Восстановление функциональных групп головного мозга с помощью графовых диффузных моделей

А. М. Астахов Московский физико-технический институт

Эксперт: д.ф-м.н. В.В.Стрижов Консультант: С. К. Панченко

Функциональные зависимости и индивидуальные вариации

Задача

Построить модель анализа головного мозга, учитывающую пространственную взаимосвязь ЭЭГ сигналов головного мозга и адаптивную для любого человека.

Проблема

Из-за нерегулярной структуры сигналов на сферической поверхности мозга CNN не могут эффективно учитывать пространственную информацию. Также активность мозга множественные вариации.

Решение

Предлагается использовать графовое представление сигналов, чтобы учесть функциональные взаимосвязи различных областей мозга. Также предлагается использовать диффузионный подход, чтобы сгладить шум и индивидуальные вариации.

Описание граф-диффузного подхода

- 1 Построение динамического графа
- 2 Применение диффузионных методов для сглаживания сигнала
- 3 Использование рекуррентной модели для учета временных зависимостей

Фрагмент ЭЭГ-сигнала [1]

Расположение электродов на голове

Динамическая графовая модель [3]

Постановка задачи

 $\mathbf{X} = [\mathbf{X}_m]_{m=1}^M, \ \mathbf{X}_m \in \mathbb{R}^{E \times N}$ — исходный сигнал, N — число отсчётов времени, E — число электродов, M — число испытаний. Дополнительно известна матрица координат электродов $\mathbf{Z} \in \mathbb{R}^{E \times 3}$. Рассмотрим ненаправленный динамический граф:

$$\mathcal{G}(m,t) = (\mathcal{V}(m,t), \mathcal{E}(m,t), A_{X,Z}(m,t)),$$

в котором $\mathcal{V}(m,t)$ — множество электродов, множество рёбер $\mathcal{E}(m,t)$ и их веса определяются из матрицы связности $A_{X,Z}(m,t)$. Требуется найти функцию:

$$A_{X,Z}(m,t): M \times T' \to \mathbb{R}_+^{E \times E}, \quad T' \subseteq T, \quad T = \{t_n\}_{n=1}^N.$$

Phase Locking Value и матрица связности

Для сигналов x(t) и y(t) длины T_w , фазовая синхронизация (PLV) определяется как:

$$p_{ij}(m, t_n) = \left| \frac{1}{T_w} \sum_{k=1}^{T_w} \exp\left(i(\phi_x(k\Delta t) - \phi_y(k\Delta t))\right) \right|,$$

где Δt — шаг по времени, $i=\sqrt{-1}$.

Матрица связности строится по правилу:

$$A_{X,Z}(m,t)=[a_{ij}(m,t)]\in\mathbb{R}_+^{E imes E},$$
 $a_{ij}(m,t)=egin{cases}
ho_{ij}(m,t),& ext{если }p_{ij}(m,t)\geq
ho(p),\ 0,& ext{иначе}. \end{cases}$

Модель классификации

Используется модель **DCGRU**, успешно применявшаяся для классификации эпилептических припадков по ЭЭГ.

Преимущества:

- 1 Учитывает влияние удалённых вершин графа за счёт диффузии;
- 2 Устойчива к шуму важно для индивидуальных ЭЭГ-данных.

Диффузионная свёртка на графе:

$$X_{:,p} \star_{\mathcal{G}} f_{\theta} = \Phi F(\theta) \Phi^{\top} X_{:,p},$$

 $L = \Phi \Lambda \Phi^{\top}$ — спектральное разложение лапласиана; $F(\theta) = \sum_{k=0}^{K-1} \theta_k \Lambda^k$ — полиномиальный фильтр; p — индекс признака вершины.

Признаковое описание

В качестве признаков используются значения дифференциальной энтропии для диапазонов ритмов мозга:

дельта (1–3 Гц), тета (4–7 Гц), альфа (8–13 Гц), бета (14–30 Гц), гамма (31–50 Гц). Формула дифференциальной энтропии для $Y \sim \mathcal{N}(\mu, \sigma^2)$:

$$DE(Y) = \frac{1}{2}\log(2\pi e\sigma^2)$$

Размерность графового сигнала в момент времени t: $x_t \in \mathbb{R}^{62 \times 5}$, где 62 — количество электродов, 5 — диапазоны частот.

Результаты

Проведено сравнение производительности двух архитектур RNN: с одним и двумя рекуррентными слоями. Также исследовано влияние длины входной последовательности (12 и 17 элементов) на качество модели. Обучение всех моделей производилось на GPU NVIDIA Tesla T4, время обучения — около 15 минут на каждую конфигурацию.

Основные выводы:

- Лучший результат модель с двумя рекуррентными слоями и последовательностью из 17 элементов.
- 2 Качество модели GRU хуже по сравнению с DCGRU.
- 3 Модели с одним рекуррентным слоем быстрее начинают переобучаться.

Модель с двумя рекуррентным слоем и группой в 17 элементов

GRU baseline

Использованные данные

- 1 https://www.epilepsia.su/jour/article/view/879?locale=ru_RU
- 2 https://bcmi.sjtu.edu.cn/home/seed/seed-iv.html
- 3 https://www.researchgate.net/figure/a-A-Discrete-Time-Dynamic-Graph-defined-over-five-timestamps-and-a-set-of-five_fig1_372313552