Rappels sur les droites

Equations de droite du plan

Proposition 1 Soit d'une droite du plan qui n'est pas parallèle à l'axe des ordonnées (c'est à dire une droite qui n'est pas «verticale»). Alors d'admet une équation de la forme y = mx + p.

En d'autres termes, d est l'ensemble des points de coordonnées (x;y) vérifiant y = mx + p. De manière équivalente, on peut voir d comme la

Définition 1 Dans l'équation y = mx + p, m s'appelle le de la droite d et p s'appelle l'

Remarque : p correspond à l'ordonnée du point d'intersection de d et de l'axe des ordonnées.

Théorème 1 Soit d'une droite d'équation y = mx + p alors **quels que soient** les points distincts $A(x_A; y_A)$ et $B(x_B; y_B)$ sur la droite, on a $m = \frac{y_B - y_A}{x_B - x_A}$.

Rappels sur les droites

Equations de droite du plan

Proposition 2 Soit d'une droite du plan qui n'est pas parallèle à l'axe des ordonnées (c'est à dire une droite qui n'est pas «verticale»). Alors d'admet une équation de la forme y = mx + p.

En d'autres termes, d est l'ensemble des points de coordonnées (x;y) vérifiant y = mx + p. De manière équivalente, on peut voir d comme la

Définition 2 Dans l'équation y = mx + p, m s'appelle le de la droite d et p s'appelle l'

Remarque : *p* correspond à l'ordonnée du point d'intersection de *d* et de l'axe des ordonnées.

Théorème 2 Soit d'une droite d'équation y = mx + p alors **quels que soient** les points distincts $A(x_A; y_A)$ et $B(x_B; y_B)$ sur la droite, on a $m = \frac{y_B - y_A}{x_B - x_A}$.

Deux techniques essentielles

0.1 Lire une équation de droite graphiquement

Exemple : Déterminer graphiquement les équations des droites d_1, d_2, d_3 dans le repère ci-dessous.

0.2 Tracer une droite connaissant son équation

Exemple : Tracer dans le repère ci-dessous les droites données par les équations : d_1 : y=2x+1, d_2 : y=-x+1, $d_3=\frac{2}{3}x-1$

