MATH 265 Homework 5

Due Oct 3

Instructions:

• Please scan your work and upload it to Gradescope by the end of Oct 3.

1 Non-Graded Questions

Textbook Section 2.4: Questions 1, 4, 7, 13, 18 Textbook Section 2.5: Questions 3, 10, 14

2 Graded Questions

1. (3 points) Consider the set

$$S = \left\{ (-1)^n \left(1 - \frac{1}{n} : n \in \mathbb{Z}_+ \right) \right\},\,$$

where \mathbb{Z}_+ is a set of positive integers.

- (a) Show that 1 is an upper bound for S.
- (b) Show that if M is an upper bound for S, then $M \geq 1$.
- (c) Conclude that $\sup S = 1$.
- 2. (2 points) Let A, B be subsets of \mathbb{R} . Prove that $\sup(A+B) = \sup A + \sup B$.
- 3. (2 points) Show that if $x \in \mathbb{R}$ with x > 1, then the set $\{x^n : n \in \mathbb{Z}_+\}$ is not bounded from above.
- 4. (3 points) Construct a family of half-open intervals of the form $I_n = [a_n, b_n)$ such that both of the following properties hold.

$$(1,4) = \bigcup_{n=1}^{\infty} I_n, \quad [2,3] = \bigcap_{n=1}^{\infty} I_n.$$

Prove that both properties are satisfied by the family you've chosen.