Regular Assignment 1 Clean

Sunday, September 29, 2024 7:51 PM

Matthew P. Horath JR

Claim: Prove the Number of edges in every simple Bipartite graph on n = 2 vertices is at Most [11/4]

Pf: Assume we have k vertices on I side of Bipatilian with N told vertical in our Groph G.

Stah's h'c5 Now to. to help with (The Maximum # or edges is when v E | U | connects to paringle a Cr to every v E W. This would be equal to R. (n-R) Now, Maximize this expression

d/dR (R.(n-k)) -> RN- R2 -> d/JR -> N-2R

Now, we set this equal to 0, and Fird the <u>Critical</u>

 \mathcal{N} -2R=0 \rightarrow \mathcal{N} =2R \rightarrow R= $\frac{n}{2}$

Sub this back into our original expression

 $k \cdot (N-k) \rightarrow \frac{n}{2} \cdot (N-\frac{n}{2}) \rightarrow \frac{n}{2} \cdot \frac{n}{2} \rightarrow \frac{n^2}{4}$

Now, why do we round down? - edge # Must be a whole number, so we must Round -> We Round down because it is "at Most." thus 11/4 > [1/4]

Is this Sharp? Well, lets show on even one odd N Wat test this upper bound. - Co-Pilot Hint even (n = 2m with the Graph G: The # of edges most be M.M = M2 Using the Constraint or $1^{12}/4J$, and with N=2M, which is good for our 6 graph above / Now, check odd > Co-Pilot Hint odd: 2 - (2m+1) verties in Graph G # of edges would be $M \cdot M + 1 \rightarrow M^2 + M$. Using the Constrain 11/41, with N= 2M+1, we get $\begin{bmatrix}
(2M+1)^{2}/2 & \rightarrow \\
\vdots & \downarrow & \downarrow \\
\downarrow \downarrow$ -> Now, this round down Means we can disp the Fraction 1/4, leaving up with M2+M, which Matches our above graph & V

Claim: Prove that if G is a simple graph on at least $N \ge 3$ vertices s.t. $\deg_{\mathcal{C}}(v) \ge \lceil \frac{n}{2} \rceil$ for every vertex $n \in V(G)$, then the Graph G - v is connected for every vertex v or G.

PF: Using Contradiction

A SSUME: G is Simple with $N \ge 3$ vertices, and $\deg_G(r) \ge \lceil \frac{n}{2} \rceil$ for every $r \in V(G)$ W.T.S. $\exists v \in V(G)$ s.t. G - v is \underline{Nof} corrected.

OUR G-V groph Most how 2 Components, C, C2 to be not connected, we also know we have -1 vertices, so lets say $\mathcal{H}-1$ total vertices. $\mathcal{H}-1=k+j$ vertices, and $\deg(v)\geq \lceil \frac{1}{2} \rceil$ in G WLOG: Assume $k\geq j$. $\Rightarrow k\geq \lceil \frac{1}{2} \rceil$ or featly helped to remind the about WLOG-Principle!

 $\mathcal{N}-1=\mathbb{R}+j \rightarrow j=(\mathcal{N}-1)-\mathbb{R} \rightarrow j=(\mathcal{N}-1)-[\mathcal{N}-2]$ Let $\mathbb{R}=[\mathcal{N}_2]$, then \mathbb{R} is at least half or GPT

More of $\mathcal{N}-1$ But, $j=(\mathcal{N}-1)-\mathbb{R}$ Means that j is strictly

half or nearly half of $\mathcal{N}-1$, so, $\mathbb{R}+j=\mathcal{N}-1$ Complet wor \mathbb{R} if \mathbb{R} is sufficiently

large \mathbb{R}

To it sharp?

Need to Test lower bond, likely with $n \in A$ odd + even with $n \in A$ deg $a \in A$.

Odd $a \in A$ vertices, our deg $a \in A$ $a \in A$.

So vertices and deg $a \to A$ graph

we are still constant $a \in A$.

Even $a \in A$ deg constraint $a \in A$.

Even $a \in A$ deg constraint $a \in A$ for $a \in A$.

If we cut out either of the $a \in A$ we have, we no larger have a consected graph, so the $a \in A$ does not work. So, $a \in A$ is Sharp.

(à	Claim: let S = 2 he my Integer Prove that every Simple
<u> </u>	Chin: let $S \ge 2$ be any Integer. Prove that every simple G (aph G , Sahlsfying $S_{min}(G) \ge S$ has a Cycle of length at least $S+1$.
	Assume the Path P1 = V., V2, V3, VR to be the longest Path in our Simple Graph G. Con you ansure about the regularis
	P ₁ = V, V ₂ U ₃ V ₄ V ₁₂ , V ₁₂
	All of the endpoints (V, Vk) Neighbors Must already reside on) The given path, otherwise, we could extend this path from the end point to its neighbor. This new Path would be called \$2, but it would have a length larger than \$1, so this cont be. So, any neighbors of V, must be on the fam \$P_1.
	V, V2 V3
	From $J_{MN}(G) \ge 0$, and $J \ge 2$, so V_{\perp} Must have at least 2 reighbors, so, there must be at least A cycle of length 2 .
	V, V ₂ V ₃
	But, we know V1 Must have of neighbors from Constraints, and it is simple 6 (No Parallel edges) so, V, Must have an edge At least of vertices away.
	Thus, At worst, If the largest path away was I vertices, it would be a cycle of 1+1 length

Is it Sharp? Show this lower bound or length, at least S+1 For 15th length.

Well, lets start with some Steatic Cores For S.

S=2, Min degree = 2

S=3A Gala length = 3=5+1

A Cycle length is 4= S+1

5:4

 \rightarrow A cycle of length 5 = J+1

of the sped!

Now, i'n General, and Complete Graph Ky will have a Cycle OF at least length S+I

(4) Claim: Prove that in every converted graph, every town Aths of Maximum length have a common vertex.

PF: Contradiction

Assure > Connected graph, so there is a path between any

Assume , we have connected graph, and two paths of Magazinum length Q: Contradiction , They do not share a common Vertex

La Pf: Two Paths, longest, P1, P2

Fis a connected graph, so every vertex in P1 most have a Path to every vertex in P2, and vike versa.

So, P1 and P2 Must be Corrected via some edge (From Assumptions)
P1...

However, now, you have a Path that is the length of P2 and P2 Must Not have been the Mariaum length paths &