- - i) When k \$3, k \$44, the system has a unique solution.
 - ii) When k = 3, the system has infinite solutions
 - iii) When k = 4, the system has no solutions

7)
$$2an + ay + bz = 2 - a$$

When $n = 1, y = 1, z = -1,$
 $2a + a - b = 2 - a$
 $4a - b = 2 - (1)$

When $n = 2, y = 1, z = -2$
 $4a - 2b = 2 - a$
 $6a - 2b = 2$
 $3a - b = 1$
 $b = 3a - 1 - (2)$

Sub (2) into (1)

 $4a - (3a - 1) = 2$
 $a + 1 = 2$
 $a = 1$

7) Sub
$$a=1$$
 into (2)
 $b=3(1)-1$
 $b=2$

$$\begin{bmatrix} 2 & 1 & 2 & 1 \\ 2 & 4 & 2 & 4 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & -1 \\ 0 & 2 & 0 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 1 & 1 \\
 0 & 1 & 0 & 1 \\
 0 & 2 & 0 & 2
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 0 & 0 & 0 & 0
 \end{bmatrix}$$

9)
$$(A^{2})^{-1}A^{2} = I$$

 $(A^{2})^{-1}AA = I$
 $(A^{2})^{-1}AAA^{-1} = IA^{-1}$
 $(A^{2})^{-1}A = A^{-1}$
 $(A^{2})^{-1}AA^{-1} = A^{-1}A^{-1}$
 $(A^{2})^{-1}I = A^{-1}A^{-1}$
 $(A^{2})^{-1}I = A^{-1}A^{-1}$
 $(A^{2})^{-1}I = A^{-1}A^{-1}$

10)
$$A^{2} + A - 4I = 0$$

 $\frac{1}{2}A^{2} + \frac{1}{2}A - 2I = 0$
 $\frac{1}{2}A^{2} - \frac{1}{2}A + A - 2I + I = I$
 $\frac{1}{2}A^{2} - \frac{1}{2}A + A - I = I$
 $\frac{1}{2}A(A-I) + A-I = I$
 $(\frac{1}{2}A+I)(A-I) = I$
 $(\frac{1}{2}A+I) = I(A-I)^{-1}$
 $(A-I)^{-1} = \frac{1}{2}A+I$
 $(shown)$