Simple Linear Regression [MCQ] (Version : 0)

TEST
Correct Answer
Answered in 86.7 Minutes
Question 1/8
In the equation below, what does _p_ represent?
y = px + q
— n is the slope or gradient of the linear
p is the slope, or gradient, of the linear model.
p is the y-intercept of the linear model.
p_ is the x-intercept of the linear
model.
Question 2/8
In the equation below, what does _q_ represent?
y = px + q
q is the slope, or gradient, of the linear
model.

q is the x-intercept of the linear model.

q is the y-intercept of the linear model.

q is an unknowr	n quantity.
Question 3/8	
What is true about the slo y = 4x + 3	ppe of the function below?
For an increase of variable, y-increas	
For an increase of variable, y-increase	
The x-variable has relationship with	
When the value or y-variable will be e	f the x-variable is 0, the equal to 2
Question 4/8	
What is true about the fur	nction below?
y = 2x + 3	
	x-variable by 2 units, increase by 1 unit.
When the value of y-variable will be e	f the x-variable is 0, the equal to 3.
When the value of y-variable will be e	f the x-variable is 2, the equal to 0.
The y-variable is a	always 3 units greater

than the x-variable.	
Question 5/8	
If we observe a point (3, 5.5), what is the residual (no model below?	ot the error) of this observation, with respect to the
y = 2x + 3	
3.5	
-3.5	
-9.0	
9.0	

Question 7/8

Least squares is a method of fitting a regression line which is robust (i.e: safe from) outliers.

Question 8/8

Refer to the figure below. A simple linear regression would be an appropriate method to model the data shown on this scatter plot

