Mean Value Theorem and Taylor's Theorem

- 1. Let f be differentiable on an open interval I and suppose that f'(x) is nonzero for all x in I. Show that f is one-to-one on I.
- 2. Let f be differentiable on an open interval I and suppose that |f'(x)| < M for some positive number M. Prove that f is Lipschitz on I with Lipschitz constant M, i.e.

$$|f(x) - f(y)| \le M|x - y|$$
 for all $x, y \in I$.

- 3. Suppose that f is differentiable on an open interval I and suppose that $f'(x) \neq 1$ for all $x \in I$. Prove that f has at most one fixed point on I. A fixed point is a point y such that f(y) = y.
- 4. Suppose f is differentiable on an open interval I and suppose that [a, b] is a closed interval contained in I with f'(a) < 0 < f'(b).
 - (a) Show that there exist points c and d with a < c < d < b such that f(c) < f(a) and f(d) < f(b).
 - (b) Show that f attains its minimum value on [a, b] at an interior point (i.e. not at a or b).
 - (c) Conclude that $f'(x_0) = 0$ for some x_0 in [a, b]. Why can't we just use the intermediate value theorem?
 - (d) Deduce Darboux's theorem: if f'(a) < L < f'(b) then $f'(x_0) = L$ for some x_0 in (a, b).

5.	Find the Taylor series representations for each of	the following	functions.	For precisely	what
	values of x is each series representation valid?				

(a)
$$x \cos x^2$$

(b)
$$\frac{x}{(1+4x^2)^2}$$

(c)
$$\log(1+x^2)$$

- 6. Find an example or explain why no such example exists.
 - (a) An infinitely differentiable function g(x) on all of \mathbb{R} with a Taylor series that converges to g(x) only for $x \in (-1,1)$.

(b) An infinitely differentiable function h(x) with the same Taylor series as that of $\sin x$ but such that $h(x) \neq \sin x$ for all $x \neq 0$.

(c) An infinitely differentiable function f(x) on \mathbb{R} with a Taylor series that converges to f(x) if and only if $x \leq 0$.