MAT1375, Classwork9, Fall2025

$$f(x) = (X - C_1) \cdot (X - C_2) \cdot (X - C_3) \cdot \cdots \cdot (X - C_n)$$

1. Factors and roots of polynomials.

Every n-degree polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0$, $(a_n \neq 0)$ can be factored as $f(x) = (x + c_1) \cdot (x + c_2) \cdot (x + c_3) \cdot \dots \cdot (x + c_n)$ Thus, the polynomial f(x) of degree n has **at most** roots (which are c_1, c_2, \dots, c_n) and these roots may be either <u>real</u> or <u>Complex</u>. $(3+2\hat{c})$

2. The Repeat roots and its Multiplicity.

Let $f(x) = (x - r)^n$ where r is the of f and this root repeats times. We call r a root with multiplicity n.

3. The complex root and its Conjugate.

Let f be a polynomial with all **real coefficients**. The complex roots are always found as a **pair**, that is, if

$$c = \underline{a} + \underline{b}i$$
 is a complex root of f , then the complex $\underline{Conjugate}$ $\bar{c} = \underline{a - b c}$ is also a root of f . Feal part $\underline{c} = 3+2c$, $\overline{c} = 3-2c$

4. The Relation between Roots and Coefficient a_0 .

 $c = 4-c$, $c = 4+c$

For a *n*-degree polynomial $f(x) = 1x^n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x^1 + a_0$, we can factorize it as $f(x) = \underline{1 \cdot (X - C_1) \cdot (X - C_2) \cdot (X - C_3) \cdot \cdots \cdot (X - C_n)}.$

where c_1, c_2, \dots, c_n are the roots of f(x). Then we have

$$(1) f(c_1) = 0$$
, $f(c_2) = 0$, $f(c_3) = 0$, ..., $f(c_n) = 0$.

$$(2) a_0 = (-C_1) \times (-C_2) \times (-C_3) \times \cdots \times (-C_n).$$

(3) The _____ of a_0 might be the possible candidates for _____ of f(x).

5. Let
$$f(x) = x^3 - x^2 + 2$$
. Find all the roots of $f(x)$.

6. The **Number Line Test**:

Step1. Solve the _____ and find all the _____.

Step2. Mark the roots on the number line and check ______ in each subinterval.

7. Let $f(x) = x^3 - 3x^2 + 4$. Find all the roots of f(x). Sketch a complete graph and label all roots.

8. Let $f(x) = x^3 - x^2 - 9x + C$ where C is a real number. If x = 3 is a root of f(x), find C so that f(x) has this root as indicated. Then, for this choice of C, find all remaining roots of f(x).

9. Find a polynomial f(x) that fits the given data.

f(x) has degree 4. f(x) has roots 0, 2, -1, -4, and f(1) = 20.