McGill University Department of Mathematics and Statistics MATH 254 Analysis 1, Fall 2015

Practice Assignment

- 1. Let I = [a, b] and let $f: I \to \mathbb{R}$ be a continuous function such that f(x) > 0 for each $x \in I$. Prove that there exists a number $\alpha > 0$ such that $f(x) \ge \alpha$ for all $x \in I$.
- 2. Let I = [a, b] and let $f: I \to \mathbb{R}$ be a continuous function such that for each $x \in I$ there exists $y \in I$ such that $|f(y)| \le \frac{1}{2} |f(x)|$. Prove that there exists a point $c \in I$ such that f(c) = 0.
- 3. Let $f:[0,1]\to\mathbb{R}$ be a continuous function such that f(0)=f(1)=0. Prove that there exists a point $c\in[0,\frac{1}{2}]$ such that $f(c)=f(c+\frac{1}{2})$.
- 4. Let I = [a, b], let $f : I \to \mathbb{R}$ be continuous on I, and assume that f(a) < 0, f(b) > 0. Let $W = \{x \in I : f(x) < 0\}$ and let $c = \sup W$. Prove that f(c) = 0. (This provides an alternative proof of **Location of Roots Theorem**.)
- 5. Prove that for any $x \in \mathbb{R}$ the double limit

$$\chi(x) = \lim_{m \to \infty} \left(\lim_{n \to \infty} \cos^n(\pi m! x) \right)$$

exists. Prove that the function $\chi(x)$ is discontinuous at any point of \mathbb{R} .

6. Let $I = (0, \infty)$ and let $f: I \to \mathbb{R}$ be a continuous and bounded function. Show that for any real number T there exists a sequence (x_n) such that $\lim x_n = \infty$ and

$$\lim \left(f(x_n + T) - f(x_n) \right) = 0.$$

7. Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Prove that the functions

$$m(x) := \inf\{f(y) : a \le y \le x\}, \qquad M(x) := \sup\{f(y) : a \le y \le x\}$$

are also continuous on I.

- 8. Let $I = [0, \infty)$ and let $f: I \to \mathbb{R}$ be a continuous function. Suppose that $\lim_{x \to \infty} f(x) = L$, where L is a real number. Prove that the function f is uniformly continuous on I.
- 9. Prove that the function $\sin x^2$ is not uniformly continuous on \mathbb{R} .
- 10. Let $f: \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function. Prove that there exist positive constants A and B such that

$$|f(x)| < A|x| + B$$

for any $x \in \mathbb{R}$.