

Week 3

After this lecture, you will:

- Understand the challenges of **Topic Modeling**
- Know about LDA, BERTopic

Previously in Text Representations

Lexical Representations

- Vocabulary
- 1 dimension = 1 item of the vocabulary
- Preprocessing (lemmatizing, stemming, stopping, ...)
- Raw Counts or TF-IDF
- Text = assembly of words

Semantic Representations

Semantic = **deals** with meaning

- **Text** = mix of **topics** ("science", "business", "sport", ...)
- These **topics** are responsible for the **terms** that appear

Problem

Problem

"How did Vogue Magazine talk about Health?"

- Without reading 100,000 articles
- Which words?

• How many articles?

Idea 1

Classify articles

- Split each article into topics:
 - Is it about health?
 - Is it about fashion?
 - Is it about cooking?
 - •

No nuance... and I need to read articles

Idea 2

Describe articles

- Split each article into topics:
 - How much % about health?
 - How much % about fashion?
 - How much % about cooking?
 - Etc...

Better... but I need to read articles

Idea 3

Topics have keywords, articles on a topic use them

TOPICS

FLU TIRED BLOAT

HEALTH

KEYWORDS

Result

"How did Vogue Magazine talk about Health?"

• Which words?

How many articles?

Result

"How did Vogue Magazine talk about Health?"

• Top articles on "Health" (titles only)

"Q&A: The pill" (Dec 1987) – 99% about health

"Facts on Fat: Obesity" (Aug 1979)

"Inner info: Contraception" (Aug 1978)

"Crash Diets Don't Work" (Aug 1979)

Topic Modeling

TOPIC

- Weighted list of terms (word / n-gram / stem ...)
 - High weight = important term | Words
 - Low weight = minor term

Topic Modeling

DOCUMENT

Weighted list of topics

- Vector representation:
 - 1 dimension = 1 topic
 - Coefficient = weight of topic in document

Semantic Representations

Challenge

- Discover the topics from text
- We will see 1 technique:
 - Latent Dirichlet Allocation (LDA)
 - Blei et al. "Latent Dirichlet Allocation", 2003 (Journal of Machine Learning Research) PDF

LDA

- Discover the topics from text
- Generative Model
- The Bag of Word is generated by random process
- Process:
 - 1 document = sum of weighted topics
 - 1 topic = probability distribution over dictionary

Machine Learning

LDA – Generate New Document

- K (number of topics) is a hyperparameter
- α is a parameter
- β is a parameter

Draw N = number of words in document

Draw Topic distribution

- From **Dirichlet** distribution
- With parameter α
- [0.1, 0.4, 0.3, 0.2]

LDA – Generate New Document

Repeat N times:

Draw a topic (use Topic Distribution)

Draw ONE word from this topic

(use word weights in topic = parameter β)

READY

• We have the **Bag of Words** of the document

LDA – Generate New Document

- **K** (number of topics) is a **hyperparameter** (integer number)
- α is a parameter (vector with Kdims)
- β is a parameter (matrix $V \times K$)
 - $\beta_{i,j}$ = weight of word w_i in topic j
- Draw from **Dirichlet** distribution
 - 1 draw = K numbers $\theta_1, \theta_2, ..., \theta_k$
 - Sum of all numbers equal 1
 - $\theta_1 + \theta_2 + \dots + \theta_k = 1$
 - E.g. with K = 3: [0.3, 0.6, 0.1]

LDA - Generation

	Topic "SPORT"	Topic "BUSINESS"
Word 1	football (0.4)	revenue (0.6)
Word 2	ronaldo (0.2)	tax (0.2)
Word 3	goal (0.2)	benefit (0.1)
Word 4	score (0.2)	grow (0.1)
Word 5	tax (0.00001)	goal (0.001)
Word 6	revenue (0.00001)	score (0.0000001)
Word 7	grow (0.000001)	ronaldo (0.000001)
Word 8	benefit (0.00000001)	football (0.00000001)

LDA - Generation

- Document
 - 6 words
 - 0.67 "Sport" + 0.33 "Business"
- Bag of Words:
 - 67% of the time we draw from "Sport"
 - 33% of the time we draw from "Business"
 - **SPORT:** <u>football</u>: 1, <u>ronaldo</u>: 1, <u>goal</u>: 1, <u>score:</u> 1
 - BUSINESS: <u>revenue</u>: 1, <u>grow</u>: 1
- "Football star Ronaldo's revenue grows as he scores many goals."

Where are the topic names ??

LDA – Topic Labeling

TOPICS

KEYWORDS

Machine Learning

ARTICLES

LDA – Topic Labeling

TOPICS

KEYWORDS

Machine Learning

ARTICLES

TAX + REVENUE + EBITDA...

MUST BE SOMETHING ABOUT "BUSINESS"

LDA - Learning

- Given a collection of documents
- Given a **number of topics**
- Learn the distribution of topics in documents
- Learn the distribution of words in topics

LDA – Hyperparameter Evaluation

• \mathbf{K} = additional Hyperparameter for GridSearchCV

LDA – Hyperparameter Evaluation

Intrinsic Evaluation

- Topic Coherence metrics: Umass, CV, UCI
- Model Perplexity
- Try multiple values of K
- Select highest coherence (lowest perplexity)

LDA - Learning

- Discover Distribution
 - Of topics in documents
 - Of words in topics
- Machine Learning task
 - Python implementation in gensim or sklearn
 - Details of the learning task are out of scope

LDA

See the notebook "LDA"

Modern Topic Modeling

BERTopic

- Same Conceptual Framework
 - 1 topic = weighted words
 - 1 document = weighted topics

• Getting it through different method

Modern Topic Modeling

BERTopic

- https://maartengr.github.io/BERTopic/index.html
- Grootendorst "BERTopic: Neural topic modeling with a class-based TF-IDF procedure", 2022 Paper

- 1. Transform documents in vectors
- 2. Cluster vectors : 1 cluster = 1 topic
- 3. Word weights in topics = TF-IDF
 - 1 cluster = 1 document (concatenate all docs in cluster)
- 4. (optional) Use LLM to generate topic label

Modern Topic Modeling

BERTopic

BERTopic

Clustering

• 6 clusters

Create Cluster-Based Corpus (CBC)

- 1 cluster = 1 doc
- CBC = 6 docs

BERTopic

Word Weights

• CBC = 6 documents

- Word w / Topic k
- $w_k = \text{tfidf}(w, d_k, CBC)$

Topic Probability Distribution

BERTopic

• See the notebook "BERTopic"

Similarity Matrix

Take Away

- Document = Topics * Words
- **Topic Modeling** = learn from documents
- LDA
 - Statistical Learning
 - Human labeling
- Bertopic
 - Clustering

Prepare Tutorial

- Read these slides
- Understand the "by heart" concepts
- Run the attached notebooks
- Update your Python Env if needed

