Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Fuhrmann, Mehl, Penn-Karras, Scherfner SS 04 11.10.2004

Oktober – Klausur (Verständnisteil) Analysis II für Ingenieure

Name: Vorname:							
MatrNr.:		Studi	engang	:			
Die Lösungen sind in Reinschri schriebene Klausuren können nic				_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst de Rechenaufwand mit den Kenntni- wenn nichts anderes gesagt ist, in	issen a	us der	Vorles	sung lö	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt ein	e Stu	nde.					
Die Gesamtklausur ist mit 32 v beiden Teile der Klausur mindest					*		
Korrektur							
	1	2	3	4	5	6	Σ

1. Aufgabe 7 Punkte

Bestimmen der Integrationsgrenzen: Schreiben Sie das Integral $\iiint\limits_M f\ dV$ in die Form

$$\int_{a}^{A} \int_{b}^{B} \int_{c}^{C} f(x, y, z) \ dxdydz$$

um. Die Menge M ist dabei

$$M = \{x^2 + y^2 \le 1\} \cap \{z \ge 0\} \cap \{x + y + z \le 2\} .$$

2. Aufgabe 6 Punkte

Welche der folgenden Mengen ist offen, abgeschlossen oder kompakt?

$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = n^2, \ n \in \mathbb{N} \} ;$$

$$B = \left\{ \left(\frac{1}{k}, \frac{1}{k} \right) \in \mathbb{R}^2 \mid k \in \mathbb{N} \right\} ;$$

$$C = \left\{ (x, y) \in \mathbb{R}^2 \mid x = y^2 \right\} \cap ([0, 1] \times [0, 1]) .$$

3. Aufgabe 7 Punkte

Gegeben sei eine Fläche im \mathbb{R}^3 durch die Parametrisierung

$$\Psi(\phi, h) = \begin{pmatrix} h \cos \phi \\ h \sin \phi \\ h^2 \end{pmatrix} , \quad \phi \in [0, 2\pi), \ h \in [0, \infty) .$$

Geben Sie diese Fläche als 0-Niveau einer Funktion f an.

4. Aufgabe 6 Punkte

Zeigen Sie, dass sich die beiden Niveauflächen

$$x + 2y - \ln z = -4$$
 und $x^2 - xy - 8x + z = -5$

im Punkt $(2, -3, 1) \in \mathbb{R}^3$ berühren, d.h. dass sie an diesem Punkt die gleiche Tangentialebene besitzen.

5. Aufgabe 6 Punkte

Bestimmen Sie das Flussintegral $\iint\limits_{S}\vec{v}\ d\vec{O}$ des Vektorfeldes

$$\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3 \ , \quad \vec{v}(x,y,z) = \begin{pmatrix} -xy^2 \\ x^2 \sin z \\ zy^2 \end{pmatrix} \ ,$$

durch die gesamte Oberfläche S des Zylinderabschnittes

$$Z = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, |z| \le 1\}$$
.

6. Aufgabe 8 Punkte

Welche der folgenden Aussagen ist wahr (mit Begründung!), welche falsch (mit Gegenbeispiel!)? Für Antworten ohne Begründung bzw. Gegenbeispiel gibt es keine Punkte.

- a) Die vektoriellen Oberflächenelemente $d\vec{O}$ der Parametrisierungen $\Psi(u,v)$ und $\widetilde{\Psi}(u,v):=\Psi(v,u)$ haben unterschiedliche Vorzeichen, sind aber ansonsten gleich.
- b) Für alle total differenzierbaren Funktionen $f: \mathbb{R}^3 \to \mathbb{R}$ mit stetigen partiellen Ableitungen gilt $\Delta f = 0$.
- c) Differenzierbare Funktionen haben auf kompakten Mengen stets mindestens ein Maximum und Minimum.
- d) Es gibt keine Mengen ohne Rand, d.h. deren Randmenge die leere Menge ist.