CS201 – Lecture 4 Data Representation

RAOUL RIVAS

PORTLAND STATE UNIVERSITY

Announcements

Bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

Binary Numbers

- Base 2 Number Representation
 - Represent 15213₁₀ in Binary
 - To convert we use a sequence of divisions by powers of 2:

$$7021 - 2^{12} = 7021 - 4096 = 2925$$

$$877 - 512 = 365$$
 (Note we can't divide by 1024)

$$45 - 32 = 13$$

$$5-4=1$$

$$1 - 1 = 0$$

11101101101101₂

1	20
2	21
4	2 ²
8	2 ³
16	24
32	2 ⁵
64	2 ⁶
128	2 ⁷
256	28
512	2 ⁹
1024	210
2048	211
4096	212
8192	213
16384	214

Binary to Decimal

- To convert to binary we add all the powers of 2 matching the position of all the ones
- $11101101101101_2 = 2^{13} + 2^{12} + 2048 + 512 + 256 + 64 + 32 + 8 + 4 + 1 = 15213$

1	20
2	21
4	2 ²
8	2 ³
16	24
32	2 ⁵
64	2 ⁶
128	2 ⁷
256	28
512	2 ⁹
1024	2 ¹⁰
2048	211
4096	212
8192	2 ¹³
16384	214

Hex Numbers

- Base 16 Number Representation:
 - Numerals: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Similar process to convert to Base 16 than to Base 2
- Represent 15213₁₀ in Hex

$$15213 - 3 * 16^3 = 2925$$

$$2925 - 11 * 16^2 = 109$$

$$109 - 6 * 16^1 = 13$$

$$-13 - 13 = 0$$

- 3B6D₁₆ (Also written as 0x3B6D or 3B6Dh)
- The process is the same for any base!

1	16 ⁰
16	16 ¹
256	16 ²
4096	16 ³
65535	16 ⁴

Hex to Decimal

Represent 3B6D₁₆ in Decimal

```
 3 * 16^3 + 11 * 16^2 + 6 * 16^1 + 13 = 15213_{10}
```

1	16 ⁰
16	16 ¹
256	16 ²
4096	16 ³
65536	16 ⁴

Representing a BYTE

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write 7B₁₆ in C as
 - 0x7B
 - 0x7b

Hex Decimal Binary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

■ A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

Not

■ ~A = 1 when A=0

Or

■ A | B = 1 when either A=1 or B=1

	0	1
0	0	1
1	1	1

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

Basic Binary Arithmetic - Addition

 Binary addition by hand is similar to its base-10 addition ("grade-school algorithm")

```
1 1 01101001
+ 01010101
10111110
```

```
1 1111
11011111
+ 10000110
101100101
```

Basic Binary Arithmetic - Multiplication

 Binary multiplication by hand is similar to its base-10 multiplication ("grade-school algorithm")

11011111 × 10000 110111110000

The same trick of shifting left applies

Representing Sets (Bitmasks)

- Representation
 - Width w bit vector represents subsets of {0, ..., w−1}
 - $a_i = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**
- Operations

&	Intersection	01000001	{ 0, 6 }
	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
٨	Symmetric difference	00111100	{ 2, 3, 4, 5 }
~	Complement	10101010	{ 1, 3, 5, 7 }

 Compact and Efficient way to represent Bitmasks (e.g flags or switches, etc)

Boolean vs Logic Operators in C

- Boolean Operators: &, |, ~, ^
- Logic Operators: &&, ||,!
 - View 0 as "False"
 - Anything nonzero as "True"
 - Lazy Evaluation
 - Stop evaluation as soon as TRUE or FALSE is determined

- (q==0) never gets evaluated
- How about this one: Are we accessing a NULL pointer?

No, p -> next is not evaluated if p==NULL

Two's Complement Representation

- Signed Integer representation in modern computers
 - Suggested by Von Neumann in 1945
- Positive Integers are represented by themselves
- Negative Integers are represented by its Two's complement
- The two's complement TC(n) of an N-bit number n is defined as the complement with respect to 2^{N} :

$$TC(n) = 2^N - n$$

- For a 16-bit Integer:
 - 15213 = 00111011 01101101₂
 - -15213 = $TC(15213) = 2^{17} 15213 = 1100010010010011_2$

short int
$$x = 15213$$
;
short int $y = -15213$;

ĺ		Decimal	Hex	Binary
	x	15213	3B 6D	00111011 01101101
	У	-15213	C4 93	11000100 10010011

Negation: Complement & Increment

CLAIM: We can compute the Two's complement using the following formula:

$$^{x}x + 1 = -x$$

The proof is beyond the scope of this class, but, note that:

$$\sim x + x = 1111...111 = -1$$

- Much easier to build circuitry to compute it
- Also faster manual computation

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
~x	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	0000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

Unsigned & Signed Numeric Values

Χ	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

Integer Binary Subtraction

- Binary subtraction is done as an addition of the minuend plus the two's complement of the subtrahend
 - Ignore the carry over at the end! (Modular arithmetic)

$$105 - 85 = 276 \mod 256 = 20$$

$$s = USub_w(u, v) = u + (\sim v + 1) \mod 2^w$$

Shift Operations

- Left Shift: x << y</p>
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with O's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- ANSI C does not specify if Right Shift is Logical or Arithmetic
 - Usually Arithmetic Shifts

Numeric Ranges

Unsigned Values

- *UMin* = 0
- $UMax = 2^w 1$ 111...1

Signed Values

■ TMin = -2^{w-1} 100...0 = $2^{w-1} - 1$

Other Values

Minus 1111...1

011...1

Values for W = 16

	Decimal	Hex Binary	
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations:

- \blacksquare | TMin | = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix0π, 4294967259π
- Casting
 - Explicit casting between signed & unsigned leaves bit pattern unchanged!

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Sign Extension

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value
 - E.g. Convert a 16-bit integer to a 32-bit integer

Rule:

Make k copies of sign bit:

Sign Extension Example

```
short int x = 15213;
int         ix = (int) x;
short int y = -15213;
int         iy = (int) y;
```

	Decimal	Hex	Binary	
X	15213	3B 6D	00111011 01101101	
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101	
У	-15213	C4 93	11000100 10010011	
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011	

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Unsigned Addition

Operands: w bits

True Sum Length: w+1 bits

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

- Standard Addition Function
 - Ignores carry output
 - In assembly we can use the carry output to see if we overflow
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

Mathematical Properties

- Modular Addition Forms an Abelian Group
 - Closed under addition

$$0 \leq \mathsf{UAdd}_{w}(u, v) \leq 2^{w} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u,0) = u$$

- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

Operands: w bits

True Sum Length: w+1 bits

Discard Carry: w bits

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - TAdd_w(u, v) = (signed) (UAdd_w((unsigned) u, (unsigned) v))
 - Since both have identical bit patterns

- Two's Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

Unsigned Multiplication

Operands: w bits

- Standard Multiplication Function in C
 - Ignores high order w bits
- IA-32's 32-bit Multiplication returns a 64-bit integer
- Implements Modular Arithmetic $UMult_w(u, v) = u \cdot v \mod 2^w$

Properties of Unsigned Multiplication

- Unsigned Multiplication with Addition Forms
 Commutative Ring
 - Addition is commutative group
 - Closed under multiplication

```
0 \leq UMult_w(u, v) \leq 2^w - 1
```

Multiplication Commutative

```
UMult_w(u, v) = UMult_w(v, u)
```

Multiplication is Associative

```
UMult_w(t, UMult_w(u, v)) = UMult_w(UMult_w(t, u), v)
```

1 is multiplicative identity

```
UMult_{w}(u, 1) = u
```

Multiplication distributes over addtion

```
UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))
```

Signed Multiplication

Operands: w bits

True Product Length: 2*w bits

Discard w bits: w bits

- Standard Multiplication Function in C
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Instruction Timings (Cycles)

	8086	286	386	486
16-bit Signed Multiplication	154	21	22	26
16-bit Unsigned Multiplication	118	21	22	26
16-bit Signed Division	184	25	27	27
16-bit Unsigned Division	162	22	22	24

Value Processor Clock Frequency

8086: 5 Mhz

286: 6 Mhz

386: 12 Mhz

486: 16 Mhz

Power-of-2 Multiply with Shift

- Operation
 - $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
 - Both signed and unsigned

Operands: w bits

True Product: w+k bits

Discard *k* bits: *w* bits

 $UMult_w(u, 2^k)$ $TMult_w(u, 2^k)$

- Examples
 - u << 3 == u * 8
 - u << 5 u << 3 == u * 24
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 PB (petabytes) of addressable memory
 - That's 18.4 X 10¹⁵
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

This is important when writing files or connecting to the network

Representing Integers

int
$$A = 15213;$$

int B = -15213;

long int C = 15213;

Two's complement representation

Summary

- Binary representation is very efficient in bistable components used in digital computers
- Boolean Algebra allows algebraic representation of logic
- Two's Complement representation is used for signed Integers
 - Modular Integer Addition forms an Abelian Group
 - Modular Integer Addition and Multiplication form a Commutative Ring
 - Logical and Arithmetic Shifts are used to replace multiplication and addition of powers of 2.
- Integer Endianness is hardware dependent
 - Little Endian and Big Endian notations are used by different platforms