山东大学 计算机科学与技术 学院

计算机组成与设计 课程实验报告

学号: 202000130143 | 姓名: 郑凯饶 | 班级: 2020 级 1 班

实验题目:

节拍脉冲发生器时序电路实验

实验学时:2

实验日期:

2022-5-2

实验目的:

掌握节拍脉冲发生器的设计方法,理解节拍脉冲发生器的工作原理。

实验软件和硬件环境:

软件环境:

Quartus II 软件

硬件环境:

- 1. 实验室台式机
- 2. 计算机组成与设计实验箱

实验原理和方法:

(1) 连续节拍发生器电路设计

RST1 低电平将左起第一个 D 触发器 PRN 引脚置为有效,将其 D 置为"1"。之后 $T1^T4$ 在 CLK1 的输入脉冲作用下,周期性地轮流输出正脉冲。

(2) 单步节拍发生器电路设计

不同于连续电路,该电路使用或非门进行初始化,T1^{*}T4 均无输出时,或非门输入高电平。之所以称为单步调试电路,是因为脉冲不会周期性输出,T5 高电平输出与时钟脉冲进行或运算,使触发信号一直处于高电平。

实验步骤:

(1) 连续节拍发生器

连接电路原理图:

引脚分配:

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pair
A CK1	Input	PIN 90	6	B6 N0	PIN 90	2.5 V (default)	Second Second	8mA (default)	SIEW Kate	Differential Pair
RST1	Input	PIN_84	5	85 NO	PIN 84	2.5 V (default)		8mA (default)		
Out T1	Output	PIN_60	4	B4 N0	PIN 60	2.5 V (default)		8mA (default)	2 (default)	
out T2	Output	PIN_65	4	B4_N0	PIN 65	2.5 V (default)		8mA (default)	2 (default)	
out T3	Output	PIN_70	4	B4 N0	PIN 70	2.5 V (default)		8mA (default)	2 (default)	
out T4	Output	PIN_74	5	B5_N0	PIN_74	2.5 V (default)		8mA (default)	2 (default)	
< <new node="">></new>										

测试、调试:

进行仿真:

FPGA 平台测试:

键 8 为使能键, 时钟脉冲为 4Hz。

(2) 单步节拍发生器

连接电路原理图:

引脚分配和连续调试器相同。

测试、调试:

符合预期结果。

结论分析与体会:

这次实验我们开始尝试时序电路,通过时钟脉冲和触发器的组合,实现更为复杂的周期性的节拍信号输出。预期该实验电路会作为 CPU 时钟电路的一部分基础,期待后面进行完整 CPU 设计。