Содержание

03. Base [3/3]	3
Задача 03A. Экзамен по истории [0.5 sec (1 sec), 256 mb]	3
Задача 03В. Поиск [0.5 sec (1 sec), 256 mb]	4
Задача 03С. Быстрый поиск в массиве [0.5 sec (1 sec), 256 mb]	5
03. Advanced [3/6]	6
Задача 03D. Веревочки [0.5 sec (1 sec), 256 mb]	6
Задача 03E. Сумма трёх [0.5 sec (1 sec), 256 mb]	7
Задача 03F. Минимальный максимум [0.5 sec (1 sec), 256 mb]	8
Задача 03G. Сумма не без разнообразия [0.5 sec (1 sec), 256 mb]	9
Задача 03H. Для любителей статистики [0.5 sec (1 sec), 256 mb]	10
Задача 03I. Коровы – в стойла! [0.5 sec (1 sec), 256 mb]	11
$03.\mathrm{Hard}\left[0/3 ight]$	12
Задача 03J. La cucaracha [0.5 sec (1 sec), 256 mb]	12
Задача 03K. K-Best [0.5 sec (1 sec), 256 mb]	13
Задача 03L. Лифт [0.5 sec (1 sec), 256 mb]	14
Задача 03М. Многочлен [0.5 sec (1 sec), 256 mb]	15

Общая информация:

Bход в контест: http://contest.yandex.ru/contest/1547/

Дедлайн на задачи: 10 дней, до 3-го октября 23:59.

К каждой главе есть более простые задачи (base), посложнее (advanced), и сложные (hard).

В скобках к каждой главе написано сколько любых задач из этой главы нужно сдать.

Caйт курса: https://compscicenter.ru/courses/algorithms-1/2015-autumn/

Семинары ведут Сергей Копелиович (burunduk30@gmail.com, vk.com/burunduk1) и Глеб Леонов (gleb.leonov@gmail.com, vk.com/id1509292)

В каждом условии указан таймлимит для С/С++.

Таймлиминт для Java примерно в 2-3 раза больше.

Таймлиминт для Python примерно в 5 раз больше.

C++:

Быстрый ввод-вывод.

http://acm.math.spbu.ru/~sk1/algo/input-output/cpp_common.html

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы, map-ы) переопределение стандартного аллокатора ускорит вашу программу:

http://acm.math.spbu.ru/~sk1/algo/memory.cpp.html

Java:

Быстрый ввод-вывод.

http://acm.math.spbu.ru/~sk1/algo/input-output/java/java_common.html

03.Base [3/3]

Задача 03A. Экзамен по истории [0.5 sec (1 sec), 256 mb]

Даны два списка дат.

Найти количество дат во втором списке, которые присутствуют в первом.

Формат входных данных

На первой строке длина первого списка N ($1 \le N \le 15\,000$).

Следующие N строк содержат целые числа от 1 до 10^9 – даты из первого списка. Далее длина второго списка M ($1 \le M \le 10^6$).

Следующие M строк содержат целые числа от 1 до 10^9 – даты из второго списка.

Формат выходных данных

Одно число – ответ на задачу.

history.in	history.out
2	2
1054	
1492	
4	
1492	
65536	
1492	
100	

Задача 03В. Поиск [0.5 sec (1 sec), 256 mb]

В этой задаче нужно уметь выяснять, содержится ли число в последовательности.

Формат входных данных

В первой строке входного файла заданы через пробел два целых числа n и k ($1 \le n \le 300\,000$, $1 \le k \le 300\,000$). Во второй строке задана последовательность из n отсортированных целых чисел a_1, a_2, \ldots, a_n , записанных через пробел ($1 \le a_i \le 10^9$). В третьей строке записаны запросы — k целых чисел b_1, b_2, \ldots, b_k записанных через пробел, в порядке возрастания ($1 \le b_i \le 10^9$).

Формат выходных данных

В выходной файл выведите k строк. В j-ой строке выведите "YES", если число b_j содержится в последовательности $\{a_i\}$, и "NO" в противном случае.

find2.in	find2.out
3 3	NO
2 3 5	YES
1 2 3	YES
3 4	YES
1 2 2	YES
1 2 4 5	NO
	NO

Задача 03С. Быстрый поиск в массиве [0.5 sec (1 sec), 256 mb]

Дан массив из N целых чисел. Все числа от -10^9 до 10^9 .

Нужно уметь отвечать на запросы вида "Сколько чисел имеют значения от L до R?".

Формат входных данных

Число N ($1 \leqslant N \leqslant 10^5$). Далее N целых чисел.

Затем число запросов K ($1 \le K \le 10^5$).

Далее K пар чисел L, R $(-10^9 \le L \le R \le 10^9)$ — собственно запросы.

Формат выходных данных

Выведите K чисел — ответы на запросы.

find3.in	find3.out
5	5 2 2 0
10 1 10 3 4	
4	
1 10	
2 9	
3 4	
2 2	

03.Advanced [3/6]

Задача 03D. Веревочки [0.5 sec (1 sec), 256 mb]

С утра шел дождь, и ничего не предвещало беды. Но к обеду выглянуло солнце, и в лагерь заглянула СЭС. Пройдя по всем домикам и корпусам, СЭС вынесла следующий вердикт: бельевые веревки в жилых домиках не удовлетворяют нормам СЭС. Как выяснилось, в каждом домике должно быть ровно по одной бельевой веревке, и все веревки должны иметь одинаковую длину. В лагере имеется N бельевых веревок и K домиков. Чтобы лагерь не закрыли, требуется так нарезать данные веревки, чтобы среди получившихся веревочек было K одинаковой длины. Размер штрафа обратно пропорционален длине бельевых веревок, которые будут развешены в домиках. Поэтому начальство лагеря стремиться максимизировать длину этих веревочек.

Формат входных данных

В первой строке заданы два числа — N ($1 \le N \le 10\,001$) и K ($1 \le K \le 10\,001$). Далее в каждой из последующих N строк записано по одному числу — длине очередной бельевой веревки. Длина веревки задана в сантиметрах. Все длины лежат в интервале от 1 сантиметра до 100 километров включительно.

Формат выходных данных

В выходной файл следует вывести одно целое число — максимальную длину веревочек, удовлетворяющую условию, в сантиметрах. В случае, если лагерь закроют, выведите 0.

ropes.in	ropes.out
4 11	200
802 743	
743	
457 539	
539	

Задача 03E. Сумма трёх [0.5 sec (1 sec), 256 mb]

Даны три массива целых чисел A, B, C и целое число S. Найдите такие i, j, k, что $A_i + B_j + C_k = S$.

Формат входных данных

На первой строке число S ($1\leqslant S\leqslant 10^9$). Следующие три строки содержат описание массивов A,B,C в одинаковом формате: первое число задает длину n соответствующего массива ($1\leqslant n\leqslant 15\,000$), затем заданы n целых чисел от 1 до 10^9 —сам массив.

Формат выходных данных

Если таких i, j, k не существует, выведите единственное число -1. Иначе выведите на одной строке три числа -i, j, k. Элементы массивов нумеруются с нуля. Если ответов несколько, выведите лексикографически минимальный.

threesum.in	threesum.out
3	0 1 1
2 1 2	
2 3 1	
2 3 1	
10	-1
1 5	
1 4	
1 3	
5	0 1 2
4 1 2 3 4	
3 5 2 1	
4 5 3 2 2	

Задача 03F. Минимальный максимум [0.5 sec (1 sec), 256 mb]

Даны n нестрого возрастающих массивов A_i и m нестрого убывающих массивов B_j . Все массивы имеют одну и ту же длину l. Далее даны q запросов вида (i,j), ответ на запрос – такое k, что $\max(A_{ik}, B_{jk})$ минимален. Если таких k несколько, можно вернуть любое.

Формат входных данных

На первой строке числа n, m, l $(1 \le n, m \le 900; 1 \le l \le 3\,000)$. Следующие n строк содержат описания массивов A_i . Каждый массив описывается перечислением l элементов. Элементы массива — целые числа от 0 до $10^5 - 1$. Далее число m и описание массивов B_j в таком же формате. Массивы и элементы внутри массива нумеруются с 1. На следюущей строке число запросов q $(1 \le q \le n \cdot m)$. Следующие q строк содержат пары чисел i, j $(1 \le i \le n, 1 \le j \le m)$.

Формат выходных данных

Выведите q чисел от 1 до l – ответы на запросы.

Примеры

minmax.in	minmax.out
4 3 5	3
1 2 3 4 5	4
1 1 1 1 1	3
0 99999 99999 99999	5
0 0 0 0 99999	4
5 4 3 2 1	3
99999 99999 99999 0 0	1
99999 99999 0 0 0	1
12	1
1 1	4
1 2	4
1 3	3
2 1	
2 2	
2 3	
3 1	
3 2	
3 3	
4 1	
4 2	
4 3	

Замечание

Размер ввода ~ 37 мегабайт.

Задача 03G. Сумма не без разнообразия [0.5 sec (1 sec), 256 mb]

Задана последовательность целых чисел A_1, A_2, \dots, A_N .

Необходимо выбрать из нее подпоследовательность из подряд стоящих чисел $A_i, A_{i+1}, \ldots, A_j$ так, чтобы она содержала не менее K различных чисел, и сумма $S = A_i + A_{i+1} + \ldots + A_j$ была максимальной.

Формат входных данных

Первая строка ввода содержит целые числа N и K ($1 \le K \le N \le 200\,000$). Вторая строка содержит N целых чисел A_1, A_2, \ldots, A_N ($|A_i| \le 1\,000\,000\,000$).

Формат выходных данных

В первой строке необходимо вывести максимальное возможное значение суммы S. Во второй строке выведите индексы первого и последнего элементов найденной оптимальной подпоследовательности. Если существует несколько решений, подойдет любое из них.

Если не существует подпоследовательностей, удовлетворяющих решению задачи, выведите одну строку со словом "IMPOSSIBLE" (без кавычек).

threemax.in	threemax.out
7 3	-89
-99 1 2 -100 3 2 3	2 7
3 2	IMPOSSIBLE
1 1 1	

Задача 03H. Для любителей статистики [0.5 sec (1 sec), 256 mb]

Вы никогда не задумывались над тем, сколько человек за год перевозят трамваи города с десятимиллионным населением, в котором каждый третий житель пользуется трамваем по два раза в день?

Предположим, что на планете Земля n городов, в которых есть трамваи. Любители статистики подсчитали для каждого из этих городов, сколько человек перевезено трамваями этого города за последний год. Из этих данных была составлена таблица, в которой города были отсортированы по алфавиту. Позже выяснилось, что для статистики названия городов несущественны, и тогда их просто заменили числами от 1 до n. Поисковая система, работающая с этими данными, должна уметь быстро отвечать на вопрос, есть ли среди городов с номерами от l до r такой, что за год трамваи этого города перевезли ровно x человек. Вам предстоит реализовать этот модуль системы.

Формат входных данных

В первой строке дано целое число $n,\,0 < n < 70\,000$. В следующей строке приведены статистические данные в виде списка целых чисел через пробел, i-е число в этом списке — количество человек, перевезенных за год трамваями i-го города. Все числа в списке положительны и не превосходят 10^9-1 . В третьей строке дано количество запросов $q,\,0 < q < 70\,000$. В следующих q строках перечислены запросы. Каждый запрос — это тройка целых чисел $l,\,r$ и $x,\,$ записанных через пробел $(1\leqslant l\leqslant r\leqslant n,\,0 < x < 10^9)$.

Формат выходных данных

Выведите строку длины q, в которой i-й символ равен 1, если ответ на i-й запрос утвердителен, и 0 в противном случае.

queries.in	queries.out
5	10101
123 666 314 666 434	
5	
1 5 314	
1 5 578	
2 4 666	
4 4 713	
1 1 123	

Задача 031. Коровы – в стойла! [0.5 sec (1 sec), 256 mb]

На прямой расположены стойла, в которые необходимо расставить коров так, чтобы минимальное растояние между коровами было как можно больше.

Формат входных данных

В первой строке вводятся числа N (2 < N < 10001) — количество стойл и K (1 < K < N) — количество коров. Во второй строке задаются N натуральных чисел в порядке возрастания — координаты стойл (координаты не превосходят 10^9).

Формат выходных данных

Выведите одно число — наибольшее возможное допустимое расстояние.

cows.in	cows.out
5 3	99
1 2 3 100 1000	

03.Hard [0/3]

Задача 03J. La cucaracha [0.5 sec (1 sec), 256 mb]

Каждую полночь в квартире ученого Васи начинается ужас. Сотни . . . , о нет! ТЫСЯЧИ тараканов вылазят из каждой дырки к его обеденному столу, уничтожая все крошки и объедки! Вася ненавидит тараканов. Он очень долго думал и сделал Супер-ловушку, которая привлекает всех тараканов в большой зоне после активации. Он планирует активировать ловушку сегодня ночью. Но есть проблема. Эта очень эффективная ловушка с её очень большой зоной работы поглощает огромное количество энергии. Так что, Вася планирует минимизировать время работы этой ловушки. Он собрал информацию о всех местах, в которых живут тараканы. Также он заметил, что все тараканы двигаются только по линиям его скатерти с постоянной скоростью (мы можем предположить, что эта скорость равна 1, так что таракан расположенный в одной из секций, может за 1 единицу времени переместится на любую соседнюю секцию (по вертикали или горизонтали)). Вася решил активировать его ловушку в одной из секций. Когда ловушка активирована, все тараканы будут двигаться к секции, содержащей ловушку, так быстро, как только смогут. Поэтому в любой момент времени после активации тараканы двигаются к секции, в которой находится ловушка, максимально уменьшая расстояние до неё. Если есть два пути с одинаковым расстоянием, то таракан выберет любой. Напишите программу для Васи, которая выбирает секцию, минимизирующую время, необходимое для уничтожения всех тараканов. Конечно, ваша программа будет считать, что скатерть будет плоскостью с декартовой системой координат и секции — точки с целыми координатами.

Формат входных данных

В первой строке входного файла содержится число мест, в которых живут тараканы N ($1 \le N \le 10000$). Следующие N строк содержат x и y — координаты мест, в которых живут тараканы (целые числа не больше 10^9 по абсолютному значению).

Формат выходных данных

Вам необходимо вывести только два целых числа x и y, не превосходящие по модулю 10^9 , — координаты секции, которая минимизирует время работы. Если есть более одное решение — выведите любое из них.

cucarach.in	cucarach.out
2	2 2
1 1	
3 3	

Задача 03K. K-Best [0.5 sec (1 sec), 256 mb]

У Демьяны есть n драгоценностей. Каждая из драгоценностей имеет ценность v_i и вес w_i . С тех пор, как её мужа Джонни уволили в связи с последним финансовым кризисом, Демьяна решила продать несколько драгоценностей. Для себя она решила оставить лишь k лучших. Лучших в смысле максимизации достаточно специфического выражения: пусть она оставила для себя драгоценности номер i_1, i_2, \ldots, i_k , тогда максимальной должна быть величина

$$\frac{\sum_{j=1}^{k} v_{i_j}}{\sum_{i=1}^{k} w_{i_j}}$$

Помогите Демьяне выбрать k драгоценностей требуемым образом.

Формат входных данных

На первой строке n и k ($1 \le k \le n \le 100\,000$).

Следующие n строк содержат пары целых чисел v_i , w_i ($0 \le v_i \le 10^6$, $1 \le w_i \le 10^6$, сумма всех v_i не превосходит 10^7 , сумма всех w_i также не превосходит 10^7).

Формат выходных данных

Выведите k различных чисел от 1 до n — номера драгоценностей. Драгоценности нумерются в том порядке, в котором перечислены во входных данных. Если есть несколько оптимальных ответов, выведите любой.

kbest.in	kbest.out
3 2	1 2
1 1	
1 2	
1 3	

Задача 03L. Лифт [0.5 sec (1 sec), 256 mb]

Высокое здание, состоящее из N этажей, оснащено только одним лифтом. Парковка находится ниже фундамента здания, что соответствует одному этажу ниже первого. Этажи пронумерованы от 1 до N снизу вверх. Про каждый этаж известно количество человек, желающих спуститься на лифте на парковку. Пусть для і-го этажа эта величина равна A_i . Известно, что лифт не может перевозить более C человек единовременно, а также то, что на преодоление расстояния в один этаж (не важно вверх или вниз) ему требуется P секунд. Какое наибольшее количество человек лифт может перевезти на парковку за T секунд, если изначально он находится на уровне парковки?

Формат входных данных

В первой строке входного файла содержатся целые числа N, C, P, T ($1 \le N \le 100, 1 \le C \le 10^9, 1 \le P \le 10^9, 1 \le T \le 10^9$). Вторая строка содержит последовательность N целых чисел $A_1, A_2, ..., A_N$ ($0 \le A_i \le 10^9$). Сумма всех значений последовательности не превосходит 10^9 .

Формат выходных данных

Выведите наибольшее количество человек, которое лифт успеет перевезти на парковку.

lift.in	lift.out
4 5 2 15	3
0 1 2 3	
4 5 2 18	5
0 1 2 3	
3 2 1 9	3
1 1 1	

Задача 03М. Многочлен [0.5 sec (1 sec), 256 mb]

Каждый новый русский хочет дать своим детям всё самое лучшее. В частности, лучшее образование. Например, Колян попросил учителя математики научить его сына решать не только квадратные уравнения, но также кубические, четвёртой и вообще любой степени. Учитель знает, что уравнения степени выше пятой не могут быть решены в радикалах в общем виде. Но решение уравнений до пятой степени также достаточно сложная задача. Лучше проверить решения, используя компьютер. Вот где нужна ваша помощь.

Формат входных данных

Первая строка содержит степень многочлена N ($1 \le N \le 5$). В следующей N+1 строке находятся целые числа ($-100 \le a_i \le 100, \ a_0 \ne 0$). Строка i+2 содержит i-й коэффициент многочлена $a_0x^n + a_1x^{n-1} + \cdots + a_n$.

Формат выходных данных

Выведите все вещественные корни многочлена, учитывая их кратность. Корни должны быть выведены в порядке возрастания. Точность должна быть не менее 10^{-6} .

polynom.in	polynom.out
2	1
1	1
-2	
1	