Submitted to Canvas, due at 11:59pm on Feb. 6, 2018.

1. Use Insertion Sort on array A and show the numbers and their position in the Array for each Iteration; also show the "key" position in each iteration.

Name: KEY

$$A = \{3,1,4,1,5,9,2,6\}$$

Answer:

3	1	4	1	5	9	2	6	<- Swap A[0] and A[1]
1	3	4	1	5	9	2	6	<- No swap needed
1	3	4	1	5	9	2	6	<- Swap A[2] & A[3] and insert A[2] into A[1] and shift elements
1	1	3	4	5	9	2	6	<- No swap needed
1	1	3	4	5	9	2	6	<- No swap needed
1	1	3	4	5	9	2	6	<- Swap A[5] and A[6] and insert A[6] into A[2] and shift elements
1	1	2	3	4	5	9	6	<- Swap A[6] and A[7], no insertion necessary.
1								<- The list is now sorted

2. Use Bubble Sort on the following letters to sort it alphabetically and give each outer step with i and j.

{STRAIGHT}

Before	i	j	
STRAIGHT	S	T	No swap
STRAIGHT	T	R	Swap
SRTAIGHT	Т	Α	Swap
SRATIGHT	Т	1	Swap
SRAITGHT	Т	G	Swap
SRAIGTHT	Т	Н	Swap
SRAIGHTT	Т	T	Swap
SRAIGHTT	S	R	Swap
RSAIGHTT	S	Α	Swap
RASIGHTT	S	1	Swap
RAISGHTT	S	G	Swap
RAIGSHTT	S	Н	Swap
RAIGHSTT	S	T	No swap
RAIGHSTT	R	Α	Swap
ARIGHSTT	R	l l	Swap
AIRGHSTT	R	G	Swap

AIGRHSTT	R	Н	Swap
AIGHRSTT	R	S	No swap
AIGHRSTT	Α	-	No swap
AIGHRSTT	1	G	Swap
AGIHRSTT	1	Η	Swap
AGHIRSTT	1	R	No swap
AGHIRSTT	Α	G	No swap
AGHIRSTT	G	Н	No swap
AGHIRSTT	Н	1	No swap
AGHIRSTT	I	R	No swap
AGHIRSTT	R	S	No swap
AGHIRSTT	S	T	No swap
AGHIRSTT	Т	T	No swap
AGHIRSTT	-	-	Sorted

3. What is the number of basic steps executed by the following method (as a function of n)? What is the big-O of the method?

```
Public int howLongA(int n) { int \ k = 0, \ kk = 0; \\ for(int \ i = 0; \ i < n/2 \ ; \ i++) \ \{ \\ k++; \\ for(int \ j = 0; \ j < n/2; \ j++) \\ kk++; \\ \} \\ return \ k^*kk; \\ \}
```

4. Using Figure 6.4 in the textbook as a model, illustrate the operation of HEAPSORT on the array:

$$A = \{3,1,4,1,5,9,2,6,5\}$$

- 5. **Analysis of tertiary heaps:** A ternary heap is like a binary heap, non-leaf nodes have 3 children instead of 2 children.
- a. How would you represent a ternary heap in an array?

Solution #1(Index starts a 1):

A binary heap is a special case of a d-ary heap where d=2. We can extend the properties of d-ary heap to any abitrary number. In this case where d=3, we can then use the following formulae for representing the ternary heap in an array:

- Root = Floor[(k+1)/3]
- Left Child = 3*k-1
- Center Child = 3*k
- Right Child = 3*k+1

Solution #2(Index starts at 0):

- Root = ((i-2)/3) + 1
- Left Child = 3(i-1)+2
- Center Child = 3(i-1)+3
- Right Child = 3(i-1)+4

a. What is the height of a ternary heap of n elements in terms of n? **Answer:**

$h = log_3 n$

- b. What is the height of a ternary heap of n elements in terms of n?
- c. Give an efficient implementation (in pseudo code) of EXTRACT-MAX in a tertiary max-heap. Analyze its running time in terms of n.

Answer:

HeapExtract-Max(A)	
if A.heap-size < 1	O(1)
error "heap underflow"	O(1)
$\max = A[1]$	O(1)
A[1] = A[A.heap-size]	O(1)
A.heap-size = $A.heap$ -size-1	O(1)
Max-Heapify(A,1)	$O(\log_3 n)$
return max	Total O(log ₃ n)

d. Give an efficient implementation (in pseudo code) of INSERT in a ternary maxheap. Analyze its running time in terms of n.

Answer:

Heap-Insert(A, key)	
A.heap-size++	O(1)
i = A.heap-size(A)	O(1)
$A[i] = -\infty$	O(1)
HeapChangeKey(A, i, key)	$O(\log_3 n)$
	Total $O(\log_3 n)$

e. Give an efficient implementation (in pseudo code) of INCREASE-KEY(A,i,k), which flags an error if k < A[i], but otherwise sets A[i] = k and then updates the ternary maxheap structure appropriately. Analyze its running time in terms of n.

Answer:

HeapIncrease-Key(A, i, key)	
A[i] = key	O(1)
while $(i > 1 \text{ and } A[parent(i)] < A[i])$	O(1)
swap(A[i], A[parent(i)])	$O(\log_3 n)$
	$O(\log_3 n)$ Total $O(\log_3 n)$