When Machines Evaluate Machines.

An empirical study on the impact of chunk size and top_k, and the reliability of LLM-based evaluation.

Introduction

LLMs are revolutionary yet struggle with knowledge cutoffs and hallucinations. This study answers two questions at:

- How do the settings of the LLM pipeline impact the response?
- How reliable is an LLM-based evaluator as compared to human judgement?

Chunk_size (number of words in a paragraph)	Top_k (number of paragraphs)	Example Chunks (Visible to LLM within the RAG model)
50	2	Chunk 1 (50 words): "The mitochondrion is the powerhouse" Chunk 2 (50 words): "ATP is the primary energy currency of the cell"

Method

We asked Retrieval-Augmented Generation (RAG) to programmatically evaluate LLMs as follows:

GROUP
A-20

Al's Evaluation of other Al's is Only Moderately Reliable!

Less is More when providing Information to Al!

Results

Best accuracy (~70%) for the RAG model achieved with chunksize = 100 and top_k = 1

Best accuracy (~70%) for the RAG model achieved with chunksize = 100 and top_k = 1. LLM evaluator was moderately accurate (73.4%, Cohen's Kappa = 0.47). Providing excessive information to the RAG reduced accuracy.

Confusion Matrix: Human Label vs. LLM Label

