# Video Popularity Distributions and Potential of Peer-Assisted

政策・メディア研究科 後期博士課程

Mohamad Dikshie Fauzie <u>dikshie@sfc.wide.ad.jp</u> MAUI 2014/04/28

# Status Updates

- Formal: 7/7/2010
- Kouchoukai: 8/20/2013
- Sechi: 8/28/2013
- Saishusinsha deadline: 8/28/2014?
- Conference: 1
- Journals: 2

# Setting

- Peer-to-Peer (P2P) usage is changing.
   (e.g peer-assisted Content Delivery Network(CDN))
- Analytical tools & measurements help us make good decisions. (e.g. bandwidth trade off, incentive for users, energy consumption).

### Problems

- Current model is not good enough:
  - limited measurement in closed environment [Dale et al, (2008): in PlanetLab]
  - simulators [Al-Hamra et al, (2007): discrete event simulator]
- We need to measure in real world
- Nobody knows swarm topology in real bittorrent network

### Contributions

- First real world measurements of swarm topology
- Proposing new model for global energy consumption of peer-assisted CDN
- In both, found new results that extend or contradict prior work

### ToC Dissertation

- 1. Introduction
- 2. P2P Content Delivery
- 3. Characteristic of Bittorrent Swarms
- 4. Energy Saving
- 5. Conclusion and Future Work

### Kochoukai Notes

- 1. P2P topology dynamics
- 2. Video popularity in P2P
- 3. How to check energy consumption

### ToC Dissertation

- 1. Introduction
- 2. P2P Content Delivery
- 3. Characteristic of Bittorrent Swarms
- 4. Peer-Assisted CDN delivery
- 5. Energy Saving
- 6. Conclusion and Future Work

# Story



One journal is required to fill the gap between P2P topic and energy topic Peer-Assisted CDN.

# Setting

- Peer-to-Peer (P2P) usage is changing. (e.g peer-assisted Content Delivery Network(CDN))
- Analytical tools & measurements help us make good decisions. (e.g. bandwidth trade off, incentive for users, energy consumption).

### What's Peer-Assisted CDN



### Research Question

- Current P2P-CDN model only considering popularity based on local-system
  - counting of frequency access from peers
- Can I add VoD popularity model to assist/ help P2P-CDN system?
  - while maintaining same good metrics or even make it better

# General Methodology

- 1. VoD popularity evolution characterization
- Modified current cache replacement strategy with my strategy that utilised VoD popularity evolution model.
  - I use PROP [1] as basis.
  - [1] Guo et al., "Design and Evaluation of a Scalable and Reliable P2P assisted proxy for on demand streaming media delivery. IEEE TKDE 2006.
- 3. Feed to Simulator

# VoD Popularity (1)

- Take Youtube VoD as example.
- Data-sets (36 weeks) from Borghol et al.,
  - "Characterizing and modeling popularity of user generated videos", performance evaluation, 2011.
- Added with my data-sets (8 weeks).
- Estimate when a video is in peak popularity phase.

## VoD Popularity (2)

- There are 3 phases of characterization of popularity evolution:
  - before-peak, at-peak, and after-peak.
  - time-to-peak video is the age at which they attain their peak popularity since upload.
- definition "at peak":
  - at which its weekly viewing rate is the highest within our measurement period.

### VoD Popularity (3)



- the time to peak distribution shows that a large fraction of the videos, approximately three quarters of them, peak within the first 6 week since their upload.
- Distribution: mixture between exponential and uniform. for exponential part using MLE we can determine alpha=0.6. greater than 6 weeks: uniform U(6,d).

### VoD Popularity (4)

- Q: How to estimate video's at-peak?
- A: sample N values from time-to-peak distribution and determine the number of videos that peak at week i.

### Current Cache Strategy (1)

- PROP's CDN cache strategy
- PROP's Peer cache strategy
- My modification to PROP's peer cache strategy

# Current Cache Strategy (2) PROP's CDN cache strategy

• We use PROP's method to estimate the popularity video:  $P_j = min\left\{\frac{n_j^r}{t_i^r - a_j}, \frac{1}{t - t_i^r}\right\}$ 

- Long-term requests:  $\frac{n_j}{t_j^r a_j}$
- Recent request rate:  $\frac{1}{t-t_j^r}$
- The smallest popularity is chosen as candidate to be replaced when the CDN cache is full.

# Current Cache Strategy (3) PROP's Peer cache strategy

 We use PROP's method to calculate utility function for peer cache strategy:

$$u = \frac{(f(p) - f(p_{min})) \times (f(p_{max}) - f(p))}{r^{\alpha + \beta}}$$

- p represent popularity of the video.
- p\_min represents estimation of min popularity
- p\_max represents estimation of max popularity
- r represent number of replica
- f(p) represent monotonic non-decreasing function, we choose log(p).

# Current Cache Strategy (4) Modified PROP's Peer cache strategy

- Because I can estimate at-peak week video, I modified PROP's utility function as follows:
- Before-peak and After-peak:  $u = \frac{f(p) f(p_{min})}{r^{\alpha + \beta}}$
- At-peak:  $u = \frac{f(p_{max}) f(p)}{r^{\alpha + \beta}}$

#### Simulator (1)

- I. Simulator Design
- 2. Simulator Parameter

### Simulator (2): Design

- Event driven simulator is developed using python
- Peer request to CDN assume to be Poisson process with mean rate (lambda) = 1.1, with 3600 times request per hour
- Time is divided into rounds, during a round a peer request a video

### Simulator (3): Design



#### Simulator (4): Parameters

- Length: 360 days
- Video size random: between IMB and 200MB
- Peer capacity: 500MB and 1000MB
- CDN capacity: I0000MB
- Number of peers: 100000 peers
- Number of videos: 10000 videos
- Symmetric peer load/download rate: I Mbps

### Evaluation

- Compare PROP and my work.
- Metrics:
  - Percentage of peer contributions
  - #Replicas

### Evaluation (1): Peer Contribution



Peer capacity = 500MB

### Evaluation (2): Peer Contribution



• Peer capacity = 1000MB

### Evaluation (3): Peer Contribution



### Evaluation (4): Peer Contribution

- Q:Are the both results (comparing PROP and model) significant?
- A: Use K-S statistics for significance testing.
  - for both model (500MB and 1000MB capacity) we get p-value: 0.5e-005 and 0.46e-005
  - since p-value less than 1%, the results are significant

### Evaluation (5): #Replicas



snapshot t=10day. (t= 864000)

### Evaluation (6): #Replicas



snapshot t=6week (t=3628800 sec)

### Evaluation (7): #Replicas



snapshot t=10week (t= 6048000 sec)

## Closing Remarks

- Propose modification to PROP gives good results:
  - More peer contribution
  - Lower replicas
- Contribution to dissertation:
  - since we have higher peer contribution we can move some of energy from CDN to peer!

### Schedule

- May 1st: send to rdv@ for english grammar checking
   & fix the mistakes
- May 10: submit to Hindawi ISRN Communication and Networking
  - in case of Jin Nakazawa and H.Tokuda先生 (2012): 34 days from submission to acceptance.
- May 10th ~: Add this work to dissertation and cleanup dissertation.

# Finish