Week 5 Notes Janet Ye

Neural Network (Classification). $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$

L = total number of layers.

 s_l = number of neuron (unit), not counting bias unit, in layer l.

Binary Classification. y = 0 or 1. In last layer, only have 1 output unit, i.e., $h_{\Theta}(x) \in \mathbb{R}$, or $s_L = K = 1$.

Multi-class classification (K classes). $y \in \mathbb{R}^K$. K output units, $h_{\Theta}(x) \in \mathbb{R}^K$, $s_L = K$, $K \geq 3$.

Cost Function. Regularized Logistic regression:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) log (1 - h_{\theta}(x^{i})) \right] + \frac{\lambda}{2m} \sum_{i=1^{n}} \theta_{i}^{2}$$

Neural network: $h_{\Theta}(x) = \mathbb{R}^K, (h_{\Theta}(x))_i = i$ th output.

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1} y_k^{(i)} log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) log(1 - (h_{\Theta}(x^{(i)}))_k) \right] - \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_t} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$$

Gradient Computation. We want to minimize $J(\Theta)$. Need code to compute $J(\Theta)$, $\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$. Imagine there is only one training example (x,y). Forward propagation:

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^2) \text{add } a_0^{(2)}$$

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$a^{(3)} = g(z^3) \text{add } a_0^{(3)}$$

$$z^{(4)} = \Theta^{(3)}a^{(3)}$$

$$a^{(4)} = h_{\Theta}(x) = g(z^{(4)})$$

Gradient Computation: Backpropagation algorithm