

4.	Consider the two following random arrays "a" and "b":	1/1 point
	1 a = np.random.randn(2, 3) # a.shape = (2, 3) 2 b = np.random.randn(2, 1) # b.shape = (2, 1) 3 c = a + b	
	What will be the shape of "c"?	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	C.shape = (3, 2)	
	c.shape = (2, 1)	
	c.shape = (2, 3)	
	✓ Correct	
	Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.	
5.	Consider the two following random arrays "a" and "b":	1/1 point
	1 a = np.random.randn(4, 3) # a.shape = (4, 3) 2 b = np.random.randn(3, 2) # b.shape = (3, 2)	
	3 c = a*b	
	What will be the shape of "c"?	
	C.shape = (4,2)	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	C.shape = (3, 3)	
	C.shape = (4, 3)	

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from

"np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).

✓ Correct

6.	Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}].$ What is the dimension of X?	1 / 1 point
	\bigcirc $(1,m)$	
	$\bigcirc \ (m,n_x)$	
	\bigcirc $(m,1)$	
	\bigcirc (n_x,m)	
	✓ Correct	
7.	Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an elementwise multiplication.	1/1 point
	Consider the two following random arrays "a" and "b":	
	1 a = np.random.randn(12288, 150) # a.shape = (12288, 150) 2 b = np.random.randn(150, 45) # b.shape = (150, 45) 3 c = np.dot(a,b)	
	What is the shape of c?	
	c.shape = (12288, 45)	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	c.shape = (12288, 150)	
	c.shape = (150,150)	
	✓ Correct	
	Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because :	
	"number of columns of a = 150 = number of rows of b"	

8. Consider the following code snippet:

1/1 point

How do you vectorize this?

- c = a.T + b.T
- c = a.T + b
- c = a + b.T
- c=a+b

9. Consider the following code:

1/1 point

```
1 a = np.random.randn(3, 3)
2 b = np.random.randn(3, 1)
3 c = a*b
```

What will be c? (If you're not sure, feel free to run this in python to find out).

- This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)
- This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)

What is the output J?

- $\int J = (c 1)*(b + a)$
- J = (a 1) * (b + c)
- ∫ = a*b + b*c + a*c
- ∫ = (b 1) * (c + a)

✓ Correct

Yes. J = u + v - w = a*b + a*c - (b + c) = a*(b + c) - (b + c) = (a - 1)*(b + c).