Notes for POLS 607: Panel data*

Casey Crisman-Cox

Spring 2025

^{*}These notes are for personal use only and not for distribution. They are likely rife with errors, typos, and are not referenced. This is not my own work, but simply notes for me to lecture from.

Contents

1	Rev	view: Linear panel model basics	3
	1.1	Pooled panel model	٠
	1.2	Random effects	13
	1.3	The fixed effects model	20
		1.3.1 Within-estimator	21
		1.3.2 Dummy variable estimator	23
		1.3.3 First differences	26
	1.4	Model testing and comparisons	27
		1.4.1 CRE	31
	1.5	Application	33
	1.6	Two-way heterogeneity	48
		1.6.1 Asymptotics in T	51
2	Cla	ssically advanced topics and moment estimators	60
	2.1	Instrumental variables (refresher and update)	60
		2.1.1 Application	63
	2.2	Invariant-regressors	73
		2.2.1 Example	75
	2.3	Dynamic panel models	83
		2.3.1 Weak instruments and Blundell and Bond	92
		2.3.2 A short note on non-stationary panels	95
	2.4	Attrition and missing data in panel models	100
		2.4.1 IPW	103
		2.4.2 Incidental truncation	105
	2.5	Non-stationary panel data	106
3	Des	sign-based causal inference with panel data	106
	3.1	A primer on difference-in-differences	106
	3.2	Casual inference and potential outcomes	107
		3.2.1 DiD framework	108
4	Noı	n-linear panel models	112
5	Mu	ltilevel modeling and Bayesian methods	112
	5.1	Fitting models	114

6	Model-based	(structural)	causal	inference	with	panel	data

1 Review: Linear panel model basics

We will start with a review of the standard panel data models. Before getting into that we'll need some assumptions. The first of which describes what a basic panel is:

Assumption A1 The data generating process is linear-in-the-parameters, such that

$$y_{it} = \alpha_i + \beta' x_{it} + \gamma' z_i + \varepsilon_{it}.$$

Usually we think of i as "units" (individuals, states, countries, dyads, etc) and t as "within-unit" observations (typically time, but could be multiple individuals within a unit, etc). We will let i = 1, ..., N, t = 1, ..., T and NT be the total number of observations. To make exposition easier, we will often assume a "balanced" panel where T is the same for each i. When necessary, we will talk about cases where this distinction matters. Neither x_{it} nor z_i contain a constant term, instead α_i reflects a general situation where each unit has its own constant term.

1.1 Pooled panel model

For now we will simplify that further and assume that $\alpha_i = \alpha$ for all i (Assumption A1.A). Additionally, x_{it} is a variable that changes both across and within units, while z_i is constant within units but variable across units.

Given this setup, we are unlikely to have independent observations. After all, if our panel is a collection of N separate time series, then assuming independence is a pretty long stretch from the start, but we will typically want a type of independence assumption

Assumption A2 Each unit $(x_i, z_i, \varepsilon_i)$ is drawn iid.

The notation $x_i = (x_{i1}, \dots, x_{iT})$ used here refer to all observations of x_{it} within unit i. Here we are making the assumption that each block of observations is independent of the rest and that the units are drawn from some population process. This is not perhaps super convincing in some cases, but it is a convenience assumption and a start.

We are not currently making any assumptions about the dependency structure on the withinunit observations. However, we will need to make some kind of exogeneity assumption (as always)

Assumption A3 There is strict exogeneity within units, $E[\varepsilon_{it}|x_i,z_i]=0$.

This tells us that within-each unit, we assume that the error term is independent of the observables (i.e., no unobserved confounding within units).

Let $\mathbf{X} = [1 \ X \ Z]$ and let $\theta = (\alpha, \beta, \gamma)'$, then the pooled OLS estimator for the panel model is

$$\hat{\theta}_p = \left(\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \mathbf{x}_{it} \mathbf{x}'_{it}\right)^{-1} \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \mathbf{x}_{it} y_{it}$$
$$= (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' y,$$

or (by A1.A)

$$\hat{\theta}_p = \theta + \left(\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it}\right)^{-1} \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it} \varepsilon_{it}.$$

By strict exogeneity within unit (A3) and independence across units (A2) we have

$$E[\varepsilon_{it}|x_i,z_i] = E[\varepsilon_{it}|\mathbf{X}] = 0.$$

Thus we can apply iterated expectations to get

$$E[E[\hat{\theta}_p|\mathbf{X}]] = \theta + E\left[\left(\frac{1}{NT}\sum_{i=1}^{N}\sum_{t=1}^{T}\mathbf{x}_{it}\mathbf{x}'_{it}\right)^{-1}\frac{1}{NT}\sum_{i=1}^{N}\sum_{t=1}^{T}\mathbf{x}_{it}E[\varepsilon_{it}|\mathbf{X}]\right]$$
$$= \theta + 0.$$

Which gives us our first property,

Property A1 Under Assumptions A1.A, A2, and A3 the pooled estimator $\hat{\theta}_p$ is unbiased, if it exists.

Note there will be times when we get to dynamics where strict within-unit exogeneity doesn't make sense. For now, we'll go with it.

Further, we will impose a rank condition

Assumption A4 The matrix
$$\mathbf{Q} = \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it} \right] < \infty$$
 has full rank.

With this assumption, we assert that the DGP for the T within-unit observations are well-behaved and X'_iX_i has full rank for each unit. Likewise, since it is in a quadratic form, the matrix will be positive definite under this assumption.

Finally, we will include some hand-wavy moment conditions on the data and errors.

Assumption A5 Additional moment assumptions that allow us to apply a central limit

theorem (CLT).

For review, let's briefly restate these theorems along with some other useful results

Theorem 1 (Weak Law of Large Numbers) Let X_1, \ldots, X_N be an iid sequence of random variables, where each $X_i \in \mathbb{R}^k$ has a finite absolute first moment $\mathrm{E}[X_i] < \infty$. Then $\frac{1}{N} \sum_{i=1}^N X_i \stackrel{p}{\to} \mathrm{E}[X_i]$.

Theorem 2 (Central Limit Theorem) Let X_1, \ldots, X_N be iid random variables with expected value μ and variance Ω (both finite), then for all $x \in \mathbb{R}$

$$\sqrt{N}\left(\frac{1}{N}\sum_{i=1}^{N}X_i-\mu\right)\stackrel{d}{\to}N(0,\Omega).$$

Theorem 3 (Continuous mapping theorem) Consider a sequence of random variables $X_n = X_1, \dots X_N$ and a continuous function g

- If $X_n \stackrel{d}{\to} X$, then $g(X_n) \stackrel{d}{\to} g(X)$
- If $X_n \stackrel{p}{\to} X$, then $g(X_n) \stackrel{p}{\to} g(X)$

Theorem 4 (Functions preserve iid) Let g be a continuous function and let X and Y be random variables

- If X and Y are independent, then g(X) and g(Y) are independent random variables
- ullet If X and Y are identically distributed, then g(X) and g(Y) are identically distributed

Theorem 4 is a deceptively powerful result. We can now say that since we know x_i and ε_i are each iid, then $g(x_i)$ and $g(\varepsilon_i)$ will retain these properties for continuous g.

Theorem 5 (Slutsky's Theorem) Let X_i and Y_i be sequences of random variables.

- 1. If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} y$ (where y is a constant), then
 - $X_nY_n \stackrel{d}{\to} Xy$
 - $Y_n^{-1}X_n \xrightarrow{d} (y^{-1})X$, if y^{-1} exists
- 2. If $X_n \xrightarrow{p} x$ and $Y_n \xrightarrow{p} y$ (where x and y are constants), then
 - $X_n Y_n \stackrel{p}{\to} xy$
 - $Y_n^{-1}X_n \xrightarrow{p} (y^{-1})X$, if y^{-1} exists

We can now apply a standard LLN type argument

1. Let's start with the expression $\frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it}\right)$, what happens here as N grows? Assumption A4 will let us know that $\mathbf{E}\left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it}\right]$ is finite. Likewise, Assumption A2 tells us that x_i and x_j are iid for $i \neq j$. Note that $\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it}$ and $\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{jt} \mathbf{x}'_{jt}$ are functions of iid random variables and so are themselves iid by Theorem 4. As such we can apply the LLN to get

$$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it} \right) \stackrel{p}{\rightarrow} \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it} \right] = \mathbf{Q}$$

2. By Assumption A4, \mathbf{Q} has full rank and will be positive definite. Because it's positive definite the inverse function will be continuous and we can apply the CMT, to get

$$\left[\frac{1}{N}\sum_{i=1}^{N}\left(\frac{1}{T}\sum_{t=1}^{T}\mathbf{x}_{it}\mathbf{x}_{it}'\right)\right]^{-1} \stackrel{p}{\to} \mathbf{Q}^{-1}.$$

3. Now consider $\frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \varepsilon_{it} \right)$. Using Assumption A2 again we know that $(x_i' \varepsilon_i)_{i=1}^{N}$ represents N iid random vectors. We can apply the LLN to see that

$$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \varepsilon_{it} \right) \stackrel{p}{\to} \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \varepsilon_{it} \right],$$

where

$$E\left[\frac{1}{T}\sum_{t=1}^{T}\mathbf{x}_{it}\varepsilon_{it}\right] = \frac{1}{T}\sum_{t=1}^{T}E\left[\mathbf{x}_{it}\varepsilon_{it}\right]$$
$$= E_{x}\left[E\left[\mathbf{x}_{it}\varepsilon_{it}|\mathbf{X}\right]\right]$$
$$= 0$$

by Assumption A2–A3.

4. We can now apply Slutsky's theorem to say:

$$\left(\frac{1}{NT}\sum_{i=1}^{N}\sum_{t=1}^{T}\mathbf{x}_{it}x_{it}'\right)^{-1}\frac{1}{NT}\sum_{i=1}^{N}\sum_{t=1}^{T}\mathbf{x}_{it}\varepsilon_{it} \stackrel{p}{\to} \mathbf{Q}^{-1}0 = 0.$$

5. Finally, since the sum operator is continuous we can again apply the continuous mapping

theorem to get

$$\hat{\theta}_p = \theta + \left(\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it} x'_{it}\right)^{-1} \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it} \varepsilon_{it}$$

$$\stackrel{p}{\to} \theta + 0 = \theta$$

Property A2 Under A1.A and A2-A4, as $N \to \infty$ the pooled estimator exists. The pooled estimator is consistent for θ .

Asymptotic normality follows in a similar way, but let's recap it too,

1. Rewrite the estimator to look like Theorem 2.

$$\sqrt{N}(\hat{\theta}_p - \theta) = \left(\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it}\right)^{-1} \frac{\sqrt{N}}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it} \varepsilon_{it}$$

2. From above we know

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it} \stackrel{p}{\to} \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it} \right] = \mathbf{Q}$$

3. The remaining term

$$\sqrt{N} \left(\frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \varepsilon_{it} \right) \right)$$

looks like the CLT, right? and we know that

$$E\left[\frac{1}{T}\sum_{t=1}^{T}\mathbf{x}_{it}\varepsilon_{it}\right] = 0,$$

from above. So, we can apply that to get to

$$\sqrt{N} \left(\frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \varepsilon_{it} \right) \right) \stackrel{d}{\to} N \left(0, \Sigma_{N} \right).$$

We will assume that $\Sigma_N = \operatorname{Var}\left(\frac{1}{T}\sum_{t=1}^T \mathbf{x}_{it}\varepsilon_{it}\right)$ exists under Assumption A5.

4. Finally, we can combine terms using Slutsky's theorem to get

$$\sqrt{N}(\hat{\theta}_p - \theta) \stackrel{d}{\to} N(0, \mathbf{Q}^{-1} \Sigma_N \mathbf{Q}^{-1}).$$

All together this gives us our next property:

Property A3 Under A1.A and A2-A5 the pooled estimator $\hat{\theta}_p$ is asymptotically normal such that

$$\sqrt{N}(\hat{\theta}_p - \theta) \stackrel{d}{\to} N(0, \mathbf{Q}^{-1} \Sigma_N \mathbf{Q}^{-1})$$

This is a format you should be used to seeing by now. If we assumed within-unit independence and homoskedasticity we would get the classic OLS variance, how likely do you think that is?

We can estimate the asymptotic variance of θ using sample counterparts:

$$\operatorname{avar}\left(\hat{\theta}_{p}\right) = \frac{1}{N} \mathbf{Q}^{-1} \Sigma_{N} \mathbf{Q}^{-1}$$

$$\widehat{\operatorname{avar}}\left(\hat{\theta}_{p}\right) = \frac{1}{N} \widehat{\mathbf{Q}}^{-1} \widehat{\Sigma}_{N} \widehat{\mathbf{Q}}^{-1}$$

$$\widehat{\mathbf{Q}} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it} \mathbf{x}'_{it}$$

$$\widehat{\Sigma}_{N} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \widehat{\varepsilon}_{it} \right] \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{it} \widehat{\varepsilon}_{it} \right]'$$

$$\widehat{\operatorname{avar}}\left(\widehat{\theta}_{p}\right) = \left[\sum_{i=1}^{N} \mathbf{x}'_{i} \mathbf{x}_{i} \right]^{-1} \left(\sum_{i=1}^{N} \mathbf{x}'_{i} \varepsilon_{i} \varepsilon'_{i} \mathbf{x}_{i} \right) \left[\sum_{i=1}^{N} \mathbf{x}'_{i} \mathbf{x}_{i} \right]^{-1}.$$

This variance matrix is called the *cluster-robust* or *clustered* variance matrix. The square root of the diagonal provides *clustered standard errors*. Note that the clustered variance matrix allows for *arbitrary* correlation among the errors within each unit. We haven't imposed any structure on them, not even stationarity. This is a powerful result that makes the clustered matrix very popular.

A warning, this sandwich is valid for large-N asymptotics. That's all we've done so far. An intuitive way to think about this is to note, that Σ_N is estimated by computing the variance within each unit and averaging over units As such, this estimator is only asymptotically valid in N. The standard rule of thumb is you have less than 50 units, the clustered matrix is probably not reliable and you may be better off with basic robust standard errors (if NT is large enough), or other alternatives based on large-T asymptotics that we'll get to later.

Some recent work has considered the issue with a small number of clusters. Some proposals here include:

- 1. A fixed number of clusters correction such as $\frac{N}{N-1}\widehat{\text{avar}}\left(\hat{\theta}_p\right)$.
- 2. Clustered bootstrap
- 3. Wild clustered bootstrap which one of your classmates will present on later

4. Jackknife

A clustered or block bootstrap. This *should* give you similar results to the asymptotic standard errors, but they can diverge for any number of reasons.

To review, a bootstrap is a tool that relies on the *empirical distribution* to estimate the true distribution. Consider a sample $y_1, \ldots, y_N \stackrel{iid}{\sim} F(y)$ where F is an unknown CDF with some parameter of interest θ what is a function $\theta = T(F(y))$. We can consider the empirical distribution function (EDF) F_N as an approximation of F.

$$F_N(y) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \le y),$$

which is a discrete distribution that puts probability 1/N on each observation. We want to be able to use this CDF to say something about true CDF and more importantly for us usually, some function of it T.

For example, if T is the expected value as in

$$T(F(y)) = E[y] = \int y f(y) dy = \mu_y$$

and substituting the EDF gives us

$$T(F_N(y)) = \sum_{i=1}^N y_i f_N(y_i) = \frac{1}{N} \sum_{i=1}^N y_i = \hat{\mu}_y,$$

which better known as the sample mean. If we wanted to know the variance of this estimate without knowing anything else about the true distribution, we would ask, well do we think the EDF is a good approximation of the CDF? So long we say yes to that, then we can use the EDF as if it were the CDF and draw "new" samples from it.

You may be familiar with how to sample from CDFs, typically we look for a solution based on inverse uniform sampling. This approach has us

- 1. Generate U which is a length-N vector of draws from the standard uniform
- 2. Generate $y^* = F^{-1}(U)$ which is our new sample.

In the case of the EDF, we always have a step function and so inversion is just the quantile function. Which is nice.

```
set.seed(10)
y <- rpois(1000, lambda=3)</pre>
```

plot(ecdf(y))


```
U <- runif(1000)
y2 <- quantile(y, probs=U, type=1)
barplot(table(y2)/1000, col="blue")
points(dpois(seq(0, 20,by=1), lambda=3), col="red", pch=16, cex=2)
lines(dpois(seq(0, 20,by=1), lambda=3), col="red", lwd=2)</pre>
```


This looks a little convoluted for what it actually is. Drawing samples from the EDF, is just a fancy way to say resample the data with replacement!

```
y3 <- sample(y, size=1000, replace=TRUE)
barplot(table(y3)/1000, col="blue")
points(dpois(seq(0, 20,by=1), lambda=3), col="red", pch=16, cex=2)
lines(dpois(seq(0, 20,by=1), lambda=3), col="red", lwd=2)
```


So that describes the ordinary bootstrap. When dealing with clustered data, however, we don't think that independence necessarily holds at the level of the individual observation. Instead, we sample at the level of the unit, reflecting Assumption A2. For bootstrap iteration b = 1, 2, ..., B:

- 1. Resample entire units in the data (y_i, \mathbf{x}_i) with replacement to create a new data set
- 2. Fit the model using this new dataset
- 3. Save the estimates $\hat{\theta}^b$

We can then estimate the variance as

$$\frac{1}{B} \sum_{b=1}^{B} \left(\hat{\theta}^b - \hat{\bar{\theta}} \right) \left(\hat{\theta}^b - \hat{\bar{\theta}} \right)',$$

where
$$\hat{\bar{\theta}} = B^{-1} \sum_{b=1}^{B} \hat{\theta}^b$$
.

One issue with the standard clustered bootstrap comes into play when we're dealing with unbalanced panels. Now the sample size is changing with each bootstrap iteration, this can lead to numerical oddities. The more unbalanced, the more pronounced the issue. An alternative approach is called a Bayesian bootstrap, which comes from Rubin (1981). Here we think about a different sampling approach where we assign weights to each unit. In the traditional clustered bootstrap these weights are integers $0, 1, 2, \ldots, N$, depending on how many times that unit appears in the data. These integer weights will sum to the number of units N but not the total sample size.

In the Bayesian version, we smooth the weights. The basic insight here is that the integer weights form a multinomial distribution, in Bayesian stats, the Dirichlet distribution is often paired with the multinomial as its continuous counterpart (glossing over details here). Visually we can think about this with the following

```
set.seed(1)
N <- 50
B <- 10000</pre>
```

```
## draw a bunch of samples. Each row is a sample
multinomial <- matrix(sample(1:N, size=N*B, replace=TRUE), nrow=B)
m1 <- rowSums(multinomial==1)

gamma11 <- matrix(rexp(N*B), nrow=B)
dircihlet <- gamma11/rowSums(gamma11)
d1 <- dircihlet[1,]*N

ggplot()+
    geom_bar(aes(x=m1, y=after_stat(prop)), fill="navyblue")+
    geom_density(aes(x=d1), color="orangered")+
    ggtitle("Distribution of weights on unit 1")+
    xlab("weights")+
    theme_bw(12)+
    ylab("Density/frequency")</pre>
```

Distribution of weights on unit 1

Note the trick for generating Dirichlet weights:

- 1. N Gamma random variables with parameters α_i and β divided by their sum is distributed Dirichlet $(\alpha_1, \ldots, \alpha_N)$
- 2. Because we want a uniform probability of picking any unit, we'll use a Gamma(1,1), which is an Exponential(1)

So for iteration bootstrap b,

- 1. Draw N values from an Exponential (1) divide these by their sum to get the weights w.
- 2. Repeat each w_i T_i times where T_i is the number of observations within unit i to get weights for each observation.

The jackknife is similar to a bootstrap, but instead of resampling, we delete observations and see how much the variance changes. In a cross-sectional context, we typically delete one row at a time. In the panel context we will delete one unit at a time.

For i = 1, ..., N, refit the model without unit i. Call these estimates $\hat{\theta}_{-i}$. The jackknife variance estimator is then

$$\frac{N-1}{N} \sum_{i=1}^{N} \left(\hat{\theta}_{-i} - \hat{\bar{\theta}} \right) \left(\hat{\theta}_{i} - \hat{\bar{\theta}} \right)',$$

where
$$\hat{\bar{\theta}} = N^{-1} \sum_{i=1}^{N} \hat{\theta}_{-i}$$
.

So now we have some useful results for the panel model including is asymptotic variance matrix, along with several bootstrap procedures that may help us if we don't feel confident using asymptotic results. However, one of the main motivations for panel data is that it gives us repeated looks at individual units. So far we've only treated that as a nuisance that we correct for in the standard errors, but it actually provides us with some important ways to think about omitted variables and unobservables that are constant within units. This kind of unit-level heterogeneity has not yet appeared in our discussion as we have so far pooled all of our units together in estimation. The pooled model restricts us to only consider obervable differences across units (through z_i). To consider heterogeneity outside of the observables, we will need to expand our thinking.

1.2 Random effects

The random effects (RE) model also starts with Assumption A1

Assumption A1

$$y_{it} = \alpha_i + \beta' x_{it} + \gamma' z_i + \varepsilon_{it}$$

Where we diverge from the pooled model is that we will allow for heterogeneity across groups to enter in through α_i now such that we'll replace this model with

Assumption A1.R

$$y_{it} = \alpha + \beta' x_{it} + \gamma' z_i + \alpha_i + \varepsilon_{it}$$

Here the heterogeneity is modeled as an overall constant with random, unit-specific differences. This unit-level heterogeneity is time-invariant and contains any invariant factors that are not included in z_i . In the RE world, each α_i is an iid draw from some distribution (thus the name), making it a stochastic component like the error term. Strict within-unit exogeneity (Assumption A3.R) in this context means

Assumptions A2.R, A3.R, A4.R, & A5.R

$$E[\varepsilon_{it}|\mathbf{x}_i] = 0$$

$$E[\alpha_i|\mathbf{x}_i] = 0$$

$$E[\alpha_i\varepsilon_i|\mathbf{x}_i] = 0$$

$$E[\varepsilon_{it}\varepsilon_{jt'}|\mathbf{x}_i] = 0$$

$$E[\alpha_i^2|\mathbf{x}_i] = \sigma_\alpha^2$$

$$E[\varepsilon_{it}^2|\mathbf{x}_i] = \sigma_\varepsilon^2$$

for all $i \neq j$ or $t \neq t'$.

Note that we also slid a few homoskedasticity assumptions (A4.R) and an iid assumption within units (A2.R). This means that we are in a world that is in some ways more restrictive than the pooled model. So we've generalized a bit through the unit-specific heterogeneity, but at the cost of some rather strong additional modeling assumptions. To see the restrictiveness of this model over the pooled model, consider that all the within-unit correlation here comes from the presence of α_i . As such it takes a very specific forms. In contrast, the basic model allowed for arbitrary within-unit correlation.

Additionally, note that in the pooled model we assumed that $\alpha_i = 0$, but what if instead we just assumed it was a set of time-invariant omitted variables? If the random effects assumptions are true then $E[\alpha_i|\mathbf{x}_i] = 0$ and so the omitted variables are uncorrelated with the observables. This means that pooled estimator $\hat{\theta}_p$ is unbiased, consistent, and asymptotically normal for the the random effects model. However, it won't be the most efficient estimator for this model. So if we believe that RE assumptions, we will want to claw out some is efficiency improvements over the pooled estimator. This should trigger a memory in your brain. What tools do we have for cases like this where OLS is inefficient? (F)GLS and MLE.

Since we're thinking about efficiency, we'll want to be focus on the random component and what it looks like let $e_{it} = \alpha_i + \varepsilon_{it}$ be the combined stochastic component. Then under our above assumptions we can say that

$$Var(e_{it}|\mathbf{x}_i) = Var(\alpha_i|\mathbf{x}_i) + Var(\varepsilon_{it}|\mathbf{x}_i) = \sigma_{\alpha}^2 + \sigma_{\varepsilon}^2$$
$$Cov(e_{it}, e_{it'}) = Cov(\alpha_i + \varepsilon_{it}, \alpha_i + \varepsilon_{it'}) = \sigma_{\alpha}^2$$

This means that the $T \times T$ covariance matrix Σ for unit i represented by $\mathrm{E}[\varepsilon_i \varepsilon_i' | \mathbf{x}_{it}]$ is dense with $\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2$ on the diagonal and σ_{α}^2 everywhere else. The full $NT \times NT$ covariance matrix Ω is then block diagonal with Σ repeated N times diagonally.

There are several ways to fit random effects model. The first we'll consider is an FGLS approach as it is a little more general. Recall that

$$\hat{\theta}_{\text{FGLS}} = (\mathbf{X}' \hat{\Omega}^{-1} \mathbf{X})^{-1} \mathbf{X}' \hat{\Omega}^{-1} y,$$

we can make this a little bit easier on ourselves and our computers by exploiting symmetry.

Because Ω is block diagonal, we can work with just Σ . Already an improvement. We don't really need all of Σ^{-1} either, we really just need its square root in order to pre-treat the data for OLS. As you may recall, there are many different ways to think about the square root of a matrix (e.g., Choleskey). We'll focus on eigenvector decomposition for reasons that hopefully become clear.

Before we get into this, here's a few things you might want to remember about eigenvalues and eigenvectors.

- 1. A non-zero vector v_i is an **eigenvector** of a square matrix A if there exists a constant λ_i such that $Av_i = \lambda_i v_i$, where λ_i is called an **eigenvalue**.
- 2. For an $N \times N$ square matrix there will be N eigenvectors (each of length N) and N eigenvalues. These values may not be unique.
- 3. Because v_i is non-zero $\det(A \lambda_i I) = 0$
- 4. $A = V\Lambda V^{-1}$ where V is a matrix where the ith column is v_i and Λ is a matrix with the corresponding eigenvalues on the diagonal.
- 5. A and A^{-1} have the same eigenvectors and the eigenvalues of A^{-1} are $1/\lambda$
- 6. $\det(A) = \prod_i \lambda_i$, and if A is triangular, then $\det(A)$ is also the product of its diagonal elements

So

$$\begin{split} \Sigma &= V \Lambda V^{-1} \\ \Sigma^{-1} &= V \Lambda^{-1} V^{-1} \\ \Sigma^{-1/2} &= V [\Lambda^{-1/2}] V^{-1}. \end{split}$$

where V is a matrix where each column is an eigenvector and Λ is a matrix with the eigenvalues of Σ on the diagonal. As such the diagonal of $\Lambda^{-1/2}$ is $1/\sqrt{\lambda}$ where λ are the eigenvalues of Σ .

We could compute these each time, but maybe there's a more general solution? Recall that

to find the eigenvalues of a matrix we need to solve

$$\det(\Sigma - \lambda I) = 0$$

for all possible values of λ . What do we know about this matrix?

$$\Sigma - \lambda I = I(\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2 - \lambda) + \mathbf{11}'\sigma_{\alpha}^2.$$

With T-2 steps of Gaussian elimination you can get an upper diagonal matrix with diagonals:

$$(T\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2 - \lambda, \sigma_{\varepsilon}^2 - \lambda, \dots, \sigma_{\varepsilon}^2 - \lambda).$$

So the determinant of this matrix is the product of these diagonals and the eigenvalues are the values of λ that make this product 0. So what are the eigenvalues?

- 1 is $T\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2$
- The other T-1 are σ_{ε}^2

Ok, remember the goal is to make an easy-to-use form of $\Sigma^{-1/2}$ that won't be dependent on sample size, so what's next? We have the eigenvalues for Σ , now we need them for Σ^{-1} . Thankfully that's as easy as

$$1/\lambda = \left(\frac{1}{T\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2}, \frac{1}{\sigma_{\varepsilon}^2}, \dots \frac{1}{\sigma_{\varepsilon}^2}\right).$$

This gives us the Λ matrix. Now we need eigenvectors, Working with Σ , let's start with the T-1 values that are σ_{ε}^2 . Consider an arbitrary row t from Σ , we need it to solve (from property 1 above):

$$v_t \sigma_\alpha^2 + v_t \sigma_\varepsilon^2 + \sum_{s \neq t} v_s \sigma_\alpha^2 = \sigma_\varepsilon^2 v_t.$$

Note that σ_{ε}^2 appears only once on the RHS, so v_t for sure needs to be non-zero. This however means that $v_t \sigma_{\alpha}^2$ sticks around, so we need to cancel it out with something from the sum. The easiest way? For eigenvectors 2 through T let $v_t = 1$, $v_1 = -1$ and everything else be 0. This just leaves eigenvector 1 which solves

$$v_1 \sigma_{\alpha}^2 + v_1 \sigma_{\varepsilon}^2 + \sum_{s=2}^T v_s \sigma_{\alpha}^2 = v_1 T \sigma_{\alpha}^2 + v_1 \sigma_{\varepsilon}^2.$$

The obvious? v = 1. Now we've got it so this gives us

$$V = \begin{bmatrix} 1 & -\mathbf{1}_{T-1} \\ \mathbf{1}_{T-1} & \mathbf{I}_{T-1} \end{bmatrix}.$$

So we've got all the pieces now for

$$\Sigma^{-1/2} = V[\Lambda^{-1/2}]V^{-1}$$

$$= \frac{1}{\sigma_{\varepsilon}} \left[I_T - \frac{\omega}{T} \mathbf{1} \mathbf{1}' \right]$$

$$\omega = 1 - \frac{\sigma_{\varepsilon}}{\sqrt{T\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2}}.$$

And the FGLS estimates of the RE model become

$$\hat{\theta}_{\text{FGLS}} = (\tilde{\mathbf{X}}'\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}'\tilde{\mathbf{y}},$$

where

$$\tilde{y}_i = \Sigma^{-1/2} y_i = (y_i - \hat{\omega} \bar{y}_i) / \sigma_{\varepsilon}$$

$$\tilde{\mathbf{x}}_i = \Sigma^{-1/2} \mathbf{x}_i = (\mathbf{x}_i - \hat{\omega} \bar{\mathbf{x}}_i) / \sigma_{\varepsilon}.$$

Fortunately this contains only two parameters σ_{α}^2 and σ_{ε}^2 , both of which can be estimated using the pooled residuals and the RE assumptions.

Here are the steps:

1. Fit the model using pooled OLS (consistent), call the residuals in this case \hat{e} where

$$\hat{e}_{it} = y_{it} - \hat{\theta}_p' \mathbf{x}_{it}.$$

Note that the pooled residuals are estimates of e_{it} , and so $\hat{e}'\hat{e}/(NT)$ is a consistent estimator $\operatorname{Var}(e_{it}|\mathbf{x}_i) = \operatorname{Var}(u_i|\mathbf{x}_i) + \operatorname{Var}(\varepsilon_{it}|\mathbf{x}_i) = \sigma_{\alpha}^2 + \sigma_{\varepsilon}^2$.

2. Likewise, the pooled residuals can also be used to estimate σ_{α}^2 , how? It's the within-covariance of the residuals

$$\hat{\sigma}_{\alpha}^{2} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{T(T-1)/2} \sum_{t=2}^{T} \sum_{t'=1}^{t-1} \hat{e}_{it} \hat{e}_{it'},$$

OR, you can use the within estimator residuals (below) to estimate σ_{ε}^2 (easier).

3. Use the relationship

$$\sigma_e^2 = \sigma_\alpha^2 + \sigma_\varepsilon^2$$

to back out the remaining quantity of interest.

4. Build $\hat{\omega}$ as described above and fit using OLS on the transformed data.

Property A4 Under Assumptions A1.R-A5.R, as N increases, the random effects estimator will exist, be consistent for θ , and asymptotically normal. It is also unbiased and (weakly) more efficient than pooled OLS in finite samples.

This property follows from ordinary (F)GLS results. The RE estimator will also consistent for θ in T. It will be inconsistent for σ_{α}^2 in T and this will affect anything we can say about efficiency in the big-T fixed N setting.

Note that for unbalanced panels, you'll need to

- 1. Be a little more careful estimating σ_{α}^2 and
- 2. Estimate ω_i separately for each unit

Both of these changes reflect the varying length T_i within each unit.

This version of the RE model is a semi-parametric way to consider heterogeneity across units. Basically, we assume that conditional on the observables all the remaining heterogeneity is mean-zero noise that is uncorrelated with the observables. We haven't put a distributional assumption on that noise yet except to say that it each u_i is an exogenous iid shock from an unknown distribution with several moments.

Identification in this case comes from correctly specifying the rest of the model. In this way, it is very similar to a standard cross-sectional linear models. The main identification comes from having no omitted variables in either z_i or x_{it} that are correlated with both the treatment of interest and the outcome of interest.

As such the assumptions needed for the RE model to identify an effect of interest are the same as the pooled model. What we've done is say, "look we recognize that there could be heterogeneity across units. We're going to model that heterogeneity in way that pooled OLS is consistent but inefficient. We can gain that efficiency back using the FGLS approach." Is that worth much? It's not nothing, but it very much relies on thinking the RE assumptions are reasonable.

It's worth asking the question at this point, what do to with the standard errors? Under the

RE assumptions we've made so far, the standard GLS variance matrix,

$$\operatorname{Var}(\hat{\theta}_{RE}|\mathbf{X}) = \sigma_{FGLS}^2(\mathbf{\tilde{X}'\tilde{X}})^{-1},$$

is correct, but recall that these assumptions are fairly strong (i.e., iid observations once we condition on u_i and two levels of homoskedasticity). Note that using the transformation above $\sigma_{FGLS}^2 = 1$, some softwares do different transformations, so be careful. Often we are not so convinced of all our RE assumptions, but if we think they're mostly reasonable we may want to consider a clustered covariance matrix with the FGLS estimates. This is perhaps controversial as we make the efficiency claims largely on the basis of these assumptions, but then say we're not so sure about them if we cluster. The extent to which the clustered standard errors differ from the GLS standard errors may tell us something about how believable the RE assumptions are (e.g., King and Roberts).

Now two more points before we move on. First, this is not the only way to fit this model. Perhaps more common is a maximium likelihood approach that requires additional parametric assumptions

Assumption A6.R The stochastic components are normally distributed $u_i \sim N(0, \sigma_{\alpha}^2)$, $\varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2)$.

this parametric addition means we don't have to do a multi-step approach. Under this assumption

$$y_i | \mathbf{x}_i \sim N\left(\left[\alpha + \beta' x_{it} + \gamma' z_i\right]_{t=1}^{T_i}, \Sigma_i\right),$$

which suggests a straightforward log-likelihood function where each unit is a draw from this multivariate normal, giving us

$$L(\theta|y) = \sum_{i=1}^{N} -\frac{1}{2}\log(\det(\Sigma_i)) - \frac{1}{2}(y_i - \theta'\mathbf{x}_i)'\Sigma_i^{-1}(y_i - \theta'\mathbf{x}_i),$$

which we can simplify a bit further using what we know about the eigenvector decomposition of Σ_i , in that

$$\det(\Sigma_i) = (T_i \sigma_\alpha^2 + \sigma_\varepsilon^2) (\sigma_\varepsilon^2)^{T_i - 1}$$

$$\frac{1}{2} \log(\det(\Sigma_i)) = \frac{1}{2} \log(T_i \sigma_\alpha^2 + \sigma_\varepsilon^2) + \frac{T_i - 1}{2} \log(\sigma_\varepsilon^2)$$

$$\frac{1}{2} (y_i - \theta' \mathbf{x}_i)' \Sigma_i^{-1} (y_i - \theta' \mathbf{x}_i) = \frac{1}{2} [(e_i - \omega_i \bar{e}_i) / \sigma_\varepsilon]' [(e_i - \omega_i \bar{e}_i) / \sigma_\varepsilon]$$

Second, this approach to modeling heterogeneity is unlikely to satisfy many people because

the exogeneity assumption is quite strong. Likewise, the specific assumptions required for the RE estimator to be more efficient than the pooled estimator requires both within-unit independence and homoskedasticity at both the observation and unit levels. As such, we will set this framework aside for a moment and consider another approach to modelling unobserved heterogeneity.

1.3 The fixed effects model

All right, so how might we think about unobserved heterogeneity? Again, we start from Assumption A1

$$y_{it} = \alpha_i + \beta' x_{it} + \gamma' z_i + \varepsilon_{it}.$$

This time we change it to be **Assumption A1.F**

$$y_{it} = \alpha_i + \beta' x_{it} + \varepsilon_{it}$$

where

$$\alpha_i = \alpha + \gamma' z_i + u_i$$

Unlike the RE model, u_i are fixed parameters not draws from a random variable (thus the names) and contain everything unobserved about unit i that is time-invariant. By estimating this fixed, overall constant for each unit, we tuck $\gamma'z_i$ into α_i along with everything that is time-invariant. ote that this constant controls for **all** time-invariant heterogeneity, even things we didn't think of or can't measure. So we lose identification of γ , but we gain insulation from a range of omitted variables. In this way, the fixed effects model is a very important tool for fighting endogeneity as it eliminates any concerns about omitted variable bias from time-invariant sources. We will also return to iid units rather than observations (Assumption A2) and maintain strict exogeneity within units (Assumption A3).

This leaves us with a very similar setup to the pooled model. However, we haven't said anything about the correlation between u_i and the exogeneity of x_{it} . In the pooled and RE settings we assumed that any within-unit deviations from the overall constant α could be safely ignored by either a) knowing/including it z_i , b) leaving it outside the model as either either part of ε_{it} (pooled) or the random u_i (RE). Now however, we're going to ask, when is that assumption reasonable?

Suppose we fit the model in Assumption A1.F using either a pooled or RE estimator. In this case we include any observed z_i , but are leaving the unobserved u_i in the error term, as we've

done before. This leaves us with a joint error term $e_{it} = \varepsilon_{it} + u_i$, such that

$$E[\hat{\theta}_p|\mathbf{x}_{it}] = \theta + \left(\frac{1}{NT}\sum_{i=1}^N\sum_{t=1}^T\mathbf{x}_{it}\mathbf{x}'_{it}\right)^{-1}\frac{1}{NT}\sum_{i=1}^N\sum_{t=1}^T\mathbf{x}_{it} E[u_i|x_{it}],$$

which is our familiar omitted variable bias result. If there is any correlation between the variables in \mathbf{x}_{it} and the unit-specific heterogeneity u_i , then the pooled estimator (and by extension the random effects estimator) are biased and inconsistent because of this endogeneity.

This poses a notable issue. What can we do to consider a non-parametric form of heterogeneity? Obviously, if we feel ok assuming that it is unrelated to either the treatment or outcome of interest then we're fine to return to the pooled estimator. However, in cases where that's unlikely to be true, we still have some options.

1.3.1 Within-estimator

The first approach we'll consider involves what's known as the "within transformation," using

$$M_i := \mathbf{I}_i - \mathbf{1}_i (\mathbf{1}_i' \mathbf{1}_i)^{-1} \mathbf{1}_i'.$$

Here M_i is the "demeaning" matrix. It's not insulting, but it does subtract the unit-specific mean of any matrices it meets such that

$$M_i y_i = y_i - \bar{y}_i$$

$$M_i X_i = \begin{bmatrix} X_{i1} - \bar{X}_{i1} & \dots & X_{iK} - \bar{X}_{iK} \end{bmatrix}.$$

Let's consider this demeaning approach, such that

$$y_{it} - \bar{y}_i = \beta'(x_{it} - \bar{x}_i) + (\alpha_i - \bar{\alpha}_i) + (\varepsilon_{it} - \bar{\varepsilon}_i)$$

$$y_{it} - \bar{y}_i = \beta'(x_{it} - \bar{x}_i) + (\varepsilon_{it} - \bar{\varepsilon}_i)$$

$$M_i y_i = M_i X_i \beta + M_i \varepsilon_i$$

We can fit this model using OLS. Doing so is called the **within estimator**.

Note that because we are using OLS to fit the within model. We inherit all the good properties of OLS is so the within estimator is unbiased and consistent, if not efficient under Assumptions A1.F, A2, and A3. With appropriate rank conditions, we can also say that the correct variance matrix is the clustered variance matrix using the within transformed data.

Of additional note, supposed we have homoskedasticity and within-unit independence. From

what we know about OLS, this gives us

$$\operatorname{Var}(\hat{\beta}_w^0|X_i) = \sigma_{\varepsilon}^2 \left(\sum_{i=1}^N X_i' M_i X_i\right)^{-1},$$

which as you'll show in a problem set is weakly greater than the variance of the pooled OLS estimator

 $\operatorname{Var}(\hat{\beta}_p^0|X_i) = \sigma_{\varepsilon}^2 \left(\sum_{i=1}^N X_i' X_i\right)^{-1}.$

The intuition behind this is that the demeaning process removes some information from each x variable (specifically the cross-section information).

What does this mean for us? Two things. First, it means that we have made a firm choice regarding what information matters. We are only interested in the within-unit variation. This is reflected in the fact that most software packages will report two (or three) different \mathbb{R}^2 values for within estimation

$$R^{2} = 1 - \frac{SSR}{SST} = 1 - \frac{\hat{\varepsilon}'\hat{\varepsilon}}{(y - \bar{y})'(y - \bar{y})}$$

$$R_{\text{adj}}^{2} = 1 - (1 - R^{2}) \frac{NT - 1}{NT - N - k}$$

$$R_{\text{within}}^{2} = 1 - \frac{\hat{\varepsilon}'\hat{\varepsilon}}{\sum (y_{i} - \bar{y}_{i})'(y_{i} - \bar{y}_{i})}$$

The differences between the overall R^2 and the within R^2 are that the former tells us how much of the total (cross-sectional and within) variance in y is explained by X plus the unit-specific heterogeneity. The latter tells us just how much of the within-unit changes in y variance is explained by X. The overall R^2 tends to be a lot higher as unit-specific heterogeneity tends to explain a lot.

Second, in this context it tells us that when we have panel data with unobserved heterogeneity and homoskedastic and independent errors, there is a bias-variance trade off. Ignoring the heterogeneity by estimating the pooling model will result in lower variance but more bias. Being robust to the heterogeneity by fitting the fixed-effects model using the within transformation will decrease bias but at the cost of variance. Generally, we're more concerned with bias in estimating treatment effects, but it's worth remembering that we don't get it for free.

1.3.2 Dummy variable estimator

Another way may be to just estimate the time invariant parameters directly for each unit. Let

$$\alpha_i = \alpha + \gamma' z_i + u_i,$$

then the model becomes

$$y_{it} = \beta' x_{it} + \alpha_i + \varepsilon_{it},$$

which can be fit using OLS with a dummy variable for each unit.

Let $\theta_{LSDV} = (\beta, \alpha_i)_{i=1}^N$ and redefine $\mathbf{X} = [X \ D]$ where D (no subscript) is a $NT \times N$ matrix of dummy variables where each column denotes if the observation is associated with unit i. Notice that we no longer have an overall constant, instead we have a constant for each unit.

This approach is identical to the within transformation such that $\hat{\beta}_w = \hat{\beta}_{LSDV}$. The within estimator saves us from estimating the N unit-specific parameters, which can be quite handy for larger N, but it does not direct estimate the constants. However, this drawback rarely matters to us in practice, at least for the linear model.

We will consider this equivalence in two steps. First, consider a model with no covariates:

$$y_{it} = \alpha_i + \varepsilon_{it}.$$

What would the least squares estimate be for α_i ? The sample mean for group i (i.e, $\hat{\alpha}_i = \bar{y}_i$). This means that the residuals of $\hat{\varepsilon}_{it} = y_{it} - \bar{y}_i$, which of course is the residual vector from the within transformation.

Second, consider the model from Assumption A1.F

$$y_{it} = \alpha_i + \beta' x_{it} + \varepsilon_{it}.$$

In matrix form we can write this as

$$y = X\beta + D\alpha_i + \varepsilon,$$

Note that we can use the Firsch-Waugh-Lovell (FWL) theorem to consider the LSDV estimator of β separately from the LSDV estimator of α . First, let us remind ourselves what the FWL says,

Theorem 6 Firsch-Waugh-Lovell (FWL) For a regression model of $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$, with $\beta = (\beta_1, \beta_2)$, the OLS estimator of β_2 can be computed using the following algorithm:

- 1. Regress y on X_1 and save the residuals \hat{e}_1
- 2. Regress X_2 on X_1 and save the residuals \hat{e}_2
- 3. Regress \hat{e}_1 on \hat{e}_2 to get $\hat{\beta}_2$ and $\hat{\varepsilon}$

In our case this means that we can compute $\hat{\beta}_{LSDV}$ in the following way

- 1. Regress y on D and save the residuals \hat{e}_1
- 2. Regress X on D and save the residuals \hat{e}_2
- 3. Regress \hat{e}_1 on \hat{e}_2 to get $\hat{\beta}_{LSDV}$ and $\hat{\varepsilon}$

Regressing anything on just D, as we showed above, **is** the within transformation. So steps 1 and 2 here are just conducting the within-transformation and step 3 is the within estimator.

The big deal here, is that the with the within/LSDV estimator, the estimated values of β are completely invariant to the values of the fixed effects α_i . This means that we do not need to put additional assumptions on α_i like we did with the pooled or random effects estimators. The composition of α_i can be correlated with the error terms and it doesn't matter.

As an additional note, when using degree of freedom corrections (or otherwise accounting for degrees of freedom), the correct number includes the N α_i terms even when using the within transformation. Why? Answer: The within transformation involves estimating N(k+1) sample means, but these sample means are themselves directly related to the the N unit-specific intercepts such that

$$\hat{\alpha}_i = \bar{y}_i - \hat{\beta}_w' \bar{x}_i$$

, as such we are still using N+k degrees of freedom even when we don't actually directly estimate the intercepts.

The LSDV/within approach also has a connection to the RE approach. Remember that we used the following weights for the RE estimator

$$\omega_i = 1 - \frac{\sigma_{\varepsilon}}{\sqrt{T_i \sigma_{\alpha}^2 + \sigma_{\varepsilon}^2}}.$$

and the RE-FGLS estimator was OLS applied to the transformed data $(y_i - \hat{\omega}\bar{y})$ and likewise for \mathbf{x} . A couple things to note:

1. If
$$\hat{\sigma}_{\alpha}^2 = 0$$
 then $\hat{\omega} = 0$ and $\hat{\theta}_{RE} = \hat{\theta}_p$

2. If
$$\hat{\sigma}_{\varepsilon}^2 >> T_i \hat{\sigma}_{\alpha}^2$$
, then $\hat{\omega} \approx 0$ and $\hat{\theta}_{RE} \approx \hat{\theta}_p$

3. If
$$T_i \hat{\sigma}_{\alpha}^2 >> \hat{\sigma}_{\varepsilon}^2$$
, then $\hat{\omega} \approx 1$ and $\hat{\beta}_{RE} \approx \hat{\beta}_w$.

Now note that β in this model reflects only the average within unit changes (thus the name). Basically, by applying the within transformation, we discard the cross-section information and focus on how the treatment affects each individual. At the other end is the pooled model, which uses both the within and the between unit information. In fact, we can consider what the other extreme might be: the **between** estimator

$$\hat{\theta}_{\mathrm{btwn}} = \left(\sum_{i=1}^{N} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_i'\right)^{-1} \sum_{i=1}^{N} \bar{\mathbf{x}} \bar{y}_i.$$

There is little practical use for the between estimator, but it does show us the extreme case where all we care about is the cross-sectional variation and where we care nothing about the within-unit variance. However, we can note the relationships between the pooled, between, and within estimators such that

$$\hat{\theta}_{p} = T_{XX}^{-1} T_{Xy}$$

$$\hat{\theta}_{w} = W_{XX}^{-1} W_{Xy}$$

$$\hat{\theta}_{b} = B_{XX}^{-1} B_{Xy}$$

$$T_{XX} = \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}'_{i}$$

$$B_{XX} = \sum_{i=1}^{N} \bar{\mathbf{x}}_{i} \bar{\mathbf{x}}'_{i}$$

$$W_{XX} = T_{XX} - B_{XX}$$

$$\hat{\theta}_{RE} = (W_{XX} + \lambda B_{XX})^{-1} (W_{Xy} + \lambda B_{Xy})$$

$$\lambda = (1 - \omega)^{2}.$$

All of this to say that the random effects estimator can also be expressed as a weighted combination of the between and within estimators. When they're weighted equally ($\lambda = 1$) then we have the pooled estimator, as λ moves to 0 (favoring the within variance), we get the within estimator.

1.3.3 First differences

Yet another way to consider the FE model is to remove the heterogeneity by subtracting y_{t-1} from both sides

$$y_{it} - y_{t-1} = (\alpha_i - \alpha_i) + \beta'(x_{it} - x_{it-1}) + \varepsilon_{it} - \varepsilon_{it-1}$$
$$\Delta y_{it} = \beta' \Delta x_{it} + \Delta \varepsilon_{it}.$$

All the time-invariant heterogeneity is removed and OLS becomes a good estimator for β .

In matrix form this looks like

$$\Delta_{i} y_{i} = \Delta_{i} X_{i} + \Delta_{i} \varepsilon_{i}$$

$$\Delta_{i} = \underbrace{\begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix}}_{T_{i}-1 \times T_{i}}$$

$$\hat{\beta}_{FD} = \underbrace{\left(\sum_{i=1}^{N} X_{i}' \Delta_{i}' \Delta_{i} X_{i}\right)^{-1} \left(\sum_{i=1}^{N} X_{i}' \Delta_{i}' \Delta_{i} y_{i}\right)}_{T_{i}}$$

Because this is simply pooled OLS on the differenced data, we can obtain a few properties with ease:

Property A5 Under Assumptions A1.F, A2, and A3 the first differences estimator $\hat{\beta}_{FD}$ is unbiased for β .

With additional rank and moment assumptions, we can also obtain

Property A6 $\hat{\beta}_{FD}$ is consistent in N and asymptotically normal with the clustered variance matrix on the differenced data.

Note that when T=2 the FD estimator will be identical to the within estimator, but this does not hold for T>2. Additionally, if we wanted to make some independence and homoskedasticity assumptions on the undifferenced errors ε_{it} then we can note that the differenced errors are correlated within units

$$\operatorname{Var}(\Delta_i \varepsilon_i | X_i) = \Delta_i \Delta_i' \sigma_{\varepsilon}^2$$

where $\Delta_i \Delta_i'$ is a matrix with 2 on the diagonal, -1 on the first off-diagonals, and 0 everywhere else.

This means that we can eek out some improvements via GLS since we know the variance, such that

$$\hat{\beta}_{FD}^{GLS} = \left(\sum_{i=1}^{N} X_i' \Delta_i' (\Delta_i \Delta_i')^{-1} \Delta_i X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i' \Delta_i' (\Delta_i \Delta_i')^{-1} \Delta_i y_i\right)$$

After some algebra, the inner parts work out to be

$$\Delta_i'(\Delta_i \Delta_i')^{-1} \Delta_i = \mathbf{I}_i - \mathbf{1}_i (\mathbf{1}_i' \mathbf{1}_i)^{-1} \mathbf{1}_i' := M_i.$$

This is the demeaning matrix again. So we can rewrite the GLS-FD estimator as

$$\hat{\beta}_{FD}^{GLS} = \left(\sum_{i=1}^{N} X_i' M_i X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i' M_i y_i\right).$$

This is the within estimator! So if the errors are iid and homoskedastic then the within estimator is BLUE by the GLS properties. However, that's probably not going to be something we want to lean on very often, but it's 1 point in favor of within over FD. Of course, if $\Delta \varepsilon_{it}$ are iid and homoskedastic then FD is BLUE. More generally, the LSDV/within estimators will only be identical to the FD estimates when T = 2.

1.4 Model testing and comparisons

The next thing you should want to know is when do you want to use the pooled, or random effects FGLS, or the LSDV/within. As we've mentioned, the fixed effects estimators will be consistent in the widest set of cases, however, this can come at some efficiency losses. Likewise, in some cases, we now know that the decision may not matter too much (i.e., as T increases the differences between fixed and random effects will be less pronounced, all else equal). Table 1.1 outlines some of the important differences among the models and estimators we've discussed so far.

Okay, so now you're thinking I don't want inconsistent estimates, but efficiency is nice. How do I choose among these estimator?

As we mentioned, even if the random effects assumptions are good, the RE-FGLS estimator converges to the within-estimator (below) as T increases. So the efficiency gains are fleeting as T increases while the risk of bias and inconsistency remain. Recall that we can consider the closeness between the two estimators by just looking at the RE weights ω_i .

$$\omega_i = 1 - \frac{\sigma_{\varepsilon}}{\sqrt{\sigma_{\varepsilon}^2 + T_i \sigma_{\alpha}^2}}.$$

The closer ω_i is to 1 the more similar the estimates are, the fewer efficiency gains if the RE assumptions are correct. Likewise, if the RE assumptions are not satisfied the estimator is inconsistent.

However, in most cases there will be differences. In these cases, we have should have good reasons for choosing the estimators we do. Most of the time, we care about consistency more than efficiency. This is a good reason to make the within/LSDV your first choice (or the "mostly harmless" choice).

If you're not yet convinced that random effects are mostly meh, or you really think there's a good reason for that approach, you can consider two different types of hypothesis tests. The first is the common textbook text for this question: The Hausman test. The Hausman test should be considered for when you think random effects are right, and you want to provide evidence in support of that decision. It should *not* be used to make a selection when you're agnostic about fixed versus random effects. If you're agnostic, use the fixed effects because they require fewer assumptions.

The null hypothesis is that $\hat{\beta}_0$ and $\hat{\beta}_1$ are both consistent. The alternative hypothesis is that only $\hat{\beta}_1$ is consistent. To put this another way, the null is that $q = \hat{\beta}_1 - \hat{\beta}_0 \stackrel{p}{\to} 0$. Note this is a slightly different kind of hypothesis than we're used to, because it relates to the limiting value of an estimate rather than whether the true parameters are a particularly value.

Hausman derives this hypothesis test for the case where $\hat{\beta}_0$ is the asymptotically efficient estimator of β (i.e., RE v FE). In this case we can consider the (joint) distribution of the estimators. We know that the sampling distributions are individually normal (asymptotically), and we will add the additional assumption that they are jointly normal.

So now we need to know the distribution of q, we start with the joint distribution:

$$\sqrt{N} \begin{bmatrix} \hat{\beta}_1 - \beta \\ \hat{\beta}_0 - \beta \end{bmatrix} \stackrel{asy}{\sim} N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{\varepsilon}^2 \operatorname{E}[X'MX] & N \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_0) \\ N \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_0) & \operatorname{E}[X'\Omega^{-1}X] \end{bmatrix} \right)$$

and this means that $q = \hat{\beta}_1 - \hat{\beta}_0$ is also asymptotically normal with mean 0 and variance

$$Var(q) = Var(\hat{\beta}_1) + Var(\hat{\beta}_0) - 2 \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_0),$$

under the null. Now we don't typically know the covariance across estimators so $Cov(\hat{\beta}_1, \hat{\beta}_0)$ is unclear (although we could—and maybe should—bootstrap it). We need to be clever. Let's

 Table 1.1: Comparing panel estimators

	Pooled	RE-FGLS	FD	LSDV/within
Pooled model: $y_{it} = \alpha + \beta' x_{it} + \gamma' z_i + \varepsilon_{it}$ $(\mathbf{x}_i, \varepsilon_i)$ iid $\mathrm{E}[\varepsilon_{it} \mathbf{x}_i] = 0$	 Unbiased and consistent in N. In T, if data are stationary and ergodic. BLUE if ε_{it} are iid homoskedastic. Asymptotically efficient if ε_{it} are iid normal and homoskedastic. 	 Unbiased and consistent in N for θ. In T, if data are stationary and ergodic. No efficiency gains over the pooled estimator. RE covariance matrix may be incorrect b/c of withinunit iid assumptions 	 Unbiased and consistent in N for β. In T if data are stationary 	 Unbiased and consistent in N for β. In T if data are stationary and ergodic
RE model: $y_{it} = \alpha + \beta' x_{it} + \gamma' z_i$ $+\alpha_i + \varepsilon_{it}$ $E[\alpha_i] = 0$ $Cov(\mathbf{x}_{it}, \alpha_i) = 0$ $Cov(\varepsilon_{it}, \alpha_i) = 0.$ $(\mathbf{x}_{it}, \varepsilon_{it}) \text{ iid}$ $E[\varepsilon_{it} \mathbf{x}_i] = 0$ $E[\varepsilon_{it}^2 \mathbf{x}_i] = \sigma_{\varepsilon}^2$ $E[\alpha_i^2 \mathbf{x}_i] = \sigma_{\alpha}^2$	Unbiased and consistent N . In T if data are stationary and ergodic.	 Unbiased and consistent in N. In T if data are stationary and ergodic. BLUE Asymptotically efficient if α_i and ε_{it} are normal 	See above	See above
FE model: $y_{it} = \beta' x_{it} + \alpha_i + u_{it}$ (x_i, ε_i) iid $E[\varepsilon_{it} \mathbf{x}_i] = 0$	Biased and inconsistent	Biased and inconsistent in N . Consistent in T as $\omega \to 1$, if data are stationary and ergodic.	See above. BLUE if $\Delta \varepsilon_{it}$ are iid and homoskedastic	See above. BLUE if ε_{it} iid and homoskedastic

rewrite q such that we get

$$\hat{\beta}_1 = \hat{\beta}_0 + q$$

$$\operatorname{Var}(\hat{\beta}_1) = \operatorname{Var}(\hat{\beta}_0) + \operatorname{Var}(q) + 2\operatorname{Cov}(\hat{\beta}_0, q).$$

Claim: $Cov(\hat{\beta}_0, q) = 0$

Proof. Suppose not, that is, let $Cov(\hat{\beta}_0, q) \neq 0$. We can define another estimator $\hat{\beta}_2 = \hat{\beta}_0 + rAq$, where A is an arbitrary matrix and r an arbitrary scalar. Because $q \stackrel{p}{\to} 0$, we know that $\hat{\beta}_2$ is consistent and asymptotically normal with variance

$$\operatorname{Var}(\hat{\beta}_2) = \operatorname{Var}(\hat{\beta}_0) + rA\operatorname{Cov}(\hat{\beta}_0, q) + r\operatorname{Cov}(\hat{\beta}_0, q)A' + r^2A\operatorname{Var}(q)A'.$$

Let

$$f(r) = \operatorname{Var}(\hat{\beta}_2) - \operatorname{Var}(\hat{\beta}_0) = 2rA\operatorname{Cov}(\hat{\beta}_0, q)A' + r^2A\operatorname{Var}(q)A' \ge 0$$

be the difference in variances between this new estimator and the efficient estimator $\hat{\beta}_0$. The derivative of f derivative wrt to r is

$$D_r f(r) = A \operatorname{Cov}(\hat{\beta}_0, q) + \operatorname{Cov}(\hat{\beta}_0, q) A' + 2r A \operatorname{Var}(q) A'.$$

Now consider the special case where r = 0 and $A = -\operatorname{Cov}(\hat{\beta}_0, q)$

$$D_r f(0) = -2 \operatorname{Cov}(\hat{\beta}_0, q)' \operatorname{Cov}(\hat{\beta}_0, q).$$

If $Cov(\hat{\beta}_0, q) \neq 0$, then this is a quadratic times a negative constant. As such, $D_r f(0) < 0$, which is to say that f(r) is decreasing in r at r = 0.

But, note that f(0) = 0, so for some small r > 0, f(r) will be negative. However, this contradicts the the fact that $\hat{\beta}_0$ is the efficient estimator. Therefore, we conclude that $\text{Cov}(\hat{\beta}_0, q) = 0$.

This tells us two identical things:

1. The variance of q

$$Var(\hat{\beta}_1) = Var(\hat{\beta}_0) + Var(q) + 0$$
$$Var(q) = Var(\hat{\beta}_1) - Var(\hat{\beta}_0),$$

2. The actual covariance of $\hat{\beta}_1$ and $\hat{\beta}_0$

$$Cov(\hat{\beta}_1 - \hat{\beta}_0, \hat{\beta}_0) = 0$$

$$Cov(\hat{\beta}_1, \hat{\beta}_0) - Cov(\hat{\beta}_0, \hat{\beta}_0) = 0$$
 Properties of covariance
$$Cov(\hat{\beta}_1, \hat{\beta}_0) = Var(\hat{\beta}_0)$$

Returning to the test statistic, we can now construct a standard χ^2 test based on q such that

$$q' \left(\operatorname{Var}(\hat{\beta}_1) - \operatorname{Var}(\hat{\beta}_0) \right)^{-1} q \stackrel{asy}{\sim} \chi_k^2,$$

where k is the length of β .

Note, that the RE estimator is only more efficient under the RE assumptions, which include homoskedasticity and iid observations. If either of these fails, this test is suspect. As such, we can only use the "classical" variance matrices

$$V_1 = \hat{\sigma}_{\varepsilon}^2 \left[\sum_i X' M_i X \right]^{-1}$$

$$V_0 = \mathbf{X}' \hat{\Omega}^{-1} \mathbf{X} \qquad \text{restricted to } \beta.$$

Because of this test's reliance on within-unit independence and homoskedasticity, we may want to consider alternatives. One that you'll think about in a problem set or something will consider the power and size of a version based on a clustered bootstrap.

Now because we want to know if the iid assumptions have any bite, we'll want to know if there is any autocorrelation in the residuals. Wooldridge recommends a panel version of the standard Bruesch-Godfrey test that simply regresses $\hat{\varepsilon}_{it}$ on $\hat{\varepsilon}_{it-1}$.

1.4.1 CRE

There is another approach though which can accommodate more interesting covariance structures without concern. This is based on work by Mundlak, who gifted us *another* estimator for the linear fixed effects model that is also equivalent to the LSDV/within called

the correlated random effects estimator. Here we adjust the fixed effects model such that

$$y_{it} = \alpha_i + \beta' x_{it} + \varepsilon_{it}$$

$$\alpha_i = \alpha + \gamma' \bar{x}_i + u_i$$

$$u_i \sim f(0, \sigma_{\alpha}^2)$$

$$\mathbf{x}_{it} = \begin{bmatrix} 1 & x_{it} & \bar{x}_i \end{bmatrix}$$

$$\mathbf{E}[u_i | \mathbf{x}_i] = \mathbf{E}[u_i \varepsilon_i | \mathbf{x}_i] = 0$$

$$\mathbf{Cov}(u_i + \varepsilon_{it}, u_i + \varepsilon_{it'}) = \sigma_{\varepsilon}^2 I_T + \sigma_{\alpha}^2 \mathbf{11}'$$

What's happening here? Well we're blending the RE and FE models a bit. If the RE assumptions are correct, then we should find that $\gamma = 0$ and then these α_i simplify to the standard random intercept from that approach. However, if $\gamma \neq 0$ then we have incorporated a way for the observe covariates x to be correlated with the unobserved heterogeneity α_i . Note that we are retaining iid within-unit observations here (from the RE setup), so the only within-unit autocorrelation is in the form of the constant u_i .

Essentially, we are accommodating the unobserved heterogeneity by modeling it's relationship to the observables and controlling for that. We are directly controlling for deviations from the within means (as in the within model), while deviations of y_{it} from \bar{y}_i and u_{it} from u_i are captured in α_i and α . And indeed $\hat{\beta}_{CRE} = \hat{\beta}_{LSDV} = \hat{\beta}_w$. To see this consider the following alternative derivation starting with the within model:

$$y_{it} - \bar{y}_i = \beta'_w(x_{it} - \bar{x}_i) + (\varepsilon_{it} - \bar{\varepsilon}_i)$$

$$y_{it} = \beta'_w(x_{it} - \bar{x}_i) + (\varepsilon_{it} - \bar{\varepsilon}_i) + \bar{y}_i$$

$$\bar{y}_i = \alpha + u_i + \beta'_b \bar{x}_i + \bar{\varepsilon}_i$$

$$y_{it} = \beta'_w(x_{it} - \bar{x}_i) + (\varepsilon_{it} - \bar{\varepsilon}_i) + \alpha + u_i + \beta'_b \bar{x}_i + \bar{\varepsilon}_i$$

$$= \beta'_w x_{it} + (\beta_w - \beta_b)' \bar{x}_i + \alpha + u_i + \varepsilon_{it}$$

$$= \beta'_w x_{it} + \gamma' \bar{x}_i + \alpha + u_i + \varepsilon_{it}$$

Which is to say that we get the within estimates back on x_{it} and the difference between the within and between estimates back on \bar{x}_i . This gives us another nice alternative to dummy variables that uses fewer parameters.

Now it also suggests a specification test. Namely if $\alpha = 0$ (i.e., $\beta_w = \beta_b$), then the there are no real differences between the within and between estimators and we can use the more efficient RE estimator (or the pooled estimator if we still want to avoid questionable RE assumptions). This becomes an ordinary Wald test of the hypothesis that $\gamma = 0$. Unlike the

Hausman test, the Wald test is well defined and applicable with (cluster) robust covariance matrices.

Note that u_i can be safely ignored here regardless of whether it is correlated with the observables or not because we have obtained the within estimates on the observables. As such we can treat it as either fixed or random. We can leave it in the error term (i.e., fit the above equation with the pooled estimator) or treat it as random and fit the GLS. Regardless, we'll get the within estimates for β .

1.5 Application

In this example we're going to be working with data from Choulis, Escribá-Folch, and Mehri (2024, JOP).¹ In this paper, they consider how the presence of secret police within a country affect anti-regime protests.

The outcome of interest is a latent measure based on combining information from several different protest datasets. The treatment of interest is whether there is a secret police organization within that country-year observation (binary). They also consider several control variables include population, GDP per captia, economic growth, politically exclude ethnic groups, protests in neighboring countries, civil conflict, and coup attempts. We will take their specification at face value and observe the following specification

$$Protests_{it} = \alpha_i + \beta_1 Secret Police_{it} + x'_{it}\gamma + \varepsilon_{it}.$$

We will consider pooling, random effects, and FE estimation.

```
## data manipulation packages
library(readstata13)
library(data.table)

## econometrics packages
library(lmtest)
library(car)
library(sandwich)
library(fixest)
library(lme4)
library(clubSandwich)
```

¹https://doi.org/10.1086/729953

```
## tables and figures
library(modelsummary)
## checking out the data
protests <- read.dta13("Rcode/datasets/Replication_secpol_protestComplete.dta")</pre>
protests <- data.table(protests)</pre>
protests <- protests[order(ccode, year),]</pre>
colnames(protests)
    [1] "ccode"
                             "year"
                                                  "country"
##
                             "secretpol revised" "pop"
##
    [4] "Region"
    [7] "gdp pc"
                             "intrastate"
                                                  "polity2"
##
## [10] "attempt"
                             "theta mean"
                                                  "physint"
## [13] "disap"
                             "kill"
                                                  "polpris"
## [16] "tort"
                             "Capacity"
                                                  "v2clrspct"
## [19] "v2stfisccap"
                             "v2terr"
                                                  "v2cseeorgs"
                                                  "v2csantimv"
## [22] "v2csreprss"
                             "v2csprtcpt"
## [25] "v2csstruc 1"
                             "solschdum"
                                                  "urbanpop"
## [28] "l12gr"
                             "xpers"
                                                  "lexclpop"
## [31] "effectivenumber"
                                                  "mean5"
                             "mean3"
## [34] "nbr mean3"
                             "nbr mean5"
## panel dimenions
length(unique(protests$ccode))
## [1] 208
summary(protests[, length(year), by = ccode])
                           V1
##
        ccode
    Min. : 2.0
                    Min.
                            : 1.00
##
    1st Qu.:313.8
                     1st Qu.:69.00
##
## Median :466.0
                    Median :69.00
           :479.9
##
   Mean
                    Mean
                            :63.76
##
    3rd Qu.:694.5
                    3rd Qu.:69.00
           :990.0
                            :69.00
##
   Max.
                    Max.
```

```
## adjust the variables based on their replication file
## Normalize the latent varaible to be mean 0, var 1
protests[, Protest := scale(mean5)]
protests[, nbr protest := scale(nbr mean5)]
## create the controls: lag(log(pop)), lag(log(gdp_pc), lag(excluded population))
protests[, `:=` (1.ln pop = shift(log(pop+1)),
                1.ln_gdppc = shift(log(gdp_pc)),
                1.lexclpop = shift(lexclpop)),
        by=ccode]
## model formula
f1 <- Protest~ secretpol_revised + 1.ln_pop + 1.ln_gdppc + 112gr+ 1.lexclpop+
 nbr protest+intrastate+attempt
## Fitting with the pooled esetimator
pooled <- lm(f1, data=protests, x=TRUE)</pre>
summary(pooled)
##
## Call:
## lm(formula = f1, data = protests, x = TRUE)
##
## Residuals:
       Min
##
                 1Q
                      Median
                                   3Q
                                           Max
## -2.18241 -0.48782 0.00395 0.48523 1.98517
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
                                0.185713 -33.737 < 2e-16 ***
## (Intercept)
                    -6.265451
## secretpol_revised -0.072502
                                0.031246 -2.320 0.0204 *
                                0.009246 36.529 < 2e-16 ***
## 1.ln_pop
                     0.337756
## 1.ln gdppc
                                0.010665 10.793 < 2e-16 ***
                     0.115105
## 112gr
                                0.001964 -5.872 4.73e-09 ***
                    -0.011531
```

```
## 1.lexclpop
                     0.101536
                                0.043745
                                           2.321
                                                  0.0203 *
## nbr protest
                    0.158305
                                0.013073 12.109 < 2e-16 ***
## intrastate
                     0.192116
                                0.031781
                                           6.045 1.66e-09 ***
                     0.217309
                                0.048047 4.523 6.32e-06 ***
## attempt
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6917 on 3245 degrees of freedom
     (10009 observations deleted due to missingness)
## Multiple R-squared: 0.4165, Adjusted R-squared: 0.415
## F-statistic: 289.5 on 8 and 3245 DF, p-value: < 2.2e-16
## To make life easy
## We're going to restrict ourselves to just the used sample
protests <- protests[as.numeric(row.names(pooled$model)), ]</pre>
## Let's consider the residual autocorrelation
## in choosing standard errors
protests[, e.hat := pooled$residuals]
protests[, L.e.hat := shift(e.hat), by =ccode]
summary(lm(e.hat~L.e.hat, data=protests)) #that's pretty high!
##
## Call:
## lm(formula = e.hat ~ L.e.hat, data = protests)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -1.1104 -0.1078 -0.0032 0.1080 0.7920
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.003252
                                            0.306
                         0.003175
                                    1.024
## L.e.hat
              0.970443 0.004629 209.648
                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 0.1779 on 3139 degrees of freedom
     (113 observations deleted due to missingness)
## Multiple R-squared: 0.9333, Adjusted R-squared: 0.9333
## F-statistic: 4.395e+04 on 1 and 3139 DF, p-value: < 2.2e-16
## Clustering the standard errors
Vcl.pooled <- vcovCL(pooled, cluster=protests$ccode)</pre>
round(coeftest(pooled, Vcl.pooled), 5)
##
## t test of coefficients:
##
##
                    Estimate Std. Error t value Pr(>|t|)
                                0.72706 -8.6175 < 2e-16 ***
## (Intercept)
                    -6.26545
## secretpol_revised -0.07250
                                0.10565 -0.6863 0.49259
## 1.ln pop
                     0.33776
                                0.03442 9.8120 < 2e-16 ***
                                0.05135 2.2416 0.02505 *
## 1.ln_gdppc
                     0.11510
## 112gr
                    -0.01153
                                0.00384 -3.0029 0.00269 **
## 1.lexclpop
                    ## nbr protest
                    0.15830
                                0.05752 2.7523 0.00595 **
## intrastate
                     0.19212
                                0.08844 2.1722 0.02992 *
## attempt
                     0.21731
                                0.07627 2.8493 0.00441 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Suppose we wanted to bootstrap we have the clustered bootstrap
pooled.boot <- t(replicate(50, {</pre>
 idx <- sample(unique(protests$ccode),</pre>
               size=length(unique(protests$ccode)),
               replace=TRUE)
 d <- copy(protests)</pre>
 d <- d[unlist(sapply(idx, \(x){which(d$ccode==x)}))]</pre>
 pooled.bs <- lm(f1, dat=d)</pre>
 pooled.bs$coef
}))
round(coeftest(pooled, var(pooled.boot)), 5)
```

##

```
## t test of coefficients:
##
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   -6.26545
                              0.90032 -6.9591 < 2e-16 ***
## 1.ln_pop
                    0.33776
                              0.04292 7.8701 < 2e-16 ***
## 1.ln gdppc
                    0.11510
                              0.06132 1.8772 0.06059 .
## 112gr
                   -0.01153
                              0.00398 -2.9005 0.00375 **
## 1.lexclpop
                    0.10154
                              0.15421 0.6584 0.51031
## nbr protest
                   0.15830
                              0.05551 2.8516 0.00438 **
## intrastate
                   ## attempt
                    0.21731
                              0.07474 2.9075 0.00367 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## And the clustered bayesian bootstrap
pooled.bayes.boot <- t(replicate(50, {</pre>
 Ti <- table(protests$ccode)</pre>
 d <- copy(protests)</pre>
 weight <- rexp(length(unique(protests$ccode)))</pre>
 weight <- weight/sum(weight)</pre>
 d$weight <- rep(weight*length(unique(protests$ccode)), Ti)</pre>
 lm(f1, dat=d, weights=weight)$coef
}))
round(coeftest(pooled, var(pooled.bayes.boot)), 5)
##
## t test of coefficients:
##
##
                   Estimate Std. Error t value Pr(>|t|)
                   -6.26545
                              0.75865 -8.2586 < 2e-16 ***
## (Intercept)
                              0.10021 -0.7235 0.46942
## secretpol revised -0.07250
                              0.03859 8.7515 < 2e-16 ***
## 1.ln pop
                    0.33776
## 1.ln_gdppc
                    0.11510
                              0.05014 2.2956 0.02176 *
## 112gr
                   -0.01153
                              0.00319 -3.6107 0.00031 ***
## 1.lexclpop
                    0.10154
                              0.15421 0.6584 0.51030
## nbr protest
                              0.05755 2.7508 0.00598 **
                    0.15830
```

```
## intrastate
                     0.19212
                                0.09509 2.0203 0.04343 *
                      0.21731
                                 0.07011 3.0995 0.00196 **
## attempt
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## We can consider fixed effects estimators too. Starting with the LSDV
lsdv <- lm(update(f1, .~. -1 + factor(ccode)), data=protests)</pre>
Vcl.lsdv <- vcovCL(lsdv, cluster=protests$ccode)</pre>
round(coeftest(lsdv, Vcl.lsdv)[1:8,], 4)
##
                     Estimate Std. Error t value Pr(>|t|)
## secretpol_revised -0.2716
                                 0.0926 - 2.9334
                                                  0.0034
                      0.6411
                                 0.1077 5.9507
                                                  0.0000
## 1.ln pop
## 1.ln gdppc
                     -0.0180
                                 0.0804 -0.2236
                                                   0.8231
## 112gr
                                 0.0026 - 1.5970
                                                   0.1104
                     -0.0041
                                 0.1075 -0.1190 0.9053
## 1.lexclpop
                     -0.0128
## nbr protest
                      0.1088
                                 0.0664 1.6380 0.1015
                      0.1851
## intrastate
                                 0.0542 3.4151
                                                   0.0006
## attempt
                       0.1141
                                  0.0432 2.6393
                                                   0.0083
## Within transformation
var.names <- colnames(pooled$model)</pre>
protests[,paste0(var.names, ".within"):=lapply(.SD, (x)\{x-mean(x)\}),
                  by=ccode, .SDcols=var.names ]
fwithin <- pasteO(var.names[1], ".within ~ -1 + ",
                  paste0(var.names[-1], ".within", collapse=" + "))
within1 <- lm(fwithin, data=protests)
Vcl.within1 <- vcovCL(within1, cluster=protests$ccode)</pre>
round(coeftest(within1, Vcl.within1), 4)
##
## t test of coefficients:
##
##
                            Estimate Std. Error t value Pr(>|t|)
                                         0.0910 -2.9858
                                                         0.0028 **
## secretpol revised.within -0.2716
## 1.ln_pop.within
                             0.6411
                                         0.1058 6.0571
                                                         <2e-16 ***
## 1.ln_gdppc.within
                             -0.0180
                                         0.0790 -0.2276 0.8199
## 112gr.within
                            -0.0041
                                         0.0025 -1.6255
                                                          0.1042
```

```
## 1.lexclpop.within
                           -0.0128
                                        0.1056 -0.1211
                                                        0.9036
## nbr protest.within
                            0.1088
                                        0.0653 1.6673
                                                       0.0956 .
## intrastate.within
                             0.1851
                                        0.0533 3.4762 0.0005 ***
                                        0.0425 2.6865 0.0073 **
## attempt.within
                             0.1141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## The fixest is the better way to go here. It takes
## a formula of the form y \sim x / heterogeneity. And automatically
## clusters the variance
within2 <- feols(Protest~ secretpol_revised + 1.ln_pop + 1.ln_gdppc + 112gr+ 1.lexclpd
 nbr_protest+intrastate+attempt|ccode, data=protests)
summary(within2)
## OLS estimation, Dep. Var.: Protest
## Observations: 3,254
## Fixed-effects: ccode: 113
## Standard-errors: Clustered (ccode)
##
                     Estimate Std. Error
                                          t value
                                                    Pr(>|t|)
## secretpol revised -0.271642
                                0.090992 -2.985330 3.4792e-03 **
## 1.ln pop
                     0.641114
                                0.105861 6.056172 1.9048e-08 ***
## 1.ln_gdppc
                    -0.017976
                                0.078980 -0.227601 8.2037e-01
## 112gr
                    -0.004095
                                0.002520 -1.625256 1.0692e-01
## 1.lexclpop
                    -0.012796
                                0.105648 -0.121119 9.0381e-01
## nbr protest
                    0.108823
                                0.065281 1.666995 9.8309e-02 .
## intrastate
                     0.185147
                                0.053270 3.475647 7.2605e-04 ***
## attempt
                     0.114058
                                0.042462 2.686092 8.3295e-03 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.422676
                     Adj. R2: 0.77316
                   Within R2: 0.222534
##
## truely the same
max(abs(lsdv$residuals-within1$residuals))
```

[1] 8.538725e-13

```
max(abs(lsdv$residuals-within2$residuals))
## [1] 8.678613e-13
## here we can see the difference between the
## total and within r-squared
c(summary(lsdv)$r.sq, summary(within1)$r.sq)
## [1] 0.7825909 0.2225345
## why are these different?
## which of these are unbiased estimates? Which are consistent?
c(summary(lsdv)$sigma, summary(within1)$sigma, sqrt(summary(within2)$sigma2))
## [1] 0.4307607 0.4231964 0.4307607
## build the weights for RE=GLS
Ti <- table(protests$ccode) #unbalanced panel so each unit has different weight
Ti <- rep(Ti, Ti)
sigma2.eps <- within2$sigma2 #unbiased and consistent
sigma2.a <- mean(pooled$residuals^2) -sigma2.eps</pre>
protests$omega.hat <- 1- sqrt(sigma2.eps/(Ti*sigma2.a+sigma2.eps) )</pre>
mean(protests$omega.hat) ## fairly similar on this measure
## [1] 0.8587313
protests[,paste0(var.names, ".gls"):=lapply(.SD, (x)\{x-omega.hat*mean(x)\}),
                  by=ccode, .SDcols=var.names ]
protests[,const.gls:=1-omega.hat]
fgls <- pasteO(var.names[1], ".gls ~ -1 + const.gls + ",
               paste0(var.names[-1], ".gls", collapse=" + "))
gls <- lm(fgls, data=protests)</pre>
summary(gls)
##
## Call:
## lm(formula = fgls, data = protests)
##
## Residuals:
```

```
##
        Min
                       Median
                                    30
                                            Max
                  10
## -1.25424 -0.32143 -0.02315 0.29313 1.63801
##
## Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
##
## const.gls
                         -8.420488
                                     0.366711 -22.962 < 2e-16 ***
## secretpol revised.gls -0.252149
                                     0.035191 -7.165 9.57e-13 ***
## 1.ln_pop.gls
                          0.516274
                                     0.022047 23.417 < 2e-16 ***
## 1.ln gdppc.gls
                                     0.020036
                                              2.239 0.025230 *
                          0.044860
## 112gr.gls
                                     0.001356 -3.644 0.000272 ***
                         -0.004943
## 1.lexclpop.gls
                                     0.051030 -0.840 0.400712
                         -0.042889
## nbr protest.gls
                          0.138695
                                     0.017534 7.910 3.49e-15 ***
## intrastate.gls
                          0.191343
                                     0.025758 7.429 1.40e-13 ***
## attempt.gls
                          0.110429
                                     0.031822 3.470 0.000527 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4359 on 3245 degrees of freedom
## Multiple R-squared: 0.2234, Adjusted R-squared: 0.2212
## F-statistic: 103.7 on 9 and 3245 DF, p-value: < 2.2e-16
Vcl.gls <- vcovCL(gls, cluster=protests$ccode)</pre>
round(coeftest(gls, Vcl.gls), 4)
##
## t test of coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
##
                                      1.1471 -7.3409
## const.gls
                          -8.4205
                                                       <2e-16 ***
## secretpol_revised.gls
                         -0.2521
                                      0.0844 - 2.9864
                                                       0.0028 **
## 1.ln pop.gls
                           0.5163
                                      0.0688 7.5047
                                                       <2e-16 ***
## 1.ln_gdppc.gls
                           0.0449
                                      0.0623 0.7197
                                                       0.4718
                                                       0.0502 .
## 112gr.gls
                          -0.0049
                                      0.0025 - 1.9586
                                      0.1002 -0.4280
## l.lexclpop.gls
                          -0.0429
                                                       0.6687
                                      0.0615 2.2561
                                                       0.0241 *
## nbr protest.gls
                           0.1387
## intrastate.gls
                           0.1913
                                      0.0526 3.6370
                                                       0.0003 ***
## attempt.gls
                           0.1104
                                      0.0422 2.6144
                                                       0.0090 **
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## The lme4 package is the more common way to go here. It takes
## a formula of the form y \sim x + (1 | \text{heterogeneity}).
## However, it does not work with the sandwich package, so
## we move the clubSandwich package for clustering.
## It also doesn't like the lmtest package that much
re <- lmer(update(f1, . ~ . + (1 ccode)), data=protests)
Vcl.re <- vcovCR(re, cluster=protests$ccode, type="CR1")</pre>
coef_test(re, Vcl.re)
##
                Coef. Estimate
                                    SE t-stat d.f. (Satt) p-val (Satt) Sig.
          (Intercept)
                      -8.8185 1.27158 -6.935
##
                                                     67.0
                                                                < 0.001
                                                     22.3
##
    secretpol revised
                      -0.2585 0.08628 -2.996
                                                                0.0066
             1.ln pop
##
                      0.5493 0.07827 7.018
                                                     60.0
                                                                <0.001
                                                                        ***
                                                     23.1
##
           1.ln gdppc 0.0285 0.06664 0.427
                                                                0.6731
                                                     22.8
##
                l12gr -0.0047 0.00252 -1.870
                                                                0.0744
           1.lexclpop -0.0365 0.10105 -0.361
                                                     18.5
                                                                0.7219
##
##
          nbr protest
                      0.1307 0.06265 2.087
                                                     65.0
                                                                0.0408
##
           intrastate
                      0.1898 0.05268 3.604
                                                     48.7
                                                                <0.001
                                                     47.8
##
                      0.1109 0.04224 2.625
                                                                0.0116
              attempt
## hausman (with iid)
Htest <- c(within2$coefficients - re@beta[-1]) %*%
 solve(within2$cov.iid - vcov(re)[-1,-1]) %*%
 c(within2$coefficients - re@beta[-1])
pchisq(drop(Htest), df=length(within2$coefficients), lower=FALSE)
## [1] 0.0004674246
##hausman (with clustering) but this version is sus
Htest.cl <- c(within2$coefficients - re@beta[-1]) %*%
 solve(vcov(within2) - Vcl.re[-1,-1]) %*%
 c(within2$coefficients - re@beta[-1])
pchisq(drop(Htest.cl), df=length(within2$coefficients), lower=FALSE)
```

[1] 1

```
### Mundlak--pooled
Xnames <- colnames(pooled$model)[-1]</pre>
protests[,paste0(var.names, ".bar"):=lapply(.SD, \(x){mean}(x))),
                  by=ccode, .SDcols=var.names ]
mundlak.add <- paste(".~.",paste0("+", Xnames, ".bar",collapse = "" ))</pre>
mundlak.formula <- update(f1, mundlak.add)</pre>
mundlak <- lm(mundlak.formula, data=protests)</pre>
Vcl.m <- vcovCL(mundlak, cluster=protests$ccode)</pre>
round(coeftest(mundlak, Vcl.m), 4)
##
## t test of coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
##
                          -6.1546
                                      0.8482 -7.2564
## (Intercept)
                                                       <2e-16 ***
## secretpol revised
                                      0.0911 -2.9816
                                                       0.0029 **
                          -0.2716
                                      0.1060 6.0487
## 1.ln pop
                           0.6411
                                                       <2e-16 ***
## 1.ln gdppc
                          -0.0180
                                      0.0791 - 0.2273
                                                       0.8202
## 112gr
                          -0.0041
                                      0.0025 -1.6233
                                                       0.1046
## 1.lexclpop
                                      0.1058 -0.1210
                                                       0.9037
                          -0.0128
                                      0.0654 1.6649
## nbr protest
                                                       0.0960 .
                           0.1088
                                                       0.0005 ***
## intrastate
                           0.1851
                                      0.0533 3.4714
## attempt
                           0.1141
                                      0.0425 2.6828
                                                       0.0073 **
                                      0.1828 1.7180
## secretpol revised.bar 0.3140
                                                       0.0859 .
## 1.ln pop.bar
                                      0.1130 - 2.7576
                                                       0.0059 **
                          -0.3116
## 1.ln gdppc.bar
                           0.1318
                                      0.0958 1.3748
                                                       0.1693
## 112gr.bar
                                      0.0198 -1.9360
                                                       0.0530 .
                          -0.0383
## 1.lexclpop.bar
                           0.0655
                                      0.2354 0.2782
                                                       0.7809
                                      0.0866 0.7480
## nbr protest.bar
                           0.0648
                                                       0.4545
## intrastate.bar
                          -0.0091
                                      0.2013 - 0.0450
                                                       0.9641
## attempt.bar
                           1.1473
                                      0.6343 1.8088
                                                       0.0706 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
linearHypothesis(mundlak, paste0(Xnames, ".bar=0"), vcov=Vcl.m)
```

Linear hypothesis test

```
##
## Hypothesis:
## secretpol revised.bar = 0
## 1.ln pop.bar = 0
## 1.ln gdppc.bar = 0
## 112gr.bar = 0
## 1.lexclpop.bar = 0
## nbr protest.bar = 0
## intrastate.bar = 0
## attempt.bar = 0
##
## Model 1: restricted model
## Model 2: Protest ~ secretpol_revised + l.ln_pop + l.ln_gdppc + l12gr +
##
       1.lexclpop + nbr_protest + intrastate + attempt + secretpol_revised.bar +
##
       1.ln_pop.bar + 1.ln_gdppc.bar + 112gr.bar + 1.lexclpop.bar +
##
       nbr_protest.bar + intrastate.bar + attempt.bar
##
## Note: Coefficient covariance matrix supplied.
##
##
     Res.Df Df
                     Pr(>F)
                   F
## 1
       3245
## 2
       3237 8 2.562 0.00876 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
### Mundlak--CRE
cre <- lmer(update(mundlak.formula, . ~ . + (1|ccode)), data=protests)</pre>
Vcl.cre <- vcovCR(cre, cluster=protests$ccode, type="CR1")</pre>
coef_test(cre, Vcl.cre)
##
                    Coef. Estimate
                                         SE t-stat d.f. (Satt) p-val (Satt) Sig.
##
                                                          45.2
              (Intercept) -6.10516 0.84238 -7.248
                                                                    < 0.001
                                                                              ***
##
        secretpol revised -0.27164 0.09088 -2.989
                                                          20.7
                                                                    0.00707
                                                                               **
##
                 1.ln_pop 0.64111 0.10573 6.064
                                                          41.7
                                                                    < 0.001
##
                                                          18.1
                                                                    0.82229
               1.ln_gdppc -0.01798 0.07888 -0.228
                    l12gr -0.00409 0.00252 -1.627
                                                          22.6
                                                                    0.11753
##
##
               1.lexclpop -0.01280 0.10552 -0.121
                                                          17.5
                                                                    0.90486
```

```
0.10029
##
              nbr protest 0.10882 0.06520
                                             1.669
                                                          60.3
               intrastate 0.18515 0.05320
                                             3.480
                                                          48.2
                                                                    0.00107
##
                                                          47.7
##
                  attempt 0.11406 0.04241
                                             2.689
                                                                    0.00983
    secretpol revised.bar
                                                          45.4
                                                                    0.10938
##
                           0.31416 0.19237
                                             1.633
                                                          54.1
                                                                    0.00839
##
             1.ln pop.bar -0.31137 0.11380 -2.736
##
           1.ln_gdppc.bar
                           0.12956 0.09593 1.351
                                                          37.9
                                                                    0.18482
##
                l12gr.bar -0.02341 0.01857 -1.260
                                                          13.7
                                                                    0.22858
##
           1.lexclpop.bar
                           0.03421 0.24765
                                            0.138
                                                          37.9
                                                                    0.89086
          nbr protest.bar 0.07145 0.08324
##
                                                          46.3
                                                                    0.39515
                                            0.858
##
           intrastate.bar -0.04938 0.21551 -0.229
                                                          34.1
                                                                    0.82012
                          1.32038 0.57089 2.313
                                                          20.6
                                                                    0.03116
##
              attempt.bar
## CRE R squared
1-sum(residuals(cre)^2)/sum((protests$Protest-mean(protests$Protest))^2)
## [1] 0.7812683
##Matches the LSDV closely
max(abs(lsdv$residuals-residuals(cre)))
## [1] 0.2097183
### between
protests[, Protest.bar := mean(Protest), by=ccode]
f.btwn <- as.formula(paste("Protest.bar ~",</pre>
                           paste0(Xnames, ".bar", collapse = " + " ) ))
btwn <- lm(f.btwn, data=protests)
cbind(within2$coefficients, mundlak$coef[2:9])
##
                             [,1]
                                           [,2]
## secretpol revised -0.271641863 -0.271641863
                      0.641113791 0.641113791
## 1.ln pop
## 1.ln gdppc
                     -0.017975958 -0.017975958
## 112gr
                     -0.004094911 -0.004094911
## 1.lexclpop
                     -0.012795881 -0.012795881
## nbr protest
                      0.108823234 0.108823234
## intrastate
                      0.185147476 0.185147476
## attempt
                      0.114057919 0.114057919
```

	Pooled	RE-GLS	RE-MLE	LSDV	Within	Mundlak	CRE
Secret police	-0.07	-0.25	-0.26	-0.27	-0.27	-0.27	-0.27
	(0.11)	(0.08)	(0.09)	(0.09)	(0.09)	(0.09)	(0.09)
Num.Obs.	3254	3254	3254	3254	3254	3254	3254
R2	0.416	0.223		0.783	0.782	0.447	
R2 Within					0.223		

```
cbind(BtwnDiff=btwn$coef[-1]-within2$coefficients,
    mundlak$coef[10:17])
```

```
##
                            BtwnDiff
## secretpol_revised.bar 0.314034175 0.314034175
## 1.ln_pop.bar
                       -0.311639916 -0.311639916
## 1.ln_gdppc.bar
                        0.131772527 0.131772527
## 112gr.bar
                        -0.038255641 -0.038255641
## 1.lexclpop.bar
                         0.065499295 0.065499295
## nbr protest.bar
                         0.064750150 0.064750150
## intrastate.bar
                        -0.009054607 -0.009054607
## attempt.bar
                         1.147308716 1.147308716
modelsummary(list("Pooled"=pooled,
                  "RE-GLS"=gls,
                  "RE-MLE"=re,
                  "LSDV"=1sdv,
                  "Within"=within2,
                  "Mundlak"=mundlak,
                  "CRE"=cre),
            vcov=list(Vcl.pooled, Vcl.gls, Vcl.re,
                      Vcl.lsdv, vcov(within2),
                      Vcl.m, Vcl.cre),
            fmt=2.
             coef map=c("secretpol revised"="Secret police",
                        "secretpol_revised.gls"="Secret police",
                        "secretpol revised.within"="Secret police"),
```

gof_map=c("nobs", "r.squared", "r2.within"))

1.6 Two-way heterogeneity

Having considered the one-way heterogeneity model to some extent, we may want start considering extensions. Given that panels are often seen as N separate time-series we may want to start by thinking about a model of the form

$$y_{it} = \beta' x_{it} + \alpha_i + f(t) + \varepsilon_{it}.$$

As in the above format we can consider the heterogenity as functions of observable and unobservable factors such that

$$\alpha_i = \alpha + \gamma' z_i + u_i$$

There are many ways to think about time here.

The easiest is a simple time trend: $f(t) = \tau t$. This could be made more flexible by using polynomials $f(t) = \tau_1 t + \tau_2 t^2 + \ldots$ or splines. Alternatively, we could do a time trend by individual $f_i(t) = \tau_i t$, in which case we would interact t with the unit-dummies.

These kind of functional forms can be appealing, but they tend to require a relatively strong assumption on how time works in the empirical model. Should it be linear? Some kind of cycle? Cycles may get weird. As such a non-parametric form based on the full specification above may be preferred, as in

$$f(t) = \tau_t + v_t.$$

This approach is called two-way heterogeneity or the two-way fixed effects model. In matrix form we can write this for a balanced panel as

$$y = \begin{bmatrix} X & (I_N \otimes 1_T) & (1_T \otimes I_N) \end{bmatrix} \theta + \varepsilon,$$

where $\theta = (\beta, \alpha_i, \tau_t)$. For examples on Kronecker products

```
N <- 3
T <- 2
diag(N) %x% rep(1, T)</pre>
```

```
## [,1] [,2] [,3]

## [1,] 1 0 0

## [2,] 1 0 0

## [3,] 0 1 0

## [4,] 0 1 0
```

```
## [5,] 0 0 1
## [6,] 0 0
rep(1, T) %x% diag(N)
      [,1] [,2] [,3]
##
## [1,]
       1
             0
## [2,]
             1
        0
## [3,]
               1
## [4,]
       1
             0 0
## [5,]
        0
             1
                0
## [6,]
        0
             0
                 1
diag(N) %x% matrix(1, ncol=T, nrow=1)
      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]
             1
                 0
         1
                     0
## [2,]
                             0
       0
             0
                 1
                     1
                         0
## [3,] 0
             0
                 0
                     0
                         1
                             1
matrix(1, ncol=T, nrow=1) %x% diag(N)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1
             0
                 0
                    1
                         0
                             0
## [2,]
        0
             1
                 0
                     0
                         1
                             0
## [3,]
             0
                 1 0
                             1
        0
                         0
A <- matrix(1:4, ncol=2)
A %x% matrix(1, ncol = 2, nrow=2)
##
      [,1] [,2] [,3] [,4]
## [1,]
        1
                 3
             1
## [2,]
                 3
                     3
       1
             1
## [3,]
             2
                4
                    4
        2
             2 4 4
## [4,]
        2
matrix(1, ncol = 2, nrow=2) %x% A
## [,1] [,2] [,3] [,4]
## [1,]
         1
             3
                 1
## [2,]
         2
             4
                 2
```

Now when we believe that two-way heterogeneity is present we cannot ignore either form. Omitted variables are of course one problem, but even with no correlation we have a problem if either dimension is small. For example, consider a large N survey over a small number of waves T and consider the one-way within estimator:

$$\hat{\beta}_{w} = \left[\sum_{i} \sum_{t} (x_{it} - \bar{x}_{i})(x_{it} - \bar{x}_{i})' \right]^{-1} \left[\sum_{i} \sum_{t} (x_{it} - \bar{x}_{i})(y_{it} - \bar{y}_{i}) \right]$$

$$= \beta + \left[\frac{1}{NT} \sum_{i} \sum_{t} (x_{it} - \bar{x}_{i})(x_{it} - \bar{x}_{i})' \right]^{-1} \left[\frac{1}{NT} \left(\sum_{i} \sum_{t} (x_{it} - \bar{x}_{i})(\tau_{t} - \bar{\tau}) + \sum_{i} \sum_{t} (x_{it} - \bar{x}_{i})(\varepsilon_{it} - \bar{\varepsilon}_{i}) \right) \right]$$

$$= \beta + \left[\frac{1}{NT} \sum_{i} \sum_{t} (x_{it} - \bar{x}_{i})(x_{it} - \bar{x}_{i})' \right]^{-1} \left[\frac{1}{NT} \left(\sum_{i} \sum_{t} (x_{it} - \bar{x}_{i})(\tau_{t} - \bar{\tau}) + 0 \right) \right]$$

So far so good, but with a little algebra we get to

$$\frac{1}{NT} \sum_{i} \sum_{t} (x_{it} - \bar{x}_i)(\tau_t - \bar{\tau}) = \frac{1}{T} \sum_{t} (\bar{x}_t - \bar{x})(\tau_t - \bar{\tau}).$$

This will converge to its expected value (zero if x is uncorrelated with the time effects), but this convergence is in T! If T is relatively small, then we can't rely on that. To put this another way, even if they are uncorrelated with the observables, time effects can still bias the estimates of β if T is not large!

The consequence of this is that unless you believe that the time effects are constant $\tau_t = \bar{\tau}$ for all t, if this dimension is small, then we should consider time heterogeneity as an important bias to control for.

We can do this in the same three ways we described above:

1. A two-way within transformation:

$$M_2 = \underbrace{I_{NT} - (I_N \otimes 1_T 1_T'/T)}_{\text{Unit demeaning}} - \underbrace{(1_N 1_N'/N \otimes I_T)}_{\text{Time means}} + \underbrace{\frac{1}{NT} 1_{NT} 1_{NT}'}_{\text{overall mean}}.$$

Note that here (the balanced case) we have the original group-wise demeaning, then

time-wise demeaning and then we add back in the overall mean, as in

$$M_2X = \left[x_{it} - \bar{x}_i - \bar{x}_t + \bar{x}\right].$$

This transformation is more involved with unbalanced panels.

- 2. Dummies: As before, just include dummies for each i and each t. 1 of these will need to be removed to avoid colinearity
- 3. CRE: When the panel is balanced, then CRE with time means and group means will still be equivalent. This equivalence does not hold for unbalanced panels.

The within transformation in unbalanced panels is slightly convoluted, but we can see how it maps into the above.

$$M_2 = M - M\Delta_T [\Delta_T' M \Delta_T]^{-1} \Delta_T' M$$

$$M = I_{NT} - \Delta_N [\Delta_N' \Delta_N]^{-1} \Delta_N'.$$

Here, Δ_N and Δ_T are matrices of unit and time dummies, respectively. We remove the first (or any) column from Δ_T to avoid colinearity. Note that M here is the unit-demeaning matrix for the whole sample (diagonal binding the M_i s).

When the panel is balanced,

$$\Delta_N[\Delta_N'\Delta_N]^{-1}\Delta_N' = (I_N \otimes 1_T 1_T')/T,$$

which gives us a block diagonal matrix of 1/T, and

$$M\Delta_T[\Delta_T'M\Delta_T]\Delta_T'M = (1_N 1_N' \otimes I_T)/N - \frac{1}{NT} 1_{NT} 1_{NT}'.$$

In the unbalanced case we get weighted averages for the time and overall means based on how often they appear in the sample.

1.6.1 Asymptotics in T

While we're considering the different dimensions of the panel, we should also be clear about fixed-N asymptotics. In survey data and many other contexts, fixed-T-large-N makes sense. However, in other parts of political science we often have a fixed (or fairly fixed) N. For example, the number of U.S. states or countries of the world don't increase all that often and are fairly static in many cases for which we collect data.

In these cases, it may make more sense to think about large T asymptotics. After all, in country-year data we typically have a fairly fixed N, but T is increasing as we move forward in

time and data collection continues. So what does it mean to think about the panel estimators in that context?

The pooled estimator should now be rewritten as

$$\hat{\theta}_p = \theta + \left[\frac{1}{T} \sum_{t=1}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{it} \mathbf{x}'_{it} \right) \right]^{-1} \left(\frac{1}{T} \sum_{t=1}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{it} \varepsilon_{it} \right) \right).$$

Before we can do anything with this, we'll need to add a few assumptions. First, instead of allowing for arbitrary correlation within-units we'll impose some constraints on the time series. Note that if N is also reasonably large these won't be as important, but here we're assuming that appealing to asymptotics in N is a tough sell.

Assumption A6 The sequence $(\mathbf{x}_t, \varepsilon_t)$ is strictly stationary and ergodic

Note that here $\mathbf{x}_t = (\mathbf{x}_{1t}, \mathbf{x}_{2t}, \dots, \mathbf{x}_{Nt})$ and likewise for ε_t .

Assumption A7 The matrix $E\left[\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{it}\mathbf{x}'_{it}\right]$ has full rank.

To review, a sequence y_t is (strictly) stationary if the joint distribution of (y_t, \dots, y_{t+k}) is independent of both t and k. This basically means that distribution of y_t does not change with time so its mean and variance are constant, but also that the relationships between parts of the time series are constant over time. For example, the covariance between y_1 and y_3 is the same as y_5 and y_7 .

Some example of stationary series include $y_t = x_t + \theta x_{t-1}$, $y_t = x_t$, and $y_t = x$, where x_t is iid with $|\theta| < 1$, $\mathbb{E}[x_t] = 0$ and x is a single realization of a random variable.

A stationary series y_t is **erogodic** if, well that is complicated and takes awhile to really explain. However, at its core, an ergodic sequence can never get "stuck." An ergodic y_t will eventually visit every value in its support if the sequence lasts long enough and it can move from any part of its support to any other with positive probability. Another way to think about this is that when we have an ergodic sequence any long-enough sub-sample will have the same statistical properties like the mean.

To make life easier, we will also assume that y_t is *mixing*. This means that as ℓ increases the $Cov(y_t, y_{t-\ell})$ goes to 0. As the time between points increases, they provide less and less information about each other. Note that mixing implies ergodicity, but not vice-versa.

Of import to us is the following theorem

Theorem 7 Let y_t be a strictly stationary and ergodic random variable and let f be a

continuous function. Then $X_t = f(y_t, y_{t-1}, ...)$ is also strictly stationary and ergodic.

This theorem tells us that stationarity is preserved by continuous transformations that consider some or part of the history of y_t . Don't lose any sleep over it other than to remember the intuition part.

What this gives us now is a time-series version of a law of large numbers

Theorem 8 (Ergodic LLN) Let y_t be stationary and ergodic with $E[y_t] < \infty$, then $\frac{1}{T} \sum_{t=1}^{T} y_t \stackrel{p}{\to} E[y_t]$.

We will also replace assumption A3 with A3' Assumption A3' $E[\varepsilon_{it}|\mathbf{x}_{it}] = 0$.

This gives us something to work with now

$$\frac{1}{T} \sum_{t=1}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{it} \mathbf{x}'_{it} \right) \stackrel{p}{\to} \mathbf{E} \left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{it} \mathbf{x}'_{it} \right]
\frac{1}{T} \sum_{t=1}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{it} \varepsilon_{it} \right) \stackrel{p}{\to} \mathbf{E} \left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{it} \varepsilon_{it} \right]
\mathbf{E} \left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{it} \varepsilon_{it} \right] = \mathbf{E}_{\mathbf{x}_{it}} \left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{it} \mathbf{E} \left[\varepsilon_{it} | \mathbf{x}_{it} \right] \right] = 0$$

From here, the usual applications of Slutsky's theorem follows and we get that pooled OLS is consistent in T under Assumptions A1.A, A2, A3', A6, & A7 the pooled estimator is consistent and surely exists for large enough T. If we want to include strict-within unit exogeneity (increasingly unlikely as T increases), then we also get unbiased estimates.

Assumption A8 Additional technical assumptions that allow us to use a central limit theorem for dependent data

We now present a central limit theorem for stationary mixing sequences

Theorem 9 Let z_t be strictly stationary and mixing with $E[z_t] = 0$ and some other conditions. Then

$$\sqrt{T}\left(\frac{1}{T}\sum_{t=1}^{T}z_{t}\right) \stackrel{d}{\to} N(0, \Sigma_{T})$$

For ease let $z_t = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{it} \varepsilon_{it}$ be stationary and mixing. This gives us the following to work

with

$$\sqrt{T} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{it} \varepsilon_{it} = \sqrt{T} \frac{1}{T} \sum_{t=1}^{T} z_{t} \xrightarrow{d} N(0, \Sigma_{T})$$
$$\Sigma_{T} = \operatorname{Var} \left(T^{-1/2} \sum_{t=1}^{T} z_{t} \right)$$

Using some time series results for stationary and ergodic series we can write this as

$$\Sigma_T = \lambda(0) + \sum_{\ell=1}^{T} \left(1 - \frac{\ell}{T+1} \right) (\lambda(\ell) + \lambda(\ell)'),$$

where $\lambda(\ell)$ are the covariances matrix of the tth observation with the ℓ th lag

$$\lambda(\ell) = \sum_{t=\ell+1}^{T} \mathbf{x}_{t}' \varepsilon_{t} \varepsilon_{t-\ell}' \mathbf{x}_{t-\ell},$$

This makes $\lambda(0)$ the contemporary variance, which in this case is the meat of a cluster-robust covariance matrix where we cluster on time.

As $T \to \infty$, full consideration of Σ_T becomes unbearable and will contain many irrelevant lags that add little-to-no information and probably some excess noise because there aren't as many lags of that length to average over.

To avoid this we can exploit the diminishing nature of the dependency (i.e., the mixing component) to get

$$\widehat{\Sigma}_T(L) = \widehat{\lambda}(0) + \sum_{\ell=1}^{L} \left(1 - \frac{\ell}{L+1} \right) \left(\widehat{\lambda}(\ell) + \widehat{\lambda}(\ell)' \right).$$

However, we now have to choose a maximum lag value have to choose L and we should choose L such that it increases with T, for example $T^{1/4}$ is a frequent default and not a bad starting point, other more thoughtful options exist.

The whole covariance estimator is then

$$\widehat{\text{avar}}(\widehat{\theta}; L) = [\mathbf{X}'\mathbf{X}]^{-1}\widehat{\Sigma}_T(L)[\mathbf{X}'\mathbf{X}]^{-1},$$

note that when L=0, this simplifies into a covariance matrix that is clustered by time. Similar analysis will demonstrate this for the within and RE estimators. This particular variance matrix is sometimes called the Driscoll-Kraay covariance matrix after their 1998 article. Note that because the baseline matrix clusters on time, that it allows for arbitrary correlation cross-sectionally (partially relaxing the assumption of iid units), while making the

most of the long-T time series within each unit.

Note that if you have large N and believe that the N units are iid, then you're probably better off with the clustered variance matrix above as it allows for arbitrary within-unit correlations, but this gives you something to do in the case where T is large and N is not.

If you are blessed enough to have both N and T going to infinity, you can stick with withinunit clustering, but you also have an option to use what are known as two-way clustered standard errors. Here we relax the assumption of iid units and suppose that errors are arbitrary correlated across time periods and within units. This still rules out correlation between observations it and js where $i \neq j$ & $t \neq s$.

Consider the estimated OLS variance

$$\widehat{\operatorname{Var}}(\hat{\beta}) = (X'X)^{-1}\Omega(X'X)^{-1}$$

When we have within unit clustering

$$\Omega = \sum_{i=1}^{N} X_i' \hat{\varepsilon}_i \hat{\varepsilon}_i' X_i$$

$$= X' \begin{pmatrix} \hat{\varepsilon} \hat{\varepsilon}' \cdot \begin{bmatrix} 1_{T_1} 1_{T_1}' & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1_{T_N} 1_{T_N}' \end{bmatrix} \end{pmatrix} X$$

$$= X' (\hat{\varepsilon} \hat{\varepsilon}' \cdot S_N) X.$$

Here we use \cdot to be element-by-element multiplication. The matrix S_N is block-diagonal where each block is a $T_i \times T_i$ matrix of 1s. So each ij element in S_N is 1 if observations i and j are in the same unit, where i and j are individual observations not units.

In a two-way case, each observation belongs to two groups and so we would want an equivalent matrix S_{NT} where the ij element is 1 if observations i and j if i and j are either in the same unit or the same time period. We can build such a matrix

$$S_{NT} = S_N + S_T - S_{N \cap T}.$$

This last term subtracts one from cases where i and j are in the same unit and the same time period (i.e., i = j). So let's plug this in

$$\Omega_2 = X'(\hat{\varepsilon}\hat{\varepsilon}' \cdot S_N)X + X'(\hat{\varepsilon}\hat{\varepsilon}' \cdot S_T)X - X'(\hat{\varepsilon}\hat{\varepsilon}' \cdot S_{N \cap T})X.$$

In our case, we said that $S_{N \cap T} = I_{NT}$ so this term becomes

$$X'(\hat{\varepsilon}\hat{\varepsilon}' \cdot S_{N \cap T})X = X'(I_{NT}(\hat{\varepsilon} \cdot \hat{\varepsilon}))X$$

This is a clustered matrix where each observation is a "cluster" this is otherwise known as the meat for the standard heteroskedasticity robust variance matrix (i.e., White or Huber-White) with the full matrix given as

$$\widehat{\text{avar}_0}(\widehat{\theta}) = [\mathbf{X}'\mathbf{X}]^{-1} \left(\sum_{i=1}^N \sum_{t=1}^T \mathbf{x_{it}} \mathbf{x_{it}}' \widehat{\varepsilon}_{it}^2 \right) [\mathbf{X}'\mathbf{X}]^{-1}.$$

This means that two-way clustering is fairly straight forward in the sense that we end up with

$$\widehat{\operatorname{avar}_2}(\widehat{\theta}) = \underbrace{\widehat{\operatorname{avar}}(\widehat{\theta}; 0)}_{\text{Clustered on time}} + \underbrace{\widehat{\operatorname{avar}}(\widehat{\theta})}_{\text{Clustered on unit}} - \underbrace{\widehat{\operatorname{avar}_0}(\widehat{\theta})}_{\text{Robust standard errors}}.$$

Here we have

- 1. Arbitrary correlation across space within each year $\widehat{\text{avar}}(\hat{\theta}; 0)$. requires large T because we're averaging the cross-sectional correlations over time.
- 2. Arbitrary correlation within units $\widehat{\text{avar}}(\theta)$. Requires large N because we're averaging the within-unit correlations over units
- 3. Remove the double counted observation-level heterogeneity $\operatorname{avar}_0(\hat{\theta})$

This method can be extended to 3 or more dimensions (Cameron, Gelbach, and Miller 2011) and to persistent shocks within groups which allow for some correlation between observations it and js (Thompson 2011). One of your classmates will present more on choosing a clustering dimension.

Here we're looking at data from Meierrieks & Auer (2022) who study the effect of corruption on terrorism.

```
summary(within1)
## OLS estimation, Dep. Var.: nattack
## Observations: 6,837
## Fixed-effects: id: 170
## Standard-errors: Clustered (id)
##
                Estimate Std. Error t value
                                             Pr(>|t|)
## v2x_corr
                0.386718
                        0.486018 0.795687 4.2733e-01
## sp_pop_totl
                ## ny_gdp_pcap_kd -0.072627   0.152929 -0.474910 6.3546e-01
## kg democracy
               0.130249 0.206882 0.629582 5.2982e-01
## statefailure
               0.340789 0.051979 6.556298 6.4270e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 1.18963
                  Adj. R2: 0.586532
##
                Within R2: 0.148268
within2 <- feols( nattack ~ v2x_corr+sp_pop_totl+ ny_gdp_pcap_kd
                +kg democracy +statefailure id+year, data=terror)
## NOTE: 777 observations removed because of NA values (RHS: 777).
summary(within2)
## OLS estimation, Dep. Var.: nattack
## Observations: 6,837
## Fixed-effects: id: 170, year: 48
## Standard-errors: Clustered (id)
##
               Estimate Std. Error t value
                                          Pr(>|t|)
                        0.475351 1.80184 7.3352e-02 .
## v2x_corr
               0.856508
## sp pop totl
                ## ny_gdp_pcap_kd 0.418864 0.219191 1.91095 5.7703e-02 .
## kg democracy
               0.366543
                        0.196599 1.86442 6.3997e-02 .
## statefailure
               ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 1.11304
                  Adj. R2: 0.635483
```

NOTE: 777 observations removed because of NA values (RHS: 777).

```
##
                 Within R2: 0.134426
within2a <- feols( nattack ~ v2x_corr+sp_pop_totl+ ny_gdp_pcap_kd
                  +kg_democracy +statefailure|id+year,
                 cluster=~year,
                 data=terror)
## NOTE: 777 observations removed because of NA values (RHS: 777).
summary(within2a)
## OLS estimation, Dep. Var.: nattack
## Observations: 6,837
## Fixed-effects: id: 170, year: 48
## Standard-errors: Clustered (year)
##
                 Estimate Std. Error t value
                                              Pr(>|t|)
## v2x_corr
                 0.856508
                          0.153166 5.59202 1.1093e-06 ***
                 1.933857 0.099712 19.39444 < 2.2e-16 ***
## sp pop totl
## ny_gdp_pcap_kd 0.418864 0.074586 5.61588 1.0215e-06 ***
                ## kg democracy
## statefailure 0.322644 0.019319 16.70112 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 1.11304
                   Adj. R2: 0.635483
##
                 Within R2: 0.134426
within2b <- feols( nattack ~ v2x corr+sp pop totl+ ny gdp pcap kd
                 +kg_democracy +statefailure|id+year,
                 vcov="DK",
                 panel.id=c("id", "year"),
                 data=terror)
## NOTE: 777 observations removed because of NA values (RHS: 777).
summary(within2b)
## OLS estimation, Dep. Var.: nattack
## Observations: 6,837
## Fixed-effects: id: 170, year: 48
## Standard-errors: Driscoll-Kraay (L=2)
```

```
##
              Estimate Std. Error t value
                                       Pr(>|t|)
## v2x corr
                       0.205488 4.16816 1.3069e-04 ***
              0.856508
## sp pop totl
              ## kg democracy
## statefailure
              ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 1.11304
                Adj. R2: 0.635483
##
               Within R2: 0.134426
within2c <- feols( nattack ~ v2x corr+sp pop totl+ ny gdp pcap kd
              +kg democracy +statefailure id+year,
              vcov="twoway",
              data=terror)
## NOTE: 777 observations removed because of NA values (RHS: 777).
summary(within2c)
## OLS estimation, Dep. Var.: nattack
## Observations: 6,837
## Fixed-effects: id: 170, year: 48
## Standard-errors: Clustered (id & year)
##
              Estimate Std. Error t value Pr(>|t|)
## v2x corr
              0.856508    0.471167    1.81785    7.5465e-02    .
             ## sp_pop_totl
## ny_gdp_pcap_kd 0.418864 0.222266 1.88452 6.5688e-02 .
## kg democracy 0.366543 0.192196 1.90713 6.2626e-02 .
## statefailure 0.322644 0.049099 6.57126 3.6589e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 1.11304 Adj. R2: 0.635483
               Within R2: 0.134426
##
sqrt(diag(vcov(within2) + vcov(within2a)
        - vcov(update(within2, vcov="hetero"))))
```

NOTE: 777 observations removed because of NA values (RHS: 777).

```
## v2x_corr sp_pop_totl ny_gdp_pcap_kd kg_democracy statefailure
## 0.46944915 0.38826932 0.22156593 0.19146068 0.04894522
```

2 Classically advanced topics and moment estimators

In this chapter we're going to cover the topics that econometrics books list as the advanced panel models. These include attrition/sample selection, dynamic models (e.g., lagged variables), and how to consider time-invariant factors without sacrificing the credibility benefits of the fixed effects models. This section will be more applied than the last as we will focus on specific implementation issues for the issues that arise.

2.1 Instrumental variables (refresher and update)

Before proceeding we will spend a little time refreshing ourselves on instrumental variables as they are key to many of the following techniques. Recall that we use the method of instrumental variable when we are concerned that the treatment of interest is endogenous (i.e., $E[\varepsilon_{it}x_{it}] \neq 0$). This can occur for any number of reasons, including

- 1. Omitted variables that are correlated with x_{it} and y_{it}
- 2. Measurement error in x_{it}
- 3. Feedback/dynamics
- 4. Attrition (i.e., exiting the panel early)

One way to work around this endogeneity is to use 1 or more instruments z_{it} such that z is exogenous, relevant, and not redundant. In lay terms this means that:

- 1. The instrument is correlated with the treatment (relevance)
- 2. The instrument *only* influences values of the outcome through its effect on the treatment (exogeneity/validity). In other words, it is not in the structural equation and is uncorrelated with any omitted variables itself (conditional on the observables).

Note that the fixed effects models buy us some insulation from endogeneity concerns. Specifically, they allow for unobserved heterogeneity that is correlated with the treatment to exist so long as it is time invariant. This means that any ommitted variables that are time invariant are not a concern because they are swept away by the within-transformation.

For working in the IV framework we'll list our assumptions, so that we can be more clear about the above.

Assumption B1 The outcome y_{it} is linear-in-the-parameters such that

$$y_{it} = \beta' x_{it} + \alpha_i + \varepsilon_{it}.$$

Move to two-way heterogeneity doesn't change much of this or the following, so we'll keep it easy.

Assumption B2 The units $(x_i, z_i, \varepsilon_i)$ are iid

Assumption B3 The instruments are strictly exogeneous within units $E[\varepsilon_{it}|z_i] = 0$

Assumption B4 The instruments are not redundant: $E[z_i'M_iz_i]$ exists and has full rank

Assumption B5 The instruments are relevant: $rank(E[z_i'M_ix_i]) \ge dim(x_{it})$

Assumption B6 Additional moment assumptions

When the above assumptions are met, we can use the two-stage-least squares (2SLS) with the within-transformed data. Let $\dot{Z} = MZ$ and $\dot{Z}_i = M_i Z_i$, then the 2SLS estimator is such that

$$\hat{\beta}_{2SLS} = [\dot{X}'\dot{Z}(\dot{Z}'\dot{Z})^{-1}\dot{Z}'\dot{X}]^{-1}(\dot{X}'\dot{Z}(\dot{Z}'\dot{Z})^{-1}\dot{Z}'\dot{y})$$

In the case where $\dim(z_i) = \dim(x_i)$ this simplifies to

$$\hat{\beta}_{2SLS} = [\dot{Z}'\dot{X}]^{-1}\dot{Z}'\dot{y}$$

Of note in the above is that we will also want to considering the within estimator in the first stage. That is to say we consider the first-stage reduced form equations

$$\dot{X} = \dot{Z}\Gamma + \dot{\nu}.$$

We can then consider the first-stage tests (i.e., the first stage F-statistic) using this regression. Note that the appropriate covariance matrix for Γ , under typical assumptions, would be the clustered variance matrix.

Because nothing actually changes as we move from cross-sectional IV to panel IV, we can import some results that we know.

1. $\hat{\beta}_{2SLS}$ is biased, but consistent (in N or T)

- 2. $\hat{\beta}_{2SLS}$ is asymptotically normal
- 3. As $N \to \infty$

$$\sqrt{N}(\hat{\beta}_{2SLS} - \beta) \stackrel{d}{\to} N(0, V_{2sls})$$
.

Let $Q_Z = \mathbb{E}[\dot{Z}_i'\dot{Z}_i]$ and $Q_X = \mathbb{E}[\dot{Z}_i'\dot{X}_i]$, then the variance becomes

$$V_{2sls} = (Q_X' Q_Z^{-1} Q_X)^{-1} (Q_X' Q_Z^{-1} \operatorname{E}[\dot{Z}_i' \varepsilon_i \varepsilon_i' \dot{Z}_i] Q_Z^{-1} Q_X) (Q_X' Q_Z^{-1} Q_X)^{-1}.$$

All can be estimated using its standard sample counterparts. Generally, you would not write these out yourself. The feols package is built to handle instruments, or you can use ivreg with your own within transformations.

Note that the 2SLS estimator also gives us another way to motivate the Mundlak estimator. The problem with pooled OLS is, as you recall, the omitted variable bias from the unobserved unit-level heterogeneity. The within-transformed variables \dot{x}_{it} are in fact excellent instruments for x_{it} in that they are correlated with x and exogeneous with respect to the omitted time-invariant variables. This gives us the equations

$$y_{it} = \beta' x_{it} + \alpha_i + \varepsilon_{it}$$
$$= \beta' x_{it} + e_{it}$$
$$x_{it} = \Gamma \dot{x}_{it} + u_{it}$$

where α_i is unobserved. This creates the joint error term $e_{it} = \alpha_i + \varepsilon_{it}$. The variables are endogeneous to the extent that they are correlated with the unobserved α_i . We can express this as a correlation between u_{it} and e_{it} which we can write as

$$e_{it} = \rho u_{it} + \nu_{it}$$

We can then substitute this into the first equation to get

$$y_{it} = \beta' x_{it} + \rho u_{it} + \nu_{it},$$

where x_{it} is exogeneous conditional on u_{it} . Unfortunately we don't observe u directly, but we do observe x and \dot{x} , let's plug those in

$$y_{it} = \beta' x_{it} + \rho' (x_{it} - \Gamma \dot{x}_{it}) + \nu_{it}.$$

Of note is that Γ in this case will be an identity matrix (I may have you show this in a

problem set), so we now get

$$y_{it} = \beta' x_{it} + \rho(x_{it} - x_{it} + \bar{x}_i) + \nu_{it}$$
$$= \beta' x_{it} + \rho' \bar{x}_i + \nu_{it}$$

which is of course the Mundlak estimator. Of importance here is that the variables are now fully exogeneous of the new error term.

Before moving on, there will be times in panels where one dimension is large and you need to do something yourself. In these cases sparse matrices tools can be your friends. A sparse matrix is one that is dominated by zeros. These zeros take up memory and can slow computation despite the face that they are canceling things left and right. Sparse matrices avoid these problems by only actually saving the non-zero elements and their coordinates in memory and working around the zeros.

However, for many small or medium sized problems, deploying sparse matrices can make the problem slower. But for larger problems it can make a huge difference. When to make the switch depends on the problem size and the amount of memory at your disposal.

The main R package for sparse matrices is Matrix. It works reasonably well for 99% of things, but if you're still having issues, Matlab is the king of matrix computation and their sparse tools are hard to beat. The combination of numpy and scipy for python is very good and tends to be my go to for very complex problems.

2.1.1 Application

```
terror[, f.nattack := shift(nattack, -1), by=id]
baseline.ols <- feols(f.nattack~v2x_corr+sp_pop_totl+ny_gdp_pcap_kd+
                    kg democracy+statefailure|id+year, data=terror)
## NOTE: 952 observations removed because of NA values (LHS: 175, RHS: 786).
within.2sls <- feols(f.nattack~sp_pop_totl+ny_gdp_pcap_kd+
                    kg_democracy+statefailure|id+year|
       v2x_corr~iv_region, data=terror)
## NOTE: 1,063 observations removed because of NA values (LHS: 175, RHS: 761, IV: 34/235
summary(within.2sls, stage=1:2)
## IV: First stage: v2x_corr
## TSLS estimation - Dep. Var.: v2x_corr
##
                  Endo.
                          : v2x corr
##
                  Instr.
                          : iv region
## First stage: Dep. Var.: v2x corr
## Observations: 6,726
## Fixed-effects: id: 167, year: 48
## Standard-errors: Clustered (id)
                Estimate Std. Error t value
##
                                             Pr(>|t|)
                ## iv_region
## sp_pop_totl
                ## kg democracy -0.084702 0.026227 -3.229575 0.00149455 **
## statefailure -0.000685 0.002535 -0.270066 0.78744458
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.079156
                   Adj. R2: 0.927678
##
                 Within R2: 0.14088
## F-test (1st stage): stat = 521.4, p < 2.2e-16, on 1 and 6,673 DoF.
##
## IV: Second stage
## TSLS estimation - Dep. Var.: f.nattack
##
                  Endo.
                          : v2x corr
```

```
##
                    Instr.
                            : iv region
## Second stage: Dep. Var.: f.nattack
## Observations: 6,726
## Fixed-effects: id: 167, year: 48
## Standard-errors: Clustered (id)
##
                 Estimate Std. Error t value
                                            Pr(>|t|)
## fit_v2x_corr
                           2.333625 2.94699 3.6709e-03 **
                 6.877165
## sp_pop_totl
                 1.470291
                          0.436966 3.36477 9.5155e-04 ***
## ny_gdp_pcap_kd 0.743066
                          0.285244 2.60502 1.0021e-02 *
                 ## kg democracy
## statefailure
                 ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 1.21379
                    Adj. R2: 0.560074
##
                  Within R2: -0.030464
## F-test (1st stage), v2x_{corr}: stat = 521.4, p < 2.2e-16, on 1 and 6,673 DoF.
##
                    Wu-Hausman: stat = 100.8, p < 2.2e-16, on 1 and 6,506 DoF.
terror2 <- terror[as.numeric(within.2sls$obs selection$obsRemoved)]
length(unique(terror2$id))
## [1] 167
summary(terror2[,length(year), by=id]$V1)
##
     Min. 1st Qu.
                            Mean 3rd Qu.
                  Median
                                           Max.
##
     5.00
            29.00
                    48.00
                           40.28
                                   48.00
                                           48.00
## Sparse functions
DeltaN <- sparse.model.matrix(~factor(id)-1, data=terror2)</pre>
DeltaT <- sparse.model.matrix(~factor(year)-1, data=terror2)[,-1]</pre>
M <- Diagonal(nrow(terror2)) - DeltaN %*% solve(crossprod(DeltaN)) %*% t(DeltaN)
## build two-way transformation
M2 <- M - M %*% DeltaT %*% solve(t(DeltaT) %*% M %*% DeltaT) %*% t(DeltaT) %*% M
var.names<- c("f.nattack", "v2x_corr", "sp_pop_totl",</pre>
             "ny_gdp_pcap_kd", "kg_democracy", "statefailure", "iv_region")
```

```
terror2[ , paste0(var.names, ".within") := lapply(.SD, \(x){as.numeric(M2 \%*\%x)}),
         .SDcols=var.names 1
within.2sls2 <- ivreg(f.nattack.within~v2x_corr.within+
                       sp_pop_totl.within+ny_gdp_pcap_kd.within+
                       kg democracy.within+statefailure.within-1
                       iv region.within+
                       sp_pop_totl.within+ny_gdp_pcap_kd.within+
                       kg democracy.within+statefailure.within-1,
   data=terror2)
within.2sls2 <- ivreg(f.nattack.within~v2x corr.within+
                       sp_pop_totl.within+ny_gdp_pcap_kd.within+
                       kg democracy.within+statefailure.within-1
                       iv region.within+
                       sp_pop_totl.within+ny_gdp_pcap_kd.within+
                       kg_democracy.within+statefailure.within-1,
   data=terror2)
summary(within.2sls2, vcov=\(x){vcovCL(x,cluster=terror2$id)})
##
## Call:
## ivreg(formula = f.nattack.within ~ v2x corr.within + sp pop totl.within +
       ny_gdp_pcap_kd.within + kg_democracy.within + statefailure.within -
##
##
       1 | iv_region.within + sp_pop_totl.within + ny_gdp_pcap_kd.within +
       kg_democracy.within + statefailure.within - 1, data = terror2)
##
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -5.97389 -0.72920 -0.05982 0.64690 4.95569
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## v2x corr.within
                          6.87717
                                     2.32459 2.958 0.003103 **
                                     0.43527 3.378 0.000735 ***
## sp_pop_totl.within
                          1.47029
```

```
0.28414
                                            2.615 0.008939 **
## ny gdp pcap kd.within 0.74307
## kg democracy.within
                        0.83223
                                   0.34600
                                            2.405 0.016186 *
## statefailure.within
                        0.32343
                                   0.05229 6.185 6.57e-10 ***
##
## Diagnostic tests:
##
                   df1 df2 statistic p-value
## Weak instruments
                     1 6721
                              12.822 0.000345 ***
## Wu-Hausman
                     1 6720
                                8.989 0.002725 **
                                           NΑ
## Sargan
                     0
                         NA
                                   NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.214 on 6721 degrees of freedom
## Multiple R-Squared: -0.03046, Adjusted R-squared: -0.03123
## Wald test: 19.26 on 5 and 6721 DF, p-value: < 2.2e-16
within.first <- lm(v2x_corr.within~
                     iv_region.within+
                     sp_pop_totl.within+ny_gdp_pcap_kd.within+
                     kg democracy.within+statefailure.within-1,
  data=terror2)
coeftest(within.first, vcov=vcovCL(within.first, terror2$id))
##
## t test of coefficients:
##
##
                          Estimate Std. Error t value Pr(>|t|)
## iv region.within
                        ## sp pop totl.within
                        0.05332005  0.04229809  1.2606  0.207505
## ny_gdp_pcap_kd.within -0.05041928   0.02142022 -2.3538   0.018610 *
## kg democracy.within -0.08470191 0.02613313 -3.2412 0.001196 **
## statefailure.within -0.00068451 0.00252554 -0.2710 0.786372
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
linearHypothesis(within.first, "iv_region.within",
                vcov=vcovCL(within.first, terror2$id))
```

```
## Linear hypothesis test
##
## Hypothesis:
## iv_region.within = 0
##
## Model 1: restricted model
## Model 2: v2x_corr.within ~ iv_region.within + sp_pop_totl.within + ny_gdp_pcap_kd.wit
       kg_democracy.within + statefailure.within - 1
##
##
## Note: Coefficient covariance matrix supplied.
##
     Res.Df Df
                    F
                        Pr(>F)
##
## 1
       6722
             1 12.822 0.000345 ***
## 2
       6721
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

It will also behoove us to refresh our memory on alternatives to 2SLS for some of the topics we're going to cover. Specifically, generalized method of moments (GMM) estimators are common in this literature. Recall that moments are specific characteristics of random variables. The method of moments (MoM) works by equating sample (empirical) moments with theoretical moments and then solving for the parameter of interest. GMM generalizes this to situations where we have/want to use more empirical moments than theoretical ones.

To recap, the original method moments consider data x_1, \ldots, x_N that we believe to have come from a uniform distribution. Further suppose that we know that the lower bound of this distribution is 0 but we don't know the upper limit. So we have that x_1, \ldots, x_N are iid $U(0,\theta)$ where we want to estimate θ .

We have 1 parameter so we need one moment. In this case we take the first empirical moment $\bar{x} = \sum_{i=1}^{N} x_i$ and relate it to the theoretical moment given by E[X], which for the uniform is $E[X] = \frac{1}{2}(\theta + 0)$. As such we set these equal:

$$\bar{x} = \frac{1}{2}(\theta)$$
$$2\bar{x} = \hat{\theta}_{\text{MoM}}.$$

So the MoM estimator is twice the sample mean.

If we needed to estimate both ends (i.e, $X \sim U(\theta_1, \theta_2)$) then we would need the first 2 moments

$$N^{-1} \sum_{i=1}^{N} x_i = \bar{x} = \frac{\theta_1 + \theta_2}{2} = E[X]$$

$$N^{-1} \sum_{i=1}^{N} x_i^2 = \overline{x^2} = \frac{\theta_1^2 + \theta_1 \theta_2 + \theta_2^2}{3} = E[X^2].$$

Solving these for the parameters we get

$$\hat{\theta}_1 = \bar{x} - \sqrt{3\left(\overline{x^2} - \bar{x}^2\right)}$$

$$\hat{\theta}_2 = \bar{x} + \sqrt{3\left(\overline{x^2} - \bar{x}^2\right)}$$

for example

```
set.seed(1)
X <- runif(500, -2, 5)
barx <- mean(X)
barx2 <- mean(X^2)
theta1.hat <- barx - sqrt(3 *(barx2 - barx^2))
theta2.hat <- barx + sqrt(3 *(barx2 - barx^2))
c(theta1.hat, theta2.hat)</pre>
```

[1] -1.962062 4.901231

For cross-sectional linear model, the theoretical and empirical moments of interest are

$$\frac{1}{N} \sum_{i} x_{i}(y_{i} - \beta' x_{i}) = \mathbb{E}[x_{i} \varepsilon_{i}]$$

$$\frac{1}{N} \sum_{i} x_{i}(y_{i} - \beta' x_{i}) = 0$$

$$\hat{\beta} = \left(\frac{1}{N} \sum_{i} x_{i} x_{i}'\right)^{-1} \frac{1}{N} \sum_{i} x_{i} y_{i},$$

which of course means that the OLS estimator is also MoM estimator for the basic linear model.

The GMM case formalizes this procedure a little bit and extends it. Let $g(x_i, y_i; \theta)$ be a function that takes in data (x_i, y_i) and a guess at the parameters θ , and then and measures how close the population moments to the sample moments are for this guess of θ . In the

population model, we will have

$$E[g(x_i, y_i; \theta)] = 0$$

only if we guess the true θ . The model is identified if there is a unique mapping from g to θ , which in this case means that there is a unique solution to the above equation. The model is **just identified** if we have $\dim(\beta) = \dim(g(x_i, y_i; \theta))$ equations in g and **over identified** if we have more equations than unknowns $\dim(\beta) < \dim(g(x_i, y_i; \theta))$. In regular method of moments we only deal with just-identified cases, in the GMM case we can have either just or over identified models $\dim(\beta) \leq \dim(g(x_i, y_i; \theta))$.

Going back to our examples. For the uniform we have

$$g(x_i; \theta) = \begin{bmatrix} x_i - \frac{\theta_1 + \theta_2}{2} \\ x_i^2 - \frac{\theta_1^2 + \theta_1 \theta_2 + \theta_2^2}{3}, \end{bmatrix}$$

which has 2 parameters and 2 equations. For the pooled panel model we have

$$g(y_{it}, \mathbf{x}_{it}; \theta) = \mathbf{x}_{it}(y_{it} - \theta' \mathbf{x}_{it}),$$

which is also a just identified case.

Moving back to the IV framework, we find a situation where GMM can offer us something interesting over least-squares approaches. The reason for this is that in the IV framework we can be over identified. That is to say we have more estimating equations (i.e., more instruments) than parameters.

Returning to the within case recall that the identifying conditions are

$$E[\dot{z}_i\varepsilon_i]=0$$

such that

$$g(x_i, z_i; \beta) = \dot{z}_i'(\dot{y}_i - \beta'\dot{x}_i)$$

In the just identified case we get the 2SLS estimator, but in the over identified case (more instruments than endogenous variables) we cannot simply solve sample moment conditions

$$\frac{1}{N} \sum_{i=1}^{N} \dot{z}'_{i}(\dot{y}_{i} - \beta' \dot{x}_{i}) = 0,$$

as \dot{z}_i'' is $\ell \times T_i$ and $\dot{y}_i - \beta' \dot{x}_i$ is $T_i \times k$ and so we end up with ℓ equations and k unknowns with $\ell > k$.

With this conundrum in mind, we introduce can introduce a concept of distance. How close can we get these systems of equations to 0? This is a minimum distance problem, and so we need to define our distance criteria. Perhaps by using least squares. Such that we want to minimize the "error" in the equation

$$\eta = \dot{Z}'\dot{y} - \dot{Z}'\dot{X}\beta$$
$$\dot{Z}'\dot{y} = \dot{Z}'\dot{X}\beta + \eta$$
$$\ddot{y} = \ddot{X}\beta + \eta.$$

This looks like a regression equation! So the minimum squared error estimator will be

$$\hat{\beta} = (\ddot{X}'\ddot{X})^{-1}\ddot{X}'\ddot{y}$$
$$= (\dot{X}'\dot{Z}\dot{Z}'\dot{X})^{-1}\dot{X}'\dot{Z}\dot{Z}'\dot{y}$$

This is a start and will minimize $\eta'\eta$, but we also know that we can make this more efficient by weighting if η is not spherical. The GMM estimator is then

$$\hat{\beta}_{GMM} = (\ddot{X}'W\ddot{X})^{-1}\ddot{X}'W\ddot{y}$$
$$= (\dot{X}'\dot{Z}W\dot{Z}'\dot{X})^{-1}\dot{X}'\dot{Z}W\dot{Z}'\dot{y}.$$

More generally, the GMM estimator of some parameters θ is given by

$$\hat{\theta}_{GMM} = \underset{\theta}{\operatorname{argmin}} N \left[\frac{1}{N} \sum_{i} g(y_i; \theta) \right]' W \left[\frac{1}{N} \sum_{i} g(y_i; \theta) \right].$$

We are now left with the choice of W. The good news here is that it doesn't matter too much. So long as W is positive definite, the GMM estimator will be consistent and asymptotically normal for its model. As such W = I is typically a fine choice for starting out, however it will rarely be the best choice.

There are few options to consider with GMM, the first is to use a "one-step" estimator where W is fixed to a specific value like I. In the above example, if $W = (\dot{Z}'\dot{Z})^{-1}$ when the GMM is identical to the over-identified 2SLS.

It turns out that the most efficient GMM results from $W^* = \text{Var}(\dot{Z}'\varepsilon)^{-1}$. With this in mind, what does that tell us about the 2SLS here and its relative efficiency to the GMM? Basically, 2SLS will only be the most efficient if

$$\operatorname{Var}(\dot{Z}'\varepsilon)^{-1} \propto (\dot{Z}'\dot{Z})^{-1},$$

which will be the case when we have iid and homoskedastic errors.

In cases where we do not believe that (i.e., most panel settings) we can try to estimate the efficient weighting matrix in a two-step setting

$$\hat{W}^{*-1} = \frac{1}{N} \sum_{i=1}^{N} g_i(\hat{\beta}_1) g_i(\hat{\beta}_1)'$$
$$= \frac{1}{N} \sum_{i=1}^{N} \dot{z}_i' \hat{\varepsilon}_i \hat{\varepsilon}_i' \dot{z}_i$$

Where $\hat{\beta}_1$ is a consistent first-stage estimate of β that produce consistent estimates of $\hat{\varepsilon}_i$. Natural candidates include either GMM with W=I or 2SLS. Note that \hat{W} here is "meat" of the cluster-robust covariance matrix. This will generally be the case for the efficient GMM in the linear model.

To estimate the clustered standard errors for the panel GMM models with weights W we have

$$\operatorname{avar}(\hat{\beta}_{GMM}) = (\ddot{X}'W\ddot{X})^{-1} \left(\ddot{X}'W \left[\frac{1}{N} \sum_{i=1}^{N} \dot{z}_{i} \hat{\varepsilon}_{i} \hat{\varepsilon}'_{i} \dot{z}_{i} \right] W \ddot{X} \right) (\ddot{X}'W\ddot{X})^{-1}$$

Although, in this case you would probably use the efficient

$$W^* = \left[\frac{1}{N} \sum_{i=1}^{N} \dot{z}_i' \hat{\varepsilon}_i \hat{\varepsilon}_i' \dot{z}_i\right]^{-1}$$

so this becomes

$$\operatorname{avar}(\hat{\beta}_{GMM}) = (\ddot{X}'W\ddot{X})^{-1}(\ddot{X}'W^*W^{*-1}WW^*\ddot{X})(\ddot{X}'W\ddot{X})^{-1}$$
$$= (\ddot{X}'W^*\ddot{X})^{-1}(\ddot{X}'W^*\ddot{X})(\ddot{X}'W\ddot{X})^{-1}$$
$$= (\ddot{X}'W^*\ddot{X})^{-1}$$

The last topic I want want to cover in GMM is how Sargan's (1958) applies to the over-identified GMM. Recall that Sargan's test relies on the face that in the over-identified case it is unlikely that we will find estimates $\hat{\beta}$ that perfectly satisfy the moment conditions that $E[\dot{Z}_i\varepsilon_i] = 0$. As such we can treat that as a hypothesis. We can use the moment conditions

to form the test statistic as in

$$H_0 : E[\dot{Z}_i \varepsilon_i] = 0$$

$$\bar{g}(\hat{\beta}) = \frac{1}{N} \sum_{i=1}^{N} \dot{z}_i' \hat{\varepsilon}$$

$$J = \bar{g}(\hat{\beta})' W^* \bar{g}(\hat{\beta})$$

$$J \xrightarrow{d} \chi_{\ell-k}^2.$$

This is test of the exogeneity of the instruments. Rejecting this null means that we have evidence against the exogeneity of the instruments. Note that we need W^* here which is the efficient weighting matrix.

2.2 Invariant-regressors

At some point you may find yourself in a pickle where you want to consider the effect of a time-invariant variable but you do not want to lose the benefits of a fixed effects estimator. As we know, the within and LSDV estimators remove any time-invariant characteristics. While we tend to think of this as a net positive, there may be times where you actually want to know something about a time-invariant trait.

One option may be to use a CRE estimator and just include the covariate. However, it's not clear that this is the best approach. Here we'll consider the model

$$y_{it} = x'_{it}\beta + z'_{i}\gamma + \alpha_i + \varepsilon_{it}$$

. We maintain the basic panel assumptions, most importantly strict exogeneity within units, which we can now write as

$$E[\mathbf{x}_{it}\varepsilon_{is}] = 0, \ \forall i \in \{1..., N\} \& (s, t) \in \{1, ..., T\}^2$$

We all suppose that z_i is uncorrelated with the individual specific intercepts, i.e., $\mathrm{E}[z_i\alpha_i]=0$, while we leave x_{it} unrestricted in this sense. This means that we have a model where z_i is exogenous wrt to both ε and α , while x_{it} is only exogeneous wrt to ε . We leave α_i as unobserved.

To consistently estimate β we would typically need to use a fixed-effects estimator. However, applying the within transformation would remove $z'_i\gamma$ and in this context we also want to know something about γ . To work around this, we will consider an IV approach. For the instruments to be valid we need them to be uncorrelated with $\alpha_i + \varepsilon_{it}$. We already assumed that for z_i , so they can instrument for themselves. For x_{it} , what if we used the within

transformed variables \dot{x}_{it} ?

The transformation removes the relationship wih u_i and so would be valid!

The moment conditions then become

$$E[z_i(y_i - \beta' x_i - \gamma' z_i)] = 0$$

$$E[\dot{x}_i(y_i - \beta' x_i - \gamma' z_i)] = 0$$

In this case we have just as many instruments as endogeneous variables and so it doesn't matter if we use 2SLS or GMM.

The above approach is algebraically equivalent to another two-step method where:

1. Estimate beta using the within estimator and compute the estimated unit constants

$$\hat{\alpha}_i = \bar{y}_i - \bar{x}_i \hat{\beta}_w.$$

Note that these residuals "contain" the omitted variables z_i .

2. Estimate γ by regressing $\hat{\alpha}_i$ on z_i .

This equivalence follows from the above moment conditions. In sample these are

$$Z'(y - X\beta - Z\gamma) = 0$$

$$\dot{X}'(y - X\beta - Z\gamma) = 0$$

Recall that the within transformation removes all cross-sectional variance so the covariance of \dot{X} and Z is 0, making $\dot{X}'Z = 0$. The bottom line is then

$$\dot{X}'(y - X\beta) = 0$$

The value of β that solves this? The within estimates! We saw this before when we used these instruments to motivate the Mundlak estimator. Plug those into the first set of line and we get:

$$\begin{aligned} \left[z_i'(y_i - x_i'\hat{\beta}_w - z_i'\gamma) \right]_{i=1}^N &= \left[z_i'(\bar{y}_i - \bar{x}_i'\hat{\beta}_w - z_i'\gamma) \right]_{i=1}^N \\ &= Z'(\hat{\alpha} - Z\gamma), \end{aligned}$$

which is of course the second step in that two-step routine just described.

In practice, you would not, of course, do the two-step when the one-step version with 2SLS exists. I include it here for you to see the intuition of this estimator, which is that we consider $\hat{\alpha}_i$ to contain the information on $z_i'\gamma$ even when z_i is uncorrelated with the true α_i . To extract

that information use this $\hat{\alpha}_i$ as dependent variable.

The main restriction in this model is the assumption that the invariant variables z are uncorrelated with the true α_i . While largely a theoretical question, it seems unlikely to me in probably most interesting cases. Hausman and Taylor generalize the above model to the following case

$$y_{it} = \beta_1' x_{1it} + \beta_2' x_{2it} + \gamma_1' z_{1i} + \gamma_2' z_{2i} + \alpha_i + \varepsilon_{it},$$

where

- x_{1it} contains k_1 time-varying exogenous variables $E[x_{1it}\alpha_i] = 0$
- z_{1i} contains ℓ_1 time-invariant exogenous variables $\mathrm{E}[z_{1i}\alpha_i]=0$
- x_{2it} contains k_2 time-varying endogenous variables $E[x_{2it}\alpha_i] \neq 0$
- z_{2i} contains ℓ_2 time-invariant endogenous variables $\mathrm{E}[z_{2i}\alpha_i] \neq 0$

Our goals is to estimate $\theta = (\beta, \gamma) = (\beta_1, \beta_2, \gamma_1, \gamma_2)$. As before we will consider the use of instruments to help us identify these parameters. The within transformed variables \dot{x}_{2it} will once against be great choices, and z_{1i} can instrument for itself. In theory x_{1it} could instrument for itself, but let's go ahead and include \dot{x}_{1it} to be safe. This leave the choice for z_2 . Hausman and Taylor propose using \bar{x}_{1i} as these should at least be exogenous.

Collect the regressors in $\mathbf{x}_i t$, then we have the following moment conditions

$$E[\dot{x}'_{1it}(y_{it} - \theta' \mathbf{x}_i t)] = 0$$

$$E[\dot{x}'_{2it}(y_{it} - \theta' \mathbf{x}_i t)] = 0$$

$$E[\bar{x}'_{1i}(y_{it} - \theta' \mathbf{x}_i t)] = 0$$

$$E[z'_{1i}(y_{it} - \theta' \mathbf{x}_i t)] = 0.$$

This gives us $2k_1 + k_2\ell_1$ moment conditions and $k_1 + k_2 + \ell_1 + \ell_2$ parameters. So the main identification condition is that $k_1 \geq \ell_2$. This model can be fit with either 2SLS or GMM, with the latter being potentially advantageous in the

2.2.1 Example

As an example, we will consider

```
library(data.table)
library(readstata13)
```

```
library(sandwich)
library(fixest)
library(ivreg)
library(lmtest)
library(modelsummary)
aid <- data.table(read.dta13("Rcode/aid migration/finaldata.dta"))</pre>
### setup in the paper###
aid[, `:=`(lcommit3a=log(1000000*commit3a+1),
           lpopulation =log(1000*population),
           listock = log(istock+1),
           lgdpcap = log(gdpcap+1),
           lexports = log(exports+1),
           ldist = log(distance+1),
           lusmil = log(usmil+1),
           ldisaster = log(disaster +1))]
aid[, `:=`(lpopulation lag= shift(lpopulation),
           listock lag=shift(listock),
           lgdpcap lag=shift(lgdpcap),
           lexports lag = shift(lexports),
           lusmil lag = shift(lusmil),
           fh_lag = shift(fh),
           civilwar_lag = shift(civilwar),
           ldisaster lag = shift(ldisaster)),
   by=dyad]
aid <- aid[year > 1992 & year < 2009]
## Main outcome
# lcommit3a: foreign aid commitments from donor to receipient (USD log)
## Main regressors
# listock lag: Size of the migrant population from the recipient country
                in the donor (log, lag)
# lgdpcap_lag: Recipient GDP per capita (USD/person log, lag)
```

```
# lpopulation_lag: Recipient population (log, lag)
# lexports_laq: Exports from donor to the recipient (USD log, laq)
# ldist: Distance from donor to recipient
# colony: Recipient is a former colony of the donor
# lusmil_lag: US military aid (log lag)
# fh_lag: 1-7 measure of democracy (lag)
# civilwar laq: Binary, is there civil war (laq)
# ldisaster_lag: Number of people affected by a natural disaster (log, lag)
m1 <- feols(lcommit3a~listock lag+lgdpcap lag+lpopulation lag+ lexports lag +
         ldist+ colony+ lusmil lag+ fh lag+ civilwar lag+ldisaster lag|
            donor+year, data=aid)
## NOTE: 19,662 observations removed because of NA values (LHS: 119, RHS: 19,571).
summary(m1)
## OLS estimation, Dep. Var.: lcommit3a
## Observations: 33,181
## Fixed-effects: donor: 22, year: 16
## Standard-errors: Clustered (donor)
##
                   Estimate Std. Error
                                          t value
                                                    Pr(>|t|)
                                         7.968504 8.7724e-08 ***
## listock lag
                   0.572146
                              0.071801
## lgdpcap lag
                              0.144451 -14.605945 1.7958e-12 ***
                  -2.109841
## lpopulation lag 0.577321
                              0.151597 3.808254 1.0266e-03 **
                                         3.553430 1.8796e-03 **
## lexports lag
                  0.204072
                              0.057430
## ldist
                              0.277692 -3.018472 6.5396e-03 **
                  -0.838207
## colony
                   3.147186
                              0.810626
                                        3.882414 8.6027e-04 ***
## lusmil lag
                   0.061323
                              0.017605
                                        3.483345 2.2177e-03 **
## fh lag
                   0.092279
                              0.057136
                                        1.615071 1.2122e-01
## civilwar lag
                 -0.139480
                              0.197864 -0.704926 4.8860e-01
                                         3.799323 1.0487e-03 **
## ldisaster_lag
                   0.084973
                              0.022365
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 5.18145
                    Adj. R2: 0.486778
```

```
##
                  Within R2: 0.370701
m2 <- feols(lcommit3a~listock_lag+lgdpcap_lag+lpopulation_lag+ lexports_lag +
          ldist+ colony+ lusmil_lag+ fh_lag+ civilwar_lag+ldisaster_lag|
              dyad+year, data=aid)
## NOTE: 19,662 observations removed because of NA values (LHS: 119, RHS: 19,571).
## The variables 'ldist' and 'colony' have been removed because of collinearity (see $co
summary(m2)
## OLS estimation, Dep. Var.: lcommit3a
## Observations: 33,181
## Fixed-effects: dyad: 3,129, year: 16
## Standard-errors: Clustered (dyad)
                   Estimate Std. Error
##
                                         t value
                                                   Pr(>|t|)
                              0.052167 5.815484 6.6555e-09 ***
## listock_lag
                  0.303379
## lgdpcap_lag
                 -0.583753
                              0.344623 -1.693886 9.0387e-02 .
## lpopulation_lag -1.205957
                              0.970822 -1.242202 2.1426e-01
## lexports_lag
                              0.018695 5.057827 4.4850e-07 ***
                  0.094556
## lusmil lag
                   0.041247
                              0.007308 5.644173 1.8080e-08 ***
## fh_lag
                   0.200216
                              0.062172 3.220382 1.2933e-03 **
## civilwar_lag 0.016697
                              0.132610 0.125908 8.9981e-01
## ldisaster lag
                   0.013605
                              0.006253 2.175740 2.9649e-02 *
## ... 2 variables were removed because of collinearity (ldist and colony)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 3.67935
                   Adj. R2: 0.714453
                  Within R2: 0.00923
##
aid.sam <- aid[m2$obs_selection$obsRemoved]</pre>
Years <- model.matrix(~factor(year)-1, data=aid.sam)[,-1]
colnames(Years) <- paste0("year", 1994:2008)</pre>
aid.sam <- cbind(aid.sam, Years)</pre>
```

```
var.names<- c("listock lag", "lgdpcap lag", "lpopulation lag",</pre>
              "lexports lag", "lusmil lag", "fh lag", "civilwar lag",
              "ldisaster lag", paste0("year", 1994:2008))
aid.sam[, paste0(var.names, ".within") := lapply(.SD, (x)\{x-mean(x)\}),
         by=dyad,
         .SDcols=var.names ]
fx <- ~listock_lag+lgdpcap_lag+lpopulation_lag+ lexports_lag +</pre>
  ldist+ colony+ lusmil lag+ fh lag+ civilwar lag+ldisaster lag +
  year1994+year1995+year1996+year1997+year1998+year1999+
  year2000+year2001+year2002+year2003 +year2004+
  year2005+year2006+year2007+year2008-1
fz <- ~lgdpcap_lag.within+lgdpcap_lag.within+lpopulation_lag.within+
  lexports_lag.within +
  lusmil lag.within+
  fh lag.within+ civilwar lag.within+ldisaster lag.within +
  year1994.within+year1995.within+year1996.within+year1997.within+
  year1998.within+year1999.within+
  year2000.within+year2001.within+year2002.within+year2003.within +
  year2004.within+ year2005.within+year2006.within+year2007.within+
  year2008.within +
  listock lag.within +
  ldist+ colony-1#z1
## (no z2 here, so no need to include xbar as additional instruments)
ht <- ivreg(update(fx, lcommit3a ~.), fz, data=aid.sam)</pre>
ht.vcl <-vcovCL(ht, aid.sam$dyad)</pre>
coeftest(ht, vcov=)[1:10,]
                      Estimate Std. Error
##
                                              t value
                                                           Pr(>|t|)
## listock lag
                   0.30337884 0.06778951 4.47530632 7.655558e-06
## lgdpcap lag
                   -0.58375251 0.35525661 -1.64318551 1.003540e-01
```

```
modelsummary(list("Donor-FE"=m1,
                  "Dyad-FE"=m2,
                  "Dyad-FE (HT)"=ht),
             vcov=list(vcov(m1),vcov(m2),
                       ht.vcl),
             fmt=2,
             coef map=c("listock lag"="Migrant population (log)",
                         "colony"="Former colony",
                         "lgdpcap lag"="GDP per cap. (log)",
                         "lpopulation_lag"="Population (log)",
                         "lexports lag"="Exports (log)",
                         "ldist"="Distance (log)",
                         "lusmil lag"= "U.S. Military aid (log)",
                         "fh lag"="Democracy",
                         "civilwar lag"="Civil war",
                         "ldisaster lag"="Diaster"),
             gof_map=c("nobs"))
```

Note that HT (1981) impose some random effects style structure on the model by introducing the following RE (and unnecessary) assumptions

$$E[\alpha_i] = E[\alpha_i | x_{1it}, z_{1it}] = 0$$

$$Var(\alpha_i | x_{1it}, x_{2it}, z_{1i}, z_{2i}) = \sigma_{\alpha}^2$$

$$E[\alpha_i \varepsilon_{it} | x_{1it}, x_{2it}, z_{1i}, z_{2i}] = 0$$

$$Var(\varepsilon_{it} + \alpha_i | x_{1it}, x_{2it}, z_{1i}, z_{2i}) = \sigma_e^2 = \sigma_{\alpha}^2 + \sigma_{\varepsilon}^2$$

$$Cov(\varepsilon_{it} + \alpha_i, u_{is} + \alpha_i | x_{1it}, x_{2it}, z_{1i}, z_{2i}) = \sigma_{\alpha}^2$$

Note that like the RE models above this also introduces iid within unit observations. As

	Donor-FE	Dyad-FE	Dyad-FE (HT)
Migrant population (log)	0.57	0.30	0.30
	(0.07)	(0.05)	(0.05)
Former colony	3.15		5.45
	(0.81)		(0.74)
GDP per cap. (log)	-2.11	-0.58	-0.58
	(0.14)	(0.34)	(0.34)
Population (log)	0.58	-1.21	-1.21
	(0.15)	(0.97)	(0.97)
Exports (log)	0.20	0.09	0.09
	(0.06)	(0.02)	(0.02)
Distance (log)	-0.84		3.35
	(0.28)		(1.96)
U.S. Military aid (log)	0.06	0.04	0.04
	(0.02)	(0.01)	(0.01)
Democracy	0.09	0.20	0.20
	(0.06)	(0.06)	(0.06)
Civil war	-0.14	0.02	0.02
	(0.20)	(0.13)	(0.13)
Diaster	0.08	0.01	0.01
	(0.02)	(0.01)	(0.01)
Num.Obs.	33 181	33 181	33 181