SECURITY CLASSIFICATION OF THIS PAGE (When Date	Entered)		
REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
RPI Math. Rep. No. 159			
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED	
On the Calculation of Acoustic Intensity Fluctucations caused by Ocean Currents		Technical Report	
		6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s)		S. CONTRACT OR GRANT NUMBER(*)	
M. J. Jacobson, W. L Siegmann, and J. S. Robertson		N00014-86-K-0129	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Rensselaer Polytechnic Institute Troy, New York 12180-3590	- ' - 1	NR 4254007	
Office of Naval Research, Code 1125		12. REPORT DATE 15 September, 1986	
Department of the Navy Arlington, Virginia 22217		13. NUMBER OF PAGES	
14. MONITORING AGENCY NAME & ADDRESS(II differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
This document has been approved for distribution is unlimited.	or public release		

- 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
- 18. SUPPLEMENTARY NOTES
- 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
 Underwater Acoustics
 Environmental Acoustics
 The Parabolic Approximation
 Ocean Currents
- significant and interesting effects on the intensity of underwater sound transmissions. We study this phenomenon via the parabolic approximation, beginning with conservation laws, and derive a family of equations, each of which is valid for different magnitudes of current speed, current gradient, and sound-speed variation. Numerical results indicate that some current structures can cause large variations in received intensity, and that substantial differences can occur in reciprocal transmissions. Current effects on intensity may be quite sensitive to the sound-speed distribution.

On the Calculation of Acoustic Intensity Fluctuations caused by Ocean Currents

by

M. J. Jacobson, W. L. Siegmann and J. S. Robertson

Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, New York 12180-3590

RPI Math. Rep. No. 159 September \$5, 1986

This work was sponsored by Code 1125, Office of Naval Research Contract NO. NO0014-86-K-0129 NR 4254007

This document has been approved for public release and sale; its distribution is unlimited.

ON THE CALCULATION OF ACOUSTIC INTENSITY FLUCTUATIONS CAUSED BY OCEAN CURRENTS

J.S. Robertson+, M.J. Jacobson*, and W.L. Siegmann*

*Department of Mathematics, U. S. Military Academy, West Point, NY, USA 10996-1788

*Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA, 12180-3590

ABSTRACT

Ocean currents can cause significant and interesting effects on the intensity of underwater sound transmissions. We study this phenomenon via the parabolic approximation, beginning with conservation laws, and derive a family of equations, each of which is valid for different magnitudes of current speed, current gradient, and sound-speed variation. Numerical results indicate that some current structures can cause large variations in received intensity, and that substantial differences can occur in reciprocal transmissions. Current effects on intensity may be quite sensitive to the sound-speed distribution.

INTRODUCTION

Ocean currents cause interesting and significant effects on underwater sound. For example, in a time-independent ocean environment, currents cause reciprocity relations to fail. Based on ray theory, work has been done by the authors and others to model the influences of currents on acoustic transmissions. It has been shown, for instance, that certain current structures can cause large fluctuations in total-field intensity and per ray phase. These results are limited to high-frequency sound transmissions. To estimate current-induced effects for lower frequencies, a full-wave model should be used. One computational model is the parabolic approximation, which has been implemented using several algorithms, and is a particularly attractive method for efficiently generating transmission-loss calculations.

MODEL FORMULATION

In a complicated medium such as a moving ocean, it is not obvious how known parabolic equations should be modified to include current effects. For this reason, we systematically reformulated the governing time-dependent wave equation, starting from the conservation laws and state relations governing the ocean medium, and including medium motion (Robertson et al., 1985). If the current is assumed steady but non-uniform, additional terms occur in the wave equation. These terms depend on the current gradient and, as will be discussed below, can be significant in subsequent approximations.

We then assume that the sound source is time-harmonic and that the propagating wave is outgoing, thereby obtaining a reduced wave equation. After transforming coordinate systems, we invoke the far-field approximation, and proceed to generate a family of parabolic equations. Each of these equations depends on the relative sizes of three dimensionless parameters: a Mach number, the sound-speed deviation, and a shear number. The last parameter indicates the magnitude of current gradient, and also depends on source frequency. For example, a parabolic approximation appropriate for an isospeed sound channel, through which flows a steady depth-dependent current, is

$$2i\kappa_0\psi_r + \psi_{zz} - 2\kappa_0^2 \left(\frac{u}{c_0}\right)\psi + \left(\frac{2}{c_0}\right)\left(\frac{du}{dz}\right)\psi_z = 0, \tag{1}$$

where κ_0 is a wave number, u is current speed, and ψ is an envelope of acoustic pressure in the far field. The reference sound speed c_0 in this isospeed case is equal to the sound speed c. Depth is indicated by z and range by r. It can be shown that range-dependent sound-speed profiles can be incorporated into these approximations in a straightforward way, provided that the horizontal gradient of sound speed is not large, which is often the case in many important ocean regions. For example, for a sound channel in which the sound-speed deviation is of the same order of magnitude as the Mach number, the appropriate equation is

$$2i\kappa_{0}\psi_{r} + \psi_{zz} + \kappa_{0}^{2} (n^{2}-1)\psi - 2\kappa_{0}^{2} \left(\frac{u}{c_{0}}\right)\psi + \left(\frac{2}{c_{0}}\right)\left(\frac{du}{dz}\right)\psi_{z} = 0, \tag{2}$$

where $n(r,z) = c_0/c$ is the index of refraction.

In Eqs. (1) and (2), the term which depends on the first derivative of current may or may not be retained, depending upon the size of the shear-number parameter. In the event that it is kept, the parabolic approximations are not in a "standard form"; that is, they cannot be solved directly with existing numerical implementations. However, it is possible to transform this family into related parabolic equations which are in a standard form. The transformed version of Eq. (2) is, for example:

$$2i\kappa_{0}\phi_{r} + \phi_{zz} + \kappa_{0}^{2} (n^{2}-1)\phi - 2\kappa_{0}^{2} \left(\frac{u}{c_{0}}\right)\phi - \frac{1}{c_{0}}\left(\frac{d^{2}u}{dz^{2}}\right)\phi - \frac{1}{c^{2}}\left(\frac{du}{dz}\right)^{2}\phi = 0, \quad (3)$$

where

$$\psi(z,r) = e^{-Mu(z)}\phi(z,r). \tag{4}$$

Note the appearance of two new terms in Eq. (3) which depend on the square of the derivative of current and the second derivative of current. The structure of Eq. (3) and other such equations suggests the use of an effective sound-speed profile (ESSP), which includes all sound-speed and current-related effects, and is used as the "actual" sound speed for numerical solution of the equations. For example, the ESSP corresponding to Eq. (3) is

$$\widetilde{c} = c + u + \frac{1}{2\kappa_0^2 c_0} \left(\frac{du}{dz}\right)^2 + \frac{1}{2\kappa_0^2} \left(\frac{d^2u}{dz^2}\right)$$
 (5)

NUMERICAL RESULTS

To solve any of our parabolic equations numerically, we elect to use the IFD model developed by Lee and Botseas (1982). In the discussion below, we consider several sound-speed profiles, together with current profiles, as

Fig. 1. Profiles of (a) range-independent sound speed, (b) current, and (c) range-dependent sound speed.

shown in Fig. 1. The zero-gradient and negative-gradient sound-speed profiles are sometimes range-independent as in Fig. 1(a), as are the current profiles in Fig. 1(b). The surface current may be either plus or minus 1 m/s. At other times, we employ a simple range-dependent sound-speed profile, Fig. 1(c), for which the horizontal gradient is both constant and small. Here, isopleths are vertical lines. We consider first the result of one calculation done in the isospeed channel, with surface current of magnitude 1 m/s. The source frequency is 200 Hz, for which it can be shown that current-gradient effects are negligible. The source and receiver depths are 25 m. In Figs. 2-6, the bottom acoustical properties are the same as in Robertson et al. (1985). Figure 2 shows a relative intensity in decibels versus range for three cases: no current present, a positive current in the source-receiver direction, and a negative current in the opposite direction. Several important current-related effects can be seen in the figure. When compared to the solid curve, representing intensity in the absence of any current, we see that a current with either direction can induce substantial variations in intensity. For example, with a positive current present, variations can exceed 10 dB over certain range intervals, such as those between 13 and 14 km. Similar behavior is seen for negative current. Current effects in both cases tend to increase with increasing range.

Intensity variations are highlighted in Fig. 3, which illustrates difference in relative intensity versus range for three cases: no current and positive current, no current and negative current, and positive and negative currents. Because source and receiver are at the same depth, this figure also illustrates one type of effect which may be seen in reciprocal transmissions (RTs). The intensity difference between positive and negative currents, indicated in Fig. 3 by the long-dashed curve, suggests that measurements of intensity variation between reciprocal source-receiver pairs may be very large. Near ranges 14 and 19 km, this difference attains a magnitude of nearly 20 dB. At other range intervals the difference is smaller, but significant. For example, between 10 and 12 km, the intensity difference is seen to generally be well over 4 dB. RT differences can also be significant in range-dependent channels. Using the sound-speed profile in Fig. 1(c), and the same source frequency, source-receiver depths, and current structure as above, the computed intensity difference between a source-receiver pair is shown in Fig. 4. Note that one effect of the range

Fig. 2. Relative intensity versus range for three currents in an isospeed channel.

Fig. 3. Difference in relative intensity versus range, from Fig. 2.

Oppositely-signed current effects are readily compared (long-dashed curve).

Fig. 4. Difference in relative intensity versus range, for current reversal. Reciprocal-transmission difference is shown for a range-dependent sound-speed profile.

variation in sound speed is to cause the relative intensity curve to shift toward the source, when compared to the analogous curve in Fig. 3. Maximum intensity values have been altered, also. For example, at a range 14 km, the peak difference is over 30 dB.

Another way to visualize the effects of reversing current direction is shown in Fig. 5. Here, differences in the two intensity functions are plotted as level curves in a portion of the depth-range plane. The difference is intensity for a positive current (in the source-receiver direction) minus intensity for a negative current, as in Fig. 1(b). The source frequency and source depth are again 200 Hz and 25 m, respectively. Contour intervals are 5 dB, with negative differences denoted by dotted curves. This figure illustrates the intensity differences that might be observed in a channel with tidal effects. At ranges larger than about 7 km, bottom attenuation has stripped away most higher modes, leaving a well-defined pattern of alternating intensity differences. Regions of large positive difference occur in finger-like patterns which alternately emanate from the channel surface and bottom. Similar structures are also seen for negative differ-In this example, a zone of very small differences extends in range across most of the channel at roughly mid-depth. Regions of maximum difference occur regularly above and below this zone. In contrast, the intensitydifference pattern in a negative gradient channel is noticeably different. Figure 6 shows the analogous level curves for the negative gradient profile of Fig. 1(a). The finger-like structures apparent in Fig. 5 have in some cases blended together in Fig. 6, leaving regions of high intensity difference located at many mid-depth points. The overall pattern is more complicated than the one present in the isospeed channel. Consequently, the intensity-difference pattern resulting from oppositely-signed currents

Fig. 5. Level curves of intensity difference in an isospeed channel, with current reversal.

Fig. 6. Level curves of intensity difference for a negative gradient channel (see Fig. 1(a)), with current reversal.

appears to be very sensitive to these types of changes in the sound-speed profile.

For some current structures and lower source frequencies, the appropriate transformed parabolic equation will include new terms which depend on current concavity and (possibly) the square of current gradient. One type of current structure which may require additional terms is shown in Fig. 7(a). At the surface, the current speed is 1 m/s, and it decays to zero at the bottom. Note the appearance of several strong shear layers, particularly those at depths 35 and 60 m. The vertical shear structure seen here can be acoustically significant for sufficiently low source frequencies. For example, when the source frequency is 30 Hz, the ESSP is similiar to that given by Eq. (5) and is depicted in Fig. 7(b). In this example, concavity effects are significant, but shear effects can be neglected. Note that current concavity dominates the behavior of the ESSP. The current shear structure has introduced large rapid variations, one of which, at the depth 60 m, approaches 20 m/s in Fig. 7(b). For higher source frequencies, the magnitude of the variations decreases, yet may still be significant. We anticipate that this current structure can cause interesting acoustical effects.

In Fig. 8, we see one result of computations done with the current structure shown in Fig. 7(a). In order to observe concavity (or second derivative) effects, we solved the relevant parabolic equation, first with concavity included and then with concavity omitted. The root-mean-square difference of the intensities in the two cases, called J, was then calculated with a range averaging. Source and receiver depths are 25 m, and the source frequency is 100 Hz. The results for three different bottom types are shown. The rigid bottom is perfectly reflecting, while beneath the water column for the hard and soft bottoms is a second fluid layer with different sound speed and density. The hard bottom has larger discontinuities in these quantities than the soft bottom. For both hard and soft bottoms, a small amount of volume attenuation was introduced. As the bottom changes

Fig. 7. Profiles of (a) a current with high shear, and (b) the effective sound speed.

Fig. 8. RMS difference in intensity versus range for the current of Fig. 7(a) and for three bottom types.

from rigid to hard to soft, note that the overall values of J tend to decrease. However, the peak values may actually increase substantially. For example, at 45 km the soft bottom has a peak which is about 4 dB larger than its overall value. Furthermore, the curves are smoother for both the hard and soft bottoms, since they attenuate higher modes more rapidly than the rigid bottom. These observations illustrate the strong dependence of concavity effects on bottom influences in underwater sound transmissions.

SUMMARY

We discuss a family of parabolic approximations, valid for depth- and range-dependent sound-speed profiles, which include effects caused by steady depth-dependent currents. These approximations permit examination of intensity effects caused by currents for frequencies and environments where other models may not be valid or convenient. Using a standard numerical implementation, we present the results of computations for several current and sound-speed structures. They suggest that currents can cause significant intensity variations, principally by altering the effective sound-speed profile. Intensity differences arising from reciprocal transmissions are shown to be especially large. Also, current effects on intensity can be very sensitive to small changes in sound speed. Finally, the presence of current fine structure can introduce additional fluctuations in intensity predictions.

Lee, D., and Botseas, G., 1982, IFD: An implicit finite difference computer model for solving the parabolic equation, New London Lab., NUSC, New London, CT, TR 6659.

Robertson, J.S., Siegmann, W.L., and Jacobson, M.J., 1985, Current and current shear effects in the parabolic approximation for underwater sound channels, J. Acoust. Soc. Am., 77:1768.

UNCLASSIFIED DISTRIBUTION LIST DEC 1981

Addressee	No. of Copies	Addressee	No. of C
Office of Naval Research		Technical Director	
800 North Quincy Street		Naval Oceanographic Research and	
Arlington, Virginia 22217		Development Activity	
Attn: Code 425AC	2	NSTL Station	
102	1	Bay St. Louis, Mississippi 39522 Attn: Technical Director	1
1020	1	Dr. L. Solomon	i
210 220		Dr. R. Gaydner	
220	•	Mr. E. Chaika	1
Office of Naval Technology		Mr. R. Van Wyckhouse	1
800 North Quincy Street		Dr. S. W. Marshall	1
Arlington, Virginia 22217			
Attn: MAT 0721	1	Director	
MAT 0724	1	Naval Oceanographic Office	
4		NSTL Station	
Director		Bay St. Louis, Mississippi 39522 Attn: Mr. H. Beck	1
Naval Research Laboratory		Dr. T. M. Devis	i
4555 Overlook Avenue, 5%.		Mr. W. H. Geddes	i
Washington, D.C. 20375 Attn: Dr. J. C. Hunson	1	Dr. W. Jobst	1 1
Mr. R. R. Rojas	i	Hr. R. Herrifield	1
Dr. B. B. Adams	i	Mr. R. A. Peloquin	1
Dr. W. B. Moseley	1	Dr. M. K. Shank	1
Dr. J. P. Dugan	1		
Unclassified Library	1	Office of the Assistant Secretary of	
		the Navy for Research, Engineering	
Superintendent		and Systems	
Neval Research Laboratory		Washington, D.C. 20350 Attn: Dr. D. Barbe, Rm 4£732 Pentagon	1
Underwater Sound Reference Division		Dr. J. H. Probus, Rm 5E779 Pentag	
P.O. Box 8337 Orlando, Florida 32806	1	· · · · · · · · · · · · · · · · · · ·	
Urlands, Fiorida 92000	•		
Director			
Office of Naval Research Branch Office		Chief of Naval Operations	
1030 East Green Street		Room 50580, Pentagon	
Pasadena, California 91106	1	Washington, D.C. 20350	
		Attn: OP951F	1
Office of Naval Research		Commander	
Rm 239, Campbell Hall		Naval Sea Systems Command	
University of California Berkeley, California 94720	1	Department of Navy	
Certain, Carriotide 74725	•	Washington, D.C. 20362	
Director		Attn: Capt. James M. Van Metre PMS 409	1
Office of Naval Research Branch Office			
495 Summer Street		Chief of Naval Operations	
Boston, Massachusetts 02210	1	Office of the Director	
Office of News 1 December		Naval Oceanographic Division OP-952	
Office of Naval Research		Department of the Navy	
New York Area Office 715 Broadway - 5th Floor		Washington, D.C. 20352	
New York, New York 10003	1	Attn: Dr. R. W. James	1
1000	•	Capt. J. C. Harlett	1
Commanding Officer			
Office of Naval Research Branch Office		Commander	
Box 39		Oceanographic System, Atlantic	
FPO New York 09510	.1	Box 100 Norfolk Virginia 23511	1
Director		Norfolk, Virginia 23511	
Office of Naval Research Branch Office		Commander	
536 South Clark Street		Oceanographic System, Pacific	
Chicago, Illinois 60605	1	Box 1390	
	•	Pearl Harbor, Hawaii 96860	1
Office of Naval Research			
Resident Representative			
University District Building, Room 422			
1107 North East 45th Street	•		
Seattle, Washington 98105	1		

Addressee	No. of Copies	Addressee .	No. of
Defense Advanced Research Projects	Agency	Commander	
1400 Wilson Boulevard		Naval Surface Weapons Center	
Arlington, Virginia 22209		Acoustics Division	
Attn: Capt. V. Simmons	1 '	Silver Spring, Maryland 20910	1
ARPA Research Center		Commander	
Moffett Field Unit #1		Naval Surface Weapons Center	
California 94035	1	Science and Mathematics Research	
Attn: Mr. E. Smith		Group (KO5)	
Commending Officer		Dahlgren, Virginia 22448 Attn: Dr. E.W. Schwiderski	1
Fleet Weather Central		Accin Dr. C.W. Schwiderski	
Box 113		Commanding Officer	
Pearl Harbor, Hawaii 96860	1	Naval Underwater Systems Center	
		New London Laboratory	
Naval Ocean Systems Center (Kaneohe	9)	New London, Connecticut 06320	
Kaneohe, Hawaii 96863	1	Attn: Dr. William Von Winkle	1
Attn: Mr. D. Hightower Mr. B. Kishimoto		Dr. A. Nuttall	1
· Mr. R. Buecher	11	Hr. A. Ellinthorpe	1
TET III DOCUME	•	Dr. D.M. Viccione Mr. A. Donn Cobb	1
Commander		PE. A. DOIN COOD	
Naval Electronic Systems Command		Commander	
2511 Jefferson Davis Highway		Naval Air Development Center	
National Center #1		Department of the Navy	
Arlington, Virginia 20360	2	Warminster, Pennsylvania 18974	
Attn: CAPI C. A. Rose, PME 124 LCDR P. Girard, NAVELEX 612	4	Attn: Unclassified Library	1
ELDR 1. Ultaru, IMPLEEX OIL		Connection Offices	
Commander		Commanding Officer Naval Coastal Systems Laboratory	
Naval Air Systems Command		Panama City, Florida 32401	
Jefferson Plaza #1		Attn: Unclassified Library	1
1411 Jefferson Davis Highway	_		_
Arlington, Virginia 20360	1	Commanding Officer	
Commander		Naval Underwater Systems Center	
Naval Sea Systems Command		Newport Laboratory	
National Center #2		Newport, Rhode Island 02840 Attn: Unclassified Library	1
2521 Jefferson Davis Highway		ACCII. ORCIOSSITIEU CIDIELY	•
Arlington, Virginia 20362		Commander	
Attn: SEA 63R	1	David W. Taylor Naval Ship Research	
63Y	1	and Development Center	
Commanding Officer		Bethesda, Maryland 20084	1
Fleet Numerical Weather Central		Attn: Dr. M. Sevik	
Monterey, California 93940		Superintendent	
Attn: Mr. Paul Stevens	1	Naval Postgraduate School	
Dr. D.R. McLain (NMFS)	1	Monterey, California 93940	1
Defense Documentation Center			·
Defense Documentation Center Cameron Station		Superintendent	
Alexandria, Virginia 22314	12	U.S. Naval Academy	
		Annapolis, Maryland 21402 Attn: Library	1
		neem cautely	
Commander		Commanding Officer	
Naval Ocean Systems Center		Naval Intelligence Support Center	
Department of the Navy San Diego, California 92132		4301 Suitland Road	
Attn: Dr. Daniel Andrews	1	Washington, D.C. 20390	-
Dr. Dean Hanna	i	Attn: NISC 20	1
Mr. Henry Aurand	i	Director	
Dr. Harry A. Schenck	1	Applied Physics Laboratory	
		University of Washington	
		1013 North East 40th Street	
		Seattle, Washington 98105	
		Attn: Dr. T.E. Ewart	1
Y -		Dr. M. Schulkin	1

Addressee	No. of Copies	Addressee	No. of Cop.
Applied Research Laboratories		Hydroscoustics, Inc.	
University of Texas at Austin		321 Northland Ave.	
P.O. Box 8029		P.O. Box 3818	
10000 FM Road 1325		Rochester, New York 14610	1
Austin, Texas 78712		Institute for Acoustical Research	
Attn: Dr. Loyd Hampton Dr. Charles Wood	i	Mismi Division for the Palisades	
DI. CHALLES HOOG	· ·	Geophysical Institute	
Atlantic Oceanographic and		615 South West 2nd Avenue	
Meteorological Laboratories		Mismi, Florida 33130	
· 15 Rickenbacker Causeway		Attn:/ Mr. M. Kronengold	1
Miami, Florida 33149		Dr. J. Clark	1
Attn: Dr. John Proni	1		
		Institute of Geophysics and Planetary	
Bell Telephone Laboratories		Physics	
1 Whippany Road		Scripps Institute of Oceanography	
Whippeny, New Jersey 07981		University of California	
Attn: Dr. Bruce Bogart	1	La Jolla, California 92093 Attn: Dr. W. Hunk	•
Dr. Peter Hirsch		Mr. J. Spiesberger	
Bolt, Beranek, and Newman, Inc.		ur. o. spresoerger	•
50 Moulton Street		Jaycor Incorporated	
Cambridge, Massachusetts 02238		205 South Whiting Street	
Attn: Dr. K. L. Chandiramani	1	Suite 607	
		Alexandria, Virginia 22304	
Chase, Inc.		Attn: Dr. S. Adams	1
14 Pinckney Street			
Boston, Hassachusetts 02114		Messachusetta Institute of Technology	
Attn: Dr. Devid Chase	1	Acoustics and Vibration Laboratory	
D- D- Id Middlehan		70 Messachusetta Avenue Room 5-222	
Dr. David Middleton 127 East 91st Street		Cambridge, Massachusetts 02139	
New York, New York 10028	1	Attn: Professor Patrick Leehey	1
How fork, Hew fork 10020	•		•
Duke University		Palisades Sofar Station	
Department of Electrical Engineering		Bermuda Division of Palisades	
Durham, North Carolina 27706		Geophysical Institute	
Attn: Dr. Loren Nolte	1	FPO New York 09560	_
		Attn: Mr. Carl Hartdegen	1
General Electric Company		Polar Passarch Laboratory	
Heavy Military Electronic Systems		Polar Research Laboratory 123 Santa Barbara Avenue	
Syracuse, New York 13201 Attn: Mr. Don Winfield	1	Sante Barbara, California 93101	
ACCIII FR. SOII WIIII ICIU	•	Attn: Mr. Beaumont Buck	1
- General Electric Company			•
P.O. Box 1088		Research Triangle Institute	
Schenectady, New York 12301		Research Triangle Park	
Attn: Dr. Thomas G. Kincmid	1	Durham, North Carolina 27709	
		Attn: Dr. S. Huffman	1
Gould, Incorporated		December Calibratic Public to	
Chesapeake Instrument Division		Rensselser Polytechnic Institute	
6711 Baymeadow Drive Glen Burnie, Maryland 21061		Troy, New York 12181 Attn: Dr. Helvin J. Jacobson	
Attn: Dr. O. Lindemann	1	Access of the Tall of Decoupon	
		Science Applications, Inc.	
		8400 Westpark Drive	
G R Associates, Inc.		McLean, Virginia 22102	
10750 Columbia Pike		Attn: Dr. P. Tatro	
Suite 602			
Silver Spring, Maryland 20901		S.D.P. Inc.	
Attn: Dr. Sheldon Gardner Dr. Frank Rees		15250 Ventura Boulevard	
VII TIMIN NEGO		Suite 518 Sherman Oaks, California 91403	
Hughes Aircraft Company	16	Attn: Dr. H. A. Besin	1
P.O. Box 3310			•
Fullerton, California 92634			
Attn: Hr. S. W. Autrey	1		

Addressee	No. of	Copies
Texas Instruments, Inc. 13500 North Central Expressway Dallas, Texas 75231 Attn: Mr. Charles Black	1	
Underwater Systems, Inc. 8121 Georgia Avenue Silver Spring, Maryland 20910 Attn: Dr. M. Weinstein	1	
University of Miami Rosenstiel School of Marine and Atmospheric Sciences 4600 Rickenbacker Causeway Hiami, Florida 33149 Attn: Dr. H. DeFerrari	1	
University of Michigan Department of Aerospace Engineering, North Campus Ann Arbor, Michigan 48109 Attn: Dr. W. W. Wilmarth		
University of Michigan Cooley Electronics Laboratory Ann Arbor, Michigan 48105 Attn: Dr. T. G. Birdsall		
University of Rhode Island Department of Electrical Engineering Wakefield, Rhode Island 02881 Attn: Dr. Donald Tufts	1	
Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543 Attn: Dr. Paul McElroy Dr. R. Spindel	1	