Computational Lab (MA318)

Probability Integral Transformation Assignment 3

Try to solve all the problems

Probability Integral Transformation Method

Let X have continuous cumulative distribution function $F_X(x)$ and define a random variable Y as $Y = F_X(X)$. Then Y is uniformly distributed on (0,1), that is, $P(Y \le y) = y$, 0 < y < 1. **Proof**: We know,

$$F_Y(y) = P(Y \le y)$$

$$= P(F_X(X) \le y)$$

$$= P(X \le F_X^{-1}(y))$$

$$= P(X \le F_X^{-1}(F_X(x)))$$

$$= P(X \le x)$$

$$= y$$

* If F_X is monotonic, then F_X^{-1} is well defined by

$$F_X^{-1}(y) = x \Leftrightarrow F_X(x) = y.$$

The Rejection Method

Suppose we have a method for generating a random variable having density function g(x). We can use this as the basis for generating from the continuous distribution having density function f(x) by generating Y from g and then accepting this generated value with a probability proportional to $\frac{f(Y)}{g(Y)}$. Specifically, let c be a constant such that

$$\frac{f(y)}{g(y)} \le c$$
 for all y .

We then have the following technique (illustrated in Figure 5.1) for generating a random variable having density f.

Algorithm

Step 1: Generate Y having density g.

Step 2: Generate a random number U. Step 3: If $U \leq \frac{f(Y)}{cg(Y)}$, set X = Y. Otherwise, return to Step 1.

Remark: The basic idea is to find an alternative probability distribution G, with density function g(x), from which we already have an efficient algorithm for generating from (e.g., inverse

Figure 1: The rejection method for simulating a random variable X having density function f.

transform method or whatever), but also such that the function g(x) is "close" to f(x). In particular, we assume that the ratio f(x)/g(x) is bounded by a constant c > 0; $\sup_x f(x)/g(x) \le c$.

Example: Let us use the rejection method to generate a random variable having density function

$$f(x) = 20x(1-x)^3$$
, $0 < x < 1$.

Since this random variable (which is Beta with parameters 2, 4) is concentrated in the interval (0, 1), let us consider the rejection method with

$$g(x) = 1, \quad 0 < x < 1.$$

To determine the smallest constant c such that $\frac{f(x)}{g(x)} \leq c$, we use calculus to determine the maximum value of

$$\frac{f(x)}{g(x)} = 20x(1-x)^3.$$

Differentiation of this quantity yields

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = 20 \left[(1-x)^3 - 3x(1-x)^2 \right].$$

Setting this equal to 0 shows that the maximal value is attained when $x = \frac{1}{4}$, and thus

$$\frac{f(x)}{g(x)} \le 20 \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^3 = \frac{135}{64} \equiv c.$$

Hence,

$$\frac{f(x)}{cg(x)} = \frac{256}{27}x(1-x)^3.$$

and thus the rejection procedure is as follows:

Step 1: Generate random numbers U_1 and U_2 .

Step 2: If $U_2 \leq \frac{256}{27} U_1 (1 - U_1)^3$, stop and set $X = U_1$. Otherwise, return to Step 1.

The average number of times that Step 1 will be performed is $c = \frac{135}{64} \approx 2.11$.

Assignment 3

1. Use the inverse transformation method to generate a random sample of size 1000 from the given distribution function:

$$F_X(x) = \ln(1+x)$$
 ; $0 \le x \le e-1$.

Also find the mean and median of the generated sample and compare these with the theoretical values.

- 2. Generate a random sample of size 1000 from the uniform distribution with parameters (0,2). Also, find the mean and variance of the generated sample and compare these with the theoretical values.
- 3. Generate a random sample of size 1000 from the one-parameter exponential distribution. Also, find the mean and variance of the generated sample and compare these with the theoretical values.
- 4. Generate a random sample of size 1000 having the gamma($\frac{3}{2}$, 1) density

$$f(x) = kx^{1/2}e^{-x}$$
 ; $x > 0$.

where $k = 1/\Gamma(3/2) = 2/\sqrt{\pi}$. Use the following algorithm.

Hint: Use exponential distribution with the same mean as proposal density g(x).

Algorithm 1 Algorithm to Generate Gamma Samples

- 1: Generate a random number U_1 and set $Y = -\frac{3}{2} \log U_1$.
- 2: Generate a random number U_2 .
- 3: If $U_2 < \left(\frac{2eY}{3}\right)^{1/2} e^{-Y/3}$, set X = Y. Otherwise, return to Step 1.

Also, verify the result.

.... end