$\begin{array}{c} {\rm Matrix\ algebra} \\ {\rm Intro} \end{array}$

 $^{\rm CHEM\text{-}E7140}_{2019\text{-}2020}$

Scalars, vector and matrices

Transposition
Sum and difference

Matrix-vector multiplication Matrix-matrix

Matrix powers

Rank and kerne

Systems of equations

Inverse

Eigenvalues and eigenvectors

Matrix algebra, w/ intro to Matlab Process Automation (CHEM-E7140), 2019-2020

Francesco Corona

Chemical and Metallurgical Engineering School of Chemical Engineering

Matrix algebra Intro

CHEM-E7140 2019-2020

and matrices

Matrix operator

Sum and differen

Matriv-scalar

multiplicatio
Matrix-vecto

multiplicatio

Matrix power

Matrix exponentis

Determinant

Rank and kerne

ystems o

Inverse

Eigenvalues and eigenvectors

Matrix algebra

This tutorial notes overview some fundamental concepts in matrix algebra

- Matrix and vectors (definitions) and main matrix operators
- Determinant and rank, linear equations, and inverse
- Eigendecomposition, eigenvalues and eigenvectors

 $\begin{array}{c} {\rm Matrix\ algebra} \\ {\rm Intro} \end{array}$

CHEM-E7140 2019-2020

Scalars, vectors, and matrices

Matrix operator

Sum and different

Matrix-scal

Matrix-vecto

multiplicatio

Matrix-matr multiplicatio

Matrix power

Matrix exponentis

Determinan

Rank and kerne

equations

Inverse

Eigenvalues and eigenvectors

Matrices, vectors and scalars

Matrix algebra

Matrix algebra Intro

CHEM-E7140 2019-2020

Scalars, vectors, and matrices

Matrix operato

Sum and differen

Matrix-scalar multiplication Matrix-vector

multiplication
Matrix-matri

marerpricaero

Matrix powe

. . .

Determinan

Rank and kerne

Systems of equations

Invers

Eigenvalues an eigenvectors

Matrices, vectors, and scalars

Definition

A matrix

A matrix A of dimension $(m \times n)$ is a table of elements

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,j} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & a_{i,2} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,j} & \cdots & a_{m,n} \end{bmatrix}$$

 \bullet m rows

 \bullet *n* columns

The notation $A = \{a_{i,j}\}$ indicates that matrix A has elements $a_{i,j}$

• At the intersection of row i with column j

We will consider (mostly) real matrices, in which element $a_{i,j} \in \mathcal{R}$

To indicate a matrix, we use upper-case letters A, B, C, \dots

• $A^{m \times n}$ indicates a matrix A of dimension $(m \times n)$

```
Matrix algebra
```

Scalars, vectors, and matrices

Matrix operato

Transposition
Sum and difference

Matrix-scalar multiplication Matrix-vector multiplication Matrix-matrix multiplication

Matrix powers

Determinant

Rank and kerne

Systems of equations

Inverse

Eigenvalues and eigenvectors

Matrices and vectors (cont.)

Example

Create a $m \times n$ matrix A of random values, with m = 5 and n = 3

```
>> A
                                                Check content of A
4
                            0.1576
5
      0.8147
                 0.0975
                                                A is generated randomly
      0.9058
                 0.2785
                            0.9706
6
      0.1270
                 0.5469
                            0.9572
      0.9134
                 0.9575
                            0 4854
      0.6324
                 0.9649
                            0.8003
```

Eigenvalues an eigenvectors

2

2

4

Matrices and vectors (cont.)

Example

Consider the (2×3) matrix

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix} = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$

The elements of the matrix

$$\rightarrow a_{1,1} = 1$$

$$\rightarrow a_{1,2} = 3.5$$

$$\rightarrow a_{1,3} = 2$$

$$\rightarrow a_{2,1} = 0$$

$$\rightarrow$$
 $a_{2,2}=1$

$$\rightarrow a_{2,3} = 3$$

$$A = [1, 3.5, 2; 0, 1, 3];$$

```
Matrix algebra
Intro
```

$^{\rm CHEM\text{-}E7140}_{2019\text{-}2020}$

2

3 4 5

9

```
Scalars, vectors, and matrices

Matrix operators
Transposition
Sum and difference
Matrix-scalar
multiplication
Matrix-watrix
multiplication
Matrix-matrix
multiplication
Matrix powers
Matrix exponential
Determinant
```

Rank and kernel

equations

Eigenvalues an eigenvectors

Matrices and vectors (cont.)

```
% Check the content of variable A
>> A
    1 0000
            3.5000
                     2 0000
            1.0000
                     3.0000
>> A(1,1)
                                      % Checks element (1,1)
                                      % Element exists, return its value
ans =
>> A(3,1)
                                      % Check element (3.1)
Index exceeds matrix dimensions.
                                      % Element (3.1) does not exist
                                      % Return error, matrix is (2 x 3)
>> A(1,3)
                                      % Check element (1,3)
ans =
                                      % Element (1.3) exists
                                       Return its value
```

Sum and differen

multiplication

Matrix-vector multiplication Matrix-matri

Matrix power

Matrix expone

Determinan

Rank and kerne

Systems o

Inverse

Eigenvalues an eigenvectors

Matrices and vectors

Definition |

A scalar and a vector

A scalar is a matrix of dimension (1×1)

$$A = \left[a_{1,1}\right]$$

A vector is a matrix in which one of the dimensions is one

 \rightarrow Column-vector, a $(m \times 1)$ matrix (a column)

$$A = \begin{bmatrix} a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{i,1} \\ \vdots \\ a_{m,1} \end{bmatrix}$$

 \rightarrow Row-vector, $(1 \times n)$ matrix (a row)

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,j} & \cdots & a_{1,r} \end{bmatrix}$$

Matrix algebra Intro

CHEM-E7140 2019-2020

Scalars, vectors, and matrices

Matrix operator

0 1 1:00

multiplication

Matrix-vect

multiplicatio

Matrix-matr

muitipiicatic

Matrix power

Matrix expon

Determinan

Rank and kerne

ystems o

Inverse

Eigenvalues and eigenvectors

Matrices and vectors (cont.)

To indicate a vector, we use lower-case letters

$$\leadsto$$
 x, y, z, \dots

 $x \in \mathbb{R}^m$ indicates a column-vector x of dimension $(m \times 1)$

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors, and matrices

Transposition

Sum and differe

Matrix-scalar

Matrix-vecto multiplicatio

Matrix-matrix multiplication

Matrix power

Matrix exponent

Determinant

Rank and kernel

Systems o equations

Inverse

Eigenvalues an

Matrices and vectors (cont.)

Example

Consider the 2 vectors

$$x = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad y = \begin{bmatrix} 2 & 3 & 0 & 1.4 \end{bmatrix}$$

The type of vectors

- \rightarrow Vector x has dimension (3 × 1), a column-vector with 3 components
- \rightarrow Vector y has dimension (1×4) , a row-vector with 4 components

```
Matrix algebra
Intro
```

$^{\rm CHEM\text{-}E7140}_{2019\text{-}2020}$

```
Scalars, vectors,
and matrices
```

```
Eigenvalues an eigenvectors
```

Matrices and vectors (cont.)

```
[1; 0; 2];
                                    % Define x as column vector (3 x 1)
                                    % x is a 1D tall matrix
2
       [2, 3, 0, 1.4];
                                    % Define v as row vector (1 x 4)
                                    % y is a 1D wide matrix
   >> size(x)
                                      Check dimensions of X
2
   ans =
4
5
6
                                    % Redefine x as equal to its transpose
                                    % Symbol ' computes the transpose
  >> size(x)
                                      Check dimensions of new v
  ans =
14
        1
              3
```

Matrix algebra Intro

CHEM-E7140 2019-2020

Scalars, vectors, and matrices

Matrix operator

Transposition

Sum and differ Matrix-scalar

multiplication

Matrix-vector multiplication

multiplicatio

Matrix power

Matrix expo

D . .

2000111111111111

Rank and kern

equations

Inverse

Eigenvalues and eigenvectors

Matrices and vectors (cont.)

A $(m \times n)$ matrix is understood as consisting of n $(m \times 1)$ column-vectors

$$\rightsquigarrow \quad A = \left[\begin{array}{ccc} | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | \end{array} \right]$$

 \rightarrow a_i is the *i*-th column

```
% Define the number n of column vectors a in
  n = 10
                               % Define the number m of their elements
  m = 1.5
  A = zeros(m.n)
                               % Create a (m x n) A matrix of zeros (Initialise)
5
  for in = 1 \cdot n
                               % FOR each integer index 'in' between 1 and n.
      a = rand(m,1):
                               % create a random m-vector 'a', size (m x 1)
      A(:,in) = a:
                               % Place column-vector 'a' in the n-th column
                               % of matrix 'A' (overwriting the zeros)
                               % Close the FOR-loop
  end
  doc for
                               % Extended documentation about FOR-loops
                               % Quick documentation about FOR-loops
  help for
```

```
1 >> whos A % Return information about variables A
2 Name Size Bytes Class Attributes
3 4 A 15x10 1200 double
```

 $\begin{array}{c} {\rm Matrix\ algebra} \\ {\rm Intro} \end{array}$

CHEM-E7140 2019-2020

Scalars, vectors, and matrices

Matrix operator

Sum and different

Matrix-scalar

3

5

multiplication
Matrix-vector

Matrix-matrix

Muterpheation

Matala

Determinant

Rank and kern

Systems of equations

Inverse

Eigenvalues and eigenvectors

Matrices and vectors (cont.)

A $(m \times n)$ matrix is understood as consisting of m $(1 \times n)$ row-vectors

$$\rightarrow \quad A = \begin{bmatrix} -- & b_1 & -- \\ -- & b_2 & -- \\ -- & \vdots & -- \\ -- & b_n & -- \end{bmatrix} \quad (b_i \text{ is the i-th row)}$$

The same code using the 'cell-array' data structure for storing the vectors a

Scalars, vectors, and matrices

Matrix operator

Sum and differen

Sum and different Matrix-scalar

Matrix-vector

multiplication

Matrix powers

D . . .

Systems of

Inverse

eigenvectors

Matrices and vectors (cont.)

Example

Consider the (2×3) matrix

$$A = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$

Extract columns and rows (that is, create column- and row-vectors from A)

1 >> A = [1, 3.5, 2; 0, 1, 3]; % Create matrix A

$$a_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 3.5 \\ 1 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 (As component columns)

$$=\begin{bmatrix}1 & 3.5 & 2\end{bmatrix}, b_2 = \begin{bmatrix}0 & 1 & 3\end{bmatrix}$$
 (As component rows)

 $\begin{array}{c} {\rm Matrix\ algebra} \\ {\rm Intro} \end{array}$

CHEM-E7140 2019-2020

Scalars, vectors, and matrices

Transposition
Sum and different

multiplication Matrix-vector multiplication

multiplication
Matrix powers

Determinan

Rank and kerne

Systems of equations

Inverse

Eigenvalues and eigenvectors

Example

Create a $m \times n$ matrix A of random values, with m = 2 and n = 5

- Display matrix A and check its size
- **2** Extract element $a_{2,3}$ and element $a_{3,2}$
- $oldsymbol{3}$ Extract the 4-th column and the 1-st row of A

Repeat the previous steps on a new matrix B with m=n=5

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors, and matrices

Matrix operato

Sum and differe

Matrix-scalar

Matrix-vector multiplication

multiplication

Matrix powers

Determinant

Rank and kerne

Systems of equations

Inverse

Eigenvalues an

Matrices and vectors (cont.)

Definition

A square matrix

A matrix A is said to be a square matrix if its dimension is $(n \times n)$

• The number of rows equals the number of columns

The diagonal of a square matrix A of order n is the set of elements

$$\{a_{1,1}, a_{2,2}, \cdots, a_{n,n}\}$$

They have the same row- and column-number

```
\begin{array}{c} {\rm Matrix\ algebra} \\ {\rm Intro} \end{array}
```

Matrices and vectors (cont.)

```
CHEM-E7140
2019-2020
```

```
% Set number of rows/columns
Scalars, vectors,
                     = 5;
and matrices
                  A = rand(n,n);
                                                                             % Create a (n x n) matrix A
                   >> A
                                                                             % Check elements of matrix A
                2
                3
                4
                5
                       0.9631
                                  0.6241
                                              0.0377
                                                         0.2619
                                                                    0.1068
                6
                       0.5468
                                  0.6791
                                              0.8852
                                                         0.3354
                                                                    0.6538
                       0.5211
                                  0.3955
                                              0.9133
                                                         0.6797
                                                                    0.4942
                       0.2316
                                  0.3674
                                              0.7962
                                                         0.1366
                                                                    0.7791
                       0.4889
                                  0.9880
                                              0.0987
                                                         0.7212
                                                                    0.7150
                9
                                                                             % Show diagonal elements of A
                   >> diag(A)
                                                                               It is a column vector
                13
                   ans =
                                                                               The size is (n \times 1)
                14
                       0.9631
                                                                               Type 'help diag'
                       0.6791
                                                                               Type 'doc diag'
                       0.9133
               18
                       0.1366
                19
                       0.7150
                                                                             %
```

```
Matrix algebra
Intro
```

Scalars, vectors, and matrices

Matrix operator

Transposition

Sum and differenc Matrix-scalar

multiplication

Matrix-vector multiplication

multiplication

matrix powers

Determinan

Rank and kerne

Systems of

2

Inverse

Eigenvalues an eigenvectors

Matrices and vectors (cont.)

Example

Consider the order 4 square matrix $A = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 4 & 3 \\ 3 & 2 & 6 \end{bmatrix}$, its diagonal elements $\{1, 4, 6\}$

Sum and different Matrix-scalar

Matrix-vector

Matrix powers

italik alid kerile

equations

Inverse

Eigenvalues and eigenvectors

Matrices and vectors (cont.)

Definition

Square matrices

Diagonal

• All off-diagonal elements are zero

Identity matrix

ullet A diagonal matrix whose diagonal elements are equal to one, I or I_n

Block-diagonal

• All elements are zero except for some square blocks along the diagonal

Lower- (upper-) triangular

• All elements above (below) the diagonal are zero

```
Matrix algebra
```

```
Scalars, vectors,
and matrices
```

Matrix operato

Sum and difference

Matrix-scalar

multiplication

Matrix-vector multiplication

multiplication

Matrix powers

Matrix exponentia

Determinant

Rank and kerne

Systems of

Inverse

Eigenvalues and

Matrices and vectors (cont.)

```
>> m = 5:
                                      % Define some scalar. (1 x 1) matrix. m
 2
   >> d = 1:m:
                                      % Create a n-vector 'd', size (m.1)
                                      % The elements of d are (1,2,\ldots,5)
 4
- 5
 6
                                      % Find out how to use ':' in Matlab
   >> D = diag(d)
                                      % Create a diagonal matrix D based
                                      % on vector 'd', size (5 \times 5)
 9
   D =
14
19
   >> I = eve(m)
                                      % Create an identity matrix I of order 'm'
                                      % Try 'help eve' and 'doc eve'
20
   T =
21
               0
26
        0
               0
                     0
                                   0
```

```
Matrix algebra
    Intro
```

Scalars, vectors, and matrices

Matrices and vectors (cont.)

```
>> na = 2; A = rand(na,na);
                                             % Create (na x na) matrix A
  >> nb = 1: B = rand(nb.nb):
                                               Create (nb x nb) matrix B
                                               Create (nc x nc) matrix C
  >> nc = 3; C = rand(nc,nc);
4
  >> D = blkdiag(A,B,C)
                                             % Create a block-diagonal matrix D,
5
                                             % from A. B and C
6
7
8
Q
       0.6490
                 0.4538
       0.8003
                 0.4324
                            0.8253
            0
                                       0.0835
                                                 0.3909
                                                            0.0605
                                       0.1332
                                                 0.8314
                                                            0.3993
                                       0.1734
                                                 0.8034
                                                            0.5269
14
```

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors, and matrices

Matrix operator

Sum and differen

Matrix-scalar

multiplication

Matrix-vecto multiplicatio

Matrix-matri:

Matrix power

Matrix expone

Determinant

Rank and kernel

Systems o

Invers

Eigenvalues an eigenvectors

Matrices and vectors (cont.)

Example

Consider the order 4 square matrices

$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 0 & 0 \\ 2 & 3 & 0 \\ 6 & 0 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & 2 & 6 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- \rightsquigarrow Matrix A is diagonal
- \rightarrow Matrix B is lower-triangular
- \leadsto Matrix C is upper-triangular
- \leadsto Matrix I is an identity of order 3

Matrix-matri

Matrix powers

Matrix exponent

Determinan

Rank and kerne

equations

Inverse

Eigenvalues and eigenvectors

Matrices and vectors (cont.)

Matrix \widetilde{A} is block-diagonal

$$\widetilde{A} = \begin{bmatrix} \widetilde{A}_1 & 0 & 0 \\ 0 & \widetilde{A}_2 & 0 \\ 0 & 0 & \widetilde{A}_3 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

Three blocks, \widetilde{A}_1 , \widetilde{B}_2 and \widetilde{B}_3 , one of order 2 and 2 of order 1

Matrix \tilde{A} is upper-block-triangular

$$\tilde{A} = \begin{bmatrix} \tilde{B}_1 & \tilde{B}_3 \\ 0 & \tilde{B}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 3 & 0 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 3 & 4 \end{bmatrix}$$

Two diagonal blocks, \widetilde{B}_1 and \widetilde{B}_2 , both of order 2

$\begin{array}{c} {\rm Matrix\ algebra} \\ {\rm Intro} \end{array}$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operators

Transposition

Sum and difference

Matrix-scala

Matrix-vecto

multiplicatio

Matrix-mat

Matrix power

Determinan

Rank and kerne

equations

Inverse

Eigenvalues and eigenvectors

Matrix operators

Matrix algebra

Matrix algebra Intro

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Transposition

Sum and difference

Matrix-scalar

Matrix-vecto

multiplicatio

multiplication

Matrix power

Matrix exponenti

Determinan

Rank and kerne

stems of

Inverse

Eigenvalues an eigenvectors

Transposition

Definition

Matrix transposition

Consider a matrix $A = \{a_{i,j}\}\$ of dimension $(m \times n)$

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

The **transpose** of A is the matrix $A' = \{a'_{i,j} = a_{j,i}\}$ of dimension $(n \times m)$

$$A' = \begin{bmatrix} a_{1,1} & a_{2,1} & \cdots & a_{m,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{m,n} \end{bmatrix}$$

- On the j-th row of A', the elements of the j-th column of A
- On the *i*-th column of A', the elements of the *j*-th row of A

Matrix-scalar

multiplication
Matrix-vector

multiplication
Matrix-matrix

Matrix powers

muutin enpone.

Determinant

Rank and kerne

Systems of equations

Inverse

eigenvectors

Transposition (cont.)

Example

Consider the (2×3) matrix A and its transpose A'

$$A = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix}, \quad A' = \begin{bmatrix} 1 & 0 \\ 3.5 & 1 \\ 2 & 3 \end{bmatrix}$$

Matrix algebra Intro

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operato

Transposition

Sum and differen

Matrix-scala

Matrix-vecto

Matrix-matri

Matrix nower

Matrix exponentia

Determinan:

Rank and kerne

Systems of

Inverse

Eigenvalues and eigenvectors

Transposition (cont.)

The following properties hold

- If D is a diagonal matrix, we have D = D'
- If A is lower-triangular, then A' is upper-triangular
- If A is upper-triangular, then A' is lower-triangular
- If A is a row-vector, A' is a column-vector
- If A is a column-vector, A' is a row-vector
- If B = A', we have B' = (A')'

Matrix algebra											
Intro	1	1 >> m = 4; d = rand(m,1); D = diag(d)							Define dimension and a random vector		
CHEM-E7140	2							%	Use vector to create diagonal matrix		
2019-2020	3										
2010-2020	4	D =						%	Show the diagonal matrix D		
	5										
	6	0	.8147		0	0	0				
	7		0		0.9058	0	0				
Matrix operators	8		0		0	0.1270	0				
Transposition	9		0		0	0	0.9134				
Sum and difference	10										
Matrix-scalar	11	>> Dt	= D,						Compute the transpose of matrix D		
multiplication	12							%	Display Dt		
Matrix-vector	13	Dt =									
multiplication	14										
Matrix-matrix multiplication	15	0	.8147		0	0	0				
36.1	16		0		0.9058	0	0				
	17		0		0	0.1270	0				
Matrix exponential	18		0		0	0	0.9134				
Determinant	19										
		>> D == Dt							% Check whether D and D'are equal		
Rank and kernel									The check is done elementwise		
	22							%			
	23							%			
Inverse		ans =						%			
	25							%			
	26	4 x 4	logi	cal	array			%			
	27							%			
	28	1	1	1	1			%			
	29	1	1	1	1			%	An alternative way of checking		
	30	1	1	1	1				>> isequal(D,Dt)		
	31	1	1	1	1			7.	Return one logical variable		

```
Matrix algebra
Intro
```

```
Scalars, vectors, and matrices
```

Matrix operat

Transposition
Sum and difference
Matrix-scalar

Matrix-vector multiplication

Matrix-matrix multiplication

Matrix exponentis

Determinant

rtank and kerne

equations

Eigenvalues and eigenvectors

Transposition (cont.)

```
4: A = rand(m,m): Au = triu(A)
2
3
  A 11 =
4
       0.6324
                  0.9575
                              0.9572
                                          0.4218
5
6
                  0.9649
                              0.4854
                                          0.9157
            0
                              0.8003
                                          0.7922
             0
                        0
8
             Λ
                        0
                                          0.9595
                                    Ω
9
```

0 >> Au'
1
2 ans =

ans :

14

16

18 19

20 21

23

24

25

26

0.6324 0 0 0 0.9575 0.9649 0 0 0.9572 0.4854 0.8003 0 0.4218 0.9157 0.7922 0.9595

>> (Au')'

ans =

0.6324 0.9575 0.9572 0.4218 0 0.9649 0.4854 0.9157 0 0 0.8003 0.7922 0 0 0 0.9595

```
Matrix algebra
```

Scalars, vectors, and matrices

Matrix operat

Transposition
Sum and difference
Matrix-scalar

Matrix-vector multiplication

Matrix-matrix multiplication

Matrix exponential

Determinant

Determinant

Systems of

Inverse

Eigenvalues and

Transposition (cont.)

```
4: A = rand(m,m): Al = tril(A)
2
3
  A1 =
4
       0.8147
                                  0
6
       0.9058
                  0.0975
                                              0
       0.1270
                  0.2785
                             0.1576
8
       0.9134
                  0.5469
                             0.9706
                                        0.1419
```

>> Al'

ans =

9

14

16

18 19

20

25 26 0.8147 0.9058 0.1270 0.9134 0 0.0975 0.2785 0.5469 0 0 0.1576 0.9706 0 0 0 0.1419

>> (A1')' == A1

4x4 logical array

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

```
Matrix algebra Intro
```

CHEM-E7140

```
2019-2020
                   >> m = 4: a = rand(1.m)
                2
                3
                   a =
                4
                       0.2511
                                   0.6160
                                              0.4733
                                                          0.3517
                5
                6
Transposition
                   >>
                8
                9
                   at =
                       0.2511
                       0.6160
                       0.4733
               14
                       0.3517
                   >> (a')'
               18
                   ans =
                       0.2511
                                   0.6160
                                              0.4733
                                                          0.3517
                   >> isequal((a')',a)
               23
                   ans =
               25
               26
                     logical
               27
               28
                      1
```

Scalars, vectors and matrices

Matrix operator

Sum and difference

Sum and differen

Matrix-scalar multiplication

Matrix-vector multiplication

Matrix-matr multiplicatio

Matrix power

Matrix expone

Determinar

Rank and kern

Systems o

Invers

Eigenvalues an eigenvectors

Sum and difference

Definition

Matrix sum and difference

Consider two matrices $A = \{a_{i,j}\}$ and $B = \{b_{i,j}\}$ both of dimension $(m \times n)$

Define the sum of A and B as the $(m \times n)$ matrix $S = \{c_{i,j} = a_{i,j} + b_{i,j}\}$

$$S = A + B$$

$$= \begin{bmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} & \cdots & a_{1,j} + b_{1,j} & \cdots & a_{1,n} + b_{1,n} \\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} & \cdots & a_{2,j} + b_{2,j} & \cdots & a_{2,n} + b_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} + b_{i,1} & a_{i,2} + b_{i,2} & \cdots & a_{i,j} + b_{i,j} & \cdots & a_{i,n} + b_{i,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m,1} + b_{m,1} & a_{m,2} + b_{m,2} & \cdots & a_{m,j} + b_{m,j} & \cdots & a_{m,n} + b_{m,n} \end{bmatrix}$$

• Element $c_{i,j}$ is equal to the sum of elements $a_{i,j}$ and $b_{i,j}$

Define the difference of A and B as the $(m \times n)$ matrix

$$D = A - B = \{d_{i,j} = a_{i,j} - b_{i,j}\}\$$

Scalars, vectors and matrices

Matrix operator

Sum and difference

Sum and differenc

Matrix-scalar

Matrix-vector multiplication

Matrix-matri multiplication

Matrix power

Matrix exponenti

Determinan

Rank and kern

Systems of

Inverse

Eigenvalues and eigenvectors

Sum and difference (cont.)

Example

Consider the two (2×3) matrices A and B

$$A = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Their sum

$$S = A + B = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} \underbrace{1+1}_{2} & \underbrace{3.5+2}_{5.5} & \underbrace{2+3}_{5} \\ \underbrace{0+4}_{4} & \underbrace{1+5}_{6} & \underbrace{3+6}_{9} \end{bmatrix}$$

Their difference

$$D = A - B = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3.5 & 2 & 2 & 3 \\ 0 & 4 & 1 & 5 & 3 & 6 \\ 0 & 4 & 1 & 5 & 3 & 6 \\ 0 & 4 & 1 & 5 & 3 & 6 \end{bmatrix}$$

```
Matrix algebra
Intro
```

Scalars, vectors, and matrices

```
Transpositio
```

Sum and difference

Matrix-scalar multiplication

Matrix-vector multiplication

multiplicatio

Matrix powe

Matrix expo

Determinan

Determinar

Rank and

Systems

quation

Invers

Eigenvalues and eigenvectors

Sum and difference (cont.)

```
[1, 3.5, 2; 0, 1, 3];
                2, 3; 4, 5, 6];
3
4
5
6
  S
7
       2.0000
                  5.5000
                             5.0000
8
       4.0000
                  6.0000
                             9.0000
9
  D
                  1.5000
                            -1.0000
      -4.0000
                 -4.0000
                            -3.0000
```

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operators

Sum and differen

Matrix-scalar

multiplication Matrix-vector multiplication

Matrix-matrix multiplication

Matrix powe

Matrix exponen

Determinan

Rank and kern

stems of

Inverse

Eigenvalues and eigenvectors

Matrix-scalar multiplication

Definition

Matrix-scalar product

Consider a number $s \in \mathcal{R}$ and a $(m \times n)$ matrix $A = \{a_{i,j}\}$

Define matrix-scalar product of A and s as the $(m \times n)$ matrix B = sA

$$B = sA = \begin{bmatrix} s \cdot a_{1,1} & \cdots & s \cdot a_{1,j} & \cdots & s \cdot a_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ s \cdot a_{i,1} & \cdots & s \cdot a_{i,j} & \cdots & s \cdot a_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ s \cdot a_{m,1} & \cdots & s \cdot a_{m,j} & \cdots & s \cdot a_{m,n} \end{bmatrix}$$

• Element $b_{i,j}$ is equal to the product of s and element $a_{i,j}$

Matrix-scalar

multiplication

Matrix-vector

Matrix-matrix

multiplication

Matrix powers

Matrix exponential

nt

8

14

Rank and kerne

equations

iverse

Eigenvalues and eigenvectors

Matrix-scalar multiplication (cont.)

Example

Let
$$s = 4$$
 and let $A = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix}$, we have $sA = 4 \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 14 & 8 \\ 0 & 4 & 12 \end{bmatrix}$

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and differen

Matrix-vector

multiplication

multiplicatio

Matrix powe

Determinan

Rank and kern

stems o

Inverse

Eigenvalues an

Matrix-vector multiplication

We treated matrices and vectors as simple collection of numbers, or rectangular tables

More mathematically, matrices associate with linear transformations or functions

- A function is an operation that takes an input and returns an output
- (We often denote those as independent and dependent variables)

In matrix algebra, we consider transformations that map vectors into vectors

$$\rightarrow$$
 $y = A(x)$, (with x and y vectors and A a transformation)

Think of the usual 2D Cartesian space, A transforms a vector x into another vector y

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \leadsto \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Understanding linear functions means understanding how bases vectors are transformed

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \rightsquigarrow \quad \begin{bmatrix} a_{1,1} \\ a_{2,1} \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \rightsquigarrow \quad \begin{bmatrix} a_{1,2} \\ a_{2,2} \end{bmatrix}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

watrix operator

Sum and difference

multiplication Matrix-vector

multiplication Matrix-matrix

Matrix power

Matrix expor

Determinan

Rank and kerne

systems of equations

Inverse

Eigenvalues and eigenvectors

Matrix-vector multiplication (cont.)

Consider a transformation A such that $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \leadsto \begin{bmatrix} a_{1,1} \\ a_{2,1} \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \leadsto \begin{bmatrix} a_{1,2} \\ a_{2,2} \end{bmatrix}$

For any vector $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}'$, we have its new (transformed) coordinates

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = x_1 \begin{bmatrix} a_{1,1} \\ a_{2,1} \end{bmatrix} + x_2 \begin{bmatrix} a_{1,2} \\ a_{2,2} \end{bmatrix}$$

We collect the transformed bases vectors in a (2×2) matrix A

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}$$

We can write

$$\leadsto \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Sum and differen

Matrix-scala multiplicatio

Matrix-vector multiplication

Matrix-matr

Matrix nome

Matrix exponent

Determinan

Rank and kerne

equations

Inverse

Eigenvalues an eigenvectors

Matrix-vector multiplication

Definition

Matrix-vector multiplication

Let $A = \{a_{i,j}\}$ be a $(m \times n)$ matrix and let $b = \{b_{i,j}\}$ be a $(n \times 1)$ matrix (a vector)

$$A = egin{bmatrix} a_{1,1} & \cdots & a_{1,k} & \cdots & a_{1,n} \\ dots & \ddots & dots & \ddots & dots \\ a_{i,1} & \cdots & a_{i,k} & \cdots & a_{i,n} \\ dots & \ddots & dots & \ddots & dots \\ a_{m,1} & \cdots & a_{m,k} & \cdots & a_{m,n} \end{bmatrix}, \quad b = egin{bmatrix} b_1 \\ dots \\ b_k \\ dots \\ b_n \end{bmatrix}$$

The product between A and b is defined as a $(m \times 1)$ matrix $c = \{c_i\}$ (a vector)

$$c = \{c_i = \sum_{k=1}^n a_{i,k} b_k\}$$

Matrix-vector multiplication

multiplicatio

Matrix power

Matrix exponenti

Determinan

Rank and kern

Systems o

Inverse

Eigenvalues and eigenvectors

Matrix-vector multiplication (cont.)

Example

Let
$$A = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
, then let $b = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ and $c = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$

To compute the vector d = Ab and e = Ac, we have

$$d = Ab = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 3.5 \cdot 3 + 2 \cdot 5 \\ 0 \cdot 1 + 1 \cdot 3 + 3 \cdot 5 \\ 0 \cdot 1 + 0 \cdot 3 + 1 \cdot 5 \end{bmatrix} = \begin{bmatrix} 21.5 \\ 18 \\ 5 \end{bmatrix}$$

$$e = Ac = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 + 3.5 \cdot 4 + 2 \cdot 6 \\ 0 \cdot 2 + 1 \cdot 4 + 3 \cdot 6 \\ 0 \cdot 2 + 0 \cdot 4 + 1 \cdot 6 \end{bmatrix} = \begin{bmatrix} 28 \\ 22 \\ 6 \end{bmatrix}$$

```
Matrix algebra
Intro
```

$^{\rm CHEM\text{-}E7140}_{2019\text{-}2020}$

```
Matrix-vector
multiplication
```

Eigenvalues an eigenvectors

Matrix-vector multiplication (cont.)

```
\Rightarrow A = [1 3.5 2: 0 1 3: 0 0 1]:
                                                   % Define the matrix the (3x3) matrix A
   >> b = [1; 3; 5];
                                                   % Define the (3x1) vector b
   >> c = [2; 4; 6];
                                                   % Define the (3x1) vector c
 5
                                                   % Compute the (3x1) vector d
   >> d = A*b
                                                   % Try b*A and comment
 7
 8
   d =
 9
      21.5000
      18,0000
       5.0000
14
   >> e = A*c
                                                   % Compute the (3x1) vector e
                                                   % Trv c*A and comment
      28.0000
18
      22.0000
20
       6.0000
```

Matrix-vector multiplication

Matrix-matrix multiplication

Matrix power

Matrix exponenti

Determinar

Rank and kern

Systems o

Inverse

Eigenvalues and eigenvectors

Matrix-vector multiplication (cont.)

Example

Let
$$A = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$
, then let $b = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ and $c = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$

Compute the vectors d = Ab and e = Ac and comment on the result

$$d = Ab = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 3.5 \cdot 3 + 2 \cdot 5 \\ 0 \cdot 1 + 1 \cdot 3 + 3 \cdot 5 \end{bmatrix} = \begin{bmatrix} 21.5 \\ 18 \end{bmatrix}$$

$$e = Ac = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 + 3.5 \cdot 4 + 2 \cdot 6 \\ 0 \cdot 2 + 1 \cdot 4 + 3 \cdot 6 \end{bmatrix} = \begin{bmatrix} 28 \\ 22 \end{bmatrix}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

m ...

Sum and difference

Matrix-scalar

multiplication

multiplication

Matrix-mat

Matrix power

Matrix exponenti

Determinan

Rank and kernel

Systems of

Invers

Eigenvalues and eigenvectors

Matrix-vector multiplication (cont.)

Example

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$
, then let $b = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ and $c = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$

Compute the vectors d = Ab and e = Ac and comment on the results

Sum and differe

multiplicatio

Matrix-vector

Matrix-matrix multiplication

Matrix powers

)eterminar

Rank and kerne

equations

Inverse

Eigenvalues and eigenvectors

Matrix-matrix multiplication

Definition

Matrix-matrix multiplication

Let $A = \{a_{i,j}\}$ be a $(m \times n)$ matrix and let $B = \{b_{i,j}\}$ be a $(n \times p)$ matrix

$$A = \begin{bmatrix} a_{1,1} & \cdots & a_{1,k} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & \cdots & a_{i,k} & \cdots & a_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,k} & \cdots & a_{m,n} \end{bmatrix}, \quad B = \begin{bmatrix} b_{1,1} & \cdots & b_{1,j} & \cdots & b_{1,p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{k,1} & \cdots & b_{k,j} & \cdots & b_{k,p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,j} & \cdots & b_{n,p} \end{bmatrix}$$

The product between A and B is defined as a $(m \times p)$ matrix $C = \{c_{i,j}\}$

$$C = \{c_{i,j} = \sum_{k=1}^{n} \frac{a_{i,k}}{a_{i,k}} b_{k,j}\}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and differen

Matrix-scalar

Matrix west

Matrix-vect multiplication

Matrix-matrix multiplication

Matrix powers

Determinan

Rank and kern

ystems c

Inverse

Eigenvalues and eigenvectors

Matrix-matrix product (cont.)

$$C = \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,j} & \cdots & c_{1,p-1} & c_{1,p} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,j} & \cdots & c_{2,p-1} & c_{2,p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ c_{i,1} & c_{i,2} & \cdots & c_{i,j} & \cdots & c_{i,p-1} & c_{i,p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ c_{m-1,1} & c_{m-1,2} & \cdots & c_{m-1,j} & \cdots & c_{m-1,p-1} & c_{m-1,p} \\ c_{m,1} & c_{m,2} & \cdots & c_{m,j} & \cdots & c_{m,p-1} & c_{m,p} \end{bmatrix}$$

Element $c_{i,j}$ of matrix C is given by the scalar product between a'_i and b_j

$$c_{i,j} = a_i'b_j = egin{bmatrix} a_{i,1} & a_{i,2} & \cdots & a_{i,k} & \cdots & a_{i,n} \end{bmatrix} egin{bmatrix} b_{1,j} \ b_{2,j} \ dots \ b_{k,j} \ dots \ b_{n,j} \end{pmatrix}$$

$$= a_{i,1}b_{1,j} + a_{i,2}b_{2,j} + \cdots + a_{i,n}b_{n,j} = \sum_{k=1}^{n} a_{i,k}b_{k,j}$$

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Sum and diffe

Matrix-scalar

multiplication

Matrix-vector multiplication

Matrix-matrix

multiplication

Matrix powers

Determinant

Rank and kerne

3

9

Systems of equations

Inverse

Eigenvalues and eigenvectors

Matrix-matrix product (cont.)

Example

18.0000

5.0000

Let
$$A = \begin{bmatrix} 1 & 3.5 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
 and let $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$, we have

$$C = AB = \begin{bmatrix} 1 \cdot 1 + 3.5 \cdot 3 + 2 \cdot 5 & 1 \cdot 2 + 3.5 \cdot 4 + 2 \cdot 6 \\ 0 \cdot 1 + 1 \cdot 3 + 3 \cdot 5 & 0 \cdot 2 + 1 \cdot 4 + 3 \cdot 6 \\ 0 \cdot 1 + 0 \cdot 3 + 1 \cdot 5 & 0 \cdot 2 + 0 \cdot 4 + 1 \cdot 6 \end{bmatrix} = \begin{bmatrix} 21.5 & 28 \\ 18 & 22 \\ 5 & 6 \end{bmatrix}$$

```
>> A = [1 3.5 2; 0 1 3; 0 0 1];

>> B = [1 2; 3 4; 5 6];

>> C = A*B

C =

21.5000 28.0000
```

22.0000

6.0000

CHEM-E7140 2019-2020

Scalars, vectors and matrices

T------

C---- --- d d:66----

Sum and differen

multiplication

Matrix-vect

Matrix-matrix multiplication

Matrix powers

Matrix expor

Determinan

Italik alid kerii

equations

Inverse

Eigenvalues and eigenvectors

Matrix-matrix product (cont.)

Element $c_{i,j}$ of matrix C is given by the scalar product between a'_i and b_j

```
c_{i,j} = \mathbf{a}_i' b_j = \begin{bmatrix} \mathbf{a}_{i,1} & \mathbf{a}_{i,2} & \cdots & \mathbf{a}_{i,k} & \cdots & \mathbf{a}_{i,n} \end{bmatrix} \begin{bmatrix} b_{2,j} \\ \vdots \\ b_{k,j} \\ \vdots \\ b_{n,j} \end{bmatrix}
```

```
clear C

for i = 1:size(A,1)
for j = 1:size(B,2)
C(i,j) = A(i,:)*B(:,j);
end
end
```

```
1 >> isequal(A*B,C)
2
2
3 ans =
4
5 logical
6 7
1
```

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition
Sum and differen

Matrix-scalar

Matrix-vecto

multiplication
Matrix-matrix

multiplication

Matrix powers

Matrix exponentia

Determinan

Rank and kerne

Systems of equations

Inverse

Eigenvalues and eigenvectors

Matrix-matrix product (cont.)

For every $(m \times n)$ matrix A, we have

$$\underbrace{I_m}_{(m\times m)}\underbrace{A}_{(m\times n)} = \underbrace{A}_{(m\times n)}\underbrace{I_n}_{(n\times n)} = \underbrace{A}_{(m\times n)}$$

Right- and left-multiplication of matrix A by an identity matrix

Matrix product is not necessarily commutative, $AB \neq BA$

$$\begin{array}{c} \underbrace{A} \quad \underbrace{B} = \underbrace{C} \\ (m \times n) \ (n \times p) \\ \end{array} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,k} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & \cdots & a_{i,k} & \cdots & a_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,k} & \cdots & a_{m,n} \end{bmatrix} \begin{bmatrix} b_{1,1} & \cdots & b_{1,j} & \cdots & b_{1,p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{k,1} & \cdots & b_{k,j} & \cdots & b_{k,p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,j} & \cdots & b_{n,p} \end{bmatrix}$$

The product BA is not defined

A and B must be both square and of the same order (necessary condition)

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and differen

Matrix-scalar

Matrix-vect

Matrix-matrix

multiplication

Matrix powers

Matrix exponenti

Determinar

Rank and kern

ystems c quations

Inverse

Eigenvalues and eigenvectors

Matrix-matrix product (cont.)

A $(n \times n)$ diagonal matrix D commutes with any $(n \times n)$ matrix A

$$DA = AD$$

$$\begin{array}{c} \underbrace{D}_{(n\times n)}\underbrace{A}_{(n\times n)} = \underbrace{C}_{(n\times n)} \\ \\ = \begin{bmatrix} d_{1,1} & \cdots & d_{1,k} & \cdots & d_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ d_{i,1} & \cdots & d_{i,k} & \cdots & d_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ d_{n,1} & \cdots & d_{n,k} & \cdots & d_{n,n} \end{bmatrix} \begin{bmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{k,1} & \cdots & a_{k,j} & \cdots & a_{k,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,n} \end{bmatrix}$$

We have,

$$ightharpoonup c_{ij} = d_{i,1}a_{1,j} + \cdots + d_{i,k}a_{k,j} + \cdots + d_{i,n}a_{n,j} = d_{i,k}a_{k,j}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Sum and differen

Matrix-scala

Matrix-vect

multiplicati

Matrix-matrix multiplication

Matrix powers

Matrix expon

Determinen

20001111111011

Rank and kern

equations

Inverse

Eigenvalues an eigenvectors

Matrix-matrix product (cont.)

$$\underbrace{\frac{A}{(n \times n)} \underbrace{D}_{(n \times n)}}_{(n \times n)} = \underbrace{\frac{C}{(n \times n)}}_{(n \times n)}$$

$$= \begin{bmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{k,1} & \cdots & a_{k,j} & \cdots & a_{k,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,n} \end{bmatrix} \begin{bmatrix} d_{1,1} & \cdots & d_{1,k} & \cdots & d_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ d_{i,1} & \cdots & d_{i,k} & \cdots & d_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ d_{n,1} & \cdots & d_{n,k} & \cdots & d_{n,n} \end{bmatrix}$$

We have,

$$\rightarrow c_{ij} = \underbrace{a_{k,1} d_{i,k} + \cdots + a_{k,j} d_{i,k} + \cdots + a_{k,n} d_{n,k}}_{a_{k,n}} = \underbrace{a_{k,j} d_{i,k}}_{a_{k,n}}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operat

Sum and differenc

Matrix-scalar

Matrix-vecto

multiplication

multiplication

Matrix powers

Matrix exponential

Determinant

Rank and kerne

Systems of equations

nverse

Eigenvalues and eigenvectors

Matrix-matrix product (cont.)

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$
 and let $B = \begin{bmatrix} 2 & 0 \\ 2 & 3 \end{bmatrix}$, we have that $AB = \begin{bmatrix} 6 & 6 \\ 4 & 6 \end{bmatrix} \neq \begin{bmatrix} 2 & 4 \\ 2 & 10 \end{bmatrix} = BA$

```
Define A and B
          Γ1 2: 0 2]: B
                        = [2 0: 2 3]:
  >> A * B
                                             % Compute and display A*B
3
   ans =
8
  >> B * A
                                             % Compute and display B*A
   ans =
             10
14
                                             % Uncomment, remove ';', to see the output
   >> isequal(A*B,B*A)
   >> A*B == B*A
                                             % Uncomment, remove ':', to seethe output
```

Sum and difference

Matrix-scalar

multiplicatio

multiplication

Matrix-matrix multiplication

multiplicatio

Matrix exponential

Determinan

Rank and kerne

Systems of

Inverse

Eigenvalues an eigenvectors

Matrix-matrix product (cont.)

Proposition

Let A be a $(m \times n)$ matrix and et B be a $(n \times p)$ matrix

$$A = \begin{bmatrix} a_1' \\ a_2' \\ \vdots \\ a_m' \end{bmatrix}, \quad B = \begin{bmatrix} b_1 | b_2 | \cdots | b_p \end{bmatrix}$$

Let S and Z be order m and order p diagonal matrices

$$S = \begin{bmatrix} s_1 & 0 & \cdots & 0 \\ 0 & s_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & s_m \end{bmatrix}, \quad Z = \begin{bmatrix} z_1 & 0 & \cdots & 0 \\ 0 & z_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & z_p \end{bmatrix}$$

We can state a number of identities

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Sum and differen

Matrix-scals

Matrix-vecto

Matrix-matrix

multiplication

Matrix powers

Matrix exponen

Determinan

Rank and kerne

Systems of equations

Inverse

Eigenvalues and eigenvectors

Matrix-matrix product (cont.)

$$AB = \begin{bmatrix} a'_1 \\ a'_2 \\ \vdots \\ a'_m \end{bmatrix} B = \begin{bmatrix} a'_1 B \\ a'_2 B \\ \vdots \\ a'_m B \end{bmatrix} = A \begin{bmatrix} b_1 | b_2 | \cdots | b_p \end{bmatrix} = \begin{bmatrix} Ab_1 | Ab_2 | \cdots | Ab_p \end{bmatrix}$$

$$SA = \begin{bmatrix} s_1 & 0 & \cdots & 0 \\ 0 & s_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & s_m \end{bmatrix} \begin{bmatrix} a'_1 \\ a'_2 \\ \vdots \\ a'_m \end{bmatrix} = \begin{bmatrix} s_1 a'_1 \\ s_2 a'_2 \\ \vdots \\ s_m a'_m \end{bmatrix}$$

$$BZ = \begin{bmatrix} b_1 | b_2 | \cdots | b_p \end{bmatrix} \begin{bmatrix} z_1 & 0 & \cdots & 0 \\ 0 & z_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & s_m \end{bmatrix} = \begin{bmatrix} z_1 b_1 | z_2 b_2 | \cdots | z_p b_p \end{bmatrix}$$

Matrix operator

Sum and difference

Matrix-scalar

Matrix-vecto

multiplicatio

Matrix powers

Matrix exponentia

Determinar

Rank and kerne

Systems o

Invers

Eigenvalues and eigenvectors

Matrix powers

Definition

Powers of a matrix

Let A be a square matrix of order n

$$A = \begin{bmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,n} \end{bmatrix}$$

The k-th power of matrix A is defined as matrix A^k of order n

$$A^k = \underbrace{AA \cdots A}_{k \text{ times}}$$

Special cases,

$$A^{k=0} = I$$

$$A^{k=1} = A$$

Matrix powers (cont.)

Consider the matrix
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

We have,

$$A^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad A^1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}; \quad A^2 = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}; \quad A^3 = \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix}; \quad \cdots$$

```
>> A = [1 2: 0 1]:
                                         % Define matrix A
                                         % Compute its zero-th power
                                         % Compute its first power
                                           Compute its second power
>> A3 = A^3:
                                         % Compute its third power
                                         % Compute the third power of its elements
```

Matrix-vector

Matrix-matrix multiplication

Matrix powers

Matrix exponential

Determinant

Rank and kern

Systems of

Inverse

Eigenvalues and eigenvectors

The matrix exponential

Let z be some scalar, by definition its exponential is a scalar

$$\rightarrow$$
 $e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{z^k}{k!}$ (The series always converges)

Definition

The matrix exponential Let A be a $(n \times n)$ matrix, by definition its exponential is a $(n \times n)$ matrix

$$\rightarrow$$
 $e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{A^k}{k!}$ (The series always converges)

Matrix-scalar

multiplicatio
Matrix-vecto

multiplicatio

Matrix nower

Matrix exponential

Determinant

Rank and kernel

Systems of

Inverse

Eigenvalues and eigenvectors

The matrix exponential (cont.)

Proposition

The matrix exponential of block-diagonal matrices

Consider a block-diagonal matrix A

$$A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_q \end{bmatrix}$$

We have,

$$\Rightarrow e^{A} = \begin{bmatrix} e^{A_{1}} & 0 & \cdots & 0 \\ 0 & e^{A_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{A_{q}} \end{bmatrix}$$

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Matrix-scala

multiplicatio

multiplication
Matrix-matrix

Matrix nowers

Matrix exponential

Determinant

Rank and kerne

ystems of

Inverse

Eigenvalues and eigenvectors

The matrix exponential (cont.)

Proof

For all $k \in \mathcal{N}$, we have

$$A^k = \begin{bmatrix} A_1^k & 0 & \cdots & 0 \\ 0 & A_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_q^k \end{bmatrix}$$

Thus,

$$e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!} = \begin{bmatrix} \sum_{k=0}^{\infty} \frac{A_{1}^{k}}{k!} & 0 & \cdots & 0 \\ 0 & \sum_{k=0}^{\infty} \frac{A_{2}^{k}}{k!} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sum_{k=0}^{\infty} \frac{A_{q}^{k}}{k!} \end{bmatrix}$$

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operate

Transposition

bum und din

Matrix-scalar

Matrix-vecto

multiplicatio

muitipiicatioi

Matrix exponential

Determinant

Systems o

equation

Inverse

Eigenvalues an eigenvectors

The matrix exponential (cont.)

Proposition

The matrix exponential of diagonal matrixes

Consider a diagonal $(n \times n)$ matrix A

$$A = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

We have,

The result is a special case of the previous proposition

Sum and differen

Matrix-scalar multiplication

Matrix-vector multiplication Matrix-matrix

Matrix powers

Matrix exponential

Determinant

Rank and kerne

Systems of equations

Inverse

Eigenvalues and

The matrix exponential (cont.)

Example

Consider the (3×3) matrix A, we are interested in its matrix exponential

$$A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}$$

We have,

$$e^A = \begin{bmatrix} e^{-2} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{0.5} \end{bmatrix}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

multiplication

Matrix-vecto

Matrix-matri

marerpiicaero

Matrix power

Matrix exponenti

eterminan

Rank and kernel

systems c

Inverse

Eigenvalues and eigenvectors

Determinant

Matrix algebra

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and different Matrix-scalar

Matrix-vector multiplication

multiplication

Matrix powers

Determinant

Rank and kerne

ystems of

Inverse

Eigenvalues and eigenvectors

Determinant (cont.)

Definition

Matrix minors

Consider a square matrix A of order $n \geq 2$

The **minor** (i,j) of matrix A is a square matrix $A_{i,j}$ of order (n-1)

 \rightarrow From A by deleting the *i*-th row and the *j*-th column

$$A_{i,j} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,j} & \cdots & a_{1,p} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,j} & \cdots & a_{2,p} \\ \vdots & \vdots & \ddots & & \ddots & \vdots \\ a_{i,1} & a_{i,2} & \swarrow & a_{i,j} & \ddots & a_{i,p} \\ \vdots & \vdots & \ddots & & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,j} & \cdots & a_{m,p} \end{bmatrix}$$

Determinant

Determinant (cont.)

Consider the (3×3) matrix A

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

The minors of order 2

$$A_{1,1} = \begin{bmatrix} 5 & 6 \\ 8 & 9 \end{bmatrix}, \quad A_{1,2} = \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix}, \quad A_{1,3} = \begin{bmatrix} 4 & 5 \\ 7 & 8 \end{bmatrix}$$
$$A_{2,1} = \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix}, \quad A_{2,2} = \begin{bmatrix} 1 & 3 \\ 7 & 9 \end{bmatrix}, \quad A_{2,3} = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$$

$$A_{2,1}=egin{bmatrix}2&3\8&9\end{bmatrix},\quad A_{2,2}=egin{bmatrix}1&3\7&9\end{bmatrix},\quad A_{2,3}=egin{bmatrix}1&2\4&5\end{bmatrix}$$

Transposition

Sum and different Matrix-scalar

multiplication Matrix-vector

multiplication
Matrix-matri

Matrix powers

Matrix powers

Determinant

Rank and kerne

ystems o

Inverse

Eigenvalues and eigenvectors

Determinant (cont.)

Definition

Matrix determinant

Consider a square matrix A of order n, the determinant of A is a real number

$$ightharpoonup \det(A) = |A|$$

• For n = 1, let $A = [a_{1,1}]$, we have

$$\rightsquigarrow$$
 det $(A) = a_{1,1}$

• For $n \geq 2$, we have

$$\rightarrow$$
 det $(A) = a_{1,1} \hat{a}_{1,1} + a_{2,1} \hat{a}_{2,1} + \dots + a_{n,1} \hat{a}_{n,1} = \sum_{i=1}^{n} a_{i,1} \hat{a}_{i,1}$

 $\hat{a}_{i,j}$, the cofactor of element (i,j), is the determinant of minor $A_{i,j}$ times $(-1)^{i+j}$

Matrix-vector multiplication Matrix-matrix

Matrix powers

Matrix expone

Determinant

Rank and kerne

Systems of

Inverse

Eigenvalues an eigenvectors

Determinant (cont.)

Example

Consider a matrix A of order n = 2, we are interested in computing its determinant

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}$$

We have,

$$A_{1,1} = [a_{2,2}], \quad \rightsquigarrow \quad \hat{a}_{1,1} = a_{2,2}$$

 $A_{2,1} = [a_{1,2}], \quad \rightsquigarrow \quad \hat{a}_{2,1} = -a_{1,2}$

The determinant

$$\det (A) = \begin{vmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{vmatrix} = a_{1,1} a_{2,2} - a_{2,1} a_{1,2}$$

CHEM-E7140 2019-2020

Scalars, vectors, and matrices

Matrix operator

a lice

Sum and differen

Matrix-scal

Matrix-vecto multiplicatio

multiplication

Matrix powe

Matrix exponentia

Determinant

Rank and kerne

ystems of

Invers

Eigenvalues an eigenvectors

Determinant (cont.)

Example

Consider a matrix A of order n = 3, we are interested in computing its determinant

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}$$

The cofactors of the elements along the first column

$$\hat{a}_{1,1} = \begin{vmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{vmatrix} = a_{2,2} a_{3,3} - a_{2,3} a_{3,2}$$

$$\hat{a}_{2,1} = (-1) \begin{vmatrix} a_{1,2} & a_{1,3} \\ a_{3,2} & a_{3,3} \end{vmatrix} = -(a_{1,2} a_{3,3} - a_{1,3} a_{3,2})$$

$$\hat{a}_{3,1} = \begin{vmatrix} a_{1,2} & a_{1,3} \\ a_{2,2} & a_{2,3} \end{vmatrix} = a_{1,2} a_{2,3} - a_{1,3} a_{2,2}$$

Sum the product of each element $a_{i,1}$ along the first column by cofactor $\hat{a}_{i,1}$

$$\det(A) = a_{1,1}(a_{2,2}a_{3,3} - a_{2,3}a_{3,2}) - a_{2,1}(a_{1,2}a_{3,3} - a_{1,3}a_{3,2}) + a_{3,1}(a_{1,2}a_{2,3} - a_{1,3}a_{2,2})$$

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and difference

Matrix-scalar

Matrix-vecto

Matrix-matri multiplicatio

Matrix power

Matrix expone

Determinant

Rank and kerne

Systems of

Inverse

Eigenvalues and eigenvectors

Determinant (cont.)

Example

Consider a matrix A of order n, we are interested in computing its determinant

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,j} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & a_{i,2} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,j} & \cdots & a_{n,n} \end{bmatrix}$$

Computation of det(A) develops along the elements of A's first column

$$\det(A) = a_{1,1}\hat{a}_{1,1} + a_{2,1}\hat{a}_{2,1} + \dots + a_{n,1}\hat{a}_{n,1} = \sum_{i=1}^{n} a_{i,1}\hat{a}_{i,1}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

2 1 1 1 2 2

Sum and differen

Matrix-scalar multiplication

Matrix-vecto multiplicatio

Matrix-matrix multiplication

Matrix powers

Matrix exponentia

Determinant

Rank and kerne

Systems o

Invers

Eigenvalues and eigenvectors

Determinant (cont.)

Analogous formulas develop along the elements of any column, so for column j we have

$$\det(A) = a_{1,j}\hat{a}_{1,j} + a_{2,j}\hat{a}_{2,j} + \dots + a_{n,j}\hat{a}_{n,j} = \sum_{i=1}^{n} a_{i,j}\hat{a}_{i,j}$$

Similarly, formulas develop along the elements of any row, so for row i we have

$$\det(A) = a_{i,1}\hat{a}_{i,1} + a_{i,2}\hat{a}_{i,2} + \dots + a_{i,n}\hat{a}_{i,n} = \sum_{i=1}^{n} a_{i,j}\hat{a}_{i,j}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Transposition

Sum and differen

Matrix-vector multiplication Matrix-matri

Matrix powers

Determinant

Rank and kernel

ystems of

Inverse

Eigenvalues an eigenvectors

Determinant (cont.)

Some relationships

The determinant of a diagonal or triangular matrix A

• It is equal to the product of the elements along the diagonal

$$\rightarrow$$
 det $(A) = a_{1,1} a_{2,2} \cdots a_{n,n}$

The determinant of a block-diagonal or block-triangular matrix A

• It is equal to the product of the determinants of the blocks along the diagonal

$$\rightarrow$$
 $\det(A) = \prod_{i=1}^{q} \det(\widetilde{A}_i)$

The determinant of the product of square matrices C = AB

• It is equal to the product of the determinants

$$\rightarrow$$
 det (C) = det (A) det (B)

If det(A) = 0, then matrix A is said to be **singular**, otherwise it is called non-singular

- Understand the determinant of a matrix as the size of a transformation
- (Visually, think of it as the amount of applied stretching/shrinking)

Determinant (cont.)

Example

Consider the linear transformations
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 1 \\ 0.5 & 1 & 1.5 \\ 1 & 0 & 1 \end{bmatrix}$

• Compute their determinant and comment on the results

```
1 >> A = [1 2; 3 6]; detA = det(A)

2 detA =

4 
5     -3.3307e-16

7 >> B = [1 0 1; 0.5 1 1.5; 1 0 1]; detB = det(B)

8 
9 detB =

1 0
```

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and differen

Matrix-scalar

Matrix-vector multiplication

Matrix-matrix multiplication

Matrix power

Matrix expone

${\bf Determinant}$

Rank and kern

equations

Inverse

Eigenvalues an eigenvectors

Determinant (cont.)

Example

Consider the following collection of order-2 square matrices

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & 2 \\ -2 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & -2 \\ 1 & -1 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We are interested in the corresponding linear transformations

• Determine their size by computing their determinant

```
1 >> A = [3 0; 0 2];
2 >> detA = det(A);
3
4 >> B = [1 3; -2 0];
5 >> detB = det(B);
6
7 >> C = [3 2; -2 1];
8 >> detC = det(C);
9
10 >> D = [2 -2; 1 -1];
11 >> detI = det(I);
12
13 >> DI = eye(2);
14 >> detI = det(I);
```

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and difference

Matrix-scalar multiplication

Matrix-vector multiplication Matrix-matrix

Matrix powers

Matrix expone

Determinant

Rank and kern

Systems of equations

Inverse

Eigenvalues and eigenvectors

Determinant (cont.)

Example

Consider the following collection of order-3 square matrices

$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 0 & 0 \\ 2 & 3 & 0 \\ 6 & 0 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & 2 & 6 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

We are interested in the corresponding linear transformations

• Determine their size by computing their determinant

```
1 >> A = [4 0 0; 0 3 0; 0 0 4];
2 >> detA = det(A);
3
4 >> B = [4 0 0; 2 3 0; 6 0 4];
5 >> detB = det(B);
6
7 >> C = [4 2 6; 0 3 0; 0 0 4];
8 >> detC = det(C);
9
10 >> I = [1 0 0; 0 1 0; 0 0 1];
11 >> detI = det(I);
```

$\begin{array}{c} {\rm Matrix\ algebra} \\ {\rm Intro} \end{array}$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Sum and difference

Matrix-scals

Matain

multiplicatio

Matrix-matr

.

Determinant

Rank and kernel

equations

Inverse

Eigenvalues and eigenvectors

Rank and kernel

Matrix algebra

Matrix algebra Intro

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operato:

Sum and differ Matrix-scalar

Matrix-vector multiplication Matrix-matrix

Matrix powers

Determinan

Rank and kernel

Systems of

Inverse

Eigenvalues an eigenvectors

Rank and kernel

Definition

Matrix rank

The rank of a $(m \times n)$ matrix A, denoted rank (A), is equal to the number of columns (or rows, equivalently) of matrix A that are linearly independent, a non-negative integer

The set of all possible vectors from transformation A is the **column space** of A

- The span of the new bases vectors (after they have been projected)
- (The projected bases vectors are the columns of A)

The rank of A is thus also defined as the number of dimension in the columns space

 \rightarrow The dimension of the vectors from transformation A

Matrix powe

Matrix expon

Determinan:

Rank and kernel

Systems of equations

Invers

Eigenvalues and eigenvectors

Rank and kernel (cont.)

Example

Consider the square matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, we are interested in its rank

Matrix A has zero determinant, $\det(A) = 1 \cdot 4 - 2 \cdot 2 = 4 - 4 = 0$

- \leadsto A is singular and thus its rank is smaller than 2
- \leadsto The column space of A has dimension 1

```
>> A = [1 2; 2 4]
>> rank(A)
ans =
```

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition
Sum and different

Matrix-scalar

Matrix-vecto multiplicatio

multiplication

Matrix powers

D . . .

Rank and kernel

Systems of

Inverse

Eigenvalues an eigenvectors

Rank and kernel (cont.)

Definition

Matrix kernel or null space

Consider a $(m \times n)$ matrix A, we define the **null space** or **kernel** of matrix A

$$\rightsquigarrow$$
 $\ker(A) = \{x \in \mathcal{R}^n | Ax = 0\}$

The set of all vectors $x \in \mathbb{R}^n$ that left-multiplied by A produce the null vector 0

 \rightarrow The set is a vector space, its dimension is called the **nullity** of matrix A

$$\leadsto$$
 $\text{null}(A)$

The null vector is always in $\ker(A)$ and if it is the only element, then $\operatorname{null}(A)=0$

For a matrix A with n columns we have n = rank(A) + null(A)

$\begin{array}{c} {\rm Matrix\ algebra} \\ {\rm Intro} \end{array}$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and different

Matrix-scale

Matrix-vecto

Matrix-matr

murcipiicatio

Matrix power

Rank and kernel

Systems of

Inverse

Eigenvalues and eigenvectors

Systems of equations

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition
Sum and difference

Matrix-scalar

Matrix-vecto multiplicatio

multiplication

Matrix powers

200011111110110

Rank and kernel

Systems of equations

Inverse

Eigenvalues an eigenvectors

Systems of equations

Proposition

Consider a system of n linear equations in n unknowns

$$Ax = b$$

 \rightarrow A is a $(n \times n)$ matrix of coefficients

 $\rightarrow b$ is a $(n \times 1)$ vector of known terms

 \rightarrow x is a $(n \times 1)$ vector of **unknowns**

We are looking for a vector x which, after applying the transformation A, equals b

If matrix A is non-singular (det $(A) \neq 0$), there is one and only one solution

If A is singular, let M = [A|b] be a $[n \times (n+1)]$ matrix

- If rank(A) = rank(M), system has infinite solutions
- If rank(A) < rank(M), system has no solutions

Matrix-scalar

Matrix-vecto multiplicatio

multiplicati

Matrix powe

D . .

Determinant

Rank and kerne

Systems of equations

Inverse

Eigenvalues an eigenvectors

Systems of equations (cont.)

Example

Consider a system of two equations and two unknowns

$$2x_1 + x_2 = 4$$
$$6x_1 + 4x_2 = 14$$

In matrix form, Ax = b

$$A = \begin{bmatrix} 2 & 1 \\ 6 & 4 \end{bmatrix}; \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \quad b = \begin{bmatrix} 4 \\ 14 \end{bmatrix}$$

The determinant of matrix A, det(A) = 2, one and only one solution

The system can be solved by substitution

$$\begin{cases} x_1 = 2 - 1/2x_2 \\ 6x_1 + 4x_2 = 14 \end{cases} \longrightarrow \begin{cases} x_1 = 2 - 1/2x_2 \\ x_2 = 2 \end{cases} \longrightarrow \begin{cases} x_1 = 1 \\ x_2 = 2 \end{cases} \longrightarrow x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Matrix-scalar

Matrix-vector

multiplication Matrix-matrix multiplication

Matrix powers

Matrix exponent

Determinan

Rank and kernel

Systems of equations

Inverse

Eigenvalues ar eigenvectors

Systems of equations (cont.)

Example

Consider a system of two equations and two unknowns

$$\begin{cases} x_1 + 2x_2 = 1 \\ 2x_1 + 4x_2 = 3 \end{cases} \longrightarrow \underbrace{\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} 1 \\ 3 \end{bmatrix}}_{b}$$

This system of equations has not got any solution, as rank([A|b]) > rank(A)

- \rightarrow Matrix A is singular and rank 1
- \rightsquigarrow Matrix [A|b] is rank 2

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operato

Transposition
Sum and differen

Matrix-scalar

Matrix-vecto

multiplication
Matrix-matrix
multiplication

Matrix powers

Matrix exponen

Determinan

Rank and kernel

Systems of equations

Inverse

Eigenvalues an eigenvectors

Systems of equations (cont.)

Example

Consider the linear system of two equation and two unknowns

$$\begin{cases} 1 = x_1 + 2x_2 \\ 2 = 2x_1 + 4x_2 \end{cases} \longrightarrow \underbrace{\begin{bmatrix} 1 \\ 2 \end{bmatrix}}_{b} = \underbrace{\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x}$$

This system of equations has infinite solutions, as rank([A|b]) = rank(A)

- \rightarrow Matrix A is singular and rank 1
- \rightsquigarrow Matrix [A|b] is rank 1

$\begin{array}{c} {\rm Matrix\ algebra} \\ {\rm Intro} \end{array}$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and differen

multiplientie

Matrix-vecto

multiplicatio

Matrix-mati

muutin pontii

D-4-----

Rank and kerne

equations

Inverse

Eigenvalues and eigenvectors

Inverse Matrix algebra

Transposition

Sum and differen

Matrix-scala

Matrix-vector multiplication Matrix-matrix

Matrix powers

Matrix exponentia

Determinan

Rank and kerne

equations

Inverse

Eigenvalues and eigenvectors

Inverse

Definition

Matrix inverse

Consider a square matrix A of order n

Define inverse of A as the square matrix A^{-1} of order n

$$\rightarrow$$
 $A^{-1}A = AA^{-1} = I$

The inverse of A exists if and only if A is non-singular

Matrix algebra Intro

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operato:

Sum and different

Matrix-scalar multiplication Matrix-vector multiplication

multiplication

Matrix powers

....

Determinan

Rank and kernel

equations

Inverse

Eigenvalues and eigenvectors

Inverse (cont.)

Cofactor matrix and adjunct matrix

Consider a square matrix A of order $n \geq 2$

The cofactor matrix of A is a square matrix of order n whose element (i,j) is the cofactor $\hat{q}_{i,j}$ of A

$$\rightsquigarrow$$
 $\hat{A} = \{\hat{a}_{i,j}\}$

The adjunct matrix of A is a square matrix of order n obtained by transposition of the cofactors

$$\Rightarrow$$
 adj $(A) = \{\alpha_{i,j} = \hat{a}_{j,i}\}$

Proposition

Consider a non-singular square matrix A of order n

• If
$$n = 1$$
, let $A = [a_{1,1}]$, we have $A^{-1} = [a_{1,1}^{-1}]$

• If
$$n \geq 2$$
, we have $A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operato

Sum and differen

Matrix-scalar

Matrix-vector

multiplication

Matrix power

Determinan

Rank and kerne

Systems o

Inverse

Eigenvalues and eigenvectors

Systems of equations (cont.)

Proposition

Consider a system of n linear equations in n unknowns Ax = b

Suppose that matrix A is non-singular, we have

$$\rightarrow$$
 $x = A^{-1}b$

Proof

Left-multiply both sides of b = Ax by A^{-1}

$$b = Ax \longrightarrow A^{-1}b = A^{-1}Ax \longrightarrow Ix = A^{-1}b \longrightarrow x = A^{-1}b$$

CHEM-E7140 2019-2020

and matrices

Matrix operator

Transposition

Matrix-scalar

multiplicatio
Matrix-vecto

multiplication
Matrix-matri

Matrix power

Matrix expo

eterminan

Rank and kerne

ystems o: quations

Inverse

Eigenvalues an eigenvectors

Systems of equations (cont.)

Consider a non-singular diagonal matrix A

$$A = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \quad \rightsquigarrow \quad A^{-1} = \begin{bmatrix} \lambda_1^{-1} & 0 & \cdots & 0 \\ 0 & \lambda_2^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n^{-1} \end{bmatrix}$$

 \rightarrow Its inverse A^{-1} is obtained by inverting the diagonal elements

Consider a non-singular block-diagonal matrix A

$$A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & A_n \end{bmatrix} \quad \rightsquigarrow \quad A^{-1} = \begin{bmatrix} A_1^{-1} & 0 & \cdots & 0 \\ 0 & A_2^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & A_n^{-1} \end{bmatrix}$$

 \rightarrow Its inverse A^{-1} is obtained by inverting the diagonal blocks

Matrix algebra Intro

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Sum and differer

Matrix-scala multiplicatio

Matrix-vector multiplication

Matrix-matrix multiplication

Matrix powers

Matrix exponenti

Determinan

Rank and kerne

ystems o quations

Inverse

Eigenvalues and eigenvectors

Systems of equations (cont.)

Consider two non-singular matrices A and B of order n, we have

$$(AB)^{-1} = B^{-1}A^{-1}$$

Consider a non-singular matrix A of order n, we have

$$\Rightarrow$$
 $\det(A^{-1}) = \frac{1}{\det(A)}$

$\begin{array}{c} {\rm Matrix\ algebra} \\ {\rm Intro} \end{array}$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Sum and difference

Matrix-scals

Matrix-vecto

Matrix-matri

Matrix nower

Matrix exponentia

Determinant

Rank and kernel

equations

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

Matrix algebra

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and differen

Matrix-scalar multiplication

Matrix-vecto multiplicatio

multiplication

Matrix powers

eterminan

Rank and kerne

Systems of

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

Definition

Eigenvalues and eigenvectors

Let $\lambda \in \mathcal{R}$ be some scalar and let $v \neq 0$ be a $(n \times 1)$ column vector

Consider a square matrix A of order n, we have the identity

$$Av = \lambda v$$

- \rightarrow The scalar quantity λ is an eigenvalue of A
- \rightsquigarrow Vector v is the associated eigenvector

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operato

Sum and differen

Mand differen

multiplicati

Matrix-vector multiplication

muitipiicatioi

matrix powers

Matrix exponer

Determinant

Rank and kerne

Systems of

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Proposition

Eigenvalues/eigenvectors of triangular/diagonal matrices

Let $A = \{a_{i,j}\}$ be a triangular or a diagonal matrix

The eigenvalues of A are $\{a_{i,i}\}, i = 1, \ldots, n$

 \rightarrow The *n* diagonal elements of *A*

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Consider the following diagonal or triangular matrices

$$A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & 0 & -2 \end{bmatrix}$$

We are interested in their eigenvalues

The eigenvalues of A_1

•
$$\lambda_1 = 1$$

•
$$\lambda_1 = 1$$

• $\lambda_2 = 1$
• $\lambda_3 = 3$

•
$$\lambda_3 = 3$$

```
1 >> A1 = [1, 0, 0; 0, 1, 2; 0, 0, 2];
  >> evalA1 = eig(A1) % Type 'help eig'
                         % Type 'doc eig'
  evalA1 =
```

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Sum and differen

Matrix-scalar multiplication

Matrix-vecto multiplicatio

multiplicatio

Matrix power

Matrix expos

D . .

Determinan

Rank and kern

equations

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

$$A_2 = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & 0 & -2 \end{bmatrix}$$

The eigenvalues of A_2

- $\lambda_1 = 1$
- $\lambda_2 = 2$
- $\lambda_3 = 3$

The eigenvalues of A_3

- $\lambda_1 = 1$
- $\lambda_2 = 3$
- $\lambda_3 = -2$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

a i ice

Sum and different

Matrix-scals multiplication

Matrix-vector multiplication

multiplication

Matrix powers

Determinant

Rank and kerne

equations

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Definition

Characteristic polynomial

The characteristic polynomial of a square matrix A of order n

The n-order polynomial in the variable s

$$\rightarrow$$
 $P(s) = \det(sI - A)$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and differen

Matrix-scalar

multiplicatio

Matrix-vector multiplication Matrix-matr

Matrix nowe

Matrix exponentis

Determinan

Rank and kerne

ystems of

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Example

Consider the matrix $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ We are interested in its characteristic polynomial

We first calculate the matrix (sI - A)

$$(sI-A) = s \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} s-2 & -1 \\ -3 & s-4 \end{bmatrix}$$

 \leadsto The elements are function of s

The determinant of the matrix

$$det (sI - A) = (s - 2)(s - 4) - 3$$
= s² - 6s + 5

This is also the characteristic polynomial P(s)

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Proposition

Eigenvalues as roots of the characteristic polynomial

The eigenvalues of a matrix A of order n are the roots of its characteristic polynomial

• That is, they are the solutions to the equation $P(s) = \det(sI - A) = 0$

Let λ be an eigenvalue of matrix A

Each eigenvector v associated to it is a non-trivial solution to the system

$$(\lambda I - A)v = 0$$

0 is a $(n \times 1)$ column-vector whose elements are all zero

Proof

An eigenvalue λ and an eigenvector v must satisfy $Av = \lambda v$, $(\lambda I - A)v = 0$ follows

The non-trivial solution $v \neq 0$ is admissible iff matrix $(\lambda I - A)$ is singular

$$\rightarrow$$
 det $(\lambda I - A) = 0$

Thus, λ is root to the characteristic polynomial of matrix A

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Transposition

Sum and differe

Matrix-scalar

multiplicatio
Matrix-vecto

multiplication
Matrix-matrix

Matrix power

Matrix expon

Determinant

Rank and kern

Systems of equations

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Example

Consider the matrix A and its eigenvalues

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \quad \rightsquigarrow \quad \lambda_{1|2} = \frac{6 \pm \sqrt{36 - 20}}{2} = \frac{6 \pm 4}{2} \quad \rightsquigarrow \begin{cases} \lambda_1 = 1 \\ \lambda_2 = 5 \end{cases}$$

We are interested in its eigenvectors

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operators
Transposition

Sum and differen

Matrix-scalar multiplication

Matrix-vecto multiplicatio

Matrix power

Matrix expone

Determinan

Rank and kernel

Systems of equations

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Consider the eigenvector

$$v_1 = \begin{bmatrix} a \\ b \end{bmatrix}$$

Eigenvector v_1 corresponds to eigenvalue $\lambda_1 = 1$, it must satisfy $(\lambda_1 I - A)v_1 = 0$

$$(\lambda_1 I - A)v_1 = \begin{bmatrix} -1 & -1 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{cases} 0 = -a - b \\ 0 = -3a - 3b \end{cases}$$

If the first equation is satisfied then also the second one will be

- → The two equations are linearly dependent
- Always with $(\lambda I A)v = 0$

We limit ourselves and consider only one equation, say, b = -a

The choice of the first component is arbitrary, then b = -a

Let a = 1, then we have

$$v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operato

C--- -- d diff----

Sum and differ

multiplication
Matrix-vector

Matrix-vecto multiplicatio

Matrix powers

Determinan

Systems of

equation

Invers

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Consider the eigenvector

$$v_2 = \begin{bmatrix} c \\ d \end{bmatrix}$$

Eigenvector v_2 corresponds to eigenvalue $\lambda_2 = 5$, it must satisfy $(\lambda_2 I - A)v_2 = 0$

If the first equation is satisfied then also the second one will be

• Again, the two equations are linearly dependent

By considering only the first equation, we have d = 3c

As the choice of the first component is arbitrary, we set c=1

$$\rightsquigarrow v_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

CHEM-E7140 2019-2020

and matrices

Transposition

Sum and differer

multiplication

multiplication
Matrix-matri

Matrix powers

Determinan

Rank and kern

Systems of

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

We have shown that the system $(\lambda I - A)v$ has an infinite number of solutions

- Eigenvectors are determined up to a multiplicative constant
- → We always select the non-trivial (non-null) solution

Let v be the eigenvector associated to eigenvalue λ

 \rightarrow Then, also y = rv is eigenvector for λ $(r \neq 0)$

$$Ay = A(rv) = r(Av) = r(\lambda v) = \lambda(rv) = \lambda y$$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Sum and differen

Matrix-scalar multiplication

Matrix-vector multiplication Matrix-matrix

Matrix nower

Matrix power

Determinan

Rank and kerne

Systems of

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Proposition

Let v_1, v_2, \ldots, v_k be the eigenvectors of matrix A

Suppose that the corresponding eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct

It can be shown that v_1, v_2, \ldots, v_k are linearly independent

Proposition

Let A be a matrix of order n with n distinct eigenvalues

It can be shown that there exists a set of n linearly independent eigenvectors

The eigenvectors are a base for \mathbb{R}^n

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

Transposition

Sum and diffe

Matrix-scalar multiplication

Matrix-vecto multiplication Matrix-matri

Matrix powe

Matrix expone

Determinan

Rank and kerne

Systems of

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Definition.

Multiplicity

Consider a square matrix A or order n

Suppose that A has $r \leq n$ distinct eigenvalues

$$\lambda_1, \lambda_2, \dots, \lambda_r$$
 $(\lambda_i \neq \lambda_j, \text{ for } i \neq j)$

The characteristic polynomial can be written in the form

$$P(s) = (s - \lambda_1)^{\nu_1} (s - \lambda_2)^{\nu_2} \cdots (s - \lambda_r)^{\nu_r}, \quad \sum_{i=1}^r \nu_i = n$$

Define the **geometric multiplicity** of the eigenvalue λ_i

• Number ν_i of linearly independent eigenvectors associated to it

Matrix-scalar

Matrix-vecto multiplicatio

multiplicatio

Matrix powe

Matrix expon

Determinan

Rank and kern

Systems o equations

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Proposition

Consider a square matrix A

Let λ be an eigenvalue with algebraic multiplicity ν

The geometric multiplicity μ of the eigenvalue

$$\rightarrow \mu = \text{null}(\lambda I - A) \le \nu$$

Proof

For each eigenvector v associated to λ , we have that $(\lambda I - A)v = 0$

- \rightarrow v belongs to the null space of $(\lambda I A)$
- \rightarrow Dimension of $(\lambda I A)$ is $\text{null}(\lambda I A)$

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Transposition

Sum and differer

Matrix-scalar

Matrix-vector

Matrix-matri

Matrix expone

Determinan

Rank and kerne

Systems of

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

Example

Consider the matrix of order n = 4 and its characteristic polynmial

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \quad \rightsquigarrow \quad P(s) = (s-2)^2(s-3)^3$$

The roots

 \rightarrow $\lambda_1 = 2$, algebraic multiplicity $\nu_1 = 2$

 \rightarrow $\lambda_2 = 3$, algebraic multiplicity $\nu_2 = 2$

We are interested in the geometric multiplicities

CHEM-E7140 2019-2020

Scalars, vectors and matrices

Matrix operator

2 1 1 1 2 2

Matrix powers

Determinan

Rank and kern

ystems of quations

Inverse

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors (cont.)

The geometric multiplicity of the first eigenvalue

$$\mu_1 = \text{null}(\lambda_1 I - A) = n - \text{rank}(\lambda_1 I - A) = 4 - \text{rank} \begin{pmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \end{pmatrix}$$

Each eigenvector associated to λ_1 is a linear combination of a single vector

$$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

The geometric multiplicity of the second eigenvalue

$$\mu_2 = \text{null}(\lambda_2 I - A) = n - \text{rank}(\lambda_2 I - A) = 4 - \text{rank} \left(\begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \right)$$

$$= 4 - 2 = 2 = \mu_0$$

-1 2 -2 - 1

 $= 4 - 3 = 1 < \nu_1$

Each eigenvector associated to λ_2 is a linear combination of two vectors

$$v_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}'$$
$$v_2 = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}'$$