Abstraction patterns

Haskell and Cryptocurrencies

Dr. Lars Brünjes, IOG Robertino Martinez, IOG Karina Lopez, IOG August, 2023

INPUT OUTPUT

Goals

Introduce Monad and Applicative.

Maybe

The Maybe datatype is often used to encode failure or an exceptional value:

```
lookup :: (Eq a) => a -> [(a, b)] -> Maybe b
find :: (a -> Bool) -> [a] -> Maybe a
```

Encoding exceptions using Maybe

Assume that we have a data structure with the following operations:

```
up, down, right :: Loc -> Maybe Loc
update :: (Int -> Int) -> Loc -> Loc
```

Given a location l1, we want to move up, right, down, and update the resulting position with using update (+ 1) ... Each of the steps can fail.

```
case up l1 of
  Nothing -> Nothing
  Just l2 -> case right l2 of
   Nothing -> Nothing
  Just l3 -> case down l3 of
   Nothing -> Nothing
  Just l4 -> Just (update (+ 1) l4)
```

```
case up l1 of
Nothing -> Nothing
Just 12 -> case right l2 of
Nothing -> Nothing
Just 13 -> case down l3 of
Nothing -> Nothing
Just 14 -> Just (update (+ 1) l4)
```

```
Case up l1 of
Nothing -> Nothing
Just l2 -> case right l2 of
Nothing -> Nothing
Just l3 -> case down l3 of
Nothing -> Nothing
Just l4 -> Just (update (+ 1) l4)
```

In essence, we need

- a way to sequence function calls and use their results if successful
- · a way to modify or produce successful results.

```
case up l1 of
  Nothing -> Nothing
  Just l2 -> case right l2 of
   Nothing -> Nothing
  Just l3 -> case down l3 of
   Nothing -> Nothing
  Just l4 -> Just (update (+ 1) l4)
```

```
up l1 >>=

\ l2  -> case right l2 of
  Nothing -> Nothing
  Just l3 -> case down l3 of
    Nothing -> Nothing
    Just l4 -> Just (update (+ 1) l4)
```

```
up l1 >>=
\ l2 -> right l2 >>=
\ l3 -> case down l3 of
   Nothing -> Nothing
   Just l4 -> Just (update (+ 1) l4)
```

```
up l1 >>=
\ l2 -> right l2 >>=
\ l3 -> down l3 >>=
\ l4 -> Just (update (+ 1) l4)
```

Sequencing and embedding

```
up l1 >>=
\l2 -> right l2 >>=
\l3 -> down l3 >>=
\l4 -> Just (update (+ 1) l4)
```

Sequencing and embedding

```
up l1 >>=
\l2 -> right l2 >>=
\l3 -> down l3 >>=
\l4 -> return (update (+ 1) l4)
```

Sequencing and embedding

```
up l1 >>=
  \l2 -> right l2 >>=
  \l3 -> down l3 >>=
  \l4 -> return (update (+ 1) l4)
```

```
(up l1) \gg right \gg down \gg return . update (+ 1)
```

Observation

Code looks a bit like imperative code. Compare:

- In the imperative language, the occurrence of possible exceptions is a side effect.
- Haskell is more explicit because we use the **Maybe** type and the appropriate sequencing operation.

A variation: Either

Compare the datatypes

```
data Either a b = Left a | Right b
data Maybe a = Nothing | Just a
```

A variation: Either

Compare the datatypes

```
data Either a b = Left a | Right b
data Maybe a = Nothing | Just a
```

The datatype Maybe can encode exceptional function results (i.e., failure), but no information can be associated with Nothing. We cannot distinguish different kinds of errors.

A variation: **Either**

Compare the datatypes

```
data Either a b = Left a | Right b
data Maybe a = Nothing | Just a
```

The datatype Maybe can encode exceptional function results (i.e., failure), but no information can be associated with Nothing. We cannot distinguish different kinds of errors.

Using **Either**, we can use **Left** to encode errors, and **Right** to encode successful results.

Sequencing and returning for **Either**

We can define variants of the operations for Maybe:

Simulating exceptions

We can abstract completely from the definition of the underlying **Either** type if we define functions to throw and catch errors.

```
throwError :: e -> Either e a
throwError e = Left e
```

Simulating exceptions

We can abstract completely from the definition of the underlying **Either** type if we define functions to throw and catch errors.

State

Maintaining state explicitly

- · We pass state to a function as an argument.
- The function modifies the state and produces it as a result.
- If the function does anything except modifying the state, we must return a tuple (or a special-purpose datatype with multiple fields).

This motivates the following type definition:

```
type State s a = s -> (a, s)
```

Using state

There are many situations where maintaining state is useful:

using a random number generator

```
type Random a = State StdGen a
```

· using a counter to generate unique labels

```
type Counter a = State Int a
```

 maintaining the complete current configuration of an application (an interpreter, a game, ...) using a user-defined datatype

```
data ProgramState = ...
type Program a = State ProgramState a
```

Example: labelling the leaves of a tree

Encoding state passing

Encoding state passing

```
\s1 -> let (lvl, s2) = generateLevel s1
    (lvl', s3) = generateStairs lvl s2
    (ms , s4) = placeMonsters lvl' s3
    in (combine lvl' ms, s4)
```

Encoding state passing

Again, we need

- · a way to sequence function calls and use their results
- · a way to modify or produce successful results.

```
(>>=) :: State s a -> (a -> State s b) -> State s b
f >>= g = \ s -> let (x, s') = f s in g x s'
return :: a -> State s a
return x = \ s -> (x, s)
```

```
(>>=) :: State s a -> (a -> State s b) -> State s b
f >>= g = \ s -> let (x, s') = f s in g x s'
return :: a -> State s a
return x = \ s -> (x, s)
```

```
(>>=) :: State s a -> (a -> State s b) -> State s b
f >>= g = \ s -> let (x, s') = f s in g x s'
return :: a -> State s a
return x = \ s -> (x, s)
```

```
(>>=) :: State s a -> (a -> State s b) -> State s b
f >>= g = \ s -> let (x, s') = f s in g x s'
return :: a -> State s a
return x = \ s -> (x, s)
```

```
(>>=) :: State s a -> (a -> State s b) -> State s b
f >>= g = \ s -> let (x, s') = f s in g x s'
return :: a -> State s a
return x = \ s -> (x, s)
```

Observation

Again, the code looks a bit like imperative code. Compare:

```
generateLevel >>= \ lvl -> lvl := generateLevel;
generateStairs lvl >>= \ lvl' -> lvl' := generateStairs lvl;
placeMonsters lvl' >>= \ ms -> ms := placeMonsters lvl';
return (combine lvl' ms) return combine lvl' ms
```

- In the imperative language, the occurrence of memory updates (random numbers) is a side effect.
- Haskell is more explicit because we use the **State** type and the appropriate sequencing operation.

"Primitive" operations for state handling

We can completely hide the implementation of **State** if we provide the following two operations as an interface:

```
get :: State s s
get = \ s -> (s, s)
put :: s -> State s ()
put s = \ _ -> ((), s)
```

```
inc :: State Int ()
inc = get >>= \ s -> put (s + 1)
```

```
data Tree a = Leaf a | Node (Tree a) (Tree a)
labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) c = (Leaf(x, c), c + 1)
labelTree (Node l r) c1 =
 let (ll, c2) = labelTree l c1
      (lr, c3) = labelTree r c2
 in (Node ll lr. c3)
```

The old version, with tedious explicit threading of the state.

```
data Tree a = Leaf a | Node (Tree a) (Tree a)
labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) = get \gg \ c ->
                       inc >> return (Leaf (x, c))
labelTree (Node l r) =
 labelTree l >>= \ ll ->
 labelTree r >>= \ lr ->
 return (Node ll lr)
```

(>>) :: State s a -> State s b -> State s b

(The same definition as for IO ...)

 $X \gg V = X \gg - V$

List

Encoding multiple results and nondeterminism

Get the length of all words in a list of multi-line texts:

```
map length
  (concat (map words
      (concat (map lines txts))
  ))
```

Encoding multiple results and nondeterminism

Get the length of all words in a list of multi-line texts:

```
map length
  (concat (map words
      (concat (map lines txts))
  ))
```

Embedding and sequencing for computations with many results *nondeterministic computations*:

Encoding multiple results and nondeterminism

Get the length of all words in a list of multi-line texts:

```
map length
  (concat (map words
      (concat (map lines txts))
  ))
```

Embedding and sequencing for computations with many results *nondeterministic computations*:

- · Embedding: a computation with exactly one result.
- Sequencing: performing the second computation on all possible results of the first one.

Defining bind and return for lists

```
(>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = concat (map f xs)
return :: a -> [a]
return x = [x]
```

We have to use **concat** in (>>=) to flatten the list of lists.

Using bind and return for lists

```
map length
  (concat (map words
       (concat (map lines txts))))
```

```
txts >>= \ t ->
lines t >>= \ l ->
words l >>= \ w ->
return (length w)
```

Using bind and return for lists

```
map length
  (concat (map words
      (concat (map lines txts))))
```

Using bind and return for lists

```
map length
  (concat (map words
      (concat (map lines txts))))
```

- Again, we have a similarity to imperative code.
- · Imperative language: implicit nondeterminism.
- Haskell: explicit by using the list datatype and (>>=).

Intermediate Summary

At least four types with (>>=) and return:

- Maybe: (>>=) sequences operations that may fail and shortcuts evaluation once failure occurs; return embeds a function that never fails;
- State: (>>=) sequences operations that may modify some state and threads the state through the operations;
 return embeds a function that never modifies the state;
- []: (>>=) sequences operations that may have multiple results and executes subsequent operations for each of the previous results; return embeds a function that only ever has one result.
- IO: (>>=) sequences the side effects to the outside world, and return embeds a function without any side effects.

Monads

```
class Applicative m => Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
```

- The name "monad" is borrowed from category theory.
- · A monad is an algebraic structure similar to a monoid.
- Monads have been popularized in functional programming via the work of Moggi and Wadler.

Instances

```
instance Monad Maybe where
 •••
instance Monad (Either e) where
 •••
instance Monad [] where
 •••
newtype State s a = State {runState :: s -> (a, s)}
instance Monad (State s) where
 •••
```

Instances

```
instance Monad Maybe where
 •••
instance Monad (Either e) where
 •••
instance Monad [] where
 •••
newtype State s a = State {runState :: s -> (a, s)}
instance Monad (State s) where
```

The **newtype** for **State** is required because Haskell does not allow us to directly make a type **s** -> (**a**, **s**) an instance of **Monad**. (Question: why not?)

There are more monads

The types we have seen: Maybe, Either, [], State, IO are among the most frequently used monads – but there are many more you will encounter sooner or later.

There are more monads

The types we have seen: Maybe, Either, [], State, IO are among the most frequently used monads – but there are many more you will encounter sooner or later.

In fact, we have already seen one more! Which one?

There are more monads

The types we have seen: Maybe, Either, [], State, IO are among the most frequently used monads – but there are many more you will encounter sooner or later.

In fact, we have already seen one more! Which one?

The generators **Gen** from QuickCheck form a monad. You can see it as an abstract state monad, allowing access to the state of a random number generator.

Monad laws

```
return is the unit of (>>=)
```

Associativity of (>>=)

$$(m >= f) >= g = m >= (\ x -> f x >= g)$$

```
return a >>= f
= { Definition of (>>=) }
  case return a of
    Nothing -> Nothing
    Just x \rightarrow f x
= { Definition of return }
  case Just a of
    Nothing -> Nothing
    Just x \rightarrow f x
= { case }
  f a
```

Monad laws for Maybe (contd.)

```
m >>= return
= { Definition of (>>=) }
  case m of
    Nothing -> Nothing
    Just x -> return x
= { Definition of return }
  case m of
    Nothing -> Nothing
    Just x -> Just x
= { case }
  m
```

Monad laws for Maybe (contd.)

forall ((f :: a -> Maybe b)) . Nothing >>= f = Nothing

```
Proof
Nothing >
```

```
Nothing >>= f

= { Definition of (>>=) }
    case Nothing of
       Nothing -> Nothing
       Just x -> f x

= { case }
    Nothing
```

```
(m >>= f) >>= g = m >>= (\ x -> f x >>= g)
```

Induction on m. Case m is Nothing:

```
(Nothing >>= f) >>= g
= { Lemma }
  Nothing >>= g
= { Lemma }
  Nothing
= { Lemma }
  Nothing >>= (\ x -> f x >>= g)
```

Monad laws for Maybe (contd.)

```
Case m is Just y:
   (Just y >= f) >= g
 = { Definition of (>>=) }
   (case Just v of
       Nothing -> Nothing
      Just x \rightarrow f x) >= g
 = { case }
   f y >>= g
 = { beta-expansion }
   (\x -> f x >>= g) v
 = { case }
   case Just y of
     Nothing -> Nothing
     Just x \rightarrow (\x \rightarrow f x \gg g) x
 = \{ definition of (>>=) \}
   Just y \gg (\langle x - \rangle f x \gg g)
```

Additional monad operations

Class Monad contains an additional method, with a default:

```
class Applicative m => Monad m where
...
(>>) :: m a -> m b -> m b
m >> n = m >>= \ _ -> n
```

do notation

The **do** notation we have introduced when discussing **IO** is available for all monads:

```
generateLevel >>= \lvl ->
generateStairs lvl >>= \lvl' ->
placeMonsters lvl' >>= \ ms ->
return (combine lvl' ms)
do
lvl <- generateLevel
lvl' <- generateStairs lvl
ms <- placeMonsters lvl'
return (combine lvl' ms)
```

```
up l1 >>= \ l2 ->
right l2 >>= \ l3 ->
down l3 >>= \ l4 ->
return (update (+ 1) l4)
```

```
do
    l2 <- up l1
    l3 <- right l2
    l4 <- down l3</pre>
```

return (update (+ 1) l4)

Tree labelling, revisited once more

Using Control.Monad.State and do notation:

```
data Tree a = Leaf a | Node (Tree a) (Tree a)
labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) = do
 c <- get
  put (c + 1) -- or modify (+ 1)
 return (Leaf (x, c))
labelTree (Node l r) = do
 ll <- labelTree l</pre>
 lr <- labelTree r</pre>
 return (Node ll lr)
```

How to get at the final tree?

Running a stateful computation

evalState :: State s a -> s -> a

Running a stateful computation

```
evalState :: State s a -> s -> a
labelTreeFrom0 :: Tree a -> Tree (a, Int)
labelTreeFrom0 t = evalState (labelTree t) 0
```

Running a stateful computation

```
evalState :: State s a -> s -> a
labelTreeFrom0 :: Tree a -> Tree (a, Int)
labelTreeFrom0 t = evalState (labelTree t) 0
```

There's also

```
runState :: State s a -> s -> (a, s)
```

(which is just unpacking State's newtype wrapper).

List comprehensions

```
map length
  (concat (map words (concat (map lines txts))))
```

```
do
  t <- txts
  l <- lines t
  w <- words l
  return (length w)</pre>
```

Also list comprehensions:

```
[length w | t <- txts, l <- lines t, w <- words l]</pre>
```

More on do notation (and list comprehensions)

- Use it, the special syntax is usually more concise.
- Never forget that it is just syntactic sugar. Use (>>=) and
 (>>) directly when it is more convenient.

And some things I've already said about IO:

- Remember that **return** is just a normal function:
 - Not every do -block ends with a return.
 - return can be used in the middle of a do -block, and it doesn't "jump" anywhere.

More on do notation (and list comprehensions)

- Use it, the special syntax is usually more concise.
- Never forget that it is just syntactic sugar. Use (>>=) and
 (>>) directly when it is more convenient.

And some things I've already said about IO:

- Remember that **return** is just a normal function:
 - · Not every **do** -block ends with a **return**.
 - return can be used in the middle of a do -block, and it doesn't "jump" anywhere.
- Not every monad computation has to be in a do -block. In particular do e is the same as e.
- On the other hand, you may have to "repeat" the do in some places, for instance in the branches of an if.

IO vs. other monads

- IO is a primitive type, and (>>=) and return for IO are primitive functions,
- there is no (politically correct) function
 runIO :: IO a -> a , whereas for most other monads
 there is a corresponding function, or at least some way to get an a out of the monad;
- values of IO a denote side-effecting programs that can be executed by the run-time system.

Effectful programming

- 10 being special has little to do with it being a monad;
- you can use IO and functions on IO very much ignoring the presence of the Monad class;
- 10 is about allowing real side effects to occur; the other types we have seen are entirely pure as far as Haskell is concerned, even though they capture a form of effects.

IO, internally

If you ask GHCi about IO by saying :i IO, you get

So internally, GHC models **IO** as a kind of state monad having the "real world" as state!

Monadic operations

The advantages of an abstract interface

Several advantages to identifying the "monad" interface:

- Have to learn fewer names. Same return and (>>=)
 (and do notation) in many different situations.
- Useful derived functions that only use return and
 (>>=) . All these library functions become automatically available for every monad.

The advantages of an abstract interface

Several advantages to identifying the "monad" interface:

- Have to learn fewer names. Same return and (>>=)
 (and do notation) in many different situations.
- Useful derived functions that only use return and
 (>>=) . All these library functions become automatically available for every monad.
- There are many more monads than the ones we've discussed so far. Monads can be combined to form new monads.
- Application-specific code often uses just the monadic interface plus a few extra functions. As such, it is easy to switch the underlying monad of a large part of a program in order to accommodate a new aspect (error handling, logging, backtracking, ...).

Useful monad operations

```
liftM
            :: (a -> b) -> I0 a -> I0 b
            :: (a -> I0 b) -> [a] -> I0 [b]
mapM
            :: (a -> I0 b) -> [a] -> I0 ()
mapM
forM :: [a] \rightarrow (a \rightarrow 10 b) \rightarrow 10 [b]
forM :: [a] -> (a -> I0 b) -> I0 ()
sequence :: [IO a] -> IO [a]
sequence :: [IO a] -> IO ()
forever :: I0 a -> I0 b
filterM :: (a -> IO Bool) -> [a] -> IO [a]
replicateM :: Int -> IO a -> IO [a]
replicateM_ :: Int -> IO a -> IO ()
when
            :: Bool -> IO () -> IO ()
unless
            :: Bool -> IO () -> IO ()
```

Useful monad operations

```
liftM
             :: Monad m => (a -> b) -> m a -> m b
             :: Monad m => (a -> m b) -> [a] -> m [b]
mapM
             :: Monad m => (a -> m b) -> [a] -> m ()
mapM
forM
             :: Monad m => [a] -> (a -> m b) -> m [b]
             :: Monad m => [a] -> (a -> m b) -> m ()
forM
sequence :: Monad m => [m a] -> m [a]
sequence :: Monad m \Rightarrow [m a] \rightarrow m()
forever
            :: Monad m => m a -> m b
filterM
             :: Monad m => (a -> m Bool) -> [a] -> m [a]
replicateM
            :: Monad m => Int -> m a -> m [a]
replicateM_ :: Monad m => Int -> m a -> m ()
when
             :: Monad m => Bool -> m () -> m ()
unless
             :: Monad m => Bool -> m () -> m ()
```

Example: labelling a rose tree

data Rose a = Fork a [Rose a]

Each node has a (possibly empty) list of subtrees.

Example: labelling a rose tree

```
data Rose a = Fork a [Rose a]
```

Each node has a (possibly empty) list of subtrees.

```
labelRose :: Rose a -> State Int (Rose (a, Int))
labelRose (Fork x cs) = do
    c <- get
    put (c + 1)
    lcs <- mapM labelRose cs
    return (Fork (x, c) lcs)</pre>
```

Questions

What do you think these will evaluate to:

```
replicateM 2 [1..3]
mapM return [1..3]
sequence [[1, 2], [3, 4], [5, 6]]
mapM
  (flip lookup [(1, 'x'), (2, 'y'), (3, 'z')]) [1..3]
mapM
  (flip lookup [(1, 'x'), (2, 'y'), (3, 'z')]) [1, 4, 3]
evalState (replicateM_ 5 (modify (+ 2)) >> get) 0
```

A common pattern

Let's once again look at tree labelling:

```
labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) = do
 c <- get
 put (c + 1) -- or modify (+ 1)
 return (Leaf (x, c))
labelTree (Node l r) = do
 ll <- labelTree l
 lr <- labelTree r
 return (Node ll lr)
```

We are returning an application of (constructor) function **Node** to the results of monadic computations.

A common pattern (contd.)

```
\begin{array}{l} \text{do} \\ r_1 <- \text{comp}_1 \\ r_2 <- \text{comp}_2 \\ \dots \\ r_n <- \text{comp}_n \\ \text{return (f } r_1 \ r_2 \ \dots \ r_n) \end{array}
```

A common pattern (contd.)

```
\begin{array}{l} \text{do} \\ r_1 <- \text{comp}_1 \\ r_2 <- \text{comp}_2 \\ \dots \\ r_n <- \text{comp}_n \\ \text{return (f } r_1 \ r_2 \ \dots \ r_n) \end{array}
```

This isn't type correct:

```
f\ comp_1\ comp_2\ ...\ comp_n
```

A common pattern (contd.)

```
\begin{array}{l} \text{do} \\ r_1 <- \text{comp}_1 \\ r_2 <- \text{comp}_2 \\ \dots \\ r_n <- \text{comp}_n \\ \text{return (f } r_1 \ r_2 \ \dots \ r_n) \end{array}
```

This isn't type correct:

```
f comp_1 comp_2 ... comp_n
```

But we can get close:

```
f < > comp_1 < > comp_2... < > comp_n
```

Monadic application

We need a function that's like function application, but works on monadic values:

```
ap :: Monad m => m (a -> b) -> m a -> m b
ap mf mx = do
    f <- mf
    x <- mx
    return (f x)</pre>
```

Monadic application

We need a function that's like function application, but works on monadic values:

```
ap :: Monad m => m (a -> b) -> m a -> m b
ap mf mx = do
   f <- mf
   x <- mx
   return (f x)</pre>
```

Types supporting return and ap have their own name:

Legacy code: Functor and Applicative in terms of Monad

```
instance Monad T where
return = ...
(>>=) = ...
```

Requires superclass instances for Functor and Applicative:

```
instance Functor T where
fmap = liftM
```

```
instance Applicative T where
pure = return
(<*>) = ap
```

New way...

instance Monad T where (>>=) = ...

Requires superclass instances for Functor and Applicative:

```
instance Functor T where
fmap = liftM
```

```
instance Applicative T where
pure = ...
(<*>) = ap
```

```
labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) = do
    c <- get
    put (c + 1) -- or modify (+ 1)
    return (Leaf (x, c))
labelTree (Node l r) =
    Node <$> labelTree l <*> labelTree r
```

Exercise: Convince yourself that this is type correct.

Lessons

- The abstraction of monads is useful for a multitude of different types.
- · Monads can be seen as tagging computations with effects.
- While **IO** is impure and cannot be defined in Haskell, the other effects we have seen can be modelled in a pure way:
 - exceptions via Maybe or Either;
 - state via State;
 - nondeterminism via [].
- The monad interface offers a large number of useful abstractions that can all be applied to these different scenarios.
- All monads are also applicative functors and in particular functors. The (<\$>) and (<*>) operations are also useful for structuring effectful code in Haskell.