COMP6248 Differentiable Programming

(and some Deep Learning)

Kate Farrahi and Jonathon Hare

Vision, Learning and Control University of Southampton

All credit for this slide goes to Niranjan

Data

$$\{x_n, y_n\}_{n=1}^N \qquad \{x_n\}_{n=1}^N$$

$$\{\boldsymbol{x}_n\}_{n=1}^N$$

Data
$$\{x_n, y_n\}_{n=1}^N \quad \{x_n\}_{n=1}^N$$

Function Approximator
$$\mathbf{y} = f(\mathbf{x}, \boldsymbol{\theta}) + \nu$$

Data
$$\{\boldsymbol{x}_n,\boldsymbol{y}_n\}_{n=1}^N \qquad \{\boldsymbol{x}_n\}_{n=1}^N$$

Function Approximator
$$\mathbf{y} = f(\mathbf{x}, \mathbf{\theta}) + \nu$$

Parameter Estimation
$$E_0 = \sum_{n=1}^{N} {\{\|\boldsymbol{y}_n - f(\boldsymbol{x}_n; \boldsymbol{\theta})\|\}^2}$$

All credit for this slide goes to Niranjan

Data	$\{x_n, y_n\}_{n=1}^{N} \qquad \{x_n\}_{n=1}^{N}$
Function Approximator	$\mathbf{y} = f(\mathbf{x}, \boldsymbol{\theta}) + \nu$
Parameter Estimation	$E_0 = \sum_{n=1}^{N} \{ \ \mathbf{y}_n - f(\mathbf{x}_n; \boldsymbol{\theta}) \ \}^2$
Prediction	$\hat{\mathbf{y}}_{N+1} = f(\mathbf{x}_{N+1}, \hat{\boldsymbol{\theta}})$

3 M C

Data	$\{x_n, y_n\}_{n=1}^N \qquad \{x_n\}_{n=1}^N$
Function Approximator	$\mathbf{y} = f(\mathbf{x}, \boldsymbol{\theta}) + \nu$
Parameter Estimation	$E_0 = \sum_{n=1}^{N} \{ \ \boldsymbol{y}_n - f(\boldsymbol{x}_n; \boldsymbol{\theta}) \ \}^2$
Prediction	$\hat{\boldsymbol{y}}_{N+1} = f(\boldsymbol{x}_{N+1}, \hat{\boldsymbol{\theta}})$
Regularisation	$E_1 = \sum_{n=1}^{N} { \ \mathbf{y}_n - f(\mathbf{x}_n; \boldsymbol{\theta}) \ }^2 + r(\ \boldsymbol{\theta} \)$

Data	$\{x_n, y_n\}_{n=1}^N \qquad \{x_n\}_{n=1}^N$
Function Approximator	$\mathbf{y} = f(\mathbf{x}, \boldsymbol{\theta}) + \nu$
Parameter Estimation	$E_0 = \sum_{n=1}^{N} \{ \ \boldsymbol{y}_n - f(\boldsymbol{x}_n; \boldsymbol{\theta}) \ \}^2$
Prediction	$\hat{\boldsymbol{y}}_{N+1} = f(\boldsymbol{x}_{N+1}, \hat{\boldsymbol{\theta}})$
Regularisation	$E_1 = \sum_{n=1}^{N} \{ \ \mathbf{y}_n - f(\mathbf{x}_n; \boldsymbol{\theta}) \ \}^2 + r(\ \boldsymbol{\theta} \)$
Modelling Uncertainty	$p(\boldsymbol{\theta} \{\boldsymbol{x}_n,\boldsymbol{y}_n\}_{n=1}^N)$

Function Approximator
$$\mathbf{y} = f(\mathbf{x}, \boldsymbol{\theta}) + \nu$$

Parameter Estimation
$$E_0 = \sum_{n=1}^{N} { \| \mathbf{y}_n - f(\mathbf{x}_n; \boldsymbol{\theta}) \| }^2$$

Prediction
$$\hat{\mathbf{y}}_{N+1} = f(\mathbf{x}_{N+1}, \hat{\boldsymbol{\theta}})$$

Regularisation
$$E_1 = \sum_{n=1}^{N} \{ \| \mathbf{y}_n - f(\mathbf{x}_n; \boldsymbol{\theta}) \| \}^2 + r(\| \boldsymbol{\theta} \|)$$

Modelling Uncertainty
$$p(\theta | \{x_n, y_n\}_{n=1}^N)$$

Probabilistic Inference
$$\mathbb{E}[g(\theta)] = \int g(\theta) p(\theta) d\theta = \frac{1}{N_s} \sum_{n=1}^{N_s} g(\theta^{(n)})$$

Data	$\{\boldsymbol{x}_n, \boldsymbol{y}_n\}_{n=1}^N$	$\{\boldsymbol{x}_n\}_{n=1}^N$

Function Approximator
$$\mathbf{y} = f(\mathbf{x}, \boldsymbol{\theta}) + \nu$$

Parameter Estimation
$$E_0 = \sum_{n=1}^{N} { \| \mathbf{y}_n - f(\mathbf{x}_n; \boldsymbol{\theta}) \| }^2$$

Prediction
$$\hat{\mathbf{y}}_{N+1} = f(\mathbf{x}_{N+1}, \hat{\boldsymbol{\theta}})$$

Regularisation
$$E_1 = \sum_{n=1}^{N} \{ \| \mathbf{y}_n - f(\mathbf{x}_n; \boldsymbol{\theta}) \| \}^2 + r(\| \boldsymbol{\theta} \|)$$

Modelling Uncertainty
$$p(\theta | \{x_n, y_n\}_{n=1}^N)$$

Probabilistic Inference
$$\mathbb{E}[g(\theta)] = \int g(\theta) p(\theta) d\theta = \frac{1}{N_s} \sum_{n=1}^{N_s} g(\theta^{(n)})$$

Sequence Modelling
$$\mathbf{x}_n = f(\mathbf{x}_{n-1}, \boldsymbol{\theta})$$

What is Deep Learning?

Deep learning is primarily characterised by function compositions:

- Feedforward networks: $\mathbf{y} = f(g(\mathbf{x}, \theta_g), \theta_f)$
 - Often with relatively simple functions (e.g. $f(\mathbf{x}, \theta_f) = \sigma(\mathbf{x}^{\top} \theta_f)$)

What is Deep Learning?

Deep learning is primarily characterised by function compositions:

- Feedforward networks: $\mathbf{y} = f(g(\mathbf{x}, \theta_g), \theta_f)$
 - Often with relatively simple functions (e.g. $f(\mathbf{x}, \theta_f) = \sigma(\mathbf{x}^{\top} \theta_f)$)
- Recurrent networks:

$$y_t = f(y_{t-1}, x_t, \theta) = f(f(y_{t-2}, x_{t-1}, \theta), \theta) = \dots$$

What is Deep Learning?

Deep learning is primarily characterised by function compositions:

- Feedforward networks: $\mathbf{y} = f(g(\mathbf{x}, \theta_g), \theta_f)$
 - Often with relatively simple functions (e.g. $f(\mathbf{x}, \theta_f) = \sigma(\mathbf{x}^{\top} \theta_f)$)
- Recurrent networks:

$$y_t = f(y_{t-1}, x_t, \theta) = f(f(y_{t-2}, x_{t-1}, \theta), \theta) = \dots$$

In the early days the focus of deep learning was on learning functions for classification. Nowadays the functions are much more general in their inputs and outputs.

 Differentiable programming is a term coined by Yann Lecun¹ to describe a superset of Deep Learning.

¹https://www.facebook.com/yann.lecun/posts/10155003011462143

²See our ICLR 2019 paper: https://arxiv.org/abs/1812.03928

- Differentiable programming is a term coined by Yann Lecun¹ to describe a superset of Deep Learning.
- Captures the idea that computer programs can be constructed of parameterised functional blocks in which the parameters are learned using some form of gradient-based optimisation.

¹https://www.facebook.com/yann.lecun/posts/10155003011462143

²See our ICLR 2019 paper: https://arxiv.org/abs/1812.03928

- Differentiable programming is a term coined by Yann Lecun¹ to describe a superset of Deep Learning.
- Captures the idea that computer programs can be constructed of parameterised functional blocks in which the parameters are learned using some form of gradient-based optimisation.
 - The implication is that we need to be able to compute gradients with respect to the parameters of these functional blocks. We'll start explore this in detail next week...

¹https://www.facebook.com/yann.lecun/posts/10155003011462143

²See our ICLR 2019 paper: https://arxiv.org/abs/1812.03928

- Differentiable programming is a term coined by Yann Lecun¹ to describe a superset of Deep Learning.
- Captures the idea that computer programs can be constructed of parameterised functional blocks in which the parameters are learned using some form of gradient-based optimisation.
 - The implication is that we need to be able to compute gradients with respect to the parameters of these functional blocks. We'll start explore this in detail next week...
 - The idea of Differentiable Programming also opens up interesting possibilities:
 - The functional blocks don't need to be direct functions in a mathematical sense; more generally they can be algorithms.
 - What if the functional block we're learning parameters for is itself an algorithm that optimises the parameters of an internal algorithm using a gradient based optimiser?!²

https://www.facebook.com/yann.lecun/posts/10155003011462143

²See our ICLR 2019 paper: https://arxiv.org/abs/1812.03928

Is all Deep Learning Differentiable Programming?

- Not necessarily!
 - Most deep learning systems are trained using first order gradient-based optimisers, but there is an active body of research on gradient-free methods.

³including at least myself, my PhD students and Geoff Hinton!

Is all Deep Learning Differentiable Programming?

- Not necessarily!
 - Most deep learning systems are trained using first order gradient-based optimisers, but there is an active body of research on gradient-free methods.
 - There is an increasing interest in methods that use different styles of learning, such as Hebbian learning, within deep networks. More broadly there are a number of us³ who are interested in biologically motivated models and learning methods.

³including at least myself, my PhD students and Geoff Hinton!

What is the objective of this module?

- To gain an in-depth theoretical and practical understanding of modern deep neural networks and their applications.
- Understand the underlying mathematical and algorithmic principles of deep learning
- Understand the key factors that have made deep learning successful for various applications
- Apply existing deep learning models to real datasets
- Gain facility in working with deep learning libraries in order to create and evaluate network architectures
- Critically appraise the merits and shortcomings of model architectures on specific problems

What will we cover in the module?

http://comp6248.ecs.soton.ac.uk/

How is this module going to be delivered?

Reading material before the lectures

Lab session plan

Lab	Date	Topic
Lab 1	05/02/19	Introducing PyTorch
Lab 2	12/02/19	Automatic Differentiation
Lab 3	19/02/19	Optimisation
Lab 4	26/02/19	NNs with PyTorch and Torchbearer
Lab 5	05/03/19	CNNs with PyTorch and Torchbearer
Lab 6	12/03/19	Transfer Learning
Lab 7	19/03/19	RNNs, Sequence Prediction and Embeddings
Lab 8	26/03/19	Deep Generative Models
	Break	
Lab 9	30/04/19	Coursework Help and Advice
Lab 10	30/04/19	Coursework Help and Advice
Lab 11	30/04/19	Coursework Help and Advice

What do we expect you already know?

- COMP3206 or COMP3223 or COMP6229 or COMP6245
- Fundamentals of Linear Algebra, Probability and Statistics, Calculus
- Programming in Python

Assessment Structure

- 1 Lab work 40%
- Final project 40%
- In-class tests 20%

Assessment Timetable

Assessment	Date	Time
Labs 1-3	22/02/19	16:00
Coursework Team Information	27/02/19	16:00
In - class Test 1	01/03/19	midnight
Labs 4-6	15/03/19	16:00
In - class Test 2	29/03/19	midnight
Labs 7-8	03/05/19	16:00
Final Coursework Submission	15/05/19	16:00

The Main Assignment

The ICLR Reproducibility Challenge

http://comp6248.ecs.soton.ac.uk/coursework.html