

GKN Driveline International GmbH
Hauptstraße 130
53797 Lohmar

15. Juli 2005
Oy/bec (2005008135)
Q03087WO10

Längsverschiebeeinheit mit Käfigsicherung

Patentansprüche

1. Längsverschiebeeinheit (24) zur Drehmomentübertragung in einer Wellenanordnung, umfassend
 - eine Profilhülse (25) mit umfangsverteilten längsverlaufenden ersten Kugelrillen (26),
 - einen Profilzapfen (1), der einen ersten Abschnitt (5) mit umfangsverteilten längsverlaufenden zweiten Kugelrillen (6) mit Kugelrillenausläufen (7) sowie einen sich hieran axial anschließenden zweiten Abschnitt (8) aufweist,
 - Kugeln (11), die in Paaren von ersten Kugelrillen und zweiten Kugelrillen (26, 6) jeweils gruppenweise angeordnet sind, und
 - einen Kugelkäfig (10), der radial zwischen der Profilhülse (25) und dem Profilzapfen (1) angeordnet ist und die Kugeln (11) in ihrer axialen Lage relativ zueinander fixiert, wobei der Kugelkäfig (10) zwischen zueinander beabstandeten Axialanschlägen relativ zum Profilzapfen (1) verschiebbar ist,
dadurch gekennzeichnet, daß eine Anschlaghülse (13a, 13b, 13c, 13d) auf dem Profilzapfen (1) angeordnet ist, die gegen den Profilzapfen (1) oder ein mit diesem verbundenes Bauteil anlaufen kann und den Verschiebeweg des Kugelkäfigs (10) in Richtung zum zweiten Abschnitt (8) begrenzt.
2. Längsverschiebeeinheit nach Anspruch 1,
dadurch gekennzeichnet,

daß die Anschlaghülse (13a, 13b, 13c, 13d) einen Innendurchmesser (16) aufweist, der größer ist als ein größter Außendurchmesser des ersten Abschnitts (5) des Profilzapfens.

3. Längsverschiebeeinheit nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

daß die Anschlaghülse (13a, 13b, 13c, 13d) einen Außendurchmesser (19) aufweist, der kleiner ist als ein kleinster Innendurchmesser der Profilhülse (25) im Bereich der Kugelrillen (26).

4. Längsverschiebeeinheit nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet,

daß das mit dem Profilzapfen (1) verbundene Bauteil eine Kugelnabe (4) eines Gleichlaufdrehgelenks ist, das an dem der Profilhülse (25) abgewandten Ende (3) des Profilzapfens (1) befestigt ist.

5. Längsverschiebeeinheit nach einem der Ansprüche 1 bis 4,

dadurch gekennzeichnet,

daß die Länge der Anschlaghülse (13a, 13b, 13c, 13d) derart gewählt ist, daß die der Anschlaghülse (13a, 13b, 13c, 13d) zugewandten Kugeln (11) in der Endposition des Kugelkäfigs (10) jeweils axial beabstandet zum Kugelrillenauslauf (7) angeordnet sind.

6. Längsverschiebeeinheit nach einem der Ansprüche 1 bis 5,

dadurch gekennzeichnet,

daß die Anschlaghülse (13a, 13b, 13c, 13d) gegen einen Sicherungsring (21) anlaufen kann, der in einer Ringnut (22) des Profilzapfens (1) einsitzt, wobei die Ringnut axial benachbart zu dem Kugelrillenauslauf (7) des Profilzapfens (1) angeordnet ist.

7. Längsverschiebeeinheit nach einem der Ansprüche 1 bis 5,

dadurch gekennzeichnet,

daß die Anschlaghülse (13a, 13b, 13c, 13d) gegen einen Ringbund (9) des Profilzapfens (1) anlaufen kann, der axial benachbart zu dem Kugelrillenauslauf (7) des Profilzapfens (1) angeordnet ist.

8. Längsverschiebeeinheit nach einem der Ansprüche 1 bis 7,

dadurch gekennzeichnet,

daß die Anschlaghülse (13a) als separates Bauteil ausgeführt ist.

9. Längsverschiebeeinheit nach einem der Ansprüche 1 bis 7,

dadurch gekennzeichnet,

daß die Anschlaghülse (13b, 13c, 13d) einstückig mit dem Kugelkäfig (10) gestaltet ist.

10. Längsverschiebeeinheit nach einem der Ansprüche 1 bis 9,

dadurch gekennzeichnet,

daß die Anschlaghülse (13a, 13b, 13c, 13d) aus Kunststoff oder Metall ist.

Längsverschiebeeinheit mit Käfigsicherung

Beschreibung

Die Erfindung betrifft eine Längsverschiebeeinheit zur Drehmomentübertragung in einer Wellenanordnung, die eine Profilhülse mit umfangsverteilten längsverlaufenden ersten Kugelrillen und einen Profilzapfen mit umfangsverteilten längsverlaufenden zweiten Kugelrillen umfaßt, wobei der Profilzapfen mit einem der Profilhülse zugewandten Ende in diese hineingreift. In Paaren von ersten und zweiten Kugelrillen sind jeweils gruppenweise Kugeln angeordnet, deren axiale Lage relativ zueinander durch einen Kugelkäfig fixiert wird, der radial zwischen Profilhülse und Profilzapfen angeordnet ist. Der Kugelkäfig ist relativ zum Profilzapfen oder zur Profilhülse zwischen zueinander beabstandeten Axialanschlägen verschiebbar.

Bei der relativen Längsverschiebung zwischen Profilhülse und Profilzapfen rollen die Kugeln in den ersten beziehungsweise äußereren Rillen und in den zweiten beziehungsweise inneren Kugelrillen im wesentlichen gleitreibungsfrei, so daß die Kugeln und damit der Kugelkäfig insgesamt jeweils den halben Verschiebeweg zwischen Profilhülse und Profilzapfen zurücklegen. Somit ermöglicht die Längsverschiebeeinheit eine reibungsarme Längenänderung der Wellenanordnung.

Die Begrenzung des Verschiebewegs des Kugelkäfigs durch die zueinander beabstandeten Axialanschläge ist notwendig, um ein Herauslaufen des Kugelkäfigs aus den Kugelrillen zu vermeiden. Auch wenn ein derartiges Hinauslaufen des Kugelkäfigs aufgrund eines die Kugelrillen begrenzenden Kugelrillenauflaufs nicht möglich ist, ist ein Axialanschlag vorzusehen, damit die Kugeln des Kugelkäfigs nicht an den Kugelrillenauflauf auflaufen, was eine Selbsthemmung zur Folge haben kann.

Aus der DE 199 11 111 C1 ist bekannt, an einem dem Profilzapfen zugewandten Ende der Profilhülse eine erste Ringnut und davon in axialer Richtung beabstandet eine zweite Ringnut in die Profilhülse einzuarbeiten, in die jeweils ein Sicherungsring eingesetzt ist, wodurch zwei Axialanschläge für den zwischen den Ringnuten verschiebbaren Kugelkäfig vorgegeben sind.

Aus der DE 102 33 758 A1 ist bekannt, neben dem Sicherungsring an dem den Profilzapfen zugewandten Ende der Profilhülse einen hülsenförmigen Anschlagkörper als zweiten Anschlag für den Kugelkäfig vorzusehen, wobei der Anschlagkörper in 10 radialer Richtung gesehen zwischen Profilhülse und Profilzapfen angeordnet ist. Zur Montage muß der Anschlagkörper in die Profilhülse eingeschoben werden. Er greift dabei formschlüssig in die Kugelrillen ein und stützt sich mit einem Stirnende an einem Konusbereich der Profilhülse ab, während das andere Stirnende als Anschlagfläche für den Kugelkäfig dient. Die Fertigung solch eines Anschlagkörpers ist aufwendig, da er ein zu den Kugelrillen korrespondierendes Querschnittsprofil aufweist. Zudem kann der Anschlagkörper nur in bestimmten Drehwinkellagen in die Hülse eingeführt werden, da er ansonsten nicht in die längsverlaufenden Kugelrillen 15 eingreifen kann.

20 Die DE 296 11 785 U1 zeigt eine Längsverschiebeeinheit mit einem Profilzapfen, einer Profilhülse und in Kugelrillen zwischen diesen gehaltenen Kugeln, die in einem Kugelkäfig aufgenommen sind. Der Profilzapfen hat an seinem freien Ende, das in die Profilhülse eintaucht, eine Anschlagplatte, gegen die der Kugelkäfig anlaufen kann. Anschlußseitig wird der Verschiebeweg der Kugeln durch die Kugelrillenausläufe begrenzt.

30 Die US 3 365 914 zeigt eine Drehkupplung mit einem Außenteil und einem Innenteil zwischen denen in Bahnen Tonnen zur Drehmomentübertragung in einem Kugelkäfig gehalten sind. Der Verschiebeweg des Kugelkäfigs wird durch eine Schulter im Außenteil einerseits und durch einen mit dem Außenteil verbundenen Deckel andererseits begrenzt.

Die DE 101 58 544 C2 zeigt eine Längsverschiebeeinheit, bei der der Kugelkäfig gegen die Kugelrillen ausläufe anschlagen kann, um den Verschiebeweg zu begrenzen.

5

Aus der DE 101 23 221 C1 ist eine Längsverschiebeeinheit bekannt, bei der der Kugelkäfig in beide Richtungen gegen Sicherungsringe, die in Ringnuten im Profilzapfen einsitzen, anlaufen kann. Dabei sind die Ringnuten, wie schon bei den oben beschriebenen Profilhülsen, im Bereich der Kugelrillen beziehungsweise im Bereich der Kugelrillen ausläufe angeordnet. Dies führt bei der Fertigung der Ringnuten mittels einer Drehoperation zu einem unterbrochenen Schnitt, durch den die Werkzeuge einem erhöhten Verschleiß ausgesetzt sind. Zudem sind die Bauteile vor dem Einbringen der Ringnuten zweckmäßigerweise zu härten, um eine Gratbildung im Bereich der Kugelrillen zu vermeiden. Dies jedoch führt zu einer weiteren Erhöhung des Werkzeugverschleißes, wodurch die Standzeiten weiter reduziert und damit die Fertigungskosten erhöht werden.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Längsverschiebeeinheit bereitzustellen, bei der der Verschiebeweg des Kugelkäfigs begrenzt ist und die einfach und kostengünstig hergestellt werden kann.

Die Aufgabe wird durch eine Längsverschiebeeinheit zur Drehmomentübertragung in einer Wellenanordnung gelöst, umfassend eine Profilhülse mit umfangsverteilten längsverlaufenden ersten Kugelrillen; einen Profilzapfen, der einen ersten Abschnitt mit umfangsverteilten längsverlaufenden zweiten Kugelrillen mit Kugelrillen ausläufen sowie einen sich hieran axial anschließenden zweiten Abschnitt aufweist; Kugeln, die in Paaren von ersten Kugelrillen und zweiten Kugelrillen jeweils gruppenweise angeordnet sind; und einen Kugelkäfig, der radial zwischen der Profilhülse und dem Profilzapfen angeordnet ist und die Kugeln in ihrer axialen Lage relativ zueinander fixiert, wobei der Kugelkäfig zwischen zueinander beabstandeten Axialanschlägen relativ zum Profilzapfen verschiebbar ist, wobei eine Anschlaghülse auf dem Profilzapfen angeordnet ist, die gegen den Profilzapfen oder ein mit diesem verbundenes Bauteil anlaufen kann und den Verschiebeweg des Kugelkäfigs in Richtung zum zweiten

Abschnitt begrenzt.

Durch die Anordnung der Anschlaghülse auf dem Profilzapfen kann eine Ringnut axial benachbart zu den Kugelrillen ausläufen im zweiten Abschnitt des Profilzapfens 5 im durchgehenden Schnitt eingebracht werden. So wird der Werkzeugverschleiß reduziert. Auf dem Profilzapfen bedeutet in diesem Zusammenhang, daß die Anschlaghülse koaxial zum Profilzapfen angeordnet ist. Dabei ist vorzugsweise ein Radialspalt zwischen der Anschlaghülse und dem Profilzapfen ausgebildet. Die Anschlaghülse kann aber auch mit Übermaßpassung auf den Profilzapfen aufgeschoben 10 sein, wobei diese Lösung bei separat ausgebildeter Anschlaghülse zu bevorzugen wäre. Durch die erfindungsgemäße Lösung erfüllt die Anschlaghülse die Aufgabe, die auf den Kugelkäfig wirkenden Axialkräfte aufzunehmen und diese Axialkräfte mittels einer geeigneten Axialabstützung für die Anschlaghülse in einen von dem Kugelkäfig beabstandeten Bereich des Profilzapfens zu leiten. Diese Axialabstützung 15 liegt axial benachbart zu den Kugelrillen ausläufen im zweiten Abschnitt des Profilzapfens, der vorzugsweise zylindrisch gestaltet ist. So können Nuten im durchgehenden Schnitt vorgenommen werden, was sich günstig auf den Werkzeugverschleiß auswirkt.

20 Vorzugsweise weist die Anschlaghülse einen Innendurchmesser auf, der größer ist als ein größter Außendurchmesser des ersten Abschnitts des Profilzapfens. Somit ist der Durchmesser der Innenbohrung größer als ein Außendurchmesser der Kugelrillen des Profilzapfens, wodurch sich die Anschlaghülse einfach über den ersten Abschnitt des Profilzapfens schieben läßt, ohne daß dabei auf eine richtige Drehwinkel- 25 Lage zwischen Anschlaghülse und Profilzapfen geachtet werden muß.

In einem bevorzugten Ausführungsbeispiel weist die Anschlaghülse einen Außen- durchmesser auf, der kleiner ist als ein kleinster Innendurchmesser der Profilhülse im Bereich der Kugelrillen. Somit kann bei zentrierter Lage der Anschlaghülse 30 ausgeschlossen werden, daß bei der Montage oder im Einsatz der Längsverschiebeeinheit der Profilzapfen in axialer Richtung gegen die Anschlaghülse stößt.

Vorzugsweise ist das mit dem Profilzapfen verbundene Bauteil in Form einer Kugelnabe eines Festgelenks gestaltet, das an dem der Profilhülse abgewandtem Ende des Profilzapfens befestigt ist. Dies reduziert die Kosten für die Herstellung des Profilzapfens, da keine gesonderten Maßnahmen durchgeführt werden müssen, eine Axialabstützung der Anschlaghülse an dem Profilzapfen vorzusehen.

Nach einer weiteren Konkretisierung ist die Länge der Anschlaghülse derart gewählt, daß die dem zweiten Ende zugewandten Kugeln in der Endposition des Kugelkäfigs jeweils axial beabstandet zum Kugelrillenauslauf angeordnet sind. So wird verhindert, daß die Kugeln auf die Kugelrillenausläufe auflaufen, wodurch Selbsthemmung eintreten könnte. Die Kugelrillen erstrecken sich nur über einen Teil des Profilzapfens, wodurch im Vergleich zu einem Profilzapfen, dessen Kugelrillen sich über die gesamte Länge erstrecken, die Fertigung der Kugelrillen aufgrund der geringeren Länge bei einer spanenden Formgebung preisgünstiger gestalten läßt.

Die Anschlaghülse kann gegen einen Sicherungsring anlaufen, der in einer Ringnut des Profilzapfens einsitzt, wobei die Ringnut axial benachbart zu dem Kugelrillenauslauf des Profilzapfens angeordnet ist. Der Vorteil einer derart eingebrachten Ringnut besteht darin, daß bei deren Fertigung kein unterbrochener Schnitt vorliegt, so daß im Vergleich zu einer Fertigung der Ringnut im Kugelrillenbereich die Werkzeugstandzeit erhöht wird. Außerdem ist die Länge der Anschlaghülse unabhängig vom Abstand zwischen dem Kugelrillenauslauf und dem Anschlußbauteil. Somit kann eine baugleiche Anschlaghülse bei Längsverschiebeeinheiten mit unterschiedlichen Festgelenken eingesetzt werden. Das Ausführungsbeispiel, bei dem die Anschlaghülse unmittelbar an der Kugelnabe abgestützt ist, hat dagegen den Vorteil, daß kein Sicherungsring erforderlich ist.

In einem anderen bevorzugten Ausführungsbeispiel kann die Anschlaghülse gegen einen Ringbund des Profilzapfens anlaufen, der axial benachbart zu dem Kugelrillenauslauf des Profilzapfens angeordnet ist. Die Fertigung eines Anschlags erfolgt zweckmäßig durch eine Drehoperation an dem Ringbund, durch die im Vergleich zum Ausführungsbeispiel mit dem Sicherungsring das Einbringen der Ringnut weg-

fällt. Darüber hinaus wird der Sicherungsring eingespart. Außerdem ist die Länge der Anschlaghülse unabhängig von dem Abstand zwischen Kugellillenauslauf und dem Anschlußbauteil, beispielsweise der Kugelnabe eines Gleichlaufgelenks.

5 Vorzugsweise ist die Anschlaghülse einstückig an dem Kugelkäfig angeformt. Dies reduziert die Anzahl der Einzelteile und bannt die Gefahr, daß bei der Montage der Längsverschiebeeinheit das Aufbringen der Anschlaghülse auf den Profilzapfen vergessen wird. Nach einer alternativen Ausführungsform kann die Anschlaghülse auch separat ausgebildet sein. Dies bietet den Vorteil einer leichten Anpaßbarkeit an unterschiedliche Einbausituationen, ohne daß die Gestalt des Kugelkäfigs verändert werden muß.

10

15 Die Anschlaghülse ist vorzugsweise aus Kunststoff oder Metall. Bei der Auswahl des Materials sowie bei der Dimensionierung der Anschlaghülse ist zu beachten, daß die Anschlaghülse die auftretenden Montage- und Gleitverschiebekräfte sicher aufnehmen kann.

Anhand der in den Figuren dargestellten Ausführungsbeispiele wird die Erfindung näher beschrieben. Es zeigen

20

Fig. 1 eine Längsverschiebeeinheit in einer ersten Ausführung;

Fig. 2 eine Längsverschiebeeinheit in einer zweiten Ausführung;

25 Fig. 3 eine Längsverschiebeeinheit in einer dritten Ausführung;

Fig. 4 eine Längsverschiebeeinheit in einer vierten Ausführung.

Die Fig. 1 bis 4 zeigen jeweils eine Längsverschiebeeinheit 24 im Längsschnitt mit einer Profilhülse 25, in die ein Profilzapfen 1 mit einem der Profilhülse 25 zugewandten Ende 2 eingesteckt ist. Der Profilzapfen 1 weist ein der Profilhülse 25 abgewandtes Ende 3 auf, an dem eine Kugelnabe 4 eines hier nicht weiter dargestellten Gleichlaufdrehgelenks befestigt ist. Die Profilhülse 25 hat längsverlaufende

parallele erste Kugelrillen 26 auf ihrer Innenseite. In übereinstimmender Umfangsposition mit den ersten Kugelrillen 26 hat der Profilzapfen 1 in einem ersten Abschnitt 5 längsverlaufende zweite Kugelrillen 6. Eine Kugelrille 6 erstreckt sich dabei von dem der Profilhülse 25 zugewandten Ende 2 des Profilzapfens 1 bis zu einem Kugelrillenauslauf 7. Dem ersten Abschnitt 5 schließt sich ein zweiter Abschnitt 8 des Profilzapfens 1 an, in dem keine Kugelrillen eingearbeitet sind und der einen Ringbund 9 aufweist.

Ein Kugelkäfig 10 mit Kugeln 11 sitzt auf dem Profilzapfen 1. Der Kugelkäfig 10 fixiert die Kugeln 11 in ihrer relativen Lage zueinander. Die Kugeln 11 laufen dabei in Gruppen, hier jeweils fünf Kugeln, in den jeweiligen Kugelrillen 6, wenn der Kugelkäfig 10 in Längsrichtung des Profilzapfens 1 verschoben wird. Eine Verschiebung des Kugelkäfigs 10 relativ zum Profilzapfen 1 stellt sich ein, wenn bei einer fertig montierten Längsverschiebeeinheit 24 der Profilzapfen 1 und die Profilhülse 25 relativ zueinander axial verschoben werden und sich dabei die Kugeln 11 in den Kugelrillen 6 des Profilzapfens 1 und in den gegenüberliegenden Kugelrillen 26 der Profilhülse 25 abrollen.

Der mögliche Verschiebeweg des Kugelkäfigs 10 relativ zum Profilzapfen 1 wird einerseits begrenzt durch einen Sicherungsring 27, der in eine Ringnut 12 am Ende 2 des Profilzapfens 1 eingesetzt ist und gegen den der Kugelkäfig 10 anlaufen kann. Andererseits wird der Verschiebeweg des Kugelkäfigs 10 begrenzt durch eine Anschlaghülse 13a, die zwischen dem Kugelkäfig 10 und der Kugelnabe 4 angeordnet ist. Die Anschlaghülse 13a stützt sich dabei mit einem ersten Stirnende 14 an der Kugelnabe 4 ab, während an einem zweiten Stirnende 15 der Anschlaghülse 13a der Kugelkäfig 10 plan anliegt. Die Anschlaghülse 13a verhindert somit, daß sich der Kugelkäfig 10 aus seiner in Fig. 1 gezeigten Lage weiter in Richtung des Endes 3 des Profilzapfens 1 bewegt, wodurch ausgeschlossen wird, daß die gelenkseitigen Kugeln 11 des Kugelkäfigs in den Kugelrillenauslauf 7 laufen. Der Verschiebeweg des Kugelkäfigs 10 relativ zur Profilhülse 25 wird gelenkseitig durch einen hier nicht dargestellten Sicherungsring begrenzt, der in eine Ringnut 28 am Ende der Profilhülse 25 eingesetzt wird und als Auszugsicherung beim Transport dient. Gegen den Sicherungsring können die gelenkseitigen Kugeln 11 anlaufen, so daß ein Heraus-

gleiten des Profilzapfens 1 aus der Profilhülse 25 verhindert wird. Wellenseitig wird der Verschiebeweg des Kugelkäfigs 10 dadurch begrenzt, daß dieser gegen den Kugelrillen auslauf 29 anschlägt. So wird ein Verklemmen der Kugeln 11 am Kugelrillen auslauf 29 beim Transport verhindert.

5

Ein Innendurchmesser 16 der Anschlaghülse 13a ist so bemessen, daß sich die Anschlaghülse 13a über den ersten Abschnitt 5 hinweg auf die Profilhülse 1 schieben läßt. Der Innendurchmesser 16 ist dabei größer als ein Durchmesser eines Kreises, auf dem äußere Kanten 17 der Kugelrillen 6 liegen. Des weiteren ist der Innendurchmesser 16 größer als ein Außendurchmesser 18 des Ringbundes 9, damit sich die Anschlaghülse 13a auch über den zweiten Abschnitt 8 des Profilzapfens 1 schieben läßt.

15 Fig. 2 zeigt ein weiteres Ausführungsbeispiel der Erfindung. Der Unterschied zu dem Ausführungsbeispiel der Fig. 1 besteht darin, daß eine Anschlaghülse 13b einstückig an dem Kugelkäfig 10 angeformt ist. Ein Außendurchmesser 19 der Anschlaghülse 13b entspricht dabei einem Außendurchmesser 20 des die Kugeln 11 fixierenden Kugelkäfigs 10. Die Anschlaghülse 13b ist unmittelbar an der Kugelnabe 4 des Gleichlaufgelenks abgestützt.

20

25 Fig. 3 zeigt ein Ausführungsbeispiel, bei dem wie in Fig. 2 eine Anschlaghülse 13c einstückig an dem Kugelkäfig 10 angeformt ist. Die Anschlaghülse 13c stützt sich mit dem ersten Stirnende 14 hier an einem Sicherungsring 21 ab, der in einer Ringnut 22 sitzt, die in dem Ringbund 9 eingearbeitet ist. Die Ringnut 22 läßt sich durch einen durchgehenden Schnitt im Ringbund 9 fertigen.

30 Beim Ausführungsbeispiel der Fig. 4 stützt sich eine einstückig an dem Kugelkäfig 10 angeformte Anschlaghülse 13d an einem Anschlag 23 des Profilzapfens 1 ab, der durch einen Absatz im Ringbund 9 gebildet ist. Der Außendurchmesser 18 des Ringbundes 9 ist größer als der Innendurchmesser 16 der Anschlaghülse 13d.

GKN Driveline International GmbH
Hauptstraße 130
53797 Lohmar

15. Juli 2005
Oy/bec (2005008135)
Q03087WO10

Längsverschiebeeinheit mit Käfigsicherung

Bezugszeichenliste

- 1 Profilzapfen
- 2 Ende
- 3 Ende
- 4 Kugelnabe
- 5 erster Abschnitt
- 6 zweite Kugelrille
- 7 Kugelrillenauslauf
- 8 Zweiter Abschnitt
- 9 Ringbund
- 10 Kugelkäfig
- 11 Kugel
- 12 Ringnut
- 13 Anschlaghülse (13a bis 13e)
- 14 erstes Stirnende
- 15 zweites Stirnende
- 16 Innendurchmesser
- 17 Äußere Kanten
- 18 Außendurchmesser
- 19 Außendurchmesser
- 20 Außendurchmesser
- 21 Sicherungsring
- 22 Ringnut
- 23 Anschlag
- 24 Längsverschiebeeinheit
- 25 Profilhülse

- 26 erste Kugelrille
- 27 Sicherungsring
- 28 Ringnut
- 29 Kugelrillenauslauf

GKN Driveline International GmbH
Hauptstraße 130
53797 Lohmar

15. Juli 2005
Oy/bec (2005008135)
Q03087WO10

Längsverschiebeeinheit mit Käfigsicherung

Zusammenfassung

Die Erfindung betrifft eine Längsverschiebeeinheit 24 für eine Wellenanordnung zur Drehmomentübertragung. Die Längsverschiebeeinheit umfaßt eine Profilhülse 25 mit umfangsverteilten längsverlaufenden ersten Kugelrillen 26, einen Profilzapfen 1 mit umfangsverteilten längsverlaufenden zweiten Kugelrillen 6, wobei der Profilzapfen 1 mit einem der Profilhülse 25 zugewandten Ende 2 in diese hineingreift, Kugeln 11, die in Paaren von ersten Kugelrillen 26 und zweiten Kugelrillen 6 jeweils gruppenweise angeordnet sind, und einen Kugelkäfig 10, der in radialer Richtung zwischen Profilhülse 25 und Profilzapfen 1 liegt und die Kugeln 11 in ihrer axialen Lage relativ zueinander fixiert. Der Kugelkäfig 10 ist zwischen zueinander beabstandeten Axialanschlägen relativ zum Profilzapfen 1 verschiebbar. Auf dem Profilzapfen 1 ist eine Anschlaghülse 13 angeordnet, die gegen den Profilzapfen 1 oder ein mit diesem verbundenes Bauteil anlaufen kann. Die Anschlaghülse 13 begrenzt den Verschiebeweg des Kugelkäfigs 10 in Richtung zum zweiten Abschnitt.

Fig. 1

1 / 2

Fig. 1

Fig. 2

2 / 2

Fig. 3

Fig. 4

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.