

CHALLENGE CATEGORIZATION

Input Image with Filter Overlaid (4 copies for clarity)

Result of Convolution

NEURAL NETWORK

CONVOLUTIONAL

TENSORFLOW

ONE – HOT ENCONDING

CONVOLUTION

			-	n di
1	0.6	0.6		
0.6			0.6	ling
0.6	0.6	0.6	0.6	
0.6		.,	0.6	100
		ii.		

1	0	-1	
2	0	-2	
1	0	-1	

kernel

Imagen de entrada

THE IMAGE PERFORMS A CONVOLUTION WITH A KERNEL

FINALMENTE
OBTENGO UN MAPA
DE DETECCIÓN DE
CARACTERÍSTICAS

NEURAL NETWORK CONVOLUTIONAL

REFERENCES

"Deep Learning with Phyton", Francois Chollet

https://www.aprendemachinelearning.com/como-funcionan-las-convolutional-neural-networks-vision-por-ordenador/

Curso API Data Science, Data Science School Cuernavaca UNAM