EXAMEN DE METHODES NUMERIQUES

1. On veut calculer le zéro de la fonction $f(x) = x^2 - 2$ dans l'intervalle [0, 2].

a) On applique la méthode de Lagrange : écrire l'algorithme et l'utiliser pour remplir le tableau (on s'arrêtera au plus petit entier naturel k qui vérifie $|f(x_k)| < 10^{-4}$).

k	a _k	Xk	b _k	Signe de	f(a _k)	Signe de	$ x_k - \sqrt{2} $
				f(a _k)		f(a _k)	1 1
0	0,00000	1,00000	2,00000	-	-1,00000	+	0,41421
1							•••
•••							

b) On applique la méthode de Newton : écrire l'algorithme et l'utiliser pour remplir le tableau (on s'arrêtera au plus petit entier naturel k qui vérifie $|f(x_k)| < 10^{-4}$). Le point initial x_0 est donné.

k	Xk	f(x _k)	$\left x_{k}-\sqrt{2}\right $
0	1,00000	•••	
•••	•••	•••	
•••	•••	•••	

N.B. Le nombre de lignes de chaque tableau dépendra du nombre k trouvé. (8pts)

2. En relevant toutes les 10 secondes la vitesse d'écoulement d'eau dans une conduite cylindrique, on a obtenu :

t	0	10	20	30	
V	2,00	1,89	1,72	1,44	

- a) Trouver une approximation de la vitesse en t = 15 via un polynôme interpolant de degré 2.
- b) Répéter l'opération avec un polynôme de degré 3.

(6pts)

- 3. Soit $f(x) = 2\sin x + 3\cos x$, où x est en radians.
 - a) Déterminer le polynôme de degré 2 qui interpole la fonction f en $x_0 = 0$, $x_1 = \pi/2$ et $x_2 = \pi$.
 - b) Estimer la valeur de $f(\pi/4)$ en utilisant le polynôme trouvé en a).
 - c) Au lieu d'utiliser le polynôme calculé en a), on décide d'interpoler la fonction f sur l'intervalle $[0,\pi]$ en $x_i=i\frac{\pi}{n}$ pour i=0,1,...,n par une fonction linéaire par morceaux. Cette fonction s'obtient en reliant chaque paire de points consécutifs $(x_i, f(x_i))$ et $(x_{i+1}, f(x_{i+1}))$ par un segment de droite. Quel doit être le nombre n de sous-intervalles pour que l'erreur d'interpolation (en valeur absolue) soit partout inférieure à 10^{-4} ?

(6pts)