## Lista01Q02a

June 19, 2025

Lista 01

Victor Paiva Paulo Neto

```
Questões: 1, 2(e), 2(a), 2(g), 2(c), 2(i)
```

Escreva um programa e envie ao arquivo fonte ou um link do mesmo, o qual tenha como ponto de partida uma funcao a(n) que define o termo geral de uma sequ^encia numerica an = a(n) (use n como a variavel do programa), que sejam fornecidos dois n'umeros naturais nmin e nmax que definem um intervalo [nmim, nmax] para os indices "plotados" e que tenha duas opcoes exclusivas de execucao:

```
[1]: import matplotlib.pyplot as plt import math
```

```
[2]: #funcao que gera a sequencia numerica de termo geral a(n) 2(a)
def a(n):
return (n - 1) / (n + 1)
```

```
[3]: #difinição de nmin e nmax
nmin = int(input("Digite o nmin: "))
nmax = int(input("Digite nmax: "))
print(f"nmin: {nmin}, nmax: {nmax}")
```

nmin: 10, nmax: 200

opcao escolhida: b

```
[5]: valoresN = []
  valoresAn = []
  print(f"\n{'n':>5} {'a(n)':>10}")
  print("-" * 15)

for n in range( nmin, nmax +1):
    an = a(n)
```

```
print(f"{n:>5} {an:>10.6f}")
valoresN.append(n)
valoresAn.append(an)
```

| n<br>    | a(n)                 |
|----------|----------------------|
| 10       | 0.818182             |
| 11       | 0.833333             |
| 12       | 0.846154             |
| 13       | 0.857143             |
| 14       | 0.866667             |
| 15       | 0.875000             |
| 16       | 0.882353             |
| 17       | 0.888889             |
| 18       | 0.894737             |
| 19       | 0.900000             |
| 20       | 0.904762             |
| 21       | 0.909091             |
| 22       | 0.913043             |
| 23       | 0.916667             |
| 24       | 0.920000             |
| 25       | 0.923077             |
| 26       | 0.925926             |
| 27       | 0.928571             |
| 28       | 0.931034             |
| 29       | 0.933333             |
| 30       | 0.935484             |
| 31       | 0.937500             |
| 32       | 0.939394             |
| 33       | 0.941176             |
| 34       | 0.942857             |
| 35<br>36 | 0.944444             |
| 36<br>37 | 0.945946<br>0.947368 |
| 38       | 0.947308             |
| 39       | 0.950000             |
| 40       | 0.951220             |
| 41       | 0.952381             |
| 42       | 0.953488             |
| 43       | 0.954545             |
| 44       | 0.955556             |
| 45       | 0.956522             |
| 46       | 0.957447             |
| 47       | 0.958333             |
| 48       | 0.959184             |
| 49       | 0.960000             |
| 50       | 0.960784             |

- 51 0.961538
- 52 0.962264
- 53 0.962963
- 54 0.963636
- 55 0.964286
- 56 0.964912
- 57 0.965517
- 58 0.966102
- 59 0.966667
- 60 0.967213
- 61 0.967742
- 62 0.968254
- 63 0.968750
- 64 0.969231
- \_\_\_\_\_
- 65 0.969697
- 66 0.970149
- 67 0.970588
- 68 0.971014
- 69 0.971429
- 70 0.971831
- 71 0.972222
- 72 0.972603
- 73 0.972973
- 74 0.973333
- 75 0.973684
- 76 0.974026
- 77 0.974359
- 78 0.974684
- 79 0.975000
- 80 0.975309
- 81 0.975610
- 82 0.975904
- 83 0.976190
- 84 0.976471
- 85 0.976744
- 86 0.977011
- 87 0.977273
- 88 0.977528
- 89 0.977778
- 90 0.978022
- 91 0.978261
- 92 0.978495
- 93 0.978723
- 94 0.978947
- 95 0.979167
- 96 0.97938197 0.979592
- 98 0.979798

- 99 0.980000
- 100 0.980198
- 101 0.980392
- 102 0.980583
- 103 0.980769
- 104 0.980952
- 105 0.981132
- 106 0.981308
- 107 0.981481
- 108 0.981651
- 109 0.981818
- 0.981982 110
- 111 0.982143
- 0.982301 112
- 113 0.982456
- 114 0.982609
- 115 0.982759
- 116 0.982906
- 117 0.983051
- 118 0.983193
- 119 0.983333
- 120 0.983471
- 121 0.983607
- 122 0.983740
- 123 0.983871
- 124 0.984000
- 125 0.984127
- 126 0.984252
- 127 0.984375
- 128 0.984496
- 129 0.984615
- 130 0.984733
- 131 0.984848
- 132 0.984962
- 133 0.985075
- 134 0.985185
- 135 0.985294
- 136 0.985401
- 137 0.985507
- 138 0.985612
- 139 0.985714
- 140 0.985816
- 141 0.985915
- 142 0.986014
- 143 0.986111
- 144 0.986207
- 145 0.986301 146 0.986395

- 147 0.986486
- 148 0.986577
- 149 0.986667
- 150 0.986755
- 151 0.986842
- 152 0.986928
- 153 0.987013
- 154 0.987097
- 155 0.987179
- 156 0.987261
- 157 0.987342
- 158 0.987421
- 159 0.987500
- 160 0.987578
- 161 0.987654
- 162 0.987730
- 102 0.901130
- 163 0.987805164 0.987879
- 165 0.987952
- 166 0.988024
- 167 0.988095
- 168 0.988166
- 169 0.988235
- 170 0.988304
- 171 0.988372
- 172 0.988439
- 173 0.988506
- 174 0.988571
- 175 0.988636
- 176 0.988701
- 177 0.988764
- 178 0.988827
- 179 0.988889
- 180 0.988950
- 181 0.989011
- 182 0.989071
- 183 0.989130
- 184 0.989189
- 185 0.989247
- 186 0.989305
- 187 0.989362
- 188 0.989418
- 189 0.989474
- 190 0.989529
- 191 0.989583
- 192 0.989637
- 193 0.989691
- 194 0.989744

```
196
            0.989848
      197
            0.989899
      198
            0.989950
      199
            0.990000
            0.990050
      200
[6]: plt.figure(figsize=(8, 5))
     plt.plot(valoresN, valoresAn, 'bo-', label='a(n)')
     plt.xlabel('n')
     plt.ylabel('a(n)')
     plt.title('Gráfico da sequência')
     plt.grid(True)
```



## Limite:

195

0.989796

Como verificado, a sequencia possui limite e ele é igual a 1.

```
[7]: #funcao que verifica se o modulo da diferença entre o termo geral e o limite éu emenor ou igual a epsilon

def N_epsilon_is_true(x, L, epsilon):
    if abs(x - L) <= epsilon:
        return True
    else:
```

## return False

```
[8]: if existeLimite == "b":
    L = float(input("Digite o valor do limite L: "))
    epsilon = float(input("Digite a tolerância epsilon: "))
    N_epsilon = float(input("Digite o valor de N(epsilon): "))

Ne = N_epsilon_is_true(a(n), L, epsilon)

while Ne == False:
    L = float(input("Digite o valor do limite L: "))
    epsilon = float(input("Digite a tolerância epsilon: "))
    N_epsilon = int(input("Digite o valor de N(epsilon): "))
    Ne = N_epsilon_is_true(a(n), L, epsilon)

plt.axhline(y=L, color='green', linestyle='--', label='y = L')
    plt.axhline(y=L+epsilon, color='red', linestyle=':', label='y = L + ')
    plt.axhline(y=L-epsilon, color='red', linestyle=':', label='y = L - ')

plt.legend()
    plt.show()
```

