MEMO NUMBER: 03 DATE: October 9, 2017 TO: EFC LaBerge

FROM: Sabbir Ahmed, Jeffrey Osazuwa, Howard To, Brian Weber

SUBJECT: Background on the Galois Field

1 Background

A Galois Field is a field with a finite number of elements. The nomenclature GF(q) is to indicate a Galois field with a elements. For GF(q) in general, a must be a power of a prime. The best known and most used Galois field is GF(2), the binary field.

2 Algorithm

Input polynomials will be represented as 16 bit arrays, where the coefficient of the terms are represented as 1. The provided example polynomial, $x^3 + x^2 + x^0$ will be represented as

 $< 0000\ 0000\ 0000\ 1101 > (4th,\ 3rd,\ and\ 1st\ bits)$

2.1 Determining Irreducibility

A polynomial is irreducible if and only if:

- 1. the coefficient of its 1st term is 1
- 2. the number of terms is odd

2.2 Default Symbols

Once a polynomial is determined irreducible, its default symbols may be generated.

- 1. The symbols for $\{x^0, x^1, \dots, x^{n-1}\}$ are generated by setting the corresponding bits to 1.
- 2. The symbol for x^n is generated by setting the corresponding bits for the terms in the polynomial after the highest degree term.
- 3. The symbol for x^{2^n-1} cycles back to x^0 , and is set to x^0 .

This would generate n+1 terms. Therefore, the maximum of 16 bits would have 17 terms generated by default.

2.3 Generated Symbols

The rest of the symbols for the terms x^{n+1} to x^{2^n-2} must be generated. In total, that would require 2^n-2-n terms. Therefore, the maximum of 16 bits would require 65,518 terms to be generated.

TODO: NEED TO ADD ALGORITHM TO GENERATE THESE TERMS

Table 1: Default Symbols Generated for An Irreducible Polynomial of Degree n

Element	Polynomial Form	Symbol		
0	$0_{n-1} + \ldots + 0_2 + 0_1 + 0_0$	$\{0_{n-1}\dots 0_2 0_1 0_0\}$		
γ^0	$0_{n-1} + \ldots + 0_2 + 0_1 + \gamma_0^0$	$\{0_{n-1}\dots 0_2 0_1 1_0\}$		
γ^1	$0_{n-1} + \ldots + 0_2 + \gamma_1^1 + 0$	$\{0_{n-1}\dots 0_2 1_1 0_0\}$		
γ^2	$0_{n-1} + \ldots + \gamma_2^2 + 0_1 + 0_0$	$\{0_{n-1}\dots 1_2 0_1 0_0\}$		
γ^{n-1}	$1_{n-1} + \ldots + 0_2 + 0_1 + 0_0$	$\{1_{n-1}\dots 0_2 0_1 0_0\}$		
γ^n	$\gamma_{n-1}^{n-1} + \ldots + \gamma_2^2 + \gamma_1^1 + \gamma_0^0$	$\{x_{n-1}\dots x_2x_1x_0\}$		
γ^{2^n-1}	$0_{n-1} + \ldots + 0_2 + 0_1 + \gamma_0^0$	$\{0_{n-1}\dots 0_2 0_1 1_0\}$		

3 Hardware Implementation

TODO: CAN ONLY BE ADDED ONCE ALGORITHM IS FIGURED OUT

4 Example

4.1 Show that $x^3 + x^2 + x^0$ is irreducible in GF(2)[x]

$$x = 0: (0)^3 + (0)^2 + (0)^0 = 0 + 0 + 1 = 1 (not \ a \ root)$$
$$x = 1: (1)^3 + (1)^2 + (1)^0 = 1 + 1 + 1 = 1 (not \ a \ root)$$
$$\therefore x^3 + x^2 + x^0 \text{ has no roots in } GF(2)[x].$$

4.2 Generate the 8 elements of $GF(2^3)$ using the primitive polynomial $x^3+x^2+x^3$.

Let
$$\beta \in GF(2^3)$$
 be a root of $x^3 + x^2 + x^0 \implies \beta^3 + \beta^2 + \beta^0$
 \therefore The coefficients are in $GF(2) \implies \beta^3 = \beta^2 + \beta^0$

 \because a field has additive and multiplicative identities :

$$\therefore 0, 1 = \beta^0 \in GF(2^3)$$

 $\therefore \beta^1 \ \epsilon \ GF(2^3) \ (\because \ closure \ of \ multiplication)$

$$\therefore \beta^2 \in GF(2^3) \ (\because \ assumption)$$

$$\therefore \beta^3 \in GF(2^3) \ (\because \beta^3 = \beta^2 + \beta^0)$$

$$\beta^{4} = \beta^{1} \times \beta^{3}$$

$$= \beta^{1}(\beta^{2} + \beta^{0})$$

$$= \beta^{3} + \beta^{1}$$

$$= \beta^{2} + \beta^{1} + \beta^{0}$$

$$\beta^4 \in GF(2^3)$$

$$\therefore \beta^5 = \beta^1 \times \beta^4$$

$$= \beta^1 (\beta^2 + \beta^1 + \beta^0)$$

$$= \beta^3 + \beta^2 + \beta^1$$

$$= \beta^2 + \beta^0 + \beta^2 + \beta^1$$

$$= \beta^1 + \beta^0$$

$$\therefore \beta^5 \in GF(2^3)$$

$$\therefore \beta^6 = \beta^1 \times \beta^5$$
$$= \beta^1 (\beta^1 + \beta^0)$$
$$= \beta^2 + \beta^1$$

$$\therefore \beta^6 \epsilon \, GF(2^3)$$

$$\beta^7 = \beta^1 \times \beta^6$$

$$= \beta^1 (\beta^2 + \beta^1)$$

$$= \beta^3 + \beta^2$$

$$= \beta^2 + \beta^0 + \beta^2$$

$$= \beta^0 = 1$$

$$\therefore \beta^7 \in GF(2^3)$$

Table 2: The 8 Element Vectors of $x^3 + x^2 + x^0$ in GF(2)[x]

Element	Polynomial Form	Symbol
0	0 + 0 + 0	000
β^0	$0 + 0 + \beta^0$	001
β^1	$0 + \beta^1 + 0$	010
β^2	$\beta^2 + 0 + 0$	100
β^3	$\beta^2 + 0 + \beta^0$	101
β^4	$\beta^2 + \beta^1 + \beta^0$	111
β^5	$0 + \beta^1 + \beta^0$	011
β^6	$\beta^2 + \beta^1 + 0$	110
β^7	$0 + 0 + \beta^0$	001

4.3 Generate the addition (bitwise XOR) and multiplication tables for the implementation of GF(2)[x]

Table 3: Addition Table for $x^3 + x^2 + x^0$ in GF(2)[x]

+	0	$oldsymbol{eta^0}$	$oldsymbol{eta^1}$	$oldsymbol{eta^2}$	$oldsymbol{eta^3}$	$oldsymbol{eta^4}$	$oldsymbol{eta^5}$	$oldsymbol{eta^6}$
0	0	eta^0	β^1	β^2	β^3	β^4	eta^5	β^6
$oldsymbol{eta^0}$	β^0	0	eta^5	β^3	β^2	eta^6	β^1	β^4
$oldsymbol{eta^1}$	eta^1	eta^5	0	eta^6	β^4	β^3	eta^0	β^2
$oldsymbol{eta^2}$	β^2	β^3	eta^6	0	β^0	eta^5	β^4	β^1
$oldsymbol{eta^3}$	β^3	β^2	β^4	eta^0	0	eta^1	eta^6	eta^5
$oldsymbol{eta^4}$	β^4	eta^6	β^3	eta^5	β^1	0	β^2	β^0
eta^5	β^5	eta^1	eta^0	eta^4	eta^6	β^2	0	β^3
$oldsymbol{eta^6}$	eta^6	eta^4	β^2	eta^1	eta^5	eta^0	eta^3	0

Table 4: Multiplication Table for $x^3+x^2+x^0 \; \text{ in } GF(2)[x]$

×	0	$oldsymbol{eta^0}$	$oldsymbol{eta^1}$	$oldsymbol{eta^2}$	$oldsymbol{eta^3}$	$oldsymbol{eta^4}$	eta^5	$oldsymbol{eta^6}$
0	0	0	0	0	0	0	0	0
$oldsymbol{eta^0}$	0	eta^0	eta^1	eta^2	β^3	eta^4	eta^5	β^6
$oldsymbol{eta^1}$	0	eta^1	β^2	eta^3	β^4	eta^5	eta^6	β^0
$oldsymbol{eta^2}$	0	eta^2	eta^3	eta^4	eta^5	eta^6	eta^0	β^1
$oldsymbol{eta^3}$	0	eta^3	eta^4	eta^5	eta^6	eta^0	eta^1	β^2
$oldsymbol{eta^4}$	0	eta^4	eta^5	eta^6	eta^0	eta^1	β^2	β^3
$oldsymbol{eta^5}$	0	eta^5	eta^6	eta^0	β^1	β^2	eta^3	β^4
$oldsymbol{eta^6}$	0	eta^6	eta^0	β^1	eta^2	β^3	eta^4	β^5