な	F	ا لــُ	N			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	/	/	

LECI8. Changing variable in / Jacobin determinant

area of ellipse with semiaxes Example 1: aib

$$(a)^2 + (b)^2 = 1$$

set
$$\ddot{a} = u$$
, $\ddot{b} = V \Rightarrow du = \dot{a} dx$

$$\int \int dxdy = \int \int u^{2}v^{2}c \int dxdv = \frac{1}{ab}\int \int u^{2}dv dv$$

$$= \frac{1}{ab} \cdot \sqrt{ab} = \frac{$$

Ingeneral: find scaling factor (dx clying cludu)

Ex2:
$$u=3x-2y$$
, $v=x+y$

Relation between
$$dA = dxdy$$
 and $dA' = dudv$

$$|A'' = |A'' = |A$$

Mo Tu We Th Fr Sa Su	Memo No
So $SS-dxdy = SS$	· · · · · · · · · · · · · · · · · · ·
General case:	
u = u(x,y) $V = v(x,y)$	
Dus Ux DXL DX + UYDY	$area' = det(-) \Delta \theta$
DV 3 VX DX + VY DY	[vx vy].[A
Jacobin: $J = \frac{\partial(u,v)}{\partial(x,y)} = 1$ dudu = $\frac{\partial(u,v)}{\partial(x,y)} = 1$ absolute value terminant	Ux Uy Vx Vy = \left \frac{\partial (\alpha \tau \tau)}{\partial (\alpha \tau \tau)} \dxdy
terminant	
En: polar coordinates: x=rcoso, y=r.smo	$\frac{\partial(X,y)}{\partial(r,0)} = \begin{vmatrix} Xr & Xo \\ Yr & Yo \end{vmatrix}$ $= \begin{vmatrix} \cos(0) & -r\sin(0) \end{vmatrix}$

= reaso traino = r

Mo 10 100 17 1 200	Memo No.	
	Date /	
$\int \langle \Delta X, o \rangle \rightarrow \langle \Delta u, o \rangle$	$\Delta v > \mathcal{L} \setminus U_X \Delta x, \ \mathcal{U}_X \Delta$	r>
	U, DU) SCUY DY, VYD	•
dA = AX. AY = AA		$\frac{1}{2} \int \cdot \Delta \times \Delta y$
My:	(vector wed)	•
DA = DX.DY DA' =		Ay. / uy Vy
= d	et (D(X, Y)) · DX·DY	
	let (o(n,v)) dxdy	
Jassbin det	terminunt	
$\left \frac{\partial (u,v)}{\partial (x,y)}\right = 0$	(mverse m	atrix)
Ex2: compute S'S	xy dx dy by d	haning to
u=x, v=xy		
9 area elements:		
$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} 1 & 0 \\ y & x \end{vmatrix}$	=x =) dudv = x	kdy
2 Integrand in terms	of u.v.	
x'y dxdy = xy dua		50
3) Joseph John John John John John John John Joh	Lumbo'	1, 4=2
There is constant	= constant = y = x	N N

1

Ç

Mo Tu We Th Fr Sa Su	Memo No
	Date /
or switch to u	iv picture
AV $Au=1$	WALLAND STORY
N. 1	v v > 1 (v onstant
A	V: 0 +1 (M anstant)
V20	
Unit's Part B: Veets	r Fields and Une Integrals
Vector fields	
	M and N are function of)
	vector that depend on Cxiy