Homework 4

November 3, 2023

Jose Carlos Munoz

1

$C = 2*d_a$	_ 2 * 3 _ 1
$C_a = \frac{2 \cdot \omega_a}{m_a \cdot (m_a - 1)}$	$-\frac{1}{4*(4-1)} - \frac{1}{2}$
$C_1 = 2*d_b$	$=\frac{2*1}{2(2*1)}=1$
$C_b = \frac{1}{m_b * (m_b - 1)}$	$= \frac{1}{2 * (2 - 1)} = 1$
$C = 2*d_c$	_ 2 * 3 _ 1
$C_c = \frac{2 * \alpha_c}{m_c * (m_c - 1)}$	$-\frac{1}{4*(4-1)} - \frac{1}{2}$
$C = 2*d_d$	$=\frac{2*1}{(2*1)^2}=1$
$C_d = \frac{2 * \alpha_d}{m_d * (m_d - 1)}$	$= \frac{1}{2 * (2 - 1)} = 1$
$C = 2*d_e$	_ 2 * 5 _ 5
$C_e = \frac{1}{m_e * (m_e - 1)}$	$-\frac{1}{4*(4-1)} - \frac{1}{6}$
$C = 2*d_f$	$=\frac{2*1}{2}$
$C_f = \frac{1}{m_f * (m_f - 1)}$	$=\frac{1}{2*(2-1)}=1$

2

The Mypic path is from node n to k to j to e to f. The shortest path is from n to m to l to f

3

Please Help me

4

The Degree distribution is $\{0, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.1\}$

5

cokoie

6

The nodes combination BCA and ADE satisfy the triadic closure principle

7

To find the average path length of the network, we use this formular $\frac{\log n}{\log k}$. n is 50 and k is 10. So our calculation is $\frac{\log 50}{\log 10} = 1.7$. The closest value is B, 2.