Working of the universal TM U.

U takes as input an encoding of a TM M and a String of and simulates mon x.

- halts and accepts if M halts and accepts oc
- halts and rejects if M halts and rejects x.
- loops if M loops on x.

U simulates on step by step.

Question. Con we do better than blind simulation?

Eg. If M halts on x then simulate Mon x if M does not halt on x then terminate the simulation and reject.

That is: Build " that takes as input M# x and

- halts and accepts if M halts and accepts x
- halts and rejects if M halts and rejects x.
- halts and rejects if M loops on x.

Thus $L(U') = L(U) = \{M \neq x \mid x \in L(M)\}$

HP = {M# >c | M halts on x}

Question. Is HP recursive?

Does there exists a total TM M &+ L(M) = HP

Answer. No

Question. Is HP recursively enumerable (r.e.)?

Does there exists a TM M &+ L(M)= HP?

Answer. Yes.

MP = 2m#x | x E L (M)}

Question. Is MP recursively enumerable (r.e.)?

Does there exists a TM M &+ L(M)=MP?

Answer. Yes

Question. Is MP recursive?

Does there exists a total TM M s.t L(M) = MP
Answer. No.

Contor's Diagonalization.

$$2^{N} = \{A \mid A \leq N\}$$

Claim. There does not exist a function f:N→2N that is onto. (Surjective)
P-roof. Suppose there exist such an onto function f.

ith now describes the set f(i)

$$(10001.-) = (01110.---) = \{2,2,3,---\}$$

The general argument for any set A.

 $f: A \rightarrow z^A$; Let $B = \{x \in A \mid x \notin f(x)\}$

Then BSA

Since Fis onto, 3 y EA st F(y) = B.

Question. Is y ∈ f(y)?

 $y \in F(y)$ iff $y \in B$ (Since B = F(y))

iff $y \notin F(y)$ (Definition of B)

So no such f exists.

Theorem. HP is not recursive.

For $x \in \{0,1\}^*$, let M_x denote the TM with input alphabet $\{0,1\}$ whose encoding is x.

			1		- 1			
	E	0	l	5 0	01	11	000	001
Me	Н	L	Н	Н	L	۷	L	H
Mo	L	Н	L	L	H	7	Н	H
Mı	H	L	H	H	L	11	L	₽
Moo	L	L	L	H	L	H	H-	け
Mol	H	H	L	Н	H	L	L	L
$M_{\rm H}$	L	L	H	Н	H	۷	H	L
M000	L	H	L	Н	L	H	}}	L
M001	H	L	Н	H	L	H	H-	})
; 180 ₁	•		•			, .		

-xth row describes for inputy if Machalts on y.

Suppose 3 atotal TMK such that L(K) = HP

For any or and y, K can determine the entry in the (x,y) to cell in the above table.

On input M#x, · K halts and accepts if M holts on x · K halts and rejects if M loops on x

Consider a TM N that on input $x \in \{0,1\}^*$ does the following:

1) Constructs $M \times from \times and writes M \times \# \times on life tope$

2) Runs Kon input Mx#x, accepting if K rejects and going into a trivial loop if K accepts.

For any $x \in \{0,1\}^*$, N halts on x iff K rejects M # x. If M = 100 ps on x.

That is, N is different from every mx on at least one string - the string x.

This gives a contradiction.

Theorem. MP is not recursive.

Suppose Fatotal TM K s.t L(K) = MP.

Given a TM M and input x. To check if M halts
on x
Build a new TM NM that does the following.

- Similar to M, NM accepts if M accepts or rejects. For all $x \in \mathcal{E}^*$, Nm accepts x iff M halts on x.

For any $M \in X$, to check if M holls on X. Construct N_M and X un K on input $N_M \# X$. By assumption K is a total TM. But Item we can construct a total TM K s.f L(K') = HP. This is a contradiction.