Master Thesis

Process Enhancement by Incorporating Negative Instances in Model Repair

Author: Kefang

Email: kefang.ding@rwth-aachen.de

Supervisor: Dr. Sebastiaan J. van Zelst

Examiners: Prof. Wil M.P. van der Aalst

Prof. Thomas Rose

Institute: Lehrstuhl für Process and Data Science

Outline 🖪

- Research Scope
- Literature Review
- Problem Definition
- Algorithm
 - Framework
 - Design
- Implementation
- Evaluation
- Conclusion
- Appendix
 - References
 - Support Plugin Development

Scope

- Process Mining
- Process Enhancement
 - Reference model
- Model repair
 - Fitness
 - Similarity
- Performance
 - Negative instances

Literature Review

Rediscovery

Inductive Miner

Model Repair by Fahland

- Deviations
- Subprocesses

Model Repair by Dees

- Data with performance labels
- Classify deviations
- Fahland's repair only on positive deviations

F

Research Problem - shortcominngs

$$L_1 := \{ \langle a1, b, \mathbf{x1}, c, d1, e1, e2, f \rangle^{50, pos},$$

 $\langle a1, b, \mathbf{x2}, c, d2, e1, e2, f \rangle^{50, pos}, \}$

5

- IM not consider reference model
 - Inductive Miner- Infrequent
 - Noise threshold: 20%
- Fahland's: add subprocesses as loops
 - Default setting
 - Deviation found at same place
 - Subprocesses as loops
- Dee's: same as Fahland's method
- → Similarity, Precision decrease

Research Problem - shortcomings

$$L_2 := \{ \langle a1, b, c, d2, \mathbf{e1}, \mathbf{e2}, f \rangle^{30,pos}, \ \langle a2, b, c, d1, \mathbf{e1}, \mathbf{e2}, f \rangle^{20,pos}; \ \langle a2, b, c, d2, \mathbf{e2}, \mathbf{e1}, f \rangle^{10,pos}; \ \langle a1, b, c, d2, \mathbf{e2}, \mathbf{e1}, f \rangle^{20,neg}, \ \langle a1, b, c, d1, \mathbf{e2}, \mathbf{e1}, f \rangle^{20,neg}; \ \langle a2, b, c, d1, \mathbf{e1}, \mathbf{e2}, f \rangle^{5,neg} \}$$

- IM keeps the model same
- Fahland's keep model same
- Dee's keep model same
- Unable to adapt model with fit traces

Research Problem – shortcomings

$$L_3 := \{ \langle \mathbf{a1}, b, c, \mathbf{d1}, e1, e2, f \rangle^{50,pos},$$

$$\langle \mathbf{a2}, b, c, \mathbf{d2}, e1, e2, f \rangle^{50,pos};$$

$$\langle \mathbf{a1}, b, c, \mathbf{d2}, e1, e2, f \rangle^{50,neg},$$

$$\langle \mathbf{a2}, b, c, \mathbf{d1}, e1, e2, f \rangle^{50,neg} \}$$

- Long-term dependency
 - Choices decides choices
 - Additional places to limit behavior
- Unable to detect long-term dependency

MO

Research Problem

Given an event log with labels, a reference Petri net, how to incorporate negative instances to generate the repaired Petri net which supports better performance?

Algorithm – framework

Modules

- Data model
- Convert event log
- Convert model
- Incorporate
- Generate process model
- Post process

Data Model

Directly-follows graph

- Directly-follows relation $a >_L b$

$$\exists \sigma \in L, 1 \leq i < |\sigma|, \sigma(i) = a \ and \ \sigma(i+1) = b.$$

A directly follow graph of an event log L is $G(L) = (A, F, A_{start}, A_{end})$ where A is the set of activities in L, $F = \{(a, b) \in A \times A | a >_L b\}$ is the directly-follows relation set, A_{start}, A_{end} are the set of start and end activities respectively, $A_{start} = \{a | \exists \sigma \in L, a = \sigma(1)\}, A_{end} = \{a | \exists \sigma \in L, a = \sigma(|\sigma|)\}$

$$L = \{ < a, c, d >^{20}, < b, c, e >^{10}, < a, c, e >^{20}, < b, c, d >^{10} \}$$

Data Model

Cardinality of directly-follows graph

For any directly-follows relation

$$\forall (a,b) \in F, c(a,b) = \sum_{\sigma \in L} |\{i \in \{1,2...|\sigma|\} | \sigma(i) = \sigma(i+1)\}|$$

For start activity a

$$\forall a \in A_{start}, c(a) = \sum_{\sigma \in L} |\{ \overline{\upsilon} | \sigma(1) = a \}|$$

- For end activity b

$$\forall a \in A_{end}, c(a) = \sum_{\sigma \in L} |\{\sigma | \sigma(|\sigma|) = a\}|$$

$$L = \{ < a, c, d >^{20}, < b, c, e >^{10}, \ < a, c, e >^{20}, < b, c, d >^{10} \}$$

Convert to directly-follows graph

Petri net

Event log

- Transition System

- Directly-follows relation
- Transitions before and after plugin states
 - piugiri

$$L = \{ \langle a, c, d \rangle^{20}, \langle b, c, e \rangle^{10}, \langle a, c, e \rangle^{20}, \langle b, c, d \rangle^{10} \}$$

Data Model

Unification of cardinality

- Models from existing model, positive and negative event log
- For any directly-follows relation

$$u(a,b) = \frac{c(a,b)}{\sum_{(a',b')\in F} c(a',b')}$$

For any start activity

$$u(a) = \frac{c(a)}{\sum_{a' \in A_{start}} c(a')}$$

For any end activity

$$u(a) = \frac{c(a)}{\sum_{a' \in A_{end}} c(a')}$$

Incorporate Data Models

Given directly-follows graphs D^+, D^-, D^M

Incorporate method

For any directly-follows relation

$$u^{n}(a,b) = u^{M}(a,b) + \underline{u}^{+}(a,b) - u^{-}(a,b)$$

- For any start activity,

$$a \in A_{start}^{M} \cup A_{start}^{+} \cup A_{start}^{-}, u^{n}(a) = u^{M}(a) + u^{+}(a) - u^{-}(a)$$

For any end activity,

$$a \in A_{end}^M \cup A_{end}^+ \cup A_{end}^-, u^n(a) = u^M(a) + u^+(a) - u^-(a)$$

Weighted value

– Three control weights w^+, w^-, w^M

$$u_w^n(a,b) = w^M \cdot u^M(a,b) + w^+ \cdot u^+(a,b) - w^- \cdot u^-(a,b)$$

Generate Petri net

Choose directly-follows relation

$$u_w^n(a,b) > t$$

- t=0
- Assign normal cardinality back

$$-c^n(a,b) = u_w^n(a,b) \cdot (|L^+| + |L^-|)$$

- IM discovery algorithm
 - Directly-follows graph
 - Process tree
 - Petri net

Post Process Petri net

Long-term dependency

- Choices dependency
 - $L_3 := \{ \langle \mathbf{a1}, b, c, \mathbf{d1}, e1, e2, f \rangle^{50, pos},$
- Exclusive choices
 - Xor block/branches
- In order
 - Least common ancestor is Seq
 - -A < C < B, D < F
 - In same level
 - A,B,C pair
 - D,F pair
- Strong correlation

Post Process Petri net

Long-term dependency

- Strong correlation
 - Frequency

Frequency of an xor branch X_i in an event log L is the count of traces which replay this xor branch,

$$f: X \to N, f_L(X) = \sum_{\sigma \in L} |\{\sigma | \sigma \models X\}|$$

Frequency of multiple xor branches is $f_L(X_1, X_2, ..., X_n) = \sum_{\sigma \in L} |\{\sigma | \forall X_i, \sigma \models X_i\}|$

Correlation over t

$$d(X_i, Y_j) = w^+ \cdot d^+(X_i, Y_j) - w^- \cdot d^-(X_i, Y_j) > t$$

$$d^{+}(X_{i}, Y_{j}) = \frac{f_{L^{+}}(X_{i}, Y_{j})}{\sum_{Y^{k} \in T, k \neq j} f_{L^{+}}(X_{i}, Y^{k})} d^{-}(X_{i}, Y_{j}) = \frac{f_{L^{-}}(X_{i}, Y_{j})}{\sum_{Y^{k} \in T, Y^{k} \neq X_{i}} f_{L^{-}}(X_{i}, Y^{j})}$$

Long-term dependency Situations

1.
$$LT = \{A \leadsto D, A \leadsto E, B \leadsto D, B \leadsto E\}.$$

 $LT_S = \{A, B\}, LT_T = \{D, E\}, |LT| = |S| \cdot |T|.$

$$LT_S := \{X_i | \exists Y_j, X_i \leadsto Y_j \in LT\}$$
$$LT_T := \{Y_j | \exists X_i, X_i \leadsto Y_j \in LT\}$$

- 2. $LT = \{A \leadsto D, A \leadsto E, B \leadsto E\}$. $LT_S = \{A, B\}, LT_T = \{D, E\}, LT_S = S \text{ and } LT_T = T, |LT| < |S| \cdot |T|$.
- 3. $LT = \{A \leadsto D, B \leadsto E\}.$ $LT_S = \{A, B\}, LT_T = \{D, E\} \ LT_S = S \text{ and } LT_T = T, |LT| < |S| \cdot |T|.$
- 4. $LT = \{A \leadsto D, B \leadsto D\}.$ $LT_S = S, LT_T \subsetneq T.$
- 5. $LT = \{A \leadsto D, A \leadsto E\}.$ $LT_S \subsetneq S, LT_T = T.$
- 6. $LT = \{A \leadsto E\}.$ $LT_S \subsetneq S, LT_T \subsetneq T.$
- 7. $LT = \emptyset$
 - Situation 1 is full dependency ==> no consideration
 - Situation 7 is empty. ==> no consideration

- How to express on Petri net
 - Add silent transition
 - Add control place as postplace post after S

$$LT = \{A \leadsto D, A \leadsto E, B \leadsto E\}.$$

- How to express on Petri net
 - Add silent transition
 - Add control place as postplace post after S

 Add control place as pre-place before T

- How to express on Petri net
 - Add silent transition
 - Add control place as postplace post after S
 - Add control place as pre-place before T
 - Add silent transitions for each long-term dependency

- How to express on Petri net
 - Add silent transition
 - Add control place as postplace post after S
 - Add control place as pre-place before T
 - Add silent transitions for each long-term dependency

Long-term dependency Situations

1.
$$LT = \{A \leadsto D, A \leadsto E, B \leadsto D, B \leadsto E\}.$$

 $LT_S = \{A, B\}, LT_T = \{D, E\}, |LT| = |S| \cdot |T|.$

$$LT_S := \{X_i | \exists Y_j, X_i \leadsto Y_j \in LT\}$$

$$LT_T := \{Y_j | \exists X_i, X_i \leadsto Y_j \in LT\}$$

2.
$$LT = \{A \leadsto D, A \leadsto E, B \leadsto E\}.$$

 $LT_S = \{A, B\}, LT_T = \{D, E\} \ LT_S = S \text{ and } LT_T = T, |LT| < |S| \cdot |T|.$

3.
$$LT = \{A \leadsto D, B \leadsto E\}.$$

 $LT_S = \{A, B\}, LT_T = \{D, E\} \ LT_S = S \text{ and } LT_T = T, |LT| < |S| \cdot |T|.$

4.
$$LT = \{A \leadsto D, B \leadsto D\}.$$

 $LT_S = S, LT_T \subsetneq T.$

- 5. $LT = \{A \leadsto D, A \leadsto E\}.$ $LT_S \subsetneq S, LT_T = T.$
- 6. $LT = \{A \leadsto E\}.$ $LT_S \subsetneq S, LT_T \subsetneq T.$

7.
$$LT = \emptyset$$

- Situation 1 is full dependency ==> no consideration
- Situation 7 is empty. ==> no consideration

Express on Petri net

- 4. $LT = \{A \leadsto D, B \leadsto D\}.$ $LT_S = S, LT_T \subsetneq T.$
- 5. $LT = \{A \xrightarrow{\square} D, A \leadsto E\}.$ $LT_S \subsetneq S, LT_T = T.$
- 6. $LT = \{A \leadsto E\}.$ $LT_S \subsetneq S, LT_T \subsetneq T.$

Petri net – soundnes

Sound:

Safeness.

Places cannot hold multiple kens at the same time.

- Proper completion.
 - If the sink place is marked, all other places are empty.
- Option to complete.
 - It is always possible to reach the final marking from any reachable marking.
- No dead parts.
 - For any transition, there exists a path from source to sink place through it.

Soundness proof

Given $S = \{X_1, X_2, ... X_m\}$ and $T = \{Y_1, Y_2, ... Y_n\}$ with $LT = \{X_i \leadsto Y_j | 1 \le i \le m, 1 \le j \le n\}$. W.l.o.g., X_i is fired.

The marking distribution is

$$M(p_{X_i}) = 1; \quad \forall p_{X_{i'}} \in P_S, i' \neq i, M(p_{X_{i'}}) = 0$$

Type 1 $LT_S = S, LT_T = T$

soundness

Safeness.

$$\sum M(p_{X_i}) \le 1, \sum M(p_{Y_j}) \le 1$$

Proper completion.

After firing
$$Y_j$$
, $M(p_{X_i}) = 0$, $\sum M(p_{Y_j}) = 0$

Option to complete & No dead parts.

$$\forall X_i \in S \text{ is enabled at beginning} \ \forall X_i \in S, \text{since } LT_S = S, \Rightarrow \exists Y_j \in T, X_i \leadsto Y_j, \ \epsilon \text{ is enabled with } p_{X_i} \to \epsilon \to p_{Y_j} \ \forall Y_j \in T, \text{since } LT_T = T, \Rightarrow \exists X_i \in S, X_i \leadsto Y_j$$

Soundness proof

Given $S = \{X_1, X_2, ... X_m\}$ and $T = \{Y_1, Y_2, ... Y_n\}$ with $LT = \{X_i \leadsto Y_j | 1 \le i \le m, 1 \le j \le n\}$. W.l.o.g., X_i is fired.

The marking distribution is

$$M(p_{X_i}) = 1; \quad \forall p_{X_{i'}} \in P_S, i' \neq i, M(p_{X_{i'}}) = 0$$

A C D D E

Type 2 $LT_S \subsetneq S, LT_T \subsetneq T$

soundness

Safeness.

$$\sum M(p_{X_i}) \le 1, \sum M(p_{Y_j}) \le 1$$

Proper completion.

After firing
$$Y_j$$
, $\sum M(p_{X_i}) = 0$, $\sum M(p_{Y_j}) = 0$

Option to complete & No dead parts.

Long-term dependency Situations

1.
$$LT = \{A \leadsto D, A \leadsto E, B \leadsto D, B \leadsto E\}.$$

 $LT_S = \{A, B\}, LT_T = \{D, E\}, |LT| = |S| \cdot |T|.$

2.
$$LT = \{A \leadsto D, A \leadsto E, B \leadsto E\}.$$

 $LT_S = \{A, B\}, LT_T = \{D, E\} \ LT_S = S \text{ and } LT_T = T, |LT| < |S| \cdot |T|.$

3.
$$LT = \{A \leadsto D, B \leadsto E\}.$$

 $LT_S = \{A, B\}, LT_T = \{D, E\} \ LT_S = S \text{ and } LT_T = T, |LT| < |S| \cdot |T|.$

- 4. $LT = \{A \leadsto D, B \leadsto D\}.$ $LT_S = S, LT_T \subseteq T.$
- 5. $LT = \{A \leadsto D, A \leadsto E\}.$ $LT_S \subseteq S, LT_T = T.$
- 6. $LT = \{A \leadsto E\}.$ $LT_S \subsetneq S, LT_T \subsetneq T.$
- 7. $LT = \emptyset$

Sound:

- Safeness.
- Proper completion.
- Option to complete.
- No dead parts.

Post process

Delete redundant silent transitions

Algorithm – architecture

- Data model
- Convert models
 - _
- Incorporate dfgs
- Add long-term dependency
- Delete redundant silent transitions

Demo

Demo

One more slide to show the workflow in KNIME?? But not here, right??

Evaluation

	Allowed behavior	Not allowed behavior
positive	TP	FN
negative	FP	TN

Confusion matrix

Recall

$$Recall = \frac{TP}{TP + FN}$$

Precision

$$Precision = \frac{TP}{TP + FP}$$

- Accuracy
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

- F1

$$F_1 = \frac{2 * Recall * Precision}{Precision + Recall}$$

Demo --result

Demo --result

Demo --result

Situation	Method	Generated Model	Confusion matrix measurements							
			TP	FP	TN	FN	recall	precisio n	accurac y	F1
S1	IM-Infrequent Noise threshold: 20%	M1.1	50	50	0	0	1	0.5	0.5	0.667
	Fahland's Repair Model	M1.2	50	50	0	0	1	0.5	0.5	0.667
	Dfg-repair	M1.3	50	50	0	0	1	0.5	0.5	0.667
S2	IM/Fahland's	MO	60	45	0	0	1	0.571	0.571	0.727
	Dfg-repair	M2.3	50	5	40	10	0.833	0.909	0.857	0.870
S3	IM/Fahland repair	MO	100	100	0	0	1	0.5	0.5	0.667
	Dfg-repair	M3.3	100	0	100	0	1	1	1	1

Conclusion:

- Conquer shortcomings of current techniques in listed situations,
- Better precision, accuracy, F1 score

Experiments -- Real life data

Experiments

Event logs

ID	Description	Traces Num	Events Num	Event Class
D1	Heuristic filter 40%	495	9565	20
D2	Heuristic filter 60% on D1	378	4566	12
D3.1	Classify on Sumledge; Below 70% as positive	349	6744	20
D3.2	Classify on Sumledge; over 70% as negative	146	2811	20
D3.3	Union of D3.1 and D3.2	495	9565	20
D4.1	Classify on throughput time; Below 70% as positive	346	6719	20
D4.2	Classify on Sumledge; over 70% as negative	146	2846	20
D4.3	Union of D4.1 and D4.2	495	9565	20

Experiments

Petri net Models

M3

Model ID	Data ID	Confusion matrix							
		TP	FP	TN	FN	recall	Precis ion	Accur acy	F1
M1	D3.3	112	40	106	237	0.321	0.737	0.440	0.447
	D4.3	131	21	128	215	0.379	0.862	0.523	0.526
M2	D3.3	106	39	107	243	0.304	0.731	0.430	0.429
	D4.3	125	20	129	221	0.361	0.862	0.513	0.509
M3	D3.3	0	0	146	349	0	NaN	0.295	0
	D4.3	0	0	149	346	0	NaN	0.301	0
M4	D3.3	0	0	146	349	0	NaN	0.295	0
	D4.3	0	0	149	346	0	NaN	0.301	0

Fanhland's method to repair M3 with default setting

Dfg-repair with default setting

Much simpler with

and **no** duplicate

transitions

01_HOOFD_375 10_Z 01_HOOFD_430 01_HOOFD_370 01_HOOFD_065_1 01_HOOFD_065_; 01_HOOFD_065_2 01_HOOFD_015 01_HOOFD_030_2 01_HOOFD_030_1 01_HOOFD_180 less silent transitions 01_HOOFD_480 01_HOOFD_200

Weight for the reference model

Measurements change with existing weight

Weight for positive instance

Measurements change with positive weight

Mean(Recall) = Mean(Precision) = Mean(Accuracy) = Mean(F-measure)

Weight for negative instance

Measurements change with negative weight

Conclusion

- Conquer the shortcomings
- Repair model with better precision, accuracy,
 F1
- Repaired model simpler,
- Run faster

Feasible to use in practice

Further Work

- Improve the balance rules
- Improve the rules for long-term dependency
- Drop process tree as intermediate model
- Extend to another choice relation

Questions & Answers

References

Support Plugins

