EMR 3/1

šk. rok: 2020/2021

Názov cvičenia:

Základné termíny z teórie elektrotechnického merania

Ciel': naučiť žiakov základné termíny z teórie elektrotechnického merania ako konštanta a citlivosť meracieho prístroja (MP), značky používané na MP, určenie vnútorného odporu MP, výpočet spotreby MP, výpočet absolútnej a relatívnej chyby MP

Úlohy:

- 1. Určte z číselníka MP odmerané hodnoty
- 2. Vypočítajte:
 - vnútorné odpory MP
 - vlastnú spotrebu MP
 - absolútne a relatívne chyby pre uvedené MP
- 3. Posúďte chyby jednotlivých MP

Teoretický úvod: vysvetlite uvedené pojmy EMR

Analógový MP: meracie prístroje, ktorých údaje sú spojitou fciou meranej veličiny

Digitálny MP: meracie prístroje, ktoré poskytujú údaje v číslicovej forme

Merací rozsah: je to súhrn najnižšej a najvyššej hodnoty meranej veličiny, ktorú môžeme meracím prístrojom odmerať

Konštanta MP: je počet jednotiek meranej veličiny, ktoré pripadnú na jeden dielik stupnice meracieho prístroja – výpočet: $\mathbf{K} = \frac{\mathbf{MR}}{\alpha_n}$ (fyz. veličina/dielik); $\mathbf{NH} = \mathbf{K} \cdot \boldsymbol{\alpha}$, α – výchylka ručičky MP

Citlivost' MP: je reagovanie MP na čo najmenšiu zmenu el. veličiny, výpočet $C = \frac{1}{K} \left(\frac{diel}{vel} \right)$

Pret'ažiteľ nosť MP: je odolnosť voči preťaženiu napätia či prúdu, ktoré MP vydrží za krátky čas a pritom sa nepoškodí (obyčajne ± 20%)

Presnost' analógového MP: je tam trieda presnosti, čím je väčšie číslo tým je merací prístroj presnejší.

Absolútna chyba: udáva rozdiel medzi nameranou hodnotou X_N a skutočnou hodnotou X_S veličiny. Výpočet: $\Delta X = X_N - X_S$ (jednotka, jednotka)

Relatívna chyba: v každom bode stupnice je MP tým presnejší, čím je väčšia výchylka ručičky. Túto Relatívnu chybu vieme ovplyvniť použitím vhodného **meracieho rozsahu**. (aby výchylka ručičky bola čo najväčšia, u digitálneho MP za des. čiarkou viac čísel) Výpočet: $\delta = \frac{\Delta X}{X_S}$. 100%

Vnútorný odpor voltmetra (RV) – Musí byť čo najväčší. Určovanie pomocou meracieho rozsahu (MR) a R_{iV} udáva na číselníku MP sám výrobca.

Ideálny R_V je nekonečný, $R_V = R_{iV}$. MR

Vnútorný odpor ampérmetra (RA) – určovanie pomocou meracieho rozsahu (MR) a úbytku napätia na ampérmetri (píše výrobca)

EMR 3/1

šk. rok: 2020/2021

Ideálny R_A je nulový, $R_A = \frac{\Delta U_A}{MR}$

Nakreslite s popisom všetky značky z číselníka (Obr. 1) uvedeného meracieho prístroja:

magnetoelektrický merací prístroj s vstavanýms umerňovačom

... – TP vyjadrená z najväčšej hodnoty MP

..... – striedavý prúd s maximálnou hodnotou

. – skúšobné napätie 2 kV

Tabul'ky nameraných a vypočítaných hodnôt:

Doplňte tabuľku 1 podľa obr. 1

Merací rozsah	2,4	6	120
Parametre	(V)	(V)	(V)
Odmeraná hodnota	1,9 V	4,8 V	97 V
Vnútorný odpor	12 kΩ	30 kΩ	600 kΩ
Vlastná spotreba MP	0,3 mW	752,08 μW	161,67 μW
Absolútna chyba	36 mV	0,09 V	1,8 V
Relatívna chyba	1,895 %	1,875 %	1,855 %

tabuľka 1

Obr. 2 *Obr.* 3

EMR 3/1 šk. rok: 2020/2021

Doplňte tabuľku 2 podľa obr. 2

Merací rozsah	100 mV	300 mV	1 V	3 V
Odmeraná hodnota	26 mV	90 mV	0,26 V	0,9 V
Trieda presnosti	1 %	1 %	3 %	3 %
Absolútna chyba	1 mV	3 mV	0,03 V	0,09 V
Relatívna chyba	3,85%	3,33%	11,54%	10%

tabuľka 2

Doplňte tabuľku 3 podľa obr. 3

Merací rozsah	10 V	30 V	100 V	300 V
Odmeraná hodnota	5,4 V	17 V	54 V	170 V
Trieda presnosti	5 %	5 %	8 %	8 %
Absolútna chyba	0,5 V	1,5 V	8 V	24 V
Relatívna chyba	9,26%	8,82%	14,81%	14,12%

tabuľka 3

Nakreslite s popisom všetky značky z číselníka (Obr. 4) uvedeného meracieho prístroja:

... – magnetoelektrický merací prístroj s vstavaným usmerňovačom

..... – TP vyjadrená z najväčšej hodnoty MP

TP vyjadrená z najväčšej hodnoty MP

..... – striedavý prúd – skúšobné napätie 2 kV

Doplňte tabuľku 4 podľa obr. 4

Tabuľka 4

Merací rozsah	~ 120	= 6	~ 2,4	= 60
Parametre	(V)	(V)	(mÅ)	(mA)
Konštanta	2 V/diel	0,1 V/diel	0,04 mA/diel	1 mA/diel
Citlivosť	0,5 diel/V	10 diel/V	25 diel/mA	1 diel/mA
Odmeraná hodnota	64 V	3 V	1,36 mA	30 mA
Vnútorný odpor	2388 kΩ	159,6 kΩ	417 Ω	16,67 Ω
Vlastná spotreba MP	1,72 mW	0,56 μW	0,771 mW	0,015 W
Absolútna chyba	1,8 V	0,09 V	0,36 μV	0,9 mV
Relatívna chyba	2,8 %	3 %	2,64 %	3 %

Pre ampérmeter pre jednosmerný aj striedavý je dané: $\Delta U_A = 1 \ V$ pre všetky meracie rozsahy. Pre jednosmerný voltmeter $R_{Vna\ rozsah} = 26.6\ k\Omega/V$ a pre striedavý voltmeter $R_{Vna\ rozsah} = 19.9\ k\Omega/V$.

Doplňte tabuľku 5 podľa obr. 5

trieda presnosti (%)	merací rozsah (mV)	odmeraná hodnota	absolútna chyba	relatívna chyba
3	100	(mV) 24	(mW) 3	12,5
5	300	55	15	27,27

Tabuľka 5

Použité vzťahy pre výpočet:

Vnútorný odpor voltmetra:

$$R_V(\Omega) = R_{Vna\;rozsah}\left(\frac{\Omega}{V}\right) \cdot MR\;(V)$$

Absolútna chyba voltmetra:

$$\Delta U_{max} = \frac{TP \cdot MR}{100} \quad (V)$$

Vnútorný odpor ampérmetra:

$$R_A(\Omega) = \frac{\Delta U_A}{MR} (\Omega)$$

Vlastná spotreba voltmetra:

$$P_V = \frac{U_{odm}^2}{R_V} \ (W)$$

Relatívna chyba voltmetra:

$$\delta U = \frac{\Delta U_{max}}{U_{odm}} \cdot 100 \quad (\%)$$

Vlastná spotreba ampérmetra:

$$P_A = I_{odm}^2 \cdot R_A (W)$$

EMR 3/1

šk. rok: 2020/2021

Absolútna chyba ampérmetra:

$$\Delta I_{max} = \frac{TP \cdot MR}{100} \quad (A)$$

Relatívna chyba ampérmetra:

$$\delta I = \frac{\Delta I_{max}}{I_{odm}} \cdot 100 \quad (\%)$$

Konštanta meracieho prístroja:

$$K = \frac{Meraci \ rozsah}{Počet \ dielikov \ celej \ stupnice} \ (\frac{jednotka}{dielik})$$

Citlivosť meracieho prístroja:

$$C = \frac{1}{K} \left(\frac{dielik}{jednotka} \right)$$

Odmeraná hodnota:

 $Odmeraná hodnota = K. \alpha (jednotka)$

Posúdenie chýb analógových meracích prístrojov: Je potrebné na analógový MP pozerať **kolmo**, aby sa nám pri jeho odčítavaní hodnoty **odraz zo zrkadla prekrýval s ručičkou**. Vhodné počkať kým sa **ručička úplne ustáli**, vieme tak dieliky presnejšie odčítať. Ďalej to môže byť nerovnomerný povrch, osobné chyby.

Vo všeobecnosti chybu merania dokážeme znížiť:

- 1.) Zvolením vhodného MR
- 2.) Vhodná meracia metóda
- 3.) Viacnásobné meranie a následný aritmetický priemer z viacerých meraní

NÁHODNÉ CHYBY – vznikajú náhodou a nevieme určiť kedy vznikajú OVPLYVNITEĽNÉ CHYBY – pri prístrojoch je to správny výber podľa TP (čím vyššie číslo, tým presnejší), kratšie vodiče, izbová teplota, pri ELMG prístrojoch nech nie sú v blízkosti magnety, kt. by meranie ovplyvňovali, vhodná meracia metóda

Nakreslite závislosť absolútnej a relatívnej chyby od elektrickej veličiny.

