R6.B.05 – OPTIMISATION DE SERVICES COMPLEXES

PARTIE III

Edward Staddon

Edward.Staddon@univ-ubs.fr

Université Bretagne Sud, IUT de Vannes, Département Informatique

PLAN DU COURS

- Optimisation de l'accès aux ressources
- Réseau de diffusion de contenus
- Introduction à la qualité de service

PLAN DU COURS

- Optimisation de l'accès aux ressources
- Réseau de diffusion de contenus
- Introduction à la qualité de service

INTRODUCTION À LA QUALITÉ DE SERVICE

BUT INFO - R6.B.05

QUALITÉ DE SERVICE

- → QoS
- Utilisation de mécanismes / technologies réseau pour
 - Contrôler le trafic
 - Assurer la performance des applications critiques
 - Capacité réseau limitée
- Permet l'ajustement du trafic réseau global
 - Hiérarchie des applications et trafic
 - Bande passante dédiée, gigue contrôlée, latence faible, etc...
 - Variation du délai de transmission

- Généralement appliqué aux réseaux de grande envergure
 - Trafic a forte consommation de ressources
 - Petit réseau → moins de trafic → moins d'efficacité
- Approche requise pour plusieurs services courants
 - IPTV, jeux en ligne, streaming, Visio, VOD, VoIP, etc...

POURQUOI?

- Ressources réseau limitées
 - Débit des liens, capacité de stockage des routeurs, etc...
- Utilisation de trafics variés
 - Temporellement et quantitativement
- Besoin d'optimisation des ressources
 - Multiplexage statistique
 - Allocation d'un débit inférieur au débit crête à chaque connexion
 - Supposition de probabilité faible d'émissions concourantes

- Problème de congestion
 - Impossible au niveau des liens
 - Contrôle d'accès organisé par la politique d'ordonnancement des équipements (scheduling)
 - Possible au niveau des routeurs
 - Espace de stockage limité (buffer)
 - Encombrement → retard → délai
 - Débordement → perte → taux de perte élevé

CONTRÔLE DE QUALITÉ

- Besoins contradictoires
 - Usagers et applications
 - Garantie de la qualité de transfert des données (QoS : taux de perte, délai, débit, etc.)
 - Opérateurs et réseau
 - Optimisation de l'utilisation des ressources
- Compromis géré par le contrôle

- Propriétés des mécanismes de contrôle :
 - Flexibilité (s'adapter au trafic)
 - Efficacité (faible complexité, peu de ressources)
 - Robustesse (continuité du service)

CONTRÔLE DE QUALITÉ

Plusieurs difficultés lors du contrôle

Haut débit

- Contrôles réactifs sont peu efficaces
- Pendant le temps d'allé retour → beaucoup de données peuvent arriver → submersion du réseau
- Lié à la capacité du réseau
 - Débit x délai → capacité

Services multiples

- Besoins très variés des applications
 - Taux de perte nul, faible, etc ...
 - Délai de transmission constant, variable, infini, etc...
 - Débit constant, sporadique, continument variable / par palier, etc...

Type de flux

 Définition des paramètres nécessaires pour décrire les différents services

NIVEAUX D'ANALYSE

Session

- Nature → variable, rafale, constante, etc...
- Bande passante requise
- QoS → taux d'erreur admissible, délai maximum, variation de la gigue, etc...
- Échelle de temps → secondes à jours)

Rafale (Burst)

- Fréquence, longueur, intensité, sporadicité
- Un message → plusieurs paquets
- Échelle de temps → miliseconde

Paquet

■ Échelle de temps → microseconde

TYPES DE TRAFIC RÉSEAU MESURÉS

- Bande passante → Vitesse de liaison
 - Indique au routeur comment utiliser la bande passante
 - Ex. attribution d'un volume donnée de bande passante a différentes files d'attente pour différents types de trafic
- Délai → Temps nécessaire à un paquet d'arriver à sa destination
 - Souvent affecté par le délai de la file d'attente
 - Lié aux périodes de congestion → longues périodes d'attente
 - QoS permet d'éviter les temps d'attente → création de files d'attente prioritaires pour certains types de trafic

- Perte → Quantité de données perdues suivant une perte de paquets
 - Généralement lié à la congestion
 - QoS permet de définir quels paquets abandonner
- Gigue → Vitesse irrégulière des paquets en raison d'une congestion
 - Peut entrainer l'arrivée tardive et désordonné de paquets
 - Peut provoquer une distorsion ou des lacunes dans des fichiers audio / vidés

COMMENT EST-CE QUE CELA FONCTIONNE ?

- Marquage des paquets
 - Permet d'identifier le type de service concerné
- Pris en compte au niveau des routeurs
 - Création de files d'attente virtuelles distincts
 - Classement des applications par priorité
- Réservation de la bande passante
 - Aux applications sensibles
 - Aux sites web prioritaires

- Marquage → « classification »
- Plusieurs méthodes
 - Utilisation d'un champ de l'entête couche réseau
 - Ex. adresse destination IP, label du paquet MPLS (MultiProtocol Label Switching), etc...
 - Ensemble de champs sur plusieurs couches
 - Ex. champs Protocol et Port Number IP et TCP pour déterminer le type de paquet
 - → analyse couteuse en profondeur

MARQUAGE IP

MARQUAGE ETHERNET

 $| | | | \rightarrow Network control (highest)$

TPID → Tag Protocol Identifier
TCI → Tag Control Information
PCP → Priority Code Point
DEI → Drop Eligible Indicator
VID → VLAN identifier

LES FILES D'ATTENTE

- Placement des paquets dans une file d'attente lorsque l'interface de sortie est occupée
 - Processus présente sur les routeurs et les switches
- Il existe plusieurs méthodes de file d'attente
 - Une file → FIFI, etc...
 - Plusieurs files → Round Robin, Prioritaire, etc...

LES FILES D'ATTENTE

- Plusieurs approches avec multiples files
 - Séparation par niveau de priorité
 - Séparation par type d'application

BUT INFO - R6.B.05

BUT INFO - R6.B.05

BUT INFO - R6.B.05

TECHNIQUES

Hiérarchie du trafic VoIP sensible aux retards via les routeurs et commutateurs

- Plus le réseau est grand → plus de risque de congestion
 - Traitement pas assez rapide → jet de paquets
- Classification du trafic et priorisation en fonction du type
 - Utile en cas de congestion élevée
 - Paquets avec priorité élevé → envoie en priorité avant le reste du trafic

Réservation de ressource

- RSVP → Protocole de réservation de ressources
 - Couche Transport pour réserver des ressources sur un réseau
 - Peut être utilisé pour fournir des niveaux spécifiques de QoS pour des flux de données d'application
- Permet la division des ressources réseau
 - Par trafic de différents types / origines
 - Définir des limites
 - Garantir la disponibilité de la bande passante

TECHNIQUES

Mise en file d'attente

- Processus de création de règles
 - Traitement préférentiel de certains flux de données
- Présent dans les routeurs et switch
- Utilisation de plusieurs files d'attente par priorité
 - Paquet reçu d'une priorité élevée → mis dans la file correspondante (débit élevé)
- Ex. attribution d'une règle de priorité du VoIP
 - Mise au début des files d'attente → utilisation de la majorité de la bande passante

Marquage du trafic

- Identification des besoins en termes de priorité des applications
- Utilisation de deux processus
 - Classe de service (CoS)
 - Marquage dans l'en-tête couche 2
 - Code des services différenciés (DSCP)
 - Marquage dans l'en-tête couche 3

AVANTAGES DE LA QOS INFORMATIQUE

Hiérarchisation illimitée des applications

 Garanti la priorité et les ressources aux applications stratégiques

Meilleure gestion des ressources

- Gestion des ressources réseau et Internet
- Réduction des couts et la nécessité d'investissement dans des liaisons supplémentaires

Expérience utilisateur améliorée

- Offrir une expérience utilisateur optimale
- Garantir des performances élevées des applications sensibles
 - Meilleure efficacité du travail des employés

Gestion du trafic point à point

- Gestion essentielle dans l'acheminement du trafic
- Permet de livrer des paquets dans l'ordre sans pertes

Prévention de la perte de paquets

- Se produit lors du rejet de paquets en transit
 - Défaillances, inefficacité, congestion, connexion faible, etc...
- Hiérarchisation de la bande passante des applications haute performance → réduction des pertes

Réduction de la latence

- Causé par le temps de traitement des routeurs dans les files d'attente
- Réduction de la latence et l'accélération des demandes via la hiérarchisation des applications sensibles