Multilabel Toxic Comments Classification

Advanced Machine Learning project - Academic year 2020/2021

Marco Ripamonti - 806785

Christian Bernasconi - 816423

Kaggle challenge

Goal:

Identification and classification of types of toxicity

Context:

Wikipedia edit pages

Involving:

- Natural Language Processing
- Multilabel text classification

Dataset - Features

- id: comment identifier → not considered
- **comment_text:** raw text in english → main feature
- toxic
- severe_toxic
- obscene
- threat
- insult
- identity_hate

binary targets

Dataset - Features

"\n\nCongratulations from me as well, use the tools well. $\arrowvert xa0 \cdot talk$ "

toxic	severe_toxic	obscene	threat	insult	identity_hate
0	0	0	0	0	0

"C****** BEFORE YOU PISS AROUND ON MY WORK"

toxic	severe_toxic	obscene	threat	insult	identity_hate
1	1	1	0	1	0

Dataset - Data distribution

- 160K comments
- 11% toxic comments
- needs balancing
- top words discriminates
 between toxic / non-toxic

Dataset - Data distribution

- labels dependencies
- hard to balance
- top words discriminates between toxicities

Preprocessing steps

Preprocessing - Text cleaning

- lower case
- remove stopwords
- remove punctuation (except "!")
- remove special chars, numbers, dates, link, etc.
- replace contracted forms
- remove char repetitions (e.g. "hellooo")

"\n\nCongratulations from me as well, use the tools well. \xa0· talk "

"congratulations well use tools well talk"

Preprocessing - Data Augmentation

Back translations strategy:

Example:

Preprocessing - Data Augmentation

Synonyms strategy:

Example:

Preprocessing - Word Embeddings

Vocabulary top 20k words

stupid	1
•••	
peace	50
war	51
hello	137

Word embedding

0.17	0.52	0.34	 0.01
0.25	0.59	-0.34	 -0.99
0.44	-0.58	0.34	 1.23
0.87	-0.52	-1.23	 0.3
0.17	0.52	0.34	 0.04
0.02	0.63	-0.07	 -0.78

Word Embeddings - Word2Vec and BERT

• fastText:

- CBOW model
- 2 million word vectors trained on Common Crawl
- 300 features

GloVe:

- co-occurences of word statistics on a large corpus
- 1 million word vectors trained on tweets
- 200 features

• BERT:

- Contextual word embedding
- DistilBERT

Methodological Approach

Approach - Pipeline

Split the classification into two phases:

For both the two phase have been considered the following architectures:

- LSTM
- GRU
- CNN

- fastText/BERT embedding
- bidirectional LSTM/GRU
- max/avg poolings combination
- dropout as regularization

- fastText embedding
- parallel convolutions of different sizes [3]
- dropout as regularization

Binary model:

Multilabel model:

Approach - Training configuration

- adam optimizer
- learning rate 0.001
- binary cross-entropy loss
- early stopping
- 75% training set 25% validation set

Model	Phase	# epochs	Time	Validation Loss
LSTM	binary	13	9m	0.0940
GRU	binary	13	20m	0.1032
CNN	binary	19	8m	0.1001
BERT	binary	20	2h	0.1115
LSTM	multilabel	50	36m	0.0713
GRU	multilabel	42	28m	0.0846
CNN	multilabel	34	4m	0.0720
BERT	multilabel	43	3h	0.1131

Evaluation

Evaluation - Binary classification

Best models:

precision: LSTM

recall: GRU

• F1-score: LSTM

Evaluation - Multilabel classification

Best models:

- precision: GRU
- recall: LSTM
- F1-score: LSTM

Evaluation - Combined classifiers

LSTM binary + LSTM multilabel

Toxic		Severe toxic		Obscene	
51536	5892	62559	591	56648	3179
604	5485	168	199	619	3071

Threat		Insult		Identity hate	
63082	224	57296	2795	62220	585
101	110	896	2530	292	420

Evaluation - Combined classifiers

LSTM binary + LSTM multilabel

Toxic		Severe toxic		Obscene	
51536	5892	62559	591	56648	3179
604	5485	168	199	619	3071

Threa	t	Insult		Identi hate	ty
63082	224	57296	2795	62220	585
101	110	896	2530	292	420

Evaluation - Combined classifiers

LSTM binary + LSTM multilabel

Toxic		Severe toxic		Obscene	
51536	5892	62559	591	56648	3179
604	5485	168	199	619	3071

Threat	Insult	Identity hate	
63082 224	57296 2795	62220 585	
101 110	896 2530	292 420	

Considerations

- two-phases approach allows to:
 - set a different classification threshold for each phase
 - combine optimal configurations of different models
- binary model: lots of false positives
- multilabel model: high labels imbalance → minority labels misclassified
- **best configuration:** LSTM binary + LSTM multilabel

Improvements and future works

- improve first model to better filter toxic comments
- augment exclusively minority labels examples
- put more effort on the BERT based models
- ensemble techniques (i.g., models based on TF-IDF, text features, etc.)

Thanks for the attention!