Traceability in Digital Forensic Investigation Process

Siti Rahayu Selamat, Robiah Yusof, Shahrin Sahib, Nor Hafeizah Hassan,
Mohd Faizal Abdollah, Zaheera Zainal Abidin
Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka,
Durian Tunggal, Melaka, Malaysia
sitirahayu@utem.edu.my, robiah@utem.edu.my, shahrinsahib@utem.edu.my, nor_hafeizah@utem.edu.my,
faizalabdollah@utem.edu.my, zaheera@utem.edu.my

Abstract— Digital forensic is part of forensic science that implicitly covers crime that is related to computer technology. In a cyber crime, digital evidence investigation requires a special procedures and techniques in order to be used and be accepted in court of law. Generally, the goals of these special processes are to identify the origin of the incident reported as well as maintaining the chain of custody so that the legal process can take its option. Subsequently, the traceability process has become a key or an important element of the digital investigation process, as it is capable to map the events of an incident from difference sources in obtaining evidence of an incident to be used for other auxiliary investigation aspects. Hence, this paper introduces a trace map model to illustrate the relationship in the digital forensic investigation process by adapting and integrating the traceability features. The objective of this integration is to provide the capability of trace and map the evidence to the sources and shows the link between the evidence, the entities and the sources involved in the process, particularly in the collection phase of digital forensic investigation framework. Additionally, the proposed model is expected to help the forensic investigator in obtaining accurate and complete evidence that can be further used in a court of law.

Keywords— digital forensic investigation, traceability, trace map model, evidence, source of evidence

I. INTRODUCTION

Over the last decade, the number of crimes that involves computers has grown and it needs products that can assist law enforcement in using computer-based evidence to determine the who, what, where, when, and how for crimes [1]. As a result, computer and network forensics have evolved to assure proper presentation of computer crime evidentiary data into court. The main purpose of forensic is to identify the origin while maintaining the chain of custody in order to enable the legal process to take its due course [2]. If any computer related incident happens, fundamental questions to answer are when and where the incident occurred and, from which device, system and geographic location did the incident originate. Hence, there is a need in the forensic areas on investigation process in order to gather the evidence to be used on identifying the offender. A digital investigation is a process of answering questions about digital states and events. In contrast, a digital forensics investigation is a special case of digital investigation where the procedures and techniques used will allow the results to be entered into a court of law [3].

The purpose of a forensic investigation can be established by either identifying the offender of a case, or establishing an evidence to build a case against the offender [4]. As both situations are common in the law enforcement perspective, the ability to trace the source to an evidence or vice versa is essential [5]. Additionally, another limitation is the acceptability of evidence that differs in each of these situations. There was also an issue of origin identification and cross referencing in investigation process [6] [7]. Hence, the traceability information is important to avoid the mislaid of decision and valuable information in collecting and analyzing during the investigation process.

Due to this fact, the goal of this research is to adapt and integrate traceability in the digital forensic investigation process that represents the traceability information in the stage of conceptual and component composition. The purpose of this integration is to help the forensic investigator obtain accurate and complete evidence of the incident especially on evidence collection process. In this paper, the proposed model will be constructed based on the malware intrusion scenario.

The rest of the paper is organised as follows. The next section explains the related work on traceability models. Section III further describes the use of traceability in digital forensic investigation. A trace map model is proposed in Section IV and a conclusion, together with future works is found in the last section.

II. RELATED WORK

A. Overview of Traceability

Traceability is the means to identify and follow real or imaginary objects through a process chain [8]. It gives the opportunity to back-track a chain of events, or to predict process outcomes given in the origin of an object. Traceability can be used in different areas. For example, in the middle of 1990's traceability was a hot subject when different cases of food-carried diseases were exposed. Even though traceability can also be defined in many ways, the meaning is to be able to trace or track and get information. ISO 8402:1995 defines traceability as the ability to trace the history, application or location of an entity, by means of recorded identifications.

According to [9] the definition of traceability can be broad, because in most of the time the processes are very complex. Traceability is a tool to achieve different objective and can never be completed. On the other hand, [10] defined traceability as the ability to map events in cyberspace, particularly on the Internet, back to real-world instigators, often with a view to holding them accountable for their actions. In networks, traceability refers to how difficult it is to establish the source and destination of communications on computers and communication networks, such as the Internet

[11]. Therefore, based on the definition reviewed in this research, this paper summarized the definition of traceability as the ability to trace and map the events of an incident from difference sources in order to obtain evidence of an incident to be used for further process of investigation.

The traceability approach is the approach used for tracing the requirement. According to [12], tracing the requirement can be performed in several ways based on the direction of tracing activities as depicted in Fig. 1.

Fig. 1 Basic Traceability Approach

In their paper, [13] define forward traceability as the ability to trace a requirement to components such as a design or implementation whereas backward traceability is the ability to trace requirement to its sources such as a person, institution, and argument. The basic concept of these traceability approaches are illustrated in Fig. 2.

Fig. 2 Concept of Backward and Forward Traceability

Forward traceability approach is common in software requirements perspective. It is used to investigate the impact of the requirement's change [12] [14]. In this approach, all related test procedures used to ensure the test procedures comply with the changed requirement and the components built to meet the requirement can be obtained. The advantage of this forward traceability is the ability to analyze the changes on the components.

Backward traceability approach is used when the stakeholder is required to understand the changes happen such as when, what and how the requirement change by investigating the information used to describe the changed requirement. In this approach, several useful information that point toward to the source will be obtained such as who the person interested in the requirement is, what documents from which requirement was extracted are, which departments the requirement is related, and when the changes to the requirement is done.

However, [14] [15] [16] claimed that in order to have a well managed requirements, traceability can be established from the source requirements to its lower level requirements and from the lower level requirements back to their source. The claim reveals that it is necessary to trace a requirement to the artifacts that implement it as well as tracing from an artifact to the requirement that the artifact itself implements. This circumstances create an idea on tracing in both a forward and backward or called as bidirectional approach as discussed in [17]. Hence in order to provide an accurate and complete evidence to prosecute the offender, this research will use the traceability approach discussed in [17]. To demonstrate the approach, knowledge of organizing the procedures, techniques and tools are needed. Identified as a

traceability model, this knowledge is discussed in the next sub-section.

B. Traceability Model

A traceability model is a central component of a traceability environment around where the tracing procedures, techniques or methods, and tools are organized. It is important to automate any part of the tracing process [12]. An automation will reduce the time consume during the process. A traceability model not only defines what entities and traces are, and which traces should be captured, but also represents traceability information in the stage of conceptual design, component composition, deployment and runtime [18] [19]. However, based on [19] [18] [12], the traceability model is used to represent the traceability information which demonstrate the relationship between the traces, entities and sources involved in a process or system.

In a traceability model, the conceptual explanation is covered by three features, namely the definition, the production and the extraction of traces [12] as shown in Fig. 3. The definition feature is concerned with the specification of the traces and traceable objects. It is within this feature that traceability model should define its traces, attributes and represented method. The definition of traces and traceable objects should promote a uniform understanding in order to avoid any errors caused by different interpretation during the tracing activities.

Fig. 3 Features of Traceability Model

The production feature is concerned with the capture of traces that is usually by the means of an explicit registration of the objects and their relationships. The trace production deals with the actual occurrence of traces that roughly corresponds to the pragmatics of a traceability model in order to get a constructive traceability model. The production of traces encompasses their perception, registration and maintenance. Besides, trace production is an important feature of traceability models because it can trace what component is available and it can interfere directly with the activities of the whole process.

The extraction feature of the traceability model is concerned with the actual process of tracing such as the retrieval of registered traces. A traceability model should provide diverse and flexible ways to retrieve (extract) the information registered in it as discussed in [20]. Among the trace extraction mechanisms define in [20] are: (a) selective tracing, (b) interactive tracing and (c) non-guided tracing. Selective tracing restricts the tracing to certain selected patterns of objects and relations. Interactive tracing allows interactive browsing over a set of related objects with each step being guided by the possible relationship. Non-guided tracing permits a user to go from one object to another and inspects contents as desired.

Consequently, a traceability model should provide a representation for traces and trace attributes as discussed in [18] in which the trace model provide two significants guidelines; relationship guideline and tracing guideline. The former guideline describes the relationship guidelines that

describes what traces should be established and the later guideline describes how traces determined by the relationship guidelines should be documented. Both guidelines establish the structures containing the elements and the relations used in tracing, specifying their type as well as the constraints under which elements of the model can be related.

Hence, this research will employ all three features of the traceability model in our proposed trace map model for forensic in order to acquire accurate and complete evidence traces to help the forensic investigator on investigation process especially on collecting the evidence and the evidence sources of an incident.

C. Digital Forensic Investigation Process

In the digital forensics investigation practices, there are over hundreds of digital forensics investigation procedures developed all over the world. Each organization tends to develop its own procedures and some focused on the technology aspects such as data acquisition or data analysis [21]. Most of these procedures were developed for tackling different technology used in the inspected device. As a result, when underlying technology of the target device changes, new procedures have to be developed.

A research done in [22] introduced a mapping process which occurs inside DFIF. The mapping is formulated by grouping and merging the same activities or processes in five phases that provide the same output into an appropriate phase. From the analysis, most of the frameworks consist of the critical phases which are Phase 2 - Collection and Preservation, Phase 3 - Examination and Analysis, and Phase 4 - Presentation and Reporting except Phase 1 and Phase 5. Even though, Phase 1 and Phase 5 are not included in some of the framework, the study [23] [24] [25] [26] [27] [28] [29] [30] [31] indicate that both phases are important to ensure the completeness of the investigation. Phases 1 is to ensure the investigation process can start and run in the proper procedure, and protect the chain of custody of the evidence. While by eliminating Phase 5, it will lead to the possibility of the incomplete investigation and no improvement in investigation procedures or policies. Therefore, a good framework should consist of all important phases; Preparation Phase, Collection and Preservation Phase, Examination and Analysis Phase, Presentation and Reporting, and Disseminating the case.

[22] findings also show that the existing frameworks mentioned in each of the proposed frameworks builds on the experience of the previous; and some of the frameworks have similar approaches and some of the frameworks focus on different areas of the investigation. However, all of the frameworks in the output mapping have the same output even though the activity is slightly difference on the term used and the order of the steps. On the other hand, all of these frameworks identified in the output mapping show that each framework has their own strength; however until nowadays there is no single framework that can be used as a general guideline for investigating all incident cases.

Therefore, in order to obtain the evidence and for it to be accepted in the court of law, digital forensic investigation must be successfully performed without tampering the evidence. Additionally, the evidence chain of custody should be presented to prove the evidence is legitimate. Hence, the evidence traceability identification of the origin of the crime

scene or the location of the incident or crime originated is one of the important elements during the digital forensic investigation process and become the first challenge in the investigation as mentioned in [7] [32] [33].

III. TRACEABILITY IN DIGITAL FORENSIC INVESTIGATION PROCESS

In digital forensic investigation process, tracing is described as a process of finding or discovering the origin or cause of certain scenario. The tracing activities are able to discover the traces left in digital devices. In the computer crime perspective, trace can be found in any digital devices. These traces consist of activities such as login and logout of the system, visit of pages, accesses documents, create items and affiliation groups found in records of data. These traces data are analysed by identifying their relationship among the attributes such as port, action, protocol, source IP address and destination IP address where this consistent relationship will produce trace pattern of the incident or crime. This trace pattern can be further used on assisting the investigator during the investigation process.

A. Trace Pattern

Trace pattern is essential in assisting the investigators tracing out the evidence found at crime scenes [34]. In this research, we affirm the definition of trace as any digital evidence in an incident. Meanwhile, tracing is defined as the observation of the moving trace on the various tracks. In addition, pattern is defined as a regular way in which certain scenario happened [35]. Therefore, in order to get a trace pattern, the observed movement of these trace is studied to confirm its regular way, with the help of the acquired hypothesis.

The trace pattern is confirmed using two steps. Firstly, the hypothesis which explains the initial scenario of the incident is taken. Secondly, the trace which was recorded in the source of evidence (host and network logs) is formulated. Using these two, the movement is observed which conclude that within the source of evidence, there are three courses of action that occurred. This course of action is referred as an *event* instead of process due to their focuses. A process merely focuses on progress or series of action toward a particular result; whereas, an event focus on the occurrence of something which not only concern with its action, but also with the attributes associated with it [36].

The extraction of the two steps above derives the three events of incident which are scan, exploit and impact/effect. Scan consists of the inspection activity which are not only to find vulnerability, but also to determine any available services (e.g. port number) on the target system (system being attacked) [37]. In this activity, if the port number responds to a scan, it will indicate the type of service running on the target system and reveal the exploitable services to attackers. Therefore, once the system determined which services are running on it, the vulnerability of the system could be exploited. Eventually, these exploited vulnerability can become a threat, such as unauthorized access (gain access) or unavailable service for intended users (deny service).

Exploit consists of the abuse activity traces that disclose any manipulation activity on the target system services such as attempting on downloading malicious codes to the target system and breaking the target system for opening backdoor on specific port. Meanwhile, the *impact/effect* event shows the traces on the goal of an attack which shows the goal of an attack as the consequences of the scan and exploits activities of the incident such as the target system is restarted, the services are terminated (expectedly) and new process is forced to be created.

Fig. 8 Event-based Forensic Trace Map

In this research, the combination of the three events discussed previously form different trace patterns in order to identify the offender of the incident: victim, attacker and victim/attacker. As this pattern reflects the complainer or perspective, henceforth, it is named as *Perspective Trace* Pattern. From the analysis and findings in [34], victim/attacker and victim perspective trace pattern must consists of all three events, and attacker perspective trace pattern must consist of scan and exploit events of incident but it is optional in having the *impact/effect* event as depicted in Fig. 8. However, the difference between them is the content of the attributes belongs to each of the events such as the number of the destination port open, the type of operation, the protocol of the connection request, the services that are vulnerable and the item transferred during communication exist.

The attributes of scan are communication exist, destination port open, operation type and connection request. Conversely, the attributes of exploit event are similar to scan event, with an addition of vulnerable service attribute. Nevertheless, the attributes of impact/effect are communication exists, new process creates, malicious code transferred as well as service terminated. The general summary of the traces of the event of the incident is illustrated in Fig. 9(a), Fig. 9(b) and Fig. 9(c) respectively.

Fig. 9(a) Traces Attributes of Scan Fig. 9(a) Traces Attributes of Exploit Event Event

Fig. 9(a) Traces Attributes of Exploit Event

For the purpose of this paper, in explaining perspective trace pattern, let's consider an incident that was caused by a

worm, Blaster. Based on the logs (host and networks), the traces of scan event shows the attribute of communication exist between the victim and attacker via Destination IP Address and Source IP Address respectively. Next, the destination port open responded is port 135 and the operation type (action) is *OPEN-INBOUND* (traffic is allowed in), whereas the connection request (protocol) is TCP (traffic packet is transmitted). The success of this event leads to the next event, exploit. In this event, the action continues with destination port open responded is 4444 and 69. If the port 4444 is exploited, the operation type (action) is OPEN-INBOUND and the connection request is TCP, then partial exploit is in place. Port 69 is also exploitable. If port 69 is exploited, the operation type (action) is OPEN (in/out communication is allowed) and the connection request is UDP (file is transmitted) which leads to vulnerable service (service) as TFTP (file transfer occurred). We consider the exploit is successful if both ports above are exploited. As the consequences of the scan and exploit event, the impact/effect incident occurred. This event consists of few attributes namely; a) offender identified (who is victim and attacker), b) process created (traffic action) which at %WINDIR%\System32\tftp.exe, c) the service terminated is RPC, and d) malicious code transferred (file transmitted) is %WINDIR%\System32\msblast.exe. The above example describes that the traces belong to victim trace pattern. The example can also be represented as an algorithm depicted in Table 3.

TABLE 1 VICTIM TRACE PATTERN ALGORITHM

```
Victim Trace Pattern
Attribute:
    Communication Exist
                                := Source IP Address
    Destination Port Open := 135
Operation Type := OPEN-INBOUND
Connection Person
Connection Request := T
Action :- find_vulnerability(
             determine_services(
Event Name: Exploit
Attribute: -
      Communication Exist
                                     Destination IP Address
      Destination Port Open := 4444 || 69
Operation Type := OPEN-INBOUND || OPEN
Connection Request
Vulnerable Services
Action :- scan();
             show manipulation activity();
Event Name: Impact/effect
     Offender Identified
                                        := victim
     New Process Created
                                        := %WINDIR%\Svstem32\tftp.exe
                                        := %WINDIR%\System32\msblast.exe
:= RPC
Action :- exploit();
             show impact();
```

B. Integration of Traceability Features and Digital Forensic Investigation Process

In order to provide the capability of tracing and mapping the accurate and complete evidence in digital forensic investigation process, the relationship between each trace should be identified to form the incident trace pattern. In this research, the ways for identifying this relationship is accomplished using features in traceability approach (definition, production and extraction) discussed previously. The integration of the traceability model's features (TMF) in digital forensic investigation process (DFIP) is illustrated in Table 1.

In Table 1, TMF in DFIP indicate that there is a potential in implementing traceability features in forensic investigation process. As mentioned by [7] [2], traceability is

an important element in forensic investigation process and it is related to the link element which is the key element used to form evidence's chain of custody. It is impossible to prevent all internet misuse but it is not impossible to identify and trace the evidence, and then take appropriate action.

TABLE 2 THE INTEGRATION OF TMF AND DFIP

Feature	TMF	TMF in DFIP
Definition: related to the specification of the traces and traceable objects	identify traces, attributes	identify component in incident
Production: related to the capture of traces (relationships)	perception, registration and maintenance	hypothesis, identify forward and backward traceability, preservation of evidence
Extraction: related to the actual process of tracing	trace extraction mechanism	tracing the evidence using selective tracing to promote trace pattern

Therefore, without the traceability information, the investigation decisions and other valuable information for collecting and analysing the evidence could be mislaid. Hence, a traceability approach is necessary and in this research, the proposed integration is named as trace map model.

C. Proposed Trace Map Model

The trace map model proposed is based on work done in [34]. This model is uses event-based traceability technique which was motivated from the traceability model discussed in [38]. Ramesh introduced three components: *stakeholder*, *subject* and *object* as depicted in Fig. 4.

Fig. 4 Traceability Model [38]

In this model, the stakeholder represents people who have an interest on requirements and on the tracing of requirements, the source represents the origins of a requirement and the artifacts used for documentation purposes, and the *object* represents the inputs and outputs being traced. In Fig. 4, the model represents what type of information is presented including salient attributes or characteristics of the information which is referred as *object*. For example, this information can be represented as an attribute of *object* and the traceability across various *object* is represented by a link namely traces to. The model also shows the stakeholders are the people who play different roles in the creation, maintenance and use the various objects and traceability links across them. These stakeholders act in different roles or capacities in the establishment and use the various conceptual *object* and traceability links. The *subject* represents the location of the documented traceability information i.e. which state that all objects are documented by subjects.

In Ramesh's model, the various dimension of traceability information is discussed such as what kind of information is represented, who are the people that play the role, where and how the traceability information are represented, why and where the object are created, modified and evolved. The compatibility and the capability model also have been discussed in various business areas with different traceability focus. In this research, this model is adapted and integrated

within the digital forensic investigation process which consists of three components, namely *stakeholder*, *source of evidence* and *digital evidence* as shown in Fig. 5.

Fig 5 Conceptual Diagram of Digital Forensic Investigation Process

These components map to the components in Ramesh's model: *stakeholder*, *subject* and *object* respectively. *Stakeholders* refer to the people involve in the whole process of digital forensic investigation such as the auditor, network administrator, complainer (perspective as discussed in [34]) and forensic expert. In this research, these investigators will manage the *source of evidence* on the incident reported such as the devices (host and network) and the logs involved in the incident. Meanwhile, the *digital evidence* is defined as events of incident (see subsection Trace Pattern) that are documented in the source of evidence. This current relationship is further illustrated using the diagram in Fig. 6. For the purpose of this research, the domain selected is malware intrusion incident.

Fig.6 Trace Map Model

As illustrated in Fig. 6, the process of investigation is initializes when a complainer complains or reports the incident to the investigator (administrator and/or forensic investigator). Then, the process is continued by searching the relevance potential evidence based on the preliminary information reported by the complainer. The evidence is collected from the source of evidence: host and network that derive heterogenous log. Subsequently, a hypothesis (an assumption made to test the logical or empirical consequences) is formulated in order to trace the event of the incident. The traces of event gathered then are map to construct the perspective's trace pattern.

Based on the proposed trace map model, the investigator could trace and map the traces of the incident that are used as the digital evidence of the incident. In this model, the traces of the offender are based on the primary events of incident that scan, exploit and impact/effect. In each event of incident, the trace patterns of the perspectives (victim, attacker, multistep attacker) are established. The model also helps the investigator identifying the relationship between the source of evidence, the digital evidence and the people involve during the investigation process. Hence, this model will help

the investigator on identifying the source of evidence in order to provide a complete and accurate digital evidence of the incident reported.

IV. CONCLUSIONS AND FUTURE WORKS

Traceability is an important element in forensic investigation process and related to the link element which is the key element used in forming evidence's chain of custody. To the best of the researchers' knowledge, unfortunately, most of research on traceability has been concentrating on software engineering, manufacturing, food processing etc. but not in digital investigation areas. Therefore, this research introduced a trace map model, inspired from traceability model. The proposed model is used to provide the forensic investigation the ability to trace back the digital evidence and source of evidence during the forensic investigation process specifically in collection and preservation phase of digital forensic investigation framework.

This useability is based on the preliminary assessment through the case study as presented in this paper. It also shows that the trace pattern enables us to identify the origin of malware intrusion through the traces attributes. These assist the investigator to show the relationship of the incident traces during obtaining the evidence accuracy and completeness in order to enable the legal process to take its due course. In future, the effectiveness of the evidence tracing is evaluated through a validation process. It is foreseeable to develop a prototype that can be used as one of the forensic investigation tool through this proposed trace map model.

ACKNOWLEDGMENT

We thank Universiti Teknikal Malaysia Melaka for the Short Grant Funding (PJP/2010/FTMK (10D) S693) for this research project.

REFERENCES

- [1] Kent, K., et al., Guide to Integrating Forensic Techniques into Incident Response, NIST Special Publication 800-86. 2006, National Institute of Standards and Technology, Gaithersburg, MD.
- [2] Palmer, G., A Road Map for Digital Forensic Research. 2001, Digital Forensic Research Workshop (DFRWS): Utica, New York.
- [3] Carrier, B., A Hyphotesis-based Approach to Digital Forensic Investigations, in Center for Education & Research in Information Assurance & Security. 2006, Purdue University: West Lafayette. p. 190.
- [4] Jansen, W. and R. Ayers, Guideline on Cell Phone Forensics, in NIST Special Publication 800-101. 2007, National Institute of Standards and Technology: Gaithersburg.
- [5] Rogers, M.R., The role of criminal profiling in the computer forensics process. Computers & Security, 2003. 22(4): p. 292--298.
- [6] Casey, E., Digital Evidence and Computer Crime. Second ed. 2004: Elsevier Academic Press.
- [7] Stephenson, P., A Comprehensive Approach to Digital Incident Investigation, in Elsevier Information Security Technical Report. 2003, Elsevier Advanced Technology.
- [8] Oghazi, P., B. Pålsson, and K. Tano. An attempt to apply traceability to grinding circuits. in Conference in Mineral Processing. 2007. Luleå, Sweden.
- [9] Golan, E., et al., Traceability in the U.S. Food Supply: Economic Theory and Industry Studies, in Agricultural Economic Report 2004.
- [10] Clayton, R., Anonymity and Traceability in Cyberspace., in Computer Laboratory, Darwin College. 2005, University of Cambridge. p. 189.
- [11] Lázaro, P.G.-C., Forensic Computing from a Computer Security Perspective, in Information Theory. 2004, Linköping Institute of Technology. p. 143.

- [12] Pinheiro, F.A.C., Requirements Traceability in Perspectives on Software Requirements. 2004, Kluwer Academic Publishers: Netherlands. p. 91-113.
- [13] Wieringa, R.J., An Introduction to Requirements Traceability 1995, Faculty of Mathematics and Computer Science, University of Vrije Amsterdam.
- [14] Morckos, M., Requirements Traceability. 2011, University of Waterloo. p. 4-5.
- [15] Zemont, G., Towards Value-Based Requirements Traceability, in Department of Computer Science. 2005, DePaul University: Chicago Illinois
- [16] Narmanli, M., A Business Rule Approach to Requirements Traceability. 2010, Middle East Technical University. p. 8-9.
- [17] Westfall, L., Bidirectional Requirements Traceability. 2006.
- [18] Knethen, A.V. and M. Grund. QuaTrace: A Tool Environment for (Semi-) Automatic Impact Analysis Based on Traces. in IEEE International Conference on Software Maintenance (ICSM'03). 2003. Amsterdam, The Netherlands.
- [19] Feng, Y., et al. Traceability between Software Architecture Models. in Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06). 2006: IEEE Computer Society.
- [20] Pinheiro, F.A.C. and J.A. Goguent, An Object-Oriented Tool for Tracing Requirements. IEEE Software, 1996. 13(2): p. 52-64.
- [21] Brill, A. and M. Pollitt, The evolution of computer forensic best practices: an update on programs and publications. Journal of Digital Forensic Practice, 2006. 1: p. 3-11.
- [22] Siti Rahayu, S., Y. Robiah, and S. Shahrin, Mapping Process of Digital Forensic Investigation Framework. International Journal of Computer Science and Network Security, 2008. 8(10): p. 163-169.
- [23] Baryamureeba, V. and F. Tushabe. The Enhanced Digital Investigation Process Model. in Proceeding of Digital Forensic Research Workshop. 2004. Baltimore.
- [24] Carrier, B. and E. Spafford, Getting Physical with the Digital Investigation Process. International Journal of Digital Evidence, 2003, 2(2).
- [25] Ciardhuáin, S.Ó., An Extended Model of Cybercrime Investigations. International Journal of Digital Evidence, 2004. 3(1).
- [26] Roger, M., DCSA: Applied Digital Crime Scene Analysis. 2006: Tipton & Krause.
- [27] Reith, M., C. Carr, and G. Gunsch, An Examination of Digital Forensic Models. International Journal Digital Evidence 2002. 1(3).
- [28] Beebe, N.L. and J.G. Clark. A Hierarchical, Objectives-Based Framework for the Digital Investigations Process. in Digital Forensic Research Workshop. 2004. Baltimore.
- [29] Freiling, F.C. and B. Schwittay. A Common Process Model for Incident Response and Computer Forensics. in Proceedings of Conference on IT Incident Management and IT Forensics. 2007. Germany.
- [30] Kohn, M., J. Eloff, and M. Olivier. Framework for a Digital Forenisc Investigation. in Proceedings of Information Security South Africa (ISSA) 2006 from Insight to Foresight Conference. 2006. South Afrika.
- [31] Perumal, S., Digital Forensic Model Based on Malaysian Investigation Process. International Journal of Computer Science and Network Security, 2009. 9(8): p. 38-44.
- [32] Casey, E. and G.L. Palmer, *The Investigative Process*, in *Digital Evidence and Computer crime*. 2004, Elsevier Ltd.
- [33] Stephenson, P., Getting The Whole Picture Volume 1, in End-to-End Digital Investigation. 2003, Getting The Whole Picture Volume 1. p. 19-20.
- [34] Siti Rahayu, S., et al., Advanced Trace Pattern For Computer Intrusion Discovery. Journal of Computing, 2010. 2(6): p. 1-8.
- [35] Fernandez, E., J. Pelaez, and M. Larrondo-Petrie, Attack Patterns: A New Forensic and Design Tool. IFIP International Federation for Information Processing, 2007. 242: p. 345-357.
- [36] Carrier, B. and E. Spafford. An Event-based Digital Forensic Investigation Framework. in Digital Forensics Research Workshop. 2004. Baltimore, MD.
- [37] Liu, Z., C. Wang, and S. Chen, Correlating Multi-Step Attack and Constructing Attack Scenarios Based on Attack Pattern Modeling. IEEE Computer Society, 2008: p. 214-219.
- [38] Ramesh, B. and M. Jarke, Towards Reference Models For Requirements Traceability. IEEE Transactions on Software Engineering, 2001. 27(1): p. 58-93.