

Sequential circuit

Lecture No. 7

By- CHANDAN SIR

After 97th clock the output ill be?

Clock	Q_3	Q_2	Q_1	Qo
0	1	0	0	O
1	0	1	0	0
2	0	0	J	0
3	0	0	0	1
4	1	0	0	O
5				
6				
7	1			
8				
9	Val.			
10				
11				
12				
13			THE	
14				

$$Q_{n+1} = T \oplus Q_n \Rightarrow 1 \oplus Q_n = \overline{Q_n}$$

1. Toggle mode of T Flip Flop (Onti = On)

$$\begin{array}{c|c}
\hline
1 & Q_n \\
\hline
f_{CUK} = \frac{1}{T_{CUK}} \\
CLK & \overline{O}
\end{array}$$

$$\int_{Q} \frac{1}{2 t_{ck}}$$

$$\int_{Q} \frac{1}{2 t_{ck}}$$

Toggle mode of J K Flip Flop.

JCK-

Figure 7: Toggling Mode of JK Flip Flop

$$q_{n+1} = J \overline{q}_n + K q_n$$

$$= 1.\overline{q}_n + 0.q_n$$

$$q_{n+1} = \overline{q}_n$$

Toggle mode of J K Flip Flop.

Figure 8: Toggling Mode of modified JK Flip Flop

$$Q_{n+j} = J \overline{Q}_n + \overline{K} Q_n$$

$$= \overline{Q}_n \cdot \overline{Q}_n + Q \cdot Q_n$$

$$Q_{n+j} = \overline{Q}_n$$

Toggle mode of J K Flip Flop.

2. Toggle mode of J K Flip Flop.

3. Toggle mode of S R Flip Flop.

$$S = \overline{g}_{R}$$
 $R = \overline{g}_{R} \rightarrow \overline{R} = \overline{g}_{R}$

$$Q_{n+1} = S + RQ_n$$

$$= \overline{Q}_n + \overline{Q}_n \cdot g_n$$

$$Q_{n+1} = \overline{Q}_n$$

$$Q_{n+1} = \overline{Q}_n$$

4. Toggle mode of D Flip Flop.

$$Q_{n+1} = R$$

$$Q_{n+1} = R$$

COUNTER

- 1. Counters are used to count Number of clocks
- Counter are used as Frequency Divider Circuit.
- 3. Counter are also used in ADC.
- 4. Counters are also known as pulse stretcher circuit.
- 5. Counters also used in RADAR for detection of Range.

TYPES OF COUNTER

Pw

- 1. Asynchronous Counter
- 2. Synchronous Counter

TYPES OF COUNTER

2. Synchronous Counter: All Flip Flops are connected with the same clock. Hence when clock is applied all the flip flops work simultaneously.

COUNTER

Synchronous counter

- (1) All the FF's are synchronized with same clock.
- 2) Faster
- 3) All type of counting are possible.
- (4) No Transition Error
- (5) Ex. Ring counter
 Johnson counter

Asynchronous counter

- 1 Only one FF having external clock and olp of that FF will be clock for the next FF.
- @ Slower
- 3 Only increasing or decreasing counting are possible.
- 1 Transition error occurs
- 5) Ex. Ripple counter.

COUNTER MAXIMUM STATE

Maximum number of states = 2n

n→ no. of FF's

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$0 \rightarrow 2 \rightarrow 6 \rightarrow 8$$

$$101 \rightarrow 56 \rightarrow 99 \rightarrow 93$$

MODULUS OF THE COUNTER

Number of states that can be used by the counters are called Modulus(MOD) of the Counter.

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9$$

$$1 \rightarrow 0 \rightarrow 10$$

$$MOD=10$$

 $Mod(M) \leq 2^n$

PW

MOD-10 counter

BCDX

not necressarly

If mode-5 counter is cascaded with mod-2 counter, then it will

Mod 10 counter

- B. BCD Counter X
- C. Both A and B
- D. None

$$2x5 = M0D - 10$$

Asynchronous counter :->

RIPPLE COUNTER

All the FF's are used in toggle mode

- 3) QB will toggle when Qn goes from I to o.
- (3) Qc will toggle when QB goes from 1 to 0.

Chock	\delta c	QB	QA
0			0
1	0	0	1
2	0	1	0
3	0	1	1
4		0	0
5		0	1
6	L	1	0
7	1	1	1
8		0	O
9	Q	0	1
1)			

