

Biochemistry, 7e

Chapter 4: Amino Acids and the Peptide Bond

Garrett and Grisham, Biochemistry, 7th Edition. © 2023 Cengage. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Chapter 4

"To hold, as 'twere, the **mirror** up to nature."

William Shakespeare,

Hamlet

All objects have mirror images, and amino acids exist in mirror-image forms.

Only the **L-isomers** of amino acids occur commonly in nature.

Three Sisters Wilderness, Oregon USA

Essential Question

Transcription Translation

DNA ——— Protein

The stunning diversity of the thousands of proteins found in nature arises from the intrinsic properties of only 20 commonly amino acids.

 Why are amino acids uniquely suited to their role as the building blocks of proteins?

These features includes:

- 1) The capacity to polymerize
- 2) Novel acid-base properties
- 3) Varied structure and chemical functionality in the amino acid side chains
- 4) Chirality

Outline

- 4.1 What are the **structures** and **properties** of amino acids?
- 4.2 What are the **acid-base** properties of amino acids?
- 4.3 What **reactions** do amino acids undergo?
- 4.4 What are the **optical and stereochemical** properties of amino acids?
- 4.5 What are the **spectroscopic properties** of amino acids?
- 4.6 How are amino acid **mixtures separated** and **analyzed**?
- 4.7 What is the **fundamental structural pattern** in proteins?

4.1 What Are the Structures and Properties of Amino Acids?

- Amino acids contain a central tetrahedral carbon atom
- There are 20 common amino acids.
- Amino acids can join via peptide bonds
- Several amino acids occur only rarely in proteins
- Some amino acids are not found in proteins

4.1a Typical Amino Acid contains a central tetrahedral Carbon Atom

Figure 4.1 Anatomy of an amino acid.

Except for proline and its derivatives, all of the amino acids commonly found in proteins possess this type of structure.

4.1b Amino Acids Can Join vir Peptide Bond.

Figure 4.2
Two amino acids can react with loss of a water molecule to form a covalent bond.

The bond joining the two amino acids is called a peptide bond.

4.1c There are 20 Common Amino Acids

We should know **names**, **structures**, **pK**_a values, **3-letter** and **1-letter** codes

- a) Non-polar amino acids MILF WA YV
- b) Polar, uncharged amino acids 57NQ
- c) Acidic amino acids HKR
- d) Basic amino acids p

GLUP

Figure 4.3 The 20 amino acids that are building blocks of most proteins can be classified as (a) nonpolar (hydrophobic); (b) polar, neutral; (c) acidic; or (d) basic. The side chain R group is highlined in yellow Protonated (low pH)form

Nonpolar (hydrophobic) amino acids

Figure 4.3 The 20 amino acids that are building blocks of most proteins can be classified as (a) nonpolar (hydrophobic); (b) polar, neutral; (c) acidic; or (d) basic.

The side chain R group is highlighted in yellow. Protonated (low pH) form

Nonpolar (hydrophobic) amino acids

基的股

Polar, uncharged amino acids

是人的多的多

Polar, uncharged amino acids

Acidic amino acids

(c) Acidic

have a net negative charge at pH 7.0

Basic amino acids

have a net positive charge at neutral pH

mo

Glutamate

deprotonated form H⁺ removed, anionic form 陰離子形式 glutamate

Aspartate

deproteonated form H⁺ remoced anionic form 陰離子形式Aspartate

4.1d Are there other ways to classify Amino Acids?

Hydrophobic:

- Ala
- Gly
- Ile
- Leu
- Phe
- Pro
- Val

Hydrophilic:

- Arg
- Asn
- Asp
- Cys
- Glu
- GIn
- His
- Ser
- Thr

Amphipathic:

- Lys
- Met
- Trp
- Tyr

Amphipathic aa

- Lysine
- R consists of aliphatic side chain,
- which can Interact with hydrophobic aa in protein

an amino group is normally charged at

neutral pH.

Tryptophine

Methionine

The least polar of the amphipathic aa, Thioether sulfur can be an effective metal ligand in protein.

Tyrosine

- Cysteine
- Deprotonate at pH values greater than 7,
- the most potent nucleophile

- Histidine
- Imidazole ring
- Two nitrogen each with an H,
- Two pKa =6 & 10

4.1e Amino Acids 21 and 22 and More?

- Selenocysteine in many organisms
- Pyrrolysine in several archaeal species

#21aa: Sec (U)

#22aa: Pyl (O)

Selenocysteine and Selenoproteins

- Selenocysteine ("Sec") has been found in many organisms
- Half of eukaryotes and most bacteria contain selenoproteins

- Selenocysteine is the only common amino acid that humans can make but higher plants cannot
- The p K_a of the Sec R group is 5.2; thus, Sec is an even better nucleophile than Cys (p K_a = 8.3)
- Human selenoenzymes are involved in peroxide removal, reduction of thioredoxins, selenophosphate synthesis, activation and inactivation of thyroid hormones, and repair of oxidized Met in proteins.

Several amino acids act as neurotransmitters & hormones

Methionine sulfoxide reductases

- One critical role of Sec lies in the function of methionine sulfoxide reductases
- Methionine sulfoxide accumulated in protein and tissues over time, contributing to many aspects of aging
- In smokers, oxidation of a crucial Met inactivates α₁Antitrypsin, leading to emphysema.

COOH
$$^{+}H_{3}N \xrightarrow{\hspace{0.2cm} \hspace{0.2cm} \hspace$$

methionine sulfoxide

4.1f Several Amino Acids Occur Only Rarely in Proteins

- Selenocysteine in many organisms
- Pyrrolysine in several archaeal species
- Hydroxylysine, hydroxyproline collagen
- Carboxyglutamate blood-clotting proteins
- Pyroglutamate in bacteriorhodopsin
- GABA (γ-Aminobutyric acid),
- Epinephrine,
- Histamine,
- Serotonin act as neurotransmitters and hormones
- Phosphorylated amino acids a signaling device

Several Amino Acids Occur Rarely in Proteins

Figure 4.4 (b) Some amino acids are less common, but nevertheless found in certain proteins.

Hydroxylysine and hydroxyproline are found in connective-tissue proteins;

Carboxy-glutamate is found in blood-clotting proteins;

Pyroglutamate is found in bacteriorhodopsin

Adding New Chemistry to Proteins with Unnatural Amino Acids (UAA)

- Peter Schultz and co-workers have developed methods to incorporate 160 novel and unnatural amino acids (UAAs) in proteins in *E. coli*, yeast, and mammalian cells.
- Incorporation of UAAs at unique sites in proteins enables an array of new methods for study of structure and function in these proteins.
- Also, UAA methodology has therapeutic potential for development of novel antibodies, immunotoxins, and vaccines.

p-Aminophenylalanine

<u>a)</u>

H-N-H

Aniline is the simplest aromatic amine. It is an industrially significant commodity chemical, as well as a versatile starting material for fine chemical

Designer enzyme

<u>b)</u>

8-hydroxyquinoline

HQ-ala

<u>Metalloenzyme</u>

used as chelating ligand (Cu⁺², Zn⁺²)

4.2 What Are **Acid-Base** Properties of Amino Acids?

Figure 4.5 The ionic forms of the amino acids, shown without consideration of any ionizations on the side chain.

4.2a Amino Acids are **Weak Polyprotic Acids**

- Amino Acids are Weak Polyprotic Acids
- The degree of dissociation depends on the pH of the medium

4.2a Amino Acids are **Weak Polyprotic Acids**

The 1st dissociation

Gly⁺ + H₂O
$$\rightarrow$$
 Gly⁰ + H₃O⁺

$$K_1 = \frac{[Gly^0][H_3O^+]}{[Gly^+]}$$

The 2nd dissociation:

$$Gly^{0} + H_{2}O \rightarrow Gly^{-} + H_{3}O^{+}$$

$$K_{2} = \frac{[Gly^{-}][H_{3}O^{+}]}{[Gly^{0}]}$$

pK_a Values of the Amino Acids

- Alpha carboxyl group $pK_a = 2-2.4$
- Alpha amino group $pK_a = 9-9.8$

4.2 What Are Acid-Base Properties of Amino Acids?

Titration of glycine

pH where the molecule has a net charge of **0**, is defined as (pK1+ pK2)/2.

4.2 What Are Acid-Base Properties of Amino Acids?

TABLE 4.1 pK _a Values of Common Amino Acids			
Amino Acid	$lpha$ -COOH p $K_{ m a}$	$lpha$ -NH $_3$ ⁺ p K_a	R group p K_a
Alanine	2.4	9.7	
Arginine	2.2	9.0	12.5
Asparagine	2.0	8.8	
Aspartic acid	2.1	9.8	3.9
Cysteine	1.7	10.8	8.3
Glutamic acid	2.2	9.7	4.3
Glutamine	pKa _{2.3} 2	9.1	
Glycine	µna _{2.3} 2	9.6	
Histidine	1.8	9.2	6.0
Isoleucine	2.4	oKa ^{9,7} 9	***************************************
Leucine	2.4	9.6	
Lysine	2.2	9.0	10.5
Methionine	2.3	9.2	
Phenylalanine	1.8	9.1	***************************************
Proline	2.1	10.6	***************************************
Serine	2.2	9.2	~13
Threonine	2.6	10.4	~13
Tryptophan	2.4	9.4	
Tyrosine	2.2	9.1	10.1
Valine	2.3	9.6	***************************************

pK_a Values of the Amino Acids

Acidic Residues

- Aspartic Acid, Asp, D: pK_a = 3.9
- Glutamic Acid, Glu, E: pK_a = 4.3

Basic Residues

- Arginine, Arg, R: pK_a(guanidino group) = 12.5
- Lysine, Lys, K: pK_a = 10.5

pK_a Values of the Amino Acids

Polar, uncharged amino acids

- Histidine, His, H: $pK_a = 6.0$
- Cysteine, Cys, C: pK_a = 8.3
- Serine, Ser, S: $pK_a = \sim 13$
- Threonine, Thr, T: $pK_a = \sim 13$
- Tyrosine, Tyr, Y: pK_a = 10.1

4.2b Side Chains of Amino Acids Undergo Characteristic Ionizations

Titration of glutamic acid

PI=(p*K*1+ p*K*2)/2

Titrations of polyprotic amino acids

Titration of lysine

PI = (pK2 + pK3)/2

Amino Acids are Weak Polyprotic Acids

$$\begin{array}{c} \frac{\text{Acid}}{\text{H}_2\text{A}^+} + \text{H}_2\text{O} \to \frac{\text{Base}}{\text{HA}^0} + \text{H}_3\text{O}^+ \quad (\sim H_2\text{O} + H^+) \\ \\ \text{K}_a = \underbrace{[\text{HA}^0][\text{H}_3\text{O}^+]}_{[\text{H}_2\text{A}^+]} \\ \\ \text{-log} \, [\text{H}_3\text{O}^+] = \text{pH} = \text{pK}_a \quad + \text{log} \quad \underbrace{[\text{Base}]}_{[\text{Acid}]} \\ \end{array}$$

Henderson-Hasselbalch Equation

Example

What is the pH of a **glycine** solution if αNH_3^+ is 1/3 dissociated?

Glycine: Gly⁺ + H₂O
$$\rightarrow$$
 Gly⁰ + H₃O⁺ $\frac{1^{st}}{COOH}$ pka=2.3
$$Gly^0 + H_2O \rightarrow Gly^- + H_3O^+ \qquad \frac{2^{nd}}{COOH}$$
 pka=9.6 H₃N⁺-C -H PK_{a1} + log [Base] [Acid]

Example

- a) What is the pH of a 0.3M solution of Leucine hydrochloride solution?
- b) What is the pH of a 0.3M solution of Leucinate?
- c) What is the pH of a 0.3M solution of isoelectric Leucine?
- a) pKa=2.4, (pKa of α COOH) Ka=10^{-pka} =10^{-2.4} =3.98x10⁻³

Assume only a small amount of H₂A+ discoiated

$$H_2A^+ + H_2O \rightarrow HA^0 + H_3O^+$$

0.3-x x x

b)
$$HA^{\circ} + H_2O \rightarrow A^{-} + H_3O^{+}$$

 $A^{-} + H_2O \rightarrow HA^{0} + OH^{-}$

Assume only a small amount of A- protonated

pKa=9.6(pKa of
$$\alpha$$
NH3+), Kb=14-9.6=4.4 Kb=10-pkb =10-4.4 =3.98x10-5

$$K_a = [HA^0][H_3O^+]$$
 $[H_2A^+]$
 $= x^2/0.3-x$
 $X=3.45x10^{-2}$
 $pH=-log(X=3.45x10^{-2})$
 $pH=1.46$

$$K_b = [HA^0][OH^-]$$
 $[A^-]$
 $= x^2/0.3-x$
 $X=3.46x10^{-3}=[OH^-]$
 $pOH=2.46$