

Exercice 1 Déterminer les dérivées des fonctions suivantes :

$$f_1(x) = 3x^4 - 2x^3 + 5x - 4$$

$$f_2(x) = 4x^2 - 3x + 1$$

$$f_3(x) = (2x + 3)(3x - 7)$$

$$f_4(x) = \frac{2x + 4}{3x - 1} \ pour \ x \neq \frac{1}{3}$$

$$f_5(x) = \frac{x + 5}{x^2 + 1}$$

$$f_6(x) = x^3 (1 + \sqrt{x})$$

$$f_7(x) = 4x^2 \sqrt{x}$$

$$f_8(x) = \left(x^2 - \frac{1}{x}\right) \left(x + \sqrt{x}\right)$$

$$f_9(x) = \sqrt{x} \left(1 - \frac{1}{x}\right)$$

Exercice 2 On pose:

$$f(x) = \sqrt{x}$$
$$g(x) = \frac{1}{x}$$
$$h(x) = x^{2}$$

Déterminer les domaines de définition des fonctions suivantes puis leur dérivée :

$$f_1(x) = f(2x-3)$$

$$f_2(x) = f(x+4)$$

$$g_1(x) = g(x-3)$$

$$g_2(x) = g(-3x+4)$$

$$h_1(x) = h(2x)$$

$$h_2(x) = h\left(\frac{1}{2}x+4\right)$$

Exercice 3 Sur le graphique ci-dessous, on a tracé la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur l'intervalle $]-3;+\infty[$. On sait que :

- la courbe \mathscr{C}_f admet pour asymptotes les droites d_1 et d_2 ;
- la tangente au point A(-1;5) à la courbe \mathcal{C}_f est parallèle à l'axe des abscisses;
- la tangente au point B(2;1) à la courbe \mathcal{C}_f coupe l'axe des abscisses au point de coordonnées (3;0).

On note f' la dérivée de la fonction f. À partir du graphique et des renseignements fournis :

- 1. Déterminer f'(-1) et f'(2).
- **2.** Pour chacune des affirmations ci-dessous, dire si elle est vraie ou si elle est fausse en justifiant votre choix.

a.
$$f'(0) \times f'(6) \leqslant 0$$
.

b.
$$f'(-2,999) \times f'(-2,5) \leq 0$$
.

Exercice 4 Sur le graphique ci-dessous, on a tracé la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur \mathbb{R} . On note f' la dérivée de la fonction f.

PARTIE A

1. La droite \mathcal{D} d'équation y = 2 - x est tangente à la courbe \mathcal{C}_f au point A d'abscisse 2

a. Tracer la droite D sur le graphique précédent.

b. Déterminer les valeurs de f(2) et de f'(2).

PARTIE B

La fonction f est définie pour tout réel x par $f(x) = \frac{18-9x}{x^2+5}$

1. Montrer que pour tout réel x, $f'(x) = \frac{9(x^2 - 4x - 5)}{(x^2 + 5)^2}$.

2. *a.* Étudier le signe de f'(x).

b. Donner le tableau de variations de la fonction f.

3. Déterminer une équation de la tangente (T) à la courbe \mathscr{C}_f au point B d'abscisse (-2).

Exercice 5 PARTIE A

Sur le graphique ci-dessous, on a tracé la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur $]0;+\infty[$.

On précise que :

— La droite Δ est asymptote à la courbe \mathscr{C}_f .

— La tangente à la courbe au point B est parallèle à l'axe des abscisses.

On note f' la dérivée de la fonction f. À partir du graphique et des renseignements fournis :

1. Déterminer $\lim_{x \to +\infty} f(x)$.

2. Déterminer f'(3).

PARTIE B

La fonction f est définie pour tout réel x strictement positif, par $f(x) = \frac{x^2 + 6x - 9}{x^2}$.

1. Montrer que pour tout réel x de l'intervalle]0; $+\infty$ [, $f'(x) = \frac{18-6x}{x^3}$.

2. Étudier le signe de f'(x).

- **3.** Donner le tableau complet des variations de la fonction f.
- **4.** Déterminer une équation de la tangente à la courbe \mathscr{C}_f au point A d'abscisse 1.5.

Exercice 6 Soit f la fonction définie pour tout réel x appartenant à l'intervalle $]0; +\infty[$ $par f(x) = \frac{2x^2 + x - 3}{x^2}$.

On note \mathscr{C}_f sa courbe représentative dans le plan muni d'un repère.

- 1. On note f' la dérivée de la fonction f. Calculer f'(x).
- **2.** Donner le tableau complet des variations de la fonction f.
- **3.** Déterminer une équation de la tangente à la courbe C_f au point A d'abscisse 3.

Exercice 7 Soit $f(x) = 2x^2 + 3x + 4$ définie sur \mathbb{R} :

- 1. Étudier le signe de f'(x) selon les valeurs de x.
- **2.** En déduire les variations de f.
- **3.** *Dresser le tableau des variations de f* .
- **4.** Montrer que f admet un extremum.

Exercice 8 On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = x^3 - 4x^2 + 4x$$

- 1. Calculer la dérivée de f. Étudier son signe puis dresser le tableau des variations de f en précisant les éventuels extrema.
- **2.** Tracer la courbe représentative de f sur [-1;3].
- **3.** Déterminer par le calcul les coordonnées des points d'intersection avec l'axe des abscisses.

Exercice 9 On considère la fonction f définie $sur \mathbb{R}$ par $f(x) = x^3 - 3x - 3$. On note \mathscr{C} sa représentation graphique.

- 1. Dresser le tableau des variations de f.
- **2.** Déterminer une équation de la tangente T à $\mathscr C$ au point d'abscisse 0.
- **3.** Tracer T, les tangentes parallèles à l'axe des abscisses puis \mathscr{C} .

Exercice 10 On considère la fonction g définie sur \mathbb{R}^* par :

$$g(x) = \frac{1}{x} + x$$

- **1.** Déterminer g'(x) pour $x \in \mathbb{R}^*$.
- 2. Étudier le signe de la dérivée g'.
- 3. Dresser le tableau des variations de g.
- 4. Déterminer si g admet des extrema locaux.
- 5. Tracer la représentation graphique de la fonction g.

Exercice 11 On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{x}{x^2 + 1}$$

- 1. Calculer la dérivée f' de la fonction f et étudier son signe.
- **2.** Dresser le tableau des variations de f en précisant la valeur M de son maximum et la valeur m de son minimum.
- **3.** Tracer la représentation graphique de f sur l'intervalle [-4;4].

Exercice 12 On considère les fonctions f et g définies sur \mathbb{R} par :

$$f(x) = -2x^{2} + 1$$
$$g(x) = x^{3} - 3x + 1$$

- 1. Calculer les dérivées f' et g'. Étudier leur signe.
- **2.** Dresser les tableaux des variations des fonctions f et g.
- **3.** Tacer les représentations graphiques \mathscr{C}_f et \mathscr{C}_g des fonctions f et g sur l'intervalle [-3;3].
- **4. a.** Factoriser $P(x) = x^2 + 2x 3$.
 - **b.** Résoudre par le calcul l'inéquation :

$$f(x) \le g(x)$$

Exercice 13 On considère un rectangle dont le périmètre P est égal à 4cm.

- 1. Déterminer ses dimensions (longueur L et largeur l) sachant que son aire est égale à $\frac{3}{4}$ c m^2
- 2. a. Exprimer S en fonction de l.
 - **b.** On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = x(2-x)$$

Calculer la dérivée f' et étudier son signe. Dresser le tableau des variations de f.

c. En déduire les dimensions du rectangle dont le périmètre P est égal à 4cm et l'aire S est maximale.

Exercice 14 *Un fermier décide de réaliser un poulailler (de forme rectangulaire) le long du mur de sa maison. Ce poulailler devra avoir une aire de* $392m^2$. Où doit-on placer les piquets A et B pour que la longueurde la clôture soit maximale? On appelle x > 0 la largeur et y > 0 la longueur de ce poulailler.

- 1. Sachant que l'aire du poulailler est de $392m^2$, exprimer y en fonction de x.
- **2.** Démontrer que la longueur l(x) du grillage est :

$$l(x) = \frac{2x^2 + 392}{x}$$

3. Calculer la dérivée de l puis en déduire le tableau des variations de l.

4. En déduire les dimensions x et y pour lesquelles la clôture a une longueur minimale. Préciser cette longueur.

Exercice 15 *1.* On considère la fonction f définie sur \mathbb{R}^* par :

$$f(x)x^3 - 60x^2 + 450x$$

- **a.** Étudier les variations de f sur l'intervalle [0;20]. Dresser le tableau des variations de f.
- **b.** Déterminer une équation de la tangente Δ à la représentation graphique de f au point d'abscisse 0.
- **c.** Déterminer, par calcul, les coordonnées des points d'intersection de \mathscr{C}_f avec l'axe des abscisses.
- **d.** Tracer Δ et la représentation graphique de f pour $x \in [0;20]$.
- 2. Un fabricant envisage la production de briques de lait en carton obtenues en découpant deux bandes de même largeur dans une feuille carrée (voir figure ci-dessous). Le ôté de la feuille carrée mesure 30cm et on désigne par x la mesure (en centimètres) de la largeur des bandes découpées. On suppose que 0 < x < 15.
 - **a.** Démontrer que le volume (en cm³) de la boîte est :

$$V(x) = 2x^3 - 60x^2 + 450x$$

b. Pour quelle valeur de x le volume V(x) est-il maximal? Préciser la valeur de ce volume maximal en litres

Exercice 16 Soit \mathscr{C} la représentation graphique de la fonction f définie sur $\mathbb{R}\setminus 2$ où $a,b\in \mathbb{R}$ par :

$$f(x) = \frac{x^2 + ax + b}{x - 2}$$

- **1.** Déterminer f'(x).
- **2.** Déterminer a et b tels que la droite d'équation y = 8 soit tangente à \mathscr{C} au point d'abscisse 3.
- **3.** Déterminer l'abscisse de l'autre point de \mathscr{C} où la tangente est horizontale.