# Improving forecasts via subspace projections

**Rob J Hyndman** 



### **Outline**

- 1 Improving hierarchical forecasts
- 2 Improving univariate forecasts
- 3 Improving multivariate forecasts
- 4 Final comments

## **Outline**

- 1 Improving hierarchical forecasts
- 2 Improving univariate forecasts
- 3 Improving multivariate forecasts
- 4 Final comments

## Australian tourism regions



## Australian tourism regions



- Monthly data on visitor nights: 1998 – 2016
- 7 states
- 27 zones
- 76 regions





New South Wales

Northern Territory

Queensland

South Australia

Tasmania

Victoria

Western Australia











| State                  |        |
|------------------------|--------|
| Australian Capital Ter | ritory |
| New South Wales        |        |
| Northern Territory     |        |
| Queensland             |        |
| South Australia        |        |
| Tasmania               |        |
| . Victoria             |        |
| Western Australia      |        |

| Aggregation level | # series |
|-------------------|----------|
| National          | 1        |
| State             | 7        |
| Zone              | 27       |
| Region            | 76       |
| Total             | 111      |

- Need forecasts at all levels of aggregation.
- Compute base forecasts using univariate models. These will not add up.
- Adjust base forecasts to ensure they are "coherent" giving reconciled forecasts.

## **Notation**

Almost all collections of time series with linear constraints can be written as  $\mathbf{y}_t = \mathbf{S}\mathbf{b}_t$ 

$$Sb_t$$

- $\mathbf{v}_t$  = vector of all series at time t
- $y_{Total,t}$  = aggregate of all series at time t.
- $y_{X,t}$  = value of series X at time t.
- $\mathbf{b}_t$  = vector of most disaggregated series at time t
- **S** = "summing matrix" containing the linear constraints.









 $y_{\text{Total}} = y_A + y_B$ 



**Base forecasts** 

Let  $\hat{\mathbf{y}}_{t+h|t}$  be vector of *incoherent* initial *h*-step forecasts.

 $y_{\text{Total}} = y_A + y_B$ 



**Base forecasts** 

Let  $\hat{\mathbf{y}}_{t+h|t}$  be vector of incoherent initial h-step forecasts.

#### **Reconciled forecasts**

Let **M** be a projection matrix.  $\tilde{\mathbf{y}}_{t+h|t} = \mathbf{M}\hat{\mathbf{y}}_{t+h|t}$  "reconciles"  $\hat{\mathbf{y}}_{t+h|t}$ .



#### **Base forecasts**

Let  $\hat{\mathbf{y}}_{t+h|t}$  be vector of incoherent initial h-step forecasts.

#### **Reconciled forecasts**

Let  $\mathbf{M}$  be a projection matrix.  $\tilde{\mathbf{y}}_{t+h|t} = \mathbf{M}\hat{\mathbf{y}}_{t+h|t}$  "reconciles"  $\hat{\mathbf{y}}_{t+h|t}$ .

- **S** forms a basis set for s
- All projections are of the form  $\mathbf{M} = \mathbf{S}(\mathbf{S}'\Psi\mathbf{S})^{-1}\mathbf{S}'\Psi$  where  $\Psi$  is a positive definite matrix.
- How to choose the best  $\Psi$ ?

## Minimum trace reconciliation

Wickramasuriya et al (2019)

$$\tilde{\mathbf{y}}_{t+h|t} = \mathbf{M}\hat{\mathbf{y}}_{t+h|t}$$

Reconciled forecasts

**Base forecasts** 

## Minimum trace reconciliation

Wickramasuriya et al (2019)

$$\tilde{\mathbf{y}}_{t+h|t} = \mathbf{M}\hat{\mathbf{y}}_{t+h|t}$$

#### **Reconciled forecasts**

#### **Base forecasts**

Base forecast covariance:

$$\mathbf{W}_h = \text{Var}[\mathbf{y}_{T+h} - \hat{\mathbf{y}}_{t+h|t} \mid \mathbf{y}_1, \dots, \mathbf{y}_T]$$

■ Reconciled forecast covariance:

$$\mathbf{V}_h = \text{Var}[\mathbf{y}_{T+h} - \tilde{\mathbf{y}}_{t+h|t} \mid \mathbf{y}_1, \dots, \mathbf{y}_T]) = \mathbf{MW}_h \mathbf{M}'$$

## **Minimum trace reconciliation**

Wickramasuriya et al (2019)

$$\tilde{\mathbf{y}}_{t+h|t} = \mathbf{M}\hat{\mathbf{y}}_{t+h|t}$$

#### **Reconciled forecasts**

#### **Base forecasts**

Base forecast covariance:

$$\mathbf{W}_h = \text{Var}[\mathbf{y}_{T+h} - \hat{\mathbf{y}}_{t+h|t} \mid \mathbf{y}_1, \dots, \mathbf{y}_T]$$

Reconciled forecast covariance:

$$\mathbf{V}_h = \text{Var}[\mathbf{y}_{T+h} - \tilde{\mathbf{y}}_{t+h|t} \mid \mathbf{y}_1, \dots, \mathbf{y}_T]) = \mathbf{M} \mathbf{W}_h \mathbf{M}'$$

#### Minimum trace (MinT) reconciliation

If **M** is a projection, then trace of  $V_h$  is minimized when  $\Psi = W_h$   $\mathbf{M} = \mathbf{S}(\mathbf{S}'W_h^{-1}\mathbf{S})^{-1}\mathbf{S}'W_h^{-1}$ 

## **Linear projections**

$$\tilde{\boldsymbol{y}}_{t+h|t} = \boldsymbol{S}(\boldsymbol{S}'\boldsymbol{W}_h^{-1}\boldsymbol{S})^{-1}\boldsymbol{S}'\boldsymbol{W}_h^{-1}\hat{\boldsymbol{y}}_{t+h|t}$$

| Reconciliation method | $\mathbf{W}_h$         |
|-----------------------|------------------------|
| OLS                   | 1                      |
| WLS(var)              | diag( <b>W</b> 1)      |
| WLS(struct)           | diag( <b>S1</b> )      |
| MinT(sample)          | $\hat{m{W}}_{\sf sam}$ |
| MinT(shrink)          | <b>Ŵ</b> shr           |

- All approximate MinT by assuming  $\mathbf{W}_h = k_h \mathbf{W}_1$ .
- $\hat{\mathbf{W}}_{sam}$  is sample estimate of the residual covariance matrix
- $\hat{\mathbf{W}}_{shr}$  is shrinkage estimator  $\tau$ diag( $\hat{\mathbf{W}}_{sam}$ ) +  $(1 \tau)\hat{\mathbf{W}}_{sam}$  where  $\tau$  selected optimally.

#### tourism

```
# A tsibble: 17,328 x 5 [1M]
# Kev:
            state, zone, region [76]
  state zone region month visitors
  <chr> <chr> <chr> <chr> <mth>
                                  <dbl>
1 NSW
        ACT Canberra 1998 Jan 612.
2 NSW
        ACT Canberra 1998 Feb
                                  471.
3 NSW
        ACT
            Canberra 1998 Mar
                                  430.
4 NSW
        ACT
            Canberra 1998 Apr
                                  499.
5 NSW
        ACT
             Canberra 1998 Mav
                                  338.
6 NSW
        ACT
             Canberra 1998 Jun
                                  236.
7 NSW
        ACT
             Canberra 1998 Jul
                                  371.
8 NSW
        ACT
            Canberra 1998 Aug
                                  375.
9 NSW
        ACT
            Canberra 1998 Sep
                                  449.
10 NSW
        ACT
             Canberra 1998 Oct
                                  517.
# i 17.318 more rows
```

```
tourism_agg <- tourism |>
 aggregate_key(state / zone / region, visitors = sum(visitors))
# A tsibble: 25,308 x 5 [1M]
# Key: state, zone, region [111]
     month state zone
                                   region
                                              visitors
     <dbl>
1 1998 Jan <aggregated> <aggregated> <aggregated>
                                                 45151.
2 1998 Feb <aggregated> <aggregated> <aggregated>
                                                 17295.
3 1998 Mar <aggregated> <aggregated> <aggregated>
                                                 20725.
4 1998 Apr <aggregated> <aggregated> <aggregated>
                                                 25389.
5 1998 May <aggregated> <aggregated> <aggregated>
                                                 20330.
6 1998 Jun <aggregated> <aggregated> <aggregated>
                                                 18238.
7 1998 Jul <aggregated> <aggregated> <aggregated>
                                                 23005.
8 1998 Aug <aggregated> <aggregated> <aggregated>
                                                 23033.
9 1998 Sep <aggregated> <aggregated> <aggregated>
                                                 22483.
10 1998 Oct <aggregated> <aggregated> <aggregated>
                                                 24845.
# i 25,298 more rows
```

fit <- tourism\_agg |>

```
filter(vear(month) <= 2015) |>
 model(ets = ETS(visitors))
# A mable: 111 x 4
# Key: state, zone, region [111]
  state
          zone
                          region
                                                   ets
  <chr*> <chr*>
                          <chr*>
                                               <model>
 1 NSW
          ACT
                          Canberra
                                          <ETS(M,N,A)>
2 NSW
          ACT
                          <aggregated>
                                          <ETS(M,N,A)>
 3 NSW
         Metro NSW
                          Central Coast
                                          <ETS(M,N,A)>
 4 NSW
                                          <ETS(M,N,A)>
         Metro NSW
                          Sydney
 5 NSW
                          <aggregated>
                                          <ETS(M,N,A)>
         Metro NSW
 6 NSW
          North Coast NSW Hunter
                                          <ETS(M,N,M)>
 7 NSW
          North Coast NSW North Coast NSW <ETS(M,N,M)>
8 NSW
          North Coast NSW <aggregated>
                                          <ETS(M,N,M)>
 9 NSW
          North NSW
                          Blue Mountains
                                          <ETS(M,N,M)>
10 NSW
          North NSW
                          Central NSW
                                          <ETS(A.N.A)>
# i 101 more rows
```

```
fc <- fit |>
 reconcile(
   ols = min trace(ets, method = "ols"),
   mint_s = min_trace(ets, method = "mint_shrink"),
 ) |>
 forecast(h = "2 years")
# A fable: 7,992 x 7 [1M]
# Kev: state, zone, region, .model [333]
 state zone region .model month
 <chr*> <chr*> <chr*> <chr> <mth>
1 NSW ACT Canberra ets 2016 Jan
2 NSW ACT Canberra ets 2016 Feb
3 NSW ACT Canberra ets 2016 Mar
4 NSW ACT Canberra ets 2016 Apr
5 NSW ACT Canberra ets 2016 May
# i 7,987 more rows
# i 2 more variables: visitors <dist>, .mean <dbl>
```

```
fc |>
     filter(is_aggregated(state)) |>
     autoplot(filter(tourism_agg, year(month) > 2012), level = NULL)
    40000 -
                                                                                               .model
visitors
                                                                                                  mint s
    20000 -
                         2014 Jan
                                                         2016 Ian
                                                                                        2018 Ian
```

month

2014 Jan

5000 -

```
fc |>
  filter(state == "NSW" & is_aggregated(zone)) |>
  autoplot(filter(tourism_agg, year(month) > 2012), level = NULL)
 17500 -
 15000 -
 12500 -
                                                                                             .model
visitors
                                                                                                mint s
 10000 -
  7500 -
```

month

2016 Jan

2018 Ian

```
fc |>
  filter(region == "Melbourne") |>
  autoplot(filter(tourism_agg, year(month) > 2012), level = NULL)
 3000 -
 2500 -
                                                                                                .model
                                                                                                   mint s
 1500 -
 1000 -
                       2014 lan
                                                        2016 lan
                                                                                         2018 lan
                                               month
```

```
fc |>
  filter(region == "Snowy Mountains") |>
  autoplot(filter(tourism_agg, year(month) > 2012), level = NULL)
```



```
fc |>
  filter(region == "Barossa") |>
  autoplot(filter(tourism_agg, year(month) > 2012), level = NULL)
```



month

### **Performance evaluation**

RMSSE = 
$$\sqrt{\text{mean}(q_j^2)}$$

$$q_j^2 = \frac{e_j^2}{\frac{1}{T-m} \sum_{t=m+1}^{T} (y_t - y_{t-m})^2}$$

- $y_t$  = observation for period t
- $e_j$  = forecast error for forecast horizon j
- T = size of training set
- = m = 12

```
accuracy(fc, tourism_agg, measures = list(rmsse = RMSSE))
```

```
# A tibble: 333 x 7
  .model state
                              region
                                          .type rmsse level
                   zone
                                         <chr> <dbl> <fct>
  <chr> <chr*>
                   <chr*>
                              <chr*>
2 mint_s <aggregated> <aggregated> Test 0.896 National
3 ols <aggregated> <aggregated> <aggregated> Test 0.768 National
4 ets
        NSW
                   <aggregated> <aggregated> Test 0.921 State
5 mint_s NSW
                   <aggregated> <aggregated> Test 0.893 State
6 ols
        NSW
                   <aggregated> <aggregated> Test 0.881 State
7 ets
        NT
                   <aggregated> <aggregated> Test 1.24 State
8 mint_s NT
                   <aggregated> <aggregated> Test 1.22 State
9 ols
                   <aggregated> <aggregated> Test 1.18 State
        NT
10 ets
        OLD
                   <aggregated> <aggregated> Test 0.860 State
# i 323 more rows
```

```
accuracy(fc, tourism_agg, measures = list(rmsse = RMSSE)) |>
summarise(rmsse = sqrt(mean(rmsse^2)), .by = .model)
```

 Overall, both reconciliation methods are more accurate than the base ETS forecasts.

```
accuracy(fc, tourism_agg, measures = list(rmsse = RMSSE)) |>
summarise(rmsse = sqrt(mean(rmsse^2)), .by = c(.model, level)) |>
```

```
# A tibble: 12 x 3
  .model level
                rmsse
  <chr> <fct> <dbl>
1 ets National 0.755
2 ols National 0.768
3 mint s National 0.896
4 ols State 0.905
5 ets State 0.919
6 mint_s State 0.953
7 ols
        7one
                0.912
8 mint_s Zone
                0.914
9 ets
        Zone
                0.935
10 mint_s Region
                0.839
11 ols
       Region
                0.843
12 ets Region
                0.858
```

- Reconciliation is best for all levels except national.
- Improvements due to reconciliation are greater at lower levels.

## **Distance reducing property**

Let 
$$\|\mathbf{u}\|_{\Psi} = \mathbf{u}' \Psi \mathbf{u}$$
. Then

$$\|\mathbf{y}_{t+h} - \tilde{\mathbf{y}}_{t+h|t}\|_{\Psi} \leq \|\mathbf{y}_{t+h} - \hat{\mathbf{y}}_{t+h|t}\|_{\Psi}$$

- $\Psi$ -projection is guaranteed to improve forecast accuracy over base forecasts using this distance measure.
- Distance reduction holds for any realisation and any forecast.
- OLS reconciliation minimizes Euclidean distance.

$$\|\mathbf{y}_{t+h} - \tilde{\mathbf{y}}_{t+h|t}\|_{2}^{2} = \|\mathbf{M}(\mathbf{y}_{t+h} - \hat{\mathbf{y}}_{t+h|t})\|_{2}^{2}$$

$$\leq \|\mathbf{M}\|_{2}^{2} \|\mathbf{y}_{t+h} - \hat{\mathbf{y}}_{t+h|t}\|_{2}^{2}$$

$$= \sigma_{\max}^{2} \|\mathbf{y}_{t+h} - \hat{\mathbf{y}}_{t+h|t}\|_{2}^{2}$$

- lacksquare  $\sigma_{\max}$  is the largest eigenvalue of  $m{M}$
- $\sigma_{\text{max}} \geq 1$  as **M** is a projection matrix.
- Every projection reconciliation is better than base forecasts using Euclidean distance.

$$\begin{aligned} &\text{tr} \Big( \mathsf{E}[\boldsymbol{y}_{t+h} - \tilde{\boldsymbol{y}}_{t+h|t}^{\mathsf{MinT}}]'[\boldsymbol{y}_{t+h} - \tilde{\boldsymbol{y}}_{t+h|t}^{\mathsf{MinT}}] \Big) \\ &\leq &\text{tr} \Big( \mathsf{E}[\boldsymbol{y}_{t+h} - \tilde{\boldsymbol{y}}_{t+h|t}^{\mathsf{OLS}}]'[\boldsymbol{y}_{t+h} - \tilde{\boldsymbol{y}}_{t+h|t}^{\mathsf{OLS}}] \Big) \\ &\leq &\text{tr} \Big( \mathsf{E}[\boldsymbol{y}_{t+h} - \hat{\boldsymbol{y}}_{t+h|t}]'[\boldsymbol{y}_{t+h} - \hat{\boldsymbol{y}}_{t+h|t}] \Big) \end{aligned}$$

#### Using sums of variances:

- MinT reconciliation is better than OLS reconciliation
- OLS reconciliation is better than base forecasts

#### **Outline**

- 1 Improving hierarchical forecasts
- 2 Improving univariate forecasts
- 3 Improving multivariate forecasts
- 4 Final comments





- Forecast series at each available frequency.
- Optimally combine forecasts within the same year.



$$\mathbf{y}_{\tau} = \begin{bmatrix} X_{\tau} \\ X_{\tau,1}^{[1]} \\ X_{\tau,2}^{[1]} \\ X_{\tau,3}^{[1]} \end{bmatrix}$$

- Forecast series at each available frequency.
- Optimally combine forecasts within the same year.

au = year

2



$$\begin{bmatrix} \mathbf{X}_{\tau,2}^{\cdot} \\ \mathbf{X}_{\tau,3}^{[1]} \\ \mathbf{X}_{\tau,4}^{[1]} \end{bmatrix}$$

$$\tau = \text{year}$$

### Temporal reconciliation: monthly data



- Forecast series at each available frequency.
- Optimally combine forecasts within the same year.

### Temporal reconciliation: monthly data



- Forecast series at each available frequency.
- Optimally combine forecasts within the same year.

## Temporal reconciliation: monthly data

#### **Temporal reconciliation**

For a time series  $y_1, \ldots, y_T$ , observed at frequency m:

$$x_j^{[k]} = \sum_{t=(j-1)k+1}^{jk} y_t$$
 for  $j = 1, \dots, \lfloor T/k \rfloor$ 

- $k \in \mathcal{K} = \{k_1, \dots, k_p\}$  denote the p factors of m in ascending order, where  $k_1 = 1$  and  $k_p = m$
- $= x_j^{[1]} = y_t$
- A single unique hierarchy is only possible when there are no coprime pairs in  $\mathcal{K}$ .
- $M_k = m/k$  is seasonal period of aggregated series.

#### **Temporal reconciliation**

$$\mathbf{x}_{\tau} = \mathbf{S}\mathbf{x}_{\tau}^{[1]}, \qquad \mathbf{S} = \begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}$$

where

$$\mathbf{X}_{\tau} = \begin{bmatrix} \mathbf{X}_{\tau}^{[k_{p}]} \\ \mathbf{X}_{\tau}^{[k_{p-1}]} \\ \vdots \\ \mathbf{X}_{\tau}^{[k_{1}]} \end{bmatrix} \qquad \mathbf{X}_{\tau}^{[k]} = \begin{bmatrix} \mathbf{X}_{M_{k}(\tau-1)+1}^{[k]} \\ \mathbf{X}_{M_{k}(\tau-1)+2}^{[k]} \\ \vdots \\ \mathbf{X}_{M_{k}\tau}^{[k]} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} \mathbf{1}'_{m} \\ \mathbf{1}'_{m/k_{p-1}} \otimes \mathbf{1}'_{k_{p-1}} \\ \vdots \\ \mathbf{1}_{m/k_{2}} \otimes \mathbf{1}'_{k_{2}} \end{bmatrix}$$

au is time index for most aggregated series,

$$k \in \mathcal{K} = \{k_1, \dots, k_p\}, \quad k_1 = 1, \quad k_p = m, \quad \tau = 1, \dots, T/m.$$

## **Example: Accident & emergency services demand**

#### Weekly A&E demand data: 7 November 2010 to 7 June 2015.

```
Type 1 Departments — Major A&E
Type 2 Departments — Single Specialty
Type 3 Departments — Other A&E/Minor Injury Unit
Total Attendances
Type 1 Departments — Major A&E > 2 hours
Type 2 Departments — Single Specialty > 2 hours
Type 3 Departments — Other A&E/Minor Injury Unit > 2 hours
Total Attendances > 2 hours
Emergency Admissions via Type 1 A&E
Total Emergency Admissions via A&E
Other Emergency Admissions (i.e not via A&E)
Total Emergency Admissions
Number of patients spending > 2 hours from decision to admit to admission
```



## Example: Accident & emergency services demand

#### Total emergency admissions via A&E



## **Example: Accident & emergency services demand**

Test set: last 52 weeks

#### **MASE comparison** (ARIMA models)

| Aggregation Level | h    | Base | Reconciled | Change |
|-------------------|------|------|------------|--------|
| Annual            | 1    | 3.4  | 1.9        | -42.9% |
| Weekly            | 1-52 | 2.0  | 1.9        | -5.0%  |
| Weekly            | 13   | 2.3  | 1.9        | -16.2% |
| Weekly            | 4    | 1.9  | 1.5        | -18.6% |
| Weekly            | 1    | 1.6  | 1.3        | -17.2% |

### Temporal reconciliation: M3 monthly series

- Apply temporal reconciliation to all 1428 monthly series from M3 competition
- Forecast horizon *h* = 18 months
- ETS and ARIMA models
- Measure percentage difference in MASE to base forecasts
- Reconciliation methods:
  - WLS<sub>H</sub> (diagonal)
  - WLS<sub>V</sub> (diagonal with common variances for same frequency)
  - WLS<sub>s</sub> (diagonal/structural)

#### Temporal reconciliation: M3 monthly series

#### Improvement in MASE relative to base forecasts

|                   |    |       | ETS     |         |                  | ARIMA |         |         |       |
|-------------------|----|-------|---------|---------|------------------|-------|---------|---------|-------|
| Aggregation level | h  | BU    | $WLS_H$ | $WLS_V$ | WLS <sub>S</sub> | BU    | $WLS_H$ | $WLS_V$ | WLSs  |
| Annual            | 1  | -12.1 | -17.9   | -17.8   | -18.5            | -25.4 | -29.9   | -29.9   | -30.2 |
| Semi-annual       | 3  | 0.0   | -6.3    | -6.0    | -6.9             | -2.9  | -8.1    | -8.2    | -9.4  |
| Four-monthly      | 4  | 3.1   | -3.2    | -3.0    | -3.4             | -1.8  | -6.2    | -6.5    | -7.1  |
| Quarterly         | 6  | 3.2   | -2.8    | -2.7    | -3.4             | -2.6  | -6.9    | -7.4    | -8.1  |
| Bi-monthly        | 9  | 2.7   | -2.9    | -3.0    | -3.7             | -1.3  | -5.0    | -5.5    | -6.3  |
| Monthly           | 18 | 0.0   | -3.7    | -4.6    | -5.0             | 0.0   | -1.9    | -3.2    | -3.7  |
| Average           |    | -0.5  | -6.1    | -6.2    | -6.8             | -5.7  | -9.7    | -10.1   | -10.8 |

#### **Outline**

- 1 Improving hierarchical forecasts
- 2 Improving univariate forecasts
- 3 Improving multivariate forecasts
- 4 Final comments

## Forecast Linear Augmented Projection (FLAP)

- We want to forecast multivariate series  $y_t$ .
- Linear combinations of  $\mathbf{y}_t$  may have better signal-noise ratio
- Construct many linear combinations  $\mathbf{c}_t = \Phi \mathbf{y}_t$  (e.g., principal components or random combinations)
- Produce univariate forecasts of all series  $\hat{\mathbf{y}}_{t+h|t}$  and all linear combinations  $\hat{\mathbf{c}}_{t+h|t}$ .
- Reconcile forecasts so they are coherent  $(\tilde{c}_{t+h|t} = \Phi \tilde{y}_{t+h|t})$

### Forecast Linear Augmented Projection (FLAP)

- We want to forecast multivariate series  $y_t$ .
- Linear combinations of  $\mathbf{y}_t$  may have better signal-noise ratio
- Construct many linear combinations  $\mathbf{c}_t = \Phi \mathbf{y}_t$  (e.g., principal components or random combinations)
- Produce univariate forecasts of all series  $\hat{y}_{t+h|t}$  and all linear combinations  $\hat{c}_{t+h|t}$ .
- Reconcile forecasts so they are coherent  $(\tilde{c}_{t+h|t} = \Phi \tilde{y}_{t+h|t})$

$$\mathbf{z}_t = \begin{vmatrix} \mathbf{y}_t \\ \mathbf{c}_t \end{vmatrix}$$
  $\tilde{\mathbf{z}}_{t+h} = \mathbf{M}\hat{\mathbf{z}}_{t+h|t}$ 

#### **Forecast error variance reduction**

If we know the covariance matrix  $\mathbf{W}_h = \text{Var}(\mathbf{z}_{t+h} - \hat{\mathbf{z}}_{t+h|t})$ , then

- The forecast error variance is reduced:
  - ▶  $Var(\mathbf{y}_{t+h} \hat{\mathbf{y}}_{t+h|t}) Var(\mathbf{y}_{t+h} \tilde{\mathbf{y}}_{t+h|t})$  is positive semi-definite.
- The forecast error variance of each series monotonically decreases with increasing number of components.

#### **Forecast error variance reduction**

If we know the covariance matrix  $\mathbf{W}_h = \text{Var}(\mathbf{z}_{t+h} - \hat{\mathbf{z}}_{t+h|t})$ , then

- The forecast error variance is reduced:
  - ▶  $Var(\mathbf{y}_{t+h} \hat{\mathbf{y}}_{t+h|t}) Var(\mathbf{y}_{t+h} \tilde{\mathbf{y}}_{t+h|t})$  is positive semi-definite.
- The forecast error variance of each series monotonically decreases with increasing number of components.

In practice, we need to:

- **E**stimate  $\mathbf{W}_h$  (use the MinT shrinkage estimator).
- $\blacksquare$  Construct the components,  $\Phi$ .

#### **Construction of** $\Phi$

#### Principal component analysis (PCA)

Finding the weights matrix  $\Phi$  so that the resulting components maximise variance

#### **Simulation**

Generating values of  $\Phi$  from a random distribution and normalising them to unit vectors

- Normal distribution
- Uniform distribution
- Orthonormal matrix

- Monthly Australian tourism data set aggregated by region giving 77 series, from Jan 1998 to Dec 2019.
- Use expanding window time series cross-validation with T = 84 observations in first training set, and forecast horizons h = 1, 2, ..., 12.
- Fit univariate ETS models to each series.







46

#### FRED-MD

- Monthly data of macroeconomic variables (McCracken and Ng, 2016).
- Data from Jan 1959 Sep 2023. 777 observations on 122 series.
- Same cleaning process as per McCracken and Ng (2016).
- All series scaled to have mean 0 and variance 1.
- Expanding time series cross-validation with initial size of 25 years and forecast horizon 12 months.

#### **FRED-MD**



#### **Simulation**

- Data generating process: VAR(3) with 70 variables
- Sample size: *T* = 400
- Number of repeated samples: 220
- Base models:
  - automatic ARIMA (based on AICc)
  - DFM (structure chosen using BIC, different model for each horizon)

### **Simulation**



#### **Outline**

- 1 Improving hierarchical forecasts
- 2 Improving univariate forecasts
- 3 Improving multivariate forecasts
- 4 Final comments

#### **Software**

| Package              | Language | Cross-<br>sectional | Temporal     | Cross-<br>temporal | Probabilistic | Multivariate |
|----------------------|----------|---------------------|--------------|--------------------|---------------|--------------|
| hts                  | R        | <b>✓</b>            |              |                    |               |              |
| thief                | R        |                     | $\checkmark$ |                    |               |              |
| fable                | R        | $\checkmark$        |              |                    | <b>✓</b>      |              |
| FoReco               | R        | $\checkmark$        | $\checkmark$ | $\checkmark$       | <b>✓</b>      |              |
| flap                 | R        |                     |              |                    |               | <b>✓</b>     |
| pyhts                | Python   | $\checkmark$        | $\checkmark$ |                    |               |              |
| hierarchicalforecast | Python   | <b>✓</b>            |              |                    | <b>✓</b>      |              |

- hts, thief, and FoReco use ts objects
- fable uses tsibble objects
- flap uses matrices of base forecasts
- fable has plans to implement temporal and cross-temporal reconciliation

# Thanks!



## **More information**

robjhyndman.com/vienna2025