Окружность Аполлония.

- **1.** Окружность Аполлония. Дан отрезок AB и положительное число k. Докажите, что при $k \neq 1$ ГМТ X, таких что $\frac{AX}{BX} = k$ это окружность.
- **2.** Пусть Ω окружность Аполлония для точек A и B, причем точка A лежит вне окружности Ω . Из точки A проведены касательные AP и AQ к окружности Ω . Докажите, что B середина отрезка PQ.
- 3. Пусть Ω_c окружность Аполлония вершин A и B треугольника ABC, для точек X которой выполнено $\frac{XA}{XB} = \frac{CA}{CB}$. Докажите, что Ω_c ортогональна описанной окружности треугольника ABC.
- **4.** Точки A и B лежат на диаметре данной окружности. Проведите через них две равные хорды с общим концом.
- **5.** Углы $\angle AOB$ и $\angle COD$ совмещаются поворотом так, что луч OA совмещается с лучом OC, а луч OB с OD. В них вписаны окружности, пересекающиеся в точках E и F. Доказать, что углы $\angle AOE$ и $\angle DOF$ равны.
- **6.** В треугольнике *АВС* проведены три окружности Аполлония (для каждой пары вершин). Докажите, что:
 - (а) они имеют ровно две общие точки (точки Аполлония).
 - **(б)** проекции каждой точки Аполлония на стороны треугольника образуют правильный треугольник
 - (в) прямая, соединяющая точки Аполлония, проходит через центр описанной окружности треугольника.
- 7. Внутри треугольника ABC отметили точку P. Прямые AP, BP, CP вторично пересекают описанную окружность треугольника ABC в точках K, L, M соответственно. Касательная к окружности (ABC) в точке C пересекает AB в точке S. Докажите, что SC = SP тогда и только тогда, когда MK = ML.