Билет I

Механическое движение. Система отсчета. Траектория. Путь. Вектор перемещения и его проекции. Координатный и векторный способы описания движения. Закон движения. Скорость. Средняя скорость. Равномерное прямолинейное движение

 ${f Mexahuчeckoe}$ движение — изменение пространственного положения тела относительно других тел с течением времени.

Траектория — линия, по которой двигалось тело.

Путь — длина участка траектории, пройденного материальной точкой за данный промежуток времени.

Перемещение — вектор, проведенный из начального положения материальной точки в конечное.

система координат — набор осей, по которым исслудуется движение.

Материальная точка — тело, обладающее массой, размерами которого можно в данной задаче пренебречь.

Система отсчета — совокупность тела отсчета, связанной с ним системы координат и часов.

Средняя скорость — скалярная величина, равная отношению пройденного пути к промежутку времени, в течение которого этот путь пройден.

 $v_{cp} = \frac{l}{t}$

Скорость — векторная физическая величина, равная пределу отношения перемещения тела к промежутку времени, в течение которого это перемещение произошло. Физический смысл: быстрота изменения координаты.

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta \vec{t}}$$

Уравнение движения — зависимость координаты от времени

$$x = x_0 + S$$

уравнение движения позволяет определяить положение тела в любой момент времени.

Равномерное прямолинейное движение — равномерным называется движение, при котором тело за любые равные промежутки времени проходит одинаковые пути.

$$x = x_0 + vt$$

Физический смысл скорости движения — быстрота изменения координат.

Билет II

Неравномерное движение. Мгновенная скорость. Ускорение. Равноускоренное движение. Закон равноускоренного движения. Графики координаты и скорости при равноускоренном движении. Криволинейное движение. Скорость и ускорение при криволинейном движении.

Неравномерное движение — тело за любые равые промежутки времени проходит неравное количество пути.

Мгновенная скорость — скорость тела в данный момент времени.

Ускорение — физическая фелечина, равная отношению изменения скорости к промежутку времени, за которое это изменение произошло. Физический смысл: быстрота изменения скорости.

$$a = \frac{\Delta v}{\Delta t}$$

Равноускоренное движение — движение, при котором скорость изменяется на одинаковую величину за равные отрезки времени.

$$\vec{v} = \vec{v_0} + \vec{a}\Delta t$$

Билет III

Центростремительное и тангенциальное ускорения.

Центростремительное ускорение — ускорение, характеризующее быстроту изменения направления линейной скорости при движении точки по окружности. Любое криволинейное движение, можно разбить на дуги, по которым движется тело. Пермендекилярно вектору скорости.

$$a = \frac{v^2}{R}$$

Тангенциальное ускорение — ускорение тела, сонаправленное вектору движения. Изменение линейной скорости тела.

$$a = \frac{\Delta v}{\Delta t}$$

Билет IV

Движение тела, брошенного под углом к горизонту. Закон движения. Траектория движения и её уравнение. Дальность полета и максимальная высота подъема. Центростремительное и тангенциальное ускорение. Движение по окружности. Угловая скорость и угловое ускорение. Связь между угловыми и линейными характеристиками движения. Период и частота.

Движение тела, брошенного под углом к горизонту — тело брошенное под углом α и скоростью v движется в пространстве под действием силы тяжести. Горизонтальная составляющая сткорости $v\cos\alpha$, вертикальная состовляющая $v\sin\alpha-gt$

Траектория — линия, по которой двигалось тело.

$$\{x, y, z\} = \{x_0 + S_x, y_0 + S_y, y_0 + S_y\}$$

Максимальная дальность полета —

$$L = \frac{v_0^2 \sin 2\alpha}{q}$$

Максимальная высота полета —

$$H = \frac{v_0^2 sin^2 \alpha}{2a}$$

Движение по окружности — криволинейное движение, траекторией которого является окружность. **Период** — время одного полного оборота.

$$T = \frac{t}{N}$$

Частота — количество оборотов за 1 секунду.

$$V = \frac{N}{t}$$

Угловая скорость — отношение угла поворота ко времени поворота.

$$\omega = \frac{\lambda}{\Delta t}$$

Угловая скорость при равномерном движении — количество оборотов за 2π секунд.

$$\omega = \frac{2\pi}{T} = 2\pi \mathcal{V}$$

Скорость движения по окружности —

$$v = \frac{2\pi R}{T} = 2\pi R \mathcal{V} = \omega R$$

Билет V

Относительность механического движения. Формула сложения скоростей. Закон инерции Галилея. Первый закон Ньютона. Инерциальные системы отсчета.

Закон Галилея. Относительное движение тел — скорость тела относительно неподвижной системы отсчета равняется векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной.

$$v = v_1 + v_2$$

Иннерция — явление сохранения телом скорости по направлению и значению.

Инертность — Свойство тела сохранять свою скорость по напрвлению и значению.

Масса — мера инертности.

 ${f M}$ нерциальная система отсчета — система отсчета, тело отсчета которого движется равномено и прямолинейно или покоится.

Первый закон Ньютона — существую такие системы отсчета, относительно которых тела движутся равномерно и прямолинейно или покоятся, если на них не действует сила или действие сил компенсируется.

Билет VI

Масса. Сила. Второй закон Ньютона. Сложение сил. Измерение сил. Взаимодействие тел. Третий закон Ньютона. Принцип относительности Галилея.

Macca — мера инертности.

сила — мера взаимодействия.

Второй закон Ньютона — ускорение тела прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорионально массе этого тела

$$\vec{a} = \frac{\vec{F}}{m}$$

 ${f Tpetu\"u}$ закон ${f H}$ ьютона — при взаимодействии возникает две силы, равные по занчению друг-другу по велечине и противоположные по направлению, приложенные к разным телам.

Равнодействующая всех сил — векторная сумма всех сил, действующих на тело.

Билет VII

Сила упругости. Упругие и неупругие деформации. Закон Гука. Модуль Юнга. Движение под действием силы упругости. Силы трения. Сухое трение: трение покоя и скольжения. Коэффициент трения. Вязкое трение. Движение под действием силы трения. Движение и трение покоя. Тормозной путь. Время торможения.

Дефформирование — изменение формы или объема тела. Дефформации бывают:

- 1. Упругие исчезают после перкращения действия деформирующей силы.
- 2. Пластические (не упругие) чистично или полностью сохраняется после прекращения действия деформирующей силы.

Сила упругости — сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение.

 ${f 3}$ акон ${f \Gamma}$ ука — деформация, возникающая в упругом теле, пропорциональна приложенной к этому телу силе.

$$F = k\Delta l$$

Модуль Юнга — механическая характеристика тела. [Е]

$$k = \frac{ES}{L}$$

Относительное удлинение —

$$\mathcal{E} = \frac{\Delta l}{L}$$

Нормальное напряжение в поперечном сечении —

$$\sigma = \frac{F}{S}$$

Закон гукадля относиельных велечин —

$$\sigma = E\mathcal{E}$$

Закон Гука в относительной форме —

$$\Delta l = \frac{FL}{ES}$$

Сила трения — сила, возникающая между поверхностями соприкосающихся тел. Сила сухого трения прямо пропорциональна силе, прижимающей поверхности друг к другу и направлена в сторону, противоположную возможному движению

$$F = \mu N$$

Сухое трение — трение, при котором между поверхностями отсутствует смазка.

Трение покоя — трение покоящегося тела, прямо пропорционально силе, пытающейся вывести тело из состояния покоя.

Вязкое трение — трение среды (воздуха, жидкости).

Билет VIII

Гравитационная сила. Закон всемирного тяготения. Сила тяжести. Зависимость силы тяжести от высоты. Инертная и гравитационная массы. Вес тела. Вес тела, движущегося с ускорением. Невесомость. Перегрузки. Движение под действием гравитационной силы. Движение планет и искусственных спутников. Первая космическая скорость.

Сила всемирного тяготения — прямо пропорционально массе каждого из взаимодействующих тел и обратно пропорцианально квадрату расстояния между их центрами. Сила всемирного тяготения приложена к центрам масс взаимодействующих тел и направлена по линии, соединящий их центры.

$$F = G \frac{m_1 m_2}{R^2}$$

Зависимость силы тяжести от высоты — квадратичная.

$$F = G \frac{m_1 m_2}{(R+h)^2}$$

 Γ равитационное поле — это особый вид материи, возникающий в пространстве, содержащей массу. Свойства:

- 1. Материально, т. е. существует.
- 2. Убывает с расстоянием.
- 3. Непрерывно.
- 4. Проявляет себя только в гравитационном воздействии.

Инертная и гравитационная массы —

Вес тела — это сила, с которой тело давит на опору или растягивает подвес.

$$P = mg$$

Вес тела, движущегося с ускорением — при двидении вверх и вниз.

$$P = mg + ma$$
 $P = mg - ma$

Невесомость — состояние отсутствия взаимодействия с опорой.

Первая космическая скорость — минимальная скорость, необходимая скорость, чтобы оставаться на постоянной орбите.

$$m\frac{v^2}{R} = G\frac{Mm}{R^2} \qquad \qquad v = \sqrt{G\frac{M}{R}}$$

Билет IX

Импульс материальной точки. Импульс силы. Импульс системы материальных точек. Закон сохранения импульса. Условия выполнения закона сохранения импульса. Реактивное движение.

Импульс тела — векторная физическая велечина, характеризующая способность тела к возможному взаимодействию.

$$\vec{p} = m\vec{v}$$

Импульс силы — векторная физическая велечина, характеризующаявоздействие одного тела на другое.

$$\vec{I} = \vec{F} \Delta t$$

Импульс системы материальных точек — если система находится в покое, то сумма всех испульсов внутренних тел равняется 0.

II Закон Ньютона в импульсной форме —

$$F\Delta t = m\vec{v_2} - m\vec{v_1}$$

Закон сохранения импульса — Векторная сумма импульсов взаимодействующих тел не изменяется при любых взаимодействях в замкнутой системе.

$$m_1\overrightarrow{v_{01}} - m_2\overrightarrow{v_{02}} = m_1\overrightarrow{v_1} + m_2\overrightarrow{v_2}$$

Замкнутая система — система, в которой тела взаимодействуют только между собой.

 ${f Bыполнениe\ 3CM}$ — закон сохранения импульса выполняется в векторном виде для систем взаимодействующих сил, для которых равнодействующая внешних сил не изменила своего значения.

Билет Х

Механическая работа. Кинетическая энергия материальной точки. Теорема о кинетической энергии. Зависимость механической работы от траектории движения. Мощность.

 ${f Mexahuчeckas paбота}$ — сила совершает механическую работу, если под действием этой силы тело перемещается. Числено механическую работу находим как площадь финуры под графиком зависимости силы от пройденного пути.

$$A = FS\cos\alpha$$

Работа — мера измерения энергии.

Кинетическая энергия — энергия движения. Это физическая величина, характеризующая движущееся тело.

 $W_{\rm K} = \frac{mv^2}{2}$

 ${\bf Mощность}$ — физическая велечина, равная отношению работы к промежутку времени, за которое она совершена.

 $P = \frac{A}{t}$

Билет XI

Полная механическая энергия. Закон сохранения полной механической энергии. Условия выполнения закона сохранения энергии. Изменение механической энергии. Работа силы трения и изменение механической энергии.

Полная механическая энергия — сумма потенциальной и кинетической энергии.

$$W_{\text{полн.мех.эн.}} = W_{\text{K}} + W_{\Pi}$$

Закон сохранения полной механической энергии — Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной.

 ${f M}$ зменение механической энергии — работа внешних сил в замкнутой системе равна изменению полной механической энергии.

$$A_{\text{ДИСС}} + A_{\text{НЕСТАЦ}} + A_{\text{ВН}} = \Delta W_{\text{ПОЛН.МЕХ.ЭН.}}$$

Нестационарные силы — силы, велечина которых зависит от длительности воздействия.

Билет XII

Консервативные и неконсервативные силы. Работа консервативной силы. Потенциальная энергия. Потенциальная энергия силы упругости и силы тяжести.

Консервативые силы — силы, работа которых не зависит от вида траектории и определяется только начальным и конечным положением этой точки.

Примеры: сила тяжести, сила упругости, гравитационная сила.

Потенциальная энергия — энергия взаимодействия.

Потенциальная энергия упругости —

$$W_{\Pi} = \frac{kx^2}{2}$$

Потециальная энергия тяжести —

$$W_{\Pi} = mgh$$

Билет XIII

Особенности жидкостей. Давление. Закон Паскаля. Гидравлический пресс. Гидростатическое давление. Атмосферное давление. Опыт Торричелли.

Особенности жидкостей —

- 1. В расположении молекул жидкости существует ближний порядок и отсутствует дальний.
- 2. Молекулы жидкости движутся по всему объему "перескоками"в свободные от молекул простраства ("дырки"). Тякучесть жидкости обусловлена перескоками молекул.
- 3. Внутренняя энергия жидкости сумма кинетической энергии движения молекул и потенциальной энергии их взаимодействия.

Давление — скалярная физическая величина, равная силе, действующей на единицу площади поверхности.

$$p = \frac{F}{S}$$

 ${f 3}$ акон ${f \Pi}$ аскаля — давление, которое оказывается на жидкость или газ, передается в каждую точку жидкости или газа без изменений

Гидравлический пресс — эта машина для оказания статического воздействия - сжатия, обработки давлением, зажимания, кинематическим звеном которой является жидкость.

$$\frac{F_1}{S_1} = \frac{F_2}{S_2}$$

Гидрастатическое давление — давление столба воды над условным уровнем.

$$p = \rho g h$$

Атмосферное давление — давление столба воздуха на земную поверхность.

Опыт Торричелли — опыт для измерения атмосферного давления. Торричелли наполнил ртутью стеклянную трубку длиной около 1 м, запаянную с одного конца. Плотно закрыв открытый конец трубки, он её перевернул, опустил в чашку с ртутью и под ртутью открыл конец трубки. Часть ртути вылилась в чашку, а часть её осталась в трубке. Высота столба ртути, оставшейся в трубке, оказалась равной примерно 760 мм. Над ртутью в трубке образовалось безвоздушное пространство. Измерив высоту столба ртути, можно рассчитать давление, которое производит ртуть. Оно и будет равно атмосферному давлению.

Билет XIV

Движение жидкости. Движение жидкости по трубам. Уравнение неразрывности. Уравнение Бернулли. Следствия из уравнения Бернулли.

Уравнение неразрывности жидкости —

$$S_1 v_1 = S_2 v_2$$

Уравнение Бернулли —

$$p_1 + \rho g h_1 + \frac{\rho v_1^2}{2} = p_2 + \rho g h_2 + \frac{\rho v_2^2}{2}$$

Билет XV

Твердое тело. Структура и свойства твердых тел.

Твердое тело — агрегатное состояние вещества, характеризующееся стабильностью формы и характером теплового движения атомов, к-рые совершают малые колебания около положений равновесия

Твердые вещества могут быть в кристалическом и аморфном состоянии.

В расположении атомов твердого тела существует ближний и дальний порядок.

Потенциальная энергия взаимодействия вещества имеет минимально возможное значение.

Кристаллы — это твердые вещества, атомы которого занимают определенное упорядоченное положение в пространстве.

Кристаллические вещества могут состоять из монокристалов и полекристалов.

Монокристал — одиночный кристал.

Физические свойстава:

- 1. Правильная геометрическая форма.
- 2. Постоянная темпера плавления.
- 3. Анизонтропия неодинаковость свойств среды.

Поликристал — это совокупность сросшихся между собой монокристалов.

Физические свойстава:

- 1. Правильная форма.
- 2. Постоянная температура плавления.
- 3. Изотропия постоянство свойств среды.

Аморфные — нет дальнего порядка.

Физические свойстава:

- 1. Обладает свойством тякучести.
- 2. Не имеют постоянной темепературы плавления.

Билет XVI

Абсолютно твердое тело. Момент силы относительно оси вращения. Сложение моментов сил. Правило моментов. Равновесие тел. Виды положений равновесия.

Абсолютно твердое тело — модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом.

Момент силы — произведение модуля силы \vec{F} на ее плечо d, где плечо d — расстояние от точки O до линии действия силы \vec{F} .

$$M = Fd$$

Сложение моментов сил — Если сила вращает тело по часовой стрелке, то момент этой силы надо брать со знаком -. Иначе если сила вращает тело по часовой стрелке, то момент этой силы надо брать со знаком +.

Правило моментов — если тело находится в равновесии (не вращается), то сумма моментов сил, врощающих тело по часовой стрелке, равна сумме моментов сил, вращающих тело против часовой стрелке.

Равновесие тел

1. Тело двидется равномерно или покоится. І закон Ньютона:

$$\vec{F_1} + \vec{F_2} + \ldots + \vec{F_n} = 0$$

2. Тело не вращается. Правило моментов:

$$M_1 + M_2 + \ldots + M_n = 0$$

Следствие из уравнения Бернулли —

Билет XVII

Молекулярное строение вещества.

Основные положения

молекулярно-кинетической теории и их опытное обоснование. Моль вещества.

Постоянная Авогадро. Размеры и массы молекул. Скорости молекул. Опыт Штерна.

Основные положения маллекулярно-кинетической теории:

- 1. Все вещества состоят из молекул. Опытное обоснование: если тереть вещество, то оно постепенно стирается.
- 2. Все молекулы вещества находятся в непрекращающимся хаотичном движении. Опытное обоснование: Броуновское движение, опыт Штерна.
- 3. Молекулы вещества взаимодействуют между собой силами взаимодействия и отталкивания.

Броуновское движение — движение взвешенных частиц в жидкости или газе. Примеры: хаотичное движение малых частиц в воде, пыль в комнате.

Моль вещества — это количество вещества, в котором содержится столько же частиц, сколько атомов содержится в 12 граммах углерода с атомной единицей массы 12.

Молярная масса — масса одного моля вещества

$$\mathcal{M} = m_0 N_A$$

Постоянная Авогадро — это число атомов (молекул, или других структурных элементов вещества), содержащихся в 1 моле.

$$N_a = 6 \cdot 10^{23} \frac{1}{\text{моль}}$$

Количество вещества:

$$\mathcal{V} = \frac{m}{\mathcal{M}} = \frac{N}{N_A}$$

Опыт Штерна -

Билет XVIII

Давление газа. Идеальный газ. Основное уравнение молекулярно-кинетической теории. Изопроцессы. Графики изопроцессов.

Давление газа —

Идеальный газ — физическая модель реального газа. В идеальном газе принебрегается:

- 1. Взаимодействием молекул силами притяжения и отталкивания.
- 2. Размерами молекул.

Основное уравнение молекулярно-кинематической теории:

$$p = \frac{2}{3}nE_{\rm K0}$$

Изотермический процесс. Закон Бойля-Мариота — для данной массе газа, при неизменной температуре произведние давления на объем является велечиной постоянной.

$$T_1 = T_2 = \text{const}$$
 $p_1 V_1 = p_2 V_2$ $p(V) = \frac{1}{V}$

Изобарный процесс. Закон Гей-Люсака — для данной массы газа при неизменном давлении отношение объема к абсолютной температуре остается неизменной.

$$p_1 = p_2 = \text{const}$$
 $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $V(T) = T$

Изокорный процесс. Закон Шарля — для данной массе газа и при неизменном объеме отнощение давления к абсолютной темепературе остается постоянным.

$$V_1 = V_2 = \text{const}$$
 $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ $P(T) = T$

Билет XIX

Температура, ее физический смысл. Абсолютная температура. Абсолютный ноль температуры. Шкала температур Цельсия.

Температура — физическая велечина, характеризующая степень нагретости тела. Это параметр одинаков для всех веществ, находящихся в тепловом равновесии. Мера средней кинетической энергии молекулы.

$$E_{ko} = \frac{3}{2}kT$$
 $k = 1.38 \cdot 10^{-23} \frac{\text{Дж}}{\text{k}^{\circ}}$

Абсолютный ноль — минимальная температура, при которой скорость молекулы рана нулю.

$$t_0 = -273^{\circ}$$

Абсолютная температура — начинает отсчет с абсолютного нуля.

$$T = t - 273^{\circ}$$

Билет XX

Внутренняя энергия. Параметры состояния.

Внутренняя энергия идеального газа:

$$U = \frac{m_0 v^2}{2} N = \frac{i}{2} \frac{m}{\mathcal{M}} RT$$

i — число степеней свободы молекул.

Параметры состояния —

Билет XXI

Количество теплоты. Работа газа. Первое начало термодинамики. Идеальный тепловой двигатель. КПД идеального двигателя. Тепловые двигатели. КПД тепловых двигателей. Второе начало термодинамики. Обратимые и необратимые процессы. Обратимость термодинамических процессов.

Количество теплоты — мера изменения внутренней энергии тела при теплообмене.

Первое начало термодинамики — Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A, совершенной системой над внешними телами.

$$Q = \Delta U + A$$

Идеальный тепловой двигатель —

Рис. 1: График двигателя карно

КПД идеального теплового двигателя — двигатель карно из 2х адиабат и 2х изотерм.

$$\eta = \frac{T_{\rm H.} - T_{\rm X.}}{t_{\rm H.}}$$

Тепловые двигатели — это устройства, в котором внутренняя энергия газа превращается в механическую работу.

КПД тепловых двигателей:

$$\eta = \frac{A}{Q_{\rm H}} = \frac{Q_{\rm H} - |Q_{\rm X}|}{Q_{\rm H}}$$

Билет XXII

Кристаллическая и аморфная структура вещества. Удельная теплота плавления.

Твердое тело — агрегатное состояние вещества, характеризующееся стабильностью формы и характером теплового движения атомов, к-рые совершают малые колебания около положений равновесия

Твердые вещества могут быть в кристалическом и аморфном состоянии.

В расположении атомов твердого тела существует ближний и дальний порядок.

Потенциальная энергия взаимодействия вещества имеет минимально возможное значение.

Кристаллы — это твердые вещества, атомы которого занимают определенное упорядоченное положение в пространстве.

Кристаллические вещества могут состоять из монокристалов и полекристалов.

Монокристал — одиночный кристал.

Физические свойстава:

- 1. Правильная геометрическая форма.
- 2. Постоянная темпера плавления.
- 3. Анизонтропия неодинаковость свойств среды.

Поликристал — это совокупность сросшихся между собой монокристалов.

Физические свойстава:

- 1. Правильная форма.
- 2. Постоянная температура плавления.
- 3. Изотропия постоянство свойств среды.

Аморфные — нет дальнего порядка.

Физические свойстава:

- 1. Обладает свойством тякучести.
- 2. Не имеют постоянной темепературы плавления.

Билет XXIII

Поверхностные явления. Энергия поверхностного слоя. Сила поверхностного натяжения. Давление под искривленной поверхностью жидкости. Явление смачивания и несмачивания. Капиллярные явления.

Поверхностные явления —

Энергия поверхностного слоя:

$$W_{\Pi.\mathrm{C}\Pi.} = \sigma S$$

 σ — коэффициент поверхностного натяжения.

Сила поверхностного натяжения:

$$F_{\text{ПОВ.НАТ.}} = \sigma l$$

l— длинна контура жидкости.

Лапласово давление — дополнительное давление, которое создает искривленная поверхность жидкости, стремящаяся выпрямиться под действием молекулярных сил. Это давление при смачивании (вогнутый мениск) направлено от жидкости, а при несмачивании (выпуклый мениск) — внутрь.

$$p = \frac{2\sigma}{R}$$

Миниск — искривленная поверхность жидкости на границе с твердым телом. Выпуклый миниск - не смачивает твердое тело. Вогнутый миниск - смачивает.

Капилярные явления —

$$h = \frac{2\sigma}{\rho gr}$$

Билет XXIV

Границы применимости законов идеального газа. Насыщенный и ненасыщенный пар. Зависимость давления и плотности насыщенного пара от температуры. Зависимость температуры кипения от давления. Влажность. Измерение относительной влажности.

Границы применения законов идеального газа — Испарение — парообразование с поверхности жидкости Скорость испарения зависит от
1. Температуры жидкости
2. Площади поверхности
3. Вязкости жидкости
4. Скорости потока газа над жидкостью
5.
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_