Electric Motor vs. Generator

Applying a time-varying voltage (current) to the loop, which (inside of a magnetic field) causes the loop to experience a torque, which (if the loop is attached to an axle) causes the axle to rotate.

Electric Motor vs. Generator

Applying a torque to the axle, which (if the loop is sitting in a constant B field) causes the loop to experience a time-varying flux, which (if the loop is connected to a circuit) provides $V_{\rm emf}$ to the attached circuit.

Example: Induced EMF/Current

The wire loop in the figure is inside a uniform magnetic flux density of 70x mWb/m².

Side AB is fixed along the z axis.

Side DC of the loop rotates around the z axis at a frequency of 60 Hz and the loop lies in the y-z plane at time t = 0.

Determine the magnitude of the current induced in the loop at t = 3 ms.

$$V_{\text{emf}} = -N \frac{\partial}{\partial t} \Psi$$
$$\Psi = \iint_{S} \mathbf{B} \cdot d\mathbf{S}$$

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 6(b)

Ampere's Law and Displacement Current

Displacement Current

convection current

-- does not require a conductor (free charge)

$$\mathbf{J} = \rho_{v} \cdot \mathbf{u}$$

u is the velocity of a collection of charges

conduction current

-- requires a conductor for charge to be carried

displacement current, I_d (in Amps)

- -- not a physical flow of charge across a surface
- -- a term in Ampere's Law that establishes continuity across all of Maxwell's Equations for *time-varying* fields

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\mathbf{J}_d = \frac{\partial \mathbf{D}}{\partial t}$$

Displacement Current: Capacitor

(dotted lines indicate Amperian contours)

$$I_d = \frac{\partial}{\partial t} \iint_S \mathbf{D} \cdot d\mathbf{S}$$

(displacement current)

$$\oint_{L} \mathbf{H} \cdot d\mathbf{l} = I$$

$$\oint_{I} \mathbf{H} \cdot d\mathbf{l} = I$$

(conduction current)

Example: I_d , Capacitor

A parallel-plate capacitor with area of 5 cm² and separation 3 mm has a voltage $V(t) = 5\sin 10^6 t$ V applied to its plates.

Calculate the displacement current from the top plate to the bottom plate.

Assume $\varepsilon = 2\varepsilon_0$ inside the plates.

$$\mathbf{J}_d = \frac{\partial \mathbf{D}}{\partial t} \qquad I = \iint_S \mathbf{J} \cdot d\mathbf{S}$$

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 6(c)

Intro to Time-Varying Fields and Propagating Waves

Maxwell's Equations: Full

Lorentz force equation:

$$\mathbf{F} = Q(\mathbf{E} + \mathbf{u} \times \mathbf{B})$$

$$\nabla \cdot \mathbf{D} = \rho_{v} \qquad \Rightarrow \qquad \qquad \oiint_{S} \mathbf{D} \cdot d\mathbf{S} = Q$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad \Rightarrow \quad \oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \iint_{S} \mathbf{B} \cdot d\mathbf{S}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \Rightarrow \qquad \bigoplus_{\mathbf{S}} \mathbf{B} \cdot d\mathbf{S} = 0$$

$$\iint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$$

Ampere's Law

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \quad \Rightarrow \quad \oint_{L} \mathbf{H} \cdot d\mathbf{l} = I + \frac{\partial}{\partial t} \iint_{S} \mathbf{D} \cdot d\mathbf{S}$$

constitutive parameters:

$$\mathbf{D} = \varepsilon \mathbf{E}$$

$$\mathbf{B} = \mu \mathbf{H}$$

$$J = \sigma E$$

boundary conditions:

$$E_{1t} = E_{2t}$$

$$D_{1n}-D_{2n}=\rho_s$$

$$B_{1n} = B_{2n}$$

$$H_{1t} - H_{2t} = J_s$$

Intro to Propagating Waves

Assuming free space $(\mu = \mu_0, \varepsilon = \varepsilon_0, \sigma = 0)...$

$$\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mu_0 \mathbf{H} \qquad \nabla \times \mathbf{H} = \frac{\partial}{\partial t} \varepsilon_0 \mathbf{E}$$

Substituting Ampere's Law into Faraday's Law...

$$\nabla \times (\nabla \times \mathbf{E}) = \nabla \times \left(-\frac{\partial}{\partial t} \mu_0 \mathbf{H} \right) = -\mu \frac{\partial}{\partial t} (\nabla \times \mathbf{H}) = -\mu \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \varepsilon_0 \mathbf{E} \right)$$

Rearranging onto one side of the equation... $\nabla \times (\nabla \times \mathbf{E}) + \mu_0 \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \varepsilon_0 \mathbf{E} \right) = 0$

Rewriting the double-curl as the Laplacian...
$$\nabla^2 \mathbf{E} + \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \mathbf{E} = 0$$

Intro to Propagating Waves

Rewriting the double-curl as the Laplacian...

$$\nabla^2 \mathbf{E} + \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \mathbf{E} = 0$$

Let **E** be a function of one dimension (z)...

$$\frac{\partial^2}{\partial z^2} \mathbf{E} + \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \mathbf{E} = 0$$

The solution of this differential equation is...

$$\mathbf{E}(z,t) = E_0 \cos(\omega t - kz) \,\hat{\mathbf{x}}$$

$$\frac{dz}{dt} = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = c$$

...which is the electric field vector associated with a wave that is propagating in the z direction, with velocity = speed of light

Intro to Propagating Waves

$$\lambda = \frac{2\pi}{k}$$

$$\mathbf{E}(z,t) = E_0 \cos(\omega t - kz) \,\hat{\mathbf{x}}$$

$$\frac{dz}{dt} = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = c$$

...which is the electric field vector associated with a wave that is propagating in the z direction, with velocity = speed of light

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 6(x)

Additional Examples from Chapters 5 and 6

Example: Magnetic Field, Toroid

Determine the magnetic flux density inside and outside of this toroid of magnetic permeability μ , inner radius a, outer radius b, carrying current I, with N turns.

Example: Inductance, Toroid

Determine the inductance of this toroid. The core has a permeability μ and a rectangular cross section of height h. The coil is wrapped around the toroid with N turns.

$$a < r < b : \mathbf{B} = -\frac{\mu NI}{2\pi r} \hat{\boldsymbol{\phi}}$$

$$L = \frac{\lambda}{I}; \quad \lambda = N\Psi$$
$$\Psi = \iint_{S} \mathbf{B} \cdot d\mathbf{S}$$

Magnetic Fields & Forces Application

Example: Induced EMF/Current

The switch in the bottom loop of the figure is closed at t = 0 and opened at a later time $t = t_1$. Determine the direction of the current I in the top loop at these two times.

