Artificial Intelligence: Optimization in Deep Learning

Some Slides from: Goodfellow et al., Deep Learning

Today

- YOU ARE HERE!
- 1. Feedforward in Deep Learning
- 2. Backpropagation in Deep Learning
 - Gradient Descent
 - Stochastic Gradient Decent (SGD)
 - Momentum SGD
 - RMSProp
 - ADAM
- 3. Scheduled Learning
- 4. Hyper-Parameter (HP) Tuning

History of AI

- Number of images for training
- M Number of Class Images
- Confidence prediction score
- Learnable parameter
- Input Image

$$y^{GT}$$
 - Ground-truth label

$$y$$
 - Prediction label $y = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_M \end{bmatrix}$, $e.g.$ $y_{cat} = \begin{bmatrix} 0.11 \\ 0.78 \\ 0.06 \\ \vdots \\ 0.23 \end{bmatrix}$, $y_{cat}^{GT} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

The output prediction label is generated by a function 'f' applied on input image 'x' processed by learnable parameters

$$y = f(x; \theta)$$

• For each input image x_i there is a corresponding ground-truth label y^{GT} which should be matched with output prediction label y

$$\epsilon = L(y, y^{GT})$$
 $L: Loss-Function$
Ideally Speaking: $\epsilon \to 0$

Calculate the gradient of loss prediction in terms of prediction label

$$\frac{\partial \epsilon}{\partial y} = \frac{\partial L(y, y^{GT})}{\partial y}$$

Calculate the gradient of loss prediction in terms of prediction label

$$\frac{\partial \epsilon}{\partial y} = \frac{\partial L(y, y^{GT})}{\partial y}$$

Back-propagate the gradient of loss-function into inner layers to calculate
the gradient of loss-function with respect to the learnable parameter of
that particular layer

 $\frac{\partial \epsilon}{\partial F^L} = \frac{\partial \epsilon}{\partial y} \cdot \frac{\partial y}{\partial F^L}$

• Back-propagate the gradient of loss-function into inner layers to calculate the gradient of loss-function with respect to the learnable parameter of that particular layer a_{ϵ} a_{ϵ} a_{ϵ}

 $\frac{\partial \epsilon}{\partial F^L} = \frac{\partial \epsilon}{\partial y} \cdot \frac{\partial y}{\partial F^L}$

We can now update parameter weights using gradient-descent method

- Updating on a single image sample introduces noisy gradient direction and we can easily get stuck at local minima
- Select a mini-batch samples (from randomly shuffled data) and average the gradients for updating
- · aka we update not for every image but batch-of-images

$$\{x_1, x_2, \cdots, x_B\} \qquad \longleftrightarrow \qquad \{\frac{\partial \epsilon}{\partial F_1^l}, \frac{\partial \epsilon}{\partial F_2^l}, \cdots, \frac{\partial \epsilon}{\partial F_B^l}\}$$

· Superimpose all batch gradients to step into average direction

Stochastic Gradient Descent (SGD)

Algorithm 8.1 Stochastic gradient descent (SGD) update

Require: Learning rate schedule $\rho_1 \rho_2, \ldots$

Require: Initial parameter θ

$$k \leftarrow 1$$

while stopping criterion not met do

Sample a minibatch of \boldsymbol{B} examples from the training set $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(\boldsymbol{B})}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{g}} \leftarrow \frac{1}{\boldsymbol{B}} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\rho}_k \hat{\boldsymbol{g}}$

$$k \leftarrow k + 1$$

end while

SGD with Momentum

- Learning with SGD can be sometimes slow
- Momentum approach we can be used to accelerate learning in the face of exploring local minima of loss function
 - High curvature
 - Small but consistent gradient
 - Noisy gradient
- Momentum approach accumulates an exponentially decaying moving average of past gradients and continues to move in their direction

The contour lines depicts a quadratic loss function with poor Hessian Matrix. The red path cutting across the contour indicates the path followed by momentum learning rule to minimize the loss function

SGD with Momentum

How to formulate it?

- Introduce a hyper-parameter (i.e. momentum) $\alpha \in [0,1)$
- α determines how quickly the contributions of previous gradients exponentially decay
- · The update rule is given by

$$m{v} \leftarrow lpha m{v} - m{
ho}
abla_{m{ heta}} \left(\frac{1}{m{B}} \sum_{i=1}^{m{B}} L(m{f}(m{x}^{(i)}; m{ heta}), m{y}^{(i)}) \right)$$

 $m{ heta} \leftarrow m{ heta} + m{v}.$

Momentum-SGD (MSGD)

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ρ , momentum parameter α

Require: Initial parameter $\boldsymbol{\theta}$, initial velocity \boldsymbol{v}

while stopping criterion not met do

Sample a minibatch of \boldsymbol{B} examples from the training set $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(\boldsymbol{B})}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.

Compute gradient estimate: $\boldsymbol{g} \leftarrow \frac{1}{\boldsymbol{B}} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \boldsymbol{\rho} \boldsymbol{g}$.

Apply update: $\theta \leftarrow \theta + v$.

end while

Today

- 1. Feedforward in Deep Learning
- 2. Backpropagation in Deep Learning
 - Gradient Descent
 - Stochastic Gradient Decent (SGD)
 - Momentum SGD
 - RMSProp
 - ADAM
- 3. Scheduled Learning
- 4. Hyper-Parameter (HP) Tuning

Where to read from rest of topics?

Please refer to Reading Material as well as Class Discussions for the rest of topics.