External Evaluation Panel Meeting, Jan 19, 2016

Chemo-mechanical properties of Hardened cement pastes prepared with volcanic ash and

Ordinary Portland cement.

Stephanie Chin, Freshman

Department of Civil and Environmental Engineering

Dr. Kunal Kupwade-Patil, MIT (Supervisor)

Faculty Advisors: Prof. Oral Buyukozturk (MIT) and Eng. Suad Al-Bahar (KISR)

Research Significance

- Volcanic ash has been considered a potential cement additive because it is similar to fly ash, a commonly used additive
- The goal of this study is to characterize cement paste made of Ordinary Portland Cement (OPC) and volcanic ash of different particle sizes and concentrations.
- Impact: This work will help engineering cements when volcanic ash is used as a partial substitute to OPC

Background: Tests

- Particle Size Distribution using a Laser-based Particle Size Analyzer
- Compression Test (ASTM Standard)
- Mercury Intrusion Porosimetry (MIP) using alcohol suspension
- SEM/BSE Imaging at CMSE
- Future Tests
 - Nanoindentation
 - Synchrotron X-Ray Diffraction

Specimen Preparation Chart

	OPC (%)	IP (%)	FA (%)	Nomenclature
1	100	0	0	OPC
2	50	50	0	IP-50
3	60	40	0	IP-40
4	70	30	0	IP-30
5	80	20	0	IP-20
6	90	10	0	IP-10
7	50	0	50	FA-50
8	60	0	40	FA-40
9	70	0	30	FA-30
10	80	0	20	FA-20
11	90	0	10	FA-10

FA = 6 μ m mean particle size of VA IP = 17 μ m mean particle size of VA

- Water to Binder Ratio of 0.35
- Specimens cured for 28 days
- Specimens submerged in acetone to arrest the hydration

Particle Size Distribution (Laser-based Particle Size Analyzer)

Binder Type	Nomenclature	Mean	Median	Mode	Diameter for selected		
		(µm)	(µm)	(µm)	percentiles by volume		
					D 90	D 50	D10
					(µm)	(µm)	(µm)
Volcanic Ash	IP	17.14	10.00	13.27	42.46	10.00	1.50
Volcanic Ash	FA	6.00	3.25	2.977	15.79	3.25	0.973
Portland Cement	OPC	12.73	7.94	6.65	30.10	7.94	2.12

Experimental Evaluation

Compression Test

Pore Structure

Microstructure

Pore structures studies were performed using Mercury Intrusion Porosimetry

Phase mapping
performed using Back
Scattered Electron
Spectroscopy (BSE)

Compression Test Results

Stress-Strain plots (Compression Testing)

Young's Modulus Analysis

Pore Structure (Mercury Intrusion Porosimetry)

FA20 had the least intruded volume, while FA50 had the highest intrusion

OPC had the least intruded volume, while IP50 had the highest intrusion

Porosity

Threshold Pore Diameter

Threshold diameter can be determined by finding the inflection point of the intrusion vs size graph.

Amount of Volcanic Ash (%)

The pore diameter depends on factors such as tortuosity and effective porosity.

Polishing Procedure

GRIT	TIME (min)	LOAD (lb)
120	4	5
240	8	6
320	8	6
400	08	6
600	8	6
800	08	6
1200	16	8
9 μm	60	8
3 μm	60	8
1 μm	60	8

Back Scattered Electron (BSE) Imaging with Elemental Mapping

Elemental composition (SEM/BSE)

Phase Mapping (SEM/BSE)

Ternary Phase Diagrams

Ongoing work to complete this task

- Nanoindentation Polishing Procedure is being developed, and trials are being carried out.
- Since we are dealing with a complex system, it is planned to use Synchrotron XRD for the phase analysis.
 If the proposal is approved, we plan to perform it at Argonne National lab

Conclusions

Engineered Cements

- The particle size and concentration of volcanic ash additive affects the microstructure and pore structure, so it can be can be chosen to optimize certain cement paste properties
- In particular, we found certain mixes that had comparable strength (FA30), phases (IP30), and porosities as our C60-OPC sample

