МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А.И. ГЕРЦЕНА»

Направление подготовки

09.03.01 – Информатика и вычислительная техника
Профиль «Технологии разработки программного обеспечения»

Лабораторная работа №1

«Построение и исследование компьютерных моделей с использованием дифференциальных уравнений»

Работу выполнил студент 2 курса 2-1 группы: Воложанин Владислав Олегович

САНКТ-ПЕТЕРБУРГ

Лабораторная работа №3

Численные методы решения дифференциальных уравнений

Часть 1

Код для метода Эйлера (взять в ЛР №4 по дисциплине «вычислительная математика»).

```
def eiler(x0, y0, a, b, n, f:str, colresh):
    count = 0
    h = (b - a) / n
    x = x0
    y = y0
    while (x < b) and (count < colresh):
        y = y + h * eval(f)
        x = x + h
        print('x = ', round(x, 5), ' y = ', round(y, 5))
        count = count + 1</pre>
```

Задача 1 (остывание кофе):

Природа переноса тепла от кофе к окружающему пространству сложна и включает в себя механизмы конвекции, излучения, испарения и теплопроводности. Исследовать зависимости остывания кофе в чашке при следующих данных t среды = 22, t жидкости = 83, коэффициент остывания r = 0,0373

$$\frac{dT}{dt} = -r(T - T_s)$$

Т – Температура тела

Ts – Температура окружающей среды

R – Коэффициент остывания

Математическая модель:

$$\frac{dT}{dt} = -r(T - T_s)$$

Т – Температура тела

Ts – Температура окружающей среды

R – Коэффициент остывания

Полученные результаты:

Где

х – это время в минутах

у – это температура в градусах Цельсия.

График остывания кофе:

график остывания кофе

Задача 2 (распад радия):

Установлено, что скорость распада радия прямо пропорциональна его количеству в каждый данный момент. Определить закон изменения массы радия в зависимости от

времени, если t = 0, масса радия была m0, k = 0,00044. Найти период полураспада радия.

Математическая модель:

$$\frac{dm}{dt} = -km$$

Полученные значения:

X	У
50	0,00978
100	0,00956
150	0,00935
200	0,00915
250	0,00895
300	0,00875
350	0,00856
400	0,00837
450	0,00819
500	0,00801
550	0,00783
600	0,00766
650	0,00749
700	0,00732
750	0,00716
800	0,00701
850	0,00685
900	0,0067
950	0,00655
1000	0,00641
1050	0,00627
1100	0,00613
1150	0,006
1200	0,00586
1250	0,00573
1300	0,00561
1350	0,00548
1400	0,00536
1450	0,00525
1500	0,00513
1550	0,00502

Задача 3.

Проходя через лес и испытывая сопротивление деревьев, ветер теряет часть своей скорости. На бесконечном малом пути эта потеря пропорциональна скорости в начале этого пути и длине его. Найти скорость ветра, прошедшего в лесу 150м, зная, что до вступления в лес начальная скорость ветра v0 = 12 м/c; после прохождения в лесу пути s = 1м, скорость ветра уменьшилась до величины v1 = 11.8 м/c.

Математическая модель:

$$\frac{dV}{dx} = -kV$$

Полученные значения:

Х	у
1	11,76
2	11,5248
3	11,2943
4	11,06842
5	10,84705
6	10,63011
7	10,41751
8	10,20916
9	10,00497
10	9,80487
11	9,60878

12	9,4166
13	9,22827
14	9,0437
15	8,86283
16	8,68557
17	8,51186
18	8,34162
19	8,17479
20	8,0113
21	7,85107
22	7,69405
23	7,54017
24	7,38936
25	7,24158
26	7,09675
27	6,95481
28	6,81571
29	6,6794
30	6,54581
31	6,4149
32	6,2866
33	6,16087
34	6,03765
35	5,9169
36	5,79856
37	5,68259
38	5,56893
39	5,45756
40	5,3484
41	5,24144
42	5,13661
43	5,03388
44	4,9332
45	4,83453
46	4,73784
47	4,64309
48	4,55023
49	4,45922
50	4,37004

51	4,28264
52	4,19698
53	4,11304
54	4,03078
55	3,95017
56	3,87116
57	3,79374
58	3,71787
59	3,64351
60	3,57064
61	3,49922
62	3,42924
63	3,36066
64	3,29344
65	3,22757
66	3,16302
67	3,09976
68	3,03777
69	2,97701
70	2,91747
71	2,85912
72	2,80194
73	2,7459
74	2,69098
75	2,63716
76	2,58442
77	2,53273
78	2,48208
79	2,43243
80	2,38379
81	2,33611
82	2,28939
83	2,2436
84	2,19873
85	2,15475
86	2,11166
87	2,06943
88	2,02804
89	1,98748

90	1,94773
91	1,90877
92	1,8706
93	1,83318
94	1,79652
95	1,76059
96	1,72538
97	1,69087
98	1,65705
99	1,62391
100	1,59143
101	1,55961
102	1,52841
103	1,49785
104	1,46789
105	1,43853
106	1,40976
107	1,38157
108	1,35393
109	1,32686
110	1,30032
111	1,27431
112	1,24883
113	1,22385
114	1,19937
115	1,17538
116	1,15188
117	1,12884
118	1,10626
119	1,08414
120	1,06245
121	1,04121
122	1,02038
123	0,99997
124	0,97997
125	0,96037
126	0,94117
127	0,92234
128	0,9039

129	0,88582
130	0,8681
131	0,85074
132	0,83373
133	0,81705
134	0,80071
135	0,7847
136	0,769
137	0,75362
138	0,73855
139	0,72378
140	0,7093
141	0,69512
142	0,68121
143	0,66759
144	0,65424
145	0,64115
146	0,62833
147	0,61576
148	0,60345
149	0,59138
150	0,57955

График:

Задача 4.

В цепи поддерживается напряжения E = 300 В. В сопротивлении цепи R = 150 Ом. Коэффициент самоиндукции равен L = 30 Гн. За какое время с момента замыкания цепи, возникающие в ней ток 1 достигнет 99% своей предельной величины.

Математическая модель:

$$\frac{dt}{dI} = \frac{L}{\varepsilon - IR}$$

Полученные значения:

Х	У
0,01	0,001
0,02	0,00201
0,03	0,00302
0,04	0,00403
0,05	0,00505
0,06	0,00608
0,07	0,00711
0,08	0,00814
0,09	0,00919
0,1	0,01023
0,11	0,01129
0,12	0,01234
0,13	0,01341
0,14	0,01448
0,15	0,01555
0,16	0,01663
0,17	0,01772
0,18	0,01881
0,19	0,01991
0,2	0,02102
0,21	0,02213
0,22	0,02325
0,23	0,02437
0,24	0,0255
0,25	0,02663

0,26	0,02778
0,27	0,02893
0,28	0,03008
0,29	0,03125
0,3	0,03242
0,31	0,03359
0,32	0,03478
0,33	0,03597
0,34	0,03716
0,35	0,03837
0,36	0,03958
0,37	0,0408
0,38	0,04203
0,39	0,04326
0,4	0,0445
0,41	0,04575
0,42	0,04701
0,43	0,04828
0,44	0,04955
0,45	0,05083
0,46	0,05212
0,47	0,05342
0,48	0,05473
0,49	0,05605
0,5	0,05737
0,51	0,0587
0,52	0,06005
0,53	0,0614
0,54	0,06276
0,55	0,06413
0,56	0,06551
0,57	0,0669
0,58	0,06829
0,59	0,0697
0,6	0,07112
0,61	0,07255
0,62	0,07399
0,63	0,07544
0,64	0,0769

0,65	0,07837
0,66	0,07985
0,67	0,08134
0,68	0,08285
0,69	0,08436
0,7	0,08589
0,71	0,08743
0,72	0,08898
0,73	0,09054
0,74	0,09211
0,75	0,0937
0,76	0,0953
0,77	0,09691
0,78	0,09854
0,79	0,10018
0,8	0,10183
0,81	0,1035
0,82	0,10518
0,83	0,10687
0,84	0,10858
0,85	0,11031
0,86	0,11205
0,87	0,1138
0,88	0,11557
0,89	0,11736
0,9	0,11916
0,91	0,12098
0,92	0,12281
0,93	0,12466
0,94	0,12653
0,95	0,12842
0,96	0,13032
0,97	0,13225
0,98	0,13419
0,99	0,13615

Где х – ток, у – время.

График:

Вывод: Научились использовать дифференциальные уравнения для решения задач. Реализовывать эти задачи с помощью языка Python.