Experiences with the super learner

Thomas Alexander Gerds

Outline

Frequently asked questions about cross-validation:

- Q1: 5-fold, 10-fold, 20-fold or bootstrap?
- Q2: Bootstrap with or without replacement?
- Q3: Random seed effect?
- Q4: Model hyper parameter selection using all data?
- Q5: In a survival setting where IPCW is used to estimate performance/loss: estimate censoring distribution in each training set separately?
- Q6: Use prediction performance to create a new learner?

Super learner

The super learner¹ (aka stacked regression²) uses cross-validation data (aka level-1 data) to combine multiple prediction models into a super model.

From that perspective, the super learner is just another machine learning algorithm which takes in the data and spits out a predicted risk.

The idea is to pre-specify all steps of modelling and to deal with misspecified regression models by controlling all data-dependent modeling steps with cross-validation.

¹van der Laan 2007

²Wolpert 1992, Breiman 1996

Two related problems – in survival analysis

Prediction of an event between time 0 and time t based on predictors X:

$$P(T \le t | X = x)$$

Average treatment effect, target parameter:

$$\int \Big\{ P(T \le t | X = x, A = 1) - P(T \le t | X = x, A = 0) \Big\} P(dx)$$

Two related problems – in survival analysis

Prediction of an event between time 0 and time t based on predictors X:

$$P(T \le t | X = x)$$

Average treatment effect, target parameter:

$$\int \left\{ P(T \le t | X = x, A = 1) - P(T \le t | X = x, A = 0) \right\} P(\mathrm{d}x)$$

Both problems require a risk prediction model and hence a super learner could be applied . . .

Modelling strategy

Training data
$$D_n = \{\tilde{T}_i, \Delta_i, X_i\}_{i=1}^n$$

Cox/logistic regression
Backward elemination
Lars and his three cousins
Cart and RandomForests
Support vector machines
Recursive Neural Networks
Super learner

$$D_n \rightarrow$$

 $\underbrace{R(D_n)}_{$ Risk prediction model

Risk prediction model

Black box

$$R(D_n)(t, X_{new}) \approx P(T \le t | X_{new})$$

Cox/logistic regression
Backward elemination
Lars and his three cousins
Cart and RandomForests
Deep Learning
Recursive Neural Networks
regression

$$(t, X_{new}) \rightarrow$$

$$\rightarrow \underbrace{R(D_n)(t, X_{new})}_{\text{predicted risk of event}}$$

Candidate modelling strategies

Flexible Cox regression with penalty:

$$R_n(t,X) = \exp(-\hat{\Lambda}_0(t) \exp(\hat{\beta}_1 \hat{f}_1(X_1) + \dots + \hat{\beta}_p \hat{f}_p(X_p)))$$

where restricted cubic splines with k-knots are applied to the continuous predictor variables

$$\hat{f}(x) = \hat{\alpha}_0 + \hat{\alpha}_1 x + \hat{\alpha}_2 \left\{ (x - t_j)_+^3 - (x - t_{k-1})^3 + (t_k - t_j)/(t_k - t_{k-1})^3 \right\}$$

where the partial likelihood estimate of the hazard ratios

$$\hat{\beta} = \hat{\beta}(\hat{\lambda})$$

depends on the shrinkage parameter λ .

Penalized Cox regression

FAQ

Q4: Model hyper parameter selection using all data?

A4: No, do not use all the data to optimize the penalty parameter $\hat{\lambda}$. Instead, use some form of cross-validation.

Candidate modelling strategies: random survival forest

Predicted 3-year risk: survival tree in full data

Predicted 3-year risk: survival tree in bootstrap sample

Predicted 3-year risk: survival tree in different bootstrap

Predicted 3-year risk: random forest with 10 survival trees

Predicted 3-year risk: random forest with 100 survival trees

Predicted 3-year risk: random forest with 1000 survival trees

FAQ

Q2: Bootstrap with or without replacement?

A2: Both candidate modelling strategies internally use cross-validation or bootstrap to build prediction models. Hence, any outer cross-validation procedure should use bootstrap without replacement.

Current situation

We have developed two prediction models (Cox and random survival forest) both estimate the risk of an event until a given time t in new patients.

Which one is better?

The aim is to assess the prediction performance of the model in new patients. But: there are no data of new patients.

Fundamental idea

Data splitting is very intuitive:

we hide one part of the data, learn on the rest, and then check our *knowledge* on what was hidden.

There is a hidden parameter here: how much we hide and how much we show.

Cross-validation

Prediction performance describes how well a model will do on future patients.

Unfortunately, this is never knowable.

The best we can do is to simulate the model being applied to future patients by repeatedly splitting the data set into training and validation part.

3-fold cross-validation

Right censored data

Notation:

$$\begin{array}{ll} \widetilde{T} = \min(T,C) & \text{time to event} \\ \Delta = 1\{T \leq C\} & \text{event indicator} \\ X & \text{p-dimensional covariate} \\ t & \text{prediction horizon} \\ \\ D_n = \{(T_i,X_i)\}_{i=1}^n & \text{Dataset} \\ D^*_{b,n} = \{(T_{i,b}^*,X_{i,b}^*)\}_{i=1}^n & \text{Bootstrap dataset} \\ \\ R_t(D_n) & \text{fitted prediction model} \\ R_t(D^*_{b,n}) & \text{bootstrap prediction model} \\ \\ R_t(D_n)(X_{new}) & \text{predicted risk of event for X_{new}} \end{array}$$

Estimate of Brier Score in right censored survival data

Inverse Probability of Censoring Weighted estimate ³

$$\left(1_{\{T_{new}\leq t\}}-R_t(D_n)(X_{new})\right)^2W_t(X_{new},\hat{G})$$

where \hat{G} is an estimate of the censoring distribution G(t|X) = P(C > t|X) as obtained with the reverse Kaplan-Meier, an undersmoothed HAL, or a super learner for the censoring distribution.

The W_t weights given by:

$$W_t(X_{new}, \hat{G}) = \frac{1_{\{T_{new} \le t\}} \Delta_{new}}{\hat{G}(T_{new} - | X_{new})} + \frac{1_{\{T_{new} > t\}}}{\hat{G}(t|X_{new})}$$

 $^{^3}$ Gerds, T. A. and M. Schumacher (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biometrical Journal 48(6), 1029–1040.

Leave-one-out-bootstrap

Algorithm:

- 1. Draw a bootstrap sample $D_n^* = \{X_1^*, \dots, X_n^*\}$ with or without replacement from the data $D_n = \{X_1, \dots, X_n\}$
- 2. Train all the prediction models in the bootstrap sample
- 3. For all out of bag subjects $i \notin D_n^*$ calculate residuals $\left(1_{\{T_i \leq t\}} R_t(D_n^*)(X_i)\right)^2$
- 4. Repeat B times

Leave-one-out bootstrap estimate⁴

$$\hat{\mu}_{t,n} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\eta_{i,B}} \sum_{k=1}^{B} \left(\mathbb{1}_{\{T_i \leq t\}} - R_t(D_{b,n}^*)(X_i) \right)^2 \mathbb{1}_{\{X_i \notin D_{b,n}^*\}} W_t(X_i, \hat{G})$$

where $\eta_{i,B}$ = number of bootstrap samples in which subject i is not included.

⁴Efron & Tibshirani (1997)

FAQ

- Q5: In a survival setting where IPCW is used to estimate performance/loss: estimate censoring distribution in each training set separately?
- A5: The formula for the leave-one-out bootstrap estimator clearly indicates to estimate the censoring distribution with all data.

The estimated parameter

The bootstrap cross-validated estimate may be considered as an estimate of the expected value of the average residual

$$\mathrm{E}_{new}\big[\mathrm{E}_{D_n}\big[\big(\mathbf{1}_{\left\{\tilde{T}_{new}\leq t\right\}}-R_t(D_n)(X_{new})\big)^2|\big(\tilde{T}_{new},\Delta_{new},X_{new})\big]\big]$$

- we are really interested in the performance of $R_t(D_n)$
- we get an estimate of the performance of the average model across all possible training data sets of size *n*:

this is a bit unfortunate

FAQ

Q1: 5-fold, 10-fold, 20-fold or bootstrap?

A1: The target parameter depends on the choice. There is a bias-variance tradeoff.

FAQ

Q3: Random seed effect?

A3: The result of cross-validation is often very sensitive to the random seed. But, k-fold cross validation can be repeated several times or bootstrap without replacement can be repeated many times.

Discrete super learner

```
ff <- Surv(time, event)\sim age + sex+ bili + protime +
    albumin + chol +copper +ast +platelet+spiders+trig+
    hepato+ascites
fit.cox <- list(lasso=penalizedS3(ff,data=pbc,model="cox",</pre>
    trace=0,lambda2=0,lambda1=4),
                elastic=penalizedS3(ff,data=pbc,model="cox
    ",trace=0,lambda2=5,lambda1=18))
fit.forest=list(Forest5=rfsrc(ff,data=pbc,seed=8,nodesize
    =5, ntree=100, mtry=13),
                Forest43=rfsrc(ff,data=pbc,seed=8,nodesize
    =43.ntree=100))
set seed (13)
x=Score(c(fit.cox,fit.forest),
        data=pbc.
        B=100.
        M=.632*NROW(pbc),
        split.method="loob",
        formula=Surv(time, status!=1)\sim1,
        times=1000.
        summary="risk")
summary(x,what="score")
```

Discrete super learner

times	Model	AUC (%)	Brier (%)
1000	Null model	50.0	15.3 [12.4;18.3]
1000	Null model	50.0 [50.0;50.0]	15.3 [12.4;18.3]
1000	lasso	86.0 [80.7;91.4]	11.2 [8.5;13.8]
1000	elastic	84.7 [79.2;90.1]	11.6 [8.9;14.3]
1000	Forest5	84.4 [79.0;89.8]	11.8 [9.4;14.2]
1000	Forest43	86.4 [81.3;91.6]	11.6 [9.4;13.8]

The winner is the lasso.

But, the result is quite sensitive to the seed and the choice of the tuning parameters is not optimized within the folds (to save computation time).

Ensemble super learner: level-1 data

ID	time	status	Null model	lasso	elastic	Forest5	Forest43
234	3255	1	17.9	2.7	4.1	4.1	6.5
169	2241	0	18.5	3.0	3.9	8.0	6.7
75	1230	1	18.4	3.2	4.4	0.4	6.6
158	2055	1	19.0	3.2	5.6	0.1	7.0
188	2449	1	18.2	3.2	6.6	23.2	8.0
11	198	1	18.0	3.4	6.1	0.4	7.5
261	4039	1	19.3	3.4	5.6	5.1	8.1
79	1271	1	18.3	3.5	5.3	0.2	6.7
128	1701	1	18.5	3.5	5.2	0.4	6.7
72	1212	1	18.3	3.6	6.7	7.2	8.1
163	2176	1	18.3	3.6	6.1	0.3	6.8
103	1434	1	18.4	3.8	4.7	0.4	6.7

Ensemble super learner

Breiman (1996): Wolpert's idea is that the level one data has more information in it, and can be used to construct "good" combinations of learners. But he also remarks that just how to use level one data to form accurate combinations is "black art".

Breiman proposed rigde regression

FAQ

Q6: Use prediction performance to create a new learner?

A6: Yes, but ...

- ... the ensemble super learner has a tuning parameter (ridge L_2 penalty)
- ... an outer cross-valiation loop is required to assess the performance of the super learner.
- ... it is possible to create a hyper learner by combining super learners and so on and so forth
- ... garbage in garbage out