NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Teo Wei Hao

MA3205 Set Theory AY 2003/2004 Sem 1

SECTION A

Question 1

- (a) Let $\beta \in \bigcup \alpha$, i.e. there exists $\gamma \in \alpha$ such that $\beta \in \gamma$. Since α is transitive, and so $\beta \in \alpha$. This give us $\bigcup \alpha \subseteq \alpha$.
- (b) Let us be given that α is not a limit ordinal.

Then $\exists \beta \in \text{Ord such that } S(\beta) = \alpha$, i.e. $\beta \in \alpha$, and for all $\gamma \in \alpha$, we have $\gamma \in \beta$ or $\gamma = \beta$. Since (α, \in) is a linearly ordered set, there does not exists $\gamma \in \alpha$ such that $\beta \in \gamma$. Therefore $\beta \notin \bigcup \alpha$. This give us $\bigcup \alpha \neq \alpha$.

Instead let us be given that $\bigcup \alpha \neq \alpha$.

From (1a.), we conclude that $\alpha \not\subseteq \bigcup \alpha$, i.e. there exists $\beta \in \alpha$ such that $\beta \not\in \bigcup \alpha$.

If $\gamma \in \alpha$, then we have $\beta \notin \gamma$, and since (α, \in) is a linearly ordered set, we have $\gamma \in \beta$ or $\gamma = \beta$. Thus $\alpha \subseteq \beta \cup \{\beta\}$.

Instead if $\gamma \in \beta$ or $\gamma = \beta$, then since $\beta \in \alpha$, and α is transitive, we get $\gamma \in \alpha$. Thus $\beta \cup \{\beta\} \subseteq \alpha$. Therefore $\alpha = \beta \cup \{\beta\} = S(\beta)$, i.e. α is not a limit ordinal.

(c) Let $\beta \in \mathcal{P}(\alpha)$. Since α is transitive, for all $\gamma \in \beta$, we get $\gamma \in \alpha$, and from that we get $\gamma \subseteq \alpha$. Thus $\gamma \in \mathcal{P}(\alpha)$, and we conclude that $\mathcal{P}(\alpha)$ is transitive.

Question 2

- (a) Assume on the contrary that there exists $\alpha \in \text{Ord}$ such that $\alpha \cup \{\alpha\} = S(\alpha) = \omega$. Then since ω is infinite and $\{\alpha\}$ is finite, we have $|\omega| = |\alpha \cup \{\alpha\}| = |\alpha|$. This give us α to be infinite, contradicting the fact that ω is the first infinite ordinal. Thus ω is a limit ordinal.
- (b) By Axiom of Foundation, there exists $\beta \in \omega$ such that for all $\gamma \in \omega$, we have $\gamma \notin \beta$. Since ω is transitive, we have $\beta = \emptyset$, and so $\emptyset \in \omega$.

Let $\alpha \in \omega$. Since ω is a limit ordinal, we have $S(\alpha) \neq \omega$. Also, we cannot have $\omega \notin S(\alpha)$, or else it give us $\omega \in \alpha$ or $\omega = \alpha$, a contradiction to the Axiom of Foundation. Since ordinals are comparable, we conclude that $S(\alpha) \in \omega$.

Thus ω is an inductive set.

(c) Assume on the contrary that $\omega \not\subseteq A$. Then $X = \omega - A$ is non-empty. Since (ω, \in) is a well-ordered set, there exists $\alpha \in X$ which is the least element of X. As A is inductive, $\emptyset \in A$ and so $\alpha \neq \emptyset$. Since all finite ordinals except \emptyset are successor ordinals, there exists $\beta \in \omega$ such that $S(\beta) = \alpha$. By our condition on α , we have $\beta \in A$. However A is inductive, which give us $\alpha = S(\beta) \in A$, a contradiction that $\alpha \in X$. Therefore $\omega \subseteq A$.

Page: 1 of 4

Question 3

(a) Since A is countable, there exists a bijection $g: A \to \omega$.

Let $f: \mathcal{P}(A) \to \mathcal{P}(\omega)$ be such that f(X) = g[X].

Since g is a bijection, g[X] = g[Y] implies X = Y, i.e. f is injective.

For all $Y \subseteq \omega$, we have $f(g^{-1}[Y]) = Y$, and so f is surjective.

Therefore f is bijective, i.e. $|\mathcal{P}(\omega)| = |\mathcal{P}(A)|$.

- (b) Since \mathbb{Q} is countable, and \mathbb{R} is uncountable, we have $\mathbb{R} \mathbb{Q}$ to be uncountable.
- (c) Let $f:(0,1)\to (1,17)$ be such that f(x)=16x+1. Since f is linear, it is injective. Also for all $y\in (1,17)$, we have $\frac{y-1}{16}\in (0,1)$ with $f(\frac{y-1}{16})=y$, and so f is surjective. Therefore f is bijective, i.e. |(0,1)|=|(1,17)|.

Let $g:[0,1]\to(0,1)$ be a well-defined injective function such that

$$g(x) = \begin{cases} \frac{1}{2+x}, & x = 0; \\ \frac{x}{1+2x}, & x = \frac{1}{k}, k \in \mathbb{Z}^+; \\ x, & \text{otherwise.} \end{cases}$$

If $y = \frac{1}{k}$ for some $k \in \mathbb{N} - \{0, 1, 2\}$, then $\frac{y}{1 - 2y} \in [0, 1]$ such that $g(\frac{y}{1 - 2y}) = y$.

If $y = \frac{1}{2}$, then g(0) = y.

Otherwise, g(y) = y. Thus g is surjective.

Therefore g is bijective, i.e. |(0,1)| = |[0,1]|.

Question 4

(a) If |A| < |B| and $|B| \le |C|$, then there exists injective functions $f: A \to B$ and $g: B \to C$.

This give us $gf: A \to C$ to be injective, i.e. $|A| \leq |C|$.

Assume on the contrary that there exists an injective function $h: C \to A$.

This give us $hg: B \to A$ to be an injective function, a contradiction to |A| < |B|.

Therefore |A| < |C|.

(b) If $|A| \leq |B|$ and |B| < |C|, then there exists injective functions $f: A \to B$ and $g: B \to C$.

This give us $gf: A \to C$ to be injective, i.e. $|A| \leq |C|$.

Assume on the contrary that there exists an injective function $h: C \to A$.

This give us $fh: C \to B$ to be an injective function, a contradiction to |B| < |C|.

Therefore |A| < |C|.

(c) Let $f: A \times B \to B \times A$ be such that f(a,b) = (b,a). f is bijective, and so $|A \times B| = |B \times A|$.

SECTION B

Question 5

(a) If $\omega_1 \notin \text{Card}$, then there exists $\alpha \in \omega_1$ such that $\alpha \in \text{Card}$ and $\alpha = |\omega_1|$. However, this would implies that α is uncountable, a contradiction to the condition that ω_1 is the first uncountable ordinal.

Page: 2 of 4

(b) Let $f: \omega_1 \to S$ be such that $f(\alpha) = \alpha + 1$. By definition of S, f is a bijection, and so $|S| = |\omega_1|$.

Since $T \subseteq \omega_1$, $|T| \leq |\omega_1|$.

For all $\alpha \in \text{Ord}$, we have $\omega \cdot \alpha \notin S$, since it is a limit ordinal. Now if $\alpha \in \omega_1$, then α is countable.

Thus $\omega \cdot \alpha$ is a countable ordinal (since $|\omega \cdot \alpha| = |\omega \times \alpha| = \omega$), and so $\omega \cdot \alpha \in \omega_1$.

Therefore we have the well-defined function $g: \omega_1 \to T$ such that $g(\alpha) = \omega \cdot \alpha$.

Let $\alpha, \beta \in \omega_1$ such that WLOG, $\alpha < \beta$. Then there exists $\gamma \in \text{Ord}$ such that $\alpha + \gamma = \beta$.

This give us $\omega \cdot \alpha < \omega \cdot \alpha + \omega \cdot \gamma = \omega \cdot (\alpha + \gamma) = \omega \cdot \beta$, and so g is injective. Thus $|\omega_1| \leq |T|$.

Therefore by Cantor-Bernstein Theorem, $|\omega_1| = |T|$.

(c) Since we have $|\omega| < |\mathcal{P}(\omega)|$, $\mathcal{P}(\omega)$ is uncountable.

By consequence of Axiom of Choice, there exists uncountable $\alpha \in \text{Card}$ such that $\alpha = |\mathcal{P}(\omega)|$. Since ω_1 is the first uncountable cardinal, $|\omega_1| = \omega_1 \leq \alpha = |\mathcal{P}(\omega)|$.

Question 6

Let us be given that there exists $\kappa \in \text{Card}$ such that $|\kappa| = |\mathbb{R}|$.

Then this give us a bijection $f: \mathbb{R} \to \kappa$.

Let us define the relation \square on \mathbb{R} , such that for $r_1, r_2 \in \mathbb{R}$, we have $r_1 \square r_2$ iff $f(r_1) \in f(r_2)$.

This resulted in f being the isomorphism between $(\mathbb{R}, \sqsubseteq)$ and (κ, \in) .

Thus (\mathbb{R}, \square) is a well-ordered set, i.e. \mathbb{R} is well orderable.

Instead let us be given that \mathbb{R} is well orderable, i.e. (\mathbb{R}, \square) is a well-order.

Let define $g : \mathbb{R} \to V$ recursively, such that $g(x) = \bigcup \{S(g(y)) \mid y \sqsubset x\}.$

Notice that for all $x, y \in \mathbb{R}$, if $y \subseteq x$, then $g(y) \in g(x)$, thus g is a order-preserving function.

This implies that g is injective, and so $(g[\mathbb{R}], \in)$ is isomorphic to (\mathbb{R}, \square) .

Let $\alpha \in g[\mathbb{R}]$, then there exists $x \in \mathbb{R}$ such that $g(x) = \alpha$.

Let $\beta \in \alpha$, i.e. $\beta \in S(g(y))$ for some $y \sqsubset x$.

Then the set $X = \{ y \in \mathbb{R} \mid y \sqsubset x \land \beta \in S(g(y)) \}$ is non-empty.

Since (\mathbb{R}, \square) is a well-ordered set, there exists $b \in X$ such that b is the least element of X.

Assume on the contrary that $\beta \in g(b)$. Then $\beta \in g(c)$ for some $c \sqsubset b$, a contradiction to the condition on b. Therefore from $\beta \in S(g(b)) = g(b) \cup \{g(b)\}$, we conclude that $g(b) = \beta$, i.e. $\beta \in g[\mathbb{R}]$. Axiom of Replacement give us $g[\mathbb{R}]$ to be a set, and so we can conclude that it is transitive. Thus $g[\mathbb{R}] \in \text{Ord}$. By definition of cardinals, there exists $\kappa \in \text{Card}$ such that $\kappa = |g[\mathbb{R}]|$. Therefore we have $|\kappa| = |\mathbb{R}|$.

Question 7

(a) Since A is countable, there exists an bijection between A and \mathbb{N} .

This bijection give us an enumeration of A, i.e. we can write $A = \{a_0, a_1, a_2, \ldots\}$.

Now we define a function $f: A \to \mathbb{Q} \cap (0,1)$ recursively, such that,

$$f(a_k) = \frac{\sup(\{0\} \cup \{f(a_i) \mid a_i <_A a_k, \ i \in k\}) + \inf(\{1\} \cup \{f(a_i) \mid a_i >_A a_k, \ i \in k\})}{2}, \quad k \in \mathbb{N}.$$

Notice that in this definition above, $0 < a_k < 1$ for any $k \in \mathbb{N}$, also $f(a_k) > f(a_i)$ for any $a_k >_A a_i$, and $f(a_k) < f(a_i)$ for any $a_k <_A a_i$, $i \in k$. Thus f is a well-defined, order-preserving function. Since $<_A$ is a linear order, we have f to be injective.

So by letting $B = f[A] \subseteq \mathbb{Q} \cap (0,1)$, and $g: A \to B$ such that g(a) = f(a) for all $a \in A$, we get g to be an isomorphism between $(A, <_A)$ and (B, <), i.e. $(A, <_A) \cong (B, <)$.

Page: 3 of 4

(b) Since $\alpha < \omega_1$, we have α to be countable, and so (α, \in_{α}) is a countable linearly ordered set. Thus using result of (7a.), we get a set $A_{\alpha} \in \mathbb{Q} \cap (0,1)$ such that $(A_{\alpha}, <) \cong (\alpha, \in_{\alpha})$.

Let $f: A_{\alpha} \to \alpha$ be an isomorphism, and let $\emptyset \neq X \subseteq A_{\alpha}$. Then since α is well-ordered, and $\emptyset \neq f[X] \subseteq \alpha$, there exists a least element of f[X], say z. This implies that there exists $y \in X$ such that f(y) = z. Since f is an isomorphism, y is the least element of X, and so A_{α} is well-ordered by <.

Page: 4 of 4