CS553 Homework #4

Understanding the Cost of Cloud Computing

Instructions:

• Assigned date: Monday March 23rd, 2020

• Due date: 11:59PM on Monday April 10th, 2020

• Maximum Points: 100%

• This homework can be done in groups up to 3 students

• Please post your questions to the Piazza forum

- Only a softcopy submission is required; it will automatically be collected through GIT after the deadline; email confirmation will be sent to your HAWK email address
- Late submission will be penalized at 10% per day; an email to the TA with the subject "CS553: late homework submission" must be sent

1. Introduction

You are hired by a startup company who is considering to use cloud computing instead of building its own infrastructure. There is concensus that a cloud computing software stack at the layer of laaS will be used, but its not clear whether the computing resources should be rented from a public cloud on-demand, or whether a private cloud should be purchased. You are tasked to find the cost breakdown of a private cloud, and compare that to what Amazon would charge. You can find many instance types defined at http://aws.amazon.com/ec2/instance-types/, and their prices are set at http://aws.amazon.com/ec2/pricing/. For pricing purposes, please stick to Linux ondemand pricing.

Since you have to estimate the cost of the hardware when building a private cloud, you can use hardware prices found at ThinkMate website (https://www.thinkmate.com) as good sources for server hardware. You must include a printout of your shoping cart in your final writeup report for this assignment; include this as an appendix at the end of your report.

You are to estimate the cost of different configurations for 3 different set of requirements:

- Configuration 1: Hadoop/Spark Cluster with 256K-cores, 2PB memory, 400PB HDD, and 25Gb/s Ethernet
 Fat-Tree network (each VM should be equivalent to the d2.8xlarge instance); in addition to the compute
 resources, a 800PB distributed storage shared across the entire cloud should be procured, with enough
 capacity for 800GB/sec throughput (for pricing comparison, see S3)
- Configuration 2: Support 1M virtual machines (VM) where each VM requires 2-core, 16GB RAM, 75GB NVMe storage, and 10Gb/s Fat-Tree network (each VM should be equivalent to the r5d.large instances); in addition to the compute resources, a 10PB distributed storage shared across the entire cloud should be procured, with enough capacity for 100GB/sec throughput (for pricing comparison, see S3)
- Configuration 3: Support deep learning with 1 exaflop of double precision performance (hint: each VM should be equivalent to p3.16xlarge instances; you will want to use the NVIDIA V100 GPUs (8 GPUs per node), and allocate 8-cores per GPU (64-cores per node) with 8GB of memory per core (512GB per node); the network to use is at least 10Gb/s per GPU (100Gb/s should work), and should be organized in a Fat-Tree network; in addition to the compute resources, a 1PB distributed storage shared across the entire cloud should be procured, with enough capacity for 10GB/sec throughput (for pricing comparison, see S3)

2. What you will submit?

Your deliverables for this project are to be written in a report, which will include the following:

- Report: A written document (typed, named hw4-report.pdf) describing your answers to the above questions.
- Compare the costs of the 3 different configurations between the public cloud (Amazon AWS) and the private cloud
 - o you may assume a 5 year amortization cost
 - you will have to factor in things other than hardware, such as cooling, power, administration costs, network infrastructure (e.g. switches); you can assume 1 system administrator is needed for every 1000 servers
 - show your data in three different tables with the costs of each of the 3 configurations, broken down by components (e.g. servers, network switches, cables, racks, cooling, power, administration, etc)
 - summarize your data in a 4th table, comparing the public cloud cost to the private cloud cost
- Explain in words if it is better to rent or buy. If it is better to buy, what utilization must you maintain over the 5 year lifetime of the private cloud in order to break even on the investment?
- Include your shopping cart of the 3 configurations. Your submission should be a single large PDF file, starting with your report, and followed by the shopping carts.

	Description	Price per Item	Quantity	Total Price
Compute Servers				
Network Switches				
Network Cables				
Racks				
Storage Servers				
Electric Power				
Cooling				
Administration				
TOTAL	N/A	N/A	N/A	

Table 2: Summary table comparing the 3 configurations between the public and private cloud; your cost of power, cooling, and administration should be to cover 5 years of costs

	Configuration 1	Configuration 2	Configuration 3
Public Cloud (including EC2 and S3)			
Cost over 5 years, 24/7 operation,			
with 100% usage			
Private Cloud cost over 5 years, 24/7			
operation, with 100% usage			
What utilization must be achieved			
with the private cloud to make the			
private cloud option more attractive			
than the public cloud?			

Submit code/report through GIT. If you cannot access your repository contact the TAs. You can find a git cheat sheet here: https://www.git-tower.com/blog/git-cheat-sheet/ **Grades for late programs will be lowered 10% per day late.**