UNIVERSITY OF WISCONSIN—MADISON

Assignment 3

Author: Raymond Tian

February 24, 2023

Question 1: Set identities [5 points]

Consider the sets $A = \{1, 2\}$ and $B = \{3, 4\}$. Verify that, for these sets, the following identies hold:

- 1. $A \setminus (B \cap A) = A$ and
- $2. \ A \setminus (B \setminus A) = A.$

Prove that, for arbitary sets A and B, item 2 above remains true but item 1 may fail to hold.

Item 1:

Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Then, $B \cap A = \emptyset$. Therefore, $A \setminus (B \cap A) = A \setminus \emptyset = A$. Now instead, if A and B are arbitary sets, then $A \setminus (B \cap A)$ is not necessarily A because if $B \cap A \neq \emptyset$, then $\exists x \in A(x \in B \cap A)$. Therefore, the cardinality of $A \setminus (B \cap A)$ is strictly less than the cardinality of A, so $A \setminus (B \cap A) \neq A$ if $A \cap B \neq \emptyset$.

Item 2:

Let $A = \{1,2\}$ and $B = \{3,4\}$. Then, $B \setminus A = B$. Therefore, $A \setminus (B \setminus A) = A \setminus B = A$. Now, let us consider this identity if A and B are arbitary sets. For all x in A, x cannot be in $B \setminus A$. Since $x \in A$ and $x \notin B$ A, then $x \in A \setminus (B \setminus A)$. Therefore $A \subseteq A \setminus (B \setminus A)$. By definition, $A \setminus (B \setminus A) \subseteq A$. Therefore, $A \setminus (B \setminus A) = A$ because they are subspaces of each other.

Question 2: Injectivity, surjectivity, and bijectivity [5 points]

For each of the functions below, determine and prove whether or not it is injective, surjective, and bijective.

- 1. $f:\{0,1\}^3 \to \{0,1\}^4$ is given by adding a copy of the first bit to the end of the binary string. In other words f(xyz) = xyzx.
- 2. Let $S = \{1, 2, 3\}$ and consider $g : \mathcal{P}(S) \to \{0, 1, 2, 3\}$ given by g(A) = |A|, where recall that for any set A, |A| denotes its cardinality.

Item 1:

Proof. f is injective because for any binary string $abc \in \{0,1\}^3$, f(abc) = abcx where some x = a. Therefore, for any other binary string in $\{0,1\}^3$ that isn't abc, the output will not contain abc, so f is injective because there does not exist $x, y \in \{0,1\}^3$ such that f(x) = f(y). We will prove that f is not surjective by contradiction. For the sake of contradiction, suppose abc is a binary string in $\{0,1\}^3$ such that f(abc) = 0011. 0011 is in $\{0,1\}^4$. Then a must be equal to 0 and 1, which is impossible. Therefore, f is not surjective. Since f is not injective and surjective, then f is not bijective.

Item 2:

Proof. We will prove that g is not injective by contradiction. For the sake of contradiction, suppose that g is injective. Then $\forall (A_1, A_2) \in \mathcal{P}(S)$ such that $S = \{1, 2, 3\}$ and $A_1 \neq A_2, (g(A_1) \neq g(A_2))$. However, suppose that $A_1 = \{1\}$ and $A_2 = \{2\}$. Then $g(A_1) = |A_1| = 1$ and $g(A_2) = |A_2| = 1$. Therefore $g(A_1) = g(A_2)$, which is a contradiction, so g is not injective. We will prove that g is surjective by exhaustion. The codomain of g is 0, 1, 2, and $g(A_2) = 1$. Let $g(A_2) = 1$ is surjective by exhaustion. The codomain of g is $g(A_2) = 1$. Let $g(A_2) = 1$ is a surjective $g(A_2) = 1$. Let $g(A_2) = 1$ is equal to $g(A_2) = 1$. Let $g(A_2) = 1$ is equal to $g(A_2) = 1$. Therefore $g(A_2) = 1$ is surjective. Since $g(A_2) = 1$ is not injective and surjective, $g(A_2) = 1$ is not bijective.