

NEW INDUSTRIAL LIGHT,

THE "BEACON,"

FOR

Contractors, Engineers, Shipbuilders, Dockyards, Landing Stages, Railway Sidings, &c.

Prices—£15 15s. to £16 10s.

Hydro-carbon Oil for ditty, from 31d. to 41d. per gallon.

THE HARDEN STAR LEWIS & SINCLAIR COMPANY

LIMITED,

114, CANNON STREET, LONDON, E.C.

ELLIOTT BROTHERS,

SOLE ADDRESS:-

101 & 102, ST. MARTIN'S LANE,

LONDON, W.C.

(Late of 449, Strand), MANUFACTURERS OF

Mathematical, Optical, Philosophical, Electrical, and

Engineering Instruments,

TO THE ADMIRALTY, WAR OFFICE, INDIAN GOVERNMENT,

HEHTARY SOLLEGES, POST OFFICE TELEGRAPHS, CROWN COLONIES, DRDNANCE SURVEY, ALL THE PRINCIPAL RAILWAY,

TELEGRAPH, AND ELECTRIC LIGHT COMPANIES, AND MOST OF

LLUSTRATED CATALOGUES MAY BE OBTAINED THE FOREIGN GOVERNMENTS.

TELEPHONE No. 3852. FELEGRAMS "OHM," LONDON.

ON APPLICATION.

IIGHEST AWARD "GRAND PRIX," BUSINESS HOURS, 9.30 TO 6.30. SATURDAIS, 9.30 TO 2. PARIS EXHIBITION, 1889.

Vanday. Variday. Variday. Variday. Variday.	Sep. Sep. No.	
- Koplaning - Koblani - Ko	A. C.	

IRON MERCHANTS, DREW, & CO., ENGINEERS AND ROWNSON,

Contractors to B.W. Gobernment.

STANCHEONS, ROOFS, GIRDERS, BUILDINGS. JOISTS, PLATES, IRON AND ROLLED BRIDGES, COLUMNS TANKS,

OFFICES AND WAREHOUSES-225, UPPER THAMES STREET,

PRINCE'S WHARF, COMMERCIAL ROAD, LAMBETH, S.E. Telegraíns, "ROWNSON, LONDON." Telephone, No. 1901. WORKS AND IRON STORES-

METAL." "DELTA

(TRADE MARK.)

STRONG AS STEEL. DOES NOT DRAW VERDIGRIS. TOUGH AS WROUGHT-IRON.

Resistance all kinds and Work. to Corrosion recommend it for Durability, of Engineering great Strength, Its

Rods, Piston Rods, Shafts, Plungers, Rams, Spindles, Cranks, Bolts Air-pump Forged and Nuts, &c., &c. METAL DELTA

Discs, Blades, Centrifugal Pump Propeller Anchors, Chains, &c., &c. METAL Cast Propellers, and Turbine Cylinders, Bearings, OA DELTA

Valves, Parts of Locks, Sewing Machines, Wheels, Bevel METAL Stamped Valve-seats, Keys, DELTA

DELTA METAL Bars, Angles, Tees, Sheets (corrugated Bicycles, &c., &c.

ags, Stampings, Rolled square inch tensile, 30 per cent. tensile, 30 per cent. Elongation, of Forgings, 35 Tons per Elongation. Strength

THE DELTA METAL CO., LTD., 110, CANNON ST., LONDON, E.C.

POCKET-BOOK

OF

USEFUL FORMULÆ & MEMORANDA

FOR

Cibil and Mechanical Engineers.

BY

MOLES WORTH, H SIR GUILFORD

CONSULTING ENGINEER TO THE GOVERNMENT OF INDIA FOR STATE BALLWAYS. KNIGHT COMMANDER OF THE ORDER OF THE INDIAN EMPIRE; MEMBER OF THE INSTITUTION OF CIVIL ENGINEERS, UBER OF THE INSTITUTION OF MECHANICAL ENGINEERS, FELLOW OF THE UNIVERSITY OF CALCUTTA MEMBER OF THE INSTITUTION OF

TWENTY-SECOND EDITION.

Revised and Enlarged,

LONDON: E. & F. N. SPON, 125, STRAND. NEW YORK: 12, CORTLANDT STREET.

MDCCCLXXXVIII.

Digitized by the Internet Archive in 2012 with funding from Gordon Bell

http://archive.org/details/molesworthspocke00sirg

PREFACE

THE FIRST EDITION.

Few are gifted with a memory so retentive, as not to require the aid of written formulæ, in working out the numerous calculations constantly necessary in the profession of an Engineer. But I am not aware of any book providing formulæ, to which on all ordinary emergencies he may easily refer, and which concisely and comprehensively furnish data for the various and rapid calculations so constantly needful in his work.

To a certain extent these requirements are supplied by Adcock's, Weale's, and Templeton's pocket-books; but these manuals, however generally useful and admirable, are not sufficiently comprehensive and portable for the purposes

aimed at in the present publication.

When younger members of the profession have asked me to recommend some concise and comprehensive manual for ordinary operations, I have

felt myself unable to make a satisfactory selection.
I had myself experienced the want of such a manual, and the consequent necessity of labour in which what I needed was frequently either and search into various sources of information; mixed up with extraneous matter, arranged in unpractical form, or clothed in mathematical terms 80 abstruse as to render it almost valueless.

This experience has led me from year to year to compile and note down for my own use many formulæ and memoranda. These, after considerable additions and careful revision, I now publish as a pocket manual, with the hope that other engineers may find it as useful to them as it has been to me.

3.6th and 1.7th powers for those numbers which are most likely to be required; and, that the book may in itself be complete for use when no other reference is at hand, I have added short tables of Logarithms, Natural and Logarithmic Sines, &c., Square and Cube Roots, Areas and Circumferences of Circles, &c., which are quite sufficient for formulæ have been added an easy approximate rule. Throughout the book there is scarcely a formula which cannot be mastered by any one possessing little more than a mere knowledge of arithmetic. To facilitate the calculations of hydraulic formulæ, the crushing strains on columns and other formulæ, I have calculated the 5th, 4th, possible been avoided, and, in many cases, to the Complex and difficult formulæ have as far as

new shape, are not original, but merely simplified by me, so as to give the same results as before with less labour and complication. Some are inall ordinary calculations. Many of the formulæ, though appearing in a

serted unchanged. Others I have deduced from

ledgment to many authors who have been consulted, but whose names could not be conveniently enumerated, I cannot deny myself the niently enumerated, I cannot deny myself the satisfaction of recording my special obligations to my friend, Mr. Henry Warriner; not only for many kind and useful suggestions in the revision of this book for publication, but for much valuable and practical information, which I have derived from him in the course of my professional conpractical experience of their usefulness. While in justice making a general acknownection with him in past years.

GUILFORD L. MOLESWORTH.

MOLESWORTH'S

Bocket-book of Engineering Formula.

CHAIN SURVEYING.
INACCESSIBLE POINTS.

By Fig. 1. Measure off perpendiculars A C, D E, ranging the point C in line with E B; then

$$AB = \frac{AC \times AD}{DE - AC}.$$

Fix any line H K and bisect it in range I in line By Fig. 2. Fix any line H K and J. Make JL = JF, and range I i H L and with JG; then LI = FG.

Set off O M at right angles to O P : then By Fig. 3. Set off O M at rig and M N at right angles to M P

$$OP = \frac{OM^2}{ON}$$

By Fig. 4. Set off RT at right angles to R Q and bisect RT in U. Set off TV at right angles to RT until V ranges in line with Q U; then

CHAIN SURVEYING-continued. ACREAGE. COMPUTATION OF

and right, the remaining figures will be acres; multiply the 5 figures so cut off by 4, and again cut off 5 figures, and the remainder is in roods; multiply the base of each triangle in links by half the perpendicular in links; cut off 5 figures to the the 5 figures by 40, and again cut off for perches. Divide the area into convenient triangles, multiply

RANGING SURVEY LINES. OBSTACLES IN

If it be possible to see over the obstacle but not at right angles to the line, then AB = CD. If it be not possible either to chain or see over the obstacle, lay off the lines EF, A C, equal to each other, and at right angles to the line (Fig. 6); range the points D H in line with E C, and set off the lines D B, H G, equal to A C and E F, and at right angles to the line E H, the continua-(Fig. AC and BD then B and G are points for ranging t tion of the line F A, and A B = CD. equal to each other, and lay off over it, to chain

CHAIN. THE TO SET OUT A RIGHT ANGLE WITH

for the links perpendicular and 50 for the hypothenuse. Take 40 links on the chain, 30

For right-angled triangles, see Trigonometry.

SURVEYING. NUMBERS IN USEFUL

rse.	
Converse.	.66 .22 43560 4840 5280 1760 80
Multiplier.	1.515 4.545 -0000229 .0002066 .00019 .00057
For Converting	Feet into links. Yards "links. Square feet "acres. Square yards "acres. Feet "miles. Yards "miles.

For Table of links and feet, see "Links."

CHAINING ON SLOPES.

Angle of slope with horizon.

horizontal. Length of line chained on the slope. Length of line reduced to the

VALUES OF TABLE SHOWING

 $K = \cos A$

K:	.819 .809 .799 .777	1
A.	35 35 36 40 40	
K.	.875 .866 .857 .839	
A.	33 33 34 34 34 34	
K.	.92 .913 .906 .899 .891	1
Α.	0 24 25 25 26 27 28	
Ä	.956 .951 .945 .94 .933	ı
A.	0 11 11 11 11 11 11 11 12 12 12 12 12 12	1
K.	.982 .978 .974 .966	k
Ą I	0 111 12 113 114 115 116 116	ı
Ж.	.996 .992 .992 .988 .988	
A.	0 2 9 2 8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	l

M

TRIGONOMETRICAL SURVEYING.

1.—Given the line B and the angles c and a, to Find the angle $b = 180^{\circ} - (c + a)$, then find A.

 $A = B \frac{\sin \alpha}{\sin b};$

 $A = B \frac{\sin (180^{\circ} - a)}{\sin (180^{\circ} + a)}$, if the angle a be greater sin. b than 90°. 2.—Given the lines A, B, and an opposite angle a, to find the angle b. Sin. $b = B \frac{\sin a}{a}$

3.—Given the lines B and C, and the included angle a, to find the side A;

$$A = \sqrt{B^2 + C^2 - 2BC\cos a}$$

CURVATURE AND REFRACTION.

D = distance in statute miles.

= curvature in feet = $\frac{2}{3}$ D² approximately. - R = curvature less refraction = $\frac{4}{7}$ D² proximately.

D.	C.	C - B.	D.	C.	C - B.	D.	C.	C - B.
-	99.	.57	9	1	20.27	12	96	82
57	2.67	2.29	10		28.00	14	130	112
8	9	5.14	00		36.57	16	170	146
4	19.01	9.14	6	54	46.30	18	216	
2	19.91	14.29	10		57.14	20	266.7	228.6

10

THE DIS-WHEN THAT AT FEET FOOT N DISTANCE BY SUBTENDED IS KNOWN. THE FIND ANGLE TANCE

Distance =
$$\frac{3437 \cdot 7}{\Lambda}$$

A being the angle in minutes.

MEASUREMENT OF HEIGHTS.

$$CD = \frac{AB}{\cot a. CAD - \cot a. CBD}.$$

APPROXIMATE MEASUREMENT OF HEIGHTS INSTRUMENT. AN WITHOUT

level eye from the length of line first at one extremity, and and ascertain the distance x in the same manner the other extremity of D the staff and the object it at which the CO length from convenient deduct the height of the ascertain the distance y of sight cuts the top of at erect a staff then erect the staff the staff to find h. Measure any ground;

$$I = \frac{Dh}{x - y} + h + \mathbb{E}$$

SEXTANT. Неиснтя with m H. MEASUREMENT OF

	Angle,	45 0 , 26 34 18 26 14 2 11 19 9 28 7 7 8 8 5 4 3 4 3 6 5 4 3 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
must.)	Divisor.	1000410980
(o. I. Hurst.	Angle.	45 0 63 26 73 34 75 58 78 41 80 32 82 52 84 17
	Multiplier.	10865401

the height will equal the distance multiplied or Set the sextant to any angle in the Table, and number by the divided, as the case may be, opposite to it.

REDUCTION OF BASE LINES TO LEVEL OF SEA. L = Length of base line measured in feet.

Height of base line above sea level in feet. = y

Correction in feet to be subtracted from the length of the base line.

20,890,000 Ih

A PROTRACTOR. PLOTTING ANGLES WITHOUT

On a given line prick off 100 with any conve-ent scale, and from the point so pricked off lay off at right angles with the same scale the natura tangent due to the angle (see Table of Natural Sines, &c.); or strike out a portion of a circle with radius 100 and lay off a chord = 2 sin, of half the angle required. nient

HORIZON. DIP OF

Distance of horizon in statute miles. Height of observer's eye in feet. Dip of horizon in seconds. MZ H

with nautical miles, Varying Approximate, do. 57.4 V H. 11

·498 S2. $N = 1.23 \, \checkmark$ ·663 N² temperature S = 1.42 V H. TABLE OF DIP AND DISTANCE OF HORIZON

VARIOUS HEIGHTS.

Dip.	11 11			9 34									
N.		11		12.3							55		8.44
23				14.14									
H.		80	90	100	150	200	300	400	500	1000	2000	3000	4000
Dip.	11 11			3 42									
N.		2.75		4.76									
s,				5.49									
H.		20	10	15	20	25	30	35	40	45	20	09	20

MARINE SURVEYING.

and move until the To determine the posttake simultaneously the bearing of three shore, BCD, plot the angles on Sounding A them on plan until the lines cut the points BCD. known objects on tracing paper, of any when affoat tion

REDUCTION OF SOUNDINGS.

be subtracted from the sounding The time between high and low water. The time of taking the sounding from low water. $\frac{180 \, t}{1}$ when it is less than 90°. $(1 + \cos \frac{180 t}{T})$ when $\frac{180 t}{T}$ exceeds 90°. K = Correction to be subtraction it to low water. Total rise of tide in feet. $(1-\cos^{-1})$

TIDES.

rivers it drives the river-waters back towards their source; after flowing for 6 hours the sea appears to rest for a quarter of an hour, after which it begins to ebb for 6 hours more, then there is another seeming pause for a quarter of an The sea flows for about 6 hours from south to north the northern hemisphere, so that entering the mouths

The sea ebbs and flows twice a day, falling gradually later by about 48 minutes, each period of flux and reflux being on an average about 12 hours and 24 minutes.

TIDAL PHENOMENA.

The elevation towards the moon slightly exceeds the opposite one, and the intensity of the tidal wave diminishes

from the equator towards the poles.

From the action of the sun every day, the sea is twice depressed and twice elevated, following the action of the moon,

Spring tides are caused by the combined action of the sun and moon when both bodies are on the same side of the earth; neap tides by the action of one partly neutralizing that of the other, when they are in the quadratures subtending an angle

The greatest elevations and depressions are not observed until the second or third day after full or new moon,

TIDAL PHENOMENA—continued.

When the sun and moon are in conjunction and near the equinoxes the tides are greatest.

The action of the sun and moon are greater the nearer those

bodies are to the earth.

Particular situations of shores, capes, straits, or rivers,

disturb these general rules.

The mean force of the moon to cause tides is about 4½ times that of the sun. Therefore, if the moon produce a tide of 9 feet, the sun will produce a tide of 2 feet; from which it follows that the spring tides will be 11 feet, and the neap tides 7 feet high. Tides are very irregular when passing over shoals into funnel-shaped channels; at Chepstow, in the Bristol Channel, the tide rises 50 feet, and in the Bay of Fundy, 70 feet.

are produced ought to be extended from east to west at To allow tides their full motion, the ocean in which they

least 90°

LEVELLING WITH THERMOMETER.

Temperature of boiling water at any station (in degrees Fahr.) deducted from 212°.

Height of the station above the level of the sea in feet. H =

 $520 B + B^2$.

This result is subject to the same correction for of the barometer by multiplying the difference of the temperature of the atmosphere as the reading

neight so found by K.

For values of K, see "Levelling with Baro-

meter."

The values of K vary approximately in the proportion of '0011 per degree Fahr.

TABLE OF FEET CORRESPONDING WITH THE BOILING POINT OF PURE WATER IN DEGREES AND DECIMALS OF A DEGREE FAHR.

Boiling point at the level of the sea being assumed at 212°. $T+t=64^{\circ}$.

					Decima	als of a de	gree Fah	r.				70.00	-
	Deg.	.0	•1	•2	•3	•4	•5	.6	.7	-8	.9	Diff.	Deg.
•	0	feet.	feet.	feet.	feet.	feet.	feet.	feet.	feet.	feet.	feet.		0
H	211	521	469	417	365	313	260	208	156	104	52	5.21	211
FORMULÆ	210	1044	992	939	887	835	782	730	678	625	573	5.23	210
5	209	1569	1516	1464	1411	1359	1306	1254	1201	1149	1096	5.25	209
W.	208	2096	2043	1991	1938	1885	1832	1780	1727	1674	1622	5.27	208
OF	207	2625	2572	2519	2466	2413	2360	2308	2255	2202	2149	5.29	207
IT!	206	3156	3103	3050	2997	2944	2890	2837	2784	2731	2678	5 °31	206
rh	205	3689	3638	35 82	3529	3476	3422	3369	3316	3263	3209	5.33	205
EERING	204	4224	4170	4117	4063	4010	3956	3903	3849	3796	3742	5.35	204
35	203	4761	4707	4654	4600	4546	4492	4439	4385	4331	4278	5.37	203
區	202	5300	5246	5192	5138	5084	5030	4977	4923	4869	4815	5.39	202
8	201	5841	5787	5733	5679	5625	5570	5516	5462	5408	5354	5.41	201
4	200	6384	6330	6275	6221	6167	6112	6058	6004	5950	5895	5.43	200
13	199	6929	6874	6820	6765	6711	6656	6602	6547	6493	6438	5.45	199
ENGIN	198	7476	7421	7367	7312	7257	7202	7148	7093	7038	6984	5.47	198
	197	8025	7970	7915	7860	7805	7750	7696	7641	7586	7531	5.49	197
OF	196	8576	8521	8466	8411	8356	8300	8245	8190	8135	8080	5.21	196
	195	9129	9074	9018	8963	8908	8852	8797	8742	8687	8631	5.23	195
	194	9684	9628	9573	9517	9462	9406	9351	9295	9240	9184	5.55	194
	193	10241	10185	10130	10074	10018	9962	9907	9851	9795	9740	5.57	193
	192	10800	10744	10688	10632	10576	10520	10465	10409	10353	10297	5.59	192

The correction for the temperature of the atmosphere must be made in the same manner as in Barometer readings, by multiplying by K.

Mountain Barometer, CORRECTED OR ANEROID. LEVELLING WITH THE

Reading of barometer at lower station in inches. 11

Temperature of lower station in degrees Reading of barometer at upper station. Fahr. T 11 2

Temperature of upper station. Correction due to T + t. (For value of K, see Table below.) t = K = K

Difference of upper and lower stations in H

 $H = 60000 (\log R - \log r) K$ approximately. feet.

TABLE SHOWING VALUES OF K.

973 70 1.007 100 1.040 130 1.95 976 72 1.009 102 1.042 132 1.95 978 74 1.011 104 1.044 134 1.95 980 76 1.013 106 1.047 136 1.95 984 80 1.018 110 1.049 138 1.95 987 82 1.020 112 1.053 144 1.95 999 84 1.022 114 1.056 144 1.95 993 1.024 116 1.058 146 1.95 998 92 1.027 118 1.060 148 1.95 1.000 94 1.033 122 1.069 156 1.95 1.002 1.036 126 1.069 156 1.95		:	_		4	7+1	id	-	•
.973 70 1.007 100 1.040 130 1.909 102 1.042 132 1.91 1.042 1.32 1.91 1.044 1.34 1.91 1.044 1.34 1.91 1.044 1.34 1.91 1.044 1.34 1.91 1.044 1.34 1.91 1.044 1.34 1.91 1.049 1.34 1.93 1.049 1.34 1.93 1.049 1.34 1.94 1.34 1.949 1.34 1.949 1.38 1.93 1.93 1.049 1.38 1.93 1.93 1.051 1.40 1.93	_			0		0		0	
.976 72 1.009 102 1.042 132 1 .978 74 1.011 104 1.044 134 1 .982 76 1.013 106 1.047 136 1 .984 80 1.016 108 1.049 138 1 .987 82 1.020 112 1.051 140 1 .998 84 1.022 114 1.053 142 1 .999 86 1.024 116 1.058 146 1 .999 88 1.027 118 1.060 148 1 .998 92 1.031 122 1.064 152 1 .999 94 1.033 124 1.067 154 1 .900 94 1.036 126 1.069 156 1	73 7	i	10		1.040	3	.07	9	.10
.978 74 1.011 104 1.044 134 1. .980 76 1.013 106 1.047 136 1. .982 78 1.016 108 1.049 138 1. .984 80 1.018 110 1.051 140 1. .989 84 1.022 114 1.056 144 1. .991 86 1.024 116 1.058 146 1. .993 88 1.027 118 1.060 148 1. .998 92 1.031 122 1.064 152 1. .998 92 1.033 124 1.067 154 1. .000 94 1.033 124 1.069 156 1. .002 166 1.066 1.56 1. 1. 1. 1.	7 976	<u>:</u>	60		•	3	10.	9	.10
.980 76 1.013 106 1.047 136 1.984 1.016 1.049 138 1.03 1.049 138 1.03 1.049 138 1.03 1.049 1.03 1.049 1.03 1.049 1.03 1.049 1.03 1.040 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.069 1.069 1.069 1.069 1.069 1.066 1.064<	978 7	<u> </u>	11		•	3		164	1.111
.982 78 1.016 108 1.049 138 1 .984 80 1.018 110 1.051 140 1 .987 82 1.020 112 1.053 142 1 .999 84 1.024 116 1.058 144 1 .993 88 1.027 118 1.060 148 1 .996 90 1.029 120 1.062 150 1 1.000 94 1.033 124 1.067 154 1 1.002 96 1.036 1.067 154 1	2 086.	<u>-</u>	13		•	3	. 08	9	11.
•984 80 1.018 110 1.051 140 1.98 •987 82 1.020 112 1.053 142 1.98 •991 86 1.024 116 1.058 144 1.99 •993 88 1.027 118 1.060 148 1.98 •996 90 1.029 120 1.062 150 1.99 •998 92 1.031 122 1.064 152 1.99 •000 94 1.033 124 1.067 154 1.96 •002 96 1.036 126 1.069 156 1.96	7 286.	<u>-</u>	91		•	3	. 08	9	11.
•984 80 1.018 110 1.051 140 1 •987 82 1.020 112 1.053 142 1 •989 84 1.022 114 1.056 144 1 •993 86 1.024 116 1.058 146 1 •996 90 1.027 118 1.060 148 1 •998 92 1.031 122 1.064 152 1 1:000 94 1.033 124 1.067 154 1 1:002 96 1.036 126 1.069 156 1	_		_						
.987 82 1.020 112 1.053 142 1. .989 84 1.022 114 1.056 144 1. .991 86 1.024 116 1.058 146 1. .993 88 1.027 118 1.060 148 1. .996 90 1.029 120 1.062 150 1. .998 92 1.031 122 1.064 152 1. .000 94 1.033 124 1.067 154 1. .002 96 1.036 126 1.069 156 1.	-984	i	18	\blacksquare	.05	4	.08	1-	111
.989 84 1.022 114 1.056 144 1 .991 86 1.024 116 1.058 146 1 .993 88 1.027 118 1.060 148 1 .996 90 1.029 120 1.062 150 1 .998 92 1.031 122 1.064 152 1 .000 94 1.033 124 1.067 154 1 .002 96 1.036 126 1.069 156 1	186	i	20		.05	4	.08	10	.12
•991 86 1.024 116 1.058 146 1. •993 88 1.027 118 1.060 148 1. •996 90 1.029 120 1.062 150 1. •998 92 1.031 122 1.064 152 1. •000 94 1.033 124 1.067 154 1. •002 96 1.036 126 1.069 156 1.	989	<u>-</u>	22		.05	4	80.	10	.12
•993 88 1.027 118 1.060 148 1 •996 90 1.029 120 1.062 150 1 •998 92 1.031 122 1.064 152 1 •000 94 1.033 124 1.067 154 1 •002 96 1.036 126 1.069 156 1	91	-	24	$\overline{}$.05	4	•		1.124
•996 90 1·029 120 1·062 150 1 •998 92 1·031 122 1·064 152 1 •000 94 1·033 124 1·067 154 1 •002 96 1·036 126 1·069 156 1	93	-	22	_	90.	4	60.		.12
•996 90 1·029 120 1·062 150 1·093 •998 92 1·031 122 1·064 152 1·064 152 1·064 152 1·064 162 1·064 1·									
•998 92 1·031 122 1·064 152 1·060 •000 94 1·033 124 1·067 154 1·060 •002 96 1·036 126 1·069 156 1·	6	-	29	120	•	YO.	•	∞	.12
.000 94 1.033 124 1.067 154 1. 002 96 1.036 126 1.069 156 1.	998	-	31	122	90.	10	•	00	.13
002 96 1.036 126 1.069 156 1.	6 000.	-	33	124	90.	50	•	00	•13
C	.002 9	-	36	126	90.	10	•	186	1.135
.1 801 11.0.1 871 871 86 1.040	• 004 9	1.0	3	128	.07	S	•	00	.13

DIFFERENT BAROMETER. OF FEET CORRESPONDING TO OF THE READINGS TABLE

 $T + t = 64^{\circ}$. Sea level assumed at 30 in.

6	87	976	896	850	839	868	939	056	222	443	724	071	491	993	587	284	660	
			_	2	က	4	D	1-	00	6	10	12	133	14	16	18	20	
œ	175	990	990	947	6	97	048	11	34	569	85	2210	638	148	751	460	287	
	က	7		5	63	9 4	8		2	6.5	8 10	9 12	5 13	4115	7.16	7 18	7 20	
1.	26	10	2084	304		-1	15	00	8462	3696	3860	4	78	5304	6917		147	
		000	30	3	4	20	6			7		_	3 15	-	4 16	5 18	9 2(
9.	35	7	217	314	4!4	518	26	7400	858	982	112	248	393	546	208	881	990	
	6	0			9			9			4	0 15	2 13	9 11	2 17	5 18	2 2(
.0	43	34		24	24	29	638	51	70	9948	25	263	408	61	725	8999	980	
	00	2	00	0	9		7		9		9 11	_	1 14	_	1 17	5 18	6 2(_
4	2	143	9	334(434	539	49	63	CV	007	00	277	೧೧			917!		
	12	4			2	5	3	6		4 10	4 11	4 15	2 14	7 15	2 17	_	1 2	
တ	61,	52	2464	1439	45	20	60	14	94	20	52	91	38	93	59	35	25	
	9	6 1		9 3	4	3	9 9	7	∞	3 10	11	7 12	3,14	8 15	3 17	1,19	9 21	_
64		61	56	53	55	61	71	86	07	0333	1660	10	53	60	94	54	448	
	1 (0		23				9			-		_	314	116	5 17	5 19	2	
7	0	709	9	3638	65	72	00	985	19	463	796	3201	989	260	93	72		
	1 60	-	2			5		~		_	11	_	14	-	17	-	21	
0.	886	80	1753	1-	763	830		10	319	593	933	3346	839	423	109	911	847	
		_		က	4	5	9	00	6	10	11	133	14	16	8	13	21	
Read- ing of Bar.	29	28	27	26	25	24	23	22	21	20	19	18	17	91	15	14	13	
W.H.W																		

estation from that of the lower station, and multiply the difference by K, see Table, the result will be the difference of the height of the two stations in feet. Deduct the tabular number due to the reading at the

BAROMETER.

Correction for Capillarity (to be added).

-	.55 .3 .25 .2 .1	004 005 007 01 014 02 025 04 059 087	·002 ·003 ·004 ·005 ·007 ·01 ·014 ·02 ·029 ·044
-	.4 .55	.014 -02	.007
	.5 .45	.007 .01	•004 •005
-	6 .55	004 .005	005 -003
	Diameter of tube 6 .55 .5 .45 .4 (ins.)	- 4 -	ion, boiled

Positive from 0° to 45°; Negative from 45° to 90°. CORRECTION FOR LATITUDE.

	46°							000	₽.	oj	u	oii	:	LL	00	ol	I					
	40°	feet.	.5	6.	1.4	1.8	2.3	2.8	3.2	3.7	4.1	4.6	5.1	5.5	0.9	6.4	6.9	7.4	2.8	8.3	1.8	8.5
nde.	300	feet.	1.3	5.6	4.0	5.3	9.9	6.4	9.3	9.01	11.9	13.2	14.6	15.9	17.2	18.5	19.9	21.2	22.2	23.8	25.2	26.2
Latitude.	200	feet.	2.0	4.1	6.1	1.8.	10.1	12.2	14.2	16.2	18.3	20.3	22.3	24.4	26.4	28.4	30.4	.32.5	34.5	36.5	38.6	40.6
	10°	feet.	2.5	2.0	2.1	0.01	12.4	14.9	17.4	19.9	22.4	24.9	27.4	29.9	32.4	34.9	37.3	39.8	42.3	44.8	47.3	. 49.8.
	800	feet.	5.6	5.3	1.8	9.01	13.2	15.9	18.5	21.2	23.8	26.5	29.1	31.8	34.4	37.1	39.7	42.4	45.0	47.7	50.3	53.0
	Apparent Altitude.	feet.	1,000	2,000	3,000	4,000	2,000	0000.9	7,000	8,000	000.6	10,000	11,000	12,000	13,000	14,000:	15,000	16,000	17,000	18,000	19,000	20,000

The period of the wave varies according to the season from WAVE. DIURNAL BAROMETRIC

A.M. 10 A.M. 9 A.M. January, maximum 9 P.M. and 93 .. 11 P.M. January, minimum 3 P.M. to June

period, the A.M. Jo is but little variation 5 P.M. Tropics there : to June average being In the

Maximum, 10 P.M. and 9.30 A.M. Minimum, 4 P.M. ,, 3.30 A.M.

At the level of the sea the average intensity in inches being at sea-level from .09 to .12 inch, and diminishing gradually The intensity of the wave varies with the latitude. to 0 about 650 or 700 north latitude.

The intensity decreases with the elevation above the level of the sea.

DIAGRAM FOR CORRECTION OF BAROMETRICAL HEIGHT FOR DIURNAL WAVE.

(Calculated for use in India.) HOUR OF OBSERVATION. AS CORREC-FROM SUBTRACTED ELEVATION WAVE. 20 APPARENT DITTRNAL THE THE ADDED TO FOR LION SCALE

lower intended for use when simultaneous temperature the elevation. both for determining cannot a mean to be assumed observations stations, and Note.

60

150

20

SUBTRACT

The correction can only be considered to be a rough approxiits movements. is irregular mation, as the diurnal wave STRENGTH AND WEIGHT OF MATERIALS. METALS. in.

v. Jo Si

Aluminium, sheet. 2-67 lbs. hs. cost. cast. 2-67 lbs. copper bolismuth, sheet. 2-67 lbs. copper bolismuth, cast. 2-56 lbs. sheet. 18-6 lbs. copper bolismuth, cast. 2-56 lbs. sheet. 18-6 lbs. copper bolismuth, cast. cost. sheet. 18-72 lbs. 2-242 lbs. sheet. 18-8 lbs. copper bolismuth, cast. cost. sheet. 18-81 lbs. she			_		-	-		_	_				_		_	_	_	_		-	-	_				_		-	_
Triangle	Transver Strengt	tons.	1	-	1	1	i	1	1	1	i	2	3.4	2.6	8	5.2	3.8	١	١	1	1	1	ł	t	1	i	ŀ	1	-
Cast	Weight	tons,	1	1	1	1	1	1	1	1	1	36	64	48	16	18	16.9	1	3.1	J	1	1	1	1	150	06	2.9	1	
nium, sheet. 2-67 168-6 " cast 2-66 168-6 " up, ask 6-72 149-5 cust 8-82 613-1 vire 8-82 613-1 wire 8-82 613-1 " up, ask from 7-6 " ask, from 7-6 " average 7-23 451 " average 7-23 486-6 wire 8-86-6 " average 7-13 486-6 " av	Streng	tons.	1	I	14.	1.45	17	8.4	13.4	56	9.1	9	13	7.3	91	53	22	40	00	1.5	I	1	1	18.2	52	35	2.0	3.3	
mium, sheet. 2-67 " cast 2-56 " outy, cast 6-72 th, cast 6-72 cast 8-607 sheet 8-89 wire 8-89 " average 7-78 " average 7-89	g capi	lbs.	960.	.092	.242	.353	*318	.31	.316	.32	.665	.222	.273	.26	.273	.281	.28	1	•408	.41	.49117	.775	.828	.377	.288	1	.262	. 252	
mium, sheet " cast cast th, cast r bolts r bolts ast, from " average wire " average wire " average wire " average wire " average " av	g capi	lbs.	166.6	159.8	419.5	613.1	552.4	537.3	548.1	555	1150	437	474.4	451	474.4	486.9	485.6	1	2.804	9.111	848.15	1343.9	1435.6	653,8	499	ŀ	455'1	437	
ninum, s on 1 on	Specific		2.67	2.56	6.72	9.822	8.85	8.607	81.8	6.8	18.417	1		7.23	9.1	2.8	1	1	11.36	11.4	13.596		23	10.474	00	1	7.291	·	
			Aluminium, sheet	" cast		Bismuth, cast	Copper bolts	" cast	" sheet		Gold	, cast,	,		" wrought, from	" to		wire		" sheet	Mercury	Platinum		Silver			Tin, cast	Zinc, cast	

1		į.	ě	ł	1
58		I	1	1	1
32	1	1.4	00	14	22
.276		67.		.301	
478.4	4	29.709	524.37	526.86	533.109
89.4	1	8.05	8.4	8.44	8.24
luminium bronze, 90 to 95 per cent.	Copper		rass, cast	" sheet	" wire

													_			
nea.	Transverse Strength.		1	1 1	1	1	1	1	i	1	1	1	1	1	1	1
contin	Crushing Weight per sq. in.		1	11	1	1	I	1	1	1	1	1	1	1	1	1
- STV	Tensile Strength per sq. in.	tons. 13.7	14.7	13.1		19.3	1.9	1	16.1	15.2	1.21	13.6	1	1	3.1	1
ued.	Weight of a cubic inch.	lbs.	*304	.3	.296	.298	.265	.638	.306	.305	.305	.305	1	.371	.264	.263
ALLOYS—continued.	Weight of a cubic foot.	lbs. 525 · 09		524.18	513.75	517.06	460.13	1106.42	528.36	528.24	528.05	527.89	1	643.72	464.87	456.32
ALLOY	Specific Gravity.			8.397	8.23		7.371	17.724	8.464	8.462	8.459	8.456	1	10.312	7.447	7.31
CIMENGIA AND		Brass, 5 copper, 1 zinc	,, 4 ,, 1 ,,	, 2 , 1 ,	,, 1 ,, 1 ,,	" 1 " 2 "	" I " 4 "	Gold (standard)	Gun-metal, 10 cop-	Ditto, 9 copper, 1 tin	Ditto, 8 ,, 1 ,,	Ditto, 7 ., 1 .,	Pewter	Silver (standard)	Speculum metal	White metal (Babbett)

	T	TIMBER.				
		Ibs.	lbs.	l lbs.	lbs. The	1 0
Acacia from	.71	44	.025	16,000	18	1867
07	64.	49	•028	. 1	1	1
Ash	69.	43	.025		8,600 2000	00
:	91.	47	.027	17,000		00
seech from	69.	43	• 022		7,700 1500	00
,, to	969.	43	.025		9,300 20	00
Sirch	.711	44	.026		3,300 190	00
** ** ** **	• 730	45	.026	. 1	6,000 193	30
30x	1.28	80	• 046	20,000	10,300 2445	2
Jedar, West Indian	•748	47	.026	5,000		3
" American	.554	35	.020	. 1	1	994
" Lebanon	.486	30	.017	11,000	5.800 130	0
Thestnut	909.	38	.022	12,000	12	20
Jork.	.240	15	800.	. 1	1	,
Jeal, Christiana	689.	43	.025	12,000	5.850 1562	52
pond	1.187	74	.043	1	19,000 21	00

-continued. WEIGHT OF MATERIALS TIMBER-continued. AND STRENGTH

Commence of the last of the la		-				Í
	Specific Gravity.	Weight of a cubic foot.	Weight of a cubic inch.	Tensile Strength per sq. in.	Crushing Strain per sq. in.	Transverse Strength.
		Ibs.	. Ibs.	lbs.	lbs.	J.B.
Elm. English	.553	34	.03	13,200	10.300	782
	629.	36	.021	14,000	1	1100
" Canadian	.725	45	.026	. 1	1	1920
Fir. spruce	.512	32	.018	10,100		1490
Hornbeam	91.	47	.027	20,000	,600	1
Ironwood	1.15	7.1	.041	. 1		000
Jackwood	19.	42	.024	1	1	1830
Larch	.543	34	.019	8,900	,200	330
:	.556	35	.03	10,200	5,5(01	1660
Lignum vitæ	1.333	83	.048	11,800	000	3440
Lime	199.	35	.02	. 1	1	1
Mahogany, Nassau	899.	42	.024	1	1	1719
" Honduras	.560	35	.02	21,000	8,000	910
" Spanish	.852	53	.031	1	8,200	1300
le	.675	42	.025	10,600		1694
Oak, African	.988	62	.035	1	1	2523
" American, red	.85	53	.03	10,000	6,0001	1680
" white	611.	49	.028	1	1	1
" English	222.	48	.028	10,000		1600
	.934	58	.034	19,000	000	1690
Pine, red	929.	36	.021	12,000	5,4001	200
	.657	41	.024	14,000	,500	1530
" white	.432	27	.015	1	1	229
	.553	34	.03	1	1	1
" yellow	809.	35	.018	1	,300	1185
" Dantzic	649.	40	.0.73	8,000	5,4001	1426
" Memel "	.550	34	.03	i	1	348
	.601		.021	1	1	1
" Kiga	.466	. 29	.017	1	I	1
	. 654	41	.023	14,000	1	1383
Satinwood	96.	09	.034	1	1	3200
Teak	.74	46	.026	8,000	12,000	2110
H . M. M. M.	.86	24	.031	12,000		1
Note The transverse	ctronoth	is the coof	ooofficient I	T in the	Commonto	1

Note.—The transverse strength is the coefficient K in the formula for strength of restangular beams, but in lbs. The modulus of rupture may be found by multiplying the transverse strength by 6.

STRENGTH AND WEIGHT OF MATERIALS—continued,

	Per sq. in. Orrashing Strain per sq. in. Transverse Strength.	469	16,800 -	- 501 -		- 10,900 -	1 000	12.800		9,160 -	- 7,579 -	11			CA .	7,428	1 1	261 7 884		.054 6.490 857	5		2,185, -	- 15,714 -	3	,800 21,000 1961	
	Weight of a cubic inch. Tensile Strength		-104	- 084			. 090			- 083		680		860.	- 260.	480.	•	.089	60.	7	*088		- 220-	60.	\$ 60·	104 112	• 000
STONES, &C.	Specific Gravity. Weight of a cubic toot.	95 1	18	2.33 145	8.	.62	2.66 166	2.67 167	-	2.6 162	1	2.6 162	17	26.17	2.697 168	9.492 151	.978 12	.477	NC.	638 16	2.45 153	.4 1	15 13	7	12	.88 18	41 64.
	=	Basalt, Scotch	" Greenstone	Chalk	Firestone	Aberdeen g	Cornish	Mount Sorrel	imestone, Compact	" Purbeck	" Anglesea	" Isthe Lias	arble, Statuary	" Italian	" Brabant block	", Devousing	,	dstone, A	Bramlev-Fall	Caithness	" Craglieth		", Red (Cheshire)	y, Yorkshire paying		" Welsh	0

STRENGTH AND WEIGHT OF MATERIALS-continued MISCELLANEOUS SUBSTANCES.

	_	_					_	-	-				_		_		_	,	_	_	_		-		_	_	_									
Ornsbing Strain per sq. in	lbs.	1	1	1	1	808	1	1111	3795	5984	1		1	1	1	-1	1	1	1	1	27,500	31,000	31,876	1	1	1	I	I	1	1	1	1	1	1	1	1
Tensile Strength per sq. in,	lbs.	1	1	١	1	1	1	1	400	009	COT	ï	1	ı	1	1	I	1	1	1	2413	2546	2896	1	1	11	1	1	1	1	1	1	1	1	1	1
Weight of a cubic inch.	lbs.	60.	.057	.072	990.	240.	980.	640.	.05	• 054	100.	.055	.046	.046	.045	.026	890.	640.	• 054	.072	1111	.091	.091	660.	.032	.082	.033	.065	.03	.049	890.	190.	.041	.082	660.	190.
Weight of a cubic foot,	lbs.	156	100	125	115	134	150	137		100	110	95	13	80	43	46	119	137	22	125	192	157	158	172	09	143	28	114	53	98	119	106	69	140	171	117
Specific Gravity.		2.2	9.1	2	1.84	2.16	2.4	2.2	7	3.155	1.0	1.53	1.272	1.29	1.269	-744	1.9	2.5	1.52	2.00	3.078					2.286	.93	1.82	.843	1.38	1.9	1.1		. 2	2.15	1.88
		:	Brick, common from	,, to	" London stock	" red	" Welsh fire	0	land, fro	ot of powder f to	Слач теоппан	Coal, anthracite	" cannel	" Glasgow		Coke	Concrete, ordinary	in cemei	Earth from		Glass, flint	" crown	" common green	", plate	Gutta-percha	Gypsum	India-rubber	:	quick	Mortar from	to "	., average	Pitch	Plumbago	Sand, quartz	, river

STRENGTH AND WEIGHT OF MATERIALS-continued,

MISCELLANEOUS DO	Sponific	Woight of	Weight of a
	Gravity.	cubic foot,	cubic inch.
		lbs.	lbs.
Sand, pit (coarse)	19.1	100	•058
" (nne)	7.0.1	100	050
:	1.42	888	1900
	70.	200	.034
Tar	1.016	63	• 036
common fro	1.81	112	• 065
	1.85	115	990.
Triot	Liouids. &c.		
		W-1-14-6-	West-Life of
	Specific Gravity.	cubic foot.	cubic inch.
		lbs.	Ibs.
Water distilled 390	1	62.425	.036
, sea	1.027	64	• 037
Acetic acid	1.06	99	•038
Alcohol, absolute	767.	48	0.78
proof	916	. Or	.033
obloric acid	1.9	40,72	.043
	1.217	72	• 044
	•94	58	•034
olive	.915	57	• 033
:	.923	. 58	•033
Sulphuric acid	1.84	115	990.
GASES,	ES, &c.		
Air	•001293	-08072	.00004655
Carbonic acid	-000000	.123	T400000
	C680000.	0000	.000003
:	12100	640.	•000046
£42	.00143	680.	.000051
Steam	*0000	.055	-00000317
			STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN THE PERSON NAMED IN COLUMN TWO IS NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSO

MODULUS OF ELASTICITY.

The modulus of elasticity of any material is the force that would lengthen a bar of that material of 1 inch section to double its length, or would compress it till its length became zero; supposing it possible to stretch or compress the bar zero; supposing it possible to stretch or compress the to this extreme extent without breaking it, and that following relation between stress and strain held good:—

a = Alteration in length due to any force F less than the modulus.

A = Alteration due to the modulus E.

TO FIND THE COMPRESSION OR EXTENSION OF ANY BODY UNDER A GIVEN STRAIN WITHIN ITS LIMITS OF ELASS-PICITY.

(See next page).

L = I ength in feet or Douy suranton. l = I increase or decrease of length in feet caused by a Length in feet of body strained.

f =Force of the strain in 1bs, per square inch. E =Modulus of elasticity (for values of E see next page). strain

$$l = \frac{Lf}{E}$$
; $E = \frac{Lf}{l}$; $f = \frac{lE}{L}$.

DETERMINATION OF E PROM THE DEPLECTION OF A BEAM FREELY SUPPORTED AT ENDS AND LOADED AT CENTRE.

Clear distance between supports in inches. Breadth of beam in inches.

l = Depth of beam in inches.
= Weight in 1bs.

Deflection in inches produced by W.

$$E = \frac{W l^3}{4 b d^3 x}.$$

Modulus of Elasticity.

E = Modulus of elasticity; 1 inch being the unit of area.

Length corresponding with modulus. Weight each square inch will bear without permanent alteration in length. M = W

METALS— Brass Gun-metal Iron, cast Iron, cast Iron, wrought Lead Seel from Zinc Zinc Marble Slate Slate Portland Ash Emen	M. feet. 2,466,000	E. 1bs. 1bs. 1bs. 24,000 9,873,000 124,920,000 4,200,000 6,42,000,000 13,680,000 13,680,000 15,833,000 1,544,000 1,444,000 1,444,000 1,444,000 2,016,000 2,016,000 2,016,000 1,444,000 1,4	W. 1188. 1188. 119	
any	6,570,000 4,730,000	1,596,000	3,694	

STEEL. AND WROUGHT IRON OF TENACITY

	Breaki	ng Weig Square	Breaking Weights in Tons per Square Inch of	ns per
	Orig	Original Section.	Fraci	Fractured Section.
	Highest Class.	Lowest Class.	Highest Class.	Lowest Class.
Steel bars for tools	59.3	45	62.1	59.1
" rivets and bolts	47.9	41.1	6.04	62.2
", puddled steel	31.9	28	49.1	
	44.3	32.3	51	35.7
Staffordshire Staffordshire	28.6	24.7	65.4	33.6
: :	28.9	20.8	52.6	21.4
" " Lancashire	27	24	46.6	38.5
" Swedish	21.5	21.3	8.99	54
13	25.3	22.1	34.7	32.2
" " Scrap	24.7	17.3	42	18.8
2	17.2	13.2	17.6	
Iron plate, Yorkshire	25.3	23	34	24.8
" Staffordshire	24.1	20.3	27.4	22.3
,,	22.9	18.6	27	19
for strap building	25	18.5	30	20.2
Angle-iron, Lanarkshire	25	23.1	32	28
" Staffordshire	25	22.3	31.9	56

This Table has been compiled from the valuable experiments of Mr. Kirkaldy, which have thrown much light on the rules which govern the fracture Amongst other points the experiments have shown conclusivelyiron.

That the breaking strain of iron and steel does not (as hitherto assumed) indicate the quality high breaking strain may be due to hard unyielding character, or a low one may be due to lst.

The contraction of area at the fracture forms an essential element in estimating extreme softness. the quality.

2nd. The breaking strain of iron and puddled steel plates is greater in the direction in which they have been rolled than in the direction of their breadth; but in cast steel the reverse.

3rd. Iron when fractured suddenly produces a crystalline fracture; but if gradually, a fibrous fracture. This accounts for the anomaly in the supposed change of iron from a fibrous to a crystalline character. Sudden shoulders which prevent a regular elongation of fibre cause sudden snap.

4th. Strength of steel is reduced by being hardened in water; but both its hardness and toughness are increased by being hardened in oil. I'm heated, and suddenly cooled in water, is hadened, and the breaking strain (if gradually applied) is increased, but it is more likely to snap suddenly. It is softened and its breaking strain reduced if heated and allowed to cool gradually. Iron if brought to a white heat is injured if it be not at the same time hammered or rolled. Casehardening bolts weakens them.

5th. The shearing strain of steel rivets is one-fourth less than their tensile strength. The ordinary proportions of iron rivets are too small when steel rivets are used for steel plates.

6th. The specific gravity is found to indicate the quality pretty correctly.

7th. The experiments on iron give the following breaking strains;-

Mean. Tons per sq. inch.	25.7 24.4 22.6 20.6
Lowest. Tons per sq. inch.	19.9 17 16.7 14.5
Highest. Tons per sq. inch.	30.7 28.4 28 27
	Rolled bars Angle-irons Plates lengthways ,, crossways

NOTES ON STRENGTH OF MATERIALS.

is not so strong as dry; in some cases it is not half the strength of dry. Wet timber

square. Crushing weight of a sphere = .26 circumscribed cube.

its tensile Cold-blast iron is stronger than hot-blast. Annealing cast iron diminishes

irons will best bear Remelting (up to ten or twelve meltings) or the strength Softer fusion increases cast iron. prolonged density of strength.

Indirect strains reduce the tensile strength of remelting.

Additional strength should be given to castiron girders that take the load on one side of the cast iron.

The tenacity of cast iron is only one-third that of wrought iron, and should not be subjected more than one-sixth of the breaking strain. bottom flange.

Tensile strain on wrought iron should not exceed one-fourth of the breaking weight.

High temperature in casting is injurious to gun-Annealing iron wire diminishes its strength.

metal.

Plated webs are more economical than braced webs in shallow girders or near the ends of long In small lattice girders it is better to make the lattices uniform throughout. girders.

STRENGTH OF IRON.

	.Saidau	692 694 695 697 697 697 697 697 697 697 697 697 697
eight,	.noisro	6305 8706 6309 8226 6369 9398 6940 9166 6833 9407 5966 95771
mg W	rans-	6932 5538 7374 6692 6992 6992 6992 6992 6992 6992 699
Breaking Weight,	.eliane	22271 17958 21859 23265 25872 25872 25876 28960
	pecific ravity.	0 325
	Description,	No. 3 pig No. 3 pig No. 3 pig No. 3 pig Cold-blast pig Cold blast No. 1 Improved (P)
	Name.	Stockton-on- Tees Hematite Co. Weardale Co. Butterley Co. Lord Ward's Blaen Avon Dr. Price's

The transverse breaking weight represents the strain necessary to break a bar I inch square projecting horizontally I inch beyond the point of support, the weight being applied at the outer end. -Ordnance Experiments. weights above are reduced inch. breaking per square The

1.62 Shearing of Oak Treenails (Dockyard Experiments). 3.9 2.95 1.67 1.88 2.3 2.03 9.1 Tons per square inch of section Diameter of treenails, inches.. Shearing force, tons

TESTS FOR ADMIRALTY

TENSILE AND EXTENSION TESTS.

an ultimate tensile strength of net less than 26, and not exceeding 30 tons per square inch of section, with an elonga-1. Strips cut lengthwise or crosswise of the plate to have tion of 20 per cent. in a length of 8 inches.

TEMPERING TEST.

ranrenheit, must stand bending in a press to a curve of 2. Strips cut lengthwise of the plate, 14 inch wide, heated uniformly to a low cherry-red, and cooled in water of 82° of the plates tested.

3. The strips are to be cut in a planing machine, and are to have the sharp edges taken off.

4. The ductility of every plate is to be ascertained by the application of one or both of these tests to the shearing, or by bending them cold by the hammer on the Contractor's by bending them cold by the hammer on premises, and at his expense.

from lamination and injurious plates to be free surface defects.

of plates does not exceed 50. If above that number, one for every addition of 50, or portion of 50. Plates may be received or rejected without a trial of every thickness on the and tempering tests from every invoice, provided the number of plates does not exceed 50. If above that number, one for 6. One plate to be taken for testing by tensile, extension

parallel width from end to end, or for at least 8 inches of length.

When the plates are ordered by thickness, their weight is to be estimated at the rate of 40 lbs, per square foot for plates of 1 inch thick, and in proportion for plates of all ceeded, but a latitude of 5 per cent. below this will thicknesses: the weight so produced is not to be

ADMIRALTY TESTS FOR STEEL-continued.

allowed for rolling in plates of half an inch in thickness and upwards, and 10 per cent. in thinner plates.

These weights may be ascertained by weighing as much as 10 tons at a time.

TESTS FOR ANGLE, BULB, OR BAR STEEL,

The whole of the steel to stand a tensile strain of 26 tons to the square inch, and not to exceed 30 tons to the square inch. Also to stand the extension and tempering tests described for plates.

One bar is to be taken for testing from every invoice, providing the number of bars that number, one for every All the cross ends to be cut off. does not exceed 50; if above additional 50, or portion of 50.

LLOYD'S TESTS FOR STEEL USED IN SHIP-BUILDING.

Strips cut lengthwise or crosswise of the plate, and also angle and bulb steel, to have an ultimate tensile strength of not less than 27, and not exceeding 31 tons per square inch of section, with an elongation corresponding to 20 per cent, on section, with an elonganou correct a length of 8 inches before fracture.

Strips cut from the plate, angle or bulb steel to be heated to a low cherry-red, and cooled in water of 82° Fahrenheit, which the diameter is not more than three times the thickness of the must stand bending double round a curve of plates tested.

those which would be required by the Rules for the vessels if No reduction will be allowed in the sizes of rivets from built of iron.

In other respects the Rules for the construction of iron ships will apply equally to ships built of steel,

(Barlow.) VARIOUS MATERIALS. STRENGTH OF

	Ultim	Ultimate Strength. Tons per sq. inch.	ch.	Worl	Working Strain. Tons per sq. inch.	- di
Material.	Tension.	Compres-	Shearing.	Tension.	Compres-	Shearing.
Skeel larrs Skeel plates Wrought-iron bars Iron wire cables Ash Beech Beech Fir Fir Grank Grank Grank Brite Beck Beck Beck Beck Beck Beck Beck Bec	200224	0 12 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	05 22 4 4 4 22 30	50 lbs.	の あな の colection 4 4 4 4 4 4 1 8 1 bs.	10 44 00 to 1 to 1 1 1

LLOYD'S RULES FOR IRON USED IN THE CONSTRUCTION OF IRON MASTS, YARDS, &C.

The iron should be of a good malleable quality, and quite

The iron should stand a tensile strain of 20 tons to the square inch, and should be capable of standing the following bending tests when cold without fracture, through the angles free from surface or other defects. mentioned.

The plates to be bent over a slab, the corner of which should be rounded with } inch radius.

(Indian Store Department.) TESTS OF IRON.

Moderated	Ultimat	Ultimate Stress.	Contraction per cen	Contraction per cent,
	Tons pe	Tons per sq. in.	of area at fracture	of area at fracture.
ALGANOI (GIL)	Highest	Lowest	Highest	Lowest
	Class.	Class.	Class.	Class.
Bars, round & square. Do. flat	25 25 25 22 22	23 22 21 20 17	45 40 30 20 12	20 16 12 8

Materials under specified strain are accepted if the contrac-Materials tested to 4 per cent. of total value. tion is proportionally higher.

following Hot, to bend without fracture from 90° to 125°. Cold Test, to bend without fracture to the ADMIRALTY TESTS FOR IRON PLATE, angles:-COLD

Crossways.	20	50 to 100	160 ,, 150	200 300
Lengunways.	10° to 15°	200 , 250	300 , 350	220 " 200
	:	:	:	:
		:		
	:	:	:	:
,	plate			100
	I m.	m 4+ +	-dea -	-

TESTS FOR CAST IRON.

for cast iron is 1 ton on the centre of an inch square bar 1 foot between supports; or 30 cwt. on the centre of a bar 2 inches deep x 1 inch wide and 3 feet between supports—the bar to bear the load without breaking. common test

1.65 to 1.40 carbon. 2 TURNER'S SCALE FOR STEEL, 1.15 06.0 .65 .40 0 1.40 1.15 .40 06. .65 contains from HHA VI. >

EXPERIMENTS ON STEEL FOR SHIP-BUILDING. B. Martell. (Naval Architects, 1878. Iron plates with butt straps and double chain riveting, boles punched, linear tensile strain 17.9 tone, broke through rivet holes.

16.7 tons per 2. Steel plates not annealed after punching, square inch, rivets sheered.

3. Same as 2, but with zigzag riveting, 19·2 tons.
4. Steel plates, same as 3, with steel rivets, 22·5 tons per square inch; rivets shearing in some cases, plates breaking in

others.

Steel plates very thin suffer less from punching than iron.

6 Difference in loss of strength by punching steel and iron does not require special precautions up to 4 inch thick.
7. Above 3 inch thick the loss to iron varied from 20 to 23

annealing after punching the whole of the lost was restored, and in some cases greater relative per cent., and in steel from 22 to 33 per cent.

strength was obtained than existed in the original plate. strength

(Dr. Siemens is of opinion that nothing is gained by annealing.) 9. The steel was only injured a small distance round the punched holes, and by riming from [±]_π to φ, round the holes the injured part was removed, and no loss of strength was observed any more than if the hole had been drilled. In drilled plates no appreciable loss of tensile strength observed:-

7.618 specific gravity. Boiler plate Mild steel PROPORTIONAL STRENGTH OF "SHIP" AND "BRIDGE"

	Phosphorus.	.033
	-mqd[ng	.049
	Silicon	Trace .074
1	Manganese.	.454
usom.	Carbon.	•09
cl. (Adai	Permanent Set. Tons per sq. in.	18% to 224 35½ to 46%
STE	Tensile Strain. Tons per sq. in.	27 to 304 57 to 654
		Mild Ship Steel Bridge Steel

(B. H. Thwaite. C = Coefficient of corrosion during 1 CORROSION OF IRON AND STEEL.

year's exposure in lbs. (For value of C. see avoirdupois per square foot, Table.)

If both the inside and outside perimeters are exposed to the corresive action, they must both be included. N= Weight in lbs. of 1 foot length of the section exposed. L = Length in feet of the perimeter exposed. If both the * Y = The number of years' life of the metal = $\overline{\text{CL}}$.

TABLE OF VALUES OF C.

		Sea-water of average foulness.	喜111	1 1	1908	3493	4012	4537
	ıts.	Air of city or manu- facturing district or sea air,	1bs. .0476 .1254	.0199	:	:-:	::	:
	Corroding Agents.	Pure air or clear river-water.	lbs. .0113 .0123	.0109	-:	:	: : 	:
	orrodir	Foul river-water.	1bs. .0381 .1440	.0371	:	::	: :	etal .
		Olear sea-water.	1bs. •0635 •1285 •0970	.0359	:	al	copper	gun-meta
		Foul sea-water.	1bs. .0656 .1956 .1944	.2301	orass	• 75 6		
			:::	pro-	pend -	gu	,,	
l				skin removed g)surface pro- galvanizing	contact with	" "On in o	*	
			-==	od of be	g ,	ught in		
			Cast iron Wrought iron Steel	by planir Cast - iron tected by	Cast iron	Best wrought iron in	3	
			0 × 30	ر ا ت	3	Be		1

1.8 If painted once a year, multiply the result by 2.0. in 2 years, 88

* Y is based on the assumption that the metal is tolerably uniform in otherwise the thin portions will have a shorter life than the 1.6 average of the section. thickness,

93 .

6

to their impurities, lost most in the same time—steel less than iron, soft steel less than hard steel. On the second day the soft steel lost more than In experiments of iron in acid, it was found that the metals, according steel less than hard steel. On the second hard; on the fourth day the loss was equal

NOTES ON IRON.

CLASSIFICATION OF PIG IRON

newly cut lead; is useful for fine castings, being with high No. I (IRON). Fracture dark grey, with high stallic lustre. Crystals large, with lustre like No. 2 is intermediate between No. 1 and No. 3. easily fused and fluid when melted. metallic lustre.

No. 1, the centre than at the sides, useful for large with less lustre; crystals larger and brighter at No. 3. Fracture of a lighter grey than

No. 4 (or Bright). Fracture light grey, with small crystals and little lustre; is not sufficiently fusible for casting, and is generally used in the manufacture of wrought iron. castings.

No. 5 (MOTTLED). Fracture dull white, with pale greyish specks and a line of white iron round

appearance. It is the worst, hardest, and most brittle of the pig irons, and is only used for the No. 6 (WHITE). Fracture wines, cystalline manufacture of inferior bar iron. the edge of the fracture. lustre; granulated,

9.0 TOON AND STEEL

to .32

to .30

•4

30

1	24.		•
2	- ::::a	: .	:
PERCENTAGE OF CARBON IN IRON AND SILE	Spiegeleisen .4·3 to 6·9 Masons' Tool steel Swedish Pig .4·8 Railway The 2.2 Group Pig .2·8 to 3·5 Steel Rails .4 Morthed and White 2·10 to 3·0 Hard Bar Iron Refined Iron 3·0 Ditto, Swedish Puddled Steel, hard 1·38 Staffordshire Plate	Armour Flate Swedish Bar, soft	:
4	S Ire	3ar	f _e
5	y y y ail		00
Ħ	wa wa H B B B B B B B B B B B B B B B B B B	dis	2
Z	Mas Rail Stee Har Ditt	Arn Swe	Low Moor
Z			
E B	Spiegeleisen	1.34	1.5
A	0 00 01	_	
-	m :∞0 · ·	: :	
OF	d. 222 . 4		1-
闰	ite.	Ditto, soft	File Steel
AG	:::\&::\f	: :	:00
Ę	tee tee		69
E	Par lar	oft	19 to
BR(le de les	Ditto, soft	St
P	vec vec offi udo	itte	ile
	PREGOS	90	F

31. 10. 910

Notes on Iron-continued.

FOREIGN SUBSTANCES IN IRON AND STEEL,

Silicon is generally excluded as slag, its presence makes iron hard and brittle; but up to ·08 per cent. it will do no harm, provided ·3 of Manganese is present with it.

SULPHUR makes iron and steel "red-short."

PHOSPHORUS. 0.5 to 0.8 per cent. is sufficient to produce cold-shortness in iron; in steel, phosphorus to an extent of 0.2 per cent, does not affect the working or hammering of steel; but rails with more than '08 per cent, will not stand the required tests.

0.5 per cent. is sufficient to make iron cold-short; it is valuable in iron to be con-MANGANESE.

verted into steel.

ARRENIO produces red-shortness in iron, but is valuable, in chilling; it increases the hardness of steel at the expense of toughness.

COPPER renders steel red-short.

TUNGSTEN renders steel hard and tenacious. VANADIUM improves the ductility of iron

wire-drawing.

CARBON. "25 per cent, gives mallcable iron; 50 per cent, gives steel; 1.75 gives the limit of welding steel; 2.00 gives the lowest limit of cast iron.

MALLEABLE CASTINGS.

Malleable castings are formed by subjecting the castings to a process of annealing in boxes with hematite iron ore or black oxide of iron. The boxes are kept in an annealing oven under equable heat, the duration of the process depending on the form and size of the castings.

```
WEIGHT OF METALS.
```

=lbs. per sq. ft. Cubic inches \times ·28 = lbs. avoirdupois. Thickness of plates in inches $\times 40$ ÷ 400 = cwt. 100 = qrs.

66 99 99 tenths ×4 eighths $\times 5$ 33 3

=lbs.perlin.yd. Lbs. per lineal yard \times .7857 = tons per mile run. $\times 3.34 =$ lbs. per lin. ft. = 7.052 = ×10 eighths inches Sectional area in inches 99

VARIOUS METALS.

= lbs. per foot run.

Diameter of round iron in inches squared × 2·64

Multipliers to convert the weights as found above into the weights of other metals.

cast iron. = weight of zinc. tin. 33 66 .92 .93 .94 Weight of wrought iron X ×

copper. brass. steel. ×1.02 ×1.09 ×1.15 33 5

cast iron. copper. brass. steel. zinc. lead. lead tin. lbs. of 66 3 99 33 9 -252 =-262= - 588 11 .26 .32 × × 3 . 66 93 Cube inches 33

yard long 1 and 1 iron wrought weighs 10 lbs. bar of

OF ENGINEERING FORMULA.

WEIGHT OF A LINEAL FOOT OF FLAT BAR IRON IN LBS.

			1					
		1	3.34 3.75 4.17 4.59 5.00	5.43 5.84 6.26 6.68	7.52	9.6 0.0 0.8 0.8 2.5 2.5	3.3	7.53 8.37 9.20 0.05
	les,	t-joc	2.92 3.28 3.65 4.01	4.70 5.11 5.47 5.86 6.21	6.94	88.4 88.7 99.4 90.0	3.15 1 3.88 1	.34 1 .07 1 .80 1 .53 2
	s of inches.	89/17	2.50 2.81 3.13 3.44 3.75	4.07 4.38 4.69 5.01	5.63 5.95 6.26 6.57 6.88	32-50	0.02 0.64 1.27 1.89 1.89 1.25 1.40	.14 15 .77 16 .40 16 .03 17
LBS.	in Fractions	w]so	2.34 2.34 2.60 2.87 3.13	3.39 3.65 3.91 4.17	4.69 4.95 5.21 5.47	· 0 2 2 8 8	8.35 1 8.87 1 9.39 1 9.91 11	0.96 13 1.48 13 2.00 14 2.53 15
T AT	less in I	-404	1.67 1.87 2.08 2.29 2.50	2.92 3.13 3.34 3.55	3.76 3.96 4.17 4.38	80488	6.68 7.09 7.51 7.93 8.35	8.76 10 9.18 11 9.60 12 0.02 12
	Thickness	16	51.46 01.64 61.82 22.00 72.19	2.55 2.55 2.74 2.92 3.10	3.28 3.47 3.65 3.83	4.38 4.74 5.11 5.47	6.21 6.57 6.94 7.30	67 03 40 76
	-	e0(so	71.4 71.4 01.5 61.87	2.19 2.19 2.34 2.50 2.66	2.81 2.97 3.13 3.28 3.44	3.75 3.75 4.07 4.68	5.00 5 5.32 6 5.63 6 5.94 6 6.26 7	20 8 88 8 20 8 51 8
	-	100	31.0	5 1.69 6 1.82 6 1.95 7 2.08	2.34 2.47 2.60 2.74 2.87	3.00 3.13 3.39 3.65 3.91	4.17 E 4.69 5 4.95 5 5.21 6	.47 6 .00 7 .25 7
-	1	+	9.6.1.1	1.35 1.46 1.56 1.67	1.87 1.98 2.08 2.19 2.29	2.40 2.50 2.71 2.92 3.13	3.34 3.54 3.75 3.96 4.17	.38 5 .59 5 .01 6
	eadth in ebdes.	1		Sin sin the sin	d a a a a a	01 00 00 00 100 00 00 00	44440	524 4 4 4 4 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6

HOOP IRON. - Dimensions and Weight in lbs. per foot run.

7 | 1 in | 11

60

B. W. gauge 21 20 19 18 17 16 Weight per lineal foot 12 14 2 in. 24 24 Breadth 12 14 14 2 in. 24 24
neal foot
The second secon
B. W. gauge 15 15 14 13 13 12
Weight per lineal foot33 .36 .484 .634 .714 91

WEIGHT OF A LINEAL FOOT OF ROUND AND SQUARE BAR IRON IN LBS.

Square Bars, Round Bars,	30.07 23.60 40.91 32.13 46.97 36.89 56.3 44 41.97 66.3 44 41.97 67.63 63.12 67.63 63.12 67.63 63.12 67.63 63.13 67.63 63.13 67
Breadth or Diam. in inches.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bars,	4.69 4.96 6.92 8.03 8.03 9.22 11.84 11.84 11.32 11.32 116.39 116.39 116.39 119.84 119.84
Square, Bare,	5.25 6.35 7.51 10.29 11.74 11.
Breadth or Diam. 'in inches.	4 00 00 00 00 00 00 00 00 00 00 00 00 00
Round Bars.	. 164 . 256 . 369 . 502 . 656 . 831 . 1 . 241 . 1 . 241 . 1 . 241 . 1 . 476 . 1 . 732 . 2 . 01 . 2 . 332
Square, Bars,	. 209 . 326 . 470 . 6470 . 635 . 635
Diameter or Side.	44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

To convert into weight of other metals, multiply tabular No. for cast iron by '93, for steel $\times 1\cdot 02$, for copper $\times 1\cdot 15$, for brass $\times 1\cdot 09$, for lead $\times 1\cdot 47$, for zinc \times '92.

Weight of a Square Foot of Sheet Metals in lib. Thickness Birmingham Wife Gauge.

			~	10	00	3	-	3	Ol	57	00	00	0	80	0	-1
Brass.	3.161	9.	4.1	4	5.26	5.88	6.49	7	7.90	8.91	9.62	10.44	11.37	.46	13.110	
Copper.	3.298	.80		4.992			6.778	•				10.900	11.862	0.	13.740	
Iron.		3.32			4.80			09.9	7.20			9.52	10.36		12.00	
Thickness B.W.G.	15	14		12	11	10	6	80	100	9	2	4	က	2	1	
Brass.	.527	.579	.615	.702	064.	878	996.	1.097	1.229	1.405	1.536	1.844	2.151	10	2.853	
Copper.	.550	.595	.641	.733	.824	.916	1.008	1:145	1.282	1.466	1.603	1.924	2.244	2.656		
Iron.	.48	.52	92.	19.	.72	08.	000	1.00			1.40		1.96			
Phickness B.W.G.	0	6	00	22	97	25	24	23	22	. 17	20	61	81	21	97	

Weight of a Superficial Foot of Plates, Different Metals, in les.

33.	Milli- mètres.		4.76	6:35	60 -	12.7		15.87	.6	20.64		25.4
Thickness.	15,	0.00	10				10			9	. ro	
	Inches.		-10	.3125	.37	5. 70	•	.6875	.75	812	.937	1.000
	Zinc	2.3	7.0	9.4	14.0	18.7	-	25.7		30.4	5	37.5
	Lead.	3.7	11.1	14.8	22.2	29.5	33.2	36.9		51.7		59.1
	Cop-		8.7	11.6	17.2	22.9	25.7	31.4	34.3	37.2	42.9	45.8
	Brass.	2.7		11.0	16.4	21.9		30.1	32.9	35.6		43.9
	Steel.	2.6	7.7	10.2	15.3	20.4	23.0	23.1	30.6	35.7	38.3	40.8
	Iron.	2.5	7.5	10	15		22.2	25 27.5		32.5	37.5	40
Think	ness Inches.	16	400 o	do et	2 es/es	10	a 10	ole al	col-P	120	Sales Sales	-

(By C. H. Jordan, Esq.) ANGLE AND T WEIGHT OF

WEIGHT OF ORDINARY ANGLE IRON. RULE FOR CALCULATING

Breadths of flanges added in decimal parts of a foot. Weight of angle-iron per lineal foot. AND

of the Weight of iron in lbs. per sq. ft. of the thickness Thickness of angle-iron in decimal parts of a foot. $W = (B - T) \times w$. angle-iron.

Weights of ω (channel) and H iron may be found from the Tables of Angle and T Iron in the following manner, provided the web and flanges sum of the depth of web, and breadth of both flanges; then twice the weight corresponding thereto will be the weight per lineal foot, according to the Let the number in the side column of the Tables referred to, equal half the are of the same mean thickness:-

WEIGHTS OF ANGLE AND T IRON IN LBS. PER LINEAL FOOT. thickness, of the channel or H iron required.

Breadth	added.	67	42	201	70 20 20 20 20 20 20 20 20 20 20 20 20 20	C3	7 20 20 20 20 20 20 20 20 20 20 20 20 20	C7 8 4	23/2	က	C7 .	31	က က(ထ	321	C.3 10(00)	C.3 10/4	C.5				4	
	so(oc	1	1	1	1	1	1	1	I	1	1	1	I	1	1	I	1	0	.2	. 2	1.81	0.
inch.	0 1	1	1	1	1	1	1	1	i	1	1	1	1	5	1-	6.	. 2	4	9.	6.	21.12	3
of an in	-401	11	1	1	1	1	i	1	I	4.17	3	. 5	I.	0.	5.21	.4	9.	00	6.04	6.25	6.46	9.
Fractions o	18	1	1	1	1	0.	prof.	3	3.55	3.74	3.92	4.10		4.47		4.83	0.	.2	5.38	.5	1.	5.92
	estoc	2.03	2.19	3	5		$^{\circ}$	6.	-	.2	4	5	3.75	.9	4.06	4.22	3	4.53	9.	4.84	5.00	91:9
mess in	100		1.89	0.	-	2.28	7	.5	9.	00	6.	0	-	3.32	*	3.58	7.	00	3.97	4.10	4.23	4.36
Thickness	-44		1.56	9.	10	90	1.98	0	-	2.29	4	10	9	'n		6.	0	-	3.23	3.33	3.44	3.54
	60 N	-	1.21	2	3	4	70								2.15			2.38	4	73	2.62	10
Breadths	added.	6	27	238	- C	23	300	9 6	274	°c:	33	. cc	***	8 67	(C)	2000	42	4.8	44	41	484	4

в	-
ľ	-
ĸ	651
8	-
	-
r	21
Ю	51
В	-
t	20
В	=
1	\sim
	_

Breadths of flanges					T	hickne	ss in I	ractio	ns of a	n inch	1.				Breadths of flanges
added. (ins.)	3 16	1/4	16	38	7 1 6	1/2	9 16	<u>5</u>	116	34	136	7 8	15	1	added.
5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6	2.85 2.93 3.01 3.09 3.16 3.24 3.32 3.40 3.48 3.55 3.63 3.71 3.79 3.87 3.87 4.02 4.10 4.18	3.75 3.85 3.96 4.06 4.17 4.27 4.37 4.48 4.58 4.69 4.79 4.90 5.00 5.10 5.21 5.31 5.42 5.52	4·49 4·62 4·75 4·88 5·01 5·14 5·27 5·53 5·66 5·79 5·92 6·05 6·18 6·45 6·45 6·45 6·45	5.47 5.62 5.78 5.94 6.09 6.25 6.41 6.56 6.72 6.87 7.03 7.19 7.34 7.56 7.81 7.97 8.13	6·11 6·29 6·47 6·65 6·65 7·02 7·38 7·56 7·75 7·93 8·11 8·29 8·48 8·66 8·84 9·02 9·21	7.08 7.29 7.50 7.71 7.92 8.12 8.33 8.54 8.75 8.96 9.17 9.37 9.58 9.79 10.00 10.21 10.42	7.62 7.85 8.09 8.32 8.55 8.79 9.02 9.26 9.49 9.73	8·33 8·59 8·85 9·11 9·37 9·63 9·90 10·16 10·42 10·68 10·94 11·20 11·46 11·72 11·98 12·24 12·50 12·76 13·02	9.02 9.31 9.60 9.88 10.17 10.45 11.03 11.31 11.60 11.89 12.17 12.46 12.74 13.03 13.32 13.60 13.89 14.18	10.62 10.94 11.25 11.56 11.87 12.19 12.50 12.81 13.12 13.43 13.75 14.06 14.37 14.68 15.00 15.31	12·69 13·03 13·71 14·05 14·72 15·06 15·74 16·08 16·42	14.95 15.31 15.67 16.04 16.40 16.77 17.13	17:38 17:77 18:16		0
							12.30								71/8

Weights of Angle and T Iron in LBS. PER LINEAL FOOT—continued.

Breadths of flanges					Th	icknes	s in F	action	< of ar	inch.					Breadths of flanges
added. (ins.)	3 16	1/4	5 16	<u>3</u>	716	1/2	9 16	<u>5</u>	11 18	3 4	13	7/8	15/6	1	added. (ins.)
7½ 7¾ 7¾		5·83 5·94		8·59 8·75	10.12	11.46	12.77	14.06	15:33	16.56	17·43 17·77	18.96	20.15	21.25	714 738
7 3 8 1 2 5 3 3 4 7 3 7 7 3 7 7 3	4.65	6.04 6.15 6.25	7.62	9.06	10.48	11.87	13.24	14.58	15.90	17.19	18·11 18·45 18·79	19.69	20.90	22.08	777777777777777777
8	4.80 4.88	6·35 6·46	7.88 8.01	9:37	10:85	12.29	13.71	15·10 15·36	16.47 16.76	18.12	19.13	20.42	21.68	23.33	8
814 814 88 88	5.04	6 . 67	8.14	9.81	11:39	12.92	14.41	15.88	17.33	18.75	19.80 20.14 20.48	21.51	22.85	24.16	81
8 daniani 8 milani 8 milani	5 20	6.87	8.53	10.16	11.76	13.33	14.88	16.41	17.90	19.37	20.82	22.24	24.02	25.41	85
83/4 87/9 9	5.43	7.19	9:05	10.62	12:30	13.96	15.58	17.19	18.76	20.31	21·49 21·83 22·17	23.33	25.19	26.66	$8\frac{7}{8}$ 9
9½ 9½	5.59	7.40	9.18	11:09	12.67	14.37	16.05 16.29	17.71	19.33	20.94	22.51	24.06	25.58	27.50	91
9 3 8 1 9 5 5 4 9 5 5 4	5.82	7.81	9.57	11:41	13.40	15.00	16.76	18.49	20.19	21.87	23·19 23·53 23·87	25.15	26.75	28.33	958
9 3/4	5.98	7.92	9.83	11.72	13.58	15.42	17.23	19.01	20.77	22.50	24.20	25.88	27.54	29.16	$9\frac{3}{4}$

WEIGHTS OF ANGLE AND T IRON IN LBS. PER LINEAL FOOT-continued.

Breadths of flanges added.	-	. 1			Thi	icknes	s in F	raction	s of ar	inch.					Breadtl of flange
(ins.)		1	16	38	16	1/2	9 16	5.8	11	3 4	13	7/8	15	1	added.
$ \begin{array}{c} 10\frac{1}{4} \\ 10\frac{3}{8} \\ 10\frac{1}{2} \\ 10\frac{5}{8} \\ 10\frac{3}{4} \\ 10\frac{7}{4} \end{array} $	- 9.9	13 23 33 34 44 15 41 16 65 11 77 11 17 11 11 11 11	10·22 10·35 10·48 10·61 10·74 10·87 1·00 11·13 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·52 11·53 11·54 11·	12·19 12·34 12·50 12·66 12·81 12·97 13·12 13·28 13·44 13·59 13·75 13·91 14·06 14·27 14·37 14·45 11·46 14·46 14·48 14·48 14·48 14·48	14·13 14·31 14·49 14·67 14·86 15·04 15·22 15·40 15·59 16·31 16·31 16·60 16·68 16·68 17·04 17·23 17·23	16.04 16.25 16.46 16.67 16.87 17.08 17.29 17.50 17.71 17.51 18.12 18.33 18.54 18.35 18.75	17.93 18.16 18.40 18.63 18.87 19.10 19.34 19.57 19.57 19.50 20.04 20.27 20.51 20.74 20.98 21.21 21.44 21.68 21	20·05 20·31 20·57 20·83 21·09	21 · 63 21 · 61 22 · 20 22 · 49 22 · 77 23 · 06 23 · 35 23 · 63 23 · 63 24 · 49 24 · 49 25 · 06 25 · 35 25 · 64 26 · 62 27 · 7 28 · 64 29 · 7 20 · 7 21 · 63 22 · 7 23 · 64 24 · 7 25 · 64 26 · 62 27 · 62 28 · 63 29 · 63 20 · 63 20 · 63 20 · 63 21 · 63 22 · 7 24 · 7 25 · 64 26 · 64 27 · 65 28 · 64 29 · 65 20 · 66 20 · 66 20 · 66 20 · 66 21 · 66 22 · 7 23 · 66 24 · 7 25 · 66 26 · 66 27 · 66 28 · 66 29 · 66 20	23·44 23·46 24·06 24·37 24·69 25·00 25·31 25·62 26·26 26·26 27·19 27·81 28·12 38·12 38·44	24 * 88 25 * 22 25 * 56 25 * 90 26 * 24 26 * 57 26 * 91 27 * 25 27 * 59 27 * 59 28 * 27 28 * 27 28 * 94 29 * 94 30 * 64 30 * 64 30 * 64	26.61 26.98 27.34 27.71 28.07 28.44 28.80 29.17 29.53 29.90 30.26 30.62 30.62 31.35 32.08 32.45 32.81	28.32 28.71 29.49 29.49 29.88 30.27 30.66 31.05 31.45 31.84 32.23 32.62 33.30 33.40 33.79 34.18 34.57 34.96 34.96	30·00 30·42 30·83 31·67 32·08 32·08 32·91 33·33 33·75 34·17 34·58 35·42 36·67 47·08	978

WEIGHTS OF ANGLE AND T IRON IN LBS. PER LINEAL FOOT-continued.

readths			Thick	kness i	in Fra	ctions	of an i	nch.			Breadths of flanges	
added. (ins.)	7 16	1/2	9	\$	11 16	-4	13	7 8	15 16	1	added. (ins.)	
12½ 12½ 12½ 12½ 13 13½ 13½ 13½ 13½ 13½ 13½ 14½ 14½ 14½ 14½	17·59 17·77 17·96	20 · 00 20 · 21 20 · 42 20 · 63 20 · 83 21 · 04 21 · 25 21 · 46 21 · 67 22 · 08 22 · 28 22 · 28 22 · 3 23 · 3 23 · 3 23 · 3	22·38 22·62 22·85 23·99 23·32 23·55 23·79 24·02 24·26 24·49 324·73 25·43 25·66 22·59 33·66·13 42·66·35 52·66·35	24 · 74 25 · 00 25 · 26 25 · 52 25 · 78 26 · 04 26 · 30 26 · 56 27 · 08 27 · 86 28 · 12 5 28 · 38 28 · 65 7 29 · 17	27 · 07 27 · 35 27 · 64 27 · 93 28 · 22 28 · 50 29 · 08 29 · 36 29 · 65 29 · 65 30 · 51 2 30 · 51 31 · 66 31 · 61 31 · 61 31 · 61	29·37 29·69 30·00 30·31 30·62 30·94 31·25 31·56 32·16 32·16 32·81 33·12 33·44 33·37 33·44 33·44 33·44 33·44 34·66	31 · 65 31 · 99 32 · 33 32 · 67 33 · 01 33 · 35 33 · 68 34 · 02 34 · 36 34 · 70 35 · 36 35 · 71 4 36 · 03 5 36 · 77 7 37 · 0 9 9 37 · 4	34 · 63 35 · 00 35 · 36 35 · 73 36 · 09 36 · 46 37 · 19 4 37 · 55 8 37 · 9 2 38 · 2 3 38 · 6 3 39 · 0 3 39 · 3 7 39 · 7 1 40 · 1	36 91 37 30 37 70 38 48 38 82 39 20 39 65 40 0 40 48 40 8 41 22 1 41 6 7 41 9 4 42 3 0 42 7	39·16 39·16 39·16 340·00 40·42 41·26 41·66 542·00 44·42·5 342·9 243·3 143·7 044·1 944·5 845·0 745·4	128 128 13 13 13 13 13 13 13 13 13 13 13 13 13	The state of the s
14 3 14 3 15	=	22.9	6 26 · 83 7 27 · 0'	3 29 . 69	9 32 . 5	1 35 . 3	1 38 . 0	8 40 . 8	3,43.5	5 46.5	5 147	

The added breadths of the flanges BB must be over all as shown in the diagrams:

OF ENGINEERING FORMULE.

Sizes and Weight of Sheet Tin.

Monte	No. of	Dimer	Dimensions.	
Mai B.	a Box.	Length.	Breadth.	Weight of a Box.
10	200	108	,	cwts, qrs. lbs.
Hx	225	134	9 9	0 0 1
1x xI	225	134	10	1 1 0
1xx	225	134	10	1 1 21
1xxx	225	13\$	100	
IXXXX	225	134	01	1 3 7
).).	100	163	124	
Dxx	100	164	124	
Dxxx	001	163	124	1 2 0
Dxxxx.	100	163	124	
SDC	200	15	11	
S Dx	200	15	11	
	200	15.	11	1 3 14
S Dxxx	200	15	11	
S Dxxxx	200	15	11	
		-		_

WIRE. The Weight of 100 lineal feet,

Copper	11.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53
Brass.	108. 108.
Steel.	1bs. 4 118 3 118 2 36 1 71 1 139 1 106 81 62 47
Iron.	108. 1.69 1.69 1.37 1.05 1.37 1.05 1.37 1.37 1.37 1.37 1.37 1.37
B. W. Gauge.	11 12 13 14 15 16 17 19
Brass. Copper.	1bs. 35·17 29·62 24·54 20·72 17·38 14·33 13·16 10·64 8·38 7·59
	10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.11
Steel.	108 30.92 30.92 26.04 21.57 112.59 112.59 112.59 7.37 6.68
Iron.	118. 30.58 25.75 21.34 21.34 18.02 115.11 11.45 9.25 7.29 6.60 6.60
B. W. Gauge.	0 10 8 8 8 8 9 10

RULE FOR THE WEIGHT OF PIPES.

Outside diameter of pipe in inches.

Weight of a lineal foot of pipe in lbs. Inside diameter. 7 3

2.45 for cast iron. 3

wrought iron. for 2.64 1

for copper. brass. for lead. for 2.82 3.03 3.86 11 11 WEIGHT OF CAST-IRON PIPES

In lbs. per lineal foot. The weight of the two flanges may be reckoned = weight of one foot.

	14	1	1	1	1	1	1	1	1	1	1	1	1	1	1			284.8	309.3	
	13	1	1	1	1	1	1	1	1	1	1	1		1.221	188.7	0	232.9	4.	200	
al.	1	1	1	1	1	1	1	1	1	1	1	127.4	147	156.8	9.991	186.2	205.8	225.4	245.0	
Thickness of Metal.	r- ∞	1	1	1	1	1	I	1		93.3	101.8	110.4	127.5	136.1	144.7	161.8	78.	1	1	
Thickne	eolor	1	1	1	42.3	4.64		4.	71.7	62	86.4	93.7	108.4	15.	123.1	37.	; 1	1	1	
	wo so	16.1	3	28.3	34.4	40.6	46.7		58.8	65.1	7.1	77.3	6	1	1	1	1	1	1	
	-det	12.3	·		26.9		36.8	41.6	46.0	51.4		I	1	1	1	11	= 1	:1	1	
	eojee	× .4			19.8					1	١	-1	1	-1	1	1	1	1	1	
	nches.	6	100	4	10	9	10	00	6	10	=	19	14	12	16	8	20	866	24	

FAIR QUALITY, WEIGHT OF WROUGHT-IRON GAS-TUBING OF PER 1000 LINEAL FEET,

		- Contract of the Contract of
	Weight.	cwt. 47.5 59.6 75.0
	Bore.	मं त्रं दे हैं है
	Weight.	cwt, 16·0 22·5 26·5 35·0 40·0
-	Bore,	11.11.12
	Weight.	2.5 3.66 5.41 7.77
	Bore.	E TO THE OWN TO SHA

WEIGHT OF GAS-TUBING (lbs. per 1000 lineal feet).

1	1833	980
A- 20	1583	795
oske	1417	625
wa(co	1084	480
-400	708	354
101	541	292
eojoo	438	230
2,0	333	161
~	270	170
Bore in inches	Composition	Block Tin

PER ROUND AND SQUARE COPPER RODS IN LBS. WEIGHT OF

	1	-	
	Weight per Lineal Foot.	Sqre.	15 53 16 51 17 65 18 18 18 18 18 19 65 21 19 66 22 23 06 22 26 75 29 36 32 09 34 94
	Weig	Rnd.	12.20 12.30 13.77 13.77 14.60 15.44 16.31 17.20 18.12 19.06 21.02 23.07 25.21 27.45
	Size	Rod.	a a a a a a a a a a a a a a a a a a a
HINEAL FOOT,	Weight per Lineal Foot.	Rnd. Sqre.	3.86 4.91 4.30 5.47 4.30 5.47 5.27 6.68 6.30 7.34 6.30 7.34 6.30 8.73 8.69 11.05 8.69 11.05 8.69 11.05 8.69 11.05 8.69 11.48
77	Size	Rod.	THE STATE OF THE S
	Weight per Lineal Foot.	. Sqre.	9 0 0 24 0 0 0 38 3 0 0 55 3 0 0 74 1 1 23 1 1 2 2 18 2 2 56 4 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	-	Rnd	0.19 0.30 0.30 0.058 0.058 0.058 0.058 1.144 1.772 2.01 2.033 3.05 3.05
	Size of Rod		4 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

WEIGHT OF SEAMLESS BRASS TUBES. (Broughton Copper Company.)

						Thick	iness	of Br	ass.						
Wire	Gauge.	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Inche Milli	es	·180 4·57	·165	·148 3·76	·134 3·40	·120 3·05	109	·095 2·41	·083 2·11	·072 1·83	·065 1·65	·058	·049 1·24	·042 1·07	·035
Ext. Ins.	Diam.					Weig	tht of	a Lir	ieal Fo	oot in	Lbs.				
を を を を を を を を を に に に に に に に に に に に に に	12.7 15.9 19.0 22.2 25.4 28.6 31.7 34.9 38.1 41.3 44.4 47.6 50.8 54.0 57.1	3·54 3·80 4·07 4·32	2·78 3·02 3·27 3·50 3·74 3·98	2·11 2·32 2·54 2·74 2·96 3·17 3·39 3·61	1.55 1.74 1.93 2.13 2.32 2.52 2.71 2.91 3.10 3.29	1·22 1·40 1·57 1·75 1·92 2·09 2·27 2·44 2·61 2·78 2·96				-46 ·56 ·66 ·77 ·87 ·98 1 ·08 1 ·19 1 ·29 1 ·40 1 ·60 1 ·71 1 ·81	**32 **42 **51 **61 **69 **79 **88 **98 1.07 1.17 1.26 1.36 1.45 1.55	· 29 · 38 · 46 · 55 · 64 · 72 · 80 · 88 · 97 1 · 05 1 · 14 1 · 22 1 · 30 1 · 39 1 · 48	*26 *32 *40 *46 *54 *61 *67 *75 *82	· 22 · 27 · 34 · 40 · 46 · 52 · 58 ————————————————————————————————————	·19 ·24 ·28 ·34 ·39
	æ	•74	•64	•50	•41	•33	•27	•21	.16	•12	•10	.08	•06	.05	•03

WEIGHT OF BRASS TURES-continued

В.	W.G.	5	6	7	8	9	10	11	12	13	14	15	16
Ins.	Mm.				We	ight o	f a Lir	neal Fo	oot in	Lbs.			<u>'</u>
2 8 1 2 8 2 7 8 3 1 4 8 3 7 8 4 7 8 4 7 8 4 7 8 4 7 8 4 7 8 4 7 8 4 7 8 4 7 8 4 7 8 4 7 8 7 8	60·3 63·5 66·7 69·8 73·0 76·2 79·3 82·5 85·7 88·9 92·0 95·2 98·4 101·6	8.04 8.36 8.68 9.00 9.31 9.63	5·10 5·40 5·69 5·98 6·28 6·57 7·16 7·46 7·75 8·05 8·34 8·63 8·93	4·84 5·10 5·37 5·62 5·89 6·15 6·40 6·66 6·92 7·19 7·45 7·71 7·97	4.70 4.94 5.18 5.41 5.65 5.89 6.13 6.37 6.61	4 · 04 4 · 25 4 · 46 4 · 67 4 · 89 5 · 11 5 · 32 5 · 53 5 · 75 5 · 96 6 · 17 6 · 39 6 · 60	4.65 4.84	3·31 3·49 3·66 3·83 4·01 4·18 4·35 4·52 4·70 4·87 5·04 5·22 5·40	3·02 3·18 3·33 3·50 3·65 3·80 3·97 4·13 4·28 4·44 4·60 4·75 4·91	2·78 2·93 3·06 3·20 3·34 3·48 3·62 3·75 3·89 4·03 4·16 4·30	2·44 2·56 2·69 2·80 2·93 3·05 3·17 3·29 3·40 3·52 3·65	1.92 2.02 2.12 2.22 2.33 2.43 2.54 2.64 2.74 2.85 2.95 3.06 3.16 3.27	1 · 82 1 · 92 2 · 01 2 · 11 2 · 26 2 · 30 2 · 49 2 · 58 2 · 68 2 · 77 2 · 86 2 · 95

If the internal diameter is given, add x. For example: the weight per lineal foot of a brass tube 2 inches internal diameter 12 W.G. is 2:38+0-27 = 2:65 lbs.

To ascertain the weight of a seamless tube of other metal, multiply the weight of a similar brass tube by

1.05 for copper, 0.90 for wrought iron, 0.84 for cast iron, or by 1.34 for lead. ffull; b bare.

OF

ENGINEERING FORMULÆ.

WEIGHT OF A LINEAL FOOT OF WROUGHT-IRON PIPE.

Bo	ore		T	nickness of M	etal in inches			Bore
i	n hes.	16	1/8	3 16	1/4	5 16	38	inches.
100	38 58 58 1 1	$\begin{array}{c} \cdot 207 \\ \cdot 288 \\ 371 \\ \cdot 454 \\ \hline \cdot 536 \\ \cdot 619 \\ \cdot 701 \\ 1 \cdot 030 \\ \end{array}$	·496 ·660 ·825 1·090 1·154 1·320 1·485 2·144	*867 1:114 1:361 1:609 1:856 2:103 2:351 3:341	1 · 321 1 · 649 1 · 980 2 · 310 2 · 640 2 · 969 3 · 300 4 · 620	1·857 2·268 2·682 3·094 3·506 3·919 4·331 5·981	$2 \cdot 476$ $2 \cdot 970$ $3 \cdot 465$ $3 \cdot 960$ $4 \cdot 455$ $4 \cdot 950$ $5 \cdot 445$ $7 \cdot 425$	1 3 8 1 2 5 8 8 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1
	2 $2\frac{1}{2}$ 3	1·361 1·692 2·021	2.805 3.465 4.125	$4 \cdot 331$ $5 \cdot 321$ $6 \cdot 311$	5.940 7.259 8.590	7.631 9.281 10.931	9·405 11·385 13·365	$\begin{bmatrix} 2\\ 2\frac{1}{2}\\ 3 \end{bmatrix}$
F	Bore.	116	18	3 16	1	5 16	38	Bore.

ı	TPES VEAL.		Strong.	1bs. 2.8 4.4 5.6 7.0 10.0
	WEIGHT OF COPPER PIPES IN LES. PER FOOT LINEAL. IN LES. PER FOOT LINEAL.		Middling.	108. 1.8 2.6 3.7 4.7 6.0
		1	Common.	107 1.6 2.0 3.0 4.0 5.0
l		Bore.	Inch.	4004 440 460
ı		inch.	-40	2.27 3.02 3.77 3.77 6.80 6.80 9.84
١		Thickness in parts of inch.	es in	1.60 2.66 2.66 3.85 5.00 6.13
l		ness in	r\$6	.94 1.33 1.69 2.44 3.21 3.21 3.97 4.73
	IGHT LBS. P	Thick	16	.42 .62 .79 .79 1.15 1.94 2.3
	WE	Bore.	Inch.	るなななる

WEIGHT OF CAST-TRON BALLS AND SOLID CYLINDERS IN LIBS,

6	100	198
00	10	156
4	47	120
9	29.2	2.4 9.9 21.9 39.0 61.0 89.0 120 156
20	17.1	61.0
4	8.7	39.0
9	3.70	21.9
67	1.10	6.6
Н	.136	2.4
Diameter in { inches }	Cast-iron balls 136 1 10 3 70 8 7 17 1 29 5 47	

NUTS AND BOLT-HEADS IN LBS. OF WEIGHT

Diameter of bolt in inches	-	
meter of bolt in inches .	* 06.	36.4
meter of bolt in inches	** 54.	2 1 17 21 21
meter of bolt in inches	* .261	2 8.56 10.8
## meter of bolt in inches	135 169	13
ght of hexagon nut and \$\frac{4}{9117}\$ ght of hexagon nut and \$\frac{6}{9117}\$ ght of square nut and head \$\frac{1}{921}\$ n. of boit in inches \$\frac{1}{14}\$ ght of hexagon nut \$\frac{1}{1}\$ \text{ 1.7}\$ the of square nut \$\frac{1}{1}\$ \text{ 1.75}\$ \text{ 2.09}\$ id head \$\text{ 1.35}\$ \text{ 2.63}\$.057 .071	1½ 3·61 4·55
gift of heagon nut and graded or control of the con	*. •017 •021	14 2.09 2.63
8 50 5 50 1 E 50 5 50 5	eter of bolt in inches ht of hexagon nut and { id ht of square nut and head	of boit in inches 1 th of hexagon nut } 1.07% thead to of square nut } 1.35%

diameter of bolt in inches. weight of nut and head in lbs. 1'07 D³ for hexagon = 1'35 D³ for square. E 2 W W III

 $\frac{\Gamma}{k}$; $L = C^2 k$; $S = C^2 x$; $W = C^2 y$; or = L z. Weight of rope in lbs. per fathom. = Circumference of rope in inches. = Working load of rope in tons. = Breaking strain ,, ,, WEIGHT AND STRENGTH OF ROPES. K I I

TABLE OF VALUE OF k, x, y, AND z.

Description of Rope.	k	×	20	95
Common hemp Coir, hawser laid Cable laid St. Petersburg tarred hemp, hawser	032		.18 .18 6. .131 – .22 .235 6.	18 18 6. 131 — 117 — 22 235 635
White Manilla, haws: cable cable with emp, "cold register" warm. Iron wire rope Steel wire rope	.045 .033 .100 .116 .290	101	.177 3.9 .155 4.	27 .177 3.93 29 .155 4.70 60 — — — — — — — — — — — — — — — — — — —

ROPES IN TONS. TABLE OF WORKING STRENGTH OF

Hemp.	Good	.83	.93	1.03	1.15	1.39	1.65	1.94	2.75	2.58	2.94	3.37	3.17	4.60
Heı	Common.	.578	.648	.122	008.	896.	1.152	1.352	1.268	1.800	2.048	2.312	2.292	3.200
Circum, Inches.		44	44	A	20	24	9	¥9		100	00	450	6	10
re	Steel.	•45	04.	1.01	1.38	1.80	2.28	2.81	3.40	4.05	4.75	5.51	6.33	7.20
Wire	Iron.	.29	.45	99.	68.	1.16	1.47	1.81	2.19	2.61	3.06	3.55	4.08	4.64
p.	Good.	.046	.072	•104	.141	•184	.233	.288	.348	•414	•486	199.	.647	.736
Hemp.	Common.	.032	.050	.072	860.	.128	.162	.200	.242	.288	.338	.392	.450	.512
O. S. C.	Inches.	-	· *	* -	es code	2	24	2,4	23	i cc	33	3.5	2 000	4

128020448448

TABLE OF WEIGHT OF ROPES IN LBS. PER FATHOM.

					-		
Circum.	Hemp.	.d.	Wire.	T9.	Circum.	Hemp.	.d.
Inches.	Common.	Good.	Iron.	Steel.	Inches.	Common.	Good.
1	•18	.24	18.	68.	44	3.25	
14	.28	•38	1.36		44	3.65	
1+	•41	•54	1.96		4	4.06	
***	.55	-74	2.66		5	4.50	
2	.72	96.	3.48		54	5.45	
24	16.	1.22	4.40		9	6.48	
2	1.13	1.50	5.44		49	19.4	
23.	1.36	1.82	89.9		10	8.82	
co	1.62	2.16	7.83		400	10.13	
34	1.90	2.54	9.19		00	11.52	
34	2.21	2.94	99.01		84	13.05	
33	2.53	3.38	12.23	12.52	6	14.58	19.44
4	2.88	3.84	13.92		10	18.00	

WEIGHT AND STRENGTH OF FLAT ROPES OF HEMP AND WIRE.

Equivalent Strength,	Break- ing Strain per ton.	20 22 22 32 32 40 40 50 60 60
Equiv	Work- ing Load per cwt.	444 60 64 72 88 100 112 128 136
Vire.	Lbs. weight per fathom.	11 110 110 110 110 110 110 110 110 110
Steel Wire,	Size in inches.	
Vire.	Lbs. weight per fathom.	11 13 15 16 18 22 22 22 22 34 34
Iron Wire.	Size in inches.	G G G G G G G G G 女 女 女 女 女 女 女 女 女 女 女
ıp.	Lbs. weight per fathom.	20 22 22 28 28 28 28 28 28 28 28 28 28 20 20 20 20 20 20 20 20 20 20 20 20 20
Hemp.	Size in inches.	25 25 25 25 25 25 25 25 25 25 25 25 25 2

= Diameter in eighths of an inch. = Safe load in tons. d = Diameter of iron in inches.SAFE LOAD ON CHAINS. $\frac{D^2}{9} = 7.111 d^2$, where M = AM

TABLE OF WORKING LOAD OF CHAINS.

4.0	$\frac{1\frac{3}{4}}{21\cdot 78}$
$\frac{1}{16}$ 3.36	$1\frac{1}{9}$
2.78 3.	$1\frac{3}{8}$
2.25	$\frac{1\frac{1}{4}}{11 \cdot 11}$
1.78	132
1.36	7.11
5) SO .	6.25
100	5.44
**	1.69
ins.	ins.
Diani.	Diam. Load

MESSRS. BROWN, LENNOX, AND Co.'S CHAIN CABLE.

Approved equivalent Circum- ference of Rope.	11. 12. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	
Weight of Anchor	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Proof Strain of Stud Chain Cable.	22 22 22 22 22 22 22 22 22 22 22 22 22	8
Average Weight per Fathom.	115. 114. 117. 217. 218. 219. 219. 211. 211. 211. 211. 211. 211	,
Length of Cable.	fathoms. 120 120 120 120 120 120 120 120 120 120	
Diam. of Cable.	inches	
Tonnage of Ship.	tons. 25 35 35 35 35 35 35 35 35 35 35 35 35 35	

4 SHEAVE BLOCK FOR 15-TON CRANE. SIZE OF METAL IN

	(I)	
	B.	日日日日日日日日日日日日
HOOKS.	Α.	日 cd
Но	Working Load. Tons.	1 2 2 4 7 8 8 0 2 7 0 0

12-TON CRANE SINGLE SHEAVE PULLEY FOR

USEFUL KNOTS. (H. B. Molesworth, R.N.)

TIMBER HITCH & HITCH. UNDONE TOGGLE FOR HAULING OR TOWING SPARS KNOT. ROUND BOWLINE SHEET BEND EASILY REEF STOPPER ON A ROPE. V NO TURNS TIMBER HITCH. SHIFT THE BEND. HITCH. HITCH. HITCH. SHEET BLACKWALL HALF HITCH, ROLLING CLOVE

OF TABLES FORMULÆ FOR CONSTRUCTING EARTHWORK.

and h = the heights of section in feet at each end of a chair length.

C = cubic contents of 1 chain length in YARDS.

The two slopes are taken separately from the central part—the former as frustum of a pyramid I chain long, the latter the frustum of a wedge,

H 1/1). Frustum of pyramid $C = X \times (H^2 + h^2 + I)$ FOR BOTH SLOPES.

k (H + h) frustum of wedge. CENTRAL PART. FOR

9

=2.445

(Occupation roads). Single line railway. Ditto. 16 20 19.56 when base= 22.00 24.45

Double line railway Turnpike road. Public road. Ditto. 28 30 = 38 33 34.23k = 36.67k = 40.34k = 46.45

PRISMOIDAL FORMULA,

feet.

3.

11

1.2222

[Sum of areas of both ends + (area of middle X 4)] X length

EARTHWORK TABLE A (Gunter's Chain = 66 feet).

ZARTHORK TABLE II (Guillost's Chain 00 1996).													
Height in feet,	Contents of 1 chain length of central portion in cube yards for Bases of							Contents of 1 chain length of both Slopes in cube yards for Slopes of					Height in feet.
HH	1 foot.	16 feet.	18 feet.	20 feet.	28 feet.	30 feet.	33 feet.	1 to 1.	½ to 1.	1 to 1.	1½ to 1.	2 to 1.	Hei in f
1	2.4	39	44	49	68	73	81	3	14	21	34	5	1
2	4.9	78	88	98	137	147	161	21	5	10	15	20	
3	7.3	117	132	147	205	220	242	51	11	22	33	44	3
4	9.8	156	176	196	274	293	323	10	20	39	59	78	4
5	12.2	196	• 220	244	342	367	403	15	31	61	92	122	5
6	14.7	235	264	293	411	440	404	00					1
7	17.1	274	308	342	479	513	484 565	22 30	44	88	132	176	6
8	19.6	313	352	391	548	587	645		60	120	180	240	7
9	22.0	352	396	440	616	660	726	39 50	78	156	234	313	8
10	24 · 4	391	440	489	684	733	807	61	99	198	297	396	9
									122	244	366	489	10
11	26.9	430	484	538	753	807	887	74	148	296	444	592	11
12	29.3	469	528	587	821	880	968	88	176	352	528	704	12
13	31.8	508	572	636	890	953	1049	103	207	413	620	826	13
14	34.2	548	616	684	958	1027	1129	120	240	479	719	958	14
15	36.7	587	660	733	1027	1100	210	138	275	550	825	1100	15
16 17	39.1	626	704	782	1095	1173	1291	156	313	626	939	1252	16
17	41.6	665	748	831	1164	1247	1371	177	353	706	1059	1413	17
	1 foot.	16 feet.	18 feet.	20 feet.	28 feet.	30 feet.	33 feet.	‡ to 1.	½ to 1.	1 to 1.	1½ to 1.	2 to 1.	
			Width	of Base i	n feet.			Slopes.					-

EARTHWORK TABLE A (Gunter's Chain = 66 feet)—continued.

	Height in feet.	Contents of 1 chain length of central portion in cube yards for Bases of								Contents of 1 chain length of both Slopes in cube yards for Slopes of				
	Hü	1 foot.	16 feet.	18 feet.	20 feet.	28 feet.	30 feet.	33 feet.	1 to 1.	½ to 1.	1 to 1.	1½ to 1.	2 to 1.	Height in feet.
	18	44.0	704	792	880	1232	1320	1452	198	396	792	1188	1534	18
- 1	19	46.4	743	836	929	1300	1393	1533	221	441	882	1323	1765	19
-	20	48.9	782	880	978	1369	1467	1613	244	489	978	1467	1956	20
-1	21	51.3	821	924	1027	1437	1540	1694	270	539	1078	1617	2156	21
1	22	53.8	860	968	1076	1506	1613	1775	296	592	1183	1775	2366	22
- 1	23	56.2	900	1012	1124	1574	1687	1855	323	647	1293	1940	2586	23
	24	58.7	939	1056	1173	1643	1760	1936	352	704	1408	2112	2816	24
1	25	61.1	978	1100	1222	1711	1833	2017	382	764	1528	2292	3056	25
1	26	63.6	1017	1144	1271	1780	1907	2097	413	826	1652	2478	3305	26
1	27	66.0	1056	1188	1320	1848	1980	2178	446	891	1782	2673	3564	27
1	28	68.4	1095	1232	1369	1916	2053	2259	479	958	1916	2874	3833	28
1	29	70.9	1134	1276	1418	1985	2127	2339	514	1028	2056	3084	4112	29
-	30	73.3	1173	1320	1467	2053	2200	2420	550	1100	2200	3300	4400	30
1	31]	75.8	1212	1364	1516	2122	2273	2501	587	1175	2349	3524	4698	31
1	32	78.2	1252	1408	1564	2190	2347	2581	626	1252	2503	3755	5006	32
1	33	80.7	1291	1452	1613	2259	2420	2662	666	1331	2662	3993	5324	33
1	34	83.1	1330	1496	1662	2327	2493	2743	706	1413	2826	4239	5652	34
1		1 foot.	16 feet.	18 feet.	20 feet.	28 feet.	30 feet.	33 feet.	1 to 1.	½ to 1.	1 to 1.	1½ to 1.	2 to 1.	
-				Width	of Base i	n feet.	Slopes.							

EARTHWORK TABLE A (Gunter's Chain = 66 teet)—continued.

Height in feet.	Cont	ents of 1		ngth of o		ortion in	cube	Content	s of 1 ch	ain leng yards for	th of both Slopes o	h Slopes	Height in feet.
HH	1 foot.	16 feet.	18 feet.	20 feet.	28 feet.	30 feet.	33 feet.	1 to 1.	½ to 1.	1 to 1.	1½ to 1.	2 to 1.	He
35	85.6	1369	1540	1711	2396	2567	2823	749	1497	2994	4491	5989	35
36	88.0	1408	1584	1760	2464	2640	2904	792	1584	3168	4752	6336	36
37	90.4	1447	1628,	1809	2532	2713	2985	837	1673	3346	5019	6693	37
38	92.9	1486	1672	1858	2601	2787	3065	882	1765	3530	5295	7060	38
39	95.3	1525	1716	1907	2669	2860	3146	930	1859	3718	5577	7436	39
40	97.8	1564	1760	1956	2738	2933	3227	978	1956	3911	5867	7822	40
41	100.2	1604	1804	2004	2806	3007	3307	1027	2055	4109	6164	8218	41
42	102.7	1643	1848	2053	2875	3080	3388	1078	2156	4312	6468	8624	42
43	105.1	1682	1892	2102	2943	3153	3469	1130	2260	4520	6780	9040	43
44	107.6	1721	1936	2151	3012	3227	3549	1183	2366	4732	7098	9465	44
45	110.0	1760	1980	2200	3080	3300	3630	1238	2475	4950	7425	9900	45
46	112.4	1799	2024	2249	3148	3373	3711	1293	2 586	5172	7758	10345	46
47	114.9	1838	2068	2298	3217	3447	3791	1350	2700	5400	8100	10800	47
48	117.3	1877	2112	2347	3285	3520	3372	1408	2816	5632	8448	11264	48
49	119.8	1916	2156	2396	3354	3593	3953	1467	2934	5869	8803	11738	49
50	122.2	1956	2200	2444	3422	3667	4033	1528	3055	6111	9166	12222	50
	1 foot.	16 feet.	18 feet.	20 feet.	28 feet.	30 feet.	33 feet.	å to 1.	1 to 1.	1 to 1.	1½ to 1.	2 to 1.	
			Width	of Base	in feet.					Slopes.			1

For any other bases multiply the quantity due to 1 foot base by the width of base required.

EARTHWORK TABLE B.

Contents of 1 foot length in cubic feet (for lengths of 100 feet alter two places of decimals).

ght set.	Centr	al por	rtion.	Widt	h of I	Base in	feet.			Contents	of both	Slopes.			ght set.
Height in feet.	10 ft.	16 ft.	18 ft.	20 ft.	28 ft.	30 ft.	33 ft.	1 to 1.	½ to 1.	\$ to 1.	1 to 1.	1½ to 1.	2 to 1.	3 to 1.	Height in feet.
1	10	16	18	20	28	30	33	•25	• 5	•75	1	1.5	2	3	1
2	20	32	36	40	56	60	66	1	2	3	4	6	8	12	2
3	30	48	54	60	84	90	99	2.25	4.5	6.75	9	13.5	18	27	2
4	4.0	64	72	. 80	112	120	132	4	8	12	16	24	32	48	4
5	50	80	90	100	140	150	165	6.25	12.5	18.75	25	37.5	50	75	5
6	60	96	108	120	168	180	198	9	18	27	36	54	72	108	6
7	70	112	126	140	196	210	231	12.25	24.5	36.75	49	73.5	98	147	7
8	80	128	144	160	224	240	264	16	32	48	64	96	128	192	8
9	90	144	162	180	252	270	297	20.25	40.5	60.75	81	121.5	162	243	9
10	100	160	180	200	280	300	330	25	50	75	100	150	200	300	10
111	110	176	198	220	308	330	363	30.25	60.5	90.75	121	181.5	242	363	11
12	120	192	216	240	336	360	396	36	72	108	144	216	288	432	12
13	130	208	234	260	364	390	429	42.25	84.5	126.75	169	253.5	338	507	13
14	140	221	252	280	392	420	462	49	98	147	196	294	392	588	14
15	150	240	270	300	420	450	495	56.25	112.5	168.75	225	337.5	450	675	15
16	160	256	288	320	448	480	528	64	128	192	256	384	512	768	16
17	170	272	306	340	476	510	561	72.25	144.5	216.75	289	433.5	578	867	17
Height in feet.	10 ft.	16 ft.	18 ft.	20 ft.	28 ft.	30 ft.	33 ft.	¼ to 1.	½ to 1.	3 to 1.	1 to 1.	1½ to 1.	2 to 1.	3 to 1.	Height in feet.
Hei in f	Centr	al por	rtion.	Wid	th of 1	Base in	feet.			Во	th Slope	s.			He

F ENGINEERING FORMULÆ.

EARTHWORK TABLE B—continued. Contents of 1 foot length in cubic feet (for lengths of 100 feet alter two places of decimals).

bt et.	Centr	al por	tion.	Widt	h of B	ase in	feet.			Content	ts of both	Slopes.			Height in feet.
Height in feet.	10 ft.	16 ft.	18 ft.	20 ft.	28 ft.	30 ft.	33 ft.	i to 1.	$\frac{1}{2}$ to 1.	3 to 1.	1 to 1.	$1\frac{1}{2}$ to 1.	2 to 1.	3 to 1.	He in 1
18	180	288	324	360	504	540	594	81	162	243	324	486	618	972	18
19	190	304	342	380	532	570	627	90.25	180.5	270.75	361	541.5		1083	19
20	200	320	360	400	560	600	660	100	200	300	400	600	800	1200	20
21	210	336	378	420	588	630	693	110.25	220.5	330.75	441	661.5	882	1323	21
22	220	352	396	440	616	660	726	121	242	363	484	726	968	1452	22
					0.1.1	000	-	132.25	264.5	396.75	529	793.5	1058	1587	23
23	230	368	414	460	644	690			288	432	576	864	1152	1728	24
24	240	384	432	480	672	720	792	156 25	312.5	468.75	625	937.5	1250	1875	25
25	250	400	450	500	700	750		169	338	507	676	1014	1352	2028	26
26	260	416	468	520	728	780		182.25	364.5	546.75	729	1093.5	1458	2187	27
27	270	432	486	540	756	810	891	182.20	304.9	940.19	123				
28	280	448	504	560	784	840	924	196	392	588	784	1176	1568	2352	28
29	290	464	522	580	812	870	957	210.25	420.5	630.75	841	1261.5	1682	2523	29
30	300	480	540	600	840	900	990	225	450	675	900	1350	1800	2700	30
31	310	496	558	620	868	930	1023	240.25	480.5	720.75	961	1441.5	1922	2883	31
32	320	512	576	640	896	960	1056	256	512	768	1024	1536	2048	3072	32
33	330	528	594	660	924	990	1089	272.25	544.5	816.75	1089	1633.5	2178	3267	33
34	340	544	612	680	952	1020	1122	289	578	867	1156	1734	2312	3468	34
t t	10 ft.	16 ft.	18 ft.	20 ft.	28 ft.	30 ft.	33 ft.	1 to 1.	½ to 1.	\$ to 1.	1 to 1.	1½ to 1.	2 to 1.	3 to 1.	Height in feet
fee						1									lei fe
Height in feet.	Cent	ral po	rtion.	Widt	th of I	Base in	feet.			В	oth Slop	es.			田岩

EARTHWORK TABLE B .- continued.

Contents of 1 foot length in cubic feet (for lengths of 100 feet alter two places of decimals).

Height in feet.	Cent	al por	rtion.	Widt	h of I	ase in	feet.			C	ontents of	both S	lopes.			cht,
Hei in f	10 ft.	16 ft.	18 ft.	20 ft.	28 ft.	30 ft.	33 ft.	å to	1.	½ to 1.	3 to 1.	1 to 1.	$1\frac{1}{2}$ to 1.	2 to 1.	3 to 1.	Height in feet.
35 36 37 38	350 360 370 380	560 576 592 608	630 648 666 684	740	1008 1036	$1050 \\ 1080 \\ 1110 \\ 1140$	$\frac{1188}{1221}$	$\frac{324}{342}$		648	918.75 972 1026.75 1083	1225 1296 1369 1444	1837.5 1944 2053.5 2166	2592	3675 3888 4107	35 36 37
39	390	624	702			1170			•25	760.5	1140.75		2281.5		4332 4563	38
40 41 42	$\frac{400}{410}$ $\frac{420}{420}$	$640 \\ 656 \\ 672$	720 738 756	820	1148	$1200 \\ 1230 \\ 1260$	1353	420	•25	800 840 • 5 882	1200 1260 · 75 1323	1681	2400 2521 · 5 2646	3200 3362 3528	4800 5043 5292	40 41 42
43 44	430 440	$\frac{688}{704}$	774 792			1290 1320					1386·75 1452		2773·5 2904	3698 3872	5547 5808	43
45 46 47	450 460 470	720 736 752	810 828 846	920	1288	$1350 \\ 1380 \\ 1410$	1518	529		1058	1518·75 1587 1656·75	2116	3037 · 5 3174 3313 · 5	4050 4232 4418	6075 6348 6627	45 46 47
48 49 50	480 490 500	768 784 800	864 882 900	960 980	$1344 \\ 1372$	1440 1470 1500	$1584 \\ 1617$	576 600	.25	1152 1200·5	1728 1800·75	2304 2401	3456 3601·5	4608 4802	6912 7203	48 49
Height in feet.				20 ft.				1 to		1250	1875 3 to 1.	-	3750 1½ to 1.	5000 2 to 1.	7500 3 to 1.	Sht oet.
Hei in f	Centi	al por	tion.	Widt	h of B	ase in	feet.				Botl	h Slopes	3.			Height in feet.

EARTHWORK TABLES A AND B.

English practice, in which the height is given in feet, the length in Gunter's chain of 66 feet, and is applicable to any measure when the length, The first set of tables (A) is applicable to the the contents in cubic yards. The second set (B) height, and contents are all of the same unit. Quantities of earthwork may be calculated with sufficient accuracy for all practical purposes by these tables, unless the heights at each end of the length differ greatly when a correction for the slopes is necessary.

at each end of a length respectively, the cubic contents = x (H + h). (For values of x, see table.) On sidelong ground where the areas are If H and h be the tabular numbers for the slopes taken out from cross sections, if A and a be the areas of a slope at each end respectively, the cubic contents of the slope = y (A + a). (For values contents of the slope = y(A + a). of y, see table.)

VALUES OF # TO BE USED FOR SLOPES ONLY.

-				,		• 5	• 3333	22	Contract Con
-					.5	.4667	.3333	10	
			ì	-5	.4667	•4118	.3333	20	
			.5	.4872	•4333	.3870	•3333	30	
		•5	•4933	1997.	.4118	•3742	•3333	40	
	9.	.4959	+4804	.4483	•3973	•3663	. 3333	20	
	20	40	30	20	10	5	0	Feet	

EARTHWORK TABLES—continued.

VALUES OF Y FOR FIRST SET OF TABLES

.35	1.222
05 1 15 2 25 3 35 9884 1 049 1 089 1 185 1 141 1 158 1 172	.6 .7 .8 .9 1.0 [.209] 1.216 1.219 1.222 1.22
1.141 1.1	1.219
1.185	1.216
1.089	9 1.209 1
1.049	1.19
.9884	.45
.8148	1.183
If A ÷ a = y = =	If A ÷ a = y =
If A	If A

VALUES OF Y FOR SECOND SET OF TABLES B.

.35	1.0
.4738	.9 .
.25	•4990
.4576	.4974
.15 .2	.4947
.1	.4905
.05 .1 .15 .2 .25 .3 .35 .4043 .4292 .4456 .4576 .4667 .4738 .4794	.45 .5 .6 .4917 .4974 .4990 .4998 .5
0	•4839
- a = 1	-a=
If $A \div a = y = y = y = y = y = y = y = y = y =$	$ \frac{1 f A \div \alpha}{y =} $

(Hurst.) MEASUREMENT OF EARTHWORK.

areas of angles, and multiply the area of each by onethird of the sum of the depths taken at the angles, Divide the surface into To measure the solidity over large and the result will equal the solidity. irregular depth.

EARTHWORK TABLES. (General De Lisle, R.E.)

Tables I. and II. give the cubic contents of a prismoid in terms of the unit of measurement, that is cubic mètres from mètres, cubic feet from feet, cubic inches from inches, &c. Tables III. and IV. are adapted for English railway practice, giving cubic yards from measurements in feet.

Tables V. and VI. give the correction for difference of width when the latter is not uniform from end to end of the prismoid, and are to be used with any of the first four Tables.

- is the greater height 2. In all these Tables the argument lesser height decimal corresponding to
 - ä the left-hand column, the second at the top of the columns, and the difference for the third is found = v, of which the first place is to be found by simple interpolation.
- 3. The dimensions must in all cases be those which give the true area of the end sections as shown in Figs 1, 2, 3, 4, where in Fig 1 H is the mean of the two side heights hh'; in Fig 2, is the mean of the top and bottom heights. In the end sections of a prismoid, the greater height or width is denoted by a capital letter. the end sections of a
- 4. To find the true mean width W, when the width is not uniform.

-continued. EARTHWORK TABLES-

H, and take When the greater width is at the same Enter Table V, with the argument v =end as the greater height.

TABLES—continued. EARTHWORK

out the factor F, which multiply by the W... result to the lesser width to find greater exactly the same manner as above, but Proceed in use Table VI. instead of Table V. greater width and height are at different ends. When the

Example.

Let the figures represent the end sections of a portion of embankment 55 feet long.

FIG. 5.

Left Slope.

$$v = \frac{h}{H} = \frac{0}{15} = .00$$
; F = .667, Table V.

-continued. HARTHWORK TABLES-

$$W_m = 20 + (W - w) F = 0 + (12 - 0) 667 = 8,$$

 $n - 00 N_0 = \overline{19979} \text{ Table II.*}$

11 N

00.

2

$$I = 15 = 1.1761$$

 $I = 55 = 1.7404$

$$W_m = 8 = 0.9031$$

$$M_m = 8 = M_m$$

$$V = 1650 = 3.2175$$

By direct calculation, V = 1650.

Centre.

$$=\frac{h}{H}=\frac{3}{17}=.177; f=.383, \text{ Table VI.}\dagger$$

$$W_m = w + (W - w)f = 20 + (30 - 20) \cdot 383$$

= 23 · 83.

$$v = .177 N_1 = \overline{1.7697} \text{ Table I.}$$

 $I = 17 = 1.2304$
 $L = 55 = 1.7404$
 $L = 23.83 = 1.3772$

By direct calculation, V = 13108.33.

* Triangular Prismoid: N from Table II. + W at lower end, Table VI. is required.

EARTHWORK TABLES—continued.

Right Slope.

$$= \frac{h}{H} = \frac{6}{19} = .316; F = .587, Table V.$$

$$W - w = 25 - 20 = 5; 5 \times .587 = 2.93.$$

$$+ (W - w)F = 20 + 2.93 = 22.93 = W_m,$$

$$V = .316 N_2 = 1.5172 Table II.*$$

$$V = .316 N_2 = 1.7788$$

$$V = .316 N_3 = 1.7788$$

$$V = .22.93 = 1.7604$$

By direct calculation, V = 7883.3.

3.8968

7884

H' TH

Whole volume of embankment = 1650 + 13110yards, or feet, supposing the dimensions to be in metres, yards, or feet respectively. By direct calculation the 7884 = 22644 cubic mètres, result is 22642 nearly.

In this example the right-hand slopes are "in in their application, and only require that the correct dimensions for area of end sections shall winding" to show that the Tables are quite general be used. Tables I., II., III., IV., are from equations by Mr. Ryan, formerly of Messrs. Cameron and Ryan, Bombay.

Tables V., VI., are from equations by the Rev. J. Sowerby, formerly of Marlborough College.

* Triangular Prismoid: N from Table II.

EARTHWORK TABLES. (General De Lisle, R.E.)

1

-		TRAP	EZO	OIDAL :	PRI	SMOIDS		_]	Logs	; <u>.</u>					Len	gtl	ı, un	ity	; 1	Vidth,	un	ity	y.	
	v	•00	1	.01		.02			•03			•04			•05			•06		• (07	-	•08		Series -	.•09	_
-	.0	1.6990	43	1.7033	43	Ī·7076	42	ī.	7118	12	ī.,	7160	42	ī.	7202	41	ī	7243	40	1.72	83	41	ī·7324	10	1.	7364	40
	.0	1.7404 1.7781 1.8129	00	T . 7017	20	1.7052	26	1 .	7999	35	1 .	7024	35	1 .	7959	34	п.	7993	35	1.80	28	34	1,800%	11333	u.	8090	30
	.4	1.8451	31	Ī·8482	31	1.8513	30	1.	8543	30	1.	8573	30	1.	8603	30	1.	8633	30	1.86	63	29	1.8692	30	1.	8122	20
	.0	ī·8751 ī·9031	27	T-9058	27	T-9085	27	ī.	9112	26	ī.	9138	26	ī	9164	27	ī	9191	26	1.92	17	26	ī·9243	3 26	1.	9269	25
-	.7	$ \begin{array}{c} 1 \cdot 9294 \\ \hline{1} \cdot 9542 \\ \hline{1} \cdot 9777 \end{array} $	26	1.9320	25	1.9345 1.9590	25	1:	9370	$\frac{25}{24}$	1.	9395 9638	$\frac{25}{23}$	1	9420 9661	$\frac{25}{24}$	$\frac{1}{1}$	·9445 ·9685	24 23	1.94	69 08	$\frac{25}{23}$	1.949	23	1.	9754	23
-	1.	0.0000						-																			

 $\begin{aligned} \mathbf{H} \times \mathbf{L} \times \mathbf{W}_m \times \mathbf{N}_1 &= \mathbf{V} \text{ in Cube of unit of measure.} \\ \mathbf{W}_m &= \text{mean Width. } \mathbf{N}_{n_t} \text{tabular Number; }_{n_t} \text{number of Table. } \mathbf{V}, \text{ volume of Prismoid.} \end{aligned}$

	TRIA	NG	UL.	AR]	PRI	SMO	IDS.						Loc	is.				Le	ng	th, unit	у;	Wie	lth,	u	nity		_
v	•00		-	•01			•02	-		•03			•04			•05		•06		.07			08			•09	
.0	ī·3979	44	ī.	4023	43	ī·4	066	42	ī.	1108	42	ī·	1150	41	ī:	4191	41	1.4232	41	1.4273	41	Ī·43	14	40	ī·4	354	39
.3	$ \begin{array}{r} \hline{1 \cdot 4393} \\ \hline{1 \cdot 4771} \\ \hline{1 \cdot 5119} \\ \hline{1 \cdot 5441} \end{array} $	33	$\frac{1}{1}$	5152	33	1.4	$843 \\ 185$	33	$\frac{1}{1}$	1878 1218	36	1.4	$\frac{1914}{5250}$	35	1:	4949 5283	34	1.4983	34	1.5017	34	I . 50	51 3	34	1.5	085	34
	Ī·5740				2																		- 1	- 1			
.8	$ \begin{bmatrix} 1 \cdot 6021 \\ \hline{1} \cdot 6284 \\ \hline{1} \cdot 6532 \\ \hline{1} \cdot 6767 \end{bmatrix} $	$\frac{25}{24}$	1.6	5309 3556	26 24	$\frac{1}{1}$ · 6:	335 580	$\frac{25}{24}$	1.6	360 604	25	1.6	385	25	1:	6410	25	1.6435	24	Ī·6459	25	1.64	84 2	24	Ī · 6	5118	24
	1.6990							THE PERSON NAMED IN						-													

 $\begin{array}{c} H\times L\times W_m\times N_2=V \ {\rm in} \ {\rm Cube} \ {\rm of} \ {\rm unit} \ {\rm of} \ {\rm measure}. \\ H.\ \emph{h,} \ {\rm Greater} \ {\rm and} \ {\rm less} \ {\rm Heights}. \quad L, \ {\rm length} \ {\rm of} \ {\rm Prismoid}. \quad W.\ \emph{w,} \ {\rm Greater} \ {\rm and} \ {\rm less} \ {\rm Widths}. \end{array}$

1		TRAPEZ	OIDAL PR	ismoids.		Logs.		Length, or	ne foot ; V	Vidth, one	foot.
1	v	•00	•01	•02	•03	•04	•05	•06	•07	•08	•09
777	.0	2.2676 43	3 2.2719 43	2.2762 42	2.2804 42	2.2846 42	2.2888 41	2 · 2929 41	$2 \cdot 2970 40$	2.3010 40	2.3050 40
FUCER	. ()	5 . 3469 3	$6.\overline{2} \cdot 3504 36$	$\begin{array}{c} 2 \cdot 3168 \ 39 \\ \overline{2} \cdot 3540 \ 35 \\ \overline{2} \cdot 3882 \ 33 \end{array}$	5,3949 39	2 3010 30	2 0010 00	5.4011 00	5 4042 22	2.4075 31	2 • 4106 311
HP	.3	2.38163	$3\ \overline{2} \cdot 3849\ 33$	$\frac{2\cdot 3882}{2\cdot 4199}31$	$\frac{2\cdot 3915}{2\cdot 4230}30$	$\frac{2}{2} \cdot 4260 \ 30$	$\frac{2}{2} \cdot 4290 30$	2.4320 29	2.4349 30	2.4379 29	2.4408 29
WOR		1		1	1		T	5- 40kh 00	5.4002 26	7.4909 26	$2 \cdot 4690 27$ $3 \cdot 2 \cdot 4955 26$ $3 \cdot 2 \cdot 5205 24$
MOLESWORTHS	. 17	2 . 4981 2	5 2.5006 2	5 2.5031 26	2.2024 75	2.0004.25	2 5100 20	D. F. 071 00	5.5294 9/	2.5418.23	\$\frac{2}{5}\frac{5}{205}\frac{24}{24}\$\$\$\$\$\frac{2}{5}\frac{5441}{23}\$
M	1.	2·5464 2 2·5686	$2\bar{2} \cdot 5486^2$	3 2.5509 23	2.5532 22	2 2 5554 2	2 3310 20	2 0000 22			
	1.	2.2686					W.i- Co.				1

III.

 $\begin{array}{ll} H\times L\times W_m\times N_3=V \ \text{in Cubic Yards.} \\ W_m=\text{mean Width.} & N_n, \text{tabular Number; } n, \text{number of Table.} & \textbf{V, volume of Prismoid.} \end{array}$

EARTHWORK TABLES-continued,

IV.

·	TRIANG	ULAR PRI	SMOIDS.		Logs.		Length, o	ne foot; V	Vidth, one	foot.
o o	•00	•01	•02	•03	•04	•05	•06	•07	•08	•09
1234 5 6789	$egin{array}{cccccccccccccccccccccccccccccccccccc$	3.9709 43 2.0119 39 2.0494 35 2.0838 33 2.1158 31 2.1456 28 2.1734 27 2.1996 25 2.2243 23 2.2476 23 2.2476 23	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} \overline{2} \cdot 0197 & 38 \\ \overline{2} \cdot 0565 & 35 \\ \overline{2} \cdot 0904 & 33 \\ \overline{2} \cdot 1219 & 30 \\ \overline{2} \cdot 1513 & 28 \\ \overline{2} \cdot 2046 & 24 \\ \overline{2}$	$ \begin{array}{r} \hline 2 \cdot 0235 & 38 \\ \hline 2 \cdot 0600 & 35 \\ \hline 2 \cdot 0937 & 32 \\ \hline 2 \cdot 1249 & 30 \\ \hline \hline $	$\begin{array}{c} 2 \cdot 0273 & 37 \\ \hline 2 \cdot 0635 & 35 \\ \hline 2 \cdot 06635 & 35 \\ \hline 2 \cdot 0969 & 32 \\ \hline 2 \cdot 1279 & 30 \\ \hline 2 \cdot 1569 & 28 \\ \hline 2 \cdot 1841 & 26 \\ \hline 2 \cdot 2096 & 25 \\ \hline \end{array}$	$\begin{array}{c} 2 \cdot 0310 \ 38 \\ \hline 2 \cdot 0670 \ 34 \\ \hline 2 \cdot 1001 \ 32 \\ \hline 2 \cdot 1309 \ 30 \\ \hline 2 \cdot 1597 \ 28 \\ \hline 2 \cdot 1867 \ 26 \\ \hline 2 \cdot 2121 \ 25 \\ \end{array}$	$\begin{array}{c} \overline{2} \cdot 03 + 8 & 37 \\ \overline{2} \cdot 0704 & 34 \\ \overline{2} \cdot 1033 & 32 \\ \overline{2} \cdot 1339 & 29 \\ \overline{2} \cdot 1625 & 27 \\ \overline{2} \cdot 1893 & 26 \\ \overline{2} \cdot 2146 & 24 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 2 \cdot 0421 & 33 \\ \hline{2} \cdot 0772 & 33 \\ \hline{2} \cdot 1096 & 31 \\ \hline{2} \cdot 1398 & 29 \\ \hline{2} \cdot 1680 & 27 \\ \hline{2} \cdot 1945 & 25 \\ \hline{2} \cdot 2194 & 25 \end{bmatrix} $

 $\begin{array}{c} H \times L \times W_m \times N_4 = V \text{ in Cubic Yards.} \\ H \text{ . h, Greater and less Heights.} \quad L, length of Prismoid.} \quad W. \text{ w, Greater and less Widths.} \end{array}$

EARTHWORK TABLES-continued.

	Factor	F f	or diffe	ren	ce of W	7id1	th.		DECIM	IAL	s.	(Greater	w	idth W	at	thigher	r er	nd H.	_
v	•00		•01	i	.02		•03		•04		•05		•06		.07		•08		•09	
·0 ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·8 ·9	·667 ·636 ·611 ·590 ·571 ·556 ·542 ·529 ·519 ·509	4 2 2 2 1 2 1 1	·663 ·634 ·609 ·588 ·570 ·554 ·540 ·528 ·518 ·508	3 2 2 2 1 1 1 1 1 1 1	·660 ·631 ·607 ·586 ·568 ·553 ·539 ·527 ·517 ·507	3 3 2 2 2 1 1 1 1 1 1	·657 ·628 ·604 ·584 ·566 ·551 ·538 ·526 ·516 ·506	3 2 2 2 2 1 1 1 1 1 1 1	·654 ·626 ·602 ·582 ·565 ·550 ·537 ·525 ·515 ·505	3 2 2 2 2 2 2 1 1	·651 ·623 ·609 ·5×0 ·563 ·548 ·535 ·524 ·514 ·504	3 2 2 2 1 1 1 1 1 1	·648 ·621 ·598 ·578 ·562 ·547 ·534 ·523 ·513 ·503	3 2 1 2 1 1 1 1 1 1 1 1	·645 ·618 ·596 ·577 ·560 ·546 ·533 ·522 ·512 ·502	3 2 2 2 1 1 1 1 0	·642 ·616 ·594 ·575 ·559 ·544 ·532 ·521 ·511 ·502	3 2 2 2 1 1 1 1 1 1 1 1	·639 ·613 ·592 ·573 ·557 ·543 ·531 ·520 ·510 ·501	3 2 2 2 1 1 2 1 1 1 1

HARTHWORK TABLES-continued.

OF ENGINEERING FORMULÆ,

										-		******	1				1			
v	.00		.01		•02		.03	3	•04		•05		*06		•07		•08		.09	٠
٠0	•333	4	•337	3	•340	3	•343	3	•346	3	•349	3	•352	3	*355	3	•358	3	•361	1 3
.1	*364	2	*366	3	•369	3	.372	2	.374	3	.377	2	.379	0	*382		.004			
.3	*389	2	•391	2	.393	3	•396	2	*398	2	.400	2	.402	3	*404	2 2	*384	3	*387	2
.3	•410	2	•412	2	.414	2	.416	2	•418	2	*420	2	•422	2		2	*406	2	.408	2
.4	•429	ĩ	*430	2	432	2	*434	11	•435	2	•437	2	•438	2	•423	2	*425	2	.427	2
		-	100	~	404	171	404	-	430	4	431	1	438	2	.440	1	.441	2	.443	1
.5	•444	2	.446	1	.447	2	•449	1	.450	2	•452	1	•453	1	.454	2	•456	1	.457	1
.6	•458	2	*460	1	•461	1	*462	,	•463	2	•465	,	•466	,	•467	1	. 100			
7	.471	1	.472	1 i	•473	1	.474	î	475	1	•476	1	•477	1	478	1	*468	1	•469	2
8	•481	1	.482	1	•483	1	•484	1	*485	1	*486	1	•487	7	.488	7	*479	1	•480	1
8	•491	1	.492	1	•493	1	.494	i	•495	1	•496	1	•497	1	•498	0	·489 ·498	1	•490	1
				-				1	100	-	400	1	401	1	498	U	498	1	•499	7
.	•500					- 1				- 1										

 $W_m = w + (W - w)f$. H. h, Greater and less Heights. L, length of Prismoid. W. w Greater and less Widths.

EARTHWORK TABLES. (General De Lisle, R.E.) Half Cutting, Half Bank.

cutting or bank slope in terms of height, let the Express the ratios of hill slope and back difference of these ratios for cutting = c, for bank base 11 area cutting area bank = b, and let -

Then if $\frac{b}{-}$ is less than unity, its value taken as argument for Table VII. gives K., a factor which multiplied by the whole width of the road gives the width for cutting. 0 %

as argument in Table VII. gives K,, a factor which, multiplied by the whole width of the But if $\frac{b}{-}$ is greater than unity, its reciprocal road, gives the width for bank. When r = 1, that is, when cutting and bank are to be equal, the arguments are $\frac{b}{c}$ or $\frac{c}{b}$ respectively.

Let width of road = 20 feet. 7.1 = 1.5 cutting bank

Examples.

EARTHWORK TABLES—continued.

86.0 = 2.081.50 = 9 Bank. 31.2 Bank slope =1.425 Hill slope .925 Cutting. 28.5 20 Back slope Hill slope

Frg. 6.

= .753; Table VII., K. = .535. $.58 \times 1.2$.925 20

535 = 10.7, width for cutting; $h = \frac{11.6}{.925} = 11.6$. 10.7 20 ×

.58 $20 - 10 \ 7 = 9.3$, width for bank; h' =

 $10.7 \times 11.6 = 1.2 = r \text{ nearly.}$ 9.3×16 Areas AEC ABD

EARTHWORK TABLES-continued. Let width of road = 24 feet.

$$r = '70$$
.

Cutting. Bank. Hill slope
$$\frac{30}{8} = 3.75$$
 Hill slope $\frac{33.9}{6} = 5$ 6

Back slope
$$\frac{2}{1} = 2$$
. Bank slope $\frac{2}{b} = \frac{2}{3 \cdot 65}$

$$c = 1.75$$

FIG. 7.

- is greater than unity. In this case -

$$\frac{c}{br} = \frac{1.75}{3.65 \times .70} = .685;$$

Table VII.,
$$K_b = .547$$
.

$$24 \times .547 = 13 \cdot 1$$
, width for bank; $h' = \frac{13 \cdot 1}{3 \cdot 65} = 3 \cdot 6$
 $24 - 13 \cdot 1 = 10 \cdot 9$, width for cutting; $h = \frac{10 \cdot 9}{1 \cdot 75} = 6 \cdot 2$.

Areas
$$\frac{ABD}{ACE} = \frac{13 \cdot 1 \times 3 \cdot 6}{10 \cdot 9 \times 6 \cdot 2} = 7 = r$$

Table VII. is from an equation by General Scott, R.E. (late Bombay). VII

	1	HA:	LF CU	TTIN	G, H	LF	BANK.]	DEC	IMALS	. 1	Factor I	Ko 1	for wid	lth	of Bar of Cu	nk, ttin	or g.	
u or u'	0		1		2		3		4	1	5		4		7		8		9	
.0	1.000	91	•909	33		24		19	.833	16	-817	14	.803	12	791	12	-779	10	.769	
1234	·760 ·691 ·646	9 5 4	·751 ·686 ·642	8 5 4	·743 ·681 ·638	5 3	·735 ·676 ·635	5 3	·728 ·671 ·632	7 4 4	·721 ·667 ·628	5 3		6 4 3	·708 ·658 ·622	4	·702 ·654 ·619	4	•696 •650 •616	-
•5	•613	3	·610	3	·607	3	·604	3	·601	3	·598	2	·596	3	·593	2	•591	3	•588	1
·6 ·7	·563	2	•561 •543	2 2	*559 *541	2 2	·557	2	·555	2	·553	1 2	·552 ·534	2	•550	2	·568	2	·566	1
.8 .9	*528 *513 *500	2	•526 •512	1 2	·525	2	·523 ·509	1	·522 ·508	2 2	•520 •506	1 1	·519 ·505	2 1	·533 ·517 ·504	1	·531 ·516 ·503	1	·529 ·515 ·501	

If c > b, $u = \frac{\sigma}{c}$ and W × K_c = width of Cutting, w_c . Then $w_b = W - w_c$. W = formation width.

If br > c, $u' = \frac{c}{br}$ and $W \times K_b = \text{width of Bank}$, w_b . Then $w_c = W - w_b$.

GROUND. SIDELONG ROADS SKIRTING

of slope Angle of ground Area of section. with horizon. Width of base. with horizon. Angle

	14 to 1.	•1199	.1562	.1992	.2512	•3164	0	.5128	.6702	606.	1.3123	2.1551							10			
for different Slopes.	1 to 1.	.107	1351	1991.	.2008	.2407	. 2857	•3389	.4012	•4761	.5675	.6330	. 8333	1.0373	1.3297	1.7857	2.6041					
of K for diffe	\$ to 1.	. 1016	.1265	.1533	1794	.2145	.25	.2907	. 3342	.3846	.4421	1609.	.5882	6830	1861.	.9434	1.131	1.385	F.	2 315		
Values of K	½ to 1.	1960.	•119	.1424	.1672	.1937	.2222	.2538	.2857	.3225	.362	.4058	.4545	1609.	1019.	.641	. 7225	*8183	.9345	1:0729	1.25	1.475
	‡ to 1.	.0922	.1123.	.1329	.1543	9941.		.2252	.25	-2777	.3067	.3373	.3703	.4058	+ .444	*4854	.5307	.5807	₹989.	3	.4692	.8488
Angle	ground x.	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	20

A convenient plan is to take the angles of the ground at contour pegs 100 decing and the lose in the A table prepared for any given hase and slope from 2.4 of Armial 12 K will give the contents for each longth in crubes "(100 cubic feet) per "line" (6/100 lineal feet), without the necessity for plotting the cross-sections. 6LOPES.—TABLE OF SUPERFICIES OF SLOPES corresponding with different the Superficies of Uniting or Embrashment.
The Superficies is given in squares of 100 superficial feet per chain length.*

_	-		-	-	_		-	-	_			_	-	_	_			_		_								ě
	C4	: :	38.35	6	1.3	12.77	.2	45.72	47.20	19.84	50.15		7	54.57	∞	57.52	59.00	60.47	61.95	63.42	4.90	.9	-		09.0	2.27	3.75	
01.	14.	Chain	0.94	.13	.32	5	٠	68.9	80.	.27	9.46	.65	2.84	.03	.22	.41	09.	64.	.93	11.		.55 6	.74	.93 6	.127	.31.7	1.09.	
Slopes to		es per	C.	33	,co	05 3	99 35	93 36	86 38	79 39	73.40	66'41	59 42	53 44	46 45	39,46	33 47	26 48	19:49	13.51	06 52	99 53	93 54	86 55	79 57	72 58	66 59	
S		Squares	8 24	2 2	9	0	4 27.	1	1 29.	10	931.	3 32.	6.33	0 34.	1.32.	8 36.	1 37.	5 38.	0 39.	3 40.	741.	0 41.	4 42.	3 43.	2.44	6 45.	9 46.	
17.			1.61		20.6	21.4	22:1	22.8	23.6	24.3	25.0	5.8	26.2	27.3	28.0	28.7	29.5	30.5	31:0	31.7	32.4	33.2	33 9	31.6	35.4	36.1	36.89	
	eigh of u		26	27	28	29	30	31	32	33	34	35	36	37	33	39	40	41	42	43	44	45		47			20	
	2.	-	1.47	2.95	4.42	2.30		8.85	0.35	ŝ	3.27	1.4	.2	1.10	6.17	9 0	5	3.6	0.9	9.2	3.05	09.6	16.0	2.45	1.92		28.9	
to 1.	14.	r Chain	-	2.38	.5	F-	6.	-		9.52 1	0.71	9	3 09 1	1.23 1	7	99.	98.	9.01 2	1.23 2	. 42 2	2.61 2		1.993	6.183	1.373	. 26	9.753	
Slopes to 1		res per	.93			-1	*	09.	.53	.46	က	.33 1	6.1	0	. 13 1	9	9 1	3	.86 20		73 25	66 23	6	53 26	46 27		33 26	
	_	Squares	14	-	21 2		6	2	9	-	8 19	·	1210	_	9 1	37	7 13	_	1 1	8.16	-	-	616	5 20	-1	1.22	5 23	
	-		-			57					.9						11.0	11.8		13.5	14.0	14.1	15.4			17.7	18.4	
ti det.	Sielgl Signification of the signification of the si	I		63	က	4	2	9 :	2	00	6	10	Ξ	12	13	1,4	15	16	11	28	13	20	21	22	23	77	25	
														_	_	-	_		-	-	-	_		_	_	-	-	

LENGTHS AND

		-			1 1
Slope.	Angle with horizon.	Length (height taken as 1.00).	Slope.	Angle with horizon.	Length (height being 1.00).
* to 1 * to 1 1 to 1 1 to 1	75° 58' 63 26 53 8 45 0 38 40	1.0307 1.118 1.25 1.4142 1.6	1½ to 1 1½ to 1 2 to 1 3 to 1 4 to 1	33° 42′ 29 44 26 34 18 26 14 2	1.802 2.016 2.236 3.162 4.124
		* Granton's ohoin 66 foot	nin GE foot		

* Gunter's chain. 66 feet.

NATURAL SLOPES OF EARTHS (with Horizontal Line).

39	16
Shingle Rubble Clay, well drained	Ditto, wet
40 38 22	28
Cravel, average Dry sand	Vegetable earth Compact earth

EARTHWORK.

50 Fillers, and Wheelers in calculated at being , Wheelers Proportion of Getters, different soils, yards run.

Getters. Fillers. Wheelers.	- 22 27 TT
Fillers.	10001111
Getters.	
	In loose earth, sand, &c. "Compact earth "Marl "Hard clay "Compact gravel "Rock, from

Sandstone, about 39 cwt. WEIGHT OF EARTHS, ROCKS, &c., per cube yard. 66 33 3 6 40 42 41 42 33 3 6 Granite Quartz Shale Trap Slate cwt. 32 9 30 36 800 25 26 31 about 33 33 33 Gravel Clay Sand, Marl Mud

BLASTING.

X = Number of ounces of powder required to blast any rock when <math>L = 2 feet. P = Quantity of powder in ounces required. L = Least line of resistance in feet.

Then $P = \frac{X L^3}{8}$,

Or when X = 4 ounces, $P = \frac{L^3}{2}$.

L should not exceed ½ depth of hole.

Table of Charges when $X = 4$ ounces.	. Charge of powder	feet. 1bs oz. 5 3 14½ 6 6 12 8 16 0
able of Charges	Charge of powder.	1bs. oz. 0 1 0 4 0 13 $\frac{1}{2}$ 2 0
T	L.	feet, 1 2 2 4 3 2 4 4 4 4 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6

In small blasts 1 lb. of powder will loosen about tons.

In large blasts 1 lb. of powder will loosen about tons.

One man can bore from 50 to 100 inches per day in granite, or 300 to 400 inches per day in limestone.

(Nobel.) AGENTS. BLASTING

Ballistic power, weight for weight.

1)0. do. bulk for bulk.

Relative weight; h, firing heat applied suddenly, Fahr. Specific gravity; H, firing heat; material heated gradually. Specific BA

H	350° 446° 360° 482° 500° —
ħ	3500 4
G.	1.60 1.55 1.65 1.70 1.00
B W G	100 100 100 100 83 80 969 156 77 77 74 1031 165 3 71 44 625 100 3 28 174 625 100 3
m	1.00 .74 .53 .44 .17
A	100 .83 .72 .50 .71
Material.	Nitro-glycerine Anmonia powder

by weight	:	:	:
 der Nitrate of ammonia 80 Charcoal 64 by weight	Nitro-glycerine 10 to 20 Porous silica 287	(Nitro-glycerine 75 -)	Nitrate of barium 5
Ammonia powder	consists of	Dynamite	Lithofracteur

(Andree. BORE-HOLE. INCH OF CONTENTS OF

Nitro-glycerine

3.76 3.76 6.03
3.166 3.166 5.066
oz419 .654 .9421.2831.675[2:120.2-618]3.166[3.766] oz419 .654 .9421.2831.675[2:120.2-618]3.1663.766] oz670_1.046_1.507[2:0532.650]3.392[4:189]5.066[6:03]
2·120 2·120 3·392
1.675 1.675 2.680
1.283 1.283 2.053
.942 .942 1.507
.654 .654 1.046
.419 .419
Gunpowder oz. 419 -654 -9421-283 1-675 2-120 2-618 3-166 3-766 Gunpowder oz. 419 -654 -9421-2831-675 2-120 2-618 3-1663-765 Guncouton oz. 419 -654 -9421-2831-675 2-120 2-618 3-1663-765 Guncouton oz6701-0461-507 2-650 3-2-650 3-392 4-189 5-066 6-03 Iynamite oz6701-0461-507

660

12, Swedish pitch. WATERPROOF COMPOSITION FOR SUBMARINE BLASTING. 1, Tallow; 3, Rosin; 4, Gutta-percha;

DYNAMITE cannot be ignited by a spark or blow, it is slow to When ignited it burns fiercely, but leaves time for es ape; if in large quantity, or confined, explosion may ensue. In winter dynamite freezes, and the cartridges require cautious thawing, which should be done in proper pans surrounded by catch fire. hot water. (Lefroy's 'Handbook of Field Service') MINING.

and a is a In the demolition of walls the line of lens sistance L = half the thickness, and α is a coefficient depending on the structure. resistance

The charge in lbs. = $a \times L^3$.

In a wall without counterforts, where the interval between the charge is 2 L, a = 0.15.

In a wall with counterforts the charge to be placed in the centre of each counterfort at the unction with the wall, a = 0.2.

Where the charge is placed under a foundation,

having equal support on both sides, a = 0.4. If the foundation rests on woodwork, a = 0.5

If the charge is placed in the centre of a cir-

cular or polygonal mass of masonry, a = 0.1.

A leather bag containing 50 or 60 lbs. of powder, hung or propped up, will denolish almost any gate or barrier.

For ordinary mines in average soil, the charge

n lbs. =
$$\frac{L^3}{10}$$
.

&c., WHEN PLACED EXCAVATION BEING BULK OF ROCK, EARTHWORK, IN EMBANEMENT, ORIGINAL ASSUMED AT 1:00

	1.60	1.70	1.80	1.70	1.20	.92	68.	.92
	apont	:	:	:	:	:	;	:
	ಹ	:	:	:	:	:	:	;
	:	:		:	ee		:	;
	SS	te d	:	:	iden		_:	:
	bloc	Medium, unselected		:	Clay before subsidence	•	Light Sandy soil	:
THE THE PART TO SEE	arge	ı, un	:	:	fore	after	and	:
-	ck, la	diun	Metal	Chalk	uy be	af	sht S	avel
1	RO	Me	Me	Ch	Ci	3	Lig	G

RETAINING WALLS.

Weight of earthwork per cube yard. 33 Weight of wall HAMAH

Height of wall. Thickness of wall at top.

Tabular No. ×

1.	E: W:: 4:5	6:4:5	E: W	E: W::1:1
Batter of Wall.	Clay.	Sand.	Clay.	Sand.
1 in 4 1 " 5 1 " 6 1 " 8 1 " 12 Vertical	.083 .122 .149 .184 .221	.029 .065 .092 .125 .160	.115 .155 .183 .218 .256 .336	.054 .092 .118 .153 .189 .267

WALLS RAILWAYS SECTIONS OF PERPENDICULAR RETAINING SOMETIMES ADOPTED ON

sets are more numerous, and follow the dotted In large walls the offline. and

STABILITY OF WALLS, &C.

Height of the wall. 1,1

Height of centre of pressure from base.

H + 3 for still water.

Breadth of wall against which pressure acts. 11

Weight of the wall.

Distance of outer edge of the wall from gravity of the line of centre of wall. the y ==

Pressure tending to overturn the wall. Moment tending to overturn the wall. m

 $Ph = 10.4 \text{ H}^3\text{B}$ for water * in pounds. Moment of stability of wall.

vided that the materials on which it is constructed, exceeds m, the wall will be stable proor the foundations on which it rests, are ciently strong to resist crushing. X

^{*} H being the height of the surface of the water from the base.

RETAINING WALLS.

weight of a cubic foot of the soil retained in lbs. weight of a lineal foot of the wall in lbs. 37

height of the wall in feet.

= angle of repose of the soil = for dry sand, 360; gravel or shingle, 390; dry earth, 470; moist earth, 540.

= pressure on each lineal foot of the wall in lbs. g = angle of slope, if any, retained.

w H2. Cos. a $1 - \sin \alpha$ when $\beta = 0$; P = $u H^2$. $\times \frac{1}{1 + \sin \alpha}$ H d

× W.H2 for any Cos. β - VCos2. β - Cos2. α P = Cos. β Cos. β + $\sqrt{\cos^2$. β - C s². α when $\beta = \alpha$.

other slope.

To determine the stability of the wall, draw the horizontal line of the centre of pressure A D at 3 H from the top of the wall, cutting the vertical line, that passes through the centre of gravity of the wall, at C. Then, with any convenient

Then, with any convenient scale, make CD = F; and CF = W; complete the parallelogram C D E F; draw the disgonal CE, and if, where it cuts the level of the base of the wall it should fall outside the base, the equilibrium will be unstable.

In practice the diagonal should fall within the middle third of the base, as shown in the diagram.

Approximate Weight of a Cubic Foot in lbs.

Brickwork, 112–120; masonry, 115–150; dry sand, 90–110; wet sand, 150–170; shingle, 88; marl, 100–120; clay 120.

DOE INEQUALITY OF PRESSURE ON FOUNDATIONS TO LATERAL FORCE. M = Moment of lateral force about axis of foundation.

p =Pressure per unit of surface from fixed load.

P = Greatest pressure per unit of surface from fixed load and lateral force together. Distance from axis to edge of foundation. y = Distance from and of plane of founda- I = Moment of inertia of plane of foundation about axis.

 $\mathbf{P} = p + \frac{\mathbf{M} \, y}{\mathbf{I}}$

FORM OF PIER TO SUSTAIN EQUAL PRESSURE OF SURFACE AT EVERY HORIZONTAL TIND TION. Height of a column of the material of which the pier is built, corresponding to the given pressure.

Area of top section of pier.

Area of horizontal section at depth h. Depth measured from the top.

r = The number whose hyperbolic $\log = \overline{\mathbf{H}}$.

 $\mathbf{A} = a \times t^h$, or, in other words, $\mathbf{A} = a \, \mathbf{N}$, where $\mathbf{N} = \text{that}$ number whose common log. ·43429 h

is equal to H

The contents of the pier = H(A - a).

SURCHARGED WALLS.

In calculating the strength of surcharged walls, substitute Y for H.

Y being the perpendicular at the end of a line, L = H, measured along the

---- $=1.71 \, \mathrm{H\,in\,slopes\,of} \, 1$ slope to be retained. : 33 36 33 Ξ 1.551

BRICKWORK.

 $11\frac{1}{3}$ cub. yds. = 306 cub. ft. 4350 bricks, average work. 272 sup. ft., 13 brick thick. 5370 bricks, laid dry. I rod of brickwork 33 33 6 99 33

36 bricks flat, or 52 on edge = 1 yard paving. cubic yard No. of bricks in 1

1 cubic yard. oad of sand .. load of mortar.

.

:

.

cubic feet sand. 3 bushels. . cubic yard brickwork re-: : : sack of cement bag of cement

6½ 2½ 2½ 2½ 330 stock bricks weigh 1 ton. : quires about .

lime.

1000 bricks closely stacked occupy about 603 cwt. cubic feet. 0001

Bricks absorb about 12th of their weight. bricklayer's hod measures 16" × 9"

2 a bushel of morcontains 20 bricks. tar, or g cubic foot. 33

The standard brick making, with joints, 9 in, \times 4½ in, \times 3 in. TABLE OF BRICK DIMENSIONS.

Dimen- sion.	12 4 4 1 1 1 2 4 4 1 1 1 2 4 4 1 1 1 2 4 4 1 1 1 1
No. of Bricks.	164 177 177 184 184 195 195 202 222 223 223 223 223 223 223 223 223
Dimen- sion.	ft. in. 6 4½ 6 4½ 6 99 7 7 10½ 8 8 3 8 8 9 9 9 9 9 9 9 9 9 9 10 10 12 10 10 10 11 11 11 12 10 0
No of Bricks.	881 992 101 111 112 113 113 113 114 115 115 115 115 115 115 115 115 115
Dimen- sion.	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
No. of Bricks.	42 H 10 12 0 12 4 4 10 10 0 10 F 12 0

BRICKWORK.

A = superficial area	or wan in square feet.	.00123 .00246 .00368 .0049 .00613 .00737 XA=rods.	.01389 .02778 .04167 .05555 .06944 .08334 XA=cube yards	.0053 '0106 016 0213 0267 032 XA=1000 bricks
Il from	တ်	.00737	.08334	.032
ses of Wa	24.	.00613	.06944	.0267
ers for different thicknesses of V brick to 3 bricks in thickness.	1. 14. 2. 24.	.0049	.05555	.0213
lifferent to 3 bric	#	.00368	.04167	910.
Multipliers for different thicknesses of Wall from ‡ brick to 3 bricks in thickness.		.00246	.02778	9010.
Multip	-4:	.00123	.01389	.0053

THICKNESS OF BRICK WALLS IN DWELLING HOUSES.

1	Remain- der.	13 13 13 13 13 13 13 13 13 13 13 13 13 1	क्षेत्र के के के के के के के
inche	6th.	121	eta eta ete
all in	5th.	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	133 133 133 133 133 133 133 133 133 133
8 of W	4th.	Harden de Harden te	
icknes	3rd.	26 213 213 213 213 213 213 213 213 213 213	841 841 841
Minimum Thickness of Wall in inches.	2nd.	26 213 2 213 2 213 2 213 2 213 2 213 2 213 2 213 2 2 2 2	
Minim	1st floor.	0 26 6 2 26 26 2 26 2 26 2 26 2 26 2 26	71 173 113 88
	Base- ment.	30 26 20 30 30 20 20 20 20 20 20 20 20 20 20 20 20 20	
Maxi- mum	Length of Wall in feet.	80 80 0 10 0 10 0 10 0 10 0 10 0 10 0 1	35 U U 35 U 35 U 35 U
Maxi-	Height of Wall in feet.	1000 800 800 800 800 800 800 800 800 800	50 40 30 30 25

ness of the wall is to be increased to $\frac{1}{2}$ th of the height of the story in case the propertine determined above falls short of this thickness. Foothigg to be double the thickness of the basement wall, diminishing in regular offsets, of which the base $= \frac{1}{4}$ the height. The letter U means that the length of the wall is unlimited. The thick-

WAREHOUSES. L = Maximum length of wall in feet, T = Thickness of wall at base in inches, The letter U means that L is unlimited, THICKNESS OF BRICK WALLS FOR

	-	Z .	Maximum		ight o	Height of Wall in	in feet.	ř.	
100	100.	90.	80.	70.	60.	50.	40.	30.	25.
n L=	U 34	34	30	U 26	U 26	U 26	U 214	U 174	U 13
1. T =	70	70	60 26	45	50	70 214	60		
1L=	55	60 26	45	30	35	40	30	13	=

be more than 30 feet high, top story may In walls not 84 inches thick,

below == Thickness of higher walls at top and 16 feet 13 inches.

From 16 feet below top to hase the wall not to be less than the space contained in the two straight lines drawn from each side of the walls at the base to each side of the wall 16 feet below the top.

The thickness to be in no case less than 1-th of the height of the story. Footings to be double the width of the base, diminishing in regular offsets 1 the width of their height.

PLASTERING.

t in. thick.	2½ s. yd.	41 63	r and set, son lath.
l in. thick. 4 in. thick. 4 in. thick.	1½ 8. yd.	3 ,,	sup. rende
1 in. thick.	11 s. yd.	21 31 3	75 yards on brick
I hirohal of soment	or 1 '28 cubic foot 1 s. yd. 1 s. yd. 2 s. yd.	cement and 1 sand	2 yards of sand, 75 yards sup. render and set, and 3 bushels of on brick, or 70 yards on lath, hair will cover
l hinol	or 1	l ceme	L Cube 2 ys and hair

hair will cover

MORTAR, CEMENT, &C.

MORTAR.-1 of lime to 2 to 3 of sharp river sand.

Or 1 of lime to 2 sand and 1 blacksmith's ashes, or coarsely-ground coke.

COARSE MORTAR.-1 of lime to 4 of coarse gravelly sand.

HYDRAULIC MORTAR. - 1 of blue lias lime to 23 CONCRETE,-1 of lime to 4 of gravel and 2 of

of burnt clay, ground together.

Or 1 of blue lias lime to 6 of sharp sand, 1 of puzzolana and 1 of calcined ironstone. Beton. - 1 of hydraulic mortar to 11 of angular

CEMENT.-1 of sand to 1 of cement.-If great be used tenacity is required, the cement should without sand. WATERPROOF MASTIC CEMENT.-1 of red-lead to 4 of ground lime and 5 of sharp sand mixed with boiled oil.

Or 1 of red-lead to 5 of whiting and 10 of sharp sand mixed with boiled oil.

and afterwards cal--after calcining it is PORTLAND CEMENT is composed of clayey mud ground together, cined at a high temperatureground to a fine powder. and chalk

PORTLAND CEMENT.

Conclusions derived from Mr. Grant's Experiments.

1. Portland cement improves by age, if kept from moisture. The longer it is in setting the stronger it will be. 3. At the end of a year, I of cement to I sand is about \$\frac{2}{3}\$ this the strength of neat cement; I to 2 about \$\frac{1}{2}\$ strength; I to 3 about \$\frac{1}{2}\$rd; I to 4, \$\frac{1}{4}\$th; 1 to 5 about 1th.

4. The cleaner and sharper the sand the greater the strength. 5. Strong cement is heavy; blue grey, slow-setting. Quick-setting cement has generally too much clay in its composition—is brownish and weak.

The less water used in mixing up the cement

the better.

7. Bricks, stones, &c., used with cement should be well soaked.

under still water will be stronger than if kept dry. 8. Cement setting

Blocks of brickwork or concrete should be kept in water until required for use.

cement, soon correct to an good as fresh for mixing

to Blue bricks, Bramley-Fall stone, or Yorkshire 11. Bricks of neat Portland cement are equal

landings (in a few months).

12. Bricks of 1 cement to 4 or 5 of sand are equal to picked stock bricks,

.

CEMENT-continued. PORTLAND

pumping or otherwise, will carry away the cement 13. When concrete is used, a current, either by and leave only the clean ballast.

14. Roman cement is only about 1rd of the strength of Portland, and is ill adapted for being mixed with sand.

CONCRETE WALLS.

free from loam, mud, fine sand, clay, or dirt of any kind. Mixture to prevent the cement from to all parts before the concrete is placed in contact cement to 6 or 7 of broken stone, mill-cinders, burnt ballast, shingle, gravel, or slag. The substance mixed with the cement must be thoroughly adhering to the plates, 11b. of yellow soap, out in shreds, boiled and stirred until it is of the consistency of paint-to be applied freely with a brush houses are built of 1 of with them. seget spe spe walls for Concrete

CRUSHING WEIGHT OF PORTLAND CEMENT in lbs. per square inch. (Grant.)

ade.	.6	5984 4561 3647 2393 2209 1678
No. of Months made.	6.	5388 3478 2752 2156 1797 1540
No. o	65	3795 2491 2004 1436 1331 959
		::::::
		Neat Portland Cement Cement to 1 Sand Cement to 2 2 " " 3 " 1 " 5 "
	-	eat Portland Ceme Cement to 1 Sand
		Neat 1 Cen

About \$ of the crushing weights produced the first Min. Inst. Civ. Eng., vol. xxv.

PORTLAND CEMENT CONCRETE. , vol. liv. "Trans, Inst. Civ. Eng.," (Sandeman,

Proportions to 1 of Cement, and Aggregates. Total 2:16 4:11 2:16 4:11 4:11 8:18 6:71 6:72 8:32 9:33 6:73 6:73 6:73 8:32 8:32 8:73 6:73 8:73 8:73 8:73 8:73 8:73 8:73 8:73 8
Pro Pro 4

CONCRETE. N INTERSTICES VOLUME OF

of Total. Per cent Welsh limestone broken in a stone crusher into flat oblong pieces, which, when gauged the narrowest way, would pass through Gravel free from sand gauged through Welsh limestone and gravel as above, in : Limestone (masons' chips) varying in size from small to pieces gauged by 4" ring Red sandstone, hand broken, gauged from 4" : equal proportions ... 3" ring ... 24" ring ..

50 Ditto, from sand to pieces gauged by 4" ring Ditto, two previous materials mixed in equal : : to 8" ring

103 36 20 proportions ... Reduction of bulk of dry cement mixed with : : water ... Ditto of sand ... proportions

194

Ditto of sand and cement in equal proportions

NOTES ON LIME

CLASSIFICATION OF LIMESTONES. (Vicat.)

1 FAT LIME.—Pure lime which does not set in

Line, containing 20 to 30 per cent of the above, sets in two to four days. 6 Hydraulic Cemerr, "Puzzolana" and "Trass," volcanic a month "Puzzolana" and "Trass," volcanic products, if maxed with pure lime, make hydraulic does not alterits condition. 3. SLIGHTLY HYDRAULIC LIME, containing 8 to 12 per cent, of silica, alu-mina, magnesia, 110n, and manganese, sets slowly 20 per cent of the above ingredients, sets in water containing 30 to 50 per cent. of argil, sets in a few minutes, and attains the hardness of stone in in water 4 Hydraulic Lime, containing 12 to water 2. Poor Line.—Mixed with sand, which

They dissolve wholly or partly in weak acids, the brisk effervescence. They are nearly insoluble in water They can be scratched with an ROUGH INDICATIONS OF LIMESTONES. with brisk effervescence.

iron point

4. Carefully collect the remainder, dry, and weight; its weight deducted from 150 grains will give the lighter particles of clay, then dry and weigh the sediment, which may be assumed to be sand. 112 grs. carbonate of lime, 9 of clay, and 29 of sand will be a fair proportion for general purposes. ROUGH ANALYSIS OF LIMESTONE (Rourkee Treatise). 1. Pound the sample, and pass it through a fine sieve. 2. Put 150 grains into a tumbler, and pour gradually on it diluted hydrochloric acid, stirring and adding the acid until effervescence ceases. 3. Filter through blotting paper, and then wash by pouring at least a quart of water through it. the weight of carbonate of lime. 5. Wash the remainder repeatedly with decantation to remove

Notes on Line-continued.

OR LIMESTONES (Pasley) HYDRAULIC CEMENT OF TESTS ROUGH

grey, brown, or some darkish colour. Taste of clay when touched by the tongue. Colour bluish

Smell of clay after wetting.

be of a Break into fragments about 14 inches thick, heat graduin a common fire, and then keep to a full red heat for take place when If it has been overburnt, it will before when taken out of the fire. placed in a glass of dilute hydrochloric acid effervescence will about three hours. darker colour than perly calcined, no

Having obtained a piece properly calcined, pound it to Mix thoroughly under its bulk of water, 3 of a spatula or kitchen knife with about no grit. an impalpable powder, leaving

When the ball has begun to cool, place it under water, when it should not only continue hard, but go on hardening. determined by the time it requires to then knead into a ball, which should soon become warm. harden and the hardness it attains. Its hydraulicity will be

burn 240 cubic feet of lime per day. SECTION OF KILNS LIME BURNING. Will

fable showing the Quantity of Mortan produced from One Imperial Bushel of Various Limes and Cements. (By experiment. Hurst.)

1	Description.	Lime or Weight in lbs.	No. of	No. of	No of	Quantity of mortar in cubic		
	Stone Lime (Plymouth). """ Lias (Keynsham)". ""(Lyme Regis) "(Keynsham). ""(Lyme Regis) ""(Lyme Regis)	70 70 70 80 80 80 70 63 63 63 74	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 3 3 4 2 3 2 None 1 1 1 1 2 3	12 12 12 12 14 15 14 15 15 16 16 16 16 16 16	34 4 5 3 1 4 2 4 6 5 2 4 6 6 6 4 4 1 4 4 2 2 1 1 4 4 2 2 2 1 1 4 4 2 2 2 2	6 gallons of water are required to slake, and 6 galls to mix each bushl. 3 gallons of water are required to slake each bushel. 2 gallons of water are required to slake each bhl.	

Notes on Timber. GENERAL CHARACTER

fibres as should not clog the teeth of the saw. If the wood has colour deepness of colour indicates strength and durability. The freshly-cut surface of wood should be firm, shining, and somewhat translucent. A dull, chalky appearance is a sign of bad timber. In resinous timber, those with least resin in their pores are strongest and most durable. In non-resinous timber, those with least In the same class of timber the slower the growth or the narrower the annular rings the better. In the same class the heavier the better. The cellular tissue (when visible) in the medullary rays should be hard and compact. The fibrous tissues should adhere firmly together, and should show no woolliness at a freshly-cut surface; loose sap or gum are best.

SEASONING TIMBER.

removed from the forest as soon as possible, and stacked where it will not be exposed to the sun, the butt end downwards; the pores of the butt exposed to the action of the air. Squared timber is less apt to split than round timber; split timber less than sawn timber. Seasoning may be effected more rapidly by soaking in water, or boiling. These processes, however, weaken the to five years before it is fit for use. It should be timber. Soaking in water should continue for about a fortnight; the timber should be freshly Timber should be felled in winter when the sap is down. Timber should be seasoned from three

NOTES ON TIMBER—continued.

or water. The wood cut when soaked. Boiling in steam should be gradually dried afterwards. last from four to six hours. should

DESICCATING PROCESS.

The timber is placed in a chamber through

which a current of hot air is passed.

Temperature of air 100° Fahr. for hard wood in logs, 120° for pine; up to 180° or 200° Fahr. for thin planks. Mahogany 280° to 300°.

Velocity of current of air 100 feet per second.

Sufficient air should be forced into the chamber to displace all the air in three minutes; or for every 3 cubic feet of air in the chamber, I cubic foot of air per minute should be supplied.

Duration of process, one week for each inch of thickness of the timber.

IMPREGNATION OF TIMBER.

Relative absorbing power of timber, Memel being assumed=1.00; elm=1.35; yellow pine=1.15; beech= 4; English oak=34.

(Bethell's.) CREOSOTING.

inch, from \$ to \$ or an now. then forced in at a pressure varying from 100 to 150 lbs. per square inch, according to the length then placed in the impregnating chamber, and subjected to a vacuum of 3 to 5 lbs. per square inch, from ½ to ¾ of an hour. The crosote is The sleepers are either dried in the open air for 12 ven 212 to 250° Fahr, either until they cease to comit steam or for twenty-four hours. They are year, or oven-dried at temperature varying emit steam or for twenty-four hours.

IMPREGNATION OF TIMBER—continued.

of timber, for a period varying from 3 of an hour to 22 hours.

.8 gallon should be the quantity lbs. or absorbed.

10 lbs. or 1 gallon for marine works.

Oak will not absorb more than 6 lbs.

with the outer layers intact, because the outer wood absorbs the crosore more readily, and sap-wood fully impregnated is more durable than heart-wood unimpregnated. Red pine will absorb 15 or 16 lbs. Mr. Bethell prefers to use for exposoting timber

Creosoting about doubles the life of sleepers if properly performed, and is uniformly satisfactory.

IMPREGNATION WITH METALLIC SALTS.

The result of impregnation with metallic salts has not in all cases been satisfactory.

BURNETT'S Chloride of Zinc, with 25 to 40 per

30 to 60 parts of water, and applied under pressure of 100 to 120 lbs. per square inch for fifteen cent. of metallic zinc (3 parts of hydrochloric acid to I of zinc). The mixture is diluted with from minutes.

Kxan's Chloride of Mercury, diluted with 150 parts of water, applied cold without pressure.

MARGERY'S Sulphate of Copper, diluted with 40 to 50 parts of water, applied with pressure varying from 15 to 30 lbs. per square inch, for six or eight hours.

PAINE'S Sulphate of Iron and Sulphate of Barium. This appears to give rise to a slow decomposition and destruction of the fibres of the wood. (See also "Ventilation of Tunnels.") LOWER TUNNELS.

HOOSAC TUNNEL. LINED SECTION.

HOOSAG TUNNEL. UNLINED SECTION.

Mr. CENIS TUNNEL, Length, 7.6 miles.

YARDS PER YEAR. Yards. RATE OF PROGRESS OF HEADING IN

to 973 199 844 ", calcareous schist... By machine in calcareous schist By hand in carbonaceous schist

510 232 in magnesian limestone average of last 4 years in carbonaceous schist in quartz

From actual Practice in Brickwork. TUNNELS,

Thick- ness of lining at Crown.	ft. in. in. in. in. in. in. in. in. in. in
Ex- treme width.	ff. in. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17
Extreme height.	## in
Formation of Strata.	Various. London Clay . Chalk Various. Shale Shale Shower Green Shower Green Freestone Freest
Purp.se.	Canal Thames Tunnel Railway, N. gauge

TABLE OF WELLS OR BARREL-DRAINS. Quantities in One Lineal Yard.

-					1		
			Brick thick	hick.	1	Brick thick.	lck.
Diam.	Con- tents in	Cube	No.	of bricks.	Cube	No. 0	No. of bricks.
1000	ganoms.	Brick- work.	Dry.	In mortar.	Brick- work.	Dry.	Mortar.
14	33	.25	114	93	-69	270	222
67	28	.31	144	123	.72	336	276
က	131	•44	204	171	.98	462	378
4	235	22	267	219	1.24	582	477
2	368	2.	330	270	1.5	702	-576
9	530	.83	390	321	1.17	828	678
2	723	96.	450	369	2.03	948	780
00	942	1.09	510	420		1074	876
6,	1193	1.22	573	468	2.22	1194	978
10	1472	1.36	636	522		1314	1080

						_							
	Cube yds. in 1 lineal	yd. of culvert.	09.0	0.15		3.30	4.10	6.10	1.50	2.00	4.00	01.9	1.60
YS.	Clear	inside.	ft. in.									5 6	
AILWA	Jo	Sides.	ft. in. rel.	_:	1 2	1 6	1 10	2 3	1 6	2 0		3 0	
FOR B	Thickness of	Invert.	ft. in. ft. Barrel	Barrel								1 0	1 0
LVERTS	T	Arch.	ft. in.	6. 0	6 0	1 2	1 2	1 6	9 0	6 0	1 0	1	1 4
TABLE OF CULVERTS FOR RAILWAYS.		Dismeter	ft. in.	2 0	3 0	4 0	2 0	0 9	fatf1 6	top 2 0	3 0	200	0 9
TAI						Brickwork			Rubble ma-	-	hammer.	draggad	archae
	-	_		-	-	-	-	-	-	-	-	-	

THE CROWNS OF FOR) TABLE OF THE THICKNESS REQUIRED ARCHES, (Hurst.

		-	-	_			-	-	_	_	_	_	_	_	_	_	_
Brick Arches.	feet.	3.10	3.22	3.35	3.46	3.58	3.69	3.80	3.90	4.00	4.30	4.38	4.56	4.13	4.90	2.06	6.58
Stone Arches.	feet.	2.33	2.43	2.51	2.60	2.68	2.11	2.82	2.93	3.00	3.15	3.29	3.42	3.35	3.67	3.80	4.18
Radius of Curvature.	foot	09	65	20	15	80	85	06.	95	100	110	120	130	140	150	160	170
Brick Arches.	foot	1.50	1.55	1.60	1.65	1.70	1.74	1.79	1.88	1.96	2.00	2.19	2.37	2.53	2.68	2.83	2.97
Stone Arches.	foot	1.12	1.16	1.20	1.24	1.27	1.32	1.34	1.41	1.47	1.50	1.64	1.78	1.90	10.6	9.19	2.55
To suffadias of Gurvature.	1 too	14	1 10	16	17	18	119	20	22	24	25	30	30	40	45	500	55
Brick Arches.	1	ieet.	000	69.	37.	000	200	06.	76.	86.	1.06	1.13	1.90	1.96.	1.22	1.90	1.44
Stone Arches.	1	reet.	77	.59	22.	000	8.4	-67		- +74 ··	08.	000	000	90.	1.00	1.00	1.08
Radius of Curvature.	-	feet.	7 6	40	200	40	# 1	600 H	2 2	20	10	→ 0	0 0	0 0	11	110	13

Weight of I foot in length of half arch in Depth or thickness of crown in feet. Height of abutment to springing in feet. THICKNESS OF ARCHES AND ABUTMENTS. (Hurst.) Radius of arch at crown in feet, Thickness of abutment in feet. APPROXIMATE RULES FOR THE Constant, 11

Single arches:— Series of arches:— Block Stone
$$n=3$$
 Block Stone $n=35$ Brick $n=45$ Brick $n=45$ Rubble $n=45$

 $\frac{1}{5}$ R² + $\frac{3}{5}$ R^{$\frac{3}{2}$} + $\left(\frac{W}{H}\right)^2$ - $\frac{W}{H}$.

This formula gives the thickness T of abutment without wing-walls or counterforts just sufficient to balance the thrust of the half arch, the depth at the crown being equal to .4 V R, and the material in the arch and abutment being the same.

A considerable margin of safety must be allowed on the dimensions thus given.

RULE SOMETIMES USED FOR RAILWAY BRIDGES.

For spans between 25 and 70 feet—Rise =
$$\frac{S}{5}$$

Thickness of arch = $\frac{S}{18}$

Thickness of abutments $\frac{S}{5}$ to $\frac{S}{4}$

Thickness of pier $\frac{S}{6}$ to $\frac{S}{4}$

Batter (if any) I inch to the foot,

cosecant 3 cosecant 1.5708 S ·0349 R S cotan. 11 In semicircular arches Span on the skew Length of impost Obliquity of arch Length of are 01

Length of heading spiral = L secant K. S cotan. Tan. K = Sine V = H

Y sine K. 11 D = Divergence of courses

STRENGTH OF COLUMNS,

(Hodgkinson.) Breaking weight in tons. LONG COLUMNS.

Length of column in feet. T =

External diameter of column in inches. Internal diameter in inches. = p

Both ends flat when L. exceeds 30 D.	$W = 44 \cdot 16 \frac{D3 \cdot 06}{L1 \cdot 7}$ $W = 44 \cdot 34 \frac{D3 \cdot 65 - d3 \cdot 55}{L1 \cdot 7}$ $W = 10 \cdot 95 \frac{D4}{L3}$ $W = 7 \cdot 81 \frac{D4}{L^2}$
Both ends rounded when L exceeds 15 D.	W=14 '9 \frac{13 \cdot 76}{\text{Li-7}} \text{V=13} \frac{\text{Ds-76} \cdot 63 \cdot 76}{\text{Li-7}}
Nature of Column.	Solid cylin- ders of cast iron Hollow cylin- ders of cast iron Solid square oak (dry) of Dantzic oak (dry) of red deal (dry)

TABLE OF 3.6 AND 1.7 POWER.

		Straig
3.6 power.	26892 33035 40133 48273 57543 68033 93058	1.7 power, 529 773
No.	17 18 19 20 22 24	er. No. 40 50
wer.	2148796	238 288 325 421
8.6 power.	3982 6611 7674 10233 13367 17136 21619	25 28 33 35 35
No.	10 11 12 13 13 14 16	1.7 power. 100 136 163 191
3.6 power.	52 147 328 632 1102 1783 2723	No. 15 No. 22 22 22 22 22 22 22 22 22 22 22 22 22
3.6 p	111111111111111111111111111111111111111	1.7 power. 15 34 50 68
No.	w 4 ™ ∞ ۲ − ∞ ©	No. 1 10 12 12

STRENGTH OF SHORT COLUMNS, In which L is less than 30 D.

Breaking weight of long columns as found Breaking weight of short columns.

area of force of material of which the is formed x Sectional Crushing column. column above. 110

10 = W + 3 C

RELATIVE STRENGTH OF MATERIALS IN LONG COLUMNS.

783 1745 2518 109 1000 11 11 : : Cast iron being assumed as : : iron Red deal Cast steel Wrought Oak

RELATIVE STRENGTH OF ROUND AND FLAT ENDS IN LONG COLUMNS.

One end flat and firmly fixed, I strength Both ends flat and firmly fixed .. Both ends rounded, 1 strength

RELATIVE STRENGTH OF SECTION IN LONG SOLID

	100	011	90
	:		
	i	:	:
Ď.	:	:	:
COLUMNS	=:	:	:
	Cylindrical	Triangular	Square

COLUMNS. (Hurst.) Noth of Breaking Weight in tons of Solid Columns, ends flat and fixed. CAST-IRON COLUMNS.

	-				-		-		_			-						-	_	_	_		_				
	25.	10.	.13	.20	.31	.56	19.	200	1.53	2.47	100	5.52	1-	10.64	14.19		23.76	6.	37-28	45.80	55.64	66.95	77.67	94.31	110.7	129.0	1
	20.	.11	.18	.30	.46	99.	·94	.2		9.		90.8	3	15.55	20.74	27.08	34.72	43.80	54.48	66.99	81.70	97.19	9.911	137.8	161.7	188.2	1
	18.	.13	.22	.36	19.	08.	1.12	.5	2.67	4.32	09.9	6.65	13.60	18.60	24.81	32.39	41.53	52.39	91.99	80.05	97.25	0.411	139.4	164.9	193.2	252.2	1
n in fee	16.	.15	.27	.44	19.	16.	1.37	1.87	.2	5.23	0.	11.79		22.72	30.31	39.57	50.73	00.79	19.61	08.46	118.8	145.8	170.3	201.4		275.5	
Length of Column in feet.	14.	.19	.34	.55	.83	1.22	1.72	2.35	4.10	6.62		14.79	20.84	28.51	33.03	99.64	63.66	80.31	06.66	122.7	149.1	179.3	213.8	252.7	9.967	345.7	
ngth of	12.	. 25	• 44	.71	1.08	1.58		3.06	÷	8.61	3.1	19.22	27.09	37.05	49.43	64.53	82.73	104.4	8.671	159.5	193.8		8.112	328.5	385.4	449.3	
Le	10.	.34	09.	126.	1.48	2.16		4.17		11.73	.93	0	.93	0.51	.38	86.18	112.8	142.3	0.441	217.4	264.2	1.1.1	2-	41.8	25.5	612.5	33
	80	.50	.67	1.41	2.16	3.16	4		9.0	-	.9	6	3.97	73-82	11.86	123.6	8.191	297.9	25 ; 6]	1.1		64.3	3.2	7.79	6.4	895.1	
	6.	.82	•		.5		7.26	6.6	1.2	9	2.13	.44	00.	7.07	9.091	0	268.8	-	1.8	18.5	2	2.2	9.70	1.290	1252.3	429.6	
ni .m .89d:		14	7	7	24	24	243	3	34	4	44	2	24	9	₹9	1-	42	00	8	6	76		104	_	40	67	1133

The correction for Short Columns should be applied where the length is less than 30 D.

Strength in tons of Short Columns = $108 + \frac{2}{3}$ C'

S being the strength for Long Columns given in the above Table, and C = 49 times the sectional area of the metal in inches.

HOLLOW COLUMNS.

The strength nearly equals the difference between that of two Solid Columns the diameters of which are equal to the External and Internal diameters of the hollow one,

MOLESWORTH'S POCKET-BOOK

STRENGTH OF STRUTS AND PILLARS.

Authority. A first in the cold fact of fixed. Goldon P = F	D I ILLIANS.	spand 30 bohngg ed	Wt. Iron. Cast. Timber. F= 16 35 k = -00033 .0025	F= 16 35 3·2 62 k= ·000028 ·00031 ·00033	р.		P.	p.
P= P	oronia.	(B) One end fixed the other end the other en	3F 1+4H2	F 1-78 kh2 1+		# ±	1	1
		(A) Ends flat or	11	1 + k	P.			

Crippling strain in tons per square inch of cross section. Ultimate crushing strain of a short length of material, tons per square inch. Coefficient.

Length of column. Diameter of column in direction of greatest flexure. Radius of gration in

T. h = L

• For elembr section; $k \equiv .0005$ and .0037 for rectangular section; and .0001 and ~ 0.05 for 1 section in wrought and cast iffor respectively.

ULTIMATE CRIPPLING STRAIN OF COLUMNS IN TONS PER SQUARE INCH OF SECTION

	_	li .		JIGHT I DI.	NG BIR	AIN OF	COLUM	NS IN 1	ONS PE	R SQUA	RE INC	H OF S	ECTION.		
NG FORMULÆ.	The Length Diameter	A 16.55	B 15:99	C	A	B	C	A	B B	C C	A A	d B	C C	H = Length Diameter	
OF ENGINEERING	20 25 30 35 40 45 50 55 60	16.08 15.55 14.88 14.20 13.48 12.75	$15 \cdot 17$ $14 \cdot 22$ $13 \cdot 22$	15·09 13·94 12·70 11·45 10·26 9·16 8·17 7·29 6·51 5·83	14.96	16·23 15·16 13·99 12·75 11·56 10·44 9·40 8·45 7·62 6·85	14·21 12·90 11·53 10·21 8·99 7·90 6·95 6·12 5·42 4·81	15·37 14·72 13·96 13·14 12·28 11·42 10·56 9·78 9·02 8·30	14 · 81 13 · 84 12 · 75 11 · 64 10 · 55 9 · 52 8 · 58 7 · 72 6 · 95 6 · 27	14·44 13·26 12·00 10·76 9·58 8·51 7·11 6·71 5·97 5·33	15.04 14.19 13.23 12.22 11.21 10.23 9.31 8.46 7.68 6.98	14·17 12·86 11·50 10·18 8·97 7·88 6·93 6·11 5·40 4·79	13.69 12.22 10.71 9.31 8.06 6.98 6.6 5.28 4.63 4.07	15 20 25 30 35 40 45 50 55	1.2
	1	vote.—Th	e table	abovo	has be		- 11		(4, 1	- 00	0.00,4	4.10	4 01	00	

Note.—The table above has been calculated from Mr. Shaler Smith's formulæ, a modified form of which is given in the preceding page. Mr. Shaler Smith in calculating the safe Loads uses the "Sliding" factor of safety $4+0^{\circ}05$ H, which has been introduced to allow for imperfections of "built up" pillars.

PILE DRIVING.

Set of pile by the last blow in inches. Height the ram has fallen in inches. Safe load for the pile in cwts.

(Sanders.) Weight of ram in ewts. 8 D approximately. = 7

W = 10 to 14 cwt. in ordinary pile engines. Rankine's rule for Lis 1000 lbs. per square inch

of section when the pile is driven home to firm ground, and 200 when it is not.

(Rankine) ANOTHER RULE

Weight of ram Height of fall.

Depth driven by last blow. 7

Sectional area of pile. Length of pile.

Modulus of elasticity.

bear Greatest dead load the pile will

$$L = \sqrt{\left(\frac{4 \text{ E s W}}{l} + \frac{4 \text{ E}^2 s^2 d^2}{l^2}\right) - \frac{2 \text{ E s } \beta}{l}}$$

DUTCH RULE.

Weight of ram; h = fall of ditto.Weight of pile; k = coefficient of safety.Load the pile is to bear.

10 for ordinary = 6 for steam pile drivers. Average penetration of the last blows,

 $L = \frac{1}{k \cdot e(W + M)}$ Wz h

Limit of driving in sand = 15 feet.

WEISBACH'S RULE.

Weight of the ram. Height of fall.

Weight of the pile.

Depth driven by the last blow. Greatest load the pile w

W2 h

bear.

will

= $\frac{d(W + P)}{d$ (W + P). In this, as well as in Rankine's rule, the safe load, in ordinary cases, may be assumed at 1 of the greatest load; where there is much vibration, and

variation of load, $\frac{1}{4}$ to $\frac{1}{2}$ may be adopted; where there is no vibration, or variation of load, $\frac{1}{3}$. In the case of Rankine's rule, Mr. Morrison suggests the substitution of $l_i + 2^i$, for l_i , where l_i is the length of pile buried and l_i , the length above ground.

Morrison's Rcle.

Find by experiment the effect of two different falls when the pile is nearly driven home. the ram Then if

the height of each fall respectively. H & h = t D & d = t

the depth the pile is driven by each fall respectively.

the weight of the ram.

load required to sink the pile further. W(H-h)

$$L = \frac{1}{D-d}$$

WEIGHT OF RAMS. Weight of pile in lbs. RULE FOR THE

= Sectional area of pile in inches. L = Length of pile in feet. H = Height of fall in feet.

Weight of ram in lbs. - 1) $R = W \left(\frac{W H}{5 A L} \right)$

A heavy ram with a small fall splits the piles less than a light ram with a large fall.

NASMYTH'S STEAM PILE DRIVER.

Weight, 72 cwt.; diameter of cylinder, 16 inches; fall, 3 feet; making 60 blows per minute. It was found that it required 15 blows to drive a pile 1 foot, which was equivalent, in soil of the same character, to 15 blows of an ordinary pile driver with a ram of 15 cwt, failing 16 feet; the ordinary pile Airver, however, only made 1 blow in 4 minutes, or \$\frac{2}{4}\$th of the speed of the steam pile driver.

SHEET PILING.

25°, with horizon. Birds-mouth bevelling 120° Angle of shoeing ...

RINGING ENGINES.

I man to each 40 lbs. weight of ram. Power to each ringing engine W = From 4 to 8 cwt.

FOUNDATIONS.

Weight of soft ground per unit of volume. (Rankine.) d = Depth of foundation.

P = Pressure on base per unit of area which will support building

$$= W d \left(\frac{1 + \sin a}{1 - \sin a} \right)^2$$

BLOWS VERSUS PRESSURE (in shaping or dividing

More waste of labour is caused by blows than by constant steady pressure,

One blow, exercising the same mechanical power as that of a known steady pressure, will not produce an equal effect.

 The mechanical power necessary to effect temporary alteration of a substance up to its limit of elasticity, if applied through the medium of blows, will not affect that substance up to the limit of elasticity,

inches; metal at point, 24 at root; pitch of thick, with 10 bolts 1 inch in thes. Flanges 14 thick, with 10 bolts 1 inch in Diameter of screw 4 feet 6 inches, screwed 20 to each each 40 feet long. 2 feet ontside, 45 feet into ground, by 4 levers lever having 8 bullocks yoked to it. Lengths, 9 feet; diameter, of inch thick; thread of screw, 7 inches. diameter. screw,

A more manageable arrangement is a capstan head on the pile, with rail arms and ropes passing twice round their ends to a crab-winch.

intermediate Weight of bottom length about 14 ton, internenging 14 ton; bracing per bay, about 0.37 tons. A 2 piles 40 feet long with bracing weighs about 16 tons.

SCREW PILE JETTIES.

SOLID WROUGHT-IRON PILE WITH CAST SCREW DISG.

Distance of centres apart, 15 feet; diameter of pile, 6 inches; 2 feet length of ditto, 21 Inches; coupling key, 2 × 1, recessed 4 inch; steel pin through coupling 14 inch dameter, 14 inch taper; clips for bracing, 9 inches wide, 10 inches long, 3 inch thick. lengths, 18 to 25 feet; screw, 3 feet 6 inches diameter; 2 6 inches deep; metal at root of blade, 24 inches thick; 104 meter of boss, 94 inches; diameter of coupling,

on two sides File, where inserted in shoe, reduced 4 inch by two flats; bracing of channel iron, 44" × 14"

HYDRAULIC PILES.

BOTTOM LENGTH.

Average depth sunk below surface of sand, 20 feet; ditto at opening spans, 26 feet; piles defended from scour by a weir These piles were sunk for a railway viaduct over the sands In Morecambe Bay. Spans, 30 feet; two main and two raking piles per pier; rake of piles, 1 in 12. Piles in lengths of of discs of main pile, 30 inches; ditto of raking pile, 18 inches. tons per square foot. piles per pier; rake of piles, 1 in 12. Piles in 9 feet, 10 inches diameter outside; metal \ thick. Sustaining power of sand, about 5 of rubble stone.

Orifice at disc, for discharge of water, 2 inches diameter.

MODE OF SINKING.

engine and a donkey engine about 2 horse-Brunlees recommends for fature operations the fitting of the pontoons with sufficient appliances for sinking all the piles of a pier simultaneously. The piles are lashed to the block of the pile engine, which acts as a guide; there is another guide low down on the pontoon; the pile hangs with a loose chain, so that its weight assists in the sinking.

When attachment is made with a flexible hose to the donkey engine, and the water pumped in issuing at the orifice washes away the sand in the marly deposit, an alternating rotatory notion is given, by which the cutters cast on the disc loosen the marl and allow it to be washed away. Piles are drawn by pumping and lifting the pile by means of the pile engine, The piles were sunk from pontoons, each pontoon being Two piles generally fixed during an ebb tide, When attachment filled with a pile Mr. power.

PERMANENT LOADS ON BRIDGES, &c.

For rough calculations the weight of the bridge to be (in wrought-iron be assumed itself may bridges)

30 feet spans, single line 5 cwt. per foot run For

9.9 . : 09 100 150 200

For flooring 11 to 2 cwt. per square foot, exclusive Dense crowds average 120 lbs. per square foot.

In store-houses from 2 to 4 cwt. per square foot. of the weight of the flooring, is generally allowed.

SAFE LOAD IN STRUCTURES, INCLUDING WEIGHT

OF

4 breaking weight. STRUCTURE. Wrought-iron structures : In cast-iron columns

In ditto for bridges and floors In cast-iron girders for tanks

In timber (live load) ..

: (dead load Stone and bricks..

TO CUT THE BEST BEAM FROM

e b, and fc, (C, into 3 the cross-section of the strongest beam. angles to ab—join bd, then acbd is f-draw the lines Divide the diameter, a b, equal parts, a f, f e, and Log. and ed, at right a d, bc, and

divide instead beam, To cut the stiffest into 4 parts, as shown, the diameter

MOLESWORTH'S POCKET-BOOK

STRENGTH OF RECTANGULAR BEAMS.

in inches. Length of beam or span. Breadth of beam. Depth of beam.

Coefficient of rupture (for values of K, see below).
Multiplier for deflection (see " Deflection"). Breaking weight in cwts.

FOR DIFFERENT MATERIALS. K VALUES OF

Material.	cwt.	Material.	cwt.	Material.	cwt.
Wrought Iron Cast Iron Cast Brass Ash, English American	68 46 19 19 17	Beech Cedar, Lebanon W. Indies Deal Elm Fir (spruce)	8884-84	Oak, African English Pine, Red Yellow Teak	122 123 125 133 133 133 133 133 133 133 133 133 13
		manogany	10		

BEAMS OF VARIOUS SECTIONS.

the 1)2 weight of beams but substituting for B the formula for the section required. breaking use sections, the preceding page, values of V for To find the following

Of " Moment see inertia Jo

B D3 - 2bd3 V = B D2 - 2b d3 TRIANGLE. B D3 I= .7854 CT3 B Da B D3 + 2 b d3 V=BD2+26d2 36 V=4.7 CT2 SQUARE. V = 83 12 ELLIPSE. 11 BD3-bd3 B Ds -bds .7854 (R* - r* RECTANGLE. RECTANGLE. - 7854 R4 HOLLOW CIRCLE. B D3 HOLLOW V=BDa SEMICIRCLE. I = .11 R4 V = .38 R3 CIRCLE, V = 4.7 R3 1= Moment 2. Inertia

and regiven be the moments of the depths of the and i Dand respectively, and SECTIONS, SIMILAR then i

SAFE LOAD DISTRIBUTED ON SQUARE BEAMS OF Intersection of the radial line (due to that ratio) with the vertical line of the span will give the safe Find the ratio of span to depth = S + D; then load measured by the scale. If the breadth of at the depth the re-PINE. (By Graphic Construction. sult must be multiplied by 2/3; if the load be concentrated at the centre of the span the The factor of halved; if the breadth be result must be halved

Cats 1300 1200

Deflecsafety has been assumed = 10. FORMULÆ FROM WHICH THE DIAGRAM HAS BEEN CALtion not to exceed S. CULATED.

L = $0.2 k S^2 \left(\frac{12 D}{S}\right)^3$ for strength. L = $0.4 K S^2 \left(\frac{12 D}{S}\right)^4$

for stiffness.

D = Depth in feet.

S = Span in feet.

k = 4.464 cwt.

K = 32.14 for.

pine.

200

SPAN OF BEAM IN FEET.

MOMENT OF INERTIA. (Heppel)

Moment of inertia.

Distance of neutral axis from lower edge of section.

Height of any particles from lower edge of Distance of any particles from the neutral section. 9=

Breadth of section at any height H. SXIS.

Sum.

 $2 \times B \triangle (d^3)$, if the neutral axis be in the Difference.

scentre and the figure symmetrical, if-ZB A (H³) not, I =

$$A = \Sigma B \Delta H$$
, $N = \frac{\Sigma B \Delta (H^2)}{9 A}$

MOMENT OF RESISTANCE.

Moment of resistance.

Moment of inertia.

Height of neutral axis from farthest edge of section.

K = Coefficient of fracture. Modulus of rupture. 11 * M

$$A = \frac{6KI}{N}$$
. $B = \frac{MI}{N}$.

The neutral axis for all practical purposes passes through the centre of gravity of any section.

* For determination of the Moment of Inertia by Graphic Construction, see page after next.

(Heppel.) OF INERTIA. MOMENT

EXAMPLE, showing the practical application of the formula given in the preceding page. The more closely the section is divided into minute rectangles, the the more accurate will be EXAMPLE, result.

	B ∆ (H³).	252 5768 3081 7987	17096 ZBA(H ^s)
	BΔ(H ²).	8 60 308 111 273	44 760 BAHZBAH2
	В Д Н.	8 21 12 8	44 = 2 B 2 H = A
ł	B.	∞ 4 H W 1-	
	ΔH(3). B.	63 5768 1027 1141	54.
	ΔH. ΔH2.	1 308 37 39	
١	ΔH.	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ī Ē l
-	H3	0 1 5832 6859 8000	
1	H 2	16 324 361 400 400	
L	H	118 118 120 20 20 20 20 20 20 20 20 20 20 20 20 2	

$$N = \frac{x B \Delta (H^2)}{2 A} = \frac{760}{88} = 8.63.$$

$$I = \frac{x B \Delta H^3}{3} - AN^2.$$

$$= \frac{17096}{3} - 44 \times (8.63)^2 = 5698 - 3277$$

Distance of edge of section from neutral axis. Distance of centre of gravity of each section neutral (Graphic Construction. the "inertia area" from OF INERTIA. of the MOMENT

of "inertia area" above or below Section AXIS. 11 0

Moment of inertia = 2 D a g in symmetrical neutral axis.

 $ag + D_1 a_1 g_1$, where D ag and $D_1 a_1 g_1$ are below axis in unsymmetrical figures. respectively above and dimensions figures.

the neutral

will give the line jo of the then respective off these radiating lines point of intersection of the verof respecfrom the lines radiating set off from any verline represent-On a horizonfrom the neutral axis layers, lines to represent the neutral To form the "individe the section into any drawing horizontal lines intersection widths thus set distant with limits "inertia area." axis, layer and tively, and each layer line horizontal H the area convenient the line points neutral which widths to the layers draw tical with tical axis. the prtra ing tal

(Graphic Construction.) MOMENT OF INERTIA.

Divide the section into convenient layers; then with any scale set out successively on a horizontal line lengths proportional to the area of each layer length D B = the area of the section; also draw the perpendicular $DC = \frac{1}{2}DB$; join BC, and from the points set out as above draw vector lines radiating to C. Then from the horizontal lines which pass through the centres of gravity of each layer respectively draw lines parallel to each vector respectively as shown in the diagram, forming a polygon. The shown in the diagram, forming a polygon. The intersection of the lines bj in the polygon determines the position of the neutral axis. respectively; making the total

The lines of the polygon are denoted by the same letters as the vector lines to which they have been drawn parallel.

Moment of inertia, Then if I =

Area of the polygon as formed above, the section, A a. Area of

The nearer the layers are together the more accurate wi.1 be the result. BRAMS OF EQUAL STRENGTH throughout their length,

Those shown in The section is supposed in all cases to be rectangular throughout, beams shown in plan are of uniform depth throughout. elevation are of uniform breadth throughout.

D = Depth of beam. B = Breadth of beam.

94 2 loaded at the other; curve parabola, vertex loaded end; B D² proportional distance from loaded end. at one end, Fixed

STRAICHT PARABOLA

at one end, loaded at the

Fixed

other; triangle apex at loaded end; B D2 proportional to the distance from the loaded end. Fired at one end; load distributed; triangle, apex at unsupported end;

B D2 proportional to square of dis-

STRAIGHT

ELEVATION.

curves two parabolas, vertices touchfrom Fixed at one end; load distributed; to distance Ing each owner B D2 proportional unsupported end.

PI,AN.

Supported at both ends; load at any one point; two parabolas, vertices at the points of support, bases at point loaded; BD2 proportional point of nearest from distance upport,

PARABOLA ELEVATION.

> load at any one point; two triangles, apices at points of support, bases at point loaded; B D2 proportional to distance from the nearest point of support. both ends: at Bupported

FLAN.

Supported at both ends; load dis-tributed; curves two parabolas, vertices at the middle of the beam; bases centre line of beam; B D2 proportional to product of distances from points of support.

STRAICHT PLAN.

> tributed; curve semi-ellipse; B D2 proportional to the product of the distances from the points of support. Supported at both ends; load dis-

Breaking weight for hori-zontal beam. Breaking weight of beam Span on horizontal line. BEAMS ON THE SLOPE. Span on slope. on slope. 11

WS

100

FORM ULA.

THE PROPERTY OF

UNEQUALLY LOADED. BEAMS

unequally Breaking weight for load applied at centre beam as found by formula. weight for Breaking 11 11 \$

Length of beam or "span." loaded. I =

Distances of load from point of support. x & y =

DEFLECTION OF BEAMS.

Length of beam.

Load on the beam.

Force corresponding with modulus of elas-Moment of inertia due to the section. 11 Ē

Coefficient varying with the mode of supticity. 11 ×

porting the beam and applying the load for values of M.

$$D = Deflection$$
, $D = \frac{WL^3M}{EI}$

DEFLECTION OF BEAMS AND GIRDERS. Length of span.

Weight on beam.

Moment of inertia.

Modulus of elasticity, say 10,000 for cast 13,000 for steel.

= uori

Stress in tons per square inch on material of beam or girder. 11

Effective depth.

d = Deflection of beam or girder.

3 E I = 9 One end fixed, the other loaded,

8 EI weight distributed, d =

W L3 q = pEnds supported, weight at centre,

48 E I M C

384 E I distributed, d =

TRANSVERSE STRENGTH OF PLATES.

4ED.

= p

Ends supported, uniform stress,

Taking the strength of the square plate = 1.00 if supported as a beam on two edges and the load applied at the centre, the following will be the relative strength:-

Strength,	1.33 4.00 1.57 4.71 .67 4+ b4*	$2.00\frac{l^4+b^4}{l^4}$
Load.	Central Distributed Central Distributed Central	Distributed
How Supported,	4 sides 4 sides All round All round 4 sides	4 sides
Plate.	Square Square Circular Circular	Oblong

If firmly riveted to immovable abutments, the strength will be 1.5 times that above given. FORCES IN BEAMS (Graphic Construction. SHEARING BENDING MOMENTS AND

With any convenient scale lay off the distances H, D, or h, as shown in the diagrams, then the moments or forces may

measured off at any part of the span L.

Ends supported at centre. load

Ends supported; distributed. load

A (4T)2 ; D= h = H

Ends supported not at centre. load K

Two equal loads Wxy; D=WH 6.

from H' = W'zH = Wx; H = Wxequidistant

Unequal loading in The other the moment Then H= points are found in a load as similar manner. each Find Case of

Find the shearing forces for each case case (5), and add all ordinates together at point in the span. s parately as in

TRUSSED BEAMS.

W = Weight distributed.

Distance of tie or strut from nearest point Span of truss.

of support.

top Angle of inclined portion with horizon. Strain on centre of horizontal part of truss.

Strain on inclined portions. or bottom. 11

SINGLE TRUSS.

QUEEN TRUSS.

The thin lines are in tension; the thick lines in compression.

H

(Tredgold.) STIFFNESS OF BEAMS.

= depth in = load in L = length in feet; and W inches; beam in breadth of on middle. inches:

$$D = \sqrt{\frac{^{3}}{1^{2}} \frac{V_{0}a}{B}} \qquad a = .01 \text{ Fir}$$

$$= .01 \text{ Ash}$$

$$= .013 \text{ Beech}$$

$$= .008 \text{ Teak}$$

$$= .008 \text{ Teak}$$

$$= .015 \text{ Elm}$$

$$= .02 \text{ Mahogany}$$

$$B = \frac{L^{2} W a}{D^{3}} = .013 \text{ Oak}$$

When the beam is uniformly loaded, take .625 instead of W.

BUILT BEAMS.

Mode of building beams sometimes adopted in preference to the ordinary method.

Hard-wood dowells are inserted in holes bored with a large centre-bit, the bolt passing through the dowell which is somelimes turned to a very slight double taper to ensure a fit,

HARD WOOD

DOWELL ENLARGED

ASPHALTE FLOORING.

to 1 of lime—no stones larger than a pigeon's egg (about 52 lbs. per superficial foot). The inequalities should be flushed up with fine concrete of 6 of Asphalte floors should be laid on a good concrete foundation 6 inches deep, of 7 of sharp clean gravel fine gravel (passed through a sieve 5 meshes to the inch) to 1 of lime passed through a sieve of 10 meshes to the inch.

before the asphalte is laid, otherwise the asphalte will blow. Dry ashes should be swept over the The concrete should be thoroughly set and dry

surface of the concrete to remove moisture.

The asphalte should be heated with wood-coke is more injurious than coal. The mineral tar should be first put into the caldron and the asphalte

broken fine and gradually mixed, stirring well.

An excess of tar should be avoided in the tropics. When the asphalte is ready for use it chould give off light puffs of smoke and drop freely from the stirrer. The surface while hot should be sprinkled with chalk powder or fine sand and stamped well.

The asphalte should be laid in widths of about 3 feet; the joints kept clean and free from dust, and heated before laying the next width.

Thickness, 14 for goods warehouse.

F for arches, &c.

Asphalte should not be used when it is likely to be saturated with oil or grease.

For repairs, pour hot asphalte over the spot and allow it to remain till the part to be removed is

softened.

Wooden Flooring, Joists, &c. (Tredgold.) TABLE OF

CELLING JOISTS, I foot apart.	Depth, Breadth	ल तंत्रतं । । । । । । । । । । । । । । । । । । ।	-
Joista.	Depth. Breadth	a a a a a a a a a a a a a a a a a a a	-
NDERS, feet apart, inch bear- on walls,	Breadth	440000000000000000000000000000000000000	
44	Breadth Depth.	10 110 111 112 113 113 113 114 115 115 115 115 115 115 115 115 115	
Gran 10 feet a to 12 inc ing on	Depth.	110001111111111111111111111111111111111	W.b 41. 1
Length of bear- ing in	feet.	86 112 113 114 118 118 118 118 126 128 128 130 130	II

When the bearing of the joists exceeds 8 feet, the joists should be strutted with a row of struts for each 4 feet of bearing extra.

For trimming joists, add 1 of an inch in breadth to the dimensions of ordinary joists for each joist supported by the trimmer. Wall plates from $4\frac{1}{2} \times 3$ to $7\frac{1}{2} \times 5$.

The rise should not be more than 7 inches, nor STAIRCASES. PROPORTION OF STEPS IN

less than 5½ inches.

The tread should not be more than 12 inches, nor less than 9 inches.

A good proportion is

Rise in inches = 18 - Tread in inches. Rise in inches = Tread in inches Another rule:-

STRENGTH AND WEIGHT OF I IRON BEAMS.

of resistance (Société John Cockerill, Belgium.)

10,000 lbs. = 44 tons per square inch. The load being distributed and the beam supported at both ends. Half the load must be taken if concentrated loads are calculated on a at the centre.

		1 1000000000000000000000000000000000000
	30 fee f.	4.7.4.7.7.8.8.3.3.8.3.3.8.3.3.3.3.3.3.3.3.3.3
3 of	25 feet.	7.44 20.50 2
r Spans	20 feet.	7.1 3.1 3.1 117.0
cwt. for	15 feet.	10.5 4 4.0 1 10.5 4 4.0 1 10.5 4 4.0 1 10.5 4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
Load in	10 feet.	14.1 18.6 6.2 334.1 334.1 334.1 17.0 17.0 17.0 10.1 10.1 10.1 10.1 10
1.3	s feet.	28.2 37.2 49.6 112.3 68.9 110.9 110.9 110.9 1146.0 1177.0 22.9 22.9 22.9 22.9 214.6 199.1 199.1
- J	eight, lbs. per foot run.	
inches.	keb.	Opening the size aim aim aim aim aim aim of the size o
ons, in	Flange	biw deal dead ada ada ada ada ada ada ada ada ad
Dimensions.	Depth	8040 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

may be rolled be or swider, thicker and the flanges wider by making the web beams that amount. These

OF I STEEL BEAMS. Cockerill, Belgium.) Rolled by the Societe John WEIGHT AND STRENGTH

on a resistance of bs. (64 tons) per square inch. The loads distributed and the beam supported at both Half the load must be taken if concentrated loads are calculated at the centre. 14,000 The being ends.

F-1	30 feet.	6.6 11.6 2.9 11.6 2.9 3.1 3.4 3.4 3.8 3.8 3.8
Jo sus	25 feet.	7.9 13.9 13.9 13.9 13.9 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0
for Sp	20 feet	9.9 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3
Load in cwt. for Spans of	15 feet.	13.2 17.4 23.1 23.1 5.7 33.6 51.8 62.5 56.1 75.8
Load	10 feet.	19.8 26.1 34.7 8.6 47.7 50.4 77.6 93.8 84.1 102.0
	6 feet.	39.6 69.4 117.2 117.2 100.7 100.7 1155.3 187.6 168.2 201.4
ber	Weight, Ibs. 1	7.10 8.50 9.20 4.10 12.10 16.30 16.30 16.30 17.50 21.20
inches.	Thick- W	20 12 14 14 16 18 14 14 16 18 18 18 18 18 18 18 18 18 18 18 18 18
Dimensions, inches.	Tange .dibity	公立できるようの立ちできます。 のででできまするよう。 のででできまする。
Dimer	Depth	の 本 ち の ち ち ち た た の す こうまままま まる まる まっしゅ を でっしゅ

French System with Wrought-iron Rolled Beams FLOORS. FIRE-PROOF

	Weight per Square.	1bs. 370 420 465 510 605 700
0	Depth of Floor complete.	inches. 74 74 84 94 104
	Depth of Joist.	inches. 4 4 4 5 5 6 7 7 8
	Length of Bearing.	feet, 10 to 111 1114 to 13 13 to 16 16 to 20 20 to 23 23 to 26

MOLESWORTH'S POCKET-BOOK

(Captain Broadbent, R.E.) AND L IRON. (Moment of inertia. OF Span in feet. STRENGTH

Distance of neutral axis from farthest edge of the section.

H

2,536 2,160 1,767 2,000 1,345 1,106 844 725 600 1,573 4,996 3,245 8,850 8,461 6,668 5,161 4,688 for different Sections and 3,7 Total load in 1bs. distributed on the row, including weight of from 6,245 8,335 209 2,500 682 ,382 ,055 806 750 098 4,665 056 170 701 576 6,451 1,1,1 5,8 3, 2, 11, 10, 5 800 ,667 860, 474, 126 196 11,800 11,282 6,662 6,882 6,250 916 4,326 3,381 2,356 794 8,890 ₹ 4, 2,5 . CZ Values of K 209 000 8,602 7,813 6,220 242 843 ,407 334 622 750 102 ,327 113 5,408 4,226 6,00 22444 3,6 2,6 . 11, 41 00 .05625 .01235 .3642 .3861 :4083 1166. .0341 .6945 .7382 7604 7829 .3214 2.6731 .0682 2.1125 .487 4 Values of .84861 .16393 .41625 .3476 .1385 .9838 4791 1867 .2274 .7031 7667 5.0485 -4234 3.635 2.865 64 100 59 11 Section. 100 Jimensions of 24 34 0000 24 ****** 34 34 7

then for re-11 similar to those above given: K1 and K1 .2242 section, and 41625 and find I1 :99.9 values for the required Example: 11 256 .41625 5 X sections × D13 1)3 67 for in the I and K, 11 and K be Ki Bnd values of and T K1, TA I1, For 4 × 4

323

403

430

1.0788

10998

II Therefore, = 17936. pectively. 99 100 2242

16

ROOFS. OF ANGLES

	-
Slope.	044 040 441 0 to 0 1
Angle.	53 00 56 20 63 30
Proportion of Rise to Span.	cates softer
Slope.	3 to 1 2 to 1 14 to 1 1 to 1
Angle.	
Proportion of Rise to Span.	missinger missinger

Exclusive of Framing. LOAD ON ROOFS.

Minimum slope.		25½ to 30°	.: 520	. 1	1009 ::	
Per Square of 100 supl. feet.	1½ ,, 3 ,,	7½ to 9 ,, 8 to 15 ,,	0.2	5 to 6 "	36 "	Poore /II.
Lead covering weighs	Zinc Corrugated iron	Tiles Boarding 4 thick	Ditto, 14 thick Timber framing for slated or	Additional load for pressure	Steepest angle of Gothic roofs	PRESSURE OF WIND ON POORS

(Unwin.)

BCAFB

Angle of surface of roof with direction of wind. Force of wind in 10s, per square foot Fersure normal to surface of roof = \mathbb{R} , \sin , a 1-8t \cos , a –1 Ditto, parallel to direction of wind = \mathbb{R} , \sin , a 1-8t \cos , a Ditto, perpendicular to do, do, = \mathbb{R} , cot, a \sin , a 1-8t \cos , a

	006	100	700	00.	2	1.00
	008	1.0.	.02 1.01 1			.991
	004	1.00		.35		96.
	009	1.001		.50	1	.85
	200	.95		19.	1	.73
	400	-83	1	.64		.53
	30°	99.	T	19.		.33
1	50°	.45	1	.43	Ī	.15
	100	.24		•24	1	*0.
1	20	.125	1	.177	1	10.
	Angle of roof=a	A=FX	1 6	X J = G	G	Y II O

CORRUGATED IRON ROOFING.

Sq. feet per ton.	800 1000 1250 1550 1880 2170
Weight per square.	cwt, qrs. lbs. 2 1 6 2 1 6 1 2 7 1 1 2 7 1 0 24 1 0 6 1 1 0 1 0
Size of Sheets.	6×2 to 8×3 6×2 to 8×3 6×2 to 7×3 6×2 to 7×2 6×2 to 7×2 6×2 6×2 to 7×2 6×2 6×2 6×2 6×2 6×2 6×2 6×2 6×2 6×2 6
B. Wire Gauge.	No. 16 20 22 24 26

Leth of the weight to be added for lappage. Sheets should overlap about 6 inches, and

3 lbs. of rivets required per square of roofing. double riveted at joints.

Curved roofs may be made up to 20 feet span without framing; tie-rods 12 feet apart. Purlins should be about 6 feet apart.

CURVED ROOFS.

with Curved roofs are made up to 30 feet span, feet radius of 18 B. W. G. corrugated

6 feet 4 inches apart; king-rods $\frac{5}{8}$ diameter, caves stiffened by angle-iron $2\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{3}$, and top strengthened by an angle-iron $1\frac{1}{2} \times 1\frac{1}{3} \times \frac{1}{3}$ strengthened by an angle-iron $1\frac{1}{2} \times 1\frac{1}{3} \times \frac{1}{3}$ running along the under surface of the corrugated inches X \$ inch or \$ diameter, iron on each side of the king-rods. without trusses Tie-rods, 2

TRANSVERSE STRENGTH Unsupported length of plate in inches. cwts. Breaking weight distributed in tons. Depth of corrugations in inches. Thickness of plate in inches. Breadth of plate in inches. : w :: CORRUGATED IRON. 7

PROPORTION OF PITCH TO DEPTH OF CORRUGATIONS,

From 21 to 26 B. W. G. the pitch P is usually 3 inches. For 20 B. W. gauge and under P is usually 5 inches. 18 or 20 B. W. G. is a good gauge for ordinary roofing; all bolts, screws, or rivets must be in the ridges and not in the valleys of the corrugations, otherwise the roof will leak.

SHEET LEAD.

For roofs, flats, gutters, &c., 7 to 8 lbs. For aprons, 5 lbs. per foot superficial. Hips and ridges, 6 to 8 lbs.

BUCKLED PLATES.

of the same plate merely supported all round, and if the two opposite sides be wholly unsupported its resistance is reduced in the proportion of 8 to 5. plates bolted riveted down all round, is double the resistance The resistance of square buckled

The stiffness of buckled plates is as the square the thickness, and inversely as the curvature.

Two inches curvature suffices for 4 feet square inch thick. and 1

are made 3 feet and 4 feet Ordinary plates square.

AND SAFE LOAD OF BUCKLED PLATES, 3 FEET SQUARE.

Safe Load distribu	in Per	7. 103 .20 1.43 .048 .32 1.00 .112 .75 2.5 .278 1.77 4.5 .5 .89 4.5 .689 4.77 9.0 1.0 6.8
-	ness weight in al. Lbs.	18 B.W.G. 17·3 11.2 23·6 12.3 38·7 13.4 45·0 14.7 90·0 14.7 90·0 11.2 90·0 11.2 91.0
No. Thickness of Metal.		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The safe load may be doubled for buckled plates of puddled steel.

SLATES.

Table of Sixes and Weights of Slates, exclusive of Laths.

Weight per Square.	CWEST OF CO
Weight of 1000.	cwts. 15 25 40 60
Squares covered by 1000.	2 41 7 10
Sizes.	13× 6 16× 8 20×10 24×12
Names.	Doubles Ladies Countesses Duchesses

Wooden Roofs. (Principals 10 feet apart.)

	A STATE OF THE STA
Struts.	××××××××××××××××××××××××××××××××××××××
Straining Beam.	1 1 × 4 1 × 4 1 × 6 1 0 × 6 1 1 × 6 1 1 × 6
Small Queens.	10 × 4 × 01 × 4 × 01 × 4 × 01 × 4 × 01 × 4 × 01 × 4 × 01 × 4 × 01 × 4 × 01 × 01
Queen- posts.	111 * 8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 * 8
King-	655 655 74 655 74 75 75 75 75 75 75 75 75 75 75 75 75 75
Tie- beam.	9×4 10×5 11×6 11×4 13×6 13×8 14×9 15×10
Prin- cipal.	4 4 4 4 7 5 1 8
Span in feet.	60 55 55 55 55 55 55 55 55 55 55 55 55 55

The roofs above 30 feet span are calculated as Queen Trusses

SCANTLINGS OF PURLINS AND RAFTERS.

Scantlings of	Rafters.	6 × 24 6 × 24
Scantl	Purlins.	ο ο. ×× γ×
Bearing	in feet.	10
Scantlings of	Rafters.	4 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×
Scantli	Purlins.	4 ××
Bearing	in feet.	9 &

MOLESWORTH

STRAINS ON ROOFS.

Length of principal rafter. Rise of roof from centre of tie-rod. Thick lines in compression. lines in tension. Fine]

principal Load on truss, including weight of framing. Number of bays formed by the intersection

Length of 1 tie-rod.

H

= 10.struts and ties with the

Strain at end of principal rafter. Strain at end of tie-rod. rafters; in the diagram N

LT (N-1) 2 R N 11

LP (N-1) 2 RN

Strain at f N-1 201 Strain at p

28

王川

-S= ...d

f"=F-

1.5 L AND QUEEN RODS. KING STRAINS ON

at c = at a =

	5.	
Tie-rod.		# H&H&## \$164 101x</td></tr><tr><td></td><td>d</td><td>100m/00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></tr><tr><td>neen</td><td>·</td><td>entonologique estes estonological</td></tr><tr><td>and Queer bolts.</td><td>9.</td><td>relocate atta atta rito i i i i i i i i i i i i i i i i i i</td></tr><tr><td>King</td><td>a.</td><td>10 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></tr><tr><td>23</td><td>on.</td><td>ス ス ス ス ス ス ス タ 本 本 大 本 ま ま ま ま × × × × × × × × × × × × × × × × × × ×</td></tr><tr><td>Struts.</td><td>T-iron.</td><td>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td></tr><tr><td>ei.</td><td>i</td><td>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td></tr><tr><td>Rafter R.</td><td>T-iron.</td><td>**************************************</td></tr><tr><td>-</td><td></td><td>44444</td></tr><tr><td>Span.</td><td>8 feet.</td><td>20 20 30 30 50 50 60 60</td></tr></tbody></table>

	k.		
$ie\text{-rod} = \frac{S}{30}$	j.	4 4 4 6 0	
H S. S. Rise of tie-rod	h.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	L 2
S = H	Rafter T-iron.	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	
-	pan.	feet. 220 330 440 45	

NALL

3

WALL

OF

110

COMPUTATION OF STRAINS ON ROOFS BY CONSTRUCTION.

Let L = Total load on truss. N = Number of bays formed by the intersection of the struts with the rafters = 6 in the diagram.

$$W = \frac{L}{N} = \frac{Load}{6}$$
 in the diagram.

At a with any convenient scale lay off the perpendicular line a b = W on the scale of units; from b draw b c parallel to the rafter, intersecting the strut at c, and from c draw c d parallel with the tie-rod. Again at c lay off with the same scale cf = W + a d, and draw as before fg, gh parallel with the rafter and tie-rod respectively.

Again at l lay off l = l + l + e h, and from i draw ij parallel to the tie-rod until it intersects the rafter at j; the strains may be measured off with the scale as follows:—

THRUST ON STRAINS ON THE RAFTER.

STRAINS ON THE RAFTER.

THE RAFTER.

THE ROD.

Between l & e = lj. e & a = lj + gf. f & m = ij + gh + cd.

Between e & k = eg.

King = 2 ef.

Queen = ad.

The strains may then be scaled off by a scale on which the total load = L, as follows:

The length of ab	c d	af	· · · · · · · · · · · · · · · · · · ·	ac	C B
= Strains on AC	СВ	AD	DE	CD	DB

The fine lines are in tension, the thick in compression.

STRAINS ON A POLYGONAL FRAMING.

intersection F lay portions lines with the at each point, the framing in C', &c., repreparallel to The cut off by the intersection of these vertical line represent the weights W. W., and W., required to keep from their to B and A total weight, and from lay off lengths parallel line D' parallel to D, and the sent the strains on the ends of this equilibrio; and B' and units = off

and

scale a number of

CHARACTER OF ANY STRAIN. To DETERMINE THE

framing. it passes in it passes between Let Let A B and A C be any two bars of a D and load if C, or b and D and and Produce the lines AB, AC, to the C; or d if between B Jo in any direction between direction between any direction represent the E and

100	
Character of Strain	Compression Compression Tension Tension Compression Tension
	Compression Tension Tension Compression
Direc- tion of Load.	מיטים

A 79 0	1/2
200	8
D 2	B
٧	H 3

CURVED ROOFS.

S = Span of girder.

Strain on any bay of top or bottom flange. Distance of apex of any bay from the Weight distributed.

bay from nearest point of support.

Length of perpendicular from base of bay the flange of any bay to apex. Angle of = 2

Vertical component of strain in any bay. horizon.

 $\mathbf{R} = \frac{\mathbf{W}x(\mathbf{S} - x)}{2\,\mathbf{S}\,l}.$

For strains on bracing, see next page. = R sin. Z.

The diagram given in the next page is another variety of the same species of roof, and is subject to the same calculations.

CURVED ROOFS-continued.

Strain on any brace.

Distance of centre of brace from nearest point of support.

Shearing force on girder at y.
Vertical component of strain in that bay of top flange to which the brace is the (for value of V =, see preceddiagonal

ing page). Vertical component ditto ditto of bottom

k =Angle of brace with vertical line.

$$r = (F + v - V)$$
 secant k . $F = \frac{W}{S} \left(\frac{S}{2} - y \right)$.

O ANY OTHER FORM ON BRACES IN CURVED STRAIN

CURVED GIRDER.

$$r = (F \mp V \pm v)$$
 secant k.

be prefixed - are to Or The signs of either + V and v as follows:

The sign is to be	+11+
And is inclined	Towards the nearest point of support From "Towards " " From " "
If the flange be in	Tension Compression

A force acting in one direction.

Resultant force of F and f combined.

A = Angle of direction of F with f

= V F2 + f2 + (2 F f cos. A).

f cos. 180° - A) when A exceeds 90°. P sin. a f2 - (2 F.

 $\sin a = \frac{f \sin A}{P}.$

f =

Measure by any scale on each line their respective units of the diagonal repre-In the diagram two forces, A B = 10 tons and B D = 7 tons, give a resultant sin. A BY PARALLELOGRAM OF FORCES. force, and complete the parallelogram; the

WEIGHTED CORD.

suspension take on nosition ind cord.

L = Length of rope. S = Span.

Height of one support above the other

$$a = \frac{\sqrt{(L+S)(L-S)-H}}{2}.$$

$$y = \sqrt{(L+S)(L-S)}$$

VARYING STRESS IN IRON AND STEEL. (T. W. Fowler.)

of stress, the less is the stress necessary to produce runture. Call the stresses which would have be repeated an infinite number of times to when the stress is steady, t; when entirely removed and reapplied, so as to leave the bar unstrained, u; when changed from a tension to an equal compression, s; when a minimum stress is left in the bar, a. Then Hannhardt's formulæ, which give results agreeing with Wöhler's and Spaugenberg's experiments, By Wöhler's law rupture may be caused not only by a steady stress exceeding the breaking strength of the material, but also by repeated applications of stresses, none of which are equal The greater the variation produce fracture, this stress. rupture. O

max. stress $\left(\frac{m}{M}\right)$ is a positive expresare, when

When the expression m sion, a = u + (t - u)

inch, that The is negative, the formula is $a = u + (u - s) \frac{m}{M}$. In using this, it is important to remember values of these constants in tons per square deduced from Wöhler's experiments, are :the latter part is a negative expression.

7.43 t = 46.6 u = 22.28 s = 13.02Wrought iron t = 20.84 u = 13.94 s = 13.94 s = 13.94Krupp's steel

These values are given in Weyrauch's work 'The Structure of Iron and Steel' reduced

factor of safety of 3 is ample when these results tension experiments alone were completed, Weyrauch wrote, When to British units. are allowed for.

VALUES OF a IN TONS PER SQUARE INCH.

9.	1 =	0	11	1 00 1	11 30	7		
	18.1	36.9	-	14.6	-0.5	10.7	-1.0	7.4
2.	18.8	39.3	.2	15.3	-0.4	11.3	6.0-	8.1
° °	19.5	41.8	.00	16.0	-0.3	12.0	8.0-	8.7
6.	20.5	44.2	4.	16.7	-0.5	12.6		9.4
1.0	8.02	46.4	.5	17.4	-0.1	13.3	2.0-9.0-	10.01
Min. ÷ max. stress		a (Krupp s cast) steel)	Min. ÷ max. stress	a (wrought iron) a (Krupp's cast steel)	Min. ÷ max. }	a (Krupp's cast)	Min. ÷ max.	a (Krupp's cast) steel)

WITHOUT INCREASE OF WROUGHT IRON. ORDÍNARY SIZES OF. LIMITS THAT MAY BE USED COST

BAR IRON.

width, flat bars, 6 inches. L AND T BARS. length, 30 to 35 feet. weight, 4 cwt. Limit of

weight, 4 cwt. length, 35 feet. Limit of

the sum of the breadth and depth, 81 in.66

CHANNEL IRON OR ROLLED BEAMS.

weight, 4 cwt. length, 35 feet. depth, 7 inches. length, Limit of 93

weight, 4 cwt.

PLATES.

length, 15 feet. Limit of

area, 28 superficial feet.

"width, 4 feet. Beyond the above limits extra prices have to be paid.

MAXIMUM DIMENSIONS ORDINARILY MANUFACTURED, Flat bars, 12 inches wide.

L bars, 6 in. x 6 in. x 3.

7 feet wide or 30 feet long, or 60 superficial feet area. Plates, 7

bars Roughly the comparative cost of plates may be assumed as follows:

1.12 Flat, round, or square bars being 1.00 L and T Bars : : Plates .. LOADS ON AMERICAN RAILWAY BRIDGES,

Engineers, June American Society Civil Engineers (Griffin and Clarke.)

In America it is sometimes the practice to double the live load for the calculation of girder strains, varying the stress per square inch in proportion to the ratio of dead to live load.

A8 AMERICA A BASIS FOR CALCULATING GIRDER STRAINS. LOADS PER FOOT RUN ADOPTED RECENTLY IN

Total Load in Tons per Foot Run.	**************************************
Live Load X 2 Tons per Foot Run.	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Dead Load in Tons per Foot Run.	22 22 22 22 22 22 22 22 22 22 22 22 22
Span in Feet,	From 0 to 12 12, 17 11, 25 25, 50 50, 110 110 125 125 225 226 226 226 226 226 226 226 226 350 350 350

TO FIND THE STRAIN ON TOP OR BOTTOM BOOMS OF GIRDERS L = Load distributed. OF DIFFERENT DEPTH (LOAD DISTRIBUTED)

D = Depth of Girder. L = Load dist S = Strain on top and bottom booms.

=L× '75 '875 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875 2	#	F19	rele	r(00	m(as	10	11	12	13	14	1.5	1.6
	×	15	.875	-	1.125	1.25	1.375	1.5	1.622	1.75	1.875	

TABLE OF BRIDGES OF LARGE SPAN. ('Trans. Inst. Civ. Eng.,' vol. liv.)

4	n Bearings.	on.	1	between re Girders.	ensi	Panel		Los tons line foo	per		rains, square			Descri	otion.
	Span between	Weight of Iron.	Weight Span ²	Width betwo	Number.	Length.	Height.	Live.	Dead.	Dead Load.	Total Load.	Dead Load.	Total Load.		
SINGLE LINE. Susquehanna Ohio St. Lawrence Elb Maas Ohio Griethausen Theiss Mayence Moerdyk Louisville Louisville Vistula	feet 307 319 330 328 341 342 342 345 345 368 375 396 397	tons 215 484 686 420 512 338 493 452 359 447 425 623 838	· 0023 · 0048 · 0063 · 0039 · 0044 · 0029 · 0039 · 0030 · 0037 · 0030 · 0040 · 0053	16 6 16 0 16 5 16 8 18 0 15 0 16 5 15 1 16 5 30 0 18 0 30 0	20 23 22 40 20 13 25 24 20 28	12 3 	28 0 30 0 32 10 41 0 33 0 25 3 34 2 49 2 39 8 46 0 37 6 46 0	1·79 2·14 1·28 1·54 1·12 1·52 1·32 2·05 1·44 1·21 1·86	1.34 1.00 1.20 1.00 1.34 0.96 0.95 1.29 1.00 1.16 0.91	2·54 3·43 — 2·68 2·03 — 3·18 2·25 3·13 2·27 3·30	4·46 5·00 5·08 4·28 4·46 4·64 5·08 5·18 3·81 5·36 4·46 5·36	1·38 2·71 2·68 1·62 - 2·25 1·56 2·04 1·65	2.68 3.97 5.08 4.28 3.57 4.64 5.08 	Paule syst Arched to Quadrangul	p. em. p.

9

-	-	_							_						
	Bearings.		Brade nag	100	Dimensions in feet.		Loads, tons per square inch.								
		Iron.		of Girders	-	Pan	els.	_		ot.	Ter	sile.	Com	press.	Description.
	Span between	Weight of Iron.	Weight Spans	Width of Girden apart, centres.	Number.	Length.	Height.	Time	Live,	Dead.	Dead Load.	Live Load.	Dead Load.	Live Load.	
Single Line. Conway	feet 400	1112	.0070		_		25	62.	88	1.00	4.11	5.54			Tube.
Cincinnati Waal	415	860	·0048	17 2	20 27	14 11	41 42	6 2·	45 97	2.01 0.86	2.45 2.85	4.46	2.21	4.02	Quadrangular; pinned.
Passaw		945	.0019	17 0	23 12		60	$\frac{1}{2}$	94	$0.99 \\ 1.00$	2.99	6.12	2.63	5.36	Lattice. Lenticular.
Britannia Cincinnati Double Line.	515		·0073 ·0014		20	25 9	30 (3.	47	0.81	4·63 3·33	5·95 4·46	2.95	4.02	Tube. Quadrangular; pinned.
Zeglin	302 305		.0049		17					1.79		4.76	-	4.76	
Tilsit	317	604	·0075	28 10	18	17 7	39 (2^{\cdot}	10	2.28	-	4.76		4.76	
Elb	319 338 347	592	0059	27. 3	18 20	17 8	49 3	1 .	92	2·16 2·16	-	4.64		4.64	
Kuilenberg			·0055 ·0092		27 38					1.34	5.27	4·64 6·50	3.66	4·64 4·46	Arched top.

DIAGRAM OF LIVE LOADS ON GIRDER BRIDGES FOR A SINGLE LINE OF RAILWAY, LOAD EQUALLY DISTRIBUTED, IN TONS.

Note.—The loads indicated in the diagrams are not necessarily the actual loads, but the equivalent to that of a distributed load which would produce nearly the same result; for example, 14 tons concentrated on the centre is taken as 28 distributed. The loads on cross girders are the actual loads.

COMTINUITY OF GIRDERS,

l = Load on the other span.

Where
$$L = l$$
, $X = \frac{1}{4}$ span = $\frac{1}{4}$

$$X = S - \left(\frac{M - 1}{8L}S\right)$$
Pressure on centre pier = $\frac{1}{8}S(L + l)$.

ressure on centre pier =
$$\frac{5}{8}$$
 S (L + l).

abutments = S $\left(\frac{7 L - l}{16}\right)$.

The thick lines representing the top and bottom flanges are The fine lines are in tension. in compression.

MOMENTS AND SHEARING FORCES CONTINUOUS UNIFORM BEAM OF TWO EQUAL SPANS. (uniform loading). DIAGRAM OF BENDING

denotes bending moments, A and B uniformly loaded. shearing forces

snearing rorces ", A unloaded, B loaded. shearing forces

MOMENTS. THEOREM OF THREE

and l_i , l_j the consecutive spans; then let p_1 p_2 = the loads per unit of span on l_1 , l_2 respectively; and M_{ij} M_{ij} M_{ij} = the bending moments on A_i , b_i and C respectively. The relation between M_i , M_i and M_i is always expressed by the equation M_i , l_1 , l_2 , l_3 , l_4 , l_4 , l_5 A, B, C, be three consecutive supports of a continuous girder of any number of spans,

LOAD ON THE SUPPORTS OF A CONTINUOUS GIRDER OF EQUAL SPANS UNIFORMLY LOADED.

The weight of one Span being = 1.00.

					_	
	7th Pier.	1	1	1	1	1.00
	6th Pier.	1	1	1	1	8666
	5th Pier.	1	1	1	1	1.0007
the	4th Pier.	1	1	1	1	\$156.
Load on the	3rd Pier.	1	1	1	1	1-134 -9641 1-0096 -9974 1-0007 -9998 1-00
	2nd Pier.	1	1	04/04 @loc	60)60 60)60	.9611
	1st Pier.	010	17	62,64 64,00	4/102 63/00	1.134
	Abut- ment.	e5(a0	10	11.12	14,00 10,00	•3943
	Number of Spans.	63	3	4	5	Infinite

the supports are nearly the same as when the number is infinite. When the number of spans exceeds five, the loads on

WROUGHT-IRON GIRDERS. DEFLECTION OF

Deflection of $\frac{1}{4}$ to $\frac{1}{6}$ to $\frac{1}{6}$ of the length may be allowed under ecial circumstances; but under ordinary loads the deflection should not exceed $\frac{1}{4}$ of these, say $\frac{1}{1600}$ to $\frac{3}{2}$ of the girder. The practice in America is to allow $\frac{1}{1200}$ after the girder special circumstances;

In small bridges there is a slight increase in deflection from has taken its permanent set.

the of the normal deflection, with the same load moving at slow speed. th or high speeds, about

In large girders there is no perceptible difference between the deflection at high and low speeds. S = Span in feet.

P = Stress on the metal by any load in tons per square inch.

E = Modulus of elasticity in tons = say 10,000 for iron and 13,000 for steel. D = Effective depth of girder in feet.

d = Deflection of girder in inches.

3 S2 P

TABLE OF VALUES OF W

Material.	Stress, tons per	_	Table of Values of K. Ratio of Effective Depth of Girder to Span.								
Iron "" "Steel "" "" "" "" "" "" "" "" "" "" "" "" ""	\$4 5 4 1 2 3 4 5 6 7 1	K = : K = :	0037 0055 0074 0092 0110 0129	**O014 **O027 **O054 **O081 **O108 **O108 **O1010 **O021 **O021 **O041 **O062 **O083 **O104 **O124 **O124 **O166	10015 00030 00060 00090 0120 0150 00120 00120 00120 00023 00046 00069 00092 00115 00138 00161 00184	**************************************	**************************************	133 ·0020 ·0039 ·0078 ·0115 ·0156 ·0195 ·0015 ·0030 ·0090 ·0120 ·0150 ·0150 ·0170 ·0150 ·0170 ·0150	**************************************	15 ·0023 ·0045 ·0090 ·0135 ·0180 ·0225 ·0017 ·0035 ·0069 ·0104 ·0138 ·0173 ·0207 ·0242 ·0276	10024 ·0048 ·0096 ·0144 ·0192 ·0240 ·0018 ·0037 ·0074 ·0110 ·0147 ·0184 ·0221 ·0254

COUNTER-BRACING GIRDERS.

which it is necessary to make the resisting both compression and tension.

$$R = \frac{L}{l}$$
.
 $x = \frac{1}{4}S - S(\sqrt{R + R^2} - R) = SR$.

VALUES OF & or coefficient of distance from centre of girder to which it is necessary to counterbrace).

	1.6	090	9.	.12	1	-05	.321
-	1:1	.058	2.	.109		*00	.284
-	8.1	.055	oc	.10		.1	.268
-	1.9	.053	6.	.092		.2 .15 .1 .08 .05	.237
-	2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6	.012 .013 .015 .017 .019 .051 .053 .055 .058 .060	1.5 1.4 1.3 1.2 1.1 1.0 .9	064 067 071 075 080 086 092 10 109 12		.2	134 152 164 186 193 210 237 268 284 321
1	2.1	.049	1.1	.080		.3 .25	•193
1	2.5	.047	1.2	.075			186
1	5.3	.045	1.3	.071		•4 •35	.164
1	2.4	.043	1.4	190.		*	.152
-	2.2	.043	1.5	.064		10	-134
	Dead load.	1 1	Dead load.	Live load.		Dead load.	Live load.

With any scale lay off $A = \frac{1}{2}(L + l)$; join EB; then the vertical ordinate y at any point between A and C measures the maximum shearing force that can exist at that point from unequal loading.

STRAINS ON LATTICES.

advancing from either point of support. load distributed With a

Join Let the line A B represent the span; E being With any convenient scale lay off strain on the end lattices from the moving load evenly distributed, and B D = strain DE with a straight line and CA with a parabolic the the Then the ordinates measured by the scale from the line D E to the line F C repreordinates measured from the line B E to the parabolic line FC represent the maximum strain at and sent the maximum strain at any point from load. moving and the fixed loads combined, fixed the end lattices from the the centre. BC = the line . 5

centre the end on the alone lattices is one-fourth of the strain upon any point due to the moving load alone. The greatest possible strain on th load moving the 2 lattices due

distributed,

ABUTMENTS. LOAD ON OF DISTRIBUTION

With any convenient scale on the vertical line the loads, lines radi. Form a polygon of forces as follows:set out lengths corresponding to draw from the points so obtained

point G. ating to any convenient and

radiating lines, as shown in the diagram (the lines the polygon having the same reacher the radiating lines to which they are drawn Then from the vertical lines that pass through the centres of the loads, draw lines parallel to the the same letters as having parallel).

abutment may be scaled off from the intersection M.N., and from the point G draw the dotted n parallel to M.N., then the load on each line Gn parallel to of Gn with EF. Join J

the load on the right abutment By calculation,

Aa+Bb+Cc+1 Span

Load on left = total load - load on right.

CAST-IRON GIRDERS.

Area of bottom flange in inches. Depth of girder in inches. Breaking weight in tons. Span in inches. .11

Supported at both ends with load | W =

50 A D Supported at both ends with load $W = \frac{3}{2}$

If the depth $=\frac{1}{15}$ of the span, W=A 4·17) where If the depth $=\frac{1}{10}$ of the span, $W=A\times 5$) distributed Area of top flange if the load is =

00 Area of top flange if the load is) applied on bottom flange applied on the top ...

Depth at the ends may equal 2D

Safe deflection to the inch for each foot of span, under a test load of 1rd of the breaking weight.

WEIGHT OF CAST-IRON GIRDERS. (In tons distributed.) BREAKING

Breaking weight.	75 75 75 158 183 208
Size of bot, flange,	125.5 12
Breaking weight.	= 31 = 50 = 62 = 94 = 125 = 141
Size of bot, flange.	6 × 14 8 × 14 10 × 14 13 × 14 15 × 2 17 × 2
Depth in inches.	10 15 20 20 30 35
Span in feet.	10 20 30 35

Strain on top and bottom flange at centre [in tons. Length of girder (or span) in feet. WROUGHT-IRON PLATE GIRDERS. Weight distributed in tons. 11 11

 $\frac{L}{8}$, then S = W. If the depth = 8D. 11

" " =
$$\frac{L}{10}$$
, " S = $1\frac{1}{4}$ W.
" " = $\frac{L}{12}$, " S = $1\frac{1}{2}$ W.

In compression, iron may be strained to 4 tons

per square inch.

In tension, iron may be strained to 5 tons per square inch.

tons per Board of Trade regulations, 5 square inch in tension and compression.

By regulations of the Ponts et Chaussées, 3.81 tons per square inch. SAFE LIMIT OF STRESS IN WROUGHT-IRON BRIDGES. With different proportions of Dead to Live load.

S = Safe limit in tons per square inch. Dead load + live load = 1.0.

Unwin.

00	100
-	w c4
.1	3.68
∞ ¢1	7.06.365.835.385.04.664.374.123.873.683.5 5.65.094.664.314.03.733.503.293.112.852.8
r- 63	3.29
.6	3.50
	3.73
.6	5.0
.3 .4 .5	5.38
51 · 00	5.83
	6.36
0 .1	1.0
::	11 11
Elive load	S. in tension S. in compn.
-	

201100

THICKNESS OF WEB PLATES OF WROUGHT-IRON GIRDER TO (Chas. Light.) RESIST DIAGONAL FORCE.

The tabular numbers show safe thrust in tons per foot of width of plate.

1	1	19
ng.	51	8 2. 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8
betwee	48	488003488
whether l	45	. 122.149 2.13.33 2.00.00 3.00.00
100 ·	42	10.2 2.6 2.1 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2
inche	39	19 7 2 7 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
listances in inches Pillars or Booms.	36	13.0 6 4 4 4 5 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Distan Pilla	33	8 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ported	30	1.0 1.8 3.0 4.5 6.3 8.5 10.8 13.4
dnsun ;	27	1.2 3.5 3.5 7.4 1.4 1.5 1.0 1.0 1.0
Net	24	1.5 4.3 6.3 6.3 8.7 111.2 114.0 17.0
Thick- ness of	Web, ins.	** *** *** *** *** ***

The tabular number under the distance required must not be less than the shearing force per foot of plate.

(W. T. Doyne.) LATTICE BRIDGES. See 'Min. Inst. Civ. Eng.,' vol. xi.

Weight distributed.

Strain at centre of top and bottom flanges.

Distance of any point from abutment. Strain on any lattice.

Distance of centre of any lattice from centre of girder. 8

Length of any lattice.

Length of bearing of glider or span.
Depth of girder (effective).

 $\frac{1}{8D} = 8$ at centre; $\frac{1}{2DL} (Lx - x^2) = 8$, at any point whose distance is x from abutment.

be $\frac{1}{DL}$; y is for single triangulation, and must divided by the number of series of triangulation. $y = W \frac{al}{al}$

If $w = \text{weight applied at centre of girder, } \frac{w l}{2 \text{ D}} = \text{strain on}$

all the lattices.

(Dewar. STRESS DIAGRAMS FOR BRACED GIRDERS.

load at each apex (= in this case & total load evenly distributed). Draw, from each point thus set off, lines parallel to the top and bottom booms; and diagonal lines parallel to the bracing. On the vertical line A Y set off, with any scale, the units of The stresses may be measured off by the scale of units.

(Dewar.) DIAGONAL FROM TRAVELLING LOAD UNIFORMLY DISTRIBUTED. ON EACH STRESS AXIMUM

the. scale set out lines parallel to it through 6, 5, 4, &c., cutting BC, and through the points of intersection draw horizontal lines and zigzag lines The diagonals represent Beyond the centre D they represent the greatest compression on what would be a tie if the load were fixed, and tension on what would be a strut. 7 C and draw 2=2; 2, 3=3; 3, 4=4, ending at 6, 7=7 To any convenient Join the greatest stress from a travelling load. of loaded apices in the girder. parallel to the diagonals as before. venient angle. number

(Graphic Determination of Stresses. GIRDERS UNEQUALLY LOADED. DIAGRAM OF LOAD.

STRESS DIAGRAM FOR LOADS A, B, AND C.

STRESS DIAGRAM FOR LOADS D, E, F, AND G.

Find the load on each abutment as follows: With loads A, B, and C, the load on the r

ads A, B, and C, the load on the right abutment
$$R = \frac{aA + bB + cC}{c}$$

and on the left abutment L = (A + B + C) - R. On a

any convenient scale lay off disto the loads on each point of the girder parallel to each lines being drawn to the to the division of load on the abutments. The stresses may then be measured on the Stress If the girder be turned upside down, the stresses will remain the same in intensity, be changed, the positive stresses becoming negative, and the negative positive, lines and on each abutment, and draw member of the girder; the diagonal with the scale of loads. horizontal line corresponding vertical line with but their character will tances corresponding

POCKET-BOOK MOLESWORTH'S

Join and with any convenient scale lay off as many girder; making with AB horizontal for uniform loading, then angle, lines of the stress diagram may be drawn. any convenient intersection the 2=2; 2, 3=3; 3, 4= from each point draw Which points as there are bays in the their from AB as if which at points the Lay off to 10 10 B, Will 8

ALL ULLIAN

STRAINS ON GIRDERS.

figures on the diagrams show the respective strains in (C. Reilly.) , vol. xxiv. See 'Min. Inst. Civ. Eng.,'

load distributed being taken as 100. the load. terms of The

proportions adopted to give these strains are Depth of girder = $\frac{1}{10}$ of span. Angle of bars = 45° . The

Girder divided into ten equal bays, each = 10 span.

In diagrams 1 and 3 the load is applied at the top; in 2 and it the bottom of the girder. The load is distributed evenly, but in cases of unequal loading the bars change their character Thick lines are in compression; thin lines in tension. at the bottom of the girder. and strains.

CALCULATION OF STRESS ON BRACED GIRDERS.

The coefficients are obtained by writing down the effect of taking the totals + each unit of load on each member, and (C. Lean. or - for each member.

Find the total amount of dead and live load on the To find the actual stress on the members of a girder:

Divide these amounts by the number of bays to find girder.

the unit for one bay. Multiply the units of dead and live loads by their

the the by respective coefficients, and divide the results the number of bays. The quotient represents greatest possible stress that can come upon girder under any conditions of the live load.

For diagonals the amount must be multiplied by the length of the bar divided by the depth of the girder; if the length of the bay does not equal its depth the amount must be multi-The results for the flanges must be corrected in a similar manner. plied by the length and divided by the depth.

Frample.—With live load = 100 tons, dead load = 50, find escason k. (See diagram below.) Units = 10 and 5 tons (See diagram below.) stresses on k.

bays. length. respectively in tension and compression.

+ 10.6 tons. 75 + 10 × 1·41 == - 175 ÷ 10 × 1·41 = 10=+100 -15 = 150Live load 10 × coef. 33 93 Or Live load 10 X " Dead Dead

i & k	+	10 15	1 2	M&N	- 120
124	+	21 15 10 10 15	+2	L&O	-105 -120
g & m	+	6 21	- 15	K&P	- 80
aks ber ckg dep cko fkn gkm hkl ikk	+	21 6	+15	A&H B&G C&F D&E I&R J&Q K&P L&O	-45 -45
e & 0	+	3 28	- 25	I&R	- 45
d&p	+	28 3	+25	D&E	+ 125
c & 9	1+	10 1 36	-35	C&F	+120
b & r	+	10	- 10	B&G	+105
4 6 8	1+	Te :	+45	A&H	1 80
		Coefficient	live load),	-	Coef. booms +80 +105 +120 +125

O

0

÷	1=	+	00		}	
	9 %	+	6 10	-4	K&L	09-
z	f&j	+	15 3	+12	J & M	- 48
Z	ako bkn ckm dkl ckk fkj gk;	+	3 15 15	- 12	A&H B&G O&F D&E I&H J&M K&L	oms +28 +48 +60 +64 -28 -48 -60
7	1 % p	1+	21 1	+ 20	D&E	+64
×	c & m	+	1 21 21	- 20	OEF	09+
j	ngq	+	28	+ 28	B&G	+48
-	020	+	58	- 28	A&H	+28
1			Coefficient live }	Coef. dead load		Coefficient booms

BOWSTRING BRIDGES.

Thrust of arch at crown, Tension of main tie, and

in tons. in feet

Total load distributed in tons. 日報の

Distance of any part from centre of girder in feet, 8 R. 8

Thrust at any other part of arc =

perpendicular $= \frac{1}{N}$ nearly, when N = number of parts into which the arc is divided by the Greatest tension at any perpendiculars.

AMERICAN TRUSS BRIDGE.

Number of panels or bays. Total load distributed.

= Load at each point of suspension.

spa = Spa

Distance of any point of suspension from abutments A and B.

Length of counter-tension rod. ength of tension rod.

WAX Strain on tension rod R = -Depth of truss.

Strain on counter-tension r =

Strain of perpendicular strut = 8 D Strain on top at centre =

The thick lines are in compression. The fine lines are in tension.

D is usually $\frac{5}{7}$.

[For continuation see next page.]

AMERICAN TRUSS BRIDGE-continued.

in 40 is on the the girder consists of a number of separate triangles unconnected except by the top boom, the strain on the top boom will be uniform throughout out on A = Aeach other at the points of intersection. When supposition that the diagonal bracing shown the diagram is used, and that they are fixed 8 D, The strain on top at centre =

out, and = D

IRON ARCHES

Strain at centre of arch. Strain at any point x.

Load between centre of arch and a Total load on arch.

Span of arch. Versed sine.

LS

10 generally,

ARCHES. (Equilibrium line.)

V = Versed sine of arch.

horizontally from crown Abscissa measured

supposed to be conpoint load point arch and centre line to any centrated at any Weight of 11 ar

and Crown = wxbetween point + 101 weights . m = point P. Sum of 11

and crown between moments Moments at each &c. $m + m_1$ Sum of 38

of gravity crown distance of centre of between measured from crown arch of Horizontal portion

Ditto ditto measured from

for unsymmefor symme Horizontal thrust of arch = W 4+ trical loads;

trical loads; when Wy and W'y' are for the Ioaded and unloaded halves respectively.

equilibrium. trical loads and inclined for unsymmetrical The tangent will be horizontal for symme determined Ordinate from tangent to line of Obliquity loads.

Determination of Equilibrium Line by Graphic Construction. ARCHES. BRACED

For notation see preceding page.

- Lay off from crown of arch tangent Wy making k = lst.
- · M Z Find position of centre of gravity; g = 2nd.
 - the line passing through the centre of gravity) draw the horizontal line G a = From G (the point of intersection of convenient scale. vertical to any 3rd.
 - Through a draw the vertical line Tae, making 4th.
 - Tb, bc, cd, de total load on half arch = Te lay off line ' the On 5th.
 - respectively.
- the length of there lines represent the intensity of stress on the lines drawn parallel to them. v v, v, v, v, respectively Join b G, c G, d G, e G; 6th.
- Bo, on, nm, ml, and le, parallel to G d, G e, respectively com-Draw to the intersection of the vertical lines menced at B. T, Gb, of load 7vh.

The line le should pass through the point C; this checks the accuracy of calculation and drawing.

S = Span of arch.

 $V^2 + (\frac{1}{2}S)^2$ Versed sine.

Radius of arch =

2R. Angle of half arch; = Sin. a =

Effective depth of arched rib from centra Angle of P with centre line.

Modulus of elasticity = 11,000 tons for iron. to centre of top and bottom booms of rib. 11

E d2 12,800 tons for steel.

Constant for rib, say K

Range of temperature in degrees Fahr.

half arch due to t. Extension of

Circular measure of arc = 0174533, ao = A Bt. .00000667

Thrust force per square inch due to ex-00029, a'. 1 = 4

 H = Stress per sq. in. due to bending moment.
 M = Bending moment at any point P. tension at abutment.

 $A(.5\sin^2 a + 1.5\cos^2 a) - 1.5\sin a\cos a$ K3× 1 = y

esin.a

: $M = h V (\cos b - \cos a)$.

Clarke.) Comparative Weights of different Types. SPAN. vol. BRIDGES OF LARGE Inst. Civ. Eng.,' C' Min.

With 250 feet of viaduct at each end. 700 feet clear. Span ?

Double line of railway; live load 3400 lbs. per foot; wind pressure, 40 lbs. per square foot; iron strained to 10,000 lbs. per square inch (say 4.46 to18). Double line of

4900 tons. : 500 5400 GIRDER. : : : STRAIGHT : 715 feet main girder Total 500 feet viaduct

4340 tons. CANTILEVERS WITH CONNECTING SPAN. 1215 feet of cantilever ..

3000 tons. 500 : 715 feet of suspension girder and back chains STIFFENED SUSPENSION BRIDGE. : : : Viaduct

tons. 2800 500 715 feet of arch and shore abutments BRACED ARCH. Total viaduct

SUSPENSION BRIDGES.

Load in tons distributed, including weight Versed sine of curve or deflection in feet. Chord or span in feet.

Distance of any point from centre of curve. Height of chain at x above centre of chain. Strain on chain in centre in tons. of bridge.

Strain on ditto, at any point distant x from 11

Number of tension rods. centre of span.

Angle of tangent of chain with horizon at any point x. 11

$$h = \frac{\nabla \times x^2}{(\frac{1}{2}\mathbb{C})^2}.$$
 Tan $\mathbf{A} = \frac{4\mathbf{V}}{\mathbb{C}}$

$$s' = S\sqrt{\left(\frac{2h}{x}\right)^2 + 1} = S$$
, secant A.

$$V = \frac{C}{13}$$
 generally. $V = \sqrt{[(\frac{1}{4}l)^2 - (\frac{1}{4}C)^2] \times .75}$

Strain on any tension rod = x

 $l = \text{Length of chain} = 2\sqrt{(\frac{1}{2}\text{C})^2 + }$

GIRDERS SUSPENSION BRIDGES. STIFFENING STIFFENED Z STRESSES

Allan Cunningham, R.E. (Major

on Rankine's hypothesis that the effect distribute a partial uniform Weight of moving load in tons per foot run. over the chain. to 18 girder Calculations based of the stiffening load uniformly all

Variable abscissæ of any point Half span.

the respectively. Greatest bending moment under moving load, measured from A and A1 from the centre. Ditto measured

in

BENDING MOMENTS. DIAGRAM OF

= Greatest shearing force

DIAGRAM OF SHEARING FORCES

PROPORTIONS OF SUSPENSION

Saltash.	1.00	99.	1.87	.935	. 935	,	-		9.2
	fl		11		11		11		11
Berkley's.	1.00	.75	2.00	1.00	1.00	1	92.		1.5
	11	11	11	H	11		11		11
	M	V	B	Ö			田		F
	Width of link	Diameter of pin	Width of eye	Radius of back	" front	Distance apart of	centres for radii	C and D	Rading of shoulder

SUSPENSION BRIDGES OR GIRDERS. PINS IN RON

The bearing surface of pins should be so proporthat the working pressure will not exceed tioned

Diameter of pin in inches; minimum value of D = .75 W tons per square inch. 33 or 4

(Berkley), or .66 W (Fox) Thickness of link in inches Width of link in inches. ×

$$a = \text{Diameter of link in inches (if round).}$$

$$D = 1.8 t \sqrt{\frac{W}{t}}; \text{ or } = 1.1 \sqrt{\frac{4 d^3 - \frac{1}{2} d^2}{1.8 t^3}} = 1.8 t$$

than the minimum, it If D, as determined above, be less must be increased to the minimum. square links.

RAILWAYS.

FOR RAILWAYS CROSSING ROADS. PARLIAMENTARY REGULATIONS

Occupation road.	ft. in.	1 1	14 0	1 in 16
Public road.	ft. in.	15.0	12.0	1 in 20
Turnpike road.	ft. in. }35 0	}16 0	12.0	1 in 30
	er bridge,	2 feet of 10 feet	ing Height of	Inclination of fencing
	Clear width of under bridge, or approach	for a width of 12 feet Ditto, for a width of 10 feet	60	
	lear wid	for a vitto, for	Ditto, at sprin	Approaches. Ditto. Height

LIMITS OF DEVIATION.

the country, 100 yards, or 5 chains nearly. In towns, 10 yards each side of centre line.

DEVIATIONS OF LEVEL,

In towns, 2 feet. In the country, 5 feet.

DEVIATIONS OF GRADIENT.

Gradients flatter than 1 in 100, deviation 10 feet

per mile steeper.
Ditto, steeper, 3 feet per mile steeper.

DEVIATIONS OF CURVE.

Curves upwards of \(\frac{1}{2} \) a mile radius, may be sharpened to \(\frac{1}{2} \) mile radius. Curves upwards of

Curves of less than 2 mile radius may not be sharpened. SCALES FOR PLANS DEPOSITED UNDER STANDING ORDERS. Minimum scale for plans = 4 inches to the mile, and sections = 100 feet to the inch. Ditto, vertical ditto, for

= 6 chains to the inch. Minimum scale for enlarged plans of buildsections

= 40 feet to the inch. sections, and sections ings, &c. ... Minimum scale for cross-

of road alterations

BOARD OF TRADE REGULATIONS FOR RAILWAYS.

MAIN LINE.

Breaking weight of cast-iron girders to be made = permanent load × 3 + moving load × 6.

Wrought-iron bridges must not be strained to more than 5 tons per square inch when loaded with the heaviest engines.

Minimum distance of standing work from the

outer edge of rail at level of carriage steps.

= 3 feet 6 inches in England.

Minimum distance between lines of railways = 4 feet in Ireland. = 6 feet. Minimum width of platform = 6 feet; 12 feet at important stations.

STATIONS.

Minimum distance of column from edge of platform = 6 feet.

gradient recommended for stations =1 in 260.Steepest

ENGINEERING FORMIL'S.

BOARD OF TRADE REGULATIONS—continued, ANNAMED BANK FUNKTOHEN,

CARRIAGES

Minimum space per passenger = 20 cubic feet.
Minimum area of glass per passenger = 60 super-

Minimum width of seats = 15 inches.

Minimum breadth of seat per passenger = 18 in. Minimum number of lamps per carriage = 2.

WAY. PERMANENT

Joints of rails to be fished.

Chairs to be secured by iron spikes. Fang bolts to be used at the joints of flat-bottomed rails, and at some intermediate places.

STATIONS.

Signals to be weighted to fly to "danger" if wire breaks. Signals and distant signals in both directions. Ends of platforms to be ramped (not stepped).

Switch handles to be brought together.

not to be worked between lines of rail.

Facing points to be avoided.

where unavoidable, to be furnished with self-acting signal.

Sidings to be supplied with locked chock-block. Sidings on a gradient falling towards the line be provided with a blind siding.

Turn-tables to be a safe distance from adjacent ines.

Platforms of bridges protected from fire.

Walls and handrails to be provided on viaducts at stations. TRADE REGULATIONS-continued, STATIONS—continued.

Level-crossing gates to be capable of being closed across both road and railway.

Clocks visible at all stations.

protected Mile posts and gradient boards. and

dangerous places telegraph. Tunnels

Tunnels provided with man-holes.

PRECAUTIONS RECOMMENDED IN THE WORKING OF TRADE. RAILWAYS BY THE BOARD OF

in it at the tail of every train; this vehicle should be provided with a raised roof and extended sides, glazed to the front and back; and it should be the duty of the guard to keep a constant look-out from it along his train. There should be a break-vehicle with a guard

2. There should be means of intercommunication and the engine driver, and between the passengers between a guard at the tail of every passenger train

3. There should be at least one break-vehicle to every three or four carriages in a passenger train, a proportion which may be economically provided by the use of continuous breaks. On steep inclines, and with trains which travel at high speed, a larger and the servants of the company.

proportion of break-power is required.

4. The tires of all wheels should be so secured

to the rims of the wheels as to prevent them from

than six wheels, with a long wheel-base, with the centre of gravity in front of the driving wheels, and with the motions balanced. They should not flying open when they are fractured.
5. The engines employed with passenger trains should be of a steady description, with not less

be run tender first.

6. Records should be carefully kept of the work 10 performed by the wearing parts of the rolling stock, to afford prictical information in regard them, and to prevent them from being retained use longer than is desirable.

7. When a line is worked by telegraph, the telegraph luts should be commodious, and should be supplied with clocks, with record books, with a separate needle for signalling the trains on each line of rails, and with an extra nee lle for other necessary communications between the signalmen, handles should face the directions in which they work. The telegraph instruments and signal

When drovers or other persons are permitted to travel with goods or eattle trains, summers vehicles should be provided for their accommoda-

tion near the front of such trains.

Luggage should not be carried on the roofs of railway carriages.

REGULATIONS FOR CONSTRUCTION OF PRUSSIAN AND ROLLING STOCK, RAII.WAY RAILWAYS

PRUSSIAN RAILWAYS—continued.

30°	$\frac{25}{8}$ inches	1800 feet	" 009	14 "	600	1000	38 ,,	18 ", 18 18 18 18 18 18 18 18 18 18 18 18 18	9 ft. 5 in.	6 inches	
LEVEL CROSSINGS AND STATIONS. Winimum angle of crossing with rails 3 Writimum width of channel for flance	at crossings	Minimum portion of level at stations, flat districts	Ditto ditto, mountainous ditto Minimum distance, centre to centre of	Minimum radius of crossings and	turnouts Ditto for facing points at stations for	through trains	tables Winimm width of passenger plat-	forms	Minimum distance of pillars in sta- tions from rails	Minimum diameter of watercrane	Minimum height of fixed portion of

Engine pits, in depth, from 2 ft. 6 in. to 3 ft. 6 in. Minimum height of water-tanks above rails 17 ft. feet height of engine doorways bearns from LOCOMOTIVE SHEDS. width of ditto Minimum width of ditto Minimum height of the rails ... Minimum

watercrane above rails ...

THE THE PROPERTY OF THE PARTY O

PRUSSIAN RAILWAYS—continued.

1¹/₄ inch 12½ tons 16 miles feet 150 lbs. 2 to 21/2 lbs 10 feet 33 100 40 3 25 to : : Maximum wheel base of engines with : be adopted with Minimum play of flanges of wheels .. Minimum clear space between wheels Minimum diameter of driving wheel and Maximum pressure in boiler, per sq. in. Ditto ditto, for passenger engine... Ditto height of chimney above rails distance of rail, centre Minimum trailing wheel Speed of goods train, per hour ditto, from 2. CARRIAGE SHEDS. Minimum height of doorways .. : for express engine Minimum diameter of leading LOCOMOTIVES. Height of life guards above rails Proof pressure in testing boilers : curves under 1000 feet rad. Maximum breadth of engine curves 2000 feet radius .. : ditto .. Maximum load on one axle Minimum width of ditto Minimum width of tire Bogie frames should 1000 ditto 1500 ditto for goods engine ditto, Ditto ditto, Minimum Express centre Ditto, Ditto,

	ed.	3 feet			18 feet	15 "	•	5 ",	4 esplace	1 ", 4 ft. 5½ in.		1 inch	aggi e	4 inches	41 33	" "	25 33		0.4 v	6.ft. 5½ in.	8 inches	
101	PRUSSIAN RAILWAYS—continued,	Minimum diameter of tender wheels	Maximum breadth of tender Ditto height of tender above rails	GARRIAGES AND WAGGONS.	2000 feet radius	Ditto ditto, 1500 feet radius	on of cone of tires	Fig. 40A	Minimum play for flanges	Maximum ditto	Maximum projection of flange below	:	Minimum diameter of axle at nave	with 34 tons load per axle		Winimum diameter of axle journal	with 34 tons load, we with	Ditto ditto, 5 tons load	Lenoth of axle centre to centre of	journal	Maximum length of journal	Minimum ditto

inch feet

spring

steel

Length of carriage springs Maximum thickness of

plates

3 ft. 6 in.	4 inches	5 3 ft. 5 in.	5 ft. 9 in. 3 ft. 6 in.	14 inches	8 ft. 7 in.	7 leet 12 ft. 4 in.			4 ft. 8½ in.	4 ft. 10\frac{3}{4} in. 5.11 to 6.6	. 0	24 inches		26 feet	17	14 ,,	4th of weight	·R #	00	£
Length of waggon springs Maximum deflection of springs under	Minimum ditto ditto	Minimum ht. of break block above rail Height of centre of buffers above rails	Distance of centre of buffers apart Distance of side chains apart	:	Maximum Founded projection	Maximum height of carriages and waggons	FRENCH RAILWAYS.	(Perdonnet et Polonceau.)	Gauge	Distance of rails apart, centre to centre Distance between up and down line	Distance from rails to edge of ditch,	Width of ordinary ditch at top	:			ontal beams above rails heels—	.:	Average Average		0 2

TECHNICAL REPORT OF GERMAN RAILWAY UNION. WAY AND BRIDGES.

Nicking lower flange of steel rails generally condemned. plates substituted or check PERMANENT fish plates Angled

preaking, 6 to 7 millions; on gradients of 1 in 60 to 1 in 100, curves of 1600 feet, 4 millions; on gradients of 1 in 40 to 1 in 100, curves of 636 feet, 1 to 2 millions. Number of tons required for wear of one millimètre in steel rails: -On level lines with easy curves, 10 to 20 million on gradients of 1 in 120, easy curves and moderate nicking.

Steel rails should not be of lighter section than iron; heads might be deeper, because they will last until worn down.

Average diameter of rail height, 4.95 inches; depth of head, 1.25; breadth of foot, 4.15; width of web, .55; angle for fishbed, 16° to 19°. Maximum length of rails from 24 to 30 feet.

Cost of chloride of zinc is from to to a of the cost of Chloride of zinc most largely employed for impregnating sleepers, creosote next; use of sulphate of copper declining.

creosoting. Sleepers Sleepers Sleepers Clean, and slad slad slad ballast is the best for sleepers found be covered with clean ballast. Air-drylag of sleepers should be covered with clean ballast. before laying is desirable. Timber is more durable if felled in winter. Drying before pickling is desirable in the case of crossote, but not with chloride of zinc.

Hard wood sleepers should be bored for spikes, but not soft

Check nuts, spring washers, and other methods for preare not satisloose from working bolts fish venting wood.

Hartwick is a failure; Battig's system and Vauthaurin's longitudinal satisfactory; joint of sleepers and rails should be together. Cross ties, 2 per length of rail on straight, of an ourves. Cross sleepers, Vauthaurin's system, most used. Gibs and cotters abandoned for clips and hook boils. Denoty Library and Property, "Hilf" system, much used; Denoty is a failure: Battig's system and Vauthaurin's factory.

for double lines by use of longitudinal iron sleepers. Use of small plates between foot of rail and the sleepers Formation may be reduced to 10 feet for single lines and 22

with two holes on each side of the rail is the best to preserve REPORT OF GERMAN RAILWAY UNION-continued. gauge.

Suspended joint preferred to insistent joint.

by plunging preferred to other coatings for bridges. fronwork should be cleaned before painting first into acid and then into lime and water. paint

Expansion gear on bridges does not seem to be absolutely necessary.

Expansion gear was taken from a bridge 280 feet span without any evil result.

There is difficulty in obtaining steel of proper character for idges, but steel bridges erected have been satisfactory. bridges, but steel bridges erected have been conserved. Coned bolts are recommended to replace long rivets of

more than 1 inch diameter. Movable bridges should be so covered with distant signals,

that releasing the gear to open them should automatically show danger signals.

WORKS AT STATIONS.

The distance between rail and guard at switches or crosslngs should be 14 inch on straight and 14 on curves extending for about 3 feet opposite the point of the crossing, then increased to 24 in the length of another 3 feet, and then curved off.

There is no advantage in giving a cant of 1 in 20 to rails and switches.

No general arrangement is adopted for ensuring position of

tongue. Facing points should be locked on the switch switches.

It is objectionable to allow wheels to run on their flarges Steel crossings are considered superior to iron, through crossings.

Straight or curved switches are used in about the same proportions.

Iron switches are generally preferred to steel,

a double line of railway are objection-Facing points on Fish-bolt fastening at head of switch is used about equally with pivot.

It is preferable on single lines to pass over facing points on straight rather than curve.

Fast trains running through should be kept on the straight line.

REPORT OF GERMAN RAILWAY UNION-continued.

long gradients used on LOCOMOTIVES. chiefly engines are Six-coupled

Ratio of working cost does not differ much in 6 above 1 in 40 and 4-coupled on short gradients.

springs of connecting Higher pressure than 150 lbs. is undesirable. coupled engines, for ratio of tractive power.

Sliding axles recommended on 8-coupled engines of long lever, but advantages not marked. Majority of railways approve

and systems, " Nowotny" considered preferable to 4-wheeled bogies. wheel base and on shunting engines. " Bissel bogies,

system preferred to Bogies considered to give greater speed on straight greater safety on curves. "Nowotny" system preferre "Bissel.

Mean value of experiments gives resistance ·0039 to ·0044 of the load (8·74 to 9·85 lbs. per ton).

Pressure test of little value except as to tightness. Steel boilers are not generally recommended.

Steam dome is necessary where gradients are severe and

General opinion that molecular changes do not take place Gussets generally preferred for staying front of fire-box.

No satisfactory plan for obviating grooving and pitting. in boilers.

Water treated with lime and caustic soda in closed tanks Steel tubes not recommended.

bars Hot jets for washing out suggested. to crown Stay bolts generally preferred prevents scale.

Steel and iron fire-boxes not approved.

wrought-iron Average radius for corners of fire-box about 71 inches. Cast-iron fire-bars present no advantage; best for coke.

Use of phosphor bronze for bearings doubtful. Steel preferred for axles and tires.

Lubricants for flanges going round curves advisable; either In large cylinders it is advantageous to pass the piston rod grease, petroleum, or water.

Bessemer mild steel suitable for connecting and coupling through the end of the cylinder cover.

rods, cranks, &c.

REPORT OF GERMAN RAILWAY UNION-continued

Cotton packing filled with talc gives excellent results for stuffing boxes.

No smoke-consuming apparatus successful. Injectors which do not suck preferred.

Jet of water or steam not satisfactory for sanding. Archimedean screw sanding apparatus preferred. Le Chatelier's break satisfactory.

CARRIAGES AND WAGGONS,

The "Mansel" ring used with good results for fastening

Cracks in journal detected by cleaning carefully and then striking the end of the axle heavily with a hammer, when the oil lodged in the crack will start to the surface. Fracture of axles not due to the use of breaks.

breakages; "Westingsatisfactory; Wrought-iron spoke or disc wheels generally preferred. Mild cast steel considered the best material for tires. In continuous breaks the "Heberlein" are violent irregular and subject to frequent house," "Steel," or "Smith's

For break blocks, wood wears too rapidly and causes wheels to skid; wrought iron wears the tires too rapidly; cast iron beneficial for tires, but wears quickly; ordinary steel causes heating; cast steel has some advantages and is cheaper in tho "Achard" costly and troublesome.

over 4-wheeled Advantages of 6-wheeled doubtful.

Storied carriages used with success for special and local service.

Elastic packings between body and under-frame advantageous in diminishing noise.

For warming carriages, heating by steam is cheap and cause risk of fire; hot-water tins are imperfect and costly, Stoves and hot but often fails in connections, but safe.

For lighting carriages, stearine caudles cheapest, colza oil next; gas dearer than oil in proportion of 11 to 8; gas is

clean and gives the best light.

Arrangements for feeding and watering cattle en route not successful; preferable to have feeding stations provided at

REPORT OF GERMAN RAILWAY UNION-continued.

Materials for construction of waggons :-Open waggons entirely of iron, or iron with timber floors; covered waggons, the body of timber, the under-frames of iron.

Ordinary oil paint preferred for waggons.

WORKSHOPS.

Series of narrow roofs side by side of ridge or saw type pre-

ferred, with slate, tile, or galvanized iron.

For flooring, wood preferred. For repairing sheds and machine shops, flooring of blocks made from old sleepers; clay floors objectionable on account of dust.

but not Lighting of shops by electricity experimental, expected to supersede gas.

For heating tires reverberating furnaces preferred; ringshaped furnaces successful.

years. Timber for waggons should be seasoned for several Some desiccate and impregnate with chloride of zinc.

SERVICE OF WAY.

For watching permanent way, women are successfully employed, but for signalling they should only assist.

Turn-tables and traversers not well adapted for marshalling

preventing vehicles breaking loose at stations, putting down breaks and coupling vehicles together is recommended. whole trains.

SERVICE OF TRAINS.

Speed—36 miles per hour when there are no sharp curves and no great number of points to pass through; this holds good with facing points properly locked with signals.

For measuring power and speed of trains, no instruments conare completely successful.

In checking speed on important sections, electrical between instruments, for measuring the time points, answer. tact

fixed

For increasing adhesion in frost or fog, sanding the rails from sand-boxes on the engine is preferred. REPORT OF GERMAN RAILWAY UNION-continued

For ascending steep gradients, an auxiliary engine should placed behind the train.

A tire is considered unsafe as soon as the rounded part of

the flange is worn away. Examination in colour blindness is necessary for railsignals. passenger and guard is it is to watch coloured between Communication successful.

Sleeping carriages with one tier are preferred by passengers to those with two tiers.

SIGNALS.

Telegraph wires through tunnels should be well insulated,

and protected with casing.

For block system. "Siemens" is preferred; the Morse system with independent optical signals also recommended. Distant signal wires to be compensated.

In distant signals actuated by electricity, the induced current is preferred to a constant current. Signals are unnecessary on sidings, but should be retained

Signals recognized by form are better than those shown by on the main line.

INCREASE TO GAUGE ON SHARP CURVES.

Radius of curve in feet.

Increase to be given to gauge if in eighths of an inch. if in inches. . 33 11 11

in terms of radius R.

$$x = \frac{4500}{R}$$
, $y = \frac{562.5}{R}$, $z = \frac{46.875}{R}$.

The increase is in no case to exceed 4 inch.

No increase is to be made on curves the radius of which exceeds 1600 feet.

NOTES ON PERMANENT WAY (Von Weber and others.)

generally too sharp, and should be increased to 24 inches.* The radius of the shoulder of the The breaking weight, as well as the lateral resistance, is greater in flange-rails than in doubleheaded rails of equal proportion. Too great rigidity of rails entails increased wear on the rails and rolling stock. The radius of the top table is top table should be about '55 inch.

The angle of the fish-planes with the horizontal plane, when the rail is upright, should

about 302.

The web for rails from 60 to 75 !bs. per yard need not be more than ½ to ¾ inch. The resistance to lateral displacement is increased by the friction between the rails and the wheels.

Rails which do not break joint have only 70 per cent. of the lateral strength of those which break

BALLAST.

effect on the lateral resistance of the permanent The character of the ballast has no important

Filling ballast at the end of the sleepers does not practically increase the lateral resistance.

Short piles driven at the end of the sleepers do not increase to any appreciable extent the power of resistance to lateral force.

* Mr. Conybeare recommends a radius of 40 inches.

NOTES ON PERMANENT WAY-continued.

The force required to produce lateral displacethe weight by which sleepers are pressed on the ballast. ment is directly proportional to

If the ballast be not filled in at the ends of the sleepers, the elasticity of the rail will bring back sleepers to their original position, even after considerable displacement.

SPIKES.

Spikes driven for the first time have a greater holding power than those which have been driven and drawn several times.

Bellied spikes have only from .7 to .9 the adhesion of straight spikes of the same weight.

No advantage is gained by jagging or twisting spikes.

The points of spikes should be "chisel" form, The best proportion for the point of a spike is so as to displace the grain of the timber endways.

Straight spikes are preferable to those of taper length = twice its breadth.

SLEEPERS.

Too long a bearing of the rail on the sleepers

causes the sleepers to rock.

Distance of joint sleepers apart should be '6 of the distance apart of the intermediate sleepers.

Sound sleepers of fir are compressed '04 inch by a pressure of 80 or 100 lbs. per square inch, or by 60 lbs. after the sleeper has been subject to compression for some time. NOTES ON PERMANENT WAY-continued.

The action of the train increases the compressi-

The cellular tissue of soft sleepers is gradually bility of the timber.

destroyed by too great pressure.

Distribution of weight should be effected by

rather than by adopting a more rigid rail which destroys elasticity, or by increasing the number of sleepers which does not attain the desired end. Soft sleepers allow of canting under lateral increasing the bearing surface of plates and shoes,

pressure from compression of the timber. The sinking of well-bedded sleepers into

It is estimated that the relative value of fir to ground is insignificant.

oak is as 1 to 13.

is 300 lbs. per square inch of the surface of the spike in fir, and 600 lbs. in oak if lateral pressure is also used, the coefficient is reduced to 160 in The coefficient to resist the drawing of spikes is not used at the same time; if lateral pressure fir and 270 in oak.

Intermediate sleepers in fir should have two spikes on the outside of the rail, or a small plate

to connect the inside with the outside spikes.

Joint sleepers or sleepers on sharp curves should have shoes or bed-plates.

Holes for spikes should be bored quite through the sleepers.

The best size for holes is half the diameter of the spikes.

to lateral increase the resistance Bed-plates

pressure by 60 to 100 per cent.

The enlargement of the gauge to an extent of 4 or 3 inch is not beyond the limits of elasticity, and does not impair the tenacity of the spikes.

OF

		•		
Gauge. A.	B. C. D.	E. F. G.	H. I. J. K.	L. M. N. O. P.
Narrow 4 8. 5 3 Indian 5 6 Prussian 4 8.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 611 020 8 14 610 6——— 14 611 63010 15 915 9268	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

STANDARD FOR STEEL RAILS.

The dimensions, &c., marked on the diagram are common to all sections.

The dimensions that vary with each section are given in the following table:-

AN INCH. INCHES AND DECIMALS OF DIMENSIONS IN

	Menuly		=	Veigh	t of	Rail.	Lbe	. per	Weight of Rail. Lbs. per yard.	_;	
	Main	30	35	40	45	20	22	09	65	20	75
Height of rail Width of flange Thickness of flange Web. Width of head Depth of ditto Width of fish-bed	QUOUNT	3.0 2.80 2.24 3.4 3.4 3.60 5.0 5.0	3.0 (3.0) (3	3.20 .26 .36 .99 .99	3.40 3.40 .27 .37 1.90 1.15	3.60 .28 .38 .30 1.22	3.80 .29 .29 .39 .27 .10 .75	4.5 .30 .40 .40 .10 .80	4.20 .31 .41 .230 .330 .330 .341	2.40 2.40 1.36 0.90	20004500
								I		ı	

5 1 5 0 5 5 5 5 5

RULES FOR THE WEIGHT OF RAILS.

= Greatest load on one driving wheel in tons. Weight of rail in lbs. per yard.

steel = weight of rail in lbs, per yard. Weight of rail in lbs, per yard $\times 1.511 =$ weight of rails for a mile of single line of railway, in tons. Sectional area of rail in inches X 10 for iron or 10.4 for

MEMORANDA ON RAILS, &c.

Depth of rails, from 44 to 5 inches for first-class railway, Thickness of middle web, \$\frac{3}{8}\$ inch. Width of top table, \$2\frac{1}{2}\$ inches.

Radius of ditto, 12 to 40 inches.

Width of flange (if a flanged rail), 44 inches.

Cast-iron intermediate chairs, each 214 lbs. 100 fish bolts weigh about 1 cwt.

inches long. feet X 10 inches at the small end, weigh 1 ton, larch sleepers creosoted, joint Fifteen

PERMANENT WAY, INDIAN STATE RAILWAYS, 5 ft. 6 in. Gauge, Steel Flange Rails, 62 lbs. per yard.

ne.	ssorted	Total tons.	_	6.96	_		-	713.7	_	104	214.7
ingle Li	Rails in assorted lengths.	Tons.	300 83 02	40 9.07	4.87	3.05	09.	2.70	7.40	104	:
nile S	Ra	No.	300	40	22	380	1760 1520	7920 8600	3700	1850	11
for 1 r	ire- ils of	24 ft.	1	1	440	440	1760	7920	3520	1760	Total
Quantity required for I mile Single Line.	Actual require- ments for Rails of lengths.	30ft. 27 ft. 24 ft. No. Tons.	1	391.11	1	391	1564	1822	3520 3520 3700	1760 1760 1760 1850 104	
ntity r		30 ft.	352	1	1	352	1408	7744	3520	1760	
Quar	Weight, lbs. Allowance for waste	per cent.	1	1	I	10	20	10	NO	10	
	ght, Ibs.			258	496	18	875	2.	4.483	125.75	
	Weig		each	33	:	pair	each	2	2	2	
			30 ft. rails each	27 39	24 ,,	Fish plates pair	Fish bolts each	Spikes	Bearing }	Sleepers*	_

PERMANENT WAY, INDIAN STATE RAILWAYS, Mètre Gauge.

									n
Ī	ne.	rted	Total tons.	64.49		7.72	_	55.31	127.82
	single Li	Rails in assorted lengths.	Tons.	70	5.	2.60	2.46	2100 22:31	:
	1 mile 8	Bail	No.	388		11000	4200	pliff commits	Total .
o hor	ired for	nents gths.	18 ft.	11	580-22	2321 9283	4661	2031	T
, 41% IU	Quantity required for 1 mile Single Line.	Actual requirements for Rails of lengths.	21 ft.	502.86		2012 9054	4023	2012	
KAILS	Quan	Actual for Ra	24 ft.	443.88	444	1776	3995	1998	
ANCH	tue.	s per c	vollA degw	111	1 10	-	13	10	
STEEL FLANCH KAILS, 414 105, Pol June		Weight, Ibs.		327.11			1.31	29	
S		Weig		each	2 2 2	each	2 2	:	_
				24 ft. rails each 327.11	21 "	Fish bolts each	Bearing \	plates)	4000

Ordinary Crossing, Narrow Gauge. AND CROSSINGS. POINTS

12 to 15 feet 4 inches 14 inch 8 feet 1 in 10 75 feet 3 165 009 33 Total length from point to point Length from point to crossing Throw of ditto, at point Clearance of ditto ... Length of switches .. Length of guard rail Clearance of ditto, Angle of crossing Radius

Length over points. Radius of curves.

Distance between centres of lines of siding. D. R - (+ D)2. 2 2

Points and Crossings,

UNEQUAL RADII. TURN-OUTS OF

R and r = Radii of the curves respectively distance apart of the tracks. turn-out Length \mathcal{E}

$$y = \frac{rx}{R + r}$$

$$z = x - y$$

$$A = r - y; \quad a = \sqrt{y(r)}$$

$$B = R - z; \quad b = \sqrt{x/r}$$

$$L = a + b.$$

LINE RUNNING FROM STRAIGHT AND CROSSINGS. POINTS CURVE

Radius of curve. 8

Gauge of railway. Angle of crossing. ರ %

Length from tangent point of curve to the

centre of the crossing = $\sqrt{(R + x) G}$.

$$\sin a^{\circ} = \frac{L}{R}.$$

Versin. ao

of crossing = cotan. a° . Lead

20 In flat curves the width required for the clearance of the flange of the wheel, and for the width of the rail at the heel of the switch, render it necessary make some allowance in the theoretical length

POINTS AND CROSSINGS.

CURVE RUNNING FROM REVERSE CURVE,

R and r = Radii of the two curves respectively. = Gauge of the railway. t

Length from tangent point of curve to the centre of the crossing.

$$x = (R + r) - G.$$

 $z - y = \frac{R^2 - r^3}{x} = 0 \text{ if } R = r.$

$$y = \frac{x - (z - y)}{2} = \frac{x}{2} \text{ if R} = \frac{x}{2}$$

$$z = x - y$$
 = y if $R = I = \sqrt{r^2 - y^2}$ = $\sqrt{R^2 - z^2}$
Sin. $a^{\circ} = \frac{I}{z}$; Sin. $b^{\circ} = \frac{1}{z^2}$

= a° + b°. Angle of crossing

CURVE RUNNING FROM INSIDE OF CURVE. POINTS AND CROSSINGS.

 $a^{\circ} = \text{Angle of crossing}.$ ≥ || ×

y = R. R + (z - y).* If w be greater than r, then $(z-y) = \frac{w^2 - r^2}{}$

RADIUS FLEVA-(J. Price, 'Min. Inst. Civ. Eng.,' OF CURVE THE ANY FOR DETERMINING OUTER RAIL FOR COMBINATION PRACTICAL RULE ANX TION OF THE vol. xxxii.) STRAIGHT. OR FOR

Maximum velocity of trains in feet per second. 11

9

Gauge of the railway in feet.

The length in feet of a chord whose versed sine V will equal the required elevation.

0 = 1 V V G.

For 40 miles per hour the length of C = 68.7 feet for 5'6" gauge, or = 63.6 feet for 4'8½" gauge = approximately a Gunter's chain of 66 feet.

Make a chord = C and stretch it on the inner

side of the rails: the distance of the rails from it its middle will equal the proper elevation, no matter what the radius may be.

Diameter of carriage wheels in feet. Width of gauge in feet. Lateral play between flange and rail in ft. ELEVATION OF OUTER RAIL ON CURVES Elevation of outer rail in inches. [-782 V2 (NDW)]-4 PR Ratio of inclination of tire. Velocity in miles per hour. Radius of curve in feet.

NDR

 $\overline{1.25~\mathrm{R}} = \mathrm{Elevation}$ of outer rail in inches. FOR TRAINS. ANOTHER RULE. SPEED TABLE

														_	_	_	_	_	_	_	-
ė I	l ii	må S	57	77	707	00	97	15	13	77.	-			0 11						_	
o l	2	g,	٠,	٠,	٠,	٠,	-1	-	-	٠,										Ξ-	-
e L	li.	ori !	15	2 9	0 5	33	20 4	37	36	36	35	34	34	33	3	3	20 0	3	3	~	
ing in	H H	ä.			j ,	-	-	0	0	0	5	0	0	0	0	9	9	> °	2	_	_
0	-				0	6	5	00	00	18		- 1	-	16	9	9	5	2	15	15	
ğ	i.	2	20		77	_	-					-									
9 1	-44	8							0												_
pour	ber.	les	က္	4	13	9	-	00	49	20	27	25	23	54	22	99	22	28	59	9	
рээ	ds																				
-		mi	0	4	00	3	00	4	0	90	22	63	9	3	10	37	34	32	30	27	25
of perform-	mi.		ന	CI				-7	-			7	_	_	-	-	-	-	_	-	_
of		8	52	22		62	12	22	0	8	9	4	3	H	0	00	47	9	10	3	5
ing ju	mi.		Ξ	12	0,	_	4	•		58	5	5	23	5	5	4	4	4	4	4	4
Pi.	-401	E	-	Н	\vdash	-	-	Н	-	0	0	0	0	0	0	0	80	3.0	2 0	10	7
De	mi.	vi	37	36	34	33	32	31	30	29	28	27	26	23	25	2	23	2	ç,	67	52
:3	17	g	0			0	0	0			0			0				0	0	0	0
.nour.		1 33				_		-	_	_	01	00	-44	10	9	1-	00	6	0	-	67
paa	dg	miles	24	25	26	2	22	22	30	3	ŝ	က်	3	3	3	3	co	က	4	4	4
Poo		1 3																			
å	le.	tri.	0	0	3.4	30	40	0	27	0	3	1	_	4	3	2			20	4	3
of perform-	1 mile.	1 4				L			2			4	4	3	3	3	3	3	2	2	CI
orfe									00	30	00	00	0	52	9	0	4	0	2	21	00
ng n	mi.	00		_	-	45	22		4	3	-					4	3	6.3	64	64	
90,1	-401	1 8	9	10	4	03	63	000	2	2	2	2	2	-	31	1		51	2,1	-0	6
Time	li.	0	0	30	00	52	40	30	212	15	6	4	-	56	55	5	4	4	4	4	3
Įį.	1 #	l s				-			-	-	-	-	-	0	0	0	0	0	0	0	0
	ber h	1 9	2						_	2 ~	. ~	-	110	9	7	00	6	0	-	22	33
	ags Spe	1 :	VC.	9	. 1	α	, 0.	1,	1	-	-	-	1 -	-	-	-	-	2	2	2	64

Chords. Equal RANGING CURVES BY OFFSETS, in

AND ORDINATES RULES FOR THE VERSED SINES OF CURVES.

Diameter of circle D = A B-Versed sine V

Length of ordinate $0 = \sqrt{}$

Approximate Rule for Bending Rails. BENDING RAILS FOR CURVES. Versed sine of rail when bent. Radius of curve in feet. Length of rails in feet.

1.56 L2 V in inches= 0.13 L2 V in feet = -

FORMULÆ FOR SEITING OUT RAILWAY CURVES.

intersec-D=Distance of centre of curve from intersection T-Length of tangent. angle of C=Any chord. tion. x=Half

C in angle of A=Tangential minutes.

(cotang. x). S=R (cosine x). V=R (coversine x). (tan. x). 1719 C 5400 - xA=-

Number of chords in the curve =

Note - and A in the two preceding formulæ must be ex-Length of the curve = $\cdot 000582 \,\mathrm{R} \,(5400 - x)$. pressed in minutes.

Tangl. Rad. Tangl.	#1. OT
d. ve.	
Rad. Of Curve.	z mnes
Tangl. Angle. 42'-97 38 2 38 28 38 28 65 65	74 .55
Had. of Curve Chains. 6 60 8 60 8 60 8 60 8	20
Tangl. Angle. 1° 54·6 1 25·95 1 8·76 57·3	49.11
Rad. of Curve Chains.	38
OF ngle. ngle. 111. 111. 111.	
Rad. of T. Curve Chains. A 5° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8°	12

2 chain chords is double the angle for I chain chords. The angle for ‡ chain chords is ‡ the angle for I chain chords. Ouree of less than 20 chains radius should be set out in ‡ chain chords. Chree of rance than I mile radius may be set out in 2 chain chords. The angles in the above Table are in degrees, minutes, and decimals of Note, -The angle for

minutes.

	_		
	Angle of Deflec-	Chord 100 feet.	4 2 m. 2 10.24 2 10.24 1 5.11 0 32.55 0 26.04 0 21.70 0 18.70 0 18.70 0 13.02
	Angle	Chord 1 foot.	min. 2.604 1.302 0.651 0.434 0.326 0.260 0.217 0.187 0.187
st.)		Radiu	10 40 40 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r. (Hur	Angle of Deflec- tion.	Chord 100 feet.	0.57.30 0.49.11 0.42.97 0.38.20 0.31.25 0.21.49 0.21.49 0.17.19
100 FEET	Angle	Chord 1 foot.	min. 0.573 0.491 0.430 0.331 0.334 0.313 0.286 0.286 0.296 0.191
AND IU		nibasi runO	feet. 3000 3500 4500 5500 6000 7000 10000
A	Angle of Deffec- tion.	Chord 100 feet.	d. m. 55 43.777 4 46.48 4 5.55 3 34.86 3 36.26 2 23.24 1 54.59 1 25.94 1 25.94
	Angle	Chord I foot.	min. 3.438 2.865 2.1456 1.910 1.719 1.563 1.432 1.432 0.859
		ribaH ruiO	feet. 500 600 700 800 1000 1100 1200 2500

TERSECTION WHEN IT TO FIND THE POSITION

OF THE POINT OF IN. IS INACCESSIBLE.

is inaccessible, run any line EF, then therefore 180° -1800 081 When also

EF × sin. EF x sin. sin. 11 and side EC

sin. Z

FC =

CURVES RAILWAY

ANGLES ANGLE OF INTERSECTION. VALUE OF USEFUL RELATIVE

006 06 x + 000Half the angle of intersection, 11 8 + 006 006 006 Let x =

SETTING OUT WITH TWO THEODOLITES

intersection of If any two lines be set out from the starting points the curve having the sum of their tangential these two lines will be a point in the curve. the $30^{\circ} - x$; (E+ angles

points the whole curve may be set out if the country be sufficiently open of such By a series to allow of it.

RESISTANCE OF TRAINS.

Weight of vehicle without wheels and axles. Weight of wheels and axles.

Diameter of wheels on tread.

Diameter of journal. 0

Coefficient of axle friction.

say '018 with oil, or '035 with grease. Coefficient of rolling friction. say '001.

Resistance of vehicle.

 $\mathbf{R} = f(\mathbf{W} + w) + \left(\mathbf{W} \mathbf{F} \frac{a}{\mathbf{D}}\right)$

RESISTANCE OF CURVES.

('Trans. Inst. Civ. Eng., vol. xxxi., Morrison.)

Weight of vehicle. Radius of curve.

Distance of rails apart from tread to tread.

Length of rigid wheel base. Coefficient of friction of wheels on rail.

WF(D+L)Resistance due to curve = The coefficient F will vary according to weather from .1 to .27. RESISTANCE IN LIBS. PER TON OF TRAIN DUE TO CURVES OF DIFFERENT RADII, WITH DIFFERENT WHEEL BASES.

Rails dry. Gauge, 4 feet 81 inches.

-	1	
ns of	2000	1bs. 0·9 1·0 1·1 1·2
to Radir	2000	1bs. 2.53 2.53 3.1
Resistance per Ton due to Radius of Curve in feet.	1500	3.4 3.8 4.2
stance per	1000	1bs. 4·6 5·1 5·7 6·3
Resis	009	1bs. 7.5 8.5 9.5 10.5
Length of	Wheel Base.	feet. 10 12 14 16

METRE (3 feet 33 inches) Gauge.

BESISTANCE IN LBS. PER TON OF TRAIN DUE TO CURVES OF DIFFERENT RADII, WITH DIFFERENT LIENGTHS OF WHEEL BASE. (Rails dry.)

Length of Rigid	Resis	tance in whos	Resistance in Lbs. per Ton due to Curvos whose Radius in Feet is	r Ton d	ue to Cr	irves
Wheel Base.	300	009	1000	1500	2000	2000
feet.	lbs.	Ibs.	lbs.	lbs.	lbs.	lbs.
9	9.4	4.7	8.7	1.8	1.4	. 26
7	10.4	5.5	3.1	2.1	9.1	.62
8	11.4	2.4	3.4	2.3	1.7	69.
10	13.4	2.9	4.0	2.2	0.7	.81
12	15.4	2.2	4.6	3.1	2.3	.93

P = Mean pressure of steam in cylinders in D = Diameter of cylinder in inches.

Length of stroke in inches. lbs. per square inch.

Diameter of driving wheel in inches, Tractive force on rails in lbs.

D2 PL T=T

With Different Rates of Expansion.—Boiler pressure being assumed as 100 lbs. per square inch. EFFECTIVE PRESSURE OF STEAM ON PISTON,

Effective pressure,

Steam cut off at 2 of stroke = 90

" 2 " = 80

" 2 " = 69

" 3 " = 69

" 5 " = 50

TO FIND THE LOAD WHICH AN ENGINE WILL TAKE ON A GIVEN INCLINE. RULE

G = Resistance due to gravity on the streepest gradient in lbs. per ton (see "Resistance of Trains").

R = Resistance due to assumed velocity of train in lbs. per ton.

Tractive power of engine in lbs. as found above.

W = Weight of engine and tender in tons. L = Lond the engine can take in tons, including

the weight of the waggons, but not that of engine and tender.

$$L = \frac{T}{G + R} - W.$$

RESISTANCE OF TRAINS. (Harding's Formula.)

Velocity in miles per hour. Area of its frontage in square feet, Resistance in lbs. on a level. T $(6 + .33 \text{ V}) + 0025 \text{ V}^2 \text{ A}$. T $(6 + .067 \text{ V}) + .00002 \text{ V}^2 \text{ B}$. Its volume in cubic feet. Weight of train in tons, ABEE

Experiment has shown that at lower speeds the formula gives too high results.

SHOWING RESULTS OF EXPERIMENT COMPARED WITH FORMULA.

Resistance in Lbs.	By Experiment.	9.8	8.2	12.6	1 12.	12.6	23.4	22.5	25	23.4	22.2	30	33.7	32.9	41.7	52.6	
Resistanc	By Formula.	13.2 %	12.9	1.91	16.6	17.1	25.4	27.2	23.1	27.2	26.1	31.0	33.1	35.3	42.1	24.8	-
Weight in	Tons.	204	403	18	40\$	403	154	144	304	18	214	24	31\$	30	25	214	
Valocity Wiles	per Hour.	16	19	21	25	27	31	32	34	34	35	39	47	50	53	19	

RESISTANCE OF TRAINS,

Velocity of train, miles per hour. Approximate Rule.*

This is under the assumption that the weather is calm, the R = Resistance, lbs. per ton of train. R = 6 + .009 Vs.

and greatly increase the friction; wind, curves, or imperfecroad level, straight, and properly maintained, and the rolling Side winds press the flanges of the wheels against the rails of the road will very largely increase the resistance, stock in good order.

probably by 50 or 60 per cent.

40 20.4	50.1 56.6
35	50.1
20 25 30 9.6 11.6 14.1	60 65 38.4 44.0
25 11·6	98.4
	55
15 8.0	50 28.5
10	45 24.1
V, miles per hour R, lbs. per ton	V, miles per hour R, lbs. per ton
P 22	> M

D = Declivity of gradient, feet per mile. R = Resistance in lbs. per ton of train. RESISTANCE DUE TO GRAVITY. $R = 2240 \frac{1}{G}$. $D = 5280 \frac{1}{G}$. G = Rate of gradient.

60 88.0 37.3	500 10.6 4.5
55 96.0 40.7	400 13.2 5.6
50 105.6 44.8	300
45 1117·3 49·8	100 120 150 200 300 400 500 52°8 44°0 35°2 26°4 17°6 13°2 10°6 2°2°4 18°7 14°9 11°2 7°5 5°6 4°5
40 132 56·0	150 35.2 14.9
35 150.9 64.0	120 44.0 18.7
30 176 74·7	100 52.8 22.4
25 30 .35 40 45 50 55 60 21.2 176 150 9 132 117-3105-6 96-0 88-0 88-6 74-7 64-0 56-0 49-8 44-8 40-7 37-3	0.9
20 264 112	n 70 8
Gradient, 1 in D, feet per mile R, lbs. per ton	Gradient, 1 in D, feet per mile R, lbs. per ton

^{*} Modified, for oil lubrication; from D. K. Clark's formula $\frac{1}{171}$ +8 for lubrication by grease,

Adhesive Power of Locomotives.

Adhesion per ton of load on the driving wheels-When the rails are very dry, 600 lbs. per ton.

33 550 450 When the rails are very wet, In ordinary English weather,

33 33 300 In frosty or snowy weather, 200 In misty weather if the rails . are greasy ..

In coupled engines the adhesive force is due to the load on all wheels coupled to the driving wheels.

force of an engine on the rails, otherwise the wheels will slip. For loads on driving wheels, see The adhesive power must exceed the tractive helow.

DISTRIBUTION OF WEIGHT IN LOCOMOTIVES.

The average distribution of the weights of a six-wheeled locomotive on its wheels is-

ii Assuming the total weight of the engine working order to be 1:

)			Passenger		Goods
				Engines.		Engines
Load	on leading wheels	:	:	32	:	•34
	on driving wheels	.:		.48	:	.36
: :	" trailing wheels	:	١:	.20	:	•30
)			1		
	Total waight of angine 1:00	onoi	Da	1.00		1.00

11211

.. from 30 to 35 tons. 93 to 40 to 35 Passenger engines, 4 ft. 8½ in. gauge, Goods engines ... Metre gauge average ..

FORCE THAT MAY BE DEVELOPED IN A LOCOMOTIVE. TRACTIVE

S = Square feet of heating surface. V = Velocity in miles per hour.

T=Tractive force in lbs. = $374 \overline{\nabla}$. ROPE INCLINES.

Resistance on the level = say .006 at slow speeds. Weight of one train in tons (vehicles only). Weight of the load (passengers or goods) in tons Weight of the cable in tons (see "Ropes"). 10

Rate of inclination.

Velocity in miles per hour. Actual horse-power required, to which should be added H 18>

25 or 30 per cent. for contingencies, friction of rope, &c. HP = 6 V $\left[\frac{W+w+y}{m} + r\left(W+w+2y\right)\right]$ for single rope.

$$HP = 6 V \left[\frac{w+y}{x} + 2 r (W + w + y) \right] \text{ for double rope}$$

This formula is based on the assumption that the vehicles of the ascending train are balanced by those of the descending ("Tail end " system).

$$IP = 6 V \left[\frac{W + w + \frac{y}{2}}{x} + r(W + w + 4y) \right] \text{ for endless}$$

SAN PAULO RAILWAY INCLINE.

(*Min. Inst. Civ. Eng., vol. xxx.)

Four lifts, the longest 13 mile long; gradient, 1 in 9.75;

"Tail end "system. On the upper half of each lift, 3 rails are laid; but on the lower half, 2 rails forming a single line; in the clear, with self-acting switches at the lower end. The bank top of each lift is on a grade of 1 in 75, and 3 lines of half-way is a crossing siding, with 4 rails about 100 feet long rails 250 feet long are laid, the centre for down trains.

of curves 30 to 80 chains.

Ropes, steel wire (10 B.W.G.), 6 strand, 4 inches circumference, working load 4 to 4½ tons; life of rope about 2 years.

Pulleys, wrought from with cast core, 12 inches diameter,
5 to 7 yards apart on curves, 10 yards on straight.

Two engines, 26-inch cylinders, 5 feet stroke, 22 revolutions per minute, 30 lbs. boiler pressure.

Horizontal pulleys and winding drums 10 feet diameter. Special breaks to clip the rails. CONTINUOUS RAILWAY BREAKS.

Distance travelled before stopping. Velocity in feet per second. Mean retarding force. Weight of train.

Height corresponding to velocity V. Accumulated work. MH

; = .0155 W VZ. W V2 29 Gravity, say 32.2. -: F= 7.5 R = FD; $H = \frac{1}{2g}$ 0

4 per cent. of gross weight. 93 66 3.62 Train resistance 9 lbs. per ton, Friction of engine and tender, not reckoning curves, winds, Trains about 200 tons.

470 feet 7.62 or gradients ...

feet with sand. " without " 33 1100 1000 1870 Distance of stopping at 30 miles per hour 776 to 865. Retarding influences, average 33 09 00 33 2

without " with 675 814,, 1600 Tender and break van's break 2.36 per cent. 964 ,, 1017 ... Foot-tons per second

STEEL. IRON ON COEFFICIENT OF FRICTION, CAST

	20 Seconds.	111,18	2011111
Experiment	15 Seconds.	1110	1 1 99 1 1
From commencement of Experiment	10 Seconds.		
From comm	5 Seconds.	193	130
	0	.250 .242 .210	. 182 . 163 . 153 . 152 . 132
Velocity,	Miles per hour.	6.8 13.6 17	20.4 27.3 30.7 34.1 410.9

from .242 at 10 miles, to steel on blocks cast-iron By Galton's experiments with tires, coefficient of friction varied ** 16 at 50 miles per hour.

EXPERIMENTS. BREAK

(Boyal Commission features, 1877.)
A. Clarke and Webb; B. Smith's recurn; G. Westinghouse air; D. Clarke's hydraulic; E. Barier's hydraulic; F. Fay's; G. Steel Machines; H. Westing-house vacuum.

H	33	15.3	13	67	209	0.25	1		2.88	5.26	2.03	-	2044		2284	7*	1	
9	33.9 35.7 25.3 33.45	14.7 14.5 10.6 15.05	13	7	200	0.46	1		7.33	4.94	2.35		1640		2432	1	1	
1	25.3	9.01	13	-22	215 195	0.33	1		7.64 7.60	5.75	1		1580			1	1	1
H	35.7	14.5	13 13	67		1	1		1.64	6.47	1		1572 1580		1860	24	40	-
Ω,	33.9	14.7	13	ci	200	0.45	1		1	8.31	2.31		1		1448	1	. 1	1
0	35.7	14.5	13	. 2	207	1	1	Ţ.,	19.01	10.04 8.31 6.47 5.75	1.		1128		1200 1448 1860 2088	14	က	-
B	29.6	14.7	13	7	260	0.36	0.785	137	7.47	5.72	2.19		1612		2100	4	I	1
A	30.5 29.6	12.05 14.7	13	67	248	0.35	0.575 0.785	11	7.19 7.47	6.21	2.90		1540		1920	1	1	1
	Weight of engine	Do. tender, do. "	No. of carriages	Wairht of train	loaded tons	Friction of vehicles	Friction of engines	Retarding force, all breaks in percent-	age of gress load	Do. without sand	vans only	Distance of stop at	all breaks with	sand feet	Time required to	ě	Do. to take off "	The same of the sa

a train in one-third the In none of the systems Timo required to put on hand breaks = 3 seconds.
Approximately a good continuous break will stop
distance run when ordinary hand breaks are used.
seperimented upon could the atopping be applied.
The break pressure should be taken off the moment rest, in quet to avoid studies abooks.

too suddenly for safety. before the train comes to The difference in results is mainly owing to the rapidity with which break can be put on.

Wood and east iron do not appear to differ in shidding power. Distance in yards at which trains should be capable of being brought to 60 100 833 = velocity in miles per hon: 275 273 Distance in yards at which trains should rest on the level $= 0.11 \text{ V}_2$ when V = veloc 35 30 V, Miles per hour. Stop in yards

AXLES FOR RAILWAY CARRIAGES AND WAGGONS.

Diameter of journal in inches.

Weight on journal in tons. Length of journal in inches.

L = for carriages and waggons from 24 to 24 D. 3.14 S

AXLES OF CARRIAGES AND WAGGONS AND TENDERS. DIMENSIONS OF

4

4 4 4 10	
33	
क क क	
ကက်ိုတ	
42 12 12	
624	
ches	
: H :	
tons journal, es	
l load, eter of h, inch	
Whee Diame	

Minimum diameter to which journals may be turned down

Usual proportion of journal L × D per ton of load, from 83 to 94 square inches.

Distance which axles should run without repair, Axle tests 3 per 100.

AXLES. VICKERS' TESTS FOR STEEL

Straight axles should have an ultimate tensilo strength of not more than 23 tons per square inch, test can only be made by destroying the Crank axles should also have a The piece of steel cut out to shape the web is the best for A piece cut off and unhammered should ows until it is bent completely double maximum tensile strength of 23 tons. without showing any defect. testing. A piece cut bear blows until it tested axles. This

TIRES OF WHEELS.

Minimum thickness to which tire may be turned = t. Thickness of tire on tread in inches = T.

After carriage tires have been turned to the minimum for

carriages they may be used under goods waggons.

Mild steel tires should be guaranteed for 100,000 miles
with a penalty for all above 20 per cent, that fail under 150,000 miles.

VICKERS' TEST FOR STEEL TIRES.

The tire placed vertically on a solid bearing should bear a series of blows from the fall of a tup weighing I ton; 1st fall, 5 feet; 2nd, 10 feet; 3rd, 15 feet, to be continued until partial or complete failure; the tire in its vertical position to

A piece of the tire thus tested ought to bear a tensile strength of 47 tons per square inch; the drop test ensures the necessary yield 4th of its diameter before breaking. ensures burization and consequent durability. safety and the tensile strain

ALLOYS FOR CARRIAGE BEARINGS.

	Italian.	37.53.8	100
	French.	188	100
	English G.W.R.	22 67 11	100
ı		::::	: -
		Copper Tin Antimony	Total

Modulus of elasticity-for spring steel 16,000 tons.

Ultimate stress, tons per square inch = $E\dot{e} = 40$. Ultimate extension of fibre say = '0025.

Half length of spring from buckle in inches.

Breadth of plates in inches. Thickness of each plate in inches.

n = Number of plates.

W = Total load on spring in tons.

 $d = \text{Length of offset} = \frac{L}{n}$.

= Deflection of spring in inches per ton of load. Working deflection = v W. 3

= Radius of curve of camber = 2S = 200 6; approxi-13.3bt2n Et mately.

Shtan 31 Safe working load of spring in tons =

$$v = \frac{4 \text{ L}^3}{\text{E} b \, t^3 n} \; ; = \frac{\text{L}^3}{4000 \, b \, t^3 \, n} \; ; \; n = \frac{\text{LW}}{13 \cdot 3 \, b \, t^2} \; .$$
 Half span of spring from buckle = $\sqrt{(2r - V) \, \overline{V}}$.

TABLE OF WORKING CAMBER OF SPRINGS.

125
1124
100
874.2
opo 10
624 624
50
ins.
of plates,
Thickness Radius of

^{*} E varies according to the quality of the steel from 13,000 to 20,000

HELICAL AND VOLUTE SPRINGS.

Modulus of elasticity in tons.

Mean radius of spring in inches.

Diameter of spring steel if round in inches. Moment of inertia of section of spring.

Breadth of rectangular or square section in inches.

Depth of rectangular section in inches,

Deflection of spring in inches.

H

Modulus of torsion about 1/3 E. Number of revolutions of spring. Working load, tons. u

- for square steel. 4.72 53 - for round steel; = 3 D3 M

R3 W (b2 + d2) 6 # n T . b3 d3 for round steel; for rectangular steel, $\mathbb{R}^3 \mathbb{W} \ 12 \pi n$ for square; = 64 n. W R3 T De 6.67 b2 d2 R V 62 + d2 R3 W 2 # 18: 11 11

but they may be made to apply approximately to volute si rings. The deflection of volute springs is, however, not directly proportional heavy pres-The section of a volute spring should gradually h from the base to the apex. The offsets of the volute diminish from the base to the apex. The offsets of the volute spring should vary as the cube of the radius R. In conical springs, with constant cross sections of steel, the deflection equals from \(\frac{1}{2}\) to \(\frac{1}{2}\) that of a cylindrical spring whose radius equals that of the base of the cone. to the load, but increases somewhat slowly with These formulæ refer to helical springs, sure,

RAILWAY CARRIAGES.

Dimensions of ordinary narrow-gauge carriages:— Frame, 17 ft. 11 in. 100g × 6 ft. 8 in. wide. Body, 18 ft. long × 7 ft. 4 in. × 6 ft. 2 in. high. Computriments, each 6 ft. long. Sides and ends of under framing, 11 X 4.

laid diagonally. Transoms, 9×3 and 11×3 .

Framing of body, 3×24 and 24×24 . Flooring, two thicknesses of 4 boarding, laid of Boof, 4 thick on ribs 24×14 , 24. apart. Width of doors, 14, 11 in, \times 5 ff. 6 in, high, Seats, 14, 6 in, from floor.

Extreme length over buffers, 22 ft. Wheels, 3 ft. diameter, 9 ft. from centre to centre.

Journals, 6 ft. 4 in. apart.

WAGGONS ORDINARY NARROW-GAUGE

0 height of side. ft. in. ft. in. 16 olong, 2 0 b. 16 0 ... 4 6 16 0 ... 4 6 16 0 ... 5 6 9 16 0 ... 5 6 18 6 ... 4 6 6 wide, in. 020 Extreme length over buffers Cattle waggon, roofed over Covered goods waggon .. Open box waggon, body Coke waggon ... Coal waggon Break van

No. of Engines, Carriages, &c., for each 100 Miles of Railway. STOCK. ROLLING

Irelana.	13	00	9	22	22	17	25	12	94	6	6	223	49	228	330
England, Scotland, Ireland	23	28	4	22	34	32	22	11	132	13	11	200	980	81	1911
England.	24	32	00	. 49	37	48	43	20	148	20	Pro-	715	1094	95	1904
	Doggongor ongines	Tabachgar engines	Tool	number of engines	First class carriages	Second	Third	Composite and other carriages	Total number of carriages	Horse boxes	Carriage trucks	Goods waggons	Mineral and other waggons	Cattle waggons	Total waggons

WORKING EXPENSES OF RAILWAYS IN GREAT BRITAIN.

										2300 000000
Ireland.	128	147	2937 1005	3942	£ 65 199 112 61 18	455	£ 733 348	1081	d. 4.03 12.41 6.95 3.78 1.16	28.33
Scotland.	180	324	3558 4357	7915	£ 139 390 223 150 49	951	.£ 841 1205	2046	d. 4.24 11:71 6.70 4.39 1.55	28.59
England.	243	378	5,685 4,991	10,676	£ 231 565 400 113	1497	£ 1511 1575	3086	d. 5·12 12·76 9·05 4·24 2·61	33.78
	Number of trains per mile open, per annum— Passenger	Total	Mileage of trains per mile open, per annum—Passenger Goods	Total	Expenditure per mile open, per annum. Maintenance Locomotive and carriage Trafflo clarges. Miscellaneous Rates and duty.	Total	Receipts per mile open, per annum— Passengers	Total	Expenditure per train mile— Maintenance Locomotive and carriage dept. Traffic charges Miscellaneous Rates and taxes	Total

WORKING EXPENSES OF RAILWAYS. COMPARATIVE

								_			
Australia	I	1	500	31,000	1	1	73	1	1	1	
German.	1000	38	4.8	17,000	1	1	52	43	73	670	
French.	1200	43	2.2	25,000	1	3.9	44	1	1	1	
.nsibaI	1	26	1	12,000	10	13	42	53	77	220	T. Service and services
American	999	48	1	8000	230	12.5	54	1	1	1	-
,dairI	455	58	3 9	15,000	. 65	41	14	27	7.6	330	
Scotch.	126	58	2.6	28,000	139	4.2	46	22	132	1761	
English.	1497	34	2.9	39,000	231	13	848	64	148	1904	-
	Working expenses	Difto per train mile	1 per t		Maintenance per mile per annum £	Maintenanco per train mile in pence	Proportion of work- ing, expenses to receipts, per cent,	Number of locomo-	Number of passenger		

On the railways of Great Britain the proportion of the details of working expenses is as follows: 15 per cent. 11 Maintenance of way ..

14 38 26 11 Miscellaneous, including police, Locomotive and carriage departwatching, compensation : . Duty, rates, &c. .. Traffic charges .. ment

100 ... Total expenses

WORKING EXPENSES OF RAILWAYS IN GREAT BRITAIN—continued.

	England.	England, Scotland, Ireland,	Ireland.
Receipts per train mile— Passengers	d. 65.7 74.5	d. 58 66	d. 52.8 84
Average	69.3	62.35 67.6	9.19
A verage fare per mile— 1st class 2nd class 3rd class 3rd class	d. 1.47	d. 1.77 1.55 1.85	d. 1.8 1.35

NUMBER OF EMPLOYES PER MILE ON THE RATTURATE OF GERAM BRITAIN

	.13	.43	2.76	.17	. 92	2.94	4.65
NITO TIVE	:	icket)	olice,	: :	: :	·:	: : :
MAILWAIS OF CAPPAL DMIAIN.	:	Inspectors, station masters, ticket)	Switchmen, gatekeepers, police,	n, &c.	::	:	
30 30	:	ion ma	tekeep	foreme	emen	:	men, &c.
LWAID	Officers, &c	is, stat	en, ga	Draughtsmen, foremen, &c.	Drivers and firemen Platelayers	ES .	Guards, breaksmen, &c. Wiscellaneous
TVAT	Officers, Clerks	spectors, s	vitchmen, g	raught	Drivers and Platclayers	Labourers	uards,
	90	F	ú	A		14	402

12.24

Total ...

35

Number of stations per mile

RAILWAY ACCIDENTS.

Causes of Railway Accidents in Great Britain from 1854 to 1860, inclusive. (Brunlees.) 'Min. Inst. Civ. Eng.,' vol. xxi., p. 346.

	Per Cent.		11		£-0		9	9
The second second	No. of Accidents.	118	143	63	06	58 61 17	\$ 65 88 88 15 15 10 21 10 8 8 8 10 10 8 97	7.0
	Cause,	Permanent Way— Defective construction	Total	Rolling Stock— Defective construction Neglect	Total	'Management— Insufficient accommodation establishment Want of engine power	on between gua	Causes not ascertained

('Min. Inst. Civ. Eng.,' vols. xxv. and xxvii.) (R. Price Williams, RAILS. LIFE OF

	Life c	Life of Rails
Iron Rails,	In Number of Trains.	In Tons.
Great Northern Railway—Rising gradient 1 in 200	119,455 57,536 65,529 47,445 58,851 62,399 203,112	24,702,861 11,760,926 13,484,661 9,679,078 12,116,382 12,451,784 38,803,128
		Bear and the second

Value of 1 mile, allowing 569l. for old material = 1371l

24,000,000 = .0137 36,000,000 = .009. Cost per ton per mile with 12,000,000 = .027424,000,000 Tons.

(C. P. Sandberg.) TOWN. EXPERIMENTS AT CAMDEN

E.* N.	000 6,900,000 3,220,000 000 8,970,000 5,520,000	-
Х. Н.	3,680,000 4,140,000 3,220,000 6,900,000 5,060,000 5,290,000 5,060,000 8,970,000	
T.	3,680,000	
Mark of rail	::	
	tons tons	

top and bottom formed of No. 2 iron, Rails marked T,

remainder of puddle bars. same as T, but the pile for the top slab of puddle iron, without any No. 2 iron H,

hammered rolled after top slab made of puddle bars heat, and after the first

the same as H, but rolled after the first as well as the second heat. second heat. ΕÚ

any Pile composed of puddle bars, without top slab.

* Rails similar to those marked E were laid down on the Great Northern Railway, and had a life of 13,000,000 tons.

Life of Rolling Stock. (R. Price Williams.) ('Min. Inst. Civ. Eng.,' vol. xxx.)

Life i		Locomotive Valuation (Life 30 years).	Net Cost.	Number of Renewals in period of Life.	Cost in period of Life.
			£.		£.
10,000	1/2	India-rubber pipe	0.26	60	15.7
80,000	4	Painting	8.23	7-3	61.8
100,000	5	Brass tubes, steel ferrules, &c	162.24	6	973.4
120,000	6	Crank-axles, moulds, &c	51.22	5	256.1
140,000	7	Tires, pressure-gauges, buffer-plank spin-	156.88	42	672.3
200,000	10	Boiler, axle-boxes and caps, brasses, brass valves and siphons, fire-box shell ends, tube-plate and back fire-box, copper recess-	482*38	3	1447.1
300,000	15	Motion cylinders, reversing catch-slide blocks, blast-pipe, ash-pan, outside and inside	107.96	2	215.9
340,000	17	springs, spring links, spring pins, &c Lubricator, shackle, buffer-plank, chains	3.18	113	5.6
400,000	20	Clack-boxes, balls and clacks, feed-pipes, smoke-box door, &c.	17.45	117	26.2
600,000	30	Plain axles, wheels, outside cranks, balance-weights, slide-bur brackets and bars, distance-blocks, eccentric-rods and straps, reversing arm, lever and bracket, reversing-rod slaft, quadrant and collar, connecting-rods and straps, bolts, framing, &c. &c.	523.07	1	523.1
	10.8	rods and straps, bolts, framing, &c., &c	1512.87	£	4

LIFE OF ROLLING STOCK-continued.

-	Life in		1 2	er Valuation (total life taken	as 30 years)	Net Cost.	Number of Renewals during Life.	Cost in period of Life.
	10,000 60,000 100,000 200,000 300,000	3 5 10 15	Break-l Paintin Oak pie Axle-be wood Springs buffe Axles, plate draw breal	blocks, rose-packings, &c g, tires, bolts, and nuts ink oxes and caps, brasses l bottom and packing for s, buckles, spring pins, tir-blocks, springs, &c. wheel-centres, spring s, horn block-stays, bol bolts, coupling boxes, f k, valve-rods, &c., feed &c., &c.	and pins, &c., tanks railing buffers, links, frame- ts, angle-irons, oot-plates, &c.,	£. 0·4 39·9 1·3 8·0 10·9 214·6	60 10 6 3 2	£. 25.5 399.3 8.0 24.1 21.8 214.6
-	Mean Life Train Mi		Mean Life in Years.	Summary.	Average cost of Repairs per annum.	Net Cost	. period	et Cost in of longest 2. 30 years.
	216,28 238,16		10.814 11.908	Engine	£. 139·9 23·1	£. 1512·87 275·19	6	£. 97·2 93·3

Average train mileage per engine per year 20,000 LIFE OF ROLLING STOCK-continued, VALUE AT GROSS AFTER 30 YEARS, Engine, 3271.; tender, 631.; total, 3901.

AVERAGE OF 12 PRINCIPAL ENGLISH LINES

(ENGINE).

Train mileage per engine per annum, 18,272. Running expenses per train mile, 5d.56. No. of engines per mile worked, .78.

per engine per annum, 426l. Repairs and renewals per train mile, 3d.29.

Money life per engine, 10 years.

LOCOMOTIVE EXPENSES PER TRAIN MILE.

2.12 2.72 -Wages Coal Running expenses General charges

.23 .43 tallow Oil and Water

1.55 1.75 Materials.. Labour Repairs and renewalsTotal ... 9-2

33

REFAIRS AND RENEWALS OF CARRIAGE AND WAGGON STOCK.

	Street, or other Designation of the last o
Carriages.	w. Waggons.
Average cost per vehicle per annum £22. Per cent, per annum on cost 114 Cost per rem mile 0'683. Total life in years 18 Mean money life in years 84	£4 10s. 63 1.6 18 18
	-

TRACTION ON ROADS.

Resistance in lbs. per ton on Different Roads, exclusive of Gravity.

Stone framway) lbs. per ton.	33 ,, ,,	t to 67 "	0 lbs. ,,	210 ,, ,,
canway oads mized roads dy and gravelly ground	22	00	4	15	21
ranway oads mized roads dy and gravelly gro	:	:		:	nud
rannway mized roads dy and gravelly	:	:		:	gro
ramway oads mized roads dy and grav	:	:	:	:	relly
ramwa oads mized dy ar	ay	:	l roads	:	d grav
	annwa	oads	mized	;	dy an
Stone to Paved 1 Macada Gravel Soft san	Stone tr	Payed r	Macada	Gravel	Soft san

HORSES. TRACTIVE FORCE OF

62 83 104 33 Tractive force exerted by horse in lbs. ... = 166 125Rate in miles per hour =

PAVED ROADS.

Jo on 12 inches of or a layer gravel well punned, in 3 layers; hydraulic concrete, 8 inches thick. inch of sand Foundation, 1

Paving of granite, or trap blocks, 4 inches wide, inches deep, 12 inches long.

DIMENSIONS OF ROADS ADOPTED IN CENTRAL INDIA ('Roorkee Treatise,')

Class of Road.
1st. 2nd. 8rd.
feet, feet
Width of land in ordinary cases 108 80
78 62
30
Vidth between parapets of culverts 30 3
_
Vidth of metalling, moorum foundation 18
1

25 20
_

ROADS.

Ordinary English turnpike-roads, 30 feet wide, the centre 6 inches higher than the sides.

 $\frac{1}{2}$ inch below the centre, 2 inches 4 feet from the centre, 9 feet from the centre,

Footpaths 6 feet wide, inclined 1 inch towards 9 15 feet from the centre,

the road.

Road material: bottom layer, gravel, burnt clay, or chalk, 8 inches deep. Top layer, broken granite Side drains, 3 feet below the surface of the road. not larger than 12 inch cube, 6 inches deep.

Some use a 2½-inch zing to clear all angles of the cubes for bottom metal, and a 2-inch ring for

top metal.

Footpaths: fine gravel, or sifted quarry chippings, 3 inches thick.

Heaped on the side of the road ready for laying. GAUGING ROAD-METALLING.

gange L = Length of side of

B = Number of required per lin yard of road. $= 12\frac{1}{4} \sqrt{B}$. in inches. bushels

 $L = 17 \sqrt{C}$ when C =the number of "cubes"

A "cube" being = 100 cubic feet. per "line." A "line"

WEAR OF ROADS IN INDIA = 100 lineal feet. 33

is reckoned at 1 cubic yard of metal per mile for each cart that passes as a daily average over the road.

USEFUL MEMORANDA FOR HYDRAULIC CALCULATIONS.

10 lbs. = '16 cube ft. $6.24 \text{ gallons} = \text{say } 6\frac{1}{4}$ 222. = = .028 ton. 1 cubic foot of water .. = 62.425 lbs. ·03612 lb. cwt. cubic inch cube foot of water .. : gallon

.. = 1.8 cube foot = 11.2 gallons. gallons. I cwt. of water ..

.. .. = 35.9 cube feet = 224 gallons. 1 ton of water

Pressure in Ibs. per square inch. Head of water in feet.

Theoretical velocity in feet per second.

 $H = P \times 2.307$. Force of gravity. $= H \times .4335.$

 $\sqrt{2g} = 8.025$. Pressure per square foot = H 62.4. $= 32.2. \quad 2g = 64.4.$ $= \sqrt{2g \, \text{H}} = 8.025 \, \sqrt{\text{H}}.$ g = 32.2.

- = -0155.29 $\overline{2g} = \cdot 0155 \, \text{V}^2$.

SEA WATER.

Wt. of sea water=1.027 weight of fresh water. I cube foot of sea water = 64.11 lbs.

RAINFALL.

Inches of rainfall × 2,323,200 = cube feet per Inches of rainfall × 14½ = millions of gallons square mile.

* By sale of Gas Act of 1859 the weight of water was fixed per square mile.

at 62.321 lbs. per cubic foot.

DISCHARGE OF WATER FROM ORIFICES, SLUICES, &C.

the head of water to centre Quantity discharged in cubic feet Area of aperture in square feet, Coefficient for different orifices. See next page. Theoretical velocity due to water (from surface of Velocity of efflux. of orifice). ×

Values of K for Different Orifices.

Velocity in feet per second $= 8\cdot025\sqrt{H}$; in feet per minute $= 481\cdot5\sqrt{H}$.

Table of Theoretical Velocity of Water under Different Heads in Feet per Minute.

_	ADI											. 1
Head.	Feet.	0	1	2	3	4	5	6	7	8	9	Head. Feet.
During Pulman	20 30 40 50	2153·32 2637·27 3045·29 3404·73 3729·70 4028·52 4306·68	481·5 1596·94 2206·52 2680·90 3083·09 3438·58 3760·61 4057·17 4333·50 4593·22	2258·43 2723·80 3120·46 3472·14 3791·33 4085·67	833 · 97 1736 · 10 2309 · 18 2766 · 02 3157 · 39 3505 · 37 3821 · 81 4113 · 94 4386 · 66 4643 · 39	963·0 1801·63 2358·87 2807·63 3193·89 3538·30 3852·00 4142·01 4413·04 4668·34	1076 · 67 1864 · 85 2407 · 50 2848 · 60 3230 · 00 3570 · 90 3882 · 00 4169 · 93 4439 · 19 4693 · 04	1179 · 43 1926 · 00 2455 · 17 2889 · 00 3265 · 68 3603 · 21 3911 · 71 4197 · 62 4465 · 24 4717 · 74	1273 · 93 1985 · 27 2501 · 97 2928 · 87 3301 · 02 3635 · 23 3941 · 27 4225 · 16 4491 · 14 4742 · 25	1361 · 89 2042 · 81 2547 · 86 2968 · 16 3335 · 93 3667 · 01 3970 · 55 4252 · 51 4516 · 86 4766 · 61	1444·50 2098·81 2592·97 3006·97 3370·50 3698·45 3999·63 4279·67 4542·47 4790·88	0 10 20 30 40 50 60 70 80 90
Tong	Feet.	0	1	2	3	4	5	6	7	8	9	Head.
OF VICES II	Head.	100	200	300	400	500	600	700	800	900	1000	Head.
	0 25 50 75	5897 - 12	7222.50	8339 · 82 8680 · 39 9008 · 05 9324 · 20	9926.36	11032.56	11794 · 29 12037 · 50 12275 · 89 12509 · 76	12964 • 77	13830 • 03	14644 • 24	15415.51	0 25 50 75

F ENGINEERING FORMULA

Table of Pressure in LBS. Per Square Foot for Different Heads of Water.

-	Head. Feet.	0	1	2	3	4	5	6	7	8	9	Head. Feet.
TOOR	0	0	62.425	124.850	187.275	249.700	312.125					
4	10	624 • 25	686+675	749.100	811.525	873.950	936.375	998.800	1061 • 225	1123.650	1186.075	10
1	20	1248 * 50	1310.925	1373.350	1435 • 775	1498 • 200	1560.625	1623.050	1685 • 475	1747 . 900	1810 • 325	20
FOODER	30	1872.75	1935 • 175	1997 • 600	2060 • 025	2122.450	2184 . 875	2247 * 300	2309 - 725	2372.150	2434.575	30
1	40	2497.00	2559 • 425	2621.850	2684 • 275	2746-700	2809 • 125	2871 • 550	2933 • 975	2996.400	3058 825	40
2	50	3121.25	3183 - 675	3246 • 100	3308 • 525	3370.950	3433.375	3495 - 800	3558 • 225	3620 • 650	3683 • 075	50
=		3745 - 50	3807 • 925	3870 - 350	3932.775	3995 • 200	4057 - 625	4120.050	4182.475	4244 • 900	4307 • 325	60
OFF	70	4369.75	4432 • 175	4494 * 600	4557.025	4619 • 450	4681 . 875	4744 . 300	4806 - 725	4869.150	4931 . 575	70
MULESWORTH	80	4994.00	5056.425	5118 - 850	5181 . 275	5243 . 700	5306-125	5368 • 550	5430 . 975	5493.400	5555 825	80
12	90	5618 250	5680 - 675	5743 • 100	5805 • 525	5867 . 950	5930 - 375	5992.800	6055 225	6117 • 650	6180.075	90
MC					-			-				-
-	Head. Feet.	0	1	2	3	4	5	6	7	8	9	Head. Feet.

For other heads than those given, after the decimal point thus: pressure for 24 feet = 1498.2 lbs., for 2.4 = 149.82, for 24 = 149.82, for 24 = 149.82 lbs. per square foot.

TARLE OF PRESSURE OF WATER LRS PER SQUARE INCH.

ſ	it d			0	3	4	5	6	47	8	9	Head, Feet.
1	Head. Feet.	0	1	2	3	4	3	0		0	3	He
-	0	_	•4335	•8670	1.3005	1.7340	2.1675	2.6010	3.0345	3.4681	3.9016	0
	10	4.3351	4.7686	5.2021	5.6356	6.0691	6.5026	6.9361	7.3696	7.8031	8.2366	10
FURMOUZE	20	8.6701	9.1036	9.5372	9.9707	10.4042	10.8377	11.2712	11.7047	12.1382	12.5717	20
2	30	13.0052	13.4387	13.8722	14.3057	14.7392	15.1727	15.6063	16.0398	16.4733	16.9068	30
5	40	17.3403	17.7738	18.2073	18.6408	19.0743	19.5078	19.9413	20.3748	20.8083	21.2418	40
ENGINEERING	50	21.6754	22.1089	22.5424	22.9759	23.4094	23.8429	24.2764	24.7099	25.1434	25.5769	50
100	60	26.0104	26.4439	26.8774	27.3109	27.7444	28.1780	28.6114	29.0450	29.478	29.9120	60
	70	30.3455	30.7790	31.2125	31.6460	32.0795	32.5130	32.9465	33.3800	33.8135	34.2471	70
5	80	34.6806	35.1141	35.5476	35.9811	36.4146	36.8481	37.2816	37.7151	38.1486	38.5821	80
_	90	39.0156	39.4491	39.8826	40.3162	40.7497	41.1832	41.6167	42.0502	42.4837	42.9172	90
OF												-
	Head.	0	1	2	3	4	5	6	7	8	9	Head Feet.

For other heads than those given, alter the decimal point as necessary: for example, pressure per square inch due to 77 feet = 33·38 lbs. per square inch, for 7·7 = 3·338 lbs., for 770 = 333·8.

Orifice taken as 1.00. PROPOSITIONS OF NOZZLES.

Neck taken as 1.00. VENA PROPORTIONS OF Apprture taken as 1.00. THE

WATER ISSUING JET OF ORIFICE.* ATERAL DESCRIBED BY FROM PATH THEORETICAL

a good be that

H 18

UPWARDS. OBLIQUE JETS INCLINED

in feet per second. Velocity of efflux

Distance of jet in feet from horizontal line Angle of jet with horizon. at any point x.

$$y = x \tan A - 16 \left(\frac{x \operatorname{secant} A}{V} \right)^2$$
.

OBLIQUE JETS INCLINED DOWNWARDS.

path. The actual path may be assumed nearly as that for a velocity due to the head × .95 for Note. - These formulæ refer to the theoretical nozzles exceeding 100th of the head in diameter,

Coefficient varying with ratio of diameter of jet JETS. Diameter of jet. Head of water. Height of jet. VERTICAL to head. h = H K.

Values of K.

.25	
3500	
2800	TAO NE
1800	Dance on IV and we Montow
1500	
1000	117.0
.9.	-
300	Then
If H= D × 300 600 1000 1500 1800 2800 3500 46 F	AND DESCRIPTION OF THE PERSON

FORCE OF

Density of water = 62.4 in fresh; = 64.1 in salt water Gravity = say 32.4. 0

Resistance of a plane normal to the current, lbs. per Velocity of current, feet per second. 2

of a plane oblique to the current. square foot. Do. Do. 3 !!

and normal 93 33 to the plane. 7.1

= 1.8 v^2 for fresh water = 1.85 v^2 for salt " in direction normal to the current, Angle of obliquity." 1.86 D v2 11 r2 ==

2 sin a cos a $r_2 = \mathbb{R} \frac{1}{1 + \sin^2 \alpha}$ cosec. a + sin a 2 R water. -: 11= $1 + \sin^2 \alpha$ $2 \sin^2 \alpha$ 29

WATER IN MOTION PRESSURE OF

Right Angles to the Direction of (Fresh water.) Against a Plane Surface at Motion.

Pressure	lus, per sq. foot.	1708 1874 2048 2048 2420 2617 2823 3036 3256 3485
Velocity of Water.	Feet per second.	30.80 32.27 33.73 35.20 36.67 38.13 39.60 41.07 42.53 44.00
Velo	Miles per hour.	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Pressure	lbs. per sq. foot.	468-51 557-57 654-37 758-91 871-20 991-23 1119-01 1254-53 1397-79 1548-80
Velocity of Water.	Feet per second.	16.13 17.60 19.07 20.53 22.00 23.47 24.93 26.40 27.87 29.33
Velo	Miles per bour.	111 12 13 14 15 16 17 18 19 20
Pressure	lbs. per sq. foot.	3.87 115.49 34.85 61.95 96.80 139.39 247.81 313.63 387.20
Velocity of Water.	Feet per second.	1.47 2.93 4.40 5.87 7.33 8.80 10.27 11.73 13.20
Velo	Miles per hour.	100 8 4 2 9 5 1 0 1 0 1

GAUGING WATER.

Height of surface of water above sill in feet.

Velocity of water appreaching the sill Ditto if measured in inches.

feet per second.

214 $\sqrt{\mathbb{H}^3}$ if the stream above the sill is Cubic feet discharged over each foot width not in motion. of the sill per minute. 1/1/3 5.15 11 11

H2 if in motion. $+ .035 \text{ V}^2$ VH3 = 214

II

In gauging, the waste-board must have a thin or waste-board, to the level of the surface where it is not affected by the overfall. The height must be measured from the The waste-board must have a free overfall top of the sill, edge.

GAUGING WATER-continued.

TABLE OF DISCHARGE FROM EACH FOOT OF WIDTH OF SILL IN CUBE FEET PER MINUTE.

				Dec	Decimals of an Inch	f an In	ch.			
1. 0.	Ŧ.	-	ė,	00	₽.	20	9.	2.	8.	6.
ft, c,	c, ff.	1	c, ft,	c, ft.	411	c. ft.	c. ft.	des	Figure	- Aprel
0.0	\vdash		.46	.846	1.30	1.823	2.34	3.05	3.68	4.4
5.15 5.92			6.75	7.62	8.55	9.42	10.4	11.38	12.41	13.48
14.57 15.65	20		16.79		19.16	20.34	21.58	22.87	24.1	· **
26.78 28.12	8.1		29.56	30.9	32.14	33.78	35.28	36.77	38.16	39.22
41.2 42.74	2.2		44.29	45.78	47.48	49.13	50.73	52.53	54.07	55.62
7.585	1.6		60.92	62.83	64.53	66.33	68.59	10.07	71.89	73.9
75.70 77.56	÷		79.46	81.42	83.38	85.23	87.24	89.35	91.26	93.26
95.38 97.44	-1		99.54	9.101	103.6	105.8	6.201	109.9	112.1	
116.5 118.6	18		120.9	123.1	125.4	127.6	129.8	133.0	134.4	136.7
139 141.3			143.9	146	148.4	120.1	153.2	155.5	157.9	160.4
62.8 165.	.99	3	167.7	170.2	172.7	175.2	177.7	180.2	182.	185.3
.9 190.	.06	*#	193	195.6	198.2	200.8	203.4	206.1	208.7	211.4
214.1 216.	216.	1-	219.4	222.1	224.8	227.5	230.3	233	235.8	238.5

1	-	De	cımals	Decimals of a Foot	Foot.			
.	62	00	7.	.5	9.	Ļ.	8	6.
c, ft,	ರೆ	ರ	c. ft.	c. ft.	c. ft.	c. ft.	c. ff.	
976	946 980	317	357	168	432	472	515	560
65				845	896	. 70	1001	1057
116		1284	1335	1401	1465	1527	1585	1643
77	16 1840	1902	1973	2041	2107	2182	2247	2311
245	458 2531	2610	2681	2756	2838	2910	2987	3070
22	3222 3302	3883	3464	3541	3625	3712	3792	-1
4049	19 4132	4220	4305	4395	4483	4569	4658	4751
493	930 5022	5116	5210	5303	5397	5489	5583	5682
587	72 5970	1909	6165	6264	6364	6463	6563	6664
	-		7					

(Eytelwein.) DELIVERY OF WATER IN PIPES.

Diameter of pipe in inches. Head of water in feet.

Length of pipe in feet. Cubic feet of water discharged per minute.

$$W = 4.71 \sqrt{\frac{D^5 H}{L}}. D = 0.538 \sqrt{\frac{5 L W^2}{H}}$$

DELIVERY HAWKSLEY'S FORMULA FOR THE WATER IN PIPES.

Number of gallons delivered per hour. Length of pipe in yards. Head of water in feet.

H

Diameter of pipe in inches.

$$D = \frac{1}{15} \sqrt{\frac{G^2 L}{H}}$$
. $G = \sqrt{\frac{(15 D)^5 H}{L}}$

NEVILLE'S GENERAL FORMULA

 $v = 140 \sqrt{rs} - 11 \sqrt[3]{rs} = \text{velocity in fect per}$ second.

r being the hydraulic mean depth in feet and s the sine of the inclination, or the total fall divided

by the total length.

In cylindrical pipes, v multiplied by $47\cdot124\ d^3$, gives in cubic feet the discharge per minute, or by 293.7286 d² the supply in gallons per minute, d being the diameter of the pipe in feet.

For greater diameters than those given in the

the and Table will be the required velocity; or the corresponding supply multiplied by 32 will be the approximate supply in gallons per minute. Table divide the proposed diameter by 4, twice the velocity opposite to the quotient in

FLOW OF WATER IN PIPES.

Mean hydraulic depth in feet = Area + wet perimeter $= \frac{1}{4}$ for circular section of pipe. 11 11

S = Sine of slope =
$$\frac{H}{2}$$
.

 $a = \text{Velocity}$ in feet per second.

 $d = \text{Diameter of pipe in feet.}$
 $H = \text{Lead of water in feet.}$

Prony $v = 97 \cdot 06 \quad \sqrt{\text{K S}} = 0 \cdot 08$;

or $v = 99 \cdot 98 \quad \sqrt{\text{K S}} = 154.$

Eytelwein
$$v = 50 \sqrt{\frac{d \text{ H}}{L + 50 \text{ d}}}$$
;

"
$$v = 108 \sqrt{RS} - 0.13$$
.
Hawksley $v = 48 \sqrt{L + 54 d}$.

RS. $v = 140 \sqrt{RS - 113}$

v = C /RS; for value of C, see table. Darcy

Maximum value of C for very large pipes, 113:3.

Kutter
$$v = C \sqrt{R}$$
 S; where $\frac{0.0281}{181 + \frac{0.0281}{S}}$ C = $\frac{1.026}{1 + \frac{0.02}{A} \left(41.6 + \frac{0.0281}{S}\right)}$. Weisbach $h = \frac{1}{r} \left(.0036 + \frac{0.043}{\sqrt{v}}\right) \frac{v^2}{2g}$;

where h = bead necessary to overcome the friction in a pipe. and r = the mean radius of the pipe in feet; g = gravity = 32.2.

Darcy
$$h = \frac{02 \text{ L}}{d} \left(1 + \frac{1}{12 d} \right) \frac{v^2}{29}$$
.

可言	172			Head of	Water divide	ed by Lengt	h of Pipe.			es.
Second ng full Hurst.	ter of	7.0	1000	10	200	10	3	10	00	inches
Pipes flowing full, rs. (J. T. Hurst.)	Diameter Pipe in incl	Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute,	Diameter Pipe in inc
PIPES.—Table showing the Velocity in pply in Gallons per Minute, for Long from the Formula $v=140 \text{ Å}/v \text{ s}-11 \text{ Å}/v$	1 1 1 1 1 1 1 2 2 2 2 3 4 5 6 7 8 9 10 11 12 11 12 11 11 11 11 11 11 11 11 11	*173 *212 *278 *336 *388 *436 *481 *522 *600 *670 *798 *911 1.02 1.11 1.20 1.29 1.37 1.45 1.52 1.73	**05***.05***.09**	*278 *336 *436 *436 *522 *6000 *670 *738 *911 *1.02 *1.37 *1.52 *1.66 *1.79 *1.92 *2.04 *2.15 *2.26 *2.56	*08 *17 *50 1*07 1*91 3*08 4*60 6*51 11*62 18*66 39*23 69*79 11*66 166*07 234*11 316*87 415*34 530*42 663*07	*363 *436 *562 *670 *856 *938 *102 1*16 1*29 1*52 1*73 1*92 2*09 2*26 2*41 2*56 2*70 2*83 3*21	*10 *22 *64 1 *37 2 *45 3 *93 5 *86 8 *29 14 *76 23 *64 49 *63 88 *14 140 *83 209 *22 29 *27 398 *58 522 *08 666 *39 832 *63 4473 *2	*436 *522 *670 *798 *911 1.02 1.11 1.20 1.37 1.52 1.79 2.04 2.26 2.46 2.46 2.65 2.83 3.01 3.17 3.33 3.76	13 27 17 163 290 467 694 981 17 46 27 92 58 53 103 84 165 77 246 10 346 45 468 35 613 22 782 42 2772 29 1727 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
and the Su calculated	18 24 30	1.92 2.26 2.56	1267.5 2652.2 4698.8	2.83 3.33 3.76	1873·4 3909·2 6911·3	3·55 4·16 4·71	2347·2 4891·4 8638·9	4·16 4·88 5·51	2751·4 5727·8 10109·7	18 24 30

MOLESWORTH'S POCKET-BOOK

1	-2			Head of	Water divide	ed by Lengt	h of Pipe.			es.
	meter of in inches.	10	00	10	6 00	10	7	10	8	ter o
		Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Velocityin feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Diameter of Pipe in inches.
CYLINDRICAL PIPES—continued.	2 2 4 3 4 5 6 7 8 9 10 11 12 15 12 4	*502 *609 *770 *911 1 *04 1 *16 1 *27 1 *37 1 *56 1 *73 2 *04 2 *31 2 *56 2 *79 3 *01 3 *21 3 *40 3 *59 3 *76 4 *71 5 *51	*14 *31 *83 1.86 3.31 5.44 7.91 11.17 19.85 31.73 66.46 117.80 187.95 278.90 392.46 530.36 694.24 885.56 1105.8 1105.8 1105.6 646.36 64	*562 *670 *856 1.02 1.16 1.29 1.41 1.52 1.73 1.92 2.26 2.83 3.09 3.33 3.55 3.76 3.97 4.16 4.71 5.18	*16 *34 *98 *3-69 5-91 8*79 12-41 22-04 35-21 73-68 130-52 208-16 308-76 434-35 586-82 767-92 979-39 1222-9 3426-1 7145-4	.618 .736 .938 1.11 1.27 1.41 1.55 1.66 1.82 2.09 2.46 2.79 3.09 3.37 3.62 3.87 4.09 4.32 4.53 5.12 5.66 6.61	*18 *38 1 *08 2 *27 4 *0.1 6 *46 6 9 *68 13 *56 23 *30 38 *43 80 *36 142 *30 226 *84 335 *60 473 *09 639 *02 833 *58 1066 *1 1331 *8 2349 *8 3737 *0 7769 *1	·670 ·798 1·02 1·20 1·37 1·52 1·66 1·79 2·04 2·26 2·65 3·01 3·33 3·62 3·90 4·16 4·41 4·65 4·88 5·51 6·08	19 41 1:17 2:45 4:36 6:98 10:38 14:63 25:96 41:44 86:61 153:31 244:32 362:21 569:38 687:95 1147:2 1432:0 2527:4 4019:3	1 1 1 1 1 2 2 1 3 4 5 6 7 8 9 10 11 12 15 8 2 4
	20	6.22	11415.0	6.86	12601.3	7.50	13772.4	8.02	14720.4	30

257

continued.

CYLINDRICAL

20

I				Head of	Water divide	d by Lengt	h of Pipe.		-	of hea.	
	ter of inches.	T	0.0	. 1	500	ī	600	ī	00	free	
	in	Velocity in feet per second.	Change 1 m	Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Diameter of Pipe in inches	
CYLINDRICAL PIPES, continued,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.73 2.04 2.56 3.01 3.40 3.76 4.41 4.99 5.51 6.44 7.27 8.71 9.36 9.97 11.63 11.63 11.43 16.44 13.10 11.63 11.43 11.43 11.43	50 1·04 2·94 6·13 10·85 17·28 25·53 35·99 63·55 101·10 210·17 370·57 658·85 1022·0 1647·4 2152·0 2740·1 3416·1 5988·2 9598·2 9598·1 19754·1 34732·1	1.96 2.31 3.40 3.40 3.85 4.63 4.63 6.22 7.27 8.20 9.04 9.82 10.55 11.24 11.89 12.49 13.10 14.75 16.25 18.25 18.25	18 3-33 6-94 12-27 28-95 40-67 71-79 114-15 237-17 418-02 663-96 981-68 1377-3 1856-4 2424-5 3082-9 3338-9 6769-5 10738-1 22228-1	2·18 2·256 3·276 4·26 4·71 5·12 5·51 6·22 6·86 8·02 9·04 9·97 10·83 12·38 12·38 14·43 16·25 17·89 20·83	62 1 · 31 3 · 68 7 · 68 13 · 59 21 · 60 31 · 98 44 · 93 79 · 27 126 · 11 26 · 70 461 · 08 732 · 18 1082 · 4 1518 · 3 2046 · 2 2665 · 9 11526 · 3 24474 · 3 24474 · 3 3401 · 1	2·37 2·79 3·50 4·09 4·63 5·12 5·57 5·96 6·76 7·50 8·71 9·82 10·83 11·76 12·63 13·44 14·22 14·96 17·63 19·41 22·59 25·41	68 1 42 4 01. 8 34 14 77 23 50 34 79 48 87 86 18 137 72 2 84 34 500 86 795 20 1175 3 1648 4 2221 3 2900 4 4901 7 4601 1 8091 3 12830 1 26645 4 46642 4	114 114 22 34 56 7 8 9 10 112 118 24 30	The state of the s

*****		ma under the source	Marie Toronto	Head of	Water divide	d by Lengt	h of Pipe.	1 × 1 × 1 × 1 × 1	AND RESTRICTION AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COL	T) a	ı
1 5	meter of in inche	Т	8 00	I	80		io I	7.	10	for of	
A STATE		Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Diameter of Pipe in inches	
CTLINDRICAL PIFES—continued.	3 1 1 1 1 1 1 1 2 2 2 1 3 4 1 5 6 6 7 7 8 8 9 9 1 1 1 1 2 2 9	2.56 3.01 3.76 4.41 4.99 5.51 5.99 6.44 7.27 8.02 9.36 10.55 11.63 12.63 12.63 14.43 15.26 16.06 16.81	73 1;53 4;32 9;00 15;89 25;27 37;41 52;54 42;64 147;20 305;50 537;99 854;02 1262;1 1765;8 2384;8 3113;5 3962;7	2·74 3·21 4·01 4·71 5·32 5·87 6·38 6·86 7·74 9·97 11·24 12·38 13·44 14·43 16·25 17·89	79 1 · 64 4 · 60 9 · 60 16 · 94 26 · 95 39 · 59 56 · 01 98 · 73 156 · 85 326 · 41 572 · 99 909 · 42 1348 · 7 1884 · 3 2538 · 6 3314 · 2 4217 · 9	2*90 3*40 4*26 4*99 5*63 6*22 6*76 7*27 8*20 9*04 10*55 11*89 13*10 14*22 15*26 17*18 18*07	.83 1.36 4.89 10.17 17.95 28.54 42.23 59.29 104.50 165.99 344.32 608.13 959.72 1421.2 1992.7 2684.5 3504.5 4459.7	4·26 4·99 6·22 7·27 8·20 9·04 9·82 10·55 11·89 13·10 15·26 17·18 18·92 20·52 22·02 23·43 24·76 26·04 27·25	1 · 22 2 · 54 7 · 13 14 · 82 26 · 13. 4 · 50 6 · 03. 5 · 60 · 03. 5 · 60 · 03. 7 · 60 · 03. 86 · 08 151 · 53. 239 · 93. 498 · 17. 876 · 11 1389 · 3. 2051 · 3. 2874 · 7. 5051 · 3. 6425 · 9. 8004 · 7.	1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1	Control of the Contro
the same and the	15 18 24 30	18.92 20.83 24.24 27.25	8683·1 13766·8 28477·6 50029·4	20·13 22·16 25·79 28·99	9240·3 14648·5 30296·3 53218·5	21 · 28 23 · 43 27 · 25 30 · 63	9763·3 15484·0 32018·8 56238·9	30.63 33.70 39.17 44.0	14059 · 7 22273 · 1 46016 · 9 80770 · 7	15 18 24 30	

0	
9	
Ö	

Î	i	1			Head of	Water divide	d by Lengt	h of Pipe.			of .	
١		meter of in inches.	7	3.0		0	7	5		0	incl	
			Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute.	Diameter of Pipe in inches.	L
	CYLINDRICAL PIPES - continued.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5:32 6:22 7:74 9:04 10:19 11:24 12:20 13:10 14:75 16:25 18:92 21:28 23:43 23:43 25:41 27:25 28:99 30:63 32:20 33:70 37:87 41:65 48:38	1 · 52 3 · 17 8 · 89 18 · 44 32 · 48 51 · 57 76 · 21 106 · 64 188 · 42 298 · 28 617 · 47 1085 · 4 1720 · 4 25539 · 4 3557 · 6 4789 · 7 6246 · 9 7947 · 9 2989 · 9 27524 · 2 27524 · 2 256839 · 1	6·22 7·27 9·01 10·55 1·89 13·10 14·22 15·26 17·18 18·92 22·12 24·76 27·25 31·67 33·70 35·60 37·41 39·17 44·0 48·38 56·18	1.78 3.71 10.37 21.52 37.88 59.98 88.82 124.54 219.03 347.32 718.66 1262.8 2001.2 2953.2 4134.9 5566.3 7262.3 7262.3 9234.4 11504.2 20192.7 31972.0 66605.2	14.75 16.01 17.18 19.33 21.28	2 · 01 4 · 18 11 · 69 24 · 25 42 · 67 67 · 70 99 · 99 110 · 18 2.16 · 46 390 · 73 808 · 21 14419 · 3 2248 · 9 3319 · 2 4647 · 9 6256 · 8 8161 · 0 10365 · 4 12923 · 0 22679 · 2 35903 · 4 74402 · 4 129971	17.63 18.92 21.28 23.43 25.25 30.63 33.70 36.53 39.17 41.65 44.00 46.24 48.38 54.33 59.72 69.32	2 · 22 4 · 61 12 · 89 26 · 66 47 · 01 74 · 57 7 · 110 · 14 154 · 13 4 30 · 11 824 · 14 156 · 7 247 · 24 3 · 365 · 1 5 · 13 · 0 6881 · 1 897 · 4 · 3 11411 · 6 14209 · 8 24932 · 9 38465 · 9 81442 · 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STATISTICS OF STREET
	_	30	54.33	99731.6	63.07	115785 -	1-10.00	120011	11 00	1222020		1

the same of the contract of page that the contract of the cont

261

ſ	, mi	for all	A formation	Head of	Water divide	ed by Lengt	h of Pipe.	-		of hes.	
19 9	er of	22 3	7 10	9	0		0 01	11	1	inch	ı
	Diameter of Pipe in inches	Velocity in feet per second.	Supply in gallons per minute.	Velocity in feet per second.	Supply in gallons per minute	Velocity in feet per second.	Supply in gallous per minute.	Velocity in feet per second.	Supply in gallons per minute.	Diameter of Pipe in inches.	
CYLINDRICAL PIPES—continued.	2 2 1 3 4 5 6 6 7 8 9 10 11 12 15 15 18 24	8·42 9·82 12·20 14·22 16·01 17·63 20·752 23·08 25·41 29·55 33·21 36·53 39·59 42·44 45·13 47·67 50·10 52·40 58·85 64·52 75·07	2 · 41 5 · 01 14 · 00 29 · 00 51 · 02 80 · 91 119 · 48 107 · 45 294 · 294 964 · 31 1692 · 6 2682 · 4 3957 · 0 55.40 · 9 7.456 · 4 9721 · 4 12364 · 4 12364 · 4 12364 · 4 12364 · 4 12364 · 4 8820 · 4 · 4 8820 · 4 · 8	15:26 17:18:92 20:52 22:02 24:76 27:25:31:67 35:60 39:17 42:44 45:50 48:33 51:10 53:70 66:18 63:07 69:32 80:44	2-59 5-34 15-00 31-14 54-76 86-83 128-21 179-67 315-71 500-29 1033-7 1815-6 2×75-1 4212-3 5944-0 7993-0 10423-5 13252-4 13252-4 45811-5	13:93 16:25 18:28 20:13 21:84 23:48 26:34 28:99 33:70 37:87 41:65 45:13 48:33 51:44 54:33 57:08 59:72 67:04 73:67 73:67	2·76 5·73 15·93 33·14 58·23 92·40 136·42 191·16 335·66 532·18 1099·9 1931·1 3.58·2 4510·7 6315·4 4849·2 11081·3 14088·5 117540·4 3076·7 48690·4 109433·1	17·18 19·33 21·28 23·08 24·76 30·63 35·60 40·01 44·00 47·67 51·10 51·10 51·33 57·33 60·29 63·07 70·80 77·80 90·26	2 · 92 6 · 06 16 · 92 35 · 04 61 · 61 97 · 68 144 · 20 202 · 05 354 · 95 562 · 22 1162 · 0 2040 · 2 3230 · 8 4764 · 9 6671 · 1 8975 · 8 41704 · 2 14880 · 0 18525 · 6 32492 · 7 106652 · 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A STATE OF THE STA
	30	84.25	154668	90.26	165708	95.92	176090	101.26	1200002	-	1

BENDS. FRICTION OF KNEES AND

Angle of bend or knee with forward line of direction.

Velocity of water in feet per second.

Radius of bore of pipe (or } diameter Radius of centre line of bend.

Coefficient for curvature of bends Coefficient for angles of knees.

Head of water in feet necessary to overcome 11

the friction of the bend or knee.

different follows for as = .0122 of The value or knees, angles:

	1200
	1000
-	900
	800
	.364
	•139
-	200
	A° = K

180 $= .0155 \text{ V}^2$ For bends, H

Values of L with various ratios of the radius of bend to radius of bore :--

$\label{eq:whom_rel} \text{When } \frac{r}{R} = \ \cdot 1 \ \cdot 2 \ \cdot 3 \ \cdot 3 \ \cdot 4 \ \cdot 5 \ \cdot 6 \ \cdot 6 \ \cdot 7 \ \cdot 8 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \ \cdot 9 \ \cdot 9 \ \cdot 9 \ \cdot 1 \ \cdot 9 \$		
6 44	1.0	3.5
6 44	6	2.3
6 44	œ -	1.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F.	1.01
$\begin{tabular}{ll} When $\frac{r}{R} = & 1 & \cdot 2 & \cdot 3 & \cdot 4 & \cdot 5 \\ \hline In oriental r section L & 134 & 138 & 158 & 206 & 294 \\ \hline In rectangular (L) & 124 & 136 & 18 & 25 & \cdot 4 \\ \hline \end{tabular}$	9.	-44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	-294
When $\frac{r}{R} = -1$.2 ·3 In circular section L ·191 ·198 ·168 In rectangular (L ·124 ·135 ·18	4.	-206
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	63	.158
When $\frac{r}{R} = -1$. In circular section L -131 In rectangular (L -124	.2	-138
When F = In circular section L In rectangular (L	-	131
When In eircular section	11	n P
Wh.	en F	ar (
In circul In rectar	МЪ	ar s
In eir In re	33	ctan
I di	145	rei
	15	In

RISE OF WATER CAUSED OVERFAL water in cubic feet per second over the Quantity of

top of the weir

sove top of weir in a evel of

approximately. 1.25 as a rough appreximation.

PEPTH OF THE WATER CUSHION FOR

d = Depth of fall fromsurface to surwater)epth

Velocity of water at surface in ins. per second. OF RIVERS. in sluggish rivers. RIVERS, &c. VELOCITIES AND BOTTOM NAVIGABLE Velocity at bottom = (V Mean velocity .. = SURFACE

Velocity of river previous to obstruction in OBSTRUCTIONS IN RIVERS.

A = Sectional area of river unobstructed in feet. R = Rise of water caused by the obstruction in ft. at obstruction in ft. feet per second.

STONED BY OBSTRUCTIONS. $R = \left(\frac{V}{58 \cdot 6} + 0.05\right) \left(\left(\frac{A}{a}\right)^2 - 1\right).$

with	Marie	01	6.63 11.70 20.15 32.00 47.18 65.75
- Consultant	ombaren	01	1.60 2.83 4.88 7.75 111.43 15.93
	uction of	10	.67 1.19 2.05 3.27 4.81 6.71
CONTRACTOR	of Ohstr	10	.35 .62 1.07 1.70 2.50 3.48
LER OC	en Amount of Ohst Sectional Area of F	100	.35 .35 .61 .97 1.43
OF WALER	wh	101	
KISE	Itise in Feet	200	
LE OF	Mil.		.01 .03 .04 .07 .11
TABLE	Velo	eity.	1222400

Velocity caused by any obstruction

TABLE OF PROPORTIONS OF CHANNELS IN TERMS OF THEIR ARRA, A. (P = Wetfed perimeter.)

1	Section 2	The second	The same of		-
Angle of Stope a.	Slope.	Depth.	Top.	Bottom.	PA/A.
006	Vertical.	·707 ✓ A	1.414 1	Vertical .707 VA 1.414 VA 1.414 VA 2.828	2.828
.: 600	.577 to 1	.76 VA	.577 to 1 .76 VA 1.755 VA	A 778:	2.632
450	1 to 1 .74	.74 VA	VA 2.092 VA	* 1613 VA 2:704	2:704
36 52'	13 to 1	-707 VA	113 to 1 -707 VA 2.537 VA	10	2.818
300	1.73 to 1	·664 NA	1.73 to 1 .664 VA 2.656 VA		3.012
260 34		.636 NA	.636 VA 2.844 VA	. 3 NA	3.144
Semi- circle.		. 798 √ A	798 VA 1.596 VA	:	2.201
-				_	

KUTTER'S FORMULA FOR DISCHARGE OF WATER IN CHANNELS.

Coefficient of mean velocity.

11 2

Mean velocity, feet per second. Mean hydraulic radius. Sine of inclination of water surface or fall in a length of 1. a, r, and m = Constants. a = 41.6; r = 1.811; m = .00281n = Coefficient dependent on the lining of the channel.

$$=\frac{a+r+m}{1+(a+\frac{n}{8})}; v=C\sqrt{RS},$$

n=1009 for well-planed timber. n=102 for canals, fine gravel. = 010 for cement plaster. ashlar and brick-= 012 for unplaned timber. plaster.

= .03 for rivers in moderate in bad = .025 for rivers in perfect rivers order.* order. = .035 for order.

* evergrown and strewed with stones or detritus

= .017 for rubble.

Work.

(Bazin.) DISCHARGE OF CHANNELS.

Hall of water surface in any distance divided by that Mean hydraulic depth in feet,

distance.

Maximum surface velocity in feet per second.
 Mean velocity in feet per second.
 Coefficient—depending upon character of bed, per coefficient of discharge.

 $1 \div 0000045 \left(10.16 + \frac{1}{r}\right)$ for fine plaster sides and hed. for cut stone or 1 + .000013 (4.354 brickwork, ... K2 = 1

- rubble masonry. 1 + .00000 (1.219 + Distill !

 \div . 00035 $\left(.2438 + \frac{1}{r}\right)$ earth.

S. DAL T 4 11, 800 F. V C=K+ 25.3

7.115	.20. 1117 1131 11147 98 85 84 .85 .82.
30	15 147 130 114 96 .85 .85
.0.	110 130 112 91 85 84 82 78
exceeds 20	8 111 130 111 88 88 85 84 81
when r ex	6 11.7 11.0 11.0 11.0 11.0 11.0 11.0 11.0
Cowb	4 1128 1128 1106 83 83 83 81 175
18 =	2 1124 124 128 83 83 17
W.K.	1 1118 1118 1118 1118 1118 1118 1118 11
A	- AWAWACCOCO

DETERMINATION OF MEAN VELOCITY OF WAFER IN CANAIS.

mean velocity of the vertical plane in which it moves. The didness is a hollow eyindrical the of sheet tin, about 1 inch diameter, loaded with rod iron at the bottom, so that the top projects 2 or 3 inches above the surface of the water; the projects 2 or 3 inches above the surface of the water; the Major Cunningham has established by experiment that the actual velocity of a floating thin vertical red reaching from the surface nearly to the bed, is very nearly equal to the whole is hermetically sealed and painted. RLOW OF RIVERS, &c.

FORMULÆ DEDUCED FROM EXPERIMENTS ON THE MISSISSIPPI.

the coilles in Lat. A = Area of cross-section.
P = Length of wetted perimeter. = Width of river at surface of water.

Ark of signe to copye R = Mean radius = P + W. A

D = Hydraulic mean depth =

TAME ARE

DATES promise the contract of s — supe or comment, or length

V = Mean velocity. s = Slope of channel; or fall

for a channel with rectangular cross-section. $V = \left[\sqrt{.0064 \, \text{K} + (195 \, \text{R} \, \sqrt{s})^{\frac{1}{4}} - .08 \, \sqrt{\,\text{K}} \right]^{2}}$

· 0081 K + (225 R \ s) + - · 09 \ K for a river channel.

for rivers whose mean radius exceeds 12 or V = 1 225 R A/s - . 0388

FLOOD DISCHARGE OF RIVERS IN INDIA,

(Colonel Dickens' formula.) Bengal.

D = Maximum flood discharge in cube feet per second.
L = Length of river miles.

M = Square miles of drainage area. D = 825 M4 ...

In Madras, $D = \frac{1300 \text{ M}}{\sqrt[3]{113}}$, (Benge) = $C \sqrt[3]{M^2}$; (Ryves).

C=450 within 15 miles of the sea; = 562.5 between 15 and 100 miles; = 675 for limited areas near hills. DISCHARGE OF WATER IN OPEN CHANNELS.

Mean hydraulic depth = area + wet peri-Mean velocity in feet per second.

Slope or length of channel to fall of 1. (See Table below.) meter. 11

Area of channel. Coefficient.

Quantity of water delivered per second.

KD

The second second	Values of K	Values of K for Velocities
Description of Channel.	Less than 4 feet per second.	Les than 4 feet More than 4 feet per second.
Brickwork	8800 (7200 6400 5300	8500 6800 5900 4700

that it may be practically neglected, and K assumed = from 8500 to 9000. In very large channels, rivers, &c., the descripthe channel affects the result so slightly tion of

VARIABLE PRESSURE. EFFLUX OF WATER UNDER

H = Head of water in feet.

= Effective mean velocity of efflux in cubic feet per second.

= Horizontal area of vessel in feet. Time of discharge in seconds.

Area of discharging orifice in feet. Coefficient for orifice.

$$V = 4aK\sqrt{H}$$
. $T = \frac{AH}{4aK\sqrt{H}}$

THE STREET, STREET, S.

+ wetted perimeter. S = Sine of slope.

v = Velocity in feet per second.

Young's coefficient, v = 84'3 × R S, Leshe for small streams. R = Mean hydraulic depth in feet = Area of cross-section Comparison of Formulæ. FLOW OF WATER IN CHANNELS.

v = 68.8 N RS; que 1

Prony, v=103 V RS-0.236; Welsbach, v=99.92 V RS-0154; Girard, v = 102.8 VES - 1.64; St. Venant, v = 106 2/ (RS)11; Leslie for large streams, D'Aubisson, Downing, $v = 100 \sqrt{RS}$; Eytelwein, $v = 93.4 \sqrt{RS}$; Beardmore, $v = 94.2 \sqrt{RS}$;

Ellet, $v = 0.64 \times dh + .01 dh$, where d = the maximum depth of the stream and h = fall of water per mile;

Neville, v=93 NRS - .02; Provis, v=60 NRS + 120 N(RS)2; 2.86 30 Kutter, $v = C \checkmark RS$ (see Kutter's formula for value of C); Humphreys and Abbott, v = C ✓ RS, where C= Bazin, v = C √ R S (see Bazin's ", ", ",

and x varies from '85 to '97;

Dubuat,
$$v = \frac{88 \cdot 51 \left(\sqrt{R} - \cdot 03\right)}{7 \sqrt{\frac{1}{5} - \text{hyp. log.}}} - \cdot 084 \left(\sqrt{R} - \cdot 03\right)}$$

Young, $v = \sqrt{\frac{1}{3}A + \left(\frac{1}{12A}\right)^2} - \frac{1}{12A}$, where
$$A = \cdot 0000001 \left(413 + \frac{1}{15025} - \frac{1}{12}A\right) \cdot \frac{15}{12A}$$

$$B = \cdot 0000001 \left(\frac{910R^2}{R^2 + 0.5} + \frac{1}{\sqrt{3}R} \left(271.25 + \frac{1}{R} + \frac{R^2}{R^2}\right)\right)$$

COMPARATIVE RESULTS OF FORMULE IN RIVERS OF VARIOUS MAGNITUDE, (Stevenson.)

-sissiM .iqqis	39938
Prony.	22357
Girard.	22491 1.218
Down-	41.23 27.69 25081 .972
Eytel-	23389
Ellet.	46.4 2033
-nidoA	36.9
Dubnet.	32.5 2987 16931 -675
Leslie.	2083
Actual discharge, feet per second.	24-22 2423 31864 1 15 millions.

Q = Supply of water into eistern in cube feet TIME EMPLOYED IN FILLING AND EMPTYING CISTERNS WHEN THE SUPPLY AND CONSUMP-TION ARE GOING ON AT THE SAME TIME.

q =Consumption of ditto from cistern in cube per minute.

The same of feet per minute.
C = Contents of eistern in cube feet.

T = Time required for filling eistern in minutes, t = Ditto for emptying ditto in minutes.

Qrq gay there of = q -Q F13 4 - 17 PUTE TE

A = Area of lock in ft. a = Area of sluice in ft. TIME REQUIRED TO EMPTY CANAL LOCKS, &c.

II = Head of water in feet.

a/H T = Time required in seconds.

constantly submerged; so that its entire area is available throughout. This is under the supposition that the sluice is available throughout.

The coefficient for lock sluices nas been assumed to be about '6.

MAXIMUM POWER OF A HORSE ON CANALS AT DIFFERENT SPEEDS.

V = Velocity in miles per hour.

Total load drawn by one horse on canal in tons H = Duration of work in hours per day.

	T.	30 119 13 9
	H.	44 Had 10
	Λ.	8 8 9 10
	I.	520 243 153 102
	H.	111 8 70 4 4 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10 1
1	Λ.	4 3 3 4 v

CANALS, Dimensions for Cordinary Dimensions for Secondsions, special traffic in feet. Depth of water 5 feet = 0 + 1.5 foot. Width at surface 40 feet = 3 B + 3 (D + 1.5). dimensions. special traine in 5 feet = D + 1.5 foot. bottom 25 feet = 3 E.

LOCKS.

Clear width $\dots = B + 1$ foot.

"length $\dots = L + 1$ foot.
Depth, minimum, $= D + 1\frac{1}{2}$ foot.

D = Maximum draught of boat in feet; Where

Extreme breadth of boat in feet; Extreme length of boat in feet, including rudder.

Ordinary canal lock, 75 feet long, 8 feet broad, 5 feet depth over sill.

Loss of water in canals, exclusive of water

expended in passing boats through locks:—
Let A = Total area of surface of canal in sq. yds.
L = Loss of water in cubic feet per day.
For England ... L = 1.5 A + 15,000.
Cubic contents of lock, less the displacement, equal the amount of water expended in passing a down alternately, half the water only will be used: if double locks be used they will effect a saving of boat through the lock. If boats be locked up and half the water.

ORDINARY CANAL "OVER BRIDGES." Width of waterway at surface of water

20 "span 11 99. 5 feet below surface Headway above surface Semicircular arch ... Width of towing path ...

The Canal

Proportion of height to extreme width inside 3:2. (C. E. Hawkins.) AREAS OF SEWERS.

Area of sewer=4.5941 R2; area of brickwork=3.1416 7 R=Radius of upper circles, T=Thickness of brickwork.

TABLE.

ards of work d	13½ in. Work.		2.529		2.454			9	2.122	2.837		3.005	3.085	3.168	3.250	3.333	3.415
Cube Yards of Brickwork per Yard Run	9 in. Work.	1.353	1.408		18	00	1.628	1.683	1.738	1.793	1.848	1.903	1.958	2.014	2.069	2.124	2.179
Area of	Sq. Ft.	14.087	15.461	16.	18.	19.	21.		25.	.97	28.		32.	34.788	36.928	39 132	41 400
Size of	Inches.	42× 63	44× 66	9 X	X		X	54× 81	×	oo X	06 × 09	X	64× 96	66 × 99	68×102	70×105	72×108
ards of work d Run.	9 in. Work.	.527	.582	.637	.692	.747	.802	.857	.912	196.	1.022	1.077	1.132	1.188	1.243	1.298	
Cube Yards of Brickwork per Yard Run,	44 in. Work.	.214	.243	.269	-297	.324	.352	.379	.407	.434	.462	.490	.517	.545	.572	009.	
Area of	Sq. Ft.	1.150	1.565	2.044	2.587	3.194	3.865	4.600	5.400	6.261	7.187		9-232	10.350	11.532	12.778	
Size of	Inches,	12×18		X	X	X	22×33	X	X	28×42	X	X	84×51	X	(×	X	

SEWERS.

FLOW OF WATER IN SEWER.

sewer + the wetted perimeter in ft. Fall in feet per mile. Area of

Velocity in feet per minute. Area in square feet.

Cubic feet of water delivered per minute. A = 0

$$V = 55 \sqrt{x \times 2f}.$$

$$C = V \times A.$$

EGG-SHAPED SEWER.

INTERNAL DIMENSIONS.

Diameter of bottom of sewer. top Radius of sides 23 Let

R = D. Depth of sewer 00 0= 3 A A BII

is less than 6 feet the brickwork is generally 9 inches thick. A When

feet, and under 9 feet, brickwork 14 inches thick. 9 Above

H

EGG-SHAPED SEWERS. (J. T. Hurst.)

fable showing the discharge in cubic feet per second when the diameter of the larger circle C and the inclination are given, the sewer flowing two-thirds full, calculated from the formula

 $Q = 35\sqrt{d^5 \frac{f}{l}}$, d being the diameter C in feet.

	Q = 3	V. W.	\bar{l}	8							
1	meter i feet inches.				Fal	l Divided b	y Length.				
	Diameter in feet and inches	1 10,000	2 10,000	3 10,000	4 10,000	5 10,000	6 10,000	7 10,000	10,000	10,000	1000
,	1	17 135 161 196 1.42 1.98 2.66 3.46 4.39 5.46 8.02 11.20 15.03 19.57	*24 *49 *86 1 · 36 2 · 01 2 · 80 3 · 76 4 · 89 6 · 21 7 · 72 11 · 34 15 · 84 21 · 26 27 · 67	*30 *61 1.06 1.67 2.46 3.43 4.60 5.99 7.60 9.45 13.89 19.40 26.04 33.89	*34 *70 *22 1.93 2.84 3.96 5.32 6.92 8.78 10.91 16.04 22.40 30.07 39.13	*38 •78 1·37 2·16 3·17 4·43 5·94 7·73 9·81 12·20 17·94 25·04 33·62 43·75	*42 *86 1.50 2.36 3.47 4.85 6.51 8.47 10.75 13.36 19.65 27.43 36.83 47.93	*45 ·93 1·61 2·55 3·75 5·24 7·93 9·15 11·61 14·44 21·22 29·53 39·78 51·77	.48 .99 1.73 2.73 4.01 5.60 7.52 9.78 12.41 15.43 22.69 31.68 42.52 55.34	*51 1.05 1.83 2.89 4.25 5.94 7.93 10.38 13.17 16.37 24.06 33.60 33.50 45.10 58.70	*54 1 · 11 1 · 93 3 · 05 4 · 48 6 · 26 8 · 40 10 · 94 13 · 88 17 · 25 25 · 37 35 · 42 47 · 54 61 · 87

MOLESWORTH'S POCKET-BOOK

Fall Divided by Length. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ter st hes.				COLUMN TO		Fall Di	vided by	Lèngth.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Diame in fee and inc	Spinnette	Married I	AND THE RE	destruction 1	BARROWS T	discountly .		-	1 100				
	1 0 1 3 1 6 1 9 2 0 2 3 2 6 2 9 3 0 3 6 4 0	1.57 2.73 4.31 6.34 8.85 11.89 15.47 19.63 24.40 35.87	1.92 3.35 5.28 7.77 10.84 14.56 18.94 24.09 29.88 43.93 61.34	2·21 3·87 6·10 8·97 12·52 16·81 21·88 27·76 34·51 50·73 70·83	2·47 4·32 6·82 10·03 14·00 18·79 24·46 31·04 38·58 56·72 79·20	2·71 4·74 7·47 10·98 15·34 20·59 26·79 34·00 42·26 62·13 86·75	2·93 4·91 8·07 11·86 16·56 22·24 28·94 36·72 45·65 67·11 93·71	3·13 5·47 8·63 12·68 17·71 23·78 30·94 39·26 48·80 71·74 100·2	3:32 5:80 9:15 13:45 18:78 25:21 32:81 41:67 51:76 76:10 106:3 146:6	3:50 6:11 9:64 14:18 19:80 26:58 34:59 43:89 54:56 80:21 112:0 150:3	4 · 95 8 · 65 13 · 64 20 · 05 28 · 00 37 · 59 48 · 92 62 · 07 77 · 16 113 · 4 158 · 4 212 · 6	6.06 10.59 16.71 24.56 34.29 46.03 59.91 76.03 94.50 138.9 194.0 260.4	7.00 12.23 19.29 28.36 39.60 53.16 69.18 87.79 109.1 160.4 224.0 300.7	7 · 83 13 · 67 21 · 57 31 · 71 44 · 27 59 · 43 77 · 34 98 · 15 122 · 0 179 · 4 250 · 4 336 · 2

Note.—Five-sevenths of the quantity given in the above Table will equal the discharge from CYLINDRICAL PIPES of the same diameter when flowing two-thirds full.

its motion, provided it be long in proportion to the depth of the fluid. A weve may travel without force to maintain

When the length of a wave is not greater than the depth of the water, the velocity of the wave depends (sensibly) only on its length, and

is proport, on l to the square root of its length.

2. When the length is not less than 100° times the depth of the water, the velocity depends only

on the depth, and is the same as the velocity which a free body would acquire by falling through a height = half the depth of the water.

30 or 40 feet in height. A wave breaks when its height above the general level of the water is equal to the general depth.—Prof. Airey, 'Encyclop, Metrop,' "Tides." 3. For intermediate proportions, the velocity can only be obtained by a general equation. Under no circumstances does an unbroken wave exceed

= Velocity of wave in feet per second. = Time of wave in seconds.

Depth of water in feet. Height of wave in feet.

Length of wave in feet.

 $.55\sqrt{L}$ when L is less than D. $1.818\sqrt{L}$

= \sqrt{32.17 D when L exceeds 1000 D.

 $V = \sqrt{32.17 D \left(1 + 3 \frac{H}{D}\right)}$ when the height of the wave bears a sensible proportion to the depth,

WAVES-continued.

Mr. Scott Russell divides waves into two classes :--

Waves of translation, or of the 1st order. 2nd oscillation,

WAVES OF THE 1ST ORDER,

1. Velocity not affected by the intensity of the generating impulse.

the same direction as the wave, and the same at 2. Motion of the particles always forward the bottom as at the surface.

3. Motion of the particles most intense in a vertical line below the crest; the particles at rest in the trough.

height of the wave approaches the proportion of 1rd of its length. When the height is more than 1rd of the length, the wave breaks. 4. Character of the wave, a prolate cycloid in long waves, approaching a true cycloid as the

WAVES OF THE 2ND ORDER.

Ordinary sea waves are waves of the 2nd but become waves of the 1st order as they enter shallow water. order,

from a point. Towards the top of the wave the movement of particles is in the direction of the Character eveloidal.
Motion of water alternately flowing to and wave; but in the trough the movement is in the opposite direction.

WAVES-continued.

Motion greatest at crest and at lowest portion of trough; no motion at half height of wave.

5. Power of destruction directly proportional

height of wave, and greatest when crest breaks.
6. A wave of 10 feet high, 32 feet long, would only agitate the water 6 inches at 10 feet below the surface; a wave 10 feet high and 100 feet long would only disturb the water 18 inches at the same depth.

a depth = the length of the wave, the motion is diminished to 1/5 of that at the sur-7. At

A wave 30 feet high may exert a pressure of

nearly I ton per square foot of surface.
9. In exposed position, and in deep water, 12/2 ton may be exerted by waves striking suddenly

10. The height of a wave does not equal the depth of water, but it nearly approaches that limit. on a vertical surface.

FREE WAVES IN FEET PER SECOND, LENGTH OF WAVE EXCEEDS 1000 VELOCITY OF THE

Depth of Water in feet.

Depth	1	67	0	4	10.	00	10	20	30
Velocity	10	00	8.6	11	12.6	16	18	25	31
Depth	40	09	80	100	200	400	009	800	1000
Velocity	36	45	51	29	80	113	139	160	179

LENGTY WHEN WATER. SECOND, DRPTH OF PER EXCEED THE WAVES IN FERT NOT DOES VELOCITY OF

1	ı	Ten	grn o	1 17.8	ve th	Length of wave in Jeer.			
Length 2 4 6 8 10 20 30 40 50	63	4	9	00	10	20	30	40	50
Velocity. 2.57 3.63 4.46 5.14 5.73 8.13 9.95 11.50 12.85	2.57	3.63	4.46	5.14	5.73	8.13	9.95	11.50	12.85
Length 100 200 300 500 1000 2000 4000 10,000	100	200	300	200	1000	2000	3000	4000	10,000
Velocity. 18.2 25.7 31.5 40.6 57.3 81.3 99.6 115 182	18.2	25.7	31.5	9.01	57.3	81.3	9.66	115	182

FORM OF WAVES.

and The length of the wave, as parts and dividing the circumference of a parts as shown Dasses below for divisions long compared with their may be approximately determeasured from crest to crest, into a given number the wave, intersection of horizontal in the diagram—the outline of the wave point. the height of such edual from given into the same number of the 32 are very projected ordinates are diameter 16 and through the by dividing their form When waves lines into circle (whose lengths of of equal vertical height, nearly 1 mined

WATER-WORKS.

I gallon of water = 0.16 cubic ft. approximately, I cube foot of water = $6\frac{1}{4}$ gallons approximately. Consumption of water in towns.

16 to 20 gallons per head per day in non-manu-

facturing towns.

20 to 30 gallons per head per day in manufacturing towns: the main should be large enough for more than double the average quantity.

Maximum demand about 21 times the average

demand.

days supply in the rainy districts, and 200 days' supply in the less rainy districts of England. Impounding reservoirs should contain above 120

Service reservoirs should contain 3 days' supply. On the average about to the rainfall is

available for storage.

Loss from overflow of storm-water about 10 per

Evaporation 50 per cent. less on flat country than on an undulating rocky country.

48 : : : Autumn Infiltration in England, in Winter Summer Spring Berthall, and

Average of the Year .. 42 RAINFALL.

Greatest rainfall in England in 24 hours, about 3 inches Annual rainfall in England from 20 to 70 inches. .. 50 to 70 Cape Tasmania : Greatest evaporation in 24 hours in ... Mean
In India, in the plains
in the hills
Cape

continued. WATER-WORKS-

FILTERS FOR WATER-WORKS.

1 square yard of filter for each 700 gallons in 24 hours; 6 in. of common sand. formed of 2 ft. 6 in. of fine sand.

gravel. 6 in, of shells. 2 ft. 6 in. of

Perforated pipes laid in the lowest stratum.

HAWKSLEY'S RULE FOR THE STORAGE OF WATER. 12 1000 O = Number of days' supply to be stored =

F = Mean annual rainfall in inches of three consecutive

dry years, say \$ of the average annual rainfall. Storage capacity in England varies from 25,000 to 50,000 cubic feet per acre of catchment area.

COATING FOR PIPES.

then placed in an upright position to allow the superfluous The pipes are lowered into a bath containing a composition of gas-tar. Burgundy pitch, oil, and resin, heated to 400° Fahr., and remain until they attain the heat of the bath, they are coating to drain off.

PUMPING ENGINES.

Compound reciprocating engines, with double-acting, pumps, are chiefy used for water-works.

They give a duty offcom 95 to 100 (duty reduced to 112 lbs. of coal), compared with a duty of from 50 to 70 from 50 to 70 for Cornish engines.

Large air-vessels are now very generally used in preference to stand-pipes, but arrangements should be made for supplying the air-vessel with air.

MAINS OR PIPES.

The velocity of water in the pipes should not exceed 3 feet per second.

should not rise more than 22 feet above the mean hydraulic gradient, and air valves should be placed at high places in Refux flaps should be placed at intervals in long pumping mains, to prevent back pressure on the engine. Reliet valves should also be used to prevent excessive pressure. Pipes the main where air is likely to accumulate,

MOLESWORTH'S POCKET-BOOK

COMPOUND PUMPING ENGINES WITH DOUBLE-ACTING PUMPS.

	Lambeth	Vienna.	Lawrence.	Hanover.	Chis- wick.
		1	-	1	
Character	Rotative	Rotative	Rotative	Rotative	Direct
m Tor De	14	20	164	2.4	1
Devolutions Fr	46	223	38	36%	20
Diam. or range of my	28	11	18	203	10
47	1662	406.4	1134	1053.5	314.1
Alea of tails commit	616	95	254.4	342.5	18.2
Stroke of large	96	583	96	53	36
	₹99	584	96	53	36
Canacity, large ,, ,,	159452	23927	108864	22836	11308
Ratio of clearance	.048	1	.116	1	1
and passages !		2022	91449	18136	2826
Capacity, small cyl., ins		1	.0243	1	1.
Raylo of Cicalance, cc.		1 40 409	1 40 4.45	1 to 3.08	1 to
avlinders -	1 10 3.3	1 10 4 0	T 10 T		
Relative area of cylrs.	1 to 2.7	1 to 4.3	1 to 4.45	1 to 3.08	1 to 4
Stroke of pump, ins.	83.8	294	96	407	000
Diameter of punip }	233	218	263	194	21
barrel, ins	,				1
Diameter of pump	164	1	18	1	15
plunger)	1		300	80	1
mor so in	354	310	100	2	
SIL	9.6	1	- 1	1	-1
cylinder §	#				
Mean pressure, large	10 -	-1	1	1	1
=					-
The I H.P. per hour	1.1	1	69.1	1	_
Duty of 1 cwt. coal	16	1	101	1	1
Percentage lost by	06	-	i	1	1
	2				
Head of water, feet .	210	264	170	133	1 1
Diam. of main, ins	30	238	7.7	101	-
Velocity of water in	1	14	1	1	1
Indicated HP	1	244	1954	1	1
Capacity, air vessel, c. f.	1	1	1	166	-
	and the second second	and mand uri	on mand with 40 lbs. initial pressure, cutti	tial pressur	e, cutti

The Lambeth engines are sometimes used with 40 lbs. initial pressure, outfort 20 per cent, of the small cylinier.
 The day of Contain engines waites from 61 to 68 millions of foot-bas, for 1 or

of coal.

PUMPING ENGINES.

By To ...

Number of gallons to be raised in 24 hours, Number of cube feet raised in 24 hours, 11 5

Height in feet to which the water is to be

HP = Actual horse-power required raised.

HP = 4752000 or 762088Exh GXB

friction, &c., and 50 or 60 per cent. more is usually allowed for contingencies, making a total of 70 or 20 per cent, must be added to overcome 80 per cent. additional power. TO FIND THE DIAMETER OF A SINGLE-ACTING PUMP.

L = Length of stroke in feet.

G = Number of galls, to be delivered per minute. F = Number of cub. ft. to be delivered per minute. N = Number of strokes per minute.

Diameter of pump in inches $00545 \text{ D}^2 \text{ L.N.}$ $0034 \text{ D}^2 \text{ L.N.}$

Note.—These formulæ of the plunger 4th, to give the net diameter of usual to increase the area the pump-plunger; it allow for leakage, &c. ·00545 L N ·034 I. N

USEFUL NUMBERS FOR PUMPS,

D = Diameter of pump in inches. Stroke of pump in inches, × ·7854 = cubic inches, D.2 S 11

 $D_2 S \times .002833 = gallons.$ $D_2 S \times .0004545 = cubic feet.$ $D_2 S \times .02833 = 1bs, fresh wa$

x .02833 = 1bs, fresh water,

ure of 200 feet of water or proof of 400 feet. CAST IRON WATER PIPES.

Weight of Lead Joint.	108. 2.4. 3.6 6.0 6.0 8.7 8.7 9.9 13.9 14.9 17.2
Weight of 9-feet Length.*	cwt, crs. list. 0 3 24 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Space for Packing	entro estro estro estro estro estro
Thickness of Socket.	্ল ত্যু কাজি হয়ত হয়ত কৰি ক্ষিত্ৰ হন্ত ত্যু কাজি হয়ত হয়ত কৰি ক্ষুত্ৰ হন্ত ত্যু কাজি হয়ত হয়ত কৰি ক্ষুত্ৰ হন্ত
Depth of Socket.	89 CO
Thickness I of Metal. S	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bore T in Inches.	2 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

The 9-feet length is taken from the end of one pipe to the end of next when laid.

CAST-IRON PIPES—PRESSURE IN.

Head of water in feet. Let H

Pressure of water in lbs. per square inch.

Internal diameter of pipe in inches. 7

Thickness of metal in inches. 0.433 H. 2

 $\cdot 000125 \text{ P.} d + x$; 1 of the contraction of the second of the seco 0.000054 H d + x.

or t:

·37 ins. for pipes less than 12 ins. diam.

·6 for pipes from 30 to 50 ins. diameter. .5 for pipes from 12 to 30 inches. 11

RULE FOR FINDING THE WEIGHT OF CAST-IRON PIPES.

Diameter outside in inches. D =

Diameter inside, or bore in inches. W = Weight of 1 yard of pipe in lbs. W = $7.35 \text{ (D}^2 - d^2)$.

The weight of two flanges = about 1 foot of pipe.

TER-WORKS. W DIMENSIONS OF PIPES USED AT THE GLASGOW (J. F. Bateman, Engineer.)

g Head.	Lbs. per sq. inch.	-	91	130	100	130	1.18	104	130	113	100	130	108	98	118	7.8	125	108	98	125	104	130	130	130	130	130	130	130	130	130
Working Head.	Feet of Water.		210	300	230	300	270	240	300	560	2:30	300	250	200	270	180	290	250	200	290	240	300	300	300	300	300	300	300	300	300
ıt	Per Foot Run.	cwt.	3.29	3.67	2.98	2.37	1.78	1.55	1.48	1.38	1.27	1.22	1.13	1.04	1.06	88.	66.	.91	.83	94.	.693	.571	.524	.412	.362	.277	.218	.158	.121	680.
Weight	Per Pipe.	cwt, qrs. ibs.	39 1 25	0	co	28 1 23	16 0 4	3	-	-		10 3 27	0	9 1 9	2	30	00		7 2 0	က	6 0 26	0	4 2 24	2	3 1 1	2 1 27	co	-	1 0 10	0 2 4
	Thickness of Metal.	inch, 10	1	14		-	1/0	osta.	6,0	or/a-	100	coles	717	wa/a	77	6 6	7	union.	612	no jeu	مام	6	6	7	-4:	12	- TO	02/0	enta o	entoc
1	Length of each Pipe.	feet.	12	12	12	12	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	9
	Bore of Pipe.	ine.	33	30	30	24	20	20	18	18	18	16	16	16	15	15	14	14	14	12	12	10	6	000	-	9	70	4	es	64

Note.

—The longer does not include the bargets of the sucket.

The weight includes the weight of the sucket.

The proof strain is doubted the working head.

For dimensions of suckets, see next page.

Permitted deviction from weight.—

2 per cent in plue from 30 to 38 inches bore.

2 per cent in plue from 30 to 38 inches bore.

2 per cent in plue from \$18 ...

3 per cent in plue from \$18 ...

3 per cent in plue from \$18 ...

3 per cent in plue from \$18 ...

4 per cent in plue from \$18 ...

5 per c

Pipes exceeding 18 inches bore to be cast socket downwards.

adirect gall		J		A BOOM	J. I.E.	
E		I.	and with the sales and the sal	FL B	i	100 Ha 10
		H.	NIO PIONELLA CHENCALA AND AND AND AND AND AND AND AND AND AN	13.	Ħ	NO NO HA HA HA
ATER	A	6	40 40 60 60 40 40 40 40 40	JOINT	9	
ow the		Eri.	京書 (2)年 (2)名 (2)名 (2)名 (2)名 (2)名 (2)名 (2)名 (2)名		1	enter enter to 100 to 100 mm mm m
GLASGOW		rei	FIRST THE THE THE THE THE	ND B	pi	100 100 H H H H H
	i de la companya della companya della companya de la companya della companya dell	Ö.	the total esten esten esten esten esten esten esten	- T	D	
RKS-	STATE OF THE STATE	C	NIO NIO IN TO THE HE OF THE THE THE	URNED	C.	win win with
Wo		1	000000004444400	II Ko	B	8 8 8 8 8 8 4 4 4
TEES	Y TEN	-	to the tea : the tea the tea		A	00000000444
·C-I	W//	V 4	66666666		Bore.	
96	19/1	nore.	2 8 4 4 8 9 1 1 2 2 1 1 2 2 0 2 2 4 4 2 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Bo	4.5

Taper of bored portion 2/2 in

RESERVOIRS MASONRY FOR HIGH DAMS IN

water Any depth below the surface of feet. Height of dam in feet.

outer face of Offset from vertical line to dam at any depth x in feet 11

Ditto, ditto to inner face in feet

Width of dam at top in feet.

4 H from top in feet. Width of dam at

allowed on the masonry per square foot. pressure imit of in tons

a Terrasse. the dam of tons in

$$= \sqrt{\frac{05 x^3}{P + (03 x)}}; z = \left(\frac{09 x}{P}\right)^4;$$

y as given by the formula be less than 0.6x, to 0.6 x. must be increased +1

0.4 a:

LOW MASONRY DAMS.

Width at bottom = height \times 0.7. Width at middle = height \times 0.5. Width at top ... = height \times 0.3. Width at top ...

EARTHEN RESERVOIR DAMS.

Width at top in high dams from 7 to 20 feet. Width at top in low dams... = height. Breast slopes ... = 3 to 1. = 2 to 1.: : Back slopes ..

not less Height above surface of water feet 6 inches. TABLE OF RAINFALL, SHOWING THE QUANTITY OF WATEL DUE TO A GIVEN RAINFALL OVER A GIVEN AREA.

One	Mile.	Million cube ft.	C4 44												1164		
	6		33	98	131	196	229	261	297	392	490	653	980	1307	1633	1960	
	00	N	23	87	116	174	203	232	197	348	436	189	871	1162	1452	1742	
oğ.	2	set.	25	16	102	157	178	203	229	305	381	508	769	1016	ALC: U	1525	
Acre	9	ube fe	22	65	87	109	152	174	196	261	327	436	544	871	1089	1307	
sent ir	10	Thousand cube feet.	18	54	13	1001	127	145	163	181	272	363	454	726	907	1089	
Area of Catchment in Acres.	4	Thou	14	44	28	73	102	116	131	174	218	290	363	581	726	871	
og of C	3		11	33 8	44	54	16	28	86	109	163	218	272	436	544	653	
Are	64		20	14	53	36	51	28	65	73	109	145	181	218	363	436	
	1	Cube feet.		7,260	14,520	œ̂,	25,780	29,040	32,670	36,300	54,450	72,600	90	108,900	2,12	17,	
	hes.	InieA	-	61 0	0 4	2	9 1-	- 00	6	10	12	20	25	30	40	09	3

WEIRS ON INDIAN RIVERS.

ON OF WEIRS RIVERS. AND JUMNA SHOWING SECTIONS BOANE DIAGRAMS

SOANE WEIR.

is on a better bed than the Weir, which is on a very fine sand mixed Soane Weir The Jumna

252 FEET

30-*

×

42 LT.

loose stone with nucleus walls which run through their with mica and very easily eroded.

Both weirs are formed of large blocks of entire length.

The walls of the Soane Weir are 5 feet thick, supported on rows of piles sunk 10 feet deep into bed of the river.

The walls of the Jumna Weir are 4 feet thick, built on the river bed.

Weir is 10 feet high at its crest. The Soane Weir is 8 feet high at its crest. The Jumna DRAINAGE OF LAI

Distance of Pipes apart.	feet, 15, 18, 21, 27, 27, 40, 60, 60
Depth of Pipes.	# 0000000 + 4
Soil.	Stiff olay Francis ditto Francis ditto Soft ditto Loam with day Loam with day Light loan graved Light loan graved Light loan graved Light loan graved Candy ditto

TABLE OF THE FOWER REQUIRED TO RAISE WATER FROM DEEP WELLS. (J. T. Hurst.).

Maximum Depth from which this Quantity can be Raised by each Unit of Power.	rse power steam.	feet. 880 550 385 275 220
om which	One Horse working a Gin.	feet. 560 350 245 175
Depth fre	One Donkey working a Gin.	feet. 160 100 70 50
Maximum can be	One Man turning a Crank.	feet. 80 85 85 85 85 85
Quantity	of Water Raised per hour.	gallons, 225 360 520 700
	tion of Pump.	Double- action lift and force
Dia-	neter of Pump Barrel,	inches.

COMPARATIVE PERFORMANCE OF METHODS USED IN INDIA FOR RAISING WAIER. (Rookee Treatise.)

	lo tec	Helative Co	2411 252	2.8	charge
	ver oyed.	Bullocks.	1100	61 61	of dis
,	Power	Men.	01. 4 -1-1	1 1	The ratio of discharge
onrs	-8	Ratio of D.s.	1.29 5.1 5.7	3432 2·4 9936 6·8	The
Day = 8 hours.	arge iem.	Gallons.	1451 1875 7392 8360		foot
	Discharge per diem.	Cube feet.	232 300 1196 1326	1704	iond h
0 feet.	arge our.	Gallons.	181.4 236.2 924 1045	429	biber wo
Height raised = 40 feet.	Discharge per hour.	Cube feet.	29.07 37.5 149.5 165.8	69.3	111 -6 the conception voiced & foot
raise		Usnal Effect	90 20 20 20 20 20 20 20 20 20 20 20 20 20	55	0.474
ight		Stages.	1 2.5		141
He		Method.	Paecottah	Single Persian Wheel }	

* Calculated on the of the quantity raised 5 feet. The value of discharge is taking the Presortata as 1. The relative cost is taking the Double Persian Wheel as 1. Cost and wear said tear of machinery is not included,

IRRIGATION IN INDIA.

PROPORTION OF RAINFALL RUNNING OFF INTO OUTFALLS. (From observations at Nagpur by A. Binnie.)

1	: 72	.40
ı	53	
l	3.65	.40 .40
ı	-4	
ı	.5	.4
l	33	
l	22	.31
ı	33	
1	62.	.16 .268
ı	29	
ı	.47	.16
ı	19	
ı	6-77 19-47 29-79 31-29 39-28 43-65 53-72	.047
i		- 4
l	-u :	·i
I	Monsoon rain- fall, inches	roportion run
l	on	tion
	nso all,	oportion
l	Mo	Pro

In Mysore the proportion running off is assumed at .25. LOSS OF WATER IN TANKS IN RAJPUTANA (Culcheth).

the second secon			-
10 2 10	By Evapora-	By By Ab-	Total.
Days.	feet.	feet.	feet.
October to March, 182	2.32	.75	3 07
April to June, 191	2.24	1.34	3.58
July to September, 92	1.59	1.53	3.12
	6.15	3.62	22.6
Average per day feet	-017	.01	.027
" inches	-202	.119	.321

From April to May 2.03 feet Decean the loss by evaporation, absorption, leakage, from October to March was found to be 3.51 feet in in 61 days = .0333 feet per day. 182 days = .0193 feet per day. In the &c.,

LOSS BY EVAPORATION ONLY, IN FEET.

	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	Total 8 Mon.
Rajputana	.49	.35	.29	.29	.35	.55	.73	.81	3.86
Bombay	.65	.49	.37	•44	.34	.44	69.	66.	4.41
Nagpur	.50	.42	.37	.33	.33	.48	91.	.59	3.77

If the average annual rainfall = 1.00, the minimum will equal From observations Mr. Binnie deduces the following rule :-Or an average of '016 feet = '198 per day.

about .65; maximum about 1.40; and the average of three consecutive dry years '83.

ordinary soil, 30; in black cotton soil, 35; Sind, rice, 40; Bombay (Deccan), rice, 40; sugar-cane, 100; ordinary winter crops, 150; 6 and 8 month crops, 150; Monsoon crops A constant flow of 1 cubic foot per second will irrigate the following acreage. Tanjore, rice 44 acres; Mysore, rice in DUTY OF WATER IN IRRIGATION. (usually grown without irrigation) 200. IRRIGATION IN INDIA - continued.

the following allowance is moist districts made for rice-

inch of water. 1210 cubic feet per acre. Per day of 24 hours =

In some parts it is usual to allow for waste, and .. = 87,000 cube feet 11 per crop

1 inch of water. : Per day of 24 hours so to assume-

1815 cubic feet. 130,000 ", " .12 inch. {| Or per crop ...

= 436 cube feet. Common grain per day

storage room is from 200,000 to 250,000 cubic feet In Central India, to allow for evaporation, the per acre.

lated at .02 cubic foot per second per acre; this is equivalent to nearly is inch per day. In some cases .03 is allowed. The discharge of channels is frequently calcu-

A proportion for channels sometimes adopted is

D = Depth in feet, B = Breadth at bottom in feet. A = Area in square feet.

 $D = \sqrt{\frac{A}{3}}$. This proportion gives

B = 2 D, with slopes of 1 to 1. = $1\frac{1}{2} D$, with slopes of $1\frac{1}{2}$ to 1. And a mean hydraulic depth of

13 to 1. ·62, with slopes of 1 to 1.

per second, unless the material through which the channel is excavated be very hard. Large channels with turbid water require the higher velocity to The velocity in feet per second should not be less than 2 feet per second, nor more than 33 feet prevent silting.

IRRIGATION—continued.

DIFFERENCE BY THE ACREAGE IRRIGATED SIZES OF CHANNEL. TABLE SHOWING

Number	Area of	Channel i	in 8q. Ft.,	with Velo	cities in F	les in Feet per Second	econd =
of Acres Irrigated.	67	24	00	370	4	2	9
	sq. ft.	8q. ft.	sq. ft.	sq. ft.	sq. ft.	sq. ft.	8q. ft.
100	- 67	1.6	1.3	1.1	1.5	4 00	0 1-
300	00	2.4	2	1.1	1.5	1.2	1
400	4	3.2	5.6	2.3	2	9.1	1.3
200	2	0.4	3.3	. 5.8.	2.2	67	1.1
009	9	4.8	0.0	3.4	co	2.4	67
200	-	9.9	4.1	4	3.2	2.8	2.0
800	00	6.4	5.3	4.6	4	3.5	2.1
1000	10	90	1.9	2.2	2	4	3.3
2000	20	16	13.3	11	10	00	2.9
3000	30	24	50	17.	15	12	10
4000	40	3.5	2.97	23	20	16	13
2000	20	40	33	28	25	20	
I Sq. Mile.	p.9	5.12	4.56	3.66	3.7	2.26	

ADAPTED FOR IRRIGATION CHANNELS IN NORTHERN INDIA. DIMENSIONS BEST APPROXIMATELY, TABLE SHOWING,

- 1111			*****
479, Login.)	Sections.	Slope of Surface Surfa	13.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
479,	sed Se	To diquel 2 4 mm a	0 1-00 00 00 00 0 1-00 00 00 00
vii., p.	Propo	as dibreadth at 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	45 70 85 110 130
vol. xxvii., p.	V	Slope of Surface Surface Surface Surface Surface	124
ng.,	tions.	To Depth of Water.	ω - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
iv. E	Calculated Sections	te d Breadth at Egg 4 to T.	50 77‡ 95 121‡ 147‡ 170
('Min. Inst. Civ. Eng.,'		oiluandid Alean Depth.	0 0 1- 1- 00 Malla 010
	3	Mean Velo- city per	ल ल ले ले ले ले
	J.	Discharge per 2000 2500 2500 2500 2500 2500 2500 250	1000 2000 3000 4000 6000

IRRIGATION—continued. IRON SLUICES.

Head of water in feet.

For Table of value of v, see minute = 482 V H.

Theoretical velocity of water." Q = Quantity of acres irrigated.

This is calculated on the assumption that the coefficient of discharge = .6, and that 4 an inch of water including waste is supplied in 24 hours, and that the sluice-pipe is circular. = .0033 A v.

Hend			Diamet	er of SI	Diameter of Sluice-p pe in inches.	in inche	.88	
Water.	. 9	00	6	12	16	18	24	13 55 *
feet.	acres.	arree.	acres.	acres.	acres.	acres.	астев.	acres.
2	63	113	143	254	452	572	1016	323
4	06	160	202	360	640	608	1439	458
9	110	195	248	440	783	166	1761	261
œ	127	226	286	509	106	1156	2032	648
10	142	252	320	699	1011	1280	2275	723
15	174	309	391	969	1238	1567	2785	228
20	201	357	452	804	1430	1809	3222	1024
30	246	437	554	982	1751	2217	3941	1254
40	284	505	640	1037	2022	2558	4550	1448
20	318	565	715	1272	2261	2861	2088	1619
				_				

13.55 gives an area of one square Area in square feet \times .475 v = Q. square foot, one

Let D = Mean depth of sluice below surface in feet. PRESSURE ON SLUICES.

Area of sluice in square feet. Pressure on sluice in lbs.

Power required to work the sluice in lbs. Coefficient of friction. 11 XXP

A × 62.4 D. K × P. MA

For other coefficients of friction, see "Friction." metal = 0.68 when the sluice is of wood. K = 0.68 K = 0.31

DOCKS.

Ordinary docks vary from 3 to 30 acres, with from 400 to 2000 lineal yards frontage. Locks: 40 to 80 feet width. 25 ,, 30 ,, depth on sill.

25 , 30 , depth on sill. 400 , 600 , length. Graving docks: from 45 to 100 ft, width.

30 ,, 35 ,, depth on sill. 500 ,, 700 ,, long in blocks.

Pontoons from 150 to 320 feet long \times 59 feet broad. Clark's hydraulic dock:

Floating docks (graving), Rennie's:— 350 feet long; width inside, 76 feet; width

outside = 105 feet.

18-inch cylinder, 8 pumps: 33-inch stroke, 26 inches diameter. Depth over keel-block when sunk = 28 feet. pressure, 2 engines: high 2-feet stroke.

BERMUDA FLOATING DOCK.

			Outside,	inside Difficultion
Length	:		381 feet	380 feet.
Breadth	:	•	124 ,,	84 ,,
Depth	:		72 ,,	52 "

PRESSURE ON LOCK GATES, &c.

Depth of water on gate in feet. Pressure on gate.

exposed to the water in Area of surface

square feet. P in lbs. = $A \times 31.2$ D. P in cwts. = $A \times .278$ D.

Best angle for lock gates = about 136°, or a ratio of rise to span = 1 to 5.

the best ratio of rise For circular gates span = 1 to 3.

I foot 6 inches wide; diagonal with 2 ribs 8 inches deep. WALLS. inch; with IRON PILES FOR RETAINING Main piles, 7 feet apart; × 5 feet, metal, 2 inches thick, × Plates,

tie-rods, 2 inches. \times 1. Diameter of feather, 6

BREAKWATERS.

high tide, 46 ft. 6 in, PLYMOUTH BREAKWATER. JOW Depth of water,

BREAKWATERS -continued.

PLYMOUTH BREAKWATER—continued,

Outer slopes—1\frac{3}{2} to 1 from bottom to 7 ft, 6 in. below low-water line.

16 ,, 1 to 4 ft. 6 in. above low-4 to 1 to low-water line.

water line. 5 to 1 to high water.

Inner slope— $1\frac{1}{2}$ to 1 above low-water line. 2 ,,, 1 below ,, ,,

Body of breakwater cased with large squared stones cramped together.

PORTLAND.

Depth of water, 58 feet, high.

bottom to 20 ft. low. to I from Outer slopes-1

2 to 1 to 12 ft. below low water, below low water.

6 " I to low-water line.

Inner slope—14 to 1.

Body of breakwater, rubble, with crest wall of

DOVER.

Depth of water, 61 feet, high-water line. low 45 ...

Body of breakwater, concrete blocks faced with granite; batter 3 inches to the foot, stepped up in each course.

-continued. BREAKWATERS-

MARSEILLES.

Depth of water, 33 feet.

Average thickness of casing from 14 to 20 feet. All other Slope 1 to 1 from bottom to water line. Outer casing of beton, 252 tons each. 24 to 1 above water line. 1 to 1. Inner easing of first-class rubble (of stones 2 to 5 tons weight), about 12 feet thick

(of stones Hearting, second-class rubble 2 tons weight), about 6 feet thick.

Nucleus of quarry rubbish.

ALGIERS.

Depth of water, 50 feet.

Rubble base carried up to 33 feet from surface of water; the remainder composed of large beton blocks, 25½ tons each. Slopes of rubble base, 1 to 1.

Outer slope of beton blocks, 14 to 1.

PORT SAID (Suez Canal).

each, comwith sea water; it remains 4 days in the mould and dries for 4 months before being put in post-In some instances the composition of beton blocks is 1/3 lime or cement to 2/8 sand and broken posed of 1 of hydraulic lime to 13 of sand, mixed blocks, 10 cubic mètres stone, about the size of a man's fist Concrete tion.

1....

-continued. BREAKWATERS-

Proportion of interstices in breakwaters to the contents of the breakwater as it stands:-

interstice		13	31
سام	mins	m1-1-1	-tes
ass rubble or quarry rubbish, 1 inters	2 tons,	5 ,,	.0 " 25 "
9	1 to		3
1	40	-7.1	_
0	-103	24 ;	-
le			
9	50	-	or .
E L	-	200	14
H	grot t		2
rd-class	1		ton ple
rd	n	St	Še.
50	CV I		-

is deep outside, found insufficient At Cassis, when the water blocks of 15 cubic mètres were

angle less than I to I, will reflect waves without breaking them. Waves of oscillation have no or on stones from 1½ to 2 feet, 12 feet below the to resist the action of waves.

Breakwaters with vertical walls or faces of an effect on small stones at 22 feet below the surface,* breaking them. surface.

A roller 20 feet high will exert a force of about I ton per square foot.

Greatest force observed at Skerryvore, 3 tons per

Ditto, ditto, Bell Rock, 12 ditto. square foot.

The action of waves is most destructive at lowwater line.

Waves of the 1st order are nearly as powerful at a great depth as at the surface.

At Madras harbour laterite rubble, 150 lbs. per cubic foot, in blocks varying from 5 lbs. to 2 cwt., were removed at depths exceeding 40 feet by cyclonic ground swell; at Wick harbour a mass of 1300 tons was bodily removed by the waves without breaking up. STANDANDS OF ELECTRICAL RESISTANCE. (Committee of British Association, 1863.)

Mass = M. FUNDAMENTAL UNITS. Time = T. Length = L.

LM Force = F = -DERIVED MECHANICAL UNITS $Work = W = \frac{L^2 M}{T^3}.$

 $Velocity = V = \frac{L}{T}.$

-+ T-1 M3. T-1M3. T-1 M4. $ml = L^{\frac{5}{3}}$ Strength of the pole of a magnet .. $m = L^{\frac{3}{3}}$.. H = L DERIVED MAGNETICAL UNITS. : : Intensity of magnetic field Moment of a magnet

ELECTROMAGNETIC SYSTEM OF UNITS.

 \dots $C = L^{\frac{1}{4}}T^{-1}M^{\frac{1}{4}}$ $\dots \quad \dots \quad \mathbf{E} = \mathbf{L}^{\frac{3}{2}}\mathbf{T}^{-2}\mathbf{M}^{\frac{1}{2}}$ $Q = L^{\frac{1}{2}} \times M^{\frac{1}{4}}$. R=LT-1. : Resistance of conductor.. .. Strength of electric current Quantity of electricity Electromotive force

ELECTROSTATIC SYSTEM OF UNITS.

 $q = L^{\frac{3}{2}}T^{-1}M^{\frac{1}{4}}.$ e=L+T-1M3. $c = L^{\frac{3}{2}} T^{-2} M^{\frac{1}{2}}$ -1T. r = L: Quantity of electricity : Strength of electric currents .. Resistance of conductor .. Electromotive force

Let v be the ratio of the electrostatic to the electromagnetic then v = 310,740,000 metres per second approximately, and we have unit of quantity;

 $e = \frac{1}{n} E_i$ 5 = v2 S. c=vC; 100 1 = 0 0:

TABLE FOR THE CONVERSION OF BRITISH (FOOT-GRAIN-SECOND,

SYSTEM	No. of British Units contained in a Metrical Unit.	15.43235	3.280899	50.6320	166-1185	2.16880	7.11561 23.3456 27.7782	
HE-SECOND)	Log.	0.0647989 2.8115678 1.1884321	0.3047945 1.4840071 0.5159929	0.0197504 2.2955749 1.7044250	0.0060198 3.7795820 2.2204179 166.1185	1.6637804 0.3362196	$\begin{array}{c} \textbf{0.140536} \overline{1} \cdot \textbf{1477874} \textbf{0.8522125} \\ \textbf{0.0428346} \overline{2} \cdot \textbf{6317949} \textbf{1.3682051} \\ \textbf{0.0359994} \overline{2} \cdot \textbf{5562953} \textbf{1.4437046} \end{array}$	
FRE-GRAMI	Log.	2.8115678	1.4840071	2 - 2955749	3.1795820	1.6637804	1.1477874 2.6317949 2.5562953	
FRICAL (ME	No. of Metrical Units contained in a British Unit.	0.0647989	0.3047945	0.0197504	0.0060198	0.461085	0·140536 0·0428346 0·0359994	
SYSTEM TO METRICAL (METRE-GRAMME-SECOND) SYSTEM		10 for M	20 for L, $\frac{v}{1}$, R, $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$	30 for F (also for foot-grains and metre-	E	electrochem- ical equiva-	6° for Q. and e 0'140536 1-1477874 0'8522128 7 for E. m. g. \ 0.428346 2'6317949 1'3682051 and c. \ 0.0359994 2'5562953 1'4437046	

BRITISH SYSTEM.

g in British system = 32.088 (1 + 0.005133 sin.² λ), where λ = the latitude of the place at which the observation is made. One absolute {force $=\frac{1}{g}$ {unit weight x unit length} where unit of \work = $\frac{1}{g}$ \ \{\text{unit weight} \times \text{unit length}\}\ \ One absolute (force =0.0310666 weight of a grain) in unit of [work =0.0310666 foot-grains] London = 32.1889 absolute (force. RELATION BETWEEN ABSOLUTE AND OTHER UNITS, In London (weight of a grain one foot-grain

the temperature of one grain of water at its maximum density Heat.-The unit of heat is the quantity required 10 Fahr.

Absolute mechanical equivalent of unit of heat =24861=772

Thermal equivalent of absolute unit of work = 0.000040224. foot-grains at Manchester.

Thermal equivalent of foot-grain at Manchester = 0.0012953. Electrochemical equivalent of water = 0.02 nearly.

METRICAL SYSTEM.

RELATION BETWEEN ABSOLUTE AND OTHER UNITS.

One absolute {force =0.0809821 weight of a gramme } at unit of {work = 0.0809821 metre-gramme } Paris. (the weight of a gramme = 9.80868 absolute (force.) or metre-gramme At Paris or metre-gramme

everywhere, $\frac{1}{g}$ unit weight \times unit length One absolute force $= \frac{1}{a}$ unit weight unit of work $= \frac{1}{a}$ unit weight

g in metrical system = 9.78024 (1 + 0.055133 sin.² $\lambda)$, where λ = the latitude of the place where the experiment is

Heat.-The unit of heat is the quantity required to raise Absolute mechanical equivalent of the unit of heat = 4157.25 1º Centigrade. one gramme of water at its maximum density

423-542 metre-grammes at Manchester.

Thermal equivalent of an absolute unit of work=0.00024054. Manchester a metre-gramme at Thermal equivalent of = 0.00236154

Electrochemical equivalent of water = 0.0092, nearly.

	11	! !	<u> </u>	
MORSE ALPHABET.	0 V P W	R Y	:	1
Morse A	н	1 !!	T	
	A	G	田 1	

TARLES FOR REDUCING OTHER MEASURES TO THE METRICAL MEASURES OF THE CENTIMETRE-GRANNE-SECOND (C. G. S.) AND MÈTRE-GRANNE-SECOND, OR ABSOLUTE SYSTEMS. BY Paget Higgs. The relations of linear, superficial, and capacity measures are given elsewhere.

Velocity:-

-

1 foot a second = 30.4797 cm. or .3048 m. a second.

I statute mile an hour = 44.704 cm. = .447 m. a second.

nautical mile or knot an hour = 51.453 cm. = .5145 m. a second.

1 kilomètre an hour = 27.777 cm. = .278 m. a second.

Density:

Pure water at 4° C. = 1.000013 grm, a cub, cm. 1 lb. a cubic foot = .016019 ,, ...

Force: - (g = 981.)

The C. G. S. unit of force is called the dyne, and is the force which acting upon a gramme for a second, generates a velocity of a centimetre a second; or is the force which acting upon a gramme produces the C. G. S. unit of acceleration; or upon any mass for 1 second produces the C. G. S. unit of momentum.

The M. G. S. unit of force = 100 dynes.

-continued. Force-

981 dynes. gramme The weight of 1

2.78 × 104 dynes.* $= 4.45 \times 10^{5}$ = 4.98 × 76.89 = oz. avoir. grain cwt.

 4.98×10^7 9.97×10^8 One poundal = 13,825 dynes. 1 ton

Work or Energy :-

The C. G. S. unit of work or energy is called the work done by a dyne of a centimètre. working through a distance erg; and is the amount of

981 ergs. gramme-centimètre

ergs. 981×10^2 981 gramme-mètre

 $(13825 \times g) = 1.356$ 93 1860. milligram-millimètre kilogrammetre

107 foot-pound

7.46 × 10° ergs a sec. 1010 ergs. 421,390 ergs. ergs. 3.04 × foot-poundal foot-ton

horse-power Pressure: -

479 dynes a sq. cm. 6.9×10^4 pound a square foot

1.86 pound a square inch kilogramme per sq. m.

1.014 × 106 ,, 1.0163×10^{6} 11 760 mm. mercury at 0° C. 30 ins.

× 107 ergs. 33 1010 1010 × 1.91 gramme-degree Cent. = 4.2 pound-degree " Heat:-

×

Fahr. = 1.06

I volt-weber = $\frac{1}{740}$ HP. = 10' ergs. Electricity :--

* To avoid confusion in writing numerous ciphers, this notation has been generally adopted; 10° means 10 to the nth power, or 1 with as many ciphers after as n indicates; thus $10^* = 10_1000$.

ELECTROMAGNETS. OF CONSTRUCTION

thickness of magnetizing helix. total length of the two bobbins. diameter of covered wire in mètres.

diameter of core.

generally from 1.4 with fine wires to 1.2 with moderately coarse wires, but dependent on the nature of the covering. constant, varying f ==

attractive force in fundamental units.

attractive force in grammes at 1 mm. distance.

electromotive force of current in Daniell's cells. 11

length of magnetizing helix, in metres. 11 =

acting on m metres of telegraph wire of 4 mm. diameter; or as hundredths of a weber; or as in G. M. S. units. quantity of current, measured as = I

number of convolutions.

R = resistance in mètres of telegraph wire of exterior circuit, including that of the source of electricity (100 matres = l ohm).

magnetic moment.

conductivity of R

0.1722 when E is in Daniell cells and R is in metres of telegraph wire; · 015957 when E and R are in B. A conductivity of H units.

number of cells of battery.

resistance of each cell, e. m. f. of each cell.

ELECTROMAGNETS—continued.

Let r = resistance of connections of battery system.

$$t = \frac{a^2}{g^2}.$$

$$\mathbf{H} = \frac{\pi b a (a + c)}{g^2}.$$

$$\mathbf{F} = \frac{\mathbf{E}}{\mathbf{B} + \mathbf{H}} = \frac{\mathbf{E}}{\mathbf{B} g^2 + \pi b a (a + c)}.$$

$$\mathbf{A} = \frac{\mathbf{E}^2 t^2}{(\mathbf{E} + \mathbf{H})^2} = \frac{\mathbf{E}^2 a^2 b^2}{[\mathbf{B} g^2 + \pi b a (a + c)]^2}.$$

 $\frac{3}{f^2}$; in which Reduced value of R [relatively to H taken as case, as H will vary as g* instead of as g2, resistance, in mètres of helix] = $\frac{q R g^2}{r_s}$

$$\mathbf{F} = \frac{f^2 g^2 \mathbf{E} a b}{q \mathbf{R} g^4 + f^2 \pi b a (a + c)};$$

$$\mathbf{A} = \frac{f^4 g^4 \mathbf{E}^2 a^2 b^2}{[q \mathbf{R} g^4 + f^2 \pi b a (a + c)]^2};$$

$$\frac{g}{f} = \text{diameter of bare wire.}$$

Maxima Conditions.

As to resistance of helix:-For electromagnets diameter of bare wire is to that of same wire of equal dimensions that size of wire is best which makes resistance of helix = R. But taking account of the thickness of insulating covering, the resistance of the helix should be to R as covered.

ELECTROMAGNETS—continued.

circuit of given resistance, that will be best, the Between several coils wound with same wire but with different numbers of convolutions, for a resistance of which is to R as a + c; a. As to a and c:-a should =c; b=12.

12 c2. -, and t = -75.4 c3 H then =

92 R = H; a = c; b = mc; —, and $g^4 = f^2 \frac{c^3}{R}$ conductivity of iron wire 2 # c3 m Where q Rg2

= 6; and diam. conductivity of copper wire AB-

of 4 mm. wire = .000016 m.; $q = \frac{.000016}{.000016}$

= .00020106; whence R · · 00020106. 2 m m 375000, and

With relation to b:-

$$A = \frac{E^2 m^2 c^4 c_2^3}{[R g^2 + 2\pi c^3 m]^2}.$$

With relation to c:-

.00008555 I2 to C3 With relation to P :-

ELECTROMAGNETS—continued.

the accentuated quantities represent the values from a typical electromagnet; then With relation to the battery :-Let

$$\frac{n^2 e^2}{n \rho + r} = \frac{\sqrt{n \rho + r}}{\sqrt{n' \rho + r'}}.$$

$$\frac{n^2 e^2}{n \rho + r} = \left(\frac{.0225 \sqrt[3]{\sqrt{f^4 P^2}}}{\sqrt{f^4 P^2}}\right)^2 = M; \text{ and }$$

$$n = \frac{M^2 \rho}{2 e^2} + \sqrt{\frac{M^2 \rho}{2 e^2}} + \frac{M^2 r}{e^2}.$$

If i represent the number of series and h the number of each member of the series in parallel arc, the internal resistance becomes $\frac{1}{h} \cdot \rho$ and

 $ih = \frac{\rho}{e^2}$. M. Under these conditions,

$$c = e^{\frac{\sqrt{h i}}{\sqrt{\rho}}} \times 0.173.$$

Derivations.

same pole of the battery, the value of h i or of n will be the same as in the simple case, but multi-If x be the number of derivations from the plied by x.

For circuits of equal resistances the diameter the electromagnet should be proportional to

the e. m. f. For equal e. m. f. the diameter varies

V total res.

For given electromagnetic force, E a v res. For equal diameter, E a V res.

TELEGRAPH CONSTRUCTION.

(Ву R. S. Brough, Esq., M.S.T.E., Indian Telegraph Department.)

§ I. THE WIRE.

weight of unit of length of the wire; L = length of itself it can just support without breaking. Then $L=rac{\Gamma}{v}$ an absolute length which is constant Let T =breaking strain of the wire; w =

for any the same kind and quality of wire; and whose numerical value depends only on the unit of length adopted. For the ordinary soft iron wire employed in overland telegraphy,* $L = \frac{3\pi}{3}$ miles.

 $t = \frac{T}{z}$ and $l = \frac{L}{z}$; then $l = \frac{t}{w}$. When z = 4, Let t = working strain of the wire; l = lengthof the wire whose weight is equal to its working strain; and z = factor of safety; so that T

l = 4400 feet for soft iron wire.

being at a distance c below the vertex of the Cartesian equation to the Catenary, the origin

$$y = \frac{c}{2} \left(\frac{x}{\epsilon^{\alpha}} + e^{-\frac{x}{\epsilon}} \right).$$

Approximate equation to the Catenary: $x^2 = 2c (y - c) - \frac{1}{3} (y - c)^2.$

essentially on *quality* and temper, and it ranges from soft mon wire, which will carry 3 miles of itself, up to steel pianoforte wire, which will carry 16 miles of itself. * The strength of wire is extremely variable, depending

Telegraph Construction, by R. S. Broughcontinued

Equation to the Parabola:

$$x^2 = 2c(y-c)$$
.

In the neighbourhood of its vertex, the catenary differs but little from the parabola, whose focal distance is equal to half the modulus of the catenary.

from the equation t = y w. Hence the strain at the lowest point is least; and the strain at any other point is equal to the strain at the lowest point plus the weight of a piece of the wire, whose length is equal to the height of the point in Let p = strain at the vertex, then c w = p. The strain at any point of the catenary is found question above the lowest point.

In telegraphy it is the maximum strain, or that at the insulator, which is kept constant, and therefore the strain at the lowest point is variable. Hence we have frequently to deal with catenaries

FIRSTLY. When the points of support of the wire of different parameters. are on the same level.

d =the "dip" of the wire, or versed-sine Let a = the length of the span.

p =the strain at the lowest point of the of the curve.

the strain at the insulator. curve.

w = the weight of the wire per unit length.

s = the length of the wire in the span.

Telegraph Construction, by R. S. Broughcontinued. Let i = the angle made by the wire with the horizon at the insulator.

$$c = \frac{p}{\mathbf{w}} = \text{modulus of the catenary.}$$

 $l = \frac{1}{w}$ = the ordinate of the curve at the insulator.

$$\begin{cases} l = c + \frac{a^2}{8c} + \frac{a^4}{384 c^3} + \dots, \\ d = \frac{a^2}{8c} + \frac{a^4}{384 c^3} + \frac{a^6}{46080 c^5} + \dots \\ \text{Approximately,} \\ c = \frac{1}{7} \left\{ 4.1 + \sqrt{(3.1)^2 - 21\left(\frac{a}{2}\right)^2} \right\} \end{cases}$$

Given a and l, required d,

 $\frac{a^2}{8d} + \frac{c}{6}$ nearly.

d = l - c.

Approximately,

$$d = \frac{1}{7} \left\{ 3l - \sqrt{(3l)^2 + 2l \left(\frac{a}{2}\right)^2} \right\}$$

$$= \frac{a^2}{8l} \text{ nearly.}$$

Hence (1) the dip is rigidly the same for all gauges of any the same kind and quality of wire-

Telegraph Construction, by R. S. Broughcontinued.

and that (2) the dip varies approximately as the square of the length of the span. Roughly, for iron wire,

$$d = \left(\frac{a \text{ yards}}{100}\right)^2 \times 2.56 \text{ feet.}$$

.00 For maximum span d =

Strain at linear land
$$a$$
 and a , required b , $b = c + d$. Approximately, $b = \frac{c}{8a} + \frac{d}{6}$ $= \frac{a^3}{8a} + \frac{a^3}{6} + \frac{a^3}{8840} + \frac{a^3}{8840} + \frac{a^3}{8840} + \frac{a^3}{8840} + \frac{a^3}{8840} + \frac{a^3}{880} + \frac{a^3}$

* Can be measured by the "inclinometer" or "batter level,"

- nearly.

 $=a+\frac{1}{3a}$

Increment of dip due to small increment of
$$d = \sqrt{\frac{3}{8}a(s-a)}$$
 crement of $\delta d = \frac{3a}{16d}\delta s$

Elongation)

from
$$s' = s \left(1 + \frac{k}{z}\right)$$

where

- for soft iron wire Modulus of elasticity per unit of area Breaking strain per unit of area 25000000 lbs. per sq. in. 57000 lbs. per sq. in. 0.0023.

Roughly, iron stretches about 10000 of its length within a strain of 1 ton per square inch.

When z = 4, $\delta s = 0.000575 s$

or about 2 in thes per 100 yards.

Effect of charge of s' =
$$s(1 \pm nf) \{ 1 + e(t' - t) \}$$
 ture.

where f = the coefficient of dilatation. 0.00001235 per 1°C.

through which temperature changes. n = number of degrees

e = reciprocal of modulus of elasticity. = 0.0000004. In 100 yards span the dip varies about 1 inch per 6° Fah. change of temperature. Let b = the difference of levels and l = the ordinate of the curve at the higher point of support, then (l-b) = ordinate at lower point of support; and the modulus c can be found by a series of approximations from the equation:

$$a = c \log_{\epsilon} \left\{ \frac{\{l + \sqrt{l^2 - c^2}\} \{(l - b) + \sqrt{(l - b)^2 - c^2}\}}{c^2} \right\}$$

The distance of the lowest point of the curve from the lower support is given by

given by
$$x = c \log_{\epsilon} \frac{(l-b)}{\epsilon} + \sqrt{(l-b)^2 - c^2}$$

Approximately,

$$x = \frac{3 \cdot (21a^2 + 25b^2 - 18bl) - 2b\sqrt{3} \left\{ 24a^2(11b^2 + 18l^2) - 7(36a^4 + 27a^2bl + 4b^4) \right\}}{6(21a^2 + 25b^2)}$$

$$= a \frac{2(a^2 + b^2 - bl) - b\sqrt{2} \left\{ 2l(l - b) - a^2 \right\}}{2(2a^2 + b^2)}$$

$$= \frac{a}{2} - \frac{b(l - b)}{a} \text{ nearly.}$$

Having found the position of the lowest point of the curve, all the other particulars of the curve can be found by the preceding formulæ.

§ II. STRAINS PRODUCED BY WIRE,

Straight Line.—The whole vertical pressure on the supports of any line is obviously equal to the the the spans are equal, the vertical pressure on any one smooth pulleys, and hence the strains along the wire on opposite sides of the support are always equal. The resultant horizontal strain, if any, is support is equal to the weight of wire in one span. In erecting an "un-checked" wire, we have practically to deal with the case of a chord passing over whole weight of the wire on the line. When points of support are on the same level, and therefore

ore
$$P = (\cos i - \cos i) t,$$

where i and i' are the angles made by the wire with the horizon on opposite sides of the support. If, however, the supports be on the same level, and the spans be equal, then i = i', and the resultant horizontal strain is nil.

When the supports are not on the same level, the distance to set them apart in order to make i = i' can be calculated.

Angles,—Let θ = the angle contained by the

 ϕ = the supplement of the same. R = the resultant strain due to wire.

the wire.

Then

$$R = 2 t \cos \frac{\theta}{2} = 2 t \sin \frac{\phi}{2} = t \sqrt{2(1 - \cos \phi)}$$

when employed to support a wire of given weight By means of these formulæ the maximum angle can be calculated, thus: *

$$\phi = 2\sin^{-1}\frac{R}{2t}.$$

Terminals.—The horizontal strain on a terminal insulator due to the wire is

approximately. $P = t \cos i$

; III. STRENGTH OF POSTS.

Let P be the resultant strain at right angles to the post, whether due to change of direction of alignment, wind pressure, terminating of wires, &c., and let h be the height of the centre of pressure above the ground line, then the strength m required at the ground line must be at least such that m is not $< P \times h$.

If z be the factor of safety adopted, then

$$\frac{m}{z} = P.h$$

The strength of a post depends (1) on the form

* Measure radius = 57.3 feet from bottom of post; then, the number of feet in chord will approximately give the number of degrees in angle.—(W. P. Johnston.)

of its cross-section, and (2) on the material of which it consists.

Let d = depth of the post in direction of strain.b = width of the post at right angles to strain.

Then, generally,

 $m = k \cdot \frac{f}{\mathbf{D}} \cdot (\mathbf{B} \, \mathbf{D}^3 - b \, d^3)$ for hollow $m=k\cdot\frac{f}{d}\cdot b\,d^3$ for solid posts, posts of uniform thickness, Strength of

where k is a coefficient depending on the form of the cross-section, and f a coefficient depending on the material of which the post consists.

For rectangles (including squares), $k = \frac{1}{6}$.

For isosceles triangles (including equilateral triangles), $k = \frac{1}{24}$. For ellipses (including circles), $k = \frac{\pi}{32} = \frac{1}{10 \cdot 2}$. In the case of thin hollow posts,

m = 2k.f.t.D.(D + 3B)where t = thickness of the material.

The following are the values of the "modulus of rupture" in tons per square inch:*

* The modulus of rupture is eighteen times the load which is required to break a bar of 1 inch square, supported at two points 1 foot apart, and loaded in the middle.

Telegraph Construction, by R. S. Broughcontinued.

Values of f in tons per square inch.	18 to 20 13 18	13:	2 4
MATERIAL . 17 (13 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Wrought Irox (Clark). Solid bars, and circular welded tubes Circular riveted tubes of plate fron, with transverse joints double riveted	Casr Iron (Clark). Solid bars Tubes	Woop (Rankine) 3 to 4 Fir. Red Pine 4 " 5 " Spruce 2 " 4 Saul Larch 7 " 10 Teak 6 " 9

Posts of uniform strength may be designed by means of the following formulæ, x being the depth of the post in the direction of the strain at ground line, and d its depth at the top:

For solid
$$d = \frac{x}{2} \cdot b \cdot x^2,$$
For solid
$$d = \frac{x}{2} \text{ if } b \text{ be kept constant.}$$

$$d = \frac{3}{2} x \text{ if } b \text{ vary with } x.$$

§ IV. STAYS, STRUTS, &C.

Let P =the horizontal strain to which a post is subjected, and h =the height of P above the ground; then the resultant moment about the ground line is m = P.h.

from the direction of the strain, then the moment is reduced to m = P. $h \cos a$. If the post be sloped through an angle a, away

If P be the resultant of any number of strains $p p' p'' \dots$ acting at height $h h' h'' \dots$ above the p p' p'' ... acting at height $\hbar h' h''$... above the ground line, the place of application of the stay is given by the equation

$$\bar{x} = \frac{\Sigma(p,h)}{\Sigma(p)},$$

and the strain on the stay = $\frac{\sum (p)}{n}$ where θ is the cos. 9 angle it makes with the horizon. If the stay be applied below x at a height y above the ground, then $\Sigma(p)$ exerts a moment = $\{ \Sigma(p) (\bar{x} - y) \}$ about the place of application of the stay, tending to bend the post at that point.

If the stay be applied above z at a height w from the ground, then $\mathbb{Z}(p)$ will have a moment

 $= \mathbb{E}(p)^{\frac{x}{x}(y'-x)}$ about the place of application of the stay, tending to bulge the post below that point.

Which makes an angle β with the first direction of then $\mathbb{R}^z = \{ \mathbb{E}(p) \}^2 + \{ \mathbb{E}(q) \}^2 + 2 \{ \mathbb{E}(p) \}$ then $\mathbb{R}^z = \{ \mathbb{E}(p) \}^2 + \{ \mathbb{E}(q) \}^2 + 2 \{ \mathbb{E}(p) \}$. resultant strain in one direction be $\Sigma(p)$, and the resultant strain in another direction be $\Sigma(q)$ The stay should be always fixed in the vertical plane in which the resultant strain acts. If the making an angle a with the former direction, and

§ v. Pressure of Wind and Water.

 $\overline{2}$, and the pressure If the pressure on a flat surface of unit length and width a at right angles to the current be P, the pressure on a surface whose section is a right tri-

angle on the same base a is =

on a surface whose section is semicircular on the same base a is $= \frac{2}{3} P$; but practically in the last case the resistance has been found to be about = 3 P.

A fairly safe maximum wind pressure to be allowed for is 50 lbs. on the square foot,

Let p = the pressure per unit of length of the wire.

Then the strain on the wire at the insulator will be

$$t' = \left(\frac{a^2}{8d} + \frac{7d}{6}\right) \sqrt{w^2 + p^2} \cdot (1 + y) t$$

Or HELD

$$t = \frac{a^2 \sqrt{w^2 + p^2}}{2^{A}}$$
 nearly.

If t' = the new strain on the wire and t = the original strain on the wire, then

$$t' = \sqrt{1 + \left(\frac{p}{w}\right)^2} \times t \text{ nearly.}$$

ELECTRICAL FORMULÆ, &c.

By PAGET HIGGS, LL.D., C.E., and R. S. BROUGH. Units. (Electromagnetic.)

Unit of resistance = 107 mètre-second units. Онм:

potential = 105 mètre-gramme-33 VOLT:

quantity=10-2 metre-gramme current = 10-2 mètre-grammeunits. 99

capacity = 10-7 metre-second second units.

33

WEBER:

units.

Electrical Formula, by PAGET HIGGS, LL, D.; C.E., and R. S. BROUGH—continued. oralle Bir oppie

2. The measurement of resistance.

In the following let a and b be resistances in ratio-arms of bridge, w balancing, and x unknown redeminis = 10' miles registance.

i. By Wheatstone's Bridge: ... with . . Bit - (1 withouse he pier)

When measures with ± currents differ slightly, and w' is reading with + current, and w" ing with - current towards a and b,

$$x = \frac{b}{a} \cdot \frac{w'' + w'}{2}.$$

If the difference is greater,

$$x = \frac{b}{a} \cdot \left\{ \frac{w'' + w' - w'}{2} - N \frac{w'' - w'}{2} \right\}$$

 $x = \frac{b}{a} \cdot \left\{ \frac{w^n + w^n - w}{2} - N \frac{w^n - w}{2} \right\}$ let **E** = e. m. f. of battery, and e that in one of Henriy. the sides, s ==

$$N = \frac{b(w'' - w')}{b(w'' + w) + 2\{ab + f(a + b)\}},$$

Neglecting f, the battery resistance,

$$N = \frac{w'' - w'}{w'' + w' + a}$$

fi. By the differential galvanometer:

$$x=n'$$
 , w_i continued with x . Brought

Electrical Formula, by Pager Higgs, LL.D., C.E., and R. S. Brough—continued.

$$x = \frac{(w'' + w') \{ g + f(n + n') \} + 2nw'w''}{2 \frac{n'}{n} \{ g + f(n + n') \} + n'(w'' + w')}$$

$$e = \frac{n'}{2} \{ g + f(n + n') \} + n'(w'' + n') + \frac{n'}{2} \}$$
ste

wher

$$n=1+\frac{g}{s}$$
 and $n'=1+\frac{g}{s'},\ g=\mathrm{galv},$ and $s=\mathrm{shunt}$ resistance.

iii. By deflection method:

$$x = \frac{1}{n} \left[\frac{\mathbf{F}(d)}{\mathbf{F}(d')} \cdot \frac{\mathbf{E}'}{\mathbf{E}} \cdot \left\{ n \left(f + w \right) + g \right\} - g \right] - f',$$
where w is known resistance in circuit with de-

flection d, f, g, n, and E: x is resistance with deflection d', f', g, n', and E'.

If the resistances taken with \pm currents differ, the true resistance is

$$x = 2\frac{x_1 x_2}{x_1 + x_2}.$$

When measuring great resistances,

$$x = \frac{n}{n'} \cdot \frac{\mathbf{E}(d)}{\mathbf{F}(d')} \cdot \frac{\mathbf{E}'}{\mathbf{E}} \cdot (f + w).$$

When

$$s=s'=\infty\,,\,n=n'=1,$$

 $x = \frac{\mathbf{F}(d)}{\mathbf{F}(d')} \cdot \frac{\mathbf{E}'}{\mathbf{E}} \cdot (f + g + w) - (f' + g).$ LINE 2 Electrical Formula, by Pager Higgs, LL.D., C.E., and R. S. Brough—continued.

3. The comparison of electromotive forces.

i. By the deflection method:

$$\frac{\mathbf{E}'}{\mathbf{E}} = \frac{\mathbf{F}(d')}{\mathbf{F}(d)} \frac{n'(f' + w') + g}{n(f + w) + g}$$

ii. By the condenser method:

$$\frac{\text{Sin. } d'}{\overline{\text{E}}} = \frac{\sin 2 - n'}{\sin 2 - n'}$$

With the reflecting galv. d' and d may be put $\frac{d'}{2}$ and $\sin \frac{d}{2}$.

for sin.

iii. By Poggendorff's method: (Put $b = \infty$ in the bridge, and intercalate E in branch x):

$$\frac{E'}{E} = \frac{a+f'+w}{w} = \frac{(w-w')+(a-a')}{w-w'}$$

4. Measurement of the internal resistance of batteries.

 $F(d') \cdot (n'w' + g) - F(d) \cdot (nw + g)$ $n \cdot \mathbb{F}(d) - n' \cdot \mathbb{F}(d)$ i. By the deflection method:

Electrical Formulæ, by PAGET HIGGS, LL.D., C.E., and B. S. BROUGH—continued.

$$s = s' = \infty, n = n' = 1, \text{ and}$$

$$f = \overline{F(d') \cdot (w' + g) - F(d) \cdot (w + g)}.$$

$$\overline{F(d) - F(d')}.$$

ii. By Poggendorff's method:

$$f = \frac{w(a+w') - w(a'+w)}{w+w'}.$$

iii. By Thomson's method: (Shunt the battery f with shunts, and take reading through resistance w; remove the shunt, and increase the resistance to w' so that the original deflection is again produced. In the bridge make b = o, $x = \infty$, u = shunt, w = resistance):

$$f = s \frac{w' - w}{w + g}.$$

If we take s = w + g, then f = w' - w.

Connect battery with condenser or electrometer electrodes (if with con-By condenser or electrometer method: denser as in taking discharge), take deflection d; shunt battery with w, and take d'.

$$f = w\left(\frac{d}{a'} - 1\right).$$

iv. By the differential galvanometer (Latimer Clark):

When w = o, f = w'.

Electrical Formulæ, by PAGET HIGGS, LL.D., C.E., and R. S. BROUGH—continued.

5. The comparison of capacities.

$$S' = \frac{\sin \frac{d'}{2}}{\sin \frac{d}{n}} \cdot \frac{E'}{n} \cdot \frac{E'}{E}.$$
With the reflecting galv. d' and d may be put

for $\sin \frac{\omega}{2}$ and $\sin \frac{\omega}{2}$.

Standard-jar method: Let a = first discharge and $a_n = n \text{th}$ discharge deflection of standard condenser charged from S to be measured; \(\kappa = \) capacity of standard condenser; then

S =
$$\kappa \cdot \frac{n \sqrt{a_n}}{\sqrt{a} - \sqrt[n]{a_n}}$$
.
6. Line Testing. (Schwendler.)

Let W = measured circuit resistance.

w = measured conduction resistance.

Then the following inequality must hold, I = measured insulation resistance.

w < W < I

L = true conduction resistance of whole Let i = true insulation resistance.

line. L = L (a) (b) L = L (c) L = L (c) L = Lsultant fault.

r =true resistance of receiving instrument at distant station, corrected for temperature. Electrical Formula, by Pager Higgs, LLD., C.E., and R. S. Brough—continued.

Then

$$i = \sqrt{rac{{{\left({1 - W}
ight)}\left({1 - w}
ight)r} {W - w}}{{W - w}}}} \, .$$
 $L = I + rac{{{\left({1 - W}
ight)r} {W - w}}}{{W - w}} - 2\,i,$
 $i = I - i,$

and $\frac{l}{L}$ should be positive and less than unity.

When
$$l = \frac{L}{2}$$
, $i = \sqrt{1 (1-w)}$, $L = 2 (1-v)$ and $\frac{I(W-w)}{1-W}$ should be = r .

Let n = number of miles the line is in length,then insulation per mile = $n \times i$.

terms of the standard wire, then conductor resist-Let m = the "reduced length" of the line in

ance per mile = $\frac{L}{m}$.

7. Fault Testing.
i. Earths.

(a) Single Line. (A, + E)
Blavier's Formula:

$$x = w - \sqrt{(1-w)(L-\overline{w})}.$$

Schwendler's Formula:

$$x = I - \sqrt{\frac{(I - W)(I - w)r}{W - w}}.$$

Electrical Formulæ, by Pager Higgs, LL.D., C.E., and R. S. Brough—continued.

(b) Double Line.

Loop test. (Loop = w''; localization = w'.) a' b" w" - a" b' w' " (a' + b')

$$a'' = a' = a$$
, and $b'' = b' = b$, $x = \frac{b(w'' - w')}{a + b}$.

When
$$a = b$$
, $x = \frac{w'' - w'}{2}$.

Correction for "partial" earth (Schwendler):

Let $d = \frac{\text{resistance of fault to be localized}}{2}$ resistance of resultant fault

Then
$$x = \frac{a w'' - b w'}{a + b} (1 + d) - \frac{d w''}{2}$$
.

When
$$a = b, x = \frac{a + b}{2}$$

unit of conductor resistance, or total capacity \div total resistance when fault free; f = resistanceof battery; g of gals.; d = discharge deflection from cable; D from condenser of 1 unit cap.; = true resistance to break; R = measured resistance of cable and break; k = capacity perBy capacity (cable):—X = true resistance to

$$X = R - \sqrt[3]{R^3 - \frac{3d}{Dk}(g + R)(f + R)}$$

If resistance of break = o, two-thirds of charge return to charging end. Flectrical Formula, by Pager Higgs, LL.D., C.E., and R. S. Brough—continued.

If discharge reading (d) is in same direction as permanent deflection p, true discharge

$$= \sqrt{d^2 - 2dp}$$

if opposite = $\sqrt{d^2 + 2dp}$

ii. CONTACTS.

third wire is not available (Schwendler): (Distant ends looped = w'; distant ends insulated = w''.) (a) When a

$$=\frac{w'-\sqrt{L'+L''-w'(w''-w')}}{m'+m''},$$

where L' and L" are the absolute, and m' and m" the per mile resistances of the two wires in contact.

When
$$w' = w'' = w$$
, $x = \frac{w}{m + m'}$.

When $m' = m'' = m, x = \frac{2m}{2m}$.

(b) When a third wire is available (Higgins): earth, and by the loop the wires in contact to localize the "contact" as an "earth" test. See 7 i. (b).

iii. DISCONNECTIONS.

(a) By the insulation method:

$$x = \frac{1}{i}$$
. L.

Electrical Formula, by Paget Higgs, LL.D., C.E., and R. S. Brough—continued.

(b) By the capacity method:

where S = total capacity when fault free, and s = measured capacity, L being length of line.

8. When a line contains several different gauges of wire, to find the resistance per mile of any particular gauge (Schwendler);

$$x_a = rac{\Gamma}{d^2 a} rac{\Gamma}{2^n rac{l}{d^2}},$$

where $d_a =$ the diameter of the wire whose resistance is required.

9. The insulation of any cable is

$$I = \frac{k}{2\pi l} \log \epsilon \frac{D}{\epsilon} \operatorname{megohms}$$
$$= 0.3665 \frac{k}{l} \log \frac{D}{\epsilon} \operatorname{megohms},$$

where k is the resistance in megohms of a cubic unit of the insulating material.

length, k=2100 megohms at 75° F. for guttaperena, k=40950 megohms at 75° F. for Hooper's core. The insulation of any guttapercha cable where p varies from 700 to 300, according to the insulating property of the g.p. coating. As a is p (log. D - log. d) megolims per knot at 75° F., When the knot = 2029 yards is the unit of

OR ESSERBERS

Electrical Formula, by Paget Higgs, LL.D., C.E., and R. S. Brough—continued.

broad rule g.p. having high insulating properties, has also high inductive capacity.

10. The electrostatic capacity of any cable is

$$S = \frac{e \, l}{2 \log \cdot \epsilon \, d}$$
 electrostatic units,

where c = 1 for air, = 3.1 for Hooper's core, = 4.2 for guttapercha.

2 for guttapercha.
$$S = 2.7 \frac{sl}{D}$$
 microfarads per l knots,
$$\log \frac{1}{d} = \frac{1}{l}$$

where s is the inductive capacity of a cubic knot of the dielectric.

s = 0.0687 microfarad for guttapereha. s = 0.0543 microfarad for Hooper's core.

The electrostatic capacity in microfarads of a guttapercha cable is approximately per knot

$$\frac{k}{\log D - \log d},$$

where k varies from '1800 to '1400, the lower number corresponding to the lower figure for insulation given in (9), and vice versá.

11. The electrostatic capacity of an overland

line is
$$S = \frac{7}{2 \log_{10} 4 h}$$
 electrostatic units,

Electrical Formulæ, by Paget Higgs, LL.D., C.E., and R. S. Brough—continued.

where d is the diameter of the wire, and h its height above the ground.

$$S = \frac{l}{24 \log_{10} \frac{4h}{4h}}$$
 microfarads per l miles.

12. To measure the insulation of a cable by its loss of charge (Werner Siemens):

I = 0.4343
$$\frac{V}{V}$$
 megohms,
S $\log \frac{V}{v}$

where t is expressed in seconds and S in microfarads.

Res. per knot =

$$2.13 t \left(\frac{\log_r \frac{D}{d}}{\log_r \frac{V}{v}} \right)$$
 (in any units),

where V and v are potentials, and D and d diameters in any units.

To measure insulation of a core, or cable, by direct deflection (Thomson galvanometer):

$$\left(\frac{R\left(\frac{g+s}{s}\right)d}{d^{1}}\right) l = \text{insulation}$$

in millions of units, where l = length in knots, d = deflection with battery and R millions units

Electrical Formula, by PAGET HIGGS, LL.D., C.E., and R. S. BROUGH—continued.

and $\frac{g+s}{m}$, and d^n deflection with cable; g being galv., and s shunt resistance.

$$\left(\mathbb{R}\left(\frac{g+s}{s}\right)d\right) = constant of instrument.$$

13. The retardation characteristic of any cable is (Thomson)

$$a = \frac{k \, c \, l^2}{\pi^2} \log \cdot \epsilon \left(\frac{4}{3}\right),$$

where l is its length, k its resistance, and c its The retardation is a minimum (for a given D) capacity per unit of length in electrostatic units.

when D = 1.649 d. When k is expressed in ohms, c in microfarads, and l in knots (Jenkin),

$$a = \frac{0.02332}{10^6} k c l^2 \text{ seconds};$$

and the speed of signalling with mirror is, in words per minute (Clark and Sabine),

$$n = \frac{130,000,000}{k \, c \, l^2}$$
 through guttapercha cables;

=
$$\frac{176,000,000}{k c l^2}$$
 through Hooper's cables.

The speed of the Morse is about one-fifteenth Dot takes .27 sec. at that of Thomson's Mirror. fifteen words per minute. 14. The weight of metal deposited from the

Electrical Formula, by Pager Higgs, LL.D., C.E., and R. S. Brough—continued.

solution of any of its salts by a current of C webers in t seconds is

n = 0.00001 C t grammes,

to that of hydrogen as unity. One weber of elecwhere a is the atomic weight of the metal referred tricity decomposes · 00142 grain of water.

must be multiplied by — to reduce it to — per minute:	Cubic Milli- Milli- Milli- Mag- c.m. grams grams grams netic water- water copper silver units.	1.865 3.522 11.99 1.786 0.524 0.2839 0.9579 0.524 0.2839 3.405 0.5071	91.972 6.714		
	Cubic Milli- c.m. grams water- gases.	and the same of th	1.044 0.55991.972		
A current strength which is measured in	per minute	Cubic c.m. water-gases Milligrams water copper silver Magnetic measure:	M. m. * mgr. *		

(Kohlrausch.)

15. The heat developed in a circuit of resistance r ohms in t seconds by a current of C webers is $H = 0.2405 C^2 r t \text{ calories.}$

16. The work done in a circuit of resistance r ohms in t seconds by a current of C webers is $W = 101.92 \,\mathrm{C}^2 \, r \, t$ grammètres.

17. The electromotive force of Daniell's element

Electrical Formula, by Pager Hiers, LLD., C.E.,

= 1.079 volts; of Bunsen's = 1.88 volts; of Marié-Davy's = 1.524 volts; and of Leclancke's = 1.48 volts.

18. The resistance of one Siemens' mercury unit = 0.9536 ohm. (B. A. Report.) The resistance of one ohm = 1.0493 S. U.

19. Copper weighs about 559 lbs. per cubic foot.

A prism of pure copper one metre long and one square millimètre in section weighs about 8:95 grammes; and its resistance is about 0.01642 ohm at 0°C, and increases about 0:388 per cent, per 1°C. (Maxwell.)

The resistance of a prism of pure copper one mètre long and weighing one gramme is about 0.14696 ohm at 0° C. The weight per knot of a telegraphic pure copper wire is 18430 d^2 , d being taken in decimals of an inch. The diameter of a pure copper wire, weighing v 1bs. per knot, is 7.866 V mils. The resistance per knot of a pure

copper wire, weighing w lbs., is w 1250.4 Siemens' units at 75°F.

20. Guttapercha weighs about 61 lbs. per cubic

The resistance of a cubic knot of guttapercha is 2100 megohms at 75° F., and its capacity about 0.0687 microfarad. The weight of guttapercha Electrical Formula, by PAGET HIGGS, LL.D., C.E., and R. S. BROUGH—continued.

per knot in any core is approximately $\frac{D^2 - d^2}{d^2}$ lbs., where D is outer and d inner diameter of The diameter of a guttaper knot, and g.p. weighing W lbs. per knot, is percha core with solid conductor weighing w lbs. √54.3 w + 486 W mils. sheath in mils.

Let w' = resistance of guttapercha at t'° **F**., w'' = resistance of guttapercha at t'° **F**, then $\log \cdot w' = \log \cdot w' - (t'' - t') \log \cdot 0.0399$.

21. Hooper's material weighs about 734 lbs. per cubic foot.

The resistance of a cubic knot of Hooper's material is 40950 megohms at 75° F, and its capacity about 0.0543 microfarad, 22. Iron weighs about 481 lbs. per cubic foot. Sp. gr.

The resistance of a prism of soft iron one metre long and one square millimetre in section is about 0.096 ohm at 0° C,, and increases about 0.7 per cent. per 1° C.

The resistance of a prism of soft iron one mètre long and weighing one gramme is about 0.7392 ohm at 0° C.

The resistance of 100 yards No. 8 iron wire is roughly one ohm.

23. German silver weighs about 530 lbs. per

eubic foot. Sp. gr. 8·5.
A prism of German silver one mètre long and

Electrical Formula, by PAGET HIGGS, LL.D., C.E., and R. S. BROUGH—continued.

one square millimètre in section weighs about 8.5 grammes; and its resistance is about 0.206 ohm at 0° C., and increases about 0.04 per cent. per

The resistance of a prism of German silver one weighing one gramme is about mètre long and

1.75 ohms at 0° C.

gravity is s, and which weighs w grammes per mètre, is 24. The diameter d of any wire, whose specific

$$d = 1.12865 \sqrt{\frac{w}{s}}$$
 millimetres,

and its sectional area a is

$$a = -\frac{w}{s}$$
 square millimetres.

25. The length of wire on a circular bobbin is

$$L = \frac{\pi b}{4 d^2} (A^2 - a^2),$$

where d = diameter of wire, including silk covering; b = length of bobbin; and A = outer diameter of bobbin

Winding coils: Let c = specific conductivity ofwire, that of pure copper being unity at 0° C.; $\tilde{l} =$ average length of convolution in inches; m = area in square inches of a semi-section of the coil (that is the sectional area of the space to be filled with wire); s = thickness in inches of insulating covering; G = resistance of coil in ohms; r = radiusmeter and a = inner diameter of bobbin.

Electrical Formula, by Pager Higgs, LL.D., C.E., and R. S. Brough—continued.

method of coiling, generally = 4; γ = (constant) = '0000001; d = diam. required in inches: of wire in inches; $\dot{a} = \text{constant depending on}$

then
$$G = \frac{\gamma l m}{2 r^2 (r+s)^2 c} = \frac{\cdot 00000002 \, l \, m}{a \, r^2 (r+s)^2 c}$$
;

$$r^{2}(r+s)^{2} = \frac{\gamma^{l}m}{2Gc}; r = \sqrt{\frac{\gamma^{l}m}{2Gc} + \frac{8^{2}}{4}} - \frac{1}{4}$$

and as s is generally very small,

$$r = \sqrt{\frac{\gamma \ell m}{2 Gc}} - \frac{s}{2}$$
 and $d = \sqrt{\frac{\gamma \ell m}{2 Gc}} - s$.

26. To test a telegraph earth (Schwendler):

the three pairs of negative Take two auxiliary earths, and measure the earths. (The mean of positive and readings to be taken.) resistance between each of

Let x be the required resistance, and a, b, and c the three observed resistances, then

$$x = \frac{a+b-c}{2}$$

By the tangent galvanometer:
$$x = \frac{f+g}{2}$$
, $\tan a^{\circ} \left(\frac{1}{\tan b^{\circ}} + \frac{1}{\tan a^{\circ}} - \frac{1}{\tan b^{\circ}} \right)$

where f and g are respectively = the resistances of the testing battery and galvanometer: and the deflections obtained are: with no external re-

Electrical Formula, by Pager Hogs, H.D., C.E., and R. S. Brougen—continued. THE PROPERTY

earth = c° ; with earth to be tested and second auxiliary earth = d° ; and with two auxiliary earths = e° . (The mean of the readings with positive and negative test currents to be taken.) sistance = a° ; with leading wires only in circuit = b° ; with earth to be tested and first auxiliary

27. The best resistance for a receiving instru-ment on an overland line is (Schwendler)

where L = true conductor resistance of line.

The best resistance for a cable receiving instrument is $r = \frac{L}{4}$ for relays of medium sensitiveness.

28. Let the small letters be expressed in electrostatic units, and the large letters in electromagnetic units, then

Dimensions of
$$q: m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-1}$$
 $q = v;$

$$q: m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-1}$$

$$q: m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-\frac{1}{2}}$$

$$q: m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-\frac{1}{2}}$$

$$q: l^{-1} l$$

Electrical Formula, by Pager Higgs, LL.D., C.E., and R. S. Brough—continued.

Dimensions of
$$e$$
 : $m^{\frac{3}{2}} {l^{\frac{3}{2}} t^{-1}} \Big|_{\overline{\Sigma}} e^{-1} \Big|_{\overline{\Sigma}} = \frac{1}{v}$; \overline{E} : $m^{\frac{3}{2}} {l^{\frac{3}{2}} t^{-2}} \Big|_{\overline{\Sigma}} = \frac{1}{v}$;

 $v = about 3 \times 10^8$ metres per second.

33

29. The range of any receiving instrument is

$$C'_{n} = \frac{p(qf + r + w)}{q(pf + r)},$$

ance added; f = resistance of mean cell; p = number of cells employed to produce strong current U'; and q = number of cells employed to produce weak current U'. where r = resistance of instrument; w = resist.

30. To correct wire resistance for temperature:

$$R_{t'} = \frac{1 + (t' - 32) \alpha}{1 + (t - 32) \alpha} R_{t}$$
, Fahrenheit, $R_{t'} = \{1 + (t' - t) \alpha \} R_{t}$, Celsius,

1 sq. mm. = 0.00155 sq. in, log. $0.00155 = \overline{3}.1903317$, 1 sq. in. = 645·148 sq. mm. $\log.645.148 = 2.8096594$.

Electrical Formulæ, by PAGET HIGGS, I.L.D., C.E., and R. S. BROUGH—continued

1 grain = 0.064799 gramme.

15.43235 grains. 2.8115683. log. 0.064799 = l gramme =

1.1884320.

log. 15.43235 =

.9382344), 3.3072820). 4.6927588). (log. 3.0383585). 1.79335730.2066370 (log. 0.2684141 1.7315888 0.06175404.9611362 per yard. grains per foot. = lbs. per knot. 33 99 66 (log. Clog. (log. (log. (log. (log. (log. 13:16 log. kiloms. kiloms. knots knots knots yards = miles vards 33 miles 9698.0 380 5.146 611.41 × 13-41951 4.0894.70381.609314 2029 0.62138241.85528 0.867422370.00049291093.633 0.539001 1.152840009144X grms. per mètre x X mètrex " mètre x ", foot grms, per yard grains per foot " yard ozs. (av.) × × X kiloms. kiloms. kiloms. knots knots Vards knots yards miles miles 66 99

Copper resistance per knot at 75° F. × resist, per kilom, at 15° C.

C. R. at 15° C. per kilom. $\times 1.9176 = C$. R. at 75° F. per knot. Electrical Formula, by PAGET HIGGS, LL.D., C.E.

continued.

element = 10° for 1 volt through 1 ohm, or 1 volt-ohm uses $\frac{30.00}{30.00}$ gramme of zinc and does 10° absolute units of work per second. 1 $\mathbb{R} = 746$ galvanic volt-ohms, and is equivalent to the consumption of 149 grammes of zine per second in a Daniell's R for a element = 107 for 1 volt through 1 cell, or 895.2 grammes per hour. 33. Rate of doing work =

potentials at M and N, and x potential at X. If r be the resistance between M and X, r_1 between X and N, and R between M and N = $r + r_1$, 34. Potential at any point of a conducting an intermediate point. Let m and n be given series: Let M N be the conductor length and X

then $x = \frac{r_1 m + r n_0}{R}$

35. When a cable insulated at both ends is charged by a battery, the potential of the charge will be the same at all points of its length, and if the eable towards the ends, this point will keep its potential a maximum above all other points in the cable length. But with a cable charged with one end to earth, the curve of fall of potential will be a parabola, two-thirds of the charge returning to the two ends are put simultaneously to earth the charges flowing out of them will be equal; and since the flow is from the middle point of the charging end.

36. When a cable whose farther end is to earth is charged by a battery whose resistance is small Electrical Formula, by PAGET HIGGS, LL.D., C.E.continued.

compared with the resistance of the conductor of the cable, the charge it will take will be directly proportional to its length. If the resistance of the battery is large compared with that of the conductor, the charge the cable will take will be directly proportional to the square of its length. When two or more cables whose farther ends are currents flowing through them are the same, the charges will be directly proportional to the squares to earth are charged so that the strengths of of the lengths.

resistance will be $dr = \frac{\pi}{2\pi l x \lambda}$, and the whole 37. If dx = thickness of differential cylinder at distance x from longitudinal axis of cable, its dx

resistance of length l =

$$\frac{1}{2\pi l \lambda} \int_{r}^{\mathbf{R}} \frac{\mathrm{d}x}{x} = \frac{\log \epsilon_{r}^{\mathbf{R}}}{2\pi l \lambda},$$

A being the specific conductivity.

a central electrode of radius ρ to the periphery of The resistance to the flow of electricity from a regular polygon of n sides is

$$\frac{1}{2\pi k \delta} \left(\frac{\log \cdot \frac{r}{\rho} \cdot \frac{4}{3 + \cos \frac{\pi}{n}}}{1 + \cos \frac{\pi}{n}} \right);$$

Electrical Formula, by PAGET HIGGS, LL.D., C.E. continued. r being the radius of the inscribed circle, 8 the thickness of the plate,

ance, S = current sent, and R = current received; 39. Percentage loss of current: Let k = totalconductor resistance; g = total insulating resist-

$$R = \frac{1}{e\sqrt{\frac{k}{g} + e - \sqrt{\frac{k}{g}}}}$$

the cable, and only dependent on the ratio of the total resistances of conductor and dielectric. The which gives a result independent of the length of percentage of loss is

$$P = 100 (1-R) = 100 \left(1 - \frac{2S}{e\sqrt{\frac{R}{1} + e - \sqrt{\frac{R}{1}}}}\right)$$

40. In the case of a wire excentrically placed, the electrostatic capacity =

$$\frac{1}{2^{\log\epsilon} \cdot \frac{R^2 - f^2}{R R'}},$$

I being the specific inductive capacity, R = inner radius of conducting sheath, R' radius of wire (of Electrical Formula, by PAGET HIGGS, LL D., C.E. continued. which R must be a considerable multiple), f =distance between axes of R' and R, where

is usual concentric form.

41. To reduce current flowing through galvanometer to its th part, insert a shunt whose $\frac{1}{n-1}$ th part of g. The compensating resistance is -

resistance will be
$$g \frac{n-1}{n} = \frac{g^2}{g^2}$$
.

42. Correction for readings on mirror galv.:

$$s_1: s_2: d_2(\sqrt{z^2 + d^2}_1 - z): d_1(\sqrt{z^2 + d^2}_2 - z)$$

 $d = \text{defection}: z = \text{distance of mirror from scale}$
in divisions of scale.

43. The log. of amplitude of a vibration that next following

logarithmic decrement. If C, is amplitude of 1st and Cn that of nth vibration, then

$$\lambda = \frac{1}{n-1} \log_{\epsilon} \left(\frac{C_1}{C} \right).$$

Electrical Formulæ, by Pager Higgs, LL.D., C.E. continued.

44. Tension spark in air:

Distance.

Electrostatic

of Perf. Units = α .	31.848 of 9 .2.30	3.26	4.26	49. grantos est 2 . 64	6.18	8,11	Stiff S 0. 8-15	69.6	12.20		17.36	= Daniell's clemen
Centimètre,	9800.	.0127	0610.	. 0281	.0408	. 0563	1860:	8890.	.0904	1056	.1325	tonson).

45. Measurement of short intervals of time: By discharge of condenser: f = capacity of condenser in microfarads; R = its insulation resistance : P =potential before, p = potential after time t (seconds),#/c000

$$f \log_{\epsilon} \frac{P}{p}$$

between condenserterminals in fraction of megohms. If R be infinite where r is resistance inserted to r, then $t = rf \log \cdot \epsilon \frac{P}{p}$.

By fall of charge on electrometer: Pand p are the electrometer readings before and after the time t. very minute intervals of By taking r small,

Electrical Formula, by PAGET HIGGS, LL.D., C.E. continued.

time may be more accurately measured than by any mechanical chronograph, it being arranged that during the time t the condenser is made to discharge through r, its potentials (P) before and after (p) being measured in the ordinary manner.

46. Table of Resistances at 0° C. (Jenkin.)

8:3	L 8 L 4 O L H 4
One mètre by 1 mm. diameter.	0.01937 0.02057 0.02057 0.02057 0.02650 0.02650 0.02650 0.02650 0.0166 0.1166 0.1161 0.1251 0.1501 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251
One	
foot 01"	9 9 9 3 6 9 9 1 5 1 1 1 2 1 2 1 4 1 1 2 1 2 1 2 1 2 1 2 1
One foot by .001" diameter.	9.93 9.15 9.91 9.91 12.52 12.52 12.74 17.72 17.73 80.36 80.36 80.36 19.39 19.39 114.3.35
ing ing	444 400 669 880 880 880 74 74 74 74 74 74 74 76 76 76 76 76 76 76 76 76 76 76 76 76
One mètre weighing I gramme	0.1544 0.1689 0.1480 0.1480 0.4150 0.4150 0.0576 0.0576 0.3983 0.454 0.9184 0.9
	414960 6 0 86
Wire, 1 ft. Weighing 1 grain.	0.2214 0.2421 0.2464 0.2064 0.58496 0.58496 0.6829 0.0682 3.2536 1.0785 1.0785 1.0785 1.8740 4.243
We	24 4 18 19 19 19 19 19 19 19 19 19 19 19 19 19
	:#:#:: : : : : : : : : : : : : : : : :
	and drawn hard drawn hard drawn hard drawn hard drawn healed tid drawn tium, an-{ tessed sesed annealed annealed annealed annealed annealed; thquid thquid thquid alloy) silver silver
	nneal rd nneal rd nneal rd nneal rd l dr. lin, in, in an easter nneal real rd. linguistic real real rd. linguistic real real real real rd. linguistic real real real real real real real real
	Silver, annealed hard drawn Gold, annealed hard drawn Gold, annealed hard drawn Aluminium, an- lead, pressed Plathum, annealed I'm, pressed I'm, pressed Blathum, annealed Antinony, pressed Aluminy, pressed Aluminy, pressed Aluminy, pressed Antinony, pressed Antino
	iver in the paper
	G PREPLINITE A G C SI

The resistance of silver varies about 0.377 per 20° C., of copper 0.388 per cent., of mercury .072 per cent., of platinum-silver .031 per cent., and of German silver .044 per cent. cent. for 1° C. at

Electrical Formulæ, by Pager Higgs, LL.D., C.E., and R. S. Brough—continued.

temperature for converting the resistance of Copper Wire measured at 80° F. to the corresponding resistance, at any temperature between 60° and 110° F. This Table can be used for 75° F. as &c., on the with 10,000, on the 22 by shifting column to correspond resistance columns. standard TABLE

	0.0000000000000000000000000000000000000
000'06	36566 36738 36909 37081 387253 87253 877596 877596 8877596 887759 887768 88878111 88878 8878
000,08	6948 7109 7109 7109 7111 7111 7111 7111 7111
000'02	7329 7463 7463 7463 7753 7753 7753 7753 7753 7753 7753 77
000'09	77111 6 7825 6 7940 6 8054 6 8169 8 8283 8283 8283 8283 8283 8 8512 8626 8871 8 8741 8885 8885 8885 8885 8885 8885 8885 88
000'09	(192 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	2555 486 5555 686 586 586 586 586 586 586 586
2	555 3 113 3 110 3 110 3 110 3 110 3 110 6 110 6
	337 288 175 288 151 29 150 20 150 20 150 20 150 20 150 20 150 20 150 20 150 20 150 20 20 20 20 20 20 20 20 20 20 20 20 20 2
	28 192 238 192 238 192 24 195 25 195 26 195 26 196 27 1 199 27 1 199 27 1 199 28 199 2
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	000,07

11. 1

by PAGET HIGGS, LL.D., C.E., Electrical Formulæ, by Pager Higgs, Li and R. S. Brough—continued.

						the state of the s
PPER	000'06	017 034 051 068 085	15 13 17 17 17 17 17 17 17 17 17 17 17 17 17	91889 92060 92232 92404 92575	0,00,00,00	93777 93777 93949 94121 94292 94636 94807 94979
of COPPER	000'08	803053 80305 80458 80610 80763	80916 81068 81221 81374 81526	816;3 81831 81984 82137 82289	82442 82594 82747 82900 83052	3356 3366 3366 3366 412 4427 4427
	000'02	013 026 040 053 066	708801 70935 71068 71202 71335	146 160 173 173 187 200	72137 72270 72404 72537 72671	
resistance	000'09	011 022 034 045	008000000000000000000000000000000000000	125 137 148 160 171	61831 61946 62060 62175 62288 62288	251 251 251 274 286 286 297 390 390 343
the resist	000'09	00000	057 066 076 085 095		51526 51621 51717 51812 51928 52003	2009 2009 2009 2009 2009 2009 2009 2009
100	000'07	000000000000000000000000000000000000000	68 61 76	83 91 99 14	41221 41297 41374 41450 41526	41679 41755 41831 41908 41984 42060 42060 42137 42289
converting WIRE-	900,08	30057 30114 30172 30229 302 ·6	51 51 51 51 51 51 51 51 51 51 51 51 51 5	90 90 80 80 80 80 80 80 80 80 80 80 80 80 80	30916 30973 31030 31087 31145	31259 31259 31314 31431 31488 31545 31545 31560
for co	000'07	003	03 00 00 00 00 00 00 00 00 00 00 00 00 0	20458 20458 20496 20534 20572	20610 20649 20687 20687 20725 20763	883 999 110 110 110
ABLE for	10,000	000 000 000 000 000	00000	$\begin{array}{c} 10210 \\ 10229 \\ 10248 \\ 10267 \\ 10286 \end{array}$	10305 10324 10343 10362 10382 10382	042 042 045 045 049 051 052 053
LA.	Temp. F.	83 83 85 85	888 84	91 93 94 95	96 66 60 00 00 00 00 00 00 00 00 00 00 00	1008 4 50 0 50 10 0 10 0 10 0 10 0 10 0 10 0

Telegruph Construction, by R. S. BROUGH.

IRON WIRE.

Ratio of resistance to	that of No. 1 wire.	1.000	1.148	1.331	1.440	1.562	1.860	2.041	2 • 250	2.630	3.114	3.746	4.054	4.592	2.160	1.438	8.163	9.972	12.457	16.000,	18.367		
Breaking strain of soft	iron wire in pounds.	4000	3400	2900	2700	2500	2200	2000	1800	1520.	1200	950	006	820	650	510	450	400	350	300	200	150	- 111
Weight ber	yard in pounds.	0.6875	0.2990	0.5165	0.4800	0.4400	0.3700	0.3409	0-3056	0.2615	0.2210	0.1836	0.1704	0-1497	0.1195	0.0924	0.0852	0.0705	0.0551	0.0429	0.0322	0.0284	100
Diameter in	inches.	0.300	0.580	0.260	0.250	0.240	0.220	0.210	0.500	0.185	0.170	0.155	0.149	0.140	0.125	0.110	0.102	0.095	0.085	0.075	0.065	190.0	N. Level
	B. W. G.	1	67	8	331	4	2	19	9	1-	00	6	¥6	10	11	12	123	13	14	15	16	11	

Note.—The resistance per mile of No. 1 wire is about 5 ohms at 80° Fah.

Telegraph Construction, by R. S. Brough continued.

DIP OF SOFT IRON WIRE AT QUARTER BREAKING STRAIN.

Dip in feet.	71.62 86.52 86.52 86.52 86.52 86.52 102.64 111.31 111.31 112.33 114.65 114.65 114.65 114.65 114.65 114.65 115.65 116.64 117.65 1
Span in feet.	15.75 15.75 17.25 17.25 17.25 18.05 18.05 18.05 18.05 18.05 17.5 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2
Dip in feet.	1.33 1.54 1.98 2.56 2.56 2.56 2.76 10.26 110
Span in feet.	225 240 240 254 330 332 333 335 335 525 600 675 675 1050 1126 1126 1126 1125 1126 1125 1126 1125 1126 1125 1126 1125 1126 1125 1126 1125 1126 1125 1126 1126

MOLESWORTH'S POCKET-BOOK

GILBERT'S TABLE—(Ordinary Calenary). x = 100 = half span.

			x = 100 = nair	span.			-
T	c = moduius.	$d \equiv \text{dip.}$	s = length of wire.	=ordinate at insulator.	90	°-i°.	
Telegraph Construction—continuous	2000 1950 1950 1900 1860 1800 1750 1650 1650 1450 1400 1350 1300 1250 1200 1150 1150 1150 1150 1150 1200	2·500511 2·564593 2·632163 2·703298 2·773421 2·957914 3·031204 3·125974 3·226852 3·334558 3·449618 3·572907 3·705344 3·847958 4·002035 4·168981 4·360543 4·548545 4·76C440 5·004084 5·106408	100·041474 100·042440 100·045727 100·047540 100·050168 100·055166 100·064318 100·064421 100·063245 100·07839 100·07839 100·097440 100·097440 100·105463 100·114680 100·125801 100·150553 100·150553 100·155906 100-173025	2002·500511 1952·564593 1902·632163 1802·778421 1752·857914 1702·942018 1663·031204 1603·125974 1553·226852 1503·334558 1453·449618 1403·572907 1353·705344 1303·847958 1254·002035 1204·168981 1154·350543 1104·548545 1054·7765440 1005·004084 985·106408	87 87 86 86 86 86 86 86 86 85 85 85 85 85 85 84 84 84	8 3 59 54 49 43 37 31 25 18 10 3 54 45 35 25 13 1 47 33 16 9	"11 46 8 15 6 40 53 46 16 21 59 6 39 35 45 16 51 26 51 54 8 49

ORDINARY CATENARY-continued.

T	c = modulus.	$d \equiv \text{dip.}$	s = length of wire.	l=ordinate at insulator.	9	0°—i°.		
					0	9	: 11	
1	960	5.213007	100.180582	965 • 213007	84	2	13	
4	940	5.324098	100.188974	945 324098	83	54	58	
	920	5.440045	100.196191	925 · 440045	83	47	4	
1	900	5.561266	100.205825	905.561266	83	38	48	
	880	5.687876	100.214837	885 • 687876	83	30	11	
1	860	5.820479	100.225255	865 · 820479	83	21	. 9	
1	840	5.959364	100.235949	845 • 959364	83 -	11	42	
	820	6.105033	100 · 247321	826 • 105033	83	. 1	47	
1	800	6.258102	100.260296	806 • 258102	82	51	23	
1	780	6.418938	100.273356	786.418938	82	.40	28	
1	760	6.588360	100.288153	766 • 588360	82	:28	57	
	740	6.767004	100.304328	746.767004	82	16	50	
1	720	6.955577	100.321527	726 • 955577	82	. 4	3	
1	700	7.154926	100.339869	707 • 154926	81	50	33	
î	680	7.366193	100.360765	687 · 366193	81	36	15	
1	660	7.590181	100.382517	667 · 5901×1	81	21	6	
	640	7 · 828368	100.407143	647 · 828368	81	5	. 1	
	620	8.081923	100.433570	628 • 081923	80	47	54	
	600	8 · 352608	100.463404	609.352608	80	29	40	
и.	580	8.642033	100.495985	588.642033	80	10	11	
и.	560	8.952299	100.532176	568 952299	79	49	27	
	540	9.283888	100.562366	549 283888	79	27	2	
	520	9.645021	100.617335	529 • 645021	79	2	56	
	500	10.033315	100.667683	510.033315	78	36	59	
	480	10.454508	100.725490	490.454508	78	8	55	

A

OF ENGINEERING FORMULÆ,

ORDINARY CATENARY—continued.

	T	c = modulus.	d = dip.	s = length of wire.	l=ordinate at insulator.	90°1°	
MOLESWORTH'S POCKET-BOOK	Telegraph Construction—continued.	c=modulus. 460 440 420 400 380 360 340 320 300 280 260 240 220 180 160 140 120 100	d = dip. 10 · 912412 11 · 412622 11 · 961025 12 · 565207 13 · 233994 13 · 978365 14 · 812141 15 · 752501 16 · 821529 18 · 047685 19 · 468993 21 · 126437 23 · 118850 25 · 525175 28 · 559946 32 · 280531 37 · 288541 44 · 134402 54 · 308027	100·789382 100·863052 100·947150 101·044792 101·158163 101·290757 101·447796 101·635337 101·862069 102·139232 102·483745 102·893226 103·473548 104·219022 105·343499 106·638654 108·722538 111·982596 117·520071	470 · 912412 461 · 412622 431 · 961025 412 · 565207 333 · 233994 333 · 978365 354 · 812141 335 · 752501 316 · 821529 295 · 047685 279 · 46893 261 · 126437 243 · 118850 225 · 525175 208 · 559946 192 · 280531 177 · 258541 164 · 134402 154 · 308027	96°-4° 77 38 77 5 76 29 75 49 75 5 74 17 73 32 72 22 71 14 69 57 68 29 66 47 64 48 62 28 59 39 56 19 52 10 46 58 40 23 38 23	28 23 6 22 35 7 10 46 44 31 13 38 38 34 43 0 2 2 48
OLESWORTH'S		240 220 200 180 160 140 120	21 · 126437 23 · 118850 25 · 525175 28 · 559946 32 · 280531 37 · 258541 44 · 134402	103.473548 104.219022 105.343499 106.638654 108.722538 111.982596	243 · 118850 225 · 525175 208 · 5559946 192 · 280531 177 · 258541 164 · 134402 154 · 308027	64 48 62 28 59 39 56 19 52 10 46 58 40 23	38 34 43 0 2 48 48 42
354 M	Tele	95 90 85 80 75	57 · 674415 61 · 511583 65 · 852160 71 · 673875 77 · 147407 84 · 433443	119·517684 121·884206 124·624934 128·153485 132·377616 137·657866	152·674415 151·511583 150·852160 151·073875 152·147407 154·433443	38 28 36 26 31 17 31 58 29 32 26 55	34 44 3 28 2 4

Telegraph Construction, by Pager Higgs, LL.D., C.E.

Table for calculating Inner and Outer Diameter of Iron Sheathing.

Rule: Multiply diameter of wire by constant corresponding to number of wires. The diameter of wire may be in mils, inches, or millimetres. To use this table for outer diameter of strand, take the number of wires around the central for entry. The inner diameter is obtained from the outer diameter by subtracting 2.

-					
No. of Wires.	Outside Diameter.	Log.	No. of Wires.	Outside Diameter.	Log.
co	2.155	0.33345	17	6.442	0.80889
4	2.414	0.38274	18	6.759	0.82988
2	2.701	0.43152	19	7.075	0.84973
9	3.000	0.47712	20	7.392	0.86876
2	3.305	0.51917	21	4.709	0.88672
00	3.613	18156.0	22	8.027	0.90455
6	3.924	0.59373	23	8.344	0.92137
10	4.236		24	8.661	0.93757
11	4.549	0.65792	25	8.979	0.95323
12	4.864	66989.0	56	9.296	0.8830
13	5.179	0.71425	27	9.614	0.98590
14	5.494	0.73989	28	9.931	66966-0
15	2.810	17	29	10.249	1.01072
16	6.126	0.78718	30	10.267	1.02407

Telegraph Construction, by PAGET HIGGS, LL.D., C.E. Table for Calculating Hemp and Asphalte Areas and Weights.

	TABLE	Α.	TABLE	E B.
Are Sheat is	Area of section in Sheathing = $d^2 \times d^2$ is diam. of sing	n inside Iron 2 × a where d single wire.	Areas for Asphalte Casings.	nalte Casings.
No.	α.	Log.	Jr.	Log.
es	0.04031	2.6054128	2.396505	0.3795783
4	0.21460	1.3316297	3.356194	0.5258470
20	0.54238	1.7343037	146937	.650246
9	272	388	.7396	158887
100	19.	222823	7.168203	0.8554103
000	3.43292	0.5356637	.5015	.021251
10	.552	58261	2.40659	-093652
11	.831	0.7657691	.4707	160490
12	.2691	0.8614860	6.6939	.222558
13	.8660	773	9.00	.280493
14	.6221	.02621	1.61768	.334808
15	2.231,5	.098202	.31824	.38593
16	4.611	164696	17794	•434216
11	6.8450	.2264	1961	47896
18	.2375	.284150	.37475	52
19	21.78931	1.3382435	36.711869	1.6043140
207	3701	.43797	86353	10
22	-3993	.482864		78318
23	33.58768	1.5261799	.65183	13085
24	36.93514	1.5674398	63	.7465
25	40.44176	1.6068310	7.1	.178706
26	44.10753	1.6445127	.52788	-809747
27	1.932	.680629	9.1382	839718
28	9162	.71530	3.90770	·868689
58	.0297	921	8 8 8 3 6 3 1	96726
30	60.36216	1.7807647	83.024098	1.9238867

Telegraph Construction, by PAGET HIGGS, LL.D., C.E. -continued. Single Sheathing: $d^2 \times .7854 \times kn$ (Table A) less $D^2 \times .7854$, where d is diameter single iron wire and D is diameter of core, n number of wires.

Double Sheathing: $\{d^2 \times .7854 \times kn\}$ (Table A) (Outside.)

Then as (Table B), less $\left\{d^{\prime 2} \times .7854 \times kn\right\}$ ewt. of Ital. or Russ. (Inside.)

hemp = 4928 cub. in., there are 73044 cub. in. in a knot length of 1" sectional in., and as 3472 cub. tarred hemp =

4928 = 14.822, &c.73044area

= cwts. Ital. hemp per knot. × 14.822 Area of hemp(section in inches Area of

× 21.038 = tarred hemp knot.

× 15.528 = Manilla hemp per

Area in square mm. $\times .0230 = \text{cwts.}$ Ital. hemp per knot. knot.

·326 = cwts. tarred hemp

ewts. Manilla per knot. -0241 =×

hemp per knot.

Asphalte casing (outer diam.) 2 × 7854 less And this in sq. in. $\times 36 = \text{cwts}$, asphalte per knot. d2 kn (Table B) gives area.

mm. $\times .0558 = \text{cwts. asphalte per}$ knot.

,, mm. \times 3·3928 = kilos. per knot. Area in sq. mm. \times 1·1685 = kilos. Ital. hemp. tarred 33 . 1.6561

Manilla

× 1.2243 =

Telegraph Construction, by PAGET HIGGS, LL.D., C.E.—continued.

Ratios of Weights and Diameters: g. p. wires.

Log. D	55530 55751 56710 56710 56710 56710 56703 56703 56703 56703 57719	
d L	66.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
W	1.35 1.35 1.35 1.35 1.36 1.36 1.45 1.45 1.45 1.55 1.55 1.55 1.55 1.55	
Log. D	-50651 -50756 -51736 -51736 -51736 -51736 -5257 -6756	
D	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
≫ 3	111111111111111111111111111111111111111	١
Log. D	14566 14566 14566 14566 14567	
Ala	222222222222222222222222222222222222222	
Bls	0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09	

These logs, are to be increased by the following logs. for the several strands,

viz.: 3 strand 0.03342 7 strand 0.00119

Telegraph Construction, by PAGET HIGGS, LL.D., C.E.—continued.

Multipliers for regular polygons.

Diameter of circumscribing errele, the side being Subtract unity from tabulated numbers for = 1. Subtract un outside diameters.

Areas of regular polygons, S = length of side. $S^2 \times k = area$.

Log.	1.5567.043 1.4668938 1.4543141 1.4899257 1.821833 1.6587221 1.6587221 1.6587221 1.7618516 1.788186 1.788186 1.7883824 1.78838382
74	22.73549 25.52074 28.46519 31.5876 34.831.7 38.25333 41.83136 42.841 63.53231 65.74283 65.74283 66.66265
No. of sides.	118 119 119 120 121 122 123 124 126 127 128 128 129 129 129 129 129 129 129 129 129 129
. Tog.	1. 6364979 0.0000000 0.235646 0.414625 0.5610307 0.683805 0.7911164 0.7911164 0.91534 1.1201055 1.2101055 1.2101055 1.2101055 1.2101055 1.2101055
¥	0.43301 1.00000 1.72048 2.59808 3.63391 4.82843 6.18182 7.66421 9.36564 11.19615 11.
No. of sides.	2 4 4 9 8 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Formulæ for Strain when laying Submarine Cable, with ordinary dynamometer, by J. R. BRITTLE, C. E.

weight of movable pulley.

depression below horizontal line.

length between bearing wheel and movable wheel measured horizontally.

s = strain on cable.

approximately for small values of d,

Or,
$$d = \frac{W l}{2 s}$$
.

More exactly
$$d = \frac{Wl}{l + o^2}$$

(Indian Telegraph Dept.) STRAINS ON TELEGRAPH WIRE.

Applicable to Indian Wire Specification of 1872

Wires made on this specification have been used in Japan, Constant strength of iron wire = 6000 yards of itself. South America. New Zealand, Australia, Cape, and

With a dip of 30 inches per 100 yards span the constant working strain at the insulator = 1500 yards, or approximately shis of its weight per mile.

The strain varies directly in proportion to the dip. = 18000steel "

WITH THE POINTS OF SUPPORT AT THE SAME LEVEL,

= Span, or length between supports. Dip of the wire.

length of the curve between supports.

Strain at the insulator.

Strain at the lowest point of the curve, Weight of a unit of wire.

$$t = \left(\frac{S^2}{8D} + \frac{D}{6}\right)w$$

$$T = \left(\frac{S^2}{8D} + \frac{7D}{6}\right) v$$

$$\frac{\Gamma}{S} = \left(\frac{S^2}{SD} + \frac{7D}{6}\right) = \text{working strain of wire.}$$

$$=\frac{1}{7}\left(\frac{3}{w}-\frac{\sqrt{\frac{16}{36}\frac{\Gamma^2}{w^2}-21\,S^2}}{2}\right).$$

WITH SUPPORTS AT UNEQUAL LEVELS.

Horizontal distance from the lowest point of the curve to the lower support, 8

= Ditto ditto to the higher support

STRAINS ON TELEGRAPH WIRE.

SUPPORTS AT UNEQUAL LEVELS-continued.

$$p =$$
The parameter.

$$x = \frac{2 \text{ T}}{w}$$

$$x = \frac{2 \text{ T}}{2 \text{ S}}$$

$$y = \frac{2 \text{ T}}{2 \text{ S}}$$

$$y = \frac{2 \text{ T}}{2 \text{ S}}$$

TO FIND THE FACTORS OF THE BACK SPAN.

- Length of main span in yards. back

= Dip of back span in feet. = Proportion of weight per mile of back span wire to that of main span wire.

" = Proportion of dip in feet per 100 yards at which the main span wire is calculated.

$$s = 50 \sqrt{\frac{d}{nr}}.$$

WIND PRESSURE.

Pressure of wind in lbs. per square foot. Weight of wire in lbs. per mile.

F = Total pressure of wind on any length L Length of curve in feet.

b = Diameter of wire in inches.in lbs.

$$\mathbf{F} = \underbrace{fL}_{2117 \cdot 16} \checkmark \mathbf{W} = \underbrace{fLb}_{18}.$$

STRAIN ON STAYS. I = Strain on the insulator.

 $\theta = Angle$ the stay makes with the ground.

€08. 0°

Strain on the stay = -

RELATIVE SPEED OF WORKING CABLES OF SIMILAR LENGTH. (Sir W. Thompson.)

D = Diameter of insulator.

S = Relative speed = 200 $\epsilon \left(\frac{d}{D}\right)^2 \log \epsilon \frac{D}{d}$.

Ω	.4684
alD	1.25
DIG	8.0
α	.9421 .9996 1.0000
वाद	2. 1.66 1.649 1.429
d D	0.0 0.0 0.0 0.0 0.0 0.1
202	.1252 .3500 .5891 .7971
DIP	3.33
DIG	0.1

L = Length in knots. S = Speed words per minute. WORKING IN CABLES. ACTUAL SPEED OF

Red Sea, L = 629, S = 11; Alexandria, Malta, L = 925, B = 19; Persian Gulf, L = 1000, S = 94; Atlantic (1865), L = 1895, S = 17; Atlantic (1866), L = 1857, S = 17; French Atlantic, L = 2584, S = 15.

LIGHTNING ROD CONFERENCE, 1881.

Abstract of Rules.

of which the height equals the base, but a foot lower down a copper ring should be screwed and soldered on the upper terminal, on which ring should be fixed 3 or 4 sharp copper needles 6 inches long, ‡ inch diameter at base, platinized Points.-Upper terminal should not be sharper than a cone gilded, or nickel plated.

building, material, configuration, and height of the several parts. Even short chimney-stacks when exposed must be Upper Terminals.—Number to depend on the size of the iliding, material, configuration, and height of the several

Fixing.—It is preferable to take the rods down the side of the building most exposed to rain. The holdfasts should hold protected by short terminals connected to the nearest rod.

should not pinch the rod or prevent expansion and contraction. firmly, but

Factory Chimneys.—Should have a copper band round the top, with stout sharp copper points about 1 foot long at intervals of 2 or 3 feet; the points should be protected from oxidation.

Ornamental Ironwork.-Finials and ridges to be connected with the conductor. An independent upper terminal is deLIGHTNING CONDUCTORS-continued.

Matrial for Rod.—Copper not less than 6 ounces per foot crim, of conductivity not less than 9 per cent, pure copper, crim, of conductivity not less than 9 per cent, but the form of tape or rope of wire not less than 12 B.W.G. Iron may be used not less than 24 lbs. per foot run. Joints.—Well cleaned, in addition to being screwed, or scarted, or riveted, must be thoroughly soldered.

Protection.—Copper rods for 10 feet above and some dis-

tance below ground to be enclosed in an iron pipe.

Painting.—Iron rods, whether galvanized or not, should be painted. Opper may be painted or not as desired. Curvature.—I'be rod should not be bent abruptly. In no

case should the length of the rod between two points be more than half as long again as the straight line joining them. When a string course will allow it, the rod may be carried through, instead of round, the projection, the hole being large enough to allow expansion and contraction.

Extrastive Masses of Metal.—The conductor should be connected with large masses of metal, such as hot-water pipes, but should be kept away from all soft metal pipes and from Church bells in well-prointernal gas-pipes of every kind.

must be buried in perman antly damp soil. Proximity to rainpipes and drains is desirable. Bifurcation of the conductor
below the surface is desirable. A strip of copper tape may
be led to the nearest gas or water merin find a lead pipe) and
soldered to it, or the tape may be soldered to a sheet of copper 3 feet \times 3 feet $\times_{\mathbb{T}_0}$ inch thick, buried in pernauently wet earth and surrounded by cinders or coke; or many yards of the tape with surface not less than 18 square feet may be laid in a trench surrounded by coke. When iron is used, a galvanized iron plate of similar dimensions should be used. Inspection.—The conductor should be examined and tested tected spires fred not be connected.

Earth Connection.—The lower extremity of the conductor

Collieries. - Head gear of collieries should be protected by by a duly qualified person.

ICE AND SNOW. proper lightning conductors.

now. 1 cubic inch = -003 lb.; 1 cubic foot= $5^{\circ}2$ lbs., 1 lb.= $332^{\circ}3$ cubic ins. = -1923 cubic ft. Specific gravity -0853. Snowfall = -433 lb. per inch depth per super. foot. (ce. At 32º Fahr., I cuolo inch = .0384 lb.; I cubic fool=57·8 lbs. I lb = 29·94 cubic ins. = .0174 cubic ft. Specific gravity = .926.* Specific leat \cdot 504.

* De Mairan; if from water purged from air, sp. gr. = '954.

EXPANSION OF GASES.

"The density of a gas is proportional to its pressure for the same temperature." Saturated steam is not a perfect gas. as nearly as possible the same coeffi-Boyle's (Mariotte's) Law. gases have Perfect

= Pressure at zero = 760 millimètres, or 29.92 inches. cient of expansion under all temperatures.

Temperature of gas. of mercury,

" at zero. at any temperature t. Weight " at any temperature t, Volume of gas at zero. > 110

Coefficient of expansion with each degree of tempera-Pressure at any temperature t.

·003665 Centigrade = ·002036 Fahr. ture ==

(1 + Kt).

$$V = \frac{v}{1 + Kt}. \qquad v = V(1 + Kt).$$

$$W = w(1 + Kt). \qquad w = \frac{W}{1 + Kt}.$$

raised, including the weight of the BALLOONS. Weight to be

Weight of a cubic foot of zir. balloon itself.

the gas. Diameter of the balloon.

·5236 (A - G) 11

Approximately with hydrogen gas, but varying with the $W = .5236 D^3 (A - G)$. state of the atmosphere,

The buoyancy of hydrogen is about 13.3 feet to a W = .0392 D3 $D = \sqrt{25.5} W.$

SEGMENTS. BALLOON FORMATION OF

ELECTRIC LIGHTING.

SAFETY CATCHES APPROXIMATE RULE FOR FUSIBLE LEAD. 0.73

 $c={
m Number}$ of ampères in the current. $d={
m Diameter}$ of safety catch in centimeters.

$$c = \sqrt{38000 \text{ d}^3} \quad d = \sqrt{\frac{c^2}{38000}}$$

The length of the safety catch should not be less than 300 d.

GRAMME ARC-LIGHTS.

DO	2198 495 6 70 20 6000 9:99 1000	24 32.6 35 3.9 3.1 2.4 3.4 3.4 3.8 5.3 7.2 1.6
CO	1241 380 4.5 65 18 3300 4 7.94 390	3.65
AG CT CQ	675 675 44 48 18 18 2500 5-1	
AG	490 1015 820 675 4 4 24·5 48 130 2500 2·69 5·1 185 390	6.75 12.25 6 4.8 6 4.8 1.8 3.4 2.6 1.3
M	10 226 1600 13.5 2 2 18.5 2 18.5 2 17.3 2 17.3 2 17.3	1.2 6.75 6 1.8 2.6
	Number of carcels, mean Revolutions per minute Length of arc, mm	Anaxures, mm. Onancter of wires, mm. Ourent per mms. Freid Maswres— Diameter of wire, mm. Current per mm.

M, used for steam launches; A G, for despatch boats; C T, for ironclads; C Q and D Q, for coast defence.

ELECTRIC LIGHTING-continued.

ELECTRIC CANDLES. (Jablochkoff.)

tensity = 41 carcels—Maximum intensity = 45 carcels—Current, 8½ Ampères—Diffèrence of potential at candle, 42½ volts—Electric energy One indicated Horse-power per light-Mean inexpended, from '45 to '50 horse-power,

(Siemens). INCANDESCENT LAMPS.

100	.80 80	224
16	182 55	209
1200	244 40.5	213
lles	: ::::	horse-
Normal candles Volts	Ampères Ohms (Hot.) Watts	ormal candles per electrical horse- power in the lamp

MEASUREMENT OF LIGHT.

1 Carcel lamp, burning 42 grammes of pure Colza

candles == German candles. oil per hour. 9.5 English

1 English candle, burning 120 grains of spermaceti per hour.

·105 carcels. 1 German candle = '132 carcels.

I cubic foot of gas per hour, at the following sp. gravities :-

2.73 3.36 9. Specific gravity of gas · 4 · 5 Equivalent in carcels 1·26 2·1

(See Supplement, Electric Lighting.)

GAS-WORKS.

Each lamp consumes 5 cubic feet per hour.

1800 In winter each lamp consumes from 1800 to 2500 cub, ft. per year. cub. ft. per month. 10001 march Barre In summer

Average consumption for each lamp = 21,000 Private burners, average about 5,000 Internal lights require 4 cubic feet of gas per nour, and external lights about 5 cubic feet per hour. Where large or Argand burners are used, from 6 to 10 cubic feet will be required.

The pressure with which gas is forced through pipes should seldom exceed 24 inches of water at the works, or the leakage will exceed the advan-

tages to be obtained from increased pressure. It is usual to place a governor at every 30 feet

When pipes are laid at an inclination either above or below the horizon, a correction will have to be made in estimating the supply, by adding or deducting $\frac{1}{100}$ of an inch from the initial pressure for every foot of rise or fall in the length change of level. of the pipe.

A retori produces about 600 cube feet of gas in 5 hours with a charge of about 13 cwt. of coal, or

In estimating the number of retorts required, th should be added for being under repairs, &c. 2800 cube feet in 24 hours.

GAS-WORKS-continued

I bushel of lime mixed with 48 bushels of water for 10,000 cube feet of gas. PURIFIERS. Wet purifiers require

Dry purifiers require 1 bushel of lime to 10,000 cubic feet of gas, and 1 superficial foot for every 400 cube feet of gas.

Products, Newcastle.

11,500 15,000 Cannel. 110 from 70 1,540 120 9,500 10,000 from 1,500 80 Cube feet of gas per ton of coal She 00 - 10" Lbs. of ammoniscal liquor Lbs. of tar

per cwt. Fuel required for retorts, about 20 lbs.

Quantity of gas in cube feet per hour. MOTION OF GAS IN PIPES.

Diameter of pipe in inches. Length of pipe in yards.

Head of water-pressure in inches. gas. Specific gravity of

$$Q = 1000 \sqrt{\frac{D^5 H}{G L}}$$

$$D = .063 \sqrt{Q^2 G L}$$

G may be assumed = 45 for ordinary calculations. inch. = 4 an inch to 1 SERVICES FOR LAMPS.

pipe.					
of	"	: :	33	33	:
bore	(30%)	ORNO			
require 3	5 3 50 50 50 50 50 50 50 50 50 50 50 50 50	314 La	Lai L	1020	77
mam		\$ 0 to 2		33	
Irom	2002	7. PC	**	33	4.0
reer	100	15, 6			
mps #0	", 500 ", 500	,, 130	,, 150	000	3, 400
2 13	1001	15	950	20 .	000

THE MAXIMUM SUPPLY OF GAS THROUGH PIPES FEET PER HOUR, THE SPECIFIC GRAVITY BEING '45, CALCULATED FROM THE FORMULA IN CUBIC TAKEN = TABLES OF

$$Q = 1000 \sqrt{\frac{D^5 H}{G L}}$$
. (J. T. Hurst.)

Length of Pipe = 10 yards.

		1.0	41 83 230 471 823 1299 2667
		6.	38 79 218 218 781 781 781 530
ur.	ches.	00	36 74 205 422 737 11621 2385 2
oer ho	in in	1.	34 70 192 394 689 1082 2231
feet I	Gauge	9.	31 64 187 365 638 1006 2066
n cube	Vater-	10	29 162 333 333 582 918
Supply of Gas in cube feet per hour.	Pressure by the Water-Gauge in inches	4	26 53 145 298 521 821 1686
hiddus	essure	00	22 46 126 258 451 711 711
. 01	Pr	67	18 37 103 211 368 581 1192
	1 1/4	-	13 26 73 149 260 260 411 843
	ətəm ni ni	Dia.	(c)
-	_		

Length of Pipe = 100 yards.

		2.2	42	GII	419				7379	3674	540	7542	- News
	20	67	36	103	117	300	186	1193	2083	3286	48	6746	
II.	hes.	1.5	32	89	183	319	503		1804	2846	4184	5842	
er hou	in inc	1.35	53	81	191	167	459	943	1647	2598	3820	5333	
feet p	auge	1.0	26	73	149	760	411	843	473	2323	3416	4770	1
Supply of Gas in cube feet per hour.	the Water-Gauge in inches	75	23	63	129	225	356	730	12761	20122	29583	41314	4000
as in	he Wa	. 2	19					969	0421	643 2	2416.2	33734	:10
b of G	by th	4	17				260	533	932 1	47011	161 2	17	She is
lddng	Pressure by		14	42		43 1	225 2	462 5	807 9	270 14	1 2	13 30	-
01	Pr		12	32	10	16 1	84 2	377 4	659 8			33 26	-
		.2	1 00	23		_	1						
		-	_			00	130	267	-	-	_	-	
	amete ni ni		+	a cofet	-	14	+1	2	24	i cc	3	7 +	

OF ENGINEERING FORMULÆ.

GAS-WORKS—continued.

Length of Pipe = 1000 yards. (J. T. Hurst.)

Supply of Gas in cube feet per hour.	-Gauge in inches.	2.0 2.5 3.0	67 75 82	205	422	737	1162	.2385	4167	6573
as in cube	e Water-	1.5	58	159	327	571	006	1817	3227.	5091
ply of G	ure by the Water	1.0	47	130	267	466	735	1508	2635	4157
Ing	Press	1,12	41	113	231	403	. 636	1306	2282	3600
		1787	33	92	189	329	520	1901	1863	2939
1	peter Pipe sodor	10	1	14	.27	24	60	4	20	9

Length of Pipe = 5000 yards.

		3.0	207	699	1168	2041	3220	4734	0199	8873	11547	18215
st per hour.	Pressure by the Water-Gauge in inches	2.5	189	520	1901	1863	2939	4321	6034	0018	10541	16628
Supply of Gas in cube feet per hour.	e Water-Gau	2.0	169	465	955	1991	2629 .	3865	5397	7245	9428	14872
Supply of Ga	ressure by th	1.5	146	402	826	1443	2277	3347	4674	6274	8165	12880
anno Tina	10 to 1	1.0	119	899	675	1179	1859	9733	3816	5123	6667	10516
	odi	Dian ()o ()o ()	6	100	7	H AC	9	1	· ox	0	10	12

-2 - 1

DIMENSIONS OF MAINS, WITH WEIGHT OF ONE LENGTHING

3.25	
188	
14 9 9 9 7 7 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	
10 9 \$ 4.37	
6 6 4.06 90.4	0
0 0 4 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
60 mmod	
1.36	-
th in feet . kness in in. th in cwts.	-
Diamet Length Thickne Weight	1

(Morrison, 'Min. Inst. Civ. Eng.,' vol. xliv.) TUNNELS. VENTILATION OF

Head in feet of pressure of air of same density as the flowing air. H =

D = Diameter of tunnel in feet.

Length of pipe or passage in feet.

Perimeter of cross-section in feet.

Area of pipe or passage in feet.

Velocity in thousands of feet per minute. Coefficient of friction = .03.

$$H = \frac{K V^2 PL}{\Lambda}$$
; $\frac{K V^2 4 L}{\Omega}$; for circular section.

feet per minute. In a tunnel 7 miles long, with 16 trains per day, a current of 410 feet per minute would be needed. On a portion of the Metropolitan Railway, 4 mile long, with 30 trains per day, the velocity of the air should be 400

When long tunnels without shafts have to be ventilated, a current of air should be passed through a fan placed near one end of the tunnel and the end closed with doors.

For a given amount of traffic the power required to ventilate varies as the fourth power of the length. For purposes of ventilation, a double line is better than two separate single-

For a given length of line there is a limit in the number of trains, beyond which ventilation becomes impossible. This limit cannot be defined, but for a tunnel 22 miles in length it cannot exceed 20 trains per day. line tunnels.

PROPORTIONS OF AIR, GASEOUS PRODUCTS, AND STEAM IN TUNNEL AFTER THE PASSAGE OF 1 TRAIN. (D. K. Clark.)

The state of the s	Per foot run.	run.	Per mile.	ille.
The second second	cub. It.	The.	cub. ft.	lbs.
Air Gaseous products Steam	473	36 .08	2,497,440 5280 7840	190,080 420 297

(D. K. Clark, 'Min. Inst. Civ. Eng.,' vel. xliv.) VENTILATION OF TUNNELS-continued.

= Head of pressure in inches of water.

Velocity of current in feet per second. = 5.20 lbs. per square foot per inch.

Perimeter of tunnel in feet.

= Sectional area of tunnel in square feet. = Horse-power. HP

L = Length of tunnel in feet,

-; for ventilation with brattices, HP = 10,000,000 V3 P L 106 V2 P L . HP = 67,000,000 h = 1

RADIATION OF HEAT.

(Anderson, 'Min. Inst. Civ. Eng., vol. xlviii.) T = Temperature of air surrounding pipes.

t = Difference of temperature of air and that of pipes.

u = Total units emitted per square foot by radiation and m = Coefficient of radiation.

 $u = m \times 1.00427^{T} (1.00427^{t} - 1) + .2853 \times t^{1.233}$ u = 0.2853 × ℓ · 283 convection.

1.00427T (1.00427t - 1)

= 252.9 for the same, with a vertical sheet of Iron between the coils. 270.9 for a single coil of 2-in, galvanized pipe. (2) # (2)

241.0 The same as No. 1, blackleaded. The same as No. 2, blackleaded.

= 231.8 The same as No. 1, with a similar coil. = 235.3 (4) (2)

= 121 7 for a coil of 4-in. cast-iron pipes. 9

= 272.3 2-in. wrought-iron tubes connecting two cast-Coil of 2-in. cast iron pipe, blackleaded. = 108.8 Same as No. 7. = 123 .0 E 8 6

* Actual; 24 times this horse-power should be provided. iron steam-chests.

VENTILATION.

Each person requires at least from 3 to 4 cube feet of air per minute. Ordinary windows allow about 8 cube feet a minute to pass.

WARMING BY STEAM.

freezing point, in order to maintain a temperature When the external temperature is 10° below of 60°:-

One superficial foot of steam-pipe for each 6 superficial feet of glass in the windows.

One superficial foot of ditto for every 6 cube of air escaping for ventilation per minute.

escaping for ventilation per minute. One superficial foct of ditto for every 120 feet

of wall, roof, or ceiling.

One cube foot of boiler is required for every 2000 cube feet of space to be heated.

One horse-power boiler is sufficient for 50,000 cube feet of space. -- Steam should be about 212°.

HOT WATER. WARMING BY

Temperature required in building. Temperature of pipes.

Temperature of external air.

Cube feet of air to be warmed per minute. Length of pipe in feet.

$$\mathbf{L} = \frac{(\mathbf{P} - t) (T - t)}{(\mathbf{P} - T)} \times 0.045 \text{ C. for 4-in. pipes.}$$

$$\mathbf{L} = (\mathbf{P} - \mathbf{k})^{0} (\mathbf{T} - \mathbf{k})^{1} \cdot (\mathbf{T} - \mathbf{k})^{1} \cdot (\mathbf{k} - \mathbf{k})^{1} \cdot$$

$$L = \frac{(P-t)(T-t)}{P-T} \times .009$$
 , 2-in.

THE PROPERTY AND PROPERTY.

	'n.	B
	5	
	5	
	E	
в		4
Р	•	۹

.000	620	264	451	336	255	200
being 1	:	:	:		aster .	
Conducting power of substances, slate being 1000.	Fire-brick	Chalk	Asphalte	Oak	Lath and pl	Cement
ower of subs	10000	0179	1110	750	009	to 730
Conducting I	Slate	Treat	riagstone	Portland stone	Brick	

PROPERTIES OF METALS, &c.

Melting Point, Fah.	32 810 810 1954 1954 1950 2786 1786 173 1873 1873 1873 1873
Expansion between 32° and 212° F.	04175 0011 0018 0018 0016 0011 0012 0023 0019 0019 0019
Con- ducting Power.	2.898 2.447 1.800 1.800 1.800 1.800 3.004 3.603
Specific Heat.	1.00 .0507 .0288 .0298 .0298 .113 .0293 .033
	Water at 399, being Antimony Brandh Brass Copper Colper Cold Iron, cast Iron, cast Mercury Mercury Plathum Silver Tim

THERMOMETER.

Centigrade or Reaumur, into degrees To convert degrees, Fahrenheit.

Let F = No, of degrees Fahrenheit. C = 0 Centigrade. R = + 0 Reaumur. Reaumur. 0 6

4 + 32=C+R+32 4 (F-32) 5 (F - 32) - + 32. 20 CH Freezing point, or 32° Fah. = Zero in Cent., or Reaumur. Boiling point, or 212° Fah. = 100° Cent., or 80° Reaumur.

COMPARISON OF DIFFERENT THERMOMETERS.

		_	_					-				-	-	_	-	-	_	-	_	-		_			_		_	_	_	_		0	0	0	0
Fabren- heit.	+437	432.	33	31.	429.80	428	.0	424.40	67	420.80	6	·-1	50	413.60	411.80	410	408.20		9.	402.80	401	.6	1-	32.	393.80					384.80	383	381	379.40	377	375.8
Reaumur.		179.	38	9.1	1-	176	15.	174.40		172.80	1-	71.	170.40	169.60	å	9	167.20	.99	165.60	164.80	164	63.	162.40	61.	.09	9	29.	58.	. 19	156.80	156	155.20	54	53.6	152.80
Centigrade or Celsius.	+ 225	22	223	222	221	220	219	218	217	216	215	214	213	212	211	210	606	208	207	206	205	204	203	202	201	0	199	198	197	196	195	194	193	192	1
Fahren- heit	1500	498.20	496-40		492.80	107	SX		·	å	482	00	200	. 94	74.	473	. 1	.69		13	464	462.20		458.60	456.80	455	453.20	451.40	449.60		446	444:20			38
Reaumur.	1. 9.00	907-20	.90		**********	200	0				200	199.20	0	1		196	0	. 4	93.		199	0		.68		188	187.20	.98	85.	84.	184	0 00	3	81.	0
Centigrade or Celsius.	020	000	922	257	256	955	951	953	252	251	020	616	948	5776	246	9.45	244	547	242	241	076	239	238	237	236	235	234	233	232	231	930	556	9.28	227	226

continued.	Fahren- heit,	+311	м		305.60	÷	302	300.50	100	296.60	294.80	293	:		27.	- 10	0 00	284	282.20	286.40	278-60	276.80	275	1	-	9.68	30	266	264.20	- 6	260.60	'n	10	55	03	-19	249.80	
	Reaumur.	24	23.	· ·	121.60	0	120.	119.20	000	-	16	116.	10	1	13.		0 77	112	-	10.4	109.60	.80	108	0		. 20	104.80	104	103.20	02.	01.	.00	100		98.40		08.96	
HERMOMETERS	Centigrade or Celsius.	+155	S	153	152	703	150	149	148	147	146	145		143		141		140	139	3	137	3	135	3	133	132		130	129	128	127	126	125	124	123	122.	121	
OF THEK	Fahren- heit,	14	12.	0	63	.99	365	363.20	361.40	359.60	-	356	1.0	52.	20.	48.	5	wiff	345.20	13.	341.60	339.80	338	36.	334.40	5	330.80	329	327.20	25.			320	00	.91			
AKISON	Reaumur.	52	51.	0	9.67	-	148	147.20	146.40	145.60	4	144	143.20	42.	41.	ė	2	140	139.20	3	137.60	136.80	136	135.20	134.40	33.	132.80	132	131.20	130.40	3	28.	128	127.20	126.40	25.6	124.80	1000
COMP	Centigrade or Celsius.	+190	00	88	00	00	00	184	183	182	181			178	1			1-	-1			100	170	69.1	163	03	9	165	0	163	162	191	160	159	158	157	156	

COMPARISON OF THERMOMETERS—continued.

Fahren-	neit.	00	83.	181.40	29.6	7.7	176	174.20	172.40	101	168.80	167	9	63.		159.80	158	13	54.	52.	150.80	49	-1	45	20 -	41	40	38	36.	•	37	131	29	57	25.6	123.80	-
Resumur.				66.40		64.80	64	63.20	62.40	09.19	08.09	09	59.20	con	57.60	26.80	26	55.20			25.80				9	48.80		47.20	46.40	4	44.80			01	:	40.80	
Centigrade	or Ceisius.	+ 85	00	83	82	81	80	50	18	1-1-	16	75	47	73	72	11	20	69	89	19	99	65	₹9	63	62	19	09	29	00		90	. 22	54	53	52	19	
Fahren-	heit.	+248	24		12.	240.80	930	937.20	235 . 40			930	228.20			222.50	0.01	219:20	i	5	pool	212	2		9.9	204.80	03	01.	.66	197:60	95.	194	92	90	9.88	186.80	-
Roammir	Theatman	967	6	94.40	93.60	5	00	01.90	4 0		00	o o		86.40		-	84	83.20			80.80	80		78.40			16			73.60		72	71.20	70.40	9	08.89	
Centigrade	or Celsius.	T190	-	118	117	116	116	4 -	17	1 -	111	011	4 0	108	107	106	105	104	103	102	101	100	66	. 86	97	96	. 66	94	93	92	16	06	88	888	87	98	-

COMPARISON OF THERMOMETERS—continued,

Fahren- heit.	+68 66·20 64·40 62·60 60·80	59 57.20 55.40 53.60 51.80	50 43.20 46.40 44.60 42.80	41. 39.20 37.40 35.60 33.80 30.20 28.40 28.40 26.60	23 21·20 19·40 17·60 15·80
Reaumur.	+16 15·20 14·40 13·60	12 11.20 10.40 9.60 8.80	8 7.20 6.40 5.60 4.80	3.20 11.60 10.80 11.60 11.60 11.60 11.60	4 4 80 5 . 60 6 . 40 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Centigrade or Celsius.	+20 119 118 117 116	113 113 113	0682-9	P4884 0L984	1098465
Fahren-	+122 120·20 118·40 116·60 114·80	113 1111.20 109.40 5.107.60 106.80	102.20 100.40 98.60 96.80	95 93.20 91.40 81.40 86 84.20 82.40 82.40 88.80	77 75-20 73-40 71-60 80
Reaumur.	+40 39.20 38.40 37.60	36 35·20 34·40 33·60 32·80	32 31.20 30.40 29.60 28.80	28 27.20 26.40 25.60 24.80 24.80 23.20 23.20 22.40 21.60	20 19·20 18·40 17·60 16·80
Centigrade or Celsius.	+ 50 4 49 4 47 4 6	44 44 42 42 41	39 38 37 36	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25 23 23 21 21

COMPARATIVE SCALE OF ENGLISH AND FRENCH

Velocity of light 192,006 miles per second, nearly. LIGHT.

Violet = maximum chemical ray DECOMPOSITION OF LIGHT, Yellow = maximum light ray. Red = maxfmum heat ray. Orange. Indigo. Green. Blue.

Broken green. Tertiary. Brown. Grey. COMBINATIONS OF COLOUR. Secondary. Purple, Orange. Green. 1 Yellow. Primary. Blue. Red.

CONTRASTS OF COLOUR,

Tertiary in contrast to Secondary.	Brown. Grey. Broken green.
Secondary in contrast to Primary.	Green. Purple. Orange.
Primary Colours.	Red. Yellow. Blue.

	econd,					-		
	Der 8	=		33	6			
	eet 1							
	= 1,142 feet p	900	825	90	908	664	900	10,378
	1,1	4,	1	Į,	ı,	, I	17,	10,8
	11	Ш	H	11	11	H.	11	14
	:	:	:		Ite	400	3	
		:	:		ran	1.60	9	3.0
occurry.	:	:	•:•	OCK	Str.	6	:	
2	:	:	p'	ed r	imu	ani	.:	
	:	ter	San	tort	cont	d gr	n	opper
	in air	Wa	Wei	COL	dis	Bol	iron	cop
	d in							
	onno		1,14	. 518		(1967)	36 -	**
	of E					. ~	7.	13
	city	3.5		- 6	*	33	3.0	-
	Velc							

" (pine) 150 yards. 2 5,300 5,200 35,000 = 11,000 to 16,700 be heard on a still day: 8: Distant sounds may band Human voice Military Cannon

. . ..

GRAVITY.

N = Number of seconds,

Space fallen through in feet. Velocity in feet per second, acquired in N 13

seconds, or S space. $= N \times 32.2$.

= \8 x 64.4 = 8.025 \8. $S = N^2 \times 16 \cdot 1$.

These formulæ are approximate, varying with See next page, the latitude and elevation.

FALLING BODIES. VELOCITY OF TABLE OF

Velocities due to Different Heights. FALLING BODIES.

Velocity. Feet per second.	133 139 144 150 150 170 170 179 227 227
Fall in feet,	275 300 325 350 375 400 1450 500 500 800 1000
Velocity. Feet per second.	57 62 62 76 76 80 80 90 98 106 113
Fall in feet.	50 60 60 80 80 80 10 112 175 175 175 175 175 175 175 175 175 175
Velocity. Feet per second.	25.5 13.9 25.3 1.8 25.5 1.6 4.0 4.0 4.0
Fall in feet.	1 1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4

GRAVITY.

Elevation above sea-level in feet. Radius of earth in feet. Latitude. 2 Ħ

32.1889 at London at the level of the sea. Force of gravity, feet per second. 8

32.088 (1 + .005133 sin². L) (1 -

20,923,000 at the equator.

= 20,853,000 at the poles. = 20,888,000 mean radius.

CENTRIFUGAL FORCE.

Radius or distance from centre of motion in Weight of revolving body in lbs.

Number of revolutions per minute. feet.

Centrifugal force in lbs. 11

= ·00034 W R N2.

 $= \frac{2941 \text{ F}}{\text{R N}^2}$

MOMENTUM

Is the mass of any body multiplied by its velocity by feet per in units of distance (for example, second).

IMPULSE

by Is the force (say feet per second) multiplied the time during which it acts.

ACCUMULATED WORK.

Weight of body in lbs. Velocity of body in feet per second. Height in feet through which the body

Distance in feet to which any obstacle is moved by the body. descends.

Force imparted by accumulated work in Ibs, Accumulated work in foot-Ibs.

$$W = h \ w = \frac{w \ v^2}{64 \cdot 4}; \quad F = \frac{W}{x}.$$

COLLISION OF BODIES.

Weight of one body.

Velocity of one body before impact, Velocity of one body after impact. Coefficient of one body.

Weight of the other body. 2

Velocity of the other body before impact.
Velocity of the other body after impact.
Coefficient of elasticity of the other body.
o for a non-elastic body, = 1 for a perfectly

elastic body.

When a body strikes a plane surface it rebounds at an angle equal to that at which it struck the plane; in other words, the angle of incidence a = the angle of reflection b.

	Collision of	Bodies—continuea.	(FOR HOUSELOH See Previous pages)
1	Conditions.	Non-elastic Bodies.	Elastic Bodies.
	One body in motion.	$y = \frac{\mathbf{W} \mathbf{V}}{\mathbf{W} + w}.$	$y = \frac{W V (1 + k)}{W + w}$ $Y = \frac{V (W - K w)}{W + w}$
	Bodies moving in the same direction.	$y = \frac{WV + wv}{W + w}.$	$y = \frac{\mathbf{W} \mathbf{V} (1+k) + v (w - k \mathbf{W})}{\mathbf{W} + w} \cdot \mathbf{Y} = \frac{\mathbf{V} (\mathbf{W} - \mathbf{K} w) + v w (1 + \mathbf{K})}{\mathbf{W} + w} \cdot \mathbf{W} \cdot $
	Bodies moving in contrary directions.	$y = \frac{W V - w v}{W + w}.$	$y = \frac{W V (1 + k) - v (w - k W)}{W + w}$ $Y = \frac{V (W - K w) - v w (1 + K)}{W + w}$
		[] 对 [] () () () () () () () () () (

When the bodies are inelastic their velocity after impact will be alike, or Y = y.

CENTRE OF GRAVITY (Homogeneous Substances).

The volume of any particle. The distance of P from any given plane.

Sum:

The distance of the centre of gravity of the plane. whole mass from a given

A TRIANGLE. AD loin THE CENTRE OF GRAVITY the base BC at D, and. TO FIND

these lines will give the centre of gravity. intersection of each AD; apex with the centre of the oppoline in the join ntre of gravity lies in the D at E, D E being 3rd of or bisect each side and The site side. centre of Bisect

IN A PARALLELOGRAM, OR ANY FOUR-SIDED FIGURE.

intersecting at E. Lay off D. D. F. = B E, and join FA, FC; then the centre of gravity of the triangle FAC is the figure ABCD, In any four-sided figure BCD draw the diagonals tersection of the diagonals In a parallelogram the ingives the centre of gravity.

CO-ORDINATES OF THE CENTRE OF CEAVILY.

$$x = \frac{1}{3} \left(A + B - \frac{AB}{A + B} \right)$$
$$y = \frac{C}{3} \left(\frac{2A + B}{A + B} \right).$$

CENTRE OF GRAVITY-continued.

, when R POSITION OF CENTRE OF GRAVITY IN VARIOUS FIGURES, height from base. 2 Chord × Rad. (R2 - r2) Rad. Rad. ·6002 Rad. Arc Chord3 Area .4244 .6366 Gircular disc ring = .4244 from \= circle from = : : : : Segment of circle Pyramid or cone Quadrant sector : Hemisphere .. circle sector from centre Paraboloid Jo Semicircle Parabola centre centre Sector

Squares, rectangles, cubes, equilateral triangles, and r = radii of outside and inside of ring.

their centre of gravity in their geometrical centres. have rings, regular polygons, circles, cylinders,

Suspend the boly successively in two or more positions; then the intersection of the vertical lines from each point of suspension will pass TO FIND THE CENTRE OF GRAVITY BY EXPERIMENT. intersection of the vertical through the centre of gravity. then the

TO FIND THE COMMON CENTRE OF GRAVITY OF TWO BODIES.

d = Distance of the respective centres of gravity apart. V = Volume of one body. v = Volume of the other.

gravity from centre of gravity

of V.

(By Graphic Construction.)

CENTRE OF GRAVITY.

Divide the section into any convenient layers and construct forces as follows:-

that pass through the centre of gravity of the the lengths corresponding with the area of each layer; assume any convenient point C, and draw lines from the lengths thus intersecting the convenient scale set out on a horizontal line intersection of the lines a f gives the horizontal line of each layer respectively form the polygon of forces, and out radiating to C. Then lines drawn parallel as shown in the diagram, centre of gravity of the layers. radiating lines, horizontal lines polygon of With any

the centre of gravity of any number of bodies A B D E may be found by constructing a polygon of forces in a similar vertical forces, the intergiving polygons manner for horizontal as well as for two lines of of the The centre gravity at G. of section

FOR VERTICAL FORCES.

TO FIND THE CENTRE OF GRAVITY OF A SERIES OF LINES.

The horizontal distances of the centres The lengths of the lines respectively. of the lines respectively from the $L_1, L_2, L_3 =$

of the lines revertical axis.

 y_1 , y_2 , y_3 = The vertical height of the centres the lines respectively from the Jo

X = Horizontal distance of the centre of gravity horizontal axis. of the lines from axis.

Y = Vertical height of ditto.

$$X = \frac{L_1 x_1 + L_2 x_2 + L_3 x_3}{L_1 + L_2 + L_1}$$

MOMENT OF INERTIA and CENTRE OF GYRATION.

Mass of the whole body. Mass of any particle.

Distance of any particle m from axis

rotation.

Sum.

Radius of gyration. Moment of inertia of the whole of the

particles.

 $\Sigma(m d^2) = m d^2 + m, d, + m, d, + \infty c.$ 11

M

I, = Moment of inertia about an axis passing through the centre of gravity.

Moment of inertia about a parallel axis at a distance y from the centre of gravity.

Distance of centre of gravity from the axis

of rotation. $I_2 = I_1 + M y^2$. CENTRE OF GYRATION FROM CENTRE OF MOTION. = .577 length. In a bar revolving about one end ...

.707 radius. = .289 Circular plate revolving about centre centre

.6324 its diameter = .5 Sphere about its diameter

.548 radius of base. 104. .816 : : Cylinder revolving about its axis Hollow sphere (insensibly thick)

= *866 height. : (right angled) revolving about : :: :: its apex Cone

TO FIND THE SPECIFIC GRAVITY OF A SUBSTANCE.

W = Weight of body in air.
$$w = \text{Weight of body in water.}$$

Specific gravity = $\frac{W}{W - w}$.

means of a heavier substance, and deduct the weight of the heavier substance. Weight of a cubic foot in lbs. = specific If the substance be lighter than the water, sink it by gravity × 62.425. CENTRE OF PERCUSSION AND OSCILLATION.

d =Distance of the centre of gravity from the Moment of inertia.

axis of motion. Volume of body.

x =Distance of centre of oscillation or percussion from the axis.

$$x = \frac{1}{M d}$$

bar suspended at extremity, \$\frac{2}{3}\$ length.

Very slender cones suspended at apex, \$\frac{4}{5}\$ height, Distance from centre of motion in a straight

PENDULUM.

N = Number of oscillations per minute. g = Gravity. (Approximately=32.2 or 386.4 if inches be required.) T=Time of one oscillation in seconds. in inches. l=Length of pendulum in feet.

$$T = .16 \sqrt{L} = \pi \sqrt{\frac{7}{g}}.$$

$$T = .554 \sqrt{1}.$$

$$l = g\left(\frac{T}{\pi}\right)^2$$
; $L = \left(\frac{375 \cdot 36}{N}\right)^2$.

1=39.1383 inches in the latitude of London. $g=32.088 (L+.005133 Sin^2 \lambda) (1-\frac{2h}{R})$

 λ =Latitude; k=Height above the Sea in feet. R=Radius of Earth=20,900,000 feet.

MECHANICAL POWERS.

to OI, proby either the wheel, and axle, may be reduced in all cases one rule, viz. the gain of power is directly p inclined plane, wedge, screw, portioned to the loss of motion, and vice versa. The effect of power transmitted pulley, lever,

Power applied.

Power transmitted Z

Motion of (p) power applied. Motion of (P) power transmitted. 111

The the show the application in the case of course does not include friction. wheel and axle. m This of lever and diagrams

MILLWORK.

NUMBER OF TEETH IN WHEELS.

teeth in driving wheel. Number of teeth in driven wheel, Number of 25

Revolutions of driving wheel.

Revolutions of driven wheel. 11 2 LS. (Cast Iron.) to 3½ P. transper second. pe may OF WHEELS. line in feet which $2\frac{1}{2}$ inches. from horse-power mitted by wheel. pitch STRENGTH OF TEETH Breadth of teeth teeth in of Velocity Pitch of Actual

9.0 $= 0.6 P^2 V$ H

5 0.45 X X Pitch Pitch Pitch Pitch Pitch Pitch OF line in small Thickness of tooth on pitch line .. pitch line to top of tooth depth of tooth PROPORTIONS OF TEETH pitch] Thickness of rim of wheel teeth i Thickness of arms if flat Space between teeth on width of Ordinary From Total

than iron wheels that × the rim or by pitch the thickness wheels to be wider be double thickness of to wheels. Thickness Mortise their rim twice the iron

က်

X

Pitch Pitch

:

centre

round

large...

pitches

(Method communicated by Mr. Aubrey Ohren.) -continued. WHEELS-TEETH OF

From the radial line at the edge of the tooth on the pitch B and The lines struck from these centres are shown Circles drawn through centres thus found will 75° with the radial the root A line; on this line will be the centres of the line H K at an angle of the point EF. lines. line, lay off in thick

striking the root A B is = pitch + the the remaining centres will be. give the lines in which A for The radius D

The radius CE for striking the point of the tooth EF thickness of the tooth. pitch.

TO DESCRIBE THE ANGLE OF 750 WITHOUT PROTRACTOR,

with any equal radii strike circles the line joining L Q will be at an angle of 75° with L N. Describe a quarter of a circle with any radius L M, rom N with a radius the as centres intersecting each other at Q; LM, strike a portion of a circle intersecting the circle from portions of then M points P and P: from LWO. Nat and

TEETH OF WHEELS,

passes, the pitch point A being the centre from which the point of the next tooth BC is struck with radius AB, the por-tion BD being radial. If nor made epicycloidal, are frequently struck out with com-

wheel to the edge of the = No. of teeth. Set off for determining America Catan in from the pitch line at A, a line B A line radiating from the centre of the P = Pitch, The following plan is adopted teeth: jo the curves

-11), and A C=-11P 3/N. From centre B strike out E F, and from centre C strike out G H. tooth; lay off from A, A B ==

MOLESWORTH'S POCKET-BOOK

(Cast Iron.) WHEELS. OF Тветн

Table showing the horse-power that may be transmitted, with different velocities and pitches.

	9	hp.	1.08	1.62	2.16	4.3		9.8	0		io		- 6	70 -		2 6	5	*	20		47.5		56.1	ė	. +	75.6	9	
	2	10,	.75	12	50	•		0.9				19.0	1 0	2 1	100	101	4	24.0	1-	0	÷	36.0	39.0		ic	3	0.09	
	41	bp.	48	.72	9	1.9		3.8						0.0	9 -	0.11	2	10	-	6	21.1	å	24.9			33.6		
ea,	03	hp.	.27		54	1.08		2.1						4 7						0	11.9	5	14.0	1 10		18.9	÷	
Pitch of Teeth in inches.	24	hp.	.18	00	.375	22		1.5						000							8.5			ė		13.1	5	
eeth in	67	hp.	.12	.18	.24	***	.72	96.		1.4	1.68			1 7							5.3					4.8		
T jo q	57 4	hp.	60.	3	38	.366	10	.73	.91		1.28	7.		0 . [0.7					7.9		
Pitc	14	.033	190.	01	135	.270	.40	.54	19.	00	₹6.	-	4 0	7 6	000	0	0	·	7.	Į.	6	57	NC.	1.	. c	4.7	+	
	12	hp.	047	10.	.094	.188	.28	.37	14.	99.	.65	1-		*04		1 . 7					2.1		2.4			300		
-	-	hp.	.030	.045	90.	.12	.18	CA	.30	.36	.42	010	H 4	0 4	D 1:		# 0	96.			1.3					2.1		
	ealer	hp.	.017	.025	.033	190.	prod	.13	$\overline{}$	CJ	CA	40.	1 0	000	200	140	#	•54	19.	99.	.74	.81	88) (٠ د	1.2		
et per	ear	300	.05	.075	-	57	.3	₹.	5	9.	2.	0	0 0	50	0 9			9.1	8.1	0.7	2.2	2.4				3.5		

WHEELS. CONSTRUCTION OF THE TEETH OF

wheels of the same pitch that may be required to work together should be generated by the samo In making a set of wheels, the teeth of all EPICYCLOIDAL TEETH. rolling circle.

wheel should have less than fourteen teeth, but if pitch \times 2.22, unless any wheel in the set should have less than fourteen teeth. No it is unavoidable, in that case the diameter of the rolling circle may be determined by the following The best diameter of the rolling circle for any formula:

D = Diameter of rolling circle.

P = Pitch of teeth.

N = Number of teeth in the smallest wheel of

the set.

 $D = \frac{1}{6 \cdot 3}$

The diameter of the rolling circle must in no the set. The plan of making the rolling circle case exceed the radius of the least pitch circle in equal to the pitch circle is incorrect.

NATURE OF CURVES OF TEETH.

Curve of Point, Curve of Root.

.. Cycloidal, .. Epicycloidal. .. Hypocycloidal. : In a straight rack ..

ting or rolling circle on a template corresponding with the pitch line. A scriber or pencil on the In the workshop the curves of the teeth are struck out by rolling the template of the generaperiphery of the generating circle marking the required curve, EPICYCLOIDAL TEETH,

The curves of epicycloidal teeth are generated by a point in the circumference of a circle (called the rolling circle) which rolls on the pitch line of the teeth to be described.

pitch line A B. From any point, y, lay off on the pitch line, any convenient points, $d \circ f g h$, at any distances from one another, and from them draw the radial lines G G G G G h; and, with their centres on these radial lines, describe circles To Delineate the Required Curves by Construction. From the centre C, with radius CB, draw the equal to the rolling circle, and touching the pitch line at the points $d \circ f \circ h$.

On the circumference of at at set off at j = yt

gm = yg kn = yh1 f at g at e at at 2 2 33 9,9 the circle

The points $y \not j \not k l m n$ form the required curve for the root of the teeth.

and through these points draw radial lines, and, with their centres on these radial lines, describe circles equal to the rolling circle, and touching the pitch line at the points $p \ q \ r \ s$. Also set off, in like manner, the points p q r s,

On the circumference of lat n law off n t

4	5	8	S
2	3	3	2
	p = y q	11	11
•	2	8	55
4	\bar{b}	8	S
1	. 1		. 66
3	6	33	
7			
7	b	30	.00
San P and out P & - 3 F	at q	at	at
:			
:	99	33	
:			S. C. C
le			
he circle			-
0	66	. 6	; :
he			

Then the points y t v x z form the curve for the point of the tooth,

For straight racks instead of radial lines, perpendicular lines are used.

RULES FOR THE DIAMETER AND PITCH OF TOOTHED WHEELS.

Diameter of pitch circle.

D=D jameter of puter curve. N = Number of teeth. P = Pirch of teetu calculated as measured round the pitch

3.14159; 11 1 $\frac{\pi}{\mathrm{P}}$; $y = \frac{\mathrm{P}}{\pi}$; $z = \frac{\mathrm{N}}{\pi}$ 11 8

For values of x, y, and z, see the following tables, N = Dx; D = Ny; = Pz; P =

VALUES OF

Pitch.	0 1 0 1 0 1 0 0	Pitch.
2014	3.59039 1.67552 1.09273 .81073 .64443 .53474 .45696	.875
60 4	4.18879 1.79520 1.14240 .83776 .66139 .54636	-75
40[t0	5.02655 1.93329 1.19680 .86665 .67926 .55851 .47420	.625
- mice	6-28319 2-09440 1-25664 -89760 -69813 -57120	.5
eo(oc	8.37758 2.28479 1.32278 .93084 .71808 .58448	.375
p-()-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-	12.5664 2.51327 1.39626 .96664 .73920 .59840	-25
Him	25.1327 2.79253 1.47840 1.00531 .76160 .61299	.125
0	3-14159 1-57080 1-04720 -78540 -62832 -52360	0.
Pitch.	0168440	Pitch.

VALUES OF y.

Pitch.	O	Pitch.
2-100	.27852 .59683 .91514 1.23345 1.55176 1.87007 2.18838	.875
oc es	.23873 .55704 .87535 1.19366 1.51197 1.83028 2.14859	-75
wa',us	19894 51725 83556 1-15387 1-47218 1-79049 2-10880	.625
PG[04	15915 47746 79577 1-11408 1-43239 1-75070 2-06901	.5
estac	.11937 .43768 .75599 1.07430 1.39261 1.71092 2.02923	.875
r(+	.07958 .39789 .71620 1.03451 1.35282 1.67113 1.98944	.25
r-(x	.03979 .35810 .67641 .99472 1.31303 1.63134 1.94965	.125
0	-31831 -63662 -95493 1-27324 1-59155 1-90986	0
Pitch.	0400400	Pitch.

Pitch and Diameter of Teeth of Wheels. Values of z when pitch is measured round the pitch line.

No. of Teeth.	0	1	2	3	4	5	6	7	8	9	No. of Teeth.
0		•31831	•63662	•95493	1.2732	1.5915	1.9099	2 • 2282	2.5465	2.8648	- 0
10	3.1831	3.5014	3.8197	4.1380	4.4563	4.7746	5.0930	5.4113	5.7296	6.0479	10
20	6.3662	6.6845	7.0028	7.3211	7.6394	7-9577	8-2761	8.5944	8-9127	9.2310	20
30	9.5493	9.8676	10.1859	10.5042	10.8225	11.1408	11.4502	11.7775	12.0958	12.4141	30
40	12.7324	13.0507	13.3690	13.6873	14.0056	14.3239	14.6423	14.9606	15.2789	15.5972	40
50	15.9155	16.2338	16.5521	16.8704	17.1887	17.5070	17.8254	18.1437	18 • 4620	18.7803	50
60	19.0986	19.4169	19.7352	20.0535	20.3718	20.6901	21.0085	21.3268	21.6451	21.9634	60
70	22.2817	22.6000	22.9183	23.2366	23.5549	23.8732	24.1916	24.5099	24.8282	25.1465	70
80	25.4648	25.7831	26.1014	26.4197	26.7380	27.0563	27.3747	27 - 6930	28.0113	28.3296	80
90	28 • 6479	28.9662	29.2845	29.6028	29.9211	30.2394	30.5577	30.8761	31.1944	31.5127	90
No. of Teeth.	. 0	1	2	3	4	5	6	7	8	9	No. of Teeth.

THE OF WHEELS IN DIFFERENT MATERIALS. STRENGTH FOR EQUIVALENT PITCHES TEETH

Pitch for east iron = $1 \cdot 00$ " brass .. = $1 \cdot 12$ " hard wood = $1 \cdot 26$

SHAFTING.

WROUGHT-IRON SHAFTING. STRENGTH OF

Indicated horse-power to be transmitted. = Number of revolutions per minute. Diameter of shaft in inches.

in crank-shafts and prime movers. H 88/

in ordinary snafting. H 99

RELATIVE POWER OF METALS TO RESIST TORSION, UNITY. BEING WROUGHT IRON

.25	.55		.10
:	:	:	:
:	:	. :	:
Brass	Copper	Tin	Lead
1.00	06	1.93	27
Wrought iron .	Cast iron	Cast steel	Gun-metal .

SECTIONS TO AREAS BEING SOLID CYLINDER BEING UNITY. RESIST TORSION, THE SECTIONAL RELATIVE POWER OF DIFFERENT EQUAL,

2.74 Hollow Cylinders whose Inner Diameter is to the Outer as \$\pm to 10 \ 5 to 10 \ 6 to 10 \ 7 to 10 \ 8 to 10. 2.08 1.7 1.44 97.1 Outer as 4 to 10 Cylinders. Squares Solid Bolid 0.1

ENGINEERING FORMULA.

COEFFICIENTS OF FRICTION IN AXLES.

Fatty Matter.	0.14
Lard and	1151111511
Pure Carriage.	1 60 10 11
Lubricated Continuously,	0.050.050.050.050.050.050.050.050.050.0
Ordinary Lubrication,	100.000.000.000.000.000.000.000.000.000
Greasy and Wetted.	1191111
Dry.	113 119 118
Bearing.	Bell-metal " Cast iron Lignum vitæ Cast iron Lignum vitæ
- Axle.	Bell-metal Cast iron Wrought iron Cast iron Wrought iron Cast iron Lignum vitæ

(Webber.) FRICTIONAL RESISTANCE OF SHAFTING.

Coefficient of friction.

resultant stress Weight of shafting and pulleys + Work absorbed in foot-lbs.

of belts.

Number of revolutions per minute. Diameter of journals in inches. Horse-power absorbed.

.000000339 P D R. · Continuous oiling. .0112 P D. Ordinary oiling. • 0182 P D; • • 0000000556 P D R;

As a rough approximation, 100 feet of shafting, 3 inches dia-.044. 990. 11.

Pressure on bearings should not exceed 750 lbs. per square PRESSURE ON BEARINGS OF SHAFTING. power.

meter, making 120 revolutions per minute, requires 1 horse-

For pivots of upright shafts, Fairbairn limits the pressure to 240 lbs. per square inch. inch, measured axially.

Cast-iron bearings wear well if the pressure does not lbs. per square inch, or velocity 150 feet exceed 100 minute.

FOR SHAFTS. TORSIONAL MOMENT OF RESISTANCE (E. J. Edwards.

16 f d3. F Calculated from the formula M

Stress per square inch. d = Diameter of shaft in inches. 4000 $\pi = 3.14159$. iron, and Movement of resistance to torsion, wrought to 10,000 lbs. for 8000

5000 lbs, for cast iron.

•11	9र्भा																									
000		998,	,930	,512	,800	,220	,662	,599	,500	,839	,088	,717	,200	,612	,100	,438	,400	,762	,300	, 788	,000	,710	,700	, 738	009	
f = 10000 1bs.		747	827	913								,984,														
						_	-	_	1	CI	21	23	က	4	70	9	οc	0,	Ξ	-	-	18	2	22		
f = 8000 ling.						7	53	0,7	0	17	25	,774	96	53	80	73	72	41	2	63	0	100	36	,190	68	
113.		598,	662,	730,	803,		144	346	570	817	680	387	712	449	308	298	430	713	156	168	560	539	717	102	703	
2							1,	1,	1,	1,	2,	2,	2,	ŝ	4,	5,	6,	7,	6	0	OI	14,	9	6	-	
Dia- meter.	inches.	1.4	14	T-	00	80	6	76	10			114	12	13	14	15	16	3.2	18	19	20	21	2.5	23	24	
000	-		332	324	212	002	354	864	814	988	369	143	163	009	652	833	325	313	980	511	060	006,	125	951	099	138
= 10 1bs		1,	3	6,6					_	07		84,	33	25	20	20	10	15	00	26	73	23	61	30	3	73
000	-	019	990	667	114	099	383	531	129	390	895	,314	793	180	522	990	260	250	184	209	472	120	300	161	848	510
f = 8000 f = 10000 1bs. 1bs.		1	3	5,	00	12,	17,8	24,	32,	42,	53,	67,	82,	9	20	53	89	96	57	10	98	339,	83	31	82	38
Dia-	inches.	7	14	14	ode I	2	24	24	233	3	33	34	650			_										
									7	3		TAT		n 6	20.		20	TTT								

Note. The bending moment of resistance is half the numbers

The moment of weight = $Wl = 2\frac{1}{2} \times 2240 \times 17 = 95,200$ inch-lbs.; the torsional moment of resistance must be equal or greater than this amount. Example.—Required to find a shaft for a drum having 24 tons pulling on it radius and taking f = 8000 lbs. at 17" 1

diameter is the size, since Find in the table to a number not a tight of greater than this amount $ight find in the table the number not higher, which in this scale is <math>10d_1$ doupted in ight find in the sets of sind trequired in wrought <math>ight find in the property of the size of shaft required in wrought <math>ight find in the size of shaft required in wrought <math>ight find in the size of shaft required in wrought <math>ight find in the size of shaft size of shaft size <math>ight find in the size of shaft size of shaft

2500 = 98125.

SHAFTING TO RESIST TORSION, STRENGTH OF

L = Length of lever in inches, or radius of wheel at which force is applied.

Force applied in lbs.

Diameter of shaft in inches, if round, Side of shaft in inches, if square.

for wrought iron. FL 1700 D ==

for wrought iron. 2000 FL

for any other metal. FL

for any other metal. FL 8

3800 1800 540 500 440 260 200 = 3200Values of K and x. 1500 425 380 220 XXXX For cast steel ... gun-metal iron copper brass lead cast tin

SUPPORTS FOR ORDINARY SHAFTING.

Diameter of shaft in inches.

Distance of supports apart in feet.

4.5 % D2, where power is taken off by riggers between the supports. 11

 $S=5\cdot\sqrt[3]{D^2}$, where no power is taken off between the supports.

WROUGHT-IRON ORDINARY SHAFTING. DIMENSIONS OF

	100	99.8	18.9	0.9	5.46	90.9	4.77	4.23	4.34	4.18	4.03	3.80	3.53	3.39	3.21	2.96	2.80	2.67	2.57	2.35	2.53	111
	06	8.36	6.64	2.8	5.28	4.89	4.61	4.38	4.20	4.03	3.87	3.66	3.39	3.27	3.11	2.88	2.71	2.57	2.46	2.59	2.15	1 3/2
	08	8.04	6.38	5.58	90.9	4.70	4.43	4.22	4.03	3.87	3.73	3.53	13.27	33.14	1,2.96	2,2.75	2,2.62	5 2.46	92.35	5,2.22	2.08	-
Horse-power	20	69.4	6.11	5.35	4.85	4.5	4.23	4.03	3.85	33.71	3.26	13.36	63.14	42.96	12.84	52,2.62	35 2.52	29,2.35	15,2.29	2.15	1,2.0	
Horse	09	7.31	2.8	2.06	4.61	4.27	4.03	3.82	3.66	33.53	17 3.39	03 3 2 21	80 2.96	67,2.84	52 2.71	35 2 5	22,23	15,2.2	5	12.0	32 1.91	
Indicated	20	18.9	5.46	4.17	4.34	4.02	3.80	3.61	3.45	13.33	ŝ	3.0	2	52 2.6	35 2.5	22 2.3	08,2.2	57	91 2.0	83 1-91	64 1.82	
Indi	40	6.38	5.06	4.43	4.02	3.73	3.53	3.36	3.21	3.07	2.96	12.8	5 2.62	5	52.3	2.2	1.2	82,2.0	71 1.9	-	48 1.6	
	30	5.80	4.61	4.02	3.66	3.39	3.21	3.04	2.92	2.80	2.69	2.57	3 2.35	2.29	2.1	22.0	1.9	prof	-	44 1.59	-	71
	20	2.06	4.02	3.53	3.17	2.96	2.8	2.67	2.57	2.46	2.35	2.22	2.08	2.0	1.86	1.82	1.62	1.59	1.49	-	3 1-29	
	10	4.02	3.21	2.8	2.57	2.35	2.22	2.15	2.04	2	1.86	1.76	1.64	1.58	1.5	1.36	1.29	1.26	1.18	1.08	1.03	
Revo-	per ninute.	10	20	30	40	20	09	20	80	90	100	120	150	170	200	250	300	350	400	200	009	

DIMENSIONS OF FIRST-MOTION SHAPTING; CRANK-SHAFTS, &c. (Wrought Iron.)

	100	1.6	7.46	6.52	5.93	5.49	2.17	4.92	7.7	4.51	4.36	4.12	3.82	3.68	3.46	3.24	3.03	2.88	2.76	2.27	2.41
	06	20.6	7.19	6.59	5.13	5.31	4.99	4.75	7.24	4.36	4.21	3.96	3.68	3.53	3.33	3.10	2.93	2.8	2.67	2.46	2.32
er.	08	48.72	26.95	20.9 3	25 5 . 49	1.98	8.46	36 4.56	8 4.36	2.4.2	7 4.05	63.81	3.56	43.39	07,3.21	88 3.00	67 2.81	57 2.67	46 2.55	23 2.35	5 2.22
Horse-power	02 09	92,8.34	29 6.62	31.9 67	99,5.2	64 4 . 88	36 4 . 59	15 4.3	00 4.18	81 4.02	68 3.87	46,3.66	21 3.4	08.3-24	9	1 2.	53 2.	42,2.5	32 2.	15.2.	03 2 . 1
	50 6	.191.	.916.	.175.	.71 4.	.36 4.	.11 4.	.9 4.	.724.	. 28 3.	3.463.	3.263.	3.01 3.	2.89 3.	2.75 2.	2.54 2.	2.38 2.	2.29.2.	2.18 2.	2.03 2.	1.91 2.
Indicated	40	6.927	5.49 5	4.8	4.364	4.05 4	3.814	3.623	3.463	3.333	3.21	3.02	2.81	2.1	2.55 2	2.36	2.23	2.1	2.03	1.862	1.75
	30	9 6-29	64.99	1.4.36	63.96	13.68	23.46	86 3 28	53.14	13.01	5 2.92	2.75	2 2.55	22.45	03 2.3	2.15	75 2.03	71.92	1.84	1.1	35 1 . 58
-	20	36 5.49	46 4.36	02 3.81	5 3.46	55 3.21	3.02	28 2.8	17 2.75	9 2.64	3 2.55	90 2.4	75 2.22	2.1	2	5 1.9	4 1.7	33 1.6	27 1.6	18 1.8	11 1.3
- A 88	te. 10	4	÷	ŝ	0 2.7	2.	2.4	2	53	0 2.00	0 2-03	÷	-	1.7	1.6	-	i	-	÷	-	i
Revo- lutions	per	10	20	30	40	50	09	70	80	90	100	120	150	170	200	250	300	350	400	200	009

STRENGTH OF SHAFTING TO RESIST LATERAL STRESS.

Length of shaft supported at both ends in Diameter in inches, or side, if square.

Weight applied on the centre in Ibs. feet.

$$D = \sqrt{\frac{1}{k}}.$$

 $\frac{1}{2k}$, where w = weight distributed in In or D =

| Round Shafts. | Square Shafts. | For wood | Round Shafts. |
$$R = 40$$
 | 70 | Cast iron | $R = 60$ | $R = 6$

(OR JOURNALS) AND COMPLINGS -NECKS SHAFTING. OF TABLE

6

	Tonoth of Diameter
THE TOO GIVE	Diamotor of Langth of
	T

	10 ches. 54 ches. 134 ches. 134 ches. 22 22 22 24 24 ches. 26 ches
Length of Box.	inches, 644, 744, 744, 744, 744, 1164, 1164, 1164, 120, 20
Length of Lap.	inches. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24
Diameter of Length of Coupling.	110.00 1.00 1.00 1.00 1.00 1.00 1.00 1.
Length of Neck.	inches. 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Diameter of Neck.	inches. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24

By the practice of some makers the length of neck=14 diam. The neck or journal in high speed machines should be larger than given in the table; pivoted bearings are made from 3 to 4 diameters long.

,

horse-power for every 100 feet of 3-inch shafting SHAFTING. POWER ABSORBED BY making 120 revolutions per minute. About 1

Richards.) KEYS AND KEYWAYS.

·182 D. Diameter of shaft in inches. Breadth of key 900

1 inch. + 9 Depth of key in boss Depth of key a

.07 D + $\frac{1}{32}$ inch, say = .4 d. .104 D + $\frac{1}{32}$ inch, say = .6 d. 1 inch in shaft = Ditto 0

only are fitted; the nearest 16ths as calculated above may be key are left rough; the sides Clearance at the top of key = The top and bottom of the I

	00 = - 0 - 0 0 0 0 0 0 0 0
	7 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	9 二二十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十
NCHES.	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-	70 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NS IN	44 WIC 20/2 0/2
ENSTONS	A state with the
DIN	1 1 2 0 to 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
E OF	co of the the
TABLE	10 + 2
	C4 edito who will a will a
The con-	The sales was the
au	Cago

PULLEYS (STAKED AND WHEELS DIMENSIONS OF EYES OF

24 93
ರ್ಷ ನಿ
6.3 FC 소급 해가 나나 이야
24
44 85
2 4 to
00 00 m
Diameter of shaft Diameter of eye of wheel Diameter of eye of pulley

SOLID COUPLINGS FOR FLUSH JOINTS OF SHAFTS FROM 12 TO 5 INCITES DIAMETER.

Breadth of key = $\cdot 25 d + \cdot 12$. Depth of ditto = 1/2 breadth. Diameter of shaft Diameter of box. Length of box. Length of lap. $d+\sqrt{6d}$. .8 d P

Depth of Key.	inches. • 25 • 31 • 37 • 53 • 56 • 62 • 68
Breadth of Key.	inches. 5 .62 .62 .75 .87 .1.12 1.24 1.37
Length of Lap.	inches. 1.2 1.6 2.0 2.4 2.8 3.2 4
Length of Box.	inches. 4.5 6 7.5 9 9 10.5 12 13.5 115
Diameter of Box.	inches. 4.5 7.2 6.4 7.2 8.9 9.7 10.5
Diam.	inches. 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

COUPLINGS FLANGED

For Shafts from 12 to 5 inches diameter.

d = Diameter of shaft.

) iameter of boss = d + d

Diameter of flange =

Phickness of flange d ength of boss = d

b = Projection of shaft = _

Projection of Shaft.	inches. 22 22 25 29 32 36 4 44 44
Thickness of Flange.	inches. ·85 1.0 1.15 1.45 1.45 1.6 1.75
Diameter of Flauge.	inches 6.5 8 8 9.5 11 12.5 14 15.5
Length of Boss.	inches. 22.56.8.4 4 4.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Diameter of Boss.	inches. 33-99-95-99-95-99-95-77-75-99-95-77-99-95-77-99-95-77-99-95-77-99-95-95
Diameter of Shaft.	inches. 214 224 334 44 44 44

SELLER'S COMPRESSION COUPLING.

Taper of cone, 3 inches diameter per foot.

	ना भामकन्त्र गांक	
	8 1 1 2 4 5 1 1 2 8 2 1 2 8 2 1 1 3 2	
i	Min who who who who	
	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Ī	with alough	
	10 41-10 611-100	
	4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	Molecular Molecu	
	4 C C C C C C C T T	
Dimensions in Inches.	4 10 10 10 10 10 10 10 10 10 10 10 10 10	
cp	000000000	
I	-4+ 10 -40 old 4-40 -40 -40	
ii		
Suc	votes votes	۱
sio	2 2 4 0 1 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ı
леп	pad .	ı
ni(224814 % 1 1 4 4 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	ì
H	prof	ı
	4 5 3 3 2 2 3 4 6 4 6 5 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1	ı
	יישרי מוליי מוליי מיליי יישרי מולפי ביישרי	l
	010100000000000000000000000000000000000	ı
	राम क्षेत्र न्या प्रकार	l
	S - C O C C T	l
	11101040 9	ļ
	AND 0 0 10 10 00 00 10 10 10 10 10 10 10 10	l
		ļ
	1 1 0 4 8 0 1 10 10 10 10 10 10 10 10 10 10 10 10	ì
Mark.		ı
		1

PEDESTALS, OR PLUMMER-BLOCKS. Thickness of sole-plate Thickness of cover .. Diameter of neck

bolts. 4 bolts. .25, × Diameter of bolts

STEPS, OR BRASSES OF PLUMMER-BLOCKS.

inches. Diameter of bearing in inches. Thickness of metal at bottom in

of metal at sides. +0.15Thickness $\times 0.12$ H

agree formula $T = D \times .09 + .15$ would agree more nearly with In this formula are used, and the practice. London Jo results with the brasses he Northern practice. T, or The North lighter closely Note. very

(J. Richards.) ADJUSTABLE BEARINGS FOR SHAFTING.

PULLEYS.

Convexity of pulleys to zeeive the strap = $\frac{1}{2}$ to $\frac{1}{2}$ in. per foot of width in high speeds = $\frac{1}{4}$ in low speeds.

Velocity of driving pulley. Velocity of driven ditto.

Diameter of driving pulley. Diameter of driven ditto.

q = p

ΔV p 11 2

In a train of pullcys the final velocity = $V \times D \times D' \times D''$, &c.

where D' D" are the diad × d' × d", &c.

meters of the driving pulleys, and d' d" those of the driven.

LEATHER BELTING.

Horse-power (actual) transmitted by belt. Velocity of belt in feet per minute.

Width of single belting $(\frac{3}{16}$ thick) in inches. With $\frac{3}{16}$ with \frac Strain on belting in lbs. 11

33000 HP x + kx

k = 1.1 when portion of driven pulley embraced ·40 circumference. by belt =

k = -77 when portion of driven pulley embraced by belt = .50 circumference.

k = -62 when portion of driven pulley embraced belt = .60 circumference.

Approximate rule for single belting, 3 thick, For double belting the width = $W \times 0.6$.

W = 1100 HP

HIGH-SPEED BELTING.

The formulæ above apply to ordinary cases, as in some wood-cutting machines, fans, &c., the acting area of the belt on the circumference of the driven pulley being so small that either great tension or a greater breadth than that determined by the formula is required to prevent the belt from slipbut are inapplicable to cases in which very small pulleys are driven at very high velocities; ping.

the breadth of the first-motion belt (the belt In such extreme cases of high-speed belts, find which imparts motion to the driving pulley) by the formula for ordinary belting, W =

Acting area of first-motion belt, Velocity of first-motion belt, 11 2

Acting area of high-speed belt, Velocity of high-speed belt,

The acting area of either belt = $l \times o$.

Where l = length of circumference of driven pulley embraced by the belt, breadth of belt,

 $\frac{a}{l}$ in the case of the high-speed belt. If there is no first-motion belt exclusively for the machine, it will be easy to suppose a hypothetical case, from which the breadth of the highspeed belt may be calculated. = 9 :·

Long belts are more effective than short belts.

HENT ROPE GEARING.

Ropes 54 to 64 circumference; 44 for small power. , 1876.) (Durie, 'Trans, Inst. Mech. Eng.,'

Greunference of pulley not less than 30 times the circum-rence of the rope. A good proportion for the diameter of is 100 times the diameter The distance of the two pulleys apart, from 30 to 60 feet. Velocity of rope from 3000 to 6000 feet per minute. ference of the rope. A good proport the driving pulley first motion is 1 of the rope; second motion, 50 times.

The ropes should not rest on the bottom of the groove, hich should be V-shaped, the sides being at an angle of length of the splice should be about 15 times the which

The rope should never be strained so as to draw it circumference of the rope. The

near approach to straight, even in short spans. Weight of ropes in lbs. per foot = .04 $\,$ C2. Working tension of the rope from 110 to 120 lbs, per square inch of its section.

FORMULA FOR HEMP ROPE GEARING.

Velocity of rope in feet per minute.

n = Number of ropes.

Circumference of rope in inches.

P = Indicated horse-power.

$$P = \frac{C^2 V (n-1)}{4000}$$

$$C = \sqrt{\frac{40:0 \text{ P}}{\overline{V(n-1)}}}$$

This formula is under the supposition that the number of ropes is one in excess of the number actually required, so as to provide for changing and repairs.

Some ropes have run for lot years, but as a rule the life of a rope is from 3 to 5 years.

economically by round (Roebling.) TRANSMISSION OF POWER BY WIRE ROPE, endless wire ropes to a distance of 3 miles. Power may be transmitted

Wire rope transmission costs 13 th the amount of belting, and

th that of shafting. The range of rope is from \$ to \$ inch diameter.

The ropes should be made with 5. It is not necessary that the two a hempen core to increase pliability. wheels should be at the same height.

The deflection of the lower rope when working is one-half greater than the rope at rest, or about 2,th of the distance from wheel to wheel.

7. The lower rope should be made the pulling rope.

8. The groove in the wheels should be formed as shown in the accompanying diagram, the wire rope resting on a filling of either soft wood, indiarubber, or oakum. The recess should 9. A little hot coal-tar occasionally poured into the groove

is a good lubricant.

TRANSMISSION OF POWER BY Diameter of pulley in feet.

Revolutions of ditto per minute. Diameter of rope in

80

140 × . . .

120

001

80

-

H

7

SECTION OF PERIPHERY OF DRIVING PULLEY.

120 300

100

120 4 211

100 176

140

22 80 vibo

6.9 21.1

HP

9 p

140 25.3 29.6

120

100

80

o E

259

173.7

148.9 120

124.1

 $\frac{\frac{1}{1}\frac{1}{6}}{102 \cdot 2}$

9.18

140

120 10

> 100 このの

SCREWS.

Angle of thread = 55°.

Number of threads to the inch in square threads = \ number of depth is rounded off at top and bottom. those in angular threads.

Depth of threads = .64 pitch for angular, = .475 pitch for square threads.

FH'S STANDARD NUTS AND BOLT-HEADS. TAT retreated

								_	_		-	_	-	-	-	
u	Diam. of I at Botto of Three	.942	1.067	1.1615	1.2365	1.368	1.4938	1.590	1.7154	31.8404	6	2.0548	52.1798	8 2.3048	3	2.634
	Thickness Bolt-hes	.9843	1.0937	1.2031	1.3125	1.4218	1.5312	1.6406	1.75	1.8593	\$ 1.9687	2.0781	\$ 2.1875	2.2968	\$ 2.4065	2.625
Jo	Thickness	14	14	90/30	14	1 85	colds.	1/x	2	23	23	238	22	288	22	3
esc	Width acre	1.8605	2.0.183	2.2146	2.4134	2.5763	2.7578	3.0183	3.1491	3.337	3.546	3.75	3.894	4.049	4.181	4 531
'aros	Diam. of E	1	1	eola	14	100	0	272	. 27	23	23	238	24	24	23	n
110	Diam, of B at Botton of Threa	.0929	1341	.1859	.2413	.2949	.346	.3932	.4557		.571	.6219	•	.7327	-7952	-8399
	Thickness Bolt-bea	.1093	.1640	-	-2734		.3823	.4375	-492	979	٠	.6562	.71	9594	\$ \$203	.875
. lo	Тріскиеза Хиtз.	1	60	116	10	n edio	-	9-4	U.	 	11	60/4	_	14	0	-
88	Width acro	-338	*448	.595		0.0	9.0	1616.	1 5	1.101	1.20	1.30	1 - 39	1.4788	1.574	1.670
olt,	Dism. of B inches.	1	60	16	10	10	-	16	0	10	111		ref)	7 10	1.5	

WHITWORTH'S STANDARD GAUGES, deposited at the

	•	\$ to	-44	00
	Fractional.	13 to 4 4	+40	24
rade.	-	\$ to 1	1.6	15
ard of T		4.2 to 6	.2	10
nent, Bo	mal.	1.1 to 4	·	30
Departi	Decimal.	·1 to 1	•.02	19
Standards Department, Board of Trade.		·01 to ·1 ·1 to 1 1·1 to 4 4·2 to 6 \$ to 1 1\$ to 4 44 to	.001 fn.	91
St		~~	Rate of in- crease per	No.of gauges Per set
		Ra	Ra	ž

OF ENGINEERING FORMULÆ.

WITH ANGULAR WHITWORTH'S STANDARD FOR SCREWS.
THREADS.

New Standard, decimals of an inch.	37	15	87	.25													
Old Sizes,	67 67 6 6/2-101 6	2 7 2 8	221	3	3	e. ****	4 4	44	4.4	20	54	2 20	9				
No. of Threads per inch.	44.	331	300	30 45	3	00	24	24	23	243	25	2218	24				
New Standard, decimals of an inch.	.625	000	.700	008.	.875												
,gesized, inches,	vajo			oje#	e - cc			-4:	en loc	14	- m	1440	22	24	2‡		1
No. of Threads per inch.	12	==	111	10	6	0	× 1-	1-	9	9	o r	44	44	43	4		
New Standard, decimals of an inch.	100	175	.200	027.	.275	.300	.350	.375	.400	.425	.450	.500	.525	.550	.575		
Old Sizes, inches.	-400			-40				60)00	,			-40					
No. of Threads per inch.	48	27	24	20	20	18	20 25	16	16	14	41	12	12	12	12		
	per inch. Old Sizes, hinches, New Standard, Acounals of an inch Der inch, per inch, hold Sizes, declinals of Acounals of New Standard, declinals of an inches, an inches, per inch. Old Sizes, per inch. Old Sizes, per inch. See, of Threads an inch. Threads per inch	per inch. Cold Sizzes. Cold Sizzes.	in the per Inch. Joseph Per I	in the per Inch. According to	10 10 10 10 10 10 10 10	### 1	10 10 10 10 10 10 10 10	100 100	100 100	### ### ### ### ### ### ### ### #### ####	100 100	100 100	10 10 10 10 10 10 10 10	75 11 11 11 11 11 11 11 11 11 11 11 11 11	75 55 56 56 56 56 56 56 56 56 56 56 56 56	### 10 10 10 10 10 10 10 1	100 100

WHITWORTH'S GAS THREADS.

2	11	
coler	1	
14 14 14	11 11	ı
14	11	ı
-	11	ì
63144	14 11 11	ı
4 0	14	ı
99/00	19	1
14	19 19	ĺ
H¦∞	28	
Diameter in inches	No. of Threads per { inch	VII

WHITWORTH'S STANDARD WATCH AND MATHEMATICAL INSTRUMENT SCREWS.

ı		1	
	.10	20	
	080.	09	l
	.060	80	
ı	.040	100	
	.032	180 150 120 100	
ı	.030	150	c
	.020	180	0 0
	.010 .015 .020 .026 .032 .040 .060 .080 .10	210	
	.010	250	
1	in.	in.	
	from	ls per	
-	Diam. from in.	Threads per in. 250 210	
L		-	

FRICTION OF PLANE SURFACES.

Mean Coefficient of Friction of Repose.

	Polished and Greasy.	.15
guent.	Dry Soap.	98
	wolleT	611.5
IO IO	Lerd,	12 11 11 11 11 11 11 11 11 11 11 11 11 1
ature	Olive Oil.	1501511111
4	Damp with Water.	891987
	Dry.	.50 .60 .60 .63 .62 .63 .63 .63 .63 .63 .63 .63 .63 .63 .63
	Surfaces,	Wood on wood Metal on metal Wood on metal Matted hemp on wood Sole leather on wood or iton Belting on iron puleys Stones on stones or birks Stones on stones or birks Wood on stones

cases = the coefficient of repose $\times 0.7$; coefficient The coefficient of friction of motion in most overcome 40 required x pressure = power friction, RULE FOR FINDING THE WEIGHT OF CASTINGS OR FORGINGS BY THE WEIGHT OF THEIR PATTERNS.

 $\times 17.1 =$ wrought iron. $\times 17.6 =$ steel. $\times 19 =$ copper. $\times 25 =$ lead. = cast iron. Weight of pattern in ×16 well-dried pine ... 33 33 33 3 33

Kimball reports that whilst the coefficient of friction as the ('Trans. Inst. C. E.,' IIII.) FRICTION OF PLANE SURFACES.

velocity increases beyond the limit due to the maximum The coefficoefficient, it decreases towards a constant value. cient also slightly decreases with the pressure.

Coefficients with 4-inch shafting on cast-iron bearings:-

Velocity, feet }	Н	က	70	7	10	15	20	30	10 15 20 30 40 60 80 100	09	80	100
Coefficient per cent	15.	12.5	15-12-2 10-4 9-3 7-9 6-6 5-8 5-4 5-3 5-2 5-1 5-	9.3	6.1	9.9	.00	5.4	5.3	5.5	5.1	r.a
			0 1 1 1001 11				١.				-	0

With pressures from 23\frac{1}{2} lbs, to 196\frac{1}{2} lbs, per square incli of longitudinal section of journal, the coefficient at very speed decreased by from 6 to 11 per cent.

For the greatest pressures the coefficient appears to become stationary.

From experiments by Poirée and Bochet on waggon friction rails, the coefficients from 900 to 4000 feet per minute on rails,

decrease from ·21 to ·14 respectively.

Frictional Resistance of Pneumatic Foundations. (Schmoll.)

resting on the guide chains or on its lower edge, but only kept The tube or caisson must be vertical and free, neither in equilibrium by the friction of its surface.

teria		Durin Motio	.440	248	.480	.498	.324	.497	.379	. 529	.419
WetMs	-	First Move ment	.3348	.3646	.4104	.4106	.3655	.5156	.4744	.4728	1819.
Dry Material, Wet Materia		Durin Motio	.4583	3965 -4911 -4677 -548	4266 -5368 -4104 -480	4088 -5109 -4106 -498	5361 -6313 -3655 -324	7269 -8391 -5156 -497	5636 -6063 -4744 -379	6473 - 7000 - 4728 - 529	.6633 .7340 .6787 .479
Dry Me		Move Move ment	.4015	.3965	.4266	.4088	.5361	.7269	.5636	.6473	.6633
of Friction.		Soil	Gravel and sand .4015 .4583 .3348 .440	11 13	: :		Sand	: : :	"	"	: : "
Table of Coefficients of Friction.		Material.	Sheet iron without rivets	Cast iron unplaned	Granite roughly worked	Pine, sawn	Sheet iron without rivets	" with rivets	Cast iron unplaned	Granite roughly worked	Pine, sawn

333

Morin's experience, the friction from rest smaller than the resistance during motion Contrary to

ALLOYS.

ıy.

	The state of the s
Bismuth	
Lead.	100 000 001
Antimon	11111111221111
Sinc.	10000
Copper.	1112 1100 1100 1100 1100 1100 1100 1100
,niT	21 2 10 10 10 10 10 10 1
ALTOVS.	Brass, engine bearings Tough brass, engine work Tough brass, engine work Tellow brass for turning Flanges to stand brazing Bell-metal Bell-metal Brass, for lecondrive bearings for strays and glands Munt's sheathing Metal to expand in cooling Metal to expand in cooling Metal to expand in cooling Spelter Satutary bronze From Scheler Spelter For lead "" " " " " " " " " " " " " " " " " "

Borax or sal-ammoniac. SOLDERING OR WELDING. FLUXES FOR Iron or steel..

Sal-ammoniac or chloride of Resin or chloride of zinc. Resin and sweet oil. Chloride of zinc. Tallow or resin. zinc. Lead and tin pipes Copper and brass.. Tinned iron Lead Zinc

STEEL.

Alloy whose Tempe- Fusing Point is of the same Temperature.	Fah. tin. lead. 430° 1 to 13 470° 1 ,, 24 500° 1 ,, 44 550° 1 ,, 12
Purpose.	{ Turning tools for } metal
Colour.	Light straw Dark straw Brown yellow Dark purple

BRAZING.

posed in a clear fire to a heat sufficient to melt The edges filed or scraped clean and bright, covered with spelter and powdered borax and exthe solder. To Test Steel and Iron. ('Scientific American.')

contrary, remains bright if touched with nitric acid. Good steel in its soft state has a curved fracture Nitric acid will produce a black spot on steel; the darker the spot the harder the steel. Iron, on the

threads, or and a uniform grey lustre; in its hard dull, silvery, uniform white. Cracks, three

sparkling particles denote bad quality.

Good steel will not bear a white heat without falling to pieces, and will crumble under the hammer at a bright red heat, while at a middling heat it may be drawn out under the hammer to a fine point.

point before operating. Steel should be drawn out Care should be taken that before attempting to draw it out to a point the fracture is not concave, and should it be so the end should be filed to an obtuse on fine point and plunged into cold water; the frac-

ness, place a fragment on a block of cast iron; if good it may be driven by the blow of a hammer into tured point should scratch glass. To test its toughthe cast iron, if poor it will crush under the blow.

IRON. TESTS OF

gradually, gives long silky fibres of leaden-grey hue, which twist together and cohere if broken tough iron, before breaking.

A medium even grain with fibres denotes good iron. Badly-refined iron gives a short blackish fibre on fracture. A very fine grain denotes hard steely iron, likely to be cold-

short, and hard.

spots denotes cold-short, brittle iron, which works easily when heated and welds well. Cracks on the edge of a bar are indi-Good iron is readily heated, is soft Coarse grain with bright crystallized fracture or discoloured under the hammer, and throws out few sparks. cations of hot-short iron.

WORKSHOP RECIPES.

ANTIFRICTION GREASE.

Boil together, 14 cwt. of tallow with 14 cwt. of Im oil. When boiling point is reached allow it palm oil. When boiling point is reached allow to to cool to blood heat, stirring it meanwhile, then strain through a sieve into a solution of $\frac{1}{2}$ cwt. of soda in 3 gallons of water, mixing it well.

The above is for summer.

For winter, 14 cwt. of tallow to 13 cwt. palm oil. Spring and autumn, 13

FOUNDRY RECIPES.

Fire-clay crucibles, 2 Stourbridge clay, 1 hard gas-coke, finely

8 Stourbridge clay, powdered. Berlin crucibles,

3 old crucibles, ground finely, 5 coke, 4 graphite, or " black-lead."

2 graphite. Black-lead crucibles, I fire-clay,

WORKSHOP RECIPES—continued.

PARTING SAND.

Burnt sand scraped from the surface of castings.

Mixture of brick, clay, and old foundry sand. LOAM.

powder; or, in some instances, fine BLACKENING FOR MOULDS. Charcoal coal-dust.

BLACK WASH. Charcoal, plumbago, and size.

STEEL. MIXTURE FOR WELDING sal-ammoniac,

Pounded together, and fused until clear, when it is poured out, and, after cooling, reduced to powder.

RUST-JOINT CEMENT (Quickly Setting). sal-ammoniae in powder (by weight). flour of sulphur.

iron borings made to a paste with water.

Rust-Joint (Stowly Setting).
2 sal-ammoniae.
1 flour of sulphur.
200 iron borings.

The latter cement is the best if the joint is not required for immediate use.

RED-LEAD CEMENT FOR FACE-JOINTS. of white-lead.

of red-lead, mixed with linseed oil to the proper consistency. WORKSHOP RECIPES—continued.

Place horn, hoof, bone-dust, or shreds of leather, together with the article to be case-hardened, in an iron box subject to a blood-red heat, then immerse the article in cold water. CASE-HARDENING.

Some engineers cut up the shreds, &c., fine, and mix them with white wine vinegar, and salt. CASE-HARDENING WITH PRUSSIATE OF POTASH.

rub the surface over with prussiate of potash; allow it to cool to dull red, and immerse it in Heat the articles after polishing to a bright red, CASE-HARDENING MIXTURES.

3 prussiate of potash to 1 of sal-ammoniac mixed, or 2 sal-ammoniac, 2 of bone-dust, and 1 of prussiate of potash.

1 lb. of glue melted in 2 quarts of skimmed GLUE TO RESIST MOISTURE.

When strong glue is required add powdered chalk to common glue.

MARINE GLUE.

I of india-rubber, 12 of mineral naphtha or coal-tar, heat gently, mix, and add 20 of powdered shellac. Pour out on a slab to cool—when used to be heated to about 250°

GLUE CEMENT TO RESIST MOISTURE.

glue mixed with the least possible quantity of water. glue

4 of glue.

I of boiled oil by weight.

1 oxide of iron.

WORKSHOP RECIPES—continued.

GALVANIZING IRON.

from time to time, according to the quantity of 1. Pickle the article six or eight hours in water containing about 1 per cent. of sulphuric acid held in wooden vessels; the acid requires to be renewed iron pickled.

2. After pickling scour and wash well in clean water.

3. Keep the article under clean water (in which a little fresh burnt lime has been stirred) until

saturating hydrochloric acid with metallic zinc ready for the next process.

4. Immerse in chloride of zinc for one or two minutes until a skin of fine bubbles is formed on the surface. Chloride of zine may be formed by then decanting adding a little sal-ammoniac. until effervescence ceases,

5. Dry the article on a heated iron plate, then immerse it in a bath of molten (not glowing) zincuntil it acquires the temperature of the zinc bath. some cases there is a partition at the surface of The surface of the molten zinc should be protected the buth, one portion of the surface being pro-tected with sal-ammoniac, the other with a layer by sal-ammoniac or some other substance. of charcoal.

6. Beat the article while hot, to remove excess of zinc.

-continued. RECIPES-DUBBING. WORKSHOP

1 gallon train oil. LEATHER. CLOTH OR 1 lb. tallow. CEMENT FOR 2 lbs. black resin.

melted together and well mixed. gutta-percha cut small 6 2 india-rubber linseed oil shellac pitch

1 gallon of turpentine. 3 lbs. of asphaltum. asphaltum. 12 of turpentine. 6 of drying oil. 12 of amber. 2 of resin. 2 of

IRON LACQUER.

8 ounces of shellac.

BRASS LACQUER.

or { 8 ounces of shellac. 1 gallon of spirits of wine. 2 ounces of sandarach. 2 ounces of annatto. dounce of dragon's

blood resin. gallon of spirits of wine.

lacquered should be heated slightly, and the lacquer should be applied by means of a soft camel's-hair WHITING. The article to be brush.

Chalk reduced to a fine powder by levigation.

I of soda with 14 vandyke brown and 4th bichro-Burnt sienna ground in vinegar. Dissolve in hot water STAINING WOOD. Mahogany colcur Walnut

of spirits potash mate of potash. issolve dragon's blood in permanganate of Dissolve Dissolve wine. : Red stain ..

FRENCH POLISH. water. Black stain

3 ounces of shellac dissolved cold in a pint of spirits of wine; if desired, it may be darkened with "dragon's blood,"

DARK DRYING OIL (FOR PAINT).

1 gallon linseed oil.
1 lb. of red-lead.

1 lb. of umber.
1 lb. of litharge.

The linseed oil is heated to about 200° Fabr, and the scum removed. The red-lead, umber, and litharge are then added, and the whole raised to 400° Fahr, and kept at that heat It is then allowed to settle before decanting about 3 hours.

RAW DRYING OIL.

Add white-lead in the proportion of 1 lb. of lead to 1 gallon of linseed oil; then allow it to settle for a week.

COPAL VARNISH.

Fuse 8 lbs. of African gum copal; add 2 gallons of clarifled oil. Boil very slowly for 4 or 5 hours until quite stringy, and mix with 34 gallons of turpentine.

WHITE HARD SPIRIT VARNISH.

Dissolve 34 lbs. gum sandarach in 1 gallon of spirits of For brown wine; wher dissolved add 1 pint of turpentine. varnish substitute shellac for sandarach.

Fuse 3 lbs. of Egyptian asphaltum, and when liquid add Ib. of shellac and I gallon of turpentine. BLACK VARNISH.

b. of resin dissolved in a pint of oil of turpentine warm. TURPENTINE VARNISH.

balsam dissolved in oil of turpentine in equal CRYSTAL VARNISH FOR TRACING PAPER.

DRIERS. quantities.

Litharge or oxide of lead; red-lead and sulphate of zinc are so used. Oxide of manganese is used for quick drying. Resin is From 4 to 1 lb. of driers are used to a gallon of oil. sometimes mixed with paint to make it dry. also used.

PAINTING OLD WORK.

Old paint should be washed with soap and water or a solution of pearlash, and afterwards rubbed with pumice-stone. To remove old paint, dissolve 1 ounce of soft soap and 2 ounces potash in boiling water, and add 4 ounces of quick-lime. Apply hot, and leave it on for 12 or 15 hours.

-continued. WORKSHOP RECIPES-

PAINTING.

A gallon of mixture, or 6 pints of raw linseed oil, 1 pint of boiled oil, 1 pint of turpentine, requires from 12 to 14 lbs of dry paint.

These proportions vary according to circumstances.

Superficial feet.	225 to 270 360 450 450 630 720	108
Superficial yds. Superficial feet.	25 to 30 40 50 50 70 80	12 16
A Gallon will cover	On stone or brick, about from On compo, &c to to on wood	One gallon tar, first coat second coat

Priming.—White-lead (sometimes mixed with chalk) diluted with linseed oil.

Putty.—Spanish whiting and linseed oil well beaten and kneeded into a stiff paste. Knotting.-Red-lead and size.

PROPORTIONS OF COLOURS FOR ORDINARY PAINTS.

 12	Red Verdi- Burnt Spanish Ochre. gris. Umber. Brown	111111
Ingredients by Weight.	Verdi- gris.	112111
ents by	Red Ochre.	1111121
Ingredi	Red- lead.	1111181
	Lamp- black,	100 1 2 4
	White- I	100 255 99 98
	Colours.	White Green Stone Lead Red Chocolate

WHITE PAINT REQUIRED TO COVER YARDS OF NEW WROUGHT DEAL. QUANTITY OF 100 SOUARE

_
=
0
0
0 %
0 80
180
ng C
ing C
.=
dir
uildir
dir
Buildir
uildir
Buildir

-	Driers.	lbs.	+++++ +
	Turpentine.	pints	HOTEL HOTEL HOTEL
	Boiled Linseed Oil.	pints.	1111 11111 व्यववर्ष
-	Faw Lin- seed Oil.	pints.	कथ्यथ्य केन्यन। यायायथ
1	White-lead.	lbs.	16 15 13 13 16 12 12 12 12 18 16 15
1	Red-lead.	lbs.	
		Total de Lacon Lacon Dobbod	Priming *. Priming *. Second coat Third Fourth Fourth Priming Fourth Second coat Third Fourth

besides the materials enumerated above, 2 lbs. of white-lead for stopping. For every 100 square yards, 5 lbs. of putty will be required

to give a flesh-coloured * Sometimes more red-lead is used and less drier.

† Sometimes just enough red-lead to give a flesh

When the finished colour is not to be pure white, it is b trer to have nearly all the oil boiled oil. All boiled oil does not work well. For pure white a larger proportion of raw oil is necessary, because boiled oil is too dark. tint.

WORKSHOP RECIPES-continued.

INCRUSTATION OF BOILERS.

Remedies that have been adopted with more or less success for boiler incrustation. ('Mechanics' Magazine.')

Potatoes, ¹/₅₀th of weight of water, prevent adherence of scale.

12 parts salt, 25 caustic soda, 1th extract of 3. Pieces of oak-wood, suspended in boiler and oak-bark, 3 of potash.

renewed monthly, prevent deposit.

4. 2 ounces of muriate of ammonia in boiler twice a week, prevents incrustation and decomposes scale.

5. Coating of 3 parts black-lead, 18 tallow, applied hot to the inside of a boiler every few

SIX weeks, prevents scale.
6. 13 lbs. of molasses fed occasionally into an for boiler prevented incrustation months. 8-horse

7. Mahogany or oak sawdust in limited quantities. The tannic acid attacks the iron, and should

8. Slippery elm-bark has been used with some therefore be used with caution.

10. Chloride of tin Carbonate of soda.

Spent tanners' bark.

Paraffin oil has been used with excellent results 12. Frequent blowing off.

locomotive boilers.

wash of Portland cement sometimes protected from Marine boilers are by a thin corrosion

FERROTYPE (OR BLUE) PROCESS.

By this process prints are produced in prussian blue and white, a print taken direct from an ordinary tracing in indian ink giving white lines on a blue ground.

	100 grains.	1 onnce.	70 grains.	l ounce.
	:	:	:	:
ION.	:	:	:	:
SENSITIZING SOLUTION.	nia	:	:	:
S SN	nm0	:	Sh	:
LLIZI	nd ar	:	pota	:
SENS	on a	:	te of	:
	of ir	:	ussia	:
	A S Citrate of iron and ammonia	/ater	ed pr	/ater
	SC	~	S. R.	=
	<	4	2	4

These solutions will keep indefinitely before mixing, but, when mixed, they should be used at once or left in the dark.

PREPARING THE PAPER.

Mix equal quantities of A and B and apply to one side of the paper with a sponge. The sponge should be as full as it will hold of the solution, which should be liberally applied to the paper for about two minutes. Then squeeze out the sponge and wipe off all the solution from the surface of the paper, care being taken to use the sponge lightly without abrading the surface. The paper, which is now of a bright yellow colour on the prepared side, should be hung up to dry in the dark.

PRINTING.

The printing is done in every respect in the same manner as for ordinary photographic silver prints, the tracing representing the negative.

Behind the glass of the printing frame lay the tracing, face next the glass, behind the tracing the prepared paper, prepared Put out in the sun or diffused daysurface next the tracing.

surface next me reserved.

light until sufficiently printed.

In bright sun-light from 9 A.M. to noon the time required.

In bright sun-light from 9 A.M. to noon the time required. longer exposure must be given.

Bricas

The print is fixed by simply washing thoroughly in clean FIXING.

ADDITIONS AND ERASURES.

A white line may be taken out by going over it with a quill pen or brush dipped in the sensitizing solution, exposing to the sun, and washing as before. Additions or corrections in white may be made with a quill pen dipped in a solution of 40 grains of carbonate of potash to 1 ounce of water. After using this solution, the potash must be dried with blotting paper and washed, or the lines will spread and become blurted. REQUIRED TO PUNCH BOILER-PLATES,

Thickness of iron in inches. Power required in tons.

Diameter of hole in inches.

Punching copper requires a force of about 3 P = 80 D T.

that required for iron.

DYNAMOMETER.

To estimate the horse-power as indicated by the dynamometer :-

N = Number of revolutions of shaft per minute. L = Length of lever in feet.

W = Weight applied to the end of the lever in

lbs., including the weight of the scale.

Actual horse-power = .0001904 WLN.

Bucket Ladder. Horse-power. Nominal 20 30 Feet. DREDGING MACHINES. Length of 63 78 09 Number of Buckets. 34 36 45 Feet. Depth of Water.

C = No. of cube feet excavated per minute. H = Height to which the earth is to be raised. P = Actual horse-power required.

ATION OF MACHINERY, &C., PER ANNUM ON FIRST COST. $P = C(-004 \text{ H} + \cdot 35)$ for stiff clay and gravel. = $C(-004 \text{ H} + \cdot 15)$ for soft clay and mud.

Wear and Total.	-	3 per cent. 3 per cent. 6 per cent.	* :	22	45	
Wear and		3 per cer	2	0 10	45 33	40 %
Deprecia-	doll.	3 per cent.	" 2		23	1
		:	:	: : :	lillwork and gearing	belts
DELENGRATION		Farines		Machines	Millwork	Bands and belts

P. SHRINKAGE OF CASTINGS.

$\dots = \frac{1}{16}$ inch in a foot.	\$ ", ", ", ", ", ", ", ", ", ", ", ", ",	å in 16 "			\$ at top.	4 at bottom.	\$ in 16 inches.	4 in 9 "	\$ in 10 ,,	i in a foot.	11 20 20	10 39	1 200	=
11	11 11	11	1	41	11	11	11.	. 11	11	11	11	11	11	11
In locomotive cylinders	Girders beams &c	Engine-beams, connecting rods	In large cylinders, say 70-inch	diameter, 10-feet stroke, the	contraction of diameter	Ditto	Ditto, in length	In thin brass	In thick brass	In zinc	In lead	In copper	Bismuth	Tin

CHANGE WHEELS IN SCREW-CUTTING LATHES. RULE FOR

= No. of threads per inch to be cut.

No. of threads per inch on traverse screw.

No. of teeth in wheel on mandrel.

No. of teeth in stud wheel (gearing in S).

No. of teeth in stud painon (gearing in T).

No. of teeth in winel on traverse screw. HARRAH

$$N = P \frac{TW}{SY}$$
. $W = N \frac{SY}{PT}$.

WEIGHT OF LEATHER BELTING, LBS. PER FOOT RUN.

4 44 5 54 46 52 58 63 921.041.151.27	6 64 7 74 8 9 10 11 12 -69 -75 -81 -86 -921-0:1-151-271-38 1-381-501-611-721-842-072-302-532-76
.58	11.27
.52	10 1.15 2.30
.92	9 1.0:
34	.92
.35	7‡ .86 1.72
24 -29	1.81
2 . 23	64 •75 1.50
13.	.69
Breadth, ins. Single, lbs Double, ,,	Breadth, ins. Single, lbs Double, "

CRANES.

Ordinary height of handle above ground, 3 fect. Diameter of circle described by handle, 32 inches. Angle of jib = 45° .

Each man working at the handle of a crane imparts a pressure of about 15 to 20 lbs.

Weight to be raised by crane in lbs. Power applied to the handle in lbs. = M

D = Diameter of circle described by handle in

Number of revolutions of handle to one of barrel. inches.

WXB Diameter of barrel in inches. $D \times P \times n$ B=

 $D = \overline{P \times n}$ W×B

 $W = \frac{P \times D \times n}{B}$

POWER GAINED BY BLOCKS.

Let N = number of cords or chains leading to or from the movable block, the power gained will = N.

STIFFNESS OF ROPES.

R = Stiffness of ropes in 1bs. avoirdupois, or excess of tension at the leading side of the rope. Diameter of rope in inches.

 $n=48\,d2$ for white rope = 35 d^2 for tarred rope. $\tau=$ Effective radius of pulley in inches.

 $R = \frac{n}{r} (.0012 + .001026 n + .0012 T)$ for white rope, Tension in lbs. avoirdupois.

 $=\frac{n}{r}(\cdot 006 + \cdot 001392 n + \cdot 00168 T)$ for tarred rope.

CRANES

Computation of Stresses by Graphic Construction,

With any convenient scale draw A B parallel to the suscomplete the parallelogram by the lines C D, B D drawn parallel to A B and A C respectively. Then the line A D represents the intensity ; also draw pending chain and equal to the load parallel to the back chain and = W; of the stress on the pin at A

From D draw a line parallel to the stay until it intersects the line of the jib at E; then DE represents the stress on the stay, and AE the stress on the jib. In this diagram no account has been taken of the stress produced by the weight

of the crane itself.

A D being the resultant of the lines A B and A C will form two sides of the parallelogram of forces for the with DE crane. CORN MILLS.

dressing machinery, &c., it is usual to allow four horse-power nominal. For each pair of stones with all the necessary

One pair of 4-feet stones will grind about five

cated) exclusive of dressing and other machinery. bushels of wheat per hour. Each bushel of wheat so ground per hour, requires 1.11 horse-power (indi-SPEED IN CORN MILLS.

Dressing machines, 450 to 500 revolutions per minute, 21 inches diameter. Stones 4 ft. diameter, 140 revolutions per minute.

Creepers, 75 revolutions per minute, with

with Elevator, 40 revolutions per minute, pitch.

Wheat screen, 300 to 350 revolutions per minute, inches diameter.

PROPORTIONS OF COCKS. 18 inches diameter.

Taper of plug 4 inch to each inch of length. Bottom diameter of plug = B × 14. Length of plug = $B \times 3$. Length of handle = $B \times 6$. B = The bore of the cock.

Ft. per min. SPEEDS FOR GRINDING AND POLISHING, &C.

1700 10,000 750 650 20,000 Speed of large grindstones for polishing 2000 2500 to 3000 Back tackle circular saws for hot iron polishing large articles plate-bending rolls tool grinders ... disintegrators emery discs millstones 66 66 33 66 33

CUTTING TOOLS. SPEED OF

Speeds for cast iron generally, 150 to 190 inches to inches per minute. per minute, boring 80 inches Speeds for wrought iron,

about 260 inches per minute.

For yellow brass, about 300 inches per minute.

Speed of planers, about 15 feet per minute. Speed of slapers, about 12 feet per minute. For drilling, tapping, or bering, the speed of the circumference of the tool should be from 80 to 120 inches per minute in cast iron, and from 140 to 160 in wrought iron

AND BORING CAST IRON. SPEEDS FOR TURNING

Diam.	Revolutions	Revolutions per Minute.	Diam.	Revolutions	Revolutions per Minute.
in Ins.	Turning.	Boring.	in Ins.	Turning.	Boring.
1	1 50 92	25-46	20	2.54	1.27
21	23.46	12.73	25	2:04	1.02
00	96.91	8.48	. 30.	1.70	85
4	12.74		35	1.46	. 73
2	10.50	2.10	40	1.28	64
9	8.48	4-24	45	1.12	95:00
7	7.28	3.64	. 09	1:02	12
00	. 6.36	3.18	60.	84.	42
6	2.66	2.83	7.0	72	•36
10	2.10	. 2.55	80-	19.	32
1.2	4.24	. 2.13	80	99	28
15.	3.40	1.20	100	.20	.25

3 ft. per min	. 33	33	33	33	33	33
3 ft.	60 413	4	20	- P	30	100
rolls	rifling steel guns o. 1.	ns su	gung	in steel	mallarms	
Speed for turning chilled rolls	g steel gu	g cast gu	g bronze	cutting	ng steel s	drilling gun-metal
or turnir	riffing	porin	riffing	Berew	drilli	drillin
speed fe	31	3.	39	33	33	66

d

WOOD-WORKING MACHINERY.

minute. Speed of machine augers, 1½ inch diameter, 900 revolutions per minute. Speed of machine augers, 3½ inch diameter, 1200 revolutions per minute. Gang-saws require for 45 superfect of pine per hour, 1 HP indicated. Circularsaws require for 75 super, feet of pine per hour. I HP indicated. In oak or hard wood, 4ths of the above quantity require 1 HP indicated. Main shafting in wood working shops, about 300 revo-Intions per minute. Mortising machines, 250 to 300 strokes per minute; stroke, 6 to 9 inches. band-saw, 3500 feet per minute. Velocity of gang-saws, 20-inch stroke, 120 strokes per minute. Velocity of scroll-saws, 600 to 800 strokes per minute. Velocity of planing-machine cutters at minute. work under planing machine, 20th of an inch for each cut. Travel of moulding-machine cutters, 3500 to 4000 feet per minute. Travel of squaring-up-machine cutters, 7000 to 8000 feet per minute. Speed of wood-carving drills, 5000 revolutions per saws, 15 to 60 feet per minute. Velocity of the Travel of Velocity of circular saws at periphery, 6000 to Rate of feed for circular periphery, 4000 to 6000 feet per minute. 7000 feet per minute.

Sharpening Angles of Machine Cutters.

Ordinary soft-wood planing machines, 35°, Gouges and ploughing machines, 40°. Adzing soft wood across the grain, 30° Hard-wood tool cutters, 50° to 55°.

3½ to 8 lbs. Ditto for refining furnace furnace

Number of revolutions of 40 to 60 per minute. puddling rolls ... tto ditto rail rolls Ditto

Velocity of rail saws, 4000 to 5000 feet per minute

L PROCESSES.	60 HP indicated.	(P		, з	dl	(P	IP	I.P
Z	-	=	2	2	=	1	-	-
FERE	09	26	00	00	250	60 HP	12	7 HP
DIE	:	:	ezer			:	:	
FOR	:	:	adne		:	:	:	702
LOWER REQUIRED FOR DIFFERENT PROCESSES.	Blast furnace, each	Refining ditto	Puddling rolls with squeezer on Tra	and shears	rain	Small bar train	Double rail saw	Straightening process

SPEED OF ROLLS, &C.

	150 feet per minute.	33	3.9	**	*	*	
	feet per	, ,,	**	,,	**	**	11
Sec.							
MOLLS,	:			on rolls	:	nam.	
SPEED OF POLLS, &C.	Armour plate, 32 ins. dlam		Tire rolls	w	dlam.	IIS, 9" C	With wall of diem
JC.	32 ins.	28		large	rolls, 15	t Dar ro	dlam.
	r plate,	plate	118	IIIS and	int bar	nerchan	d rolls
	Armon	Boiler plate	Tire ro	FOIL III	Mercha	Neil I	Wino m

BLAST FURNACES.

table gives the interior dimensions of blast furnaces selected from accompanying different countries.

Insome furnaces the lines are curved so that the dimensions give a near approxi-The dimensions are in feet. correspond with the letters in the diagram to their actual figure. The dimensions merely mation

J.	56 63 63 60 57 51 47
I.	3 25 40 28 37 36 19
H.	22 6 6 14 10 10
G.	20 18 8 9 7 7 11
F.	111 4 9 8 8 1 7
E.	200 8 12 4 4 9
D.	11. 25. 24. 44. 88.
C.	17 16 17 15± 54 13± 16
ë	10 16 20 16 14 13 13
A.	100 100 100 100 100 100 100 100 100 100
	Welsh Staffordshire Cleveland Belgian French German German

STEEL MANUFACTURE, (See 'Min. Inst. Civ. Eng., xlii.) CRUCIBLE OR POT STEEL PROCESS.

Puddled iron of good quality, or mild Bessemer steel scrap, fused with manganiferous pig iron or spiegeleisen, which

Uchatius steel is formed by melting with coke in crucible furnaces a mixture of mottled cast iron in a tolerably fine state of division, with pulverized calcined iron ore and char-The proportions of carbon in the brands are adds carbon and manganese. coal powder.

	0	6	-	.03	70.
Brand	2	4			0.1. 9.0
ercentage)	.7 to .85	·85 to ·95	1.7 to .85 .85 to .95 .95 to 1.11.1 to 1.21.2 to 1.3	1.1 to 1.7	c. 1 01 Z. I
of carbon f	Vorv	Mason's	Dies.	Cutting	Razors.
	soft.	tool.	TO W. TH	tools.	

12 hours, with a consumption of 23 to 34 of coke (equivalent The furnace is lined with gannister, a species of millstone × 1 ft. 6 in., and 3 ft. 9 in. high. the furnace to the chimney flue is holding Three charges are melted in 55 to 70 lbs. for the first charge, and 5 or 10 lbs. are generally of fire-clay, to 4 or 5 tons of coal) per ton of steel melted time they are refined. grit; it is oval, about 2 ft. The passage leading from The crucibles o in. from each

POT-STEEL MELTING HOLE,

FURNACE. REGENERATIVE GAS

regenerative gas furnace effects a considerable saving requiring from 22 to 30 cwt. of small coal per ton of in fuel, requiring from 22 to 30 cwt. of metal melted. The

The melting chamber in the regenerative gas furnace is cross walls into chambers, each holding 6 pots arranged in two rows. by divided long trench

of 1 cwt. Each pot lasts about 24 hours, yielding 5 charges with a consumption of 1 ton of small coal per ton of metal In America, plumbago crucibles are used having a capacity produced. of

BESSEMER 5-TON CONVERTER.

The converter is supported on trunnions, through which the blast is introduced; the bottom is loose, pierced with from 7 to 12 fire-clay tuyeres about \$\frac{1}{2}\$ inch diameter. Spare The converter (7'6" diameter for 5 tons) has a lining of to 12 inches thick, cased with boiler plates. bottoms are always in reserve. gannister from 9

The converter is first heated to redness by a coke fire inside it, urged by a gentle blast. The fire is then turned out and the molten iton run into it whilst in a horizontal position; the blast is then put on and the converter turned into an Pressure of blast from 15 to 25 lbs. per square inch. upright position.

with a little iron burn first, and after a few minutes the carbon begins to burn freely. The length of the blow varies from 5 to 6 to 30 minutes, or even more, depending on the The air allows the carbon, silicon, and manganese to burn out, the temperature rising rapidly and the colour changing from orange to dazzling white. The silicon and manganese metal and the amount of decarbonization necessary, is sometimes determined by the eye and sometimes spectrum.

In some cases in the middle of the blow from 15 to 20 per

cent. of rail crop ends are added.

As soon as the spectrum bands have disappeared, the converter is turned down to a horizontal position, and a little slag taken out and cooled in water. At Seraing the colour of the slag denotes the percentage of carbon,—lemon velow denotes the percentage of carbon,—lemon velow of as lower of 3. bluish black 0.15 of plant hown 0.45; dark hown 0.3; bluish black 0.15. The globules of metal adhering to the slag are also tested by harmor; if a globule of about 4 inch diameter, flattens down too casily under the of about 4 inch diameter, flattens down too casily under the crosks readily at the edges it is too lard. If the metal is too an upright position; if too soft, some melted manganiferous from is added. When the metal is of the proper character it is poured out into ingots. At Sersing it is found that metal conthan that obtained from a remelting cupola. Sometimes the hard the blast is again started, and the converter brought into veyed direct from the blast furnace to the converter is tougher ingots, when sufficiently cool to be removed, are hammered under a 15-ton steam hammer.

Dr. Siemens states that in America 72 "blows" have been

one pit in the 24 hours, but the number and capacity of the converters in a pit is not stated. 1u obtained

The English practice is to blow until the carbon is reduced to about 0.1 per cent,, and then to add from 3 to 5 per cent. spiegeleisen, which contains 3 or 4 per cent, of carbon and 8 to 20 of manganese. molten

and consequently great heat is favourable Quick "blows to sound ingots.

cent, when the iron is taken direct and 15 when it is remelted process is from 9 The loss of weight in the Bessemer in a cupola,

parts, keeping spare top, bottom and nose sections ready in seever and relining the truminon section in place. In this manner the possible make of a pair of 5-ton converters has been increased to between 45 and 50 blows in the 24 hours. American practice is to divide the converter into four The

OPEN HEARTH MELTING FURNACE OPEN HEARTH SYSTEM, SIEMENS,

raw or more or less reduced) in a bath of pig metal; the heat of the furnaces being such that the fluid bath of metal and In the Siemens-Martin open hearth process, steel is produced by the dissolution of pig metal and iron ores (either for any reasonable or wrought scrap or spongy metal or ore, may be made to adjust it to the desired quality. A sufficient quantity of pig is first melted down, then fron taken may be condition length of time, during which samples additions, either of pig metal in that maintained pe may

steel and old ends into steel ingots.
The use of ferro-manganese instead of spiegeleisen allows or steel scrap is added as fast as it dissolves, until a symple taken out in a small ladle indicates by its outpiness and facture that it is of the desired quality; then from 6 to 8 per cent, of spiegeleisen or ferro-manganese in a solid state is added, and the result is a bath of metal, the precise chemical condition of which is known; the charge is then run into ingots. This process is much used for the conversion of scrap

the use of manganese with so little carbon, as to neutralize the objectionable effect of phosphorus so long as the latter

tungsten, and cannot be forged, but if cast and ground sharp it produces cutting tools of great endurance. Chromium has Mushet's tungsten steel consists of iron combined with does not exceed 0.25 per cent.

has the effect of removing "red-shortness," and making the metal extremely maleable both when hot and cold. The furnace is heated by gas formed from small coal on Siennens' also been used to produce strength and endurance in steel. Manganese added in the proportion of 0.5 per cent. to ingot metal containing from 0.15 to 0.20 per cent. of carbon,

regenerative principle.

The bed is 10 feet long, 8 feet broad, and 12 or 15 inches deep in front, being more shallow behind.

The bed of the furnace is of quartzose sand sufficiently firsh to the furnace is of quartzose sand sufficiently firsh to set into a hard mass at a full steel melting heat. The sand is thoroughly dried or earlied before use, and, in The sand is thoroughly dried or earlied before use, and, in pagaring the bottom, it is simply poured on the place to be may e up, after scraping away the slag. The parts exposed ma'e up after scraping away the siag. The parts exposed to the full intensity of heat are of refractory Dinas brick, the regenerators of Stourbridge fire-brick, and the reversing flues and chimney of ordinary brick.

The proportion of scrap varies from 3 to 10 times the weight of pig. The time required to work a 5 or 6 ton charge from 9 to 11 hours, 60 or 70 tons of steel being a fair is from 9 to 11 hours.

week's work. The loss in converting Bessener scrap with hematite pig is 4 or 5 per cent., and the consumption of coal 13 or 14 cwt. per ton of steel. Iron may be produced by this process from Cleveland ore with only '04 per cent. of suiplur and '06 of phosphorus. The roof of the Turnace will with proper care last for 150 or

The Pernot furnace bed is mounted on wheels so as to be moved out of the furnace (which is of the ordinary regenerafrom the vertical and revolves about twice per minute, is about 7½ feet internal and 9 feet external diameter and 18 tive gas type), it has its axis inclined at an angle of inches in depth.

PERNOT'S REVOLVING OPEN HEARTH.

The pig iron previously heated to redness in an auxiliary furnace is spread uniformly over the bottom, and upon this the whole quantity of steel rail ends or scrap is charged at once. As the bed revolves the fusion is very rapid; the whole mass is liquid within 2 hours; samples are taken out at intervals, and when the metal is ready spiegeleisen or ferro-manganese is added. The average work of the furnace is 5 charges in 24 hours, and 24 per cent. pig fron, 67 per cent. scrap, 9 per cent. spiegel, yield about 44 tons. Loss from 6 to 7 per cent, consumption of coal 8 to 84 cwt. per ton of steel,

VENTILATION IN COLLIERIES.

('Trans. Inst. Civ. Engrs.,' vol. vi.)

temperature of air in downcast shaft. temperature of air in upcast shaft.

the periphery of the transverse section of depths of the shaft in feet. m 0

the air-course in feet.

the velocity of the current in ft. per second. the length traversed by the current in feet the area of the section in feet.

$$v = 96\sqrt{\frac{(T-t)}{T+448}D_s}$$

VENTILATION IN COLLIERIES.

('Trans. Inst. Civ. Engrs.,' vol. x.)

length of downcast column.

length of upcast ditto.

number of degrees in excess of 32° F. in C. number of degrees in excess of 32° F. in c.

$$c = C \left(\frac{480 + t}{480 + T} \right).$$

WINDING ENGINES WITH FLAT ROPES COILED ON DRUM.

To find the place of meeting for ascending and descending skips.

t =thickness of rope in inches.

number of revolutions of the drum. 35

the distance below half the depth of the

pit at which the skips will meet in yards $x = .0218 n^2 t$.

WINDING ENGINES-continued.

To find the diameter of the winding barrel for flat ropes :--

Depth of pit in feet. Number of revolutions of engine.

Diameter of winding barrel in feet. Thickness of rope in inches.

12P - 3.15R2T 37 · 7 B

MINING MACHINERY.

inches square. 8 to 10 ft. stroke. Rolls crushed together with a force of 60 tous. Speed of crushing rolls at 60 feet per min. 24 to 30 inches. 4½ "; inch diam. 6×10 inches. to 12 inches. $9" \times 6$ inches. .. from 150 to 200 feet. 12 to 5 cwt. 12 to 15 45 to 60 about Number of holes to the inch 140 Weight of stamper heads from Pumps for deep mines, usually Exposed area of cast gratings) Area of stamper bottom gene-Number of lifts per minute ... Sifting screen shaft Diameter of ditto ditto : Breadth of ditto Tumbling shaft Lift of ditto Roller shaft periphery for tin .. : Each lift

Horse-power of Pumping Engines.

Q = Quantity of water raised per minute cub. ft. H = Height in feet.

STEAM.

MERCURIAL GAUGE.

*1 atmosphere, or 14.706 lbs. = 29.92 inches of mercury Each 1b. pressure per square = 2.035. per square inch

Fach lb. pressure per square = 1.018 rise in a siphon gauge = 1.018 rise in a siphon gauge.

Each atmosphere, or $14^{\circ}706$ $= 33^{\circ}9$ feet of water. Ibs. per square inch ... $= 27^{\circ}68$ inches of wa

VELOCITY OF INFLUX OF STEAM IN

= 27.68 inches of water.

- Velocity of steam in feet per second. T = Temperature of steam. V = 60 N T + 459.

RULE FOR THE ELASTIC FORCE OF STEAM.

F = The force in inches of mercury.
T = The temperature (Fahr.) of the steam. force in inches of mercury.

$$F = \left(\frac{T + 100}{C}\right)^6$$

saturated with salt. = 177 for fresh water = 177.6 , sea water 33 = 182.6 "

P = Pressure in lbs. per square inch, atmosphere included. T = Temperature of steam in degrees Fahr. TEMPERATURE AND VOLUME OF SATURATED STEAM.

= Specific volume of steam or cubic feet of steam from

The columns three and four in the Tables in the following pages are calculated from the following formulæ:-2938.16

$$T = \frac{2938 \cdot 16}{6 \cdot 1993544 - \log P} - 371 \cdot 85.$$

* In common practice an atmosphere is generally taken and ; or log. V = 4.3135 - ('941 × log. P).

15 lbs. per square inch.

TABLE OF THE PROPERTIES OF SATURATED STEAM,

(Calculated by Lewis Olrick.)

The author is indebted to Mr. D. K. Clark for the use of his formulæ in calculating the columns three and four.

	Excluded.	Lbs. per sq. inch.		-13.7	-12.7	-111.7	-10.7		1.8 -	1.1		1.9 -		1 3.7	- 2.7	1.1	0	0.0	.0	1.3	2.3		4.3			7.3					20.3		
-	Atmosphere Excluded.	Inches of Mercury.		-27.886	-25.851	-23.815	-21.780	-19.744	7.7	-15.673	-13.638	09.	. 56	- 7.531			- 1.425	000.0 +	0	2.646		1-	.75	0.78	2.85	4.85	8.9	6.	96.0		1.32	51.498	
	No. of	spheres.		890.	.136	.204	.272	.340	.408	914.	++G.	.612	089.	842.	.816	.884	.952	1.000		1.083	.15		1.292	.36	4		53	9.	1.700	0.	3	2.720	
	Specific			20582	100	7322	5583	CN	3813	3298	2909	2604	10	2157	1986	-	33	4	-	10	43	35	1290	22	17	12	1075	0	CD.	00	CVI	640	
	Tempe-	Steam.	Fahr.	102.1	126.3	141.6	153.1	162.3	.04	176.9	182.9	188.3	6:	197.8	202.0	205-9	209.6	212.0	213.1	216.3	219.6	2.22.4	225.3	228.0	230.6	200	235.5	37.	240.1	250.4		267.3	
	Atmosphere Included.	Inches of Mercury.		2.0355		6.1065	8.142	10.178	.21	4.	16.284			22.391	24.426	26.462	28.497			32.568	9.	9.	9.	40.710	.74	4.7	-	8.85	0.88	61.065		81.420	
	Atmo	Lbs. per sq. in.		-	67	00	4	2	9	2	00	6	10	11	12	13	14	14.706	15	16	17	18	19	20	21	22	23	24	25	30	35	40	

TABLE OF THE PROPERTIES OF SATURATED STEAM-

							-	-		_		_		-	-	-	-	ratio No.	ments to the	-		_							_						- 1
Excluded.	Lbs. per sq. inch.	30.3		ė		ċ			65.3		75.3	80.3	85.3	.0	05.	. 10	950	5.00	5	100	10	120			.0	35.	85.	35.	10	.0	:03	20	10	985.3	
Atmosphere Excluded.	Inches of Mercury.	27.8.12	1 . 67	0.0	06.6	4 4 4 6 6 6	3 12	7.66	129.01	143.09	153.9	163.45	173.69	102.	614.2	0.147	107	ED CC7	505	216.1	010	330 4	957.18	478.9	580.7	682.	184.2	0.988	8.186	6,1191-384	394.935	poor	80	86.500	
No. of	Atmo- spheres.	. 0		1 10	- 9	2			4 4	4 1		T .	H 0					50	10.200	m =	1 6	17.740	7 0	17.000	. c			30.600		40.800	47.600	-	-	68.00	
9	Volume.	1 1	- 1	J	474	20 0	405	378	333	333	314	523	202	270	147	2.27	211	197	184	174	164	155	148	114	40	83	73	99	59				,	33	
Tempa-	rature of Steam.	ahr	•	-	287.1	÷1		OI J	20	27 0	310.1					341.1		25		000		÷1.		. 18	- 1:	116	2 4	K 7 7	2.7.9	27	0.00	510.5	3 8	46.	91
Atmosphere Included.	es of	1	.59	1-	11.9	22.13	132-308	42.48	52.66	62.8	0	13	37	55	23.		+					.99	00	07.1	80	9.01	712.429	14.	E CIR	1 1100	0.1221	1424.00	1021.05	1831 30	2039
Atmo	Lbs. per sq. in.		45	20		09	65	04	12	80	85	06	95	001	110	120	130	140	150	160	170	180	190	200	250	300	350	400	450	000	009	700	008	200	1000

JOULE'S MECHANICAL EQUIVALENT OF HEAT.

772 foot-pounds.

and produces by its disappearance, 772 foot-pounds for each unit of heat. The unit being the amount necessary to increase the temperature of one pound of water by one degree Fahrenheit. Heat requires for its production,

EXPANSION OF STEAM.

by the piston before the steam L = Length of stroke in inches. l = Distance travelled by the

cut off. $t = \text{Ratio of expansion} = \frac{L}{l}.$

Hyperbolic Logarithm of R, see Table below.

Initial pressure of steam in lbs. per sq. in., including atmosphere.

Allowance for imperfect vacuum = about 21 lb. pressure during stroke in lbs. per sq. in., cluding atmosphere. square inch. Mean 110

-v = PK

H th	.9566 .9566 .978 .9982
Hyper- bolic log.	.507 .470 .358 .285 .223 .131
Ratio of Expansion.	1.66 1.6 1.43 1.33 1.25 1.14 1.11
Fortion of Stroke at which Steam is cut off.	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
K or 1+H	.33 .385 .522 .596 .661 .744 .766
Hyper- bolic log. H.	2.302 2.079 1.609 1.386 1.203 .978 .916
Ratio of Expansion.	01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Portion of Stroke at which Steam is cut off.	10 40 80 40 40 40 40 40 40 40 40 40 40 40 40 40

The Hyperbolic Logarithm of any number is found by multiplying the common Logarithm of the number by 2:302685.

-centinued. EXPANSION OF STEAM-

deduction migh pressure engines. In condensing engines a deduction must be made for imperfect vacuum; this will amount to about 24 lbs, per square inch in well-proportioned nating the expansion; it must therefore be deducted from the The pressure of the atmosphere is to be included in calcuengines.

COMPOUND ENGINES. EXPANSION OF

Area of the large cylinder. small ditto.

Distance travelled by piston before steam is cut off in Length of stroke. small cylinder.

A I al E = Rate of expansion = -

The mean pressure of steam in lbs. per square inch may be upon the large cylinder only, and the it acted as if taken

 $\frac{1}{E}$ th of the stroke. steam were cut off at

The best proportion of a to
$$A = \frac{a}{A} \sqrt{E}$$
, or $a = \frac{A}{\sqrt{E}}$.

AND POINT PROPORTION OF CAPACITY OF CYLINDERS FOR CUTTING OFF STEAM. BEST

Relative Capacity of Small to Large Cylinder.	50 A 45 A 41 A 38 A 35 A 29 A
Best Point for Cutting off Steam.	50 L 45 L 45 L 31 L 32 L 32 L 29 L
No. of Times Steam is to be Expanded.	4 times. 5 " " 6 " " 10 " " 12 " " 12 " "

STEAM USED EXPANSIVELY. TABLE OF

			_		,	-	_	_	_	_	_	_		-	-	_	_	_							
for the		-40	1.9		2.8				÷	50	17.3	19.5	23.1	26.9	30.8	34.6	38.5		46.3	50.0	53.9	57.7			
per square inch for the	is cut off.	44	3.0		6.8	11.9		17.9		23.8	26.8	29.8		41.7	47.7	53.6	59.69	9.59	71.5	2.11	83.4	89.4	95.4	107.3	119.2
lbs. per sciroke.	which Steam	60(00	3.7	1.4	11.2	14.8	18.6	22.3	26.0	29.7	33.5	37.2	9.77	52.1	59.5	6.99		÷	89.3	2.96	104.1	111.6	119.0	133.9	148.8
Average Pressure of Steam in lbs. whole Stroke,	Stroke at wh	-404	4.3	8.4	5	6.91	21.1	25.4	29.6	33.8		42.3		2.69	2.19	1.94	84.6	÷	101.5	0.011	118.5	126.9	135.4	152.3	169.2
Pressure	Portion of S	«Neo		9.5	÷		22.9			.9	÷	.0	5	+	÷	67	6.16	01.	$\overline{}$	119.4	128.6	137.8	147.0	165.4	183.8
Average	I	col-tr				19.3	24.1			38.6		å.		-			96	.90	15.	25.	ic		.79		193.2
Initial Pressure,	lbs. per	inch.	10		15	20	25	30	35	40	45	20	09	20	08	06		110	120	130	140			180	200

TERMINAL PRESSURE.

Rule for finding the Pressure at the end of the Stroke, or at any Point during Expansion.

irch, Initial pressure of steam in lbs. per square including the pressure of the atmosphere. 11

Distance travelled by the piston when the pressure of Distance travelled by the piston before steam is cut off. the steam = X. H

Pressure of steam in the cylinder, including the pressure of the atmosphere, when the piston has travelled a distance L. X

X = I

COMPOUND ENGINES.

A = Area of large cylinder. a = Area of small ditto.

L = Length of stroke.

Distance travelled by piston before steam Initial pressure of steam in lbs. per square is cut off in small cylinder.

Back pressure caused by imperfect vacuum inch, including pressure of atmosphere, = generally 2½ lbs. per square inch.

Work performed during l portion of strole. Stroke work performed during whole stroke. Number of revolutions of engine per minute.

Ratio of expansion = AL 田米

$$w = a P l \left(1 + hyp. \log \frac{a L + (A - a)l}{a L} \right) - A p l.$$

$$W = \frac{A P L}{E} (1 + hyp. \log \cdot E) - A p L.$$

= $\cdot 0000606 \text{ A L N} \left[\frac{P}{E} (1 + \text{hyp. log. E}) - p \right]$ Horse-power

Hyp. log. indicates the hyperbolic logarithm. See Table of Hyperbolic Logarithms.)

of number The hyperbolic logarithm of any number found by multiplying the common logarithm the number by 2.302535.

^{*} The limit of useful expansion is to 5 lbs. per square ingh, including atmosphere.

COMPOUND ENGINES—continued.

BEST RATE FOR EXPANSION UNDER DIFFERENT PRESSURES, 23 times; cut off .21 stroke. pressure . 26 .28 .33 convenient 19 ,, 33 . 93 15 highest 100 lbs., excluding atmosphere, 8 6 2 . lbs. is the 33 er e About 80 80 09

&c. L = Length of stroke before steam is cut off, in terms of ALLOWANCE FOR CLEARANCE AND STEAM IN PASSAGES,

marine engines.

of admission port, volume displaced by the pi-ton in space + contents terms of C = Clearance stroke.

C varies from '02 to '10, $R = Ratio of expansion = \frac{1+C}{C+L}$.

stroke.

 $\frac{+1.1}{+25} = 3.143$ 1. Thus, if C= 1, and L = :25, then R = times.

SURFACE OF TUBES IN SQUARE FEET PER FOOT

क्ष्म्चिक भाग्नेक भागीतम	.0982 .1309 .1636 .1963 .3600 .3927 .4251 .4581 .6218 .6545 .6872 .7200 .8836 .9163 .9490 .98471 1.145411.17811.21081.24351 1.4072 1.4399 1.4726 1.506381
*010	0327 -0654 -0982 -1309 2518 -2945 -3272 -3600 -3927 5236 -5563 -5909 -6218 -6545 54754 -5181 -8508 -8868 -9163 0472 1-0799 1-1126 1-1454 1-1781 3090 1-3411 1-3744 1-4772 1-4599
-40	.0327 .2945 .5563 .8181 1.0799 1.3417
0	.2618 .5236 .7854 1.0472
Diameter Inches.	012247

vol. lxiii. TUBES. (Unwin, 'Min. Inst. Civ. Eng.,' AIR IN FRICTION OF

k = Coefficient of friction = - + b, a and b being constants, and v = Velocity of air, feet per second.

Diameter	of	tube	feet.	1.64	1.07	.83	.338	.266	.164
Value of a00129 .00972 .01525 .03604 .0379 .0451	a.		:	.00129	.00972	.01525	.03604	.0379	.0451
	9		:	b00483 .0064 .00704 .00941 .00959 .01167	₹900.	.00704	.00941	.00959	.01167
2	k i	f v =	= 100	.00484	.0065	.00719	11600.	16600-	.01212

DUTY OF ENGINES.

raised I foot high by a bushel of Welsh coal, or 94 pounds (or by 1 cwt. in recent practice).

Average duty of Cornish engines 60,000,000 The duty of an engine is the number of pounds 60 millions of pounds raised 1 foot high. 713 millions for 112 lb. standard.

D = Duty of an engine in millions of pounds.

C = No. of lbs. of coal consumed per indicated horse-power per hour.

221.76 for cwt. for bushels; = -186.12

lb. of coke evaporates 9 lbs. of water.* AVERAGE EVAPORATIVE POWER. FUEL.

33 of coal

99 ... 4 1b. of slack

99 lb. of oak (dry) "

Coal loses about and of its weight in coking, but increases in bulk Loth.

4 to 7 lbs. of coal per indicated horse-power per hour. Compound engines 13 to 3 lbs. Locomotives (passenger) from 20 to 30 lbs. per train Stationary expansive condensing engines use from

Wood-burning locomotives will run 24 miles with (heavy goods) ,, 40 to 55 lbs.

A cord of wood = 4 feet \times 4 feet \times 8 feet. I cord of wood.

Navy allowance of stowage of coal = 2700 lbs.; 48 cube feet per ton. The bulk of wood is about 6 times as much as an equivalent of coal. An average of 27 kinds of coal gave about 402 cubic feet per ton.

* Feed-water supplied at 212° Fahr.

(Fritz.) FUEL. OF POWER HEATING RELATIVE

Lbs. of Water evaporated by 11b. of Fuel.	In Steam In Open Boilers. Boilers.	6.2 to 8 6.2 5.2 5.2 10.8 5.2 10.8 5.2 10.0 2.3
	Theoretical.	12:48 11:51 10:77 10:77 10:77 1:7 5:5 , 7:4 4:3 , 5:6
	Fuel.	Anthracite Coal Coal Cobreoal Coke Brown coal Brown coal Straw Wood Straw Coal Ibs. coal bas. coal Straw Coal Coal Coal Coal Coal Coal Coal Coal

In heating boilers, on an average only 47 per cent, of the theoretical heating power of fuel is utilized, the remainder being lost through imperfect combustion, radiation, and other causes, WORK THEORETICAL OF FUEL IN DIFFERENT MOTORS. RELATION BETWEEN EFFECTIVE AND

8 8 8 6 1 1 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	800	3.0	4.5 5.0 8.4 9.0
ion::::	:::	:::	::::
xpans	:::	ansion ••	::::
nout e	: : :	h exp	uo : : :
e with	:::	ine wit	pansi en) nake
engin	:::	engin	Ith ex Lang
pressure eng Erricson) Leaubereau)	(Lenoir) (Hugon) am engin	Leawitt) (Belou)	ine w to and ne
Small high-pressure engine without expansion Air engine (Erricson) (Leaubereau) (Lehman)	Gas engine (Lenoir) (Hugon) Portable steam engine	High-pressure steam engine with expansion Air engine (Leawitt) (Belou)	Condensing engine with expansion Gas engine (Otto and Langen) . Petroleum engine
III hig	engir table	h-presengin	densir engir oleun ge ste
Sma	Gas	Hig Air	Con Gas Petr Lar

gas engines exceeds that for steam times; so that notwithstanding the cannot compete with steam engines, The cost of fuel in engines from 24 to 5 many advantages they (H. Aydon, 'Min. Inst. C. E.,'11:.) LIGUID FUEL.

of water per lb. of oil. (The average result of several days' experiment was 19½ lbs. of water per lb. of oil. With best Aberdare coal, the same boiler evaporated only 6½ lbs. of water per lb. of coal.) The advantages claimed for liquid fuel in covered with thin slabs, overlaid with a few cinders, and the asl-pit doors closed. In a Cornish boiler 25 ft. long and 5 ft. 6 in. diameter, with one internal flue 3 ft. diameter, the oil, American petroleum, was allowed to fall through tinuous stream, at the rate of about 3 gallons per hour. As the oil fell vertically, a jet of super-heated steam met it and formed it into vapour, which then took fire, and was consumed in a The quantity of water evaporated amounted to 10 cubic feet per hour, or 20.8 lbs. a small orifice, about 1 inch diameter, in a con-No alteration of the ordinary furnace or grate is necessary. For burning oil, the grate bars are sea-going vessels areperfect manner.

1st. A reduction of weight of fuel amounting to 40 per cent. 36 per cent. A reduction of the bulk 2nd.

A reduction of stokers in the proportion of 4 to 1. 3rd.

Prompt kindling of fires. The fire can be extinguished instantaneously.

Capability for stowage in the place of water ballast, iy which it may be replaced as consumed, and great

facility for taking in fast.

Its cleanliness and freedom from ashes, cinders, &c. The avoidance of loss of heat due to the frequent opening of the furnace doors.

10th. Facility for perfect combustion, and rapidity of raising 9th. The ability to command a more intense fire and management of temperature without forced draught.

steam.

In a plate-heating furnace at Woolwich, the same plan of using petroleum was tried, showing a consumption of 780 lbs. of petroleum against 2240 lbs. of coal. 11th. Freedom from smoke.

STEAM ENGINE.

COMBUSTION.

of air for the consumption of each 1b, of coal; by means of farblast or feet of steam this quantity of air may be decreased to 18 lbs, or 220 cube feet.

From 13 to 2c lbs, of coal may be consumed per superficial An ordinary furnace requires 24 lbs. of air, or 300 cube feet

foot of fire-grate.

a foot of fire-grate are required to evaporate a cubic foot of water.

COMBUSTION OF 1 LB, OF FUEL,

Refativ	Heat.	102	100	96	86	84	19	43
Air	cubic feet per lb.	163	161	153	140	142	100	80
Units of	Heat.	16500	16200	15500	14000	13600	0066	1800
Jo	Oxygen.	1	₽.	c7 .00	9.4	.7	31	41
Percentage of	Carbon. Hydrogen. Oxygen.	9.9	2	2.9	5.1	•04	9	9
	Carbon.	06	68	83.2	80.4	94.	09	20
		Patent fuel	Steam coal	Wallsend	A verage coal	Coke	Peat	Wood

CONDENSATION.

for condensation is about The quantity of water required 20 times the amount of the feed,

SURFACE CONDENSATION.

Area of condensing surface = heating surface \times 0.7. Tubes $\frac{1}{4}$ in. diameter outside from 7 to 10 feet long-Approximate Rule for Surface Condensers,

COMBINED STEAM.

Area of superheating surface = 1 square foot per indicated Combined steam should not be used at a higher temperature horse-power.

Some engineers allow 3 superficial feet per foot of water than 310° Fahr. evaporated,

14 of their diam. 13 diameter RELATIVE VALUE OF HEATING SURFACE. .50 Horizontal surfaces above the flame = 1.0000. = Convex surfaces above the flame .. Horizontal beneath the flame : : Tubes and flues ertical

BOILERS-LAND.

FOR HEATING AND GRATE SURFACES. = Fire-grate surface in square feet. RULES

Number of nominal horse-power. = Heating surface in square yards.

V 16. F =

$$h = P^2 \qquad \qquad G = \frac{P^2}{h}.$$

For each nominal horse-power a boiler requires. I cubic foot of water per hour.

square yard of heating surface.

square foot of fire-grate surface.

boilers, an approxi-1 cube yard capacity.
28 square inches flue area; 18" over bridge. For eylindrical double-flued mate rule is:-

= nominal horse-power. Length × diameter

24 in. diam. in seat 24 in. 5 in. "... Mountings for a Nominal 30-Horse Boiler. 8 in. X 10 X 4. 18 in. X 15 in. 4 ft. × 134 in. 16 in. × 13 in. bore. 24 in. 3 in. 10 in. 10 in. Man-hole, oval Spring-balance safety-valve : Veighted safety-valve ... Damper, area of opening Damper weight Range of glass gauge... Length of dead-plate.. Fire-doors .. Escape-valve

MULTITUBULAR BOILERS.

Sectional area of tubes in inches. Diameter of tubes in inches. Length of tubes in inches. Number of tubes. Horse-power. H 2

·785 K d I II T nd 11

Assuming the tube surface to be about .9 of the total The values of K and A vary heating surface.

400-8 with very strong draught from 670-20 in ordinary boilers artificial blast. 250-24 "

per sq. ft. WATER SPACE. boiler-total capacity = 1.63 cub. ft. RELATIVE STEAM AND Simple

heating surface. ·33 to 49 .83 .18 .98 .26 : : Boiler with two heaters Marine multitubular . . . Portable engine ... Lancashire boiler Locomotive ..

1.00 steam to 2.00 water space. The ratio of steam space to water space is in-1.08 1.33 33 13 1.00 Marine multitubular Cornish boilers ... Locomotives

3

:

The best distance for the fire below the heating surface of the flue in Cornish or Lancashire boilers is about 20 or 22

CORNISH OR LANCASHIRE BOILERS. inches.

GENERAL MEMORANDA.

Width of fire-bar spaces, \$ to \$ inch. Inclination of fire-brus, 1 in 10, to 1 in 12. Height of dead-plate above floor of builter-shed or stoke-bole, 2 ft. 8 in. Thickness of fire-bars, 1 to 1 inch.

4 inches. 9 inches. towards blow-off Minimum height of water over flue Inclination of cylindrical bollers Average

cock in setting, # inch in 10 feet.

EVAPORATIVE PERFORMANCE OF STEAM BOILERS.

w = lbs. of water evaporated per square foot of grate per c = lbs. of fuel consumed per square foot of grate per hour. E = Efficiency of fuel = -. hour.

h = Heating surface in square feet.g = Grate surface , , , ,

Ratio of heating to grate surface = 7 ==

a=A constant varying with each boiler. B = Coefficient of fucl consumed per square foot of grate. $A = Coefficient of water consumed = a r^2$.

ar2 + Bc. 11 w-Bc w = A + Bc

E-B 0. 72 i U w-ar2

	Limiting Value of c.		.0075572 .007 .002 .0032572 .0032572
	Values of w	1	.0222,24 9.56 c .00755,72 .016 p²+10.25 c .007 p² .008 p²+ 8.6 c .002 p² .009 p²+ 9.7 c .00325,p² .0178,p²+ p·7 c .00325,p²
	ofc	12	18.3
	mum value		18:9 5.0 5.0 8.1
	Minimum value of c	80 40 50	6.812.118.9 6.311.217.5 1.8 3.2 5.0 2.9 5.2 8.11 1.0 7.011.02
1	Min	30	1.8
			Stationary 6-812-118:9 — Marine 6-811-217-5 — Portable 1.8 3.2 5.0 — Locomotive. 2-9 5-2 8-118-3 Ditto, coke 1-0 7-0 11-0 25

For lower than the limiting values of c, the values of w are In locomotives the limit is from 100 to 120 lbs, of coal or 12.5 c for coal and 12c for coke.

coke per square foot per hour. Experiments in France gave as the average of the Lan-Fairbairn "5-tube" boilers, cashire, the Elephant, and the $\alpha = .0113$ and B = 7.82.

EVAPORATIVE POWER OF LOCOMOTIVE BOILERS,

Longridge, 'Min. Inst. Civ. Eng.,' vol. Iii.)

Surface of fire-box in square feet. Surface of tubes

Number of units required to evaporate 1 cubic foot of from 60° to temperature of water in boiler = say 71,000. water

foot of surface = say 11 for each degree Fahr. Temperature of gases (before entering tubes from fire-Units of heat transmitted per hour through 1 box) above temperature of water = say 2100.

 $h = W \, G \, \sigma \, vo.$ W = 1b3, of fuel consumed per square foot fire-grate per hour.

Surface of fire-grate in square feet.

Weight of gases and unconsumed air arising from the combustion of 1 lb. of fuel $\lim_{n \to \infty} \frac{1}{n} = 4.033$ Specific heat of this mixture = .237 $\left\{ v \sigma = 4.033. \right\}$ = m

 $\epsilon = \text{Base of hyp. log.} = 2 \cdot 718$. Use this of heat arising from the combustion of 1 lb. fuel.

Heat generated per hour = U W G.

Smx Evaporation from fire-box per cube foot per hour = $\frac{1}{N}$

Evaporation from tubes
$$= \frac{\hbar x}{N} \left\{ 1 - \frac{1}{\frac{-3\mu s}{\epsilon}} \right\}$$
.

Diameter of the tube is a matter of indifference. (4) When the quantity of fuel burnt is 50 or 60 lbs. per square foot of grate per hour, the combustion is nearly perfect; but loss grate per hour, the combustion is nearly perfect; but loss results from carbonic oxide passing away unconsumed with hard firing. (5) A large increase in leating surface in proportion to coal burnt only slightly increases the economical Conclusions.—(1) No fixed rule can be established as to the best relative proportions of grate, fire-box, and tube surfaces.
(2) Length of tube does not affect economic result. (3) effect.

In locomotives the economic effect is in proportion to the fourth root of the heating surface.

MOLESWORTH'S POCKET-BOOK

(Havrez. CORNISH AND LANCASHIRE BOILERS.

D = Diameter of boiler in inches.

Length of shell of boiler in fect. Diameter of flues in inches.

Nominal horse-power at 16.9 square feet per HP. Length of fire-grate in inches.

p = Effective pressure in atmospheres. = Total weight of boiler in lbs.

In Cornish boilers-

4 to 6 inches. 4 to 8 Space between under side of flue and shell : Depth of water over flue

Lancashire Boilers. Cornish Boilers.

D = 1.7d for Cornish boilers; = 2.5d for Lancashire. D=11.4 V II. d = 4.56 √ H. $D = 11.42 \sqrt{H}$;

L = 14.4 + 0.46 II. l = 8.65 √ H. 1=11.8√H; d = 6.72 √ H; L=5.1 VH;

W = H(220 + 12.35 $p\sqrt{H}$). Lrea of chimney, 154 square inches per horse-power. W = H(110 + 22 $p\sqrt{H}$);

,	Weight of Boiler. tons
Cancashire Boilers.	Length Poller. Boller. 28.2 32.8 37.4 42
ancashir	Dia- meter of Flue. inches. 25 25 28 32 34
T	Diameterof Boiler. incl.es.
	Weight of Boiler. 2004 5.37 9.54 114.39 119.82
Boilers.	Length of Boiler. Foet. 16 · 1 22 · 8 28 32 · 3 36 39 · 5
Cornish Beilers	Dia- meter of Flue. 214 30 364 424 474 474
	Dia- meter of Shell. inches. 36 51 624 724 804 884
	AnimoM 588359

assumed at 5 atmospheres effective or 6 atmospheres absolute. Pressure

FAIRBAIRN "FIVE-TUBE" BOILER

Working pressure, 150 lbs. per square inch. AND WEIGHT. LEADING DIMENSIONS

Horse-power,	30	40	20	09
Length in feet Diameter of Sable; ins. Diameter of flucs, ins. Heating surface, sq. ft. Length of grate, ft. Area of grate, st. ft. Thickness of plate, ins.	12 36 24 449 449 18	15 39 27 600 5 22‡ 22‡	117 422 30 974 53 274 274	20 45 33 1000 6 33
Weight of top tube, tons Weight of bottom tubes, tons Weight of mountings, tons Total tons	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14 64 2 2 10	114	24 84 24 124
	Territories de la constitución d	Witness Committee of the Parket	adjustment and an other	Charles and a contract

OR "ELEPHANT" BOILER. (See 'Trans. Inst. Civ. Eng., vol. xlii.) "FRENCH"

Diameter of heater in feet = '6 D. Diameter of boiler in feet. 9 B

Mean length of the boiler and heaters. TH

Nominal horse-power at 16·9 square feet per HP. Number of heaters.

Heating surface in square feet.

	$L = \frac{10.75 \mathrm{H}}{\mathrm{D}}$	$L = \frac{5.38 \text{H}}{D}$	L= 3.58 H	$L = \underbrace{D(n+1)}_{\text{II}}$
	S=16·1H;	S=8.05H+8.05H;	S=5.37H+10.73H;	$S = \frac{16 \cdot 111}{n+1} + \frac{16 \cdot 111n}{n+1};$
No. of heaters.	0	1	67	n

that of the boiler 3, and with the proportion of heating surfaces of boiler and heater will be The heating surface of the heater is assumed at this of the feet. feet 3 inches. heating surfaces equal per unit of length. Maximum diameter of boiler circumference, the $d = .6 \, \mathrm{D},$

7 11 heater:

foot 6 inches. Minimum diameter of heater

ELEPHANT BOILERS-continued.

(IN CWTS. PER HORSE-POWER) OF ELEPHANT BOILERS as usually made in France. WEIGHT

		1.01+0
Atmo-	9	cwt. 4·20 4·57 4·94 5·20
pressure in Atmo- spheres.	10	cwt. 3.73 4.04 4.33 4.65
tive pressure spheres.	4	cwt. 3.23 3.50 3.73 3.96
Effec	603	cwt. 2.74 2.86 3.12 3.30
Diameter of Heater.		feet. 1.64 1.80 1.97 2.16
Diameter of Boiler.		feet. 2.62 2.95 3.28 3.61
Horse-		10 to 20 2 2 20 30 30 , 45 3

The disadvantages of the "Elephant" boiler are the unboiler and heaters, and the deposit of sediment on the portions most exposed to the fire. equal expansion of

RULE FOR THE THICKNESS OF BOILER PLATE. BELGIAN

Diameter of boiler in feet.

Effective pressure of steam in atmospheres. = Thickness of plate in inches,

.0216 DP For plates directly exposed to the fire, t beyond the fire

.08 · 04 .04 .0144 DP .0115 DP .0069 DP 810. 93 33

10. ENPERIMENT ON COMPARATIVE PERFORMANCE OF BOILERS

iler.	Fairbairn "Five Tube."	8.54	3870	227	3.75	27.5	25.75	7
Description of Boiler,	Lancashire. "Elephant,"	7.95	6100	189	3.74	20.0	29.2	63
Des	Lancashire.	8.20	6110	186	92.9	27.5	25.75	61
		Water evaporated at 32°, per lb. of coal	gases.	Volume of air consumed cube ft. per lb. of coal	Diameter of boiler, feet	heaters, inches	Length of boiler in feet	heaters

BOILER SETTING.

Care should be taken to keep the boiler from contact with the brickwork, which is apt to cause rapid corrosion of the Cast-iron supports should be used to keep the boiler clear from contact. plates.

CAULKING.

an angle 20° from a right angle, and be 14 inch wide $\times \frac{1}{16}$ ths thick, moved about 1 inch after each blow; one blow at each too thin or too acute a have its end ground to Caulking should not be done with tool, which for ordinary work should place should suffice.

(INDICATED). MARINE BOILER, 400 HORSE-POWER

13 6	0 6	4 0	100 O	107	Bq. ft.	680	1001	101
:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:
								:
: : : :			•			iues		
٠	•	•	(d.)			nd f		·
:	:	Se	×.	•		ce a		•
	:	rnac	(9 B		:	าเทล	lbes	total
IOF		h fu	bes	60		Ī	t	Ť
Diamotor of hailor	itto	PBC	f tu	tuh	Length of tubes	Heating surface-furnace and fines		
do no	of d	Pr of	61.0	40 4	of t	113 4	0	2 :
4000	mer h	met	met	mho	ngth	ofin	7000	
Ties	Lor	Dia	Dia	N	Lei	Ho	11	

in.

MARINE BOILERS,

varies so much from the actual or "indicated" horse-power, that the former can no longer be In marine engines the "nominal" horse-power taken as a basis for the calculation of boiler-power.

Many screw engines work up to more than six times their nominal horse-power.

In marine compound engines the indicated horse-power consumes from 13 to 23 lbs. of coal per horse-power per hour, which requires the following proportions :-- Fire-grate area from '13 to '17 sq. ft. per I.H.P. 33 3.0 ,, 5.0 Heating surface ,, 3.0 Surface condensing Tube area

33 area, from .. 2.5 ,, 3.0

Tubes for marine boilers are generally about 32 inches internal diameter, from 5 to 6 feet 6 inches long, with an inclination of about 1 an inch the foot.

Stays, about 11 diameter.
Water spaces, 5 to 6 inches wide.

Height of firing plate above stoke-hole, 2 ft. 6 in. Length of fire-grate, 5 feet to 7 feet 6 inches. Length of fire-bars, from 2 feet 6 inches to 3 feet Depth of fire-bars at centre = '12 of length. Depth of fire-bars at ends = '06 of length.

Clearance of fire-bars, \(\frac{1}{2} \) to \(\frac{2}{2} \) inch.

Taper of fire-bars, \(\frac{1}{2} \) of depth.

Width of fire-bars at ends, \(\frac{2}{2} \) to I inch.

Minimum height of water, 6 inches over flues, 8 inches over tubes. EXHAUSTIVE POWER OF THE BLAST-PIPE IN LOCOMOTIVES.

(Longridge, 'Min. Inst. Civ. Eng.,' vol. Iii.)

Diameter of jet or blast-pipe in inches.
Diameter of chimney in inches.
Pressure of steam in lbs. per square inch above the

Exhaustive power in inches of water. atmosphere.

 $37 d^{1.662} p^{0.8}$ H Increased action obtained by lengthening the chimney very slow when the length exceeds four diameters.

AREA OF CHIMNEYS.

Area of fire-grate in square feet. Quantity of coal consumed per hour in lbs.

Height of chimney in feet,

Horse-power of engine (indicated).

Area of chimney at top in square inches.

GENERAL RULES FOR BRICK CHIMNEYS.

The diameter at the base 1, th to 1, the of the height. Batter of chimneys, 0.3 inch to the foot.

Thickness of brickwork, 1 brick from top to 25 feet from

increasing 14 brick from 25 to 50 feet from the top, brick for each 25 feet from the top.

If the inside diameter at the top exceeds 4 feet 6 inches, top length should be 14 brick thick.

VELOCITY OF ARTIFICIAL DRAUGHT.

Height of chimney in feet. Temperature of air supplying the chimney. Temperature of air at top of chimney. Velocity in feet per second.

V = 36.5 VH(T

For marine engines, 14 square inches area per nominal horse FUNNELS OF PADDLE-WHEEL STEAMERS,

Minimum height of water, 6 in. over flues, 8 in. over tubes. power is allowed.

HEATING AND PROPORTIONS OF LOCOMOTIVES,

Area of heating surface in square feet. Area of fire-grate in square feet. GRATE SURFACES.

Water evaporated in cube feet per hour. H^2

$$W = \cdot 0022 \frac{H^2}{G}.$$

$$H = 21.2\sqrt{WG}$$
.

W = H is a common proportion. .0022 0 =

Area of grate should not be more than 10th is used, heating surface, or 11th when coal

Consumption of coke about 150 lbs. per foot of fire-grate per hour.

GIFFARD'S INJECTOR.

Q = Quantity of water injected in gallons per hour.

Pressure of steam in atmospheres. Diameter of throat in inches. 11

$$D = .0158 \sqrt{\frac{Q}{\sqrt{E}}}$$
 $Q = (63.4 D)^2 \sqrt{P}$.

aure per	159 lbs.	127 285 508 793 1140
Delivery in Gallons per hour with a Pressure per square inch of	12) lbs.	113 255 455 711 1021
per hour uare inch	90 lbs.	98 221 393 615 884
in Gallons	60 Ilia.	80 180 321 502 722
Delivery	30 Ibs.	56 127 226 354 505
Diameter of Throat in	decimals of au inch.	11. 125

BOARD OF TRADE AND LLOYD'S RULES. BOILERS.

```
Mean diameter of shell in inches (D_1 = outside diam.).
                 Working pressure, lbs. per square inch. Factor of safety (see page after next).
      AREL
```

(For diagonal riveting take
$$\cdot 6p + \cdot 4d$$
.)

$$n = \text{Number of rows of rivets.}$$
 $a = \text{Sectional area of a rivet in square inches.}$

(For double shear take 1.75 a.)

R = Percentage of strength of joint or rivet (least of the two).

$$p-d$$

for many d

for d

for mindled

= 100
$$\frac{p-d}{p}$$
; or 100 $\frac{n}{p}t$ for drilled, or 90 $\frac{n}{p}t$ for punched, holes.

$$G = Depth$$
 of stay girder in inches. $l = Span$ "

Circular Spell
$$\left\{\begin{array}{ll} P = \frac{P}{D} + \frac{P}{K} + t = \frac{D}{D} + \frac{P}{K} + t = \frac{P}{K} + \frac{P}{K} +$$

Flue or P =
$$\frac{Q}{D(L+1)}$$
; $t=\sqrt{\frac{Q}{Q}}$; For Superheaters mul-
Furnace Funace $\frac{Q}{Q}$ 1, tiply k by $\frac{3}{2}$.

$$\left\{ P = \frac{C(T+1)^3}{S-6}; T = \sqrt{\frac{P(S-6)}{C} - 1}; P = \frac{cT^2}{p^2}; T = \sqrt{\frac{Pp^2}{C}} \right\}$$

Collapse .

$$\begin{cases} \Gamma = \overline{L} \, \overline{D_1} \,, \, V = 89600 \\ \text{Grder} \, \end{cases}$$

$$P = \frac{M \, \text{G}^g \, b}{l^2 \, w} \left\{ = 12000 \, \text{for } 1 \, \text{bolt}, = 13500 \, \text{for } 2 \\ \text{Stays} \, \right\}$$

Collapse

Flat

00968

RULES - continued. LLOYD'S VALUE OF CONSTANTS. AND TRADE OF BOARD BOILERS.

600 for superheaters, flame oblique. against the grain. for shells with the fibre. 940 800 MM

at right angles. 6 448 MM

bove.	170 190 200 240 260	Ī		gle.	75,000 85,000
18 to Above	250		Puncked.	Single.	
00.	165 180 190 190		Pun	Double.	85,000
-fes objes	188	1		ă	
Ties enion	215			Single.	80,000
0 to	155		Drilled.		,
t = 000 000 = 000 0 0 0 0 0 0 0 0 0 0 0	200		Dr	Double.	90,000
t ==	222222		Holes.	Riveting,	1 1 00
	ched		Ho	Rive	::
VALUES OF k.	"" "" drilled " butt, 2 straps punched " butt, 2 straps punched Steel lap joint drilled " butt, double strap		VALITIES OF O.	For welded seams Q = 80,000.	Butt, single strap

1\$ t; double \$ t (B. of T.). (Lloyd). Thickness of single butt straps Thickness of inside butt strap

65,000 60,000

75,000

10,000 90,000 65,000

80,000

not bevelled

bevelled

ab, 6

Screwed in Plate.	Riveted	36	100
Screwed	Nut.	1 1 8	110
Nnte	only.	90	140 140
Vista and	Washers.	1000	160
-	VALUES OF C. fastening	Not exposed to flame C= Exposed (steam contact) C= (water ") C=	Values of c. $c = \frac{c}{c}$, when t exceeds $\frac{L}{16}$ $c = \frac{c}{c}$

Fensile stress not to exceed 5000 lbs. per sq. in. for iron, or 7000 for

Thickness of washer = $\frac{2}{3}t_i$ Diam. = 3 diam. of stay (B. of T.).

= $\frac{2}{3}t_i$... = 0.4 pitch of stay (Lloyd).

BOARD OF TRADE AND LLOYD'S RULES-continued. BOILERS. The factor of safety F=5 under the following conditions: (1) Best materials; (2) Rivet-holes drilled in place; (3) All joints butt, with double straps; (4) All seams double riveted with an allowance of not more than 75 per cent, over single

shear; (5) Full inspection during construction.
When these conditions are not observed, F will be increased

as follows:-

	Treble.	1111:1:11111111111111111111111111111111	1111 1
Riveting.	Double.	1115661111551	11111
	Single.	111001112211	1111 1 =
Before	bend- ing.	& &	11111
After	bend- ing.	111155111135	1111 1
		11511115111	.4 .4 1.65
A 3 3 1 toma to Ranton	of Safety for	Drilling out of place Punching " Holes not good or fair Lap joints Drilling out of place Punching ut of place Punching out of place Punching out of place Punching out of place Punching so fair or good Lap joints But a joints See The control of the c	Chrakeson quie muer and over. Long boilers or flues Soams improperly crossed Boubful material Not inspected during con- struction

RULES FOR RIVETS IN SHIP-BUILDING.

34 d 3 d 11 &cc. Pitch of rivets in outer row of treble riveting. Minimum distance of rivet from edge of plate, Maximum pitch of rivets
Minimum "myler single riveting double d = diameter of rivet.

STAYING LOCOMOTIVE BOILERS.

per square inch being \$\frac{1}{6}\$th of bursting pressure; stays, \frac{2}{3}\$ in. diameter; copper plates, \frac{1}{2}\$ in, thick; iron ditto, \frac{2}{3}\$ in, thick. WATER SPACES. pressure in lbs. FIRE-BOX Working

Stays Stays 5 inches 4 inches apart, apart.	185 250 190 290
Stays 5 inches apart.	107 160 120 185
	Screwed and riveted Screwed and riveted Screwed only Screwed only Screwed and riveted riveted
Plate.	Copper Copper Copper Iron
Stay.	Copper Iron Iron

For low-pressure boilers, at 20 lbs, per sq. in., flat portions should be stayed at intervals of 12 in. apart.

FOR TOP STAYS FOR LOCOMOTIVE FIRE-BOXES.

Span of stay in inches. Breadth of ditto in inches.

Depth of ditto in inches.

Working load in tons, 24, B D²

STRENGTH OF RIVETS.

Shearing strength of a Lowmoor rivet in tons $18 d^2$ when d = diameter in inches.

tons per in Mean tensile strain of rivet-iron square inch = 26.3 Fairbairn.

25.98 Kirkaldy.

STAYING FLAT SURFACES IN BOILERS,

Pressure of steam in Ibs, per square inch, Thickness of plate in inches. Distance of stays apart from centre t centre in inches. 11 d

e to centre f plate =	-4po	ins. 17.68	12.50	10.50	8.83	7.90	7.22	89.9	6.24	5.89	
from centri	injet.	ins. 14·14	10.00	8.16	2.07	6.32	2.44	5.34	2.0	4.71	
Distance of Stays apart from centre to centre in Flat Surfaces when thickness of plate ==	erai-uo	ins. 10·60	7.50	6.12	5.29	4.74	4.34	4.00	3.74	3.53	
Distance of in Flat Su	-to	ins. 7.07	2.0	4.08	3.53	3.16	2.88	2.67	2.50	2.36	
Pressure of Steam	in lbs. per square inch.	20	40	00	08	100	120	140	160	180	

COLLAPSING PRESSURE IN CYLINDRICAL BOILER FLUES.

P = Collapsing pressure in lbs. per square inch. Thickness of plate in inches.

L = Length of tube or flue in feet. D = Diameter of tube in inches.

 $P = 806,300 \frac{t^{2-19}}{LD}$ (Fairbairn.)

 $\frac{(k\,t)^3}{\text{L\,D}}$ when k=800 in 4-in. plate; $k = 820 \text{ in } \frac{1}{8} \cdot \text{in.}; k = 840 \text{ in } \frac{1}{2} \cdot \text{in.}; k = 860 \text{ in } \frac{1}{8} \cdot \text{in.}$ = Approximately plate,

UNWIN'S FORMULA FOR THE COLLAPSE OF BOILERS.* For tubes with iongitudinal lap joint,

P=7,363,000 1.0.9 DI-16

For tubes with longitudinal butt, t^{2-21}

 $P = 9,614,000 \frac{1}{1,0.9 \, \text{I})1.16}$

For ordinary boiler flues with longitudinal and cross joints,

$$P = 15,547,000 \frac{t^{2.35}}{L^{0.9} D^{1.16}}$$
.

Approximate formula, $P = \frac{e^{-Ax}}{L \ D \ B \ C} \times \begin{cases} \text{Coefficient as above for} \\ \text{olarise cr. of tube.} \end{cases}$ 42 A

VALUES OF A, B, AND C.

When tis } .061 & .087 & .119 & .159 & .206 & .261 & .325 & .399 9. .55 .60 .50 .40 .45 Then A =

When t is \ .399 & .483 & .577 & .682 & .80 & .931 & 1.07 b-tween \ .95 06. * S .80 .75 Then A =

13 & 25 & 51 & 110 & 253 & 628 .55 9. .65 2. .75 When L is between } Then B=

2.4 & 4.0 & 6.5 & 10.2 & 15.5 & 22.9 & 33.0 & 47 1.1 1.6 1.5 1.4 1.3 1.2 When D is } Then C=

^{*} In Unwin's formula, L must be in inches.

-continued. BOILERS-PRESSURE IN COLLAPSING

So far as the resistance to collapse is concerned, by ribs Some the longth of the tube or flue is practically reduced by the joints when the plates overlap each other, resistance to collapse further forms of these ribs are given below still carried and the reduction is which offer increased of the

43,000 lbs. BURSTING PRESSURE OF CYLINDRICAL BOILERS. Ultimate Tensile Strength of Plate = per square inch.

Bursting Pressure in Ibs. per square inch, with Thickness of Plate =	Single Riveting. Double Riveting.	100 miles 100 mi	501 752 1003 1254 627 940 1254 1568 401 602 801 1005 502 752 1005 1254 334 501 669 836 418 627 836 1045 286 430 573 716 836 37 716 896 265 376 401 607 731 470 627 738 202 383 401 500 251 376 600 627 738 167 250 334 418 209 313 418 522
Burstin	Sing	*	
Diameter of Shell (feet).			64 64 60 00 00 00 00 00 00 00 00 00 00 00 00

(W. R. Browne, 'Proc. I. M. E.,' 1872.) S = Breaking strain in tons. RIVETED JOINTS.

rivet in square d = Diameter of rivet, inches.A = Area of inches.

t = Thickness of plate, inches. S = K A. (1) RIVET SHEAR. K = 18 to 20 tons.

(2) CRIPPLING OF PLATE. S = K t d. K = 40 to 43 tons.

 $\overline{t} = 2.31$ for equal strength.

(3) BURSTING OF PLATE. KtL2

== d, when ١١ تــ tons, S 38

(4) TEARING

for drilled plates.

K = 18 for punched and 22 tons NG OF PLATE. = K t(b-d). d = 2t $d = 1 \pm t$.

(2)

Sta

Strengt of Join to Plat	669 669 671. 669 691. 672 696 691.
Pitch of Rivets.	3.6 d. 3.6 d. 3.25 d. 3.25 d. 4.4 d. 4.4 d. 4.4 d. 5.4 d. 5.4 d.
Lap, or Cover.	d d d d d d d d d d d d d d d d d d d
La	Chain, 5½ d 5½ d 5½ d 110 d 110 d 110 d
Diam. of Rivet.	11 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Covers.	
Holes.	Punched Drilled Punched Drilled Drilled Drilled Drilled Drilled Punched Drilled Drilled Drilled Drilled Punched Drilled Drilled Drilled
Riveting.	Single
Joint.	Lap Butt " Lap Butt Butt " Butt

RIVETING FOR BOILERS.

Table of Dimensions of Rivets, &c., for Steam Boilers.

Breadth of Lap. Single Riveting.	inches. 14 15 15 24 24 34
Distance apart of Rivets, centre to centre.	14 14 14 14 14 14 14 14 14 14 14 14 14 1
Length of Rivet from Head.	inches.
Diameter of Rivet.	11 12 12 12 12 12 12 12 12 12 12 12 12 1
Thickness of Plate.	inches 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For double-riveted joints add grds of the breadth of lap.

RIVETS USED IN SHIP-BUILDING.

	Length Snap point,	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Millwall.	Millwall. Length counter- sunk.	inches. 13 14 13 14 110 15 2 2 16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Diameter of Rivet,	田
ivet	Lloyd's.	まる なる まま なり で まま の で で で で で で で で で で で で で で で で
Diameter of Rivet.	Dock-	11. The state of t
Dian	Liver-	inches
With shape 5 and	Thickness of Plate.	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PROPORTIONS OF RIVET-HEADS.

Depth of head at centre = Diameter of rivet. arge radius = Small radius A 2

Depth of centre below shoulder = Depth of head at centre = $\frac{5}{8}$ Radius of rivet-head = \frac{2}{4} D Diameter of rivet. a 1 q

-continued. RIVET-HEADS-PROPORTIONS OF

COUNTERSUNK RIVETS.

The countersink should be at an angle of 60°, and countershould not extend thickthe of the case the ness of the plate. any sinking beyond

Diameter of rivet, Extreme diameter Depth of countersink

= 1.52 D. of head

S.F.

1.5 D. = .45 D. CHEESE-HEADED RIVETS. Diameter of head = Depth of head

RIVETED JOINTS IN TENSION.

the plate is only weakened to the extent of one rivet-In joints of the character shown in the diagram hole.

The rivets near the point are sometimes of smaller diameter than the rest.

HORSE-POWER (INDICATED).

Area of piston in square inches.

Diameter of piston in inches.

Average pressure of steam in lbs. per square inch in cylinder.

Number of revolutions per minute. Length of stroke in feet. 2

Number of revolutions per second. Indicated horse-power. 2 A P R S

= .0000476 D2 PRS. = .002856 D2P rS. 2 A PrS 33000 550

NOMINAL HORSE-POWER.

"Nominal" horse-power means very little, the term is arbitrary and varying. The actual or indicated horse-power varying in stationary engines from 24 to 3 times the nominal It is now becoming obsolete horse-power, and in marine engines it is sometimes 6 or times the nominal horse-power. for marine engines.

ORDINARY RULES FOR NOMINAL HORSE-POWER.

Mean velocity of piston in feet per minute.

Diameter of cylinder in inches. Stroke of engine in feet. SH

Nominal horse-power of engine. - for high pressure. D2 3/5 15.6

$$D = \sqrt{\frac{15.6 \,\mathrm{H}}{\mathrm{s}^{-1}}} \qquad V = 128^{-3} \text{//}$$

or condensing engines

$$D = \sqrt{\frac{47H}{\sqrt[3]{5}}}$$

FRENCH HORSE-POWER (Force de Cheval).

French horse-power = 75 kilogrammètres (542-486 foot-lbs.) per second.

force de cheval = .986337 horse-power.

Diameter of cylinder in metres. Length of stroke in metres. 11

Number of revolutions per minute.

Average pressure on piston in kilogs, per

square centimetre. Indicated French horse-power = $3.49 \, D^2 P \, R \, S$.

FRICTION OF ENGINES UNLOADED. GENERAL RULES FOR ENGINES.

necessary to overcome the friction of P = Pressure of steam in lbs. per square inch an engine.

Diameter of cylinder in inches.

AND LEAD OF THE SLIDE-VALVE. Width of 1 steam-port in inches. LAP

Lap in inches.

Lead in ditto.

Stroke of engine.

by the piston The distance travelled Travel of the slide. 11

$$X = S \left[\frac{2L+l}{r} \right]^2$$

$$L = (\frac{1}{2} T \sqrt{\frac{S - X}{S}}) - \frac{1}{2} l$$
,
 $T = 2 L + 2 W$.

-continued. SLIDE-VALVE-

Stroke of piston. 11

Distance travelled by the piston before

stroke end of Distance of piston from before exhaust is cut off. the steam is cut off. H 3

Ditto, ditto, before exhaust begins. Steam lap.

Eduction overlap. Lead of valve. 11 F

11

Travel of slide.

Linear advance = L + l.

Angle of advance. Angle of eccentric. Angle of crank = $a + 90^{\circ} - b$. Angle of eduction overlap.

 $\frac{2 \, \text{L}}{\text{T}}$; cosin. d = $\overline{\mathbf{T}}$; cosin, b =g II Sin.

$$x = \frac{S}{2}(1 + \cos n. c).$$

$$y = \frac{S}{9} [1 - \cos in, (a + 90^{\circ} - d)].$$

$$z = \frac{S}{2} [1 - \cos in. (a + d - 90^{\circ})].$$

TABLE OF LENGTH OF LAP REQUIRED TO CUT OFF STEAM AT DIFFERENT PARTS OF THE STROKE.

Travel			Por	tion of St	roke in F	'ull Stean	a.		
of Slide.	1	1/3	3 8	1/2	5/8	2/3	34	5	7 8
ins. 4 6 8 10 12 14 16 18 20 22 24	1·73 2·60 3·46 4·33 5·20 6·06 6·93 7·80 8·66 9·53 10·39	1.63 2.45 3.26 4.08 4.90 5.71 6.53 7.35 8.16 8.98 9.80	1.58 2.37 3.16 3.95 4.74 5.53 6.32 7.11 7.90 8.69 9.48	1·41 2·12 2·83 3·53 4·24 4·95 5·65 6·36 7·07 7·78 8·48	1·22 1·84 2·45 3·06 3·67 4·28 4·90 5·51 6·12 6·73 7·35	1·15 1·73 2·31 2·89 3·46 4·04 4·62 5·19 5·77 6·35 6·93	$ \begin{array}{c} 1 \cdot 00 \\ 1 \cdot 50 \\ 2 \cdot 00 \\ 2 \cdot 50 \\ 3 \cdot 00 \\ 3 \cdot 50 \\ 4 \cdot 00 \\ 4 \cdot 50 \\ 5 \cdot 00 \\ 5 \cdot 50 \\ 6 \cdot 00 \\ \end{array} $	·82 1·22 1·63 2·04 2·45 2·86 3·26 3·67 4·08 4·49 4·90	·71 1·06 1·41 1·77 2·12 2·47 2·83 3·18 3·54 3·89 4·24

Note.—If lead is given, one-half of the lead must be deducted from the tabular numbers.

HIGH-PRESSURE ENGINES, WITH VERTICAL BOILERS.

_		
	12	5' 11' 12" 14" 110
wer.	10	4'9" 10' 11" 13" 115 6½
orse-po	00	4'6" 8'6" 10" 12" 125 5
Nominal Horse-power.	9	3'9" 8' 9" 11" 135
Non	4	3'3" 6'9" 7" 10" 150 2½
	57	2' 6" 5" 5" 8" 200 14
		Diameter of boiler Height of ditto Diameter of cylinder Longh of stroke Revolutions per min. Weight packed (tons)

(Single Cylinder). ENGINES PORTABLE

		Nominal Hor		se-power.	
	4	9	00	10	12
Diameter of cylinder, ins. Length of stroke, ins. Revolutions per minute Weight in tons, packed	6½ 10 150 3	127.	9 115 54	10 14 110 6	12 15 100 64

(Double Cylinder). ENGINES PORTABLE

	30	13 85 15
-power	25	12 16 95 124
ominal Horse-power	20	10 14 110 113
Nomina	15	113
	10	7± 125 125
		Diameter of cylinder, ins. Stroke in inches Revolutions per minute Weight, packed, in tons

The weights given in these Tables are only approximate.

PROPORTIONS OF SAFETY-VALVE, LEVERS, &C.

Diameter of valve in inches. Area of valve in inches.

Pressure in Ibs. per square inch on the safety-valves. Weight in lbs. ×

The proportion of $l=\mathrm{D}$ and $\mathrm{L}=\mathrm{D}\,\mathrm{A}$ gives 1 lb. per square the weight of the lever and inch for each 1b, at the end of the lever. In addition to the weight W, the

Let G = Distance of centre of gravity of lever from fulcrum,

Weight of lever. = 0

 $r = \begin{cases} Pressure per square inch due to the weight of lever, \end{cases}$ G 20

 $\frac{\lambda}{A} = \begin{cases} \text{Pressure per square inch, due to the weight of} \end{cases}$

The mitre of safety-valves should not exceed 1, inch in width.

AREA OF SAFETY-VALVES.

Area of safety-valve. A = Area of fire-grate.

For land engines the proportion of '8 inch per nominal horse-power is sometimes adopted. a = .006 A.

(FRENCH PRACTICE.) Two Safety-valves to each Boiler. SAFETY-VALVES.

Heating surface of boiler in square metres. Pressure of steam in atmospheres. 11

D = Diameter of each valve in centimetres.
*D =
$$2 \cdot 6 \sqrt{\frac{S}{P - \cdot 412}}$$
.

SAFETY-VALVES MILLIMÈTRES FOR DIFFERENT PRESSURES. OF DIAMETERS OF

		Pressu	tre of Ste	am in A	Pressure of Steam in Atmospheres.	es.		
1	61	m	4	5	9	7	00	
1.	mill.	mill.	mill.	mill.	mill.	mill.	mill.	
	46	36	31	27	24	22	21	
	65	51	43	38	35	32	30	
	80	62	53	47	42	38	36	
	92	7.5	19	54	49	45	42	
	103	81	69	09	55	20	47	
	113	88	15	99	09	55	52	
	130	101	98	75	69	64	29	
	145	113	96	84	94	20	29	
	158	121	106	76	84	200	73	

EQUIVALENT FORMULA IN ENGLISH MEASURE.

Heating surface in square yards. Two Safety-valves.

Diameter of each safety-valve in inches. Pressure in atmospheres.

$$D = .945 V \frac{S}{P - 1 + 558}$$

Cube feet of water required per horse-power COLD-WATER AND FEED PUMPS.

per minute.

Stroke of pump in inches. Number of strokes per minute.

Horse-power of the engine.

 $D = Diameter of pump = \sqrt{H Q 2200}$ N S

of The cold-water pump usually = diameter of cylinder \times 0.3 when stroke = $\frac{1}{2}$ stroke of engine. The cold-water pump usually = diameter

cylinder \times 0.42 when stroke = $\frac{1}{4}$ stroke of engine.

Velocity of water in pump-passages should not eeed 500 feet per minute. Pump-valves should not be of less area than 4 area of the pump. exceed 500 feet per minute.

Feed-pumps for High-pressure Engines:

Diameter = $\frac{1}{17}$ diameter of cylinder who pump's stroke = stroke of the engine. Diameter = $\frac{1}{8}$ diameter of cylinder when

stroke of the engine.

Diameter = $\frac{1}{8}$ diameter of cylinder when 1th stroke of the engine.

Diameter = $\frac{1}{1}$ diameter of cylinder when stroke of the engine. Feed-pumps for Condensing Engines:

Diameter = $\frac{1}{8}$ diameter of cylinder when $\frac{1}{4}$ th stroke of the engine.

Quantity of water required per nominal INJECTION WATER.

T = Temperature of the steam in degrees Fahr. horse-power in cube feet per minute. $Q = T \times 00304$.

For temperature of steam, see Table.

Approximately 0.8 cube foot, or 5 gallons are required per nominal horse-power per minute.

FEED-WATER,

one Jo of cylinder and contents

Cubic contents of displacement of pumpsteam passage. 0

Specific volume of steam (varying with the pressure), see Table, "Specific Volume." plunger. 11

$$c = \frac{4}{8}$$

Approximately about .07 cube foot, or nearly gallon per nominal horse-power per minute for condensing stationary engines.

FEED-WATER IN EXPANSIVE ENGINES.

Area of piston in inches. H

Stroke of engine in feet.

Number of revolutions per minute.

steam; Ratio of admission of

volume of steam corresponding being = Specific

pressure of steam on admission to the

Cubic feet of steam consumed per hour, to the cylinder.

in passages, piston Cubic feet of water to be evaporated per allowing for loss in clearance, leakage, &c. 11

$$Q = 1.05 \text{ ASR}x; \quad q = \frac{Q}{n}.$$

hour.

Lancashire OI. Cornish in = .72 q. area boilers about Fire-grate

STEAM-ENGINE GOVERNOR.

L = Vertical height from plane of revolution to point of suspension in inches.

Number of revolutions per minute.

 $\mathbf{L} = \left(\frac{187 \cdot 5}{\mathbf{R}}\right)^2.$ 187.5

WEIGHT OF RIM OF FLY-WHEEL. Mean diameter of rim in feet.

Total average pressure on piston in lbs. PS Stroke in feet.

 $W = Weight of rim in cwts. = \overline{45D}$

11.42 W Sectional area of rim in inches

D = Stroke \times $3\frac{1}{2}$ or 4 generally. For engines with high expansion or with irregular loads multiply W as found above by 1.5. Some engineers make W = 100 lbs, for each indicated horse-power.

fly-wheel must exceed the velocity of the periphery of the stones, to prevent back lash. In corn mills the velocity of the periphery of the

(Another Rule.) WEIGHT OF FLY-WHEEL RIM.

Pressure on piston in tons.

Stroke of engine in feet.

Mean diameter of rim in feet.

Number of revolutions per minute.

Constant varying from 3 to 4 in ordinary to 6 when engines, and rising

uniformity is required.
Weight of fly-wheel rim in tons.

(N)

Maximum safe velocity for cast iron = 80 feet

CONNECTING-ROD ENDS.

Diameter of bearing in inches.

PARALLEL MOTION.

A = Length from centre of beam to centre of Length from centre of air-pump studs to centre of cylinder-studs. Length of radius-rods. air-pump stud.

 $R = \frac{A^2}{2}$

_ B

R = A when A = B. Length of back and front links = $\frac{1}{3}$ stroke. R

TO FIND THE VERSED SINE OF THE ARC DESCRIBET Radius of are described, in inches. Stroke of the engine in inches. BY THE BEAM OF AN ENGINE. Versed sine in inches,

V = Versed sine in inche $<math>V = R - \sqrt{R^2 - (\frac{1}{2}S)^2}$.

The essential features of the motion are a vibrating link V to which motion is given by a point in the connecting rod; and a lever L, one end of which is moved by a point in V, and the other end is connected with the slide-valve, whilst its to travel through a curved fulcrum to the dotted line A B.

A movable slotted link may be substituted for the radiusof path of The reversing is effected by moving the end D so as to alter the curved fulcrum is forced by a radius-rod radius-rod from C to path.

rod.

The dotted lines show another position of the motion.

PEAUCELLIER PARALLEL MOTION.

The distance apart of the fixed points A and B must always the length of the spare link $B\dot{D}$; C is the point that moves a straight line; DE = FC = DF = EC; AF = AE; HL= LJ; $HA = \frac{1}{2}HL$; $JD = \frac{1}{2}JL$; $HC = \frac{1}{2}HK$. Į,

Though Hart's modification has fewer links it has more foints than Peaucellier's.

HIGH-PRESSURE ENGINES.

1.5 width of steam-port. foot .057 area of cylinder. 3 thickness or metal, per rod. 2 D to 2½ D. 1, th inch length of 1 stroke × 2. ·06 D +·2. ·19 D. ·15 D. ·7 D. .25 D. 11 11 Diameter of piston-rod Diameter of cylinder of slide-Length of connecting Diameter of connect-Thickness of metal of Thickness of ribs of evlinder in inches ength of ports = cylinder and Width of exhaust : . ing rod at end Depth of piston valve spindle Area of port in inches Diameter Stroke rod

NOMINAL HORSE-POWER OF HIGH-PRESSURE ENGINES,

·23 D.

Diameter of crank-pin

Swell of ditto ..

= .33 D.

Diam. of crank-shaft

Length of ditto

50	3
40 20 45	P
30	P
20 15	3
13	63
10	7.7
M2 00 0	10
Nominal horse-power Diam. of cylinder in ins.	Stroke in inches

APPROXIMATE RULES FOR THE PROPORTIONS OF STATIONARY CONDENSING ENGINES.

Diameter of cylinder in inches. Stroke of engine in inches.

S = from 2 D to 21/2 D.

Area of ports = area of cylinder × '06. Diameter of air-pump = 1×0.6 . Stroke of air-pump = $\frac{1}{2}$ S.

Area of foot-valve = area of air-pump × '25.

Capacity of condenser = capacity of cylinder \times '6. Diameter of piston-rod = D \times 0.1. Area of delivery-valve = area of foot-valve.

Diam, of air-pump rod = diam, of air-pump \times 0.1. Diameter of crank-pin = D \times '14.

Length of crank-pin = D \times '21. Diameter of crank-shaft journal = D \times '3. Length of crank-shaft journal = $D \times 44$.

Area of connecting rod at centre = area of cylin-Length of connecting rod = $S \times 3$.

 $der \times .056$.

Area of connecting-rod straps = area of piston-rod. Distance of keyway from edge of butt = $\frac{1}{2}$ diameter

of crank-pin.

Depth of gib and cutter = $\frac{2}{3}$ diameter of crank-pin.

Depth of gib at centre = depth of cutter at centre.

Taper of key = $\frac{1}{2}$ inch per foot.

Lancth of key = breadth of but and strap × 2.

Depth of large eye of crank = diameter of shaft. Thickness of metal round eye = $\frac{1}{4}$ diam. of shaft, Depth of small eye of crank = $\frac{2}{4}$ diam. of shaft. Diameter of motion-rods = D × '04. Length of key = breadth of butt and Width of key = $\frac{1}{4}$ the width of butt.

Swell of ditto = $\frac{1}{4}$ inch per lineal foot.

Diameter of valve-spindle = piston-rod \times 0.4, Area of steam-pipe = area of steam-port \times 1.1.

APPROXIMATE RULES FOR STATIONARY Engines—continued. Rule for the Sectional Area of the Beam at Centre. Length from axis of cylinder to centre ca Total pressure on piston in lbs. اا

beam (or 1/2 the length of beam) in inches.

Sectional area of beam at centre in square

inches.

Depth of beam at centre = diameter of cylinder. 500 D

Length of beam from centre to centre = stroke of ends = depth at centre × 0.4. engine × 3.

Width of flanges at centre = $\frac{4}{4}$ depth at centre.

"
ends = $\frac{1}{2}$ width at centre.

DIMENSIONS OF STATIONARY CONDENSING (From actual Practice.) ENGINES.

A STANDARD BOOK OF THE PARTY OF	A PROPERTY AND ADDRESS OF THE PARTY AND ADDRES
Diameter of Steam-pipe.	108. 9. 9. 104. 111. 12. 12.
Diameter of Air-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Diameter of Piston-rod,	22 22 22 22 24 44 44 44 44 44 44 44 44 4
Area of Steam- port,	111 × 21 14 × 33 16 × 4 17 × 4 17 × 4 117 × 5 119 × 5 119 × 5 110 × 5 110 × 6
Length of Con- necting Rod.	feet, 15.0 18.0 18.0 18.0 21.0 21.0 24.0
Length of Beam.	feet. 15.0 18.0 18.0 18.0 21.0 21.0 24.0
Diameter of Air-pump,	ins. 14.7 17.8 20 22.22 24.5 24.5 26.3 28.3 28.3
Number of Strokes,	211 211 113 114 115 115 115 115 115
Length of Stroke.	feet. 88777000000000000000000000000000000000
Diameter of Cylinder.	ins. 224 - 229 - 2
Horse-power, Nominal,	20 30 30 40 50 60 70 80 80 90

PROPORTIONS OF APPROXIMATE RULES FOR THE LOCOMOTIVES,

D X .16. D2 × .08. $D^2 \times \cdot 18$. Diameter of piston-rod Area of eduction-port Area of steam-ports

if of the same .12 Diameter of feed-pump plunger

stroke as the engine. × .09. D × ·12. Diameter of outside crank-pin.. Diameter of valve-spindle Diameter of feed-pipe

3.11. $D^2 \times \cdot 02$. .28. × .3 XX Diameter of steam-pipe Diameter of blast-pipe Diameter of boiler Length of

.16. .28. .16. X Thickness of piston .. Diameter of piston-rod

middle Length of journal of crank-axie ends Diam. of connecting-rod Diameter of crank-axle

.21.

.43 90. D × 60. tank-} Capacity of tenders in gallons ... Capacity of tanks of

65 area of fire-grate. engines, in gallons ... Heating surface ..

LEAD OF LOCOMOTIVE SLIDE, RULE FOR THE LAP AND

Travel of slide in inches. Lap of slide in inches.

Lead of slide in inches. T × 0.22.

T × 0.07.

RULE FOR THE STRENGTH OF LOCOMOTIVE SPRINGS. (D. K. Clark.)

Span of spring in inches. Breadth of plates in inches.

Thickness of plates in sixteenths of an inch. Number of plates.

Deflection in inches per ton of load, HAAH

Safe load on spring in tons, RT2 N 11.3SL

11.38

D=TaBN. ·14 S3

REVOLUTIONS PER MILE WITH DRIVING WHEELS OF DIFFERENT DIAMETERS. NUMBER OF

	neel 2 ft. 24 ft. 3 ft. 34 ft. 4 ft. 44 ft. 5 ft.	lile 840 672 560 480 420 373 336	heel 54 ft 6 ft. 64 ft. 7 ft. 8 ft. 9 ft. 10 ft.	oile 305‡ 280 258\$ 240 210 187 168	
Control of the Contro	Diam. of wheel 2 f	1	11	1	_

SPEED OF PISTONS.

Miles per hour travelled by engine. Speed of piston in feet per minute, $56\cdot0225~\mathrm{S}$ M Diameter of driving wheels in feet. Stroke of engine in feet. D M M 11 An ordinary speed of piston is about 900 feet per minute.

		26	2427 2031 1821 1618 1457 1214 1040 910 728
er Minute our.	38.	24	2241 1921 1681 1494 1345 1120 960 840 672
Speed of Piston in Feet per Minute at 60 Miles per Hour.	Stroke in inches.	.53	2054 1760 1540 1369 1232 1027 880 770 616
eed of Pisto at 60	Str	20	1867 1600 1400 1245 1120 933 800 700 560
ďs		18	1681 1440 1260 1120 1120 1008 840 720 630 630
Diameter	of Driving	feet.	88844400 m 800 m

GRAVITY OF RULE FOR THE CENTRE OF

C = Horizontal distance line of centre of gra-LOCOMOTIVES.

vity from driving axle.

Load on leading wheels.

Load on trailing wheels.

Distance of leading axle from driving axle.

Distance of trailing axle from driving axle. Length of wheel base. 11

Total weight of engine.

- measured towards leading axle. LI-Tt

If T t exceeds L l, then

measured towards the trailing Tt-LI

axle.

T. is rule applies to six-wheeled engines when the driving wheel is placed between the leading and trailing wheels. In four-wheeled engines, if L exceeds T, the horizontal distance of the centre of gravity measured from the trailing W. If T exceeds L, the distance mea-LB axle =

sured from the leading axle = $\frac{1}{W}$. If T = L, TB

the centre of gravity is half-way between the two

CONSUMPTION OF OIL ON RAILWAYS.

In America the consumption of oil is 12th to

12th of a pint per train mile. Twenty pints of oil lubricate 8 journals carriages 5000 miles, or 1 pint to 250 miles.

LOCOMOTIVES-continued.

(FRENCH PRACTICE.)

D = Diameter of cylinder. A = Area of one cylinder. II = Heating surface. d = Diameter of tubes. D = $\cdot 0416 \checkmark H$. A = $\cdot 00136 H$.

√H. ·00017 H. ·00015 H. ·0002 H. ·0002 H. ·03 VH. ·065 D. ·013 D. .14 A. 111+ 013 .04 .0012 1 .15 D. 114 = 3.84 D. .071 .012 .91. 1.57 300 11 11 Area of regulator-opening Inside cover of slide-valve Diameter of steam-pipe .. ·68 D Angle of advance of slide Diameter of eccentrics .. Length of connecting rod Breadth of ditto = .82 D Length of port to width Area of exhaust-pipe Ditto of nozzle of ditto Surface of ditto = .59 Length of fire-grate Ditto of blast-pipe Ditto slide-valve = Width of ditto .. Area of ditto ... Steam-port area Outside cover .. Lineal advance Stroke

(FRENCH PRACTICE)—continued. LOCOMOTIVES

lowest = $08 \sqrt{H}$ = $1\frac{1}{2}$ to $1\frac{3}{4}$ in = $0033 \frac{H}{9}$ = $0033 \frac{H}{9}$	= 87 d. $ = 14 B.W.G. $ $ = .08 H. $ $ = .92 H. $ $ = H.$. = .00269 H. $. = 3\frac{1}{4} \text{ ins.}$ s . = 4 ins.	= $\frac{1}{8}$ in. = ·124 $$ H. = ·84 d .	1 11	= $0.024 \checkmark$ H. = 0.001 H. = $0.028 \checkmark$ H. = $4\frac{3}{4}$ inches.
Height from fire-grate to lowest row of tubes = $.08 \checkmark \overline{\text{H}}$. Internal diameter of tubes = $1\frac{1}{2}$ to $1\frac{2}{3}$ in Number of tubes = $.0033 \frac{\text{H}}{3}$.		bol	: : :	Thickness of boiler-plate Ditto outer fire-box plate	Area of one safety-valve Diameter of pump-plunger Stroke of ditto

·0058 \/ H.

: 13

Diameter of clack-valve opening

Ditto suction-pipe

T	A	В	С	D	E	F	G	н		
1 2 3 4 5 6	ft. in. 9½ Tank out Bissell 4 3 6	ft. in. 10½ Tank out 6 3 6 9 2	ft. in. 12 Tan: out 4 3 6 8 0	ft. in. 13 out 4 3 6 9 8	ft. in. 13½ Mixed out -6 3 33 8 9 23 4 9 23	ft. in. 16 Mixed out Bogie 4 5 6 9 7½ 4 0	ft. in. 17 Mixed out 4 4 8½ 11 13 4 2	ft. in. 17 Tank in Bogie 4 4 8½ 10 6 4 2	1 2 3 4 5 6	Diameter of cylinder, inches. Description Outside or inside cylinders. No. of wheels coupled. Gauge of railway Boller. Length Diameter
	$\begin{bmatrix} 3 & 4 \\ 1 & 2 & 11 & \frac{1}{2} \\ 2 & 2 & 11 & \frac{3}{2} \\ 3 & 1 & 5 & \frac{3}{4} \\ 4 & 2 & 8 & \frac{3}{4} \\ 5 & 2 & 1 & \frac{3}{4} \end{bmatrix}$	1 5 ½ to ½ to ½ 3 2 5 ½ 3 2 1	2 10½ 1 4¾ 7 to § 2 10¼ 2 4¾	$\begin{bmatrix} 4 & 2\frac{1}{8} \\ 2 & 7\frac{1}{8} \\ 3 & 8 \end{bmatrix}$	1 1118	7 16 4 8 4 3 8 4 3 8 2 4 1 3 6 2 4 1 3 6 1 0 2 4 1 3 8 5 8	4 13 4 4 4 4 0 2 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 6 4 4 4 0½ 2 2 5 1¾ 4 6¾ ½ 4 9¼	9 10 11 12 13 14 15 16 18 19	Breadth at top Ditto at bottom Height above centre of boiler Depth below ,, back Thickness of plate INSIDE FIRE-BOX. Length at fire-grate Breadth at ditto Depth at front

LOCOMOTIVES. (From actual Practice.)

	J	K	L	M	N	0	P	Q	R	digital or
1 2 3 4 5 6	ft. in. 17 Express inside 4 4 8½	ft. in. 17 Express inside Single 4 8½	ft in. 17½ Tank inside Bogie 4 4 8½ 10 6	ft. in. 17½ Goods inside 6 4 8½ 10 6	ft. in. 17½ Pass'ger outside Bogie 4 4 8½ 10 6	ft. in. 17½ Express inside Bogie 4 4 8½ 10 2	ft. in. 18 Goods inside 6 4 8½ 10 3½	ft. in. 18 Goods outside 6 4 8½	ft. in. 18 inside 4 4 8½ 10 6	1 2 3 4 5 6
8 9 10 11 12 13 14 15	4 3 5 6 4 4 4 0 2 2 4 10½ 4 10½	4 4 5 5 5 4 6 8 4 1 2 3 3 5 6 4 4	4 1 5 6 4 5 4 1 - 4 6½	5 11 4 4 4 0½ - 5 2	4 2 5 0 4 8 3.11½ 2 7½ 4 4% 4 1%	4 2½ 716 5 9 4 4 3 11 2 2 5 2 5 2	4 4 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 104 4 4 4 0 4 74	4 2 5 6 4 3 4 0 4 8	8 9 10 11 12 13 14 15
16 17 18 19 20	4 9% 3 4 5 9 5 9	4 85 3 45 6 5 5 3	\$ to \(\frac{11}{16}\) 4 11 3 6 5 1\(\frac{1}{2}\) 4 4\(\frac{1}{2}\)	5 213 3 4½ 5 6 4 11	4 37 3 34 5 38 5 08	5 07 3 3 6 0 6 0	5 98 3 48 6 14 4 43	\$ to \$ 4 3 3 4½ 5 2½ 5 2½	4 94 3 4 4 11 4 5	16 17 18 19 20

(X	5	
4		5	
.2	2	5	

1	A 9½	B 10½	C 12	D 13	E 13½	F 16	. G 17	H 17		Diameter of cylinder.
21 22 23 24	7 8	ft. in.	ft. in. ½ & & & & & & & & & & & & & & & & & &	ft. in. $\frac{1}{2}$ & 1 $\frac{1}{4}$ $\frac{1}{8}$ \times $3\frac{7}{8}$	it. in. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ft. in. \(\frac{1}{2}\) \(\frac{7}{8}\) \(\fra	ft. in. ½ 7 8 1 4	ft. in. 13 13 13 15 8 315 × 4	22 23 24	Inside Fire-box—continued. Thickness of plate
25 26 27 28 29 30 31	18 21 32 360 392	9 5½ 1¾ 2¾ 42½ 446¼ 482¾ 9	8 38 14 28 39½ 3814 416½ 6.78	9 11½ 18 2¼ 47 618½ 665½ 10.82	9 64 18 24 628 590 644 11.83	10 0 14 2½ 908 925½ 1007·35 15·13	10 10 13 23 78 9921 10601 11.79	10 10 4 14 28 1041 1092 11961 16·1	26 27 28 29	Length between plates Diameter outside Distance of centres Fire-box area, square feet Tube surface, Total heating surface, sq. ft.
31 32 33 34 35 36	9 6 105 115 278	$\frac{11}{2\frac{1}{2}}$	1 1½ 11½ 3	10 11% 1 1 1 0 31/4 1 1%	10 10 1 2 1 1 3½ 1 3	13 6 1 43 1 2 31 1 6	12 3½ 1 5 1 3 5¾ 1 1	13 2 1 3 1 4 4 4 ½ 1 4 ½	33	Height from rails Diameter at top Ditto at bottom Diameter of blast-pipe
3'	3	_	=	=	=	=	=	=	37 38 39	

LOCOMOTIVES—continued.

		J 17	K 17	L 17½	M 17½	N 17½	0 17½	P 18	Q 18	R 18	
2 2 2	ft. 1 2 3 4 4	in. 1/2 1/8 1/8 2/8 2/8 × 4	ft. in. $\frac{9}{16}$ $\frac{7}{8}$ $4 \times 4\frac{3}{16}$	ft. in. ½ 1 3 4	ft. in, ½ 133 17 8	ft. in. $\frac{1}{2}$ $\frac{7}{8}$ $\frac{7}{8}$ $4 \times 4\frac{1}{16}$	ft. in. $\frac{\frac{1}{2}}{\frac{1}{3}}$ $\frac{1}{3}$ $\frac{3}{1}$ $\frac{7}{8}$ $4 \times 3\frac{7}{8}$	ft. in. $ \begin{array}{c} $	ft. in. ½ ½ 7 8 1 4	ft. in. \frac{1}{2} \frac{3}{2} \frac{3}{4} \tag{4}	21 22 23 24
2 2 2 2 2 2 3 3	6 7 8 9 0 1	$ \begin{array}{c} 8\frac{1}{4} \\ 1\frac{3}{16} \\ 2\frac{3}{16} \\ 100 \\ 108 \\ 208 \\ 6 \cdot 1 \end{array} $	$\begin{array}{cccc} 10 & 5_{10}^{15} \\ & 1_{34}^{15} \\ & 2_{2}^{15} \\ & 86 \\ & 957 \\ & 1043 \\ & 15 \cdot £7 \end{array}$	$\begin{array}{c} 10 \ 10\frac{4}{5} \\ 2\frac{1}{2} \\ 94 \\ 967\frac{1}{2} \\ 1052\frac{1}{2} \\ 17 \cdot 18 \end{array}$	10 10 § 1 § 2 § 101 1112 1201 § 17 · 63	10 10 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1	10 6 14 2½ 107 962 1069 16.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 15 2 24 92½ 990 1073 14·32	10 9½ 1½ 2½ 98½ 1059 1144 15:91	25 26 27 28 29 30 31
3 3 3 3	3 1 4 1 5 1	7 4 4§	13 0 1 5 1 4 43 1 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 0½ 1 3 1 4 45 1 4½	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 $3\frac{7}{8}$ 1 6 1 $4\frac{1}{2}$ variable 1 $6\frac{9}{16}$	13 0 1 6 1 5 43 1 54	12 11 1 5 1 3 5 1 5	13 0 1 6 1 5 4 ³ / ₄ 1 8 ³ / ₄	32 33 34 35 36
3131	3 .		2 0 2 1 2 1		=	_	=	$ \begin{array}{c c} 2\frac{1}{3} \\ 2 & 2 \\ 2\frac{1}{3} \end{array} $	=		37 38 39

Ĩ		A 9½	B 10½	C 12	D 13	E 13½	F 16	G 17	H 17		Diameter of cylinder.
	40	nt. in.	ft. in.	ft. in. 2	ft. in. 2	ft. in.,	ft. in. 2 7 & 8	ft. in. 2	ft. in. 2	40 41	INJECTORS. Number of injectors Gauge in millimètres SAFETY-VALVES.
	42 43	2 2	2 278	2 0 25	2 2	2 2½	2 2½	2 2½	2 3 % & 2	43	Number
	44 45 46	1 6	4 11% 1 6 1%	5 0 1 6 1 ⁷ / ₈	6 4½ 1 8 2½ 2½	5 6\frac{1}{4} 1 8 2\frac{1}{8} 3\frac{1}{2}	6 9 2 0 2 3 3	6 2 1 10 25 4	2 4 2 0 2 ³ / ₂ 3	45	Stroke Diameter of piston-rod Depth of piston
	47	1	7	3\frac{1}{2}	10 1½ 2½	11½ 1¼ 3	1 2 14 32	1 1 1 1 1 2 3	1 3 13 31 31	49	PORTS. Breadth of ports Length of steam-ports Ditto of exhaust
TITO TO	50 51 52	2 2	2 2	2½ 3½	3 3½	2 ¹ / ₄	3½ 3§	3 5½	3 8	55	B Lead
	5.5	1 1	5	6	7-1	74	78	14 9.7	87	5	Steam overlap Lift of links ECCENTRICS. Diameter of sheaves
010	5	6 9	11	11	1 03	1 1	1 3	1 34	11 24	10	

LOCOMOTIVES—continued.

		J 17	K 17	L 17½	M 171	N 17½	0 17½	P 18	Q 18	R 18	
	10	ft. in. 2 8	ft. in.	ft. in. 2 7 & 8	ft. in. 2	ft. in. 2	ft. in. 2	ft. in.	ft. in. 2 8	ft. in.	40 41
	12	3 4 & 2	2 21	3	2 38	$\frac{2}{2^{\frac{1}{2}}}$	2 3½	$\frac{2}{2^{\frac{1}{2}}}$	$\begin{array}{c}2\\2\frac{1}{2}\end{array}$	2 2 ¹ / ₂	42 43
4	14 15 16 17	2 4½ 2 0 2½ 4	2 3 2 0 23 4	2 4 2 2 24 4	2 4 2 2 2‡ 3	6 2½ 2 2 2¾ 3½	2 4 2 2 24 34	2 3 2 2 3 4	6 6 2 0 2 8 4	2 4½ 2 2 2¾ 3⅓	44 45 46 47
4	18 19 50 51	1 1 1½ 3½ 4	1 3 1½ 3	1 3 14 3 37	1 3½ 1 ½ 3½ 4	1 1½ 1½ 3 4	1 2 1½ 3¼ 4½	1 4 15 31 31	1 3 1\$ 3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1½ 3	48 49 50 51
1	52 53 54 55	$\begin{array}{c} 4\frac{9}{16} \\ \frac{3}{10} \\ 1\frac{1}{16} \\ 10\frac{9}{16} \end{array}$	$\begin{array}{c} 4\frac{3}{10} \\ \frac{1}{8} \\ 1 \\ 9\frac{1}{2} \end{array}$	4 1 94	$\frac{3\frac{1}{2}}{\frac{1}{8}}$ $\frac{1}{28}$ $\frac{7}{8}$ $\frac{1}{5}$	$\begin{array}{c} 4\frac{7}{16} \\ \frac{1}{8} \\ 1\frac{1}{16} \\ 10\frac{7}{16} \end{array}$	3 7 3 3 1 8	$\frac{4\frac{5}{16}}{\frac{1}{8}}$ $\frac{1}{9\frac{1}{2}}$	5½ ½ 1½ 10	1	52 53 54 55
1	56	1 41	1 43	1 4	1 31	1 4	1 41	1 4%	1 34	1 31	56

(A 9½	B 10	ł	C 12	D 13	E 13½	F 16	G 17	H 17		Diameter of cylinder.
0K.	57	rt. in.		n. 14	ft. in. 178	ft. in. 2½ 5½	1t. in. 21 6	ft. in. 24 64	ft. in. 2\frac{1}{2}	ft. in. 3½ 5¾	57 58	ECCENTRICS—continued. Width of sheaves Throw of eccentrics Motion Bars.
POCKET-BOOK.	59 60	2	2	31/2	2 3 1½	1 3½ 2§	1 3½ 2½	1 4½ 2½	2 5 24	4 2 ³ / ₄ 2	59 60 61	No. to each cylinder Breadth
	61 62 63 64	- 9 9 9	1	18 91 10	91	11	11	12	11½ 12	10 3½ 2	62 63 64 65	Thickness of ditto Diam, of slide-block pin
ORTH	65 66 67	1 1 2	-	2 2½	21	21 21 21 21	2½ 2½ 2½	23 28	24 3	3 2§	66	Do. connecting-rod pin Length of ditto WHEELS.
MOLESWORTH'S	68 69 70	1 6 3 0 3	3	0 0	2 6 2 6	3 9 3 0 3 9	3 6 3 6 3 6	2 9 5 6½ 5 0½	6 2	5 6 3 0 5 6 21 9	68	Ditto of trailing
Ä	71	11 3	54	6 5 1		11 0	11 0		7 7	8 6	7	AXLES. 2 Diameter at wheels 3 Ditto at middle
512	7:	1	4 ½ 4 ½ 5 ¾	4 ½ 4 ½ 5 ½	-	5 8	7. 6	6	7 7	15 7		Ditto of journal

	J 17	K 17	L 17½	M 17½	N 17½	0 17½	P 18	Q 18	R 18	
57	ft. in. 3 6½	ft. in. 2	ft. in. 27 64	ft. in. 3 54	ft. in. $2\frac{3}{4}$ $6\frac{1}{4}$	ft. in. 23/4 61/2	ft. in. 25 61	ft. in. 24 51	ft. in. 23 61	57 58
59 60 61 62 63 64	4 2½ 1¼ 7 10 3 2	4 34 14 54 1 0 34 24	4 2 2 3 1 2 —	4 24 2 31 10 - 2 3	5 2½ - 1 2 11¼ 3	4 3 24 67 1 2 38 2 3	4 31 14 6 1 0 34 24	1 5 2½ 1 3 4 4	4 24 21 3 104	59 60 61 62 63 64 65 66
 66 67 68 69 70 71	3 2 ¹⁵ / ₁₀ 4 6 1 7 0 1 7 0 1 16 1	34 3 4 6 4 6 7 0 15 6	3 3 5 8 3 0½ 5 8 22 7	3 24 4 10 4 10 4 10 16 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31 213 5 0 5 0 5 0 15 3	24 3 5 2 5 2 5 2 11 0	2 3 27 5 7½ 3 7½ 5 7½ 14 8	67 68 69 70 71
72 73 74 75	$ 7\frac{13}{16} \\ 6\frac{1}{2} \\ 7 \\ 7\frac{3}{4} $	8 1 71 8 71	8½ 7 7½ 7	8 64 7 74	$ \begin{array}{c} 8\frac{1}{2} \\ 6\frac{1}{2} \\ 7 \\ 9 \end{array} $	9 to 7 7 ½ 7 ½ 7 ½	8½ 7½ 8 7½	7 7 7 9½	8 7 7	72 73 74 75

.

-			- min man								
		. J	K	L	M	N	0	P	0	R	1
		17	17	171	171	174	171	18	18	18	
	_										-
		ft. in.	ft. in.	ft. in.	ft. in.	ft. in.	ft. in.	ft. in.	ft. in.	ft. in.	-
	76	7 3‡	1) 4	71/3	7 21	31/2	78	8	31	71	76
•	77	34	4	4	37	4	4	4	31	4	77
•	78	44 × 14	5 × 2	7.0	7.5	4 × 13	5 × 17	5 × 2	7.0	7.0	78
1	79	31 × 11	31 × 2	4.8	5.5	3 × 14	31 × 17	31×2	5.5	3.27	79
	80	5 71	6 6	6 2	6 21	- 6 14	5 10	6 6	5 3	6 1	80
1	81	31	-	4	. 31	44	4	41	41	4	81
	82	3 9	35	4.5	4	. 3	4	4 1	28	31	82
ı			11		`						
1	83	5 61	5 6	4 10	4 37	5 1	: 4 3 :	4 7	3 7	5 6	83
-	84	4 × 7	$3\frac{1}{4} \times \frac{13}{10}$	1.75	2.95	$3\frac{1}{2} \times \frac{7}{8}$	4 × 11	$3\frac{1}{2} \times \frac{13}{10}$	2.95	2 0	84
	85			1.19	2.95				2.99	2 0	80
1	86	2200	2400	1100	2350	1950	2550	2400	1840	1800	86
1	87	1	1	1	3 to 5	3 16	1	1	5 to 1	4	87
	88	12 3	12 0	Tank*	13 0	11 0	12 0	$12 0^{4}$	11 51	11 7	88
1	89	3	3	1000000	3	3	3	3	3	3	89
1	90	3 81	4 0	_	4 0	3 71			3 8	3 71	90
1	91	53	6	1.4	54	5 5	6	6	54	5	91
1	92	5	5 8	1 -	43	5	51	5.	.44	41	92
	93	10	8	1. 11	61		37		11 5 7	97	93
	94 95	6 10	6 2	4 . T : 1	6 3	6 7 6 3	6 4	6 2	6 3	6 24	94
	99	0.10	0 2		0 3.		0 4	0 2	0 3	0 23	00]

Γ	A 9½	B 10½	C 12	D 13	E 13½	F 16	G 17	H 17		Diameter of cylinder.
96 95 98 99 100 100	5 12 2 5 15 3 14 16 0 ft. in. 3 3½ centre	6 2 0	8 15 2	6 19 0 4 16 0	6 10 2	11 8 0 11 5 0	12 19 1	14 12 2 15 8 0 43 9 3 ft. in. 4 5 ½ 5 8	98	Total weight

BALANCING LOCOMOTIVES. (Rankine.)

The centre of gravity of the counterbalance weight should be in the prolongation of the line that bisects the angle formed by the two cranks, or at an angle of 135° with each crank.

The formula can only give approximate results, as there are other disturbing influences; and the engine should be further adjusted by suspending it by means of chairs or ropes from the corners of the framing, leaving it free to oscillate, and the weights should be increased or diminished until the oscillation of the engine working at speed is reduced to a minimum. The suspension should be on springs, so as to allow vertical as well as horizontal motion. The balance is sometimes facilitated by placing the driving wheels in the lathe centres, so that they may revolve freely, and then attaching in position the connecting rod and other moving parts.

LOCOMOTIVES-continued.

	J 17	K 17	L 17½	M 17⅓	N 17½	0 17½	P 18	Q 18	R 18	
96 95 98 98 106 101	14 3 0 12 18 0 39 9 0 ft. in. 4 5 g 5 9	\$\frac{1}{5}\text{Mod QL} & \frac{1}{5}\text{Mod QL} & \frac{1}\text{Mod QL} & \frac{1}{5}\text{Mod QL} & \frac{1}{5}Mod QL	# # # # # # # # # # # # # # # # # # #	# # 2	# # E E E E E E E E E E E E E E E E E E	\$\frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{9} \frac{1}{2} \frac{1}{12} \frac{1}{	## 12 5 0 13 8 0 12 9 0 38 2 0 ft. in. 4 5½ 5 8 3 5½	ri ka 2 12 12 10 13 3 2 11 8 0 37 3 2 1t. in. 4 5½ 5 9 3 5	11 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	96 97 98 99 00 01

BALANCING LOCOMOTIVES-continued.

W = Accumulated weight of moving parts acting on crank. w = Weight of counterbalance. R = Radius of centre of crank pin. r = Radius of centre of gravity of counterbalance weight.

D = Distance of centre of crank from centre of engine. d = Distance of the centre of gravity

of counterbalance weight from centre of engine.

$$w = \frac{WR}{r} \sqrt{\frac{\overline{D^2 + d^2}}{2 d^2}}.$$

THICKNESS OF METAL IN CYLINDERS.

D = Diameter of cylinder in inches,

T = Thickness of metal in inches.

$$T = \frac{D P}{4000} + \frac{1}{4}$$

							PRI	NCIPAL DIMENSIONS OF HIGH-PRESSURE CONTINUE	
	173	243	296	465	516	572	1016	Indicated Horse-power.	
MOLESWORT	173 14 14 14 15 1 14 15 1 14 15 1 16 17 7 0 6 6 6 6 6 6 15 15 15	21 36 1 1 1 4 152 6 1½ 9 3 — 1 4½ 20 60	21 38½ 1 1 1 6 7 9 1 50 60 75 S. a. 18 9 1 2½ B	28 48 1 1 6 133 9 0 9 3 1 6 38 63 77:40 126 D. a. 11† 1 6 1 2 B	25 50 1 1 3 0 60 14 6 17 0 	29 56 1 1 2 6 56 14 9 15 0 1 7 43.75 119 1204 8. a. 27 1 3 1 3 1 8. cased	64 1 1 2 0 104 13 0 12 0 7 10 75 157·50 120 D. a. 16 2 0 1 2 8	Diameter of high-pressure cylinder in inches Diameter of low-pressure cylinder in inches Number of high-pressure cylinders Number of low-pressure cylinders Number of revolutions per minute, on trial Diameter of propeller in feet and inches Pitch of propeller Diameter of paddle-wheels to centre of floats Length of floats Breadth of floats Number of propellers Diameter of main steam-pipe in inches Area of high-pressure steam-ports in sq. inches Area of high-pressure steam-ports in sq. inches Area of low-pressure Parea of low-pressure Single acting (S. a.) or double acting (D. a.) Diameter of air-pump in inches Length of stroke of air-pump in feet and inches Number of air-pumps od in inches Diameter of air pump rod in inches Air-pump rod, brass or iron or brass cased	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

MARINE Engines. (Manufactured by Messrs. Maudslay, Sons, and Field.)

		1 - 10 - 10	P	1		****		-				_
	1189	1258	1305	1319	2334	3388	3470	3666	4130	5429	7713	T
-										0120	1110	
1	3.0	36	46	38	34	62	41	42	43	48	41	1
2	70	68	82	70	75	112	75	78	80	83		1 4
3	.1 .	1	. 1	1	2	1			2	2	75	2
4	1: 11: 11	1 1	1	1	2	1	2 2	2 2	2	2	4	1 3
5	4. 0	3 9	5 0	4 0	2 9	5 0	4 3	5 0	4 6	5 0	3 0	1 4
6	.58	62	304	614	96.13	54	62	52	* 0	574		0
7	16 0	16 0	-	16 0	15 0	19 0	19 0	22 0	19 8	23 6	97	0
8	21. 0.	19 0	-	20 0	15 6	30 0	28 0	30.3	27 6	30 6	16 31	1 3
1 9		-	19 0	-		-	20 0	30 3	21 0	30, 6	19 11	8
10	-	1 +	8 6	-		-				1		9
11		-	3 4	-						property.		10
12	1 1	1	2 .	1	1	. 1	1	1	1	1	2	111
13			74	10	12	17	13	14	14	66	2	12
14		80	80	80.	75	220	93	104	104		22	13
15		210	112	220	250	594.50	270	299	299	123.50	112	14
16	112.50	240	240	. 240	120	308	170.5	224	224	338	299	15
17	312	273	336	286	350	779	372.25	414		266	192	16
1.	Sa.	S.a.	S. a.	S. a.	D. a.	S. a.	S. a.		414	468	390	17
18		35	40	35	16	35	35 a.	S. a.	S. a.	S. a.	S. a.	
19	2 0	1 . 8	2 4	1 8	2 9	2 6	2 0	38 2 3	38	41	43	18
20		1	1	1	2	2	2		2 0	2 3	1 9	19
21	34	4	trunk	1	24	47	4	2	2	2	1 to each engine	
		B. cased		B. cased	B B			4 8 P	48	44		21
		z. caseu		D. Caseu	10	b. cased	D. cased	B. cased	B. cased	B. cased	В .	22

									PRINCIPAL DIMENSIONS OF THERE'S	
T-B00K.	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	173 3\frac{1}{4} 2\frac{1}{2} 8 2\frac{1}{6} 3\frac{1}{6} 1 1\frac{1}{6} 1\frac{1}{6} 1 1\frac{1}{6} 1 1\frac{1}{6} 1 1\frac{1}{6} 1 1 1\frac{1}{6} 1 1 1 1 1 1 1 1 1	3½ 3½ 1 3½ 1 2 2 ½ 5½ 5½ 5½ 5½	296 2½ 9 3 4½ 3½ 1 3½ 1 2½ ½ ½ 5 1 1 6½ 6½ 6½	1 6½ 6½ 6½ 10f1	516 3½ 1 5 6 0 4½ 4½ 1 5 5 1 2½ 2½ 1⅓ 1 none none 8½ 9 8¾ 6 10f 15	572 4 1 3 5 5 5 5 1 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0 4 0 6 6 1 5 5 5 1 3 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 2 1	Indicated Horse-power. Diameter of feed-pump plunger in inches Length of stroke of feed-pump in feet and inches Length of connecting rod Diameter of high-pressure piston-rods in inches Diameter of low-pressure piston-rods Number of piston-rods to each cylinder Stroke of low-pressure slide-valves in inches Stroke of low-pressure slide-valves in inches Stroke of low-pressure slide-rods in inches Stroke of low-pressure slide-rods in inches Diameter of high-pressure slide-rods. Thickness of low-pressure slide-rods Thickness of high-pressure cylinders Thickness of high-pressure jackets Thickness of high-pressure jackets Thickness of fow-pressure jackets Diameter of crank-pin in inches Length of crank-shaft bearings	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
MOLESWORT	35 36 37 38 39	none none 5‡	none	15 none 7 61 61 61	1 6½ 6½ 6½ 10f 10	none 84 9 83	1	14 18 104 114 94	Thickness of high-pressure Jackets Thickness of low-pressure Jackets Diameter of crank-pin in inches Length of crank-pin Diameter of crank-shaft bearings Length of crank-shaft bearings	37 38 39 40 41
20	42	660	514	898	830	1088	1015	1704	Number of tubes in surface condenser Diameter of tubes (inside) in inches	. 43

COMPOUND MARINE ENGINES-continued.

		1	_									-
	1189	1258	1305	1319	2334	3388	3470	3666	4130	5429	7713	
2:	3 41 2 0	5	7	5	4	7	64	7	1	7 ±	7 ½	23
		1 8	1 6	1 8	2 9	2 6	2 0	2 3	20	2 3	1 6	24
2		7 6	-	8 0	5 9	10 0	8 6	10 0	9 0	10 0	5 6	25
2		6.	7	61	44	101	6	6	64	7+	83	26
2'		61	8	63	51	12	88	84	84	93	74	27
2		1	1	1	1 HP 2 LP.	1	1	1	1	1	1	28
29		7	61	7	61	7	81	9	9	9	64	29
30		7	6‡	7	71	10	81	9	9	9	8	30
3		1	2 2 2	1	2	1	1	1*	1	1	8 2	31
32		. 37	2	37	14	64	24	3	3	31	21	32
33		37		37	27	61	43	5	5	51	34	33
34		14	14	11	11	2	1,0	14	14	21	1 9	34
35		13	11	18	11	2	14	12	14	14	1 5	35
36		18	11	18	1 1 7	2 21	_	14	1 5		1-3-	36
37		14	none	11	18	21	17	14	11		110	37
38		111	94	124	121	19	16	171	174	20	16	38
39		12	13	14	124	201	17	18	18	211		39
40		111	131	121	124	19	164	171	17	19		40
41	1 of 22	17	18	17	18	001	-				2 of 91	
	1 of 19	1.	10	11	18	281	241	28	26	281	2 of 23	41
42	1695	1560	1394	1740	2000	1100	nor.				5200 S E	
1		1000		1740	3666	4466	3674	3314	3844	4762	7024 PE	42
43	-	4	3	4	8	3	4	3	4	4		43
-		No. of the last					-		•	•	8	

PRINCIPAL DIMENSIONS OF HIGH-PRESSURE

128 12 12 13 13 13 13 13 13										PRINCIPAL DIMENSIONS OF THE	
1820 12 13 14 15 16 15 15 15 15 15 15	1	1	173	243	296	465	516	572	1016		_
10	MOLESWORTH'S POCKET-BOOK	55 66 17 18 19 50 60 65 65 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	376 10 6 R 1 3 2 14 0 5 6 0 1 12 65 1 5 9 5 5	390 10½ 6 R 1 8 3 2 5 6 0 45 0 0 39 13 60 1 7 6 round 7 9 ————————————————————————————————————	10½ 6¾ R 1 15 16 15 16 15 16 15 16 15 16 17 16 16 17 16 16 17 16 17 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	780 7½ 18 R 15 15 15 15 16 64 2 615 7 roun 6 3 2	993 15 11 R 1 24 6 6 15 14 -70 1 13 0 d round 6 11 5	1223 12 P 24 B 9 R 1 29 7 19 12 128 0 64 2 9 0 0 1 round 2 10 4	1820 30 C 1 64 7 21 6 167 16 143 9 60 3 15 7 round 7 10	Total condensing surface in square feet Diameter of circulating pump in inches Length of stroke of circulating pump. Circulating pump, reciprocal or centrifugal. Number of circulating pumps Weight of circulating pumps Weight of water in boilers in tons and cwts. Total weight of machinery and water in tons Total weight of machinery exclusive of water Steam pressure in boiler in lbs. per sq. inch Number of boilers Length of boilers in feet and inches Height of boilers Height of boilers Breadth of boilers Breadth of boilers Breadth of boilers Breadth of boilers Breadth of boilers Breadth of boilers Breadth of boilers Breadth of boilers Breadth of boilers	45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

COMPOUND MARINE ENGINES-continued.

	1189	1258	1305	1319	2334	3388	3470	3666	4130	5429	7713
44	6 101	6 54	7 10	6 8	6 3	8 6	7 0	8 3	7 9	8 6	5 3 P E 44 7 0 S E 44
45 46		2206 16 P 30 2 B	2401 24	2549 19	3746 10	8351	5657 36	6014	6554 36	8904 60	14042 45 45 46
47	24	128	$\frac{2\pi}{C}$	16	33	30	$\frac{36}{C}$	c	- C	- C	- 47
48	1	R	1	R	R	R	2	2	2	1	2 49
50 51	58 0	56 16 36 0	55 1 38 16		64 7 45 0	138 16	151 16 112 0	226 16 153 0	160 7 126. 6	287 12 204 0	228 5 50 149 2 51
53	318 0 260 8	237 0 201 8	268 10 228 14	-	302 0 256 0	740 10		876 0 717 6	745 0 619 16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1008 18 52 803 4 53
54 55		78	66	70	51	57	60	60 12	60	70 8	65 54 12 55
56		16 5	8 9	16 6	9 2	9 2	16 7	10 2	16 9	19 10	$ 4 = 9 51 56 \\ 8 = 9 61 56 $
57			round	14 7	10 2	round	round	14 3	round 4 of 12	14 45	8 of 13 4 57
58	1	. 10. 9	10 4	9 21	12 6	12 2	10 7	8 5	2 of 9 10	8 9	4 of 11 2 58 8 of 12 4 59
60	1	. 5. 8	4 0	7 0	oval 6 10 × 4 10	6 51	6 6	9 10	7 0	oval 9 3 × 8 0	1 of 7 7 60
61	51 0	47 3	38 0	41 0	36 0	53 0	53 0	54 10	53 0	54	56 61

PRINCIPAL DIMENSIONS OF HIGH-PRESSURE

	FRINCIPAL DIMENSIONS OF ALLE	And the
173 243 296 465 162 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	290	69 70 71 71 72 eet 73 75 76 77 77 78 80 81 82
83 8 10 2 8 0 12 0 9	0 16 0 17 2 13 9 Mean draught of water at that, in it. an	Tirenes

224

COMPOUND MARINE ENGINES-continued.

_			-									
_	1189	1258	1305	1319	2334	3388	3470	3666	4130	5429	7713	
62	1	1	2	1	1	2	2	1	2	2	2	00
63	8	8	8 .	8	12	24	24	24	32	32	32	62
64	6 0	5 9	6 8	5 9	6 0	6 0	5 9	6 6	5 6	6 6	7 0	63
65	4 0	3 3	3 0	3 2	2 11	3 14		3 2	3 0	3 3	3 11	64
66	192	149	160	145	210	450	464	494	578	680	700	65
67	1030	680	655	636	1052	2100	2220	2480	2530	3600	2910	66
68	3540	3880	3655	4070	4600	8100	8400	12000	10728	15490	15870	68
69	4570	4560	4310	4706	5652	10200	11120	14480	13258	19090	18780	69
70	376	712	688	744	1248	1528	1680	1824	2020	2368	2898	70
71	9 0	6 5	6 3	6 .5	5 8	6 3	6 3	7 2	6 3	7 2	6 51	71
72	4	3‡	34	31	24	31		31	31	31	31	72
73	26.5	33	32.7	32.5	34.6	72	77	_ 02	92	127	145	73
74	3.84		3.30	3.56	2.42	3	3.20	3.95	3.21	3.51	2.43	74
75	23.80	30.60	26.93	32.45	26.96	22.66	23.98	29.31	22.95	28.36	26.82	75
76	432			_	425		20 00	20 01	739	20.30	20.92	76
77	-	-			1746	-	5075		6170		3290	77
78		10.75	12.72	not taken	13.08	15.28		not taken		not taken	18.57	78
	340 0	316 0	250 0	310 0	212 0		395 4	437 6	413 6	475 0	300 0	79
80	35 0	35 0	31 0	34 0	36 0	-	44 0	41 0	46 3	46 0	46 1	80
81	-	26 10		24 0	19 4		38 4	32 0	32 9	40 0	40 1	81
82	1965	1948	1145	-	1268		3795	3692	4343	4610	3735	82
83.	15 61	20 6	9 0	-		18 64	24 0	5032	21 0	4010		83
1	1								21 0		10 47	03

Compound Marine Engines. (From actual Practice.) (Bramwell, 'Trans. Inst. Mech. Engrs.,' 1872.)

(Braniwell, Trans. Inst. Med	
Cylinders. Speed. Diam. Indicated Ho	orse-power. Steam Pressure Coal Consumption.
Diam. Diam. 5 Piston, Screw. High. Lov. 6 Min. Min.	H. Cyl. L. Cyl.
M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Class 1. Compound ongine with 1 high and 1 low pressure cylinder; vertical; cranks at right angles.

The consumption of coal is the average for long voyages.

COMPOUND MARINE ENGINE BOILERS. (From actual Practice,) (Bramwell,)

	-		OMITOC		1 1 4											Heat-
	Boilers.	Boiler Shell.			Furn		Tubes.			Total Working					Indi-	ing Sur- face
	No. of 1	Diam.	Length.	Thick- ness.	Total No.	Diam.	Total No.	Length.	Extrnl. Diam.	Area.	of Steam.	Tubes.	Fur- nace.	Total.	HP.	per Ind. HP.
A	2	ft. in.	ft. in.	in. 87	8	ft. in. 2 10	456	ft. in. 8 0	in, 3.50	136	1b. a sq. ft.	3342	726 1158	4068 5008	793 825	sq it. 5·12 6·07
H	4	$10 \times 13\frac{1}{4}$ $10 \times 13\frac{1}{4}$	9 5	•62	12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	600 600 1392	7 0 7 0 5 6	3·50 3·50 2·75	187 187 333	52 54 50	3850 3850 5510	1158	5008 7255	860 1452	5.82
H	8 1 2	12 0 12 0 14 3	8 0 12 0 9 3	·75	6 6	3 1 3 6	506 420	5 0 6 3	2.62	104 115	48 60	1738 2557	289 603	$\frac{2027}{3160}$	609 640	3·33 4·94
E	2	13 4 11 9	18 8 12 6	·81	12	$\begin{smallmatrix}3&3\\2&10\end{smallmatrix}$	840	7 6 5 0	3.62	228 170	60 56 56	5959 2799 6355	968 623 1325	6927 3422 7680	1487 1237 2520	2.77
H	3 2	12 3	16 0 13 6 17 1	·78 ·75	18 8 12	3 0 3 0 3 0	960 568 868	6 9 5 6 7 0	3·75 3·25 3·25	297 114 216	60	2607 5164	491 902	3098 6066	886	3.50
17	1 2 1 2 1 1	12 7 13 3 13 6	18 0 15 9	.87	12 6	3 3 3	868 396	6 6 6	3.50	234 107	55	5060 2268	1150 427	6210 2695	1369	6.02
1) 2 P 2	12 3 9 10	17 6 10 1	.62	8 4	3 6 2 11 3 3	552 268 816	7 6 7 3 6 4	3·75 3·25 3·00	168 66 182	55 50 60	4067 1677 4000	575 305 720	4642 1982 4720	858 364 964	5.45
1	Q 2 R 2 S 2		17 6 16 6 9 2	75	8 12. 4	3 0 3 3	472 324	7 0 6 6	3.75	180	55 65	3243 1790	761 502	4004 2292	985 496	4.06

OF ENGINEERING FORMULÆ.

527

	COMPO	UND MAR	INE	LNG	IN ES	-SUR	FACE GU	NDENSE	itto.	(FIOL	u actua	Traduction	(274		
1	Indi-	Working		Con	den	ser Tube	38.		Cir	culating	Pump.	Vacuum	Condensing Surface.		
	cated Horse- power.	Pressure of Steam.	No. Len		gth. Ex- ternal Diam		Space between.			Dia- meter.	Stroke.	in Condenser.	Per Ind. HP.	Pr. sq. ft. Heating Surface.	
A	793	lb. a sq. in.	1797	6	in.	in. 1.00	in. •62	sq. ft, 2821	1	in. 26	in. 21*	in. max.	3.56	•69	
E	860	52 54	4872 2064 2415	7	6	•56 •75	*44 *37 *35	3944 3040 6666	1 1 2	36 30 131	24* 25* 32‡†	26 26 28	3.53	·61 ·92	
E		50 48 60	911 1342	9 7	2 2	*75 1.00	·35	1654 2573	1	13 centrif	154† ugal	28± 28 26±	2·72 4·02 2·63	*82 *81 *57	
I		60 56 56	1759 1289 2257	10	10 10	1.00 .75 .75	·75 ·35 ·35	3914 2752 6249	1 2	centrif	20½† 26½†	27± 27±	2.22	*80	
F	886	60 60	898 2304	12 6	5	·75	*35 *62	2189 4078	1	14 26 19‡	17½* 25½* 16+	27 25 28	2·47 2·92 3·29	·71 ·67 ·73	
I I	448	55 60 55	1725 890 2064	7	9 6	1.00 .75	·37 ·75 ·37	4504 1811 3040	1 1	21 30	36* 25*	27 27	4.04 3.54	•67 •65 •56	
	2 364 2 964	50 60	944 1338 1663	12	7 3	·75	·31 ·37 ·35	1112 3250 2694	1 1 2	20½ 18½ 16	19½* 15† 20†	27 29 27 1	3·04 3·37 2·74	•69	
	R 985 S 496	55 65	608		10	1.00	.87	1246	1	22	18*	261	2.21	•54	

Single acting.

	-	
	ANIMAL	ANIMAL POWER.
Working 8 hours	In lbs. raised	Working 8 hours In lbs.
per day.	1 ft. per min.	per day. 1 ft, per
Horse	21,000	Man, as in rowing 4
0x	12,000	Ditto on tread-wheel 3
Mule 10,000	10,000	Turning a handle 26
A88	5.500)

lsed nin.

33

WATER-POWER.

Quantity of water in cube feet per minute. Head of water from tail-rane in fact THEORETICAL HORSE-POWER OF WATER, 11

Theoretical horse-power.

$$= .001892 \,Q \,h.$$
 $Q = \frac{528 \cdot 5 \,P}{h}$

MOTORS. 1.00 EFFECTIVE HORSE-POWER FOR DIFFERENT Theoretical power being

.35 09. 89. .55 09 02. Poncelet's undershot water-wheel Undershot water-wheels : 3 ... Overshot wheel Breast-wheel High-breast Turbine

UNDERSHOT WATER-WHEEL. : : Water-pressure engine ...

Hydraulic ram raising water

:

09.

80

due to Velocity of periphery of the undershot waterwheel should equal the theoretical velocity the head of water \times 0.57.

.57 V. For values of V, see Table theoretical velocity of water.

Head of water in feet.

Quantity of water in cube feet per minute.

Effective horse-power. 92

$$Q = \frac{1511 \text{ P}}{h}$$
. P = .00066 Q h.

MOLESWORTH'S POCKET-BOOK

PONCELET'S UNDERSHOT WATER-WHEEL.

Quantity of water in cube feet per minute. Effective horse-power. = Head of water in feet

HP = .00113Qh. 880 HP 11

eoretical velocity of water. Velocity of periphery = $V \times 0.55$. For values of V, see Table of theory Number of buckets = 1.6 D + 16

be less than Number of buckets = $1.6\,\mathrm{D} + 16$ when D = diameter of wheel in feet. The sluce-opening should be covered by at least two buckets. wheel should not from 3rd to \$ jo but the diameter hrouding 2h: Depth of sl wheel =

Greatest depth of opening of sluice =

Let A B represent the direction of the supply, and lay off a tangent to the periphery C the wheel at the centre of the since. Stakes AC perpertended to AB, and and analyse OB= 48 G. Join AD and draw 15 paulled to AD; then B is the tangent to the curve of the float at its point. This to AB, then B is the tangent to the curve of the float at its point. The ourre may be struck with a radius of 1.2 depth of shrouding. The curb should fit the wheel accurately for 18 or 20 inches, measured back from the perpendicular line which passes through the axis of the wheel; the breast should then incline 1 in 10, or 1 in 15 towards the shines. After passing the axis of the wheel in the fail-nee the curb should make a sudden dip of 6 inches, OF ENGINEERING FURMULES.

Floating Milt-wheels.

Velocity of periphery of wheel = Velocity of stream × '4.

Diameter of wheels generally from 12 to 15 feet. Number of floats generally from 9 to 11. Inclination of floats from radial line about 25°

Depth of floats from 24 to 30 inches,

Dip of floats from 12 to 15 inches,

Not less than two floats should be immersed at

EFFECTIVE POWER OF FLOATING MILLS,

V = V elocity of stream in feet per second. v = W an velocity of float in feet per second.

A = Inmersed area of floats in square feet. P = Horse-power. P = .0028 Ve A (V - v). Note.—These wheels seem never to be made with curved floats. Floats, if made of a somewhat similar form to those of Poncelet's undershot wheel, would probably give a greater effect.

Breast and Overshot Wheels. Head of water in feet.

Quantity of water in cube feet per minute. Effective horse-power.

961 P in low-breast wheels,

- in high-breast wheels. 381 P 0

 $Q = \frac{1}{h}$ in overshot wheels. 777 P

 $V_{\rm e} = \frac{h}{100004}$ P = .00104 Q h in low-breast wheels, $V_{\rm e} = .00128$ Q h in overshot wheels, $V_{\rm e} = .00128$ Q h in overshot wheels,

-continued. WHEELS AND OVERSHOT BREAST

Velocity of periphery in feet per second VELOCITY OF PERIPHERY. water in feet. h = Fall of

V = 7 feet per second. 5 feet h = When

inches in high-breast or overshot. DISTANCES OF BUCKETS APART. 18 inches in low-breast.

of a square foot to each cube foot of contents bucket in high-breast. OPENINGS OF BUCKETS.

of a square foot to each cube foot of contents bucket in low-breast,

Or generally about 6 to 8 inches width of open-And about 9 to 12 inches width of opening in low-breast. in high-breast. Jo

Depth of shrouding from 12 in. in high-breast. 16 in. in low-breast. APPROXIMATE RULE SOMETIMES USED FOR THE 9.9

NUMBER OF BUCKETS. = Diameter of wheel in feet.

2.3 For wheels from 12 to 25 ft. diam, N 33 ,, 50 = Number of buckets. ,, 40 25 ... 40

33

-continued. BREAST AND OVERSHOT WHEELS-

FORMS OF BUCKETS,

D = Depth of shrouding.

d = Distance of buckets apart on periphery.

l = Length of wrist measured on periphery.

S = Length of start (radial).

Two-part Buckets.

= d.

S = $\frac{1}{2}$ D.

= 1 $\frac{1}{4}$ D in large wheels.

= D in wheels under

Three-part Buckets.

feet diameter.

25 a = Length of arm measured Divide D into 3 equal parts. wheels under large wheels. on periphery $S = \frac{1}{2} D$. u

feet diameter.

GUDGEONS OF WATER-WHEELS.

Diameter of gudgeon-journal in inches. Weight on the gudgeon in cwts.

3.86 W for wrought iron.

 $D = \sqrt[3]{W}$ for east iron,

-continued FORMS OF BUCKETS (CURVED). WHEELS-AND OVERSHOT BREAST

of buckets start apart at periphery. Depth of shrouding. Jo radial). Distance Length 11 82 N N

bucket bucket curye, with radial line of wheel at points of bucket. Angle of radius

curve, measured on ength of

14 D in large wheels. periphery of wheel.

under 25 feet drameter. overshot wheels 15° in ın

low-breast high-breast wheels. in wheels. $X = 25^{\circ}$ II X

The radius of the bucket curves may be determined thus:

is rounded, The points of intersection of DE with A E will be the centre struck with In prachine raise the bucket Join the point of the A set off the line X, with wheel, CB= the DE. depth of shrouding. of the the line between B C. E A at the angle tice the start is start and bisect the radius A E. D, and perpendicular curve will be as shown by which radius the at From bucket Draw from the

WHEELS FAIRBAIRN'S VENTILATING BREAST AND OVERSHOT

BUCKETS

ventilation for about 1 inch wide. spaces The

TURBINES.

For falls of 30 feet and under. JONVAL'S LOW-PRESSURE,

Quantity of water in cube feet per second. Head of water in feet.

= Horse-power (actual).

Diam, of centre of motion of buckets in ft. Velocity of buckets at centre of motion in Area of sum of orifices of buckets in feet.

feet per second.

d = Depth of guides. d' = Depth of buckets.

$$D = 1.33 \sqrt{\frac{Q}{l^3}}$$

Q = 12.67

$$^*A = \frac{Q}{V}$$

$$d' = D \times 18$$
.

No. of guides = No. of buckets × '7. buckets = $17 \, \checkmark$ No. of

* The orifices are the distances a1 b, a2 b1, &c., &c. x width See diagrams, next page. of the buckets w.

continued. JONVAL'S TURBINES

d' = Depth of buckets. ILLUSTRATIVE OF JONVAL'S TURBINE. Diameter of centre of motion in buckets. Vertical Section of Turbine. Width of buckets. Depth of guides. DIAGRAMS

Development of buckets and guides on the line of the centre of motion.

JONVAL'S TURBINES—continued.

CONSTRUCTION OF BUCKETS.

with the line B B; from the points a, a^1, a^2 , set off lines $a c, a^1 c, \& c.$, at right angles to the line $ab, a^1 b^1$; the lines a c, a c determine the lengths of the straight portion of the buckets; then on the lines $a c^1, a^1 c^2$, from the point $b b^1, lay$ off distance $b c, b^1 c^2 = \text{depth}$ of the buckets; then the point $c^1 c^2$ are the centres from which the On the line BB set off the distances of the buckets apart a, a^1, a^2 , and from the points a, a^1, a^2 , draw the lines a, b, a^1b_1, a^2b^2 , at an angle of 12° curved portions of the buckets are described, with a radius = depth of buckets.

The guides are constructed in the same manner, but with a different radius and angle, as below.

BUCKETS.

Radius of curved portion of bucket = Depth of bucket D.

*Angle of straight portion of bucket = 12° with horizontal line.

Length of straight portion of bucket = Distance of buckets apart on the horizontal line.

Radius of curved portion of guides = Depth of GUIDES. guides.

*Angle of straight portion of guides = 15° with horizontal line.

Length of straight portion of guides = Distance of guides apart on the horizontal line.

When the buckets and guides are made entirely straight-

Angle of bucket = 24° with horizontal line. Angle of guides = 66° * When the quantity of water is large these angles may be

TABLE OF LOW-PRESSURE TURBINES. (From actual Practice.)

Head of water in feet. Velocity of centre of buckets in ft. per sec.

Quantity of water in cube feet per second.

Revolutions of turbine per minute. Effective horse-power. OH

		1000	_		-
HP.	B.	33 56 75 1131 1131 1134 253 310	HP.	E.	488 488 116 116 116 116 116
30 H	0	25 25 25 115.0 115.0	. 80 1	0	136 101 40 34 34
	E E	17 41 68 90 90 160 160 330 380	. di	B.	36 48 85 123 166 227
20 HP	0	100 50 33 25 17 12.6 10 8.4	70 HP	9	120 88 60 60 35 35 30
0:	rd.	20 47 79 79 105 185 273 358	HP.	E	40 53 92 136 179 219
15 HP.	0	15 38 38 25 19 19 19 19 17 17 17 17 18	60 B	0	102 176 23 34 35 25 25 25 25 25 25 25 25 25 25 25 25 25
- a:	d	24 57 97 97 97 97 97 97 97 97	HP.	B	26 43 58 100 148 196 240
10 HP.	0	0.225	50 1	0	126 85 63 42 31 25 21
- a	E E	34 81 81 81 81 81 81 81 81 81 81 81 81 81	HP.	R	28 48 64 113 164 220 220 268
5 HP	0	1 1 4 6 8 5 5	40.1		100 68 50 33 25 25 17
-		48 41 43 43 63 83 83 86		E	6.43 18.97 18.97 23.23 26.83 30.0
		23.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	10		111111111111111111111111111111111111111
10	2	30 25 25 25 25 25 25 25 25 25 25 25 25 25	-	4	222220

DIAMETER OF UPRIGHT SHAFT.

Diameter of shaft in inches. Horse-power, effective. = p - J -

Number of revolutions per minutes , 90 P enident to affact todays to disput

HIGH-PRESSURE TURBINES—FOURNEYRON'S.

Quantity of water in cube feet per second. h = Head of water in feet

Internal diameter of turbine in feet. Horse-power.

Velocity of turbine at perphery in feet External

Number of buckets. per second.

Number of guides. n

Depth of orifices in feet.

Area of sum of orifices in square feet. V = 6.6 Vh.

*D =
$$\sqrt{\frac{1.77}{4}}$$
. Q = 12.67 $\frac{P}{h}$.

P = .079 Q h.

E = 1.2 D when D is more than 6 feet. E = 1.4 D when D is less than 6 feet.

+N = 24 \sqrt{D} . = N, when N is less than 24.

 $n = \frac{1}{3}$, when N exceeds 24.

Sectional area of supply-pipe = 0.4 Q.

MOOTHER HE WILLIAM CANAL

this formula may be increased.

+ Fourneyron's rule for the number of buckets is the * In extreme cases of very high falls the diameter given by constant number 36, irrespective of the size of the turbine,

FOURNEYRON'S TURBINE,

CONSTRUCTION OF BUCKETS AND GUIDES.

Jo radius turbine. External Radius of curve !

buckets periphery externa aparton with Distance Angle of radius of curve ? Length of curve

bucket shrouding. depth Radius of curve k

turbine.

radius

FOURIETRON'S TURBINES—continued.

Radius of curve m ... = Internal radius of m ... = Distance of guides apart on turbine. stoned the feet how ? Guides. Length of curve m

Angle of radius of curve $m = 18^{\circ}$ with internal

Radius of curve n ... = $\frac{1}{2}$ internal radius radius of turbine. of turbine.

HIGH-PRESSURE TURBINES.

 $h = 30 + 40^{\circ} 50 + 60 + 70 + 80^{\circ} 90 + 100 + 120 + 140 + 160 + 180 + 200$ Quantity of water required for each 10 horse-power. Velocity of turbine at periphery in feet per second. Head of water in feet.

Q = Quantity of water used in cube feet per HYDRAULIC RAM.

Head of water in feet. P = Effective horse-power. minute.

P = .00113 Q h. 881 P 0 =

less than \$\frac{3}{2}\$ths of the height to which the water is to be raised. The length of the supply-pipe should not be

Diameter of supply-pipe = $1.45 \sqrt{Q}$.

Contents of air-vessel = contents of rising pipe. Ditto of rising pipe ... = .75 \sqrt{Q} .

4th of the water may be raised to about 4 times the head of supply, or 14th eight times, or 34th sixteen times, &c.

Entit I finds of frei PURE PURINE FRESSURE ENGINES. THE PURINES FOR THE PURINE P

and the state

For Pressure per square inch at different. Heads, see Tables of pressure of water. Oly at I = oqiq-7 kqqua to retomoit

POWER OF PRESSURE ENGINES.

Q = Q nantity of water in cube ft. per minute. h = Head of water in feet. Street Clare

P = Effective horse-power.

WORLDOW ...

Wrought-iron pipes are frequently used for, high-pressure turbines. P = .00151 Qh.

D = Internal diameter of pipe in inches. P = Pressure of water in atmospheres. DP

Thickness of metal in inches = $\frac{1}{800} + 0.2$.

33 feet from the top = 1 atmosphere nearly.

Thickness of metal in cylinder = F d · 0025 + 1

Where d = diameter of cylinder, in inchestree of supply-pipe for water-pressure engines = diameter of cylinder × · 41 for single-cylinder engines.

cylinder engines. = diameter of cylinder × 68 for double-

Stroke of engine, about 41 diam. of cylinder, 1 3

Velocity of piston, 60 feet per minute. Velocity of water in supply-pipe should not exceed 400 feet per minute

HYDRAULIC PRESS.

d = Luternal " " P = Working pressure of piecs, tons per square inch. S = Safe working stress on metal, tons per square inch. External diameter of press in inches.

D = dx. d = S. Hyp. log.

OF 3. VALUES

2.23 4.48 1.5 4.06 2.01 1.4 1.82 1.3 3.67 9. 1.65 3.32 1.2 1.49 3.01 7. 1:1 1.35 2.72 1.0 1.23 2.46 .2 6 11

Assuming safe working stress of cast iron = 14 tons per square inch, the following are the values of x:-

_	
1	1.4 1.49 1.6 1.71 1.82 1.95 2.3 2.72 3.21 3.79
1.	
	64 63
	2.2
1.0	3
Ĕ	600
0	101-
P.	- 63
문	3 52
S	5.
Working Pressure, Tons per Square Inch.	10
100	0.6
0	
H	22
re	
Su	
1 3	200
104	
100	- 10
ki.	
or	
B	64
1	
1	2
1	* ·
-	-
Working Pressure	
1. 2	1111
1	0. 1

HYDRAULIC MACHINERY.

Tweddell in his hydraulic riveting machines uses pressures varying from 10:0 to 1750 lbs. per square inch (say from 45 to 78 ton per square inch).

The accumulator is supplied by two purps, 3-inch stroke,

a pressure of making from 100 to 120 revolutions per minute. Armstrong uses for crane work 700 lbs. per square inch (sey 3125 ton). each 14 diameter,

HYDRAULIC MACHINES (TOULON DOCKYARD). ('Min. Inst. Mech. Fugrs.,' 1878.

N. A. A.	Diam.	1	Ghanko		DailyWo	Daily Work 10 hrs
machine.	Ram.	Area.	Strong	sure.	Strokes.	Water.
	ins.	fns.	ins.	tons.		cub. ft.
Plate punching	9.93	2.11	3.15		1200	188
Ditto	14.05	155	3.94	98.42	009	235
iron shearing	12.17	116.25	69.9	13.81		200
Ditto	17.21	232.5	9.42	147.63		282
Plate flanging	15.39	186	13.78	13.78 118.10		82
~	8.83	9.93 77.6	11.81	49.21	200	118
bending {	14.06	166	11.81	98.42	100	118

MOLESWORTH'S POCKET-BOOK

CENTRIFUGAL PUMPS.

(D. Thomson, 'Trans. Inst. Civ. Eng.,' vol. xxxii. VANES. DIAGRAM OF FORM OF

Divide the quarter circumference into four equal parts with radial lines; then draw concentric circles with radii = .559 R, .696 R., -81 R, and -91 R respectively; then the intersection of these circles with the radial lines gives points in the curve

of the vane.

Puty of vanes of this form = .68; if radial vanes = .46. The number of vanes is generally 6.

An 18-inch pump will work well with 20 ft. lift. 36-inch

D = Plameter of fan in feet.
H = Head of water in feet, including head corresponding 33 30 ft.

S = Speed of periphery of fan, feet per second. pipes, &c. with friction of

= Quantity of water lifted, feet per minute.

H in large fans. 90.25 H in small fans; =9.5 ∧ 500 19

·12 to ·18 the value of c varying from (Unwin) D=01

Diam. of fan, inches	12	15	18	21	24	30	36
Discharge, gals. per min.	1200	1800	2700	36004	4800	7500	10800

FIND THE FORCE OF THE To

Velocity of wind in feet per second.

*x =Angle of incidence of direction of the wind with the v =Velocity in miles per hour. P = Pressure in lbs. per square foot.

plane of the surface when it is oblique.

 $P = 0.002288 \text{ V}^2$. $P = .00492 \text{ v}^2$. $P = .0023 \text{ V}^2 \times \sin x$.

Description.	Hardly perceptible.	Just perceptible.	Gentle breeze.	Diogent hanne	reasant preeze.	Brisk gale.	High wind.	Vory high wind	Storm.	Groot stown	Great Storing.	Hurricane.	
Force in lbs. per sq. foot.	.005	.020 .044	90100	0.492	1.968)	3.075 }	6.027	7.872	9.963 5	17.712	24.108 \$	31.488 \	foot or
Feet per second.	1.47	4.4	5.87	14.67	222	36.6	44	9.89	66.0	0.88	102.7	146.6	710
Feet per minute.	88	264	352	880	1320	2200	3080	3520	3960	5280	0919	8800	-
Miles per hour.		71 m	4 13	10	15	25	35 25	40	45	09	200	100	

CYCLONES.

Direction in the Northern Hemisphere,

Direction in the Southern Hemisphere.

Inde for infining the Centre of a Cyclome—Face the wind; and about D points (1129) to the right will be the direction of the centre in the Northern Hemisphere or to the left in the Southern Hemisphere.

WINDMILLS.

THE ANGLES OF THE SAILS. RULE FOR Angle of the sail with the plane of motion at any part of the sail.

Total radius of sail in feet.

I) = Distance of any part of the sail from the $18 D^2$

 $A = 23^{\circ} - \frac{10 \text{ L}}{\text{R}^2}$

into six equal parts, the angles at cach of those parts will be as follows, reckoning from the axis: If the radius of the windmill sails be divided

tip.	×20	20
eo(eo	7930	103
4/10	750	
60,50	6710 690 7110 750 7920 K50	181 15
610	069	21
H(9	6710	$22\frac{1}{3}$
Distances from axis	of	Angle of sail with plane of a motion

Axis of shaft of windmill with horizon

15° on high exposed positions. 80 on level ground.

Breadth of whip at axis = $\frac{1}{30}$ th length of whip. Depth = $\frac{1}{40}$ th ... Breadth of whip at tip = 11

soth soth soth soth 11 99 99 Width of sail Depth

33

Jo 100 the proportion to 3, the narrow portion being nearest divided by the whip in the wind.

 $.. = \frac{1}{5}$ th length of whip. Distance of sail from axis = $\frac{1}{7}$ th Cross-bars from 16 to 18 inches apart, Width of sail at axis

WINDMILL SAILS.	30 feet.	12 inches.	9	9	43 44
O	:		:		
DRDINARY DIMENSIONS OF WINDMILL SAILS.	Length of whip	Breadth of base	Depth at base	Breadth at tip	

AND SAIL-AREA OF WINDMILLS. HORSE-POWER

Horse-power, Velocity of wind in feet per second Total area of sails in square feet, Number of sails. HP 1080000

$$IP = \frac{A V^3}{1080000}.$$

Area of each sail =

Velocity of tips of sails = $2.6 \,\mathrm{V}$, nearly.

FROM COEFFICIENTS FOR EFFLUX OF AIR ORIFICES.

86. ç. 6 Conical converging Vena contracta

œ : Cylindrical rounded at ends
Cylindrical throughout
Thin plates

CENTRIFUGAL FANS.

Diameter of fan.

Velocity of tips of fan in feet per second. Pressure in Ibs. per square inch.

 $\sqrt{P} \times 97300$. 11

$$\mathbf{P} = \frac{\mathbf{V}^2}{97300}.$$

POWER REQUIRED FOR FANS.

Area of the sum of the tuyeres in square Pressure of blast in lbs. per square inch.

Velocity of tips of fan in feet per second. inches.

Indicated horse-power required. ·000016 V2 A p. HP = []

PROPORTIONS OF FANS.

Width of vanes = $\frac{D}{4}$. Ď. Diameter of inlet = $\frac{1}{2}$. Eccentricity of fan = $\frac{1}{10}$ A 4 Length of vanes = -

Length of spindle journal = 4 diameters spindle. Diameter of smith's forge nozzle, 15.

Smithy blast from 0.25 to 0.3 lb per square Cupola blast about 0.8 lb. per square inch. mch.

BLOWING ENGINES.

Capacity of air-vessel = 20 times the capacity of

the blowing cylinder if the cylinder is single-acting, or 10 times if double-acting.

Velocity of air in the passages should not exceed

\$5 feet per second. Density of blast for iron

35 feet per second. Density of blast for iron furnaces from 2½ to 3 lbs, per square inch. Bach smith's forge requires 150 cube feet of air per minute. Density of smith's forge blast ½ lb, per square inch. Each ton per hour melted in cupola requires 3500 cube feet per minute. Each finery forge requires 100,000 cube feet air for each ton refined. Each blast furnace 20 cube feet per minute for each cube yard capacity of furnace,

EXPERIMENTS ON STEAM JETS, 1872.)

COMPRESSION of air into a closed vessel 225 cube feet capacity. steam in steam boiler, 50 lbs. per square inch. Siemens, 'Trans. Inst. Mech. Engrs.,' Pressure of air in inches of mercury. Pressure of

00	143 234 10
1	144 234 104
9	144 241 11
2	15 244 12
4	15± 25 16‡
m	15 24 16 ²
64	14 214 16
C. (c.) (c.)	13± 19 15±
1400	13 16 15
н	12 12 14
C9(60	10 9 11
H(#2	920
Orifice.	·07* ·12*
	3 3 1 13 13 2 3 4 5 6 7

+ Without condensing water. With condensing water.

Final temperature of air in vessel: 1st experiment, 113° Ft. 2nd, 158° Ft.

capacity. Vacuum vessel, 225 cube feet Pressure in steam boiler, 45 lbs. per square inch. closed in inches of mercury. from EXHAUSTION

-		7
	7	1384
rtes,	9	184
t in Minu	5	154 154 18
on of Jet i	4	154 154 174
Time of Action	es	144 15 164 154
Tim	2	134 134 134 13
	1	10 10 10 10 10 10
Area of Circular	Orifice. Sq. Ins.	.05 .10 .15

The quantity of air delivered by a steam jet depends on the extent of surface contact between air and steam up to the limits of exhaustion and compression the jet is capable of producing.

2. The maximum degree of vacuum or pressure attainable increases in direct proportion to the steam pressure employed.

The quantity of air delivered per minute within effective limits is in inverse proportion to the weight of the air acted upon. Better result is obtained in exhausting than in com-

4. The limits of air pressure attainable with a given pressure of steam are the same in compressing and exhausting within the limit of a perfect vacuum in the latter case. pressing.

PNEUMATIC TRANSMISSION ('Min. Inst. Civ. Eng.,' vol. xilii, '

Leaden tubes are generally used.
The 3 diameters used are 3, 24, 14.
The relative traffic power of the tubes was as follows:—

wer required.	67	18	4.
Po		*	
Time required for Traffic. Power require			
lired	3	17	14
requ		:	:
Time	:		:
	:		
	3/2	24	土

for the traffic should be lowest possible diameter The

steel mandrel, lubricated with soft soap, and drawn through to Tubes are made in lengths of 29 feet, smoothed inside by a adopted.

make the bore fair and uniform.

Minimum radius of curves of the pipe, 12 feet.
The carrier is a cylindrical box of gutta-percha covered with felt; the felt projecting slightly in the rear of the carrier. The open end of the carrier is closed by an elastic band, to

pressure; but, if worked by a vacuum, where there is no prevent the messages from escaping. Tubes should be worked on the block system if worked by

intermediate station, carriers may follow at short intervals. Signalling is done by electric telegraph.

Obstructions are removed by forcing water into the pipe

the tube, and calculating the distance from the time the concussion of air travels to, and is reflected back by, the obstacle; the rate for calculation being 1030 feet per second. The distance of a fault is ascertained by firing a pistol into when they cannot be removed by air.

Engines compound; high-pressure cylinder 17 in. diam.

Boiler, pressure 70 lbs. per square inch. Each engine indicated 734 horse-power at 25 revolutions

The compressing pump indicated per minute.

above Compression of air = 10 lbs. tmosphere; vacuum = 8.8 lbs. below atmosphere. Efficiency = .872.

PNEUMATIC TRANSMISSION—continued, Formula for the Velocity.

Velocity of carrier in tube, feet per second.

Diameter of tube in feet. Length of tube in feet.

Pressure in tube in lbs. per square inch. # 2 P.B.

Coefficient of work.

a carrier to go through Time in seconds required for the tube.

1 V 33	Horse-power required for each	per minute.	Pressure. Vacuum.	.014 .019	_	_	.029 .029	.035 .021	.040 .025	.046 .026	.052 .028		_
$t = .000482 \frac{1}{}$	ssanse.	Working	Inter-	3690	4310	4850	5380	6850	6370	6850	7350	7870	8400
t=.	Values of k with different pressure	Vacuum	Con- tinuous.	3770	4420	5030	5620	6170	0949	7350	8000	8700	9430
וֹם	s of k with o	ressure working	Inter- mittent,	3570	4080	4550	4980	5350	0899	6020	6330	6580	6850
S = k	Value	Pressure	Con- tinuous.	3520	4000	4420	4810	5150	2460	5750	6020	6250	6490
32		lbs. per square	inch.	3	4	20	9	-	00	6	10	11	12

50 per cent, additional engine power should be provided in excess of the power necessary to compress or rarefy the air. 10 lbs. per square inch and pipes of 24 inches diameter are

most convenient for general purposes.

To maintain equal velocities in different lengths of tubing of the same diameter, the pressure must be varied so that

To maintain equal velocities in tubes of the same length > Na but different diameters; $\overline{l}:\sqrt{l_1}::k:k_1.$

lengths $d_1::k:k_1$. when both velocities To maintain equal

:: k 417 diameters are different;

STABILITY OF FLOATING BODIES.

line that passes through the gravity C of the floating body when in equilibrium. x the vertical centre of

passes through the centre of gravity c of the displaced fluid. line that the vertical

be above C, the equilibrium is stable; if it coincide with C, it is indifferent; if below C, it is unstable.

I = Moment of mertia of plane of flotation about an axis passing through its centre When the vessel is in equilibrium x and y coingives M, the position of the "metacentre." If M but when the body is careened over the of intersection of the two lines, x and point of cide;

of gravity.

Height of centre of gravity of body above centre of gravity of displaced water.

H = Height of metacentre above centre of V = Submerged volume.

vity of displaced water.

 $\frac{1}{V}$, and H – h= measure of stability,

OF FLOATING BODIES-continued. STABILITY

W = Weight of floating body.

Horizontal distance of centre of gravity of displacement c from metacentral line.

gravity of floating Horizontal distance of centre of = 1

body C from metacentral line,

f = Distance of C from metacentre q = Distance of c from metacentre

e = Distance of C from c. V = Angle of careen.

A = Area of displacement.

Horizontal distance apart of the centres of gravity of Area immersed or emerged by careening at angle V.* the sections immersed and emerged by careening.

 $g = \frac{1}{\sin V}$; $l = d \pm e \sin V$; Stability of vessel $= Wf \sin$.

^{*} Supposing the two sections are equal,

AREAS SIMPSON'S METHOD OF CALCULATING (for displacement).

Divide the base into any number of equal parts, taking care that the number of ordinates are odd, viz. 7, 9, or 11, &c.

y = Distance of the contract of the even ordinates, 2, 4, S = The sum of the lengths of the even ordinates, 2, 4,= Distance of the ordinates apart. Let

The sum of the lengths of the odd ordinates, 1, 3, 6, &c.

The sum of the lengths of the end ordinates C and B. Area of the figure. 5, 7, &cc.

 $L = \frac{y}{3} (E + 2S + 4\Sigma).$

THICKNESS OF PLATES IN IRON SHIPS.

T = Thickness of plate in inches. $S = Span unsupported by ribs in fee D = Depth of submergence in feet. T = .05 S <math>\sqrt{D}$.

SALINOMETER.

exceed 2154° Fahr., or as deposit The temperature of water drawn from marine boilers when saltness, degrees of should not commences a little beyond that point 32 3 boiled in the open air 1.99 specific gravity, or

VESSELS. PROPULSION OF

Immersed cross-section of vessel in square feet. Displacement in tons.

Speed of vessel in knots per hour.

Wetted skin in square feet. Indicated horse-power. y, & z = Cot fficients. S

x = From .0013 in vessels of large tonnage to .0032 From .003 to .006; average .005. K, 3, II

 $y = \text{From } \cdot 000036 \text{ to } \cdot 000075$; average $\cdot 00^{0.05.3}$. $z = \text{From } \cdot 0034$ in vessels of large tonnage to small.

FORMULE.

small.

cross-section and skin H = .00877V3 (.05 A+KS) resistance combined For

V3 A x. V3 S y. H = H : For skin resistance alone For sectional area alone

 $H = V^3 D^{\frac{2}{3}} z.$ For displacement alone

Any of these formulæ are used separately to give the total indicated horse-power; but none of them are altogether indicated horse-power; but none of them are altogether satisfactory. Mr. Fronde in a paper read at the Institution of Naval Architects, April 7th, 1876, observed that "a limited view of the proper range of inquiry arose from the belief that the resistance must be as the square of the spreed, and the horse-power as its cube; and that this belief, incorporated into one or other of the well-known constants, has survived more or less persi-tently in spite of attacks and misgivings, contributed a self-supported obstruction to new and has

which scarcely varied between the speeds of 3 and 12 knots per hour. But the values of K and C must of course vary for each vessel; being dependent on the displacement, the cross-section, the skin resistance, the form of screw, &c. The diagram on the next page, based on Mr. Froude's experiments, shows that in this particular case the horse-power varied as the cube of the speed, plus a constant, ideas."*

* Mr. Marsel has suggested an absolute constant $c=bV\log_{c}^{-1}$ o V_{γ} which b irrodves one of the ordinary coefficients x,y,c or z and the value of c is deduced from the tangent of the angle formed by the residues of b = 2 log. V at different trial specific

MOLESWORTH'S POCKET-BOOK

Speed of vessel: knots per hour.

MID-SECTION SQUARE. RELATIVE RESISTANCE OF SUBMERGED BODIES IN WATER, at a velocity of 1 foot per second. (Beaufoy.) STERN 4 1/2 3 m 3 CI 17/2 BOW 0 50 .9580 1.0067 .2706 1.0474 .3406 •4156 .3116 .8883 .2836 .2332 .2848 •1439 •3054 4191 .4817 .3938 .2698 .3096 .3798 2617 2517 .9580 STERN 10 NOILDE THE ROW MID-SECTION CIRCULAR. SCUARE, MID-SECTION

The bow lines or entrance should be a curve of versed sines. VESSELS. WAVE LINES OF The stern lines cycloidal.

diameter = balf the breadth of the vessel, divide the circumference into the same number of equal parts as the length, and from each division draw horizontal lines; their intersection divide the parts and at each division At one end draw a semicircle with lines, with the vertical lines give points in the curve. entrance of the ength into any number of equal the curve erect perpendicular lines, construct

the points of intersection to a distance in each case equal to the horizontal distance of the circumference of the semicircle The cycloidal lines of the stern may be found in the same the horizontal lines must be prolonged beyond Trus the hori. at that line from its perpendicular diameter. manner, but

1 and 1 must be prolonged to a distance a' = a. line at the intersection of the lines 2 and 2 zontal

WAVE LINES OF VESSELS-continued.

Lines zontal Lines to form Cycloidal Curves, supposing the number of divisions to be 8, and the diameter of the semicircle = unity or 1 · 00. the Length of Prolongation of the Horigiving the Height of the Vertical TABLE and

	-	355 -96194 35 -19134
	9	·69134 ·85355 ·4619 ·3535
	io	6918
ı	491	10 10
	00	-038(6'-14644 -30866 -5 -69134 -85355 -9
1	2	.3535
1	1	-03806 -19134
	At Division No.	Height of vertical Prolongation of horizontal

A true cycloid may be constructed in the manner shown by the diagram in the preceding page, by making the length (or half the base of the cycloid) = diameter of the semicircle × 1·570796.

(For different Speeds.) TABLE OF PROPORTION OF BOW AND STERN Stern = .3. V2. Bow = .42 V2 WAVE-LINE SHIPS.

n feet of	Stern.	36.3	43.2	2.09	58.8	67.5	8.94	2.98	97.2	108.3	120	
Length in feet of	Bow.	50.81	60.48	70.98	82.33	94.50	107.52	121.38	136.08	151.62	168	
Speed.	Hour.	111	12	13	14	15	16	17	18	19	20	
n feet of	Stern.	.3	1.2	2.1	4.8	1.5	10.8	14.7	19.2	24.3	30	
Length in feet of	Bow.	.42	1.68	3.18	6.12	10.20	15.12	20.28	26.88	34.02	42	
ler.	Speed. Miles per Hour.			-	/11	_	T	_		6		

PRESSURE OF WATER ON AN OBLIQUE SURFACE RELATIVELY NARROW IN THE LINE OF MOTION. (Lord Rayleigh.)

 $p={
m Normal}$ pressure acting on the face of the plane. P = Pressure of a head due to the speed acting on the

a = Angle between the plane and the line of motion. $P(4+\pi)\sin\alpha$ plane.

4 + # sin. a

Froude is of opinion that as it appears by Beaufoy's experiments that when the plane is moving normally through the water so that $a=90^\circ$ the resistance actually exceeds P in the ratio of 112 to 96, (or say 1 00 to .86), it is not imight be realised to 112 to 96. probable that a proportionate excess beyond p as given in Lord Rayleigh's formula will be experienced when the motion is oblique.

RESISTANCE OF VESSELS. (Froude.)

For moderate speeds, the resistance of a ship is proportional to the "indicated thrust" + a constant, which represents the dead-weight friction of the engines, &c. 33,000 P

The "indicated thrust" = -

n = Number of revolutions per minute.where P = Indicated horse-power, = Pitch of screw in feet,

From experiments with models, the following

If the ship's dimensions be D times those of the model, been adduced:-

P = Indicated horse-power of the model, <math>V = Velocity of ditto;

Dy $P \setminus D$. And if at speeds V_1, V_2, V_3 , the measured resistances be R_1, R_2 , and R_3 respectively, the resistances of the ship will be D^3R_1 ; D^3R_2 ; D^3R_3 ; respectively, in experiments with H.M.S. 'Greybound,' it was found that about 58 per cent. of power was wasted in friction of machinery, and in detrimental action caused by the screw in then for speed \sqrt{D} . V of the ship the power will be

the water at the stern of the vessel.

Lightening and thus diminishing the displacement did not seem to be proportionally advantageous.

RESISTANCE OF VESSELS-continued.

Altering the trim of the vessel caused no great difference in the resistance. Superiority in resistance seems to be indicated in deep rather than in broad vessels.

It is calculated that the power is absorbed as follows, assuming the gross indicated horse-power = 1.000:—

.426	.170	.043	.143	Friction of working load	.075
	1~	٠.	•	*	•
	80 .	16			
•	n.	3		:	•
	v.				
•	0			*.	•
	200	10			
•	tan		•	*.	
	sis				8
	res		•	* "	<u>~</u>
	S	-		ਕੂਂ	DG.
	ip ed j	ev.	٠,	0	ಡ
ce	sh	SCI		0,5	ď
an	f Ca	Charl	ie.	8	Ξ
St	e 0	0	E	Ť	<u>-</u>
SS	or	OI	E	W.	=
-	BEL!	cti	444 1	4	-
net	nte	E	0	0	0
SI	ne e r	£ .	OI	IO.	101
b,d	50,2	the	ct	ct	CL
hi	Augmentation of ship's resistance by nega-	Water friction of screw	=	=	H
02	4	-	and b	-	-

or the proportion of gross indicated horse-power to effective horse-power as 2:347 to 1; and if to the gross indicated

Total

horse-power be added 10 per cent, for slip, the proportion will be 2.58, which nearly agrees with experiment. In the experiments with H.M.S. 'Iris,' the following results were obtained :- With twin four-bladed screws, a speed of 16.577 knots per hour was obtained with the expenditure of 7503 L.H.P.

2. On removing two of the blades of each screw, 15.726 knots per hour were obtained by the expenditure of only 4361 I.H.P.

With new screws slightly modified in form from experiment No. 1, reduced in dameter about 4th and pitch in-creased by about 15th, 18.57 knots were obtained with 4572 I.H.P.

On removing two blades from each screw in No. 18:59 knots were obtained with 7530 I.H P.

The skin resistance is nearly as the area and V2 (the square of the speed), but experiments approximate more nearly to V1.95 or V1.9 than to V2.

At moderate speeds the resistance coincides with the calcardated resistance due to surface friction alone; but as the speed increases, the entire resistance becomes more and more in excess of that due to surface friction. At low speed the frice tional resistance of the engine is greater than the resistance of Propagation 2.0 the ship.

ELEMENTARY RELATION BETWEEN PITCH, SLIP, AND PROPUL-(Froude, 'Inst. Nav. Arch.,' 1878.) SIVE EFFICIENCY.

 $A={
m Area}$ of propelling plane surface in square feet. P = Normal pressure on a plane area moving on

forming the argue θ with the plane, in 1bs. p=Coefficient of pressure, 1bs. per square foot = about 1.7s. f=(being .004 for each surface).

= .0047 appproximately. 11 2

Priction on surface of plane moving edgeways = $A f v^2$.

Speed of plane through water, feet per second. Speed of propeller plane, feet per second. Speed of vessel in feet per second. 2 10

Slip angle $= \sqrt{k}$ for maximum efficiency. Speed of slip.

0

Propulsive force to maintain speed of ship, lbs. $= \alpha + \theta$. Virtual pitch angle. Actual 8

= R v = R V tan. a. Gross work done, foot-lbs. ME M

Efficiency = W ÷ w = about .77 as a maximum. Effective 11 12

V3 sec. 2 a (sin. ϕ sin. θ + k cos. a); ; P = $p A v^2 \sin \theta$; s+ a Slip ratio = -

 $p v^2 \cos c$, $a (\cos, \phi \sin, \theta - k \sin, a)$

RELATION BETWEEN PITCH, SLIP, AND EFFICIENCYcontinued. In these calculations the motion of water in the ship's wake has been disregarded, the action being assumed as if in

undisturbed water.

The area which will drive a ship with a given "slip ratio" is directly as the vessel's resistance, and inversely as the equare of the speed; and since at moderate speeds a ship's resistance is proportional to the square of the speed, the same area of propeller will at moderate speeds drive a given ship with the same slip ratio; and areas directly as the squares of the respective dimensions of two similar ships will drive with the same slip ratio, since the wetted surface measures the At the higher speeds the slip ratio resistance in each case. At the higher speewill increase with the given propelling area.

The maximum of efficiency is not produced by extending the area of the propelling plane so as to minimize the slip, but the slip angle that gives the maximum efficiency is moderate. If friction did not exist, the obliquity with which the propeller acts on the water would cause no loss in efficiency. ought to have the same value whatever be the pitch angle, the slip ratio will be greater for large pitch angles than for small. If the slip angle be that which gives the maximum gives the maximum efficiency, the pich angle must also be increased; if the excess be small, the pitch angle must be increased by the same amount; if the excess be large, the increment of pitch angle must be still greater.

The calculations point to the conclusion that a very much The value of θ , which gives the maximum efficiency, is the same whatever be the value of ϕ . Although the slip angle efficiency, then to produce the maximum efficiency the pro-pelling plane ought to stand at an angle of 45° with the line of ship's motion, whatever be the coefficient of surface friction or of normal pressure. If the slip angle exceed that which

longer pitch than has commonly been adopted is favourable to efficiency; and that instead of its being correct to regard a large amount of slip as a proof of waste of power, the opposite conclusion is the true one. To assert that a screw works with unusually little slip, is to prove that it works with large waste of power.

(Millar, 'Inst. Nav. Arch.,' 1877.) PROPULSION OF VESSELS.

"The reaction of the stream of water acted upon by any propelling instrument is the product of three factors:—"(a) The mass of a cubic foot of water.

The number of cubic feet acted upon in a second. (9) ,,

(c) The velocity in feet per second impressed on the water by the propeller."—Fankine.

V = Speed of the ship in feet per second.

P = propeller in feet per second.

stream driven back = P - V = the slip. Effective area of propeller in square feet.

Number of revolutions per second.

Quantity of water acted upon in a second = A P. Thrust in lbs. propelling the ship. Gravity = 32.

- = 2 A P S for sea water.

Thus while the thrust varies as the velocity, the lost work E = Energy expended = A P S2 for sea water. varies as the square of the velocity.

SLIP OF PADDLE-WHEELS.

A = Length of arc of immersed portion of paddle-wheel (effective circumference).

C = Length of the chord of the arc immersed. = Slip of the wheel.

2 (A - C) for radial floats.

Approximately the slip of radial floats may be taken at 20 per cent,, and of feathering floats at 15 per cent,, on the effec-1.5 (A - C) for feathering floats.

The effective circumference may be assumed to be that due tive circumference.

to the extreme diameter, less grds of the depth of a float.

* From experiments on the performance of some river steamers, it appears that only about one-half the actual area of one float on each sadile-wheel is effective.

PADDLE STEAMERS—continued.

IMMERSION OF FLOATS.

sea-steamers from 18 to 20 inches of In small sea-steamers from 12 to 15 inches of In river steamers 2 inches of water over the water over the upper edge of float when vertical. water over the upper edge of float when vertical. In large

upper edge of float when vertical. Number of floats immersed

= 1½ to 2 in river steamers. = 4 in sea-going vessels.

Diameter of paddle-wheels in feet.

Area of one float in feet. AREA OF FLOATS.

Total indicated horse-power of engines. Length of float in feet.

in ordinary sea-going vessels. = ¥

75 P in fast vessels. A = -

L = 0.6 A in ordinary sea-going vessels. L = 0.7 A in fast vessels.

Distance of radial floats apart = $2\frac{1}{4}$ ft. in fast vessels, , , = 3 ft. in slow ,

Distance of feathering floats apart = from 4 to 6 ft

= 1.00PROPORTIONS OF PADDLE STEAMERS. : Breadth of beam Centre of paddles from stern-post : : Depth of vessel Length of keel

SCREW PROPELLERS.

THE SPEED OF SCREWS. in knots per hour. Velocity RULE FOR

in miles per hour. Pitch of screw in feet. Velocity

Number of revolutions per minute.

which varies from This is exclusive of the slip, 10 to 30 per cent.

PROPORTIONS OF SCREW PROPELLERS. PITCH OF SCREW.

The pitch of screws varies with the ratio of the

circle described by the screw to the midship section. FOR TWO-BLADED SCREWS.

64	8 1.02 1.11 1.2 1.27 1.31 1.4 1.47
12	1.4
. 00	1.31
**	1.27
4	1.2
44 4 34	1.11
, ia	1.02
	- 00
Ratio of ecrew's disc) to midship section >	Ratio of pitch to the diameter of screw is 1 to

For four-bladed screws multiply the ratio of the pitch the diameter as given above by 1.35.

Length of screw = 1th diameter of screw.

WASTE, OIL, AND COAL, IN COAL-BUNKERS AND TANKS FOR STRAM VESEIIS:—
Tallow 59 lbs. in a cubic foot. MULTIPLIERS FOR ASCERTAINING THE STOWAGE OF TALLOW

6.23 gallons in a cubic foot. * 11 Waste

45 cubic feet to a ton as stowed in coal-bunkers. * Navy allowance: a ton may be stowed into a space of 4 % cube feet. *Coal

SPEED OF SCREW APPROXIMATE RULE FOR THE Well HE, X . etc. STEAMERS.

Total indicated horse-power.

section Velocity of vessel in knots per hour. Sectional area of midship mersed, in square feet.

Displacement in tons.

$$V = \frac{1}{2} \left(\sqrt[3]{\frac{x \text{ HP}}{S}} + \sqrt[3]{\frac{h \text{ HP}}{\sqrt{\sqrt{D^2}}}} \right)$$

The Values of x and k are as follows: *-

750 In fast troop-ships where the length is from 7 to $7\frac{1}{2}$ times the breadth amidships

165 550 In line-of-battle ships and frigates of deep immersion, where the length is 4 or 4½ times the breadth

450 In frigates of lighter immersion, where the length is from 5 to 5½ times the breadth

430 In gunboats of light immersion, where the length is about 61 times the breadth

06 In auxiliary line-of-battle ships, where the length is about 31 times the : breadth * The values of x and k have been deduced from the mean of a very large number of careful experiments with different vessels on trial

$$x \text{ being} = \frac{V^3 \text{ S}}{\text{HP}} \qquad k \text{ being} = \frac{V^3 \sqrt{19^3}}{\text{HP}}$$

APPROXIMATE RULES FOR PADDLE STEAMERS.

Velocity in knots per hour.

P = Indicated horse-power (total). S = Sectional area of ship in square feet (immersed).

$$V = \sqrt{\frac{x \text{ HP}}{S}}$$
 HP = $\frac{V^3 \text{ S}}{x}$

From 460 in small vessels not built for high speed = To 650 in small vessels with fine lines.

560 in large vessels not built for speed. with fine lines. . 800

DIAMETER OF PADDLE-WHEELS.

Diameter of rolling circle of paddle-wheel in feet. Effective diameter of paddle-wheel in feet.

Velocity of ship in knots per hour. Velocity in miles per hour.

Number of revolutions per minute. 11 0

$$a = \frac{32 \cdot 25 \text{ V}}{\text{R}}$$
. $b = \frac{45 \text{ V}}{\text{B}}$. $B = \frac{45 \text{ V}}{\text{D}}$

$$\frac{28}{R}$$
. $D = \frac{39}{R}$. $R = \frac{39}{D}$

11

5 times the stroke of the engine in last vessels to 3 times the stroke in The diameter of paddle-wheels varies from

USEFUL MEMORANDA FOR STEAMSHIPS.

Cube feet of displacement \times .0279 = tons fresh water. X · 0286 = tons sea water Miles \times .87 = knots. Knots \times 1.15 = miles.

Indicated HP \times .01607 = tons of coal per 24 hours at rate of 14 lbs. per horse-power per hour. ·010714 = tons per 24 hours. reet per minute x .01 = knots per hour. × Libs, of coal per hour

× .02143 = ditto at 2 lbs. × .02679 = ditto at 24 lbs.

TONNAGE OF VESSELS (New Measurement).

the after-part of the stem and the fore-part of the stern-post into 6 equal parts, and note the under-side of the upper deck to the ceiling of the limber-strake; or in case of a break in the upper deck, from a line stretched in continuation of the deck. For the breadths divide each Divide the length of the upper deck between foremost, middle, and aftermost points of division. Measure the depths at these three points in feet and tenths of a foot; also the depths from the aftermost depths; and from '4 and '8 from the upper deck of the amidship depth. Take the length at half the amidship depth from the afterpart of the stem to the fore-part of the stemdepth into 5 equal parts, and measure the inside breadths at the following points, viz.:-At ·2 and ·8 from the upper deck of the foremost and post.

with the lower breadth at the midship, and the upper and twice the lower breadth at the after division for the sum of the breadths.

Multiply together the sum of the depths, the sum of the breadths, and the length, and divide Then to twice the amidship depth add the foremost and aftermost depths for the sum of the depths, and add together the foremost upper and lower breadths 3 times the upper breadth

the product by 3500, which will give the number of tons or "register."

If the vessel has a poop or half-deck, or a break in the upper deck, measure the inside mean length, breadth, and height of such part thereof as may be included within the bulkhead; mulTONNAGE OF VESSELS-continued.

tiply these three measurements together, and divide the product by 92.4; the quotient will be the number of tons to be added to the result as above ascertained.

FOR OPEN VESSELS. - The depths are to be taken from the upper edge of the upper strake.

tiply this length by the amidship depth of the vessel, and the product by the inside amidship breadth at '4 of the depth from the deck, and FOR STEAM VESSELS.—The tonnage due to the engine-room is deducted from the total tonnage measure the inside of the engine-room from the foremost to the aftermost bulkhead; then mulcomputed by the above rule. To determine this, divide the final product by 92.4.

Tonnage of Vessels (Builders' Measurement).

L = Length of keel between perpendiculars in ft. B = Brendth of vessel in feet.

Tonnage =
$$\frac{(L - \frac{3}{5}B) \times B \times \frac{1}{2}B}{94}$$

The fore-perpendicular is taken at the fore-part of the stem at the height of the upper deck.

The aft-perpendicular is taken at the back of the stern-post at the height of the upper deck.

The middle deck is taken in three-deckers

instead of the upper deck.

The breadth is taken as the extreme breadth at the height of the wales, subtracting the difference between the thickness of the wales and the bottom plank. Deductions to be made for the rake of the stem and stern,

TABLE FOR FACILITATING THE CALCULATION OF TONNAGE O. M. OR BUILDERS' TONNAGE. (By Oliver Byrne.)

	-		-	-	_			-	-	_		_	_		_	_	_	_	_	_	-	_	-	_	-				_		_	_		_		-	-		
Constant, Subtract.			.9	53.	11.	0	0	-	52.		.86	423.3	15.	60			591.0			6	724.4	9.094	198.0		876.4	- 0			094.	142.	191	241.	293.	:0	01.	457.	514.	73.	1634.0
Length to be Multiplied by		.9414	.3859	.8321	. 297	.771	11.25532	. 15	. 255	2.7712	3.2978	· ·	14.95230	5.510	0.9	.9	.2	00	å	9.1	. 192	0.446	1.111	-	22.47340		.59	25.32447		9.8138	. 2744	.345	29.12766	.9	. 12	537	.3617	.196	34.04525
Breadth of Beam.	feet.	41	42	43	44	45	46	47	48	49	20	10	53	2 2	22.	99	57	28	69	09	19	62	63	1-9	65	000	68	69		11	1.5	13	14	12	94	11	18	19	08
Constant, Subtract.		0.	0.		.2	*	2.					. 7 . 4		0			15.7	18.6		25.5	59.6		. 38.8			7.00			86.2	95.	04.	14.	25.	36.	48	19	15	89	204.1
Length to be Multiplied by		• 00532	2	.04787	11980.	.13298	•19149	*28064	.34043	•43085	5	et (0600000	1.04955	1.19681	1.36170	1.53723	1.72340	1.92021	1276	.345	5		.063	324	000	170	.47	184.	.0	4	64.	.148	5	.89	.2819	.6808	060.	8.51064
Breadth of Beam.	feet.	-	7	က	4	2	9	2	00	6	10	11	12	14	1 10	16	11	. 18	19	07	21	22	23	24	25	07	287	53	30	31	32.	33	34	35	36	37	33	33	40

TONNAGE O. M. OR BUILDERS' TONNAGE-continued

		-
Constant, Subtract.	2405·1 2485·2 2567·2 2650·8 2736·3 2823·6 2912·8 3003·8 3191·8	nnage ne
Length to be Multiplied by	44.04787 46.00532 47.00000 48.00532 60.04787 51.08511 52.13298 53.19149	The tonnage ner
Breadth of Beam.	feet. 91 92 93 94 95 96 97 98 99	a Process
Constant, Subtract.	1696·1 1759·7 1824·8 1891·6 1960·0 2030·0 2101·6 2174·9 2249·9	
Length to be Multiplied by	34.89893 35.76596 36.64362 37.53191 38.43085 39.34043 40.26064 41.19149 42.13293 43.08511	
of of Beam.	feet, 81, 82, 83, 84, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86	-

Thus, 14 feet beam gives 1 ton per foot of length, 20 feet beam gives 2 tons per foot of length, 28 feet beam gives 4 tons, 31 feet 5 tons, 34 feet 6 tons, and so on for each foot in length; but this number is merely approximate, and wants correction. The third column supplies the correction, which is in tons, to be deducted. For example: Required the tonnage of a vessel foot length of ship, according to the ordinary rule. whose length = 210 feet, breadth of beam = 39 feet:-This Table shows, in the second column, the 2 tons

1509·59 = Tonnage.

The Table has been computed from the following formula-

Tomage B.O. M. =
$$\frac{(\lambda - \frac{3}{2}B) \times B \times \frac{1}{2}B}{94} = \frac{\frac{1}{2}\lambda B^2 - \frac{3}{15}B^3}{94} = \frac{1}{188}B^2 \times \lambda - \frac{3}{940}B^3$$

and B the extreme breadth in feet. The tonnage of a vessel of A being the length between perpendiculars expressed in fect, any dimensions, not given in the Table, may easily be calculated from either of the above expressions, with the help of a table of squares and cubes.

N.B.
$$\frac{1}{188} = 0.00531$$
 91489 36, $\frac{3}{188} = 0.00319$ 14893 62,

940

GUNNERY, &c. (Lieut. Percy B. Molesworth, R.E., from Major Mackinlay's Text-Book of Gunnery, 1887.)

To find Gravimetric Density, G.D., of a charge. Let S = cubic space allotted per lb. of powder in the GRAVIMETRIC DENSITY.

G.D. = Gravimetric Density. G.D. = $\frac{27 \cdot 73}{2}$

chamber.

POWDER. (Table by Noble and Abel.) EXPLODING BY WORK DONE

Work per 1b. Burned.	foot-tons. 121'165 124'239 127'036 129'602 131'970 134'168 138'138 138'38'138
Number of Ex- pansions.	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
Work per 1b. Burned.	foot-tons. 95-210 98-638 101-744 104-586 107-192 119-600 1113-937 115-905
Number of Ex- pansions.	5.5 6.0 6.0 7.0 7.0 7.0 8.0 8.0 9.0 10.0
Work per lb. Burned.	foot-tons, 19.226 31.986 41.494 49.050 60.642 69.347 76.315 82.107 87.064
Number of Ex- pansions.	11.25 11.25 11.50

Gravimetric of unit charges out for made table

Multiply Divide cubic content of bore by cubic content of cartridge chamber, which will give number of the number of lbs. charge, and result will be the work done. Density.

expan-Suppose Gravimetric Density = '8, and number of If the charge be not of unit Gravimetric Density;

sions = 5; Work done per lb. of powder = Work done in 5 expansions—Work done

In practice only a portion of this, called the factor of effect varying from 0.7 to 0.9, is obtained. Thus, suppose factor of effect 0.8, the work realised is = 72.159 × 0.8 foot-tons. = (91.385 - 19.226) foot-tons = 72.159 foot-tons.

WORK DONE BY EXPLODING POWDERcontinued GUNNERY, &C.:

foot tons is also a measure of the work contained × 2240

By equating these two expressions the probable muzzle velocity can be estimated before actual trial has been made. in the projectile; in which w= weight of projectile in lbs.; V= the muzzle velocity in fect per second.

STRENGTH OF GUNS.

Against a longitudinal burst:

$$\begin{split} P_2 &= \frac{r_3^2 - r_2^2}{r_3^2 + r_2^2} t_2 \\ P_1 &= \frac{r_2^2 - r_2^2}{r_2^2 + r_2^2} (t_1 + P_2) + P_2 \\ P_0 &= \frac{r_1^2}{r_1^2 + r_0^2} (t_0 + P_1) + P_1 \end{split}$$

in which P_0 P_1 P_2 are the pressures in tons per sq. in. at the surfaces surface of the bore, and at the surfaces of contact between the A tube and next outer piece, and between the latter and

the outer cylinder. sq. in. at the interiors of the same

surfaces respectively on firing. cylinders; r_1 and r_2 are also the exterior radii of the two inner p. r.1ons; and r3 is the exterior radius of the

If p is the maximum pressure which the metal of the bore can safely endure, and f is the factor of safely, $P_0 f = p$. Against a circumferential burst or ring fracture: west in exterior cylinder.

steel tube, in sq. inches. = area of cross section of bore in sq. inches.

wrt, iron coils, in sq. ins. = factor of safety of gun circumferentially. $AP_0f_1 = 18A_1 + 10A_2$ 33

Nore. -Guns of late design are entirely made of steel.

GUNNERY, &C.: TRAJECTORIES.

Greatest height (H) of trajectory in feet is approximately T2 in which T = total time of flight.

FLAT TRAJECTORIES (Sladen's approximation.)

$$y = \frac{gt}{2} (T - t)$$

where T = total time of flight

For mortars the parabolic theory may be accepted and the t = time of flight to a point whose ordinate is y. resistance of the air neglected for rough approximations.

VELOCITY AND MOMENTUM OF RECOIL.

muzzle velocity of projectile. weight of gun and carriage.

weight of projectile. velocity 11 2

 $Wv = (w + Cw_1) V$ w_1 = weight of powder charge.

where C is a constant deduced by experiment, usually rather less than unity.

USE OF BASHFORTH'S TABLES (pp. 576, 577).

velocity In using these tables put t= total time of flight. $T_{\rm v}=$ number opposite ${
m v}$

 $T_v = number$ opposite remain-V in table (p. 576).

ing velocity v in table In these tables d = diameter of bore in inches across the Similarly with the symbols s, S,, S, in table (p. 577), (p. 576).

lands.

weight of projectile in lbs.

Gunnery, &c. Bashforth's Time and Velocity Table. $\frac{d^2t}{w} = T_V - T_V$

Values of Tv and Tv in seconds.

Velocity. Feet per	0	10	20	30	40	50	60:	70	80	90	Velocity. Feet per second.
800 900 1000 1100 1200 1300 1400 1500 1600 1700 2000 2100 2200 2300	232·599 232·858 233·091 233·303 233·496 233·666 233·816	228·135 229·652 230·600 231·189 231·649 232·022 232·342 232·626 232·882 233·113 233·323 233·514 233·682	228 · 309 229 · 780 230 · 667 231 · 240 231 · 689 232 · 056 232 · 372 232 · 906 233 · 135 233 · 531 233 · 698 233 · 843 233 · 843	228 · 478 229 · 902 230 · 731 231 · 290 232 · 402 232 · 680 232 · 930 233 · 157 233 · 363 233 · 549 233 · 713 233 · 857	228 · 641 230 · 018 230 · 794 231 · 338	228 · 799 230 · 123 230 · 854 231 · 385 231 · 807 231 · 156 232 · 460 232 · 732 232 · 978 233 · 200 233 · 402 233 · 584 233 · 584 233 · 884	230 · 217 230 · 217 231 · 432 231 · 844 232 · 188 232 · 758 232 · 758 233 · 001 233 · 220 233 · 421 233 · 601 233 · 897 234 · 022	239 · 101 230 · 303 230 · 972 231 · 477 231 · 881 232 · 220 232 · 516 232 · 783 233 · 024 233 · 242 233 · 440 233 · 617 233 · 773 233 · 910 234 · 035	223 - 240 230 - 383 231 - 528 231 - 521 231 - 917 231 - 251 232 - 544 232 - 808 233 - 046 233 - 262 233 - 459 233 - 634 233 - 787 233 - 787 233 - 923 234 - 647	230 · 459 231 · 963 231 · 565 231 · 953 232 · 282 232 · 572 232 · 833 233 · 069 233 · 283 233 · 477 233 · 650 233 · 802 233 · 935 234 · 059	1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300
Velocity Feet per second.		10	20	30	40	50	60	70	80	90	Velocity. Feet per second.

Velocity. Feet per Second.	0	10	20	30	40	50	60	70	80	90	Velocity Feet pe Second
1000 1100 1200 1300 1400 1500 1600 1700 1800 1200 2100 2300 2300	39842·9 40897·0 41591·9 42178·8 42692·6 43162·0 43606·6 44032·7 44440·8 44832·2 45207·1 45556·4 45877·5 46174·6	39975·0 40974·2 41654·8 42233·0 42741·2 43207·2 43650·0 44074·3 44480·6 44870·5 45589·7 45589·7 45908·3 46203·5	36916·0 3×683·5 40104·3 41048·2 41716·7 42286·4 42789·3 43693·3 44115·7 44520·3 44620·3 44620·3 44620·3 46938·7 46232·3 46522·6	40230 · 1 41120 · 5 41777 · 5 42339 · 2 42837 · 1 43297 · 2 443736 · 3 44157 · 0 44559 · 8 44946 · 7 45314 · 9 45655 · 5 46261 · 9 46261 · 9	30991 9 40349 4 41191 4 41837 5 42391 4 42844 4 43379 2 44198 0 44599 2 44599 0 455350 3 45688 0	39141·2 40459·2 41261·0 41896·5 42443·0 42931·4 43886·5 43831·9 44238·9 44638·4 45022·2 45385·4 45720·2 46628·7	29287·4 40558·7 41329·5 41954·6 42493·9 42978·1 43430·9 33864·4 44279·6 45059·6 45420·2 45752·2 46058·3	$39430 \cdot 6$ $40650 \cdot 5$ $41396 \cdot 8$ $42011 \cdot 8$ $42544 \cdot 4$ $43024 \cdot 5$ $43475 \cdot 1$ $43906 \cdot 8$ $44716 \cdot 3$ $44716 \cdot 3$ $45096 \cdot 9$ $45454 \cdot 7$ $45783 \cdot 9$ $46087 \cdot 6$	39570 · 8 40736 · 8 41462 · 9 42068 · 3 42594 · 3 43070 · 6 43519 · 1 43949 · 0 44360 · 5 44755 · 0 45133 · 9 45815 · 4 46116 · 7	39708·3 40819·0 41528·0 42123·9 42643·7 43116·4 43563·0 43990·9 44400·7 44793·7 46170·6 45522·8 45846·6 46145·7	800 900 1000 1100 1200 1300
elocity. Feet per Second.	0	10	20	30	40	50	60	70	80	90	Veloctty. Feet per Second.

OF ENGINEERING FORMULA. 219

GUNNERY, ETC.; TABLE OF PENETRATIONS.

-	Gun.	Rapidity of fire per min. Aimed Shots.		Earth. ft.	Oak. ft.	Charge of Piece.	Weight of Shot,	Thickness of Parapet. feet.	Muzzle Velocity. f. s.	Multipliers. Earths. Woods.
The second secon	M.H. Rifle Gatling 9-Pr. M.L. 16-Pr. M.L. 12-Pr. B.L. 13-Pr. M.L.	2 3	2	2 4 6 Rather	2 2½	85 gr. R.F.G. 1 lb. 12 oz. R.L.G ₂ 3 lb. R.L.G ₂ 3 lb. 12 oz. P. 3 lb. 2 oz. R.L.G ₂ .	9.65 lbs.	9-12	1370 1380 1355 1700 1560	Very wet 0-87 Poplar 2:0 Sandy 1:00 Fir 1:8 Sand and Clay 1:09 Elm 1:3 Clay 1:44 Beech 1:0 Light earth 1:50 Ash 1:0 Light earth 1:00 Ash 1:0 Light earth 1:00 Light earth ea

Note.—It should be remembered that various causes will modify the above; when striking at an angle projectiles will deflect if the angle be sufficiently oblique.

PENETRATION OF ARMOUR. (Wrought Iron.)

Captain Orde Brown's rough rule : v= striking velocity in feet per second. d= diameter of projectile in inches.

Penetration in inches = $\frac{va}{1000}$

CORRECTION FOR LAYING.

A gun laid by the ordinary sights carries to the side of the lowest wheel when the ground is uneven. With a field carriage, in which the wheels are about 60 inches apart, multiply the difference in level of the wheels in inches (or the inclination of the trunnions in degrees) by the number of degrees of elevation for the range, for the number of minutes of deflection to be given to the side of the highest wheel.

SECTIONAL AREA OF FIELD EARTHWORKS IN SQ. FT. DIMENSIONS IN FEET.

		-	_	_	_	_		_	-	-					_	_	
Ditch.	Sectional Area.	feet.	176	126	160	114	144	102	128	06	112	104	96	99	09	42	30
Ä	K	1 00		9	00	9	00	9	00	9	00	00	00	9	9	9	9
	H	20		18	16	16	14	14	12	12	10	10	00	00	00	4	64
_	M	26	26	24	24	22	22	20	20	18	18	16	16	14	12	10	00
Berm.	3.						əbi	W 36	eel (E 01	zτ	ron	A				
	Sectional Area.	feet. 125	118.25	104.37	98.75	120.6	114.2	101	92.2	9.18	9.94	28	54	45.5	42	42.2	32.5
ef.	Ħ	5.5	70	5.5	2	5.5	10	5.5	10	5.5	20	72	4.5	10	4.5	41	4
Parapet.	9	5.5	10	5.5	10	5.5	10	5.5	20	5.5	10	20	4.5	10	4.5	4	4
1 4	阵	15	15	12	12	15	15	12	12	6	6	9	9	4	4	9	4
	阿	00	00	00	00	7.5	2.2	4.5	7.5	1.5	7.02	2.1	2.2	1.0	2.2	9	9
	D.	16.5	16.5	13.5	13.5	16.5	16.5	13.5	13.5	2.01	10.2	2.1	1.5	5.5	5.5	2	2
Banquette.	Sectional Area.	feet. 27	24	21	22.5	19.5	18									_	
but		က	co	က	က	co	က										-
B	В	9	70	4	20	4	4										
	₹.	9	9	9	73	ro	4		-							_	-

WEIGHTS AND MEASURES.

AVOIRDUPOIS WEIGHT.

						~
I'rench grammes.	1=-0625=-0039=-000139=-000035=-00000174=1-771846	=28.34954	=453.59	=12,700	==50,802	=1,016,048
ton.	-10000017	000028	000447	= .0125	20.=	=1
cwts.	= .000032=	= 899000 -=	16= 1 = .0357 = .00893 = .000447	= .25 ==	11	=20 =
qrs.	-000139=	.00223 =	= 7500.	=1	=4=	
lbs.	=-00039=	0625=	16= 1 = .0357	= 28 =	= 112 =	= 2240 =
OZS.	0625	1		448	1792	5840
drachms. ozs.	1=.	16=	256==	7168= 448= 28	28672= 1792= 112 =	573440=35840=2240=80

TROY WEIGHT.

French grammes.	3= .0648	1.555	31.1032	373.242
.dl	-0001736=	-004167 =	-0833 ==	1
0ZB.	-00508=	-02	1	= 2
grains, dwts.	1=:04167=	24=1 ==		5760=240 =12

175 lbs, troy = 144 lbs, avoirdupois, lbs, avoirdupois \times 1·2153 = lbs, troy. lbs, troy \times 82286 = lbs, avoirdupois,

LONG MEASURE.

rrench mètres,			.9144		5.0291	= 201.16	1609 315
	11	1	H	11	H	11	II
mile.	9=-000015	-681000.=	=-000268	= -001136	= -003125	= 125	63360=5280 = 1760 = 880 = 320 = 8 = 1 = 1
furl.	=-00012	=:00151	= -00454	=.0091	=-025	=1	8
poles.	=.002	9090.=	=.182	=.364	1 1	= 40	= 320
fath.	=:0139:	=.1667:	5.		= 23:	= 110	880 :
yards. fath. poles.	-02778=	-333 =	I	2 ::	54=	220 =	:1760 =
	11	11	11	11	11	, 11	11
feet,	.083	-	3	9	16	099	5280
ins. feet.	11	12=	36=	72=	198=	7920=	63360=

-continued. SURVEYING MEASURE (Lineal). MEASURES-WEIGHTS AND

.0254 .2012 .3048 •9144 20.116 French metres. =1609.315 -00126=-0000158= = .000125.01215=-000189 .04545=-000568 mile. = .0125chains. 10. -180 .126=-0833=-0278= yards. = .333 22 =5280 = 1760-.22 feet. 99 12=1.515= 36=4.545= links. 63360=8000 792=100 7.92=1

1 knot or geographical mile = 6082.66 feet = 1854 mètres Admiralty knot = 1.1515 mile = 6080 feet, see pages 415 1.152 statute mile.

and 416. See Table of knots and miles,

SQUARE MEASURE.

000772 = 0000255 = 00000064 = 000000159 = 000645square mètres =25.292=4046.7 =1011.7 = .0929=-8361 = .00020062acre. = -000023= .00625= .25roods, = .0000018=-0000826 perches. 19800.= = .033140 =160yards. 304 = 1210= 48402724= 1568160=10890 1 = .00694feet. 6272640 = 43560=962139204:= ins.

3097600 sq. yards. 27878400 sq. feet. 8 acres per mile. 2.471143 acres. 640 acres. acre. square chains square mile 1 chain wide hectare 01

= sq. miles. sq. miles. Acres × '0015625 = Sq. yds. X .000000323

CUBIC MEASURE,

cubic metre, ·000016386 or stere. .028315 .764513 -000000144 =yard. •03704 - 00005788 == feet. ins. 1728 46656

-continued AND MEASURES WEIGHTS

tun 1 puncheon. $1\frac{1}{2} = 1$ pipe. 3 = 2 = 11 hogshead. $1\frac{1}{3} = 1$ punch $2 = 1\frac{1}{4} = 1$ 4 = 3 = 2WINE MEASURE, 1 tierce. 14= 1 h $2 = 1\frac{1}{3} = 2$ 3 = 2 = 6 6 = 4 = 6gallon. 11 11 63 84 126 42 quart. 252 336 504 pints 00 336 504 672 2016 1008

ALE AND BEER MEASURE.

```
1 puncheon. 1_{\frac{1}{2}} = 1 butt.
                                    1 hogshead.

1 \frac{1}{3} = 1 puncled \frac{2}{3} = \frac{1}{4} =
                              1 barrel.
                        kilderkin.
                                    11
                                     11
                  firkin.
            gallon.
                                     54
            -
                  6
                         8
                               36
      quart.
       1
                  36
                        72
                               144
                                     216
                                                 432
pints
       C
                  72
            00
                               288
                                     432
                                           576
```

MEASURE OF CAPACITY.

Breed.	190.	4.243	9.087	36.347	290.781	=1453.906	=2907.81
	11	П	11	П	II	11	II
cub. ft.	100020.	.16046	.32092	5 = 1.28367 = 3	10.269	= 51.347	=102.69
	11	11	11	11	11	11	11
pints, gall, peck, bushel, quarter, wey, last, cub	:.000180	: 00126	00312	0125		9.2	
. 5	391	121	25=	11	11	11	11
Wey	3	.003	900	.025	67	_	67
ú,	11	11	11	11	ij	11	11
quarte	36100.=	= .0126	=:08156	=.152		11	=10
lel.	70						
ush	010	125	25	-	00	40	80
2	11	iı	il	11	11	11	11
peck	0290	10	_	4	32	160	320
gall. 1	12021	ii	5=	8	64=	320=	640=
40	11	11	11	11	11	11	H
pints		w	16	65	515	2560	512

991 5

```
1 bushel = 2218 19 cube inches = 1.28 cube foot.
gallon in wine, ale, or dry measure = 277.27384 cubic inches = .16 cubic foot
                                                                =10 lbs. of distilled water =
                                                                                                                                             Cube ins. X . 003607 = gallons.
                                                                                                      Cube feet × 6.2355 = gallons.
                                                                                                                                                                                                             Cube feet \times .78 = \text{bushels}.
Cube ins. \times .00045 = \text{bushels}.
```

LINKS REDUCED TO FEET AND DECIMALS (J. L. Gallott.)

Ft. Dec.	46.86	47.52	Ŧ			-	00	51.48	52.14	52.80	53.46	54.12	54.78	. 55.44	56.10	92.99	57.42	68.08	58.74	. 59.40	90.09	60.72		62.04			*	*	3	.9	32.	198.00	264.00	330.00	96	
Links.	11		13	14	75	- 76	22	282	64	08	81	83	83	- 84	85	98	18.	88	68	06	16	92	93	94	-95	96	16	86	66	100	200	300	. 400	200	009	
Ft. Dec.	in	24.42	0.9	2.4	:		27-72		*	29.70	-						34.32						.38.28		39.60	40.56			42.24			*	44.88		.9	
Links.	36	37	38	39	40	41	42	43	44	45	46	47	48	49.	. 50	51	52	53	54.	22	99	22	28	59	09	61	62	63	64	65	99	19	- 89	69	10	
Ft. Dec.	99.	1.32	1.98	2.64	3.30	3.96	4.62	5.28	5.94	09.9	7.26	7.92	8.28	9.24	06.6	0	-	-	CQ.	00	œ.	-44	10	15.84	ro.			å	÷	<u>.</u>	-	٠.	٠.	**	*	
Links.	1	67	က	4	20	9	1-	00	6	10	11	12	13	14	15	91	17	18	19	20	21	22	23	24	25		27		29	30	31	32	33	34	35	

MILES. TABLE OF KNOTS AND STATUTE (Calculated by Lewis Olrick.)

the circumference of the earth, viz. 131,385,466 feet divided by (360 × 60 =) 21,600 gives the length of a knot, viz. 6082-66 feet, which is generally considered the standard, except by the Admiralty. The circumference of the earth is divided into 360 degrees, each degree containing 60 knots or nautical miles, consequently

1 knot = 6082.66 feet; 1 statute mile = 5280 feet.

1 degree = 60 knots = 69.121 miles.

Miles.	21.888 22.176 22.464 22.752	23.040 23.328 23.616 23.904	24.192 24.480 24.768 25.056	25.344 25.632 25.920 26.208	26.496 26.784 27.072 27.360	27.648 27.936 28.224 28.512 28.500
Knots.	19 19.25 19.50 19.75	20.25 20.25 20.50 20.75	21 21.25 21.50 21.75	22 22.25 22.50 22.75	23.25 23.50 23.50 23.75	24.25 24.50 24.50 24.75
Miles.	14.976 15.264 15.552 15.840	16.128 16.416 16.704 16.992	17.280 17.568 17.856 18.144	18.432 18.720 19.008 19.296	19.584 19.872 20.160 20.448	20.736 21.024 21.312 21.600
Knots,	13 13.25 13.50	14.25 14.50 14.75	15.25 15.25 15.50 15.75	16.25 16.25 16.50 16.75	17.25 17.25 17.50 17.75	18.25 18.50 18.50
Miles.	8.352 8.352 8.640 8.928	9.216 9.504 9.792 10.080	10.368 10.656 10.944 11.232	11.520 11.808 12.096 12.384	12.672 12.960 13.248 13.536	13.824 14.112 14.460 14.688
Knots.	7.25	Sioi	9.25 9.50 9.75	10.25 10.25 10.50 10.75	11.25 11.25 11.50 11.75	12.25 12.25 12.50 12.75
Miles.	1.152 1.440 1.728 2.016	.59	3.456 3.744 4.032 4.320	4.608 4.896 5.184 5.472	5.760 6.048 6.336 6.624	6.912 7.200 7.488 7.776
Knots.	1.25	.25	3.25 3.25 3.75	4.25 4.50 4.50	ci ro i-	CIUL

TABLE OF KNOTS AND STATUTE MILES—continued.

1							
Knots.	19.096 19.313 19.530 19.747	19.964 20.181 20.398 20.615	20.832 21.049 21.266 21.483	21.700 21.917 22.134 22.351	22.568 22.785 23.002 23.219	23.436 23.653 23.870 24.087	24.304 24.521 24.738 24.955 25.172
Miles.	22 22.25 22.50 22.75	23.25 23.50 23.75	24 24·25 24·50. 24·75	25 25 25 25 25 25 25 75	26.25 26.25 26.50 26.75	27 27-25 27-50 27-75	28.25 28.50 28.75 29.75
Knots.	13.020 13.237 13.454 13.671	13.888 14.105 14.322 14.539	14.973 14.973 15.190 15.407	15.624 15.841 16.058	16.492 16.709 16.926 17.143	17.360 17.577 17.794 18.011	18.228 18.445 18.662 18.879
Miles.	15.25 15.50 15.50 15.75	16.25 16.50 16.75	17.25 17.50 17.50	18 18.25 18.50 18.75	19.25 19.50 19.50	20 20.25 20.50 20.75	21.25 21.50 21.50 21.75
Knots.	6.944 7.161 7.378 7.595	7.812 8.029 8.246 8.463	8.680 8.897 9.114 9.331	9.548 9.765 9.982 10.199	10.416 10.633 10.850 11.067	11.284 11.501 11.718 11.935	12.152 12.369 12.586 12.803
Miles.	8 8.25 8.50 8.75	9.25 9.50 9.75	10.25 10.25 10.50 10.75	11.25 11.50 11.50	12.25 12.25 12.50 12.75	13 13.25 13.50 13.75	14.25 14.25 14.50 14.75
Knots.	.868 1.085 1.302 1.519	1.736 1.953 2.170 2.387	2.604 2.821 3.038 3.255	3.472 3.689 3.906 4.123	4.340 4.557 4.774 4.991	5.208 5.425 5.642 5.859	6.293 6.293 6.510 6.727
Miles.	1.25 1.50 1.75	2.25 2.50 2.75	3.25 3.25 3.75	4.25 4.50 4.75	5.25 5.50 5.75	6.25 6.50 6.75	7.25 7.50 7.75

ADMIRALTY KNOTS AND STATUTE (Calculated by Lewis Olrick.) TABLE OF MILES.

statute knot = 6080 feet; 1 The Admiralty lle = 5280 feet. mile =

Miles.	21.8787 22.1666 22.4545 22.7123	23.0303 23.3182 23.6060 23.8939	24.1818 24.4697 24.7575 25.0454	25.3333 25.6212 25.9090 26.1969	26.4848 26.7727 27.0606 27.3484	27.6363 27.9242 28.2121 28.4999 28.7878
Knots.	19 19.25 19.50 19.75	20 20.25 20.50 20.75	21 21.25 21.50 21.75	22 22.25 22.50 22.75	23 23.25 23.50 23.75	24.25 24.50 24.75 24.75
Miles.	14.9696 15.2575 15.5454 15.8332	16.1212 16.4091 16.6969 16.9848	17.2727 17.5606 17.8484 18.1363	18.4242 18.7121 18.9999 19.2878	19.5757 19.8636 20.1515 20.4393	20.7272 21.0151 21.3030 21.5908
Knots.	13 13.25 13.50 13.75	14.25 14.25 14.75	15 15.25 15.50 15.75	16.25 16.25 16.50 16.75	17.25 17.25 17.50	18.25 18.50 18.75
Miles.	8.0606 8.3485 8.6363 8.9242	9.2121 9.5000 9.7878 10.0757	10.3636 10.6515 10.9393 11.2272	11.5151 11.8030 12.0909 12.3787	12.6666 12.9545 13.2424 13.5302	13.8181 14.1060 14.3939 14.6817
Knots.	7.25	8 8.25 8.50 8.75	9.25	10.25 10.25 10.50 10.75	11 11.25 11.50 11.75	12.25 12.25 12.50 12.75
Miles.	1.1515 1.4394 1.7272 2.0151	2.3030 2.5909 2.8787 3.1666	3.4545 3.7424 4.0303 4.3181	4.6060 4.8939 5.1818 5.4696	6.0454 6.3333 6.6211	6.9090 7.1969 7.4848 7.7726
Knots.	1.25 1.50 1.75	2 2.25 2.50 2.75	3.25 3.50 3.75	4.25 4.50 4.75	5.25 5.50 5.75	6.25 6.50 6.75

quite accurate, whereas the fourth cannot always N.B.—The three first decimals in this Table are be depended upon.

TABLE OF ADMIRALTY KNOTS AND STATUTE MILES-continued.

Knots.	19-1068 19-5324 19-5324 19-536 19-7566 19-7566 20-1903 20-4079 21-2763 21-2763 21-2763 21-2763 21-2763 22-3618 22-3618 23-4744 23-4087 24-3618 24-3618 24-3619 24-3619 24-3619 24-3619 24-3619 25-49619
Miles.	222 222 222 222 223 223 224 225 225 225 225 225 225 225 225 225
Knots.	13.0263 13.434 13.434 13.436 13.6776 13.894 14.7636 14.7636 14.7636 16.7636 16.7636 16.7636 16.7636 16.7636 17
Miles.	15: 25 16: 25 16: 25 16: 25 16: 25 17: 25 17: 25 18: 25
Knots.	6 '9474 7 '1645 7 '1645 7 '1645 7 '1645 7 '1645 8 '1500 8 '2500 8 '2500 8 '2500 9 '3355 9 '3355 9 '3355 10 '2335 11 '235 11 '2
Miles.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Knots.	1.0855 1.3085 1.0855 1.0855 1.0855 1.0559 2.1710 2.1710 2.285 3.085 3.085 3.095 3.095 3.095 4.1250 4.1250 4.1250 4.1250 5.6653 3.675 3.775
Miles.	11111028 11111028 1220202020203030303030303030303030303030

N.B.—The three first decimals in this Table are quite accurate, whereas the fourth cannot always be depended upon.

DECIMAL EQUIVALENTS OF THE DIVISIONS OF A FOOT.

(Communicated by J. Gallott, Esq.) For divisions in 32nds, see next page.

	0	1	2	3	4	5	6	7	8	9	10	11
		• 08333	.16666	• 25	.33333	•41666	.5	• 58333	• 66666	.75	83333	.9166
1	.00521	.08854	.17187	. 25521	.33854	.42187	.50521	.58854	.67187	.75521	*83854	.9218
116	.01041	.00274	17707	.26041	.34374	.42707	.51041	.59374	.67707	.76041	.84374	.9270
8 3	.01569	.00895	.18228	.26562	.34895	.43228	.51562	.59895	.68228	.76562	*84895	.9322
16	01002	00000	10220	20002	Oxoro	- LOMMO	0_0_					
÷	.02002	.10416	.18750	. 27083	.35416	.43750	.52083	.60416	68750	.77083	.85416	.937
	102003	10410	19970	.27604	.35937	.44270	.52604	.60937	.69270	.77604	.85937	.942
3 10	+02105	111459	10210	•28125	.36458	.44791	.53125	.61458	69791	.78125	86458	.947
3 ,	100120	11450	.00219	. 98646	.36979	.45312	.53646	61979	.70312	.78646	.86979	.953
7	1	1	l	1	100	1	1			1		
,	LOATER	. 19500	.00833	. 20166	.27500	.45833	-54166	62500	.70832	.79166	87500	.958
1 0	04100	12000	191353	- 20687	•38020	•46353	.54687	63020	.71353	.79687	*88020	.963
9 1 G	04001	13020	191974	+ 20001	. 29541	.46875	• 55208	63541	.71874	80208	88541	.968
8 7 7	05208	13341	100205	190790	30063	47395	.55729	.64062	.72395	80729	.89062	.973
115	05729	14062	22333	30125	33002	41000	00120	01002	12000			
0	.00050	. 74500	. 99016	.27250	. 20593	.47916	-56250	64583	.72916	81250	89583	.979
*	00250	14000	. 02427	91771	. 40104	· 49437	1.56771	. 65104	. 73437	81771	90104	984
718	10770	15104	23437	. 22202	.40625	18958	.57292	.65625	.73958	82292	90625	.989
B	07292	13023	23900	1 20012	.41746	10000	•57813	.66146	.74479	82813	91146	.994
15	.04813	16146	24413	34013	41140	43413	01010	00110	1	02000	1	

DECIMAL EQUIVALENTS OF THE DIVISIONS OF A FOOT IN 32NDS OF AN INCH. (For the divisions in 16ths, see preceding page.)

	Inches 0	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches 7	Inches.	Inches.	Inches.	Inches.	
3 2 1 7 3 2 1 3 2 2 1 3 2 2 3 2 2 3 2 2 5 2 2 7 2 3 2 2 3 2	·01302 ·01823 ·02344 ·02864 ·03385 ·03906 ·04427 ·04948	.09635 .10156 .10677 .11198 .11719 .12239 .12760 .13281 .13802 .14323 .14844 .15364 .15885	17446 17969 19010 19531 20052 20573 21094 22135 22656 23177 23698 24219	26302 26823 27344 27864 288365 28906 29427 29948 30469 30489 31510 32031 32552	34114 34635 35156 35156 36198 36719 37239 37760 38281 38802 39323 39323 40364 40385	.41927 .42448 .42969 .43489 .44010 .44531 .45052 .45573 .46094 .47135 .47656 .48177 .48698 .49219	*51302 *51823 *52344 *52864 *5385 *53906 *54427 *55469 *55589 *565031 *57559	*59114 *59635 *60156 *60677 *61198 *61719 *62239 *62760 *63802 *64323 *64844 *65364 *65364	Feet66927 -67448 -67969 -68489 -69531 -70052 -70573 -71094 -72135 -72656 -73177 -73698	Feet	Feet. *83504 *84114 *84635 *85156 *85677 *86198 *86719 *87239 *87760 *88281 *88802 *89323 *89844 *90364	Feet. •91927 •92448 •92969 •93489 •94010 •94531 •95052 •95573 •96094 •97135 •97656 •98177 •98698	332 32 32 32 32 32 32 32 32 32
	0	1	2	3	4	- 5	6	7	8	9	10	11	312

YARDS. FEET, AND EQUIVALENTS OF INCHES, DECIMAL

Inches. Feet. Yards. = (0833 = (0278) 2 = (1667 = (0566) 3 = (256) = (0483) 4 = (3333 = 1111) 5 = (4167 = (1389) 6 = (5) = (1647) 7 = (5833 = 1944) 8 = (6667 = (2222) 9 = (75) = (25) 10 = (3333 = (278)) 11 = (9167 = (2056)) 12 = (1000) = (3333)
Fractions Decims. Decims. One of the north o

TIMBER MEASURING.

girt of tree at one end in feet. girt of tree at middle in feet. th.

th girt of tree at the other end in feet. F3.3

Cube contents of log in feet. Length of log in feet.

G + g + g'110

from each 4th girt. The allowance varies from half an inch in trees with thin bark to 2 inches Allowance is to be made for bark by deducting for trees with thick bark.

MEASURES OF TIMBER.

hundred sduare. battens. load. load. load. deals. 600 superficial ft. of inch planking cube feet of squared timber 100 superficial feet of planking 40 feet of unhewn timber Boards 7 inches wide 120 deals 20

planks.

12

MEASURES. SUNDRY

14 lbs. = euors

20. score

24 sheets. 12 dozen. quire gross

20 quires. ream =

cord of wood = 128 cube feet.

seam of glass = 120 lbs. faggot of steel = 120 lbs.

ton of coal = 10 sacks.

ton of Portland cement = 10 sacks or 6 casks. barrel of $\tan = 25$ gallons.

ton of freight by measurement = 40 cubic feet.

SIZE OF DRAWING PAPER.

8	62	22	3	CJ.	4.	4	- 6
she	y	:		6	2	60 ,, 4	Total of the state
Ĕ	7	0	27	0	0	_	7
	က	4	5	ñ	3	9	*
	:		:	:	:	:	1
	-	nt			Ţ,		2
		13		H			
		de	B	Tracing paper			-
	:	ĕ	ris	pg			1
		(a)	E	50	: 2	2	j
	53	pld	igi	'등			
	tlg	no	nt	Ľä			
	A	-	A	\Box			į,
							,
_					_	T	
	10	1	6	6	22	. 34 ,, 23	
98			قا		64	64	0
ch	5				-		,
ř	20	22	24	27	30	34	•
							. !
			•		:	.:	
							,
	-						
				E		Z-a	,
				0	<u>, —</u>	ie	
		, iii	_	ā	Ţ	ם	
	m	7	Va	e le	pe	Columbier	ľ
	19	To	20	E	B	20	
	_	-	-	02	-	\circ	

922299

Tracing cloth, 18, 28, 36, 38, and 41 inches wide; 24 yards long. Continuous cartridge, 54 and 60 inches wide.

CASKS. (J. T. Hurst.)

= ditto at the bung, and L = the length, all D, d = inside diameters at the heads.

The capacity in imperial gallons inches; then

 $= .0014162 \text{ L } (\text{D} d + \text{M}^2).$

The BUOYANCY in lbs. equals ten times the capacity in gallons minus the weight of the cask itself. WIRE AND PLATE GAUGES. (Equivalents in Decimals of an Inch.) Low Tolornesh Wire Gauge see Tolornesh

MOLESWORTH S POCKET-BOOK.

225

																																					-		1
	Wire.	mm.	1	1	1	1	1	j .º		•	•	i	<u> </u>		-	7.4	-	7	7	0.1	23	63	3	· ·	2 . 2	4 4	50	6.9	1	,		W. G.	1000	.0032	.0028	.0024	.0020	9700.	3
Telegraph.	French Wire, Galvanized,	ins.	1	1	1	1	I	-02362	10	.03150	.03543	0393	.04331	.04724	= :	.05512	00650	70070.	-07874	998	.09440	.10030	.11811	proof p	.15293	- I	.21260	.23226	1	:	320	No. S.		44 0	0	0	0	48 0	-
ie I ei		mm.		1	1	1	1.00	.45	99.	19.	64.	9	1.01	7			4 0		0 0	2.02	2.14	2.52	2.84	well (3.85				08.9		×.	W. G.	1 000		0900.			.0044	-
Gauge, see	French Wire. Ordinary.	ins.		1	I	1	4 - 31	01772	0.7	.02638	031		0397	.04410	.04882	m	10000	\$1000.	.07520	I'm	- 20	088	111	1338	Iccel.	00%	need!	141	.26172	Ш	N. S.	NO. IS		37 0	0		-	42 0	16
Wire	Whit-		1 1]	1	.1,	1	100.	.002	.003	.004	.005	00	100.	.003	600.	010	110.	210.	.014	.015		.017	0.1	.019	020.	.022	.023	•024	.025	.026	.027	. 028	050	.031	.032	.033	•034	ONII.
Telegraph	Lanca- sbire.	ins.	1 1	. !	1	1	1	70.6.	.219	.209	.204	.201	.198	.195	9	.191	00 :	681.	180	1771.		•174	.169	191.	.164	.160	4 1994	.150	.148	prod	14		138	101.	3 per		.1111		NI CIN
For Tel	Bir- ming- ham Plate.	ins.	1.1	ļ	1	1	1	100	.305	800.	.010	.012	_	.015	.016	610.	.024	670	.034	.041	.047	.051	.057	.061	¥90.	190.	*10.	-077	.082	• 095				124	•	.143	.14		Sul
nch):	New Stan- dard Wire Gange.	ins	0.200	4	0.400	3		0.324				.2		-		.14	12		#01.0							0.039	0.028			.03		.01	0.0148		.01	.01	0.0100	0.0092	10.1111184
In	No.	1 5	0	0	0,		9		2 2	_	4		_	_	00	6	0	- 0	77 0	2 4		9	1	18	_	07		23	24	25	56	27	200	30	31	32	33	34	59

TABLE OF CUBIC FEET EQUIVALENT TO IMPERIAL GALLONS.

Gal	1	1	1 .	1	1	1	1	AD CALLO			-
lon		1	2	3	4	5	6	7	8	9	Gal- lons.
0	-	•16046	*32092	•48138	•64184	*80230	•96276	1.12322	1.28368	1.44414	0
10	1.60460	1.76505	1.92551	2.08597	2.24643	2.40689	2.56735	2.72781	2.88827	3.04873	10
20	3.20919	3.36965	3.53011	3.69057	3.85103	4.01149	4.17195	4.33241	4.49287	4.65333	20
30	4.81379	4.97424	5.13470	5.29516	5.45562	5.61608	5.77654	5.93700	6.09746	6.25792	30
40	6.41838	6.57884	6.73930	6.89976	7.06022	7.22068	7.38114	7.54160	7.70206	7.86252	
50	8.02298	8.18343	8.34389	8.50435	8.66481	8.82527	8.98573	9.14619	9.30665	9-46711	50
60	9.62757	9.78803	9.94849	10.10895	10.26941	10.42987	10.59033	10.75079	10.91125	11.07171	60
70	11.23216	11*39262	11.55308	11.71354	11.87400	12.03446	12*19492	12.35538	12.51584	12.67630	70
80	12.83676	12.99722	13.15768	13:31814	13.47860	13.63906	13.79952	13.95998	14.12044	14.28090	80
90	14.44136	14.60181	14.76227	14.92273	15.08319	15.24365	15.40411	15.56457	15.72503	15.88549	90
Gal- lons.	0	1	2	3	4	5	6	7	8	9	Gal- lons.

F ENGINEERING FORMIL

20

DECIMAL EQUIVALENTS OF LBS., QRS., AND CWTS.

ownto	- Free La					1821		.8036		21	.8303	39		27	96	15	.8839	32	5	10	13		37	46	55	*9643	73		91	-
The	TOO!			C7	ಣ	4	2	9	1-	00	6	10	11	12	13	14	15	16	1,1	18	19	20	21	22	23	24	25	26	27	
200	drs.	2	ಣ	co	co	က	3	3	co	က	က	ಣ	က	က	co	က	3	ಣ	က	က	3	ಣ	က	co	63	ಣ	က	co	3	_
	CWUS.		00	10	97	10	4	.5536	32	-	30						•6339	12	51		69	9819.	87	96	0	.7143	23			
	nos.		_	2	co	4	22	9	1-	00	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
	qrs.	77	7	2	7	2	7	2	2	7	7	23	7	7	7	2	2	7	c3	7	23	C1	7	7	7	67	23	7	62	
	cwts.	. 25	on	100	0.0	10	note	.3036	.3125	pmd	.3303	5		.3571		.375	(3839	03	pand	0	67	03	.4375	.4464	10	.4643	3	.4822	•4911	
-	rs. Ibs.	1 0=	1 1	2	1 3	1 4	12	1 6	1-	1 8	1 9	1 10	1 11	1 12	1 13	1.14	1 15	1 16	1 17	1 18	1 19	1 20	1 21	1 22	1 23	1 24	1 25	1 26	1 27	
		0	6	6	00		9	98	625	714	803	893	. 25	071	161	25		429	518	209	969	186	875	964	154	143	232	322	1	
	qrs. lbs.	= 40 0	1 0	0 2	00	0 4	100	9 0									0 15												0 27	-

	. 84375 . 84375 . 90625 . 9375 . 96875	
	028. 134 14 14 15 15 16	I
DECIMAL EQUIVALENTS OF 1 COMES AND CONCESS	1bs. -625 -625 -65625 -6875 -71875 -75 -75 -78125	
CINTO	028. 10 10 11 11 11 12 12 13	۱
OF TO	1bs. -40625 -4375 -46875 -5 -5 -5 -53125 -5625 -59375	
DAY A.	820 44 44 46 46 46 46 46 46 46 46 46 46 46	١
COLLAR	1ba. 1875 21875 25 25 28125 3125 34375	
7	6 5 5 4 4 5 5 5	
DECIMA	1bs. -015625 -03125 -046875 -0625 -09375 -125	
	22 22 44 44 44 44 44 44 44 44 44 44 44 4	

TABLE SHOWING EQUIVALENT RATES PER LB., CWT., AND TON.

Per ton.	300	60 13 4	0	9	13	0	9	13	0	9	13	0	9	13	0	9	13	0	9	13	0	9	13	0.	and the second
Per cwt.	-	8 09																	00	02	05		60	12	-
Per lb.	d.	*** 6**	689	2	1.4	14	2	00	*8	18	00	6	46	34	93	10	104	104	10%	11		114		6.4	
Per ton.		4 13 4	0	9	13	14 0 0	9	13	0	9	25 13 4	0	9	13	0		13	0	9	13	0	9	13	0	The state of the s
Per cwt.	-	4 00																							-
Per lb.	d.	les refer	eo je	-	14	14	#T	2	24	24	22.	ന	31	35	est*	4	44	44	4.5	ro	54	24.0	54.	9	-

DECIMAL EQUIVALENTS OF PENCE AND SHILLINGS.

Shillings	.70832	.75	. 19166	.83333	.8750	99916.	.95833	1.0000	
	11	11	11	11	11	11	11	11	l
Pence.	84	6	94	10	104	11	111.	12	
Shillings.	= .3750	= .41666	= .45833	2 ==	= .54166	= .58333	= .6250	99999. ==	
Pence.	44	2	53	9	49		7.3		
Shillings.	= .04166	08333	= 1125	= .16666	= .20832	- 25	= .29166	- 33333	
Pence.	-401	:	14	.5	24	: m	34	:	

READY RECKONER.

MOLESWORTH'S POCKET-BOOK

10	
6	
00	4000000000000000000000000000000000000
-	そのののののコーニュニューのことにこのことのころのころのころまままままましいといるちのちゅうちゅうで
9	またないであるだらいでは、おりのものものものものものなった。たらはったのだった。なられるないなった。 かんしょうしょ カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カ
10	そのこののこうののローローローローローのこのこのこのできましているのののののののののできます。
4	400000000000000000000000000000000000000
60	そのようののののののののののののではよりのはなっていませんのできょうのできないのできないのでは、そののののののののののののののののののでは、これに、これには、これには、これには、これには、これには、これには、これには
63	**************************************
1	

WAGES TABLE,

-		_	-	-	_	_	-	_	_	_	-	_			_	_													
	Per Day.	1	30	. '	0 14			3	4	0 44	0 54	9 0	9		00	00	03	0	0 104	Ξ	11	0	-	4	1	11	27		9
-	Per Week.	0 3	0.0	0 42 0	0 94 0	1 14	1 6%	1 11	2 33	2 84	3 1	3 54	$3 10\frac{1}{4}$	4 2 2 3	4 74	0 9	5 44	5 9±	6 13	6 6±	6 11	7 33	1 84	9 74	11 64	13 54	5 4	7 3	9 2
Approximately	Per Month.	1.		+ 0		2	9	00		11	·	0 15 0	0 16 8		0	П	က	10	1 6 8	00	10	_	13	7	10	_	9	15	co
= App	Quarter Year.	0.	2	100	10	7	0 0 1	2	П	15	0	2	10	15		D	3 10 0	15	0	20	_	15	0	20	10	00	10 0 0	1 5	2 10
	Per Half Year.		10		0 0	07	0 0		0 9	07	0	2	0	10	0 0 9	10	0	10		10	0	9 10	0	01 7	0 0	0	0 0 0	0 0 0	0 0 0
Wages	Per Year.	43	1	2	100	2 -	# 1	0 <	0 1		× 0				77	13	14	15	91	7.7	20,00	19		-	_		0 1		_

113.001 grains. : ENGLISH COINS copper or a fineness of '9163.
Total weight .. A pound sterling consists of gold

3

counting =87.273 grains. 12 pence. ... =4 h. woir. 20 shillings=3 % 6.0 x toy. Or pence in £ = 5 lbs. ... Copper Convage. A h. wow. = 5 lbs. 123-274

COPPER CONNAGE, -A lb. avoir, of copper is coined into 48 pence or 96 halfpence.

BRONZE COINAGE. - 95 copper, 4 tin, 1 zinc, is coined into 40 pence, 80 halfpence, 160 farthings.

AND MEASURES. INDIAN WEIGHTS

SQUARE MEASURE NORTH INDIA. NORTH INDIA. LENGTH.

				Ì			
Jow.	Guj.	Kos.	English. Guj. Baus. Biga.	Guj.	Baus.	Biga.	English.
			-	-	-		
	40000	7100000	1	-	.111111	-00028	1 .111111 .00028 .84028sq.yd.
7	TROOM.	1 TOOOOO .			,	2000	H. ROOK
144	_	1 .00025	33 ins.	5.	7	0700.	1 9070 11
14.7	4.	,	0.00 miles 2600	2600	400	-	·624 acres
1576000	4000	1	7.00 miles.	2000	201		
	-		-	-	-	-	

The kos varies from 1 to 2 miles in North India; in the Punjab it is generally 2 miles. The English yard is frequently called a guj. A biga in Bengal \equiv 3306 acre.

CAPACITY. NORTH INDIA. WEIGHT. KORTH INDIA.

	THE THE PERSON			-	1	-	-	-
Tola.	Chitak.	Seer.	Maund.	Maund, Lbs. avoir. Seer.	Seer.	Pali.	Maund.	Pali. Maund. Gallons.
1 5 80 3200	.2 1 16 640	.0125 .0625 .040	.000313 .00156 .025	.0257 .12857 2.0571 82.2857	1 20 40	.2	.125	.245 1.226 9.81
	-			-	-		-	-

-		1	94		
URE.	glish.		sq. ft	" "	2 acre
IEAS	En		24	216	1.3
SQUARE MEASURE.	Kal Gali, Kani, English.		1 .04167 .0004167 24 sq. ft.	.010	-
MADRAS.	Güli.		.04167	1	100
MAI	Kol		7	24	2400
H.	walish	Taligation.	8 ins.	81	2.27 m.
MADRAS. LENGTH.	***************************************	DOS.	0000556 8 ins.	.000125 118	
MADRAS		Span. Cubit.	.4444	1	8000
	-	Span.	-	93	18000

		dr.
ו ון סק מסוכי		Candy. Lbs. avoir.
1		38°
-	1	3
		. 1
٦		dy
		Jan
		_
2.27 m. 2400 100	Ë	
-	G.H	nd.
9	EI	faund.
740	MADRAS, WEIGHT.	Maund.
-	υn	
a	RA	
7.7	A D	Vis.
7	M	
		-
	1	i
	1	Pollam.
		Po
0		-
00		di
w		Tola.
000		
18000 8000	1	

	T	
LUB. RVOIF.	.0257 .07714 3.0857 24.686* 493.714*	
Candy.	.0000521 .0001563 .00625 .05	
Maund.	.001042 .003125 .125 .126	
Vis.	.00833 .025 .025 1 8	-
Pollam.	.333 1 40 320 6400	
Tola.	1 3 120 960 19200	

Frequently assumed at 25 and 500

	English.	3175 8 800 " " 800 " " 5 4000 " "
	Gās.	.000025 .0003175 .0025 .0125
CALACIA	Para.	.002 .025 .2 .1 80
MADINAS.	Mercal.	.01 .125 .1 .1 .5 .5
	Padi.	.08 1 8 40 3200
	Olak.	1 12‡ 100 500 40000

	-	
MEASURES—continued. BOMBAY, SOUARE MEASTIRE	English.	10sq.yds. 200 ,, ".
-contin	Biga.	.0025 .05
SURES-	Pand.	.05
D MEA.	M	1 20 400
INDIAN WEIGHTS AND MEASURES—continued, MBAY. LENGTH. BOMBAY. SQUARE ME.	Inches.	1.125 18 27
WEIGHTS LENGTH.	Guj.	.04167 .6667 1
BOMBAY,	Hāth.	.0625 1 1.5
BC	Tasū.	1 16 24

	BOMBAY
-	APACITY.
	BOMBAY.

BUMBAY. WEIGHT.		1 seer = .7 lb. 1 maund = 28 lbs. 1 candy = 5 cwt.
BC	Gallons.	.18 .71 11.34 11.99 90.74
	Candy. Cub. In. Gallons.	49 197 3145 25160
Cala	Candy.	.00195 .00781 .125
ORIGOILI.	Para,	.015625 .00195 .0625 .00781 1 .125 8 1
	Paili.	.25 1 16 128
	Seer.	1 4 64 512

rupee). 28. INDIAN MONEY (par being

English at par.	125 pence.
Rupees.	.005208 .0625 1
Annas.	.0833
Pie.	12: 12:

1 crore = 1,00,00,000 In 1 lakh = 1,00,000 rupees = £10,000. 1 crore = 1,00,00 rupees = £1,000,000. The "pice" = 3 "pie" or $\frac{1}{4}$ anna. Ceylon the rupee is divided into 100 parts called "cents."

AND MULTIPLIERS FOR THE CONVERSION OF & STERLING

= Rate of exchange for the rupee in shillings and pence RUPERS. **>**

•	Δ	= Rs.	A	= Rs.
Some Porce	1 10	10.9091	00	$ \begin{array}{c} \texttt{E} \times 11.0345 \ 11.1628 \ 11.2941 \ 11.4286 \ 11.6653 \ 11.1073 \ 11.8519 \ 12.0000 \ \hline = \text{Rs.} \\ \texttt{Rs.} \times 090625 \ 0.980583 \ 0.98542 \ 0.987500 \ 0.981545 \ 0.085417 \ 0.08427 \ 0.082700 \ \hline \end{array} $
0	1.10%	10.7865	1 84	11.8519
	1 104	10.6667	1 84	11 - 7073
1	1 10\$	10.5495	1 84	11 - 5663
-	111	10-4348	6.1	11.4286
-	1 114	10.3276	1 94	11.2941
	1 11%	10-2127	1 94	11.1628
-	V 1 114 1 114 1 114 1 11 1 104 1 104 1 104 1 10 V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V 1 94 1 94 1 94 1 9 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	11.0345
,	>	Es. X	>	Es. X

$\begin{array}{llllllllllllllllllllllllllllllllllll$	
25 077083 076	
5 12 6316 12 80 8 -079167 -0781	
12-3077 12-467 -081250 -08020	
£ × 12·1519 Rs. × · · · 82292	

9

64

-

1 -4 -

+ 03i4

 $\vec{}$

>

MOLESWORTH'S POCKET-BOOK

TABLE FOR THE CONVERSION OF ANNAS AND PIE INTO CENTS, OR 100THS OF A RUPEE.

	Annas.										Conti- nuation of the						
Pie.	0	1	2	3	4	5	. 6	7	8	9	10	11	12	13	14	15	Deci- mal.
0	00.00	06.25	12.50	18.75	25.00	31.25	37.50	43.75	50.00	56.25	62.50	68.75	75.00	81 • 25	87.50	93.75	0000
0	01.01	07.00	19+54	19.79	26 . 01	32.29	38·02 38·54 39·06	44.79	51.04	57 . 29	63.54	69.79	76.04	81.77 82.29 82.81	88.54	94.79	
4 5 6	00.60	00.85	15.10	$21 \cdot 35$	$27 \cdot 60$	33 . 85	39.58 40.10 40.62	46.35	52.60	58 85	65 * 10	71.35	77.60	83.80	90.10	190.30	3333 4166 5000
7 8 9	04 - 16	10 . 41	176.66	22 • 91	29 • 16	35.41	41·14 41·66 42·18	47.91	154 • 16	60.41	66.66	72.91	79.16	89,41	91.00	91.91	0000
10	05 · 20	11.45	17.70	23.95	30.20	36.45	42.70	48.95	55·20 55·72	61.45	67.70	73·95 74·47	80·20 80·72	86·45 86·97	92·70 93·22	98.95	8333 9166
Pie	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Pie	Annas.																

COMPARISON OF ENGLISH, FRENCH, AMERICAN, AND GERMAN COINS.

		English. French.	French.	can.	German.
	(Denomination	Sovereign. 20 franc. Eagle.	20 franc.	Eagle.	20 mark.
gorn	Total weight, grains troy Fine *	123.27	99.56 258	258	122.918
	Weight of pure gold, gr. troy	113.0016	89.6	232	110.626
	Ratio of silver to gold	14.6	15.5	16	
	Equiv. to 1 sov., grs. troy	1650	1736.1	1782 1543	15
.sı	ht of puresilver, gr. troy	165	347.23	347-23 371-25	77.16
E	:	19.916	006	006	006
TI	Total weight, grains troy	180	385.81 412.5	412.5	85.73
3	Denomination	Rupee. 5 franc. Dollar.	5 franc.	Dollar.	Mark.

161.45 pure silver = 920 fine. INTERCHANGE UNDER STANDARD. FOR Or COINAGE, NEUROS BI-METALLIC The English florin = 1754 grains; ALTERED

German	20 mark.	144.45 900 112 112	15.5 1736.1 86.8 900 96.5	Mark,
Ameri- can.	Eagle.	99.56 259.26 00 900 89.6 233.3	15.5 1736.1 361.7 900 401.9	Dollar.
English. French	20 franc. Eagle.	99.56 900 89.6 112	15.5 1736.1 347.2 900 385.81	Florin or Bupee. 5 franc.
English.	Sove- reign.	124.45 900 112 112	15.5 1736.1 173.6 900 192.9	Florin or Rupee.
	Denomination	Total weight, grains troy Fine * Weight of pure gold, gr. troy Equiv. to 1 sov. ers. troy	Ratio of silver to gold Equiv. to 1 sov., grs., troy Weight of pure silver, gr, troy Fine Total weight, grains troy	Denomination Florin or Rupee. 5 franc. Dollar. Man
		Gorn.	ILVER.	S

^{*} The term Fine denotes the number of parts of pure metal in 1000, the remainder being alloy; thus 900 "fine" denotes 900 of pure metal to 100 of alloy.

20 marks, + The equivalent is assumed at 25 francs, 4.8 dollars, 10 rupees. ‡ The French coinage is unaltered in this table.

MULESWORTH'S POCKET-BOOK

DOLLARS AND CENTS.

The dollar is for rough approximations frequently assumed £ × 4.8, or shillings × .24 to be equal to 50 pence. Dollars × ·20833 = £ sterling; = dollars.

10	48	10	2.083	10	41/8
6	43.2	6	1.875	6	37/6
00	38.4	00	1.667	00	33/4
7	33.6	1-	1.458	7	29/2
9	28.8	9	1.25	9	25/0
5	24	20	1.042	20	20/10
4	19.5	4	.833	4	16/8
.00	14.4	m	.625	က	12/6
. 63	9.6	62	.417	22	8/4
1	4.8	1	.208	-	4/2
£1 2 3 4 5 6 7 8 9	Dollars . 4.8 9.6 14.419.2 24 28.8 33.6 38.4 43.2 48	Dollars 1 2 3 4 5 6 7 8 9 10	£ 208 417 -625 -833 1 . 042 1 . 25 1 . 458 1 . 667 1 . 875 2 . 083	Dollars 1 2 3 4 5 6 7 8 9 10	Shillings 4/2 8/4 12/6 16/8 20/10 25/0 29/2 33/4 37/6 41/8

CENTS COMPARED WITH SHILLINGS AND PENCE.

			_	-		_	_		1
.63	Cen	0	10	30	50	9	200	90	
	6	s. d.	1 24	1 74		_			6
	00	8. d.	1 2	1 7		_			00,
	1-	- 2 Het	1 1 2 4	1 64	4	6	N 1-	0	1
	9	s. d.	∞ ⊢	1 6	4	6	21 12	0	9
	2	d.	440	104	34	00	14	114	فد
Cents.	4	8. 12. a.	1-0	1 5 1	200	00	. 9	11	4
	က	1 ades	114	40	0 63		3 04	10	es
	67	s. d.	9				3 3	- Provided	61
	-	S. Les	104	00	0 1	9	2 114	00	7
	0		10				2 11 2		0
.et	Cen		10	30	20	09	20	90	

FOREIGN WEIGHTS AND MEASURES.

The Metrical System has been adopted in France, Belgium, Netherlands, Switzerland, Germany, Italy, Spain, Portugal, Greece, Austria, Sweden, and Norway. Others will probably Greece, Austria, Sweden, and Norway. Others will probably he added to the number. For detailed tables of Metric Values, see 'Molesworth's Metrical Tables,' which are uniform with and may be bound up with this Pocket-book.

RUSSIAN. WEIGHT.

DRY MEASURE.

RUSSIAN.

Gallons	1194
Chetwert, Gall	11-
Chetwerik.	∞
Garnez.	1 8 64
Zolotnik, Funt, Pood, Lb. avoir.	36.1141
Pood.	111-
Funt,	1 1 40
Zolotnik.	1 96 3840
Doli.	1 96 9216 368640

	t.	
-		-
	ı.	
	4	ж
	•	
		п
		-
_		
	1	в
	Ł	п
	ı	
	1	
	•	1
		The second secon
	T	
		-
		- 12
		1
		10
		П
	1	- 17
		ш
	1	
	•	
_	1	
36,1141	1	
di.		
_		
_		
^		в
~		-12
· ·		Æ
		- 7
		- 7
	1	i
	1	- (
	1	
	1	,
	1	
	1	
	1	ı
_	1	1
add .	ı	ı
4.	1	ď
40	1	ı
	1	5
		5
	ı	ı
0	i	ALMOST A TANDARD
wild	1	ı,
m	I	
~	1	
13	1	
	1	
08640 3840	1	
7	1	
	1	
d.	I	
2	I	
20	1	
0	1	

Gallons.	2.707 2.7069 48.725
Oxhoft.	19-
Vedro.	18
Stoof.	100
English.	7 ft.
Verst.	111-
Sajen.	1 1 1
Fuss.*	1 6 8 3000
Vershok, Fuss.* Sajen. Verst, English, Stoof, Vedro. Oxhoft, Gallons.	1 8 48 24000

used as the standard measure in 2400 square * The English foot is now much used as the standard assia. Land is measured by the "Crown" dessatine of Sajen = 2.7 acres; common dessatine = 3.6 acres. Russia.

1 rotolo = 1.27 lb, avoir. 26.625 English inches. 1.1455 imp. gallon. TURKEY. 11 180 drakmas almud killow pik Weight hiquid Length

27 English inches. 1 rotolo = .98046 lb. avoir. = 5.02 bushels. Weight 144 drakmas = 1 ardeb Capacity Length

= 1000 tsun = 100 chih = 10 chang = 1 yin = 1.13 gallon English. 1324 lbs. avoir. 1 tau = 1 pecul = 1 CHINA. 10 shing = 1600 tael = 100 catty 1174 ft. English. 100 koh = 10,000 fun

SILVER COINS AND TOKENS.

T	1	17	19	
-	Fine,		835 945 945 816.67 800 800 868 868	835
	Total Weight Grs. Troy.	87.270 412.49 190.512 77 162 180.000 115.743 19.290 77.162	77.162.835 154.324.945 17.162.835 17.162.835 17.543.800 385.809.916.67 320.000.868 80.125.810	115 · 743 77 · 162 18 · 565
	SHver Value in Pence at	10.09 46.40 21.43 8.05 20.625 11.57 2.17 8.05 9.64	8.05 18.23 20.625 8.05 11.57 74.20 34.72 8.112	11.57 8.05 1.93
FOREIGN MONET—SLLVER COLDS AND	Subdivisions,	12 pence 100 cents 100 kreuzer 100 centine 100 centine 100 cents 100 aspre 100 aspre 100 centime	1000 110000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 110000 110000 110000 11000 11000 11000 11000 11000 11000 11000 1100	100 oere 100 centime 100 aspre
IGN MON	Coin or Token.	Shilling Dollar Florin Franc Rupee Krone Piastre Franc Mark	Drachma Guilder Rupee Lire Crown Milrei Rouble Peseta	Krona Franc Piastre
FORE	Country.	England Austria Belgium Ceylon Deumark Egypt France Germany	Greece Holland India Italy Norway Portugal Russia Spain	Sweden Switzerland Turkey

METRICAL SYSTEM.

correction needed for scientific purposes to allow for this ference. In the Weights and Measures Act of 1878, however, the original equivalents as determined by Kater were adopted without the proposed correction. A comparison of whilst the French standard metre is of platinum at 0° C., the Standards Commission in the Report of 1871–72 considered The English standard yard being of bronze at 62° Fahr, adopted without the proposed correction. A compathe corrected and adopted equivalents is given below. difference.

	Mètre.	Litre.	Kilogram.
		11000	The
	1118	.00010t	9.90469
Standards Commission .	. 03.30c. Rc .		10101
Adopted in Act 1878	39.37079	-2200967	2.20462

^{*} At equal temperatures in ordinary air. At equal temperatures, distilled water.

METRICAL EQUIVALENTS (Weights and Measures Act 1878),

mes true 1010).	Becincosts	39 - 27070	3.280899	1.093633	1988424	. 0497106	004971	00062138		Reciprocals.	T60.0001			.0399383				Reciprocals.	07.7.7.00	1.30802		Bacinrocala	7.043094	1.760773	*8803868	.2200967	·1100483	.0027512	BC+C00	Reciprocals.	.564383	.0352739	20102200.	896100000.	*0000000	15.43235	•6430146	.03215073	• 00267923
200								•			:	•	:		:	: :			:	: :			:	:			:	:	:		:	:	:		:	:		:	:
S S								:	m		:	:,	:	: ,	•	: :			:	: :	CITY.		:	:	:	;	:	:	:		:	:	:	:	:	:	:	:	:
LINEAR MEASURES	Mètres.	•02539954	.3047945	•91438343	5.029109	20.11644	201.1644	1609.3149	TARE MEASURE	Square mètres.	101040101	8988880.	160000	011-678	4046.71	2589894.5	CUBIC MEASURES.	Cubic metres.	000010000	.764513	RES OF CAPA	Litres.	.141983	.56793	1.13586	4.543457	9.086915	36.34766	WEIGHTS.	Grammes,	1.111836	453.50965	0220	50802.38	916047.5	.06479895	1.555175	31-1034615	513.7419
1		11	11		11	11	11	11	SQU.	-	1	11 1	1 1	1	- []	H	CD	-	11	1 11	ASU		11	11	11	11	11	11 11			1	1	1	İ	ī	11	11	11 1	1
		, :		.:	:	:	:	:			:	•	:	:	:	: :			: .	: :	ME		*	. 2	:	:	:	: :			2012					:	:	:	:
			.,	:	:	:	:	:			:		:	: :		: :			:	: :			:	:	:	4	:	: :		da.	nn	66	î		33	:		:	
		•	:	:	:	:	20	:		inch	foot	Tool	Jane	: :	:	mile		inch	foot .	yard			, ,*	:	:	:	:	::		o to the state of the state of the			(-p.	د. چه		Troy	200	11	6
		Inch	Foot	Yard	Pole	Chain	Furlon	Mile		Samore	Tom Ko	8	Porch	Rood	Acre	Square mile		Cubic	Oranio	2 2			Gill .	Pint.	Quart	Gallon	Peck	Quarter		Decohan	Onnoa	Pound	Hundred	weight	Ten	Grain 7	weight	Ounce	the Country

INCHES AND 16THS CONVERTED INTO MILLIMETRES.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ins.	0	1	2	3	4	5	6	7	8	9	10	11	Ins.
	1 16 8 3 16 14 5 16 16 16 16 16 16 16 16 16 16 16 16 16	1·5875 3·1749 4·7624 6·3499 7·9374 9·5248 11·112 12·700 14·287 16·875 17·462 19·050 20·637 22·225 23·812	26.987 28.574 30.162 31.749 33.337 34.924 36.512 38.099 39.687 41.274 42.862 44.449 46.037	50·799 52·387 53·974 55·561 57·149 58·736 60·324 61·911 63·499 66·68-66 66·674 68·261 69·849 71·436 73·024 74·611	76·199 77·786 79·374 80·961 82·549 84·136 85·723 87·311 88·898 90·486 92·073 93·661 95·248 96·836 98·423 100·01	101.60 103.19 104.77 106.36 107.95 111.12.71 114.30 115.89 117.47 119.06 120.65 122.24	127.00 128.59 130.17 130.17 131.76 133.35 134.94 136.52 138.11 139.70 141.28 142.87 144.46 146.05 147.63 149.22 150.81	153.98 155.57 157.16 158.75 160.33 161.92 163.51 166.68 168.27 168.86 171.45 3 173.03 2 174.62 176.21	179-38 180-97 182-56 184-15 185-73 187-32 188-91 190-50 192-08 193-67 195-26 196-85 198-43 2 200-02 201-61	204 · 78 206 · 37 207 · 96 209 · 55 211 · 13 212 · 72 214 · 31 215 · 90 217 · 48 219 · 07 3 220 · 66 5 222 · 25 3 223 · 35 2 225 · 42 1 · 227 · 03	230 · 18 231 · 77 233 · 36 234 · 95 236 · 53 238 · 12 239 · 71 241 · 30 242 · 88 244 · 47 246 · 06 247 · 65 3 · 249 · 23 2 · 250 · 82 252 · 41	255 - 17 258 - 76 260 - 35 261 - 93 263 - 52 265 - 11 266 - 76 268 - 28 271 - 46 273 - 05 274 - 63 277 - 81	282-57 284-16 285-74 287-33 288-92 290-51 292-09 293-68 295-27 296-86 298-44 300-03 301-62 303-21	18 3 16 14 5 16 16 16 16 16 16 16 16 16 16 16 16 16

For metres move the decimal point three figures forward. Example.— $8\frac{3}{13} = 207.96$ millimetres,=20.796 centimetres,=2.0796 decimetres,=2.0796 metre

ALGEBRAIC SIGNS IN ORDINARY USE,

the numbers are to be taken together.	5 $(a-b)$; or 5 $[a-b]$; or 5 $a-b$; = 5 $a-bb$. a: b:: c:: $a = a$ is to b as c is to d. $\frac{a+b}{a+b} = (a+b) \div (c-d)$.	a', a'', a''' ; or b', b_{in}, b_{in} , accents denoting quantities of the same kind.	45 = 45 degrees; 20 = 20 minutes; 25 " = 25 seconds; 12 " = 12 thirds. The first letters of the alphabet, 4 , 5 , 6 .	are often used to denote known quantities, whilst the last, x, y, z, to denote unknown	quantities, the following letters are frequently used as follows:	d Differential (see & Variation.
+ Plus, addition, + positive,	Minus, tension, negative, subtraction.	= Equal to. ≠ Unequal to.	Greater than.	✓ Less than. ✓ Not less.	Multiplied by.	Is to (ratio). As; so is (ratio).
++-	+111	11 14	1A	V7:	×::	::

Base of hyperbolic ference to diameter circum-A Finite difference. Sum of finite Any angles. logarithms. quantities. = 3.14159.Ratio of Latitude. Radius. elas-(see Radius in degrees of arc = 57° · 2958. Gravity $= 32 \cdot 2$. f Functions. Do. minutes = Any number. Modulus of Calculus). Integration Coefficient.

Calculus)

ticity.

Perpendicular to.

Divided by.

Not parallel.

Parallel to.

Modulus.

M 33

Therefore.

Angle.

Because.

Right angle.

Triangle.

a raised to the power of a

 $a^n =$ a3 ==

 $a^2 = \alpha$ squared.

Square root.

Circumference, Parallelogram.

Square.

3437'.75. 3/Cube root.

a cubed.

equal n. number

arc

the

Sin.-1 a =

Sin. a =the sine of awhose sine is a.

"/ nth root.

Semicircle.

0 8

Circle.

Juadrant.

Infinity.

 a^2

as = 2

sin.a

 $(\operatorname{Sin}, \alpha)^{-1} = -$

Difference.

ALGEBRAIC FORMULÆ (from 'Algebra Self-taught,' Dr. Paget III, ES). ADDITION AND SUBTRACTION. n + (-m) = n - m = -(m - n); n - (+m) = n + (-m); m - (-m) = n + (+m) = n + m.MULTILATION. $a \cdot b = a \times b = ab; n (m + p) = n m + np;$ $(-m) \times (-m) = -m n; (+n) (-m) = -m n.$

DIVISION. $a \div b = \frac{a}{b} = a : b ; (-a) : (-b) = a : b = + \frac{a}{b} ;$

$$(-a):(+b)=(-a):(-b)=-\frac{a}{b};\frac{m\pm n}{p}=\frac{m}{p}\pm\frac{n}{p};$$

$$\frac{m}{n}=\frac{m}{p},n=m\cdot\frac{n}{p};\frac{p}{m}=\frac{p}{m}:n=\frac{p}{m}:m.$$

$$\begin{split} \frac{m}{p} &= \frac{m}{p}, & n = m, \frac{n}{p}; \frac{p}{mn} = \frac{p}{m}; n = \frac{p}{n}; m, \\ \mathbf{F}_{\text{RACTIONS}}, & \frac{d}{0} &= \frac{\alpha n}{n} = \frac{\alpha n}{0}; n = \frac{p}{n}; m, \\ \frac{\alpha}{b}, & \frac{n}{p} &= \frac{\alpha n}{b}; \frac{\alpha}{b}, \frac{p}{b} &= \frac{\alpha}{b}; \frac{n}{b}; \frac{\alpha}{b}; \frac{p}{b} = \frac{\alpha}{b}; \\ \frac{\alpha}{b}, & \frac{n}{p} &= \frac{\alpha n}{b}; \frac{n}{b}; \frac{n}{p} &= \frac{\alpha p}{b}. \end{split}$$

POWERS AND ROOFS. a^m . $b^m = (ab)^m$; $a^m : b^m = \begin{pmatrix} a \\ \overline{b} \end{pmatrix}^m$;

 $\begin{array}{ll} a^m \cdot a^n = a^m + n; \ a^m : a^m = a^{m-n}; \ (a^m)^n = a^{m-n}; \ (-a)^{2n} = a^{2n}; \ (-a)^{2n+1} = -a^{2n+1}; \ (a \pm b)^2 = a^2 \pm 2 \ c \ b + b^2; \ (a \pm b)^3 = a^3 \pm 3 \ a^2 \ b + 3 \ a \ b^2 \pm b^3; \ n^2 = 1; \ a^{-m} = \text{either 0 or } n; \end{array}$ $x^{-m} = \frac{1}{x^m}; x^m = \frac{1}{x^{-m}}; \overline{a^m} = \sqrt[m]{a}; a^m = \sqrt[m]{a};$

$$\frac{n_{\sqrt{a}} \cdot \sqrt{a}}{\sqrt{a}} = \sqrt{ab}; \sqrt{a} \cdot \sqrt{b} = \sqrt{\frac{a}{b}}; \sqrt{a}^{n} = (\sqrt{a})^{n};$$

$$\sqrt{\sqrt{a}} = \sqrt{a}; \sqrt{a} \cdot \sqrt{a}; \sqrt{\sqrt{a}} = \sqrt{a}; \sqrt{a}; \sqrt{a} = \pm b;$$

$$\frac{2n_{\sqrt{a}}}{\sqrt{a}} = \pm b\sqrt{-1}; \frac{2n_{\sqrt{a}}}{\sqrt{a}} + \frac{2n_{\sqrt{a}}}{\sqrt{a}} = + c;$$

Logarithms. $\log m n = \log m + \log n$; $\log \frac{m}{n} = \log m - \log n$; $\log x^m = m \log x$; $\log \sqrt[m]{x} = \frac{\log x}{\sqrt{x}}$.

Equations. Let $x \pm m = n$, then $x = n \mp m$. Let nx = m, then x = m

Let $x^n = m$, then $x = \sqrt[n]{m}$. Let $\sqrt[n]{x} = m$, then $x = m^n$. Let $\frac{x}{n} = m$, then x = n m. Let $\frac{n}{x} = m$, then $x = \frac{n}{m}$. Let $a^x = b$, then $x \log a = \log b$, and $x = \frac{a}{\log a}$. ALGEBRAIC FORMULÆ-continued. x: n = m: p; then xp = mn; EQUATIONS.

x:n=m:x, or n:x=x:m, then $x^2=m\,n$, and $x=\sqrt{m\,n}$; x:n=m:p, then x:m=n:p, and $(x\pm n):n=(m\pm p):p$

QUADRATIC EQUATIONS. $x^2 + ax = b$, then $x = -\frac{a}{2} \pm \sqrt{b + \left(\frac{a}{2}\right)}$ $x^{2n} + ax^n = b$, then $x = \sqrt{-\frac{a}{2} \pm \sqrt{b + \left(\frac{a}{2}\right)^2}}$;

x+y=s, and xy=p, then $x=\frac{s+\sqrt{s^2-4p}}{s}$ and $y=\frac{s-\sqrt{s^2-4p}}{s}$

CUBIC EQUATION. $x^3 + ax^2 + bx + c = 0$, becomes $x^3 + b_1 x_1 + c_1 = 0$, if we put $x_1 = x - \frac{a}{3}$; $b_1 = b - \frac{a^3}{3}$; and $c_1 = c - \frac{ab}{3} + \frac{2}{27}a^3$.

Cardan's solution of $x^3 + bx + c = 0$ is as follows:—

 $\alpha = \sqrt{\frac{c}{3} + \sqrt{\left(\frac{b}{3}\right)^3 + \left(\frac{c}{3}\right)^2} + \sqrt{\frac{c}{2} - \sqrt{\left(\frac{b}{3}\right)^3 + \left(\frac{c}{3}\right)^2}}$

This rule is correct if b is positive; or if b is negative and $\left(\frac{b}{3}\right)^3 > \left(\frac{c}{5}\right)^2$. If b is negative and $\left(\frac{1}{2}\right)^3 = \left(\frac{0}{2}\right)^2$, the equation has three true roots—

$$a = -2\sqrt{\frac{3}{2}}, \quad a = \sqrt{\frac{c}{2}}, \quad a = \sqrt{\frac{c}{2}}.$$

APPROXIMATION FORMULE. If x_1 approximates to $x^2 + ax + b = 0$, If b is negative and $\left(\frac{b}{3}\right)^2 > \left(\frac{c}{2}\right)^2$, the roots are real but imaginary.

then x (nearly) = $\frac{x_1^2 - b}{2x_1 + a}$

If x_1 approximates to $x^3 + a x^2 + b x + c = 0$, then $x = \frac{2x_1^3 + \alpha x_1^2 - c}{1 + \alpha x_1^2 - c}$

If x_1 approximates to $x^4 + a x^3 + b x^2 + c x + d = 0$, then $3x_1^2 + 2ax_1 + b$

$$x = \frac{3x_1^4 + 2ax_1^3 + bx_1^2 - d}{4x_1^3 + 3ax_1^2 + 2bx_1 + c}$$

ERRORS OF OBSERVATION. (Paget Higgs.)

Let n = number of observations;

" $d_1 d_2 d_3 \dots d_n =$ differences from the arithmetical mean;

S = the sum of the squares of the errors, i. e. $S = d_1^2 + d_2^2 + d_3^2 + \dots d^{n_2}$ Then, the mean error of a single observation

$$=\pm\sqrt{\frac{8}{n-1}}$$
.

the mean error of the result = $\pm \sqrt{\frac{8}{-1}}$

the probable error of a single observation

$$= \pm 0.6745 \times \sqrt{\frac{S}{n-1}}.$$

,, the probable error of the result = ± 0.6745

$$\times \sqrt{\frac{8}{n(n-1)}}$$
.

 $0.6745 = \frac{2}{3}$, for all practical purposes.

The probable error means that it is as likely that the actual unknown error is less than the probable error as that it is greater. INTEREST (SIMPLE AND COMPOUND), ANNUITIES, &C. Principal in £ sterling.

Number of years, integral or fractional. Amount of £1 at given rate per cent.

Interest; M = Amount; D = Discount; W = Present

A = Annuity to continue for n years. V = Present value of an annuity.

Simple Interest, I = Pnr; M = P(1 + nr); $W = \frac{1}{1 + nr}$; $D = P - W = \frac{r \cdot nr}{1 + nr}$ Pnr

Compound Interest, M = P R".

Annuities (Simple Interest), $M = nA(1 + \frac{n-1}{2}r)$;

$$= \frac{nA(1 + \frac{n-1}{2}r)}{1 + \frac{n-1}{2}r}$$

Annuities (Compound Interest), $M = \frac{1}{R-1}A$; R"-1

$$I = \frac{\mathbf{R}^n - 1}{\mathbf{R}^n (\mathbf{R} - 1)} \mathbf{A}.$$

DURATION, OR FIRST COST.

First cost of more durable article to be on an equality y =First cost of less durable article.

N = Number of years' duration of x. n = Number of years' duration of y. i = Rate of interest per annum in decimals of 100; for

example, 5 per cent. = .05. $x = y \frac{1}{(1+i)^N - (1+i)^{N-n}}$ $(1+i)^{N}-1$

Value of x at different rates of interest (y = 1).

Duratio	ation, Years.	x at Rat	x at Rates of Interest	est per Cent. per Annum.	Annum.
и	N	00	. 4	70	9
22	10	4.4604	4.3029	4.1539	4.0142
2	20	8 - 2491	8.0541	2.8783	2.7231
10	09	3.0162	2.6485	2.3644	2.1416
20	100	2.1237	1.8031	1.5926	1.4487
		-		STATE OF THE PERSON NAMED IN	-

INTERPOLATION (SUM AND DIFFERENCE),

a, b, c, &c. = The first term of the 1st, 2nd, 3rd, &c., orders Any term of an equidistant series of terms. of differences.

x = The distance of z from A. The term required.

$$x = 1$$
 the distance of z from A :
 $x = A + xa + x \frac{x-1}{2}b + x \frac{x-1}{2} \cdot \frac{x-2}{3}c$, &c.

Example.—Find the 30th term of a series of 1, 8, 27, 64, 125, &c.

Then x being = 29; A = 1; a = 7; b = 12; and c = 6, $z = 1 + (29 \times 7) + \left(29 \times \frac{28}{2} \times 12\right) + \left(29 \times \frac{28}{2} \times \frac{27}{3} \times 6\right) = 27000$.

61

FOR INTERPOLATING A TERM IN A SERIES.

a,b,c,d,&c.=A series of equidistant terms. n= The number of terms whose value is given. Then the required term will be found by reducing the equation that corresponds with n.

equation when n = 93 33 93 n - 2 " : 0=0

Example.—Given a, b, d, e, to find c; then as n=4, by reducing the equation n=4, $c=\frac{4(b+d)-(a+e)}{-(a+e)}$.

2 = 2

- d, &c.,

Given log
$$25.23 = 4019173 = b$$
 $4 (b + d) = 32167148$ $(bg, 25.22 = 4017481 = a)$ $62.25.25 = 4017481 = a$ $62.25.25 = 4017481 = a$ $63.25.25 = 4017481 = a$ $64.6 + a) = 8041784$ Required log $25.24 = 24125364 + b = 4020894$.

x = m N = N \div M; where M and N = the number of times the given rates are contained in the required rates; and m and n the times the required rates are contained in the given Conversion of Rates (Multiplier = x). rates less ectively; for M per N, or m per n. ARITHMETICAL AND GEOMETRICAL PROGRESSION First term.

Any term whose number is n from A. Number of terms between A and x. 11 11

Sum of all the terms.

Ratio by which the terms are to be multi-Difference between the terms. plied or divided.

ARITHMETICAL PROGRESSION.

$$\mathbf{A} = x - \mathbf{D} (n - 1) = \frac{2 \mathbf{S}}{n} - x,$$

 $x = \mathbf{A} + \mathbf{D} (n - 1) = \frac{2 \mathbf{S}}{n} - \mathbf{A},$

$$n = \frac{x - A}{D} + 1.$$

$$D = \frac{x - A}{n - 1}.$$

GEOMETRICAL PROGRESSION.

 $\frac{1}{2}n(A+x)$.

$$A = \frac{x}{R^{n-1}} = S - R(S - x),$$

$$x = AR^{n-1} = S - \frac{S}{R} - A,$$

$$R = \frac{x - 1}{\sqrt{x}},$$

$$S = \frac{Rx - A}{R}.$$

TRIGONOMETRY.

The supplement of an angle A = 180° -) = Coversin. A. Tan, A. = Cosecant A. Versin. Cosin. Secant Cotan. SUPPLEMENT OF AN ANGLE. = Sin. A. 180 180 180 180 180 180 Sin. Cosin. Tan. Cosecant Versin. Coversin. Cotan. Secant

For the more common angles, & denotes infinity. TRIGONOMETRICAL RATIOS. VALUES OF THE

180	0	- A	0	8	7_	8	63
150		2 2 3	,	- 13		- 1	2+√3
135	1 2 1	1 1	-1	-1	- 12	-	√2+1 √2
		- 12	8 - 1	1 1	8	1 2	60100
06				1100		2/10	- 10
09	> 2	7 7	>	1	- 23		
45	1	21/2		1	127		V2-1 V2
30	1 2	18 3	1 3	× 31	64 50	67	2-13
00	0	prof	0	8	-	8	0
	-:	:	:	ıt	:	:	sine
Angla	Sine	Cosine	Fangent	Cotanger	Secant	Cosecant	Versed sine

TRIGONOMETRICAL EQUIVALENTS.

- cosin. 0; $1 - \sin \theta$. Secant $\theta \times cosin. \theta =$ + tan. 2 0 = sec. 2 0 $\sin \theta = \cot \theta$; Versin. $\theta = 1$ Coversin. 0 = Cos. 0 $1 + \cot n.^2 \theta = \csc \theta$ Sin, $\theta \times \text{cosec}$. $\theta = 1$; Tan. 0 × cotan. 0 = $\sin^2 \theta + \cos^2 \theta =$ = tan. 0; Sin. 9 Cos. 0

EXPRESSIONS. TRIGONOMETRICAL

The diagram shows the different trigonometrical functions in terms of the angle A to the radius =

1802 06 Complement of an angle = its difference from TRIGONOMETRICAL Supplement

= coversin. versin. cosec tan. cot. sin. sin. sec. COS. EQUIVALENTS. cos.2) cosec cot. tan. sin. cos. cos. sin. COS. COS. cos. tan. cot. sin, sec. sin. rad sin.2 tan. cos. sin. cot. cot. sin. sec. cot. Tan. Tan. Tan. Sin. Sin. Sin. Cos. ,08.

See Table of logarithmic sines, tangents, &c. See Table of decimal equivalents of a degree.

TRIGONOMETRICAL FUNCTIONS,

Perp. Base Perp. Base. Hyp. - Base Cotangent = Cosecant = Cosine = Perp. Base Base Perp. Tangent = Sine = Secant

Hyp. - Perp. Hyp. Coversed sine = Versed sine =

AREAS OF PLANE TRIANGLES.

Area = $\sqrt{S(S-a)(S-b)(S-c)}$, 49+0 $S = \frac{1}{2}$ sum of the sides =

RIGHT-ANGLED TRIANGLES.

BC = Perpendicular. And A, B, and C the respective angles. Hypothenuse, Base.

Hypoth. = N Base2 + Perp.2

Sin.
$$A = \frac{BC}{AB}$$
. Cosin. $A = \frac{AC}{AB}$.

Tan.
$$A = \frac{BC}{AC}$$
. Cotan. $A = \frac{AC}{BC}$.

Secant
$$A = \frac{AB}{AC}$$
. Cosecant $A = \frac{AB}{AC}$

BG.

Versin,
$$A = \frac{AB - AC}{AB}$$
. Coversin, $A = \frac{AB - BC}{AB}$

$$BC = AB \cos B$$
,
 $AC = AB \sin B$.

A B = BC sec. B,

= A D SH. D.

$$B = \text{complement of } A = 90^{\circ} - A,$$

$$A + B + C = 180^{\circ},$$

PLANE TRIANGLES.

Value of any side AB; A, B, and C being the angles. A C sin. C BC sin, C

$$AB = \frac{\sin A}{\cos \ln B + \sin B} \cot C$$

cosin. A + sin. A cotan. C AC

AB= VBC+ AC-2BC × ACcos. C. A B = A C cosin. A + A C sin. A cotan. B. A B = B C cosin. B + B C sin. B cot. A.

Value of any Angle A.

Sin.
$$A = \frac{BC \sin C}{AB} = \frac{BC \sin B}{AC} = \sin (B+C)$$
.

Josin. A = sin. B sin. C − cosin. B cosin. C = − cos. (B + C). Sin. A = sin. B cos. C + cosin. B sin. C.

$$\cos A = \frac{AB^2 + AC^2 - BC^2}{2AB \times AC}$$

Tan.
$$A = \frac{BC \sin C}{AC - BC \cos C} = \frac{BC \sin B}{AB - BC \cos B}$$

Tan. A =
$$\frac{\tan B + \tan C}{\tan B \tan C - 1}$$
.

SPHERICAL RIGHT-ANGLED TRIANGLES,

RIGHT-ANGLED SPHERICAL TRIANGLES.

A C Base. Base. B C Perpendicular. And A, B, and C the respective angles. = cosin. A B + cosin. B C. Cosin. A C = cosin. A B secant B C = sin. BC + sin. A B. Cosin. A B = cosin. B C cosin. A C = tan. A C cotan. A B. Sin. B = cosin. A secant BC. Cotan. A B = cotan. A C cosin. A. Sin. A = sin. B C cosect, A B = sin. BC + sin. A. Sin. A C = cotan, A tan. B C. = cotan. A cotan. B. = cosin. A + sin. B. Sin. A B = sin. B C cosect. A Cosin. B C = cosin. A cosect. B Cotan. A = sin. A C cot. B C. Cosin. A = sin. B cosin. BC Let A B be the Hypothenuse. Sin. B C = sin. A sin. A B.

OBLIQUE-ANGLED SPHERICAL TRIANGLES,

NATURAL SINES, &c.

		-	-			-	-	=	_	-		-	-	-		=		-	-	*	-	-		-	=	-	-	=	-	-	-		-	-	-	-	-	-	-	-	-	_	-	-		-	-		_		_	_			
	1	06	80		200			855				83				79			11					10	1 :				89					*00		70		_		00 1	25	99	55	54	53	62	51	20	\$	48-	47	46	45	Deg.	,
Cosin.	-	1.00000	-99985	. 99999	00000			-99619	_	17000	eczes.	199097	02790.			.98163	97815			08078	.86293	•	.95630	•	O TERE	20000	69686.	. 93358	.92718	.92050	.91355	.001691	80870	10000	TOTAG	06780	8/462	80000	11/08.	.84802	183867	\$0678·	81915	80805	·79864	·788(.1.	.777715	.76604	.75471	.74314	.73135	.71934	.70711	Sine,	
Vrsn.	-	0.	.00015	-00061	-00107			·(0381	-01.548	-0004	06/100	·00973	19910.			.01837	·02185		000000	022370	1034(1/		.04370	.04894	.05440	00000	18090.	.06642	-07282	.07950	.08645	09860	10101	100001	117705	COLUMN	10007	10001	14283	26101.	16133	1/096	18082	19098	.20136	66112	22285	23396	24529	25686	.26865	28066	29289	Covn.	
Secant.	1	1.00000	1.00015	1.00061	1.00187	1.00044	1 00244	1.0(385	1.00551	1.00751	TOOLS T	I-00983	1.01947	1.01540	2 01010	7.1810.1	1.02234	1.09630	1.08061	100000	1.09028	1.04030	1.04569	1-65146	1.05769	1.00410	1.00918	GIIIO.T	1-07853	1.08636	1.(9464	1.10838	1.11260	1.19989	1.19957	1.14998	7	1.10200	1 10003	816/1.1	1.19236	779 7	1.22077				1.28676	1 20541	1.85201:-			1.39016	1.41421	Cosec.	-
Cotan,	1	Infinite,	0067.79	28-6363	19.0811	14.8007		1004.11	9.5144	8.1448		#011. /	6.3138	5.6712			4.7046	4.3315	4-0108	0.7501				3-0777	2.9049	9.7475			2.4751	2.3559	2.2460	2.1445	2.05(3		1.88.7	1.8040	1.7901	1.6640	1.0049	1.60003	1.0233	1.4626	1.4281	1.8764	1.3270	1.2799	1.2349	1-1918	1.1504	1.1106	1.0724	1.(355 1	1.00001	Tan.	
Tan.	1	0.	.0I746	.03492	.05241	.06993	00000	00140	.10510	.19978	TA ACIETY	10011	.15838	.17633	10490	12100	.21756	-23087	.94933	. 9670E	20000	0/027	82002	.82492	.84433	*86807	00000	000000	•40403	.42147	.44523	.46631	•48773	.50953	.63171	55431	.67795	98009.	00.00	105501	14640	104/0	12007	100Z/.	00001	.78129	80878	.83910	.86929	.90040	.93252	69996	1.00000	Cotan.	-
Cosec.	1:0	Innuite.	1867.10	28-6537	19-1073	14.8356			8.296.6	8-2055			6.3925	5.7588	K. D400		4.8097	4.4454	4-1836	2.2697	00000	0.0290		3.2361	3.0716	9.0938		4000				2.3662	2.2812	2.2027	9.13.1	2690-6			1.0071	1.000.1	10001	1.7494	10501	1.0010	0100.1	1.6243	0680.1	1.5557	1.5243	1.4945	1.4663		1.4142	Secant.	
Cover.	00000	00000.1			.94766	.93094	01001	10716	-89547	.87813	000.00	00 99	84357	.89635	. 00010	61600	60767.	.77505	-75808	.74110	COTT.	12436	.70763	86069	-67443	.65798	64160	COLLO	65253	17,609.	•59326	.57738	.56163	.54601	.53053	.51519	.50000	·48496	47008	.45526	14000	49649	24027	17711	STORO.	. 38434	89078	17708	.84394	33087	.31800	.30534	.29289	Versin.	-
Sine.	100	3	01/45	.03480	1.05234	·06976	01700.	00110	10453	12187	19014	liger.	15643	.17365	10001	Toner	16702	.22495	.94199	.05889	20002	\$001Z	123237	-30902	. 32557	.84909	.95097	00000	194/6	23073	40674	.45562	.43837	•45399	.46947	-48481	.50000	.51504	60000	. 54484	55010	. KTOKO	00000 .	00100	00100	99000	02932	64279	65606	66913	68200	69466	70711	Cosin.	
Deg.	9	> 1	1	27	00	4	(34	0 0	9	7	. 0	0	6	10	-	17	12	133	14	10	101	217	7	18	19	20	6	100	77	23	24		_	27					30			-	200	_	-				_			_	45		- Contraction
																									_							-		-			-		_			-	-		_	-	-	-	-	-	-	-	_	-	-

THEIR CORRESPONDING ANGLES WITH THE MERIDIAN. AND POINTS OF THE COMPASS

South.					C hr W	3			200111	5.5. W .			o tir has o	3. W . Dy D.			711	S.W.			C 117 1. 1. 117	S.W. by W.			TAY CO TAY	VV .CS. VV				W. by S.			107	. W.	
Sol					O Las D	D. Dy E.			200	D,D.E.			or or	S.E. Dy D.				ж. Э.Е.			O TO	S.E. by E.			73.0 17	E,3.E.			,	E. by S.		_	Ē.	4	-
North.						N. by W.				N.N.W.				N.W. by N.				N.W.				N.W. by W.			***************************************	W.N.W.				W. by N.				W.	
Non						N. by E.				N.N.E.				N.E. by N.				N.E.				N.E. by E.				E.N.E.				E. by N.			1	स्र	
Angle	-	- :	48	37	26	15	က	16 52 30	41	30	18	1-	99	45	33	22	42 11 15	0	48	37		15	က	52		30	18		99	45	33	22	87 11 15	0	
Points.	1		4	-4et	ostes	7	14	4	1.45	2	24	2.4	23	co	34	3	(C)	*	44	43	4	5	24	5.4	57 848	9	₹9	49	9	2	14	42	1-	00	

DECIMAL EQUIVALENTS OF A DEGREE.

	Min.	0	-	07 0	က	4	2	9	2	00	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	223	53	30	31	32	33	34	35	Min.
~	20,1	013	0305	0.4	0638	802	972	13	05	472	638	80	972	138	30	17	63	80	100	13	.33022	.34722	.36388	380	397	13	305	447	4638	802	972	13	302	472	63	.58055	972	2011
Gallott, Esq.)	4011	.01111	277	444	611	-1	44	.11111	277	444	111111	111	944	111	.22777	144	911	7-	9-14	Ξ	.32777	14	10	3777	944	4111	1277	444	4611	777	94	11	22	.54444		12	94	4011
J.	30''	0	25	†16	10	12	99160.	.10833	.125	16		15	91		.225	1444	10	1 town	pund		.325	116	.35833	20	proof	40	25	11	45	25	91	.50833		.54166	10	.575	.59166	2011
(Communicated by	2011	055	222	388	555		88	055	222	388	.15555	.17222	80	55	22	.23888	.25555	.27222	.28888	.30555	.32222	.33888	.35555	0.7	.38888	0	222	388	55	122	888	055	22	388	555	722	.58888	20,1
(Commu	101	.00278	6	361	.05278	.06944	20	27	194		527	169	198	.20277	-		.25277				.31944	61	.35277	-	.38611	02	.41944	.43611	52	69	.48611	.50277	6	36	67	69	9	10,,
	1,0	000000	19910.	33	.05	99990.	.08333	-	-	333	10	.16666	18333	.5	.21666	. 23333	.25	.26666	.28333		.31666	333		.36666	•38333	.4	.41666	• 43333	.45	.46666	• 48333	20.	.51666	333	10	.56666	.58333	1/0
	Min.	0	-	67	co	4	10	9	1	- 00	6	10	=	12	133	14	120	16	17	8	16	20	21	22	23	24	25	26	27	28	29	30	31	33	333	34	35	Min.

continued.

		_	_				_		_		_	-	_	_		-	-	-		-	_	_	_	1	-	7
Min.	36	37	38	39	4.0	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	56	57	58	59	Min	-
.20%	•61388	.63055	.64722	.66388	.68055	.69722	.71388	7305	.74722	7638	•78055	7972	.81388	*83055	.847.22	.86388	.88022	.89722	.91388	.93055	.94722	.96388	.98055	.99722	2001	
401	-	6277	404	6611	7.0	.69444		7277	7444	7611	T.	-27	-	1	22		1	200	-	1-		61			4011	-
307	1 0		64			16	83		7416	100		57	803	25	co	858		prof.	.90833	01	70.64	.95833	100	0	3077	-
2011	100	22	00	55	22	688	70	222	388	7555	25	50	355	22		55	12	35		22	50	55	72	30	2011	
10,1	120	: 1	361	16	694	11989.	1027	1194	1361	527	7694	7861	8027	8194	8361	8527	869	8861	902	61	36	52	6.9	11986.	101/	
1,0	9.	< 0	63333	3 10	666	.68333		716	.73333	2	999	.78333		816	·83333		99998.	200		91666	333	10	666	.93333	0,,0	
din.	26	27		20	40	41	4.6	43	44	45	46	47	48	49	50	10	52	57.5	54	5 10	26	1	000	59	Min.	

APPROXIMATION ("TRIAL AND ERROR") FOR ANY POWER THE SQUARE. ABOVE

the number out of which the root is to be extracted. Index of the root required. R = Root required. IIN = " 11 2

 $\mathbf{R} = n \frac{\mathbf{N}(r+1) + n^r(r-1)}{\mathbf{N}(r-1) + n^r(r+1)}.$

The process is to be repeated, taking the results of the first approximation for the second trial, &c.

DIFFERENTIAL AND INTEGRAL CALCULUS.

Paragraphs which refer to the Differential Calculus are in italias; those which refer to the Integral Calculus are in full-face from the refer to the in full-face from The object of the Differential Calculus is to find how the indipinitely small changes in some VARIABLE quantity after at each instant the

The object of the Integral Calculus (the reverse of the Differential) is to ascertain from the ratio of indefinitely small changes in two or more magnitudes the function (f) which governs the changes. value of a quantity DEPENDENT upon it.

Constant quantities, which retain the same value throughout the NOTATION.

Investigation, are usually represented by the early letters of the alphabet—a, b, c, e, &c. Variables, to which different values may be assigned, by the later letters, u, v, v, x, y, z. The latter are frequently (but not invariably) used to denote the following:

u= one or more functions; sometimes u= length; v= volume; x= absclssa; y= ordinate; z= surface, or area; d= differential, or the sign of differentiating; f is the sign of integration of the quantity that follows it: f/f = successive integration; $\int_b^a \text{denotes that}$

RULES FOR DIFFERENTIATION AND INTEGRATION integration is to be within the limits of α and b.

Rule for Differentiation of any power of the variable x.—Deduct 1 from the index of the variable, and multiply by the original index, or $dx = n x^{n-1}$, dx. For example, $dax^3 = 3 ax^{3-1} = 3 ax^3$, dx.

Rule for Integration.—Add 1 to the index of the variable, and divide by the new index, *or/x** $d\mathbf{x} = \frac{x_n + 1}{n + 1}$. For example, / $3 \mathbf{a} \mathbf{x}^2 d\mathbf{x} - \mathbf{a} \mathbf{x}^2$.

A constant, if a coefficient to a variable, is unchanged in differentiating; thus d, a $x^3=3$ a x^2 , d x.

If the constant be a term, it disappears; thus $d(a + x^3) = 3x^2 \cdot dx$. Constant factor may be removed from the process of integration, thus, $f = a \cdot dx$. A constant term must reappear in integration in the form of an arbitrary constant, thus, $f = x^3 + C$.

f and d neutralize each other, thus, f. dx = x.

Except when n = -1; then $\int x - 1 dx = \int \frac{dx}{x} = \log_e$

Radical expressions must be represented by fractional indices, thus CALCULUS—continued. INTEGRAL AND DIFFERENTIAL

 $\frac{1}{x}$ as $x^{-\frac{1}{2}}$; sin. ^{-1}x , cos. ^{-1}x , denote the arc whose sine or cosine, &c., i x x. Ax must be expressed as x3;

	INTEGRALS.	$\int_{0}^{1} dx = x + C$ $\int_{0}^{1} dx = 1 + C$ $\int_{0}^{2} dx \cdot dx = x^{n} + C$ $\int_{0}^{2} dx \cdot dx = 3x^{2} + C$ $\int_{0}^{2} dx \cdot dx = 3x^{2} + C$ $\int_{0}^{2} dx - \frac{1}{2} dx = -ax - \frac{1}{2} + C$ $\int_{0}^{1} dx = -ax - Ax $	
icients.	and du =	$\begin{array}{c} 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ 0. $	are of the care
Differential Coefficients.	then $\frac{du}{dx} =$	0. 1 2x 2x 2x 2x 2x 2x 2x 2x 2x	o the moder
Differ	If u =	a. a	-

m is the modulus of the system of togarthems must $\epsilon = 1.7182816$.

VE ENGINEERING FORMULAS.

DIFFERENTIATION OF VARIOUS EXPRESSIONS OF v, y, w, &c., functions of the variable x. DIFFERENTIAL AND INTEGRAL CALCULUS-continued

ı	then $\frac{d^n}{d^x} =$	$\frac{dv}{dx} + \frac{dy}{dx} - \frac{dw}{dx} \&c.$	$v \frac{dy}{dx} + y \frac{dv}{dx}$	$[(v, w, \frac{dy}{dx} + w, y \frac{dv}{dx} + v, y \frac{dw}{dx})] + v^3$	$n.y^{n-1}\frac{dy}{dx}$	$\frac{n}{m}y^{\frac{n}{m}-1}\frac{dy}{dx}$	$-ny^{n-1}\frac{dy}{dx}$	$\frac{d}{dy} \cdot \frac{dy}{dx}$
S OF THE PROPERTY OF	If u =	v + y - w &c.	v.y	$\frac{v.y.w}{\frac{y}{v}}$	yn	n h	y-u	f (y)
		Sum of several functions	functions }	than two func-	Power	Fractional power	Negative power	Function of a function

Successive differentiation is the process of differentiating successive differential coefficients of an original function. SUCCESSIVE DIFFERENTIATION, Thus if u = axs

42h ,, = $\frac{d * u}{d * u} = 190 a x$ 5th ,, = $\frac{d * u}{d * u} = 190 a * c$	3 u, &c., the indices are sim
4th 5th	above da u, a
1st coefficient = $\frac{du}{dx} = 5ax^{4}$ $2nd$, = $\frac{d^{2}u}{dx^{2}} = 20ax^{3}$	In the numerators given in the example above da u, da u, ga, the indices are sim

successive differentiation. du

hld

If
$$u = a^x$$
; then $\frac{d^n}{dx} = \log_e a_n a^x \frac{d^3 u}{dx^2} = (\log_e a)_2 a^x$; $\frac{d^3 u}{dx^3} = (\log_e a)_2 a^x$; $\frac{d^3 u}{dx^4} = (\log_e a)_4 a^x$; &c.

The energy is the energy when $a^2 = a^2 = a^2 + a^2 + a^2 + a^2 + a^2 + a^2 = a^2 + a^2$

If
$$u = \log_{\epsilon} x_1$$
 then $\frac{du}{dx} = +\frac{x_1}{x_2} \frac{dx_2}{dx_3} = -\frac{1}{x^2} \frac{d^3u}{dx^3} = -\frac{1}{x^3} \frac{d^3u}{dx_3} = +\frac{1}{x^3} \frac{3.3}{4x^3} = +\frac{1}{x^4} \frac{3.34}{x^5} = +\frac{1}{x^6} \frac{3.34}{x^5} = +$

x3 :

$$d_{xx} = -\frac{x_1}{x_1}; d_{xx} = +\frac{x_5}{x^5}; \delta c.$$
If $u = \sin x$; then $\frac{d_x}{dx} = +\cos x$; $\frac{d^2u}{dx^2} = -\sin x$; d^2u

AND INTEGRAL CALCULUS -- continued. FORMULÆ FOR SUCCESSIVE DIFFERENTIATION. DIFFERENTIAL

= number of times to which successive differentiation is to be carried.

then $\frac{d^{N}u}{dx^{N}} =$	$(-1)^{N} n (n-1) \dots [n-(N-1)] x^{n-N}$ $(-1)^{N} n (n+1) \dots n + (N-1)^{n-(n+N)}$ $(\log_{\epsilon} a)^{N} a x$	$n^{N} \sin (nx + \frac{1}{2}N\pi)$ (-1) ^N -1 (N-1) (N-2)3.2.1.x-N	$2(1-x) - (x+1) N(N-1) (N-2) \dots 3.2.1$
If u =	x^n x^{-n} x^n	sin. nr log. x	1 + 3

TAYLOR'S AND MACLAURIN'S THEOREMS.

Let y be a function of x which it is possible to develop in a series of ascending powers of that variable; and suppose that h = any indeterminate quantity, $y=\Lambda+Bx+Cx^2+Dx^3+Ex^4+\delta c.$; and when x becomes x+h, let y=y', dy, d^2y , h^2 , d^2y , h^2 , d^2y , h^3 , d^2y , h^3

$$y' = y + \frac{dx}{dx}h + \frac{d^2y}{dz^2} \frac{h^2}{1 \times 2} + \frac{d^2y}{dz^3} \frac{h^3}{1 \times 2 \times 3} + \frac{h^3}{dz^4} \frac{h^4}{1 \times 2 \times 3 \times 4} + \&c.$$

$$y' = y + \frac{c_3}{dx}h + \frac{c_3}{4x^2} \cdot \frac{1}{1\times 2} + \frac{dx^3}{dx^3} \cdot \frac{1}{1\times 2\times 3} + \frac{dx^4}{dx^4} \cdot \frac{1}{1\times 2\times 3\times 4} + \frac{4}{\kappa c_{i,j}}$$

 $y' = (y)_0 + \left(\frac{dx}{dy}\right)_0 x + \frac{1}{1\times 2} \left(\frac{d^3y}{dx^2}\right)_0 \cdot x^2 + \frac{1}{1\times 2\times 3} \cdot \left(\frac{d^3y}{dx^3}\right)_0 x^3 + k\tau$

x = hyp. log. x, - hyp. log. x, = hyp. log. x, x, or "Maclaurin's Theorem." J'X1 dx

f x.dy = xy - f y.dxINTEGRATION BY PARTS.

SIMPSON'S FORMULA OF QUADRATURES.

To find the approximate value of any integral of the form $\int z \cdot dx$, where z is any function of x. is the product of the third part of the equivalence, by a sum component of the condition of the product of the cut in the part of the equivalence, by a sum component of the condition of the co Find n values of z, corresponding to n equidistant values of x; such

-continued. CALCULUS-MAXIMA AND MINIMA. INTEGRAL DIFFERENTIAL

has no a quantity increases continuously, and then decreases, its values, at the limits of increase or decrease, are the maxima or minima it decreases (or increases) continually maxima or minima. If respectively.

 $\overline{dx} = 0.$ The function u is a minimum or maximum when

 $\frac{d^2 u}{d^2}$ be a negative quantity the If the second differential coefficient

value of u is a maximum. nep JI

be positive, u is a minimum.

(in a curve whose equation = 0 or $= \infty$. point of contrary flexure d2 y f(xy) = 0) occurs when $\frac{1}{dx^2}$

APPLICATION OF THE PRINCIPLES AREA. OF THE CALCULUS TO INCREASE IN SIMPLE EXAMPLE OF THE

x = Radius = 12.

= Rate of increment of x. Area of figure.

dia. dz = Rate of increment of area portion in = hatched

gram

Differential Calculus.—A figure increases at the rate dx = 2 when x=12; at what rate dx does the area increase when $z=ax^2$ and $a = 4\pi = 1.5708$? $dz = 2ax^2 - 1 dx = 2ax. dx = 75.4$.

to in Integration.-A figure is found Find the f, 2ax 1+1 = 2ax. qz dx the ratio in Example increase

Nore. -In this and other diagrams given to exemplify the principles of the calculus the increments are shown as having considerable magnitude, otherwise they cannot be shown in diagram; but properly the increments should be indefinitely small. CALCULUS—continued. AND INTEGRAL DIFFERENTIAL

$$dx^{n} = nx^{n-1}dx; \quad fx^{n}dx = \frac{x^{n+1}}{n+1}.$$

SIMPLE EXAMPLE OF THE INTEGRA-TION BETWEEN FIXED LIMITS. Let x and y be any co-ordinates. b and α = the greatest and least values of x. $\begin{pmatrix} v \\ y \end{pmatrix} dx = the$ area of the figure cdef.

AREAS CALCULUS TO AND CENTRES OF GRAVITY. OF THE APPLICATION

the Area of one of the layers parallel to from centre of layer plane: A.B. plane A.B. Jo Distance

Thickness of one-layer. Volume of the whole body = sum of volumes of the layers $= \int z dx$.

the of B A dz

plane A B = $\int \frac{x z d x}{V}$.

Distance of centre of gravity from

APPLICATION OF CALCULUS TO CURVES.

Let AB, A c, be the axes of the co-ordinates of the curve, φ and y the co-ordinates $\varphi(x,y) = 0$ — the equation of

Tan. $\theta = \frac{dy}{dx}$.

the curve.

DIFFERENTIAL AND INTEGRAL CALCULUS—continued,

7.1414. 40. say 20. Any abscissa corresponding with Major axis of an ellipse ditto Minor axis of Any ordinate Let A

a2 Then the equation of an ellipse being $y^2 =$

 $-y^2 = 0 = 10x$ a2 x2 $\alpha^2 A x$

the differential of which is
$$10 - \frac{x}{2} - 2y = \frac{20 - x - 4y}{2}$$
, $dy = 20 - x$

= 2.04. = 16.22520 dy - - .491; also Length of tangent T = y 44

ength of tangent
$$T = y \sqrt{1 + \left(\frac{dx}{dy}\right)^3} = 16.235$$

subtangent $t = y \frac{dx}{dy} = 14.563$
normal $N = y \sqrt{1 + \left(\frac{dy}{dy}\right)^2} = 7.955$

" subnormal
$$n = y \frac{dy}{dx}$$
 = 3.506

1 =

6

7.955

Note. -dx, dy, &c., in this and in the preceding diagrams are shown as having considerable magnitude, but properly they should be indefinitely small .491 = tan. 260 10' dx dy Tan. of angle of T with t =

DIFFERENTIAL AND INTEGRAL CALCULUS continued.

$$dx^n = nx^{n-1}dx;$$
 $\int \mathbf{x}^n d\mathbf{x} = \frac{\mathbf{x}^{n+1}}{n+1}.$

SIMPLE EXAMPLE OF MAXIMA AND MINIMA.

np

u is a minimum or maximum when $\frac{1}{dx} = 0$.

 $(Lx-x^2)$ (see page 171); find the point at which the strain is a maximum. In formula $S = \frac{1}{2DL}$

2DL is the same in all cases, and therefore a constant;

substitute a for it; and u for S; or $u = a Lx - ax^2$; $-2ax^{2-1} = aL - 2ax$. $= = \alpha \Gamma x$ np

Make $\frac{du}{dx}$ (or a L - 2ax) = 0;

then 2ax = aL; or 2x = L; or $x = \frac{L}{2}$; or the point of

maximum or minimum value is at half the span. d^2u

is negative, u is a maximum; but if positive, u is a minimum. When the second differential coefficient $\frac{1}{dx^2}$

 $\overline{dx^2} = -2a$; therefore u is a maximum

EXAMPLE OF THE APPLICATION OF THE CALCULUS TO GIRDERS.

as a function of a variable x, the normal shearing force at that point will be expressed by the differential coefficient of In any girder (whether straight, curved, continuous, or discontinuous) if the bending moment at any point be expressed the function.

Thus, if the bending moment at any point be expressed by $M=W\left(2\,\alpha x-\alpha^2\right)$; the normal shearing force at that point

 $\frac{1}{dx} = W(2a - 2x) = 2W(a - x).$

CIRCLE THE OF PROPERTIES

side of an inscribed square, degrees × .017453 radius. side of an equal square. .000290888 .000004848 0.01745329. circumference, circumference. area of circle, area of circle. area of circle. diameter. number of Arc of 1° to rad. Arc of 1" to rad. to rad. .886226 3.14159 6.28318 .31831 *7854 1707. 3.5449 1.1283 Arc of Circum ference Circumference Length of arc Diameter² Diameter Diameter Diameter Diameter Radius

CIRCUMFERENCE) radius = 570.2957795. OF DIAMETER Degrees in arc whose length RATIO (OR H OF VALUE

To

+	
950	
327	
1338	
626	
3384	
1932	
1289	
2653	
159	
3.14	
11	
F	

1		1
= 0.4501582 = 0.1013212 = 0.5641896	n 1.	1.7726 3.5449 5.3174 7.0898 8.8623 10.6347 12.4072
$\frac{\sqrt{2}}{1} = 0.450158$ $\frac{1}{1} = 0.1013212$ $\frac{1}{1} = 0.564189$	n	9.8696 4.9348 3.2898 2.4674 1.9739 1.6449
9	$\pi^2 \times n$.	9.8696 19.7392 29.6088 39.4784 49.3480 59.2176 69.0872
$\sqrt{\frac{2}{\pi}} = 4.44288$ $\sqrt{\frac{2}{\pi}} = 0.79788$ $\sqrt{\frac{\pi}{2}} = 2.2214415$ $\sqrt{\frac{\pi}{2}} = 1.2533$	# i #	.31831 .63662 .95493 1.27324 1.59155 1.90986 2.22817
1499	#! &	3.14159 1.57080 1.04720 1.785398 628318 523599 448798
$\begin{array}{l} \text{Log. } n = 0.4971499 \\ \frac{360}{\pi} = 114^{\circ} \cdot 69156 \\ \frac{\pi}{360} = 0.00872664 \\ \frac{1}{\pi^2} = 0.1013212 \\ \frac{\pi}{\sqrt{\pi}} = 0.5641896 \end{array}$	π×n.	3.14159 6.28318 9.42478 12.56637 15.70796 18.84956 21.99115
10g. 360 360 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	'n.	11010141001-0

59 69 78

1.27324 1.59155 1.90986 2.22817 2.54648 2.86479

25.13274 28.27433

459285

8809. 39.4784 3480 .2176 .9568

.785398 .523599 .628318 •448798 392699 349065

10.6347 12.4072 1796

14 1.9739 1.6449 1.4099 3.2898 2.4674

.2337

CIRCLES. OF SEGMENT

Versed sin.

Any ordinate Distance of ordinate from centre. Radius.

or diameter X2 - (R -Ħ

$$r = R - \sqrt{R^2 - C^2}.$$

11

$$X = \sqrt{R^2 - (0 + R - V)^2}$$

(0.626 V)2 + Area of segment =

CONIC SECTIONS.

Section on plane A B, the line of axis forms a TRIANGLE.

Ditto on C.D, parallel to the base forms a CIRCLE.

slope of the cone forms a Ditto on EF at an angle to Ditto on G H, parallel to the the base forms an ELLIPSE. PARABOLA. Ditto on J K, cutting the side at an angle less than parabola forms a HYPERBOLA.

CONIC SECTIONS.

Diagrams and Formulæ corresponding with the Symbols are given in succeeding pages.

and the second s	DEFINITION.	Major Axis (or Transverse Axis) is the right line that passes through the vertices of a curve (First 1.9.3)	MINOR AXIS (or Conjugate) is a right line passing through the centre of the major axis at right oracle of the major	A and a are infinite; the symbols have therefore been adopted to express the height and 4 the best reconstruction.	SLANT HEIGHT of the portion of the cone that affects the figure (see Diarrams 3.4.	and 5). DIAMETERS OF THE CONE at the respective	Vertices of the figure (Figs. 4, 5, and 6). DIAMETER OF CURVE is any straight line that basses through the centre of the		Solve of the former of the first state of the first said to be conjugate to another when it is said to be to the former of the first state of the	DISTANCE OF FOCI APART (Figs. 8 and 11). FOCAL DISTANCE, or distance of the focus	from the nearest vertex (Figs. 8 and 11). DISTANCE OF VERTEX FROM DIRECTRIX.— The directrix is a first of the control of the c	the major axis, and is in such a position that f:g:V:G (Fig. 9).	LATUS RECTUM (or Principal Parameter)	passing through the focus, it is a double ordinate, which is a third proportion to	the axis; or A: a:: a: L (Fig. 8).
	Symbol.	A	3		В	C and c	Q	*	3	وسئة جلسي	8	0	. Н	F	

Conic Sections—continued.

DEFINITION.	PARAMETER.—A third proportion to any dia- meter and its conjugate: or D: d:: d::	(Fig. 7).	axis subended by the normal (Fig. 10). Normal.—A line drawn at right angles to a	tangent from the tangent point to the trans- verse axis (Fig. 10).	SUBTANGENT.—Into part of the danserse axis that is subtended by the tangent	TANGENT.—A right line which touches the curve, and, being produced, does not cut it. The length of the tangent is limited it.	between the point of confact and the transverse axis. RADIUS OF CURVATURE at any point of the	RADII VECTORES.—The radius vector is a straight line drawn from the focus to any	point in the curve (Fig. 11). Traced Angle.—The angle formed by the radius vector and the transverse axis	(Fig. 11). ABSCISSA.—The portion of the diameter which is between the ordinate and the	ORDINATE.—Any line parallel to the tangent of a diameter, and drawn from that dia-	meter to the curve (kig. 12). Distance From Centre of curve to any ordinate (Fig. 12).	Contract of the Contract of th
Symbol.	2	= 8	2 Z		45	T	R	ν, υ	M	8	'n	42	

CONIC SECTIONS - continued.

Symbols used in the Definitions Formulæ. Diagrams illustrating the

	HYPERBOLA.	V B2 - Cc	√ <u>00</u>	V A2 + 03	a3+c	a³ ÷ C	$\sqrt{A^2 - a^2 + d^2}$ $\sqrt{A^2 - a^2 + D^2}$	B	F-A	$\int_{2}^{3} \div \left(\frac{a^{2}}{2 \Lambda} - f \right)$	g V ÷ f a² ÷ A	$\sqrt{y^3+t}$	2 - A - 4 - 1 - 4 - 2 - 2	Ny3+t3	$(x-f)^3 + y^3$	$\frac{4 \sqrt{(V v)^3}}{A \alpha}$		$\frac{A(\alpha \pm \sqrt{\alpha^2 + 4y^2})}{2\alpha}$	$\frac{a}{A}\sqrt{x(A+x)}$	A + 8,	
POCK ET-BOOK	ELLIPSE.	V B2 + Cc	NG0	NA2-a2	0.7	್ಠ ೮	$\sqrt{A^2 + a^2 - d^2}$	B	A - F	$f^2 \div \left(\frac{a^2}{2A} - f\right)$	$gV \div f$ $a^2 \div A$	$\sqrt{y^2+t}$	A ² - z	$\sqrt{y^3+t^2}$	$\sqrt{(x-f)^2+y^2}$	$\frac{4\sqrt{(\nabla v)^3}}{A\alpha}$	$y \div v$	$\frac{A(a\pm\sqrt{a^2-4y^2})}{2a}$	$\frac{a}{A}\sqrt{Ax-x^3}$	A - 2 - 2	1 1 1 1 1 1 1 1 1
MOLESWORTH S	PARABOLA.	a2 B	V Ca A	02.1 a3	:	$\sqrt{\frac{a^3 \mathrm{B}}{\mathrm{A}}}$:	:	y2 + 4x	₩,	₽	$\sqrt{y^3 \div t}$	28	V y2 + t3	x + f	:	N÷ €	A 393	a Nx		-
638 MOLES		Major axis	Minor axis	Slant height		Diam. of cone at vertices	Conjugate diameters	{Distance of foci}	Focal distance	{ Distance of } directrix	Offset to ditto	Subnormal Normal	Subtangent	Tangent	Radius vector	Radius of curvature	Sine of traced angle	{ Abscissa from } a vertex}	Ordinate	{ Distance of y} { from centre }	
9	-	*,	*	8	O	0	Q	<u></u>	t	8	DH.	Zzc	7	H	2	4	*	8	2	55	I

Loci. (Paget Higgs.)

in a given direction, and so as to pass The locus of a point which through a given position. Straight Line. -

Circle.—The locus of every point in a given plane which is at a given distance from a given point in that plane. The given point is the centre.

Ellipse.-The locus of every point in a plane points in that plane is equal to a given length. This locus is called the clipse; the two points its such that the sum of its distances from two given

Hyperbola.—The locus of every point in a plane so situated that the difference of its distances from two given points in that plane is equal to a given Parabola.—The locus of every point in a plane which is equally distant from a given point and a given straight line in that plane. The point is the focus; given line the directrix. It is useful to note that the square root of any number may be constructed as the third side of a right triangle, of which the hypothenuse and one leg are respectively the halves of the numbers next above and next below the given number. Also that Euclid's Pons Asinorum appears more usefully stated as that the square of a line is equal to the sum of the squares of its projections on two rectangular axes.

INES AND HYPERBOLA, STRAIGHT INTERSECTING OF ELLIPSE, CONSTRUCTION PARABOLA, BY

straight lines points in divisions may give Any convenient number of equal taken, and the intersections of the diagrams will in indicated the curve. be 88

ELLIPSE.

Divide half mior and half major axes. Intersecting lines radiate from end of minor axis.

HYPERBOLA.
Divide height and base. Intersecting lines radiate from end of major axis and vertex.

PARABOLA.

Divide height and base. Intersecting lines vertical, and radiating from vertex.

TO CONSTRUCT AN ELLIPSE FROM TWO CRICLES ELLIPSE—continued.

The intersection and vertical lines drawn from any radia Describe two semicircles whose diameters are respectively the length of the major and minor axes. line will give a point in the curve. horizontal the

TO CALCULATE THE RADIUS OF A FALSE ELLIPSE WITH 3 CENTRES.

R = Large radius. r = Small radius. x = Semi minor axis. z = Semi minor axis. y = Distances of centreof r from minor axis. $R = x + y^2 - (x - r)^2$ $R = x + 2(x - r)^2$

ELLIPSE—continued

To draw an Ellipse:

= semi-transverse axis a circle, cutting the transverse axis at . F F' are the foci of the ellipse. From n, with radius n F km, draw

On the transverse axis lay off any points a b c d,

between the foci, and

From F with radius = $p \, a$ describe a portion of a circle at e, also from F' with radius = $m \, a$ describe a portion of a circle at e; the curve will pass through the intersection of these circles at e.

In like manner f is described from the foci with the radii = p b and m b respectively

with the ratio
$$= p \cdot a$$
 and $m \cdot a$ responsible $p \cdot a$, $m \cdot a$ $p \cdot b$, $m \cdot a$ $p \cdot b$, $m \cdot a$

To CALCULATE ANY ORDINATE (see diagram next page). 99 Let T = Semi-transverse axis.

= Semi-conjugate axis.

= Distance of the ordinate from the centre. The length of any ordinates

$$K = \sqrt{\frac{c^2 - \left(\frac{CX}{T}\right)^2}{T}}$$

Periphery of an ellipse approximately $= \frac{1}{2} \pi \left[\sqrt{2(T^2 + C^2) + T + C} \right] + 0.2078(T - C).$ Area of an ellipse = TC3.1416.

ENGINEERING FORMULÆ. OF

continued ELLIPSE

and ORDINATES. CONSTRUCT the LoL Divide

ordinate is shown each

complement ordinates pective draw ordinates ordinate conjugate

To Construct an Ellipse when the Diameters DO NOT CHOSS ONE ANOTHER AT RIGHT ANGLES.

Let A B and C D be the given diameters.

both into parts, also divide the shorter the shorter diameter D lines through the divisions of the C draw bound. ing lines; the intersection of these lines will give number of equal the longest diameter 20 radial lines to the divisions on the shorter longer diameter, and from the opposite end parallel same lines the From one end of bounding diameters and divide any number of equal into points in the curve. bounding lines the radial Draw parts. draw

HYPERBOLA.

is that join an part of the axis which, if continued, would axis of a hyperbola ab The transverse opposite cone.

the centre of the transverse axis The conjugate axis through at right angles to it. drawn line

the focus at right angles to The parameter is the chord the curve drawn through the axis. Jo

The focus is a point in the the ordinate is axis where

Transverse axis. diameter. T = T

C = Conjugate axis.

Abscissa.

Ordinate.

$$y = \frac{C\sqrt{x(\Gamma + x)}}{T}.$$

$$x = \frac{\Gamma \sqrt{y^2 + \left(\frac{C}{2}\right)^2}}{C} - \frac{\Gamma}{2}.$$

$$C = \frac{\Gamma y}{\sqrt{x (\Gamma + x)}}.$$

$$T = \frac{1}{y^2}$$

Parameter

PARABOLA.

A and a = the abscissæ. K and k = the ordinates.

ORDINATES OF THE PARABOLA,

5 9

PARABOLA—continued.

OF PARABOLIC CURVE, CONSTRUCTION

by on of complement respective number determined and raise parts pe The into 10 equal C by the diagram. each ordinate is shown above it. Divide the ordinate A perpendicular in the pendiculars, multiplying each

TANGENT TO A : PARABOLA PART OF DRAW TO

= B C and is the tangent. Make CD

TO CONSTRUCT A PARABOLA.

ioin the tangents to triangle into any even number of equal parts, divide the sides of be bb, cc, &c., the lines will and = 2 H parabola. Make aa,

CURVE. CONSTRUCTION OF THE CYCLOIDAL

On the line A B, lay off any point 1, 2, 3, 4, &c., aw perpendicular lines at each point, and on each describe circles equal to the generating circle. , are points of 2.5 3.3 On the circum, of the circle at 1 lay off 1.1' 3, 4, 5, 9 , 2, the points 1', and so on; the curve. draw

See also another method of forming a cycloid, Wave lincs." 79

CURVE. CALCULATION OF THE CYCLOIDAL

Area of cycloid = area of generating circle x ·31831 B. Diameter of generating circle d =Length of base B = 3.14159 d. Length of curve = 4 d.

CYCLOIDAL CURVE-continued.

generating D E. The The circular arc D E = circle. The tangent FG is parallel to the chord are DF is double the chord DE. The circular are area of AFDEBA is equal to that of the parallel to the base A B.

any arc L K in the same time independently of the length of the arc; this time is to that of a body falling perpendicularly from N to K as 3·14159 to 2; and, if a pendulum be made to isochrobody falls through cycioid is the curve of quickest descent between any The evolute of a cycloid is another equal cycloid. oscillate in the arc of a cycloid its vibrations will be If the cycloid be turned upside down a nous.

attached to a If the tracing the generating circle, a curtate cycloid will be produced terminating in nodes; if the tracing point be on the circumference a common cycloid will be formed terminating in cusps, if within the circumference a is formed by a tracing point generating circle which rolls on a straight line. point be beyond the circumference of prolate cycloid will be formed. The cycloid points.

CURVES—continued.

CONCHOID CURVE,

= the distance of the generating point from the a-ymptote CD which is a tright angles to P A, sho lay off $\mathbf{A} = \mathbf{a} = \mathbf{a} \times \mathbf{a}$ of the concloid. Draw from P any radiating lines cutting the asymptote at FFF, and on these lines produced lay off FE. From the point P on the straight line P A lay off P B = b F.E. &c., = u; these distances will give points in a "first" conchoid (or a conchoid on that side of the asymptote which

is opposite to the generating point P).

For a second conchoid (or one formed on the same side as the generating point) the distances F G, F G, &c. = a are laid off towards P; if b is less than a the curve will have a node at the centre, if b = a it will have a cusp at the centre. The left-hand curve is drawn with p as the generating point; being less than a.

 $= a^2 b^2 - 2 a^2 bx + a^2 x^2$, for a second conchoid. $y = a^2b^2 + 2a^2bx + a^2x^2$, for a first conchoid,

MODE OF TRACING A CONCHOID CURVE.

For a first conchoid the tracing point must be in the prolongation of the lath above the straight-edge.

CATENARY. CURVES-continued.

between vertex and ordinate. chain H = dip.Length of Ordinate. Abscissa. Span. 3

point in the case. Tension at point of suspension. I = Length of the chain. $a^{\circ} = \text{Angle of suspension}.$

sion at vertex (or lowest

point in the chain).

Parameter = horizontal ten-

11 d

z = p tan. a° ; t = p sec. a° ; x = z cosec. a° versin. a° -; = p(hyp. log. $p+x+\sqrt{2px+x^2}$ y = p (hyp. log.

The tension at the point of suspension with respect to y is at a minimum when $a^\circ=56^\circ$ 28'; then if p be assumed = 1, If L = 2S, then H = .7966 S, and $a^{\circ} = 77^{\circ} 3'$.

gravity chain 2z above vertex = then x = .81, y = 1.995, z = 1.5089. Distance of centre of gravity cha

$$-\left(x+\frac{p}{z}-p\right).$$

If p = H = 1, then S = 2.6339, L = 3.4641, t = 2, and CISSOID CURVE. a° = 60°

y = Ordinate.

a = Axis =

On A B describe a semicircle, and from A draw lines radiating to the asymptote BC, which is at right angles to AB; on these lines lay off JL = AK; GR = AH; GD = AE; gc_{G}

CURVES-continued.

CARDIOIDE.

Diameter of generating circle. Abscissa.

Ordinate.

construct a cardioide curve its diameter draw radiating lines, always making describe the generating circle and end of through one bbb=a. To

 $y^{4}-6ay^{3}+2x^{2}y^{2}-6ax^{2}y+x^{4}+12a^{2}y^{2}-8a^{3}y+3a^{2}x^{2}=0.$ follows :-

A bscissa. Ordinate. 20 Axis. 8 11 0

TRUE SPIRAL.

SPIRAL, FALSE

number of equal parts, then the intersection of the radial lines A false spiral is sometimes drawn Divide the radius and the circumference into the in a series of quadrants from four centres. gives points in the curve.

2 2

-continued. CURVES- QUADRATRIX

of . 3 and the radius A B into number of equal parts; then the intersection of the respeclines as drawn in the diagram circumference gives points in the curve. the. the same Divide quadrant tive

V 72- 8in. a2 $\sin a(r-x)$

x = .0636 rz

PLAN OF SETTING CUT A CAMBER OR FLAT CURVE.

point Join A C and produce the line A C until it cuts the perpendicular line B E. Divide the half span BD into any conparts. Then lines radiating from the divisions on E B to the perpendiculars Also divide B E into the same number of renient number of parts, and on each division erect the with their intersection points in the curve. endicular. will at

ANOTHER PLAN,

B into any convenient number of parts, also DC and AE into the same number of parts. Then lines radiating to C from the divisions on A E will at their intersection with the A B and D C give points in lines which join the divisions on the curve. A B and D C give points in

CURVES-continued.

EQUATIONS OF CURVES.

The formula $Ax^2 + Bxy + Cy^2 + Dx + F = 0$, represents an ellipse, parabola, or hyperbola, according as $B^2 - 4^{\circ}A$ C is positive in the ellipse; is 0 in the parabola; or negative the hyperbola.

when x = the abscissa, y = the ordinate, a = the axis, p =The following are the equations of the principal the parameter.

CIRCLE,
$$y = \sqrt{ax - x^2}$$
.

ELLIPSE,
$$y = V \frac{p}{a} (ax - x^2)$$
.

HTPERBOLA,
$$y = \sqrt{\frac{p}{a}(ax + x^2)}$$
.

PARABOLA, $y = \sqrt{px}$.

CATENARY,
$$y = p \left(\text{hyp. log.} \frac{p + x + \sqrt{2px + x^2}}{p} \right)$$

ist CONCHOID, $y=a^2b^2+2a^2bx+a^2x^2$ when $b=\mathrm{dis}$. 2nd CONCHOID, $y=a^2b^2-2a^2bx+ax^2$ when $b=\mathrm{dis}$ stance of the generating point from the asymptote (or P B, see diagram of Conchoid.)

CISSOID,
$$y = \sqrt{x^3}$$

CARDIOIDE, $y^4 - 6ay^3 + 2x^2y^2 - 6ax^2y + x^4 + 12a^2y^2 - 8a^3y$ + 3a2x2=0.

Lemniscate,
$$y = x \frac{\sqrt{a^2 - x^2}}{a}$$

QUADRATRIX,
$$y = \frac{\sin \theta (r - x)}{\sqrt{r^2 - (\sin \theta)^2}}$$
; where $\theta =$ the angle

subtended by y, and r = the radius of the generating circle,

Spiral,
$$y = \frac{rx}{c}$$
; where $c =$ the circumference of the

of ditto, =x the disfance of y from end of the spiral subtended by the circumference of the generating circle, y= distance of any part of the spiral measured from its centre. (See Spiral.) circle in which the spiral makes one revolution, r = the radius

MENSURATION OF SURFACES

triangle ... = Base \times 4 perpendicular, circle ... = Diameter² \times 7854. sector of circle = Length of arc \times 4 radius. Area of triangle

Number of degrees in arc × area of the circle 33.

.. = Base $\times \frac{2}{3}$ height. base³ - top³ Frustum of a parabola = 3 height base 2 - top 2 360 Area of parabola

= Transverse axis X . 7854 conjugate : A rea of ellipse .. Area of generating circle × 3.

Area of both ends + length × cir-" cycloid.. Surface of cylinder

= Area of base + circumference of base × 4 slant height. = Diameter² × 3·14159. cumference. . cone .. .:

frustum .. = Sum of girt at both ends \times $\frac{1}{2}$ slant height + area of both ends. sphere . :

The area of a segment = Area of a sector - + chord X SEGMENT AREAS. (radius - versin.

- = The versed sine divided by the diameter of the circle Area of segment of circle = Diameter² $\times x$ (see Table).

of which the segment is a part.

		_	_	_	_	_	_	_	_	-
19		•	•	.332843	.342783	.352742		.372704	.382700	.392699
PIA	-41	.42	.43	• 44	.45	.46	.47	.48	.49	.20
H	-207376	.216666	.226034	.235473	.244980	.254551	.264179	.273861	.283593	.293370
DIA	•31	.32	.33	.34	.35	.36	.37	.38	.39	.40
H	.119898	128114	136465	.144945	153546	.162263	.171090	.180020	.189048	198168
DIA	-21	. 22	. 23	.24	. 25	.26	.27	.28	.29	.30
89	.047006	.053385	.059999	•066833	.073875	.081112	.088536	.096135	.103900	1111824
DIA	17	.12	.13	•14	.15	91.	-17	.18	.19	.20
н	.001329	.003749	998900.	.010538	.014681	.019239	.024168	.029435	.035012	.040875
Q.	.01	.02	.03	*0.	.05	90.	10.	.08	60.	.10

Cylinder = Area of one end \times length. Solids. MENSURATION OF

Sphere = Diameter $^3 \times 0.5236$. Segment of sphere = 0.5236 H ($H^z + 3$ \mathbb{R}^2), where H = height of segment and R = radius of the base of the segment

Cone or pyramid = Area of base $\times \frac{1}{3}$ perpendicular height.

Frustum = $\frac{1}{3}$ H (A + a + $\sqrt{A \times a}$.) When A and a = Areas of the ends, H = Perpendicularheight.

Frustum of cone = 0.2618 H (D² + d^2 + D. d). When D and d = the diameters of each end, H = Perpendicular height.

Wedge=Area of base \times $\frac{1}{2}$ perpendicular height Frustum of wedge = $\frac{1}{2}$ $\frac{1}{4}$ (A + a), when A and a = Area at each end, H = Perpendicular height.

LENGTH OF HELICES AND SPIRALS.

Length of any helix or screw coil. Length of any plain spiral.

Length of any conical spiral.

Circumference of a circle equal in diameter

to the diameter of the helix or largest diameter of the spiral.

Circumference of a circle equal the smallest diameter of the spiral. 0 11

Number of revolutions of helix or spiral. Pitch of revolutions.

Height of the conical spiral

$$x = n \sqrt{C^2 + p^2}.$$

$$l = n \left(\frac{C + c}{2}\right).$$

$$L = \sqrt{l^2 + l^2}.$$

BODIES, OF SOLIDITY AND SURFACE

Ring. Any figure of revolution on axig. Ellipsoid. Sector of sphere. 3. Sector of sphere. 8. Paraboloid. 7. Elliptic link. Sphere.

TABLE OF POLYGONS.

Side of polygon.

Radius of circumscribed circle. Radius of inscribed circle.

the Angle formed by the intersection of sides.

n . 5 108° 1.7205 n . 6 120° 2.5980	Name.	No. of Sides.	Α.	Area = 82X	S = R X	SirX
10 1440 7.6942	G C	01086	60° 108° 120° 135° 144°	.4330 1.7205 2.5980 4.8284 7.6942	1.732 1.1755 1.0000 .7653	3.4641 1.4536 1.1547 0.8284 .6498

Area of any regular polygon = Radius of inscribed circle $\times \frac{1}{2}$ number of sides \times length of one side.

POLYHEDRONS. OF TABLE

C=83 ×	0.1178 1.0000 .4714 7.6631 2.1817
A = 82 X	1.7320 6.0000 3.4641 20.6458 8.6602
r=s×	.2041 .5000 .4082 1.1135 .7558
R=SX	0.6124 .8660 .7071 1.4012
No. of Sides.	4 6 8 12 20
Name.	Tetrahedron Hexahedron Octahedron Dodecahedron Icosahedron

Length of linear edge of a side. Radius of circumscribed circle. 8

Radius of inscribed circle.

Area of polyhedron.

Cube contents of polyhedron. 11 11 OP

AREAS AND CIRCUMFERENCES OF WIRE OF NEW NEW STANDARD WIRE GAUGE.

S. W. G. IN

DECIMALS OF AN INCH.

Circum- ference.	077,838 (0831) 6 (083)	011310 010058 008796 006796 006283 005027 003770
Area.	100004524 100004524 100004524 100004545 10000454 100004 10	.00001018 .00000804 .00000616 .00000452 .00000314 .00000201 .00000013
S W. G	224222222222222222222222222222222222222	8444448
Circum- ference.	1.57.07.0 1.957.03 1.256.57 1.1256.57 1.106.57 1.106.57 1.106.57 1.106.57 1.106.57 1.106.57 1.106.57 1.288.9 1.502.03 1.	.251327 .226195 .201062 .175929 .150796 .125664 .113097 .100531
Area.	1.1963-196 1.1960-196	00000000000000000000000000000000000000
s. W. G.	000000000000000000000000000000000000000	41 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15

New Legal Standard Wire Gauge came into operation March 1st, 1884 the By order of Council

ADVANCING BY 32NDS. AREAS OF SMALL CIRCLES,

wn. Arca. Diam. Area. Diam. Area. Diam. Area. Diam. Area. Diam. Area. Diam. Area. Diam. Barran. Barra	Area.	.4793 .5185 .5591 .6013 .6450 .6903 .7370
Arca. Diam. Area. Diam. (10076 12) 14.7 (10030 12) 1928 13.4 (1928 12) 1928 13.5 (19276 12) 1936 13.5 (19276 12) 1936 13.5 (19276 12) 1936 13.5 (19276 12) 1936 13.5 (19390 12) 1938 13.5 (19390 12) 1	Diam.	444 444 444 444 444 444 444 444 444 44
Arca. Diam. Area. (1907) 6 25 (1928) 6 25 (1928) 6 25 (1928) 6 25 (1928) 6 25 (1928) 6 25 (1928) 6 25 (1928) 6 25 (1928) 6 25 (1928) 7 (19	Area.	.2216 .2485 .2768 .3068 .3382 .3712 .4057
	Diam.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00076 00076 00030 00122 0192 0192 0276 0376	Area.	.0621 .0767 .0928 .1104 .1296 .1503 .1725
	Diam.	2 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Area.	.00076 .0030 .0069 .0122 .0192 .0276 .0376
1 1 Ja Ja 1 1	Diam.	10 00 00 10 10 10 10 10 10 10 10 10 10 1

OF ENGINEERING FORMULA.

	-	-	-					
	1	Diam	044044	6 7 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10	122212	16 117 118 119 20	25 22 22 22 22 22 22 22 22 22 22 22 22 2	26 29 30 30
STHS.	A	a-jx	.6013 2.761 6.491 111.79 18.66	1.8.1.8	10.7 30.1 51.2 73.7	23.6 50.9 79.8 10.2	75.8 10.9 47.6 85.9	0.00000
BY 8T		edies	2.405 5.939 111.04 17.72		08.41 27.61 48.41 70.81	66.1.22	1.53 6.44 3.04 1.14 0.75	4.8 610 9.1 654 5.1 700 2.6 748
CING		vojao .	3068 .073 .411 0.32 6.80	4.47 5.66 8.42 2.75 8.66	06.11 25.11 45.81 67.91	2004441	22.08.83	.7 56 .3 60 .5 64 .2 69 .6 74
ADVANCING	Areas.	-+-	1963 - 1964 - 1965 - 4 - 908 5 9 - 621 1 15 - 90 1 23 - 75 2	33.183 44.174 56.745 70.887 86.59 88	03.81 22.71 43.11 65.11	13.8.21 40.5.24 68.8.27 98.6.30 30.0.33	3.036 7.640 3.743 1.447 0.751	3.9.55 3.9.59 7.9.64 3.4.68
OIRCLES,	Are	es)es	1104 1.484 1.430 8.946 8.946 15.03	1.91 2.71 5.08 9.02 4.54	01.6 20.2 40.5 62.2 85.6	5.1.22	8.836 3.239 9.143 6.647 5.751	3 55
OF CIR		*	.0490 1.227 3.976 8.295 14.18	0.67 1.28 3.45 7.20 2.51	9.401 17.81 37.81 59.41 82.61	7.3 3.7 1.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	4.635 8.839 4.542 1.846 0.750	1.1 54 3.2 58 6.7 63 1.9 67 8.6 72
CAN O		-dec	.0122 .9940 3.546 7.669 13.36 20.62	29.463 39.874 51.845 65.396	97.20 9 115.4 1 135.2 1 156.6 1 179.6 1	04.2 30.3 58.0 87.2 18.1	350.4 35 384.4 38 420.0 42 457.1 46 495.7 500	6.054 7.858 1.262 6.267 2.771
-		0	.0 .7854 3.142 7.069 12.57 19.64	28.27 38.48 50.27 63.62 78.54	95.03 9 113.1 132.7 153.9 176.7	01.12 27.0 54.4 83.5 14.1 3	4.50.0	30.9 53 72.6 57 15.8 62 60.5 66 06.9 715
L	- 2	Diam	0122470	6 . 8 . 9 . 10	112 13 14 11 15 11	16 17 18 19 20 31 20 31 32 32 32 32 32 32 32 32 32 32 32 32 32	21 34 23 38 41 25 45 45 45 45 45 45 45 45 45 45 45 45 45	26 53 27 57 28 61 29 66 30 70

OF CIRCLES, ADVANCING BY STHS-continued.

					30 8 8 8 11 11 1 8 1 8 8 8 9 0 0 9 1 4 L 12	00400
٢		-1	- w	1 500000	111. 112. 122. 123. 123. 123. 123. 123.	01004
I		a- 100	798 848 901 955 1010	3325	1155115	0000000
l	11 00		F40400	-2004	4000 0000	01 10 1- 10 1-
١	-	10/40	91 442 94 48 48	000140	22 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25	33 33 33 33
١	-		· pod	55733	01-00 44000 01000 monut	20000
1		water	M3	33.	2525 2525 2525 2525 2525 2525 2525 252	98 08 08 11 12 11 12 11 11 11 11 11 11 11 11 11
١		-	785 836 888 941 996	mmmmm	000010 00000 00000	0 00000
١		-	9.8	4 4 4 6 30	8001 19 19 19 19 19 19 19 19 19 19 19 19 19	2970 3068 3166 3267 3369
ı		indea	779 829 881 934 989		222222222222222222222222222222222222222	-100 CM -1 CM CT
ı	Areas.	-	1 2 2 2 1 2	21010	88.5.7.1.00.00	554 455
	A	80/00	28 28 28 82 82	039 097 156 217 280	27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32 32 33 33 33 33 33 33 33 33 33 33 33 3
	ia.	-	1- 20 20 01 01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	96666
6		-400	- 9 70 -115	12.	36 002 002 008 37 38 38 38 38 38 38 38 38 38 38 38 38 38	
TEN		1 :	76 81 86 86 92	1221	000000000000000000000000000000000000000	4 200004
1160		inte	0.0	100mm	4.55 8.66 8.86 6.3 4.1 4.55 8.86 6.3 4.55 8.3	933
E C	1	22	760 810 861 914	2 2 2 4 6 6	133 133 133 133 133 133 133 133 133 133	4 50 - 80 0 8
0	1	1-	1.000000	001199	25.23 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5	27 22 22 119 117 117 117 117
EAS	=	0	804 855 907	117 117 134 134 194 256	28888888888888888888888888888888888888	- 33 33 33 88 58 58 - 33 33 33 88 58 58
ARE		1			7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	63 63 64 65 65 65 65 65 65 65 65 65 65 65 65 65
	1	ATTENDED	1 - 5 8 5	388 39	44444 44440 00-	

OF ENGINEERING FORMULE.

AREAS OF CIRCLES, ADVANCING BY STHS-continued.

-	-		-				1
	***	3512.5 3618.4 3725.8 3834.7 3945.3	4057.4 4171.1 4286.3 4403.2 4521.6	641. 763. 886. 010.	5264.9 5394.3 5525.3 5657.8 5791.9	5927 · 6 6064 · 9 6203 · 7 6344 · 1 6486 · 0 6629 · 6 6774 · 7 6921 · 3 7069 · 6	7370.8 7523.8 7678.3 7834.4
	soles	3499;4 3605;0 3712;2 3821;0 3931;4	4043.3 4156.8 4271.8 4388.5 4506.7	626. 747. 870. 995. 121.	5248.9 5378.1 5508.8 5641.2 5775.1	5910.6 6047.6 6186.3 6326.4 6468.2 6611.5 6756.5 6902.9	7351.8 7504.5 7658.9 7814.8
	sign .	3486'3 3591'7 3698'8 3807'3	4029.2 4142.5 4257.4 4373.8 4491.8	611. 732. 855. 979.	5232.8 5361.8 5492.4 5624.6 5758.3	5893.6 6030.4 6169.8 6308.8 6450.4 6593.5 6738.3 7032.4 7181.8	7332-8 7485-4 7639-5 7795-2
Areas,	*	3473°2 3578°5 3685°3 3793°7 3903°6	4015-2 4128-3 4242-9 4359-2 4477-0	596. 717. 839. 963. 089.	5216.8 5345.6 5476.0 5608.0 5741.5	5876.6 6013.2 6151.4 6291.3 6432.6 6575.6 6720.1 6866.2 7013.8	7313.8 7466.2 7620.1 7775.7
Are	- eb(eo	3460.2 3565.2 3671.9 3780.0 3889.8	4001.1 4114.0 4228.5 4344.6 4462.2	581. 702. 824. 948. 073.	5200°8 5329°4 5459°6 5591°4 5724°7	5859.6 5596.1 6134.1 6273.7 6414.9 6557.6 6701.9 6847.8	7294.9 7447.1 7600.8 7756.1
0	+	3447.2 3552.0 3658.4 3766.4 3876.0	3987·1 4099·8 4214·1 4330·0 4447·4	566. 686. 809. 932. 058.	5184.9 5313.3 5443.3 5574.8	5842.6 5978.9 6116.7 6256.2 6397.1 6539.7 6683.8 6829.5 6976.8	7276.0 7428.0 7581.5 7736.6
	-40	3434.2 3538.8 3645.1 3752.8 3862.2	3973.2 4085.7 4199.7 4315.4 4432.6	551. 671. 793. 917. 042.	5297-1 5297-1 5426-9 5558-3 5691-2	5825.7 5961.8 6039.4 6238.6 6379.4 6521.8 6665.7 6811.2 6958.3	7257-1 7408-9 7562-2 7717-2
	0.	3421:2 3525:7 3631:7 3739:3 3848:5	3959.2 4071.5 4185.4 4300.9 4417.9	536. 656. 778. 901. 026.	5281.0 5281.0 5410.6 5541.8 5674.5	5808.8 5944.7 6082.1 6221.2 6361.7 6503.9 6647.6 6792.9 6939.8	7238.2 7389.8 7543.0
*0	Dian	66 69 69 70	122245	77 77 80 80 80	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	98 3 3 8

AREAS OF SMALL CIRCLES, ADVANCING BY DECIMALS.

			Areas.		
Diam.	0000	100.	•003	-003	•004
000.	0	*0000000	.0000031	.0000001	.0000126
.010	.00000185	.00000050	.0001131	.0001327	.0001539
.020	.0003142	.0003464	1088000.	.0004155	.0004524
.030	69010000	.0007548	.0008043	.0008553	64060000-
.040	.0012566	.0013203	.0013854	.0014522	.0015205
.020	.0019635	.0020428	.0021237	.0022062	.0022902
090.	.0028274	.0029225	.0030191	.0031172	.0032170
040.	.0038484	.0039592	.0040715	.0041854	.0043008
080.	.0050276	.0051530	.0052810	.0054106	.0055418
060.	.0063617	.0065039	.0066476	.0067929	.0069398
	The second second second second				
	•002	900.	200-	*000	600-
			-	-	-
000.	96100000.	.0000283	.0000385	.00000203	.0000636
.010	1911000.	.0002016	.0002270	.0002565	.0002835
.020	.0004909	.0002309	.0005726	.0006158	.0006605
.030	.0009621	6410100.	.0010752	.0011341	.0011946
.040	.0015904	.0016619	.0017349	9608100.	.0018857
.020	.0023758	.0024630	.0025517	.0026421	.0027340
090.	.0033183	.0034212	.0035257	.0036317	.0037393
040.	.0044179	.0045365	.0046566	.0047784	.0049017
.080	.0056745	.0058088	.0059447	.0060821	.0062211
060.	.0070882	.0072382	.0073898	.0075430	1169100.
			-		-

AREAS OF SMALL CIRCLES.

60.	-0063		990-	11195	.1886	.2734	-3739	.4902	.6221	.1693
80.	.00203		9190.	.1134	181.	.2642	.3632	-4778	.6082	.7543
20.	.00385	.0227	.0572	1075	.1735	.2552	.3526	.4657	.5945	.139
90.	.00283	.0201	1820.	1018	1662	.2463	3421	.4536	.5809	7238
-05	96100-	.0177	.0491	.0962	.1590	.2376	-3318	.4418	₹199.	-7088
Ŧ0.	.00125	.0154	.0452	8060.	1520	.2290	.3217	.4301	.5542	.694
.03		.0133	.0415	.0822	.1452	.2206	.3117	.4185	.5411	.6193
-03	.00031	.0113	.038	. 0804	.1385	-2124	.3014	.4071	.5281	.6648
-01	8100000								5153	
00.	0.	8400.	.0314	9010.	.1256	.1963	.2827	.3848	.5026	.6362
.msid	0.	-	.2	÷	4	5	9.	- 7	80	6.

. 9

n.	1			*****	Ar	eas.			10.70	erster a street, in plants	
Diam.	•0	•1	•2	•3	•4	•5	• 6	•7	•8	•9	Diam.
0	•0	•0078	•0314	.0706	•1256	•1963	•2827	*3848	•5026	•6361	0
1	*7854	•9503	1.1309		1.5393	1.7671	2.0106	2.2698	2.5446	2.8352	1
2 3	3.1416	3.4636	3.8013		4.5239	4.9087	5.3093	5 • 7255	6.1575	6.6052	2
3	7.0686	7.5476					10.1787				2 3 4
4							16.6190				4
5	19.6350	20.4282	$21 \cdot 2372$	22.0618	22.9022	23.7583	24.6301	25.5176	26.4208	27.3397	5
6	28.2744	29 • 2247	30.1907	31.1725	32.1699	33.1831	34.2120	35 . 2566	36.3168	37 - 3928	6
7	33*4846	39.5920	40.7151	41.8539	43.0085	44.1787	45.3647	46.5663	47.7837	49.0168	6 7 8 9
8-	50.2656										8
9	63.6174										9
10	78.5400	S0.1186	81.7130	83*3230	84.9488	×6.5903	88.2475	89 • 9204	91.6090	93.3133	10
11	95.0334	96.7691	98.5205	100.287	102:070	103 . 869	105 . 633	107:513	109:359	111.220	11
12	113.097	114.990	116.898	118.823	120.763	122.718	124 . 690	126 - 677	128 679	130 . 698	12
13	132.732										13
14	153.938										14
15	176.715	179.079	181.458	183.854	186 * 265	188 692	191 134	193.593	196.067	198.556	15
16	201.062	203.583	206 120	208 672	211.241	213.825	216.424	219:040	221.671	224.318	16
	226.980										17
	254 • 469										18
19	283.529										19
20	314.160										20
	•0	•1	.2	•3	• 4	. 5	• 6	7	8	•9	

AREAS OF CIRCLES, ADVANCING BY 10THS-continued.

			Areas.			as.	is.				Diam.
Diam.	.0	•1	•2 •3		•4	*5	•6	• 7	.8	•9.	Diam.
21	346.361	349.667	352.990	356.328	359.681	363.051	366 • 436	369.837	373 • 253	376 • 685	21
22	380.133	383.597	387.076	390.571	394.082	397.608	401.150	404.708	408 • 282	411.871	22
23	415.476	419.097	422 - 733	426.385	430.053	433.737	437.436	441.151	444.881	448.628	23
24	452.390	456.168	459.961	463.770	467.595	471.436	475.292	479.164	483.052	486.955	24
25	490.875	494.809	498.760	502.726	506.708	510.706	514.719	518.748	522.793	526.854	25
	530.930	E 2 E + A 2 D	K20+120	542+252	547 - 292	551 - 547	555 - 717	559 903	564-105	568:323	26
27	572.556	576 - 905	581 • 070	585 350	589 646	593.958	598 286	602 629	606 988	611 * 363	27
28	615 - 759	620 - 150	624.581	629 • 019	633 472	637 . 941	642 425	646 * 926	651 . 442	655 . 973	28
29	660 - 521	665 - 084	669.663	674 258	678 868	683:494	688 136	692.793	697 • 466	702 - 155	29
30	706 - 960	711 - 520	716.316	721 - 067	725 - 835	730 • 618	735 • 417	740 * 231	745.061	749 907	30
											31
31	754.769	759.646	764.539	769 448	774 372	779.313	784 268	789*240	944.064	250 124	
32	804.249	809 • 284	814.334	819.399	824.481	829 578	834.691	839.820	007.070	000 124	33
33	855.300	860.492	865.699	870.922	876,160	881,419	886.689	891.910	057-150	056+695	
34	907.922	913.270	918 • 635	924.011	929 410	934 822	940 249	1000+00	1000.60	1012:22	35
35			973.142								
36	1017.87	1023.54	1029.21	1034.91	1040.62	1046.34	1052.09	1057.84	1063.62	1069:40	36
37	1075:21	1081.03	1086.86	1092.71	1098.58	1104.46	1110.36	1116.58	1122.51	1128-15	37
38	1134.11	1140.09	1146.08	1152.09	1158.11	1164.15	1170.21	1176.28	1182.37	1188.47	38
39	1194:59	1200:72	1206:87	1213.04	1219 22	1225 • 42	1231.63	1237.86	1244.10	1250.36	39
40	1256 64	1262 . 93	1269 - 23	1275.56	1281.89	1288 . 25	1294.62	1301.00	1307.40	1313.85	40
	.0	•1	•2	*3	•4	•5	•6	• 7	•8	•9	

AREAS OF CIRCLES, ADVANCING BY 10THS-continued.

-		Areas.											
2	Diam.	.0	•1	•2	•3	•4	*5	•6	-7	. *8	. •9	Diam.	
	41	1320 - 25	1326.70	1333*16	1339 • 64	1346 • 14	1352.65	1359:18	1365 · 72	1372 28	1378 - 85	41	
	42									1438 72		42	
5	. 43	1452 20	1458 96	1465 . 74	1472.53	1479 34	1186 . 17	1493.01	1499 87	1506.74	1513 62	43	
	44									1576.32		44	
٠,	45	1590 43	1597.51	1604.60	1611.71	1618.83	1625 97	1633.12	1640.30	1647.48	1654 68	45	
ı	46	1661 . 90	1669 13	1676 - 38	1683 - 65	1690 • 93	1698 23	1705 . 54	1712.87	1720 - 21	1727 - 57	46	
K	47									1794.51		47	
ĸ	. 48									1870.38		48	
ı	49									1947.82		49	
н	50									2026 . 83		50	
r		1							1 .	2107.41		51	
	51									2189.56		52	
										2273 • 29		53	
	53									2358 • 58		54	
	54									2445 • 45		55	
ı							1 2						
ı	56									2533 * 88		56	
ı	57									2623.89		57	
	58	2642.08	2651.20	2660.33	2669 • 48	2678 • 65	2687 . 83	2697.03	2706.24	2715 . 47	2724 • 71	58	
	59	2733.97	2743 25	2752.54	2761.85	2771 . 17	2780.51	2789.86	2799 • 23	2808.62	2818.02	59	
	- 60	2827 • 44	2836 · 87	2846.35	2855 . 78	2865 . 26	2874 . 76	2884 • 26	2893.79	2903.34	2912.89	60	
		-0	•1	2	•3	•4	•5	•6	-7	•8	•9		

OF ENGINEERING

D:					Ar	Areas,									
Diam.	•0	•1	•2	•3	•4	•5	•6	• 7	•8	•9	Diam				
61	2922.47	2932.06	2941.66	2951 · 28	2960 • 92	2970.57	2980 • 24	2989 • 93	2999 • 63	3009.34	61				
62	3019.07	3028 * 82	3038.58	3048.36	3058.15	3067.96	3077.79	3087 - 63	3097 • 49	3107.36	62				
63	3117.25	3127.15	3137.07	3147.01	3156.96	3166.92	3176.91	3186.90	3196 . 92	3206 . 95	63				
64	3216.99	$3227 \cdot 05$	3237 • 13	3247 • 22	3257 • 33	3267.46	3277.59	3287.75	3297 • 92	3308 • 11	64				
65	3318.31	3328.53	3338 • 76	3349 • 01	3359 • 28	3369.56	3379.85	3390.17	3400 • 49	3410.84	65				
66	3421 • 20	3431.57	3441.96	3452.37	3462 * 79	3473 23	3483.68	3494.16	3504 • 64	3515 • 14	66				
67	3525 66	3536 • 19	3546 • 74	3557 . 30	3567.88	3578 • 47	3589 • 08	3599 • 71	3610 - 35	3621 • 01	67				
68	3631.68	3642.37	3653.08	3663.80	3674.54	3685 • 29	3696.06	3706 * 84	3717 • 64	3728 • 45	68				
69	3739 . 28	3750 . 13	3760.99	3771.87	3782 . 76	3793.67	3804.60	3815.54	3826.50	3837 • 47	69				
70	3848 • 46	3859 • 46	3870.48	3881.51	3892.56	3903.63	3914.71	3925 . 81	3936 • 92	3948 • 05	70				
71	3959 • 20	3970.36	3981 • 53	3992 • 73	4003 • 93	4015 • 16	4026 • 40	4037 . 65	4048 • 92	4060+21	71				
						4128 • 25					72				
73	4185.39	4196.87	4208 . 36	4219 . 86	4231 . 38	4242.92	4254.48	4266 • 04	4277 . 63	4289 • 23	73				
						4359 • 16					74				
						4476.97					75				
			1			4596.35					76				
						4717.30					77				
	4778 - 37	4790 63	4802*90	4815 • 20	4827 - 50	4839.83	4852 • 16	4864 • 59	1876 - 89	100012	78				
79	4901.68	4914 . 09	4926 53	4938 98	4951 • 44	4963.92	4976.42	1988 - 93	5001 - 45	5014 - 00	79				
						5089.58					80				
							2202 22	000		0110 45	30				

Diam.			Areas.							
	.0 .1	•2 •3	•4 •5	• 6	•7	•8	•9	Diam.		
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	5410 · 62 5423 · 66 5541 · 78 5554 · 98 5674 · 51 5687 · 87 5808 · 81 5822 · 33 5944 · 69 5958 · 96 6082 · 13 6095 · 96 60221 · 15 6235 · 14 6647 · 62 6662 · 08 6650 · 89 6518 · 19 6647 · 62 6662 · 08 6792 · 92 6807 · 54 6939 · 79 6954 · 56 67238 · 24 7253 · 33 3389 · 82 7405 · 07 5742 · 98 7558 · 38 1697 · 70 7713 · 26 854 · 00 7869 · 71	\$ 178.48 5191.25 \$ 5308.82 5319.74 \$ 5449.80 \$ 5568.20 5581.43 \$ 5568.20 5581.43 \$ 5568.20 5581.43 \$ 569.20 5581.43 \$ 6109.81 6123.67 \$ 6249.14 6263.16 \$ 6390.04 6404.22 \$ 6676.55 6691.05 \$ 66822.17 6836.82 \$ 6676.55 6691.05 \$ 6822.17 6836.82 \$ 7288.43 7288.43 \$ 7288.43 7388.5 \$ 7420.33 7435.60 \$ 7573.80 7589.23 \$ 7728.83 7589.23 \$ 7728.83 7728.83 7728.83 \$ 7728.83 744.42 \$ 7885.44 \$ 7901.19	18332 76 18348 76 186 186 187 187 187 187 187 187 187 187 187 187	3388 59 5489 12 5621 23 5754 90 5890 15 6026 97 6165 35 6305 31 6446 84 6589 94 6734 61 6734 61 7178 05 7329 00 7481 53 7635 62	5371.57.55 5502.26 5634.53 5768.36 5903.76 6040.73 6179.28 6319.39 6461.08 66749.16 66895.56 7043.53 77193.07 7344.18 7446.87	5384 57 55 5515 42 55 5515 42 55 5647 84 56 5781 83 57 6054 52 60 6193 22 62 6333 49 63 6475 34 64 6618 75 66 6676 73 67 6765 73 67 7208 11 72 7208 11 72 7512 22 75	397·59 528·59 528·59 661·17 795·31 931·03 968·32 907·18 847·61 89·61 33·18 78·32 25·03 773·32 223·17 74·59 27·59 82·16	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100		
10)	0.0	.2 3	•4 •5	- 6	.7 00 6	10.80	-9			

T	Dianı.	100 100 100 100 100 100 100 100 100 100	30 52 54 52 54 55 55 55 55 55 55 55 55 55 55 55 55
STHS.	D 100	1 - 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.5 2.6 4.7 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6
BY	COlege Colege	256 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.04 5.18 6.18 6.60 6.60
ANCING	*\$40	2.23 3.81121	65 6 93 6 7 7 7 7 7 7 7 7 8 6 7 9 8 6 7 9 8 6 7 7 8 8 8 7 8 7 8 8 7 8 7 8 8 8 7 8 8 8 7 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 8 7 8 8 8 8 8 7 8 8 8 8 8 7 8
4 .	-	1011 1011	26 61 40 64 668 71 10 88 71 10 88 71 10 88 71 10 88 82 82 82 82 82 82 82 82 82 82 82 82
CIRCLES, A	*	11.55 11	86 115 115 117 117 117 117 117 117 117 117
CIR	e0 c0	11.17 1.4.31 113.7	1 64 1 64 1 64 1 64 1 64 1 64 1 64 1 64
ES OF	-de	3.92 1.06	66. 63. 66. 68. 775. 776. 776. 779. 779. 779. 779. 779. 779
ERENC	-40	392 392 312 398 116 117 119 119 119 119 119 119 119	8 82. 8 882. 8 882. 8 882. 8 84.
CIRCUMFERENCES	0.	3.1411 6.28318 9.424 112.56 115.70 118.84 221.99 221.99 221.99 221.99 221.99 221.99 221.99 221.99 221.99 221.99 221.99 221.99 221.99 221.99 321.90 32	65.9 65.9 65.9 772.2 772.2 772.3 784.8 84.8 84.2 94.2
Crr)iam.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	20 20 22 22 22 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25

CIRCUMPERENCES OF CIRCLES, ADVANCING BY STHS-

_		1		-		_						
	Diam	323	34	36	39	41 42 43	45	46 47 48	49	52 53 54 55	55 59 59 60	61 63 64 65 65
	N/so -	100.1	00.	115.8 119.0	25.	131.6	41.	4 10 10	159.8	163.0 166.1 169.3	78. 81. 85. 91.	194.4 197.5 200.7 203.8 207.0
-	- col-4*	99.7	0100	115.5	128.0	34.3	9.0	46.9 50.0 53.2	156.3		78.3 881.4 884.6 90.9	194.0 197.1 200.3 203.4 206.6
	value	99.4 102.5 105.6	08.	115·1 118·2 121·3	124.5	130.8	4 4	46.	155.9	162.2 165.3 168.5 171.6	4 11 14 88 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	193.6 196.7 199.9 203.0 206.2
Circumferences.	-	99.0 102.1 105.2	· ·	114.7 117.8 121.0	124.1	130.4 133.5 136.7	139.8	46.	155.5	161.8 164.9 168.1 171.2	886. 886.	193.2 196.4 199.5 202.6 205.8
Sircumí	60/00	98.6 101.7 104.9		114.3 117.4 120.6		130.0 133.1 136.3	139.4	45.	155·1 158·3	161.4 164.5 167.7 170.8	880.	192.8 196.0 199.1 202.2 205.4
	-++	98.2	: 0	113.9 117.0 120.2	23.	129·6 132·7 135·9	139.0	45.	154.7	161.0 164.1 167.3 170.4		192.4 195.6 198.7 201.8 205.0
	-400	97.8 100.9 104.1	107.	113.5 116.6 119.8		129.2 132.3 135.5	38.	44.	154°3 157°5	160.6 163.8 166.9 170.0	88 82 9 9 9	192.0 195.2 198.3 201.5 204.6
	0.	97.4 100.5 103.7	90	113·1 116·2 119·4	122.5	128.8 131.9 135.1	20.1	41.0	153.9	160.2 163.4 166.5 169.6	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	191.6 194.8 197.9 201.1
	Diam.	32 33	35	36 37 38	39	41 42 43	44	46 47 48	50	52 53 54 54	52 52 56 50 60 60 60 60 60 60 60 60 60 60 60 60 60	61 62 63 64 65

MOLESWORTH'S POCKET-BOOK

CIRCUMFERENCES OF CIRCLES, ADVANCING BY STHS-cont.

	ė l		according to the contract of		H 63 63 44 70	9220	Q + 3 5 1	9230
	Diam.	66 63 69 70	712 73 74 75	77 77 78 79 80 80	00 00 00 00 00	x x x x x c	00000	0000
-	200	2.5	0.00 m	7.4.7.8	57.2 60.4 63.5 66.6 69.8	72.9 76.1 79.2 85.4	88.6 91.8 94.9 98.1	04.3 07.5 110.6 13.8
		222222	23 23 23 25	422225	ପ୍ରସ୍ତ୍ର	10872	24222	8 8 8 8
	60/44	209.7 212.8 216.0 219.1 222.3	225.4 228.6 231.7 234.8 238.0	241.1 244.3 2.7.4 250.5 253.7	256°8 260°0 268°1 266°3 269°4	272.5 275.7 278.8 282.0	288. 291. 294. 297. 300.	303. 307. 310. 313.
	v2/20	12.5 112.5 115.6 118.7 21.9	25.0 28.2 31.3 34.4 37.6	240.7 243.9 247.0 250.1 253.3	256.4 259.6 262.7 265.9 269.0	272.1 275.3 278.4 281.6 284.7	287.8 291.0 294.1 297.3 300.4	306.7 306.7 309.8 313.0
rences.	-fes	208.9 20 212.1 2 215.2 2 218.3 2 221.5 2	224.6 220.9 234.0 234.0 237.2	243.5 243.5 246.6 249.8 252.9	256.0 259.2 262.3 265.5 268.6	271.7 274.9 278.0 281.2 284.3	287.5 290.6 293.7 296.9 300.0	306.3 306.3 309.4 312.6
Circumferences	enjoc a	208.5 211.7 214.8 217.9 221.1	224.2 227.4 230.5 233.7 236.8	239.9 243.1 246.2 249.4 252.5	255.6 258.8 261.9 265.1 268.2	271-4 274-5 277-6 280-8 280-8	287.1 290.2 293.3 296.5 296.5	302.8 305.9 309.1 312.2
0	***	208.1 211.3 214.4 217.6 220.7	6.00.00	239.5 242.7 245.8 245.8 249.0 252.1	255.3 258.4 261.5 264.7 267.8	271.0 274.1 277.2 280.4 283.5	286-7 289-8 293-0 296-1 296-1	302.4 305.5 308.7 311.8
	-400	207.7 210.9 214.0 217.2	223.4 226.6 229.7 232.9 236.0	239.2 242.3 245.4 248.6 251.7	254.9 258.0 261.1 264.3 267.4	270.6 273.7 276.9 280.0 283.1	286.3 289.4 292.6 295.7 295.7	302.0 305.1 308.3 311.4
	0.	207.3 210.5 213.6 216.8	26.2 26.2 29.3 32.5 35.6	238.8 241.9 245.0 248.2 251.3	254.5 257.6 260.8 263.9 267.0	270.2 273.3 276.5 279.6 282.7	285.9 289.0 292.2 295.3 298.5	301.6 304.7 307.9 311.0
	Diam.	66 63 69 70	1 1 1 1 1 1 1 1 1	77 78 79 80 80	83 84 85 85	88 88 90 90	92 93 94 95	96 93 99

OF ENGINEERING FORMULÆ.

CIRCUMFERENCES OF CIRCLES.

-	-10	L. C.J.	00 74	20	102	- 00 0	0 0	e-d 1	N F	4 1	2 00	770	00	50	-	01.0	3 -4	10	10 5	00.0	50		3 00		
.mai(-	-		-	4 -	-	-	10		22			26			co (30	3	0
0	5 0 ×	60 7		8		27.9	34.2	7.3	43.66	46.80	2.0	6.5	59.3	62.51	68.80	71.94	000	÷	84.50	2.0	40	.00	103.3	.60	77
a	5 0	8.79	6.	8.2	21.36	9 4		0.4	43.35	4	0 1	3 .0	9.	62.20	68.48	9.1	16.44	1.0	84.19		10	6.6	· ·	109.3	7
4.	- -		9.	1.9	21.04	4.5	900	1.9	43.89	46.18	0.0	55.6	2.89	65.03	68.17	1.3	.5	0	83.88	0.1	93.30	9.58	02.7	0.6	1.7.1
9.		5.02	11.30	7.5	20.73	1.0	.3	4.9		45.86	0 . 0	4 61	8.4	61.57	67.85	-	.2		83.56	8.6		6	02.		=
rences.	5 10	4.71	6.	7.2	20.42	9.1		6.1	39.27	45.55	0 0	6.7	8.1	$61 \cdot 26$ $64 \cdot 40$	67.54	9.0	0 9	0.1	83.25	9.53	92.67	8.9	5.5	08.3	c. 11
Circumferences	1.25	30	10.68	.9	20.10	9.9	32.67	00	38.95	45 - 23	0 1	4 +	2.8	60.94	67 - 22	0.3	10.01	1.6	82.93	9.22		8.64	04.9	0	11.5
0 6.	. 94	4.08		.9	19.79	00	2 00	10	41.78	44.92	1.90	4.35	1.49	60.63	16.99	0.0	76.34	9.4	82.62	6.8	92.04	.00	01.	1.401	.07
6.		3.77	9.	6.3	19.47	91.0	0 0	5.1	41.46	44.61	- œ	4.03	1.17	60.31	09.99	60 0	0 0	6	82.30	8.5	94.87	0.8	00	1107.4	.01
-	4 65		:- x	0.9	19.16	4 1	31.73	00	38.01	44.29	4 10	3.72	98.	60.00	66.28		5.0	œ	81.99	00 -	4 10	1.1	9 0	1.701	2
9	00.	3.14	9.42	10	18.84	200	0	4.5	37.69	43.98	7 0	3.4	6.9	62.83	26.99	600	75.39	ô	81.68	6.2		7.3	03.	106.8	So
.msi	alo	- 24	w 4	2	9 1	- 00 0	010		13			17	18	13	21	22	24	25	26	28	30	31	333	34	2

MOLESWORTH'S POCKET-BOOK

CIRCUMFERENCES OF CIRCLES—continued.

.11	Dian	338 340	1000410	000010	1100410	000000	110045	000040
1-	D:-	00204	44444	44440	51 57 57 57 57	மைமமம	00000	4666
	6		9.00.	6.49	01040	7.001.00	407.80	H 00 4 10 15
		15 19 19 19 18 18 18 18	44 34	55 59 59	63 69 69 72 75	78 88 88 91	94 97 00 00 00 00 00	113 119 119 22 22
1		10011	111111	mmmm	m m m m m		H H SI SI SI	000000
1	00			0.1.840	7. % O L &	40000	4405	80HU4
1		15 18 18 18 18 18 18 18 18 18	31 34 37 43 43	550 550 550 550 550 550 550 550 550 550	65 65 72 75	78 84 87 91	94 97 99 90 90 90 90 90 90 90 90 90 90 90 90	09 113 119 22
1		2427-8	01247	711011		HHHHH	H H M M M	222222
	1-				40000	12400	80 CL C1 4	100001
		TO TO TO TO	000044	46 49 50 50 50	65 68 68 71 74	78 81 84 87 90	93 00 00 00 00	22 112 12 12 12 12 12 12 12 12 12 12 12
1		111111	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08651			u u u u u	अयययम्
	9	4844			44460	000000	0.0000	46000
	1	10000	900944	46 49 55 55 58	65 68 68 71 74	77 80 84 87 87 90	93 99 99 00 06	00 112 115 118 21
w n	-	20011	98653	0 2 2 3 5 0			HHH99	ପ୍ରପ୍ରପ୍ର
8	70	47.047			7.00028	0.00	400	00104
le n		11 12 20 21	999994	46 49 55 55 58	61 64 68 71 74	77 88 88 90	93 99 99 02 05	08 12 15 13 21 21
fe		111111	64320	31011	11111		HHH CO	यय दावाय
Circumferences	4					16401	ж о i i i 4	07.001
lo l		コーロロロコ	000004	552 52 55 55 55 55 55 55 55 55 55 55 55	61 64 67 70 74	77 88 88 88 88	92 99 99 02 05	08 11 14 18 18 21
Ö		01 11 11 11 11 61	311111	11111	112411	ппппп		000000
	· co	6.00.0				801.24	27.801	614101-00
		CU CU CV -	4 3 3 3 5	45 51 54 58	61 64 67 70 73	76 88 88 89 89	92 95 98 02 05	08 11 14 17 20
1		21011	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	75421			11100	य य य य य य
		6.00.00			86.44	2. 2001	4000	0 4220
		THO SHO	01 00 00 00 44	48 51 51 57	60 63 67 70 73	76 79 82 85 89	95 95 98 01 04	07 11 11 20 20
		40000	L 2 4 70 00		ппппп	ппппп	HHHMM	000000
1	1			800-1216	20000	61 00 00 00	000000	000000
	•	HHHOO!	23 33 38 41	444	60 66 69 69 73	76 79 82 88 88	91 95 98 98 01 04	07 10 11 11 20 20
-	-	65522	32001	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			エエエロ	000000
1	0	2.50.00			40000	00011114	0.000	64010
		THE PORT	0,00004	44 47 50 50 50 57	60 66 66 69 72	75 75 88 88 88 88	91 94 97 01 04	07 10 13 19 19
·100	Dian	00000	24822	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12847			000000
1	Toid	200004	44444	444 64 50 50	51 52 53 54 55	56 59 59 60	61 63 64 65 65	66 69 69 70

CIRCUMFERENCES OF CIRCLES—continued.

1		_					
-	300	Dian	12224	· · · · · · · · · · · · · · · ·	827 832 84 852 853	888 888 888 898 998 998 998 998	96 97 98 99
		6.	226.	241.5 244.7 244.7 247.8 251.0 254.1	257.2 260.4 263.5 266.7 269.8	273.0 276.1 285.2 285.2 285.2 294.9 301.2	304.4 307.5 310.7 313.8 316.9
-		80	225. 228. 231.	238.1 241.2 244.4 247.5 250.6 253.8	256.9 260.1 263.2 266.4 266.4	22 22 22 22 22 22 22 22 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	304.1 307.2 310.3 313.5
		4.	225 228 231 234	240.9 244.1 244.1 250.3 253.5	256.6 259.8 262.9 266.0 266.0	272.272.3 275.5.5 284.9 288.0 294.3 300.6	303.7 306.9 310.0 313.2
	. 1	9.	224 · 228 · 231 · 234 · 234 · 234	240'6 248'7 246'9 246'9 250'0 253'2	256 '3 259 '4 262 '6 265 '7 268 '9	272.0 275.2 275.2 284.6 284.6 294.0 294.0 294.0 300.3	303.4 306.6 309.7 312.9 316.0
	Circumferences		224 · 227 · 230 · 234 ·	240.3 243.4 246.6 246.6 249.7 252.8	256.0 259.1 262.3 265.4 268.6	271.7 274.8 278.0 284.3 284.3 290.5 290.5 300.0	303.1 306.3 3(9.4 312.5
	Arcum	**	224. 227. 230. 233.	240.0 243.1 246.3 246.3 249.4 252.5	255.7 258.8 262.0 265.1 268.2	271.4 274.5 284.0 284.0 284.0 287.1 290.2 293.4 296.5	302.8 305.9 309.1 312.2 315.4
-)	63	223. 227. 230. 233.	239.7 242.8 245.9 245.9 249.1 252.2	255.4 258.5 261.6 264.8 267.9	271.1.2 274.2 274.2 280.5 283.6 286.8 289.9 299.3 299.3	302.5 305.6 308.8 311.9 315.1
		.2	223.	236.2 239.3 242.5 245.6 248.8 251.9	255.0 258.2 261.3 264.5 264.5	270.8 277.0 2277.0 283.3 283.6 283.6 293.7 293.7 299.0	302.2 305.3 308.5 311.6
		•1	223. 226. 229.	235.9 239.0 242.2 245.3 248.5 251.6	254.7 257.9 261.0 264.2 267.3	270.4 273.6 273.6 279.9 286.1 286.1 286.1 289.3 292.4 295.6	301.9 305.0 308.1 311.3
		0.	223. 226. 229. 232.	235.6 238.7 241.9 245.0 248.1 251.3	254·4 257·6 260·7 263·8 267·0	22710 22710	301.5 304.7 307.8 311.0
	•π	Dian	122241	77 77 80 80	823 83 85 85	88 88 87 89 90 89 89 89 89 89 89 89 89 89 89 89 89 89	96 97 98 98 100

LENGTH OF THE CIRCULAR ARC SUBTENDED BY ANY ANGLE,

		arc.	064650	.082104	.0332	.117010	134461		100000	OPEROT.	1.1868239	.2042	.221730	939189	1.9566371	000000	20412	281043		00.	000070	343903	.361326	8	.396263	.4137	.43117	.4486		.4835		. 500	.518	1.5358897	. 553	.570	CARLO CONTRACTOR
		0	61	62	63	64	65	22	0 0	10	89	69	20	1.	64	10	5.1	47	15	2	0 1	1.1	28	19	80	2	82	83	84	85		98	28	88	68	90	
Radius being $= 1.00$.	Degrees,	Brc.		55850	575958	93411		010000	10070	1110660	663225	-6806784	698131		. 5000000			.1679449		1	0109708.	.8203047	.8377580	.8552113	.8726646	.8901179	907571	5094	6	959931		97738	.9948377		1.0297443	.04719	0.000 mo. 0.000
dius		0	31	32	33	34	35	0	20	31	38	33	40	-	11	77	43	44	45		40	17	25	49	20	2	5.0	200	15	10		99	57	28	59	09	
R		arc.	.0174533	.0349066	05235	981	08726	4	1047198	1221	1396263	570	745	9	191986	209439	226892	7	199		9252	9670	415	161	.3490659	0	5 6	401495	4188	2 5	#000#	4537	1238	488692		5235	
	1	0	-	2	000	7	10	-	9	2	80	6	10		1	1.5			15		16	17	8	19	20	5	17	9 0	5.4	100	67	26	26	28	59	30	

LENGTH OF THE CIRCULAR ARC-continued.

-		-	_																		
	000.		20	20	21	24	- 6	3 0	1 00	2376	2124	4.7	2521	12	- 19	03	7	76	2	36	2909
	=	4.1	42	43	44	45	46	47	48	49	50	5	52	53	54	55	56	10	28	59	09
Seconds,	0000	1018	0	1115	16	21	26	30	1357	4	10	50	1551	59	1648	69	7.4	4	7	1881	33
Sec	=	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
	000.	0048	7600	0145	0194	0242	0291	ന	0388	0436	0485	0533	0582	0630	6490		9440	0824	0873	0921	0160
	=	-	22	3	4	5	9	*	00	6	10	Π	12	13	14	15	16	17	18	19	20
	0.	192	221	2508	127991	130300	0	3671	962	425	145444	4835	151262	5417	5708	5998	62	658	88,	716	745
100	-	41	42	43	44	45	10	-	~	49	-	_	52	m	4	55 1	9		00	59 1	1 000
Minutes.	0.	108	399	690	6981	072722	7563	7854	8144	843	087266	9017	930	9599	86	1018111	04720	07629	10538	19	16355
	-	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	33	40
	00.	290	05818	372	163	44	17453	980	327	618	29089	31998	190	781	10	**	6542	9451	2360	569	81
	-	_	67		4	0	9.	-	00	6	07	=	12	7	14	CI	16		00 0	.	- 1

	1	_	
	60.	0.	215 219 224 229 239 239 244 249 259 259
	80.	0.	170 174 178 183 183 187 192 201 201 205
n.)	10.	0	130 134 138 142 145 145 149 153 157 166
Don.	90.	0.	096 099 102 112 113 113 126
ARCS. (E.	.05	00.	67 72 72 73 83 83 86 89 89 89
AR AR	50.	00.	45 44 45 52 52 54 56 61 61 61 61
CHRCUI	.03	00.	24 26 27 29 33 33 38 38 41
EH OF	-02	00.	11 12 13 14 15 17 17 19 22
DESIGN	.01	000.	267 323 384 451 451 523 600 683 771 864 963
	0	000.	003 011 011 024 043 067 096 131 171 171
	Versin.		000. 000. 000. 000. 000. 000. 000. 000

APPROXIMATE RULE FOR LENGTH OF ARO L. $C = Chord of Arc; c = Chord of <math>\frac{1}{2}$ Arc. $L = \frac{1}{2} (8c - C)$.

Table of difference between the chord and the arc; escribed of difference between the chord and the arc; escribed and the length of any arc, divide the versed size by the chord, and find the length of any arc, divide the versed size by the chord, and find the the versed size of the chord, and find the chord arc arc.

																							_			_	_		_	_					-	_	-	٠,
iff.).	600-	diff.	.0373	.0507	0.			• 0834	200	1125	23	.13	.1460	7	=	= "	•		• •	7 0		• 282	.298			•	• •				4	.4	•		679	• 56	, ,	
(1+q	*000	diff.	1980.	.0500	.0574	.0653	.0736	.0875	7160.	91111	22	.1333	.1448	1991.	.1690	1816	1948	2083	0222	1020	.2659	.2812	.2968	.3128	.3290	.3456	3625	0406.	- 1C	.4331	.4514	.4700	.4889	1 00	70	566	1	
shord X	-007	diff.	.0361	.0493	1990.	.0645	072	9180.	2000	9011.	୍ୟ	.1322	43	55	167	1804	1934	02020	9077.	2349	1 0	.2796	.2952	.3111	.3274	.3440	.3608	3180	.4132	.4313	.4496	.4681	.4810	19091	10204	564		
then Length of arc = chord \times (1 + diff.)	900.	diff.	.0355	.0418	10	1890.	.0719	10801	088	9601.	.1201	11311	42	54	.1665	.1791	19	9502.	2193		0696.	.2781	6	.3095	.3258	CI	.3591	3103	.4114	.4294	.4477	• 4		.504	7 4	CO MC	1	
ngth of	•005	diff.	•0349	.0479	10	.0629	7	62	6880.	1085	19	.1300	.1414	53	65	22	0	.2042	2179	.2320	7196.	4 45	.2921	.3079	.3241	0	-	3740	.4097	.4276	.4459	•4644	*4832	.5022	N .	1140.	3 1	
then Le	•004	diff.	.0343	.0405	· ~#	.0621	0	.0789	\$ OC	6760.	00	.1288	.1402	-	ne#4	91	88	.2028	.2166	30	.9599	.2750	.2905	.3063	.3225	.3330	.3557	37.78	3902	.425	•444	.4625	.4813	99	- 0	*5588	3 1	
result;	•003	diff.	.0337	.0465	.0537	.0613	+0694	.0780	0280.	10665	91	11217	.1390	1201.	\sim		188	201	2122	7677.	.9584	.2735		.3047	.320	÷	.354	371	.3885	• 424		.4607	.4794	98	10	.5568	3 1	
to the result;	-002	diff.	.0331	.0392	•0530	2090.	20	.0771	1980.	.1055	3 10	26	.1379	.1495	9191.	.1740	6981.	.2001	.2138	8177.	.2422	0.27.6.	11	.3031	.3192	35	.3524	369	3867	• 422	٠	.4588	.4775	96	.51	.5352	5 1	
No. (diff.) due	-001	diff.	.0325	.0386	5 07	1650.	1190.	0	.0852	.1045	14	120	36	.1483	.1603	.1727	85	.1988	-2124	26	.2407	1026.	.2858	.3016	.3176	.3340	.3507	.3677	3820	.4204	.4386	.4570	.4756	94	.5138	.5332	3 1	
	000-	diff.	.0320	.0380	.0515	.0590	6990.	.0754	.0843	.1036	11137	24	1356	.1471	1691	11115	84	1974	.2111	.2249	.2392	6666	.2843	.3000	.3160	.3323	.3490	.3660	3832	-4186	.4367	.4551	.4738	32	- 0	*5313	570	
tabular	Vers. Chord.	100	.110	.120	140	.150	.160	021.	.180	. 190	007	.220	•230	.240	.250	.260	.270	.280	.290	.300	.310	076	.340	.350	.360	.370	.380	.390	.400	•420	•430	.440	.450	.460	•470	.480	.500	

CONTENTS OF SPHERES.

Diam.	.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Diam
0		000523	.004189	.014137	033510	065450	113097	179594	.268082	.381702	0
1	*523599	030310	904779	1.150	1.437	1.767					1
. 2	4.189				1	8.181	9.203		11.494		2
4	14·137 33·510	000		010		1	24.429	26.522	28 · 731	31.059	3
5	65.450				44.602	47.713	50.965	54.362	57.906	61.601	4
6		00 200		177 952	82.448	87.114	91.952	96.967	102.160	107.536	5
7	179.594	187 .402	195 · 432	203 - 689	212-176	143.793	150.533	157·479 239·040	164 · 636	172.007	6
. 8	268 • 083	278 · 262	288 · 696	299 - 387	310.339	221.555	229.847	239·040 :	248-475	258 · 155	7
9	381 - 703	394 . 569	407.720	421.160	434 893	448 921	463.947	477 875	356.818	369 121	8
Liam.	.0	0.1	0.2	0.3		-			192-807	508.047	9
1		-	0 4	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Diam.

For each decimal point added to or subtracted from the diameter alter three decimal points in the tabular number.

Thus the contents of a sphere whose diameter is 5.8 = 102.160

" 58 = 102160 " 58 = ·102 LOGARITHM OF NUMBERS FROM 0 TO 1000.

Prop.	10111111111111111111111111111111111111	0.3
6	ECCHIII 2022 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-60530
00	00309 171888 17086 17026 13988 13988 13988 13988 13884 13884 13884 13884 14884 1	11 1
1-	94510 10380	4.03
9	77815 77815 7085	Log.
10	22000070 10000070 1000070 1000070 1000070 1000070 1000070 1000070 1000070 10000070 10000070 100000 1000000 100000000	
4	0.01703 0.0342 0.0342 1.0376 0.0342 1.0376 0.0342 1.0376 0.0342 0	18
63	17712 19284 19891	thms:
64	2010103 00860 00860 008636 11822 11822 11822 22653 22653 32653 32653 34653 3653 3653 3653 3653 3653 3653	Logari
1	00000 004302 11727 11727 11727 11727 11727 11727 1178 1178	es of]
0	0 0 173918 173918 173918 17603 22045 22045 22045 23120	Indices
No.	100 1111111111111111111111111111111111	1

= 1.60530 = 3.60530 = 3.60530

.403

.00403

20

4030 = 3.60530 403 = 2.60530 40.3 = 1.60530

Log. 4030

LOGARITHM OF NUMBERS FROM 0 TO 1000-continued.

Prop.	102 102 99 96 95 95 98 88	488088 080 877 774 877 774 877 774 877 877 877 877	71 68 68 68 66 64 63 63	71442
6	62221 63246 64246 65225 66181 67117 68034 68931 69810	7115 7123 7131 7147 7170 7170 7170 7170	79169 79865 80550 81224 81889 82543 83187 83822 83822 84448	3.7
∞ .	62118 63144 64147 65128 66087 67025 67923 68842 69723	71433 72263 73078 73078 74663 75435 76193 76938 77670	79099 79796 80482 81158 81158 81823 83123 83123 83123 83159 83159 83159 83159	gor
4	62014 63043 64048 65031 65992 66932 67852 68753 69636	71349 72997 72997 73799 74586 75358 76118 76864 77597	79029 79727 80414 81090 81757 82413 83059 83059 84323 84323	of L
9	61909 62941 63949 64933 65896 66839 67761 68664	71265 72099 72916 73719 74507 76042 76790 77525 78247	78958 79657 80346 81023 81690 82347 82395 83632 84261 84880	number of
20	61805 62839 63849 64836 65801 66745 67669 68574 68574	71181 72016 72835 73640 74429 75205 75967 77452 7716	78888 79588 80277 80956 81624 81282 82330 823569 84198 84198	Find m
4	61700 62737 63749 64738 65706 66652 67578 67578	71096 71933 72754 73560 74351 75128 75891 76641 77379	78817 79518 80209 80889 81558 82217 82217 82366 84136 84136	115
6	61595 62634 63649 64640 65610 65610 66558 67486 68395 69285	71012 71850 72673 73673 74273 75051 75815 76567 77305 78032	78746 79449 80140 80821 881451 828151 82802 882802 884073 84696	3.7041
5	61490 62531 63548 64542 65514 66464 67394 67394 68305	70927 71767 72591 73400 74194 74974 75740 76492 77232 77232	8675 9379 0072 0754 1425 2086 2737 3378 4011 4634	:
1	61384 62428 63448 64444 65418 66370 67302 68215 69108	70842 71684 72509 73320 74115 74115 74896 76418 77159	78604 79309 79309 80686 81358 82020 82672 83315 83315 83315 83315 83315 83315	of 5065 of 5060 Diff 5
0	61278 62325 63347 64345 65321 66276 67210 68124 69020	70757 71600 72428 73239 74036 74819 75587 76343 77085	8533 9239 9934 0618 11291 11954 2607 3251 3885 4510	Log. of Log. of
.oN	1264444444	65987655	669 88 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Find
				医古

= 3.70415: : Find Log. of 5065 Log. of 5060 Prop. 86 × Diff. 5

Log. required = 3.704580

Diff.=592 Diff. 592 + Prop. 73=8. No. required 5908

LOGARITHM OF NUMBERS FROM 0 TO 1000-continued.

Prop.	1000000000000 0000000444 444444444 10000000044 0000110000000 XFF 000044	1
6	86673 88673 886274 888024 888024 88893 88893 99276 992876	1
00	86512 86213 87290 87780 87780 87867 889856 889856 89957 9171 9172 9172 9173 9173 9173 9173 9173 9173 9173 9173	
2	86152 86153 87324 87324 87310 89480 90054 90054 91752 91751 9228 9239 9239 94300 9500 9500 96091 96091 96091 96091 96091	
9	86.991 86.094 87.752 87.752 88.842 88.842 88.842 88.842 90.034 90	
10	86.31 86.034 87.216 87.216 87.216 88.836 88.836 88.836 99.84 99.84 91.64	
4	88570 88737 88737 88737 88737 88820 88820 99826 99826 99826 99826 99826 99826 99866 99866 99866 99866 99866 99866 99866 99866	
က	85509 876914 876914 887680 887680 887780 89376 89376 99109 91640 91609 9	
. 63	85548 85884 87645 87045 87045 87196 87196 87196 90417	
-	85794 886832 886832 88764 88764 88788 88788 88985 99083 99180 96472 96835	
0	85733 88633 88633 88633 88633 88633 88691 9039 9039 91388 9242 9242 9242 9242 9242 9365 9365 9365 9365 9365 9365 9365 9365	
.oM	11777777777777777777777777777777777777	

To multiply by logarithms add the logarithms together and find

the corresponding number.
To divide by logarithms subtract one from the other.
To extract the root divide the logarithm by the index of the root and find the number corresponding to it.

To raise a number to any power multiply the logarithm by the index of the power and find the corresponding number.

INVOLUTION AND EVOLUTION OF FRACTIONS BY LOGARITHMS,

In a logarithm the integer is called the characteristic, and the decimal portion the mantissa.

INVOLUTION. - The number carried from the mentissa to the characteristic being positive, must be deducted from the negative characteristic.

Example.-Find the 5th power of .05, or the value of .055,

Log.
$$05 = \overline{2} \cdot 69897$$

then $\overline{2} \times 5 = \overline{10}$
and $09897 \times 5 = \overline{3} \cdot 49485$
Then $\log \cdot 055 = \overline{7} \cdot 49485$
and $055 = \cdot 0000003125$,

Evolution. - If the negative characteristic be not divisible without a remainder by the index of the required root, the number of units sufficient to make it so divisible must be added to it, and the same number of units must also be added to the mantissa before division,

Example. - Find the value of Novo0003125.

then $\tilde{t} + \tilde{3} = 10$, and $10 \div 5 = 2$ and $3.49485 \div 5 = .69897$ $Log. \cdot 0000003125 = 7 \cdot 49485$

Therefore $\log \sqrt[5]{\cdot 0000003125} = \overline{2} \cdot 69897 = \log$ of .05.

PROPORTION BY LOGARITHMS.

Add together the logarithms of the 2nd and 3rd terms, and from their sum subtract the logarithm of the 1st term, then 1st term, then the number corresponding to the logarithm of the remainder gives the required answer.

Example. -68.30:13.70:: 79.40.

1.20212 = log. of 15.93.

RULE. SLIDE

All are spaced as the logarithms of the numbers they represent, so that by sliding one scale against another, logarithmic functions are mechanically performed.

A, B, and C are identical in their divisions, whilst the divisions of D are twice the size of those on the other scales, or The common slide rule consists of 4 scales; A and D fixed, and B and C sliding.

spaced as the logarithms of the square roots of the other scales.

EXAMPLES OF WORKING THE SLIDE RULE.

denote tively. In questions involving the square root: if the number of digits be oth, the working must be on A_1 or C_1 ; but if the number of digits be even, it must be on A_2 or C_2 , as the In questions not involving any root or power it is immaterial whether the working is on the first or second P denotes the gauge point (see below); d = diameter, or side of square; l = length; v = weight, or cubic contents; denote the first and second half of C scale respecfound In the following examples the letters A, B, C, D the respective scales on which the reading is to be half of the scale. case may be. 1 and C

4th Term. 13 ANSWER.	276 A 2·25 B 239 A 31 A	47.1 A 31.7 C w C	w C	2.55 D 8.06 D	43.6 D 389 C
3rd Term. AND AGAINST	12 B 54 A 31 B 54 O	3·14 A 15 B ·785 B 6·35 D 1·B d D	d D d D	6.5 C ₁ 6.5 C ₂	25 C 7.3 D
2nd Term.	23 A 1 B 54 A 239 A	3·14 A ·785 B 1·B	8 p	1D 1D	76C 76D 25C 10D 7.3C 7.3D
lst Term.	1 B 2 t A 7 B 7 D	1B 1A PA	PA PA	10	76 C 10 D
Сазе.	12×23 $54 \div 24$ $7:54::31$ $7:54::x:239$	for $d = 15$ for $d = 6.35$ $dz \div P$	d ÷ ₹ ₽ d 3 ÷ ₽	√6.5 √6.5 √65	√25 × 76 (7·3)³
	Multiplication	5 Circle Circumference (P=3·14) (CH=3·14) (Circle Area (P=·755) 7 Strength, Weight, (P=0.14)	8 Mensuration of Solids 9 Contents of Sphere or Cube	10 Squaring 11 Square Root (digits \ odd) \} 12 Ditto (digits even)	13 Side of Square or Rectangle }

SLIDE RULE-continued.

ston contained in the unit of the answer. Thus if answer and dimensions are all in feet p=1; for answer in feet with dimensions F.1.1 (feet χ feet, χ feet, χ for answer in inches χ inches), χ for answer in inches with dimensions F. F. J. χ for answer in inches with dimensions F. F. J. χ for answer in inches with dimensions F. F. J. χ for the χ for the ordinary slide rule must be divided by gauge points for the ordinary slide rule must be divided by The "gauge-point" P = the number of units of the dimen-

16 (49). The slide rule is a proportional instrument, and a given case The slide rule is a proportional form a:b:c:a. should be reduced to

If A and B be set to any proportion, then all the numbers against each other in the same lines will be in the same ratio; thus if the gauge point for the circumference of a circle on B be set on 1 A, all the numbers on B will represent a table of circumferences due to the diameter represented by the figures Terms a and b or c and x must never fall on the same line.

With the gauge point, P, for areas on B, set against 1A, the scale C forms a table of areas of circles for diameters repre-sented by the figures on D. With 1C set on 1D, the scales C and D are tables of squares and square roots respectively for the numbers of the scales opposite to them.

Cases of $x = \sqrt{am}$ or a^n may be readily solved by the aid of an equal parts scale applied to a slide-rule line. Thus for \$\sqrt{163}\$, if the distance from '16 to 1 of a slide rule measure 378 on a scale of 80, then 378 $\times \frac{3}{8} = 22.7$, and from 0 to 22.7 on the 80 scale reaches back from 1 to $\cdot 333 = x$ on the sliderule scale,

Tin. 219 35 378 401 481 429 723
Lead. 141 203 243 258 31 27 465
Cop- 18 26 312 331 397 397 596
Brass 1193 218 333 354 424 424 369 637
Cast Iron. 2222 324 407 489 4114 7333
Wt. Iron. 207 2297 357 357 358 453 394 682
Nater. 16 23 2765 293 352 305 528
Gal- lons. 163 2231 249 353 306 529
Cube Feet. 1144 11728 1833 22 191 33
Cube Ins. 578 88 88 1 106 1273 106
HE TILL THE TENT OF THE TENT O

LOGARITHMIC SINES, &c.

	1					0	Secant.	Cosine.	Deg.
Deg.	Sine.	Cosecant.	Versin.	Tangent.	Cotangent.	Coversin.	Becant.	Costne.	Deg.
0	Inf. Neg.	Infinite.	Inf. Neg.	Inf. Neg.	Infinite.	10.0000	10.00000	10.00000	90
1	8·24186	11.75814	6.18271	8.24192	11.75808	9.99235	10.00007	9.99993	89
2	8.54282	11 45718	6.78474	8.54303	11.45692	9.98457	10.00026	9.99974	88
3	8.71880	11.28120	7.13687	8.71940	11.28060	9.97665	10.00060	9.99940	87
4	8.84358	11 15642	7.38667	8.84464	11.15536	9.96860	10.00106	9.99894	86
5	8.94030	11.05970	7.58039	8.94195	11.05805	9.96040	10.00166	9 • 9 5 8 3 4	85
	0 01000								0.4
6	9.01923	10.98077	7.73863	9.02162	10.97838	9.95205	10.00239	9.99761	84
7	9.08589	10.91411	7.87238	9.08914	10.91086	9.94356	10.00325	9.99675	83
8	9.14356	10.85644	7.98820	9.14780	10.85220	9.93492	10.00425	9.99575	82
9	9.19433	10.80567	8.09032	9.19971	10.80029	9 9 2 6 1 2	10.00538	9.99462	81
10	9 - 23967	10.76033	8.18162	9.24632	10.75368	9.91717	10.00665	9.99335	80
						0.00005	10.00805	9.99195	79
11	9.28060	10.71940	8.26418	9.28865	10.71135	9 90805	10.00809	9.99133	78
12	9.31788	10.68212	8.33950	9.32747	10.67253	9.89877		9.98872	77
13	9.35209	10.64791	8 • 40875	9.36336	10.63664	9.88933	10.01128	9.98690	76
14	9.38368	10.61632	8.47282	9.39677	10.60.23	9.87971	10.01310	9.98494	75
15	9.41300	10.58700	8.53243	9.42805	10 57195	9.86992	10.01506	0 00404	10
-	Cosine.	Secant.	Coversin.	Cotangent.	Tangent	Versin.	Cosecant.	Sine,	

LOGARITHMIC SINES, &c .- continued.

Deg.	Sine.	Cosecant.	Versin,	Tangent.	Cotangent.	Coversin.	Secant.	Cosine.	Deg
16	9.44034	10.55966	8.58814	9.45750	10.54250	9.85996	10.01716	9.98284	74
17	9.46594	10.53406	8.64043	9.48534	10.51466	9.84981	10.01940	9.98060	73
18	9.48998	10.51002	8.68969	9.51178	10.48822	9.83947	10.02179	9.97821	72
19	9.51264	10.48736	8.73625	9.53697	10.46303	9.82894	10.02433	9.97567	71
20	9.53405	10.46595	8.78037	9.56107	10.43893	9.81821	10.02701	9.97299	70
21	9.55433	10.44567	8.82230	9.58418	10.41582	9.80729	10.02985	9.97015	69
22	9.57358	10.42642	8 * 86223	9.60641	10.39359	9.79615	10.03283	9.96717	-68
23	9.59188	10.40812	8.90034	9.62785	10.37215	9.78481	10.03597	9.96403	67
24	9.60931	10.39069	8 • 93679	9.64858	10.35142	9.77325	10.03927	9.96073	66
25	9.62595	10.37405	8.97170	9.66867	10.33133	9.76146	10.04272	9.95728	65
26	9.64184	10.35816	9.00521	9.68818	10.31182	9.74945	10.04634	9.95366	64
27	9.65705	10.34295	9.03740	9.70717	10.29283	9.73720	10.05012	9-94988	63
28	9.67161	10.32839	9.06838	9.72567	10.27433	9.72471	10.05407	9 • 94593	62
29	9.68557	10.31443	9.09823	9.74375	10.25625	9.71197	10.05818	9.94182	61
30	9.69897	10.30103	9.12702	9.76144	10 23856	9.69897	10.06247	9.93753	60
	Cosine.	Secant.	Coversin.	Cotangent,	Tangent.	Versin.	Cosecant.	Sine.	

LOGARITHMIC.

LOGARITHMIC SINES, &c .- continued.

Deg.	Sine.	Cosecant.	Versin.	Tangent.	Cotangent.	Coversin.	Secant.	Cosine.	Deg
31	9.71184	10.28816	9.15483	9.77877	10.22123	9.68571	10.06693	9.93307	59
32	9.72421	10.27579	9.18171	9.79579	10.20421	9.67217	10.07158	9.92842	58
33	9.73611	10 26389	9.20771	9.81252	10.18748	9.65836	10.07641	9.92359	57
34	9.74756	10 25244	9.23290	9.82899	10.17101	9.64425	10.08143	9.91857	56
35	9.75859	10 23244	9.25731	9.84523	10.15477	9.62984	10.08664	9.91336	55
36	9.76922	10.23078	9.28099	9.86126	10-13874	9.61512	10.09204	9.90796	54
37	9.77946	10.22054	9.30398	9.87711	10.12289	9.60008	10.09765	$9 \cdot 90235$	53
38	9.78934	10.21066	9.32631	9.89281	10.10719	9.58471	10.10347	9.89653	52
39	9.79887	10.20113	9.34802	9.90837	10.09163	9.56900	10.10950	9.89050	51
40	9.80807	10.19193	9.36913	9.92381	10.07619	9.55293	10.11575	9.88425	50
41	9.81694	10.18306	9.38968	9.93916	10.06084	9.53648	10.12222	9.87778	49
42	9.82551	10.17449	9.40969	9.95444	10.04556	9.51966	10.12893	9.87107	48
43	9.83378	10.16622	9.42918	9.96966	10.03034	9.50243	10.13587	9.86413	47
44	9.84177	10 10022	9.44818	9.98484	10.01516	9.48479	10.14307	9.85693	46
45	9.84949	10.15052	9.46671	10.00000	10.00000	9.46671	10.15052	9.84949	45
	Cosine.	Secant.	Coversin.	Cotangent.	Tangent.	Versin.	Cosecant.	Sine,	1

LOGARITHMIC.

HYPERBOLIC LOGARITHMS.

Calculated by LEWIS OLRICK, C.E.

a number is found by multiplying the common logarithm of the number by 2:302585052994. The hyperbolic logarithm of

0.8450980, which multiplied by 2.30258505 gives logarithm of 1.9459100, the hyperbolic logarithm. Example: - The common

-			the principal of the second of
Logarithm.	.5653138 .5709795 .5766133 .5822156 .5877866	.5933268 .5988365 .6043159 .6097655	6205764 6312717 6365768 6418638 6418638 6471033 657520 6678294 678294 678294 678294 678294 678294 678294 678294 678294 678294 678294 678294 678294 678294 678294 678294 678294
No.	1.76 1.77 1.78 1.79 1.80	1.81 1.82 1.83 1.84 1.85	1.86 1.88 1.88 1.99 1.90 1.95 1.95 1.96 1.97 1.98
Logarithm.	.4121095 .4187103 .4252676 .4317825	.4446858 .4510756 .4574249 .4637339	4824261 4824261 4946961 5007752 5007752 5128237 5128237 5247285 5306282 534933 5423242 5423242 5423242 5423242 5423242 5423242
No.	1.51 1.52 1.53 1.54 1.55	1.56 1.57 1.58 1.59 1.60	1.61 1.62 1.65 1.65 1.65 1.67 1.71 1.71 1.72 1.73 1.74
Logarithm.	.2311116 .2390169 .2468601 .2546422 .2546422	.2700271 .2776317 .2851788 .2926696	3074847 3148108 3220335 3293037 3364722 3435897 3506568 3516668 3516668 3516668 3516668 3516668 3516668 3516668 371366 37136
No.	1.26 1.27 1.28 1.29 1.30	1.32 1.32 1.34 1.35	1.36 1.37 1.33 1.33 1.44 1.45 1.45 1.45 1.45 1.45 1.45 1.45
Logarithm.	.0099503 .0198026 .0295588 .0392207	.0582690 .0676586 .0769610 .0861777	1133386 1133386 1310284 1397618 1484200 1570038 1670038 1670038 1639534 1823215 1905204 1988508 2070041
No.	1.01 1.02 1.03 1.04 1.05	1.06 1.07 1.08 1.09 1.10	1.11 1.12 1.15 1.15 1.15 1.16 1.16 1.17 1.20 1.22 1.23 1.24 1.24

HYPERBÖLIC LOGARITHMS-continued.

Logarithm.	1.118 1.121 1.124 1.128 1.131 1.134	12 1-1378330 13 1-1410330 14 1-1442227 15 1-1505720 16 1-15057315 18 1-15637315 19 1-1600209 20 1-1631508	11.1662708 21.169381. 31.1724823 41.175573 51.1786544 61.181727 71.184789 81.187843 91.190887	311.1969481 321.1999647 331.2099647 341.2069702 351.2069603 361.2119409 371.2149127 381.2178757 391.2236299 401.2237754
Logarithm. No.	.9969486 3. .0006318 3. .0043015 3. .0079579 3. .0116009 3.	0224509 3- 0224509 3- 0296193 3- 0296193 3- 0231844 3- 0367368 3- 0428040 3- 0438040 3- 0438040 3- 0438040 3- 0438040 3- 0438040 3-	0508215 0543120 05473120 0612564 0647107 0681531 0715836 0750024 0784095	1.0851892 3: 1.085619 3: 1.085619 3: 1.0952733 3: 1.0986124 3: 1.1019400 3: 1.1052568 3: 1.118575 3: 1.1118575 3: 1.1118575 3:
ogarithm. No I	86616 2.71 28899 2.72 71004 2.73 12933 2.74 54686 2.75	37675 2.77 8912 2.78 19980 2.79 50381 2.80 101613 2.81 22181 2.83 22585 2.83	25.00 2.86 2.87 2.86 2.193 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89	9593502 2.96 963143 2.97 963183 2.99 9767596 3.00 9783260 3.01 9820784 3.02 9858167 3.03
No. I	2. 41 .87 .86 .87 .86 .87 .86 .87 .86 .87 .86 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87	22.44 22.44 22.44 22.44 22.44 388 388 388 388 388 388 388 388 388 3	2 2 2 2 2 3 2 5 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	17. 2. 61 18. 2. 62 18. 2. 63 19. 2. 65 10. 2. 65 17. 2. 66 17. 2. 67 17. 2. 68 18. 2. 68 18. 2. 68 18. 2. 68
No. Logarithm.	01 .698 02 .703 03 .708 04 .712 05 .717	0072754 0072754 0073236 0074193 11 -74668 12 -75141 13 -75612 14 -76080	110 10340 111 17472 118 17472 118 178320 20 178320 20 17929 22 179299 22 179299 22 179299 22 179299 22 179299 22 179299 22 179299 22 179299 23 18020 24 180647	2.26 .815364 2.27 .819779 2.28 .824175 2.30 .828551 2.30 .83290 2.31 .887244 2.32 .841566 2.33 .84586 2.33 .84586 2.33 .84586 2.33 .84586

HYPERBOLIC LOGARITHMS-continued.

_							
Logarithm.	4951487 4973883 4996230 5018527 5040773	06297 08511 10721 12926	17322 19513 21699 23880	822 939 255 171 171	390154 411590 432981 454325 475625		602476 623462 644405 665304 686159
No. Log	44 48 148 149 150 1	51 1. 52 1. 53 1. 54 1.		62 1. 62 1. 63 1. 64 1.	66 1.5 67 1.5 68 1.5 69 1.5	71 1.54 72 1.55 73 1.55 74 1.55	61.5 71.5 81.5 91.5 01.5
ogarithm.	1342304 1585314 1827744 2069574 2310834	55150 4 79161 4 03112 4 27007 4 50845 4	4626 4 8351 4 2020 4 5632 4	9269 1613 3953 3953 8286 3614	9379 4 - 2553 4 - 5675 4 - 8743 4 - 1758 4 -	4720 4. 7630 4. 0487 4. 3292 4. 6045 4.	746 4 396 4 995 4 543 4
No. Logi	13 1.4	16 1.4 17 1.4 18 1.4 19 1.4	21 1.437 22 1.439 23 1.442 24 1.4444 25 1.446	26 1.44 27 1.45 28 1.45 29 1.45 30 1.45	1.46 21.46 31.46 11.46 11.46	36 1.471 37 1.471 38 1.477 39 1.479 40 1.481	1.48 1.48 1.49 1.49
-	1189 4 0749 4 7240 4 3660 4 0010 4	291 4. 504 4. 348 4. 723 4.	671 4. 544 4. 351 4. 091 4.	373 4 · 916 4 · 395 4 · 307 4 · 156 4 ·	440'4. 661 4. 818 4. 912 4.	312 4 318 4 763 4 146 4	4 4 4 4 4
Logarithm.	1.324 1.327 1.329 1.332 1.335	1.337 1.340 1.342 1.345 1.348	1.35 1.35 1.35 1.35	1.36 1.36 1.36 1.37 1.37	1.3762 1.3787 1.38123 1.3837 1.38628	1.3887; 1.3912; 1.3937; 1.3962; 1.3987;	1.4011829 1.4036429 1.4060969 1.4085449 1.4109869
n. No.	000000	0000000	60 3.86 09 3.87 78 3.88 66 3.89 75 3.90	5 3.91 7 3.92 1 3.94 8 3.95	73.96 03.97 63.98 63.98 63.99		4.06 4.07 4.09 4.10
Logarithm.	1.226712 1.229640 1.232560 1.235471 1.238374	.24126 .24415 .24703 .24990	.25561 .25846 .26129 .26412 .26694	6976 7256 7536 7815 8093	86474 86474 89232 91983 94727	297463 300191 302912 305626 308332	3110318 3137236 3164082 3190856 3217559
No.	3.42 3.42 3.43 3.45 3.45	3.46 1 3.47 1 3.48 1 3.49 1 3.50 1	3.511 3.521 3.531 3.541 3.551	.56 1 .57 1 .58 1 .59 1 .60 1	.61 1 .62 1 .63 1 .64 1 .65 1	.66 1. .67 1. .68 1. .69 1. .70 1.	3.721 3.721 3.721 3.741 3.751

HYPERBOLIC LOGARITHMS—continued.

				40040	10000		10 01 4H 4H 63 4	80 20 00
		0 4 9 6 6	458 364 242 091	104 105 200 50 50 50	87 47 04 158	10 35 35 00 00 64 28	92 82 82 45	969 969 293 454
	rithm	200000	33	850 867 884 990 917	98	03 05 06 06 08	00000	82222
	zar	771	F-F-82	To In In In In	r-r-r-10	1.888.1		HANNE
	Logar			6.1	40100 410	91-860		119 119 120 130
1	01	88 88 88 88 88 90	.91 .93 .94 .95	6.6.6.	0.9	0.9	. 9 . 9 . 9	00000
1	Z	200000	0101010	50 40 50 50 50 50 50 50 50 50 50 50 50 50 50	20000	98 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	10001	5805 3002 0170 7308 4416
Г	e l	646 778 878 944 979	988 95 65	50, 31, 09, 84, 84,	423 189 951 710	1296	093 267 440 613 785	940
1	ith	65 01 19 37	55 73 91 27	28 28 29 31	35 35 35	742 745 745 747	111111	150 76 76 76 76 76 76
١	ogerithm	72 17 17 17 17 17 17 17 17 17 17 17 17 17	727	Le Le Le Le Le	Fretr			
1	31			12224.0	00000	177371	8 1 2 2 2 3 2 4 4 6 8 6 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	81 82 83 84 85 85
I	01	51 52 53 53 54 54	.57	.61 .63 .63 .64	000000	0 0 0 0 0 0	من من من من	500000
1	Z	000000	04240	0000000	010 10 mm	682868	91 90 90 90 90	487 786 051 282 481
١	ë	365 726 050 336 586	19 11 11 21 28	31 30 30 26 18 18	473 473 351 225 096	96 82 68 68 54		74 92 11 12 29
1	ith	09 22 28 44 67 67 86	05 24 44 63 82	620 639 658 658 677	1711	680 682 684 684	69	69 69 70 70 70 70
١	Logarithm.	64 64 64 64 64	65 65 65 65	99999	9999			
1	2			00110	12241	000000	44 44 45 45	46 47 48 49 .50
ı	0	119 119 120	वा वा वा वा वा	. यं यं यं यं यं	0000000			51 57 57 57 57
	Z	000000	100000 C	0000000	1-000000	00000	12 12 05 05 05 05 05 05 05 05 05 05 05 05 05	994 544 057 530 967
	thm.	971 739 46+ 147 187	888 388	138 88 88 88 88 88 88 88 88 88 88 88 88 8	0 - 0	4 + + + + + + + + + + + + + + + + + + +	36 34 34 37 27 27 27 27 27 27 27 27 27 27 27 27 27	118 318 318 70 70 89
	1 =	900	010	10000	003	·	त्रात्रत्त्	63563636
	ogarit	500000	10 10 10 10 11	ب بن بن بن بن بن				
	F	1	4 4 4 4 4 4	1 + 0 1 P	000000	D - 0 0 9 4 5	00 00 00 00 00 00 00 00 00 00 00 00 00	112 .13
	No.	0000000	2 20 20 20 20		9 9 9 9 9 9 9			010000

HYPERBOLIC LOGARITHMS-continued.

Logarithm.	1.9823798 1.9837562 1.9851308 1.9865035 1.9865035	.98924 .99061 .99197 .99333	1.9960599 1.9974177 1.9987736 2.0001278 2.0014800	2.0028305 2.0041790 2.0055258 2.006×708 2.0082140	2.0095553 2.0108949 2.0122327 2.0135687 2.0149030	2.0162354 2.0175661 2.0188950 2.0202221 2.0215475	2.0228711 2.0241929 2.0255131 2.0268315 2.0281482
No.	7.26 7.28 7.28 7.29 7.30		7.36 7.37 7.38 7.39 7.40	7.42 7.43 7.45 7.45	7.46 7.47 7.48 7.49 7.50	7.51 7.52 7.53 7.54	7.56 7.57 7.59 7.59
Logarithm.	1.9329696 1.9344157 1.9358598 1.9373017 1.9387416	.9401 .9416 .9430 .9444	1.9473376 1.9487632 1.9501866 1.9516080 1.9530275	1.9544449 1.9558604 1.9572739 1.9586853 1.9600947	1.9615022 1.9629077 1.9643112 1.9657127 1.9671123	1.9685099 1.9699056 1.9712993 1.9726911 1.9740810	1.9754689 1.9768549 1.9782390 1.9796212 1.9810014
No.	6.93 6.93 6.94 6.95	96.9	7.02 7.03 7.04 7.05	7.06 7.03 7.09 7.10	7.12	7.16 7.17 7.18 7.19 7.20	7.21
No. Logarithm.	6.56 1.8809906 6.57 1.8825138 6.58 1.8840347 6.59 1.8855533 6.60 1.8870697	6.61 1.8885837 6.62 1.8900954 6.63 1.8916048 6.64 1.8931119 6.65 1.8946168	6.66 1.8961194 6.67 1.8976193 6.68 1.8991179 6.69 1.9006138 6.70 1.9021075	6.71 1.9035989 6.72 1.9050851 6.73 1.9065751 6.74 1.9080600 6.75 1.9095425	6.76 1.9110228 6.77 1.9125011 6.78 1.9139771 6.79 1.9154509 6.80 1.9169226	6.81 1.9183921 6.82 1.9198594 6.83 1.9213247 6.84 1.9227877 6.85 1.9242486	6.86 1.9257074 6.87 1.9271641 6.88 1.9286186 6.89 1.9300710 6.90 1.9315214
Logarithm.	1.8261608 1.8277699 1.8293763 1.8309801 1.8325814	1.8341801 1.8357763 1.8373699 1.8389610 1.8405496	1.8421356 1.8437191 1.8453022 1.8468787 1.8484547	1.8500283 1.8515994 1.8531680 1.8547342 1.8562979	1.8578592 1.8594181 1.8609745 1.8625285 1.8640801	1.8656293 1.8671761 1.8687205 1.8702625 1.8718021	1.8748743 1.8748743 1.8764069 1.8779371 1.8794650
No.	6.22 6.23 6.23 6.24 6.25	6.28 6.28 6.29 6.30	6.31 6.32 6.33 6.34 6.35	6.36 6.37 6.38 6.39 6.40	6.41 6.42 6.43 6.44 6.45	6.46 6.47 6.48 6.49 6.50	6.52 6.53 6.53 6.54 6.55

-continued. HYPERBOLIC LOGARITHMS-

No. Logarithm.	66 2 158114 67 2 158068 68 2 161021 69 2 161021 70 2 163323 71 2 165068 71 2 165065 72 2 177019 73 2 165063 74 2 173614 75 2 177019 75 2 177019 75 2 177019 76 2 177019 77 2 177019 78 2 177019 78 2 178019 78 2	8 2 194999 9 2 196112 0 2 197224
No. Logarithm.	8 - 32 2 1186528 8 - 33 2 2 120628 8 - 34 2 2 120628 8 - 35 2 1224658 8 - 35 2 1224658 8 - 35 2 1224658 8 - 36 2 1224658 8 - 36 2 1224658 8 - 36 2 1224658 8 - 36 2 1224618 8 - 41 2 1224618 8 - 41 2 1224618 8 - 41 2 1224618 8 - 41 2 1324614 8 - 41 2 1324614 8 - 42 2 134664 8 - 45 2 13464 8 - 45 2 134684 8 - 45 2 134684 8 - 46 2 13464 8 - 46 2 1441601 8 - 56 2 1441601	8.62 2.1540 8.63 2.1552 8.64 2.1564 8.65 2.1575
No. Logarithm.	7.796 2.0714239 7.796 2.0756845 7.799 2.0756845 8.00 2.0794414 8.02 2.0819384 8.02 2.08181845 8.02 2.08181845 8.02 2.08181845 8.03 2.0818429 8.04 2.08181845 8.05 2.0818429 8.05 2.0818429 8.05 2.0818429 8.05 2.0818429 8.05 2.0818429 8.05 2.081823 8.05 2.081823 8.12 2.094364 8.12 2.094364 8.12 2.094364 8.12 2.094364 8.12 2.094364 8.12 2.094364 8.12 2.094364 8.13 2.09564 8.13 2.09564 8.14 2.09568 8.15 2.09564 8.15 2.09464 8.17 2.10464 8.17 2.10464 8.22 2.10657 8.23 2.10657 8.23 2.10657 8.24 2.1085988 8.25 2.1067484	8 8 8 8 8
No. Logarithm.	12 0.094ft 12 0.094ft 12 0.094ft 12 0.094ft 12 0.094ft 13 2 0.034ft 13 2 0.034ft 13 0.044ft 13 0.04	113

HYPERBOLIC LOGARITHMS-continued.

-					
Logarithm	1 64 64 64 64	2.2834023 2.2844211 2.2854389 2.2864557 2.2874715	2.2884862 2.2894999 2.2905125 2.2915241 2.2925348	2.2935444 2.2945529 2.2955605 2.2965670 2.2965670	2.2985771 2.2995806 2.3005831 2.3015846 2.3025851
No.	9.76 9.77 9.78 9.79	9.81 9.83 9.84 9.84	9.86 9.88 9.88 9.89	9.91 9.92 9.93 9.94	9.96 2 9.97 2 9.98 2 9.99 2
Logarithm.	2.2523439 2.2533947 2.2544446 2.2554935 2.2554935	2.2575877 2.2586332 2.2596775 2.2607209 2.2617631	2.2628042 2.2638443 2.2648832 2.2659211 2.2669579	2.2679936 2.2690283 2.2700619 2.2710944 2.2721259	2731563 2741856 2752139 2762411 2772673
No.	9.51 9.52 9.53 9.54 9.55	9.56 9.57 9.58 9.59 9.60	9.61 9.62 9.63 9.64 9.65	9.66 9.67 9.69 9.69 9.70	9.71 2 9.72 2 9.73 2 9.74 2
Logarithm	2.2257040 2.2267834 2.2278615 2.2289385 2.2390144	2.2310891 2.2321626 2.2332350 2.2343062 2.2353763	2.2364453 2.2375131 2.2385797 2.2396453 2.2407097	2.2428351 2.2428351 2.2438961 2.2449560 2.2460147	.2470724 .2481289 .2491843 .2502386 .2512918
No.	9.26 9.27 9.28 9.29 9.30	9.31 9.32 9.33 9.34	9.36 9.37 9.38 9.40	. 43 . 43 . 44 . 45	9.462 9.472 9.482 9.492 9.502
Logarithm.	2.1983351 2.1994443 2.2005524 2.2016592 2.2027648	2.2038691 2.2049723 2.2060742 2.2071749 2.2082774	2.2093727 2.2104698 2.2115657 2.2126604 2.2137539	.2148462 .2159373 .2170272 .2181159	.2202898 .2213750 .2224590 .2235419 .2246236
No.	9.01 9.02 9.03 9.04 9.05	90.00.00.00.00.00.00.00.00.00.00.00.00.0	122.44.	117	9.23 2 9 9 2 3 2 9 9 2 3 2 5 2 5 2 6 9 9 2 5 5 2 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Constant. Logarithm.	7 2 718281826 0-4342945 M 44329445 1-6377433 Ø 32-19084 0-73206684 20, 923, 560 7-3206684 20, 583, 567 7-3191825 20, 583, 567 7-3191825 365, 369 5-5536090 366, 396 5-6529504 366, 396 5-6529504
	-
. Useful Logarithms.	Base of Naperian system Modulus of Briggs system Rechroad of Modulus Yelectiv of failing body, ft. in 1 sec. Equatorial radius of earth Polar Degree in latitude, Equator longitude, Equator longitude, Equator

		-	_		~	7	0	m 0	7 0	200	_	4 7	0 0	200	30	-	6	2	S 9	0 0	2	35	2 :	76	4	_	12	12	16	0 1	2	408	70	193	100		358	2543	200	3089	
	Cube Root.	482	160	5034	5303	900	5830	6088	6542	20	500	7084	- 1	- 1	- 0	200	8229					60	0 1	3.81	0 0	0.7	.04	90.	100.		-	-	- '			4	ė,	7.7	46		- 3
	Da l		3.4							30					0 0			3	00 0	3 0	3	3			4 4	4	4.	4.	4 =		4	10				0				10	- 1
တို	0 . 1	-	7.7	-11	50	20	233	565	70	104	5		7:	110	30					115	53	025	.87401	725	6	977	10	533	24621	000	36660	91	352	54400	60233	2099	71780	7496	317	149	
Roors.	Square Root.	403	480	557	.63325	208	00	855	.978	0.		14	28	570	340	#	48	86:9.1	6.1	689	.14	.81	. 87	.93	0.	90.				, c		4				9.8			00 0		
	S		.9	9	9	. 9	9	9	9	1 -1	-	i-	<u>-</u> 1	- 1	- 1	-					2	10	1-	100		00		00				_	00			25			75	200	3
CUBE	.	CJ	880	9507	8	125	336	03823	269.7	7649	000	651	40608	5551	404	2	51	193	5112	5379	16000	226981	335	25004	262144	462	749	300763	314432	373909	3000	161	324	38901	52	18	3897	65	15	19000	2
	Cube	689	140	195	85	911	97	1038	110592	- C	071	132	₩,	eer 1	101	100	175	185	195	205	216	226	238	250	26.	27	28	30	31	3.5	34	35	37	8	46	42	43	4	4 .	4 1	3
AND				_	"	10		-				_		6	9	c	36	6	#		0	21	14	39	96	25	356	489	4654	19	900	1109	84	5329	5476	625	941	5929	£809	147.9	100
	Square.	681	1764	846	1936	2025	2116	2209	2304	2401	2500	260	2704	2809	2916	30.75	313	3249	3364	348	3600	375	3844	3969	4096	422	43	44	46	476	49	50	518	53	2	2					- 1
ROOTS,		-				_					00				10	0	9	22	30	29	09	61	62	63	79	65	99	19	68	69	20	11	72	13	-	15	94	17	20 5	67.	0
Ro	No.	4]	42	_		45		1	_	_												6						_	9	20	57	14	48	22	96	11	19	22	3620	3912	00
RE	0t.		599	.4422	874	7100	171	9129		.0801	544	2240	894	3513	4101	99	198	2.5713	320	1899.	7144	158	8020	8439	884	9240	9625	0	.0366	.0723	107	14	1-	.20	200	.27	.30				
SQUARE	Cube Root.	0.		1.4		1.1	8.1	6.1	2.0	2.0	5.1		2.5			2.4	2.2	2.2	2.6	5.		2.				53		3	3	ന	e.s.	÷	3	3	3	3	3	3		00 0	
S		-	prod.	10		-	6	20	3	1	58	40	med	22	99	98		11	64	90	14	58	2	583	868		9902	9615	150	216	47723	776	685	4456	3002	809		276	14	45	32456
ES,	Square Root.		142	320		.2360	49	.645	-8284		62	316	mar-list	05	41	872	0	.123	242	.35890	472	100	10	100	38	0	.09	.196	29	•38	.47	95.		La	00	.91	0.	.085	-		6.37
CUBES,	Squ	0.1		1-	2.0	2.2	2.4		2.8	3.0	3.1	3	3.	3.			4	4	4	4.	4.	4	4.	4	4.	5	5	5	73	5	10	10	50	5			9		2 6	_	-
	-	1 7		-	-	25	9	343	512	129	0	331	58	37	144	12	96	-	5832	6889	000	20	ST	19	3824	5625	576	333	952	389	000	164	91	35937	39304	875				318	00019
RES	Cube,			2	9	12	216	3	5	-	1000	13,	1728	219	27	33	40	49	55	68	80	99	0	1216	138	156	7	196	219	243	27	29	33	35	39	42	46	506	54	59	9
SQUARES,	-	1			-	_	-	_	-		_	-		_					-	_	-		-	6	9	20	92	6	+	-	0	196	024	89	99	25	296	369	444	521	009
S	Square.	-	4 4	6	16	25	36	49	Ŧ9	81	100	121	144	169	196	225	956	989	324	361	400	4.4.1	48	529	576	62	67	72	784	S	900	96	105	1089	11	12	12	13	14	15	16
		-													- 4				- ~	0	0		2	23	+	10	- 9	-	28	6	30	31	32	33	34	35	36	37	38	39	40
	-	1 0	40	1 00	2 4	5	9	1	00	0	0		6	40	14	-	-	-	1 -	-	20	0	0	101	03	6.1	0	C	CA	24				-	-						-

ned.	Cube Root.	4.9461 4.9597 4.9732 4.9866 5.0	5.0133 5.0265 5.0397 5.0528 5.0652 5.0788 5.0916 5.1172	5.1426 5.1551 5.1676 5.1801 5.1925	5 - 2048 5 - 2171 5 - 2293 5 - 2415 5 - 2656 5 - 2656 5 - 2776 5 - 2896 5 - 3015	.3251 .3368 .3485 .3601 .3717 .3832 .3947 .4061
s-continued.	Square Root.	11.04536 11.09054 11.13553 11.18034		1.6619 1.74734 1.74734 1.8322	1.87434 1.9164 1.9583 2.0 2.0416 2.08305 2.12436 2.12436 2.26556 2.26566	2.288215 2.3288315 2.369325 2.409675 2.44990 5 2.44990 5 2.62990 5 2.669815 2.669815 2.669815
CUBE ROOTS-	Cube.	1771561 1815848 1860867 1906624 1953125	2000376 2048383 2097152 2146689 2197000 2248091 2299968 2352637 2460375	25154561 25713531 26280721 26856191 27440001	2863221 2863281 2984207 2985984 3048625 3112136 3176523 3241792 3307949 13355000 1	34429511 35118081 35815771 3652264 37238751 37964161 3869893 39443121 401957911
AND CU	No. Sqre.	21 14641 22 14884 23 15129 24 15376 25 15625	26 15876 27 16129 28 16384 29 16641 30 16900 31 17161 32 17424 33 17689 34 17956 35 18225	6 18496 7 18769 8 19044 9 19321 0 19600	19881 20164 20449 20736 21025 21609 21609 21904 22201 22500	22801 23104 23409 23716 24025 24025 24649 24964 25281 25600
	Z			136 137 138 139 140	141 142 144 145 145 146 147 148 149	151 152 153 154 155 155 156 159 159 160
	Cube Root.	4.3267 4.3445 4.3621 4.3795 4.3968	4.4140 4.44810 4.4647 4.4814 4.4979 4.5144 4.5307 4.5468	4.5789 4.5947 4.6104 4.6261 4.6416	4.6570 4.6723 4.6723 4.7177 4.7177 4.7177 4.7475 4.7622 4.7769	8346 8346 8346 8488 8488 8488 8629 877 8910 9049
	Square Root.	9.0 9.05539 9.11043 9.16515 9.21954	9-27362 9-32738 9-38083 9-43398 9-53939 9-59166 9-64365 9-69536	9.79796 9.84886 9.89949 9.94987	10.04988 10.09950 10.14889 10.19804 10.24695 10.34408 10.39230 10.44031 10.44031	0.53565 0.58301 0.63015 0.67708 0.72381 0.81665 0.90871 0.90871
s, Cubes,	Cube.	531441 551368 571787 592704 614125	636056 658503 681472 704969 729000 753571 778688 804357 830584 857375	884736 912673 941192 970299	1030301 1061208 1092727 1124864 1157625 1191016 1225043 1259712 1295029 1331000	1367631 1404928 1442897 1481544 1520875 1601613 1643032 1655159 1728000 172800
SQUARES,	Sqre.	6561 6724 6889 7056 7225	7396 7569 7744 7921 8100 8281 8464 8649 8836	9216 9409 9604 9801 10000	10201 10404 10609 10816 11025 11236 11449 11664 11664 11881 12100	12321 12544 125644 12769 13225 13456 13689 13924 14161 14400
-J	No.	82 83 84 85	888 889 890 901 902 904 905	96 98 99 100	101 102 103 104 105 106 107 108 1109	1112 1113 1114 1116 1118 1119 1119

S, AND CUBE ROOTS—continu No. Sgre. Cube. Square Root.	
40401 8120601 14.17745 40804 8244208 14.21275 41209 8365427 14.24785 41616 8489664 14.28295 42025 8615125 14.31786	.8578 .8675 .8771 .8868
66 27556 4574296 12×88410 5×4958 206 42938 6741816 14×32375757 67 27889 4657443 12×92255 5×5089 207 42849 8869743 14×3875 5× 68 28224 474152212×95148 6×5178 208 42854 8988912 14×42225 69 28561 4895899 13×00000 5×5288 209 43681 9129329 14×4568/5 70 28900 4913000 13×03840 5×5284 209 44100 9251000 14×4914 5×	
241 5000211 13-07670 5-5505 211 44521 9933331 14 5228 5 584 6088448 13-11448 5-561232 4494 95:28128 14-5602 5 205 251747 17 15.95 5-5721 213 4538 9653597 14-5948 5 276 5266024 13-19091 5-5828 214 45796 9983375 14 6287 5 285 5359375 13-22816 5-58342154 5525 6925 9983375 14-6287 5 285 5359375 13-22816 5-5834215 66225 9983375 14-6287 5	.9533 .9627 .9721 .9814
18313 14 7309 50232 14 7648 03459 14 7986 48000 14 8324	
81 32761 502974 13-45362 5-6567 221 4844 1 0793-61 14 8061 6 82 33124 6028-68 13-4674 5-6671 222 492-4 1 0410-814-8897 6 82 33436 612-4871 3-52776 5-6774 223 49729 1 1089567 14-9325 6 84 3385 6223-604 17-56465 5-6771224 50176 1 1239424 4-6066 6 86 34225 6331626 13-60147 5-6986 225 50625 13-006	6.0459 6.0550 6.0741 6.0732 6.0822
	6.0912 6.102 6.1091 6.1180 6.1269
191 36481 6967871 13-82028 5-7590 231 53361 12326391 15-1987 6 192 36864 7077888 13-85841 5-7689 233 5-24 12477168 15-72316 193 37219 71890677 13-89244 5-7790 233 54289 1264337 15-2643 194 37636 7790 334 13-92839 5-7899 234 64766 12812994 16-72471 6 195 3763 7414875 13-96424 5-7988 235 55225 12977875 15-7297 6	6.1358 6.1446 6.1534 6.1622 6.1710
196 38416 7529536 14-000 5-8088 236 55696 13144256 15-3623 6 197 33890 7645372 14-03867 5-8188 235 66644 13812053 15-9845 6 189 39904 7752321 14-07125 5-8285 238 56644 1345127215-4272 6 199 39647 7880599 14-10674 5-8283229 57121 13651919 15-4396 29044 7880599 14-10674 5-8283229 57121 13651919 15-43919	6.1797 6.188 6.1972 6.2058 6.2145

Cube Root.	6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 5 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6		6.811 6.826 6.826 6.833 6.833
Square Root,	16.7631 16.7929 16.8226 16.8523 16.8819	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17.72.0 17.7482 17.7764 17.80.15 17.8326 17.8885
Cube.	22188041 22425768 22665187 22906304 23149125	223993656 22639903 24137569 24137569 24137569 24137569 24137569 2413759 241375 251375 251375 251375 251375 251375 251375 251375 2513789 271375	- # 10 CO M 01 CO
Square.	78961 79524 80089 80656 81225	81796 82365 82361 82365 84681 85140 87140	98596 99225 9926 99856 100489 101124 101761 102160
No.	281 283 283 284 285	286 288 288 288 288 288 299 299 298 298 298	
Cube Root.	6.2231 6.2317 6.2403 6.2488 6.2488	6.2688 6.2743 6.2742 6.2922 6.2922 6.2926 6.2926 6.3316	5030 5030 5108 5187 5187 5265 5343 5421
Square Root.	15.5242 15.5563 15.5885 15.6205 15.6525	15.6844 15.7480 15.7480 15.7490 15.7490 15.9374 15.9374 16.0312 16.0307 16.1356 16.1356 16.2788 16.2788 16.2788 16.2788 16.2788 16.2788 16.3707 16.370	6.5529 6.5529 6.6132 6.6433 6.6733 6.7332 6.7332
Cube.	13997521 14172488 14348907 14526784 14706125	14886936 15652923 15652929 1565200 15612521 1609200 1609200 1609200 1609420 177720 177720 177720 177720 177730 177	000000
Sqre.	58564 58564 59049 59536 60025	60316 61009 62500 623001 623001 653001 653001 65304 66049 66	
No.	242 243 244 245	24.4 24.4 25.4 25.4 25.4 25.4 25.4 25.4	472 272 472 172 172 173 173 173 173 173 173 173 173 173 173

noors—continued.

CUBE

-continued. SQUARE ROOTS, AND CUBE ROOTS

	SQUARES	623	CUBES, D	Danage	-		1		Samare	Cube
Sq	Square	re.	Cube.	Square Root.	Cube Root.	No.	Square.	· Cube.	Root.	Root.
321 10 322 10 323 10 324 10	103041 103684 104329 104976		33076161 33386248 33698267 34012224 34328125	17.9165 97.9444 17.9722 18.0 18.0	6.847 6.854 6.861 6.868 6.875	361 362 363 364 364 365	130321 131044 131769 132496 133225	47045881 47437928 47832147 48228544 48627125	19.0 19.0263 19.0526 19.0788 19.1050	7.120 7.127 7.133 7.140 7.147
	106276 106929 107584 108241		34645976 34965783 35287552 35611289	18.0555 18.0831 18.1108 18.1384 18.1384	6.889 6.889 6.896 6.903	366 367 368 369 370	133956 1346×9 135424 136161 136900	49027896 49430863 49836032 50243409 50653000	19.1311 19.1572 19.1833 19.2094 19.2354	7.153 7.160 7.166 7.173 7.179
	095 102 108 115 125	09561 10224 10889 11556	36264 36594 36594 36926 37259	18.2	99999	371 372 373 374 375	137641 138384 139129 139876 140625	51064811 51478848 51895117 52313624 52734375	19.2614 19.2873 19.3132 19.3391 19.3649	7.196 7.192 7.198 7.205 7.211
		112896 113569 114244 114921	3793 3827 3861 3895	18.357 18.357 18.384 18.412 18.439	3 6.952 6 6.959 8 6.966 0 6.973	376 377 378 379 380	141376 142129 142884 143641 144400	5315737 5358263 5401015 5443993 5487200	6 19 3907 3 19 4165 2 19 4422 9 19 4679 0 19 4936	7.218 7.224 7.230 7.237 57.243
		6281 6964 7649 8336 9025	3965182 4000168 4035360 4070758 4106362	1 18.4662 8 18.4932 7 118.5203 4 18.5472 5 18.5742	86.98 0.7 0.7 1.00	8 8 8 8 8	14516 14592 14668 14745 14822	5530634 5574296 5618188 5662310 5706662	19.519 19.544 19.570 19.595 19.621	2 7.249 8 7.256 4 7.262 9 7.268 4 7.275
346 347 348 349 349		110	414217 417819 421441 425085 428750	36 18 · 6011 23 18 · 6279 92 18 · 6548 49 18 · 6815 00 18 · 7083	1 7 0 2 0 9 7 0 2 7 8 7 0 3 4 5 7 0 4 1 8 3 7 0 4 7	38 88 88	6 148996 7 149769 8 150544 9 151321 0 152100	6 57512456 9 57960603 4 58411072 1 58863869 0 59319000	6 19·6469 3 19·6723 2 19·6977 9 19·7231 0 19·7484	9 7 281 3 7 287 7 7 294 1 7 306 4 7 306
351 352 353 354 354	22222	23201 23904 24609 25316 26025	43243 43614 43986 44361 44738	18.73 18.76 18.81 18.81	7777	054 391 (161 392 067 393 074 394 081 395	1528 1536 1544 1552 1560	597764 602362 606984 611629 616298	19.7 19.8 19.8 19.8	737 7·312 990 7·319 242 7·325 494 7·331 746 7·331
356		26736 27449 28164	451180 454992 458827	3 18.	80 7. 44 7. 09 7.	.101 39	5 156 7 157 8 158	625707 630447 635211	36 19 0937 73 19 9249 92 19 9499 99 19 9750	37 7 343 49 7 356 99 7 356 50 7 36
59	로	28881	462682	79 18-94	73.7			17000	0.000	14.

SQUARES, CUBES, SQUARE ROOTS, AND CUBE ROOTS-continued.

Cube Root.	7.612 7.617 7.623 7.629 7.635	64 65 65 65 66 66	7.674 7.680 7.686 7.691	7.697 7.703 7.714 7.719	7.725 7.731 7.742 7.742	7.753 7.758 7.764 7.775	7.780 7.786 7.791 7.797	7.808 7.813 7.824 7.830
Square Root.	21.0 21.024 21.048 21.071 21.095		21.260 21.284 21.307 21.331	21 · 354 21 · 378 21 · 401 21 · 424 21 · 448	21.471 21.494 21.517 21.541 21.564	21.587 21.610 21.633 21.656 21.679	21-703 21-726 21-749 21-772	21.817 21.840 21.863 21.886 21.909
Cube.	85766121 86350888 86938307 87528384 88121125	8716536 9314623 9915392 0518849 1125000	92345408 92959677 93576664 94196375	94818816 95443993 96071912 96702579 97336000	97972181 98611128 99252847 99897344 100544625	101194696 101847563 402603232 103161709 103823000	104487111 105154048 105823817 106496424 107171875	107850176 108531333 109215352 109902239 110592000
Square.	194481 195364 196249 197136 198025	198916 199899 20070# 201601 202500 203401	204304 205209 206116 207025	207936 208849 209764 210681 211600	212521 213444 214369 215296 216225	217156 218089 219024 219961 220900	221841 222784 223729 224676 225625	226576 227529 228484 229441 230400
No.	441 444 444 445	446 447 418 449 450 451	452 453 454 455 455	456 457 458 458 459 460	461 463 464 465 465	466 467 468 469 470	471 472 474 474 475	476 477 479 480
Cube Root.	7.374 7.380 7.386 7.393 7.399	04. 14. 14. 14. 14. 14. 14. 14. 14. 14. 1	7.441 7.447 7.453 7.459	7.465 7.471 7.477 7.483 7.489	7.495 7.501 7.513 7.518	7.524 7.530 7.542 7.542 7.548	7.554 7.560 7.571 7.571	7.583 7.589 7.594 7.600
Square Root.	20.0250 20.0499 20.0749 20.0998 20.1246	.149 .174 .199 .223 .248	20.2978 20.3224 20.3470 20.3715	20 · 3961 20 · 4206 20 · 4450 20 · 4695 20 · 4939	20.5183 20.5426 20.5670 20.5913 20.6155	20.6398 20.6640 20.6882 20.7123 20.7364	20.7605 20.7846 20.8087 20.8327 20.8567	20.8806 20.9045 20.9284 20.9523 20.9762
. Cube.	64481201 64964808 65450827 65939264 66430125	1171717171717171717171717171717171717171	69934528 70444997 70957944 71473375	71991296 72511713 73034632 73560059 74088000	74618461 75151448 75686967 76225024 76765625	77308776 77854483 78402752 78953589 79507000	80062991 80621568 81182737 81746504 82312875	82881856 83453453 84027672 84604519 85184000
Square.	160801 161604 162409 163216 164025	164836 165649 166464 167281 168100	169744 170569 171396 172225	173056 173889 174724 175561 176400	177241 178084 178929 179776 180625	181476 182329 183184 184041 184900	185761 186624 187489 188356 189225	190096 190969 191844 192721 193600
No.	401 403 404 404 405	406 407 408 409 410	413 414 415	416 417 418 419 420	421 423 424 424 425	424 428 428 429 430	431 434 434 435	436 437 438 440 440

1		1-01-01-	01-01.00 m.m.	ာက ထ	ကတက္ဘေက	8 6 8 8 8 8	98899	198 203 208 213 213	223
	Cube Root,	04 05 05 06 06	072 077 082 088 098 098	17.7	123	11.00		220212	
ed	58	000000	တ်တ်တ်ထဲတ် ကိ တိ	00 00	00 00 00 00 00	00 00 00 00 00	09 00 00 00 00	00 00 00 00 00	00000
nn	0.1	825 847 869 891 913	64 2 865	.108	152 173 195 195 216 238	259 281 302 324 345	367 388 409 431 452	F 00 H 00 10	580 601 622
ti	lar	.84 .84 .86 .89	6560000	.13					
-continued.	Square Loot.	222222	2222222	233	223 23 23 23 23 23 23 23 23 23 23 23 23	23 23 23 23	223223	80000	4440
11	- 1	- m 10		304	553	21 28 84 25 25	336 323 592 149 000	51 77 75 75	1879616 2808693 3741112
ROOTS-		076 664 566 782 312	1576 3183 7952 5889 7000 1291 8768	3304 0375		4042 2005 0300 8918 7862	mmin	8415 9660 1237 3146 5387	961
0	Cube		63631 6363 7197 8035 8877 9721 9521	- 1 - m	990 851 720 590 464		1- 10 10 4 00	28 119 111 03 95	87
m	5	414 422 430 438 4417		522	55 55	58 59 60 60 60 60 61	62 63 64 65 66	6728 6819 691 7007 709	171
		been been been been been	HAHAH HA				0 0 4 0 0	56941	
CUBE	Square.	41 84 84 29 76 25	76676 77729 78784 79841 80900 81961 83024	156	296 369 444 521 600	681 764 849 936 025	20000	30 30	m 03 00 -
	ng	14 24 35 35 56	766 777 787 787 798 809 819 819	851	100001	CI 00 ++ 10 1-	98	303 304 306 306 308	309
CN.	82	222222	01010101010101010	4 04 04			MARKET PROPERTY AND ADDRESS OF THE OWNER, WHEN PERSON NAMED IN COLUMN 2 IS NOT		
A	No.	22 23 22 2	526 527 528 528 530 530 531	535	536 537 538 540	541 543 545	546 547 548 549 550	551 553 554 554 555	556
S,		10 10 10 10 10				63 00 00 00 00	04040		021 026 031
ROOTS,	Cube Root,	835 841 846 851 857	8652 8673 8873 884 884 889	90	93	94 95 95 96 96 96	96.	.995 .0 .005 .010	
RO	28	-1-1-1-1		-1-1-	فر ما ما ما ما	-1-1-1-1	To Lo To To To	1-00 00 00 00	000000
	Θ.	1 01 H 10 10	45 688 91 36 81 81 81	226	271 293 316 335 361	83 05 72 72 72	494 517 539 561 583	605 627 649. 672 694	738
12	quare Root.	66600	00000	222	.27 .29 .31 .33 .36	64444			
SQUARE	-5-2i	222.	222222222	555	222222	555555	222222	222222	22
S				- 410		01 08 08 08 64 25	216 843 5 2 229 000	831 728 697 744 875	096 413 832
ze		4641 0168 8587 9904 4125		378	23936 63473 05992 51499 00000	10000	PH 10 01 00 He		3738809 3818841 3899183
38	Cube	1284 1980 2678 3379 4084	47912 55013 62145 6930] 7649(8370) 9095	0553 0553 1287	005 50 50 25 00 00 00	5751 6506 7263 8024 8787	2955 3032 3109 3187 3265	3343; 3421; 3500; 3579; 3659;	818
CUBES,	5	1128 1198 1267 1337 1408	1479 1550 1621 1693 1764 1837 1909	202	22023936 22763473 23505992 24251499 25000000	22827	2955 3032 3109 3187 3265		138
		1						21 1 44 1 69 1 96 1 25 1	
33	160	61 24 24 25 25 25 25	196 169 144 121 100 100 081 064	36	6016 7009 8004 9001 0000	1001 2004 3009 4016 5025	6036 7049 8064 9081 0100	12 14 16 19 19 22	289
LR	Square	231361 232324 233289 234256 235225	36196 37169 38144 39121 40100 41081 42064	13049 14036 45025	460 470 480 490 500	H 03 03 4 10		26115 2621 2631 2641 2652	266256 267289 268324
SQUARES,	So	1 2 2 2 2 2 2	विविविविव विव	2000	200000	000000	य य य य य य	522222	00000
5	No.	481 483 485 485 485	486 488 489 490 491 491	494 494 495	496 497 498 499 500	501 502 503 504 505	506 507 508 509 510	5115	51
	4	चचचं चंच	चेनेचेचेच चच	स स स	44440	0.00000	4, 4, 4, 4,		

10.:	किस कि कि क	Talico Henda	# @ m m m m m m	10 m w 10 m 10 m 10	present a service of the service
Cube Root.	8 + 438 8 - 444 8 - 453 8 - 453	88.4462 88.4472 88.4472 88.4496 88.496 88.496		8.545 8.554 8.554 8.559 8.569 8.569 8.568	
Square Root.	.515 .536 .556 .576	617 658 658 658 658 658 658 7139 7139	839 880 880 990 990 940	980 0020 040 060 060 080	120 8 140 8 1159 8 100 8
- SZ H	422222	44444 44444	44444 444	24.	25. 25. 25. 25. 25. 25. 25. 25.
Cube.	21708180 21816720 21925622 22034886 22144512	22254501 22364854 223648541 224755711 22698100 22809913 22922092 23034554 23145554	23374489 233785111 23602903 23717665 23832800 23948306 240641848	242970624 244140625 245314376 246491883 247673152 248858189 250047000	251239591 252435968 253856137 254840104 256047875 257259456 258774853 259694072 260917119
Square	361201 362404 363609 364816 366025	367236 368449 368644 370881 372100 373321 374544 375769		389376 390625 391876 393129 394384 395641 396900	398161 399424 400689 401956 403225 404496 405769 407044 408321 409600
No.	601 603 603 604 605	606 607 608 609 610 611 613 613	91-000 -00	624 625 625 627 628 629 630	631 3 632 3 633 4 633 4 636 4 636 4 638 4 638 4 638 4 639 4 653 640 4
Cube Root.	8.247 8.252 8.257 8.267 8.267	8 8 272 8 8 282 8 2 82 8 2 82 8 2 96 8 3 3 0 0 8 3 3 0 0	.325 .325 .335 .344 .344 .349	363 363 373 373 382 387	392 397 401 411 411 420 425 434
Square Root	23.685 23.707 23.728 23.749 23.770	23.791 23.832 23.832 23.854 23.875 23.875 23.917 23.937 23.958	.0 .021 .042 .062 .083 .104 .125	4.166 4.187 4.207 4.228 4.249 4.269 4.290	24.310 8 24.331 8 24.331 8 24.343 8 24.433 8 24.434 8 24.434 8 24.434 8 24.434 8 24.434 8
Cube.	176558481 177504328 178453547 179406144 180362125	181321496 182234263 183250432 184220009 185193000 186169411 187149248 188132517 188132517 198119224 190109375	91102976 92100033 93100552 94104539 95112000 96122941 97137368	199176704 2 200201625 2 201230056 2 202262003 2 203297472 2 201336469 2 205379000 2	06425071 07474688 08527857 09584584 10644875 11708736 12776173 13847192 14921799
Square.	314721 315844 316969 318096 319225	320356 321489 322624 323761 324900 326041 327184 328329 329476 330625		341056 1 342225 2 343396 2 344569 2 346921 2 348100 2	349281 2 350464 2 351649 2 352836 2 354025 2 355216 2 355409 2 355409 2 355409 2 355409 2 355409 2
No.	561 563 563 504 565	566 567 567 57 57 57 57 57 57 57 57 57 57 57 57 57		30 38 37 88 99 90 90 90 90 90 90 90 90 90 90 90 90	591 592 593 595 595 595 600 335 600 595 600 595 600 595 600 595 600 595 695 695 695 695 695 695 695 695 695

continued

AND CURE ROOTS

Squares, Cubes, Square Roots, and Cube Roots-continued.

	QH-1500	04001-	12048	02100	00010	4000-	925 929 934 938 942	946 950 955 959
Cube Root.	8.802 8.802 8.807 8.811 8.815	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 8 883 5 8 887 4 8 892 3 8 896 2 8 900	1 8 904 9 8 909 8 8 913 7 8 917 6 8 921	0000000	58 8 9 9 4 1 4 8 9 5 1
Square Root.	26.096 26.115 26.134 26.153 26.153	26.192 26.211 26.230 26.249 26.268	26.287 26.306 26.325 26.324 26.363	26.382 26.401 26.420 26.439 26.458	26.47 26.49 26.53 26.53 26.53	26.57 26.58 26.60 26.62 26.64	1 26.665 8 26.683 7 26.702 4 26.721 5 26.739	26.7 26.7 26.8
Cube.	315821241 317214568 318611987 320013504 321419126	322828856 324242703 325660672 327082769 328509000	329939311 331373888 332812557 334255384 335702375	337153536 338608873 340068392 341532099 343000000	34472101 345948408 347428927 348913664 350402625	351895816 353393243 354894912 356400829 357911000	35942543 36094412 36246709 36399434 36552587	36706169 36860181 37014623 37169495
Square.	463761 465124 466489 467856 469225	471969 471969 473344 474721 476100	477481 478864 480249 481636 483025	484416 485809 487204 488601 490000	491401 492804 494209 495616 497025	498436 499849 501264 502681 504100	50552 50694 50836 50979 51122	6 512656 7 514089 8 515524 9 516961
No.	681 682 683 684 684	686 688 688 689 690	691 692 693 694 695	696 698 699 700	1 701 5 702 0 703 4 704 9 705	3 706 7 707 2 708 6 709 0 710	11111	1119
Cube Root.	8.627 8.627 8.631 8.636 8.636	8.645 8.649 8.653 8.658 8.662	8.667 8.671 8.680 8.685	8.689 8.693 8.698 8.702	888.71	8.17.88 41.88 41.88	8.75 8.75 8.76 8.77	8.7.8
Square Root.	25.318 25.338 25.357 25.377 25.377	25.417 25.436 25.456 25.475 25.495	25.515 25.534 25.554 25.573 25.573	25.612 25.632 25.652 25.671 25.690	25.710 25.729 25.749 25.768	25.807 25.826 25.846 25.846 25.865	25.90 25.92 25.94 25.94 25.98	26.01 26.03 26.03
Cube.	263374721 264609288 265847707 267089984 268336125	269586136 270840023 272097792 273359449 274625000	275894451 277167808 278445077 279726264 281011375	282300416 283593393 284890312 286191179 287496000	288804781 290117528 291434247 292754944 294079625	29540×296 296740963 298077632 299418309 300763000	30211171 30346444 30482121 30618202 30754687	30891577 31028873 31166575
o. Square.	410881 412164 413449 414736 416025	417316 418609 419904 421201 422500	423801 425104 426409 427716 429025	430336 431649 432964 434281 434281	436921 438244 439569 440896 442225	443556 446224 446224 447561 448900	1 450241 2 451584 3 452929 4 454276 5 455625	45697 45832 45968
No.	641 643 644 645	646 647 648 649 650	651 653 653 654 655	656 658 659 659 660	661 662 663 664 664	666 669 669 670	671 673 673 674 674	676 678 678

-								
Cube Root.	9.134 9.138 9.138 9.142	9.150 9.154 9.158 9.162 9.166	9.170 9.174 9.178 9.181 9.185	9.189 9.193 9.197 9.201	9.213 9.213 9.217 9.221	9.233 9.237 9.240 9.244	9.218 9.252 9.256 9.260	9.268 9.272 9.275 9.279
Square Root.	27.586 27.604 27.622 27.641 27.659	27.677 27.695 27.713 27.731 27.749	27.767 27.785 27.803 27.821 27.839	27.857 27.893 27.911 27.928	27.946 27.964 27.982 28.0	8.036 8.054 8.071 8.089 8.089	8.125 8.142 8.160 8.178 8.196	8-213 8-231 8-249 8-267
Cube.	440711081 442450728 414194947 445943744 447697125	449455096 451217663 4529×4832 454756609 456533000	458314011 460099648 461889917 463684824 465484375	467288576 469097433 470910952 472729139 474552000	476379541 478211768 480048687 481890304 483736625	485587656 487443403 489303872 491169069 493039000	494913671 2 496793088 2 498677257 2 500566184 2 502459875 2	504358336 2 506261573 2 508169592 2 510082399 2 512000000 2
Square.	579121 580644 582169 583696 585225	586756 588289 589824 591361 592900	594441 595984 597529 599076 600625	602176 603729 605284 606841 608400	609961 611524 613089 614656 616225	617596 619369 620944 622521 624100	625681 627264 628849 630436 632025	633616 635209 636×04 638+01 640000
No.	762 763 764 764 765	765 768 768 769 770	771 772 773 774 775	777 777 778 779 780	781 783 783 785	786 787 787 789 789 790	791 792 793 791 795	796 797 798 799 800
Cube Root.	8.967 8.971 8.975 5.979 8.983	8.988 8.992 8.996 9.0	9.008 9.012 9.016 9.021 9.025	9.029 9.033 9.037 9.041 9.045	9.049 9.053 9.057 9.061	9.069 9.073 9.078 9.082 9.086	9.090 9.094 9.102 9.106	9.110 9.114 9.118 9.122 9.126
Square Root.	26.851 26.870 26.889 26.907 26.926	26.944 26.963 26.981 27.0 27.0	27.037 27.055 27.074 27.092 27.111	27 · 129 27 · 148 27 · 166 27 · 185 27 · 203	27-221 27-240 27-258 27-276 27-276	27 - 313 27 - 331 27 - 350 27 - 368 27 - 386	27.404 27.423 27.441 27.441	27.495 27.514 27.532 27.550 27.568
Cube.	374805361 376367048 377933067 379503424 381078125	382657176 384246583 385828352 387420489 389017000	390617891 392223168 393832837 395446904 397065375	398688256 400315553 401947272 403583419 405224000	406869021 408518488 410172407 411830784 413493625	415160936 416832723 418508992 420189749 421875000	423564751 425259008 426957777 428661061 430368875	432081216 433798093 435519512 437245479 438976000
Square.	519841 521281 522729 524176 525625	52529 529984 531441 532900	534361 535824 537289 538756 540225	541696 543169 544644 544614 546121	549081 550564 552049 553536 555025	556516 558009 559504 561001	564001 565504 567009 568516 570025	571536 573049 574564 576031 577600
No.	721 722 723 724 725	726 727 728 729 730	731 732 733 734 735	736 737 738 739 740	741 742 743 744 745	746 747 748 749 750	751 752 753 754 755	756 757 758 759 760

ted.	Cube Root.	9.439 9.443 9.447 9.450 9.454	44444	9.48	9.495 9.499 9.502 9.506 9.510	9.513 9.517 9.521 9.524 9.528	9.532 9.535 9.539 9.543 9.546	9.550 9.554 9.557 9.561 9.565	9.568 9.572 9.576 9.579 9.583
continued	Square Root.	29.017 29.017 29.034 29.069		29 - 172 29 - 189 29 - 206 29 - 223 29 - 240	29 - 257 29 - 275 29 - 292 29 - 309 29 - 326	29.343 29.360 29.377 29.394 29.411	29 428 29 445 29 462 29 479 29 496	29.513 29.530 29.547 29.563 29.563	29.597 29.614 29.631 29.648 29.665
Roots-	Cube.	594823321 596947688 599077107 601211584 603351125	495736 645423 800192 960049 125000	8470208 8470208 0650477 2835864 5026375	627222016 629422793 631628712 633839779 636056000	638277381 640503928 642735647 644972544 647214625	649461896 651714363 653972032 656234909 658503000	663054848 663338617 665338617 667627624 669921875	672221376 674526133 676836152 679151439 681472000
ND CUBE	Square.	707281 708964 710649 712336 714025	15716 17409 19104 20801 22500	724201 725904 727609 729316 731025	732736 734449 736164 737881 739600	741321 743044 744769 746496 748225	749956 751689 753424 755161 756900	758641 760384 762129 763876 765625	767376 769129 770884 772641 774400
A,	No.	841 842 843 844 844 844	सास का का वा 10 1	851 853 854 854 855	856 857 858 859 860	861 862 863 864 864	866 868 868 869 870	871 872 873 874 875	876 878 878 879 880
ROOTS	Cube Root.	9.287 9.291 9.295 9.299 9.302		9.326 9.329 9.333 9.337 9.341	9.345 9.348 9.352 9.356 9.360	9.364 9.367 9.371 9.375 9.379	9.383 9.386 9.391 9.394 9.398	9.402 9.405 9.409 9.413	9.420 9.428 9.428 9.432 9.435
SQUARE	Square Root.	28.302 28.320 28.337 28.355 28.355	8.39 8.42 8.44 8.44 8.46	28.478 28.496 28.513 28.531 28.538	28.566 28.583 28.601 28.618 28.636	28.653 28.671 28.688 28.705 28.723	28.740 28.758 28.775 28.792 28.810	28 · 827 28 · 844 28 · 862 28 · 879 28 · 896	28.914 28.931 28.948 28.965 28.983
CUBES,	Cube.	513922401 515849608 517781627 519718464 521660125	23606616 255579 (3 27514112 29475129 31441000	533411731 535387328 537367797 539353144 541343375	543338496 545338513 547343432 549353259 551368000	553387661 555412248 557441767 559476224 561515625	563559976 565609283 567663552 569722789 571787000	573856191 575930368 578009537 5×0093704 582182875	584277056 586376253 588480472 590559719 592704000
UARES,	Square.	641601 643204 644809 646416 648025	496 512 528 544 561	657721 659344 660969 662596 664225	665856 667489 669124 670761 672400	674041 675684 677329 678976 680625	682276 683929 685584 687241 688900	690561 692224 693889 695556 697225	698896 700569 702244 703921 705600
SQU.	No.	801 802 803 804 805 805	008	8 8 8 8 1 1 2 8 8 1 1 2 8 1 2 8 1 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	816 817 818 819 820	821 822 823 824 824 825	826 827 828 829 829 830	831 832 834 834 835	836 833 839 840

_								
-	9.729 9.733 9.736 9.740 9.743	9.747 9.750 9.754 9.757 9.757	9.764 9.768 9.771 9.775	9.782 9.785 9.789 9.792 9.796	9.799 9.803 9.806 9.810	9.817 9.820 9.824 9.827 9.830	9.834 9.837 9.841 9.844 9.848	9.851 9.855 9.858 9.861
TROOP.	30.348 30.364 30.381 30.397 30.414	30.430 30.447 30.463 30.479 30.496	30.512 30.529 30.545 30.561 30.578	30.594 30.610 30.627 30.643 30.659	30.676 30.692 30.708 30.725 30.741	30.757 30.773 30.790 30.806	30.838 30.854 30.871 30.887 30.903	30.919 30.935 30.952 30.968 30.984
	781229961 783777448 786330467 788889024 791453125	794022776 796597983 799178752 801765089 804357000	806954491 809557568 812166237 814780504 817400375	820025856 822656953 825293672 827936019 830584000	833237621 835896888 838561807 841232384 843908625	846590536 849278123 851971392 854670349 857375000	862801408 865523177 86825064 870983875	73722816 76467493 79217912 81974079 84736000
	848241 850084 851929 853776 855625	857476 859329 861184 863041 864900	866761 868624 870489 872356 874225	876096 877969 879844 881721 883600	885481 887364 889249 891136 893025	894916 896809 898704 900601	904401 906304 908209 910116 912025	13936 15849 17764 19681 21600
	921 922 923 924 925	926 927 928 929 930	931 932 933 934 935	936 937 938 939 940	941 942 943 944 945	946 947 948 949 950	553	900000
40006	9.586 9.590 9.594 9.597 9.597	9.608 9.608 9.612 9.615 9.615	9.623 9.626 9.633 9.633	9.641 9.644 9.648 9.651 9.655	9.658 9.662 9.666 9.669 9.673	9.676 9.680 9.683 9.687 9.691	.694 .698 .701 .705	712 9 715 9 719 9 722 9 726 9
	29.682 29.698 29.715 29.732 29.749	29.766 29.783 29.799 29.833	29.850 29.866 29.883 29.900 29.917	29.933 29.950 29.966 29.983	30.017 30.033 30.050 30.065 30.083	30-100 30-116 30-133 30-150 30-166	30 183 9 30 189 9 30 216 9 30 2249 9	30.2659 30.2829 30.2899 30.3159 30.3319
	683797841 686125968 688465387 690807104 693154125	695506456 697864103 700227072 702595369 704969000	707347971 709732288 712121957 714516984 716917375	719323136 721734273 724150792 726572699 726572699	731432701 733870808 736314327 738763264	743677416 746142643 748613312 751089429 753571000	56058031 58550528 61048497 63551944 66060875	68575296 71095213 73620632 76151559 78688000
	776161 777924 779689 781456 783225	784996 786769 788544 794321 794321	793881 795664 797449 799236 801025	802816 804609 806404 808201 810000		8208367 8226497 8244647 8262817 8281007	829921 7 831744 7 833569 7 835396 7 837225 7	839056 7 840889 7 842724 7 844561 7
	881 883 884 884 885	886 888 888 889 890	891 893 894 895	896 898 898 899 899		906 907 908 909 910	911 912 913 914 915	916 917 918 919 920

SQUARES, CUBES, SQUARE ROOTS, AND CUBE ROOTS-continued.

Cube Root.	936 946 948 948 953 953 953 967 967 973 973 973 973 973 973 974 973 974 973 974 975 977 977 977 977 977 977 977 977 977
	000000000000000000000000000000000000000
Square Root.	321 3321 369 386 386 386 386 4401 4432 448 464 480 496 512 528 528 559 575 560 7
Squ	33 33 33 33 33 33 33 33 33 33 33 33 33
	144076141 148650168 148650168 155276304 155276304 155276304 155276168 155276168 155276168 155276168 155276168 155276168 15527618
ube.	407614 696516 98620 276390 856716 856716 856716 856716 856716 773610 99990 99100 9970029 9970029
0	
Ire.	
Square.	2969 296 296 296 296 296 296 296 296 296
No.	9981 9982 9883 9884 9985 9986 9987 9997 9996 9996 9996 9996 9996
0 43	882 882 883 883 883 883 883 883 883 883
Cul e	00000 00000 00000 00000
are ot.	00 00 0032 0048 0048 0097 1113 1113 1113 1113 1113 1113 1113 11
Square Root.	
	00 00 00 00 00 00 00 00 00 00 00 00 00
Cube.	75:75631 75:75831 75:7584 76:7584 7
5	877 990 990 990 112 112 115 115 115 115 115 115 115 115
9	1116000 964110 1146900 9641100
Square.	655555
-	1122246 60 1122447 80 80 80 80 80 80 80 80 80 80 80 80 80
No	996666666666666666666666666666666666666

Table of $\frac{2}{2}$ Powers or $\sqrt[3]{N^2}$.

. 1	000000000000000000000000000000000000000
Z	
1	3267 1204 4391 5 5 7 155 823 411 934 40 10 10 10 10 10 10 10 10 10 10 10 10 10
6	7.1 111.1 113.4 116.1 118.1 118.1 129.2
	8683 2209 303 303 303 303 303 303 303 303 303 3
00	86.8 99.2 111.2 1 1 1 1
	6593 6115 6115 .104 .024 .811 .496 .634 .111
- 1-	3.65 6.61 111.1 111.1 114.8 116.4 116.4 119.6 119.6
	3019 3496 7764 7764 7764 7.942 3.483 9.483 9.483 3.483 5.397
9	3.30 6.34 6.34 6.34 112.8 114.6 114.6 119.4
	9240: 0822 5499 5499 7-700 7-700 7-784 9-33 0-82 2-257
70	2.92 6.08 6.08 8.54 10.0 114.4 114.4 116.1
-	1000000 P 60410
41	2.519 5.5808 8.3208 110.49 112.46 114.28 116 116 119.18
-	0801 2588 5288 50876 80876 80876 80876 80876 9028 9028 973
00	HO0-194 10-00-1
-	4104000000000
61	10 07 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-	
-	6001001000
-	
0	100000000000000000000000000000000000000
-	1 41-01-
Z	000000000000000000000000000000000000000

M
6
8
B
1
H
×
0
0
Fine
25
H
-
22
OR
VOR
SWOR
ESWOR
LESWOR
OLESWOR
HOLESWOR

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1·11111 ·526316 ·344828	No.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·526316 ·344828	1
6 - 166667 - 1663934 - 161290 136386 135135 133333 131579 122870 122870 122857 140845 133889 135356 135135 133333 131579 114943 113634 122870 123457 121951 120482 119048 117647 116279 114943 113634 10 10000 099010 098039 010529 0105297 0105263 094340 093458 092538 094340 099010 098039 097087 096154 095238 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 092538 094340 093458 094340 093458 094340 093458 094340 093458 094340 093458 094340 093458 094340 093458 094340 093458 094340 093458 094340 093458 094340 093458 094340 093458 094340 093458 094340 093458 094340 094458 094	8 - 204082 - 169492 - 169492 - 144928 5 - 126582 5 - 126582 6 - 112360 1 - 01010 3 - 091743 6 - 084034 5 - 077519 4 - 077519 8 - 067114 1 - 062893 4 - 052896 1 - 052910 5 - 050251 7 - 047847	11 12 13 14 15 16 17 18 19 20

FORMULÆ.	
ENGINEERING	
OF	

Proposate of Numbers-continued.

				KE	CIPROCALS	OF MUD	IBERS-CO	onconnec.				-
Ī	No.	•0	•1	•2	•3	•4	•5	.6	•7	•8	• 9	No.
-	44 45 46 47 48 49 50 51 52 53 54 55	·022727 ·022222	022676 022676 022173 021692 021231 020790 020790 019960 019960 019969 019194 018832 018449 017825 017513 017212 016920 016639 016637 016103 015548 015601	022624 ·022124 ·021645 ·021186 ·021186 ·021087 ·020747 ·020325 ·019920 ·019531 ·01957 ·018450 ·018450 ·017483 ·017483 ·017483 ·017691 ·016340 ·016077 ·018523 ·015576		**022523** **022026** **021552** **021057** **020661** **020243** **019841** **018727** **018727** **018727** **018727** **017422** **017422** **017423** **016535** **016535** **016536** **016287** **016026** **016287** **016026** **016528** **016528** **0165528** **0165528** **0165528** **0165528** **0165528** **0165528** **016529** **016	*022472 *021978 *021505 *021653 *020619 *020202 *019802 *019802 *018902 *018349 *018349 *017399 *017391 *017094 *016507 *016529 *016260 *015504 *015504	*022422 *021930 *021459 *0210459 *021063 *020576 *020161 *019763 *019380 *019011 *018657 *018315 *017986 *017361 *017065 *016709 *016502 *016234 *015974 *015723 *015480 *015248	021413 ·020964 ·020121 ·019724 ·019342 ·018622 ·018622 ·017637 ·017331 ·016750 ·01647 ·016948 ·015694 ·015694 ·015694	.021834 .021368 .020921 .020492 .020080 .019685 .019305 .018339 .018587 .017921 .017606 .017301 .017007 .016722 .016447 .016181 .015924 .015924 .015924 .015924	.021322 .020877 .020450 .020400 .019646 .019268 .018503 .018215 .017889 .017575 .017271 .016694 .016422 .016155 .015898 .015644	45 46 47 48 49 50 51 52 53 54 55 55 56 57 57 66 66 61 66 66 66 66 66 66 66 66 66 66
4 .				-		1	1	1	1	1		

FORMULÆ.
-1-
9
120
77
22
F-3
42
63
\mathbf{z}
-
TH
9
Z_{i}
F-7
-
OF
0

No.	.0	•1	•2	•3	•4	•5	•6	.7	•8	•9	No.
66	*015152	.015129	.015106	.015083	.015060	•015038	•015015	.014993	.014970	*014948	66
67	.014925	.014903	*014881	.014859	.014837	.014815	.014793			.014728	
68	*014706	.014684	.014663	.014641	.014620	.014599	.014577			*014514	
69	.014493	.014472	•014451	.014430	014409	.014388	.014368			.014306	
70	.014286	*014265	.014245	.014225	.014205	.014184	.014164			*014104	
71	.014085	.014065	.014045	.014025	.014006	.013986	.013966	.013947	.013928	.013908	71
72	.013889	*013870	*013850	.013831	.013812	.013793	.013774		*013736		
	.013699	•013680	.013661	*013643	.013624	.013605	.013587			.013532	
	.013514	.013495	.013477	.013459	.013441	.013423	.013405		*013369		74
75	•013333	*013316	*013298	·013280	.013263	.013245	*013228		.013193		
	.013158	.013141	.013123	.013106	.013089	.013072	.013055	.013038	.013021	*013004	76
	.012987	.012970	.012953	.012937	.012920	.012903	.012887			.012837	
	.012821	.012804	.012788	.012771	.012755	.012739	.012723	.012706			
	.012658	.012642	.012626	*012610	.012594	.012579	.012563			.012516	
80	.012500	.012484	•012469	•012453	•012438		.012407	.012392			
81	.012346	.012330	.012315	•012300	.012285	.012270	.012255	.012240	• 012225	•012210	81
		.012180	*012165	.012151	.012136		.012107	.012092			
		.012034	·012019		.011990		.011962	.011947			83
		.011891	*011876	.011862	.011848		.011820	.011806			84
			.011737	.011723	.011710			.011669			
			*011601		.011574			.011534			86
37	011494	·011481	.011468		.011442			.011403			
											٠.

No.	•0	• •1 :-	•2	*3 //	•4	• 5	*6 . •	•7 ;	•8	. 9	No.
90 91 92 93 94 95 96 97 98	·011236 ·011111	*011351 *011223 *011099 *010977 *010858 *010741 *010627 *010515 *010406 *010299 *010194 *010091 *009990	.011211	*011325 *011198 *011074 *010953 *010834 *010604 *010493 *010384 *010277 *010173 *010070 *009970	*011312 *011186 *011062 *010941 *010823 *010707 *010593 *010482 *010373 *010267 *010163 *010060 *009960	*011299 *011173 *011050 *010929 *010811 *010695 *010582 *010471 *010363 *010256 *010152 *010050 *009950	*011287 *011161 *011038 *010917 *010799 *010684 *010571 *010460 *010352 *010246 *010142 *010040 *009940	·011148 ·011025 ·010905 ·010787 ·010672 ·010560 ·010449 ·010341 ·010235 ·010132 ·010030	*011261 *011136 *011013 *010893 *010776 *010661 *010549 *010438 *010331 *010225 *010121 *010020 *009921	*011123 *011001 *010881 *010764 *010650 *010537 *010428 *010320 *010214 *010111	89 90 91 92 93 94 95 96 97 98 99

Any sum multiplied by the reciprocal of a number is equal to the same sum divided by the number which the reciprocal represents. Reciprocals are frequently useful for facilitating hasty calculations; the reciprocal, used as a multiplier, being substituted for its number used as a divisor.—In the Table the reciprocals are those of integers and decimals mixed; but it is easy to extend their use to integers alone, or decimals alone, by adding to the reciprocal in the Table a decimal point for each integer added to its number, or deducting a decimal point for each integer subtracted from its number.

Thus, reciprocal of 20.9 = .047847; of 209.0 = .0047847; of 2090.0 = .00047847. 0.209 = 4.7847; 0.209 = 47.847; 0.209 = 47.847; 0.207 = 478.47.

SUPPLEMENT.

ELECTRIC LIGHTING.

to 20 p. c. of the light 35 50 65 30 40 09 Plain glass absorbs from Ground 33 Ordinary opal " Thin opal"

WORK, ETC., IN LIGHTING.

Total resistance in circuit = $r_1 + r_2$ armature ", wires and connections. Electromotive force in volts = Intensity of current-Ampères Resistance of lamp in ohms. 7. 門田田

$$= \frac{E}{R} = \sqrt{\frac{746 \text{ F}}{R}} = \sqrt{\frac{746 \text{ HP. D}}{R}}$$

= Power absorbed in electrical work =

Actual horse-power to work Dynamo. D = $(v_1 + v_3)$

= EC. = Heat de- $\left.\right\}$ = C² B = $\frac{E^2}{R}$ HE. e = Efficiency = 11 D = Duty

RESISTANCE OF CYLINDRICAL CARBONS PER METRE, (Joubert,) Diameter, mm. — 1 2 3 4 5 6 10 15 20 Resistance, ohms—50 12 5 5 5 5 3 12 5 2 1 3 9 5 2 2 2 125 = ·2406 C² R Calories (g. d. C.)

ELECTRICAL UNITS.

Symbol = 108 C.G.S. units = $= 10^{9}$ Ohm* Electromotive Resistforce ance = 107 = EC = C2 R= Joule : Heat

 $= 10^{-1}$ "= $\overline{R} =$

Current.. Ampèret

= .004 76° F. g.d.C $= 10^7 = .00134 \text{ HP} = \text{C}^2 \text{ R}$ Calorie 4.16×10^7 10-1 6-01 Horse-power, English, = Coulomb == Watt Farad Quantity. Capacity. Work Heat

: 746 × 10' C.G.S. units e ... Seconds

$$S = \frac{E}{R} = \sqrt{\frac{W}{R}}$$
; $E = CR$; $R = \frac{E}{C}$.

 $C^2R = \frac{L}{R} = EC$; $W = C^2Rt$.

Megohm (or one million ohms). Ohm. 3

Ampère.

Miliampère (or 1000 Ampère). 11

* The British Association obm = '*868 × 10° G.G.S. units. G.G.S. denotes the Cerimter-echanme-Scoold System. 10° denotes 1 + n crybters; thus 10° = 1000; 10" denotes 1 at the nth place of decimals; thus 10° = -00. The prefix Mga." denotes 1,000,000: "Micro" denotes 10° in Micro" denotes 10° in Micro" denotes 10° in the prefix + Formerly Weber.

MENT.)	LENGTH. $km = \text{kilometre}$ $m = \text{metre}$ $dm = \text{decimetre}$ $cm = \text{centimetre}$ $mm = \text{millimetre}$	SURFACE. $km^2 = \text{sq. kilometre}$ $m^2 = \text{, metre}$ $dm^2 = \text{, decimetre}$ $cm^2 = \text{, centimetre}$ $mm^2 = \text{, millimetre}$ $ha = \text{hectare}$ $a = \text{are}$	SOLIDITY, &c. $km^3 = \text{cubic kilometre}$ $m^3 = , \text{metre}$ $dm^3 = , \text{decimetre}$ $cm^3 = , \text{centimetre}$ $mm^3 = , \text{millimetre}$
adalos)	WEIGHT. $t = \text{tonne} = 1000 \ kg$ $q = \text{quintal} = 100 \ kg$ $kg = \text{kilogramme}$ $dkg = \text{decagramme}$ $g = \text{gramme}$	WEIGHT (continued), $dg = \text{decigramme}$ $cg = \text{centigramme}$ $mg = \text{milligramme}$	CAPACITY. $ht = \text{hectolitre}$ $t = \text{litre}$ $dt = \text{decilitre}$ $ct = \text{centilitre}$

Italic letters are used for these contractions, and no stop is to be used at the right of them. The contractions succeed the figures to which they refer, on the same line and after the last decimal place, when decimals are used.

MOLESWORTH'S POCKET-BOOK (SUPPLEMENT.)

RESISTANCE OF METALS.

Specific resistance of metal (see table below). Resistance of wire in ohms at 0° Centigrade. 2

Cross-sectional area of wire centimetres. Diameter of wire in centimetres. 500

Temperature in degrees Centigrade. Length

 $R = \frac{r \times 10^{-6} L}{s} = \frac{r \times 10^{-6} L}{4 \pi d^2}.$

10 -6 be-(C. G. S.) being 109 C. G. S. units, the expression Second Gramme Centimetre the for comes 103, The ohm System.

Melting Point.	Centi- grade.	10000	100	1000	12500	1	0009	4500	17700	15000	1	2350	3320	4400	2650	-36.20	1	1	1
In- creased* Resistance per °C. at	Ohms.	11200.	1	•00388	•00365	1	١	•00365	1	.0063	1	.00365	.00387	•00389	•00354	.00072	.00031	.00044	•00062
1 mm Diam. 1 metro Long.	Ohms.	.01937	.02103	.02057	.02104	.02697	.03751	.07244	11166	.1251	·1604	11701	.2526	.4571	1.689	1.2247	•314	.2692	•1399
Specific Resistance (r). 1 Centi- metre Cube.	Microhms.	1.521	1.652	1.616	1.652		2.915	2.689	9.158	9.825	12.60	13.36	19.85	35.	132.7	99.74	24.66	21.17	10.99
		Silver annealed	hard drawn	per	", hard drawn	Cold, annealed	A huminium annealed	Zing compressed	Platinim annealed	Iron	lo.	Tin compressed	I oad	Antimony compressed	Rismuth	Mercury, liquid	2 Silver, 1 Platinum	German silver	2 Gold, 1 Silver

The specific resistance due to temperatures exceeding 0° Centigrado in very pure metals approximately = r (1 + '00824t + '0000126 r²), The resistance of commercial metals is generally much greater than that of pure puchls.

INCREASE OF RESISTANCE WITH TEMPERATURE, R = Resistance at temperature t° Centigrade. r = 0t = Temperature in degrees Centigrade. α and b = Coefficients. $R = r \left(1 + at \pm bt^2 \right)$

values of a and b.

b = +.00000126. b = -.000000398. b = +.000000152. b = -.0000000062+ .00069999 ; + .0007485; + .0004433; + .003824; + .00031; a = aa = aa = aplatinum silver alloy a = German silver For pure metals gold silver mercury

RELATIVE RESISTANCE OF WIRES IN SINGLE CIRCUIT,

cross sectional area of wires. resistance of wires. Relative diameter of wfres. = Specific reistance of wires. heat developed. lengths. d_1 코고핀 S d and and R and L and and and

$$\frac{R}{R_1} = \frac{r L d_1^2}{r_1 L_1 d^2} = \frac{r L S_1}{r_1 L_1 S} = \frac{H}{H_1}$$

COMPOUND CIRCUIT.

71, 72, 73, 74, = resistances of wires.

r1 r2 71 + 79 r1 and r2 = -R₂ = Resultant resistance of

$$R_3 =$$
, r_1, r_2 and $r_3 = \frac{R_2 r_3}{R_2 + r_3}$.

$$\mathbf{R}_{4} = n_{1} - n_{1}, r_{2}, r_{3}, \text{ and } r_{4} = \frac{\mathbf{R}_{3} r_{4}}{\mathbf{R}_{3} + r_{4}}.$$

(SUPPLEMENT.)

ELECTRIC LIGHT CONDUCTORS.

RULE OF FIRE RISK COMMITTEE, S. T. E.:—
1000 ampères per square inch of sectional area.
RULE OF CLARK, FORD AND CO.:— SAFE CURRENT.

1 ampère for every 10 lbs. of copper per mile.

1000 ampères per square inch of sectional area, and 1000 ohms resistance of insulator for every volt of electro-JAMIESON'S RULE:-

motive force in the current. PROFESSOR FORBES' RULE: --

Current in ampères. Diameter of Conductor in centimetres.

insulated cable in centimetres.

Excess of temperature of conductor above the air.

Coefficient of radiation and convection = .0003.

Specific electrical resistance of material. Heat conductivity of insulator.

· 00018 for guttapercha; = · 00041 for indiarubber.

$$C = \sqrt{d\beta t} \frac{\pi^2 H}{4 B \cdot 24}$$
, for bare overhead wires.

$$= \sqrt{\frac{\pi^2 k d^2}{48 \, \mathrm{R}}} \ t \times \frac{3 \, \mathrm{D}}{10 + 3 \, \mathrm{D} \log_{\epsilon} \frac{\mathrm{D}}{d}} \right\} \text{ for aerial insulated cables.}$$

broad, would carry a current of 700-00 ampères with a rise of 10° C, in temperature; but the cost of copper is so great that large conductors of this kind should be of iron instead of For underground conductors (2 feet below the surface) a flat 2,800 centimetres copper conductor 1 centimetre thick and

COILS OF A DYNAMO.

The surface radiating heat.

Safe current which can be carried with a rise of 50° C. The resistance of the coils.

This does not apply to armature coils, which are cooled by rapid rotation. (SUPPLEMENT.)

HEATING OF WIRES (Forbes). Diameter of wire in centimetres. Current in ampères.

Excess of temperature of wire above air Centigrade.

.000168 for bright, and .00032 for blackened copper. Specific resistance of material in ohms Coefficient of radiation and convection

for copper. for lead. .38 t + 100 38 4 .000001642 .00001985 П

= .00001985
$$\left(1 + \frac{\pi}{100}\right)$$
 for lead.
= $\sqrt{\text{D}^3 t} \frac{\pi^2 E}{.96 \text{ R}} = \sqrt{\frac{10.28 \text{ D}^3 t E}{\text{R}}}$.

THE TEMPERATURE OF WIRE to CENTIGRADE ABOVE THE INCREASE BARE BRIGHT COPPER TO REQUIRED CURRENT

Temperature of the air assumed at 20° Centigrade.

AIR. SURROUNDING

	$t = 91^{\circ} \text{C}.$	6.4	22.4	41.2	63.4	9.88	116	. 147	179	214	251	602	1303	2006	2802	3685	4642	5671	6269	7926	F. t=145°·8 F.
peres.	$t = 49^{\circ} \text{ C}.$	6.9	18.3		51.7		94.9	119	146	174	204	577	1001	1633	2283	3000	3781	4620	5511	6455	t = 88° · 2 F.
Current in Amperes.	$t = 25^{\circ}$ C.		13.5	24.9	38.3		70.3	1.88	108	129	151	428	787	1211	1692	2225	2803	3422	4088	4788	t = 45° F.
Cur	$t = 9^{\circ} \text{ C}.$	3.0	8.3	15.3	23.6	33.0	43.4		4.99	9.64	93.3	264	485	746	1043	1371	1728	2110	2519	2950	t=16°.2 F.
	$t = 1^{\circ} C$.	1.0	2.8	20	80	11.	14.		22.	56.9	31.5		164.0	252	353	463	584	714	851	266	t=10.8 F.
f Wire.	Inches.	.03937	.07874	11811	15748	.19685	.23623	.27560	.31497	.35434	.39371	. 78742	7			က္	.75		• 54	3.93708	Inches.
Diameter of Wire.	Centimetres.	.1	57	တ္	. ₹•	2	9.	2.	œ	6.	1.0	2.0		4.0	2.0	0.9	0.2	0.8	0.6	10.0	Centimetres.

A more powerful current might be used for a short interval, wire multiply the results above given by For blackened 1.3845.

(SUPPLEMENT.)

(Forbes. Diameter of the conductor, centimetres. cable or insulator. Thermal conductivity of insulator INSULATED CABLES. Coefficient of cooling = '0003. .00048 for guttapercha. HEATING OF

surrounding medium, Specific resistance of conductor ohms. whether air or water, Centigrade. Excess temperature above = Current in ampercs. 11 11

10 + 3D loge & 72 d2 K t ·48 R

TABLE OF CURRENT REQUIRED TO HEAT INSULATED CONDUCTORS.

Temperature of air, 20° Centigrade. = assumed == J.

Diam. of Conductor.		Curren			
	ℓ = 1° C.	t = 9° C. t	t=25° C.	t=49° C.	t=81° C.
	3.7	11.0	17.8	24.0	29.5
	9.1	27.0	43.8		-1
	15.0	44.4	72.1	97.3	_
	21.2	62.5	102	137	
	27.4	81.0	131	177	-
	33.7	100	164	219	268
	40.1	119	192	259	319
	46.4	137	223	301	369
	52.9	157	253	342	420
_	59.3	175	285	384	472
	124	367	595	803	886
	189	559	806	1225	1503
	254	753	1221	1646	2021
-	319	945	1534	2068	2523
-	385	1138	1846	2491	3058
_	450	1330	2158	2846	3575
_	514	1525	2472	3332	4094
	580	1716	2785		03
	645	1909	3097	4178	2130

sults must be multiplied by a factor varying from '95 when If K should = '0003 instead of '00048, as calculated, the red = .1; to .84 for 1.0; and to .78 for 10.0.

OF ENGINEERING FORMULÆ. (SUPPLEMENT.)

(Forbes.) HEATING OF COILS.

Resistance of coil in ohms when hot, 1.2 resistance cold at 50° Centigrade.

Surface of coil exposed to air in cm2 (sq. centimetres). Permissible rise in temperature; say 50° Centigrade.

Coefficient of cooling = .0003. 対田田の

Heat generated = $\cdot 24 \text{ C}^2 r$; Heat radiated = EtS;

Current in ampères,

$$H=L_1$$
; $C=\sqrt{\frac{EtS}{24r}}=25\sqrt{\frac{5}{r}};$

(Forbes.) Breadth of conductor 1 centimetre thick. HEATING OF BURIED CONDUCTORS.

Depth below surface of ground, centimetres. g

Temperature of conductor above that of the ground (\mathfrak{S}). Temperature of ground above that of the air (\mathfrak{S}). Current in ampères. K CT

Coefficient of conductivity = .004.

Specific resistance of conductor, ohms.

Heat generated per centimetre, length = -

Heat radiated = $\mathbf{E} b t_1$.

Coefficient of cooling = '0003. Heat conducted. 三三二

$$H = L_i$$
 .. $C = \sqrt{\frac{b^2 t_1}{800 \text{ R}}}$; if $t_1 = 10^\circ$, $C = \sqrt{\frac{b^3}{80 \text{ R}}}$;
 Kbt .004 bt

$$l = \frac{Kb^t}{d} = \frac{004b^t}{0040^2} \frac{d}{d} \text{ and } H = l$$

$$\therefore C^2 = \frac{004b^2t}{24Rd} = \frac{b^2}{80R}; \text{ and } \frac{t}{24d} = \frac{1}{80},$$

Assuming 50° as permissible rise of temperature and 15° as the temperature of the air, $R=:2031\times10^{-6}$ ohms for copper and $t = .75 d = 45^{\circ}$ C. when d = 60 centimetres,

$$C = \frac{b \times 10^3}{\sqrt{1000}} = 25 b.$$

Table calculated on the above assumptions for flat copper conductors buried at a depth not exceeding 2 feet or 60 centi-V162-48 metres below the surface.

2,800 centimetres. 70,000 ampères. Buried conductors should be in the form of flat sheets. 360 9000 4000 160 C = 250 1000 2250 90 40 01 = 0

PERFORMANCE OF MACHINES SUPPLYING ARC-LAMPS. (Hospitalier.)

I ERFORMANO.	01 2.31								
	-2		Contin	uous Cu	rrent.		Alter	nating Cu	rrent.
	Formulæ.	Gramme.	Siemens.	Burgin.	Siemens.	Brush.	Meritens.	Meritens.	Siemens.
Number of lamps Revolutions of generator Effective horse-power Resistance of machine, ohms " of circuit without lamps " total in ohms Current in ampères Fall of potential at lampvolts Work of entire circuit Work of lamps in 1 circuit H.P. Total electric work, H.P. Mean electromotive force Diam. of carbons, mm Luminous intensity, horznul. " " mean spherical Total " " " Total ", " " Total ", " " Total ", " "	per min. T R	1 475 16·13 ·33 ·1 ·43 109·2 53·0 6·97 7·87 7·87 14·84	1 737 4·4·4 ·66 ·12 ·78 35·0 1·29 2·52 2·52 3·81 80 18 805 306	3 1535 5·32 2·8 1·5 4·3 18·5 41·0 2·0 1·027 3·08 5·08 203 13 50 227 82 246	5 826 5.05	16 770 13·39 10·55 2·56 13·11 10·0 44·3 1·79 ·6 9·6 11·39 840 11 37 76 38 608	1 870 11·7 — — — — — — — — — — — — — — — — — — —	5 874 12·28 - ·59 - 8·4 10·5 20 130,171 117,154 733	12 620 16·39 4·62 - - - - 11·31 15·26 - 10 44

PERFORMANCE OF MACHINES SUPPLYING ARC-LAMPS—continued.

			1				THE STATE OF	5-0111	inaea.			
	1					auous Cu			Alter	nating Cu	irrent.	1
	Num	ber of lamps	Formulæ.	Gramme.	Siemens	Burgin.	Siemens	Brush.	Meritens.	Meritens	Siemen	s
			T'. n	1	1	3	. 5	16	1	5	12	-
压.	Emici	ency, total mechanical	T	•92	.86	•95	•94	*85	_	*85	*93	
UL.	,,	mechanical of arcs	$rac{t}{\mathrm{T}}$	•43	•57	•58		-			.93	1
FORMULÆ.	,,	electrical of arcs			0.	- 58	•63	•72		*68	•69	1
FO TT.			$\frac{t}{\mathrm{T'}}$	*53	.66	.61	.67	*84		•8	•74	
NG	Carcel	s per electric HP.'	L T	65 · 1	80.3	48.4	54.6	53.4	79.6	59.7		1
GINEERING FO	,,	" mechanical HP.	L T	60.0	68*9			-	.5.0	39-7	33.3	
YEF.				00.0	68.8	46.2	51.5	45.4		69.9	33.3	
us)	,,	" arc	$\frac{\mathbf{L}}{t}$	128.8	121.4	79.9	81.3	63.3	_	87.3	41.4	
NE	,,	" ampère	$\frac{l}{\bar{C}}$	8.85	8.74	4.43	5.2	3.8				
30		MEAN EFFICIENCY OF	-	OFFIC Cree	T				_	3.59	3.66	
			T'			AMPS V	VITH DI	FFEREN	r Mach:	INES.		
		Formulæ.	T	$\frac{t}{T}$	$\frac{t}{T'}$	Series .	T	L	L		7	
	1 lamp	(mean of 4 machines)	-00				1	$\overline{\mathbf{T}}'$	\overline{t}		Č	
	2 10 5 18	amps (mean of 5)	·89 ·86	·47 ·59	*53	1 ,	55.	61	113	1 0	•1	
	General	,, (mean of 4) (mean of 13)	·84 ·87	·70	*84	E	.00	72· 59·	102		.8	
1.		7	0.	- 59	•69	5	4.	63.	93		.0	

INCANDESCENT-LAMPS.

. Filament of grass fibre, carbonised and enclosed in an exhausted globe. FOX-LANE LAMP.

SWAN LAMP.

Filament of cotton immersed in sulphuric acid, then carbonised and enclosed in an exhausted globe.

rarefied atmosphere of Filament of cardboard, carbonised and enclosed in a in a globe benzoline. 6 MAXIM

Filament of bamboo, carbonised and enclosed in an exhausted globe. • EDISON

ELECTRIC LIGHTING.
TRIAL OF INCANDESCENT LAMPS. (Paris Exposition, 1881.)

	Edison.	Swan.	Fox-Lane.	Maxim.
Candles. Ohms Ampères Watts	At 16. At 82. 15.38 31.11 137.4 130.0 .651 .759	At 16. At 32. 16.61 33.21 32.78 31.75 1.471 1.758	At 16. At 32. 16.36 32.71 27.40 26.59 1.593 1.815	At 16. At 32. 15.96 31.93 41.11 39.60 1.380 1.578
Volts Kilogrammetres Lamp, per horse-power Candles,	57.98 94.88 89.11 98.39 5.91 7.60 12.73 9.88 196.4 307.3		69·53 87·65 43·63 48·22 7·09 8·94 10·61 8·47 73·6 276·9	78·05 98·41 62·27 7·94 10·03 9·48 7·50 151·3 239·4

The maximum efficiency of lamps of this character does not exceed 300 candle-lights perhorse-power.

The economy is greater at high than at low incandescence; and the economy of light-production is greater in high than in low-resistance larges

The relative efficiency in Carcel burners of 7.4 candles at 16 candles is—Edison, 26.5; Swan, 24; Fox-Lane, 23.5; Maxim, 20.4. At 32 candles—Edison, 41.5; Fox-Lane, 37.4; Swan, 35.5; Maxim, 32.4.

To double the light the current-energy was increased for Fox-Lane and Maxim 26 per cent.; for Edison, 28: and for Swan, 37 per cent.

Resistance of Lamp cold:—Edison, 241; Swan, 59; Fox-Lane, 55; Maxim, 72.

OF

different Jo Palace, the LAMPS —Results of lamps in the Crystal INCANDESCENT

Candles.

Swan high-resistance

Edison B. 8-candle

Swan 20-candle

Maxim

Edison 16-candle British incandescent

MOLESWORTH'S POCKET-BOOK (SUPPLEMENT.)

AND LEADS IN A PERCENTAGE EFFICIENCY WITH DIFFERENT SPEEDS BRUSHES IN ELECTRO-MOTORS. 36 LB. AYRTON-PERRY MOTOR. LEAD

	2000	24.6 18.0 14.8 6.0
	1600 1800	26.5 21.4 118.9 11.6 5.8 5.8
nute.	1600	28.1 23.4 22.0 116.2 112.0 8.0 6.9
per Min	1400	29.4 26.6 24.2 20.8 17.0 14.0 12.0
Revolutions per Minute.	1000 1200	30.3 28.6 25.6 23.6 21.2 17.9 14.7 8.9
Revol		29.9 29.5 26.0 24.0 19.8 10.2
	800	29.0 28.6 26.0 27.1 25.4 25.4 20.6 17.4
1.0	809	25.8 26.2 24.9 26.2 22.6 22.6 17.4 12.9
Angle of	read.	1 1 1 + + + 1

the efficiency diminishes in proportion to the increase in speed. each lead beyond which EXPERIMENTS WITH ELECTROMOTORS. (Ayrton and Pe for a certain speed There is

(-) - som min I cily.)	Efficiency.		.13	.0335	.199	.289	.226	.34	.40	.50	.746	-714
	Revs. per Miuute.		2500	780	2853	2527	4117	2000	1570	2000	906	731
	Actual Horse- Power.		0.012	0.0137	0.0625	0.0738	0.120	0.3	0.5	0.75	4.96	2.60
	Weight of Motor.	Ths.	2.2	6.07	8.03	8.08	30.8	37	25	72	519	519
And the second s	Motor,	(Inference	.Inhoohroff	,	Signature Armature	Medicine Field	A magnet.	Aylton-Ferry	D. Monte	Sigmond	sileniells	: : : : : : : : : : : : : : : : : : : :

The weight of the motor is the total weight complete, in-cluding the base plate. The borse-power is the actual HP

given out by the motor in each case. In small motors the loss by electric resistance is great, In motors on the Gramme, Siemens, or Meritens principle the heating due to resistance is in excess. The loss due to magnetic friction whilst the loss by magnetic friction is small. is proportional to the square of the speed.

OF ENGINEERING FORMULE. (SUPPLEMENT.

(Aron.) SECONDARY BATTERIES.

(1) Spongy lead precipitated from acetate of lead by zing, and pressed into plates, becomes active at once, in the negative but not in the positive plate.
(2) Rolled lead can be coated with disintegrated lead

electrolysis when placed in dilute sulphuric acid, if I per cent.

pe a depth of about half a millimetre; they should, therefore, of nitric acid be mixed with the sulpliuric acid.
(3) Positive plates of rolled lead become disintegrated at least 2 mm. thick; connections 5 mm. thick, soldered with tin solder.

(4) Coherent plates may be obtained by covering them with a mixture of red lead and collodion, which is a good conductor. (5) If x = Calorific value of the chemical action on the

Negative plate, That on the Positive plate,

y = 9710, and y = That on the Positive place, E = Electro-motive Force = x + y. E = 1.78 Daniells = 86,230 units, x = 79,520.

Plumbic acid Pb. 0 (0H)2 is formed at the positive plate.

(7) The specific gravity of the liquid increases on charging, and decreases in discharging, the difference amounting to $\frac{1}{16}$. (8) It is undesirable to hinder the free circulation of the

(9) The capacity of a cell may amount to 3000 kilogrammetres of energy per kilogramme of gross weight; but only 50.07 grammes of the gross weight per kilogramme are really liquid.

few days; a gradual discharge takes place, and the positive place is covered with lead sulphace; but with further formation the brown peroxide can be again produced.

The plates hold their charge better when dry.

(11) Plates with thick coatings at first keep their charge better, but afterwards fall off in storage capacity. (10) The cells with thin coatings hold their charge only a

(12) A positive plate, prepared from lead sulphate, shows that oxidation only takes place at the parts which are in immediate contact with the lead plate, so that the lead sulphate is converted into lead peroxide, but only in the immediate

neighbourhood of the lead plate, and not throughout the mass.

MOLESWORTH'S POCKET-BOOK (SUPPLEMENT.)

ABSTRACT OF RULES FOR THE PREVENTION OF FIRE-RISKS FROM ELECTRIC LIGHTING.

DYNAMO MACHINE.

Fixed in a dry place.

Not exposed to dust or flyings.

(3) Kept perfectly clean and bearings wen onco.

(4) Perfect insulation of colls and conductors.

(5) Fixed if practicable on insulating bed.

(6) Conductors firmly supported, well insulated, convenient for inspection, and marked or numbered.

moved and left to themselves they cannot permit of a permanent arc or heating, and their stands to be of slate, stone. and commutators constructed so that when (7) Switches

ware, or other incombusible substance.

(3) Man fortuit furnished with fusible safety-catch.

(9) Wires properly proportioned to current and changes of circuit, from larger to smaller, protected with safety-catches. which fuse if any portion of the conductor exceeds 150° Fahr. Safety catches enclosed in incombustible cases. If wires are perceptibly warmed by the ordinary current, it is a proof that they are too small and should be replaced. (10) Complete metallic circuits should be used.

water pipes for completing the circuit inadmissible.
(11) Bare wires out of doors on insulating supports should be coated with insulating material at least 2 feet each side of

support.
(12) Bare wires over tops of houses at least 7 feet clear of any part of the roof. When crossing thoroughfares high enough to allow fire escapes to pass.

Joints must be electrically and mechanically perfect, forms of joint are shown in the annexed diagram, Good forms of joint are shown in the anne whipped with fine wire and united with solder. (13) Good f

14) The position of underground wires indicated, and easy

of inspection and repairs.
(15) In-door wires effici (16) Wires passing thi

(15) In-door wires efficiently insulated. (16) Wires passing through partitions, &c., or liable to touch metallic masses, should be protected from abrasion or rats, if necessary by hard casing.

testing is (17) In-door wires under floors or out of sight, protected Frequent from injury, and position indicated. desirable.

MOLESWORTH'S POCKET-BOOK (SUPPLEMENT.)

ELECTRICAL JOINTS.

The joint is whipped with fine wire and united with solder.

LAMPS.

(18) Arc lamps guarded by proper lanterns to prevent fall with protected Globes particles. incandescent netting.

and all parts handled, insulated from Lanterns, (19) I circuit.

DANGER TO PERSONS.

(20) Conductors and fittings such that no one can be exposed to shocks of alternating currents exceeding 60 velts. potential exceeding 200 volts between two points in the same room. should never be a difference of There

(21) If the difference of potential in any house exceeds 200 volts, the house should be provided outside with a switch, so arranged that the supply can at once be cut off.

INDEX TO SUPPLEMENT.

Incandescent Lamps 726		Lamps, Arc 724	onference Contrac-	tions Resistance due to Tem-	Resistance, Double Circuit 719		Safe Current 720	Temperature, Resistance	ctrical	Watt 716	Wires, Heating of 716
of Light	Batteries, Secondary 730 British Association Ohm 716	Buried Conductors 729	Coulomb " 723	Conductors, Buried 723	rails Coll	ts:		Glass, Absorption of Light	By T15	723	723

SYNOPSIS OF CONTENTS.

d Arches Roofs rorks, Docks, Lightning ming. S. S. S. Selting Iron Manu- fachines Arithmetical arest, &c. ss, &c.	rials mry, an
	verling and Surveying rength and Weight of Materials rength and Weight of Materials ratthwork Brickwork, Masoury, and Arches rates and Bridges riders and Bridges riders and Bridges rirgation, and Breakwaters Waterworks, Docks, Puringation, and Breakwaters Warming conductors, Gas, Verliation, Warming rear, Light, Colour, and Sound ravity, Cantres, Forces, and Powers fillwork, Crioched Wheels, Shafting, Belting fills, Workshop Recipes, &c. forther facture fact

Annities 611 Antiriction Greas 424 Arches, Bracel 181 ———————————————————————————————————	ness of of, by Verhords of, by Angles neys e Triangles.	:::::	10th 664	Athour, Felterston or. 378 Augers, Machine 136 Avoirdupois Weight 580 Axles, Friction in 403 Axles, Friction in 403	Balancing Locomotives . 516 Balling. 290 Balliast. 202 Balliast. 365 Balls, Weight of 51 Bar Iron, Weight of 73 Barometer, Capillarity of 13 Barometer, Capillarity of 13 Barometric Heights 113 Barometric Heights 113
Abutments 109 Accidents, Railway 109 Accumulated Work 384 Acreage, Computation of 2 Addresive Power of Leco-	Montalty Knots 224 Admiralty Knots 586 Admiralty Knots 186 Admiralty Knots 187 Admir	ear-	Strength and Weight oet, Telegraph an Bridges, Loads on	: :: : : : :	Angle-10d, Strength of 140 Angle, Setting out Right 3 Angles of Machine Cutters 440 Angles of Machine Cutters 440 of Roofs 141 of Slopes 83 Plotching of 7 Tangential 10, 174 Langential 10, 174 Aufmal Power 1, 1

A	Rairbairn "5-tube" Mounthigs Plates, Punching of Plates, Punching of Belgian, Tubes for Board of Trade s for Bursting pressure of	Caulking 470 — Collapsing presente 479 — Combustion in 461 — Commission in 463 — Cyfind feal Strength to for 474 — Evaporative Per- 464 — Find for 461	ocomotives tion of the time time the time time time time time time time tim	of
Barrel-drains	no si : : : : :	Loade	transmitted tof Leather ttsin Beams	

A La Service	Buckets, Ventilation 535	=	Measurement		Building Walls of	of Casks 5				Camber Setting out 654	: : :	Locks	.:	:	ia on	Cantillerity of Recompeter 13	8	tage in Iron		Curve 6	russian	tock, Kenewal of	Carriages, Railway 232		10		:	Shrinkage of 435	:-	- County	Girders 1	eight of	th of	Tests for	:	Caulking 352	Soncrete	7
2. 1.1.0	Table of 11	s 1	ints 4	Boring Snoods for 420	: :	Lines of	's Law 3	:	Plate Weight of 20		::	ire ::	: : :	: : .	Broakers, hallway 226	Breast Water-wheels 521	Thimneys	ensions	Memoranda 92	pliers for	:,	teel, Strength of	Bildges, Arched 109	4 -	ains on	Level	n Girder 1	Girder, Loads on 162	1 -	n 1	1	on	1	Wr	Buckets, High-pressure	Low-pressure Tur-	53	co

Chimneys, Steamer Circles, Area of small, 32nds	8ths	Circumferences, 8ths	Properties of Segments of	Circular Arcs, Lengths by Angles Lengths by	Chords	Cistoria comptring	Classification of Pig Iron Clearance in Cylinders	Cloth, Cement for	Navy All)wance of Products of	g for Pipes Proportions		n = 1	Cold-water Pumps Collapsing Pressure Collieries, Ventilation of Collision	,5	Formula for
Cement, Crushing Weight of 98	Glue 426 Notes on 97 Portland 96	440	Centragade Inermometer 5.5 Centre of Gravity by Ex- periment 387	truction.	and Parallelo-	motives 503	of Lines 389	of Vari-	::	Centrifugal Fans 547	Force 383	: :::	of Table of Second	Irrigation	"Cheval, Force de" 486 Chimneys, Area of 472 Rules for Brick 472

Contrasts of Colour 281	racing Girders. and Necks of Compression Flanged Flanged Flanged Flanged Flanged Flangen Agins on flangen of Timber of Timber of Timber of Timber of Timber Mamoranda on Menoranda on Points and
Page Page	Sions of

PAGE.

PAGE	Cyclones 545	nd Engines	Thickness of 517	64			High, in Masonry 287	Equivalents	Degrees of	a foot in 32nds 589	a foot in 16ths 588	include fort and words 500	icet, and yards	gallons 593	lbs 018 and cwts 594	Jo	lbs. and ozs 694	Links 583	Donog Donog	of	Rupees, Annas, and Pies 600	Deflection of Beams 132	_	mal of Equ	Delivery of Water in Pipes 253	ine		ormula for Flo	Differential Calculus 625	Dip and Distance of Horizon 8
PAGE	Weight of Ma	Cubes and Cube Roots 696	Cubic Measure 581	Culverts, Lable of	Curved Roofs	cipals for 152	Ponding Do			: : : :	Cycloidal 650	:	Editptical 655		ä	- Lemniscate	:	Parabolic 045	Ranging of 215	Resistance of Trains on 219	out by two	:		Useful Angles of 218	Ordinates Sines and		Cutters, Angles of Machine 440	Calculations of	Construction of 650	::

P.	am of ::	= -	Ordinates alse, Calculation of, ss vormula for rhen Diameters are Right Angles 1 ss, Railway, Num-	Engine, Locomotive, Balancing	Lead of
of Water from	fro t, Simpson	Distribution of Weight in Locomotives	of		to to

INDEX.

147 TANT	2448
	WAC W
PAGE	Transform of Cumos 655
Engine, Steam, Combustion 461	of, in
Surface condens	
	nts, Metrical
: ;	Trigonome-
Plowing	trical 614
Stoom	Frrors of Observation 610
or can	nc
T.A.	Boilers 464
i.	
doncation in	Locomotive Boilers 465
	Ξ
Colluctions, 110	Exhanst of Blast-pipe 472
portions of Dod 495	2
	Findings 457
Till The Tries	of Gases
FIY-WHEEL, WEL	rches
:	
:	
:	hlaof
High-pressure 489	Table of
High - pressure,	Working, or
Pronortions of 498	Railways 233
	Expressions, Trigonome-
of	
	Wheels
essure,	
:	Total Comont fon 19K
:	ement for
Nominal 485	
Lan and Lead of	e Boiler"
Clide melve	
and Foad of	
Toblo of	red for
	-
ninodin	
Con.	
Dimor	
Dimension	and Inches, and Yards
Con	(Decimal Equivalents) 590
James Description of A00	4
10 81101	TŽ.
guit	of 39nds
:	Decimal Equivalents
Mothod	of 16ths 588
of Forming 399	Square and Cubic
:	

GE 20 20 22 22 28 58 08 91

12421

Forgings, Weight of, 450 Formula, Harding's, 22 Formula, Algebraic, 608 Formula, Algebraic, 608 Foundations, Inequality of 91 Potenmarie	Resistance of Freematic of Foundry Recipes	cess cess cos cos cos cos cos cos cos cos cos c
Ferrotype Process 443 Field Karthworks 579 Figure of Revolution 658 Filters for Water-works 281 Fire-box Stays 477 Fire-proof Flooring 139 First Cost	Balier ouplings of of of of of of of of of o	139 267 essure. 479 480 ng or 422 f 494 f 494 f 494 f 494 ilents 588 383 383 383 383 154 f 604 f 604 f 604 f 604

PAGE	Gradients, Table of 223	irface	: ::	Centre of	Co-ordi-	nates of 386	-000T ui -000-	motives 503		lelograms Tri-	angles 386	-Vari-	ous Figures 387	or Series	of Lines	Bodies 387	Resista	:	ion		Gudgeons of Water-wheels 533	High-pressure		Low-pressure do. 537	Gunnery &c Bashforth's	1	Correction in		Earthworks 579	1	- Momentum		Penetration 578		- Work of Ex-	ploding Powder 573	ig	entre of	
TOTAL.	4 4	in Pines 370	Mains Dimensions of 371	369	Pipe. Weight of 47	ds of Screws 4	Tubing. Weight of 47		Purifiers for	of	Cotes I coly hest Angle for 295	Dressing on	dard Wire	Mercurial	of Railways 205		Posd Metal	: :	Rone	cal Progression.	:	Catenary .	Stress	: :	Bowstring 177		acing	32, 1	:	Load on 162	Safe limit of stress	17	i uc	Trussed 178	of 1	Wrought-iron	Glue Cement 426	Governor, Steam-engine 494	

Hollow Columns Hoop Iron Horizon, Dip of Horse-power Horse-power Frech Water- Webools Of Water-	of Windmi on Canals ractive Power er, Warming by Thickness n Machinery Memoranda Piles Press	ng ivery in rege from	[]: [otto	Tace Velocity 1846 1847 1848
Harding's Formula	B Tic B F B	1 1	Helices, Length of 657 Hemp Rope Gearing 416 Strength of Weight and 52 Loads of Working 52 Hexagon Role 33	489 489 489 498 489 111

Tron, Carbon in 34 — Cast, Strength of 27 — Tests of 31 — Classification of Pig 34 — Columns	Corrugated, Roomg 142 Flat Bar, Weight of 37 Foreign Slubstances, in 35 Galvanizing 427 Girders, Cast 170 Horn Plate 38	le Castings n age of Carb or Retainin	10 : p : 15	SI CO CO	Weight of 3
		n n	in Beams by Gra- on. 128, different 123,	Giffard's of Boilers, Rules Zalculus Compound	

Ļ	valve	motives Tahl	Lathes, Change Wheels for	Latitude, Correction for	of Strains Diagrams	Lattices, Strains on	Lead	Lead of Slide walve	Leather Belting, Power of	Weight of	-	Levelling with Barometer	- Thermo-	Thermo-	Life of Rails 237	Rolling Stock	Velocity of 381	:	Lime Kiins	Notes on 100	Limes and Cements 102	no no	Links and Feet, Table of 583	dity	Suspension 186	lel	Liquids, Weight of 21
THE STATE OF	or 45,	Wrought, Pipes,	Sizes	Jo u	Sluices in India	rizontal	Oblique	eam	Flanged, for Shaft-		Flush, for Shafting 410	ted:::	in Tension	Turned and Bored 986	 Joule's Mechanical Equi-	of Heat	Journals 408	nd Kommono	Kilns, Lime, Section of 101	Knees, Resistance of Knots, Table of	Admiralty	Kutter's Forenie	communa	Lacquer, Brass 428	for	Land Drainage	:

Proport - Revolution - Spring - Spring - Table of - Thickr of - Top St - Tracti		Machiner Cutters 440 Machinery Deprectation of 434 441 ————————————————————————————————————
Loads on Abutments 168 168 169 1	:6:::::::::::::::::::::::::::::::::::::	

		AGE Millimètres Millimètres Mills, Corn 21 Mills, Corn 22 Mills, Corn 8 21 Millwork Millwork 21 Millwo	E I E	tr. 580 Mississippi, Experiments 603 in Rivers 605 Modulus of Elasticity 605 Moment of Inertia. 126, 691 ————————————————————————————————————	ders and Beams hy phic Construction ons Sections Resistance Moments, Bending	Comparison Com
--	--	--	-------	---	--	--

Obstacles in Surveying 2 Obstacles in Rivers 264 Oil, Consumption of, on Railways	Paddle-wheel, Dismeter of 568 Paddle-wheel, Dismeter of 568 Processes and the second of the second o
Mots for Baling	Projections of Projections of Reciprocals of Reciprocals of Squares and of Squares and 17, 28 and 17, 28 and 17, 29 and 18, 20 and 20, 20 and 20

	Locomo-	Wheels	riction of	616	071 170	144	s of, in	55	without		mission 550		— Me-	Compass 622	428	:	: : : :	:	wheel 530		Decimal	t Rates	in Loco-	:		N K	8 Water 290
Piston, Speed of	tives	Pitch of Screws.	Plane Surfaces, F	Plastering	Plate Girders	Plates, Buckled.	Thickness	Vessels	Flotting Angles	Protractor	Pheumatic Transmission	Points and Crossings	moranda on	of the	Polishing Speed	Fram	able	Polyhedrons	Portland Cement	nd	Equivalents of	- Equivalent	Power, Adhesive.	motives	- gained by Blo	-	from Wells
	-				9 Pla		1	Ē					1 "						-		1	1	Po		-		
PAGE 413	es 578			290		ıal 91			118		120	119	118		262	of 46		:	253 in 253	:	285	50	369	1 254	255	284	
Pedestals 41	of Projectiles	Centre of	Indian Indian	ways	al	ers to sustain Equal	u	tion of	Driving 118	or Retaining	ulic	: : :	: :	Load on	: :	C		Calindrical Weight of 5]	Water in	W.	ow water	Iron, Wrought 50	of Gas in	- Water in 254	:	Rule for	ive Pressure

.

PAGE	s of 281, 1 9. 1 1 1 1 1 1	adratrix Curve
TO TO	10 10 10 10 10	Motion 251 Quadratrix Curve

074	
Railway Curves, Tangen-	Reduction of Soundings
tial Angles 217	Refraction and Curvature
	Regulations, Parliamentary
mployés on	Recervoir Dome
	-
:	periments
Life of Rolling	Cross-sectional
Stock on 238	Electrical Stand
Limits of Devia-	ards of 300
Loading Gauge 205	in Vessels 555
mentary	Moment of 126
Kegulations for 187	: ;
2	
Prussian	100
	:
Cooling Stock of 233	:
Tor Top	of Forces 1
200	retaining Walls 88
	for for
Tangential Angles	Surcharged
	Tables for
	Figure
: :	Mevolutions of Driving
	Rhumbs Table of
Expenses	
fall	angles 61
- Table of	Kinging Engines 118
Ram, Hydraulic 541	lia .
:.	Jc
Ready Portons	rs in
Realmur Thermometer	ssippi, Expe-
: :	:
orkshop	Obstructions in 264
:	: :
Reduction of Base Lines	u
c camp or reaction	Kiveted Joints 481
0	0

Ropes, Hemp, Gearing 416 Stiffness of 436 Weight and Strength	mission 4	Working Load of	Rupee, Decimal Equiva- lents of Common Rupees, Multipliers for exchange of 599 Rust-joint Cement 425	Safe Load on Beams of Pine 125 Safety-valves, Area of 490 French Practice 491 Proportions of 490	Salmomeerer 425 Sand, Parting 440 Saws, Circular 440 Cooley for Parliamentary	Standing Orders ing of Roofs bolts and Nuts cutting Change	THE CO	Screws, Angular Angular Gas Thread —— Watch and Mathematical Instrument —— Whitworth's Sea Water —— Sectors of Sphere —— Sectors of Sphere —— Segment Areas.
PAGE ts in Tension 484 483	g for boners. Ship-build-475, Hydraulic		on Sidelong Ground 82 Paved 241 Traction on 241 Wear of, in India 242 Pault of	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4	Roofing, Corrugated Iron 142 Roofs, Angles of 142, 152 Curved Iron Prin- cipals Transcos for 152	, E 10	Slate 145

7	
:	
p-n-spheres	ness of
*****	ty of
272,	: ::
27	
Some Liable of Flow in. 274	- for Dif-
	nt Speeds
Adjustable Bear-	of io
	Velocity of 576, 577
Couplings of	Shrinkage of Castings 435
	Sidings, Railway 208
ısp	Algebraic
Dimensions of 406	over
First Motion Of,	:
Horse-nower of	Areas
	Since, Lante of Logal luming 689
- Necks and Coun-	
lings	Secretarion in Vocasi
- Power absorbed	V CBSCLS
	nla.
Strength of	
	-wheels
J(Screwe
Wrought-iron	in the
ns	of Earlbs
of Treenails	
ck	Chaining on
ron	~
Weight of	of
:	2
, Weight of	Iron .: 294
	**
** *** ***	- Pressure on
ore and Donco D	
rence, Dec	Solids Mongaretion of Series
rilding Areas	Distance andible
Experiments	Velocity of
:	Jo uc
Dienlooment :	
Suips, Displacement in 554	Alloys 16
:	Finids 21

Stave and Struts, Tele-	Boilers Boilers Combined P. Effective P. Plasticity of Enasticity of Enasticity of Combined Co	Governor. 49 Horse- er of Expansion of Gauge General Table of General Table of Toffer	briver, s crices of 65 perature and 45 initial Pressure 66 els. — Wave Lines 55 mush by 94 mush on fit. for of 64 for of	Tires Turner's Scale for Weight of
Cosoa	fetals 1 liscella 2 tones, &c. 1 imber 3 Ills 43 re Pistons 50	onsuing and ng rew Steamers able for Trains. urning al	tents on the control of control o	Statemary Engines, 170-499 Staying Boilers 474 Lacomotives 477 Stays, Distance apart of 478

:	11011
	Struts 114
Suspension Bridges 184	LOISI
	Shafting to Re-
1	ivets 4
Ubstacles in 2	Substances 20
Measures 581	Metals 16
- Marine	Notes on
Points in	rials
Slopes 3	Corrugated Iron 143
- Chaining	:
	: :
Acreage Com-	Beams 122
ensuration of	- of Alloys
Velocity in Rivers 264	Strength and Weight of
of Tubes 45	. Telegraph Wires
ng, Relative	Submoning Ochla 200
	Roofs
Condensation 46	Framing.
:	Lattices 167
Shafting 40	Iron Arches 182
rders, Loads	:
Supplement of Angles . 61	Girders Dia-
: :	in Bridges
Substances, Foreign, in Iron and Steel	Strains and Tests in
Cable Strain	il, Coal, Tal-
Struts, Strength of Iron	Strength of 19
:	Stock, Rolling 232
Diagrams for Girdens	Ropes
riola (Barlous Mate-	Stiffness of Beams 135
Timber 1	4
Strength of Telegraph Wires 36	nd Iron, Corrosion c
2.4	DAGE.

#11 000140 2020 422182 21408 21 W 18

AGK

324 334 331

PAGE	40	352	566 Discont	Ves 216	iic 686 ————Electrical Units	6:8		400 Force of	395 Capacity		-]	rolor		Guttapercha 402 Guttapercha	noise-	of 392 terial	Power of 396 —— Magnets	393 tion	302 207 4000TT		363	326	lectro-		Modulus of 311 Copper Wire
Strength of.	Weight of	Table of Catenary	Tackling and knots		Tangents, Logarithmic	Tangent to a Parabola	Teeth of Wheels, Curves of	and Pitch	Forms	-	cloidal Epicy	Method of Forming	Strength in Dif	:	nower of		Pow	tions of Stre	Telegraph Alphabet, Morse	- Cable, Submarine,	peed in	- Capacities		static Catenary Equa-	Po W

 f316

Thermometer, Comparison of Levelling	Table for Levelling 10 Table for to Convert Fahrenheit to Convert	de mess of Mets inders ds, Gas — Screw.	Tidal Phenomena 9 Tides Tides 9 Timber, Creescting of 104 cess for cess for 104 - Innversating Pro- 104	suring so on ing of and	Weight of 17 The Plates, Sizes of 45 Tires of Wheels 229 Tonnage, New Measure 569	or Vessels 569 Tating 1700s. Cwits, lis., Rates 595 Tools, Speed of 439 Torsion, Relative Strength	of Medias to Resist 402 — Relative Strength of Different Sections 402 Strength of Shart- ing 407 Traction on Canals 270
Telegraph Retardation 333 Sheathing 357 Table of 355 Spark Tension 346	0		sulator Dip of 312 Dip of 311 Dip of, 311 Dip of, 311 Dip of, 351	13 13 14 15 15 15 15 15 15 15	Different 375 Different 376 mparative 380 Steam 450	423 16 16 484 1455 326	31, 424 eel 28, 423 Mo- arative

Turbines, High-pressite	Vena Contracta Ventilation in Collieries Tunnels of Water-wheels
n Roads	Tubing, Gas 47 Tubular Boilers

Thannels ortzontal alique ertical pi Expe-owers of	Vert 5118 252	Pressure of 246 Raising in India 246 Raising in India 246 Weirs 248 Sea 243 Space 243 Space 243 Space 243 Surage of 240 Surface and Bottom Velocity 254 Theoretical Pric. 254 Theoretical	- 20 - 11 - 00 0 00
Curry thim til sec. sec. sec. ines ines	Table Ins. Railway Infe of Num-	ick, Thickness of agram for Sta- gram for Sta- velling-house taining tribility of reharged arehouse arehouse or Walls, Thick-	Natural Natu

TACA Dinos El El El El	Hing 4	Sumpor	Motoriola 16		Metals 10	-		Miscellaneous	and Dolf.	- Nuts	heads 46	T ood	for	101	Metals	: ;	:	and	u	Sheet Brass	Iron 39	Tin 45		Nire	:	Timber 17	Tubes Brass 48	Gas		Water	Ropes .		Weights and measures	French	Weirs in Indian Rivers	Welding,	l Steel, miximo vo
PAGE	Water Wheel, Ventilation	: ::	- Works	Filters for 281	and Wind, Pressure	of 320	e. Barometric	Lines of Vessels	:	Theory of	nt, Indian	e Railways	ermanent	Web Plates, Thickn ss of 171	irted Cord	pois	reaking, or in	Girders.		:	Angle Iron	Cy-	linders 51	:	ates 1	4	on Balls	Chains 45	Rods	ire	Cylinders 51	Rim	4	Gases ZI	 Hemp Ropes . 52	pes,	Wrought 50

PAGE	582	45	45	099	45	349		417		23	45	156	453	428	137	145	440	17	384		233	424	1	170	170	14.	7	20	:	158	100	33	16	
P	Measure	Wire, Brass, Weight of	Copper	Gauge, New Standard 660	Iron, Weight of		nemission	:	Weight and	Strength of	eight of	: :	:	:	:		Wood-working Machinery	Woods, Weight of	ed	Working Expenses of	Railways	Workshop Recipes		Limit of Stress on	Girders	9	Flaces of Pines Weight	Jo		mensions of	Opnai Sires	Zinc Sheets	Strength of	
PAGE	:	Power f	Water from 290		E	Diameter of Pitch	of Teeth 400	Different Forms of		-Driving, Revolu-		- Epicycloidal Teeth 397	ď	Method of Forming 399	- 1	of Teeth in Different	:	:		ij		:	Proportions of 393	Strength of Teeth	:	:	: :	Direction of, in	ones	Force of 545	and Water, Pressure	Winding Engines 448	: :	

THE

PHOSPHOR BRONZE CO.,

FOUNDRY AND OFFICE:

87, SUMNER STREET, SOUTHWARK, LONDON S.E.

Sole Makers of the renowned "COG WHEEL" Brand of

'Phosphor Bronze,

The best and most durable Alloys for Bearings, Bushes, and parts of Machinery exposed to friction and wear. To avoid error or imposture, please specify the manufacture of the Phosphor Bronze Company, Limited, London, and the "Cog Wheel" Brand, as well as the number of the Alloy required. Nos. II., III., V., VII., and XI. are the alloys mostly used.

WEILLER'S PATENT

SILICIUM BRONZE WIRE

FOR OVERHEAD TELEPHONE, TELEGRAPH, AND ELECTRIC LIGHT LINES.

HIGH CONDUCTIVITY with great tensile strength and resistance to corrosion.

Genuine Finest Babbitt Metal, "Vulcan" Brand. Plastic Metal, "Cog Wheel" Brand. "Phosphor" White Brass. Phosphor Tin, "Cog Wheel" Brand, for Improving Gun Metal, &c.

BULL'S METAL.

are nearly twice as strong as good Gun Metal, with greater resist-It can be rolled, forged, stamped or otherwise wrought at a red heat, and then acquires an elastic limit and tensile strength considerably higher than Boiler Plate Steel. Castings in the alloy THIS alloy is a malleable Brass, possessing good casting qualities. ance to corrosion, and also great resistance to wear.

tion, for Marine and Hydraulic Work generally, as a Spindles, Bolts and Nuts, parts of Ordnance, Ammuni-The perfect uniformity of the alloy, combined with the above qualities, render it particularly suitable for Propellers, Stern Shafts, Stern Brackets, Pump Rods, Rams, Valve Launch- and Yacht-building material, &c., &c.

At the highest temperatures of steam used in the modern marine engine, BULL's METAL is still as strong and tough as

uly, 1889).	Elastic Limit, per sq. in. 15 to 28 tons 9 to 12 ,,,	20 to 23 ,, 14 to 15 ,,
Mild Steel (see Report in Engineering of 26th July, 1889).	Tensile Strength. per sq. in. 30 to 35 tons 20 to 24 "	Crushing Strength. per sq. in. 90 to 100 tons 70 to 78 ",
Eng	::	::
rt in	::	rolledcast
tepol	1 ::	rolled
see I	rolled	rolle
Steel (Bull's Metal, rolled	2 2
Mild	Bull's	

THE MAXIM NORDENFELT GUNS AND AMMUNITION CO., LIMITED, ERITH, KENT,

Inventor and Manager of Bull's Metal Foundry— Mr. J. C. BULL, Erith. Sole Licensees in the United Kingdom.

RAGOSINE & CO.,

Head Office -7, IDOL LANE, EASTCHEAP, LONDON, E.C. Stores and Works-ALBION WHARF, BOW, E.

Branches-4, PEARSON PLACE, CARDIFF; & LOVE LANE, QUAYSIDE, NEWCASTLE-ON-TYNE.

Kubricating Gil Manufacturers and Merchants,

SOLE VENDORS OF

RAGOSINE OIL,

The original Russian Lubricating Oil. 10 years in use. 7 Gold Medals.

Never gums; never freezes; pure hydro-carbon; Free from acid; prevents corrosion.

CYLINDER OILS, ENGINE OILS, AXLE OILS, GAS ENGINE OIL, AND OILS FOR EVERY
CLASS OF ENGINES AND MACHINERY.

CROMPTON & CO.,

LIMITED,

MANSION HOUSE BUILDINGS, LONDON, E.C. Electric Aight & Power Engineers, Works-CHELMSFORD, Manufacturers of Dynamo Machines, Lamps, and all requisites for Electric Lighting.

CONTRACTORS FOR TOWN LIGHTING.

CENTRAL STATIONS ERECTED ANY PART OF THE WORLD FOR LIGHT AND MOTIVE POWER. Electric Railways, Tramways, Cranes, &c.

DYNAMOS OF SPECIAL DESIGN FOR SMELTING, DEPOSITING, PLATING, &C., &C. ESTIMATES AND ALL INFORMATION FREE.

GROMPTON & CO., Limited,

MANSION HOUSE BUILDINGS, LONDON, E.C. Crompton's Pocket Price-List Book of Electrical Formulæ,

Address: YORK STREET WORKS, LAMBETH, LOUDON. ·H .W ALLEN S.'00 SPECIALITIES, En-

AND Forced Draught in Boilers, steam, COM-EN CENTRIFUGAL for Marine work, Irrigation, PUMPING-ENGINE, FAN giving increased ACTING ACTING for with economy and Drainage. TRIFUGAL ENGINE SINED DIRECT DIRECT

for AND KAPP'S 디 combined with GH - SPEED DIRECT-ACT DYNAMO, board Steamers, &c. Lighting ALLEN" ENGINE ALLEN'S PATENT Electric ING

(TRADE) PULSOMETER STEAM PATENT GHA PULSOMETER as used suspended in shaft up to 80 or 100 feet deep.

ITSE.

Z

12,000

Is specially suitable amongst other purposes for raising muddy and gritty water, and for use in difficult operations of all kinds.

PURCHASE. ETC., PIPES, ASSORTMENT OF BOILERS, WITH LARGE HIRE.

Price of Pulsometer Price of Foot-valve, 20 feet lift. Galls, per hour on PULSOMETERS, Size of Delivery. Size of Suction. Size of Steam Pipe. NO 'OZIS

Pipes for 40 feet.

bas relied diw

000000000 100 0000 40-2000444 82848284828 130 Price. 10,000 13,000 17,000 22,000 40,000 52,000 3,800 4440000 H#2000444000000 ı≟∾

1000400140001

\$000000000 On appli-

and DIRECT-ACTING lift, its performance high ಡ OII tested of carefully kept record dun, Every

AND CENTRIFUGALS, DUPLEX 님 KEPT PUMPS. STOCK A LARGE

FOR 9a. LIST ASK No. MACHINERY CEMENT MILL PLANT ENGINES COOLING PUMPING FILTRATION, ICE-MAKING

S.W G0., London ENGINEERING Works, Iron PULSOMETER Elms Nine

