UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA LINEAL 520131 Listado 7 (Transformaciones lineales.)

- 1. ¿Cuáles de las siguientes funciones son transformaciones lineales? (En práctica c) y d))
 - a) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 3$
 - b) $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = x + y
 - c) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x, y, z) = (\cos(x + y), \sin(z))$
 - d) $f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R}), f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ax^2 + (b+c)x + d$
 - e) $f: \mathbb{R} \to \mathbb{R}^2$, $f(x) = (x^2, x^3)$
- 2. Determine una base para el Ker(T) e Im(T) donde T es la transformación lineal siguiente:
 - a) $T: \mathbb{R}^2 \to \mathcal{M}_{2\times 3}(\mathbb{R}), T(x, y, z) = \begin{pmatrix} x & y & z \\ 2x & 2y & z \end{pmatrix}$
 - b) $T: \mathbb{R}^n \to \mathbb{R}, T(x_1, x_2, \dots, x_n) = x_2$
 - c) $T: \mathbb{R}^n \to \mathbb{R}, T(x_1, x_2, \dots, x_n) = \sum_{i=1}^n x_i$
 - d) $T: \mathcal{P}_2(x) \to \mathbb{R}^2, T(ax^2 + bx + c) = (a c, b + c)$ (En práctica)
- 3. Sea $A = \begin{pmatrix} 4 & 3 & 2 \\ 2 & 2 & 0 \\ 4 & 2 & 1 \end{pmatrix}$ la matriz asociada a la transformación lineal $T : \mathbb{R}^3 \to \mathbb{R}^3$ respecto de las bases $B_1 = \{(1,1,1), (1,1,0), (1,0,0)\}$ y $B_2 = \{(1,0,0), (0,1,0), (0,0,1)\}$.
 - a) Encuentre la ecuación de definición de T.
 - b) Encuentre el rango de T y una base para Ker(T).
- 4. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal tal que: T(1,0,0) = (2,1,-1), T(0,1,0) = (0,0,0), T(0,0,1) = (2,-1,1). (En práctica)
 - a) Encuentre la ecuación de definición de T.
 - b) Encuentre una base para Ker(T) e Im(T).
 - c) Indique la nulidad y el rango de T.
- 5. Considere la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x,y,z) = (3x+y,x+z)
 - a) Encuentre una base para Ker(T) y para Im(T).
 - b) Determine la nulidad y el rango de T.
- 6. Defina la transformación lineal cuya matriz asociada respecto de las bases $B_1 = \{(1,2), (-1,1)\}$ y $B_2 = \{(1,-1,0), (-2,0,1), (-1,0,0)\}$ es (En práctica)

$$[T]_{B_1B_2} = \begin{pmatrix} -3/2 & 0\\ 6 & 3\\ -27/2 & -3 \end{pmatrix}.$$

7. Sea $A = \begin{pmatrix} -3 & 0 \\ 6 & 3 \\ 7 & -3 \end{pmatrix}$ la matriz asociada a la transformación lineal $T : \mathbb{R}^2 \to \mathbb{R}^3$ respecto de las bases $B_1 = \{(1,0), (-1,1)\}$ y $B_2 = \{(1,0,1), (1,-1,0), (0,1,-1)\}$.

- a) Encuentre la ecuación de definición de T.
- b) Encuentre las coordenadas de T(5,-1) en la base B_2 usando la matriz asociada.
- 8. Sean $B_1 = \{1, t, t^2\}$ y $B_2 = \{t 1, t + 1, t^2 + 1\}$ bases del espacio vectorial $\mathcal{P}_2(R)$. (En práctica)
 - a) Encuentre las matrices asociadas a la aplicación I (identidad) respecto de las bases B_1 , B_2 ($[I]_{B_1B_2}$) y B_2 , B_1 ($[I]_{B_2B_1}$).
 - b) De las matrices obtenidas en a) use la que corresponda para encontrar las coordenadas del vector $v = 2t^2 + 5t 9$ en la base B_2 .
- 9. Considere la siguiente transformación lineal $D: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R}), D(p) = \frac{d}{dx}(p(x))$ y encuentre la matriz asociada respecto de la base canónica.
- 10. Sea $T: \mathcal{P}_2(R) \to \mathbb{R}, T(p(x)) = \int_0^1 p(x) dx$. Encontrar la matriz asociada a T respecto de las bases $B_1 = \{1, x-1, x(x-1)\}$ y $B_2 = \{1\}$. (En Práctica)
- 11. Sea $T: \mathbb{R}^4 \to \mathbb{R}^4$ la aplicación lineal cuya matriz asociada respecto de las bases canónicas

$$A = \begin{pmatrix} 3 & 0 & 1 & -2 \\ 2 & 4 & 3 & -1 \\ 10 & 8 & 8 & -6 \\ 8 & 4 & 5 & -5 \end{pmatrix}$$

- a) Pruebe que la nulidad de T es 2.
- b) Sean $v_1 = (4,7,-12,0), v_2 = (0,-5,8,4), v_3 = (2,1,-2,2).$ Pruebe que $\{v_1,v_2,v_3\}$ es L.D. y que $v_1,v_2,v_3 \in Ker(T).$
- c) Sean v_1, v_2 como en b), $v_4 = (2, 1, -2, 1)$ y $v_5 = (1, 1, 1, 1)$. Acepte que $\{v_1, v_2, v_4, v_5\}$ es una base para \mathbb{R}^4 y usando esta información encuentre una base para Im(T).
- d) Defina una transformación lineal $T: \mathbb{R}^4 \to \mathbb{R}^4$ de modo que $Ker(T) = \langle \{v_4, v_5\} \rangle$ y $Im(T) = \langle \{v_1, v_2\} \rangle$.
- 12. Determine una aplicación lineal de $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que: (En Práctica)

$$dim(Ker(T)) = 2$$
 y $Im(T) = \langle \{(2, -1, 0), (-1, 2, 2)\} \rangle$.