Knowledge Distillation on Neural networks

- Poornima Devi Krishnasamy Karthikeyan -

Contents:

- Introduction
- Knowledge Distillation (KD)
 - Types of Knowledge Distillation
 - Knowledge Distillation Schemas
- Methodology
 - Terms
 - Hybrid approach
 - Loss function
- Dataset information
- Implementation :
 - Teacher model Resnet50
 - Student model Resnet18
 - Hyperparameter tuning
 - Student model without KD
- Results

Introduction:

Problem:

Large deep learning models

 high accuracy and cost. Real-world deployment
 smaller, faster models.

Goal:

- Knowledge distillation © lighter models for resource constraint deployment without losing the performance.
 - Transferring knowledge from a large model (Teacher) to a small model (Student).

Dataset Information:

CIFAR-10:

- 5000 training images
- 1000 validation images
- 2 x 32 x 32 images
- 10 classes

Knowledge distillation schemes:

Offline distillation method is used for the further implementation of KD

Types of Knowledge Distillation:

Methodology: Terms

Softmax:

• raw logits © probability distribution [0.95, 0.02, 0.01, 0.01, 0.01] © Not informative beyond the top prediction.

$$P_i = rac{e^{z_i}}{\sum_j e^{z_j}}$$

Temperature (T):

Softens the probability output from softmax [0.85, 0.05, 0.04, 0.03, 0.03]

$$\frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

Higher T → softer, more informative distribution

Methodology: Terms

Soft Labels:

• Teacher's output probabilities [0.4, 0.3, 0.2, 0.1] [€] richer info than just the correct class.

Hard Labels:

• One-hot true labels [1, 0, 0, 0]) [€] standard classification loss

Alpha (α):

- Controls the balance between:
 - Distillation loss (soft labels)
 - Classification loss (hard labels)

Methodology - Knowledge Distillation (KD):

Modél architecture:

- Teacher: large pre-trained model (ResNet50) + fine tuned to CIFAR
 10
- Student : (ResNet18)

How I trained my student model:

Hybrid Approach = response based KD + feature based KD

- soft outputs 4 teacher
- Hard

Response based KD

Feature based KD

Methodology – Loss function

Loss Components:

- Distillation Loss: KL divergence loss
- Classification Loss: Cross entropy loss
- Feature Loss: MSE

Total Loss:

 $\mathcal{L} = \alpha \times \text{Distillation Loss} + (1 - \alpha) \times \text{Classification Loss} + 0.1 \times \text{Feature loss}.$

Hyperparameters:

- Temperature: *T*
- Weight Balance: α
- Feature Weight: $\lambda = 0.1$

Implementation – Teacher model

Input ResNet50 (Teacher) extracts Soft Targets + Intermediate Features information

Implementation – Teacher student

Teacher student: after projection [64,128,256,512]

- FeatureProjector © class aligns the teacher's feature maps to the student's feature map.
- 1x1 conv to project teachers features from in_channels (teacher channels) down to out_channels (student channels), to match the channel dimensions.

```
# define the intermediate feature channels for both teacher and student
student_channels = [64, 128, 256, 512]
teacher_channels = [256, 512, 1024, 2048]

# create projection layers to align teacher's feature maps with student's feature maps
proj_layers = [
    FeatureProjector(in_c, out_c).to(device)
    for in_c, out_c in zip(student_channels, teacher_channels)
]
```

Implementation – student model tuned

Input ResNet18 learns from soft targets + feature loss (intermediate features) + hard

Hyperparameter tuning:

```
Tuning www. two ways
```

- T , α **fixed** values.
- T, α scheduling through exponential decay

Hyperparameter (fixed):

- T = 0.5
- $\alpha = 0.7$

Hyperparameter (scheduling):

- T = 0.5, 0.3, 0.95
- $\alpha = 0.8, 0.5, 0.95$

scheduling improved the model accuracy than fixed values

Implementation – student model without KD

Input ResNet18 (trained from scratch) predictions (cross entropy loss)

Results:

Model	Architecture	Accuracy (%)	Parameters (M)	Latency (ms)
Teacher	ResNet50	85.11	23.5	8.72
Student distilled (tuned)	ResNet18	78.6	11.18	3.90
Student distilled	ResNet18	76.8	11.18	4.10
Student without KD	ResNet18	75.06	11.18	4.70

Thank you.