Valentin Mayer-Eichberger and Toby Walsh

SAT Encodings for the Car Sequencing Problem

08/07/2013 at Pragmatics of SAT

Agenda

- 1) Car Sequencing
- 2) Encodings
- 3) Experimental Results
- 4) Future Work

Car Sequencing

Picture from Wikipedia

Car Sequencing from the CSPLib Benchmark

Definition

Assemble a production line of cars such that capacity constraints on the workstations are not exceeded.

Notation:

- ▶ Set of Classes C
- Demand d_i for class i
- Set of Options O
- ▶ Capacity constraint with ratio u_I/q_I for option I

Car Sequencing: Example

- $C = \{1, 2, 3\}$ with demand 3, 2, 2
- ▶ $O = \{a, b\}$ with capacity constraints 1/2 and 1/5
- ► Class 1 no restriction
- Class 2 requires option a
- Class 3 requires option a and b

Car Sequencing: Example

- $C = \{1, 2, 3\}$ with demand 3, 2, 2
- ▶ $O = \{a, b\}$ with capacity constraints 1/2 and 1/5
- Class 1 no restriction
- Class 2 requires option a
- Class 3 requires option a and b

	3	1	2	1	2	1	3
а	1	-	1	-	1	-	1
b	1	-	-	-	-	-	1

PB Model

- ▶ Boolean variable c_i^k : car $k \in C$ is at position i
- ▶ Boolean variable o_i^l : option $l \in O$ is at position i
- ▶ Demand constraints: $\forall k \in C$

$$\sum_{i=1}^n c_i^k = d_k$$

▶ Capacity constraints: $\forall I \in O$ with ratio u_I/q_I

$$\bigwedge_{i=0}^{n-q_l} (\sum_{j=1}^{q_l} o_{i+j}^l \le u_l)$$

PB Model

And in all positions $i \in \{1 \dots n\}$ of the sequence it must hold:

▶ Link between classes and options: for each $k \in C$ and

$$\forall I \in O_k : c_i^k - o_i^l \le 0$$

$$\forall I \in O \setminus O_k : c_i^k + o_i^l \le 1$$

Exactly one car:

$$\sum_{k\in C}c_i^k=1$$

Modelling in CNF: the CP view

- ► This model with standard translation (minisat+,clasp ...) has bad performance
- More redundant constraints
- Global constraints and propagators

Sequential Counter: Auxiliary Variables

► Translation of Boolean Cardinality:

$$\sum_{i\in\{1...n\}}x_i=d$$

- x_i is true iff an object is at position i
- ▶ $s_{i,j}$ is true iff in the positions $0, 1 \dots i$ the object exists at least j times (for technical reasons $0 \le j \le d+1$).

Sequential Counter

$$\forall i \in \{1 \dots n\} \ \forall j \in \{0 \dots d+1\}$$
:

$$\neg s_{i-1,j} \lor s_{i,j}$$

$$x_i \vee \neg s_{i,j} \vee s_{i-1,j}$$

$$\forall i \in \{1 \dots n\} \forall j \in \{1 \dots d+1\}$$
:

$$\neg s_{i,j} \lor s_{i-1,j-1}$$

$$\neg x_i \lor \neg s_{i-1,j-1} \lor s_{i,j}$$

$$s_{0,0} \wedge \neg s_{0,1} \wedge s_{n,d} \wedge \neg s_{n,d+1}$$

(1)

(2)

(3)

Sequential Counter: Example

Setting x_2 and x_7 to 1:

Sequential Counter: Related Work

- Carsten Sinz Sequential Counter [4]
- ► Fahim Bacchus translation of AMONG by the Regular constraint [1]
- Translation through BDDs [2]

Capacity Constraints: More Global

$$\left(\sum_{i=1}^{n} x_{i} = d\right) \wedge \bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \leq u\right)$$

$$\forall i \in \{q \dots n\}, \ \forall j \in \{u \dots d+1\}$$
:

$$\neg s_{i,j} \lor s_{i-q,j-u} \tag{6}$$

Capacity Constraints: Example

Capacity constraint 4/8, demand d = 12 on a sequence of 22 variables:

```
13
12
                                                               ?
11
                                                            U
                                                                   ?
10
                                                               ?
                                        ?
               ? L
   U
                            8
                                    11 12 13 14 15 16 17 18 19 20 21 22
                                  10
X_i
                           0
                                                      0
```

Capacity Constraints: Example

Partial Assignment: x_1 and x_{13} to true and x_{12} , x_{14} and x_{21} to false.

A Trick for Lower Bounds ([3])

Table: Overview of options and demands for instance 300-04

class	0	1	2	3	4	5	6	7	8	9	10	11
demand	9	4	22	2	1	62	31	4	24	4	3	36
0: 1/2	-	-	-	-	-	-	-	-	-	-	-	×
1: 2/3	-	-	-	-	-	×	×	×	×	×	x	-
2: 1/3	-	-	X	×	X	-	-	-	×	X	X	-
3: 2/5	-	×	-	-	×	-	×	×	-	-	x	-
4: 1/5	×	×	-	×	×	-	-	×	-	×	x	-

class	12	13	14	15	16	17	18	19	20	21	22	23
demand	3	25	3	8	5	2	6	21	5	7	11	2
0: 1/2	х	х	х	х	х	х	х	х	х	х	х	x
1: 2/3	-	-	-	-	-	-	×	×	x	x	x	x
2: 1/3	-	-	-	×	×	×	-	-	-	x	x	x
3: 2/5	-	×	x	-	-	×	-	×	x	-	x	x
4: 1/5	x	-	x	-	×	×	X	-	X	x	-	x

Results: Solved Instances

	E1	E2	E3	ASP	РΒ
// 5011 Ca	17	15	17	10	8
#fastest UNSAT	5	4	4	0	4
#solved SAT	11	11	11	7	2
#fastest SAT	0	4	7	0	0

Conclusion and Future Work

- SAT can be very competitive on certain CP benchmarks
- Spending time on the model pays off
- ▶ Learning from Constraint Programming and global constraints
- Choosing the right decomposition of cardinality constraint
- Lower bound techniques are novel

Future work:

- Exponential encoding in the number of options?
- Theoretical analysis of the decompositions and usage in other domains

End

Thank you very much

Bibliography

GAC Via Unit Propagation.

In CP, pages 133–147, 2007.

🔋 Niklas Eén and Niklas Sörensson.

Translating Pseudo-Boolean Constraints into SAT.

Journal on Satisfiability, Boolean Modeling and Computation,

2(1-4):1–26, 2006.

🔋 lan P. Gent.

Two Results on Car-sequencing Problems.

In Report APES-02-1998, 1998.

Carsten Sinz.

Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.

In CP, pages 827–831, 2005.

Backup Slides

Example

Let n = 5, d = 2 with a capacity constraint of 1/2, and let x_3 be true, then unit propagation does not force x_2 nor x_4 to false. Setting them to true will lead to a conflict through clauses (4) and (6) on positions 2, 3 and 4.

3				U	U	U
2		U	U			L
3 2 1 0	U	L		L	L	
s _{i,j} x _i	0	1		3	4	5
Xi				1		