《运筹学》

实验报告

学	号	2020112921
姓	名	刘欣豪
年	级	2020 级
专	<u> </u>	交通工程
院	系	交通运输与物流学院

二0二二年六月

目录

一、Li	ngo 基础知识与使用	
1.1	Lingo 基本界面	1
1.2	Lingo 模型结构	2
1.3	Lingo 逻辑运算符	3
1.4	Lingo 函数	3
二、Li	ngo 在线性规划的应用	4
2.1	基本线性规划题目	4
2.2	运输问题	5
2.3	指派问题	7
2.4	整数规划	8
2.5	分支限界法	9
三、Li	ngo 在图论的应用	9
3.1	最短路问题	9
3.2	最大流问题	11
四、实		

一、Lingo 基础知识与使用

1.1 Lingo 基本界面

1.1.1 基本界面

图 1: Lingo 基本界面图

1.1.2 工具栏

图 2: Lingo 工具栏

- 求解模型: Ctrl+S
- 1.1.3 运行状态窗口

图 3: Lingo 运行状态窗口

1.2 Lingo 模型结构

LINGO 模型由三大部分组成

- 集合段 (sets, endsets): 定义模型中用到的各个集合
- 目标段:定义模型的目标函数
- 数据段(data, enddata):根据集合段定义的集合输入对应的数据

图 4: Lingo 模型结构

1.2.1 集合段

集是一群相互联系的对象,这些对象也称为集的成员,每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。属性值可以预先给定,也可以是未知的,有待于 LINGO 求解。借助于集,能够用一个单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型。集以关键字"sets:"开始,以"endsets"结束。

- 原始集:由一些最基本的对象组成的。
- 派生集:用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的集。

定义原始集: setname[/member_list/][:attribute_list];

定义派生集: setname(parent_set_list)[/member_list/][:attribute_list]; 1.2.2 数据段

己知参数的数据输入以 data: enddata 关键字开始,多个数值间用空格隔开。

1.2.3 目标段

目标段包含目标函数与约束条件,是 lingo 模型的核心内容。

1.3 Lingo 逻辑运算符

LINGO 具有 9 种逻辑运算符:

- #not# 否定该操作数的逻辑值, #not#是一个一元运算符
- #eq# 若两个运算数相等,则为 true; 否则为 flase
- #ne# 若两个运算符不相等,则为 true; 否则为 flase
- #gt# 若左边的运算符严格大于右边的运算符,则为 true; 否则为 flase
- #ge# 若左边的运算符大于或等于右边的运算符,则为 true; 否则为 flase
- #lt# 若左边的运算符严格小于右边的运算符,则为 true; 否则为 flase
- #le# 若左边的运算符小于或等于右边的运算符,则为 true: 否则为 flase
- #and# 仅当两个参数都为 true 时,结果为 true; 否则为 flase
- #or# 仅当两个参数都为 false 时,结果为 false; 否则为 true

1.4 Lingo 函数

- (1) 算术运算符,如 + * / ^
- (2) 关系运算符
- (3) 数学函数

@abs(x)	返回x的绝对值
@sin(x)	返回x的正弦值,x采用弧度制
<pre>@cos(x)</pre>	返回 x 的余弦值

 @tan(x)
 返回 x 的正切值

 @exp(x)
 返回常数 e 的 x 次方

 @log(x)
 返回 x 的自然对数

 @lgm(x)
 返回 x 的 gamma 函数的自然对数

(4) 变量界定函数

@bin(x) 限制 x 为 0 或 1 @bnd(L,x,U) 限制 L≤x≤U

Ofree(x) 取消对变量 x 的默认下界为 0 的限制

@gin(x) 限制 x 为整数

(5) 集循环函数,如@for函数,@sum函数,@min和@max

(6) 判断函数, @if 函数将评价一个逻辑表达式 logical_condition,如果为真,返回 true_result,否则返回 false_result

二、Lingo 在线性规划的应用

2.1 基本线性规划题目

某公司有6个建筑工地,位置坐标为(ai, bi)(单位:公里),水泥日用量di(单位:吨)

i	1	2	3	4	5	6
a	1.25	8.75	0.5	5.75	3	7.2
b	1.25	0.75	4.75	5	6.5	7.75
d	3	5	4	7	6	11

现有 2 料场,位于 A (5,1),B (2,7),记为 (x_j,y_j) ,j=1,2,日储量各有 20 吨。假设料场与工地之间有直线道路,指定每天的供应计划,即 从 A、B 两料场分别向各工地运送多少吨水泥,是总的吨公里数最小。取决策变量 c_{ij} 表示 i 工地从 j 料场运来的水泥量。

模型:

$$\begin{aligned} \min z &= \sum_{j=1}^{2} \sum_{i=1}^{6} c_{ij} \sqrt{(x_{j} - a_{i})^{2} + (y_{j} - b_{i})^{2}} \\ s.t &\begin{cases} \sum_{j=1}^{2} c_{ij} &= d_{i}, i = 1, 2, \dots, 6 \\ \sum_{i=1}^{6} c_{ij} &\leq e_{j}, j = 1, 2 \end{cases} \end{aligned}$$

求解的程序为:

```
Model - model - model
                                                                           _ _ X
 model:
 sets:
 s/1..6/:a,b,d;
 t/1,2/:x,y,e;
 u(s,t):c;
 endsets
 data:
 a=1.25 8.75 0.5 5.75 3 7.2;
 b=1.25 0.75 4.75 5 6.5 7.75;
 d=3 5 4 7 6 11;
 x=5 2:
 y=1 7;
 e=20 20;
 enddata
 \min= \text{@sum}(t(j): \text{@sum}(s(i):c(i,j)* \text{@sqrt}((x(j)-a(i))^2+(y(j)-b(i))^2)));
 @for(s(i):
       @sum(t(j):c(i,j))=d(i));
 @for(t(j):
       @sum(s(i):c(i,j))<=e(j));</pre>
```

求解结果为:

得到全局最优解 135.717 灵敏度分析为:

2.2 运输问题

运输问题,一类具有特殊结构的线性规划问题。运输问题所有的子行列式为 0 或±1,存在着比单纯形法更简单的特殊解法。

如果运输问题的总产量等于总销量,满足此条件时称为产销平衡的运输问题,否则称为产销不平衡的运输问题。产销不平衡的运输问题可以通过增加假想产地或假想销地,化成产销平衡的运输问题。

例题求解:

使用 LINGO 软件计算 6 个发点 8 个收点的最小费用运输问题。产销单位运价如下表。

单位运价地	B_1	B ₂	B ₃	B_4	B ₅	B_{6}	\mathbf{B}_7	B ₈	产量
A_1	6	2	6	7	4	2	5	9	60
A_2	4	9	5	3	8	5	8	2	55
A_3	5	2	1	9	7	4	3	3	51
A_4	7	6	7	3	9	2	7	1	43
A_5	2	3	9	5	7	2	6	5	41
A_6	5	5	2	2	8	1	4	3	52
销量	35	37	22	32	41	32	43	38	

求解的程序为:

```
LINGO Model - yunshu
                                                                            - - X
 model:
warehouses/whl..wh6/:capacity;
 vendors/vl..v8/:demand;
links (warehouses, vendors): cost, volume;
endsets
data:
capacity=60 55 51 43 41 52;
demand=35 37 22 32 41 32 43 38;
cost=6 2 6 7 4 2 9 5
 4 9 5 3 8 5 8 2
5 2 1 9 7 4 3 3
 76739271
2 3 9 5 7 2 6 5
5 5 2 2 8 1 4 3;
 enddata
min=@sum(links:cost*volume);
 @for(vendors(j):
       @sum(warehouses(i):volume(i,j))=demand(j));
 @for(warehouses(i):
       @sum(vendors(j):volume(i,j))<=capacity(i));</pre>
 end
```

运行结果:

灵敏度分析(部分):

Variab	ole Coefficient	Increase	Decrease
VOLUME (WH1, V	71) 6.000000	INFINITY	5.000000
VOLUME (WH1, V	72) 2.000000	2.000000	1.000000
VOLUME (WH1, V	73) 6.000000	INFINITY	5.000000
VOLUME (WH1, V	74) 7.000000	INFINITY	7.000000
VOLUME (WH1, V	75) 4.000000	1.000000	INFINITY
VOLUME (WH1, V	76) 2.000000	INFINITY	2.000000
VOLUME (WH1, V	77) 9.000000	INFINITY	6.000000
VOLUME (WH1, V	78) 5.000000	INFINITY	6.000000
VOLUME (WH2, V	71) 4.000000	0.0	1.000000
VOLUME (WH2, V	72) 9.000000	INFINITY	4.000000
VOLUME (WH2, V	73) 5.000000	INFINITY	1.000000
VOLUME (WH2, V	74) 3.000000	1.000000	INFINITY
VOLUME (WH2, V	75) 8.000000	INFINITY	1.000000
VOLUME (WH2, V	76) 5.000000	INFINITY	2.000000
TOTIME / BUS T	9 000000	TMETMTTV	2 000000

2.3 指派问题

在生活中经常遇到这样的问题,某单位需完成 n 项任务,恰好有 n 个人可承担这些任务。由于每人的专长不同,各人完成任务不同(或所费时间),效率也不同。于是产生应指派哪个人去完成哪项任务,使完成 n 项任务的总效率最高(或所需总时间最小)。这类问题称为指派问题或分派问题。

例题求解:

现在要在五个工人中确定四个人来分别完成四项工作中的一项工作。由于每个工人的技术特长不同,他们完成各项工作所需的工时也不同。每个工人完成各项工作所需工时如下表所示,试找出一个工作分配方案,使总工时最小。

	A	В	С	D
1	9	4	3	8
2	4	6	5	3
3	5	3	7	5
4	7	5	2	3
5	10	6	6	4

求解的程序为:

```
- - X
LINGO Model - LINGO3
model:
 sets:
jobs/jl..j4/;
 workers/wl..w5/;
links(jobs,workers):cost,volume;
endsets
cost=9 4 5 7 10
4 6 4 5 6
3 5 7 2 6
8 3 5 3 4;
 enddata
min=@sum(links:cost*volume);
@for(jobs(i):@sum(workers(j):volume(i,j))=1);
@for(workers(j):@sum(jobs(i):volume(i,j))<=1);</pre>
@for(links(i,j):@bin(volume(i,j)));
```

运行结果:

2.4 整数规划

整数规划是指规划中的变量(全部或部分)限制为整数,若在线性模型中,变量限制为整数,则称为整数线性规划。

在Lingo 中使用的主要函数为@gin(x)。

例题:

圆钢原材料每根长 5.5m, 现需要 A, B, C 三种圆钢材料,长度分别为 3.1m, 2.1m, 1.2m, 数量分别为 100, 200, 400 根, 试安排下料方式,使所需圆钢原材料的总数最少。

求解过程略。

2.5 分支定界法

分支定界法求解整数规划步骤:1、如果该最优解就是整数,那么得到整数规划最优解;2、如果最优解不是整数,那么转到下一个步骤分支与定界。

对于分支限界法,多次分支,使用 lingo 求解得到最终结果。

三、Lingo 在图论中的应用

本质上, Lingo 只能求解线性规划问题, Lingo 在图论中的应用即建立一个线性规划模型,来解决图论中的最短路径、最大流问题。

3.1 最短路问题

最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。基本内容是: 若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。

例题求解:

下图,给定一个线路网络,两点之间连线上的数字表示两点间的距离,求一条从A到G的铺管线路,使总距离最短。


```
- - X
LINGO Model - LINGO3
sets:
cities/1..16/:F;
roads(cities,cities)/1,2 1,3 2,4
2,5 2,6 3,5 3,6 3,7 4,8 4,9 5,8
5,9 6,9 6,10 7,9 7,10 8,11
8,12 9,12 9,13 10,12 10,13
11,14 11,15 12,14 12,15
13,14 13,15 14,16 15,16/:D,X;
endsets
DATA:
D= 5 3 1 3 6 8 7 6 6 8 3 5
3 3 8 4 2 2 1 2 3 3 3 5 5 2
6 6 4 3;
ENDDATA
F(@SIZE(cities))=0;
@for(cities(i)|i#LT#@SIZE(cities):
F(i) = @min(roads(i,j):D(i,j)+F(j)));
@for(roads(i,j):x(i,j)=@if(F(i)#eq#D(i,j)+F(j),1,0));
end
```

运行结果:

X(1,2)	1.000000
X(1,3)	0.000000
X(2,4)	0.000000
X(2,5)	1.000000
X(2,6)	0.000000
X(3,5)	0.000000
X(3,6)	1.000000
X(3,7)	0.000000
X(4,8)	1.000000
X(4,9)	0.000000
X(5,8)	1.000000
X(5,9)	0.000000
X(6,9)	1.000000
X(6, 10)	0.000000
X(7,9)	0.000000
X(7, 10)	1.000000
X(8, 11)	0.000000
X(8, 12)	1.000000
X(9, 12)	1.000000
X(9, 13)	0.000000
X(10, 12)	1.000000
X(10, 13)	0.000000
X(11, 14)	1.000000
X(11, 15)	0.000000
X(12, 14)	0.000000
X(12, 15)	1.000000
X(13, 14)	0.000000
X(13, 15)	1.000000
X(14, 16)	1.000000
X(15, 16)	1.000000

3.2 最大流问题

最大流问题是一种组合最优化问题,就是要讨论如何充分利用装置的能力, 使得运输的流量最大。

容量网络:设 G(V, E), 是一个有向网络, 在 V 中指定了一个顶点, 称为源点(记为 Vs), 以及另一个顶点, 称为汇点(记为 Vt);对于每一条弧 $\langle u, v \rangle$ 属于 E, 对应有一个权值 c(u, v) > 0, 称为弧的容量. 通常吧这样的有向网络 G 称为容量网络.

例题求解:

求网络图的最大流。


```
LINGO Model - LINGO1
                                                               - - X
 MODEL:
 SETS:
 NODES/1..6/;
 ARCS (NODES, NODES) /1,2 1,3 2,3 2,4 2,5 3,5 4,6 5,4 5,6
 6,1/:CAP,FLOW;
 ENDSETS
 DATA:
 CAP=4 6 2 2 1 5 4 3 7 1000;
 ENDDATA
 MAX=FLOW(6,1);
 @for(ARCS(I,J):
 FLOW(I, J) < CAP(I, J));
 @FOR (NODES (I):
 \operatorname{\mathsf{@SUM}}(\operatorname{ARCS}(J, I) : \operatorname{FLOW}(J, I)) =
 @SUM(ARCS(I, J):FLOW(I, J)));
 end
```

运行结果:

四、实验总结

Lingo 是一个十分好用的线性规划求解器,通过直观建立集合段、数据段以及目标约束条件段,解决线性规划问题,其中内置了多种求解方法,并可以对各个参数进行灵敏度分。,同时,将图问题转化为线性,也可使用 Lingo 进行求解。

通过此次运筹学实验,在实验过程中,对运筹学的有关知识有了进一步的掌握,学会了通过建立模型解决实际生活中的相关问题。对问题的分析、建模、求解锻炼了我们的思考能力,同时提高了分析、解决问题的能力,也更加了解和熟悉了 Lingo 求解线性模型的功能,提高计算机应用水平。