Project proposal

Suitable location prediction for solar farms using NN

Motivation

Evolution towards renewable energy:

- Global production of solar increased
- Easiest way to increase more is solar farms

Manual finding of suitable locations:

- Slow and costly
- Not always a suitable location.

Data source: Energy Institute - Statistical Review of World Energy (2024)

Our World in Data.org/renewable-energy | CC BY
Note: 'Other renewables' refers to renewable sources including geothermal, biomass, waste, wave and tidal. Traditional biomass is not

Solar farms location - influences

Data - Land suitability

Copernicus Browser:

- Visualisation of sentinel satellites
- allows to retrieve this imagery

- Satellite image via Querying:
 - Via API
 - Via Request

Data - Grid Connectivity

OpenInfraMap:

- Visualization of electronic infrastructure
- Data collected from OpenStreetMaps

- distance to closest powergrid
 - Querying through the overpass API

Data - Solar irradiance

Solcast:

- solar API:
 - Weather and Irradiance

- Global horizontal irradiance (GHI)
 - Irradiance over a horizontal surface

Data - Weather

Openweathermap:

- A weather API

- temperatures
- cloudiness
- rain
- fog

Method

Dataset

Semantic segmentation of aerial imagery

SEN12MS

open-earth-map

Classes and Annotations

We provide annotations with eight classes: bareland, rangeland, developed space, road, tree, water, agriculture land, and building. Their color and proportion of pixels are summarized below. All the labeling was done manually, and it took 2.5 hours per image on average.

Color (HEX)	Class	%
800000	Bareland	1.5
00FF24	Rangeland	22.9
949494	Developed space	16.1
FFFFFF	Road	6.7
226126	Tree	20.2
0045FF	Water	3.3
4BB549	Agriculture land	13.7
DE1F07	Building	15.6

ction, Change detection, Time-series analysis

R45 views

A benchmark lake ice manitoring dataset of terrestrial webcam

This dataset consists of 1,759,830 multi-spectral image patches the first dataset that provides black-box adversarial samples in

Multiple locations

OPENEARTHMAP

((+)) Multispectral Optical

gerial and satellite images with manu-

Multiple locations

Geo-/bio-physical parameter estimation, Semantic segmentation, Time-series analysis, Other

SDGs, including tasks related to economic development, gariculture, health, education, wat...

Evaluation

- comparison with already existing models
- qualitative evaluation
- zero suitability cases (like antarctica or jungle)

Jens Houbregs, Mirko Calvi, Pietro Benecchi

State of the art

Solar power prediction based on Artificial Neural Network guided by feature selection for Large-scale Solar Photovoltaic Plant

Short-mid-term solar power prediction by using artificial neural networks

Spatial modelling the location choice of large-scale solar photovoltaic power plants: Application of interpretable machine learning techniques and the national inventory