

### RESOLVENDO UM PROBLEMA DE INTERPOLAÇÃO SEM USAR TODOS OS PONTOS DISPONÍVEIS

A tabela abaixo nos mostra alguns valores da função f definida  $f(x) = \int_{x}^{\infty} \frac{e^{-t}}{t} dt$ .

| х    | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   |
|------|--------|--------|--------|--------|--------|--------|
| f(x) | 4.0379 | 3.3547 | 2.9591 | 2.6813 | 2.4679 | 2.2953 |

Vamos obter um valor aproximado do valor de f para x=0.0378, com um polinômio interpolador de grau 2 e com um polinômio interpolador de grau 3, usando a interpolação de Newton.

#### I – POLINÔMIO DE GRAU 2

| х    | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   |
|------|--------|--------|--------|--------|--------|--------|
| f(x) | 4.0379 | 3.3547 | 2.9591 | 2.6813 | 2.4679 | 2.2953 |

Precisamos de 3 pontos da tabela. Como x = 0.0378 está entre 0.03 e 0.04, podemos usar  $x_0 = 0.03$ ,  $x_1 = 0.04$  e  $x_2 = 0.05$  para construir o polinômio interpolador de Newton.

|      |        | DIFERENÇAS DIVIDIDAS |                  |         |  |
|------|--------|----------------------|------------------|---------|--|
| x    | f(x)   | ORDEM 0              | ORDEM 1          | ORDEM 2 |  |
| 0.03 | 2.9591 | 2.9591               |                  |         |  |
| 0.04 | 2.6813 | 2.6813               | -27.78<br>-21.34 | 322     |  |
| 0.05 | 2.4679 | 2.4679               |                  |         |  |

$$p_2(x) = 2.9591 - 27.78(x - 0.03) + 322(x - 0.03)(x - 0.04)$$
  
 $p_2(0.0378) = 2.7369$   $f(0.0378) \cong 2.7369$ 

#### II – POLINÔMIO DE GRAU 3

| х    | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   |
|------|--------|--------|--------|--------|--------|--------|
| f(x) | 4.0379 | 3.3547 | 2.9591 | 2.6813 | 2.4679 | 2.2953 |

Precisamos de 4 pontos da tabela. Vamos usar agora  $x_0 = 0.02$ ,  $x_1 = 0.03$ ,  $x_2 = 0.04$  e  $x_3 = 0.05$  para construir o polinômio interpolador de Newton (o importante é que 0.03 < 0.0378 < 0.04).

|      |        | DIFERENÇAS DIVIDIDAS |         |         |         |  |  |  |
|------|--------|----------------------|---------|---------|---------|--|--|--|
| x    | f(x)   | ORDEM 0              | ORDEM 1 | ORDEM 2 | ORDEM 3 |  |  |  |
| 0.02 | 3.3547 | 3.3547               | -39.56  |         |         |  |  |  |
| 0.03 | 2.9591 | 2.9591               |         | 589     |         |  |  |  |
|      |        |                      | -27.78  |         | -8900   |  |  |  |
| 0.04 | 2.6813 | 2.6813               |         | 322     |         |  |  |  |
|      |        |                      | -21.34  |         |         |  |  |  |
| 0.05 | 2.4679 | 2.4679               |         |         |         |  |  |  |

| 1                        |  |      |                      |         |         |         |         |  |
|--------------------------|--|------|----------------------|---------|---------|---------|---------|--|
| II – POLINÔMIO DE GRAU 3 |  |      | DIFERENÇAS DIVIDIDAS |         |         |         |         |  |
|                          |  | x    | f(x)                 | ORDEM 0 | ORDEM 1 | ORDEM 2 | ORDEM 3 |  |
|                          |  | 0.02 | 3.3547               | 3.3547  |         |         |         |  |
|                          |  |      |                      |         | -39.56  |         |         |  |
|                          |  | 0.03 | 2.9591               | 2.9591  |         | 589     |         |  |
|                          |  | 0.03 | 2.7371               | 2.7371  |         | 307     |         |  |
|                          |  |      |                      |         | -27.78  |         | -8900   |  |
|                          |  | 0.04 | 2.6813               | 2.6813  |         | 322     |         |  |
|                          |  | 0.04 | 2.0813               | 2.0015  |         | 322     |         |  |
|                          |  |      |                      |         | -21.34  |         |         |  |
|                          |  | 0.05 | 2 4 6 7 6            | 2.4650  |         |         |         |  |
|                          |  | 0.05 | 2.4679               | 2.4679  |         |         |         |  |

$$p_3(x) = 3.3547 - 39.56(x - 0.02) + 589(x - 0.02)(x - 0.03) - 8900(x - 0.02)(x - 0.03)(x - 0.04)$$

 $p_3(0.0378) = 2.7350$ 

 $f(0.0378) \cong 2.7350$ 

#### **COMPARANDO**

| х    | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   |
|------|--------|--------|--------|--------|--------|--------|
| f(x) | 4.0379 | 3.3547 | 2.9591 | 2.6813 | 2.4679 | 2.2953 |

POLINÔMIO DE GRAU 2:

 $f(0.0378) \cong 2.7369$ 

POLINÔMIO DE GRAU 3:

 $f(0.0378) \cong 2.7350$ 

POLINÔMIO DE GRAU 5 (TODOS OS PONTOS): (FAÇAM!!)

 $f(0.0378) \cong 2.7361$ 

# UMA IMPORTANTE PROPRIEDADE DAS DIFERENÇAS DIVIDIDAS

Seja uma função f cujos valores  $f(x_0), f(x_1), f(x_2), ..., f(x_n)$  em n+1 pontos distintos  $x_0 < x_1 < x_2 < \cdots < x_n$  de um intervalo  $[x_0, x_n]$  são conhecidos

Como vimos, as diferenças divididas de ordem 1 de f são dadas por:

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}, i = 0, 1, ..., n.$$

Observe que: 
$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i} = \frac{f[x_i] - f[x_{i+1}]}{x_i - x_{i+1}} = f[x_{i+1}, x_i]$$

Ou seja: permutar os elementos  $x_n$  usados na obtenção de uma diferença divida de ordem 1 não altera o seu valor:  $f[x_0, x_1] = f[x_1, x_0]$ ,  $f[x_1, x_2] = f[x_2, x_1]$  ...

Se considerarmos as diferenças divididas de ordem 2 de f, chegaremos à mesma conclusão: permutar os elementos  $x_n$  usados na obtenção de uma diferença divida de ordem 2 não altera o seu valor:

$$f[x_0, x_1, x_2] = f[x_0, x_2, x_1] = f[x_1, x_0, x_2] = f[x_1, x_2, x_0] = f[x_2, x_0, x_1] = f[x_2, x_1, x_0]$$

## UMA IMPORTANTE PROPRIEDADE DAS DIFERENÇAS DIVIDIDAS

De maneira geral, temos o seguinte resultado:

$$f[x_0, x_1, ..., x_n] = f[x_{j_0}, x_{j_1}, ..., x_{j_n}],$$

onde  $j_0$ ,  $j_1$ , ...,  $j_n$  é uma permutação qualquer de 0, 1, ..., n.

### **AVALIANDO O ERRO ABSOLUTO**

Sejam  $x_0 < x_1 < x_2 < \dots < x_n$  pontos distintos do intervalo  $[x_0, x_n]$  no qual as n+1 derivadas da função f existem e são contínuas. Seja p(x) o polinômio interpolador de f(x) em  $[x_0, x_n]$ . Então, para cada  $x \in [x_0, x_n]$ ,  $x \ne x_i$ ,  $i = 0,1, \dots, n$ , tem-se que:

$$|f(x) - p(x)| \le M|(x - x_0)(x - x_1)...(x - x_n)|,$$

onde  $M = max\{|f[x_0, x_1, ..., x_n, x]|; x \in [x_0, x_n]\}.$ 

O resultado acima nos dá um majorante para |f(x) - p(x)|, que é o erro absoluto na aproximação de f(x) por p(x), dando-nos uma possibilidade de avaliar tal erro através de diferenças divididas de ordem n+1.

Não exploraremos esse tipo de avaliação do erro absoluto de interpolação aqui no nosso curso.