NeXus-CBF Concordance Summary

Herbert J. Bernstein, Aaron S. Brewster, Daniel Paley, Tobias S. Richter, Jonathan Sloan 4 June 2025

Contents

1	Introduction	5
2	How to read this document	5
3	General Mapping Issues	6
4	Mapping from CBF to NeXus	7
	4.1 The NeXus Structure Into Which to Map	7
	4.2 The NeXus top level	13
	4.3 Identifying images	13
	4.4 The ARRAY_DATA category	14
	4.5 The ARRAY_DATA_EXTERNAL_DATA category	15
	4.6 The ARRAY_ELEMENT_SIZE category	15
	4.7 The ARRAY_INTENSITIES category	16
	4.8 The ARRAY_STRUCTURE category	17
	4.9 The ARRAY_STRUCTURE_LIST category	17
	4.10 The ARRAY_STRUCTURE_LIST_SECTION category	21
	4.11 The ARRAY_STRUCTURE_LIST_AXIS category	22
	4.12 The AXIS category	26
	4.12.1 Differences in Coordinate Frames	31
	4.12.2 Mapping Axes	32
	4.13 The DIFFRN_DATA_FRAME category	32
	4.14 The DIFFRN_DETECTOR category	33
	4.15 The DIFFRN_DETECTOR_AXIS category	34
	4.15.1 DIFFRN_DETECTOR_ELEMENT category	34
	4.16 The DIFFRN_MEASUREMENT category	34
	4.17 The DIFFRN_MEASUREMENT_AXIS category	35
	4.18 The DIFFRN_RADIATION category	36
	4.19 The DIFFRN_REFLN category	38
	4.19.1 The MAP_SEGMENT category	44
	4.20 The VARIANT category	45
5	Mapping from NeXus to CBF/imgCIF	46
	5.1 Faithful Mapping of a NeXus Tree	46
	5.2 Mapping Fields	47
6	NeXus Base Class Mapping	50
	6.1 NXaperture	50
	6.2 NXattenuator	50
	6.3 NXbeam	51

6.4	NXbeam_stop	53
6.5	NXbending_magnet	54
6.6	NXcapillary	55
6.7	NXcharacterization	56
6.8	NXcollection	57
6.9	NXcollimator	57
6.10	NXcrystal	59
6.11	NXdata	62
6.12	NXdetector	64
6.13	NXdetector_group	70
6.14	$NXdisk_chopper$	70
6.15	NXentry	71
6.16	NXenvironment	74
6.17	NXevent_data	75
6.18	NXfermi_chopper	76
6.19	NXfilter	77
	NXflipper	79
	NXgeometry	79
6.22	NXguide	80
6.23	NXinsertion_device	82
6.24	NXinstrument	83
6.25	NXlog	85
6.26	NXmirror	86
6.27	NXmoderator	88
	NXmonitor	89
6.29	NXmonochromator	90
6.30	NXnote	91
6.31	NXorientation	92
	NXparameters	92
6.33	NXpolarizer	92
6.34	NXpositioner	93
	NXprocess	94
	NXroot	95
	NXsample	96
	NXsensor	99
6.39	NXshape	100
6.40	NXsource	101
		103
	·	106
		106
		107

	.45 NXvelocity_selector	
7	Proposed Pixel Array Detector Application Definitions 1	110
	7.1 NXentry	110
	7.2 NXinstrument	112
	3 NXdetector	113
	4. detectorSpecific:DECTRIS_detector_specific	117
	.5 detectorModule_nnn:DECTRIS_detector_module	121
	6 detectorChip_nn:DECTRIS_detector_chip	124
	7.7 Consolidated Dectris Eiger Application Definition	

1 Introduction

This is an updated concordance of the representation of macromolecular crystallographic image data when presented in NeXus/HDF5 or CBF/imgCIF. The original version written by Herbert J. Bernstein, Tobias S. Richter, and Jonathan Sloan was released in August 2013 [3], shortly after release of Dectris Eiger detectors using NeXus/HDF5 and six years after the adoption of CBF/imgCIF for Dectris Pilatus detectors in 2007. As of this writing both image formats are still in widespread use, and comversion between them is a common part of light source workflows.

As of this writing in 2025, the primary reference ontology for coordinate data for macromolecular crystallography is the Protein Data Bank's PDBX/mmCIF dictionary [9], and the primary reference ontology for raw crystallographic diffraction image data is the CBF/imgCIF dictionary [2] now housed in the DIALS obflib github repository ¹. The most commonly used container other than CBF/imgCIF for macromolecular crystallographic image data is NeXus/HDF5 [5] using the Dectris Filewriter format as described in the Gold Standard paper [1]. NeXus is tree-oriented and imgCIF/CBF is table-oriented. In this document we summarize an approach to a concordance between them. Both frameworks allow for multiple alternative representations of the same data. HDF5 provides a particularly appropriate format for the management of large numbers of experimental data sets and for the representation of particularly large data sets.

The original concordance in 2013 combined input from Herbert J. Bernstein, Tobias S. Richter and Jonathan Sloan, as well as comments and suggestions by Mark Koennecke in 2010 (see http://lists.nexusformat.org/pipermail/nexus-developers/attachments/20100201/a9424156/attachment-0001.el) and by the members of NIAC.

This draft is by Herbert J. Bernstein, Aaron Brester and Dan Paley, who take complete responsibility for any mistakes and misunderstandings in this version. Please send comments, corrections and suggestions to yayahjb@gmail.com.

The reader is assumed to already have familiarity with imgCIF/CBF, NeXus and HDF5.

2 How to read this document

While the mappings described here are complex and detailed, the approaches to the mappings are simple. If you are familiar with both CBF and NeXus, you should read section 4 "Mapping from CBF to NeXus" on page 7 through "Identifying images" on page 13 and section 5 "Mapping from NeXus to CBF/imgCIF" on page 46 through "Mapping Fields" on page 47. If you are interested on the handling of the Dectris Eiger detector, see section 7 "Proposed Pixel Array Detector Application Definitions" on page 110

¹http://github.com/dials/cbflib

3 General Mapping Issues

A CBF is organized as a set of relational tables, each table is called a "category". The name of a category is essentially the name of a class. Categories are organized into "data blocks" the name of a category must be distinct from the name of all other categories in the same data block. As a relational table, each table has a key. One component of the key is, in general, an "ID".

A NeXus file is organized as a tree. Each node of the tree has a name, which must be distinct from all the other names of nodes that are children of the same parent, each node of the tree is an HDF5 NeXus class instance or an HDF5 dataset or an HDF5 attribute. Each NeXus class instance has a NeXus class.

In most cases the value of the ID in each row of a CBF table will have to be mapped to the name of a NeXus class instance in the NeXus file, and in most cases the name of a NeXus class instance in a NeXus file will have to be mapped to the value of an ID in some CBF table.

To avoid namespace conflicts, in going from CBF to NeXus, we carry the CBF category name prefixed by "CBF_" along with the ID value in "dotted" notation, using a double underscore, "__", in place of the period to conform to NeXus naming conventions, but so as to not convict with the use of the single underscore, "_", to separate components of names on a single hierarchical level. In going from NeXus to CBF, we strip leading dotted notation name components that match the target category name.

Similar considerations will arise throughout this mapping. The major exception is for the fields in NXdetector, in which the well-established practice in NeXus is to give those fields fixed names, such as "data". If there is no possibility of a name conflict, we will retain the standard name and uses suffixes, rather than prefixes in cases that require disambiguation. In the longer term, it would be best to ensure reliable identification of the function of fields with attributes, rather than by name. In each case, an attribute will be added for that purpose.

Most CBF categories accept identifiers for variants. NeXus does not have an equivalent concept to variants at this time.

CBF carries detailed information about the storage of images, such as the compression used, that is not exposed in NeXus. That information is carried in HDF5.

CBF is designed to organize scans, identified by a scan ID, SCANID, in the context of multiple scans per diffraction experiment, where each diffraction experiment is identified by a diffraction ID, DIFFRNID, in the context of multiple experiments per study of a macromolecule, where each macromolecular study is identified by an entry ID, ENTRYID. This creates a 3-level hierarchy of information supporting the eventual report and structural deposition. At present, NeXus, does not support an equivalent of this hierarchy. This issue should be discussed.

4 Mapping from CBF to NeXus

For the following mapping, where a placement current defined NeXus class instances under NXentry has not yet been specified the mapping is shown as "→??", but all CBF items have a mapping under an CBF_cbf NeXus class instance that we propose to place under NXentry, so further mapping could be done entirely in NeXus or HDF5, if desired. Each _CATEGORY.COLUMN value of type CBFTYPE in row NN in data block DATABLOCK is mapped to

```
/entry_ENTRYID:NXentry
   /CBF_cbf:CBF_cbf
   /DATABLOCK:CBF_cbfdb
   /CATEGORY:CBF_cbfcat
   /COLUMN:CBF_cbfcol
   /NN
   /value
```

with the attribute @cbftype=CBFTYPE, so no information will be lost, and all the information in the rest of the NeXus tree will be available in these relational tables. For most traditional NeXus uses of the file, these tables may be ignored or deleted, but they are needed for efficient external management of multiple files in the context of a larger data management system. When very large numbers of datasets have to be handled at a facility, standard practice is to put information on which searches will be done into a relational database. CBF tables are such information. Translating them faithfully into NeXus allows that information to preserved with the NeXus/HDF5 files, rather than having to deal with two different file formats for this information. In order to index information from a NeXus file into a database, as is done, for example in the iCAT project, first the information needs to be in the NeXus file. Until the CBF to NeXus mapping has become complete and automatic, the extra CBF_cbf class ensures that all the information is available for such database use.

4.1 The NeXus Structure Into Which to Map

The following is the target tree structure. All elements of this mapping should be carefully considered and discussed. The attribute and field names with CBF category name prefixes are potential placeholder for shorter more readable names to be discussed. Names with double asterisks are flagged as particularly worth discussing.

```
/CBF_diffrn_scan__SCANID:NXentry
/CBF_scan_id="SCANID"
/CBF_diffrn_id="DIFFRNID"
/CBF_entry_id="ENTRYID"
/instrument:NXinstrument
```

```
/CBF_diffrn_detector__DETECTORNAME:NXdetector
  /start_time=STARTDATETIME
  /end_time=ENDDATETIME
  /CBF_diffrn_scan_frame__date=DATES
  /CBF_diffrn_scan_frame__frame_id=IDS
  /average_count_time=AVGCOUNTTIME
    /@units="sec"
  /average_frame_restart_time=RSTRTTIME
    /@units="sec"
  /average_frame_time=TIMEPER
    /@units="sec"
  /count_time=COUNTTIMES
    /@units="sec"
  /frame_time=TIMEPERS
    /@units="sec"
  /frame_restart_time=RSTRTTIME
    /@units="sec"
  /frame_start_number=FRAMESTARTNO
  /frame_end_number=FRAMEENDNO
  /distance --> /NXentry/NXinstrument/NXsample/CBF_diffrn_measurement__sample_detector_distance
  /data_ARRAYID_BINARYID=DATA
    /@CBF_array_id="ARRAYID"
   /@CBF_binary_id="BINARYID"
    /@CBF_header_contents="HEADER"
    /@CBF_header_convention="HEADERCONVENTION"
   /@x_pixel_size=XPSIZE
   /@y_pixel_size=YPSIZE
   /@CBF_array_intensities__details="DETAILS"
   /@CBF_array_intensities__gain=GAIN
    /@CBF_array_intensities__gain_esd=GAINESD
    /@CBF_array_intensities__linearity="LINEARITY"
    /@CBF_array_intensities__offset=OFFSET
    /@CBF_array_intensities__scaling=SCALING
    /@CBF_array_intensities__overload=OVERLOAD
    /@CBF_array_intensities__undefined_value=UNDEFVAL
   /@CBF_array_intensities__pixel_fast_bin_size=FBINSIZE
   /@CBF_array_intensities__pixel_slow_bin_size=SBINSIZE
    /@CBF_array_intensities__pixel_binning_method="METHOD"
  /deadtime=DTIME
  /description=DESCRIPTION
  /details=DETAILS
  /number_of_axes=NUMDETAXES
  /type=TYPE
  /CBF_array_structure_list__AXISSET1=[]
   /@CBF_array_id="ARRAYID"
   /@CBF_array_structure_list__dimension=DIM1
   /@CBF_array_structure_list__direction="DIR1"
    /@CBF_array_structure_list__index=1
    /@CBF_axis=PRECEDENCE1
```

```
/CBF_array_structure_list__AXISSET2=[]
    /@CBF_array_id="ARRAYID"
    /@CBF_array_structure_list__dimension=DIM2
    /@CBF_array_structure_list__direction="DIR2"
    /@CBF_array_structure_list__index=2
    /@CBF_axis=PRECEDENCE2
  /CBF_array_structure_list_section__SECTIONID=[]
    /@CBF_array_id="ARRAYID"
    /@CBF_array_structure_list_section__index=INDEX
    /@CBF_array_structure_list_section__end=END
    /@CBF_array_structure_list_section__start=START
    /@CBF_array_structure_list_section__stride=STRIDE
  /CBF_array_structure_list_axis__AXISID=[]
    /@CBF_array_structure_list_axis__axis_id="AXISID"
    /@CBF_array_structure_list_axis_axis_set_id="AXISSETID"
   /@CBF_array_structure_list_axis__angle=ANGLE
   /@CBF_array_structure_list_axis__angle_increment=ANGLEINC
                                                               **
    /@CBF_array_structure_list_axis__displacement=DISP
                                                                **
    /@CBF_array_structure_list_axis__displacement=FRACTDISP
    /@CBF_array_structure_list_axis__fract_displacement=DISPINC **
    /@CBF_array_structure_list_axis__fract_displacement_increment=FRACTINC **
    /@CBF_array_structure_list_axis__angular_pitch=ANGPITCH
                                                               **
    /@CBF_array_structure_list_axis__radial_pitch=RADPITCH
                                                                **
    /@CBF_array_structure_list_axis__reference_angle=REFANG
                                                                **
    /@CBF_array_structure_list_axis__reference_displacement=REFDISP **
  /CBF_diffrn_scan_axis__AXISID=[]
     /@CBF_axis_id="AXISID"
     /@CBF_diffrn_scan_axis__angle_start=ANGSTART
     /@CBF_diffrn_scan_axis__angle_range=ANGRANGE
     /@CBF_diffrn_scan_axis__angle_increment=ANGINC
     /@CBF_diffrn_scan_axis__angle_rstrt_incr=ANGRSTRT
     /@CBF_diffrn_scan_axis__displacement_start=DISPSTART
     /@CBF_diffrn_scan_axis__displacement_range=DISPRANGE
     /@CBF_diffrn_scan_axis__displacement_increment=DISPINC
     /@CBF_diffrn_scan_axis__displacement_rstrt_incr=DISPRSTRT
     /@CBF_diffrn_scan_axis__reference_angle=ANG
     /@CBF_diffrn_scan_axis__reference_displacement=DISP
  /CBF_diffrn_detector_element__id="ELEMENTID1:ELEMENTID2:..."
  /CBF_diffrn_detector_element__reference_center_fast=[RCF1,RCF2,...] **
  /CBF_diffrn_detector_element__reference_center_slow=[RCS1,RCS2,...] **
  /CBF_diffrn_detector_element__id="UNITS1:UNITS2:..." **
  /CBF_diffrn_data_frame__section_id=SECTIONIDARRAY **
  /CBF_diffrn_data_frame__binary_id=BINARYIDARRAY **
  /CBF_diffrn_data_frame__center_fast_slow=CENTERARRAY **
    /@units="UNITS"
  /CBF_diffrn_data_frame__details=DETAILSARRAY
/CBF_diffrn_measurement__GONIOMETER:NXsample
  /CBF_diffrn_measurement__details="DETAILS"
  /CBF_diffrn_measurement__device="DEVICE"
```

```
/CBF_diffrn_measurement__device_details="DEVDETAILS"
  /CBF_diffrn_measurement__device_type="DEVTYPE"
  /CBF_diffrn_measurement__method="METHOD"
  /number_of_axes=NUMBER
  /CBF_diffrn_measurement__sample_detector_distance=DIST
    /@units="mm"
  /CBF_diffrn_measurement__sample_detector_voffset=VOFST
    /@units="mm"
  /CBF_diffrn_measurement__specimen_support="SPECSPRT"
  /CBF_diffrn_radiation__collimation="COLLIMATION"
  /divergence_x=DIVX
    /@units="deg"
  /divergence_y=DIVY
    /@units="deg"
  /CBF_diffrn_radiation__div_x_y_source=DIVXY
    /@units="deg^2"
  /CBF_diffrn_radiation__filter_edge=ABSEDGE
    /@units="angstroms"
  /CBF_diffrn_radiation__inhomogeneity=HWIDTH
    /@units="mm"
/monochromator: NXmonochromator
  /wavelength=WAVELENGTH
  /CBF_diffrn_radiation__monochromator="MONOCHROMATOR"
  /CBF_diffrn_radiation__polarisn_norm=POLNANG
    /@units="deg"
  /CBF_diffrn_radiation__polarisn_ratio=POLRAT
  /CBF_diffrn_radiation__polarizn_source_norm=POLSNANG
    /@units="deg"
  /CBF_diffrn_radiation__polarizn_source_ratio=POLSRAT
  /CBF_diffrn_radiation__probe="RADIATION"
  /CBF_diffrn_radiation__type="SIEGBAHNTYPE"
  /CBF_diffrn_radiation__xray_symbol="IUPACXRAYSYMB"
/CBF_diffrn_scan_SCANID:NXscan
/CBF_diffrn_scan_frame_monitor__DETECTORNAME:NXmonitor
  /data=MONITORVALUES
  /count_time=INTEGRATIONTIMES
    /@units="sec"
```

In the years since the original proposal, NeXus has chosen to gather the information about the various transformations based rotation, translation, and general axes in one or more NXtranformations groups.

This is a fragmentary example of the axis definitions as proposed for NeXus taken from the CBF fragment afterwards.

```
/instrument:NXinstrument
  /CBF_diffrn_detector__DETECTOR:NXdetector
  CBF_axis__DETECTOR_PITCH=[0.]
    @units="deg"
    @CBF_location="image_1.axis.vector.10"
```

```
@depends_on="axis__DETECTOR_Y"
      @transformation_type="rotation"
      @vector=[-1, 0, 0]
  CBF_axis__DETECTOR_Y=[0.]
      @units="mm"
      @CBF_location="image_1.axis.vector.9"
      @depends_on="axis__DETECTOR_Z"
      @transformation_type="translation"
      @vector=[0, -1, 0]
  CBF_axis__DETECTOR_Z=[250.]
      @units="mm"
      @CBF_location="image_1.axis.vector.8"
      depends_on="."
      @transformation_type="translation"
      @vector= [0, 0, 1]
  CBF_axis__ELEMENT_X=[0.]
     @units="mm"
     @offset_units="mm"
      @CBF_location="image_1.axis.vector.11"
      @depends_on="axis__DETECTOR_PITCH"
      @transformation_type="translation"
      @vector= [-1, 0, 0]
     @offset= [-211.818, -217.322, 0]
  CBF_axis__ELEMENT_Y=[0.]
     @units="mm"
      @CBF_location=image_1.axis.vector.12
      @depends_on="axis__ELEMENT_X"
      @transformation_type="translation"
      @vector= [0, 1, 0]
/CBF_coordinate_system:NXcoordinate_system
   /CBF_axis__SLS_X=[]
      @CBF__location="image_1.axis.vector.0"
      @depends_on="."
      @vector= [-1, 0, 0]
   /CBF_axis__SLS_Y=[]
      @CBF__location="image_1.axis.vector.1"
      @depends_on="."
      @vector= [0, -1, 0]
   /CBF_axis__SLS_Z=[]
      @CBF__location="image_1.axis.vector.2"
      @depends_on="."
      @vector= [0, 0, 1]
   /CBF_axis__GRAVITY=[]
      @cbf_location="image_1.axis.vector.7"
      @depends_on="."
      Qvector=[0, -1, 0]
   /CBF_axis__BEAM=[]
      @cbf_location="image_1.axis.vector.6"
      @epends_on="."
      @vector= [0, 0, 1]
```

```
/CBF_diffrn_measurement__GONIOMETER:NXsample
                                           (Note: Changed from NXgoniometer, 8Aug13)
         /CBF_axis__GONIOMETER_KAPPA=[0]
            @units="deg"
            @CBF__location="image_1.axis.vector.4"
            @depends_on="axis__GONIOMETER_OMEGA"
            @transformation_type="rotation"
            @vector= [-0.64279, 0.76604, 0]
         /CBF_axis__GONIOMETER_OMEGA=[0]
            @units="deg"
            @CBF__location=image_1.axis.vector.3
            @depends_on="."
            @transformation_type="rotation"
            @vector= [1, 0, 0]
         /CBF_axis__GONIOMETER_PHI=[0]
            @units="deg"
            @CBF__location=image_1.axis.vector.5
            @depends_on="axis__GONIOMETER_KAPPA"
            @transformation_type="rotation"
            @vector= [1, 0, 0]
loop_
_axis.id
_axis.type
_axis.equipment
_axis.depends_on
_axis.vector[1]
_axis.vector[2]
_axis.vector[3]
_axis.offset[1]
_axis.offset[2]
_axis.offset[3]
                                              I - I - I
                                              1
                                                - 1
# The SLS Beamline axis convention is similar to the imgCIF convention, but
# Y and Z run the other way
                        SLS_X
               general
                        general
                                               1 0 0 0 0 0
               general
 SLS Y
                       general
                                               0 -1 0 0 0 0
                                               0 0 -1 0 0 0
 SLS_Z
               general
                       general
                                              # We define a kappa geometry with a left-handed omega and phi and a right- | |
# handed kappa. The kappa axis arm is at the top when omega is zero
                                                    GONIOMETER_OMEGA rotation
                        goniometer
                                              -1 0 0 .
 GONIOMETER_KAPPA rotation
                        goniometer
                                    GONIOMETER_OMEGA
                                          0.64279 0.76604
```

```
GONIOMETER_PHI
                            GONIOMETER_KAPPA
           rotation
                  goniometer
                                      0 0
                                    -1
BF.AM
                                      0 -1
           general
                  source
 GRAVITY
                                     0 -1 0
           general
                  gravity
- 1
# The detector is assumed to be mounted on an arm parallel to the beam
# with a DETECTOR_Y vertical translation and a pitch axis
I \quad I \quad I
 DETECTOR Z
           translation detector
                                     0 0 -1
                                          0
                                            0
 DETECTOR_Y
                            DETECTOR_Z
                                     0 - 1
                                          0
           translation detector
 DETECTOR_PITCH
                            DETECTOR_Y
                                     1 0 0
           rotation
                  detector
# This detector is assumed to have the 0,0 corner at +X and -Y
# we assume a 2463 x 2527 detector on a 0.172 mm pixel pitch
                                      1
                                       I I I
 ELEMENT_X
                            DETECTOR_PITCH 1 0 0
           translation detector
                                    211.818 -217.322 0
 ELEMENT_Y
           translation detector
                            ELEMENT_X
                                    0 1 0
```

4.2 The NeXus top level

The top level presented on the NeXus side of this mapping is

```
/CBF_diffrn_scan__SCANID:NXentry
```

These scans can then be NeXus class instanceed into diffraction experiments and then into macromolecular studies by careful organization of files in tree of directories, but as the number of files and directories become large and individual scans get moved, there is a serious risk of loss of critical information if the identifiers for higher levels of the hierarchy are not recoverable from individual scans. For this reason, the fields

```
/CBF_scan_id="SCANID"
/CBF_diffrn_id="DIFFRNID"
/CBF_entry_id="ENTRYID"
```

are given at the top level, if available, even if the same information is carried deeper in the hierarchy.

4.3 Identifying images

In many experimental disciplines, including X-ray crystallography, multiple related images are generated a single experiment. In some cases these can be gathered into a single array, but there are also many cases in which multiple data arrays are needed. Therefore, it is not sufficient to reserve the name "data" for the data. In imgCIF and array of data is identified by two identifiers, an array ID, specifying the structure

of the array, and a binary ID identifying a specific array. We name such data arrays by composing the commonly used name "data" these two identifiers separated by an underscores "_".

When only one array ID and only one binary ID are present, then it will be sufficient to just use the field name "data".

It is important to note that an image from an single detector may consist of only a slice (or "section") taken from a larger array of data, and that a multi-element detector may be stored either as a single slice from one array common to all the elements, or as separate slices from different arrays, one array (or even more than one array) per detector element.

4.4 The ARRAY_DATA category

Data items in the ARRAY_DATA category are the containers for the array data items described in the category ARRAY_STRUCTURE.

It is recognized that the data in this category needs to be used in two distinct ways. During a data collection the lack of ancillary data and timing constraints in processing data may dictate the need to make a 'miniCBF' nothing more than an essential minimum of information to record the results of the data collection. In that case it is proper to use the ARRAY_DATA category as a container for just a single image and a compacted, beam-line dependent list of data collection parameter values. In such a case, only the tags '_array_data.header_convention', '_array_data.header_contents' and '_array_data.data' need be populated.

For full processing and archiving, most of the tags in this dictionary will need to be populated.

The mapping from CBF into NeXus for the ARRAY_DATA category is:

```
_array_data.array_id ARRAYID
_array_data.binary_id BINARYID
_array_data.data DATAARRAY
_array_data.header_contents HEADER
_array_data.header_convention HEADERCONVENTION
\rightarrow
/entry:NXentry
 /instrument:NXinstrument
    /DETECTORNAME: NXdetector_group
    /DETECTORELEMENTNAME: NXdetector
        /data_ARRAYID_BINARYID -->
             /entry/data_ARRAYID_BINARYID/data_ARRAYID_BINARYID
         @CBF_array_id="ARRAYID"
         @CBF_binary_id="BINARYID"
         @CBF_header_contents="HEADER"
         @CBF_header_convention="HEADERCONVENTION"
```

4.5 The ARRAY_DATA_EXTERNAL_DATA category

Data items in the ARRAY_DATA_EXTERNAL_DATA category optionally record the location and essential characteristics of arrays of data for use in ARRAY_DATA that are found external to the cif_img file.

The mapping from CBF into NeXus for the ARRAY_DATA_EXTERNAL_DATA category is:

```
_array_data.array_id ARRAYID
_array_data.binary_id BINARYID
_array_data.external_data_id EXTERNAL_DATA_ID
_array_data.header_contents HEADER
_array_data.header_convention HEADERCONVENTION
_array_data_external_data.archive_format ARCHIVEFORMAT
_array_data_external_data.archive_path ARCHIVEPATH
_array_data_external_data.id EXTERNAL_DATA_ID
_array_data_external_data.format HDF5
_array_data_external_data.uri DATAURI
_array_data_external_data.path DATAPATH
_array_data_external_data.frame DATAFRAME
/entry:NXentry
 /data_ARRAYID_BINARYID:NXdata
   data_ARRAYID_BINARYID --> DATAURI//DATAPATH
/instrument:NXinstrument
   /DETECTORNAME: NXdetector_group
   /DETECTORELEMENTNAME: NXdetector
       /data_ARRAYID_BINARYID -->
            /entry/data_ARRAYID_BINARYID/data_ARRAYID_BINARYID
        @CBF_array_id="ARRAYID"
        @CBF_binary_id="BINARYID"
        @CBF_header_contents="HEADER"
        @CBF_header_convention="HEADERCONVENTION"
        @CBF_external_data_archive_format="ARCHIVEFORMAT"
        @CBF_external_data_archive_path="ARCHIVEPATH""
        @CBF_external_data_uri="DATAURI"
        @CBF_external_data_path="DATAPATH"
        @CBF_external_data_frame="DATAFRAME"
```

4.6 The ARRAY_ELEMENT_SIZE category

Data items in the ARRAY_ELEMENT_SIZE category record the physical size of array elements along each array dimension.

The mapping from CBF into NeXus for the ARRAY_ELEMENT_SIZE category is:

There is no general equivalent to ARRAY_ELEMENT_SIZE in NeXus, but for NXdetector_module, the pixel size is given as values in the array fast_pixel_direction and slow_pixel_direction.

4.7 The ARRAY_INTENSITIES category

Data items in the ARRAY_INTENSITIES category record the information required to recover the intensity data from the set of data values stored in the ARRAY_DATA category.

The detector may have a complex relationship between the raw intensity values and the number of incident photons. In most cases, the number stored in the final array will have a simple linear relationship to the actual number of incident photons, given by _array_intensities.gain. If raw, uncorrected values are presented (e.g. for calibration experiments), the value of _array_intensities.linearity will be 'raw' and _array_intensities.gain will not be used.

The mapping from CBF into NeXus for the ARRAY_DATA_EXTERNAL_DATA category is:

```
_array_intensities.array_id ARRAYID
_array_intensities.binary_id BINARYID
_array_intensities.details DETAILS
_array_intensities.gain GAIN
_array_intensities.gain_esd GAINESD
_array_intensities.linearity LINEARITY
_array_intensities.offset OFFSET
_array_intensities.scaling SCALING
_array_intensities.overload OVERLOAD
_array_intensities.undefined_value UNDEFVAL
_array_intensities.underload UNDERLOAD
_array_intensities.pixel_fast_bin_size FBINSIZE
_array_intensities.pixel_slow_bin_size SBINSIZE
_array_intensities.pixel_binning_method METHOD
  /entry:NXentry
    /data_ARRAYID_BINARYID:NXdata
      /data_ARRAYID_BINARYID
          @CBF_array_id="ARRAYID"
          @CBF_binary_id="BINARYID"
          @details="DETAILS"
          @gain=[GAIN]
          @gain_esd=[GAINESD]
          @linearity="LINEARITY"
          @offset=[OFFSET]
          @saturation_value=[OVERLOAD]
          @scaling_factor=[SCALING]
          Qundefined_value=[UNDEFVAL]
          @underload_value=[UNDERLOAD]
          @CBF_array_intensities__pixel_fast_bin_size=[FBINSIZE]
```

@CBF_array_intensities__pixel_slow_bin_size=[SBINSIZE]
@CBF_array_intensities__pixel_binning_method="METHOD"

/instrument:NXinstrument

/DETECTORNAME:NXdetector_group
/DETECTORELEMENTNAME:NXdetector
/data_ARRAYID_BINARYID -->

/entry/data_ARRAYID_BINARYID/data_ARRAYID_BINARYID

The argument has been made that these attributes are not needed because NeXus files are supposed to have 'true values' stored. In many cases that is true and then none of these attributes are needed. However, with some detectors and some experiments there are good technical and scientific reasons to bring in values that will need processing later to derive 'true values', and in those case some or all of these attributes will be needed. They are provided for such cases.

The same attributes could be used as fields in the case of a single data array, but in that case links for all the fields would be needed from NXdata to NXdetector, so it is preferable to use attributes even in the case of a single data array. The reverse mapping will support both uses.

4.8 The ARRAY_STRUCTURE category

Data items in the ARRAY_STRUCTURE category record the organization and encoding of array data that may be stored in the ARRAY_DATA category.

Note that this is essentially a type that may apply to multiple binary images, and corresponds to some of the detailed HDF5 information about an array. The following mapping is a placeholder for the names given for future reference, if needed.

The information in this category is the byte order, the compression information, and the encoding, which is carried in and retrievable from the HDF5 types, properties lists, etc.

At present NeXus does not expose this information. This should be discussed.

4.9 The ARRAY_STRUCTURE_LIST category

Data items in the ARRAY_STRUCTURE_LIST category record the size and organization of each array dimension.

The relationship to physical axes may be given.

The mapping from CBF into NeXus for the ARRAY_STRUCTURE_LIST category is:

_array_structure_list.axis_set_id AXISSETID

```
_array_structure_list.array_id ARRAYID
_array_structure_list.array_section_id ARRAYSECTIONID
_array_structure_list.dimension DIM
_array_structure_list.direction DIR
_array_structure_list.index INDEX
_array_structure_list.precedence PRECEDENCE
_array_structure_list_section.array_id ARRAYID -->
_array_structure_list_section.id ARRAYSECTIONID -->
_array_structure_list_section.index PRECEDENCE-->
_array_structure_list_section.end END -->
_array_structure_list_section.start START -->
_array_structure_list_section.stride STRIDE -->
 loop_
_array_structure_list_axis.axis_id
_array_structure_list_axis.axis_set_id
_array_structure_list_axis.angle
_array_structure_list_axis.angle_increment
_array_structure_list_axis.displacement
_array_structure_list_axis.fract_displacement
_array_structure_list_axis.displacement_increment
_array_structure_list_axis.fract_displacement_increment
_array_structure_list_axis.angular_pitch
_array_structure_list_axis.reference_angle
_array_structure_list_axis.reference_displacement REFDISP
AXISID1 AXISSETID ANGLE1 ANGLEINC1 DISP1 FRACTDISP1
     DISPINC1 FRACTINC1 ANGPITCH1 REFANG1
AXISID2 AXISSETID ANGLE2 ANGLEINC2 DISP2 FRACTDISP2
     DISPINC2 FRACTINC2 ANGPITCH2 REFANG2
AXISID3 AXISSETID ANGLE3 ANGLEINC3 DISP3 FRACTDISP3
     DISPINC3 FRACTINC3 ANGPITCH3 REFANG3
_diffrn_data_frame.array_id ARRAYID
_diffrn_data_frame.binary_id BINARYID
_diffrn_data_frame.center_fast CENF
_diffrn_data_frame.center_slow CENS
_diffrn_data_frame.center_derived CENDERIVED
_diffrn_data_frame.center_units UNITS
_diffrn_data_frame.detector_element_id ELEMENTID
_diffrn_data_frame.id FRAMEID
_diffrn_data_frame.details DETAILS
. . .
/entry:NXentry
 /data_ARRAYID_BINARYID:NXdata
     @signal="data_ARRAYID_BINARY_ID"
```

```
/data_ARRAYID_BINARYID[ the data for the array ARRAYID,
                           binary BINARYID, all sections,
                           all FRAMES]
   @axes=[...,AXISID1,...] with AXISID1 inserted at PRECEDENCE-1
   @AXISID1_indices=[PRECEDENCE-1]
   @AXISID2_indices=[PRECEDENCE-1]
   @AXISID3_indices=[PRECEDENCE-1]
   @AXISID1_origins=[origin1] (default 0)
   @AXISID2_origins=[origin2] (default 0)
  @AXISID3_origins=[origin3] (default 0)
  @AXISID1_sizes=[size1]
  @AXISID2_sizes=[size2]
  @AXISID3_sizes=[size3]
  @AXISID1_strides=[stride1]
  @AXISID2_strides=[stride2]
  @AXISID3_strides=[stride3]
   /AXISID1 -->
      /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID1
   /AXISID2 -->
       /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID2
   /AXISID2 -->
      /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID3
/instrument:NXinstrument
  /DETECTORNAME: NXdetector_group
  /DETECTORELEMENTNAME: NXdetector
     /data_ARRAYID_BINARYID -->
           /entry/data_ARRAYID_BINARYID/data_ARRAYID_BINARYID
      /AXISID1 -->
           /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID1
     /AXISID2 -->
           /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID2
     /AXISID2 -->
           /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID3
      /ARRAYSECTIONID: NXdetector_module
        /data_origin=[...] -- the O-based origins indices of ARRAYSECTIONID
        /data_size=[...] the sizes in pixels of ARRAYSECTIONID
        /data stride[...] the strides of ARRAYSECTIONID
      /transformations:NXtransformations
        /AXISID1=[DISP1,DISP1+DISPINC1,...]
             (or using angles where appropriate)
           @depends_on=... determined from AXIS definitions
           @equipment="detector"
           @offset=[...] determined from AXIS definitions
           @offset_units="mm"
           @transformation_type="..." from AXIS definitions
```

```
@units="mm"
  @vector=[...] determined from AXIS definitions
  @CBF_array_structure_list_axis__axis_id="AXISID1"
  @CBF_array_structure_list_axis__axis_set_id="AXISSETID"
  @CBF_array_structure_list_axis__angle=ANGLE1
  @CBF_array_structure_list_axis__angle_increment=ANGLEINC1
  @CBF_array_structure_list_axis__displacement=DISP1
   @CBF_array_structure_list_axis__displacement=FRACTDISP1
  @CBF_array_structure_list_axis__displacement_increment=DISPINC1
  @CBF_array_structure_list_axis__fract_displacement_increment
    =FRACTINC1
   @CBF_array_structure_list_axis__angular_pitch=ANGPITCH1
  @CBF_array_structure_list_axis__radial_pitch=RADPITCH1
   @CBF_array_structure_list_axis__reference_angle=REFANG1
  @CBF_array_structure_list_axis__reference_displacement=REFDISP1
/AXISID2=[DISP2,DISP2+DISPINC2,...]
     (or using angles where appropriate)
   @depends_on=... determined from AXIS definitions
   @equipment="detector"
   @offset=[...] determined from AXIS definitions
   @offset_units="mm"
  @transformation_type="..." from AXIS definitions
  @units="mm"
  @vector=[...] determined from AXIS definitions
  @CBF_array_structure_list_axis__axis_id="AXISID2"
  @CBF_array_structure_list_axis__axis_set_id="AXISSETID"
  @CBF_array_structure_list_axis__angle=ANGLE2
  @CBF_array_structure_list_axis__angle_increment=ANGLEINC2
  @CBF_array_structure_list_axis__displacement=DISP2
  @CBF_array_structure_list_axis__displacement=FRACTDISP2
  @CBF_array_structure_list_axis__displacement_increment=DISPINC2
  @CBF_array_structure_list_axis__fract_displacement_increment
    =FRACTINC2
   @CBF_array_structure_list_axis__angular_pitch=ANGPITCH2
   @CBF_array_structure_list_axis__radial_pitch=RADPITCH2
  @CBF_array_structure_list_axis__reference_angle=REFANG2
  @CBF_array_structure_list_axis__reference_displacement=REFDISP2
/AXISID3=[DISP3,DISP3+DISPINC3,...]
     (or using angles where appropriate)
                    determined from AXIS definitions
   @depends_on=...
   @equipment="detector"
  @offset=[...] determined from AXIS definitions
  @offset_units="mm"
  @transformation_type="..." from AXIS definitions
  Qunits="mm"
  @vector=[...] determined from AXIS definitions
  @CBF_array_structure_list_axis__axis_id="AXISID3"
  @CBF_array_structure_list_axis__axis_set_id="AXISSETID"
  @CBF_array_structure_list_axis__angle=ANGLE3
  @CBF_array_structure_list_axis__angle_increment=ANGLEINC3
```

The same axis AXISIDn may appear in multiple axis sets for different values of PRECEDENCE of the data array, in which case the values in AXISIDn_indices will be the sorted list of PRECEDENCE-1 values and the array section information will be organized by the same ordering.

This mapping of precedence of axes and directions may seem redundant with the array storage parameters maintained by HDF5, but changed information is used by applications to remap images to undo rotations and flips and needs to be accessible without rewriting the image, which may be impractical. Failure to expose at least this information in the NeXus will greatly restrict the range of applications that will be able to use the NeXus version of these files.

4.10 The ARRAY_STRUCTURE_LIST_SECTION category

Data items in the ARRAY_STRUCTURE_LIST_SECTION category identify the dimension-by-dimension start, end and stride of each section of an array that is to be referenced.

For any array with identifier ARRAYID, array section ids of the form ARRAYID(start1:end1:stride1,start2:end2:stride2, ...) are defined by default.

```
For the given index, the elements in the section are of indices:
_array_structure_list_section.start,
_array_structure_list_section.start + _array_structure_list_section.stride,
_array_structure_list_section.start + 2*_array_structure_list_section.stride,
...

stopping either when the indices leave the limits of the indices
of that dimension or
[min(_array_structure_list_section.start, _array_structure_list_section.end),
max(_array_structure_list_section.start, _array_structure_list_section.end)].
```

The ordering of these elements is determined by the overall ordering of _array_structure_list_section.array_id and not by the ordering implied

The mapping from CBF into NeXus for the ARRAY_STRUCTURE_LIST_SECTION category is:

```
_array_structure_list_section.array_id ARRAYID -->
_array_structure_list_section.id SECTIONID -->
_array_structure_list_section.index INDEX-->
_array_structure_list_section.end END -->
_array_structure_list_section.start START -->
_array_structure_list_section.stride STRIDE -->
/instrument:NXinstrument
   /DETECTORNAME: NXdetector_group
   /DETECTORELEMENTNAME: NXdetector
       /data_ARRAYID_BINARYID -->
            /entry/data_ARRAYID_BINARYID/data_ARRAYID_BINARYID
      /AXISID1 -->
            /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID1
      /AXISID2 -->
            /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID2
       /AXISID2 -->
            /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID3
      /ARRAYSECTIONID: NXdetector_module
         /data_origin=[...] -- the O-based origins indices of ARRAYSECTIONID
         /data_size=[...] the sizes in pixels of ARRAYSECTIONID
         /data_stride[...] the strides of ARRAYSECTIONID
```

4.11 The ARRAY_STRUCTURE_LIST_AXIS category

Data items in the ARRAY_STRUCTURE_LIST_AXIS category describe the physical settings of sets of axes for the centres of pixels that correspond to data points described in the ARRAY_STRUCTURE_LIST category.

In the simplest cases, the physical increments of a single axis correspond to the increments of a single array index. More complex organizations, e.g. spiral scans, may require coupled motions along multiple axes.

Note that a spiral scan uses two coupled axes: one for the angular direction and one for the radial direction. This differs from a cylindrical scan for which the two axes are not coupled into one set.

Axes may be specified either for an entire array or for just a section of an array.

The mapping from CBF into NeXus for the ARRAY_STRUCTURE_LIST_AXIS category is:

```
_array_structure_list.axis_set_id AXISSETID _array_structure_list.array_id ARRAYID
```

```
_array_structure_list.array_section_id ARRAYSECTIONID
_array_structure_list.dimension DIM
_array_structure_list.direction DIR
_array_structure_list.index INDEX
_array_structure_list.precedence PRECEDENCE
_array_structure_list_section.array_id ARRAYID -->
_array_structure_list_section.id ARRAYSECTIONID -->
_array_structure_list_section.index PRECEDENCE-->
_array_structure_list_section.end END -->
_array_structure_list_section.start START -->
_array_structure_list_section.stride STRIDE -->
 loop_
_array_structure_list_axis.axis_id
_array_structure_list_axis.axis_set_id
_array_structure_list_axis.angle
_array_structure_list_axis.angle_increment
_array_structure_list_axis.displacement
_array_structure_list_axis.fract_displacement
_array_structure_list_axis.displacement_increment
_array_structure_list_axis.fract_displacement_increment
\verb|_array_structure_list_axis.angular_pitch|
_array_structure_list_axis.reference_angle
_array_structure_list_axis.reference_displacement REFDISP
AXISID1 AXISSETID ANGLE1 ANGLEINC1 DISP1 FRACTDISP1
     DISPINC1 FRACTINC1 ANGPITCH1 REFANG1
AXISID2 AXISSETID ANGLE2 ANGLEINC2 DISP2 FRACTDISP2
     DISPINC2 FRACTINC2 ANGPITCH2 REFANG2
AXISID3 AXISSETID ANGLE3 ANGLEINC3 DISP3 FRACTDISP3
     DISPINC3 FRACTINC3 ANGPITCH3 REFANG3
_diffrn_data_frame.array_id ARRAYID
_diffrn_data_frame.binary_id BINARYID
_diffrn_data_frame.center_fast CENF
_diffrn_data_frame.center_slow CENS
_diffrn_data_frame.center_units UNITS
_diffrn_data_frame.detector_element_id ELEMENTID
_diffrn_data_frame.id FRAMEID
_diffrn_data_frame.details DETAILS
. . .
/entry:NXentry
 /data_ARRAYID_BINARYID:NXdata
    @signal="data_ARRAYID_BINARY_ID"
     /data_ARRAYID_BINARYID[ the data for the array ARRAYID,
```

```
binary BINARYID, all sections,
                           all FRAMES]
   @axes=[...,AXISID1,...] with AXISID1 inserted at PRECEDENCE-1
  @AXISID1_indices=[PRECEDENCE-1]
   @AXISID2_indices=[PRECEDENCE-1]
  @AXISID3_indices=[PRECEDENCE-1]
   @AXISID1_origins=[origin1] (default 0)
   @AXISID2_origins=[origin2] (default 0)
  @AXISID3_origins=[origin3] (default 0)
  @AXISID1_sizes=[size1]
  @AXISID2_sizes=[size2]
  @AXISID3_sizes=[size3]
  @AXISID1_strides=[stride1]
  @AXISID2_strides=[stride2]
  @AXISID3_strides=[stride3]
  /AXISID1 -->
      /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID1
  /AXISID2 -->
       /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID2
  /AXISID2 -->
      /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID3
/instrument:NXinstrument
  /DETECTORNAME: NXdetector_group
  /DETECTORELEMENTNAME: NXdetector
      /data_ARRAYID_BINARYID -->
           /entry/data_ARRAYID_BINARYID/data_ARRAYID_BINARYID
     /AXISID1 -->
           /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID1
      /AXISID2 -->
           /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID2
     /AXISID2 -->
           /entry/instrument/DETECTORELEMENTNAME/transformations/AXISID3
     /ARRAYSECTIONID: NXdetector_module
        /data_origin=[...] -- the O-based origins indices of ARRAYSECTIONID
        /data_size=[...] the sizes in pixels of ARRAYSECTIONID
        /data_stride[...] the strides of ARRAYSECTIONID
      /transformations:NXtransformations
        /AXISID1=[DISP1,DISP1+DISPINC1,...] (or using angles where appropriate)
           @depends_on=... determined from AXIS definitions
           @equipment="detector"
           @offset=[...] determined from AXIS definitions
           @offset_units="mm"
           @transformation_type="..." from AXIS definitions
           @vector=[...] determined from AXIS definitions
```

```
@CBF_array_structure_list_axis__axis_id="AXISID1"
  @CBF_array_structure_list_axis__axis_set_id="AXISSETID"
  @CBF_array_structure_list_axis__angle=ANGLE1
  @CBF_array_structure_list_axis__angle_increment=ANGLEINC1
  @CBF_array_structure_list_axis__displacement=DISP1
  @CBF_array_structure_list_axis__displacement=FRACTDISP1
  @CBF_array_structure_list_axis__displacement_increment=DISPINC1
  @CBF_array_structure_list_axis__fract_displacement_increment=FRACTINC1
  @CBF_array_structure_list_axis__angular_pitch=ANGPITCH1
  @CBF_array_structure_list_axis__radial_pitch=RADPITCH1
  @CBF_array_structure_list_axis__reference_angle=REFANG1
  @CBF_array_structure_list_axis__reference_displacement=REFDISP1
/AXISID2=[DISP2,DISP2+DISPINC2,...] (or using angles where appropriate)
   @depends_on=...
                    determined from AXIS definitions
  @equipment="detector"
  @offset=[...] determined from AXIS definitions
  @offset_units="mm"
  @transformation_type="..." from AXIS definitions
  Qunits="mm"
  @vector=[...] determined from AXIS definitions
  @CBF_array_structure_list_axis__axis_id="AXISID2"
  @CBF_array_structure_list_axis__axis_set_id="AXISSETID"
  @CBF_array_structure_list_axis__angle=ANGLE2
  @CBF_array_structure_list_axis__angle_increment=ANGLEINC2
  @CBF_array_structure_list_axis__displacement=DISP2
  @CBF_array_structure_list_axis__displacement=FRACTDISP2
  @CBF_array_structure_list_axis__displacement_increment=DISPINC2
  @CBF_array_structure_list_axis__fract_displacement_increment=FRACTINC2
  @CBF_array_structure_list_axis__angular_pitch=ANGPITCH2
  @CBF_array_structure_list_axis__radial_pitch=RADPITCH2
  @CBF_array_structure_list_axis__reference_angle=REFANG2
  @CBF_array_structure_list_axis__reference_displacement=REFDISP2
/AXISID3=[DISP3,DISP3+DISPINC3,...] (or using angles where appropriate)
  @depends_on=...
                    determined from AXIS definitions
   @equipment="detector"
  @offset=[...] determined from AXIS definitions
  @offset_units="mm"
  @transformation_type="..." from AXIS definitions
  Qunits="mm"
  @vector=[...] determined from AXIS definitions
  @CBF_array_structure_list_axis__axis_id="AXISID3"
  @CBF_array_structure_list_axis__axis_set_id="AXISSETID"
  @CBF_array_structure_list_axis__angle=ANGLE3
  @CBF_array_structure_list_axis__angle_increment=ANGLEINC3
  @CBF_array_structure_list_axis__displacement=DISP3
  @CBF_array_structure_list_axis__displacement=FRACTDISP3
  @CBF_array_structure_list_axis__displacement_increment=DISPINC3
  @CBF_array_structure_list_axis__fract_displacement_increment=FRACTINC3
  @CBF_array_structure_list_axis__angular_pitch=ANGPITCH3
  @CBF_array_structure_list_axis__radial_pitch=RADPITCH3
```

@CBF_array_structure_list_axis__reference_angle=REFANG3
@CBF_array_structure_list_axis__reference_displacement=REFDISP3

The same axis AXISIDn may appear in multiple axis sets for different values of PRECEDENCE of the data array, in which case the values in AXISIDn_indices will be the sorted list of PRECEDENCE-1 values and the array section information will be organized by the same ordering.

4.12 The AXIS category

Data items in the AXIS category record the information required to describe the various goniometer, detector, source and other axes needed to specify a data collection or the axes defining the coordinate system of an image.

The location of each axis is specified by two vectors: the axis itself, given by a unit vector in the direction of the axis, and an offset to the base of the unit vector.

The vectors defining an axis are referenced to an appropriate coordinate system. The axis vector, itself, is a dimensionless unit vector. Where meaningful, the offset vector is given in millimetres. In coordinate systems not measured in metres. the offset is not specified and is taken as zero.

The available coordinate systems are:

The imgCIF standard laboratory coordinate system
The direct lattice (fractional atomic coordinates)
The orthogonal Cartesian coordinate system (real space)
The reciprocal lattice
An abstract orthogonal Cartesian coordinate frame

For consistency in this discussion, we call the three coordinate system axes X, Y and Z. This is appropriate for the imgCIF standard laboratory coordinate system, and last two Cartesian coordinate systems, but for the direct lattice, X corresponds to a, Y to b and Z to c, while for the reciprocal lattice, X corresponds to a*, Y to b* and Z to c*.

For purposes of visualization, all the coordinate systems are taken as right-handed, i.e., using the convention that the extended thumb of a right hand could point along the first (X) axis, the straightened pointer finger could point along the second (Y) axis and the middle finger folded inward could point along the third (Z) axis.

THE IMGCIF STANDARD LABORATORY COORDINATE SYSTEM

The imgCIF standard laboratory coordinate system is a right-handed orthogonal coordinate similar to the MOSFLM coordinate system, but imgCIF puts Z along the X-ray beam, rather than putting X along the X-ray beam as in MOSFLM.

The vectors for the imgCIF standard laboratory coordinate system form a right-handed Cartesian coordinate system with its origin in the sample or specimen. The origin of the axis system should, if possible, be defined in terms of mechanically stable axes to be be both in the sample and in the beam. If the sample goniometer or other sample positioner has two axes the intersection of which defines a unique point at which the sample should be mounted to be bathed by the beam, that will be the origin of the axis system. If no such point is defined, then the midpoint of

the line of intersection between the sample and the center of the beam will define the origin. For this definition the sample positioning system will be set at its initial reference position for the experiment.

Axis 1 (X): The X-axis is aligned to the mechanical axis pointing from the sample or specimen along the principal axis of the goniometer or sample positioning system if the sample positioning system has an axis that intersects the origin and which form an angle of more than 22.5 degrees with the beam axis.

Axis 2 (Y): The Y-axis completes an orthogonal right-handed system defined by the X-axis and the Z-axis (see below).

Axis 3 (Z): The Z-axis is derived from the source axis which goes from the sample to the source. The Z-axis is the component of the source axis in the direction of the source orthogonal to the X-axis in the plane defined by the X-axis and the source axis.

If the conditions for the X-axis can be met, the coordinate system will be based on the goniometer or other sample positioning system and the beam and not on the orientation of the detector, gravity etc. The vectors necessary to specify all other axes are given by sets of three components in the order (X, Y, Z). If the axis involved is a rotation axis, it is right-handed, i.e. as one views the object to be rotated from the origin (the tail) of the unit vector, the rotation is clockwise. If a translation axis is specified, the direction of the unit vector specifies the sense of positive translation.

Note: This choice of coordinate system is similar to but significantly different from the choice in MOSFLM [6]. In MOSFLM, X is along the X-ray beam (the CBF/imgCIF Z axis) and Z is along the rotation axis.

In some experimental techniques, there is no goniometer or the principal axis of the goniometer is at a small acute angle with respect to the source axis. In such cases, other reference axes are needed to define a useful coordinate system. The order of priority in defining directions in such cases is to use the detector, then gravity, then north.

If the X-axis cannot be defined as above, then the direction (not the origin) of the X-axis should

be parallel to the axis of the primary detector element corresponding to the most rapidly varying dimension of that detector element's data array, with its positive sense corresponding to increasing values of the index for that dimension. If the detector is such that such a direction cannot be defined (as with a point detector) or that direction forms an angle of less than 22.5 degrees with respect to the source axis, then the X-axis should be chosen so that if the Y-axis is chosen in the direction of gravity, and the Z-axis is chosen to be along the source axis, a right-handed orthogonal coordinate system is chosen. In the case of a vertical source axis, as a last resort, the X-axis should be chosen to point North.

All rotations are given in degrees and all translations are given in mm.

Axes may be dependent on one another. The X-axis is the only goniometer axis the direction of which is strictly connected to the hardware. All other axes are specified by the positions they would assume when the axes upon which they depend are at their zero points.

When specifying detector axes, the axis is given to the beam centre. The location of the beam centre on the detector should be given in the DIFFRN_DETECTOR category in distortion-corrected millimetres from the (0,0) corner of the detector.

It should be noted that many different origins arise in the definition of an experiment. In particular, as noted above, it is necessary to specify the location of the beam centre on the detector in terms of the origin of the detector, which is, of course, not coincident with the centre of the sample.

The unit cell, reciprocal cell and crystallographic orthogonal Cartesian coordinate system are defined by the CELL and the matrices in the ATOM_SITES category.

THE DIRECT LATTICE (FRACTIONAL COORDINATES)

The direct lattice coordinate system is a system of fractional coordinates aligned to the crystal, rather than to the laboratory. This is a natural coordinate system for maps and atomic coordinates. It is the simplest coordinate system in which to apply symmetry. The axes are determined by the cell edges, and are not necessarily orthogonal. This coordinate system is not uniquely defined and depends on the cell parameters in the CELL category and the settings chosen to index the crystal.

Molecules in a crystal studied by X-ray diffraction are organized into a repeating regular array of unit cells. Each unit cell is defined by three vectors, a, b and c. To quote from [4],

"The choice of the unit cell is not unique and therefore, guidelines have been established for selecting the standard basis vectors and the origin. They are based on symmetry and metric considerations:

- ''(1) The axial system should be right handed.
- (2) The basis vectors should coincide as much as possible with directions of highest symmetry.
- (3) The cell taken should be the smallest one that satisfies
- (4) Of all the lattice vectors, none is shorter than a.
- (5) Of those not directed along a, none is shorter than b.
- (6) Of those not lying in the ab plane, none is shorter than c.
- (7) The three angles between the basis vectors a, b and c are either all acute (< 90 degrees)

or all obtuse (greater than equal to 90 degrees).''

These rules do not produce a unique result that is stable under the assumption of experimental errors, and the the resulting cell may not be primitive.

In this coordinate system, the vector (.5, .5, .5) is in the middle of the given unit cell.

Grid coordinates are an important variation on fractional coordinates used when working with maps. In imgCIF, the conversion from fractional to grid coordinates is implicit in the array indexing specified by _array_structure_list.dimension. Note that this implicit grid-coordinate scheme is 1-based, not zero-based, *i.e.* the origin of the cell for axes along the cell edges with no specified _array_structure_list_axis.displacement will have grid coordinates of (1,1,1), i.e. array indices of (1,1,1).

THE ORTHOGONAL CARTESIAN COORDINATE SYSTEM (REAL SPACE)

The orthogonal Cartesian coordinate system is a transformation of the direct lattice to the actual physical coordinates of atoms in space. It is similar to the laboratory coordinate system, but is anchored to and moves with the crystal, rather than being anchored to the laboratory. The transformation from fractional to orthogonal cartesian coordinates is given by the _atom_sites.Cartn_transf_watrix[i][j] and _atom_sites.Cartn_transf_vector[i] tags. A common choice for the matrix of the transformation is given in the 1992 PDB format document

$$\begin{vmatrix} a & b\cos(\gamma) & c\cos(\beta) \\ 0 & b\sin(\gamma) & c\left(\cos(\alpha) - \cos(\beta)\cos(\gamma)\right)/\sin(\gamma) \\ 0 & 0 & V/(ab\sin(\gamma)) \end{vmatrix}$$

This is a convenient coordinate system in which to do fitting of models to maps and in which to understand the chemistry of a molecule.

THE RECIPROCAL LATTICE

The reciprocal lattice coordinate system is used for diffraction intensities. It is based on the reciprocal cell, the dual of the cell, in which reciprocal cell edges are derived from direct cell faces:

```
\begin{array}{lll} \mathbf{a}^* &= \mathbf{bc} \; \sin(\alpha)/\mathbf{V} \; \mathbf{b}^* &= \mathbf{ac} \; \sin(\beta)/\mathbf{V} \; \mathbf{c}^* &= \mathbf{ab} \; \sin(\gamma)/\mathbf{V} \\ \cos(\alpha^*) &= (\cos(\beta) \; \cos(\gamma) \; - \; \cos(\alpha))/(\sin(\beta) \; \sin(\gamma)) \\ \cos(\beta^*) &= (\cos(\alpha) \; \cos(\gamma) \; - \; \cos(\beta))/(\sin(\alpha) \; \sin(\gamma)) \\ \cos(\gamma^*) &= (\cos(\alpha) \; \cos(\underline{\mathbf{0}} \; - \; \cos(\gamma))/(\sin(\alpha) \; \sin(\beta)) \\ \mathbf{V} &= \mathbf{abc} \; \sqrt{(1-\cos(\alpha)^2-\cos(\beta)^2-\cos(\gamma)^2+2\cos(\alpha)\cos(\beta)\cos(\gamma))} \end{array}
```

In this form the dimensions of the reciprocal lattice are in reciprocal Ångstroms ($Å^{-1}$). A dimensionless form can be obtained by multiplying by the wavelength. Reflections are commonly indexed against this coordinate system as (h, k, l) triples. See [8] and [7].

The mapping from CBF into NeXus for the AXIS category is::

```
_axis.id AXISID 
_axis.type AXISTYPE
```

```
AXISEQUIPMENT
    _axis.equipment
    _axis.equipment_component AXISEQUIPCOMP
    _axis.depends_on
                               AXISDEPENDSON
    _axis.rotation_axis
                               AXISROTAXIS
                               AXISROTATION
    _axis.rotation
    _axis.vector[1]
                               AXISV1
    _axis.vector[2]
                               AXISV2
    _axis.vector[3]
                               AXISV3
    _axis.offset[1]
                              AXISO1
   _axis.offset[2]
                              AXISO2
   _axis.offset[3]
                              AXISO3
                              AXISSYSTEM
    _axis.system
      /entry:NXentry
        /instrument:NXinstrument
         /DETECTORELEMENTNAME: NXdetector
for AXISEQUIPMENT=="detector"}
     /entry:NXentry
        /sample:NXsample
for AXISEQUIPMENT=="goniometer"}
      /entry:NXentry
for AXISEQUIPMENT=="general"}
          /transformations:NXtransformations
            /AXISID=[]
              @units="mm" if AXISTYPE=="translation"
              or @units="degrees" if AXISTYPE=="rotation"
              @transformation_type="AXISTYPE"
              @equipment_component="AXISEQUIPCOMP"
              @depends_on="AXISDEPENDSON"
              @rotation_axis="AXISROTAXIS"
              @rotation=AXISROTATION
              @rotation_units="degrees"
              @offset=offsetxform([01,02,03])
              @offset_inits="mm"
              @vector=coordxform([V1,V2,V3])
   ullet _axis.system 
ightarrow
     Only a laboratory coordinate system is handled in NeXus at present. The addition of more
     coordinate systems in NeXus is pending. See the discussion of transformation to the McStas
     coordinate system below.
   ullet _axis.vector[1] V1 
ightarrow
         /CBF_axis__AXISID=[]
     @vector=coordxform([V1,V2,V3])
   ullet _axis.vector[2] V2 
ightarrow
         /CBF_axis__AXISID=[]
     @vector=coordxform([V1,V2,V3])
```

- \bullet _axis.variant \rightarrow ?? NeXus does not handle variants at this time

4.12.1 Differences in Coordinate Frames

The standard coordinate frame in NeXus is the McStas coordinate frame, in which the Z-axis points in the direction of the incident beam, the X-axis is orthogonal to the Z-axis in the horizontal plane and pointing left as seen from the source and the Y-axis points upwards. The origin is in the sample.

The standard coordinate frame in imgCIF/CBF aligns the X-axis to the principal goniometer axis, chooses the Z-axis to point from the sample into the beam. If the beam is not orthogonal to the X-axis, the Z-axis is the component of the vector points into the beam orthogonal to the X-axis. The Y-axis is chosen to complete a right-handed axis system.

Let us call the NeXus coordinate axes, X_{nx} , Y_{nx} and Z_{nx} and the imgCIF/CBF coordinate axes, X_{cbf} , Y_{cbf} and Z_{cbf} and the direction of gravity, Gravity. In order to translate a vector $\mathbf{v}_{nx} = (\mathbf{x}, \mathbf{y}, \mathbf{z})$ from the NeXus coordinate system to the imgCIF coordinate system, we also need two additional axes, as unit vectors, Gravity_{cbf}, the downwards direction, and Beam_{cbf}, the direction of the beam $(e.g. \ (0,0,-1))$.

In practice, the beam is not necessarily perfectly horizontal, so Y_{nx} is not necessarily perfectly vertical. Therefore, in order to generate X_{nx} , Y_{nx} and Z_{nx} some care is needed. The cross product between two vectors \overrightarrow{a} and \overrightarrow{b} is a new vector \overrightarrow{c} orthogonal to both \overrightarrow{a} and \overrightarrow{b} , chosen so that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is a right handed system. If \overrightarrow{a} and \overrightarrow{b} are orthogonal unit vectors, this right-handed system is an orthonormal coordinate system.

In the CBF coordinate frame, Z_{nx} is aligned to Beam_{cbf}:

$$\mathbf{Z}_{\mathtt{nx}} = \mathtt{Beam}_{\mathtt{cbf}}$$

 X_{nx} is defined as being horizontal at right angles to the beam, pointing to the left when seen from the source. Assuming the beam is not vertical, we can compute X_{nx} as the normalized cross product of the beam and the gravity:

$$\mathtt{X}_{\mathtt{nx}} = (\mathtt{Beam}_{\mathtt{cbf}} \times \mathtt{Gravity}_{\mathtt{cbf}}) / ||\mathtt{Beam}_{\mathtt{cbf}} \times \mathtt{Gravity}_{\mathtt{cbf}}||$$

To see that this satisfies the constraint of being horizontal and pointing to the left, consider the case of Beam =(0,0,-1) and Gravity =(0,0,1) then we would have $X_{nx}=(1,0,0)$ from the cross product above. The normalization is only necessary if the beam is not horizontal.

Finally Y_{nx} is computed as the cross product of the beam and X_{nx} , completing a orthonormal right-handed system with Y_{nx} pointing upwards:

$${\tt Y_{nx}} = {\tt Beam_{cbf}} \times {\tt X_{nx}}$$

Then we know that in the imgCIF/CBF coordinate frame

$$\mathtt{v}_{\mathtt{nx}} = \mathtt{x} \cdot \mathtt{X}_{\mathtt{nx}} + \mathtt{y} \cdot \mathtt{Y}_{\mathtt{nx}} + \mathtt{z} \cdot \mathtt{Z}_{\mathtt{nx}}$$

Thus, given the imgCIF/CBF vectors for the true direction of the beam and the true direction of gravity, we have a linear transformation from the NeXus coordinate frame to the imgCIF/CBF coordinate frame. The origins of the two frames agree. The inverse linear transformation will transform a vector in the imgCIF/CBF coordinate frame into the NeXus coordinate frame.

In the common case in which the beam is orthogonal to the principal goniometer axis so that $Beam_{cbf}=(0,0,-1)$ and the imgCIF/CBF Y-axis points upwards, the transformation inverts the X

and Z axes. In the other common case in which the beam is orthogonal to the principal goniometer axis and the imgCIF/CBF Y-axis points downwards, the transformation inverts the Y and Z axes.

4.12.2 Mapping Axes

There are two transformations needed: $\operatorname{coordxform}(v)$ which takes a vector, v, the the CBF imgCIF Standard Laboratory Coordinate System and returns the equivalent McStas coordinate vector, and $\operatorname{offsetxform}(o)$ which takes an offset, o, in the the CBF imgCIF Standard Laboratory Coordinate System and returns the equivalent NeXus offset. As of this writing, it has not been decided as to whether the NeXus offset should also be relative (in which case offsetxform = $\operatorname{coordxform}$) or whether the NeXus offset should be absolute.

In imgCIF/CBF all the information about all axes other than their settings are gathered in one AXIS category. The closest equivalent container in NeXus is the NXinstrument class, We put the information about detector axes into an detector:NXdetector NeXus class instance, information about the goniometer into an goniometer:NXsample NeXus class instance, etc. Additionally, in view of the general nature of some axes, such as the coordinate frame axes and gravity, we add a coordinate_system:NXcoordinate_system NeXus class instance with axis_gravity, axis_beam and other axes not tied to specific equipment.

We have applied the coordinate frame transformation changing the CBF laboratory coordinates into McStas coordinates. Notice that X and Z have changed direction, but Y has not. In other experimental setup, other transformations may accur. The offsets for dependent axes are given relative to the total offset of axes on which that axis is dependent. Note that the axis settings do not enter into this calculation, because the offsets of dependent axes are given with all axes at their zero settings

The cbf_location attribute gives a mapping back into the CBF AXIS category in dotted notation. The first component is the data block. The second component is "axis". The third component is either "vector" or "offset" for information drawn from the AXIS.VECTOR[...] or AXIS.OFFSET[...] respectively. The last component is the CBF row number to facilitate recovering the original CBF layout.

4.13 The DIFFRN_DATA_FRAME category

Data items in the DIFFRN_DATA_FRAME category record the details about each frame of data.

The items in this category were once in a DIFFRN_FRAME_DATA category, which is now deprecated. The items from the old category are provided as aliases but should not be used for new work.

The mapping from CBF into NeXus for the DIFFRN_DATA_FRAME category is:

```
_diffrn_data_frame.array_id ARRAYID
_diffrn_data_frame.array_section_id SECTIONID
_diffrn_data_frame.binary_id BINID
_diffrn_data_frame.center_fast CENF
_diffrn_data_frame.center_slow CENS
_diffrn_data_frame.center_units UNITS
_diffrn_data_frame.detector_element_id ELEMENTID
_diffrn_data_frame.id FRAMEID
_diffrn_data_frame.details DETAILS
```

 \rightarrow

```
/entry:NXentry
/instrument:NXinstrument
/DETECTORNAME:NXdetector_group
/DETECTORELEMENTNAME:NXdetector
/CBF_diffrn_data_frame__section_id=[SECTIONIDARRAY]
/CBF_diffrn_data_frame__binary_id=[BINARYIDARRAY]
/CBF_diffrn_data_frame__center_fast_slow=[CENTERARRAY]
@units="UNITS"
/CBF_diffrn_data_frame__details=["DETAILSARRAY"]
```

inserts either ARRAYID (if SECTIONID is not specified or SECTIONID into the element of SECTIONIDARRY for this frame and for this detector element (see below);

inserts BINID into the element of BINARYIDARRAY for this frame and for this detector element (see below);

inserts CENF into the element of CENTERARRAY for this frame, for this detector element and for the fast centre (see below);

inserts CENS into the element of CENTERARRAY for this frame, for this detector element and for the slow centre (see below);

only one CENTERARRY unit is provided. If there is variation, the values in CENTERARRAY should be rescaled to uniform units.

_diffrn_data_frame.detector_element_id ELEMENTID -->
ELEMENTID used to index into the arrays of this category by the ordinal of
the matching ELEMENTID in DIFFRN_DETECTOR_ELEMENT__id for the fast index;

FRAMEID used to index into the arrays of this category by the ordinal of the matching ELEMENTID in DIFFRN_DETECTOR_ELEMENT__id for the slow index by matching FRAMEID against _diffrn_scan_frame.id and using _diffrn_scan_frame.frame_number from the same row.

inserts DETAILS into the element of DETAILSARRAY for this frame and for this detector element (see below);

The arrays created in the mapping have a slow index of the number of frames and a fast index of the number of detector elements. There is a middle index for CENTERARRAY in the order fast and then slow.

4.14 The DIFFRN_DETECTOR category

Data items in the DIFFRN_DETECTOR category describe the detector used to measure the scattered radiation, including any analyser and post-sample collimation.

The mapping from CBF into NeXus for the DIFFRN_DETECTOR category is:

_diffrn_detector.diffrn_id DIFFRNID _diffrn_detector.id DETECTORNAME

```
_diffrn_detector.details DETAILS
_diffrn_detector.detector DETECTOR
_diffrn_detector.dtime DTIME
_diffrn_detector.gain_setting GAINSETTING
_diffrn_detector.number_of_axes NAXES
_diffrn_detector.type DETTYPE
  /entry:NXentry
    /CBF_scan_id="SCANID"
   /CBF_diffrn_id="DIFFRNID"
      /instrument:NXinstrument
       /DETECTORNAME: NXdetector_group
       /DETECTORELEMENTNAME: NXdetector
          /details="DETAILS"
          /type="DETECTOR"
          /deadtime=DTIME
          /number_of_axes=NAXES
          /description="DETTYPE"
          /gain_setting="GAINSETTING"
```

4.15 The DIFFRN_DETECTOR_AXIS category

Data items in the DIFFRN_DETECTOR_AXIS category associate axes with detectors.

The mapping from CBF into NeXus for the DIFFRN_DETECTOR_AXIS category is:

```
_diffrn_detector_axis.axis_id AXISID -->
_diffrn_detector_axis.detector_id DETECTORNAME -->
    /instrument:NXinstrument
    /DETECTORNAME:NXdetector_group
    /DETECTORELEMENTNAME:NXdetector
    /transformations:NXtransformations
    /AXISID=[]
```

This information normally will duplicate information obtained from the $\mbox{ARRAY_STRUCTURE_LIST_AXIS}$.

4.15.1 DIFFRN_DETECTOR_ELEMENT category

Data items in the DIFFRN_DETECTOR_ELEMENT category record the details about spatial layout and other characteristics of each element of a detector which may have multiple elements.

In most cases, giving more detailed information in ARRAY_STRUCTURE_LIST and ARRAY_STRUCTURE_LIST_AXIS is preferable to simply providing the centre of the detector element.

4.16 The DIFFRN_MEASUREMENT category

Data items in the DIFFRN_MEASUREMENT category record details about the device used to orient and/or position the crystal during data measurement and the manner in which the diffraction data

were measured.

```
The mapping from CBF into NeXus for the DIFFRN_MEASUREMENT category is:
    _diffrn_measurement.diffrn_id DIFFRNID
    _diffrn_measurement.details DETAILS
    _diffrn_measurement.device DEVICE
    _diffrn_measurement.device_details DEVDETAILS
    _diffrn_measurement.device_type DEVTYPE
    _diffrn_measurement.id GONIOMETER
    _diffrn_measurement.method METHOD
    _diffrn_measurement.number_of_axes NUMBER
    _diffrn_measurement.sample_detector_distance DIST
    _diffrn_measurement.sample_detector_distance_derived DISTDERIVED
    _diffrn_measurement.sample_detector_voffset VOFST
    _diffrn_measurement.specimen_support SPECSPRT
    /entry:NXentry
      /CBF_scan_id="SCANID
      /CBF_diffrn_id="DIFFRNID"
      /instrument:NXinstrument
      /CBF_diffrn_measurement__GONIOMETER:NXgoniometer
        /details="DETAILS"
        /local_name="DEVICE"
        /description="DEVDETAILS"
        /type="DEVTYPE"
        /CBF_diffrn_measurement__method="METHOD"
          /number_of_axes=NUMBER
        /CBF_diffrn_measurement__specimen_support="SPECSPRT"
      /CBF_diffrn_detector__DETECTORNAME:NXdetector
        /distance=DIST
          @units="mm"
        /distance_derived=DISTDERIVED
        /CBF_diffrn_measurement__sample_detector_voffset=V0FST
          Qunits="mm"
```

4.17 The DIFFRN_MEASUREMENT_AXIS category

Data items in the DIFFRN_MEASUREMENT_AXIS category associate axes with goniometers.

The mapping from CBF into NeXus for the DIFFRN_MEASUREMENT_AXIS category is:

```
_diffrn_measurement_axis.axis_id AXISID
_diffrn_measurement_axis.measurement_device DEVICE
_diffrn_measurement_axis.measurement_id GONIOMETER
```

 \rightarrow

```
/entry:NXentry
   /CBF_scan_id="SCANID
   /CBF_diffrn_id="DIFFRNID"
   /sample:NXsample
        /transformations:NXtransformations
        /AXISID=[]
   /instrument:NXinstrument
   /CBF_diffrn_measurement__GONIOMETER:NXgoniometer
   /CBF_diffrn_measurement__device="DEVICE"
```

4.18 The DIFFRN_RADIATION category

Data items in the DIFFRN_RADIATION category describe the radiation used for measuring diffraction intensities, its collimation and monochromatization before the sample.

Post-sample treatment of the beam is described by data items in the DIFFRN_DETECTOR category.

The mapping from CBF into NeXus for the DIFFRN_RADIATION category is:

```
_diffrn_radiation.collimation
                           COLLIMATION
_diffrn_radiation.diffrn_id
                           DIFFRNID
_diffrn_radiation.div_x_source
                           DTVX
_diffrn_radiation.div_y_source
                           DIVY
_diffrn_radiation.div_x_y_source DIVXY
_diffrn_radiation.filter_edge'
                           ABSEDGE
_diffrn_radiation.inhomogeneity HWIDTH
_diffrn_radiation.monochromator MONOCHROMATOR
_diffrn_radiation.polarisn_ratio POLRAT
_diffrn_radiation.polarizn_source_norm
_diffrn_radiation.polarizn_Stokes_I SVECI
_diffrn_radiation.polarizn_Stokes_U SVECU
_diffrn_radiation.polarizn_Stokes_V SVECV
_diffrn_radiation.polarisn_norm_esd POLNANGESD
_diffrn_radiation.polarisn_ratio_esd POLRATESD
_diffrn_radiation.polarizn_source_norm_esd
_diffrn_radiation.polarizn_source_ratio_esd POLSRATESD
_diffrn_radiation.polarizn_Stokes_Q_esd SVECQESD
_diffrn_radiation.polarizn_Stokes_V_esd SVECVESD
_diffrn_radiation.probe
                           RADIATION
_diffrn_radiation.type
                           SIEGBAHNTYPE
_diffrn_radiation.xray_symbol
                           IUPACXRAYSYMB
_diffrn_radiation.wavelength_id ID
_diffrn_radiation_wavelength.id ID
                                   WAVELENGTH
_diffrn_radiation_wavelength.wavelength
                                   WEIGHT
_diffrn_radiation_wavelength.wt
```

```
_diffrn_scan_frame.polarizn_Stokes_I STOKESI
_diffrn_scan_frame.polarizn_Stokes_Q STOKESQ
_diffrn_scan_frame.polarizn_Stokes_U STOKESU
_diffrn_scan_frame.polarizn_Stokes_V STOKESV
_diffrn_scan_frame.polarizn_Stokes_I_esd STOKESIESD
_diffrn_scan_frame.polarizn_Stokes_Q_esd STOKESQESD
_diffrn_scan_frame.polarizn_Stokes_U_esd STOKESUESD
_diffrn_scan_frame.polarizn_Stokes_V_esd STOKESVESD
_diffrn_scan_frame.frame_number FRAMENO
   /entry:NXentry
     /CBF_scan_id="SCANID"
     /sample:NXsample
       /beam: NXbeam
         /incident_divergence_x=DIVX
           Qunits="degrees"
         /incident_divergence_y=DIVY
           @units="degrees"
         /incident_divergence_xy=DIXXY
           @units="degrees^2"
         /CBF_diffrn_radiation_wavelength_wavelength_id=[WAVELENGTH_ID]
         /incident_wavelength=[WAVELENGTH]
           @units="A"
         /weight=[WEIGHT]
         /incident_polarisation_stokes_average=[SVECI,SVECQ,SVECU,SVECV]
         /incident_polarisation_stokes_average_uncertainty=[SVECIESD,SVECQESD,SVECUESD,SVECVESD]
         /incident_polarisation_stokes=[STOKESI,STOKESQ,STOKESU,STOKESV]
         /incident_polarisation_stokes_uncertainty=[STOKESIESD,STOKESQESD,STOKESUESD,STOKESVESD]
           Qunits="Watts/meter^2"
         /CBF_diffrn_radiation__polarisn_norm=POLNANG
           @units="deg"
         /CBF_diffrn_radiation__polarisn_ratio=POLRAT
         / {\tt CBF\_diffrn\_radiation\_polarisn\_norm\_uncertainty=POLNANGESD}
           @units="deg"
         /CBF_diffrn_radiation__polarisn_ratio_uncertainty=POLRATESD
         /CBF_diffrn_radiation__polarisn_source_norm=POLSNANG
           @units="deg"
         /CBF_diffrn_radiation__polarizn_source_ratio=POLSRAT
         /CBF_diffrn_radiation__polarisn_source_norm_uncertainty=POLSNANGESD
           @units="deg"
         /CBF_diffrn_radiation__polarizn_source_ratio_uncertainty=POLSRATESD
         /CBF_diffrn_radiation__filter_edge=ABSEDGE
            Qunits="angstroms"
         /CBF_diffrn_radiation__inhomogeneity=HWIDTH
            @units="mm"
     /instrument:NXinstrument
       /monochromator: NXmonochromator
         /description="MONOCHROMATOR"
```

```
/source:NXsource
             /probe="RADIATION"
             /CBF_diffrn_radiation__type="SIEGBAHNTYPE"
             /CBF_diffrn_radiation__xray_symbol="IUPACXRAYSYMB"
        With the incident_polarisation_stokes array indexed by FRAMENO
\end{itemize}
\subsection{The DIFFRN\_RADIATION\_WAVELENGTH category}
\footnotesize{\begin{verbatim}
The DIFFRN_RADIATION_WAVELENGTH category is defined in
the Protein Data Bank's PDBx/mmmCIF dictionary
\cite{westbrook2022pdbx}
Data items in the DIFFRN_RADIATION_WAVELENGTH category
describe the wavelength of the radiation used to measure the
diffraction intensities. Items may be looped to identify
and assign weights to distinct components of a
polychromatic beam.
```

- _diffrn_radiation_wavelength.id ID ->
 /instrument:NXinstrument
 /CBF_diffrn_radiation_wavelength__id=["ID"]
- _diffrn_radiation_wavelength.wavelength_id WAVELENGTH_ID →
 /instrument: NXinstrument
 /CBF_diffrn_radiation_wavelength_wavelength_id=["WAVELENGTH_ID"]

- ullet _diffrn_radiation_wavelength.variant ightarrow ?? (NeXus does not handle variants at this time)

4.19 The DIFFRN_REFLN category

This category redefinition has been added to extend the key of the standard DIFFRN_REFLN category from mmCIF.

Data items in the DIFFRN_REFLN category record details about the intensities in the diffraction data set identified by _diffrn_refln.diffrn_id.

```
The DIFFRN_REFLN data items refer to individual intensity measurements and must be included in looped lists.
```

The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements in the particular diffraction data set identified by _diffrn_reflns.diffrn_id and _diffrn_refln.frame_id

There are proposals on handling reflections in NeXus in NXreflections. When the discussions are resolved this section will be updated.

```
\begin{itemize}
\item{\_diffrn\_refln.frame\_id $\rightarrow$ ??}
\item{\_diffrn\_refln.variant $\rightarrow$ ??}
\end{itemize}
}
\subsection{The DIFFRN\_SCAN category}
\footnotesize{\begin{verbatim}
Data items in the DIFFRN_SCAN category describe the parameters of one
```

The mapping from CBF into NeXus for the DIFFRN_SCAN category is:

```
diffrn scan.id SCANID
_diffrn_scan.date_end ENDDATETIME
_diffrn_scan.date_end_estimated ENDDATETIMEEST
\verb|_diffrn_scan.date_start STARTDATETIME| \\
_diffrn_scan.integration_time AVGCOUNTTIME
_diffrn_scan.frame_id_start FRAMESTARTID
_diffrn_scan.frame_id_end FRAMEENDID
_diffrn_scan.frames FRAMES
_diffrn_scan.time_period TIMEPER
_diffrn_scan.time_rstrt_incr RSTRTTIME
    /entry:NXentry
      /CBF_scan_id="SCANID"
      /end_time=ENDDATETIME
      / \verb"end_time_estimated=ENDDATETIMEEST"
      /start_time=STARTDATETIME
      /average_count_time=AVGCOUNTTIME
        @units="sec"
```

/average_frame_time=TIMEPER

or more scans, relating axis positions to frames.

```
Qunits="sec"
         /average_frame_restart_time=RSTRTTIME
           @units="sec"
         /instrument:NXinstrument
          /DETECTORNAME: NXdetector_group
          /DETECTORELEMENTNAME: NXdetector
             /frame_start_number=FRAMESTARTNO
             /frame_end_number=FRAMEENDNO
   FRAMESTARTNO is the value of _diffrn_scan_frame.frame_number
   for which the value of _diffrn_scan_frame.frame_id equals FRAMESTARTID
   FRAMEENDNO is the value of _diffrn_scan_frame.frame_number
   for which the value of _diffrn_scan_frame.frame_id equals FRAMEENDID
\end{itemize}
\subsection{The DIFFRN\_SCAN\_AXIS category}
\footnotesize{\begin{verbatim}
Data items in the DIFFRN_SCAN_AXIS category describe the settings of
axes for particular scans. Unspecified axes are assumed to be at
their zero points.
   The mapping from CBF into NeXus for the DIFFRN_SCAN_AXIS category is:
   _diffrn_scan_axis.axis_id AXISID-->
   _diffrn_scan_axis.angle_start ANGSTART
   _diffrn_scan_axis.angle_range ANGRANGE
   _diffrn_scan_axis.angle_increment ANGINC
   _diffrn_scan_axis.angle_rstrt_incr ANGRSTRT
   _diffrn_scan_axis.displacement_start DISPSTART
   _diffrn_scan_axis.displacement_range DISPRANGE
   _diffrn_scan_axis.displacement_increment DISPINC
   _diffrn_scan_axis.displacement_increment DISPINC
   _diffrn_scan_axis.displacement_rstrt_incr DISPRSTRT
   _diffrn_scan_axis.reference_angle ANG
   _diffrn_scan_axis.reference_displacement DISP
   _diffrn_scan_axis.scan_id SCANID
   { /entry:NXentry
      /CBF_scan_id="SCANID"
      /instrument:NXinstrument
      /DETECTORNAME: NXdetector_group
      /DETECTORELEMENTNAME: NXdetector
   for AXISEQUIPMENT=="detector"}
   /sample:NXsample
```

```
for AXISEQUIPMENT=="goniometer"}
   for AXISEQUIPMENT=="general"}
        /transformations:NXtransformations
          /AXISID=[]
            @diffrn_scan_axis__angle_start=ANGSTART
            @diffrn_scan_axis__angle_range=ANGRANGE
            @diffrn_scan_axis__angle_increment=ANGINC
            @diffrn_scan_axis__angle_rstrt_incr=ANGRSTRT
            @diffrn_scan_axis__displacement_start=DISPSTART
            @diffrn_scan_axis__displacement_range=DISPRANGE
            @diffrn_scan_axis__displacement_increment=DISPINC
            @diffrn_scan_axis__displacement_rstrt_incr=DISPRSTRT
            @diffrn_scan_axis__reference_angle=ANG
            @diffrn_scan_axis__reference_displacement=DISP
\end{itemize}
}
\footnotesize{\begin{verbatim}
Data items in the DIFFRN_SCAN_FRAME category describe
the relationships of particular frames to scans.
   The mapping from CBF into NeXus for the DIFFRN_SCAN_FRAME category is:
   _diffrn_scan_frame.date DATETIME
   _diffrn_scan_frame.frame_id ID
   _diffrn_scan_frame.frame_number FRAMENUMBER
   _diffrn_scan_frame.integration_time COUNTTIME
   _diffrn_scan_frame.polarizn_Stokes_I STOKESI
   _diffrn_scan_frame.polarizn_Stokes_Q STOKESQ
   _diffrn_scan_frame.polarizn_Stokes_U STOKESU
   _diffrn_scan_frame.polarizn_Stokes_V STOKESV
   _diffrn_scan_frame.scan_id SCANID
   _diffrn_scan_frame.time_period FRAMETIME
   _diffrn_scan_frame.time_rstrt_incr RSTRTTIME
   /entry:NXentry
      /CBF_scan_id="SCANID"
      /instrument:NXinstrument
      /DETECTORNAME: NXdetector_group
      /DETECTORELEMENTNAME: NXdetector
         /CBF_diffrn_scan_frame__date=["DATETIME"]
         /CBF_diffrn_scan_frame__frame_id=["ID"]
         /count_time=[COUNTIME]
         /frame_time=[FRAMETIME]
         /frame_restart_time=[RSTRTTIME]
      /sample:NXsample
```

```
/beam:NXbeam
          /incident_polarisation_stokes=[STOKESI,STOKESQ,STOKESV]
             Qunits="Watts/meter^2"
    where each array element is inserted at index FRAMENUMBER
\end{itemize}
\subsection{The DIFFRN\_SCAN\_FRAME\_AXIS category}
\footnotesize{\begin{verbatim}
Data items in the DIFFRN_SCAN_FRAME_AXIS category describe the
settings of axes for particular frames. Unspecified axes are
assumed to be at their zero points. If, for any given frame,
nonzero values apply for any of the data items in this category,
those values should be given explicitly in this category and not
simply inferred from values in DIFFRN_SCAN_AXIS.
   The mapping from CBF into NeXus for the DIFFRN_SCAN_FRAME_AXIS category is:
    _diffrn_scan_frame_axis.axis_id AXISID
    _diffrn_scan_frame_axis.angle ANGLE
    _diffrn_scan_frame_axis.angle_increment ANGLEINCREMENT
    _diffrn_scan_frame_axis.angle_rstrt_incr ANGLERSTRTINCREMENT
    _diffrn_scan_frame_axis.displacement DISP
    _diffrn_scan_frame_axis.displacement_increment DISPINCREMENT
    _diffrn_scan_frame_axis.displacement_rstrt_incr DISPRSTRTINCREMENT
    _diffrn_scan_frame_axis.reference_angle REFANGLE
    _diffrn_scan_frame_axis.reference_displacement REFDISP
    { /entry:NXentry
      /CBF_scan_id="SCANID"
      /instrument:NXinstrument
       /DETECTORNAME: NXdetector_group
       /DETECTORELEMENTNAME: NXdetector
    for AXISEQUIPMENT=="detector"}
    { /entry:NXentry
         /sample:NXsample
    for AXISEQUIPMENT=="goniometer"}
    { /entry:NXentry
    for AXISEQUIPMENT=="general"}
         /transformations:NXtransformations
          /AXISID=[]
             @diffrn_scan_frame_axis__angle_start=[ANGSTART]
             @diffrn_scan_frame_axis__angle_range=[ANGRANGE]
             @diffrn_scan_frame_axis__angle_increment=[ANGINC]
             @diffrn_scan_frame_axis__angle_rstrt_incr=[ANGRSTRT]
             @diffrn_scan_frame_axis__displacement_start=[DISPSTART]
```

@diffrn_scan_frame_axis__displacement_range=[DISPRANGE]
@diffrn_scan_frame_axis__displacement_increment=[DISPINC]
@diffrn_scan_frame_axis__displacement_rstrt_incr=[DISPRSTRT]
@diffrn_scan_frame_axis__reference_angle=[ANG]
@diffrn_scan_frame_axis__reference_displacement=[DISP]

note that @units="mm" or @units="deg" should also be specified.

The dimensions of the array depend on np (the number of frames = the value of _diffrn_scan.frames)

either DISP OR ANGLE is inserted as the i-th element counting from 1 in AXISID where i is the value of _diffrn_scan_frame.frame_number for which the value of _diffrn_scan_frame.frame_id agrees with the value of _diffrn_scan_frame_axis.frame_id

The remaining tags similarly populate the attribute arrays \end{itemize} }

\subsection{The DIFFRN_SCAN_FRAME_MONITOR category}

\footnotesize{\begin{verbatim}

Data items in the DIFFRN_SCAN_FRAME_MONITOR category record the values and details about each monitor for each frame of data during a scan.

Each monitor value is uniquely identified by the combination of the scan id given by _diffrn_scan_frame.scan_id, the frame id given by _diffrn_scan_frame_monitor.frame_id, the monitor's detector id given by _diffrn_scan_frame_monitor.detector_id, and a 1-based ordinal given by _diffrn_scan_frame_monitor.id.

If there is only one frame for the scan, the value of _diffrn_scan_frame_monitor.frame_id may be omitted.

A single frame may have more than one monitor value, and each monitor value may be the result of integration over the entire frame integration time given by the value of _diffrn_scan_frame.integration_time, or many monitor values may be reported over shorter times given by the value of _diffrn_scan_frame_monitor.integration_time. If only one monitor value for a given monitor is collected during the integration time of the frame, the value of _diffrn_scan_frame_monitor.id may be omitted.

```
The mapping from CBF into NeXus for the DIFFRN_SCAN_FRAME_MONITOT category is:
    _diffrn_scan_frame_monitor.id MONID -->
    _diffrn_scan_frame_monitor.detector_id DETECTORNAME -->
    _diffrn_scan_frame_monitor.scan_id SCANID -->
    _diffrn_scan_frame_monitor.frame_id FRAMEID -->
    _diffrn_scan_frame_monitor.integration_time INTEGRATIONTIME -->
    _diffrn_scan_frame_monitor.monitor_value MONITORVALUE -->
    /entry:NXentry
      /CBF_scan_id="SCANID"
        /instrument:NXinstrument
          / {\tt CBF\_diffrn\_scan\_frame\_monitor\_DETECTORNAME\_MONID: NX monitor} \\
            @CBF_detector_id="DETECTORNAME"
            @CBF_diffrn_scan_frame_monitor__id="MONID"
            /data=[MONITORVALUE]
            /count_time=[INTEGRATIONTIME]
\end{itemize}
\subsection{The MAP category}
{\footnotesize\begin{verbatim}
Data items in the MAP category record
the details of a maps. Maps record values of parameters,
such as density, that are functions of position within
a cell or are functions of orthogonal coordinates in
three space.
A map may is composed of one or more map segments
specified in the MAP\_SEGMENT category.
   • \_map.details \rightarrow ??
   • \_map.diffrn_id \rightarrow ??
```

- $_{\mathtt{map.entry_id}} \rightarrow ??$
- $map.id \rightarrow ??$
- _map.variant category \rightarrow ??

To be mapped to NeXus in the future.

4.19.1 The MAP_SEGMENT category

Data items in the MAP_SEGMENT category record the details about each segment (section or brick) of a map.

- $_{\mathtt{map_segment.array_id}} \rightarrow ??$
- _map_segment.array_section_id → ??

- _map_segment.binary_id → ??
- _map_segment.mask_array_id → ??
- $_{\mathtt{map_segment.mask_array_section_id}} \rightarrow ??$
- $_{\mathtt{map_segment.mask_binary_id}} \rightarrow ??$
- $_{\mathtt{map_segment.id}} \rightarrow ??$
- _map_segment.map_id → ??
- $_{\mathtt{map_segment.details}} \rightarrow ??$
- $_{\mathtt{map_segment.variant}}$ category \rightarrow ??

To be mapped to NeXus in the future.

4.20 The VARIANT category

Data items in the VARIANT category record the details about sets of VARIANTs of data items.

There is sometimes a need to allow for multiple versions of the same data items in order to allow for refinements and corrections to earlier assumptions, observations and calculations. In order to allow data sets to contain more than one VARIANT of the same information, an optional ...variant data item as a pointer to _variant.variant has been added to the key of every category, as an implicit data item with a null (empty) default value.

All rows in a category with the same VARIANT value are considered to be related to one another and to all rows in other categories with the same VARIANT value. For a given VARIANT, all such rows are also considered to be related to all rows with a null VARIANT value, except that a row with a null VARIANT value is for which all other components of its key are identical to those entries in another row with a non-null VARIANT value is not related the the rows with that non-null VARIANT value. This behavior is similar to the convention for identifying alternate conformers in an atom list.

An optional role may be specified for a VARIANT as the value of _variant.role. Possible roles are null, "preferred", "raw data", "unsuccessful trial".

VARIANTs may carry an optional timestamp as the value of _variant.timestamp.

VARIANTs may be related to other VARIANTs from which they were derived by the value of _variant.variant_of

Further details about the VARIANT may be specified as the value of _variant.details.

In order to allow VARIANT information from multiple datasets to be combined, _variant.diffrn_id and/or _variant.entry_id may be used

- ullet _variant.details ightarrow ??
- _variant.role \rightarrow ??
- ullet _variant.timestamp ightarrow ??
- _variant.variant \rightarrow ??
- _variant.variant_of → ??

To be mapped to NeXus in the future.

5 Mapping from NeXus to CBF/imgCIF

Mapping from NeXus to CBF/imgCIF is matter of establishing appropriate tables and columns for each of the NeXus classes. In general, a NeXus class will correspond to a category, while the specific name will be part of the key of that category, usually the id of the category. The terms in NeXus may be defined in base classes (see http://download.nexusformat.org/doc/html/classes/base_classes/index.html) or in application definitions (see http://download.nexusformat.org/doc/html/classes/applications/index.html). We will consider them one at a time.

As with the mapping from CBF to NeXus, where we do both a complete faithful mapping of a CBF to a NeXus tree in CBF_cbf, and a more structured tag-by-tag mapping throughout the NeXus tree, in his direction we will address a complete faithful mapping of all features of a NeXus tree into a single CBF data block as well as a more structured item-by-item mapping.

5.1 Faithful Mapping of a NeXus Tree

A NeXus tree is a tree of HDF5 groups, each with an associated NeXus class. For the full faithful mapping in to a single CBF datablock, which will be given the name NeXus_Tree, each NeXus class will be mapped to a CBF category of the same name, and each instance of that class will be mapped to a single row in that table. The unique identifier of a row, in the column NX_tree_path will be the rooted path to the particular NeXus class instance in the tree. Each path component will consist of the NeXus class composed with the actual name of the NeXus class instance in dotted notation, with an underscore before each NeXus class name. Each subgroup of a NeXus class instance (also a NeXus class instance) will be entered into a column named with name of the subgroup, with a value equal to the rooted path to that subgroup.

For example, in the NeXus tree

```
\entry:NXentry
\instrument:NXinstrument
\detector:NXdetector

the mapping would be to
_datablock_NeXus_Tree
loop_
_NXentry.NX_tree_path "/_NXentry.entry"
_NXentry.instrument
```

An attribute of a NeXus class other than the HDF5 attribute for the NeXus class name itself will be given a column name composed from the prefix ''NX_class_attribute__" and the name of the attribute.

5.2 Mapping Fields

Fields share some of the characteristics of classes and some if the characteristics of attributes. When a rooted path to a field is needed in this discussion, the rooted path be composed of the NeXus class composed with the name of the NeXus class instance composed with the name of the field in dotted notation, with an underscore before each NeXus class name.

If a NeXus class instance is given in the NeXus tree by a link, rather than directly an extra tag having the name of the column with the suffix "__link" will be used to carry the link path to the target in addition to giving the path to the origin of the link.

The mapping of fields in NeXus class instances will be handled in one of two ways:

- If instances of a NeXus class are each permitted to contain multiple instances of a field, each field instance will be handled like a NeXus class instance, with the modification to rooted paths noted above. Each such field will be assigned a column name that is generic to the instances, such as ''data'' or ''axis_poise'', and a category name beginning with ''NX_'' will be generated to hold the field instance value and attribute values. The value in the column will be a list of the rooted paths to the field instances.
- if each instance of a NeXus class may only contain one unique instance of a field, then the field name will be used as the column name. The value of the column for a field will be the verbatim value of the field, using the CBF binary data type when needed, or CIF 2 lists and tuples when needed. Attributes of fields are handled by creating a column beginning with the name of the column of the field and appending the attribute name in dotted notation, converting the dots to double underscores.

For example, in the NeXus tree

```
\entry:NXentry
\instrument:NXinstrument
\detector:NXdetector
\data=BINDATA
\@signal=1

the mapping would be to
_datablock_NeXus_Tree
_loop_
```

```
_NXentry.NX_tree_path "/_NXentry.entry"
_NXentry.instrument
"/_NXentry.entry"
                    "/_NXentry.entry/_NXinstrument.instrument"
loop_
_NXinstrument.NX_tree_path
_NXinstrument.detector
"/_NXentry.entry/_NXinstrument.instrument" "/_NXentry.entry/_NXinstrument.instrument/_NXdetector__detector"
loop_
_NXdetector.NX_tree_path
_NXdetector.data
                      BINDATA
_NXdetector.data__signal
"/_NXentry.entry/_NXinstrument.instrument/_NXdetector__detector" BINDATA 1
   While, in the NeXus tree
    /entry:NXentry
       /instrument:NXinstrument
          /CBF\_diffrn_detector__detector:NXdetector
             CBF_axis__DETECTOR_PITCH=[0.]
                @units="deg"
                @cbf_location="image_1.axis.vector.10"
                @depends_on="CBF_axis__DETECTOR_Y"
                @transformation_type="rotation"
                @vector=[-1, 0, 0]
             CBF_axis__DETECTOR_Y=[0.]
                Qunits="mm"
                @cbf_location="image_1.axis.vector.9"
                @depends_on="CBF_axis__DETECTOR_Z"
                @transformation_type="translation"
                @vector=[0, -1, 0]
             CBF_axis__DETECTOR_Z=[250.]
                @units="mm"
                @cbf_location="image_1.axis.vector.8"
                depends_on="."
                {\tt @transformation\_type="translation"}
                @vector= [0, 0, 1]
             CBF_axis__ELEMENT_X=[0.]
                @units="mm"
                @offset_units="mm"
                @cbf_location="image_1.axis.vector.11"
                @depends_on="CBF_axis__DETECTOR_PITCH"
                @transformation_type="translation"
                @vector= [-1, 0, 0]
                @offset= [-211.818, -217.322, 0]
             CBF_axis__ELEMENT_Y=[0.]
```

Qunits="mm"

```
@depends_on="CBF_axis__ELEMENT_X"
                                  @transformation_type="translation"
                                  @vector= [0, 1, 0]
       the mapping would be to
_datablock_NeXus_Tree
_loop_
_NXentry.NX_tree_path "/_NXentry.entry"
_NXentry.instrument
_NXinstrument.NX_tree_path
_NXinstrument.detector
"/_NXentry.entry/_NXinstrument.instrument" "/_NXentry.entry/_NXinstrument.instrument/_NXdetector__diffrn_detect
loop_
_NXdetector.NX_tree_path
_NXdetector.axis_poise
"/_NXentry.entry/_NXinstrument.instrument/_NXdetector__diffrn_detector__detector__axis_poise"
["CBF_axis__DETECTOR_PITCH","CBF_axis__DETECTOR_Y","CBF_axis__DETECTOR_Z","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_axis__ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS_ELEMENT_X","CBF_AXIS
_NX_axis_poise.NX_tree_path
_NX_axis_poise.value
_NX_axis_poise.units
_NX_axis_poise.offset_units
_NX_axis_poise.cbf_location
_NX_axis_poise.depends_on
_NX_axis_poise.transformation_type
_NX_axis_poise.vector
_NX_axis_poise.offset
"/_NXentry.entry/_NXinstrument.instrument/_NXdetector__diffrn_detector__detector__axis_poise__axis__DETECTOR_PITCH"
                          . "image_1.axis.vector.10" "axis__DETECTOR_Y"
                                                                                                                                         "rotation" [-1,0,0]
       0. "deg"
"/_NXentry.entry/_NXinstrument.instrument/_NXdetector__diffrn_detector__detector__axis_poise__axis__DETECTOR_Y"
       O. "mm"
                                     "image_1.axis.vector.9"
                                                                                        "axis__DETECTOR_Z" "translation" [0,-1,0]
"/_NXentry.entry/_NXinstrument.instrument/_NXdetector__diffrn_detector__detector__axis_poise__axis__DETECTOR_Z"
   250. "mm"
                                       "image_1.axis.vector.8"
                                                                                                                              . "translation" [0,0,1]
"/_NXentry.entry/_NXinstrument.instrument/_NXdetector\__diffrn\_detector\__detector\__axis\_poise\__axis\__ELEMENT\_X"
                            "mm" "image_1.axis.vector.11" "axis__DETECTOR_PITCH" "translation" [-1,0,0] [-211.818,-217.322,0]
"/_NXentry.entry/_NXinstrument.instrument/_NXdetector__diffrn_detector__detector__axis_poise__axis__ELEMENT_Y"
                                       "image_1.axis.vector.12"
                                                                                                 "axis__ELEMENT_X" "translation" [0,1,0]
```

@cbf_location=image_1.axis.vector.12

While the full faithful mapping of the NeXus tree into CBF is primarily for development and debugging, portions of it will also become essentially the final detailed mapping. Notice, for

example, that the NX_axis_poise category in the faithful mapping has all the information needed to populate the standard CBF axis category will minimal transformations. In the final detailed mapping, in addition to the NX_tree_path, each category will have a ''NX_id'' column to provide a unique identifier when a CBF originates the data and no path is available to use as the key. Normally this will be the last component of the path.

6 NeXus Base Class Mapping

The details of the NeXus base classes are provided at http://download.nexusformat.org/doc/html/classes/base_classes/index.html which should be consulted for getails.

6.1 NXaperture

Template of a beamline aperture.

NXaperture (base class, version 1.0)
description:NX_CHAR
material:NX_CHAR
NXgeometry
NXgeometry
NXnote

ullet APERTURE:NXaperture ightarrow

_NXaperture.NX_tree_path NEXUSTREEPATH
_NXaperture.NX_id APERTURE
_NXaperture.NX_scan_id SCANID
_NXaperture.NX_diffrn_id DIFFRNID
_NXaperture.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXaperture_APERTURE'' where APERTURE is the name of this group, typically ''aperture''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- ullet description:NX_CHAR=DESCRIPTION ightarrow _NXaperture.description DESCRIPTION
- $\begin{array}{ll} \bullet & \texttt{material:NX_CHAR=MATERIAL} \ \to \\ & _\texttt{NXaperture.material} \ \ \texttt{MATERIAL} \end{array}$
- geometry_aperture:NXgeometry \rightarrow _NXaperture.NXgeometry_id geometry_aperture
- $\bullet \ \ \, {\tt geometry_blades:NXgeometry} \to \\ _{\tt NXaperture.NXgeometry_id} \ \, {\tt geometry_blades}$
- $\begin{array}{l} \bullet \ \ \, \mathtt{note:NXnote} \ \to \\ \quad \ \, _\mathtt{NXaperture.NXnote_id} \ \, \mathtt{note} \end{array}$

6.2 NXattenuator

Description of a device that reduces the intensity of a beam by attenuation. If uncertain whether to use NXfilter (band-pass filter) or NXattenuator (reduces beam intensity), then choose NXattenuator.

NXattenuator (base class, version 1.0)
absorption_cross_section:NX_FLOAT
attenuator_transmission:NX_FLOAT
distance:NX_FLOAT
scattering_cross_section:NX_FLOAT
status:NX_CHAR
 @time
thickness:NX_FLOAT
type:NX_CHAR

ullet ATTENUATOR:NXattenuator ightarrow

_NXattenuator.NX_tree_path NEXUSTREEPATH

_NXattenuator.NX_id ATTENUATOR
_NXattenuator.NX_scan_id SCANID
_NXattenuator.NX_diffrn_id DIFFRNID
_NXattenuator.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXattenuator_ATTENUATOR'' where ATTENUATOR is the name of this group, typically ''attenuator''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\verb| absorption_cross_section:NX_FLOAT=ABSORPTION_CROSS_SECTION \to \\ \verb| NXattenuator.absorption_cross_section | ABSORPTION_CROSS_SECTION | \\ | ABSORPTION_CROSS_SECTION | ABSORPTION_CR$
- attenuator_transmission:NX_FLOAT=ATTENUATOR_TRANSMISSION \rightarrow _NXattenuator_attenuator_transmission ATTENUATOR_TRANSMISSION
- scattering_cross_section:NX_FLOAT=SCATTERING_CROSS_SECTION \rightarrow _NXattenuator.scattering_cross_section SCATTERING_CROSS_SECTION
- status:NX_CHAR=STATUS \rightarrow _NXattenuator.status STATUS
- $\begin{array}{ll} \bullet & \texttt{thickness:NX_FLOAT=THICKNESS} \ \to \\ _\texttt{NXattenuator.thickness} \ \ \texttt{THICKNESS} \end{array}$
- type:NX_CHAR=TYPE \rightarrow _NXattenuator.type TYPE

6.3 NXbeam

Template of the state of the neutron or X-ray beam at any location. It will be referenced by beamline component groups within the NXinstrument group or by the NXsample group. Note that variables such as the incident energy could be scalar values or arrays. This group is especially valuable in storing the results of instrument simulations in which it is useful to specify the beam profile, time distribution etc. at each beamline component. Otherwise, its most likely use is in the NXsample group in which it defines the results of the neutron scattering by the sample, e.g., energy transfer, polarizations.

Note: there has been a recent NIAC discussion on this class, in which Tobias Richter pointed out that the polarization is unspecified, and the Stokes parameters would be 4 array position, not 2. In addition, there was a ''j'' index floating around and the 2-dimensional arrays appear to have been transposed. The version has added the 2-parameter Denzo polarization parameters in the order norm, then ratio. In addition we have added the Stokes parameters in the order I, Q, U, V. We propose that the unspecified polarization be deprecated.

```
NXbeam (base class, version 1.0)
 distance: NX_FLOAT
 energy_transfer:NX_FLOAT[i]
 final_beam_divergence:NX_FLOAT[i,2]
 final_energy:NX_FLOAT[i]
 final_polarization:NX_FLOAT[i,2]
 final_polarization_Denzo:NX_FLOAT[i,2]
 final_polarization_Stokes:NX_FLOAT[i,4]
 final_wavelength:NX_FLOAT[i]
 final_wavelength_spread:NX_FLOAT[i]
 flux:NX_FLOAT[i]
 incident_beam_divergence:NX_FLOAT[i,2]
 incident_energy:NX_FLOAT[i]
 incident_polarization:NX_FLOAT[i,2]
 incident_polarization_Denzo:NX_FLOAT[i,2]
 incident_polarization_Stokes:NX_FLOAT[i,4]
 incident_wavelength:NX_FLOAT[i]
  incident_wavelength_spread:NX_FLOAT[i]
 NXdata
```

ullet BEAM:NXbeam ightarrow

_NXbeam.NX_tree_path NEXUSTREEPATH
_NXbeam.NX_id BEAM
_NXbeam.NX_scan_id SCANID
_NXbeam.NX_diffrn_id DIFFRNID
_NXbeam.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXbeam_BEAM'' where BEAM is the name of this group, typically ''beam''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

◆ distance:NX_FLOAT=DISTANCE →
 _NXbeam.distance DISTANCE
 is an alias for

_diffrn_measurement.sample_detector_distance DISTANCE

- $\begin{array}{ll} \bullet & \mathtt{energy_transfer:NX_FLOAT[i]=ENERGY_TRANSFER} \ \to \\ \mathtt{_NXbeam.energy_transfer} \ \ \mathtt{ENERGY_TRANSFER} \end{array}$
- final_beam_divergence:NX_FLOAT[i,2]=FINAL_BEAM_DIVERGENCE \rightarrow _NXbeam.final_beam_divergence FINAL_BEAM_DIVERGENCE
- final_energy:NX_FLOAT[i]=FINAL_ENERGY \rightarrow _NXbeam.final_energy FINAL_ENERGY
- final_polarization:NX_FLOAT[i,2]=FINAL_POLARIZATION \rightarrow _NXbeam.final_polarization FINAL_POLARIZATION

- final_polarization_Denzo:NX_FLOAT[i,2]=FINAL_POLARIZATION_DENZO \rightarrow _NXbeam.final_polarization FINAL_POLARIZATION_DENZO
- final_polarization_Stokes:NX_FLOAT[i,4]=FINAL_POLARIZATION_STOKES \rightarrow _NXbeam.final_polarization_FINAL_POLARIZATION_STOKES
- final_wavelength:NX_FLOAT[i]=FINAL_WAVELENGTH \rightarrow _NXbeam.final_wavelength FINAL_WAVELENGTH
- final_wavelength_spread:NX_FLOAT[i]=FINAL_WAVELENGTH_SPREAD \rightarrow _NXbeam.final_wavelength_spread FINAL_WAVELENGTH_SPREAD
- $\begin{array}{ll} \bullet & \texttt{flux:NX_FLOAT[i]=FLUX} \ \to \\ & _\texttt{NXbeam.flux} \ \texttt{FLUX} \end{array}$
- incident_beam_divergence:NX_FLOAT[i,2]=INCIDENT_BEAM_DIVERGENCE \rightarrow _NXbeam.incident_beam_divergence INCIDENT_BEAM_DIVERGENCE
- incident_polarization:NX_FLOAT[i,2]=INCIDENT_POLARIZATION \rightarrow _NXbeam.incident_polarization INCIDENT_POLARIZATION
- incident_polarization_Denzo:NX_FLOAT[i,4]=INCIDENT_POLARIZATION_DENZO \rightarrow _NXbeam.incident_polarization_Stokes INCIDENT_POLARIZATION_DENZO
- incident_polarization_Stokes:NX_FLOAT[i,4]=INCIDENT_POLARIZATION_STOKES \rightarrow _NXbeam.incident_polarization_Stokes INCIDENT_POLARIZATION_STOKES
- incident_wavelength:NX_FLOAT[i]=INCIDENT_WAVELENGTH \rightarrow _NXbeam.incident_wavelength INCIDENT_WAVELENGTH
- incident_wavelength_spread:NX_FLOAT[i]=INCIDENT_WAVELENGTH_SPREAD \rightarrow _NXbeam.incident_wavelength_spread INCIDENT_WAVELENGTH_SPREAD
- $\begin{array}{l} \bullet \ \ \, \mathtt{data:NXdata} \ \to \\ \quad \ \ \, \mathtt{LNXbeam.NXdata_id} \ \ \, \mathtt{data} \end{array}$

The final Denzo polarization from the beam component immediately prior to the beam being incident on the sample should agree with the values of the CBF tags _diffrn_radiation.polarizn_source_norm and _diffrn_radiation.polarizn_source_ratio.

6.4 NXbeam_stop

A class for a beamstop. Beamstops and their positions are important for SANS and SAXS experiments.

```
NXbeam_stop (base class, version 1.0)

description:NX_CHAR
distance_to_detector:NX_FLOAT
size:NX_FLOAT
status:NX_CHAR
x:NX_FLOAT
y:NX_FLOAT
NXgeometry
```

BEAM_STOP: NXbeam_stop →
 _NXbeam_stop.NX_tree_path NEXUSTREEPATH

```
_NXbeam_stop.NX_id BEAM_STOP
_NXbeam_stop.NX_scan_id SCANID
_NXbeam_stop.NX_diffrn_id DIFFRNID
_NXbeam_stop.NX_entry_id ENTRYID
```

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXbeam_stop_BEAM_STOP'' where BEAM_STOP is the name of this group, typically ''beam_stop''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CRF

- $\begin{array}{ll} \bullet & {\tt description:NX_CHAR=DESCRIPTION} \to \\ {\tt _NXbeam_stop.description} & {\tt DESCRIPTION} \end{array}$
- $\begin{array}{ll} \bullet & {\tt distance_to_detector:NX_FLOAT=DISTANCE_T0_DETECTOR} \ \to \\ {\tt _NXbeam_stop.distance_to_detector} \ {\tt DISTANCE_T0_DETECTOR} \end{array}$
- size:NX_FLOAT=SIZE \rightarrow _NXbeam_stop.size SIZE
- $\begin{array}{ll} \bullet & \mathtt{status:NX_CHAR=STATUS} \ \to \\ \mathtt{_NXbeam_stop.status} \ \mathtt{STATUS} \end{array}$
- $x:NX_FLOAT=X \rightarrow \\ _NXbeam_stop.x X$
- $y:NX_FLOAT=Y \rightarrow$ _NXbeam_stop.y Y
- geometry1:NXgeometry \rightarrow _NXbeam_stop.NXgeometry_id geometry1

6.5 NXbending_magnet

description for a bending magnet

```
NXbending_magnet (base class, version 1.0)
accepted_photon_beam_divergence:NX_FLOAT
bending_radius:NX_FLOAT
critical_energy:NX_FLOAT
divergence_x_minus:NX_FLOAT
divergence_x_plus:NX_FLOAT
divergence_y_minus:NX_FLOAT
divergence_y_plus:NX_FLOAT
magnetic_field:NX_FLOAT
source_distance_x:NX_FLOAT
source_distance_y:NX_FLOAT
spectrum:NXdata
NXgeometry
```

BENDING_MAGNET:NXbending_magnet →
 _NXbending_magnet.NX_tree_path NEXUSTREEPATH
 _NXbending_magnet.NX_id BENDING_MAGNET
 _NXbending_magnet.NX_scan_id SCANID

_NXbending_magnet.NX_diffrn_id DIFFRNID _NXbending_magnet.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXbending_magnet__BENDING_MAGNET'' where BENDING_MAGNET is the name of this group, typically "bending_magnet". The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\verb|accepted_photon_beam_divergence:NX_FLOAT=ACCEPTED_PHOTON_BEAM_DIVERGENCE| \rightarrow$ _NXbending_magnet.accepted_photon_beam_divergence ACCEPTED_PHOTON_BEAM_DIVERGENCE
- ${\tt bending_radius:NX_FLOAT=BENDING_RADIUS} \ \rightarrow$ _NXbending_magnet.bending_radius BENDING_RADIUS
- ${\tt critical_energy:NX_FLOAT=CRITICAL_ENERGY} \ \rightarrow$ _NXbending_magnet.critical_energy CRITICAL_ENERGY
- ${\tt divergence_x_minus:NX_FLOAT=DIVERGENCE_X_MINUS}
 ightarrow$ _NXbending_magnet.divergence_x_minus DIVERGENCE_X_MINUS
- $divergence_x_plus:NX_FLOAT=DIVERGENCE_X_PLUS
 ightarrow$ _NXbending_magnet.divergence_x_plus DIVERGENCE_X_PLUS
- ${\tt divergence_y_minus:NX_FLOAT=DIVERGENCE_Y_MINUS} \ \rightarrow$ _NXbending_magnet.divergence_y_minus DIVERGENCE_Y_MINUS
- ${\tt divergence_y_plus:NX_FLOAT=DIVERGENCE_Y_PLUS} \ \to \\$ $\verb|-NXbending_magnet.divergence_y_plus DIVERGENCE_Y_PLUS|$
- ${\tt magnetic_field:NX_FLOAT=MAGNETIC_FIELD} \ \to \\$ _NXbending_magnet.magnetic_field MAGNETIC_FIELD
- ${\tt source_distance_x:NX_FLOAT=SOURCE_DISTANCE_X} \to$ _NXbending_magnet.source_distance_x SOURCE_DISTANCE_X
- $source_distance_y:NX_FLOAT=SOURCE_DISTANCE_Y \rightarrow$ _NXbending_magnet.source_distance_y SOURCE_DISTANCE_Y
- ullet spectrum:NXdata ightarrow_NXbending_magnet.NXdata_id spectrum
- ullet geometry1:NXgeometry o_NXbending_magnet.NXgeometry_id geometry1

6.6 NXcapillary

This is a dictionary of field names to use for describing a capillary as used in X-ray beamlines. Based on information provided by Gerd Wellenreuther.

NXcapillary (base class, version 1.0) accepting_aperture:NX_FLOAT focal_size:NX_FLOAT manufacturer: NX_CHAR maximum_incident_angle:NX_FLOAT type: NX_CHAR

working_distance:NX_FLOAT

gain:NXdata

transmission: NXdata

CAPILLARY:NXcapillary →
 _NXcapillary.NX_tree_path NEXUSTREEPATH
 _NXcapillary.NX_id CAPILLARY
 _NXcapillary.NX_scan_id SCANID
 _NXcapillary.NX_diffrn_id DIFFRNID
 _NXcapillary.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXcapillary__CAPILLARY'' where CAPILLARY is the name of this group, typically ''capillary''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & \texttt{accepting_aperture:NX_FLOAT=ACCEPTING_APERTURE} \ \to \\ & _\texttt{NXcapillary.accepting_aperture} \ \texttt{ACCEPTING_APERTURE} \end{array}$
- focal_size:NX_FLOAT=FOCAL_SIZE \rightarrow _NXcapillary.focal_size FOCAL_SIZE
- $\begin{array}{ll} \bullet & \mathtt{manufacturer:NX_CHAR=MANUFACTURER} \ \to \\ & \mathtt{_NXcapillary.manufacturer} \ \ \mathtt{MANUFACTURER} \end{array}$
- $\bullet \quad \text{maximum_incident_angle:NX_FLOAT=MAXIMUM_INCIDENT_ANGLE} \ \to \\ \text{_NXcapillary.maximum_incident_angle} \ \text{MAXIMUM_INCIDENT_ANGLE}$
- type:NX_CHAR=TYPE \rightarrow _NXcapillary.type TYPE
- working_distance:NX_FLOAT=WORKING_DISTANCE →
 _NXcapillary.working_distance WORKING_DISTANCE
- $\begin{array}{l} \bullet \ \, {\tt gain:NXdata} \, \to \\ \quad \, _{\tt NXcapillary.NXdata_id} \ \, {\tt gain} \end{array}$
- transmission:NXdata \rightarrow _NXcapillary.NXdata_id transmission

6.7 NXcharacterization

note: This base class may be removed in future releases of NXDL. If you have a use for this base class, please provide a description of your intended use to the NIAC (nexus-committee@nexusformat.org).

```
NXcharacterization (base class, version 1.0)
    @source
    @location
    @mime_type
    definition:NX_CHAR
        @version
        @URL
```

 $\begin{array}{l} \bullet \;\; {\tt CHARACTERIZATION:NXcharacterization} \;\; \to \\ {\tt _NXcharacterization.NX_tree_path} \;\; {\tt NEXUSTREEPATH} \end{array}$

_NXcharacterization.NX_id CHARACTERIZATION

_NXcharacterization.NX_scan_id SCANID

_NXcharacterization.NX_diffrn_id DIFFRNID

 $\verb|_NXcharacterization.NX_entry_id ENTRYID| \\$

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under

score and, finally, the name of the group, ending with ''/NXcharacterization__CHARACTERIZATION'' where CHARACTERIZATION is the name of this group, typically ''characterization''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

ullet @source=SOURCE ightarrow

_NXcharacterization.NX_class_attribute__source SOURCE

ullet @location=LOCATION ightarrow

_NXcharacterization.NX_class_attribute__location LOCATION

_NXcharacterization.NX_class_attribute__mime_type MIME_TYPE

ullet definition:NX_CHAR=DEFINITION ightarrow

_NXcharacterization.definition DEFINITION

ullet @version=VERSION ightarrow

_NXcharacterization.definition__version VERSION

ullet @URL=URL ightarrow

_NXcharacterization.definition__URL URL

6.8 NXcollection

Use NXcollection to gather together any set of terms. The original suggestion is to use this as a container class for the description of a beamline.

For NeXus validation, NXcollection will always generate a warning since it is always an optional group. Anything (groups, fields, or attributes) placed in an NXcollection group will not be validated.

NXcollection (contributed definition, version 1.0) beamline: NX_CHAR

ullet COLLECTION:NXcollection ightarrow

 $\verb|_NXcollection.NX_tree_path| NEXUSTREEPATH|$

_NXcollection.NX_id COLLECTION

_NXcollection.NX_scan_id SCANID

 $\verb|-NXcollection.NX_diffrn_id DIFFRNID| \\$

_NXcollection.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXcollection__COLLECTION'' where COLLECTION is the name of this group, typically ''collection''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

ullet beamline:NX_CHAR=BEAMLINE ightarrow _NXcollection.beamline BEAMLINE

6.9 NXcollimator

Template of a beamline collimator.

NXcollimator (base class, version 1.0) absorbing_material:NX_CHAR

blade_spacing:NX_FLOAT
blade_thickness:NX_FLOAT
divergence_x:NX_FLOAT
divergence_y:NX_FLOAT
frequency:NX_FLOAT
soller_angle:NX_FLOAT
transmitting_material:NX_CHAR
type:NX_CHAR
NXgeometry
frequency_log:NXlog

ullet COLLIMATOR:NXcollimator o

_NXcollimator.NX_tree_path NEXUSTREEPATH

_NXcollimator.NX_id COLLIMATOR
_NXcollimator.NX_scan_id SCANID
_NXcollimator.NX_diffrn_id DIFFRNID
_NXcollimator.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXcollimator__COLLIMATOR'' where COLLIMATOR is the name of this group, typically ''collimator''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\hbox{\tt absorbing_material:NX_CHAR=ABSORBING_MATERIAL} \rightarrow \\ \hbox{\tt NXcollimator.absorbing_material} \ \hbox{\tt ABSORBING_MATERIAL}$
- $\verb| blade_thickness:NX_FLOAT=BLADE_THICKNESS| \rightarrow \\ \verb| NXcollimator.blade_thickness| BLADE_THICKNESS|$
- divergence_x:NX_FLOAT=DIVERGENCE_X →
 _NXcollimator.divergence_x DIVERGENCE_X
- $\begin{array}{ll} \bullet & \mathtt{divergence_y:NX_FLOAT=DIVERGENCE_Y} \ \to \\ & \underline{ \tt NXcollimator.divergence_y \ DIVERGENCE_Y} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{frequency:NX_FLOAT=FREQUENCY} \ \to \\ _\texttt{NXcollimator.frequency} \ \ \texttt{FREQUENCY} \end{array}$
- $\bullet \quad \text{soller_angle:NX_FLOAT=SOLLER_ANGLE} \ \to \\ \quad _\text{NXcollimator.soller_angle} \ \ \text{SOLLER_ANGLE}$
- $\bullet \qquad \text{transmitting_material:NX_CHAR=TRANSMITTING_MATERIAL} \ \to \\ \text{_NXcollimator.transmitting_material} \ \text{TRANSMITTING_MATERIAL}$
- $\begin{array}{ll} \bullet & {\tt type:NX_CHAR=TYPE} \ \to \\ {\tt _NXcollimator.type} \ {\tt TYPE} \end{array}$
- $\bullet \ \ \, {\tt geometry1:NXgeometry} \to \\ _{\tt NXcollimator.NXgeometry_id} \ \, {\tt geometry1} \\$
- $\begin{array}{c} \bullet \ \ \, \mathtt{frequency_log:NXlog} \ \to \\ \quad \ \, \underline{\mathtt{NXcollimator.NXlog_id}} \ \, \mathtt{frequency_log} \end{array}$

See also _diffrn_radiation.div_x_source and _diffrn_radiation.div_y_source

6.10 NXcrystal

Template of a crystal monochromator or analyzer. Permits double bent monochromator comprised of multiple segments with anisotropic Gaussian mosaic.

If curvatures are set to zero or are absent, array is considered to be flat.

Scattering vector is perpendicular to surface. Crystal is oriented parallel to beam incident on crystal before rotation, and lies in vertical plane.

```
NXcrystal (base class, version 1.0)
  azimuthal_angle:NX_FLOAT[i]
 bragg_angle:NX_FLOAT[i]
  chemical_formula:NX_CHAR
  curvature_horizontal:NX_FLOAT
  curvature_vertical:NX_FLOAT
 cut_angle:NX_FLOAT
  cylindrical_orientation_angle:NX_NUMBER
 d_spacing:NX_FLOAT
 density:NX_NUMBER
  is_cylindrical:NX_BOOLEAN
 mosaic_horizontal:NX_FLOAT
 mosaic_vertical:NX_FLOAT
 order_no:NX_INT
 orientation_matrix:NX_FLOAT[3,3]
 polar_angle:NX_FLOAT[i]
 reflection: NX_INT[3]
  scattering_vector:NX_FLOAT
  segment_columns:NX_FLOAT
  segment_gap:NX_FLOAT
  segment_height:NX_FLOAT
  segment_rows:NX_FLOAT
  segment_thickness:NX_FLOAT
  segment_width:NX_FLOAT
  space_group:NX_CHAR
  temperature:NX_FLOAT
  temperature_coefficient:NX_FLOAT
 thickness:NX_FLOAT
  type: NX_CHAR
 unit_cell:NX_FLOAT[n_comp,6]
 unit_cell_a:NX_FLOAT
 unit_cell_alpha:NX_FLOAT
 unit_cell_b:NX_FLOAT
 unit_cell_beta:NX_FLOAT
 unit_cell_c:NX_FLOAT
 unit_cell_gamma:NX_FLOAT
 unit_cell_volume:NX_FLOAT
 usage:NX_CHAR
 wavelength:NX_FLOAT[i]
 reflectivity: NXdata
 transmission: NXdata
 NXgeometry
  temperature_log:NXlog
```

shape: NXshape

ullet CRYSTAL:NXcrystal ightarrow

_NXcrystal.NX_tree_path NEXUSTREEPATH

_NXcrystal.NX_id CRYSTAL

_NXcrystal.NX_scan_id SCANID

_NXcrystal.NX_diffrn_id DIFFRNID

_NXcrystal.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXcrystal_CRYSTAL'' where CRYSTAL is the name of this group, typically ''crystal''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- azimuthal_angle:NX_FLOAT[i]=AZIMUTHAL_ANGLE ightarrow _NXcrystal.azimuthal_angle AZIMUTHAL_ANGLE
- $\bullet \quad \text{bragg_angle:NX_FLOAT[i]=BRAGG_ANGLE} \ \to \\ \text{_NXcrystal.bragg_angle} \ \ \text{BRAGG_ANGLE}$
- $\begin{array}{ll} \bullet & {\tt chemical_formula:NX_CHAR=CHEMICAL_FORMULA} \ \to \\ _{\tt NXcrystal.chemical_formula} \ {\tt CHEMICAL_FORMULA} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{curvature_horizontal:NX_FLOAT=CURVATURE_HORIZONTAL} \\ \to & \texttt{_NXcrystal.curvature_horizontal} \end{array} \\ \begin{array}{ll} \texttt{CURVATURE_HORIZONTAL} \end{array}$
- curvature_vertical:NX_FLOAT=CURVATURE_VERTICAL → _NXcrystal.curvature_vertical CURVATURE_VERTICAL
- cut_angle:NX_FLOAT=CUT_ANGLE \rightarrow _NXcrystal.cut_angle CUT_ANGLE
- cylindrical_orientation_angle:NX_NUMBER=CYLINDRICAL_ORIENTATION_ANGLE \rightarrow _NXcrystal.cylindrical_orientation_angle CYLINDRICAL_ORIENTATION_ANGLE
- $\begin{array}{ll} \bullet & \text{d_spacing:NX_FLOAT=D_SPACING} \ \to \\ & \text{_NXcrystal.d_spacing} \ \text{D_SPACING} \end{array}$
- density:NX_NUMBER=DENSITY \rightarrow _NXcrystal.density DENSITY
- $\begin{array}{ll} \bullet & {\tt is_cylindrical:NX_BOOLEAN=IS_CYLINDRICAL} \ \to \\ {\tt _NXcrystal.is_cylindrical} \ {\tt IS_CYLINDRICAL} \end{array}$
- mosaic_vertical:NX_FLOAT=MOSAIC_VERTICAL →
 _NXcrystal.mosaic_vertical MOSAIC_VERTICAL
- $\begin{array}{lll} \bullet & & \text{order_no:NX_INT=ORDER_NO} & \rightarrow \\ & & _\text{NXcrystal.order_no} & \text{ORDER_NO} \end{array}$
- orientation_matrix:NX_FLOAT[3,3]=ORIENTATION_MATRIX \rightarrow _NXcrystal.orientation_matrix ORIENTATION_MATRIX
- polar_angle:NX_FLOAT[i]=POLAR_ANGLE \rightarrow _NXcrystal.polar_angle POLAR_ANGLE
- $\begin{array}{ll} \bullet & \texttt{reflection:NX_INT[3]=REFLECTION} \ \to \\ _\texttt{NXcrystal.reflection} \ \texttt{REFLECTION} \end{array}$

- $\bullet \hspace{1.5cm} \texttt{scattering_vector:NX_FLOAT=SCATTERING_VECTOR} \rightarrow \hspace{0.5cm} \texttt{NXcrystal.scattering_vector} \hspace{0.5cm} \texttt{SCATTERING_VECTOR}$
- segment_gap:NX_FLOAT=SEGMENT_GAP \rightarrow _NXcrystal.segment_gap SEGMENT_GAP
- $\begin{array}{ll} \bullet & \texttt{segment_height:NX_FLOAT=SEGMENT_HEIGHT} \ \to \\ & \texttt{_NXcrystal.segment_height} \ \texttt{SEGMENT_HEIGHT} \\ \end{array}$
- $\begin{array}{ll} \bullet & \texttt{segment_rows:NX_FLOAT=SEGMENT_ROWS} \ \to \\ _\texttt{NXcrystal.segment_rows} \ \texttt{SEGMENT_ROWS} \end{array}$
- $\bullet \hspace{0.3in} \texttt{segment_thickness:NX_FLOAT=SEGMENT_THICKNESS} \rightarrow \\ \mathtt{NXcrystal.segment_thickness} \hspace{0.3in} \mathtt{SEGMENT_THICKNESS}$
- $\begin{array}{ll} \bullet & \mathtt{segment_width:NX_FLOAT=SEGMENT_WIDTH} \ \to \\ \mathtt{NXcrystal.segment_width} \ \mathtt{SEGMENT_WIDTH} \end{array}$
- space_group:NX_CHAR=SPACE_GROUP \rightarrow _NXcrystal.space_group SPACE_GROUP
- $\begin{array}{ll} \bullet & {\tt temperature:NX_FLOAT=TEMPERATURE} \rightarrow \\ {\tt _NXcrystal.temperature} & {\tt TEMPERATURE} \end{array}$
- temperature_coefficient:NX_FLOAT=TEMPERATURE_COEFFICIENT \rightarrow _NXcrystal.temperature_coefficient TEMPERATURE_COEFFICIENT
- $\begin{array}{ll} \bullet & {\tt thickness:NX_FLOAT=THICKNESS} \ \to \\ _{\tt NXcrystal.thickness} \ {\tt THICKNESS} \end{array}$
- type:NX_CHAR=TYPE \rightarrow _NXcrystal.type TYPE
- $\begin{array}{ll} \bullet & \text{unit_cell:NX_FLOAT[n_comp,6]=UNIT_CELL} \ \to \\ _ \text{NXcrystal.unit_cell} \ \ \text{UNIT_CELL} \end{array}$
- $\begin{array}{ll} \bullet & \text{unit_cell_a:NX_FLOAT=UNIT_CELL_A} \ \to \\ _\text{NXcrystal.unit_cell_a UNIT_CELL_A} \end{array}$
- $\begin{array}{ll} \bullet & \text{unit_cell_alpha:NX_FLOAT=UNIT_CELL_ALPHA} \ \to \\ & \text{_NXcrystal.unit_cell_alpha} \ \ \text{UNIT_CELL_ALPHA} \end{array}$
- $\begin{array}{ll} \bullet & \text{unit_cell_b:NX_FLOAT=UNIT_CELL_B} \ \to \\ _ \text{NXcrystal.unit_cell_b UNIT_CELL_B} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{unit_cell_beta:NX_FLOAT=UNIT_CELL_BETA} \ \to \\ & _\texttt{NXcrystal.unit_cell_beta} \ \texttt{UNIT_CELL_BETA} \end{array}$
- unit_cell_c:NX_FLOAT=UNIT_CELL_C \rightarrow _NXcrystal.unit_cell_c UNIT_CELL_C
- $\begin{array}{ll} \bullet & \text{unit_cell_gamma:NX_FLOAT=UNIT_CELL_GAMMA} & \rightarrow \\ & _\text{NXcrystal.unit_cell_gamma} & \text{UNIT_CELL_GAMMA} \end{array}$
- $\begin{array}{lll} \bullet & \text{unit_cell_volume:NX_FLOAT=UNIT_CELL_VOLUME} & \rightarrow \\ & _\text{NXcrystal.unit_cell_volume} & \text{UNIT_CELL_VOLUME} \end{array}$
- usage:NX_CHAR=USAGE ightarrow _NXcrystal.usage USAGE
- wavelength: NX_FLOAT[i]=WAVELENGTH \rightarrow _NXcrystal.wavelength WAVELENGTH

```
    reflectivity:NXdata →
        _NXcrystal.NXdata_id reflectivity
    transmission:NXdata →
        _NXcrystal.NXdata_id transmission
    geometry1:NXgeometry →
        _NXcrystal.NXgeometry_id geometry1
    temperature_log:NXlog →
        _NXcrystal.NXlog_id temperature_log
    shape:NXshape →
        _NXcrystal.NXshape_id shape
```

6.11 NXdata

(required) NXdata is a template of plottable data and their dimension scales. It is mandatory that there is at least one NXdata group in each NXentry group. Note that the variable and data can be defined with different names. The signal and axes attribute of the data item define which items are plottable data and which are dimension scales.

Each NXdata group will consist of only one data set containing plottable data and their standard deviations. This data set may be of arbitrary rank up to a maximum of NX_MAXRANK=32. The plottable data will be identified by the attribute: signal=1 The plottable data will identify the dimension scale specification(s) in the axes attribute.

If available, the standard deviations of the data are to be stored in a data set of the same rank and dimensions, with the name errors.

For each data dimension, there should be a one-dimensional array of the same length. These one-dimensional arrays are the dimension scales of the data, i.e. the values of the independent variables at which the data is measured, such as scattering angle or energy transfer.

There are two methods of linking each data dimension to its respective dimension scale.

The preferred (and recommended) method uses the axes attribute to specify the names of each dimension scale.

The older method uses the axis attribute on each dimension scale to identify with an integer the axis whose value is the number of the dimension.

NXdata is used to implement one of the basic motivations in NeXus, to provide a default plot for the data of this NXentry. The actual data might be stored in another group and (hard) linked to the NXdata group.

```
NXdata (base class, version 1.0)
data:NX_NUMBER[n]
    @signal
    @axes
    @uncertainties
    @long_name
    errors:NX_NUMBER[n]
    offset:NX_FLOAT
    scaling_factor:NX_FLOAT
    variable:NX_NUMBER[n]
     @long_name
     @distribution
     @first_good
     @last_good
```

@axis variable_errors:NX_NUMBER[n] x:NX_FLOAT[nx] y:NX_FLOAT[ny] z:NX_FLOAT[nz] ullet DATA:NXdata ightarrow_NXdata.NX_tree_path NEXUSTREEPATH _NXdata.NX_id DATA _NXdata.NX_scan_id SCANID _NXdata.NX_diffrn_id DIFFRNID _NXdata.NX_entry_id ENTRYID where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXdata_DATA'' where DATA is the name of this group, typically ''data''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF. _NXdata.NX_id DATA is an alias for _array_intensities.array_id DATA and requires that we have a row in ARRAY_DATA for which we have _array_data.array_id DATAID $\mathtt{data:NX_NUMBER[n]=DATA} \rightarrow$ _NXdata.data DATA is an alias of _array_data.data DATA for a row of ARRAY_DATA for which we have _array_data.array_id DATAID ${\tt @signal=SIGNAL} \, \to \,$ _NXdata.data__signal SIGNAL <code>@axes=AXES</code> ightarrow_NXdata.data__axes AXES ${\tt Quncertainties=UNCERTAINTIES} \ \to \ \\$ _NXdata.data_uncertainties UNCERTAINTIES @long_name=LONG_NAME \rightarrow _NXdata.data_long_name LONG_NAME $\verb|errors:NX_NUMBER[n]=ERRORS| \rightarrow$ _NXdata.errors ERRORS offset:NX_FLOAT=OFFSET ightarrow_NXdata.offset OFFSET is an alias for _array_intensities.offset OFFSET ${\tt scaling_factor:NX_FLOAT=SCALING_FACTOR} \ \to \\$ _NXdata.scaling_factor SCALING_FACTOR is an alias for _array_intensities.scaling SCALING_FACTOR $variable:NX_NUMBER[n]=VARIABLE \rightarrow$ _NXdata.variable VARIABLE

● @long_name=LONG_NAME →
_NXdata.variable__long_name LONG_NAME

 $\begin{array}{ll} \bullet & & \texttt{Odistribution=DISTRIBUTION} \ \to \\ & _\texttt{NXdata.variable__distribution} \ \ \texttt{DISTRIBUTION} \end{array}$

- $\begin{tabular}{ll} \tt & \tt @first_good=FIRST_GOOD \end{tabular} \rightarrow & \tt _NXdata.variable__first_good FIRST_GOOD \end{tabular}$
- $\begin{tabular}{ll} \bullet & @last_good=LAST_GOOD $\rightarrow $$ _NXdata.variable__last_good LAST_GOOD $\end{tabular}$
- $\begin{array}{ll} \bullet & & \texttt{@axis=AXIS} \ \to \\ & _\texttt{NXdata.variable__axis} \ \texttt{AXIS} \end{array}$
- $\begin{array}{ll} \bullet & \mathtt{variable_errors:NX_NUMBER[n]=VARIABLE_ERRORS} \ \to \\ \mathtt{LNX} & \mathtt{LNX} &$
- $x:NX_FLOAT[nx]=X \rightarrow \\ _NXdata.x X$
- $y:NX_FLOAT[ny]=Y \rightarrow$ _NXdata.y Y
- $z:NX_FLOAT[nz]=Z \rightarrow$ _NXdata.z Z

These items have a relationship with the CBF ARRAY_INTENSITIES category, as noted above as aliases, Additional mappings into the various ARRAY categories should be established.

6.12 NXdetector

Template of a detector, detector bank, or multidetector.

```
NXdetector (base class, version 1.0)
 acquisition_mode:NX_CHAR
 angular_calibration:NX_FLOAT[i,j]
 angular_calibration_applied:NX_BOOLEAN
 azimuthal_angle:NX_FLOAT[np,i,j]
 beam_center_x:NX_FLOAT
 beam_center_y:NX_FLOAT
 bit_depth_readout:NX_INT
 calibration_date:NX_DATE_TIME
 count_time:NX_NUMBER[np]
 countrate_correction_applied:NX_BOOLEAN
 crate:NX_INT[i,j]
    @local_name
 data:NX_NUMBER[np,i,j,tof]
    @signal
    @axes
    @long_name
    @check_sum
    @link
 data_error:NX_NUMBER[np,i,j,tof]
    @units
    @link
 dead_time:NX_FLOAT[np,i,j]
 description:NX_CHAR
 {\tt detection\_gas\_path:NX\_FLOAT}
 detector_number:NX_INT[i,j]
 detector_readout_time:NX_FLOAT
```

```
diameter:NX_FLOAT
distance:NX_FLOAT[np,i,j]
flatfield:NX_FLOAT[i,j]
{\tt flatfield\_applied:NX\_BOOLEAN}
flatfield_error:NX_FLOAT[i,j]
frame_start_number:NX_INT
frame_time:NX_FLOAT[NP]
gain_setting:NX_CHAR
gas_pressure:NX_FLOAT[i,j]
input:NX_INT[i,j]
  @local_name
layout: NX_CHAR
local_name:NX_CHAR
number_of_cycles:NX_INT
pixel_mask:NX_FLOAT[i,j]
pixel_mask_applied:NX_BOOLEAN
polar_angle:NX_FLOAT[np,i,j]
raw_time_of_flight:NX_INT[tof+1]
  @frequency
saturation_value:NX_INT
sensor_material:NX_CHAR
sensor_thickness:NX_FLOAT
sequence_number: NX_CHAR
slot:NX_INT[i,j]
  @local_name
solid_angle:NX_FLOAT[i,j]
threshold_energy:NX_FLOAT
time_of_flight:NX_FLOAT[tof+1]
  @axis
  @primary
  @long_name
  @link
trigger_dead_time:NX_FLOAT
trigger_delay_time:NX_FLOAT
type:NX_CHAR
x_pixel_offset:NX_FLOAT[i,j]
  @axis
  @primary
  @long_name
x_pixel_size:NX_FLOAT[i,j]
y_pixel_offset:NX_FLOAT[i,j]
  @axis
  @primary
  @long_name
y_pixel_size:NX_FLOAT[i,j]
NXcharacterization
efficiency:NXdata
  efficiency: NX_FLOAT[i,j,k]
  real_time:NX_NUMBER[i,j,k]
```

wavelength: NX_FLOAT[i,j,k]

NXgeometry

calibration_method:NXnote

data_file:NXnote

ullet DETECTOR:NXdetector ightarrow

_NXdetector.NX_tree_path NEXUSTREEPATH

_NXdetector.NX_id DETECTOR
_NXdetector.NX_scan_id SCANID
_NXdetector.NX_diffrn_id DIFFRNID

_NXdetector.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with "'NXdetector_DETECTOR" where DETECTOR is the name of this group, typically "detector". The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\bullet \quad \text{acquisition_mode:NX_CHAR=ACQUISITION_MODE} \ \to \\ _\text{NX} \\ \text{detector.acquisition_mode} \ \text{ACQUISITION_MODE}$
- $\qquad \text{angular_calibration:NX_FLOAT[i,j]=ANGULAR_CALIBRATION} \ \to \\ \text{_NXdetector.angular_calibration} \ \ \text{ANGULAR_CALIBRATION}$
- $\bullet \quad \text{angular_calibration_applied:NX_BOOLEAN=ANGULAR_CALIBRATION_APPLIED} \ \to \\ \text{_NX} \\ \text{detector.angular_calibration_applied} \ \text{ANGULAR_CALIBRATION_APPLIED}$
- azimuthal_angle:NX_FLOAT[np,i,j]=AZIMUTHAL_ANGLE \rightarrow _NXdetector.azimuthal_angle AZIMUTHAL_ANGLE
- beam_center_y:NX_FLOAT=BEAM_CENTER_Y \rightarrow _NXdetector.beam_center_y BEAM_CENTER_Y
- bit_depth_readout:NX_INT=BIT_DEPTH_READOUT →
 _NXdetector.bit_depth_readout BIT_DEPTH_READOUT
- $\begin{array}{ll} \bullet & {\tt calibration_date:NX_DATE_TIME=CALIBRATION_DATE} \ \to \\ _{\tt NXdetector.calibration_date} \ {\tt CALIBRATION_DATE} \end{array}$
- $\begin{array}{ll} \bullet & {\tt count_time:NX_NUMBER[np]=COUNT_TIME} \ \to \\ _{\tt NXdetector.count_time} \ \ {\tt COUNT_TIME} \end{array}$
- crate:NX_INT[i,j]=CRATE \rightarrow _NXdetector.crate CRATE
- $\begin{array}{lll} \bullet & & \texttt{@local_name=LOCAL_NAME} & \rightarrow \\ & & \texttt{_NXdetector.crate_local_name} & \texttt{LOCAL_NAME} \\ \end{array}$
- data:NX_NUMBER[np,i,j,tof]=DATA \rightarrow _NXdetector.data DATA
- @axes=AXES ightarrow _NXdetector.data_axes AXES

- $\begin{array}{lll} \bullet & & & @long_name=LONG_NAME \ \to \\ & & & _NXdetector.data__long_name \ LONG_NAME \end{array}$
- $\begin{array}{ll} \bullet & & \texttt{@check_sum=CHECK_SUM} \ \to \\ & & \texttt{_NXdetector.data__check_sum} \ \ \mathsf{CHECK_SUM} \end{array}$
- data_error:NX_NUMBER[np,i,j,tof]=DATA_ERROR \rightarrow _NXdetector.data_error_DATA_ERROR
- $\begin{array}{ll} \bullet & & \texttt{Qunits=UNITS} \ \to \\ & & \texttt{_NXdetector.data_error__units} \ \ \texttt{UNITS} \end{array}$
- $\begin{array}{ll} \bullet & & \texttt{@link=LINK} \ \to \\ & & \texttt{_NXdetector.data_error_link} \ \texttt{LINK} \end{array}$
- dead_time:NX_FLOAT[np,i,j]=DEAD_TIME →
 _NXdetector.dead_time DEAD_TIME
 is an alias for
 _diffrn_detector.dtime DEAD_TIME
- $\begin{array}{ll} \bullet & {\tt description:NX_CHAR=DESCRIPTION} \ \to \\ {\tt _NXdetector.description} \ {\tt DESCRIPTION} \end{array}$
- $\begin{array}{ll} \bullet & {\tt detection_gas_path:NX_FLOAT=DETECTION_GAS_PATH} \ \to \\ {\tt _NXdetector.detection_gas_path} \ {\tt DETECTION_GAS_PATH} \end{array}$
- detector_number:NX_INT[i,j]=DETECTOR_NUMBER \rightarrow _NXdetector.detector_number DETECTOR_NUMBER
- $\begin{array}{ll} \bullet & {\tt detector_readout_time:NX_FLOAT=DETECTOR_READOUT_TIME} \to \\ {\tt _NXdetector_detector_readout_time} & {\tt DETECTOR_READOUT_TIME} \end{array}$
- $\begin{array}{ll} \bullet & \mathtt{diameter:NX_FLOAT=DIAMETER} \ \to \\ \mathtt{_NXdetector.diameter} \ \mathtt{DIAMETER} \end{array}$
- $\begin{array}{ll} \bullet & \mbox{distance:NX_FLOAT[np,i,j]=DISTANCE} \ \to \\ \mbox{_NXdetector.distance DISTANCE} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{flatfield:NX_FLOAT[i,j]=FLATFIELD} \ \to \\ & \texttt{_NX} detector.flatfield FLATFIELD} \end{array}$
- flatfield_applied:NX_BOOLEAN=FLATFIELD_APPLIED \rightarrow _NXdetector.flatfield_applied FLATFIELD_APPLIED
- flatfield_error:NX_FLOAT[i,j]=FLATFIELD_ERROR \rightarrow _NXdetector.flatfield_error FLATFIELD_ERROR
- frame_start_number:NX_INT=FRAME_START_NUMBER \rightarrow _NXdetector.frame_start_number FRAME_START_NUMBER
- $\begin{array}{ll} \bullet & \texttt{frame_time:NX_FLOAT[NP]=FRAME_TIME} \ \to \\ & _\texttt{NXdetector.frame_time} \ \ \texttt{FRAME_TIME} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{gain_setting:NX_CHAR=GAIN_SETTING} \ \to \\ _\texttt{NX} detector.gain_setting \ \texttt{GAIN_SETTING} \end{array}$
- $\begin{array}{ll} \bullet & {\tt gas_pressure:NX_FLOAT[i,j]=GAS_PRESSURE} \ \to \\ _{\tt NXdetector.gas_pressure} \ {\tt GAS_PRESSURE} \end{array}$
- input:NX_INT[i,j]=INPUT \rightarrow _NXdetector.input INPUT

- layout:NX_CHAR=LAYOUT \rightarrow _NXdetector.layout LAYOUT
- local_name:NX_CHAR=LOCAL_NAME \rightarrow _NXdetector.local_name LOCAL_NAME
- $\begin{array}{ll} \bullet & {\tt number_of_cycles:NX_INT=NUMBER_OF_CYCLES} \ \to \\ _{\tt NXdetector.number_of_cycles} \ {\tt NUMBER_OF_CYCLES} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{pixel_mask:NX_FLOAT[i,j]=PIXEL_MASK} \ \to \\ _\texttt{NX} detector.pixel_mask} \ \ \texttt{PIXEL_MASK} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{pixel_mask_applied:NX_BOOLEAN=PIXEL_MASK_APPLIED} \\ \rightarrow & _\texttt{NX} \\ \texttt{detector.pixel_mask_applied_PIXEL_MASK_APPLIED} \end{array}$
- polar_angle:NX_FLOAT[np,i,j]=POLAR_ANGLE \rightarrow _NXdetector.polar_angle POLAR_ANGLE
- raw_time_of_flight:NX_INT[tof+1]=RAW_TIME_OF_FLIGHT \rightarrow _NXdetector.raw_time_of_flight RAW_TIME_OF_FLIGHT
- $\begin{array}{ll} \bullet & & \texttt{@frequency=FREQUENCY} \ \to \\ & & \texttt{_NXdetector.raw_time_of_flight__frequency} \ \ \texttt{FREQUENCY} \end{array}$
- saturation_value:NX_INT=SATURATION_VALUE ightarrow _NXdetector.saturation_value SATURATION_VALUE
- sensor_material:NX_CHAR=SENSOR_MATERIAL \rightarrow _NXdetector.sensor_material_SENSOR_MATERIAL
- sensor_thickness:NX_FLOAT=SENSOR_THICKNESS →
 _NXdetector.sensor_thickness SENSOR_THICKNESS
- $\bullet \qquad \text{sequence_number:NX_CHAR=SEQUENCE_NUMBER} \ \to \\ \text{_NXdetector.sequence_number} \ \ \text{SEQUENCE_NUMBER}$
- $\begin{array}{ll} \bullet & \mathtt{slot:NX_INT[i,j]=SLOT} \ \to \\ \mathtt{_NXdetector.slot} \ \ \mathtt{SLOT} \end{array}$
- $\begin{array}{lll} \bullet & & \texttt{@local_name=LOCAL_NAME} & \rightarrow \\ & & \texttt{_NXdetector.slot__local_name} & \texttt{LOCAL_NAME} \end{array}$
- solid_angle:NX_FLOAT[i,j]=SOLID_ANGLE \rightarrow _NXdetector.solid_angle SOLID_ANGLE
- threshold_energy:NX_FLOAT=THRESHOLD_ENERGY →
 .NXdetector.threshold_energy THRESHOLD_ENERGY
- time_of_flight:NX_FLOAT[tof+1]=TIME_OF_FLIGHT \rightarrow _NXdetector.time_of_flight TIME_0F_FLIGHT
- $\begin{tabular}{ll} \bullet & \tt @primary=PRIMARY \to \\ \tt _NXdetector.time_of_flight__primary \ PRIMARY \end{tabular}$
- @long_name=LONG_NAME →
 _NXdetector.time_of_flight__long_name LONG_NAME

- $\begin{array}{ll} \bullet & \texttt{trigger_dead_time:NX_FLOAT=TRIGGER_DEAD_TIME} \ \to \\ & \texttt{_NXdetector.trigger_dead_time} \ \ \texttt{TRIGGER_DEAD_TIME} \end{array}$
- trigger_delay_time:NX_FLOAT=TRIGGER_DELAY_TIME \rightarrow _NXdetector.trigger_delay_time TRIGGER_DELAY_TIME
- $\begin{array}{ll} \bullet & {\tt type:NX_CHAR=TYPE} \ \to \\ {\tt _NXdetector.type} \ {\tt TYPE} \end{array}$
- x_pixel_offset:NX_FLOAT[i,j]=X_PIXEL_OFFSET \rightarrow _NXdetector.x_pixel_offset X_PIXEL_OFFSET
- $\begin{tabular}{ll} \bullet & \tt Qprimary=PRIMARY \to \\ \tt _NXdetector.x_pixel_offset__primary \ PRIMARY \end{tabular}$
- @long_name=LONG_NAME →
 _NXdetector.x_pixel_offset__long_name LONG_NAME
- x_pixel_size:NX_FLOAT[i,j]=X_PIXEL_SIZE \rightarrow _NXdetector.x_pixel_size X_PIXEL_SIZE
- $\begin{array}{ll} \bullet & \text{y_pixel_offset:NX_FLOAT[i,j]=Y_PIXEL_OFFSET} \ \to \\ \text{_NXdetector.y_pixel_offset} \ \text{Y_PIXEL_OFFSET} \end{array}$
- @primary=PRIMARY →
 _NXdetector.y_pixel_offset__primary PRIMARY
- @long_name=LONG_NAME →
 _NXdetector.y_pixel_offset_long_name_LONG_NAME
- y_pixel_size:NX_FLOAT[i,j]=Y_PIXEL_SIZE →
 .NXdetector.y_pixel_size Y_PIXEL_SIZE
- ullet characterization1:NXcharacterization ightarrow _NXdetector.NXcharacterization_id characterization1
- $\begin{array}{c} \bullet \ \, {\tt efficiency:NXdata} \, \to \\ \quad \, {\tt _NXdetector.NXdata_id} \ \, {\tt efficiency} \end{array}$
- $\begin{array}{ll} \bullet & \text{efficiency:NX_FLOAT[i,j,k]=EFFICIENCY} \ \rightarrow \\ _\text{NXdetector.efficiency} \ \text{EFFICIENCY} \end{array}$
- $\begin{array}{ll} \bullet & \text{real_time:NX_NUMBER[i,j,k]=REAL_TIME} \ \to \\ _\text{NXdetector.real_time} \ \text{REAL_TIME} \end{array}$
- wavelength:NX_FLOAT[i,j,k]=WAVELENGTH →
 _NXdetector.wavelength WAVELENGTH
 is an alias for
 _diffrn_radiation_wavelength.wavelength WAVELENGTH
- geometry1:NXgeometry \rightarrow _NXdetector.NXgeometry_id geometry1
- $\begin{tabular}{ll} \bullet & calibration_method: NXnote \rightarrow \\ _NXdetector. NXnote_id calibration_method \\ \end{tabular}$
- $\begin{array}{l} \bullet \ \ \, \mathtt{data_file:NXnote} \ \ \, \to \\ \quad \, _\mathtt{NXdetector.NXnote_id} \ \, \mathtt{data_file} \end{array}$

6.13 NXdetector_group

NXdetector_group (base class, version 1.0)
 group_index:NX_INT[i]
 group_names:NX_CHAR
 group_parent:NX_INT[]
 group_type:NX_INT[]

DETECTOR_GROUP:NXdetector_group →
 _NXdetector_group.NX_tree_path NEXUSTREEPATH
 _NXdetector_group.NX_id DETECTOR_GROUP
 _NXdetector_group.NX_scan_id SCANID
 _NXdetector_group.NX_diffrn_id DIFFRNID
 _NXdetector_group.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXdetector_group__DETECTOR_GROUP'' where DETECTOR_GROUP is the name of this group, typically ''detector_group''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- group_index:NX_INT[i]=GROUP_INDEX →
 _NXdetector_group.group_index GROUP_INDEX
- $\begin{array}{ll} \bullet & \texttt{group_names:NX_CHAR=GROUP_NAMES} \ \to \\ _\texttt{NXdetector_group_group_names} \ \ \texttt{GROUP_NAMES} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{group_parent:NX_INT[]=GROUP_PARENT} \ \to \\ & _\texttt{NXdetector_group.group_parent} \ \ \texttt{GROUP_PARENT} \end{array}$

This is closely related to the DIFFRN_DETECTOR_ELEMENT category and a method of integration needs to be found.

6.14 NXdisk_chopper

NXdisk_chopper (base class, version 1.0)
distance:NX_FLOAT
pair_separation:NX_FLOAT
phase:NX_FLOAT
radius:NX_FLOAT
ratio:NX_INT
rotation_speed:NX_FLOAT
slit_angle:NX_FLOAT
slit_height:NX_FLOAT
slits:NX_INT
type:NX_CHAR
wavelength_range:NX_FLOAT[2]
NXgeometry

```
_NXdisk_chopper.NX_scan_id SCANID
_NXdisk_chopper.NX_diffrn_id DIFFRNID
_NXdisk_chopper.NX_entry_id ENTRYID
```

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXdisk_chopper_DISK_CHOPPER'' where DISK_CHOPPER is the name of this group, typically ''disk_chopper''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- ◆ distance:NX_FLOAT=DISTANCE →
 _NXdisk_chopper.distance DISTANCE
- pair_separation:NX_FLOAT=PAIR_SEPARATION →
 _NXdisk_chopper.pair_separation PAIR_SEPARATION
- $\begin{array}{ll} \bullet & \texttt{phase:NX_FLOAT=PHASE} \ \to \\ & _\texttt{NXdisk_chopper.phase} \ \ \texttt{PHASE} \end{array}$
- radius:NX_FLOAT=RADIUS \rightarrow _NXdisk_chopper.radius RADIUS
- $\begin{array}{ll} \bullet & {\tt ratio:NX_INT=RATIO} \ \to \\ & _{\tt NXdisk_chopper.ratio} \ {\tt RATIO} \end{array}$
- $\begin{array}{ll} \bullet & {\tt rotation_speed:NX_FLOAT=ROTATION_SPEED} \ \to \\ _{\tt NXdisk_chopper.rotation_speed} \ {\tt ROTATION_SPEED} \end{array}$

- $\begin{array}{ll} \bullet & \mathtt{slits:NX_INT=SLITS} \ \to \\ & \mathtt{_NXdisk_chopper.slits} \ \mathtt{SLITS} \end{array}$
- $\begin{array}{ll} \bullet & {\tt type:NX_CHAR=TYPE} \ \to \\ {\tt _NXdisk_chopper.type} \ {\tt TYPE} \end{array}$
- geometry1:NXgeometry →
 _NXdisk_chopper.NXgeometry_id geometry1

6.15 NXentry

```
NXentry (base class, version 1.0)
@IDF_Version
collection_description:NX_CHAR
collection_identifier:NX_CHAR
collection_time:NX_FLOAT
definition:NX_CHAR
    @version
    @URL
definition_local:NX_CHAR
    @version
    @URL
```

duration: NX_INT end_time:NX_DATE_TIME entry_identifier:NX_CHAR experiment_description:NX_CHAR experiment_identifier:NX_CHAR pre_sample_flightpath:NX_FLOAT program_name:NX_CHAR @version @configuration revision:NX_CHAR @comment run_cycle:NX_CHAR start_time:NX_DATE_TIME title:NX_CHAR NXcharacterization NXdata NXinstrument NXmonitor experiment_documentation:NXnote notes:NXnote thumbnail:NXnote @mime_type NXprocess NXsample NXsubentry NXuser

ullet ENTRY:NXentry o

_NXentry.NX_tree_path NEXUSTREEPATH

 $_{
m NXentry.NX_id}$ ENTRY

_NXentry.NX_scan_id SCANID

_NXentry.NX_diffrn_id DIFFRNID

_NXentry.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXentry_ENTRY'' where ENTRY is the name of this group, typically ''entry''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

ullet @IDF_Version=IDF_VERSION ightarrow

 $\verb|-NXentry.NX_class_attribute_-IDF_Version IDF_VERSION| \\$

- $\begin{array}{ll} \bullet & \texttt{collection_description:NX_CHAR=COLLECTION_DESCRIPTION} \rightarrow & \texttt{NXentry.collection_description} & \texttt{COLLECTION_DESCRIPTION} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{collection_identifier:NX_CHAR=COLLECTION_IDENTIFIER} \rightarrow \\ _\texttt{NXentry.collection_identifier} & \texttt{COLLECTION_IDENTIFIER} \end{array}$
- collection_time:NX_FLOAT=COLLECTION_TIME →
 _NXentry.collection_time COLLECTION_TIME
- $\begin{array}{ll} \bullet & {\tt definition:NX_CHAR=DEFINITION} \ \to \\ _{\tt NXentry.definition} \ {\tt DEFINITION} \end{array}$

- $\begin{array}{ll} \bullet & \texttt{definition_local:NX_CHAR=DEFINITION_LOCAL} \to \\ & _\texttt{NXentry.definition_local} \ \ \texttt{DEFINITION_LOCAL} \end{array}$

- duration:NX_INT=DURATION \rightarrow _NXentry.duration DURATION
- end_time:NX_DATE_TIME=END_TIME \rightarrow _NXentry.end_time END_TIME
- $\begin{array}{ll} \bullet & \text{entry_identifier}: \texttt{NX_CHAR} = \texttt{ENTRY_IDENTIFIER} & \rightarrow \\ _\texttt{NXentry_entry_identifier} & \texttt{ENTRY_IDENTIFIER} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{experiment_description:NX_CHAR} = \texttt{EXPERIMENT_DESCRIPTION} & \rightarrow \\ \texttt{_NXentry.experiment_description} & \texttt{EXPERIMENT_DESCRIPTION} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{experiment_identifier:NX_CHAR=EXPERIMENT_IDENTIFIER} \rightarrow \\ \texttt{_NXentry.experiment_identifier} & \texttt{EXPERIMENT_IDENTIFIER} \end{array}$
- pre_sample_flightpath:NX_FLOAT=PRE_SAMPLE_FLIGHTPATH →
 _NXentry.pre_sample_flightpath PRE_SAMPLE_FLIGHTPATH
- $\begin{array}{lll} \bullet & \texttt{program_name:NX_CHAR=PROGRAM_NAME} & \rightarrow \\ & _\texttt{NXentry.program_name} & \texttt{PROGRAM_NAME} \end{array}$
- $\begin{array}{ll} \bullet & & \texttt{Gversion=VERSION} \ \rightarrow \\ & & \texttt{_NXentry.program_name__version} \ \ \texttt{VERSION} \end{array}$
- $\begin{array}{ll} \bullet & & \texttt{Occnfiguration=CONFIGURATION} \to \\ & _\texttt{NXentry.program_name_configuration} & \texttt{CONFIGURATION} \end{array}$
- revision:NX_CHAR=REVISION ightarrow _NXentry.revision REVISION
- $\begin{tabular}{ll} \bullet & \tt @comment=COMMENT \to \\ \tt _NXentry.revision__comment COMMENT \end{tabular}$
- $\begin{array}{lll} \bullet & & {\tt run_cycle:NX_CHAR=RUN_CYCLE} \ \to \\ & & {\tt _NXentry.run_cycle} \ \ {\tt RUN_CYCLE} \end{array}$
- $\begin{array}{ll} \bullet & \mathtt{start_time:NX_DATE_TIME=START_TIME} \ \to \\ \mathtt{_NXentry.start_time} \ \ \mathtt{START_TIME} \end{array}$
- $\begin{array}{ll} \bullet & {\tt title:NX_CHAR=TITLE} \ \to \\ {\tt _NXentry.title} \ {\tt TITLE} \end{array}$
- data1:NXdata \rightarrow _NXentry.NXdata_id data1
- monitor1:NXmonitor \rightarrow _NXentry.NXmonitor_id monitor1

- $\bullet \ \ \, {\tt experiment_documentation: NXnote} \ \ \rightarrow \\ \ \, {\tt _NXentry.NXnote_id} \ \ \, {\tt experiment_documentation}$
- $\begin{array}{c} \bullet \ \, {\tt notes:NXnote} \ \, \to \\ \ \, _{\tt NXentry.NXnote_id} \ \, {\tt notes} \end{array}$
- $\begin{array}{l} \bullet \hspace{0.1in} \mathtt{thumbnail:NXnote} \to \\ \hspace{0.1in} \mathtt{.NXentry.NXnote_id} \hspace{0.1in} \mathtt{thumbnail} \end{array}$
- $\begin{tabular}{lll} \bullet & & \tt Gmime_type=\tt MIME_TYPE \to \\ & \tt _NXentry.title_mime_type \ MIME_TYPE \end{tabular}$
- $\begin{array}{c} \bullet \ \ \, \mathtt{process1:NXprocess} \, \to \\ \quad \, _\mathtt{NXentry.NXprocess_id} \ \ \, \mathtt{process1} \end{array}$
- $\begin{array}{l} \bullet \ \ \, \mathtt{sample1:NXsample} \ \ \, \to \\ \quad \ \, \underline{\hspace{0.5cm}} \mathtt{NXentry.NXsample_id} \ \, \mathtt{sample1} \end{array}$
- $\begin{array}{l} \bullet \ \ \, \text{subentry1:NXsubentry} \, \to \\ \quad \, _\text{NXentry.NXsubentry_id subentry1} \end{array}$
- user1:NXuser \rightarrow _NXentry.NXuser_id user1

6.16 NXenvironment

NXenvironment (base class, version 1.0)
description:NX_CHAR
name:NX_CHAR
program:NX_CHAR
short_name:NX_CHAR
type:NX_CHAR
position:NXgeometry
NXnote
NXsensor

ENVIRONMENT:NXenvironment →
 _NXenvironment.NX_tree_path NEXUSTREEPATH
 _NXenvironment.NX_id ENVIRONMENT
 _NXenvironment.NX_scan_id SCANID
 _NXenvironment.NX_diffrn_id DIFFRNID
 _NXenvironment.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXenvironment_ENVIRONMENT'' where ENVIRONMENT is the name of this group, typically ''environment''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CRF

- description:NX_CHAR=DESCRIPTION \rightarrow _NXenvironment.description DESCRIPTION
- $\begin{array}{ll} \bullet & \texttt{name:NX_CHAR=NAME} \ \to \\ & _\texttt{NXenvironment.name} \ \texttt{NAME} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{program:NX_CHAR=PROGRAM} \ \to \\ & _\texttt{NXenvironment.program} \ \texttt{PROGRAM} \end{array}$

- $\begin{array}{ll} \bullet & \texttt{type:NX_CHAR=TYPE} \ \to \\ _\texttt{NXenvironment.type} \ \texttt{TYPE} \end{array}$
- position: NXgeometry \rightarrow _NXenvironment. NXgeometry_id position
- note1:NXnote \rightarrow _NXenvironment.NXnote_id note1
- sensor1:NXsensor →
 _NXenvironment.NXsensor_id sensor1

6.17 NXevent_data

```
NXevent_data (base class, version 1.0)
  events_per_pulse:NX_INT[j]
  pixel_number:NX_INT[i]
  pulse_height:NX_FLOAT[i,k]
  pulse_time:NX_INT[j]
    @offset
  time_of_flight:NX_INT[i]
```

ullet EVENT_DATA:NXevent_data ightarrow

_NXevent_data.NX_tree_path NEXUSTREEPATH
_NXevent_data.NX_id EVENT_DATA
_NXevent_data.NX_scan_id SCANID
_NXevent_data.NX_diffrn_id DIFFRNID
_NXevent_data.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXevent_data_EVENT_DATA'' where EVENT_DATA is the name of this group, typically ''event_data''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- events_per_pulse:NX_INT[j]=EVENTS_PER_PULSE →
 _NXevent_data.events_per_pulse EVENTS_PER_PULSE
- pixel_number:NX_INT[i] = PIXEL_NUMBER \rightarrow _NXevent_data.pixel_number PIXEL_NUMBER
- $\begin{array}{ll} \bullet & \texttt{pulse_height:NX_FLOAT[i,k]=PULSE_HEIGHT} \ \to \\ & _\texttt{NXevent_data.pulse_height} \ \texttt{PULSE_HEIGHT} \end{array}$
- pulse_time:NX_INT[j]=PULSE_TIME →
 _NXevent_data.pulse_time PULSE_TIME

6.18 NXfermi_chopper

```
NXfermi_chopper (base class, version 1.0)
absorbing_material:NX_CHAR
distance:NX_FLOAT
energy:NX_FLOAT
height:NX_FLOAT
number:NX_INT
r_slit:NX_FLOAT
radius:NX_FLOAT
rotation_speed:NX_FLOAT
slit:NX_FLOAT
transmitting_material:NX_CHAR
type:NX_CHAR
wavelength:NX_FLOAT
width:NX_FLOAT
NXgeometry
```

FERMI_CHOPPER:NXfermi_chopper →
 _NXfermi_chopper.NX_tree_path NEXUSTREEPATH
 _NXfermi_chopper.NX_id FERMI_CHOPPER
 _NXfermi_chopper.NX_scan_id SCANID
 _NXfermi_chopper.NX_diffrn_id DIFFRNID
 _NXfermi_chopper.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXfermi_chopper_FERMI_CHOPPER'' where FERMI_CHOPPER is the name of this group, typically ''fermi_chopper''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- absorbing_material:NX_CHAR=ABSORBING_MATERIAL → _NXfermi_chopper.absorbing_material_ABSORBING_MATERIAL
- distance:NX_FLOAT=DISTANCE \rightarrow _NXfermi_chopper.distance DISTANCE
- $\begin{array}{ll} \bullet & \texttt{energy:NX_FLOAT=ENERGY} \ \to \\ & _\texttt{NXfermi_chopper.energy} \ \ \texttt{ENERGY} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{height:NX_FLOAT=HEIGHT} \ \to \\ & \texttt{_NXfermi_chopper.height} \ \texttt{HEIGHT} \end{array}$
- number: NX_INT=NUMBER \rightarrow _NXfermi_chopper.number NUMBER
- $\begin{array}{ll} \bullet & \text{r_slit:NX_FLOAT=R_SLIT} \ \to \\ & \text{_NXfermi_chopper.r_slit} \ R_SLIT \end{array}$
- $\begin{array}{ll} \bullet & {\tt radius:NX_FLOAT=RADIUS} \ \to \\ & {\tt _NXfermi_chopper.radius} \ {\tt RADIUS} \end{array}$
- rotation_speed:NX_FLOAT=ROTATION_SPEED \rightarrow _NXfermi_chopper.rotation_speed ROTATION_SPEED
- $\begin{array}{ll} \bullet & \mathtt{slit:NX_FLOAT=SLIT} \ \to \\ & \mathtt{_NXfermi_chopper.slit} \ \mathtt{SLIT} \end{array}$

- transmitting_material:NX_CHAR=TRANSMITTING_MATERIAL \rightarrow _NXfermi_chopper.transmitting_material TRANSMITTING_MATERIAL
- $\begin{array}{ll} \bullet & {\tt type:NX_CHAR=TYPE} \ \to \\ {\tt _NXfermi_chopper.type} \ {\tt TYPE} \end{array}$
- wavelength:NX_FLOAT=WAVELENGTH ightarrow _NXfermi_chopper.wavelength WAVELENGTH
- width:NX_FLOAT=WIDTH ightarrow _NXfermi_chopper.width WIDTH

NXfilter (base class, version 1.0)

• geometry1:NXgeometry \rightarrow _NXfermi_chopper.NXgeometry_id geometry1

6.19 NXfilter

```
chemical_formula:NX_CHAR
coating_material:NX_CHAR
coating_roughness:NX_FLOAT[nsurf]
density:NX_NUMBER
description: NX_CHAR
m_value:NX_FLOAT
orientation_matrix:NX_FLOAT[n_comp,3,3]
status:NX_CHAR
substrate_material:NX_CHAR
substrate_roughness:NX_FLOAT
substrate_thickness:NX_FLOAT
temperature: NX_FLOAT
thickness: NX_FLOAT
unit_cell_a:NX_FLOAT
unit_cell_alpha:NX_FLOAT
unit_cell_b:NX_FLOAT
unit_cell_beta:NX_FLOAT
unit_cell_c:NX_FLOAT
unit_cell_gamma:NX_FLOAT
unit_cell_volume:NX_FLOAT[n_comp]
transmission: NXdata
NXgeometry
temperature_log:NXlog
sensor_type:NXsensor
 ullet FILTER:NXfilter 
ightarrow
      _NXfilter.NX_tree_path NEXUSTREEPATH
      _NXfilter.NX_id FILTER
      _NXfilter.NX_scan_id SCANID
      _NXfilter.NX_diffrn_id DIFFRNID
```

_NXfilter.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXfilter_FILTER'' where FILTER is the name of this group, typically ''filter''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- chemical_formula:NX_CHAR=CHEMICAL_FORMULA →
 .NXfilter.chemical_formula CHEMICAL_FORMULA
- coating_material:NX_CHAR=COATING_MATERIAL →
 _NXfilter.coating_material COATING_MATERIAL
- coating_roughness:NX_FLOAT[nsurf]=COATING_ROUGHNESS \rightarrow _NXfilter.coating_roughness COATING_ROUGHNESS
- $\begin{array}{ll} \bullet & \texttt{density:NX_NUMBER=DENSITY} \ \to \\ _ \texttt{NXfilter.density} \ \texttt{DENSITY} \end{array}$
- $\begin{array}{ll} \bullet & {\tt description:NX_CHAR=DESCRIPTION} \ \to \\ {\tt _NXfilter.description} \ {\tt DESCRIPTION} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{m_value:NX_FLOAT=M_VALUE} \ \to \\ & \texttt{_NXfilter.m_value} \ \texttt{M_VALUE} \end{array}$
- orientation_matrix:NX_FLOAT[n_comp,3,3]=ORIENTATION_MATRIX \rightarrow _NXfilter.orientation_matrix ORIENTATION_MATRIX
- $\bullet \quad \text{status:NX_CHAR=STATUS} \ \to \\ \text{_NXfilter.status} \ \text{STATUS}$
- $\verb| substrate_material:NX_CHAR=SUBSTRATE_MATERIAL| \rightarrow \\ \verb| NXfilter.substrate_material| SUBSTRATE_MATERIAL|$
- substrate_roughness:NX_FLOAT=SUBSTRATE_ROUGHNESS \rightarrow NXfilter.substrate_roughness SUBSTRATE_ROUGHNESS
- substrate_thickness:NX_FLOAT=SUBSTRATE_THICKNESS →
 NXfilter.substrate_thickness SUBSTRATE_THICKNESS
- $\begin{array}{ll} \bullet & \texttt{temperature:NX_FLOAT=TEMPERATURE} \ \to \\ & \texttt{_NXfilter.temperature} \ \ \texttt{TEMPERATURE} \end{array}$
- $\begin{array}{ll} \bullet & {\tt thickness:NX_FLOAT=THICKNESS} \ \to \\ {\tt _NXfilter.thickness} \ {\tt THICKNESS} \end{array}$
- $\begin{array}{ll} \bullet & \text{unit_cell_a:NX_FLOAT=UNIT_CELL_A} \ \to \\ & _\text{NXfilter.unit_cell_a} \ \text{UNIT_CELL_A} \end{array}$
- unit_cell_alpha:NX_FLOAT=UNIT_CELL_ALPHA \rightarrow _NXfilter.unit_cell_alpha UNIT_CELL_ALPHA

- unit_cell_c:NX_FLOAT=UNIT_CELL_C ightarrow _NXfilter.unit_cell_c UNIT_CELL_C
- $\begin{array}{ll} \bullet & \mathtt{unit_cell_gamma:NX_FLOAT=UNIT_CELL_GAMMA} & \to \\ & \underline{\mathsf{NXfilter.unit_cell_gamma} \ \mathsf{UNIT_CELL_GAMMA}} \end{array}$
- $\begin{array}{ll} \bullet & \text{unit_cell_volume:NX_FLOAT[n_comp]=UNIT_CELL_VOLUME} \\ & \rightarrow & \text{_NXfilter.unit_cell_volume} \end{array}$
- ullet transmission:NXdata ightarrow _NXfilter.NXdata_id transmission
- geometry1:NXgeometry \rightarrow _NXfilter.NXgeometry_id geometry1

- temperature_log:NXlog \rightarrow _NXfilter.NXlog_id temperature_log

6.20 NXflipper

NXflipper (base class, version 1.0)
comp_current:NX_FLOAT
comp_turns:NX_FLOAT
flip_current:NX_FLOAT
flip_turns:NX_FLOAT
guide_current:NX_FLOAT
guide_turns:NX_FLOAT
thickness:NX_FLOAT
type:NX_CHAR

ullet FLIPPER:NXflipper ightarrow

_NXflipper.NX_tree_path NEXUSTREEPATH

_NXflipper.NX_id FLIPPER
_NXflipper.NX_scan_id SCANID
_NXflipper.NX_diffrn_id DIFFRNID
_NXflipper.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXflipper_FLIPPER'' where FLIPPER is the name of this group, typically ''flipper''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- comp_current:NX_FLOAT=COMP_CURRENT \rightarrow _NXflipper.comp_current COMP_CURRENT
- $\begin{array}{ll} \bullet & {\tt comp_turns:NX_FLOAT=COMP_TURNS} \ \to \\ {\tt _NXflipper.comp_turns} \ {\tt COMP_TURNS} \end{array}$
- flip_current:NX_FLOAT=FLIP_CURRENT \rightarrow _NXflipper.flip_current FLIP_CURRENT
- $\begin{array}{ll} \bullet & \mathtt{flip_turns:NX_FLOAT=FLIP_TURNS} \ \to \\ & \mathtt{_NXflipper.flip_turns} \ \mathtt{FLIP_TURNS} \end{array}$
- $\begin{array}{ll} \bullet & \mathtt{guide_current:NX_FLOAT=GUIDE_CURRENT} \ \to \\ \mathtt{LNXflipper.guide_current} \ \ \mathsf{GUIDE_CURRENT} \end{array}$
- $\begin{array}{ll} \bullet & {\tt guide_turns:NX_FLOAT=GUIDE_TURNS} \ \to \\ {\tt _NXflipper.guide_turns} \ {\tt GUIDE_TURNS} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{thickness:NX_FLOAT=THICKNESS} \ \to \\ _\texttt{NXflipper.thickness} \ \ \texttt{THICKNESS} \end{array}$
- $\begin{array}{ll} \bullet & {\tt type:NX_CHAR=TYPE} \ \to \\ {\tt _NXflipper.type} \ {\tt TYPE} \end{array}$

6.21 NXgeometry

NXgeometry (base class, version 1.0)

```
component_index:NX_INT
description:NX_CHAR
NXorientation
NXshape
NXtranslation
```

■ GEOMETRY:NXgeometry →
 _NXgeometry.NX_tree_path NEXUSTREEPATH
 _NXgeometry.NX_id GEOMETRY
 _NXgeometry.NX_scan_id SCANID
 _NXgeometry.NX_diffrn_id DIFFRNID
 _NXgeometry.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXgeometry_GEOMETRY'' where GEOMETRY is the name of this group, typically ''geometry''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & {\tt component_index:NX_INT=COMPONENT_INDEX} \ \to \\ & _{\tt NXgeometry.component_index} \ {\tt COMPONENT_INDEX} \end{array}$
- $\begin{array}{ll} \bullet & {\tt description:NX_CHAR=DESCRIPTION} \ \to \\ {\tt _NXgeometry.description} \ {\tt DESCRIPTION} \end{array}$
- $\bullet \ \ \, \text{orientation1:NXorientation} \ \, \to \\ \ \ \, _\text{NXgeometry.NXorientation_id} \ \, \text{orientation1}$
- $\begin{array}{l} \bullet \hspace{0.1in} \mathtt{shape1:NXshape} \ \to \\ \hspace{0.1in} \mathtt{.NXgeometry.NXshape_id} \hspace{0.1in} \mathtt{shape1} \end{array}$
- ullet translation1:NXtranslation ightarrow _NXgeometry.NXtranslation_id translation1

6.22 NXguide

```
NXguide (base class, version 1.0)
 bend_angle_x:NX_FLOAT
 bend_angle_y:NX_FLOAT
 coating_material:NX_FLOAT[nsurf]
 coating_roughness:NX_FLOAT[nsurf]
 description: NX_CHAR
 external_material:NX_CHAR
 incident_angle:NX_FLOAT
 interior_atmosphere:NX_CHAR
 m_value:NX_FLOAT[nsurf]
 number_sections:NX_INT
 substrate_material:NX_FLOAT[nsurf]
 substrate_roughness:NX_FLOAT[nsurf]
 substrate_thickness:NX_FLOAT[nsurf]
 reflectivity: NXdata
    data: NX_NUMBER[nsurf,nwl]
      @signal
      @axes
    surface:NX_NUMBER[nsurf]
    wavelength: NX_NUMBER[nwl]
```

NXgeometry

■ GUIDE:NXguide →
 _NXguide.NX_tree_path NEXUSTREEPATH
 _NXguide.NX_id GUIDE
 _NXguide.NX_scan_id SCANID
 _NXguide.NX_diffrn_id DIFFRNID
 _NXguide.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXguide_GUIDE'' where GUIDE is the name of this group, typically ''guide''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & \mathtt{bend_angle_x:NX_FLOAT=BEND_ANGLE_X} \ \to \\ & \mathtt{_NXguide.bend_angle_x} \ \ \mathtt{BEND_ANGLE_X} \end{array}$
- bend_angle_y:NX_FLOAT=BEND_ANGLE_Y \rightarrow _NXguide.bend_angle_y BEND_ANGLE_Y
- coating_material:NX_FLOAT[nsurf]=COATING_MATERIAL \rightarrow _NXguide.coating_material COATING_MATERIAL
- $\begin{array}{ll} \bullet & {\tt coating_roughness:NX_FLOAT[nsurf]=COATING_ROUGHNESS} \ \to \\ _{\tt NXguide.coating_roughness} \ {\tt COATING_ROUGHNESS} \end{array}$
- $\begin{array}{ll} \bullet & {\tt description:NX_CHAR=DESCRIPTION} \to \\ {\tt _NXguide.description} & {\tt DESCRIPTION} \end{array}$
- $\begin{array}{lll} \bullet & \text{external_material:NX_CHAR=EXTERNAL_MATERIAL} \rightarrow \\ _ \text{NXguide.external_material} & \text{EXTERNAL_MATERIAL} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{incident_angle:NX_FLOAT=INCIDENT_ANGLE} \ \to \\ & \texttt{_NXguide.incident_angle} \ \ \texttt{INCIDENT_ANGLE} \end{array}$
- $\bullet \quad \text{interior_atmosphere: NX_CHAR=INTERIOR_ATMOSPHERE} \ \to \\ \text{_NXguide.interior_atmosphere} \ \text{INTERIOR_ATMOSPHERE}$
- $\begin{array}{ll} \bullet & \texttt{m_value:NX_FLOAT[nsurf]=M_VALUE} \ \to \\ & _\texttt{NXguide.m_value} \ \texttt{M_VALUE} \end{array}$
- $\begin{array}{ll} \bullet & {\tt number_sections:NX_INT=NUMBER_SECTIONS} \ \to \\ _{\tt NXguide.number_sections} \ {\tt NUMBER_SECTIONS} \end{array}$
- substrate_material:NX_FLOAT[nsurf]=SUBSTRATE_MATERIAL \rightarrow _NXguide.substrate_material SUBSTRATE_MATERIAL
- substrate_roughness:NX_FLOAT[nsurf]=SUBSTRATE_ROUGHNESS \rightarrow _NXguide.substrate_roughness SUBSTRATE_ROUGHNESS
- $\bullet \quad \text{substrate_thickness:NX_FLOAT[nsurf]=SUBSTRATE_THICKNESS} \ \to \\ \text{_NXguide.substrate_thickness} \ \text{SUBSTRATE_THICKNESS}$
- $\begin{array}{l} \bullet \ \ \, {\tt reflectivity\!:\!NXdata} \ \to \\ \quad \, {\tt _NXguide\!.\!NXdata_id} \ \, {\tt reflectivity} \end{array}$
- $\begin{array}{ll} \bullet & {\tt data:NX_NUMBER[nsurf,nwl]=DATA} \ \to \\ {\tt _NXguide.data} \ {\tt DATA} \end{array}$

- $\begin{array}{ll} \bullet & {\tt surface:NX_NUMBER[nsurf]=SURFACE} \to \\ {\tt _NXguide.surface} & {\tt SURFACE} \end{array}$
- wavelength:NX_NUMBER[nwl]=WAVELENGTH ightarrow _NXguide.wavelength WAVELENGTH
- $\begin{array}{l} \bullet \ \ {\tt geometry1:NXgeometry} \to \\ \quad _{\tt NXguide.NXgeometry_id} \ \ {\tt geometry1} \end{array}$

6.23 NXinsertion_device

NXinsertion_device (base class, version 1.0)
bandwidth:NX_FLOAT
energy:NX_FLOAT
gap:NX_FLOAT
harmonic:NX_INT
k:NX_FLOAT
length:NX_FLOAT
magnetic_wavelength:NX_FLOAT
phase:NX_FLOAT
poles:NX_INT
power:NX_FLOAT
taper:NX_FLOAT
type:NX_CHAR
spectrum:NXdata
NXgeometry

ullet INSERTION_DEVICE:NXinsertion_device ightarrow

_NXinsertion_device.NX_tree_path NEXUSTREEPATH
_NXinsertion_device.NX_id INSERTION_DEVICE
_NXinsertion_device.NX_scan_id SCANID
_NXinsertion_device.NX_diffrn_id DIFFRNID
_NXinsertion_device.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXinsertion_device__INSERTION_DEVICE'' where INSERTION_DEVICE is the name of this group, typically ''insertion_device''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & \mathtt{bandwidth:NX_FLOAT=BANDWIDTH} \ \to \\ & \underline{\mathsf{NXinsertion_device.bandwidth}} \ \ \mathtt{BANDWIDTH} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{energy:NX_FLOAT=ENERGY} \ \to \\ & _\texttt{NXinsertion_device.energy} \ \ \texttt{ENERGY} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{gap:NX_FLOAT=GAP} \ \to \\ & _\texttt{NXinsertion_device.gap} \ \texttt{GAP} \end{array}$
- $\begin{array}{ll} \bullet & {\tt harmonic:NX_INT=HARMONIC} \ \to \\ & {\tt _NXinsertion_device.harmonic} \ \ {\tt HARMONIC} \end{array}$
- k:NX_FLOAT=K \rightarrow _NXinsertion_device.k K

- $\begin{array}{ll} \bullet & \mathtt{length:NX_FLOAT=LENGTH} \ \to \\ & \mathtt{LENGTH} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{magnetic_wavelength: NX_FLOAT=MAGNETIC_WAVELENGTH} \ \to \\ & \texttt{_NXinsertion_device.magnetic_wavelength} \ \ \texttt{MAGNETIC_WAVELENGTH} \end{array}$
- $\begin{array}{ll} \bullet & {\tt phase:NX_FLOAT=PHASE} \ \to \\ {\tt _NXinsertion_device.phase} \ {\tt PHASE} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{poles:NX_INT=POLES} \ \to \\ & _\texttt{NXinsertion_device.poles} \ \texttt{POLES} \end{array}$
- $\begin{array}{ll} \bullet & \text{power:NX_FLOAT=POWER} \ \rightarrow \\ _\text{NXinsertion_device.power} \ \text{POWER} \end{array}$
- $\begin{array}{ll} \bullet & {\tt taper:NX_FLOAT=TAPER} \ \to \\ & {\tt _NXinsertion_device.taper} \ {\tt TAPER} \end{array}$
- type:NX_CHAR=TYPE \rightarrow _NXinsertion_device.type TYPE
- $\bullet \ \ \, \mathtt{spectrum:NXdata} \ \, \to \\ \ \ \, \mathtt{LNXinsertion_device.NXdata_id} \ \, \mathtt{spectrum}$
- geometry1:NXgeometry →
 _NXinsertion_device.NXgeometry_id geometry1

6.24 NXinstrument

NXinstrument (base class, version 1.0) name:NX_CHAR @short_name NXaperture NXattenuator NXbeam NXbeam_stop NXbending_magnet ${\tt NXcollimator}$ NXcrystal NXdetectorNXdisk_chopper NXfermi_chopper NXfilter NXflipper NXguide NXinsertion_device NXmirror NXmoderator NXpolarizer NXsource NXvelocity_selector

■ INSTRUMENT:NXinstrument →
 _NXinstrument.NX_tree_path NEXUSTREEPATH
 _NXinstrument.NX_id INSTRUMENT
 _NXinstrument.NX_scan_id SCANID

 $\verb|_NXinstrument.NX_diffrn_id DIFFRNID| \\$

_NXinstrument.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXinstrument__INSTRUMENT'' where INSTRUMENT is the name of this group, typically ''instrument''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CRF.

- $\begin{array}{ll} \bullet & \texttt{name:NX_CHAR=NAME} \ \to \\ & _\texttt{NXinstrument.name} \ \texttt{NAME} \end{array}$
- $\bullet \ \ \, \text{aperture1:NXaperture} \to \\ \ \ \, _\text{NXinstrument.NXaperture_id aperture1}$
- ullet attenuator1:NXattenuator ightarrow _NXinstrument.NXattenuator_id attenuator1
- beam_stop1:NXbeam_stop \rightarrow _NXinstrument.NXbeam_stop_id beam_stop1
- bending_magnet1:NXbending_magnet \rightarrow _NXinstrument.NXbending_magnet_id_bending_magnet1
- crystal1:NXcrystal →
 _NXinstrument.NXcrystal_id crystal1
- detector1:NXdetector \rightarrow _NXinstrument.NXdetector_id detector1
- disk_chopper1:NXdisk_chopper →
 _NXinstrument.NXdisk_chopper_id disk_chopper1
- fermi_chopper1:NXfermi_chopper →
 .NXinstrument.NXfermi_chopper_id fermi_chopper1
- filter1:NXfilter \rightarrow _NXinstrument.NXfilter_id filter1
- flipper1:NXflipper \rightarrow _NXinstrument.NXflipper_id flipper1
- $\begin{tabular}{ll} \bullet & guide1:NXguide \rightarrow \\ _NXinstrument.NXguide_id $guide1$ \\ \end{tabular}$
- $\begin{array}{l} \bullet \ \, \mathtt{mirror1:NXmirror} \ \, \to \\ \quad \, \mathtt{.NXinstrument.NXmirror_id} \ \, \mathtt{mirror1} \end{array}$
- ullet moderator1:NXmoderator ightarrow _NXinstrument.NXmoderator_id moderator1

- polarizer1:NXpolarizer \rightarrow _NXinstrument.NXpolarizer_id polarizer1
- source1:NXsource \rightarrow _NXinstrument.NXsource_id source1
- $\bullet \ \ velocity_selector1: \verb|NXvelocity_selector| \rightarrow \\ \verb|LNXinstrument.NXvelocity_selector_id| velocity_selector1$

6.25 NXlog

NXlog (base class, version 1.0)
average_value:NX_FLOAT
average_value_error:NX_FLOAT
description:NX_CHAR
duration:NX_FLOAT
maximum_value:NX_FLOAT
minimum_value:NX_FLOAT
raw_value:NX_NUMBER
time:NX_FLOAT
@start
value:NX_NUMBER

arao...._.........

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXlog_LOG'' where LOG is the name of this group, typically ''log''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{lll} \bullet & {\tt average_value:NX_FLOAT=AVERAGE_VALUE} \ \to \\ & {\tt _NXlog.average_value} \ \ {\tt AVERAGE_VALUE} \end{array}$
- average_value_error:NX_FLOAT=AVERAGE_VALUE_ERROR \rightarrow _NXlog.average_value_error AVERAGE_VALUE_ERROR
- $\begin{array}{ll} \bullet & {\tt description:NX_CHAR=DESCRIPTION} \ \to \\ {\tt _NXlog.description} \ {\tt DESCRIPTION} \end{array}$
- $\begin{array}{ll} \bullet & {\tt duration:NX_FLOAT=DURATION} \ \to \\ _{\tt NXlog.duration} \ {\tt DURATION} \end{array}$
- $\begin{array}{lll} \bullet & {\tt maximum_value:NX_FLOAT=MAXIMUM_VALUE} & \to \\ & {\tt _NXlog.maximum_value} & {\tt MAXIMUM_VALUE} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{minimum_value:NX_FLOAT=MINIMUM_VALUE} \ \to \\ & _\texttt{NXlog.minimum_value} \ \ \texttt{MINIMUM_VALUE} \end{array}$
- $\begin{array}{lll} \bullet & {\tt raw_value:NX_NUMBER=RAW_VALUE} \ \to \\ {\tt _NXlog.raw_value} \ {\tt RAW_VALUE} \end{array}$
- ullet time:NX_FLOAT=TIME ightarrow _NXlog.time TIME

- value:NX_NUMBER=VALUE ightarrow _NXlog.value VALUE

6.26 NXmirror

NXmirror (base class, version 1.0) bend_angle_x:NX_FLOAT bend_angle_y:NX_FLOAT coating_material:NX_CHAR coating_roughness:NX_FLOAT description: NX_CHAR even_layer_density:NX_FLOAT even_layer_material:NX_CHAR external_material:NX_CHAR incident_angle:NX_FLOAT interior_atmosphere:NX_CHAR layer_thickness:NX_FLOAT m_value:NX_FLOAT odd_layer_density:NX_FLOAT odd_layer_material:NX_CHAR substrate_density:NX_FLOAT substrate_material:NX_CHAR substrate_roughness:NX_FLOAT substrate_thickness:NX_FLOAT type: NX_CHAR reflectivity: NXdata figure_data:NXdata NXgeometry

ullet MIRROR:NXmirror ightarrow

shape: NXshape

 $\verb|-NXmirror.NX_tree_path| NEXUSTREEPATH|$

_NXmirror.NX_id MIRROR
_NXmirror.NX_scan_id SCANID
_NXmirror.NX_diffrn_id DIFFRNID
_NXmirror.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXmirror_MIRROR'' where MIRROR is the name of this group, typically ''mirror''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & \mathtt{bend_angle_x:NX_FLOAT=BEND_ANGLE_X} \ \to \\ & \mathtt{_NXmirror.bend_angle_x} \ \ \mathtt{BEND_ANGLE_X} \end{array}$
- $\bullet \quad \text{bend_angle_y:NX_FLOAT=BEND_ANGLE_Y} \ \to \\ \text{_NXmirror.bend_angle_y} \ \text{BEND_ANGLE_Y}$
- $\begin{array}{lll} \bullet & {\tt coating_material:NX_CHAR=COATING_MATERIAL} \to & \\ {\tt _NXmirror.coating_material} & {\tt COATING_MATERIAL} \end{array}$

- $\begin{array}{ll} \bullet & {\tt coating_roughness:NX_FLOAT=COATING_ROUGHNESS} \rightarrow \\ _{\tt NXmirror.coating_roughness} & {\tt COATING_ROUGHNESS} \\ \end{array}$
- $\begin{array}{ll} \bullet & {\tt description:NX_CHAR=DESCRIPTION} \to \\ {\tt _NXmirror.description} & {\tt DESCRIPTION} \end{array}$
- $\begin{array}{lll} \bullet & \text{even_layer_material:NX_CHAR=EVEN_LAYER_MATERIAL} & \to & \\ _\text{NXmirror.even_layer_material} & \text{EVEN_LAYER_MATERIAL} \end{array}$
- ullet external_material:NX_CHAR=EXTERNAL_MATERIAL ightarrow NXmirror.external_material_EXTERNAL_MATERIAL
- incident_angle:NX_FLOAT=INCIDENT_ANGLE \rightarrow _NXmirror.incident_angle INCIDENT_ANGLE
- interior_atmosphere: NX_CHAR=INTERIOR_ATMOSPHERE \rightarrow _NXmirror.interior_atmosphere INTERIOR_ATMOSPHERE
- layer_thickness:NX_FLOAT=LAYER_THICKNESS \rightarrow _NXmirror.layer_thickness LAYER_THICKNESS
- m_value:NX_FLOAT=M_VALUE ightarrow NXmirror.m_value M_VALUE
- odd_layer_density:NX_FLOAT=ODD_LAYER_DENSITY →
 _NXmirror.odd_layer_density ODD_LAYER_DENSITY
- $\begin{array}{lll} \bullet & {\tt odd_layer_material:NX_CHAR=ODD_LAYER_MATERIAL} & \to & \\ & {\tt .NXmirror.odd_layer_material} & {\tt ODD_LAYER_MATERIAL} \end{array}$
- substrate_density:NX_FLOAT=SUBSTRATE_DENSITY \rightarrow _NXmirror.substrate_density SUBSTRATE_DENSITY
- $\verb| substrate_material:NX_CHAR=SUBSTRATE_MATERIAL| \rightarrow \\ \verb| NXmirror.substrate_material| SUBSTRATE_MATERIAL|$
- substrate_roughness:NX_FLOAT=SUBSTRATE_ROUGHNESS \rightarrow NXmirror.substrate_roughness SUBSTRATE_ROUGHNESS
- substrate_thickness:NX_FLOAT=SUBSTRATE_THICKNESS \rightarrow _NXmirror.substrate_thickness SUBSTRATE_THICKNESS
- $\begin{array}{ll} \bullet & {\tt type:NX_CHAR=TYPE} \ \to \\ {\tt _NXmirror.type} \ {\tt TYPE} \end{array}$
- $\bullet \ \ \, {\tt reflectivity:NXdata} \to \\ \quad \, {\tt _NXmirror.NXdata_id} \ \, {\tt reflectivity}$
- $\begin{array}{l} \bullet \ \ \, \texttt{figure_data:NXdata} \, \to \\ \quad \, _\texttt{NXmirror.NXdata_id} \ \, \texttt{figure_data} \end{array}$
- $\begin{tabular}{ll} \bullet & {\tt geometry1:NXgeometry} \rightarrow \\ & {\tt _NXmirror.NXgeometry_id} & {\tt geometry1} \end{tabular}$
- $\begin{array}{l} \bullet \ \ \, {\tt shape:NXshape} \ \, \to \\ \ \ \, _{\tt NXmirror.NXshape_id} \ \ \, {\tt shape} \end{array}$

6.27

```
NXmoderator
NXmoderator (base class, version 1.0)
  coupled: NX_BOOLEAN
  coupling_material:NX_CHAR
 distance: NX_FLOAT
 poison_depth: NX_FLOAT
 poison_material:NX_CHAR
 temperature:NX_FLOAT
  type: NX_CHAR
 pulse_shape:NXdata
 NXgeometry
  temperature_log:NXlog
   ullet MODERATOR:NXmoderator 
ightarrow
        \verb|_NXmoderator.NX_tree_path| NEXUSTREEPATH|
        _NXmoderator.NX_id MODERATOR
        _NXmoderator.NX_scan_id SCANID
        _NXmoderator.NX_diffrn_id DIFFRNID
        _NXmoderator.NX_entry_id ENTRYID
```

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with "'/NXmoderator_MODERATOR" where MODERATOR is the name of this group, typically ''moderator''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- ${\tt coupled:NX_BOOLEAN=COUPLED} \ \rightarrow$ _NXmoderator.coupled COUPLED
- coupling_material:NX_CHAR=COUPLING_MATERIAL ightarrow_NXmoderator.coupling_material COUPLING_MATERIAL
- ${\tt distance:NX_FLOAT=DISTANCE} \ \rightarrow$ _NXmoderator.distance DISTANCE
- ${\tt poison_depth:NX_FLOAT=POISON_DEPTH} \ \rightarrow$ _NXmoderator.poison_depth POISON_DEPTH
- poison_material:NX_CHAR=POISON_MATERIAL ightarrow_NXmoderator.poison_material POISON_MATERIAL
- $\texttt{temperature:NX_FLOAT=TEMPERATURE} \ \rightarrow$ _NXmoderator.temperature TEMPERATURE
- $\texttt{type:NX_CHAR=TYPE} \ \rightarrow$ _NXmoderator.type TYPE
- ullet pulse_shape:NXdata ightarrow_NXmoderator.NXdata_id pulse_shape
- ullet geometry1:NXgeometry ightarrow_NXmoderator.NXgeometry_id geometry1
- ullet temperature_log:NXlog ightarrow_NXmoderator.NXlog_id temperature_log

6.28 NXmonitor

```
NXmonitor (base class, version 1.0)
  count_time:NX_FLOAT
  data:NX_NUMBER[n]
    @signal
    @axes
  distance:NX_FLOAT
  efficiency:NX_NUMBER[]
  end_time:NX_DATE_TIME
  integral:NX_NUMBER
  mode: NX\_CHAR
  preset:NX_NUMBER
  range:NX_FLOAT[2]
  sampled_fraction:NX_FLOAT
  \verb|start_time:NX_DATE_TIME| \\
  time_of_flight:NX_FLOAT[]
  type: NX_CHAR
  NXgeometry
  integral_log:NXlog
    ullet MONITOR:NXmonitor 
ightarrow
         _NXmonitor.NX_tree_path NEXUSTREEPATH
         _NXmonitor.NX_id MONITOR
         _NXmonitor.NX_scan_id SCANID
         _NXmonitor.NX_diffrn_id DIFFRNID
         _NXmonitor.NX_entry_id ENTRYID
      where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under
      score and, finally, the name of the group, ending with "'/NXmonitor_MONITOR" where MONITOR
      is the name of this group, typically "monitor". The SCANID, DIFFRNID and ENTRYID are
      optional keys for use when multiple scans, etc. are aggregated in the same CBF.
         {\tt count\_time:NX\_FLOAT=COUNT\_TIME} \ \to \\
         _NXmonitor.count_time COUNT_TIME
        \mathtt{data} \colon \mathtt{NX\_NUMBER[n]} \texttt{=} \mathtt{DATA} \ \to \\
         _NXmonitor.data DATA
           <code>@signal=SIGNAL</code> 	o
           _NXmonitor.data__signal SIGNAL
           @axes=AXES 
ightarrow
           _NXmonitor.data__axes AXES
        {\tt distance:NX\_FLOAT=DISTANCE} \ \rightarrow
         _NXmonitor.distance DISTANCE
         efficiency:NX_NUMBER[]=EFFICIENCY 
ightarrow
         _NXmonitor.efficiency EFFICIENCY
         \verb"end_time: \verb"NX_DATE_TIME=END_TIME" \to
         \verb|_NXmonitor.end_time END_TIME| \\
         \verb|integral:NX_NUMBER=INTEGRAL| \rightarrow
         _NXmonitor.integral INTEGRAL
```

- $\bullet \quad \texttt{mode:NX_CHAR=MODE} \ \to \\ \quad _\texttt{NXmonitor.mode} \ \texttt{MODE}$
- $\begin{array}{ll} \bullet & \texttt{preset:NX_NUMBER=PRESET} \ \to \\ _\texttt{NXmonitor.preset} \ \texttt{PRESET} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{range:NX_FLOAT[2]=RANGE} \ \to \\ & _\texttt{NXmonitor.range} \ \texttt{RANGE} \end{array}$
- $\verb| sampled_fraction:NX_FLOAT=SAMPLED_FRACTION| \rightarrow \\ \verb| NXmonitor.sampled_fraction| SAMPLED_FRACTION|$
- start_time:NX_DATE_TIME=START_TIME \rightarrow _NXmonitor.start_time START_TIME
- time_of_flight:NX_FLOAT[]=TIME_OF_FLIGHT →
 _NXmonitor.time_of_flight TIME_OF_FLIGHT
- $\begin{array}{ll} \bullet & {\tt type:NX_CHAR=TYPE} \ \to \\ {\tt _NXmonitor.type} \ {\tt TYPE} \end{array}$
- $\begin{array}{l} \bullet \ \ {\tt geometry1:NXgeometry} \to \\ \quad _{\tt NXmonitor.NXgeometry_id} \ \ {\tt geometry1} \end{array}$
- $\begin{array}{c} \bullet \hspace{0.1cm} \mathtt{integral_log:NXlog} \hspace{0.1cm} \to \\ \hspace{0.1cm} \mathtt{NXmonitor.NXlog_id} \hspace{0.1cm} \mathtt{integral_log} \end{array}$

6.29 NXmonochromator

 ${\tt NXmonochromator\ (base\ class,\ version\ 1.0)}$

energy:NX_FLOAT
energy_error:NX_FLOAT
wavelength:NX_FLOAT
wavelength_error:NX_FLOAT

NXcrystal

distribution:NXdata geometry:NXgeometry NXvelocity_selector

ullet MONOCHROMATOR:NXmonochromator ightarrow

_NXmonochromator.NX_tree_path NEXUSTREEPATH _NXmonochromator.NX_id MONOCHROMATOR _NXmonochromator.NX_scan_id SCANID _NXmonochromator.NX_diffrn_id DIFFRNID _NXmonochromator.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXmonochromator_MONOCHROMATOR'' where MONOCHROMATOR is the name of this group, typically ''monochromator''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & \texttt{energy:NX_FLOAT=ENERGY} \ \to \\ & _\texttt{NXmonochromator.energy} \ \ \texttt{ENERGY} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{energy_error:NX_FLOAT=ENERGY_ERROR} \rightarrow \\ \texttt{_NXmonochromator.energy_error} & \texttt{ENERGY_ERROR} \end{array}$

- $\begin{tabular}{ll} \bullet & wavelength: NX_FLOAT=WAVELENGTH \rightarrow \\ _NXmonochromator.wavelength $WAVELENGTH$ \\ \end{tabular}$
- $\begin{array}{ll} \bullet & \mathtt{wavelength_error:NX_FLOAT=WAVELENGTH_ERROR} \ \to \\ \mathtt{LNXmonochromator.wavelength_error} \ \mathtt{WAVELENGTH_ERROR} \end{array}$
- $\begin{array}{c} \bullet \ \ \, {\tt crystal1:NXcrystal} \ \to \\ \quad \ \ \, {\tt LNXmonochromator.NXcrystal_id} \ \ \, {\tt crystal1} \end{array}$
- $\begin{tabular}{ll} \bullet & distribution: NXdata \rightarrow \\ & _NXmonochromator. NXdata_id & distribution \end{tabular}$
- $\bullet \ \ \mbox{geometry:NXgeometry} \rightarrow \\ \ \ \ \mbox{NXmonochromator.NXgeometry_id} \ \ \mbox{geometry}$
- velocity_selector1:NXvelocity_selector →
 _NXmonochromator.NXvelocity_selector_id velocity_selector1

6.30 NXnote

NXnote (base class, version 1.0)
author:NX_CHAR
data:NX_BINARY
date:NX_DATE_TIME
description:NX_CHAR
file_name:NX_CHAR
type:NX_CHAR

ullet NOTE:NXnote ightarrow

_NXnote.NX_tree_path NEXUSTREEPATH _NXnote.NX_id NOTE

_NXnote.NX_scan_id SCANID _NXnote.NX_diffrn_id DIFFRNID

_NXnote.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXnote_NOTE'' where NOTE is the name of this group, typically ''note''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & {\tt author:NX_CHAR=AUTHOR} \ \to \\ {\tt _NXnote.author} \ \ {\tt AUTHOR} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{data:NX_BINARY=DATA} \ \to \\ & _\texttt{NXnote.data} \ \ \texttt{DATA} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{date:NX_DATE_TIME=DATE} \ \to \\ \texttt{_NXnote.date} \ \ \texttt{DATE} \end{array}$
- $\begin{array}{ll} \bullet & {\tt description:NX_CHAR=DESCRIPTION} \ \to \\ {\tt _NXnote.description} \ {\tt DESCRIPTION} \end{array}$
- file_name:NX_CHAR=FILE_NAME ightarrow _NXnote.file_name FILE_NAME
- type:NX_CHAR=TYPE ightarrow _NXnote.type TYPE

6.31 NXorientation

NXorientation (base class, version 1.0) value:NX_FLOAT[numobj,6]
NXgeometry

ORIENTATION:NXorientation →
 _NXorientation.NX_tree_path NEXUSTREEPATH
 _NXorientation.NX_id ORIENTATION
 _NXorientation.NX_scan_id SCANID
 _NXorientation.NX_diffrn_id DIFFRNID
 _NXorientation.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXorientation_ORIENTATION'' where ORIENTATION is the name of this group, typically ''orientation''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- value:NX_FLOAT[numobj,6]=VALUE ightarrow _NXorientation.value VALUE
- $\bullet \ \, {\tt geometry1:NXgeometry} \to \\ _{\tt NXorientation.NXgeometry_id} \ \, {\tt geometry1}$

6.32 NXparameters

PARAMETERS:NXparameters →
 _NXparameters.NX_tree_path NEXUSTREEPATH
 _NXparameters.NX_id PARAMETERS
 _NXparameters.NX_scan_id SCANID
 _NXparameters.NX_diffrn_id DIFFRNID
 _NXparameters.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXparameters_PARAMETERS'' where PARAMETERS is the name of this group, typically ''parameters''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & \texttt{term:NX_CHAR=TERM} \ \to \\ & _\texttt{NXparameters.term} \ \texttt{TERM} \end{array}$
- Qunits=UNITS \rightarrow _NXparameters.term_units UNITS

6.33 NXpolarizer

NXpolarizer (base class, version 1.0)
 composition:NX_CHAR
 efficiency:NX_FLOAT
 reflection:NX_INT[3]
 type:NX_CHAR

POLARIZER: NXpolarizer →
 _NXpolarizer.NX_tree_path NEXUSTREEPATH
 _NXpolarizer.NX_id POLARIZER
 _NXpolarizer.NX_scan_id SCANID
 _NXpolarizer.NX_diffrn_id DIFFRNID
 _NXpolarizer.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXpolarizer_POLARIZER'' where POLARIZER is the name of this group, typically ''polarizer''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & {\tt composition:NX_CHAR=COMPOSITION} \to \\ _{\tt NXpolarizer.composition} & {\tt COMPOSITION} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{efficiency:NX_FLOAT=EFFICIENCY} \ \to \\ _\texttt{NXpolarizer.efficiency} \ \texttt{EFFICIENCY} \end{array}$
- reflection:NX_INT[3]=REFLECTION ightarrow _NXpolarizer.reflection REFLECTION
- type:NX_CHAR=TYPE \rightarrow _NXpolarizer.type TYPE

6.34 NXpositioner

NXpositioner (base class, version 1.0)
acceleration_time:NX_NUMBER
controller_record:NX_CHAR
description:NX_CHAR
name:NX_CHAR
raw_value:NX_NUMBER[n]
soft_limit_max:NX_NUMBER
soft_limit_min:NX_NUMBER
target_value:NX_NUMBER[n]
tolerance:NX_NUMBER[n]
value:NX_NUMBER[n]
velocity:NX_NUMBER[n]

POSITIONER:NXpositioner →
 _NXpositioner.NX_tree_path NEXUSTREEPATH
 _NXpositioner.NX_id POSITIONER
 _NXpositioner.NX_scan_id SCANID
 _NXpositioner.NX_diffrn_id DIFFRNID
 _NXpositioner.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with ''/NXpositioner_POSITIONER'' where POSITIONER is the name of this group, typically ''positioner''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

 acceleration_time:NX_NUMBER=ACCELERATION_TIME → _NXpositioner.acceleration_time ACCELERATION_TIME

- controller_record:NX_CHAR=CONTROLLER_RECORD →
 _NXpositioner.controller_record CONTROLLER_RECORD
- $\begin{array}{ll} \bullet & {\tt description:NX_CHAR=DESCRIPTION} \to \\ {\tt _NXpositioner.description} & {\tt DESCRIPTION} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{name:NX_CHAR=NAME} \ \to \\ _\texttt{NXpositioner.name} \ \texttt{NAME} \end{array}$
- $\begin{array}{ll} \bullet & {\tt raw_value:NX_NUMBER[n]=RAW_VALUE} \to \\ & _{\tt NXpositioner.raw_value\ RAW_VALUE} \end{array}$
- $\bullet \quad \text{soft_limit_max:NX_NUMBER=SOFT_LIMIT_MAX} \ \to \\ \quad \text{_NXpositioner.soft_limit_max} \ \text{SOFT_LIMIT_MAX}$
- soft_limit_min:NX_NUMBER=SOFT_LIMIT_MIN →
 _NXpositioner.soft_limit_min SOFT_LIMIT_MIN
- $\begin{array}{ll} \bullet & {\tt target_value:NX_NUMBER[n]=TARGET_VALUE} \ \to \\ _{\tt NXpositioner.target_value} \ {\tt TARGET_VALUE} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{tolerance:NX_NUMBER[n]=TOLERANCE} \ \to \\ & _\text{NXpositioner.tolerance} \ \ \texttt{TOLERANCE} \end{array}$
- value:NX_NUMBER[n]=VALUE \rightarrow _NXpositioner.value VALUE
- velocity:NX_NUMBER=VELOCITY \rightarrow _NXpositioner.velocity VELOCITY

6.35 NXprocess

NXprocess (base class, version 1.0)

date:NX_DATE_TIME
program:NX_CHAR
version:NX_CHAR
NXnote

ullet PROCESS:NXprocess ightarrow

_NXprocess.NX_tree_path NEXUSTREEPATH

_NXprocess.NX_id PROCESS
_NXprocess.NX_scan_id SCANID
_NXprocess.NX_diffrn_id DIFFRNID

_NXprocess.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the group, ending with "/NXprocess_PROCESS" where PROCESS is the name of this group, typically "process". The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & \texttt{date:NX_DATE_TIME=DATE} \ \to \\ _\texttt{NXprocess.date} \ \texttt{DATE} \end{array}$
- program:NX_CHAR=PROGRAM \rightarrow _NXprocess.program PROGRAM
- version:NX_CHAR=VERSION \rightarrow _NXprocess.version VERSION
- $\begin{array}{l} \bullet \ \, \mathtt{note1:NXnote} \, \to \\ \quad _\mathtt{NXprocess.NXnote_id} \ \, \mathtt{note1} \end{array}$

6.36 NXroot

```
NXroot (base class, version 1.0)
  @NX_class
  @file_time
  @file_name
  @file_update_time
  @NeXus_version
  @HDF_version
  @HDF5_Version
  @XML_version
  @creator
  NXentry
    ullet ROOT:NXroot 
ightarrow
         _NXroot.NX_tree_path NEXUSTREEPATH
         _NXroot.NX_id ROOT
         _NXroot.NX_scan_id SCANID
         _NXroot.NX_diffrn_id DIFFRNID
         _NXroot.NX_entry_id ENTRYID
      where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under
      score and, finally, the name of the group, ending with ''/NXroot_ROOT'' where ROOT is
      the name of this group, typically ''root''. The SCANID, DIFFRNID and ENTRYID are optional
      keys for use when multiple scans, \it etc. are aggregated in the same CBF.
         {\tt @NX\_class=NX\_CLASS} \,\, \to \,\,
           _NXroot.NX_class_attribute__NX_class NX_CLASS
        {\tt @file\_time=FILE\_TIME} \ \to \\
           _NXroot.NX_class_attribute__file_time FILE_TIME
         \texttt{Ofile\_name=FILE\_NAME} \rightarrow
           _NXroot.NX_class_attribute__file_name FILE_NAME
        {\tt @file\_update\_time=FILE\_UPDATE\_TIME} \ \to \\
           _NXroot.NX_class_attribute__file_update_time FILE_UPDATE_TIME
         {\tt @NeXus\_version=NEXUS\_VERSION} \ \to \\
           _NXroot.NX_class_attribute__NeXus_version NEXUS_VERSION
         {\tt @HDF\_version=HDF\_VERSION} \ \to \\
           _NXroot.NX_class_attribute__HDF_version HDF_VERSION
        <code>@HDF5_Version=HDF5_VERSION</code> 
ightarrow
           _NXroot.NX_class_attribute__HDF5_Version HDF5_VERSION
        <code>QXML_version=XML_VERSION</code> 
ightarrow
           \texttt{@creator=CREATOR} \rightarrow
           _NXroot.NX_class_attribute__creator CREATOR
    \bullet entry1:NXentry \rightarrow
         _NXroot.NXentry_id entry1
```

6.37 NXsample

```
NXsample (base class, version 1.0)
  changer_position:NX_INT
  chemical_formula:NX_CHAR
  component: NX_CHAR
  concentration:NX_FLOAT[n_comp]
 density:NX_FLOAT[n_comp]
 description: NX_CHAR
 distance: NX_FLOAT
 electric_field:NX_FLOAT[n_eField]
    @direction
 external_DAC:NX_FLOAT
 magnetic_field:NX_FLOAT[n_mField]
    @direction
 mass:NX_FLOAT[n_comp]
 name:NX\_CHAR
 orientation_matrix:NX_FLOAT[n_comp,3,3]
 path_length:NX_FLOAT
 path_length_window:NX_FLOAT
 preparation_date:NX_DATE_TIME
 pressure:NX_FLOAT[n_pField]
 relative_molecular_mass:NX_FLOAT[n_comp]
 rotation_angle:NX_FLOAT
  sample_component:NX_CHAR
  sample_orientation:NX_FLOAT[3]
  scattering_length_density:NX_FLOAT[n_comp]
 short_title:NX_CHAR
 situation:NX_CHAR
 stress_field: NX_FLOAT[n_sField]
  temperature: NX_FLOAT[n_Temp]
  thickness:NX_FLOAT
  type: NX_CHAR
 unit_cell:NX_FLOAT[n_comp,6]
 unit_cell_class:NX_CHAR
 unit_cell_group:NX_CHAR
 unit_cell_volume:NX_FLOAT[n_comp]
 volume_fraction:NX_FLOAT[n_comp]
 x_translation:NX_FLOAT
 NXbeam
 transmission:NXdata
  temperature_env:NXenvironment
 magnetic_field_env:NXenvironment
  geometry: NXgeometry
  temperature_log:NXlog
 magnetic_field_log:NXlog
 external_ADC:NXlog
```

_NXsample.NX_id SAMPLE
_NXsample.NX_scan_id SCANID
_NXsample.NX_diffrn_id DIFFRNID
_NXsample.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXsample_SAMPLE'' where SAMPLE is the name of this NeXus class instance, typically ''sample''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- changer_position:NX_INT=CHANGER_POSITION \rightarrow _NXsample.changer_position CHANGER_POSITION
- $\begin{array}{ll} \bullet & {\tt chemical_formula:NX_CHAR=CHEMICAL_FORMULA} \ \to \\ _{\tt NXsample.chemical_formula} \ {\tt CHEMICAL_FORMULA} \end{array}$
- $\begin{array}{ll} \bullet & {\tt component:NX_CHAR=COMPONENT} \ \to \\ {\tt _NXsample.component} \ {\tt COMPONENT} \end{array}$
- $\begin{array}{ll} \bullet & {\tt concentration:NX_FLOAT[n_comp] = CONCENTRATION} \\ \to & {\tt .NXsample.concentration} & {\tt CONCENTRATION} \\ \end{array}$
- $\begin{array}{ll} \bullet & \mathtt{density} : \mathtt{NX_FLOAT[n_comp]} \texttt{=} \mathtt{DENSITY} \ \to \\ \mathtt{_NXsample.density} \ \mathtt{DENSITY} \end{array}$
- ullet description:NX_CHAR=DESCRIPTION ightarrow _NXsample.description DESCRIPTION
- $\begin{array}{ll} \bullet & \mathtt{distance:NX_FLOAT=DISTANCE} \ \to \\ \mathtt{_NXsample.distance} \ \mathtt{DISTANCE} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{electric_field:NX_FLOAT[n_eField]=ELECTRIC_FIELD} \\ \rightarrow & \texttt{_NXsample.electric_field} \end{array}$
- ullet external_DAC:NX_FLOAT=EXTERNAL_DAC ightarrow _NXsample.external_DAC EXTERNAL_DAC
- $\bullet \quad \texttt{magnetic_field:NX_FLOAT[n_mField]=MAGNETIC_FIELD} \ \to \\ \texttt{_NXsample.magnetic_field} \ \ \texttt{MAGNETIC_FIELD}$
- $\begin{tabular}{ll} \bullet & \tt Qdirection=DIRECTION \to \\ \tt _NXsample.magnetic_field__direction \ DIRECTION \end{tabular}$
- $\begin{array}{ll} \bullet & \texttt{mass:NX_FLOAT[n_comp]=MASS} \ \to \\ & _\texttt{NXsample.mass} \ \texttt{MASS} \end{array}$
- name:NX_CHAR=NAME ightarrow _NXsample.name NAME
- orientation_matrix:NX_FLOAT[n_comp,3,3]=ORIENTATION_MATRIX \rightarrow _NXsample.orientation_matrix ORIENTATION_MATRIX
- $\begin{array}{ll} \bullet & \text{path_length:NX_FLOAT=PATH_LENGTH} \ \to \\ \text{_NXsample.path_length} \ \ \text{PATH_LENGTH} \end{array}$
- $\begin{array}{ll} \bullet & {\tt path_length_window:NX_FLOAT=PATH_LENGTH_WINDOW} \ \to \\ _{\tt NXsample.path_length_window} \ {\tt PATH_LENGTH_WINDOW} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{preparation_date:NX_DATE_TIME=PREPARATION_DATE} \ \to \\ _\texttt{NXsample.preparation_date} \ \ \texttt{PREPARATION_DATE} \end{array}$

- $\begin{array}{ll} \bullet & \texttt{pressure:NX_FLOAT[n_pField]=PRESSURE} \ \to \\ _\texttt{NXsample.pressure} \ \ \texttt{PRESSURE} \end{array}$
- $\bullet \quad \texttt{relative_molecular_mass:NX_FLOAT[n_comp]=RELATIVE_MOLECULAR_MASS} \ \to \\ \texttt{_NXsample.relative_molecular_mass} \ \texttt{RELATIVE_MOLECULAR_MASS}$
- rotation_angle:NX_FLOAT=ROTATION_ANGLE ightarrow _NXsample.rotation_angle ROTATION_ANGLE
- sample_component:NX_CHAR=SAMPLE_COMPONENT →
 _NXsample.sample_component SAMPLE_COMPONENT
- sample_orientation:NX_FLOAT[3]=SAMPLE_ORIENTATION \rightarrow _NXsample.sample_orientation SAMPLE_ORIENTATION
- $\bullet \quad \text{scattering_length_density:NX_FLOAT[n_comp]=SCATTERING_LENGTH_DENSITY} \ \to \\ \text{_NXsample.scattering_length_density} \ SCATTERING_LENGTH_DENSITY$
- $\bullet \qquad \text{short_title:NX_CHAR=SHORT_TITLE} \ \to \\ _\text{NXsample.short_title} \ \ \text{SHORT_TITLE}$
- ullet situation:NX_CHAR=SITUATION ightarrow _NXsample.situation SITUATION
- $\bullet \quad \texttt{stress_field:NX_FLOAT[n_sField]=STRESS_FIELD} \ \to \\ _\texttt{NXsample.stress_field} \ \texttt{STRESS_FIELD}$
- $\begin{tabular}{ll} \bullet & \tt @direction=DIRECTION \rightarrow \\ \tt _NXsample.stress_field_direction \ DIRECTION \\ \end{tabular}$
- $\begin{array}{ll} \bullet & \texttt{temperature:NX_FLOAT[n_Temp]=TEMPERATURE} \ \to \\ _\texttt{NXsample.temperature} \ \ \texttt{TEMPERATURE} \end{array}$
- ullet thickness:NX_FLOAT=THICKNESS ightarrow _NXsample.thickness THICKNESS
- type:NX_CHAR=TYPE ightarrow _NXsample.type TYPE
- $\begin{array}{ll} \bullet & \texttt{unit_cell:NX_FLOAT[n_comp,6]=UNIT_CELL} \ \to \\ & _\texttt{NXsample.unit_cell} \ \ \texttt{UNIT_CELL} \end{array}$
- unit_cell_class:NX_CHAR=UNIT_CELL_CLASS \rightarrow _NXsample.unit_cell_class UNIT_CELL_CLASS
- unit_cell_group:NX_CHAR=UNIT_CELL_GROUP \rightarrow _NXsample.unit_cell_group UNIT_CELL_GROUP
- $\begin{array}{ll} \bullet & \texttt{unit_cell_volume:NX_FLOAT[n_comp]=UNIT_CELL_VOLUME} \ \to \\ & _\texttt{NXsample.unit_cell_volume} \ \ \texttt{UNIT_CELL_VOLUME} \end{array}$
- $\begin{array}{ll} \bullet & {\tt volume_fraction:NX_FLOAT[n_comp]=VOLUME_FRACTION} \ \to \\ {\tt _NXsample.volume_fraction} \ {\tt VOLUME_FRACTION} \end{array}$
- $\begin{array}{ll} \bullet & \text{x_translation:NX_FLOAT=X_TRANSLATION} \ \to \\ & \text{_NXsample.x_translation} \ \text{X_TRANSLATION} \end{array}$
- $\begin{array}{c} \bullet \ \ \text{beam1:NXbeam} \ \to \\ \ _\text{NXsample.NXbeam_id beam1} \end{array}$
- $\begin{array}{l} \bullet \;\; {\tt transmission:NXdata} \; \to \\ \quad {\tt _NXsample.NXdata_id} \;\; {\tt transmission} \end{array}$
- temperature_env:NXenvironment →
 _NXsample.NXenvironment_id temperature_env

- $\begin{array}{l} \bullet \ \ \, {\tt magnetic_field_env:NXenvironment} \ \to \\ \quad \ \ \, _{\tt NXsample.NXenvironment_id} \ \ \, {\tt magnetic_field_env} \end{array}$
- geometry:NXgeometry \rightarrow _NXsample.NXgeometry_id geometry
- temperature_log:NXlog \rightarrow _NXsample.NXlog_id temperature_log
- magnetic_field_log:NXlog \rightarrow _NXsample.NXlog_id magnetic_field_log
- $\begin{array}{l} \bullet \;\; \texttt{external_ADC:NXlog} \; \to \\ \quad _\texttt{NXsample.NXlog_id} \;\; \texttt{external_ADC} \end{array}$

6.38 NXsensor

NXsensor (base class, version 1.0) attached_to:NX_CHAR external_field_brief:NX_CHAR ${\tt high_trip_value:NX_FLOAT}$ low_trip_value:NX_FLOAT measurement: NX_CHAR model:NX_CHAR name: NX_CHAR run_control:NX_BOOLEAN short_name:NX_CHAR type:NX_CHAR value:NX_FLOAT[n] value_deriv1:NX_FLOAT[] value_deriv2:NX_FLOAT[] geometry:NXgeometry value_log:NXlog value_deriv1_log:NXlog value_deriv2_log:NXlog external_field_full:NXorientation

_NXsensor.NX_diffrn_id DIFFRNID

_NXsensor.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXsensor_SENSOR'' where SENSOR is the name of this NeXus class instance, typically ''sensor''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\bullet \quad \text{attached_to:NX_CHAR=ATTACHED_TO} \ \to \\ \text{_NXsensor.attached_to} \ \text{ATTACHED_TO}$
- $\begin{array}{ll} \bullet & \texttt{external_field_brief:NX_CHAR=EXTERNAL_FIELD_BRIEF} \\ _\texttt{NXsensor.external_field_brief} & \texttt{EXTERNAL_FIELD_BRIEF} \\ \end{array}$

- $\begin{array}{ll} \bullet & \texttt{high_trip_value:NX_FLOAT=HIGH_TRIP_VALUE} \ \to \\ & _\texttt{NXsensor.high_trip_value} \ \ \texttt{HIGH_TRIP_VALUE} \end{array}$
- ullet measurement:NX_CHAR=MEASUREMENT ightarrow _NXsensor.measurement MEASUREMENT
- ullet model:NX_CHAR=MODEL ightarrow _NXsensor.model MODEL
- name:NX_CHAR=NAME ightarrow_NXsensor.name NAME
- $\begin{array}{lll} \bullet & {\tt run_control:NX_BOOLEAN=RUN_CONTROL} \ \to \\ _{\tt NXsensor.run_control\ RUN_CONTROL} \end{array}$
- $\begin{array}{ll} \bullet & \mathtt{short_name:NX_CHAR=SHORT_NAME} \ \to \\ & \mathtt{_NXsensor.short_name} \ \ \mathtt{SHORT_NAME} \end{array}$
- type:NX_CHAR=TYPE ightarrow _NXsensor.type TYPE
- value:NX_FLOAT[n]=VALUE \rightarrow _NXsensor.value VALUE
- $\begin{array}{ll} \bullet & {\tt value_deriv1:NX_FLOAT[]=VALUE_DERIV1} \ \to \\ {\tt _NXsensor.value_deriv1} \ {\tt VALUE_DERIV1} \end{array}$
- $\begin{array}{lll} \bullet & {\tt value_deriv2:NX_FLOAT[]=VALUE_DERIV2} \ \to \\ & {\tt _NXsensor.value_deriv2} \ {\tt VALUE_DERIV2} \end{array}$
- $\begin{tabular}{ll} \bullet & {\tt geometry:NXgeometry} \rightarrow \\ & _{\tt NXsensor.NXgeometry_id} & {\tt geometry} \end{tabular}$
- $\begin{array}{c} \bullet \ \ \, \text{value_log:NXlog} \, \to \\ \quad \, _\text{NXsensor.NXlog_id} \ \, \text{value_log} \end{array}$
- value_deriv1_log:NXlog →
 _NXsensor.NXlog_id value_deriv1_log
- $\begin{array}{l} \bullet \ \, {\tt value_deriv2_log:NXlog} \to \\ \quad _{\tt NXsensor.NXlog_id} \ \, {\tt value_deriv2_log} \end{array}$
- ullet external_field_full:NXorientation ightarrow _NXsensor.NXorientation_id external_field_full

6.39 NXshape

NXshape (base class, version 1.0)
 direction:NX_CHAR
 shape:NX_CHAR
 size:NX_FLOAT[numobj,nshapepar]

SHAPE:NXshape →
 _NXshape.NX_tree_path NEXUSTREEPATH
 _NXshape.NX_id SHAPE
 _NXshape.NX_scan_id SCANID

_NXshape.NX_diffrn_id DIFFRNID

_NXshape.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXshape_SHAPE'' where SHAPE is the name of this NeXus class instance, typically ''shape''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & {\tt direction:NX_CHAR=DIRECTION} \to \\ {\tt _NXshape.direction} & {\tt DIRECTION} \end{array}$
- shape:NX_CHAR=SHAPE ightarrow _NXshape.shape SHAPE
- $\begin{array}{ll} \bullet & \mathtt{size:NX_FLOAT[numobj,nshapepar]=SIZE} \ \to \\ \mathtt{_NXshape.size} \ \mathtt{SIZE} \end{array}$

6.40 NXsource

```
NXsource (base class, version 1.0)
 bunch_distance:NX_FLOAT
 bunch_length:NX_FLOAT
 current:NX_FLOAT
 distance: NX_FLOAT
 emittance_x:NX_FLOAT
 emittance_y:NX_FLOAT
 energy:NX_FLOAT
 flux:NX_FLOAT
 frequency: NX_FLOAT
 last_fill:NX_NUMBER
    @time
 mode: NX_CHAR
 {\tt name:NX\_CHAR}
    @short_name
 number_of_bunches:NX_INT
 period:NX_FLOAT
 power: NX_FLOAT
 probe: NX_CHAR
 pulse_width:NX_FLOAT
 sigma_x:NX_FLOAT
 sigma_y:NX_FLOAT
 target_material:NX_CHAR
 top_up:NX_BOOLEAN
 type: NX_CHAR
 voltage:NX_FLOAT
 bunch_pattern:NXdata
    title:NX_CHAR
 pulse_shape:NXdata
 distribution:NXdata
 geometry:NXgeometry
 notes:NXnote
```

 $\begin{array}{l} \bullet \;\; {\tt SOURCE:NXsource} \; \to \\ {\tt _NXsource.NX_tree_path} \;\; {\tt NEXUSTREEPATH} \end{array}$

_NXsource.NX_id SOURCE
_NXsource.NX_scan_id SCANID
_NXsource.NX_diffrn_id DIFFRNID
_NXsource.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXsource_SOURCE'' where SOURCE is the name of this NeXus class instance, typically ''source''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & \mathtt{bunch_distance:NX_FLOAT=BUNCH_DISTANCE} \ \to \\ & \underline{ \ \ } \mathsf{NXsource.bunch_distance} \ \ \mathsf{BUNCH_DISTANCE} \end{array}$
- $\begin{array}{ll} \bullet & \mathtt{bunch_length}: \mathtt{NX_FLOAT=BUNCH_LENGTH} \ \to \\ & \underline{\mathtt{NXsource.bunch_length}} \ \ \mathtt{BUNCH_LENGTH} \end{array}$
- ullet current:NX_FLOAT=CURRENT ightarrow _NXsource.current CURRENT
- $\begin{array}{ll} \bullet & \mathtt{distance:NX_FLOAT=DISTANCE} \ \to \\ \mathtt{_NXsource.distance} \ \mathtt{DISTANCE} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{emittance_x:NX_FLOAT=EMITTANCE_X} & \rightarrow \\ & _\texttt{NXsource.emittance_x} & \texttt{EMITTANCE_X} \end{array}$
- $\begin{array}{ll} \bullet & \text{emittance_y:NX_FLOAT=EMITTANCE_Y} & \rightarrow \\ \text{_NXsource.emittance_y} & \text{EMITTANCE_Y} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{energy:NX_FLOAT=ENERGY} \ \to \\ _\texttt{NXsource.energy} \ \ \texttt{ENERGY} \end{array}$
- flux:NX_FLOAT=FLUX ightarrow _NXsource.flux FLUX
- $\begin{array}{ll} \bullet & \texttt{frequency:NX_FLOAT=FREQUENCY} \ \to \\ _\texttt{NXsource.frequency} \ \ \texttt{FREQUENCY} \end{array}$
- $\begin{array}{ll} \bullet & {\tt last_fill:NX_NUMBER=LAST_FILL} \ \to \\ & {\tt _NXsource.last_fill} \ {\tt LAST_FILL} \end{array}$
- ullet mode:NX_CHAR=MODE ightarrow _NXsource.mode MODE
- name:NX_CHAR=NAME ightarrow _NXsource.name NAME
- $\begin{array}{ll} \bullet & \texttt{@short_name=SHORT_NAME} \ \to \\ & \texttt{_NXsource.name__short_name} \ \ \texttt{SHORT_NAME} \end{array}$
- $\verb| number_of_bunches:NX_INT=NUMBER_OF_BUNCHES| \rightarrow \\ \verb| NXsource.number_of_bunches| NUMBER_OF_BUNCHES|$
- $\begin{array}{ll} \bullet & \texttt{period:NX_FLOAT=PERIOD} \ \to \\ \texttt{_NXsource.period} \ \texttt{PERIOD} \end{array}$
- $\begin{array}{ll} \bullet & \text{power:NX_FLOAT=POWER} \ \to \\ \text{_NXsource.power} \ \text{POWER} \end{array}$
- $\begin{array}{ll} \bullet & {\tt probe:NX_CHAR=PROBE} \ \to \\ {\tt _NXsource.probe} \ {\tt PROBE} \end{array}$

- $\begin{array}{ll} \bullet & \mathtt{pulse_width:NX_FLOAT=PULSE_WIDTH} \ \to \\ \mathtt{_NXsource.pulse_width} \ \ \mathtt{PULSE_WIDTH} \end{array}$
- $\begin{array}{ll} \bullet & \mathtt{sigma_x:NX_FLOAT=SIGMA_X} \ \to \\ \mathtt{_NXsource.sigma_x} \ \mathtt{SIGMA_X} \end{array}$
- sigma_y:NX_FLOAT=SIGMA_Y \rightarrow _NXsource.sigma_y SIGMA_Y
- $\begin{array}{ll} \bullet & {\tt target_material:NX_CHAR=TARGET_MATERIAL} \ \to \\ _{\tt NXsource.target_material} \ {\tt TARGET_MATERIAL} \end{array}$
- top_up:NX_BOOLEAN=TOP_UP \rightarrow _NXsource.top_up TOP_UP
- type:NX_CHAR=TYPE ightarrow _NXsource.type TYPE
- $\begin{array}{ll} \bullet & \mathtt{voltage:NX_FLOAT=VOLTAGE} \ \to \\ \mathtt{_NXsource.voltage} \ \mathtt{VOLTAGE} \end{array}$
- $\begin{array}{l} \bullet \;\; \mathtt{bunch_pattern:NXdata} \; \to \\ \quad _\mathtt{NXsource.NXdata_id} \;\; \mathtt{bunch_pattern} \end{array}$
- ullet title:NX_CHAR=TITLE ightarrow _NXsource.title TITLE
- $\begin{array}{l} \bullet \ \ \, \mathtt{pulse_shape:NXdata} \ \to \\ \quad \ \, \mathtt{_NXsource.NXdata_id} \ \, \mathtt{pulse_shape} \end{array}$
- $\begin{tabular}{ll} \bullet & {\tt distribution:NXdata} \to \\ & {\tt _NXsource.NXdata_id} & {\tt distribution} \end{tabular}$
- $\begin{tabular}{ll} \bullet & {\tt geometry:NXgeometry} \to \\ & _{\tt NXsource.NXgeometry_id} & {\tt geometry} \end{tabular}$
- $\begin{array}{c} \bullet \ \, {\tt notes:NXnote} \ \, \to \\ \quad \, _{\tt NXsource.NXnote_id} \ \, {\tt notes} \end{array}$

6.41 NXsubentry

```
NXsubentry (base class, version 1.0)
 @IDF_Version
 collection_description:NX_CHAR
 collection_identifier:NX_CHAR
 collection_time: NX_FLOAT
 definition: NX_CHAR
    @version
    @URL
 definition_local:NX_CHAR
    @version
    @URL
 duration:NX_INT
 end_time:NX_DATE_TIME
 entry_identifier:NX_CHAR
 experiment_description:NX_CHAR
 experiment_identifier:NX_CHAR
 pre_sample_flightpath:NX_FLOAT
```

program_name:NX_CHAR @version @configuration revision:NX_CHAR @comment run_cycle:NX_CHAR start_time:NX_DATE_TIME title:NX_CHAR NXcharacterization NXdata NXinstrument NXmonitor experiment_documentation:NXnote notes:NXnote thumbnail:NXnote @mime_type NXprocess NXsample NXuser

ullet SUBENTRY:NXsubentry o

_NXsubentry.NX_tree_path NEXUSTREEPATH
_NXsubentry.NX_id SUBENTRY
_NXsubentry.NX_scan_id SCANID
_NXsubentry.NX_diffrn_id DIFFRNID
_NXsubentry.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXsubentry_SUBENTRY'' where SUBENTRY is the name of this NeXus class instance, typically ''subentry''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\bullet \qquad \texttt{collection_description:NX_CHAR=COLLECTION_DESCRIPTION} \rightarrow \\ \texttt{NX} \texttt{subentry.collection_description} \quad \texttt{COLLECTION_DESCRIPTION}$
- $\bullet \quad \texttt{collection_identifier:NX_CHAR=COLLECTION_IDENTIFIER} \ \to \\ _\texttt{NX} \\ \texttt{subentry.collection_identifier} \ \texttt{COLLECTION_IDENTIFIER}$
- $\begin{array}{ll} \bullet & \texttt{collection_time:NX_FLOAT=COLLECTION_TIME} \ \to \\ _\texttt{NXsubentry.collection_time} \ \ \texttt{COLLECTION_TIME} \end{array}$
- $\begin{array}{ll} \bullet & {\tt definition:NX_CHAR=DEFINITION} \to \\ {\tt _NXsubentry.definition} & {\tt DEFINITION} \end{array}$
- $\begin{array}{ll} \bullet & & \texttt{@version=VERSION} \ \rightarrow \\ & & \texttt{_NXsubentry.definition__version} \ \ \texttt{VERSION} \end{array}$

- QURL=URL →
 _NXsubentry.definition_local__URL URL
- duration:NX_INT=DURATION \rightarrow _NXsubentry.duration DURATION
- $\begin{array}{ll} \bullet & {\tt end_time:NX_DATE_TIME=END_TIME} \ \to \\ {\tt _NXsubentry.end_time} \ \ {\tt END_TIME} \end{array}$
- $\begin{array}{ll} \bullet & \text{entry_identifier:NX_CHAR=ENTRY_IDENTIFIER} \ \to \\ _\text{NXsubentry_entry_identifier} \ \ \text{ENTRY_IDENTIFIER} \end{array}$
- $\bullet \quad \text{experiment_description:NX_CHAR=EXPERIMENT_DESCRIPTION} \ \to \\ \text{_NXsubentry.experiment_description} \ \ \text{EXPERIMENT_DESCRIPTION}$
- $\bullet \quad \text{experiment_identifier:NX_CHAR=EXPERIMENT_IDENTIFIER} \ \to \\ \text{_NXsubentry.experiment_identifier} \ \text{EXPERIMENT_IDENTIFIER}$
- pre_sample_flightpath:NX_FLOAT=PRE_SAMPLE_FLIGHTPATH \rightarrow _NXsubentry.pre_sample_flightpath PRE_SAMPLE_FLIGHTPATH
- program_name:NX_CHAR=PROGRAM_NAME →
 _NXsubentry.program_name PROGRAM_NAME

- revision:NX_CHAR=REVISION \rightarrow _NXsubentry.revision REVISION
- $\begin{tabular}{ll} \bullet & & \tt @comment=COMMENT \end{tabular} \rightarrow & \\ & \tt _NXsubentry.revision_comment \end{tabular} \begin{tabular}{ll} COMMENT \end{tabular}$
- $\begin{array}{ll} \bullet & {\tt run_cycle:NX_CHAR=RUN_CYCLE} \ \to \\ _{\tt NXsubentry.run_cycle} \ {\tt RUN_CYCLE} \end{array}$
- start_time:NX_DATE_TIME=START_TIME \rightarrow _NXsubentry.start_time START_TIME
- $\begin{array}{ll} \bullet & {\tt title:NX_CHAR=TITLE} \ \to \\ {\tt _NXsubentry.title} \ {\tt TITLE} \end{array}$
- ullet characterization1:NXcharacterization o _NXsubentry.NXcharacterization_id characterization1

- $\begin{array}{l} \bullet \ \ \, \mathtt{monitor1:NXmonitor} \ \ \, \to \\ \quad \ \ \, _\mathtt{NXsubentry.NXmonitor_id} \ \ \, \mathtt{monitor1} \end{array}$
- $\bullet \ \ \, {\tt experiment_documentation:NXnote} \ \to \\ \ \ \ \, {\tt _NXsubentry.NXnote_id} \ \ \, {\tt experiment_documentation}$
- $\begin{array}{l} \bullet \ \ \, \mathtt{notes:NXnote} \ \ \, \to \\ \quad \, _\mathtt{NXsubentry.NXnote_id} \ \ \, \mathtt{notes} \end{array}$

- $\begin{array}{l} \bullet \ \ \, \mbox{thumbnail:NXnote} \ \, \to \\ \ \ \, \mbox{_NXsubentry.NXnote_id thumbnail} \end{array}$
- $\begin{array}{l} \bullet \ \ \, \mathtt{process1:NXprocess} \ \, \to \\ \quad \, _\mathtt{NXsubentry.NXprocess_id} \ \, \mathtt{process1} \end{array}$
- $\begin{array}{l} \bullet \ \ \, {\tt sample1:NXsample} \ \ \, \to \\ \quad \, _{\tt NXsubentry.NXsample_id} \ \ \, {\tt sample1} \end{array}$
- $\begin{array}{c} \bullet \;\; user1: \tt NXuser \; \rightarrow \\ \quad _\tt NXsubentry. \; \tt NXuser_id \;\; user1 \end{array}$

6.42 NXtransformations

NXtransformations (base class, version 1.0) @default:NX_CHAR

AXISNAME:

@transformation_type: (optional) NX_CHAR

@vector: (required) NX_NUMBER[3]
@offset: (optional) NX_NUMBER[3]
@offset_units: (optional) NX_CHAR
@depends_on: (optional) NX_CHAR

@equipment_component: (optional) NX_CHAR

AXISNAME_end: (optional) NX_CHAR

AXISNAME_increment_set: (optional) NX_CHAR

ullet AXISNAME:NXtransformations ightarrow

for which, in the CIF version, AXISNAME XFORMTYPE is mapped to _axis.id, XFORMVECTOR and XFORMOFFSET need to be converted from NeXus McStas conventions to appropriate CBF/imgCIF conventions and then mapped to _axis.vector[1], _axis.vector[2], and _axis.vector[3], and _axis.offset[1], _axis.offset[2], and _axis.offset[3], XFORMDEPON is mapped to _axis.depends_on, and XFORMCOMPON is mapped to _axis.equipment and _axis.equipment_component.

6.43 NXtranslation

NXtranslation (base class, version 1.0)
 distances:NX_FLOAT[numobj,3]
 geometry:NXgeometry

TRANSLATION:NXtranslation →
 _NXtranslation.NX_tree_path NEXUSTREEPATH
 _NXtranslation.NX_id TRANSLATION
 _NXtranslation.NX_scan_id SCANID
 _NXtranslation.NX_diffrn_id DIFFRNID

_NXtranslation.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXtranslation_TRANSLATION'' where TRANSLATION is the name of this NeXus class instance, typically ''translation''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- distances:NX_FLOAT[numobj,3]=DISTANCES \rightarrow _NXtranslation.distances DISTANCES
- ullet geometry: NXgeometry ullet _NXtranslation.NXgeometry_id geometry

6.44 NXuser

NXuser (base class, version 1.0)
address:NX_CHAR
affiliation:NX_CHAR
email:NX_CHAR
facility_user_id:NX_CHAR
fax_number:NX_CHAR
name:NX_CHAR
role:NX_CHAR
telephone_number:NX_CHAR

ullet USER:NXuser ightarrow

_NXuser.NX_tree_path NEXUSTREEPATH _NXuser.NX_id USER _NXuser.NX_scan_id SCANID

_NXuser.NX_diffrn_id DIFFRNID _NXuser.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXuser_USER'' where USER is the name of this NeXus class instance, typically 'user''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & \mathtt{address:NX_CHAR=ADDRESS} \ \to \\ \mathtt{_NXuser.address} \ \mathtt{ADDRESS} \end{array}$
- $\begin{array}{ll} \bullet & \text{affiliation:NX_CHAR=AFFILIATION} \ \to \\ \text{_NXuser.affiliation} & \text{AFFILIATION} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{email:NX_CHAR=EMAIL} \ \to \\ \texttt{_NXuser.email} \ \texttt{EMAIL} \end{array}$
- $\begin{array}{ll} \bullet & {\tt facility_user_id:NX_CHAR=FACILITY_USER_ID} \ \to \\ _{\tt NXuser.facility_user_id} \ {\tt FACILITY_USER_ID} \end{array}$
- $\begin{array}{ll} \bullet & {\tt fax_number:NX_CHAR=FAX_NUMBER} \ \to \\ _{\tt NXuser.fax_number} \ {\tt FAX_NUMBER} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{name:NX_CHAR=NAME} \ \to \\ & \texttt{_NXuser.name} \ \texttt{NAME} \end{array}$
- ullet role:NX_CHAR=ROLE ightarrow _NXuser.role ROLE

• telephone_number:NX_CHAR=TELEPHONE_NUMBER ightarrow _NXuser.telephone_number TELEPHONE_NUMBER

6.45 NXvelocity_selector

NXvelocity_selector (base class, version 1.0)
height:NX_FLOAT
length:NX_FLOAT
num:NX_INT
radius:NX_FLOAT
rotation_speed:NX_FLOAT
spwidth:NX_FLOAT
table:NX_FLOAT
twist:NX_FLOAT
twist:NX_FLOAT
type:NX_CHAR
wavelength:NX_FLOAT
wavelength_spread:NX_FLOAT

width:NX_FLOAT geometry:NXgeometry

VELOCITY_SELECTOR: NXvelocity_selector →
 _NXvelocity_selector.NX_tree_path NEXUSTREEPATH
 _NXvelocity_selector.NX_id VELOCITY_SELECTOR
 _NXvelocity_selector.NX_scan_id SCANID
 _NXvelocity_selector.NX_diffrn_id DIFFRNID
 _NXvelocity_selector.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXvelocity_selector__VELOCITY_SEL where VELOCITY_SELECTOR is the name of this NeXus class instance, typically 'velocity_selector''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- height:NX_FLOAT=HEIGHT →
 _NXvelocity_selector.height HEIGHT
- $\begin{array}{ll} \bullet & \mathtt{length:NX_FLOAT=LENGTH} \ \to \\ & \mathtt{_NXvelocity_selector.length} \ \mathtt{LENGTH} \end{array}$
- $\begin{array}{ll} \bullet & \text{num:NX_INT=NUM} \ \to \\ & _\text{NXvelocity_selector.num} \ \text{NUM} \end{array}$
- $\begin{array}{ll} \bullet & {\tt radius:NX_FLOAT=RADIUS} \ \to \\ & {\tt _NXvelocity_selector.radius} \ {\tt RADIUS} \end{array}$
- rotation_speed:NX_FLOAT=ROTATION_SPEED \rightarrow _NXvelocity_selector.rotation_speed ROTATION_SPEED
- $\begin{array}{ll} \bullet & {\tt spwidth:NX_FLOAT=SPWIDTH} \ \to \\ & {\tt _NXvelocity_selector.spwidth} \ {\tt SPWIDTH} \end{array}$
- $\begin{array}{ll} \bullet & {\tt table:NX_FLOAT=TABLE} \ \to \\ {\tt _NXvelocity_selector.table} \ {\tt TABLE} \end{array}$
- $\begin{array}{ll} \bullet & {\tt twist:NX_FLOAT=TWIST} \ \to \\ {\tt _NXvelocity_selector.twist} \ {\tt TWIST} \end{array}$

- $\begin{array}{ll} \bullet & {\tt type:NX_CHAR=TYPE} \ \to \\ {\tt _NXvelocity_selector.type} \ {\tt TYPE} \end{array}$
- $\begin{tabular}{llll} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & &$
- wavelength_spread:NX_FLOAT=WAVELENGTH_SPREAD \rightarrow _NXvelocity_selector.wavelength_spread WAVELENGTH_SPREAD
- width:NX_FLOAT=WIDTH ightarrow _NXvelocity_selector.width WIDTH
- $\bullet \ \ \mbox{geometry:NXgeometry} \to \\ \ \ \ \mbox{NXvelocity_selector.NXgeometry_id geometry}$

6.46 NXxraylens

NXxraylens (base class, version 1.0) aperture:NX_FLOAT

curvature:NX_FLOAT cylindrical:NX_BOOLEAN focus_type:NX_CHAR

gas:NX_CHAR

gas_pressure:NX_FLOAT
lens_geometry:NX_CHAR
lens_length:NX_FLOAT
lens_material:NX_CHAR
lens_thickness:NX_FLOAT
number_of_lenses:NX_INT
symmetric:NX_BOOLEAN
cylinder_orientation:NXnote

_

ullet XRAYLENS:NXxraylens ightarrow

_NXxraylens.NX_tree_path NEXUSTREEPATH
_NXxraylens.NX_id XRAYLENS
_NXxraylens.NX_scan_id SCANID
_NXxraylens.NX_diffrn_id DIFFRNID
_NXxraylens.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXxraylens_XRAYLENS'' where XRAYLENS is the name of this NeXus class instance, typically ''xraylens''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- aperture:NX_FLOAT=APERTURE \rightarrow _NXxraylens.aperture APERTURE
- curvature:NX_FLOAT=CURVATURE ightarrow _NXxraylens.curvature CURVATURE
- $\begin{array}{ll} \bullet & {\tt cylindrical:NX_BOOLEAN=CYLINDRICAL} \to \\ {\tt _NXxraylens.cylindrical} & {\tt CYLINDRICAL} \end{array}$
- focus_type:NX_CHAR=FOCUS_TYPE \rightarrow _NXxraylens.focus_type FOCUS_TYPE

- $\begin{array}{ll} \bullet & {\tt gas:NX_CHAR=GAS} \ \to \\ & {\tt _NXxraylens.gas} \ {\tt GAS} \end{array}$
- $\begin{array}{ll} \bullet & {\tt gas_pressure:NX_FLOAT=GAS_PRESSURE} \rightarrow \\ _{\tt NXxraylens.gas_pressure} & {\tt GAS_PRESSURE} \end{array}$
- lens_geometry:NX_CHAR=LENS_GEOMETRY → _NXxraylens.lens_geometry LENS_GEOMETRY
- $\bullet \quad \texttt{lens_length:NX_FLOAT=LENS_LENGTH} \ \to \\ \texttt{_NXxraylens.lens_length} \ \texttt{LENS_LENGTH}$
- $\bullet \qquad \texttt{lens_material:NX_CHAR=LENS_MATERIAL} \rightarrow \\ \texttt{_NXxraylens.lens_material} \ \ \texttt{LENS_MATERIAL}$
- lens_thickness:NX_FLOAT=LENS_THICKNESS \rightarrow NXxraylens.lens_thickness LENS_THICKNESS
- number_of_lenses:NX_INT=NUMBER_OF_LENSES \rightarrow _NXxraylens.number_of_lenses NUMBER_OF_LENSES
- $\bullet \qquad \text{symmetric:NX_BOOLEAN=SYMMETRIC} \ \to \\ _\text{NXxraylens.symmetric SYMMETRIC}$
- cylinder_orientation:NXnote \rightarrow _NXxraylens.NXnote_id cylinder_orientation

7 Proposed Pixel Array Detector Application Definitions

The following has been derived from the current Dectris Eiger test data and presentations and the Dectris web site:

https://www.dectris.com/nexus.html#main_head_navigation

In this version we have noted the multi-NXDATA use of NXentry, and note the extensions to NXdectector by including what Dectris has called detectorSpecific:DetectorSpecific detectorSpecific:DECTRIS_dectas as a recommended placeholders for such information in an update to the NXdetector base class. We have also called detectorModule_xxx:DetectorModule detectorModule_xxx:Dectris_dectector_module and detectorChip_xxx:DetectorChip_detectorChip_xxx:Dectris_detector_chip. These changes in class names have no impact on the relevant HDF5 paths.

7.1 NXentry

The base class NXentry currently has the following structure:

```
NXentry (base class, version 1.0)
 @IDF_Version
 collection_description:NX_CHAR
 collection_identifier:NX_CHAR
 {\tt collection\_time:NX\_FLOAT}
 definition:NX_CHAR
    @version
    @URL
 definition_local:NX_CHAR
    @version
    @URL
 duration: NX_INT
 end_time:NX_DATE_TIME
 entry_identifier:NX_CHAR
 experiment_description:NX_CHAR
 experiment_identifier:NX_CHAR
 pre_sample_flightpath:NX_FLOAT
 program_name:NX_CHAR
    @version
    @configuration
 revision:NX_CHAR
    @comment
 run_cycle:NX_CHAR
 start_time:NX_DATE_TIME
 title:NX_CHAR
 NXcharacterization
 NXdata
 NXinstrument
 NXmonitor
 experiment_documentation:NXnote
 notes:NXnote
 thumbnail:NXnote
    @mime_type
 NXprocess
 NXsample
 NXsubentry
 NXuser
```

There is no conflict between the Dectris proposal and this class. We recommend that NIAC formally adopt the use of multiple NXdata NeXus class instances in NXentry and note that in the NXentry base class definition, not just imply that possibility in the NXdata base class definition as is now the case, so that the Detris proposal

```
NXentry_pad (application definition, version 0.1) (overlays NXentry) data_000001:NXDATA data_000002:NXDATA ... data_nnnnnn:NXDATA instrument:NXinstrument
```

will not raise any questions. The CIF mapping of the Dectris proposal would then be:

ullet ENTRY:NXentry ightarrow

_NXentry.NX_tree_path NEXUSTREEPATH

_NXentry.NX_id ENTRY

_NXentry.NX_scan_id SCANID

_NXentry.NX_diffrn_id DIFFRNID

_NXentry.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXentry_ENTRY'' where ENTRY is the name of this NeXus class instance, typically ''entry''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

ullet data_000001:NXDATA ightarrow

_NXentry.NXDATA_id data_000001

ullet data_000002:NXDATA ightarrow

_NXentry.NXDATA_id data_000002

. . .

 $\bullet \ \, \mathtt{data_nnnnn} : \mathtt{NXDATA} \, \, \to \, \,$

_NXentry.NXDATA_id data_nnnnnn

ullet instrument:NXinstrument ightarrow

_NXentry.NXinstrument_id instrument

7.2 NXinstrument

There is no conflict between the Dectris proposal and this class. The Dectris use is

NXinstrument

dectector: NXdetector

which is a standard use and would map in CIF to

ullet INSTRUMENT:NXinstrument ightarrow

_NXinstrument.NX_tree_path NEXUSTREEPATH

_NXinstrument.NX_id INSTRUMENT

_NXinstrument.NX_scan_id SCANID

_NXinstrument.NX_diffrn_id DIFFRNID

 $\verb|_NXinstrument.NX_entry_id ENTRYID| \\$

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXinstrument__INSTRUMENT'' where INSTRUMENT is the name of this NeXus class instance, typically ''instrument''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

ullet dectector:NXdetector ightarrow

_NXinstrument.NXdetector_id dectector

7.3 NXdetector

There are minor conflicts between the Dectris proposal and this class. Dectris has used the detector_number field as a character string, rather than as a number. We have added the ''Dectris_'' prefix for the character string version and changes the name to ''Dectris_detector_serial_number''. The use of character string serial ''numbers'' is a common practice for electronic equipment, so we recommend that a ''detector_serial_number:NX_CHAR'' field be added to the NXdetector base class to carry this information. The field detector_distance is not currently in this class. We have added the ''Dectris_'' prefix as a placeholder until a field with this information is added to the base class. Mark Koennecke has suggested ''sample_detector_distance'' as the new field name, so the name used here is ''Dectris_sample_detector_distance''

Dectris has added one subclass, which is likely to be needed for almost all pixel array detectors. However, at the moment, what is proposed is a Dectris-specific class definition, so rather than proposing the subclass immediately as a new NeXus base class, we propose the subclass with a ''DECTRIS_'' prefix. The revised NXdetector base class would then be as follows. The fields explicitly used by DECTRIS are noted with [**]. Fields proposed by Dectris that are not currently in the NXdetector base class are prefixed with the ''DECTRIS_'' prefix

```
NXdetector (base class, version 1.1)
 acquisition_mode:NX_CHAR
                                                    [**]
 angular_calibration:NX_FLOAT[i,j]
                                                    [**]
                                                    [**]
 angular_calibration_applied:NX_BOOLEAN
 azimuthal_angle:NX_FLOAT[np,i,j]
 beam_center_x:NX_FLOAT
                                                    [**]
 beam_center_y:NX_FLOAT
                                                    [**]
 bit_depth_readout:NX_UINT
                                                    [**]
 calibration_date:NX_DATE_TIME
 countrate_correction_applied:NX_BOOLEAN
                                                    [**]
                                                    [**]
 count_time:NX_NUMBER[np]
 crate:NX_INT[i,j]
    @local_name
 data: NX_NUMBER[np,i,j,tof]
    @signal
    @axes
    @long_name
    @check_sum
    @link
 data_error:NX_NUMBER[np,i,j,tof]
    @units
    @link
 dead_time:NX_FLOAT[np,i,j]
 description: NX_CHAR
                                                         [**]
 DECTRIS_sample_detector_distance:NX_FLOAT
                                                         [**]
 detection_gas_path:NX_FLOAT
 detector_number:NX_INT[i,j]
 DECTRIS_detector_serial_number:NX_CHAR
                                                         [**]
 detector_readout_time:NX_FLOAT
                                                         [**]
 DECTRIS_efficiency_correction_applied:NX_BOOLEAN
                                                         [**]
 diameter: NX_FLOAT
 distance: NX_FLOAT[np,i,j]
 flatfield:NX_FLOAT[i,j]
```

```
flatfield_applied:NX_BOOLEAN
                                                       [**]
flatfield_error:NX_FLOAT[i,j]
frame_start_number:NX_INT
                                                       [**]
frame_time:NX_FLOAT[NP]
gain_setting:NX_CHAR
                                                       [**]
gas_pressure:NX_FLOAT[i,j]
input:NX_INT[i,j]
  @local_name
layout: NX_CHAR
local_name:NX_CHAR
                                                       [**]
number_of_cycles:NX_INT
pixel_mask:NX_FLOAT[i,j]
                                                       [**]
pixel_mask_applied:NX_BOOLEAN
polar_angle:NX_FLOAT[np,i,j]
raw_time_of_flight:NX_INT[tof+1]
  @frequency
saturation_value:NX_INT
                                                       [**]
sensor_material:NX_CHAR
                                                       [**]
sensor_thickness:NX_FLOAT
sequence_number: NX_CHAR
slot:NX_INT[i,j]
  @local_name
solid_angle:NX_FLOAT[i,j]
                                                       [**]
threshold_energy:NX_FLOAT
time_of_flight:NX_FLOAT[tof+1]
  @axis
  @primary
  @long_name
  @link
trigger_dead_time:NX_FLOAT
trigger_delay_time:NX_FLOAT
type: NX_CHAR
DECTRIS_virtual_pixel_correction_applied:NX_BOOLEAN [**]
x_pixel_offset:NX_FLOAT[i,j]
  @axis
  @primary
  @long_name
  @link
x_pixel_size:NX_FLOAT[i,j]
                                                       [**]
y_pixel_offset:NX_FLOAT[i,j]
  @primary
  @long_name
                                                       [**]
y_pixel_size:NX_FLOAT[i,j]
characterization: NX characterization
detectorSpecific:DECTRIS\_detector\_specific
                                                       [**]
efficiency:NXdata
  efficiency: NX_FLOAT[i,j,k]
  real_time:NX_NUMBER[i,j,k]
  wavelength:NX_FLOAT[i,j,k]
```

```
geometry:NXgeometry
 calibration_method:NXnote
 data_file:NXnote
   adding
 {\tt DECTRIS\_sample\_detector\_distance:NX\_FLOAT}
 DECTRIS_detector_serial_number:NX_CHAR
 DECTRIS_efficiency_correction_applied:NX_BOOLEAN
 DECTRIS_virtual_pixel_correction_applied:NX_BOOLEAN
   and giving explicit suggested names to the NXcharacterization and NXgeometry instances.
NXdetector_detris (application definition, version 0.1)
  (overlays NXDetector)
NXdetector
 acquisition_mode:NX_CHAR
 angular_calibration_applied:NX_BOOLEAN
 beam_center_x:NX_FLOAT
    @units
 beam_center_y:NX_FLOAT
    @units
 bit_depth_readout:NX_UINT
 count_time:NX_FLOAT[np]
    @units
 countrate_correction_applied:NX_BOOLEAN
 description: NX_CHAR
 {\tt DECTRIS\_sample\_detector\_distance:NX\_FLOAT}
    Qunits
 DECTRIS_detector_serial_number:NX_CHAR
 detector_number: NX_CHAR
 detector_readout_time:NX_FLOAT[np]
    @units
 detectorSpecific:DECTRIS_detector_specific
 DECTRIS_efficiency_correction_applied:NX_BOOLEAN
 {\tt flatfield\_correction\_applied:NX\_BOOL}
 frame_time:NX_FLOAT[np]
    @units
 gain_setting:NX_CHAR
 number_of_cycles:NX_UINT
 pixel_mask_applied:NX_BOOL
 sensor_material:NX_STRING
 sensor_thickness:NX_FLOAT
    @units
 threshold_energy:NX_FLOAT
 DECTRIS_virtual_pixel_correction_applied:NX_BOOL
 x_pixel_size:NX_FLOAT
   @units
 y_pixel_size:NX_FLOAT
    @units
```

ullet DETECTOR:NXdetector ightarrow

_NXdetector.NX_tree_path NEXUSTREEPATH

_NXdetector.NX_id DETECTOR

_NXdetector.NX_scan_id SCANID

_NXdetector.NX_diffrn_id DIFFRNID

_NXdetector.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/NXdetector_DETECTOR'' where DETECTOR is the name of this NeXus class instance, typically ''detector''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & {\tt acquisition_mode:NX_CHAR=ACQUISITION_MODE} \ \to \\ \\ _{\tt NXdetector.acquisition_mode} \ \ ACQUISITION_MODE \end{array}$
- $\hbox{\tt angular_calibration_applied:NX_BOOLEAN=ANGULAR_CALIBRATION_APPLIED} \rightarrow \\ \hbox{\tt LNX} detector.angular_calibration_applied} \ \hbox{\tt ANGULAR_CALIBRATION_APPLIED}$
- Qunits=UNITS ightarrow _NXdetector.beam_center_x_units UNITS
- $\begin{array}{ll} \bullet & \text{beam_center_y:NX_FLOAT=BEAM_CENTER_Y} \ \to \\ \text{_NXdetector.beam_center_y} \ \ \text{BEAM_CENTER_Y} \end{array}$
- bit_depth_readout:NX_UINT=BIT_DEPTH_READOUT →
 _NXdetector.bit_depth_readout BIT_DEPTH_READOUT
- count_time:NX_FLOAT[np]=COUNT_TIME \rightarrow _NXdetector.count_time COUNT_TIME
- $\begin{array}{ll} \bullet & & \texttt{@units=UNITS} \ \to \\ & & \texttt{_NXdetector.count_time__units} \ \ \texttt{UNITS} \\ \end{array}$
- countrate_correction_applied:NX_BOOLEAN=COUNTRATE_CORRECTION_APPLIED \to _NXdetector.countrate_correction_applied COUNTRATE_CORRECTION_APPLIED
- $\begin{array}{ll} \bullet & {\tt description:NX_CHAR=DESCRIPTION} \to \\ {\tt _NXdetector.description} & {\tt DESCRIPTION} \end{array}$
- $\begin{array}{ll} \bullet & \mathtt{detector_number:NX_CHAR=DETECTOR_NUMBER} \ \to \\ -\mathtt{NXdetector_detector_number} \ \ \mathtt{DETECTOR_NUMBER} \end{array}$
- $\begin{array}{ll} \bullet & \text{detectorSpecific:DECTRIS_detector_specific} \rightarrow \\ _\text{NXdetector.DECTRIS_detector_specific_id} & \text{detectorSpecific} \end{array}$
- $\begin{array}{ll} \bullet & {\tt DECTRIS_detector_number: NX_CHAR=DETECTOR_NUMBER} \rightarrow \\ {\tt NXdetector.DECTRIS_detector_number} & {\tt DETECTOR_NUMBER} \end{array}$
- $\bullet \qquad \texttt{detector_readout_time:NX_FLOAT[np]=DETECTOR_READOUT_TIME} \ \to \\ \texttt{_NXdetector_detector_readout_time} \ \ \texttt{DETECTOR_READOUT_TIME}$
- efficiency_correction_applied:NX_BOOL=EFFICIENCY_CORRECTION_APPLIED \rightarrow _NXdetector.efficiency_correction_applied EFFICIENCY_CORRECTION_APPLIED

- flatfield_correction_applied:NX_BOOL=FLATFIELD_CORRECTION_APPLIED \rightarrow _NXdetector.flatfield_correction_applied FLATFIELD_CORRECTION_APPLIED
- frame_time:NX_FLOAT[np]=FRAME_TIME \rightarrow _NXdetector.frame_time FRAME_TIME
- $\begin{array}{ll} \bullet & {\tt gain_setting:NX_CHAR=GAIN_SETTING} \ \to \\ _{\tt NXdetector.gain_setting} \ {\tt GAIN_SETTING} \end{array}$
- number_of_cycles:NX_UINT=NUMBER_OF_CYCLES \rightarrow _NXdetector.number_of_cycles NUMBER_OF_CYCLES
- $\begin{array}{ll} \bullet & {\tt pixel_mask_applied:NX_BOOL=PIXEL_MASK_APPLIED} \ \to \\ _{\tt NXdetector.pixel_mask_applied} \ {\tt PIXEL_MASK_APPLIED} \end{array}$
- $\verb| sensor_material:NX_STRING=SENSOR_MATERIAL| \rightarrow \\ \verb| NXdetector.sensor_material| SENSOR_MATERIAL|$

- $\verb| threshold_energy:NX_FLOAT=THRESHOLD_ENERGY| \rightarrow \\ \verb| NXdetector.threshold_energy| THRESHOLD_ENERGY|$

- x_pixel_size:NX_FLOAT=X_PIXEL_SIZE \rightarrow _NXdetector.x_pixel_size X_PIXEL_SIZE
- $\begin{array}{ll} \bullet & & \texttt{@units=UNITS} \ \to \\ & & \texttt{_NXdetector.x_pixel_size__units} \ \texttt{UNITS} \end{array}$
- y_pixel_size:NX_FLOAT=Y_PIXEL_SIZE \rightarrow _NXdetector.y_pixel_size Y_PIXEL_SIZE
- Qunits=UNITS ightarrow _NXdetector.y_pixel_size__units UNITS

7.4 detectorSpecific:DECTRIS_detector_specific

These are some additions added by Dectris, that they designated as a new detectorSpecific:DectectorSpecific NeXus class instance.

```
DECTRIS\_detector\_specific (application definition, version 0.1)
countrate_correction_bunch_mode:NX_CHAR
countrate_correction_count_cutoff:NX_UINT
countrate_correction_lookup_table:NX_FLOAT[1000000]
data_collection_date:NX_CHAR
detectorModule_000:DECTRIS_detector_module
detectorModule_001:DECTRIS_detector_module
```

detectorModule_002:DECTRIS_detector_module detectorModule_003:DECTRIS_detector_module detectorModule_004:DECTRIS_detector_module detectorModule_005:DECTRIS_detector_module detectorModule_006:DECTRIS_detector_module detectorModule_007:DECTRIS_detector_module detectorModule_008:DECTRIS_detector_module detectorModule_009:DECTRIS_detector_module detectorModule_010:DECTRIS_detector_module detectorModule_011:DECTRIS_detector_module detectorModule_012:DECTRIS_detector_module detectorModule_013:DECTRIS_detector_module detectorModule_014:DECTRIS_detector_module detectorModule_015:DECTRIS_detector_module detectorModule_016:DECTRIS_detector_module detectorModule_017:DECTRIS_detector_module detectorModule_018:DECTRIS_detector_module detectorModule_019:DECTRIS_detector_module detectorModule_020:DECTRIS_detector_module detectorModule_021:DECTRIS_detector_module detectorModule_022:DECTRIS_detector_module detectorModule_023:DECTRIS_detector_module detectorModule_024:DECTRIS_detector_module detectorModule_025:DECTRIS_detector_module detectorModule_026:DECTRIS_detector_module detectorModule_027:DECTRIS_detector_module detectorModule_028:DECTRIS_detector_module detectorModule_029:DECTRIS_detector_module detectorModule_030:DECTRIS_detector_module detectorModule_031:DECTRIS_detector_module detectorModule_032:DECTRIS_detector_module detectorModule_033:DECTRIS_detector_module detectorModule_034:DECTRIS_detector_module detectorModule_035:DECTRIS_detector_module detectorModule_036:DECTRIS_detector_module detectorModule_037:DECTRIS_detector_module detectorModule_038:DECTRIS_detector_module detectorModule_039:DECTRIS_detector_module detectorModule_040:DECTRIS_detector_module detectorModule_041:DECTRIS_detector_module detectorModule_042:DECTRIS_detector_module detectorModule_043:DECTRIS_detector_module detectorModule_044:DECTRIS_detector_module detectorModule_045:DECTRIS_detector_module detectorModule_046:DECTRIS_detector_module detectorModule_047:DECTRIS_detector_module detectorModule_048:DECTRIS_detector_module detectorModule_049:DECTRIS_detector_module detectorModule_050:DECTRIS_detector_module detectorModule_051:DECTRIS_detector_module

```
detectorModule_052:DECTRIS_detector_module
detectorModule_053:DECTRIS_detector_module
detectorModule_054:DECTRIS_detector_module
detectorModule_055:DECTRIS_detector_module
detectorModule_056:DECTRIS_detector_module
detectorModule_057:DECTRIS_detector_module
detectorModule_058:DECTRIS_detector_module
detectorModule_059:DECTRIS_detector_module
detector_origin:NX_FLOAT
    @depends_on
    @transformation
    Qunits
    @vector
transformLabToDetector: NX_FLOAT
    @rotation:NX_FLOAT[9]
    @translation:NX_FLOAT[3]
    @units
flat field:NX_FLOAT[number of x pixels,number of y pixels]
mode_register:NX_UINT
nimages:NX_UINT
number_of_excluded_pixels:NX_UINT
photon_energy:NX_FLOAT
pixel_mask:NX_UINT[number of x pixels,number of y pixels]
readout_mode:NX_CHAR
software_version:NX_CHAR
sub_image_exposure_time:NX_FLOAT
summation_mode:NX_CHAR
summation_nimages:NX_UINT
{\tt trigger\_mode:NX\_CHAR}
x_pixels_in_detector:NX_UINT
y_pixels_in_detector:NX_UINT
   \bullet \  \, {\tt DETECTOR\_SPECIFIC:DECTRIS\_detector\_specific} \, \to \, \\
      _DECTRIS_detector_specific.NX_tree_path NEXUSTREEPATH
      _DECTRIS_detector_specific.NX_id DETECTOR_SPECIFIC
      _DECTRIS_detector_specific.NX_scan_id SCANID
      _DECTRIS_detector_specific.NX_diffrn_id DIFFRNID
      _DECTRIS_detector_specific.NX_entry_id ENTRYID
    where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under
    score and, finally, the name of the NeXus class instance, ending with ''/NXcollection-
    ___DETECTOR_SPECIFIC'' where _DETECTOR_SPECIFIC is the name of this NeXus class instance,
    typically "collection". The SCANID, DIFFRNID and ENTRYID are optional keys for use when
    multiple scans, etc. are aggregated in the same CBF.
      \verb|countrate_correction_bunch_mode: \verb|NX_CHAR=COUNTRATE_CORRECTION_BUNCH_MODE|| \rightarrow \\
      _DECTRIS_detector_specific.countrate_correction_bunch_mode
        COUNTRATE_CORRECTION_BUNCH_MODE
     countrate_correction_count_cutoff:NX_UINT=
        {\tt COUNTRATE\_CORRECTION\_COUNT\_CUTOFF} \ \to \\
      _DECTRIS_detector_specific.countrate_correction_count_cutoff
        COUNTRATE_CORRECTION_COUNT_CUTOFF
```

- countrate_correction_lookup_table:NX_FLOAT[1000000]
 =COUNTRATE_CORRECTION_LOOKUP_TABLE →
 _DECTRIS_detector_specific.countrate_correction_lookup_table
 COUNTRATE_CORRECTION_LOOKUP_TABLE
- data_collection_date:NX_CHAR=DATA_COLLECTION_DATE →
 _DECTRIS_detector_specific.data_collection_date DATA_COLLECTION_DATE
- detectorModule_000:DECTRIS_detector_module detectorModule_001:DECTRIS_detector_module ... detectorModule_059:DECTRIS_detector_module →

_DECTRIS_detector_specific.DECTRIS_detector_module_id
["detectorModule_000","detectorModule_001",...,"detectorModule_059"]

- $\label{eq:detector_origin:NX_FLOAT64=DETECTOR_ORIGIN} \rightarrow \\ _DECTRIS_detector_specific.detector_origin \ DETECTOR_ORIGIN$
- $\hbox{\tt 0depends_on=DEPENDS_ON} \to \\ \hbox{\tt DECTRIS_detector_specific.detector_origin__depends_on} \ \hbox{\tt DEPENDS_ON}$
- $\hbox{\tt @transformation=TRANSFORMATION} \rightarrow \\ \hbox{\tt _DECTRIS_detector_specific.detector_origin__transformation} \ \ \text{TRANSFORMATION}$
- Qunits=UNITS →
 _DECTRIS_detector_specific.detector_origin__units UNITS
- transformLabToDetector:NX_FLOAT64=TRANSFORMLABTODETECTOR \rightarrow _DECTRIS_detector_specific.transformLabToDetector_TRANSFORMLABTODETECTOR
- @translation=TRANSLATION →
 _DECTRIS_detector_specific.transformLabToDetector_translation TRANSLATION
- flatfield:NX_FLOAT[numberofxpixels,numberofypixels]=FLATFIELD \rightarrow _DECTRIS_detector_specific.flatfield FLATFIELD
- $\begin{tabular}{ll} & \verb|mode_register:NX_UINT=MODE_REGISTER| \rightarrow \\ & \verb|DECTRIS_detector_specific.mode_register| & \verb|MODE_REGISTER| \\ \end{tabular}$
- $\begin{array}{ll} \bullet & \texttt{nimages:NX_UINT=NIMAGES} \ \to \\ _\texttt{DECTRIS_detector_specific.nimages} \ \texttt{NIMAGES} \end{array}$
- $\bullet \quad \text{number_of_excluded_pixels:NX_UINT=NUMBER_OF_EXCLUDED_PIXELS} \ \to \\ _ DECTRIS_detector_specific.number_of_excluded_pixels \ NUMBER_OF_EXCLUDED_PIXELS$
- photon_energy:NX_FLOAT=PHOTON_ENERGY →
 _DECTRIS_detector_specific.photon_energy PHOTON_ENERGY
- $\begin{array}{ll} \bullet & \texttt{pixel_mask:NX_UINT[numberofxpixels,numberofypixels]=PIXEL_MASK} \ \to \\ _\texttt{DECTRIS_detector_specific.pixel_mask} \ \texttt{PIXEL_MASK} \end{array}$
- readout_mode:NX_CHAR=READOUT_MODE →
 _DECTRIS_detector_specific.readout_mode READOUT_MODE

- $\bullet \qquad \text{software_version:NX_CHAR=SOFTWARE_VERSION} \rightarrow \\ _\text{DECTRIS_detector_specific.software_version} \ \ \text{SOFTWARe_VERSION}$
- sub_image_exposure_time: NX_FLOAT=SUB_IMAGE_EXPOSURE_TIME →
 _DECTRIS_detector_specific.sub_image_exposure_time SUB_IMAGE_EXPOSURE_TIME
- $\verb| summation_mode:NX_CHAR=SUMMATION_MODE| \rightarrow \\ \verb| DECTRIS_detector_specific.summation_mode| SUMMATION_MODE|$
- summation_nimages:NX_UINT=SUMMATION_NIMAGES →
 _DECTRIS_detector_specific.summation_nimages SUMMATION_NIMAGES
- trigger_mode:NX_CHAR=TRIGGER_MODE →
 _DECTRIS_detector_specific.trigger_mode TRIGGER_MODE
- x_pixels_in_detector:NX_UINT=X_PIXELS_IN_DETECTOR →
 _DECTRIS_detector_specific.x_pixels_in_detector X_PIXELS_IN_DETECTOR
- y_pixels_in_detector:NX_UINT=Y_PIXELS_IN_DETECTOR →
 _DECTRIS_detector_specific.y_pixels_in_detector Y_PIXELS_IN_DETECTOR

The specific number of modules may vary.

7.5 detectorModule_nnn:DECTRIS_detector_module

```
DECTRIS\_detector\_module (application definition, version 0.1)
 dac_names:NX_CHAR[6]
 dac_values:NX_UINT[6]
 data_origin:NX_UINT[2]
 data_size:NX_UINT[2]
 detectorChip_000:DECTRIS_detector_chip
 detectorChip_001:DECTRIS_detector_chip
 detectorChip_002:DECTRIS_detector_chip
 detectorChip_003:DECTRIS_detector_chip
 detectorChip_004:DECTRIS_detector_chip
 detectorChip_005:DECTRIS_detector_chip
 detectorChip_006:DECTRIS_detector_chip
 detectorChip_007:DECTRIS_detector_chip
 detectorChip_008:DECTRIS_detector_chip
 detectorChip_009:DECTRIS_detector_chip
 detectorChip_010:DECTRIS_detector_chip
 detectorChip_011:DECTRIS_detector_chip
 detectorChip_012:DECTRIS_detector_chip
 detectorChip_013:DECTRIS_detector_chip
 detectorChip_014:DECTRIS_detector_chip
 detectorChip_015:DECTRIS_detector_chip
 fast_pixel_direction:NX_FLOAT64
    @depends_on
    @transformation
    @units
    @vector
 firmware_version:NX_CHAR
 module_offset:NX_FLOAT64
    @depends_on
    @transformation
```

```
@units
  @vector
nbits:NX_UINT
nchips:NX_UINT
readout_frequency:NX_FLOAT
  @units
region_of_interest:NX_UINT[4]
slow_pixel_direction:NX_FLOAT64
  @depends_on
  @transformation
  Ounits
  @vector
x_pixels_in_module:NX_UINT
y_pixels_in_module:NX_UINT
  ullet DETECTORMODULE:DECTRIS_detector_module 
ightarrow
      _DECTRIS_detector_module.NX_tree_path NEXUSTREEPATH
      _DECTRIS_detector_module.NX_id DETECTORMODULE
      _DECTRIS_detector_module.NX_scan_id SCANID
      _DECTRIS_detector_module.NX_diffrn_id DIFFRNID
      _DECTRIS_detector_module.NX_entry_id ENTRYID
    where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under
    score and, finally, the name of the NeXus class instance, ending with ''/DECTRIS_detector_module-
    __DETECTORMODULE'' where DETECTORMODULE is the name of this NeXus class instance, typically
    ''detectorModule_nnn''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when
    multiple scans, etc. are aggregated in the same CBF.
      dac\_names:NX\_CHAR[6]=DAC\_NAMES \rightarrow
      _DECTRIS_detector_module.dac_names DAC_NAMES
      dac\_values:NX\_UINT[7]=DAC\_VALUES \rightarrow
      _DECTRIS_detector_module.dac_values DAC_VALUES
      {\tt data\_origin:NX\_UINT[2]=DATA\_ORIGIN} \ \rightarrow
      _DECTRIS_detector_module.data_origin DATA_ORIGIN
      {\tt data\_size:NX\_UINT[2]=DATA\_SIZE} \ \rightarrow
      _DECTRIS_detector_module.data_size DATA_SIZE
  • detectorChip_000:DECTRIS_detector_chip
    detectorChip_001:DECTRIS_detector_chip
    {\tt detectorChip\_015:DECTRIS\_detector\_chip} \ \to \\
      _DECTRIS_detector_module.NXcollection_id
         ["detectorChip_000", "detectorChip_001", ..., "detectorChip_015"]
      {\tt fast\_pixel\_direction:NX\_FLOAT64=FAST\_PIXEL\_DIRECTION} \ \to \ \\
      _DECTRIS_detector_module.fast_pixel_direction FAST_PIXEL_DIRECTION
        <code>@depends_on=DEPENDS_ON</code> 
ightarrow
         _DECTRIS_detector_module.fast_pixel_direction__depends_on DEPENDS_ON
        {\tt @transformation=TRANSFORMATION} \ \to \\
         _DECTRIS_detector_module.fast_pixel_direction__transformation TRANSFORMATION
        @units=UNITS 
ightarrow
         _DECTRIS_detector_module.fast_pixel_direction__units UNITS
```

- @vector=VECTOR →
 _DECTRIS_detector_module.fast_pixel_direction__vector VECTOR
- $\begin{array}{ll} \bullet & \texttt{firmware_version:NX_CHAR=FIRMWARE_VERSION} \ \to \\ \texttt{_DECTRIS_detector_module.firmware_version} \ \ \texttt{FIRMWARe_VERSION} \end{array}$
- module_offset:NX_FLOAT64=MODULE_OFFSET →
 DECTRIS_detector_module.module_offset MODULE_OFFSET
- $\begin{array}{ll} \bullet & & \texttt{@transformation=TRANSFORMATION} \to \\ & & \texttt{_DECTRIS_detector_module.module_offset__transformation} & \texttt{TRANSFORMATION} \end{array}$
- Qunits=UNITS →
 _DECTRIS_detector_module.module_offset__units UNITS
- $\begin{array}{ll} \bullet & \texttt{nbits:NX_UINT=NBITS} \ \to \\ _\texttt{DECTRIS_detector_module.nbits} \ \texttt{NBITS} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{nchips:NX_UINT=NCHIPS} \ \to \\ _\texttt{DECTRIS_detector_module.nchips} \ \texttt{NCHIPS} \end{array}$
- $\begin{array}{ll} \bullet & \texttt{readout_frequency:NX_FLOAT=READOUT_FREQUENCY} \ \to \\ \texttt{_DECTRIS_detector_module.readout_frequency} \ \ \texttt{READOUT_FREQUENCY} \end{array}$

- slow_pixel_direction:NX_FLOAT64=SLOW_PIXEL_DIRECTION \rightarrow _DECTRIS_detector_module.slow_pixel_direction SLOW_PIXEL_DIRECTION
- Odepends_on=DEPENDS_ON →
 _DECTRIS_detector_module.slow_pixel_direction__depends_on DEPENDS_ON
- $\hbox{\tt @transformation=TRANSFORMATION} \to \\ \hbox{\tt _DECTRIS_detector_module.slow_pixel_direction_transformation} \ \ \hbox{\tt TRANSFORMATION}$
- $\begin{array}{ll} \bullet & & \texttt{@units=UNITS} \ \to \\ & \texttt{_DECTRIS_detector_module.slow_pixel_direction_units} \ \ \texttt{UNITS} \\ \end{array}$

- y_pixels_in_module:NX_UINT=Y_PIXELS_IN_MODULE →
 _DECTRIS_detector_module.y_pixels_in_module Y_PIXELS_IN_MODULE

The specific number of chips may vary.

7.6 detectorChip_nn:DECTRIS_detector_chip

DECTRIS_detector_chip chip_type:NX_CHAR x_pixels_in_chip:NX_UINT x_position:NX_UINT y_pixels_in_chip:NX_UINT y_position:NX_UINT

◆ DETECTORCHIP:DECTRIS_detector_chip →
 _DECTRIS_detector_chip.NX_tree_path NEXUSTREEPATH
 _DECTRIS_detector_chip.NX_id DETECTORCHIP
 _DECTRIS_detector_chip.NX_scan_id SCANID
 _DECTRIS_detector_chip.NX_diffrn_id DIFFRNID
 _DECTRIS_detector_chip.NX_entry_id ENTRYID

where components of NEXUSTREEPATH are composed of the relevant NeXus class, a double under score and, finally, the name of the NeXus class instance, ending with ''/DECTRIS_detector_chip__DETECTORCHIP'' where DETECTORCHIP is the name of this NeXus class instance, typically ''detectorChip_nnn''. The SCANID, DIFFRNID and ENTRYID are optional keys for use when multiple scans, etc. are aggregated in the same CBF.

- $\begin{array}{ll} \bullet & {\tt chip_type:NX_CHAR=CHIP_TYPE} \ \to \\ {\tt _NXcollection.chip_type} \ {\tt CHIP_TYPE} \end{array}$
- $\begin{array}{ll} \bullet & \text{x_position:NX_UINT=X_POSITION} \ \to \\ & _\text{NXcollection.x_position} \ \text{X_POSITION} \end{array}$
- y_pixels_in_chip:NX_UINT=Y_PIXELS_IN_CHIP \rightarrow _NXcollection.y_pixels_in_chip Y_PIXELS_IN_CHIP
- y_position:NX_UINT=Y_POSITION \rightarrow _NXcollection.y_position Y_POSITION

7.7 Consolidated Dectris Eiger Application Definition

In addition to the above classes, the Dectris application definition draws on NXsample for the rotation_angle_step and NXmonochromator for the wavelength. The Dectris Eiger NeXus format as proposed by Dectris with the proposed changes in this document marked with ''**[...]**'' is as follows. However, rotation_angle_step is not in the NeXus base class dictionary. Therefore, we flag it with the DETRIS prefix until it is formally adopted as part of the NXsample base class.

```
NXdectris_eiger (application definition, version 0.1)

(overlays NXentry)

entry:NXentry

data_000001:NXDATA

data:NXINT[np_000001,number of x pixels,number of y pixels]

@image_nr_low

@image_nr_high

data_000002:NXDATA

data:NXINT[np_000001,number of x pixels,number of y pixels]

@image_nr_low
```

```
@image_nr_high
data_nnnnnn:NXDATA
 data:NXINT[np_nnnnnn,number of x pixels,number of y pixels]
   @image_nr_low
    @image_nr_high
instrument: NXinstrument
 detector: NXdetector
   acquisition_mode:NX_CHAR
   angular_calibration_applied:NX_FLOAT32[number of x pixels,number of y pixels]
   beam_center_x:NX_FLOAT
      @units
   beam_center_y:NX_FLOAT
      @units
   bit_depth_readout:NX_UINT
   countrate_correction_applied:NX_BOOLEAN
   count_time:NX_FLOAT[np]
      Qunits
   description: NX_CHAR
   detector_number: NX_CHAR
   detectorSpecific:DetectorSpecific
                                                 **[detectorSpecific:DECTRIS_detector_specific]**
      countrate_correction_bunch_mode: NX_CHAR
      countrate_correction_count_cutoff:NX_UINT
      {\tt countrate\_correction\_lookup\_table:NX\_FLOAT[1000000]}
      data_collection_date:NX_CHAR
      detectorModule_000:detectorModule
                                                 **[detectorModule_000:DECTRIS_detector_module]**
        dac_names:NX_CHAR[6]
        dac_values:NX_UINT[7]
        data_origin:NX_UINT[2]
        data_size:NX_UINT[2]
        detectorChip_000:DetectorChip
                                                  **[detectorChip_000:DECTRIS_detector_chip]**
          chip_type:NX_CHAR
          x_pixels_in_chip:NX_UINT
          x_position:NX_UINT
          y_pixels_in_chip:NX_UINT
          y_position:NX_UINT
        detectorChip_001:DetectorChip
                                                  **[detectorChip_001:DECTRIS_detector_chip]**
          chip_type:NX_CHAR
          x_pixels_in_chip:NX_UINT
          x_position:NX_UINT
          y_pixels_in_chip:NX_UINT
          y_position:NX_UINT
                                                  **[detectorChip_015:DECTRIS_detector_chip]**
        detectorChip_015:DetectorChip
          chip_type:NX_CHAR
          x_pixels_in_chip:NX_UINT
          x_position:NX_UINT
          y_pixels_in_chip:NX_UINT
          y_position:NX_UINT
        fast_pixel_direction:NX_FLOAT
```

```
@transformation
    @vector:NX_FLOAT[3]
    @units
    @depends_on
 firmware_version:NX_CHAR
 module_offset:NX_FLOAT
    @transformation
    @vector:NX_FLOAT[3]
    @units
    @depends_on
 nbits:NX_UINT
 nchips:NX_UINT
 readout_frequency:NX_FLOAT
    @units
 region_of_interest:NX_UINT[4]
  slow_pixel_direction:NX_FLOAT
    @transformation
    @vector:NX_FLOAT[3]
    @units
    @depends_on
 x_pixels_in_module:NX_UINT
 y_pixels_in_module:NX_UINT
detectorModule_001:detectorModule
                                          **[detectorModule_001:DECTRIS_detector_module]**
 dac_names:NX_CHAR[6]
 dac_values:NX_UINT[7]
 data_origin:NX_UINT[2]
 data_size:NX_UINT[2]
                                           **[detectorChip_000:DECTRIS_detector_chip]**
 detectorChip_000:DetectorChip
    chip_type:NX_CHAR
    x_pixels_in_chip:NX_UINT
    x_position:NX_UINT
    y_pixels_in_chip:NX_UINT
    y_position:NX_UINT
  detectorChip_001:DetectorChip
                                           **[detectorChip_001:DECTRIS_detector_chip]**
    chip_type:NX_CHAR
    x_pixels_in_chip:NX_UINT
    x_position:NX_UINT
    y_pixels_in_chip:NX_UINT
   y_position:NX_UINT
                                           **[detectorChip_015:DECTRIS_detector_chip]**
 detectorChip_015:DetectorChip
    chip_type:NX_CHAR
    x_pixels_in_chip:NX_UINT
    x_position:NX_UINT
    y_pixels_in_chip:NX_UINT
    y_position:NX_UINT
  fast_pixel_direction:NX_FLOAT
    @transformation
    @vector:NX_FLOAT[3]
    @units
```

```
@depends_on
firmware_version:NX_CHAR
module_offset:NX_FLOAT
   @transformation
   @vector:NX_FLOAT[3]
   @units
   @depends_on
nbits:NX_UINT
nchips:NX_UINT
readout_frequency:NX_FLOAT
   @units
region_of_interest:NX_UINT[4]
 slow_pixel_direction:NX_FLOAT
   @transformation
   @vector:NX_FLOAT[3]
   @units
   @depends_on
x_pixels_in_module:NX_UINT
y_pixels_in_module:NX_UINT
detectorModule_059:detectorModule
                                          **[detectorModule_059:DECTRIS_detector_module]**
dac_names:NX_CHAR[6]
dac_values:NX_UINT[7]
data_origin:NX_UINT[2]
data_size:NX_UINT[2]
                                           **[detectorChip_000:DECTRIS_detector_chip]**
detectorChip_000:DetectorChip
   chip_type:NX_CHAR
   x_pixels_in_chip:NX_UINT
  {\tt x\_position:NX\_UINT}
   y_pixels_in_chip:NX_UINT
   y_position:NX_UINT
                                           **[detectorChip_001:DECTRIS_detector_chip]**
 detectorChip_001:DetectorChip
   chip_type:NX_CHAR
   x_pixels_in_chip:NX_UINT
   x_position:NX_UINT
   y_pixels_in_chip:NX_UINT
   y_position:NX_UINT
                                           **[detectorChip_015:DECTRIS_detector_chip]**
 detectorChip_015:DetectorChip
   chip_type:NX_CHAR
   x_pixels_in_chip:NX_UINT
   x_position:NX_UINT
   y_pixels_in_chip:NX_UINT
   y_position:NX_UINT
 fast_pixel_direction:NX_FLOAT
   @transformation
   @vector:NX_FLOAT[3]
   @units
   @depends_on
firmware_version:NX_CHAR
```

```
module_offset:NX_FLOAT
      @transformation
      @vector:NX_FLOAT[3]
      Qunits
      @depends_on
    nbits:NX_UINT
    nchips:NX_UINT
    readout_frequency:NX_FLOAT
      @units
    region_of_interest:NX_UINT[4]
    slow_pixel_direction:NX_FLOAT
      @transformation
      @vector:NX_FLOAT[3]
      @depends_on
    x_pixels_in_module:NX_UINT
    y_pixels_in_module:NX_UINT
  detector_origin:NX_FLOAT
    @transformation
    @vector:NX_FLOAT[3]
    @units
    @depends_on
  {\tt transformLabToDetector:NX\_FLOAT}
    @rotation:NX_FLOAT[9]
    @translation:NX_FLOAT[3]
  flatfield:NX_FLOAT[number of x pixels,number of y pixels]
  mode_register:NX_UINT
 nimages:NX_UINT
  number_of_excluded_pixels:NX_UINT
  photon_energy:NX_FLOAT
  pixel_mask:NX_UINT[number of x pixels,number of y pixels]
  readout_mode:NX_CHAR
  software_version:NX_CHAR
  sub_image_exposure_time:NX_FLOAT
  \verb|summation_mode:NX_CHAR||
  summation_nimages:NX_UINT
 trigger_mode:NX_CHAR
  x_pixels_in_detector:NX_UINT
 y_pixels_in_detector:NX_UINT
detector_number: NX_CHAR
detector_readout_time:NX_FLOAT[np]
efficiency_correction_applied:NX_BOOL
flatfield_correction_applied:NX_BOOL
frame_time:NX_FLOAT[np]
  @units
gain_setting:NX_CHAR
number_of_cycles:NX_UINT
pixel_mask_applied:NX_BOOL
```

References

- [1] Herbert J Bernstein, Andreas Förster, Asmit Bhowmick, Aaron S Brewster, Sandor Brockhauser, Luca Gelisio, David R Hall, Filip Leonarski, Valerio Mariani, Gianluca Santoni, Clemens Vonrhein, and Graeme Winter. Gold standard for macromolecular crystallography diffraction data. *IUCrJ*, 7(5):784 -- 792, 2020.
- [2] HJ Bernstein and AP Hammersley. International tables for crystallography, volume G: Definition and exchange of crystallographic data, chapter 2.3. Specification of the Crystallographic Binary File (CBF/imgCIF), page 37. Springer, 2006.
- [3] HJ Bernstein, JM Sloan, G Winter, and TS Richter. Managing crystallographic data in facilities using integrated cif, hdf5 and nexus. Work, 25:29, 2013.
- [4] J Drenth. chapter Introduction to basic crystallography, pages 45 -- 63. Wiley Online Library, 2012.
- [5] Mark Könnecke, Frederick A Akeroyd, Herbert J Bernstein, Aaron S Brewster, Stuart I. Campbell, Björn Clausen, Stephen Cottrell, Jens Uwe Hoffmann, Pete R. Jemian, David Männicke, Raymond Osborn, Peter F. Peterson, Tobias Richter, Jiro Suzuki, Benjamin Watts Watts, Eugen Wintersberger, and Joachim Wuttke Wuttke. The nexus data format. J. Appl. Cryst., 48(1):301 -- 305, 2015.
- [6] Andrew GW Leslie and Harry R Powell. Processing diffraction data with mosflm. In Evolving Methods for Macromolecular Crystallography, volume 245 of NATO Science Series, pages 41 -- 51. Springer, 2007.
- [7] Protein Data Bank. Protein data bank contents guide and dictionary. Format specification, Brookhaven National Laboratory, 1992. Available from: https://www.wwpdb.org/documentation/file-format.
- [8] George H Stout and Lyle H Jensen. X-ray structure determination: a practical guide. John Wiley & Sons, 1989.
- [9] John D. Westbrook, Jasmine Y. Young, Chenghua Shao, Zukang Feng, Vladimir Guranovic, Catherine L. Lawson, Brinda Vallat, Paul D. Adams, John M. Berrisford, Gerard Bricogne, Robbie P. Diederichs, Kay amd Joosten, Peter Keller, Nigel W. Moriarty, Oleg V. Sobolev, Sameer Velankar, Clemens Vonrhein, David G. Waterman, Genji Kurisu,

Helen M. Berman, Stephen K. Burley, and Ezra Peisach. Pdbx/mmcif ecosystem: foundational semantic tools for structural biology. J. Mol. Bio., 434(11):167599, 2022.