THAI MOBILE APP NOTIFICATION FILTER

OVERVIEW

- Aiming at classifying mobile application notifications into two categories:
 - "ham" (bill reminding, delivery noticing, non-advertising related)
 - "spam" (marketing, advertising related, etc.)
- Solving the issue of receiving mixed notifications like
 - delivery status updates and marketing offers, from mobile applications

ให้คะแนนความอร่อยร้านนี้กัน 1h ago คำสั่งซื้อ 240403-JJ-5443 เสร็จสมบูรณ์แล้ว กรุณาให้คะแนนความพึงพอใจร้านนี้

ใบเสร็จรับเงิน (E-Receipt) 2h ago คนขับส่งอาหารเรียบร้อยแล้ว ดูใบเสร็จรับเงิน ของหมายเลขคำสั่งซื้อ 240403-JJ-5443

สถานะคำสั่งซื้อ 3h ago คำสั่งซื้อ 240403-JJ-5443 ยอด 398.36 บาท ชำระเงินสำเร็จแล้ว หากคำสั่งซื้อไม่ สมบูรณ์ คุณจะได้รับเงินคืนโดยเร็ว

เริ่มหิวแล้ว มาสั่งของอร่อยกัน! 10:07 ค่าส่งแค่ 5 กม. 5 บาท* กดสั่งจากร้านแถบ สีชมพูได้เลย ตลอดเดือนนี้ รีบกดสั่งด่วน!

4.4 อย่าพลาดโปรส่งของด่วน ลดสูง... 08:05 ใส่โค้ด EXP44 ลดสูงสุด 44.-* x4 ครั้ง ไม่มี ขั้นต่ำ ส่งของเร็ว ถูกใจทั้งผู้รับ ผู้ส่ง เรียกส่ง ของเลย!

ส่งฟรีแค่คุณ Chayakorn Jiensuw... เก็บคูปองส่งฟรี แล้วไปช้อป

DATASET

LABEL: "HAM" OR "SPAM"

CONTENT: TEXT OF THE NOTIFICATION

MAINLY IN THAI LANGUAGE FOCUSING ON SHOPPING, FOOD DELIVERY, AND SERVICE-RELATED APPLICATIONS. Dimension of dataset: (1056, 2)

content	label	
คนขับส่งอาหารเรียบร้อยแล้ว ดูใบเสร็จรับเงิน ขอ	0	0
หมายเลข: 09116240327514498 อยู่ในสถานะ 'เสร็จส	0	1
หมายเลข: 09116240327514498 พนักงานกำลังน้ำ สิน	0	2
7-Delivery: เนื่องจากขณะนี้มีออเดอร์เป็นจำนวนม	0	3
หมายเลข: 09116240327514498 อยู่ในสถานะ 'จัดของ	0	4
เที่ยงคืน แจกอีก5,000 เก็บด่วน! ช้อปดีลเด็ด	1	1051
4.4 มาแล้ว! ลดโหด โค้ด 50% วันนี้วันเดียว!	1	1052
โค้ดลด 50% 9 โมง » เก็บด่วน	1	1053
Shopee Live! watch cintage.official's live: co	1	1054
โค้ดเด็ด! 4.4 ลด 50% ถึงตีสอง	1	1055

PREPROCESSING

Thai language behavior is handled differently from English language, which we handle these following steps to streamline the feature set for modeling

	label	content	transformed_content
0	0	คนขับส่งอาหารเรียบร้อยแล้ว ดูใบเสร็จรับเงิน ขอ	คนขับส่งอาหารเรียบร้อยดูใบเสร็จรับเงินหมายเลขส
1	0	หมายเลข: 09116240327514498 อยู่ในสถานะ 'เสร็จส	หมายเลข09116240327514498อยู่สถานะสมบูรณ์date15
2	0	หมายเลข: 09116240327514498 พนักงานกำลังน้ำ สิน	หมายเลข09116240327514498พนักงานน้ำสินค้าส่งกรุ
3	0	7-Delivery: เนื่องจากขณะนี้มีออเดอร์เป็นจำนวนม	7deliveryออเดอร์จำนวนมากพนักงานดำเนินการจัดส่ง
4	0	หมายเลข: 09116240327514498 อยู่ในสถานะ 'จัดของ	หมายเลข09116240327514498อยู่สถานะdate1428นาฬิกา
1051	1	เที่ยงคืน แจกอีก5,000 เก็บด่วน! ช้อปดีลเด็ด	เที่ยงคืนแจก5000ด่วนช้อปดีลเด็ด44จำกัดเวลาตี2
1052	1	4.4 มาแล้ว! ลดโหด โค้ด 50% วันนี้วันเดียว!	44ลดโหดโค้ด50
1053	1	โค้ดลด 50% 9 โมง » เก็บด่วน	โค้ดลด509โมงด่วน
1054	1	Shopee Live! watch cintage.official's live: co	shopeelivewatchcintageofficialslivecode50200บา
1055	1	โค้ดเด็ด! 4.4 ลด 50% ถึงตีสอง	โค้ดเด็ด44ลด50ตีสอง

01 - REMOVING ACRONYMS

02 - SUBSTITUTING DATES WITH A GENERIC PLACEHOLDER

03 - REMOVE STOP WORDS AND NON-THAI/ALPHANUMERIC CHARACTERS

PREPROCESSING SAMPLE

PREPROCESSING

```
tfidf = TfidfVectorizer(max_features=2000)
X = tfidf.fit_transform(noti_dataset['transformed_content']).toarray()
y = noti_dataset['label'].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

```
((844, 2000), (212, 2000), (844,), (212,))
```

TfidfVectorizer

A method for converting a collection of raw documents into a matrix of TF-IDF (Term Frequency-Inverse Document Frequency) features

train_test_split: Train 80% / Test 20%

MODEL SELECTION MULTINOMIAL NAIVE BAYES

Multinomial Naive Bayes Classifier

based on Bayes' theorem, the assuming that the features (words) are conditionally independent given the class label.

In practice

Real-world applications show that MNB perform well on text classification tasks, like spam detection.

MODEL TRAINIG

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}.$$

- Compute the P(y) (Prior) and P(x|y) (Likelihood)
- P(y) = count(y) / count(Y) [Y = all samples, y = specific class]
- P(x|y) = count(x, y) + 1 / count(y) + |X|
 [X = all features, x = specific feature]

```
def fit(self, X, y):
    """
    Prior : P(y) = count(y) / count(Y) [ Y = all samples, y = specific class ]
    Likelihood : P(x|y) = count(x, y) + 1 / count(y) + |X| [ X = all features, x = specific feature ]
    """
    self.classes = np.unique(y)
    self.class_prior = np.zeros(len(self.classes))
    self.feature_prob = np.zeros((len(self.classes), X.shape[1])) #

for i, c in enumerate(self.classes): #
    X_c = X[y == c] # Get samples with class c
    self.class_prior[i] = X_c.shape[0] / X.shape[0] # P(y) = count(y) / count(Y)
    self.feature_prob[i] = (np.sum(X_c, axis=0) + 1) / (np.sum(X_c) + X.shape[1]) # P(x|y) = count(x, y) + 1 / count(y) + |X|
```

$$P(y|\mathbf{x}) = rac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

- $log_likelihood = log(P(x | y)) \times XT$
- Compute log of the likelihood of each feature given each class
- Use feature probabilities learned during model training phase

```
def predict_proba(self, X):
    Calculate the posterior probability for each class given the input features X.
    Parameters:
    X: Input features, shape (n_samples, n_features)
    Returns:

    posterior probabilities: Probability of each class for each sample in X, shape (n_classes, n_samples)

    # Compute the logarithm of the likelihood of each feature given each class, then transpose the result
    log_likelihood = np_llog(self_feature_prob + 1e-9) @ X_I # log(P(x|y)) * X (dot product [ @ : matrix multiplication ])
    # Add the logarithm of the prior probability of each class to the likelihood
    log_likelihood += np.log(self.class_prior.reshape(-1, 1))
    # Normalize the log-likelihoods by subtracting the maximum log-likelihood value to avoid numerical instability
    log_likelihood -= np.max(log_likelihood, axis=0)
    # Exponentiate the normalized log-likelihoods to get the likelihoods
    likelihood = np.exp(log_likelihood)
    return likelihood / np.sum(likelihood, axis=0) # Normalize the likelihoods to get the posterior probabilities
```

$$P(y|\mathbf{x}) = rac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

- log_likelihood += log(P(y))
- Adds log of the prior probability of each class to log-likelihood
- Adjusts likelihoods based on the prior probability of each class

```
def predict_proba(self, X):
    Calculate the posterior probability for each class given the input features X.
    Parameters:
    X: Input features, shape (n_samples, n_features)
    Returns:

    posterior probabilities: Probability of each class for each sample in X, shape (n_classes, n_samples)

    # Compute the logarithm of the likelihood of each feature given each class, then transpose the result
    log_likelihood = np_llog(self_feature_prob + 1e-9) @ X_I # log(P(x|y)) * X (dot product [ @ : matrix multiplication ])
    # Add the logarithm of the prior probability of each class to the likelihood
    log_likelihood += np.log(self.class_prior.reshape(-1, 1))
    # Normalize the log-likelihoods by subtracting the maximum log-likelihood value to avoid numerical instability
    log_likelihood -= np.max(log_likelihood, axis=0)
    # Exponentiate the normalized log-likelihoods to get the likelihoods
    likelihood = np.exp(log_likelihood)
    return likelihood / np.sum(likelihood, axis=0) # Normalize the likelihoods to get the posterior probabilities
```

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

- log_likelihood -= max(log_likelihood)
- log-likelihood normalization, performed to address numerical instability issues which occur when dealing with very small or very large values (logarithms)

```
def predict_proba(self, X):
   Calculate the posterior probability for each class given the input features X.
    Parameters:
   - X: Input features, shape (n_samples, n_features)
    Returns:
   - posterior probabilities: Probability of each class for each sample in X, shape (n_classes, n_samples)
   # Compute the logarithm of the likelihood of each feature given each class, then transpose the result
    log_likelihood = np.log(self.feature_prob + 1e-9) @ X.T # log(P(x|y)) * X (dot product [ @ : matrix multiplication ])
   # Add the logarithm of the prior probability of each class to the likelihood
    log likelihood += np.log(self.class prior.reshape(-1, 1))
   # Normalize the log-likelihoods by subtracting the maximum log-likelihood value to avoid numerical instability
    log_likelihood -= np.max(log_likelihood, axis=0)
   # Exponentiate the normalized log-likelihoods to get the likelihoods
   likelihood = np.exp(log_likelihood)
    return likelihood / np.sum(likelihood, axis=0) # Normalize the likelihoods to get the posterior probabilities
```

$$P(y|\mathbf{x}) = rac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

- likelihood = exp(log_likelihood)
- posterior_prob = likelihood / Σ likelihood

```
def predict_proba(self, X):
   Calculate the posterior probability for each class given the input features X.
    Parameters:
   - X: Input features, shape (n_samples, n_features)
    Returns:

    posterior probabilities: Probability of each class for each sample in X, shape (n_classes, n_samples)

   # Compute the logarithm of the likelihood of each feature given each class, then transpose the result
    log_likelihood = np.log(self.feature_prob + 1e-9) @ X.T # log(P(x|y)) * X (dot product [ @ : matrix multiplication ])
   # Add the logarithm of the prior probability of each class to the likelihood
    log likelihood += np.log(self.class prior.reshape(-1, 1))
   # Normalize the log-likelihoods by subtracting the maximum log-likelihood value to avoid numerical instability
    log_likelihood -= np.max(log_likelihood, axis=0)
   # Exponentiate the normalized log-likelihoods to get the likelihoods
   likelihood = np.exp(log_likelihood)
    return likelihood / np.sum(likelihood, axis=0) # Normalize the likelihoods to get the posterior probabilities
```

CLASS PREDICTION

```
def predict(self, X):
    """
    Predict the class with the highest probability by finding the argmax of the posterior probability.
    """
    return np.argmax(self.predict_proba(X), axis=0)
```

$$rgmax_{c} \ P(y=c\mid \mathbf{x}) \propto rgmax_{c} \ \hat{\pi}_{c} \prod_{lpha=1}^{a} \hat{ heta}_{lpha c}^{x_{lpha}}$$

Selects the class with the highest probability (argmax) as the predicted class for each sample

PERFORMANCE METRICS

```
def accuracy_score(self, y_true, y_pred):
    correct_predictions = np.sum(y_true == y_pred)
    total_samples = len(y_true)
    accuracy = correct_predictions / total_samples
    return accuracy
```

- measures the proportion of correctly classified samples out of the total number of samples
- Accuracy = Number of Correct Predictions / Total Number of Predictions

PERFORMANCE METRICS

```
def precision_score(self, y_true, y_pred, pos_label=0):
    true_positives = np.sum((y_true == pos_label) & (y_pred == pos_label))
    predicted_positives = np.sum(y_pred == pos_label)
    precision = true_positives / predicted_positives if predicted_positives > 0 else 0
    return precision
```

- Measure of the accuracy of positive predictions made by the model
- Precision = True Positives / True Positives + False Positives
- Indicates the model's ability to avoid false positive predictions.

PERFORMANCE METRICS

```
# Calculate accuracy score
   accuracy = accuracy_score(y_test, predictions)
   print("Accuracy score:", accuracy)
   # Calculate precision score
   precision_score = precision_score(y_test, predictions)
   print("Precision score:", precision_score)
    0.0s
Accuracy score: 0.9339622641509434
Precision score: 0.9176470588235294
```

REFERENCES

- Multinomial Naive Bayes
 - Cornell University CS4780 Lecture Notes
- Slides
 - Colorful Modern Business Infographic Presentation