Hi, people, and welcome to my project! Classification with Python

In this notebook I try to practice all the classification algorithms.

- K Nearest Neighbor(KNN)
- · Decision Tree
- · Support Vector Machine
- Logistic Regression

I have the following:

- pre-processing, feature selection, feature-extraction, and so on, to make a better model.
- using scikit-learn, Scipy or Numpy libraries for developing the classification algorithms.

```
In [246]: import itertools
   import numpy as np
   import matplotlib.pyplot as plt
   from matplotlib.ticker import NullFormatter
   import pandas as pd
   import numpy as np
   import matplotlib.ticker as ticker
   from sklearn import preprocessing
   %matplotlib inline
```

About dataset

This dataset is about past loans. The **Loan_train.csv** data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields:

Field	Description
Loan_status	Whether a loan is paid off on in collection
Principal	Basic principal loan amount at the
Terms	Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule
Effective_date	When the loan got originated and took effects
Due_date	Since it's one-time payoff schedule, each loan has one single due date
Age	Age of applicant
Education	Education of applicant
Gender	The gender of applicant

Lets download the dataset

Load Data From CSV File

Out[247]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender
0	0	0	PAIDOFF	1000	30	9/8/2016	10/7/2016	45	High School or Below	male
1	2	2	PAIDOFF	1000	30	9/8/2016	10/7/2016	33	Bechalor	female
2	3	3	PAIDOFF	1000	15	9/8/2016	9/22/2016	27	college	male
3	4	4	PAIDOFF	1000	30	9/9/2016	10/8/2016	28	college	female
4	6	6	PAIDOFF	1000	30	9/9/2016	10/8/2016	29	college	male

In [248]: df.shape

Out[248]: (346, 10)

Convert to date time object

Out[249]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10-07	45	High School or Below	male
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10-07	33	Bechalor	female
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09-22	27	college	male
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10-08	28	college	female
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10-08	29	college	male

Data visualization and pre-processing

How many of each class is in our data set

```
In [250]: df['loan_status'].value_counts()
```

Out[250]: PAIDOFF 260

COLLECTION 86

Name: loan_status, dtype: int64

260 people have paid off the loan on time while 86 have gone into collection

Plot some columns to underestand data better:

In [198]: !conda install -c anaconda seaborn -y

Solving environment: done

All requested packages already installed.

In [251]: import seaborn as sns

```
bins = np.linspace(df.Principal.min(), df.Principal.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
g.map(plt.hist, 'Principal', bins=bins, ec="k")
g.axes[-1].legend()
plt.show()
```



```
In [252]: bins = np.linspace(df.age.min(), df.age.max(), 10)
    g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
    g.map(plt.hist, 'age', bins=bins, ec="k")

g.axes[-1].legend()
    plt.show()
```


Pre-processing: Feature selection/extraction

The day of the week people get the loan

```
In [253]: df['dayofweek'] = df['effective_date'].dt.dayofweek
    bins = np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10)
    g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
    g.map(plt.hist, 'dayofweek', bins=bins, ec="k")
    g.axes[-1].legend()
    plt.show()
```


People who get the loan at the end of the week dont pay it off, so use Feature binarization to set a threshold values less then day 4

In [254]: df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)
 df.head()

Out[254]:

	Unnamed:	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender	dayofweek	weeke
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10- 07	45	High School or Below	male	3	0
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10- 07	33	Bechalor	female	3	0
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09- 22	27	college	male	3	0
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10- 08	28	college	female	4	1
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10- 08	29	college	male	4	1
4												•

Convert Categorical features to numerical values

By gender:

```
In [255]: df.groupby(['Gender'])['loan_status'].value_counts(normalize=True)
```

Out[255]: Gender loan_status

female PAIDOFF 0.865385 COLLECTION 0.134615

male PAIDOFF 0.731293

COLLECTION 0.268707

Name: loan_status, dtype: float64

86 % of female pay there loans while only 73 % of males pay there loan

Convert male to 0 and female to 1:

Out[256]:

	Unnamed:	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender	dayofweek	weeke
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10- 07	45	High School or Below	0	3	0
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10- 07	33	Bechalor	1	3	0
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09- 22	27	college	0	3	0
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10- 08	28	college	1	4	1
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10- 08	29	college	0	4	1
4												

One Hot Encoding

Education?

In [257]: df.groupby(['education'])['loan_status'].value_counts(normalize=True) Out[257]: education loan_status Bechalor PAIDOFF 0.750000 COLLECTION 0.250000 High School or Below PAIDOFF 0.741722 COLLECTION 0.258278 Master or Above COLLECTION 0.500000 **PAIDOFF** 0.500000 college PAIDOFF 0.765101 COLLECTION 0.234899 Name: loan status, dtype: float64

Feature before One Hot Encoding

In [258]: df[['Principal','terms','age','Gender','education']].head()

Out[258]:

_					
	Principal	terms	age	Gender	education
0	1000	30	45	0	High School or Below
1	1000	30	33	1	Bechalor
2	1000	15	27	0	college
3	1000	30	28	1	college
4	1000	30	29	0	college

```
In [259]: Feature = df[['Principal','terms','age','Gender','weekend']]
    Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)
    Feature.drop(['Master or Above'], axis = 1,inplace=True)
    Feature.head()
```

Out[259]:

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college
0	1000	30	45	0	0	0	1	0
1	1000	30	33	1	0	1	0	0
2	1000	15	27	0	0	0	0	1
3	1000	30	28	1	1	0	0	1
4	1000	30	29	0	1	0	0	1

Feature selection

In [260]: X = Feature
X[0:5]

Out[260]:

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college
0	1000	30	45	0	0	0	1	0
1	1000	30	33	1	0	1	0	0
2	1000	15	27	0	0	0	0	1
3	1000	30	28	1	1	0	0	1
4	1000	30	29	0	1	0	0	1

```
In [261]: y = df['loan_status'].values
y[0:5]
```

Normalize Data

Data Standardization give data zero mean and unit variance (technically should be done after train test split)

```
In [262]: X= preprocessing.StandardScaler().fit(X).transform(X)
          X[0:5]
          /opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/preprocessing/data.py:645: DataConversionWarnin
          g: Data with input dtype uint8, int64 were all converted to float64 by StandardScaler.
            return self.partial fit(X, y)
          opt/conda/envs/Python36/lib/python3.6/site-packages/ipykernel/ main .py:1: DataConversionWarning: Data wit
          h input dtype uint8, int64 were all converted to float64 by StandardScaler.
            if name == ' main ':
Out[262]: array([[ 0.51578458, 0.92071769, 2.33152555, -0.42056004, -1.20577805,
                  -0.38170062, 1.13639374, -0.86968108],
                 [0.51578458, 0.92071769, 0.34170148, 2.37778177, -1.20577805,
                   2.61985426, -0.87997669, -0.86968108],
                 [0.51578458, -0.95911111, -0.65321055, -0.42056004, -1.20577805,
                  -0.38170062, -0.87997669, 1.14984679],
                 [0.51578458, 0.92071769, -0.48739188, 2.37778177, 0.82934003,
                  -0.38170062, -0.87997669, 1.14984679],
                 [ 0.51578458, 0.92071769, -0.3215732 , -0.42056004, 0.82934003,
                  -0.38170062, -0.87997669, 1.14984679]])
```

Classification

K Nearest Neighbor(KNN)

Finding the best k to build the model with the best accuracy. Split your train loan.csv into train and test to find the best **k**.

Out[263]:

	Unnamed:	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender	dayofweek	weeke
0	0	0	0	1000	30	2016-09-08	2016-10- 07	45	High School or Below	0	3	0
1	2	2	0	1000	30	2016-09-08	2016-10- 07	33	Bechalor	1	3	0
2	3	3	0	1000	15	2016-09-08	2016-09- 22	27	college	0	3	0
3	4	4	0	1000	30	2016-09-09	2016-10- 08	28	college	1	4	1
4	6	6	0	1000	30	2016-09-09	2016-10- 08	29	college	0	4	1

```
In [264]: # Split our data on test and train
          from sklearn.model selection import train test split
          X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=4)
          # import knn & metrics
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn import metrics
          # Let's try K coefficient up to 10
          if True:
              Ks = 10
              mean acc = np.zeros((Ks - 1))
              std acc = np.zeros((Ks - 1))
              for n in range(1, Ks):
                  # Train Model and Predict
                  neigh = KNeighborsClassifier(n neighbors=n).fit(X train, y train)
                  vhat = neigh.predict(X test)
                  mean acc[n - 1] = metrics.accuracy score(y test, yhat)
                  std acc[n - 1] = np.std(yhat == y test) / np.sqrt(yhat.shape[0])
              print(mean acc)
              plt.plot(range(1, Ks), mean acc, 'b')
              plt.fill between(range(1, Ks), mean acc - 1 * std acc, mean acc + 1 * std acc, alpha=0.10)
              plt.legend(('Accuracy ', '+/- 3xstd'))
              plt.ylabel('Accuracy ')
              plt.xlabel('Number of Nabors (K)')
              plt.tight layout()
              plt.show()
              print("The best accuracy was with", mean acc.max(), "with k=", mean acc.argmax() + 1)
```

[0.67142857 0.77142857 0.71428571 0.77142857 0.75714286 0.78571429 0.78571429 0.757142857 0.75714286]

The best accuracy was with 0.7857142857142857 with k= 6

```
In [283]: # Let's create the best knn with k = 6
knn_6 = KNeighborsClassifier(n_neighbors=6).fit(X_train, y_train)
knn_6_pred = knn_6.predict(X_test)

print("KNN acc by Jaccard is ", jaccard_similarity_score(y_test, knn_6_pred))
print("KNN acc by F1 score is ", f1_score(y_test, knn_6_pred, average='weighted'))
```

KNN acc by Jaccard is 0.7857142857142857 KNN acc by F1 score is 0.7334244702665754

Decision Tree

In [266]: from sklearn.tree import DecisionTreeClassifier

'precision', 'predicted', average, warn for)

```
In [289]: # Assuming, that we already have splitted data
    LoanTree = DecisionTreeClassifier(criterion="entropy", max_depth=4)
    LoanTree.fit(X_train, y_train)

predTree = LoanTree.predict(X_test)

print("DecisionTrees's Accuracy: ", metrics.accuracy_score(y_test, predTree))
print("DecisionTrees's Accuracy by F1 score is ", f1_score(y_test, predTree, average='weighted'))

DecisionTrees's Accuracy: 0.7857142857142857
DecisionTrees's Accuracy by F1 score is 0.6914285714285714

/opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricW arning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
```

Support Vector Machine

```
In [268]: from sklearn import svm

vector = svm.SVC(kernel='linear', gamma='auto')
vector.fit(X_train, y_train)

y_vector = vector.predict(X_test)
print("SVC Accuracy: ", metrics.accuracy_score(y_test, y_vector))
```

SVC Accuracy: 0.7857142857142857

Logistic Regression

```
In [269]: from sklearn.linear_model import LogisticRegression

LR = LogisticRegression(C=0.02, solver='lbfgs').fit(X_train, y_train)

LR_pred = LR.predict(X_test)
print("LR Accuracy: ", metrics.accuracy_score(y_test, LR_pred))

LR_pred_proba = LR.predict_proba(X_test) #probability

#print(LR_pred," ",LR_pred_proba)
```

LR Accuracy: 0.7857142857142857

Model Evaluation using Test set

```
In [270]: from sklearn.metrics import jaccard_similarity_score
    from sklearn.metrics import f1_score
    from sklearn.metrics import log_loss
```

First, download and load the test set:

Load Test set for evaluation

In [285]: test_df = pd.read_csv('loan_test.csv')
 test_df.head()

Out[285]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender
0	1	1	PAIDOFF	1000	30	9/8/2016	10/7/2016	50	Bechalor	female
1	5	5	PAIDOFF	300	7	9/9/2016	9/15/2016	35	Master or Above	male
2	21	21	PAIDOFF	1000	30	9/10/2016	10/9/2016	43	High School or Below	female
3	24	24	PAIDOFF	1000	30	9/10/2016	10/9/2016	26	college	male
4	35	35	PAIDOFF	800	15	9/11/2016	9/25/2016	29	Bechalor	male

```
In [286]: # We have to clean & transform test data in the same way, as we did for train data
          test df['due date'] = pd.to datetime(test df['due date'])
          test df['effective date'] = pd.to datetime(test df['effective date'])
          test df['dayofweek'] = test df['effective date'].dt.dayofweek
          test df['weekend'] = test df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)
          test df['Gender'].replace(to replace=['male','female'], value=[0,1],inplace=True)
          #I will replace 'loan status' in df on PAIDOFF -> 0 and COLLECTION -> 1
          test df['loan status'].replace(to replace=['PAIDOFF','COLLECTION'], value=[0,1],inplace=True)
          X t = test df[['Principal', 'terms', 'age', 'Gender', 'weekend']]
          X t = pd.concat([X t,pd.get dummies(test df['education'])], axis=1)
          X t.drop(['Master or Above'], axis = 1,inplace=True)
          X t = preprocessing.StandardScaler().fit(X t).transform(X t)
          y t = test df['loan status'].values
          # Now, let's test our trained modules
          # KNN
          knn prediction = knn 6.predict(X t)
          print("KNN has ", metrics.accuracy score(y t, knn prediction))
          print("KNN acc by Jaccard is ", jaccard_similarity_score(y_t, knn_prediction))
          print("KNN acc by F1 score is ", f1 score(y t, knn prediction, average='weighted'))
          print("KNN by log loss is ", log loss(y t, knn prediction))
```

```
KNN has 0.6851851851851852
KNN acc by Jaccard is 0.6851851851852
KNN acc by F1 score is 0.626541384672668
KNN by log loss is 10.873377724133375

/opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/preprocessing/data.py:645: DataConversionWarnin g: Data with input dtype uint8, int64 were all converted to float64 by StandardScaler.
    return self.partial_fit(X, y)
/opt/conda/envs/Python36/lib/python3.6/site-packages/ipykernel/__main__.py:16: DataConversionWarning: Data with input dtype uint8, int64 were all converted to float64 by StandardScaler.
```

'precision', 'predicted', average, warn_for)

'precision', 'predicted', average, warn for)

```
In [287]: # Desicion tree
          predTree = LoanTree.predict(X t)
          print("DecisionTrees's Accuracy: ", metrics.accuracy score(y t, predTree))
          print("DecisionTrees's Accuracy by Jaccard is ", jaccard similarity score(y t, predTree))
          print("DecisionTrees's Accuracy by F1 score is ", f1 score(y t, predTree, average='weighted'))
          print("DecisionTrees log loss is ", log loss(y t, predTree))
          # SVM
          y vector = vector.predict(X t)
          print("SVC Accuracy: ", metrics.accuracy score(y t, y vector))
          print("SVC Accuracy by Jaccard is ", jaccard_similarity_score(y_t, y_vector))
          print("SVC Accuracy by F1 score is ", f1 score(y t, y vector, average='weighted'))
          print("SVC log loss is ", log loss(y t, y vector))
          # LR
          LR pred = LR.predict(X t)
          print("LR Accuracy: ", metrics.accuracy score(y t, LR pred))
          print("LR Accuracy by Jaccard is ", jaccard_similarity_score(y_t, LR_pred))
          print("LR Accuracy by F1 score is ", f1 score(y t, LR pred, average='weighted'))
          print("LR log loss is ", log loss(y t, LR pred))
          DecisionTrees's Accuracy: 0.7592592592593
          DecisionTrees's Accuracy by Jaccard is 0.7592592592592593
          DecisionTrees's Accuracy by F1 score is 0.6717642373556352
          DecisionTrees log loss is 8.31489061358961
          SVC Accuracy: 0.7407407407407
          SVC Accuracy by Jaccard is 0.7407407407407
          SVC Accuracy by F1 score is 0.6304176516942475
          SVC log loss is 8.954497583865733
          LR Accuracy: 0.7407407407407407
          LR Accuracy by Jaccard is 0.7407407407407407
          LR Accuracy by F1 score is 0.6304176516942475
          LR log loss is 8.954497583865733
          /opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricW
          arning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
```

/opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricW

arning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.

In [288]: print("Log loss is NA for KNN, DT and SVM, but if replace PAIDOFF -> 0 and COLLECTION -> 1 in 'loan_status', we can find them")

Log loss is NA for KNN, DT and SVM, but if replace PAIDOFF -> 0 and COLLECTION -> 1 in 'loan_status', we can find them

Report

You should be able to report the accuracy of the built model using different evaluation metrics:

Algorithm	Jaccard	F1-score	LogLoss
KNN	0.68	0.62	NA (10.9)
Decision Tree	0.76	0.67	NA (8.31)
SVM	0.74	0.63	NA (8.95)
LogisticRegression	0.74	0.63	8.9