Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Übungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 5 Lösungshinweise

Aufgabe 1 (5 + 2 Punkte): Es sei $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ ein Polynom n-ten Grades mit reellen Koeffizienten a_0, a_1, \ldots, a_n . Für ein festes $x_0 \in \mathbb{R}$ definieren wir $b_{-1}, b_0, b_1, \ldots, b_{n-1}$ rekursiv durch die Vorschrift

$$b_{n-1} = a_n$$
 und $b_{k-1} = a_k + x_0 b_k$ für $k = n - 1, \dots 2, 1, 0$.

- (a) Zeigen Sie, dass $b_{-1} = p(x_0)$ gilt.
- (b) Aufgabenteil (a) besagt, dass wir mithilfe der eingangs beschriebenen Rekursion den Wert des Polynoms p an einer beliebigen Stelle x_0 bestimmen können. Diese Rekursion lässt sich mittels des sogenannten Horner-Schemas sehr einfach durchführen:

Erläuterung: Hier werden die Koeffizienten von p in die erste Zeile sowie der führende Koeffizient a_n zusätzlich in die dritte Zeile der erste Spalte von links geschrieben (gemäß $b_{n-1}=a_n$). Beginnend in der ersten Spalte von links wird nacheinander in jeder Spalte der jeweilige Eintrag in der dritten Zeile (nämlich b_k) mit x_0 multipliziert und das Ergebnis (nämlich x_0b_k) in der zweiten Zeile der jeweils nächsten Spalte notiert; anschließend werden in dieser Spalte die übereinanderstehenden Einträge addiert und das Ergebnis (nämlich $b_{k-1}=a_k+x_0b_k$) in der dritten Zeile eingetragen. Der Eintrag in der dritten Zeile der letzten Spalte ist dann gerade $p(x_0)$.

Berechnen Sie mithilfe des Horner-Schemas p(2) für $p(x) = 2x^3 - 3x^2 + x - 1$.

Lösung:

(a) Man überlegt sich, dass $b_{n-1}, \ldots, b_0, b_{-1}$ selbst Polynome in x_0 sind, deren Koeffizienten in der folgenden Tabelle aufgelistet sind:

	x_0^n	x_0^{n-1}	x_0^{n-2}	 x_0^2	x_0	1
b_{n-1}						a_n
b_{n-2}					a_n	a_{n-1}
b_{n-3}				a_n	a_{n-1}	a_{n-2}
:				 :	:	:
b_1			a_n	 a_4	a_3	a_2
b_0		a_n	a_{n-1}	 a_3	a_2	a_1
b_{-1}	a_n	a_{n-1}	a_{n-2}	 a_2	a_1	a_0

Tatsächlich rücken die Einträge von einer Zeile zur nächsten (also beim Rekursionsschritt $b_{k-1} = a_k + x_0 b_k$ von b_k zu b_{k-1}) jeweils um eine Position nach links (wegen der Multiplikation von b_k mit x_0), während die dadurch frei werdende Position ganz rechts durch den nächsten Koeffizienten von p aufgefüllt wird (wegen der anschließenden Addition von a_k). An der letzten Zeile sehen wir, dass wie behauptet

$$b_{-1} = a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_1 x_0 + a_0 = p(x_0).$$

(b) Mit dem Horner-Schema berechnen wir

und erhalten somit p(2) = 5.

Aufgabe 2 (5 + 4 + 2 Punkte): In der Situation von Aufgabe 1 nehmen wir nun an, dass x_0 eine Nullstelle von p ist (d. h. es gelte $p(x_0) = 0$).

- (a) Zeigen Sie, dass $p(x) = q(x)(x x_0)$ gilt, wobei $q(x) := b_{n-1}x^{n-1} + \dots + b_1x + b_0$.
- (b) Aufgabenteil (a) besagt, dass wir aus dem in Aufgabe 1 beschriebenen Horner-Schema zur Berechnung von $p(x_0)$ im Fall einer Nullstelle x_0 von p das Ergebnis q(x) der Polynomdivision $p(x): (x-x_0)$ ablesen können. Überprüfen Sie diese Feststellung am Beispiel $p(x) = x^3 3x^2 13x + 15$ und $x_0 = 1$, indem Sie hier sowohl das Horner-Schema anwenden, als auch die Polynomdivision p(x): (x-1) durchführen.
- (c) Faktorisieren Sie das Polynom $p(x) = x^3 3x^2 13x + 15$ vollständig in Linearfaktoren.

Lösung:

(a) Nach Aufgabe 1 (a) gilt $b_{-1} = p(x_0) = 0$. Damit können wir nachrechnen, dass

$$q(x)(x - x_0) = (x - x_0) \sum_{k=0}^{n-1} b_k x^k$$

$$= \sum_{k=0}^{n-1} b_k x^{k+1} - \sum_{k=0}^{n-1} x_0 b_k x^k$$

$$= \sum_{k=1}^{n} b_{k-1} x^k - \sum_{k=0}^{n-1} x_0 b_k x^k$$

$$= b_{n-1} x^n + \sum_{k=1}^{n-1} (b_{k-1} - x_0 b_k) x^k + x_0 b_0$$

$$= b_{n-1} x^n + \sum_{k=0}^{n-1} (b_{k-1} - x_0 b_k) x^k.$$

Die Rekursion für die Koeffizienten von q verrät uns nun, dass

$$b_{n-1} = a_n$$
 und $b_{k-1} - x_0 b_k = a_k$ für $k = 1, ..., n-1$,

sodass wir wie gewünscht

$$q(x)(x - x_0) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = p(x)$$

erhalten.

(b) Mit dem Horner-Schema bestimmen wir

und lesen ab, dass $x_0 = 1$ eine Nullstelle von p ist und dass nach Aufgabenteil (a) mit $q(x) = x^2 - 2x - 15$ die Faktorisierung p(x) = (x - 1)q(x) gilt. Dieses Ergebnis wird bestätigt durch die folgende Polynomdivision:

$$\begin{pmatrix}
 x^3 - 3x^2 - 13x + 15 \\
 - x^3 + x^2 \\
 \hline
 -2x^2 - 13x \\
 \hline
 -2x^2 - 2x \\
 \hline
 -15x + 15 \\
 \underline{15x - 15}
 \end{bmatrix}$$

(c) Wir faktorisieren das Polynom q aus Aufgabenteil (b) mittels quadratischer Ergänzung. Dies liefert

$$q(x) = x^{2} - 2x - 15 = (x - 1)^{2} - 16 = ((x - 1) - 4)((x - 1) + 4) = (x - 5)(x + 3).$$

Somit erhalten wir die gewünschte Faktorisierung von p als

$$p(x) = (x-1)q(x) = (x-1)(x-5)(x+3),$$

an der wir zugleich die Nullstellen -3, 1 und 5 von p ablesen können.

Aufgabe 3 (3 + (3 + 3) Punkte): Mithilfe der natürlichen Exponentialfunktion exp : $\mathbb{R} \to \mathbb{R}, x \mapsto \exp(x) = e^x$ definiert man die sogenannten Hyperbelfunktionen als

$$\sinh \colon \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \frac{1}{2} (e^x - e^{-x}) \quad \text{und} \quad \cosh \colon \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \frac{1}{2} (e^x + e^{-x}).$$

Man nennt sinh den Sinus hyperbolicus und cosh den Cosinus hyperbolicus. Diese Funktionen besitzen Eigenschaften, die denen der trigonometrischen Funktionen sin und cos sehr ähnlich sind:

- (a) Zeigen Sie, dass $\cosh^2(y) \sinh^2(y) = 1$ für alle $y \in \mathbb{R}$ gilt.
- (b) Beweisen Sie für $y_1, y_2 \in \mathbb{R}$ die beiden Additionstheoreme

$$\sinh(y_1 + y_2) = \sinh(y_1)\cosh(y_2) + \cosh(y_1)\sinh(y_2),$$

 $\cosh(y_1 + y_2) = \cosh(y_1)\cosh(y_2) + \sinh(y_1)\sinh(y_2).$

Lösung:

(a) Wir berechnen

$$\sinh^{2}(y) = \frac{1}{4}(e^{y} - e^{-y})^{2} = \frac{1}{4}(e^{2y} - 2 + e^{-2y}),$$
$$\cosh^{2}(y) = \frac{1}{4}(e^{y} + e^{-y})^{2} = \frac{1}{4}(e^{2y} + 2 + e^{-2y}),$$

woraus sich schließlich $\cosh^2(y) - \sinh^2(y) = 1$ ergibt.

(b) Wir berechnen zunächst

$$\sinh(y_1)\cosh(y_2) = \frac{1}{4}(e^{y_1} - e^{-y_1})(e^{y_2} + e^{-y_2}) = \frac{1}{4}(e^{y_1+y_2} + e^{y_1-y_2} - e^{y_2-y_1} - e^{-(y_1+y_2)}),$$

$$\cosh(y_1)\sinh(y_2) = \frac{1}{4}(e^{y_1} + e^{-y_1})(e^{y_2} - e^{-y_2}) = \frac{1}{4}(e^{y_1+y_2} - e^{y_1-y_2} + e^{y_2-y_1} - e^{-(y_1+y_2)}),$$

woraus sich nach Addition

$$\sinh(y_1)\cosh(y_2) + \cosh(y_1)\sinh(y_2) = \frac{1}{2}(e^{y_1+y_2} - e^{-(y_1+y_2)}) = \sinh(y_1+y_2)$$

ergibt. Ebenso berechnen wir

$$\cosh(y_1)\cosh(y_2) = \frac{1}{4}(e^{y_1} + e^{-y_1})(e^{y_2} + e^{-y_2}) = \frac{1}{4}(e^{y_1+y_2} + e^{y_1-y_2} + e^{y_2-y_1} + e^{-(y_1+y_2)}),$$

$$\sinh(y_1)\sinh(y_2) = \frac{1}{4}(e^{y_1} - e^{-y_1})(e^{y_2} - e^{-y_2}) = \frac{1}{4}(e^{y_1+y_2} - e^{y_1-y_2} - e^{y_2-y_1} + e^{-(y_1+y_2)}),$$

woraus sich nach Addition

$$\cosh(y_1)\cosh(y_2) + \sinh(y_1)\sinh(y_2) = \frac{1}{2}(e^{y_1+y_2} + e^{-(y_1+y_2)}) = \cosh(y_1 + y_2)$$
ergibt.

Bemerkung: Da cosh eine gerade Funktion ist (d. h. es gilt $\cosh(-y) = \cosh(y)$ für alle $y \in \mathbb{R}$) und sinh eine ungerade Funktion ist (d. h. es gilt $\sinh(-y) = -\sinh(y)$ für alle $y \in \mathbb{R}$), erhalten wir aus den obigen Additionstheoremen (indem wir diese auf $-y_2$ anstelle von y_2 anwenden), dass

$$\sinh(y_1 - y_2) = \sinh(y_1)\cosh(y_2) - \cosh(y_1)\sinh(y_2),$$

$$\cosh(y_1 - y_2) = \cosh(y_1)\cosh(y_2) - \sinh(y_1)\sinh(y_2).$$

Die zweite dieser Formeln liefert für $y_1 = y_2 = y$ die Identität $1 = \cosh(0) = \cosh^2(y) - \sinh^2(y)$, die wir in Aufgabenteil (a) direkt bewiesen haben.

Aufgabe 4 (4 + 5 + 4) Punkte:

- (a) Zeigen Sie, dass eine gerade und monoton wachsende Funktion $f: \mathbb{R} \to \mathbb{R}$ konstant sein muss.
- (b) Finden Sie eine Funktion $f: \mathbb{R} \to \mathbb{R}$, die streng monoton wachsend und beschränkt ist. Bestimmen Sie das Supremum und das Infimum.

(c) Kann eine streng monoton wachsende Funktion $f: \mathbb{R} \to \mathbb{R}$ ihr Maximum bzw. Minimum annehmen?

Lösung:

(a) Ist $f: \mathbb{R} \to \mathbb{R}$ eine gerade Funktion, so gilt definitionsgemäß f(-x) = f(x) für alle $x \in \mathbb{R}$. Wir betrachten nun $x_1, x_2 \in \mathbb{R}$ mit $x_1 \leq x_2$; somit gilt auch $-x_2 \leq -x_1$. Wir haben also $f(x_1) = f(-x_1)$ und $f(x_2) = f(-x_2)$, und falls f monoton wachsend ist, zusätzlich $f(-x_2) \leq f(-x_1)$ sowie $f(x_1) \leq f(x_2)$. Zusammenfassend erhalten wir die Ungleichungskette

$$f(x_1) \le f(x_2) = f(-x_2) \le f(-x_1) = f(x_1),$$

in der demnach an allen Stellen Gleichheit gelten muss; insbesondere sehen wir, dass $f(x_1) = f(x_2)$ gelten muss. Weil $x_1, x_2 \in \mathbb{R}$ mit $x_1 \leq x_2$ beliebig vorgegeben waren, besagt dies, dass f auf \mathbb{R} konstant ist.

(b) Wir betrachten die Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \arctan(x).$$

Diese ist streng monoton wachsend (als Umkehrfunktion der streng monoton wachsenden Funktion tan : $(-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$) und hat das Bild $f(\mathbb{R}) = (-\frac{\pi}{2}, \frac{\pi}{2})$, ist also beschränkt. Es gilt

$$\inf_{x \in \mathbb{R}} f(x) = -\frac{\pi}{2} \quad \text{und} \quad \sup_{x \in \mathbb{R}} f(x) = \frac{\pi}{2}.$$

(c) Es sei $f: \mathbb{R} \to \mathbb{R}$ eine streng monoton wachsende Funktion. Wir nehmen an, es gäbe eine globale Maximumstelle (bzw. Minimumstelle) $x_0 \in \mathbb{R}$ von f, d. h. für alle $x \in \mathbb{R}$ gilt $f(x_0) \geq f(x)$ (bzw. $f(x_0) \leq f(x)$). Wir wählen nun $x_1 \in \mathbb{R}$ mit $x_0 < x_1$ (bzw. $x_1 < x_0$). Dann gilt einerseits $f(x_0) < f(x_1)$ (bzw. $f(x_1) < f(x_0)$) aufgrund der strengen Monotonie von f, und andererseits $f(x_0) \geq f(x_1)$ (bzw. $f(x_0) \leq f(x_1)$), weil x_0 eine globale Maximumstelle (bzw. Minimumstelle) von f ist. Die ist ein Widerspruch. Eine streng monoton wachsende Funktion $f: \mathbb{R} \to \mathbb{R}$ kann somit weder ihr Maximum noch ihr Minimum annehmen.