Segundo parcial - 06/06/2023

Nombre y apellido:

Carrera: LCC / LA / LF / LM / PF / PM / LMA

No se permite el uso de celular, calculadora, o similar, durante la resolución del parcial.

1. (30 pts.) Sean W_1 y W_2 los subespacios de \mathbb{R}^5 definidos por:

$$W_1 = \{(x, y, z, u, v) \in \mathbb{R}^5 : u + v = 0, x + y + z = 0\},\$$

 $W_2 = \langle (1, -1, 1, -1, 1), (0, 1, 0, 0, 0) \rangle.$

- (a) Dar una base del subespacio $W_1 \cap W_2$ y calcular su dimensión.
- (b) Dar una base del subespacio $W_1 + W_2$ y calcular su dimensión.
- (c) Decidir si el vector (1, 1, -2, 1, 1) pertenece a $W_1 + W_2$.
- 2. (30 pts.) Sea $\mathcal{B} = \{(1,1,0), (0,0,1), (1,0,2)\} \subseteq \mathbb{R}^3$.
 - (a) Hallar la matriz de cambio de base de la base ordenada $\mathcal{B}' = \{(0,0,1), (0,1,0), (1,0,0)\}$ a la base ordenada \mathcal{B} .
 - (b) Hallar las coordenadas de un vector $(x, y, z) \in \mathbb{R}^3$ en la base ordenada \mathcal{B} .
- 3. (25 pts.) Sea $T:\mathbb{R}^3 \to \mathbb{R}^2$ la transformación lineal definida por

$$T(x, y, z) = (x - y - 2z, -x + y + 2z).$$

- (a) Dar una base y una descripción implícita del núcleo de T.
- (b) Dar una base y una descripción implícita de la imagen de T.
- (c) Hallar la matriz de T con respecto a las bases ordenadas \mathcal{C} y \mathcal{B}' de \mathbb{R}^3 y \mathbb{R}^2 , respectivamente, donde

$$\mathcal{C} = \{(1,0,0), (0,1,0), (0,0,1)\}, \qquad \qquad \mathcal{B}' = \{(0,1), (1,0)\}.$$

- 4. (15 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar en cada caso la respuesta.
 - (a) El conjunto $\{(1,0,-1),(-i,0,i)\}$ se extiende a una base de \mathbb{C}^3 .
 - (b) Si W_1 y W_2 son subespacios de $F^{2\times 2}$ tales que dim $W_1 = \dim W_2 = 3$, entonces $W_1 \cap W_2 \neq \{0\}$.
 - (c) Existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,-1)=(2,-1) y T(1,0,0)=(1,1).