Vektor dan Skalar

 Ada besaran fisis yang hanya dinyatakan dengan besarnya saja tetapi ada besaran fisis lainnya yang dinyatakan bukan hanya dengan besarnya tetapi juga dengan arahnya.

Besaran Vektor

- Besaran yang mempunyai besar dan arah
- Contohya, perpindahan, kecepatan, percepatan, gaya, momentum, dan lain-lain.

Besaran Skalar

- Besaran yang hanya dinyatakan oleh besarnya saja.
- Contohnya, usaha, energi, volume, waktu, suhu, dan lain-lain.

Notasi Vektor

 Vektor dinotasikan dengan anak panah yang memiliki pangkal, ujung, dan panjang anak panah.

- Vektor AB dengan besar vektor sebesar panjang AB = |AB|
- Notasi vektor juga dapat berupa huruf besar atau huruf kecil yang dicetak tebal (a, A), dicetak miring (a, A), atau dengan tanda panah diatasnya (A)

Notasi Vektor

Perhatikan beberapa vektor berikut,

 Dua buah vektor dikatakan sama jika memiliki besar dan arah yang sama

Penjumlahan dan Pengurangan Vektor

 Menentukan resultan dari beberapa buah vektor yaitu mencari vektor baru yang dapat menggantikan vektor-vektor yang dijumlahkan atau dikurangkan.

Beberapa metode penjumlahan atau pengurangan vektor,

- 1) Metode jajaran genjang
- 2) Metode segitiga
- 3) Metode poligon (segi banyak)
- 4) Metode uraian

Metode Jajaran Genjang

Vektor resultan dengan metode jajaran genjang sebagai berikut,

Metode Segitiga

Vektor resultan dengan metode segitiga sebagai berikut,

Metode Poligon

 Metode ini sama dengan metode segitiga tetapi jumlah vektor yang dijumlahkan lebih dari dua buah vektor.

$$R = A + B + C$$

Metode Uraian (analitik)

 Metode ini menjumlahkan atau mengurangkan vektor dengan menguraikan setiap komponen vektornya.

Perkalian Vektor

Terdapat dua macam operasi perkalian vektor, yaitu

- 1) Perkalian skalar dengan vektor
- 2) Perkalian vektor dengan vektor, terdiri atas
 - a) Perkalian titik (dot product)
 - b) Perkalian silang (*cross product*)

Perkalian skalar dengan vektor

 perkalian skalar dengan vektor akan memberikan hasil berupa sebuah vektor baru.

$$\vec{B} = k \vec{A}$$

Perkalian titik (dot product)

 perkalian titik antara dua buah vektor akan menghasilkan sebuah skalar.

$$\vec{A} \cdot \vec{B} = C$$

 $\vec{A} \cdot \vec{B} = AB \cos \theta$

Perkalian titik (dot product)

Sifat-sifat perkalian titik:

bersifat komutatif

bersifat distributif

3. jika A dan B saling tegak lurus maka

4. jika A dan B searah

5. jika A dan B berlawanan arah maka : A • B = - A.B

 $: A \bullet B = B \bullet A$

 $: A \bullet (B+C) = A \bullet B + A \bullet C$

 $: A \cdot B = 0$

: **A** • **B** = A.B

Perkalian silang (cross product)

 perkalian silang antara dua buah vektor akan menghasilkan sebuah vektor baru.

$$\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{C}$$

 $\overrightarrow{A} \times \overrightarrow{B} = AB \sin \theta$

Perkalian silang (cross product)

Sifat-sifat perkalian silang (cross Product).

- 1. bersifat anti komutatif : $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$
- 2. jika A dan B saling tegak lurus maka : A x B = A.B
- 3. jika A dan B searah atau berlawanan arah : A x B = 0

 Perkalian silang antara dua buah vektor dapat juga diselesaikan dengan determinan matriks.

Vektor satuan

- Vektor satuan adalah sebuah vektor yang didefinisikan sebagai satu satuan vektor.
- Untuk koordinat Kartesian, sebagai berikut

Vektor satuan

Sifat-sifat perkalian titik vektor satuan

$$\widehat{\mathbf{i}} \cdot \widehat{\mathbf{i}} = \widehat{\mathbf{j}} \cdot \widehat{\mathbf{j}} = \widehat{\mathbf{k}} \cdot \widehat{\mathbf{k}} = 1$$

$$\widehat{\mathbf{i}} \cdot \widehat{\mathbf{j}} = \widehat{\mathbf{j}} \cdot \widehat{\mathbf{k}} = \widehat{\mathbf{i}} \cdot \widehat{\mathbf{k}} = 0;$$

Vektor satuan

Sifat-sifat perkalian silang vektor satuan

$$\hat{i} \times \hat{i} = j \times j = k \times k = 0$$

Jika vektor satuannya tidak sejenis dapat dibantu dengan,

