

Departamento de Engenharia Electrotécnica e de Computadores

Sistemas Digitais (2001/2002)

2^a chamada – 24/Janeiro/2002

Duração: 2horas, sem consulta.

Antes de iniciar a prova, tenha em atenção as seguintes recomendações:

- Leia atentamente toda a prova antes de a iniciar.
- Mostre e justifique adequadamente todos os passos das suas respostas.
- · A prova deverá ser resolvida no enunciado. Se necessário, utilize o verso para continuar a sua resolução.
- Assine todas as folhas que entregar, indicando em cada uma o número de páginas/folhas que entregou.

1 -

- a) Considere o número binário 10000000₂. Diga qual é o seu valor se:
 - (i) representar um número inteiro sem sinal.
 - (ii) representar um número inteiro com sinal em complemento para dois com 8 bits.

- **b)** Considere os números A=00010111₂ e B=00101111₂
 - (i) Efectue a subtracção A-B em binário.

- (ii) Comente o resultado obtido admitindo que A, B e o resultado são números inteiros sem sinal.
- (iii) Comente o resultado obtido admitindo que A, B e o resultado são números inteiros com sinal representados em complemento para dois com 8 bits.

NOME:_____TURMA

2 — O circuito da figura resultou de uma tentativa para construir um circuito que realize a função NOR de 4 entradas F=(A+B+C+D)'

a) Construa a tabela de verdade do circuito da figura e mostre que não realiza a função pretendida.

b) Utilizando Mapas de Karnaugh obtenha uma expressão simplificada do tipo produto-de-somas para a função realizada pelo circuito.

c) Mostre como se realizaria o circuito pretendido (função NOR de 4 entradas) utilizando o menor número possível de portas NOR de duas entradas (**utilize o verso da folha**)

3 — Pretende-se projectar uma máquina de estados (**controlador**) para controlar a contabilização de moedas entradas e a selecção da bebida, numa máquina de distribuição de chá e café (ver figura). O **detector de moedas** detecta a entrada de moedas de 0.10€ e 0.20€ e assinala, para a máquina de estados, o tipo de moeda através da entrada **MOEDA** (2 bits).. A máquina de estados apenas aceita moedas de 0.20€ e 0.10€ e não dá troco. O custo de qualquer uma das bebidas é 0.40€, sendo ignoradas as moedas que sejam introduzidas depois de atingida esta importância. Quando for atingido o valor de 0.40€, a selecção da bebida é feita pressionando um de dois botões que activam as entradas **B_CHA** e **B_CAFE** com o nível lógico 1. Para proceder à confecção da bebida o controlador deve activar (com o valor lógico 1) a saída **FAZ_CHA** ou **FAZ_CAFE** e esperar que a entrada **PRONTO** seja activada, indicando que foi concluída a confecção. Este sistema interactua com as restantes unidades desta máquina (detector de moedas e a máquina de confeccionar as bebidas) através das seguintes entradas e saídas (ver figura):

Entradas:

MOEDA (2 bits): identifica a moeda introduzida na máquina de acordo com a tabela seguinte:

MOEDA (2 bits)	Significado
0x	Não detectou moeda
10	Detectou moeda de 0.10€
11	Detectou moeda de 0.20€

B_CHA: botão que quando premido (valor lógico 1) escolhe a bebida chá, se já tiver sido atingido o valor de 0.40€. **B_CAFE**: botão que quando premido (valor lógico 1) escolhe a bebida café, se já tiver sido atingido o valor de 0.40€. **PRONTO**: indica que o processo de confecção (de chá ou café) foi terminado.

Saídas:

FAZ CHA: quando activa (valor lógico 1) dá ordem para se iniciar a confecção do chá.

FAZ_CAFE: quando activa (valor lógico 1) dá ordem para se iniciar a confecção do café.

Complete o diagrama de estados da figura (próxima página), indicando claramente as condições de transição de estado e os valores das saídas em cada estado.

NOME:_____TURMA

 $\mathbf{4}$ — Considere a máquina sequencial (modelo de Moore) com duas entradas E1 e E0 e uma saída Z, cujo diagrama de transição de estados se mostra. Os estados S1, S2 e S3 são codificados respectivamente na forma $Q_1Q_0 = 11$, 01 e 10.

a) Construa a tabela de transição de estados admitindo a utilização do critério de custo mínimo para os estados não especificados.

- b) Obtenha um circuito que realize esta máquina de estados utilizando flip-flops D (utilize o verso da folha)
- c) Supondo que a máquina arranca no estado não definido (em que $Q_1Q_0=00$), diga, justificando, se é possível ocorrer uma transição para S1, S2 ou S3 e, caso afirmativo, em que condições das entradas E1 e E0.

NOME:_____TURMA

 $\mathbf{5}$ — Considere o circuito da figura construído com base em contadores 74x163. Supondo que o estado inicial dos dois contadores é $Q_DQ_CQ_BQ_A=0000$, diga justificando qual a sequência de valores obtida nas saídas $S_3S_2S_1S_0$.

74x163			estado presente			próximo estado					
/CLR	/LD	ENT	ENP	QD	QC	QΒ	QA	QD*	QC*	QB*	QA*
0	x	x	x	x	x	x	x	0	0	0	0
1	0	x	x	x	x	x	x	D	C	В	A
1	1	0	x	x	x	x	x	QD	QC	QВ	QA
1	1	x	0	x	x	x	x	QD	QC	QВ	QA
1	1	1	1	1	N (s	se 1	N<15)		N ·	+ 1	
1	1	1	1	1	1	1	1	0	0	0	0

6 — Pretende-se construir um circuito síncrono baseado no *shift register* 74x194 (ver tabela) que detecte, na sua entrada X, a sequência de 4 bits 0101. A saída Z deverá ser activada (nível lógico 1) quando for detectada a sequência 0101, e são consideradas sequências parcialmente sobrepostas (ver exemplo).

Exemplo: Universal Shift-register 74x194

X: **010101**10110**101**10 Z: **000101**0000000100

função	s1	S 0	QA* QB* QC* QD*
hold	0	0	QA QB QC QD
shift right	0	1	RIN QA QB QC OB QC QD LIN
shift left	1	0	QB QC QD LIN
load	1	1	A B C D

a) Projecte o circuito que realiza a funcionalidade pretendida, utilizando o 74x194 e circuitos lógicos adicionais.

b) Modifique o circuito anterior por forma a que parmita detectar duas sequências diferentes, dependendo do valor lógico de uma entrada adicional S: se S=0 a sequência a detectar é a anterior (0101); se S=1 a sequência a detectar deve ser 0011. Tal como no caso anterior, considere que as sequências podem ser parcialmente sobrepostas.

- FIM -