Energy: 6.94 MeV/u, Current: 4000 enA, Temperature: 900 °C

 $\epsilon_{\text{ionization}}$: 100.0%, $\epsilon_{\text{extraction}}$: 100.0%, ϵ_{MCP} : 37.0%, ϵ_{SSD} : 0.2%

We assume that only Fr is extracted from the target.

Escape efficiencies $\varepsilon_{\text{escape}}$:

²⁰⁸Fr: 34.66%, ²⁰⁹Fr: 18.00%, ²¹⁰Fr: 25.10%, ²¹¹Fr: 21.03%

Ions on the MCP Surface / in the MCP

After 900 seconds of beam irradiation (4000 enA):

 208 Fr: 433183/s production, α detection 338.746/s (6.641 MeV)

 $^{209}\text{Fr:}$ 2.32467e+06/s production, α detection 1801.54/s (6.646 MeV)

 $^{210}\text{Fr: }4.60152\text{e+}06/\text{s}$ production, α detection 2858.47/s (6.545 MeV)

 $^{211}\text{Fr:}$ 1.05162e+06/s production, α detection 738.156/s (6.537 MeV)

TOTAL: 8.411e+06/s production, α detection 5736.91/s from Fr