

Methods Of Differentiation [MOD]

- 1 Differentiation using first principle: $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$.
- (2) Derivative of some functions.

$f(\alpha)$	$f'(\alpha)$
f(x)	f'(x)
Sin(x)	Cos(x)
Cos(x)	-Sin(x)
Tan(x)	$Sec^{2}(x)$
Cot(x)	$-Cosec^2(x)$
Sec(x)	Sec(x)Tan(x)
Cosec(x)	-Cosec(x)Cot(x)
arcsin(x)	1
	$\sqrt{1-x^2}$
arccos(x)	-1
	$\sqrt{1-x^2}$
arctan(x)	1
	$\frac{1+x^2}{1+x^2}$
arccot(x)	-1
	$\frac{1+x^2}{1+x^2}$
arcsec(x)	1
	$\overline{ x \sqrt{x^2-1}}$
arccosec(x)	-1
	$\overline{ x \sqrt{x^2-1}}$

_	
f(x)	f'(x)
x^n	$nx^{(n-1)}$
a^x	a^x . $ln(a)$
e^x	e^x
ln(x)	1/x
$\log_a(x)$	$1/\chi . ln(a)$
ln(sin(x))	cot(x)
ln(cos(x))	-tan(x)
ln(sec(x)	sec(x)
+ tan(x)	

(3) Theorems

1)
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

2)
$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

3)
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) + f(x)g'(x)}{g^2(x)}$$

4)
$$(f(g(x))' = f'(g(x)) x g'(x)$$

- 4 Logarithmic Differentiation
 - 1) If a function is product & quotient of many functions
 - 2) If a function is in form: $f(x)^{g(x)}$
- (5) Parametric Differentiation

$$y = f(t) \ x = g(t)$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{f'(t)}{g'(t)}$$

6 Differentiation of an Implicit Function

Differentiate directly with respect of required variable.

(7) Differentiation of an inverse function

If g(x) is inverse of f(x) then,
$$g'(x) = \frac{1}{f'(g(x))}$$

8 Differentiation using substitution

(i)
$$\sqrt{a^2-x^2}$$
 \Rightarrow $x = a \sin \theta$ or $a \cos \theta$

(ii)
$$\sqrt{x^2 + a^2}$$
 \Rightarrow $x = a \tan \theta$ or $a \cot \theta$

(iii)
$$\sqrt{x^2-a^2}$$
 \Rightarrow $x = a \sec \theta \text{ or } a \csc \theta$

(iv)
$$\sqrt{\frac{a+x}{a-x}}$$
 \Rightarrow $x = a \cos \theta \text{ or } a \cos 2 \theta$

(v)
$$\frac{a+x}{a-x}$$
 \Rightarrow $x = a \tan \theta$ or $a \cot \theta$

(vi)
$$\sqrt{\frac{x-\alpha}{\beta-x}}$$
 or $\sqrt{(x-\alpha)(\beta-x)} \Rightarrow x = \alpha \cos^2\theta + \beta \sin^2\theta$

(vii)
$$\sqrt{\frac{x-\alpha}{x-\beta}}$$
 or $\sqrt{(x-\alpha)(x-\beta)} \Rightarrow x = \alpha \sec^2 \theta - \beta \tan^2 \theta$

(9) HOD in Parametric form

$$\frac{d^2x}{dy^2} = -\frac{y''}{(y')^3}$$