3

[7] The following is an **SR-FF circuit** using **NAND** gate. Complete the **State transition table**. [8 pts] If the state is invalid, write 'Invalid state'.

s	_		
ā		٥)
Q.[\sim		
R) 0 	į

Set	Reset	Q (Current)	Q (Next)
0	0	0	Invalid grate
0	0	1	Invalid state
0	1	0	
0	1	1	(A)
1	0	0	0
1	0	1	0
1	1	0	6
1	1	1	

[8] An audio CD stores 650 MB(MegaBytes) of data. The sampling rate of 44 kHz is used with 66-bit quantization. What duration of **stereo** music (**two separate waveforms**) can be stored on a CD? Give the answer in **minutes**. You must show your calculation process. [5 pts]

650 MB,
$$P_S = 44 \cdot 10^3 \, \text{Hz}$$
, $16 \, \text{bit}$ functivation.
 $= 8 \times 650 \times 10^3 \, \text{bits}$ $= 44 \cdot 10^3 \, \text{sample / sec}$
 $T_S = \frac{1}{44 \cdot 10^3} \, \text{S} = \frac{1}{44} \, \text{ms. olzh.}$
 $\frac{C \times 650 \times 10^3 \cdot 16 \, \text{bit}}{16 \, \text{bit}} = \frac{8 \times 650 \times 10^3 \times 16}{244 \, \text{ms.}} = \frac{83.2 \, \text{Mb ol} \, 2}{244 \, \text{ms.}} = \frac{83.2 \, \text{Mb ol} \, 2}{244 \, \text{ms.}} = \frac{83.2 \, \text{Mb ol} \, 2}{244 \, \text{ms.}} = \frac{1.39 \, \text{Gbolot.}}{244 \, \text{ms.}}$

[9] The following figure depicts the noise/distortion chain in digital communication. Specify possible types of noise or distortion (a) in sensors acquiring an analog signal, (b) in the analog-to-digital conversion process, (c) in wireless data transmission. [6 pts]

