ANALYSIS QUALIFYING EXAM FALL 2011

Part A. Choose any 3 of the 6 problems and solve. Justify each step! May quote named-theorems. Throughout, m is the Lebesgue measure on \mathbb{R} and $f' = \frac{d}{dx}f$.

Q-A1. Suppose $f(x), xf(x) \in L_2(\mathbb{R})$. Prove that $f \in L_1(\mathbb{R})$.

Q-A2. Let f(x) be non-decreasing on [0,1] (you may assume - by a theorem - that f is differentiable almost everywhere).

- (a) Show that f' is measurable.
- (b) Show that f' is integrable and $\int_0^1 f'(x)dx \le f(1) f(0)$.

Q-A3. Let (X, \mathfrak{M}, μ) be a real measure space, where \mathfrak{M} is a σ -algebra. Suppose $f, g: X \to \mathbb{R}$ are non-negative measurable functions. Denote the characteristic function of a set A by χ_A . Define, for each $E \in \mathfrak{M}$, the set map $\nu(E) = \int_X g \chi_E d\mu$.

- (a) Show that ν is a measure on \mathfrak{M} ;
- (b) Show $\int_X f d\nu = \int_X f g d\mu$.

Q-A4. Suppose $f \in L_p[0,1]$ for some $1 \le p \le \infty$, and define

$$h(t):=\pmb{m}\{x\in[0,1]:|f(x)|>t\},\qquad\text{for each }0\leq t<\infty.$$

Show that $\int_0^\infty h(t)dt < \infty$.

Q-A5. A measure ν_1 is absolutely continuous with respect to ν_2 , denoted $\nu_1 \ll \nu_2$, if every $\nu_2(A) = 0$ implies $\nu_1(A) = 0$.

Consider the *coin-flipping* (probability) measure ν on $\{0,1\}$ where both 0 and 1 are equally probable (prob. $\frac{1}{2}$ each). The product topological space $X=\{0,1\}^{\infty}$ is equipped with the product probability measure P, arising from ν . Let $\Phi:X\to\mathbb{R}$ be the map given by $\Phi(s)=\sum_{n=0}^{\infty}s_k\left(\frac{1}{3}\right)^k$, where $s=(s_0,s_1,s_2,\dots)\in X$ is treated as a binary sequence. Define the measure μ on \mathbb{R} by

$$\mu(E) = P(\Phi^{-1}(E)), \quad \forall E \subset \mathbb{R}.$$

Is $\mu \ll m$? Justify.

Q-A6.

- - - -

- (a) If $x_n \in \mathbb{R}, x_n \to 0, f \in L_2(\mathbb{R})$ and $f_n(x) := f(x + x_n)$, show $f_n \to f$ in $L_2(\mathbb{R})$.
- (b) If $E \subset \mathbb{R}$ is measurable with m(E) > 0, show the set $E E := \{a b : a, b \in E\}$ contains an open neighborhood of the origin.

Part B. Choose any 4 of the 7 problems and solve. Justify each step! May quote named-theorems. The identity map is denoted by I, i.e., I(x) = x.

Q-B1. Suppose V is the vector space of continuously differentiable functions on [0,1]. Treat V as a subspace of C[0,1], under the maximum norm $\|\cdot\|_{max}$. Define the map $D:V\to C[0,1]$ by $D(f)=\frac{d}{dx}f$. Is D a bounded operator, i.e. $D\in\mathcal{B}(V,C[0,1])$? Justify.

Q-B2. Equip the linear space of continuous functions C[0,1] with the L_1 -norm, i.e., $||f|| = \int |f|$. Is it a Banach space? Why, or why not? Explain.

Q-B3. Let H be a real Hilbert space. Assume $z_n, x_n, y_n \in \{x \in H : ||x|| \le 1\}$ and $\langle x_n, y_n \rangle \to 1$ as $n \to \infty$. Given $T \in \mathcal{B}(H)$ is self-adjoint $(T^* = T)$ with

$$1 = ||T|| = \lim_{n \to \infty} ||T(z_n)||.$$

- (a) Show that $x_n y_n \to 0$;
- (b) Show that $T(T(z_n)) z_n \to 0$.

Q-B4. Suppose H is a Hilbert space and that $T: H \to H$ is a bounded linear operator (i.e., $T \in \mathcal{B}(H)$). If ||T|| < 1, prove (I - T) is invertible (i.e. $(I - T)^{-1} \in \mathcal{B}(H)$ exists).

Q-B5. With ℓ_2 = square summable sequences, let $A:=\{x\in\ell_2:\sum_{n=1}^\infty n|x_n|^2\leq 1\}$. Prove that A is compact in the ℓ_2 -norm topology (recall this norm $\|x\|=\sqrt{\sum_n|x_n|^2}$).

Q-B6. Let $f_n:[0,1]\to\mathbb{R}$ be differentiable satisfying both

$$\int_{0}^{1} f_{n}(x)dx = 0, \quad \text{and} \quad |f'_{n}(x)| \le \frac{1}{\sqrt{x}}; \quad 0 < x \le 1.$$

Prove that $\{f_n\}_n$ has a uniformly convergent subsequence on [0,1].

Q-B7. With $\mathbb{S}^1 := \{z \in \mathbb{C} : |z| = 1\}$, show that there is a measurable function $f: \mathbb{S}^1 \to \mathbb{S}^1$ whose Fourier coefficients satisfy

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{2\pi i \theta}) e^{-2\pi i n \theta} d\theta \neq 0, \quad \forall n \in \mathbb{Z}.$$

Here $i = \sqrt{-1}$. Hint: Baire Catagory Thm.