

Comprehensive Testing Procedures for Robust Avionics

Team 21 Project Technical Presentation to the 2019 Spaceport America Cup

> Mei Qi Tang McGill Rocket Team, Montreal, Quebec, H3A0E9

Agenda

Avionics Sub-team Avionics Systems Configuration Testing

- Preliminary anechoic chamber tests
- Radiation pattern tests

Integration Testing

- Spectrum Analyzer tests
- Preliminary short-range tests
- Long-range tests

Summary and Impacts Follow-on work

SRAD Antenna design

AVIONICS SUB-TEAM

Avionics sub-team

Background

- Lost both SRAD and COTS telemetry and did not recover previous 30K rocket
- Undocumented test setup, procedures, and results

Importance of robust testing

- Testing COTS modules provide a reference for future SRAD designs
- Quantitative measurement of the performance. More than just "it works" or "it doesn't work"
- Repeatable tests allows possibility of optimization and iterative design

AVIONICS SYSTEMS

Avionics Systems

Requirements

- Telemetry link for full duration of flight, coverage for up to 20 km
- Dual-stage e-match ignition for drogue and main parachute deployment

Overview

- SRAD Telemetry
- COTS Telemetry
- Ejection
- Power Management
- Ground-station

Project Caladan

Avionics bay

Ground-Station

SRAD Telemetry

COTS Telemetry

CONFIGURATION TESTING

Overview

Drives design decisions to select the optimal configuration of individual subsystems

Preliminary anechoic chamber tests

- Easy to setup, fast test results (8 readings in 30 s)
- Implemented to be remote-controlled with automated data recording and post-processing
- Only requires one person to operate test

Example configurations

- Simulates link at various flight stages
- Measuring effects of different materials

Apogee (vertical 180°)

Horizontal position

Launchpad and landing (horizontal 0°)

Vertical position

Without fiberglass body tube

Conductive mounting surface

TSM

Example test results

Test 3: FXP400 patch antenna 5 cm close to the carbon fiber tube

Test 4: FXP400 patch antenna 20 cm away from the carbon fiber tube

Test 5: FXP400 patch antenna 45 cm far away from the carbon fiber tube

Test 8: Test 4 on double layer of fiberglass tubes

Test 11: Test 8 with a 7cm x 15cm copper ground plane behind antenna

- Test 3 vs. 4&5: being close to the carbon fiber tube attenuates the signal
- Test 8 vs. 4: double layer of fiberglass also attenuates the signal
- Test 11: ground plane behind the antenna does not improve its performance

Antenna radiation pattern test

- Used the NSI-MI Technologies Near-Field test equipment in the anechoic chamber
- Detailed and precise measurement of antenna's radiation pattern
- 30 min each test run, fully automated by test equipment
- Tested with top configurations selected from preliminary tests

FXP400 facing up on fiberglass tube ending with carbon fiber coupler

 Slight deviations from COTS antenna's datasheet due to surrounding materials and bent shape to match curvature of rocket body tube

Datasheet (simulated pattern)

Measured pattern

Diagonal link (45°)

Vertical link (180°)

6 6 8 8 8 8

Horizontal link (0°)

FXP400 facing down on fiberglass tube ending with carbon fiber coupler

Less directional, more probability of maintaining stable link throughout flight

Slightly rotated view (30°)

Straight view (0°)

Diagonal link (45°)

Vertical link (180°)

INTEGRATION TESTING

Overview

- Aims at optimizing for the best performance of the overall system, verifying any effect of interference between individual subsystems
- Simulates in-flight conditions with all subsystems integrated and assembled

Spectrum analyzer tests

- Displays power level of an input signal over specified frequency range
- Can measure the noise floor level and signal-to-noise ratio
- Can observe interference like intermodulation

Example of interference: intermodulation distortion

- Higher noise floor
- Out-of-band frequencies

Preliminary short-range tests

- 15 -100 meters distance
- Easy to setup and execute test: can be tested by 1-2 people
- Simulated long-range with added attenuators (40-80 dB)
- Used shielding to minimize leakage from adding too much attenuation

Long-range tests

- 10 and 15 km line-of-sight distance
- Logistically heavy: need minimum 5 people to transport test setup, hold antennas and record data
- Harder to vary test setups and configurations
- Test all telemetry systems with their respective ground-stations
- Measure the Received Signal Strength Indicator (RSSI) and throughput
- Verify the effect of interference caused by individual subsystems
- Spin test to observe the effect of potential spinning of the rocket over its dominant axis

Transmitter and receiver setup

Transmitter (higher altitude)

Receiver (ground)

Example test result

- RSSI is about 2dB lower in the horizontal position
- RSSI did not seem to be affected when powering all radios at the same time, full power

Spin test

SUMMARY AND IMPACTS

Summary and Impacts

Summary

- Started testing previous design year's modules to serve as reference
- Kept testing iteratively throughout the year to make sure every design decision integrates well with the rest of the systems
- All design decisions were based on extensive test results

Impacts

- Iterative designs instead of re-inventing the wheel
- Quantitative assessment of performance allows deeper understanding of why a system does not behave as expected and how to improve it

Summary and Impacts

Additional tests

- We are still looking for a vibration test facility
- 5k feet test flight on May 18th

FOLLOW-ON WORK:

SRAD ANTENNA DESIGN

Follow-on work

SRAD Antenna design: Meander line patch antennas

- Preliminary SRAD antenna design
- Simple solution given size and shape constraint but not very performant
- Learned how to use antenna simulation software and introduced to basic antenna design

Antennas – Telemetry (R&D)

TFM

S Parameter Chart 1

Design C

- Simulated with a lumped port
- Really good bandwidth and matching
- Negative gain

Antennas – Telemetry (R&D)

Design A

Return loss/s11:

• -24.2 dB

Peak gain:

• -3.66 dBi

Bandwidth:

• 30 MHz

Dimensions:

• 78 mm x 152.5 mm x 0.1524 mm

Design B

Return loss/s11:

• -11.6 dB

Peak gain:

• -5.97 dBi

Bandwidth:

• 25 MHz

Dimensions:

• 54.95mm x 133 mm x 0.1524mm

Design C

Return loss/s11:

• -40 dB

Peak gain:

• -3.37dBi

Bandwidth:

• 82.3MHz

Dimensions:

• 54.95mm x 168.5 mm x 0.188mm

Follow-on work

SRAD Antenna design: Beamforming patch antenna array

- Antenna array can steer its radiation beam through phase synchronization at different stages of flight
- Allows for better performance due to higher directivity controlled to beam towards the ground station
- Way more complicated and will require bigger mounting surface

