Лабораторная работа №3.2.3 Резонанс токов в параллельном контуре

Рожков А. В.

27 ноября 2024 г.

Цель работы: исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

Оборудование: генератор сигналов, источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

1 Теоретическое введение и описание установки

конденсатора с потерями.

Рис.1 Схема установки.

$$I=\frac{E}{R_I}=\frac{E_0cos(\omega t+\varphi_0)}{R_I}=I_0cos(\omega t+\varphi_0) \text{— ток на генераторе}$$

$$R_S=\frac{U_{RS}}{I}=\frac{U_{RS}}{\omega CU_{CS}}=\frac{1}{\omega C}tg\delta$$

где R_S - эквивалентное последовательное сопротивление (ЭПС) Для используемых емкостей C_n выполнено $tg\delta < 10^{-3}$

$$R_{\sum} = R + R_L + R_S$$

где R_{Σ} - суммарное активное сопротивление контура. Воспользуемся методом комплексных амплитуд: $Z_L=R_L+i\omega L,\,Z_C=R_S-i\frac{1}{\omega C},\,Z=R_{\Sigma}+i(\omega L-i\omega L)$

Тогда напряжение на контуре и токи на индуктивной и емкостной частях контура при нулевой начальной фазе можно представить в виде:

$$\begin{split} I_c &= I \frac{Z_L}{Z_C + Z_L} = iQI_0 \frac{\omega}{\omega_0} \frac{1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega}}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ I_L &= I \frac{Z_c}{Z_C + Z_L} = iQI_0 \frac{\omega_0}{\omega} \frac{1 + itg\delta}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ U &= I \frac{Z_L Z_c}{Z_C + Z_L} = Q\rho I_0 \frac{(1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega})(1 + itg\delta)}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \end{split}$$

где $\omega_0=\frac{1}{\sqrt{LC}}$ - собственная частота, $\rho=\sqrt{\frac{L}{C}}$ - реактивное сопротивление контура, $Q=\frac{\rho}{-}R_{\sum}$ добротность контура

Рассмотрим случай, когда $|\Delta\omega|=|\omega-\omega_0|\ll\omega_0$. Тогда

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0}$$

Пренебрегая поправками порядка Q^{-2} , получим:

$$I_c = QI_0 \frac{\omega}{\omega_0} \frac{e^{i\phi_c}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \phi_c = \frac{\pi}{2} - \frac{R + R_L}{\rho} - \arctan(\tau \Delta \omega)$$

$$I_L = QI_0 \frac{\omega_0}{\omega} \frac{e^{i\phi_L}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \phi_L = -\frac{\pi}{2} + \delta \arctan(\tau \Delta \omega)$$

$$U = Q\rho I_0 \frac{\omega}{\omega_0} \frac{e^{i\phi_U}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \phi_U = -\frac{\omega}{\omega_0} \frac{R + R_L}{\rho} + \delta - \arctan(\tau \Delta \omega)$$

где $au = rac{2L}{R_{\sum}} = rac{2Q}{\omega_0}$ - время затухания.

При резонансе, т.е. когда $\Delta\omega = 0$:

$$I_c(\omega_0) = QI_0, \phi_c(\omega_0) = \frac{\pi}{2} - \frac{R + R_L}{\rho}$$

$$I_L(\omega_0) = QI_0, \phi_L(\omega_0) = -\frac{\pi}{2} + \delta$$

$$U(\omega_0) = Q\rho I_0 = Q^2 R_{\sum} I_0, \phi_U \omega_0 = -\frac{R + R_L}{\rho} + \delta$$

2 Ход работы

Данные установки: R = 3,50 Ом, $R_1 = 1008$ Ом.

2.1 Измерения резонансных частот и напряжений, а также сопутствующих величин

Проведем для 7 разных конденсаторов емкости C_n измерения резонансных частот и напряжений на них, поддерживая напряжение на вольтметре 1 равным E=0,2 B, а также вычислим дополнительные величины, следующие из наших измерений, по следующим формулам:

$$L = \frac{1}{C(2\pi f)^2} \tag{1}$$

$$\rho = \frac{1}{2\pi fC} \tag{2}$$

$$Z_{\text{pes}} = \frac{U}{E_0} R_1 \tag{3}$$

$$Q = \frac{UR_1}{E_0} 2\pi f C \tag{4}$$

$$R_{\sum} = \frac{E_0}{UR_1} \frac{1}{(2\pi f C)^2} \tag{5}$$

$$R_{Smax} = 10^{-3} \cdot \frac{1}{\omega_0 C} \tag{6}$$

$$R_L = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} - R - 10^{-3} \cdot \frac{1}{\omega_0 C}$$
 (7)

Результаты занесём в таблицу:

Теперь проведем аналогичные вычисления при E = 0.37 B.

Таблица 1: Результаты измерений при $E=0,2~{\rm Om}$

C_n , H Φ	f_{0n} , к Γ ц	U_{0n} , B	E, B	L , мк Γ н	ρ , Om	Z_{pes} , Om	Q	R_{Σ} , Om	R_{Sm} , Om	R_L , Om
25.1	32.1	1.18	0.2	980.4	197.6	5947.2	30.1	6.57	0.20	2.9
33.2	27.8	0.91	0.2	988.2	172.5	4586.4	26.6	6.49	0.17	2.8
47.3	23.2	0.67	0.2	996.0	145.1	3376.8	23.3	6.24	0.15	2.6
57.4	21.3	0.57	0.2	973.7	130.2	2872.8	22.1	5.90	0.13	2.3
67.5	19.5	0.48	0.2	987.9	121.0	2419.2	20.0	6.05	0.12	2.4
82.7	17.7	0.40	0.2	978.7	108.8	2016.0	18.5	5.87	0.11	2.3
101.6	16.0	0.34	0.2	974.9	98.0	1713.6	17.5	5.60	0.10	2.0
Среднее значение				982,8						2,5
Ср-к	кв. погр. ср	э. значен	ия	2,67						0,10
Слу	чайная по	грешнос	ГЬ	6,3						0,2

Таблица 2: Результаты измерений при $E=0,37~{\rm Om}$

C_n , н Φ	f_{0n} , к Γ ц	U_{0n} , B	E, B	L , мк Γ н	ρ , Om	$Z_{\rm pes}$, Om	Q	R_{Σ} , Om	R_{Sm} , Om	R_L , Om
25.1	32.1	2.18	0.37	980.4	197.6	5939.0	30.1	6.58	0.20	2.9
33.2	27.8	1.62	0.37	988.2	172.5	4413.4	25.6	6.74	0.17	3.1
47.3	23.2	1.23	0.37	996.0	145.1	3350.9	23.1	6.28	0.15	2.6
57.4	21.3	1.04	0.37	973.7	130.2	2833.3	21.8	5.99	0.13	2.4
67.5	19.5	0.88	0.37	987.9	121.0	2397.4	19.8	6.10	0.12	2.5
82.7	17.7	0.74	0.37	978.7	108.8	2016.0	18.5	5.87	0.11	2.3
101.6	16.0	0.62	0.37	974.9	98.0	1689.1	17.2	5.68	0.10	2.1
Среднее значение				982,8						2,5
Ср-к	зв. погр. ср	э. значен	RИ	2,67						0,11
Слу	чайная по	грешност	ГЬ	6,3						0,3

2.2 Измерение АЧХ

Теперь измерим амплитудно-частотную характеристику для конденсаторов C_2, C_5 . При этом посчитаем также измеряемые величины по отношению к резонансным U_0, f_0 . Результаты сведем в таблицу:

Таблица 3: Результаты измерений АЧХ

1	0.1	38	62	88	107	125	150	191	268
2	0.3	27	41	57	69	83	100	124	334
3	0.6	8	10	13	17	18	23	32	432
4	0.9	-9	-15	-20	-28	-28	-34	-42	517
5	1.2	-22	-34	-49	-60	-68	-81	-104	582
6	1.5	-30	-48	-67	-82	-94	-114	-144	629
7	1.8	-36	-56	-89	-96	-112	-135	-169	658
8	2.1	-40	-62	-88	-106	-123	-146	-184	674

По результатам построим графики АЧХ для обоих конденсаторов в осях U(f) и $\frac{U}{U_0}\left(\frac{f}{f_0}\right)$. Теперь найдем добротность по ширине резонансной кривой $\delta\omega$ на 2 графике как

$$Q = \frac{1}{\delta\omega} \tag{8}$$

Где $\delta \omega$ — расстояние между частотами при значении напряжения $\frac{1}{\sqrt{2}}$. Получаем ответ:

Рис. 1: График амплитудно-частотной характеристики в осях U(f)

Рис. 2: График амплитудно-частотной характеристики в осях $\frac{U}{U_0}\left(\frac{f}{f_0}\right)$

$$Q_2 \approx 25, 9 \qquad Q_5 \approx 19, 7 \tag{9}$$

2.3 Фазово-частотная характеристика

Для тех же конденсаторов определим фазово-частотную характеристику. Будем определять разность фаз между сигналами U(t), E(t) как $\Delta \phi = \frac{x}{x_0} \phi$, где x, x_0 — расстояния от начала отсчёта до момента обращения графиков этих значений в нуль. Результаты занесем в таблицу:

	$C_2 =$	33, 2	Фн		$C_5 = 67, 5 \; {\rm H}\Phi$					
U, B	$\frac{f}{f_0}$	x	x_0	$\Delta\phi,\pi$	U, B	$\frac{f}{f_0}$	x	x_0	$\Delta \phi, \pi$	
0.29	0.949	2.2	4.0	0.55	0.29	0.967	4.0	5.8	0.69	
0.76	0.989	3.0	3.9	0.77	0.42	0.986	4.6	5.7	0.81	
0.90	1.003	3.9	3.8	1.03	0.35	0.976	4.2	5.7	0.74	
0.64	0.983	2.8	3.9	0.72	0.23	0.953	3.8	5.7	0.67	
0.26	0.944	2.4	4.0	0.60	0.18	0.937	3.6	5.8	0.62	
0.38	0.963	2.5	4.0	0.63	0.47	0.994	5.0	5.5	0.91	
0.77	0.989	3.1	3.8	0.82	0.48	0.998	5.3	5.4	0.98	
0.50	0.974	2.7	3.9	0.69	0.38	0.981	4.4	5.5	0.80	
0.82	1.008	4.1	3.7	1.11	0.44	1.010	5.9	5.4	1.09	
0.28	1.052	4.9	3.6	1.36	0.26	1.039	6.7	5.2	1.29	
0.56	1.022	4.7	3.7	1.27	0.15	1.074	7.0	5.0	1.40	
0.83	1.008	4.2	3.7	1.14	0.24	1.043	6.8	5.2	1.31	
0.46	1.03	4.8	3.7	1.30	0.42	1.014	6.1	5.3	1.15	
0.60	1.02	4.6	3.7	1.24	0.46	1.007	5.8	5.4	1.07	
0.74	1.012	4.4	3.7	1.19	0.37	1.020	6.4	5.3	1.21	
					0.31	1.029	6.6	5.20	1.27	

Таблица 4: Результаты измерений ФЧХ

По данным таблицы построим график $\frac{\Delta\phi}{\pi}\left(\frac{f}{f_0}\right)$.

Аналогично определим добротность, подсчитав длину резонансной кривой как расстояние между частотами при разности фаз в $\frac{3}{4}\pi$ и $\frac{5}{4}\pi$:

$$Q_2 \approx 20, 4 \qquad Q_5 \approx 27, 1 \tag{10}$$

${f 2.4}$ ${f \Gamma}$ рафик зависимости R_L от f_{0n}

Теперь построим график зависимости $R_L(f_{0n})$ и проведем прямую $\langle R_L \rangle = 2,5$ Ом. Видно, что R_L возрастает при увеличении частоты. Это может быть объяснено скин-эффектом.

Рис. 3: График фазово-частотной характеристики в осях $\frac{\Delta\phi}{\pi}\left(\frac{f}{f_0}\right)$

Рис. 4: График зависимости $R_L(f_{0n})$

2.5 Векторная диаграмма

Теперь построим векторную диаграмму для контура с наименьшей добротностью, т.е. для последнего — $Q_7=17,5.$

Рис. 5: Векторная диаграмма

Посчитаем ток $I=\frac{E}{R_1}=\frac{0.2}{1008}\approx 0,1$ мА. Его вектор равен сумме: $\vec{I}=\vec{I_L}+\vec{I_C},$ причем сам \vec{I} расположен на оси абсцисс, а его компоненты расположены к нему под углами

$$\phi_C = \frac{\pi}{2} - \frac{R + R_l}{\rho}, \quad \phi_L = -\frac{\pi}{2} + \delta$$
 (11)

Здесь $\delta \simeq 10^{-3}$ — очень малый параметр установки, которым допустимо пренебречь при расчёте, однако можно изобразить для наглядности. Подсчитаем угол $\phi_C' = \frac{R+R_l}{\rho} \approx 0,0562$.

Аналогичный угол у напряжения $\vec{U}:\phi_U=-\frac{R+R_l}{\rho}$. Т.е. оно незначительно отклоняется от оси абсцисс на отрицательный угол.

Изобразим это на рисунке.

3 Вывод

В данной работе мы изучили резонанс токов в параллельном контуре. С помощью непосредственных измерений, графиков АЧХ и ФЧХ мы определили добротность контуров и получили, в пределах погрешности, хорошо совпадающие результаты.

Проделав измерения при двух разных напряжениях E, мы выяснили, что меняется только абсолютное значение резонансных амплитуд напряжения U (увеличивается при более высоком E).

В конце работы мы построили векторную диаграмму как наглядное представления «резонанса токов».