# <u>DL</u> in Audio: Sound and Sound Representations



2024
Deep Learning in Audio Processing,
Invited Talks

Maksim Kaledin

#### About

- **PhD in Applied Mathematics:** With the topic about RL and optimal control
- **Currently:** Associate Professor, Department of Big Data and Information Retrieval
- Sound Research for Some Time: Key topic is audio source separation
- Btw, there is a course: DLA













## A short history of Speech Recognition





In 1962, IBM introduced "**Shoebox**" which understood and responded to 16 words in English.

In **1952**, Bell Laboratories designed the "Audrey" system which could recognize a single voice speaking digits aloud







## A short history of Speech Recognition



The '80s saw speech recognition vocabulary go from a few hundred words to **several thousand words** thanks to **HMM** 

DARPA's system was capable of understanding over **1,000** words. **Siri** was a spin-out of DARPA development:)



## A short history of Speech Recognition



90,8

Speech recognition was propelled forward in the 90s in large part because of **faster processors** 

And then came the era of big data, machine learning and GPUs





## A short history of Speech Synthesis



Fig. 8-Schematic circuit of the voder.

Formant-based on rules. You may listen examples in Atari&Sega games:)

until 80%

In **1939**, The Bell Laboratory's **Voder** was the first attempt to electronically synthesize human speech by breaking it down into its **acoustic components** 



## A short history of Speech Synthesis



And then came the era of big data, machine learning and GPUs

Concatenative synthesis is a technique for synthesising sounds by concatenating short samples of recorded sound (called *units*).





## Briefly on Speech Technologies



## Sound representation

What is sound and how to store it in memory?

#### What is sound?

- **Sound wave** is the pattern of **oscillations** caused by the movement of energy traveling through the air
- Microphone picks up these air oscillations and converts them into electrical vibrations
- These oscillations are converted into an analog signal and then a digital signal



#### How is sound stored in the computer?

- The analog signal is discretized, quantized and encoded
- An analog signal is **discretized** in that the signal is represented as a sequence of values taken at discrete points in time **t** with step **d**
- Quantisation of a signal consists in splitting the range of signal values into N levels in increments of d and selecting for each reference the level that corresponds to it
- Signal **encoding** is just a way of presenting the signal in a more compact form





### Analog-to-Digital Conversion

- Converting analog signals to a sequence of numbers having finite precision
- Corresponding devices are called A/D converters (ADCs)



#### Digital-to-Analog Conversion

- Process of converting a digital signal into an analog signal
- Interpolation
  - Connecting dots in a digital signal
  - Approximations: zero-order hold (staircase), linear, quadratic, and so on



#### What other characteristics are there?

- **Sample rate (SR)** number of audio samples per one second (e.g. 8 kHz, 22.05 kHz, 44.1 kHz)
- **Sample size** number of bits per one sample (e.g. 8, 16, 25, 32 bits)
- **Number of channels** -- how many signals we record in parallel (e.g. mono(1), stereo(2))

#### 8000 Hz

The international  $\underline{G.711}$   $\square$  standard for audio used in telephony uses a sample rate of 8000 Hz (8 kHz). This is enough for human speech to be comprehensible.

#### 44100 Hz

The 44.1 kHz sample rate is used for compact disc (CD) audio. CDs provide uncompressed 16-bit stereo sound at 44.1 kHz. Computer audio also frequently uses this frequency by default.

#### 48000 Hz

The audio on DVD is recorded at 48 kHz. This is also often used for computer audio.

#### 96000 Hz

High-resolution audio.

#### 192000 Hz

Ultra-high resolution audio. Not commonly used yet, but this will change over time.

#### What other characteristics are there?

- Assume **f(n)** is our signal where **n** is time
- Power of signal is  $f^2(n)$
- Energy of signal (**E**) is  $\sum f^2(n)$
- In practice estimated by some window
- ullet Energy in **decibels**:  $10\log_{10}E$
- $ullet ext{SNR}_{dB} = 10 \log_{10} rac{E_{ ext{signal}}}{E_{ ext{noise}}}$



#### What about audio formats?

- Non-compressed formats: **WAV**, **AIFF**, **etc**.
- Lossless compression(2:1): **FLAC**, **ALAC**, **etc**.
- Lossy compression(10:1): **MP3, Opus, etc**
- Bit rate measure a degree of compression. Number of bit that are conveyed or processed per unit of time.



## Frequencies and **Spectrograms**

Why not just use wave representation for ML?

#### Problems with the waveform

• One letter/sound consists of 2000-4000 amplitudes, so they are expensive to process and store



- No "invariant" regarding noise and transformations
- Periodical nature of audio signals



#### Complex waves as a sum of sigmoids

We want to represent a periodic function as a sum of sigmoids with different periods (frequencies), shifts and amplitudes.

$$f(x) = A_1 * sin(freq_1x + \phi_1) + ...$$
...
...
 $A_n * sin(freq_nx + \phi_n)$ 





#### Complex waves as a sum of sigmoids

We want to represent a periodic function as a sum of sigmoids with different periods (frequencies), shifts and amplitudes.

$$f(x) = A_1 * sin(freq_1x + \phi_1) + ...$$
...
...
 $A_n * sin(freq_nx + \phi_n)$ 

And for audio processing we are only interested in:

- Frequencies
- Amplitudes





### Complex waves as a sum of sigmoids

We want to represent a periodic function as a sum of sigmoids with different periods (frequencies), shifts and amplitudes.

$$f(x) = A_1 * sin(freq_1x + \phi_1) + ...$$
...
...
 $A_n * sin(freq_nx + \phi_n)$ 

And for audio processing we are only interested in:

- Frequencies
- Amplitudes
- Phases(?)





#### Fourier Transform

- The **Fourier transform(FT)** is a mathematical formula that allows us to decompose a signal into its individual **frequencies** and the frequency's amplitude
- FT transfer a signal from real-valued function of the time domain to a complex-valued function of frequency domain

Fourier transform integral 
$$f: \mathbb{R} o \mathbb{R}$$
  $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) \ e^{-i2\pi\xi x} \ dx, \quad orall \ \xi \in \mathbb{R}.$   $\hat{f}: \mathbb{R} o \mathbb{C}$ 

$$f: \mathbb{R} 
ightarrow \mathbb{R} \ \hat{f}: \mathbb{R} 
ightarrow \mathbb{C}$$



- The function must meet the following conditions:
  - to be **bounded**
  - to be absolutely integrable
  - to have a **finite number** of minimas, maximas and discontinuities

#### Fourier Transform

- The **Fourier transform(FT)** is a mathematical formula that allows us to decompose a signal into its individual **frequencies** and the frequency's amplitude
- FT transfer a signal from real-valued function of the **time domain** to a complex-valued function of frequency domain

Fourier transform integral 
$$f: \mathbb{R} o \mathbb{R}$$
  $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) \, e^{-i2\pi \xi x} \, dx, \quad orall \, \xi \in \mathbb{R}.$   $\hat{f}: \mathbb{R} o \mathbb{C}$ 

Original signal Frequency



#### Inverse Fourier Transform

Fourier transform integral

$$\left|\hat{f}\left(\xi
ight)=\int_{-\infty}^{\infty}f(x)\;e^{-i2\pi\xi x}\,dx,\quadorall\;\xi\in\mathbb{R}.
ight|$$

Fourier inversion integral

$$f(x)=\int_{-\infty}^{\infty}\hat{f}\left(\xi
ight)e^{i2\pi\xi x}\,d\xi,\quadorall\ x\in\mathbb{R},$$

#### **Inverse Fourier Transform**

#### Fourier transform integral

$$\hat{f}\left( \xi
ight) =\int_{-\infty}^{\infty}f(x)\;e^{-i2\pi\xi x}\,dx,\quadorall\;\xi\in\mathbb{R}.$$

#### Fourier inversion integral

$$f(x)=\int_{-\infty}^{\infty}\hat{f}\left(\xi
ight)e^{i2\pi\xi x}\,d\xi,\quadorall\ x\in\mathbb{R},$$

$$=2\int_{0}^{\infty}\operatorname{Re}\Bigl(\hat{f}\left(\xi
ight)\cdot e^{i2\pi\xi x}\Bigr)d\xi$$

#### **Property of FT**

$$\hat{f}\left( \xi 
ight) = \left\{ egin{array}{ll} \displaystyle \int_{-\infty}^{\infty} f(x) \; e^{-i2\pi \xi x} \; dx, \qquad & \xi \geq 0 \ \displaystyle \hat{f}^{st}(|\xi|) & & \xi < 0, \end{array} 
ight.$$

#### **Inverse Fourier Transform**

#### Property of FT

$$\hat{f}\left( \xi 
ight) = \left\{ egin{array}{ll} \displaystyle \int_{-\infty}^{\infty} f(x) \ e^{-i2\pi \xi x} \ dx, & \quad \xi \geq 0 \ \displaystyle \hat{f}^{st}(|\xi|) & \quad \xi < 0, \end{array} 
ight.$$

#### Fourier transform integral

$$\hat{f}\left( \xi 
ight) = \int_{-\infty}^{\infty} f(x) \; e^{-i2\pi \xi x} \, dx, \quad orall \; \xi \in \mathbb{R}.$$

#### Euler's formula

$$e^{jx} = \cos x + j\sin x$$

Fourier inversion integral

$$f(x)=\int_{-\infty}^{\infty}\hat{f}\left(\xi
ight)e^{i2\pi\xi x}\,d\xi,\quadorall\ x\in\mathbb{R},$$

$$egin{aligned} &=2\int_{0}^{\infty}\mathrm{Re}\Big(\hat{f}\left(\xi
ight)\cdot e^{i2\pi\xi x}\Big)d\xi \ &=2\int_{0}^{\infty}\left(\mathrm{Re}(\hat{f}\left(\xi
ight))\cdot\cos(2\pi\xi x)-\mathrm{Im}(\hat{f}\left(\xi
ight))\cdot\sin(2\pi\xi x)
ight)d\xi. \end{aligned}$$

## **Discrete Fourier Transform (DFT)**

How to calculate Fourier Transform in practice?

- Operates on signal X consisting of N uniformly sampled across [0,T] points
- Discrete analogue of FT: at frequency number k (which is 2πk/N\*sampleRate Hz) it gives a complex number

$$\hat{X}_k = \sum_{t=0}^{N-1} X_t e^{-\frac{2\pi ki}{N}t}$$

- Operates on signal X consisting of N uniformly sampled across [0,T] points
- Discrete analogue of FT: at frequency number k (which is 2πk/N\*sampleRate Hz) it gives a complex number

$$\hat{X}_k = \sum_{t=0}^{N-1} X_t e^{-\frac{2\pi ki}{N}t}$$

$$\hat{X}_{k} = a_{k}e^{-i\phi_{k}} = a_{k}(cos(\phi_{k}) - isin(\phi_{k}))$$
 frequency amplitude

$$\hat{X} = MX$$

$$M_{mn} = \exp\left(-2\pi i \frac{(m-1)(n-1)}{N}\right)$$

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & e^{-\frac{2\pi i}{N}} & e^{-\frac{4\pi i}{N}} & e^{-\frac{6\pi i}{N}} & \dots & e^{-\frac{2\pi i}{N}(N-1)} \\ 1 & e^{-\frac{4\pi i}{N}} & e^{-\frac{8\pi i}{N}} & e^{-\frac{12\pi i}{N}} & \dots & e^{-\frac{2\pi i}{N}2(N-1)} \\ 1 & e^{-\frac{6\pi i}{N}} & e^{-\frac{12\pi i}{N}} & e^{-\frac{18\pi i}{N}} & \dots & e^{-\frac{2\pi i}{N}3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-\frac{2\pi i}{N}(N-1)} & e^{-\frac{2\pi i}{N}2(N-1)} & e^{-\frac{2\pi i}{N}3(N-1)} & \dots & e^{-\frac{2\pi i}{N}(N-1)^2} \end{pmatrix}$$

## Example of DFT





### Example of DFT



## Why spectrum is mirroring?

$$egin{align} X_m &= \sum_{n=0}^{N-1} x_n \exp\left(-j2\pirac{m}{N}n
ight) \ X_{N-m} &= \sum_{n=0}^{N-1} x_n \exp\left(-j2\pirac{N-m}{N}n
ight) \ &= \sum_{n=0}^{N-1} x_n \exp\left(-j2\pi n + j2\pirac{m}{N}n
ight) \ &= \sum_{n=0}^{N-1} x_n \exp\left(j2\pirac{m}{N}n
ight) \ &= (X_m)^* \end{aligned}$$



$$\hat{X}_{k} = a_{k}e^{-i\phi_{k}} = a_{k}(cos(\phi_{k}) - isin(\phi_{k}))$$
 frequency amplitude

#### Kotelnikov Theorem

- If a function **f(t)** contain no frequencies higher than **B hertz**, it is completely determined by giving its ordinates at series of points spaced **1/2B** seconds apart
- **Example:** If signal contains frequency 100 Hz, the sampling rate for this signal needs to be 200 Hz at least
- DFT of a segment of a signal with sample rate N, will produce amplitudes for nfft evenly spread frequencies in range [-sampleRate / 2; sampleRate / 2]



## **Short Time Fourier Transform (STFT)**

How to apply FT to a long non-periodic signal?

## Short-Time Fourier Transform



# Window functions



### Short Time Fourier Transform + window function



# Spectrogram



**Practical use**: values of the spectrogram are very small, so typically the log-spectrogram is used instead

## Mel Scale

Compressing the spectrogram

#### Mel Scale

- Humans perceive sound on a log-scale. For human ear:
  - 500 Hz << 600 Hz
  - but 5000 Hz ~= 5100 Hz



There is no single mel-scale formula. [3] The popular formula from O'Shaughnessy's book can be expressed with different logarithmic bases:

$$m = 2595 \log_{10} \left(1 + rac{f}{700}
ight) = 1127 \ln \left(1 + rac{f}{700}
ight)$$

The corresponding inverse expressions are:

$$f = 700 \left(10^{rac{m}{2595}} - 1
ight) = 700 \left(e^{rac{m}{1127}} - 1
ight)$$

# Mel Spectrogram





## Mel Spectrogram





### **MFCC**

Decorrelating the spectrogram

- Sound representation
- Motivation for spectrograms
- Fourier Transform
- Discrete Fourier Transform
- Short Time Fourier Transform
- Spectrogram
- Mel scale
- MFCC

## **Fundamental Frequency**

- Fundamental frequency
   refers to the approximate
   frequency of the
   (quasi-)periodic structure of
   voiced speech signals
- Peaks on envelope curve are **formants**
- **Pitch** is perceptual value, F0 is physical
- F0 lie roughly in the range 80 to 450 Hz, where males have lower voices than females and children



## Cepstrum

- Fourier spectrum of voice has **periodic** structure
- Apply DCT (Discrete Cosine Transform) to spectrum and obtain Cepstrum
- **Peak** in Cepstrum should be located at  $\overline{I}$





#### Cepstrum of speech segment



# **Mel-Frequency Cepstral Coefficients (MFCCs)**

- Algorithm of acquiring MFCC:
  - Apply STFT to the signal
  - Apply mel filters
  - o Take the log value
  - Apply DCT

Spectrogram after multiplication with mel-weighted filterbank



#### Corresponding MFCCs

