IC105: Probability and Statistics

2021-22-M

Lecture 5: Random Variables and their Distribution Functions

Instructor: Dr. Kuldeep Kumar Kataria

Scribe:

Let (Ω, \mathcal{F}, P) be a given probability space. In some situations we may not be directly interested in the sample space Ω ; rather we may be interested in some numerical aspect of Ω .

Example 5.1. A fair coin (head and tail are equally likely) is tossed three times independently. Then,

$$\Omega = \{HHH, HHT, HTH, HTT, TTT, TTH, THT, THH\}$$

and $P(\{\omega\}) = 1/8$ for all $\omega \in \Omega$. Suppose that we are interested in number of heads in three tosses, i.e., we are interested in the function $X : \Omega \to \mathbb{R}$ defined as

$$X(\omega) = \begin{cases} 0, & \textit{if } \omega = TTT, \\ 1, & \textit{if } \omega \in \{HTT, THT, TTH\}, \\ 2, & \textit{if } \omega \in \{HHT, HTH, THH\}, \\ 3, & \textit{if } \omega = HHH. \end{cases}$$

Clearly the values assumed by X are random with

$$P(X = 0) = P(X = 3) = 1/8$$
 and $P(X = 1) = P(X = 2) = 3/8$.

Hence $P(X \in \{0, 1, 2, 3\}) = 1$.

Definition 5.2. Let (Ω, \mathcal{F}, P) be a given probability space. A **real valued measurable function** $X : \Omega \to \mathbb{R}$ (defined on sample space Ω) is called a random variable (r.v.).

Note: From rigorous mathematical point of view a random variable is a real valued function with some technical condition. In this course we are ignoring these technical details. For all practical purpose r.v. is a real valued function defined on Ω .

For a function $Y: \Omega \to \mathbb{R}$ and $A \subseteq \mathbb{R}$, define

$$Y^{-1}(A) = \{ \omega \in \Omega : Y(\omega) \in A \}.$$

Then it is straightforward to prove the following result:

Proposition 5.3. Let $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$ and $A_{\alpha} \subseteq \mathbb{R}$, $\alpha \in \Lambda$, where Λ is an arbitrary index set. Let $Y : \Omega \to \mathbb{R}$ be a given function. Then

- (a) If $A \cap B = \phi$, then $Y^{-1}(A) \cap Y^{-1}(B) = \phi$;
- (b) $Y^{-1}(A^c) = (Y^{-1}(A))^c$ (that is, $Y^{-1}(\mathbb{R} A) = Y^{-1}(\mathbb{R}) Y^{-1}(A) = \Omega Y^{-1}(A)$);
- (c) $Y^{-1}\left(\bigcup_{\alpha\in\Lambda}A_{\alpha}\right)=\bigcup_{\alpha\in\Lambda}Y^{-1}(A_{\alpha});$
- $(d) Y^{-1} \left(\bigcap_{\alpha \in \Lambda} A_{\alpha} \right) = \bigcap_{\alpha \in \Lambda} Y^{-1}(A_{\alpha}).$

For a probability space (Ω, \mathcal{F}, P) and a r.v. $X : \Omega \to \mathbb{R}$, note that $\forall B \subseteq \mathcal{B}$

$$X^{-1}(B) = \{ \omega \in \Omega : \overline{X(\omega) \in B} \} \in \mathcal{F}.$$

Thus, one can define a set function $P_X : \mathscr{B} \to [0,1]$ by

$$P_X(B) = P(X^{-1}(B)) = P\left(\{\omega \in \Omega : X(\omega) \in B\}\right), B \in \mathcal{B}$$

where \mathcal{B} is some class of subsets of \mathbb{R} . Here, also for all practical purpose we will take \mathcal{B} to be a sigma algebra formed by open subsets of \mathbb{R} .

We simply write

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}) = P(X \in B), B \in \mathcal{B}.$$

We have the following scenario $(\Omega, \mathcal{F}, P) \xrightarrow{X} (\mathbb{R}, \mathcal{B}, P_X)$.

Theorem 5.4 (Induced probability space / measures). $(\mathbb{R}, \mathcal{B}, P_X)$ (as defined above) is a probability space, i.e., $P_X(\cdot)$ is a probability function defined on \mathcal{B} .

Proof. (i)
$$P_X(\mathbb{R}) = P(X \in \mathbb{R}) = P(X^{-1}(\mathbb{R})) = P(\Omega) = 1$$
.

- (ii) For any $B \in \mathcal{B}$, $P_X(B) = P(X^{-1}(B)) \ge 0$.
- (iii) Let $\{B_n\}$ be a collection of mutually exclusive events in \mathcal{B} . Then,

$$\begin{split} P_X\left(\bigcup_{n=1}^\infty B_n\right) &= P\left(X^{-1}\left(\bigcup_{n=1}^\infty B_n\right)\right) \\ &= P\left(\bigcup_{n=1}^\infty X^{-1}(B_n)\right), \quad \text{(Proposition 5.3$($c$))} \\ &= \sum_{n=1}^\infty P(X^{-1}(B_n)), \quad (P \text{ is a probability measure and using Proposition 5.3$($a$))} \\ &= \sum_{n=1}^\infty P_X(B_n). \end{split}$$

This completes the proof.

Definition 5.5. The probability function P_X defined above is called the probability function/measure induced by r.v. X and $(\mathbb{R}, \mathcal{B}, P_X)$ is called the probability space induced by r.v. X.

The induced probability measure P_X describes the random behaviour of X.

Example 5.6. Toss a coin three times independently. Then,

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\} \text{ and } P(\{\omega\}) = 1/8, \ \ \forall \ \omega \in \Omega$$

and $X: \Omega \to \mathbb{R}$ (number of heads in three tosses) is defined by

$$X(\omega) = \begin{cases} 0, & \text{if } \omega \in \{TTT\}, \\ 1, & \text{if } \omega \in \{HTT, THT, TTH\}, \\ 2, & \text{if } \omega \in \{HHT, HTH, THH\}, \\ 3, & \text{if } \omega \in \{HHH\}. \end{cases}$$

Obviously, $X:\Omega\to\mathbb{R}$ is r.v. with induced probability space given by $(\mathbb{R},\mathcal{B},P_X)$, where

$$P_X(\{0\}) = P(\{TTT\}) = 1/8,$$

 $P_X(\{1\}) = P(\{HTT, THT, TTH\}) = 3/8,$
 $P_X(\{2\}) = P(\{HHT, HTH, THH\}) = 3/8,$
 $P_X(\{3\}) = P(\{HHH\}) = 1/8.$

Now for any $B \in \mathcal{B}$ *,*

$$P_X(B) = P(X^{-1}(B)) = P(\{\omega \in \Omega : X(\omega) \in B\}) = \sum_{i \in B \cap \{0, 1, 2, 3\}} P_X(\{i\}).$$

Definition 5.7. Let X be a r.v. defined on probability space (Ω, \mathcal{F}, P) and let $(\mathbb{R}, \mathcal{B}, P_X)$ denote the probability space induced by X. Define the function $F_X : \mathbb{R} \to \mathbb{R}$ by

$$F_X(x) = P(X \le x) = P(X^{-1}(-\infty, x]) = P_X((-\infty, x]), x \in \mathbb{R}.$$

The function F_X is called the cumulative distribution function (c.d.f.) or simply the distribution function (d.f.) of r.v. X.

Note: Whenever there is no ambiguity we will drop subscript X in F_X to represent d.f. of a r.v. by F. It can be shown (in advanced courses) that the c.d.f. $F_X(\cdot)$ of a r.v. X determines the induced probability measure $P_X(\cdot)$ uniquely. Thus to study the random behaviour of r.v. X it suffices to study its d.f. F.

Example 5.8. *In the previous example*

$$P(X = 0) = P_X(\{0\}) = 1/8, \ P(X = 1) = P_X(\{1\}) = 3/8 = P(X = 2) = P_X(\{2\})$$

and $P(X=3) = P_X(\{3\}) = 1/8$. Then, the d.f. of X is obtained as

$$F_X(x) = P(X \le x) = P\left(\{\omega : X(\omega) \le x\}\right) = \sum_{\substack{i \in \{0,1,2,3\}\\i \le x}} P_X(\{i\}) = \begin{cases} 0, & x < 0, \\ 1/8, & 0 \le x < 1, \\ 1/8 + 3/8 = 1/2, & 1 \le x < 2, \\ 7/8, & 2 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$

Theorem 5.9. Let $F(\cdot)$ be the c.d.f. of a r.v. X defined on a probability space (Ω, \mathcal{F}, P) and let $(\mathbb{R}, \mathcal{B}, P_X)$ be the probability space induced by X. Then

- (i) F is non-decreasing,
- (ii) F(x) is right continuous,
- (iii) $F(-\infty) = \lim_{n \to \infty} F(-n) = 0$ and $F(\infty) = \lim_{n \to \infty} F(n) = 1$

Conversely, any function $G(\cdot)$ satisfying properties (i)-(iii) is a d.f. of some r.v. Y defined on a probability space $(\Omega^*, \mathcal{F}^*, P^*)$.

Proof. (i) Let $-\infty < x < y < \infty$. Then $(-\infty, x] \subseteq (-\infty, y] \implies P_X((-\infty, x]) \le P_X((-\infty, y])$. This implies that $F(x) \le F(y)$.

(ii) Since F is monotone and bounded below (by 0), $\lim_{h\downarrow 0}F(x+h)=F(x+)$ exists $\forall~x\in\mathbb{R}.$ Therefore,

$$F(x+) = \lim_{h \downarrow 0} F(x+h) = \lim_{n \to \infty} F\left(x + \frac{1}{n}\right) = \lim_{n \to \infty} P_X\left((-\infty, x + 1/n]\right).$$

Let $A_n = (-\infty, x + 1/n], n = 1, 2, \dots$ Then $A_n \downarrow$ and $\bigcap_{n=1}^{\infty} (-\infty, x + 1/n] = (-\infty, x]$. Thus,

$$F(x+) = P_X \left(\bigcap_{n=1}^{\infty} (-\infty, x + 1/n) \right) = P_X((-\infty, x)) = F(x).$$

(iii) Note that

$$F(-\infty) = \lim_{n \to \infty} F(-n) = \lim_{n \to \infty} P_X((-\infty, -n]) = P_X\left(\bigcap_{n=1}^{\infty} (-\infty, -n]\right), ((-\infty, -n] \downarrow)$$
$$= P_X(\phi), \left(\bigcap_{n=1}^{\infty} (-\infty, -n] = \phi\right)$$
$$= 0.$$

Also,

$$F(+\infty) = \lim_{n \to \infty} F(n) = \lim_{n \to \infty} P_X((-\infty, n]) = P_X\left(\bigcup_{n=1}^{\infty} (-\infty, n]\right), ((-\infty, n] \uparrow)$$
$$= P_X(\mathbb{R}), \left(\bigcup_{n=1}^{\infty} (-\infty, n] = \mathbb{R}\right)$$
$$= 1.$$

This completes the proof.

Remark 5.10. (i) Since any distribution function is monotone and bounded above (by 1), $\lim_{h \downarrow 0} F(x - h) = F(x - h)$ exists $\forall x \in \mathbb{R}$. Moreover,

$$F(x-) = \lim_{h \to 0} F(x-h) = \lim_{n \to \infty} F(x-1/n) = \lim_{n \to \infty} P_X((-\infty, x-1/n])$$

$$= P_X\left(\bigcup_{n=1}^{\infty} (-\infty, x-1/n]\right), \ ((-\infty, x-1/n] \uparrow)$$

$$= P_X((-\infty, x)) = P(X < x).$$

- (ii) From the calculus we know that any monotone function is either continuous on $\mathbb R$ or it has atmost countable number of discontinuities. Thus any c.d.f F(x) is either continuous on $\mathbb R$ or has atmost countable number of discontinuities. Since, for any $x \in \mathbb R$, F(x+) and F(x-) exist, F has only jump discontinuities F(x) = F(x+) > F(x-).
- (iii) A distribution function F is continuous at $a \in \mathbb{R}$ iff F(a) = F(a-)
- (iv) For any $a \in \mathbb{R}$, $P(X = a) = P(X \le a) P(X < a) = F(a) F(a)$. Thus, a d.f. F is continuous at $a \in \mathbb{R}$ iff P(X = a) = F(a) F(a) = 0.

$$(\textit{v}) \textit{ For } -\infty < a < b < \infty, \ P(X \leq b) = P(X \leq a) + P(a < X \leq b).$$

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

Similarly, for $-\infty < a < b < \infty$,

$$P(a < X < b) = P(X < b) - P(X \le a) = F(b-) - F(a),$$

$$P(a \le X \le b) = P(X \le b) - P(X < a) = F(b) - F(a-),$$

$$P(a \le X < b) = P(X < b) - P(X < a) = F(b-) - F(a-),$$

$$P(a < X < b) = P(X < b) - P(X \le a) = F(b-) - F(a),$$

$$P(X > a) = 1 - P(X \le a) = 1 - F(a),$$

$$P(X \ge a) = 1 - P(X < a) = 1 - F(a-).$$

Example 5.11. Consider the function $G : \mathbb{R} \to \mathbb{R}$ defined by

$$G(x) = \begin{cases} 0, & \text{if } x < 0, \\ \frac{x}{3}, & \text{if } 0 \le x < 1, \\ \frac{1}{2}, & \text{if } 1 \le x < 2, \\ \frac{2}{3}, & \text{if } 2 \le x < 3, \\ 1, & \text{if } x \ge 3. \end{cases}$$

- (a) Show that G is d.f. of some r.v. X,
- (b) Find P(X = a) for various values of $a \in \mathbb{R}$,

(c) Find
$$P(X < 3)$$
, $P(X \ge \frac{1}{2})$, $P(2 < X \le 4)$, $P(1 \le X < 2)$, $P(2 \le X \le 3)$ and $P(\frac{1}{2} < X < 3)$.

Solution: (a) Clearly G is non-decreasing in $(-\infty, 0)$, (0, 1), (1, 2), (2, 3) and $(3, \infty)$. Moreover,

$$G(0) - G(0-) = 0 \ge 0, \quad G(1) - G(1-) = \frac{1}{2} - \frac{1}{3} > 0,$$

 $G(2) - G(2-) = \frac{2}{3} - \frac{1}{2} > 0, \quad G(3) - G(3-) = 1 - \frac{2}{3} > 0.$

It follows that G is non-decreasing.

Clearly G is continuous (and hence right continuous) on $(-\infty,0)$, (0,1), (1,2), (2,3) and $(3,\infty)$. Moreover,

$$\begin{array}{lll} G(0+)-G(0) &= 0-0 &= 0 \\ G(1+)-G(1) &= 1/2-1/2 &= 0 \\ G(2+)-G(2) &= 2/3-2/3 &= 0 \\ G(3+)-G(3) &= 1-1 &= 0 \\ \end{array} \} \quad \Longrightarrow \quad G \text{ is right continuous on } \mathbb{R}.$$

Also, $G(+\infty) = \lim_{x \to \infty} G(x) = 1$ & $G(-\infty) = \lim_{x \to \infty} G(-x) = 0$. Thus, G is a d.f. of some random variable X.

(b) The set of discontinuity points of F is $D = \{1, 2, 3\}$. Thus,

$$P(X = a) = G(a) - G(a-) = 0, \forall a \neq 1, 2, 3,$$

$$P(X = 1) = G(1) - G(1-) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6},$$

$$P(X = 2) = G(2) - G(2-) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6},$$

$$P(X = 3) = G(3) - G(3-) = 1 - \frac{2}{3} = \frac{1}{3}.$$

(c) Note that

$$P(X \le 3) = G(3-) = \frac{2}{3},$$

$$P\left(X \ge \frac{1}{2}\right) = 1 - G\left(\frac{1}{2}-\right) = 1 - \frac{1}{6} = \frac{5}{6},$$

$$P(2 < X \le 4) = G(4) - G(2) = 1 - \frac{2}{3} = \frac{1}{3},$$

$$P(1 \le X < 2) = G(2-) - G(1-) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6},$$

$$P(2 \le X \le 3) = G(3) - G(2-) = 1 - \frac{1}{2} = \frac{1}{2},$$

$$P\left(\frac{1}{2} < X < 3\right) = G(3-) - G\left(\frac{1}{2}\right) = \frac{2}{3} - \frac{1}{6} = \frac{1}{2}.$$