第三章 多级放大电路

自 测 题

一、 判断下列说法是否正确,凡对的在括号内打" ",否则打" × "。
(1)现测得两个共射放大电路空载时的电压放大倍数均为 - 100 , 将它
们连成两级放大电路,其电压放大倍数应为 10000。()
(2)阻容耦合多级放大电路各级的 Q 点相互独立,()它只能放大交
流信号。()
(3)直接耦合多级放大电路各级的 Q 点相互影响 , ()它只能放大直
流信号。()
(4)只有直接耦合放大电路中晶休管的参数才随温度而变化。()
(5)互补输出级应采用共集或共漏接法。()
\mathbf{R} :(1) × (2) (3) × (4) × (5)
二、 现 有 基 本 放 大 电 路 :
A.共射电路 B.共集电路 C.共基电路
D.共源电路 E.共漏电路
根据要求选择合适电路组成两级放大电路。
(1)要求输入电阻为 1k 至 2k ,电压放大倍数大于 3000,第一级应
采用,第二级应采用。
(2)要求输入电阻大于 10M ,电压放大倍数大于 300,第一级应采
用,第 二 级 应 采 用。
(3)要求输入电阻为 100k ~200k ,电压放大倍数数值大于 100,
第一级应采用,第二级应采用。
(4)要求电压放大倍数的数值大于 10,输入电阻大于 10M ,输出电
阻小于 100 ,第一级应采用,第二级应采用。
(5)设信号源为内阻很大的电压源,要求将输入电流转换成输出电压,
且 $\left \dot{A}_{ui}\right = \left \dot{U}_{o}/\dot{I}_{i}\right > 1000$,输出电阻 $R_{o} < 100$,第一级应采用,第二级应
采用。
解:(1)A,A (2)D,A (3)B,A (4)D,B
(5) C. B

(1)直接耦合放大电路存在零点漂移的原因是。	
A. 电阻阻值有误差 B. 晶体管参数的分散性	
C. 晶体管参数受温度影响 D. 电源电压不稳定	
(2)集成放大电路采用直接耦合方式的原因是。	
A. 便于设计 B. 放大交流信号 C. 不易制作大容量电容	容
(3)选用差分放大电路的原因是。	
A. 克服温漂 B. 提高输入电阻 C. 稳定放入倍数	
(4)差分放大电路的差模信号是两个输入端信号的,共模	信
号是两个输入端信号的。	
A. 差 B. 和 C. 平均值	
(5)用恒流源取代长尾式差分放大电路中的发射极电阻 R _e ,将使电	路
的。	
A. 差模放大倍数数值增大	
B. 抑制共模信号能力增强 C. 差模输入电阻增大	
(6) 互补输出级采用共集形式是为了使。	
A. 电压放大倍数大 B. 不失真输出电压大	
C. 带负载能力强	
解:(1)C,D (2)C (3)A (4)A,C (5)B	
(6) C	
四、电路如图 PT3.4 所示,所有晶体管均为硅管, 均为 60 , $r_{ m bb}$ =1	00
,静态时 U _{BEQ} 0.7V。试求:	
(1)静态时 T_1 管和 T_2 管的发射极电流。	
(2) 若静态时 $u_{\rm O}>0$,则应如何调节 $R_{\rm c2}$ 的值才能使 $u_{\rm O}=0$ V?若静	态
$u_{\rm O}$ = $0{ m V}$,则 $R_{\rm c2}$ = ?电压放大倍数为多少?	

三、选择合适答案填入空内。

$\mathbf{m}:(1)$ T₃ 管的集电极电流

$$I_{\rm C3}$$
 = ($U_{\rm Z}$ - $U_{\rm BEQ3}$) / $R_{\rm e3}$ = 0.3mA

静态时 T₁ 管和 T₂ 管的发射极电流

$$I_{\rm E1} = I_{\rm E2} = 0.15 \,\mathrm{mA}$$

(2) 若静态时 $u_0 > 0$,则应减小 R_{c2} 。

当 $u_{\rm I}$ = 0 时 $u_{\rm O}$ = 0, T_4 管的集电极电流 $I_{\rm CQ4}$ = $V_{\rm EE}$ / $R_{\rm c4}$ = 0.6mA。 $R_{\rm c2}$ 的电流及其阻值分别为

$$I_{R_{c1}} = I_{C2} - I_{B4} = I_{C2} - \frac{I_{CQ4}}{\beta} = 0.14 \text{mA}$$

$$R_{c2} = \frac{I_{E4}R_{E4} + |U_{BEQ4}|}{I_{R_{C2}}} \approx 7.14 \text{k}\Omega$$

电压放大倍数求解过程如下:

$$r_{be2} = r_{bb'} + (1+\beta) \frac{26\text{mV}}{I_{EQ2}} \approx 10.7\text{k}\Omega$$

$$r_{be4} = r_{bb'} + (1+\beta) \frac{26\text{mV}}{I_{EQ4}} \approx 2.74\text{k}\Omega$$

$$\dot{A}_{u1} = \frac{\beta \{R_{c2} - [r_{be4} + (1+\beta)R_{e4}]\}}{2 r_{be2}} \approx 16.5$$

$$\dot{A}_{u2} = -\frac{\beta R_{c4}}{r_{be4} + (1+\beta)R_{e4}} \approx -18$$

$$\dot{A}_{u} = \dot{A}_{u1} \cdot \dot{A}_{u2} \approx -297$$

题 习

3.1 判断图 P3.1 所示各两级放大电路中, T_1 和 T_2 管分别组成哪种基本 接法的放大电路。设图中所有电容对于交流信号均可视为短路。

解:(a)共射,共基

- (b) 共射, 共射
- (c) 共射, 共射

- (d)共集,共基
- (e) 共源, 共集 (f) 共基, 共集

3.2 设图 P3.2 所示各电路的静态工作点均合适,分别画出它们的交流等效电路,并写出 \dot{A}_u 、 R_i 和 R_o 的表达式。

解:(1)图示各电路的交流等效电路如解图 P3.2 所示。

(2) 各电路 \dot{A}_{μ} 、 R_{i} 和 R_{o} 的表达式分别为

图 (a)

$$\begin{split} \dot{A}_{u} &= -\frac{\beta_{1} \left\{ R_{2} - \left[r_{\text{be2}} + (1 + \beta_{2}) R_{3} \right] \right\}}{R_{1} + r_{\text{be1}}} \cdot \frac{(1 + \beta_{2}) R_{3}}{r_{\text{be2}} + (1 + \beta_{2}) R_{3}} \\ R_{i} &= R_{1} + r_{\text{be1}} \\ R_{o} &= R_{3} - \frac{r_{\text{be2}} + R_{2}}{1 + \beta_{2}} \end{split}$$

图 (b)

$$\begin{split} \dot{A}_u &= \frac{(1+\beta_1)(R_2-R_3-r_{\text{be}2})}{r_{\text{be}1} + (1+\beta_1)(R_2-R_3-r_{\text{be}2})} \cdot (-\frac{\beta_2 R_4}{r_{\text{be}2}}) \\ R_i &= R_1 - [r_{\text{be}1} + (1+\beta_1)(R_2-R_3-r_{\text{be}2})] \\ R_o &= R_4 \end{split}$$

图 (c)

$$\begin{split} \dot{A}_{u} &= -\frac{\beta_{1} \left\{ R_{2} - \left[r_{\text{be2}} + (1 + \beta_{2}) r_{\text{d}} \right] \right\}}{R_{1} + r_{\text{be1}}} \cdot \left[-\frac{\beta_{2} R_{3}}{r_{\text{be2}} + (1 + \beta_{2}) r_{\text{d}}} \right] \\ R_{i} &= R_{1} + r_{\text{be1}} \\ R_{o} &= R_{3} \end{split}$$

图 (d)

$$\dot{A}_u = [-g_{\rm m}(R_4 \quad R_6 \quad R_7 \quad r_{\rm be2})] \cdot (-\frac{\beta_2 R_8}{r_{\rm be2}})$$
 $R_{\rm i} = R_3 + R_1 \quad R_2$
 $R_{\rm o} = R_8$

解图 P3.2

- 3.3 基本放大电路如图 P3.3(a)(b)所示,图(a)虚线框内为电路图(b)虚线框内为电路。由电路、组成的多级放大电路如图(c)(d)(e)所示,它们均正常工作。试说明图(c)(d)(e)所示电路中
 - (1)哪些电路的输入电阻比较大;
 - (2)哪些电路的输出电阻比较小;
 - (3)哪个电路的 $\left|\dot{A}_{us}\right| = \left|\dot{U}_{o}/\dot{U}_{s}\right|$ 最大。

图 P3.3

解: (1)图(d),(e)所示电路的输入电阻较大。

(2)图(c)(e)所示电路的输出电阻较小。

(3)图(e)所示电路的 $\left|\dot{A}_{us}\right|$ 最大。

3.4 电路如图 P3.1(a)(b)所示,晶体管的 均为 50, r_{be} 均为 1.2k , Q 点合适。求解 \dot{A}_u 、 R_i 和 R_o 。

解:在图(a)所示电路中

$$\dot{A}_{u1} = \frac{-\beta_1 \cdot \frac{r_{\text{be2}}}{1 + \beta_2}}{r_{\text{be1}}}$$

$$\dot{A}_{u2} = \frac{\beta_2 R_3}{r_{\text{be2}}} = 125$$

$$\dot{A}_u = \dot{A}_{u1} \cdot \dot{A}_{u2} \approx -125$$

$$R_i = R_1 \quad R_2 \quad r_{\text{be1}} \approx 0.93 \text{k}\Omega$$

$$R_0 = R_3 = 3 \text{k}\Omega$$

在图(b)所示电路中

$$\dot{A}_{u1} = \frac{-\beta_1 \cdot (R_1 - r_{be2})}{r_{be1}} \approx -50$$

$$\dot{A}_{u2} = -\frac{\beta_2 R_4}{r_{be2}} \approx -42$$

$$\dot{A}_u = \dot{A}_{u1} \cdot \dot{A}_{u2} \approx 2100$$

$$R_i = (R_5 + R_2 - R_3) - r_{be1} \approx 1.2k\Omega$$

$$R_0 = R_4 = 1k\Omega$$

3.5 电路如图 P3.1 (c)(e)所示,晶体管的 均为 80, r_{be} 均为 1.5k ,场效应管的 g_m 为 3mA/V;Q点合适。求解 \dot{A}_u 、 R_i 和 R_o 。

解:在图(c)所示电路中

$$\dot{A}_{u1} = \frac{-\beta_1 \cdot (R_3 - r_{be2})}{r_{be1}} \approx -62$$

$$\dot{A}_{u2} = -\frac{\beta_2 R_4}{r_{be2}} \approx -107$$

$$\dot{A}_u = \dot{A}_{u1} \cdot \dot{A}_{u2} \approx 6634$$

$$R_i = R_1 - r_{be1} \approx 1.5 \text{k}\Omega$$

$$R_i = R_4 = 2 \text{k}\Omega$$

在图(e)所示电路中

$$\begin{split} \dot{A}_{u1} &= -g_m \left\{ R_2 \quad [r_{be} + (1+\beta)R_4] \right\} \approx -g_m R_2 \approx -6 \\ \dot{A}_{u2} &= \frac{(1+\beta)R_4}{r_{be} + (1+\beta)R_4} \approx 1 \\ \dot{A}_u &= \dot{A}_{u1} \cdot \dot{A}_{u2} \approx -6 \\ R_i &= R_1 = 10 \text{M}\Omega \\ R_o &= R_4 \quad \frac{r_{be} + R_2}{1+\beta} \approx 43 \Omega \end{split}$$

- 3.6 图 P3.6 所示电路参数理想对称 , $_1$ = $_2$ = , r_{be1} = r_{be2} = r_{beo}
- (1)写出 $R_{\rm W}$ 的滑动端在中点时 $A_{\rm d}$ 的表达式;
- (2)写出 $R_{\rm W}$ 的滑动端在最右端时 $A_{\rm d}$ 的表达式,比较两个结果有什么不同。

图 P3.6

解:(1) R_W 的滑动端在中点时 A_d 的表达式为

$$A_{\rm d} = \frac{\Delta u_{\rm O}}{\Delta u_{\rm I}} = -\frac{\beta (R_{\rm c} + \frac{R_{\rm W}}{2})}{r_{\rm be}}$$

(2) Rw的滑动端在最右端时

$$\Delta u_{\rm C1} = -\frac{\beta \left(R_{\rm c} + R_{\rm W}\right)}{2r_{\rm be}} \cdot \Delta u_{\rm I} \qquad \Delta u_{\rm C2} = +\frac{\beta R_{\rm c}}{2r_{\rm be}} \cdot \Delta u_{\rm I}$$

$$\Delta u_{\rm O} = \Delta u_{\rm C1} - \Delta u_{\rm C2} = -\frac{\beta \left(R_{\rm c} + \frac{R_{\rm W}}{2}\right)}{r_{\rm be}} \cdot \Delta u_{\rm I}$$

所以 Ad 的表达式为

$$A_{\rm d} = \frac{\Delta u_{\rm O}}{\Delta u_{\rm I}} = -\frac{\beta (R_{\rm c} + \frac{R_{\rm W}}{2})}{r_{\rm be}}$$

比较结果可知,两种情况下的 $A_{\rm d}$ 完全相等;但第二种情况下的 $\left|\Delta u_{\rm Cl}\right|>\left|\Delta u_{\rm C2}\right|$ 。

3.7 图 P3.7 所示电路参数理想对称,晶体管的 均为 50, $r_{bb}=100$, $U_{\rm BEQ}=0.7$ 。试计算 $R_{\rm W}$ 滑动端在中点时 T_1 管和 T_2 管的发射极静态电流 $I_{\rm EQ}$,以及动态参数 $A_{\rm d}$ 和 $R_{\rm i}$ 。

图 P3.7

 $\mathbf{M}: R_{\mathrm{W}}$ 滑动端在中点时 T_{1} 管和 T_{2} 管的发射极静态电流分析如下:

$$U_{\text{BEQ}} + I_{\text{EQ}} \cdot \frac{R_{\text{W}}}{2} + 2I_{\text{EQ}}R_{\text{e}} = V_{\text{EE}}$$
$$I_{\text{EQ}} = \frac{V_{\text{EE}} - U_{\text{BEQ}}}{\frac{R_{\text{W}}}{2} + 2R_{\text{e}}} \approx 0.517 \text{mA}$$

 $A_{\rm d}$ 和 $R_{\rm i}$ 分析如下:

$$r_{be} = r_{bb'} + (1 + \beta) \frac{26\text{mV}}{I_{EQ}} \approx 5.18\text{k}\Omega$$

$$A_{d} = -\frac{\beta R_{c}}{r_{be} + (1 + \beta) \frac{R_{W}}{2}} \approx -97$$

$$R_{i} = 2r_{be} + (1 + \beta)R_{W} \approx 20.5\text{k}\Omega$$

3.8 电路如图 P3.8 所示, T_1 管和 T_2 管的 均为 40, r_{be} 均为 3k 。 试问:若输入直流信号 $u_{I1}=20$ mv, $u_{I2}=10$ mv,则电路的共模输入电压 $u_{IC}=?$ 差模输入电压 $u_{Id}=?$ 输出动态电压 $u_{O}=?$

图 P3.8

解:电路的共模输入电压 $u_{\rm IC}$ 、差模输入电压 $u_{\rm Id}$ 、差模放大倍数 $A_{\rm d}$ 和动态电压 $u_{\rm O}$ 分别为

$$u_{IC} = \frac{u_{I1} + u_{I2}}{2} = 15 \text{mV}$$

$$u_{Id} = u_{I1} - u_{I2} = 10 \text{mV}$$

$$A_{d} = -\frac{\beta R_{c}}{2r_{be}} \approx -67$$

$$\Delta u_{O} = A_{d} u_{Id} \approx -0.67 \text{V}$$

由于电路的共模放大倍数为零,故 u_0 仅由差模输入电压和差模放大倍数决定。

- 3.9 电路如图 P3.9 所示,晶体管的 =50, $r_{\rm bb}$ =100 。
- (1) 计算静态时 T_1 管和 T_2 管的集电极电流和集电极电位;
- (2) 用直流表测得 $u_0=2V$, $u_I=?$ 若 $u_I=10$ mv,则 $u_0=?$

解:(1)用戴维宁定理计算出左边电路的等效电阻和电源为

$$R_{\rm L} = R_{\rm c} \qquad R_{\rm L} \approx 6.67 \text{k}\Omega \,, \qquad V_{\rm CC} = \frac{R_{\rm L}}{R_{\rm c} + R_{\rm L}} \cdot V_{\rm CC} = 5 \text{V}$$

静态时 T₁ 管和 T₂ 管的集电极电流和集电极电位分别为

$$\begin{split} I_{\rm CQ1} &= I_{\rm CQ2} = I_{\rm CQ} \approx I_{\rm EQ} \approx \frac{V_{\rm EE} - U_{\rm BEQ}}{2R_{\rm e}} = 0.265 \text{mA} \\ U_{\rm CQ1} &= V_{\rm CC}^{'} - I_{\rm CQ} R_{\rm L}^{'} \approx 3.23 \text{V} \\ U_{\rm CQ2} &= V_{\rm CC} = 15 \text{V} \end{split}$$

(2) 先求出输出电压变化量,再求解差模放大倍数,最后求出输入电压,如下:

$$u_{\rm O} = u_{\rm O} - U_{\rm CQ1} - 1.23 \text{ V}$$

$$r_{\rm be} = r_{\rm bb'} + (1 + \beta) \frac{26 \text{mA}}{I_{\rm EQ}} \approx 5.1 \text{k}\Omega$$

$$A_{\rm d} = -\frac{\beta R_{\rm L}^{'}}{2(R_{\rm b} + r_{\rm be})} \approx -32.7$$

$$u_{\rm I} = \frac{\Delta u_{\rm O}}{A_{\rm d}} \approx 37.6 \text{mV}$$

若 $u_{\rm I}=10\,{\rm mv}$, 则

$$\Delta u_{\rm O} = A_{\rm d} u_{\rm I} \approx -0.327 \text{V}$$

$$u_{\rm O} = U_{\rm COI} + \Delta u_{\rm O} \approx 2.9 \text{V}$$

3.10 试写出图 P3.10 所示电路 A_d 和 R_i 的近似表达式。设 T_1 和 T_2 的电 第三章题解 - 12

流放大系数分别为 $_1$ 和 $_2$, b-e 间动态电阻分别为 $_{r_{be1}}$ 和 $_{r_{be2}}$ 。

图 P3.10

 $\mathbf{m}: A_{\mathrm{d}}$ 和 R_{i} 的近似表达式分别为

$$A_{\rm d} \approx -\frac{\beta_1 \beta_2 (R_{\rm c} \frac{R_{\rm L}}{2})}{r_{\rm be1} + (1 + \beta_1) r_{\rm be2}}$$

$$R_{\rm i} = 2[r_{\rm be1} + (1 + \beta_1) r_{\rm be2}]$$

 $\bf 3.11$ 电路如图 P3.11 所示, $\bf T_1$ 和 $\bf T_2$ 的低频跨导 g_m 均为 2mA/V。试求解差模放大倍数和输入电阻。

图 P3.11

解:差模放大倍数和输入电阻分别为

$$A_{\rm d} = -g_{\rm m}R_{\rm D} = -40$$
$$R_{\rm i} =$$

3.12 试求出图 P3.12 所示电路的 A_{do} 。设 T_1 与 T_3 的低频跨导 g_m 均为 $$9{\equiv}5$ 第三章 \$13

2mA/V, T_2 和 T_4 的电流放大系数 均为 80。

图 P3.12

解:首先求出输出电压和输入电压的变化量,然后求解差模放大倍数。

$$\begin{split} \Delta u_{\rm O} &= -(\Delta i_{\rm D} + \Delta i_{\rm C}) R_{\rm D} = -(g_{\rm m} \Delta u_{\rm GS} + \beta g_{\rm m} \Delta u_{\rm GS}) R_{\rm D} \\ &\frac{1}{2} \Delta u_{\rm I} = \Delta u_{\rm GS} + \Delta u_{\rm BE} = \Delta u_{\rm GS} + \Delta i_{\rm D} r_{\rm be} = \Delta u_{\rm GS} + g_{\rm m} \Delta u_{\rm GS} r_{\rm be} \\ A_{\rm d} &= -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g_{\rm m}R_{\rm D}}{1+g_{\rm m}r_{\rm be}} \text{ , } \\ \\ &\frac{1}{2} R_{\rm D} = -\frac{1}{2} \cdot \frac{(1+\beta)g$$

3.13 电路如图 P3.13 所示, $T_1 \sim T_5$ 的电流放大系数分别为 $T_0 \sim T_0$ be 间动态电阻分别为 $T_{be1} \sim T_{be5}$,写出 $T_0 \sim T_0$ 的表达式。

图 P3.13

解: A_{u} 、 R_{i} 和 R_{o} 的表达式分析如下:

$$\begin{split} A_{u1} &= \frac{\Delta u_{\text{O1}}}{\Delta u_{\text{I}}} = \frac{\beta_{1} \left\{ R_{2} - \left[r_{\text{be4}} + (1 + \beta_{4}) R_{5} \right] \right\}}{2 r_{\text{be1}}} \\ A_{u2} &= \frac{\Delta u_{\text{O2}}}{\Delta u_{\text{I2}}} = -\frac{\beta_{4} \left\{ R_{6} - \left[r_{\text{be5}} + (1 + \beta_{5}) R_{7} \right] \right\}}{r_{\text{be4}} + (1 + \beta_{4}) R_{5}} \\ A_{u3} &= \frac{\Delta u_{\text{O3}}}{\Delta u_{\text{I3}}} = \frac{(1 + \beta_{5}) R_{7}}{r_{\text{be5}} + (1 + \beta_{5}) R_{7}} \\ A_{u} &= \frac{\Delta u_{\text{O}}}{\Delta u_{\text{I}}} = A_{u1} \cdot A_{u2} \cdot A_{u3} \\ R_{i} &= r_{\text{be1}} + r_{\text{be2}} \\ R_{o} &= R_{7} - \frac{r_{\text{be5}} + R_{6}}{1 + \beta_{5}} \end{split}$$

- **3.14** 电路如图 3.14 所示。已知电压放大倍数为 100,输入电压 $u_{\rm I}$ 为正弦波, T_2 和 T_3 管的饱和压降 | $U_{\rm CES}$ | =1 $V_{\rm o}$ 试问:
 - (1)在不失真的情况下,输入电压最大有效值 U_{imax} 为多少伏?
- (2)若 $U_{\rm i}$ = $10{\rm mv}$ (有效值),则 $U_{\rm o}$ = ? 若此时 R_3 开路,则 $U_{\rm o}$ = ? 若 R_3 短路,则 $U_{\rm o}$ = ?

P3.14

解:(1)最大不失真输出电压有效值为

$$U_{\rm om} = \frac{V_{\rm CC} - U_{\rm CES}}{\sqrt{2}} \approx 7.78 \text{V}$$

故在不失真的情况下,输入电压最大有效值 U_{imax}

$$U_{\rm imax} = \frac{U_{\rm om}}{\left|\dot{A}_u\right|} \approx 77.8 \text{mV}$$

(2) 若 $U_{\rm i}$ = $10\,{\rm mV}$, 则 $U_{\rm o}$ = $1\,{\rm V}$ (有效值)。

若 R_3 开路,则 T_1 和 T_3 组成复合管,等效 1 - 3 , T_3 可能饱和,使得 u_0 - 11 V(直流)。

若 R₃ 短路,则 u₀ 11.3V(直流)。