Chamblandes 2009 — Problème 5

1. (a)
$$u_1 = 5$$

$$u_2 = \frac{u_1 + 4}{3} = \frac{5 + 4}{3} = 3$$

$$u_3 = \frac{u_2 + 4}{3} = \frac{3 + 4}{3} = \frac{7}{3}$$

$$u_4 = \frac{u_3 + 4}{3} = \frac{\frac{7}{3} + 4}{3} = \frac{19}{9}$$

(b) L'initialisation est claire au vu des calculs ci-dessus de u_1 , u_2 , u_3 et u_4 .

Supposons donc $u_n\geqslant 2$ et prouvons l'hérédité, c'est-à-dire que $u_{n+1}\geqslant 2$:

$$u_{n+1} = \frac{\underbrace{u_n}^{\geqslant 2} + 4}{3} \geqslant \frac{2+4}{3} = 2$$

(c) Pour montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante, il faut montrer que $u_n \geqslant u_{n+1}$, ou encore $u_n - u_{n+1} \geqslant 0$:

$$u_n - u_{n+1} = u_n - \frac{u_n + 4}{3} = \frac{3u_n - (u_n + 4)}{3} = \frac{2u_n - 4}{3} = \frac{2(u_n - 2)}{3} \geqslant 0$$

En effet, la preuve faite en (b) affirme que $u_n \ge 2$, à savoir $u_n - 2 \ge 0$.

(d) Puisque la suite $(u_n)_{n\in\mathbb{N}}$ est minorée par 2 et décroissante, elle converge.

Sa limite $a=\lim_{n\to +\infty}u_n$ satisfait l'équation $a=\frac{a+4}{3}$. Il s'ensuit 3 a=a+4, puis 2 a=4 et enfin a=2.

2. (a) $w_1 = u_1 - 2 = 5 - 2 = 3$ $w_2 = u_2 - 2 = 3 - 2 = 1$ $w_3 = u_3 - 2 = \frac{7}{3} - 2 = \frac{1}{3}$ $w_4 = u_4 - 2 = \frac{19}{9} - 2 = \frac{1}{9}$

(b)
$$\frac{w_{n+1}}{w_n} = \frac{u_{n+1} - 2}{u_n - 2} = \frac{\frac{u_n + 4}{3} - 2}{u_n - 2} = \frac{\frac{u_n + 4 - 6}{3}}{u_n - 2} = \frac{\frac{u_n - 2}{3}}{u_n - 2} = \frac{1}{3} \cdot \frac{u_n - 2}{u_n - 2} = \frac{1}{3}$$

La suite $(w_n)_{n\in\mathbb{N}}$ est une suite géométrique de 1^{er} terme $w_1=3$ et de raison $r=\frac{1}{3}$.

(c) Il en résulte que $w_n = w_1 \cdot r^{n-1} = 3 \cdot \left(\frac{1}{3}\right)^{n-1} = \frac{1}{3^{n-2}}$. En particulier, $w_{100} = \frac{1}{3^{100-2}} = \frac{1}{3^{98}} = \frac{1}{57\ 264\ 168\ 970\ 223\ 481\ 226\ 273\ 458\ 862\ 846\ 808\ 078\ 011\ 946\ 889}$