Introduction to Machine Learning Feature Generation

Andres Mendez-Vazquez

February 25, 2019

Outline

- Introduction
 - What do we want?
- Fisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

Outline

- Introduction
 - What do we want?
- Pisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

What do we want?

What

Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

Our Approach

We want to "squeeze" in a relatively small number of features, leading to a reduction of the necessary feature space dimension.

Thus removing information redundancies - Usually produced and the

What do we want?

What

Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

Our Approach

We want to "squeeze" in a relatively small number of features, leading to a reduction of the necessary feature space dimension.

Thus removing information redundancies - Usually produced and the measurement.

What do we want?

What

Given a set of measurements, the goal is to discover compact and informative representations of the obtained data.

Our Approach

We want to "squeeze" in a relatively small number of features, leading to a reduction of the necessary feature space dimension.

Properties

Thus removing information redundancies - Usually produced and the measurement.

What Methods we will see?

Fisher Linear Discriminant

- Squeezing to the maximum.
- From Many to One Dimension

- Not so much squeezing
- You are willing to lose some information

What Methods we will see?

Fisher Linear Discriminant

- Squeezing to the maximum.
- 2 From Many to One Dimension

Principal Component Analysis

- Not so much squeezing
- 2 You are willing to lose some information

However, Please review

Singular Value Decomposition

- ① Decompose a $m \times n$ data matrix A into $A = USV^T$, U and V orthonormal matrices and S contains the eigenvalues.
- You can read more of it on "Singular Value Decomposition Tutorial" at the paper section.

Outline

- Introduction
 - What do we want?
- Fisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

Rotation

Projecting

Projecting well-separated samples onto an arbitrary line usually produces a confused mixture of samples from all of the classes and thus produces poor recognition performance.

ething Noti

However, moving and rotating the line around might result in an orientation for which the projected samples are well separated.

t is a discriminant analysis seeking directions that are efficient for discriminating binary classification problem.

Rotation

Projecting

Projecting well-separated samples onto an arbitrary line usually produces a confused mixture of samples from all of the classes and thus produces poor recognition performance.

Something Notable

However, moving and rotating the line around might result in an orientation for which the projected samples are well separated.

It is a discriminant analysis seeking directions that are efficient for discriminating binary classification problem.

Rotation

Projecting

Projecting well-separated samples onto an arbitrary line usually produces a confused mixture of samples from all of the classes and thus produces poor recognition performance.

Something Notable

However, moving and rotating the line around might result in an orientation for which the projected samples are well separated.

Fisher linear discriminant (FLD)

It is a discriminant analysis seeking directions that are efficient for discriminating binary classification problem.

Example

This is actually comming from...

Classifier as

A machine for dimensionality reduction.

Initial Setup

We have:

- N d-dimensional samples $x_1, x_2, ..., x_N$
- N_i is the number of samples in class C_i for i=1,2,2

```
y_i = w^T x_i \tag{1}
```

This is actually comming from...

Classifier as

A machine for dimensionality reduction.

Initial Setup

We have:

- N d-dimensional samples $x_1, x_2, ..., x_N$
- N_i is the number of samples in class C_i for i=1,2.

$$y_i = \boldsymbol{w}^T \boldsymbol{x}_i$$

This is actually comming from...

Classifier as

A machine for dimensionality reduction.

Initial Setup

We have:

- N d-dimensional samples $x_1, x_2, ..., x_N$
- N_i is the number of samples in class C_i for i=1,2.

Then, we ask for the projection of each x_i into the line by means of

$$y_i = \boldsymbol{w}^T \boldsymbol{x}_i \tag{1}$$

Outline

- Introduction
 - What do we want?
- Fisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

Use the mean of each Class

Then

Select $oldsymbol{w}$ such that class separation is maximized

- 2 0 1 5N1
- $\bigcirc U_1 \Rightarrow m_1 = rac{1}{N_1} \sum_{i=1}^{N_1} x_i$
- $O C_2 \Rightarrow m_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} x_i$

Oklii Th

Thus, we want to maximize the distance the projected means

$$m_1 - m_2 = w^T (m_1 - m_2)$$

where $m_k = oldsymbol{w}^T oldsymbol{m}_k$ for k=1,2.

Use the mean of each Class

Then

Select $oldsymbol{w}$ such that class separation is maximized

We then define the mean sample for ecah class

- **1** $C_1 \Rightarrow m_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} x_i$
- **2** $C_2 \Rightarrow m_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} x_i$

Ok!!! This is giving us a measure of dist

Thus, we want to maximize the distance the projected means

$$m_1 - m_2 = \boldsymbol{w}^T \left(\boldsymbol{m}_1 - \boldsymbol{m}_2 \right)$$

(2)

where $m_k = {m w}^T {m m}_k$ for k=1,2.

Use the mean of each Class

Then

Select w such that class separation is maximized

We then define the mean sample for ecah class

- **1** $C_1 \Rightarrow m_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} x_i$
- $C_2 \Rightarrow m_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} x_i$

Ok!!! This is giving us a measure of distance

Thus, we want to maximize the distance the projected means:

$$m_1 - m_2 = \boldsymbol{w}^T \left(\boldsymbol{m}_1 - \boldsymbol{m}_2 \right) \tag{2}$$

where $m_k = \boldsymbol{w}^T \boldsymbol{m}_k$ for k = 1, 2.

However

We could simply seek

$$\max \mathbf{w}^{T} (\mathbf{m}_{1} - \mathbf{m}_{2})$$

$$s.t. \sum_{i=1}^{d} w_{i} = 1$$

After all

We do not care about the magnitude of $oldsymbol{w}.$

However

We could simply seek

$$\max \mathbf{w}^{T} (\mathbf{m}_{1} - \mathbf{m}_{2})$$

$$s.t. \sum_{i=1}^{d} w_{i} = 1$$

After all

We do not care about the magnitude of w.

Example

Outline

- Introduction
 - What do we want?
- Fisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

Fixing the Problem

To obtain good separation of the projected data

The difference between the means should be large relative to some measure of the standard deviations for each class.

(4)

Fixing the Problem

To obtain good separation of the projected data

The difference between the means should be large relative to some measure of the standard deviations for each class.

We define a SCATTER measure (Based in the Sample Variance)

$$s_k^2 = \sum_{x_i \in C_k} (w^T x_i - m_k)^2 = \sum_{y_i = w^T x_i \in C_k} (y_i - m_k)^2$$
 (3)

Fixing the Problem

To obtain good separation of the projected data

The difference between the means should be large relative to some measure of the standard deviations for each class.

We define a SCATTER measure (Based in the Sample Variance)

$$s_k^2 = \sum_{x_i \in C_k} \left(w^T x_i - m_k \right)^2 = \sum_{y_i = w^T x_i \in C_k} (y_i - m_k)^2$$
 (3)

We define then within-class variance for the whole data

$$s_1^2 + s_2^2 (4)$$

Outline

- Introduction
 - What do we want?
- Fisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

Finally, a Cost Function

The between-class variance

$$(m_1 - m_2)^2 \tag{5}$$

(6)

$$J(w) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2} \tag{7}$$

Finally, a Cost Function

The between-class variance

$$(m_1 - m_2)^2 \tag{5}$$

The Fisher criterion

between-class variance
within-class variance

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2} \tag{7}$$

Finally, a Cost Function

The between-class variance

$$(m_1 - m_2)^2 \tag{5}$$

The Fisher criterion

between-class variance
within-class variance

Finally

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2} \tag{7}$$

(6)

From it, we can obtain

An approximation to the w $w \propto S_w^{-1} \left(m_1 - m_2 ight)$ (8)

From it, we can obtain

An approximation to the $oldsymbol{w}$

$$\boldsymbol{w} \propto \boldsymbol{S}_w^{-1} \left(\boldsymbol{m}_1 - \boldsymbol{m}_2 \right) \tag{8}$$

Once the data is transformed into y_i

• Use a threshold $y_0 \Rightarrow x \in C_1$ iff $y\left(x\right) \geq y_0$ or $x \in C_2$ iff $y\left(x\right) < y_0$

From it, we can obtain

An approximation to the $oldsymbol{w}$

$$\boldsymbol{w} \propto \boldsymbol{S}_w^{-1} \left(\boldsymbol{m}_1 - \boldsymbol{m}_2 \right) \tag{8}$$

Once the data is transformed into y_i

- Use a threshold $y_0 \Rightarrow x \in C_1$ iff $y(x) \ge y_0$ or $x \in C_2$ iff $y(x) < y_0$
- Or ML with a Gussian can be used to classify the new transformed data using a Naive Bayes (Central Limit Theorem and $y = w^T x$ sum of random variables).

Please

Your Reading Material, it is about the Multiclass

4.1.6 Fisher's discriminant for multiple classes AT "Pattern Recognition" by Bishop

Outline

- Introduction
 - What do we want?
- Fisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

Also Known as Karhunen-Loeve Transform

Setup

• Consider a data set of observations $\{x_n\}$ with n=1,2,...,N and $x_n \in R^d$.

Project data onto space with dimensionality m < d (We assume m is given)

Also Known as Karhunen-Loeve Transform

Setup

• Consider a data set of observations $\{x_n\}$ with n=1,2,...,N and $x_n\in R^d$.

Goal

Project data onto space with dimensionality $m < d \mbox{ (We assume } m \mbox{ is given)}$

Dimensional Variance

Remember the Sample Variance Sample

$$VAR(X) = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) (x_i - \overline{x})}{N - 1}$$
(9)

$$COV(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) (y_i - \overline{y})}{N - 1}$$

$$(10)$$

Dimensional Variance

Remember the Sample Variance Sample

$$VAR(X) = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) (x_i - \overline{x})}{N - 1}$$
(9)

You can do the same in the case of two variables X and Y

$$COV(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) (y_i - \overline{y})}{N - 1}$$
(10)

Now, Define

Given the data

$$\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N \tag{11}$$

where x_i is a column vector

$$\overline{oldsymbol{x}} = rac{1}{N} \sum_{i}^{N} oldsymbol{x}_i$$

$$x_1-\overline{x},x_2-\overline{x},...,x_N$$

(13)

Now, Define

Given the data

$$\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N \tag{11}$$

where x_i is a column vector

Construct the sample mean

$$\overline{\boldsymbol{x}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i \tag{12}$$

$$x_1 - \overline{x}, x_2 - \overline{x}, ..., x_N - \overline{x}$$
 (13)

Now, Define

Given the data

$$\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N \tag{11}$$

where x_i is a column vector

Construct the sample mean

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{12}$$

Build new data

$$x_1 - \overline{x}, x_2 - \overline{x}, ..., x_N - \overline{x}$$
 (13)

Build the Sample Mean

The Covariance Matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$
(14)

- The ijth value of S is equivalent to σ_i^i
- The *ii*th value of S is equivalent to σ_{ii}^2
- What else? Look at a plane Center and Rotating!!!!

Build the Sample Mean

The Covariance Matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$
(14)

Properties

- The ijth value of S is equivalent to σ_{ij}^2 .
- ② The *ii*th value of S is equivalent to σ_{ii}^2 .
- 3 What else? Look at a plane Center and Rotating!!!

Outline

- Introduction
 - What do we want?
- 2 Fisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

Using S to Project Data

As in Fisher

We want to project the data to a line...

For this we use a u_1

with $\boldsymbol{u}_1^T\boldsymbol{u}_1=1$

Question

What is the Sample Variance of the Projected Data

Using S to Project Data

As in Fisher

We want to project the data to a line...

For this we use a $oldsymbol{u}_1$

with $\boldsymbol{u}_1^T \boldsymbol{u}_1 = 1$

What is the Sample Variance of the Projected Data

Using S to Project Data

As in Fisher

We want to project the data to a line...

For this we use a $oldsymbol{u}_1$

with $\boldsymbol{u}_1^T \boldsymbol{u}_1 = 1$

Question

What is the Sample Variance of the Projected Data

Outline

- Introduction
 - What do we want?
- Fisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

Thus we have

Variance of the projected data

$$\frac{1}{N-1}\sum_{i=1}^{N}\left[\boldsymbol{u}_{1}\boldsymbol{x}_{i}-\boldsymbol{u}_{1}\overline{\boldsymbol{x}}\right]=\boldsymbol{u}_{1}^{T}S\boldsymbol{u}_{1}$$
(15)

Use Lagrange Multipliers to Maximize

$$\boldsymbol{u}_{1}^{T}S\boldsymbol{u}_{1} + \lambda_{1} \left(1 - \boldsymbol{u}_{1}^{T}\boldsymbol{u}_{1} \right) \tag{16}$$

Thus we have

Variance of the projected data

$$\frac{1}{N-1} \sum_{i=1}^{N} \left[\boldsymbol{u}_{1} \boldsymbol{x}_{i} - \boldsymbol{u}_{1} \overline{\boldsymbol{x}} \right] = \boldsymbol{u}_{1}^{T} S \boldsymbol{u}_{1}$$
 (15)

Use Lagrange Multipliers to Maximize

$$\boldsymbol{u}_{1}^{T}S\boldsymbol{u}_{1} + \lambda_{1}\left(1 - \boldsymbol{u}_{1}^{T}\boldsymbol{u}_{1}\right) \tag{16}$$

Derive by $oldsymbol{u}_1$

We get

$$S\boldsymbol{u}_1 = \lambda_1 \boldsymbol{u}_1 \tag{17}$$

Then

 $oldsymbol{u}_1$ is an eigenvector of S

If we left-multiply by u_1

$$\boldsymbol{u}_{1}^{T}\boldsymbol{S}\boldsymbol{u}_{1} = \lambda_{1} \tag{18}$$

Derive by \boldsymbol{u}_1

We get

$$S\boldsymbol{u}_1 = \lambda_1 \boldsymbol{u}_1 \tag{17}$$

Then

 $oldsymbol{u}_1$ is an eigenvector of S.

$$\boldsymbol{u}_1^T \boldsymbol{S} \boldsymbol{u}_1 = \lambda_1 \tag{18}$$

Derive by \boldsymbol{u}_1

We get

$$S\boldsymbol{u}_1 = \lambda_1 \boldsymbol{u}_1 \tag{17}$$

Then

 u_1 is an eigenvector of S.

If we left-multiply by $oldsymbol{u}_1$

$$\boldsymbol{u}_1^T S \boldsymbol{u}_1 = \lambda_1 \tag{18}$$

What about the second eigenvector $oldsymbol{u}_2$

We have the following optimization problem

$$\max \mathbf{u}_2^T S \mathbf{u}_2$$
s.t. $\mathbf{u}_2^T \mathbf{u}_2 = 1$
 $\mathbf{u}_2^T \mathbf{u}_1 = 0$

$$L\left(oldsymbol{u}_{2},\lambda_{1},\lambda_{2}
ight)=oldsymbol{u}_{2}^{T}Soldsymbol{u}_{2}-\lambda_{2}\left(oldsymbol{u}_{2}^{T}oldsymbol{u}_{2}-1
ight)-\lambda_{1}\left(oldsymbol{u}_{2}^{T}oldsymbol{u}_{1}-0
ight)$$

What about the second eigenvector $oldsymbol{u}_2$

We have the following optimization problem

$$\max \mathbf{u}_2^T S \mathbf{u}_2$$
s.t. $\mathbf{u}_2^T \mathbf{u}_2 = 1$
 $\mathbf{u}_2^T \mathbf{u}_1 = 0$

Lagrangian

$$L\left(\boldsymbol{u}_{2}, \lambda_{1}, \lambda_{2}\right) = \boldsymbol{u}_{2}^{T} S \boldsymbol{u}_{2} - \lambda_{2} \left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{2} - 1\right) - \lambda_{1} \left(\boldsymbol{u}_{2}^{T} \boldsymbol{u}_{1} - 0\right)$$

With Solution

We have

$$oldsymbol{u}_2^T S oldsymbol{u}_2 = \lambda_2$$

ullet u_2 is the eigenvector of S with second largest eigenvalue λ_2 .

With Solution

We have

$$\boldsymbol{u}_2^T S \boldsymbol{u}_2 = \lambda_2$$

Implying

• u_2 is the eigenvector of S with second largest eigenvalue λ_2 .

Thus

Variance will be the maximum when

$$\boldsymbol{u}_1^T S \boldsymbol{u}_1 = \lambda_1 \tag{19}$$

is set to the largest eigenvalue. Also know as the First Principal Component

It is possible for M-dimensional space to define M eigenvectors $u_1, u_2, ..., u_M$ of the data covariance S corresponding to $\lambda_1, \lambda_2, ..., \lambda_M$ that maximize the variance of the projected data.

- \bigcirc Full eigenvector decomposition $O(d^3)$
- \bigcirc Power Method $O(Md^2)$ "Golub and Van Loan, 1996)"
- Use the Expectation Maximization Algorithm

Thus

Variance will be the maximum when

$$\boldsymbol{u}_1^T S \boldsymbol{u}_1 = \lambda_1 \tag{19}$$

is set to the largest eigenvalue. Also know as the First Principal Component

By Induction

It is possible for M-dimensional space to define M eigenvectors $\boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_M$ of the data covariance S corresponding to $\lambda_1, \lambda_2, ..., \lambda_M$ that maximize the variance of the projected data.

- Full eigenvector decomposition $O\left(d^3\right)$
- Open Power Method $O\left(Md^2\right)$ "Golub and Van Loan, 1996)"
- Use the Expectation Maximization Algorithm

Thus

Variance will be the maximum when

$$\boldsymbol{u}_1^T S \boldsymbol{u}_1 = \lambda_1 \tag{19}$$

is set to the largest eigenvalue. Also know as the First Principal Component

By Induction

It is possible for M-dimensional space to define M eigenvectors $u_1, u_2, ..., u_M$ of the data covariance S corresponding to $\lambda_1, \lambda_2, ..., \lambda_M$ that maximize the variance of the projected data.

Computational Cost

- Full eigenvector decomposition $O\left(d^3\right)$
- 2 Power Method $O(Md^2)$ "Golub and Van Loan, 1996)"
- Use the Expectation Maximization Algorithm

Outline

- Introduction
 - What do we want?
- Pisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

We have the following steps

Determine covariance matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$
 (20)

$$S = U\Sigma U^T$$

ullet Eigenvalues in Σ and eigenvectors in the columns of U.

We have the following steps

Determine covariance matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$
 (20)

Generate the decomposition

$$S = U\Sigma U^T$$

ullet Eigenvalues in Σ and eigenvectors in the columns of U:

We have the following steps

Determine covariance matrix

$$S = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T$$
(20)

Generate the decomposition

$$S = U\Sigma U^T$$

With

ullet Eigenvalues in Σ and eigenvectors in the columns of U.

Then

Project samples x_i into subspaces dim=k

$$z_i = U_K^T \boldsymbol{x}_i$$

ullet With U_k is a matrix with k columns

Outline

- Introduction
 - What do we want?
- Fisher Linear Discriminant
 - The Rotation Idea
 - Solution
 - Scatter measure
 - The Cost Function
- Principal Component Analysis
 - Karhunen-Loeve Transform
 - Projecting Data
 - Lagrange Multipliers
 - The Process
 - Example

Example

Example

Example

