Vector Algebra

Class work

Vector Algebra

- 1. Find the values of x, y and z so that the vectors $\overline{a} = xi + 2j + zk$ and $\overline{b} = 2i + yj + k$ are equal. Ans. x = 2, y = 2, z = 1.
- 2. If $\overline{a} = 2i k$ and $\overline{b} = -i + 3k$ and $\overline{c} = i + 2k$ then find scalars x and ysuch that $x\overline{a} + y\overline{b} = \overline{c}$ Ans: x = 1, y = 1
- 3. Let $\overline{a} = i + 2j$ and $\overline{b} = 2i + j$. Is $|\overline{a}| = |\overline{b}|$? Are the vectors \overline{a} and \overline{b} equal? Ans. Yes $|\overline{a}| = |\overline{b}| = \sqrt{5}$, two vectors are not equal.
- 4. Find unit vector in the direction of vector $\overline{a} = 2i + 3j + k$. Ans. $\overline{a} = \frac{1}{\sqrt{14}}(2i + 3j + k)$.
- 5. Find the unit vector in the direction of the sum of the vectors, $\overline{a} = 2i + 2j 5k$ and $\overline{b} = 2i + j + 3k$. Ans. $\frac{1}{\sqrt{29}}(4i + 3j 2k)$.
- 6. If A(-4,-7,1) and B(-1,-6,2) are any two points the find unit vector along \overline{AB} Ans: $\frac{3i+j+k}{\sqrt{11}}$
- 7. If $\overline{a} = 2i 3j + kand\overline{b} = i + 2j 3k$ are position vectors of point A and B respectively then find \overline{AB} , $|\overline{AB}|$ and $|\overline{AB}|$ and $|\overline{AB}|$ and $|\overline{AB}|$ and $|\overline{AB}|$ Ans: $|\overline{AB}| = \sqrt{42}$, $|\overline{AB}| = \sqrt{$
- 8. Find the direction ratios and direction cosines of the line passing through the points A(-4,2,3) and B(1,3,-2) Ans: 5,1,-5 and $\pm \frac{5}{\sqrt{51}}, \pm \frac{1}{\sqrt{51}}, \pm \frac{5}{\sqrt{51}}$
- 9. If a line has direction ratios -18,12,-4 the find its direction cosines.

 (Ans: $\frac{-9}{11}$, $\frac{6}{11}$, $\frac{-2}{11}$)
- 10. Find the vector joining the points P(2, 3, 0) and Q(-1, -2, -4) directed from P to Q. Ans. $\overline{PQ} = -3i - 5j - 4k$.
- 11. Show that the points A(2,-1,4) , B(3,2,5) and C(5,8,7) are collinear using vectors
- 12. If \overline{a} , \overline{b} and \overline{c} are position vectors of the vertices of a triangle where $\overline{a} = 4i + j + 3k$ and $\overline{b} = i + 3j + 2k$ and $\overline{c} = 2i + 7k$ then prove that the triangle is a right angled triangle

- 13. If A(1,1,1), B(-2,4,3) and C(-1,5,5) and D(2,2,6) are four points find the vectors of magnitude 4 units perpendicular to both \overline{AB} and \overline{CD} Ans:4 $\left(\frac{i+j}{\sqrt{2}}\right)$
- 14. If $\overline{a} = 5i j 3k$ and $\overline{b} = i + 3j 5k$, then show that the vectors $\overline{a} + \overline{b}$ and $\overline{a} \overline{b}$ are perpendicular.
- 15. If A(2,-1,5), B(2,1,4) and C(1,1,0), D(0,0,1) then find unit vector parallel to \overline{AB} \overline{CD} Ans: $\frac{i+3j-2k}{\sqrt{14}}$
- 16. Find unit vector perpendicular to both \overline{a} and \overline{b} where $\overline{a} = 3i 2j + 5k$ and $\overline{b} = 2i + 3j 7k$ Ans: $\frac{\pm (-i + 31j + 13k)}{\sqrt{1131}}$
- 17. For vectors \overline{a} , \overline{b} and \overline{c} prove that $\overline{a} \times (\overline{b} + \overline{c}) + \overline{b} \times (\overline{c} + \overline{a}) + \overline{c} \times (\overline{a} + \overline{b}) = 0$
- 18. Find the projection of \overline{a} on \overline{b} if \overline{a} . $\overline{b} = 8$ and $\overline{b} = 2i + 6j + 3k$
- 19. Find sine of the angle between the vectors $\overline{a} = 4i j + 3k$ and $\overline{b} = -2i + j 2k$ Ans: $\sin \theta = \frac{1}{\sqrt{26}}$
- 20. Find the magnitude of two vectors \overline{a} and \overline{b} having same magnitude such that the angle between them is 60 and their scalar product is 1/2.
- 21. Show that no line in space can make angles $\frac{\pi}{6}$ and $\frac{\pi}{4}$ with the X-axis and Y-axis
- 22. Find the angle between the lines whose direction ratios are 5,12,-13 and 3,-4,5 Ans: $cos^{-1}\left(\frac{49}{65}\right)$
- 23. Find unit vectors perpendicular to \overline{a} and \overline{b} if $\overline{a} = 2i j + 3kand\overline{b} = 3i + j 4k$ Ans: $\frac{i+17j+5k}{3\sqrt{35}}$
- 24. Find the projection of \overline{b} on \overline{a} where $\overline{a} = 2i + 3j 4k$ and $\overline{b} = i j k$ Ans: $\frac{3}{\sqrt{29}}$
- 25. Find sine of the angle between the vectors $\overline{a} = i 2kand\overline{b} = j 4k$ Ans: $\sin \theta = \sqrt{\frac{21}{85}}$
- 26. Find angle '\theta' between the vectors $\overline{a} = i + j kand\overline{b} = i j + k$. Ans. $\theta = cos^{-1}\frac{1}{3}$.
- 27. Find the angle between the lines whose direction ratios are 5,12,-13 and 3,-4,5 Ans: $cos^{-1}\left(\frac{49}{65}\right)$
- 28. Find $|\overline{a} \times \overline{b}|$, if $\overline{a} = 2i + j + 3k$ and $\overline{b} = 3i + 5j 2k$. Ans. $\sqrt{507}$

- 29. If a line makes angles 90° , 135° and 45° with the X, Y and Z axis respectively the find its direction cosines. (Ans: $0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$)
- 30. Find the area of a triangle having points A(1,1,1), B(1,2,3), C(2,3,1) as its vertices. Ans. $\frac{1}{2}\sqrt{21}$.
- 31. Find the area of a triangle *ABC* if the position vectors of the points *A*, *B*, *C* are respectively i-2j+k, 2i-j+2k, -i-j-k. Ans. $\frac{3}{\sqrt{2}}$
- 32. Find the area of a parallelogram whose adjacent sides are given by the vectors $\overline{a} = 3i + j + 4kand\overline{b} = i j + k$. Ans. $\sqrt{42}$.