МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Лабораторная работа №3.6.1

Спектральный анализ электрических сигналов

выполнил студент 006 группы ФЭФМ Штрайх Роберт Цель работы: изучить спектры электрических сигналов.

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье.

1 Теоретическое введение

Разложение сложных сигналов на периодические колебания

Метод для описания сигналов. Для него используется разложение в сумму синусов и косинусов с различными аргументами или, как чаще его называют, разложение в ряд Φ урье.

Пусть задана функция f(t), которая периодически повторяется с частотой $\Omega_1=\frac{2\pi}{T}$, где T — период повторения импульсов. Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(n\Omega_1 t\right) + b_n \sin\left(n\Omega_1 t\right) \right] \tag{1}$$

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n)$$
 (2)

Если сигнал четен относительно t=0, так что f(t)=f(-t) в тригонометрической записи остаются только косинусные члены. Для нечетной наоборот.

Коэффициенты определяются по формуле

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt$$
(3)

Здесь t_1 — время, с которого мы начинаем отсчет.

Сравнив формулы (1) и (2) можно получить выражения для A_n и ψ_n :

$$A_n = \sqrt{a_n^2 + b_n^2}; \psi_n = \arctan \frac{b_n}{a_n}$$
 (4)

Периодическая последовательность прямоугольных импульсов

Введем некоторые величины:

$$\Omega_1 = \frac{2\pi}{T},$$

где T — период повторения импульсов.

Коэффициенты при косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}$$
 (5)

Здесь V_0 - амплитуда сигнала.

Поскольку наша функция четная, то $b_n = 0$.

Пусть у нас τ кратно T. Тогда введем ширину спектра, равную $\Delta \omega$ — расстояние от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедится при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi \Rightarrow \Delta\nu\Delta t \simeq 1 \tag{6}$$

Периодическая последовательность цугов

Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике согласно формуле (3) равен

$$a_{n} = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_{0} \cos(\omega_{0}t) \cdot \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin\left[\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}} + \frac{\sin\left[\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}} \right)$$

$$(7)$$

Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$.

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t \tag{8}$$

Коэффициентом m называется глубина модуляции. При m<1 амплитуда меняется от минимальной $A_{min}=A_0(1-m)$ до максимальной

 $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{9}$$

Простым тригонометрическим преобразованием уравнения (9) можно найти спектр колебаний

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t$$
 (10)

2 Ход работы

Исследование спектра периодической последовательности прямоугольных импульсов

Устанавливаем прямоугольные колебания с $f_{\text{повт}} = 1$ к Γ ц и длительностью импульса $\tau = 100$ мкс.

Получаем спектр сигнала и, изменяя либо τ , либо $f_{\text{повт}}$, наблюдаем, как он изменяется.

Ширина спектра $\Delta \nu$ в случае изменения $f_{\text{повт}}$ от 1 к Γ ц до 2 к Γ ц не изменилась, но уменьшилась при повышении τ . $\delta \nu$ увеличилась при повышении $f_{\text{повт}}$.

Проведем измерения зависимости ширины спектра $\Delta \nu$ от длительности импульса τ при $f_{\text{повт}}=1$ к Γ ц:

Таблица 1: Зависимость $\Delta \nu$ от τ

τ , MKC	40	60	80	100	120	140	160	180	200
$\Delta \nu$, к Γ ц	25	16,5	12,5	10	8,5	7	6,2	5,5	5

$$\Delta \nu \tau \approx 1 \pm 0.01$$

Формула (6) выполняется довольно точно.

Измерим частоты и амплитуды гармоник при разных τ :

Таблица 2: $f_{\text{повт}}=1$ к Γ ц, au=50 мкс

n	0	1	2	3	4	5	6	7	8
$\Delta \nu$, к Γ ц	0,009	1,002	2,001	3,002	4,008	5,008	6,011	7,01	8,01
a_n , мВ	110,6	66,89	68,51	66,2	63,66	59,96	56,26	52,56	47,25
9	10	11	12	13	14	15	16	17	18
8,999	9,989	10,99	11,99	12,99	14	14,99	16	17	18,01
43,09	40,2	36,51	33,04	29,11	24,72	20,79	15,71	11,32	7,625

Таблица 3: $f_{\text{повт}}=1$ к Γ ц, au=100 мкс

n	0	1	2	3	4	5	6	7	8
nu, кГц	0,006	1,002	2,011	3,013	3,996	5,005	6,001	7,008	7,998
ап, мВ	219,2	137,4	129,6	118	102,3	84,76	65,96	46,9	29,34
9	10	11	12	13	14	15	16	17	18
9,007	10,01	11	11,99	12,99	14	15	16	17	18,01
13,63	0,6932	11,32	20,1	25,18	29,34	28,88	25,65	19,64	13,63

Построим по данным таблиц картины спектров и график $\Delta \nu \left(\frac{1}{\tau}\right)$.

Рис. 1: Вид спектра (прямоугольные импульсы)

Из графика 2:

$$k = \Delta \nu \tau = 1$$
,

что является частным случаем соотношения неопределенности в квантовой механике.

Рис. 2: $\Delta \nu (1 \backslash \tau)$

Исследование спектра периодической последовательности цугов гармонических колебаний

Проанализируем, как меняется картина спектра при увеличении длительности τ импульса вдвое от 100 до 200 мкс ($f_{\text{повт}}=1$ к Γ ц):

Рис. 3: Вид спектра (цуги)

Установим длительность импульса $\tau=100$ мкс, будем менять несущую частоту ν_0 ($\nu_0=10,\,25,\,40$ кГц):

Рис. 4: Изменение несущей частоты ν_0

Установим несущую частоту $\nu_0=30$ к Γ ц, длительность импульса $\tau=100$ мкс. Для разных частот повторения импульсов $f_{\rm повт}$ определим расстояние $\delta \nu$:

Таблица 4: Зависимость $\delta \nu(f_{\text{повт}})$

$f_{\text{повт}}$, к Γ ц	0,5	1	2	4	5
$\delta \nu$, к Γ ц	0,5	1	2	4	5

$$\frac{\delta \nu}{f_{\text{\tiny HOBT}}} \approx 1$$