Exercise 8. Let X denote the two-element set $\{0,1\}$; let \mathscr{B} be the set of countable subsets of X^{ω} . Show that X^{ω} and \mathscr{B} have the same cardinality.

Proof. Let

$$\phi: \mathscr{B} \to X^{\omega}$$

$$B \mapsto \begin{cases} (0,0,\dots) & \text{if } B = \varnothing \\ \beta & \text{for some } \beta \in B \text{ otherwise} \end{cases}$$

with the added rule that if B_1 and B_2 are elements of \mathscr{B} such that $B_1 = B_2$, then we choose the same element in B_1 and B_2 to be the value of $\phi(B_1) = \phi(B_2)$. This rule is necessary to make ϕ a function, and is possible with the axiom of choice. For all $x \in X^{\omega}$, we have $\phi(\{x\}) = x$, so ϕ is surjective.

For all nonempty $B = \{b_1, b_2, \dots\} \in \mathcal{B}$, we note $b_p = (b_{p,1}, b_{p,2}, \dots)$ for all $p \in \mathbb{Z}_+$. Since $\mathbb{Z}_+ \times \mathbb{Z}_+$ is countable, let $\sigma : \mathbb{Z}_+ \to \mathbb{Z}_+ \times \mathbb{Z}_+$ be a bijection, and let $\psi : X^{\omega} \to \mathcal{B}$ be defined by:

- $\psi((0,0,\dots)) = \varnothing$
- Otherwise, let $x = (x_1, x_2, \dots) \in X^{\omega}$ and S be the subset of \mathbb{Z}_+ of all integers p such that, for $a \geq p$, any b, and $\sigma(i) = (a, b)$, $x_i = 0$. If S is nonempty, it has a smallest element n. Let then $\psi(x) = \{b_1, b_2, \dots, b_n\}$ with $b_{p,q} = x_i$ for $(p,q) = \sigma(i)$. Since σ is bijective, the $b_{p,q}$ are defined for all q and all $p \leq n$, so each b_p is an element of X^{ω} as expected.
- Otherwise, if S is empty, define $b_{p,q} = x_i$ for $\sigma(i) = (p,q)$ and let $\psi(x) = \{b_1, b_2, \dots\}$. There are countably many x_i , and σ is bijective, so there are countably many b_i . As a consequence, $\psi(x)$ is an element of \mathscr{B} as expected.

The function ψ is surjective. Let $B \in \mathcal{B}$; if $B = \emptyset$, then $B = \psi((0,0,\dots))$. If $B = \{b_1, b_2, \dots, b_n\}$, let $x = (x_1, x_2, \dots)$ with $x_i = b_{p,q}$ for $p \leq n$ and $\sigma(i) = (p,q)$ and $x_i = 0$ otherwise. Then $\psi(x) = \{b_1, b_2, \dots, b_n\}$. Finally, if $B = \{b_1, b_2, \dots\}$ is countably infinite, let $x = (x_1, x_2, \dots)$ with $x_i = b_{p,q}$ for $\sigma(i) = (p,q)$. For such an x we have $\psi(x) = B$.

Since the exists a surjection from X^{ω} to \mathcal{B} , there exists an injection from \mathcal{B} to X^{ω} . And since there exists a surjection from \mathcal{B} to X^{ω} , there exists an injection from X^{ω} to \mathcal{B} . Finally, since there exist injections both from X^{ω} to \mathcal{B} and from \mathcal{B} to X^{ω} , there exists a bijection from \mathcal{B} to X^{ω} , so that \mathcal{B} and X^{ω} have the same cardinality (and in particular, \mathcal{B} is uncountable).