Keilani Bailey

CIS 335

Sorio Boit

March 30, 2022

Assignment 3

- 1. Bagging with z-scored values and no features selected gives the best performance.
- 2. Recall is the most important because it has the highest value.

Name	Scaling Feature	selector	parameter	Recall	Precision	Accuracy	F1score
Adaboost	none	none	n_estimators= 10	0.762	0.619	0.676	0.733
Adaboost	z-score	none	n_estimators= 10	0.762	0.619	0.676	0.733
Adaboost	z-score	ffs	n_estimators= 10	0.757	0.582	0.683	0.722
Adaboost	none	ffs	n_estimators= 10	0.751	0.586	0.663	0.718
Adaboost	z-score	rfe	n_estimators= 10	0.76	0.59	0.685	0.727
Adaboost	none	rfe	n_estimators= 10	0.691	0.414	0.584	0.632
Random Forest	none	none	n_estimators= 10	0.759	0.5	0.731	0.71
Random Forest	z-score	none	n_estimators= 10	0.759	0.5	0.731	0.71
Random Forest	z-score	ffs	n_estimators= 10	0.76	0.552	0.701	0.721
Random Forest	none	ffs	n_estimators= 10	0.755	0.511	0.707	0.708
Random Forest	z-score	rfe	n_estimators= 10	0.754	0.526	0.7	0.71
Random Forest	none	rfe	n_estimators= 10	0.69	0.302	0.616	0.597
Naive Bayes	none	none	n_estimators= 100	0.751	0.586	0.662	0.718
Naive Bayes	z-score	none	n_estimators= 100	0.751	0.586	0.662	0.718
Naive Bayes	z-score	ffs	n_estimators= 100	0.766	0.564	0.707	0.728
Naive Bayes	none	ffs	n_estimators= 100	0.768	0.541	0.727	0.726
Naive Bayes	z-score	rfe	n_estimators= 100	0.757	0.556	0.691	0.718

Naive Bayes	none	rfe	n_estimators= 100	0.686	0.351	0.583	0.61
Bagging	none	none	n_estimators= 10	0.758	0.474	0.747	0.703
Bagging	z-score	none	n_estimators= 10	0.78	0.552	0.755	0.738
Bagging	z-score	ffs	n_estimators= 10	0.76	0.478	0.751	0.707
Bagging	none	ffs	n_estimators= 10	0.747	0.426	0.746	0.683
Bagging	z-score	rfe	n_estimators= 10	0.753	0.452	0.742	0.694
Bagging	none	rfe	n_estimators= 10	0.673	0.104	0.715	0.488
Decision Tree	none	none	n_estimators= 100	0.708	0.582	0.592	0.695
Decision Tree	z-score	none	n_estimators= 100	0.71	0.586	0.587	0.687
Decision Tree	z-score	ffs	n_estimators= 100	0.689	0.594	0.566	0.669
Decision Tree	none	ffs	n_estimators= 100	0.674	0.564	0.535	0.642
Decision Tree	z-score	rfe	n_estimators= 100	0.684	0.56	0.561	0.644
Decision Tree	none	rfe	n_estimators= 100	0.638	0.492	0.469	0.597