Dimensionality reduction

Principal Components Analysis

t-Stochastic Neighbour Embedding

Sparse Factor Analysis

Kath Nicholls

Aims of dimensionality reduction

- Produce mapping to reduce dimensions without losing structure
- Visualise high-dimensional data
- Identify important variables
- Cluster data points (e.g. to check for a batch effect)

Principal Components Analysis

- Directions of most variance
 - Linear
 - Orthogonal
- Explicit mapping
- Easy to change k
- Calculate using SVD or eigen decomposition

Linearity of PCA

PCA won't find non-linear directions of variance

PCA via eigen decomposition

- X has n rows (samples) and p columns (variables)
- $C = \frac{1}{n-1} X^T X$ is $p \times p$ covariance matrix
- Eigen decomposition is $C = VLV^T$

$$C = \begin{bmatrix} & & & & & \\ & & & & & \\ v_1 & v_2 & \dots & v_p \\ & & & & \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_p \end{bmatrix} \begin{bmatrix} - & v_1^T & - \\ - & v_2^T & - \\ & \vdots & \\ - & v_p^T & - \end{bmatrix}$$

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_p$$

- $X \mapsto XV$ transforms to rotated p-dimensional space
- $X \mapsto XV_{1:k}$ transforms to *reduced* k-dimensional space
- XV_j is called jth *principal component*

PCA via singular value decomposition

Singular value decomposition of X is

Eigenvectors of $\boldsymbol{X}^T\boldsymbol{X}$

- Linked to eigen decomposition
- $XV_j = U_j D_j$ is jth principal component

Reconstructing X

- Recall $X = UDV^T$
- $V_{1:k}V_{1:k}^T \approx I$ (exact for k=p since V orthogonal)

$$X \approx X V_{1:k} V_{1:k}^T$$

Link to factor analysis:

$$X = F\Lambda + \epsilon$$

Principal Components Analysis

Directions of most variance

 $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_p$

- Linear
- Orthogonal
- Explicit mapping
- Easy to change k

$$X \mapsto XV_{1:k}$$

$$X \mapsto XV_{1:k}$$

Calculate using SVD or eigen decomposition

Dimensionality reduction

Principal Components Analysis

t-Stochastic Neighbour Embedding

Sparse Factor Analysis

Kath Nicholls

t-distributed Stochastic Neighbour Embedding

- Preserves local similarity
- Stochastic
- Hyperparameters
 - Perplexity
- No explicit mapping

t-SNE preserves local similarity

- $x_1, ..., x_n$ in high dimensional space
- Map to points $y_1, ..., y_n$ in low dimensional space
- Gaussian centred at x_i gives same points as Student tdistribution centred at y_i

Why Student t-distribution for lower-dimensional points?

- Faster to evaluate than Gaussian
- More weight on tails
 - Spreads out low dimensional points

t-SNE algorithm

- 1. Calculate probability of selecting pair of points x_i, x_j
- 2. Initialise y_1, \ldots, y_n
- 3. Calculate probability of selecting pair of points y_i, y_j
- 4. Move $y_1, ..., y_n$ to decrease distance between probability distributions
- 5. Repeat 3-4 until convergence

t-SNE algorithm

- 1. Calculate probability of selecting pair of points x_i, x_j
- 2. Initialise y_1, \ldots, y_n
- 3. Calculate probability of selecting pair of points y_i, y_j
- 4. Move $y_1, ..., y_n$ to decrease distance between probability distributions
- 5. Repeat 3-4 until convergence

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

$$p_{j|i} = \frac{\exp\left(-\|x_i - x_j\|^2 / 2\sigma_i^2\right)}{\sum_{l \neq i} \exp\left(-\|x_i - x_l\|^2 / 2\sigma_i^2\right)}$$

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{l \neq i} \left(1 + \|y_i - y_l\|^2\right)^{-1}}$$

$$KL(P||Q) = \sum_{i} \sum_{j \neq 1} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Hyperparameters

- Parameters for gradient descent
- Perplexity = smooth measure of number of neighbours
 - Number of neighbours roughly equal for each x_i
 - Sigma differs for each x_i

t-distributed Stochastic Neighbour Embedding

- Preserves local similarity
- Stochastic
- Hyperparameters
 - Perplexity
- No explicit mapping

Dimensionality reduction

Principal Components Analysis

t-Stochastic Neighbour Embedding

Sparse Factor Analysis

Kath Nicholls

Sparse Factor Analysis

- Identify latent variables in data
 - Explicit mapping to latent space
- Stochastic
- Sparsity helps choice of k

Sparse factor analysis finds biclusters

(a) Original matrix (b) Clustering rows (c) Clustering columns

Aim of biclustering

- Gene regulatory networks are thought to be modular
- Biclustering finds modules, and identifies links between modules and disease (and/or cell type)

Figure 1C Müller-Linow et al. 2008; Figure 3 Moran et al. 2019

Comparison

PCA	t-SNE	Sparse Factor Analysis
Deterministic	Stochastic	Stochastic
Linear	Non-linear	Linear
Interpretable	Not interpretable	Interpretable
Mapping can be applied to other datasets	Mapping only works for one dataset	Mapping can be applied to other datasets
Easy to adjust for k	Have to re-run for each k	Have to re-run for each k
Good for explicit reduction	Good for visualisation	Good for biclusters