Apprentissage par renforcement pour le contrôle de processus de Markov déterministe par morceaux

Application à l'optimisation d'un traitement médical

Orlane Rossini ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹, Régis Sabbadin ³ et Meritxell Vinyals ³

¹IMAG, Univ Montpellier, CNRS, Montpellier, France ²John Curtin School of Medical Research. The Australian National University. Canberra, ACT, Australia ³Univ Toulouse, INRAE-MIAT, Toulouse, France

Octobre 2024

Le contexte médical

FIGURE: Exemple de donnée d'un patient^a

- Des patients ayant eu un cancer bénéficient d'un suivi régulier;
- La concentration d'immunoglobuline clonale est mesurée dans le temps;
- Le médecin doit prendre de nouvelles décisions à chaque visite.

^aIUCT Oncopole et CRCT, Toulouse, France

Le contexte médical

FIGURE: Exemple de donnée d'un patient^a

- Des patients ayant eu un cancer bénéficient d'un suivi régulier;
- La concentration d'immunoglobuline clonale est mesurée dans le temps;
- Le médecin doit prendre de nouvelles décisions à chaque visite.
- Optimiser la prise de décision pour assurer la qualité de vie du patient

^aIUCT Oncopole et CRCT. Toulouse. France

Méthodes

¹Piecewise Deterministic Markov Process

Méthodes

²Piecewise-deterministic Markov process

³Partially Observable Markov Decision Process

Agent

Environnement

DÉFINITION D'UN POMDP

- Etat du patient $s = (m, k, \zeta, u, t, \tau) \in S$;
- Décisions $d = (\ell, r) \in \mathcal{D}$;
- $\mathcal{K}(s) \subseteq D$ l'espace des décisions admissibles dans l'état s;
- Probabilité de transition $\mathcal{P}(s,d)(s')$;
- Observation $\omega = (\tau, t, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Fonction d'observation $\mathcal{Z}(s)(\omega)$;
- Fonction coût C(s, d, s').

DÉFINITION D'UN POMDP

- Etat du patient $s = (m, k, \zeta, u, t, \tau) \in S$;
- Décisions $d = (\ell, r) \in \mathcal{D}$;
- $\mathcal{K}(s) \subseteq \mathcal{D}$ l'espace des décisions admissibles dans l'état s;
- Probabilité de transition $\mathcal{P}(s, d)(s')$;
- Observation $\omega = (\tau, t, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Fonction d'observation $\mathcal{Z}(s)(\omega)$;
- Fonction coût C(s, d, s').

DÉFINITION D'UN POMDP

- Etat du patient $s = (m, k, \zeta, u, t, \tau) \in S$;
- Décisions $d = (\ell, r) \in \mathcal{D}$;
- $\mathcal{K}(s) \subseteq D$ l'espace des décisions admissibles dans l'état s;
- Probabilité de transition $\mathcal{P}(s, d)(s')$;
- Observation $\omega=(au,t, extsf{F}(\zeta,\epsilon),\mathbb{1}_{m=3})\in\Omega$;
- Fonction d'observation $\mathcal{Z}(s)(\omega)$;
- Fonction coût C(s, d, s').

DÉFINITION D'UN POMDP

- Etat du patient $s = (m, k, \zeta, u, t, \tau) \in S$;
- Décisions $d = (\ell, r) \in \mathcal{D}$;
- $\mathcal{K}(s) \subseteq D$ l'espace des décisions admissibles dans l'état s;
- Probabilité de transition $\mathcal{P}(s,d)(s')$;
- Observation $\omega = (\tau, t, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Fonction d'observation $\mathcal{Z}(s)(\omega)$;
- Fonction coût C(s, d, s').

Identifier une politique $\pi:h\to d$ optimale déterministe!

On n'observe pas l'espace d'état ! Soit l'historique $h=(\omega_0,d_1,\omega_1,d_2,\ldots,\omega_n)$

Identifier une politique $\pi: h \to d$ optimale déterministe!

On n'observe pas l'espace d'état! Soit l'historique $h=(\omega_0,d_1,\omega_1,d_2,\ldots,\omega_n)$

$$\underbrace{V(\pi,h)}_{\text{Critère à optimiser}} = \underbrace{\mathbb{E}_h^{\pi}[\sum_{n=1}^{n-1}c(D_n,S_n)]}_{\text{Critère à optimiser}}$$

Coût attendu à long terme suite à la politique menée π

Identifier une politique $\pi: h \to d$ optimale déterministe!

On n'observe pas l'espace d'état! Soit l'historique $h=(\omega_0,d_1,\omega_1,d_2,\ldots,\omega_n)$

$$\underbrace{V(\pi,h)}_{\text{Critère à optimiser}} = \underbrace{\mathbb{E}_h^{\pi}[\sum_{n=1}^{n-1}c(D_n,S_n)]}_{\text{Critère à optimiser}}$$

Coût attendu à long terme suite à la politique menée π

Identifier une politique $\pi: h \to d$ optimale déterministe!

On n'observe pas l'espace d'état! Soit l'historique $h=(\omega_0,d_1,\omega_1,d_2,\ldots,\omega_n)$

$$\underbrace{V(\pi,h)}_{\text{Critère à optimiser}} = \underbrace{\mathbb{E}_h^{\pi}[\sum_{n=1}^{H-1}c(D_n,S_n)]}_{\text{Single properties of the properties of$$

Coût attendu à long terme suite à la politique menée π

$$\underbrace{V^{\star}(h)}_{\text{Fonction valeur}} = \underbrace{\min_{\pi \in \Pi} V(\pi,h)}_{\text{Minimisation sur l'ensemble des politiques }\Pi.}$$

MERITXELL VINYALS 4

Problème vie réelle simplifié Modélisation PDMP contrôlé dates d'observations discrètes espace d'état continu **POMDP** partiellement observé dynamique partiellement connue simulable Apprentissage par renforcement profond

⁴Univ Toulouse, INRAE-MIAT, Toulouse, France

Apprentissage par renforcement

La politique optimale est obtenue à partir des expériences $<\omega,d,\omega',c>$

$$\underbrace{Q^{\pi}(h,d)}_{\text{Critère à optimiser}} = \underbrace{\mathbb{E}[\sum_{n=0}^{H-1} c(D_n,S_n)|h,d,\pi]}_{\text{Eritère à optimiser}}$$

Valeur d'une action dans un état suivant la politique π

$$\underbrace{Q^{\star}(h,d)}_{\text{Q fonction}} = \min_{\pi \in \Pi} Q^{\pi}(h,d)$$

$$\underbrace{\pi^{\star}}_{\text{Politique Optimale}} = \operatorname*{arg\ min}_{d \in \mathcal{D}} Q^{\star}(h,d)$$

Algorithme DQN⁵

⁵Deep Q-Network

Résultats

Politique	Coût moyen (log)	IC	Taux de survie	Rechutes
ОН	5.05	[3.58, 5.62]	91.88%	2.12
Inactive	6.39	[5.98, 6.67]	0.08%	1.00
Threshold	16.03	[14.83, 16.56]	74.04%	1.01
DQN observé	6.40	[5.99, 6.69]	0.84%	1.01
DQN	5.64	[4.49, 6.16]	76.76%	0.99
$R2D2^6$	6.49	[6.19, 6.71]	0.08%	1.00

 ${
m TABLE:}$ Policy evaluation performance on 10 5 simulations

 $^{^6\}text{R2D2} \approx \text{DQN} + \text{LSTM}$

Conclusion

Politique	Coût moyen (log)	IC	Taux de survie	Rechutes
ОН	5.05	[3.58, 5.62]	91.88%	2.12
Inactive	6.39	[5.98, 6.67]	0.08%	1.00
Threshold	16.03	[14.83, 16.56]	74.04%	1.01
DQN observé	6.40	[5.99, 6.69]	0.84%	1.01
DQN	5.64	[4.49, 6.16]	76.76%	0.99
R2D2	6.49	[6.19, 6.71]	0.08%	1.00

- Politiques peu conforme à la réalité
- Paramétrisation de la fonction de coût
- Work in Progress

Nécessite beaucoup de données pour apprendre la politique optimale!

Perspectives

Evaluer les politiques obtenues avec les différents algorithmes

Apprentissage par renforcement model-based

Problème vie réelle simplifié

- Politique d'échantillonnage adaptative pour reconstruire un processus stochastique
- Application à la migration des oiseaux

⁷Hidden semi-Markov Model

- Travaux sur les familles de politiques ϵ -optimales (publication contrôle)
- Transformation et résolution du PDMP contrôlé en BAPOMDP (acte de conférence ML)
- Extension de la méthode aux HsMM contrôlés Application sur la migration des oiseaux (publication d'écologie)
- Rédaction et soutenance de thèse

Soit $s = (m, k, \zeta, u, t, \tau)$ l'état du patient:

- m état général du patient;
- k nombre de rechute;
- ζ biomarqueur;

30. 60 iours).

- *u* temps depuis le dernier saut;
- t temps écoulé depuis le début du suivi;
 τ temps depuis l'application d'un
- traitement. Soit d la décision telle que: $d = (\ell, r)$:
 - of the item and this problem is the first of the state o
 - \(\ell \) traitement (rien, chimiothérapie);
 \(r \) temps avant la prochaine visite (15,

```
Soit s=(m,k,\zeta,u,t,\tau) l'état du patient:

• m état général du patient;

• k nombre de rechute;

• \zeta biomarqueur;

• u temps depuis le dernier saut;

• t temps écoulé depuis le début du suivi;

• \tau temps depuis l'application d'un traitement.

Soit d la décision telle que: d=(\ell,r):
```

\(\ell \) traitement (rien, chimiothérapie);
 r temps avant la prochaine visite (15,

30, 60 jours).

Fonction de coût
$$=$$
 C_V coût de la visite $+ C_D(H-t') \times \mathbb{1}_{m'=3}$ coût de la mort $+ \kappa_C \times r \times \mathbb{1}_{\ell=a}$

coût de la chimiothérapie

avec
$$C_V = 1$$
, $C_D = 0.08$ et $\kappa_C = 0.4$