

-; , , ; , —

$$G = (V, E)$$
 — , k —

$$f:V\to N_k, \qquad N_k=\left\{1,2,...,k\right\},$$
 k - G .

$$(u,v) \in E f(u) \neq f(v).$$

$$k$$
-

|V| = k

$$k\text{-}$$

$$V \qquad G$$

$$V_1 \cup V_2 \cup \ldots \cup V_l = V \text{,} \qquad l \leq k \text{, } V_i \neq \varnothing \text{, } i = 1, 2, \ldots, l \text{.}$$

$$V_i$$
 —

•

$$k \text{-}$$

$$X_p\left(G\right).$$

$$X_p\left(G\right) = k \text{,} \qquad G$$

K - $X_p\left(G
ight)=k$, G

 $k=X_{p}\left(G
ight)$.

G ,

k -

1,2,3,4

.

$$K_n$$
,

 $X_p\left(K_n\right) = n$

$$K_n - e$$
,

n

$$X_p(K_n - e) = n - 1$$

 $K_{m,n}$,

3.

$$|A| = m$$
 $|B| = n$,

$$X_{p}\left(K_{m,n}\right)=2$$

,

1-2-, 2-3n, n K_m , m .

,

$$X(G) \ge c$$
, c —
 $X(G) \le c$, c —
 $X(G) < c$ —
 $X(G) \le c$, c —
 $X(G) \le c$, c

G

 $X(G) \ge \check{S}(G)$.

G

•

G s(G).

G — , a $ar{G}$ — ,

G — , a \overline{G} — , $s(G) = \check{S}(\overline{G})$.

G $X(G) \ge \frac{n(G)}{S(G)}$

G - n = n(G) - G, m = m(G) - G, $X(G) \ge \frac{n^2}{n^2 - 2m},$ (

,

,

,

 $1. \hspace{1cm} v_1, v_2, \ldots, v_i \hspace{1cm} l$

 $1,2,\ldots,l;\ l\leq i, \qquad \qquad v_{i+1}$

 v_{i+1}

1.

2.

3. 4.

4.1.

4.2.

5.

,

,

,

.4.1.-4.2.:

			_		
	•				
•					
	•			_	
•					
				•	
		,	7		
					•
•		•			

```
3.
«
          >>
procedure visit(i: integer);
begin
 if i = n + 1 then Print else
 begin
  for c := color[i]+1 to k do//k -
  if (
                               ) then
  begin color[i] := c; visit(i + 1); end else
  visit(i);
 end;
end;
```

```
«
                         G(V,E).
                        monochrom := \emptyset,
             ,
         >>
Procedure Greedy
                                            v \in V ) do
For (
                                  monochrom then
If v
begin
 color(v) := ;
monochrom := monochrom \cup \{v\}
end.
```

(2 2, 3 2 . 11 1 2, 4

$$X_p(G) \le r+1$$
,

2.
$$G$$
 $X_p(G) \le r+1, \qquad r = \max_{v \in V} (\deg(v)).$

 $r\geq 3$, $X_p\left(G
ight)\leq r$.

 K_{1n} ,

. ()) G $X_{p}\left(G\right) \leq 6.$

•

$$X_p\left(G\right) \leq 5$$
.

4- .

1976 (Kenneth Appel and Wolfgang Haken. Every Planar Map is Four Colorable. Contemporary Mathematics 98, American Mathematical Society, 1980).

 $v_1, v_2, ..., v_8.$

 $a_1, a_2, ..., a_6$.

•

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
a_1	+		+				+	+
a_2		+		+				
a_3			+			+	+	
a_4	+	+		+	+			
a_5			+		+			+
a_6					+	+		+

. 1 .

!

 $\begin{matrix} \boldsymbol{G} \,, \\ \boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_8, \\ \end{matrix}$

$$V_1, V_2, V_4, V_5$$
 $G,$ $X\{G\} \ge 4.$ $X(G).$

G, 1- v_1 v_6 , 2- v_2 v_3 , 3- v_4 v_8 , 4- v_5 v_7 .

	$ v_1 $	v_2	v_3	$ v_4 $	v_5	v_6	$ v_7 $	v_8
a_1	+		+				+	+
a_2		•		+				
a_3			+			+	+	
a_4	+	+		+	+			
a_5			-		+			<u>+</u>
a_6					+	-		<u>+</u>

 3. , **» «**

: 1 2. 1. 2. . , . Y, . Z. , **« >>** ,

,

•

B1 B2 M2 M1

1, 2, 1 2

, K_4 .

, . 4

	1	2
1	•	•
2	•	•
3	•	•
4		•

