202

Optimality conditions, first order

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

Optimal points

Given a cost function $f: \mathcal{M} \to \mathbf{R}$ on a manifold, we aim to solve:

$$\min_{x \in \mathcal{M}} f(x)$$

Def.: $x \in \mathcal{M}$ is a global minimum if $f(x) \leq f(y)$ for all $y \in \mathcal{M}$.

Def.: $x \in \mathcal{M}$ is a local minimum if there exists a ngbhd \mathcal{U} of x on \mathcal{M} such that $f(x) \leq f(y)$ for all $y \in \mathcal{U}$.

Critical points, first order

Def.: A point $x \in \mathcal{M}$ is critical or stationary for $f: \mathcal{M} \to \mathbf{R}$ if

$$(f \circ c)'(0) \ge 0$$

for all smooth curves c on \mathcal{M} such that c(0) = x.

Fact: If *x* is a local minimum, then it is critical.

Fact: On a Riemannian manifold, x is critical iff grad f(x) = 0.

Fact: On a Riemannian manifold, x is critical iff grad f(x) = 0.

Proof.
$$(f \circ c)'(o) = Df(x)[v] = \langle gradf(x_1, v)_{x_1}, c'(o) = x_1 \rangle$$

$$= \langle gradf(x), v \rangle_{x} \geq 0 \quad \forall v \in T_{x} U$$

$$= \langle gradf(x), v \rangle_{x} = 0 \quad \forall v \in T_{x} U$$

= gradf(x) = 0

Fact: If *x* is a local minimum, then it is critical.

Proof. Assume x is a local minimum.

There exists a ngbhd \mathcal{U} s.t. $f(y) \geq f(x)$ for all $y \in \mathcal{U}$.

For contradiction, say there exists a smooth curve $c: \mathbf{R} \to \mathcal{M}$ with

$$c(0) = x$$
 and $(f \circ c)'(0) < 0$.

The function $g = f \circ c : \mathbf{R} \to \mathbf{R}$ is smooth by composition.

In particular, $g' = (f \circ c)'$ is continuous, and g'(0) < 0.

Thus, there exists $\bar{t} > 0$ such that $g'(\tau) < 0$ for all $\tau \in [0, \bar{t}]$, and so

$$f(c(t)) = g(t) = g(0) + \int_0^t g'(\tau) d\tau < g(0) = f(x) \quad \text{for all } t \in (0, \overline{t}].$$

But $I = c^{-1}(\mathcal{U})$ is open in **R** (by continuity of c), it contains 0 (since $c(0) \in \mathcal{U}$), and it has no overlap with $(0, \overline{t}]$ (because $f(c(t)) \ge f(x)$ for $c(t) \in \mathcal{U}$).

That's impossible.