Algorithms for Mining Distance-Based Outliers in Large Datasets

Knorr, Edwin M.

Ng, Raymond T.

1998

Outliers

"An outlier is an observation that deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism"

- Douglas M. Hawkins

Problem

Finden von Outliers

• Effizienz

Dimensionen

Existierende Lösungen

• Sehr viele

• Distribution-based (k = 1)

• Depth-based $(k \le 2)$

Clustering-Algorithmen

Lösung

Distance-based outlier detection

• DB(p,D)

• 4 Algorithmen

Beispiel

Algorithm FindAllOutsM

- 1. For $q \leftarrow 1, 2, \dots m$, $Count_q \leftarrow 0$
- 2. For each object P, map P to an appropriate cell C_q , store P, and increment $Count_q$ by 1.
- 3. For $q \leftarrow 1, 2, ..., m$, if $Count_q > M$, label C_q red.
- 4. For each red cell C_r , label each of the L_1 neighbours of C_r pink, provided the neighbour has not already been labelled red.
- 5. For each non-empty white (i.e., uncoloured) cell C_w , do:
 - a. $Count_{w2} \leftarrow Count_w + \sum_{i \in L_1(C_w)} Count_i$
 - b. If $Count_{w2} > M$, label C_w pink.
 - c. else
 - 1. $Count_{w3} \leftarrow Count_{w2} + \sum_{i \in L_2(C_w)} Count_i$
 - 2. If $Count_{w3} \leq M$, mark all objects in C_w as outliers.
 - 3. else for each object $P \in C_w$, do:
 - i. $Count_P \leftarrow Count_{w2}$
 - ii. For each object $Q \in L_2(C_w)$, if $dist(P,Q) \leq D$:

Increment $Count_P$ by 1. If $Count_P > M$, P cannot be an outlier, so goto 5(c)(3).

iii. Mark P as an outlier.

Rechtfertigung

Komplexitätsbetrachtungen

Messungen

- Variierung von
 - Dimensionen
 - Datensetgröße

Ergebnispräsentation

Ergebnispräsentation

$oxed{N}$	CS	NL	KD
20000	0.32	1.02	3.14
40000	0.54	4.26	20.49
60000	0.74	9.64	33.08
80000	1.04	17.58	54.66
100000	1.43	27.67	104.28

Anwendungsgebiete

• E-Commerce

Kreditkartenbetrug

Leistungsanalyse von professionellen Athleten

Checkliste

- Stimmt das Resultat?
- Erkenntnisgewinn?
- Neue Ideen?
- Problem wichtig?
- Ergebnis relevant?

Kritikpunkte

Pseudo-Code

Datenset

Ansonsten...