Prediction

With Regression, Decision Trees, and Random Forests

January 2019

Prediction is...

Nils Bohr, Nobel Laureate in Physics

Evan Esar

Anonymous

Source: Medium.com

What is model prediction?

Model prediction (aka, testing) is the process of computing a model's predictions on **test data**.

What is test data?

Test data is a separate, 'hold-out' data set that the model never saw during training

Model Training

Model Testing

Why do we separate training from testing?

Just because a model can **fit past data** well (high training accuracy), does necessarily mean that it will **predict** new data well (high testing accuracy).

Evan Esar

Training data

id	sex	age	fam_history	smoking	criterion
1	m	45	No	FALSE	0
2	m	43	Yes	FALSE	1
3	f	40	Yes	FALSE	1
4	m	51	Yes	FALSE	1
5	m	44	No	TRUE	0

Test data

id	sex	age	fam_history	smoking	criterion
91	m	51	Yes	TRUE	?
92	f	47	No	TRUE	?
93	m	39	No	TRUE	?
94	f	51	Yes	TRUE	?
95	f	50	Yes	FALSE	?

Overfitting

When a model is consistently **less accurate in** predicting future data than in fitting training data, this is called overfitting

Overfitting typically occurs when a model 'mistakes' random noise for a predictable signal

Overfitting

Overfitting

How do we account for overfitting?

Always evaluate models based on their performance on new, unseen test data

Use models with **regularization** terms, which explicitly punish models for being too complex.

Use fitting methods such as **cross-validation** to find optimal regularization values.

We will learn about these methods in a future session!

Fitting versus Prediction Error Smaller values are better!

How do I get separate training and test data?

If you don't have two naturally occurring distinct training and test dataset, you can **randomly split** a dataset into an **X% training** set and **1-X% testing** set.

The caret function createDataPartition() helps you do this automatically.

Natural examples

Domain	Training	Test
Stock prediction	2017 Trends	2019 Trends
Medical diagnosis	Patients from Hospital A	Patients from Hospital B
Crime rates	Statistics from City X	Statistics from City Y

Two new models enter the ring...

Regression

Decision Trees

Random Forests

In decision trees, the criterion is modeled as a sequence of logical YES or NO questions.

Age > 50?

Yes

No

Previous default?

Yes

No

Low Risk
Risk = 0.20

Risk
Risk = 0.40

Risk
Risk = 0.50

Risk = 0.10

Grow Decisions Trees by splitting features that maximize

"Excellent separation!"

"Pretty good separation"

In decision trees, the criterion is modeled as a sequence of logical YES or NO questions.

Fit a Decision Tree in caret using method = "rpart".

```
# Fit a decision tree with a defined cp = .10

train(form = income ~ .,
    data = baselers,
    method = "rpart", # Decision Tree
    trControl = ctrl,
    tuneGrid = expand.grid(cp = .10)) # cp
```

Complexity Parameter

Decision trees have a **complexity parameter** called cp.

The cp parameter controls how complex (i.e.; large) trees are allowed to grow

- **Small** cp (< 0.01) = **Complex** Trees
- **Large** cp (> 0.10) = **Simple** Trees

There is no "one" best value of cp -- the best value of cp depends on your needs and your dataset!

Complexity Parameter

Decision trees have a **complexity parameter** called cp.

The cp parameter controls how complex (i.e.; large) trees are allowed to grow

```
Small cp (< 0.01) = Complex Trees</li>
Large cp (> 0.10) = Simple Trees
```

There is no "one" best value of cp -- the best value of cp depends on your needs and your dataset!

Decision Trees in Caret: rpart

When fitting a decision tree, the cp parameter can be defined by the user in the tuneGrid argument:

• cp can also be optimally determined through methods such as **cross-validation**, which we will learn later

Regression

Decision Trees

Random Forests

In Random Forest, the criterion is modeled as the aggregate prediction of a large number of decision trees each based on different features.

In Random Forests, we create a large set of diverse trees that can be aggregated into one Wisdom of Crowds judgment.

In Random Forest, the criterion is modeled as the aggregate prediction of a large number of decision trees each based on different features.

To **fit a random forest** in caret, use method = "rf".

```
# Fit a random forest with a defined mtry = 3

train(form = income ~ .,
    data = baselers,
    method = "rf", # Random Forest
    trControl = ctrl,
    tuneGrid = expand.grid(mtry = 3))
```

Diversity Parameter: mtry

Random Forests have a diversity parameter called mtry

Technically, this controls how many features are randomly considered at each split of the trees

- Small mtry (~ 1) = Diverse Forest
- Large mtry (> 5) = Similar Forest

There is no "one" best value of mtry -- the best value of mtry depends on your needs and your dataset!

Diversity Parameter: mtry

Random Forests have a diversity parameter called mtry

Technically, this controls how many features are randomly considered at each split of the trees

- Small mtry (~ 1) = Diverse Forest
- Large mtry (> 5) = Similar Forest

There is no "one" best value of mtry -- the best value of mtry depends on your needs and your dataset!

When fitting a random forest, the mtry parameter can be defined by the user in the tuneGrid argument.

```
# Fit a random forest with a defined mtry = 2

train(form = income ~ .,
    data = baselers,
    method = "rpart", # Decision Tree
    trControl = ctrl,
    tuneGrid = expand.grid(mtry = 2)) # mtry
```

• mtry can also be optimally determined through methods such as **cross-validation**, which we will learn later

Evaluating model predictions with caret

Predict new data with predict()

To **test model predictions** with caret, all you need to do is get a vector of predictions from a new dataframe newdata using the predict() function:

```
# Get predictions for test data!
predict(mod, newdata = data_test)
```

argument	description
object	A machine learning / statistical object created from caret,
newdata	A dataframe of new data

This returns a vector of predicted values for your new data!

```
Get predictions, use predict(mod, newdata =
data_test)
```

Predict new data with predict()

To **test model predictions** with caret, all you need to do is get a vector of predictions from a new dataframe newdata using the predict() function:

```
# Get predictions for test data!
predict(mod, newdata = data_test)
```

argument	description
object	A machine learning / statistical object created from caret,
newdata	A dataframe of new data

This returns a vector of predicted values for your new data!

Compare predictions to the criterion with postResample()

Split data with createDataPartition()

Use createDataPartition() to split a dataset into separate training and test datasets

Argument	Description
у	The criterion
p	Percent of data to select

This returns a vector of indices you can then use to select rows (see right)

Create separate XX_train and data_test datasets from a single 'large' dataset

5 steps with caret

Step 0: Load training and test data (or create with
createDataPartition())

```
data_train <- read_csv("1_Data/XXX_train.csv")
data_test <- read_csv("1_Data/XXX_test.csv")</pre>
```

Step 1: Define control parameters

```
# Use method = "none" for no advanced fitting
ctrl <- trainControl(method = "none")</pre>
```

Step 2: Train model

Step 3: Explore

```
mod # Print object
mod$finalModel # Final model
```

Step 4: Predict

Step 5: Evaluate prediction accuracy

Questions?

Practical