# MATH 116 - Complex Analysis

Instructor: Yakov Eliashberg; Notes: Adithya Ganesh

## November 11, 2018

## **Contents**

| 1                                            | 9-24                 | -18: Introduction                               | 1  |  |
|----------------------------------------------|----------------------|-------------------------------------------------|----|--|
| 2                                            | Differential 1-forms |                                                 | 4  |  |
| 3 Complex projective line, or Riemann sphere |                      | plex projective line, or Riemann sphere         | 4  |  |
| 4                                            | Rien                 | nann surfaces                                   | 4  |  |
| 5                                            | Key                  | ideas                                           | 5  |  |
|                                              | 5.1                  | Basic facts                                     | 5  |  |
|                                              | 5.2                  | Main results                                    | 5  |  |
| 6                                            | Mid                  | term review sheet                               | 7  |  |
|                                              | 6.1                  | Cauchy-Riemann equations                        | 7  |  |
|                                              | 6.2                  | Cauchy integral formula + applications          | 7  |  |
|                                              | 6.3                  | Power series                                    | 8  |  |
|                                              | 6.4                  | Exponential function and logarithm              | 8  |  |
|                                              | 6.5                  | Meromorphic functions                           | 9  |  |
|                                              | 6.6                  | Argument principle and Rouche's theorem         | 9  |  |
|                                              | 6.7                  | Computation of integrals using residues         | 10 |  |
|                                              | 6.8                  | Harmonic functions and harmonic conjugates      | 10 |  |
|                                              | 6.9                  | Elementary conformal mappings                   |    |  |
|                                              | 6.10                 | Properties of fractional linear transformations | 11 |  |

# **1 9-24-18: Introduction**

We can build up complex numbers with a few basic axioms.

- 1. (1,0) unit.
- 2.  $(0,1)^2 = -(1,0)$ .

3. Bi-linear in  $z_1, z_2$  (i.e. linear with respect to each argument).

Suppose z = x + iy. We define the *conjugation* operator as  $\overline{z} = x - iy$ , such that

$$z\overline{z} = x^2 + y^2 = |z|^2.$$

We can also express z in polar coordinates, so that

$$z = x + iy = r(\cos\phi + i\sin\phi).$$

We can extend the Taylor series of the exponential function on the real line to the complex plane by defining:

$$e^z = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots$$

It is easy to check that this definition satisfies the usual properties:

$$e^{z_1+z_2} = e^{z_1} \cdot e^{z_2}; \qquad e^{x+iy} = e^x e^{iy}.$$

We can similarly define

$$\cos z = 1 - \frac{z^2}{2} + \frac{z^4}{4!} + \dots$$

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$$

We can combine these formulae to obtain  $e^{iy} = \cos y + i \sin y$  (Euler).

Combining this with the previous definition, we can write

$$re^{i\phi} = r(\cos\phi + i\sin\phi).$$

Now, if  $z=re^{i\phi}$ , we can write  $z^{-1}=\frac{1}{r}e^{-i\phi}$ . This gives you a very natural geometric interpretation of inversion (conjugation + scaling).

Note that it is straightforward to derive trigonometric identities from Euler's formula; for example it is easy to see that

$$(\cos \phi + i \sin \phi)^n = \cos n\phi + i \sin n\phi.$$

*Linear functions.* Suppose we have a linear map  $F: \mathbb{R}^2 \to \mathbb{R}^2$ . We can write this as

$$F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

And furthermore, the following axioms must be satisfied:

- $F(z_1 + z_2) = F(z_1) + F(z_2)$ .
- $F(\lambda z) = \lambda F(z)$ .

One question: we could have either  $\lambda \in \mathbb{R}$  (termed a real linear map) or  $\lambda \in \mathbb{C}$  (termed a complex valued linear map).

If F is a complex linear map, we must have F(iz)=iF(z) (i.e. the matrix has to commute). Furthermore, we must have  $F(z)=F(z\cdot 1)=zF(1)=c$ , where c=a+ib. So

$$F(z) = (a+ib)(x+iy) = (ax - by) + (ay + bx)i.$$

Also,

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax - by \\ ay + bx \end{pmatrix}.$$

It follows that F is complex if and only if a = d and b = -c.

If z=x+iy, we can write  $x=\frac{1}{2}(z+\overline{z})$  and  $y=-\frac{i}{2}(z-\overline{z})$ . Now, set A=a+ic, B=b+id, so we can write.

$$\frac{1}{2}(A - iB)z\frac{1}{2}(A + iB)\overline{z} = \alpha z + \beta \overline{z}.$$

Importantly,  $\alpha z$  is complex linear while  $\beta \overline{z}$  is complex antilinear (which means  $F(\lambda z) = \overline{\lambda} F(z)$ .

This proves that any real linear map can be written as a sum of a complex linear map and a complex antilinear map.

## 2 Differential 1-forms

Here,  $\mathbb{R}^2_z$  denotes the space  $\mathbb{R}^2$  with the origin shifted to the point z. A differential 1-form is a function of arguments of 2 kinds: of a point  $z \in U$  and a vector  $h \in \mathbb{R}^2_z$ . It depends linearly on h and arbitrarily (but usually continuously and even differentiably) on z.

We will need only 1-forms on domains in  $\mathbb{R}^2$ . A differential 1-form  $\lambda$  on a domain  $U \subset \mathbb{R}^2$  is a field of linear functions  $\lambda_z = \mathbb{R}^2_z \to \mathbb{R}$ . Thus a 1-form is a function of arguments of 2 kinds: of a point  $z \in U$  and a vector  $h \in \mathbb{R}^2_z$ .

Given a real valued function  $f:U\to\mathbb{R}^2$  on U, its differential df is an example of a differential form:  $d_z(f)(h)=\frac{\partial f}{\partial x}h_1+\frac{\partial f}{\partial y}h_2$ . In particular, differentials dx and dy of the coordinate functions x,y are differential 1-forms. Any other differential form can be written as a linear combination of dx and dy:

$$\lambda = Pdx + Qdy,$$

where  $P, Q: U \to \mathbb{R}$  are functions on the domain U.

A differential 1-form  $\lambda$  is exact if  $\lambda=df$ . The function f is called the primitive of the 1-form  $\lambda$ . The necessary condition for exactness if that  $\lambda$  is closed which by definition means  $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ .

# 3 Complex projective line, or Riemann sphere

Consider the space  $\mathbb{C}^n$ . Similar to the real case, one can *projectivise*  $\mathbb{C}^n$ .  $\mathbb{C}P^n$  is defined as the space of all complex lines through the origin. For us, the one-dimensional complex projective space is most relevant, the complex projective line ( $\mathbb{C}P^1$ ).

Any vector  $z=(z_1,z_2)\in\mathbb{C}^2$  generates the 1-dimensional complex subspace (complex line) denoted as

$$l_z = (z) = \{\lambda z : \lambda \in \mathbb{C}\}.$$

This line  $l_z$  can be viewed as a point of  $\mathbb{C}P^1$ . Any proportional vector  $\overline{z} = \mu z$  generates the same line. Fix an affine line  $L_1 = \{z_2 = 1\} \subset \mathbb{C}^2$ . Any line from  $\mathbb{C}P^1$  except  $\{z_2 = 0\}$ 

## 4 Riemann surfaces

A Riemann surface is a 1-dimensional complex manifold. A set S is called a Riemann surface if there exist subsets  $U_{\lambda} \subset X$ ,  $\lambda \in \Delta$ , where  $\Delta$  is a finite of countable set of indices, and for every  $\lambda \in \Delta$  a map  $\Phi_{\lambda} : U_{\lambda} \to \text{such that}$ 

- $S = \bigcup_{\lambda \in \Delta}$
- The image  $G_{\lambda}=\Phi_{\lambda}(U_{\lambda})$  is an open set in  $\mathbb{C}.$

MATH 116 5 KEY IDEAS

- The map  $\Phi_{\lambda}$  viewed as a map  $U_{\lambda} \to G_{\lambda}$  is one to one.
- For any two sets  $U_{\lambda}, U_{\mu}, \lambda, \mu \in \Delta$ , the images  $\Phi_{\lambda}(U_{\lambda} \cap U_{\mu}), \Psi_{\mu}(U_{\lambda} \cap U_{\mu}) \subset$  are open and the map

$$h_{\lambda,\mu} = \Phi_{\mu} \circ \Phi_{\lambda}^{-1} : \Phi_{\lambda}(U_{\lambda} \cap U_{\mu}) \to \Phi_{\mu}(U_{\lambda} \cap U_{\mu}) \subset^{n}$$

# 5 Key ideas

#### 5.1 Basic facts

- 1.  $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ .
- 2.  $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$
- 3.  $\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$

#### 5.2 Main results

#### Cauchy's integral formulas.

Suppose f is holomorphic on an open set that contains the closure of a disc D. If C denotes the boundary circle of this disc with the positive orientation, then

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{z - \zeta} d\zeta.$$

#### Cauchy's integral formulas for derivatives.

Let f be holomorphic on an open set  $\Omega$ , then f has infinitely many complex derivatives in  $\Omega$ . Moreover, if  $C \subset \Omega$  is a circle whose interior is also contained in  $\Omega$ , then

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta.$$

**Cauchy-Riemann.** f is analytic iff  $u_x = v_y$ ,  $u_y = -v_x$ .

 $C^1$  class. Every holomorphic function is a domain U is of class  $C^1$ , i.e. its derivative continuously depends on the point of U.

#### Cauchy's theorem.

**Liouville's theorem.** If f is entire and bounded, then f is constant.

**Singularities and poles.** A point singularity (or isolated singularities) of f is a  $z_0 \in \mathbb{C}$  such that f is defined in a neighborhood of  $z_0$  but not at the point  $z_0$  itself. A zero for the holomorphic

MATH 116 5 KEY IDEAS

function f is  $z_0$  such that  $f(z_0) = 0$ . By analtic continuation, the zeros of a non-trivial holomorphic function are isolated. A function F defined in a deleted neighborhood of  $z_0$  has a pole at  $z_0$  if the function  $\frac{1}{f}$ , defined to be to be zero at  $z_0$ , is holomorphic in a full neighborhood of  $z_0$ .

**Pole power series representation.** If f has a pole of order n at  $z_0$ , then

$$f(z) = \frac{a_{-n}}{(z - z_0)^n} + \frac{a_{-n+1}}{(z - z_0)^{n-1}} + \dots + \frac{a_{-1}}{(z - z_0)} + G(z),$$

where G is a holomorphic function in a neighborhood of  $z_0$ .

**Residue at a pole.** The residue of f at that pole is defined as the coefficient  $a_{-1}$ , so that  $\operatorname{res}_{z_0} f = a_{-1}$ . In particular, if f has a pole of order n at  $z_0$ , then

$$\operatorname{res}_{z_0} f = \lim_{z \to z_0} \frac{1}{(n-1)!} \left( \frac{d}{dz} \right)^{n-1} (z - z_0)^n f(z).$$

**Residue formula, and corollary.** Suppose that f is holomorphic in an open set containing a circle C and its interior, except for a pole at  $z_0$  inside C. Then

$$\int_C f(z) dz = 2\pi i \operatorname{res}_{z_0} f.$$

Suppose f is holomorphic on an open set containing a circle C and its interior, except for poles at the points  $z_1, \dots, z_N$  inside C. Then

$$\int_C f(z) dz = 2\pi i \sum_{k=1}^N \operatorname{res}_{z_k} f.$$

**Conformal map.** A bijective holomorphic function  $f:U\to V$  is called a conformal map or biholomorphism.

**Riemann mapping theorem.** Suppose  $\Omega$  is proper and simply connected. If  $z_0 \in \Omega$ , then there exists a unique conformal map  $F: \Omega \to \mathbb{D}$  such that

$$F(z_0) = 0;$$
  $F'(z_0) > 0.$ 

**Corollary (3.2)** Any two proper simply connected open subsets in  $\mathbb{C}$  are conformally equivalent.

Mantel's theorem.

## 6 Midterm review sheet

### 6.1 Cauchy-Riemann equations

f is holomorphic iff  $u_x = v_y$ ;  $u_y = -v_x$ .

Differential operators w.r.t. z and  $\overline{z}$ .

$$\frac{\partial}{\partial z} = \frac{1}{2} \left( \frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right)$$
$$\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left( \frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right).$$

## 6.2 Cauchy integral formula + applications

Suppose f is holomorphic on an open set that contains the closure of a disc D. If C is the boundary circle, then for any  $z \in D$ :

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} \, d\zeta.$$

n-th derivative. If f is holomorphic in an open se  $\mathrm{T}\Omega$ , then f has infinitely many complex derivatives in  $\Omega$ . If  $C\subset\Omega$  is a cricle whose interior is only contained in  $\Omega$ , then for all z in the interior of C:

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} dz eta.$$

Cauchy inequality + quick proof. If f is holomorphic in an open set that contains the closure of a disc D centered at  $z_0$  and of radius R, then

$$|f^{(n)}(z_0)| \le \frac{n!||f||_C}{R^n}.$$

Proof. By the Cauchy integral formula, we obtain

$$|f^{(n)}(z_0)| = \left| \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right|$$

$$= \frac{n!}{2\pi} \left| \int_0^{2\pi} \frac{f(z_0 + Re^{i\theta})}{(Re^{i\theta})^{n+1}} Rie^{i\theta} d\theta \right|$$

$$\leq \frac{n!}{2\pi} \frac{||f||_C}{R^n} 2\pi.$$

**Liouville's theorem.** If f is entire and bounded, then f is constant.

*Proof.* By Cauchy inequality, we obtain

$$|f'(z_0)| \le \frac{B}{R},$$

where B is some bound for f. Taking  $R \to \infty$ , we obtain the desired result.

**Quick proof of FTA.** Suppose P has no roots. Then  $\frac{1}{P(z)}$  is bounded and entire. But then  $\frac{1}{P(z)}$  is constant, which is a contradiction.

**Schwarz reflection principle.** Suppose that f is a holomorphic function in  $\Omega^+$  that extends continuously to I and such that f is real-valued on I. Then there exists a function F holomorphic in all of  $\Omega$  such that F = f on  $\Omega^+$ .

*Proof.* For  $z \in \Omega^-$ , define F(z) by

$$F(z) = \overline{f(\overline{z})},$$

look at power series expansions, and invoke the symmetry principle.

#### 6.3 Power series

Suppose f is holomorphic in an open set  $\Omega$ . If D is a disc centered at  $z_0$  and whose closure is contained in  $\Omega$ , then f has a power series expansion at  $z_0$ :

$$f(Z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

where  $a_n = \frac{f^{(n)}(z_0)}{n!}$ .

**Analytic continuation.** Suppose f and F are analytic in regions  $\Omega, \Omega'$  with  $\Omega \subset \Omega'$ . If the two functions agree on the smaller set  $\Omega$ , then F is an analytic continuation of f into the region  $\Omega'$ , and is uniquely determined by f.

In particular, suppose f and g are holomorphic in a region  $\Omega$  and f(z)=g(z) for all z in some non-empty open subset of  $\Omega$ . Then f(z)=g(z) throughout  $\Omega$ .

# 6.4 Exponential function and logarithm

Complex logarithm. Write

$$\log z = \log r + i\theta;$$

principal branch when  $|\theta| < \pi$ . Constructively, we can write

$$\log_{\Omega}(z) = F(z) = \int_{\gamma} f(w) \, dw,$$

where  $\gamma$  is any curve connecting 1 to z. Standard path of integration is to take  $1 \to r \in \mathbb{R}$  and then  $r \to z$ , so that

$$\log z = \int_{1}^{r} \frac{dx}{x} + \int_{\eta} \frac{dw}{w}$$
$$= \log r + \int_{0}^{\theta} \frac{ire^{it}}{re^{it}} dt$$
$$= \log r + i\theta.$$

Note that in general

$$\log(z_1 z_2) \neq \log z_1 + \log z_2.$$

**Taylor expansion for**  $\log(1+x)$ . For the principal branch, we can write

$$\log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots$$

### 6.5 Meromorphic functions

**Definition of a meromorphic function.** A function f on an open set  $\Omega$  is meromorphic if there exists a sequence of points  $z_0, z_1, \ldots$  that has no limit points in  $\Omega$  and such that

- f is holomorphic in  $\Omega \setminus \{z_0, z_1, \dots\}$
- f has poles at the points  $\{z_0, z_1, \dots\}$ .

**Casorati-Weierstrass.** Suppose f is holomorphic in the punctured disc  $D_r(z_0) \setminus \{z_0\}$  and has an essential singularity at  $z_0$ . Then the image of  $D_r(z_0) - \{z_0\}$  under f is dense in the complex plane.

## 6.6 Argument principle and Rouche's theorem

**Argument principle.** Suppose f is meromorphic in an open set containing a circle C and its interior. If f has no poles and never vanishes on C, then

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = Z - P,$$

where Z is the number of zeros inside C, and P is the number of poles inside C.

**Rouche's theorem.** Suppose that f and g are holomorphic in an open set containing a circle C and its interior. If |f(z)| < |g(z)| for all  $z \in C$ , then f and f + g have the same number of zeros inside C.

*Proof.* Let  $f_t(z) = f(z) + tg(z)$ ;  $t \in [0, 1]$ . Argue that

$$n_t = \frac{1}{2\pi i} \int_C \frac{f_t'(z)}{f_t(z)} dz$$

is constant; and in particular that  $n_0 = n_1$ .

**Open mapping theorem.** If f and holomorphic and nonconstant in a region  $\Omega$ , then f is open.

**Maximum modulus principle.** If f is a nonconstant holomorphic function in a region  $\Omega$ , then f cannot attain a maximum in  $\Omega$ .

*Proof.* Immediate from open mapping theorem.

## 6.7 Computation of integrals using residues

**Residue limit identity.** If f has a pole of order n at  $z_0$ , then

$$\operatorname{res}_{z_0} f = \lim_{z \to z_0} \frac{1}{(n-1)!} \left( \frac{d}{dz} \right)^{n-1} (z - z_0)^n f(z).$$

**Residue theorem.** Suppose that f is holomorphic in an open set containing a toy contour  $\gamma$  and its interior, except for poles at the points  $z_i$  inside  $\gamma$ . Then

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{N} \operatorname{res}_{z_k} f.$$

Integrals to know.

- $\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \pi.$
- $\int_{-\infty}^{\infty} \frac{e^{ax}}{1+e^x} dx = \frac{\pi}{\sin \pi a}; 0 < a < 1.$
- $\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \xi}}{\cosh \pi x} \, dx = \frac{1}{\cosh \pi \xi}.$

# 6.8 Harmonic functions and harmonic conjugates

**Definition.** A real of complex valued  $C^2$ -smooth function f on a domain  $U\subset \mathbb{C}$  is harmonic if

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

**Unique determination.** let  $f, g: U \to \mathbb{R}$  be two harmonic functions which extend continuously to the boundary  $\partial U$ . Suppose that f = g on  $\partial U$ . Then f = g on U.

*Proof.* Suppose for  $a \in U$  we have f(a) > g(a); then consider f - g and apply maximum modulus principle; contradiction.

**Log-composition.** If f is a holomorphic function then  $h(z) = \ln |f(z)|$  is harmonic.

**Harmonic conjugate.** The harmonic conjugate to a function u(x,y) is a function v(x,y) such that u+iv is analytic.

*Example.* The harmonic conjugate of  $u(x,y) = e^x \sin y$  is  $-e^x \cos y + C$ .

## 6.9 Elementary conformal mappings

Examples to know:



# 6.10 Properties of fractional linear transformations

Fractional linear transformations are mappings of the form

$$z \mapsto \frac{az+b}{cz+d}.$$

They always map circles and lines to circles and lines.