Ejemplo V:

	VB	Ecu	Z	<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	LD	
	Z	0	1	-3	<mark>-5</mark>	0	0	0	0	
	<i>x</i> ₃	1	0	1	0	1	0	0	4	
	<i>X</i> ₄	2	0	0	<mark>2</mark>	0	1	0	12	(1/2)
Ī	<i>X</i> ₅	3	0	3	2	0	0	1	18	

Prueba de optimalidad: No todos los elementos de la primer fila son ≥ 0

Variable que entra: X_2

Prueba del cociente mínimo: $min\left[\frac{12}{2}, \frac{18}{2}\right] = 6$

Variable que sale: X_4

VB	Ecu	Z	<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	LD	
Z	0	1	-3	-5	0	0	0	0	
<i>x</i> ₃	1	0	1	0	1	0	0	4	
	2	0	0	1	0	1/2	0	6	(5)(-2)
<i>X</i> ₅	3	0	3	2	0	0	1	18	

VB	Ecu	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD	
Z	0	1	-3	0	0	5/2	0	30	
<i>x</i> ₃	1	0	1	0	1	0	0	4	
<i>X</i> ₂	2	0	0	1	0	1/2	0	6	
<i>x</i> ₅	3	0	3	0	0	-1	1	6	(1/3)

Prueba de optimalidad: No todos los elementos de la primer fila son ≥ 0

Variable que entra: X_1

Prueba del cociente mínimo: $min\left\{\frac{4}{1}, \frac{6}{3}\right\} = 2$

Variable que sale: X_5

VB	Ecu	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD	
Z	0	1	-3	0	0	5/2	0	30	←
<i>X</i> ₃	1	0	1	0	1	0	0	4	4
<i>X</i> ₂	2	0	0	1	0	1/2	0	6	
	3	0	1	0	0	-1/3	1/3	2	(-1)(3)

VB	Ecu	Z	<i>X</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD
Z	0	1	0	0	0	3/2	1	36
<i>x</i> ₃	1	0	0	0	1	1/3	-1/3	2
<i>X</i> ₂	2	0	0	1	0	1/2	0	6
<i>X</i> ₁	3	0	1	0	0	-1/3	1/3	2

Prueba de optimalidad: Todos los elementos de la primer fila son ≥ 0 , es la solución óptima.

Por lo tanto, la solución óptima es:

$$z^{i} = 36$$

$$x^i = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$

Ejemplo VI:

V	В	Ecu	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	$\overline{X_5}$	LD	
	Z	0	1	-3	-5	0	0	М	0	
λ	۲ ₃	1	0	1	0	1	0	0	4	
λ	4	2	0	0	2	0	1	0	12	
		3	0	3	2	0	0	1	18	(-M)

VB	Ecu	Z	<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	$\overline{X_5}$	LD	
Z	0	1	-3M-3	-2M-5	0	0	0	-18M	
<i>X</i> ₃	1	0	1	0	1	O	0	4	(3M+3)(-3)
<i>X</i> ₄	2	0	0	2	0	1	0	12	
$\overline{X_5}$	3	0	3	2	0	0	1	18	•

Prueba de optimalidad: No todos los elementos de la primer fila son ≥ 0

Variable que entra: X_1 Variable que sale: X_3

VB	Ecu	Z	\boldsymbol{x}_1	\boldsymbol{x}_2	x_3	X_4	$\overline{X_5}$	LD	
Z	0	1	0	-2M-5	3M+3	0	0	-6M+12]
\boldsymbol{x}_1	1	0	1	0	1	0	0	4	
X_4	2	0	0	2	0	1	0	12	
\overline{X}_{5}	3	0	0	2	-3	0	1	6	(1/2)

Prueba de optimalidad: No todos los elementos de la primer fila son ≥ 0

Variable que entra: X_2 Variable que sale: $\overline{X_5}$

VB	Ecu	Z	x_1	\boldsymbol{x}_2	x_3	X_4	$\overline{X_5}$	LD	
Z	0	1	0	-2M-5	3M+3	0	0	-6M+12	
\boldsymbol{X}_1	1	0	1	0	1	0	0	4	
<i>X</i> ₄	2	0	0	2	0	1	0	12	
	3	0	0	1	-3/2	0	1/2	3	(-2)(2M+5)

									_
VB	Ecu	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	$\overline{X_5}$	LD	
Z	0	1	0	0	-9/2	0	M+5/2	27	
\boldsymbol{X}_1	1	0	1	0	1	0	0	4	
<i>X</i> ₄	2	0	0	0	3	1	-1	6	(1/3)
<i>X</i> ₂	3	0	0	1	-3/2	0	1/2	3	

Prueba de optimalidad: No todos los elementos de la primer fila son ≥ 0

Variable que entra: X_3 Variable que sale: X_4

VB	Ecu	Z	<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	$\overline{X_5}$	LD	
Z	0	1	0	0	-9/2	0	M+5/2	27	—
<i>x</i> ₁	1	0	1	0	1	0	0	4	★ -,
	2	0	0	0	1	1/3	-1/3	2	(-1)(9/2)(3/2)
<i>X</i> ₂	3	0	0	1	-3/2	0	1/2	3	

VB	Ecu	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	$\overline{X_5}$	LD
Z	0	1	0	0	0	3/2	M+1	36
<i>X</i> ₁	1	0	1	0	0	-1/3	1/3	2
<i>x</i> ₃	2	0	0	0	1	1/3	-1/3	2
<i>X</i> ₂	3	0	0	1	0	1/2	0	6

Prueba de optimalidad: Todos los elementos de la primer fila son ≥ 0

Por lo tanto, la solución óptima es:

$$z^{i} = 36$$

$$x^{i} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$

Ejemplo VII:

VB	Ecu	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	$\overline{X_4}$	<i>x</i> ₅	$\overline{X_6}$	LD	
Z	0	1	3	5	0	М	0	М	0	↓
<i>X</i> ₃	1	0	1	0	1	0	0	0	4	1 11
	2	0	0	2	0	1	0	0	12] (-M) —
	3	0	3	2	0	0	-1	1	18	(-M)—

Podemos observar que no está completa la base, hay que darle la forma canónica.

La variable X_5 no puede está dentro de la base en esta iteración porque implica multiplicar la última fila por -1 y eso hace que tengamos un lado derecho negativo, lo cual no debe ser posible.

ı										
	VB	Ecu	Z	X 1	X_2	X 2	$\overline{X_4}$	X_{5}	$\overline{X_6}$	LD

Z	0	1	-3M-3	-4M+5	0	0	М	0	-30M
<i>x</i> ₃	1	0	1	0	1	0	0	0	4
$\overline{X_4}$	2	0	0	2	0	1	0	0	12
$\overline{X_6}$	3	0	3	2	0	0	-1	1	18

Ahora la base está completa, entonces se puede proceder con el método simplex.

Ejemplo XI:

	VB	Ecu	W	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	y_5	LD	
	W	0	1	-4	-12	-18	0	0	0	
	<i>y</i> ₄	1	0	-1	0	-3	1	0	-3	
ĺ	<i>y</i> ₅	2	0	O	<mark>-2</mark>	-2	0	1	-5	(-1/2)

Variable que sale: y_5

Prueba del cociente mínimo: $min\left[\frac{12}{2}, \frac{18}{2}\right] = 6$

Variable que entra: y_2

VB	Ecu	W	\boldsymbol{y}_1	y_2	y_3	y_4	y_5	LD	
W	0	1	-4	-12	-18	0	0	0	lacksquare
y_4	1	0	-1	0	-3	1	0	-3	
	2	0	0	1	1	0	-1/2	5/2	(12)

VB	Ecu	W	y_1	y_2	y_3	y_4	<i>y</i> ₅	LD	
W	0	1	-4	0	-6	0	-6	30	
y_4	1	0	-1	O	-3	1	0	-3	(-1/3)
y_2	2	0	0	1	1	0	-1/2	5/2	

Variable que sale: y_4

Prueba del cociente mínimo: $min\left\{\frac{4}{1}, \frac{6}{3}\right\} = 2$

Variable que entra: y_3

VB	Ecu	W	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	y_4	<i>y</i> ₅	LD	
W	0	1	-4	0	-6	0	-6	30	
	1	0	1/3	0	1	-1/3	0	1	(6)(-1)
y_2	2	0	0	1	1	0	-1/2	5/2	

VB	Ecu	W	y_1	<i>y</i> ₂	y_3	y_4	y_5	LD
W	0	1	-2	0	0	-2	-6	36

y_3	1	0	1/3	0	1	-1/3	0	1
\boldsymbol{y}_2	2	0	-1/3	1	0	1/3	-1/2	3/2

Prueba de optimalidad: Todos los LD>=0, entonces es la solución óptima.

La solución óptima es:

$$w^{i} = 36$$
 $y^{i} = (0 \quad 3/2 \quad 1)$

Ejemplo XII:

El problema del entrenador es:

Variables de decisión:

 X_1 : cantidad de kilogramos de la verdura 1 X_2 : cantidad de kilogramos de la verdura 2 X_3 : cantidad de kilogramos de la verdura 3 X_4 : cantidad de kilogramos de la verdura 4 X_5 : cantidad de kilogramos de la verdura 5

Modelo matemático:

$$\begin{aligned} &\min z \!=\! 100\,x_1 \!+\! 80\,x_2 \!+\! 95\,x_3 \!+\! 100\,x_4 \!+\! 110\,x_5 \quad \text{(costo de la EV)} \\ &\text{s.a: } 2\,x_1 \!+\! 3\,x_3 \!+\! 4\,x_4 \!+\! x_5 \!\geq\! 10 \quad \text{(unidades de vitamina A en la EV)} \\ &x_1 \!+\! 2\,x_2 \!+\! 2\,x_3 \!+\! x_4 \!+\! 3\,x_5 \!\geq\! 25 \quad \text{(unidades de vitamina C en la EV)} \\ &x_1, x_2, x_3, x_4, x_5 \!\geq\! 0 \end{aligned}$$

El problema de la farmacéutica es:

Variables de decisión:

 y_1 : precio de cada pastilla de una unidad de vitamina A y_2 : precio de cada pastilla de una unidad de vitamina C

Modelo matemático:

Max w=10 y_1+25 y_2 (venta total) s.a: 2 y_1+ $y_2 \le 100$ (aporte vitamínico de la verdura 1) 2 $y_2 \le 80$ (aporte vitamínico de la verdura 2)

 $3\,y_1+2\,y_2\leq 95$ (aporte vitamínico de la verdura 3) $4\,y_1+y_2\leq 100$ (aporte vitamínico de la verdura 4) $y_1+3\,y_2\leq 110$ (aporte vitamínico de la verdura 5) $y_1\geq 0$ $y_2\geq 0$

Ejemplo XIII:

El problema original:

$$max z = 3x_1 + 5x_2$$

s.a
$$x_1 \le 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

La última tabla del método simplex es:

٠.	aitiiiia tabi	a aci ilictot	ao annipiex	CJ.						
	VB	Ecu.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	X_{5}	LD	
	Z	0	1	0	0	/ 0	3/2	1	36	
	<i>X</i> ₃	1	0	0	0	1	1/3	-1/3	2	
	<i>X</i> ₂	2	0	0	1 /	0	1/2	0	6	
	<i>X</i> ₁	3	0	1	0 /	0	-1/3	1/3	/ 2	

El problema bajo estudio es:

$$max z = 3x_1 + 5x_2$$

$$x_1 \leq 4$$

$$2x_2 \le 24$$

 $3x_1 + 2x_2 \le 18$

$$x_1, x_2 \ge 0$$

Tenemos que:

Lados derechos del modelo del problema original Lados derechos del modelo del problema nuevo

Variables de holgura

$$S^{i} = \begin{pmatrix} 1 & \frac{1}{3} & \frac{-1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & \frac{-1}{3} & \frac{1}{3} \end{pmatrix} \quad y^{i} = \begin{pmatrix} 0 & \frac{3}{2} & 1 \end{pmatrix} \quad b = \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix} \quad \overline{b} = \begin{pmatrix} 4 \\ 24 \\ 18 \end{pmatrix} \quad b_{anterior}^{i} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} \quad z_{anterior}^{i} = 36$$

Actualizamos el valor de la función objetivo:

$$z^{i} = y^{i}\overline{b} = \begin{pmatrix} 0 & \frac{3}{2} & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 24 \\ 18 \end{pmatrix} = 54$$

Actualizamos el valor de los lados derechos:

$$b^{i} = S^{i} \overline{b} = \begin{pmatrix} 1 & \frac{1}{3} & \frac{-1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & \frac{-1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 4 \\ 24 \\ 18 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \\ -2 \end{pmatrix}$$

Como existe una componente en b^i que es negativa, i.e., -2<0, entonces la solución es infactible. Por lo tanto, hay que reoptimizar con el método simplex dual.

Actualizar los valores de la tabla:

VB	Ecu	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD	
Z	0	1	0	0	0	3/2	1	54	
<i>X</i> ₃	1	0	0	0	1	1/3	-1/3	6	
<i>X</i> ₂	2	0	0	1	0	1/2	0	12	
<i>X</i> ₁	3	0	1	O	0	-1/3	1/3	-2	(-3

Variable que sale: X_1

Variable que entra: X_4

VB	Ecu	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD	
Z	0	1	0	0	0	3/2	1	54]
<i>x</i> ₃	1	0	0	0	1	1/3	-1/3	6 .	<u> </u>
<i>x</i> ₂	2	0	0	1	0	1/2	0	12	
	3	0	-3	0	0	1	-1	6	(-3/2

(-3/2)(-1/3)(-1/2)

VB	Ecu	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD
Z	0	1	9/2	0	0	0	5/2	45
<i>x</i> ₃	1	0	1	0	1	0	0	4
\boldsymbol{x}_2	2	0	3/2	1	0	0	1/2	9
<i>X</i> ₄	3	0	-3	0	0	1	-1	6

Notamos que la base del problema cambió. La solución óptima es:

$$z^{i} = 45$$

$$x^{i} = \begin{pmatrix} 0 \\ 9 \end{pmatrix}$$

Ejemplo XIV:

Empecemos calculando el intervalo permisible de b_1 :

$$b^{i} = b_{anterior}^{i} + S^{i} \Delta b$$

$$b^{i} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 & \frac{1}{3} & \frac{-1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & \frac{-1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \Delta b_{1} \\ 0 \\ 0 \end{pmatrix}$$

$$b^{i} = \begin{pmatrix} 2 + \Delta b_{1} \\ 6 \\ 2 \end{pmatrix}$$

Como $b^{i} \ge 0$

$$\begin{vmatrix}
2 + \Delta b_1 \\
6 \\
2
\end{vmatrix} \ge 0$$

Para el componente 1:

$$2+\Delta b_1 \ge 0$$

$$\Delta b_1 \ge -2$$

Para la componente 2:

 $6 \ge 0$

Para la componente 3:

2≥0

La intersección de los tres es:

$$-2 \le \Delta b_1 \le \infty$$

Para obtener el intervalo permisible, hay que considerar el valor del lado derecho del modelo original:

$$4 - 2 \le b_1 \le \infty + 4$$

El intervalo permisible b_1 es:

$$2 \le b_1 \le \infty$$

Ahora, calcular el intervalo permisible de b_2 :

$$b^{\iota} = b^{\iota}_{anterior} + S^{\iota} \Delta b$$

$$b^{i} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 & \frac{1}{3} & \frac{-1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & \frac{-1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 \\ \Delta b_{2} \\ 0 \end{pmatrix}$$

$$b^{i} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} + \begin{pmatrix} \frac{\Delta b_2}{3} \\ \frac{\Delta b_2}{2} \\ -\Delta b_2 \\ \frac{3}{3} \end{pmatrix}$$

$$b^{i} = \begin{vmatrix} 2 + \frac{\Delta b_2}{3} \\ 6 + \frac{\Delta b_2}{2} \\ 2 - \frac{\Delta b_2}{3} \end{vmatrix}$$

Como $b^{i} \ge 0$

$$\begin{vmatrix} 2 + \frac{\Delta b_2}{3} \\ 6 + \frac{\Delta b_2}{2} \\ 2 - \frac{\Delta b_2}{3} \end{vmatrix} \ge 0$$

Para el componente 1:

$$2 + \frac{\Delta b_2}{3} \ge 0$$

$$\frac{\Delta b_2}{3} \ge -2$$

$$\Delta b_2 \ge -6$$

Para la componente 2:

$$6 + \frac{\Delta b_2}{2} \ge 0$$

$$\frac{\Delta b_2}{2} \ge -6$$

$$\Delta b_2 \ge -12$$

Para la componente 3:

$$2-\frac{\Delta b_2}{3} \ge 0$$

$$\frac{-\Delta b_2}{3} \ge -2$$

$$-\Delta b_2 \ge -6$$

$$\Delta b_2 \leq 6$$

La intersección de los tres es:

$$-6 \le \Delta b_2 \le 6$$

Para obtener el intervalo permisible, hay que considerar el valor del lado derecho del modelo original:

$$12 - 6 \le b_2 \le 6 + 12$$

El intervalo permisible de b_2 es:

 $6 \le b_2 \le 18$

Ahora, calcular el intervalo permisible de b_3 :

$$b^{\iota} = b^{\iota}_{anterior} + S^{\iota} \Delta b$$

$$b^{i} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 & \frac{1}{3} & \frac{-1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & \frac{-1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \Delta b_{3} \end{pmatrix}$$

$$b^{i} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} + \begin{pmatrix} \frac{-\Delta b_3}{3} \\ 0 \\ \frac{\Delta b_3}{3} \end{pmatrix}$$

$$b^{i} = \begin{bmatrix} 2 - \frac{\Delta b_3}{3} \\ 6 \\ 2 + \frac{\Delta b_3}{3} \end{bmatrix}$$

Como
$$b^{i} \ge 0$$

$$\begin{vmatrix} 2 - \frac{\Delta b_3}{3} \\ 6 \\ 2 + \frac{\Delta b_3}{3} \end{vmatrix} \ge 0$$

Para el componente 1:

$$2 - \frac{\Delta b_3}{3} \ge 0$$

$$\frac{-\Delta b_3}{3} \ge -2$$

$$\frac{\Delta b_3}{3} \le 2$$

$$\Delta b_3 \leq 6$$

Para la componente 2:

6≥0

Para la componente 3:

$$2+\frac{\Delta b_3}{3}\geq 0$$

$$\frac{\Delta b_3}{3} \ge -2$$

$$\Delta b_3 \ge -6$$

La intersección de los tres es:

$$-6 \le \Delta b_3 \le 6$$

Para obtener el intervalo permisible, hay que considerar el valor del lado derecho del modelo original:

$$18 - 6 \le b_3 \le 6 + 18$$

El intervalo permisible de b_3 es:

$$12 \le b_3 \le 24$$

Ejemplo XV:

% incremento permisible =
$$\frac{\overline{b}-b}{\text{incremento permisible}} *100\%$$

Nota: Incremento permisible = unidades aumentadas permitidas, se encuentran en el intervalo permisible, del lado derecho de la desigualdad de Δb , es decir, $\Delta b_i \leq incremento\ permisible$

% decremento permisible =
$$\frac{b-\overline{b}}{decremento\ permisible}$$
 *100 %

Nota: Decremento permisible = unidades disminuidas permitidas, se encuentran en el intervalo permisible, del lado izquierdo de la desigualdad de Δb , es decir, $decremento\ permisible \leq \Delta b_i$

$$b = \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix} \qquad \qquad \overline{b} = \begin{pmatrix} 4 \\ 15 \\ 15 \end{pmatrix}$$

Para b_2 :

% incremento permisible =
$$\frac{15-12}{6}$$
 *100%=50%

Para b_3 :

% decremento permisible =
$$\frac{18-15}{6}$$
 * 100 % = 50 %

Sumando los porcentajes tenemos que

$$\% b_2 + \% b_3 = 50 \% + 50 \% = 100 \%$$

Como el porcentaje de cambio es igual a 100%, entonces la solución óptima es la misma.

Entonces, hay que actualizar los valores:

$$y^{i} = \begin{pmatrix} 0 & \frac{3}{2} & 1 \end{pmatrix} \quad \overline{b} = \begin{pmatrix} 4 \\ 15 \\ 15 \end{pmatrix} \quad S^{i} = \begin{pmatrix} 1 & \frac{1}{3} & \frac{-1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & \frac{-1}{3} & \frac{1}{3} \end{pmatrix}$$

$$z^{i} = \begin{pmatrix} 0 & \frac{3}{2} & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 15 \\ 15 \end{pmatrix} = \frac{75}{2}$$

$$b^{i} = S^{i} \overline{b}$$

$$b^{i} = \begin{pmatrix} 1 & \frac{1}{3} & \frac{-1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & \frac{-1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 4 \\ 15 \\ 15 \end{pmatrix} = \begin{pmatrix} 4 \\ \frac{15}{2} \\ 0 \end{pmatrix}$$

Vemos que todos los componentes son mayores o iguales que cero.

Hay que recordar la base del problema original:

$$x_{B} = \begin{pmatrix} x_{3} \\ x_{2} \\ x_{1} \end{pmatrix}$$

Por lo tanto la solución óptima es:

$$z^{i} = \frac{72}{2}$$

$$x*i \left(\frac{0}{15} \right)$$

Nota: es una solución degenerada, ya que al menos una variable básica (en este caso x_1) es igual a cero

Ejemplo XV:

$$\%$$
 incremento permisible = $\frac{\overline{b}-b}{\text{incremento permisible}} * 100\%$

Nota: Incremento permisible = unidades aumentadas permitidas, se encuentran en el intervalo permisible, del lado derecho de la desigualdad de Δb , es decir, $\Delta b_i \leq incremento\ permisible$

% decremento permisible =
$$\frac{b-\bar{b}}{\text{decremento permisible}} *100\%$$

Nota: Decremento permisible = unidades disminuidas permitidas, se encuentran en el intervalo permisible, del lado izquierdo de la desigualdad de Δb , es decir, $decremento\ permisible \leq \Delta b_i$

$$b = \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix} \qquad \overline{b} = \begin{pmatrix} 4 \\ 16 \\ 14 \end{pmatrix}$$

Para b_2 :

% incremento permisible =
$$\frac{16-12}{6} * 100 \% = 66.67 \%$$

Para b_3 :

% decremento permisible =
$$\frac{18-14}{6}$$
 * 100 % = 66.67 %

Sumando los porcentajes tenemos que $b_2 + b_3 = 66.67 + 66.67 > 100$

Entonces, la solución óptima anterior ya no es válida.

Debemos actualizar z^i y b^i

$$z^{i} = y^{i} \overline{b}$$

$$z^{i} = \begin{pmatrix} 0 & \frac{3}{2} & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 16 \\ 14 \end{pmatrix} = 38$$

$$b^{i} = S^{i} \overline{b}$$

$$b^{i} = \begin{vmatrix} 1 & \frac{1}{3} & \frac{-1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & \frac{-1}{3} & \frac{1}{3} \end{vmatrix} \begin{pmatrix} 4 \\ 16 \\ 14 \end{pmatrix} = \begin{vmatrix} \frac{14}{3} \\ 8 \\ \frac{-2}{3} \end{vmatrix}$$

Como hay un lado derecho negativo es infactible, entonces hay que reoptimizar con el simplex dual.

VB	Ecu	Z	\boldsymbol{x}_1	x_2	x_3	<i>X</i> ₄	<i>X</i> ₅	LD	
Z	0	1	0	0	0	3/2	1	38	
X_3	1	0	0	0	1	1/3	-1/3	14/3	
<i>X</i> ₂	2	0	0	1	0	1/2	0	8	
<i>X</i> ₁	3	0	1	O	O	-1/3	1/3	-2/3	(-3)

Variable que sale: X_1

Variable que entrar: X_4

	•		-						
VB	Ecu.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD	
Z	0	1	0	0	0	3/2	1	38	←
<i>X</i> ₃	1	0	0	0	1	1/3	-1/3	14/3	
<i>X</i> ₂	2	0	0	1	0	1/2	0	8	—
	3	0	-3	0	0	1	-1	2	(-1/2)(-1/3)(-3/2)

VB	Ecu.	Z	\boldsymbol{x}_1	X_2	<i>x</i> ₃	X_4	<i>X</i> ₅	LD
Z	0	1	9/2	0	0	0	5/2	35
<i>x</i> ₃	1	0	1	0	1	0	0	4
<i>X</i> ₂	2	0	3/2	1	0	0	1/2	7
<i>X</i> ₄	3	0	-3	0	0	1	-1	2

La nueva solución óptima es:

$$z^{i} = 35$$

$$x*i \begin{pmatrix} 0 \\ 7 \end{pmatrix}$$

Ejemplo XVI:

$$a i c_1 = 4 y a_{31} = 2$$

El problema original (ejemplo XIII) es:

$$max z = 3x_1 + 5x_2$$

s.a
$$x_1 + 0x_2 \le 4$$

 $0x_1 + 2x_2 \le 24$
 $3x_1 + 2x_2 \le 18$

$$x_1, x_2 \ge 0$$

El problema con los cambios es:

$$max z = 4 x_1 + 5 x_2$$

s.a
$$x_1 + 0x_2 \le 4$$

$$0x_1 + 2x_2 \le 24$$

$$2x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

Analizar si la solución básica complementaria y_* en el problema dual todavía satisface la restricción dual que cambió.

La tabla óptima del problema XIII es:

VB	Ecu	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	LD
Z	0	1	9/2	0	0	0	5/2	45
<i>x</i> ₃	1	0	1	0	1	0	0	4
<i>X</i> ₂	2	0	3/2	1	0	0	1/2	9
<i>X</i> ₄	3	0	-3	0	0	1	-1	6

De la tabla vemos que
$$y^i = \begin{pmatrix} 0 & 0 & \frac{5}{2} \end{pmatrix}$$

Como el cambio se realizó en X_1 , entonces encontramos la restricción dual asociada a esa columna donde se realizaron los cambios:

$$y_1 + 2y_3 \ge 4$$

Sustituyendo los valores:

$$0+2(\frac{5}{2}) \ge 4$$

Vemos que se satisface la restricción dual.

Por lo tanto la solución óptima del modelo original sigue siendo válida en el modelo con cambio.

$$b \, \dot{c}_1 = 8$$

El problema original (XIII) es:

$$max z = 3x_1 + 5x_2$$

s.a
$$x_1 + 0x_2 \le 4$$

$$0x_1 + 2x_2 \le 24$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

El problema con los cambios es:

$$max z = 8 x_1 + 5 x_2$$

s.a
$$x_1 + 0x_2 \le 4$$

$$0x_1 + 2x_2 \le 24$$

$$2x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

Analizar si la solución básica complementaria y_* en el problema dual todavía satisface la restricción dual que cambió.

Como el cambio se realizó en X_1 , entonces encontramos la restricción dual asociada a esa columna donde se realizaron los cambios:

$$y_1 + 2y_3 \ge 8$$

$$y^i = \begin{pmatrix} 0 & 0 & \frac{5}{2} \end{pmatrix}$$

Sustituir:

$$y_1 + 2 y_3 \ge 8$$

$$0+2(\frac{5}{2}) \ge 8$$

Como NO se cumple la desigualdad, entonces podemos decir que la solución óptima ya NO es válida.

Debemos encontrar la nueva solución, por lo tanto encontramos los siguientes valores.

$$z_{j}^{i} - \overline{c}_{j} = y^{i} \overline{A}_{j} - \overline{c}_{j}$$
$$A_{i}^{i} = S^{i} \overline{A}_{i}$$

Como los cambios se hicieron en x_1 entonces j=1

$$z_1^{\iota} - \overline{c}_1 = y^{\iota} \overline{A}_1 - \overline{c}_1$$

$$z_1^i - \overline{c}_1 = \begin{pmatrix} 0 & 0 & \frac{5}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} - 8 = -3$$

$$A_1^{\iota} = S^{\iota} \overline{A}_1$$

$$A_{1}^{i} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

Sustituir los nuevos valores y reoptimizar con simplex

_				-					
	VB	Ecu.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD
	Z	0	1	<mark>9/2</mark>	0	0	0	5/2	45
	<i>X</i> ₃	1	0	<mark>1</mark>	0	1	0	0	4
	<i>X</i> ₂	2	0	<mark>3/2</mark>	1	0	0	1/2	9
	<i>X</i> ₄	3	0	<mark>-3</mark>	0	0	1	-1	6

Realizamos el cambio en la columna:

VB	Ecu.	Z	<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	LD
Z	0	1	<mark>-3</mark>	0	0	0	5/2	45
<i>x</i> ₃	1	0	<mark>1</mark>	0	1	0	0	4
<i>X</i> ₂	2	0	1	1	0	0	1/2	9
<i>X</i> ₄	3	0	<mark>-2</mark>	0	0	1	-1	6

Vemos que con el cambio, la solución no es óptima ya que existe un negativo en la Ecu. 0

VB	Ecu.	Z	X_1	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	LD	
Z	0	1	-3	0	0	0	5/2	45	▼
<i>x</i> ₃	1	0	1	0	1	0	0	4	(3)(-1)(2)
<i>x</i> ₂	2	0	1	1	0	0	1/2	9	←
<i>X</i> ₄	3	0	-2	0	0	1	-1	6	—

Variable de entrada: X_1

Variable de salida: x_3

	9							
VB	Ecu.	Z	<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD
Z	0	1	0	0	3	0	5/2	57
\boldsymbol{x}_1	1	0	1	0	1	0	0	4
<i>X</i> ₂	2	0	0	1	-1	0	1/2	5
<i>X</i> ₄	3	0	0	0	2	1	-1	14

Solución:

$$z^6 = 57$$

$$x^{i} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

Ejemplo XVIII:

Sabemos que:

$$c_j \leq y^{\iota} \overline{A}_j$$

Como vamos a analizar a c_1 entonces j=1

$$c_1 \leq y^i \overline{A}_1$$

$$c_1 \le \left(0 \quad 0 \quad \frac{5}{2}\right) \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = \frac{15}{2}$$

Intervalo permisible es:

$$c_1 \le \frac{15}{2}$$

Ejemplo XIX:

$$\%$$
 incremento permisible = $\frac{\overline{c} - c}{\text{incremento permisible}} * 100\%$

$$\%$$
 decremento permisible = $\frac{c - \overline{c}}{decremento \ permisible} * 100 \%$

El problema original:

$$max z = 3x_1 + 5x_2$$

s.a
$$x_1 \le 4$$

$$2x_2 \le 24$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

El problema con cambios:

$$max z = 6 x_1 + 4 x_2$$

s.a
$$x_1 \le 4$$

$$2x_2 \le 24$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

$$c = (35)$$

$$\bar{c} = (64)$$

Para C_1 :

$$\%$$
 incremento permisible = $\frac{\overline{c} - c}{\text{incremento permisible}} * 100\%$

$$%c_1 = \frac{6-3}{4.5} * 100 \%$$

$$%c_1 = 66.66\%$$

Para C_2 :

% decremento permisible = $\frac{c - \overline{c}}{decremento \ permisible} * 100 \%$

$$\%c_2 = \frac{5-4}{3} * 100\%$$

$$%c_2 = 33.33\%$$

Nota: como X_2 es una variable básica, para encontrar el decremento es con otro procedimiento, ver el ejemplo XXII.

Sumando ambos porcentajes de cambios:

$$%c_1 + %c_2 = 100\%$$

Por lo tanto, la solución actual sigue siendo óptima, i.e., los precios sombra siguen siendo válidos.

Ejemplo XX:

El problema original:

$$max z=3 x_1+5 x_2$$

s.a
$$x_1 \le 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

Los parámeros asociados a la nueva variable son:

$$c_n = 0$$

$$A_n = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

a)
$$\overline{c}_n = 4$$
 y $\overline{A}_n = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$

El problema con cambios:

$$\max z = 3x_1 + 5x_2 + 4x_n$$
s.a
$$x_1 + 2x_n \le 4$$

$$2x_2 + 3x_n \le 12$$

$$3x_1 + 2x_2 + x_n \le 18$$

$$x_1, x_2, x_n \ge 0$$

La restricción dual asociada a X_n en el problema con los cambios es:

$$2y_1 + 3y_2 + y_3 \ge 4$$

La solución complementaria, es decir, la solución del problema dual del problema original es:

$$y^i = \begin{pmatrix} 0 & \frac{3}{2} & 1 \end{pmatrix}$$

Verificar que la restricción dual asociada a X_n sea válida con solución dual:

$$2y_1 + 3y_2 + y_3 \ge 4$$

$$2(0)+3(\frac{3}{2})+1\geq 4$$

$$\frac{11}{2} \ge 4$$

Vemos que se cumple la desigualdad.

Por lo tanto, la solución actual sigue siendo válida a pesar de haber introducido una nueva variable en el modelo.

b)
$$\overline{c}_n = 6$$
 y $\overline{A}_n = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$

El problema con cambios:

$$\max z = 3x_1 + 5x_2 + 6x_n$$
s.a
$$x_1 + 2x_n \le 4$$

$$2x_2 + 3x_n \le 12$$

$$3x_1 + 2x_2 + x_n \le 18$$

$$x_1, x_2, x_n \ge 0$$

La restricción dual asociada a X_n en el problema con los cambios es:

$$2y_1+3y_2+y_3 \ge 6$$

La solución complementaria, es decir, la solución del problema dual del problema original es:

$$y^{i} = \begin{pmatrix} 0 & \frac{3}{2} & 1 \end{pmatrix}$$

Verificar que la restricción dual asociada a X_n sea válida con solución dual:

$$2y_1+3y_2+y_3 \ge 6$$

$$2(0)+3(\frac{3}{2})+1\geq 6$$

$$\frac{11}{2} \ge 6$$

Como la desigualdad NO se cumple, entonces la solución actual ya no es óptima.

Por lo tanto, hay que actualizar los valores en la tabla y después reoptimizar.

$$z_{j}^{i} - \overline{c}_{j} = y^{i} \overline{A}_{j} - \overline{c}_{j}$$
$$A_{i}^{i} = S^{i} \overline{A}_{i}$$

$$z_n^i - \overline{c}_n = y^i \overline{A}_n - \overline{c}_n$$

$$z_n^i - \overline{c}_n = \begin{pmatrix} 0 & \frac{3}{2} & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} - 6 = \frac{-1}{2}$$

$$A_n^{\iota} = S^{\iota} \overline{A}_n$$

$$A_n^{i} = \begin{pmatrix} 1 & \frac{1}{3} & \frac{-1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & \frac{-1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{8}{3} \\ \frac{3}{2} \\ \frac{-2}{3} \end{pmatrix}$$

Sustituir los nuevos valores y reoptimizar con simplex

VB	Ecu.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	X _n	LD
Z	0	1	0	0	0	3/2	1	<mark>-1/2</mark>	36
<i>X</i> ₃	1	0	0	0	1	1/3	-1/3	<mark>8/3</mark>	2
<i>X</i> ₂	2	0	0	1	0	1/2	0	<mark>3/2</mark>	6
<i>x</i> ₁	3	0	1	0	0	-1/3	1/3	<mark>-2/3</mark>	2

Vemos que la tabla non es la óptima ya que no todos los elementos en la ecuación 0 son mayores o iguales que 0. Entonces aplicamos el método Simplex

VB	Ecu.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	X _n	LD
Z	0	1	0	0	0	3/2	1	-1/2	36
<i>x</i> ₃	1	0	0	0	1	1/3	-1/3	8/3	2

(3/8)

<i>X</i> ₂	2	0	0	1	0	1/2	0	3/2	6
X_1	3	0	1	0	0	-1/3	1/3	-2/3	2

Variable que entra: X_n

Variable que sale: X_3

Ī	VB	Ecu.	Z	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>x</i> ₅	X _n	LD	
Ī	Z	0	1	0	0	0	3/2	1	-1/2	36	← _
		1	0	0	0	3/8	1/8	-1/8	1	3/4	(1/2)(-3/2)(2/3)
	<i>X</i> ₂	2	0	0	1	0	1/2	0	3/2	6	—
Ī	<i>X</i> ₁	3	0	1	0	0	-1/3	1/3	-2/3	2	<u> </u>

VB	Ecu.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>x</i> ₅	\boldsymbol{X}_n	LD
Z	0	1	0	0	3/16	25/16	15/16	0	291/8
X_n	1	0	0	0	3/8	1/8	-1/8	1	3/4
<i>X</i> ₂	2	0	0	1	-9/16	5/16	3/8	0	39/8
<i>X</i> ₁	3	0	1	0	1/4	-1/4	1/4	0	5/2

Ejemplo XXI:

El problema origial (XIII) es:

$$max z=3 x_1+5 x_2$$

s.a
$$x_1 + 0x_2 \le 4$$
$$0x_1 + 2x_2 \le 24$$
$$3x_1 + 2x_2 \le 18$$
$$x_1, x_2 \ge 0$$

El problema con cambios es:

$$\max z = 3x_1 + 3x_2$$
s.a $x_1 + 0x_2 \le 4$
 $0x_1 + 3x_2 \le 24$
 $3x_1 + 4x_2 \le 18$
 $x_1, x_2 \ge 0$

Podemos ver que los cambios se hicieron en los coeficientes asociados a X_2 , que es VB.

$$\overline{c}_2 = 3 \text{ y } \overline{A}_2 = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}$$

Hay que actualizar los valores en la tabla y después los pasamos a la tabla óptima del problema original, y finalmente ver si es necesario reoptimizar.

$$z_{j}^{\iota} - \overline{c}_{j} = y^{\iota} \overline{A}_{j} - \overline{c}_{j}$$
$$A_{j}^{\iota} = S^{\iota} \overline{A}_{j}$$

$$z_{2}^{i} - \overline{c}_{2} = y^{i} \overline{A}_{2} - \overline{c}_{2}$$

$$z_{2}^{i} - \overline{c}_{2} = \begin{pmatrix} 0 & 0 & \frac{5}{2} \end{pmatrix} \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} - 3 = 7$$

$$A_{2}^{i} = S^{i} \overline{A}_{2}$$

$$A_{2}^{i} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$$

En la tabla óptima del problema original, el XIII, teníamos:

VB	Ecu.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD
Z	0	1	9/2	0	0	0	5/2	45
X_3	1	0	1	0	1	0	0	4
<i>X</i> ₂	2	0	3/2	<mark>1</mark>	0	0	1/2	9
<i>X</i> ₄	3	0	-3	0	0	1	-1	6

Actualizando los valores:

VB	Ecu.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD
Z	0	1	9/2	<mark>7</mark>	0	0	5/2	45
<i>x</i> ₃	1	0	1	0	1	0	0	4
<i>X</i> ₂	2	0	3/2	2	0	0	1/2	9
<i>X</i> ₄	3	0	-3	<mark>-1</mark>	0	1	-1	6

(1/2)

Podemos ver fácilmente que X_2 está dentro de la base, pero no tiene forma canónica, por lo tanto hay que darle esa forma antes de aplicar la prueba de optimalidad

VB	Ecu.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD	
Z	0	1	9/2	7	0	0	5/2	45	-
<i>x</i> ₃	1	0	1	0	1	0	0	4	
<i>X</i> ₂	2	0	3/4	1	0	0	1/4	9/2	(-7)(1)
<i>X</i> ₄	3	0	-3	-1	0	1	-1	6	—

VB	Ecu.	Z	<i>x</i> ₁	\boldsymbol{x}_2	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	LD
Z	0	1	-3/4	0	0	0	3/4	27/2
<i>X</i> ₃	1	0	1	0	1	0	0	4
<i>X</i> ₂	2	0	3/4	1	0	0	1/4	9/2
<i>X</i> ₄	3	0	-9/4	0	0	1	-3/4	21/2

Vemos que no es la table óptima, hay que reoptimizar con simplex.

VB	Ecu.	Z	<i>X</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD	
Z	0	1	-3/4	0	0	0	3/4	27/2	
<i>x</i> ₃	1	0	1	0	1	0	0	4	(3/4)(-3/4)(9/4)
\boldsymbol{x}_2	2	0	3/4	1	0	0	1/4	9/2	-
<i>X</i> ₄	3	0	-9/4	0	0	1	-3/4	21/2	4

Variable que entra: X_1

Variable que sale: X_3

	-		9					
VB	Ecu.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	LD
Z	0	1	0	0	3/4	0	3/4	33/2
X_1	1	0	1	0	1	0	0	4
<i>X</i> ₂	2	0	0	1	-3/4	0	1/4	3/2
X_4	3	0	0	0	9/4	1	-3/4	39/2

Solución:

$$z^{i} = \frac{33}{2}$$

$$x^{i} = \frac{3}{2}$$

Ejemplo XXII:

De forma general

$$z_i^{i} - \overline{c}_i \ge 0$$

Donde

$$\overline{c}_i = c_i + \Delta c_i$$

Entonces:

$$z_j^i - (c_j + \Delta c_j) \ge 0$$

$$z_j^{l} - c_j - \Delta c_j \ge 0$$

Como X_j es una variable básica, entonces el valor que tiene en la Ecu.0 es 0, ya que tiene forma canónica. Entonces:

$$z_i^i - c_i = 0$$

Entonces

$$-\Delta c_i \ge 0$$

Esta es la tabla óptima del problema original:

VB	Ecu.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	LD
Z	0	1	0	0	3/4	0	3/4	33/2
<i>X</i> ₁	1	0	1	0	1	0	0	4
<i>X</i> ₂	2	0	0	1	-3/4	0	1/4	3/2
<i>X</i> ₄	3	0	0	0	9/4	1	-3/4	39/2

Entonces, para los rangos permisibles hay que sustituir en la Ecu. 0 el cambio para \mathcal{C}_2 , que es el coeficiente en la función objetivo de \mathcal{X}_2

VB	Ecu.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	LD	
Z	0	1	0	$-\Delta c_2$	3/4	0	3/4	33/2	—
<i>X</i> ₁	1	0	1	0	1	0	0	4	
<i>X</i> ₂	2	0	0	1	-3/4	0	1/4	3/2	(Δc_2)
<i>X</i> ₄	3	0	0	0	9/4	1	-3/4	39/2	

Regresando a la forma canónica a X_2

VB	Ecu	Z	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	LD
Z	0	1	0	0	$\frac{-3}{4}\Delta c_2 + \frac{3}{4}$	0	$\frac{1}{4}\Delta c_2 + \frac{3}{4}$	$\frac{3}{2}\Delta c_2 + \frac{33}{2}$
<i>x</i> ₁	1	0	1	0	1	0	0	4
X_2	2	0	0	1	-3/4	0	1/4	3/2
<i>X</i> ₄	3	0	0	0	9/4	1	-3/4	39/2

Entonces, para que la tabla sea óptima, $Ecu \ge 0$

$$\begin{array}{ll} \frac{3}{4}\Delta c_2 \leq \frac{3}{4} & \Delta c_2 \geq -\frac{3}{4}(4) \\ \Delta c_2 \leq 1 & \Delta c_2 \geq -3 \end{array}$$

Considerando ambas:

$$-3 \le \Delta c_2 \le 1$$

$$3 - 3 \le c_2 \le 1 + 3$$

Intervalo permisible de C_2 :

$$0 \le c_2 \le 4$$

Ejemplo XXIII:

Considere la nueva restricción $2x_1+3x_2 \le 24$.

El problema original (XIII) es:

$$max z = 3x_1 + 5x_2$$

s.a
$$x_1 + 0x_2 \le 4$$

 $0x_1 + 2x_2 \le 24$
 $3x_1 + 2x_2 \le 18$

$$x_1, x_2 \ge 0$$

Modelo con la nueva restricción es:

$$max z = 3x_1 + 5x_2$$

s.a
$$x_1 + 0x_2 \le 4$$

 $0x_1 + 2x_2 \le 24$
 $3x_1 + 2x_2 \le 18$
 $2x_1 + 3x_2 \le 24$
 $x_1, x_2 \ge 0$

La solución óptima del modelo original (XIII) es: $x^{i} = (09)$

Verificar si la solución óptima actual (problema XIII) satisface la nueva restricción:

$$2(0)+3(9) \le 24$$

$$27 \le 24$$

NO se satisface la restricción nueva, entonces, la solución actual ya no es válida. Entonces debemos encontrar la forma aumentada de esa nueva restricción:

$$2x_1 + 3x_2 \le 24$$

$$2x_1 + 3x_2 + x_6 = 24$$

Donde
$$x_6 \ge 0$$

Por lo tanto, se debe introducir un renglón adicional a la tabla final del método simplex del problema XIII para introducir la nueva restricción, y también hay que agregar una nueva columna considerando la nueva variable de holgura (la que corresponde a la restricción nueva) como parte de la base.

VB	Ecu.	Z	<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	<i>x</i> ₆	LD	
Z	0	1	9/2	0	0	0	5/2	0	45	
<i>X</i> ₃	1	0	1	0	1	0	0	0	4	
<i>X</i> ₂	2	0	3/2	1	0	0	1/2	0	9	(-3)
<i>X</i> ₄	3	0	-3	0	0	1	-1	0	6	
<i>x</i> ₆	4	0	2	3	O	0	0	1	<mark>24</mark>	—

Debemos asegurarnos que las variables básicas tengan forma canónica, en este caso hay que regresarle la forma canónica a x_2 .

VB	Ecu.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>x</i> ₅	<i>X</i> ₆	LD
Z	0	1	9/2	0	0	0	5/2	0	45
<i>x</i> ₃	1	0	1	0	1	0	0	0	4
<i>X</i> ₂	2	0	3/2	1	0	0	1/2	0	9
<i>X</i> ₄	3	0	-3	0	0	1	-1	0	6
<i>x</i> ₆	4	0	-5/2	0	0	0	-3/2	1	-3

Si después de la actualización existe algún lado derecho sea negativo, debemos reoptimizar utilizando el método simplex dual.

VB	Ecu.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	<i>x</i> ₆	LD	
Z	0	1	9/2	0	0	0	5/2	0	45	
<i>x</i> ₃	1	0	1	0	1	0	0	0	4	
<i>X</i> ₂	2	0	3/2	1	0	0	1/2	0	9	
<i>X</i> ₄	3	0	-3	0	0	1	-1	0	6	
<i>x</i> ₆	4	0	-5/2	O	0	O	-3/2	1	-3	(-2/3)

Variable que sale: X_6 Variable que entra: X_5

VB	Ecu	Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	LD	
Z	0	1	9/2	0	0	0	5/2	0	45	←
<i>x</i> ₃	1	0	1	0	1	0	0	0	4	
<i>x</i> ₂	2	0	3/2	1	0	0	1/2	0	9	-
<i>X</i> ₄	3	0	-3	0	0	1	-1	0	6	-
	4	0	5/3	0	0	0	1	-2/3	2	(1)(-1/2)(-5/2)

VB	Ecu	Z	<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	LD
Z	0	1	1/3	0	0	0	0	5/3	40

<i>x</i> ₃	1	0	1	0	1	0	0	0	4
<i>X</i> ₂	2	0	2/3	1	0	0	0	1/3	8
<i>X</i> ₄	3	0	-4/3	0	0	1	0	-2/3	8
<i>x</i> ₅	4	0	5/3	0	0	0	1	-2/3	2

Solución: $z^{i}=40$

$$z^{i} = 40$$

$$x^{i} = \begin{pmatrix} 0 \\ 8 \end{pmatrix}$$