Foundations of Computer Security

Lecture 13: Covert Channels I

Dr. Bill Young
Department of Computer Sciences
University of Texas at Austin

Is BLP Secure?

Consider the simple lattice of labels in the diagram, where H > L. There are no need-to-know categories in this system.

If this represents a BLP lattice, then information flow is permitted from L to H, but not vice versa. This captures the metapolicy of this simple system. H L

If we can instantiate this system such that BLP is satisfied, but information flows in violation of the metapolicy, something is clearly wrong.

A Simple BLP System

Consider a simple system that has READ and WRITE operations with the following semantics:

READ (S, O): if object O exists and $L_S \ge L_O$, then return its current value; otherwise, return a zero.

WRITE (S, O, V): if object O exists and $L_S \leq L_O$, change its value to V; otherwise, do nothing.

These operations pretty clearly are acceptable instances of READ and WRITE for a BLP system.

A BLP System (Cont.)

Suppose we want to add two new operations, CREATE and DESTROY to the system, with the following semantics:

CREATE (S, O): if no object with name O exists anywhere on the system, create a new object O at level L_S ; otherwise, do nothing.

DESTROY (S, O): if an object with name O exists and $L_S \leq L_O$, destroy it; otherwise, do nothing.

These operations seem to satisfy the BLP rules, but are they "secure" from the standard of the metapolicy? Why or why not?

Covert Channel Example

In this system, a high level subject S_H can signal one bit of information to a low level subject S_L as follows:

S _H Transmits 0	S_H Transmits 1
Create (S _H , F0)	do nothing
Create $(S_L, F0)$ Write $(S_L, F0, 1)$ Read $(S_L, F0)$	Create $(S_L, F0)$ Write $(S_L, F0, 1)$ Read $(S_L, F0)$ Destroy $(S_L, F0)$
Destroy $(S_L, F0)$	Destroy $(S_L, F0)$

In the first case, S_L sees a value of 0; in the second case, S_L sees a value of 1. Thus, S_H can signal one bit of information to S_L by varying its behavior.

So What?

Who cares if one bit flows from high to low?

- It's enough to show that BLP cannot *guarantee* that the metapolicy is satisfied.
- If S_L and S_H can coordinate their activities, S_H can transfer arbitrary amounts of information to S_L , given enough time.

In an access control policy like BLP, objects are the *only* entities recognized to carry information.

For the channel above, the "information" is not in the contents of any object. It's in the answer to the question: $can S_L read an$ object named O?

Covert Channels

If S_L ever sees varying results depending on varying actions by S_H , that could be used to send a bit of information from S_H to S_L , in violation of the metapolicy.

Such a mechanism is called a covert channel.

Lessons

- An access control policy constrains information flowing by subjects reading or writing objects.
- There may be other system features that could be manipulated to convey information.
- Such channels are called "covert channels."

Next lecture: Covert Channels II