6 The Rank of a Matrix

The Row Space

Let A be an $m \times n$ matrix. Then we can view A as a collection of rows instead of a collection of columns. Note that each row of A has n entries, so we can identify each row as a vector in \mathbb{R}^n .

Definition 6.1. Let A be an $m \times n$ matrix. The row space of A, denoted by Row(A), is the set of all linear combinations of the rows of A.

Theorem 6.2. If two matrices A and B are row equivalent then Row(A) = Row(B). If B is in row echelon form then the nonzero rows of B form a basis for Row(A) and Row(B).

Note 6.3. Theorem 6.2 implies that the dimension of Row(A) equals the numbers of pivots in A, which is the same as the dimension of Col(A), i.e.

$$\dim(\text{Row}(A)) = \dim(\text{Col})(A) = \#\text{pivots}$$

Example 6.4. Let
$$A = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}$$
. Matrix A is row equivalent to $B = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 0 & 0 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

Find bases for Row(A), Col(A) and Nul(A).

Solution

By Theorem 6.2, the first three rows of B form a basis for Row(A) as well as for Row(B), i.e. the set

$$\mathcal{B}_0 = \{(1, 4, 0, 2, -1), (0, 0, 1, -1, 8), (0, 0, 0, 0, -4)\}$$

is basis for Row(A).

Since B is a row echelon form of A, we see that columns 1, 3, and 5 are pivot columns hence, the set

$$\mathcal{B}_1 = \left\{ \begin{bmatrix} 1\\3\\2\\5 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\5\\2\\8 \end{bmatrix} \right\}$$

is a basis for Col(A).

Using the row echelon form B of A, the solutions of the homogeneous equation $A\vec{x} = \vec{0}$ can be written in parametric vector form as

$$\vec{x} = x_2 \begin{vmatrix} -4 & & & -2 \\ 1 & & & 0 \\ 0 & +x_4 & 1 \\ 0 & & 1 \\ 0 & & 0 \end{vmatrix}, \quad x_2, x_4 \in \mathbb{R}$$

Hence, the set

$$\mathcal{B}_2 = \{ \begin{bmatrix} -4 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} \}$$

is a basis for Nul(A).

The Rank Theorem

Definition 6.5. Let A be a matrix. The **rank** of A is the dimension of the column space of A.

Theorem 6.6 (Rank-Nullity Theorem). Let A be an $m \times n$ matrix, then

$$rank(A) + \dim(Nul(A)) = n$$

Proof. On one hand, we have

$$rank(A) = dim(Col(A)) = \# pivots$$

On the other hand, we have

$$\dim(\text{Nul}(A)) = \# \text{ free variables} = n - \# \text{ pivots}$$

Therefore,

$$\dim(\text{Nul}(A)) + \text{rank}(A) = (n - \# \text{ pivots}) + \# \text{ pivots} = n.$$

Theorem 6.7 (Invertible Matrix Theorem (continued)). Let A be an $n \times n$ matrix. Then, the following statements are equivalent:

- (a) A is invertible
- (b) $Col(A) = \mathbb{R}^n$
- (c) $\dim(\operatorname{Col}(A)) = n$
- (d) rank(A) = n
- (e) $Nul(A) = {\vec{0}}$
- (f) $\dim(\text{Nul}(A)) = 0$.