SmoothGrad: removing noise by adding noise

Authors: Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, Martin Wattenberg

Presented by: Vignav Ramesh, Zelin (James) Li, Paul Liu

Motivation

- We want post-hoc explanations of image classifiers
- Solution: Sensitivity maps (a.k.a. saliency maps, pixel attribution maps)
 - Visual interpretation of gradient of class activation function w.r.t input image
 - Structured as grayscale image w/ dimension same as input image
 - Brightness of pixel \(\infty \) importance to classification decision

Image

Sensitivity map M_c

Background: Gradients as Sensitivity Maps

- N: network that classifies images into one class from set C
- Given input image x, N typically computes class activation function S_c for each $c \in C$
- Final classification $class(x) = \operatorname{argmax}_{c \in C} S_c(x)$
- Sensitivity map given by

$$M_c(x) = \partial S_c(x)/\partial x$$

■ Intuition: M_c represents how much difference a tiny change in each pixel of x would make to the classification score for class c

Related Work: Perturbation Methods

- Key idea: generate a perturbed dataset to fit an explainable model
 - O LIME
 - o KernelSHAP

Related Work: Backpropagation

Yellow = inputs

- **Key idea:** backpropagate importance through the network
 - Vanilla gradients
 - Layerwise relevance propagation (Bach et al.)
 - Integrated gradients (Sundararajan et al.)
 - DeepLIFT (Shrikumar et al.)
 - Deconvolution (Zeiler & Fergus, 2014)
 - Guided Backpropagation (Springenberg et al, 2014)

Limitations of Sensitivity Maps

Visually noisy

 Often highlight pixels that-to a human eye-seem randomly selected

 a priori, we cannot know if this noise reflects an underlying truth about how networks perform classification, or is due to more

superficial fa

The Smoothis soon!

n - we'll get to

Theory Behind SmoothGrad: Noisy Gradients

- Key idea behind SmoothGrad: noisy maps are due to noisy gradients
- Derivative of S_c may fluctuate sharply at small scales
 - Apparent noise one sees in a sensitivity map may be due to essentially meaningless local variations in partial derivatives

Noisy Gradients (cont'd)

■ Given these rapid fluctuations, gradient of S_c at any given point will be less meaningful than a local average of gradient values.

SmoothGrad: Intuition

Recall that noisy maps are due to noisy gradients

Simple solution:

- take an image of interest
- sample similar images by adding Gaussian noise to the image
- take the average of the resulting sensitivity maps for each sampled image
 - This <u>smoothes</u> the gradient

SmoothGrad: Algorithm

- 1. Take random samples in a neighborhood of an input x with added noise
- 2. Average the resul $\hat{M}_c(x) = \frac{1}{n} \sum_1^n M_c(x + \mathcal{N}(0, \sigma^2))$

n is the number of samples, and $N(0, \sigma^2)$ represents Gaussian noise with standard deviation σ .

Experimental Setup

- Performed SmoothGrad on visualizations of two neural networks:
 - Inception v3 model by Google that was trained on the ILSVRC-2013 dataset
 - Convolutional MNIST model based on the TensorFlow tutorial

Choosing Hyperparameters (o: std. dev.)

$$\hat{M_c}(x) = rac{1}{n} \sum_1^n M_c(x + \mathcal{N}(0, \sigma^2))$$

 σ : the standard deviation of the Gaussian noise

Figure 3. Effect of noise level (columns) on our method for 5 images of the gazelle class in ImageNet (rows). Each sensitivity map is obtained by applying Gaussian noise $\mathcal{N}(0, \sigma^2)$ to the input pixels for 50 samples, and averaging them. The noise level corresponds to $\sigma/(x_{max}-x_{min})$.

Choosing Hyperparameters (n: sample size)

$$\hat{M}_c(x) = \frac{1}{n} \sum_{1}^{n} M_c(x + \mathcal{N}(0, \sigma^2))$$

Figure 4. Effect of sample size on the estimated gradient for inception. 10% noise was applied to each image.

Qualitative Results: Visualization Techniques

- Absolute Value of Gradients
 - depends on the characteristics of dataset

Qualitative Results: Visualization Techniques

- Absolute Value of Gradients
 - depends on the characteristics of dataset
- Capping outlying values
 - presence of few pixels that have much higher gradients than the average
- Muffiphying maps with images
 - produce simpler & sharper images (Shrikumar et al., 2017;
 Sundararajan et al., 2017)
 - O Downside: Pixels with values of 0 will never show up on the sensitivity map.
 - Upside: when viewing the importance of the feature as contribution to the image

Qualitative Results: Visual Coherence

Definition (Visual Coherence): Highlights are only on the object of interest, not the background

Comparison with three gradient-based methods

- Vanilla gradient
- Integrated Gradients
- Guided BackProp

Figure 5. Qualitative evaluation of different methods. First three (last three) rows show examples where applying SMOOTHGRAD had high (low) impact on the quality of sensitivity map.

Qualitative Results: Discriminativity

Definition

(Discriminativity): the ability to explain / distinguish separate objects without confusion

Figure 6. Discriminativity of different methods. For each image, we visualize the difference $scale(\partial y_1/\partial x) - scale(\partial y_2/\partial x)$ where y_1 and y_2 are the logits for the first and the second class (i.e., cat or dog) and scale() normalizes the gradient values to be between [0,1]. The values are plotted using a diverging color map $[-1,0,1] \mapsto [blue, gray, red]$. Each method is represented in columns.

Qualitative Results: Discriminativity

Open Problem

Which properties affect the discriminativity of a given methods?

- Why did GBP show the worst performance?

Figure 6. Discriminativity of different methods. For each image, we visualize the difference $scale(\partial y_1/\partial x) - scale(\partial y_2/\partial x)$ where y_1 and y_2 are the logits for the first and the second class (i.e., cat or dog) and scale() normalizes the gradient values to be between [0, 1]. The values are plotted using a diverging color map $[-1, 0, 1] \mapsto [blue, gray, red]$. Each method is represented in columns.

Combining with Other Methods

The same smoothing procedure can be used to augment any gradient-based method.

Limitations / Discussion

- Completely qualitative results, can we get quantitative metrics?
- Noisy sensitivity maps are due to noisy gradients
 - Is this true?
 - <u>Future work</u>: look for further evidence and theoretical arguments
- Does SmoothGrad generalize to other networks & tasks?
- How do we tradeoff between making picture pretty and being faithful to the model? Do you think SmoothGrad handled this tradeoff well?

Thank you!

Questions?