HN462732, HN462732G

4096-word × 8-bit U.V. Erasable and Programmable Read Only Memory

The HN462732 is a 4096 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a 24-pin, dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.

FEATURES

• Single Power Supply +5V ±5%

Simple Programming Program Voltage: +25V D.C.

Program with One 50ms Pulse

Static No Clocks Required

 Inputs and Outputs TTL Compatible During Both Read and Program Modes

• Fully Decoded On-Chip Address Decode

Access Time 450ns (max)

Low Power Dissipation 150mA (max) Active Currents

30mA (max) Standby Current

• Three State Output OR-Tie-Capability

Compatible with INTEL 2732

■ BLOCK DIAGRAM

MODE SELECTION

Pins	CE	OE /VPP	Vcc	Outputs
Mode	(18)	(20)	(24)	(9~11, 13~17)
Read	VIL	VIL	+5	Dout
Stand by	VIH	Don't Care	+5	High Z
Program	VIL	VPP	+5	Din
Program Verify	VIL	VIL	+5	Dout
Program Inhibit	VIH	VPP	+5	High Z

PIN ARRANGEMENT

MADSOLUTE MAXIMUM RATINGS

ADOOLO ! I		Value	Unit
Item	Symbol	value	
	Top	0 to +70	•C
Operating Temperature Range		-65 to +125	°C
Storage Temperature Range	Tate		V
All Input and Output Voltage*	Vτ	-0.3 to +7	
V. Voltage	OE /VPP	-0.3 to +28	V

* With respect to GND

READ OPERATION

ullet DC AND OPERATING CHARACTERISTICS ($\it Ta=0$ to $\pm 70^{\circ}{\rm C}$, $\it V_{cc}=5{\rm V}\pm 5\%$, $\it V_{PP}=V_{cc}\pm 0.6{\rm V}$)

	Symbol	Test Condition	min.	typ.	max.	Unit
Parameter			-	_	10	μA
Input Leakage Current (Except OE/VPP)	Iui	$V_{IN} = 5.25 \text{ V}$	-		10	μΑ
OE /VPF Input Leakage Current	ILIZ	$V_{IN} = 5.25 \text{ V}$				μΑ
Output Leakage Current	ILO	Vout - 5.25 V	_		10	
	Iccı	$\overline{\text{CE}} - V_{IH}, \overline{\text{OE}} - V_{IL}$	-	-	30	m A
Vcc Current (Standby)	Iccz	$\overline{OE} - \overline{CE} - V_{IL}$	_	-	150	m A
Vcc Current (Active)		OE CE VIL	-0.1	_	0.8	V
Input Low Voltage	VIL				$V_{cc}+1$	V
Input High Voltage	VIH		2.0		-	v
Output Low Voltage	Vol	$I_{OL}=2.1\mathrm{mA}$	_		0.45	
Output Low Voltage	Von	$I_{OH} = -400 \mu\text{A}$	2.4		_	V

•AC CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5$ V $\pm 5\%$, $V_{PP}=V_{cc}\pm 0.6$ V)

	Symbol	Test Condition	min	typ	max	Unit
Parameter		$\overline{CE} = \overline{OE} = V_{IL}$	-	_	450	ns
Address to Output Delay	tacc	OE - VIL	-	_	450	ns
CE to Output Delay	t CE	CE - VIL	_	_	120	- ns
Output Enable to Output Delay	toE	CE - VIL	0	_	100	ns
Output Enable High to Output Float *	tor	CE - OE - VIL	0	_	-	ns
Address to Output Hold	tон	CE - OE - VIL	1 0			1

* tor defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

• SWITCHING CHARACTERISTICS

Test Condition

Input Pulse Levels:

0.8V to 2.2V

Input Rise and Fall Times:

≤ 20ns

Output Load:

1TTL Gate + 100pF

Reference Level for Measuring Timing:

Inputs 1V and 2V Outputs 0.8V and 2V

• CAPACITANCE (Ta-25°C, f-1MHz)

	Symbol	Test Condition	min.	typ.	max.	Unit
Parameter	-,		_	_	6	pF
Input Capacitance (Except $\overline{\text{OE}}/V_{PP}$)	Gni	V _{IN} -0V	-		20	pF
OE /Vpp Input Capacitance	C _{1 N2}	$V_{IN} = 0 \text{ V}$			20	-
Output Capacitance	Cour	V 0 V	_		12	pF

PROGRAMMING OPERATION

● DC PROGRAMMING CHARACTERISTICS (V_{CC}=5V±5%, V_{PP}=25V±1V, T_a=25°C±5°C)

Parameter	Symbol	Test Condition	min.	typ.	max.	Unit
Input Leakage Current	Iu	VIN-5.25V/0.4V	-	-	10	μA
Output Low Voltage During Verify	Vol	IoL = 2.1 mA	-	-	0.4	V
Output High Voltage During Verify	Von	$I_{OH} = -400 \mu\text{A}$	2.4	_	-	V.
Vcc Supply Current	Icc		-	-	150	m A
Input Low Level	VIL		-0.1	-	0.8	V
Input High Level (All Input Except $\overline{\text{OE}}/V_{PP}$)	VIH		2.0	-	Vcc+1	V
VPP Supply Current	IPP	$\overline{CE} = V_{IL}, \overline{OE} = V_{PP}$	-	-	30	mA

• AC PROGRAMMING CHARACTERISTICS ($V_{CC} = 5V \pm 5\%$, $V_{PP} = 25V \pm 1V$, $T_a = 25^{\circ}C \pm 5^{\circ}C$)

Parameter	Symbol	Test Condition	min.	typ.	max.	Unit
Address Setup Time	tas		2	-	-	μs
OE Setup Time	toes		2	_	_	μs
Data Setup Time	tos		2	-	-	μs
Address Hold Time	t _{AH}		0	-	-	μs
OE Hold Time	toen		2	-	-	μs
Data Hold Time	t _{DH}		2	-	-	μs
Chip Enable to Output Float Delay*	lor		0	_	120	ns
Data Valid from CE	tov	$\overline{CE} = V_{lL}, \overline{OE} = V_{lL}$	-	-	1	μs
CE Pulse Width During Programming	t _{PW}		45	50	55	ms
OE Pulse Rise Time During Programming	t PRT		50	-	-	ns
VPP Recovery Time	. tvr		2	-	-	μs

^{*} tar defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

• SWITCHING CHARACTERISTICS Test Conditions

Input Pulse Level:

Input Rise and Fall Times:

Output Load:

Reference Level for Measuring Timing:

0.8V to 2.2V

≤ 20ns

1TTL Gate + 100pF Inputs; 1V and 2V,

Outputs; 0.8V and 2V

• ERASE

Erasure of HN462732 is performed by exposure to Ultraviolet light of 2537Å, and all the output data are changed to "1" after this prosedure.

The minimum integrated close (i.e., UV intensity x exposure time) for erasure is 15W - sec/cm².

SUPPLY CURRENT VS. SUPPLY VOLTAGE

ACCESS TIME vs. SUPPLY VOLTAGE

SUPPLY CURRENT VS. AMBIENT TEMPERATURE

ACCESS TIME vs. AMBIENT TEMPERATURE

HN462532, HN462532G

4096-word × 8-bit U. V. Erasable and Programmable Read Only Memory

The HN462532 is a 4096 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a 24-pin, dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.

FEATURES

• Single Power Supply +5V ±5%

Simple Programming Program Voltage: +25V D.C.
 Program with One 50ms Pulse

Static No Clocks Required

 Inputs and Outputs TTL Compatible During Both Read and Program Modes

Fully Decoded On-Chip Address Decode

Access Time 450ns (max.)

 Low Power Dissipation 858mW (max) Active Power 201mW (max) Standby Power

• Three Stste Output OR-Tie Capability

Compatible with TMS2532

■ BLOCK DIAGRAM

MODE SELECTION

Pins	CE (20)	V_{PP} (21)	V _{cc} (24)	Outputs (9 to 11, 13 to 17)
Read	VIL	+5	+5	Dout
Stand by	VIH	+5	+5	High Z
Program	Pulsed VIH to VIL	+25	+5	Din
Program Inhibit	VIH	+25	+5	High Z

PIN ARRANGEMENT

MASSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit
All Input and Output Voltages*	V_{τ}	-0.3 to +7	·V
V _{PP} Voltage*	V_{PP}	-0.3 to +28	ν
Operating Temperature Range	Top.	0 to +70	°C
Storage Temperature Range	Tree	-65 to +125	°C

^{*} With respect to GND.

READ OPERATION

• DC AND OPERATING CHARACTERISTICS ($T_a=0$ to +70°C, $V_{cc}=5$ V ±5 %, $V_{PP}=V_{cc}\pm0.6$ V)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Leakage Current	Iu	V., = 5.25 V	-	-	10	μΑ
Output Leakage Current	ILO	V _{out} = 5.25 V / 0.4 V	_	-	10	μA
VPP Current	I_{PP1}	$V_{PF} = 5.85 \mathrm{V}$	_	-	12	m A
Vcc Current (Standby)	Icci	$\overline{\text{CE}} = V_{IH}$	_	-	25	m A
Vcc Current (Active)	Iccz	$\overline{\text{CE}} = V_{IL}$	-	-	150	m A
Input Low Voltage	VIL		-0.1		0.8	V
Input High Voltage	VIH		2.0	-	Vcc+1	V
Output Low Voltage	Vol	I _{OL} = 2.1 m A	-	-	0.4	V
Output High Voltage	Von	$I_{OH} = -400 \mu\text{A}$	2.4	-	-	V

Note: Vcc must be applied simultaneously or before Vrv and removed simultaneously or after Vrv.

• AC CHARACTERISTICS (Ta=0 to ± 70 °C, $V_{CC}=5$ V $\pm 5\%$, $V_{PP}=V_{CC}\pm 0.6$ V)

Parameter	Symbol	Test Condition	min	typ	max	Uhit
Address to Output Delay	tacc	$\overline{\text{CE}} = V_{IL}$	_	_	450	ns
CE to Output Delay	tcE		_	1-	450	ns
CE High to Output Float *	tor		0	_	100	ns
Address to Output Hold	t on	$\overline{\text{CE}} = V_{IL}$	0	-	-	ns

^{*:} to defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

• SWITCHING CHARACTERISTICS

Test Conditions

Input Pulse Levels:

0.8V to 2.2V

Input Rise and Fall Times:

≤ 20 ns

Output Load: Reference Level for Measuring Timing: 1TTL Gate + 100pF Inputs; 1V and 2V, Outputs; 0.8V and 2V

• CAPACITANCE ($Ta=25^{\circ}\text{C}, f=1\,\text{M}\,\text{Hz}$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Capacitance	C	V 0 V	-	-	6	pF
Output Capacitance	Cout	V _{mi} = 0 V	-	-	12	pF

PROGRAMMING OPERATION

• DC PROGRAMMING CHARACTERISTICS (T_a =25°C±5°C, V_{cc} =5V±5%, V_{PP} =25V±1V)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Leakage Current	I_{Ll}	V5.25 V /0.4 V	_	-	10	μA
VPP Supply Current During Programming	I_{PP2}	$\overline{\text{CE}} = V_{IL}$	-	-	30	m A
Vcc Supply Current	Icc		_	-	150	m A
Input Low Level	VIL		-0.1	_	0.8	V
Input High Level-	VIH		2.0	-	$V_{cc}+1$	V

• AC PROGRAMMING CHARACTERISTICS ($Ta=25^{\circ}C\pm5^{\circ}C$, $V_{cc}=5V\pm5\%$, $V_{PP}=25V\pm1V$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Address Setup Time	LAS		2	-	-	μs
Data Setup Time	tos		2	-	-	μs
Address Hold Time	t _{AH}		2	-	-	μs
Data Hold Time	t _{DH}		2	-	- 7	μs
Setup Time from VPP	tvpps		0	-	-	ns
Program Pulse Hold Time	t PRH		0	-	-	ns
VPP Hold Time	t vppH		0	-	-	ns
Program Pulse Width	t _{PW}		45	50	55	ms
Program Pulse Time	t PRT		. 5	-	-	ns
Program Pulse Time	tpfT		5	-	_	ns

Note: $V_{C\!\!C}$ must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} ,

• SWITCHING CHARACTERISTICS

Test Conditions

Input Pulse Level:

Input Rise and Fall Times:

Output Load:

Reference Level for Measuring Timing:

0.8V to 2.2V ≤ 20 ns

1TTL Gate + 100pF

Inputs; 1V and 2V, Outputs; 0.8V and 2V

• ERASE

Erasure of HN462532 is performed by exposure to ultraviolet light with a wavelength of 2537Å, and all the output data are changed to "1" after this erasure procedure. The minimum integrated close (i.e., UV intensity x exposure time) for erasure is 15W • sec/cm².

ACCESS TIME VS. SUPPLY VOLTAGE

SUPPLY CURRENT vs. SUPPLY VOLTAGE

ACCESS TIME VS. AMBIENT TEMPERATURE

SUPPLY CURRENT VS. AMBIENT TEMPERATURE

