Lecture 7: Hierarchical Modeling

Professor Alexander Franks

2023-03-07

Announcements

- Fill out ESCI evaluations online!
 - What did you like? Would you like to see more courses like this?
 - What can be improved?
- Reading: Chapters 15 and 16

Hernchical

· Aw 5 out, due 19th.

· Quit out, due 8th at 2pm. (MCMC) (1 But rext).

Comparing Multiple Related Groups

- Hierarchy of nested populations
- Models which account for this are called <u>hiearchical</u> or <u>multi-level</u> models

Some examples:

- Patient outcomes within several different hospitals
- People within counties in the United States (e.g. Asthma mortality example)
- Athlete performance in sports
- Genes within a group of animals

- A study was performed for the Educational Testing Service (ETS) to evaluate the effects of coaching programs on SAT preparation
- Each of eight different schools used a short-term SAT prep coaching program
- Compute the average SAT score in those who did take the program minus those that did not participate in the program
- We observe the average difference varies by school. What accounts for these differences?

SO Stodents

per school, lifterence in SAT from randomly assign training vs control.

- Access varier by school Income Quality of the school populations are different MohVation - Language. Chance! + By ChanG Strong shoulds
in I gray & weaker in the other.

- Interested in "real" differences due to training
- Want to reduce effect of chance variability
- How do we estimate the effect of the program in each of the schools?
- Two extremes:
 - Estimate the effect of the program in every school independently
 - A separate prior distribution for each school effect
 - o Or assume the effect is the same in every school
 - Combine all the data
 - A compromise between the above 2 options?

$$y_j \sim N(heta_j, \sigma_j^2)$$
 9; $\sim N(\mathcal{M}, \frac{\sigma_j^2}{K})$

- y_j is the observed effects of the program in school j
 - Based on a sample of test scores from those in the program and those not in the program
- ullet θ_j are the true *unknown* effects of the program in school j
- Variances, σ_j^2 , are *known*

$$O_j^2 = \frac{O_j^2}{N_j}$$

Determined by the number of students in the sample

```
J <- 8
y = c(28, 8, -3, 7, -1, 18, 12)
sigma <- c(15, 10, 16, 11, 9, 11, 10, 18)
```

- Assuming the effect of the program on each school is identical.
- What are the chances of seeing a value as large as 28?
- As small as -3? $\frac{1}{(2\pi)^2}$ $\frac{8}{(2\pi)^2}$ $\frac{1}{(2\pi)^2}$ $\frac{1}{(2\pi)^2}$ $\frac{1}{(2\pi)^2}$ $\frac{1}{(2\pi)^2}$ $\frac{1}{(2\pi)^2}$

$$\hat{\Theta}_{MLE} = \frac{8}{5} \frac{1/\sigma_i^2 y_i}{5}$$

If effects are actual equal, what is it?

```
## Compute the precision frome each school
prec <- 1/sigma^2

## global estimate is a weighted average
mu_global <- sum(prec * y / sum(prec))
mu_global</pre>
```

[1] 7.685617

Omle ~ 7,7 if no Variation between schools.

• Assume the effect of the program on each school is identical, i.e.

$$\theta_j = \Theta > 7.7$$

- What are the chances of seeing a value as large as 28?
- As small as -3?

```
# 1000 datasets with mean mu_global but different sigmas

## Chance of seeing a value greater than 28
mean(sapply(1:1000, function(x)
    max(rnorm(J, mean=mu_global, sd=sigma))) >= 28)

## [1] 0.358

## Chance of seeing a value less than -3
mean(sapply(1:1000, function(x)
    min(rnorm(J, mean=mu_global, sd=sigma))) <= -3)

## [1] 0.799</pre>
```

Density of $Y_j \sim N(heta_{
m pooled}, \sigma_j^2)$

$$y_j \sim N(heta_j, \sigma_j^2)$$

- θ_j are the true unknown effects of the program in school j
- y_j is the observed effects of the program in school j
 - Based on a sample of test scores from those in the program and those not in the program
 - \circ Number of people in the sample determine the magnitude of σ_j^2

- How do we estimate θ_j ?
 - \circ Independent: $\hat{ heta}_j^{(MLE)} = y_j$ is the MLE

$$\circ \text{ Identical effects: } \hat{\theta}_{j}^{(pool)} = \frac{\sum_{i} \frac{1}{\sigma_{i}^{2}} y_{i}}{\sum_{j} \frac{1}{\sigma_{i}^{2}}} = \theta^{(pool)} \text{ for all } j$$

 Same effect for all schools: estimate using a weighted average of the observed effects

Eight Schools

Bios-Variance Tradof.

```
theta_j_mle <- y
theta_j_mle

## [1] 28 8 -3 7 -1 1 18 12

theta_j_pooled <- rep(sum(1/sigma^2 * y) / sum(1/sigma^2), J)
theta_j_pooled</pre>
```

[1] 7.685617 7.685617 7.685617 7.685617 7.685617 7.685617 7.685617 7.685

Is there a middle ground between two extremes?

A hierarchical model:

Itom variable ove he true SAT effects across schools.

- Add a shared normal prior distribution to θ_i
- Assume the global mean, μ is also unknown
- How do we choose prior for μ ?

$$\mu \sim N(\mu_0, au_0^2)$$
? or $p(\mu) \propto 1$?

Doorce

- Need to estimate all of $(\mu, \theta_1, \dots, \theta_8)$ with MCMC
- τ^2 determines how much weight weight we put on the independent estimate vs the pooled estimate P(N, 01, -- 2/91, -. 99, 05)

9- paaner

 $\frac{8}{11}\left(\frac{1}{12\pi\sigma_{i}^{2}}e^{-\frac{(\gamma_{i}-\gamma_{i})^{2}}{2\sigma_{i}^{2}}}e^{-\frac{(\beta_{i}-\gamma_{i})^{2}}{2\sigma_{i}^{2}}}e^{-\frac{(\beta_{i}-\gamma_{i})^{2}}{2\sigma_{i}^{2}}}\right)P(M)$

- Compromise: $\hat{ heta}_j^{(shrink)} = w heta_j^{(MLE)} + (1-w) heta_j^{(pool)}$
- How is this different from the standard normal-normal model we saw before?

Intuition behind shrinkage

- $Y_j = \theta_j + \epsilon_j$ and for simplicity assume that the variance of ϵ, σ^2 for all j
 - \circ θ_i represents true differences between schools (signal)
 - \circ ϵ_i is sampling variability (noise, chance variation)

$$ullet \ Var(Y_j) = Var(heta_j) + Var(\epsilon_j) = au^2 + \sigma_j^2$$

- The variance of the observed outcomes is the sum of signal variance, τ^2 , and the sampling variance σ_j^2
- Consequence: the observed outcomes always have higher variance across groups than the signal
 - $\circ \ \operatorname{Var}(Y_j) > \operatorname{Var}(heta_j)$
- Intuition: reduce the variance by shrinking Y_j 's closer together!
 - \circ Want the variance of the shrunken estimates to be close to τ^2

Comments:

- The global average, μ , is a parameter so also has uncertainty
- How dow we determine how much to shrink, e.g. how do we determine τ^2 ? Signal Voviability.
- Is the training program effective in school j?
 - What is $P(\theta_j > 0 \mid y)$?
- On avearge (over all schools) is the training program effective?
 - \circ What is $P(\mu > 0 \mid y)$?

- If τ^2 is large, the prior for θ_j is not very strong
 - \circ If $au^2 o \infty$ equivalent to the no pooling model
- If τ^2 is small, we assume a priori that θ_j are very close
 - \circ if $au^2 o 0$ equivalent to the complete pooling model, $heta_j = \mu$

$$\Theta_{j,pm} = W_{j;+(1-w)} U$$

$$W = \frac{1/\sigma_{j}^{2}}{1/\sigma_{j}^{2} + \frac{1}{2}}$$

Estimating parameters

- MH: Need to generate a proposal from a 9-dimensional posterior distribution
 - Eight parameters for θ_j and one for μ
- Gibbs: sample each of the 9 parameters from the complete conditionals
 - \circ Sample $p(\theta_j \mid \theta_{-j}, \mu)$
 - \circ Sample $p(\mu \mid \theta_1, \dots \theta_8, \mu)$
- Stan

Eight Schools Estimation

```
J <- 8

y = c(28, 8, -3, 7, -1, 1, 18, 12)

sigma <- c(15, 10, 16, 11, 9, 11, 10, 18)

## fix the variance of the prior to a number

tau <- 20
```

Eight Schools in Stan

```
// saved as 8schools.stan
data {
  int<lower=0> J;  // number of schools
                         // estimated treatment effects
  real y[J];
  real<lower=0> sigma[J]; // standard error of effect estimates
  real<lower=0> tau; // shrinkage standard deviation
                        -A number I choose.
parameters {
  real mu; // population treatment effect (y) avage)
 vector[J] cta; // unscaled deviation from mu by school
transformed parameters {
  vector[J] theta = mu + tau * eta;
model {
  target += normal lpdf(eta | 0, 1): // prior log-density
  target += normal lpdf(y | theta, sigma); // log-likelihood
        y ~ normal (theta, sizma)

that ~ normal (M, taw)

(mu & const, Plat a prior)
```


MLE vs Posterior Mean

Basketball Example

