

Clustering: Algorithmes de Clustering

Le clustering par partitionnement

- Nous recherchons une partition plate C telle que les objets appartenant à un cluster sont similaires et que les objets appartenant à des clusters différents sont dissemblables.
- Rappelons qu'une partition est la même chose qu'un regroupement ou qu'une relation d'équivalence.

ipes.boutyour@gmail.com

197

Clustering: Algorithmes de Clustering

Le clustering par partitionnement

- On peut faire la distinction entre le clustering par partitionnement dur (ou crisp) et doux (ou fuzzy):
 - Dans le clustering dur : un objet n'appartient qu'à un seul cluster.
 - Dans le clustering doux, un objet peut appartenir à plusieurs clusters et dans ce cas, il a une valeur d'appartenance non nulle avec tous les clusters auxquels il appartient.

pes.boutyour@gmail.com

Clustering: Algorithmes de Clustering

Le clustering par partitionnement

- On peut faire la distinction entre le clustering par partitionnement dur (ou crisp) et doux (ou fuzzy):
 - Dans le clustering dur : un objet n'appartient qu'à un seul cluster.
 - Dans le **clustering doux**, un objet peut appartenir à plusieurs clusters et dans ce cas, il a une valeur d'appartenance non nulle avec tous les clusters auxquels il appartient.

Exemple de la matrice de répartition

$$\mathbf{U} = \begin{pmatrix} C_1 & C_2 & C_3 \\ \mathbf{x}_1 & 1 & 0 & 0 \\ \mathbf{x}_2 & 1 & 0 & 0 \\ \mathbf{x}_3 & 1 & 0 & 0 \\ \mathbf{x}_4 & 0 & 1 & 0 \\ \mathbf{x}_5 & \mathbf{x}_6 & 0 & 1 & 0 \\ \end{pmatrix}$$

199

Clustering : Méthodes de partitionnement

Principales méthodes de clustering

- Méthodes hiérarchiques :
- Méthodes de partitionnement :
 - Nuées dynamiques
 - Centres mobiles
 - K-means
 - Réseaux de Kohonen
- O Méthodes à estimation de densité
- Méthodes mixtes

Nuées dynamiques

- o Idée de base de cet algorithme dans des travaux de Hugo Steinhaus et Stuart Lloyd en 1957
- O Principe général des algorithmes de partitionnement
- O Noyau = sous-ensemble d'individus appartenant à la classe
 - * Noyau bien constitué \rightarrow meilleure représentativité de la classe
- Puisqu'on fixe le nombre de classes, on parle de typologie ou d'analyse typologique

ipes.boutyour@gmail.com

201

Clustering : Méthodes de partitionnement

Nuées dynamiques

- Algorithme :
 - 1. Indiquer le nombre de classes souhaitées k
 - 2. Tirer aléatoirement k objets qui constituent les noyaux initiaux des classes
 - Affecter chaque objet restant à la classe dont le noyau est le plus proche (calcul de la distance)
 - 4. Recalculer les noyaux des k classes
 - 5. Répéter de 3. jusqu'à stabilisation des classes ou qu'un nombre défini d'itération soit atteint

es.boutyour@gmail.com

Principales méthodes de clustering

- O Méthodes hiérarchiques :
- Méthodes de partitionnement :
 - Nuées dynamiques
 - Centres mobiles
 - K-means
 - Réseaux de Kohonen
- O Méthodes à estimation de densité
- Méthodes mixtes

ipes.boutyour@gmail.com

20

203

Clustering : Méthodes de partitionnement

Centres mobiles

- O Algorithme conçu en 1965
- O Remplace le noyau des classes par le barycentre
- o Le barycentre n'est pas forcément un objet « réel » dans la classe

oes.boutyour@gmail.com

Centres mobiles

- Algorithme :
 - 1. Indiquer le nombre de classes souhaitées k
 - 2. Tirer aléatoirement k objets comme centres initiaux des classes à constituer
 - 3. Rattacher chaque objet restant au centre le plus proche (calcul de la distance)
 - 4. Recalculer les barycentres des k classes
 - 5. Répéter de 3. jusqu'à stabilisation des classes ou qu'un nombre défini d'itération soit atteint

ipes.boutyour@gmail.com

205

205

Clustering: Méthodes de partitionnement

Centres mobiles

- Exemples :
 - 1. Soient $X(1 \ 2 \ 9 \ 12 \ 20)$, k=2, $C_1 = \{1\}$ et $C_2 = \{20\}$, appliquer l'algorithme des centres mobiles pour créer les deux clusters.

pes.boutyour@gmail.com

Centres mobiles

• Exemples :

$$X(1 \ 2 \ 9 \ 12 \ 20)$$
, k=2, $C_1 = \{1\}$ et $C_2 = \{20\}$

	$d^2(x,C_1)$	$d^2(x,C_2)$
1		
2		
9		
12		
20		
	Itáration 1	

$$\mathsf{d}^2(\mathsf{1},\mathsf{C}_1) \; = \;$$

$$d^2(1,C_2) =$$

$$d^2(2,C_1) =$$

$$d^2(2,C_2) =$$

$$d^2(9, C_1) =$$

$$d^2(9, C_2) =$$

$$d^2(12,C_1) =$$

$$d^2(12, C_2) =$$

$$d^2(20, C_1) =$$

$$d^2(20, C_2) =$$

Itération 1

207

Clustering : Méthodes de partitionnement

Centres mobiles

• Exemples :

$$X(1 \quad 2 \quad 9 \quad 12 \quad 20)$$
 , k=2 , C $_1$ ={1} et C $_2$ = {20}

	$d^2(x,C_1)$	$d^2(x,C_2)$
1		
2		
9		
12		
20		

$$d^2(1,C_1) = 0$$

$$d^2(1,C_2) =$$

$$d^2(2, C_1) = (2-1)^2 = 1$$

$$d^2(2,C_2) =$$

$$d^{2}(9,C_{1}) = (9-1)^{2} = 64$$
 $d^{2}(9,C_{2}) =$

$$d^{2}(0, C) =$$

$$d^{2}(12,C_{1}) = (12-1)^{2} = 121$$
 $d^{2}(12,C_{2}) =$

$$d^{2}(12 \ C) -$$

$$d^2(20, C_1) = (20-1)^2 = 361$$

$$d^2(20, C_2) =$$

Itération 1

Centres mobiles

• Exemples :

$$X(1 \ 2 \ 9 \ 12 \ 20)$$
 , k=2 , $C_1 = \{1\}$ et $C_2 = \{20\}$

	$d^2(x,C_1)$	$d^2(x,C_2)$	
1	0	361	
2	1	324	
9	64	121	
12	121	64	
20	361	0	
	Itération 1		

$$d^2(1,C_1) = 0$$

$$d^{2}(2,C_{1}) = (2-1)^{2} = 1$$
 $d^{2}(2,C_{2}) = (2-20)^{2} = 324$

$$d^{2}(9,C_{1}) = (9-1)^{2} = 64$$

 $d^{2}(12,C_{1}) = (12-1)^{2} = 121$

$$d^2(20,C_1) = (20-1)^2 = 361$$

$$d^2(1,C_2) = (1-20)^2 = 361$$

$$d^2(2, C_2) = (2-20)^2 = 324$$

$$d^2(9,C_2) = (9-20)^2 = 121$$

$$d^2(12,C_2) = (12-20)^2 = 64$$

$$d^2(20,C_2) = (20-20)^2 = 0$$

209

Clustering : Méthodes de partitionnement

Centres mobiles

• Exemples :

$$X(1 \quad 2 \quad 9 \quad 12 \quad 20)$$
 , k=2 , C $_1$ ={1} et C $_2$ = {20}

	$d^2(x,C_1)$	$d^2(x,C_2)$	
1	0	361	
2	1	324	
9	64	121	
12	121	64	
20	361	0	
	Itération 1		

Cluster 1	Cluster 2	
1	12	
2	20	
9	-	
Barycentres		

Centres mobiles

• Exemples :

$$X(1 \ 2 \ 9 \ 12 \ 20)$$
 , k=2 , $C_1 = \{1\}$ et $C_2 = \{20\}$

	$d^2(x,C_1)$	$d^2(x,C_2)$
1	0	361
2	1	324
9	64	121
12	121	64
20	361	0
Itération 1		

Cluster 1 Cluster 2 1 12 20 **Barycentres** (1+2+9)/3 = 4 (12+20)2 = 16

211

Clustering : Méthodes de partitionnement

Centres mobiles

• Exemples :

$$X(1 \quad 2 \quad 9 \quad 12 \quad 20)$$
 , k=2 , $C_1 = \{4\}$ et $C_2 = \{16\}$

	$d^2(x,C_1)$	$d^2(x,C_2)$
1		
2		
9		
12		
20		
	Itáration 2	

$$\mathsf{d}^2(\mathsf{1},\mathsf{C}_1) \; = \;$$

$$d^2(1,C_2) =$$

$$d^2(2, C_1) =$$

$$d^2(2,C_2) =$$

$$d^2(9, C_1) =$$

$$d^2(9, C_2) =$$

$$d^2(12, C_1) =$$

$$d^2(12, C_2) =$$

$$d^2(20, C_1) =$$

$$d^2(20, C_2) =$$

Centres mobiles

• Exemples :

$$X(1 \ 2 \ 9 \ 12 \ 20)$$
, $k=2$, $C_1 = \{4\}$ et $C_2 = \{16\}$

	$d^2(x,C_1)$	$d^2(x,C_2)$
1	9	225
2	4	196
9	25	49
12	64	16
20	256	16
Itération 2		

$$d^{2}(1,C_{1}) = (1-4)^{2} = 9$$
 $d^{2}(1,C_{2}) = (1-16)^{2} = 225$

$$d^2(1,C_2) = (1-16)^2 = 22$$

$$d^2(2, C_1) = (2-4)^2 = 4$$

$$d^{2}(2,C_{1}) = (2-4)^{2} = 4$$
 $d^{2}(2,C_{2}) = (2-16)^{2} = 196$

$$d^2(9, C_1) = (9-4)^2 = 25$$

$$d^2(9,C_2) = (9-16)^2 = 49$$

$$d^2(12, C_1) = (12-4)^2 = 64$$

$$d^2(12,C_2) = (12-16)^2 = 16$$

$$d^2(20, C_1) = (20-4)^2 = 256$$

$$d^2(20, C_2) = (20-16)^2 = 16$$

213

Clustering : Méthodes de partitionnement

Centres mobiles

• Exemples :

$$X(1 \ 2 \ 9 \ 12 \ 20)$$
 , k=2 , $C_1 = \{4\}$ et $C_2 = \{16\}$

$d^2(x,C_1)$	$d^2(x,C_2)$
9	225
4	196
25	49
64	16
256	16
	9 4 25 64

Cluster 1 Cluster 2 12 20 **Barycentres** (1+2+9)/3 = 4 (12+20)2 = 16

Itération 2

Les clusters sont stables → convergence de l'algorithme

Centres mobiles

• Exemples :

$$X(1 \ 2 \ 9 \ 12 \ 20)$$
, $k=2$, $C_1 = \{4\}$ et $C_2 = \{16\}$

	$d^2(x,C_1)$	$d^2(x,C_2)$
1	9	225
2	4	196
9	25	49
12	64	16
20	256	16
	Itération	2

Les clusters sont stables \rightarrow convergence de l'algorithme

215

Clustering : Méthodes de partitionnement

Principales méthodes de clustering

- O Méthodes hiérarchiques :
- Méthodes de partitionnement :
 - Nuées dynamiques
 - Centres mobiles
 - K-means
 - Réseaux de Kohonen
- O Méthodes à estimation de densité
- Méthodes mixtes

K-Means

- O Algorithme conçu en 1967
- O Variante de l'algorithme des centres mobiles
- Recalcule du barycentre de chaque classe après introduction de chaque nouvel individu
- Moins d'itérations nécessaires avant stabilisation des classes → plus grande rapidité
- O Rapidité dépend de l'ordre d'introduction des individus

ipes.boutyour@gmail.com

017

217

Clustering : Méthodes de partitionnement

K-Means

- Algorithme :
 - 1. Indiquer le nombre de classes souhaitées k
 - 2. Tirer aléatoirement k objets comme centres initiaux des classes à constituer
 - 3. Pour chaque objet:
 - Rattacher l'objet au centre le plus proche (calcul de la distance)
 - Recalculer les barycentres des classes concernées
 - 4. Répéter de 3. jusqu'à stabilisation des classes ou qu'un nombre défini d'itération soit atteint

pes.boutyour@gmail.com

K-Means

O Qualité d'une classification: R2

Proportion de la variance (inertie) expliquée par les classes.

$$R^2 = \frac{I_R}{I_{Total}}$$

- $0 \le \mathbb{R}^2 \le 1$
- Plus c'est proche de 1, plus la classification est bonne
- Critère d'arrêt de fusion des classes: arrêter après le dernier changement de valeur important du R²
- O Pseudo F: $Pseudo F = \frac{\frac{R^2}{nombre \ de \ classes 1}}{\frac{1 R^2}{nombre \ d' \ observations nombre \ de \ classes}}$
 - Proportion de la variance (inertie) expliquée par les classes.

ipes.boutyour@gmail.com

210

219

Clustering : Méthodes de partitionnement

K-Means

Comment choisir k:

- Afin de trouver le nombre optimal de clusters pour un k-means, il est recommandé de le choisir en se basant sur :
 - O Le contexte du problème traité
 - Les 4 approches suivantes :
 - La méthode du coude (Elbow method) (qui utilise les sommes des carrés à l'intérieur des groupes WSS).
 - Méthode de la silhouette moyenne
 - Méthode de la statistique de l'écart (Gap)
 - Algorithme basé sur le consensus

Plus d'info sur l'article suivant: https://cran.rproject.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf

pes.boutyour@gmail.com

K-Means

Oceant choisir k:

- Méthode du coude (Elbow method):
 - Calculer l'algorithme de clustering (par exemple, le clustering k-means) pour différentes valeurs de k. Par exemple, en faisant varier k de 1 à 10 clusters.
 - \circ Pour chaque k, calculer la variance inter-classe I_A du cluster (WSS: within-cluster sum of square).
 - \circ Tracer la courbe de I_A en fonction du nombre de clusters k.
 - L'emplacement d'un coude (genou) dans la parcelle est généralement considéré comme un indicateur du nombre approprié de clusters.

221

Clustering: Méthodes de partitionnement

K-Means

Exemple:

	x	Y
1	1	9
2	2	7
3	4	3
4	5	3
5	7	2
6	8	4
7	10	11
8	11	9
9	9	10
10	12	8

<u>WSS:</u> Within-cluster sum of square

BSS: Between Sum of

Squares

TSS: Total Sum of Squares

pes.boutyour@gmail.com

Exemple:

$$WSS = \sum_{i=1}^{n_c} \sum_{x \in i} d(x, \bar{x}_i)^2 = WSS_1 + WSS_2 + WSS_3$$

$$WSS_3 = \sum_{x \in 3} d(x, \bar{x}_3)^2 = (12 - 11.5)^2 + (8 - 8.5)^2 + (11 - 11.5)^2 + (9 - 8.5)^2$$

K-Means

• Exemple:

	x	Y
1	1	9
2	2	7
3	4	3
4	5	3
5	7	2
6	8	4
7	10	11
8	-11	9
9	9	10
10	12	8

$$WSS = \sum_{i=1}^{n_c} \sum_{x \in i} d(x, \bar{x}_i)^2 = WSS_1 + WSS_2 + WSS_3$$

$$WSS_3 = \sum_{x \in 3} d(x, \bar{x}_3)^2 = (12 - 11.5)^2 + (8 - 8.5)^2 + (11 - 11.5)^2 + (9 - 8.5)^2$$
$$= 0.5^2 + 0.5^2 + 0.5^2 + 0.5^2 = 1$$

Principales méthodes de clustering

- O Méthodes hiérarchiques :
- Méthodes de partitionnement :
 - Nuées dynamiques
 - Centres mobiles
 - K-means
 - Réseaux de Kohonen
- O Méthodes à estimation de densité
- Méthodes mixtes

ipes.boutyour@gmail.com

0.0

239

Clustering : Méthodes de partitionnement

Réseaux de Kohonen : SOM (Self Organizing Map)

- O La carte auto-organisatrice est un type de réseau neuronal artificiel.
- O Réseaux de neurones à apprentissage non supervisé
- O Son réseau est entrainé avec un algorithme d'apprentissage compétitif.
- SOM est utilisé pour les techniques de regroupement et de cartographie (ou de réduction de la dimensionnalité).
- O Réduire des problèmes complexes pour en faciliter l'interprétation.
- Le SOM comporte deux couches, l'une étant la couche d'entrée et l'autre la couche de sortie.

pes.boutyour@gmail.com

Réseaux de Kohonen : SOM (Self Organizing Map)

Objectif:

 Représenter un grand échantillon d'individus avec plusieurs variables en une carte à deux dimensions où les nœuds les plus proches sont similaires.

O Principe :

 « Assigner des centres de classe à une couche radiale en soumettant de façon itérative des formes d'apprentissage au réseau, et en ajustant les pondérations des centres des unités radiales gagnantes (plus proches), et de ses voisins »

ipes.boutyour@gmail.com

2.4

241

Clustering : Méthodes de partitionnement

Réseaux de Kohonen : SOM (Self Organizing Map)

oes.boutyour@gmail.com

Clustering : Méthodes de partitionnement

Réseaux de Kohonen : SOM (Self Organizing Map)

- La taille et la forme de la grille sont choisies par l'utilisateur et peuvent évoluer au cours de l'apprentissage.
- Chaque nœud d'entrée est connecté à tous les nœuds de sortie avec une pondération p_{ijk} qui est initialisé aléatoirement.
- O La réponse d'un nœud (i,j) à un individu $\mathbf{x}=(\mathbf{x}_1 \dots \mathbf{x}_N)$ est la distance : $d_{ij}(X)=\sum_{k=1}^N \bigl(x_k-p_{ijk}\bigr)^2$ \rightarrow fonction de score
- O Le nœud (i,j) retenu pour représenter l'individu x est celui qui a le meilleur score = minimise d_{ii} (X)

es.boutyour@gmail.com

Réseaux de Kohonen : SOM (Self Organizing Map)

- O Les nœuds de sortie sont en compétition entre eux pour être le gagnant -> Algorithme compétitif.
- O Pour chaque individu, un seul nœud de sortie est activé: le nœud gagnant = cluster représentant de l'individu.
- O Les poids du nœud gagnant et ses voisions sont réajustés -> Deux individus proches sont représentés par deux nœuds proches.
- O Apprentissage achevé quand :
 - O Chaque individu a été présenté au réseau
 - O Tous les poids ont été ajustés

245

Clustering : Méthodes de partitionnement

Réseaux de Kohonen : SOM (Self Organizing Map)

Algorithme SOM :

- 1. Initialisation des poids
- 2. Pour 1 à N nombre d'époques
- 3. Sélectionner l'échantillon l'apprentissage pour (Training)
- 4. Calculer le vecteur gagnant
- 5. Mettre à jour le vecteur gagnant
- 6. Répéter 3, 4, 5 pour tous les individus de l'échantillon d'apprentissage.
- 7. Procéder à la classification de l'échantillon du test

Clustering: Méthodes de partitionnement Réseaux de Kohonen: SOM (Self Organizing Map) Avantages: Classification raffinée Une technique de réduction de dimension non linéaire Inconvénients: Difficulté de lire les résultats Nécessité de fixer le nombre de classes à l'avance Nécessite de normaliser les variables sensibles aux valeurs extrêmes

Clustering

Principales méthodes de clustering

- O Méthodes hiérarchiques :
- O Méthodes de partitionnement :
- O Méthodes à estimation de densité
 - DBSCAN
 - DENCLUE
- Méthodes mixtes

pes.boutyour@gmail.com

Clustering : Méthodes à estimation de densité

- O Principales caractéristiques :
 - O Découvrir des clusters de forme arbitraire
 - O Gérer les bruits
 - Un seul balayage
 - O Nécessité de paramètres de densité comme condition de terminaison
- O Algorithmes les plus célèbres:
 - **DBSCAN**: Ester, et al. (KDD'96) **OPTICS**: Ankerst, et al (SIGMOD'99)
 - o DENCLUE: Hinneburg & D. Keim (KDD'98) CLIQUE: Agrawal, et al. (SIGMOD'98)

ipes.boutyour@gmail.com

2.0

251

Clustering : Méthodes à estimation de densité

DBSCAN

- O Density-Based Spatial Clustering of Applications with Noise
- O Deux paramètres :
 - Eps: la distance maximale entre deux points pour qu'ils soient considérés comme voisins
 - MinPts: le nombre minimum de points nécessaires pour former un cluster
- O Trois types de points à considérer :
 - 1. Point central (core point): il a plus que le nombre spécifié de points (MinPts) dans Eps
 - 2. Point de frontière (border point): il a moins de MinPts dans Eps, mais se trouve dans le voisinage d'un point central.
 - 3. Point bruit (noise point): autre point que le «point central » et le « point de frontière »

pes.boutyour@gmail.com

Clustering : Méthodes à estimation de densité

DBSCAN

Ochoix des paramètres :

O Eps:

- Si trop petite, une grande partie des données ne sera pas classifiée car sera considérée comme bruit;
- Si trop grande, les clusters risquent d'être fusionnés → grand nombre d'observations dans même cluster;
- En général, privilégier un Eps de petite valeur (pas trop)

MinPts:

- Les grandes valeurs sont préférables si données bruitées
- La valeur minimale conseillée est 3
- Plus les grand le dataset, plus grande la valeur de MinPoints;
- Astuce: MinPts \geq nombre de variables + 1

ipes.boutyour@gmail.com

2.5

Clustering : Méthodes à estimation de densité

DBSCAN: complexité

Ocomplexité en temps :

 $O(n^2)$ -pour chaque point il faut déterminer s'il s'agit d'un point central, il peut être réduit à $O(n^*log(n))$ dans des espaces de dimension inférieure en utilisant des structures de données efficaces (n est le nombre d'objets à regrouper) ;

Oceanité de l'espace :

O(n)

ipes.boutyour@gmail.co

257

Clustering : Méthodes à estimation de densité

DBSCAN:

Avantages:

- Efficace en temps de calcul
- Pas besoin de fixer le nombre de clusters à l'avance
- Permet de trouver des clusters de formes arbitraires

• Inconvénients:

- Difficile à utiliser quand le nombre de variables est grand
- Le choix des paramètres est délicat

ipes.boutyour@gmail.com

Clustering

Principales méthodes de clustering

- O Méthodes hiérarchiques :
- O Méthodes de partitionnement :
- O Méthodes à estimation de densité
 - DBSCAN
 - DENCLUE
- Méthodes mixtes

ipes.boutyour@gmail.com

2.5

259

Clustering : Méthodes à estimation de densité

DENCLUE

- DENsity based CLUstEring
- Adapté aux données bruitées
- Opère en deux étapes:
- o 1. Construire un hyperrectangle des données à classifier
 - Chaque hyperrectangle est composé d'hypercubes dont la dimension est le nombre de variables
 - On ne considère que les hypercubes peuplés
- 2. Déterminer les clusters à partir des hypercubes à forte densité (dont le nombre de points dépasse un seuil fixé) et les hypercubes voisins

pes.boutyour@gmail.com

Clustering: Méthodes à estimation de densité

DENCLUE

- o Basé sur le concept de calcul de l'influence entre les points → fonction d'influence
- Obécrit l'impact (l'influence) d'un point dans son voisinage (sur ses points voisins)

$$f_{Gauss}(x,y) = exp^{-rac{d(x,y)^2}{2\sigma^2}}$$
 avec σ est le rayon de voisinage de x

o La somme des fonctions d'influence de tous les points → fonction de densité

$$f_D(x) = \sum_{i=1}^{N} f_{Gauss}(x, x_i)$$

avec D est l'ensemble des objets à classifier et N le cardinal de D

ipes.boutyour@gmail.com

261

Clustering : Méthodes à estimation de densité

DENCLUE

<u>Exemple:</u>

 \circ Soit D = {a, b, c, d}

of $f_D(x) = f_{Gauss}(x, a) + f_{Gauss}(x, b) + f_{Gauss}(x, c) + f_{Gauss}(x, d)$ = 0.78

es.boutyour@gmail.com

Clustering : Méthodes à estimation de densité

DENCLUE

- O Les clusters sont déterminés en utilisant la méthode hill-climbing
 - o Identifier les « density attractors » = maxima locaux de la fonction de densité
 - O Les objets associés au même density attractor appartiennent au même cluster

ipes.boutyour@gmail.com

263

Clustering : Méthodes à estimation de densité

DENCLUE

- Avantages:
 - Il repose sur une solide base numérique et généralise plusieurs approches de regroupement, telles que les méthodes de partitionnement, hiérarchiques et basées sur la densité.
 - Il possède de bonnes propriétés de regroupement pour les ensembles de données comportant de grandes quantités de bruit.
 - Ces méthodes nécessitent une sélection minutieuse du paramètre de densité σ et du seuil de bruit ξ , car la sélection de ces paramètres peut influencer de manière significative la qualité des résultats du clustering.

ipes.boutyour@gmail.com

