

DW_bc_5

Boundary Scan Cell Type BC_5

Version, STAR and Download Information: IP Directory

Features and Benefits

- IEEE Standard 1149.1 compliant
- Synchronous or asynchronous scan cells with respect to tck
- Supports the standard instructions: EXTEST, SAMPLE/PRELOAD, and BYPASS
- Supports the optional instructions INTEST, RUNBIST, CLAMP, and HIGHZ

data_in data_out si so intest mode shift_dr capture_en update_en yupdate_clk >capture_clk

SolvNet

DesignWare.com

Description

DW_bc_5 is a boundary scan cell used to control the output enable for a three-state output buffer when a signal received form an IC input pin is used only as an output enable. DW_bc_5 combines the functions of an input cell and an output cell. The Boundary Scan Description Language (BSDL) description of this cell is of type BC_5 described in the BSDL package STD_1149_1_1990.

The DW_bc_5 cell may be synchronous or asynchronous with respect to tck (Test Clock system pin), depending on the port connections.

Table 1-1 Pin Description

Pin Name	Width	Direction	Function
capture_clk	1 bit	Input	Clocks data into the capture stage
update_clk	1 bit	Input	Clocks data into the update stage
capture_en	1 bit	Input	Enable for data clocked into the capture stage, active low
update_en	1 bit	Input	Enable for data clocked into the update stage, active high
shift_dr	1 bit	Input	Enables the boundary scan chain to shift data one stage toward its serial output (tdo)
mode	1 bit	Input	Determines whether data_out is controlled by the boundary scan cell or by the data_in signal
intest	1 bit	Input	INTEST instruction signal
si	1 bit	Input	Serial path from the previous boundary scan cell
data_in	1 bit	Input	Input data from system input pin

Table 1-1 Pin Description (Continued)

Pin Name	Width	Direction	Function
data_out	1 bit	Output	Output data
so	1 bit	Output	Serial path to the next boundary scan cell

Table 1-2 Synthesis Implementations

Implementation Name	Function	License Feature Required
str	Synthesis model	DesignWare or Test-IEEE-STD-1149-1

The mode signal gives the Test Access Port (TAP) instructions control of the boundary scan cell. Table 1-3 lists the required values of the mode signal for each of the TAP instructions that DW_bc_5 supports.

Table 1-3 Mode Signal Generation for DW_bc_5

Instruction	Mode for Output Cell
EXTEST	1
SAMPLE/PRELOAD	0
INTEST	1 ^a
CLAMP	1
RUNBIST	1 ^a
BYPASS	0

a. If you do not want these instructions to drive the output pins with pre-loaded data held in the boundary scan register, then these instructions are not needed to determine the state of the mode signal. Instead, the instruction must be added to the output enable logic to force every system output pin to an inactive drive state.

Table 1-4 lists the connections for asynchronous boundary scan chains.

Table 1-4 Simulation Models

Model	Function
DW04.DW_BC_5_CFG_SIM	Design unit name for VHDL simulation
dw/dw04/src/DW_bc_5_sim.vhd	VHDL simulation model source code
dw/sim_ver/DW_bc_5.v	Verilog simulation model source code

Table 1-5 lists the connections for synchronous boundary scan chains.

Table 1-5 Port Connections for Asynchronous Boundary Scan Chains

DW_bc_5 Port Name	Connection
capture_clk	clock_dr from TAP controller
update_clk	update_dr from TAP controller
capture_en	Logic zero
update_en	Logic one
shift_dr	shift_dr from TAP controller
mode	Mode generation logic
si	so from previous boundary scan cell
intest	INTEST signal from the instruction decoder
data_in	System input pin for input cells or IC output logic for output cells
data_out	IC input logic for input cells or system output pin for output cells
so	si of next boundary scan cell

Table 1-6 Port Connections for Synchronous Boundary Scan Chains

DW_bc_5 Port Name	Connection
capture_clk	tck from system pin
update_clk	tck_n from system pin
capture_en	sync_capture_en from TAP controller
update_en	sync_update_dr from TAP controller
shift_dr	shift_dr from TAP controller
mode	Mode generation logic
si	so from previous boundary scan cell
intest	INTEST signal from the instruction decoder
data_in	System input pin for input cells or IC output logic for output cells
data_out	IC input logic for input cells or system output pin for output cells
S0	si of next boundary scan cell

Related Topics

- Application Specific JTAG Overview
- DesignWare Building Block IP Documentation Overview

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DWpackages.all;
use DWARE.DW foundation comp.all;
entity DW_bc_5_inst is
                                          inst_update_clk : in std_logic;
  port (inst_capture_clk : in std_logic;
        inst_capture_en : in std_logic;
                                          inst_update_en : in std_logic;
        inst_shift_dr : in std_logic;
                                          inst_mode
                                                         : in std_logic;
        inst_intest
                        : in std logic;
                                          inst_si
                                                          : in std logic;
                        : in std_logic;
        inst_data_in
                                          data_out_inst : out std_logic;
        so_inst
                         : out std_logic );
end DW bc 5 inst;
architecture inst of DW_bc_5_inst is
begin
  -- Instance of DW_bc_5
  U1 : DW bc 5
   port map (capture_clk => inst_capture_clk,
             update_clk => inst_update_clk,
                                              capture_en => inst_capture_en,
              update_en => inst_update_en,
                                           shift_dr => inst_shift_dr,
              mode => inst mode, intest => inst intest,
                                                           si => inst si,
              data_in => inst_data_in, data_out => data_out_inst,
              so => so_inst );
end inst;
-- pragma translate_off
configuration DW_bc_5_inst_cfg_inst of DW_bc_5_inst is
  for inst
  end for; -- inst
end DW_bc_5_inst_cfg_inst;
-- pragma translate_on
```

HDL Usage Through Component Instantiation - Verilog

```
module DW_bc_5_inst(inst_capture_clk, inst_update_clk, inst_capture_en,
                    inst_update_en, inst_shift_dr, inst_mode, inst_intest,
                    inst_si, inst_data_in, data_out_inst, so_inst );
  input inst_capture_clk;
  input inst_update_clk;
  input inst capture en;
  input inst_update_en;
  input inst_shift_dr;
  input inst_mode;
  input inst_intest;
  input inst_si;
  input inst_data_in;
  output data_out_inst;
  output so_inst;
  // Instance of DW_bc_5
  DW_bc_5
   U1 (.capture_clk(inst_capture_clk), .update_clk(inst_update_clk),
        .capture_en(inst_capture_en), .update_en(inst_update_en),
        .shift_dr(inst_shift_dr),
                                    .mode(inst_mode),
        .intest(inst_intest), .si(inst_si),
                                                 .data_in(inst_data_in),
        .data out (data out inst),
                                    .so(so inst) );
endmodule
```

DesignWare.com

Copyright Notice and Proprietary Information

© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. 690 E. Middlefield Road Mountain View, CA 94043

www.synopsys.com