JYU

JOHANNES KEPLER UNIVERSITY LINZ

SPECIAL TOPICS

Audio and Music Processing - Exercise Track 344.032 KV, 2h, SS2020

Jan Schlüter
Institute of Computational Perception

PRELIMINARIES

- exercises can be done in pairs or alone
- we set up a forum in KUSSS to help finding group partners
- a small Java framework will be provided, you can implement your algorithms in any language though
- using ready-made onset detectors, beat trackers or tempo estimators from an MIR framework does not count of course! you have to implement your approaches yourself!

GETTING A NAME

- write an email to jan.schlueter@jku.at
- use this email header prefix "[SPEZKAP20]"
- list the group members (1 or 2) with name and email address
- you will be assigned a group name

GOALS OF THE EXERCISE

- implement at least two onset detection methods
- implement at least one tempo extraction method
- implement at least one beat detection method
- your methods may share any pre-/post-processing or peak-picking methods
- you will have to decide on a final combination of onset detection / tempo extraction / beat detection methods that produce your final predictions
- you may of course combine several methods that do the same thing ("ensemble")
- your tempo extraction may also be based on other features besides the detected onsets

DATA DISTRIBUTION

both the framework and data for training or development of your algorithms is available at:

```
http://teacap.cp.jku.at/files/spezkap_amp/2020,
user spezkap_amp,
password 2020onsets
```


TRAINING DATA

you will find a training dataset consisting of:
☐ 127 excerpts
☐ excerpts are between 3 seconds and 2 minutes long
□ excerpts span across various genres
$\ \square$ you can assume (nearly!) constant tempo over the excerpt
 □ it might improve your results, if you allow for slight tempo variations
for each excerpt you are also provided with 3 additional text files
☐ WAVNAME.onsets.gt is a list of all onset times
☐ WAVNAME.beats.gt is a list of all beat times
☐ WAVNAME.tempo.gt contains multiple tempo annotations

A NOTE ON TEMPO ANNOTATIONS

- WAVNAME.tempo.gt needs a few explanations
- humans rarely agree on the exact tempo of a piece of music
- that is why there are often two tempi and a weighting
- $60\ 120\ 0.8$ means that 80% of the people said that the tempo is $60\ [bpm]$, and 20% of the people say it is actually $120\ [bpm]$
- 60 120 0.1 means that 10% of the people chose the first, and 90% the second tempo (the slower one always comes first)
- 60 means that there is a single annotation only (for 60 [bpm])
- the evaluation will only use the tempo that received the majority vote

EXTRA TRAINING DATA

- you will also find two additional training datasets
- one of 151 excerpts annotated with onsets only
- one of 696 excerpts annotated with beats and tempo only
- you may use these as additional material for training or validating your algorithms, or ignore them

TEST DATA

- in the end, you will have to run your algorithm on unseen **test** data
- for this, we provide 50 excerpts without annotations
- to be clear: this is not meant for you to validate your algorithms (you will need to reserve training data for this), but for the final submission

THE JAVA FRAMEWORK (1)

- the Java framework is available at the same download link as the data
- the framework provides simple ways to:
 - □ read in audio files in the WAV format
 - \square compute the STFT (magnitude, phase, unwrapped phase)
 - evaluate predictions, given a ground truth
- you are free to change everything

THE JAVA FRAMEWORK (2)

the framework takes 5 parameters: input directory -n processor name p predict onsets, beats and tempo ☐ -e evaluate all predictions that have a groundtruth -s summarize all evaluations the **output** is written to the **input directory** as well: WAVNAME.onsets.pr (estimated onset time) WAVNAME.beats.pr (estimated beat positions) WAVNAME.tempo.pr (estimated tempo) summary.[onsets|beats|tempo].ev.txt files

THE JAVA FRAMEWORK (3)

- everything lives in the at.jku.cp.spezi package
- example code is in at.jku.cp.spezi.example.TooSimple
- you can put your code in at.jku.cp.spezi.<shortname>.<ShortName>
- if you got assigned the short name "Alpha" then you put your code in at.jku.cp.spezi.alpha.Alpha
- you could structure your code **beneath** this package
- but you do not have to ...

THE JAVA FRAMEWORK (4)

- you might want to use maven, there is a pom.xml provided
- you build your code with mvn package
- your jar file will be in the target folder
- it'll be named Spezi-1.0.jar
- call it with java -jar target/Spezi-1.0.jar for instructions
- you can generate an Eclipse project via mvn eclipse:eclipse

VISUALIZING

- to see what your algorithms are doing, or to inspect the groundtruth, you can load the onset and the beat data into Sonic Visualizer
- \blacksquare load the WAV file first (File \rightarrow Open)
- \blacksquare import the annotation (File \rightarrow Import Annotation Layer)

EVALUATION (1)

- the framework already includes an evaluation procedure
- onset detection:
 - \square every onset estimate which is within ± 50 [ms] of an actual onset is counted as a true positive (TP)
 - ☐ for each actual onset only one onset estimate is allowed, others are counted as false positives (FP)
 - every onset estimate outside of the window is counted as a false positive too
 - every onset for which there is no predicted onset in the window, is counted as a false negative (FN)
 - ☐ **F-measure** is the important measure here

EVALUATION (2)

- beat detection:
 - $\hfill\Box$ the same as for onset detection, but with a bigger window of $\pm70~\mathrm{[ms]}$
- tempo estimation:
 - \Box if the estimate is within $\pm 4\%$ of the actual tempo, this is counted as correct

SUBMISSION

- deadline is on June 17
- submission happens via email to jan.schlueter@jku.at
- please use the subject header prefix "[SPEZKAP20]"
- use one of [zip|tar|gzip|7z]
- the following must be present in the archive:
 - □ **only** the **source** of your program
 - ☐ instructions on how to compile/run it, if you do not use the provided framework
 - ☐ a **folder** named predictions, containing the **final predictions** you made on the test set
 - □ exactly 1 slide, for a 2 minute presentation of your efforts in PDF format
 - □ a 2–3 page **description** of your approach, and the experiments you did (also in PDF format)

CONTENTS OF THE DESCRIPTION

- which methods you chose and why (bonus points, if you include quantitative evaluation)
- describe which kind of experiments you ran, different things you tried, funky ideas you had, . . .
- it is more important for us to see that you experimented with different methods, tried to understand the difficulties, than the actual performance of the final system
- curiosity and creativity will be rewarded

SUBMISSION DISCUSSION

- on June 24 there will be a presentation session as well as a discussion
- attendance is compulsory!
- we will talk about:
 - \supset the different approaches you implemented
 - □ problems and pleasant surprises with your implementations
 - \square evaluation of your systems on an independent test set
 - experiences with the exercise track
 - \supset the lecture in general
 - \supset beer and everything

