Matrices et applications linéaires - exercice supplémentaire

Exercice 1 ($^{\bigcirc}$) Soit $A \in \mathcal{M}_n(\mathbb{R})$, que peut-on dire si tr $(^tAA) = 0$?

Exercice 2 (\bigcirc) On considère l'endomorphisme u de $\mathbb{R}_3[X]$ défini par :

$$\forall P \in \mathbb{R}_3[X] \quad u(P) = P' + P$$

Écrire la matrice de u dans la base $1, X, X^2, X^3$.

Exercice 3 (\circlearrowleft) On note M_a la matrice de $\varphi: P \to P(X+a)$ dans la base canonique de $\mathbb{R}_n[X]$. Montrer que l'ensemble des matrices M_a lorsque a décrit \mathbb{R} est un groupe multiplicatif.

Exercice 4 (\circlearrowleft) Soit $f \in \mathcal{L}(\mathbb{R}^3)$, vérifiant $f^2 \neq 0_{\mathcal{L}(\mathbb{R}^3)}$ et $f^3 = 0_{\mathcal{L}(\mathbb{R}^3)}$. Montrer qu'il existe une base de E dans laquelle la matrice de f s'écrit $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 5 ($\stackrel{\triangleright}{\triangleright}$) Soit $n \ge 2$.

- 1) Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe une matrice $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $\forall M \in \mathcal{M}_n(\mathbb{R}), \ \varphi(M) = \operatorname{tr}(AM)$.
- 2) En déduire que tout hyperplan de $\mathcal{M}_n(\mathbb{R})$ possède au moins une matrice inversible.