$12a_{1146} \ (K12a_{1146})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{58} - u^{57} + \dots - u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 58 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{58} - u^{57} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u\\-u^{3}+u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2}+1\\u^{4}-2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3}+2u\\-u^{3}+u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{6}-3u^{4}+2u^{2}+1\\-u^{8}+4u^{6}-4u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{7}-4u^{5}+4u^{3}\\u^{7}-3u^{5}+2u^{3}+u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{11}+6u^{9}-12u^{7}+8u^{5}-u^{3}+2u\\-u^{11}+5u^{9}-8u^{7}+3u^{5}+u^{3}+u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{26}+13u^{24}+\cdots+u^{2}+1\\-u^{26}+12u^{24}+\cdots+6u^{4}-u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{21}-10u^{19}+\cdots+10u^{3}+u\\-u^{23}+11u^{21}+\cdots+2u^{3}+u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{55}-26u^{53}+\cdots+10u^{5}+2u\\-u^{57}+27u^{55}+\cdots+2u^{3}+u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{55} 104u^{53} + \cdots 12u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7, c_{10}	$u^{58} - 7u^{57} + \dots - 79u + 7$
c_2, c_3, c_8	$u^{58} - u^{57} + \dots - u + 1$
c_4, c_6	$u^{58} - u^{57} + \dots - 3u + 2$
c_5, c_{11}, c_{12}	$u^{58} + u^{57} + \dots + u + 1$
<i>c</i> 9	$u^{58} + 3u^{57} + \dots - 129u - 192$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_{10}	$y^{58} + 61y^{57} + \dots + 913y + 49$
c_2, c_3, c_8	$y^{58} - 55y^{57} + \dots + 5y + 1$
c_4, c_6	$y^{58} - 27y^{57} + \dots + 23y + 4$
c_5, c_{11}, c_{12}	$y^{58} + 49y^{57} + \dots + 5y + 1$
<i>c</i> 9	$y^{58} - 27y^{57} + \dots - 1316865y + 36864$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.14724	-1.35276	0
u = 1.151380 + 0.058161I	2.53228 + 3.79612I	0
u = 1.151380 - 0.058161I	2.53228 - 3.79612I	0
u = 0.481555 + 0.664903I	11.99140 + 2.20783I	4.22893 - 3.07025I
u = 0.481555 - 0.664903I	11.99140 - 2.20783I	4.22893 + 3.07025I
u = -0.443054 + 0.686901I	7.60131 - 10.06700I	0.80807 + 7.84045I
u = -0.443054 - 0.686901I	7.60131 + 10.06700I	0.80807 - 7.84045I
u = -0.515153 + 0.627947I	7.87503 + 5.69223I	1.58915 - 1.87939I
u = -0.515153 - 0.627947I	7.87503 - 5.69223I	1.58915 + 1.87939I
u = 0.438326 + 0.675169I	2.65616 + 6.14445I	-3.69389 - 6.69694I
u = 0.438326 - 0.675169I	2.65616 - 6.14445I	-3.69389 + 6.69694I
u = 0.501005 + 0.618665I	2.90568 - 1.85234I	-2.97160 + 0.63684I
u = 0.501005 - 0.618665I	2.90568 + 1.85234I	-2.97160 - 0.63684I
u = -0.442362 + 0.648377I	5.01043 - 2.20484I	-0.34907 + 2.50917I
u = -0.442362 - 0.648377I	5.01043 + 2.20484I	-0.34907 - 2.50917I
u = -0.466755 + 0.626215I	5.10910 - 1.98014I	0.15978 + 4.14976I
u = -0.466755 - 0.626215I	5.10910 + 1.98014I	0.15978 - 4.14976I
u = -1.307560 + 0.189347I	4.08058 - 1.65712I	0
u = -1.307560 - 0.189347I	4.08058 + 1.65712I	0
u = 1.331250 + 0.207988I	0.86765 + 5.45245I	0
u = 1.331250 - 0.207988I	0.86765 - 5.45245I	0
u = 0.188380 + 0.617055I	0.49984 + 6.30818I	-4.83696 - 8.02356I
u = 0.188380 - 0.617055I	0.49984 - 6.30818I	-4.83696 + 8.02356I
u = 1.354390 + 0.050533I	3.56112 + 0.15774I	0
u = 1.354390 - 0.050533I	3.56112 - 0.15774I	0
u = -1.351690 + 0.130313I	4.61294 - 2.74721I	0
u = -1.351690 - 0.130313I	4.61294 + 2.74721I	0
u = -1.345480 + 0.220131I	5.32159 - 9.34589I	0
u = -1.345480 - 0.220131I	5.32159 + 9.34589I	0
u = -0.155934 + 0.602452I	-3.78873 - 2.51425I	-10.60618 + 5.42125I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.155934 - 0.602452I	-3.78873 + 2.51425I	-10.60618 - 5.42125I
u = 0.107983 + 0.596551I	-0.304445 - 1.182970I	-7.28418 - 0.76991I
u = 0.107983 - 0.596551I	-0.304445 + 1.182970I	-7.28418 + 0.76991I
u = -0.366762 + 0.465079I	4.44827 - 1.54185I	2.24711 + 4.56850I
u = -0.366762 - 0.465079I	4.44827 + 1.54185I	2.24711 - 4.56850I
u = -1.411190 + 0.054492I	8.16493 + 2.73473I	0
u = -1.411190 - 0.054492I	8.16493 - 2.73473I	0
u = 1.40642 + 0.15083I	10.05250 + 3.76035I	0
u = 1.40642 - 0.15083I	10.05250 - 3.76035I	0
u = 0.547094 + 0.139034I	2.23185 - 3.44215I	0.89332 + 2.64024I
u = 0.547094 - 0.139034I	2.23185 + 3.44215I	0.89332 - 2.64024I
u = -0.511205	-1.78784	-4.31540
u = 1.47373 + 0.23609I	11.19640 + 5.44235I	0
u = 1.47373 - 0.23609I	11.19640 - 5.44235I	0
u = 1.47805 + 0.22330I	11.39260 + 5.08524I	0
u = 1.47805 - 0.22330I	11.39260 - 5.08524I	0
u = -1.47640 + 0.24549I	8.84229 - 9.50759I	0
u = -1.47640 - 0.24549I	8.84229 + 9.50759I	0
u = -1.48567 + 0.21307I	9.33313 - 1.16891I	0
u = -1.48567 - 0.21307I	9.33313 + 1.16891I	0
u = 1.48008 + 0.24923I	13.8182 + 13.4851I	0
u = 1.48008 - 0.24923I	13.8182 - 13.4851I	0
u = 1.49285 + 0.21200I	14.3880 - 2.6478I	0
u = 1.49285 - 0.21200I	14.3880 + 2.6478I	0
u = -1.49028 + 0.23319I	18.3827 - 5.4813I	0
u = -1.49028 - 0.23319I	18.3827 + 5.4813I	0
u = 0.155026 + 0.396579I	-0.139434 + 0.781761I	-4.01123 - 8.80292I
u = 0.155026 - 0.396579I	-0.139434 - 0.781761I	-4.01123 + 8.80292I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7, c_{10}	$u^{58} - 7u^{57} + \dots - 79u + 7$
c_2, c_3, c_8	$u^{58} - u^{57} + \dots - u + 1$
c_4, c_6	$u^{58} - u^{57} + \dots - 3u + 2$
c_5, c_{11}, c_{12}	$u^{58} + u^{57} + \dots + u + 1$
<i>C</i> 9	$u^{58} + 3u^{57} + \dots - 129u - 192$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_{10}	$y^{58} + 61y^{57} + \dots + 913y + 49$
c_2, c_3, c_8	$y^{58} - 55y^{57} + \dots + 5y + 1$
c_4, c_6	$y^{58} - 27y^{57} + \dots + 23y + 4$
c_5, c_{11}, c_{12}	$y^{58} + 49y^{57} + \dots + 5y + 1$
<i>c</i> 9	$y^{58} - 27y^{57} + \dots - 1316865y + 36864$