(i) Printed Pages: 4]

Roll No.

(ii) Questions : 14]

Sub. Code : 0 8

Exam. Code : 0 0 1

Bachelor of Commerce 3rd Semester Examination

1127

BUSINESS MATHEMATICS AND STATISTICS Paper: BCM-304

Time: 3 Hours]

[Max. Marks: 80

- Note: (i) Attempt any four questions from Section A
 - (ii) Attempt any two questions from Section B.
 - (iii) Attempt any two questions from Section C.

Section-A

 $4 \times 5 = 20$

1. Define matrix and discuss the types of matrices.

2. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$
.

Then verify that A(adj A) = |A|I.

NA-108

(1)

Turn Over

- 3. Differentiate $\log(xe^x)$ w.r.t. $x \log x$.
- 4. Give in brief the methods of collecting primary statistical data.
- 5. Find quartile deviation (Q.D.) from the following data:

Age (years)	0–20	20–40	40–60	60–80	80–100
 Persons	4	10	15	20	11

6. Give merits and demerits of arithmetic mean.

 $2 \times 15 = 30$

7. If
$$A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & -1 & 6 \\ -1 & 5 & 1 \end{bmatrix}$$
 then verify that $(A')^{-1} = (A^{-1})'$.

- 8. Find $\frac{dy}{dx}$, if $y^x + x^y + x^x = a^b$.
- Discuss the concept of maximum value and minimum value of the function of one variable. Also explain the criteria for determing these.

(2)

10. (a) Prove that:

$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2a \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3 - 7$$

(b) Find inverse of the following matrix by using elementary operations:

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$
Section—C 2×15=30

- 11. Discuss the problems in the construction of Index numbers.
- 12. Calculate mean deviation from median and its coefficient from the following data:

Size	Frequency	
100–120	4	
120–140	6	
140–160	10	
160–180	8	
180-200	5	
NA-108	(3)	Tum Over

13. Fit a straight line trend by the method of least squares (taking 1978 as year of origin) to the following data:

Year	1979	1980	1981	1982	1983	1984
Production (Lakh tons)	5	7	9	10	12	17

Also obtain the trend values.

14. Discuss the methods of collecting statistical data and types of classification of data.