UNIVERSIDADE DO PORTO

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

1. (4 valores). O sistema representado na figura, com 2 roldanas e 2 blocos ligados por um fio de comprimento constante, tem um único grau de liberdade. As massas dos blocos são $m_{\rm A}=0.3~{\rm kg}$ e $m_{\rm B}=0.7~{\rm kg}$. As duas roldanas podem ser consideradas discos homogéneos (momento de inércia $I_{\rm cm}=m\,R^2/2$), cada uma com massa de 0.06 kg. (a) Encontre as expressões para o valor da velocidade do bloco B e das velocidades angulares de cada uma das roldanas, em função do valor da velocidade $v_{\rm A}$ do bloco A e do raio R das roldanas (admita que as roldanas rodam sem que o fio deslize sobre elas). (b) Determine a expressão da energia mecânica total do sistema, em função de v_A e da distância vertical y_A desde o teto até o centro de massa do bloco A (despreze a massa do fio). (c) Desprezando o trabalho das forças não conservativas, encontre a equação de movimento do sistema e calcule as acelerações dos dois blocos.

$$\dot{x} = -y - x^2 \qquad \qquad \dot{y} = x - x^3$$

(a) Determine os conjuntos limite positivo e negativo das duas curvas de evolução que passam pelos pontos (x,y)=(0,-2) e (x,y)=(0,-0.5). (b)Calcule a divergência da velocidade de fase e diga que pode concluir-se a partir do critério de Bendixson. (c) Indique se o sistema tem algum ciclo, órbita homoclínica ou órbita heteroclínica. (d) Comente a seguinte afirmação, argumentando claramente os seus comentários: "O retrato de fase inclui duas curvas de evolução parabólicas que se cruzam em dois pontos".

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. Um corpo escorrega, com movimento uniforme, do topo de um plano inclinado, fixo no solo, até à sua base. Para este percurso:
 - (A) A energia cinética do corpo diminui.
 - (B) A energia mecânica do corpo mantém-se constante.
 - (C) O trabalho realizado pela resultante das forças sobre o corpo é positivo.
 - (**D**) A energia potencial do corpo diminui.
 - (E) O trabalho realizado pela força gravítica é negativo.

Resposta:

4. As equações de evolução de um sistema linear são:

 $\dot{x} = x + 2y$ $\dot{y} = x + y$

Que tipo de ponto de equilíbrio é a origem?

- (A) Foco repulsivo.
- (**D**) Centro.
- (B) Foco atrativo.
- (E) Ponto de sela.
- (C) Nó repulsivo.

Resposta:

5. O sistema dinâmico não linear:

 $\dot{x} = xy - 4x + y - 4$ $\dot{y} = xy + x - 3y - 3$ tem um ponto de equilíbrio em x = 3, y = 4. Qual é o sistema linear que aproxima o sistema não linear na vizinhança desse ponto de equilíbrio?

- **(A)** $\dot{x} = 5y$ $\dot{y} = 4x$
- - **(D)** $\dot{x} = -5y$ $\dot{y} = -4x$
- **(B)** $\dot{x} = -4y$ $\dot{y} = 5x$ **(E)** $\dot{x} = 4y$ $\dot{y} = 5x$
- (C) $\dot{x} = 5y$ $\dot{y} = -4x$

Resposta:

- 6. A energia mecânica de um sistema conservativo com dois graus de liberdade, x e θ , é dada pela expressão $E_{\rm m} = 5 \dot{x}^2 + 7 \dot{\theta}^2 - 3 x \theta$. Encontre a expressão para a aceleração $\ddot{\theta}$.
 - **(A)** $3x\theta/14$
- (C) 3x/14
- (E) $3x\theta/5$

- **(B)** $3\theta/14$
- **(D)** 3x/5

Resposta:

- 7. Um projétil é lançado desde uma janela a 2.5 m de altura, com velocidade de 16 m/s, inclinada 30° por cima da horizontal. Desprezando a resistência do ar, calcule a altura máxima que o projétil atingirá.
 - (**A**) 4.1 m
- (C) 9.0 m
- **(E)** 5.8 m

- (**B**) 15.6 m
- (**D**) 12.3 m

Resposta:

8	3. A matriz de um sistema dinâmico linear é: $\begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$	13.	As equações $\dot{x} = x(2+y), \dot{y} = y(2+x)$ d
	Se A for a curva de evolução que passa pelo ponto (1,1) no		(\mathbf{A}) De duas espécies com cooperação.
	espaço de fase e B for a curva de evolução que passa pelo		(B) Predador presa.
	ponto (1,-1), podemos afirmar que a origem é:		(C) Linear.
	(A) Conjunto limite positivo de A e limite negativo de B.		(D) Conservativo.
	(B) Conjunto limite negativo de A e de B.		(E) De duas espécies com competição.
	(C) Conjunto limite negativo de A e limite positivo de B.		Resposta:
	(D) Conjunto limite positivo de A e de B.	1 1	A forum mostro a natrata da faga da um
	(E) Centro de A e B que são ciclos.	14.	A figura mostra o retrato de fase de um variáveis de estado x e y. Quais são as ec
	Resposta:		do sistema em coordenadas polares?

9. A posição de um ponto ao longo de um percurso, em função do tempo, é dada pela expressão $y = 10 t - t^2$ (SI). Determine a distância percorrida pelo ponto entre t=0 e

(C) 25 m

(**D**) 6.25 m

10. Num sistema dinâmico contínuo no plano xy, se os conjuntos limite positivo e negativo de uma curva de evolução C são ambos o mesmo objeto L, qual das seguintes afirmações

(C) 67.6°

(**D**) 16.9°

zontal e constante, com módulo igual a 30 N. O coeficiente

(C) 5.0 m/s^2

(**D**) 2.55 m/s^2

Calcule o módulo da aceleração do bloco.

(A) L é um ponto de equilíbrio atrativo.

(C) C é uma órbita heteroclínica.

(E) L é um atrator estranho.

(E) 9.25 m

(E) 42.3°

(E) 7.45 m/s^2

t = 7.5 s.

(A) 31.25 m

(B) 43.75 m

Resposta:

poderá ser verdadeira?

(B) L é um centro.

(D) C é um ciclo.

Resposta:

t = 1.

(A) 88.8°

(B) 55.0°

Resposta:

mostra o retrato de fase de um sistema com duas de estado x e y. Quais são as equações de evolução do sistema em coordenadas polares?

(A)
$$\dot{\theta} = 2$$
 $\dot{r} = 3r^2 - 2r$

(B)
$$\dot{\theta} = 2$$
 $\dot{r} = r^3 - 3r^2 + 2r$

(C)
$$\dot{\theta} = 2$$
 $\dot{r} = 3r^2 - r^3 - 2r$

(**D**)
$$\dot{\theta} = -2$$
 $\dot{r} = 3r^2 - r^3 - 2r$

(E)
$$\dot{\theta} = -2$$
 $\dot{r} = r^3 - 3r^2 + 2r$

Resposta:

(A)
$$182 \text{ rad/s}^2$$

(C)
$$279 \text{ rad/s}^2$$

(**E**)
$$838 \text{ rad/s}^2$$

(B)
$$419 \text{ rad/s}^2$$

(**D**)
$$209 \text{ rad/s}^2$$

Resposta:

(**D**) 0.6 m

Resposta:

17. Num sistema que se desloca no eixo dos x, a força resultante é $-x^2 + x + 6$. O sistema tem uma órbita homoclínica que se aproxima assimptoticamente do ponto (a, 0) no espaço de fase. Qual $\acute{\rm e}$ o valor de a?

$$(E) -2$$

$$(E)$$
 -2

(A) 15.3 m/s^2

(B) 44.7 m/s^2

Resposta:

Regente: Jaime Villate

Resolução do exame de 17 de junho de 2013

Problemas

1. (a) Medindo as posições y_A e y_B dos blocos na vertical, com origem no teto e sentido positivo para baixo,

$$y_A + 2y_B = k \implies v_B = -\frac{v_A}{2}$$

onde k é uma constante. Se ω_1 for a velocidade angular da roldana do lado esquerdo, ω_2 a velocidade angular da roldana do lado direito e arbitrando sentido positivo no sentido antihorário,

$$\omega_1 = \frac{v_A}{R}$$
 $\omega_2 = \frac{v_B}{R} = \frac{v_A}{2R}$

(b) Se m for a massa das roldanas,

$$\begin{split} E_{\rm c} &= \frac{1}{2} \left(m_{\rm A} v_{\rm A}^2 + m_{\rm B} v_{\rm B}^2 + m v_{\rm B}^2 + \frac{m R^2}{2} \, \omega_1^2 + \frac{m R^2}{2} \, \omega_2^2 \right) = \frac{v_{\rm A}^2}{2} \left(m_{\rm A} + \frac{m_{\rm B}}{4} + \frac{m}{4} + \frac{m}{2} + \frac{m}{8} \right) \\ &= \frac{v_{\rm A}^2}{2} \left(m_{\rm A} + \frac{m_{\rm B}}{4} + \frac{7 \, m}{8} \right) = 0.26375 \, v_{\rm A}^2 \\ U &= -m_{\rm A} \, g \, y_{\rm A} - \left(m_{\rm B} + m \right) g \, y_{\rm B} = -m_{\rm A} \, g \, y_{\rm A} - \frac{\left(m_{\rm B} + m \right) g}{2} (k - y_{\rm A}) = 0.748 \, y_{\rm A} - 3.724 \, k \\ E_{\rm m} &= 0.26375 \, v_{\rm A}^2 + 0.748 \, y_{\rm A} - 3.724 \, k \end{split}$$

(c) A equação de Lagrange para a coordenada y_A e a velocidade v_A é:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial v_{\mathrm{A}}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial v_{\mathrm{A}}} + \frac{\partial U}{\partial_{\mathrm{A}}} = 0$$

que conduz à equação de movimento

$$0.5275 a_{A} + 0.784 = 0 \implies a_{A} = -\frac{0.784}{0.5275} = -1.486 \frac{\text{m}}{\text{s}^{2}}$$

o sinal negativo indica que o bloco A sobe. A aceleração do bloco B é,

$$a_{\rm B} = -\frac{a_{\rm A}}{2} = 0.743 \; \frac{\rm m}{\rm s^2}$$

o sinal pisitivo indica que o bloco B desce.

- 2. (a) O sistema tem unicamente os 3 pontos de equilíbrio representados na figura: um centro na origem e dois pontos de sela em (1, −1) e (−1, −1). Os conjuntos limite negativo e positivo da curva que passa por (0, −2) não existem. Os conjuntos limite negativo e positivo da curva que passa por (0, −0.5) é um ciclo à volta da origem.
 - (b) A divergência da velocidade de fase é:

$$\vec{\nabla} \cdot \vec{u} = \frac{\partial \left(-y - x^2 \right)}{\partial x} + \frac{\partial \left(x - x^3 \right)}{\partial y} = -2x$$

O critério de Bendixson implica que podem existir ciclos o órbitas, mas deverão incluir sempre pelo menos um ponto do eixo dos *y* (onde *x* é zero).

- (c) O sistema tem uma órbita heteroclínica que une os dois pontos de sela (1, -1) e (-1, -1), e no interior dessa órbita todas as curvas de evolução são ciclos.
- (d) A afirmação é falsa. As duas curvas aparentemente parabólicas são realmente 6 curvas de evolução separadas, que se aproximam assimptoticamente dos dois pontos de sela, sem tocá-los. As curvas de evolução nunca podem cruzar-se entre si.

Perguntas

3. D

6. C

9. A

12. E

15. B

4. E

7. E

10. D

13. A

16. B

5. E **8.** C

11. E

14. D

17. E