ET53C - SISTEMAS DIGITAIS

Barramentos de Comunicação Serial – UART e I²C

Prof.: Glauber Brante e Profa. Mariana Furucho gbrante@utfpr.edu.br marianafurucho@utfpr.edu.br

UTFPR – Universidade Tecnológica Federal do Paraná DAELT – Departamento Acadêmico de Eletrotécnica

UART

UART

- USART: Universal Synchronous Asynchronous Receiver Transmitter
- SCI: Serial Communications Interface

UART:

- Comunicação assíncrona → o torna insubstituível em algumas aplicações
- Transmite dados de um microprocessador para outro ou para um computador utilizando apenas dois fios (RX/TX)
- É um sistema de comunicação Full-Duplex
- É muito utilizada para comunicação entre periféricos
- Fácil de utilizar

Forma de onda da UART

- Quando parado, o pino de saída está no estado lógico (1);
- Cada transmissão de dados começa com um bit START, que é sempre zero (0);
- Cada pacote de dados tem 8 ou 9 bits de tamanho, onde o LSB é sempre o primeiro a ser transferido;
- Cada transmissão de dados termina com um bit de STOP, que tem sempre estado lógico (1).

Forma de onda da UART

TTL:

RS-232:

Configuração

Velocidade:

- **1200**
 - 2400
- **4800**
- **9600**
- **19200**
- **38400**
- **57600**
- **115200**

Número de bits:

- **8**
- **9**

Paridade:

- Par
- Ímpar

Stop Bits:

- **1**
- **2**

Camada Física

- RS 232
- TTL
- RS 485
- • •

Substituições

- Computadores mais novos não possuem mais porta serial
- Conversores Serial → USB
- $lue{}$ Ou, Serial ightarrow Bluetooth

· ...

<u>MikroC</u>

Estudar a biblioteca da UART no MikroC

Introdução

- O barramento I²C foi desenvolvido pela Philips para comunicação entre periféricos
- Possibilita que até 122 dispositivos diferentes estejam ligados simultaneamente
- Transferência é síncrona e bidirecional
- Utiliza apenas 2 fios:
 - SDA dados série
 - SCL clock série
- Pode se comunicar a até 3,4 Mbit/s porém são velocidades mais comuns 100 kbit/s e 400 kbit/s

O barramento físico

- O barramento I^2C possui duas linhas
- É um barramento multi-mestre multi-escravo

Papéis no barramento

- Mestre: Sempre cuida da linha do clock
- Mestre: A transmissão sempre é iniciada por ele
- **Escravo:** Tem um endereço físico, único no barramento
- Mestre/Escravo: Podem receber ou enviar dados

O protocolo de comunicação

- O Mestre inicia uma transação enviando o Start Bit
- O Mestre finaliza uma transação enviando o Stop Bit

O protocolo de comunicação

- O primeiro byte contém:
 - 7 bits com o endereço do Escravo
 - 1 bit que especifica leitura ou escrita
- Todos os Escravos partilham a linha de transmissão e recebem simultaneamente o primeiro byte, mas apenas um tem o endereço coincidente
- Depois do primeiro byte enviado, o Mestre entra em modo de recepção e aguarda o ACK – Acknowledgement (confirmação) do Escravo com o endereço coincidente

O protocolo de comunicação

- Se o Escravo envia um ACK lógico (1), a transferência vai continuar até o Mestre enviar o Stop Bit
- A transação sempre é composta por 8 bits + ACK
- O mestre finaliza uma transação enviando o Stop Bit

MikroC

■ O MikroC possui duas bibliotecas para I²C.

Qual a diferença entre elas?

Quando usar uma ou usar a outra?

MikroC

Estudar a biblioteca da I²C no MikroC