Convolutional Neural Network on FPGA

by:

Arjun Rakesh Gandhi Mahmoud Khallaf-Allah Venkatesh Mahadevan Roberto Dicecco

System-Level Architecture (initial)

System-Level Architecture (final)

AlexNet Implementation using Caffe layers on FPGA

- Implementing CONV, POOL, LRN, RELU
- 5 CONV, 3 POOL, 2 LRN, 7 RELU (in hardware)
- Rest of the layers use existing CPU implementation

Moving to SDAccel

Why SDAccel?

- Provides CPU-GPU like platform to increase performance.
- Use OpenCl APIs to increase parallelism.
- Burden of context switching is on OpenCl.
- Facilitate integration with Caffee library.
- Re-implementing four main layers

SDAccel execution flow

Host Code:

- Connect to platform and compute device.
- Create a compute context.
- Create the compute kernel and Allocate memory.
- Execute Kernel.
- Read results.

SDAccel - CPU/GPU-Like Development Experience on FPGAs

- Kernel Code
 - Execute Kernel function
 - Write output back

Convolutional Layer

- Element-wise multiplication between filter elements and input data.
- Filter is applied as a 3-D kernel.
- The final result will be the average of all summed outputs.
- Output Size is: $ho = \frac{hi k + 2 * padding}{Stride} + 1$

Convolutional Layer (Cont.)

- Function input: Data input,
 Filter weights.
- Function Output: Data output.
- Configurations: Input size,
 Filter size, Stride.
- Two outer loops, and Two inner loops.
- Pipelining directives are used.

Convolutional Layer (Cont.)

Kernel Name	Target Freq	Estimated Freq	Start Interval	Best Case	Avg Case	Worst Case	FF	LUT	DSP	BRAM
Conv1	167 MHZ	144 MHZ	239837	239836	239836	239836	10652	10614	12	138
Conv2	167 MHZ	178 MHZ	11350	11349	11349	11349	4239	3588	11	4
Conv3	167 MHZ	178 MHZ	1329	1328	1328	1328	2978	2480	11	3

Pooling Layer

- Given an input image with width IWIDTH and height IHEIGHT, and a mask of width MASK_WIDTH and height MASK_HEIGHT, the pooling layer divides the input image into sections of the same size as the mask size.
- It then computes either the maximum or the average of the values in the region of the input encompassed by the mask.
- The final output has width OWIDTH and height OHEIGHT.

Pooling layer (contd ...)

- As per Alex net model, a Pooling layer with max size of 55 x 55 is required.
- For Alex net's requirement, the Pooling function can be either the max function or the average function.
- 3 instances used in Alex net implementation.
- Pipelining is used for increasing throughput and reducing latency.

Pooling Resource utilization and Timing information (ave)

```
prj ocl pooling
Design Name:
Target Platform: vc690-admpcie7v3-1ddr-gen2
Target Board:
Target Clock:
           167MHz
Kernel Summarv
Total number of kernels: 1
OpenCL Binary = pool1 ave float
Kernels mapped to = clc region
Timing Information (MHz)
                Kernel Name
| Compute Unit
                                | Target Frequency
<del>+----+</del>
| ocl pooling
               | pool1 ave float
+-----+
```

Pooling Latency and Area information (ave)

Latency Information (clo	ock cycles)								
Compute Unit	Kernel Name	Start Inter	val	Best Case		Avg C	ase	Worst Case	ļ
ocl_pooling	pool1_ave_float	9052		9051		9051		9051	ļ
Area Information					4				,
Compute Unit	Kernel Name	FF	LUT	DSP	BRAM				
ocl_pooling	pool1_ave_float	5267	8583	8	10				
T			T		T				

Pooling Resource utilization and Timing information

(max)

Design Name: prj ocl pooling Target Platform: vc690-admpcie7v3-1ddr-gen2 Target Board: Target Clock: 167MHz Kernel Summary Total number of kernels: 1 OpenCL Binary = pool1_max_float Kernels mapped to = clc region Timing Information (MHz) Compute Unit Target Frequency | Kernel Name | pool1 max float

Pooling Latency and Area information (max)

Latency Information (cl	ock cycles)						·
Compute Unit	Kernel Name	Start Interval		Best Case		Avg Case	Worst Case
ocl_pooling	pool1_max_float	9028		9027		9027	9027
Area Information							,
Compute Unit	Kernel Name	FF	LUT	DSP	BRAM		
			+				

LRN Layer

- Given an input image with width IWIDTH and height IHEIGHT, and a mask of width MASK_WIDTH and height MASK_HEIGHT, the LRN layer divides the input image into sections of the same size as the mask size.
- The LRN layer performs neural activity inhibition by squaring all the values in the mask region, multiplying them by alpha, and dividing them by the mask size to create a scaling factor.
- This scaling factor is then raised to beta, and applied to each value in the mask region.

LRN layer (contd ...)

- As per Alex net model, an LRN layer with max size of 10x256x27x27 is required.
- For Alex net's requirement, the LRN layer can be either a cross-channel or a withinchannel implementation
- 2 instances used in Alex net implementation.
- Pipelining is used for increasing throughput/ reducing overall latency.

LRN Resource utilization and Timing information (AC)

Design Name: prj_ocl_lrn Carget Platform: vc690-admpcie7v3-1ddr-gen2 Carget Board:										
	arget Clock: 167MHz									
Kernel Summary										
Total number of kerne										
Kernel Name	Type	Target		OpenCL Library	7 Comput	e Units				
lrn1_ac_float	I c	fpga0:OCL_I	REGION_0	lrn1_ac_float	1		Ī			
							+			
OpenCL Binary = 1rn1_	ac_float									
Kernels mapped to = c	lc_region									
Timing Information (M	Hz)									
Compute Unit	Kernel Name		Target Fre	equency	Estimated	Frequen	су			
ocl_lrn	lrn1_ac_floa	t	166.945	i	190.84		i			
+	+		+							

LRN Latency and Area information (AC)

Latency Information (c	lock cycles)							
Compute Unit	Kernel Name	Start Interval		Best Case		Avg Case	Worst Case	
ocl_lrn	lrn1_ac_float	6352502 ~ 9	982502	6352501		6352501 9075001		
Area Information	-1						,	
Compute Unit	Kernel Name	FF	LUT	DSP	BRAM			
ocl_lrn	lrn1_ac_float	10244	10995	109	0	-		

LRN Resource utilization and Timing information (WC)

	dr-gen2					
z 						
Type	Target		OpenCL Library	/ Compute Unit	ts	
l c	fpga0:OCL I	REGION 0	lrn1 wc float	1	1	
_region						
)						
Kernel Name		Target Fre	equency	Estimated Frequ	uency	
lrn1_wc_float	t	166.945	i	190.84		
	: 1	-admpcie7v3-1ddr-gen2 z	-admpcie7v3-1ddr-gen2 z : 1	-admpcie7v3-1ddr-gen2 z : 1	-admpcie7v3-1ddr-gen2 z	

LRN Latency and Area information (WC)

Latency Information (clo	ock cycles)								
Compute Unit	Kernel Name	Start Inter	val	Best Case	i	Avg Ca	ise	Worst Case	
ocl_lrn	lrn1_wc_float	5997270 ~ 6	062047270	5997269	İ	146961	.3269	6062047269	İ
Area Information							,		
Compute Unit	Kernel Name	FF	LUT	DSP	BRAM				
ocl_lrn	lrn1_wc_float	10176	11061	107	0				

Relu Layer

- Given an input value x, the ReLU layer computes the output as x if x > 0 and negative slope * x if x <= 0.
- When the negative slope parameter is not set, it is equivalent to the standard ReLU function of taking max (x, 0).
- It also supports in-place computation, meaning that the bottom and the top blob could be the same to preserve memory consumption. i.e. (OWIDTH = IWIDTH and OHEIGHT = IHEIGHT)

Relu layer (contd ...)

- As per Alex net model, a Relu with max size of 50 x 50 is required.
- For Alex net's requirement, the Relu function is standard max (x,0) function.
- 7 instances used in Alex net implementation.
- Pipelining is used for increasing throughput/ reducing overall latency.

Relu Resource utilization and Timing information

Relu Latency information and Area utilization

Roberto's Demo

Performance comparison with CPU

	Time to Program FPGA	Total Layer Time	FPGA Execution Time	CPU Execution Time	Ratio
conv1	1413.77	9510.22	8096.45	11.703	691.826882
relu1	1323.63	1372.32	48.69	0.267	182.359551
norm1	1648.54	2387.58	739.04	9.555	77.3458922
pool1	1331.28	1385.08	53.8	0.916	58.7336245
conv2	1332.1	25474.5	24142.4	24.035	1004.46848
relu2	1329.34	1362.1	32.76	0.172	190.465116
norm2	2600.67	2783.16	182.49	6.053	30.1486866
pool2	1328.9	1431.57	102.67	0.619	165.864297
conv3	1330.88	88693.5	87362.62	13.049	6694.96666
relu3	1313.78	1329.98	16.2	0.061	265.57377
conv4	1326.8	81278.3	79951.5	10.323	7744.98692
relu4	1326.18	1344.53	18.35	0.061	300.819672
conv5	1322.29	61532	60209.71	7.336	8207.43048
relu5	1325.02	1339.75	14.73	0.041	359.268293
pool3	1325.28	1506.23	180.95	0.169	1070.71006
relu6	1325.65	1328.82	3.17	0.005	634
relu7	1322.31	1325.43	3.12	0.005	624

Testing of the layers

- Individually with raw data
- By Roberto using Caffe test vectors

Future Work

- 70 % percent Alex net is in hardware
- Target to convert it to 100 % hardware implementation.
- Fine tuning of individual layers to reduce latency

Future Work (Contd...)

- Placing multiple binary streams simultaneously on FPGA to reduce the fixed overhead.
- Measure performance over large number of images to reduce the effect of the fixed overhead

Future Work (Contd...)

- In Convolution, separate between elementwise multiplication step and results summation.
- This Enables the use of DataFlow directive.
- It requires more memory to store intermediate results.

Future Work (Cont.)

	Input size	Filter size	Number of input features	Number of output features	Memory required for Synapses for one operation	Number of computations for one input set
Multi-Object recognition in natural images (DNN), winner 2012 ImageNet competition [2]	224	11	1	96	22.69 MB	Mult: ≈ 1.581 Billion Add: ≈ 1.567 Billion Division: ≈ 13.066 Mil Transfer: ≈ 13.066 Mil
Street scene parsing (CNN) (e.g., identifying building, vehicle, etc) [3]	500*375	9	32	48	0.24 MB	Mult: ≈ 67.39 Billion Add: ≈ 67.36 Billion Division: ≈ 26 Million Transfer: ≈ 26 Million
Face Detection in YouTube videos (DNN), (Google) [4]	200	18	8	8	1.29GB	N/A

FPGA Boards with Smaller Kernels

 In Convolution and Pooling, make hardware computation for only one window.

> Reduce hardware resources needed

Increase parallelism

