

SPRING MASS OSCILLATIONS

Experiment No. 1 (Procedure)

Procedure: -

- 1. Set the spring mass system into oscillation and acquire the data digitally. Store the data of time and displacement in a file (Excel in our case).
- 2. Plot the displacement versus time curve.
- 3. Find the time period T_D of the damped oscillations. Calculate $f_D = \frac{1}{T_D}$ and $w_D = 2\pi f_D$.
- 4. Calculate
 - $\delta = \left(\frac{i}{j}\right) \ln \left(\frac{u_i}{u_{i+j}}\right)$ by assuming an appropriate value of j and hence determine ζ . Calculate $w_n = \frac{w_D}{\sqrt{1-\zeta^2}}$.
- 5. Identify u (0) from the data. Calculate v (0) by calculating slope from $\dot{u}(0) = \frac{u(t_1) u(0)}{t_1 0} \, .$
- 6. Calculate u_0 and Φ_0 .
- 7. Plot u(t) from the obtained parameters on the same graph as the raw data. Also plot the envelop $u_0e^{-\zeta w_n t}$ and $-u_0e^{-\zeta w_n t}$. Comment on the deviations between the raw data and the theoretical curve which arises due to experimental error.
- 8. Find the velocity and acceleration numerically and plot it versus time.
- 9. Note the poor quality of velocity and acceleration graphs which highlights the importance of data quality.

Observations: - Copy the time versus displacement data into an Excel sheet.

Results: - Write the results and conclusion in the Excel sheet.