Position vectors and Force directed along a line

Text: 2.7-2.8

Content:

- Position vectors and displacement vectors
- Vector directed along a line
- Solving systems of linear equations
- Practice: W2-4

POSITION VECTOR

Notations for the coordinates of a point: P(x, y, z)

For example: A(1, -1, 4), B(0, 5, 3.5)

A position vector is a vector that goes from the coordinate origin $oldsymbol{0}$ to a point.

DISPLACEMENT VECTOR

- We will denote as \vec{r}_{AB} a vector that goes from point A to point B (= the "displacement vector")
- Once again: $\vec{r}_{AB} \equiv \vec{r}_{A \text{ to } B}$ (a vector from B to A has the opposite sign: $\vec{r}_{BA} = -\vec{r}_{AB}$!!)

Q: Given two points A and B, the vector \vec{r}_{AB} from A to B is given by the expression:

A.
$$\vec{r}_{AB} = \vec{r}_A + \vec{r}_B$$

B.
$$\vec{r}_{AB} = \vec{r}_A - \vec{r}_B$$

C.
$$\vec{r}_{AB} = \vec{r}_B - \vec{r}_A$$

The origin isn't defined, so we can't tell.

DISPLACEMENT VECTOR

- Choose arbitrary coordinate origin O.
- Draw a vector from A to B displacement vector \vec{r}_{AB}

• We see that
$$\vec{r}_A + \vec{r}_{AB} = \vec{r}_B$$
.

• Hence,
$$\vec{r}_{AB} = \vec{r}_B - \vec{r}_A$$

- This result does not depend on the choice of the point O
- Don't accidentally reverse A and B when working quickly!

• If
$$A = A(x_A, y_A, z_A)$$
 and $B = B(x_B, y_B, z_B)$, then:

$$\vec{r}_{AB} = \vec{i} (x_B - x_A) + \vec{j} (y_B - y_A) + \vec{k} (z_B - z_A)$$

$$+ i\rho (B) - + \alpha \vec{i} (A)$$

FORCE VECTOR DIRECTED ALONG A LINE

- Will often (cables, struts...) encounter situation where force vector direction is defined by two points, $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$, lying on the line of action.
- The force vector \vec{F} has the same direction as the displacement vector \vec{r}_{AB} passing through these two points.

• If \vec{u} is a unit vector that defines this direction, we have:

$$\vec{F} = F \vec{u}$$
 and $\vec{r}_{AB} = r_{AB} \vec{u}$

• Hence,
$$\vec{F} = F \; rac{\vec{r}_{AB}}{r_{AB}}$$

$$\vec{r}_{AB} = \vec{r}_B - \vec{r}_A = \vec{i} (x_B - x_A) + \vec{j} (y_B - y_A) + \vec{k} (z_B - z_A),$$

$$\vec{r}_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

Practice: A force with magnitude F acts along a line defined by points $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$.

Write the expression for \vec{F} in Cartesian components.

$$F = F \frac{7}{48}$$

$$\vec{\Gamma}_{AB} = (x_B - x_A) \vec{i} + (y_B - y_A) \vec{j} + (z_B - z_A) \vec{k}$$

$$= \Gamma_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

$$\vec{F} = \frac{F}{GB} \left\{ (x_B - x_A)\vec{i} + (y_B - y_A)\vec{j} + (z_B - z_A)\vec{i} \right\}$$

$$\vec{F} = F \; \frac{\dot{r}_{AB}}{r_{AB}}$$

Practice: A force with magnitude F acts along a line defined by points $A(x_A, y_A, z_A)$ and $B(x_B, y_B, z_B)$. Write the expression for \vec{F} in Cartesian components.

Solution: We are going to make use of
$$\vec{F} = F \frac{\vec{r}_{AB}}{r_{AB}}$$
 where $\vec{r}_{AB} = \vec{r}_B - \vec{r}_A$

• Step 1: Write down the coordinates of A and B:
$$A = (x_A, y_A, z_A)$$
 $B = (x_B, y_B, z_B)$

• Step 2: Compute
$$\vec{r}_{AB}$$
 and $r_{AB} = |\vec{r}_{AB}|$:
$$\vec{r}_{AB} = \vec{i} (x_B - x_A) + \vec{j} (y_B - y_A) + \vec{k} (z_B - z_A)$$
$$r_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

• Step 3: You are done!

$$\vec{F} = F \ \vec{u}_{AB} = F \ \frac{\vec{r}_{AB}}{r_{AB}} = F \ \frac{\vec{i} \ (x_B - x_A) + \vec{j} \ (y_B - y_A) + \vec{k} (z_B - z_A)}{\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}}$$

Calculational trick to use with vectors of unknown magnitude but known direction - 1

• Assume that you want to find the magnitude F of a force \vec{F} that passes through two points, (x_A, y_A, z_A) and (x_B, y_B, z_B) , on its line of action:

$$\vec{F} = F \frac{\vec{r}_{AB}}{r_{AB}} \qquad \vec{r}_{AB} = \vec{i} (x_B - x_A) + \vec{j} (y_B - y_A) + \vec{k} (z_B - z_A)$$
$$r_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

• The components of the vector \vec{r}_{AB} are usually some "nice" whole numbers, but the components of the unit vector, \vec{r}_{AB}/r_{AB} , are usually irrational numbers

- Note that if you write the vector \vec{F} as $\vec{F} = F \frac{\vec{r}_{AB}}{r_{AB}}$, you will have an unknown F multiplied by a set of irrational numbers inconvenient, and higher chances to make a mistake!
- But: There is a trick which can make your life easier.

Calculational trick to use with vectors of unknown magnitude but known direction - 1

• Assume that you want to find the magnitude F of a force \vec{F} that passes through two points, (x_A, y_A, z_A) and (x_B, y_B, z_B) , on its line of action:

$$\vec{F} = F \frac{\vec{r}_{AB}}{r_{AB}}$$

$$\vec{r}_{AB} = \vec{i} (x_B - x_A) + \vec{j} (y_B - y_A) + \vec{k} (z_B - z_A)$$

$$r_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

• The components of the vector
$$\vec{r}_{AB}$$
 are usually some "nice" whole numbers, but the components of the unit vector, \vec{r}_{AB}/r_{AB} , are usually irrational numbers

• The idea is to introduce a new scalar unknown, $X = F/r_{AB}$, and express the vector \vec{F} as:

$$\vec{F} = \left(\frac{F}{r_{AB}}\right) \vec{r}_{AB} = (X) \vec{r}_{AB}$$

- Now \vec{F} is expressed as an unknown, X, multiplied by a set of whole numbers much better! \odot
- The (small) price to pay is that, after you find X, you need also to find F as $F = X r_{AB}$.

W2-4. The magnitude of the resultant force is 1300 N and acts along the axis of the strut from A towards O. Determine the magnitude of each of the three forces acting on the strut. Set x=0 and z=5.5 m.

W2-4. The magnitude of the resultant force is 1300 N and acts along the axis of the strut from A towards O. Determine the magnitude of each of the three forces acting on the strut. Set x=0 and z=5.5 m.

W2-4. The magnitude of the resultant force is 1300 N and acts along the axis of the strut from A towards O. Determine the magnitude of each of the three forces acting on the strut. Set x=0 and z=5.5 m.

• The coordinates of the relevant points:

A
$$(0, 6, 2.5)$$
B $(-3, 0, 4.5)$
C $(2, 0, 4)$
D $(3, 0, -5.5)$

• Compute \vec{r}_{AB} , etc.

$$\vec{F}_{B} \uparrow \uparrow \vec{r}_{AB} = (\vec{-3})\vec{i} + (\vec{-6})\vec{j} + (\vec{2})\vec{k}$$

$$\vec{F}_{C} \uparrow \uparrow \vec{r}_{AC} = (\vec{2})\vec{i} + (\vec{-6})\vec{j} + (\vec{1.5})\vec{k}$$

$$\vec{F}_{D} \uparrow \uparrow \vec{r}_{AD} = (\vec{0})\vec{i} + (\vec{-6})\vec{j} + (\vec{-8})\vec{k}$$

W2-4. The magnitude of the resultant force is 1300 N and acts along the axis of the strut from A towards O. Determine the magnitude of each of the three forces acting on the strut. Set x=0 and z=5.5 m.

• Compute r_{AB} , etc.

$$\vec{r}_{AB} = (-3)\vec{i} + (-6)\vec{j} + (2)\vec{k}$$

$$\vec{r}_{AB} = (-3)^2 + (-6)^2 + (2)^2 = 7$$

$$\vec{r}_{AC} = (2)\vec{i} + (-6)\vec{j} + (1.5)\vec{k}$$

$$\vec{r}_{AC} = (2)\vec{i} + (-6)\vec{j} + (-6)\vec{j} + (-8)\vec{k}$$

$$\vec{r}_{AD} = (0)\vec{i} + (-6)\vec{j} + (-8)\vec{k}$$

$$\vec{r}_{AD} = (0)\vec{i} + (-6)\vec{j} + (-8)\vec{k}$$

$$\vec{r}_{AD} = (0)\vec{i} + (-6)\vec{j} + (-8)\vec{k}$$

Compute forces & introduce B, C, D:

$$\vec{F}_{B} = \left(\frac{F_{B}}{r_{AB}}\right) \vec{r}_{AB} = \mathbf{B} \left((-3)\vec{i} + (-6)\vec{j} + (2)\vec{k} \right)$$

$$\vec{F}_{C} = \left(\frac{F_{C}}{r_{AC}}\right) \vec{r}_{AC} = \mathbf{C} \left((2)\vec{i} + (-6)\vec{j} + (1.5)\vec{k} \right)$$

$$\vec{F}_{D} = \left(\frac{F_{D}}{r_{AD}}\right) \vec{r}_{AD} = \mathbf{D} \left((0)\vec{i} + (-6)\vec{j} + (-8)\vec{k} \right)$$

our forces in Cartesian components!

FB + Fc + F3 = FR

W2-4. The magnitude of the resultant force is 1300 N and acts along the axis of the strut from A towards O. Determine the magnitude of each of the three forces acting on the strut. Set x=0 and z=5.5 m.

- We know that the resultant of these three forces acts along AO and $F_R=1300$ N. Let's write \vec{F}_R in Cartesian components.
- A(0, 6, 2.5) & O(0,0,0)

$$\vec{\Gamma}_{A0} = \vec{i} (0-0) + \vec{j} (0-6) + \vec{k} (0-2.5)$$

•
$$\vec{r}_{A0} = \vec{i} (0) + \vec{j} (-6) + \vec{k} (-2.5)$$

•
$$\Gamma_{A0} = \sqrt{(0)^2 + (-6)^2 + (-25)^2} = 6.5$$

$$\vec{F}_{R} = \frac{F_{R}}{r_{AO}} \vec{r}_{AO} = \left(\frac{1300}{6.5}\right) \left[(0)\vec{i} + (-6)\vec{j} + (-2.5)\vec{k}\right]$$

$$= 0(i) - 1200\vec{j} - 500\vec{k}$$

$$= (0)\vec{i} + (-1200)\vec{j} + (-500)\vec{k} \longrightarrow \vec{F}_{R} \text{ in Cartesian}$$
components!

W2-4. The magnitude of the resultant force is 1300 N and acts along the axis of the strut from A towards O. Determine the magnitude of each of the three forces acting on the strut. Set x=0 and z=5.5 m.

• Almost there! What remains: Find the force magnitudes F_B , F_C , F_D .

$$\vec{F}_{B} = B \left[(-3)\vec{i} + (-6)\vec{j} + (2)\vec{k} \right]$$

$$\vec{F}_{C} = C \left[(2)\vec{i} + (-6)\vec{j} + (1.5)\vec{k} \right]$$

$$\vec{F}_{D} = D \left[(0)\vec{i} + (-6)\vec{j} + (-8)\vec{k} \right]$$

$$\vec{F}_{R} = 200 \left[(0)\vec{i} + (-6)\vec{j} + (-2.5)\vec{k} \right]$$

$$X: -3B + 2C + 0D = 0$$
 $Y: -6B - 6C - 6D = -1200$
 $Y: -6B - 6C - 6D = -120$

Comment: Solving systems of linear equations

- General rule: the number of equations should be equal to the number of unknowns.
- Write the equations in the standard form, e.g.:

$$\begin{array}{rcl}
-3x + 2y & = 0 \\
-6x - 6y - 6z & = -1200 \\
2x + 1.5y - 8z & = -500
\end{array}$$

• Here x, y, z are **variables**, everything else are coefficients. Collect them in a matrix, with the first column being x-coefficients, etc., and the last column being the right-hand side coefficients:

$$M = \begin{bmatrix} -3 & 2 & 0 & 0 \\ -6 & -6 & -6 & -1200 \\ 2 & 1.5 & -8 & -500 \end{bmatrix}$$

Each **row** of this matrix corresponds to one equation; row elements must be entered consistently (i.e. *x* coefficients in first column, *y* coefficients in second etc.); right-hand side of the equation is always the last element of the row.

Reduced Row Echelon Form method produces a series of linear operations to transform this matrix to another form:

$$M = \begin{bmatrix} 1 & 0 & 0 & d_1 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 1 & d_3 \end{bmatrix}$$
 from which you will get: $x = d_1$, $y = d_2$, $z = d_3$. In our numerical example, $d_1 = x = 45.36$, $d_2 = y = 68.04$, $d_3 = 86.60$

- Worked example of solving a 3x3 system using rref on Canvas: "Additional information" →TI-3x3-solve-example.pdf"
- Alternative (not for the exams!!!): Use numerical solver of a system of linear equations