一、选择题

题号	1	2	3	4	5	6	7	8
答案	D	C	В	D	D	D	D	В

二、填空题

题号	答案	题号	答案		
9	8 m, 10 m	10	$h_1 v / (h_1 - h_2)$		
11	$v_0 + Ct^3/3$, $x_0 + v_0t + \frac{1}{12}Ct^4$	12	23 m/s		
13	5 m/s, 17 m/s	14	0.1 m/s^2		
15	B, $(A^2/R)+4\pi B$	16	$50(-\sin 5t \vec{i} + \cos 5t \vec{j})$ m/s, 0, $x^2+y^2=10^2$		

三、计算题

17. 解:设质点在x处的速度为v,

$$a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = \frac{dv}{dx} \cdot v = 4 + 12x^{2}$$

$$\int_{2}^{v} v \, dv = \int_{0}^{x} (4 + 12x^{2}) \, dx$$

$$\frac{1}{2}v^{2} - \frac{1}{2} \cdot 2^{2} = 4x + 12 \cdot \frac{1}{3}x^{3}$$

$$v = 2(2x^{3} + 2x + 1)^{1/2}$$

18. 解: 质点的速率 v = ds/dt = 2 + 4t 质点切向加速度大小 $a_t = dv/dt = 4$ 质点法向加速度大小 $a_n = v^2/R = (2 + 4t)^2/16$ 根据题意 $a_t = a_n$ 有: $4 = (2 + 4t)^2/16$ 即 8 = 2 + 4t 解得 t = 1.5 s

19. 解:根据已知条件确定常量
$$k$$
 $k = \omega/t^2 = v/(Rt^2) = 4 \text{rad}/s^2$ 角速度 ω 与时间 t 的函数关系为: $\omega = 4t^2$ 质点的线速度表达式为: $v = R\omega = 4Rt^2$ $t = 1s$ 时, $v = 4Rt^2 = 8$ m/s $a_t = dv/dt = 8Rt = 16m/\text{s}^2$ $a_n = v^2/R = 32m/\text{s}^2$ 因此, $a = \left(a_t^2 + a_n^2\right)^{1/2} = 35.8$ m/s²