

Class-Incremental Exemplar Compression for Class-Incremental Learning

Paper

au: mask threshold

(1) validation loss

(2) memory constraint (3) mask diversity loss

Zilin Luo, Yaoyao Liu, Bernt Schiele, Qianru Sun

Exemplar-based Class-Incremental Learning

- **Basic Task**
- Different classes arrive in different phases.
- Data in former phases is not available in later phases.
- An extra memory with a limited budget is provided.
- Challenge
- Catastrophic forgetting due to few-shot old-class exemplars.

- Contribution
- A pixel-selective compression framework for Exemplar-based CIL.
- An optimization pipeline that associates the CIM model with the CIL model to produce adaptive compression masks.

Overall Compression Framework

Global Optimization Pipeline

- **Task-level Optimization**
- $(\theta_i, \omega_i) \leftarrow (\theta_i, \omega_i) \lambda \nabla_{(\theta, \omega)} \mathcal{L}_{CIL}(\tilde{\mathcal{E}}_{0:i-1} \cup \mathcal{D}_i; \theta_i, \omega_i)$

 (θ,ω) : CIL model ϕ : CIM model

- inner step: $\theta_i^+ \leftarrow \theta_i \beta_1 \nabla_{\theta} \mathcal{L}_{\text{CIL}}(\tilde{\mathcal{E}}_{0:i-1} \cup \tilde{\mathcal{D}}_i(\phi_i); \theta_i, \omega_i)$ Mask-level Optimization
 - outer step: $\phi_i \leftarrow \phi_i \beta_2 \nabla_{\phi} [\mathcal{L}_{CE}(\mathcal{D}_i; \theta_i^+, \omega_i) + \mu \mathcal{R}(\phi_i) + \mu' \mathcal{L}_{CE}(\tilde{\mathcal{E}}_{0:i-1} \cup \mathcal{D}_i; \theta_i, \phi_i, \omega_i)]$

Experimental Results

Comparing with SOTA in multiple settings and datasets

		Learning from Scratch (LFS)					Learning from Half (LFH)						
	Method	Food-101			ImageNet-100			Food-101			ImageNet-100		
#phases -	4	N=5	10	20	5	10	20	5	10	25	5	10	25
	DER [46]	73.88	70.76	64.39	78.50	76.12	73.79	78.13	73.45	-	79.08	77.73	-
	DER w/ ours	75.63	73.09	69.17	79.63	77.57	75.36	79.25	75.76	-	80.30	79.05	-
	FOSTER [42]	75.03	72.72	66.73	79.93	76.55 [†]	74.49	79.08	75.07	68.08	80.07	77.54	-72.40°
	FOSTER w/ ours	76.44	74.85	70.20	80.58	77.94	75.23	79.76	76.86	70.50	80.93	78.66	75.74
	-												

Memory	Method	N	=5	N=10			
Budget	Wethou	Avg.	Last	Avg.	Last		
M = 20k	FOSTER [42]			68.34	60.14		
$M = 20\kappa$	FOSTER w/ ours	69.93	66.05	69.53	62.07		
M=5k	FOSTER	57.19	49.42	54.72	44.96		
$M = 5\kappa$	FOSTER w/ ours	61.37	54.46	59.48	50.83		

- The results on ImageNet-1000 (LFS) show that our method brings larger performance improvement under a stricter memory budget.

- "DER: Dynamically Expandable Representation for Class Incremental Learning." In CVPR 2021.
- "FOSTER: Feature Boosting and Compression for Class-Incremental Learning." In ECCV 2022.

Ablation Studies

A1-1-4 M-411	Food-101		ImageNet-100		
Ablation Method	N=10	20	10	20	
1 Baseline	72.72	66.73	76.55	72.37	
Artifact Aug.	71.38	66.03	75.63	71.45	
3 Full Comp.	73.03	67.38	76.92	73.26	- Line 1-2: SOTA baselines.
4 Random Acti.	73.10	67.54	76.88	73.54	
5 Center Acti.	73.29	67.88	76.78	73.82	- Line 3-6: different activation methods.
6 Class Acti.	73.76	68.65	77.21	74.67	- Line 7-9: different optimization strategies.
7 Phase-wise τ	73.83	69.17	77.06	74.78	- Line 10-11: two variants.
8 Joint Train	73.44	69.01	77.34	74.59	Line 10 11. two variants.
9 BOP (ours)	74.85	70.20	77.94	75.23	
10 LastBlock Only	74.55	69.87	77.72	74.86	

Performances on Different-Size Objects

Metric	Small	Middle	Large
Mean of #Exemplars	39.40	38.30	34.77
Last Acc. (%, baseline)	66.13	68.40	69.93
Last Acc. (%, ours)	70.00	71.10	72.26
Improvement (%)	+3.87	+3.65	+2.33

11 Fg Compressed 75.02 70.13 77.87 75.46

- The baseline has 20 exemplars for each individual class.
- Our method achieves larger performance boost for small objects.