IP5306 I2C reg V1.3

IP5306 I2C REG

Figure 1 IP5306 I2C典型应用电路

使用建议:

- 1、用IRQ信号判断5306是处于工作态还是待机态: IRQ=1时工作, IRQ=0时处于待机
- 2、用寄存器0x70的bit3判断5306是充电还是放电: bit3=1时充电, bit3=0时放电
- 3、用寄存器0x71的bit3判断电池是否已经被充满: bit3=1时充满, bit3=0时未充满

I2C interface

- The i2c speed support 400Kbps.
- Support 8 bit address width and 8bit data width.
- Transmit and receive MSB first.
- The default slave address is 0xea.

Registers are written to and read from the master through the I2C Interface. The IP5306I2C acts as slave and is controlled by the master. The SCK line of the I2C interface is driven by the master. The SDA line could be pulled up to BATby a 1.5Kohm resister and pulled down by either the master or the slave. A typical WRITE sequence for writing 8bits data to a register is shown in below figure 2. A start bit is given by the master, followed by the slave address, register address and 8-bit data. After each 8-bit address ordata transfer, the IP5306gives an ACK bit. The master stops writing by sending a stop bit. All 8 bits data must be written before the register is updated.

Example: Write 8bit data 0x5a to register 0x05:

Note: sACKgenerated by Slave, mACKgenerated by Master

Figure 2 I2C WRITE

A typical READ sequence is shown in below figure. First the master has to write the slave

address, followed by the register address. Then a restart bit and the slave address specify that a READ is generated. Themaster then clocks out 8 bits at a time to read data.

Example: Read 8bit data 0x5A from register 0x05:

Figure3 I2C Read

1. Register

标示为"Reserved"的寄存器位有特殊控制作用,不可改变原有的值,否则会出现无法预期的结果。对寄存器的操作必须按照"读-->修改-->写"来进行,只修改要用到的 bit,不能修改其他未用 bit 的值。

SYS_CTL0

Offset = 0X00

Bit(s)	Name	Description	R/W	Reset
7:6		reserved	RW	10
5	En_boost	Boost enable	RW	1
		0: disable		
		1:enable		
4	En_charge	Charger enable	RW	1
		0: disable		
		1:enable		
3:0		reserved	RW	1101

SYS_CTL1

Offset = 0X01

Bit(s)	Name	Description	R/W	Reset
7		关机按键信号选择:	RW	х
		0: 短按两次关机		
		1: 长按关机		
6		开/关 WLED 信号选择:	RW	х
		0: 长按		
		1: 短按两次		

5	短按开/关 boost 使能:	RW	х
	0: Disable		
	1: Enable		
	此功能开启时,短按两次按键功能无效。		
4:3	Reserved	RW	xx
2	Vin 拔出后是否开启 Boost:	RW	1
	0: 不开启		
	1: 开启		
1:0	Reserved		xx

Charger_CTL0

Offset=0x20

Bit(s)	Name	Description	R/W	Reset
7: 2		Reserved		
1:0		脉冲充电停止设置:	RW	10
		11:4.2/4.305/4.35/4.395		
		10: 4.185/4.29/4.335/4.38		
		01: 4.17/4.275/4.32/4.365		
		00: 4.14/4.26/4.305/4.35		
		由 Charger_CTL2 的 bit[3:2]确定		

Charger_CTL1

Offset=0x21

Bit(s)	Name	Description	R/W	Reset
7: 5		Reserved	RW	XXX
4:2		充电欠压环电压选择:	RW	xxx
		111: 4.8V		
		110: 4.75V		
		101: 4.70V		
		100: 4.65V		
		011: 4.60V		
		010: 4.55V		
		001: 4.50V		
		000: 4.45V		
1:0		Reserved	RW	XX

IP5306 I2C reg V1.3

Charger_CTL2

Offset=0x22

Bit(s)	Name	Description	R/W	Reset
7: 4		Reserved		0000
3:2		电池电压设定	RW	00
		11: 4.4		
		10: 4.35v		
		01: 4.3v		
		00: 4.2v		
1:0		电池充电 CV 电压增加值 (加快 CV 充电)	RW	01
		11: 42mv		
		10: 28mv(4.2v 电池用)		
		01: 14mv(4.3v、4.35v 电池用)		
		00: 不增加		

4.2v 电池配置:

REG20[1: 0]=01, REG22[3: 2]=00, REG22[1: 0]=10,

4.3v 电池配置:

REG20[1: 0]=01, REG22[3: 2]=01, REG22[1: 0]=01,

4.35v 电池配置:

REG20[1: 0]=01, REG22[3: 2]=10, REG22[1: 0]=01,

4.4v 电池配置:

REG20[1: 0]=01, REG22[3: 2]=11, REG22[1: 0]=01,

Charger_Dig_CTL0

Offset=0x24

Bit(s)	Name	Description	R/W	Reset
7: 5		Reserved		110
4:0		充电电流设置:	RW	xxxxx
		I = 0.05 + 0.1*bit[4:0] (A)		

REG_READ0

Offset = 0X70

Bit(s)	Name	Description	R/W	Reset

7: 4		Reserved	R	Х
3		充电使能标志	R	Х
	charge_en	1: 充电开启		
		0: 充电关闭		
2: 0		Reserved	R	Х

REG_READ1

Offset = 0X71

Bit(s)	Name	Description	R/W	Reset
7:4		Reserved	R	Х
3		充电结束标志	R	Х
		0:		
		1: 充电结束		
2: 0		Reserved	R	Х

REG_READ2

Offset = 0X72

Bit(s)	Name	Description	R/W	Reset
7:3			R	X
2	负载标志	0: 重负载 1: 轻负载	R	Х
1:0			R	х

REG_READ3

Offset = 0X78

注:此寄存器的 LED 灯电量显示未经过数字滤波处理,所以读到的 LED 灯数目可能会跳动,需要 MCU 增加处理。

Bit(s)	Name	Description	R/W	Reset
7		0: 1: 电量低于 75%(4 颗灯)或者 66%(3 颗灯)	R	Х
6		0: 1: 电量低于 50%(4 颗灯)	R	Х

IP5306 I2C reg V1.3

5	0: 1: 电量低于 25%(4 颗灯)或者 33%(3 颗灯)	R	х
4	batlow32 0: 1: BATOCV 低于 3.2v 低电报警电压	R	Х
3:2		R	х
1	batlow30 0: 1: BATOCV 低于 3.0v 关机电压	R	Х
0		R	Х