

SPECIFICATION FOR APPROVAL

()	Preliminar	y Specification
---	---	------------	-----------------

(●) Final Specification

Title	17.1" WXGA+ TFT LCD
-------	---------------------

BUYER	Dell
MODEL	

SUPPLIER	LG Display Co., Ltd.		
*MODEL	LP171WPA		
Suffix	TLA1		

^{*}When you obtain standard approval, please use the above model name without suffix

APPROVE	ED BY	SIGNATURE
/		
/		
/		

Please return 1 copy for your confirmation with your signature and comments.

APPROVED BY	SIGNATURE
K. J. Kwon / S.Manager	
REVIEWED BY	
G. J. Han / Manager	
PREPARED BY	
S. W. Park / Engineer J. K. Han / Engineer	
Product Engineering LG Display Co., I	

Ver. 0.2 Jul,02, 2008 0/ 30

Contents

No	ITEM				
	COVER				
	CONTENTS	1			
	RECORD OF REVISIONS	2			
1	GENERAL DESCRIPTION	3			
2	ABSOLUTE MAXIMUM RATINGS	4			
3	ELECTRICAL SPECIFICATIONS				
3-1	ELECTRICAL CHARACTREISTICS	5			
3-2	INTERFACE CONNECTIONS	6			
3-3	SIGNAL TIMING SPECIFICATIONS	8			
3-4	SIGNAL TIMING WAVEFORMS	10			
3-5	COLOR INPUT DATA REFERNECE	11			
3-6	POWER SEQUENCE	12			
4	OPTICAL SFECIFICATIONS	13-15			
5	MECHANICAL CHARACTERISTICS	16-19			
A	APPENDIX. LPL PROPOSAL FOR SYSTEM COVER DESIGN	20-22			
6	RELIABLITY	23			
7	INTERNATIONAL STANDARDS				
7-1	SAFETY	24			
7-2	EMC	24			
8	PACKING				
8-1	DESIGNATION OF LOT MARK	25			
8-2	PACKING FORM	25			
9	PRECAUTIONS	26			
Α	APPENDIX. Enhanced Extended Display Identification Data	27-30			

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
0.0	Jun.12.2008	-	First Draft (Preliminary Specification)	0.1
0.1	Jun.30.2008	18	Change Mechanical Characteristics	0.1
			- Connector location update @ rear view	
0.2	Jul.02.2008	28-30	Update EDID Data for Post-RTS samples	0.2
				

1. General Description

The LP171WPA is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 17.1 inches diagonally measured active display area with WXGA+ resolution(1440 horizontal by 900 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262.144 colors.

The LP171WPA has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP171WPA is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP171WPA characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	17.1 inches diagonal			
Outline Dimension	382.20 (H) × 247.0 (V) × 7.0(D, max.) mm			
Pixel Pitch	0.255 mm × 0.255 mm			
Pixel Format	1440 horiz. by 900 vert. Pixels RGB strip arrangement			
Color Depth	6-bit, 262,144 colors			
Luminance, White	270 cd/m²(Min., @I _{LED} =19mA) , 5 points Min			
Power Consumption	Total 5.41Watt @LCM circuit 1.40W(Typ.), LED 4.01 W (Typ.)			
Weight	610g(Max.)			
Display Operating Mode	Transmissive mode, normally white			
Surface Treatment	Hard coating(3H), Glare treatment of the front polarizer			
RoHS Comply	Yes			

Ver. 0.2 Jul,02, 2008 3/ 30

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
Farameter	Syllibol	Min	Max	Office		
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 ± 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39°C Max, and no condensation of water.

Ver. 0.2 Jul,02, 2008 4/ 30

3. Electrical Specifications

3-1. Electrical Characteristics

The LP171WPA requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED BL.

Table 2. ELECTRICAL CHARACTERISTICS

Danish atau	O:l	Values			l locit	NI-4
Parameter	Symbol	Min	Тур	Max	Unit	Notes
MODULE :						
Power Supply Input Voltage	VCC	3.0	3.3	3.6	V _{DC}	
Power Supply Input Current		360	425	490	mA	1
(Window desktop pattern)	I _{cc}	360	425	490 	'''A	 '
Power Consumption	Pc	_	1.40	1.6	 Watt	1
(Window desktop pattern)						<u>'</u>
Differential Impedance	Zm	90	100	110	Ohm	2
LED Backlight :		[[[[
Operating Voltage	V_{LED}		35.2	36.3	V	3
Operating Current per string	I _{LED}	[19		mA	4
Power Consumption (dimming 100%)	P_{BL}	-	4.01	4.14	Watt	
LED Driver power consumption	P_{Driver}	-	1.15	-	Watt	-
Life Time		10,000	-	-	Hrs	5
BL Input Voltage	BL_VCC	7.5	12	21	V	
PWM input signal :			5.0		V	[
Input Frequency (for operating)	-	100	-	500	Hz	6
Input Frequency (for reliability)	-	217	222	227	Hz	[
on threshold	-	2.1	-	-	V	[
off threshold	-	-	-	0.8	V	
Duty Cycle	-	12.5	-	100	%	7, 8

Note)

1. The specified current and power consumption are under the Vcc = 3.3V , 25 °C , fv = 60Hz condition whereas Window desktop pattern is displayed and fv is the frame frequency.

- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. The variance of the voltage is \pm 10%.
- 4. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics. I_{LED} is the current of each LEDs' string, LED backlight has 6 strings on it.
- 5. The life time is determined as the time at which brightness of LED is 50% compare to that of initial value at the typical LED current.
- 6. LED Driver operating Frequency
- 7. There may be a flickering Under 6% dimming.
- 8. There is no reliability issue.(under 12.5% duty cycle)

Ver. 0.2 Jul,02, 2008 5/30

3-2. Interface Connections

This LCD employs two interface connections, a 50 pin connector is used for the module electronics interface and the other connector is used for the internal backlight system.

The electronics interface connector is a model FI-VHP50S manufactured by JAE.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	VSS	Ground (Buyer's Test loop to pin 30)	1, Interface chips
2	VEEDID	EDID 3.3V power	1.1 LCD: SW, ST2_BS (LCD Controller) including LVDS Receiver
3	VSS	Ground	1.2 System : * Pin to Pin compatible with LVDS
4	CLK EEDID	EDID clock	
5	DATA EEDID	EDID data	2.1 LCD :JAE FI-VHP50 or equivalent
6	VSS	Ground	(1.0 mm thickness, lock-in type, pin 1 starts from left on the front)
7	Odd_Rin0-	Negative LVDS differential data input	2.2 Mating:JAE FI-VHP50 series or equivalent (micro-coax type)
8	Odd_Rin0+	Positive LVDS differential data input	2.3 Connector pin arrangement LCD rear view
9	VSS	Ground	LCD real view
10	Odd_Rin1-	Negative LVDS differential data input	1 50
11	Odd_Rin1+	Positive LVDS differential data input	
12	VSS	Ground	
13	Odd_Rin2-	Negative LVDS differential data input	[LCD Module Rear View]
14	Odd_Rin2+	Positive LVDS differential data input	
15	VSS	Ground	
16	Odd_ClkIN-	Negative LVDS differential clock input	
17	Odd_ClkIN+	Positive LVDS differential clock input	
18	VSS	Ground	
19	Even_Rin0-	Negative LVDS differential data input	
20	Even_Rin0+	Positive LVDS differential data input	
21	VSS	Ground	
22	Even_Rin1-	Negative LVDS differential data input	
23	Even_Rin1+	Positive LVDS differential data input	
24	VSS	Ground	
25	Even_Rin2-	Negative LVDS differential data input	
26	Even_Rin2+	Positive LVDS differential data input	
27	VSS	Ground	
28	Even_ClkIN-	Negative LVDS differential clock input	
29	Even_ClkIN+	Positive LVDS differential clock input	
30	VSS	Ground (Buyer's Test loop to pin 1)	

31	VSS	Ground (Buyer's Test loop to 50pin)
32	VDD	Logic power 3.3V
33	VDD	Logic power 3.3V
34	BIST_EN	Panel Self Test
35	+5V_ALW	No connection
36	VSS	Ground
37	VSS	Ground
38	PWM_BL	PWM brightness control
39	VSS	Ground (VBL-)
40	VSS	Ground (VBL-)
41	VSS	Ground (VBL-)
42	VSS	Ground (VBL-)
43	NC	No connect
44	VBL+	7.5V ~ 21V LED power
45	VBL+	7.5V ~ 21V LED power
46	VBL+	7.5V ~ 21V LED power
47	VBL+	7.5V ~ 21V LED power
48	SMB_DATA	SMBus Data
49	SMB_CLK	SMBus Clk
50	VSS	Ground (Buyer's Test loop to 31pin)

The LED backlight connector is a model TF12-9S-0.5H, manufactured by Hirose.

Table 4. BACKLIGHT CONNECTOR PIN CONFIGURATION (CN2)

Pin	Symbol	Description	Notes
1	Vdc(1,2,3,4,5,6)	LED Anode(Positive)	
2	Vdc(1,2,3,4,5,6)	LED Anode(Positive)	1 1 1 1 1 1 1 1 1 1 1 1 1 1
3	NC	No Connection	
4	Vdc1	LED Cathode (Negative)	
5	Vdc2	LED Cathode (Negative)	
6	Vdc3	LED Cathode (Negative)	
7	Vdc4	LED Cathode (Negative)	
8	Vdc5	LED Cathode (Negative)	
9	Vdc6	LED Cathode (Negative)	

3-3. LVDS Signal Timing Specifications

3-3-1. DC Specification

Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	200	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-

3-3-2. AC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skow Margin	t _{SKEW}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
LVDS Clock to Data Skew Margin	t _{SKEW}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-

Ver. 0.2 Jul,02, 2008 8/ 30

< Clock skew margin between channel >

< Spread Spectrum >

3-3-3. Data Format

- LVDS 2 Port

< LVDS Data Format >

3-3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 5. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	f _{CLK}	-	54.75	-	MHz	2port
	Period	tw _{HA}	952	1000	1048		
Hsync	Width	t _{HP}	32	40	48	tCLK	2port
	Active	t _{wh}	720	720	720		
	Period	tw _{vA}	907	912	926		
Vsync	Width	t _{VP}	2	3	5	tHP	
	Active	t _{wv}	900	900	900		
	Horizontal back porch	t _{HBP}	176	200	224	tCLK	
Data Enable	Horizontal front porch	t _{HFP}	24	40	56	ICLK	2port
	Vertical back porch	t _{VBP}	4	7	15	+I ID	
	Vertical front porch	t _{VFP}	1	2	6	tHP	

3-4. Signal Timing Waveforms

3-5. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 6. COLOR DATA REFERENCE

									Inp	out Co	olor D	ata							
	Color			RE	D					GRE	EN					BL	UE		
\	30101	MSI	3				LSB	MSE	3				LSB	MSE	3				LSB
	•	R 5	R 4	R 3	R 2	R 1	R 0	G 5	G 4	G 3	G 2	G 1	G 0	B 5	B 4	В3	B 2	B 1	В0
	Black	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	. 1	1		0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED																			
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN					 														
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	1
BLUE																			
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	 1	1	
	BLUE (63)	0	 0	0	0	0	0	0	0	0	0	 0	0	1	1	1	 1	1	1
	- (/																		

Ver. 0.2 Jul,02, 2008 11/30

3-6. Power Sequence

Table 7. POWER SEQUENCE TABLE

Parameter		Value	Units	
	Min.	Тур.	Max.	
T ₁	0	-	10	(ms)
T ₂	0	-	50	(ms)
T ₃	200	-	-	(ms)
T ₄	200	-	-	(ms)
T ₅	0	-	50	(ms)
T ₆	0	-	10	(ms)
T ₇	400	-	-	(ms)

Note)

- 1. Valid Data is Data to meet "3-3. LVDS Signal Timing Specifications"
- 2. Please avoid floating state of interface signal at invalid period.
- 3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 4. Lamp power must be turn on after power supply for LCD and interface signal are valid.

Ver. 0.2 Jul,02, 2008 12/30

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 20 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 8. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, f_{V} =60Hz, f_{CLK} = 102MHz, I_{LED} = 19mA

Doromotor	Cumbal		Values		Lloito	Notes
Parameter	Symbol	Min	Тур	Max	Units	Notes
Contrast Ratio	CR	400	600	-		1
Surface Luminance, white	L _{WH}	270	-	-	cd/m ²	2
Luminance Variation(13points)	δ_{WHITE}		1.4	1.6		3
Response Time	Tr _R + Tr _D		16	25	ms	4
Color Coordinates				[]	
RED	RX	0.561	0.591	0.621	1	
	RY	0.318	0.348	0.378		
GREEN	GX	0.309	0.339	0.369		
	GY	0.520	0.550	0.580		
BLUE	вх	0.126	0.156	0.186		
	BY	0.096	0.126	0.156		
WHITE	WX	0.283	0.313	0.343		+/- 0.030
	WY	0.299	0.329	0.359	[+/- 0.030
Viewing Angle						5
x axis, right(Φ=0°)	Θr	55	60		degree	
x axis, left (Φ =180°)	Θl	55	60		degree	
y axis, up (Φ=90°)	Θu	45	50		degree	
y axis, down (⊕=270°)	Θd	45	50	-	degree	
Gray Scale				-		6

Ver. 0.2 Jul,02, 2008 13/30

Notes)

1. Contrast Ratio(CR) is defined mathematically as

Surface Luminance with all white pixels

Contrast Ratio =

Surface Luminance with all black pixels

- 2. Surface luminance is the 5point (1~5)average across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 2. When I_{LED} = 19mA, L_{WH} =300cd/m²(Typ.)
- 3. Luminance variation is measured for 13 point For more information see FIG 2. δ WHITE = Maximum(LN1,LN2, LN13) ÷ Minimum(LN1,LN2, LN13)
- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- 6. Gray scale specification

* f_V =60Hz

Gray Level	Luminance [%] (Typ)
L0	0.10
L7	1.58
L15	6.10
L23	12.8
L31	21.6
L39	35.4
L47	54.0
L55	76.0
L63	100

Ver. 0.2 Jul,02, 2008 14/30

FIG. 2 Luminance

<Measuring point for Average Luminance & measuring point for Luminance variation>

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

Ver. 0.2 Jul,02, 2008 15/30

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP171WPA. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	382.2 ± 0.50 mm		
Outline Dimension	Vertical	247.0 ± 0.50 mm		
	Depth	7.0 mm (Max.)		
Bezel Area	Horizontal	370.8 ± 0.50 mm		
Dezei Alea	Vertical	233.1 ± 0.50 mm		
Active Display Area	Horizontal	367.2 mm		
Active Display Area	Vertical	229.5 mm		
Weight	610g (Max.)			
Surface Treatment	Hard coating(3H), Glare treatment of the front polarizer			

Ver. 0.2 Jul,02, 2008 16/30

<FRONT VIEW>

Note) Unit:[mm], General tolerance: \pm 0.5mm

[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

- * Mounting Screw Length (A) = 2.0(Min) / 2.5(Max)
- * Mounting Screw Hole Depth (B) = 2.5(Min)
- * Torque : 2.5 kgf.cm(Max) (Measurement gauge : torque meter)

Notes: 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface.

[DETAIL INFORMATION OF PPID LABEL AND REVISION CODE]

* PPID Label Revision:

It is subject to change with Dell event. Please refer to the below table for detail.

Classification	No Change	1st Revision	2nd Revision	 9th Revision	
SST(WS)	X00	X01	X02	 A09	•••
PT(ES)	X10	X11	X12	 A19	
ST(CS)	X20	X21	X22	 A29	•••
XB(MP)	A00	A01	A02	 A09	•••

Ver. 0.2 Jul,02, 2008 19/30

LPL Proposal for system cover design.(Appendix)

Ver. 0.2 Jul,02, 2008 20/30

LPL Proposal for system cover design.

LPL Proposal for system cover design.

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20°C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Sine wave, 5 ~ 150Hz, 1.5G, 0.37oct/min 3 axis, 30min/axis
6	Shock test (non-operating)	- No functional or cosmetic defects following a shock to all 6 sides delivering at least 180 G in a half sine pulse no longer than 2 ms to the display module - No functional defects following a shock delivering at least 200 g in a half sine pulse no longer than 2 ms to each of 6 sides. Each of the 6 sides will be shock tested with one each display, for a total of 6 displays
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr

[{] Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

Ver. 0.2 Jul,02, 2008 23/30

7. International Standards

7-1. Safety

a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc.,

Standard for Safety of Information Technology Equipment.

b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association,

Standard for Safety of Information Technology Equipment.

c) EN 60950-1:2001, First Edition,

European Committee for Electrotechnical Standardization(CENELEC)

European Standard for Safety of Information Technology Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) CISPR22 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

Ver. 0.2 Jul,02, 2008 24/30