

Mechanical Data

Case: SOT-26

DUAL N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0

Terminals: Finish - Matte Tin annealed over Copper

leadframe. Solderable per MIL-STD-202, Method 208

Moisture Sensitivity: Level 1 per J-STD-020C

Terminal Connections: See Diagram

Marking Information: See Page 4

Ordering Information: See Page 4

Weight: 0.015 grams (approximate)

Features

- **Dual N-Channel MOSFET**
- Low On-Resistance
- Very Low Gate Threshold Voltage (1.0V max)
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- Small Surface Mount Package
- Lead Free By Design/RoHS Compliant (Note 2)
- ESD Protected up to 2kV
- "Green" Device (Note 4)
- Qualified to AEC-Q101 standards for High Reliability

BOTTOM VIEW

TOP VIEW

SOT-26

TOP VIEW Internal Schematic

Maximum Ratings @T_A = 25°C unless otherwise specified

	Characteristic	Symbol	Value	Unit
Drain Source Voltage		V_{DSS}	50	V
Gate-Source Voltage		V_{GSS}	±20	V
Drain Current (Note 1)	Continuous	1-	305	m^
	Pulsed (Note 3)	ıD	800	mA

Thermal Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Total Power Dissipation (Note 1)	P _D	400	mW
Thermal Resistance, Junction to Ambient	$R_{ hetaJA}$	313	°C/W
Operating and Storage Temperature Range	T _i , T _{STG}	-65 to +150	°C

Electrical Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 5)							•
Drain-Source Breakdown Voltage		BV _{DSS}	50	_	_	V	$V_{GS} = 0V, I_D = 10\mu A$
Zero Gate Voltage Drain Current	@ T _C = 25°C	I _{DSS}	_	_	60	nA	$V_{DS} = 50V, V_{GS} = 0V$
Gate-Body Leakage		I _{GSS}	_	_	1 500 50	μA nA nA	$V_{GS} = \pm 12V, V_{DS} = 0V$ $V_{GS} = \pm 10V, V_{DS} = 0V$ $V_{GS} = \pm 5V, V_{DS} = 0V$
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage		V _{GS(th)}	0.49	_	1.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
Static Drain-Source On-Resistance		R _{DS (ON)}	_	_ _ _	3.0 2.5 2.0	Ω	$V_{GS} = 1.8V$, $I_D = 50mA$ $V_{GS} = 2.5V$, $I_D = 50mA$ $V_{GS} = 5.0V$, $I_D = 50mA$
On-State Drain Current		I _{D(ON)}	0.5	1.4	_	Α	$V_{GS} = 10V, V_{DS} = 7.5V$
Forward Transconductance		Y _{fs}	200	_	_	mS	$V_{DS} = 10V, I_{D} = 0.2A$
Source-Drain Diode Forward Voltage		V _{SD}	0.5	_	1.4	V	$V_{GS} = 0V, I_{S} = 115mA$
DYNAMIC CHARACTERISTICS				•	•	•	
Input Capacitance		Ciss	_	_	50	pF	V 05V V 0V
Output Capacitance			_	_	25	pF	$V_{DS} = 25V, V_{GS} = 0V$ - f = 1.0MHz
Reverse Transfer Capacitance			_	_	5.0	pF	71 = 1.0101112

Notes:

- Device mounted on FR-4 PCB. 1.
- No purposefully added lead.
- Pulse width ≤10μS, Duty Cycle ≤1%.
- Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
 - Short duration pulse test used to minimize self-heating effect.

Fig. 5 Static Drain-Source On-Resistance vs. Drain Current

Fig. 4 Static Drain-Source On-Resistance vs. Drain Current

Fig. 6 Static Drain-Source On-Resistance vs. Gate-Source Voltage

Fig. 7 Static Drain-Source On-State Resistance vs. Ambient Temperature

Fig. 9 Reverse Drain Current vs. Source-Drain Voltage

Fig. 8 Reverse Drain Current vs. Source-Drain Voltage

Fig.10 Forward Transfer Admittance vs. Drain Current

Ordering Information (Note 6)

Part Number	Case	Packaging
DMN5L06DMK-7	SOT-26	3000/Tape & Reel

Notes: 6. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

DAB = Marking Code YM = Date Code Marking Y = Year ex: T = 2006 M = Month ex: 9 = September

Date Code Key

Year	200	6	2007		2008	20	09	2010		2011	2	2012
Code	Т		U		V	V	٧	Х		Υ		Z
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

Package Outline Dimensions

SOT-26					
Dim	Min	Max	Тур		
Α	0.35	0.50	0.38		
В	1.50	1.70	1.60		
С	2.70	3.00	2.80		
D	_	_	0.95		
F	-	-	0.55		
Н	2.90	3.10	3.00		
J	0.013	0.10	0.05		
K	1.00	1.30	1.10		
L	0.35	0.55	0.40		
М	0.10	0.20	0.15		
α	0°	8°	_		
All Dimensions in mm					

Suggested Pad Layout

Dimensions	Value (in mm)
Z	3.20
G	1.60
Х	0.55
Y	0.80
С	2.40
E	0.95

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.