Course Organization

- Top-down approach to microprocessor programming and design.
- Lectures focus on structured computer organization, and progress through "layers":
 - Instruction set architecture
 - Assembly language level + problem-oriented language level (embedded C)
 - Microarchitecture
 - Operating system level
- Application of design principles on state-of-art architecture
 - ARM Cortex M processor family
- The course focuses primarily on experimental work.
 - Usual lecture: 45 minutes on basics/theory and 30 minutes on how it applies to your hardware device and experiments.

Course Basics

Instructor: Prof. Zeljko Zilic

Room 546, McConnell

Tel: 398-1834, Fax: 398-4470

e-mail: zeljko.zilic@mcgill.ca

- Office Hours: Wed: 11:30-12:30, by appointment (after lectures) – can adjust later. If by e-mail, use
 "ECSE 444" in subject
- Teaching Assistants: Hamza Javed and Shahab Mahmoudi Sadaghiani

Course: Lab Structure

- 4 experiments + final project.
 - Experiment 1 : Assembly and C
 - Experiment 2: Intro. to hardware interfacing; drivers, timing ...
 - Experiment 3-4: I/O, Interrupts, DMA, Advanced Sensor Use, Networking, ...
- Project (example): Sensors, display + wireless interface between boards, novel applications, cloud interface, smartphone access, ...

Organization/Administrivia

- Labs conducted in pairs –choose in a week
 - Team of 2 students: one report, but work graded individually
- Final project in group of 4
- 15 minute quizzes will be conducted during four lectures or tutorials in the term
 - lecture material since the previous quiz + most recently completed experiments
 - In-person or online, depending on circumstances
- Tutorials will be announced within two weeks
- Penalties for Late Assignments: 5 % per day (Fri-Mon=1day)
- Missed demo reschedule for 65 percent of grade

Course Timeline

Week	Lecture	Tutorial	Experiment
1: Jan. 11	Intro, organization	Tools	Tutorial
2: Jan. 18	Instruction Set, Assembler	Assembly	1: Assembly +
3: Jan. 25	Instruction Set Arch.	Linking, Debug	1: Embedded C
4: Feb. 1	ISA ctd, Quiz 1	ADC,DAC,Timer	2: Peripherals
5: Feb. 8	I/O, Interfacing	Peripherals	3: Peripherals
6: Feb. 15	I/O, Interfacing, Quiz 2	Flash	4: I/O
7: Feb. 22	Microarchitecture	Interfacing	4: I/O
8: Mar. 8	Microarchitecture, Quiz 3		Project
9: Mar. 15	System Design Principles	Networking	Real time clock
10: Mar. 22	Design Principles, Quiz 4		LCD
11: Mar. 29	Sensing and Actuating		Project Progress
12: Apr. 5	Networking		Integration
13: Apr. 12	Security		Final Demo

Course Overview

- Background
 - Computer Arch. Basics
- Microprocessor Instruction Set Architecture
- Embedded Processors
- Embedded System Design
 - HW and SW techniques
- Building Real Systems
 - Techniques and Tools

Computer Organization

- Processor
 - Microprocessor
- Memory
- Peripherals
- Common Bus

Central processing unit (CPU)

Control unit

Arithmetic logical unit (ALU)

Registers

Registers

Signature Main memory

Disk

Printer

Bus

Background Refresher

- Microprocessor basics
 - Operation
 - Some (far from all) optimizations
 - Aspects that you will face in course
- Software/system bringup
 - Interaction between HW and SW
 - To give a "feel" of things in the course
- Presentation style: "visual" plus "reference" slides, (plus blackboard?)

Microprocessor Operation

Common Processors

- Mainly vonNeumannarchitecture
 - Arithmeticlogic unit
 - Registers
 - Auxiliary registers

Processor Execution - Java code

```
public class Interp {
                                           // program counter holds address of next instr
static int PC:
static int AC;
                                           // the accumulator, a register for doing arithmetic
                            // a holding register for the current instruction
static int instr:
static int instr type;
                                           // the instruction type (opcode)
static int data loc;
                                           // the address of the data, or -1 if none
static int data;
                            // holds the current operand
static boolean run bit = true; // a bit that can be turned off to halt the ma
public static void interpret(int memory[], int starting address) {
 PC = starting address;
 while (runbit) {
                                                         // fetch next instruction into instr
     instr = memory[PC];
     PC = PC + 1:/
                                           / increment program counter
     instr type = get instr type(instr);
                                                         // determine instruction type
     data loc = find data(instr, instr type);// locate data (-1 if none)
     if (data loc >= 0)
                                           // if data loc is -1, there is no operand
              data = memory[data loc];
                                                         // fetch the data
     execute(instr_type, data); //execute instruction
private static int get instr type(int addr) { ... }
private static int find data(int instr, int type) { ... }
private static void execute(int type, int data){ ... }
   9-Jan-23
```


Lab Equipment

- Development Board: Discovery-IoT (new)
 - Micro-USB Cable (full data cable, not charging)
- Auxiliary material: wires, resistors, buzzer (as per earlier announcement and e-mail)
 - Shopping cart for DigiKey
 - Free shipping if you get some spare parts
- Other tools: multimeter, embedded oscilloscope/logic analyzer
- IDE SW: STM32CubeIDE

Your Jobs Until Next Lecture

- Sign up the lab group online
- Read the documentation
- Try starting STM32CUBE IDE
- Check out a session for the labs (Tue. or Thu.), will be activated after groups are formed, i.e. the week after next one
- Other Preparation: attend tutorials (late next week and afterwards)
- Consult me if there are difficulties

