Chapter 3: Chemical Compounds

Sept 12, 2022

Chemistry Department, Cypress College

Lecture and Lab Weekly Agenda

Lab Section

- Lab Safety Quiz
- Begin Exp 2 Nomenclature

Lecture Section

- Go over homework assignment; present your work for 1pt EC
- Review Ch 3+8 Chemical Compounds and Types of Bonding
- Finish up Ch 3 lect and worksheet
- Homework and quiz 3 released Fri at 3pm

Outline

Review: Electronegativity of Ionic and Molecular Compounds

Naming Molecular Compounds

Acids and Bases

Introduction to Bonding

Ionic Bonding

- Electrons transferred from metal to nonmetal
- Ionized atoms and electrostatic interactions

Covalent Bonding (CB)

- Sharing of electrons between atoms (usually look at as pairs)
- Generally occurs between nonmetals in molecular elements, molecular compounds, and polyatomic ions

Consideration of Electronegativity

Practice: Ionic or Molecular compounds?

Determine whether the following compounds are ionic or molecular.

- Cl₂CO
- MnO
- NCl₃
- CoBr₂
- K₂S
- CO

- CaF₂
- HI
- CaO
- IBr
- CO₂
- C₆H₁₂O₆ (sugar)

Practice: Polarity

Which of the following is the most polar bond?

Monoatomic and Polyatomic Ions

Monoatomic and Polyatomic Ions

B BO ₃ ³⁻ borate	C CO ₃ ²⁻ carbonate	N NO ₃ ⁻ nitrate NO ₂ ⁻ nitrite N ³⁻ nitride	O_2^{2-} peroxide O_2^{2-} oxide	F No oxoanions F ⁻ fluoride
	Si SiO ₄ ⁴⁻ silicate	PO ₄ ³⁻ phosphate P ³⁻ phosphide	SO ₄ ²⁻ sulfate SO ₃ ²⁻ sulfite S ²⁻ sulfide	CI CIO ₄ perchlorate CIO ₃ chlorate CIO ₂ chlorite CIO hypochlorite CI chloride
		AsO ₄ ³⁻ arsenate AsO ₃ ³⁻ arsenite As ³⁻ arsenide	Se SeO ₄ ²⁻ selenate SeO ₃ ²⁻ selenite Se ²⁻ selenide	Br BrO ₄ ⁻ perbromate BrO ₃ ⁻ bromate BrO ₂ ⁻ bromite BrO ⁻ hypobromite Br ⁻ bromide
			Te TeO ₄ ²⁻ tellurate TeO ₃ ²⁻ tellurite Te ²⁻ telluride	$ \begin{array}{c} \mathbf{I} \\ \mathbf{IO_4}^- \text{ periodate} \\ \mathbf{IO_3}^- \text{ iodate} \\ \mathbf{IO_2}^- \text{ iodite} \\ \mathbf{IO}^- \text{ hypoiodite} \\ \mathbf{I}^- \text{ iodide} \\ \end{array} $

Additional Polyatomic Ions

SCN ⁻	thiocyanate		
NH_{4}^{+}	ammonium		
H ₃ O+	hydronium		
O ₂ ²⁻	peroxide		
OH-	hydroxide		
CN ⁻	cyanide		
$C_{2}H_{3}O_{2}^{-}$	acetate		
MnŎ ₄ -	permanganate		
$C_{2}O_{4_{2}}^{2}$	oxalate		
CrO ₄ ²⁻	chromate		
Cr ₂ O ₇ ²⁻	dichromate		

Outline

Review: Electronegativity of Ionic and Molecular Compounds

Naming Molecular Compounds

Acids and Bases

Naming Molecular Compounds

Prefix	Number	Prefix	Number	Prefix	Number
mono-	1	penta-	5	octa-	8
di-	2	hexa-	6	nona-	9
tri-	3	hepta-	7	deca-	10
tetra-	4				

- 1. Use numerical prefix for the element (usually ignore the first when using "mono")
- 2. Add "-ide" to the second element

Naming Binary Molecular Compounds

- H₂O
- N₂O₄
- CO
- CH₄

Naming Acids and Bases

- 1. If anion ends in "-ide," add "hydro" before the root of the anion name followed by "-ic acid"
- If anion ends in "-ate," use the root of the anion name followed by "-ic acid"
- 3. If anion ends in "-ite," use the root of the anion name followed by "-ous acid"

Practice: Naming the Acid

- HCI
- HNO₃
- H₂CO₃
- H₂SO₃

Definition(s) of an Acid

Arrhenius Acid - dissociation of acid in water to yield the ions e.g. $HCI(aq) \to H^+(aq) + CI^-(aq)$

Brønsted Acid - any species that can donate a proton H^+

Lewis Acid - donation of a pair of electrons