Curso 0 Sesión 1

Departamento de Matemáticas

Escola Politécnica de Enxeñaría de Ferrol

Curso 2025-2026

Índice

- Conxuntos e subconxuntos
- 2 Aplicacións

Conxuntos e subconxuntos

Conxuntos

Entendemos por conxunto unha colección de obxectos ben definidos e diferenciados entre si. A estes obxectos chámaselles elementos do conxunto.

Así, se A é un conxunto e x é un elemento de A, dicimos que x pertence a A e escribímolo

$$x \in A$$
.

Se, pola contra, x non pertence a A entón

$$x \notin A$$
.

- Dous conxuntos son iguais se teñen exactamente os mesmos elementos.
- Ó conxunto que non ten elementos chamámoslle conxunto baleiro, e denotámolo por \emptyset .

Definición de conxuntos

Un conxunto pódese definir de dous xeitos:

O Por extensión: enuméranse todos os elementos.

Exemplos:

- {2, 3, 4, 5, 6}.
- O conxunto dos números naturais: $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$.
- O conxunto dos números enteiros:

$$\mathbb{Z} = \{ \dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots \}.$$

② Por comprensión: dáse a propiedade ou propiedades que definen os elementos do conxunto.

- O conxunto formado polos números 2, 3, 4, 5, 6 podémolo definir por comprensión do seguinte xeito: {x ∈ N/2 ≤ x ≤ 6}.
- O conxunto dos números racionais: $\mathbb{Q} = \{\frac{m}{n}/m, n \in \mathbb{Z}, n \neq 0\}$.

Subconxuntos

Dados dous conxuntos A e B, dise que A é un subconxunto de B se todo elemento de A tamén pertence a B. Que A é subconxunto de B escribímolo:

$$A \subset B$$
.

Exemplo: Os números naturais constitúen un subconxunto dos números enteiros, que á súa vez constitúen un subconxunto dos números racionais:

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}.$$

Na seguinte táboa amósanse a notación que usaremos en teoría de conxuntos:

Notación	Terminoloxía	Significado
$A \subset B$	A contido en B	$x \in A \Rightarrow x \in B$
A = B	A igual a B	$x \in A \Leftrightarrow x \in B$
$A \cup B$	Unión de A e B	$x \in A \cup B \Leftrightarrow x \in A \text{ ou } x \in B$
$A \cap B$	Intersección de A e B	$x \in A \cap B \Leftrightarrow x \in A e x \in B$
$A \setminus B$	Complementario de B en A	$x \in A \setminus B \Leftrightarrow x \in A e x \notin B$

Dous conxuntos A e B dinse disxuntos se $A \cap B = \emptyset$, Lembramos tamén

3	Existe	
∃•	Existe un único	
\forall	Para todo	

Produto cartesiano

Produto cartesiano

Sexan A e B dous conxuntos arbitrarios. Defínese o *produto cartesiano* de A e B (denótase $A \times B$) como o conxunto de pares ordenados seguinte:

$$A \times B = \{(a, b)/a \in A \in b \in B\}.$$

Exemplos:

• Sexa $A = \{1, 2\}$ e $B = \{x, y, z\}$, entón

$$A \times B = \{(1,x), (1,y), (1,z), (2,x), (2,y), (2,z)\}.$$

• Se facemos o produto cartesiano $\mathbb{R} \times \mathbb{R}$ temos o conxunto de pares ordenados de números reais, que chamamos

$$\mathbb{R}^2 = \{(a,b)/a, b \in \mathbb{R}\}$$

e que identificamos habitualmente co plano cartesiano.

Subconxuntos de R. Intervalos

Intervalo aberto

Un intervalo aberto é un subconxunto da recta real (\mathbb{R}) da forma:

$$(a, b) = \{x \in \mathbb{R}/a < x < b\}.$$

Os extremos non están incluídos no conxunto. Se queremos incluír algún extremo, escribímolo cun corchete en vez de paréntese, por exemplo:

$$(a,b] = \{x \in \mathbb{R}/a < x \le b\}.$$

Observación:

Non debemos confundir o intervalo aberto cun punto de \mathbb{R}^2 . Aínda que se escriben da mesma forma, son moi distintos, pois $(a,b)\in\mathbb{R}^2$ é un elemento do conxunto \mathbb{R}^2 , mentres que $(a,b)\subset\mathbb{R}$ é un intervalo, isto é, un subconxunto de \mathbb{R} .

Aplicacións

Aplicacións

Sexan A e B dous conxuntos non baleiros. Unha aplicación f de A en B é unha correspondencia entre os elementos de A e os de B, de xeito que a cada elemento $a \in A$ lle corresponde un único elemento $b \in B$. Este chámase imaxe de a (pola aplicación f) e denótase f(a).

Habitualmente as aplicacións represéntanse así:

$$f: A \longrightarrow B$$

 $a \rightsquigarrow f(a) = b$

O conxunto A chámase conxunto inicial e o B conxunto final.

Se A e B son conxuntos numéricos entón é usual empregar o nome de *función* para unha aplicación entre eles e *dominio* para o conxunto inicial A.

Aplicacións

Imaxe

Sexa $C \subset A$, chámase *imaxe por f do conxunto C* ó seguinte subconxunto de B:

$$f(C) = \{f(a)/a \in C\}.$$

Chamamos imaxe de f, sen explicitar conxunto ningún, a f(A), é dicir, á imaxe do conxunto inicial.

Imaxe recíproca

Sexa $D \subset B$, chámase imaxe recíproca por f do conxunto D ó subconxunto de A:

$$f^{-1}(D) = \{a \in A/f(a) \in D\}.$$

Restricción

Para un subconxunto $C \subset A$, chámase *restrición* de f a C, e denótase $f_{\mid C}$, á aplicación f restrinxida ó conxunto C, isto é, a f definida só nos elementos de C.

Tipos de aplicacións

Dada unha aplicación $f: A \longrightarrow B$, dise que f é:

 Inxectiva se cada dous elementos distintos de A teñen distinta imaxe en B, é dicir,

$$\forall a_1, a_2 \in A \text{ tense } a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2).$$

- A función exponencial: $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = e^x$ é unha función inxectiva, pois se $e^x = e^y$ entón necesariamente x = y.
- A función seno: $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \operatorname{sen} x$ non é inxectiva, xa que, por exemplo, sen $0 = \operatorname{sen} \pi$.

Tipos de aplicacións

Dada unha aplicación $f: A \longrightarrow B$, dise que f é:

 Sobrexectiva se todo elemento de B é imaxe dalgún elemento de A, é dicir,

$$\forall b \in B, \exists a \in A \text{ tal que } f(a) = b.$$

Polo tanto,

$$f$$
 é sobrexectiva $\Leftrightarrow f(A) = B$.

- A función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ é unha función sobrexectiva, porque para todo valor $y \in \mathbb{R}$ existe x tal que f(x) = y. Neste caso x sería $x = \sqrt[3]{y}$.
- A función seno: $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \operatorname{sen} x$ non é sobrexectiva, porque só toma valores no intervalo [-1,1]. Así, por exemplo, non hai ningún número real x tal que sen x=2.

Tipos de aplicacións

Dada unha aplicación $f:A\longrightarrow B$, dise que f é:

• Bixectiva (ou biunívoca) se é inxectiva e sobrexectiva, é dicir,

$$\forall b \in B, \exists^{\bullet} a \in A \text{ tal que } f(a) = b.$$

- A función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ é unha función inxectiva e sobrexectiva, polo tanto é unha función bixectiva.
- As funcións seno e exponencial: $f, g : \mathbb{R} \longrightarrow \mathbb{R}$, definidas por $f(x) = \text{sen } x \in g(x) = e^x$ respectivamente, non son bixectivas.

Composición de aplicacións.

Consideremos unha aplicación $f:A\longrightarrow B$ e outra aplicación $g:C\longrightarrow D$. Se tomamos un elemento $x\in A$, entón $f(x)\in B$. Se se cumpre que $f(x)\in C$ entón podemos aplicar g a f(x), de modo que fariamos g(f(x)).

A isto chámaselle compoñer f con g e pódese facer se a imaxe de f está no conxunto inicial de g. Así que:

Composición

Se $f(A) \subset C$, definimos a *composición de f e g*, que se denota por $g \circ f$, como a aplicación

$$g \circ f: A \longrightarrow D$$

 $a \leadsto (g \circ f)(a) = g(f(a)).$

Dado un conxunto A, unha aplicación de especial relevancia definida nel é a aplicación identidade, que aplica un elemento en si mesmo:

$$I_A: A \longrightarrow A$$

 $a \rightsquigarrow I_A(a) = a.$

Obsérvese que para calquera aplicación $f:A\longrightarrow B$ se verifica $f\circ I_A=f=I_B\circ f$.

Aplicación inversa.

Aplicación inversa.

Sexan A e B dous conxuntos e $f:A\longrightarrow B$ unha aplicación entre eles. Chámase aplicación inversa de f, e denótase por f^{-1} , a unha aplicación $f^{-1}:B\longrightarrow A$ tal que

$$f^{-1}\circ f=I_A\quad \text{e}\quad f\circ f^{-1}=I_B.$$

A aplicación inversa de f non sempre existe, de feito existe se e só se f é bixectiva.

Se unha aplicación f ten inversa, entón a inversa da inversa é a propia aplicación, é dicir, $(f^{-1})^{-1} = f$. Ademais, obsérvese que se $f: A \longrightarrow B$ e $g: B \longrightarrow C$ son dúas aplicacións invertibles tamén o é a súa composición $g \circ f$, e ademais $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Exemplo:

• A función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3$ ten inversa $g(y) = \sqrt[3]{y}$, xa que g(f(x)) = x e f(g(y)) = y.

Operacións con binomios

 Para sumar e restar binomios (ou polinomios) súmanse ou réstanse os termos do mesmo grao.

Exemplos:

$$(4x^3 + x^2) + (-4x^3 + 6x) = x^2 + 6x.$$

$$(4x^2 + 3x) - (x^2 - 5x) = 3x^2 + 8x.$$

 Para multiplicar binomios, multiplícase cada monomio do primeiro binomio por cada monomio do segundo binomio.

Exemplos:

$$(2x-3)(3x+4) = 6x^2 + 8x - 9x - 12 = 6x^2 - x - 12.$$

$$(4x^2+3x)(x-5) = 4x^3 - 20x^2 + 3x^2 - 15x = 4x^3 - 17x^2 - 15x.$$

• Igualdades notables:

$$(a+b)^2 = a^2 + b^2 + 2ab.$$

$$(a-b)^2 = a^2 + b^2 - 2ab.$$

$$(a+b)(a-b) = a^2 - b^2$$
.

Ollo!: Non podemos confundir $(a+b)^2$ con a^2+b^2 nin $\sqrt{a^2+b^2}$ con a+b ou $\sqrt{a^2}+\sqrt{b^2}$. De feito tense que $|a+b|=\sqrt{(a+b)^2}=\sqrt{a^2+b^2+2ab}$.

Curso 0 Sesión 1

Departamento de Matemáticas

Escola Politécnica de Enxeñaría de Ferrol

Curso 2025-2026