Anshul Jain

in anshul-jain ♀ Anshul-Jain ➡ anshuljain6598@gmail.com └ +1 (206) 600-1808 ♀ Boulder, CO, USA

OBJECTIVE

Driven and hardworking professional with a strong foundation in Engineering Mathematics, Physics, and System Design. As a Graduate Aerospace Engineer and passionate educator, I am eager to take on new challenges that allow me to utilize my skills in strategic planning, training and development, relationship building, and project management. Proven ability to lead cross-functional teams, mentor peers, and simplify complex technical concepts into accessible lessons and hands-on demonstrations. Committed to showing up as my authentic self, following my passions, and adding meaningful value to every role I undertake. Seeking teaching opportunities where I can use my background and expertise to inspire curiosity, analytical thinking, and a lifelong love for learning in students.

EDUCATION

• University of Colorado, Boulder, Master's in Aerospace Engineering Sciences USA — Aug 2023 – Dec 2025

• R. V. College of Engineering, Bengaluru, Bachelor's in Aerospace Engineering

India — Aug 2019 - May 2023

Core Competencies

- Mathematics: Calculus, Linear Algebra, Matrix Algebra, Eigenvalue Analysis, Differential Equations, State-Space Modeling, System Identification, Curve Fitting, Transfer Function Analysis, Optimization, LQR and Feedback Design, Probability, Statistics, Gaussian Transformations, and Numerical Simulation.
- Physics: Rigid-Body Dynamics, Rotational and Translational Motion, Fluid Mechanics, Aerodynamics, Control Systems, Frequency & Time Domain Methods (Bode, Nyquist, Stability Margins), and System Stability Analysis.
- Instructional Skills: Curriculum Planning, Lesson Preparation, Classroom Facilitation, Student Guidance, Academic Support, and Educational Communication.
- Technical Tools: MATLAB, Simulink, Python, C, C++, JavaScript, R, VS Code, Git, GitHub, Canvas.

TEACHING EXPERIENCE

Teaching Assistant

University of Colorado Boulder

Aug 2023 – Oct 2025

Boulder, CO

- Taught undergraduate laboratories including EBIO 1110: Biology and Society, and EBIO 1230/1240: General Biology, guiding 50+ students through experiments that connected theoretical and real-world biological and mathematical principles.
- Developed and implemented lesson plans, lab manuals, and problem sets that simplified complex concepts into intuitive, hands-on learning experiences.
- Trained students on lab safety procedures and proper operation of biological laboratory equipment, ensuring a safe and productive environment.
- Communicated regularly with students and faculty to coordinate testing accommodations, address course-related concerns, and resolve academic or logistical issues.
- Maintained and updated course Canvas pages, announcements, and discussion boards to build a strong virtual learning presence and improve student engagement.
- Monitored student performance and participation through grade tracking and feedback systems, identifying learners needing additional support or guidance.
- Gathered student feedback through mid-semester check-ins and end-of-term evaluations to assess teaching effectiveness and improve course delivery.
- Collaborated with faculty and departmental staff to enhance instructional quality, ensure accessibility compliance, and promote a positive learning culture.

Mentor, Recovery Subsystem Engineer

Team Antariksh, R. V. College of Engineering

Oct 2019 – Aug 2022 Bengaluru, India

- Mentored junior team members in the principles of **aerodynamics**, **fluid mechanics**, **and system modeling** by connecting theory with real-world rocketry applications.
- Guided students through the design and analysis of **dual-parachute recovery systems**, explaining concepts such as drag force, lift generation, pressure distribution, and momentum transfer.
- Led workshops demonstrating how parameters like parachute diameter, mass, and air density affect terminal velocity and stability during descent.
- Supervised CFD and experimental tests to validate theoretical results, helping students interpret data and refine their understanding of physical principles.
- Developed visual explanations and calculation templates to enhance comprehension of recovery dynamics and stability criteria.
- o Derived analytical relationships between drag coefficient and Reynolds number to assess performance under varying flow regimes.
- Documented design iterations, test results, and analytical findings in technical reports to support subsystem validation and team knowledge retention.
- Encouraged teamwork and scientific reasoning by fostering a collaborative environment focused on applying physics to practical engineering problems.

Spacecraft Attitude Control System [Link]

University of Colorado Boulder

 $\begin{array}{c} {\rm Jan~2025-May~2025} \\ {\it Boulder,~CO} \end{array}$

- Analyzed spacecraft mockup frequency-response data to derive mathematical models representing rotational dynamics through curve fitting, transfer-function formulation, and Bode/Nyquist interpretation.
- Translated frequency-domain characteristics into state-space representation to study system stability, controllability, and observability using matrix algebra.
- Designed and optimized feedback and observer controllers via pole placement and LQR principles, quantifying system behavior through eigenvalue analysis, damping ratios, and bandwidth metrics.
- Simulated time-domain responses under step and sinusoidal inputs to illustrate control trade-offs between response speed, actuator saturation, and dynamic stability.

Linear Control Design – Multirotor Dynamics [Link]

Aug 2024 - Dec 2024

Boulder, CO

University of Colorado Boulder

- Modeled a six-state symmetric quadrotor system in MATLAB, deriving state-space matrices A, B, C from small-angle linearized translational and rotational dynamics.
- Evaluated controllability and observability via Gramian integration and rank tests, confirming full control and measurement observability under the chosen model.
- Applied pole-placement to design state-feedback gains for desired closed-loop eigenvalues, then compared with LQR design minimizing a quadratic cost on states and control effort.
- Formulated and compared multiple Luenberger observers (slow, equal, fast) by placing observer poles via transpose-based technique and interpreting convergence trade-offs.
- Simulated closed-loop system (controller & observer) under zero and nonzero initial conditions, analyzing state estimation error dynamics, transient response, and energy cost of actuation.

Cooperative Air–Ground Robot Localization Using Kalman Filters [Link]

Aug 2024 – Dec 2024

Boulder, CO

- University of Colorado Boulder
- Developed and compared centralized and decentralized localization frameworks using Linear Kalman Filter, Extended Kalman Filter, and Unscented Kalman Filter for multi-robot systems sharing range and position measurements.
- Linearized nonlinear kinematics and measurement equations to derive Jacobian matrices and prediction/update steps, propagating covariance in the face of system and sensor noise.
- Implemented filter tuning, cross-correlation management, and covariance consistency checks across multiple filter types to evaluate estimation accuracy and robustness.
- Simulated ground and aerial vehicle trajectories and assessed performance under communication constraints, measurement delays, and sensor noise via Monte Carlo experiments.

Mathematical Image Modeling [Link]

May 2022 – June 2022 Bengaluru, India

R. V. College of Engineering

ibutions using Caussian

- Developed mathematical models in MATLAB to animate images by transforming pixel brightness distributions using Gaussian functions.
- Applied concepts of probability, normalization, and curve fitting to analyze the effect of mean and variance on image intensity patterns.
- Explored correlations between spatial frequency content and visual perception to interpret image transformations mathematically.
- Collaborated with peers to evaluate numerical results and optimize model parameters for smoother intensity transitions.

RESEARCH EXPERIENCE

Co-Author, 73rd International Astronautical Congress [Link]

Nov 2021 – Sept 2022

Team Antariksh

Bengaluru, India

• Vageesha S, Darpan B, Trisha A, Anshul Jain, Greeshma A, Rithwik R, "Study of Drag Characteristics of a Parachute for landing on planets and moons with different atmospheric conditions and its optimization using gases with varying properties".

AWARDS AND RECOGNITION

SAARTHAKA Trust Scholarship

Jan 2020

R. V. College of Engineering

Bengaluru, India

 $\circ \ \ {\rm Awarded} \ \ {\rm for} \ \ {\rm securing} \ \ {\rm \bf Rank} \ \ {\rm \bf 1} \ \ {\rm \bf in} \ \ {\rm \bf Aerospace} \ \ {\rm \bf Engineering} \ \ ({\bf 2019}) \ \ {\rm among} \ \ {\rm all} \ \ {\rm first-year} \ \ {\rm students}.$

E-Summit Business Marathon – 1st Place

July 2022

R. V. College of Engineering

Bengaluru, India

 Ranked 1st out of 32 teams for developing a service-based transport solution addressing damaged road infrastructure in hilly regions during monsoon conditions.

Volunteer Experience

Emcee – Faculty Development Program (FDP)

May 2022

R. V. College of Engineering

Bengaluru, India

• Coordinated a 5-day FDP on Machine Learning applications in Aerospace Engineering, facilitating sessions, managing logistics, and ensuring smooth communication between faculty and participants.

Emcee – RSS Vishwa Sangh Shibir

Dec 2015

Rashtriya Swayamsevak Sangh

Indore, India

 Served as the Tamil-language Emcee for the international conference, engaging with delegates from 45+ countries after rapidly acquiring conversational proficiency in the language.

LANGUAGES

- English: Professional Proficiency
- Hindi: Native Proficiency