Package 'oaPlots'

October 14, 2022

Maintainer Jason Waddell < jason.waddell@openanalytics.eu>
License GPL-3 + file LICENSE
Title OpenAnalytics Plots Package
Type Package
LazyLoad yes
Author Jason Waddell, Willem Ligtenberg
Description Offers a suite of functions for enhancing R plots.
Version 0.0.25
Date 2015-11-29
- m· - · · · · · · · · · · · · · · · · ·
<pre>URL http://www.openanalytics.eu</pre>
Depends oaColors
Imports ggplot2
Suggests RColorBrewer
NeedsCompilation no
Repository CRAN
Date/Publication 2015-11-30 14:51:34
R topics documented:
it topics documented:
addLegend
blankPlot
colorPoly
customRound
densityLegend
drawSplitDensity
findLocations
getBreaks
oaTemplate
oaTheme
nlotRars 11

2 addLegend

	plotDensityTrace				•			•			•	•	•	•	•				11
	plotDots																		12
	plotPolygonRegions																		13
	pointsOnBoxplot																		13
	pointsOnBoxplot.default																		14
	pointsOnBoxplot.formula																		16
	prepLegend																		16
	scatterplotDL																		18
	splitCircle																		19
	splitColorVar																		20
Index																			21
muca																			41

 ${\sf addLegend}$

Function for adding a legend to an existing device

Description

Function for adding a legend to an existing device

Usage

```
addLegend(x = "center", y = NULL, legend, font = NULL, bty = "n",
    xjust = 0.5, yjust = 0.5, ...)
```

Arguments

X	legend x location
У	legend y location
legend	vector of legend labels
font	legend text font
bty	A character string which determined the type of box which is drawn about plots. If bty is one of "o" (the default), "l", "7", "c", "u", or "]" the resulting box resembles the corresponding upper case letter. A value of "n" suppresses the box.
xjust	how the legend is to be justified relative to the legend x location. A value of 0 means left justified, 0.5 means centered and 1 means right justified.
yjust	the same as xjust for the legend y location.
• • •	additional optional arguments to be passed to legend()

Value

none; legend is added to the current device

Author(s)

Jason Waddell

blankPlot 3

Examples

```
layout \leftarrow c(2,3);
side <- "left"</pre>
proportion <- 0.2
prepLegend(layout = layout, side = side, proportion = proportion)
for(i in 1:(layout[1]*layout[2]))
plot(1:7, 1:7, col = 1:7, pch = 19, cex = 2.2, xaxt = "n",
yaxt = "n", ann = FALSE)
addLegend(legend = paste("Group", 1:7), font = 2,
pch = 19, pt.cex = 2, text.col = 1:7, col = 1:7,
y.intersp = 1.5, cex = 1.5)
layout = rbind(c(1, 2, 3), c(0, 4, 3), c(0, 4, 5))
side = "right"
proportion = 0.15
prepLegend(layout = layout, side = side, proportion = proportion)
for(i in 1:max(layout))
plot(1:7, 1:7, col = 1:7, pch = 19, cex = 2.2, xaxt = "n",
yaxt = "n", xlab = "", ylab = "", main = paste("Plot", i))
addLegend(legend = paste("Group", 1:7), font = 2,
pch = 19, pt.cex = 2, text.col = 1:7, col = 1:7,
y.intersp = 1.5, cex = 1.5)
```

blankPlot

Create a Blank Plot

Description

Create a Blank Plot

Usage

```
blankPlot(xlim, ylim)
```

Arguments

```
xlim x limits for the plot
ylim y limits for the plot
```

Value

none, plot is created on the current device

Author(s)

Jason Waddell

4 customRound

colorPoly

Function for plotting a colored polygon as part of a density legend

Description

Function for plotting a colored polygon as part of a density legend

Usage

```
colorPoly(de1, tempDex, col, side)
```

Arguments

de1 a density() object

tempDex a set of indices corresponding to the range of the current segment to be plotted

(which indices of the density object to ues)

col the color of the polygon to be plotted

side the side of the plot that the density legend should be plotted on

Value

none, graphics are added to the current device

Author(s)

Jason Waddell

customRound

Custom rounding function to round to the nearest specified interval

Description

Custom rounding function to round to the nearest specified interval

Usage

```
customRound(x, roundTo)
```

Arguments

x numeric value(s) roundTo rounding interval

Value

rounded numeric value(s)

densityLegend 5

Author(s)

Jason Waddell

densityLegend	Create a colored density legend for visually representing the distribution of a color variable on a plot

Description

Create a colored density legend for visually representing the distribution of a color variable on a plot

Usage

```
densityLegend(x, colorPalette, colorBreaks, side = "right", main = NULL)
```

Arguments

x a numeric vector used to create the density trace

colorPalette a vector of color values

colorBreaks a vector of cutoff values for the color regions side the side of the plot to place the desntiy legend

main the main title for the density legend (optional, recommended to use a title that

describes x

Value

none, graphics are added to the current device

Author(s)

Jason Waddell

```
library(ggplot2)
library(RColorBrewer)

# subset the data object
dsub <- subset(diamonds, x > 5 & x < 6 & y > 5 & y < 6)
dsub <- dsub[-which(dsub$z > 4), ]
dsub <- dsub[-which(dsub$z < 3), ]

# define color pallette, color vector and color region breaks
colorPalette <- brewer.pal(9, "Blues")[4:9]
colorObj <- splitColorVar(colorVar = dsub$z, colorPalette)
colorVec <- colorObj$colorVec</pre>
```

6 drawSplitDensity

```
breaks <- colorObj$breaks

# plot the data
prepLegend(side = "right", proportion = 0.3)
oaTemplate(xlim = range(dsub$x), ylim = range(dsub$y),
main = "Diamond Length by Width \n Colored by Depth",
xlab = "Length (mm)", ylab = "Width (mm)")
points(x = dsub$x, y = dsub$y, col = colorVec, pch = 19, cex = 0.6)

# add the legend
densityLegend(x = dsub$z, colorPalette = colorPalette, side = "right",
main = "Diamond Depth", colorBreaks = breaks)</pre>
```

drawSplitDensity

Draw a Split Density Plot

Description

Draw a Split Density Plot

Usage

```
drawSplitDensity(x = NULL, y = NULL, densityObj = NULL, yshift = 0,
  colVec, outerCol, lwd = 2, split = NULL, yScale = NULL,
  fillBackground = FALSE)
```

Arguments

x	x vector from a density object. e.g. data <- rnorm(100); x <- density(data)\$x
У	y vector from a density object
densityObj	an object created by the function density()
yshift	vertical shift to be applied to the y object
colVec	color vector for the shaded regions that compose the interior of the plot. The length of 'colVec' should be one greater than the length of split
outerCol	the color for the outer density line
lwd	line width for the outer density line
split	vector of x values at which to split the density plot
yScale	vertical scale at which to plot the density. For example, a call with 'yScale = 1' will produce a density curve scaled between 0 and 1
fillBackground	binary specification of whether to fill in the background the outerCol color

Value

none. Graph is plotted to the current device

findLocations 7

Author(s)

Jason Waddell

Examples

```
library(RColorBrewer)
data <- rnorm(1000)
x <- density(data)$x
y <- density(data)$y
colVec <- brewer.pal(9, "Blues")[3:8]
outerCol <- brewer.pal(9, "Blues")[9]

oaTemplate(xlim = range(x), ylim = c(0, 1), ygrid = 0, cex.axis = 1.2)
drawSplitDensity(x, y, colVec = colVec, split = c(-8),
outerCol = outerCol,
yScale = 0.95, yshift = 0)</pre>
```

findLocations

Returns a Vector of x Locations

Description

Returns a Vector of x Locations

Usage

```
findLocations(n, space, center)
```

Arguments

n number of observations for a given value

space space between points center center plotting value

Value

numeric vector of location values

Author(s)

Jason Waddell

8 oaTemplate

intervals	getBreaks	Divide the range of x into intervals, returning the breakpoints of these intervals
-----------	-----------	--

Description

Divide the range of x into intervals, returning the breakpoints of these intervals

Usage

```
getBreaks(x, breaks, dig.lab = 3L)
```

Arguments

X	a numeric vector which is to be converted to a factor by cutting
breaks	a single number (greater than or equal to 2) giving the number of intervals into which x is to be cut
dig.lab	integer which is used when labels are not given. It determines the number of

digits used in formatting the break numbers

Value

a vector of numeric breakpoints

Author(s)

Jason Waddell

oaTemplate Create a OA Plot Template	oaTemplate	Create a OA Plot Template	
--------------------------------------	------------	---------------------------	--

Description

Create a OA Plot Template

Usage

```
oaTemplate(xlim, ylim, xgrid = NULL, ygrid = NULL, xlab = NULL,
 ylab = NULL, main = NULL, bgCol = gray(0.9), col.axis = gray(0.6),
 col.lab = gray(0.4), col.main = gray(0.3), cex.axis = 0.7,
  cex.lab = 1, cex.main = 1.5, xaxs = "r", yaxs = "r", add = FALSE,
 box = FALSE, box.col = "black", box.lwd = 1, ylabels = NULL,
 xlabels = NULL, buffer = 0, gridLabelBuffer = 0.01, ylabBuffer = 0.1,
 xlabBuffer = 0.08, mainBuffer = 0.07)
```

oaTemplate 9

Arguments

xlim	x limits for the plot
ylim	y limits for the plot
xgrid	values at which to draw the x axis gridlines
ygrid	values at which to draw the y axis gridlines
xlab	a title for the x axis
ylab	a title for the y axis
main	an overall title for the plot
bgCol	background color for the plot
col.axis	color for the axis labels
col.lab	color for the xlab and ylab titles
col.main	color for the main title
cex.axis	size of the axis labels
cex.lab	size of the xlab and ylab titles
cex.main	size of the main title
xaxs	The style of axis interval calculation to be used for the x-axis. Possible values are "r", "i". Style "r" (regular) first extends the data range by 4 percent at each end and then finds an axis with pretty labels that fits within the extended range. Style "i" (internal) just finds an axis with pretty labels that fits within the original data range.
yaxs	The style of axis interval calculation to be used for the y-axis. See xaxs above.
add	A logical value specifying whether to add the template to an existing plot. If FALSE, a new plot will be created
box	binary specifying whether to draw a bounding box around the plot
box.col	color of the bounding box
box.lwd	width of the bounding box lines
ylabels	labels to print at the y tickmarks
xlabels	labels to print at the x tickmarks
buffer	optional buffer around all edges of the plot (as a percentage of the plot)
gridLabelBuffe	
	buffer between plot and grid labels (as a proportion of plotting range)
ylabBuffer	distance between plot and y-axis title, as proportion of total plot width
xlabBuffer	distance between plot and x-axis title, as proportion of total plot height
mainBuffer	distance between plot and main title, as proportion of total plot height

Value

none, objects are plotted to the current device

10 oaTheme

Author(s)

Jason Waddell

Examples

```
par(plt = c(0, 1, 0, 1))
oaTemplate(xlim = c(0, 10), ylim = c(20, 50), add = FALSE, xlab = "X Label", ylab = "Y Label",
main = "Main Title")
```

oaTheme

Apply OA ggplot2 theme

Description

Apply OA ggplot2 theme

Usage

```
oaTheme(p, useOAColors = TRUE, expand = "both", bgColor = gray(0.9))
```

Arguments

p ggplot2 plot object

useOAColors boolean which indicates wether or not to use the oaColors package to provide a

color scheme. Default: TRUE

expand specify wether or not to expand the axis valid options are: (both, x, y, none)

Default: both

bgColor specify a different background color (useful for plotting colors with alpha val-

ues) Default: gray(0.9)

Value

ggplot2 plot object

Author(s)

Willem Ligtenberg

plotBars 11

plotBars A function for creating the segmented color bars in a density legend

Description

A function for creating the segmented color bars in a density legend

Usage

```
plotBars(de1, side, colorPalette, colorBreaks)
```

Arguments

de1 a density() object

side the side of the plot that the density legend should be plotted on

colorPalette A vector of color values

colorBreaks A vector of cutoff values for the color regions

Value

none, graphics are added to the current device

Author(s)

Jason Waddell

plotDensityTrace Function for plotting the density trace outline in a density legend

Description

Function for plotting the density trace outline in a density legend

Usage

```
plotDensityTrace(de1, side)
```

Arguments

de1 a density() object

side the side of the plot that the density legend should be plotted on

Value

none, graphics are added to the current device

12 plotDots

Author(s)

Jason Waddell

plotDots

Adds Points on a Pre-existing Plot using Shifted Locations

Description

Adds Points on a Pre-existing Plot using Shifted Locations

Usage

```
plotDots(vec = NULL, xLeft = 0.8, xRight = 1.2, ...)
```

Arguments

```
    vec numeric vector
    xLeft left x boundary of the point plotting region
    xRight right x boundary of the point plotting region
    further arguments to be handed to the points function
```

Value

points are added to the current graphics device

Author(s)

Jason Waddell

```
x <- sample(1:5, size = 25, replace = TRUE)
plot(x = -1, y = -1, xlim = c(0.5,1.5), ylim = range(x),
    ylab = "", xlab = "", xaxt = "n")
colVec <- c(rep("olivedrab", 15), rep("goldenrod", 5), rep("red", 5))
plotDots(vec = x, xLeft = 0.8, xRight = 1.2, pch = 19,
    col = colVec, cex = 2)</pre>
```

plotPolygonRegions 13

	n 1	_	
plot	Polvg	onReg	ions

Function to plot all colored density regions of a density legend

Description

Function to plot all colored density regions of a density legend

Usage

```
plotPolygonRegions(de1, side, colorPalette, colorBreaks)
```

Arguments

de1 a density() object

side the side of the plot that the density legend should be plotted on

colorPalette a vector of color values

colorBreaks a vector of cutoff values for the color regions

Value

none, graphics are added to the current device

Author(s)

Jason Waddell

		_	
noi	nts()	nBox	plot

Generic pointsOnBoxplot function. Calls pointsOnBoxplot.default or pointsOnBoxplot.formula

Description

Generic pointsOnBoxplot function. Calls pointsOnBoxplot.default or pointsOnBoxplot.formula

Usage

```
pointsOnBoxplot(x, ...)
```

Arguments

x a vector of numeric values to be passed on

... further arguments for the methods, such as a vector of categories 'y' for the

default method

Author(s)

Jason Waddell

See Also

```
pointsOnBoxplot.default pointsOnBoxplot.formula
```

Examples

```
# Examples run in the formula and default methods
x2 <- runif(50, 0, 10);
table(customRound(x2, roundTo = 0.5))
boxplot(x2)
pointsOnBoxplot(x2, pch = 19, roundTo = 0.5)
# Set up input data
x \leftarrow c(sample(1:5, size = 25, replace = TRUE), rpois(25, lambda = 4))
colVec <- c(rep("olivedrab", 10), rep("red", 5), rep("goldenrod", 15),</pre>
    rep("red", 15), rep("olivedrab", 5))
y <- rep(c("Awesome Rats", "Stupid Rats"), each = 25)
y2 <- rep(c("Open", "Analytics"), 25)</pre>
x2 \leftarrow c(1, 2, 2, 3, 3, 1, 1, 1, 4, 5)
y3 <- c(rep("A", 5), rep("B", 5))
levels(y3) <- c("A", "B", "C")
boxplot(x \sim y, horizontal = TRUE)
pointsOnBoxplot(x ~ y, horizontal = TRUE)
boxplot(x \sim y)
pointsOnBoxplot(x = x, y = y, col = colVec, pch = 19, cex = 2)
boxplot(x \sim y + y2)
pointsOnBoxplot(x \sim y + y2, col = colVec, pch = 19, cex = 2)
```

pointsOnBoxplot.default

Draw Points on Top of a Boxplot using Appropriate Shifting

Description

Draw Points on Top of a Boxplot using Appropriate Shifting

Usage

```
## Default S3 method:
pointsOnBoxplot(x = NULL, y = NULL, totalSpread = 0.3,
   roundTo = NULL, horizontal = FALSE, ...)
```

Arguments

Χ	vector of numeric values that were used to create boxplots
У	vector of values representing a categorical variable
totalSpread	total spread of point plotting range within a boxplot. Defaults to 0.3 so that points plot between 0.85 and 1.15
roundTo	optional rounding interval. For example, if given roundTo = 0.25 , all numeric x values will be rounded to the nearest quarter
horizontal	logical indicating if the boxplots should be horizontal; default FALSE means vertical boxes.
	further parameters to be passed to the points function

Value

points are drawn to the current device

Author(s)

Jason Waddell

```
# Examples run in the formula and default methods
x2 <- runif(50, 0, 10);
table(customRound(x2, roundTo = 0.5))
boxplot(x2)
pointsOnBoxplot(x2, pch = 19, roundTo = 0.5)
# Set up input data
x \leftarrow c(sample(1:5, size = 25, replace = TRUE), rpois(25, lambda = 4))
colVec <- c(rep("olivedrab", 10), rep("red", 5), rep("goldenrod", 15),</pre>
    rep("red", 15), rep("olivedrab", 5))
y <- rep(c("Awesome Rats", "Stupid Rats"), each = 25)
y2 <- rep(c("Open", "Analytics"), 25)</pre>
x2 <- c(1, 2, 2, 3, 3, 1, 1, 1, 4, 5)
y3 <- c(rep("A", 5), rep("B", 5))
levels(y3) <- c("A", "B", "C")
boxplot(x \sim y, horizontal = TRUE)
pointsOnBoxplot(x \sim y, horizontal = TRUE)
boxplot(x \sim y)
pointsOnBoxplot(x = x, y = y, col = colVec, pch = 19, cex = 2)
boxplot(x \sim y + y2)
pointsOnBoxplot(x \sim y + y2, col = colVec, pch = 19, cex = 2)
```

prepLegend prepLegend

```
pointsOnBoxplot.formula
```

Draw Points on Top of a Boxplot using Appropriate Shifting

Description

Draw Points on Top of a Boxplot using Appropriate Shifting

Usage

```
## S3 method for class 'formula'
pointsOnBoxplot(formula, data = NULL, ...,
    na.action = NULL)
```

Arguments

formula a formula of the form $a \sim b$ (+ c, etc.), where a is a numeric vector and all other

variables are categorical

data an optional input parameter of a data frame containing the variables used in the

formula

... further arguments to be passed to pointsOnBoxplot.default

na.action parameter specifying how to handle missingness

Author(s)

Jason Waddell

prepLegend

Function for arranging plotting layout to accomodate a legend panel

Description

Function for arranging plotting layout to accomodate a legend panel

Usage

```
prepLegend(layout = c(1, 1), type = if (is.matrix(layout)) "layout" else
  "mfrow", side = "right", proportion = 0.15, heights = NULL,
  widths = NULL)
```

prepLegend 17

Arguments

layout	layout vector or matrix
type	type of layout; either "mfrow" or "layout"
side	side of the plot to place legend on; one of "top", "bottom", "left" or "right"
proportion	proportion of plotting window to allocate to legend
heights	height vector for original layout (before the legend panel is appended)
widths	width vector for original layout (before the legend panel is appended)

Value

none; layout is passed to current device

Author(s)

Jason Waddell

```
layout <- c(2,3);
side <- "left"</pre>
proportion <- 0.2
prepLegend(layout = layout, side = side, proportion = proportion)
for(i in 1:(layout[1]*layout[2]))
plot(1:7, 1:7, col = 1:7, pch = 19, cex = 2.2, xaxt = "n",
yaxt = "n", ann = FALSE)
addLegend(legend = paste("Group", 1:7), font = 2,
pch = 19, pt.cex = 2, text.col = 1:7, col = 1:7,
y.intersp = 1.5, cex = 1.5)
layout = rbind(c(1, 2, 3), c(0, 4, 3), c(0, 4, 5))
side = "right"
proportion = 0.15
prepLegend(layout = layout, side = side, proportion = proportion)
for(i in 1:max(layout))
plot(1:7, 1:7, col = 1:7, pch = 19, cex = 2.2, xaxt = "n",
yaxt = "n", xlab = "", ylab = "", main = paste("Plot", i))
addLegend(legend = paste("Group", 1:7), font = 2,
pch = 19, pt.cex = 2, text.col = 1:7, col = 1:7,
y.intersp = 1.5, cex = 1.5)
```

18 scatterplotDL

scatterplotDL	Plot a base-graphics scatterplot with	th accompanying density legend
---------------	---------------------------------------	--------------------------------

Description

Plot a base-graphics scatterplot with accompanying density legend

Usage

```
scatterplotDL(x, y, colorVar, colorPalette, side = "right",
proportion = 0.3, legendTitle = NULL, ...)
```

Arguments

X	the x coordinates to be handed to plot()
У	the y coordinates of points in the plot()
colorVar	the numeric vector of values used to color the points
colorPalette	a color palette. If 'colorPalette' contains, for example, 6 colors, then the values of colorVar will be split and assigned to these 6 colors
side	the side of the plot to put the density legend on ("left", "right", "top", or "bottom") $$
proportion	the proportion of the plot (from 0 to 1) to allocate to the density legend (defaults to 0.3)

legendTitle string for labelling the density legend

... additional parameters to be passed to plot()

Value

none, plot is added to device

Author(s)

Jason Waddell

```
library(ggplot2)
library(RColorBrewer)
colorPalette <- brewer.pal(9, "YlOrRd")[4:9]
scatterplotDL(x = mtcars$mpg, y = mtcars$wt, colorVar = mtcars$hp,
legendTitle = "Horse Power", colorPalette = colorPalette, pch = 19,
xlab = "MPG (miles per gallon)", ylab = "Weight (tonnes)",
main = "MPG by Weight in Cars \n Colored by Horse Power")</pre>
```

splitCircle 19

	-	٠		~ ·		
cr	١I	1	+	(`1	rc.	16

Function for drawing a split circle (two differently colored semicircles)

Description

Function for drawing a split circle (two differently colored semicircles)

Usage

```
splitCircle(x, y, radius, splitAngle = pi/4, nv = 100, border = NA,
col1 = NA, col2 = NA, lty = 1, lwd = 1)
```

line width used for darwing the circle polygon

Arguments

x	x location of the circle center
у	y location of the circle center
radius	radius of the circle
splitAngle	angle (in radians) that splits the color in two halves
nv	number of vertices used to draw the circle
border	binary whether to include a border on the circle
col1	color of the first semicircle
col2	color of the second semicircle
lty	line type used for drawing the circle polygon

Value

lwd

none, split circle is drawn to the current device

Author(s)

Jason Waddell

```
plot(-1, -1, xlim = c(0, 1), ylim = c(0,1), type = "n") splitCircle(x = 0.5, y = 0.5, radius = 0.48, splitAngle = pi/4, nv = 1000, border = NA, col1 = "blue", col2 = "red")
```

20 splitColorVar

for each element of 'colorVar' (to be used in plot calls), and a vector of breaks defining the color regions (to be used in densityLegend)	splitColorVar	Function to take a numeric vector 'colorVar' and palette 'color-Palette', and return a list containing a vector of color assignments for each element of 'colorVar' (to be used in plot calls), and a vector of breaks defining the color regions (to be used in densityLegend)
--	---------------	---

Description

Function to take a numeric vector 'colorVar' and palette 'colorPalette', and return a list containing a vector of color assignments for each element of 'colorVar' (to be used in plot calls), and a vector of breaks defining the color regions (to be used in densityLegend)

Usage

```
splitColorVar(colorVar, colorPalette, breaks = NULL)
```

Arguments

colorVar the numeric vector of values used to color the points

colorPalette a color palette. If 'colorPalette' contains, for example, 6 colors, then the values

of colorVar will be split and assigned to these 6 colors

breaks (optional) a numeric vector of two or more unique cut points

Value

a list containing a vector of color assignments ('colorVec') for each element of 'colorVar' (to be used in plot calls), and a vector of breaks ('breaks') defining the color regions (to be used in densityLegend)

Author(s)

Jason Waddell

Index

```
\mathsf{addLegend}, \textcolor{red}{2}
blankPlot, 3
colorPoly, 4
\verb|customRound|, 4
densityLegend, 5
{\tt drawSplitDensity}, {\color{red} 6}
{\it findLocations}, {\it 7}
getBreaks, 8
\verb|oaTemplate|, 8
oaTheme, 10
plotBars, 11
plotDensityTrace, 11
plotDots, 12
plotPolygonRegions, 13
pointsOnBoxplot, 13
pointsOnBoxplot.default, 14, 14
pointsOnBoxplot.formula, 14, 16
prepLegend, 16
scatterplotDL, 18
splitCircle, 19
{\tt splitColorVar}, \textcolor{red}{\textbf{20}}
```