```
clase09.py
```

```
Programming 'Language' = {
 Introducción = [Python,
 MicroPython]
```

```
Clase 09 = {
 Presentación = [Les
 damos la bienvenida al
 curso
```


ESP32 DevKit V1 Pinout {


```
Wi-Fi {
```

Wi-Fi (Wireless Fidelity) es una tecnología de comunicación inalámbrica que permite la conexión de dispositivos electrónicos a una red de datos, como Internet, sin necesidad de cables físicos. Utiliza ondas de radio para transmitir y recibir datos entre dispositivos, como computadoras, teléfonos inteligentes, tabletas, y otros dispositivos habilitados para Wi-Fi, y un punto de acceso o router. Opera en bandas de frecuencia de 2.4 GHz y 5 GHz.

La banda de **2.4 GHz** ocupa el espectro desde **2.401 Ghz** hasta **2.485 GHz**. Cada canal tiene un ancho de 22 MHz. Es por ello que solo podremos usar solamente 3 canales de 20 MHz sin solaparse o 1 solo de 40 MHz.

La banda de **5 GHz** ocupa el espectro desde **5.180 GHz** hasta los **5.825 GHz**. Cada canal puede tener 20, 40, 80 y 160 MHz de ancho de banda. Soporta por ende 25 canales de 20 MHz, 12 canales de 40 MHz, 6 canales de 80 MHz y 2 canales de 160 MHz. Esta variedad nos permite descongestionar el espectro por lo que logramos conexiones mas estables.

```
Wi-Fi {
     # Algo muy importante que tiene Wi-Fi es que tiene estándares bien
     definidos que van a permitir una mayor compatibilidad entre dispositivos,
     como así también protocolos de seguridad establecidos para evitar que la
     información pueda ser interceptada fácilmente. Ejemplos de protocolos de
     seguridad son WEP, WPA y WPA2.
     # Dependiendo de la potencia del transmisor y receptor podemos obtener
     distancias de hasta 100 metros sin obstáculos.
     # Actualmente esta se plantea su reemplazo por Li-Fi pero con poco
     consenso internacional.
```



```
Red hogareña de Wi-Fi {

3
4

# Un diagrama genérico de
```

Un diagrama genérico de una conexión de red wifi puede verse de la siguiente manera.

Generalmente, nuestro ISP nos provee de Access Point y Modem en un solo equipo que solemos llamar habitualmente "Router".


```
Red hogareña de Wi-Fi {
```

Para los ejemplos, utilizaremos un diagrama simplificado.

Vemos aquí un equipo portátil que se conecta a un Access Point (AP), el mismo se conecta al modem que es el que se vinculara con los servidores de nuestro ISP para entregarnos acceso a internet.

ESP32 en modo STA {

El primer modo de funcionamiento del modulo Wi-Fi del ESP32 es el **modo station** o estación (modo **STA**).

El modo Estación (STA) es uno de los modos de funcionamiento más utilizados del ESP32. En este modo, el ESP32 se conecta a una red Wi-Fi existente como un cliente, similar a cómo lo haría un teléfono inteligente o una computadora portátil. Este modo es fundamental para aplicaciones que requieren acceso a Internet o comunicación dentro de una red local.


```
ESP32 en modo STA {
```

```
# El modo Estación permite que el ESP32 se conecte a una red Wi-Fi existente, lo que le proporciona acceso a recursos y servicios disponibles en esa red, como ser acceso a internet, comunicación en la red local con otros dispositivos, actualización del firmware OTA (Over the Air), etc.
```

Casos de uso para este modo pueden ser monitoreo remoto de sensores, automatización de tareas, automatización del hogar, dispositivos portátiles con conexión a internet, control industrial, etc.

```
# Permite conectarnos bajo diferentes protocolos de seguridad como WEP, WPA, WPA2, etc.
```


ESP32 en modo AP {

El segundo modo de funcionamiento del modulo Wi-Fi del ESP32 es el **modo access point** o punto de acceso (modo **AP**).

En el modo Punto de Acceso, el ESP32 crea su propia red Wi-Fi a la que otros dispositivos pueden conectarse. Este modo es útil para crear redes locales temporales o para configurar el ESP32 sin necesidad de una red Wi-Fi existente.

ESP32 en modo AP {

```
3
4
5
6
7
8
9
10
```

El modo Punto de Acceso (AP) es una de las funcionalidades más poderosas del ESP32. En este modo, el ESP32 actúa como si fuera un router Wi-Fi, creando su propia red inalámbrica a la que otros dispositivos pueden conectarse. Esto es especialmente útil en situaciones donde no hay una red Wi-Fi existente disponible o cuando se necesita una red local temporal para la configuración o comunicación entre dispositivos.

Este modo es especialmente útil para poder configurar por primera vez nuestro proyecto para que se adapte a las condiciones de trabajo (por ejemplo, instalación inicial del equipo) generando una red Wi-Fi temporal.

También sirve si necesitamos conectar dos dispositivos mediante una red de forma temporal de manera rápida o si necesitamos crear un red rápida para poder hacer pruebas y practicas.

ESP32 en modo dual STA+AP {

El tercer modo de funcionamiento del modulo Wi-Fi del ESP32 es el modo dual (modo STA+AP).

En el modo Dual, el ESP32 puede funcionar simultáneamente como estación y como punto de acceso. Esto permite que el ESP32 esté conectado a una red Wi-Fi existente mientras crea su propia red Wi-Fi.

ESP32 en modo dual STA+AP {

3

5

ง 7

8

9

.0

- -I つ

13

14

El modo Dual permite que el ESP32 actúe como un puente entre una red Wi-Fi existente y una red local creada por el propio ESP32. Bajo ciertas condiciones esto puede servir para extender la conexión de internet (no disponible aun en Micropython) o como puente entre redes.

Si bien el firmware todavía no tiene soporte para hacer NAT, podríamos hacer un manejo manual de paquetes entre los que llegan y los que salen, y si bien esto funcionaria, la performance seria muy mala, pero lo importante es que conceptualmente es posible hacerlo con mucho trabajo.

La función principal de este modo es poder brindar una red Wi-Fi para que todos los dispositivos se conectan a una red única mientras que el ESP32 mantiene conexión a internet por si necesita recuperar información o datos (como sincronización de fechas y horas por NTP).

Comparativa {

2	
3	
4	
5	
6	
8	
9	
1	0
	1
	2
	3
	4

Característica	Modo Estación (STA)	Modo Punto de Acceso (AP)	Modo Dual (STA + AP)
Descripción	Conecta el ESP32 a una red Wi-Fi existente	Crea una red Wi-Fi propia	Conecta a una red Wi-Fi y crea una red propia
Conectividad	Cliente de una red Wi-Fi	Punto de acceso para otros dispositivos	Cliente de una red Wi-Fi y punto de acceso
Acceso a Internet	Sí, a través de la red Wi-Fi conectada	No, a menos que esté conectado a otra red	Sí, a través de la red Wi-Fi conectada
Configuración Inicial	Necesita red Wi-Fi existente	No necesita red Wi-Fi existente	Necesita red Wi-Fi existente
Número de Dispositivos	Uno (el ESP32)	Múltiples dispositivos pueden conectarse	Múltiples dispositivos pueden conectarse
Rango de Cobertura	Depende del router Wi-Fi	Depende de la ubicación del ESP32	Depende de la ubicación del ESP32
Configuración de IP	Asignada por el router	Asignada por el ESP32	Asignada por el ESP32
Aplicaciones comunes	Acceso a Internet, comunicación en red local	Configuración de dispositivos, redes locales	Repetidor Wi-Fi, puente de red, configuración
Ventajas	Acceso a recursos de red e Internet	Fácil configuración y control local	Conectividad versátil y extendida
Desventajas	Necesita red Wi-Fi existente	Sin acceso a Internet	Complejidad en la configuración


```
Ejemplo 1 - Escaner de redes {
    import network
    # Inicializar la interfaz de estación
    estacion = network.WLAN(network.STA IF)
    # Activar la interfaz de estación
    estacion.active(True)
    # Escanear las redes disponibles
    redes = estacion.scan()
    print(redes)
    # Desactivar la interfaz de estación
    estacion.active(False)
```



```
SSID {
                         SSTD: MiRedWiFi
                         BSSID: ac:cf:23:61:b7:95
                        Channel: 6
                         RSSI: -45
                         Authentication: WPA2-PSK
     # El SSID (Service Set Identifier) es el nombre de una red Wi-Fi. Es un
     identificador único que permite a los dispositivos distinguir entre
     diferentes redes Wi-Fi disponibles. El SSID es una cadena de texto que
     puede contener hasta 32 caracteres y es configurado por el administrador de
     la red. Cuando un dispositivo escanea las redes Wi-Fi disponibles, el SSID
     es uno de los principales identificadores que se muestran para que el
     usuario pueda seleccionar la red a la que desea conectarse.
```

```
BSSID {
                        SSID: MiRedWiFi
                        BSSID: ac:cf:23:61:b7:95
                        Channel: 6
                        RSSI: -45
                        Authentication: WPA2-PSK
     # El BSSID (Basic Service Set Identifier) es un identificador único que se
     asigna a cada punto de acceso (AP) en una red Wi-Fi. Es esencialmente la
     dirección MAC (Media Access Control) del punto de acceso y se utiliza para
     identificar de manera única cada AP en una red Wi-Fi.
     # El BSSID es una dirección MAC de 48 bits (6 bytes) que identifica de
     manera única un punto de acceso en una red Wi-Fi. Cada punto de acceso
     tiene un BSSID único, lo que permite a los dispositivos diferenciar entre
     múltiples puntos de acceso, incluso si tienen el mismo SSID. El BSSID tiene
     un formato de esta forma 00:1A:2B:3C:4D:5E
```



```
Canal {
                        SSID: MiRedWiFi
                        BSSID: ac:cf:23:61:b7:95
                        Channel: 6
                        RSSI: -45
                        Authentication: WPA2-PSK
     # El "Channel" (canal) en el contexto de redes Wi-Fi se refiere a la
     frecuencia específica en la que se transmite la señal Wi-Fi. Los canales
     son divisiones del espectro de frecuencia que permiten que múltiples redes
     Wi-Fi operen en la misma área sin interferir entre sí, siempre y cuando
     estén en canales diferentes o suficientemente separados.
     # Este dato nos sirve si vamos a armar una red Wi-Fi para poder ver cuantas
     otras redes hay en un canal determinado y de esta manera poder elegir algún
     canal libre para evitar interferencias o solapamientos, o en su defecto,
     elegir los canales en donde las otras redes tengan menor potencia de señal.
```



```
RSSI {
                        SSID: MiRedWiFi
                        BSSID: ac:cf:23:61:b7:95
                        Channel: 6
                        RSSI: -45
                        Authentication: WPA2-PSK
    # El RSSI (Received Signal Strength Indicator) es una medida de la potencia
    de la señal recibida por un dispositivo de red inalámbrica, como el ESP32,
    desde un punto de acceso Wi-Fi. El RSSI se expresa en decibelios-milivatios
     (dBm) y es un indicador clave de la calidad de la conexión inalámbrica.
    # Por ejemplo, un RSSI de -30 dBm es una señal muy fuerte, mientras que un
     RSSI de -90 dBm es una señal muy débil. En la practica se considera una
     señal de -60dBm a -70dBm como débil, de -70dBm a - 80dBm como muy débil y
    menor a -80dBm directamente se toma como que no existe conexión.
```



```
Authentication 

SSID: MiRedWiFi
BSSID: ac:cf:23:61:b7:95
Channel: 6
RSSI: -45
Authentication: WPA2-PSK

# La authentication se refiere al proceso de verificar la identidad de un dispositivo que intenta conectarse a la red. Los modos de autenticación determinan cómo se realiza esta verificación y qué nivel de seguridad se aplica a la conexión. Para WPA y WPA2 los ESP soportan TKIP y AES.
```

```
# 1 = WEP
# 2 = WPA-PSK
# 3 = WPA2-PSK
# 4 = WPA/WPA2-PSK
```

0 = Open


```
Ejemplo 3 - Conectarse {
    import network, time
    ssid = 'Nombre de Wi-Fi'
    password = 'xxxxx'
    estacion = network.WLAN(network.STA IF)
    estacion.active(True)
    estacion.connect(ssid, password)
    print('Conectando ...', end="")
    while not estacion.isconnected():
        print('.', end="")
        time.sleep(0.1)
    print('Conectado')
```


Ejemplo 10 - Respuesta DHT {

```
s = socket.socket(socket.AF INET, socket.SOCK STREAM)
s.bind(('0.0.0.0', 80))
s.listen(5)
while True:
    cliente, ip cliente = s.accept()
    print('Cliente conectado desde', ip cliente)
    sensor.measure()
    temperatura = sensor.temperature()
    humedad = sensor.humidity()
    response = f"""\
<html>
<body>
    <h1>## Aquí completar con lo que quiero mostrar ##</h1>
</body>
</html>
    cliente.send(response)
    cliente.close()
```

```
ESP32
DHT22
           .....
```



```
Aprender a programar
es aprender a pensar.
{ Steve Jobs; }
```



```
{ Nos vemos en la
proxima clase }
```

