A Study of Khintchine Type Inequalities for Random Variables

Alex Havrilla

October 23, 2020

1 Known Examples of Type L Random Variables

Relatively few examples of Type L random variables are known. The majority we do have follow from results of Polya in his study of kernels producing strictly real zeroes of fourier transforms of the form:

$$\phi(z) = \int_{\mathbb{R}} K(x)cos(zx)dx$$

for some kernel $K: \mathbb{R} \to \mathbb{R}$. This can naturally be interpreted as the inverse fourier transform of a random variable X with density K. And (assuming symmetry and nice gaussanity conditions) if ϕ has strictly real zeroes then we know $\phi(iz) = \mathbb{E}e^{-zX}$ has strictly imaginary zeroes and hence X is type L.

1.1 Polya's Examples

All of these examples can be found in Polya's *Problems in Analysis* but the experience of retrieving them (and their proofs) is somewhat time consuming. Hopefully this presentation is somewhat less so. We now list the examples:

Theorem 1 (Decreasing Concave Density(173)). Let X be a symmetric continuous random variable distributed on [0,1] density f s.t. f', f'' < 0. Then $X \in \mathcal{L}$.

Theorem 2 (L1 Bounded Derivative(175)). Let X be a symmetric continuous random variable distributed on [0,1] with density f s.t. $|f(1)| \ge \int_0^1 |f'(t)| dt$. Then $X \in \mathcal{L}$. Note in particular this works for the case f is increasing.

Theorem 3 (Exponential Density(170)). Let α be even integer greater than 2. Then if X a symmetric continuous random variable with density of the form $e^{-t^{\alpha}}$ then $X \in \mathcal{L}$

Theorem 4 (Exponential Product Density(161)). Let $1 > \alpha \ge 0, 0 < \alpha_1 \le \alpha_2 \le \dots$ and reciprocal convergent. Then if $g(z) = e^{-\alpha z} (1 - \frac{z}{\alpha_1}) (1 - \frac{z}{\alpha_2}) \dots$ we have for symmetric X with density $e^{-t^2} g(-t^2)$ then $X \in \mathcal{L}$.

Theorem 5 (Bessel Function(159)). The symmetric continuous random variable X with density $\frac{2}{\pi\sqrt{1-t^2}}$ in \mathcal{L} .

Theorem 6 (Large nth Coefficient(27)). Suppose X a discrete integer valued symmetric distribution. If $p_0 + 2p_1 + ... + 2p_{n-1} < 2p_n$ then $X \in \mathcal{L}$.

1.2 Newman's Examples

Newman, who initiated our study in Type L random variables, produced some examples as well.

Theorem 7 (Arithmetic Sequences). Let the sequence X above be an arbitrary arithmetic progression, ie. of the form $x_1 = d$, $x_2 = d + c$,..., $x_L = d + (L-1)c$ for arbitrary $d \in \mathbb{R}$, c > 0. Then $S_X(z)$ has zeroes only on the imaginary axis.

Theorem 8 (Uniform(Newman 7)). Let X be random variable with density $\frac{d\mu}{dy} = 1$ if $|y| \le A$ and 0 otherwise. A > 0. Then $X \in \mathcal{L}$.

Theorem 9 (Newman (8)). Density $(1-y^2)^{(d-2)/2}$ with $|y| \le 1$ and 0 otherwise. For d > 0.

Theorem 10 (Newman (9)). Density $e^{-\lambda \cosh(y)}$, $\lambda > 0$

Theorem 11 (Newman (10)). $e^{-ay^4-by^2}$ with a > 0

1.3 Other Examples

Theorem 12 (Enestrom-Kakeya). If X integer valued symmetric with $0 \le p_0 \le 2p_1 \le ... \le 2p_n$ with $p_n > 0$ then $X \in \mathcal{L}$.

Theorem 13 (Absolute Value). Let $a_0, a_1, ..., a_n \in \mathbb{R}$ with $|a_0| + ... |a_{n-1}| \le |a_n|$ then the trig polys $p_c(z) = \sum_{k=0}^n a_k \cos(kz)$ and the sin one have only real zeroes

Theorem 14 (Shifted Symmetry). Let $X \in \mathcal{L}$. Then $\exists \lambda \in \mathbb{R}$ s.t. $X - \lambda$ is symmetric.

Theorem 15 (Renyi). Renyi paper