weitere Erkenntnisse zum Modell

Die Größe $\mathcal{R}_0=\beta/\gamma$ heißt **Basisreproduktionszahl**. Ist $\mathcal{R}_0<1$, klingt das Infektionsgeschehen ab. Ist $\mathcal{R}_0>1$ siehe [Statista, 2023], nimmt das Infektionsgeschehen zu.

Analytische Charakterisierung

Das System (1) - (3) ist

- ein System gewöhnlicher Differentialgleichungen,
- ▶ ist nichtlinear,
- ▶ ist gekoppelt aufgrund des Terms $-\beta S(t) \frac{I(t)}{N}$,

SIR-Modell

Modellannah

Herleitung

Anfangswertproblem für das SIR-Modell

> Weitere Erkenntnisse zum Modell

Varianten des SIR-Modells

Numerische Methoden

Allgemeines

onvergenzordnung und ein mentares Verfahren

Runge-Kutta-Verfahren

Numerische

osung

imulation

Vergleich der Methoden

ergleich der Methoden ndwerte der Simulation

Die Größe $\mathcal{R}_0=\beta/\gamma$ heißt **Basisreproduktionszahl**. Ist $\mathcal{R}_0<1$, klingt das Infektionsgeschehen ab. Ist $\mathcal{R}_0>1$ siehe [Statista, 2023], nimmt das Infektionsgeschehen zu.

Analytische Charakterisierung

Das System (1) - (3) ist

- ein System gewöhnlicher Differentialgleichungen,
- ▶ ist nichtlinear,
- ▶ ist gekoppelt aufgrund des Terms $-\beta S(t) \frac{I(t)}{N}$,
- ► lässt eine Entkopplung -wie beispielsweise über Eigenwerttheorie im Falle linearer Systeme- nicht ohne Weiteres zu.

SIR-Modell

Modellannah

Herleitung

SIR-Modell
Weitere Erkenntnisse zum

Modell

Varianten des SIK-Modells

Numerische Methoden

Allgemeines Lösungsverfahre

Convergenzordnung und eir

Runge-Kutta-Verfahren

lumorischo

imulation

imulation

Simulationsei

Vergleich der Methoden

Endwerte der Simulation

Analytische Aussagen

Erste Aussagen

Virusausbreitung

Robert Haas

Überblick

CID Modell

3IK-IVIOGEII

Herleitung

Anfangswertproblem für da

Weitere Erkenntnisse zum Modell

Varianten des SIR-Modell

Numerische

Allgemeines

ösungsverfahren onvergenzordnung 1

elementares Verfahren Runge-Kutta-Verfahren

merische

Simulation

Simulation Simulationsergebnisse

Vergleich der Methoden

Endwerte der Simulation

1. Lemma von Gronwall, [Walter, 1996, §5.], $\rightarrow S(t) \geq S(0)e^{-\beta t}$.

Überblick

SIR-Modell

M I II I

Herleitung

Weitere Erkenntnisse zum Modell

Varianten des SIR-Modells

varianten des SIK-Iviodelis

lumerische Nethoden

Allgemeines Lösungsverfahrei

> nvergenzordnung und ei mentares Verfahren

unge-Kutta-Verfahren

umerische ösung

Simulation

Simulationsergebnisse Vergleich der Methoden

ergleich der Methoden indwerte der Simulation

Erste Aussagen

- 1. Lemma von Gronwall, [Walter, 1996, §5.], $\rightarrow S(t) \geq S(0)e^{-\beta t}$.
- 2. In [Bacaër, 2021, S. 6] wird $S(t) \ge 0$, $I(t) \ge 0$ und $R(t) \ge 0$ für alle t > 0 gezeigt.

Weitere Erkenntnisse zum Modell

Allgemeines

Simulationsergebnisse

- 1. Lemma von Gronwall, [Walter, 1996, §5.], $\rightarrow S(t) \geq S(0)e^{-\beta t}$.
- 2. In [Bacaër, 2021, S. 6] wird $S(t) \ge 0$, $I(t) \ge 0$ und $R(t) \ge 0$ für alle t > 0 gezeigt.

Existenz und Eindeutigkeit einer Lösung

Weitere Erkenntnisse zum Modell

Allgemeines

Simulationsergebnisse

Erste Aussagen

- 1. Lemma von Gronwall, [Walter, 1996, §5.], $\rightarrow S(t) \geq S(0)e^{-\beta t}$.
- 2. In [Bacaër, 2021, S. 6] wird $S(t) \ge 0$, $I(t) \ge 0$ und $R(t) \ge 0$ für alle t > 0 gezeigt.

Existenz und Eindeutigkeit einer Lösung

1. Satz von Picard-Lindelöf, [Walter, 1996, §6.], \rightarrow Existenz und Eindeutigkeit einer lokalen Lösung des Systems (1) – (3) auf [0, T).

SIR-Modell

Modellannahi

Herleitung

Anfangswertproblem für das SIR-Modell

Weitere Erkenntnisse zum Modell

Varianten des SIR-Modells

Numerische Nethoden

Allgemeines Lösungsverfahre

Convergenzordnung und

unge-Kutta-Verfahren

Transc rates versioner

Simulation

Simulation

Simulationsergebnisse

Analytische Aussagen

Erste Aussagen

- 1. Lemma von Gronwall, [Walter, 1996, §5.], $\rightarrow S(t) \geq S(0)e^{-\beta t}$.
- 2. In [Bacaër, 2021, S. 6] wird $S(t) \ge 0$, $I(t) \ge 0$ und $R(t) \ge 0$ für alle t > 0 gezeigt.

Existenz und Eindeutigkeit einer Lösung

- 1. Satz von Picard-Lindelöf, [Walter, 1996, §6.], \rightarrow Existenz und Eindeutigkeit einer lokalen Lösung des Systems (1) (3) auf [0, T).
- 2. In [Bacaër, 2021, S. 6] wird die Existenz und Eindeutigkeit einer Lösung für alle t>0 gezeigt.

in contrary

SIR-Modell

3111-Ivioueii

Herleitung

SIR-Modell

Weitere Erkenntnisse zum Modell

Varianten des SIR-Modells

Numerische Methoden

Allgemeines Lösungsverfahrer

onvergenzordnung und ementares Verfahren

unge-Kutta-Verfahren

Numerische

Simulation

Simulation

Simulationsergebnisse Vergleich der Methoden

Endwerte der Simulation

Mit s = S/N, i = I/N und r = R/N folgt:

$$\begin{array}{lll} \frac{\mathrm{d}\,s}{\mathrm{d}\,t}(t) & = & -\beta s(t)i(t) \text{ und } s(0) = 1 - N_I/N, \\ \frac{\mathrm{d}\,i}{\mathrm{d}\,t}(t) & = & \beta s(t)i(t) - \gamma i(t) \text{ und } i(0) = N_I/N, \\ \frac{\mathrm{d}\,r}{\mathrm{d}\,t}(t) & = & \gamma i(t) \text{ und } r(0) = 0. \end{array}$$

Bemerkung: Mittels Dimensionsanalyse und dem Buckingham-Π-Theorem können mathematische Modelle unter geeigneten Voraussetzungen -u.a. mindestens zwei Grundeinheiten- systematisch in dimensionslose Form transformiert werden.

SIR Mode

SIR-Model

Modellannahm

Herleitung

CID M-J-II

Weitere Erkenntnisse

Varianten des SIR-Modells

lumorischo

Methoden

Allgemeines Lösungsverfahr

vergenzordnung und eir

nge-Kutta-Verfahren

umorischo

imulation

Simulationsergebnisse

Vergleich der Methoden

SEIR-Modell als Erweiterung des SIR-Modells

Unterscheidung der infizierten Personen in:

Gleichungen:

$$\frac{d}{dt}S(t) = -\beta S(t)\frac{I(t)}{N},$$

$$\frac{d}{dt}E(t) = \beta S(t)\frac{I(t)}{N} - \alpha E(t),$$

$$\frac{d}{dt}I(t) = \alpha E(t) - \gamma I(t),$$

$$\frac{d}{dt}R(t) = \gamma I(t),$$

zzgl. entsprechender Anfangsbedingungen an die Größen S(t), E(t), I(t) und R(t).

_

IR-Modell

Herleitung

IR-Modell

Neitere Erke Nodell

Varianten des SIR-Modells

Methoden Allgemeines

> sungsverranren invergenzordnung und ei mentares Verfahren

> nge-Kutta-Verfahren

sung

mulation

Simulationsergebnisse Vergleich der Methode

Vergleich der Methoden Endwerte der Simulation

SEIR-Modell als Erweiterung des SIR-Modells

Unterscheidung der infizierten Personen in:

infizierte Personen, die andere (noch) nicht anstecken können (exposed: E = E(t)),

Gleichungen:

$$\frac{d}{dt}S(t) = -\beta S(t)\frac{I(t)}{N},$$

$$\frac{d}{dt}E(t) = \beta S(t)\frac{I(t)}{N} - \alpha E(t),$$

$$\frac{d}{dt}I(t) = \alpha E(t) - \gamma I(t),$$

$$\frac{d}{dt}R(t) = \gamma I(t),$$

zzgl. entsprechender Anfangsbedingungen an die Größen S(t), E(t), I(t) und R(t).

CID M. I. II

IR-Modell

Horloitung

fangawartaral

SIK-Modell

Modell

Varianten des SIR-Modells

merische

Methoden
Allgemeines

Lösungsverfahren Konvergenzordnung und ei

unge-Kutta-Verfahren

umerische

imulation

Simulationsergebnisse

Vergleich der Methoden

dwerte der Simulation

SEIR-Modell als Erweiterung des SIR-Modells

Unterscheidung der infizierten Personen in:

- infizierte Personen, die andere (noch) nicht anstecken können (exposed: E = E(t)),
- ▶ infizierte Personen, die andere anstecken können (infectious: I = I(t)).

Gleichungen:

$$\frac{d}{dt}S(t) = -\beta S(t)\frac{I(t)}{N},$$

$$\frac{d}{dt}E(t) = \beta S(t)\frac{I(t)}{N} - \alpha E(t),$$

$$\frac{d}{dt}I(t) = \alpha E(t) - \gamma I(t),$$

$$\frac{d}{dt}R(t) = \gamma I(t),$$

zzgl. entsprechender Anfangsbedingungen an die Größen S(t), E(t), I(t) und R(t).

SIR-Modell

SIR-Modell

Herleitung

Anfangswertproblem

Weitere Erkenntnisse zum

Varianten des SIR-Modells

umerische

Allgemeines

Lösungsverfahren Konvergenzordnung und ei

unge-Kutta-Verfahren

ımerische

Simulation

Simulationsergebnisse

Vergleich der Methoden

ndwerte der Simula

Gestelltes Anfangswertproblem

$$y' = f(t, y), \ y(t_0) = y_0 \leftrightarrow y(t) = y_0 + \int_{t_0}^t f(\tau, y(\tau)) d\tau$$

Allgemeines Lösungsverfahren

Simulationsergebnisse Vergleich der Methoden

Gestelltes Anfangswertproblem

$$y' = f(t, y), y(t_0) = y_0 \leftrightarrow y(t) = y_0 + \int_{t_0}^{\tau} f(\tau, y(\tau)) d\tau$$

Erste Uberlegungen

Allgemeines Lösungsverfahren

Simulationsergebnisse

Gestelltes Anfangswertproblem

$$y' = f(t, y), y(t_0) = y_0 \leftrightarrow y(t) = y_0 + \int_{t_0}^{\tau} f(\tau, y(\tau)) d\tau$$

Erste Überlegungen

► Es ist $y(t+h) = y(t) + \int_t^{t+h} f(\tau, y(\tau)) d\tau$ für $t \in \mathbb{R}_+$,

Obciblick

SIR-Modell

erleitung

SIR-Modell

Weitere Erkenntnisse z Modell

Varianten des SIR-Modells

Numerische

Allgemeines Lösungsverfahren

ementares Verfahren

nge-Kutta-Verfahren

sung

imulation

Simulationsergebnisse Vergleich der Methoden

eich der Methoden erte der Simulation

$$y' = f(t, y), y(t_0) = y_0 \leftrightarrow y(t) = y_0 + \int_{t_0}^t f(\tau, y(\tau)) d\tau$$

Erste Überlegungen

- ► Es ist $y(t+h) = y(t) + \int_t^{t+h} f(\tau, y(\tau)) d\tau$ für $t \in \mathbb{R}_+$,
- ▶ $y(t+h) \approx y(t) + Q_h(f,t,y(t))$, nach Näherung durch Quadraturformel Q_h .

Oberblick

SIR-Modell

Modellannahme

erleitung

Antangswertproblem für (SIR-Modell

eitere Erkennti

odell

varianten des Silv-Woden

Numerische Methoden

> Allgemeines Lösungsverfahren

lementares Verfahren

Kunge-Kutta-Verfahren

ösung

imulation

Simulationsergebnisse

Vergleich der Methoden

-Iwerte der Simulat

$$y' = f(t, y), y(t_0) = y_0 \leftrightarrow y(t) = y_0 + \int_{t_0}^{t} f(\tau, y(\tau)) d\tau$$

Erste Überlegungen

- ► Es ist $y(t+h) = y(t) + \int_t^{t+h} f(\tau, y(\tau)) d\tau$ für $t \in \mathbb{R}_+$,
- ▶ $y(t + h) \approx y(t) + Q_h(f, t, y(t))$, nach Näherung durch Quadraturformel Q_h .
- ▶ Mit $F_h: (t,y) \mapsto (t+h,y+Q_h(f,t,y))$ und $t_k = t_0 + kh$ ist $(t_1,y_1) = F_h(t_0,y_0)$, $(t_2,y_2) = F_h(t_1,y_1)$ usw.

SIR-Modell

Modellannahm

lerleitung

Anfangswertprobler

Mr. El . .

lodell

varianten des SIK-Iviodelis

Numerische

Allgemeines Lösungsverfahren

elementares Verfahren

Runge-Kutta-Verfahren

ımerische

imulation

Simulation

Simulationsergebnisse

Vergleich der Methoden

dwerte der Simulat

$$y' = f(t, y), y(t_0) = y_0 \leftrightarrow y(t) = y_0 + \int_{t_0}^{t} f(\tau, y(\tau)) d\tau$$

Erste Überlegungen

- ► Es ist $y(t+h) = y(t) + \int_t^{t+h} f(\tau, y(\tau)) d\tau$ für $t \in \mathbb{R}_+$,
- ▶ $y(t + h) \approx y(t) + Q_h(f, t, y(t))$, nach Näherung durch Quadraturformel Q_h .
- Mit $F_h: (t,y) \mapsto (t+h,y+Q_h(f,t,y))$ und $t_k = t_0 + kh$ ist $(t_1,y_1) = F_h(t_0,y_0)$, $(t_2,y_2) = F_h(t_1,y_1)$ usw.
- ► Folge von Punkten (t_0, y_0) , (t_1, y_1) , (t_2, y_2) , ..., die die exakte Lösung y annähern.

SIR-Modell

Modellannahm

Anfangswertproblem für

Weitere Erkenntnisse zun

Modell

Numorischo

Allgemeines Lösungsverfahren

Konvergenzordnung und eir elementares Verfahren

Runge-Kutta-Verfahren

ımerische

imulation

Simulationsergebnisse

Vergleich der Methoden Endwerte der Simulation

4 □ ト 4 回 ト 4 亘 ト 4 亘 ・ 夕 Q (~)

Konvergenzordnung und ein elementares Verfahren

Konvergenzordnung

Virusausbreitung

Robert Haas

Allgemeines

Konvergenzordnung und ein elementares Verfahren

Simulationsergebnisse

Vergleich der Methoden

Endwerte der Simulation

▶ Der Wert $g_k = y(t_k) - y_k$ heißt globaler Fehler.

Konvergenzordnung

Allgemeines

Konvergenzordnung und ein elementares Verfahren

Simulationsergebnisse

 Der Wert g_k = y(t_k) − y_k heißt globaler Fehler.
 Gilt |g_k| ≤ c₁e^{c₂nh} · h^p = O(h^p), so hat das Lösungsverfahren die Konvergenzordnung p.

Konvergenzordnung

Anfangswertproblem für

Weitere Erkenntnisse zur

Varianten des SIR-Modell

lethoden

Allgemeines Lösungsverfahre

Konvergenzordnung und ein elementares Verfahren

ige-Kutta-Verfahren

umerische isung

Simulation

Simulationsergebnisse Vergleich der Methode

Vergleich der Methoden

Endwerte der Simula

Konvergenzordnung und ein elementares Verfahren

Virusausbreitung

Robert Haas

Allgemeines

Konvergenzordnung und ein

elementares Verfahren

Simulationsergebnisse

1 D > 10 > 1 E > 1 E > E

Vergleich der Methoden

Konvergenzordnung

- ▶ Der Wert $g_k = y(t_k) y_k$ heißt globaler Fehler.
- ▶ Gilt $|g_k| \le c_1 e^{c_2 nh} \cdot h^p = \mathcal{O}(h^p)$, so hat das Lösungsverfahren die Konvergenzordnung p.

Explizites Euler-Verfahren (Polygonzugverfahren)

Konvergenzordnung und ein elementares Verfahren

Virusausbreitung

Robert Haas

berblick

Konvergenzordnung

- ▶ Der Wert $g_k = y(t_k) y_k$ heißt globaler Fehler.
- ▶ Gilt $|g_k| \le c_1 e^{c_2 nh} \cdot h^p = \mathcal{O}(h^p)$, so hat das Lösungsverfahren die *Konvergenzordnung p*.

Explizites Euler-Verfahren (Polygonzugverfahren)

▶ $Q_h(f, t, y) = hf(t, y)$ und $y_{k+1} = y_k + hf(t_k, y_k)$ für $k \in \{0, 1, 2, ...\}$.

IR-Modell

SIK-IVIOGEII

Herleitung

menerung

SIR-Modell

Veitere Erke

arianten des SIR-Modells

umerische

Methoden
Allgemeines

Lösungsverfahren Konvergenzordnung und ein

elementares Verfahren Runge-Kutta-Verfahren

Runge-Kutta-Verfahren

lumerische ösung

Simulation

Simulationsergebnisse

Vergleich der Methoden

rte der Simulation

- ▶ Der Wert $g_k = y(t_k) y_k$ heißt globaler Fehler.
- ▶ Gilt $|g_k| \le c_1 e^{c_2 nh} \cdot h^p = \mathcal{O}(h^p)$, so hat das Lösungsverfahren die *Konvergenzordnung p*.

Explizites Euler-Verfahren (Polygonzugverfahren)

- ▶ $Q_h(f, t, y) = hf(t, y)$ und $y_{k+1} = y_k + hf(t_k, y_k)$ für $k \in \{0, 1, 2, ...\}.$
- ▶ Die so erzeugten Punkte (t_0, y_0) , (t_1, y_1) , (t_2, y_2) sind Eckpunkte eines Polygonzugs aus Verbindungsstrecken von (t_k, y_k) nach (t_{k+1}, y_{k+1}) , $k \in \{0, 1, 2, ...\}$.

SIR-Modell

SIK-Modell

11.15

Herleitung

Anfangswertproblem fü

Weitere Erke

/lodell

rianten des SIR-Modell

lumerische

Allgemeines

Konvergenzordnung und ein elementares Verfahren

Runge-Kutta-Verfahren

Numerische

Simulation

Simulation sergebnisse

Vergleich der Methoden

ndwerte der Simul

Allgemeines Konvergenzordnung und ein

elementares Verfahren

Simulationsergebnisse

Vergleich der Methoden

Konvergenzordnung

- ▶ Der Wert $g_k = y(t_k) y_k$ heißt globaler Fehler.
- ▶ Gilt $|g_k| \le c_1 e^{c_2 nh} \cdot h^p = \mathcal{O}(h^p)$, so hat das Lösungsverfahren die Konvergenzordnung p.

Explizites Euler-Verfahren (Polygonzugverfahren)

- $ightharpoonup Q_h(f,t,y) = hf(t,y)$ und $y_{k+1} = y_k + hf(t_k,y_k)$ für $k \in \{0, 1, 2, \dots\}.$
- ▶ Die so erzeugten Punkte (t_0, y_0) , (t_1, y_1) , (t_2, y_2) sind Eckpunkte eines Polygonzugs aus Verbindungsstrecken von (t_k, y_k) nach $(t_{k+1}, y_{k+1}), k \in \{0, 1, 2, \dots\}$.
- ightharpoonup Konvergenzordnung p=1.

s-stufiges RK-Verfahren: Einschrittverfahren der Form

$$y_{n+1} = y_n + h \sum_{j=1}^{s} b_j k_j, \ k_j = f(t_n + hc_j, y_n + \sum_{l=1}^{s} a_{jl} k_l)$$

Die Zahlen b_j , c_j und a_{jl} notiert man häufig im Butcher-Tableau.

.....

SIR-Modell

derleitung

. . .

SIK-IVIODEII

odell

arianten des SIR-Modells

Vumerische

Methoden

Allgemeines Lösungsverfahr

> ergenzordnung und ein entares Verfahren

Runge-Kutta-Verfahren

ımerische sung

Simulation

Simulation Simulationsergebnisse

Vergleich der Methoden

s-stufiges RK-Verfahren: Einschrittverfahren der Form

$$y_{n+1} = y_n + h \sum_{j=1}^{s} b_j k_j, \ k_j = f(t_n + hc_j, y_n + \sum_{l=1}^{s} a_{jl} k_l)$$

Die Zahlen b_i , c_i und a_{il} notiert man häufig im Butcher-Tableau.

Beispiele für Runge-Kutta-Verfahren

Allgemeines

Runge-Kutta-Verfahren

Allgemeine Form

s-stufiges RK-Verfahren: Einschrittverfahren der Form

$$y_{n+1} = y_n + h \sum_{j=1}^{3} b_j k_j, \ k_j = f(t_n + hc_j, y_n + \sum_{l=1}^{3} a_{jl} k_l)$$

Die Zahlen b_i , c_i und a_{il} notiert man häufig im Butcher-Tableau.

Beispiele für Runge-Kutta-Verfahren

Klassisches Runge-Kutta:

$$b_1 = b_4 = 1/6$$
, $b_2 = b_3 = 2/3$, $c_1 = 0$, $c_2 = c_3 = 1/2$, $c_4 = 1$, $a_{21} = a_{32} = 1/2$, $a_{43} = 1$, Konvergenzordnung $p = 4$.

Robert Haas

Runge-Kutta-Verfahren

Allgemeine Form

s-stufiges RK-Verfahren: Einschrittverfahren der Form

$$y_{n+1} = y_n + h \sum_{j=1}^{3} b_j k_j, \ k_j = f(t_n + hc_j, y_n + \sum_{l=1}^{3} a_{jl} k_l)$$

Die Zahlen b_j , c_j und a_{jl} notiert man häufig im Butcher-Tableau.

Beispiele für Runge-Kutta-Verfahren

- ► Klassisches Runge-Kutta: $b_1 = b_4 = 1/6$, $b_2 = b_3 = 2/3$, $c_1 = 0$, $c_2 = c_3 = 1/2$, $c_4 = 1$, $a_{21} = a_{32} = 1/2$, $a_{43} = 1$, Konvergenzordnung p = 4.
- ▶ Dormand-Prince: Siehe [Stöcker, 1995, S.636], p = (4,5).

CID Madall

SIK-IVIOGEII

Herleitung

SIR-Modell

Weitere Erl

arianten des SIR-Model

umerische ethoden

Allgemeines Lösungsverfahren

Runge-Kutta-Verfahren

umerische

Simulation

Simulationser

Vergleich der Methoden

ergieich der Methoden ndwerte der Simulation

Numerische Lösungsverfahren für das Systems (1) – (3)

Virusausbreitung

Robert Haas

Allgemeines

elementares Verfahren

Simulation

Simulationsergebnisse Vergleich der Methoden

Endwerte der Simulation

Explizites Euler-Verfahren,

Numerische Lösungsverfahren für das Systems (1) – (3)

erleitung

Anfangswertproblem für SIR-Modell

/eitere Erkenntnisse z lodell

rianten des SIR-Modells

ımoriccho

/lethoden

Allgemeines Lösungsverfahren

onvergenzordnung und ei ementares Verfahren

nge-Kutta-Verfahren

merische sung

Simulation

Simulationsergebnisse Vergleich der Methoden

Vergleich der Methoden Endwerte der Simulation

Explizites Euler-Verfahren,

► Klassisches Runge-Kutta-Verfahren.

Numerische Lösungsverfahren für das Systems (1) – (3)

Virusausbreitung

Robert Haas

Überblick

SIR-Modell

Harlaitung

Anfangswertproblem für d SIR-Modell

eitere Erkennt

lodell

arianten des SIR-Modells

Numerische

Allgemeines

Allgemeines Lösungsverfahre

> nvergenzordnung und e mentares Verfahren

inge-Kutta-Verfahren

umerische isung

Simulation

Simulationsergebnisse

Explizites Euler-Verfahren,

Dormand-Prince-Verfahren.

► Klassisches Runge-Kutta-Verfahren.

Numerische Lösungsverfahren für das Systems (1) – (3)

Uberblick

SIR-Modell

Herleitung

Anfangswertproblem für

...

Veitere Erkenntnisse zu Nodell

Varianten des SIR-Modells

ethoden

Allgemeines

.ösungsverfahre

nvergenzordnung und e mentares Verfahren

ınge-Kutta-Verfahren

umerische

Simulation

Simulationsergebnisse

Vergleich der Methoden

ndwerte der Simulation

Explizites Euler-Verfahren,

Dormand-Prince-Verfahren.

Parameterwerte der Simulation

Klassisches Runge-Kutta-Verfahren.

Numerische Lösungsverfahren für das Systems (1) – (3)

Virusausbreitung

Robert Haas

Überblick

SIR-Modell

lerleitung

Anfangswertproblem für SIR-Modell

Weitere Erkenntnis

Modell

irianten des SIK-IVIODEII:

Numerische

Allgemeines

Allgemeines Lösungsverfahre

onvergenzordnung und

inge-Kutta-Verfahren

umerische sung

Simulation

Simulationsergebnisse

Vergleich der Methoden

ndwerte der Simulation

000

Explizites Euler-Verfahren,

▶ Dormand-Prince-Verfahren

Parameterwerte der Simulation

Deutschland 2019/2020)

Klassisches Runge-Kutta-Verfahren.

Numerische Lösungsverfahren für das Systems (1) – (3)

▶ Populationsgröße *N*: 83 200 000 (Einwohnerzahl von

Virusausbreitung

Robert Haas

Uberbli

SIR-Modell

Modellannahn

lerleitung

Anfangswertproblem für c SIR-Modell

Veitere Erkenntn

Modell

Methoden

Allgemeines

Lösungsverfahre

onvergenzordnung und eir ementares Verfahren

nge-Kutta-Verfahren

ösung

Simulation

Simulationsergebnisse

Vergleich der Methoden

werte der Simulation

4 D > 4 B > 4 E > 4 E > E 990

Explizites Euler-Verfahren,

▶ Dormand-Prince-Verfahren

Parameterwerte der Simulation

Deutschland 2019/2020)

Klassisches Runge-Kutta-Verfahren.

► Infizierte Personen am Anfang I₀: 10 000

Numerische Lösungsverfahren für das Systems (1) – (3)

▶ Populationsgröße N: 83 200 000 (Einwohnerzahl von

Virusausbreitung

Robert Haas

Uberbli

SIR-Modell

Modellannahn

lerleitung

Anfangswertproblem für d

Waitara Erkanntniss

Weitere Erkenntnisse zur Modell

arianten des SIR-Modells

umerische

Methoden

Allgemeines Lösungsverfahr

Konvergenzordnung ur

Runge-Kutta-Verfahren

Vumerische Lösung

Simulation

Simulationsergebnisse

Vergleich der Methoden

werte der Simulation

4 D > 4 D > 4 E > 4 E > E 990

Simulation

Vergleich der Methoden

- Numerische Lösungsverfahren für das Systems (1) (3)
 - Explizites Euler-Verfahren,
 - Klassisches Runge-Kutta-Verfahren.
 - ▶ Dormand-Prince-Verfahren

Parameterwerte der Simulation

- ▶ Populationsgröße N: 83 200 000 (Einwohnerzahl von Deutschland 2019/2020)
- ► Infizierte Personen am Anfang I₀: 10 000
- \triangleright Erholungsrate γ : 1/3

Numerische Lösungsverfahren für das Systems (1) – (3)

- ► Explizites Euler-Verfahren,
- ► Klassisches Runge-Kutta-Verfahren.
- ▶ Dormand-Prince-Verfahren.

Parameterwerte der Simulation

- Populationsgröße N: 83 200 000 (Einwohnerzahl von Deutschland 2019/2020)
- ► Infizierte Personen am Anfang *l*₀: 10 000
- ▶ Erholungsrate γ : 1/3
- ▶ Effektive Kontaktrate β : 0.6 $\rightarrow \mathcal{R}_0 = 1.8$.

CID Modo

SIR-Modell

Modellannahr

Herleitung

Anfangswertproblem für o

SIR-IVIOUEII

Weitere Erkenntnisse zu

Varianten des SIR-Modell

umerische

lethoden

Allgemeines Lösungsverfahr

Konvergenzordnung i

unge-Kutta-Verfahren

-ösung

Simulation

Simulationsergebnisse Vergleich der Methoden

ergleich der Methoden

Endwerte der Simulation

Simulationsergebnisse

Überblick

SIR-Modell

Herleitung

Anfangswertproblem für das

Weitere Erkenntnisse zu

Varianten des SIR-Mode

umensche lethoden

Allgemeines

Lösungsverfahren

Konvergenzordnung und ein elementares Verfahren

unge-Kutta-Verfahren

Numerische

Simulation

Simulation

Simulationsergebnisse

Vergleich der Methoden

Vergleich der Methoden Endwerte der Simulation

Explicit Euler

Vergleich der Methoden

Virusausbreitung

Robert Haas

Simulationsergebnisse

Endwerte der Simulation

Explicit Euler

Virusausbreitung

Robert Haas

Allgemeines

elementares Verfahren

Simulationsergebnisse

Vergleich der Methoden

Endwerte der Simulation

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

Allgemeines

elementares Verfahren

Simulationsergebnisse

Vergleich der Methoden

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

► Infectious: 0.0, 4 127

Allgemeines

Simulationsergebnisse

Vergleich der Methoden

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

► Infectious: 0.0, 4 127

► Removed: 0.7459, 62 058 833

Allgemeines

Simulationsergebnisse

Vergleich der Methoden

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

► Infectious: 0.0, 4 127

► Removed: 0.7459, 62 058 833

Runge-Kutta

Allgemeines

Simulationsergebnisse

Vergleich der Methoden

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

► Infectious: 0.0, 4 127

► Removed: 0.7459, 62 058 833

Runge-Kutta

► Susceptible: 0.2676, 22 262 641

CID Modell

SIR-Modell

Modellannahmen

lerleitung

angswertproblem für

tere Erkeni

ere Erkenntniss ell

rianten des SIR-Modells

lumerische

Methoden

Allgemeines Lösungsverfahr

> vergenzordnung und ein nentares Verfahren

nge-Kutta-Verfahren

umerische ösung

imulation

Simulationsergebnisse

Vergleich der Methoden

Endwerte der Simulation

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

► Infectious: 0.0, 4 127

► Removed: 0.7459, 62 058 833

Runge-Kutta

► Susceptible: 0.2676, 22 262 641

► Infectious: 0.0001, 6 429

CID Modell

SIR-Modell

Modellannahmer

lerleitung

fangswert problem

wiodeli

ere Erkenntni

ell d.- CID M.-d.l

Methoden

Allgemeines Lösungsverfah

Konvergenzordnung und

Runge-Kutta-Verfahren

Numerische

Simulation

imulation imulationsers

Vergleich der Methoden

Endwerte der Simulation

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

► Infectious: 0.0, 4 127

► Removed: 0.7459, 62 058 833

Runge-Kutta

► Susceptible: 0.2676, 22 262 641

► Infectious: 0.0001, 6 429

► Removed: 0.7323, 60 930 930

CID Mada

SIR-Modell

Madallanashasa

erleitung

rangswertproblem für d R-Modell

tere Erkeni

ere Erkenntniss

ianten des SIR-Mode

lumerische

Methoden

Allgemeines Lösungsverfahr

> onvergenzordnung und e ementares Verfahren

unge-Kutta-Verfahren

lumerische

Simulation

imulationserg

Vergleich der Methoden

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

► Infectious: 0.0, 4 127

► Removed: 0.7459, 62 058 833

Runge-Kutta

► Susceptible: 0.2676, 22 262 641

► Infectious: 0.0001, 6 429

► Removed: 0.7323, 60 930 930

Dormand-Prince-4,5

Allgemeines

Vergleich der Methoden

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

► Infectious: 0.0, 4 127

► Removed: 0.7459, 62 058 833

Runge-Kutta

► Susceptible: 0.2676, 22 262 641

► Infectious: 0.0001, 6 429

► Removed: 0.7323, 60 930 930

Dormand-Prince-4,5

► Susceptible: 0.2676, 22 263 541

Vergleich der Methoden

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

► Infectious: 0.0, 4 127

► Removed: 0.7459, 62 058 833

Runge-Kutta

► Susceptible: 0.2676, 22 262 641

► Infectious: 0.0001, 6 429

► Removed: 0.7323, 60 930 930

Dormand-Prince-4,5

Susceptible: 0.2676, 22 263 541

► Infectious: 0.0001, 7 385

Vergleich der Methoden

Virusausbreitung

Robert Haas

Explicit Euler

► Susceptible: 0.2541, 21 137 040

► Infectious: 0.0, 4 127

► Removed: 0.7459, 62 058 833

Runge-Kutta

► Susceptible: 0.2676, 22 262 641

► Infectious: 0.0001, 6 429

► Removed: 0.7323, 60 930 930

Dormand-Prince-4,5

Susceptible: 0.2676, 22 263 541

► Infectious: 0.0001, 7 385

► Removed: 0.7323, 60 929 073

Vergleich der Methoden

Endwerte der Simulation

4 D > 4 D > 4 E > 4 E >

Quellen

Robert Haas

Allgemeines

Vergleich der Methoden

Endwerte der Simulation

Nicolas Bacaër (2021)

Mathématiques et Épidémies

Cassini Paris

Wolfgang Walter (1996)

Gewöhnliche Differentialgleichungen

Springer Berlin Heidelberg

W. O. Kermack und A. G. McKendrick (1927)

A contribution to the mathematical theory of epidemics Proceedings Royal Society London Series A 115, 700–721, 1927

Horst Stöcker (1995)

Taschenbuch mathematischer Formeln und Verfahren

Verlag Harri Deutsch Thun und Frankfurt am Main

Virusausbreitung

Robert Haas

Statista (2023)

Quellen (Fortsetzung)

Reproduktionszahl des Coronavirus (COVID-19) in Deutschland seit Mai 2020:

URL: https://de.statista.com/statistik/daten/studie/
1117478/umfrage/

reproduktionszahl-des-coronavirus-covid-19-in-deutschland/Modell

Oberbliek

R-Modell

Modellannahr

erleitung

R-Modell

Neitere Erke Nodell

arianten des SIR-Modells

umerische ethoden

Allgemeines

Konvergenzordnung und ein elementares Verfahren

Runge-Kutta-Verfahre

Lösung

Simulation

Simulationsergebnisse Vergleich der Methode

Vergleich der Methoden Endwerte der Simulation

Noch Fragen...?

Virusausbreitung

Robert Haas

Herleitung

Anfangswertproblem für das

Allgemeines

elementares Verfahren

Runge-Kutta-Verfahren

Lösung

Simulationsergebnisse

Vergleich der Methoden

Noch Fragen...?

Vielen Dank für Ihre Aufmerksamkeit!

Link zum Vortrag:

https://github.com/Haasrobertgmxnet/Epidemiologie Link zum Code der Simulation:

https://github.com/Haasrobertgmxnet/EspidemicsMath

Robert Haas

Allgemeines

Simulationsergebnisse

Vergleich der Methoden