AE1241 Physics Chapter 18 Kinetics Theory of Gases

Dr. Feijia Yin
Operations and Environment
Faculty of Aerospace Engineering

27th February, 2025

Relevance of thermodynamics to aerospace

Link to video

Suction surface

Trailing edge

Example: Radiation and climate change

What do we focus on?

Thermodynamics

- 0th law of thermodynamics (temperature) Chapter 17
- Kinetic Theory of Gases (temperature) Chapter 18
- 1st law of thermodynamics (energy) Chapter 19
- 2nd law of thermodynamics (entropy) Chapter 20
- 3rd law of thermodynamics (absolute 0 K) Chapter 20

Structure of today's lecture

- The Ideal Gas Law and the Molecular Interpretation of Temperature
- Distribution of Molecular Speeds
- Real Gas and Changes of Phase
- Vapor Pressure and Humidity
- Van der Waals Equation of State
- Mean Free Path
- Diffusion

Learning objectives

After today's lecture, you should be able to:

- Explain molecular kinetic theory for ideal gases, including, average kinetic energy, average speed and speed distribution.
- Explain the difference of ideal and real gas, using van der Waals theory

• Analyze phase changes for given substances, using phase diagrams.

- Calculate relative humidity at given temperature.
- Calculate the diffusion rate of molecules

Prior knowledge

- Basic mechanics (e.g., *Newton's law*)
- Calculus (e.g., differential and integral)
- Statistics (e.g., distribution, probability)

18-1 Force of molecules

Pressure exerted on a wall of a container of gas is due to collisions of the molecules with the walls

one molecule striking wall (yz-plane):

$$\begin{cases} \Delta(mv) = mv_{x} - (-mv_{x}) & \text{Newton's 2}^{\text{nd}} \text{ law:} \\ \Delta t = \frac{2l}{v_{x}} & F = \frac{\Delta(mv)}{\Delta t} \end{cases}$$

$$F = \frac{mv_x^2}{l}$$
 N molecules $P = \frac{m(v_{x,1}^2 + v_{x,2}^2 + \dots + v_{x,N}^2)}{l} = \frac{mN\overline{v_x^2}}{l}$

18-1 Average translational kinetic energy of molecules

$$F = \frac{mNv_x^2}{l}$$

$$\overline{v^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2} = 3\overline{v_x^2}$$

Energy is equally shared per degree of freedom

Average translational

kinetic energy \overline{K}

$$F = \frac{mN\overline{v^2}}{3l}$$

N very large, P constant

Wery large, P constant
$$P = \frac{F}{A} = \frac{1}{3} \frac{Nm\overline{v^2}}{V} \longrightarrow PV = \frac{2}{3}N\left(\frac{1}{2}m\overline{v^2}\right) = \frac{2}{3}N\overline{K}$$
combine with ideal gas law, $PV = NkT$

combine with ideal gas law PV = NkT

11

Average translational energy

$$\overline{K} = \frac{3}{2}kT$$

Average translational kinetic energy, only depending on $\overline{K} = \frac{3}{2}kT$ temperature.

T: Temperature in K

k: Boltzmann constant: 1.38 * 10⁻²³ J/K

Q: what is the average kinetic energy of 40 molecules gas at 25°C.

$$\overline{K} = \frac{3}{2}kT = \frac{3}{2}(1.38 \times 10^{-23})(298K) = 6.17 \times 10^{-21} J/molecule$$

40 molecules will have a total translational kinetic energy of:

$$6.17 \times 10^{-23} \times 40 = 2.47 \times 10^{-19} J$$

18-1 Root mean square speed

$$v_{rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3kT}{m}} \approx 1.73 \sqrt{\frac{kT}{m}}$$

Mass of one molecule O_2 (molecular mass = 32u) is: $m(O_2) = (32)(1.66 \times 10^{-27}) = 5.3 \times 10^{-26} \ kg$

$$v_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3(1.38 \times 10^{-23} J/K)(293K)}{5.3 \times 10^{-26} kg}} = 481m/s$$

Mass of one molecule He (molecular mass = 4u) is: $m(H_e) = (4)(1.66 \times 10^{-27}) = 6.6 \times 10^{-27} \ kg$

$$v_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3(1.38 \times 10^{-23} J/K)(293K)}{6.6 \times 10^{-27} kg}} = 1357 \, m/s$$

18-2 Speed distribution

$$dN = \int_{v1}^{v1+dv} f(v)dv$$

The fraction of molecules that have the speed between v and v+dv

$$\int_0^\infty f(v)dv = N$$

18-2 Maxwell distribution of speed

$$f(v) = 4\pi N \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^{2} e^{-\frac{1mv^{2}}{2kT}}$$

Temperature dependent, K

N: number of molecules

m: mass of a single molecule, kg

k: Boltzmann constant, J/K

The speed distribution shifts towards high speed regime as increasing the temperature.

18-2 Maxwell distribution of speed

Chemical reactions take place more rapidly as T increases! (E_A activation energy)

TUDelft

For the same temperature, the lighter the molecule, the higher the speed.

18-2 Calculation of different speeds

Tip: Please remember these speed equations!

Average speed:

$$\bar{v} = \frac{\int_0^N v dN}{N} = \frac{\int_0^\infty v f(v) dv}{N}$$
$$= \sqrt{\frac{8kT}{\pi m}} \approx 1.6 \sqrt{\frac{kT}{m}}$$

Most probable speed:

$$\frac{df(v)}{dv} = 0 \qquad \longrightarrow v_p = \sqrt{\frac{2kT}{m}} \approx 1.41 \sqrt{\frac{kT}{m}}$$

See derivation in Example 18-5

Exercise

In outer space, the density of matter is about one atom per cm³ (mainly hydrogen *atoms*). The temperature is about 2.7 K.

- What is the *rms* speed of the hydrogen atoms?
- What is the pressure in the atmosphere?

$$v_{rms} = \sqrt{\frac{3kT}{m}} = 259 \text{ m/s}$$
 $(m = 1.66 \text{ x } 10^{-27} \text{ kg})$

$$P = \frac{1}{3} \frac{N}{V} m \overline{v^2} = \frac{1}{3} \frac{N}{V} m v_{rms}^2 = 3.7 \times 10^{-17} \ pa = 3.7 \times 10^{-22} \ atm$$

18-3 Phase change

18-3 P-V diagram

Steep rise as liquids are nearly incompressible

All of the substance has become liquid

• Dashed lines: ideal gas behavior: PV = NkT;

• Solid lines: real gas behavior driven by attractive forces (see 18-6 for details);

Critical temperature (T_c) :

• $< T_C$: a gas changes to liquid with sufficient high pressure;

 $>T_C$: no phase change.

Substance	Critical temperature [K]	Critical pressure [atm]
Water	647	218
Nitrogen	126	33.5
Hydrogen	33.3	12.8

decreases with no change in pressure

20

18-3 P-T diagram

P-T diagram for water

▼ TUDelft

- Curve (\ell-\alpha): liquid and vapour phase are in equilibrium (boiling point vs. pressure)
- Curve (\$\epsilon \ell\$): solid and liquid phase are in equilibrium (freezing point)
- Curve (a-a): Sublimation point
- Triple point: three phases coexist in equilibrium (unique value of *P* and *T*)
- Low pressure (< 0.006 atm): sublimation

Copyright @ Feijia Yin, TU Delft

P-T diagram for CO₂

18-4 Vapor Pressure

- When equilibrium is reached, saturation occurs.
- The pressure of the vapour when saturation occurs is called saturated vapor pressure
- Evaporation occurs
 when the vapor pressure
 < saturated vapor
 pressure

Copyright @ Feijia Yin, TU Delft

TABLE 18–2 Saturated Vapor Pressure of Water

Temp-	Saturated Vapor Pressure	
erature (°C)	torr (= mm-Hg)	Pa (= N/m ²)
-50	0.030	4.0
-10	1.95	2.60×10^{2}
0	4.58	6.11×10^{2}
5	6.54	8.72×10^{2}
10	9.21	1.23×10^{3}
15	12.8	1.71×10^{3}
20	17.5	2.33×10^{3}
25	23.8	3.17×10^{3}
30	31.8	4.24×10^{3}
40	55.3	7.37×10^{3}
50	92.5	1.23×10^{4}
60	149	1.99×10^{4}
70^{\dagger}	234	3.12×10^4
80	355	4.73×10^4
90	526	7.01×10^4
100 [‡]	760	1.01×10^{5}
120	1489	1.99×10^{5}
150	3570	4.76×10^5

[†]Boiling point on summit of Mt. Everest.

ds on

[‡]Boiling point at sea level.

18-4 Evaporation vs. condensation

Partial pressure = saturated

Equilibrium: saturation reached.

Temperature increase → saturated vapor pressure increases \rightarrow More evaporation

Temperature reduces→ saturated vapor pressure reduces \rightarrow More condensation

vapour pressure

18-4 Boiling

Copyright @ 2008 Pearson Education, In

Boiling: when saturated vapour pressure equals the external pressure.

Q: At top of Mt. Everest air pressure is 1/3 of that at the sea level.

Then at what temperature water boils?

70 °C

Copyright @ Feijia Yin, TU Delft

TABLE 18–2 Saturated Vapor Pressure of Water

Temp-	Saturated Vapor Pressure		
erature (°C)	torr (= mm-Hg)	Pa (= N/m ²)	
-50	0.030	4.0	
-10	1.95	2.60×10^{2}	
0	4.58	6.11×10^{2}	
5	6.54	8.72×10^{2}	
10	9.21	1.23×10^{3}	
15	12.8	1.71×10^{3}	
20	17.5	2.33×10^{3}	
25	23.8	3.17×10^{3}	
30	31.8	4.24×10^{3}	
40	55.3	7.37×10^{3}	
50	92.5	1.23×10^{4}	
60	149	1.99×10^{4}	
70^{\dagger}	234	3.12×10^{4}	
80	355	4.73×10^{4}	
90	526	7.01×10^4	
100‡	760	1.01×10^{5}	
120	1489	1.99×10^{5}	
150	3570	4.76×10^5	

Boiling point on summit of Mt. Everest.

[‡]Boiling point at sea level.

18-4 Relative Humidity

 $relative\ humidity = rac{partial\ pressure\ of\ water}{saturated\ vapor\ pressure}$

Exercise: 1) What is the water vapor partial pressure now in Delft?

2) Considering the same amount vapor pressure, if temperature increases to 10 °C, what would be the relative humidity?

TABLE 18–2 Saturated Vapor Pressure of Water

Temp-	Saturated Vapor Pressure		
erature (°C)	torr (= mm-Hg)	Pa (= N/m ²)	
-50	0.030	4.0	
-10	1.95	2.60×10^{2}	
0	4.58	6.11×10^2	
5	6.54	8.72×10^2	
10	9.21	1.23×10^{3}	
15	12.8	1.71×10^{3}	
20	17.5	2.33×10^{3}	
25	23.8	3.17×10^{3}	
30	31.8	4.24×10^{3}	
40	55.3	7.37×10^{3}	
50	92.5	1.23×10^4	
60	149	1.99×10^4	
70 [†]	234	3.12×10^4	
80	355	4.73×10^4	
90	526	7.01×10^4	
100‡	760	1.01×10^{5}	
120	1489	1.99×10^{5}	
150	3570	4.76×10^5	

[†]Boiling point on summit of Mt. Everest. ‡Boiling point at sea level.

Copyright @ 2008 Pearson Education, Inc.

18-4 various phenomena: dew, frost, clouds

- **Dew point**: the temperature, at which, the air is saturated with water.
- If the temperature is below the dew point, water vapor condenses on surface to form we drops.
 TUDelft

- Frost point: If the temperature is below freezing, the dew point is called the frost point.
- If the temperature falls below the frost point, water vapor deposits on surface to form crystals known as frost

• If the air temperature cools below the dew point, water vapor condenses to form cloud/fog drops

18-4 Clouds formation

https://laulima.hawaii.edu/access/content/group/dbd544e4-dcdd-4631-b8ad-3304985e1be2/book/chapter_6/lifting.htm

TUDelft

Figure source: De la Torre Castro, 2025

- If the partial pressure of water exceeds the saturated vapour pressure, the air is supersaturated;
- Drop formation occurs on particles known as cloud condensation nuclei (CCN)
- Without particles clouds would not form in the Atmosphere

Exercise

What is the mass of water in a closed room of 5.0 m x 3.0 m x 2.5 m when the temperature is 25 °C and the relative humidity is 65 %?

$$V = 5 \times 3 \times 2.5 = 37.5 \, m^3$$

$$p_{H2O} = 65\% \times (3.17 \times 10^3) \ pa = 2.06 \times 10^3 pa = 0.020 \ atm$$

$$n = \frac{PV}{RT} = \frac{(0.020 \times 10^5)pa \times 37.5 \, m^3}{8.314 \frac{J}{mol \, K} \times (25 + 273)K} = 30.27 \, mol$$

$$m = n \times M = 30.27 \ mol \times 18 \ g/mol = 544.86 \ g$$

TABLE 18-2 Saturated Vapor Pressure of Water

Temp-	Saturated Vapor Pressure	
erature (°C)	torr (= mm-Hg)	$ \begin{array}{c} \mathbf{Pa} \\ (=\mathbf{N/m^2}) \end{array} $
-50	0.030	4.0
-10	1.95	2.60×10^{2}
0	4.58	6.11×10^{2}
5	6.54	8.72×10^{2}
10	9.21	1.23×10^{3}
15	12.8	1.71×10^{3}
20	17.5	2.33×10^{3}
25	23.8	3.17×10^{3}
30	31.8	4.24×10^{3}
40	55.3	7.37×10^{3}
50	92.5	1.23×10^4
60	149	1.99×10^{4}
70 [†]	234	3.12×10^{4}
80	355	4.73×10^4
90	526	7.01×10^4
100‡	760	1.01×10^{5}
120	1489	1.99×10^{5}
150	3570	4.76×10^{5}
†Boiling point on summit of Mt. Everest.		

*Boiling point on summit of Mt. Everest Boiling point at sea level.

Copyright @ 2008 Pearson Education, Inc.

Problem 33 pressure cooker

- A pressure cooker is a sealed pot designed to cook food with the steam produced by boiling water above 100 °C.
- It uses a weight of mass *m* to allow steam to escape at a certain pressure through a small hole in the lid.

The diameter of the hole is *d* equal to 3.0 mm.

What should m be in order to cook food at 120 °C? (assume atmospheric pressure outside the cooker is 1 atm)

$$mg = (Pin - Pa_{tm})A = \Delta P \frac{\pi d^2}{4}$$
 $m = \frac{\Delta P \pi d^2}{4g}$

Saturated vapor pressure at $120 \, ^{\circ}\text{C} = 1.99 \, ^{*}10^{5} \, \text{pa}$, the ambient pressure of 1 atm is $1.0 \, ^{*}10^{5} \, \text{pa}$

$$m = \frac{(0.99 \times 10^5)pa \times \pi \times (0.003 \, m)^2}{4 \times 9.8 \, m^2/s} = 0.071 \, kg$$

18-6 Van der Waals Equation of State

Nobel prize in physics 1910

Van der Waals forces

Animation from:

http://www.chm.bris.ac.uk/webproject s2003/swinerd/forces/forces.htm

- Based on kinetic theory
- Non-negligible volume of molecules
- Range of attractive forces larger than size of molecules
- The actual volume in which the molecules can move is smaller than the volume of container.

18-6 Clausius equation of state-effects of molecule size

colliding molecules

$$PV = nRT$$

$$P(V - nb) = nRT$$

$$P\left(\frac{V}{n} - b\right) = RT$$

$$P_{real} < P_{ideal}$$

for given temperature and volume

18-6 Van der Waals equation of state

- Molecules towards wall are slowed down
- The corresponding reduced pressure is proportional to density of molecules in layer of gas at the surface (and to density in next layer)
- Actual forces exerted on the wall is less due to attractive forces;
- We expect the pressure to be reduced is proportional to the density squared $(n/V)^2$

$$P = \frac{nRT}{V - nb} - \frac{a}{(V/n)^2}$$
 Constant a, b differ per gas Determined by experiments

Constant a, b differ per gas

$$T_{cr} = rac{8a}{27bR} \quad P_{cr} = rac{a}{27b^2}$$
 Copyright @ Feijia Yin, TU Delft

18-6 Van der Waals Equation of State—comparison

Changes with the type of gas!

18-7 Mean Free Path

---average distance molecule travels between collisions

- If molecules were true point particles, they would never collide with one another.
- Mean free path distance is the average distance a molecule travels between collisions.
- Greater molecule, greater air density → shorter mean free path distance

Figure 18-12 Zigzag path of a molecule colliding with other molecules.

18-7 Mean Free Path

---average distance molecule travels between collisions

- Molecules are hard spheres with radius *r*;
- Dashed line: molecule moves from left to right with speed \bar{v} without collision;
- Assuming the other molecules are still;
- Concentrations of molecules (#/volume) are N/V;
- Number of Collison = concentration * volume

Mean free distance:

$$l_M = \frac{\bar{v}\Delta t}{\pi (2r)^2 \bar{v}\Delta t (N/V)} = \frac{1}{4\pi r^2 (N/V)}$$

We expect mean free path to be inversely proportional to density N/V and size ($\sim r^2$) of the molecules

18-7 Mean Free Path

---average distance molecule travels between collisions

• Assuming the other molecules are still

$$l_M = \frac{\bar{v}\Delta t}{\pi (2r)^2 \bar{v}\Delta t (N/V)}$$

• Relative speed matters:

$$v_{rel} = \sqrt{2}\bar{v}$$

$$l_m = \frac{1}{4\pi\sqrt{2}r^2(N/V)}$$

Example 18-8 Mean free path of air molecules at STP

Estimate the mean free path of air molecules at STP, standard temperature and pressure (0°C, 1atm). The diameter of O_2 and N_2 molecules is about 3×10^{-10} m.

Knowing 1 mol of an ideal gas occupies a volume of 22.4×10⁻³ m³ at STP.

$$\frac{N}{V} = \frac{6.02 \times 10^{23}}{22.4 \times 10^{-3}} = 2.69 \times 10^{25} \, \#/m^3$$

$$l_M = \frac{1}{4\pi\sqrt{2}(1.5\times10^{-10})^2(2.7\times10^{25}m^{-3})} = \sim 9\times10^{-8} \,\mathrm{m}.$$

18-8 Diffusion

- Takes place because of the random motion of molecules
- Diffusion depends on concentrations (#/mol; #/m³)
- Diffusing direction: high concentration region → low concentration region **TUDelft**

18-8 Fick's law

- often convection (moving air currents) plays a greater role than diffusion
- diffusion can be understood on the basis of kinetic theory

- more molecules cross into central region from region 1 than from region 2 →
- net flow of molecules from left to right

TABLE	18-3	Diffusi	0	n
Consta	nts, D	(20°C,	1	atm)

Diffusing Molecules	Mediun	$D (m^2/s)$
H_2	Air	6.3×10^{-5}
O_2	Air	1.8×10^{-5}
O_2	Water	100×10^{-11}
Blood hemoglobin	Water	6.9×10^{-11}
Glycine (an amino acid)	Water	95×10^{-11}
DNA (mass $6 \times 10^6 \mathrm{u}$)	Water	0.13×10^{-11}

Rate of diffusion in mol/s

 $J = DA \frac{1}{D}$ Diffusion

factor

 $\begin{array}{c|c}
\Delta x \\
\uparrow \\
\text{Concentration} \\
\text{gradient in mol/m}^4
\end{array}$

Diffusion gets faster when temperature increases!

Wrap up: learning objectives

Explain molecular kinetic theory for ideal gases, including, average kinetic energy, average speed and speed distribution. (Maxwell distribution)

$$\overline{K} = \frac{3}{2}kT$$
 $\overline{v} = \sqrt{\frac{8kT}{\pi m}}$ $v_p = \sqrt{\frac{2kT}{m}}$ $v_{rms} = \sqrt{\frac{3kT}{m}}$

Explain the real gas behaviors, $P = \frac{nRT}{V - nb} - \frac{a}{(V/n)^2}$ using van der Waals theory

$$P = \frac{nRT}{V - nb} - \frac{a}{(V/n)^2}$$

Thank you for your attention!

Feijia Yin

f.yin@tudelft.nl

