Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim			1
Cagname	nome	ρ	matricola:
Cognonic,	1101110	\mathbf{c}	man icoia.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) La funzione $h \colon \mathbb{Q} \to \mathbb{Q}$ definita da $h(q) = 4q^2 - 1$ è

2 punti

- □ biettiva.
- □ iniettiva ma non suriettiva.
- □ né iniettiva, né suriettiva.
- □ suriettiva ma non iniettiva.
- (b) Consideriamo il linguaggio L con due simboli di funzione unaria h,k. Quali delle 2 punti seguenti espressioni sono L-enunciati che formalizzano correttamente relativamente alla L-struttura $\langle C, h, k \rangle$ l'affermazione "la funzione h è l'inversa della funzione k"

$$\square \ \forall x (h(k(x)) = x \land k(h(x)) = x)$$

- $\square\ h=k^{-1}$
- $\square \ \forall x (h(k(x)) = x)$
- $\square \forall x (h(x) \cdot k(x) = 1)$
- (c) Siano C, D, A lettere proposizionali e R una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

- \square R \models D.
- $\square \neg R \wedge D$ è una contraddizione.

	\square R non è insoddisfacibile.	
	$\square R \wedge A \models D$	
(d)	La relazione Q su $\mathbb{R} \setminus \{0\}$ definita da z Q w se e solo se $\exists x(z \cdot x = w)$	2 punti
	□ è transitiva.	
	□ non è una relazione d'equivalenza.	
	□ è riflessiva.	
	□ non è simmetrica.	
(e)	Siano φ, ψ delle <i>L</i> -formule.	2 punti
	$_{\square}$ φ è soddisfacibile se e solo se $\neg \varphi \rightarrow \psi$ è soddisfacibile.	
	\Box Se ϕ è una tautologia allora $\neg \phi \rightarrow \psi$ è soddisfacibile.	
	\Box Se ϕ è soddisfacibile allora $\neg \psi \rightarrow \phi$ è soddisfacibile.	
	$_{\square}$ Se $\neg \phi$ è soddisfacibile allora $\neg \phi \rightarrow \psi$ è soddisfacibile.	
(f)	Quali dei seguenti insiemi sono infiniti e numerabili?	2 punti
	$\square \ \{(z,w) \in \mathbb{R}^2 \mid z \in \mathbb{Z} \lor w \notin \mathbb{Q} \}$	
	$\square \mid \{(z, w) \in \mathbb{R}^2 \mid z \in \mathbb{Z} \land w \in \mathbb{Q}\}$	
	$\Box \{z \in \mathbb{R} \mid z^2 - 3z + 4 = 0\}$	
	$\square \ \{z \in \mathbb{R} \mid \sqrt{z} \in \mathbb{N}\}$	
(g)	Sia φ la formula $\forall z \forall w R(w,z) \vee \neg \exists w R(z,w)$, dove R è un simbolo di	2 punti
	predicato binario.	
	\Box φ è un enunciato.	
	\Box La variabile w occorre libera e vincolata in φ .	
	\Box φ è un enunciato e la variabile z occorre sia libera che vincolata in φ .	
	\Box La variabile z occorre libera e vincolata in φ .	

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L=\{h\}$ con h simbolo di funzione binario. Sia ψ la L-formula

$$\exists w \, (h(w, w) = z).$$

1. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \psi[y/2, x/1].$$

2. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \psi[y/2, x/2].$$

3. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \forall z \psi [y/2, x/2].$$

4. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \exists z \psi [y/2, x/1].$$

5. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \psi[y/1, x/3].$$

6. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \psi[y/\sqrt{2}, x/-2].$$

- 7. È vero che $\langle \mathbb{R}, \cdot \rangle \models \forall z \psi[y/1, x/3]$?
- 8. Sia $\mathcal{C} = \langle \mathbb{R}^+, \cdot \rangle$, dove $\mathbb{R}^+ = \{ r \in \mathbb{R} \mid r > 0 \}$. È vero che $\mathcal{C} \models \forall z \, \psi[y/1, x/3]$?

Giustificare le proprie risposte.

ognome, nome e matricola:				

Esercizio 3 9 punti

Sia $\langle C, < \rangle$ un ordine lineare stretto e siano D, A sottoinsiemi di C. Formalizzare relativamente alla struttura $\langle C, <, D, A \rangle$ mediante il linguaggio $L = \{<, D, A\}$ con un simbolo di relazione binaria e due simboli di predicato unari le seguenti affermazioni:

- 1. Tra due elementi di D c'è un elemento di A.
- 2. Dati due elementi di D, c'è necessariamente un elemento di A che è maggiore di entrambi.
- 3. Qualche elemento di D è minore di qualche elemento di A.
- 4. Il più grande elemento di D coincide con il più piccolo elemento di A.