CAPÍTUO III: PLANOS EN EL ESPACIO TRIDIMENSIONAL

> Espacio tridimensional. Coordenadas cartesianas.

Una vez que se ha especificado una unidad de medida, un número $x \in \mathbf{R}$ puede ser usado para

representar un punto en una línea.

un par $(x,y) \in \mathbb{R}^2$ se puede usar para representar un punto en un plano

De manera análoga, una terna $(x,y,z) \in \mathbb{R}^3$ se puede usar para representar un punto en el espacio tridimensional.

Para ello tomamos un punto fijo cualquiera \mathbf{o} , llamado origen, y tres planos distintos, mutuamente perpendiculares, que pasan por \mathbf{o} . Los planos se intersecan en pares en tres rectas (ejes) mutuamente perpendiculares que pasan por \mathbf{o} llamados eje \mathbf{x} , eje \mathbf{y} , y eje z.

Para hacer la representación gráfica de los tres ejes, podemos trazar el eje \mathbf{y} , y el eje \mathbf{z} de frente y la parte positiva del eje \mathbf{x} se representa en una dirección inclinada, para simular profundidad.

Si queremos ubicar un punto determinado en el espacio, P(x, y, z), dibujamos primero el punto (x,y) en el plano x-y, desde este punto, dibujamos un segmento paralelo al eje z, y orientado de acuerdo al signo de z y de longitud z, como se muestra en la figura

En geogebra

Eje x (rojo)

Eje y (verde)

Eje z (azul)

Los ejes tomados de a dos, determinan planos llamados **planos coordenados.** En total son 3 planos que dividen al espacio en 8 sectores llamados **octantes.** El octante que corresponde a valores positivos de los ejes se llama **primer octante.**

CÁLCULO II Ciclo lectivo 2022

UNIVERSIDAD DE MENDOZA FACULTAD DE INGENIERÍA

Vamos a definir la ecuación de los planos coordenados

Plano x-z:

Es el conjunto de puntos del espacio (x.y.z), cuyo valor de y es siempre cero. Por lo tanto su ecuación es y = 0

Plano y-z:

Es el conjunto de puntos del espacio (x.y.z), cuyo valor de x es siempre cero. Por lo tanto su ecuación es $\mathbf{x} = \mathbf{0}$

Plano x-y:

Es el conjunto de puntos del espacio (x.y.z), cuyo valor de z es siempre cero. Por lo tanto su ecuación es z = 0

En Geogebra:

Plano y-z (rosado)

D = -4

D = -1

> Superficies en el Espacio

Definición:

Una superficie en el espacio, es el conjunto de puntos del espacio que verifican alguna condición, la cual está dada generalmente por una ecuación F(x,y,z)=0.

Hay una infinidad de superficies, pero veremos ahora algunas superficies particulares en el espacio, que usaremos mucho:

Planos en el espacio:

Definición:

Es el conjunto de puntos (x,y,z) del espacio que cumplen con la siguiente ecuación Ax + By + Cz + D = 0

donde A, B, C son números reales, llamados coeficientes principales, y D es el término independiente.

Si D = 0 significa que el plano contiene al origen de coordenadas (0,0,0), si D $\neq 0$ el plano no contiene al origen

Ejemplos:

y + x = 1

$$x + y + 2z = 4$$
 A=1 B=1 C= 2

A = 1

B = 1

C = 0

Los planos pueden tener posiciones particulares en el espacio.:

- A. PLANOS PARALELOS O CONTENER A LOS EJES CARTESIANOS
- **B. PLANOS PARALELOS A LOS PLANOS COORDENADOS**
- C. PLANOS NO PARALELOS NI A LOS EJES NI A LOS PLANOS COORDENADOS

A. PLANOS PARALELOS O CONTENER A LOS EJES CARTESIANOS

En este caso, se distingue por que uno solo de los coeficientes principales es nulo.

Ejemplo: Graficar el siguiente plano y + x = 1

Los coeficientes son: A = 1 B = 1 C = 0 D = -1

la variable que no está en la ecuación se llama <u>variable libre</u>, en este ejemplo la variable libre es z, esto significa que el plano es paralelo al eje z, o lo contiene

Para graficar superficies en el espacio, se usan las trazas de la superficie

Definición de trazas

Las trazas, son las curvas de intersección de la superficie con los planos coordenados, o con planos paralelos a los planos coordenados.

Como las trazas son la intersección del plano con los planos coordenados, para hallar las trazas debemos resolver un sistema de ecuaciones

Traza con el plano x-z:

 $\begin{cases} y + x = 1 \end{cases}$ A (ecuación del plano a graficar) y = 0 B (ecuación del plano coordenado x-z)

sustituyendo B en A, nos queda: 0+x=1,

por lo que la traza es x = 1 que es la ecuación de una recta en el plano x-z

Traza con el plano y-z:

$$\begin{cases} y + x = 1 & A & \text{(ecuación del plano a graficar)} \\ x = 0 & A & \text{(ecuación del plano coordenado y-z)} \end{cases}$$

sustituyendo B en A, nos queda: y+0=1,

CÁLCULO II Ciclo lectivo 2022

UNIVERSIDAD DE MENDOZA FACULTAD DE INGENIERÍA

por lo que la traza es : y = 1 que es la ecuación de una recta en el plano y-z

Traza con el plano x-y:

$$\begin{cases} y + x = 1 & \text{(ecuación del plano a graficar)} \\ z = 0 & \text{(ecuación del plano coordenado } x-z) \end{cases}$$

En este caso no se puede sustituir a la z por 0 porque no aparece en la ecuación, por lo que la traza es la recta cuya ecuación es y + x = 1

Despejando la y nos queda : y = 1 - x que es la ecuación de una recta en el plano x-y Gráficamente: se ha dibujado sólo la parte del plano que queda en el primer octante

En Geogebra:

Ejercicio 1

Siguiendo los pasos del ejercicio anterior, graficar el siguiente plano x + 2z = 4a mano usando trazas. Luego realizar el grafico con Geogebra y comparar

Al finalizar el ejercicio responder:

- a) Cual es la variable libre en este caso?
- b) Cómo está ubicado el plano respecto de los ejes cartesianos?

Ejercicio 2

Siguiendo los pasos del ejercicio anterior, graficar el siguiente plano -x + y = 0a mano usando trazas. Luego realizar el grafico con Geogebra y comparar

Al finalizar el ejercicio responder:

- a) Cual es la variable libre en este caso?
- b) Cuánto vale el coeficiente D? Qué indica ese valor sobre la posición del plano?
- c) Cómo está ubicado el plano respecto de los ejes cartesianos?

B. PLANOS PARALELOS A LOS PLANOS COORDENADOS

En este caso se distingue por que hay dos coeficientes principales nulos

Ejemplo:

$$A = 0 \qquad B = 0$$

$$B = 0$$

$$D = -4$$

Las variables libres son x e y, por lo tanto es un plano paralelo al plano x-y

Para graficar

Traza con el plano x-y:

$$z = 4$$
 (ecuación del plano a graficar)
 $z = 0$ (ecuación del plano coordenado x-y)

En este caso si igualamos nos queda 0 = 4, lo que es ABSURDO!! Esto quiere decir que no existe intersección. Por eso es paralelo al dicho plano x-y (variables libres)

Traza con el plano x-z:

$$z = 4$$
 (ecuación del plano a graficar)
y= 0 (ecuación del plano coordenado x-z)

CÁLCULO II Ciclo lectivo 2022

UNIVERSIDAD DE MENDOZA FACULTAD DE INGENIERÍA

En este caso no se puede sustituir a la y por 0 porque no aparece en la ecuación, por lo que la traza es **la recta cuya ecuación es z=4** (recta que está en el plano x-z, y es paralela al eje x, y corta al eje z en z=4)

Traza con el plano y-z:

$$\begin{cases} z = 4 & \text{(ecuación del plano a graficar)} \\ x = 0 & \text{(ecuación del plano coordenado y-z)} \end{cases}$$

En este caso no se puede sustituir a la \mathbf{x} por 0 porque no aparece en la ecuación, por lo que la traza es **la recta cuya ecuación es \mathbf{z} = \mathbf{4}** (recta que está en el plano $\mathbf{y} - \mathbf{z}$, y es paralela al eje \mathbf{y} , y corta al eje \mathbf{z} en $\mathbf{z} = \mathbf{4}$)

Gráficamente:

Ejemplo 2:

Graficar el plano x = 4 A = 1 B = 0 C = 0 D = -10

Es la ecuación de un plano paralelo al plano z-y. Aquí las variables libres son z e y. En este caso particular, como es un plano paralelo al plano z-y, todos los puntos que pertenecen al plano tienen la forma P(4,y,z), por lo tanto la traza con el plano z-x es una recta paralela al eje z, y corta al eje x en 4, y la traza con el plano x-y es una recta paralela al eje y

En Geogebra

Ejercicio 3:

Siguiendo los pasos del ejercicio anterior, graficar el siguiente plano x = 3 a mano usando trazas. Luego realizar el gráfico con Geogebra y comparar

Al finalizar el ejercicio responder:

- a) Cuáles son las variables libres en este caso?
- b) Cómo está ubicado el plano respecto de los planos cartesianos ?