Chapter 7

Homework 21935004 谭焱

7.1 第十三次作业

Problem 7.1. 计算 $\mathbb{R}^n - e_r(n > 0)$ 的同调群, 其中 e_r 是 I_r 在 \mathbb{R}^n 中的同胚象.

Solution. 因为 \mathbb{R}^n 同胚于 S^n-N , N 为 S^n 中的一点, 因此 S^n-N 中存在子集 e'_r 同胚于 e_r . 令 $X_1:=S^n-N$, $X_2:=S^n-e'_r$, 由上定义知 $N\in S^n-e'_r$, $e'_r\in S^n-N$, 所以 $X:=X_1^o\cup X_2^o=S^n$ 并且 $X_1\cap X_2=S^n-N-e'_r\simeq\mathbb{R}^n-e_r$. 综上利用 Mayer-Vietoris 序列得正合序列

$$\cdots \to \widetilde{H}_{q+1}(\mathbb{R}^n) \oplus \widetilde{H}_{q+1}(S^n - e'_r) \to \widetilde{H}_{q+1}(S^n) \to \widetilde{H}_q(\mathbb{R}^n - e_r) \to \widetilde{H}_q(\mathbb{R}^n) \oplus \widetilde{H}_q(S^n - e'_r) \to \cdots$$

又因为我们已知 $\forall q \geq -1, \widetilde{H}_q(\mathbb{R}^n) = 0, \widetilde{H}_q(S^n - e'_r) = 0$ 然后由正合序列性质知当 $\forall q \geq -1, \widetilde{H}_q(\mathbb{R}^n) \oplus \widetilde{H}_q(S^n - e'_r) = 0$ 时 $\widetilde{H}_q(\mathbb{R}^n - e_r) = \widetilde{H}_{q+1}(S^n)$. 综上, $n > 1, H_q(\mathbb{R}^n - e_r) = \begin{cases} Z & q = 0, n - 1 \\ 0 & otherwise \end{cases}$, $H_q(\mathbb{R}^1 - e_r) = \widetilde{H}_{q+1}(S^n)$

$$\begin{cases} Z \times Z & q = 0 \\ 0 & otherwise \end{cases}$$

Problem 7.2. 计算 $\mathbb{R}^3 - s_1$ 的同调群, 其中 s_1 是 S^1 的同胚象.

Solution. 因为 \mathbb{R}^3 同胚于 $S^3 - N$, N 为 S^3 中的一点, 因此 $S^3 - N$ 中存在子集 s_1' 同胚于 s_1 . 令 $X_1 := S^3 - N, X_2 := S^3 - s_1'$, 由上定义知 $N \in S^3 - s_1', s_1' \in S^3 - N$, 所以 $X := X_1^o \cup X_2^o = S^3$ 并且 $X_1 \cap X_2 = S^3 - N - s_1' \simeq \mathbb{R}^n - s_1$. 综上利用 Mayer-Vietoris 序列得正合序列

$$\cdots \to \widetilde{H}_{q+1}(\mathbb{R}^3) \oplus \widetilde{H}_{q+1}(S^3 - s_1') \to \widetilde{H}_{q+1}(S^3) \to \widetilde{H}_q(\mathbb{R}^3 - s_1) \to \widetilde{H}_q(\mathbb{R}^3) \oplus \widetilde{H}_q(S^3 - s_1') \to \widetilde{H}_q(S^3) \to \cdots$$

已知 $\widetilde{H}_q(\mathbb{R}^3)=0$, $\widetilde{H}_q(S^3)=\begin{cases} Z & q=3\\ 0 & otherwise \end{cases}$, $\widetilde{H}_q(S^3-s_1')=\begin{cases} Z & q=1\\ 0 & otherwise \end{cases}$. 所以当 $q\neq 0,1$, $\widetilde{H}_{q+1}(\mathbb{R}^3)\oplus \widetilde{H}_{q+1}(S^3-s_1')=\widetilde{H}_q(\mathbb{R}^3-s_1')=\widetilde{H}_q(\mathbb{R}^3-s_1')=\widetilde{H}_q(S^3-s_1')=$

$$H_q(\mathbb{R}^3 - s_1) = \begin{cases} Z & q = 2, 1, 0 \\ 0 & otherwise \end{cases}$$
.

Problem 7.3. 举例说明在 $D^n = \{(x_1, x_2, \dots, x_n) \mid x_1^2 + x_2^2 + \dots x_n^2 \le 1\}$ 上领域不变性不成立.

Solution. 定义 $D^+ = \{(x_1, x_2, \dots, x_n) \mid x_1^2 + x_2^2 + \dots + x_n^2 \le 1, x_n \ge 0\}, \ \diamondsuit \ h : D^n \to D^+$ 满足

$$h(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_{n-1}, |x_n|).$$

容易验证 h 是同胚的, D^n , D^+ 都是 D^n 的子集. D^n 是开集, 但是 D^+ 中满足 $x_n = 0$ 的所有点都不是 D^+ 在 D^n 中的内点.

Problem 7.4. 证明定义中 $\mathbf{R}P^n$ 与 S^n/\sim 是同胚.

Solution. 定义 $h: \mathbf{R}^{n+1} \to S^n / \sim 为$

$$h(x_0, x_1, \dots, x_n) = \frac{(x_0, x_1, \dots, x_n)}{|x|}, |x| = \sqrt{\sum_{i=0}^n x_i^2}.$$

因为 h 是 \mathbf{R} 到 S^n 中的投影映射,所以是连续的并且是开映射,然后对任意 $x \in S^n/\sim$,我们有 h(x)=x,所以 h 是满射. 定义定价类 $x \sim y$ 当且仅当 $\exists \lambda \in \mathbf{R}^+, s.t. x = \lambda y$,并且 \mathbf{R}^n 和此等价类生成的商空间表示为 $\mathbf{R}P^+$. 所以由书中推论 1.10,映射 $\varphi \colon \mathbf{R}P^+ \to S^n, \varphi([x]) = h(x)$ 是同胚的,所以 $\mathbf{R}P^+$ 与 S^n 同胚. 由 $\mathbf{R}P^+$ 定义,我们还知道 $\mathbf{R}P^+/\sim \simeq \mathbf{R}P^n$,所以 $\mathbf{R}P^n \simeq \mathbf{R}P^+/\sim \simeq S^n/\sim$.

7.2 第十四作业

Problem 7.5. 作出 $\Phi: (D^{2n}, S^{2n-1}) \to (\mathbb{C}P^n, \mathbb{C}P^{n-1})$ 相对同胚.

Solution. 若 $x = (x_1, x_2, ..., x_n) \in$, 定义 $\mathbb{C}P^n$ 中的等价类为 $[x] = [x_1, x_2, ..., x_{n+1}]$. 定义

$$e = \{ [x_1, x_2, \dots, x_{n+1}] \in \mathbb{C}P^n : x_{n+1} \neq 0 \}.$$

因此 e 在 $\mathbb{C}P^n$ 中的补集 Y 恰好是 $\mathbb{C}P^{n-1}$. 定义映射 $\phi: e \to \mathbf{R}^{2n}$ 为

$$\phi([x_1, x_2, \dots, x_{n+1}]) \mapsto [\|x_{n+1}^{-1}(x_1 + \overline{x}_1)\|, \|x_{n+1}^{-1}(x_1 - \overline{x}_1)\|, \dots, \|x_{n+1}^{-1}(x_n + \overline{x}_n)\|, \|x_{n+1}^{-1}(x_n - \overline{x}_n)\|].$$

可以验证 ϕ 是连续开映射, 并且 $\phi(x) = 0$ 当且仅当 $x = 0, \forall y \in \mathbf{R}^{2n}, \ \diamondsuit \ x = [y_1 + iy_2, y_3 + iy_4, \dots, y_{2n-1} + iy_{2n}, 2] \in e$ 可得 $\phi(x) = y$. 所以 ϕ 是同胚映射, 即 $e \simeq \mathbf{R}^{2n} \simeq D^{2n} - S^{2n-1}$. 综上, $Z = \mathbb{C}P^n = e \cup \mathbb{C}P^{n-1}, e, Y = \mathbb{C}P^{n-1}$ 是 Hausdorff 空间, $e \cap Y = \emptyset \ \diamondsuit \ u = (u_1, u_2, \dots, u_{2n}) \in D^{2n}$, 所以 $\|u\| \le 1$. 定义 Φ 为

$$\Phi(u) = \left[u_1 + iu_2, \dots, u_{2n-1} + iu_{2n}, \sqrt{1 - \|u\|^2} \right].$$

Problem 7.6. 计算 $G = S^1 \vee S^1$ 同胚群.

Solution. 定义 $S_1^1 = \{(x_1, x_2) \mid (x-1)_1^2 + x_2^2 = 1\}, S_2^1 = \{(x_1, x_2) \mid (x+1)_1^2 + x_2^2 = 1\}, O = \{(0, 0)\}, A = \{(2, 0)\},$ 可以看出 $S_1^1 \vee S_2^1 \simeq S^1 \vee S^1$.

令 $v: S_1^1 \sqcup S_2^1 \to S_1^1 \vee S_2^1$ 为自然映射,并且令 $\Phi = v \mid S_1^1: (S_1^1 - O) \to (S_1^1 \vee S_2^1, S_2^1)$. 定义 $e = \Phi(\{(x_1, x_2) \mid (x_1, x_2) \in S_1^1, (x_1, x_2) \neq O\})$, $S_1^1 \vee S_2^1 - S_2^1 = \{(x_1, x_2) \mid (x_1, x_2) \in S_1^1, (x_1, x_2) \neq O\}$,则 $e \simeq (S_1^1 \vee S_2^1 - S_2^1) \simeq \mathbf{R}^1$. 因为 Φ 是相对同胚的并且 e 是开集,定义 $U' = \{(x_1, x_2) \mid (x_1, x_2) \in S_1^1, x_1 > 0\}$, $U = \Phi(U')$, $V = S_1^1 \vee S_2^1 - A$,因此 $U, V \in S_1^1 \vee S_2^1$ 的开覆盖. 由(Mayer-Vietoris 序列)得

$$\cdots H_p(U \cap V) \to H_p(U) \oplus H_p(V) \to H_p(S_1^1 \vee S_2^1) \to H_{p-1}(U \cap V) \to \cdots$$

因为 $U \simeq \mathbf{R}^1, U \cap V = S_1^1 - O - A \simeq S^0, H_P(U \cap V) = H_P(S^0), H_P(U) = 0.$

并且 V 可收缩为 S_2^1 . 定义 $F: V \times I \to V$ 为

$$F(v,t) = \begin{cases} v & \text{if } v \in S_1^2\\ \Phi((1-t)z_1, \frac{z_2}{|z_2|}\sqrt{1-((1-t)z_1-1)^2}) & \text{if } v = \Phi(z) \in e \end{cases}.$$

F 是合理的因为 $S_1^1 \vee S_2^1$ 是无交并 $e \cup S_2^1$, 并且 F 是连续的满足 F(v,0) = v, $F(v,1) \subset S_2^1$, $\forall v \in S_2^1$, $t \in I$, F(v,t) = v. 综上, $H_p(V) = H_p(S_2^1)$.

最后由含入映射 $\alpha\colon U-A\hookrightarrow S_1^1-A,\beta\colon S_1^1-O-A\hookrightarrow S_1^1-A,j\colon S_2^1\hookrightarrow V,k\colon U\cap V\hookrightarrow V$ 都是同伦等价知 分别诱导同构的链映射 α_*,β_*,j_*,k_* ,并且因为 $\phi\colon (S_1^1,O)\to (S_1^1\vee S_2^1,S_2^1)$ 是相对同胚,即 $S_1^1-O\simeq S_1^1\vee S_2^1-S_2^1$ 并且 $A\in S_1^1,A\in (S_1^1\vee S_2^1-S_2^1)$ 所以 $\Phi\mid U'\colon S_1^1-A\to U\cap V$ 也是同胚映射得 $(\Phi\mid U')_*$ 是同构,综上 $k_*\colon H_p(U\cup V)\to H_p(V)$ 满足 $k_*=(\Phi\mid (S_1^1-A))_*\alpha_*(\Phi\mid U')_*^{-1}=j_*f_*\beta_*^{-1}\alpha_*(\Phi\mid U')_*^{-1}$,其中 $j_*\colon H_p(S_2^1)\to H_p(V),\beta_*\alpha_*^{-1}(\Phi\mid U')_*\colon H_p(S_1^1-A-O)\to H_p(U\cap V)$ 和 k_*,f_* 是可交换的,所以

$$\cdots H_p(S^0) \to H_p(S^1) \to H_p(S^1_1 \vee S^1_2) \to H_{p-1}(S^0) \to \cdots$$

当 $p \neq 0,1$ 时 $H_p(S^0) = H_{p-1}(S^0) = 0$ 所以 $H_p(S^1 \vee S^1) = H_p(S^1)$. 当 p = 1 时,替换为 \bar{H} 可得

$$\cdots \bar{H}_1(S^0) \to \bar{H}_1(S^1) \to \bar{H}_1(S^1 \vee S^1) \to \bar{H}_0(S^0) \to \bar{H}_0(S^1) \to \cdots$$

设 i_* : $\bar{H}_1(S^1) \to \bar{H}_1(S^1 \vee S^1)$, 则 $\bar{H}_1(S^0) = \bar{H}_0(S^1) = 0$ 暗示 $\ker i_* \cong \bar{H}_1(S^1) = Z$, $\operatorname{im} i_* \cong \bar{H}_0(S^0) = Z$. 由同态 基本定理有 $\bar{H}_1(S^1 \vee S^1) / \ker i_* \cong \operatorname{im} i_*$, 得 $\bar{H}_1(S^1 \vee S^1) \cong Z \oplus Z$.

当
$$p=0$$
 时, $\bar{H}_0(S^1)=\bar{H}_{-1}(S^0)=0$ 所以 $\bar{H}_0(S^1\vee S^1)=0$

综上
$$H_p(S^1 \vee S^1) = \begin{cases} Z \oplus Z & q = 1 \\ Z & q = 0 \\ 0 & otherwise \end{cases}$$

Problem 7.7. 计算 $Z = D^3 \coprod_f S^2$, 其中 $f: S^2 \to S^2$ 度为 3 的连续映射.

Solution. 令 $Y = S^2$ 则 $p \neq 2,3$ 时有 $H_p(Z) \cong H_p(S^2)$ 并且有正合序列

$$0 \to H_3(S^2) \xrightarrow{i_*} H_3(Z) \to H_2(S^2) \xrightarrow{f_*} H_2(S^2) \to H_2(Z) \to 0$$

因为 f 的度为 3, 所以诱导的 $f_*: H_2(S^2) \to H_2(S^2)$ 是乘 3. 得新正合序列

$$0 \to 0 \stackrel{i_*}{\to} H_3(Z) \to \mathbb{Z} \stackrel{3}{\to} \mathbb{Z} \to H_2(Z) \to 0$$

设序列中的函数 $k_*: H_3(Z) \to H_2(S^2)$, 因为 f_* 是单射即 $\ker f_* = 0$ 得 $\operatorname{im} k_* = 0$, 又由正合序列性质和 i_* 的定义域为 0, 有 $\ker k_* = \operatorname{im} i_* = 0$, 所以同态基本定理给出 $H_3(Z)/\ker k_* \cong \operatorname{im} k_* \Longrightarrow H_3(Z) = 0$.

设序列中的函数 $h_*: H_2(S^2) \to H_2(Z)$, 由正合序列和 $H_2(Z) \to 0$ 知 h_* 是满射, 即 $\operatorname{im} h_* = H_2(Z)$. 正合序列还可得 $\operatorname{ker} h_* = \operatorname{im} 3 = 3\mathbb{Z}$, 所以同态基本定理给出 $H_2(Z) = \operatorname{im} h_* \cong \mathbb{Z}/\operatorname{ker} h_* \cong \mathbb{Z}/3\mathbb{Z}$.

第上
$$H_p(D^3 \coprod_f S^2) = \begin{cases} \mathbb{Z} & p = 0 \\ \mathbb{Z}/3\mathbb{Z} & p = 2 \\ 0 & otherwise \end{cases}$$