Numerical Summaries

Summarizing data in R

- Have seen summary (5-number summary of each column). But what if we want:
 - a summary or two of just one column
 - a count of observations in each category of a categorical variable
 - summaries by group
 - a different summary of all columns (eg. SD)
- To do this, meet pipe operator %>%. This takes input data frame, does something to it, and outputs result. (Learn: Ctrl-Shift-M.)
- Output from a pipe can be used as input to something else, so can have a sequence of pipes.
- Summaries include: mean, median, min, max, sd, IQR, quantile (for obtaining quartiles or any percentile), n (for counting observations).
- Use our Australian athletes data again.

Packages for this section

library(tidyverse)

Summarizing one column

• Mean height:

```
athletes %>% summarize(m=mean(Ht))
```

 $\frac{\text{m}}{180.104}$

or to get mean and SD of BMI:

```
athletes %>% summarize(m=mean(BMI),s=sd(BMI))
```

m s 22.95589 2.863933

Quartiles

• quantile calculates percentiles ("fractiles"), so we want the 25th and 75th percentiles:

```
athletes %>% summarize( Q1=quantile(Wt, 0.25), Q3=quantile(Wt, 0.75))
```

Q1	Q3
66.525	84.125

Creating new columns

- These weights are in kilograms. Maybe we want to summarize the weights in pounds.
- Convert kg to lb by multiplying by 2.2.
- Create new column and summarize that:

```
athletes %>% mutate(wt_lb=Wt*2.2) %>% summarize(Q1_lb=quantile(wt_lb, 0.25), Q3_lb=quantile(wt_lb, 0.75))
```

Q1_lb	Q3_lb
146.355	185.075

Counting how many

for example, number of athletes in each sport:

```
athletes %>% count(Sport)
```

Sport	n
BBall	25
Field	19
Gym	4
Netball	23
Row	37
Swim	22
T400m	29
Tennis	11
TSprnt	15
WPolo	17

Counting how many, variation 2:

Another way (which will make sense in a moment):

```
athletes %>% group_by(Sport) %>%
  summarize(count=n())
```

Sport	count
BBall	25
Field	19
Gym	4
Netball	23
Row	37
Swim	22
T400m	29
Tennis	11
TSprnt	15
WPolo	17

Summaries by group

 Might want separate summaries for each "group", eg. mean and SD of height for males and females. Strategy is group_by (to define the groups) and then summarize:

```
athletes %>% group_by(Sex) %>% summarize(m=mean(Ht), s=sd(Ht))
```

Sex	m	S
female male	174.5940 185.5059	8.242203 7.903487

Count plus stats

If you want number of observations per group plus some stats, you need to go the n() way:

```
athletes %>% group_by(Sex) %>%
summarize(n=n(), m=mean(Ht), s=sd(Ht))
```

Sex	n	m	S
female	100	174.5940	8.242203
male	102	185.5059	7.903487

• This explains second variation on counting within group: "within each sport, how many athletes were there?"

Summarizing several columns

• Standard deviation of each (numeric) column:

```
athletes %>% summarize(across(where(is.numeric), ~sd(.)))
```

RCC WCC Hc Hg Ferr BMI SSF %Bfat LBM Ht 0.45797614.8005493.6629891.36245147.501242.86393332.565336.18982613.07029.73449

• Median and IQR of all columns whose name starts with H:

Hc_med	Hc_iqr	Hg_med	Hg_iqr	Ht_med	Ht_iqr
43.5	4.975	14.7	2.075	179.7	12.175

by group

Sex	Hc_med	Hc_iqr	Hg_med	Hg_iqr	Ht_med	Ht_iqr
female	40.6	4.025	13.5	1.600	175.00	8.675
male	45.5	2.575	15.5	0.975	185.55	11.250