Power bi NOT beginner level

Anteriormente....

01	Conceitos	
02	O que é o Power Bl	
03	Qual o propósito do Power Bl	
04	Tipos de análises de dados	

Conteudo

05	O que é o Power Bl e o ele não é	
06	Modelagem de dados	
07	Formas Normais	
08	Modelagem Dimensional	
09	Demo	

O que é o Power Bl e o ele não é

O que é o Power BI

Qual o propósito do Power BI

A implantação de uma solução de Business Intelligence como o Power BI, permite não só coletar e tratar os dados, como também desenvolver e gerar dashboards que trazem uma visão de 360 graus de suas principais métricas em um só ambiente.

 Responde perguntas em linguagem natural de forma rápida e objetiva;

Disponível em todos os dispositivos móveis: computadores, smartphones e tablets;

- É self-service, ou seja, permite o autoatendimento e autonomia;
- Permite contar histórias com dados utilizando o recurso
 Storytelling;

O que é um dashboard?

Dashboards são painéis que apresentam informações importantes sobre um determinado negócio ou assunto. Geralmente são representadas por gráficos, kpis e indicadores que facilitam a visualização dos dados

Self-service BI?

Estamos falando de autoatendimento, ou seja, usuários de negócios tendo mais facilidade para desenvolver relatórios e Dashboards quando e onde for necessário, sem precisar acionar um profissional de TI para desenvolver seus indicadores de gestão.

Por que usar Power BI?

Para que você usa o Power BI?

- Para criar gráficos!
- Para criar relatórios!
- Para modelar os dados sem a necessidade de programação!
- Para integrar com outros produtos Microsoft!
- Para resolver problemas de negócio, entregar soluções e ajudar a empresa ou cliente a alcançar seus objetivos e estratégias.

Por que usar Power BI?

Wesley Neves

MODELAGEM DE BANCOS DE DADOS

Modelo Entidade-Relacionamento

Também conhecido pela sigla MER, trata-se de um modelo conceitual usado para descrever os objetos envolvidos no domínio de um sistema a ser construído, incluindo seus atributos e relacionamentos.

O modelo de dados ER (MER) não possui ligação nenhuma com SGBD.

O MER permite representar de forma abstrata a estrutura que irá constituir o banco de dados.

É composto pelos seguintes objetos:

Entidades

Atributos

Relacionamentos

Entidades

Representa tudo aquilo sobre o qual se deseja manter informações.

Ex. Empregado, consulta, fornecedor, departamento, etc.

São representadas graficamente por um retângulo!

Funcionário

Departamento

Fornecedor

Figura 2.1 — Exemplos de Entidades

Atributos

Propriedades que caracterizam e descrevem uma entidade ou um relacionamento.

Ex. A entidade empregado poderia ter os atributos matrícula, nome e função dentro outros.

*Possuem um tipo de dados (domínio) nome e valor específico.

Wesley Neves

Atributos

Os atributos podem ser vários tipos, tais como:

- Simples ou Atômico;
- Composto;
- Multivalorado;
- Determinante;
- Identificador;
- Calculado ou Derivado;

Relacionamentos

Uma associação entre duas ou mais entidades cujo significado seja de interesse para a realidade analisada.

EX: Um cliente compra produtos.

Um filme possui vários atores.

Um empregado trabalha em um departamento.

Wesley Neves

POR QUE NORMALIZAR?

- 1. Minimização de redundâncias e inconsistências;
- 2. Facilidade de manipulação do Banco de Dados;
- 3. Facilidade de manutenção do Sistema de Informações.

"A normalização não é um processo com finalidade restritiva, mas sim, com caráter organizativo."

BENEFÍCIOS DA NORMALIZAÇÃO

- Estabilidade do Modelo Lógico;
- Flexibilidade;
- Integridade;
- Economia;
- Fidelidade ao Ambiente Observado.

Conjunto de regras aplicadas numa tabela com o objetivo de corrigir possíveis erros de projeto.

As regras são chamadas Formas Normais:

- 1ª Forma Normal (1FN)
- 2ª Forma Normal (2FN)
- ♦ 3ª Forma Normal (3FN)

NORMALIZAÇÃO DE DADOS - 1FN

se (há atributos multivalorados) então
Criar uma nova tabela e colocá-los nela;
Relacionar a nova tabela com a tabela original;
fimse

1ª Forma Normal (1FN)

Atributo Composto

É formado por itens menores.

Pode ser subdividido em outros atributos.

Ex. Endereço do funcionário.

1ª Forma Normal (1FN)

Atributo Multivalorado

Pode conter mais de valor para um mesmo registro (informação).

Ex. Telefone do funcionário.

É indicado por um "*".

NORMALIZAÇÃO DE DADOS – 2ª FN

Como normalizar uma tabela para ela ficar na 2FN?

```
se (há Dependência Funcional Parcial) então
Criar uma nova tabela;
Remover os atributos que não dependem integralmente da PK;
Colocar esses atributos na nova tabela;
fimse
```

3ª Forma Normal (3FN)

<u>Tabela não está na terceira forma</u> normal.

Chave Primária

Func_CPF	Func_Nome	Dt_Nascimento	Cod_Dpt	Dpt_Nome	Setor
009	Gabriel	10/09/90	10	Infraestrutura	Tecnologia
021	Adriana	07/10/95	05	Desenvolvimento	Tecnologia
034	Eduardo	05/03/88	05	Desenvolvimento	Tecnologia
055	Ricardo	10/07/92	10	Infraestrutura	Tecnologia

Não está na terceira forma normal, pois há atributos não chave que não são funcionalmente dependentes de atributos não chave.

Modelagem Dimensional

Arquitetura para BI

Abaixo segue uma arquitetura genérica de DW e as descrições dos seus elementos:

Modelagem dimensional

A modelagem dimensional é a técnica utilizada para se ter uma visão multidimensional dos dados e não uma visão simplista.

A construção de um Data Warehouse é fundamental em um projeto de BI, promovendo a tomada de decisão e a análise estratégica das informações.

Modelo de dados onde as informações sobre um **FATO** DE NEGÓCIO se relacionam com as **DIMENSÕES** relevantes para suas análises, representadas por um **CUBO**.

Modelo de dados onde as informações sobre um **FATO** DE NEGÓCIO se relacionam com as **DIMENSÕES** relevantes para suas análises, representadas por um **CUBO**.

- Fatos;
- Dimensões;
- Modelo Estrela (Star schema).

FATOS

- Os FATOS são as informações importantes para a gestão do negócio, são números, valores, que podem ser somados, agregados, para indicar o desempenho da empresa, unidade de negócio ou departamento;
- Geralmente as tabelas fato possuem apenas chaves das dimensões e métricas.

- Métricas: São os valores oriundos das transações de negócio, é tudo aquilo que se deseja medir.
- Granularidade: É a menor porção de informação que iremos armazenar nas métricas da tabela FATO. Determina também as DIMENSÕES envolvidas e suas hierarquias.
- Surrogate Keys;

- Tipos de tabelas Fato:
 - Transacional;
 - Cumulativo;
 - Snapshot;
 - Sem Metrica;
 - Agregado;
 - Consolidado;

- **Fato Transacional:** Cada linha reflete um evento exclusivo do Sistema de origem de dados transacional. Não é feita nenhuma agregação. É o tipo de fato mais frequente nos sistemas de BI;
- Cumulativo: Descreve o que ocorreu em determinado período de tempo, ex. acompanhamento do rastreamento de um pedido;
- Agregado: Descreve o fato em uma granularidade maior que a transacional, há alguma agregação (normalmente pela dimensão tempo);

- DIMENSÕES: As DIMENSÕES são as formas como os gestores querem visualizar o negócio.
- São informações que dão significados aos números (métricas). São identificadas durante a fase de análise de requisitos. Podem ser: Dimensões sem Tabela ou Degenerate Dimensions; Slowly Changing Dimensions; Rapidly Changing Monster Dimensions; Role Playing Dimensions; Outrigger; Bridge; Junk;

Dinâmica de atualização das dimensões;

DIMENSÕES:

- Dimensões conformadas;
 - São aquelas que têm o mesmo significado e o mesmo conteúdo quando utilizadas por duas ou mais tabelas Fato.
- Hierarquia;
 - Ex. Tempo
 - Ano, semestre, trimestre, mês, semana, dia;
 - Ex. Localidade
 - Global, país, região, estado, cidade, bairro;

Tipos de Modelagens dimensionais

Demo 2

Leitura complementar

Power BI:

https://powerbi.microsoft.com/pt-br/

https://docs.microsoft.com/pt-br/power-bi/fundamentals/

https://blog.bi9.com.br/vantagens-de-utilizar-dashboards-de-gestao-rh/

https://docs.microsoft.com/pt-br/learn/powerplatform/power-bi?WT.mc_id=sitertzn_learn tab_guidedlearning-card-powerbi

