Análisis de Componentes Principales (PCA)

José A. Perusquía Cortés

Análisis Multivariado Semestre 2023-2

Motivación:

Visualizar y/o interpretar datos multivariados es complicado

Motivación:

Visualizar y/o interpretar datos multivariados es complicado

- A grandes rasgos PCA es un método estadístico que busca:
 - 1. "Reducir" la dimensionalidad de los datos.
 - 2. Retener la mayor cantidad de la variación original.

Motivación:

Visualizar y/o interpretar datos multivariados es complicado

- A grandes rasgos PCA es un método estadístico que busca:
 - 1. "Reducir" la dimensionalidad de los datos.
 - 2. Retener la mayor cantidad de la variación original.

¿Cómo?

Crear un nuevo conjunto de variables no correlacionadas y ordenadas por varianza

Intuición

> ¿Cómo debe girar la cabeza la ballena para comer la mayo cantidad de kril?

Fuente: Allison Horst (twitter)

- Sea $\mathbf{X}_{p \times 1}$ un vector aleatorio

El primer componente principal estará dado por:

$$\alpha'_1 x = \alpha_{11} x_1 + \alpha_{12} x_2 + \dots + \alpha_{1p} x_p = \sum_{j=1}^p \alpha_{1j} x_j$$

tal que sea la combinación lineal de mayor varianza

El segundo componente principal está dado por

$$\alpha_2' x = \alpha_{21} x_1 + \alpha_{22} x_2 + \dots + \alpha_{2p} x_p = \sum_{j=1}^p \alpha_{2j} x_j$$

tal que sea la combinación lineal de mayor varianza y **no esté correlacionado** con el primero.

Y así sucesivamente...

Ejemplo

Datos

Ejemplo

Primer Componente

Primer Componente

Segundo Componente

Nuevas variables

- Sea $\mathbf{X}_{p imes 1}$ un vector aleatorio con Σ conocida
- (Formalmente) el primer componente principal se encuentra resolviendo

$$\max_{\alpha_1} var(\alpha_1^T x) = \alpha_1^T \sum_{\alpha_1} \alpha_1$$

$$s \cdot a \cdot \alpha_1^T \alpha_1 = 1$$

- Sea $\mathbf{X}_{p imes 1}$ un vector aleatorio con Σ conocida
- Formalmente) el primer componente principal se encuentra resolviendo

$$\max_{\alpha_1} var(\alpha_1^T x) = \alpha_1^T \sum_{\alpha_1} \alpha_1$$

$$s.a. \qquad \alpha_1^T \alpha_1 = 1$$

Dando como resultado que:

 λ : eigenvalor más grande

 α_1 : eigenvector asociado

Para el segundo componente resolvemos:

$$\max_{\alpha_2} var(\alpha_2^T x) = \alpha_2^T \Sigma \alpha_2$$

$$s \cdot a \cdot \qquad \alpha_2^T \alpha_2 = 1 \qquad cov(\alpha_1^T \mathbf{x}, \alpha_2^T \mathbf{x}) = 0$$

Construcción

Para el segundo componente resolvemos:

$$\max_{\alpha_2} var(\alpha_2^T x) = \alpha_2^T \Sigma \alpha_2$$

$$s \cdot a \cdot \qquad \alpha_2^T \alpha_2 = 1 \qquad cov(\alpha_1^T \mathbf{x}, \alpha_2^T \mathbf{x}) = 0$$

Dando como resultado que:

 λ : segundo eigenvalor más grande

 α_2 : eigenvector asociado

Y así sucesivamente...

Los componente principales corresponden a una transformación ortogonal de X

$$z = Ax$$

Los componente principales corresponden a una transformación ortogonal de X

$$z = Ax$$

Donde:

A : es la matriz de eigenvectores

Los componente principales corresponden a una transformación ortogonal de X

$$z = Ax$$

Donde:

A : es la matriz de eigenvectores

• Así, $var(z_k) = \lambda_k$

Los componente principales corresponden a una transformación ortogonal de X

$$z = Ax$$

Donde:

A : es la matriz de eigenvectores

• Así, $var(z_k) = \lambda_k$

Proposición

Sea la familia de elipsoides $\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} = c$. Entonces los componentes principales \mathbf{z} definen los ejes principales.

Propiedades Algebraicas

Proposición (A1)

Considerar la transformación ortogonal $\mathbf{y}=\mathbf{B}^T\mathbf{x}$. Donde $\mathbf{B}_{q imes p}$ y $\mathbf{\Sigma}_y=\mathbf{B}^T\mathbf{\Sigma}\mathbf{B}$ entonces

- 1. $tr(\Sigma_y)$ y $|\Sigma_y|$ se maximizan cuando $\mathbf{B}=\mathbf{A}_q$ (las primeras q columnas)
- 2. $tr(\Sigma_y)$ se minimiza cuando $\mathbf{B} = \mathbf{A}_q^*$ (las últimas q columnas)

Propiedades Algebraicas

Proposición (A1)

Considerar la transformación ortogonal $\mathbf{y}=\mathbf{B}^T\mathbf{x}$. Donde $\mathbf{B}_{q imes p}$ y $\mathbf{\Sigma}_y=\mathbf{B}^T\mathbf{\Sigma}\mathbf{B}$ entonces

- 1. $tr(\Sigma_y)$ y $|\Sigma_y|$ se maximizan cuando $\mathbf{B}=\mathbf{A}_q$ (las primeras q columnas)
- 2. $tr(\Sigma_y)$ se minimiza cuando $\mathbf{B}=\mathbf{A}_q^*$ (las últimas q columnas)

Proposición (A2)

La descomposición espectral de Σ está dada por $\Sigma = \sum_{i=1}^P \lambda_i \alpha_i \alpha_i^T$

Propiedades Algebraicas

Proposición (A1)

Considerar la transformación ortogonal $\mathbf{y}=\mathbf{B}^T\mathbf{x}$. Donde $\mathbf{B}_{q imes p}$ y $\mathbf{\Sigma}_y=\mathbf{B}^T\mathbf{\Sigma}\mathbf{B}$ entonces

- 1. $tr(\Sigma_y)$ y $|\Sigma_y|$ se maximizan cuando $\mathbf{B}=\mathbf{A}_q$ (las primeras q columnas)
- 2. $tr(\Sigma_y)$ se minimiza cuando $\mathbf{B}=\mathbf{A}_q^*$ (las últimas q columnas)

Proposición (A2)

La descomposición espectral de Σ está dada por $\Sigma = \sum_{i=1}^P \lambda_i \alpha_i \alpha_i^T$

Proposición (A3)

Si σ_j^2 es la varianza residual de predecir x_j en términos de ${f y}$ entonces $\sum \sigma_i^2$ se minimiza

cuando
$$\mathbf{B} = \mathbf{A}_q$$

En la práctica es más común definir a los componentes como

$$z = Ax^*$$

Donde \mathbf{x}^* son las variables estandarizadas y \mathbf{A} es la matriz de eigenvectores de la matriz de correlación.

En la práctica es más común definir a los componentes como

$$z = Ax^*$$

Donde \mathbf{x}^* son las variables estandarizadas y \mathbf{A} es la matriz de eigenvectores de la matriz de correlación.

Observaciones

1. Todas las propiedades siguen siendo válidas.

En la práctica es más común definir a los componentes como

$$z = Ax^*$$

Donde \mathbf{x}^* son las variables estandarizadas y \mathbf{A} es la matriz de eigenvectores de la matriz de correlación.

Observaciones

- 1. Todas las propiedades siguen siendo válidas.
- 2. Mezclar variables en diferentes escalas

En la práctica es más común definir a los componentes como

$$z = Ax^*$$

Donde \mathbf{x}^* son las variables estandarizadas y \mathbf{A} es la matriz de eigenvectores de la matriz de correlación.

Observaciones

- 1. Todas las propiedades siguen siendo válidas.
- 2. Mezclar variables en diferentes escalas
- 3. Los componentes no están dominados por una posible variable de mayor varianza

PCA Muestrales

Sea $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ una muestra aleatoria (centrados) con matriz de varianzas y covarianzas

$$\mathbf{S} = \frac{1}{n-1} \mathbf{X}^T \mathbf{X}$$

Sea $x_1, x_2, ..., x_n$ una muestra aleatoria (centrados) con matriz de varianzas y covarianzas

$$\mathbf{S} = \frac{1}{n-1} \mathbf{X}^T \mathbf{X}$$

- 1.El primer componente principal es el eigenvector \mathbf{a}_1 asociado al eigenvalor más grande.
- 2. Se tienen n nuevas variables $z_{i1} = \mathbf{a}_1^T \mathbf{x}_i$.
- 3.Y sucesivamente para los otros componentes.

Sea $x_1, x_2, ..., x_n$ una muestra aleatoria (centrados) con matriz de varianzas y covarianzas

$$\mathbf{S} = \frac{1}{n-1} \mathbf{X}^T \mathbf{X}$$

- 1.El primer componente principal es el eigenvector \mathbf{a}_1 asociado al eigenvalor más grande.
- 2. Se tienen n nuevas variables $z_{i1} = \mathbf{a}_1^T \mathbf{x}_i$.
- 3.Y sucesivamente para los otros componentes.

Observaciones

- 1. Las variables z_i se les conoce como scores.
- 2. Los eigenvectores a_i se les conoce como loadings.

En muchas ocasiones es preferible usar la descomposición en valores singulares (SVD) para encontrar los componentes principales.

$$\mathbf{S} = \frac{1}{n-1} \mathbf{W}^T \mathbf{W}$$

$$\mathbf{W} = \mathbf{U} \mathbf{D} \mathbf{V}^T$$

En muchas ocasiones es preferible usar la descomposición en valores singulares (SVD) para encontrar los componentes principales.

$$\mathbf{S} = \frac{1}{n-1} \mathbf{W}^T \mathbf{W}$$

$$\mathbf{W} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

$$\mathbf{S} = \mathbf{V} \Lambda \mathbf{V}^T$$

En muchas ocasiones es preferible usar la descomposición en valores singulares (SVD) para encontrar los componentes principales.

$$\mathbf{S} = \frac{1}{n-1} \mathbf{W}^T \mathbf{W}$$

$$\mathbf{W} = \mathbf{U} \mathbf{D} \mathbf{V}^T$$

$$\mathbf{S} = \mathbf{V} \Lambda \mathbf{V}^T$$

1. Numéricamente más estable.

En muchas ocasiones es preferible usar la descomposición en valores singulares (SVD) para encontrar los componentes principales.

$$\mathbf{S} = \frac{1}{n-1} \mathbf{W}^T \mathbf{W}$$

$$\mathbf{W} = \mathbf{U} \mathbf{D} \mathbf{V}^T$$

$$S = V \Lambda V^T$$

- 1. Numéricamente más estable.
- 2. Permite considerar el caso p > n

En muchas ocasiones es preferible usar la descomposición en valores singulares (SVD) para encontrar los componentes principales.

$$\mathbf{S} = \frac{1}{n-1} \mathbf{W}^T \mathbf{W}$$

$$\mathbf{W} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

$$\mathbf{S} = \mathbf{V} \Lambda \mathbf{V}^T$$

- 1. Numéricamente más estable.
- 2. Permite considerar el caso p > n
- 3. Puede ser más rápido

Proposición

Sea $\mathbf{Z} = \mathbf{H}\mathbf{X}\mathbf{V}$ la matriz de cargas, i.e., $\mathbf{z}_i = \mathbf{V}^T(\mathbf{x}_i - \bar{\mathbf{x}})$ entonces se cumple

1. La media muestral es el vector de ceros.

- 1. La media muestral es el vector de ceros.
- 2. La matriz de varianza y covarianza es Λ .

- 1. La media muestral es el vector de ceros.
- 2. La matriz de varianza y covarianza es Λ .
- 3. $\mathbf{v_1}^T \mathbf{S} \mathbf{v_1} > \mathbf{v_2}^T \mathbf{S} \mathbf{v_2} > \cdots > \mathbf{v_p}^T \mathbf{S} \mathbf{v_p}$ y si ran(S) = q < p se tiene que $\mathbf{v_s}^T \mathbf{S} \mathbf{v_s} = 0$ para $s = q + 1, \dots, p$

- 1. La media muestral es el vector de ceros.
- 2. La matriz de varianza y covarianza es Λ .
- 3. $\mathbf{v_1}^T \mathbf{S} \mathbf{v_1} > \mathbf{v_2}^T \mathbf{S} \mathbf{v_2} > \cdots > \mathbf{v_p}^T \mathbf{S} \mathbf{v_p}$ y si ran(S) = q < p se tiene que $\mathbf{v_s}^T \mathbf{S} \mathbf{v_s} = 0$ para

$$s = q + 1,...,p$$

4.
$$\sum_{i=1}^{p} \mathbf{v_i}^T \mathbf{S} \mathbf{v_i} = \sum_{i=1}^{p} \lambda_i = tr(S)$$

- 1. La media muestral es el vector de ceros.
- 2. La matriz de varianza y covarianza es Λ .
- 3. $\mathbf{v_1}^T \mathbf{S} \mathbf{v_1} > \mathbf{v_2}^T \mathbf{S} \mathbf{v_2} > \cdots > \mathbf{v_p}^T \mathbf{S} \mathbf{v_p}$ y si ran(S) = q < p se tiene que $\mathbf{v_s}^T \mathbf{S} \mathbf{v_s} = 0$ para

$$s = q + 1,...,p$$

4.
$$\sum_{i=1}^{p} \mathbf{v_i}^T \mathbf{S} \mathbf{v_i} = \sum_{i=1}^{p} \lambda_i = tr(S)$$

5.
$$\prod_{i=1}^{p} \mathbf{v_i}^T \mathbf{S} \mathbf{v_i} = \prod_{i=1}^{p} \lambda_i = |S|$$

> 88 calificaciones de 5 exámenes a libro abierto o cerrado.

Lineal (C)	Estadística (C)	Probabilidad(A)	Finanzas (A)	Cálculo (A)
97	92	77	72	96
83	88	90	75	96
95	83	81	71	96
75	82	73	75	83
83	73	75	75	78
73	71	82	69	88
71	77	75	70	83

Figure 1. En R usamos prcomp() con $\widehat{\Sigma} = S$

Los eigenvalores resultantes son:

$$\lambda_1 = 689.6583 > \lambda_2 = 200.9016 > \lambda_3 = 103.5280 > \lambda_4 = 83.3404 > \lambda_5 = 32.2476$$

Los vectores de cargas:

Lineal	-0.502	-0.759	0.289	-0.284	-0.080
Estadística	-0.371	-0.188	-0.417	0.785	-0.186
Probabilidad	-0.345	0.077	-0.144	-0.002	0.923
Finanzas	-0.450	0.299	-0.591	-0.523	-0.287
Cálculo	-0.535	0.541	0.609	0.164	-0.149

• El primer componente es

$$-.502 \times Lin. - .371 \times Est. - .345 \times Prob. - .450 \times Fin. - .535 \times Cal.$$

"Promedio"

El primer componente es

$$-.502 \times Lin. -.371 \times Est. -.345 \times Prob. -.450 \times Fin. -.535 \times Cal$$
. "Promedio"

El segundo componente es

$$-.759 \times Lin. -.188 \times Est. +.077 \times Prob. +.299 \times Fin. +.541 \times Cal.$$

Comparación entre libro abierto y cerrado

El primer componente es

$$-.502 \times Lin. -.371 \times Est. -.345 \times Prob. -.450 \times Fin. -.535 \times Cal$$
. "Promedio"

El segundo componente es

$$-.759 \times Lin. -.188 \times Est. +.077 \times Prob. +.299 \times Fin. +.541 \times Cal$$
. Comparación entre libro abierto y cerrado

• El tercer componente es

$$.289 \times Lin. - .417 \times Est. - .144 \times Prob. - .591 \times Fin. + .609 \times Cal$$

Comparación entre matemáticas "puras y aplicadas"

Consideraciones

La interpretación requiere conocimiento del problema

- Algunos componentes pueden interpretarse como un promedio ponderado

Algunos componentes pueden discriminar entre grupos de variables

> ¿Cuántos componentes elegir?

Seleccionar los componentes que expliquen un cierto porcentaje de la variación (e.g. 80%, 90%).

Seleccionar los componentes que expliquen un cierto porcentaje de la variación (e.g. 80%, 90%).

Usar la regla de codo.

Seleccionar los componentes que expliquen un cierto porcentaje de la variación (e.g. 80%, 90%).

Usar la regla de codo.

Dtros (e.g. pruebas de hipótesis)

La variación explicada por los componentes

61.91%

18.21% 9.35% 7.63%

2.90%

La variación explicada por los componentes

61.91% 18.21% 9.35% 7.63% 2.90%

 Nos quedamos con los primeros dos para tener arriba del 80% de la variación total (80.12%) La variación explicada por los componentes

61.91% 18.21% 9.35% 7.63% 2.90%

 Nos quedamos con los primeros dos para tener arriba del 80% de la variación total (80.12%)

Nos quedamos con los primeros tres para tener casi 90% de la variación total (89.47%)

Regla de codo es graficar las varianzas (o usar la función screeplot)

Si nos quedamos con dos componentes podemos graficarlos usando biplot()

Ejemplo

Con el PC1, se pueden identificar los mejores y peores promedios

Con el PC1, se pueden identificar los mejores y peores promedios

Alumno	Lineal	Est.	Proba.	Finanzas	Cálculo
1	97	92	77	72	96
2	83	88	90	75	96
3	95	83	81	71	96

Con el PC1, se pueden identificar los mejores y peores promedios

Alumno	Lineal	Est.	Proba.	Finanzas	Cálculo
1	97	92	77	72	96
2	83	88	90	75	96
3	95	83	81	71	96

Alumno	Lineal	Est.	Proba.	Finanzas	Cálculo
87	25	36	25	25	35
88	20	50	31	14	29

Ejemplo

 Con el PC2, se pueden identificar las mejores y peores calificaciones en examen abierto y cerrado

 Con el PC2, se pueden identificar las mejores y peores calificaciones en examen abierto y cerrado

Alumno	Lineal	Est.	Proba.	Finanzas	Cálculo
66	79	63	47	27	34
76	69	60	48	28	24

 Con el PC2, se pueden identificar las mejores y peores calificaciones en examen abierto y cerrado

Alumno	Lineal	Est.	Proba.	Finanzas	Cálculo
66	79	63	47	27	34
76	69	60	48	28	24

Alumno	Lineal	Est.	Proba.	Finanzas	Cálculo
23	38	54	60	62	96
28	32	68	72	68	82

Los eigenvalores resultantes con la matriz de correlación:

$$\lambda_1 = 1.7849 > \lambda_2 = 0.8536 > \lambda_3 = 0.6688 > \lambda_4 = 0.62582 > \lambda_5 = 0.4961$$

Los vectores de cargas:

Lineal	-0.397	-0.664	0.612	-0.091	-0.131
Estadística	-0.432	-0.420	-0.740	0.234	-0.179
Probabilidad	-0.502	0.129	-0.021	-0.116	0.846
Finanzas	-0.456	0.389	-0.064	-0.674	-0.425
Cálculo	-0.439	0.461	0.268	0.684	-0.230

Seleccionar los componentes que expliquen un cierto porcentaje de la variación (e.g. 80%, 90%).

Usar la regla de codo.

Otros (e.g. pruebas de hipótesis)

Regla de Kaiser: retener componentes con varianza mayor a cierto valor

> 300 observaciones de 7 valores nutricionales en 8 marcas de pizza diferentes

1. Mois: Cantidad de agua por cada 100g

2. Prot: Cantidad de proteína por cada 100g

3.Fat: Cantidad de grasa por cada 100g

4. Ash: Cantidad de ceniza por cada 100g

5. Sodium: Cantidad de sodio por cada 100g

6. Carb: Cantidad de carbohidratos por cada 100g

7.Cal: Cantidad de calorías por cada 100g

Obtenemos los componentes principales con matriz de correlación, prcomp(...,scale=T)

¿Cuántos componentes?

El primer componente es

 $0.064 \times mois + 0.378 \times prot + 0.446 \times fat + 0.471 \times ash + 0.435 \times sodium - 0.424 \times carb + 0.244 \times cal$

El segundo componente es

 $-0.628 \times mois - 0.269 \times prot + 0.234 \times fat - 0.110 \times ash + 0.201 \times sodium + 0.320 \times carb + 0.567 \times cal$

Dtra librería para el biplot: factoextra

Otros Tópicos

Selección de variables

Detección de outliers y observaciones influyentes

Detección de outliers y observaciones influyentes

Usar en conjunto con otras técnicas multivariadas

Detección de outliers y observaciones influyentes

Usar en conjunto con otras técnicas multivariadas

Rotación de componente principales

Detección de outliers y observaciones influyentes

Usar en conjunto con otras técnicas multivariadas

Rotación de componente principales

Otro tipo de datos (e.g. series de tiempo, datos no independientes, discretos, etc.)