MA1014 Probability and Queueing Theory

Unit I

(Probability and Random Variables)

1. The Random variable which can take infinite number of values in an interval is			
	(a) Random Variable (b) Continuous R.V (c) Discrete R.V (d) Range	space Ans: (b)	
2.	The conditions satisfied by the pdf are		
	(a) $p(x) \ge 0 \& \sum p(x) = 1$ (b) $f(x) \ge 0 \& \int_{-\infty}^{\infty} f(x) dx = 1$		
	(c) $p(x) \le 0 \& \sum p(x) = 0$ (d) $f(x) \le 0 \& \int_{-\infty}^{\infty} f(x) dx = 1$		
3.	The cumulative distribution function $F(x)$ is a function of X . (a) Increasing (b) non- increasing (c) non- decreasing (d) decreasing	Ans: (b)	
4.	If X is a continuous R.V, then $\frac{d}{dx}F(x) = f(x)$ at all points here F(x) is—	. ,	
	(a) integrable (b) Constant (c) 1 (d) Differentiable	Ans: (d)	
5.	The value of 'k' from the following table is		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A (-)	
	(a) 1 (b) $\frac{1}{10}$ (c) $\frac{1}{15}$ (d) $\frac{2}{3}$	Ans: (c)	
6.	From the above table the value of $P(X<2)$ is		
	(a) 1 (b) $\frac{1}{15}$ (c) $\frac{1}{2}$ (d) $\frac{1}{30}$	Ans: (c)	
7.	The value of $P(1/2 X < 2/3)$ from the above table is		
	(a) 0.5 (b) ∞ (c) undefined (d) 1	Ans: (c)	
8.	The Relation between Variance and Standard deviation is (a) $var = S.D^2$ (b) $var = \sqrt{S.D}$		
	(c) $var - S.D = 0$ (d) $var = \sqrt[2]{S.D}$	Ans: (a)	
9.	The Relation between Covariance and Mean is (a) $cov(X,Y) = E(XY) - E(X)E(Y)$		
	(b) $cov(X,Y) = E(XY) + E(X)E(Y)$ (c) $cov(X,Y) = E(XY) - (E(X)E(Y))^2$		
	(d) $cov(X,Y) = E(XY)^2 - (E(X)E(Y))^2$	Ans: (a)	

10. The value of k if the pdf $f(x) = kx^2e^{-x}$, $x \ge 0$ is -----

(c) 0

(d) 1

Ans: (a)

 $(b) \infty$

(a) 0.5

	tween Variance a $(E(x))^2 (b)$ $(x))^2 - E(x^2) (d)$	VarX = E($x^2) - (E(x))^2$		Ans: (b)
12. The functions of	$f R V Y = \sigma(x)$) is given by	ı,		
	$\frac{dx}{dy} \qquad \text{(b) } h(x)$,		
	$\frac{dy}{dy}$	dy			
(c) $h(y) = f(x)$	$\frac{dy}{dx}$ (d) $h(x)$	$= f(y) \left \frac{dy}{dx} \right $			Ans: (a)
13. The generalized	-	-	-		
	$[k\sigma] = 1 - \frac{1}{k^2} (b)$				
(c) $P[X - \mu] < k$	$[k\sigma] = \frac{1}{k^2}$ (d)	$P[X - \mu >$	$k\sigma$]= $\frac{1}{k^2}$		Ans: (a)
14. The conditions	satisfied by the p	omf is			
(a) $p(x) \ge 0 \& \sum_{x = 0}^{\infty} x^{2}$	$\sum p(x) = 1 \text{(b)}$	$f(x) \ge 0 \&$	$\int_{0}^{\infty} f(x)dx = 1$		
(c) $p(x) \le 0 \& \sum_{x = 0}^{\infty} \frac{1}{x} e^{-x}$	$\sum p(x) = 0 (d) j$	$f(x) \le 0 \& \int_{-\infty}^{\infty}$	$\int_{0}^{\infty} f(x)dx = 1$		Ans: (a)
15. If $Var(X) = 4$, then Var(4X+5)) is			
(a)89 ((b) 69	(c) 64	(d) 9		Ans(c)
16. If X and Y are in	ndependent rando	m variables	with Var 2 and	3 respectivel	y, Then
Var(3X+4Y) is					
(a) 66 (b)	7 (c) 25	(d) 18			Ans: (a)
17. If X and Y are in	ndependent rando	m variables	with Var 2 and	3 respectivel	y, Then
Var(3X - 4Y) is					
(a) 66 (b)	7 (c) 25	(d) 18			Ans: (a)
18. If $E(X) = 3$, then 1	E(3X+4) is				
(a) 15	(b) 13	(c) 9	(d) 10		Ans: (b)
19. Var(aX) is					
(a) aVar(X)	(b) $a^2 Var(X)$	(c)	Var(X)	(d) 0	Ans: (b)
20. $Var(aX+b) =$					
(a) $aVar(X)+b$	(b) a ² Var	(X)	(c)aVar(X)	(d)Var(X)	Ans: (b)

Unit II

(Theoretical Distributions)

1. A discrete R.V	X has moment gene	erating function M	$f_{x}(t) = (\frac{1}{4} + \frac{3}{4} e^{t})^{5}$. The	n E(X) and Var(X)		
is						
a) $\frac{15}{4}$, $\frac{15}{4}$	b) $\frac{15}{4}$, $\frac{15}{16}$	$c)\frac{1}{4},\frac{5}{4}$	$d)\frac{1}{4},\frac{3}{4}$	Ans: (b)		
2. Mean and Varia	nce of Binomial Di	stribution is				
a) np, npq	b) nq, n/q	c) pq , p+c	q = 1, d) $p+q,p-q$	Ans: (a)		
=	e, 9 ships out of 10 a Tely out of 150 ships		port then the variance of	the number of		
a) 135	b) 13.5	c) 1.35	d) 12	Ans: (b)		
4. If X and Y are in Poisson variate with		n variates with par	ameters λ_1 and λ_2 , then	X+Y is also a		
a) $\lambda_1 + \lambda_2$	b) $\lambda_1 - \lambda_2$	c) λ_1/λ_2	d) λ_1 . λ_2	Ans: (a)		
5. Let X be a rando 90P(X=6), then the		ng Poisson distrib	oution such that P(X=2) =	= 9P(X=4) +		
a)1	b) 2	c)0	d)5	Ans: (a)		
6. If X is a random	n variable with geor	metric distribution	, then $P[X > s+t / X > s]$	=		
a) $P[X > s]$	b) P[X > t]	c) $P[X \le t]$	d) $P[X \le s]$	Ans: (b)		
7. If the probabilit the first success is	-	h trial is 1/3 , then	the expected number of	trials required for		
a) 2/3	b) 3	c) 2	d)1/3	Ans: (b)		
8. A typist types 2 letters errorneously for every 100 letters. Then the probability that the tenth letter typed is the first letter with error is						
a) 0.0167	b) 2.335	c) .0001	d) 0.1	Ans: (a)		
9. Four coins are	9. Four coins are tossed simultaneously the probability of getting 2 heads is					
a) 3/4	b)11/16	c)3/8 d))3	Ans: (c)		
10. Poisson distrib	10. Poisson distribution is a limiting case of					
a)Binomial d	listribution	b) ur	niform distribution			
c) Geometric	distribution	d) No	ormal distribution.	Ans: (a)		

a)\lambda	b) λ^2	c) λ^3	d) pq		Ans: (a)	
12. If the moment generating function of the random variable is $e^{4(e^t - 1)}$, Find $P(X = \mu + \sigma)$						
where μ	where μ and σ^2 are the mean and variance of poisson					
a) 6!	b) $\frac{e^{-4}4^6}{6!}$	c) =	⁶ 6 ⁴ 4!	d) = 664 4!	Ans: (b)	
13. Variance	of Exponential dis	tribution is				
$a)\frac{1}{\lambda}$	$b)\frac{1}{\lambda^2}$	$c)\frac{1}{\sqrt{\lambda}}$	d)\lambda		Ans: (b)	
14. Memory	less property is sati	sfied by				
a) Expo	nential distribution	b) Un	iform distribut	ion	C) Normal distribution	
d) Binor	mial distribution				Ans: (a)	
15. Moment	generating function	of exponentia	l disturibution	is		
16. All odd o	order moments of a	Normal distrib	oution about its	s mean are		
a) Zero	b) one	c) infinity	d)	uniform	Ans: (a)	
17. Total are	a under the standar	d normal curve	e is equal to			
a)0	b) 1	c)2	d)∞		Ans: (b)	
18. If for a po	oisson variate, E(X	2) = 6, what is	E(X)			
a)1	b) 2	c) 6	d)3		Ans: (b)	
19. If X has uniform distribution in (-3,3) Then P($ x-2 < 2$) IS						
a) 0	b)1	c)1/2 d)	2		Ans: (c)	
20. Which of the following distribution satisfies Memoryless Property?						
a) Binor	mial distribution	b) Poisson d	istribution	c) Geom	etric distribution	
d) Norm	nal distribution.				Ans: (c)	

11. The mean and variance of poisson distribution is

UNIT III

TESTING OF HYPOTHESES

1. If θ_0 is a population parameter and θ is the corresponding sample statistic and if we set up the

null hypotheses H_0 : $\theta = \theta_0$ then the right-tailed alternative hypotheses is

(a) H_1 : $\theta = \theta$	Q_0 (b) $H_1: \theta >$	θ_0 (c)	$H_1: \theta < \theta_0$	(d) H_1 : θ	$\theta \neq \theta_0$ Ans: (b)	
2. The size of large sample is :						
(a)Exact	(b) Less than 30	(c) Greater th	an 30	(d) Equal to 30	Ans: (c))
3. The statistic to	o test the significar	nce difference b	etween sam	ple proportion	and population	
proportion is	3					
(a) $\frac{p-P}{\sqrt{\frac{p}{n}}}$	(b) $\frac{p}{V}$	$\frac{p+P}{pQ}$	(c) $\frac{p-P}{\sqrt{\frac{pQ}{n}}}$	(d)	$\frac{p-P}{\sqrt{\frac{Q}{n}}}$ Ans: (c)	
4. The statistic to	test the significan	ce difference be	etween the s	ample mean an	d population mean	is
(a) $Z = \frac{\bar{X}}{\bar{X}}$	$\frac{-\mu}{\sigma}$ (b) $Z = \sqrt{n}$	$\frac{\bar{X} + \mu}{\frac{\sigma}{\sqrt{n}}}$	(c) $Z = \frac{\bar{X}}{\frac{\sigma}{\sqrt{n}}}$	(d) .	$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{n}}$	
					Ans: (a)	
5. If σ_1 and σ_2 are equal and not known then the test statistic is						
(a) $Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_2} + \frac{s_2^2}{n_2}}}$	$\frac{\bar{X}_{2}}{\frac{s_{2}^{2}}{n_{1}}}$ (b) $Z = \frac{\bar{X}_{2}}{\sqrt{\frac{s_{2}^{2}}{n_{1}}}}$	$\frac{\overline{\zeta_1 + \overline{\chi_2}}}{\overline{s_1^2} + \frac{\overline{s_2^2}}{n_1}}$	(c) $Z = \frac{\overline{X_1}}{\sqrt{\frac{s_1^2}{n}}}$	$\frac{1 - X_2}{\frac{2}{2} - \frac{S_2^2}{n_1}}$	(d) $Z = \frac{\bar{X_1} - \bar{X_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	
					Ans: (a)	
6. The sample is said to be small if						
(a) $n > 30$	(b) $n > 100$	(c) n < 0	60	(d) $n \le 30$	Ans: (d)	
7. The t – distribution is used to test the significance of the difference between						
(a)Mean of t	wo small samples	(b)	Variance of	two small sam	ples	
(c) Mean of	two large samples	(d)	Variance of	f two large sam	ples Ans: (a)	
8. If $n_1 = n_2 = n$, then the degrees of freedom to test mean of the two small samples is						

(b) $n_1 + n_2 + 2$ (c) 2n - 2

(a) $n_1 + n_2 - 2$

(d) 2n + 2

Ans: (c)

9. The use of F-di	istribution is to test th	ie		
(a) Mean of tw	wo small samples	(b) Variance	of two small samples	
(c) Mean of t	wo large samples	(d) Variance	e of two large samples	Ans: (b)
10. The value of to	est statistic F is			
(a) $F > 1$	(b) F < 1	(c) $F = 1$	(d) F = 0	Ans: (a)
11. The statistics t	o test the significance	e difference betw	reen means of two sam	ples is
$(a) \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}}}$	$\frac{\overline{\epsilon_2}}{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$	$(b) \qquad \sqrt{\frac{n_1 s_1^2 + n_2^2}{n_1 + n_2^2}}$	$\frac{\overline{x_1} + \overline{x_2}}{+n_2 s_2^2} + \frac{1}{n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2} \right)$	
(c) $\frac{\overline{x_1}}{\sqrt{\binom{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}}}$	$\frac{\overline{x_2}}{\left(\frac{1}{n_1} - \frac{1}{n_2}\right)}$	$(d) \qquad \frac{\overline{x_1}}{\sqrt{\left(\frac{n_1 s_1^2}{n_1 + 1}\right)^2}}$	$\frac{\overline{x_2}}{+n_2 s_2^2}$ $\frac{n_2 - 2}{n_2 - 2}$	Ans:
(a)				
12. Chi square dis	tribution is used to			
(a) To test the	mean of two small sa	amples	(b) To test the mean of	of two large samples
(c) To test the	goodness of fit	((d) To test the variance	e of two populations
				Ans: (c)
13. In Chi square	test, the number of o	bservations in th	ne sample is	
(a) ≥ 50	$(b) \le 50$	(c) 10	(d) 100	Ans: (a)
14. In Chi square	test, the condition to	choose small n is	S	
(a) 4≤ n	(b) $4 \le n \le 16$	(c) n≥16	(d) n≤4	Ans: (b)
15. The statistic of	f chi square test is			
(a) $\chi^2 = \sum_{i=1}^{n} \frac{1}{i}$	$\frac{O_i - E_i)^2}{E_i}$	(b) ;	$\chi^2 = \sum \frac{(o_i - E_i)^2}{E_i^2}$	
(c) $\chi^2 = \sum (C$	$O_i - E_i$	(d) χ	$\chi^2 = \sum \frac{(o_i - E_i)^2}{E_i}$	Ans: (a)
16. The number of	f degrees of freedom	of Chi square te	est is	
(a) n-2	(b) n-3	(c)n-4	(d) n-1	Ans: (d)

17. The value of χ^2 for 2 x 2 contingency table is

(a)
$$\chi^2 = \frac{N(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$$
 (b) $\chi^2 = \frac{N(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$ (c) $\chi^2 = \frac{N(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$ (d) $\chi^2 = \frac{N(ad-bc)^2}{(a-b)(c+d)(a+c)(b+d)}$ Ans: (c) Unit-IV

(Principles of Queueing theory)

1. In Queueing system,the Number of arrivals per unit time always follows _____ distribution.

(a) poisson (b) exponential (c) Binomial d)Normal Ans: (a)

2. In the model M/M/1, the first M represents _____ a) server b) arrival c) no. of servers d)departure Ans: (b)

3. In the model M/M/1, then 1 represents _____ a) single server b) multiple server c) single arrival d) multiple arrival Ans: (a)

4. The average waiting time of a customer in the (M/M/1):($\infty/F1FO$) system is

a) $\frac{1}{\mu - \lambda}$ b) $\frac{\lambda}{\mu - \lambda}$ c) $\frac{\mu}{\mu - \lambda}$ d) $\frac{\mu}{\mu + \lambda}$ Ans: (a)

5. Mean arrival rate is denoted by

a) $\frac{1}{\lambda}$ b) λ c) μ d) $\frac{1}{\mu}$ Ans: (b)

7. The number of customers in the system in M/M/1 model is

a) $\frac{1}{\mu - \lambda}$ b) $\frac{\lambda}{\mu - \lambda}$ c) $\frac{\mu}{\mu - \lambda}$ d) $\frac{\mu}{\mu + \lambda}$ Ans: (b)

8. The probability that the arrival enter the service without wait is

a) $1 + P(arrival has to wait)$ b) $P(arrival has to wait) - 1$ c) $1 - P(arrival has to wait)$ d) $2ero$ Ans: (c)

9. Average number of customer in the system when $\rho = 1$ in (M/M/1) :(K/FIFO) is ______ and _____ a) K/2 b) $2K$ c) K d) 0 Ans: (d)

10. The number of customer in the system are always _____

a) mutually exclusive		b) mutually exhaustive	
c) mutually exclusive and exhaust	ive	d) unique	Ans: (c)
11. The relation between $E(N_s)$ and $E($	N _q) is		
a) $E(N_s) = E(N_q) + \frac{\lambda}{\mu}$	b) $E(N_s) = E(N_q)$	$-\frac{\lambda}{\mu}$	
c) $E(N_s) = E(N_q) + \frac{1}{\mu}$	d) $E(N_s) = E(N_q)$	$+\lambda\mu$	Ans: (a)
	UNIT –V		
	(MARKOV CH	AIN)	
1. A discrete parameter markov proce	ess is called a		
(a)Markov process (b) station	ary process (c) random process (d) M	Iarkov chain
			Ans: (d)
2. A square matrix, in which the sum	of all the elemen	ts of each row is one is called	a
(a)unitary matrix (b) diagonal m	atrix (c) stocha	astic matrix (d) skew matrix	Ans: (c)
3. A stochastic matrix P is said to be re	egular if all the en	tries of P ^m are	
(a)negative (b) positive (c)	semi positive	(d) either positive or negative	ve Ans: (b)
4. If $\pi = (\pi_1, \pi_2,, \pi_n)$ is the steady starting square matrix P, then	te distribution of	the chain whose tpm is the n ^t	^h order
(a) $\pi P = \pi$ (b) $\pi \mu = \pi$	(c) $\pi A = n$	(d) $\pi P = P$.	Ans: (a)
5. The conditional probability $P[X_n = a]$	$a_j/X_{n-1} = a_i$] is calle	d	
(a) second tpm (b)one-step transiti	on probability (c)) homogeneous (d) n-step tpm	n Ans:(b)
6. If the one-step tpm does not depend called	on the step ie. p_i	$p_{ij}(n-1,n) = p_{ij}(m-1,m)$ the mark	xov chain is
(a) stationary chain (b) di	screte chain	(c) homogeneous markov	chain
(d) regular markov chain			Ans: (c)
7. The conditional probability $P[X_n =$	$a_j/X_0=a_i$] is called	1	
(a) second tpm (b)one-step tpm (c	e) homogeneous (d) n-step transition probabilit	y Ans:(d)
8. If P is the tpm of a homogeneous M	Iarkov chain, the	n the n-step tpm $P^{(n)} = P^n$ is k	nown as
(a) probability theorem	(b) Chapman- K	olmogorov Theorem	
(c) Markov theorem	(d) Chapman th	eorem	Ans: (b)

9. State i of a Marke	9. State i of a Markov chain is said to be with period d_i if $d_i > 1$				
(a) periodic	(b) not periodic	(c) aperiodic	(d) biperiodic	Ans: (a)	
10. State i of a Mar	kov chain is said to	be with period of	d_i if $d_i = 1$		
(a) periodic	(b) not periodic	(c) aperiodic (d) biperiodic	Ans: (c)	
11. Every state can	be reached from ev	ery other state, the	Markov chain is said to be		
(a) homogeneou	us (b) reducible	(c) irreducible	(d) recurrent	Ans: (c)	
12. A non null pers	istent and aperiodic	state is called			
(a) markov	(b) irreducible	(c) recurrence	(d) ergodic	Ans: (d)	
13. A state i is said	to be if the ret	urn to state i is certa	in.		
(a) persistent	(b) non persistent	(c) ergodic	(d) periodic	Ans:(a)	
14. A state i is said	to be if the ret	urn to state i is unce	rtain.		
(a) persistent	(b) non persisten	t (c) transient	(d) periodic	Ans: (c)	
15. A state i is said	to be if the me	an recurrence time	ii is finite.		
(a) persistent	(b) non persistent	(c) transient	(d) non null persistent	Ans:(d)	
16. A state i is said	to be if the me	an recurrence timeµ	$_{ii}=\infty$.		
(a) persistent	(b) non persistent	(c) null persisten	t (d) non null persistent	Ans:(c)	
17. If a markov cha	in is finite irreducib	le, all its states are			
(a) persistent	(b) null persister	et (c) non null pe	ersistent (d) recurrent	Ans: (c)	
18. A Markov chair	n is completely speci	ified when			
(a) intial probability distribution (b) tpm (c) absorbing state (d) both a & b are given Ans:(d)					
19.If $\pi P = \pi$, where $P = \begin{pmatrix} 0 & 1 \\ 1/2 & 1/2 \end{pmatrix}$ then values of (π_1, π_2) is					
(a) (1/3,2/3)	(b) (1/2,1/2)	(c) (2/3,1/3)	(d)(0,1)	Ans:(a)	
20.If the tpm of a m	narkov chain is P =	0.1 0.5 0.4 0.6 0.2 0.2 0.3 0.4 0.3	(d) $(0,1)$ find $P[X_1 = 3/X_0 = 2]$.		
(a) 0.1	(b) 0.2	(c) 0.4	(d) 0.6	Ans:(b)	
