Randomization and Sampling Methods

This version of the document is dated 2021-01-08.

Peter Occil

Discusses many ways applications can do randomization and sampling from an underlying (pseudo-)random number generator and includes pseudocode for many of them.

1 Introduction

This page discusses many ways applications can sample random content by transforming the numbers produced by an underlying source of random numbers (such as a pseudorandom number generator [PRNG] or another kind of random number generator [RNG]), and offers pseudocode for many of these methods. Those methods include—

- ways to derive uniform random numbers (such as the core method, RNDINT(N)),
- ways to generate randomized content and conditions, such as true/false conditions, shuffling, and sampling unique items from a list, and
- generating non-uniform random numbers, including **weighted choice**, the **Poisson distribution**, and **other probability distributions**.

This page is focused on sampling methods that *exactly* sample from the distribution described, without introducing additional errors beyond those already present in the inputs (and assuming that we have a source of "truly" random numbers). This will be the case if there is a finite number of values to choose from. But for the normal distribution and other distributions that take on an infinite number of values, there will always be some level of approximation involved; in this case, the focus of this page is on methods that *minimize* the error they introduce.

<u>Sample Python code</u> that implements many of the methods in this document is available, together with <u>documentation for the code</u>.

The randomization methods presented on this page assume we have an endless source of independent and uniformly distributed random numbers. For more information, see "Sources of Random Numbers" in the appendix.

In general, the following are outside the scope of this document:

- This document does not cover how to choose an underlying RNG (or PRNG) for a particular application, including in terms of security, performance, and quality. I have written more on RNG recommendations in **another document**.
- This document does not include algorithms for specific PRNGs, such as Mersenne Twister, PCG, xorshift, linear congruential generators, or generators based on hash functions.
- This document does not cover how to test RNGs for correctness or adequate random number generation. This is covered, for example, in "<u>Testing PRNGs for High-</u> <u>Ouality Randomness</u>".
- This document does not explain how to specify or generate "seeds" for certain PRNGs. This is **covered in detail** elsewhere.
- This document does not show how to generate random security parameters such as encryption keys.
- This document does not cover randomness extraction (also known as unbiasing,

deskewing, or whitening). See my Note on Randomness Extraction.

• Variance reduction techniques, such as importance sampling or common random numbers, are not in the scope of this document.

1.1 About This Document

This is an open-source document; for an updated version, see the <u>source code</u> or its <u>rendering on GitHub</u>. You can send comments on this document either on <u>CodeProject</u> or on the <u>GitHub issues page</u>.

Comments on any aspect of this document are welcome.

2 Contents

- Introduction
 - About This Document
- Contents
- Notation
- Uniform Random Integers
 - RNDINT: Random Integers in [0, N]
 - RNDINTRANGE: Random Integers in [N, M]
 - RNDINTEXC: Random Integers in [0, N)
 - RNDINTEXCRANGE: Random Integers in [N, M)
 - Uniform Random Bits
 - Examples of Using the RNDINT Family
- Randomization Techniques
 - Boolean (True/False) Conditions
 - Random Sampling
 - Sampling With Replacement: Choosing a Random Item from a List
 - Sampling Without Replacement: Choosing Several Unique Items
 - Shuffling
 - Random Character Strings
 - Pseudocode for Random Sampling
 - Rejection Sampling
 - Random Walks
 - Random Dates and Times
 - Randomization in Statistical Testing
 - Markov Chains
 - Random Graphs
 - A Note on Sorting Random Numbers
- General Non-Uniform Distributions
 - Weighted Choice
 - Weighted Choice With Replacement
 - Weighted Choice Without Replacement (Multiple Copies)
 - Weighted Choice Without Replacement (Single Copies)
 - Weighted Choice Without Replacement (List of Unknown Size)
 - Weighted Choice with Inclusion Probabilities
 - Mixtures of Distributions
 - Transformations of Random Numbers
- Specific Non-Uniform Distributions
 - Dice
 - Binomial Distribution

- Negative Binomial Distribution
- Geometric Distribution
- Exponential Distribution
- Poisson Distribution
- Hypergeometric Distribution
- Random Integers with a Given Positive Sum
- Multinomial Distribution
- Randomization with Real Numbers
 - Uniform Random Real Numbers
 - For Fixed-Point Number Formats
 - For Rational Number Formats
 - For Floating-Point Number Formats
 - Monte Carlo Sampling: Expected Values, Integration, and Optimization
 - Low-Discrepancy Sequences
 - Notes on Randomization Involving Real Numbers
 - Random Walks: Additional Examples
 - Transformations: Additional Examples
 - Random Numbers from a Distribution of Data Points
 - Random Numbers from an Arbitrary Distribution
 - Sampling for Discrete Distributions
 - Inverse Transform Sampling
 - Rejection Sampling with a PDF
 - Alternating Series
 - Markov-Chain Monte Carlo
 - Piecewise Linear Distribution
 - Specific Distributions
 - Index of Non-Uniform Distributions
 - Geometric Sampling
 - Random Points Inside a Simplex
 - Random Points on the Surface of a Hypersphere
 - Random Points Inside a Box, Ball, Shell, or Cone
 - Random Latitude and Longitude
- Acknowledgments
- Other Documents
- Notes
- Appendix
 - Sources of Random Numbers
 - Mean and Variance Calculation
 - Norm Calculation
 - Implementation Considerations
 - Security Considerations
- License

3 Notation

In this document:

- The **pseudocode conventions** apply to this document.
- The following notation for intervals is used: [a, b) means "a or greater, but less than b". (a, b) means "greater than a, but less than b". (a, b] means "greater than a and less than or equal to b". [a, b] means "a or greater and b or less".
- log1p(x) is equivalent to ln(1 + x) and is a robust alternative where x is a floating-

- point number (Pedersen 2018)(1).
- MakeRatio(n, d) creates a rational number with the given numerator n and denominator d.
- Sum(list) calculates the sum of the numbers in the given list. Note, however, that summing floating-point numbers naïvely can introduce round-off errors. Kahan
 summation along with parallel reductions can be a more robust way than the naïve approach to compute the sum of three or more floating-point numbers.

4 Uniform Random Integers

This section shows how to derive independent uniform random integers with the help of a source of random numbers (such as a source produced by a PRNG).

This section describes four methods: RNDINT, RNDINTEXC, RNDINTRANGE, RNDINTEXCRANGE. Of these, RNDINT, described next, can serve as the basis for the remaining methods.

4.1 RNDINT: Random Integers in [0, N]

In this document, RNDINT(maxInclusive) is the core method in this document; it generates independent uniform random integers in the interval [0, maxInclusive] using a source of random numbers⁽²⁾. In the pseudocode below, which implements RNDINT—

- NEXTRAND() reads the next number generated by a source of numbers that behave like independent random numbers of the same distribution (such as a source produced by a PRNG or another kind of random number generator), as described below, and
- MODULUS is the number of different outcomes possible with that source.

Specifically:

If the underlying source produces:	Then NEXTRAND() is:	And MODULUS is:
Non-uniform numbers (3).	The next number from a new source formed by writing the underlying source's outputs to a stream of memory units (such as 8-bit bytes) and using a $\underline{randowness\ extraction}$ technique to transform that stream to n -bit non-negative integers.	2 ⁿ .
Uniform numbers not described below.	Same as above.	2^n .
Uniform 32-bit non-negative integers.	The next number from the source.	2^{32} .
Uniform 64-bit non-negative integers.	The next number from the source.	2^{64} .
Uniform integers in the interval $(0, n)$.	The next number from the source.	n.
Uniform numbers in the interval [0, 1) known to be evenly spaced by a number <i>p</i> (e.g., dSFMT).	The next number from the source, multiplied by p .	1/p.
Uniform numbers in the		
interval [0, 1), where numbers	O if the course outpute a number less than O E on	ı

```
\sigma if the source outputs a number less than \sigma, or \sigma.
in [0, 0.5) and those in [0.5, 1)
                                   1 otherwise.
are known to occur with equal
probability (e.g., Java's
Math.random()).
METHOD RndIntHelperNonPowerOfTwo(maxInclusive)
  if maxInclusive <= MODULUS - 1:</pre>
    // NOTE: If the programming language implements
    // division with two integers by discarding the result's
    // fractional part, the division can be used as is without
    // using a "floor" function.
    nPlusOne = maxInclusive + 1
    maxexc = floor((MODULUS - 1) / nPlusOne) * nPlusOne
    while true
      ret = NEXTRAND()
      if ret < nPlusOne: return ret
      if ret < maxexc: return rem(ret, nPlus0ne)</pre>
    end
  else
    cx = floor(maxInclusive / MODULUS) + 1
    while true
       ret = cx * NEXTRAND()
       // NOTE: The addition operation below should
       // check for integer overflow and should reject the
       // number if overflow would result.
       ret = ret + RNDINT(cx - 1)
       if ret <= maxInclusive: return ret</pre>
    end
  end
END METHOD
METHOD RndIntHelperPowerOfTwo(maxInclusive)
  // NOTE: Finds the number of bits minus 1 needed
  // to represent MODULUS (in other words, the number
 // of random bits returned by NEXTRAND() ). This will
  // be a constant here, though.
  modBits = ln(MODULUS)/ln(2)
  // Lumbroso's Fast Dice Roller.
  x = 1
  y = 0
  nextBit = modBits
  rnav = 0
  while true
   if nextBit >= modBits
      nextBit = 0
      rngv = NEXTRAND()
    end
    x = x * 2
    y = y * 2 + rem(rngv, 2)
    rngv = floor(rngv / 2)
    nextBit = nextBit + 1
    if x > maxInclusive
      if y <= maxInclusive: return y</pre>
      x = x - maxInclusive - 1
      y = y - maxInclusive - 1
    end
  end
END METHOD
METHOD RNDINT(maxInclusive)
  // maxInclusive must be 0 or greater
```

if maxInclusive < 0: return error

```
if maxInclusive == 0: return 0
if maxInclusive == MODULUS - 1: return NEXTRAND()
// NOTE: Finds the number of bits minus 1 needed
// to represent MODULUS (if it's a power of 2).
// This will be a constant here, though.
modBits=ln(MODULUS)/ln(2)
if floor(modBits) == modBits # Is an integer
  return RndIntHelperPowerOfTwo(maxInclusive)
else
  return RndIntHelperNonPowerOfTwo(maxInclusive)
end
END METHOD
```

There are many algorithms for RNDINT(maxInclusive), as shown in the table below, but in general, the algorithm can be *unbiased* only if it runs forever in the worst case. (The column "Unbiased?" means whether the algorithm generates random integers without bias, even if $n = \max_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$

Algorithm	Optimal?	Unbiased?	Time Complexity
Rejection sampling: Sample in a bigger range until a sampled number fits the smaller range.	Not always	Yes	Runs forever in worst case
Multiply-and-shift reduction: Generate bignumber, a k-bit random integer with many more bits than n has, then find (bignumber * n) >> k (see (Lemire 2016) $^{[4]}$, (Lemire 2018) $^{(5)}$, and the "Integer Multiplication" algorithm surveyed by M. O'Neill).	No	No	Constant
Modulo reduction: Generate bignumber as above, then find rem(bignumber, n).	No	No	Constant
Fast Dice Roller (Lumbroso 2013) ⁽⁶⁾ (see pseudocode above).	Yes	Yes	Runs forever in worst case
Math Forum (2004) ⁽⁷⁾ or (Mennucci 2018) ⁽⁸⁾ (batching/recycling random bits).	Yes	Yes	Runs forever in worst case
"FP Multiply" surveyed by M. O'Neill.	No	No	Constant
Algorithm in "Conclusion" section by O'Neill.	No	Yes	Runs forever in worst case
"Debiased" and "Bitmask with Rejection" surveyed by M. O'Neill.	No	Yes	Runs forever in worst case

Notes:

1. RNDINT as a binary tree walker. Donald E. Knuth and Andrew C. Yao (1976)⁽⁹⁾ showed that any algorithm that generates random integers using random unbiased bits (including RNDINT algorithms) can be described as a binary tree (also known as a DDG tree or discrete distribution generating tree). Random unbiased bits trace a path in this tree, and each leaf (terminal node) in the tree represents an outcome. In the case of RNDINT(maxInclusive), there are n = maxInclusive + 1 outcomes that each occur with probability 1/n.

Knuth and Yao showed that any optimal DDG tree algorithm needs at least

 $\log_2(n)$ and at most $\log_2(n) + 2$ bits on average (where $\log_2(x) = \ln(x)/\ln(2)$). But as they also showed, for the algorithm to be *unbiased (exact)*, it must run forever in the worst case, even if it uses few random bits on average (that is, there is no way in general to "fix" this worst case while remaining unbiased). This is because 1/n will have an infinite run of base-2 digits except when n is a power of 2, so that the resulting DDG tree will have to either be infinitely deep, or include "rejection leaves" at the end of the tree.

For instance, the *modulo reduction* method can be represented by a DDG tree in which rejection leaves are replaced with labeled outcomes, but the method is biased because only some outcomes can replace rejection leaves this way. For the same reason, stopping the *rejection sampler* after a fixed number of tries likewise leads to bias. However, which outcomes are biased this way depends on the algorithm.

- 2. **Reducing "bit waste".** Any integer-generating algorithm, including RNDINT, needs at least log2(n) bits per random number on average, as noted above, but most of them use many more. There are various ways to bring an algorithm closer to log2(n). They include batching, bit recycling, and randomness extraction, and they are discussed, for example, in the Math Forum page and the Lumbroso and Mennucci papers referenced above, and in Devroye and Gravel (2020, section 2.3)⁽¹¹⁾. Batching example: To generate three digits from 0 through 9, we can call RNDINT(999) to generate an integer in [0, 999], then break the number it returns into three digits.
- 3. **Simulating dice.** If we have a (virtual) fair *p*-sided die, how can we use it to simulate rolls of a *k*-sided die? This can't be done without "wasting" randomness, unless "every prime number dividing *k* also divides *p*" (see "**Simulating a dice with a dice**" by B. Kloeckner, 2008). However, since randomness extraction (see my **Note on Randomness Extraction**) can turn die rolls into unbiased bits, so that the discussion above applies, this question is interesting only when someone wants to build instructions to choose a number at random by rolling real dice or flipping real coins.

4.2 RNDINTRANGE: Random Integers in [N, M]

The naïve way of generating a **random integer in the interval [minInclusive,** maxInclusive], shown below, works well for nonnegative integers and arbitrary-precision integers.

```
METHOD RNDINTRANGE(minInclusive, maxInclusive)
  // minInclusive must not be greater than maxInclusive
  if minInclusive > maxInclusive: return error
  return minInclusive + RNDINT(maxInclusive - minInclusive)
END METHOD
```

The naïve approach won't work as well, though, if the integer format can express negative and nonnegative integers and the difference between <code>maxInclusive</code> and <code>minInclusive</code> exceeds the highest possible integer for the format. For integer formats that can express—

- 1. every integer in the interval [-1 MAXINT, MAXINT] (e.g., Java int, short, or long), or
- 2. every integer in the interval [-MAXINT, MAXINT] (e.g., Java float and double and .NET's implementation of System.Decimal),

where MAXINT is an integer greater than 0, the following pseudocode for RNDINTRANGE can be used.

```
METHOD RNDINTRANGE(minInclusive, maxInclusive)
   // minInclusive must not be greater than maxInclusive
   if minInclusive > maxInclusive: return error
   if minInclusive == maxInclusive: return minInclusive
   if minInclusive==0: return RNDINT(maxInclusive)
   // Difference does not exceed maxInclusive
   if minInclusive > 0 or minInclusive + MAXINT >= maxInclusive
       return minInclusive + RNDINT(maxInclusive - minInclusive)
   end
   while true
     ret = RNDINT(MAXINT)
     // NOTE: For case 1, use the following line:
     if RNDINT(1) == 0: ret = -1 - ret
     // NOTE: For case 2, use the following three lines
     // instead of the preceding line; these lines
     // avoid negative zero
     // negative = RNDINT(1) == 0
     // if negative: ret = 0 - ret
     // if negative and ret == 0: continue
     if ret >= minInclusive and ret <= maxInclusive: return ret</pre>
END METHOD
```

4.3 RNDINTEXC: Random Integers in 0, N)

RNDINTEXC(maxExclusive), which generates a **random integer in the interval [0,** maxExclusive), can be implemented as follows^{[(12)}:

```
METHOD RNDINTEXC(maxExclusive)
  if maxExclusive <= 0: return error
  return RNDINT(maxExclusive - 1)
END METHOD</pre>
```

Note: RNDINTEXC is not given as the core random generation method because it's harder to fill integers in popular integer formats with random bits with this method.

4.4 RNDINTEXCRANGE: Random Integers in N, M)

RNDINTEXCRANGE returns a random integer in the interval [minInclusive, maxExclusive). It can be implemented using [RNDINTRANGE, as the following pseudocode demonstrates.

```
METHOD RNDINTEXCRANGE(minInclusive, maxExclusive)
  if minInclusive >= maxExclusive: return error
  if minInclusive >=0: return RNDINTRANGE(
      minInclusive, maxExclusive - 1)
  while true
   ret = RNDINTRANGE(minInclusive, maxExclusive)
   if ret < maxExclusive: return ret
  end
END METHOD</pre>
```

4.5 Uniform Random Bits

The idiom RNDINT((1 << b) - 1) is a naïve way of generating a **uniform random b-bit integer** (with maximum 2^b - 1).

In practice, memory is usually divided into *bytes*, or 8-bit integers in the interval [0, 255]. In this case, a block of memory can be filled with random bits—

- by setting each byte in the block to RNDINT(255), or
- via a PRNG (or another kind of random number generator) that outputs one or more 8-bit chunks at a time.

4.6 Examples of Using the RNDINT Family

- 1. To generate a random number that's either -1 or 1 (a *Rademacher random number*), one of the following idioms can be used: (RNDINT(1) * 2 1) or (RNDINTEXC(2) * 2 1).
- 2. To generate a random integer that's divisible by a positive integer (DIV), generate the integer with any method (such as RNDINT), let X be that integer, then generate X rem(X, DIV) if X >= 0, or X (DIV rem(abs(X), DIV)) otherwise. (Depending on the method, the resulting integer may be out of range, in which case this procedure is to be repeated.)
- 3. A random 2-dimensional point on an N×M grid can be expressed as a single integer as follows:
 - To generate a random $N \times M$ point P, generate P = RNDINT(N * M 1) (P is thus in the interval [0, N * M)).
 - \circ To convert a point P to its 2D coordinates, generate [rem(P, N), floor(P / N)]. (Each coordinate starts at 0.)
 - To convert 2D coordinates coord to an N×M point, generate P = coord[1] * N + coord[0].
- 4. To simulate rolling an N-sided die (N greater than 1), generate a random number in the interval [1, N] by RNDINTRANGE(1, N).
- 5. To generate a random integer with one base-10 digit: RNDINTRANGE(0, 9).
- 6. To generate a random integer with N base-10 digits (where N is 2 or greater), where the first digit can't be 0: RNDINTRANGE(pow(10, N-1), pow(10, N) 1).
- 7. To generate a random number in the interval mn, mx) in increments equal to step: mn+step*RNDINTEXC(ceil((mx-mn)/(1.0*step))).
- 8. To generate a random integer in the interval [0, x):
 - And favor numbers in the middle: floor((RNDINTEXC(X) + RNDINTEXC(X)) / 2).
 - And strongly favor low numbers: floor(RNDINTEXC(X) * RNDINTEXC(X) / X).
 - And favor high numbers: max(RNDINTEXC(X), RNDINTEXC(X)).
 - And strongly favor high numbers: X 1 floor(RNDINTEXC(X) * RNDINTEXC(X) / X)
 or max(RNDINTEXC(X), RNDINTEXC(X), RNDINTEXC(X)).

5 Randomization Techniques

This section describes commonly used randomization techniques, such as shuffling, selection of several unique items, and creating random strings of text.

5.1 Boolean (True/False) Conditions

To generate a condition that is true at the specified probabilities, use the following idioms in an if condition:

- True or false with equal probability: RNDINT(1) == 0.
- True with X percent probability: RNDINTEXC(100) < X.
- True with probability X/Y (a *Bernoulli trial*): RNDINTEXC(Y) < X.
- True with odds of X to Y: RNDINTEXC(X + Y) < X.

The following helper method generates 1 with probability x/y and 0 otherwise:

```
METHOD ZeroOrOne(x,y)
  if RNDINTEXC(y)<x: return 1
  return 0
END METHOD</pre>
```

The method can also be implemented in the following way (as pointed out by Lumbroso (2013, Appendix B)[(13)):

```
// NOTE: Modified from Lumbroso
// Appendix B to add 'z==0' and error checks
METHOD ZeroOrOne(x,y)
  if y <= 0: return error
  if x==y: return 1
  z = x
  while true
  z = z * 2
  if z >= y
   if RNDINT(1) == 0: return 1
  z = z - y
  else if z == 0 or RNDINT(1) == 0: return 0
  end
END METHOD
```

Note: Probabilities can be rational or irrational numbers. Rational probabilities are of the form n/d and can be simulated with ZeroOrOne above. Irrational probabilities (such as exp(-x/y) or ln(2)) have an infinite digit expansion (0.ddddd....), and they require special algorithms to simulate; see "Algorithms for Irrational Constants" in my page on Bernoulli Factory algorithms.

Examples:

- True with probability 3/8: RNDINTEXC(8) < 3.
- True with odds of 100 to 1: RNDINTEXC(101) < 1.
- True with 20% probability: RNDINTEXC(100) < 20.
- To generate a random integer in [0, y), or -1 instead if that number would be less than x, using fewer random bits than the naïve approach: if ZeroOrOne(x, y) == 1: return -1; else: return RNDINTEXCRANGE(x, y).

5.2 Random Sampling

This section contains ways to choose one or more items from among a collection of them, where each item in the collection has the same chance to be chosen as any other. This is called *random sampling* and can be done *with replacement* or *without replacement*.

5.2.1 Sampling With Replacement: Choosing a Random Item from a List

Sampling with replacement essentially means taking a random item and putting it back. To choose a random item from a list—

- whose size is known in advance, use the idiom list[RNDINTEXC(size(list))]; or
- whose size is not known in advance, generate RandomKItemsFromFile(file, 1), in **pseudocode given later** (the result will be a 1-item list or be an empty list if there are no items).

5.2.2 Sampling Without Replacement: Choosing Several Unique Items

Sampling without replacement essentially means taking a random item without putting it back. There are several approaches for doing a uniform random choice of k unique items or values from among n available items or values, depending on such things as whether n is known and how big n and k are.

- 1. **If n is not known in advance:** Use the *reservoir sampling* method; see the RandomKItemsFromFile method, in **pseudocode given later**.
- 2. If n is relatively small (for example, if there are 200 available items, or there is a range of numbers from 0 through 200 to choose from):
 - If items have to be chosen from a list **in relative (index) order**, or if n is 1, then use RandomKItemsInOrder (given later).
 - Otherwise, if the order of the sampled items is unimportant, and each item can be derived from its *index* (the item's position as an integer starting at 0) without looking it up in a list: Use the RandomKItemsFromFile method. (14)
 - Otherwise, the first three cases below will choose k items in random order:
 - Store all the items in a list, **shuffle** that list, then choose the first k items from that list.
 - If the items are already stored in a list and the list's order can be changed, then shuffle that list and choose the first k items from the shuffled list.
 - If the items are already stored in a list and the list's order can't be changed, then store the indices to those items in another list, shuffle the latter list, then choose the first k indices (or the items corresponding to those indices) from the latter list.
 - If k is much smaller than n, proceed as in item 3 instead.
- 3. If k is much smaller than n and the order of the items must be random or is unimportant:
 - If the items are stored in a list whose order can be changed: Do a partial shuffle of that list, then choose the last k items from that list. A partial shuffle proceeds as given in the section "Shuffling", except the partial shuffle stops after k swaps have been made (where swapping one item with itself counts as a swap).
 - Otherwise, if the items are stored in a list and n is not very large (for example, less than 5000): Store the indices to those items in another list, do a partial shuffle of the latter list, then choose the last k indices (or the items corresponding to those indices) from the latter list.
 - Otherwise, **if** n **is not very large:** Store all the items in a list, do a *partial shuffle* of that list, then choose the *last* k items from that list.
- 4. If n k is much smaller than n and the order of the sampled items is unimportant: Proceed as in item 3, except the partial shuffle involves n k swaps and the *first* k items are chosen rather than the last k.
- 5. Otherwise (for example, if 32-bit or larger integers will be chosen so that n is 2^{32} , or if n is otherwise very large):
 - o If the items have to be chosen **in relative (index) order**: Let n2 = floor(n/2). Generate h = Hypergeometric(k, n2, n). Sample h integers in relative order from the list [0, 1, ..., n2 1] by running this algorithm (items 1 to 5) recursively, then sample k h integers in relative order from the list [n2, n2 + 1, ..., n 1] by running this algorithm recursively. The integers chosen this way are the indices to the desired items in relative (index) order (Sanders et al. 2019)⁽¹⁵⁾.
 - Otherwise, create a data structure to store the indices to items already chosen.
 When a new index to an item is randomly chosen, add it to the data structure if it's not already there, or if it is, choose a new random index. Repeat this process until k indices were added to the data structure this way. Examples of suitable data structures are—

- a hash table,
- a compressed bit set (e.g, "roaring bitmap", EWAH), and
- a self-sorting data structure such as a <u>red-black tree</u>, if the random items are to be retrieved in sorted order or in index order.

Many applications require generating unique random numbers to identify database records or other shared resources, among other reasons. For ways to generate such numbers, see my **RNG recommendation document**.

5.2.3 Shuffling

The <u>Fisher-Yates shuffle method</u> shuffles a list (puts its items in a random order) such that all permutations (arrangements) of that list are equally likely to occur. However, that method is also easy to write incorrectly — see also (Atwood 2007)⁽¹⁶⁾. The following pseudocode is designed to shuffle a list's contents.

```
METHOD Shuffle(list)
   // NOTE: Check size of the list early to prevent
   // `i` from being less than 0 if the list's size is 0 and
// `i` is implemented using an nonnegative integer
   // type available in certain programming languages.
   if size(list) >= 2
      // Set i to the last item's index
      i = size(list) - 1
      while i > 0
         // Choose an item ranging from the first item
         // up to the item given in `i`. Note that the item
         // at i+1 is excluded.
         k = RNDINTEXC(i + 1)
         // The following is wrong since it introduces biases:
         // "k = RNDINTEXC(size(list))"
         // The following produces Sattolo's algorithm (which
         // chooses from among permutations with cycles)
         // rather than a Fisher-Yates shuffle:
         // "k = RNDINTEXC(i)"
         // Swap item at index i with item at index k;
         // in this case, i and k may be the same
         tmp = list[i]
         list[i] = list[k]
         list[k] = tmp
         // Move i so it points to the previous item
         i = i - 1
      end
   end
   // NOTE: An implementation can return the
   // shuffled list, as is done here, but this is not required.
   return list
END METHOD
```

Notes:

- The choice of random number generator (including PRNGs) is important when it comes to shuffling; see my <u>RNG recommendation document on</u> <u>shuffling</u>.
- 2. A shuffling algorithm that can be carried out in parallel is described in (Bacher et al., 2015)⁽¹⁷⁾.
- 3. A *derangement* is a permutation where every item moves to a different position. A random derangement can be generated as follows (Merlini et al. 2007)⁽¹⁸⁾: (1) modify Shuffle by adding the following line after k =

```
RNDINTEXC(i + 1): if i == list[k]: return nothing, and changing while i > 0 to while i >= 0; (2) use the following pseudocode with the modified Shuffle method: while True; list = []; for i in 0...n: AddItem(list, n); s=Shuffle(list); if s!=nothing: return s; end.
```

5.2.4 Random Character Strings

To generate a random string of characters:

- 1. Prepare a list of the letters, digits, and/or other characters the string can have. Examples are given later in this section.
- 2. Build a new string whose characters are chosen at random from that character list. The method, shown in the pseudocode below, demonstrates this. The method samples characters at random with replacement, and returns a list of the sampled characters. (How to convert this list to a text string depends on the programming language and is outside the scope of this page.) The method takes two parameters: characterList is the list from step 1, and stringSize is the number of random characters.

```
METHOD RandomString(characterList, stringSize)
  i = 0
  newString = NewList()
  while i < stringSize
   // Choose a character from the list
   randomChar = characterList[RNDINTEXC(size(characterList))]
   // Add the character to the string
   AddItem(newString, randomChar)
   i = i + 1
  end
  return newString
END METHOD</pre>
```

The following are examples of character lists:

- 1. For an *alphanumeric string*, or string of letters and digits, the characters can be the basic digits "0" to "9" (U+0030-U+0039, nos. 48-57), the basic upper case letters "A" to "Z" (U+0041-U+005A, nos. 65-90), and the basic lower case letters "a" to "z" (U+0061-U+007A, nos. 96-122), as given in the Unicode Standard.
- 2. For a base-10 digit string, the characters can be the basic digits only.
- 3. For a base-16 digit (hexadecimal) string, the characters can be the basic digits as well as the basic letters "A" to "F" or "a" to "f" (not both).

Notes:

- 1. If the list of characters is fixed, the list can be created in advance at runtime or compile time, or (if every character takes up the same number of code units) a string type as provided in the programming language can be used to store the list as a string.
- 2. **Unique random strings:** Generating character strings that are not only random, but also unique, can be done by storing a list (such as a hash table) of strings already generated and checking newly generated strings against that list. However, if the unique values will identify something, such as database records or user accounts, the choice of random number generator (including PRNGs) is important, and using *random* unique values might not be best; see my **RNG recommendation document**.
- 3. **Word generation:** This technique could also be used to generate

"pronounceable" words, but this is less flexible than other approaches; see also "Markov Chains".

5.2.5 Pseudocode for Random Sampling

The following pseudocode implements two methods:

- RandomKItemsFromFile implements <u>reservoir sampling</u>; it chooses up to k random items from a file of indefinite size (file). Although the pseudocode refers to files and lines, the technique applies to any situation when items are retrieved one at a time from a data set or list whose size is not known in advance. In the pseudocode, ITEM_OUTPUT(item, thisIndex) is a placeholder for code that returns the item to store in the list; this can include the item's value, its index starting at 0, or both.
- 2. RandomKItemsInOrder returns a list of up to k random items from the given list (list), in the order in which they appeared in the list. It is based on a technique presented in (Devroye 1986)⁽¹⁹⁾, p. 620.

```
METHOD RandomKItemsFromFile(file, k)
  list = NewList()
  i = 0
  index = 0
  while true
    // Get the next line from the file
    item = GetNextLine(file)
    thisIndex = index
    index = index + 1
    // If the end of the file was reached, break
    if item == nothing: break
    // NOTE: The following line is OPTIONAL
    // and can be used to choose only random lines
    // in the file that meet certain criteria,
    // expressed as MEETS CRITERIA below.
    // if not MEETS CRITERIA(item): continue
    if j < k // phase 1 (fewer than k items)
     AddItem(list, ITEM OUTPUT(item, thisIndex))
      j = j + 1
    else // phase 2
     j = RNDINT(thisIndex)
      if j < k: list[j] = ITEM OUTPUT(item, thisIndex)</pre>
    end
  end
  // NOTE: We shuffle at the end in case k or
  // fewer lines were in the file, since in that
  // case the items would appear in the same
  // order as they appeared in the file
  // if the list weren't shuffled. This line
  // can be removed, however, if the order of
  // the items in the list is unimportant.
  if size(list)>=2: Shuffle(list)
  return list
METHOD RandomKItemsInOrder(list, k)
  n = size(list)
  // Special case if k is 1
  if k==1: return [list[RNDINTEXC(n)]]
```

```
i = 0
kk = k
ret = NewList()
while i < n and size(ret) < k
u = RNDINTEXC(n - i)
if u <= kk
AddItem(ret, list[i])
kk = kk - 1
end
i = i + 1
end
return ret
END METHOD</pre>
```

Examples:

- 1. Removing k random items from a list of n items (list) is equivalent to generating a new list by RandomKItemsInOrder(list, n k).
- 2. **Filtering:** If an application needs to sample the same list (with or without replacement) repeatedly, but only from among a selection of that list's items, it can create a list of items it wants to sample from (or a list of indices to those items), and sample from the new list instead. (20) This won't work well, though, for lists of indefinite or very large size.

5.3 Rejection Sampling

Rejection sampling is a simple and flexible approach for generating random content that meets certain requirements. To implement rejection sampling:

- 1. Generate the random content (such as a random number) by any method and with any distribution and range.
- 2. If the content doesn't meet predetermined criteria, go to step 1.

Example criteria include checking-

- whether a random number—
 - is not less than a minimum threshold (*left-truncation*),
 - is not greater than a maximum threshold (right-truncation),
 - is prime,
 - o is divisible or not by certain numbers,
 - is not among recently chosen random numbers,
 - was not already chosen (with the aid of a hash table, red-black tree, or similar structure),
 - o was not chosen more often in a row than desired, or
 - o is not included in a "blacklist" of numbers,
- whether a random point is sufficiently distant from previous random points (with the aid of a KD-tree or similar structure),
- whether a random point lies in a simple or complex shape,
- whether a random string matches a regular expression, or
- two or more of the foregoing criteria.

(KD-trees, hash tables, red-black trees, prime-number testing algorithms, and regular expressions are outside the scope of this document.)

Notes:

1. The running time for rejection sampling depends on the acceptance rate,

- that is, how often the sampler accepts a sampled outcome rather than rejecting it. In general, this rate is the number of acceptable outcomes divided by the total number of outcomes.
- 2. All rejection sampling strategies have a chance to reject data, so they all have a *variable running time* (in fact, they could run indefinitely). Note that graphics processing units (GPUs) and other devices that run multiple tasks at once work better if all the tasks finish their work at the same time. This is not possible if they all generate a random number via rejection sampling because of its variable running time. If each iteration of the rejection sampler has a low rejection rate, one solution is to have each task run one iteration of the sampler, with its own source of random numbers (such as numbers generated from its own PRNG), then to take the first random number that hasn't been rejected this way by a task (which can fail at a very low rate). (21)

5.4 Random Walks

A $random\ walk$ is a process with random behavior over time. A simple form of random walk involves generating a random number that changes the state of the walk. The pseudocode below generates a random walk of n random numbers, where STATEJUMP() is the next number to add to the current state (see examples later in this section).

```
METHOD RandomWalk(n)
  // Create a new list with an initial state
  list=[0]
  // Add 'n' new numbers to the list.
  for i in 0...n: AddItem(list, list[i] + STATEJUMP())
  return list
END METHOD
```

Note: A **white noise process** is simulated by creating a list of independent random numbers generated in the same way. Such a process generally models behavior over time that does not depend on the time or the current state. One example is ZeroOrOne(px,py) (for modeling a *Bernoulli process*, where each number is 0 or 1 depending on the probability px/py).

Examples:

- 1. If STATEJUMP() is RNDINT(1) * 2 1, the random walk generates numbers that each differ from the last by -1 or 1, chosen at random.
- 2. If STATEJUMP() is Zero0r0ne(px,py) * 2 1, the random walk generates numbers that each differ from the last by -1 or 1 depending on the probability px/py.
- 3. **Binomial process:** If STATEJUMP() is ZeroOrOne(px,py), the random walk advances the state with probability px/py.

5.5 Random Dates and Times

Pseudocode like the following can be used to choose a **random date-and-time** bounded by two dates-and-times (date1, date2): dtnum1 = DATETIME_TO_NUMBER(date1); dtnum2 = DATETIME TO NUMBER(date2); num = RNDINTRANGE(date1, date2); result = NUMBER TO DATETIME(num).

In that pseudocode, DATETIME_TO_NUMBER and NUMBER_TO_DATETIME convert a date-and-time to or from a number, respectively, at the required granularity, for instance, month, day, or hour granularity (the details of such conversion depend on the date-and-time format and are outside the scope of this document). Instead of RNDINTRANGE(date1, date2), any other

random selection strategy can be used.

5.6 Randomization in Statistical Testing

Statistical testing uses shuffling and *bootstrapping* to help draw conclusions on data through randomization.

- **Shuffling** is used when each item in a data set belongs to one of several mutually exclusive groups. Here, one or more **simulated data sets** are generated by shuffling the original data set and regrouping each item in the shuffled data set in order, such that the number of items in each group for the simulated data set is the same as for the original data set.
- **Bootstrapping** is a method of creating one or more random samples (simulated data sets) of an existing data set, where the items in each sample are chosen **at random with replacement**. (Each random sample can contain duplicates this way.) See also (Brownlee 2018)⁽²²⁾.

After creating the simulated data sets, one or more statistics, such as the mean, are calculated for each simulated data set as well as the original data set, then the statistics for the simulated data sets are compared with those of the original (such comparisons are outside the scope of this document).

5.7 Markov Chains

A <u>Markov chain</u> models one or more *states* (for example, individual letters or syllables), and stores the probabilities to transition from one state to another (e.g., "b" to "e" with a chance of 20 percent, or "b" to "b" with a chance of 1 percent). Thus, each state can be seen as having its own list of *weights* for each relevant state transition (see "**Weighted Choice With Replacement**). For example, a Markov chain for generating "**pronounceable" words**, or words similar to natural-language words, can include "start" and "stop" states for the start and end of the word, respectively.

An algorithm called *coupling from the past* (Propp and Wilson 1996)⁽²³⁾ can sample a state from a Markov chain's *stationary distribution*, that is, the chain's steady state, by starting multiple chains at different states and running them until they all reach the same state at the same time. However, stopping the algorithm early can introduce bias unless precautions are taken (Fill 1998)⁽²⁴⁾. The following pseudocode implements coupling from the past. In the method, StateCount is the number of states in the Markov chain, UPDATE(chain, state, random) transitions the Markov chain to the next state given the current state and random numbers, and RANDOM() generates one or more random numbers needed by UPDATE.

```
METHOD CFTP(chain)
states=[]
numstates=StateCount(chain)
done=false
randoms=[]
while not done
// Start multiple chains at different states. NOTE:
// If the chain is monotonic (meaning the states
// are ordered and, whenever state A is less
// than state B, A's next state is never higher than
// B's next state), then just two chains can be
// created instead, starting
// at the first and last state, respectively.
```

5.8 Random Graphs

A *graph* is a listing of points and the connections between them. The points are called *vertices* and the connections, *edges*.

A convenient way to represent a graph is an *adjacency matrix*. This is an $n \times n$ matrix with n rows and n columns (signifying n vertices in the graph). For simple graphs, an adjacency matrix contains only 1s and 0s — for the cell at row r and column c, a 1 means there is an edge pointing from vertex r to vertex c, and a 0 means there are none.

In this section, Zeros(n) creates an $n \times n$ zero matrix (such as a list consisting of n lists, each of which contains n zeros).

The following method generates a random n-vertex graph that follows the model G(n, p) (also known as the *Gilbert model* (Gilbert 1959)⁽²⁵⁾), where each edge is drawn with probability px/py (Batagelj and Brandes 2005)⁽²⁶⁾.

Other kinds of graphs are possible, including $Erd\~os$ -R'enyi graphs (choose m random edges without replacement, given an $n \times n$ adjacency matrix), Chung-Lu graphs, preferential attachment graphs, and more. For example, a mesh graph is a graph in the form of a rectangular mesh, where vertices are the corners and edges are the sides of the mesh's rectangles. A random maze is a random spanning tree (Costantini 2020)⁽²⁷⁾ of a mesh graph. Penschuck et al. $(2020)^{(28)}$ give a survey of random graph generation techniques.

5.9 A Note on Sorting Random Numbers

In general, sorting random numbers is no different from sorting any other data. (Sorting algorithms are outside this document's scope.) (29)

6 General Non-Uniform Distributions

Some applications need to choose random items or numbers such that some of them are more likely to be chosen than others (a *non-uniform* distribution). Most of the techniques in this section show how to use the **uniform random number methods** to generate such random items or numbers.

6.1 Weighted Choice

The weighted choice method generates a random item or number from among a collection of them with separate probabilities of each item or number being chosen. There are several kinds of weighted choice.

6.1.1 Weighted Choice With Replacement

The first kind is called weighted choice *with replacement* (which can be thought of as drawing a ball, then putting it back) or a *categorical distribution*, where the probability of choosing each item doesn't change as items are chosen. In the following pseudocode:

- WeightedChoice takes a single list weights of weights (integers 0 or greater) and returns
 the index of a weight from that list. The greater the weight, the more likely its index
 will be chosen.
- CumulativeWeightedChoice takes a single list weights of N cumulative weights; they start at 0 and the next weight is not less than the previous. Returns a number in the interval [0, N-1).
- NormalizeRatios calculates a list of integers with the same proportions as the given list of rational numbers (numbers of the form x/y). This is useful for converting rational weights to integer weights for use in WeightedChoice.
- gcd(a, b) is the greatest common divisor between two numbers (where gcd(0, a) = gcd(a, 0) = a whenever a >= 0).

```
METHOD WChoose(weights, value)
    // Choose the index according to the given value
    runningValue = 0
    for i in 0...size(weights) - 1
       if weights[i] > 0
          newValue = runningValue + weights[i]
          // NOTE: Includes start, excludes end
          if value < newValue: break</pre>
          runningValue = newValue
       end
    // Should not happen with integer weights
    return error
END METHOD
METHOD WeightedChoice(weights)
    return WChoose(weights,
       RNDINTEXC(Sum(weights)))
END METHOD
```

```
METHOD CumulativeWeightedChoice(weights)
    if size(weights)==0 or weights[0]!=0: return error
    value = RNDINTEXC(weights[size(weights) - 1])
    // Choose the index according to the given value
    for i in 0...size(weights) - 1
       // Choose only if difference is positive
       if weights[i] < weights[i+1] and
           weights[i]>=value: return i
    end
    return 0
END METHOD
METHOD NormalizeRatios(ratios)
  prod=1; qc=0
  for r in ratios: prod*=r[1] // Multiply denominators
 weights=[]
  for r in ratios
     rn = floor(r * prod)
     gc = gcd(rn, gc); AddItem(weights, rn)
  end
  if gc==0: return weights
  for i in 0...size(weights): weights[i]=floor(weights[i]/qc)
  return weights
END METHOD
```

The following are various ways to implement WeightedChoice. (Many of them require using a special data structure.) For best results, weights passed to these algorithms should first be converted to integers (for conversion methods, see IntegerWeightsListFP in "Sampling for Discrete Distributions" or NormalizeRatios in the pseudocode above), or rational numbers when indicated. Also, using floating-point numbers in the algorithms can introduce unnecessary rounding errors, so such numbers should be avoided.

Algorithm

Linear search See the pseudocode for WeightedChoice above.

Linear search

weights

Calculates a list of cumulative weights (also known as a *cumulative*

distribution table or CDT), then generates a random number less than with cumulative the sum of (original) weights, then does a linear scan of the new list to find the first item whose cumulative weight exceeds the random number.

Fast Loaded

Dice Roller (Saad et al., $2020a)^{(30)}$

Uses integer weights only, and samples using random bits ("fair coins"). This sampler comes within 6 bits, on average, of the optimal number of random bits per sample.

Samplers described in (Saad et al., 2020b)(31)

Uses integer weights only, and samples using random bits. The samplers come within 2 bits, on average, of the optimal number of random bits per sample as long as the sum of the weights is of the form 2^{k} or $2^{k} - 2^{m}$.

Given a list (weights) of n weights: (1) find the highest weight and call it max; (2) set i to RNDINT(n - 1); (3) With probability weights[i]/max (e.g., if ZeroOrOne(weights[i], max)==1 for integer weights), return i, and go to step 2 otherwise. (See, e.g., sec. 4 of the Fast Loaded Dice Roller paper, or the Tang or Klundert papers. weights[i] can also be a function that calculates the weight for i "on the fly"; in that case, max is the maximum value of weights[i] for all i.) If the weights are instead "coins", each with a separate but unknown bias, the algorithm is also called Bernoulli race (Dughmi et al. 2017)(32); see also (Morina et al., 2019)(33): (1) set i to

Rejection sampling

RNDINT(n-1); (2) flip coin i (the first coin is 0, the second is 1, and so on), then return *i* if it returns 1 or heads, or go to step 1 otherwise.

Bringmann and

Panagiotou

Shows a sampler designed to work on a sorted list of weights.

 $(2012/2017)^{(34)}$.

Alias method (Walker 1977) (35)

Michael Vose's version of the alias method (Vose 1991)⁽³⁶⁾ is described in "Darts, Dice, and Coins: Sampling from a Discrete

Distribution". Weights should be rational numbers.

(37)

(Klundert 2019) Various data structures, with emphasis on how they can support changes in weights.

The Bringmann-Larsen succinct

data structure Larsen 2013)

Uses rejection sampling if the sum of weights is large, and a (Bringmann and compressed structure otherwise.

(38)

Hübschle-Schneider and Sanders (2019) (39)

Parallel weighted random samplers.

(Tang 2019)(40). Presents various algorithms, including two- and multi-level search, binary search (with cumulative weights), and a new "flat" method. Given a list of probabilities probs that must sum to 1 and should be rational numbers: (1) Set cumu to 1 and i to 0; (2) with probability probs[i]/cumu, return i; (3) subtract probs[i] from cumu, then add 1 to i, then go to step 2. For a correctness proof, see "Darts, Dice, and Coins". If each probability in probs is calculated "on the fly", this is also called sequential search; see chapter 10 of Devroye (1986)⁽¹⁹⁾ (but this generally won't be exact unless all the probabilities involved are rational numbers).

"Loaded Die from Biased Coins"

> Generates a binary DDG tree from the binary expansions of the probabilities (that is, they have the base-2 form 0.bbbbbb... where b is 0 or 1). Comes within 2 bits, on average, of the optimal number of random bits per sample. This is suggested in exercise 3.4.2 of chapter 15 of Devroye (1986)⁽¹⁹⁾, implemented in *randomgen.py* as the discretegen method, and also described in (Devroye and Gravel 2020)

> (11). discretegen can work with probabilities that are irrational numbers (which have infinite binary expansions) as long as there is a way to calculate the binary expansion "on the fly".

Han and Hoshi $(1997)^{(41)}$

Knuth and Yao

 $(1976)^{(9)}$

Uses cumulative probabilities as input. An error-bounded version is described in (Devroye and Gravel 2020)(11) and comes within 3 bits, on average, of the optimal number of random bits per sample.

Notes:

1. Weighted choice algorithms as binary tree walkers. Just like RNDINT algorithms (see the RNDINT section), weighted choice algorithms can all be described as random walks on a binary DDG tree. In this case, though, the probabilities are not necessarily uniform, and on average, the algorithm needs at least as many random bits as the sum of binary entropies of all the probabilities involved. For example, say we give the four integers 1, 2, 3, 4 the following weights: 3, 15, 1, 2. The binary entropies of these

weights add up to 0.4010... + 0.3467... + 0.2091... + 0.3230... = 1.2800... (because the sum of the weights is 21 and the binary entropy of 3/21 is (3/21) * log2(21/3) = 0.4010..., and so on for the other weights). Thus, any weighted sampler will require at least 1.2800... bits on average to generate a random number with these weights. (10) The note "Reducing 'bit waste'" from the RNDINT section also applies here.

2. The **Python sample code** contains a variant of the WeightedChoice pseudocode for generating multiple random points in one call.

Examples:

- 1. Assume we have the following list: ["apples", "oranges", "bananas", "grapes"], and weights is the following: [3, 15, 1, 2]. The weight for "apples" is 3, and the weight for "oranges" is 15. Since "oranges" has a higher weight than "apples", the index for "oranges" (1) is more likely to be chosen than the index for "apples" (0) with the WeightedChoice method. The following idiom implements how to get a randomly chosen item from the list with that method: item = list[WeightedChoice(weights)].
- 2. Example 1 can be implemented with CumulativeWeightedChoice instead of WeightedChoice if weights is the following list of cumulative weights: [0, 3, 18, 19, 21].
- 3. **Piecewise constant distribution.** Assume the weights from example 1 are used and the list contains the following: [0, 5, 10, 11, 13] (one more item than the weights). This expresses four intervals: [0, 5), [5, 10), and so on. After a random index is chosen with index = WeightedChoice(weights), an independent uniform random number in the chosen interval is chosen. For example, code like the following chooses a random integer this way: number = RNDINTEXCRANGE(list[index], list[index + 1]).

6.1.2 Weighted Choice Without Replacement (Multiple Copies)

To implement weighted choice without replacement (which can be thought of as drawing a ball without putting it back) when each weight is an integer 0 or greater, generate an index by WeightedChoice, and then decrease the weight for the chosen index by 1. In this way, each weight behaves like the number of "copies" of each item. The pseudocode below is an example of this. It assumes 'weights' is a list that can be modified.

```
totalWeight = Sum(weights)
// Choose as many items as the sum of weights
i = 0
items = NewList()
while i < totalWeight
  index = WeightedChoice(weights)
  // Decrease weight by 1 to implement selection
  // without replacement.
  weights[index] = weights[index] - 1
  // NOTE: Assumes the 'list' of items was declared
  // earlier and has at least as many items as 'weights'
  AddItem(items, list[index])
  i = i + 1
end</pre>
```

Alternatively, if all the weights are integers 0 or greater and their sum is relatively small, create a list with as many copies of each item as its weight, then **shuffle** that list. The resulting list will be ordered in a way that corresponds to a weighted random choice without replacement.

Note: Some applications (particularly some games) wish to control which random numbers appear, to make the random outcomes appear "fairer" to users (e.g., to avoid long streaks of good outcomes or of bad outcomes). When the weighted sampling in this section is used for this purpose, each item represents a different outcome (e.g., "good" or "bad"), and the lists are replenished once no further items can be chosen. However, this kind of sampling should be avoided in applications that care about information security, including when predicting future random numbers would give a player or user a significant and unfair advantage.

6.1.3 Weighted Choice Without Replacement (Single Copies)

The following are ways to implement weighted choice without replacement, where each item **can be chosen no more than once** at random. The weights have the property that higher-weighted items are more likely to appear first.

- Use WeightedChoice to choose random indices. Each time an index is chosen, set the weight for the chosen index to 0 to keep it from being chosen again. Or...
- Assign each index a random exponentially-distributed number (with a rate equal to that index's weight, which must be an integer 1 or greater), make a list of pairs assigning each number to an index, then sort that list in ascending order by those numbers. Example: v=[]; for i in 0...size(weights): AddItem(v, [ExpoNew(weights[i]), i]); Sort(v) (see the next section for ExpoNew). The sorted list of indices will then correspond to a weighted choice without replacement. See "Algorithms for sampling without replacement".

6.1.4 Weighted Choice Without Replacement (List of Unknown Size)

If the number of items in a list is not known in advance, then the following pseudocode implements a RandomKItemsFromFileWeighted that selects up to k random items from a file (file) of indefinite size (similarly to RandomKItemsFromFile). This is also known as weighted reservoir sampling. See (Efraimidis and Spirakis 2005)⁽⁴²⁾, and see also (Efraimidis 2015) (43), (Vieira 2014)⁽⁴⁴⁾, and (Vieira 2019)⁽⁴⁵⁾. In the pseudocode below:

- WEIGHT_OF_ITEM(item, thisIndex) is a placeholder for arbitrary code that calculates the integer weight of an individual item based on its value and its index (starting at 0); the item is ignored if its weight is 0 or less.
- ITEM_OUTPUT(item, thisIndex, key) is a placeholder for code that returns the item to store in the list; this can include the item's value, its index starting at 0, the item's key, or any combination of these.
- ExpoNew(weight) creates an "empty" exponential number with rate weight, whose bits are not yet determined (see "Partially-Sampled Random Numbers"), and ExpoLess(a, b) returns whether one exponential number (a) is less than another (b), building up the bits of both as necessary. For a less exact algorithm, replace ExpoNew(weight) with ExpoRatio(1000000, weight, 1) and ExpoLess(a, b) with a < b.
- The items in the returned list are in no particular order. A Shuffle() can be done to that list if desired.

```
METHOD RandomKItemsFromFileWeighted(file, k)
  queue=[] // Initialize priority queue
  index = 0
  while true
    // Get the next line from the file
    item = GetNextLine(file)
```

```
thisIndex = index
    index = index + 1
    // If the end of the file was reached, break
    if item == nothing: break
    weight = WEIGHT OF ITEM(item, thisIndex)
    // Ignore if item's weight is 0 or less
    if weight <= 0: continue
    // NOTE: Equivalent to Expo(weight)
    key = ExpoNew(weight)
    itemToStore = ITEM OUTPUT(item, thisIndex, key)
    // Begin priority queue add operation. Instead
    // of the item ('item'), the line number starting at one
    // ('thisIndex') can be added to the queue.
    if size(queue) < k // Fewer than k items
     AddItem(queue, [key, itemToStore])
     Sort(queue)
    else
      // Check whether this key is smaller
      // than the largest key in the queue
      if ExpoLess(key, queue[size(queue)-1][0])
          // Replace the item with the largest key
          queue[size(queue)-1]=[key, itemToStore]
          Sort (queue)
     end
    // End priority queue add operation
  end
  list=[]
  for v in 0...size(queue): AddItem(list, queue[v][1])
  return list
end
```

Note: Weighted choice with replacement can be implemented by doing one or more concurrent runs of RandomKItemsFromFileWeighted(file, 1) (making sure each run traverses file the same way for multiple runs as for a single run) (Efraimidis 2015)⁽⁴³⁾.

6.1.5 Weighted Choice with Inclusion Probabilities

For the weighted-choice-without-replacement methods given earlier, the weights have the property that higher-weighted items are chosen first, but each item's weight is not necessarily the chance that a given sample of n items will include that item (an *inclusion probability*). The following method chooses a random sample of n indices from a list of items (whose weights are given as weights), such that the chance that index k is in the sample is given as weights[k]*n/Sum(weights). The chosen indices will not necessarily be in random order. The method implements the splitting method found in pp. 73-74 in "Algorithms of sampling with equal or unequal probabilities".

```
METHOD InclusionSelect(weights, n)
  if n>size(weights): return error
  if n==0: return []
  ws=Sum(weights)
  wts=[]
  items=[]
  // Calculate inclusion probabilities
  for i in 0...size(weights):
    AddItem(wts,[MakeRatio(weights[i],ws)*n, i])
  Sort(wts)
  // Check for invalid inclusion probabilities
  if wts[size(wts)-1][0]>1: return error
```

```
last=size(wts)-n
  if n==size(wts)
    for i in 0...n: AddItem(items,i)
    return items
  end
  while true
    lamda=min(MakeRatio(1,1)-wts[last-1][0],wts[last][0])
    if lamda==0: return error
    if ZeroOrOne(lamda[0],lamda[1])
      for k in 0...size(wts)
        if k+1>ntotal-n:AddItem(items,wts[k][1])
      end
      return items
    end
    newwts=[]
    for k in 0...size(wts)
      newwt=(k+1<=last) ?</pre>
          wts[k][0]/(1-lamda) : (wts[k][0]-lamda)/(1-lamda)
      AddItem(newwts,[newwt,wts[k][1]])
    end
    wts=newwts
    Sort(wts)
  end
END METHOD
```

6.2 Mixtures of Distributions

A *mixture* consists of two or more probability distributions with separate probabilities of being sampled. To generate random content from a mixture—

- 1. generate index = WeightedChoice(weights), where weights is a list of relative probabilities that each distribution in the mixture will be sampled, then
- based on the value of index, generate the random content from the corresponding distribution.

Examples:

- One mixture consists of the sum of three six-sided virtual die rolls and the result of one six-sided die roll, but there is an 80% chance to roll one six-sided virtual die rather than three. The following pseudocode shows how this mixture can be sampled: index = WeightedChoice([80, 20]); number = 0; if index==0: number = RNDINTRANGE(1,6); else: number = RNDINTRANGE(1,6) + RNDINTRANGE(1,6).
- 2. Choosing an independent uniform random point, from a complex shape (in any number of dimensions) is equivalent to doing such sampling from a mixture of simpler shapes that make up the complex shape (here, the weights list holds the n-dimensional "volume" of each simpler shape). For example, a simple closed 2D polygon can be triangulated, or decomposed into triangles, and a mixture of those triangles can be sampled. (46)
- 3. Take a set of nonoverlapping integer ranges (for example, [0, 5], [7, 8], [20, 25]). To choose an independent uniform random integer from those ranges:
 - Create a list (weights) of weights for each range. Each range is given a
 weight of (mx mn) + 1, where mn is that range's minimum and mx is its
 maximum.

 Choose an index using WeightedChoice(weights), then generate RNDINTRANGE(mn, mx), where mn is the corresponding range's minimum and mx is its maximum.

This method can be adapted for rational numbers with a common denominator by treating the integers involved as the numerators for such numbers. For example, [0/100, 5/100], [7/100, 8/100], [20/100, 25/100], where the numerators are the same as in the previous example.

- 4. In the pseudocode index = WeightedChoice([80, 20]); list = [[0, 5], [5, 10]]; number = RNDINTEXCRANGE(list[index][0], list[index][1]), a random integer in 0, 5) is chosen at an 80% chance, and a random integer in [5, 10) at a 20% chance.
- 5. A hyperexponential distribution is a mixture of [exponential distributions, each one with a separate weight and separate rate parameter. The following is an example involving three different exponential distributions: index = WeightedChoice([6, 3, 1]); rates = [[3, 10], [5, 10], [1, 100]]; number = ExpoRatio(100000, rates[i][0], rates[i][1]).

6.3 Transformations of Random Numbers

Random numbers can be generated by combining and/or transforming one or more random numbers and/or discarding some of them.

As an example, <u>"Probability and Games: Damage Rolls"</u> by Red Blob Games includes interactive graphics showing score distributions for lowest-of, highest-of, drop-the-lowest, and reroll game mechanics. (47) These and similar distributions can be generalized as follows.

Generate one or more random numbers, each with a separate probability distribution, then:

- 1. **Highest-of:** Choose the highest generated number.
- 2. **Drop-the-lowest:** Add all generated numbers except the lowest.
- 3. **Reroll-the-lowest:** Add all generated numbers except the lowest, then add a number generated randomly by a separate probability distribution.
- 4. **Lowest-of:** Choose the lowest generated number.
- 5. **Drop-the-highest:** Add all generated numbers except the highest.
- 6. **Reroll-the-highest:** Add all generated numbers except the highest, then add a number generated randomly by a separate probability distribution.
- 7. **Sum:** Add all generated numbers.
- 8. **Mean:** Find the mean of all generated numbers.
- 9. **Geometric transformation:** Treat the numbers as an n-dimensional point, then apply a geometric transformation, such as a rotation or other *affine* transformation⁽⁴⁸⁾, to that point.

If the probability distributions are the same, then strategies 1 to 3 make higher numbers more likely, and strategies 4 to 6, lower numbers.

Note: Variants of strategy 4 - e.g., choosing the second-, third-, or nth-lowest number — are formally called second-, third-, or nth-**order statistics distributions**, respectively.

Examples:

- 1. The idiom min(RNDINTRANGE(1, 6), RNDINTRANGE(1, 6)) takes the lowest of two six-sided die results (strategy 4). Due to this approach, 1 is more likely to occur than 6.
- 2. The idiom RNDINTRANGE(1, 6) + RNDINTRANGE(1, 6) takes the result of two six-sided dice (see also "**Dice**") (strategy 7).
- 3. A **binomial distribution** models the sum of n random numbers each generated by Zero0r0ne(px,py) (strategy 7) (see "**Binomial Distribution**").
- 4. **Clamped random numbers.** These are one example of transformed random numbers. To generate a clamped random number, generate a random number as usual, then—
 - if that number is less than a minimum threshold, use the minimum threshold instead (*left-censoring*), and/or
 - if that number is greater than a maximum threshold, use the maximum threshold instead (*right-censoring*).

An example of a clamped random number is min(200, RNDINT(255)).

- 5. A **compound Poisson distribution** models the sum of *n* random numbers each generated the same way, where *n* follows a **Poisson distribution** (e.g., n = PoissonInt(10, 1) for an average of 10 numbers) (strategy 7, sum).
- 6. A **Pólya-Aeppli distribution** is a compound Poisson distribution in which the random numbers are generated by NegativeBinomial(1, 1-p)+1 for a fixed p.

7 Specific Non-Uniform Distributions

This section contains information on some of the most common non-uniform probability distributions.

7.1 Dice

The following method generates a random result of rolling virtual dice. It takes three parameters: the number of dice (dice), the number of sides in each die (sides), and a number to add to the result (bonus) (which can be negative, but the result of the method is 0 if that result is greater). See also Red Blob Games, "Probability and Games: Damage Rolls".

```
METHOD DiceRoll(dice, sides, bonus)
  if dice < 0 or sides < 1: return error
  ret = 0
  for i in 0...dice: ret=ret+RNDINTRANGE(1, sides)
  return max(0, ret + bonus)
END METHOD</pre>
```

Examples: The result of rolling—

- four six-sided virtual dice ("4d6") is DiceRoll(4,6,0),
- three ten-sided virtual dice, with 4 added ("3d10 + 4"), is DiceRoll(3,10,4),
 and
- two six-sided virtual dice, with 2 subtracted ("2d6 2"), is DiceRoll(2,6,-2).

7.2 Binomial Distribution

The binomial distribution uses two parameters: trials and p. This distribution models the number of successes in a fixed number of independent trials (equal to trials), each with the same probability of success (equal to p, where $p \le 0$ means never, $p \ge 1$ means always, and p = 1/2 means an equal chance of success or failure).

This distribution has a simple implementation: count = 0; for i in 0...trials: count=count+ZeroOrOne(px, py). But for large numbers of trials, this can be very slow.

The pseudocode below implements an exact sampler of this distribution, with certain optimizations based on (Farach-Colton and Tsai 2015)⁽⁴⁹⁾. (Another exact sampler is given in (Bringmann et al. 2014)⁽⁵⁰⁾ and described in my "Miscellaneous Observations on Randomization".) Here, the parameter p is expressed as a ratio px/py.

```
METHOD BinomialInt(trials, px, py)
  if trials < 0: return error
  if trials == 0: return 0
  // Always succeeds
  if mx: return trials
  // Always fails
  if p \le 0.0: return 0
  count = 0
  ret = 0
  recursed = false
  if py*2 == px // Is half
    if i > 200
      // Divide and conquer
      half = floor(trials / 2)
      return BinomialInt(half, 1, 2) + BinomialInt(trials - half, 1, 2)
    else
      if rem(trials,2)==1
        count=count+RNDINT(1)
        trials=trials-1
     end
      // NOTE: This step can be made faster
      // by precalculating an alias table
      // based on a list of n + 1 binomial(0.5)
      // weights, which consist of n-choose-i
     // for all i in [0, n], and sampling based on
      // that table (see Farach-Colton and Tsai).
      for i in 0...trials: count=count+RNDINT(1)
    end
  else
    // Based on proof of Theorem 2 in Farach-Colton and Tsai.
    // Decompose px/py into its base-2 digits.
    pw = MakeRatio(px, py)
    pt = MakeRatio(1, 2)
    while trials>0 and pw>0
      c=BinomialInt(trials. 1. 2)
      if pw>=pt
        count=count+c
        trials=trials-c
        pw=pw-pt
      else
        trials=c
      pt=pt/2 // NOTE: Not rounded
```

```
end
end
if recursed: return count+ret
return count
END METHOD
```

Note: If px/py is 1/2, the binomial distribution models the task "Flip N coins, then count the number of heads", and the random sum is known as $\underline{\textit{Hamming}}$ $\underline{\textit{distance}}$ (treating each trial as a "bit" that's set to 1 for a success and 0 for a failure). If px is 1, then this distribution models the task "Roll n py-sided dice, then count the number of dice that show the number 1."

7.3 Negative Binomial Distribution

In this document, the *negative binomial distribution* models the number of failing trials that happen before a fixed number of successful trials (successes). Each trial is independent and has a success probability of px/py (where 0 means never and 1 means always). The following is a naïve implementation; see also the notes for the geometric distribution, a special case of this one.

```
METHOD NegativeBinomialInt(successes, px, py)
  // Needs to be 0 or greater; px must not be 0
  if successes < 0 or px == 0: return error
  if successes == 0 or px >= py: return 0
  total = 0
  count = 0
  while total < successes
      if ZeroOrOne(px, py) == 1: total = total + 1
      else: count = count + 1
  end
  return count
END METHOD</pre>
```

If successes is a non-integer, the distribution is often called a *Pólya distribution*. In that case, it can be sampled using the following pseudocode (Heaukulani and Roy 2019) $^{(51)}$:

```
METHOD PolyaInt(sx, sy, px, py)
   isinteger=rem(sx,sy)==0
   sxceil=ceil(sx/sy)
   while true
      w=NegativeBinomialInt(sxceil, px, py)
      if isinteger or w==0: return w
     tmp=MakeRatio(sx,sy)
     anum=tmp
      for i in 1...w: anum=anum*(tmp+i)
      tmp=sxceil
      aden=tmp
      for i in 1...w: aden=aden*(tmp+i)
     a=anum/aden
     if Zero0r0ne(a[0], a[1])==1: return w
   end
END METHOD
```

7.4 Geometric Distribution

The geometric distribution is a negative binomial distribution with successes = 1. In this document, a geometric random number is the number of failures that have happened before one success happens. For example, if p is 1/2, the geometric distribution models

the task "Flip a coin until you get tails, then count the number of heads." As a unique property of the geometric distribution, the number of trials that have already failed in a row says nothing about the number of new trials that will fail in a row.

Notes:

- 1. The negative binomial and geometric distributions are defined differently in different works. For example, *Mathematica*'s definition excludes the last success, but the definition in (Devroye 1986, p. 498)⁽¹⁹⁾ includes it. And some works may define a negative binomial number as the number of successes before N failures, rather than vice versa.
- 2. A bounded geometric random number is either n (an integer greater than 0) or a geometric random number, whichever is less. Exact and efficient samplers for the geometric and bounded geometric distributions are given in (Bringmann and Friedrich 2013)⁽⁵²⁾ and described in my "Miscellaneous Observations on Randomization".)

7.5 Exponential Distribution

The exponential distribution uses a parameter known as λ , the rate, or the inverse scale. Usually, λ is the probability that an independent event of a given kind will occur in a given span of time (such as in a given day or year), and the random result is the number of spans of time until that event happens. Usually, λ is equal to 1, or 1/1. $1/\lambda$ is the scale (mean), which is usually the average waiting time between two independent events of the same kind.

In this document, Expo(lamda) is an exponentially-distributed random number with the rate lamda.

ExpoRatio, in the pseudocode below, generates an exponential random number (in the form of a ratio) given the rate rx/ry (or scale ry/rx) and the base base. ExpoNumerator generates the numerator of an exponential random number with rate 1 given that number's denominator. The algorithm is due to von Neumann (1951)⁽⁵³⁾. For additional algorithms to sample exponential random numbers, see "Partially-Sampled Random Numbers".

```
METHOD ExpoRatio(base, rx, ry)
    // Generates a numerator and denominator of
    // an exponential random number with rate rx/ry.
    return MakeRatio(ExpoNumerator(base*ry), base*rx))
END METHOD
METHOD ExpoNumerator(denom)
   if denom<=0: return error
   count=0
   while true
     y1=RNDINTEXC(denom)
     y=y1
     accept=true
      while true
         z=RNDINTEXC(denom)
         if y<=z: break
         accept=not accept
      end
      if accept: count=count+y1
      else: count=count+denom
```

```
if accept: break
end
return count
END METHOD
```

7.6 Poisson Distribution

The Poisson distribution uses a parameter mean (also known as λ). λ is the average number of independent events of a certain kind per fixed unit of time or space (for example, per day, hour, or square kilometer). A Poisson-distributed number is the number of such events within one such unit.

In this document, Poisson(mean) is a Poisson-distributed number if mean is greater than 0, or 0 if mean is 0.

The following method generates a Poisson random number with mean mx/my, using the approach suggested by (Flajolet et al., $2010)^{(54)}$. In the method, UniformNew() creates a uniform partially-sampled random number (an "empty" random number whose contents are not yet determined) with a positive sign, an integer part of 0, and an empty fractional part (for more information, see my article on this topic), and UniformLess(a, b) returns whether one partially-sampled random number (a) is less than another (b), and samples unbiased random bits from both numbers as necessary (see the UniformLess algorithm in the same article). For a less exact algorithm, replace UniformNew() with RNDINT(1000) and UniformLess(a, b) with a < b.

```
METHOD PoissonInt(mx, my)
    if my == 0: return error
    if mx == 0: return 0
    if (mx < 0 \text{ and } my < 0) or (mx > 0 \text{ and } my < 0): return 0
    if mx==my: return PoissonInt(1,2)+PoissonInt(1,2)
    if mx > my
       // Mean is 1 or greater
       mm=rem(mx, my)
       if mm == 0
          mf=floor(mx/my)
          ret=0
          if rem(mf, 2)==0: ret=ret+PoissonInt(1, 1)
          if rem(mf. 2)==0: mf=mf-1
          ret=ret+PoissonInt(mf/2, 1)+PoissonInt(mf/2, 1)
          return ret
       else: return PoissonInt(mm, my)+
           PoissonInt(mx-mm, my)
    end
    if mx>floor(my*9/10)
       // Runs slowly if mx/my is close to 1, so break it up
       hmx=floor(mx/2)
       return PoissonInt(hmx,my)+PoissonInt(mx-hmx,my)
    end
    while true
      k = 0
      w = nothing
      while true
         // Generate a random number of random numbers
         // and determine whether they are sorted
         if ZeroOrOne(mx.mv)==0: return k
         u2 = UniformNew()
         // Break if we find an out-of-order number
         if k>0 and UniformLess(w, u): break
         w = u
```

```
k=k+1
end
end
return count
END METHOD
```

Note: To generate a sum of n independent Poisson random numbers with separate means, generate a Poisson random number whose mean is the sum of those means (see (Devroye 1986)⁽¹⁹⁾, p. 501). For example, to generate a sum of 1000 independent Poisson random numbers with a mean of 1/1000000, simply generate PoissonInt(1, 1000) (because 1/1000000 * 1000 = 1/1000).

7.7 Hypergeometric Distribution

The following method generates a random integer that follows a *hypergeometric* distribution. When a given number of items are drawn at random without replacement from a collection of items each labeled either 1 or 0, the random integer expresses the number of items drawn this way that are labeled 1. In the method below, trials is the number of items drawn at random, ones is the number of items labeled 1 in the set, and count is the number of items labeled 1 or 0 in that set.

```
METHOD Hypergeometric(trials, ones, count)
    if ones < 0 or count < 0 or trials < 0 or
      ones > count or trials > count
      return error
    if ones == 0: return 0
    successes = 0
    i = 0
    currentCount = count
    currentOnes = ones
    while i < trials and currentOnes > 0
      if ZeroOrOne(currentOnes, currentCount) == 1
        currentOnes = currentOnes - 1
        successes = successes + 1
      end
      currentCount = currentCount - 1
     i = i + 1
    end
    return successes
END METHOD
```

Example: In a 52-card deck of Anglo-American playing cards, 12 of the cards are face cards (jacks, queens, or kings). After the deck is shuffled and seven cards are drawn, the number of face cards drawn this way follows a hypergeometric distribution where trials is 7, ones is 12, and count is 52.

7.8 Random Integers with a Given Positive Sum

The following pseudocode shows how to generate n random integers with a given positive sum, in random order (specifically, a uniformly chosen random partition of that sum into n parts with repetition and in random order). (The algorithm for this was presented in (Smith and Tromble 2004)⁽⁵⁵⁾.) In the pseudocode below—

- the method PositiveIntegersWithSum returns n integers greater than 0 that sum to total, in random order,
- the method IntegersWithSum returns n integers 0 or greater that sum to total, in

random order, and

• Sort(list) sorts the items in list in ascending order (note that sort algorithms are outside the scope of this document).

```
METHOD PositiveIntegersWithSum(n, total)
    if n <= 0 or total <=0: return error
    ls = [0]
    ret = NewList()
    while size(ls) < n
      c = RNDINTEXCRANGE(1, total)
      found = false
      for j in 1...size(ls)
        if ls[j] == c
          found = true
          break
        end
     if found == false: AddItem(ls, c)
    end
    Sort(ls)
    AddItem(ls, total)
    for i in 1...size(ls): AddItem(ret,
        ls[i] - ls[i - 1])
    return ret
END METHOD
METHOD IntegersWithSum(n, total)
  if n <= 0 or total <=0: return error
  ret = PositiveIntegersWithSum(n, total + n)
  for i in 0...size(ret): ret[i] = ret[i] - 1
  return ret
END METHOD
```

Notes:

- 1. To generate N random numbers with a given positive average avg, in random order, generate IntegersWithSum(N, N * avg).
- 2. To generate N random numbers min or greater and with a given positive sum sum, in random order, generate IntegersWithSum(N, sum N * min), then add min to each number generated this way. The Python sample code implements an efficient way to generate such integers if each one can't exceed a given maximum; the algorithm is thanks to a *Stack Overflow* answer (questions/61393463) by John McClane.
- 3. To generate N rational numbers that sum to tx/ty, call IntegersWithSum(N, tx * ty * x) or PositiveIntegersWithSum(N, tx * ty * x) as appropriate (where x is the desired accuracy as an integer, such as pow(2, 32) or pow(2, 53), so that the results are accurate to 1/x or less), then for each number c in the result, convert it to MakeRatio(c, tx * ty * x) * MakeRatio(tx, ty).

7.9 Multinomial Distribution

The multinomial distribution uses two parameters: trials and weights. It models the number of times each of several mutually exclusive events happens among a given number of trials (trials), where each event can have a separate probability of happening (given as a list of weights).

A trivial implementation is to fill a list with as many zeros as weights, then for each trial,

choose index = WeightedChoice(weights) and add 1 to the item in the list at the chosen index. The resulting list follows a multinomial distribution. The pseudocode below shows an optimization suggested in (Durfee et al., 2018, Corollary 45) $^{(56)}$, but assumes all weights are integers.

```
METHOD Multinomial(trials, weights)
    if trials < 0: return error
    // create a list of successes
    list = []
    ratios = []
    sum=Sum(weights)
    for i in 0...size(weights): AddItem(ratios,
           MakeRatio(weights[i], sum))
    for i in 0...size(weights)
        r=ratios[i]
        b=BinomialInt(t,r[0],r[1])
        AddItem(list, b)
        trials=trials-b
        if trials>0: for j in range(i+1,
            len(weights)): ratios[j]=ratios[j]/(1-r)
    end
    return list
END METHOD
```

8 Randomization with Real Numbers

This section describes randomization methods that use random real numbers, not just random integers. These include random rational numbers, fixed-point numbers, and floating-point numbers.

However, whenever possible, **applications should work with random integers**, rather than other random real numbers. This is because:

- No computer can choose from among all real numbers between two others, since there are infinitely many of them.
- Working with integers is more portable and numerically stable than working with other real numbers, especially floating-point numbers.⁽⁵⁷⁾
- For applications that may care about reproducible "random" numbers (unit tests, simulations, machine learning, and so on), using non-integer numbers (especially floating-point numbers) can complicate the task of making a method reproducible from run to run or across computers.

The methods in this section should not be used to generate random numbers for information security purposes, even if a source of secure random numbers is available. See "Security Considerations" in the appendix.

8.1 Uniform Random Real Numbers

This section defines the following methods that generate independent uniform random real numbers:

```
RNDRANGE(a, b): Interval [a, b].
RNDRANGEMaxExc(a, b): Interval [a, b).
RNDRANGEMinExc(a, b): Interval (a, b].
RNDRANGEMinMaxExc(a, b): Interval (a, b).
```

The sections that follow show how these methods can be implemented for fixed-point, rational, and floating-point numbers. An additional format for random real numbers is the **partially-sampled random number**.

8.1.1 For Fixed-Point Number Formats

For fixed-point number formats representing multiples of 1/n, these methods are trivial. The following implementations return integers that represent fixed-point numbers. In each method below, fpa and fpb are the bounds of the random number generated and are integers that represent fixed-point numbers (such that fpa = a * n and fpb = b * n). For example, if n is 100, to generate a number in [6.35, 9.96], generate RNDRANGE(6.35, 9.96) or RNDINTRANGE(635, 996).

- RNDRANGE(a, b): RNDINTRANGE(fpa, fpb). But if a is 0 and b is 1: RNDINT(n).
- RNDRANGEMinExc(a, b): RNDINTRANGE(fpa + 1, fpb), or an error if fpa >= fpb. But if a is 0 and b is 1: (RNDINT(n 1) + 1) or (RNDINTEXC(n) + 1).
- RNDRANGEMaxExc(a, b): RNDINTEXCRANGE(fpa, fpb). But if a is 0 and b is 1: RNDINTEXC(n) or RNDINT(n 1).
- RNDRANGEMinMaxExc(a, b): RNDINTRANGE(fpa + 1, fpb 1), or an error if fpa >= fpb or a == fpb 1. But if a is 0 and b is 1: (RNDINT(n 2) + 1) or (RNDINTEXC(n 1) + 1).

8.1.2 For Rational Number Formats

For rational number formats with a fixed denominator, the RNDRANGE family can be implemented in the numerator as given in the previous section for fixed-point formats.

8.1.3 For Floating-Point Number Formats

For floating-point number formats representing numbers of the form FPSign * s * FPRADIX^e (58), the following pseudocode implements RNDRANGE(lo, hi). In the pseudocode:

- MINEXP is the lowest exponent a number can have in the floating-point format. For the IEEE 754 binary64 format (Java double), MINEXP = -1074. For the IEEE 754 binary32 format (Java float), MINEXP = -149.
- FPPRECISION is the number of significant digits in the floating-point format, whether the format stores them as such or not. Equals 53 for binary64, or 24 for binary32.
- FPRADIX is the digit base of the floating-point format. Equals 2 for binary64 and binary32.
- FPExponent(x) returns the value of e for the number x such that the number of digits in s equals FPPRECISION. Returns MINEXP if x = 0 or if e would be less than MINEXP.
- FPSignificand(x) returns s, the significand of the number x. Returns 0 if x = 0. Has FPPRECISION digits unless FPExponent(x) == MINEXP.
- FPSign(x) returns either -1 or 1 indicating whether the number is positive or negative. Can be -1 even if s is 0.

See also (Downey 2007)⁽⁵⁹⁾ and the **Rademacher Floating-Point Library**.

```
METHOD RNDRANGE(lo, hi)
  losgn = FPSign(lo)
  hisgn = FPSign(hi)
  loexp = FPExponent(lo)
  hiexp = FPExponent(hi)
  losig = FPSignificand(lo)
  hisig = FPSignificand(hi)
  if lo > hi: return error
  if losgn == 1 and hisgn == -1: return error
```

```
if losgn == -1 and hisgn == 1
    // Straddles negative and positive ranges
    // NOTE: Changes negative zero to positive
    mabs = max(abs(lo), abs(hi))
    while true
       ret=RNDRANGE(0, mabs)
       neg=RNDINT(1)
       if neg==0: ret=-ret
       if ret>=lo and ret<=hi: return ret
    end
  if lo == hi: return lo
  if losgn == -1
    // Negative range
    return -RNDRANGE(abs(lo), abs(hi))
  end
  // Positive range
  expdiff=hiexp-loexp
  if loexp==hiexp
    // Exponents are the same
    // NOTE: Automatically handles
    // subnormals
    s=RNDINTRANGE(losig, hisig)
    return s*1.0*pow(FPRADIX, loexp)
  while true
    ex=hiexp
    while ex>MINEXP
     v=RNDINTEXC(FPRADIX)
     if v==0: ex=ex-1
     else: break
    end
    s=0
    if ex==MINEXP
      // Has FPPRECISION or fewer digits
      // and so can be normal or subnormal
      s=RNDINTEXC(pow(FPRADIX,FPPRECISION))
    else if FPRADIX != 2
      // Has FPPRECISION digits
      s=RNDINTEXCRANGE(
        pow(FPRADIX, FPPRECISION-1),
        pow(FPRADIX,FPPRECISION))
    else
      // Has FPPRECISION digits (bits), the highest
      // of which is always 1 because it's the
      // only nonzero bit
      sm=pow(FPRADIX,FPPRECISION-1)
      s=RNDINTEXC(sm)+sm
    ret=s*1.0*pow(FPRADIX, ex)
    if ret>=lo and ret<=hi: return ret
  end
END METHOD
```

The other members of the RNDRANGE family can be derived from RNDRANGE as follows:

• RNDRANGEMaxExc, interval `mn, mx`):

- \circ Generate RNDRANGE(mn, mx) in a loop until a number other than mx is generated this way. Return an error if mn >= mx (treating positive and negative zero as different).
- RNDRANGEMinExc, interval [mn, mx):
 - Generate RNDRANGE(mn, mx) in a loop until a number other than mn is generated

this way. Return an error if mn >= mx (treating positive and negative zero as different).

• RNDRANGEMinMaxExc, interval (mn, mx):

• Generate RNDRANGE(mn, mx) in a loop until a number other than mn or mx is generated this way. Return an error if mn >= mx (treating positive and negative zero as different).

Note: In many software libraries, random numbers in a range are generated by dividing or multiplying a random integer by a constant. For example, the equivalent of RNDRANGEMaxExc(0, 1) is often implemented like RNDINTEXC(X) * (1.0/X) or RNDINTEXC(X) / X, where X varies based on the software library. [(60)] The disadvantage here is that doing so does not necessarily cover all numbers a floating-point format can represent in the range (Goualard 2020)(61). As another example, RNDRANGEMaxExc(a, b) is often implemented like a + Math.random() * (b - a), where Math.random() returns a random number in the interval \(0, 1 \); however, this not only has the same disadvantage, but has many other issues where floating-point numbers are involved (Monahan 1985)[(62)].

8.2 Monte Carlo Sampling: Expected Values, Integration, and Optimization

Requires random real numbers.

Randomization is the core of **Monte Carlo sampling**. There are three main uses of Monte Carlo sampling: estimation, integration, and optimization.

Estimating expected values. Monte Carlo sampling can help estimate the
expected value of a function given a random process or sampling distribution. The
following pseudocode estimates the expected value from a list of random numbers
generated the same way. Here, EFUNC is the function, and MeanAndVariance is given in
the appendix. Expectation returns a list of two numbers — the estimated expected
value and its standard error.

```
METHOD Expectation(numbers)
  ret=[]
  for i in 0...size(numbers)
    AddItem(ret,EFUNC(numbers[i]))
  end
  merr=MeanAndVariance(ret)
  merr[1]=merr[1]*(size(ret)-1.0)/size(ret)
  merr[1]=sqrt(merr[1]/size(ret))
  return merr
END METHOD
```

Estimates of expected values include the following:

- The nth sample raw moment (a raw moment is a mean of nth powers) if EFUNC(x) is pow(x, n).
- The **sample mean**, the first sample raw moment.
- The **nth sample central moment** (a central moment is a moment about the mean) if EFUNC(x) is pow(x-m, n), where m is the mean of the sampled numbers.
- The (biased) **sample variance**, the second sample central moment.
- $\circ~$ The $\boldsymbol{probability},$ if EFUNC(x) is 1 if some condition is met or 0 otherwise.

If the sampling domain is also limited to random numbers meeting a given condition

(such as x < 2 or x = 10), then the estimated expected value is also called the estimated *conditional expectation*.

Monte Carlo estimation makes a difference between biased and unbiased estimators. An estimator is unbiased if multiple independent samples of size k (from the same distribution) are expected to average to the true expected value regardless of k (Halmos 1946)⁽⁶³⁾. For example, an Expectation for any nth sample raw moment is an unbiased estimator provided $k \ge n$, but an Expectation for the sample variance is not unbiased, and neither is one for any sample central moment other than the first (Halmos 1946)⁽⁶³⁾. For an unbiased estimator, the error in the Monte Carlo estimation is due to variance, but variance reduction techniques are outside the scope of this document.

- 2. **Monte Carlo integration**. This is a way to estimate a multidimensional integral; randomly sampled numbers are put into a list (nums) and the estimated integral and its standard error are then calculated with Expectation(nums) with EFUNC(x) = x, and multiplied by the volume of the sampling domain.
- Stochastic optimization. This uses randomness to help find the minimum or maximum value of a function with one or more variables; examples include simulated annealing and simultaneous perturbation stochastic approximation (see also (Spall 1998)⁽⁶⁴⁾).

8.3 Low-Discrepancy Sequences

Requires random real numbers.

A <u>low-discrepancy sequence</u> (or *quasirandom sequence*) is a sequence of numbers that behave like uniform random numbers but are <u>dependent</u> on each other, in that they are less likely to form "clumps" than if they were independent. The following are examples:

- A base-N van der Corput sequence is generated as follows: For each non-negative integer index in the sequence, take the index as a base-N number, then divide the least significant base-N digit by N, the next digit by N², the next by N³, and so on, and add together these results of division.
- A *Halton sequence* is a set of two or more van der Corput sequences with different prime bases; a Halton point at a given index has coordinates equal to the points for that index in the van der Corput sequences.
- Roberts, M., in "The Unreasonable Effectiveness of Quasirandom Sequences", presents a low-discrepancy sequence based on a "generalized" version of the golden ratio.
- Sobol sequences are explained in "Sobol sequence generator" by S. Joe and F. Kuo.
- Latin hypercube sampling doesn't exactly produce low-discrepancy sequences, but serves much the same purpose. The following pseudocode implements this sampling for an n-number sequence: lhs = []; for i in 0...n: AddItem(RNDRANGEMinMaxExc(i*1.0/n, (i+1)*1.0/n)); lhs = Shuffle(lhs).
- Linear congruential generators with modulus m, a full period, and "good lattice structure"; a sequence of n-dimensional points is then [MLCG(i), MLCG(i+1), ..., MLCG(i+n-1)] for each integer i in the interval [1, m] (L'Ecuyer 1999)⁽⁶⁵⁾. One example of MLCG(seed): rem(92717*seed,262139)/262139.0.
- Linear feedback shift register generators with good "uniformity" for Monte Carlo sampling (e.g., (Harase 2020)⁽⁶⁶⁾).
- If the sequence outputs numbers in the interval [0, 1], the **Baker's map** of the

The points of a low-discrepancy sequence can be "scrambled" with the help of a pseudorandom number generator (or another kind of RNG). In Monte Carlo sampling, low-discrepancy sequences are often used to achieve more efficient "random" sampling, but in general, they can be safely used this way only if none of their points is skipped $(Owen 2020)^{(67)}$

8.4 Notes on Randomization Involving Real Numbers

Requires random real numbers.

8.4.1 Random Walks: Additional Examples

- One example of a white noise process is a list of Normal(0, 1) numbers (Gaussian white noise).
- If STATEJUMP() is RNDRANGE(-1, 1), the random state is advanced by a random real number in the interval [-1, 1].
- A **continuous-time process** models random behavior at every moment, not just at discrete times. There are two popular examples:
 - A Wiener process (also known as Brownian motion) has random states and jumps that are normally distributed. For a random walk that follows a Wiener process, STATEJUMP() is Normal(mu * timediff, sigma * sqrt(timediff)), where mu is the drift (or average value per time unit), sigma is the volatility, and timediff is the time difference between samples. A Brownian bridge (Revuz and Yor 1999)
 (68) modifies a Wiener process as follows: For each time X, calculate W(X) W(E)
 * (X S) / (E S), where S and E are the starting and ending times of the process, respectively, and W(X) and W(E) are the state at times X and E, respectively.
 - o In a *Poisson point process*, the time between each event is its own exponential random number with its own rate parameter (e.g., Expo(rate)) (see "Exponential Distribution"), and sorting N random RNDRANGE(x, y) expresses N arrival times in the interval [x, y]. The process is *homogeneous* if all the rates are the same, and *inhomogeneous* if the rate is a function of the "timestamp" before each event jump (the *hazard rate function*); to generate arrival times here, potential arrival times are generated at the maximum possible rate (maxrate) and each one is accepted if RNDRANGE(0, maxrate) < this rate, where this rate is the rate for the given arrival time (Lewis and Shedler 1979)⁽⁶⁹⁾.

8.4.2 Transformations: Additional Examples

- 1. **Bates distribution**: Find the mean of n uniform random numbers in a given range (such as by RNDRANGE(minimum, maximum)) (strategy 8, mean; see the **appendix**).
- 2. A random point (x, y) can be transformed (strategy 9, geometric transformation) to derive a point with **correlated random** coordinates (old x, new x) as follows (see (Saucier 2000)⁽⁷⁰⁾, sec. 3.8): [x, y*sqrt(1 rho * rho) + rho * x], where x and y are independent random numbers generated the same way, and rho is a *correlation coefficient* in the interval [-1, 1] (if rho is 0, x and y are uncorrelated).
- 3. It is reasonable to talk about sampling the sum or mean of N random numbers, where N has a fractional part. In this case, ceil(N) random numbers are generated and the last number is multiplied by that fractional part. For example, to sample the sum of 2.5 random numbers, generate three random numbers, multiply the last by 0.5 (the fractional part of 2.5), then sum all three numbers.
- 4. A **hypoexponential distribution** models the sum of *n* random numbers that follow

- an exponential distribution and each have a separate rate parameter (see "Exponential Distribution").
- 5. The **maximal coupling** method mentioned by **P. Jacob** generates correlated random numbers from two distributions, P and Q, with known probability density functions or PDFs (PPDF and QPDF, respectively); this works only if the area under each PDF is 1: Sample a random number x from distribution P, and if RNDRANGE(0, PPDF(x)) < QPDF(x), return [x, x]. Otherwise, sample a random number y from distribution Q until PPDF(y) < RNDRANGE(0, QPDF(y)), then return [x, y].

8.5 Random Numbers from a Distribution of Data Points

Requires random real numbers.

Generating random data points based on how a list of data points is distributed involves the field of **machine learning**: fit a data model to the data points, then predict a new data point based on that model, with randomness added to the mix. Three kinds of data models, described below, serve this purpose. (How fitting works is outside the scope of this page.)

- 1. **Density estimation models. Density estimation** models seek to describe the distribution of data points in a given data set, where areas with more points are more likely to be sampled. (71) The following are examples.
 - **Histograms** are sets of one or more non-overlapping *bins*, which are generally of equal size. Histograms are *mixtures*, where each bin's weight is the number of data points in that bin. After a bin is randomly chosen, a random data point that could fit in that bin is generated (that point need not be an existing data point).
 - Gaussian <u>mixture models</u> are also mixtures, in this case, mixtures of one or more Gaussian (normal) distributions.
 - Kernel distributions are mixtures of sampling distributions, one for each data point. Estimating a kernel distribution is called <u>kernel density estimation</u>. To sample from a kernel distribution:
 - 1. Choose one of the numbers or points in the list at random **with** replacement.
 - 2. Add a randomized "jitter" to the chosen number or point; for example, add a separately generated Normal (0, sigma) to the chosen number or each component of the chosen point, where sigma is the $bandwidth^{(72)}$.
 - **Stochastic interpolation** is described in (Saucier 2000)⁽⁷⁰⁾, sec. 5.3.4.
 - **Fitting a known distribution** (such as the normal distribution), with unknown parameters, to data can be done by **maximum likelihood estimation**, among other ways.
- 2. **Regression models.** A regression model is a model that summarizes data as a formula and an error term. If an application has data in the form of inputs and outputs (e.g., monthly sales figures) and wants to sample a random but plausible output given a known input point (e.g., sales for a future month), then the application can fit and sample a regression model for that data. For example, a *linear regression model*, which simulates the value of y given known inputs a and b, can be sampled as follows: y = c1 * a + c2 * b + c3 + Normal(0, sqrt(mse)), where mse is the mean squared error and c1, c2, and c3 are the coefficients of the model. (Here, Normal(0, sqrt(mse)) is the error term.)

3. **Generative models.** These are machine learning models that take random numbers as input and generate outputs (such as images or sounds) that are similar to examples they have already seen. **Generative adversarial networks** are one kind of generative model.

Notes:

- 1. Usually, more than one kind of data model and/or machine learning model is a possible choice to fit to a given data set (e.g., multiple kinds of density estimation models, regression models, parametric distributions, and/or decision trees). If several kinds of model are fitting choices, then the kind showing the best *predictive accuracy* for the data set (e.g., *goodness of fit*, precision, recall) should be chosen.
- If the existing data points each belong in one of several categories, choosing a random category could be done by choosing a random number weighted on the number of data points in each category (see "Weighted Choice").
- 3. If the existing data points each belong in one of several *categories*, choosing a random data point *and* its category could be done—
 - 1. by choosing a random data point based on all the existing data points, then finding its category (e.g., via machine learning models known as *classification models*), or
 - 2. by choosing a random category as given above, then by choosing a random data point based only on the existing data points of that category.

8.6 Random Numbers from an Arbitrary Distribution

Requires random real numbers.

Many probability distributions can be defined in terms of any of the following:

- The *cumulative distribution function*, or *CDF*, returns, for each number, the probability that a number equal to or greater than that number is randomly chosen; the probability is in the interval [0, 1].
- The *probability density function*, or *PDF*, is, roughly and intuitively, a curve of weights 0 or greater, where for each number, the greater its weight, the more likely a number close to that number is randomly chosen. In this document, the area under the PDF need not equal 1.⁽⁷³⁾
- The *quantile function* (also known as *inverse cumulative distribution function* or *inverse CDF*) is the inverse of the CDF and maps numbers in the interval 0, 1) to numbers in the distribution, from low to high.

The following sections show different ways to generate random numbers based on a distribution, depending on what is known about that distribution.

Note: Lists of PDFs, CDFs, or quantile functions are outside the scope of this page.

8.6.1 Sampling for Discrete Distributions

If the distribution **is discrete**^{[(74)}, numbers that closely follow it can be sampled by choosing points that cover all or almost all of the distribution, finding their weights or cumulative weights, and choosing a random point based on those weights.

- the discrete distribution has a **known PDF** (PDF(x), more properly called *probability mass function*),
- the interval [mini, maxi] covers all the distribution, and
- the PDF's values are all rational numbers (numbers of the form y/z where y and z are integers),

the following method samples exactly from that distribution:

```
METHOD SampleDiscrete(mini, maxi)
    // Setup
    ratios=[]
    for i in mini..maxi: AddItem(ratios, PDF(i))
    ratios=NormalizeRatios(ratios)
    // Sampling
    return mini + WeightedChoice(ratios)
END METHOD
```

If—

- the discrete distribution has a **known CDF** (CDF(x)),
- the interval [mini, maxi] covers all the distribution, and
- the CDF's values are all rational numbers,

the following method samples exactly from that distribution:

```
METHOD SampleDiscreteCDF(mini, maxi)
  // Setup
  ratios=[MakeRatio(0,1)]
  for i in mini..maxi: AddItem(ratios, CDF(i))
  ratios=NormalizeRatios(ratios)
  // Sampling
  value=ratios[size(ratios) - 1]
  for i in 0...size(ratios) - 1
        if ratios[i] < ratios[i+1] and
            ratios[i]>=value: return mini + i
  end
  return mini
END METHOD
```

In other cases, the discrete distribution can still be approximately sampled. The following cases will lead to an approximate sampler unless the PDF's or CDF's values cover all the distribution and are calculated exactly (without error).

- If the PDF's or CDF's values are calculated as **floating-point numbers** of the form FPSignificand * FPRadix FPExponent (which include Java's double and float) (75), there are various ways to turn these numbers to rational numbers or integers.
 - 1. One way is to use FPRatio(x) (in the pseudocode below), which is lossless and calculates the rational number for the given floating-point number x.
 - 2. Another way is to scale and round the values to integers (e.g., round(x * mult) where mult is a large integer); this is not lossless.
 - 3. A third way is to approximate the PDF's values to integers in a way that bounds the error, such as given in (Saad et al., 2020)⁽⁷⁶⁾; this is not lossless and works only in the PDF case.
- If the PDF's or CDF's values are calculated as **rational numbers**, these numbers can be turned into integer weights using either NormalizeRatios, which is lossless, or (2) or (3) above, which are not.
- If the distribution takes on an **infinite number of values**, an appropriate interval

[mini, maxi] can be chosen that covers almost all of the distribution.

```
METHOD FPRatio(fp)
  expo=FPExponent(fp)
  sig=FPSignificand(fp)
  radix=FPRadix(fp)
  if expo>=0: return MakeRatio(sig * pow(radix, expo), 1)
  return MakeRatio(sig, pow(radix, abs(expo)))
FND METHOD
```

8.6.2 Inverse Transform Sampling

Inverse transform sampling (or simply *inversion*) is the most generic way to generate a random number that follows a distribution.

If the distribution **has a known quantile function**, generate a uniform random number in (0, 1) if that number wasn't already pregenerated, and take the quantile of that number. However:

- In most cases, the quantile function is not available. Thus, it has to be approximated.
- Even if the quantile function is available, a naïve quantile calculation (e.g., ICDF(RNDRANGEMinMaxExc(0, 1))) may mean that small changes in the uniform number lead to huge changes in the quantile, leading to gaps in random number coverage (Monahan 1985, sec. 4 and 6)⁽⁶²⁾.

The following method generates a random number from a distribution via inversion, with an accuracy of $1/\text{BASE}^{\text{precision}}$ ((Devroye and Gravel 2020)⁽¹¹⁾, but extended for any base; see also (Bringmann and Friedrich 2013, Appendix A)⁽⁵²⁾). In the method, ICDF(u, ubits, prec) returns a two-item list containing upper and lower bounds, respectively, of a number that is within $1/\text{BASE}^{\text{prec}}$ of the true quantile of u/BASE^{ubits}, and BASE is the digit base (e.g. 2 for binary or 10 for decimal).

```
METHOD Inversion(precision)
   u=0
   ubits=0
   threshold=MakeRatio(1,pow(BASE, precision))*2
   incr=8
   while true
      incr=8
      if ubits==0: incr=precision
      // NOTE: If a uniform number (`n`) is already pregenerated,
      // use the following instead:
      // u = rem(floor(n*pow(BASE, ubits+incr)), pow(BASE, incr))
      u=u*pow(BASE,incr)+RNDINTEXC(pow(BASE,incr))
      ubits=ubits+incr
      // Get upper and lower bound
      bounds=ICDF(u,ubits,precision)
      if lower>upper: return error
      diff=bounds[1]-bounds[0]
      if diff<=threshold: return bounds[1]+diff/2</pre>
   end
end
```

Some applications need to convert a pregenerated uniform random number to a non-uniform one via quantiles (notable cases include copula methods, order statistics, and Monte Carlo methods involving low-discrepancy sequences). For these cases, the following methods approximate the quantile if the application can trade accuracy for speed:

- Distribution is **discrete, with known PDF**: The most general method is sequential search (Devroye 1986, p. 85)⁽¹⁹⁾, assuming the probabilities sum to 1 and the distribution covers only integers 0 or greater: i = 0; p = PDF(i); while u01 > p; u01 = u01 p; i = i + 1; p = PDF(i); end; return p, but this is not always fast even though it's exact in theory. If the interval [a, b] covers all or almost all the distribution, then the application can store the interval's PDF values in a list and call WChoose: for i in a..b: AddItem(weights, PDF(i)); return a + WChoose(weights, u01 * Sum(weights)). Note that finding the quantile based on the **CDF** instead can introduce more error than with the PDF (Walter 2019)⁽⁷⁷⁾. See also integers_from_u01 in the Python sample code.
- Distribution is **continuous**, **with known PDF**: ICDFFromContPDF(u01, mini, maxi, step), below, finds an approximate quantile based on a piecewise linear approximation of the PDF in [mini, maxi], with pieces up to step wide. (Devroye and Gravel 2020)⁽¹¹⁾. See also DensityInversionSampler, numbers_from_u01, and numbers_from_dist_inversion (Derflinger et al. 2010)⁽⁷⁸⁾, (Devroye and Gravel 2020)⁽¹¹⁾ in the Python sample code ⁽⁷⁹⁾
- Distribution is **continuous**, **with known CDF**: See numbers_from_u01 in the Python sample code.

```
METHOD ICDFFromContPDF(u01, mini, maxi, step)
  pieces=[]
  areas=[]
  // Setup
  lastvalue=i
  lastweight=PDF(i)
  cumuarea=0
  i = mini+step; while i <= maxi
     weight=i; value=PDF(i)
     cumuarea=cumuarea+abs((weight + lastweight) * 0.5 *
            (value - lastvalue))
     AddItem(pieces,[lastweight,weight,lastvalue,value])
     AddItem(areas,cumuarea)
     lastweight=weight;lastvalue=value
     if i==maxi: break
     i = min(i + step, maxi)
  for i in 0...size(areas): areas[i]=areas[i]/cumuarea
  // Sampling
 prevarea=0
  for i in 0...size(areas)
     cu=areas[i]
     if u01<=cu
         p=pieces[i]; u01=(u01-prevarea)/(cu-prevarea)
         s=p[0]; t=p[1]; v=u01
         if s!=t: v=(s-sqrt(t*t*u01-s*s*u01+s*s))/(s-t)
         return p[2]+(p[3]-p[2])*v
     end
     prevarea=cu
  end
  return error
END METHOD
```

Notes:

1. If only percentiles of data (such as the median or 50th percentile, the minimum or 0th percentile, or the maximum or 100th percentile) are

available, the quantile function can be approximated via those percentiles. The Nth percentile corresponds to the quantile for N/100.0. Missing values for the quantile function can then be filled in by interpolation (such as spline fitting). If the raw data points are available, see "Random Numbers from a Distribution of Data Points" instead.

2. Taking the kth smallest of n random numbers distributed the same way is the same as taking the kth smallest of n *uniform* random numbers (also known as the kth *order statistic*; e.g., BetaDist(k, n+1-k)) and finding its quantile (Devroye 2006)⁽⁸⁰⁾; (Devroye 1986, p. 30)⁽¹⁰⁾.

8.6.3 Rejection Sampling with a PDF

If the distribution **has a known PDF**, and the PDF can be more easily sampled by another distribution with its own PDF (PDF2) that "dominates" PDF in the sense that PDF2(x) >= PDF(x) at every valid x, then generate random numbers with the latter distribution until a number (n) that satisfies $r \le PDF(n)$, where r = RNDRANGEMaxExc(0, PDF2(n)), is generated this way (that is, sample points in PDF2 until a point falls within PDF).

A variant of rejection sampling is the *squeeze principle*, in which a third PDF (PDF3) is chosen that is "dominated" by the first PDF (PDF) and easier to sample than PDF. Here, a number is accepted if $r \le PDF3(n)$ or $r \le PDF(n)$ (Devroye 1986, p. 53)⁽¹⁹⁾.

See also (von Neumann 1951)⁽⁵³⁾; (Devroye 1986)⁽¹⁹⁾, pp. 41-43; "**Rejection Sampling**"; and "Generating Pseudorandom Numbers".

Examples:

- 1. To sample a random number in the interval [low, high) from a PDF with a positive maximum value no greater than peak at that interval, generate x = RNDRANGEMaxExc(low, high) and y = RNDRANGEMaxExc(0, peak) until y < PDF(x), then take the last x generated this way. (See also Saucier 2000, pp. 6-7.) If the distribution **is discrete**, generate x with x = RNDINTEXCRANGE(low, high) instead.
- 2. A custom distribution's PDF, PDF, is exp(-abs(x**x*)), and the exponential distribution's PDF, PDF2, is exp(-x). The exponential PDF "dominates" the other PDF (at every x 0 or greater) if we multiply it by 1.5, so that PDF2 is now 1.5 * exp(-x). Now we can generate numbers from our custom distribution by sampling exponential points until a point falls within PDF. This is done by generating n = expo(1) until PDF(n) >= RNDRANGEMaxExc(0, PDF2(n)).
- 3. The normal distribution's upside-down bell curve has the PDF 1-exp(-(x*x)), and the highest point for this PDF is peak = max(1-exp(-(low*low)), 1-exp(-(high*high))). Sampling this distribution then uses the algorithm in example 1.

Note: In the Python sample code, <u>moore.py</u> and numbers_from_dist generate random numbers from a distribution via rejection sampling (Devroye and Gravel 2020)⁽¹¹⁾, (Sainudiin and York 2013)⁽⁸¹⁾.

8.6.4 Alternating Series

If the target PDF is not known exactly, but can be approximated from above and below by two series expansions that converge to the PDF as more terms are added, the *alternating series method* can be used. This still requires a "dominating" PDF (PDF2(x)) to serve as the "easy-to-sample" distribution. Call the series expansions UPDF(x, n) and LPDF(x, n),

respectively, where n is the number of terms in the series to add. To generate a random number using this method (Devroye 2006)⁽⁸⁰⁾: (1) Generate a random number x that follows the "dominating" distribution; (2) set n to 0; (3) accept x if $r \le LPDF(x, n)$, or go to step 1 if r > LPDF(x, n), or repeat this step with n increased by 1 if neither is the case.

8.6.5 Markov-Chain Monte Carlo

Markov-chain Monte Carlo (MCMC) is a family of algorithms for sampling many random numbers from a probability distribution by building a *Markov chain* of random values that build on each other until they converge to the given distribution. In general, however, a given chain's random values will have a statistical *dependence* on each other, and it takes an unknown time for the chain to converge (which is why techniques such as "thinning" -- keeping only every Nth sample -- or "burn-in" -- skipping iterations before sampling -- are often employed). MCMC can also estimate the distribution's sampling domain for other samplers, such as rejection sampling (above).

MCMC algorithms⁽⁸²⁾ include *Metropolis-Hastings*, *slice sampling*, and *Gibbs sampling* (see also the <u>Python sample code</u>). The latter is special in that it uses not a PDF, but two or more distributions, each of which uses a random number from the previous distribution (*conditional distributions*), that converge to a *joint distribution*.

Example: In one Gibbs sampler, an initial value for y is chosen, then multiple x, y pairs of random numbers are generated, where x = BetaDist(y, 5) then y = Poisson(x * 10).

8.7 Piecewise Linear Distribution

Requires random real numbers.

A <u>piecewise linear distribution</u> describes a continuous distribution with weights at known points and other weights determined by linear interpolation (smoothing). The PiecewiseLinear method (in the pseudocode below) takes two lists as follows (see also (Kscischang 2019)⁽⁸³⁾):

- values is a list of rational numbers. If the numbers are arranged in ascending order, which they should, the first number in this list can be returned exactly, but not the last number.
- weights is a list of rational-valued weights for the given numbers (where each number and its weight have the same index in both lists). The greater a number's weight, the more likely it is that a number close to that number will be chosen. Each weight should be 0 or greater.

```
METHOD PiecewiseLinear(values, weights)
  if size(values)!=size(weights) or size(values)==0: return error
  if size(values)==1: return values[0]
  areas=[]
  for i in 1...size(values)
     area=abs((weights[i] + weights[i-1]) *
         (values[i] - values[i-1]) / 2) // NOTE: Not rounded
    AddItem(areas, area)
  end
  // NOTE: If values and weights are rational
  // numbers, use `areas=NormalizeRatios(areas)` instead
  // of finding `areas` as given below.
```

```
ratios=[]
for w in areas: AddItem(ratios, FPRatio(w))
areas=NormalizeRatios(ratios)
index=WeightedChoice(areas)
w=values[index+1]-values[index]
if w==0: return values[index]
m=(weights[index+1]-weights[index])/w
h2=(weights[index+1]+weights[index])
ww=w/2.0; hh=h2/2.0
x=RNDRANGEMaxExc(-ww, ww)
if RNDRANGEMaxExc(-hh, hh)>x*m: x=-x
return values[index]+x+ww
END METHOD
```

Note: The **Python sample code** contains a variant to the method above for returning more than one random number in one call.

Example: Assume values is the following: [0, 1, 2, 2.5, 3], and weights is the following: [0.2, 0.8, 0.5, 0.3, 0.1]. The weight for 2 is 0.5, and that for 2.5 is 0.3. Since 2 has a higher weight than 2.5, numbers near 2 are more likely to be chosen than numbers near 2.5 with the PiecewiseLinear method.

8.8 Specific Distributions

Methods to sample additional distributions are given in a **separate page**. They cover the normal, gamma, beta, von Mises, stable, and multivariate normal distributions as well as copulas. Note, however, that most of the methods won't sample the given distribution in a manner that minimizes approximation error, but they may still be useful if the application is willing to trade accuracy for speed.

8.9 Index of Non-Uniform Distributions

Many distributions here require random real numbers.

A \dagger symbol next to a distribution means the random number can be shifted by a location parameter (mu) then scaled by a scale parameter greater than 0 (sigma). Example: num * sigma + mu.

A • symbol next to a distribution means the random number can be scaled to any range, which is given with the minimum and maximum values mini and maxi. Example: mini + (maxi - mini) * num.

For further examples and distributions, see (Devroye 1996)⁽⁸⁴⁾ and (Crooks 2019)⁽⁸⁵⁾.

Most commonly used:

- Beta distribution •: See Beta Distribution.
- Binomial distribution: See Binomial Distribution.
- Binormal distribution: See Multivariate Normal (Multinormal) Distribution.
- Cauchy (Lorentz) distribution†: Stable(1, 0). This distribution is similar to the normal distribution, but with "fatter" tails. Alternative algorithm based on one mentioned in (McGrath and Irving 1975)⁽⁸⁶⁾: Generate x = RNDRANGEMinExc(0,1) and y = RNDRANGEMinExc(0,1) until x * x + y * y <= 1, then generate (RNDINT(1) * 2 1) * y / x.
- Chi-squared distribution: GammaDist(df * 0.5 + Poisson(sms * 0.5), 2), where df is the number of
 degrees of freedom and sms is the sum of mean squares (where sms other than 0 indicates a noncentral
 distribution).
- Dice: See Dice.
- Exponential distribution: See Exponential Distribution. The naïve implementation -ln(1-RNDRANGE(0,

- 1)) / lamda has several problems, such as being ill-conditioned at large values because of the distribution's right-sided tail (Pedersen 2018)⁽¹⁾, as well as returning infinity if RNDRANGE(0, 1) becomes 1. An application can reduce some of these problems by applying Pedersen's suggestion of using either -ln(RNDRANGEMinExc(0, 0.5)) or -log1p(-RNDRANGEMinExc(0, 0.5)) (rather than -ln(1-RNDRANGE(0, 1))), chosen at random each time; an alternative is ln(1/RNDRANGEMinExc(0,1)) mentioned in (Devroye 2006)⁽⁸⁰⁾.
- Extreme value distribution: See generalized extreme value distribution.
- Gamma distribution: See <u>Gamma Distribution</u>. Generalized gamma distributions include the <u>Stacy distribution</u> (pow(GammaDist(a, 1), 1.0 / c) * b, where c is another shape parameter) and the <u>Amoroso distribution</u> (Crooks 2015)⁽⁸⁷⁾, (pow(GammaDist(a, 1), 1.0 / c) * b + d, where d is the minimum value).
- Gaussian distribution: See Normal (Gaussian) Distribution.
- Geometric distribution: See Geometric Distribution. If the application can trade accuracy for speed: floor(-Expo(1)/ln(1-p)) (Devroye 1996, p. 500)⁽⁸⁴⁾ (ceil replaced with floor because this page defines geometric distribution differently).
- Gumbel distribution: See generalized extreme value distribution.
- Inverse gamma distribution: b / GammaDist(a, 1), where a and b have the same meaning as in the gamma distribution. Alternatively, 1.0 / (pow(GammaDist(a, 1), 1.0 / c) / b + d), where c and d are shape and location parameters, respectively.
- Laplace (double exponential) distribution†: (Expo(1) Expo(1)).
- Logarithmic distribution•: RNDRANGE(0, 1) * RNDRANGE(0, 1) (Saucier 2000, p. 26). In this distribution, lower numbers are exponentially more likely than higher numbers.
- Logarithmic normal distribution: exp(Normal(mu, sigma)), where mu and sigma are the underlying normal distribution's parameters.
- Multinormal distribution: See multivariate normal distribution.
- Multivariate normal distribution: See Multivariate Normal (Multinormal) Distribution.
- Normal distribution: See <u>Normal (Gaussian) Distribution</u>.
- Poisson distribution: See "Poisson Distribution". If the application can trade accuracy for convenience, the following can be used (Devroye 1986, p. 504)⁽¹⁹⁾: c = 0; s = 0; while true; sum = sum + Expo(1); if sum>=mean: return c; else: c = c + 1; end; and in addition the following optimization from (Devroye 1991)⁽⁸⁸⁾ can be used: while mean > 20; n=ceil(mean-pow(mean,0.7)); g=GammaDist(n, 1); if g>=mean: return c+(n-1-Binomial(n-1,(g-mean)/g)); mean = mean g; c = c + n; end, or the following approximation suggested in (Giammatteo and Di Mascio 2020)⁽⁸⁹⁾ for mean greater than 50: floor(1.0/3 + pow(max(0, Normal(0, 1)*pow(mean,1/6.0)*2/3 + pow(mean, 2.0/3)), 3.0/2)).
- Pareto distribution: pow(RNDRANGE(0, 1), -1.0 / alpha) * minimum, where alpha is the shape and minimum is the minimum.
- Rayleigh distribution†: sqrt(Expo(0.5)). If the scale parameter (sigma) follows a logarithmic normal distribution, the result is a Suzuki distribution.
- Standard normal distribution†: Normal (0, 1). See also Normal (Gaussian) Distribution.
- Student's *t*-distribution: Normal(cent, 1) / sqrt(GammaDist(df * 0.5, 2 / df)), where df is the number of degrees of freedom, and *cent* is the mean of the normally-distributed random number. A cent other than 0 indicates a *noncentral* distribution. Alternatively, cos(RNDRANGE(0, pi * 2)) * sqrt((pow(RNDRANGE(0, 1), -2.0/df)-1) * df) (Bailey 1994)⁽⁹⁰⁾.
- Triangular distribution† (Stein and Keblis 2009)(91): (1-alpha) * min(a, b) + alpha * max(a, b), where alpha is in [0, 1], a = RNDRANGE(0, 1), and b = RNDRANGE(0, 1).
- Weibull distribution: See generalized extreme value distribution.

Miscellaneous:

- Archimedean copulas: See Gaussian and Other Copulas.
- Arcsine distribution•: BetaDist(0.5, 0.5) (Saucier 2000, p. 14).
- Bates distribution: See <u>Transformations of Random Numbers: Additional Examples</u>.
- Beckmann distribution: See Multivariate Normal (Multinormal) Distribution.
- **Beta binomial distribution**: Binomial(trials, BetaDist(a, b)), where a and b are the two parameters of the beta distribution, and trials is a parameter of the binomial distribution.
- Beta negative binomial distribution: NegativeBinomial(successes, BetaDist(a, b)), where a and b are the two parameters of the beta distribution, and successes is a parameter of the negative binomial distribution. If successes is 1, the result is a Waring-Yule distribution. A Yule-Simon distribution results if successes and b are both 1 (e.g., in Mathematica) or if successes and a are both 1 (in other works).
- **Beta-PERT distribution**: startpt + size * BetaDist(1.0 + (midpt startpt) * shape / size, 1.0 + (endpt midpt) * shape / size). The distribution starts at startpt, peaks at midpt, and ends at endpt, size is endpt startpt, and shape is a shape parameter that's 0 or greater, but usually 4. If the mean (mean) is known rather than the peak, midpt = 3 * mean / 2 (startpt + endpt) / 4.

- **Beta prime distribution**[†]: pow(GammaDist(a, 1), 1.0 / alpha) / pow(GammaDist(b, 1), 1.0 / alpha), where a, b, and alpha are shape parameters. If a is 1, the result is a Singh-Maddala distribution; if b is 1, a Dagum distribution; if a and b are both 1, a logarithmic logistic distribution.
- **Birnbaum-Saunders distribution**: pow(sqrt(4+x*x)+x,2)/(4.0*lamda), where x = Normal(0,gamma), gamma is a shape parameter, and lamda is a scale parameter.
- Chi distribution: Square root of a chi-squared random number. See chi-squared distribution.
- Compound Poisson distribution: See Transformations of Random Numbers: Additional Examples.
- Cosine distribution•: atan2(x, sqrt(1 x * x)) / pi, where x = (RNDINT(1) * 2 1) * RNDRANGE(0, 1) (Saucier 2000, p. 17; inverse sine replaced with atan2 equivalent).
- Dagum distribution: See beta prime distribution.
- **Dirichlet distribution**: This distribution (e.g., (Devroye 1986)⁽²²⁾, p. 593-594) can be sampled by generating n+1 random **gamma-distributed** numbers, each with separate parameters, taking their sum⁽²⁴⁾, dividing them by that sum, and taking the first n numbers. (The n+1 numbers sum to 1, but the Dirichlet distribution models the first n of them, which will generally sum to less than 1.)
- **Double logarithmic distribution**•: (0.5 + (RNDINT(1) * 2 1) * RNDRANGEMaxExc(0, 0.5) * RNDRANGE(0, 1)) (see also Saucier 2000, p. 15, which shows the wrong X axes).
- Erlang distribution: GammaDist(n, 1.0 / lamda), where n is an integer greater than 0. Returns a number that simulates a sum of n exponential random numbers with the given lamda parameter.
- Estoup distribution: See zeta distribution.
- Exponential power distribution (generalized normal distribution version 1): (RNDINT(1) * 2 1) * pow(GammaDist(1.0/a, 1), a), where a is a shape parameter.
- Extended xgamma distribution (Saha et al. 2019)⁽⁹²⁾: GammaDist(alpha + x, theta), where x is 0 with probability theta/(theta+beta) (e.g., if RNDRANGE(0, 1) <= theta/(theta+beta)) and 2 otherwise, and where alpha, theta, and beta are shape parameters. If alpha = 0, the result is an xgamma distribution (Sen et al., 2016)⁽⁹³⁾.
- Fréchet distribution: See generalized extreme value distribution.
- Fréchet-Hoeffding lower bound copula: See Gaussian and Other Copulas.
- Fréchet-Hoeffding upper bound copula: See Gaussian and Other Copulas.
- Gaussian copula: See Gaussian and Other Copulas.
- Generalized extreme value (Fisher-Tippett or generalized maximum value) distribution (GEV(c))†: (pow(Expo(1), -c) 1) / c if c != 0, or -ln(Expo(1)) otherwise, where c is a shape parameter. Special cases:
 - The negative of the result expresses a generalized minimum value. In this case, a parameter of c = 0 results in a *Gumbel distribution*.
 - $\circ~$ A parameter of c = 0 results in an extreme value distribution.
 - Weibull distribution: 1 1.0/a * GEV(-1.0/a) (or pow(Expo(1), 1.0/a)), where a is a shape parameter.
 - Fréchet distribution: 1 + 1.0/a * GEV(1.0/a) (or pow(Expo(1), -1.0/a)), where a is a shape parameter.
- Generalized Tukey lambda distribution: (s1 * (pow(x, lamda1)-1.0)/lamda1 s2 * (pow(1.0-x, lamda2)-1.0)/lamda2) + loc, where x is RNDRANGE(0, 1), lamda1 and lamda2 are shape parameters, s1 and s2 are scale parameters, and loc is a location parameter.
- Half-normal distribution. Parameterizations include:
 - Mathematica: abs(Normal(0, sqrt(pi * 0.5) / invscale))), where invscale is a parameter of the half-normal distribution.
 - MATLAB: abs(Normal(mu, sigma))), where mu and sigma are the underlying normal distribution's parameters.
- Hyperexponential distribution: See Mixtures of Distributions.
- Hypergeometric distribution: See Hypergeometric Distribution.
- Hypoexponential distribution: See Transformations of Random Numbers.
- Inverse chi-squared distribution†: df / (GammaDist(df * 0.5, 2)), where df is the number of degrees of freedom. The scale parameter (sigma) is usually 1.0 / df.
- Inverse Gaussian distribution (Wald distribution): Generate n = mu + (mu*mu*y/(2*lamda)) mu * sqrt(4 * mu * lamda * y + mu * mu * y * y) / (2 * lamda), where y = pow(Normal(0, 1), 2), then return n with probability mu / (mu + n) (e.g., if RNDRANGE(0, 1) <= mu / (mu + n)), or mu * mu / n otherwise. mu is the mean and lamda is the scale; both parameters are greater than 0. Based on method published in (Devroye 1986)(19).
- kth-order statistic: BetaDist(k, n+1-k). Returns the kth smallest out of n uniform random numbers. See also (Devroye 1986, p. 210)⁽¹⁹⁾.
- Kumaraswamy distribution •: pow(BetaDist(1, b), 1.0 / a), where a and b are shape parameters.

- Landau distribution: See stable distribution.
- Lévy distribution †: 0.5 / GammaDist(0.5, 1). The scale parameter (sigma) is also called dispersion.
- Logarithmic logistic distribution: See beta prime distribution.
- Logarithmic series distribution: Generate n = NegativeBinomialInt(1, py px, py)+1 (where px/py is a parameter in (0,1)), then return n if ZeroOrOne(1, n) == 1, or repeat this process otherwise (Flajolet et al., 2010)⁽⁵⁴⁾. If the application can trade accuracy for speed, the following can be used instead: floor(1.0 Expo(log1p(-pow(1.0 p, RNDRANGEMinMaxExc(0, 1))))), where p is the parameter in (0, 1); see (Devroye 1986)⁽¹⁹⁾.
- Logistic distribution: (ln(x)-log1p(-x)) (logit function), where x is RNDRANGEMinMaxExc(0, 1).
- Log-multinormal distribution: See Multivariate Normal (Multinormal) Distribution.
- Max-of-uniform distribution: BetaDist(n, 1). Returns a number that simulates the largest out of n uniform random numbers. See also (Devroye 1986, p. 675)(19).
- Maxwell distribution†: sqrt(GammaDist(1.5, 2)).
- Min-of-uniform distribution: BetaDist(1, n). Returns a number that simulates the smallest out of n uniform random numbers. See also (Devroye 1986, p. 210)(19).
- Moyal distribution: See the Python sample code.
- Multinomial distribution: See Multinomial Distribution.
- Multivariate Poisson distribution: See the Python sample code.
- Multivariate t-copula: See the Python sample code.
- Multivariate *t*-distribution: See the **Python sample code**.
- Negative binomial distribution (NegativeBinomial(successes, p)): See Negative Binomial
 Distribution. If the application can trade accuracy for speed: Poisson(GammaDist(successes, (1 p) / p))
 (works even if successes is not an integer).
- Negative multinomial distribution: See the **Python sample code**.
- Noncentral beta distribution •: BetaDist(a + Poisson(nc), b), where nc (a noncentrality), a, and b are greater than 0.
- Parabolic distribution •: BetaDist(2, 2) (Saucier 2000, p. 30).
- **Pascal distribution**: NegativeBinomial(successes, p) + successes, where successes and p have the same meaning as in the negative binomial distribution, except successes is always an integer.
- **Pearson VI distribution**: GammaDist(v, 1) / GammaDist(w, 1), where v and w are shape parameters greater than 0 (Saucier 2000, p. 33; there, an additional b parameter is defined, but that parameter is canceled out in the source code).
- Piecewise constant distribution: See Weighted Choice With Replacement.
- Piecewise linear distribution: See Continuous Weighted Choice.
- Pólya-Aeppli distribution: See Transformations of Random Numbers: Additional Examples.
- **Power distribution**: BetaDist(alpha, 1) / b, where alpha is the shape and b is the domain. Nominally in the interval (0, 1).
- Power law distribution: pow(RNDRANGE(pow(mn,n+1),pow(mx,n+1)), 1.0 / (n+1)), where n is the exponent, mn is the minimum, and mx is the maximum. Reference.
- Power lognormal distribution: See the <u>Python sample code</u>.
- Power normal distribution: See the <u>Python sample code</u>.
- Product copula: See Gaussian and Other Copulas.
- Rice distribution: See Multivariate Normal (Multinormal) Distribution.
- Rice-Norton distribution: See <u>Multivariate Normal (Multinormal) Distribution</u>.
- Singh-Maddala distribution: See beta prime distribution.
- sin^k distribution: Generate x = BetaDist(k+1, k+1) * pi, then return x if 0-Expo(k) <= ln(pi*pi*sin(x) / ((4*x*(pi x))), or repeat this process otherwise (Makalic and Schmidt 2018) (94).
- **Skellam distribution**: Poisson(mean1) Poisson(mean2), where mean1 and mean2 are the means of the two Poisson random numbers.
- **Skewed normal distribution**: Normal(0, x) + mu + alpha * abs(Normal(0, x)), where x is sigma / sqrt(alpha * alpha + 1.0), mu and sigma have the same meaning as in the normal distribution, and alpha is a shape parameter.
- Snedecor's (Fisher's) F-distribution: GammaDist(m * 0.5, n) / (GammaDist(n * 0.5 + Poisson(sms * 0.5)) * m, 1), where m and n are the numbers of degrees of freedom of two random numbers with a chi-squared distribution, and if sms is other than 0, one of those distributions is noncentral with sum of mean squares equal to sms.
- Stable distribution: See Stable Distribution. Four-parameter stable distribution: Stable(alpha, beta) * sigma + mu, where mu is the mean and sigma is the scale; if alpha and beta are 1, the result is a Landau distribution. "Type 0" stable distribution: Stable(alpha, beta) * sigma + (mu sigma * beta * x), where x is ln(sigma)*2.0/pi if alpha is 1, and tan(pi*0.5*alpha) otherwise.
- Standard complex normal distribution: See Multivariate Normal (Multinormal) Distribution.

- Suzuki distribution: See Rayleigh distribution.
- Tukey lambda distribution: (pow(x, lamda)-pow(1.0-x,lamda))/lamda, where x is RNDRANGE(0, 1) and lamda is a shape parameter.
- Twin-t distribution (Baker and Jackson 2018)⁽⁹⁵⁾: Generate x, a random Student's t-distributed number (not a noncentral one). Accept x with probability z = pow((1 + y) / ((1 + y * y) + y), (df + 1) * 0.5) (e.g., if RNDRANGE(0, 1) < z), where y = x * x / df and df is the degrees of freedom used to generate the number; repeat this process otherwise.
- von Mises distribution: See von Mises Distribution.
- Waring-Yule distribution: See beta negative binomial distribution.
- Wigner (semicircle) distribution†: (BetaDist(1.5, 1.5)*2-1). The scale parameter (sigma) is the semicircular radius.
- Yule-Simon distribution: See beta negative binomial distribution.
- Zeta distribution: Generate n = floor(pow(RNDRANGEMinMaxExc(0, 1), -1.0 / r)), and if d / pow(2, r) < RNDRANGEMaxExc((d 1) * n / (pow(2, r) 1.0)), where d = pow((1.0 / n) + 1, r), repeat this process. The parameter r is greater than 0. Based on method described in (Devroye 1986)⁽¹⁹⁾. A zeta distribution truncated by rejecting random values greater than some positive integer is called a Zipf distribution or Estoup distribution. (Note that Devroye uses "Zipf distribution" to refer to the untruncated zeta distribution.)
- Zipf distribution: See zeta distribution.

8.10 Geometric Sampling

Requires random real numbers.

This section contains ways to choose independent uniform random points in or on geometric shapes.

8.10.1 Random Points Inside a Simplex

The following pseudocode generates a random point inside an n-dimensional simplex (simplest convex figure, such as a line segment, triangle, or tetrahedron). It takes one parameter, *points*, a list consisting of the n plus one vertices of the simplex, all of a single dimension n or greater. The special case of 3 points came from Osada et al. $(2002)^{(96)}$. See also Grimme $(2015)^{(97)}$, which shows MATLAB code for generating a random point uniformly inside a simplex just described, but in a different way.

```
METHOD VecAddProd(a, b, c)
  for j in 0...size(a): a[j]=a[j]+b[j]*c
END METHOD
METHOD RandomPointInSimplex(points):
   ret=NewList()
   if size(points) > size(points[0])+1: return error
   if size(points)==1 // Return a copy of the point
     for i in 0...size(points[0]): AddItem(ret,points[0][i])
     return ret
   end
   if size(points)==3
     // Equivalent to sqrt(RNDRANGE(0,1))
     rs=max(RNDRANGE(0,1), RNDRANGE(0,1))
     r2=RNDRANGE(0,1)
     ret=[0,0,0]
     VecAddProd(ret,points[0],1.0-rs)
     VecAddProd(ret,points[1],(1.0-r2)*rs)
     VecAddProd(ret,points[2],r2*rs)
     return ret
   end
   gammas=NewList()
   // Sample from the simplex
```

```
for i in 0...size(points): AddItem(gammas, Expo(1))
  tsum=Sum(gammas)
  for i in 0...size(gammas): gammas[i] = gammas[i] / tsum
  gammas[size(gammas)-1]=0 // To omit last gamma in sum
  tot = 1.0 - Sum(gammas)
  // Build the final point
  for i in 0...size(points[0]): AddItem(ret, points[0][i]*tot)
  for i in 1...size(points): VecAddProd(
      ret, points[i], gammas[i-1])
  return ret
END METHOD
```

8.10.2 Random Points on the Surface of a Hypersphere

The following pseudocode shows how to generate a random N-dimensional point on the surface of an N-dimensional hypersphere, centered at the origin, of radius radius (if radius is 1, the result can also serve as a unit vector in N-dimensional space). Here, Norm is given in the appendix. See also (Weisstein)⁽⁹⁸⁾.

```
METHOD RandomPointInHypersphere(dims, radius)
  x=0
  while x==0
    ret=[]
    for i in 0...dims: AddItem(ret, Normal(0, 1))
     x=Norm(ret)
  end
  invnorm=radius/x
  for i in 0...dims: ret[i]=ret[i]*invnorm
  return ret
FND METHOD
```

Note: The **Python sample code** contains an optimized method for points on the edge of a circle.

Example: To generate a random point on the surface of a cylinder running along the Z axis, generate random X and Y coordinates on the edge of a circle (2-dimensional hypersphere) and generate a random Z coordinate by RNDRANGE(mn, mx), where mn and mx are the highest and lowest Z coordinates possible.

8.10.3 Random Points Inside a Box, Ball, Shell, or Cone

To generate a random point on or inside—

- an **N-dimensional box**, generate RNDRANGEMaxExc(mn, mx) for each coordinate, where mn and mx are the lower and upper bounds for that coordinate. For example—
 - to generate a random point inside a rectangle bounded in [0, 2) along the X axis and [3, 6) along the Y axis, generate [RNDRANGEMaxExc(0,2), RNDRANGEMaxExc(3,6)], and
 - to generate a complex number with real and imaginary parts bounded in [0, 1], generate [RNDRANGE(0, 1), RNDRANGE(0, 1)].
- an **N-dimensional ball**, centered at the origin, of radius R, either—
 - generate a random (N+2)-dimensional point on the surface of an (N+2)-dimensional hypersphere with that radius (e.g., using RandomPointInHypersphere), then discard the last two coordinates (Voelker et al., 2017)⁽⁹⁹⁾, or
 - follow the pseudocode in RandomPointInHypersphere, except replace Norm(ret) with sqrt(S + Expo(1)), where S is the sum of squares of the numbers in ret.
- an N-dimensional spherical shell (a hollow ball), centered at the origin, with

inner radius A and outer radius B (where A is less than B), generate a random point on the surface of an N-dimensional hypersphere with radius equal to $pow(RNDRANGE(pow(A, N), pow(B, N)), 1.0 / N)^{(100)}$.

• a **cone** with height H and radius R at its base, running along the Z axis, generate a random Z coordinate by Z = max(max(RNDRANGE(0, H), RNDRANGE(0, H)), RNDRANGE(0, H)), then generate random X and Y coordinates inside a disc (2-dimensional ball) with radius equal to max(RNDRANGE(0,R*Z/H), RNDRANGE(0,R*Z/H)).

Example: To generate a random point inside a cylinder running along the Z axis, generate random X and Y coordinates inside a disc (2-dimensional ball) and generate a random Z coordinate by RNDRANGE(mn, mx), where mn and mx are the highest and lowest Z coordinates possible.

Notes:

- 1. The **Python sample code** contains a method for generating a random point on the surface of an ellipsoid modeling the Earth.
- 2. Sampling a half-ball, half-shell, or half-hypersphere can be done by sampling a full ball, shell, or hypersphere and replacing one of the dimensions of the result with its absolute value.

8.10.4 Random Latitude and Longitude

To generate a random point on the surface of a sphere in the form of a latitude and longitude (in radians with west and south coordinates negative)⁽¹⁰²⁾—

- generate the longitude RNDRANGEMaxExc(-pi, pi), where the longitude is in the interval [- π , π), and
- generate the latitude atan2(sqrt(1 x * x), x) pi / 2, where x = RNDRANGE(-1, 1) and the latitude is in the interval $[-\pi/2, \pi/2]$ (the interval excludes the poles, which have many equivalent forms; if poles are not desired, generate x until neither -1 nor 1 is generated this way).

9 Acknowledgments

I acknowledge the commenters to the CodeProject version of this page, including George Swan, who referred me to the reservoir sampling method.

I also acknowledge Christoph Conrads, who gave suggestions in parts of this article.

10 Other Documents

The following are some additional articles I have written on the topic of random and pseudorandom number generation. All of them are open-source.

- Random Number Generator Recommendations for Applications
- More Random Number Sampling Methods
- Code Generator for Discrete Distributions
- The Most Common Topics Involving Randomization
- Partially-Sampled Random Numbers for Accurate Sampling of Continuous Distributions
- Bernoulli Factory Algorithms
- Testing PRNGs for High-Quality Randomness

• Examples of High-Quality PRNGs

11 Notes

- (1) Pedersen, K., "Reconditioning your quantile function", arXiv:1704.07949v3 [stat.CO], 2018.
- (2) For an exercise solved by part of the RNDINT pseudocode, see A. Koenig and B. E. Moo, *Accelerated C++*, 2000; see also a **blog post by Johnny Chan**.
- (3) An example of such a source is a Gaussian noise generator. This kind of source is often called an *entropy source*.
- (4) D. Lemire, "A fast alternative to the modulo reduction", Daniel Lemire's blog, 2016.
- (5) Lemire, D., "Fast Random Integer Generation in an Interval", arXiv:1805.10941v4 [cs.DS], 2018.
- (6) Lumbroso, J., "Optimal Discrete Uniform Generation from Coin Flips, and Applications", arXiv:1304.1916 [cs.DS]
- (7) "Probability and Random Numbers", Feb. 29, 2004.
- (8) Mennucci, A.C.G., "Bit Recycling for Scaling Random Number Generators", arXiv:1012.4290 [cs.IT], 2018.
- (9) Knuth, Donald E. and Andrew Chi-Chih Yao. "The complexity of nonuniform random number generation", in Algorithms and Complexity: New Directions and Recent Results, 1976.
- (10) This is because the binary entropy of p = 1/n is p * log2(1/p) = log2(n) / n, and the sum of n binary entropies (for n outcomes with probability 1/n each) is log2(n) = ln(n)/ln(2).
- (11) Devroye, L., Gravel, C., "Random variate generation using only finitely many unbiased, independently and identically distributed random bits", arXiv:1502.02539v6 [cs.IT], 2020.
- (12) A naïve RNDINTEXC implementation often seen in certain languages like JavaScript is the idiom floor(Math.random() * maxExclusive), where Math.random() is any method that outputs an independent uniform random floating-point number in the interval [0, 1). However, no implementation of Math.random() can choose from all real numbers in [0, 1), so this idiom can bias some results over others depending on the value of maxExclusive. For example, if Math.random() is implemented as RNDINT(X 1)/X and X is not divisible by maxExclusive, the result will be biased. Also, an implementation might pre-round Math.random() * maxExclusive (before the floor) to the closest number it can represent; in rare cases, that might be maxExclusive for certain rounding modes. If an application is concerned about these issues, it should treat the Math.random() implementation as the source of random numbers for RNDINT and implement RNDINTEXC through RNDINT instead.
- (13) Lumbroso, J., "Optimal Discrete Uniform Generation from Coin Flips, and Applications", arXiv:1304.1916 [cs.DS].
- (14) The user "BVtp" from the *Stack Overflow* community led me to this insight.
- (15) Sanders, P., Lamm, S., et al., "Efficient Parallel Random Sampling Vectorized, Cache-Efficient, and Online", arXiv:1610.0514v2 [cs.DS], 2019.
- (16) Jeff Atwood, "The danger of naïveté", Dec. 7, 2007.
- (17) Bacher, A., Bodini, O., et al., "MergeShuffle: A Very Fast, Parallel Random Permutation Algorithm", arXiv:1508.03167 [cs.DS], 2015.

- ⁽¹⁸⁾ Merlini, D., Sprugnoli, R., Verri, M.C., "An Analysis of a Simple Algorithm for Random Derangements", 2007.
- (19) Devroye, L., Non-Uniform Random Variate Generation, 1986.
- (20) See also the *Stack Overflow* question "Random index of a non zero value in a numpy array".
- (21) S. Linderman, "A Parallel Gamma Sampling Implementation", Laboratory for Independent Probabilistic Systems Blog, Feb. 21, 2013, illustrates one example, a GPU-implemented sampler of gamma-distributed random numbers.
- (22) Brownlee, J. "A Gentle Introduction to the Bootstrap Method", Machine Learning Mastery, May 25, 2018.
- (23) Propp, J.G., Wilson, D.B., "Exact sampling with coupled Markov chains and applications to statistical mechanics", 1996.
- (24) Fill, J.A., "An interruptible algorithm for perfect sampling via Markov chains", Annals of Applied Probability 8(1), 1998.
- (25) E. N. Gilbert, "Random Graphs", Annals of Mathematical Statistics 30(4), 1959.
- (26) V. Batagelj and U. Brandes, "Efficient generation of large random networks", Phys.Rev. E 71:036113, 2005.
- (27) Costantini, Lucia. "Algorithms for sampling spanning trees uniformly at random." Master's thesis, Universitat Politècnica de Catalunya, 2020.
 https://upcommons.upc.edu/bitstream/handle/2117/328169/memoria.pdf
- (28) Penschuck, M., et al., "Recent Advances in Scalable Network Generation", arXiv:2003.00736v1 [cs.DS], 2020.
- (29) Jon Louis Bentley and James B. Saxe, "Generating Sorted Lists of Random Numbers", *ACM Trans. Math. Softw.* 6 (1980), pp. 359-364, describes a way to generate random numbers in sorted order, but it's not given here because it relies on generating real numbers in the interval [0, 1], which is inherently imperfect because computers can't choose among all random numbers between 0 and 1, and there are infinitely many of them.
- (30) (2020a) Saad, F.A., Freer C.E., et al., "The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete Probability Distributions", arXiv:2003.03830v2 [stat.CO], also in AISTATS 2020: Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research 108, Palermo, Sicily, Italy, 2020.
- (31) Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka, "Optimal Approximate Sampling From Discrete Probability Distributions", arXiv:2001.04555v1 [cs.DS], also in Proc. ACM Program. Lang. 4, POPL, Article 36 (January 2020), 33 pages.
- (32) Shaddin Dughmi, Jason D. Hartline, Robert Kleinberg, and Rad Niazadeh. 2017. Bernoulli Factories and Black-Box Reductions in Mechanism Design. In *Proceedings of 49th Annual ACM SIGACT Symposium on the Theory of Computing*, Montreal, Canada, June 2017 (STOC'17).
- (33) Morina, G., Łatuszyński, K., et al., "From the Bernoulli Factory to a Dice Enterprise via Perfect Sampling of Markov Chains", arXiv:1912.09229v1 [math.PR], 2019.
- (34) K. Bringmann and K. Panagiotou, "Efficient Sampling Methods for Discrete Distributions." *Algorithmica* 79 (2007), also in Proc. 39th International Colloquium on Automata, Languages, and Programming (ICALP'12), 2012.

- (35) A.J. Walker, "An efficient method for generating discrete random variables with general distributions", ACM Transactions on Mathematical Software 3, 1977.
- (36) Vose, Michael D. "A linear algorithm for generating random numbers with a given distribution." IEEE Transactions on software engineering 17, no. 9 (1991): 972-975.
- (37) Klundert, B. van de, "Efficient Generation of Discrete Random Variates", Faculty of Science Theses, Universiteit Utrecht, 2019.
- (38) K. Bringmann and K. G. Larsen, "Succinct Sampling from Discrete Distributions", In: Proc. 45th Annual ACM Symposium on Theory of Computing (STOC'13), 2013.
- (39) L. Hübschle-Schneider and P. Sanders, "Parallel Weighted Random Sampling", arXiv:1903.00227v2 [cs.DS], 2019.
- (40) Y. Tang, "An Empirical Study of Random Sampling Methods for Changing Discrete Distributions", Master's thesis, University of Alberta, 2019.
- (41) T. S. Han and M. Hoshi, "Interval algorithm for random number generation", IEEE Transactions on Information Theory 43(2), March 1997.
- (42) Efraimidis, P. and Spirakis, P. "Weighted Random Sampling (2005; Efraimidis, Spirakis)", 2005.
- (43) Efraimidis, P. "Weighted Random Sampling over Data Streams", arXiv:1012.0256v2 [cs.DS], 2015.
- (44) T. Vieira, "Gumbel-max trick and weighted reservoir sampling", 2014.
- (45) T. Vieira, "Faster reservoir sampling by waiting", 2019.
- (46) The <u>Python sample code</u> includes a ConvexPolygonSampler class that implements this kind of sampling for convex polygons; unlike other polygons, convex polygons are trivial to decompose into triangles.
- (47) That article also mentions a critical-hit distribution, which is actually a mixture of two distributions: one roll of dice and the sum of two rolls of dice.
- (48) An affine transformation is one that keeps straight lines straight and parallel lines parallel.
- ⁽⁴⁹⁾ Farach-Colton, M. and Tsai, M.T., 2015. Exact sublinear binomial sampling. *Algorithmica* 73(4), pp. 637-651.
- (50) K. Bringmann, F. Kuhn, et al., "Internal DLA: Efficient Simulation of a Physical Growth Model." In: Proc. 41st International Colloquium on Automata, Languages, and Programming (ICALP'14), 2014.
- ⁽⁵¹⁾ Heaukulani, C., Roy, D.M., "Black-box constructions for exchangeable sequences of random multisets", arXiv:1908.06349v1 [math.PR], 2019. Note however that this reference defines a negative binomial distribution as the number of successes before N failures (not vice versa).
- (52) Bringmann, K., and Friedrich, T., 2013, July. Exact and efficient generation of geometric random variates and random graphs, in *International Colloquium on Automata*, *Languages*, and *Programming* (pp. 267-278).
- (53) von Neumann, J., "Various techniques used in connection with random digits", 1951.
- (54) Flajolet, P., Pelletier, M., Soria, M., "On Buffon machines and numbers", arXiv:0906.5560v2 [math.PR], 2010.

- (55) Smith and Tromble, "Sampling Uniformly from the Unit Simplex", 2004.
- (56) Durfee, et al., "l1 Regression using Lewis Weights Preconditioning and Stochastic Gradient Descent", Proceedings of Machine Learning Research 75(1), 2018.
- (57) The NVIDIA white paper "Floating Point and IEEE 754 Compliance for NVIDIA GPUs", and
 "Floating-Point Determinism" by Bruce Dawson, discuss issues with floating-point numbers in much
 more detail.
- ⁽⁵⁸⁾ This includes integers if e is limited to 0, and fixed-point numbers if e is limited to a single exponent less than 0.
- (59) Downey, A. B. "Generating Pseudo-random Floating Point Values", 2007.
- ⁽⁶⁰⁾ Ideally, X is the highest integer p such that all multiples of 1/p in the interval [0, 1] are representable in the number format in question. For example, X is 2^53 (9007199254740992) for binary64, and 2^24 (16777216) for binary32.
- (61) Goualard, F., "Generating Random Floating-Point Numbers by Dividing Integers: a Case Study", 2020.
- ⁽⁶²⁾ Monahan, J.F., "Accuracy in Random Number Generation", *Mathematics of Computation* 45(172), 1985.
- (63) Halmos, P.R., "The theory of unbiased estimation", Annals of Mathematical Statistics 17(1), 1946.
- ⁽⁶⁴⁾ Spall, J.C., "An Overview of the Simultaneous Perturbation Method for Efficient Optimization", *Johns Hopkins APL Technical Diaest* 19(4), 1998, pp. 482-492.
- (65) P. L'Ecuyer, "Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure", *Mathematics of Computation* 68(225), January 1999, with <u>errata</u>.
- (66) Harase, S., "A table of short-period Tausworthe generators for Markov chain quasi-Monte Carlo", arXiv:2002.09006 [math.NA], 2020.
- (67) Owen, A.B., 2020. "On dropping the first Sobol' point", arXiv:2008.08051 [math-NA], 2020.
- (68) D. Revuz, M. Yor, "Continuous Martingales and Brownian Motion", 1999.
- (69) Lewis, P.W., Shedler, G.S., "Simulation of nonhomogeneous Poisson processes by thinning", *Naval Research Logistics Quarterly* 26(3), 1979.
- (70) Saucier, R. "Computer Generation of Statistical Distributions", March 2000.
- (71) Other references on density estimation include <u>a Wikipedia article on multiple-variable kernel</u> <u>density estimation</u>, and a <u>blog post by M. Kay</u>.
- (72) "Jitter", as used in this step, follows a distribution formally called a *kernel*, of which the normal distribution is one example. *Bandwidth* should be set so that the estimated distribution fits the data and remains smooth. A more complex kind of "jitter" (for multi-component data points) consists of a point generated from a **multinormal distribution** with all the means equal to 0 and a *covariance matrix* that, in this context, serves as a *bandwidth matrix*. "Jitter" and bandwidth are not further discussed in this document.
- (73) More formally—
 - the PDF is the *derivative* (instantaneous rate of change) of the distribution's CDF (that is, PDF(x) = CDF'(x)), and

• the CDF is also defined as the integral ("area under the curve") of the PDF,

provided the PDF's values are all 0 or greater and the area under the PDF's curve is 1.

- (74) A discrete distribution is a distribution that associates one or more items with a separate probability. This page assumes (without loss of generality) that these items are integers. A discrete distribution can produce non-integer values (e.g., x/y with probability x/(1+y)) as long as the values can be converted to and from integers. Two examples:
 - A rational number in lowest terms can be converted to an integer by interleaving the bits of the numerator and denominator.
 - Integer-quantized numbers (popular in "deep-learning" neural networks) take a relatively small number of bits (usually 8 bits or even smaller). An 8-bit quantized number format is effectively a "look-up table" that maps 256 integers to real numbers.
- (75) This includes integers if FPExponent is limited to 0, and fixed-point numbers if FPExponent is limited to a single exponent less than 0.
- (76) Saad, F.A., et al., "Optimal Approximate Sampling from Discrete Probability Distributions", arXiv:2001.04555 [cs.DS], 2020. See also the associated source code.
- (77) Walter, M., "Sampling the Integers with Low Relative Error", in *International Conference on Cryptology in Africa*, Jul. 2019, pp. 157-180.
- (78) Gerhard Derflinger, Wolfgang Hörmann, and Josef Leydold, "Random variate generation by numerical inversion when only the density is known", ACM Transactions on Modeling and Computer Simulation 20(4) article 18, October 2010.
- (79) Part of numbers_from_u01 uses algorithms described in Arnas, D., Leake, C., Mortari, D., "Random Sampling using k-vector", *Computing in Science & Engineering* 21(1) pp. 94-107, 2019, and Mortari, D., Neta, B., "k-Vector Range Searching Techniques".
- (80) Devroye, L., "Non-Uniform Random Variate Generation". In *Handbooks in Operations Research and Management Science: Simulation*, Henderson, S.G., Nelson, B.L. (eds.), 2006, p.83.
- (81) Sainudiin, Raazesh, and Thomas L. York. "An Auto-Validating, Trans-Dimensional, Universal Rejection Sampler for Locally Lipschitz Arithmetical Expressions," *Reliable Computing* 18 (2013): 15-54.
- (82) Tran, K.H., "A Common Derivation for Markov Chain Monte Carlo Algorithms with Tractable and Intractable Targets", arXiv:1607.01985v5 [stat.CO], 2018, gives a common framework for describing many MCMC algorithms, including Metropolis-Hastings, slice sampling, and Gibbs sampling.
- ⁽⁸³⁾ Kschischang, Frank R. "A Trapezoid-Ziggurat Algorithm for Generating Gaussian Pseudorandom Variates." (2019).
- ⁽⁸⁴⁾ Devroye, L., 1996, December, "Random variate generation in one line of code" In *Proceedings Winter Simulation Conference* (pp. 265-272). IEEE.
- (85) Crooks, G.E., *Field Guide to Continuous Probability Distributions*, 2019.
- (86) McGrath, E.J., Irving, D.C., "Techniques for Efficient Monte Carlo Simulation, Volume II", Oak Ridge National Laboratory, April 1975.
- (87) Crooks, G.E., "The Amoroso Distribution", arXiv:1005.3274v2 [math.ST], 2015.
- (88) Devroye, L., "Expected Time Analysis of a Simple Recursive Poisson Random Variate Generator", Computing 46, pp. 165-173, 1991.

- ⁽⁸⁹⁾ Giammatteo, P., and Di Mascio, T., "Wilson-Hilferty-type approximation for Poisson Random Variable", *Advances in Science, Technology and Engineering Systems Journal* 5(2), 2020.
- ⁽⁹⁰⁾ Bailey, R.W., "Polar generation of random variates with the t distribution", *Mathematics of Computation* 62 (1994).
- (91) Stein, W.E. and Keblis, M.F., "A new method to simulate the triangular distribution", *Mathematical and Computer Modelling* 49(5-6), 2009, pp.1143-1147.
- (92) Saha, M., et al., "The extended xgamma distribution", arXiv:1909.01103 [math.ST], 2019.
- (93) Sen, S., et al., "The xgamma distribution: statistical properties and application", 2016.
- (94) Makalic, E., Schmidt, D.F., "An efficient algorithm for sampling from sin^k(x) for generating random correlation matrices", arXiv:1809.05212v2 [stat.CO], 2018.
- (95) Baker, R., Jackson, D., "A new distribution for robust least squares", arXiv:1408.3237 [stat.ME], 2018.
- (96) Osada, R., Funkhouser, T., et al., "Shape Distributions", _ACM Transactions on Graphics 21(4), Oct. 2002.
- (97) Grimme, C., "Picking a Uniformly Random Point from an Arbitrary Simplex", 2015.
- (98) Weisstein, Eric W. "Hypersphere Point Picking". From MathWorld—A Wolfram Web Resource.
- ⁽⁹⁹⁾ Voelker, A.R., Gosmann, J., Stewart, T.C., "Efficiently sampling vectors and coordinates from the *n*-sphere and *n*-ball", Jan. 4, 2017.
- (100) See the Mathematics Stack Exchange question titled "Random multivariate in hyperannulus", questions/1885630.
- (101) See the *Stack Overflow* question "Uniform sampling (by volume) within a cone", questions/41749411. Square and cube roots replaced with maximums.
- (102) Reference: <u>"Sphere Point Picking"</u> in MathWorld (replacing inverse cosine with atan2 equivalent).
- ⁽¹⁰³⁾ For example, see Balcer, V., Vadhan, S., "Differential Privacy on Finite Computers", Dec. 4, 2018; as well as Micciancio, D. and Walter, M., "Gaussian sampling over the integers: Efficient, generic, constant-time", in Annual International Cryptology Conference, August 2017 (pp. 455-485).

12 Appendix

12.1 Sources of Random Numbers

All the randomization methods presented on this page assume that we have an endless source of numbers such that—

- each number is equally likely to occur, and
- each number is chosen independently of any other choice.

That is, the methods assume we have a source of (uniform) random numbers. (Thus,

none of these methods *generate* random numbers themselves, strictly speaking, but assume we have a source of them already.)

However, this is an ideal assumption which is hard if not impossible to achieve in practice.

Indeed, most applications make use of *pseudorandom number generators* (PRNGs), which are algorithms that produce *random-behaving* numbers, that is, numbers that simulate the ideal source of random numbers mentioned above. As a result, the performance and quality of the methods on this page will depend in practice on the quality of the PRNG (or other kind of RNG) even if they don't in theory.

Note that the source of random numbers can be generated (or simulated) by a wide range of devices and programs, including PRNGs, so-called "true" random number generators, and application programming interfaces (APIs) that provide uniform random-behaving numbers to applications. They can serve as a source of random numbers regardless of their predictability or statistical quality, and whether or not they use a fixed algorithm. However, some random number generators are better than others for certain purposes, and giving advice on which RNG to choose is outside the scope of this document.

The randomization methods in this document will be deterministic (that is, produce the same values given the same state and input) whenever they are powered by a PRNG (as will generally be the case in practice), as PRNGs are deterministic. However, if a "true" random number generator powers these methods, they will not necessarily be deterministic.

12.2 Mean and Variance Calculation

The following method calculates the (sample) mean and the **bias-corrected sample variance** of a list of real numbers, using the **Welford method** presented by J. D. Cook. The method returns a two-item list containing that kind of mean and that kind of variance in that order. (Sample mean and sample variance are the estimated mean and variance of a population or distribution assuming list is a random sample of that population or distribution.) The square root of the variance calculated here is what many APIs call a standard deviation (e.g. Python's statistics.stdev).

```
METHOD MeanAndVariance(list)
   if size(list)==0: return [0, 0]
   if size(list)==1: return [list[0], 0]
   xm=list[0]
   xs=0
   i=1
   while i < size(list)
        c = list[i]
        i = i + 1
        cxm = (c - xm)
        xm = xm + cxm *1.0/ i
        xs = xs + cxm * (c - xm)
   end
   return [xm, xs*1.0/(size(list)-1)]</pre>
END METHOD
```

Note: The population variance (or biased sample variance) is found by dividing by size(list) rather than (size(list)-1), and the standard deviation of the population is the population variance's square root.

12.3 Norm Calculation

The following method calculates the norm of a vector (list of numbers), more specifically the ℓ_2 norm of that vector.

```
METHOD Norm(vec)
  ret=0
  rc=0
  for i in 0...size(vec)
    rc=vec[i]*vec[i]-rc
    rt=rc+ret
    rc=(rt-ret)-rc
    ret=rt
  end
  return sqrt(ret)
END METHOD
```

There are other kinds of norms besides the ℓ_2 norm. More generally, the ℓ_p norm, where p is 1 or greater or is ∞ , is the p^{th} root of the sum of p^{th} powers of a vector's components' absolute values (or, if p is ∞ , the highest absolute value among those components). An ℓ_p ball or sphere of a given radius is a ball or sphere that is bounded by or traces, respectively, all points with an ℓ_p norm equal to that radius. (An ℓ_∞ ball or sphere is boxshaped.)

12.4 Implementation Considerations

- 1. Shell scripts and Microsoft Windows batch files are designed for running other programs, rather than general-purpose programming. However, batch files and bash (a shell script interpreter) might support a variable which returns a random integer in the interval [0, 32767] (called %RANDOM% or \$RANDOM, respectively); neither variable is designed for information security. Whenever possible, the methods in this document should not be implemented in shell scripts or batch files, especially if information security is a goal.
- 2. **Query languages such as SQL** have no procedural elements such as loops and branches. Moreover, standard SQL has no way to generate random numbers, but popular SQL dialects often do with idiosyncratic behavior, and describing differences between SQL dialects is outside the scope of this document. Whenever possible, the methods in this document should not be implemented in SQL, especially if information security is a goal.
- 3. Stateless PRNGs. Most designs of pseudorandom number generators (PRNGs) in common use maintain an internal state and update that state each time a random number is generated. But for <u>stateless PRNG designs</u> (including so-called "splittable" PRNGs), RNDINT(), NEXTRAND(), and other random sampling methods in this document may have to be adjusted accordingly (usually by adding an additional parameter).
- 4. **Multithreading.** Multithreading can serve as a fast way to generate multiple random numbers at once; it is not reflected in the pseudocode given in this page. In general, this involves dividing a block of memory into chunks, assigning each chunk to a thread, giving each thread its own instance of a random number generator, and letting each thread fill its assigned chunk with random numbers. For an example, see "Multithreaded Generation".
- 5. **Fixed number of random bits.** Random numbers that follow a distribution (e.g., Poisson, Normal) can be generated with a fixed number (n) of unbiased random bits either by **inverse transform sampling** or by treating the bits as a seed for a local PRNG and using the PRNG to generate the random number. An application should use this suggestion only if it wants to ensure a fixed number of random bits per sampled outcome is ultimately drawn, because the sampling method can return one

12.5 Security Considerations

If an application generates random numbers for information security purposes, such as to generate random passwords or encryption keys, the following applies:

- 1. **Cryptographic RNG.** The application has to use a cryptographic RNG. Choosing a cryptographic RNG is outside the scope of this document.
- 2. Timing attacks. Certain security attacks have exploited timing and other differences to recover cleartext, encryption keys, or other sensitive data. Thus, so-called "constant-time" security algorithms have been developed. (In general, "constant-time" algorithms are designed to have no timing differences, including memory access patterns, that reveal anything about any secret inputs, such as keys, passwords, or RNG "seeds"). But even if an algorithm has variable running time (e.g., rejection sampling), it may or may not have security-relevant timing differences, especially if it does not reuse secrets.
- 3. **Security algorithms out of scope.** Security algorithms that take random secrets to generate random security parameters, such as encryption keys, public/private key pairs, elliptic curves, or points on an elliptic curve, are outside this document's scope.
- 4. **Floating-point numbers.** Random numbers generated for security purposes are almost always integers (and, in very rare cases, fixed-point numbers). Even in the few security applications where random floating-point numbers are used (differential privacy and lattice-based cryptography), there are ways to avoid such random numbers (103).

13 License

Any copyright to this page is released to the Public Domain. In case this is not possible, this page is also licensed under **Creative Commons Zero**.