CANONICAL MODELS FOR THE FORWARD AND BACKWARD ITERATION OF HOLOMORPHIC MAPS

LEANDRO AROSIO

ABSTRACT. We prove the existence and the essential uniqueness of canonical models for the forward (resp. backward) iteration of a holomorphic self-map f of a cocompact Kobayashi hyperbolic complex manifold, such as the ball \mathbb{B}^q or the polydisc Δ^q . This is done performing a time-dependent conjugacy of the dynamical system (f^n) , obtaining in this way a non-autonomous dynamical system admitting a relatively compact forward (resp. backward) orbit, and then proving the existence of a natural complex structure on a suitable quotient of the direct limit (resp. subset of the inverse limit). As a corollary we prove the existence of a holomorphic solution with values in the upper half-plane of the Valiron equation for a holomorphic self-map of the unit ball.

Contents

Int	troduction	1
Part	1. Forward iteration	7
1.	Preliminaries	7
2.	Non-autonomous iteration	8
3.	Autonomous iteration	12
4.	The unit ball	15
Part	2. Backward iteration	18
5.	Preliminaries	18
6.	Non-autonomous iteration	20
7.	Autonomous iteration	23
8.	The unit ball	25
References		27

Introduction

In order to study the forward or backward iteration of a holomorphic self-map $f: X \to X$ of a complex manifold, it is natural to search for a semi-conjugacy of f with some automorphism of a complex manifold. The first example of this approach is old as complex dynamics itself: if $\mathbb{D} \subset \mathbb{C}$

²⁰¹⁰ Mathematics Subject Classification. Primary 32H50; Secondary 37F99.

Key words and phrases. Canonical models; holomorphic iteration.

Supported by the ERC grant "HEVO - Holomorphic Evolution Equations" n. 277691.

is the unit disc and $f: \mathbb{D} \to \mathbb{D}$ is a holomorphic self-map such that f(0) = 0 and 0 < |f'(0)| < 1, then in 1884 Königs proved [22] that there exists a unique holomorphic mapping $h: \mathbb{D} \to \mathbb{C}$ solving the Schröder equation

$$h \circ f = f'(0)h$$
,

and satisfying h'(0) = 1. Clearly h gives a semi-conjugacy between f and the automorphism $z \mapsto f'(0)z$ of \mathbb{C} . Notice that $\bigcup_{n\geq 0} f'(0)^{-n}h(\mathbb{D}) = \mathbb{C}$.

We call semi-model for f a triple (Λ, h, φ) , where Λ is a complex manifold called the base space, $h: X \to \Lambda$ is a holomorphic mapping called the intertwining mapping and $\varphi: \Lambda \to \Lambda$ is an automorphism, such that the following diagram commutes:

$$\begin{array}{ccc}
X & \xrightarrow{f} & X \\
\downarrow h & & \downarrow h \\
\Lambda & \xrightarrow{\varphi} & \Lambda
\end{array}$$

and $\Lambda = \bigcup_{n\geq 0} \varphi^{-n}(h(X))$. A model for f is a semi-model (Λ, h, φ) such that the intertwining mapping h is univalent on an f-absorbing domain, that is, a domain A such that $f(A) \subset A$ and such that every orbit of f eventually lies in A.

There is a "dual" way of semi-conjugating f with an automorphism: we call pre-model for f a triple (Λ, h, φ) , where Λ is a complex manifold called the base space, $h \colon \Lambda \to X$ is a holomorphic mapping called the intertwining mapping and $\varphi \colon \Lambda \to \Lambda$ is an automorphism, such that the following diagram commutes:

$$\begin{array}{ccc}
\Lambda & \xrightarrow{\varphi} & \Lambda \\
\downarrow h & & \downarrow h \\
X & \xrightarrow{f} & X.
\end{array}$$

We refer to [4, 3, 2] for a brief history and recent developments in the theories of semi-models and pre-models. We recall that semi-models and pre-models, besides giving informations on the iteration of the self-map f, can also be fruitfully applied to the study of composition operators [7, 15, 21, 24] and of commuting self-maps [14, 8, 12].

We now need to recall some definitions and results for a holomorphic self-map f of the unit disc $\mathbb{D} \subset \mathbb{C}$. A point $\zeta \in \partial \mathbb{D}$ is a boundary regular fixed point if $\angle \lim_{z \to \zeta} f(z) = \zeta$, where $\angle \lim$ denotes the non-tangential limit, and if

$$\lambda := \liminf_{z \to \zeta} \frac{1 - |f(z)|}{1 - |z|} < +\infty.$$

The number $\lambda \in (0, +\infty)$ is called the dilation of f at ζ . The point ζ is repelling if $\lambda > 1$. The classical Denjoy–Wolff theorem states that if f admits no fixed point $z \in \mathbb{D}$, then there exists a boundary regular fixed point $p \in \partial \mathbb{D}$ with dilation $\lambda \leq 1$ such that (f^n) converges to the constant map p uniformly on compact subsets. The self-map f is called hyperbolic if $\lambda < 1$. We denote by $\mathbb{H} \subset \mathbb{C}$ the upper half-plane.

We are interested in the following examples of semi-models and pre-models in \mathbb{D} , given respectively by Valiron [29] and by Poggi-Corradini [25]. Both examples can be seen as the solution of a generalized Schröder equation at the boundary of the disc.

Theorem 0.1 (Valiron). Let $f: \mathbb{D} \to \mathbb{D}$ be a hyperbolic holomorphic self-map with dilation $\lambda < 1$ at its Denjoy-Wolff point. Then there exists a model $(\mathbb{H}, h, z \mapsto \frac{1}{\lambda}z)$ for f.

Theorem 0.2 (Poggi-Corradini). Let $f: \mathbb{D} \to \mathbb{D}$ be a holomorphic self-map and let ζ be a boundary repelling fixed point with dilation $\lambda > 1$. Then there exists a pre-model $(\mathbb{H}, h, z \mapsto \frac{1}{\lambda}z)$ for f.

A proof of the essential uniqueness of the intertwining mapping in Theorem 0.1 was given by Bracci-Poggi-Corradini [11], and Poggi-Corradini [25] proved that the intertwining mapping in Theorem 0.2 is essentially unique.

These two results were generalized to the unit ball $\mathbb{B}^q \subset \mathbb{C}^q$ (for a definition of dilation, hyperbolic self-maps, Denjoy-Wolff point and boundary repelling points in the ball, see Sections 4 and 8). Bracci-Gentili-Poggi-Corradini [10] studied the case of a hyperbolic holomorphic self-map $f \colon \mathbb{B}^q \to \mathbb{B}^q$ with dilation $\lambda < 1$ at its Denjoy-Wolff point $p \in \partial \mathbb{B}^q$, and, assuming some regularity at p, they proved the existence of a one-dimensional semi-model ($\mathbb{H}, h, z \mapsto \frac{1}{\lambda}z$) for f (for other results about semi-models for hyperbolic self-maps, see [9, 21, 6]).

Ostapyuk [23] studied the case of a holomorphic self-map $f: \mathbb{B}^q \to \mathbb{B}^q$ with a boundary repelling fixed point $\zeta \in \partial \mathbb{B}^q$ with dilation $\lambda > 1$, and, assuming that ζ is isolated from other boundary repelling fixed points with dilation less or equal than λ , she proved the existence of a one-dimensional pre-model $(\mathbb{H}, h, z \mapsto \frac{1}{\lambda}z)$ for f.

Theorems 0.1 and 0.2 were generalized respectively by Bracci and the author [4] and by the author [3] to the case of a univalent self-map $f: X \to X$ of a cocompact Kobayashi hyperbolic complex manifold (such as the unit ball \mathbb{B}^q or the unit polydisc Δ^q). The approach used is geometric, much in the spirit of the work of Cowen [13] for the forward iteration in the unit disc.

We first consider the forward iteration case. Let k denote the Kobayashi distance. Notice that if $(z_n := f^n(z_0))$ is a forward orbit, then for all fixed $m \ge 1$ the sequence $(k_X(z_n, z_{n+m}))_{n\ge 0}$ is non-increasing. The limit $s_m(z_0) := \lim_{n\to\infty} k_X(z_n, z_{n+m})$ is called the forward m-step at z_0 . The divergence rate of a self-map is a generalization introduced in [4] of the dilation at the Denjoy-Wolff point of a holomorphic self-map of \mathbb{B}^q .

Theorem 0.3 (A.–Bracci). Let X be Kobayashi hyperbolic and cocompact and let $f: X \to X$ be a univalent self-map. Then there exists an essentially unique model (Ω, σ, ψ) . Moreover, there exists a holomorphic retract Z of X, a surjective holomorphic submersion $r: \Omega \to Z$, and an automorphism $\tau: Z \to Z$ with divergence rate

$$c(\tau) = c(f) = \lim_{m \to \infty} \frac{s_m(x)}{m}, \quad x \in X,$$
(0.1)

such that $(Z, r \circ \sigma, \tau)$ is a semi-model for f, called a canonical Kobayashi hyperbolic semi-model. Moreover, the semi-model $(Z, r \circ \sigma, \tau)$ satisfies the following universal property. If (Λ, h, φ) is a semi-model for f such that Λ is Kobayashi hyperbolic, then there exists a surjective holomorphic mapping $\eta \colon Z \to \Lambda$ such that the following diagram commutes:

In particular, if $X=\mathbb{B}^q$ and f is hyperbolic with dilation $\lambda<1$ at its Denjoy–Wolff point, then Z is biholomorphic to a ball \mathbb{B}^k with $1\leq k\leq q$, and the automorphism τ is hyperbolic with dilation λ at its Denjoy-Wolf point. As a corollary Theorem 0.3 yields the existence of a semi-model $(\mathbb{H}, \vartheta, z\mapsto \frac{1}{\lambda}z)$ for f, hence $\vartheta\colon \mathbb{B}^q\to \mathbb{H}$ is a holomorphic solution of the Valiron equation

$$\vartheta \circ f = \frac{1}{\lambda}\vartheta. \tag{0.2}$$

Now we recall the backward iteration case. A backward orbit is a sequence $\beta := (y_n)$ in X such that $f(y_{n+1}) = y_n$ for all $n \ge 0$. Notice that if (y_n) is a backward orbit, then for all fixed $m \ge 1$ the sequence $(k_X(y_n, y_{n+m}))_{n\ge 0}$ is non-decreasing. The limit $\sigma_m(\beta) := \lim_{n\to\infty} k_X(y_n, y_{n+m})$ is called the backward m-step of β . A backward orbit β has bounded step if $\sigma_1(\beta) < +\infty$.

Theorem 0.4 (A.). Let X be Kobayashi hyperbolic and cocompact and let $f: X \to X$ be a univalent self-map. Let $\beta := (y_n)$ be a backward orbit for f with bounded step. Then there exists a holomorphic retract Z of X, an injective holomorphic immersion $\ell: Z \to X$, and an automorphism $\tau: Z \to Z$ with divergence rate

$$c(\tau) = \lim_{m \to \infty} \frac{\sigma_m(\beta)}{m},\tag{0.3}$$

such that (Z, ℓ, τ) is a pre-model for f, called a canonical pre-model associated with $[y_n]$. Moreover (Z, ℓ, τ) satisfies the following universal property. If (Λ, h, φ) is a pre-model for f such that for some (and hence for any) $w \in \Lambda$, the non-decreasing sequence $(k_X(h(\varphi^{-n}(w)), y_n))_{n\geq 0}$ is bounded, then there exists an injective holomorphic mapping $\eta \colon \Lambda \to Z$ such that the following

diagram commutes:

In particular, if $X = \mathbb{B}^q$ and the backward orbit (y_n) converges to a boundary repelling fixed point $\zeta \in \partial \mathbb{B}^q$ with dilation $\lambda > 1$, then Z is biholomorphic to a ball \mathbb{B}^k with $1 \le k \le q$, and the automorphism τ is hyperbolic with dilation $\mu \ge \lambda$ at its unique boundary repelling fixed point.

In this paper we generalize Theorems 0.3 and 0.4 to non-necessarily univalent holomorphic self-maps $f: X \to X$, and then we apply our results to the case of the unit ball \mathbb{B}^q . Our proofs underline the strong duality between the forward case and the backward case.

In the first part of the paper we prove Theorem 3.6, which generalizes Theorem 0.3. Let $(\Omega, \Lambda_n \colon X \to \Omega)$ be the direct limit of the sequence $(f^n \colon X \to X)$. Consider the equivalence relation \sim on Ω , where $[(x,n)], [(y,u)] \in \Omega$ are equivalent by \sim if and only if

$$k_X(f^{m-n}(x), f^{m-u}(y)) \stackrel{m \to \infty}{\longrightarrow} 0.$$

The bijective self-map $\psi \colon \Omega \to \Omega$ defined by $[(x,n)] \mapsto [(f(x),n)]$ satisfies $\psi \circ \Lambda_0 = \Lambda_0 \circ f$ and passes to the quotient inducing a bijective self-map $\hat{\psi} \colon \Omega/_{\sim} \to \Omega/_{\sim}$ satisfying

$$X \xrightarrow{f} X \qquad \qquad X$$

$$\hat{\Lambda}_0 \downarrow \qquad \qquad \downarrow \hat{\Lambda}_0$$

$$\Omega/_{\sim} \xrightarrow{\hat{\psi}} \Omega/_{\sim},$$

where $\hat{\Lambda}_0 := \pi_{\sim} \circ \Lambda_0$. A natural candidate for a canonical Kobayashi hyperbolic semi-model for f would be the triple $(\Omega/_{\sim}, \Lambda_0, \hat{\psi})$. Indeed, by the universal property of the direct limit, if (Λ, h, φ) is a semi-model for f such that Λ is Kobayashi hyperbolic, then there exists a mapping $\eta \colon \Omega/_{\sim} \to \Lambda$ which makes the following diagram commute:

We have to show that $\Omega/_{\sim}$ can be endowed with a suitable complex structure. If f is univalent, then it follows from the proof of Theorem 0.3 that the direct limit Ω admits a natural complex structure which passes to the quotient to a complex structure on $\Omega/_{\sim}$ (see [4]). The problem in the non-univalent case is that Ω may not admit a natural complex structure. Rather surprisingly, even if Ω does not, the quotient set $\Omega/_{\sim}$ can always be endowed with a complex structure which makes it biholomorphic to a holomorphic retract of X. We prove this by conjugating (f^n) to a non-autonomous holomorphic forward dynamical system $(\tilde{f}_{n,m}\colon X\to X)_{m\geq n\geq 0}$ which admits a relatively compact forward orbit. This orbit is used to prove the existence of a holomorphic

retract Z of X and a family of holomorphic mappings $(\alpha_n: X \to Z)$ satisfying

$$\alpha_m \circ \tilde{f}_{n,m} = \alpha_n, \quad \forall \ 0 \le n \le m.$$

By the universal property of the direct limit there exists a mapping $\Phi \colon \Omega \to Z$ which induces a bijection $\hat{\Phi} \colon \Omega/_{\sim} \to Z$, which pulls back the desired complex structure to $\Omega/_{\sim}$. Formula (0.1) for the divergence rate of τ is a consequence of the fact that the Kobayashi distance on $\Omega/_{\sim}$ admits a description in terms of the forward iteration of f.

In the second part of the paper, we consider the backward iteration of $f: X \to X$ and we prove Theorem 7.5, which generalizes Theorem 0.4. Let $(\Theta, V_n: \Theta \to X)$ be the inverse limit of the sequence $(f^n: X \to X)$. Let (y_n) be a backward orbit with bounded step and let $[y_n] \subset \Theta$ be the subset consisting of the backward orbits $(z_n) \in \Theta$ such that the non-decreasing sequence $(k_X(z_n, y_n))_{n \ge 0}$ is bounded. The bijective self-map $\psi: \Theta \to \Theta$ defined by $(z_0, z_1, z_2, \dots) \mapsto [(f(z_0), z_0, z_1, \dots)]$ satisfies $\psi([y_n]) = [y_n]$, and the following diagram commutes:

$$\begin{bmatrix} y_n \end{bmatrix} \xrightarrow{\psi|_{[y_n]}} \begin{bmatrix} y_n \end{bmatrix}$$

$$V_0 \downarrow \qquad \qquad \downarrow V_0$$

$$X \xrightarrow{f} X$$

A natural candidate for a canonical pre-model for f associated with $[y_n]$ would be the triple $([y_n], V_0, \psi|_{[y_n]})$. Indeed, by the universal property of the inverse limit, if (Λ, h, φ) is a pre-model for f such that for some (and hence for any) $w \in \Lambda$ the non-decreasing sequence $(k_X(h(\varphi^{-n}(w)), y_n))_{n\geq 0}$ is bounded, then there exists a mapping $\eta \colon \Lambda \to [y_n]$ which makes the following diagram commute:

We have to show that $[y_n]$ can be endowed with a suitable complex structure. If f is univalent, then $V_0: \Theta \to X$ is injective, and it follows from the proof of Theorem 0.4 that the image $V_0([y_n])$ is an injectively immersed complex submanifold of X which is biholomorphic to a holomorphic retract of X. In the non-univalent case the mapping $V_0: \Theta \to X$ is no longer injective, but the subset $[y_n]$ can however be endowed with a natural complex structure which makes it biholomorphic to a holomorphic retract of X. We prove this by conjugating (f^n) to a non-autonomous holomorphic backward dynamical system $(\tilde{f}_{n,m}\colon X\to X)_{m\geq n\geq 0}$ which admits a relatively compact backward orbit. This orbit is used to prove the existence of a holomorphic

retract Z of X and a family of holomorphic mappings $(\alpha_n: Z \to X)$ satisfying

$$\tilde{f}_{n,m} \circ \alpha_m = \alpha_n, \quad \forall \ 0 \le n \le m.$$

By the universal property of the inverse limit there exists an injective mapping $\Phi: Z \to \Theta$, which pushes forward the desired complex structure to its image $\Phi(Z) = [y_n]$. Formula (0.3) for the divergence rate of τ is a consequence of the fact that the Kobayashi distance of $[y_n]$ admits a description in terms of the backward iteration of f.

Part 1. Forward iteration

1. Preliminaries

Definition 1.1. Let X be a complex manifold. We call forward (non-autonomous) holomorphic dynamical system on X any family $(f_{n,m}: X \to X)_{m \ge n \ge 0}$ of holomorphic self-maps such that for all $m \ge u \ge n \ge 0$, we have

$$f_{u,m} \circ f_{n,u} = f_{n,m}$$
.

For all $n \ge 0$ we denote $f_{n,n+1}$ also by f_n . A forward holomorphic dynamical system $(f_{n,m}: X \to X)_{m \ge n \ge 0}$ is called *autonomous* if $f_n = f_0$ for all $n \ge 0$. Clearly in this case $f_{n,m} = f_0^{m-n}$.

Remark 1.2. Any family of holomorphic self-maps $(f_n: X \to X)_{n\geq 0}$ determines a forward holomorphic dynamical system $(f_{n,m}: X \to X)$ in the following way: for all $n \geq 0$, set $f_{n,n} = \operatorname{id}$, and for all $m > n \geq 0$, set

$$f_{n,m} = f_{m-1} \circ \cdots \circ f_n$$
.

Definition 1.3. Let X be a complex manifold, and let $(f_{n,m}: X \to X)$ be a forward holomorphic dynamical system. A *direct limit* for $(f_{n,m})$ is a pair (Ω, Λ_n) where Ω is a set and $(\Lambda_n: X \to \Omega)_{n\geq 0}$ is a family of mappings such that

$$\Lambda_m \circ f_{n,m} = \Lambda_n, \quad \forall \ m \ge n \ge 0,$$

satisfying the following universal property: if Q is a set and if $(g_n: X \to Q)$ is a family of mappings satisfying

$$g_m \circ f_{n,m} = g_n, \quad \forall \ m \ge n \ge 0,$$

then there exists a unique mapping $\Gamma \colon \Omega \to Q$ such that

$$g_n = \Gamma \circ \Lambda_n, \quad \forall \ n \ge 0.$$

Remark 1.4. The direct limit is essentially unique, in the following sense. Let (Ω, Λ_n) and (Q, g_n) be two direct limits for $(f_{n,m})$. Then there exists a bijective mapping $\Gamma \colon \Omega \to Q$ such that

$$g_n = \Gamma \circ \Lambda_n, \quad \forall \ n \geq 0.$$

Remark 1.5. A direct limit for $(f_{n,m})$ is easily constructed. We define an equivalence relation on the set $X \times \mathbb{N}$ in the following way: $(x,n) \simeq (y,m)$ if and only if there exists $u \ge \max\{n,m\}$ such that $f_{n,u}(x) = f_{m,u}(y)$. We denote the equivalence class of (x,n) by [(x,n)], and we set $\Omega := X \times \mathbb{N}/_{\simeq}$. We define a family of mappings $(\Lambda_n : X \to \Omega)_{n \ge 0}$ in the following way: for all $x \in X$ and $n \ge 0$, set $\Lambda_n(x) = [(x,n)]$. It is easy to see that (Ω, Λ_n) is a direct limit for $(f_{n,m})$.

Definition 1.6. In what follows we will need the following equivalence relation on Ω :

$$[(x,n)] \sim [(y,u)]$$
 iff $k_X(f_{n,m}(x), f_{u,m}(y)) \stackrel{m \to \infty}{\longrightarrow} 0.$

It is easy to see that this is well-defined. We denote by $\pi_{\sim} : \Omega \to \Omega/_{\sim}$ the projection to the quotient.

We now introduce a modified version of the direct limit for $(f_{n,m})$ which is more suited for our needs

Definition 1.7. Let X be a complex manifold and let $(f_{n,m}: X \to X)$ be a forward holomorphic dynamical system. We call canonical Kobayashi hyperbolic direct limit for $(f_{n,m})$ a pair (Z, α_n) where Z is a Kobayashi hyperbolic complex manifold and $(\alpha_n: X \to Z)_{n \ge 0}$ is a family of holomorphic mappings such that

$$\alpha_m \circ f_{n,m} = \alpha_n, \quad \forall \ m \ge n \ge 0,$$

which satisfies the following universal property: if Q is a Kobayashi hyperbolic complex manifold and if $(g_n: X \to Q)$ is a family of holomorphic mappings satisfying

$$g_m \circ f_{n,m} = g_n, \quad \forall \ m \ge n \ge 0,$$

then there exists a unique holomorphic mapping $\Gamma \colon Z \to Q$ such that

$$g_n = \Gamma \circ \alpha_n, \quad \forall \ n \ge 0.$$

Proposition 1.8. The canonical Kobayashi hyperbolic direct limit is essentially unique, in the following sense. Let (Z, α_n) and (Q, g_n) be two canonical Kobayashi hyperbolic direct limits for $(f_{n,m})$. Then there exists a biholomorphism $\Gamma: Z \to Q$ such that

$$g_n = \Gamma \circ \alpha_n, \quad \forall \ n \ge 0.$$

Proof. There exist holomorphic mappings $\Gamma: Z \to Q$ and $\Xi: Q \to Z$ such that for all $n \ge 0$, we have $g_n = \Gamma \circ \alpha_n$ and $\alpha_n = \Xi \circ g_n$. Thus the holomorphic mapping $\Xi \circ \Gamma: Z \to Z$ satisfies

$$\Xi \circ \Gamma \circ \alpha_n = \alpha_n, \quad \forall \ n \ge 0,$$

By the universal property of the canonical Kobayashi hyperbolic direct limit, this implies that $\Xi \circ \Gamma = \operatorname{id}_Z$. Similarly, we obtain $\Gamma \circ \Xi = \operatorname{id}_Q$.

2. Non-autonomous iteration

Let X be a taut complex manifold. Let $(f_{n,m}: X \to X)_{m \ge n \ge 0}$ be a forward holomorphic dynamical system, and assume that it admits a relatively compact forward orbit $(f_{0,m}(x_0))_{m>0}$.

Remark 2.1. Let $K \subset X$ be a compact subset such that $\{f_{0,m}(x_0)\}_{m\geq 0} \subset K$. It follows that, for all fixed $n\geq 0$,

$$f_{n,m}(K) \cap K \neq \emptyset \quad \forall m \ge n.$$
 (2.1)

The sequence of holomorphic self-maps $(f_{0,m}: X \to X)_{m\geq 0}$ is not compactly divergent by (2.1), and since X is taut, there exists a subsequence $(f_{0,m_{k_0}})_{k_0\geq 0}$ converging uniformly on compact subsets to a holomorphic self-map $\alpha_0\colon X\to X$. The sequence of holomorphic self-maps $(f_{1,m_{k_0}}\colon X\to X)_{k_0\geq 0}$ is not compactly divergent by (2.1), and since X is taut, there exists a subsequence $(f_{1,m_{k_1}})_{k_1\geq 0}$ converging to a holomorphic self-map $\alpha_1\colon X\to X$. Iterating

this procedure we obtain a family of holomorphic self-maps $(\alpha_n \colon X \to X)$ satisfying for all $m \ge n \ge 0$,

$$\alpha_m \circ f_{n,m} = \alpha_n. \tag{2.2}$$

Notice that for all $n \geq 0$ we have

$$\alpha_n(K) \cap K \neq \varnothing. \tag{2.3}$$

Let now $(m_k)_{k\geq 0}$ be a sequence of integers which for all $j\geq 0$ is eventually a subsequence of $(m_{k_j})_{k_j\geq 0}$ (such a sequence exists by a classical diagonal argument).

The sequence of holomorphic self-maps $(\alpha_{m_k}: X \to X)_{k \ge 0}$ is not compactly divergent by (2.3), and since X is taut, there exists a subsequence $(\alpha_{m_h})_{h \ge 0}$ converging uniformly on compact subsets to a holomorphic self-map $\alpha: X \to X$.

Proposition 2.2. The holomorphic self-map $\alpha \colon X \to X$ is a holomorphic retraction, and for all $n \geq 0$,

$$\alpha \circ \alpha_n = \alpha_n. \tag{2.4}$$

Proof. Fix $n \geq 0$ and $x \in X$. Then for all $h \geq 0$ such that $m_h \geq n$, we have

$$\alpha_n(x) = \alpha_{m_h}(f_{n,m_h}(x)) \stackrel{h \to \infty}{\longrightarrow} \alpha(\alpha_n(x)).$$

Thus we have, for all $h \geq 0$,

$$\alpha(\alpha_{m_h}(x)) = \alpha_{m_h}(x).$$

When $h \to \infty$, the left-hand side converges to $\alpha(\alpha(x))$, while the right-hand side converges to $\alpha(x)$.

Remark 2.3. The image $\alpha(X)$ is a closed complex submanifold of X (see e.g. [1, Lemma 2.1.28]).

Definition 2.4. We denote $\alpha(X)$ by Z.

Remark 2.5. By (2.4), we have $\alpha_n(X) \subset Z$ for all $n \geq 0$, and by (6.2) we have that

$$\alpha_n(X) \subset \alpha_m(X)$$

for all $m \ge n \ge 0$.

Let (Ω, Λ_n) be the direct limit of the directed system $(X, f_{n,m})$. By the universal property of the direct limit, there exists a mapping $\Psi \colon \Omega \to Z$ such that for all $n \geq 0$,

$$\alpha_n = \Psi \circ \Lambda_n$$
.

The mapping Ψ is defined in the following way: if $[(x,n)] \in \Omega$, then $\Psi([(x,n)]) = \alpha_n(x)$.

Proposition 2.6. The mapping $\Psi \colon \Omega \to Z$ is surjective, and $\Psi([(x,n)]) = \Psi([(y,u)])$ if and only if $[(x,n)] \sim [(y,u)]$.

Proof. Since α is a retraction, we have $\alpha(z)=z$ for all $z\in Z$, that is, $\alpha_{m_h}(z)\stackrel{h\to\infty}{\longrightarrow} z$ for all $z\in Z$. Consider the sequence of holomorphic mappings $(\alpha_{m_h}|_Z\colon Z\to Z)$. This sequence converges uniformly on compact subsets to id_Z , and thus it is eventually injective on compact subsets of Z. Fix $z\in Z$ and let U be a neighborhood of z in Z such that $(\alpha_{m_h}|_U\colon U\to Z)$ is eventually injective. Then the image $\alpha_{m_h}|_U$ eventually contains z (see e.g. [5, Corollary 3.2]). Hence we obtain that $\Psi\colon\Omega\to Z$ is surjective.

Assume now that $[(x,n)] \sim [(y,u)]$. For all $m \geq \max\{n,u\}$, we have that $\Psi([(x,n)]) = \alpha_m(f_{n,m}(x))$, and $\Psi([(y,u)]) = \alpha_m(f_{u,m}(y))$. We have

$$k_X(\Psi([(x,n)]), \Psi([(y,u)])) \leq k_X(f_{n,m}(x), f_{u,m}(y)) \stackrel{m \to \infty}{\longrightarrow} 0,$$

which implies $\Psi([(x,n)]) = \Psi([(y,u)])$.

Conversely, assume that $\Psi([(x,n)]) = \Psi([(y,u)])$. It follows that

$$\lim_{h \to \infty} f_{n,m_h}(x) = \lim_{h \to \infty} f_{u,m_h}(y),$$

and thus $\lim_{h\to\infty} k_X(f_{n,m_h}(x), f_{u,m_h}(y)) = 0$. Since the sequence $(k_X(f_{n,m}(x), f_{u,m}(y)))_{m\geq \max\{n,u\}}$ is non-increasing, we have $[(x,n)] \sim [(y,u)]$.

Remark 2.7. It follows from Proposition 2.6 that $\bigcup_{n\geq 0} \alpha_n(X) = Z$, and that Ψ induces a bijection $\hat{\Psi} \colon \Omega/_{\sim} \to Z$.

Proposition 2.8. The pair (Z, α_n) is a canonical Kobayashi hyperbolic direct limit for $(f_{n,m})$.

Proof. First of all, Z is Kobayashi hyperbolic since it is a submanifold of X. Let Q be a Kobayashi hyperbolic complex manifold and let $(g_n: X \to Q)$ be a family of holomorphic mappings satisfying

$$g_m \circ f_{n,m} = g_n, \quad \forall \ m \ge n \ge 0.$$

By the universal property of the direct limit, there exists a unique mapping $\Phi \colon \Omega \to Q$ such that

$$g_n = \Phi \circ \Lambda_n, \quad \forall \ n \geq 0.$$

The mapping Φ is defined in the following way: if $[(x,n)] \in \Omega$, then $\Phi([(x,n)]) = g_n(x)$. We claim that

$$[(x,n)] \sim [(y,u)] \Longrightarrow \Phi([(x,n)]) = \Phi[(y,u)].$$

Indeed, if $[(x,n)] \sim [(y,u)]$, then for all $m \ge \max\{n,u\}$, we have that $\Phi([(x,n)]) = g_m(f_{n,m}(x))$, and $\Phi([(y,u)]) = g_m(f_{u,m}(y))$. We have

$$k_X(\Phi([(x,n)]),\Phi([(y,u)])) \le k_X(f_{n,m}(x),f_{u,m}(y)) \stackrel{m\to\infty}{\longrightarrow} 0.$$

Thus there exists a unique mapping $\hat{\Phi} \colon \Omega/_{\sim} \to Q$ such that $\hat{\Phi} \circ \pi_{\sim} = \Phi$. Set

$$\Gamma \coloneqq \hat{\Phi} \circ \hat{\Psi}^{-1} \colon Z \to Q.$$

For all $n \geq 0$,

$$\Gamma \circ \alpha_n = \Gamma \circ \Psi \circ \Lambda_n = \hat{\Phi} \circ \pi_{\sim} \circ \Lambda_n = \Phi \circ \Lambda_n = g_n.$$

The uniqueness of the mapping Γ follows easily from the uniqueness of the mappings Φ and Φ . The mapping Γ acts in the following way: if $z \in \mathbb{Z}$, then there exists $x \in X$ and $n \geq 0$ such that $\alpha_n(x) = z$, and then $\Gamma(z) = g_n(x)$.

We now prove that Γ is holomorphic. Let $z \in Z$, and let $x \in X$ and $n \geq 0$ such that $\alpha_n(x) = z$. Since α has maximal rank at z, there exists a neighborhood V of z in X such that, for m large enough, α_m has maximal rank at every point $y \in V$. Since the sequence $(f_{n,m_{k_n}}(x))_{k_n\geq 0}$ converges to $\alpha_n(x) = z$ as $k_n \to \infty$, it is eventually contained in V. Hence there

exists $m' \geq 0$ such that $w := f_{n,m'}(x) \in V$ and $\alpha_{m'}$ has maximal rank at w. Thus there exists an open neighborhood $U \subset Z$ of z and a holomorphic function $\sigma : U \to X$ such that

$$\alpha_{m'} \circ \sigma = \mathrm{id}_U$$
.

Then, for all $y \in U$,

$$\Gamma(y) = \Gamma(\alpha_{m'}(\sigma(y))) = g_{m'}(\sigma(y)),$$

which means that Γ is holomorphic in U.

We denote by κ the Kobayashi–Royden metric.

Proposition 2.9. For all $n \geq 0$,

$$\lim_{m \to \infty} f_{n,m}^* k_X = \alpha_n^* k_Z, \tag{2.5}$$

and

$$\lim_{m \to \infty} f_{n,m}^* \, \kappa_X = \alpha_n^* \, \kappa_Z. \tag{2.6}$$

Proof. Let $x, y \in X$, and fix $n \ge 0$. We have that

$$\lim_{k_n \to \infty} k_X(f_{n, m_{k_n}}(x), f_{n, m_{k_n}}(y)) = k_X(\alpha_n(x), \alpha_n(y)) = k_Z(\alpha_n(x), \alpha_n(y)),$$

where the last identity follows from the fact that $\alpha_n(x), \alpha_n(y) \in Z$ and Z is a holomorphic retract. Then (2.5) follows since the sequence $(k_X(f_{n,m}(x), f_{n,m}(y)))_{m \geq n}$ is non-increasing. The proof of (2.6) is similar.

Definition 2.10. Let X be a Kobayashi hyperbolic complex manifold. We say that X is cocompact if X/aut(X) is compact.

Notice that this implies that X is complete Kobayashi hyperbolic [18, Lemma 2.1].

Theorem 2.11. Let X be a cocompact Kobayashi hyperbolic complex manifold, and let $(f_{n,m}: X \to X)_{m \ge n \ge 0}$ be a forward holomorphic dynamical system. Then there exists a canonical Kobayashi hyperbolic direct limit (Z, α_n) for $(f_{n,m})$, where Z is a holomorphic retract of X. Moreover,

$$Z = \bigcup_{n>0} \alpha_n(X), \tag{2.7}$$

and

$$\lim_{m \to \infty} f_{n,m}^* k_X = \alpha_n^* k_Z, \quad \lim_{m \to \infty} f_{n,m}^* \kappa_X = \alpha_n^* \kappa_Z. \tag{2.8}$$

Proof. Let $K \subset X$ be a compact subset such that $X = \operatorname{Aut}(X) \cdot K$. Let $x_0 \in X$. For all $n \geq 0$, let $h_n \in \operatorname{Aut}(X)$ be such that $h_n(f_{0,n}(x_0)) \in K$. For all $m \geq n \geq 0$ set $\tilde{f}_{n,m} := h_m \circ f_{n,m} \circ h_n^{-1}$. It is easy to see that $(\tilde{f}_{n,m} : X \to X)$ is a forward holomorphic dynamical system such that

$$\{\tilde{f}_{0,m}(h_0(x_0))\}_{m\geq 0} \subset K.$$
 (2.9)

We can now apply Proposition 2.8 to $(\tilde{f}_{n,m}: X \to X)$, obtaining a canonical Kobayashi hyperbolic direct limit $(Z, \tilde{\alpha}_n)$ for $(\tilde{f}_{n,m})$, where Z is a holomorphic retract of X. For all $n \geq 0$ set $\alpha_n := \tilde{\alpha}_n \circ h_n$. Clearly

$$\alpha_m \circ f_{n,m} = \alpha_n, \quad \forall \ m \ge n \ge 0.$$

Let Q be a Kobayashi hyperbolic manifold and let $(g_n: X \to Q)$ be a family of holomorphic mappings satisfying

$$g_m \circ f_{n,m} = g_n, \quad \forall \ m \ge n \ge 0.$$

For all $n \geq 0$ set $\tilde{g}_n := g_n \circ h_n^{-1}$. Then for all $m \geq n \geq 0$,

$$\tilde{g}_m \circ \tilde{f}_{n,m} = g_m \circ h_m^{-1} \circ \tilde{f}_{n,m} = g_m \circ f_{n,m} \circ h_n^{-1} = g_n \circ h_n^{-1} = \tilde{g}_n.$$

By the universal property of the canonical Kobayashi hyperbolic direct limit applied to $(Z, \tilde{\alpha}_n)$ we obtain a holomorphic mapping $\Gamma: Z \to Q$ such that

$$\tilde{g}_n = \Gamma \circ \tilde{\alpha}_n, \quad \forall \ n \ge 0.$$

Hence $g_n = \Gamma \circ \alpha_n$ for all $n \geq 0$.

Remark 2.7 yields (2.7). Finally, (2.8) follows from Proposition 2.9 since for all $n \geq 0$ the automorphism $h_n: X \to X$ is an isometry for k_X and κ_X .

Remark 2.12. Let (Ω, Λ_n) be the direct limit of the directed system $(X, f_{n,m})$. Let (Z, α_n) be the canonical Kobayashi hyperbolic direct limit given by Theorem 2.11. By the universal property of the direct limit, there exists a mapping $\Psi \colon \Omega \to Z$ such that $\alpha_n = \Psi \circ \Lambda_n$ for all $n \geq 0$. It is easy to see that Ψ is surjective and induces a bijection $\hat{\Psi} \colon \Omega/_{\sim} \to Z$ such that

$$\alpha_n = \hat{\Psi} \circ \pi_{\sim} \circ \Lambda_n, \quad \forall \ n \ge 0.$$

3. Autonomous iteration

Definition 3.1. Let X be a complex manifold and let $f: X \to X$ be a holomorphic self-map. Let $x \in X$, and let $m \ge 0$. The m-step $s_m(x)$ of f at x is the limit

$$s_m(x) = \lim_{n \to \infty} k_X(f^n(x), f^{n+m}(x)).$$

Such a limit exists since the sequence $(k_X(f^n(x), f^{n+m}(x))_{n\geq 0})$ is non-increasing. The divergence rate c(f) of f is the limit

$$c(f) = \lim_{m \to \infty} \frac{k_X(f^m(x), x)}{m}.$$

It is shown in [4] that such a limit exists, does not depend on $x \in X$ and equals $\inf_{m \in \mathbb{N}} \frac{k_X(f^m(x), x)}{m}$.

Definition 3.2. Let X be a complex manifold and let $f: X \to X$ be a holomorphic self-map. A semi-model for f is a triple (Λ, h, φ) where Λ is a complex manifold, $h: X \to \Lambda$ is a holomorphic mapping, and $\varphi: \Omega \to \Omega$ is an automorphism such that

$$h \circ f = \varphi \circ h, \tag{3.1}$$

and

$$\bigcup_{n\geq 0} \varphi^{-n}(h(X)) = \Lambda. \tag{3.2}$$

We call the manifold Λ the base space and the mapping h the intertwining mapping.

Let (Z, ℓ, τ) and (Λ, h, φ) be two semi-models for f. A morphism of semi-models $\hat{\eta} \colon (Z, \ell, \tau) \to (\Lambda, h, \varphi)$ is given by a holomorphic map $\eta \colon Z \to \Lambda$ such that the following diagram commutes:

If the mapping $\eta: Z \to \Lambda$ is a biholomorphism, then we say that $\hat{\eta}: (Z, \ell, \tau) \to (\Lambda, h, \varphi)$ is an isomorphism of semi-models. Notice that then $\eta^{-1}: \Lambda \to Z$ induces a morphism $\hat{\eta}^{-1}: (\Lambda, h, \varphi) \to (Z, \ell, \tau)$.

Remark 3.3. It is shown in [4, Lemmas 3.6 and 3.7] that if (Z, ℓ, τ) , (Λ, h, φ) are semi-models for f, then there exists at most one morphism $\hat{\eta} \colon (Z, \ell, \tau) \to (\Lambda, h, \varphi)$, and that the holomorphic map $\eta : Z \to \Lambda$ is surjective.

Definition 3.4. Let X be a complex manifold and let $f: X \to X$ be a holomorphic self-map. Let (Z, ℓ, τ) be a semi-model for f whose base space Z is Kobayashi hyperbolic. We say that (Z, ℓ, τ) is a canonical Kobayashi hyperbolic semi-model for f if for any semi-model (Λ, h, φ) for f such that the base space Λ is Kobayashi hyperbolic, there exists a morphism of semi-models $\hat{\eta}: (Z, \ell, \tau) \to (\Lambda, h, \varphi)$ (which is necessarily unique by Remark 3.3).

Remark 3.5. If (Z, ℓ, τ) and (Λ, h, φ) are two canonical Kobayashi hyperbolic semi-models for f, then they are isomorphic.

Theorem 3.6. Let X be a cocompact Kobayashi hyperbolic complex manifold, and let $f: X \to X$ be a holomorphic self-map. Then there exists a canonical Kobayashi hyperbolic semi-model (Z, ℓ, τ) for f, where Z is a holomorphic retract of X. Moreover, the following holds:

(1) if $\alpha_n := \tau^{-n} \circ \ell$ for all $n \geq 0$, then

$$\lim_{m \to \infty} (f^m)^* k_X = \alpha_n^* k_Z, \quad \lim_{m \to \infty} (f^m)^* \kappa_X = \alpha_n^* \kappa_Z,$$

(2) the divergence rate of τ satisfies

$$c(\tau) = c(f) = \lim_{m \to \infty} \frac{s_m(x)}{m} = \inf_{m \in \mathbb{N}} \frac{s_m(x)}{m}.$$

Proof. Let $(f_{n,m}: X \to X)$ be the autonomous dynamical system defined by $f_{n,m} = f^{m-n}$. By Theorem 2.11, there exist a holomorphic retract Z of X and a family of holomorphic mappings $(\alpha_n: X \to Z)$ such that the pair (Z, α_n) is a canonical Kobayashi hyperbolic direct limit for $(f_{n,m})$. The sequence of holomorphic mappings $(\beta_n := \alpha_n \circ f: X \to Z)$ satisfies, for all $m \ge n \ge 0$,

$$\beta_m \circ f_{n,m} = \alpha_m \circ f \circ f^{m-n} = \alpha_n \circ f = \beta_n.$$

By the universal property of the canonical Kobayashi hyperbolic direct limit there exists a holomorphic self-map $\tau \colon Z \to Z$ such that for all $n \ge 0$,

$$\tau \circ \alpha_n = \alpha_n \circ f.$$

We claim that τ is a holomorphic automorphism. For all $n \geq 0$, set $\gamma_n := \alpha_{n+1}$. For all $m \geq n \geq 0$,

$$\gamma_m \circ f_{n,m} = \alpha_{m+1} \circ f^{m-n} = \alpha_{n+1} = \gamma_n.$$

Thus there exists a holomorphic self-map $\delta \colon Z \to Z$ such that $\delta \circ \alpha_n = \alpha_{n+1}$ for all $n \geq 0$. For all $n \geq 0$ we have

$$\tau \circ \delta \circ \alpha_n = \tau \circ \alpha_{n+1} = \alpha_n,$$

and

$$\delta \circ \tau \circ \alpha_n = \delta \circ \alpha_n \circ f = \alpha_{n+1} \circ f = \alpha_n.$$

By the universal property of the canonical Kobayashi hyperbolic direct limit we have that τ is a holomorphic automorphism and $\delta = \tau^{-1}$. Since for all $n \geq 0$,

$$\tau^n \circ \alpha_n = \alpha_n \circ f^n = \alpha_0,$$

it follows that $\alpha_n = \tau^{-n} \circ \alpha_0$.

Set $\ell := \alpha_0$. We claim that the triple (Z, ℓ, τ) is a canonical Kobayashi hyperbolic semi-model for f. Indeed, let (Λ, h, φ) be a semi-model for f such that the base space Λ is Kobayashi hyperbolic. For all $n \geq 0$, let $\lambda_n := \varphi^{-n} \circ h$. Then by the universal property of the canonical Kobayashi hyperbolic direct limit there exists a holomorphic mapping $\eta \colon Z \to \Lambda$ such that for all $n \geq 0$ we have $\eta \circ \alpha_n = \lambda_n$, that is

$$n \circ \tau^{-n} \circ \ell = \varphi^{-n} \circ h.$$

Notice that this implies $\eta \circ \ell = h$, and if $n \geq 0$,

$$\varphi \circ \eta \circ \tau^{-1} \circ \alpha_n = \varphi \circ \varphi^{-n-1} \circ h = \lambda_n = \eta \circ \alpha_n.$$

Thus by the universal property of the canonical Kobayashi hyperbolic direct limit, $\eta = \varphi \circ \eta \circ \tau^{-1}$. Hence the mapping $\eta: Z \to \Lambda$ gives a morphism of semi-models $\hat{\eta}: (Z, \ell, \tau) \to (\Lambda, h, \varphi)$.

Property (1) follows clearly from Theorem 2.11. Property (1) implies in particular that for all $m \ge 0$ and $x \in X$, the m-step $s_m(x)$ satisfies

$$s_m(x) = k_Z(\ell(z), \tau^m(\ell(z))).$$

By [4, Proposition 2.7]

$$c(\tau) = \lim_{m \to \infty} \frac{k_Z(\ell(z), \tau^m(\ell(z)))}{m} = \lim_{m \to \infty} \frac{s_m(x)}{m} = \lim_{m \to \infty} \frac{k_X(f^m(x), x)}{m} = c(f),$$

and

$$c(\tau) = \inf_{m \in \mathbb{N}} \frac{k_Z(\ell(z), \tau^m(\ell(z)))}{m} = \inf_{m \in \mathbb{N}} \frac{s_m(x)}{m},$$

which proves Property (2).

Remark 3.7. Actually, the proof shows that the semi-model (Z, ℓ, τ) satisfies the following stronger universal property. If Λ is a Kobayashi hyperbolic complex manifold, if $\varphi \colon \Lambda \to \Lambda$ is an automorphism and if $h \colon X \to \Lambda$ is a holomorphic mapping such that $h \circ f = \varphi \circ h$ (notice that we do not assume (3.2)), then there exists a holomorphic mapping $\eta \colon Z \to \Lambda$ such that $\eta \circ \ell = h$ and $\eta \circ \tau = \varphi \circ \eta$. Clearly, $\eta(Z) = \bigcup_{n \geq 0} \varphi^{-n} h(X)$.

4. The unit ball

Definition 4.1. The Siegel upper half-space \mathbb{H}^q is defined by

$$\mathbb{H}^{q} = \left\{ (z, w) \in \mathbb{C} \times \mathbb{C}^{q-1}, \operatorname{Im}(z) > ||w||^{2} \right\}.$$

Recall that \mathbb{H}^q is biholomorphic to the ball \mathbb{B}^q via the Cayley transform $\Psi \colon \mathbb{B}^q \to \mathbb{H}^q$ defined as

$$\Psi(z,w) = \left(i\frac{1+z}{1-z}, \frac{w}{1-z}\right), \quad (z,w) \in \mathbb{C} \times \mathbb{C}^{q-1}.$$

Let $\langle \cdot, \cdot \rangle$ denote the standard Hermitian product in \mathbb{C}^q . In several complex variables, the natural generalization of the non-tangential limit at the boundary is the following. If $\zeta \in \partial \mathbb{B}^q$, then the set

$$K(\zeta, R) := \{ z \in \mathbb{B}^q : |1 - \langle z, \zeta \rangle| < R(1 - ||z||) \}$$

is a Korányi region of vertex ζ and amplitude R > 1. Let $f: \mathbb{B}^q \to \mathbb{C}^m$ be a holomorphic map. We say that f has K-limit $L \in \mathbb{C}^m$ at ζ (we write K-lim $_{z \to \zeta} f(z) = L$) if for each sequence (z_n) converging to ζ such that (z_n) belongs eventually to some Korányi region of vertex ζ , we have that $f(z_n) \to L$. The Korányi regions can also be easily described in the Siegel upper half-space \mathbb{H}^q , see e.g. [10].

Let $\zeta \in \partial \mathbb{B}^q$. A sequence $(z_n) \subset \mathbb{B}^q$ converging to $\zeta \in \partial \mathbb{B}^q$ is said to be restricted at ζ if $\langle z_n, \zeta \rangle \to 1$ non-tangentially in \mathbb{D} , while it is said to be special at ζ if

$$\lim_{n\to\infty} k_{\mathbb{B}^q}(z_n, \langle z_n, \zeta \rangle \zeta) = 0.$$

We say that f has restricted K-limit L at ζ (we write $\angle_K \lim_{z\to\zeta} f(z) = L$) if for every special and restricted sequence (z_n) converging to ζ we have that $f(z_n) \to L$.

One can show that

$$K$$
- $\lim_{z \to \zeta} f(z) = L \Longrightarrow \angle_K \lim_{z \to \zeta} f(z) = L$,

but the converse implication is not true in general.

Definition 4.2. A point $\zeta \in \partial \mathbb{B}^q$ such that K- $\lim_{z \to \zeta} f(z) = \zeta$ and

$$\liminf_{z \to \zeta} \frac{1 - \|f(z)\|}{1 - \|z\|} = \lambda < +\infty$$

is called a boundary regular fixed point, and λ is called its dilation.

The following result [20] generalizes the Denjoy-Wolff theorem in the unit disc.

Theorem 4.3. Let $f: \mathbb{B}^q \to \mathbb{B}^q$ be holomorphic. Assume that f admits no fixed points in \mathbb{B}^q . Then there exists a point $p \in \partial \mathbb{B}^q$, called the Denjoy-Wolff point of f, such that (f^n) converges uniformly on compact subsets to the constant map $z \mapsto p$. The Denjoy-Wolff point of f is a boundary regular fixed point and its dilation λ is smaller than or equal to 1.

Remark 4.4. Let $f: \mathbb{B}^q \to \mathbb{B}^q$ be a holomorphic self-map without fixed points, and let λ be the dilation at its Denjoy-Wolff fixed point. Then by [4, Proposition 5.8] the divergence rate of f satisfyies

$$c(f) = -\log \lambda$$
.

Definition 4.5. A holomorphic self-map $f: \mathbb{B}^q \to \mathbb{B}^q$ is called

- (1) elliptic if it admits a fixed point $z \in \mathbb{B}^q$,
- (2) parabolic if it admits no fixed points $z \in \mathbb{B}^q$, and its dilation at the Denjoy-Wolff point is equal to 1,
- (3) hyperbolic if it admits no fixed points $z \in \mathbb{B}^q$, and its dilation at the Denjoy-Wolff point is strictly smaller than 1.

If $s_1(z) > 0$ for all $z \in \mathbb{B}^q$, then we say that f is nonzero-step.

The next result generalizes Theorem 0.1 to the unit ball.

Theorem 4.6. Let $f: \mathbb{B}^q \to \mathbb{B}^q$ be a hyperbolic holomorphic self-map, with dilation λ at its Denjoy-Wolff point $p \in \partial \mathbb{B}^q$. Then there exist

- (1) an integer k such that $1 \le k \le q$,
- (2) a hyperbolic automorphism $\varphi \colon \mathbb{H}^k \to \mathbb{H}^k$ of the form

$$\varphi(z,w) = \left(\frac{1}{\lambda}z, \frac{e^{it_1}}{\sqrt{\lambda}}w_1, \dots, \frac{e^{it_{k-1}}}{\sqrt{\lambda}}w_{k-1}\right),\tag{4.1}$$

where $t_j \in \mathbb{R}$ for $1 \leq j \leq k-1$,

(3) a holomorphic mapping $h \colon \mathbb{B}^q \to \mathbb{H}^k$ with K- $\lim_{x \to p} h(x) = \infty$,

such that the triple $(\mathbb{H}^k, h, \varphi)$ is a canonical Kobayashi hyperbolic model for f.

Proof. Since \mathbb{B}^q is cocompact and Kobayashi hyperbolic, by Theorem 3.6 there exists a canonical Kobayashi hyperbolic semi-model (Z,ℓ,τ) for f. Since Z is a holomorphic retract of \mathbb{B}^q , it is biholomorphic to \mathbb{B}^k for some $0 \le k \le q$ (see e.g. [1, Corollary 2.2.16]). By Remark 4.4 and by (2) of Theorem 3.6, we have $c(\tau) = c(f) = -\log \lambda$, hence $k \ge 1$ and τ is a hyperbolic automorphism with dilation λ at its Denjoy-Wolff point. Thus there exists (see e.g. [1, Proposition 2.2.11]) a biholomorphism $\gamma \colon Z \to \mathbb{H}^k$ such that $\varphi \coloneqq \gamma \circ \tau \circ \gamma^{-1}$ is of the form (4.1). Setting $h \coloneqq \gamma \circ \ell$ we have that $(\mathbb{H}^k, h, \varphi)$ is also a canonical Kobayashi hyperbolic semi-model for f. By [4, Proposition 5.11], we have K-lim $_{x\to p} h(x) = \infty$.

Corollary 4.7. Let $f: \mathbb{B}^q \to \mathbb{B}^q$ be a hyperbolic holomorphic self-map, with dilation λ at its Denjoy-Wolff point $p \in \partial \mathbb{B}^q$. Then there exists a holomorphic mapping $\vartheta: \mathbb{B}^q \to \mathbb{H}$ solving the Valiron equation (0.2).

Proof. Let $(\mathbb{H}^k, h, \varphi)$ be the canonical Kobayashi hyperbolic semi-model given by Theorem 4.6. Let $\pi_1 : \mathbb{H}^k \to \mathbb{H}$ be the projection $\pi_1(z, w) = z$. Then $(\mathbb{H}, \vartheta := \pi_1 \circ h, x \mapsto \frac{1}{\lambda}x)$ is a semi-model for f, and thus ϑ solves the Valiron equation (0.2).

Remark 4.8. If q = 1, then the following uniqueness result holds [11]: any holomorphic solution of the Valiron equation (0.2) is a positive multiple of a given solution $\vartheta \colon \mathbb{H} \to \mathbb{H}$.

If $q \geq 2$, the situation is quite different. It is easy to see that the solutions of (0.2) are all the holomorphic mappings of the form $\Gamma \circ h$, where $(\mathbb{H}^k, h, \varphi)$ is the canonical Kobayashi hyperbolic semi-model given by Theorem 4.6, and $\Gamma \colon \mathbb{H}^k \to \mathbb{H}$ is a holomorphic function such that

$$\Gamma \circ \varphi = \frac{1}{\lambda} \Gamma. \tag{4.2}$$

Notice that for all $z \in \mathbb{H}$,

$$\Gamma\left(\frac{1}{\lambda}z,0\right) = \frac{1}{\lambda}\Gamma(z,0),$$

which by a result of Heins [19] implies that $\Gamma(z,0) = az$ for some a > 0 (and thus $\Gamma(\mathbb{H}^k) = \mathbb{H}$). Thus if k = 1 we obtain again a uniqueness result: any holomorphic solution of (0.2) is a positive multiple of a given solution $\vartheta \colon \mathbb{H}^q \to \mathbb{H}$.

Assume now that $k \geq 2$. The function Γ is unique up to positive multiples on the slice $\{w = 0\}$ of \mathbb{H}^k , but is far from being unique on $\mathbb{H}^k \setminus \{w = 0\}$. This can be seen, for example, in the following way. If $\gamma \colon \mathbb{H}^k \to \mathbb{H}^k$ is a holomorphic self-map which commutes with the hyperbolic automorphism φ , then clearly $\Gamma \coloneqq \pi_1 \circ \gamma$ satisfies (4.2). The family of holomorphic mappings of the form $\pi_1 \circ \gamma$ is large, as shown (and made precise) in [16, Theorem 2.5].

Recall the following result on the Abel equation in the unit disc.

Theorem 4.9 (Pommerenke [28]). Let $f: \mathbb{D} \to \mathbb{D}$ be a parabolic nonzero-step holomorphic selfmap. Then there exists a model $(\mathbb{H}, h, z \mapsto z \pm 1)$ for f.

The essential uniqueness of the intertwining mapping in the previous theorem is proved in [27]. The next result gives a generalization of this result to the unit ball.

Theorem 4.10. Let $f: \mathbb{B}^q \to \mathbb{B}^q$ be a parabolic nonzero-step holomorphic self-map with Denjoy-Wolff point $p \in \partial \mathbb{B}^q$. Then there exist

- (1) an integer k such that $1 \le k \le q$,
- (2) a parabolic automorphism $\varphi \colon \mathbb{H}^k \to \mathbb{H}^k$ of the form

$$\varphi(z,w) = (z \pm 1, e^{it_1}w_1, \dots e^{it_{k-1}}w_{k-1}), \tag{4.3}$$

where $t_i \in \mathbb{R}$ for $1 \leq j \leq k-1$, or of the form

$$\varphi(z,w) = (z - 2w_1 + i, w_1 - i, e^{it_2}w_2, \dots e^{it_{k-1}}w_{k-1}), \tag{4.4}$$

where where $t_j \in \mathbb{R}$ for $2 \leq j \leq k-1$,

(3) a holomorphic mapping $h \colon \mathbb{B}^q \to \mathbb{H}^k$ with \angle_K - $\lim_{z \to 0} h(z) = \infty$,

such that the triple $(\mathbb{H}^k, h, \varphi)$ is a canonical Kobayashi hyperbolic model for f.

Proof. Since \mathbb{B}^q is cocompact and Kobayashi hyperbolic, by Theorem 3.6 there exists a canonical Kobayashi hyperbolic semi-model (Z, ℓ, τ) for f. Since Z is a holomorphic retract of \mathbb{B}^q , it is biholomorphic to \mathbb{B}^k for some $0 \le k \le q$. Let $z \in Z$, $x \in \mathbb{B}^q$, and $n \ge 0$ such that $\tau^{-n}(\ell(x)) = z$. Then, by (1) of Theorem 3.6,

$$k_Z(z,\tau(z)) = s_1(z) > 0.$$

Hence $k \geq 1$, and τ is not elliptic. By Remark 4.4 and by (2) of Theorem 3.6, we have $c(\tau) = c(f) = 0$. Hence τ is parabolic. There exists (see e.g. [17]) a biholomorphism $\gamma \colon Z \to \mathbb{H}^k$ such that $\varphi := \gamma \circ \tau \circ \gamma^{-1}$ is of the form (4.3) or of the form (4.4). Setting $h := \gamma \circ \ell$ we have that $(\mathbb{H}^k, h, \varphi)$ is also a canonical Kobayashi hyperbolic semi-model for f. By [4, Proposition 5.11], we have $\angle_{K^-} \lim_{x \to p} h(x) = \infty$.

Part 2. Backward iteration

5. Preliminaries

Definition 5.1. Let X be a complex manifold. We call backward (non-autonomous) holomorphic dynamical system on X any family $(f_{n,m}: X \to X)_{m \ge n \ge 0}$ of holomorphic self-maps such that for all $m \ge u \ge n \ge 0$, we have

$$f_{n,u} \circ f_{u,m} = f_{n,m}$$
.

For all $n \geq 0$ we denote $f_{n,n+1}$ also by f_n . A backward holomorphic dynamical system $(f_{n,m}\colon X \to X)_{m\geq n\geq 0}$ is called *autonomous* if $f_n=f_0$ for all $n\geq 0$. Clearly in this case $f_{n,m}=f_0^{m-n}$.

Remark 5.2. Any family of holomorphic self-maps $(f_n: X \to X)_{n\geq 0}$ determines a backward holomorphic dynamical system $(f_{n,m}: X \to X)$ in the following way: for all $n \geq 0$, set $f_{n,n} = \mathrm{id}$, and for all $m > n \geq 0$, set

$$f_{n,m} = f_n \circ \cdots \circ f_{m-1}.$$

Definition 5.3. Let X be a complex manifold, and let $(f_{n,m}: X \to X)$ be a backward holomorphic dynamical system. An *inverse limit* for $(f_{n,m})$ is a pair (Θ, V_n) where Θ is a set and $(V_n: \Theta \to X)_{n>0}$ is a family of mappings such that

$$f_{n,m} \circ V_m = V_n, \quad \forall \ m \ge n \ge 0,$$

satisfying the following universal property: if Q is a set and if $(g_n: Q \to X)$ is a family of mappings satisfying

$$f_{n,m} \circ g_m = g_n, \quad \forall \ m \ge n \ge 0,$$

then there exists a unique mapping $\Gamma: Q \to \Theta$ such that

$$g_n = V_n \circ \Gamma, \quad \forall \ n \ge 0.$$

Remark 5.4. The inverse limit is essentially unique, in the following sense. Let (Θ, V_n) and (Q, g_n) be two inverse limits for $(f_{n,m})$. Then there exists a bijective mapping $\Gamma: Q \to \Theta$ such that

$$g_n = V_n \circ \Gamma, \quad \forall \ n \ge 0.$$

Definition 5.5. Let X be a complex manifold, and let $(f_{n,m}: X \to X)$ be a backward holomorphic dynamical system. A backward orbit for $(f_{n,m})$ is a sequence $(x_n)_{n\geq 0}$ in X such that, for all $m\geq n\geq 0$,

$$f_{n,m}(x_m) = x_n.$$

Remark 5.6. An inverse limit for $(f_{n,m})$ is easily constructed. We define Θ as the set of all backward orbits for $(f_{n,m})$. We define a family of mappings $(V_n : \Theta \to X)_{n\geq 0}$ in the following way. Let $\beta = (x_m)_{m\geq 0}$ be a backward orbit. Then for all $n\geq 0$,

$$V_n(\beta) = x_n$$
.

It is easy to see that (Θ, V_n) is an inverse limit for $(f_{n,m})$.

Definition 5.7. Let X be a complex manifold and let $(f_{n,m}: X \to X)_{m \ge n \ge 0}$ be a backward holomorphic dynamical system. Let (Θ, V_n) be the inverse limit of the inverse system $(X, f_{n,m})$. We define an equivalence relation \sim on Θ in the following way. The backward orbits (z_n) and (w_n) are equivalent if and only if the non-decreasing sequence $(k_X(z_n, w_n))_{n \ge 0}$ is bounded. The class of the backward orbit (z_n) will be denoted by $[z_n]$.

Lemma 5.8. Let X be a complex manifold, and let $(f_{n,m}: X \to X)$ be a backward holomorphic dynamical system. Let Z be a complex manifold and let $(\alpha_n: Z \to X)$ be a sequence of holomorphic mappings such that $f_{n,m} \circ \alpha_m = \alpha_n$ for all $m \ge n \ge 0$. Then $(\alpha_n(z)) \sim (\alpha_n(w))$ for all $z, w \in Z$.

Proof. It follows since $k_X(\alpha_n(z), \alpha_n(w)) \leq k_Z(z, w)$ for all $n \geq 0$.

We now introduce a modified version of the inverse limit for $(f_{n,m})$ which is more suited for our needs.

Definition 5.9. Let X be a complex manifold. Let $(f_{n,m}: X \to X)$ be a backward holomorphic dynamical system. We call canonical inverse limit associated with the class $[y_n] \in \Theta/_{\sim}$ for $(f_{n,m})$ a pair (Z, α_n) where Z is a complex manifold and $(\alpha_n: Z \to X)$ is a sequence of holomorphic mappings such that

- (1) $f_{n,m} \circ \alpha_m = \alpha_n$, for all $m \ge n \ge 0$,
- (2) $(\alpha_n(z)) \in [y_n]$ for some (and hence for any) $z \in Z$,

which satisfies the following universal property: if Q is a complex manifold and if $(g_n: Q \to X)$ is a family of holomorphic mappings satisfying

- (1') $f_{n,m} \circ g_m = g_n$, for all $m \ge n \ge 0$,
- (2') $(g_n(q)) \in [y_n]$ for some (and hence for any) $q \in Q$,

then there exists a unique holomorphic mapping $\Gamma: Q \to Z$ such that

$$g_n = \alpha_n \circ \Gamma, \quad \forall \ n \ge 0.$$

Proposition 5.10. The canonical inverse limit for $(f_{n,m})$ associated with the class $[y_n] \in \Theta/_{\sim}$ is unique in the following sense. Let (Z, α_n) and (Q, g_n) be two canonical inverse limit for $(f_{n,m})$ associated with the same class $[y_n]$. Then there exists a biholomorphism $\Gamma: Q \to Z$ such that

$$g_n = \alpha_n \circ \Gamma, \quad \forall \ n \ge 0.$$

Proof. There exist holomorphic mappings $\Gamma: Q \to Z$ and $\Xi: Z \to Q$ such that for all $n \ge 0$, we have $g_n = \alpha_n \circ \Gamma$ and $\alpha_n = g_n \circ \Xi$. Thus the holomorphic mapping $\Gamma \circ \Xi: Z \to Z$ satisfies

$$\alpha_n \circ \Gamma \circ \Xi = \alpha_n, \quad \forall \ n \ge 0,$$

By the universal property of the canonical inverse limit associated with the class $[y_n] \in \Theta/_{\sim}$, this implies that $\Gamma \circ \Xi = \operatorname{id}_Z$. Similarly, we obtain $\Xi \circ \Gamma = \operatorname{id}_Q$.

6. Non-autonomous iteration

Let X be a complete Kobayashi hyperbolic complex manifold. Let $(f_{n,m}: X \to X)_{m \ge n \ge 0}$ be a backward holomorphic dynamical system, and assume that it admits a relatively compact backward orbit $(y_m)_{m>0}$.

Remark 6.1. The class $[y_n] \in \Theta/_{\sim}$ coincides with the subset of Θ defined by all relatively compact backward orbits of $(f_{n,m})$.

Remark 6.2. Let $K \subset X$ be a compact subset such that $\{y_m\}_{m\geq 0} \subset K$. It follows that, for all fixed $n\geq 0$,

$$f_{n,m}(K) \cap K \neq \emptyset \quad \forall m \ge n.$$
 (6.1)

The sequence $(f_{0,m}: X \to X)_{m\geq 0}$ is not compactly divergent by (6.1), and since X is taut, there exists a subsequence $(f_{0,m_{k_0}})_{k_0\geq 0}$ converging to a holomorphic self-map $\alpha_0\colon X\to X$. The sequence $(f_{1,m_{k_0}}: X\to X)_{k_0\geq 0}$ is not compactly divergent by (6.1), and since X is taut, there exists a subsequence $(f_{1,m_{k_1}})_{k_1\geq 0}$ converging to a holomorphic self-map $\alpha_1\colon X\to X$. Iterating this procedure we obtain a family of holomorphic self-maps $(\alpha_n\colon X\to X)$ satisfying for all $m\geq n\geq 0$,

$$f_{n,m} \circ \alpha_m = \alpha_n. \tag{6.2}$$

Notice that for all $n \geq 0$ we have

$$\alpha_n(K) \cap K \neq \varnothing. \tag{6.3}$$

Let now $(m_k)_{k\geq 0}$ be a sequence which for all $j\in\mathbb{N}$ is eventually a subsequence of $(m_{k_j})_{k_j\geq 0}$ (such a sequence exists by a diagonal argument). The sequence of holomorphic self-maps $(\alpha_{m_k}\colon X\to X)_{k\geq 0}$ is not compactly divergent by (6.3), and since X is taut, there exists a subsequence $(\alpha_{m_k})_{h\geq 0}$ converging to a holomorphic self-map $\alpha\colon X\to X$.

Lemma 6.3. The holomorphic self-map $\alpha: X \to X$ is a holomorphic retraction, and for all $n \geq 0$,

$$\alpha_n \circ \alpha = \alpha_n. \tag{6.4}$$

Proof. Fix $n \geq 0$ and $x \in X$. Then for all $h \geq 0$ such that $m_h \geq n$, we have

$$\alpha_n(x) = f_{n,m_h}(\alpha_{m_h}(x)) \stackrel{h \to \infty}{\longrightarrow} \alpha_n(\alpha(x)).$$

Thus we have, for all $h \geq 0$,

$$\alpha_{m_h}(\alpha(x)) = \alpha_{m_h}(x).$$

When $h \to \infty$, the left-hand side converges to $\alpha(\alpha(x))$, while the right-hand side converges to $\alpha(x)$.

Definition 6.4. We denote the closed complex submanifold $\alpha(X)$ by Z.

In what follows we denote the restriction $\alpha_n|_Z$ simply by α_n . Let (Θ, V_n) be the inverse limit of the inverse system $(X, f_{n,m})$. By the universal property of the inverse limit, there exists a mapping $\Psi \colon Z \to \Theta$ such that for all $n \geq 0$,

$$\alpha_n = V_n \circ \Psi.$$

The mapping Ψ is defined in the following way: if $z \in \mathbb{Z}$, then $\Psi(z)$ is the backward orbit $(\alpha_m(z))_{m \geq 0}$.

Proposition 6.5. The mapping $\Psi: Z \to \Theta$ is injective and its image is $[y_n]$.

Proof. Let $z, w \in Z$ and assume that $\Psi(z) = \Psi(w)$. It follows that $\alpha_m(z) = \alpha_m(w)$ for all $m \geq 0$, that is $\alpha(z) = \alpha(w)$. Since α is a retraction, we obtain z = w. Hence $\Psi: Z \to \Theta$ is injective.

We now show that $\Psi(Z) \subset [y_n]$. If $z \in Z$, we have to show that the sequence $(k_X(\alpha_m(z), y_m))$ is bounded. Since $y_m \in K$ for all $m \geq 0$ and $\alpha_{m_h}(z) \to \alpha(z)$, we have that the subsequence $(k_X(\alpha_{m_h}(z), y_{m_h}))$ is bounded. Since the sequence $(k_X(\alpha_m(z), y_m))$ is non-decreasing, it is bounded too.

Finally, we show that for all $(z_m) \in [y_n]$, there exists $z \in Z$ such that $\alpha_m(z) = z_m$ for all $m \geq 0$. Let thus (z_m) be a backward orbit such that the sequence $(k_X(y_m, z_m))$ is bounded. Clearly, the subsequence $(k_X(y_{m_h}, z_{m_h}))$ is also bounded, and thus there exists a subsequence (z_{m_u}) of (z_{m_h}) converging to a point $z \in X$. It follows that for all $n \geq 0$,

$$z_n = f_{n,m_u}(z_{m_u}) \stackrel{u \to \infty}{\to} \alpha_n(z).$$

We claim that $z \in Z$. Indeed, letting $u \to \infty$ in the identity $\alpha_{m_u}(z) = z_{m_u}$ we obtain $\alpha(z) = z$.

Proposition 6.6. The pair (Z, α_n) is a canonical inverse limit for $(f_{n,m})$ associated with $[y_n]$.

Proof. Let Q be a complex manifold and let $(g_n: Q \to X)$ be a family of holomorphic mappings satisfying

- (1) $f_{n,m} \circ g_m = g_n$, for all $m \ge n \ge 0$,
- (2) $(g_n(q)) \in [y_n]$ for some (and hence for any) $q \in Q$.

By the universal property of the inverse limit, there exists a unique mapping $\Phi \colon Q \to \Theta$ such that

$$g_n = V_n \circ \Phi, \quad \forall \ n \ge 0.$$

The mapping Φ is defined in the following way: if $q \in Q$, then $\Phi(q)$ is the backward orbit $(g_m(q))_{m\geq 0}$. Property (2) implies that $\Phi(Q) \subset [y_n]$. Set

$$\Gamma := \Psi^{-1} \circ \Phi \colon Q \to Z.$$

For all $n \geq 0$,

$$\alpha_n \circ \Gamma = V_n \circ \Psi \circ \Gamma = V_n \circ \Phi = g_n. \tag{6.5}$$

The uniqueness of the mapping Γ follows easily from the uniqueness of the mapping Φ . The mapping Γ acts in the following way: if $q \in Q$, then $\Gamma(q) \in Z$ is uniquely defined by

$$\alpha_m(\Gamma(q)) = g_m(q), \quad \forall \, m \ge 0.$$
 (6.6)

We now prove that Γ is holomorphic. Recall that the sequence $(\alpha_{m_h}: Z \to X)_{h \ge 0}$ converges uniformly on compact subsets to id_Z . By Remark 6.1, the sequence $(g_m: Q \to X)$ is not compactly divergent. Since X is taut, the sequence $(g_{m_h}: Q \to X)$ admits a subsequence $(g_{m_u}: Q \to X)$ converging uniformly on compact subsets to a holomorphic mapping $g: Q \to X$. Thus taking the limit in both sides of

$$\alpha_{m_n} \circ \Gamma = q_{m_n}$$

as $m_u \to \infty$, we have $\Gamma = g$, which implies that Γ is holomorphic.

Proposition 6.7. We have

$$\lim_{m \to \infty} \alpha_m^* k_X = k_Z,$$

and

$$\lim_{n\to\infty}\alpha_m^*\kappa_X=\kappa_Z.$$

Proof. Let $z, w \in Z$. We have

$$\lim_{m_h \to \infty} k_X(\alpha_{m_h}(z), \alpha_{m_h}(w)) = k_X(\alpha(z), \alpha(w)) = k_X(z, w) = k_Z(z, w).$$

where the last identity follows from the fact that Z is a holomorphic retract of X. The first statement follows since the sequence $(k_X(\alpha_m(z), \alpha_m(w)))_{m\geq 0}$ is non-decreasing. The proof of the second statement is similar.

Theorem 6.8. Let X a cocompact Kobayashi hyperbolic complex manifold, and let $(f_{n,m}: X \to X)_{m \ge n \ge 0}$ be a backward dynamical system. Let (y_n) be a backward orbit. Then there exists a canonical inverse limit (Z, α_n) for $(f_{n,m})$ associated with $[y_n]$, where Z is a holomorphic retract of X. Moreover,

$$\lim_{m \to \infty} \alpha_m^* k_X = k_Z, \quad and \quad \lim_{m \to \infty} \alpha_m^* \kappa_X = \kappa_Z. \tag{6.7}$$

Proof. Let $K \subset X$ be a compact subset such that $X = \operatorname{Aut}(X) \cdot K$. For all $n \geq 0$, let $h_n \in \operatorname{Aut}(X)$ be such that $h_n^{-1}(y_n) \in K$. For all $m \geq n \geq 0$ set $\tilde{f}_{n,m} = h_n^{-1} \circ f_{n,m} \circ h_m$. It is easy to see that $(\tilde{f}_{n,m} \colon X \to X)$ is a forward holomorphic dynamical system with a relatively compact backward orbit $(\tilde{y}_n \coloneqq h_n^{-1}(y_n))$. We can now apply Proposition 6.6 to $(\tilde{f}_{n,m} \colon X \to X)$, obtaining a canonical inverse limit $(Z, \tilde{\alpha}_n)$ for $(\tilde{f}_{n,m})$ associated with $[\tilde{y}_n]$, where Z is a holomorphic retract of X. For all $n \geq 0$ set $\alpha_n \coloneqq h_n \circ \tilde{\alpha}_n$. Clearly

$$f_{n,m} \circ \alpha_m = \alpha_n, \quad \forall \ m \ge n \ge 0.$$

Let Q be a complex manifold and let $(g_n: Q \to X)$ be a family of holomorphic mappings satisfying

$$f_{n,m} \circ g_m = g_n, \quad \forall \ m \ge n \ge 0.$$

For all $n \ge 0$ set $\tilde{g}_n := h_n^{-1} \circ g_n$. Then for all $m \ge n \ge 0$,

$$\tilde{f}_{n,m} \circ \tilde{g}_m = \tilde{f}_{n,m} \circ h_m^{-1} \circ g_m = h_n^{-1} \circ f_{n,m} \circ g_m = \tilde{g}_n.$$

By the universal property of the canonical inverse limit $(Z, \tilde{\alpha}_n)$ we obtain a holomorphic mapping $\Gamma: Q \to Z$ such that

$$\tilde{g}_n = \tilde{\alpha}_n \circ \Gamma, \quad \forall \ n \ge 0.$$

Hence $g_n = \alpha_n \circ \Gamma$ for all $n \geq 0$.

Finally, (6.7) follows from Proposition 6.7, since for all $n \ge 0$ the automorphism $h_n \colon X \to X$ is an isometry for k_X and κ_X .

Remark 6.9. Let (Θ, V_n) be the inverse limit of the inverse system $(X, f_{n,m})$. Let (y_n) be a backward orbit and let (Z, α_n) be the canonical inverse limit associated with (y_n) given by Theorem 6.8. By the universal property of the inverse limit, there exists a mapping $\Psi \colon Z \to \Theta$ such that

$$\alpha_n = V_n \circ \Psi, \quad \forall \ n \ge 0.$$

It is easy to see that Ψ is injective and that $\Psi(Z) = [y_n]$. In particular, for all $n \geq 0$,

$$\alpha_n(Z) = V_n([y_n]).$$

7. Autonomous Iteration

Definition 7.1. Let X be a complex manifold and let $f: X \to X$ be a holomorphic self-map. A pre-model for f is a triple (Λ, h, φ) such that Λ is a complex manifold, $h: \Lambda \to X$ is a holomorphic mapping and $\varphi: \Lambda \to \Lambda$ is an automorphism such that

$$f \circ h = h \circ \varphi$$
.

The mapping h is called the intertwining mapping.

Let (Λ, h, φ) and (Z, ℓ, τ) be two pre-models for f. A morphism of pre-models $\hat{\eta} : (\Lambda, h, \varphi) \to (Z, \ell, \tau)$ is given by a holomorphic mapping $\eta : \Lambda \to Z$ such that the following diagram commutes:

If the mapping $\eta: \Lambda \to Z$ is a biholomorphism, then we say that $\hat{\eta}: (\Lambda, h, \varphi) \to (Z, \ell, \tau)$ is an isomorphism of pre-models. Notice that then $\eta^{-1}: Z \to \Lambda$ induces a morphism $\hat{\eta}^{-1}: (Z, \ell, \tau) \to (\Lambda, h, \varphi)$.

Definition 7.2. Let X be a complex manifold and let $f: X \to X$ be a holomorphic self-map. Let (y_n) be a backward orbit for f. Let (Z, ℓ, τ) be a semi-model for f such that for some (and hence for any) $z \in Z$ we have $(\ell(\tau^{-n}(z))) \in [y_n]$. We say that (Z, ℓ, τ) is a canonical pre-model associated with $[y_n]$ for f if for any pre-model (Λ, h, φ) for f such that for some (and hence for any) $x \in \Lambda$ we have $(h(\varphi^{-n}(x))) \in [y_n]$, there exists a unique morphism of pre-models $\hat{\eta}: (\Lambda, h, \varphi) \to (Z, \ell, \tau)$.

Remark 7.3. If (Z, ℓ, τ) and (Λ, h, φ) are two canonical pre-models for f associated with the same class $[y_n]$, then they are isomorphic.

Lemma 7.4. Let X be a complex manifold and let $f: X \to X$ be a holomorphic self-map. Let (y_n) be a backward orbit. If there exists a canonical pre-model (Z, ℓ, τ) for f associated with $[y_n]$, then every backward orbit $(w_n) \in [y_n]$ has bounded step.

Proof. Let $z \in Z$. The backward orbit $(\ell(\tau^{-n}(z)))$ has bounded step since for all $n \geq 0$,

$$k_X(\ell(\tau^{-n}(z)), \ell(\tau^{-n-1}(z))) \le k_Z(\tau^{-n}(z), \tau^{-n-1}(z)) = k_Z(z, \tau(z)).$$

Let $(w_n) \in [y_n]$. Since for all $n \geq 0$,

$$k_X(w_n, w_{n+1}) \le k_X(w_n, \ell(\tau^{-n}(z))) + k_X(\ell(\tau^{-n}(z)), \ell(\tau^{-n-1}(z))) + k_X(\ell(\tau^{-n-1}(z)), w_{n+1}),$$

it follows that (w_n) has also bounded step.

Theorem 7.5. Let X be a cocompact Kobayashi hyperbolic complex manifold, and let $f: X \to X$ be a holomorphic self-map. Let (y_n) be a backward orbit with bounded step. Then there exists a canonical pre-model (Z, ℓ, τ) for f associated with $[y_n]$, where Z is a holomorphic retract of X. Moreover, the following holds:

- (1) $\ell(Z) = V_0([y_n]),$
- (2) if $\alpha_m := \ell \circ \tau^{-m}$ for all $m \ge 0$, then

$$\lim_{m \to \infty} \alpha_m^* k_X = k_Z, \quad \lim_{m \to \infty} \alpha_m^* \kappa_X = \kappa_Z,$$

(3) if β is a backward orbit in the class $[y_n]$,

$$c(\tau) = \lim_{m \to \infty} \frac{\sigma_m(\beta)}{m} = \inf_{m \in \mathbb{N}} \frac{\sigma_m(\beta)}{m}.$$

Proof. Let $(f_{n,m}: X \to X)$ be the autonomous dynamical system defined by $f_{n,m} = f^{m-n}$. By Theorem 6.8, there exist a holomorphic retract Z of X and a family of holomorphic mappings $(\alpha_n: Z \to X)$ such that the pair (Z, α_n) is a canonical inverse limit associated with $[y_n]$. The sequence of holomorphic mappings $(\beta_n := f \circ \alpha_n: Z \to X)$ satisfies, for all $m \ge n \ge 0$,

$$f_{n,m} \circ \beta_m = f^{m-n} \circ f \circ \alpha_m = f \circ \alpha_n = \beta_n.$$

Let $z \in Z$ be the unique point such that $\alpha_m(z) = y_m$ for all $m \ge 0$. Then for all $m \ge 1$,

$$k_X(\beta_m(z), y_m) = k_X(\alpha_{m-1}(z), y_m) = k_X(y_{m-1}, y_m),$$

which is bounded since by assumption the backward orbit (y_n) has bounded step. By the universal property of the canonical inverse limit associated with $[y_n]$ there exists a holomorphic self-map $\tau \colon Z \to Z$ such that for all $n \ge 0$,

$$\alpha_n \circ \tau = f \circ \alpha_n$$
.

We claim that τ is a holomorphic automorphism. Set for all $n \geq 0$, $\gamma_n := \alpha_{n+1}$. For all $m \geq n \geq 0$,

$$f_{n,m} \circ \gamma_m = f^{m-n} \circ \alpha_{m+1} = \alpha_{n+1} = \gamma_n.$$

Let $z \in Z$ be the unique point such that $\alpha_m(z) = y_m$ for all $m \ge 0$. For all $m \ge 0$,

$$k_X(\gamma_m(z), y_m) = k_X(\alpha_{m+1}(z), y_m) = k_X(y_{m+1}, y_m),$$

which is bounded since by assumption the backward orbit (y_n) has bounded step. Thus there exists a holomorphic self-map $\delta \colon Z \to Z$ such that $\alpha_n \circ \delta = \alpha_{n+1}$ for all $n \ge 0$. For all $n \ge 0$ we have

$$\alpha_n \circ \tau \circ \delta = f \circ \alpha_n \circ \delta = f \circ \alpha_{n+1} = \alpha_n$$

and

$$\alpha_n \circ \delta \circ \tau = \alpha_{n+1} \circ \tau = \alpha_n.$$

By the universal property of the canonical inverse limit associated with $[y_n]$ we have that τ is a holomorphic automorphism and $\delta = \tau^{-1}$. Since for all $n \geq 0$,

$$\alpha_n \circ \tau^n = f^n \circ \alpha_n = \alpha_0,$$

it follows that

$$\alpha_n = \alpha_0 \circ \tau^{-n}$$
.

Set $\ell := \alpha_0$. We claim that the triple (Z, ℓ, τ) is a canonical pre-model for f associated with $[y_n]$. Indeed, let (Λ, h, φ) be a pre-model for f such that for some (and hence for any) $x \in \Lambda$ we have $h(\varphi^{-n}(x)) \in [y_n]$. For all $n \geq 0$, let $\lambda_n := h \circ \varphi^{-n}$. Then by the universal property of the canonical inverse limit associated with $[y_n]$ there exists a holomorphic mapping $\eta \colon \Lambda \to Z$ such that for all $n \geq 0$ we have $\alpha_n \circ \eta = \lambda_n$, that is

$$\ell \circ \tau^{-n} \circ \eta = h \circ \varphi^{-n}.$$

Notice that this implies $\ell \circ \eta = h$, and if $n \geq 0$,

$$\alpha_n \circ \tau^{-1} \circ \eta \circ \varphi = h \circ \varphi^{-n-1} \circ \varphi = \lambda_n.$$

Thus by the universal property of the canonical Kobayashi hyperbolic direct limit, $\eta = \tau^{-1} \circ \eta \circ \varphi$. Hence the mapping $\eta: \Lambda \to Z$ gives a morphism of pre-models $\hat{\eta}: (\Lambda, h, \varphi) \to (Z, \ell, \tau)$.

Property (1) follows from Remark 6.9. Property (2) follows from (6.7). We now prove Property (3). Let $\beta := (w_n)$ be a backward orbit $[y_n]$, and let $z \in Z$ be the unique point such that $\alpha_n(z) = w_n$ for all $n \ge 0$. Then by Property (2) the backward m-step $\sigma_m(\beta)$ satisfies

$$\sigma_m(\beta) = \lim_{n \to \infty} k_X(\alpha_n(z), \alpha_{n+m}(z)) = \lim_{n \to \infty} k_X(\alpha_n(z), \alpha_n(\tau^{-m}(z))) = k_Z(z, \tau^{-m}(z)).$$

Notice that $k_Z(z, \tau^{-m}(z)) = k_Z(z, \tau^m(z))$. We have

$$c(\tau) = \lim_{m \to \infty} \frac{k_Z(z, \tau^m(z))}{m} = \lim_{m \to \infty} \frac{\sigma_m(\beta)}{m},$$

and

$$c(\tau) = \inf_{m \in \mathbb{N}} \frac{k_Z(z, \tau^m(z))}{m} = \inf_{m \in \mathbb{N}} \frac{\sigma_m(\beta)}{m}.$$

8. The unit ball

Definition 8.1. Let $f: \mathbb{B}^q \to \mathbb{B}^q$ be a holomorphic self-map. Let $\zeta \in \partial \mathbb{B}^q$ be a boundary regular fixed point. The *stable subset* of f at ζ is defined as the subset consisting of all $z \in \mathbb{B}^q$ such that there exists a backward orbit with bounded step starting at z and converging to ζ . We denote it by $S(\zeta)$.

Clearly $S(\zeta)$ coincides with the union of all backward orbits in \mathbb{B}^q with bounded step converging to ζ .

Definition 8.2. Let $f: \mathbb{B}^q \to \mathbb{B}^q$ be a holomorphic self-map. A boundary repelling fixed point $\zeta \in \partial \mathbb{B}^q$ is a boundary regular fixed point with dilation $\lambda > 1$.

The next result generalizes Theorem 0.2 to the unit ball.

Theorem 8.3. Let $f: \mathbb{B}^q \to \mathbb{B}^q$ be a holomorphic self-map and let $\zeta \in \partial \mathbb{B}^q$ be a boundary repelling fixed point with dilation $1 < \lambda < \infty$. Let (y_n) be a backward orbit with bounded step which converges to ζ . Define μ by

$$\mu \coloneqq \lim_{m \to \infty} e^{\frac{\sigma_m(\beta)}{m}} \ge \lambda,$$

where $\beta \in [y_n]$. Then μ does not depend on $\beta \in [y_n]$ and there exist

- (1) an integer k such that $1 \le k \le q$,
- (2) a hyperbolic automorphism $\varphi \colon \mathbb{H}^k \to \mathbb{H}^k$ with dilation μ at its unique repelling point ∞ , of the form

$$\varphi(z, w) = \left(\frac{1}{\mu} z, \frac{e^{it_1}}{\sqrt{\mu}} w_1, \dots, \frac{e^{it_{k-1}}}{\sqrt{\mu}} w_{k-1}\right), \tag{8.1}$$

where $t_j \in \mathbb{R}$ for $1 \le j \le k-1$,

(3) a holomorphic mapping $h: \mathbb{H}^k \to \mathbb{B}^q$ with K- $\lim_{z\to\infty} h(z) = \zeta$,

such that $(\mathbb{H}^k, h, \varphi)$ is a canonical pre-model for f associated with $[y_n]$, and

$$h(\mathbb{H}^k) = V_0([y_n]) \subset \mathcal{S}(\zeta).$$

If $[y_n]$ contains backward orbit whose convergence to ζ is special and restricted, then $\mu = \lambda$.

Proof. Since \mathbb{B}^q is cocompact and Kobayashi hyperbolic, by Theorem 7.5 there exists a canonical pre-model (Z, ℓ, τ) for f associated with $[y_n]$. Since Z is a holomorphic retract of \mathbb{B}^q , it is biholomorphic to \mathbb{B}^k for some $0 \le k \le q$. By (3) of Theorem 7.5, if β is a backward orbit in the class $[y_n]$,

$$\mu = \lim_{m \to \infty} e^{\frac{\sigma_m(\beta)}{m}} = e^{c(\tau)}.$$

In particular, μ does not depend on $\beta \in [y_n]$.

We claim that $\mu \geq \lambda$. Let $n \geq 0$. Since λ^n is the dilation at ζ of the mapping f^n , we have, for any $w \in \mathbb{B}^q$ (see e.g. [1]),

$$n\log\lambda = \liminf_{z \to \zeta} (k_{\mathbb{B}^q}(w, z) - k_{\mathbb{B}^q}(w, f^n(z))).$$

Since

$$k_{\mathbb{B}^q}(w,z) - k_{\mathbb{B}^q}(w,f^n(z)) \le k_{\mathbb{B}^q}(z,f^n(z)),$$

we have that $n \log \lambda \leq \sigma_n(\beta)$, that is, $\lambda \leq e^{\frac{\sigma_n(\beta)}{n}}$. Thus $\mu \geq \lambda$.

The automorphism τ is hyperbolic since the dilation at its Denjoy–Wolff point is equal to $e^{-c(\tau)}$ and

$$e^{-c(\tau)} = \frac{1}{\mu} \le \frac{1}{\lambda} < 1.$$

There exists (see e.g. [1, Proposition 2.2.11]) a biholomorphism $\gamma: Z \to \mathbb{H}^k$ such that $\varphi := \gamma \circ \tau \circ \gamma^{-1}$ is of the form (8.1). Setting $h := \ell \circ \gamma^{-1}$ we have that $(\mathbb{H}^k, h, \varphi)$ is also a canonical pre-model for f associated with $[y_n]$.

We now address the regularity at ∞ of the intertwining mapping h. Let (z_n, w_n) be a backward orbit in \mathbb{H}^k for τ . Then (z_n, w_n) converges to ∞ and there exists C > 0 such that

$$k_{\mathbb{H}^k}((z_n,w_n),(z_{n+1},w_{n+1})) \leq C, \quad \text{and} \quad k_{\mathbb{H}^k}((z_n,w_n),(z_n,0)) \leq C.$$

Clearly $g(z_n, w_n)$ is a backward orbit for f which converges to $\zeta \in \partial \mathbb{B}^q$. Then [4, Theorem 5.6] yields the result.

Theorem 7.5 yields that $h(\mathbb{H}^k) = V_0([y_n])$. Let $x \in V_0([y_n])$. Then there exists a backward orbit $(w_n) \in [y_n]$ starting at x, which clearly converges to ζ . By Lemma 7.4 the backward orbit (w_n) has bounded step, and thus $V_0([y_n]) \subset \mathcal{S}(\zeta)$.

Let $\beta := (w_n)$ be a special and restricted backward orbit in $[y_n]$ converging to ζ . Then the same proof as in [3, Proposition 4.12] shows that

$$\log \mu = \lim_{m \to \infty} \frac{\sigma_m(\beta)}{m} = \log \lambda.$$

We leave the following open questions.

Question 8.4. With notations from the previous theorem, does the identity $\lambda = \mu$ always hold?

Question 8.5. Let $f: \mathbb{B}^q \to \mathbb{B}^q$ be a holomorphic self-map and let $\zeta \in \partial \mathbb{B}^q$ be a boundary repelling fixed point with dilation $1 < \lambda < \infty$. By [23, Lemma 3.1], if ζ is isolated from other boundary repelling fixed points with dilation less or equal than λ , then $\mathcal{S}(\zeta) \neq \emptyset$. Is the same true if the point ζ is not isolated?

Question 8.6. Let $f: \mathbb{B}^q \to \mathbb{B}^q$ be a parabolic self-map and let $p \in \partial \mathbb{B}^q$ be its Denjoy-Wolff point. Let (y_n) be a backward orbit with bounded step which converges to p. Let (Z, ℓ, τ) be a canonical pre-model associated with $[y_n]$. Clearly τ cannot be elliptic. Is τ parabolic? In the unit disc, it follows from [26, Theorem 1.12] that this is true.

References

- [1] M. Abate, Iteration theory of holomorphic maps on taut manifolds, Mediterranean Press, Rende (1989).
- [2] L. Arosio, Abstract basins of attractions, preprint (arXiv:1502.07906).
- [3] L. Arosio, The stable subset of a univalent self-map, preprint (arXiv:1502.07901).
- [4] L. Arosio, F. Bracci, Canonical models for holomorphic iteration, Trans. Amer. Math. Soc. (to appear) (arXiv:1401.6873).
- [5] L. Arosio, F. Bracci, H. Hamada and G. Kohr, An abstract approach to Loewner chains, J. Anal. Math. 119 (2013), 89–114.
- [6] F. Bayart, The linear fractional model on the ball, Rev. Mat. Iberoam. 24 (2008), no. 3, 765-824.
- [7] P. S. Bourdon, J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997).
- [8] F. Bracci, Fixed points of commuting holomorphic mappings other than the Wolff point, Trans. Amer. Math. Soc. **355** (2003), no. 6, 2569–2584.
- [9] F. Bracci, G. Gentili, Solving the Schröder equation at the boundary in several variables, Michigan Math. J. 53 (2005), no. 2, 337–356.
- [10] F. Bracci, G. Gentili, P. Poggi-Corradini, Valiron's construction in higher dimensions, Rev. Mat. Iberoam. 26 (2010), no. 1, 57–76.
- [11] F. Bracci, P. Poggi-Corradini, On Valiron's Theorem, Future Trends in Geometric Function Theory. RNC Workshop Jyväskylä, Rep. Univ. Jyväskylä Dept. Math. Stat. 92 (2003), 39–55.
- [12] F. Bracci, R. Tauraso, F. Vlacci, Identity principles for commuting holomorphic self-maps of the unit disc, J. Math. Anal. Appl 270 (2002), 451–473.
- [13] C. C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), no. 1, 69–95.
- [14] C. C. Cowen, Commuting analytic functions, Trans. Amer. Math. Soc. 283 (1984), 685–695.
- [15] C. C. Cowen, B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, FL, 1995.
- [16] C. de Fabritiis, Commuting holomorphic functions and hyperbolic automorphisms, Proc. Amer. Math. Soc. 124 (1996) no. 10, 3027–3037.
- [17] C. de Fabritiis, A. Iannuzzi, Quotients of the unit ball of \mathbb{C}^n for a free action of \mathbb{Z} , J. Anal. Math. 85 (2001), 213–224.

- [18] J. E. Fornæss, N. Sibony, Increasing sequences of complex manifolds, Math. Ann. 255 (1981), no. 3, 351–360.
- [19] M. H. Heins, A generalization of the Aumann-Carathéodory "Starrheitsatz", Duke Math. J. 8 (1941), 312–316.
- [20] M. Hervé, Quelques propriétés des applications analytiques d'une boule à m dimensions dans elle-même, J. Math. Pures Appl. 42 (1963), 117–147.
- [21] T. Jury, Valiron's theorem in the unit ball and spectra of composition operators, J. Math. Anal. Appl. 368 (2010), no. 2, 482–490.
- [22] G. Königs, Recherches sur les intégrales de certaines équations fonctionnelles. Ann. Sci. École Norm. Sup. (3) 1 (1884), 3–41.
- [23] O. Ostapyuk, Backward iteration in the unit ball, Illinois J. Math. 55 (2011), no. 4, 1569–1602.
- [24] P. Poggi-Corradini, Angular derivatives at boundary fixed points for self-maps of the disk Proc. Amer. Math. Soc. 126 (1998), no. 6, 1697–1708.
- [25] P. Poggi-Corradini, Canonical conjugations at fixed points other than the Denjoy-Wolff point Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 2, 487–499.
- [26] P. Poggi-Corradini, Backward-iteration sequences with bounded hyperbolic steps for analytic self-maps of the disk Rev. Mat. Iberoamericana 19 (2003), no. 3, 943–970.
- [27] P. Poggi-Corradini, On the uniqueness of classical semiconjugations for self-maps of the disk Comput. Methods Funct. Theory 6 (2006), no. 2, 403–421.
- [28] C. Pommerenke, On the iteration of analytic functions in a half plane, J. London Mat. Soc. (2) 19 (1979), no. 3, 439–447.
- [29] G. Valiron, Sur l'itération des fonctions holomorphes dans un demi-plan, Bull. Sci. Math. 47 (1931), 105–128.

L. Arosio: Dipartimento Di Matematica, Università di Roma "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Roma, Italy

E-mail address: arosio@mat.uniroma2.it