Fundação Faculdade de Filosofia, Ciências e Letras de Mandaguari

Curso de Ciência da Computação

IoT e integração com Micro-serviços: Subtítulo

Willian Marques Freire

Ficha catalográfica: elaborada pela biblioteca do CI. Será impressa no verso da folha de rosto e não deverá ser contada. Se não houver biblioteca, deixar em branco.

CENTRO DE INFORMÁTICA

Fundação Faculdade de Filosofia, Ciências e Letras de Mandaguari

Trabalho de Conclusão de Curso de Ciência da Computação
intitulado IoT e integração com Micro-serviços de autoria de Willian Marques Freire, aprovada pela
banca examinadora constituída pelos seguintes professores:

Prof. Mr. Nome do Professor B Instituicao do Professor A

Prof. Dr. Nome do Professor B Instituição do Professor B

Prof. Dr. Nome do Professor C Instituicao do Professor C

Coordenador(a) do Departamento Nome do Departamento Nome do Coordenador CI/UFPB

Mandaguari, May 1, 2017

DEDICATÓRIA

A dedicatória é opcional

AGRADECIMENTOS

O agradecimento é opcional

RESUMO

Um resumo de trabalho de conclusão de curso é do tipo informativo e deve conter somente um parágrafo. A estrutura do resumo deve conter essencialmente os seguintes tópicos: apresentar inicialmente os objetivos do trabalho (o que foi feito?), a justificativa (porquê foi feito) e, finalmente, os resultados alcançados. O resumo deve informar ao leitor todas as informações importantes para o que o leitor possa entender o trabalho desenvolvido, quais foram as finalidades, a metodologia que o autor utilizou e os resultados obtidos. Deve conter frases curtas, porém completas (evitar estilo telegráfico); usar o tempo verbal no passado para os principais resultados e presente para comentários ou para salientar implicações significativas. O resumo em português e inglês são obrigatórios e não devem passar de 200 palavras.

Palavras-chave: <Primeira palavra>, <segunda palavra>, <até 5 palavras>. <
Obs.: as palavras-chave devem ser escolhidas com bastante rigor, pois devem representar adequadamente os principais temas abordados pela pesquisa.>

ABSTRACT

<Resumo em Inglês - Write here the abstract of your work>

Key-words:

LISTA DE FIGURAS

LISTA DE TABELAS

LISTA DE ABREVIATURAS

SIGLA – NOME COMPLETO

 LUMO – Laboratório de computação Móvel e Ubíqua

UbiComp
 – Computação Ubíqua

Contents

1	INTRODUÇÃO	17
2	APRESENTAÇÃO E ANÁLISE DOS RESULTADOS	23
3	CONCLUSÕES E TRABALHOS FUTUROS	24
\mathbf{R}^{1}	EFERÊNCIAS	24
A	- ANEXOS E APÊNDICES 1	25

1 INTRODUÇÃO

Com a evolução da computação distribuída surgiu a necessidade de criação de novos paradigmas, dando assim, origem ao Micro-serviço. O termo "Arquitetura de Micro-serviços" surgiu nos últimos anos para descrever uma maneira específica de desenvolver suítes de serviços com implantação (deploy) independente. Esta arquitetura tem várias características-chave que reduzem a complexidade. Cada micro-serviço funciona como um processo separado. Consiste em interfaces impulsionadas por dados que normalmente têm menos de quatro entradas e saídas. Cada micro-serviço é auto-suficiente para ser implantado em qualquer lugar em uma rede, pois contém tudo o que é necessário para que ele funcione - bibliotecas, instalações de acesso a banco de dados e arquivos específicos do sistema operacional. Cada micro-serviço é construído em torno de uma única funcionalidade focada; Portanto, é mais eficaz. Desenvolvimento, extensibilidade, escalabilidade e integração são os principais benefícios oferecidos pela Arquitetura de Micro-serviços.

Tem-se surgido muitos projetos utilizando este formato nos últimos anos e os resultados têm sido positivos, tanto que para muitos desenvolvedores o mesmo têm-se tornado a forma padrão de desenvolver aplicações. Entretanto, não existe muita informação que descreve o que são micro-serviços e como implementá-los (FOWLER et al., 2016). Utilizando-se da empresa Netflix como referência em micro-serviços, esta provê muitos recursos gratuitos e de código aberto para desenvolvedores como Eureka, Hystrix, Ribbon entre outros. Estimativas apontam que a mesma faturou algo em torno de R\$ 1,1 bilhões somente no Brasil no ano de 2015 e fontes do mercado registraram que o canal de streaming faturou cerca de R\$ 260 milhões a mais do que a previsão mais otimista de faturamento do SBT no ano de 2015. (FELTRIN, 2016). A empresa Netflix é uma das pioneiras em micro-serviços, e este termo nem sequer existia quando o serviço por streaming da empresa começou a caminhar. Atualmente a plataforma da mesma é sustentada por um Gateway (Ponte de Ligação) de APIs que lida com cerca de dois bilhões de requisições todo o dia. No total as requisições citadas são tratadas por mais de 600 APIs (SMARTBEAR, 2016).

Atualmente, um assunto também em discussão, que tem chamado a atenção desde pessoas com pouco conhecimento em tecnologia até pessoas que trabalham na área, é o IoT (Internet of Things) ou "Internet das Coisas" que se refere a uma revolução tecnológica que tem como objetivo conectar itens utilizados no dia a dia à rede mundial de computadores. Cada dia surgem mais eletrodomésticos, meios de transporte e até mesmo acessórios vestíveis conectados à Internet e a outros dispositivos, como computadores e smartphones (ZAMBARDA, 2014). Segundo Ashton (Primeiro especialista a utilizar o termo "Internet das Coisas") a limitação de tempo e da rotina fará com que as pessoas se conectem à Internet de outras maneiras, sendo para tarefas pessoais ou trabalho, permitindo o

compartilhamento de informações e experiências existentes na sociedade. Segundo uma pesquisa realizada em 2015 pelo IDC (Corporação Internacional de dados), no mercado de IoT seria movimentado em 2016 cerca de US\$ 41 bilhões (IDC, 2016).

Todas as evoluções tecnológicas na área de micro-serviços e IoT tem gerado grande interesse por parte dos desenvolvedores. Com base nas informações apresentadas, observa-se que são duas áreas distintas que crescem exponencialmente em razão do surgimento de novas tecnologias e têm-se necessidade de verificar relações que podem ser feitas entre as mesmas. Ao construir estruturas de comunicação entre diferentes processos, é visto que, muitos produtos e abordagens enfatizam a inserção de inteligências significativas no próprio mecanismo de comunicação. Um exemplo do que foi citado é o Enterprise Service Bus (ESB), onde os os produtos do mesmo incluem recursos sofisticados para roteamento de mensagens, coreografia, transformação e aplicação de regras de negócios. As aplicações construídas a partir de micro-serviços visam ser independentes e coesas, e estes são coreografados utilizando protocolos RestFul (FOWLER et al., 2016).

No ano de 1990 estava em alta uso a Arquitetura Orientada a Serviços (SOA). Foi um padrão que incluiu serviço como uma funcionalidade individual. O SOA trouxe muitas vantagens como velocidade, melhores fluxos de trabalho e vida útil mais longa das aplicações. Desta vez, foi do ponto de vista da criação de aplicativos desenvolvidos em torno de componentes de domínio de negócios e que poderiam ser desenvolvidos, manipulados e decompostos em serviços que se comunicassem por meio de APIs e protocolos de mensagens baseados em rede. Aqui é onde a Arquitetura de micro-serviços nasceu. A mesma adiciona agilidade, velocidade e eficiência quando se trata de implantação e modificação de sistemas. Como a tecnologia evolui, especificamente com IoT ganhando tanta tração, as expectativas das plataformas baseadas em nuvem mudaram. Big Data, termo que descreve imenso volumes de dado, se tornou um lugar comum e o mundo tecnológico começou a se mover para a economia de API. Este é o ponto onde o clássico SOA começou a mostrar problemas, demonstrando ser muito complicado, com centenas de interfaces e impossível definir granularidade. (TAYAL, 2016)

Os micro-serviços hospedados em nuvem criaram um modelo de coleção de serviços, representando uma função específica. Os mesmos oferecem uma maneira de dimensionar a infra-estrutura tanto horizontal quanto verticalmente, proporcionando benefícios de longo prazo para as implantações de aplicações. Cada um dos serviços pode escalar com base nas necessidades. Dando o dinamismo das expectativas de implantação e escalabilidade que vem com o Micro-serviço, os mesmos precisam se tornar uma parte importante da estratégia IoT. (TAYAL, 2016)

Neste trabalho tem-se por objetivo o desenvolvimento de uma interação entre as tecnologias citadas, através de uma interface de comunicação simples onde cada sistema embarcado se comunicará com algum micro-serviço genérico permitindo assim, a escalabil-

idade, sustentabilidade e independência dos serviços propostos. Será utilizado tecnologias como Spring Boot, uma plataforma Java criado por Rod Johnson baseado nos padrões de projeto inversão de controle (IoC) e injeção de dependência, Eureka, uma Interface de comunicação Java para micro-serviços para a construção dos Micro-serviços e a plataforma de prototipagem eletrônica NodeMcu ESP8266 para desenvolvimento do IoT que se comunicará com os mesmos. Para exemplo de aplicação, pode ser citado um conjunto de dispositivos que iriam coletar informações de sensores e controladores, e torná-los visíveis na forma de dados. Os micro-serviços poderiam apenas processar esses dados e aplicar algumas regras a esses dados. Outros serviços também poderiam buscar dados de sistemas empresariais de terceiros, como sistemas CRM / ERP.

Bare Demo of IEEEtran.cls for IEEE Journals

Michael Shell, Member, IEEE, John Doe, Fellow, OSA, and Jane Doe, Life Fellow, IEEE

Abstract—The abstract goes here.

Index Terms—IEEE, IEEE
tran, journal, $\ensuremath{\text{ET}_{\text{E}}}\xspace\ensuremath{X}\xspace$, paper, template.

I. INTRODUCTION

THIS demo file is intended to serve as a "starter file" for IEEE journal papers produced under LATEX using IEEEtran.cls version 1.8b and later. I wish you the best of success.

mds August 26, 2015 PLACE PHOTO

HERE

Michael Shell Biography text here.

A. Subsection Heading Here

Subsection text here.

1) Subsubsection Heading Here: Subsubsection text here.

II. CONCLUSION

The conclusion goes here.

APPENDIX A
PROOF OF THE FIRST ZONKLAR EQUATION

Appendix one text goes here.

APPENDIX B

Appendix two text goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

 H. Kopka and P. W. Daly, A Guide to BTEX, 3rd ed. Harlow, England: Addison-Wesley, 1999. John Doe Biography text here.

Jane Doe Biography text here.

Manuscript received April 19, 2005; revised August 26, 2015.

M. Shell was with the Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA e-mail: (see http://www.michaelshell.org/contact.html).

J. Doe and J. Doe are with Anonymous University.

Bare Demo of IEEEtran.cls for IEEE Journals

Michael Shell, Member, IEEE, John Doe, Fellow, OSA, and Jane Doe, Life Fellow, IEEE

Abstract—The abstract goes here.

Index Terms—IEEE, IEEE
tran, journal, $\ensuremath{\text{ET}_{\text{E}}}\xspace\ensuremath{X}\xspace$, paper, template.

I. INTRODUCTION

THIS demo file is intended to serve as a "starter file" for IEEE journal papers produced under LATEX using IEEEtran.cls version 1.8b and later. I wish you the best of success.

mds August 26, 2015 PLACE PHOTO

HERE

Michael Shell Biography text here.

A. Subsection Heading Here

Subsection text here.

1) Subsubsection Heading Here: Subsubsection text here.

II. CONCLUSION

The conclusion goes here.

APPENDIX A
PROOF OF THE FIRST ZONKLAR EQUATION

Appendix one text goes here.

APPENDIX B

Appendix two text goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

 H. Kopka and P. W. Daly, A Guide to BTEX, 3rd ed. Harlow, England: Addison-Wesley, 1999. John Doe Biography text here.

Jane Doe Biography text here.

Manuscript received April 19, 2005; revised August 26, 2015.

M. Shell was with the Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA e-mail: (see http://www.michaelshell.org/contact.html).

J. Doe and J. Doe are with Anonymous University.

Bare Demo of IEEEtran.cls for IEEE Journals

Michael Shell, Member, IEEE, John Doe, Fellow, OSA, and Jane Doe, Life Fellow, IEEE

Abstract—The abstract goes here.

Index Terms—IEEE, IEEE
tran, journal, $\ensuremath{\text{ET}_{\text{E}}}\xspace\ensuremath{X}\xspace$, paper, template.

I. INTRODUCTION

THIS demo file is intended to serve as a "starter file" for IEEE journal papers produced under LATEX using IEEEtran.cls version 1.8b and later. I wish you the best of success.

mds August 26, 2015 PLACE PHOTO

HERE

Michael Shell Biography text here.

A. Subsection Heading Here

Subsection text here.

1) Subsubsection Heading Here: Subsubsection text here.

II. CONCLUSION

The conclusion goes here.

APPENDIX A
PROOF OF THE FIRST ZONKLAR EQUATION

Appendix one text goes here.

APPENDIX B

Appendix two text goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

 H. Kopka and P. W. Daly, A Guide to BTEX, 3rd ed. Harlow, England: Addison-Wesley, 1999. John Doe Biography text here.

Jane Doe Biography text here.

Manuscript received April 19, 2005; revised August 26, 2015.

M. Shell was with the Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA e-mail: (see http://www.michaelshell.org/contact.html).

J. Doe and J. Doe are with Anonymous University.

2 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

Toda pesquisa deve apresentar uma análise sobre a investigação que foi realizada através da metodologia que foi aplicada. Nesta sessão é interessante inserir tabelas, gráficos, imagens que mostrem os resultados, análise de dados coletados, etc.

É interessante que nessa sessão o autor compare os seus resultados com os resultados de outros trabalhos existentes. Essa comparação aumenta a qualidade do trabalho e demonstra a relevância do mesmo.

Nesta sessão o autor pode/deve incluir as contribuições científicas desenvolvidas tais como artigos, patentes, livros e outras contibuições que foram publicadas ou estão em fase de publicação e que são parte do trabalho.

3 CONCLUSÕES E TRABALHOS FUTUROS

A conclusão deve conter os principais aspectos e contribuições de forma a finalizar o trabalho apresentado. Deve-se apresentar o que era esperado do trabalho através dos objetivos inscridos inicialmente e mostrar o que foi conseguido.

Não deve-se inserir um novo assunto na conclusão. Aqui o autor apresentará as próprias impressões sobre o trabalho efetuado.

É importante também que sejam identificadas limitações e problemas que surgiram durante o desenvolvimento do trabalho e quais as consequências do mesmo.

Os trabalhos futuros devem conter oportunidades de expansão do trabalho apresentado, bem como, novos projetos que puderam ser vislumbrados a partir do desenvolvimento do trabalho

A – ANEXOS E APÊNDICES 1

Anexos e apêndices são materiais adicionais, utilizados para complementar o texto, acrescentados ao final do trabalho, com a finalidade de esclarecimento ou de comprovação.

Apêndices são elaborados pelo autor e visam complementar uma argumentação. Os Anexos não são elaborados diretamente pelo autor e servem de fundamentação teórica, comprovação e ilustração (ex. mapas, leis, estatutos entre outros). Os apêndices devem aparecer antes dos anexos.

REFERÊNCIAS

- [1] SOBRENOME Nome. Título. Disponível em: http://example.com, Acesso em: dia (não incluir o zero à esquerda) mês (usar abreviações) ano.
- [2] SOBRENOME Nome. Título do livro, chapter **Título do capítulo**. Editora, 2016.
- [3] SOBRENOME Nome. **Título**: subtítulo. PhD thesis, Departamento acadêmico, Universidade, 2016.
- [4] SOBRENOME Nome. **Título do livro em negrito**. Editora, 2016.