

# Jong M. Shin

in linkedin.com/in/jshinm github.com/jshinm

# **Professional Experience**

Johns Hopkins University - Whiting School of Engineering, Baltimore, MD

- Developing new neural network based ML algorithms using parallel processing and GPU utilization
- Maintaining and publishing research softwares in an open source setting in github organization
- Leading a team of 6 AI researchers and their 20+ engineering students to develop state-of-the-art machine learning packages (emsemble-based decision tree models) in **python** to be integrated into **scikit-learn**
- Published 2 preprints on AI/ML subjects (google scholar)
- Presented at 2022 NAISys conference on machine-human intelligence and machine behavior (poster)

U.S. Bureau of Labor Statistics, Washington, DC

- Retrained and optimized the transformer-based **NLP model** using 2.4M records achieving 81% accuracy
- Troubleshooted auxiliary software for machine learning pipeline to support 10+ economists
- Resolved python-based solutions for critical discrepencies failing to assess ML model performance
- Developing a new machine learning systems for **natural language processing (NLP)** using **scikit-learn, Tensorflow, PyTorch, Huggingface** framework using neural network and gradient boosting models
- Provided ML solutions to streamline the deployment of the OSH helpdesk web application
- Provided collaborative consultations and ML related advices throughout the BLS offices

Johns Hopkins University - Whiting School of Engineering, Baltimore, MD

- Studied the extrapolative behavior of various ML algorithms implemented using **python** and **scikit-learn**
- Built a production-grade web app and REST API to conduct human behavioral experiments using HTML,
   Javascript and Flask, and backend database management using SQLAIchemy hosted on heroku

Microsoft Research, Redmond, WA

- Developed a web application that automates the process of causal inference using React and Typescript to power front-end and python Flask to service back-end in the context of human trafficking and COVID-19
- Built and designed an **end-to-end** pipeline of **causal inference** using **Python DoWhy** package to deploy a research application product branded as ShowWhy
- Led a team of 6 engineers of different technical background to build the initial ShowWhy application

Johns Hopkins University School of Medicine, Baltimore, MD

- Developed a data preparation pipeline for JHU COVID-19 initiative using probabilistic linkage methods to provide backend database management in R
- Built a data analytic pipeline to parse hospital datasets via **causal inference** methods to provide a clinical data science guideline for COVID-19 vaccination distribution

- Built an analytical pipeline to parse out biometric signals from the **multivariate time-series** hologram signal datasets in **python** using **sklearn** and **tensorflow**
- Cleaned and pre-processed real-world multimodal datasets using pandas and hyppo

Post baccalaureate IRTA research fellow 11/2018 to 05/2021

- Built a prediction pipeline for HIV detection by HIV antibody titer in **Python** using **pandas** and **sklearn**
- Conducted parametric/nonparametric multivariate linear regression analysis of the national omics datasets such as metabolomics and proteomics using **Python** and **R**

Graduate Researcher 06/2017 to 10/2018

Virginia Commonwealth University, Richmond, VA

The National Institutes of Health, Bethesda, MD

- Built automated fourier transformed signal detection program in Matlab for mouse behavioral experiments
- Conducted 50+ multivariate parametric/nonparametric data analysis on biomedical data for publication



# Jong M. Shin

in linkedin.com/in/jshinm
github.com/jshinm

### **Skills**

Python, R, SQL (MySQL, MS SQL Server), Git, Matlab, Java, Typescript, React, HTML/CSS, Linux (Bash/Shell)

#### **Recent Publications**

- 1. Deep discriminative to kernel generative modeling (2022), arXiv [Link]
- 2. Prospective Learning: Back to the Future (2022), arXiv [Link]
- 3. Interclass GPCR heteromerization affects localization and trafficking (2020), Science Signaling [link]
- 4. Site-Specific Incorporation of Genetically Encoded Photo-Crosslinkers Locates the Heteromeric Interface of a GPCR Complex in Living Cells (2020), Cell Chemical Biology [link]
- 5. Fully automated head-twitch detection system for the study of 5-HT2A receptor pharmacology in vivo (2019), Scientific Reports [link]

## **Education**

# **Professional Projects**

#### Automated end-to-end causal inference application (Microsoft Research)



- Devised application design from a data scientist perspective and laid out the basic architecture from scratch
- Built proof-of-concept framework of the app using Fluent-UI, typescript, and python-flask
- Wrote in-house python libraries and jupyter notebooks to develop the end-to-end data science pipelines
- Used visualization tools such as **matplotlib** and **seaborn** to generate internal statistics of the data sets within the app

#### **Inductive bias experiment (Johns Hopkins University - JOVO Lab)**



- Implemented ML models from sklearn and trained on nonlinear simulation data
- Generated mathematically derived posterior probability for exclusive OR and spiral dataset
- Implemented point-wise Hellinger distance and explored extrapolative behaivor of ML models such as SVM, DN, RF
- Generated publication figures and presented experimental findings using visual tools such as matplotlib and seaborn

### Web application for human behavioral experiment (Johns Hopkins University - JOVO Lab)



- Developed web application for human behavioral experiment to collect extrapolative inference pattern performed by humans
- Designed front-end using HTML/CSS, JavaScript and powered back-end using python-Flask and SQLalchemy
- Managed SQL database that stored over 150 participants' behavioral experiment data on heroku