САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Дисциплина: Архитектура ЭВМ

Отчет

по домашней работе № 1

«ПОСТРОЕНИЕ ЛОГИЧЕСКИХ СХЕМ И МИНИМИЗАЦИЯ ЛОГИЧЕСКИХ ФУНКЦИЙ»

Выполнил: Султанов Мирзомансурхон Махсудович

Номер ИСУ: 311629

студ. гр. М3134

Санкт-Петербург

2021

Цель работы: моделирование простейших логических схем и минимизация логических функций методом карт Карно.

Инструментарий и требования к работе: работа выполняется в logisim.

Теоретическая часть

Карты Карно — это графическое представление таблиц истинности логических функций. В таблице содержится 2^n ячеек, где n — число логических переменных. Карта размечается системой координат, соответствующих значениям входных переменных. При этом для координат столбцов и строк используется код Грея, т.е. входные переменные идут таким образом, чтобы соседние наборы отличались лишь одной цифрой в каком-либо разряде. При этом таблица представляет собой тор, т.е. верхняя и нижняя строки являются "соседними", левый и нижний столбцы так же являются "соседними". Пример карты Карно можно увидеть на рисунке 1.

Рисунок 1 – Пример таблицы карты Карно для 4 переменных

Алгоритм минимизации функций КНФ аналогичен алгоритму для ДНФ, нужно лишь работать с нулями вместо единиц и вместо дизъюнкции конъюнкций использовать конъюнкцию дизъюнкций. Для минимизации логических функций ДНФ нужно проследовать следующему алгоритму:

1. Выделяем смежные клетки, содержащие только единицы, в прямоугольники, которые содержат 2ⁿ ячеек, где n — неотрицательное целое число. При этом нужно помнить, что крайние строки и столбцы являются соседними между собой;

- 2. Площадь прямоугольников должна быть как можно больше, а количество прямоугольников как можно меньше;
- 3. Прямоугольники могут пересекаться и возможно несколько вариантов покрытия.

Далее берём первый прямоугольник и смотрим какие переменные не меняются в пределах этой области, выписываем конъюнкцию этих переменных, если неменяющаяся переменная нулевая, проставляем над ней инверсию. Берём следующий прямоугольник, выполняем то же самое что и для первого, и т. д. для всех прямоугольников. Конъюнкции областей объединяем дизъюнкцией. Примеры использования карт Карно для функции с двумя переменными можно увидеть на рисунке 2.

Рисунок 2 – Примеры использования карт Карно

Так, например, для карты Карно на рис. 1 выражение в формате ДНФ будет иметь вид:

$$F(x_1, x_2, x_3, x_4) = s_1 | s_2 | s_3 = \overline{x}_2 \& \overline{x}_4 | \overline{x}_1 \& \overline{x}_4 | x_1 \& x_2 \& x_4$$

Практическая часть

Заданная вектор-функция: 100100101010101. Ниже представлены таблица истинности (см. таблицу 1) и ЛФ для данной функции. Для удобства записи ЛФ в виде формулы переопределим наши аргументы х3,

x2, x1, x0 в x, y, z, t. В логической схеме будем всё так же использовать x3, x2, x1, x0.

Таблица 1 – Таблица истинности для данной вектор-функций

x (x3)	y (x2)	z (x1)	t (x0)	F(x, y, z, t)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

ЛФ в СДНФ по заданной вектор-функции:

$$F(x, y, z, t) = (\overline{x} \& \overline{y} \& \overline{z} \& \overline{t}) | (\overline{x} \& \overline{y} \& z \& t) | (\overline{x} \& y \& z \& \overline{t}) | (x \& \overline{y} \& \overline{z} \& \overline{t}) | (x \& y \& z \&$$

ЛФ в СКНФ по заданной вектор-функции:

$$F(x, y, z, t) = (x \mid y \mid z \mid \overline{t}) & (x \mid y \mid \overline{z} \mid t) & (x \mid \overline{y} \mid z \mid t) & (x \mid \overline{y} \mid z \mid \overline{t}) & (x \mid \overline{y} \mid \overline{z} \mid \overline{t}) \\ \overline{t}) & (\overline{x} \mid y \mid z \mid \overline{t}) & (\overline{x} \mid y \mid \overline{z} \mid \overline{t}) & (\overline{x} \mid \overline{y} \mid z \mid \overline{t}) \\ \end{array}$$

Теперь построим схему для СКН Φ согласно варианту (см. рис. 3):

Рисунок 3 — Схема из функциональных элементов для СКНФ

Теперь составим карту Карно (см. таблицу 2) и проследуем алгоритму из теории:

Таблица 2 – Карта Карно данной функции

Zt		00	01	11	10
xy	00	1	0	1	0
	01	0	0	0	1
	11	1	0	1	1
	10	1	0	0	1

МКНФ:

Разобьём таблицу на прямоугольники из нулей так, чтобы количество прямоугольников было минимальным, а их площади максимальными и при этом являлся степенью двойки. Затем для каждого прямоугольника построим соответствующие им дизъюнкции и объединим их конъюнкцией. Результат разбиения можно увидеть на рисунке 4.

zt		00	01	11	10
xy	00	1	0	1	0
	01	0	0	0	1
	11	1	0	1	1
	10	1	0	0	1

Рисунок 4 – Таблица карты Карно для МКНФ

$$\mathbf{S2} = \mathbf{x} \mid \overline{\mathbf{y}} \mid \mathbf{z} \qquad \mathbf{S4} = \overline{\mathbf{x}} \mid \mathbf{y} \mid \overline{\mathbf{t}}$$

$$F(x, y, z, t) = S1 & S2 & S3 & S4 & S5 = (z \mid \overline{t}) & (x \mid \overline{y} \mid z) & (x \mid \overline{y} \mid \overline{t}) & (\overline{x} \mid y \mid \overline$$

МДНФ:

Аналогично, как и в предыдущем случае, разобьём таблицу на прямоугольники уже из нулей так, чтобы количество прямоугольников было минимальным, а их площади максимальными и при этом являлись степени двойки. Затем для каждого прямоугольника построим соответствующие им конъюнкции и объединим их дизъюнкцией. Результат разбиения на рисунке 5.

zt		00	01	11	10
xy	00	1	0	1	0
	01	0	0	0	1
	11	1	0	1	1
	10	1	0	0	1

Рисунок 5 – Таблица карты Карно для МДНФ

$$S1 = x \& \overline{t}$$
 $S3 = x \& y \& z$ $S5 = \overline{x} \& \overline{y} \& z \& t$

$$\frac{S2}{S2} = y \& z \& \overline{t} \qquad \frac{S4}{S4} = \overline{y} \& \overline{z} \& \overline{t}$$

 $F(x, y, z, t) = S1 \mid S2 \mid S3 \mid S4 \mid S5 = (x \& \overline{t}) \mid (y \& z \& \overline{t}) \mid (x \& y \& z) \mid (\overline{y} \& \overline{z} \& \overline{t}) \mid (\overline{x} \& \overline{y} \& z \& t)$

Построим теперь МДН Φ на логической схеме согласно условию задачи (см. рис. 6):

Рисунок 6 – Схема из функциональных элементов для МДНФ

Как можно заметить из схем, количество элементов при минимизации уменьшилось существенно. Также замечу, что при построении конъюктов или дизъюнктов длиной n + 1 можно использовать уже построенные конъюкты или дизъюнкты длиной n, а не строить их заново, как это сделал в некоторых местах я. Тогда в таком случае нам бы потребовалось ещё бы меньше функциональных элементов, но наглядность построения СКНФ и МДНФ была бы потеряна. Ещё одно важное замечание: вместо последовательного объединения в конъюкцию или дизъюнкцию можно было сделать это деревом отрезков. Тогда бы количество функциональных элементов не изменилось бы, но зато уменьшилась бы глубина схемы.