Introduction to Database Systems CSE 414

Lecture 28: Intro to Query Optimization

CSE 414 - Spring 2018

Final Exam

- Thursday 6/7, 2:30-4:20pm
- · Location: here
- Comprehensive exam
 - Covers all lectures, sections, web quizzes, HWs, and readings
- · Can bring 2 letter-size sheets of notes
 - Handwritten or printed
- · More info on course website
- · Review session:
 - Sunday 6/3, 2:30-5pm, SMI 102

Big Picture

- How to choose the "best" query plan to run? (aka query optimization)
- To answer this question we need to understand:
 - Data organization on the disk
 - Index structures and how they are used in queries
 - A way to model query "costs"
 - Compute cost for each query operator
 - Compute cost for each physical plan

Last topics

CSE 414 - Spring 2018

ng 2018

Review: Join Algorithms

- · Nested loop join
- · Hash join
- · Sort-merge join

CSE 414 - Spring 2018

4

Hash Join

Hash join: R ⋈ S

- · Scan R, build hash table in main memory
- Then scan S and join
- Cost: B(R) + B(S)
- · Which relation to build the hash table on?
- One-pass algorithm when B(R) ≤ M
 - M = number of memory pages available

CSE 414 - Spring 2018

•

Sort-Merge Join

Sort-merge join: R ⋈ S

- Scan R and sort in main memory
- · Scan S and sort in main memory
- · Merge R and S
- Cost: B(R) + B(S)
- One pass algorithm when B(S) + B(R) <= M
- Typically, this is NOT a one pass algorithm

CSE 414 - Spring 2018

Sort-Merge Join Example
Step 1: Scan Patient and sort in memory

Memory M = 21 pages

1 2 3 4 5 6 8 9

Disk
Patient Insurance
1 2 2 4 6 6
3 4 4 3 1 3
9 6 2 8
8 5 8 9

Sort-Merge Join Example
Step 2: Scan Insurance and sort in memory

Memory M = 21 pages

Patient Insurance

1 2 2 4 6 6
3 4 3 1 3
9 6 2 8
8 5 8 9

Sort-Merge Join Example
Step 3: Merge Patient and Insurance

Memory M = 21 pages

1 2 3 4 5 6 8 9

1 2 2 3 3 4 4 6

6 8 8 9

1 1

Output buffer

17

20

Index Nested Loop Join

$R \bowtie S$

- · Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S

```
for r in R
  // use index to lookup
  for s' in S that should be joined with r
    s = fetch S tuple pointed to by s' from disk
    output (r,s)
```

CSE 414 - Spring 2018

Index Nested Loop Join

R ⋈ S

for r in R

// use index to lookup
for s' in S that should be joined with r
s = fetch S tuple pointed to by s' from disk
output (r,s)

• Cost:

- If index on S is clustered:
B(R) + T(R) * (B(S) * 1/V(S,a))
- If index on S is unclustered:
B(R) + T(R) * (T(S) * 1/V(S,a))

CSE 414-Spring 2018

Review: Logical vs Physical Plans

Query Optimization: Overview

- Compute cost of each operator, which depends on:
 - Table statistics (# of tuples produced)
 - · Algorithm used to implement each operator
- Cost of a physical plan = sum(each operator cost)
- Cost each plan and choose the one with lowest cost

CSE 414 - Spring 2018

26

Query Optimizer Summary

- · Input: A logical query plan
- · Output: A good physical query plan
- · Basic query optimization algorithm
 - Enumerate alternative plans (logical and physical)
 - Compute estimated cost of each plan
 - Choose plan with lowest cost
- · This is called cost-based optimization
 - More in CSE 444

CSE 414 - Spring 2018

45