Chapter 2. Introduction to the Relational Model

D.D Structure of Robotional Databases.

Remark. RDB consists of a collection of tables with unique names.

Row in a table represents a relationship among a set of values.

Mathematics		Database
Relation	\longleftrightarrow	Table.
Tuple	\longleftrightarrow	Row.
Attribute	\	Column.

Def. Relation instance is a specific instance of relation.
i.e., containing a specific set of tuples.

Remark. Values of attributes of a tuple must be uniquely identificable, T.e., no two rows are the same in a table.

Remark Order of tuples is irrelevant.

Def. Domain of the attribute is a set of permitted values. For all relation r, the domain of all the attributes in r is atomic, i.e., not consisted of several values, so elements are indivisible.

Def. The null value is a special value that signifies that the value is unknown or does not exist.

Remark Null values causes difficulties when we access or update databases.

Thus should be eliminated if possible.

- (2-2) Dotahase Schema.
- Def. Database schema is the logical design of the database.

 Database instance is a snapshot of the data in database given time.

23) Keys.

- Def. Given a veletion r, set of attributes in the schema of relation r R, tuple $t_i, t_i \in r$ and $i \neq j$ (so that $t_i \neq t_j$).

 A superkey K of r is F CR such that $t_i, K \neq t_j, K$ i.e., no two distinct tuples have the same values on all attributes in <math>K.
- Def. A condidate tey C is a supertey of r Such that no subset except itself is a supertey. i.e., a minimal supertey.
- Def. A primary key is a candidate key chosen by the designer as the principle means of identifying a tuple in a relation.
- Def. Given two distinct relation V_1, V_2 , if V_1 include the primary key V_2 of V_2 among its attributes, V_3 called a foreign key from V_4 referencing V_2 , V_4 is the referencing relation of the foreign key dependency, and V_2 is the referenced relation of the foreign key.
- Renark. Referential integrity constraint requires that the values appeared as the foreign key from r, referencing to has to appear in at least one tuple $t \in V_2$.

(2.5) Relational Query Languages

Det. A procedual language describes a seguence of operations on the detabase to acquire desired results.

Zeample Relational algebra.

Def. A nonprocedual language describes the desired result itself. Example. Tuple relational calculus. Domain relational calculus.

Remark Overy layuages in practice include elements of both.

(2.6) Relational Operators.

: Takes one or more relations as input and outputs a relation.

i) 5 (selection): Tuples which satisfy given predicate. ex) of attr>0 (relation)

(i) T(projection): Tuples with specified attributes. ex) Tatra (relation)

(ii) M (Natural join): Tuples from two relations that have the same attribute values. ex) 1, M 1/2.

iv) \times (Curtesion product): Every tuple from two relations (Regardless of whether values match or not). Let) $l_1 \times r_2$.

V) U (Union): Union of types from two relations. ex) Thatra (r) U Thatra (r2)