COMP 330 - Assignment 3

15/02/21

Question 1

- a) let $L=(a^nb^n\mid n=1)$ This is clearly regular (i.e. can build a DFS for it-trivial) let $L_2=(a^nb^n\mid n>=0)$ L_2 is know to not be regular.
 - See that L is contained in L₂
 - Therefore the statement is false.
- b) Assuming AB is regular then there exists an NFA that describes it. Divide this machine 2 parts: one that processes A then uses an ε-move when the B part arrives. Thus, B must have a DFA/NFA to process it because AB is regular.
 - Therefore, the statement is true.
- c) We know that if A_1 and A_2 are regular then A_1 union A_2 is so too. Form A_i union A_{i+1} pairs. These pairs are regular. New pairing can be performed ad infinitum.
- Therefore, the statement is true.

 d) Let A be the set for L= (aⁿbⁿ | n>=0). Clearly L₂= (aⁿbⁿ | n=1) is contained in A and is regular (because we can make a DFA for it).
 - Therefore, the statement is false.

Question 2

 $L = (a^n b^{2n} | n > 0)$

- 1) Demon chooses p.
- 2) I choose a^pb^{2p}.
- 3) Demon picks y consisting only of a's. $y = a \mid s.t. \mid xy \mid <= p$; say $\mid y \mid = 1 > 0$
- 4) I pick i= 5

$$|xy^5z| = p-l+5l +2p$$

- \Rightarrow a^{p+4l}b^{2p} is not in L.
- ⇒ Therefore, L is not regular.

Question 3

 $F = \{a^i b^j c^k \mid i, j, k > = 0 \text{ and if } i = 1 \text{ then } j = k\}$

Let $L_1 = \{ab^nc^m \mid n, m >= 0\}$. L_1 is regular (proof trivial).

Let $L_2 = \{ab^nc^n \mid n > = 0\}$. Clearly L_2 is contained in L_1 .

By language closure properties L_1 intersection L_2 if and only if L_2 is regular.

Claim: L2 is not regular.

Let $L_3 = \{a^n \mid n=1\}$ Clearly L_3 is regular.

Let $L_4 = \{b^nc^n \mid n > = 0\}$ L_4 is known not to be regular.

Therefore, $L = L_3 L_4$ is not regular by language closure properties.

Therefore, L₁ intersection L₂ is not regular and neither is F.

Satisfaction of the pumping lemma conditions.

- 1) Demon chooses p.
- 2) I choose $a^pb^pc^{2p}$.
- 3) Demon picks y consisting only of a's. $y = a \mid s.t. \mid xy \mid <= p$; say $\mid y \mid = 1 > 0$
- 4) I choose i= 0

$$|xy^0z| = |xz| = p-l+3p$$

 \Rightarrow $a^{p-1}b^pc^{2p}$ I, p>0

3 conditions: There exists x, y, z in Σ^* s.t. w= xyz & |xy| <= p & |y| > 0

Let p=5, I=1 then $a^4b^5c^{10}$

W= xyz as x= a^4 ; y= a^0 ; z= b^5c^{10} & |xy|=4<=5 & |y|=1 (before pumping).

All 3 conditions are satisfied, get F is not regular. Why?

The pumping lemma states: L regular => L can be pumped.

This does not mean: L can be pumped => L regular.

The pumping lemma offers a sufficient but not a necessary condition to establish a language's regularity.

Question 4

b) b(bb)*(aa)*

Question 5

We test right invariance. Let $\Sigma = \{a, b\}$. Let $x = a^nb^{n-1}$, $y = a^nb^{n-2}$, z = b s.t. n > 2 $xz = a^nb^{n-1}b = a^nb^n$ which is not in L since n = n $yz = a^nb^{n-2}b = a^nb^{n-1}$ which is in L.

Therefore no 2 elements of L are in the same equivalence class thus there are infinitely many equivalence classes.