Deep Reinforcement learning

ML course - fall 1401

Dr Rezazadegan

Kiana Asgari Zahra Janalizadeh

The Wonder of Reinforcement Learning

Coast Runners Game, played by RL agent.

Agent: takes actions, for example, a drone. The algorithm is the agent, and in real life we are the agents.

Environment: the world in which the agent exists and operates.

Action: a move the agent can make in the environment.

State: a situation which the agent perceives.

Reward: feedback that measures the success or failure of the agent's action.

Defining the Q-function

$$R_{t} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \cdots$$

Total Reward, R_t , is the discounted sum of all rewards obtained from time t

$$Q(s,a) = \mathbb{E}[R_t]$$

The Q-function captures the **Expected Total Future Reward** an agent in state, **s**, can receive by executing a certain action, a

How to take actions given a Q-function?

Ultimately, the agent needs a **policy** $\pi^*(s)$, to infer the best action to take at its state, s

Strategy: the policy should choose an action that maximizes the future reward

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

→ DRL algorithms are able to handle high-dimensional state space!

- → DRL algorithms are able to handle high-dimensional state space!
- → Beginning around 2013, DeepMind showed impressive learning results using deep RL to play **Atari** video games.

- → DRL algorithms are able to handle high-dimensional state space!
- → Beginning around 2013, DeepMind showed impressive learning results using deep RL to play **Atari** video games.
- → In 2016, DeepMind was able to solve **Go**, the most challenging classical problem for AI.

* AlphaGo

AlphaGo! Making History

AlphaGo is the first computer program to defeat a professional human Go player, the first to defeat a Go world champion, and is arguably the strongest Go player in history.

Deep Reinforcement Learning Algorithms

Value Based

Find Q(s,a)

$$a = \underset{a}{argmax}Q(s, a)$$

Policy Based

Find $\pi(s)$

Sample a $?\pi(s)$

Deep Q Learning

Step 1: Choose your network structure and initial the DQN.

Step 2: Choose an action from epsilon-greedy algorithm

$$a = \operatorname*{argmax}_{a} Q(s,a)$$
 with probability $1-arepsilon$ $a = \operatorname{random}$ action with probability $arepsilon$

Step 3: Define your loss.

$$LossFunction = Q_{best}(s_t, a_t) - Q(s_t, a_t)$$

$$Q(s_t, a_t)$$

Step 3.5: Update your network weights using the Bellman Equation.

Complexity:

- Can model scenarios where the action scape is discrete and small
- <u>Cannot</u> handle continuous action spaces

Complexity:

- Can model scenarios where the action scape is discrete and small
- Cannot handle continuous action spaces

Imagine you want to predict steering wheel angle of a car!

Complexity:

- Can model scenarios where the action scape is discrete and small
- Cannot handle continuous action spaces

Flexibility:

Imagine you want to predict steering wheel angle of a car!

 <u>Cannot</u> learn stochastic policies, since policy is deterministically computed from the Q function

Complexity:

- Can model scenarios where the action scape is discrete and small
- Cannot handle continuous action spaces

Flexibility:

Imagine you want to predict steering wheel angle of a car!

 <u>Cannot</u> learn stochastic policies, since policy is deterministically computed from the Q function

What can we do to overcome this?

Complexity:

- Can model scenarios where the action scape in discrete and small
- Cannot handle continuous action spaces

Flexibility:

Imagine you want to predict steering wheel angle of a car!

 <u>Cannot</u> learn stochastic policies, since policy is deterministically computed from the Q function

What can we do to overcome this?

consider a new class of RL training algorithms: Policy Gradient methods

Policy Gradient (PG)

DQN (before)	Policy Gradient
Approximating Q and inferring	Directly optimize the policy!
the optimal policy.	

Policy Gradient (PG)

DQN (before)

Approximating Q and inferring

the optimal policy.

Policy Gradient

Directly optimize the policy!

 $\pi(a|s) = P(action|state)$

Policy Gradient (PG): Training

- 1. Run a policy for a while
- Increase probability of actions that lead to high rewards
- Decrease probability of actions that lead to low/no rewards.

Policy Gradient (PG): Training

- 1. Run a policy for a while
- Increase probability of actions that lead to high rewards
- Decrease probability of actions that lead to low/no rewards.

```
function REINFORCE Initialize \theta for episode \sim \pi_{\theta} \{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode for t = 1 to T-1 \nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) R_t \theta \leftarrow \theta + \alpha \nabla return \theta
```


Policy Gradient (PG): Training

- 1. Run a policy for a while
- Increase probability of actions that lead to high rewards
- Decrease probability of actions that lead to low/no rewards.

```
function REINFORCE Initialize \theta for episode \sim \pi_{\theta} \{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode for t = 1 to t-1 \nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) R_t \theta \leftarrow \theta + \alpha \nabla return \theta
```


Stable Baseline3:

A reliable user-friendly implementation of DRL!

Thank you for your Attention! ^.^

