NeurlPS 2020

주제 : Meta-learning

Reviewed by Kyeong Ryeol Go

Contents

- Task adaptive customization
 - Online structured meta-learning
 - Structured prediction for conditional meta-learning
 - MATE: Plugging in model awareness to task embedding for metalearning
- Generalizing framework
 - Bayesian meta-learning for the few-shot setting via deep kernels
 - Continuous meta-learning without tasks

Online structured meta-learning

- Well-organized meta-learner
 - Benefit fast adaptation with task-specific prior
 - Accumulate and organize the newly learned experience
 - Automatically adapt and expand for unseen knowledge
- Previous works
 - Modulation relies on a well-trained task representation network
 - Yao, Huaxiu, et al. "Hierarchically structured meta-learning." *arXiv preprint arXiv:1905.05301* (2019).
 - Construct a totally new meta-learner for dissimilar task
 - Jerfel, Ghassen, et al. "Reconciling meta-learning and continual learning with online mixtures of tasks." *Advances in Neural Information Processing Systems*. 2019.

Online structured meta-learning

* $w_{0,t} \mid w_t \mid g_{l,t} \mid o_{b_l} \mid K$: initial | adapted | layer output | block importance | # of tasks sharing blocks

Selection

•
$$g_{l,t} = \sum_{b_l=1}^{B_l+1} \frac{\exp(o_{b_l})}{\sum_{b_l'}^{B_l+1} \exp(o_{b_{l'}})} w_t g_{l-1,t}$$

•
$$w_t = w_{0,t} - \alpha \nabla_{w_{0,t}} L(w_{0,t}; D_t^s)$$

•
$$w_{0,t} = w_{0,t} - \beta_1 \nabla_{w_{0,t}} L(w_t, o; D_t^q)$$

•
$$o = o - \beta_2 \nabla_o L(w_t, o; D_t^q)$$

•
$$b_l^* = \arg\max_{b_l \in [1,B_l]} o_{b_l}$$

Meta update

•
$$w_{0b_{l}^{*},t} = w_{0b_{l}^{*},t} - \beta_{3} \sum_{k=1}^{K} \nabla_{w_{b_{l}^{*},k}} L(w_{k}; D_{k}^{q})$$

•
$$w_k = w_{0,k} - \beta_4 \nabla_{w_{0,k}} L(w_{0,k}; D_k^s)$$

Fine tuning

•
$$w_{b_l^*,t} = w_{0b_l^*,t} - \beta_5 \nabla_{w_{0b_l^*,t}} L(w_{0b_l^*,t}; D_t^s \cup D_t^q)$$

Online structured meta-learning

Constructed knowledge block

Figure 5: Selected ratio of knowledge blocks for each sub-dataset in Meta-dataset. Figure (a)-(d) illustrate the knowledge blocks in layer 1-4.

Increased model capacity

Models	Blur Acc.	Night Acc.	Pencil Acc.	Overall Acc.	AR
NT	$49.80 \pm 3.91\%$	$47.70 \pm 2.91\%$	$47.55 \pm 5.18\%$	$53.32 \pm 2.30\%$	3.92
NT-Large	$43.05 \pm 3.99\%$	$41.30 \pm 2.66\%$	$43.25 \pm 4.24\%$	$42.53 \pm 2.15\%$	
FT	$51.50 \pm 4.90\%$	$49.00 \pm 3.82\%$	$50.90 \pm 5.30\%$	$50.47 \pm 2.73\%$	2.82
FT-Large	$54.60 \pm 2.99\%$	$50.35 \pm 2.64\%$	$52.45 \pm 3.92\%$	$52.46 \pm 1.91\%$	
FTML	$58.90 \pm 3.52\%$	$56.40 \pm 3.53\%$	$54.60 \pm 5.46\%$	$56.63 \pm 2.50\%$	2.13
FTML-Large	$57.55 \pm 3.76\%$	$56.70 \pm 3.92\%$	$56.30 \pm 4.05\%$	$56.85 \pm 2.26\%$	
OSML	$64.10 \pm 3.12\%$	$65.25 \pm 3.24\%$	$60.35 \pm 3.65\%$	$63.23 \pm 2.00\%$	1.13

Structured prediction for conditional meta-learning

Motivation

- Relying on the shared parameter is challenging for complex task distribution
- Previous works lack theoretical guarantees on generalization performance
 - Rusu, Andrei A., et al. "Meta-learning with latent embedding optimization." *arXiv* preprint arXiv:1807.05960 (2018).

Conditional meta learning

•
$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(Alg(\theta, D_i^s), D_i^q) \rightarrow \min_{\tau: D \to \Theta} \frac{1}{N} \sum_{i=1}^{N} L(Alg(\tau(D_i^{tr}), D_i^{tr}), D_i^{val})$$

- Superior when the larger the number of clusters
 - Denevi, Giulia, Massimiliano Pontil, and Carlo Ciliberto. "The advantage of conditional meta-learning for biased regularization and fine-tuning." arXiv preprint arXiv:2008.10857 (2020).

Meta-Learning

Conditional Meta-Learning

Structured prediction for conditional meta-learning

- Structured prediction → direct sup. Learn. Not allowed
 - $X \mid Y \mid Z$: input | label | output spaces where Z is not linear (structured) (ex. strings, graphs, points on a manifold, probability distributions ...)
 - $\min_{f:X\to Z} \int g(f(x),y\mid x) \ d\rho(x,y)$ where $g:X\times Y\times Z\to R$
 - Estimator : $\hat{f}(x) = \arg\min \sum_{i=1}^{n} \alpha_i(x) g(z, y_i | x_i)$
 - C. Ciliberto, F. Bach, and A. Rudi. Localized structured prediction. In Advances in Neural Information Processing Systems, 2019.
- Task-adaptive structured meta-learning (TASML)
 - $\hat{\tau}(D) = \arg\min_{\theta \in \Theta} \sum_{i=1}^{N} \alpha_i(D) L(Alg(\theta, D_i^{tr}), D_i^{val})$
 - $\alpha(D) = (K + \lambda I)^{-1}v(D)$ where $K_{ij} = k(D_i^{tr}, D_j^{tr})$ and $v_i(D) = k(D_i^{tr}, D)$
 - $k(D, D') = \exp\left(-\frac{\|\overline{\phi}(D) \overline{\phi}(D')\|^2}{\sigma^2}\right)$, $\overline{\phi}(D) = \frac{1}{|D|} \sum_{(x,y) \in D} \phi(x)$

(measure the relevance of known training tasks to target tasks)

Structured prediction for conditional meta-learning

	ACCURACY (%)				
	miniIM A	miniIMAGENET		tieredImageNet	
CONDITIONAL METHODS	1-ѕнот	5-ѕнот	1-ѕнот	5-ѕнот	
(JERFEL ET AL.) [23]	51.46 ± 1.68	65.00 ± 0.96	1 -	-	
HSML [56]	50.38 ± 1.85	-	-	n -	
MMAML [54]	46.1 ± 1.63	59.8 ± 1.82	-	-	
CAML [24]	59.23 ± 0.99	72.35 ± 0.71	-	-	
LEO [44]	61.76 ± 0.08	77.59 ± 0.12	66.33 ± 0.05	81.44 ± 0.09	
LEO (LOCAL) [44]	60.37 ± 0.74	75.36 ± 0.44	65.11 ± 0.72	79.70 ± 0.59	
TASML (OURS)	62.04 ± 0.52	$\textbf{78.22} \pm \textbf{0.47}$	66.42 ± 0.37	82.62 ± 0.31	

-1		1-ѕнот	5-ѕнот
_	MAML [17]	58.9 ± 1.9	71.5 ± 1.0
	R2D2 [9]	65.3 ± 0.2	79.4 ± 0.1
	PROTONET(RESNET12 FEAT.) [47]	72.2 ± 0.7	83.5 ± 0.5
	METAOPTNET [29]	72.0 ± 0.7	84.2 ± 0.5
	TASML	74.6 ± 0.7	85.1 ± 0.4

Improvement from structured prediction

	ACCURACY (%)				
	$mini { m IMAGENET}$		<i>tiered</i> IM	AGENET	
	1-SHOT	5-shot	1-SHOT	5-shot	
MAML (LEO FEAT.)	54.12 ± 1.84	67.58 ± 0.92	51.28 ± 1.81	69.80 ± 0.84	
SP+MAML (LEO FEAT.)	58.46 ± 1.56	74.51 ± 0.75	60.89 ± 1.64	78.42 ± 0.73	
LEO (LOCAL)	60.37 ± 0.74	75.36 ± 0.44	65.11 ± 0.72	79.70 ± 0.59	
SP+LEO (LOCAL)	61.46 ± 0.69	$\textbf{76.54} \pm \textbf{0.59}$	66.07 ± 0.66	80.68 ± 0.41	
LS META-LEARN	60.19 ± 0.65	76.76 ± 0.43	64.32 ± 0.65	81.43 ± 0.55	
TASML (SP + LS META-LEARN)	62.04 ± 0.52	78.22 ± 0.47	66.42 ± 0.37	82.62 ± 0.31	

MATE: plugging in model awareness to task embedding for meta-learning

- Inductive bias decides the hypothesis space ${\mathcal F}$
 - 1) Capacity
 - 2) Performance of optimal hypothesis f^*
 - 3) Difficulty of identifying optimal hypothesis f^*
- Meta-learning Find suitable inductive bias using prior knowledge Ex. parameters for different tasks lie within neighborhood of meta parameter
- Model is itself part of the inductive bias
 - Establish a relationship b/t tasks and their corresponding models
 - Exploit not only the data distribution, but also the feature obtained by model

MATE: plugging in model awareness to task embedding for meta-learning

- * T: task, P_D : data dist., M: model
- Model-awareness via the incorporation of model into embedding

•
$$T = (P_D) \rightarrow T = (P_D, M)$$

•
$$\Phi(T) := \int f_M(x) \odot \phi(x) dP_D(x) \approx \frac{1}{K} \sum_{k=1}^K f_M(x_k) \odot \phi(x_k)$$

•
$$f_M(x) = c \cdot \left| \frac{\partial \|w^*\|_2^2}{\partial \phi(x)} \right|$$

Select the features that incur the big change in margin (essential features ≈ attention)

(a) SVM-based model-aware task embedding.

(b) Classification with conditioned backbone.

MATE: plugging in model awareness to task embedding for meta-learning

Model	Backbone	CIFAR-FS [6]		
Wiodei	Dackbone	5-way 1-shot	5-way 5-shot	
MAML ^{\$} [10]	32-32-32	$58.9 \pm 1.9\%$	$71.5 \pm 1.0\%$	
Relation Networks [†] [45]	64-96-128-256	$55.0 \pm 1.0\%$	$69.3 \pm 0.8\%$	
ProtoNets ^{\$} [44]	64-64-64	$55.5 \pm 0.7\%$	$72.0 \pm 0.6\%$	
ProtoNets [44]	ResNet-12	$71.35 \pm 0.73\%$	$84.07 \pm 0.51\%$	
MATE + ProtoNets	ResNet-12	$71.49 \pm 0.70\%$	$84.71 \pm 0.50\%$	
R2D2 ^{\disp} [6]	96-192-384-512	$65.3 \pm 0.2\%$	$79.4 \pm 0.1\%$	
R2D2 [6]	ResNet-12	$72.51 \pm 0.72\%$	$84.60 \pm 0.50\%$	
MATE + R2D2	ResNet-12	$72.59 \pm 0.0.70\%$	$85.04 \pm 0.50\%$	
MetaOptNet ^{\(\disp\)} [21]	ResNet-12	$72.0 \pm 0.7\%$	$84.2 \pm 0.5\%$	
MATE + MetaOptNet	ResNet-12	$72.3 \pm 0.7\%$	$85.2 \pm 0.4\%$	

Model	Doolshone	miniImageNet [53]		
Model	Backbone	5-way 1-shot	5-way 5-shot	
Matching Networks ⁵ [53]	64-64-64	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
MAML [⋄] [10]	32-32-32	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$	
ProtoNets ^{\displays*} [44]	64-64-64	$49.42 \pm 0.78\%$	$68.20 \pm 0.66\%$	
Relation Networks ⁵ [45]	64-96-128-256	$50.44 \pm 0.82\%$	$65.32 \pm 0.70\%$	
R2D2 ^{\dightarrow} [6]	96-192-384-512	$51.20 \pm 0.60\%$	$68.8 \pm 0.10\%$	
LEO ^{\$} [40]	WRN-28-10	$61.76 \pm 0.08\%$	$77.59 \pm 0.12\%$	
SNAIL [◊] [27]	ResNet-12	$55.71 \pm 0.99\%$	$68.88 \pm 0.92\%$	
AdaResNet ^{\(\phi\)} [30]	ResNet-12	$56.88 \pm 0.62\%$	$71.94 \pm 0.57\%$	
TADAM [⋄] [35]	ResNet-12	$58.50 \pm 0.30\%$	$76.70 \pm 0.30\%$	
MetaOptNet ^{\(\displain\)} [21]	ResNet-12	$62.64 \pm 0.61\%$	$78.63 \pm 0.46\%$	
MetaOptNet [†] [21]	ResNet-12	$61.64 \pm 0.60\%$	$77.88 \pm 0.46\%$	
MATE + MetaOptNet	ResNet-12	$62.08 \pm 0.64\%$	$78.64 \pm 0.46\%$	

Cat	FiLM	KME	SVM	Load Backbone	Fix Backbone	FiLM Regularization	1-shot	5-shot
√	√ ✓	√ ✓	√				72.15%	84.40% 84.37% 84.72%
	✓ ✓ ✓		√ √ √	√ √ √	✓	✓	72.01% 72.57 % 72.32%	85.13% 84.76% 85.20 %

Bayesian meta-learning for the few-shot setting via deep kernels

- Two levels of inference
 - Inner loop : ρ_t (task-specific parameters)
 - Outer loop : θ (shared parameters) (Learning is destabilized and higher-order derivatives is estimated)
- Marginalize ho_t with a Bayesian integral and just estimate heta
 - Simple and efficient (straightforward to implement and train)
 - Flexible (used in both classification and regression)
 - Robust (provide a measure of uncertainty)

Bayesian meta-learning for the few-shot setting via deep kernels

- Deep Kernel Transfer (DKT)
 - $\theta = \{\hat{\theta}, \hat{\phi}\}\ where\ k(x, x'|\hat{\theta}, \hat{\phi}) = k'(F_{\hat{\phi}}(x), F_{\hat{\phi}}(x')|\hat{\theta})$
 - $p(D^{y}|D^{x}, \hat{\theta}, \hat{\phi}) = \prod_{t} p(T_{t}^{y}|T_{t}^{x}, \hat{\theta}, \hat{\phi}) = \prod_{t} \int \prod_{k} p(y_{k}|x_{k}, \hat{\theta}, \hat{\phi}, \rho_{t}) d\rho_{t}$

Training

$$\log p(D^{y}|D^{x}, \hat{\theta}, \hat{\phi}) = \sum_{t} \left[-\frac{1}{2} y_{t}^{T} K_{t}(\hat{\theta}, \hat{\phi})^{-1} y_{t} - \frac{1}{2} \log |K_{t}(\hat{\theta}, \hat{\phi})| + c \right]$$

$$(\log p(y|x, \hat{\theta}, \hat{\phi}) = \sum_{c=1}^{C} \log p(y = c|x, \hat{\theta}, \hat{\phi}) \text{ in case of classification})$$

Inference

 $E[f_*] = k_*^T (K + \sigma^2 I)^{-1} y$, $cov(f_*) = k_{**} - k_*^T (K + \sigma^2 I)^{-1} k_*$ (sigmoid activation for the predictive mean in case of classification)

Bayesian meta-learning for the few-shot setting via deep kernels

(a) Oualitative comparison						
ALPaCA (Harrison et al., 2018)	0.14 ± 0.09	5.92 ± 0.11				
Feature Transfer/1	2.94 ± 0.16	6.13 ± 0.76				
Feature Transfer/100	2.67 ± 0.15	6.94 ± 0.97				
MAML (1 step)	2.76 ± 0.06	8.45 ± 0.25				
DKBaseline + RBF	2.85 ± 1.14	3.65 ± 1.63				
DKBaseline + Spectral	2.08 ± 2.31	4.11 ± 1.92				
$\mathbf{DKT} + \mathbf{RBF}$ (ours)	1.38 ± 0.03	2.61 ± 0.16				
DKT + Spectral (ours)	$\textbf{0.08} \pm \textbf{0.06}$	$\textbf{0.10} \pm \textbf{0.06}$				

(b) Uncertainty estimation

Feature Transfer/1	0.25 ± 0.04	0.20 ± 0.01
Feature Transfer/100	0.22 ± 0.03	0.18 ± 0.01
MAML (1 step)	0.21 ± 0.01	0.18 ± 0.02
DKT + RBF (ours)	0.12 ± 0.04	0.14 ± 0.03
DKT + Spectral (ours)	$\textbf{0.10} \pm \textbf{0.01}$	$\textbf{0.11} \pm \textbf{0.02}$

- Motivation
 - Many real world setting do not have known boundaries b/t tasks
 - A good learning system must detect the change in task
- Goal: enable use of meta-learning with unsegmented tasks

- Bayesian online change point detection (BOCPD)
 - ullet Recursively estimate run length of current tasks r_t

•
$$p(y_t|y_{1:t-1}) = \sum_{r_t} p(y_t|y_{1:t-1}, r_t) p(r_t|y_{1:t-1})$$

•
$$p(r_t|y_{1:t-1}) \propto p(r_t, y_{1:t-1})$$

= $\sum_{r_{t-1}} p(r_t|r_{t-1}) p(y_{t-1}|y_{1:t-2}, r_{t-1}) p(r_{t-1}, y_{1:t-2})$
• $p(r_t|r_{t-1}) = \begin{cases} H(r_{t-1}+1) & \text{if } r_t = 0 \\ 1 - H(r_{t-1}+1) & \text{if } r_t = r_{t-1}+1 \\ 0 & \text{otherwise} \end{cases}$

•
$$p(y_t|y_{1:t-1},r_t) = \int p(y_t|\eta)p(\eta|y_{1:t-1},r_t) d\eta$$

→ substitute into meta-learning algorithm

- Meta learning via online change point analysis (MOCA)
 - 1) $\eta_t \ updated : \eta_t[r] = h_{\theta}(x_t, y_t, \eta_{t-1}[r-1]) \ or \ \eta_t = f_{\theta}(x_{t-r_t+1:t}, y_{t-r_t+1:t})$
 - 2) y_t estimation: $p(y_t|x_{1:t}, y_{1:t-1}) = \sum_{r_t=0}^{t-1} p_{\theta}(y_t|x_t, \eta_{t-1}[r_t]) p(r_t|x_{1:t}, y_{1:t-1})$
 - 3) y_t observed : $p(r_t|x_{1:t}, y_{1:t}) \propto p_{\theta}(y_t|x_t, \eta_{t-1}[r_t])p(r_t|x_{1:t}, y_{1:t-1})$
 - 4) r_{t+1} estimation : $p(r_{t+1}|x_{1:t+1}, y_{1:t}) = \begin{cases} \lambda & \text{if } r_{t+1} = 0\\ (1-\lambda) p(r_t|x_{1:t}, y_{1,t-1}) & \text{if } r_{t+1} = r_t + 1 \end{cases}$
 - 5) θ updated with loss = $\sum_{t=k}^{k+T} l_t = \sum_{t=k}^{k+T} -\log p_{\theta}(y_t|x_{1:t},y_{1:t-1})$

Black: run length (higher intensity for higher probability) Red vertical line: true change points

→ can capture the change points

Blue vertical line : time stamp of middle and right visualization Red points : current task

Green points: previous tasks (more faded for older ones)

- → disregard the unrelated tasks
- → back to prior at change point

Thank you