

Shape from Texture

Learning based

i-VisionGroup

Shape from Texture

- □ 从纹理图案恢复深度信息
 - 表面光滑,深度渐变 smooth
 - 纹理元素均匀分布 homogeneous
 - 纹理元素之间没有关联 isotropic

LBP

Shape from Texture

□ 最简单的纹理Periodic—频谱法

□ 一般纹理Cyclostationary—texton法

□ 复杂纹理

Texture description

Use filter outputs to measure local spatial frequency.

Fig. 2. (a) Cylinder with sinusoidal grating texture. (b) Horizontal component of image spatial frequency on center cross-section of (a).

Texture projection

Assume orthographic projection.

Fig. 5. Top row: real part of Gabor filter with radial frequency of 12 cycles/image, and a texture patch. Bottom row: back-projections of Gabor filter and texture patch onto a plane with orientation $(\sigma, \tau) = (60^{\circ}, 45^{\circ})$.

Slant and tilt

由Gabor滤波结果确定倾角 实际算法考虑到噪声等干扰,采用二阶矩计算

$$a(x) = \sum_{i} u_{i}^{2}(x) A_{i}^{2}(x) \qquad M = \frac{1}{2} \left(a + c + \sqrt{b^{2} + (a - c)^{2}} \right)$$

$$b(x) = 2 \sum_{i} u_{i}(x) v_{i}(x) A_{i}^{2}(x) \qquad m = \frac{1}{2} \left(a + c - \sqrt{b^{2} + (a - c)^{2}} \right)$$

$$c(x) = \sum_{i} v_{i}^{2}(x) A_{i}^{2}(x), \qquad \theta = \frac{1}{2} \arctan \frac{b}{a - c}.$$

$$\tau = \left\{\theta \pm \frac{1}{2}\arccos\lambda, \ \theta \pm \frac{1}{2}\arccos\lambda + \pi\right\} \qquad \lambda = \frac{\left(\cos^2\sigma + 1\right)(M+m) - 2\left(M_s + m_s\right)}{\sin^2\sigma(M-m)}$$

Box 1. Summary of algorithm

- 1. Convolve the image with Gabor functions and their partial derivatives, and smooth the filter output amplitudes (to reduce noise) by convolving them with a Gaussian.
- 2. Select the Gabor filter h_k with the largest amplitude output at each point.
- 3. Compute the (signed) instantaneous frequency $\mathbf{u}_i(\mathbf{x}_i)$ at each point using equation (6).
- 4. Sample (σ, τ) -space, backprojecting $\mathbf{u}_i(\mathbf{x}_i)$ to compute $\mathbf{u}_s(\mathbf{x}_s)$ using equation (20). Compute the variance $V_{\sigma,\tau}$ of $\mathbf{u}_s(\mathbf{x}_s)$. Coarse-to-fine sampling in multiple stages may be used.
- 5. Output the values of (σ, τ) for which $V_{\sigma, \tau}$ is a minimum.

Texture description

Non-occluded textons, and approximated as flat.

The two pieces of the solution

每个texton有三个旋转自由度 If we knew the transformations

- We can find the textons
- We can find the local intensity contrast

By minimization of:

If we knew the texton and contrast

 Recover the transformation by transforming the texton to match each local patch.

纹理元素 变形
$$\frac{1}{2\sigma_{im}^2}\sum_i\left(||\lambda_i\mathcal{I}_\mu-\mathcal{T}_i^{-1}\mathcal{I}||^2\delta_i\right)+\sum_i(1-\delta_i)K+\frac{1}{2\sigma_{light}^2}(\lambda_i-1)^2+L$$
 对比度 隐变量 Prind interest points

EM iterations

EM→GAN

- Learning Texture Manifolds with the Periodic Spatial GAN, CVPR2017
- □ GAN生成纹理

2.3. Spatially Periodic Dimensions

The third part of Z, Z^p , contains spatial periodic functions, or plane waves in each channel i:

$$Z_{\lambda\mu i}^{p} = \zeta_{\lambda\mu i}(K) = \sin\left(\mathbf{k}_{i}^{T} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} + \phi_{i}\right),$$
 (2)

Model

- Toward a Universal Model for Shape from Texture, CVPR2020
- **□** Generator
- Discriminator
- Warper

- □ 需要求解
 - 展平后的texture分布
 - 扭曲场

$$\begin{split} G^{(t)}, D^{(t)} &= \arg\min_{G} \max_{D} \mathbb{E}_{I \sim q(I; W^{(t-1)})}[\log D(I)] \\ &+ \mathbb{E}_{Z \sim p(Z)}[\log(1 - D(G(Z)))], \\ W^{(t)} &= \arg\max_{W} \mathbb{E}_{I \sim q(I; W)}[\log D^{(t)}(I)] - C(W), \end{split}$$

Generator

- □ M+3,减少加窗效应
- □ 三种随机输入
 - local maps [-1,1] 调节纹理图案, 噪声
 - periodic maps, 变频正弦波

$$Z_p^{(i,j)}(\lambda,\mu) = \sin\left(2\pi k_1^{(i,j)}\lambda + 2\pi k_2^{(i,j)}\mu + \phi^{(i,j)}\right),$$

$$k_1^{(i,j)} = a^{(i,j)}\cos(\theta^{(i,j)}),$$

$$k_2^{(i,j)} = a^{(i,j)}\sin(\theta^{(i,j)}),$$

• global map [-1,1], 全局噪声, 比如阴影

Figure 3: Side view of generator, showing only one spatial dimension (spatial operations are square). Arrows denote 5×5 stride-2 deconvolution followed by a ReLU and a batch normalization layer. Each arrow's output is cropped (darkly shaded) to avoid windowing effects. Adjacent blocks denote concatenation, and colored blocks are input samples from predefined stochastic processes: green are spatially-constant random samples ("global maps"); yellow are spatially i.i.d. random samples ("local maps"); and pink are randomly-shifted sinusoids with learnable frequencies ("periodic maps"). See text for details.

Discriminator

- Symmetrically to the generator
 - four stride-2 convolutions
 - leaky-ReLU activation with slope 0.2
 - use "valid" convolution
- □ 输出概率

Warper

■ 3D normal and tangent vectors

$$\hat{n} = \frac{-p\hat{x} - q\hat{y} + \hat{z}}{\sqrt{p^2 + q^2 + 1}}, \ \hat{t} = \frac{cn_z\hat{x} + sn_z\hat{y} - (cn_x + sn_y)\hat{z}}{\sqrt{c^2n_z^2 + s^2n_z^2 + (cn_x + sn_y)^2}}.$$

- 3×3 rotation $\hat{x} \mapsto \hat{t}, \hat{z} \mapsto \hat{n}$, and $\hat{y} \mapsto \hat{n} \times \hat{t} \triangleq \hat{b}$.
- **口** 正交投影 $W(x,y) = \begin{bmatrix} t_x(x,y) & b_x(x,y) \\ t_y(x,y) & b_y(x,y) \end{bmatrix}$
- □ 连续性约束+光滑性约束

• Integrability
$$C^{(I)} = \frac{\alpha^{(I)}}{hw} \sum_{i,j} [p_{i,j+1} - p_{i+1,j+1} + p_{i,j} - p_{i+1,j} + q_{i,j+1} + q_{i+1,j+1} - q_{i,j} - q_{i+1,j}]^2,$$

- $\bullet \quad \text{Smoothness} \quad C^{(S)} = \alpha_n^{(S)} \frac{1}{hw} \|\nabla \hat{n}\|_2^2 + \alpha_t^{(S)} \frac{1}{hw} \|\nabla \hat{t}\|_2^2,$
- □ 高斯金字塔多尺度优化

Experiments

- \square generator output of size 192×192 (M = 12)
- unwarper patch size {96, 128, 160, 192}
- Synthetic images created with Blender MAE($\hat{n}, \hat{n}^{(gt)}$) = $\frac{1}{hw} \sum_{i=1}^{h} \sum_{j=1}^{w} |\cos^{-1}(\hat{n}_{ij} \cdot \hat{n}_{ij}^{(gt)})|$
- □ 有效恢复形状
 - 只有纹理图难以辨认形状的
 - 没有边缘的
 - 对非周期纹理也有效
- □ 缺陷
 - 对于接近平坦的恢复成平面
 - 局部极值产生褶皱

Figure 5: Shape and texture results for synthetic images. From left to right: surface normals of the true shape; input image; output surface normals (with MAE); and sample from output texture generator. Green inset squares show patch sizes used by the unwarper.

Experiments

■ isolated textons [16, 17] and stationarity [4]

■ Stationarity [4] works well for periodic textures but breaks for general cyclostationary ones.

■ Isolated textons [17] works well for non-overlapping texture elements

but breaks when they overlap.

		焰					R			4	0
[4]	30.5	41.2	45.4	35.6	32.7	37.8	36.1	38.7	29.5	29.0	24.4
[17]	-	-	12.9	35.9	21.5	23.7	-	19.8	22.6	21.6	6.9
	27.7										
ours	15.2	16.8	12.6	15.0	18.6	17.4	19.5	17.1	14.0	20.1	14.9

Table 1: Shape accuracy (MAE, in degrees) of our and other algorithms for various textures, including those of Figs. 5 & 6 and four additional ones. Each entry is average error over four images with the same texture and four different shapes (see supplement for complete visualizations). Missing entries for [17] are failures to identify a frontal textons.

Conclusion

- □ 三方对抗
- □ 可适用各种纹理
- Our results suggest that it is worth considering how multi-player games might be used to address other types of intrinsic image tasks, and how they might be combined with perceptual grouping for higher-level vision tasks in real-world environments.

