

ZKBOO

ZKB00

Table of Contents

MPC

Σ -Protocol

Public data: $C:\{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

7/15

Σ -Protocol Public data: $C:\{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$ Input: x s.t. C(x) = yа Sample $\mathbf{e} \leftarrow \{0,1\}^e$ z Output: Y / N 7/15

Σ -Protocol

Public data: $C:\{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

Complete: if Alice and Bob honest and $C(\mathbf{x}) = \mathbf{y}$, Pr[Bob outputs Y] = 1

7/15

ZKBOO 6 / 28

Σ -Protocol

Public data: $C:\{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

Soundness: from ≥ 2 accepting conversations $(\mathbf{a}, \mathbf{e}_i, \mathbf{z}_i)$ with $\mathbf{e}_i \neq \mathbf{e}_j$ we can efficiently compute \mathbf{x}' s.t. $C(\mathbf{x}') = \mathbf{y}$

- 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 9 0 0 ○

ZKB00 7 / 28

Σ-Protocol

Public data: $C:\{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

The protocol has soundness error ϵ : if Alice is cheating, then $\Pr[\mathsf{Bob} \ \mathsf{outputs} \ \mathsf{Y}] \leq \epsilon$

7/

ZKB00

Σ-Protocol

Public data: $C:\{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

(Honest-Verifier) ZK property: the distribution of (a,e,z) does not reveal info on x

7/15

Σ -Protocol

Public data: $C:\{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

It can be made non-interactive! (Fiat-Shamir heuristic)

Related work:

IKOS Construction

(or "MPC-in-the-head")

[Ishai-Kushilevitz-Ostrovsky-Sahai 2007]

9 / 1

ZKB00 12/2

Circuit decomposition:

Goal: compute C(x) splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on x

Circuit decomposition:

Goal: compute C(x) splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on x

Let N be a fixed integer, consider the following finite set of functions:

Share, Rec and

$$\mathcal{F} = \{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}_{j=1,...,N}$$

Circuit decomposition:

Goal: compute C(x) splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on x

Let *N* be a fixed integer, consider the following finite set of functions:

Share, Rec and

$$\mathcal{F} = \{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}_{j=1,\dots,N}$$

Circuit decomposition:

Goal: compute $C(\mathbf{x})$ splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on \mathbf{x}

Let N be a fixed integer, consider the following finite set of functions:

Share, Rec and

$$\mathcal{F} = \{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}_{j=1,...,N}$$

Circuit decomposition:

Goal: compute C(x) splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on x

Let ${\it N}$ be a fixed integer, consider the following finite set of functions:

Share, Rec and

$$\mathcal{F} = \{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}_{j=1,\dots,N}$$

Circuit decomposition:

Goal: compute C(x) splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on x

Let ${\cal N}$ be a fixed integer, consider the following finite set of functions:

Share, Rec and
$$\mathcal{F} = \{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}_{j=1,\dots,N}$$

Circuit decomposition:

Goal: compute $C(\mathbf{x})$ splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on \mathbf{x}

Let N be a fixed integer, consider the following finite set of functions:

Share, Rec and
$$\mathcal{F} = \{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}_{j=1,...,N}$$

• correctness: $\mathbf{y} = C(\mathbf{x})$

Circuit decomposition:

Goal: compute C(x) splitting the computation in 3 branches s.t. looking at any 2 consecutive branches gives no info on x

Let N be a fixed integer, consider the following finite set of functions:

Share, Rec and
$$\mathcal{F} = \{f_1^{(j)}, f_2^{(j)}, f_3^{(j)}\}_{j=1,\dots,N}$$

- correctness: $\mathbf{y} = C(\mathbf{x})$
- 2-privacy: ∀e,∀j (w_e^j, wj_{e+1}, y_{e+2}) doesn't reveal info on x

ZKBoo Protocol

Public data: $C:\{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

11 / 15

ZKBoo Protocol

Public data: $C:\{0,1\}^n o \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

11 / 15

ZKBoo Protocol

Public data: $C:\{0,1\}^n o \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

11 / 15

ZKBoo Protocol

Public data: $C:\{0,1\}^n o \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

11.4

ZKB00 26 / 28

ZKBoo Protocol

Public data: $C:\{0,1\}^n \to \{0,1\}^m$ (boolean circuit) and $\mathbf{y} \in \{0,1\}^m$

ZKB00 27 / 2