GLM happy surprised angry male female age

/WSFACTOR=AI_Scores 6 Polynomial

/MEASURE=Results

/METHOD=SSTYPE(3)

/PLOT=PROFILE(AI_Scores) TYPE=BAR ERRORBAR=CI MEANREFERENCE=YES

/EMMEANS=TABLES(AI_Scores) COMPARE ADJ(BONFERRONI)

/EMMEANS=TABLES(OVERALL)

/PRINT=DESCRIPTIVE ETASQ

/CRITERIA=ALPHA(.05)

/WSDESIGN=AI_Scores.

Allgemeines Lineares Modell

Anmerkungen

Ausgabe erstellt		24-JAN-2020 11:21:44
Kommentare		
Eingabe	Daten	/Users/jens/Downloads/ Al_Data.sav
	Aktiver Datensatz	DataSet2
	Filter	<keine></keine>
	Gewichtung	<keine></keine>
	Aufgeteilte Datei	<keine></keine>
	Anzahl der Zeilen in der Arbeitsdatei	33
Behandlung fehlender Werte	Definition für "fehlend"	Benutzerdefinierte fehlende Werte werden als fehlend behandelt.
	Verwendete Fälle	Die Statistik basiert auf allen Fällen mit gültigen Daten für alle Variablen im Modell.
Syntax		GLM happy surprised angry male female age /WSFACTOR=AI_Scores 6 Polynomial /MEASURE=Results /METHOD=SSTYPE(3) /PLOT=PROFILE (AI_Scores) TYPE=BAR ERRORBAR=CI MEANREFERENCE=YES /EMMEANS=TABLES (AI_Scores) COMPARE ADJ(BONFERRONI) /EMMEANS=TABLES (OVERALL) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=AI_Scores.
Ressourcen	Prozessorzeit	00:00:00,54
	Verstrichene Zeit	00:00:01,00

Innersubjektfaktore n

Maß: Results

Abhängige Variable

1 happy
2 surprised
3 angry
4 male
5 female
6 age

Deskriptive Statistiken

	Mittelwert	Std Abweichung	N
happy	4,97	1,704	33
surprised	4,15	1,544	33
angry	4,39	1,694	33
male	4,67	1,979	33
female	4,21	1,867	33
age	4,39	1,540	33

Multivariate Tests^a

Effekt		Wert	F	Hypothese df	Fehler df	Sig.	Partielles Eta- Quadrat
Al_Scores	Pillai-Spur	0,187	1,291 ^b	5,000	28,000	0,296	0,187
	Wilks-Lambda	0,813	1,291 ^b	5,000	28,000	0,296	0,187
	Hotelling-Spur	0,231	1,291 ^b	5,000	28,000	0,296	0,187
	Größte charakteristische Wurzel nach Roy	0,231	1,291 ^b	5,000	28,000	0,296	0,187

a. Design: Konstanter Term Innersubjektdesign: Al_Scores

b. Exakte Statistik

Mauchly-Test auf Sphärizität a

Maß: Results

						Epsilon ^b	
Innersubjekteffekt	Mauchly-W	Approx. Chi- Quadrat	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Untergrenze
Al_Scores	0,195	49,220	14	0,000	0,607	0,677	0,200

Prüft die Nullhypothese, daß sich die Fehlerkovarianz-Matrix der orthonormalisierten transformierten abhängigen Variablen proportional zur Einheitsmatrix verhält.

a. Design: Konstanter Term Innersubjektdesign: Al_Scores

b. Kann zum Korrigieren der Freiheitsgrade für die gemittelten Signifikanztests verwendet werden. In der Tabelle mit den Tests der Effekte innerhalb der Subjekte werden korrigierte Tests angezeigt.

Tests der Innersubjekteffekte

Maß: Results

Quelle		Quadratsumm e vom Typ III	df	Mittel der Quadrate	F	Sig.	Partielles Eta- Quadrat
Al_Scores	Sphärizität angenommen	15,434	5	3,087	1,533	0,182	0,046
	Greenhouse-Geisser	15,434	3,034	5,088	1,533	0,211	0,046
	Huynh-Feldt	15,434	3,387	4,557	1,533	0,205	0,046
	Untergrenze	15,434	1,000	15,434	1,533	0,225	0,046
Fehler(Al_Scores)	Sphärizität angenommen	322,232	160	2,014			
	Greenhouse-Geisser	322,232	97,081	3,319			
	Huynh-Feldt	322,232	108,391	2,973			
	Untergrenze	322,232	32,000	10,070			

Tests der Innersubjektkontraste

Maß: Results

Quelle	Al_Scores	Quadratsumm e vom Typ III	df	Mittel der Quadrate	F	Sig.	Partielles Eta- Quadrat
Al_Scores	Linear	2,771	1	2,771	0,841	0,366	0,026
	Quadratisch	1,922	1	1,922	1,286	0,265	0,039
	Kubisch	3,540	1	3,540	1,355	0,253	0,041
	Ordnung 4	6,754	1	6,754	5,129	0,030	0,138
	Ordnung 5	0,447	1	0,447	0,332	0,569	0,010
Fehler(Al_Scores)	Linear	105,429	32	3,295			
	Quadratisch	47,851	32	1,495			
	Kubisch	83,622	32	2,613			
	Ordnung 4	42,139	32	1,317			
	Ordnung 5	43,191	32	1,350			

Tests der Zwischensubjekteffekte

Maß: Results

Transformierte Variable: Mittel

Quelle	Quadratsumm e vom Typ III	df	Mittel der Quadrate	F	Sig.	Partielles Eta- Quadrat
Konstanter Term	3946,747	1	3946,747	501,999	0,000	0,940
Fehler	251,586	32	7,862			

Geschätzte Randmittel

1. Al_Scores

Schätzer

Maß: Results

		Standard	95%-Konfid	lenzintervall
AI_Scores	Mittelwert	Fehler	Untergrenze	Obergrenze
1	4,970	0,297	4,365	5,574
2	4,152	0,269	3,604	4,699
3	4,394	0,295	3,793	4,995
4	4,667	0,345	3,965	5,368
5	4,212	0,325	3,550	4,874
6	4,394	0,268	3,848	4,940

Paarweise Vergleiche

Maß: Results

					95% Konfidenz Diffe	intervall für die renz ^a
(I)AI_Scores	(J)AI_Scores	Mittlere Differenz (I-J)	Standard Fehler	Sig. ^a	Untergrenze	Obergrenze
1	2	0,818	0,357	0,432	-0,316	1,952
	3	0,576	0,311	1,000	-0,410	1,562
	4	0,303	0,378	1,000	-0,896	1,502
	5	0,758	0,379	0,817	-0,446	1,961
	6	0,576	0,359	1,000	-0,563	1,714
2	1	-0,818	0,357	0,432	-1,952	0,316
	3	-0,242	0,218	1,000	-0,933	0,448
	4	-0,515	0,442	1,000	-1,917	0,887
	5	-0,061	0,353	1,000	-1,181	1,060
	6	-0,242	0,382	1,000	-1,454	0,969
3	1	-0,576	0,311	1,000	-1,562	0,410
	2	0,242	0,218	1,000	-0,448	0,933
	4	-0,273	0,431	1,000	-1,641	1,096
	5	0,182	0,373	1,000	-1,001	1,365
	6	0,000	0,367	1,000	-1,163	1,163
4	1	-0,303	0,378	1,000	-1,502	0,896
	2	0,515	0,442	1,000	-0,887	1,917
	3	0,273	0,431	1,000	-1,096	1,641
	5	0,455	0,218	0,677	-0,237	1,146
	6	0,273	0,309	1,000	-0,706	1,251
5	1	-0,758	0,379	0,817	-1,961	0,446
	2	0,061	0,353	1,000	-1,060	1,181
	3	-0,182	0,373	1,000	-1,365	1,001
	4	-0,455	0,218	0,677	-1,146	0,237
	6	-0,182	0,273	1,000	-1,049	0,685
6	1	-0,576	0,359	1,000	-1,714	0,563
	2	0,242	0,382	1,000	-0,969	1,454
	3	0,000	0,367	1,000	-1,163	1,163
	4	-0,273	0,309	1,000	-1,251	0,706
	5	0,182	0,273	1,000	-0,685	1,049

Basiert auf den geschätzten Randmitteln

a. Anpassung für Mehrfachvergleiche: Bonferroni.

Multivariate Tests

	Wert	F	Hypothese df	Fehler df	Sig.	Partielles Eta- Quadrat
Pillai-Spur	0,187	1,291 ^a	5,000	28,000	0,296	0,187
Wilks-Lambda	0,813	1,291 ^a	5,000	28,000	0,296	0,187
Hotelling-Spur	0,231	1,291 ^a	5,000	28,000	0,296	0,187
Größte charakteristische Wurzel nach Roy	0,231	1,291 ^a	5,000	28,000	0,296	0,187

Jedes F prüft den multivariaten Effekt von Al_Scores. Diese Tests basieren auf den linear unabhängigen paarweisen Vergleichen zwischen den geschätzten Randmitteln.

a. Exakte Statistik

2. Gesamtmittelwert

Maß: Results

	Standard	95%-Konfid	lenzintervall
Mittelwert	Fehler	Untergrenze	Obergrenze
4,465	0,199	4,059	4,871

Profildiagramm

GLM happy surprised angry

/WSFACTOR=AI_Scores 3 Polynomial

/MEASURE=Results

/METHOD=SSTYPE(3)

/PLOT=PROFILE(AI_Scores) TYPE=BAR ERRORBAR=CI MEANREFERENCE=YES

/EMMEANS=TABLES(AI_Scores) COMPARE ADJ(BONFERRONI)

/EMMEANS=TABLES(OVERALL)

/PRINT=DESCRIPTIVE ETASQ

/CRITERIA=ALPHA(.05)

/WSDESIGN=AI_Scores.

Allgemeines Lineares Modell

Anmerkungen

A I	-	04 1411 0000 40 44 00
Ausgabe erstellt		24-JAN-2020 12:44:28
Kommentare Eingabe	Daten	/Users/jens/Downloads/ Al Data.sav
	Aktiver Datensatz	DataSet2
	Filter	<keine></keine>
	Gewichtung	<keine></keine>
	Aufgeteilte Datei	<keine></keine>
	Anzahl der Zeilen in der Arbeitsdatei	33
Behandlung fehlender Werte	Definition für "fehlend"	Benutzerdefinierte fehlende Werte werden als fehlend behandelt.
	Verwendete Fälle	Die Statistik basiert auf allen Fällen mit gültigen Daten für alle Variablen im Modell.
Syntax		GLM happy surprised angry /WSFACTOR=AI_Scores 3 Polynomial /MEASURE=Results /METHOD=SSTYPE(3) /PLOT=PROFILE (AI_Scores) TYPE=BAR ERRORBAR=CI MEANREFERENCE=YES /EMMEANS=TABLES (AI_Scores) COMPARE ADJ(BONFERRONI) /EMMEANS=TABLES (OVERALL) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=AI_Scores.
Ressourcen	Prozessorzeit	00:00:00,35
	Verstrichene Zeit	00:00:01,00

Innersubjektfaktore n

Maß: Results

Al_Scores	Abhängige Variable
1	happy
2	surprised
3	angry

Deskriptive Statistiken

	Mittelwert	Std Abweichung	N
happy	4,97	1,704	33
surprised	4,15	1,544	33
angry	4,39	1,694	33

Multivariate Tests^a

Effekt		Wert	F	Hypothese df	Fehler df	Sig.	Partielles Eta- Quadrat
Al_Scores	Pillai-Spur	0,141	2,539 ^b	2,000	31,000	0,095	0,141
	Wilks-Lambda	0,859	2,539 ^b	2,000	31,000	0,095	0,141
	Hotelling-Spur	0,164	2,539 ^b	2,000	31,000	0,095	0,141
	Größte charakteristische Wurzel nach Roy	0,164	2,539 ^b	2,000	31,000	0,095	0,141

a. Design: Konstanter Term Innersubjektdesign: Al_Scores

b. Exakte Statistik

Mauchly-Test auf Sphärizität a

Maß: Results

						Epsilon ^b	
Innersubjekteffekt	Mauchly-W	Approx. Chi- Quadrat	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Untergrenze
Al_Scores	0,733	9,612	2	0,008	0,790	0,824	0,500

Prüft die Nullhypothese, daß sich die Fehlerkovarianz-Matrix der orthonormalisierten transformierten abhängigen Variablen proportional zur Einheitsmatrix verhält.

a. Design: Konstanter Term Innersubjektdesign: Al_Scores

b. Kann zum Korrigieren der Freiheitsgrade für die gemittelten Signifikanztests verwendet werden. In der Tabelle mit den Tests der Effekte innerhalb der Subjekte werden korrigierte Tests angezeigt.

Tests der Innersubjekteffekte

Maß: Results

Quelle		Quadratsumm e vom Typ III	df	Mittel der Quadrate	F	Sig.	Partielles Eta- Quadrat
Al_Scores	Sphärizität angenommen	11,657	2	5,828	3,899	0,025	0,109
	Greenhouse-Geisser	11,657	1,579	7,382	3,899	0,036	0,109
	Huynh-Feldt	11,657	1,647	7,077	3,899	0,034	0,109
	Untergrenze	11,657	1,000	11,657	3,899	0,057	0,109
Fehler(Al_Scores)	Sphärizität angenommen	95,677	64	1,495			
	Greenhouse-Geisser	95,677	50,529	1,894			
	Huynh-Feldt	95,677	52,709	1,815			
	Untergrenze	95,677	32,000	2,990			

Tests der Innersubjektkontraste

Maß: Results

Quelle	Al_Scores	Quadratsumm e vom Typ III	df	Mittel der Quadrate	F	Sig.	Partielles Eta- Quadrat
Al_Scores	Linear	5,470	1	5,470	3,430	0,073	0,097
	Quadratisch	6,187	1	6,187	4,434	0,043	0,122
Fehler(Al_Scores)	Linear	51,030	32	1,595			
	Quadratisch	44,646	32	1,395			

Tests der Zwischensubjekteffekte

Maß: Results

Transformierte Variable: Mittel

Quelle	Quadratsumm e vom Typ III	df	Mittel der Quadrate	F	Sig.	Partielles Eta- Quadrat
Konstanter Term	2009,253	1	2009,253	388,698	0,000	0,924
Fehler	165,414	32	5,169			

Geschätzte Randmittel

1. Al_Scores

Schätzer

Maß: Results

		Standard	95%-Konfid	enzintervall
Al_Scores	Mittelwert	Fehler	Untergrenze	Obergrenze
1	4,970	0,297	4,365	5,574
2	4,152	0,269	3,604	4,699
3	4,394	0,295	3,793	4,995

Paarweise Vergleiche

Maß: Results

					95% Konfidenzintervall für die Differenz ^a		
(I)AI_Scores	(J)AI_Scores	Mittlere Differenz (I-J)	Standard Fehler	Sig. ^a	Untergrenze	Obergrenze	
1	2	0,818	0,357	0,086	-0,085	1,721	
	3	0,576	0,311	0,220	-0,210	1,361	
2	1	-0,818	0,357	0,086	-1,721	0,085	
3	3	-0,242	0,218	0,821	-0,793	0,308	
3	1	-0,576	0,311	0,220	-1,361	0,210	
	2	0,242	0,218	0,821	-0,308	0,793	

Basiert auf den geschätzten Randmitteln

a. Anpassung für Mehrfachvergleiche: Bonferroni.

Multivariate Tests

	Wert	F	Hypothese df	Fehler df	Sig.	Partielles Eta- Quadrat
Pillai-Spur	0,141	2,539 ^a	2,000	31,000	0,095	0,141
Wilks-Lambda	0,859	2,539 ^a	2,000	31,000	0,095	0,141
Hotelling-Spur	0,164	2,539 ^a	2,000	31,000	0,095	0,141
Größte charakteristische Wurzel nach Roy	0,164	2,539 ^a	2,000	31,000	0,095	0,141

Jedes F prüft den multivariaten Effekt von Al_Scores. Diese Tests basieren auf den linear unabhängigen paarweisen Vergleichen zwischen den geschätzten Randmitteln.

a. Exakte Statistik

2. Gesamtmittelwert

Maß: Results

	Standard	95%-Konfid	lenzintervall	
Mittelwert			Obergrenze	
4,505	0,229	4,040	4,970	

Profildiagramm

Fehlerbalken: 95% CI