

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Original) A compound of formula (I):

wherein:

R^a and R^b are, independently, hydrogen or C₁₋₄ alkyl or R^a forms part of a ring as defined below;

R^c is hydrogen or hydroxy;

X is CH₂, C(O), O, S, S(O), S(O)₂ or NR³;

Z is CHR^d(CH₂)_n;

n is 0 or 1;

R^d is hydrogen, C₁₋₄ alkyl, hydroxy or C₁₋₄ alkoxy;

R¹ is hydrogen, C₁₋₆ alkyl, aryl or heterocyclyl;

R² is aryl or heterocyclyl;

wherein, unless stated otherwise, the foregoing aryl and heterocyclyl moieties are optionally substituted by: halogen, cyano, nitro, hydroxy, oxo, S(O)_pR⁴, OC(O)NR⁵R⁶, NR⁷R⁸, NR⁹C(O)R¹⁰, NR¹¹C(O)NR¹²R¹³, S(O)₂NR¹⁴R¹⁵, NR¹⁶S(O)₂R¹⁷, C(O)NR¹⁸R¹⁹, C(O)R²⁰, CO₂R²¹, NR²²CO₂R²³, C₁₋₆ alkyl, CF₃, C₁₋₆ alkoxy(C₁₋₆)alkyl, C₁₋₆ alkoxy, OCF₃, C₁₋₆ alkoxy(C₁₋₆)alkoxy, C₁₋₆ alkylthio, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₁₀ cycloalkyl (itself optionally substituted by C₁₋₄ alkyl or oxo), methylenedioxy, difluoromethylenedioxy, phenyl, phenyl(C₁₋₄)alkyl, phenoxy, phenylthio, phenyl(C₁₋₄)alkoxy, heterocyclyl, heterocyclyl(C₁₋₄)alkyl, heterocyclyloxy or heterocyclyl(C₁₋₄)alkoxy; wherein any of the immediately foregoing phenyl and heterocyclyl

moieties are optionally substituted with halogen, hydroxy, nitro, S(O)_q(C₁₋₄ alkyl), S(O)₂NH₂, S(O)NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ below), cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ below), CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃;

or Z, R² and R^a together with the carbon atom to which Z and R^a are attached form a ring; p and q are, independently, 0, 1 or 2;

R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are, independently, hydrogen, C₁₋₆ alkyl (optionally substituted by halogen, hydroxy or C₃₋₁₀ cycloalkyl), CH₂(C₂₋₆ alkenyl), phenyl (itself optionally substituted by halogen, hydroxy, nitro, NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ below), S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ below), cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ below), CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃) or heterocyclyl (itself optionally substituted by halogen, hydroxy, nitro, NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ below), S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ below), cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ below), CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃);

alternatively NR⁵R⁶, NR⁷R⁸, NR¹²R¹³, NR¹⁴R¹⁵, NR¹⁸R¹⁹, may, independently, form a 4-7 membered heterocyclic ring, azetidine, pyrrolidine, piperidine, azepine, morpholine or piperazine, the latter optionally substituted by C₁₋₄ alkyl on the distal nitrogen;

R⁴, R¹⁷ and R²³ are, independently, C₁₋₆ alkyl (optionally substituted by halogen, hydroxy or C₃₋₁₀ cycloalkyl), CH₂(C₂₋₆ alkenyl), phenyl (itself optionally substituted by halogen, hydroxy, nitro, NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as

described for R⁵ and R⁶ above), S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ above), cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ above), CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃) or heterocycl (itself optionally substituted by halogen, hydroxy, nitro, NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ above), S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ above), cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁵ and R⁶ above), CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃);

R³ is hydrogen, C₁₋₆ alkyl or benzyl;

or an N-oxide thereof; or a pharmaceutically acceptable salt thereof; or a solvate thereof.

2. (Original) A compound of formula (I) as claimed in claim 1 wherein X is O.

3. (Previously Presented) A compound of formula (I) as claimed in claim 1 wherein the aryl and heterocycl moieties of R¹ and R² are, independently, optionally substituted by: halogen, cyano, nitro, hydroxy, oxo, S(O)_pR⁴, OC(O)NR⁵R⁶, NR⁷R⁸, NR⁹C(O)R¹⁰, NR¹¹C(O)NR¹²R¹³, S(O)₂NR¹⁴R¹⁵, NR¹⁶S(O)₂R¹⁷, C(O)NR¹⁸R¹⁹, C(O)R²⁰, CO₂R²¹, NR²²CO₂R²³, C₁₋₆ alkyl, CF₃, C₁₋₆ alkoxy(C₁₋₆ alkyl), C₁₋₆ alkoxy or OCF₃; p is 0, 1 or 2; R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁸, R¹⁹, R²⁰, R²¹ and R²² are, independently, hydrogen, C₁₋₆ alkyl (optionally substituted by halogen) or phenyl (itself optionally substituted by halogen, hydroxy, nitro, NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂, S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂, cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂, CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃); and R⁴, R¹⁷ and R²³ are, independently, C₁₋₆ alkyl (optionally substituted by halogen) or phenyl (itself optionally substituted by halogen, hydroxy, nitro, NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂, S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄

alkyl)₂, cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂, CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃).

4. (Previously Presented) A compound of formula (I) as claimed in claim 1 wherein R¹ is phenyl optionally substituted with halogen, cyano, C₁₋₄ alkyl or C₁₋₄ alkoxy.

5. (Previously Presented) A compound of formula (I) as claimed in claim 1 wherein R⁸ is hydrogen.

6. (Previously Presented) A compound of formula (I) as claimed in claim 1 wherein R^b is hydrogen or methyl.

7. (Previously Presented) A compound of formula (I) as claimed in claim 1 wherein R^c is hydrogen.

8. (Previously Presented) A compound of formula (I) as claimed in claim 1 wherein R^d is hydrogen, hydroxy or C₁₋₄ alkyl.

9. (Previously Presented) A compound of formula (I) as claimed in claim 1 wherein Z is CH₂, CH₂CH₂, CHCH₃ or CHOH.

10. (Previously Presented) A compound of formula (I) as claimed in claim 1 wherein R² is phenyl or heterocyclyl optionally substituted by halogen, cyano, nitro, hydroxy, NR⁷R⁸, C₁₋₆ alkyl (optionally substituted with halogen), C₁₋₆ alkoxy (optionally substituted with halogen), S(O)_p(C₁₋₆ alkyl), S(O)_rCF₃ or S(O)₂NR¹⁴R¹⁵; p and r are, independently, 0, 1 or 2; and R⁷, R⁸, R¹⁴ and R¹⁵ are, independently, hydrogen, C₁₋₆ alkyl (optionally substituted by halogen, hydroxy or C₃₋₁₀ cycloalkyl), CH₂(C₂₋₅ alkenyl), phenyl (itself optionally substituted by halogen, hydroxy, nitro, NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂, S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂ (and these alkyl groups may join to form a ring as described for R⁷ and R⁸ below), cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂ (and

these alkyl groups may join to form a ring as described for R⁷ and R⁸ below), CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃) or heterocyclyl (itself optionally substituted by halogen, hydroxy, nitro, NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂, S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂(and these alkyl groups may join to form a ring as described for R⁷ and R⁸ below), cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂(and these alkyl groups may join to form a ring as described for R⁷ and R⁸ below), CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), CF₃ or OCF₃); or alternatively NR⁷R⁸ or NR¹⁴R¹⁵ may, independently, form a 4-7 membered heterocyclic ring, azetidine, pyrrolidine, piperidine, azepine, morpholine or piperazine, the latter optionally substituted by C₁₋₄ alkyl on the distal nitrogen.

11. (Previously Presented) A compound of formula (I) as claimed in claim 1 wherein R² is phenyl or heterocyclyl optionally substituted by halogen, cyano, hydroxy, C₁₋₄ alkyl, C₁₋₄ haloalkyl or C₁₋₄ alkoxy.

12. (Previously Presented) A compound of formula (I) as claimed in claim 1 wherein heterocyclyl is indolyl, imidazolyl, thieryl or pyridinyl.

13. (Original) A process for preparing a compound of formula (I) as claimed in claim 1 comprising:

- reacting a compound of formula (II):

with a compound of formula (III):

in the presence of $\text{NaBH}(\text{OAc})_3$ or $\text{NaBH}_3(\text{CN})$ in a suitable solvent at a suitable temperature;

b. when R'^{b} is not hydrogen, reacting a compound of formula (II) with a compound of formula (III), where R'^{b} is not hydrogen, in the presence of $\text{NaBH}(\text{OAc})_3$ in the presence of a suitable base in a suitable solvent at a suitable temperature;

c. when R'^{a} represents H, reacting a compound of formula (IX):

with a compound of formula (X):

wherin L is a suitable leaving group, in a suitable solvent, at a temperature in the range 0°C to 30°C , in the presence of a base; or,

d. when R'^{a} represents H, hydrolysing a compound of formula (XIV):

wherein Xc is a chiral auxiliary, in a suitable solvent, at a temperature between 10°C and reflux of the solvent.

14. (Original) A pharmaceutical composition which comprises a compound of the formula (I), or a pharmaceutically acceptable salt thereof or solvate thereof as claimed in claim 1, and a pharmaceutically acceptable adjuvant, diluent or carrier.

15-16. (Cancelled)

17. (Original) A method of treating a chemokine mediated disease state in a mammal suffering from, or at risk of, said disease, which comprises administering to a mammal in need of such treatment a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt thereof or solvate thereof as claimed in claim 1.

18. (Previously Presented) A compound of formula (I) as claimed in claim 2 wherein R¹ is phenyl optionally substituted with halogen, cyano, C₁₋₄ alkyl or C₁₋₄ alkoxy.

19. (Previously Presented) A compound of formula (I) as claimed in claim 2 wherein R^a is hydrogen.

20. (Previously Presented) A compound of formula (I) as claimed in claim 2 wherein R^b is hydrogen or methyl.

21. (Previously Presented) A compound of formula (I) as claimed in claim 2 wherein R^c is hydrogen.

22. (Previously Presented) A compound of formula (I) as claimed in claim 2 wherein R^d is hydrogen, hydroxy or C₁₋₄ alkyl.

23. (New) A compound of formula (III):

wherein

Z is $\text{CHR}^d(\text{CH}_2)_n$; or Z, R^2 and R^a , together with the carbon atom to which Z and R^a are attached, form a ring;

R^2 is aryl or heterocyclyl; or R^2 , Z, and R^a , together with the carbon atom to which Z and R^a are attached, form a ring; and

R^a and R^b are, independently, hydrogen or C_{1-4} alkyl; or R^a , Z, and R^2 , together with the carbon atom to which Z and R^a are attached, form a ring.

24. (New) A compound of formula (X):

wherein

Z is $\text{CHR}^d(\text{CH}_2)_n$;

L is a leaving group;

R^2 is aryl or heterocyclyl; and

R^b is hydrogen or C_{1-4} alkyl.

25. (New) The compound of claim 24, wherein L is bromide, triflate, or methanesulfonate.