Lie Theory 0x02

DaeYong Kim

Dept. of Artificial Intelligence, Ajou University

Contents

Algebraic System

What is the Algebraic System

Lie Theory

- What is the Lie Theory
- Group theory
- Properties
- Set && Space && Group
- group action
- Features of Lie Group
- Lie Group and Lie Algebra
- Mapping: Exponential and Logarithmic Operation

References

Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (Graduate Texts in Mathematics, 222) 2nd ed. 2015 Edition

Preview: Spherical Linear Interpolation

Goal

Algebraic System

Is "the Theory of everything" merely the ultimate ensemble theory?

FIG. 1. Relationships between various basic mathematical structures. The arrows generally indicate addition of new symbols and/or axioms. Arrows that meet indicate the combination of structures — for instance, an algebra is a vector space that is also a ring, and a Lie group is a group that is also a manifold.

Is "the Theory of everything" merely the ultimate ensemble theory?

What is the Algebraic System

대수적 체계(Algebraic system)란 무엇인가 그리고 어떻게 정의되는가

대수적 체계: 집합, 하나 이상의 연산 + 연산들이 만족해야 하는 공리로 구성된 수학적 구조 Set(집합)

- 대수적 체계에서 다루고자 하는 대상들의 모임
- e.g. 자연수, 정수, 실수, 복소수, ...

Operation(연산)

- 집합의 원소들 사이에서 정의된 함수
- 원소들을 결합하여 새로운 원소로 매핑
- e.g. Binary operation, Unary Operation, ...

Axiom or Properties(공리 또는 성질)

- 연산이 만족해야 하는 규칙이나 법칙
- 체계의 구조를 결정

Lie Theory

Lie Theory

- 변환군 관련 이론
- 사용 분야: 양자역학, 수학, 시스템 제어, 컴퓨터 그래픽스 등

Marius Sophus Lie(1842 – 1899): Norwegian mathematician.

Group Theory: 군론

Group(군): 특정 조건들을 만족하는 대수적 구조

Set(집합): A = $\{a_1, a_2, a_3, a_4, \dots, a_n\}$ Operation(연산): *

$$G = (A, *)$$

닫혀있다: a_i (operation) $a_i \Rightarrow a_k \in A$

e.g.) 루빅스 큐브

G = (A, *)A = 가능한 모든 회전의 집합 * = 움직임의 합성

닫혀있다: $a_i * a_i => a_k \in A$

<대수적 구조>

Examples: Set && Operation

Group	Set elements	Operation	e.g.
№(자연수)	1, 2, 3,	+	1 + 1 = 2
ℤ(정수)	-2, -1, 0, 1, 2, 3,	-, +, X	(-6) + 2 = -4
ℝ(실수)	1/3, 0.5, 0, 2,	-, +, x, /	1 / 2 = 0.5

닫혀 있지 않는 경우

N: 1 - 2 = -1 \rightarrow 자연수는 (-)연산에 대해서 닫혀 있지 않음

 \mathbb{Z} : 1 / 2 = 0.5 \rightarrow 정수는 나눗셈에 대해서 닫혀 있지 않음

Main Axioms || **Properties**

- Closure(폐쇄성): 연산 결과가 항상 집합 내에 존재해야 함 $\forall a,b \in G, a*b \in G$
- Associativity(결합법칙): (a+b)+c = a+(b+c)
- Identity Element(항등원): 집합 G에는 항등원 e가 존재 $\exists e \in G, \forall a \in G, e*a = a*e = a$
- Inverse Element(역원): 각 집합 G의 원소에 대해서 역원이 존재 $\forall a \in G, \exists a^{-1} \in G, a * a^{-1} = a^{-1} * a = e$

Axioms of Group

+ Commutativity(교환법칙): a*b = b*a

Set && Space && Group

Relationship

Group Action

Group Action

- 또 다른 집합 또는 군을 변환(=act) 시킬 수 있다.
- 군이 특정 집합을 변환하는 연산자 역할을 할 수 있다는 것을 의미
- Lie Group은 3차원 공간 상에서 물체의 이동+회전을 표현하기 적합한 도구

Lie Group

- SO(n): Rotation Matrix
- SE(n): Transformation Matrix

Example

Group Action of SO(2): Rotation Matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = \mathbf{R} \cdot x$$

(Vector Space) = (Lie Group)(Composition)(Vector Space)

회전행렬: $\mathbf{R} \in SO(2)$ 2차원 벡터: $\mathbf{x} \in \mathbb{R}^2$

이항연산: •

R은 vector space의 한 점을 회전(=act)

Example

Group Action of SE(3): Transformation Matrix

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{bmatrix} = \begin{bmatrix} R_{3\times3} & T_{3\times1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{bmatrix}$$

$$x' = T \cdot x$$

변환행렬: $T \in SE(3)$ 2차원 벡터: $\mathbf{x} \in \mathbb{R}^3$

이항연산: •

T는 vector space의 한 점을 Rotation && Translation (=act)

Features of Lie Group

Smooth Manifold

Smooth Manifold

Non-Smooth Manifold (Edge, Spike)

Features of Lie Group

<What We Want>

<Manifold>

Lie Group and Lie Algebra

Topological Structure: Lie Group, Lie Algebra

Mapping: Exponential and Logarithmic Operation

Lie Group : 까다로운 제약 조건

Lie Algebra: 비교적 자유로운 제약 조건

1대1 mapping: Lie Group ←→ Lie Algebra

연산 과정

Lie Group → Lie Algebra → Lie Group

Mapping: Exponential and Logarithmic Operation

Exponential Mapping

Lie Algebra → Lie Group

Logarithmic Mapping

Lie Group → Lie Algebra

References

https://slideplayer.com/slide/16959877/

https://www.sciencedirect.com/science/article/pii/S0003491698958559

https://en.wikipedia.org/wiki/Group_theory

https://drive.google.com/viewerng/viewer?url=https://github.com/gyubeomim/gb-supp-

mat/blob/main/blog/Notes+on+Lie+Theory.pdf?raw%3DT

Q&A

Bonus Lecture

https://github.com/microsoft/generative-ai-for-beginners?tab=readme-ov-file

21 Lessons teaching everything you need to know to start building Generative Al applications

Generative AI for Beginners (Version 3) - A Course

Learn the fundamentals of building Generative AI applications with our 21-lesson comprehensive course by Microsoft Cloud Advocates.

Getting Started

This course has 21 lessons. Each lesson covers its own topic so start wherever you like!

Lessons are labeled either "Learn" lessons explaining a Generative AI concept or "Build" lessons that explain a concept and code examples in both **Python** and **TypeScript** when possible.

Each lesson also includes a "Keep Learning" section with additional learning tools.

What You Need

To run this code of this course, you can use either:

- Azure OpenAl Service Lessons: "aoai-assignment"
- GitHub Marketplace Model Catalog Lessons: "githubmodels"
- OpenAl API Lessons: "oai-assignment"
- Basic knowledge of Python or TypeScript is helpful *For absolute beginners check out these <u>Python</u> and <u>TypeScript</u> courses.
- A GitHub account to fork this entire repo to your own GitHub account

We have created a **Course Setup** lesson to help you with setting up your development environment.

Don't forget to star (*) this repo to find it easier later.

#	Lesson Link	Description	Video	Extra Learning
00	Course Setup	Learn: How to Setup Your Development Environment	Coming Soon	<u>Learn</u> <u>More</u>
01	Introduction to Generative AI and LLMs	Learn: Understanding what Generative Al is and how Large Language Models (LLMs) work.	Video	<u>Learn</u> <u>More</u>
02	Exploring and comparing different LLMs	Learn: How to select the right model for your use case	<u>Video</u>	<u>Learn</u> <u>More</u>
03	Using Generative AI Responsibly	Learn: How to build Generative Al Applications responsibly	<u>Video</u>	<u>Learn</u> <u>More</u>
04	Understanding Prompt Engineering Fundamentals	Learn: Hands-on Prompt Engineering Best Practices	<u>Video</u>	<u>Learn</u> <u>More</u>
05	Creating Advanced Prompts	Learn: How to apply prompt engineering techniques that improve the outcome of your prompts.	<u>Video</u>	<u>Learn</u> <u>More</u>
06	Building Text Generation Applications	Build: A text generation app using Azure OpenAI / OpenAI API	<u>Video</u>	<u>Learn</u> <u>More</u>
07	Building Chat Applications	Build: Techniques for efficiently building and integrating chat applications.	<u>Video</u>	<u>Learn</u> <u>More</u>
08	Building Search Apps Vector Databases	Build: A search application that uses Embeddings to search for data.	<u>Video</u>	<u>Learn</u> <u>More</u>
09	Building Image Generation Applications	Build: A image generation application	<u>Video</u>	<u>Learn</u> <u>More</u>
10	Building Low Code Al Applications	Build: A Generative AI application using Low Code tools	<u>Video</u>	<u>Learn</u> <u>More</u>

11	Integrating External Applications with Function Calling	Build: What is function calling and its use cases for applications	<u>Video</u>	<u>Learn</u> <u>More</u>
12	Designing UX for AI Applications	Learn: How to apply UX design principles when developing Generative Al Applications	Video	<u>Learn</u> <u>More</u>
13	Securing Your Generative Al Applications	Learn: The threats and risks to AI systems and methods to secure these systems.	Video	<u>Learn</u> <u>More</u>
14	The Generative Al Application Lifecycle	Learn: The tools and metrics to manage the LLM Lifecycle and LLMOps	<u>Video</u>	<u>Learn</u> <u>More</u>
15	Retrieval Augmented Generation (RAG) and Vector Databases	Build: An application using a RAG Framework to retrieve embeddings from a Vector Databases	Video	<u>Learn</u> <u>More</u>
16	Open Source Models and Hugging Face	Build: An application using open source models available on Hugging Face	<u>Video</u>	<u>Learn</u> <u>More</u>
17	Al Agents	Build: An application using an Al Agent Framework	<u>Video</u>	<u>Learn</u> <u>More</u>
18	Fine-Tuning LLMs	Learn: The what, why and how of finetuning LLMs	<u>Video</u>	<u>Learn</u> <u>More</u>
19	Building with SLMs	Learn: The benefits of building with Small Language Models	Video Coming Soon	<u>Learn</u> <u>More</u>
20	Building with Mistral Models	Learn: The features and differences of the Mistral Family Models	Video Coming Soon	<u>Learn</u> <u>More</u>
21	Building with Meta Models	Learn: The features and differences of the Meta Family Models	Video Coming Soon	<u>Learn</u> <u>More</u>

