Ćwiczenia 6 – Rachunek predykatów - wskazówki rozwiązania

1. Rozważmy język, w którym dane są dwie stałe: a, b; dwa predykaty: p - jednoargumentowy i q - dwuargumentowy oraz żaden symbol funkcyjny. Poniżej przedstawiono interpretację:

$$I(p(a)) = 1, \ I(p(b)) = 0, \ I(q(a,a)) = 0, \ I(q(a,b)) = 1, \ I(q(b,a)) = 1, \ I(q(b,b)) = 0$$

określ, czy poniższe zdania są spełnione przez interpretację.

Aby sprawdzić spełnialność zdania przez daną interpretację, musimy sprawdzić prawdziwość zdania przy podstawionych za zmiennych stałych. Gdy sprawdzamy wartość dla predykatu ∀, to sprawdzamy, czy zdanie jest prawdziwe dla wszystkich podstawień stałej pod zmienną. Gdy sprawdzamy wartość dla predykatu ∃, to sprawdzamy, czy zdanie jest prawdziwe dla przynajmniej jednego podstawienia.

- (a) $\forall_X(p(X) \Rightarrow q(X,X))$ Sprawdzamy podstawienia: dla X := a zdanie ma postać $p(a) \Rightarrow q(a,a)$, czyli $1 \Rightarrow 0$ fałsz, w związku z tym całe zdanie jest niespełnione;
- (b) $\forall_X p(X) \Rightarrow \forall_X q(X,X)$;
- (c) $\exists_X q(X,a) \land \exists_X q(X,b)$;
- (d) $\exists_X (q(X,a) \land q(X,b));$
- (e) $\forall_X \exists_Y (q(X,Y));$
- (f) $\exists_Y \forall_X (q(X,Y));$
- (g) $\forall_X (p(X) \Rightarrow \exists_Y q(X,Y));$
- (h) $\forall_X p(X) \Rightarrow \exists_Y q(Y,Y)$;
- 2. Które z następujących formuł rachunku predykatów są tautologiami:
 - (a) $\forall_X p(X) \Rightarrow \exists_X p(X)$
 - (b) $\exists p(X) \Rightarrow \forall_X p(X)$
 - (c) $\forall_X p(X) \Rightarrow p(X)$
 - (d) $\exists_X p(X) \Rightarrow p(X)$
 - (e) $p(X) \Rightarrow \forall_X p(X)$
 - (f) $p(X) \Rightarrow \exists_X p(X)$
 - (g) $\forall_X \exists_Y p(X,Y) \Rightarrow \exists_Y \forall_X p(X,Y)$
 - (h) $\forall_X (p(X) \Rightarrow q(X)) \Rightarrow \exists_X (p(X) \land q(X))$
 - (i) $\forall_X (p(X) \Rightarrow q(X)) \land \exists_X (p(X) \land \neg q(X))$
 - (j) $(\exists_X p(X) \Rightarrow \forall_X q(X)) \lor (\forall_X q(X) \Rightarrow \exists_X r(X))$

Postać normalna formuł Formuła jest w preneksowej koniunkcyjnej postaci normalnej wtw., gdy jest postaci:

$$Q_1X_1\dots Q_nX_nM$$

gdzie Q_i są kwantyfikatorami, a M jest formułą w koniunkcyjnej postaci normalnej.

Przykład 1:

Następująca formuła jest w postaci normalnej:

$$\forall_Y \forall_Z ([p(f(Y)) \vee \neg p(g(Z)) \vee q(Z)] \wedge [\neg q(Z) \vee \neg p(g(Z)) \vee q(Y)])$$

- 3. Rozważmy język z wykorzystanymi już dwoma stałymi a i b oraz funkcją stałą f. Wskaż poprawną postać klauzulową dla poniższych formuł:
 - $i \exists_Y \forall_X p(X,Y)$:

(a)
$$\{p(a,Y)\}$$
, (b) $\{p(c,Y)\}$, (c) $\{p(X,b)\}$, (d) $\{p(X,c)\}$, (e) $\{p(X,f(X))\}$, (f) $\{p(X,g(X))\}$.

ii $\forall_X.\exists_Y p(X,Y)$:

(a)
$$\{p(a,Y)\}$$
, (b) $\{p(c,Y)\}$, (c) $\{p(X,b)\}$, (d) $\{p(X,c)\}$, (e) $\{p(X,f(X))\}$, (f) $\{p(X,g(X))\}$.

- iii $\exists_X \exists_Y (p(X,Y) \land q(X,Y))$:
 - (a) $\{p(a,b),q(a,b)\}\$, (b) $\{p(a,b)\}\$ i $\{q(a,b)\}\$, (c) $\{p(c,d),q(c,d)\}\$, (d) $\{p(c,d)\}\$ i $\{q(c,d)\}\$,
 - (e) $\{p(X,Y), q(X,Y)\}$, (f) $\{p(X,Y)\}$ i $\{q(X,Y)\}$.
- iv $\forall_X \forall_Y (p(X,Y) \Rightarrow q(X))$:
 - (a) $\{\neg p(a,b), q(a)\},$ (b) $\{\neg p(c,d), q(c)\},$ (c) $\{\neg p(X,b), q(X)\},$ (d) $\{\neg p(X,d), q(X)\},$
 - (e) $\{\neg p(X,Y), q(X)\}$, (f) $\{\neg p(X,g(X)), q(X)\}$.
- $\forall X (\exists_Y p(X,Y) \Rightarrow q(X))$:
 - (a) $\{\neg p(a,b), q(a)\},$ (b) $\{\neg p(c,d), q(c)\},$ (c) $\{\neg p(X,b), q(X)\},$ (d) $\{\neg p(X,d), q(X)\},$
 - (e) $\{\neg p(X,Y), q(X)\}$, (f) $\{\neg p(X,g(X)), q(X)\}$.
- 4. Sprowadź do postaci klauzulowej:
 - (a) $\forall_X p(X) \vee \forall_X q(X)$;
 - (b) $\exists_X p(X) \land \exists_X q(X)$;
 - (c) $\forall_X p(X) \Rightarrow \exists_X q(X)$;
 - (d) $\forall_X (p(X) \Rightarrow \exists_Y q(Y));$
 - (e) $\neg \exists_X [p(X) \land \exists_Y q(X,Y)];$
 - (f) $\forall_X (p(X) \Rightarrow q(X)) \Rightarrow (\forall_Y p(Y) \Rightarrow \forall_Z q(Z))$;
 - (g) $\exists_X \forall_Y r(X,Y) \Rightarrow \forall_Y \exists_X r(X,Y)$;
- 5. Wskaż rezolwentę poniższych klauzul:
 - $\mathsf{i} \ \{p(X,f(X)),q(X)\} \, \mathsf{i} \ \{\neg p(a,Y),r(Y)\} :$
 - (a) $\{q(X), r(Y)\}$, (b) $\{q(a), r(f(X))\}$, (c) $\{q(a), r(f(a))\}$, (d) nie istnieje rezolwenta.
 - ii $\{p(X,b), q(X)\}\ i \{\neg p(a,X), r(X)\}$:
 - (a) $\{q(X), r(Y)\}$, (b) $\{q(b), r(a)\}$, (c) $\{q(a), r(b)\}$, (d) nie istnieje rezolwenta.

- iii $\{p(X), p(a), q(X)\}$ i $\{\neg p(Y), r(Y)\}$: (a) $\{p(X), q(X), r(X)\}$, (b) $\{p(a), q(X), r(X)\}$, (c) $\{p(a), q(a), r(a)\}$, (d) nie istnieje rezolwenta.
- iv $\{p(X), p(a), q(X)\}$ i $\{\neg p(Y), r(Y)\}$: (a) $\{q(X), r(X)\}$, (b) $\{q(X), r(a)\}$, (c) $\{q(a), r(a)\}$, (d) nie istnieje rezolwenta.
- $\begin{array}{l} \mathsf{v} \ \{p(a),q(Y)\} \ \mathsf{i} \ \{\neg p(X),\neg q(b)\} \ \mathsf{-} \\ \mathsf{(a)} \ \{q(b),\neg q(b)\}, \ \mathsf{(b)} \ \{q(Y),\neg q(b)\}, \ \mathsf{(c)} \ \{\}, \ \mathsf{(d)} \ \mathsf{nie} \ \mathsf{istnieje} \ \mathsf{rezolwenta}. \end{array}$
- vi $\{p(X), q(X, X)\}$ i $\{\neg q(a, f(a))\}$: (a) $\{p(a)\}$, (b) $\{p(f(a))\}$, (c) $\{p(a), p(f(a))\}$, (d) nie istnieje rezolwenta.
- 6. Pokaż, że podany poniżej w punktach zbiór klauzul jest niespełnialny
 - (a) $\neg p(X) \lor q(X) \lor r(X, f(X))$,
 - (b) $\neg p(X) \lor q(X) \lor s(f(X))$,
 - (c) t(a),
 - (d) p(a)
 - (e) $\neg r(a, Y) \lor t(Y)$,
 - (f) $\neg t(X) \lor \neg q(X)$,
 - (g) $\neg t(X) \lor \neg s(X)$;

ŹRÓDŁA

- 1. Igor A. Ławrow, Łarisa L. Maksimowa: Zadania z teorii mnogości, logiki matematycznej i teorii algorytmów, PWN 2004.
- 2. Zbigniew Huzar: Elementy logiki i teorii mnogości dla informatyków, Poznań 2007.
- 3. Wiktor Marek, Janusz Onyszkiewicz: Elementy logiki i teorii mnogości w zadaniach, PWN 2000.
- 4. Michael Genesereth, Eric Kao: Introduction to Logic. http://arrogant.stanford.edu/intrologic/chapters/cover.html.