EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele şi specializările, mai puțin specializarea matematică-informatică

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

 Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Se consideră sarcina electrică elementară $e = 1.6 \cdot 10^{-19}$ C

SUBIECTUL I -

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

1. Energia electrică de 1 kWh exprimată în funcție de unități de măsură în S.I. corespunde valorii:

a.
$$\frac{10^3 \text{ W}}{3600 \text{ s}}$$

b.
$$10^3 \frac{W}{s}$$
 c. $36 \cdot 10^5 J$

2. Intensitatea curentului care străbate un conductor variază în raport cu timpul conform graficului alăturat. Sarcina electrică transportată prin conductor în intervalul 15 de timp $t \in [2s, 4s]$ este egală cu:

a. 10 mC

b. 20 mC

c. 30 mC

3. Dacă se scurtcircuitează bornele unui generator prin intermediul unui conductor de rezistență electrică neglijabilă, intensitatea curentului electric este I_{sc} . Acelaşi generator poate transfera circuitului exterior o putere maximă P_{max} . Tensiunea electromotoare a generatorului este egală cu:

a.
$$E = \frac{P_{\text{max}}}{I_{\text{aa}}}$$

b.
$$E = \frac{2P_{\text{max}}}{I_{\text{sc}}}$$

c.
$$E = \frac{3P_{\text{max}}}{I_{\text{sc}}}$$

a.
$$E = \frac{P_{\text{max}}}{I_{\text{sc}}}$$
 b. $E = \frac{2P_{\text{max}}}{I_{\text{sc}}}$ **c.** $E = \frac{3P_{\text{max}}}{I_{\text{sc}}}$ **d.** $E = \frac{4P_{\text{max}}}{I_{\text{sc}}}$ (3p)

4. O grupare de n surse identice având fiecare t.e.m. E şi rezistența internă r, se conectează în serie, Tensiunea electromotoare echivalentă și rezistența internă echivalentă grupării se determină cu ajutorul relatiei:

a.
$$E_0 = nE$$
. $r_0 = nr$

a.
$$E_e = nE$$
, $r_e = nr$ **b.** $E_e = E$, $r_e = r/n$ **c.** $E_e = E/n$, $r_e = r$ **d.** $E_e = E$, $r_e = r$

c.
$$E_{\rm e} = E/n, r_{\rm e} = r$$

d.
$$E_0 = E_1 r_0 = r$$

curentului electric care iese din nodul A este egală cu: **a.** -6 mA

b. -4 mA

c. 4 mA

d. 6mA.

(3p)