$Cours\ N^{\circ}C6$: Évolution spontanée d'un système chimique

Introduction: Pour ce système chimique ci-contre peut se produire CH,COO- + Na* HCOO- + No deux réactions chimiques selon les conditions initiales : CH,COOH **Soit:** $HCOOH + CH_3COO^- \rightarrow HCOO^- + CH_3COOH$ Ou: $HCOO^- + CH_3COOH \rightarrow HCOOH + CH_3COO^-$ Donc comment peut-on prévoir le sens d'évolution d'un système chimique? Quelle est la norme qui peut utiliser pour prévoir le sens d'évolution? I- Rappel sur le quotient d'une réaction 1-Expression du quotient de réaction Qr Le quotient de réaction Q_r pour une réaction chimique d'équation : $aA_{(aq)} + bB_{(aq)} \rightleftharpoons cC_{(aq)} + dD_{(aq)}$ S'écrit dans un état donné du système : À l'équilibre les concentrations molaires des espèces chimiques deviennent constantes et le quotient de la réaction prend une valeur constante qui s'appelle la constante d'équilibre: C'est une grandeur sans unité ne dépend que de la température Activité 1 On mélange dans un bécher de volume V: -Un volume $V_1 = 10 \ mL$ d'une solution d'acide éthanoïque CH_3COOH de concentration $C = 5.10^{-2} \ mol/L$. -Un volume $V_2 = 5 mL$ d'une solution d'ammoniac NH_3 de concentration C-Un volume $V_3 = 5 \, mL$ d'une solution d'éthanoate de sodium $(CH_3COO^- + N\alpha^+)$ de concentration $C' = 10^{-1} \, mol/L$. -Un volume $V_4 = 10 \ mL$ d'une solution de chlorure d'ammonium $(NH_4^+ + Cl^-)$ de concentration C'. On donne l'équation de la réaction qui se produit entre l'acide éthanoïque et l'ammoniac. $CH_3COOH_{(aq)} + NH_{3(aq)} \rightleftharpoons CH_3COO_{(aq)}^- + NH_{4}^+$ **On donne:** pour le couple: $CH_3COOH / CH_3COO^ pk_{A1} = 4.8$; NH_4^+ / NH_3 $pk_{A1} = 9.2$ 1. Déterminer la valeur du quotient de réaction dans l'état initial Q_{r,i} du système. 2. Déterminer la constante d'équilibre K associée à cette réaction.

** (Y • / Y	- 10	• •	4.			
II- (Critère	a	'evo	lution	spon	tanee	:

1- Définition

Un système chimique va évoluer de façon que le quotient de réaction initiale $Q_{r,i}$ tend vers la valeur de la constante d'équilibre K. On en distingue trois cas :

- -Si Q_{r,i} < K : le système évolue spontanément dans le
- Si Q_{r,i} > K : le système évolue spontanément dans le
 - -Si **Q_{r,i} = K**, **le système** est

Diagramme de critère d'évolution spontanée d'un système

- La suite de l'activité1

3. Dans quel sens le système va-t-il évolué?

Remarque: Si la constante d'équilibre $K > 10^4$, on dit que la réaction est totale, dans ce cas on utilise une seule flèche dans l'équation.

III-Application du critère d'évolution :

1-cas d'une réaction acido-basique (voir activité 1)

2-cas d'une réaction d'oxydoréduction

On introduit dans un bécher :

- * $V_1 = 100$ ml d'ions de zinc $Zn_{(aq)}^{2+}$ de concentration $[Zn^{2+}]_i = 0$, 20 $mol.L^{-1}$
- * $\mathbf{V_2} = \mathbf{200} \text{ ml}$ d'ions d'aluminium $Al_{(aq)}^{3+}$ de concentration $[Al^{3+}]_i = 0$, 015 $mol. L^{-1}$
- * une plaque de zinc et l'autre d'aluminium

On considère la réaction chimique suivante :

$$2Al_{(s)} + 3Zn_{(aq)}^{2+} \xrightarrow{1} 2Al_{(aq)}^{3+} + 3Zn_{(s)}$$

- 1-Déterminer la valeur du quotient de réaction dans l'état initial $Q_{r,i}$.
- 2-La constante d'équilibre de cette réaction est $=4.10^{38}$, dans quel sens le système va-t-il évolué ?

.....

Exercice 1: On mélange à l'état initial 10^{-2} mol d'ions $F^{3+}_{e(aq)}$; 5. 10^{-2} mol d'ions $Ag^{+}_{(aq)}$ et 2. 10^{-2} mol d'ions

 $F_{e(aq)}^{2+}$; puis on introduit dans un volume **V=500 mL** de cette solution un fil d'argent $Ag_{(s)}$. On considère la réaction chimique suivante : $Ag_{(s)} + Fe_{(aq)}^{3+} \Rightarrow Ag_{(aq)}^{+} + Fe_{(aq)}^{2+}$ sa constante d'équilibre à 25°C est K = 3, 2

	1) Déterminer quotient initial $Q_{r,i}$ de cette réaction puis en déduire le sens d'évolution spontanée du système.								
4) Déterminer les concentrations de toutes les espèces chimiques existant à l'équilibre.	2) Dresser le tableau d'évolution de ce système. 3) Déterminer l'avancement de la réaction à l'équilibre.								
	4) Determiner les concentrations de toutes les especes chimiq	ues existant a l'equilibre.							
		· · · · · · · · · · · · · · · · · · ·							
I									
		.L							