

COE-C2004 - Materials Science and Engineering 2020-2021 Autumn II

Assignment 5, 29.11.2021

Task 1. Phase Transformation (15 points, Lecture9)

Figure 1 is the isothermal transformation diagram for a 0.45 wt% C iron-carbon alloy. List the microconstituent(s) present for the heat treatment labeled (a-c) on this diagram. Please explain your results.

Figure 1. [1]

Solutions:

- (a) proeutectoid ferrite and martensite. Upon cooling to 725 °C, the microstructure remains 100% austenite. While being held at this temperature for about 103 seconds, proeutectoid ferrite begins to form. As it is rapidly cooled to room temperature, the remaining austenite begins to transform to martensite at about 300 °C; all of this austenite will have transformed martensite at the end of this quench. Furthermore, there are no changes with the proeutectoid ferrite that has already formed; thus the final composition will consist of proeutectoid ferrite and martensite.
- (b) tempered martensite. Upon rapid cooling to and while at $100\,^{\circ}\text{C}$ for $20\,\text{s}$, all of the austenite is converted to martensite. During the subsequent rapid heating to about $400\,^{\circ}\text{C}$, no changes occur. While being held at $400\,^{\circ}\text{C}$ for about $104\,\text{s}$, all the martensite will transform to tempered martensite; and during the final cooling to about $100\,^{\circ}\text{C}$ no additional changes will occur. Thus the final microconstituent is tempered martensite.
- (c) bainite, proeutectoid ferrite, and pearlite. There are no changes in the microstructure during the rapid cooling to 350 °C (i.e., only austenite will be present). As the alloy is held at that this temperature for about 10 seconds, approximately 25% of the alloy transforms to bainite. During the rapid heating to 625 °C there are no microstructural changes; however, while maintaining the alloy for about 103 seconds at this temperature, all the remaining austenite will transform to proeutectoid ferrite and pearlite. Since, by this time all of the austenite has transformed, no changes will occur during the final rapid cooling to room temperature. Thus, the final microstructure will consist of bainite, proeutectoid ferrite, and pearlite.

(Results 3 points + Explanation 2 points) \times 3

Task 2. Process (52 points, Lecture9)

2.1 Explain what casting is? List at least four types of casting methods with their frequently used mold materials, general process, and applications. And make a comparison between different types of casting methods, using either tables or plots. (Hint: you can explain with methods, usages, results, examples, etc.).

Solutions:

Casting is a fabrication process whereby totally molten metal is poured into a mold cavity having the desired shape; upon solidification, the metal assumes the shape of the mold but experiences some shrinkage. Casting techniques are employed when (1) the finished shape is so large or complicated that any other method would be impractical, (2) a particular alloy is so low in ductility that forming by either hot or cold working would be difficult, and (3) in comparison to other fabrication processes, casting is the most economical. Furthermore, the final step in the refining of even ductile metals may involve a casting process. A number of different casting techniques are commonly employed, including sand, die, investment, lost foam, and continuous casting. The comparison between different types of casting methods is shown in the following table.

Type	Mold/Die	Method	Example/Application
Sand	sand	A two-piece sand mold is formed by packing	Sand casting is
Casting		sand around a pattern that has the shape of the	probably the most
		intended casting. Furthermore, a gating system	common method.
		is usually incorporated into the mold to expedite	Sand-cast parts include
		the flow of molten metal into the cavity and to	automotive cylinder
		minimize internal casting defects.	blocks, fire hydrants,
			and large pipe fittings.
Die Casting	permanent	In die casting, the liquid metal is forced into a	This technique lends
	steel mold	mold under pressure and at a relatively high	itself only to relatively
	or die	velocity and allowed to solidify with the	small pieces and to
		pressure maintained. A two-piece permanent	alloys of zinc,
		steel mold or die is employed; when clamped	aluminum, and
		together, the two pieces form the desired shape.	magnesium, which
		When the metal has solidified completely, the	have low melting
		die pieces are opened, and the cast piece is	temperatures.
		ejected. Rapid casting rates are possible,	
		making this an inexpensive method;	
		furthermore, a single set of dies may be used for	
		thousands of castings.	
Investment	plaster of	The pattern is made from wax or plastic that has	This technique is
Casting	paris	a low melting temperature. Around the pattern	employed when high
(sometimes		is poured a fluid slurry, which sets up to form a	dimensional accuracy,
called		solid mold or investment; plaster of paris is	reproduction of fine
lost-wax		usually used. The mold is then heated, such that	detail, and an excellent
casting)		the pattern melts and is burned out, leaving	finish are required. For
		behind a mold cavity having the desired shape.	example, in jewelry
			and dental crowns and
			inlays. Also, blades for

			gas turbines and jet engine impellers are
			investment cast.
Lost Foam	Sand	A variation of investment casting is lost foam	Metal alloys that most
Casting		(or expendable pattern) casting. Here the	commonly use this
		expendable pattern is a foam that can be formed	technique are cast irons
		by compressing polystyrene beads into the	and aluminum alloys;
		desired shape and then bonding them together	furthermore,
		by heating. Alternatively, pattern shapes can be	applications include
		cut from sheets and assembled with glue. Sand	automobile engine
		is then packed around the pattern to form the	blocks, cylinder heads,
		mold. As the molten metal is poured into the	crankshafts, marine
		mold, it replaces the pattern, which vaporizes.	engine blocks, and
		The compacted sand remains in place, and,	electric motor frames.
		upon solidification, the metal assumes the shape	
		of the mold. With lost foam casting, complex	
		geometries and tight tolerances are possible.	
		Furthermore, in comparison to sand casting, lost	
		foam is a simpler, quicker, and less expensive	
		process, and there are fewer environmental	
		wastes.	
Continuous	stationary	At the conclusion of the extraction processes,	This process is used
Casting	molds,	many molten metals are solidified by casting	most frequently to cast
	materials	into large ingot molds. The ingots are normally	steel. Aluminum and
	depend on	subjected to a primary hot-rolling operation, the	copper are also
	applicatio	product of which is a flat sheet or slab; these are	continuously cast.
	ns, e.g.	more convenient shapes as starting points for	
	'open-	subsequent secondary metal-forming	
	pour'	operations (i.e., forging, extrusion, drawing).	
	copper	These casting and rolling steps may be	
	mold	combined by continuous casting (sometimes also termed strand casting) process. Using this	
		technique, the refined and molten metal is cast directly into a continuous strand that may have	
		either a rectangular or circular cross-section;	
		solidification occurs in a water-cooled die	
		having the desired cross-sectional geometry.	
		The chemical composition and mechanical	
		properties are more uniform throughout the	
		cross-sections for continuous castings than for	
		ingot-cast products. Furthermore, continuous	
		casting is highly automated and more efficient.	
	l		l

Definition of casting: 2 points;

 $(Type\ name\ 2\ points + Mold\ materials\ 2\ points + Process\ 2\ points + Application\ 2\ points) \times 4$

2.2 Explain annealing and its various types of applications. Compare the differences between full annealing with quenching and tempering in terms of processing parameters, resulted microstructure and mechanical properties.

Solutions:

The term annealing refers to a heat treatment in which a material is exposed to an elevated temperature for an extended time period and then slowly cooled. Any annealing process consists of three stages: (1) heating to the desired temperature, (2) holding or "soaking" at that temperature, and (3) cooling, usually to room temperature. Time is an important parameter in these procedures. During heating and cooling, temperature gradients exist between the outside and interior portions of the piece; their magnitudes depend on the size and geometry of the piece. If the rate of temperature change is too great, temperature gradients and internal stresses may be induced that may lead to warping or even cracking. Also, the actual annealing time must be long enough to allow for any necessary transformation reactions. The annealing temperature is also an important consideration; annealing may be accelerated by increasing the temperature, because diffusional processes are normally involved.

Ordinarily, annealing is carried out to (1) relieve stresses; (2) increase softness, ductility, and toughness; and/or (3) produce a specific microstructure. A variety of annealing heat treatments are possible; they are characterized by the changes that are induced, which many times are microstructural and are responsible for the alteration of the mechanical properties.

The comparison of full annealing with quenching and tempering is shown in the following table.

•		•		
Method	Processing parameter	Microstructure and		
		Mechanical property		
Full	Annealing temperature: 50 °C above the A3 line (solvus	The microstructural		
annealing	line between the γ -phase region and α - γ -two-phase region)	product of this anneal is		
	to form austenite for hypoeutectoid steel. Or, for	coarse pearlite (in		
	hypereutectoid steel, 50 °C above the A1 line (eutectoid	addition to any		
	line) to form austenite and Fe ₃ C phases.	proeutectoid phase) that		
	Long annealing time to make sure the full phase	is relatively soft and		
	transformation to form austenite microstructure.	ductile.		
	Followed with a slow cooling rate, i.e. furnace cooled.			
Quenching	Quenching from the full austenite region with a high	The final microstructure		
and	cooling rate, normally water or oil cooling.	is tempering martensite,		
tempering	Followed by tempering at a proper temperature below A1	with high strength and		
	temperature (eutectoid temperature), then cooling with	relatively low ductility.		
	proper rate, general air cooling.			

Definition of annealing: 2 points; Applications of annealing: 2 points (Processing parameter 3 points + Microstructure 2 points + Mechanical property 2 points) × 2

Task 3. Inorganic Non-metallic Materials (33 points, Lecture 10)

3.1 True or False

- (1) For noncrystalline ceramics, plastic deformation occurs by the motion of dislocations.
- (2) The coordination number of ionic ceramics is constrained by the relative sizes of the compound's component species.
- (3) Consider the ZrO₂ crystal structure. The coordination number of Zr₄₊ ions is 8.
- (4) Na₂O, CaO, Al₂O₃, and B₂O₃ are all oxides that may be found in silica-based glasses.
- (5) With increasing temperature, the following is the correct phase transformation sequence for a glass: supercooled liquid, solid, and liquid.
- (6) Consider the ideal barium titanate (BaTiO₃) structure, the coordination number of the Ba₂₊ ion in terms of surrounding Ti₄₊ ions is 8.

Solutions: (2 points \times 6 = 12)

- (1) False, For noncrystalline materials, plastic deformation does not occur by the motion of dislocations. Instead, some materials, e.g. noncrystalline ceramics, deform by viscous flow.
- (2) True
- (3) True
- (4) True
- (5) False, With increasing temperature, the following is the correct phase transformation sequence for a glass: solid, supercooled liquid, and liquid.
- (6) False, 12 Ti₄₊ ions surround each Ba₂₊ ion.
- **3.2** Name and plot seven kinds of ionic point defects that are found in ceramic compounds. (Please use figures and illustrations and make a proper citation of the figures if they are not created by you).

Solutions:

Defects in ionic ceramics: cation/anion vacancy, cation interstitial impurity, cation/anion substitutional impurity, Frenkel defect (a cation vacancy-cation interstitial pair), Shottky defect (a cation-anion vacancies pair).

Figure 2 Schematic representations of defects in ceramics. [1]

(Name 1 point + figure 2 points) \times 7

Reference

[1] W. D. Callister and D. G. Rethwisch, *Materials Science and Engineering: An Introduction, 8th Edition*, Wiley, 2009.

Due date: 18:00, 05.12.2021.

Contact: MyCourses 'General discussion' channel