Équations aux dérivées partielles

Chapitre 4 : Différences finies en 2D

Lucie Le Briquer

1 Introduction

$$u_{xx} + u_{yy} = f \tag{1}$$

$$-\Delta u = f \tag{2}$$

où $\Delta u = \sum_{i=1}^m \frac{\partial^2 u}{\partial x_i^2}$

Notons:

$$v_{l,m} = u(lh, mh)$$

Schéma approchant (1):

$$\frac{v_{l+1,m}+v_{l-1,m}-2v_{l,m}}{h^2}+\frac{v_{l,m+1}+v_{l,m-1}-2v_{l,m}}{h^2}=f_{l,m}$$

C'est un schéma à 5 points. On note $(\Delta_h v)_{l,m} = \frac{v_{l+1,m} + v_{l-1,m} - 2v_{l,m}}{k^2} + \frac{v_{l,m+1} + v_{l,m-1} - 2v_{l,m}}{h^2}$.

- Théorème 1 -

Si $\Delta_h v \geq 0$ sur une région bornée de \mathbb{Z}^2 alors le maximum de v est atteint sur la frontière de cette région.

- Corollaire 2 —

Si $\Delta_h v \leq 0$ le minimum de v est atteint sur la frontière.

Preuve.

Preuve du corollaire : il suffit de changer v et -v dans le théorème.

Preuve.

Preuve du théorème : Soit $\mathcal{R} \subset [-N, N]^2$

$$(l,m) \in \overset{\circ}{\mathcal{R}} \overset{\text{def}}{\Leftrightarrow} (l+1,m), (l-1,m), (l,m+1), (l,m-1) \in \mathcal{R}$$

On note $\partial \mathcal{R} = \mathcal{R} \backslash \overset{\circ}{\mathcal{R}}$.

Soit v_{l_0,m_0} le maximum de v sur \mathcal{R} .

$$v_{l_0,m_0} \le \frac{v_{l_0+1,m_0} + v_{l_0-1,m_0} + v_{l_0,m_0+1} + v_{l_0,m_0-1}}{4}$$

1. $(l_0, m_0) \in \partial \mathcal{R}$

2.
$$(l_0, m_0) \notin \overset{\circ}{\mathcal{R}} \Rightarrow v_{l_0+1, m_0} = v_{l_0-1, m_0} = v_{l_0, m_0+1} = v_{l_0, m_0-1}$$

Théorème 3 —

Si $v_{l,m} = 0$ sur $\partial [0, N]^2$ avec L = Nh, alors :

$$||v||_{\infty} \le \frac{L^2}{8} ||\Delta_h v||_{\infty} \tag{3}$$

Preuve.

$$||v||_{\infty} = \max_{(l,m)\in[0,N]^2} |v_{l,m}|$$
 et $||\Delta_h v||_{\infty} = \max_{(l,m)\in[0,N]^2} |(\Delta_h v)_{l,m}|$

Soit:

$$w(x,y) = \frac{1}{4} \left[\left(x - \frac{L}{2} \right)^2 + \left(y - \frac{L}{2} \right)^2 \right] \qquad (\Delta w = 1)$$

Notons $w_{l,m} = w(lh, mh)$. Alors $(\Delta_h w)_{l,m} = 1$

$$-(\Delta_h w)(\|\Delta_h v\|_{\infty}) \le (\Delta_h v)_{l,m} \le \|\Delta_h v\|_{\infty}(\Delta_h w)$$

$$\Delta_h(v + \|\Delta_h v\|_{\infty} w) \ge 0$$

D'après le théorème 1 :

$$v + \|\Delta_h v\|_{\infty} w \le \|\Delta_h v\|_{\infty} \underbrace{\max_{\partial [0,N]^2} w}_{\le L^2/8}$$

Donc
$$v \leq \frac{L^2}{8} \|\Delta_h v\|_{\infty}$$
 et $-v \leq \frac{L^2}{8} \|\Delta_h v\|_{\infty}$

Théorème 4

Soit u tel que $+\Delta u = f$ sur $Q = [0, L]^2$. Soit v tel que $(\Delta_h v)_{l,m} = (f)_{l,m}$ avec $v_{l,m} = u(lh, mh)$ sur ∂Q . Alors $\exists C$ tq:

$$||u - v||_{\infty} \le Ch^2 ||\nabla^4 u||_{\infty} \tag{4}$$

où:

$$\|\nabla^4 u\|_{\infty} = \sup_{\alpha+\beta=4} \left\| \frac{\partial^4 u}{\partial x^{\alpha} \partial y^{\beta}} \right\|_{\infty,Q}$$

Preuve.

u = u(x,y) et $\bar{u} = u(lh, mh)$, on a $\Delta_h \bar{u} = \bar{f} + O(h^2)$. Par le théorème 3 on a :

$$\|\Delta_h \bar{u} - \bar{f}\|_{\infty} \le Ch^2 \|\Delta^4 u\|_{\infty}$$

Or:

$$\frac{u((l+1)h,mh) + u((l-1)h,mh) - 2u(lh,mh)}{h^2} = \int_0^2 \theta^m \frac{\partial^4 u}{\partial X^4} (lh + \theta h, mh) d\theta$$

On a:

$$- \bar{u} - u = 0 \operatorname{sur} \partial Q$$

$$\bar{f} = \Delta_h v$$

$$\|\Delta_h(\bar{u}-v)\|_{\infty} \le Ch^2 \|\nabla^4 u\|_{\infty} \text{ et } \bar{u}-v=0 \text{ sur } \partial Q$$

2 Matrice Bande

On appelle matrice pleine une matrice contenant "peu" de coefficients nuls, une matrice creuse le contraire.

Exemple.

Exemple le plus simple de matrices creuses :

Matrice bande : $\exists p \geq 1 \text{ tq } |i-j| \geq p \Rightarrow a_{ij} = 0$. La largeur de bande est 2p+1.

Rappel. (décomposition LU)

A(n,n) $A_k = (a_{ij})_{1 \leq i,j \leq n}$ inversible. Alors $\exists L$ triangulaire inférieure (n,n), $L_{i,i} = 1$, $\exists U$ triangulaire supérieur (n,n) telles que A = LU. Si de plus A est de largeur de bande 2p-1 on peut assurer que L et U le sont aussi.

cf. Schatzman interéditions

Ax = b

- $-\frac{2n^3}{3}$ opérations pour factoriser A sous forme LU
- $L(Ux) = b \Leftrightarrow Ly = b$ et Ux = y en $2n^2$ opérations

Donc $\frac{2n^3}{3} + 2n^2$ opérations au total.

Pour une matrice bande 2p-1:

- A = LU en $(2(p-1)^2 + p 1)n$ opérations
- LUx = b en (4p 3)n opérations

D'où $(2(p-1)^2 + 5p - 4)n$ opérations.