MPhil Econometrics – Limited Dependent Variables and Selection

Francis J. DiTraglia

University of Oxford

Complied on 2020-02-08 at 19:25:38

Housekeeping

Lecturer: Francis J. DiTraglia

Email: francis.ditraglia@ox.ac.uk

Course Materials: http://ditraglia.com/teaching

Office: 2132 Manor Road Building

Meetings: after lecture on Wednesdays & Fridays or by appointment

References

- ▶ Wooldridge (2010) Econometric Analysis of Cross Section & Panel Data
- ► Cameron & Trivedi (2005) Microeconometrics: Methods and Applications
- ► Train (2009) Discrete Choice Methods with Simulation

Lecture #5 – Sample Selection

Examples of Sample Selection

The Heckman Selection Model

What is sample selection?

Question

Thus far we have always assumed that $(y_1, \mathbf{x}_1), \dots, (y_N, \mathbf{x}_N)$ are a random sample from the population of interest. What if they aren't?

Example 1: MPhil Admissions

- ▶ Suppose we want to improve admissions decisions at Oxford.
- $ightharpoonup y \equiv$ overall marks in 1st year of Oxford Economics MPhil
- $\mathbf{x} \equiv \{$ undergrad grades, letters of reference, . . . $\}$
- ▶ What we observe: **x** for all applicants; *y* for applicants who were admitted.
- ▶ What we want: $\mathbb{E}(y|\mathbf{x})$ for all applicants.

Example 2: A Model of Wage Offers

Gronau (1974; JPE)

Question

How do wage offers offers w_i^o vary with \mathbf{x}_i for all people in the population.

Problem

Only observe w_i^o for people who accept their offer, i.e. those who are employed.

Mathematically

$$\mathbb{E}(w_i^o|\mathbf{x}_i) \neq \mathbb{E}(w_i^o|\mathbf{x}_i, \mathsf{Employed})$$

The Heckman Selection Model (Heckit) — Is β_1 identified?

Outcome Equation

$$y_1 = \mathbf{x}_1' \boldsymbol{\beta}_1 + u_1$$

(a) Observe
$$y_2, \mathbf{x}' = (\mathbf{x}'_1, \mathbf{x}'_2)$$
; only observe y_1 if $y_2 = 1$.

Participation Equation

(b)
$$(u_1, v_2)$$
 are mean zero and jointly independent of x .

$$y_2 = 1 \{ \mathbf{x}' \boldsymbol{\delta}_2 + v_2 > 0 \}$$

(c)
$$v_2 \sim \text{Normal}(0,1)$$

(d) $\mathbb{E}(u_1|v_2) = \gamma_1 v_2$ where γ_1 is an unknown constant.

Notes

- $ightharpoonup \mathbb{E}(u_1) = \mathbb{E}(v_2) = 0$ is not restrictive: just include intercepts in both equations.
- Assumption (d) would be *implied* by assuming that (u_1, v_2) are jointly normal.
- ▶ These assumptions are strong. They can be weakened a bit, but not too much.

Step 1: Show that u_1 and \mathbf{x} are conditionally independent given v_2 .

Assumption (b)

 (u_1, v_2) are jointly independent of **x**.

Equivalently

$$f_{1,2|\mathbf{x}}(u_1,v_2|\mathbf{x}) = f_{1,2}(u_1,v_2), \quad \text{and} \quad f_{1|\mathbf{x}}(u_1|\mathbf{x}) = f_1(u_1), \quad \text{and} \quad f_{2|\mathbf{x}}(v_2|\mathbf{x}) = f_2(v_2)$$

Therefore

$$f_{1|2,\mathbf{x}}(u_1|v_2,\mathbf{x}) = \frac{f_{1,2|\mathbf{x}}(u_1,v_2|\mathbf{x})}{f_{2|\mathbf{x}}(v_2|\mathbf{x})} = \frac{f_{1,2}(u_1,v_2)}{f_2(v_2)} = f_{1|2}(u_1|v_2)$$

In Words

Conditioning on (v_2, \mathbf{x}) gives the same information about u_1 as conditioning on v_2 only.

Step 2: Calculate $\mathbb{E}(y_1|\mathbf{x}, v_2)$; show that if v_2 were observed we'd be done.

$$\begin{split} \mathbb{E}(y_1|\mathbf{x},v_2) &= \mathbb{E}(\mathbf{x}_1'\boldsymbol{\beta}_1 + u_1|\mathbf{x},v_2) & \text{(Substitute Outcome Eq.)} \\ &= \mathbf{x}_1'\boldsymbol{\beta}_1 + \mathbb{E}(u_1|\mathbf{x},v_2) & \text{(\mathbf{x}_1 is a subset of \mathbf{x})} \\ &= \mathbf{x}_1'\boldsymbol{\beta}_1 + \mathbb{E}(u_1|v_2) & \text{(apply result of Step 1)} \\ &= \mathbf{x}_1'\boldsymbol{\beta}_1 + \gamma_1v_2 & \text{(apply Assumption (d))} \end{split}$$

This slide has been cut, but I'm leaving a blank slide in its place so that the slide numbering remains unchanged from lecture.

Step 3: Relate v_2 (unobserved) to **x** and y_2 (both observed).

$$\mathbb{E}(y_1|\mathbf{x},y_2) = \mathbb{E}_{v_2|(\mathbf{x},y_2)} \left[\mathbb{E}\left(y_1|\mathbf{x},y_2,v_2\right) \right] \qquad \text{(Law of Iterated Expectations)}$$

$$= \mathbb{E}_{v_2|(\mathbf{x},y_2)} \left[\mathbb{E}\left(y_1|\mathbf{x},v_2\right) \right] \qquad \text{(Participation Eq: } y_2 = g(\mathbf{x},v_2) \text{)}$$

$$= \mathbb{E}\left[\mathbf{x}_1'\boldsymbol{\beta}_1 + \gamma_1v_2|\mathbf{x},y_2\right] \qquad \text{(apply result of Step 2)}$$

$$= \mathbf{x}_1'\boldsymbol{\beta}_1 + \gamma_1\mathbb{E}\left(v_2|\mathbf{x},y_2\right) \qquad \qquad \mathbf{x}_1 \text{ is a subset of } \mathbf{x} \text{)}$$

Therefore

$$\mathbb{E}\left(y_1|\mathbf{x},y_2=1\right)=\mathbf{x}_1'\boldsymbol{\beta}_1+\gamma_1\mathbb{E}(v_2|\mathbf{x},y_2=1).$$

What is the significance of Step 3?

- ▶ Define $h(\mathbf{x}) \equiv \mathbb{E}(v_2|\mathbf{x}, y_2 = 1)$. Then: $\mathbb{E}(y_1|\mathbf{x}, y_2 = 1) = \mathbf{x}_1'\boldsymbol{\beta}_1 + \gamma_1 h(\mathbf{x})$
- Note that h(x) is a random variable: a function of x.
- Step 3 shows that a linear regression of y_1 on \mathbf{x}_1 and $h(\mathbf{x})$ for the selected sample, those with $y_2 = 1$, identifies β_1 and γ_1 !
- ▶ All that remains is to figure out what function *h* is...

Note: Selection Bias Enters Through γ_1

Assumption (d)

 $\mathbb{E}(u_1|v_2) = \gamma_1 v_2$ allows dependence between errors in participation and outcome eqs.

Step 3

$$\mathbb{E}(y_1|\mathbf{x},y_2=1)=\mathbf{x}_1'\boldsymbol{\beta}_1+\gamma_1\mathbb{E}(v_2|\mathbf{x},y_2=1)$$

Therefore

If $\gamma_1=0$ there is no selection bias: in this case $\mathbb{E}(y_1|\mathbf{x},y_2=1)=\mathbf{x}_1'\boldsymbol{\beta}$ so regressing y_1 on \mathbf{x}_1 for the subset of individuals with $y_2=1$ identifies $\boldsymbol{\beta}_1$.

Step 4: Determine the distribution of v_2 given $(\mathbf{x}, y_2 = 1)$.

$$\mathbb{P}(v_2 \leq t | \mathbf{x}, y_2 = 1) = \mathbb{P}(v_2 \leq t | \mathbf{x}, v_2 > -\mathbf{x}' \boldsymbol{\delta}_2)$$
 (participation eq.)

$$= \frac{\mathbb{P}\left(\left\{v_2 \leq t\right\} \cap \left\{v_2 > -\mathbf{x}'\boldsymbol{\delta}_2\right\} | \mathbf{x}\right)}{\mathbb{P}(v_2 > -\mathbf{x}'\boldsymbol{\delta}_2 | \mathbf{x})} \qquad \text{(defn. of cond. prob.)}$$

$$=\frac{\mathbb{P}\left\{v_2\in (-\mathbf{x}'\boldsymbol{\delta}_2,t]\right\}}{\mathbb{P}(v_2>-\mathbf{x}'\boldsymbol{\delta}_2)} \hspace{1cm} (v_2 \text{ and } \mathbf{x} \text{ are indep.})$$

$$= \frac{\mathbb{P}\left\{z \in (c,t]\right\}}{\mathbb{P}(z>c)}$$
 (v₂ is standard normal)

where $z \sim \text{Normal}(0,1)$ and we define the shorthand $c \equiv -\mathbf{x}'\delta_2$.

Step 5: Calculate the Expectation of a Truncated Normal

Recall: $z \sim \text{Normal}(0,1)$ and $c \equiv -\mathbf{x}' \delta_2$

CDF

$$\mathbb{P}(z \leq t | z > c) = rac{\mathbb{P}\left\{z \in (c, t]
ight\}}{\mathbb{P}(z > c)} = \mathbb{1}\left\{c \leq t
ight\}\left[rac{\Phi(t) - \Phi(c)}{1 - \Phi(c)}
ight]$$

Density

$$f(z|z>c) = rac{d}{dt}\mathbb{P}(z\leq t|z>c) = \left\{egin{array}{ll} 0, & z < c \ arphi(z)/\left[1-\Phi(c)
ight], & z \geq c \end{array}
ight.$$

Step 5: Calculate the Expectation of a Truncated Normal

Recall: $z \sim \mathsf{Normal}(0,1)$ and $c \equiv -\mathsf{x}' \delta_2$

$$\mathbb{E}(z|z>c) = \int_{-\infty}^{\infty} zf(z|z>c) \, dz = \frac{1}{1-\Phi(c)} \int_{c}^{\infty} z\varphi(z) \, dz$$

$$= \left[\frac{1}{1-\Phi(c)}\right] \left(\frac{1}{\sqrt{2\pi}}\right) \int_{c}^{\infty} z \exp\left\{-z^{2}/2\right\} \, dz$$

$$= \left[\frac{1}{1-\Phi(c)}\right] \left(\frac{1}{\sqrt{2\pi}}\right) \left[-\exp\left\{-z^{2}/2\right\}\right]_{c}^{\infty}$$

$$= \left[\frac{1}{1-\Phi(c)}\right] \left(\frac{\exp\left\{-c^{2}/2\right\}}{\sqrt{2\pi}}\right) = \frac{\varphi(c)}{1-\Phi(c)}$$

Step 6: Put everything together.

Recall: Step 3

$$y_1 = \mathbf{x}_1' \boldsymbol{\beta}_1 + \gamma_1 h(\mathbf{x}) + \eta, \quad \mathbb{E}\left[\eta | \mathbf{x}_1, h(\mathbf{x}) \right] = 0, \quad h(\mathbf{x}) \equiv \mathbb{E}(v_2 | \mathbf{x}, y_2 = 1)$$

Using Steps 4-5

$$h(\mathbf{x}) = \frac{\varphi(-\mathbf{x}\delta_2)}{1 - \Phi(-\mathbf{x}\delta_2)} = \frac{\varphi(\mathbf{x}'\delta_2)}{\Phi(\mathbf{x}'\delta_2)} \quad \text{ since } \varphi(-c) = \varphi(c) \text{ and } 1 - \Phi(c) = \Phi(-c).$$

Inverse Mills Ratio

 $\varphi(c)/\Phi(c)$ is the inverse Mills Ratio, traditionally denoted by $\lambda \implies h(\mathbf{x}) = \lambda(\mathbf{x}'\boldsymbol{\delta}_2)$.

Careful!

In an earlier lecture λ denoted the standard logistic density. Here it's something else!

The Heckman Two-step Estimator aka "Heckit"

Observables

Observe (y_{2i}, \mathbf{x}_i) for a random sample of size N; only observe y_{1i} for those with $y_{2i} = 1$.

First Step – Estimate δ_2 from Full Sample

- ▶ Run Probit on the Participation Eq. $\mathbb{P}(y_{2i} = 1 | \mathbf{x}_i) = \Phi(\mathbf{x}_i' \delta_2)$ for the full sample.
- ▶ Define $\widehat{\lambda}_i \equiv \lambda(\mathbf{x}_i'\widehat{\boldsymbol{\delta}}_2)$ where $\widehat{\boldsymbol{\delta}}_2$ is the MLE for $\boldsymbol{\delta}_2$.

Second Step – Estimate (β_1, γ_1) from Selected Sample

Using the observations for which y_{i1} is observed, regress y_{i1} on $(\mathbf{x}_{1i}, \widehat{\lambda}_i)$ by OLS to obtain estimates $(\widehat{\boldsymbol{\beta}}_1, \widehat{\gamma}_1)$.

The Heckman Two-step Estimator aka "Heckit"

Theorem

Under the assumptions from above, the 2-step "Heckit" estimators satisfy

$$\begin{bmatrix} \widehat{\boldsymbol{\delta}}_2 \\ \widehat{\boldsymbol{\beta}}_1 \\ \widehat{\boldsymbol{\gamma}}_1 \end{bmatrix} \rightarrow_{\boldsymbol{\rho}} \begin{bmatrix} \boldsymbol{\delta}_2 \\ \boldsymbol{\beta}_1 \\ \boldsymbol{\gamma}_1 \end{bmatrix} \quad \text{and} \quad \sqrt{N} \begin{bmatrix} \widehat{\boldsymbol{\delta}}_2 - \boldsymbol{\delta}_2 \\ \widehat{\boldsymbol{\beta}}_1 - \boldsymbol{\beta}_1 \\ \widehat{\boldsymbol{\gamma}}_1 - \boldsymbol{\gamma}_1 \end{bmatrix} \rightarrow_{\boldsymbol{d}} \mathsf{Normal}(\boldsymbol{0}, \boldsymbol{\Omega}) \quad \text{as } N \rightarrow \infty.$$

Standard Errors

The asymptotic variance matrix Ω is complicated: the usual OLS standard errors from step two are incorrect as they do not account for the estimation of δ_2 in step one.

The Big Picture: How does Heckit solve the selection problem?

- ▶ If we regress y_{1i} on \mathbf{x}_{1i} for the selected sample, there is an omitted variable.
- Under the Heckit assumptions, the omitted variable is precisely $\lambda(\mathbf{x}_i'\delta_2)$.
- ▶ Hence: a regression of y_{1i} on \mathbf{x}_{1i} and $\lambda(\mathbf{x}_i'\delta_2)$ is correctly specified.

Why is the second step regression identified?

- If \mathbf{x}_i contains some variables that are *not* in \mathbf{x}_{1i} , we have an exclusion restriction: i.e. there are variables that affect participation but not outcomes.
- Even if there are no exclusion restrictions, λ is nonlinear so $\lambda(\mathbf{x}'_{1i}\boldsymbol{\delta}_2)$ will not be perfectly co-linear with \mathbf{x}_{1i} .
- \blacktriangleright Without exclusion restrictions identification comes *solely* from nonlinearity in λ .
- Depending on the values where it is evaluated, λ can be *close* to linear, leading to very imprecise estimates unless you have an exclusion restriction.