Discover Binomial Distribution

Example 1. Let's consider a student taking a multiple choice quiz. Each question has 3 choices. Assume the student is blue it. is blindly guessing. We will let X be the number of right answers.

- 1. Let's have the student take a quiz with just one question.
 - (a) Fill out the table of individual probabilities and the probability distribution.

sample space outcomes	value of X	probability of individual outcome
Right	1.	11:
Wrong	0	7/2

Now what if the student takes a quiz with three questions.

(a) Fill

Fill out the table of probabilities.				
sample space	probability of individual outcome	probability of individual outcome (rewrite using exponents)	value of X	
outcomes		(Tewrite doing exponence)	1 3	
RRR	\$ · \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(3) (1)		
RRW	生生等= 年	(3)2.(3)	2	
RWR	2	(1)2.(25)	2	
RWW.	$\left(\frac{1}{3}\right) \cdot \left(\frac{2}{3}\right) \cdot \left(\frac{2}{3}\right) = \frac{4}{27}$	$\left(\frac{1}{3}\right)^1 \cdot \left(\frac{2}{3}\right)^2$		
WRR	$\left(\frac{2}{3}\right) \cdot \left(\frac{1}{3}\right) \cdot \left(\frac{1}{3}\right) = \frac{2}{27}$	$\left(\frac{1}{3}\right)^2\cdot\left(\frac{2}{3}\right)^1$	2	
WRW.	$\left(\frac{2}{3}\right)\cdot\left(\frac{1}{3}\right)\cdot\left(\frac{2}{3}\right) = \frac{4}{27}$	$\left(\frac{1}{3}\right)^1 \cdot \left(\frac{2}{3}\right)^2$	1	
WWR	$\left(\frac{2}{3}\right) \cdot \left(\frac{2}{3}\right) \cdot \left(\frac{1}{3}\right) = \frac{4}{27}$	$\left(\frac{1}{3}\right)^1\cdot\left(\frac{2}{3}\right)^2$	1	
m.m.m.	$\left(\frac{2}{3}\right) \cdot \left(\frac{2}{3}\right) \cdot \left(\frac{2}{3}\right) = \frac{8}{27}$	$\left(\frac{1}{3}\right)^0\cdot\left(\frac{2}{3}\right)^3$	0	

(b) Fill out the probability distribution (pmf) of X

1 m out the productify distribution (pair) or 21:		
value of X	Probability of X	
0	8/27	
1	H/27)·3 = 12/27	
2	(2/27) - 3 = 6/27	
3	1/27	

(c) Rewrite the probability distribution using exponents and multiplication.

value of X	Probability of X	
0	1. (1/3)0. (2/3)3	
1	7. (1/3) . (2/5)2	
2	3. (1/5)2. (2/5)1	
3	1. (1/3)3. (2/3)0	

(d) What do the exponents always add up to? 3, number of frials

(e) Compare the exponent on the $\frac{1}{3}$ to the x value. What do you notice?

(f) For the value of X=2, why do you need the exponent of 2 on the $\frac{1}{3}$?

(g) Why do we have to multiply the probabilities by 3 for X=2?

There's 3 ways to get 2 correct answers.

- 3. Now the student has to take a quiz with 10 questions. (Each question still has 3 choices.)
 - (a) How many possible outcomes are there?

(b) Do you want to fill out a table for all the possible outcomes and probabilities?

(c) Instead we should come up with a formula to find the probabilities.

(d) How do we find the number of ways to get x right answers out of 10 questions? (Hint: think of combinations.)

(e) Write a formula for the pdf of X.

P(
$$\chi = \chi$$
) = $\begin{pmatrix} 10 \\ \chi \end{pmatrix}$, $\begin{pmatrix} \frac{1}{3} \\ \frac{3}{3} \end{pmatrix}$

4. Fill out the probability distribution for the number of correct guesses if 10 students take the taste test.

X	(number of ways to get x correct guesses)	probability of X
0	(10) = 1	.0173
1	$\binom{10}{1} = 10$.0867
2	(10) = 45	.1951
3	$\binom{10}{3} = 120$	-2601
4	$\binom{10}{4} = 210$.2276
5	$\binom{10}{5} = 252$	$252 \cdot \left(\frac{1}{3}\right)^5 \cdot \left(\frac{2}{3}\right)^5 = .1355$
6	$\binom{10}{6} = 210$	$210 \cdot \left(\frac{1}{3}\right)^6 \cdot \left(\frac{2}{3}\right)^4 = .0569$
7	$\binom{10}{7} = 120$	$120 \cdot \left(\frac{1}{3}\right)^7 \cdot \left(\frac{2}{3}\right)^8 = .0163$
8	$\binom{10}{8} = 45$	$45 \cdot \left(\frac{1}{3}\right)^8 \cdot \left(\frac{2}{3}\right)^2 = .0031$
9	$\binom{10}{9} = 10$	$10 \cdot \left(\frac{1}{3}\right)^9 \cdot \left(\frac{2}{3}\right)^1 = .00034$
10	$\begin{pmatrix} 10\\10 \end{pmatrix} = 1$	$1 \cdot \left(\frac{1}{3}\right)^{10} \cdot \left(\frac{2}{3}\right)^0 = .00002$

3.1: ladef. 4,5,6,9 + PDF Die Jun 1

3.1 (a) $P(x=3) = {10 \choose 3} \cdot 12^3 (.88)^2 = [0.0847]$ (b) P(x=7) = P(x=7) + P(x=7) + P(x=9) + P(x=10) $= [3.085 \times 10^{-5}]$

e $E(x) = n \times p = 10 - .12 = [1.2]$ f) Var(x) = np(1-p) = 10 - .12(.88) = (1.056)

Ha) map, N=0, success = hit bullseye p=0.09. $P(x=2) = {2 \choose 2} (09)^2 (1-.91)^7 = (0.1507)$ b) $P(x \ge 2) = 1 - (P(x=0) + P(x=1)) = (0.1912)$ E(x) = 9(.09) = (0.81)

5a) Mdep, n=8, success = even #s, P=.5 $P(x=5) = {8 \choose 5} (55)^{5} (1-.5)^{3} = 0.2187$ b) $P = {6 \choose 5}$, success = $1^{11}6$ $P(x=1) = {8 \choose 5} ({1 \choose 5})^{7} = {0.3721}$ c) Success = n = 10 $P(x=0) = {8 \choose 5} ({1 \choose 5})^{6} = {0.2326}$

(a) indep, n=10, success = correct; $p=\frac{1}{5}$ P(X=7) = P(x=7) + P(x=8) + P(x=9) + P(x=10) = [0.0009] P=.5P(x=7) = P(x=7) + P(x=8) + P(x=9) + P(x=10) = [0.1719]

9a) P = .6, indep, success = placed over internet, N = 18 $P(8 \le x \in 10) = P(x = 8) + P(x = 9) + P(x = 10) =$ $= (\frac{18}{8})(.6)^{8}(1 - .6)^{10} + (\frac{18}{9})(.6)^{9}(1 - .6)^{9} + (\frac{18}{10})(.6)^{9}(1 - .6)^{8} = 0.3789$ b) $P(x \le 4) = P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4)$ = (0.0013)