April,2023

# ICT 6641 Advanced Embedded System Design

Lecture#1: Introduction

S. M. Lutful Kabir, PhD Professor, BUET

# ICT 6641: Syllabus

- · Hardware design for embedded systems;
- Software development for embedded systems;
- Sensors and Transducers for embedded systems;
- Case study on advanced embedded system;
- Introduction to digital control;
- Its use within embedded systems;
- Case study on digital control in embedded systems;
- Design examples.
- Network based embedded systems;

#### Introduction

- Microprocessor has revolutionized various industries and our day-to-day life
- Its use in control, monitoring, measurement and signal processing has made a breakthrough in electronic industry
- Now-a-days you won't be able to name one electronic device in which microprocessor or its derivative has not been used
- This course is designed to make you familiar with this remarkable piece of wonder

3

## **Historical Backgroud**

• 1949: Invention of Transistor

• 1959: Invention of Integrated Circuit

1971: Invention of uP

1976: Invention of first uC

4

#### **Invention of Transistor**

- In 1947, Willium Schockley and his colleagues in Bell laboratory invented transistor
- That introduced a new era in electronic industry
- Transistor is being used in all electronic circuits replacing its rival vacuum tube
- Vacuum tubes are bulky, consumes lots of power, unreliable, occupies lots of space etc.
- So, a lot of research and development efforts were put in the area of solid state electronics
- The basic idea was that semiconductor materials like germenium, silicon can carry currents and the current can be controlled by the injuction of some impurity

#### **Invention of Integrated Circuit**

- Very soon in 1959, another invention made revolution in electronic industry
- Some scientists in Fairchild Semiconductor invented planner technology of transistors which ultimately led to the invention of Integrated Circuit Technology
- An integrated circuit is one in which a number of transistors or components can be fabricated in a single silicon wafer
- The rate of production of IC was progressed rapidly over next few years

6

|           |                            | Evolu              | <b>Evolution of IC Technology</b> |  |  |
|-----------|----------------------------|--------------------|-----------------------------------|--|--|
| Year      | Technology                 | Number of Devices  | Typical Products                  |  |  |
| 1947      | Invention of<br>Transistor | 1                  | Transistor                        |  |  |
| 1950-1960 | Discrete<br>Components     | 1                  | Junction Diode and Transistor     |  |  |
| 1961-1965 | SSI                        | 10-100             | Planner Devices, Logic Gates, FFs |  |  |
| 1966-1970 | MSI                        | 100-1000           | Counter, MUX, Decoders            |  |  |
| 1971-1979 | LSI                        | 1000-20000         | 8-bit uP, RAM, ROM, DSP, RISC     |  |  |
| 1980-1984 | VLSI                       | 20000-50000        | 16-bit, 32-bit uP                 |  |  |
| 1985-     | ULSI                       | Greater than 50000 | 64 bit uP                         |  |  |



### **Evolution of Microprocessor**

- In 1971, first microprocessor was developed by Intel, this particular device is 4 bit uP called 4004
- By microprocessor we mean that all the components one finds in a CPU (ALU, Register, Timing & Control Unit and the Interfacing circuits) are put together in a single chip
- That is a uP can be considered as "CPU in a Chip"
- Other companies like Texus Instruments, Fairchild etc have started manufacturing uP
- The reason was that although 4004 was developed for making calculator but they found its potential for making any intiligent electronic system.



#### **Evolution of Microcontroller**

- Very soon in 1976 first microcontroller was produced again by Intel, 8048
- Microcontroller is somewhat different from microprocessor in a sense that not only the CPU but also RAM, ROM, I/O Ports, Timer & Counter, Serial Port all put together in a single chip
- So, it is called as "Computer on a chip"

| CPU     | I/O<br>Port      |  |
|---------|------------------|--|
| RAM     | Timer<br>Counter |  |
| RO<br>M | Serial<br>Port   |  |

# Why uP and uC are so popular?

- Small Size
- Lower Cost
- Higher Reliability
- Lower Power Consumption
- Higher Versatility
- More Powerful

#### **Smaller Size**

- A tiny chip can contain hundreds of thousands of transistors and components
- The size of present day microprocessor has now reduced to less than an inch
- With the advent of VLSI technology the microprocessors/ microcontrollers now come with a large numbers of pins





#### **Lower Cost**

- With the advent of complex technology, microprocessor microcontroller's cost does not increase proportionally
- Rather its cost per function has decreased gradually
- As the material cost is negligible in comparison with the initial masking cost, per unit cost decreases as the volume of production increases

# **Higher Reliability**

- With the advent of more sophisticated fabrication technology and testing system microprocessor/ microcontroller manufacturing process is now very reliable
- Moreover, the microprocessor/ microcontroller based system nowa-days requires less number of chips and so wiring requirement is less making the overall system more reliable

#### **Power consumption**

- Present day microprocessors/ microcontrollers consume very low power in the order of milliwatt
- This is because of the fact that they are manufactured by transistors using CMOS technology which requires very low power

# Versatility

- Since the program stored in a microprocessor/ microcontroller system is rewritable hence one system can be reused by loading a new program
- This is especially useful when a new system is being developed.
  Frequent change in programming is necessary to fix bugs if any

# More powerful

- Present day microprocessor/ microcontroller is more powerful than the previous one, w.r.t processing speed, memory and I/O pins
- This becomes possible because of increase in data addressible bit size
- Now 32 bit processor is common in the market
- A 32 bit microprocessor/ microcontrolleris powerful than the then main frame computer

17

# Microcontroller and some of their applications



# Typical Applications of uP

- Microprocessor is basically a CPU, using CPU general purpose computer can be built
- Desktop computers, PCs, Laptops, Workstations, Servers, Supercomputers
- We are in the era of 32- and 64-bit microprocessor, so we can produce very powerful computers

19

### **Typical Application of uC**

- Using microcontrollers embedded systems are produced
- An embedded system is a combination of hardware and software built for a specific application
  - Consumer electronics making toys, cameras, camcorders, robots
  - Consumer products washing machines, microwave ovens etc.
  - Instrumentation oscilloscopes, various medical equipments,
  - Process control data aquisition, controlling various industries
  - Communication Telephone, answering machines
  - Office equipments Fax, printer, small PABX
  - Micromedia application Cell phones, PDAs, teleconferencing equipment.



|                                        | 8051                                                        | PIC                                               | AVR                                                                           | ARM                                                                                                   |
|----------------------------------------|-------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Bus width                              | 8-bit for standard core                                     | 8/16/32-bit                                       | 8/32-bit                                                                      | 32-bit mostly also available in 64-bit                                                                |
| Communication Protocols                | UART, USART,SPI,I2C                                         | PIC, UART, USART, LIN, CAN,<br>Ethernet, SPI, I2S | UART, USART, SPI, I2C,<br>(special purpose AVR<br>support CAN, USB, Ethernet) | UART, USART, LIN, I2C, SPI,<br>CAN, USB, Ethernet, I2S,<br>DSP, SAI (serial audio<br>interface), IrDA |
| Speed                                  | 12 Clock/instruction cycle                                  | 4 Clock/instruction cycle                         | 1 clock/ instruction cycle                                                    | 1 clock/ instruction cycle                                                                            |
| Memory                                 | ROM, SRAM, FLASH                                            | SRAM, FLASH                                       | Flash, SRAM, EEPROM                                                           | Flash, SDRAM, EEPROM                                                                                  |
| ISA                                    | CLSC                                                        | Some feature of RISC                              | RISC                                                                          | RISC                                                                                                  |
| Memory Architecture                    | Harvard architecture                                        | Von Neumann architecture                          | Modified                                                                      | Modified Harvard<br>architecture                                                                      |
| Power Consumption                      | Average                                                     | Low                                               | Low                                                                           | Low                                                                                                   |
| Families                               | 8051 variants                                               | PIC16,PIC17, PIC18, PIC24,<br>PIC32               | Tiny, Atmega, Xmega,<br>special purpose AVR                                   | ARMv4,5,6,7 and series                                                                                |
| Community                              | Vast                                                        | Very Good                                         | Very Good                                                                     | Vast                                                                                                  |
| Manufacturer                           | NXP, Atmel, Silicon Labs,<br>Dallas, Cyprus, Infineon, etc. | Microchip Average                                 | Atmel                                                                         | Apple, Nvidia, Qualcomm,<br>Samsung Electronics, and TI<br>etc.                                       |
| Cost (as compared to features provide) | Very Low                                                    | Average                                           | Average                                                                       | Low                                                                                                   |
| Other Feature                          | Known for its Standard                                      | Cheap                                             | Cheap, effective                                                              | High speed operation<br>Vast                                                                          |
| Popular Microcontrollers               | AT89C51, P89v51, etc.                                       | PIC18fXX8, PIC16f88X,<br>PIC32MXX                 | Atmega8, 16, 32, Arduino<br>Community                                         | LPC2148, ARM Cortex-M0 to ARM Cortex-M7, etc.                                                         |

#### Center of the Development: STM32

- A family of 32-bit microcontrollers
- Manufactured by STMicroelectronics.
- Based on the ARM Cortex-M architecture
- Widely used in
  - embedded systems,
  - IoT devices, and
  - other applications requiring high-performance and low power consumption.
- · Offers a wide range of products, with
  - various options for memory,
  - performance, and
  - peripherals.

# Center of the Development: STM32 (continued)

- Available in various package sizes, from
  - small and low-power devices to
  - high-performance devices
  - with multiple cores and
  - advanced peripherals.
- Designed to be easy to use and integrate into a variety of systems.
- To help developers get started quickly and easily. STMicroelectronics provides
  - a comprehensive ecosystem of development tools,
  - software libraries, and
  - reference designs.

## Key features of the STM32

- Low power consumption ideal for battery-powered devices and other low-power applications.
- High performance the ARM Cortex-M architecture, enabling the microcontrollers to handle complex tasks and real-time applications.
- Flexible peripherals the microcontrollers have a wide range of peripherals, including GPIO, timers, ADCs, DACs, and communication interfaces such as UART, SPI, I2C, USB, and Ethernet.
- Rich software ecosystem the microcontrollers are supported by a range of development tools and software libraries.

# Integrated Development Environment (IDE)

- There are some different options for IDEs. Here are a few of them:
  - Eclipse
  - ARM Embed
  - Keil
  - IAR Systems
  - Atollic TrueStudio
  - STM32CUBE IDE
- **STM32CUBE IDE** is the software tool we'll be using.
- The toolchain provides features to ease and accelerate the development, debugging, and testing tasks.

## key features of STM32CubeIDE

- Code generation: STM32CubeIDE includes a code generator that can help you quickly generate code for your STM32 microcontroller.
   Debugger: STM32CubeIDE includes a powerful debugger that will help you identify and fix bugs more quickly and efficiently.
- Project management: STM32CubeIDE allows you to manage your projects easily. You can create, edit, and organize your projects in a user-friendly interface.
- Support for multiple languages: STM32CubeIDE supports multiple programming languages, including C, C++, and Assembly.
- Library management: STM32CubeIDE comes with a library manager that allows you to easily manage your libraries and dependencies.

# Downloading the software for the IDE

- https://www.st.com/en/development-tools/stm32cubeide.html
- From the page select the correct software for your operating system. For windows choose the bottom most one.

#### **Get Software**



### Firmware Development Level of Abstraction

- The software layered architecture diagram is given.
- We won't be developing LL drivers at the register level.
- However, we'll be using the LL+HAL device drivers provided by STMicroelectronics.
- So we can dedicate the development effort to the application layer and middleware, mostly the ECU abstraction layer (ECUAL) drivers.



## Advantages of Abstraction

#### Advantage #1:

- You'll learn how to develop reusable configurable firmware drivers for different modules, sensors, and interfaces.
- All of which will be dependent on the STM's HAL+LL drivers that have uniformed APIs across the entire portfolio of STM's STM32 families.

#### Advantage #2:

- Will have an embedded software stack that can potentially run on any STM32 microcontroller with very little effort.
- This is really helpful if you're designing your own STM32-based PCB boards and projects with any microcontroller part,
- Having portable reusable firmware drivers is key in shortening the development time.

#### STMCube MX Software

- https://www.st.com/en/development-tools/stm32cubemx.html
- Like the previous case, choose the software for your operating system.
- This is the second software tool you need to download and install.
- Obviously, we'll use the CubeMX GUI app to setup and configure the low-level hardware and peripherals.
- It also helps you configures the clock tree of the microcontroller to decide on the various clock speed for the system, buses, and peripherals.
- At the end of the configuration process, it generates the project folder in the specified directory.
- Then you click a button in order to launch it in the Cube IDE and start developing your project right away.

#### ST-link V2 Driver

- You'll finally need to make sure that the driver for the ST-Link v2 programmer/debugger is correctly installed and it's assigned a virtual COM port by your operating system.
- For any Nucleo or discovery board you'll not be in need to do this step.
- However, for the blue pill, you'll need an external USB ST-Link v2 debugger and it may not install the driver automatically once connected to your USB port.
- So here is the link:
- https://www.st.com/en/development-tools/stsw-link009.html

# Thanks