正则表达式

- 正则表达式
- 自动机和正则表达式
- 正则表达式的代数定律

正则表达式的代数定律

定义

含有变量的两个正则表达式,如果以任意语言替换其变量,二者所表示的语言仍然相同,则称这两个正则表达式等价.在这样的意义下,正则表达式满足一些代数定律.

• 并运算
$$(L+M) + N = L + (M+N) \qquad (结合律) \\ L+M = M+L \qquad (交换律) \\ L+L = L \qquad (幂等律) \\ \emptyset + L = L + \emptyset = L \qquad (单位元 \emptyset)$$

正则表达式的代数定律

• 连接运算

$$(LM)N = L(MN)$$
 (结合律)
 $\varepsilon L = L\varepsilon = L$ (单位元 ε)
 $\emptyset L = L\emptyset = \emptyset$ (零元 \emptyset)
 $LM \neq ML$

• 分配率

$$L(M+N) = LM + LN$$
 (左分配律)
 $(M+N)L = ML + NL$ (右分配律)

• 闭包运算

$$(L^*)^* = L^*$$
 $\mathcal{O}^* = \varepsilon$
 $\mathcal{E}^* = \varepsilon$
 $\mathcal{L}^* = L^+ + \varepsilon$

 $(\varepsilon + L)^* = L^*$ Frden theorem

发现与验证正则表达式的定律

检验方法

要判断表达式 E 和 F 是否等价, 其中变量为 L_1, \ldots, L_n :

- lackbox 将变量替换为具体表达式, 得正则表达式 f r 和 f s, 例如, 替换 L_i 为 $f a_i$;
- ② 判断 $\mathbf{L}(\mathbf{r}) \stackrel{?}{=} \mathbf{L}(\mathbf{s})$, 如果相等则 E = F, 否则 $E \neq F$.

例 10. 判断 $(L+M)^* = (L^*M^*)^*$.

- 将 L 和 M 替换为 a 和 b;
- **2** $(\mathbf{a} + \mathbf{b})^* \stackrel{?}{=} (\mathbf{a}^* \mathbf{b}^*)^*$;
- **3** 因为 $L((\mathbf{a} + \mathbf{b})^*) = L((\mathbf{a}^*\mathbf{b}^*)^*)$, 所以 $(L + M)^* = (L^*M^*)^*$.

- 例 11. 判断 L + ML = (L + M)L.
 - 将 L 和 M 替换为 a 和 b:
 - 2 判断 $a + ba \stackrel{?}{=} (a + b)a$:

 - **3** 因为 $aa \notin \mathbf{a} + \mathbf{ba}$ 而 $aa \in (\mathbf{a} + \mathbf{b})\mathbf{a}$;

4 所以 $\mathbf{a} + \mathbf{b}\mathbf{a} \neq (\mathbf{a} + \mathbf{b})\mathbf{a}$, 即 $L + ML \neq (L + M)L$.

注意

这种方法仅限于判断正则表达式, 否则可能会发生错误.

例 12. 若用此方法判断 $L \cap M \cap N \stackrel{?}{=} L \cap M$, 以 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 替换 L, M, N, 有

$$\{a\}\cap\{b\}\cap\{c\}=\emptyset=\{a\}\cap\{b\},$$

而显然

$$L \cap M \cap N \neq L \cap M$$
.