华中科技大学研究生课程考试试卷

课程名称	K:	矩阵论			<u> </u>			考核形式 口开卷	
学生类别	」研究	充生 考试日期 201		2018.12.2	_	□专业课 近在院系_	<u> </u>		
学号		姓	姓名		任课载	牧师			
题号	_	<u> </u>	三	四	Ŧi.	六	七	总分	
得分									

- 一、填空题(15分)(每小题3分,共5小题)
- 1. 已知 4 阶方阵 A 的 Jordan 标准型 $J_A=\begin{bmatrix}2&1&&\\&2&&\\&&2&\\&&&1\end{bmatrix}$ 则 A 的最小多项式 $m_A(\lambda)=$

____·

2. 已知 3 阶方阵 A 的 LU 分解为 $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 3 & 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \end{bmatrix}$,则 A 的 LDV 分解为

A=_____.

- 3. 已知 3 阶方阵 $A = \begin{bmatrix} 2 & -1 & a \\ 4 & -1 & b \\ 5 & 1 & 3 \end{bmatrix}$ 则行列式 $|e^A| =$ ______.
- 4. 已知 3 阶方阵 $A = \begin{bmatrix} i & 2 & 3+4i \\ -1 & 3 & 1 \\ 3 & 2i & 0 \end{bmatrix}$ 其中 $i = \sqrt{-1}$,则 $||A||_1 = \underline{\hspace{1cm}}$
- 5. 已知 $A = \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ 则行列式 $|A \otimes B| = \underline{\qquad}$

二、计算题(15分)(每小题5分,共3小题)

1. 已知 $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ 求矩阵 A 的 Jordan 标准形 J_A 及相似变换矩阵 P,使 $P^{-1}AP = J_A$.

2. 已知矩阵 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$,求线性方程组 $Ax = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ 的最佳最小二乘解.

3. 已知 $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$ 求解关于 X 的矩阵方程 AX+XB=D.

三、(15 分) $R^{2\times 2}$ 表示 2 阶实方阵构成的线性空间,T 是 $R^{2\times 2}$ 到 $R^{2\times 2}$ 上的变换且满足: $\forall X \in R^{2\times 2}$,有 $TX = AX + A \circ X$.其中 $A = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$,。表示 Hadamard 乘积.

- (1) 验证 T 是 R^{2×2}上的线性变换;
- (2) 求 T 在基 $E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 下的矩阵 B.

四、(15 分) 已知复矩阵 $A = \begin{bmatrix} i & 0 & i \\ 1 & 0 & 1 \end{bmatrix}$, 其中 $i = \sqrt{-1}$. 求 A 的奇异值分解.

五、(15分)已知一阶线性常系数齐次微分方程组:

$$\begin{cases} \dot{x}(t) = Ax(t) \\ x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} & \text{ } \sharp \uparrow h A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -1 & 1 & 1 \end{bmatrix}. \end{cases}$$

- (1) 求矩阵函数 e^{At} ;
- (2) 求该常微分方程组的解.

六、(15分) 在线性空间 R^3 中,定义子空间

$$W = \{(x_1, x_2, x_3)^T \in \mathbb{R}^3 \ \bot \ x_1 - x_2 + x_3 = 0\}$$

- (1) 求从 R^3 到子空间 W 的正交投影变换 P;
- (2) 分别求 P 的零空间 N(P)及像空间 R(P)的标准正交基.且把 R^3 分解成不变子空间的直和;
 - (3) 求正交投影变换 P 在自然基 $\{e_1,e_2,e_3\}$ 下的矩阵.

七、(10 分) 若秩为 γ 的 n 阶方阵 A 为幂等矩阵($1 \le \gamma < n$),且 A 为正规矩阵. 证明 A 为半正定的 Hermite 阵.