Benjamin Kramer David Losch

Datenstrukturen

Text-Indizierung

3. April 2014

basierend auf:

- J. Fischer: Text-Indexierung und Information Retrieval
- S. Rahmann: Algorithmen auf Sequenzen

Fragestellungen

- gibt es Pattern P in Text T?
- wie oft kommt P in T vor?
- wo kommt P in T vor?

- Wie schnell?
 - Abhängig von m=|P|, n = |T|, Alphabet |Σ|
- Wie viel zusätzlicher Speicherverbrauch?

	1	2	3	4	5	6	7	8	9	10	11	12	13
T =	С	а	b	С	С	b	а	а	а	b	b	а	\$
A =	13	12	7	8	9	2	11	6	10	3	1	5	4
	\$	a \$	aaabba\$	a a b b a \$	a b b a \$	a b c c b a a a b b a \$	ba\$	baaabba\$	bba\$	bccbaaabba\$	cabccbaaabba\$	cbaaabba\$	ссb а а а b b а \$

- Konstruktion
 - Naiv mit Mergesort
 - O(n log n) Sortierzeit
 - O(n) für Stringvergleiche
 - \rightarrow O(n² log n)
 - Es geht besser in O(n)

- Größe
 - Klar: O(n)
 - Im Verhältnis zu Text?
 - Menschliches Genom $|\Sigma| = 4$; |T| = 3 GBP $\approx 2^{32}$
 - 2 Bit pro Base. 1GB Textgröße.
 - Suffixarray mit 4 Byte pro Eintrag
 - ⇒ Textgröße 1 GB, Index 16 GB

- Anwendungen
 - gibt es Pattern P in Text T?
 - Binäre Suche O(m log n)
 - m = Länge des Substrings, n = Länge des SA
 - o wie oft kommt P in T vor?
 - Binäre Suche von oben und unten, Abstand messen.
 - o wo kommt P in T vor?
 - Index hat man schon :)

Approximative Suche

- Levenshtein-Distanz
 - Einfügungen, Löschungen, Ersetzungen zählen.

b	a	n	а	n	а	
	а	n	а	n	а	S

Distanz = 2

- Idee: Erzeuge für Suchstring P alle Strings mit Distanz =
 1
- m Löschungen; |Σ|(m+1) Einfügungen;
 (|Σ|-1)m Ersetzungen
- O Suchzeit $O(m^2 |\Sigma| \log n)$ (kann auf $O(m |\Sigma| \log n)$ verbessert werden)

LCP-Array

		_		_	_				_		_	_	
	1	2	3	4	5	6	7	8	9	10	11	12	13
T =	С	а	b	С	С	b	а	а	а	b	b	а	\$
A =	13	12	7	8	9	2	11	6	10	3	1	4	5
H=		0	1	2	1	2	0	2	1	1	0	1	1
	\$	a \$	a a a b b a \$	a a b b a \$	a b b a \$	a b c c b a a a b b a	b a \$	b a a a b b a \$	b b a \$	b c c b a a a b b a \$	cabccbaaabb	c c b a a a b b a \$	c b a a a b b a \$

Suffixbaum

Suffixbaum

- Anwendungen
 - gibt es Pattern P in Text T?
 - Baum traversieren.
 - o wie oft kommt P in T vor?
 - Baum traversieren. Blätter zählen.
 - o wo kommt P in T vor?
 - Index in den Blättern speichern.

Suffixbaum

- Größe?
 - O(n) Knoten (maximal 2n)
 - n Blätter, n-1 interne Knoten, 1 Wurzel
 - Aber: Hoher Aufwand um die Struktur zu speichern
 - 20-40x Textgröße
- Kann mit Suffixarray (und ein paar zusätzlichen Datenstrukturen) simuliert werden.

Burrows-Wheeler-Transformation

	1	2	3	4	5	6	7
T=	b	а	n	а	n	а	\$
A=	7	6	4	2	1	5	3
	b	а	n	а	n	а	\$
	а	n	а	n	а	\$	b
	n	а	n	а	\$	b	а
	а	n	а	\$	b	а	n
	n	а	\$	b	а	n	а
	а	\$	b	а	n	а	n
	\$	b	а	n	а	n	а

Burrows-Wheeler-Transformation

	1	2	3	4	5	6	7
T=	b	а	n	а	n	а	\$
A=	7	6	4	2	1	5	3
	\$	b	а	n	а	n	а
	а	\$	b	а	n	а	n
	а	n	а	\$	b	а	n
	а	n	а	n	а	\$	b
	b	а	n	а	n	а	\$
	n	а	\$	b	а	n	а
	n	а	n	а	\$	b	а

Burrows-Wheeler-Transformation

- Konstruktion in O(n)
 - \circ L[i] = T[A[i]-1] T[0] = T[n]
- Vorteile
 - Gleiche Buchstaben stehen jetzt häufiger nebeneinander.
 - Da in (natürlichsprachigen) Texten oft die gleichen Buchstabenpaare auftreten.
 - => Möglichkeiten zur Kompression

BWT + Run Length Encoding

L = annb\$aa

RLE(L) = (a, 1) (n, 2) (b, 1) (\$, 1) (a, 2)

In diesem Fall kein Gewinn

BWT + Move to Front

L = annb\$aa

\$	а	b	n	1
а	\$	b	n	3
n	а	\$	b	0
b	n	а	\$	3
\$	b	n	а	3
а	\$	b	n	3
				0

Ausgabe 1303330

inverse BWT

	F			L	
1	\$			а	
2	а			n	
3	а			n	
4	а			b	
5	b			\$ -	
6	n			а	
7	n			а	

inverse BWT

Gleiche Buchstaben kommen in L und F in gleicher Reihenfolge vor

	F					L	LF
1	\$					а	2
2	а					n	6
3	а	1				n	7
4	а	*				b	5
5	b		\times	\nearrow		\$	1
6	n					а	3
7	n					а	4

inverse BWT

Gleiche Buchstaben kommen in L und F in gleicher Reihenfolge vor

T[n] = \$ T[n-1] = L[1] T[n-2] = L[LF(1)]			
T[n-i] = [F(F((LF(1))) \]	

I[n-I] = L[LF(LF(...(LF(1))...))]

Wende LF i-1 mal an

	F				L	LF
1	\$				а	2
2	а				n	6
3	а	1			n	7
4	а	*			b	5
5	b		\times		\$	1
6	n				а	3
7	n				а	4

- Definitionen
 - OCC(a, i): Anzahl der 'a's in L[1, i]
 - C[a]: Anzahl der Buchstaben, die lexikographisch kleiner als 'a' sind.

Beispiel: banana\$

	\$	а	b	n
C=	0	1	4	5

LF(i): Last-To-Front-Mapping (BWT)LF(i) = C[L[i]] + OCC(L[i], i])

Idee: Suche das Pattern rückwärts in L

	1	2	3	4	5	6	7
T=	b	а	n	а	n	а	\$
A=	7	6	4	2	1	5	3

P = ban

L=	а	n	n	b	\$	а	а
----	---	---	---	---	----	---	---

Idee: Suche das Pattern rückwärts in L

	1	2	3	4	5	6	7
T=	b	а	n	а	n	а	\$
A=	7	6	4	2	1	5	3

n

P = ban

L=	а	n	n	b	\$ а	а

Idee: Suche das Pattern rückwärts in L

	1	2	3	4	5	6	7
T=	b	а	n	а	n	а	\$
A=	7	6	4	2	1	5	3

n

P = ban

an

L= a n b \$ a a

Idee: Suche das Pattern rückwärts in L

		1	2	3	4	5	6	7
	T=	b	а	n	а	n	а	\$
	A =	7	6	4	2	1	5	3
							1	า
P = ban					n			
						ban		
	L=	а	n	n	b	\$	а	а

Idee: Suche das Pattern rückwärts in L

```
s = 1
       e = n
       s = C[P[i]] + OCC(P[i], s - 1) + 1
       e = C[P[i]] + OCC(P[i], e)
                                                                                      n
P = ban
                                                  an
                                                                    ban
                                                     b
                  a
                                         n
                                                                                        а
                                                                            a
```

- gibt es Pattern P in Text T?
 - Gerade gesehen. Laufzeit und Größe hängt direkt von OCC ab.
 - Geht in Textgröße und O(n log $|\Sigma|$) = O(n)
- wie oft kommt P in T vor?
 - Bekommt man direkt dazu.
- wo kommt P in T vor?
 - Zusätzlicher Aufwand. Zum Beispiel mit gesampeltem Suffixarray. (+ Textgröße)

Hashing

Allgemein: Hashfunktion *h* ordnet jedem beliebig langem String *s* einen String *h(s) fester Länge zu.*

Hashfunktion: Anwendungen

- Assoziatives Array
 - Hashfunktion berechnen
 - Index als Hash modulo Arraygröße berechnen

Hashfunktion: Anwendungen

- Kryptographische Hashfunktion
- Wird zur Authentifizierung oder Signierung benutzt
- Bereits kleine Änderungen bei der Eingabe erzeugen sehr unterschiedliche Ausgabe

SHA-1

Hashfunktionen: Anwendungen

- Suche nach ähnlichen Datensätzen
 Idee: eine Art Gegenteil der kryptographischen Hashfunktion
- "Ähnliche" Datensätze bekommen gleichen Hashwert

Szenenvervollständigung

Andere Anwendungen

- Ähnliche Internetseiten
- Allgemein: Ähnliche Texte

Idee

- Hochdimensionalen Vektor x aus einem Dokument konstruieren
- Anschließend alle Dokumente suchen, die entsprechend einer Distanzfunktion d(x, y) nahe beieinander liegen
 - \circ d(x, y) <= s
- Hat eine Laufzeit von O(n²), aber kann durch Hashing auf O(n) reduziert werden

Hochdimensionaler Vektor

- Bei einem Bild beispielsweise die Folge aller Pixelfarben
- Wie kann man möglichst effizient Dokumente repräsentieren?

q-gram-Index

AGGTAGATGATA, q = 2

AG	1, 5
GG	2
GT	3
TA	4, 11
GA	6, 9
AT	7, 10
TG	8

q-gram-Index

AGGTAGATGATA, q = 2

q- Gram	Index
AG	1, 5
GG	2
GT	3
TA	4, 11
GA	6, 9
AT	7, 10
TG	8

Beispiel: Suche nach AGA

Index(AG) = 1, 5

Index(GA) = 6, 9

=> AG an Stelle 5 und GA an Stelle 6 passen

q-gram

In diesem Fall war ein Token eine Nukleinbase

- Allgemein kann bei Dokumenten ein Token z.B. aber auch ein ganzes Wort sein
- Lange q-Gramme k\u00f6nnen durch Hash repr\u00e4sentiert werden

Dokumente als Menge

- Ein Dokument kann als Menge von q-Grammen repräsentiert werden
- In Form eines binären Vektors
- Dokumente mit vielen gemeinsamen q-Grammen sind sich ähnlich, auch wenn der Text nicht in der gleichen Reihenfolge vorkommt
- Wahl von q muss geschickt getroffen werden

Ähnlichkeit von Dokumenten

Jaccard-Koeffizient

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Beispiel: A = 10111; B = 10011

=> J(A, B) = 3/4

q-Gram	A	В
00	0	1
01	1	1
10	1	1
11	1	1

Problem: Matrizen sind in der Praxis nur dünn belegt

Daher: Signaturen von Spalten berechnen

Ähnliche Signaturen ⇔ Ähnliche Spalten

q-Gram	A	В
00	0	1
01	1	1
10	1	1
11	1	1

Idee

- Hashfunktion h, für die
 - \circ h(C) = h(D), wenn J(C, D) groß
 - h(C) != h(D), wenn J(C, D) klein
- Ähnliche Dokumente auf gleiche Hashwerte abbilden
- => Min-Hashing

Min-Hashing

- Berechne zufällige Permutation π der Zeilen
- Hashfunktion h_π(C) = Index der ersten Zeile gemäß π, an der die Spalte C den Wert 1 hat h_π(C) = min_π π(C)
- Einige (z.B. 100) verschiedene Hashfunktionen ergeben die Signatur einer Spalte

is the first to map to a 1 Input matrix (Shingles x Documents) Permutation π Signature matrix M 4th element of the permutation is the first to map to a 1

2nd element of the permutation

Eigenschaft

Man kann zeigen:

$$W(h_{\pi}(C) = h_{\pi}(D)) = J(C, D)$$

- Eine Zeilenpermutation einer praktischen Matrix lässt sich nicht effizient berechnen
- Daher: die Reihenfolge wird implizit auch wieder mit Hashfunktionen berechnet

Hashfunktion für Permutation

- 1. Initialisiere die Signaturmatrix überall mit ∞
- Für eine Zeile r:
- 3. Wenn r in Spalte c eine 1 hat:
- 4. Für alle Hashfunktionen:
- 5. Wenn der berechnete Wert der Hashfunktion

kleiner ist als der aktuelle Wert in der

Signaturmatrix, dann schreibe ihn in die

Signaturmatrix

Locality Sensitive Hashing

- Bisher: Signaturmatrix berechnet aber es ist immer noch zu aufwendig, alle möglichen Signaturpaare zu vergleichen
- Daher: Erneutes Hashing

Locality Sensitive Hashing

 Idee: Die Signaturmatrix wird zeilenweise in gleichgroße Bänder aufgeteilt

 Eine globale Hashfunktion wird auf jede Teilsignatur angewendet

band 1

 Gleiche Teilsignatur wird auf gleichen Wert abgebildet

band 2

Bekommen zwei verschiedene
 Signaturen den gleichen Hashwert,
 dann sind sie Kandidaten für einen
 Gleichheitstest

band 3

band 4

Locality Sensitive Hashing

- Sind sich zwei Dokumente ähnlich, so muss nicht zwingendermaßen jedes Band einen Kandidaten erzeugen
- Aber: Wegen der Ähnlichkeit ist es wahrscheinlich, dass in einem anderen Band ein Kandidat erzeugt wird
- In der Praxis muss die Bandgröße noch geschickt ausgewählt werden

Quellen

Mining of Massive Dataasets, Kapitel 3

http://infolab.stanford.edu/~ullman/mmds/ch3.pdf

außerdem:

http://matthewcasperson.blogspot.de/2013/11/minhash-for-dummies.html

http://www.stanford.edu/class/cs276b/handouts/minhash.ppt

http://nlp.stanford.edu/IR-book/html/htmledition/k-gram-indexes-for-wildcard-queries-1.html

http://en.wikipedia.org/wiki/Locality_sensitive_hashing

http://www.informatik.hu-berlin.de/forschung/gebiete/wbi/teaching/archive/ws0910/ue_algbio/aufgabe3.pdf

www.stanford.edu/class/cs246/slides/03-lsh.pdf