

Computer Security

Stream Cipher

Hyoungshick Kim

Department of Software College of Software Sungkyunkwan University

Symmetric key crypto

- Stream cipher based on one-time pad
 - Except that key is relatively short
 - Key is stretched into a long keystream
 - Keystream is used just like a one-time pad
 - RC4, A5/1, and etc.
- Block cipher based on codebook concept
 - Block cipher key determines a codebook
 - Each key yields a different codebook
 - Employs both "confusion" and "diffusion"

Stream Ciphers: making OTP practical

Idea: Replace "random" key by "pseudorandom" key

PRG is a fuction $G: \{0, 1\}^s \rightarrow \{0, 1\}^n$

Generate a pseudo random key using a random seed!

Encryption: $c = G(k) \oplus m$

Security will depend on specific PRG G

Quiz

Can a stream cipher have perfect secrecy?

No, since the key is shorter than the message

RC4 stream cipher

- A proprietary cipher owned by RSA, designed by Ron Rivest in 1987
- Became public in 1994
- Simple and effective design
- Variable key size (typical 40 to 256 bits)
- Output unbounded number of bytes
- Widely used (SSL/TLS, wireless WEP)
- Extensively studied, not a completely secure PRNG
- Newer Versions: RC5 and RC6

Stream cipher example - RC4

Key stream generation:

```
- (S[] is permutation of 0,1,...,255)

i := i+1 \quad (\text{mod } 256)
j := j+s[i](\text{mod } 256)
swap(s[i],s[j])
t := s[i]+s[j] \quad (\text{mod } 256)
k := s[t]
```

 Idea: systematically keep swapping and producing output bytes (i.e., S [])

Security of RC4

- RC4 is not a truly pseudorandom generator.
- The keystream generated by RC4 is biased.
 - The second byte is biased toward zero with high probability.
 - The first few bytes are strongly non-random and leak information about the input key.
- Defense: Discard the initial n bytes of the keystream.
 - Called "RC4-drop[n-bytes]".
 - Recommended values for n = 256, 768, or 3072 bytes.

Trends of stream ciphers

- Stream ciphers were popular in the past
 - Efficient in hardware
 - Speed was needed to keep up with voice, etc.
 - Today, processors are fast, so software-based crypto is usually more than fast enough
- Future of stream ciphers?
 - Shamir declared "the death of stream ciphers"
 - May be greatly exaggerated...

Questions?

