## Una nueva implementación del algoritmo Bag of Features (BoF) en Python

Aarón Narváez

Mayo 2019

### 1. Introducción

Una serie de tiempo es una sucesión de observaciones enlistadas de acuerdo al momento de captura. Son útiles en áreas como la agricultura, donde se lleva un registro de la producción y su precio en el mercado. En la meteorología, que registra la velocidad de los vientos, las temperaturas máximas y mínimas, la cantidad de lluvia anual, entre otras. En la Geofísica se observa continuamente la vibración de las placas tectónicas con el propósito de predecir posibles temblores o terremotos. Los Electroencefalogramas trazan las ondas cerebrales con el fin de detectar enfermedades cerebrales, al igual que los electrocardiogramas trazan las ondas cardíacas con el fin de detectar enfermedades cardíacas. La tasa anual de muertes y nacimientos, y las diferentes formas de actividades criminales [1]. Existen una gran cantidad de procesos que pueden ser expresados en forma de serie de tiempo.

Las razones para analizar y almacenar esta información son muchas, sin embargo, se destaca el deseo de entender los mecanismos que generan estas observaciones, la predicción de observaciones futuras, o el control óptimo de un sistema [1].

Baydogan, Runger y Tuv en [2], proponen un framework para la clasificación de series de tiempo basado en bolsa de características (*A Bag-of-features Framework*, TSBF). Este método selecciona múltiples subsecuencias de longitud y posición aleatorias de una serie de tiempo, con el fin de extraer patrones que aparecen con diferentes longitudes y en diferentes posiciones.

En el presente reporte se describe la implementación de este método en lenguaje Python, buscando la compatibilidad con los clasificadores disponibles en la suite de scikit-learn, y con el fin de extender la disponibilidad del método. Además se presentan las pruebas estadísticas aplicadas a este y a la implementación presentada por Baydogan et al en lenguaje R, para determinar si se comportan de manera similar. Por último, se compara el desempeño del algoritmo al utilizar Extratrees como clasificador en cada una de las etapas.

## 2. Descripción del Método

El método inicia creando subsecciones de longitud  $(l_s)$  aleatoria, mayor a una longitud mínima  $(l_{min})$  y con posición aleatoria. Estas subsecciones se dividen en d intervalos. Por

cada subsección se crea una instancia o vector de características que incluye la media  $(\mu_{dn})$ , la varianza  $(\sigma_{dn}^2)$  y la pendiente  $(m_{dn})$  de cada uno de los intervalos de la subsección, además incluye la media  $(\mu_s)$ , la varianza  $(\sigma_s^2)$ , el punto inicial  $(x_i)$ , y el punto final  $(x_f)$ , de la de toda la subsección. Cada instancia pertenece a la clase de la serie de la que fue extraída. Para determinar la longitud mínima de la subsección se utiliza una proporción de la longitud total de la serie  $(z \times T)$ , para  $(0 < z \le 1)$ . Para determinar el número de intervalos (d) para cada subsección, se relaciona la longitud mínima  $(l_{min})$  con la longitud mínima de intervalo  $(w_{min})$ , esta última definida por el usuario (5 en las pruebas). La cantidad de posibles intervalos en una serie de tiempo (r), es la relación entre la longitud total de la serie de tiempo (T) y la longitud mínima de intervalo. Por cada subsección analizada existen r-d intervalos sin analizar, por lo que se crean r-d subsecciones (e instancias) para cada serie.

Estas instancias alimentan un clasificador (RandomForest) es el elegido por Baydogan et al en [2]) que entrega la probabilidad de pertenencia a cada una de las clases. Estas probabilidades son agrupadas en b conjuntos. El codebook está conformado por  $C \times b$  elementos (que corresponden al total de conjuntos formados), donde C es el número de clases. Por cada instancias se obtienen C palabras, por lo que por cada serie se obtienen  $(r-d) \times C$  palabras. Estas palabras son utilizadas para generar el histograma de la serie de tiempo.

Los histogramas de las series de tiempo son utilizados para alimentar el segundo clasificador (*RandomForest*), que regresa la predicción de clase. En la etapa de entrenamiento se entrenan los clasificadores, mientras que en la etapa de pruebas solo se utilizan para obtener las probabilidades utilizadas para crear los histogramas, y la predicción de clase.

En la Figura 1, se muestra un diagrama del método. Este se puede resumir en 4 etapas: generación de instancias y extracción de características, clasificación y obtención de probabilidades de clases, crear bolsa de palabras e histogramas, y clasificación final.



Figura 1: Diagrama de TSBF

#### 2.1. Pseudocódigo

### Aprendizaje:

1. Dado un conjunto de series de tiempo para entrenamiento:

$$x^n = (x_1^n, x_2^n, ..., x_T^n)$$

Donde T es longitud total de la serie  $x^n$ , y  $x_i^n$  la observación i para la serie de tiempo n. Cada serie de tiempo  $y^n$  para  $n=1,2,\ldots,N$ , está asociada a una clase con  $y^n \in \{0, 1, 2, \dots, C-1\}.$ 

1.1: Para cada serie de tiempo crear r-d subsecciones de tamaño mayor a  $l_{min}$ y posición aleatoria, donde:

$$r = \frac{T}{w_{min}}$$
 ,  $y$   $d = \frac{l_{min}}{w_{min}}$ 

 $r=\frac{T}{w_{min}}~,y~d=\frac{l_{min}}{w_{min}}$ 1.1.1: Para cada subsección crear d intervalos del mismo tamaño y mayores a  $w_{min}$ .

1.1.2: Para cada subsección crear un vector de características perteneciente a la clase de la serie de la que fue extraído, con los parámetros siguientes:

 $[\mu_{d1}, \sigma_{d1}^2, m_{d1}, \mu_{d2}, \sigma_{d2}^2, m_{d2}, ..., \mu_{dn}, \sigma_{dn}^2, m_{dn}, \mu_s, \sigma_s^2, x_i, x_f]$ 

 $\mu_{dn}$ , es la media del intervalo n

 $\sigma_{dn}^2$ , es la varianza del intervalo n

 $m_{dn}$ , es la pendiente del intervalo n

 $\mu_s$ , es la media de la subsección

 $\sigma_s^2$ , es la varianza de la subsección

 $x_i$ , es el punto inicial de la subsección

 $x_f$ , es el punto final de la subsección

2. Entrenar un clasificador con el total de las instancias  $((r-d)\times N)$ , donde N es el número total de series de tiempo en el conjunto.

3. Obtener la probabilidad de pertenencia a cada de una de las clases para cada instancia

4. Agrupar las probabilidades en b conjuntos por cada clase.

5. Formar un histogramas para cada serie de tiempo con las palabras generadas.

3

El codebook se compone de  $b \times C$  palabras.

Cada instancia genera C palabras.

Cada serie de tiempo genera  $(r-d) \times C$  palabras.

6. Entrenar un clasificador con los histogramas generados.

#### Utilización:

1. Se sigue el mismo proceso que en el aprendizaje omitiendo el entrenamiento de los clasificadores

### 3. Pruebas

Para determinar si la implementación en Python se comporta de manera similar a la implementación en R, primero se inspeccionaron de manera visual los histogramas generados por ambos algoritmos. En la Figura 2, inciso (a) se muestran dos ejemplo de los histogramas generados en dos corridas diferentes para la misma serie de tiempo por cada uno de los algoritmos. Esta serie pertenece a la clase 2 del conjunto de datos "Beef". De igual manera se presentan en el inciso (b) para una serie de tiempo diferente perteneciente al mismo conjunto de datos, y de la clase 3. Las diferencias se deben a la aleatoriedad del algoritmo.



Figura 2: histogramas para el dataset Beef

### 4. Analisis Bayesiano

Benavoli et al en [3], presentan tres métodos de estimación Bayesiana que se pueden emplear para comparar el desempeño de dos algoritmos. Estos métodos, contrario a aquellos basados en la prueba de significación de la hipótesis nula (Null Hypothesis Significance Testing, NHST), son capaces de proveer la probabilidad de que un método sea mejor que otro a partir de un conjunto de datos.

Benavoli et al definen 3 pasos en el análisis bayesiano:

- 1.- Establecer un modelo matemático descriptivo de los datos. En el modelo paramétrico, este modelo matemático es la función de verosimilitud (like-lihood), que proporciona la probabilidad del valor observado para cada uno de los parámetros  $p(Datos \mid \theta)$ .
- 2.- Establecer la credibilidad para cada uno de los parámetros antes de observar los datos, la distribución a priori  $p(\theta)$ .
- 3.- El tercer paso es usar la regla de Bayes para combinar la función de verosimilitud y la distribución a priori, para obtener la distribución a posteriori de los parámetros dados los datos  $p(\theta \mid Datos)$ .

Los tres métodos propuestos por Benavoli et al son:

- Prueba Bayesiana t de correlación
- Prueba Bavesiana de rangos alienados





La prueba Bayesiana t de correlación es utilizada para medir el desempeño de dos algoritmos en un mismo dataset, mientras que las prueba Bayesiana de rangos alienados y la prueba Bayesiana t de correlación jerárquica, son utilizadas para medir el desempeño de dos algoritmos en multiples dataset.

Para comparar dos algoritmos en múltiples datasets, Benavoli et al recomiendan el uso de la prueba Bayesiana t de correlación jerárquica, ya que toma como entradas las m corridas de los k-folds de la validación cruzada de cada dataset, por lo que hace inferencias acerca de la diferencia media de precisión entre dos clasificadores para cada dataset, explotando toda la información disponible: la media de la muestra, la desviación estándar de la muestra, y la correlación debida a la superposición de los datos.

# 4.1. Comparar el desempeño de las implementaciones en Python y R

Para compara el desempeño de la implementación de TSBF en lenguaje Python y la implementación presentada por Baydogan et al en lenguaje R, se seleccionaron la prueba Bayesiana t de correlación, para cada dataset, y la prueba Bayesiana t de correlación jerárquica para multiples datasets. Para las pruebas se utilizó la librería para lenguaje Python proporcionada por Benavoli et al.

En la tabla 1, se presentan los datasets utilizados en las pruebas. Cada uno de estos viene divido train y test, sin embargo, para realizar las pruebas de validación cruzada (con  $10 \ folds$ ) se unieron train y test y se generaron los nuevos grupos de train y test con ayuda de la librería StratifiedKFold de numpy. Se hicieron 10 corridas para cada grupo, para los 4 valores de z: 0.1, 0.25, 0.5, y 0.75.

### Cuadro 1: Datasets utilizados en las pruebas

| Dataset               | Train | Test | Total | Observaciones | clases | tipo      |
|-----------------------|-------|------|-------|---------------|--------|-----------|
| Coffe                 | 28    | 28   | 56    | 286           | 2      | SPECTRO   |
| CBF                   | 30    | 900  | 930   | 128           | 3      | SIMULATED |
| ECGFiveDays           | 23    | 861  | 884   | 136           | 2      | ECG       |
| DiatomSizeReduction   | 16    | 306  | 322   | 345           | 4      | IMAGE     |
| Adiac                 | 390   | 391  | 781   | 176           | 37     | IMAGE     |
| ECG200                | 100   | 100  | 200   | 96            | 2      | ECG       |
| Beef                  | 30    | 30   | 60    | 470           | 5      | SPECTRO   |
| FaceFour              | 24    | 88   | 112   | 350           | 4      | IMAGE     |
| FaceAll               | 560   | 1690 | 2250  | 131           | 14     | IMAGE     |
| CricketY              | 390   | 390  | 780   | 300           | 12     | MOTION    |
| CricketX              | 390   | 390  | 780   | 300           | 12     | MOTION    |
| GunPoint              | 50    | 150  | 200   | 150           | 2      | MOTION    |
| FacesUCR              | 200   | 2050 | 2250  | 131           | 14     | IMAGE     |
| FiftyWords            | 450   | 455  | 905   | 270           | 50     | IMAGE     |
| CricketZ              | 390   | 390  | 780   | 300           | 12     | MOTION    |
| Lightning7            | 70    | 73   | 143   | 319           | 7      | SENSOR    |
| Fish                  | 175   | 175  | 350   | 463           | 7      | IMAGE     |
| ChlorineConcentration | 467   | 3840 | 4307  | 166           | 3      | SIMULATED |
| MedicalImages         | 381   | 760  | 1141  | 99            | 10     | IMAGE     |
| MoteStrain            | 20    | 1252 | 1272  | 84            | 2      | SENSOR    |
| SonyAIBORobotSurface1 | 20    | 601  | 621   | 70            | 2      | SPECTRO   |
| SonyAIBORobotSurface2 | 27    | 953  | 980   | 65            | 2      | SENSOR    |
| SwedishLeaf           | 500   | 625  | 1125  | 128           | 15     | IMAGE     |
| OSULeaf               | 200   | 242  | 442   | 427           | 6      | IMAGE     |
| OliveOil              | 30    | 30   | 60    | 570           | 4      | SPECTRO   |
| SyntheticControl      | 300   | 300  | 600   | 60            | 6      | SIMULATED |
| Trace                 | 100   | 100  | 200   | 275           | 4      | SENSOR    |
| TwoLeadECG            | 23    | 1139 | 1162  | 82            | 2      | ECG       |
| Symbols               | 25    | 995  | 1020  | 398           | 6      | IMAGE     |
| Lightning2            | 60    | 61   | 121   | 637           | 2      | SENSOR    |
| WordSynonyms          | 267   | 638  | 905   | 270           | 25     | IMAGE     |

En las tablas 2, 3, 4, y 5 del Anexo 1, se presentan los resultados de la prueba Bayesiana t de correlación para cada dataset, y para cada uno de los valores de z. Si ponemos un límite inferior 90 % para considerar que un algoritmos se desempeña mejor que el otro, o si ambos se comportan del mismo modo, podemos deducir lo siguiente:

Para z=0.1: Los algoritmos se comportan de la misma manera en CBF, DiatomSize-Reduction, FaceAll, FacesUCR, y Symbols. En los demás datasets las probabilidades no nos permiten tomar una decisión.

Para z=0.25: Los algoritmos se comportan de la misma manera en CBF, Diatom-Sizereduction, FaceAll, FacesUCR, MoteStrain, Symbols, SyntheticControl y Trace. Baydogan se comporta mejor que Python en ChlorineConcentration. En los demás datasets las probabilidades no nos permiten tomar una decisión.

Para z=0.5: Los algoritmos se comportan de la misma manera en CBF, Coffe, DiatomSizeReduction, ECGFiveDays, FaceAll, FacesUCR, MoteStrain, Symbols, SyntheticControl, y TwoLeadECG. Baydogan se comporta mejor que Python en ChlorineConcentration. En los demás datasets las probabilidades no nos permiten tomar una decisión.

Para z=0.75: Los algoritmos se comportan de la misma manera en CBF, Diatom-SizeReduction, FacesUCR, Symbols, Trace y TwoLeadECG. Baydogan se comporta mejor que Python en ChlorineConcentration. En los demás datasets las probabilidades no nos permiten tomar una decisión.

Por otra parte, la prueba Bayesiana t de correlación jerárquica, aplicada a todo el conjunto de datasets, arrojó una probabilidad del 100% de que ambos algoritmos se desempeñan de la misma manera para cada valor de z. En la Figura 3, se presentan las gráficas generadas por la librería de Benavoli et~al. En estas gráficas se aprecian las áreas de probabilidad y la posición que toma un conjunto de muestras generados aleatoriamente por la distribución a posteriori.



Figura 3: Resultados de la pruebas Bayesianas t de correlación jerárquica

# 4.2. Comparar el desempeño de implementación en Python utilizando ExtraTrees

Para compara el desempeño de la implementación de TSBF en Python utilizando ExtraTrees como clasificador y la implementación presentada por Baydogan et~al en lenguaje R, se seleccionaron la prueba Bayesiana t de correlación, para cada dataset, y la prueba Bayesiana t de correlación jerárquica para multiples datasets. Para las pruebas se utilizó la librería para lenguaje Python proporcionada por Benavoli et~al.

Para comparar las implementaciones en Python utilizando *ExtraTrees* y R, se utilizaron los mismos *datasets* utilizados en al comparar el desempeño de las implementaciones en Python y R.

En las tablas 6, 7, 8, y 9 del Anexo 1, se presentan los resultados de la prueba Bayesiana

t de correlación para cada dataset, y para cada uno de los valores de z. Si ponemos un límite inferior de 90% para considerar que un algoritmos se desempeña mejor que el otro, o si ambos se comportan del mismo modo, podemos deducir lo siguiente:

Para z=0.1: Los algoritmos tienen el mismo desempeño en CBF, DiatomSizeReduction, ECGFiveDays, ySymbols. Python con ExtraTrees se desempeño mejor en Fish. Baydogan se desempeño mejor en Adiac, y OliveOil. En los demás datasets las probabilidades no nos permiten tomar una decisión.

Para z=0.25: Los algoritmos tienen el mismo desempeño en CBF, DiatomSizereduction, FacesUCR, Symbols, y Trace. Python con ExtraTrees se desempeño mejor en CricketY, Fish, yLightning7. Baydogan se desempeño mejor en ChlorineConcentration. En los demás datasets las probabilidades no nos permiten tomar una decisión.

Para z=0.5: Los algoritmos tienen el mismo desempeño en CBF, DiatomSizeReduction, Symbols, SyntheticControl, y TwoLeadECG. Python con ExtraTrees se desempeño mejor en Lightning7. Baydogan se comporta mejor en ChlorineConcentration, MoteStrain y SonyAIBORobotSurface2. En los demás datasets las probabilidades no nos permiten tomar una decisión.

Para z=0.75: Los algoritmos tienen el mismo desempeño en CBF, DiatomSizeReduction, Symbols, y TwoLeadECG. Baydogan se comporta mejor en ChlorineConcentration, y SonyAIBORobotSurface2. En los demás datasets las probabilidades no nos permiten tomar una decisión.

Por otra parte, la prueba Bayesiana t de correlación jerárquica, aplicada a todo el conjunto de datasets, arrojó una probabilidad del 100% de que ambos algoritmos se desempeñen de la misma manera para z=0.1, 95.15% para z=0.25, 90% para z=0.5, y 99.7% para z=0.75. En la Figura 4, se presentan las gráficas generadas por la librería de Benavoli et~al. En estas gráficas se aprecian las áreas de probabilidad y la posición que toma un conjunto de muestras generados aleatoriamente por la distribución a posteriori.



Figura 4: Resultados de la pruebas Bayesianas t de correlación jerárquica

### 5. Conclusiones

La mayoría de las pruebas Bayesianas t de correlación aplicadas al comparar las implementaciones en Python y en R, para los distintos dataset, no permitieron emitir un juicio. Sin embargo, en aquellos en los que si se puede emitir un juicio, la mayoría apuntó a que el comportamiento de ambos algoritmos es igual. Este mismo comportamiento se presentó en la comparación entre la implementación en Python utilizando ExtraTrees con R.

Por otra parte, el resultado presentado por la prueba Bayesiana t de correlación jerárquica, permitió determinar que el comportamiento de ambos algoritmos en base a los resultado de las pruebas de todos los dataset es el mismo, con una probabilidad del 100 % para todos los valores de z en la implementación en Python. De igual modo esta prueba nos permitió determinar que el comportamiento de la implementación en Python utilizando ExtraTrees es igual a la implementación en R; con una probabilidad del 100 % para z=0.1, 95.15 % para

z = 0.25, 90% para z = 0.5, y 99.7% para z = 0.75.

### 6. Trabajo Futuro

Partiendo de la implementación en Python de TSBF se pueden probar diferentes configuraciones utilizando los clasificadores disponibles en la suite de scikit-learn. Además, se puede mejorar el rendimiento de la implementación utilizando múltiples hilos. Actualmente, tanto en la implementación de Baydogan et al en R como en la implementación en Python; solo los clasificadores funcionan en múltiples hilos. Por último, aún no se han probado diferentes tamaños de conjuntos (b). En las pruebas presentadas por Baydogan etal, y en las presentadas en este reporte se utilizó un valor de b=10.

### Referencias

- [1] M. Falk, F. Marohn, R. Michel, D. Hofmann, M. Macke, B. Tewes, P. Dinges, and S. Englert, "A first course on time series analysis: Examples with sas," http://statistik.mathematik.uni-wuerzburg.de/timeseries/, 04 2005.
- [2] M. G. Baydogan, G. Runger, and E. Tuv, "A bag-of-features framework to classify time series," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 35, no. 11, pp. 2796–2802, Nov 2013.
- [3] A. Benavoli, G. Corani, J. Demsar, and M. Zaffalon, "Time for a change: A tutorial for comparing multiple classifiers through bayesian analysis," *Journal of Machine Learning Research*, vol. 18, 06 2016.

## Anexo 1

Cuadro 2: Resultados de la prueba Bayesiana t de correlación para z=0.1

| dataset               | Python > R     | Python = R     | R > Python     |
|-----------------------|----------------|----------------|----------------|
| Adiac                 | 0.396098       | 0.39052047     | 0.21338152     |
| Beef                  | 0.3620509      | 0.15359659     | 0.48435252     |
| CBF                   | 5.52408099e-14 | 1.00000000e+00 | 3.10862447e-15 |
| ChlorineConcentration | 0.03248057     | 0.6815569      | 0.28596253     |
| Coffee                | 0.24404075     | 0.27573313     | 0.48022612     |
| CricketX              | 0.09795619     | 0.53963231     | 0.36241149     |
| CricketY              | 0.13171922     | 0.50672823     | 0.36155255     |
| CricketZ              | 0.07810557     | 0.57393297     | 0.34796146     |
| DiatomSizeReduction   | 9.36704327e-03 | 9.89890592e-01 | 7.42364764e-04 |
| ECG200                | 0.33732759     | 0.26597639     | 0.39669602     |
| ECGFiveDays           | 0.06736336     | 0.88132356     | 0.05131307     |
| FaceAll               | 0.02228171     | 0.90880353     | 0.06891476     |
| FaceFour              | 0.02909849     | 0.75720018     | 0.21370133     |
| FacesUCR              | 0.01220821     | 0.91397865     | 0.07381314     |
| FiftyWords            | 0.26193502     | 0.61716665     | 0.12089833     |
| Fish                  | 0.17769794     | 0.60423594     | 0.21806613     |
| GunPoint              | 0.23499697     | 0.60057358     | 0.16442945     |
| Lightning2            | 0.28582051     | 0.31806703     | 0.39611246     |
| Lightning7            | 0.17881893     | 0.29182803     | 0.52935304     |
| MedicalImages         | 0.1302978      | 0.46453746     | 0.40516474     |
| MoteStrain            | 0.44113126     | 0.53110339     | 0.02776535     |
| OSULeaf               | 0.26103839     | 0.54052386     | 0.19843775     |
| OliveOil              | 0.27205948     | 0.14638731     | 0.58155321     |
| SonyAIBORobotSurface1 | 0.21471721     | 0.54824327     | 0.23703952     |
| SonyAIBORobotSurface2 | 0.14351545     | 0.51131274     | 0.34517181     |
| SwedishLeaf           | 0.22669238     | 0.60905739     | 0.16425023     |
| Symbols               | 2.66853706e-05 | 9.99863973e-01 | 1.09341413e-04 |
| SyntheticControl      | 0.30749757     | 0.47494863     | 0.21755381     |
| Trace                 | 0.0648209      | 0.87035819     | 0.0648209      |
| TwoLeadECG            | 0.50649815     | 0.46809731     | 0.02540454     |
| WordSynonyms          | 0.21791905     | 0.65204729     | 0.13003366     |

Cuadro 3: Resultados de la prueba Bayesiana t de correlación para  $z=0.25\,$ 

| dataset               | Python > R     | Python = R      | R > Python      |
|-----------------------|----------------|-----------------|-----------------|
| Adiac                 | 0.26146006     | 0.53451812      | 0.20402183      |
| Beef                  | 0.19333826     | 0.10355984      | 0.7031019       |
| CBF                   | 1.95100051e-19 | 1.000000000e+00 | 0.000000000e+00 |
| ChlorineConcentration | 1.59195184e-07 | 1.23138326e-03  | 9.98768458e-01  |
| Coffee                | 0.20519111     | 0.66986445      | 0.12494444      |
| CricketX              | 0.14886226     | 0.55427803      | 0.29685972      |
| CricketY              | 0.17525434     | 0.55968058      | 0.26506508      |
| CricketZ              | 0.12587706     | 0.59564856      | 0.27847438      |
| DiatomSizeReduction   | 2.43857735e-03 | 9.97386128e-01  | 1.75294798e-04  |
| ECG200                | 0.29215488     | 0.29781774      | 0.41002738      |
| ECGFiveDays           | 0.46857275     | 0.53028539      | 0.00114187      |
| FaceAll               | 6.24506549e-02 | 9.36720464e-01  | 8.28881225e-04  |
| FaceFour              | 0.04821857     | 0.54229265      | 0.40948878      |
| FacesUCR              | 0.00250245     | 0.9886196       | 0.00887795      |
| FiftyWords            | 0.24381672     | 0.65580516      | 0.10037812      |
| Fish                  | 0.06409594     | 0.52520392      | 0.41070014      |
| GunPoint              | 0.12663108     | 0.69867106      | 0.17469785      |
| Lightning2            | 0.37327944     | 0.28629114      | 0.34042941      |
| Lightning7            | 0.51109        | 0.29172452      | 0.19718548      |
| MedicalImages         | 0.10170043     | 0.55889157      | 0.339408        |
| MoteStrain            | 0.0739804      | 0.90024542      | 0.02577419      |
| OSULeaf               | 0.20717132     | 0.64465551      | 0.14817317      |
| OliveOil              | 0.52761181     | 0.1784513       | 0.29393689      |
| SonyAIBORobotSurface1 | 0.15710329     | 0.70577947      | 0.13711724      |
| SonyAIBORobotSurface2 | 0.05760484     | 0.56387328      | 0.37852188      |
| SwedishLeaf           | 0.14890955     | 0.66096486      | 0.19012559      |
| Symbols               | 3.78550856e-07 | 9.99998811e-01  | 8.10591268e-07  |
| SyntheticControl      | 0.04701916     | 0.92066887      | 0.03231197      |
| Trace                 | 1.77175837e-07 | 9.99999809e-01  | 1.38986265e-08  |
| TwoLeadECG            | 0.00531992     | 0.77386084      | 0.22081924      |
| WordSynonyms          | 0.37316272     | 0.52586696      | 0.10097032      |

Cuadro 4: Resultados de la prueba Bayesiana t de correlación para  $z=0.5\,$ 

| dataset               | Python > R     | Python = R     | R > Python      |
|-----------------------|----------------|----------------|-----------------|
| Adiac                 | 0.09215519     | 0.53126751     | 0.3765773       |
| Beef                  | 0.08496373     | 0.05983979     | 0.85519648      |
| CBF                   | 9.02577392e-48 | 1.00000000e+00 | 0.000000000e+00 |
| ChlorineConcentration | 1.75334747e-12 | 9.57492653e-07 | 9.99999043e-01  |
| Coffee                | 0              | 1              | 0               |
| CricketX              | 0.02002252     | 0.38880093     | 0.59117656      |
| CricketY              | 0.00920922     | 0.4030986      | 0.58769218      |
| CricketZ              | 0.06059288     | 0.62910723     | 0.31029988      |
| DiatomSizeReduction   | 0.00237944     | 0.99363317     | 0.00398739      |
| ECG200                | 0.23084836     | 0.33718756     | 0.43196408      |
| ECGFiveDays           | 0.00141687     | 0.90974291     | 0.08884022      |
| FaceAll               | 0.00141359     | 0.96934833     | 0.02923807      |
| FaceFour              | 0.02926575     | 0.49461347     | 0.47612077      |
| FacesUCR              | 0.00265374     | 0.99387365     | 0.00347261      |
| FiftyWords            | 0.15080876     | 0.69510542     | 0.15408582      |
| Fish                  | 0.17687858     | 0.71458547     | 0.10853595      |
| GunPoint              | 0.10601104     | 0.6918037      | 0.20218526      |
| Lightning2            | 0.29309608     | 0.3310332      | 0.37587072      |
| Lightning7            | 0.49976217     | 0.35038493     | 0.1498529       |
| MedicalImages         | 0.30264651     | 0.59338136     | 0.10397213      |
| MoteStrain            | 0.04647764     | 0.93004308     | 0.02347928      |
| OSULeaf               | 0.5582785      | 0.39633563     | 0.04538587      |
| OliveOil              | 0.19936386     | 0.15063178     | 0.65000436      |
| SonyAIBORobotSurface1 | 0.11195657     | 0.77538014     | 0.11266329      |
| SonyAIBORobotSurface2 | 0.00935158     | 0.26105982     | 0.7295886       |
| SwedishLeaf           | 0.10685169     | 0.77810573     | 0.11504258      |
| Symbols               | 1.57428303e-04 | 9.99804257e-01 | 3.83149097e-05  |
| SyntheticControl      | 0.02621573     | 0.95757798     | 0.01620629      |
| Trace                 | 0.10280507     | 0.89245999     | 0.00473494      |
| TwoLeadECG            | 3.33651599e-04 | 9.84344734e-01 | 1.53216145e-02  |
| WordSynonyms          | 0.2946319      | 0.63454097     | 0.07082714      |

Cuadro 5: Resultados de la prueba Bayesiana t de correlación para  $z=0.75\,$ 

| dataset               | Python > R     | Python = R     | R > Python      |
|-----------------------|----------------|----------------|-----------------|
| Adiac                 | 0.2331464      | 0.50893522     | 0.25791838      |
| Beef                  | 0.12907094     | 0.08899277     | 0.78193629      |
| CBF                   | 8.34401735e-36 | 1.00000000e+00 | 0.000000000e+00 |
| ChlorineConcentration | 9.89601704e-11 | 5.95645256e-05 | 9.99940435e-01  |
| Coffee                | 0.11400755     | 0.7719849      | 0.11400755      |
| CricketX              | 0.02980696     | 0.63346995     | 0.33672309      |
| CricketY              | 0.06999215     | 0.55401224     | 0.3759956       |
| CricketZ              | 0.05485093     | 0.68311518     | 0.26203389      |
| DiatomSizeReduction   | 9.62627466e-04 | 9.97203874e-01 | 1.83349836e-03  |
| ECG200                | 0.28867736     | 0.29345446     | 0.41786819      |
| ECGFiveDays           | 3.38580608e-04 | 7.63990686e-01 | 2.35670733e-01  |
| FaceAll               | 9.64043974e-05 | 8.47005727e-01 | 1.52897869e-01  |
| FaceFour              | 0.13101914     | 0.7090594      | 0.15992146      |
| FacesUCR              | 2.75392924e-05 | 9.25243106e-01 | 7.47293543e-02  |
| FiftyWords            | 0.19525927     | 0.70472656     | 0.10001417      |
| Fish                  | 0.22210458     | 0.70584535     | 0.07205007      |
| GunPoint              | 0.30674946     | 0.65122986     | 0.04202068      |
| Lightning2            | 0.36098963     | 0.32133916     | 0.31767121      |
| Lightning7            | 0.31834174     | 0.37359889     | 0.30805938      |
| MedicalImages         | 0.14515025     | 0.59590085     | 0.25894891      |
| MoteStrain            | 0.00704297     | 0.89148668     | 0.10147036      |
| OSULeaf               | 0.41346112     | 0.45354226     | 0.13299662      |
| OliveOil              | 0.12366161     | 0.14697396     | 0.72936444      |
| SonyAIBORobotSurface1 | 0.0389231      | 0.85262057     | 0.10845633      |
| SonyAIBORobotSurface2 | 0.00637977     | 0.33480527     | 0.65881496      |
| SwedishLeaf           | 0.046074       | 0.77603425     | 0.17789175      |
| Symbols               | 1.51917346e-03 | 9.98480665e-01 | 1.61287964e-07  |
| SyntheticControl      | 0.20261335     | 0.77888683     | 0.01849982      |
| Trace                 | 1.38986265e-08 | 9.99999809e-01 | 1.77175837e-07  |
| TwoLeadECG            | 5.75646817e-07 | 9.99900700e-01 | 9.87247405e-05  |
| WordSynonyms          | 0.28659738     | 0.6621893      | 0.05121332      |

Cuadro 6: Resultados de la prueba Bayesiana t de correlación entre ExtraTreesy Baydogan para  $z=0.1\,$ 

| dataset               | pExtraTrees > R | pExtraTrees = R | R > pExtraTrees |
|-----------------------|-----------------|-----------------|-----------------|
| Adiac                 | 6.46710743e-04  | 1.68719811e-02  | 9.82481308e-01  |
| Beef                  | 0.24822436      | 0.15633266      | 0.59544298      |
| CBF                   | 3.36606509e-12  | 1.00000000e+00  | 2.59237076e-13  |
| ChlorineConcentration | 0.02525937      | 0.83272716      | 0.14201347      |
| Coffee                | 0.22542949      | 0.47960636      | 0.29496415      |
| CricketX              | 0.73174182      | 0.2506055       | 0.01765268      |
| CricketY              | 0.68118887      | 0.29355097      | 0.02526016      |
| CricketZ              | 0.49693069      | 0.47520954      | 0.02785977      |
| DiatomSizeReduction   | 0.03876648      | 0.95795292      | 0.00328059      |
| ECG200                | 0.33703973      | 0.28823787      | 0.37472239      |
| ECGFiveDays           | 0.02430877      | 0.94849373      | 0.02719749      |
| FaceAll               | 0.00849142      | 0.87086091      | 0.12064767      |
| FaceFour              | 0.15459606      | 0.78766784      | 0.0577361       |
| FacesUCR              | 0.00694194      | 0.83245027      | 0.16060779      |
| FiftyWords            | 0.0878548       | 0.67524683      | 0.23689837      |
| Fish                  | 0.94468187      | 0.05352602      | 0.00179211      |
| GunPoint              | 0.48232144      | 0.47458951      | 0.04308905      |
| Lightning2            | 0.27014319      | 0.2839228       | 0.44593401      |
| Lightning7            | 0.81211906      | 0.14899943      | 0.0388815       |
| MedicalImages         | 0.00451651      | 0.13108379      | 0.86439969      |
| MoteStrain            | 0.51745177      | 0.46753865      | 0.01500958      |
| OSULeaf               | 0.45855676      | 0.45687996      | 0.08456328      |
| OliveOil              | 0.0504915       | 0.03785491      | 0.91165359      |
| SonyAIBORobotSurface1 | 0.2288345       | 0.51629672      | 0.25486878      |
| SonyAIBORobotSurface2 | 0.08079513      | 0.52706829      | 0.39213658      |
| SwedishLeaf           | 0.1313242       | 0.57988555      | 0.28879026      |
| Symbols               | 1.25107054e-04  | 9.99715984e-01  | 1.58908905e-04  |
| SyntheticControl      | 0.49562482      | 0.40749039      | 0.09688479      |
| Trace                 | 0.04191652      | 0.80945961      | 0.14862388      |
| TwoLeadECG            | 0.29074814      | 0.58498518      | 0.12426668      |
| WordSynonyms          | 0.13248274      | 0.64348087      | 0.2240364       |

Cuadro 7: Resultados de la prueba Bayesiana t de correlación entre ExtraTreesy Baydogan para  $z\,=\,0.25$ 

| dataset               | pExtraTrees > R | pExtraTrees = R | R > pExtraTrees |
|-----------------------|-----------------|-----------------|-----------------|
| Adiac                 | 0.01857578      | 0.21948665      | 0.76193757      |
| Beef                  | 0.28074775      | 0.11400528      | 0.60524697      |
| CBF                   | 5.8781518e-28   | 1.0000000e+00   | 0.0000000e+00   |
| ChlorineConcentration | 2.43889782e-09  | 4.63340199e-05  | 9.99953664e-01  |
| Coffee                | 0.20519111      | 0.66986445      | 0.12494444      |
| CricketX              | 0.81967442      | 0.1706181       | 0.00970748      |
| CricketY              | 0.94047724      | 0.05851396      | 0.0010088       |
| CricketZ              | 0.82877917      | 0.1655187       | 0.00570213      |
| DiatomSizeReduction   | 4.03874768e-02  | 9.59048426e-01  | 5.64097080e-04  |
| ECG200                | 0.33284719      | 0.346635        | 0.32051781      |
| ECGFiveDays           | 7.40218205e-01  | 2.59747208e-01  | 3.45864871e-05  |
| FaceAll               | 7.23313440e-01  | 2.76685574e-01  | 9.85770253e-07  |
| FaceFour              | 0.26331568      | 0.63800617      | 0.09867815      |
| FacesUCR              | 2.00767511e-02  | 9.79196259e-01  | 7.26989936e-04  |
| FiftyWords            | 0.2829053       | 0.62604753      | 0.09104717      |
| Fish                  | 9.88873444e-01  | 1.10884739e-02  | 3.80819906e-05  |
| GunPoint              | 0.38722328      | 0.58927793      | 0.02349879      |
| Lightning2            | 0.47007899      | 0.26189571      | 0.26802529      |
| Lightning7            | 0.95226556      | 0.0410862       | 0.00664823      |
| MedicalImages         | 0.10718398      | 0.57575351      | 0.31706251      |
| MoteStrain            | 2.31077348e-04  | 2.55539251e-01  | 7.44229672e-01  |
| OSULeaf               | 0.56394392      | 0.40774946      | 0.02830661      |
| OliveOil              | 0.82078114      | 0.08979733      | 0.08942153      |
| SonyAIBORobotSurface1 | 0.30110758      | 0.62050442      | 0.078388        |
| SonyAIBORobotSurface2 | 0.00371633      | 0.16434029      | 0.83194338      |
| SwedishLeaf           | 0.26278354      | 0.65914663      | 0.07806983      |
| Symbols               | 2.15463654e-03  | 9.97769387e-01  | 7.59768865e-05  |
| SyntheticControl      | 0.15809137      | 0.81436689      | 0.02754174      |
| Trace                 | 1.92512955e-04  | 9.99797950e-01  | 9.53748993e-06  |
| TwoLeadECG            | 0.00310353      | 0.78702756      | 0.20986891      |
| WordSynonyms          | 0.5721368       | 0.39276501      | 0.03509819      |

Cuadro 8: Resultados de la prueba Bayesiana t de correlación entre ExtraTreesy Baydogan para  $z=0.5\,$ 

| dataset               | pExtraTrees > R | pExtraTrees = R | R > pExtraTrees |
|-----------------------|-----------------|-----------------|-----------------|
| Adiac                 | 0.14610689      | 0.58442775      | 0.26946536      |
| Beef                  | 0.42343168      | 0.12779249      | 0.44877583      |
| CBF                   | 5.8703429e-47   | 1.0000000e+00   | 0.0000000e+00   |
| ChlorineConcentration | 1.37629968e-15  | 2.11859785e-09  | 9.99999998e-01  |
| Coffee                | 0.02349879      | 0.89952879      | 0.07697243      |
| CricketX              | 0.8077774       | 0.18690178      | 0.00532082      |
| CricketY              | 0.86878557      | 0.13005597      | 0.00115846      |
| CricketZ              | 0.68120954      | 0.30523578      | 0.01355468      |
| DiatomSizeReduction   | 2.55212264e-03  | 9.97435836e-01  | 1.20411526e-05  |
| ECG200                | 0.32917462      | 0.32103808      | 0.34978729      |
| ECGFiveDays           | 6.57653864e-01  | 3.42346081e-01  | 5.42742595e-08  |
| FaceAll               | 8.52041247e-01  | 1.47958662e-01  | 9.03398781e-08  |
| FaceFour              | 0.33952513      | 0.52784956      | 0.13262531      |
| FacesUCR              | 5.87988173e-01  | 4.12011737e-01  | 8.99786197e-08  |
| FiftyWords            | 0.07980746      | 0.66526498      | 0.25492757      |
| Fish                  | 0.87866022      | 0.11692128      | 0.00441851      |
| GunPoint              | 0.30579808      | 0.57548779      | 0.11871414      |
| Lightning2            | 0.53534328      | 0.30219277      | 0.16246395      |
| Lightning7            | 0.97159944      | 0.02485892      | 0.00354163      |
| MedicalImages         | 0.73711962      | 0.25064357      | 0.01223681      |
| MoteStrain            | 2.65532183e-05  | 7.19956612e-02  | 9.27977786e-01  |
| OSULeaf               | 0.88032835      | 0.11672678      | 0.00294487      |
| OliveOil              | 0.89290594      | 0.0639084       | 0.04318566      |
| SonyAIBORobotSurface1 | 0.35260085      | 0.62716195      | 0.0202372       |
| SonyAIBORobotSurface2 | 9.33530023e-06  | 7.04829216e-03  | 9.92942373e-01  |
| SwedishLeaf           | 0.55439983      | 0.43922988      | 0.00637028      |
| Symbols               | 8.21545873e-05  | 9.99913490e-01  | 4.35550387e-06  |
| SyntheticControl      | 0.01803021      | 0.9751514       | 0.00681839      |
| Trace                 | 0.24158744      | 0.75547318      | 0.00293938      |
| TwoLeadECG            | 1.08235522e-04  | 9.99316019e-01  | 5.75745160e-04  |
| WordSynonyms          | 0.29500835      | 0.63251962      | 0.07247202      |

Cuadro 9: Resultados de la prueba Bayesiana t de correlación entre ExtraTreesy Baydogan para  $z=0.75\,$ 

| dataset               | pExtraTrees > R | pExtraTrees = R | R > pExtraTrees |
|-----------------------|-----------------|-----------------|-----------------|
| Adiac                 | 0.26143326      | 0.56935432      | 0.16921242      |
| Beef                  | 0.22661319      | 0.10904163      | 0.66434518      |
| CBF                   | 0               | 1               | 0               |
| ChlorineConcentration | 2.09168490e-14  | 2.06935390e-08  | 9.99999979e-01  |
| Coffee                | 0.12416538      | 0.52607248      | 0.34976214      |
| CricketX              | 0.30507216      | 0.61126145      | 0.08366639      |
| CricketY              | 0.4728749       | 0.50384523      | 0.02327987      |
| CricketZ              | 0.09780625      | 0.74066755      | 0.1615262       |
| DiatomSizeReduction   | 6.58571023e-03  | 9.93326454e-01  | 8.78352963e-05  |
| ECG200                | 0.3941328       | 0.30763584      | 0.29823136      |
| ECGFiveDays           | 4.08371447e-01  | 5.91628138e-01  | 4.15367483e-07  |
| FaceAll               | 6.50879702e-01  | 3.49120279e-01  | 1.88678633e-08  |
| FaceFour              | 0.33428664      | 0.58045212      | 0.08526125      |
| FacesUCR              | 3.19944685e-01  | 6.80055109e-01  | 2.05548951e-07  |
| FiftyWords            | 0.00424299      | 0.36521922      | 0.63053779      |
| Fish                  | 0.83476153      | 0.16103783      | 0.00420063      |
| GunPoint              | 0.2428085       | 0.72319644      | 0.03399506      |
| Lightning2            | 0.24407948      | 0.28436902      | 0.4715515       |
| Lightning7            | 0.59804501      | 0.2490308       | 0.1529242       |
| MedicalImages         | 0.29445385      | 0.58792641      | 0.11761974      |
| MoteStrain            | 2.18834608e-05  | 1.30136221e-01  | 8.69841896e-01  |
| OSULeaf               | 0.55416663      | 0.36611917      | 0.0797142       |
| OliveOil              | 0.80262646      | 0.11273741      | 0.08463612      |
| SonyAIBORobotSurface1 | 0.34182201      | 0.64860939      | 0.0095686       |
| SonyAIBORobotSurface2 | 1.95340593e-04  | 5.67242010e-02  | 9.43080458e-01  |
| SwedishLeaf           | 0.2469643       | 0.70751751      | 0.04551819      |
| Symbols               | 1.04770524e-05  | 9.99980190e-01  | 9.33316374e-06  |
| SyntheticControl      | 0.20839311      | 0.78559728      | 0.00600961      |
| Trace                 | 0.41381459      | 0.56006995      | 0.02611546      |
| TwoLeadECG            | 2.64040106e-05  | 9.99916464e-01  | 5.71318434e-05  |
| WordSynonyms          | 0.0457645       | 0.65775291      | 0.29648259      |