CS 228 : Logic in Computer Science

S. Krishna

First-Order Logic: Syntax

▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!

- ▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!
- ▶ Every dad is older than his child

- ▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!
- Every dad is older than his child
- Every vertex has atleast two outgoing edges

- ▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!
- Every dad is older than his child
- Every vertex has atleast two outgoing edges
- ► There is exactly one vertex with 3 outgoing edges

- ▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!
- Every dad is older than his child
- Every vertex has atleast two outgoing edges
- ▶ There is exactly one vertex with 3 outgoing edges
- Atleast 5 students scored more than 90 marks in a class of 50

- ▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!
- Every dad is older than his child
- Every vertex has atleast two outgoing edges
- ▶ There is exactly one vertex with 3 outgoing edges
- Atleast 5 students scored more than 90 marks in a class of 50
- ▶ All words starting with the letter *a*, ending with the letter *b*, have even length

Signatures

- ightharpoonup A vocabulary or signature τ is a set consisting of
 - ightharpoonup constants c_1, c_2, \dots
 - ▶ Relation symbols $R_1, R_2 \dots$, each with some arity k, denoted R_i^k
- We look at finite signatures
- $au = (E^2, F^3)$ is a finite signature with two relations, E with arity 2 and F with arity 3

Formulae of FO, over signature τ , are sequences of symbols, where each symbol is one of the following:

Formulae of FO, over signature τ , are sequences of symbols, where each symbol is one of the following:

► The symbol ⊥ called false

Formulae of FO, over signature τ , are sequences of symbols, where each symbol is one of the following:

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ of variables

Formulae of FO, over signature τ , are sequences of symbols, where each symbol is one of the following:

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ of variables
- Constants and relations from \(\tau \)

Formulae of FO, over signature τ , are sequences of symbols, where each symbol is one of the following:

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ of variables
- Constants and relations from τ
- ► The symbol → called implication

Formulae of FO, over signature τ , are sequences of symbols, where each symbol is one of the following:

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ of variables
- Constants and relations from \(\tau \)
- ► The symbol → called implication
- ► The symbol ∀ called the universal quantifier

Formulae of FO, over signature τ , are sequences of symbols, where each symbol is one of the following:

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ of variables
- Constants and relations from \(\tau \)
- ► The symbol → called implication
- ► The symbol ∀ called the universal quantifier
- ► The symbols (and) called paranthesis

A well-formed formula (wff) over a signature τ is inductively defined as follows:

A well-formed formula (wff) over a signature τ is inductively defined as follows:

▶ ⊥ is a wff

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- ▶ I is a wff
- ▶ If t_1 , t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- ▶ I is a wff
- ▶ If t_1 , t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- ▶ I is a wff
- ▶ If t_1 , t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- If φ and ψ are wff, then $\varphi \to \psi$ is a wff

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- ▶ I is a wff
- ▶ If t_1 , t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- ▶ If φ and ψ are wff, then $\varphi \to \psi$ is a wff
- ▶ If φ is a wff and x is a variable, then $(\forall x)\varphi$ is a wff

Logical Abbreviations : Boolean Connectives

- $ightharpoonup
 eg \varphi \to \bot$
- ightharpoonup $\top = \neg \bot$
- $\blacktriangleright \varphi \lor \psi = \neg \varphi \to \psi$
- $ightharpoonup \exists x. \varphi = \neg(\forall x. \neg \varphi)$
- ▶ Precedence of operators : $\neg > \land > \lor > \rightarrow > \forall$

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

 $ightharpoonup \forall x R(x,x)$

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

 $ightharpoonup \forall x R(x,x)$ Reflexivity

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- $\blacktriangleright \forall x (R(x,x) \rightarrow \bot)$

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- $\forall x (R(x,x) \rightarrow \bot)$ Irreflexivity

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x, x) \rightarrow \bot)$ Irreflexivity
- $\forall x \forall y (R(x,y) \to R(y,x))$

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x, x) \rightarrow \bot)$ Irreflexivity
- ▶ $\forall x \forall y (R(x,y) \rightarrow R(y,x))$ Symmetry

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x, x) \rightarrow \bot)$ Irreflexivity
- ▶ $\forall x \forall y (R(x,y) \rightarrow R(y,x))$ Symmetry

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x, x) \rightarrow \bot)$ Irreflexivity
- $\blacktriangleright \forall x \forall y (R(x,y) \rightarrow R(y,x))$ Symmetry
- $\blacktriangleright \ \forall x \forall y (R(x,y) \rightarrow (R(y,x) \rightarrow (x=y)))$ Anti-symmetry

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x,x) \rightarrow \bot)$ Irreflexivity
- ▶ $\forall x \forall y (R(x,y) \rightarrow R(y,x))$ Symmetry
- $\blacktriangleright \forall x \forall y (R(x,y) \rightarrow (R(y,x) \rightarrow (x=y)))$ Anti-symmetry

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x, x) \rightarrow \bot)$ Irreflexivity
- ▶ $\forall x \forall y (R(x,y) \rightarrow R(y,x))$ Symmetry
- $\blacktriangleright \ \forall x \forall y (R(x,y) \rightarrow (R(y,x) \rightarrow (x=y)))$ Anti-symmetry
- $\blacktriangleright \forall x \forall y \forall z (R(x,y) \rightarrow (R(y,z) \rightarrow R(x,z)))$ Transitivity

First-Order Logic : Semantics

Structures

▶ A structure A of signature τ consists of

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe
 - For each constant c in the signature τ, a fixed element c_A is assigned from the universe A

- ▶ A structure A of signature τ consists of
 - A non-empty set A or u(A) called the universe
 - For each constant c in the signature τ, a fixed element c_A is assigned from the universe A
 - For each k-ary relation \mathbb{R}^k in the signature τ , a set of k-tuples from A^k is assigned to \mathbb{R}^A

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe
 - For each constant c in the signature τ, a fixed element c_A is assigned from the universe A
 - For each k-ary relation \mathbb{R}^k in the signature τ , a set of k-tuples from A^k is assigned to \mathbb{R}^A
 - ▶ The structure A is finite if A (or u(A)) is finite

Examples of Structures

A Graph

- ► A set V of vertices
- ▶ A set $E \subseteq V \times V$ of edges

A Graph Structure

 $ightharpoonup au = \{E\}$, with E binary.

A Graph Structure

- $ightharpoonup au = \{E\}$, with E binary.
 - ▶ A graph structure over τ is $\mathcal{G} = (V, E^{\mathcal{G}})$,
 - ▶ The universe u(G) is the set of vertices V
 - ▶ The relation *E* is the edge relation

A Graph Structure

- $ightharpoonup au = \{E\}$, with E binary.
 - ▶ A graph structure over τ is $\mathcal{G} = (V, E^{\mathcal{G}})$,
 - ▶ The universe $u(\mathcal{G})$ is the set of vertices V
 - ▶ The relation *E* is the edge relation
 - $\mathcal{G} = (V = \{1, 2, 3, 4\}, E^{\bar{\mathcal{G}}} = \{(1, 2), (2, 3), (3, 4), (1, 1)\})$. We could just as well draw the graph for convenience.
 - $\forall x \exists y (E(x,y))$

A totally ordered set

- A set S with an order relation
- Relates any two elements of S
- ▶ Examples : $(\mathbb{N}, <)$, $(\mathbb{R}, <)$

A Total Order Structure

$$ightharpoonup au = \{<, S\}$$
 with $<, S$ binary.

A Total Order Structure

- $\qquad \qquad \tau = \{<, S\} \text{ with } <, S \text{ binary.}$
 - A finite order structure over τ is $\mathcal{O} = (O, <^{\mathcal{O}}, S^{\mathcal{O}})$
 - ▶ The universe $u(\mathcal{O})$ is the finite ordered set \mathcal{O}
 - \triangleright < $^{\circ}$ is the ordering on O and S° is the successor on O

A Total Order Structure

- $\tau = \{<, S\} \text{ with } <, S \text{ binary.}$
 - A finite order structure over τ is $\mathcal{O} = (O, <^{\mathcal{O}}, S^{\mathcal{O}})$
 - ▶ The universe $u(\mathcal{O})$ is the finite ordered set \mathcal{O}
 - \triangleright < $^{\circ}$ is the ordering on O and S° is the successor on O
 - $\mathcal{O} = (O = \{1, 2, 4\}, <^{\mathcal{O}} = \{(1, 2), (1, 4), (2, 4)\}, S^{\mathcal{O}} = \{(1, 2)\})$
 - $\rightarrow \exists x \neg \exists y (S(x, y))$
- Can you write a Partial Order as a structure, where the universe consists of all subsets of a given finite set?

Words

- A word is a sequence of symbols over a (finite) alphabet
- Alphabet Σ = {a, b, c}
- Some words over Σ : b, aaa, abababa, cacbccc
- ▶ The length of a word is the number of symbols in it

▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $\mathcal{W} = (u(\mathcal{W}), <^{\mathcal{W}}, S^{\mathcal{W}}, Q_{a}^{\mathcal{W}}, Q_{b}^{\mathcal{W}})$

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W
 - \triangleright $S^{\mathcal{W}}$ is the successor relation on the positions of W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W
 - \triangleright $S^{\mathcal{W}}$ is the successor relation on the positions of W
 - $\triangleright Q_a^{\mathcal{W}}$ is the set of positions labeled a in W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W
 - \triangleright $S^{\mathcal{W}}$ is the successor relation on the positions of W
 - $ightharpoonup Q_a^{\mathcal{W}}$ is the set of positions labeled a in W
 - \triangleright $Q_b^{\mathcal{W}}$ is the set of positions labeled b in W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W
 - \triangleright $S^{\mathcal{W}}$ is the successor relation on the positions of W
 - \triangleright $Q_a^{\mathcal{W}}$ is the set of positions labeled a in W
 - $\triangleright Q_b^{\mathcal{W}}$ is the set of positions labeled b in W
 - ► The structure with $u(W) = \{0, 1, 2, ..., 8\}$, $Q_a^W = \{0, 1, 4, 6, 8\}$, $Q_b^W = \{2, 3, 5, 7\}$.
 - $ightharpoonup <^{W} = \{(0,1), (0,2), \dots, (7,8)\}, S^{W} = \{(0,1), (1,2), \dots, (7,8)\}$ uniquely defines the word W = aabbababa.
 - $\forall x (Q_b(x) \to \exists y (x < y \land Q_a(y))$