Tableau 9, Part 1

Independence A first look at independent events

A multiplication table of possibilities

Given three letters and five numbers, how many (letter, number) possibilities are there?

01 \	CB	\mathfrak{B}					
21 X		1	2	3	4	5	
21	a	(a, 1)	(a, 2)	(a, 3)	(a, 4)	(a, 5)	
	b	(b, 1)	(b, 2)	(b, 3)	(b, 4)	(b, 5)	
	C	(c, 1)	(c, 2)	(c, 3)	(c, 4)	(c, 5)	

If $\mathfrak{A} = \{a, b, c\}$ and $\mathfrak{B} = \{1, 2, 3, 4, 5\}$, the Cartesian product $\mathfrak{A} \times \mathfrak{B}$ of (letter, number) pairs has $3 \times 5 = 15$ elements.

A multiplication table of possibilities

Given three letters and five numbers, how many (letter, number) possibilities are there?

OI V	(B	\mathfrak{B}					
21 ×		1	2	3	4	5	
21	a	(a, 1)	(a, 2)	(a, 3)	(a, 4)	(a, 5)	
	b	(b, 1)	(b, 2)	(b, 3)	(b, 4)	(b, 5)	
	C	(c, 1)	(c, 2)	(c, 3)	(c, 4)	(c, 5)	

If $\mathfrak{A} = \{a, b, c\}$ and $\mathfrak{B} = \{1, 2, 3, 4, 5\}$, the Cartesian product $\mathfrak{A} \times \mathfrak{B}$ of (letter, number) pairs has $3 \times 5 = 15$ elements.

A basic principle of counting: Independent possibilities multiply!

Coin tosses

- * A coin is tossed twice: $\mathfrak{A} = \{\mathfrak{H}, \mathfrak{T}\}, \mathfrak{B} = \{\mathfrak{H}, \mathfrak{T}\}.$
 - * Sample space: $\Omega = \mathfrak{A} \times \mathfrak{B} = \{ \mathfrak{HH}, \mathfrak{HT}, \mathfrak{TH}, \mathfrak{TT} \}.$
 - * Events:
 - * $A := First toss is heads = \{ \mathfrak{HH}, \mathfrak{HI} \}.$
 - * B := Second toss is tails = $\{\mathfrak{HT}, \mathfrak{TT}\}$.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/4 to each atom.

- * A coin is tossed twice: $\mathfrak{A} = \{\mathfrak{H}, \mathfrak{T}\}, \mathfrak{B} = \{\mathfrak{H}, \mathfrak{T}\}.$
 - * Sample space: $\Omega = \mathfrak{A} \times \mathfrak{B} = \{\mathfrak{HH}, \mathfrak{HT}, \mathfrak{TH}, \mathfrak{TT}\}.$
 - * Events:
 - * $A := First toss is heads = \{ \mathfrak{HH}, \mathfrak{HI} \}.$
 - * B := Second toss is tails = $\{\mathfrak{HT}, \mathfrak{TT}\}$.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/4 to each atom.

$$\mathbf{P}(\mathbf{A}) = \mathbf{P}\{\mathfrak{HH},\mathfrak{H}\} = \frac{2}{4} = \frac{1}{2}$$

- * A coin is tossed twice: $\mathfrak{A} = \{\mathfrak{H}, \mathfrak{T}\}, \mathfrak{B} = \{\mathfrak{H}, \mathfrak{T}\}.$
 - * Sample space: $\Omega = \mathfrak{A} \times \mathfrak{B} = \{\mathfrak{HH}, \mathfrak{HT}, \mathfrak{TH}, \mathfrak{TT}\}.$
 - * Events:
 - * $A := First toss is heads = \{\mathfrak{HH}, \mathfrak{HI}\}.$
 - * $B := Second toss is tails = \{\mathfrak{HI}, \mathfrak{TI}\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/4 to each atom.

$$\mathbf{P}(\mathbf{A}) = \mathbf{P}\{\mathfrak{HH},\mathfrak{H}\} = \frac{2}{4} = \frac{1}{2}$$

$$\mathbf{P}(\mathbf{B}) = \mathbf{P}\{\mathfrak{HT}, \mathfrak{TT}\} = \frac{2}{4} = \frac{1}{2}$$

Coin tosses

- * A coin is tossed twice: $\mathfrak{A} = \{\mathfrak{H}, \mathfrak{T}\}, \mathfrak{B} = \{\mathfrak{H}, \mathfrak{T}\}.$
 - * Sample space: $\Omega = \mathfrak{A} \times \mathfrak{B} = \{ \mathfrak{HH}, \mathfrak{HT}, \mathfrak{TH}, \mathfrak{TT} \}.$
 - * Events:
 - * $A := \text{First toss is heads} = \{ \mathfrak{HH}, \mathfrak{HI} \}.$
 - * $B := Second toss is tails = \{\mathfrak{HI}, \mathfrak{TI}\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/4 to each atom.

$$\mathbf{P}(\mathbf{A}) = \mathbf{P}\{\mathfrak{HH},\mathfrak{H}\} = \frac{2}{4} = \frac{1}{2}$$

$$\mathbf{P}(\mathbf{B}) = \mathbf{P}\{\mathfrak{HT}, \mathfrak{TT}\} = \frac{2}{4} = \frac{1}{2}$$

$$\mathbf{P}(\mathsf{A}\cap\mathsf{B})=\mathbf{P}\{\mathfrak{HT}\}=\frac{1}{4}$$

- * A coin is tossed twice: $\mathfrak{A} = \{\mathfrak{H}, \mathfrak{T}\}, \mathfrak{B} = \{\mathfrak{H}, \mathfrak{T}\}.$
 - * Sample space: $\Omega = \mathfrak{A} \times \mathfrak{B} = \{\mathfrak{HH}, \mathfrak{HT}, \mathfrak{TH}, \mathfrak{TT}\}.$
 - * Events:
 - * $A := First toss is heads = \{ \mathfrak{HH}, \mathfrak{HI} \}.$
 - * B := Second toss is tails = $\{\mathfrak{HT}, \mathfrak{TT}\}$.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/4 to each atom.

$$\mathbf{P}(\mathbf{A}) = \mathbf{P}\{\mathfrak{HH}, \mathfrak{HT}\} = \frac{2}{4} = \frac{1}{2}$$

$$\mathbf{P}(\mathbf{B}) = \mathbf{P}\{\mathfrak{HT}, \mathfrak{TT}\} = \frac{2}{4} = \frac{1}{2}$$

$$P(A \cap B) = P\{\mathfrak{HT}\} = \frac{1}{4} = \frac{1 \times 1}{2 \times 2} = \frac{1}{2} \cdot \frac{1}{2} = P(A) \times P(B)$$

Cards

- * A card is selected at random from a standard deck of 52 cards: four suits $\mathfrak{A} = \{ \spadesuit, \forall, \blacklozenge, \clubsuit \}$, thirteen ranks $\mathfrak{B} = \{ 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A \}$.
 - * Sample space: $\Omega = \mathfrak{A} \times \mathfrak{B}$; each card is a (suit, rank) pair.
 - * Events:
 - * $A := \text{Card drawn is a} \triangleq \{(\spadesuit, 2), (\spadesuit, 3), (\spadesuit, 4), (\spadesuit, 5), (\spadesuit, 6), (\spadesuit, 7), (\spadesuit, 8), (\spadesuit, 9), (\spadesuit, 10), (\spadesuit, J), (\spadesuit, Q), (\spadesuit, K), (\spadesuit, A)\}.$
 - * B := Card drawn is an ace = $\{(\spadesuit, A), (\heartsuit, A), (\diamondsuit, A), (\clubsuit, A)\}$.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/52 to each atom.

- * A card is selected at random from a standard deck of 52 cards: four suits $\mathfrak{A} = \{ \spadesuit, \forall, \blacklozenge, \clubsuit \}$, thirteen ranks $\mathfrak{B} = \{ 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A \}$.
 - * Sample space: $\Omega = \mathfrak{A} \times \mathfrak{B}$; each card is a (suit, rank) pair.
 - * Events:
 - * A := Card drawn is a $\spadesuit = \{(\spadesuit, 2), (\spadesuit, 3), (\spadesuit, 4), (\spadesuit, 5), (\spadesuit, 6), (\spadesuit, 7), (\spadesuit, 8), (\spadesuit, 9), (\spadesuit, 10), (\spadesuit, J), (\spadesuit, Q), (\spadesuit, K), (\spadesuit, A)\}.$
 - * B := Card drawn is an ace = $\{(\spadesuit, A), (\heartsuit, A), (\diamondsuit, A), (\clubsuit, A)\}$.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/52 to each atom.

$$\mathbf{P}(A) = \frac{13}{52} = \frac{1}{4}$$

- * A card is selected at random from a standard deck of 52 cards: four suits $\mathfrak{A} = \{ \spadesuit, \forall, \blacklozenge, \clubsuit \}$, thirteen ranks $\mathfrak{B} = \{ 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A \}$.
 - * Sample space: $\Omega = \mathfrak{A} \times \mathfrak{B}$; each card is a (suit, rank) pair.
 - * Events:
 - * $A := \text{Card drawn is a} \triangleq \{(\spadesuit, 2), (\spadesuit, 3), (\spadesuit, 4), (\spadesuit, 5), (\spadesuit, 6), (\spadesuit, 7), (\spadesuit, 8), (\spadesuit, 9), (\spadesuit, 10), (\spadesuit, J), (\spadesuit, Q), (\spadesuit, K), (\spadesuit, A)\}.$
 - * B := Card drawn is an ace = $\{(\spadesuit, A), (\blacktriangledown, A), (\blacklozenge, A), (\clubsuit, A)\}$.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/52 to each atom.

$$\mathbf{P}(A) = \frac{13}{52} = \frac{1}{4}$$

$$\mathbf{P}(B) = \frac{4}{52} = \frac{1}{13}$$

- * A card is selected at random from a standard deck of 52 cards: four suits $\mathfrak{A} = \{ \spadesuit, \forall, \blacklozenge, \clubsuit \}$, thirteen ranks $\mathfrak{B} = \{ 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A \}$.
 - * Sample space: $\Omega = \mathfrak{A} \times \mathfrak{B}$; each card is a (suit, rank) pair.
 - * Events:
 - * $A := \text{Card drawn is a} \triangleq \{(\spadesuit, 2), (\spadesuit, 3), (\spadesuit, 4), (\spadesuit, 5), (\spadesuit, 6), (\spadesuit, 7), (\spadesuit, 8), (\spadesuit, 9), (\spadesuit, 10), (\spadesuit, J), (\spadesuit, Q), (\spadesuit, K), (\spadesuit, A)\}.$
 - * B := Card drawn is an ace = $\{(\spadesuit, A), (\blacktriangledown, A), (\blacklozenge, A), (\clubsuit, A)\}$.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/52 to each atom.

$$\mathbf{P}(A) = \frac{13}{52} = \frac{1}{4}$$

$$\mathbf{P}(B) = \frac{4}{52} = \frac{1}{13}$$

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \mathbf{P}\{(\spadesuit, \mathbf{A})\} = \frac{1}{52}$$

- * A card is selected at random from a standard deck of 52 cards: four suits $\mathfrak{A} = \{ \spadesuit, \forall, \blacklozenge, \clubsuit \}$, thirteen ranks $\mathfrak{B} = \{ 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A \}$.
 - * Sample space: $\Omega = \mathfrak{A} \times \mathfrak{B}$; each card is a (suit, rank) pair.
 - * Events:
 - * $A := \text{Card drawn is a} \triangleq \{(\spadesuit, 2), (\spadesuit, 3), (\spadesuit, 4), (\spadesuit, 5), (\spadesuit, 6), (\spadesuit, 7), (\spadesuit, 8), (\spadesuit, 9), (\spadesuit, 10), (\spadesuit, J), (\spadesuit, Q), (\spadesuit, K), (\spadesuit, A)\}.$
 - * B := Card drawn is an ace = $\{(\spadesuit, A), (\blacktriangledown, A), (\blacklozenge, A), (\clubsuit, A)\}$.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/52 to each atom.

$$\mathbf{P}(A) = \frac{13}{52} = \frac{1}{4}$$

$$\mathbf{P}(B) = \frac{4}{52} = \frac{1}{13}$$

$$P(A \cap B) = P\{(\spadesuit, A)\} = \frac{1}{52} = \frac{1 \times 1}{4 \times 13} = \frac{1}{4} \cdot \frac{1}{13} = P(A) \times P(B)$$