LECTURER: Nghia Duong-Trung

MACHINE LEARNING

WHOIAM

- Name: Nghia Duong-Trung
- 09.2022 present: The German Research Center for Artificial Intelligence (DFKI GmbH)
- 06.2022 present: IU International University of Applied Sciences
- PostDoc in Machine Learning at Technische Universität Berlin
- PhD in Machine Learning at The Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
- MSc in Software Engineering at Heilbronn University, Germany
- Profile: https://sites.google.com/ismll.de/duongtrungnghia/

IU: NEW FROM Q12023

- Check attendance
- Attendance or partial attendance
- Excuse note (yes | no)
- Absence reason (yes | no)

INTRODUCTION TO ARTIFICIAL INTELLIGENCE_DLBDSEAIS01

- Course book: Machine Learning_DLMDSML01, provided by IU, myStudies
- Reading list DLMDSML01, provided by IU, myStudies
- Additional teaching materials:

https://github.com/duongtrung/IU-MachineLearning-DLMDSML01

Introduction to Machine Learning	1
Clustering	2
Regression	3
Support Vector Machines	4
Decision Trees	5
Genetic Algorithms	6

INTRODUCTION TO MACHINE LEARNING

STUDY GOALS

- Explain what is meant by machine learning.
- Know common terms and definitions in machine learning.
- Learn the different applications of machine learning.
- Understand concepts of classification and regression.
- Comprehend the difference between each of the machine learning paradigms.

Machine learning ...

- is a subfield of Artificial Intelligence (AI).
- is a mathematical and algorithmic approach
- is devoted to understanding and building methods that "learn".
- methods leverage data to improve performance on some set of tasks.

Machine learning as subfield of Al

MAKING DECISIONS WITH DATA

- Remember-formulate-predict framework
 - We remember past situations that were similar
 - We formulate a general rule
 - We use this rule to predict what may happen in the future

Machine learning concepts

- Traditional programming constructs an explicit processing of input variables into desired outputs via a set of code instructions
- ML algorithms build models based on sample data, in order to make predictions or decisions without being explicitly programmed to do so

Traditional Programming

Machine learning

WHAT IS A MODEL?

A model is an approximation of the relationship between two variables.

Model y=f(x)+ε

Input variable(s) χ

Output variable(s) y

WHAT IS A MODEL?

A model is an approximation of the relationship between two variables.

BUILDING A MODEL

- To create a model, we define four things:
 - **Features**: to use
 - Algorithm: acts as a form/template for model
 - **Hyperparameter**: values for algorithm
 - Loss function: to optimize
- We train our model using historial data:
 - Algorithm & hyperparameters provide overall model form
 - Learn values for the model which minimize loss function

INTRODUCTION

Supervised Learning

- Dataset: a collection of labeled samples,
 containing both inputs (independent variables) and outputs (dependent variable)
- Objective: develop a ML model to relate the inputs to the outputs of in the training set and predict the outputs for new inputs

1.2 MACHINE LEARNING PARADIGMS

Supervised Learning

Supervised Learning Examples		
Example Dataset	Prediction	Туре
Previous home sales	How much is a specific home worth?	Regression
Previous loans that were paid	Will this client default on a loan?	Classification
Previous weeks' visa applications	How many businesspersons will apply for visa next week?	Regression
Previous statistics of benign/malignant cancers	Is this cancer malignant?	Classification

Supervised Learning Techniques		
Technique	Obtained Function	
Linear classifier, linear regression, multi-linear regression.	Numerical functions	
Support Vector Machine (SVM), Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden Markov models (HMM).	Parametric Probabilistic functions	
K-nearest neighbors, Kernel regression, Kernel density estimation	Non-parametric instance based functions	
Decision tree	Non-metric symbolic functions	

REGRESSION VS CLASSIFICATION

Regression

- Predict one or more numerical target variables
- E.g. home price, number of power outages, product demand

Classification

- Predicts a class / category either binary or out of a set
- E.g. lung disease detection, identifying types of plants, sentiment analysis, detecting spam

Classification

- Objective: develop a ML model to map the inputs to the outputs and predict the classes of new inputs
- Accuracy can be presented in a confusion matrix.
- Evaluation metrics:

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$Recall = \frac{TP}{TP + FN}$$

•
$$F_{Score} = \frac{2 \cdot (Precision \cdot Recall)}{Precision + Recall}$$

Dog and Cat classification

Confusion matrix

1.1 APPLICATIONS OF MACHINE LEARNING

Regression

- **Objective**: develop a ML model to **relate** the inputs x to the outputs y and **predict** the output **values** \hat{y} for new inputs
- Evaluation metrics:
 - Mean Square Error: $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - Root Mean Square Error: $RMSE = \sqrt{MSE}$
 - Mean Absolute Error: $\mathbf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$

Unsupervised Learning

- Dataset: a collection of unlabeled samples, containing only inputs (independent variables) while outputs (dependent variable) are unknown.
- Objective: develop a ML model to discover the salient patterns and structures within the training set.

Unsupervised Learning Structure

1.2 MACHINE LEARNING PARADIGMS

Unsupervised Learning

Unsupervised Learning Examples			
Example dataset	Discovered patterns	Туре	
Customers profiles	Are these customers similar?	Clusters	
Previous transactions	Is a specific transaction odd?	Anomaly detection	
Previous purchasing	Are these products purchased together?	Association discovery	

Unsupervised Learning Techniques		
Technique	Description	
K-Means, hierarchical clustering	Clustering analysis	
Gaussian mixture model (GMM), graphical models	Density estimation	
DBSCAN	Outlier detection	
Principal component analysis, factor analysis	Dimensionality reduction	

Semi-Supervised Learning

- Dataset: a collection of both labeled samples (a small portion of data), and unlabeled samples (lots of data)
- Objective: mix of supervised and unsupervised learning to combine the properties of both.

─ 2 steps:

- Supervised learning is performed on few labeled data
- Unsupervised learning is performed on large unlabeled data

Semi-Supervised Learning Structure

1.2 MACHINE LEARNING PARADIGMS

Semi-supervised Learning

Two steps of Semi-Supervised Learning

Reinforcement Learning

- Objective: to find an action policy that achieves a given goal by trial-and-error interactions with the environment.
- "Cause and effect" method: an action is performed to achieve a maximum reward.
- Reward function acts as feedback to the agent

Reinforcement Learning Structure

1.2 MACHINE LEARNING PARADIGMS

Reinforcement Learning

WHAT ML CAN DO WELL* AND WHAT ML CANNOT DO WELL**

- Do well*
 - Automate straightforward tasks
 - Make predictions by learning input-output relationships
 - Personalize for individual users
- Cannot do well**
 - Understanding context
 - Determine causation
 - Explain why things happen
 - Determine the impact of interventions / find solutions

REVIEW STUDY GOALS

- Explain what is meant by machine learning.
- Know common terms and definitions in machine learning.
- Learn the different applications of machine learning.
- Understand concepts of classification and regression.
- Comprehend the difference between each of the machine learning paradigms.

SESSION 1

INTRODUCTION TO MACHINE LEARNING

TRANSFER TASKS

Explain how Machine Learning can be applied to improve the purchasing services of an online shop.

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

1. Semi-supervised learning combines aspects of ...

- a) ...supervised and reinforcement learning
- b) ...unsupervised and reinforcement learning
- c) ...reinforcement learning and active learning
- d) ...supervised and unsupervised learning.

LEARNING CONTROL QUESTIONS

2. Which of the following are the low and high bounds for the F-Score?

- a) [0,100]
- b) [0,1]
- c) [-1,1]
- d) [-1,0]

3. Normalized data are centered at ____ and have unit standard deviation.

- a) 0
- b) 1
- (c) -1
- d) 10

- 4. Grouping news articles according to similarity can be solved using which of the following?
 - a) Regression
 - b) Classification
 - c) Reinforcement Learning
 - d) Clustering

- 5. Genetic Classification problems fall under the category of...
 - a) unsupervised learning
 - b) reinforcement learning
 - c) supervised learning
 - d) supervised and unsupervised learning

LIST OF SOURCES

Text:

Fernandez, J. (2020). Introduction to Regression Analysis. https://towardsdatascience.com/introduction-to-regression-analysis-9151d8ac14b3

Jason, B. (2021). Regression Metrics for Machine Learning. https://machinelearningmastery.com/regression-metrics-for-machine-learning/

Machine Learning (Feb. 28, 2023). In Wikipedia Commons, the free media repository. Retrieved, February 28, 2023, from https://en.wikipedia.org/wiki/Machine_learning

Zöller, T. (2022). Course Book – Machine Learning. IU International University of Applied Science.

Images:

File:Normdist_regression.png. (2023, January 22). *In Wikimedia Commons, the free media repository*. Retrieved, January 29, 2023, from https://en.wikipedia.org/wiki/Regression_analysis

File:Dog and Cat Classification.png. (2023, January). Open sources. Kaggle Competition. Retrieved, Feb. 28, 2023, from https://www.kaggle.com/code/sasakitetsuya/dog-and-cat-classification-by-mobilenet-

Zöller (2022, p. 12-13).

Zöller (2022, p. 15).

Zöller (2022, p. 22-23).

Zöller (2022, p. 24).

Zöller (2022, p. 25).

