2. Übung Maß- und Wahrscheinlichkeitstheorie 1 SS2019

- 1. Zeigen Sie mit dem Prinzip der guten Mengen, dass das von einem Mengensystem, das bezüglich der Durchschnittsbildung abgeschlossen ist, erzeugte Dynkin-System mit der erzeugten Sigmaalgebra übereinstimmt.
- 2. Zeigen Sie, dass jeder endliche Ring \Re von einem System von endlich vielen disjunkten Mengen erzeugt wird (zeigen Sie, dass $\{A_x, x \in \Omega\}$ mit $A_x = \bigcap_{A \in \Re: x \in A} A$ hier soll der leere Durchschnitt ausnahmsweise = \emptyset sein das Gewünschte leistet, also für $x, y \in \Omega$ entweder $A_x = A_y$ oder $A_x \cap A_y = \emptyset$ gilt).
- 3. Bestimmen Sie alle Semiringe (im weiteren Sinn), die den Ring $2^{\{1,2,3\}}$ erzeugen. Welche darunter sind Semiringe im engeren Sinn?
- 4. Aus der Menge $\Omega = \{-1, 0, 1, 2, 3\}$ ist eine Funktion $f: \Omega \to \mathbb{Z}$ durch $f(x) = x^2 3x$ gegeben. Bestimmen Sie das Urbild $f^{-1}(2^{\mathbb{Z}})$.
- 5. Ω sei eine beliebige Menge,

$$\mathfrak{A} = \{ A \subseteq \Omega : |A| < \infty \lor |A^C| < \infty \}.$$

Zeigen Sie, dass durch

$$\mu(A) = \begin{cases} 0 & \text{wenn } |A| < \infty, \\ 1 & \text{sonst} \end{cases}$$

ein Inhalt auf $\mathfrak A$ definiert wird. Wann ist μ ein Maß?

6. Auf dem Semiring

$$\{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 4\}\}$$

über $\{1,2,3,4\}$ ist ein Inhalt μ mit

$$\mu(\{1,2\}) = 3, \mu(\{1,3\}) = 2, \mu(\{1,4\}) = 1, \mu(\{2,4\}) = 4$$

gegeben. Bestimmen Sie die fehlenden Werte von μ und die Fortsetzung von μ auf den erzeugten Ring.

7. Auf dem vom Semiring $\mathfrak{T} = \{(a,b] : 0 \le a \le b \le 1\}$ erzeugten Ring \mathfrak{R} über $\Omega = (0,1]$ ist durch das Lebesguemaß λ ein Maß gegeben. Jedes $\omega \in \Omega$ kann durch seine Binärdarstellung

$$\omega = \sum_{n \in \mathbb{N}} \frac{a_n(\omega)}{2^n}$$

mit $a_n \in \{0,1\}$ angegeben werden. Wenn diese nicht eindeutig ist (etwa für $\omega = 1/2$), wählen wir die Darstellung mit unendlich vielen Einsen (im Beispiel 1/2 = 0.01111...). Zeigen Sie, dass die Mengen $A_i = \{\omega \in \Omega : a_i(\omega) = 0\}$ in \Re liegen, und bestimmen Sie $\lambda(A_i)$ und $\lambda(A_i \cap A_j)$.