Lesweek 10 - HC 8: Booglengte + Volume/massa van 3D-objecten en uitrekenen onbepaalde integralen

Cursustekst HOOFDSTUK 5, §5.2.3 tot §5.3

FORMULARIUM WISKUNDE

	EXTRA voorbeelden in lesvideo op Toledo: oefening 1b, 5 en 6 uit de oefenbundel		
	CARTESISCH	PARAMETERVORM	POOLKROMME
OPPERVLAKTE	dA = y dx	of $dA = x dy$	$dA = \frac{1}{2}r^2d\theta$
VOLUME	Algemeen: $dV = A(h) dh$ $dV = \pi y^2 dx$ of $dV = \pi x^2 dy$		
BOOGLENGTE	ds =	$\sqrt{(dx)^2+(dy)^2}$	$ds = \sqrt{r^2 + (r')^2} d\theta$

TO DO: VERVOLG BOOGLENGTE + (MOTIVATIE) VOLUME-AANPAK!

Toepassing: booglengte cartesisch

Booglengteformule in cartesische coördinaten

De booglengte van de kromme y = f(x) tussen de punten p en q is gelijk aan

$$s = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx = \int_{a}^{b} \sqrt{1 + [y']^2} \, dx$$

met p(a, f(a)) en q(b, f(b)) en a < b.

ALGEMEEN

$$s = \int_{\dots}^{\infty} \sqrt{(dx)^2 + (dy)^2}$$

Booglengte (deel) parameterkromme

Booglengteformule voor parameterkrommen

De booglengte langs de parameterkromme

$$\begin{cases} x = f(t) \\ y = g(t) \end{cases} \quad t \in [t_a, t_b]$$

is

$$s = \int_{t_a}^{t_b} \sqrt{[f'(t)]^2 + [g'(t)]^2} dt$$

met $t_a < t_b$.

= LENGTE VAN SNELHEIDSVECTOR !!

die in elk punt raakt aan de baan van het deeltje (beschreven in parametervorm)

mooie "mechanica-technische" interpretatie

s = afgelegde weg!!

Booglengte (deel) parameterkromme

Bron figuur: Cursus Introductieweek Fysica (FABER, KU Leuven)

Oppervlakte + booglengte polair gebied

In tegenstelling tot bij afleiden, is nu een rechtstreekse "polaire aanpak" mogelijk!!

Basisformule poolkrommen

De oppervlakte van het gebied bepaald door $r = f(\theta)$

met $\alpha < \theta < \beta$ is gelijk aan

Opp =
$$\frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta$$

Booglengteformule voor poolkrommen

De booglengte langs de kromme $r = f(\theta)$ met $\alpha < \theta < \beta$ is gelijk aan

$$s = \int_{\alpha}^{\beta} \sqrt{[f'(\theta)]^2 + [f(\theta)]^2} d\theta$$

Booglengte poolkromme

Bewijs: Bij de polaire kromme $r = f(\theta)$ is

$$\begin{cases} x = r\cos(\theta) = f(\theta)\cos(\theta) & \leftarrow x(\theta) \\ y = r\sin(\theta) = f(\theta)\sin(\theta) & \leftarrow y(\theta) \end{cases}$$

Dit is de parameter vergelijking van de kromme, waarbij de parameter nu gelijk is aan θ . De infinitesimale booglengte kunnen we dus bepalen aan de hand van de formule voor

parameterkrommen:

$$ds = \sqrt{[x'(\theta)]^2 + [y'(\theta)]^2} d\theta$$

Nu is

en

$$x'(\theta) = f'(\theta)\cos\theta - f(\theta)\sin\theta$$
$$y'(\theta) = f'(\theta)\sin\theta + f(\theta)\cos\theta$$

$$y'(\theta) = f'(\theta)\sin\theta + f(\theta)\cos\theta$$

Daaruit volgt

$$ds = \sqrt{(f'(\theta)\cos\theta - f(\theta)\sin\theta)^2 + (f'(\theta)\sin\theta + f(\theta)\cos\theta)^2} d\theta$$
$$= \dots$$
$$= \sqrt{[f'(\theta)]^2 + [f(\theta)]^2} d\theta$$

VOLUME-INTEGRAALFORMULES

VOLUME = oneindige som van de volumes van flinterdunne schijven dV (aangesneden volgens asrichting!)

Speciaal geval: omwentelingslichamen $\Rightarrow A(x) = \pi \cdot y^2$

VOLUME-VOORBEELDEN

Oefeningen Volume

14. Bepaal het volume van een lichaam met een hoogte van 1m waarvan de dwarsdoorsnede op hoogte z een ellips is met halve assen z en $\sqrt{1-z^2}$.

(oplossing: 1,0472 m³)

VOLUME-VOORBEELDEN

Bepaal de inhoud van het lichaam dat ontstaat door de oppervlakte tussen de parabool $y^2 = 8x$ en de rechte x = 2 in het eerste kwadrant, te laten wentelen om

de x- as.

(oplossing: 16π)

Bepaal de inhoud van het lichaam dat ontstaat door de oppervlakte tussen de

parabool $y^2 = 8x$ en de rechte x = 2

te laten wentelen om

deze rechte.

(oplossing: 256 π / 15)

VOLUME-VOORBEELDEN

Bereken het volume dat je bekomt door het kleine lusje van de poolkromme $r = 2 + 4 \cos(\theta)$ te laten wentelen om de x-as.

(oplossing: $2 \pi / 3$)

REKENTECHNIEKEN: KERN VAN DE ZAAK

Vlot kunnen integreren = vlot kunnen omgaan met differentialen !!

Substitutiemethode (integralen) ←→ Kettingregel (bij afleiden)

Als
$$u = g(x)$$
 dan
$$\int f(g(x))g'(x)dx = \int f(u)du$$

$$= \int f(g(x)) dg(x)$$

UITREKENEN VAN
ONBEPAALDE
INTEGRALEN MOET
JE BLIJVEN KUNNEN OM
EERSTE ORDE DV
OP TE LOSSEN
(= HOOFDSTUK 6)

Partiële integratie ←→ Productregel (bij afleiden)

$$\int f \cdot dg = f \cdot g - \int g \cdot df$$

