

AD-A283 530

Miscellaneous Paper CERC-94-14

Waterways Experiment Station

Upgrade of Tropical Cyclone Surface Wind Field Model

by Vincent J. Cardone, Andrew T. Cox, J. Arthur Greenwood, Oceanweather, Inc. Edward F. Thompson, WES

Approved For Public Release; Distribution Is Unlimited

94-26566

DTIC QUALITY INSPECTED 5

94 8 19 078

Upgrade of Tropical Cyclone Surface Wind Field Model

by Vincent J. Cardone, Andrew T. Cox, J. Arthur Greenwood

Oceanweather, Inc. 5 River Road, Suite 1 Cos Cob, CT 06807

Edward F. Thompson

U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000

Waterways Experiment Station Cataloging-in-Publication Data

Upgrade of tropical cyclone surface wind field model / by Vincent J. Cardone ... [et al]; prepared for U.S. Army Corps of Engineers. 101 p.: ill.; 28 cm. — (Miscellaneous paper; CERC-94-14)

Includes bibliographic references.

1. Storm winds -- Mathematical models. 2. Hurricanes -- Mathematical models -- Data processing. 3. Windstorms -- Mathematical models -- Computer programs. 4. Cyclones -- Mathematical models. 1. Cardone, Vince J. II. United States. Army. Corps of Engineers. III. U.S. Army Engineer Waterways Experiment Station. IV. Coastal Engineering Research Center (U.S.) V. Series: Miscellaneous paper (U.S. Army Engineer Waterways Experiment Station); CERC-94-14. TA7 W34m no.CERC-94-14

Contents

Preface
Conversion Factors, Non-SI to SI Units of Measurements v
1—Introduction
Background
2—Existing Model Limitations
Physics
3—Upgraded Model
Increased Resolution 10 Generalized Pressure Specification 12 Pressure profile form 12 Modified outflow 13 Specification of pressure parameters 15 Sample Runs 20
4—Summary
References 20
Appendix A: Comparison of Five-Nest and Seven-Nest Models for Hurricane Camille
Appendix B: Documentation of CE Model Upgrades B
Appendix C: Sample Application of Upgraded CE Model to Simulation of 12 Snapshots of Hurricane Gilbert
Appendix D: Sample Application of Upgraded CE Model to Simulation of 36-Hr Period of Hurricane Gilbert in the Gulf of Mexico

List of Figures

Figure 1.	Temporal changes in the azimuthally averaged wind for NOAA reconnaissance flights into Hurricane Gilbert; changes are normalized to a 6-hr time interval (from Black and Willoughby (1992))	. 8
Figure 2.	Distribution of maximum wind speed differences between 5-nest and 7-nest model runs for Hurricane Camille	12
Figure 3.	Example of Oceanweather tropical storm analysis	17
Figure 4.	Some parameters in double exponential profile	21
Figure 5.	Comparison of azimuthally averaged reconnaissance winds and fitted gradient winds in 12 cases of Hurricane Gilbert defined by Black and Willoughby (1992)	24
List of	Tables	
Table 1.	Effect of Nest Activation Parameter, INSIDE	11
Table 2.	Maximum Inflow Observed in Frictionless Stationary Vortex Solution	14
Table 3.	Empirical Correction of Inflow Angle	15
Table 4.	Parameter Definitions for Fitting Single Exponential Profile	18
Table 5.	Generalized Single Exponential Profile Fits to Selected Hurricane Gilbert Cases	18
Table 6.	Parameter Definitions for Fitting Double Exponential Profile	20
Table 7.	Observed Pressure and Azimuthally Averaged Pseudo- Gradient Wind Maxima in Hurricane Gilbert and Estimated Generalized Profile Parameters	22
Table 8.	Comparison of Measured Flight-Level Wind Maxima and Fitted Gradient Wind Maxima for Double Exponential Pressure Profile	23

Preface

This report describes improvements developed for the planetary boundary layer surface wind field model traditionally used by the U.S. Army Corps of Engineers for hurricane modeling. Limitations of the model are also described. The upgraded model has increased flexibility for spatial resolution and pressure profile specification. The wind fields can be used in ocean response modeling, including wave and surge modeling activities.

This study was authorized by Headquarters, U.S. Army Corps of Engineers, under the Coastal Flooding and Storm Protection Area of the Coastal Research Program, Work Unit 32683, "Wind Estimation for Coastal Modeling." Technical Monitors were Messrs. John H. Lockhart, Jr.; John G. Housley; Barry W. Holliday; and John Saucier. Ms. Carolyn M. Holmes of the U.S. Army Engineer Waterways Experiment Station (WES), Coastal Engineering Research Center (CERC), was the Program Manager.

The study was conducted under Contract No. DACW39-93-C-0022 by Oceanweather, Inc. (OWI), Cos Cob, Connecticut. The report was prepared by Dr. Vincent J. Cardone and Messrs. Andrew T. Cox and J. Arthur Greenwood, all of OWI, and Dr. Edward F. Thompson of the Coastal Oceanography Branch (COB), Research Division (RD), CERC. Dr. Thompson was Principal Investigator of the research work unit funding this study. The work unit was under the direct supervision of Dr. Martin C. Miller, Chief, COB, and Mr. H. Lee Butler, Chief, RD, and under the general supervision of Mr. Charles C. Calhoun, Jr., Assistant Director, CERC, and Dr. James R. Houston, Director, CERC.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

Acces	sion For	
MTIS	GRALI	G
DTIC	TAB	ă
Unane	owneed	ō
Just 1	fication_	
•	ibution/, lability C	
	Avail and	
Dist	Special	
	1	
4		
1,	1 1	364
	' -	

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Conversion Factors, Non-SI to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units as follows:

Multiply	Ву	To Obtain
degrees (angle)	0.01745329	radians
knots (international)	0.5144444	meters per second
miles (U.S. nautical)	1.852	kilometers

1 Introduction

Background

The unprecedented destruction of parts of the United States caused by hurricanes Andrew and Iniki last summer has aroused increased interest in the wind structure of tropical cyclones among the scientific and engineering communities. Unlike most past destructive storms, much of the loss in these recent storms was associated with direct wind damage. While simple parametric tropical cyclone wind models remain in use to model surface winds and to provide forcing for ocean response models, a few numerical vortex boundary layer models based upon solution of the primitive equations of motion have emerged, including most prominently the so-called U.S. Army Corps of Engineers (CE) wind model (Cardone et al. 1992). The model was developed originally at New York University in the early 1970's and later further developed at Oceanweather Inc. (OWI) under CE support in 1979. Recently the format of the CE model was modified to conform with the requirements of the CE Coastal Modeling System (Thompson 1993).

The CE numerical model was reviewed as part of a Workshop on Tropical Wind Modeling convened at the U.S. Army Engineer Waterways Experiment Station on 24-25 March, 1992. Invited participants in the review were:

- Dr. Wilson A. Schaffer, Techniques Development Laboratory, National Weather Service (NWS), National Oceanic and Atmospheric Administration (NOAA)
- Dr. Mark D. Powell, Hurricane Research Division (HRD), Atlantic Oceanographic and Meteorological Laboratory, Environmental Research Laboratories, NOAA
- Dr. Mukut B. Mathur, National Meteorological Center, NWS, NOAA
- Dr. Vincent J. Cardone, OWI

The workshop stressed the relationship between surface wind modeling and more general questions of the dynamical and thermodynamic nature of tropical cyclones. It also emphasized the need to carefully evaluate the reliability and representativeness of the scant surface marine wind data available in intense cyclones, before such data are used to further develop and validate numerical models.

The workshop addressed the potential for further development of existing numerical models, particularly the CE model. A number of specific research needs for improving wind models were identified and prioritized in terms of both importance to ocean response modeling and feasibility of success. These needs are summarized more fully in a "white paper" (Cardone and Thompson 1992).

Subsequent to the workshop, a study was initiated to address high priority upgrades to the CE model which could be accomplished with the limited funds available. The following tasks were chosen: (1) increase resolution and domain of the nested grid system; (2) generalize the surface pressure specification. The enhancements developed for the CE wind model are the subject of this report. The enhancements will be incorporated into the Coastal Modeling System in the near future.

Previous Studies

The CE wind model has been used mainly to provide wind fields in historical tropical cyclones to drive ocean response models operated in a hindcast mode (surface waves, mixed layer currents, storm surge). Those wind fields generally provide unbiased ocean predictions when used to drive CE and OWI ocean response models (e.g Reece and Cardone 1982). They have also been used to drive ocean response models developed by other scientists independently, wherein CE model winds have also repeatedly been shown to provide unbiased hindcasts (e.g. Forristall 1980, WAMDI Group 1988, Cooper and Thompson 1989, Ly and O'Connor 1991, Grosskopf et al. 1991, Mairs et al. 1992). At OWI the model has been used in over three dozen studies to drive ocean response models to establish offshore design criteria in many parts of the world affected by tropical cyclones.

The CE model has been extensively used for both ocean wave and storm surge modeling for CE applications. Abel et al. (1989) applied the model to estimate wave statistics due to hurricanes in the Atlantic Ocean and Gulf of Mexico during 1956-75. Tracy and Hubertz (1990) estimated waves produced by 10 hurricanes impacting southern California during 1956-89. Mark and Scheffner (1993) describe a hurricane surge study for the coast of Delaware. A similar approach is presently being applied to the entire U.S. Atlantic Coast.

The generality of the CE model was also demonstrated when it was used to provide winds to test the third generation wave model (3GWAM) (WAMDI Group 1988). Winds supplied to the WAM model were exactly the same as winds for the subject storms (three intense Gulf of Mexico hurricanes) which had been used in previous studies to drive first and second generation models, and which had been used by other investigators. The WAM model was found to provide unbiased and skillful wave hindcasts in these storms, with WAM using its own calibration of source terms developed completely independently of CE winds. The same tuning on WAM has also been shown to provide

nearly perfect hindcasts in severe extratropical storms as well when driven by extremely accurate wind fields derived by direct kinematic analysis of wind measurements (Cardone et al. 1994).

Scope

In many of the studies cited above, ocean response models were used to evaluate the most extreme response (storm peak winds, waves, surge and currents) in a storm at a fixed site. In general, in storms in which the assumed storm pressure profile fits the actual radial distribution well, modeled storm peaks are unbiased in the mean and exhibit scatter index of 15 percent or less. The method is less successful in modeling the entire spatial and temporal distribution of the wind field in such storms. There are some storms in which even the storm peaks are difficult to simulate, where the storm structure departs from the simple structure implied by the presumed pressure distribution. This and other limitations of the CE model are described in more detail in Chapter 2.

In this study, two limitations of the CE tropical storm wind model are addressed and remedied. The first change is simply the addition of two additional nests to the grid system used to implement the numerical vortex model. This change provides lower truncation errors near the center of small intense storms, greater resolution near the vortex center, and an expanded solution domain. The second change is generalization of the radial surface pressure profile upon which the surface pressure initialization of the vortex model is based. The form adopted also allows the specification of profiles with two maxima in the radial pressure gradient. These changes are described in Chapter 3. A summary is given in Chapter 4.

2 Existing Model Limitations

The CE wind model developed by Cardone et al. (1992) has proved to be a powerful tool in ocean response modeling. However, the model, developed in 1979, includes a number of limitations. In light of enhanced computing power now available and the increasing field measurements and understanding of tropical storm behavior, it is timely to review the model limitations. Limitations of the CE model may be described in three basic categories: physics, initialization, and numerics.

Physics

The CE model evolved from the model of Chow (1971) who solved the momentum equations of an integrated boundary layer flow for a boundary layer of constant depth. The vertical friction force was taken parallel to the wind relative to the earth. Horizontal friction was also considered. The equations, however, were solved numerically on a nested cartesian grid system centered on the vortex and translating at constant velocity with the vortex. The steady solution in the moving coordinate system referred back to the earth yielded qualitatively realistic boundary layer wind patterns. The solution included supergradient flows inside the radius of maximum gradient wind and a decrease in the radius of maximum wind. It also included an asymmetric wind distribution with maxima in the right front quadrant for a typical superposition of a symmetric vortex and ambient gradient, and a boundary layer convergence pattern consistent with observed patterns of convection in typical storms.

Shapiro (1983) solved the same slab momentum equation as Chow (1971) but used a truncated spectral analysis in cylindrical coordinates, in order to allow a more convenient separation of the role of linear and non-linear asymmetric effects in the boundary layer flow. Chow's model and solution method provide the same patterns as that of Shapiro's model except that inside the radius of maximum wind truncation errors are larger than for the spectral solution. As a consequence, Chow's model may slightly overestimate the degree of supergradient flow inside the eye. These studies show that the essential physics governing the boundary layer flow are included in Chow's and Shapiro's models. The main physical processes missing are the feedback of

the convection (induced in part by the modelled convergence field) on the wind field, and strong non-steady effects (for example rapid deepening of the vortex in the moving frame) which may cause even the overlying vortex to be unbalanced.

The CE model is derived directly from Chow's formulation and uses Chow's numerical solution. Several improvements to Chow's solution were made to insure that it not only gives qualitatively realistic wind fields, but also provides a quantitatively correct surface stress vector distribution, from which the model diagnoses winds within the surface boundary layer as well. The main enhancements to Chow's model are in the inclusion of a similarity boundary layer formulation relating vertically integrated flow to the surface drag (magnitude and direction), adoption of more realistic boundary layer depths than considered by Chow or Shapiro, consideration of the effects of boundary layer stratificat... and variable surface roughness (expressed in terms of wind alone with no sea state effects considered), and incorporation of greater flexibility in the specification of the imposed pressure distribution of the vortex over the possibilities considered by Chow.

The CE model was developed with a secondary objective to provide winds over inland lake surfaces and land surfaces of arbitrary roughness. The theoretical development of this part of the model met with less success than the over-water treatment. A simplified equilibrium boundary layer approach was adopted which ignores the adjustment of the planetary boundary layer (PBL) wind field across discontinuities of roughness. Thus, while the model validation against winds measured over land indicated good agreement when the wind fetch was over a homogeneous roughness, little is known about the effect on ocean response modeling associated with failure in the CE model (probably) to resolve small scale PBL wind changes downwind of abrupt changes in roughness (e.g. the coast).

Initialization

The model is generally applied with boundary layer height in the range of 500 m - 650 m, slightly unstable stratification, a Charnock type surface roughness formulation (Charnock constant 0.035 with Karman constant 0.35), and a value of unity for the Ekman scale height parameter. This combination produces unbiased surface winds over the open sea when the model is applied to real storms and validated against measured surface wind time histories obtained by calibrated instruments (e.g. NOAA buoys, offshore rigs).

The pressure field is generally described as the superposition of the pressure gradient computed from the exponential pressure profile form for the symmetric part of the vortex:

$$p(r) = p_o + (p_u - p_o) e^{\frac{-R_r}{r}}$$
 (1)

where

p(r) = pressure

 p_o = central pressure (at the eye)

 p_{-} = axisymmetric ambient pressure (far field pressure)

 $R_p = \text{scaling radius}$

r = radius

and an uniform ambient gradient given by

$$f \, \overline{k} \, x \, \overline{V_a} = -\frac{1}{\rho} \, \nabla p_a \tag{2}$$

where

f = Coriolis parameter

K =unit vector in the vertical direction

 \overline{V}_{s} = ambient uniform geostrophic flow

 ρ = mean air density

 ∇p_a = uniform ambient pressure gradient

This pressure initialization scheme (it is also a boundary condition since the model is solved to a steady state solution) often provides a very realistic simulation of the actual pressure field about a tropical cyclone. However, in some storms the actual pressure field departs from this simple picture in several possible ways. Often, particularly as a tropical cyclone enters the midlatitudes, the ambient pressure field is inhomogeneous. The effect is especially evident if the tropical cyclone begins to interact with a frontal system or an extratropical cyclone or both. Within the tropics, some storms have been shown (Holland 1980) to follow the more general form:

$$p(r) = p_o + (p_w - p_o) e^{-\left(\frac{R_o}{r}\right)^2}$$
(3)

where

B = constant in the general range 0.5-2.5

Finally, in some storms the radial pressure profile in the inner core is more irregular than either of the above forms, with a shape which implies two maxima in the radial pressure gradient, accompanied by two distinct maxima in the wind speed. Willoughby (1990) and Black and Willoughby (1992) have described the tendency for "concentric rings" in the radial wind distribution to be a fairly typical characteristic of intense tropical cyclones. The rings appear to be related intimately to storm intensity evolution. For example, Figure 1 shows the evolution of concentric rings in Hurricane Gilbert (1988) over a six-day period. In this storm, the CE model might be expected to provide reasonably accurate wind fields in the initial stage of vortex development and intensification between September 11-13, but it would fail to model the complicated double maxima structures later. The impact on ocean response modeling of this failure to model concentric rings is unknown.

Numerics

The CE model is computationally demanding. For example, computational considerations drove the decision to presolve the boundary layer model for spatially homogeneous (constant) boundary layer height and stability and to use a table look-up procedure for the drag coefficient during the marching of the solution toward steady state. To relax the constraint of constant boundary layer height and stability would greatly increase computer time, unless a more efficient integration scheme could be found. The minimum grid spacing on the inner nest of the solution grid (as opposed to the target grid) is 5 km, which is a bit too large to resolve details of the wind field near the center in very tight storms. (For example, as Hurricane Andrew approached the south Florida coast, the radius of maximum wind was only about 11 km.) The grid spacing is also not sufficient to resolve boundary layer adjustments near roughness discontinuities, though that physical process is not presently incorporated in the numerical model. Further, the grid spacing is too coarse to resolve detailed gradients of wind over inland bays and estuaries. Limitations in temporal resolution are less serious, within the constraint of the steady-state model, since the "time step" of the windfields is simply the temporal resolution of the storm track. That temporal resolution can be refined within reason (say to intervals of 15 minutes or so) without significant computational cost.

Figure 1. Temporal changes in the azimuthally averaged wind for NOAA reconnaissance flights into Hurricane Gilbert; changes are normalized to a 6-hr time interval (from Black and Willoughby (1992))

Summary of Limitations

The main model limitations described in each category above may be listed as follows:

a. Physics.

- (1) Decoupling of boundary layer from full vortex dynamics, precluding mutual adjustment of pressure and wind fields; and feedback of convective scale effects on wind field.
- (2) Simplified PBL theory (e.g. constant Ekman scale height).
- (3) Extrapolation of Charnock roughness to extreme wind speeds, with no sea state dependence.
- (4) No boundary layer adjustment across roughness discontinuity.

b. Initialization.

- (1) Constant and homogeneous boundary layer height.
- (2) Constant and homogeneous stratification.
- (3) Relatively simple pressure specification:
 - (a) Exponential pressure profile provides only one radius of maximum wind (no concentric rings).
 - (b) Pressure profile may be inadequate even for unimodal maximum gradient pressure distributions.
 - (c) Homogeneous ambient linear pressure gradient.

c. Numerics.

- (1) Practical limit of spatial resolution to 5 km may be inadequate for very tight storms.
- (2) Large number of iterations (800) required for each steady state configuration, or snapshot (using the terminology of Cardone et al. 1992).

In this study, two of the above limitations are addressed and remedied, as described in the next section.

3 Upgraded Model

Increased Resolution

The CE program consists basically of two main programs (Cardone et al. 1992). The first, SNAP, solves the numerical vortex model on a nested grid a number of times to represent the storm wind field at discrete times within an event, thereby producing a number of *snapshot* wind fields on a nested grid. SNAP also writes the snapshots to a file for use by the second main program HIST, which among other functions, interpolates the nested grid solutions to hourly intervals and then interpolates the winds to an output or *target* grid (typically that of an ocean response model).

The nested grid consists of five square 21 by 21 grid point arrays. The grid spacing increases by a factor of two from nest to nest. In the program input, the user specifies a desired spacing of the inner nest (the variable DX in namelist NAME3 of SNAP). For the default value of 5 km, the grid spacing in the coarsest nest becomes 80 km and the entire grid covers an area of (1,600 km²). While the existing CE program allows users to set DX smaller than 5 km, this is not recommended since the grid coverage shrinks commensurately. The simplified boundary condition applied on the outer boundary of the outermost nest becomes increasingly tenuous as the gridded domain shrinks.

The upgraded program allows the use of up to seven nests. However, the user may specify the number of nests (from three to seven) in a given run. The new parameter INSIDE is used to specify the number of active nests. It designates which is the finest active nest, where nests are numbered from 1 to 7 going from finest to coarsest. For example, INSIDE = 1 activates all seven nests, and INSIDE = 2 activates only nests 2 through 7. The grid spacing of nest 1, the innermost nest, is specified as before with variable DX, regardless of whether or not the nest is active. The relationships between INSIDE, active nests, and spacing of the finest active nest are summarized in Table 1. The default value of DX is 2 km. If all seven nests are exercised, the execution time per snapshot is roughly four times as long as the existing CE model. For this case the number of iterations on the inner nest is set to the default value of 3200.

Table 1 Effect of Nest Activation Parameter, INSIDE								
INSIDE Active Nests Specing of Finest Active Nest								
1	1 - 7	DX						
2	2 - 7	2 DX						
3	3 - 7	4 DX						
4	4-7	8 DX						
5	5-7	16 DX						

The program with the new nesting was tested in two ways using the Hurricane Camille snapshots as test cases. First, vortex model winds were produced by the CE model (and its OWI equivalent) for the case of DX = 8 km. Then, the same SNAP inputs were used to generate winds with the new code for the case DX = 2 km, INSIDE = 3, which provides the equivalent number of nests and inner nest grid spacing as the CE model run. Winds produced by the two alternative programs were interpolated to a target grid covering the Gulf of Mexico (nominal spacing of 0.2 deg^1), compared and found to agree to within roundoff error of the VAX computer used for these tests.

The second test compared winds for Camille produced by the new code for the case DX = 2 km and INSIDE = 1; that is, all seven nests are live with inner nest grid spacing of 2 km, with winds produced by the CE program with DX = 5 km. These results are shown in Appendix A which gives, at 30-minute intervals, the maximum scalar wind speed, the location and the corresponding wind speeds and directions, and the same data for the maximum vector wind difference magnitude. The results (see also Figure 2) indicate that the largest differences (scalar differences of up to about 7 m/s), occur inside the eyewall, where truncation errors on the 5-km solution are expected to be large for an intense tight vortex such as Camille. Maximum scalar wind speed differences in the area of the eyewall are generally less than 1 m/sec. However, maximum vector difference magnitudes of up to 9 m/sec were observed occasionally in the vicinity of the eyewall reflecting a tendency for the wind direction on the 2-km solution to be turned systematically in the direction of less inflow, by up to 10 deg from the 5-km solution. The 2-km solutions are no doubt the more accurate solutions.

A table of factors for converting non-SI units of measurement to SI units is presented on page vi.

Figure 2. Distribution of maximum wind speed differences between 5-nest and 7-nest model runs for Hurricane Camille

Generalized Pressure Specification

Pressure profile form

The upgrade to the pressure specification uses a generalized form of Holland's (1980) exponential pressure profile

$$p(r) = p_o + \sum_{i=1}^n dp_i e^{-\left(\frac{R_p}{r}\right)^{k_i}}$$
 (4)

where

n = number of components

 dp_i = pressure anomaly for the *i'th* component $(dp_1+dp_2+...+dp_n=p_n-p_o)$

 R_{-i} = scaling radius for the i'th component

 B_i = Holland's B coefficient for the i'th component

The corresponding tangential and radial pressure gradients are:

$$\frac{\partial p}{\partial \theta} = 0 \qquad \text{(tangential)}$$

$$\frac{\partial p}{\partial r} = \sum_{i=1}^{n} B_{i} dp_{i} \left(\frac{R_{pi}}{r}\right)^{p_{i}} \left(\frac{1}{r}\right) e^{-\left(\frac{R_{p}}{r}\right)^{p_{i}}} \qquad \text{(radial)}$$

The CE model was modified to provide options for a single or double exponential component (n = 1 or n = 2). This form allows the specification of pressure profiles with two separate maxima in the radial pressure gradient, though the mere form does not guarantee two maxima. For example, the sum of two exponentials also allows the modeling of pressure profiles which have only one maximum but with shapes very different from those predicted by the single exponential even with the variable B included.

Incorporation of this model into the seven-nest version of the program led to extensive changes to program SNAP, in particular to Subroutines GRAD and PXYM and further changes to namelist NAME3, as documented in Appendix B. One immediate consequence of this model is that the quadrantal specification of profile parameters allowed in the single exponential form with B=1 is lost. To retain this option in the CE model portfolio, two versions of the upgraded program were developed as follows:

SNAP_ADC.7NE and HIST_ADC.7NE - This version only upgrades the current CE program (which includes quadrantal variation of parameters for a single exponential with B=1) to incorporate the additional nests.

SNAP_HOL.7NE - This version upgrades the current CE model to allow both 7 nests and the generalized pressure specification scheme, but without quadrantal variation. Note, however, that asymmetry in the pressure field is still modeled through superposition of the vortex pressure field and the background steering gradient. The background pressure gradient is required to be homogeneous (that is, the parameter ST12 is eliminated).

Modified outflow

In early tests of the upgraded CE program with hypothetical snapshot inputs estimated roughly to apply to several stages of Hurricane Gilbert (inputs for

Gilbert snapshots were derived more rigorously as described below), it was demonstrated that the program could produce the pattern of annular concentric wind maxima. However, it was noticed that the inflow characteristics of the model appeared to have changed somewhat from the unimodal model. In the standard CE model, Subroutine OUTFLOW serves to remove 8 degrees of inflow from the snapshot solution throughout the domain to compensate approximately for inflow believed to be spuriously introduced through the numerical solution. This spurious inflow is revealed by solving the model for a motionless vortex with all friction terms deactivated and comparing the modeled wind direction to the purely circular flow expected of a vortex in gradient balance.

The frictionless, motionless vortex test was repeated with the upgraded model for the series of nine snapshots indicated in Table 2. For the unimodal case (Case 1) and the bimodal cases with B=1 for both exponentials (cases 2 and 6), the maximum inflow (which tends to occur just outside the wind maxima) averages 7.5 deg. As the value of B increases, however, there is a proportional increase in the inflow. In the bimodal profile with B varying between the two exponentials, the inflow varies with radius. Subroutine OUT-FLOW was modified to compensate for dependence of spurious inflow on B (Table 3).

Table 2			
Meximum	Inflow Observed	in Frictionless St	ationary Vortex
Solution ¹			•

Case	P. mb	R _{pt}	R _{se}	dp, mb	dp, mb	8,	8,	(Max inflow), deg	(Max Inflow) ₂ deg
1	970	27	0	40	0	1.00	0.00	7.2	_
2	915	8	58	68	27	1.00	1.00	7.3	7.3
3	915	8	58	68	27	1.00	2.00	6.6	13.1
4	915	8	58	68	27	2.52	1.00	18.7	6.6
5	915	8	58	68	27	2.52	2.00	28.8	16.5
6	890	6	42	53	67	1.00	1.00	8.0	7.7
7	890	6	42	53	67	1.00	1.26	8.1	9.1
8	890	6	42	53	67	2.52	1.00	12.7	7.5
0	890	6	42	53	67	2.52	1.26	15.1	9.0

¹ All runs were done with the upgraded CE model with 7 nests and generalized pressure specification; $p_{\rm u}$ = 1010 mb for all runs

Table 3 Empirical Correction of Inflow Angle								
Reduction Applied To Inflow Angle deg								
Unimodel <i>B</i> = 1	8							
Unimodel <i>B</i> ≠ 1	8 8							
Birmodel	$8\left(\frac{B_1+B_2}{2}\right)$							

Specification of pressure parameters

Single Exponential Profile: B = 1. In the standard CE model, the pressure profile may be specified in basically two ways. The most fundamental way is to fit the profile to sea level pressure measurements available at different radii at a given time, or transformed from time to space using single station data acquired at a station in the path of the storm. There are several examples of this approach as applied to historical U.S. Gulf of Mexico and East Coast hurricanes in Graham and Hudson (1960). The eye pressure may be prescribed, if it is known, for a more accurate fit, or the eye pressure may be extrapolated from a fit determined exclusively from data outside the center. A simplification to this procedure is often followed for oceanic storms, for which eye pressure may be known from aircraft dropsonde data, far field pressure is estimated from weather maps, and a few estimates of pressure at various radii about the storm are known from ship or island station synoptic reports. Then, the unknown parameter scale radius may be estimated from Equation 1 as follows for each such report and an average or weighted average of the estimates taken to represent the storm profile at map time:

$$R_{p} = -r \ln \left(\frac{p(r) - p_{o}}{p_{-} - p_{o}} \right) \tag{6}$$

If there are insufficient pressure data but eye pressure is known and an estimate of the radius of maximum wind, R_m , is known (e.g. from aircraft vortex message reports filed upon penetration of the eye and assuming that R_m at flight level is the same as R_m at the surface, or more crudely from radar or satellite eye diameter estimates), R_p may be estimated directly from R_m using the average relationship found between these two variables by the vortex model.

Single Exponential Profile: Variable B. Variants of these same two approaches may be followed to estimate the parameters of the generalized unimodal model, for which the additional parameter B must also be specified. Again, if there are sufficient pressure data, the profile may be fitted directly. For example, Figure 3 shows the screen display of a PC-based interactive system developed at OWI using a commercially available plotting/statistical analysis software package. The pressure data are composited (see window in upper right hand corner of screen) as a function of radius in a South China Sea typhoon from reduced (from flight level) aircraft pressures and pressures reported by ships within a 3-hr time window of analysis time. The aircraft also provided estimates of eye pressure (note the two conflicting estimates at the origin in the lower window of Figure 3). Far field pressure was estimated from weather maps. The best fit shown is for $p_a = 968$ mb, B = 0.8, and $R_a =$ (14 nm)^{0.8}. The window at the upper left of the screen compares the azimuthally averaged solution for the model surface wind (downloaded from a run made on a VAX) and reduced aircraft and ship reports of wind.

The second approach is more indirect and emphasizes the use of aircraft wind data. In recent years such data have become quite accurate after the introduction of inertial navigation systems, onboard processing and the availability of coded messages (so-called supplementary or peripheral flight level winds) containing measured winds at flight level outside the eye. Figure 1 shows the complete analysis carried out by Black and Willoughby (1992) of flight data acquired over the main lifetime of Hurricane Gilbert in the Caribbean Sea and Gulf of Mexico. These curves show 12 separate radial profiles of the azimuthally averaged flight level (700 mb or 850 mb) tangential wind speed composited from flight legs near the indicated times. Most of the wind profiles exhibit two distinct wind maxima. On the assumption that the azimuthally averaged flow is approximately in gradient balance with the axisymmetric pressure field, the pressure profile associated with double concentric wind maxima should also exhibit two local maxima in the pressure gradient. Therefore they might be fitted by a double exponential profile. Even those profiles which do not exhibit two distinct peaks, such as those in panels b, d, and e, exhibit atypical shapes for tropical cyclones, with a single maximum and broad regions with little or no change of wind speed with radius. Nevertheless, we have selected five of these cases to illustrate the fitting of the single exponential profile using aircraft wind data and eye pressure. Parameters are defined in Table 4 and results from the fitting process are given in Table 5.

The fitting method is basically a systematic search of many possible solutions of the single exponential for that solution whose radial distribution of implied gradient wind provides a close match to the location and magnitude of the azimuthal average flight level wind. This searching program (implemented in a preprocessing program called 1EYEWALL.r.OL) requires the input information listed in Table 5. Additional documentation is given in Appendix B. The searching program fixes the profile anomaly parameter $(p_m - p_o)$, loops through possible values of the scale radius R_p (from R_m to $2R_m$) and B (from 0.5 to 2.52) and finds the pressure profile whose gradient wind simultaneously

Figure 3. Example of Oceanweather tropical storm analysis

Table 4 Parameter Definitions for Fitting Single Exponential Profile									
Peremeter	Definition								
R _m	Observed radius of maximum wind								
V _m	Azimuthally averaged tangential flight level wind at $R_{\rm m}$								
V _{m150}	Azimuthally averaged tangential flight level wind at 150 km from center								
R _p	Scale radius of single exponential profile								
ф	Storm pressure anomaly parameter of single exponential profile								
8	Holland's B								
R _{gen}	Radius of maximum gradient of fitted pressure profile								
V _{gm}	Maximum gradient wind of fitted pressure profile								
V _{g150}	Gradient wind of fitted profile 150 km from center								

Table 5 Generalized Single Exponential Profile Fits to Selected Hurricane Gilbert Cases											
Input Output											
Case	Po mb	P mb	R _m ture	V	V _{m150} m/s	im	dp mb	В	V _{en} m/s	R _{gm} km	V _{g18} 0 m/e
3	905	1012	16	65	30	20	107	1.50	67.2	20	21
4	888	1012	13	69	30	16	124	1.41	70.3	16	20
7	951	1012	65	38	36	97	61	1.00	39.3	87	36
8	950	1012	69	41	38	92	62	1.12	42.2	85	38
9	949	1010	57	40	37	85	61	1.12	41.9	79	37

best matches the observed wind speeds at R_m and at 150 km in terms of absolute difference. For example, in Case 3 of Table 5 the selected profile gradient wind (not shown) is within 1 m/s of the V_m of 65 m/s at R_m . However the searching program places the absolute profile maximum of 67.2 m/s at a radius of 20 km, and fails to maintain the observed broad region of little change in wind speed between 50 and 150 km, resulting in a profile wind speed of only 21 m/s at 150 km, about 10 m/s lower than measured. Cases 7, 8 and 9 are somewhat more successful. The parameter B varies between 1.0 and 1.5 for these fits, or in the same general range reported by Holland for a single exponential.

Double Exponential Profile. While it is conceivable that there may be sufficiently voluminous and accurate pressure data in some tropical cyclones to

attempt to directly fit a double exponential profile to measurements of surface pressure as a function of radius, we have not attempted to construct such a data set and perform such a fit. We did try, without success, to develop useful fits to the profile from just the total storm anomaly, estimates of the two radii of maximum wind and a single pressure along the profile in the region between the two maxima. However, a generalization of the searching algorithm described above for a single exponential has met with some success.

The searching algorithm (called 2EYEWALL.HOL) as applied to a double exponential is documented in Appendix B. Parameters involved are defined in Table 6 and Figure 4. The searching program fixes the total storm anomaly, assumes the scale radius for the inner exponential is equal to the observed radius of maximum wind of the inner maximum, or ring, and loops through ranges of the outer scale radius, R_{p2} (from R_{m2} to $2R_{m2}$), inner and outer B (from 0.5 to 2.52) and the ratio of dp/dp_2 (from 1/8 to 8). The algorithm seeks the combination whose pressure profile provides a gradient wind profile that has maxima at R_{m3} and R_{m2} within ± 1 m/s of observed and which maximizes the following:

$$V_{gl} + V_{g2} - 2 V_{gm} \tag{7}$$

where

$$V_{\rm gm}$$
 = gradient wind at $(R_{\rm ml} + R_{\rm m2})/2$

If it succeeds in finding such a profile it checks that the wind at 150 km is lower than the outer maximum, V_{m2} , and if it is, prints the solution. If these conditions are not met, another cycle is attempted. The matching criterion is relaxed to ± 2 m/s, this time requiring that the wind at $(R_{ml} + R_{m2})/2$ is less than the winds prescribed at R_{ml} and R_{m2} , and minimizing the wind at 150 km. The program also prints the profile parameters for the selected profile. If, after the second cycle the program still does not find a successful fit, it prints the closest fit found in each cycle.

Table 7 shows the results of the application of this searching algorithm to all 12 of the azimuthal average tangential flight level wind profiles in Hurricane Gilbert derived by Black and Willoughby (1992). The double exponential appears to require large values of B to resolve two distinct peaks in the radial profile of gradient wind, at least for most of these cases. Table 8 compares the location and magnitude of the double wind maxima derived from the fitted profile to those observed. Figure 5 compares the fitted and observed radial profiles of pseudo-gradient wind. The inner ring is usually fitted very closely. In 11 out of 12 of the cases a distinct outer wind maximum is resolved, and it is usually placed within ± 20 km of the observed maximum. In 9 out of those 11 cases, the maximum is within about ± 2 m/s of that observed. Case 8 is the poorest fit, but in practice Case 7 and Case 8 are so close in time

Table 6 Parameter Definitions for Fitting Double Exponential Profile								
Parameter .	Definition							
R _{m1}	Radius of maximum wind, inner ring							
R _{me}	Radius of maximum wind, outer ring							
V _{m1}	Azimuthally averaged tangential flight level wind, inner ring							
Vane	Azimuthally averaged tangential flight level wind, outer ring							
R _{p1}	Scale radius, inner exponential							
R _{pe}	Scale radius, outer exponential							
dp,	Pressure anomaly, inner exponential							
dp,	Pressure anomaly, outer exponential							
В,	Holland's B, inner exponential							
В,	Holland's B, outer exponential							
R _{g1}	Radius of maximum gradient wind of fitted profile, inner ring							
R _{pt}	Radius of maximum gradient wind of fitted profile, outer ring							
V _{g1}	Maximum gradient wind of fitted profile, inner ring							
V _{se}	Maximum gradient wind of fitted profile, outer ring							

(in fact they are derived from the same flight) that Case 7 may be used to represent this phase of the storm history.

Sample Runs

The upgraded program, including seven nests and the generalized pressure specification, has been applied to provide sample wind fields on target grids using as test input the snapshots developed for Hurricane Gilbert. Two runs were made. The first generates a snapshot wind field for each of the 12 Gilbert cases (including realistic forward motion and steering flow parameters) and interpolates each snapshot to a polar grid using a test history table. Interpolations are also made from pairs of adjacent snapshots (equal time weight). Winds for the 23 wind fields so produced on the polar grid are then azimuthally averaged. These results are given in Appendix C.

A second test run was made which modeled Gilbert during its passage across the Gulf of Mexico between 1200 UT 15 September through 0000 UT 17 September, 1988. Snapshots for this run consisted of Cases 7, 9, 11, and 12. The target grid for this run was a grid of nominal 12 nm spacing covering the Gulf of Mexico. The wind fields were output at 12-hourly intervals. Additional details and surface wind field plots are given in Appendix D.

Figure 4. Some parameters in double exponential profile

Table 7
Observed Pressure and Azimuthally Averaged Pseudo-Gradient Wind Maxima In Hurricane Glibert¹ and Estimated Generalized Profile Parameters

				Inp	ut			Output					
Case	Date/ Time (UTC)	P. mb	<i>P_</i> mb	R _m , km	<i>R_{m2}</i> km	V _{m1} m/s	V _{m2} m/s	R _p , km	R _{pt} mb	<i>dp</i> , mb	<i>dp,</i> mb	В,	В,
1	11/1624	972	1011	47	90	40	35	47	127	23	16	2.52	2.52
2	11/2002	968	1011	58	108	47	36	58	162	32	11	2.52	2.52
3	13/1744	905	1012	16	111	65	32	16	125	94	13	1.68	2.39
4	13/2333	888	1012	13	100	69	38	13	100	110	14	1.59	2.52
5	14/0549	893	1012	13	70	62	44	13	70	101	18	1.41	2.52
6	14/1126	890	1012	13	69	62	48	13	69	102	20	1.41	2.52
7	15/1204	951	1012	22	65	25	38	22	87	45	16	0.56	2.52
8	15/1629	950	1012	32	69	28	41	32	103	35	27	0.94	2.51
9	16/0016	949	1010	22	57	27	40	22	81	41	20	0.75	2.52
10	16/0539	950	1011	55	120	41	37	55	170	52	9	1.12	2.24
11	16/1850	953	1010	50	100	42	43	50	119	47	10	1.33	2.52
12	16/2131	954	1009	40	100	39	40	40	112	45	10	1.19	2.52

¹ Cases correspond to Black and Willoughby's (1992) analysis of aircraft data in Hurricane Gilbert

Table 8
Comparison of Measured Flight-Level Wind Maxima and Fitted
Gradient Wind Maxima for Double Exponential Pressure Profile¹

		Inner	Ring		Outer Ring					
	Measured		Fitted		Measured		Fitted			
Case	R _m , km	V _m , m/s	R _{g1} km	V _{g1} m/s	R _{mt} km	V _m , m/s	R _{gs} km	V _{ge} m/s	V _g at R _{ms} m/s	
1	47	40	47	39.6	90	35	110	37.1	35.7	
2	58	47	58	46.6	108	36	106²	35.72	_	
3	16	65	16	66.7	111	32	105	33.7	33.6	
4	13	69	13	70.3	100	38	85	37.2	36.3	
5	13	62	13	63.5	70	44	59	46.2	45.4	
6	13	62	13	63.7	69	48	59	48.4	47.3	
7	22	25	22	26.3	65	38	82	39.2	36.1	
8	32	28	30	29.7	69	41	98	48.1	39.2	
9	22	27	21	28.9	57	40	78	43.4	38.1	
10	55	41	55	39.2	120	37	120	37.1	_	
11	50	42	50	40.7	100	43	93	41.5	41.3	
12	40	39	40	32.9	100	40	92	38.4	38.2	

¹ Cases correspond to Black and Willoughby's (1992) analysis of Hurricane Gilbert

² Second ring maximum not resolved, profile gradually decays from inner maximum

Figure 5. Comparison of azimuthally averaged reconnaissance winds and fitted gradient winds in 12 cases of Hurricane Gilbert defined by Black and Willoughby (1992)

4 Summary

The CE tropical cyclone surface wind field model has been a very useful tool in ocean response modeling for more than a decade. The model continues to be used regularly. The CE recently held a workshop to reassess model assumptions, particularly in light of modern advances in computing technology and field measurement of hurricane structure. Model limitations were identified and evaluated in terms of their perceived importance to ocean response modeling and the level of effort required to develop improved solutions. The limitations are summarized in this report.

Two aspects of the CE model were targeted for improvement. This report describes the improvements developed for the upgraded model. First, the standard CE model represents a compromise between spatial resolution in the central region of very high gradients, coverage of the full ocean area affected by the tropical cyclone, and computer requirements. Computing resources are much more available now than at the time the model was developed in the late 1970's. The model was upgraded to include more computationally intensive options which give improved resolution and areal coverage. Up to seven nested grids are now available, compared to only five nests in the standard model. In a typical application, this upgrade can be used to achieve 2-km resolution around the eye (as compared to 5-km resolution often used in the standard model) and an expanded total coverage area.

The second upgrade to the standard CE model allows a more general specification of the axisymmetric pressure profile. This upgrade can be used to create wind fields with maxima at two different radii or with a broad maximum extending over a range of radii. It also provides more flexibility in fitting the shape of single peaked wind profiles.

The upgraded model is demonstrated with historical hurricanes. The fivenest and seven-nest models are applied to Hurricane Camille. The fully upgraded model, with seven nests and general pressure specification, is applied to Hurricane Gilbert. This hurricane was chosen because it is well-documented by Black and Willoughby (1992) and it evolved into some non-traditional storm structures. The upgraded model was more effective than the standard CE model in simulating the storm.

References

- Abel, C. E., Tracy, B. A., Vincent, C. L., and Jensen, R. E. (1989). "Hurricane hindcast methodology and wave statistics for Atlantic and Gulf hurricanes from 1956-1975," WIS Report 19, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Black, M. L., and Willoughby, H. E. (1992). "The concentric eyewall cycle of Hurricane Gilbert," *Mon. Weather Rev.*, American Meteorological Society, 120, 947-957.
- Cardone, V. J., and Thompson, E. F. (1992). "Numerical modeling of tropical cyclone boundary layer winds: status, limitations and priorities," unpublished report prepared for U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Cardone, V. J., Graber, H. C., Jensen, R. E., Hasselmann, S., and Caruso, M. J. (1994). "In search of the true surface wind field in SWADE IOP-1: ocean wave modelling perspective," to be submitted to Atmosphere-Ocean System Journal.
- Cardone, V. J., Greenwood, C. V., and Greenwood, J. A. (1992). "Unified program for the specification of hurricane boundary layer winds over surfaces of specified roughness," Contract Report CERC-92-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Chow, S. H. (1971). "A study of the wind field in the planetary boundary layer of a moving tropical cyclone," M. S. thesis in Meteorology, School of Engineering and Science, New York University, New York, N.Y.
- Cooper, C., and Thompson, J. D. (1989). "Hurricane-generated currents on the outer continental shelf, 1, model formulation and verification," *J. Geophys. Res.* 94(C9), 12513-12540.
- Forristall, G. Z. (1980). "A two-layer model for hurricane driven currents on an irregular grid," J. Phys. Oceanog. 10(9), 1417-1438.

- Graham, H. E., and Hudson, G. N. (1960). "Surface winds near the center of hurricanes and other cyclones," National Hurricane Research Project Report No. 39, Wash., DC.
- Grosskopf, W. D., Griffon, D. L., Berek, E. P., and Sharma, J. N. (1991). "Gulf of Mexico wind, wave, and current database," *Proc.*, Offshore Tech. Conf. OTC 6539, Houston, TX, 1, 357-364.
- Holland, G. J. (1980). "An analytic model of the wind and pressure profiles in hurricanes," Mon. Weather Rev. 108, 1212-1218.
- Ly, L. N., and O'Connor, W. P. (1991). "Gulf coast hurricane surge simulations using a numerical ocean circulation model," *Proc.*, *MTS '91 Conf.*, Marine Technology Society, New Orleans, LA.
- Mairs, H. L., Koch, S. P., Gordon, R. B., and Cuellar, R., Jr. (1992). "The storm current response of Gulf of Mexico hurricanes," *Proc.*, Offshore Tech. Conf. OTC 6833, Houston, TX, 235-242.
- Mark, D. J., and Scheffner, N. W. (1993). "Validation of a continental-scale storm surge model for the coast of Delaware," *Proc. Estuarine and Coastal Modeling Conference*, ASCE, Chicago, IL, 249-263.
- Reece, A. M., and Cardone, V. J. (1982). "Test of wave hindcast model results against measurements during four different meteorological systems," *Proc.*, Offshore Tech. Conf. OTC 4323, Houston, TX, 269-293.
- Shapiro, L. J. (1983). "The asymmetric boundary layer flow under a translating hurricane," J. Atmospheric Sci. 39(Feb.).
- Thompson, E. F. (1993). "HURWIN: Tropical Storm Planetary Boundary Layer Wind Model," Coastal Modeling System (CMS) User's Manual, Instruction Report CERC-91-1, Supplement 2, M. A. Cialone, ed., U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Tracy, B. A., and Hubertz, J. M. (1990). "Hindcast hurricane swell for the coast of southern California," WIS Report 21, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- WAMDI Group. (1988). "The WAM model a third generation ocean wave prediction model," J. Phys. Oceanog. 18, 1275-1810.
- Willoughby, H. E. (1990). "Temporal changes of the primary circulation in tropical cyclones," J. Atmospheric Sci. (47), 242-264.

Appendix A Comparison of Five-Nest and Seven-Nest Models for Hurricane Camille

Comparison of modeled winds at 20-m height and at 30-min intervals in alternative hindcasts of Hurricane Camille in the Gulf of Mexico during August 1969. The run labelled "5-Nests" used the standard CE model with 5-km spacing on the inner nest. The run labelled "7-Nests" used the upgraded CE model with seven-nests and grid spacing of 2 km on the inner nest. The first (second) line at each time step gives: maximum scalar (vector magnitude) wind speed difference found on the grid between the two runs, latitude and longitude of the grid point, and wind speed and direction of the alternative solutions at that grid point.

Table A1 Comparison of Wind Estimates from 5-Nest and 7-Nest Models, Hurricane Camille

		Grid Point Coord.		5-Nest	Model	7-Nest Model			
Day/ Hour	Mex. Speed Diff. m/s	Lat. deg	Long.	Speed m/s	Dir. deg az	Speed m/s	Dir. deg az		
161200	7.1	24.1	-85.7	27.9	151.7	20.8	162.6		
	8.4	24.1	-85.7	27.9	151.7	20.8	162.6		
161230	3.0	24.1	-86.0	39.7	338.6	36.7	342.5		
	6.0	24.1	-85.7	42.0	172.2	43.1	180.1		
161300	1.2	24.1	-85.7	41.6	181.0	42.8	183.7		
	7.0	24.3	-86.0	52.6	47.1	52.9	54.6		
161330	2.2	24.3	-86.0	43.6	78.8	41.4	88.0		
	7.2	24.3	-86.0	43.6	78.8	41.4	88.0		
161400	1.5	24.3	-86.0	38.1	131.1	36.7	140.6		
	6.7	24.3	-86.2	51.0	2.0	50.1	9.5		
161430	3.4	24.3	-96.2	40.7	359.4	37.3	5.4		
	7.3	24.3	-86.0	43.5	150.1	45.2	1 59 .3		
161500	2.1	24.3	-86.2	21.2	312.9	23.2	306.1		
	5.3	24.5	-86.2	53.0	52.8	54.0	58.3		
161530	2.4	24.3	-86.2	31.2	240.3	33.6	242.5		
	8.2	24.5	-86.2	49.6	80.5	49.2	90.0		
161600	1.0	24.3	-86.4	46.5	312.6	45.5	316.1		
	8.9	24.5	-86.2	47.6	106.6	46.9	117.4		
161630	3.8	24.5	-86.4	39.5	16.6	35.7	22.6		
	6.2	24.5	-86.2	46.3	138.6	47.9	145.9		
161700	1.5	24.5	-86.4	9.8	339.9	8.4	342.7		
	3.6	24.8	-86.4	53.0	57.2	54.1	60.8		
161730	1.9	24.5	-86.4	23.2	226.5	25.1	232.6		
	5.4	24.8	-86.4	52.2	74.4	52.9	80.2		
161800	2.0	24.5	-86.4	36.8	209.7	38.8	212.5		
	6.9	24.8	-86.4	49.9	103.1	51.0	110.8		
161830	3.4	24.8	-86.7	43.7	27.9	40.3	36.3		
	7.0	24.8	-86.7	43.7	27.9	40.3	36.3		
161900	2.1	24.8	-86.7	14.7	2.9	12.7	359.3		
	3.0	25.0	-86.7	53.2	53.0	54.2	55.9		
161930	2. 8	24.8	-86.7	25.2	226.3	28.0	231.6		
	6.0	25.0	-86.7	52.0	76.3	52.6	82.9		
162000	1.9	24.8	-86.7	36.1	217.8	38.0	219.8		
	7.9	25.0	-86.7	48.9	102.0	49.9	111.1		
162030	3.1	25.0	-86.9	44.4	20.2	41.3	28.9		
	7.2	25.0	-86.9	44.4	20.2	41.3	28.9		
(Sheet 1 of 6)									

Table /	A1 (Conti	nued)					
		Grid Po	int Coord.	5-Nes	Model	7-Nest	Model
Day/ Hour	Max. Speed Diff. m/s	Lat. deg	Long. deg	Speed m/s	Dir. deg az	Speed m/s	Dir. deg az
162100	1.2	25.0	- 86 .7	44.1	159.6	45.3	163.4
	3.2	25.0	- 86 .7	44.1	159.6	45.3	163.4
162130	2.4	25.0	-86.9	24.7	255.5	27.0	257.8
	6.8	25.3	-86.9	51.9	68.2	52.2	75.7
162200	1.7	25.2	-86.9	47.8	95.4	46.2	106.5
	9.3	25.2	-86.9	47.8	95.4	46.2	106.5
162230	2.8	25.2	-87.1	45.4	13.3	42.6	22.2
	7.6	25.2	-86.9	46.9	132.4	46.9	141.6
162300	1.6	25.2	-86.9	43.4	163.1	44.9	167.5
	3.7	25.2	-86.9	43.4	163.1	44.9	167.5
162330	2.1	25.2	-87.1	26.5	267.8	28.6	268.0
	7.7	25.4	-87.1	51.0	64.2	51.3	72.8
170000	1.8	25.4	-87.1	44.0	94.1	42.2	104.8
	8.2	25.4	-87.1	44.0	94.1	42.2	104.8
170030	1.2	25.4	-87.4	48.6	345.6	47.3	352.7
	6.1	25.4	-87.4	48.6	345.6	47.3	352.7
170100	2.2	25.4	-87.4	41.8	313.1	39.6	318.0
	7.2	25.6	-87.4	51.9	29.6	51.8	37.5
170130	2.4	25.6	-87.4	31.0	7.0	28.6	6.2
	5.0	25.6	-87.1	45.7	149.9	46.8	155.9
170200	0.9	22.6	-88.5	8.4	265.9	7.4	271.6
	7.8	25.8	-87.4	51.4	54.0	51.4	62.7
170230	7.3	25.8	-87.4	19.8	104.9	12.6	124.3
	9.0	25.8	-87.4	19.8	104.9	12.6	124.3
170300	3.5	25.8	-87.4	28.9	221.5	32.3	226.8
	6.7	26.0	-87.4	51.2	81.4	52.0	88.8
170330	1.0	26.0	-87.6	51.3	7.4	50.4	14.3
	7.5	26.0	-87.4	42.1	121.2	41.2	131.4
170400	2.8	26.0	-87.6	38.2	333.4	35.4	336.4
	5.5	26.0	-87.4	41.5	175.3	42.9	182.5
170430	2.9	26.2	-87.6	45.2	39.4	42.3	48.6
	7.6	26.2	-87.6	45.2	39.4	42.3	48.6
170500	1.3	26.2	-87.4	44.2	161.7	45.5	164.7
	3.7	26.4	-87.6	53.4	53.5	54.4	57.3
170530	1.7	26.2	-87.6	32.2	250.2	34.1	251.5
	8.1	26.4	-87.6	46.2	78.9	45.2	89.0
						(Sh	eet 2 of 6)

Table /	A1 (Conti	nued)					
		Grid Po	int Coord.	5-Nec	Model	7-Nes	Model
Day/ Hour	Mex. Speed Diff. m/s	Let. deg	Long.	Speed m/s	Dir. deg az	Speed m/s	Dir. deg sz
170600	6.9	26.4	-87.6	22.5	163.9	15.7	177.4
	8.1	26.4	-87.6	22.5	163.9	15.7	177.4
170630	2.5	26.4	-87.6	37.7	192.9	40.2	199.6
	5.2	26.4	-87.6	37.7	192.9	40.2	199.6
170700	4.0 6.7	26.6 26.6	-87.8 -87.8	42.8 42.8	29.2 29.2	38.8 38.8	36.7 36.7
170730	2.4	26.6	-87.8	6.5	353.2	4.1	20.6
	3.4	26.6	-87.8	6.5	353.2	4.1	20.6
170800	3.2	26.6	-87.8	30.1	229.2	33.2	234.5
	7.9	26.8	-87.8	51.4	81.1	51.1	89.9
170830	1.5	26.8	-88.0	49.3	7.7	47.8	16.1
	7.3	26.8	-87.8	41.8	129.6	40.9	139.7
170900	2.9	26.8	-88.0	35.2	344.8	32.3	345.8
	6.3	26.8	-87.8	43.9	163.9	45.6	171.6
170930	0.9	24.5	-90.1	8.8	290.2	8.0	296.4
	8.6	27.0	-88.0	49.4	53.7	48.5	63.7
171000	5.9	27.0	-86. 0	19.5	102.7	13.6	113.0
	6.6	27.0	-86. 0	19.5	102.7	13.6	113.0
171030	1.4	27.0	-88.3	45.3	342.6	43.9	349.2
	6.4	27.0	-88.0	32.6	186.0	33.3	197.1
171100	2.0 7.1	27.0 27.2	-88.3 -88.3	39.4 51.2	312.5 31.4	37.3 50.1	315.8 39.4
171130	2.3	27.2	-88.3	26.3	24.5	24.0	20.5
	5.3	27.2	-88.0	48.7	145.2	49.6	151.4
171200	1.0	27.2	-88.0	45.1	168.0	46.1	170.2
	6.3	27.4	-88.3	52.9	64.7	53.4	70.4
171230	3.7	27.4	-88.3	39.6	96.0	35.9	102.8
	5.8	27.4	-88.3	39.6	96.0	35.9	102.8
171300	1.8	27.4	-88.5	44.1	346.3	42.4	352.7
	7.1	27.4	-88.3	35.3	180.2	33.6	191.7
171330	1.7	27.4	-88.5	40.1	313.1	38.4	316.2
	7.5	27.6	-88.3	50.7	111.3	51.0	119.7
171400	1.4	27.6	-88.5	28.0	12.5	26.6	8.4
	5.9	27.6	-88.3	48.2	149.0	49.5	155.8
171430	2.3	27.6	-88.5	30.2	280.3	32.6	279.7
	8.4	27.8	-88.5	48.7	58.4	47.3	68.2
				<u> </u>		(8)	neet 3 of 6)

		Grid Po	oint Coord.	5-Nee	t Model	7-Nes	t Model
Day/ Hour	Max Speed Diff. m/s	Lat. deg	Long. deg	Speed m/s	Dir. deg az	Speed m/s	Dir. deg sz
171500	6.0	27.8	-86.5	19.3	114.2	13.3	125.6
	6.8	27.8	-88.5	19.3	114.2	13.3	125.6
171530	1.7	27.8	-88.7	45.9	338.5	44.2	342.8
	6.5	28.0	-88.5	52.5	81.4	53.2	88.4
171600	1.6	28.0	-88.5	41.8	126.4	40.1	136.8
	7.6	28.0	-88.5	41.8	126.4	40.1	136.8
171630	1.7	28.0	-88.7	34.0	338.7	32.3	338.4
	7.5	28.0	-88.5	45.2	169.1	46.3	178.4
171700	3.1	28.3	-88.7	44.9	45.2	41.8	54.2
	7.5	28.3	-88.7	44.9	45.2	41.8	54.2
171730	2.0	28.3	-88.7	6.9	324.1	4.9	340.6
	3.2	28.5	-88.7	53.8	59.8	53.9	63.2
171800	2.6	28.3	-88.7	33.7	240.9	36.4	246.3
	8.5	28.5	-88.7	47.2	81.6	45.0	91.9
171830	7.8	28.5	-88.7	24.5	167.5	16.7	175.6
	8.3	28.5	-88.7	24.5	167.5	16.7	175.6
171900	2.5	28.5	-88.7	38.2	214.3	40.7	221.1
	8.9	28.7	-88.7	50.1	97.5	49.6	107.7
171930	2.9	28.7	-89.0	41.2	1.6	38.3	6.5
	7.7	28.7	-88.7	41.2	154.8	40.8	165.5
172000	1.8	28.7	-88.7	43.2	192.8	45.0	197.7
	7.2	28.9	-89.0	50.0	38.1	49.0	46.4
172030	1.5	28.9	-88.7	47.9	150.2	49.4	158.3
	7.1	28.9	-88.7	47.9	150.2	49.4	158.3
172100	2.0	28.9	-89.0	31.1	283.6	33.2	283.5
	8.2	29.1	-89.0	47.6	55.6	46.1	65.4
172130	3.1	29.1	-89.0	15.6	79.7	12.5	86.5
	3.5	29.1	-89.0	15.6	79.7	12.5	86.5
172200	3.6	29.1	-89.0	27.7	250.0	31.3	255.4
	8.5	29.3	-89.0	50.1	72.7	49.6	82.6
172230	7.2	29.3	-89.0	23.8	135.6	16.6	147.2
	8.2	29.3	-89.0	23.8	135.6	16.6	147.2
172300	1.6	29.3	-89.0	37.8	205.3	39.4	214.6
	7.1	29.5	-89.0	51.5	93.0	52.0	100.9
172330	2.2	29.5	-89.2	44.9	7.8	42.7	15.1
	6.2	29.5	-89.0	39.1	143.3	37.6	152.3

Table	T	A-1-4 P-	les Coord	g Ma-	• M ada	* Al	Medel
Day/ Hour	Mex. Speed Diff. m/s	Lat.	Long.	Speed m/s	Dir.	Speed	Dir.
nou	Dill. IIV8	deg	deg	HVS	deg ez	m/s	000 12
180000	1.7 5.5	29.5 29.5	- 89 .0 - 89 .0	43.4 43.4	188.7 188.7	45.1 45.1	195.4 195.4
180030	1.8 6.0	29.7 29.7	-89.2 -89.0	27.4 49.7	30.7 142.6	25.6 50.7	26.6 149.4
180100	3.2 8.4	29.7 29.9	-89.2 -89.2	27.0 50.6	274.3 62.6	30.2 49.5	276.4 72.1
180130	6.9	29.9	-89.2 -89.2	20.1	126.8 126.8	13.2 13.2	141.7
180200	1.4	29.9	-89.2 -89.2	36.5 36.5	197.3 197.3	37.9 37.9	208.1
180230	2.9	30.1 30.1	-89.4 -89.2	43.9 46.9	16.8 132.5	41.0 45.5	24.2
180300	1.4	30.1 30.3	-89.2 -89.4	45.9 52.0	176.3 47.1	47.3 52.1	181.7 53.6
180390	2.5 3.3	30.3 30.3	-89.4 -89.2	23.1 49.9	71.2 139.7	20.6 50.5	66.5 143.4
180400	1.9 3.6	30.3 30.3	-89.4 -89.4	24.1 24.1	245.7 245.7	26.0 26.0	252.7 252.7
180430	0.9 1.4	28.3 30.3	-92.2 -89.4	8.4 38.9	293.9 234.0	7.5 39.7	299.6 235.6
180500	0.9	28.3 29.5	-92.2 -94.0	8.3 4.4	291.2 353.8	7.5 4.3	296.5 11.9
180530	0.9 1.5	28.5 30.3	-92.2 -89.4	8.8 39.5	292.6 236.7	7.9 38.8	298.1 234.8
180600	0.9	28.5 29.5	-92.4 -93.3	7.8 6.5	293.4 334.2	7.0 6.0	299.2 345.8
180630	0.9 1.3	26.7 29.7	-92.4 -92.9	7.5 8.0	293.6 328.1	6.6 7.2	299.3 336.0
180700	0.9	29.5 29.5	-92.6 -92.6	7.6 7.6	315.2 315.2	6.7 6.7	322.1 322.1
180730	0.9	29.5 29.5	-92.6 -92.6	6.7 6.7	310.7 310.7	5.8 5.8	317.2 317.2
180800	0.9	29.5 29.5	-92.4 -92.4	6.8 6.8	301.6 301.6	5.9 5.9	306.7 306.7
180830	0.9	29.7	-92.2	7.2	298.6	6.3	302.9 298.0
180830	 		 	-	+	6.3 7.3	302

Table /	A1 (Conc	uded)	<u> </u>				
		Grid P	oint Coord.	5-Nec	t Model	7-Nec	t Model
Day/ Hour	Max. Speed Diff. m/s	Lat. deg	Long. deg	Speed m/s	Dir. deg az	Speed m/s	Dir. deg az
180900	0.9	29.7	-92.0	7.2	289.3	6.3	292.2
	0.9	29.7	-92.0	7.2	289.3	6.3	292.2
180930	0.9	29.7	-92.0	6.3	282.5	5.5	284.1
	0.9	30.3	-89.4	17.4	218.1	17.3	215.2
181000	0.8	29.7	-92.0	5.5	275.1	4.7	274.8
	0.8	30.3	-89.4	15.8	216.9	15.8	213.8
181030	0.7	29.7	-92.0	4.8	265.3	4.1	262.5
	0.8	30.3	-86.4	11.9	161.5	12.1	165.0
181100	0.5	29.7	-91.7	4.9	253.5	4.3	249.7
	0.8	30.3	-86.4	11.4	162.2	11.5	165.9
181130	0.4	28.3	-83.4	8.2	156.8	8.5	160.7
	0.8	30.1	-85.7	10.0	160.4	10.2	164.6
181200	0.4	29.7	-93.8	3.1	170.9	3.5	170.8
	0.8	30.3	-86.4	10.3	163.0	10.4	167.3
						(9	heet 6 of 6)

Appendix B Documentation of CE Model Upgrades

This appendix provides brief documentation of new and modified programs in the upgraded CE tropical cyclone surface wind field model. The material is a supplement to the primary documentation of Cardone et al. (1992). Five FORTRAN programs are discussed. The programs HIST_ADC.7NE, SNAP_ADC.7NE, and SNAP_HOL.7NE are modified versions of the previous HIST and SNAP programs. Programs 1EYEWALL.HOL and 2EYEWALL.HOL are new. They are helpful in implementing the new generalized surface pressure specification.

Program HIST_ADC.7NE

HIST_ADC.7NE is a slight modification of HIST_ADC.F. All input files except LSNAP, and all output files, are unchanged from HIST_ADC.F to HIST_ADC.7NE. The changes to file LSNAP are as follows:

- pressure arrays, formerly dimensioned (21,21,5), are now dimensioned (21,21,7);
- wind arrays, formerly dimensioned (21,21,10), are now dimensioned (21,21,14);
- in the variables at the end of records in LSNAP, variable DX is followed by the new variable INSIDE. INSIDE is an integer indexing the innermost live nest of the 7 nests supported, so that the effective grid spacing is DX*2**(INSIDE-1).

Program SNAP_ADC.7NE

SNAP_ADC.7NE is derived from SNAP_ADC.F. The modifications allow the user to run up to 7 grid nests rather than the previous mandatory 5 nests.

Arrays of pressure, pressure gradient, wind, formerly dimensioned (21,21,5), are now dimensioned (21,21,7). Two changes are made to namelist /NAME3/ as follows:

- a variable name NOMEN (CHARACTER*4) for storm identification has been included:
- integer variable INSIDE has been added. INSIDE indexes the finest live nest of the 7 nests provided. Thus the number of live nests is (8-INSIDE), and the grid spacing of the finest live nest is DX*2**(INSIDE-1). Default values are DX = 2. and INSIDE = 1, yielding a 2 km grid spacing and an execution time roughly 4 times as long as the existing 5-nest model. The combination DX = 6.25, INSIDE = 3, (lines 304, 305) reproduces the 25 km spacing often used by the CE for global studies. In the great majority of applications, the useful values of INSIDE are 1, 2, and 3. INSIDE = 4 may be tried for running a quick preliminary study on a coarse grid.

Program SNAP_HOL.7NE

SNAP_HOL.7NE is an extensive modification of SNAP_ADC.7NE to include the generalized pressure profile as well as the capability for modeling up to 7 nests. The variable ST12 and the quadrantal variation of PFAR and RADIUS have been excised. In OWI's experience with the hurricane model, they have been used only once: for hurricane Eloise, September 13, 1975. Variable ITRACK has been excised: its use pertained to a 1969 study in which direction was specified in points. Namelist /NAME3/ is changed materially. Each variable and array in /NAME3/ is documented below. The method of computation of pressure and pressure gradient is discussed in a later part on Mathematical Method.

Revisions at beginning of program

REAL RADIUS(2),DPRESS(2),HOLL(2)
CHARACTER*4 NOMEN
EQUIVALENCE (RAD1,RADIUS), (RAD2,RADIUS(2)), (B1,HOLL),
(R2 HOLL(2)), (DP1 DPRESS), (DP2 DPRESS(2))

- \$ (B2,HOLL(2)), (DP1,DPRESS), (DP2,DPRESS(2))
- NAMELIST /NAME3/ SGW, AN1, NOMEN,
- \$ EYELAT, EYLONG, DIREC, SPEED, EYPRES, RADIUS, RADI,
- \$ RAD2, PFAR, NM, DX, INSIDE, HOLL, B1, B2, DPRESS, DP1,
- \$ DP2

Definition of variables in namelist NAME3

SGW	Magnitude of surface geostrophic wind, m/sec
AN1	Angle between SGW and east, counterclockwise from east
NOMEN	Designator for tropical storm, e.g. two digits and one letter
EYELAT	Latitude of eye of storm at snap time, north positive
EYLONG	Longitude of eye of storm at snap time, east positive (EYLONG is
	included for archival purposes but not presently used in
	computation)
DIREC	Direction of forward motion of storm, clockwise from north
SPEED	Speed of forward motion, in kt (but redefinable according to
	the switch variable UNITS)
EYPRES	Pressure at eye of storm, in mb
RADIUS	Scale radius of the two components of exponential pressure profile
RAD1,RAI	D2 Alternate names for specifying RADIUS; convenient when only
	one exponential is modeled
PFAR	Ambient pressure exterior to storm, in mb
NM	Number of computational cycles in nest 1; NM should be a
	multiple of 64 (default: $NM = 3200$)
DX	Grid spacing in nest 1, in km (default: DX = 2.)
INSIDE	Index of finest nest actually used for computations; the finest
	active grid spacing is DX*2**(INSIDE-1) (default: INSIDE = 1)
HOLL	Power to which radius is raised in the modified Holland's (1980)
	pressure profile model. When $HOLL(2) = 0$, only one exponen-
	tial is used; RADIUS(2) and DPRESS(2) are then ignored.
B1,B2	Alternate names for specifying HOLL; convenient when only one
	exponential is modeled. Default values are $B1 = 1$., $B2 = 0$.
	These defaults are reinstated for every snapshot. Use of the
	defaults reverts to a standard exponential pressure profile, as used
	in SNAP_ADC.7NE.
DPRESS	DPRESS(I) is the pressure difference associated with RADIUS(I)
	and HOLL(I) in OWI's double-eyewall extension of Holland's
	(1980) modified exponential profile.
DP1,DP2	Alternate names for specifying DPRESS. As explained in the part
	on Mathematical Method, it is never advantageous to include DP2
	in an input list; it is in the NAMELIST in order to force its

SPECIAL WARNING: Do not input both members of an equivalence. Input either RADIUS or RAD and RAD2; either HOLL or B1 and B2; either DPRESS or DP1 and DP2. The program imposes consistency checks on RADIUS, HOLL, and DPRESS; it does not check EYPRES and PFAR, so that it remains the user's duty to verify that PFAR > EYPRES.

appearance in the output file.

Mathematical method

The program performs the following consistency checks:

- 1. If B1 < 0 or B2 < 0, stop.
- 2. If B2 = 0, run Holland's modified exponential model (ignore RAD2 and DP2).
 - 2.1 If RAD1 \leq 0, stop.
 - 2.2 If DP1 not specified, compute it as PFAR-EYPRES.
 - 2.3 If DP1 specified, but inconsistent with PFAR-EYPRES, stop.
 - 2.4 Set N = 1.
- 3. If B2 > 0, run OWI's extension of Holland's pressure profile.
 - 3.1 If RAD1 \leq 0 or RAD2 \leq 0, stop.
 - 3.2 If DP2 not specified, compute it as PFAR-EYPRES-DP1.
 - 3.3 If DP2 specified, but inconsistent with PFAR-EYPRES-DP1, stop.
 - 3.4 Set N = 2.

Program 1EYEWALL.HOL

Program 1EYEWALL.HOL attempts to fit snapshot parameters to a guessed wind profile. It considers only the case of one exponential (B2 = 0.0). 1EYEWALL.HOL requires the following input arguments (in namelist /INN/):

BLAT Absolute value of latitude of eye, degrees & decimals; used in computation of the Coriolis parameter. Also, the value BLAT=99 is used as a flag to stop computation.

EYPRES Pressure at eye, in mb

PFAR Pressure at large (theoretically infinite) distance from eve. in mb

RW1 Radius at which a wind speed is guessed, in km SP1 Wind speed corresponding to RW1, in m/sec

V150 Wind speed at radius of 150 km, in m/sec

The following outputs are printed:

1. In namelist /INN/:

SP11, SP12 = SP1 minus & plus 1 m/sec SP31, SP32 = V150 minus & plus 1 m/sec DP2 = pressure difference (far field minus eye), in pascal

2. In namelist /VORTEX/:

COR = Coriolis parameter, 2*omega*sin(BLAT)

FR22 = the quantity 0.5*COR*RW1 (used in the computation of gradient wind)

FR23 = 0.5*COR*r, where r is 150000 m or 150 km

PEYE = pressure at eye, in pascal

- 3. Below namelist /VORTEX/, six parameters are printed, defined from left to right as:
 - 3.1 DP2 (see above)
 - 3.2 Fitted value of scale radius, in m
 - 3.3 Fitted value of Holland's exponent
 - 3.4 Fitted value of gradient wind at radius RW1, in m/sec (in a good fit, this will be nearly equal to SP1)
 - 3.5 Fitted value of gradient wind at radius 150 km, in m/sec (in a good fit, this will be nearly equal to V150)
 3.6 Goodness of fit measure: absolute value of gradient wind minus in put wind at radius RW1, plus the same at radius 150 km. A value less than 3.0 implies a tolerably well-fitting solution.
- 4. Table with 6 columns and 150 lines:
 - 4.1 Radius, in km
 - 4.2 Pressure, in mb
 - 4.3 First component of pressure gradient, in pascal/m
 - 4.4 Second component (this is zero, since only one exponential was fitted)
 - 4.5 Pressure gradient (here equal to output #4.3)
 - 4.6 Gradient wind, m/sec
- 5. Below the table are numbers that, if the fit is satisfactory, the user can insert into namelist /NAME3/ of SNAP_HOL.7NE:

EYELAT = echo of the input BLAT

EYPRES = echo of input

PFAR = echo of input

RAD1 = scale radius, in nm

HOLL = two values of Holland's exponent; the second value is zero,

because only one exponential was fitted

Program 2EYEWALL.HOL

Program 2EYEWALL.HOL attempts to fit snapshot parameters to a guessed wind profile. It considers the case of two exponentials (B2 > 0.0). 2EYEWALL.HOL requires the following inputs in namelist /INN/:

BLAT Same usage as in 1EYEWALL.HOL EYPRES Same usage as in 1EYEWALL.HOL PFAR Same usage as in 1EYEWALL.HOL

RS1 Scale radius of inner ring, in km

(numerical experiments with this scheme have shown that the inner scale radius can safely be taken equal to the inner radius to local maximum wind)

RW2 Radius to maximum wind of outer ring, in km

DRING An integer switch variable indexing the shape of the wind profile

DRING = 1: the maximum wind is greater in the inner ring DRING = 2: the maximum wind is greater in the outer ring

SP1 Desired wind speed at radius RS1, in m/sec

SP2 Desired wind speed at radius RW2, in m/sec

The following outputs are printed:

1. In namelist /INN/:

SP11, SP12 = SP1 minus and plus 1 m/sec

SP21, SP22 = SP2 minus and plus 1 m/sec

2. In namelist /VORTEX/:

BLAT = echo of input

COR = same usage as in 1EYEWALL.HOL

RAD1 = RS1, in m RAD2 = RW2, in m

RAD3 = 0.5*(RAD1+RAD2); a local minimum of wind speed, if found, will be near RAD3

RAD4 = 150000 m (= 150 km)

FR21 = the quantity 0.5*COR*RAD1; used in the computation of gradient wind

FR22 = the quantity 0.5*COR*RAD2

FR23 = the quantity 0.5*COR*RAD3

PEYE = same usage as in 1EYEWALL.HOL

DP = pressure difference (far field minus eye), in pascal

- 3. Below namelist /VORTEX/, nine parameters are printed, defined from left to right as:
 - 3.1 Fitted value of DP1 (partial pressure difference for first exponential), in pascal
 - 3.2 Fitted value of DP2 (partial pressure difference for second exponential), in pascal
 - 3.3 Scale radius of second exponential, in m (the scale radius of first exponential has been fixed at RAD1)
 - 3.4 Exponent for first exponential (Holland 1980)
 - 3.5 Exponent for second exponential (OWI extension of Holland (1980))
 - 3.6 Fitted wind speed at radius RAD1, m/sec
 - 3.7 Fitted wind speed at radius RAD2, m/sec

- 3.8 Fitted wind speed at radius RAD3, m/sec
- 3.9 (printed below 3.1): fitted wind speed at radius 150 km
- 4. Second printing of namelist /INN/, if given:

The fit in the above two-line summary was unsatisfactory in that the wind at 150 km was greater than the wind at RAD2; a second fit will be attempted, this time minimizing the wind speed at 150 km.

SP11, SP12 = SP1 minus and plus 2 m/sec SP21, SP22 = SP2 minus and plus 2 m/sec

- 5. Below second printing of /INN/: the same nine parameters as in #3 above, for the second attempted fit.
- 6. Table with 6 columns and 150 lines:
 - 6.1 Radius, in km
 - 6.2 Pressure, in mb
 - 6.3 First component of pressure gradient, in pascal/m
 - 6.4 Second component of pressure gradient, in pascal/m
 - 6.5 Pressure gradient (sum of the two components), in pascal/m
 - 6.6 Gradient wind, in m/sec
- 7. Below the table are numbers that, if the fit is satisfactory, the user can insert into namelist /NAME3/ of SNAP_HOL.7NE:

EYELAT = echo of the input BLAT

EYPRES = echo of input

PFAR = echo of input

RADIUS = two values of scale radius, in nm

HOLL = two values of Holland's exponent

DP1 = pressure difference for first component, in mb

(program SNAP_HOL.7NE computes DP2 by subtraction)

Appendix C Sample Application of Upgraded CE Model to Simulation of 12 Snapshots of Hurricane Gilbert

This appendix provides input file information used by OWI in test runs with the upgraded CE model, including seven nests and the generalized pressure specification. Snapshots were generated at 6-hr intervals for Hurricane Gilbert, which occurred during September 1988. The first snapshot represents 1200 UTC (Universal Time Coordinate, formerly known as Greenwich Mean Time) 15 September 1988. In all, 12 snapshots were generated. Inputs for the programs SNAP_HOL.7NE and HIST_ADC.7NE are included as implemented on the OWI VAX computer. The listed values of parameter AN1 follow a meteorological convention (deg azimuth coming from) rather than the convention used by the Cardone et al. (1992).

Listings of the full field of surface (19-m elevation) wind speed and direction were generated on a polar output grid. They are included here at 6-hr intervals (snapshot times). Wind speed is in m/sec. Wind direction is in deg azimuth coming from. Printed output of the azimuthally averaged, surface wind speed and inflow angle is also given in this appendix. In addition to the 12 snapshot wind fields, this output includes a wind field interpolated halfway betwee each pair of snapshots.

```
S ASSIGN GRID.312
                      FOR012
S ASSIGN OSGILBERTZ1 FOROOS
S ASSIGN GILB.WIND21 FJR052
s RUN HOLL3
SNAME1
KZM
                  8309,
KDH
               151200,
        .
KMIN
                   180.
            2.000630
DX
        *
                     0,
KSTRES
        .
                 17227,
NSTRES
KWIND
        =
                   19,
NWIND
                   312,
        =
            500.0000
HH
        =
INSIDE
KTIME
SEND
SNAME2
EYELAT
            16-00030
DIREC
        .
            290.0030
                                     Snapshot 1
SPEED
            11.03030
EYPRES
       -
            972-0000
PFAR
        .
            1011.030
            25.38000
RAD1
RAD2
            68.73030i
RADIUS
            25.38030
                             68.73000
DP1
        #
            22.85010.
DP2
            16.15030
DPRES
        .
            22-85030
                             16-15000
                         ,
            2.520030
B1
82
            2.520030
HOLL
        # 7#7.47AAAA
SGW
            7-000000
        .
                         ,
ANI
            110.0030
        = 0.0000000E+00
ST12
SEND
SNAME2
EYELAT
            16.00000
DIREC
        .
            290.0030
                                     Snapshot 2
SPEED
        .
            11.00030
EYPRES
            968.0030
PFAR
        =
            1011.030
RAD1
            31.32070
RAD2
            87.37000
                             87.37000
RADIUS
            31.32000
DP1
            31.77030
DP2
            11.23030
DPRES
            31.77030
                             11.23000
81
            2.520000
        =
82
            2.520030
HOLL
        = 2=2.520030
SGW
            7-000630
        =
ANI
        .
            110.0000
        = 0.000000000+00
ST12
SEND
```

Figure C1. Program inputs, Hurricane Gilbert (Sheet 1 of 6)

```
SNAME2
            19.00000
EYELAT
            290.0000
DIREC
                                     Snapshot 3
SPEED
            11.00030
            905.0000
EYPRES
            1012.030
PFAR
            8.640000
RAD1
RAD2
            67.28030
            8.640030
                             67.28000
RADIUS
            93.830)0
DP1
OPZ
            13.17000
                             13.17000
            93.83630
DPRES
81
            1.680000
            2.3800)0
82
                             2.380000
            1.683030
HOLL
SGW
            7-000630
AN1
            110.0000
           0.0000000000000
ST12
SEND
SNAME2
EYELAT
            20.00000
            290.0030
DIREC
        =
                                     Snapshot 4
SPEED
            11.00000
EYPRES
            888.0030
PFAR
            1012:000
            7-020000
RAD1
            54.00030
RAD2
                             54.00000
RADIUS
            7.020000
DP1
            110.2200
            13.78030
DP2
                             13.78000
DPRES
            110-2270
            1.590020
61
82
            2.520030
                             2.520000
HOLL
             1.590000
            7.000030
SEW
ANL :
            110-0030
            0.0000000E+00
ST12
SEND
SNAME2
             20.00030
EYELAT
DIREC
             290.0030
                                     Snapshot 5
SPEED
             11-00030
             893.0000
EYPRES
             1012-030
PFAR
RAD1
             7.020000
RAD2
             37.80000
RADIUS
             7.020030
                             37.80000
DP1
             101.1230
DPZ
             17.88030
         #
DPRES
             101-1270
                             17.88000
        Æ
             1.410000
81
82
             2.520000
             1.410030
                             2.520000
HOLL
        =
             7.000030
SGH
        =
AN1
             110.0000
        = 0.0000030E+00
ST12
SEND
```

Figure C1. (Sheet 2 of 6)

```
SNAME2
             21.00030
EYELAT
DIREC
             290.0030
                                       Snapshot 6
             11.00000
SPEED
        *
             890.0030
EYPRES
PFAR
             1012.000
RAD1
             7-020030:
RAD2
             37.26030
RADIUS
             7.020030
                              37.26000
             101-30)0
DPI
OP2
             20.20030
DPRES
             101.8030
                              20.20000
81
             1-410030
             2.529030
52
HOLL
             1.410630
                              2.520000
SGW
             7-000000
             110.0000
AN1
        =
ST12
            0.000000000000
SEND
SNAME2
EYELAT
             22.00030
DIREC
             296.0030
                                       Snapshot 7
             11.00000
SPEED
        .
EYPRES
             951.0030
             1012.030
PFAR
RAD1
             11.88000
             46.85030
RAD2
RADIUS
             11.88000
                              46.85000
             45.07030
DP1 :
DP2
             15.93000
         .
DPRES
             45.07030
                              15.93000
81
        æ'
            0.5600000
             2-520030
B2
        =
HOLL
            0.5600030
                              2-520000
SGW
        .
             7-000030
INA
             110-0030
           0.0000030E+00
ST12
        .
SEND
SNAME2
             22.00000
EYELAT
DIREC
             290.0030
                                       Snapshot 8
             11.00000
SPEED
             950.0030
EYPRES
        =
             1012-030
PFAR
RAD1
             17.28030
             55.82030
RAD2
             17.28030
                              55.82000
RADIUS
OP1
             34.57030
             27.43030
DP2
         =
DPRES
             34.57030
                              17.43000
            0.9400030
81
             2.5200)0
82
            0.9400000
                              2.520000
HOLL
             7-000000
SGW
             110.0000
AN1
           0.0000030E+00
5T12
SEND
```

Figure C1. (Sheet 3 of 6)

```
SNAME2
EYELAT
             23.00000
             290-0030:
DIREC
                                      Snapshot 9
             11.00030
SPEED
EYPRES
             949.0000
             1010.030
PFAR
RAD1
             11.89030
RAD2
             43.53030
             11.88030
RADIUS
                              43.53000
OPI
             40.67030
DPZ
             20.33000
DPRES
                              20.33000
             40.67030
            0.7500000
81
82
             2.520000
           0.7500030
                              2.520000
HOLL
        .
            7-000000
SGW
AN1
            110.0000
ST12
        .
           0.00000000000000
SEND
SNAME2
             23.00000
EYELAT
             290-0030
DIREC
                                      Snapshot 10
SPEED
             11.00030
EYPRES
             950-0000
PFAR
             1011.030
        .
RAD1
             29.70030
RAD2
             91.63030
                              91.63000
RADIUS
             29.70030
DP1
             51.840)0
OPZ
             9-160000
                              9.160000
DPRES
             51-84030
81
             1-120030
82
             2.240030
                              2.240000
HDLL
             1.120030
SGW
             7.000030
AN1
            110.0000:
ST12
           0-0000030E+00
SEND
SNAME2
EYELAT
            24.00030
                                      Snapshot 11
             290.0030
DIREC
SPEED
             11-00000
EYPRES
             953.0000
PFAR
             1010.000
RAD1
             27.00000:
RAD2
             64.21030
                              64-21000
RADIUS
             27.00030
             46.62030
DP1
DP2
             10.38030
                              10.38000
DPRES
        *
             46.62030
             1.3300)0
B1
        =
             2.520030
82
                              2.520000
HOLL
             1.330000
SGW
        =
             7.000000
AN1
             110.0000
        =
ST12
            0.00000000202+00
SEND
```

Figure C1. (Sheet 4 of 6)

```
SNAME2
             24.00000
EYELAT
DIREC
             290.0000
                                       Snapshot 12
             11.00030
SPEED
EYPRES
        =
             954.00)0
PFAR
             1009.000
RAD1
             21.60000
             60.61030
RAD2
         *
             21.60000
                               60.61000
RADIUS
DP1
             44.98030
DP2
         =
             10.02000
                               10-02000
DPRES
             44.98030
81
             1-190030
             2.520000
32
             1.190000
HOLL
                               2.520000
SGW
             7.000000
             110-0000
ANI
         =
            0.000000002+00
ST12
SEND
SNAME2
EYELAT
             999.0030
             290-0030
DIREC
         *
SPEED
             11.00000
EYPRES
             954.0030
             1009-000
PFAR
            0.0000000E+00,
RAD1
RAD2
            0.00000000000000
         = 2*0.000000E+00,
RADIUS
            0.60000JOE+00,
OP1
DP2
            0.00000308+00,
         = 2*0.0090300E+00,
DPRES
        ٠.
             1.0000000
81
82
            0.0000000E+00,
                              0-C000000E+00.
             1.000000
HOLL
         =
             7-000030
SEM
AN1 :
             110-0030
            0.0000000E+00
ST12
SEND
     20
           6
  0
               0
                    3
                        1
  2
     20
           0
                0
  4
     20
           0
               0
                    3 i
                         3
  6
     20
           0
               0
                             0
  8
     20
           0
                0
 10
     20
           ٥
               0
                    3
 12
     20
           0
               0
                    3 ;
                        7
                             0
 14
     20
           0
               0
                             0
 16
     20
           0
                             0
               0
                         9
                       10
 18
     20
           Ģ
               0
                             0
 20
     20
               Ū
                             0
                       11
           0
 22
     20
               0
                       12
               ٥
999
      0
           0
                    3
                             0
                        0
```

Figure C1. (Sheet 5 of 6)

HOUR	L	NT	\$1 L3N		HIST Sna			RO I	HOUR ROT	IS	8809	15120
0	20	0	0	0	1	0		000	0			
1	20 20	0	0	0	1 2	2		000	0			
2 3	20	ŏ	8	Ö	2	3		000	ő			
4	20	Ö	ŏ	Ğ	3	ō		000	Ď			
5	20	0	0	0	3	4		000	9			
6	20	0	0	ű	4	0		000	0			
7	20	0	0	Ú	4	5		000	9			
8	20	0	0	G	5	Ó	0.0		ე ე			
9 10	20 20	0	0	0	5 6	6	0.5	000	0			
11	20	Ö	Ö	Ŏ	6	7		000	Ö			
12	20	ŏ	Ŏ	ŭ	7	ò		000	Š			
13	20	Ŏ	ō	Ö	7	8		000	D			
14	20	0	0	0	8	0		000	3			
15	20	Ũ	0	0	8	9		000	3			
16	20	0	0	0	9	Û		000	0			
17 18	20 20	6 0	0	() O	9 10	10		000	3			
19	20	0	Ö	Ü	10	11		000	õ			
20	20	Ŏ	ō	Ğ	11	- 0	0.0		Š			
21	20	Õ	č	Ŏ	11	12		000	0			
22	20	0	C	0	12	0	0.0	000	9			
TAHWE												
(STEP2	=		7	22								
BEND Workk	•)		9	60 8		151	200			
WORKK		•	í			809			500			
WORKK			2			609			800			
WORKK	:		3			809			100			
WORKK			\$		-	80 9			000			
WORKK			5			809			300			
WORKK			5			809)600 1900			
WORKK:			7 · 3			80 9 80 9			200			
WDRKK:		•	3			80 9			500			
WORKK			1)			809			800			
WORKE	:		11			809		162	100			
WORKK			12		-	86 9		_	000			
WORKK:			13			809		_	300			
WORKK:			14			809			603			
WORKK:			15 15		-	80 3 80 9		-	900			
WORKK			17		-	80 9			500			
WORKK			13		_	809			800			
WORKK:			19	•		609			100			
WORKK	;		23		-	809			000			
WDRKK:			21			809			300			
WORKK:	-		22		8	809		180	600			
ND OF	STRE	:55 R	ŲN									

Figure C1. (Sheet 6 of 6)

														•					
	Speed Direction																		
330.	5.9396	5.9474	5.9667	6.0009	4.0610	4.1741	4.4442	7.1547	102.8374	12.0818	42.3971	47.3146	45.2970	12.8609	39.2619	34.5348	33.6129	29.0277	24.9486 20.5199
360.	5.9587	5.9828	6.0169	6.0631	6.1333	6.2529 101.6151	6.5045	7.1461	95.6300	11.5958	14.2547	46.8943	357.4086	41.9051	38.1559	35.1707	32.1910	27.6136	23.5127
270.	5.9717	4.0055	6.0429	6.0868	6.1428	6.2273	6.4122	6.9504	19.3535	12.2251	41.4234	.4.8647	42.8003	40.4307	36.6578	33.9074	36.9557	26.2332	22.1489
240-	5.9781	4.0155	6.0531	6.0906	6.1304	6.1807	6.2732	6.4952	7.0274	8.4014	34.7541	43.2172	41.2559	307.46.8	35.2842	32.5335	29.6297	24.9651	20.7484
210.	5.9752	6.0111	4.0471	6.0829	6.1189	6.1550	6.1925	6.2316	6.2647	6.2315	21.4211	40.2791	39.7871 287.9271	37.8654	34.7602	31.9663	29.1312	24.5025	20.1863
130.	5.9535	5.930 6	6.0199	6.050 P	6.031	6.1163	6.1500	6.1339	4-1598 93-3360	5.6764	11.5172	32.654	37.0584	36.7684	33.825 5 247.5186	31.7723	29.359 5	24.7162	20.5507
Azimuth (deg)	5.9450	5.9547	5.9668	5.9812 95.3598	5.9962	4.0117	6.0255	6.0349	5.9943	5.6780	11.9573	245.3624	34.1627	35.3037	33.9128	32.3110	30.0568	25.7919	21.6182
Azimut	5.9242	9.9104	5.8975	5.8836	5.8676	5.0429	5.8623	5.7212	5.5279	5.0923 108.6514	15.5180	27.3211	32.9490	34.6832	35.2295	33.8160 172.1577	31.6906	27.5210 163.9196	23.4829
•	5.9048 97.4786	5.8731 97.5765	5.8349 97.5117	5.7964	5.7486 97.6652	5.6882 94.0189	5.6034	5.4666 130.9022	5.2330 167.7331	5.2179 128.3313	18.7590	29.2763	33.4423	35.5084	36.5206	35.7160	33.7196	29.4682 127.0138	25.5612
•	5.8998	5.8574	5.8130	5.7649	5.7133	5.6561	5.5923 101.9891	5.5234	5.4917	5.8063 120.7771	21.3874	33.23.2	37.4322	39.0072 119.0570	39.2017	37.6674	35.0755	30.7445	26.7038
30.	5.9045	9.1123	5.8381 99.8900	5.8081 1 00.7703	5.7813 1 01.8027	5.7649	5.7660 104.7010	5.8091 1 06.9004	5.9973 1 10.2957	6.4193 1.15.8243	24.3052	100.0264	43.5532	43.2629	40.5314	37.9756 67.2837	35.2379	30.7611	26.4758 67.7149
÷	5.9196	5.9653	5.8987 100.4693	5.9043	5.9283 102.8765	5.9882 104.4123	6.1286	6.5015 108.7335	7.546)	9.8565	32.0573	46.2677 56.4293	45.9567	43.9233	40.2472	37.6369	34.8655	30.249)	26.2961
HOUR 0	1.65	3.70	5.54	7.41	9.26	11-11	12.94	14.82	16.67	11.52	27.78	37.04	46.30	55.54	14.00	92.60	111.12	131.90	166.68
			Rad	lius 1	from	Eye	(km)											

Figure C2. Wind speed and direction fields, Snapshot 1, Hurricane Gilbert (Continued)

Speed

Azimuth (deg)

19.0218 19.0218 19.128 19.128 19.128 19.128 19.128 19.1288

11.6218 7.7929 32.0569 32.0569 32.0569 36.1609 36.1609 37.595 37.

116.1449 110.7288 110.7288 110.7288 110.7288 110.7288 110.0094 110.0099 110.0099 110.0099 110.0099 110.0099

115.54018 115.54018 115.54018 117.5358 117.5318 117.2718 117.27218 117.27218

13.7449
281.1733
6.5855
320.8015
4.2311
23.2502
6.0444
80.0717
4.8311
87.8430
7.1473
89.5882
7.2796

231.7130 231.7130 231.7130 231.7130 23.2133 23.2133 24.4145 24

15-1857 7-6873 194-1169 159-7079 103-6498 6-7688 95-2139 7-1697 92-7961 7-2878

		Speed Direction																		
	330.	5.9827 97.8183	5.9848	5.9970	4.0218 100.3925	4.0472	4.1514	4.3243	6.7389	1.7757	9.9542	39.6113	19.9335	19.3319	16.9883	41.2898	37.0093	34.0181	30.1454	26.5792
	306.	4.0014	6.0211	6.6496	6.0891	6.1473	100.8346	6.4043	4.7447	7.6364	9.5238	42.6345	49.854	40.4355	45.8580	46.1013	352.3108	32.7217	28.8266	25.2144
	270.	6.0157	4.0464	4.0805	4.1200	4.1681	4.2342	6.3636	6.7339	7.8700	16.7285	39.8221	67.3736	46.7354	327.5868	38.8198	34.6455	31.4681	27.4348	23.8236
	240.	6.0239	6.0597	6.0957 96.7057	6.1316	6.1684	6.2114	4.2792	6.4276	4.7709	1.5809	30.6683	45.6548	45.3157	43.0315	37.3884	33.1362	30.0429	26.1244 299.2667	22.4529
	210.	6.0233	4.0590	6.0949	6.1303	6.1658	6.2011	6.2370	6.2737	6.3142	6.3636	14.9649	41.0915	14.0577	42.1164 276.3683	36.6904	32.4140	29.4549	25.6106	21.8949
	190.	6.0134	6.0528	6.0737	6-1159	6.1392	6.1733	6-2380	6.2630	6.2703	4.3314	3.2571	28.2568	40.269 4	41.1114	36.111 5 245.617 5	32.2264	29.3367	25.6350	22.0351 236.1360
9	150.	5.9975 ·	6.0115	4.0282	6.0472	6.0672	6.0882 93.8016	4.1084	6.1281	6.1453	6.1570	27.0472	24.9353	39.1754	10.5947	36.1754	32.4099	29.8380	26.4572	23.0127
Azimuth (deg	120.	5.9777	5.9705	5.9453	5.9607	5.9556	5.9467	5.9313	5.9040	5.8539	95.0400	4.7697	25.8830	38.6665	40.7925	37.2324	33.4076	31.4084	28.1733	24.8534
	•	3.9598	5.9326 96.7213	5.9050	5.8758	5.0434	5.8048	5.7552 96.6139	5.6857 97.1333	5.5761	\$.3779 191 .5091	9.8057 171.5016	27.1963	38.5967 155.2495	41.4640	38.7028	35.7009	33.4960 134.4621	30.1300	26.1397 127.130
	• 09	5.9504	5.9119	5.8724 97.7274	5.8306	5.7871	5.7397	5.6178	5.6294 100.1962	5.5429 101.4775	5.4905 103.6595	12.5349	32.6583	43.0615	115.6400	106.0334	37.4409	35.0255	31.5796	28.1478 95.7161
	30.	5.9520 97.6120	5.9171	5.8831 98.8245	5.8301	\$.0100 100.3409	5.7923 1 01.2927	5.7719 1 02.4176	\$.7624 103.7812	5.7737 1 05.5087	3.0289	15.7405	102.4577	46.0112	47.3375	42.3529	38.3317	35.4379	31.7120	28.1971
	ė	5.9433	5.9453	5.9322	5.9273	5.9363 101.5611	5.965¢ 102.8771	4.0325	4.1972	1059.9	7.885)	26.8751	40.0277	49.8415	48.0513	42.4392	30.2892	35.1776	31.2913	27.827)
	HOUR 2	1.05	3.70	5.56	7.41	92.6	11.11	12.96	14.02	14.67	10.52	27.10	37.04	44.30	98.86	14.08	92.00	111-12	131.90	166.48
				Rac	lius 1	from	Eye	(km	}											İ

Figure C3. Wind speed and direction fields, Snapshot 2, Hurricane Gilbert (Continued)

	Speed						
	20.8117	14.3636	11.4103	17.0961	84.0589	7.4954	7.4720
	19.4286	13.1758 26.3056	10.5146	8.4426	7.0129	7.6052	7.4984
	17.9669	11.0255	9.3391	7.8189	7.4900	1.4105	000000000000000000000000000000000000000
			7.3629				
	15.4539	307.8060	4.3999	5.6274	6.6315	7.6419	7.2227
			1.5528				
(6 6 b)	17.0184	9.4884 131.7374	177.7417	\$.2103 109.6753	6.5155	7.6368	7.2337
Azimuth (deg)	18.9781	11.9390	143.9436	6.7512 110.9293	7:0729	7.2659	7.2966
	21.0170	14.1769	10.6246	104.9461	7.6305	7.4752	0000
	22.2726	15.2246	11.7786	96.5086	1.0345	7.7063	7.5175
	22.3232	15.4210	12.0923	9.2394	6.2004 36.2799	7.7716	7.5087
	21.9911	15.2757	11.907)	9.2662	6.1847	-	0.000
	222.24	333.34	*****	666.72	117.36	1111.20	1333.44
			Rad	ius f	rom		(km)

			-																	
		Speed Direction																		
	330.	7.1032	11.6792	21.8769	37.1812	\$1.5830 \$7.8855	59.5602 49.2185	41.8345	41.9234	61.0007	59.7725 32.1373	52.2124 28.4262	16.4385	42.5946	39.7859	36.4279	33-6197	31.0907	27.0026	23.4576
	300.	1.3454	11.0791	20.6006	36.0251	\$1.9093 31.2029	21.1701	63.2745	63.5483	62.7176	61.3462	52.4197 1.6978	15.9832	41.6510	30.652	35.4440	32.5457	29.7633	25.6651	22.0786
	270.	4.8297	9.9312	18.0165	33.4770	49.5049	59.9010	43.2624	43.5493	52.4120 341.6465	40.7103	\$1.3233 337.5374	14.5716	40.3178	37.3275	33.7613	31.1144	28.3805	24.1456	20.5720
	2.0.	6.4900	8.8824 63.8978	15.7449	36.0264	45.8625	54.8411 332.0783	61.4242	42.20~9 320.8549	61.2977	59.5662 315.0690	49.5866	42.8909	313.7713	35.7393	32.3880	29.7654	27.0522	22.8679	19.1710
	210.	5.9529	5.3609	12.0194	24.8478	39.8780	51.2451 307.9843	97.4554 302.7323	59.9112 297.8355	59.6330	\$7.9288 291.3265	47.8436 288.7675	41.3320	34.9910	34.3768	31.4155	29.0999	26.4748	22.3391	18.5394
	130.	5.3363	3.4118	9.3368	21.6502	33.6360	43.729.7	50.7363 276.0531	54.7309 273.4392	55.9351 270.2363	54.8304 267.4534	46.3510	39.819.5 264.8620	35.794.2	33.2337	30.4323	243.4364	26.4952	22.4419	10.7194
	150.	4.3837	0.3307	11:3704	23.2943	33.5871	10.7562	15.8806	49.2623	50.9828 241.3079	\$1.1177 239.0744	44.4961	38.4476	34.3592	32.0090	30.2104	29.1260	27.2036	23-4652 260-8346	19.4143
A	120.	4.1147	3.9818	1000	27.2734	37.2607	42.6371	45.6379	47.7983	48.8894	49.1155	43.0159	37.3044	33.0520	30.8343	30.8217	30.6475	28.9380	25.3306	21.8495
	•	4.5752	6.5165	17.7526	31.2838 171.5076	41.2348 158.6372	16.5805	18.9620	169.3303	19.6143	189.9112	42.5715 171.0880	36.5312	32.5023 175.7740	30.6489	31.8107 153.2487	32.4351	31.0774 132.5943	27.4040	24.0163 127.2158
	•	5.3757 129.2227	9.3294	20.4796	34.7949	45.8225	\$1.6399 136.6837	\$2.9880 135.1777	53.2120 134.1294	52.5230 133.3091	\$1.1277 132.7553	43.1949	34.9528	33.3399	32.933	35.9394	34.6424	32.4719	28.6733	25.1344
1	30.	4.0342	10.4571	21.5344	36.5428	112.4553	34.7085	103.9443	57.0398 101.4500	, \$6.1579 99.6799	54.5888 98.3872	45.1662	39.76%	38.67%	39.0663	37.7037	35.3101	32.7519	20.7473	25.1641
	ė	4.3963	10.4925	21.4251	37.0003	49.8882	57.1533	59.8893	59.9457	\$6.6341	54.7088	49.1063	45.2728	42.8763	40.7133	37.5183 44.9825	35.0405	32.4035	20.2018	24.7912
	HOUR 4	1.65	3.70	3.56	7.41	3.26	11-11	12.96	14.82	16.67	18.52	27.73	37.04	46.30	35.56	74.08	92.40	111.12	134.90	166.60
				Rac	lius 1	from	Eye	(km)											

Figure C4. Wind speed and direction fields, Snapshot 3, Hurricane Gilbert (Continued)

	_ §						
	Speed Direction						
	10.3479	13.1697	10.7542	8.8415	8.1051 87.9400	1.7778	7.4797
	16.9308	12.0612	10.0043	17.5533	7.0591	7.6301	7.6033
	15.4506	10.6869	45.3005	7.7410	1.5352	1.4859	••
	13.9272	357.1131	6.9944	6.8978	7.1626	7.3113	7.2957
	12.8710	6.3039	4.0783	5.8709 84.3416	6.7605	7.1347	7.3054
	244.6368	4.9740	0.6328	5.2327	6.5340 96.2314	7.057 5 95.1169	00
30	14.2169	192.3705	4.7069	5.9349	4.8039	7.1719	7.3307
Azimuth (deg)	14.4411	16.7125	8.2240 136.3901	7.1286	7.2043	7.3797	7.2617
	18.6517	12.9278	10.0976	104.9554	7.7926	7.5194	•••
	19.7298	13.8576	11.1620	90.1306	96.1245	7.8150	7.5573
	19.8213	14.1066	11.435	9.1445	93.0460	7.8781	7.5214
	19.4263	13.9043	11.2427	9.1314	1.2405	7.7573	0.00
	222.24	333.34	****	646.72	967.00	1111.20	1333.44
			Rad	lius 1	rom	Eye	(km)

	Speed Direction																		
130.	9.6593	19.7043	37.1243	54.2745 54.8400	42.2520	42.4365	10.4411	62.3526 35.6283	61.1262	99.7965 31.9720	52.9014 24.0418	47.4065	13.6136	11.0602	37.3015	33.3674	29.5367	22.2574	21.0074
360.	9.9054	17.4959	35.3477	53.5607	63.1655	65.2947	45.3203	64.3750	63.0473	41.5085	\$2.6041 0.2626	46.5241 358.7277	42.5748	40.0062 354.4014	36.099	31.9501	20.078	23.2620	19.5601
276.	6.6346	15.3362	32.3592	30.9019 5.1511	41.0504	45.3+73 350.5936	15.6317	64.5352 342.8263	62.7787 340.5653	10.1260	\$1.3458 336.5960	15.0299	41.1783	32.426	34.4868	30.5728	26.6939	21.7092	16.0309
240.	7.6405	13.7629	26.9589	44.8573	\$9.4512 332.3792	43.741.	64.4038 322.2219	43.3714	41.6626	89.4404 314.7228	49.6243	13.1621	39.5725	37.0294	33.2504	29.2471	25.4027	20.3927	16.5483
210.	4.2874	9.5600	24.4005	41.3744	54.1535 307.2585	10.4581	61.9924	61.5640	60.2171	58.0281 291.2797	47.9773	42.1048	36.3551	34.184.	32.9078 269.6181	20.0042	24.9010	19.0343	15.0073
190.	4.5384	6.5546	21.535 \$	34.1342	46.7360	53.4704 274.0303	57.3364 274.354.7	58.3369 271.9716	57,4593	55.4311	46.5540	40.8154	37.4746	35.4557	32.3917	28.969 8 235.853	25.234 6	20.123 2	16.0168
(deg) 150.	108.7453	255.8552	23.0200	35.9873 236.5251	13.7812	10.5930	52.5784	53.0123 243.2906	53.1536	\$2.1987	44.4886	39.5486	36.4978	34.9848	13.0439	29.8140	26.2388	21.2980	17.2540
Azimuth (degi	2.5068	12.0362	26.9626	39.4667	15.6554	48.1942	10.5085	50.0520	50.0538 209.0975	19.4475	42.7040	38.1672	35.5423	35-1539	34.8051	31.5331	20.0637	23.2679	19.400
90.	4.2912	14.5375	31.5210 171.5301	63.8276 156.9833	49.4879 164.1550	\$1 . 2279 157 . 2547	51.2651 169.1674	\$0.5646 171.1573	49.4064	47.8018	11.2747	36.9134	35.4313	36.2074	36.3313	33.5377	30.1923	25.4220	21.7449
9	7.3751	18.1758	35.0390	48.8768	54.4180 134.3890	55.3874 133.4112	54.6777	53.1554 134.2455	51.3413	49.2613	41.1240	37.3719	37.9987	39.3022	39.2846	35.0407	31.3769	26.5597	22.7297
30.	144.1176	19.1030	36.036	51.7840	50.3196 104.9284	59.2660 1 02.25%	\$6.3462	56.4528	54.6111	52.3678 99.5450	13.6728	42.8484	1 43.0607	42.1377	39.0401	35.1943	31.4111	26.5379	22.7348
÷	130.1325	10.0375	37.5673	52.9128 83.7693	40.2722	61.7753	41.2395	59.0245	\$7.6073 66.0625	55.4691	50.1195	47.4381	44.6671	42.3291	30.4857	34.7073	30.9171	26.0103	22.3619
9 400#	1.69	3.70	3.34	7.43	97.56	11-11	12.96	14.82	16.67	16.52	27.78	37.04	44.30	55.56	74.00	92.40	111.12	130.90	19.051
			Re	dius	fron	ı Eye	e (kr	1)											

Figure C5. Wind speed and direction fields, Snapshot 4, Hurricane Gilbert (Continued)

	Breed Direction									
	16.2609	11.9226	10.0099	6.9233	1.000	7.7495	7.4519			
	14.6759	11.000	9.3069	0.1610	7.8153	7.7054	7.6297			
	13.4418	9.6954	6.4713	7.6877	7.5711	7.5394	•••			
	11.0014	7.7629	6.9514	7.0713	7.2963	7.4168	7.3656			
	10.4290	4.9374	4.6404	6.3725	7.0098	7.2743	7.3340			
	10.3609	2.2301	2.6578	5.953 6 98.8360	6. 237.2 94. 859 9	7.2140	0.000			
_	11.7034 .	5.6661	1.15.8766	6.4323	7.0500	7.3842	7.4118			
Azimuth (deg)	14.2267	3.4269	1.6101	1.2481	7.3085	7.4448	7.2928			
	16.4740	11.5546	9.3488	7.9967	7.7264	7.5105	•••			
	17.5174	12.4597	10.2201	0.5321 90.3721	7.9856	7.7497	7.5343			
	17.6536	12.7505	10.5605	93.76	94.5714	7.0127	7.4244			
	17.2247	12.5675	10.410	6.7468	1.0995	7.6842				
	222.24	333.34	****	446.72	****	1111.20	1333.44			
			Radi	us fi	om i	Eye	(km)			

						A change (April									ſ
	#00H	•	30.	•	•	120.	150.	130.	210.	240.	270.	300.	336.		
	1.05	9.6751	10.2850	156.9169	9.0424 172.0941	3.2845	154.8410	67,733	9.7292	7.2887	8.8195 92.5335	10.3624	10.5073	Speed Direction	
	3.70	22.1151	120.9179	21.9172	18.5023	15.4906 203.3124	121.6597	10.3164 291.1562	11.1921	14.4920	16.1192	18.7350	21.8567		
Rad	3.36	40.1331	39.9096	37.9009	34.4004	29.6840	23.5107	23.764	24.9115	28.1012	31.6102	35.5339	38.3884		
lius 1	7.42	92.3583	\$1.678	48.7181	13.5401	38.7187	34.6514	33.8177	37.2201	41.8973	46.4364	50.2437	52.1404		
irom	9. %	57.4635	55.8262 102.4278	52.0313	46.7359 161.4817	41.8824	38.8237	40.5394	16.5423	\$2.5.19 337.8590	54.499	58.856 26.4653	58.7275		
Eye	11.11	58.4125	55.7516 1 00.3186	51.8363 129.5666	46.9532	42.4548	41.3062	45.6567	53.2949	\$9.1010 333.370\$	61.8473 356.4786	62.0448	46.7478		
(km	12.96	57.7041	54.4403	50.5099 129.9590	1605.521	42.4698	13.4062	49.7304	57.4779 306.9131	61.6746	43.6567	63.3929	61.0737		
)	14. 82	56.4703	52.4970 99.9425	48.7169	157.2946	42.4143	15.3132	52.6519 280.2346	59.2350 302.9649	62.1835	43.7755	63.7622 10.5203	61.3841 38.8536		
	16.67	55.9263	100.8564	46.9299	43.3669	42.5826	16.9449	54.1366 278.0231	59.3921 298.6218	61.5424	42.8809	63.4332	61.5341		\ <u></u>
	11.52	55.7145	49.3525	45.2174	12.1794	42.8823	18.0471	54.2336 274.811:2	58.3783	60.2713 316.2557	\$1.5158 339.2260	3.1047	61.2415		
	27.78	\$6.3915 \$0.9543	50.0541 93.5489	43.0713	41.8983 166.3135	44.6678	17.7939	50.1354	51.4035	52.7310 306.7090	54.3364 331.0107	55.7974 354.4830	36.4496		
	37.04	52.7183 42.9993	92.1626 76.4174	47.6326	152.3575	45.5670	45.6491	46.1380	47.2151	47.8018	49.1724	50.7911 350.3728	51.7145		
	46.30	19.4445	19.4471	47.8230	16.4751	14.7144	13.6323	43.3531	43.7702	294.2846	45.7043	16.944	48.2400		
	55.56	46.2683	46.5732	45.7621	136.7935	42.7059	11.2463	40.7539	40.6701	41.0167	42.3565	43.5703	44.9282		
	14.00	39.5081	40.0985	39.857	38.4805	36.0042	35.0998 196.8785	34.232 4 231.0133	33.9715	34.2099	35.3791	34.7413	38.1708		
	92.40	33.7742	34.2900	34.2436	33.6132	30.9387	198.2490	232.0567	27.7856 263.9776	28.1982	29.5189	349.9463	32.3094		
	111.12	29.0925	29.6316	29.6101	20.4479	26.3126	199.4439	23.4583	267.6903	23.4993	24.7250	26.2031	27.7656		
	130.90	24.1065	24.4175	24.5826	23.4337	21.1983	19.1048	18.033	17.7646	18.4141	19.7943	21.3652	22.7997		
	166.68	20.7313	21.0632	21.0026	10.0055	17.5596	19, 3519	14.2382 242.9711	14.0643	14.9348	16.5042	18.0036	19.4459		

Figure C6. Wind speed and direction fields, Snapshot 5, Hurricane Gilbert (Continued)

					Azimuth ((Dep)							
222-24		14.6489	16.4392	15.3768	13.1025	10.4623			10.9143	12.6443	14.0424	15.3766	Speed Direction
333.36	12.3012	12.4639	12.1373	11.2045		\$.3362 175.7883			7.5668 21.3593	9.5156	10.6113	11.6709	
***	10.4048	10.5436	10.1955	9.3100		4.9766			6.8749	1.4160 58.5198	1.3632	12.0037	
66.72	8.9071	1.9256	1509.06	8.0536 103.9265		6.3117			6.9492	7.4584	61.2133	8.4281	
11.34	6.2143	94.200	9.0752	7.7502	7.3391 100.7916	4.9204	6.7107	6.8465	7.1903	7.5405	7.8514	8.0065 89.5728	
11-20	7.7783	7.9021	7.8292	7.5234		7.1963			1.3257	7.5069	7.7262	7.88%	
1333.44	0.00	7.550	7.5720	0.000		7.3270			7.2964	.0000	7.6429	7.5029	

	HOUR 10	ė	30.	9	•	Azimuth ((deg) 150.	130 .	210.	240.	270.	300.	336.		
	1.13	131.3066	10.1489	157.1742	4.8803	3.2036	173.6769	. 3.5940	5.7002 60.1013	7.2473	8.7838 92.2133	10.3057	10.4284	Speed Direction	
	3.70	21.6363	22.5112	21.8087	18.4959	15.6772	12.9956	10.6750	11.3403	14.4414	16.0212	18.5949	21.6802		
Rac	5.54	39.9483	39.8839	38.0393	34.7197	30.2136	26.1399	24.1395	24.9039	27.7189	31.2022	35.2078	30.1353		
ius :	1.41	52.4135 63.3271	51.9334	49.1763	44.1494	39.4865	35.3483	33.9757	36.4696	40.9140	45.5416	49.7462	51.9256 58.6751		
from	3.26	57.6395	\$6.2452 102.7956	52.6725 130.6036	47.4795	42.6542	39.2353	40.1104	45.2045	338.6639	55.5250 3.8183	\$8.2599 27.8642	\$8.6482 \$2.3983		
Eye	11-11	58.7303	54.2493 100.5104	52.5187 129.3953	47.6951	43.0319	41.2267	44.536 9	51.5284 310.1827	57.5391 335.2315	41.0183 358.7145	41.5788	60.4665 47.9914		
(km	12.96	58.0383	\$4.97 <i>6</i> 7 99.7399	91.1652	46.6519	42.7534 201.7781	42.8059	48.2579	55.9123	60.8256	63.1204 353.4751	43.6671	41.0043		
)	14.82	56.9963	53.1903 99.9851	49.3068	45.2064	42.3413	14.2989	51.1519 281.0529	58.3005 305.3955	61.7639	63.5389	43.5568	40.9376		
	14.67	56.2454	51.4165	47.4392	43.7170	42.2027	15.7262	53.0)54	59.0150	61.5397	43.0095	63.4761	61.5397		
	16.52	56.0443	102.0371	134.6521	42.3345	42.2330	16.8669	53.530 6 277.1290	58.4784	40.5424 318.5396	61.0415	62.8233	19.4017		
	27.78	\$7.144) \$2.3207	51.0161 93.9816	43.6755	41.0925	44.5440	48.1017	50.8524 241.4862	52.2907	53.6941	55.3218 331.8659	54.8044 355.552	57.3005 21.7381		
	37.04	53.9147	53.4386	49.0093	15.8119	46.7055	46.8830	47.2721	48.6672	49.0253	\$6.3930 325.5730	52.0557 350.5764	52.9292 16.0257		
	46.30	50.8063	\$0.77 89 70.00 8 3	49.2526	14.5289	46.1723	45.0147	44.7327	45.1290	45.4161	47.0309 321.1307	48.2946	19.5576		
	95.54	47.5535	47.0519	47.1005	135.9901	44.0913	12.6674	42.1337	11.9868	42.3103	43.6506	14.0514	14.2041		
	14.08	10.5411	41.1248	40.9084	39.5867 130.1001	37.9022	36.1924	35.317.6 230.3507	35.0257	35.2475	36.4124	37.7678	39.1964		
	92.60	34.5622	35.0165	35.0501	33.8460 128.8554	31.7965	30.0720	29.1934	263.4983	28.9941	30.3147	31.4080	14.006		
	111.12	29-7222	30.2573	30.2373	29.1093	26.9763	25.1259	24.134 \$ 234.1369	267.2756	24.1120	25.3994	26.0103	20.3268		
	136.90	24.5599	29.0718	25.0241	23.9041	21.6714	19.6445	18.450 8 238.1139	10.1941 274.7439	18.8394	20.2230	21.8041	23.2469		
	166.63	21.0675	21.4215	21.3219	20.3567	17.9032	194.4757 2011.9574	14.51711	14.3544	15.2304	16.0151	16.3237	19-7702		

Figure C7. Wind speed and direction fields, Snapshot 6, Hurricane Gilbert (Continued)

Figure C7. (Concluded)

		Speed Direction																		
	330.	14.7227	19.9848	22.4651	24.0734	25.1629	25.9406	26.5268	26.8754	27.0094	26.9386	27.8356	34.7732	39.9090	40.8103	38.5469	14.0411	31.3351	27.1164	24.0119
	300.	13.1887	18.4283	20.6577	22.1604	23.0651	23.7542	24.2756 39.8327	24.6413	24.8926	25.0168	27.4991	39.4657	39.4773	1.2001	37.5626	353.9312	36.0234	25.8227	22.6660 9.2076
	270.	12.121	16.4207	18.6777	19.9639	20.7206	21.3558	21.8171	22.1659	22.4137	22.5799	25.5891	32.5133	36.8290	38.1652	35.7351	32.0837	28.5653	24.2383	21.1372
	240.	9.3323	14.2768	16.6401	18.0420	18.8344	19.2976	19.6245	19.8217	19.9421	19.9968	21.9103	27.639	33.9363	34.3337	34.5005	30.7254	27.2036	22.8525	19.5896
	210.	7.6613	13.3480	15.7209	17.1555	17.8697	18.2280	18.3867	16.3916	18.3104	18.1333	17.7982	21.3054	28.7706 311.7523	33.5735	33.8150	30.0229	26.4412	22.0497	18.6395
	130.	259.2362	13.6513	16.1125	17.4735	18.1582	18.4369	18.5568	18.4324	18.1154	17.6332	15.8151	16.93512	22.8364	29.7501	32.6347	29.7382	26.4187	21.4360	18.4352
3	150.	9.6663	14.7980	17.2592	18.7836 225.7666	19.5501	19.9230	225.0270	19-9705	19.7453	19,3575	17.2621	16.8069	20.7687	27.2107	32.8975	30.2987 2071,3613	27.0738	22.7337	19.2766
Azimenth (ded	120.	11.8043	16.5956	19.1422	20.7299	21.6698	22.2290	22.6006	22.8019	22.8641 187.6121	22.7516	20.6571	19.4144	21.9835	26.0371	34.3411	31.8309	28.6943	24.5283	21.2642
	90.	14.1334	10.6866	21.2237	22.8102	23.9296 154.6467	24.7707	25.3956 162.3443	25.7704	25.8431	29.6169	23.8829	23.2087 153.5896	26.0590	31.0728	35.4729	33.5062	30.6643	26.5857	23.5271
	•	14.7316	20.1147	22.6916	24.4926	25.7461	26.7276	27.4410	27.8449	27.9598	27.7638	26.1451	26.1313	30.1342	35.2725	37.9999	35.2514	32.0507 103.0804	27.9393	24.7497
	30.	15.8492	21.0080	23.5946	25.3959 113.3252	26.6732	27.6545	28.3793	20.0117	110.4239	109.3154	27.2295	17.9659	33.9877	39.6166	39.7257	36.1449	32.7556	20.5583	25.3470
	ė	16.3507	21.1548	23.6835	25.2937	26.4703	27.3912	26.0793	28.4976	28.596)	20.3763	27.5243	31.2762	37.7403	41.0651	39.5231	36.0367	32.5401	28.2071	25.0965
	HOUR 12	1.85	3.70	5.56	1.41	9.26	11.11	12.96	14.82	16.67	10.52	27.78	37.04	46.30	55.56	14.00	92.40	111.12	130.90	164.68
				Rad	dius	from	Eye	(kn	1)											

Figure C8. Wind speed and direction fields, Snapshot 7, Hurricane Gilbert (Continued)

	Speed						
	20.0075 S	15.9211	13.7544	11.5151	14.3149	9.9568	9.0801
	18.5938	14.6756	12.7089	10.7025	9.5811	11.2965	8.5450 74.5999
	17.1109	13.1382	11.1680	9.2559	6.2307 59.1180	7.7176	00000
	15.4084	11.2449	9.1514	6.7957	6.1556	6.0912	6.0791
	14.0595	9.3517	5.9584	32.3861	3.5826	4.5115	5.1492
	13.751 5 251.750 7	8.3360 259.637	4.4322	1.7330	3.1535	4.1778	0.0360
(Bep	14.7055.	10.1152	***	5.4686	3.3080	5.5693	5.7541
Azimuth (deg)	16.9316	12.7686	10.6628	8.6628 143.2619	7.7021	7.3188	7.0382
	19.3016	15.0640	12.7955	10.4951	9.3544	8.5923 114.3397	000000000000000000000000000000000000000
	20.5431	16.1883	13.9106	11.5583	10.3390	9.5647	103.4790
	21.1562	16.8229 84.2 n 25	14.5290	12.1576	10.8701	10.0597	9.4190
	20.8111	16.568)	14.3125	12.0379	10.7475	9.9243	0.000
	222.24	333.34	****	666.72	***************************************	1111.20	1333.44
			Rad	dius	from	Eye	(km)

		<u>-</u> -																	
	Speed Direction																		
336.	4.7546 107.4558	9.4594	12.7349	16.1879	19.2406	21.8452	14.0113	25.7950	27.1694	20.1101	31.9115	41.1320	46.1238	47.1961	46.3935	43.1862	39.1700	13.4266	20.7774
306.	6.8043	83.6886	11.7575	15.0622	17.9045	20.1893	22.0899	23.6959	25.0479	26.1438	32.2792	42.2181 24.0516	45.9631	16.7223	45.8705	41.9655	37.8652	32.1345	27.4264
276.	4.4114	7.4573	10.1942	13.3750 26.5580	16.1560	18.2845	20.1465	21.5674	22.7364 13.0989	23.7232	30.1293	39.1871 5.133\$	43.2903	334.9314	43.8149	40.7029	36.7140	30.7724	26.0802
240.	5.8912	5.8476 44.1783	7.9992	11.5782	14.5065	16.6294	18.3025	19.4890	20.3842	21.0763	25.5789	33.8092	40.5233	43.0494	12.6332	39.4565	35.4555	29.5757	24.7240
210.	5.4502	3.6093	5.1488	9.8228	13.1633	15.4324	17.0047	18.0439	18.7049	19.0814	20.4126	25.7924	34.8384	40.2867	42.3924 267.7920	39.0944	35.0934	29.223	24.2397
130.	5.1945 101.1154	2.1578	3.293 \$	8.8706	12.4554 273.321 2	14.9322	16.7268	17.8150	18.3133	18.3397	17.7583	19.7367	27.2599	35.8531	40.9791	39.910.1	35.4345	29.5338	24.624.3
eg) 150.	107.9817	2.4043	5.1929 219,9188	10.0180	13,4850	16.0879	18.0016	19.2911	225.0539	20.3251	19.2543	18.6711	246.3961	31.6531	41.3400	39.6451	34.1250 194.9458	30.4496	25.5357
Azimuth (deg) 120.	4.7471	4.7180	105.4784	12.2905	15.6928	18.5180	20.7533	22.423	23.5632	24.1947	22.9905	21.2910	23.1957	30.9766	43.0469	41.1710	37.4938	32.1415	27.3710
90.	\$.1433 115 .4730	4.4910	16.6279	14.5031	18.0561	21.1463	23.4649	25.5862 164.2686	26.7639	27 . 2449	26.4438	25.1191	27.5048	34.2487	19.7267	132.5309	39.5421	33.9424 127.0322	29.4031
6	5.7882 118.9495	135.8164	12.2754	16.2297	19.9056	23.0668	25.6746	27.6445	28.9354	29.5451	28.8644 132.7295	26.3070	32.5712	39.9193	46.1813	44-1783	40.5500	34.994	30.3078
30.	4.2123	9.0842	13.0417	17.0289	20.6668	23.7701	26.3959	28.4618	19.9081	30.7179	30.1141	30.4543	38.1410	15.0501	47.7271	44.4299	40.7662	35.1190	30.4352
•	4.3147	9.3112	13.1143 .	16.0003	20.2743	23.102)	25.6683	27.4935	29.1255	29.4652	30.713)	35.9043	43.7292	47.7511	47.3631	44.3671	16.4933	34.7276	30.1803
HOUR 14	1.85	3.70	5.36	7.41	9.26	11.11	12.96	14.82	16.67	11.52	27.78	37.04	44.30	55.56	14.08	92.60	111.12	130.90	166.68
			Rac	ius 1	irom	Eye	(km)											

Figure C9. Wind speed and direction fields, Snapshot 8, Hurricane Gilbert (Continued)

	Speed Direction						
	22.4507	16.1364	13.1381	10.4348	9.2900	8.4403	8.1287 96.0352
	21.0256	14.0198	12.1181	9.7168	15.8702	8.2297	7.9612
	19.5530	13.3626	10.6728	8.5409 56.6723	7.7403	7.4878	00000
	18.0937				6.4914	4.4945	6.7644
	17.1813	9.9522	334.0115	3.8326	5.1659 39.7432	5.9770 94.0379	6.4437
			3.8567	2.6743	4.812 6 108.936 1		0.000
(Bep)	18.5328	11:1491	7.1188	5.2300 143.0829	\$.7794 119.2399	6.3312 139.8507	6.6526 195.3662
Azimuth (deg)	20.5727	13.5750	10.3054	7.8155 132,5556	1.2487	7.1972	7.0586
	22.7057 129.2268			9.5562	110.4453	7.0904	00000
	23.6923		13.4677		9.289	6.445	100.67
	23.9216 74.0585	17.2036	13.9539	10.9859	9.4694	1.9470	96.8043
	23.5575	16.9581 1	13.7141	10.9215	9.6053		0000
	222.24	333-36	*****	446.72	111.96	1111.20	1333.64
				dius	fron		(km)

		Speed Direction																		
	330.	11.1527	16.8249	20.9901	23.9225	25.9655 67.5752	27.4068	28.4874	28.9790	29.2075	29.1862	32.0244 52.3394	41.7294	44.5509	20.4167	16.2282	35.9117	31.7591	26.9531	23.494
	300.	10.4973	15.2323	19.2034	21.8980	23.6550	24.9198	25.8349	24.4579	26.0784	27.1478	33.0507	12.5503	44.0064	43.3627	39.5037	34.5990	30.3893	25.6173	22.1071 9.1503
	270.	0.6842	13.3953	17.1955	19.5743	21.1638	22.273	23.0992	23.7362	24.2775	24.8445	31.6220	39.8481	41.6286	41.6717	37.8418	33.1926	28.9668 327.9138	24.0334	20.5807
	240.	5.8231 36.9258	11.3789	15.1942	17.7657	19.2863	20.2181	20.8690	21.3363	21.7476	22.1634	27.3583	35.6194	39.8717	40.1942 304.2949	34.4.86	31.8627	27.4501	22.4717	19.0297
	210.	3.5643	9.9159	14.3302	17.0477	18.5377	19.3092	19.7099	19.8700	19.9174	19.8871	21.5914	29.0146	36.4357	38.8504	34.2801	31.3324	268.8583	21.9838	18.1680 279.5340
	190.	330.6789	9.8741	14.610.9	17.3612	10.0526	19.6221	19.8198 263.2120	19.823	19.4328	18.939 2 266.138 0	17.6164 279.911 5	21.358 5	30.7384	36.7192	35.7123	31.436.7	27.2413	22.0139	18.1150 242.551 5
	(deg) 150.	3.4501	10.0949	15.5376	18.5694	28, 2380	226.8195	225.7869	224.7087	20.9099	223.0573	17.9408	19:2930	28-1506	35.5101	36.3744	32.1302 202:.7459	202.6433	203.3250	19.1054
	120-	6.1747	12.6388	17.2950	20.4302	22.3512	23.4336	24.0444	24.3028	24.3093 147.4789	24.0747	21.4511	21.2231	202.1307	36.1424	38.0387	169.0215	29.7350 168.0328	24.6345	21.1413
	•	7.7846 155.9167	14.6679	19.3236	22.4971 156.5271	24.6330	26.1495	27.1396 161.8877	27.6361	27.6749	27.3308 156.3651	25.1578 156.9907	25.9423 157.5576	32.1996 155.1445	38.2284	19.2676 139.1621	35.5824 135.0267	31.7301	26.9237 132.8400	132.5715
	•	10.3044	14.3294	20.9525	24.3093	26.6912	28.4123	29.5192	30.0544	30.1248	29.8138	27.9424	29.8507	37.0923	41.4396	41.0181	36.9212	32.9237 100.7526	28.1347	24.5544
	30.	11.4761	17.3363	22.0421	25.3759	27.7923	29.5067	30.6214	31.1404	31.2995 1 09.6573	31.0731	29.4271	32.6482	41,5019 92,9338	44.4212	42.1196 71.8083	37.49%	33.3790	28.55%	24.9877
	•	11.2437	17.6478	22.1714	25.2354	27.4713	29.1225	30.2401	30.033	30.9343	30.4512	30.3617	37.1555	43.4332	45.2505	42.5465	37.2312	33.0561	28.1503	24.6793
	HOUR 16	1.15	3.70	5.36	7.41	4.26	11-11	12.96	14.82	16.67	10.52	27.18	37.04	46.30	35.56	14.08	92.60	111-12	130.90	166.68
-	_			Rad	lius 1	irom	Eye	(km)											

Figure C10. Wind speed and direction fields, Snapshot 9, Hurricane Gilbert (Continued)

	222	33			from	Eye	(km
	222.24		244.48				
	7.6513	5.4289	3.1323	2.186)	9.7377	9.045t 0.7525	0.0000
	20.3481	15.6706	13.3257	10.9990	9.1526	9.1155	97.2023
	19.8652	15.1135	12.7691	10.4790	9.4422	102.5408	102.1143
	18.7060	14.0677	11.6796	9.5330	0.6230	109.3689	0000
Azhruth					7.2931 120.7818		
ge pj					5.4923 123.3870		
					4.519 0 112.6123		
					4.8463		
	14.4707	10.1337	8.0136	6.4186	4.3113	6.5004	4.5714
					7.7488		
	17.6736	13.5969	11.6522	9.7137	14.9080	0.3627	18.9732
	19.1063	14.7448	12.5701	10.4552	9.4520	1.0597	1.3444
	Speed						

		¢																		
		Speed Direction																		
	330.	5.9408	6.1779	6.8159 105.3813	136.7331	10.1204	12.6221	15.2993	18-1419	21.0434	23.6249	34.9819	40.6728	42.6448	42.0135	40.9471	30.7348	36.7062	33.645	36.7129
	300.	5.9444 103.7457	6.1677	4.6484	7.5069	9.2662	11.5386	14.1036	16.8134	19.5127	22.1439	33.6704	40.0763	12.5411	42.3466	40.2094	37.7727	35.7021	32.4234	29.5903
	270.	9.9468	4.0952	6.3115	6.6329	7.6819	9.7013	12.2262	14.7444	17.2690	19.7091	30.7052	38.4115	40.6875	10.0439	38.3978	36.1574	34.1408	30.9772	27.9706
	240.	\$.9223 102.1501	6.0157	5.9782	5.6302	5.4814	7.2315	9.9767	12.5248	14.0966	17.1371	24.7359	34.5245	37.8422	38.5344	34.8094	34.6699	32.7453	29.7139	26.6729
	210.	5.8780	5.9208 100.4585	9.6918	4.4831	3.0884	4.1879	7.6180	10.7774	13.2873	15.4523	23.1548	29.866	34.1790	35.4987	35.1327	33.3009	31.7090	28.9649	26.0123
	136.	\$.8250 101.630 4	5.8239 100.355 S	5.570 4 100.2331	3.9924	0.9344	2.3129	6.9754	13.434 \$ 273.4295	13.11.34 271.32.5	15.212.1	23.4590	25.7373	29.2189	31.874 5 273.215 4	32.9192	31.9372	38.9948	26.3986	25.5569
(De	150.	\$.7720 102.0790	5.6977 13651	5.2809	4.0650	2.8452	5.0521	229.0041	11.9945	14.6755	17.0101	23.1143	25.4676	27.0173	28.6614	30.8071	31.2726	30.058	20.9440	26-3365
Azimuth (deg	120.	5.7350	5.6093	5.2914 308.6707	4.8050	5.1709	7.8619	11.1054	14.1814	17.1703	19.0016	26.6152 192.8734	20.3559 193.7711	28.3964	20.7200	30.3981	31.4988	32.0884	30.5914	28.2049
	•	5.7244 103.4973	5.6053 135.3896	\$.4957 111 .2792	5.8232 128.6930	1.4588	10.1489	13.0503	16.1341	19.2667	22.1237	30.1479 162.8338	31.6346	31.4493	31.3028	32.2104	33.5399	13.9493	32.4345	30.0672
	•	5.7581 104.6491	5.6875 107.0980	5.8683 113.8568	6.7850	9.0202	11.6449	14.5311	17.6727	20.8665	23.9246	32.9125	34.9978	34.9345	35.0911	36.2696	36.7864	36.1541	34.6209	31.3974
	30.	5.8152 1.05.1008	5.85% 107.766	4.2755	7.5052	9.8030	12.5065	15.4080	10.5315	21.7028	24.026.	1 99.6270	103.4319	36.2838	39.0203	46.1197	39.0413	37.6338	34.9129	32.0541
	ė	5.8791	4.0385	4.6052 109.5492	0.1022	16.3157	12.8761	15.6671	16.6273	21.6328	24.4101	35.522	39.3955	10.9423	41.7935	11.0643	39.5187	37.7723	34.7661	31.0693
	HDUN 18	1.18	3.70	5.54	7.41	9.26	11.11	12.96	14.42	16.67	11.52	27.78	37.04	46.30	95.56	;	92.60	111-12	138.90	166.68
				Rad	ius f	rom	Ĕ ye	(km)	ı											

Wind speed and direction fields, Snapshot 10, Hurricane Gilbert (Continued) Figure C11.

	25.737e Speed	26-1352 Discri gor 19-2449	15.7404	12.0192	16.2130	73.8207	15.27 16.66
	26.4360						
	22.9452	14-4545	13.0173	9.720	0.354	7.6736	000
	22.5323						6.3997 85.5844
	20.5820				3.7751	4.963	5.7875
	241.51419			1.735	3.192 8	4.6719	0.000
(Geg)	203-4316			8.8215	\$.2976 140.1694	5.7435	4-1409
Azimuth (deg)	23.3488	16.7296	12.8784	9.1712	131.2879	7.2471	7.6227
	25.4717	18.9608	14.9936	11.1019	9.3326	113.0096	0.000
	101.9207	19.9481	16.0659	12.1337	10.2993	9.2984	103.1059
	27.0236	20.4624	16.6361	12.7210	10.4083	9.7236	1.913
	26.7972	20.2095	14.359)	12.6141	10.7025	9.6035	0.000
	222.24	333.36	444.48	666.72	****	1111.20	1333.44

	MOUR 20	•	30.	6	•	Azimuth (deg) 120.	d egi 150.	136.	210.	240.	270.	300.	336.	
	1.15	5.9295	\$.8823 103.3145	5.8475	5.6352	5.851 101.4148	5.8926 100.8360	5.9372	5.9747	101-0966	100.001	4.0052	103.0237	Speed Direction
	3.70	3.941)	105.2324	5.7644	\$.7365 102.6506	9.7774 101.3052	5.8698 100.001	5.952 4	4.0304	100.433	4.1627	6.1130 103.0752	4.0621	
Rad	3.36	107.4967	5.9303	5.7101	5.4101	5.6446	5.7917	5.930 5	6.0720	6.1500	4.2274	103.4341	105.6725	
ius 1	7.41	6.7665	6.2669	5.7929 113.2055	5781 111.5368	\$.3447 107.0328	9.4262	5.7160 98.8276	5.9119 97.9039	4.1369	4.4120	4.7301	4.9335	
irom	9.26	109.0837	1.4201	6.6725	5.7277	4.6734	4.1552	4.036 4	9863	5.7371	6.7963	7.6339	101.0705	
Eye	11.11	10.3923	9.7639	136.2229	7.3604	5.1277	2.6882	0.9107	3.1597	5.7189	7.8680	9.4149	10.3230	
(km	12.94	12.9992	12.5085	11.6842	10.3057	8.2092 189.1190	5.3637	2.953 2 278.454 4	357.8077	7.4666	10.0225	11.7933	12.0035	
)	14.62	15.9642	15.4682	14.9280	13.4134	11.7990	9.3829	7.0365	7.5289	10.2768	12.6714	14.6086	15.0056	
	16.67	19.2397	19.2051	10.5467	17.1984	15.1895	12.4795	10.424 9	10.4905	13.0612	15.6478	17.7275	19.0104	
	10.52	22.7205	12.0047	22.2024	20.6210	18.3616	15.0451	12.6303	13.3014	15.9718	18.9824	21.0070	22.3282	
	27.78	35.7237	34.5800	32.6709	29.9005	26.1567 195.4956	22.3295	21.4134	25.3418	31.3325	36.2174	38.1519	37.2980	
	37.04	42.5259	16.9350	35.5777	52.1298 156.2190	26.6985	27.0051	29.3277	36.4634	41.1668	353.4004	16.1769	46.0016	
	46.30	45.5145	42.1673	37.5512	33.7562 157.7660	31.3806	31.7408	35.1369	39.6362	42.5312	14.4570	16.3933	16.6385	
	55.56	16.0265	44.3577	39.7188 127.3518	35.9740 165.7419	34.2957	34.9786 235.0846	37.6524	39.7887	41.5712	13.2427	14.9356	15.6461	
	14.08	13.4195	13.4844	41.3370	38.4435	37.4637	36.3556	36.4592	37.6987	38.4542	39.7570	41.4674	42.4429	
	92.60	40.3345	14.022	39.4321 105.1505	37.5403 140.8722	35.0956 175.2363	34.4016	33.9822	34.4175	35.1165	36.4832	37.9664	39.1451	
	111.12	37.0192	37.2929	34.4289	15.334	33.3321	31.6796	31.0519	31.1381	31.7649	33.1351	34.2434	19.845	
	130.90	32.3885	32.7023	32.2408	31.0368 133.4026	29.0404	203.3277	26.350.2	26.4103	27.0126	28.3199	29.0996	31.1494	
	166.68	28.5431	74.6354	20.4113	132.6059	25.1778 167.8595	2634,3952	12.259 6 239.735 2	22.2691	22.9669	24.4164	25.9438	25.2034	

Figure C12. Wind speed and direction fields, Snapshot 11, Hurricane Gilbert (Continued)

222.24 22.7	333.34	***	666.7	:	1111.	1333.4.
22		_	~	•	•	:
132	14.6811	13.5337	10.7068	9.3461	94.4785	6.6003
23.1301	16.9134	13.7240	10.7060	9.3819	1.6739	94-8749
			10.2118	9.0390	8.3925 102.7196	7.8979
22.7239 21.6340 103.7114 152.8844	15.3621	13.1828 12.0916 107.7544 126.5662	9.3165	111.1915	1.7497	0000
19.3665	13.0046	16.0621		7.2128	7.2106	7.0902
17-1865	10.5121	6.6926 187.7993	5.2998 139.3374	117,1069		
16.033	854.271 1		3.1588			
16.0998	9.4515		4.1276			
17.2386 317.3661			6.6323		6.8765	
18.8421	13.1558	10.5609	62.9819	7.7315	7.5224	0.000
20.3654	14.6660	12.0211	9.5773	1.5796	0.1249	7.0939
21.7965	15.0344	12.9492	10.2520	9.1143	90.6672	7.9847
Speed						
	21.7965		10 11 18 14 14 14 14 14 14 14 14 14 14 14 14 14	10 11 11 11 11 11 11 11 11 11 11 11 11 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11 11 11 11 11 11 11 11 11 11 11 11 11

		Speed Direction																		
	336.	5.9708 105.9163	4.4387	7.8154	10.0938	13.0651	16.4849	19.9808	23.3874	26.5349	29.5115	30.1055	43.2483	43.5302	42.4561	39.5999	36.4326	33.2275	26.0423	25.2052
	366.	6.0087	6.4174	7.4401	9.2984	12.1309	15.3609	18.6859	21.8935	24.9213	27.7673	38.9985	43.6304	42.9631	41.6494	38.6883	35.2296	31.9442	27.5578	23.9371
	270.	5.9738 103.7604	6.2573	6.7244	1.9428	10.5079	13.4147	16.8092	19.8:80	22.4708	25.3486	37.0632	41.6440	41.1492	39.9184	36.7987	33.6708	30.4404	25.9384	337.7744
	240.	9.9370 102.9132	6.0145	5.000	5.9578 59.2401	8.1597	11.5406	14.6487	17.5322	20.1729 346.7214	12.5434	32.8432	38.5401	39.1003	38.2261	35.4817	32.2954	29.0911	24.5860	20.8544
	210.	9.8702 102.3888	5.0390 100.2132	5.0094 91.7266	3.4569	5.1262 352.6953	9.4547	12.8624	15.7096	10.1192 311.4927	20.1122 311.1021	27.7243	34.3422	36.3564	36.2971	34.6161	31.5434 273.4544	20.3774	23.9003	20.0594
	130.	. 5.736.2	9.6592 100.7512	4.4527	1.131.	3.552 5 283.837	8.654.5	12.3474	15.21812	17.4714	19.0538	23.8399	28.136 5	31.8193	33.929.2	33.334 5 251.535 1	31.0137	28.2838	23.836.2	19.9141 242.0393
1777	130.	5.7040 102.9887	\$.4097 102.6410	1111,9417	2.4381	5.6443	101.2925	13.8330	16.8137	19.1495	229.1581	23.0345	246.1823	20.2714	30.8343	33.0826	31.5190 210L4728	266.7071	24.7179	20c.9518 264c.7376
A	120.	5.6322 103.9704	5.3474 105.8942	4.5765	4.8845	190.5141	12.6338	16.4285	19.8353	22.5747	24.5794	27.2926 192.9456	27.3107	27.9401	30.0780	34.0633	33.0510	30.4348 171.8704	26.5950 169.8555	23.0158 160.5574
	•	\$.4499 105.0239	5.4067	5.3752	7.1616 150.7317	16.7793	14.7052	18.8100	22.5829	25.6301	27.7474	31.2468	30.6971	30.7574	32.2254 166.1621	35.2583 151.3618	34.7217	32.4936 136.9694	28.4659 134.1456	25.2436 133.1483
	• • • • • • • • • • • • • • • • • • • •	5.6997 106.2191	5.6022	6.3398	8.7735	12.2267	16.2157	20.4157	24.3814	27.7604	30.3424	34.4266	34.2299	34.6418	36.3289	38.4459	36.7535	34.0454	29.9345	26.3680 102.7452
	30.	\$.7806 1.96.7510	9.9179 1 10.9312	7.0523	9.5543	12.9520	16.8812	21.0445	25.1146	28.7738	31.7702	36.5787	37.3980 1 05.0162	39.0756	41.0297	10.655	37.7455	34.7113	30.40%	26.7982 75.9031
	ė	5.8683	6.1945	7.5137	10.1199	13.3121	16.9411	20.7713	24.5265	27.9951	30.8953	37.0815	40.6303	42.3711	42.7425	40.5303	37.4405	34.5017	30.0557	24.5042
	MOUR 22	1.85	3.70	3.56	7.41	9.26	11.11	12.96	14.82	16.67	16.52	27.70	37.04	46.30	95.56	14.08	92.60	131.12	130.90	166.48
				Rad	ius f	rom	Eye	(km))											
ı																				

Figure C13. Wind speed and direction fields, Snapshot 12, Hurricane Gilbert (Continued)

	_						
	Speed Direction						
	20.3462	15.1384	12.5173	10.0928	9.0636	90.4770	7.9624
	14.9052	13.9458	11.6192	9.4281	0.5194	1.1059	7.8681
	17.3848	12.4397	10.2010	8.3439	7.6791	7.4971	0.0000
	15.7158	10.5082	8.0267 19.9131	65.5564	6.6171 83.6558	6.8518	6.9270
:	14.4724	317.1211	4.5313	4.2284	5.5444	6.2589	6.6594
	14.352 6	7.2102	2.2184	3.4547	5.272 5	4.1128	0.0300
(Bep.	15.4786 '	9.5366	182.4662	5.3766 136.4057	4.0248	6.5425	4.8234
Azimuth (deg)	17.7597	12.2563	9.6498	7.5507	7.2139	7.2093	7.0822
	20.0624	14.5325	11.6307	9.1900	110.7762	7.7470	900
	21.2031	15.5516	12.7148	10.0407	104.1113	102.5401	7.9080 101.7670
	21.6436	16.0818	13.2574	10.5349	9.3324	98.2470	8.1000 98.7140
	21.2642 56.7867	15.8525	13.0761	10.5345	9.3353	0.5133 94.3025	0.000
	122.24	333.36	****	666.72	96-181	1111.20	1333.44
			Rad	lius 1	irom	Eye	(km

S RUN A	ZIM_AVER				
		Wind 8	Speed	Inflow Angle,	
Redius	Redius	Scalar Avg.	Vector Avg.	(+ = in, - = out)	
(n.m.)	(km)	(m/eec)	(m/sec)	(deg)	
WIND.	HOUR	20	. 0		
1.	1.852	5.9405	0.0583	242.9772	
2.	3.704	5.9437	0.1176	243.5015	Snepshot 1
3.	5.556	5.9498	0.1792	244.4844	
4.	7.408	5.7595	0.2443	245.8895	
5.	9.260	5.9755	G.3159	248.0143	
6.	11.112	5-0049	0.4017	251.6257	
7.	12.964	5.0747	0.5263	259.0292	
8.	14-816	5-2682	0.7831	-85.1015	
9.	16-668	5.7908	1.4971	-61.3046	
10-	18.520	7-8736	3.2177	-39.8814	
15.	27.780	25.71.27	25.8542	0.0638	
20.	37.040	39.1360	37.0043	14.4071	
25.	46-300	39.8450	38.6980	21.4880	
30. 40.	55.560 74.080	39-2075	38 - 2327	26-3533	
50.	74-080 92-600	35.9664	36.4542	35.2711	
60.	111.120	34.7457	34.4134	40 - 8962	
75.	138.900	32.1222 27.6395	31 - 8455	43.3617	
90.	166-680	23.5362	27.3607 23.2120	43.5430	
120.	222.240	17.3512	16.8293	41.9649 36.0960	
180.	333.360	13.8521	9.6021	23-6111	
240.	444.480	7.9560	5.4558	15.0186	
360.	666-720	7-4514	1.7981	10.4387	
480.	888.960	7-4233	0-6930	11.4414	
600.	1111.200	7.4100	0.3141	6-7318	
720.	1333.440	4.9126	Ú. 1089	-12-1050	
WIND,	IOUR	20	1		
1.	1.852	5.9644	0.0565	240.5800	Interpolation between
2.	3-704	5.9677	0.1138	241.0424	Snapshots 1 & 2
3.	5.556	5.9738	0.1730	241.9138	
4.	7-408	5.9834	0.2350	243.1496	
5.	9-260	5-99 85	0.3022	245-0328	
6.	11-112	5-0250	0.3803	248-1936	
7. 8.	12.964 14.816	5.0830	0.4864	254.5270	
9.	16-668	5.2368 5.6499	0.6847 1.2092	268.6367 -68.0856	
10.	18-520	7.5427	2.5093	-45.4020	
15.	27-780	23.5379	22.5697	-2.4338	
20.	37.040	33.3208	37.1779	14.3704	
25.	46.300	42.0500	41 - 0345	23.7352	
30.	55.560	41.50 28	40.6994	29.0430	
40.	74-080	37.9929	37.5078	35.4472	
50.	92.600	34.9229	34.5727	39.4681	
60.	111.120	32.1931	31.8974	41.7054	
75.	138.900	23.1118	27.8268	42.5412	
90.	166.680	24-3038	23. 9868	41.6276	
120.	222-240	13.2532	17.7728	36.8113	
180.	333.360	11.5444	10-4276	25.1562	
240-	444-480	3-2821	6.0906	15.3304	
360.	666-720	7 - 46 68	2.0921	10.6132	
480-	888.960	7-4237	6.8189	11.3544	
600.	1111.200	7.4093	0.3746	7.6189	

Figure C14. Azimuthally averaged speed and inflow angle, Hurricane Gilbert (Sheet 1 of 12)

			Speed	inflow Angle,	
Redius	Radius	Scalar Avg.		(+ = in, - = out)	
(n.m.)	(km)	(m/sec)	(m/sec)	(deg)	
WIND,	HOUR	20	2		
1.	1.852	5.9885	0.0548	238.0248	
2.	3.704	5.9919	0.1102	238.4156	Snepshot 2
3.	5.556	5.9982	0.1672	239.1560	
4.	7.408	5.0076	0.2264	240.1999	
5.	9.260	5.0220	0.2895	241.7754	
6.	11.112	5.0457	0.3604	244.3654	
7.	12.964	5.0921	0.4500	249.2603	
8.	14.816	5.2074	0.5968	260.4110	
9.	16.668	5.5173	0.9457	-78.7729	
10.	18.520	7.2460	1.8151	-55.4724	
15.	27.780	23.4553	19.1466	-5.2852	
20.	37.040	33.5064	37.3467	14.3364	
25.	46.300	44.2971	43.3895	25.7404	
30.	55.560	43.8676	43.1995	31.4260	
40.	74.080	39.0180	38.5573	35.6167	
50.	92.600	35.1224	34.7513	38.0579	
60.	111.120	32.2916	31.9735	40.0499	
75.	138.900	23.5935	28.3006	41.5780	
90.	166.680	25.0731	24.7614	41.3158	
120.	222-240	19.1630	18.7172	37.4373	
180.	333-360	12.2446	11.2392	26.5320	
240.	444.480	3.6870	6.7227	17.4240	
360.	666.720	7.4862	2.3823	10.7159	
480.	888.960	7.4253	0.9447	11.2861	
600.	1111.200	7.4090	0.4350	8.2587	
720.	1333.440	4.9130	0.1493	-5.0173	
WIND.		20	3	3002.0	
1.	1.852	5.8402	0.7731	-75.1767	4-4
2.	3.704	5.45 99	3.0543	-50.1969	Interpolation between
3.	5.556	9.9973	8.7711	-22.2437	Snepshots 2 & 3
4.	7.408	17.1276	16.4325	-8.7850	
5.	9.260	23.7617	23.2580	-1-7680	
6.	11.112	27.9470	27.5536	2.6972	
7.	12.964	29.9794	29.6319	6.0785	
8.	14.816	33.5931	30.2645	8.6527	
9.	16.668	30.4137	30.1121	10.4360	
10.	18.520	29.9044	29.6449	11.3989	
15.	27.780	33.3389	32.9973	10.4108	
20.	37.040	33.8700	38. 9509	15.7391	
25.	46.300	43.8779	39.9576	22.2504	
30.	55.560	39.5400	36.7501	26.6865	
40.	74.080	35.3129	35.8119	33.3749	
50.	92.600	33.4908	33.1396	37.8682	
60-	111.120	33.90 05	30.6016	40.2691	
75.	138.900	27.0636	26.7709	41.2536	
90.	166.680	23.5050	23.1748	40.4313	
120.	222.240	17.8497	17.3439	35.7290	
180.	333.360	11.4874	10.3226	24.5473	
240.	444.480	3.35 87	6.1182	16.4950	
360.	666.720	7.5436	2.1977	11.5892	
480.	888.960	7.4797	0.9074	12.1303	
600.	1111.200	7.4515	0.4313	9.1300	
720.	1333.440	4.9283	0.1473	-3.2691	
120.	T333.44A	** 74 03	0.1413		

Figure C14. (Sheet 2 of 12)

		Wind 9	Speed	Inflow Angle,	
Radius	Redius	Scalar Avg.	Vector Avg.	(+ = in, - = out)	
(n.m.)	(km)	(m/sec)	(m/sec)	(deg)	
WIND,	HOUR	20	4		
1.	1.852	5.8323	1.5088	-73.7257	
2.	3.704	7.6811	5.8655	-48.3018	Snapshot 3
3.	5.556	17.0601	16.3827	-18.8441	
4.	7.408	31.1340	3û.6660	-5.6326	
5.	9.260	44.1059	43.7016	1.0484	
6.	11.112	52.0694	51 - 6435	5.5470	
7.	12.964	55.7219	55.1891	8.9149	
8.	14.816	55.9171	56.2661	11.6026	
9.	16.668	55.6530	55.9352	13.6930	
10.	18.520	55.4595	54.7346	15.2657	
15. 20.	27.780	47.2739	46.6246 40.5148	17.3370 17.0706	
25.	37.040 46.300	41.2928 37.5578	36.6132	18.1008	
30.	55.560	35.4703	34.4779	20.7272	
40.	74.080	33.6395	33.0831	30.7598	
50.	92.600	31.8519	31.5189	37.6681	
60.	111-120	29.5078	29.2248	40.5194	
75.	138.900	25.5316	25.2342	40.8956	
90.	166.680	21.9416	21.5849	39.4102	
120.	222-240	15.5657	15.9818	33.7018	
180.	333.360	17.7602	9.3951	22.2754	
240.	444.480	3.1825	5.5112	15.3905	
360.	666.720	7.61 31	2.0124	12.5970	•
480.	888.960	7.5401	0.8702	13.0439	
600.	1111.200	7-4989	G-4276	10.0139	
720. Wind, h	1333-440	4.94 63	0.1454	-1.4962	
1.	1.852	20 5.2252	5 2.7628	-65.8165	
2.	3.704	1).8849	9.7729	-34.6276	Interpolation between
3.	5.556	23.9177	23.3696	-10.5852	Snapshots 3 & 4
4.	7.408	38.7603	38.3208	-0.9444	
5.	9.260	43.6471	49.2128	4.1015	
6.	11.112	55.1260	54.6246	7.4212	
7.	12.964	57.2447	56.6338	9.9296	
8.	14-816	57.5303	56.8154	11.9629	
9.	16.668	55.7618	55.9895	13.5702	
10.	18.520	55.3013	54.5162	14.8087	
15.	27.780	47.1459	46.3588	16.6690	
20.	37-040	41.7828	40.8349	17.7450	
25.	46-300	38.5645	37 - 61 81	21.1510	
30.	55.560	35.6946	35.9205	25.7857	
40.	74-080	34.4778	34.0738	35.2891	
50-	92-600	31.8423	31.5568	40.0867 41.5009	
60.	111-120 138-900	23.8347	28.5661 24.0850	40.6504	
75. 90.	166-680	24.3943 23.6857	20.2947	38.4191	
120.	222.240	15.4411	14.7694	31.7297	
180.	333.360	13.0126	8.4136	20.0608	
240.	444.480	3.0213	4.8038	13.9795	
360.	666.720	7.6176	1.7291	12.1352	
480.	888.960	7.55 82	0.7501	12.4990	
600.	1111.200	7.5163	0.3689	9.0158	
720.	1333,440	4.9548	0.1238	-3.6095	

Figure C14. (Sheet 3 of 12)

				Speed	Inflow Angle,	
NIND, HOUR 1. 1.852 5.7256 2.9907 -62.4913 2. 3.704 14.5032 13.6544 -28.3991 3. 5.556 31.8972 30.3899 -6.2408 4. 7.408 45.3251 45.8593 2.2482 5. 9.260 5.9773 54.4563 6.4809 6. 11.112 58.0636 57.4492 9.0340 7. 12.964 53.7361 58.0230 10.8773 8. 14.816 53.1499 57.3589 12.3154 9. 16.668 55.8714 56.0365 13.4475 10. 18.520 55.1522 54.2986 14.3488 15. 27.780 47.0437 46.0940 15.9946 26. 37.040 42.3020 41.1548 16.4114 25. 46.300 39.6646 38.7001 24.0330 30. 55.564 33.1960 37.5633 30.4291 40. 74.080 35.5348 35.2260 39.5457 50. 92.600 31.6955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5355 75. 138.900 23.2591 22.9323 40.3830 90. 166.680 19.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 3.3352 7.4333 17.3851 120. 222.240 14.3366 13.5521 29.3917 180. 333.340 9.3352 7.4333 17.3851 240. 444.480 7.9289 4.0952 12.1178 360. 6111.20 7.5351 0.3103 7.6245 77. 12.964 55.5360 55.7612 9.8917 55. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 77. 12.964 55.5360 55.7612 9.8517 58. 14.816 55.2999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4999 55.4289 11.1628 9. 16.668 55.4968 37.5621 33.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 31.4613 31.2270 43.5405 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2700 43.5405	Redius		•	_		
1. 1.852 5.7256 2.9907 -62.4913 2. 3.704 1.5032 13.6544 -28.3991 3.5.556 3).8972 30.3899 -6.2408 3. 5.556 3).8972 30.3899 -6.2408 4. 7.408 45.3251 45.8593 2.2482 5. 9.260 54.9773 54.4563 6.4809 6. 11.112 58.0636 57.4492 9.0340 7. 12.964 53.7361 58.0230 10.8773 8. 14.816 53.14.99 57.3589 12.3154 9. 16.668 55.8714 56.0365 13.4475 10. 18.520 55.1522 54.298 14.3488 15. 27.780 47.0437 46.0940 15.9946 15. 27.780 47.0437 46.0940 15.9946 20. 37.040 42.3020 41.1548 18.4114 25. 46.300 33.6646 38.7010 24.0330 30. 55.564 33.1960 37.5633 30.4291 40. 74.080 35.5348 35.2260 39.5457 50. 92.600 31.6955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3830 90. 166.680 19.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 3.3352 7.4333 17.3851 240. 444.480 7.3289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7333 600. 111.1200 7.5351 0.3103 7.6245 720. 1333.440 4.9639 0.1025 -66.6188 WIND, HOUR 20 7.5251 9.9517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3861 10. 18.520 56.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 8.3532 75. 138.900 22.2644 4.7367 3.0375 55.560 31.6745 31.1321 -4.0379 9. 166.668 55.4900 55.4289 11.1628 9. 166.668 55.4900 55.4289 11.1628 9. 166.668 55.4900 55.4289 11.1628 9. 166.668 55.4900 55.4289 11.1628 9. 166.668 55.4900 55.4289 11.1628 9. 166.668 55.4900 55.4289 11.1628 9. 166.668 55.4900 54.5386 12.3861 10. 18.520 56.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 20. 37.040 45.1281 44.1740 25.3132 20. 37.040 45.1281 44.1740 25.3132 20. 37.040 45.1281 44.1740 25.3132 20. 37.040 35.1586 35.9069 42.46494 50. 92.6000 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 12.9178 39.4404 40. 74.080 35.1586 35.9069 42.46494 50. 92.6000 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2644 21.9178 39.4404 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2644 21.9178 39.4404 60. 444.480 7.9265 40.0666 12.5087	(n.m.)	(km)	(m/sec)	(m/sec)	(a•8)	
2. 3.704 1.5032 13.6544 -28.3991 3. 5.556 3).8972 30.3899 -6.2488 4. 7.408 45.3251 45.8593 2.2482 5. 9.260 5.9773 54.4563 6.4809 6. 11.112 58.0636 57.4492 9.0340 7. 12.964 53.7361 58.0230 10.8773 8. 14.816 53.1499 57.3589 12.3154 9. 16.668 55.8714 56.0365 13.4475 10. 18.520 55.1522 54.2986 14.3488 15. 27.780 47.0437 46.0940 15.9946 20. 37.040 42.3020 41.1548 18.4114 25. 46.300 39.6646 38.7001 24.0330 30. 55.564 33.1960 37.5633 30.4291 40. 74.080 35.5548 35.2260 39.5457 50. 92.600 31.6955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3830 90. 166.680 17.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 7.5739 0.6301 11.73851 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7383 600. 1111.206 7.5551 0.3103 7.6245 7720. 1333.440 4.9639 0.1025 -6.6188 MIND, HOUR 20	WIND,	HOUR	20			
3. 5.556 3).8972 30.3899 -6.2408 4. 7.408 45.3251 45.8593 2.2482 5. 9.260 59773 54.4563 6.4809 6. 11.112 55.0636 57.4492 9.0340 7. 12.964 53.7361 58.0230 10.8773 8. 14.816 53.1499 57.3589 12.3154 9. 16.668 55.8714 56.0365 13.4475 10. 18.520 55.1522 54.2981 14.3488 15. 27.780 47.0637 46.0940 15.9946 20. 37.040 42.3020 41.1548 18.4114 25. 46.300 33.6646 38.7001 24.0330 30. 55.564 33.1960 37.5633 30.4291 40. 74.080 35.5548 35.2260 39.5457 50. 92.600 31.8955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5355 75. 138.900 23.2591 22.9323 40.3830 99. 166.6680 19.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 9.3352 7.4333 17.8851 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7333 60. 666.720 7.5295 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7333 600. 1111.200 7.5351 0.3103 7.6245 601. 1111.25 5.6745 45.976 8.3532 77. 4133.446 4.9639 0.1025 -6.6188 MIND, HOUR 7.589 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7333 600. 111.1200 7.5351 0.3103 7.6245 6. 11.112 55.6764 54.976 8.3532 77. 428.845 4.9639 0.1025 -6.6188 MIND, HOUR 7.408 5.5400 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3861 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 40. 74.080 35.1586 35.9069 42.6494 40. 74.080 35.1586 35.9069 42.6494 40. 74.080 35.1586 35.9069 42.6494 40. 74.080 35.1586 35.9069 42.6494 40. 74.080 35.1586 35.9069 42.6494 40. 74.080 35.1586 35.9069 42.6494 40. 74.080 35.1586 35.9069 42.6494 40. 74.080 35.1586 35.9069 42.6494 40. 74.080 35.1586 35.9069 42.6494 40. 74.080 35.1586 35.9069 42.6494 40. 404.480 7.9265 40.0666 12.5087 75. 138.900 22.2634 12.9178 39.4404 40. 74.080 35.1586 35.9069 42.6494 40. 404.480 7.9265 40.0666 12.5087 760. 166.680 31.8853 18.153 35.9769	1.		5.7256	3.9907		
4. 7.408	2.	3.704	14.5032			Snapshot 4
5. 9.260 51.773 54.4563 6.4809 6. 11.112 58.0636 57.4492 9.0340 7. 12.964 53.7361 58.0230 10.8773 8. 14.816 53.1499 57.3589 12.3154 9. 16.668 55.8714 56.0365 13.4475 10. 18.520 55.1522 54.2986 14.3488 15. 27.780 47.0437 46.0940 15.9946 26. 37.040 42.3020 41.1548 18.4114 25. 46.300 33.6646 38.7001 24.0330 30. 55.560 33.1960 37.5633 30.4291 40. 74.080 35.5748 35.2260 39.5457 50. 92.600 31.8955 31.6439 42.5023 60. 111.120 28.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3830 90. 166.680 17.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 3.3352 7.4333 17.3851 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7333 660. 111.200 7.5351 0.3103 7.6245 77. 1333,440 4.9639 0.1025 -6.6188 NIND.HOUR 20 7 1. 1.852 5.8491 4.5236 -58.1521 2. 3.704 15.3031 13.0616 -22.8319 3. 5.556 31.6745 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5222 15. 27.780 48.6838 47.4276 18.2287 27.1 2.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 33.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.1740 25.3332 20. 37.040 45.1281 44.2760 18.2287 20. 37.040 45.1281 44.2760 18.2287 20. 37.040 45.1281 44.2760 18.2287 20. 37.040 45.1281 44.2760 18.2287 20. 37.040 45.1281 44.2760 18.2287 20. 37.040 45.1281 44.2760	3.	5.556	3).8972			
6. 11.112 58.0636 57.4492 9.0346 7. 12.964 53.7361 58.0230 10.8773 8. 14.816 53.1499 57.3589 12.3154 9. 16.668 55.8714 56.0365 13.4475 10. 18.520 55.1522 54.2986 14.3488 15. 27.780 47.0437 46.0940 15.9946 20. 37.040 42.3020 41.1548 16.4114 25. 46.300 39.6646 38.7001 24.0330 30. 55.560 33.1960 37.5633 30.4291 40. 74.080 35.5748 35.2260 39.5457 50. 92.600 31.6955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5355 75. 138.900 23.2591 22.9323 40.3630 90. 166.680 17.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 120. 222.240 14.3366 13.5521 29.3917 120. 222.240 14.3366 13.5521 29.3917 120. 23.333,460 7.5739 0.6301 11.7333 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.5295 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7333 660. 111.200 7.5351 0.3103 7.6245 720. 1333,460 4.9639 0.1025 -6.6188 MIND,HOUR 20 7 1. 1.852 5.8491 4.5236 -58.1521 2. 3.704 15.3031 25.0616 -22.8319 3. 5.556 31.6745 31.1321 4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 57.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 87.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 44.9100 32.3032 30. 55.560 31.6745 31.2614 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.4613 31.2270 43.5405 50. 92.600 31.5863 35.9069 42.6494 50. 166.680 13.5853 18.1153 35.9769 21.00 44.4480 7.9265 4.0666 12.5087 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 33.5853 18.1153 35.9769 22.00 44.4480 7.9265 4.0666 12.5087	4.	7-408	45.3251		- ·	
7. 12.964 53.7361 58.0230 10.8773 8. 14.816 53.1499 57.3589 12.3154 9. 16.668 55.8714 56.0365 13.4475 10. 18.520 55.1522 54.2988 14.3488 15. 27.780 47.0437 46.0940 15.9946 20. 37.040 42.3020 41.1548 16.4114 25. 46.300 33.6646 38.7001 24.0330 30. 55.560 33.1960 37.5633 30.4291 40. 74.080 35.5748 35.2260 39.5457 50. 92.600 31.8955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3830 90. 166.680 13.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 3.3352 7.4333 17.3851 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7333 600. 111.200 7.5351 0.3103 7.6245 720. 1333.446 4.9639 0.1025 -6.6188 MND.HOUR 20 1. 1.852 5.88491 4.5236 -58.1521 2. 3.704 15.3031 15.0616 -22.8319 3. 5.556 31.6745 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2999 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3861 10. 18.520 54.2968 57.7726 8.3532 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 41.5284 40.1261 37.4410 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 130. 333.360 3.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 7. 52.840 444.480 7.9265 4.0666 12.5087 7. 52.840 444.480 7.9265 4.0666 12.5087 7. 52.840 444.480 7.9265 4.0666 12.5087 7. 52.840 444.480 7.9265 4.0666 12.5087 7. 52.840 444.480 7.9265 4.0666 12.5087 7. 52.840 444.480 7.9265 4.0666 12.5087	5.	9.260	54.9773	54.4563		
8. 14.816 53.14 99 57.3589 12.3154 9. 16.668 55.8714 56.0365 13.4475 10. 18.520 55.1522 55.2988 14.3488 15. 27.780 47.0437 46.0940 15.9946 20. 37.040 42.3020 41.1548 18.4114 25. 46.300 33.6646 38.7001 24.0330 30. 55.560 33.1960 37.5633 30.4291 40. 74.080 35.5348 35.2260 39.5457 50. 92.600 31.6955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5335 75. 138.900 23.2591 22.9323 40.3630 90. 166.680 17.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 3.3352 7.4333 17.3851 240. 444.480 7.3289 4.0952 12.1178 360. 666.720 7.5351 0.3103 7.6245 600. 1111.200 7.5351 0.3103 7.6245 720. 1333,440 4.9639 0.1025 -6.6188 MIND, HOUR 20 7 1. 1.852 5.8491 4.5236 -58.1521 2. 3.704 15.3031 13.0616 -22.8319 3. 5.556 31.6745 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.688 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 44.1740 25.3132 25. 46.300 42.5121 44.1740 25.3132 30. 55.5560 31.6712 81 44.1740 25.3332 7. 12.964 65.5264 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 7.9855 1360. 666.720 7.6258 1.5307 12.1834	6.	. 11.112	58.0636	57.4492		
9. 16.668 55.8714 56.0365 13.4475 10. 18.520 55.1522 54.2988 14.3488 15. 27.780 47.0437 46.0940 15.9946 20. 37.040 42.3020 41.1548 16.4114 25. 46.300 33.6646 33.7001 24.0330 30. 55.564 33.1960 37.5633 30.4291 40. 74.080 35.5748 35.2260 39.5457 50. 92.600 31.8955 32.6439 42.5023 40. 111.120 23.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3630 90. 166.680 13.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 3.352 7.4333 17.3851 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6629 1.4431 11.4411 480. 888.960 7.5789 0.6301 11.7383 600. 1111.200 7.5351 0.3103 7.6245 7720. 1333.446 4.9639 0.1025 -6.6188 WIND, HOUR 20 7 1. 1.852 5.84 91 4.5236 -58.1521 Snapshote 4 & 4.7408 45.2941 44.7367 3.0175 6. 11.112 55.6764 55.976 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.52562 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 42.51281 44.1740 25.3132 30. 55.556 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.9900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 3.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 1500. 666.720 7.6258 1.5307 12.1834	7.	12.964	53.7361	58.0230		
10. 18.520 53.1522 54.2986 14.3488 15. 27.780 47.0437 46.0940 15.9946 26. 37.040 42.3020 41.1548 16.4114 25. 46.300 33.6646 38.7001 24.0330 30. 55.566 33.1960 37.5633 30.4291 40. 74.080 35.5348 35.2260 39.5457 50. 92.600 31.8955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3630 90. 166.680 13.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 120. 222.240 14.3366 13.5521 29.3917 120. 222.240 14.3366 13.5521 29.3917 120. 23.3340 9.3352 7.4333 17.3851 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7383 660. 111.200 7.5351 0.3103 7.6245 720. 1333.440 4.9639 0.1025 -6.6188 MIND, HOUR 7 1. 1.852 5.8491 4.5236 -58.1521 Interpolation between the second	8.	14.816	53.1499	57.3589		
15. 27.780 47.0437 46.0940 15.9946 20. 37.040 42.3020 41.1548 18.4114 25. 46.300 33.6646 38.7001 24.0330 30. 55.566 33.1960 37.5633 30.4291 40. 74.080 35.5748 35.2260 39.5457 50. 92.600 31.8955 31.6439 42.5023 60. 111.120 28.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3830 90. 166.680 13.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 3.3352 7.4333 17.3851 240. 444.480 7.92 89 4.0952 12.1178 360. 666.720 7.62 95 1.4431 11.4411 480. 888.960 7.57 39 0.6301 11.7333 600. 1111.200 7.5351 0.3103 7.6245 720. 1333.446 4.96 39 0.1025 -6.6188 WINDHOUR 20 7 1. 1.852 5.84 91 4.5236 -58.1521 2. 3.704 13.3031 13.0616 -22.8319 3. 5.5550 31.67 45 31.1321 -4.0379 4. 7.400 85.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.67 64 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.29 09 55.4289 11.1628 9. 16.668 55.49 00 54.5386 12.3841 10. 18.520 56.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 20. 37.040 45.1281 44.1740 25.3132 21.5. 46.300 42.5121 41.9100 32.3032 30. 55.560 31.4613 31.2270 43.5405 60. 111.120 7.2626 77.0013 42.3935 75. 138.9900 22.2634 21.9178 39.4404 90. 166.680 13.58 53 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 2400 444.480 7.9265 4.0666 12.5087 15.00 666.720 7.6258 1.5307 12.1834	9.	16.668	55.8714			
20. 37.040 42.3020 41.1548 16.4114 25. 46.300 33.6646 38.7001 24.0330 30. 55.566 33.1960 37.5633 30.4291 40. 74.080 35.5748 35.2260 39.5457 50. 92.600 31.6955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3630 90. 166.680 13.4405 19.0049 37.2775 180. 333.360 3.3352 7.4333 17.3851 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.57389 0.6301 11.7333 600. 1111.200 7.5351 0.3103 7.6245 720. 1333.446 4.9639 0.1025 -6.6188 MIND, HOUR 20 7 1. 1.852 5.8491 4.5236 -58.1521 Interpolation betwee Snepshots 4 & 14.816 55.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7.12.964 55.5360 55.7612 9.8517 8. 14.816 55.2949 55.4289 11.1628 9.16.668 53.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 31.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 22.644 41.31 12.27.466 33.919 60. 12.1834 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90.166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 120. 222.24	10.	18.520	55.1522	54.2988		
25.	15.	27.780	47.0437	46.0940	15.9946	
30. 55.560 33.160 37.5633 30.4291 40. 7*.080 35.5748 35.2260 39.5457 50. 92.600 31.6955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3630 90. 166.680 19.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 9.3352 7.4333 17.3851 240. 444.480 7.92.89 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7333 600. 1111.200 7.5351 0.3103 7.6245 480. 1111.200 7.5351 0.3103 7.6245 481. 111. 11. 11. 11. 11. 11. 11. 11. 11.	20.	37.040	42.3020	41.1548	18.4114	
30. 55.560 33.1960 37.5633 30.4291 40. 74.080 35.5148 35.2260 39.5457 50. 92.600 31.6955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3630 90. 166.680 19.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 9.3332 7.4333 17.3851 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5789 0.6301 11.7333 660. 1111.200 7.5351 0.3103 7.6245 720. 1333.440 4.9639 0.1025 -6.6188 MIND, HOUR 20 7 1. 1.852 5.8491 4.5236 -58.1521 2. 3.704 15.3031 13.0616 -22.8319 3. 5.556 31.6745 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 56.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 40.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 2404. 444.480 7.9265 4.0666 12.5087 1606. 666.720 7.6258 1.5307 12.1834	25.	46.300	39.6646	38.7001	24.0330	
50. 92.600 31.8955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5355 75. 138.900 23.2591 22.9323 40.3630 90. 166.680 13.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 3.3352 7.4333 17.3851 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5789 0.6301 11.7333 600. 1111.200 7.5351 0.3103 7.6245 7720. 1333.440 4.9639 0.1025 -66.6188 WIND, HOUR 20 7 1. 1.852 5.8491 4.5236 -58.1521 2. 3.704 13.3031 13.0616 -22.8319 3. 5.556 31.6745 31.1321 -4.0379 4. 7.408 43.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 56.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 53.4900 54.5386 12.3861 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3332 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 40.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6694 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 32.2240 13.8112 12.9681 27.9855 180. 333.360 7.9265 4.0666 12.5087 240. 444.480 7.9265 4.0666 12.5087 240. 444.480 7.9265 4.0666 12.5087 240. 444.480 7.9265 4.0666 12.5087 2404 444.480 7.9265 4.0666 12.5087 2404 444.480 7.9265 4.0666 12.5087 2404 444.480 7.9265 4.0666 12.5087 2404 444.480 7.9265 4.0666 12.5087 2404 444.480 7.9265 4.0666 12.5087 2404 444.480 7.9265 4.0666 12.5087 2404 444.480 7.9265 4.0666 12.5087		55.560	33.1960	37.5633	30.4291	
50. 92.600 31.8955 31.6439 42.5023 60. 111.120 23.1750 27.9150 42.5365 75. 138.900 23.2591 22.9323 40.3630 90. 166.680 13.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 3.3352 7.4333 17.3851 2240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5789 0.6301 11.7333 660. 1111.200 7.5351 0.3103 7.6245 720. 1333.440 4.9639 0.1025 -6.6188 MIND, HOUR 20 7 1. 1.852 5.8491 4.5236 -58.1521 2. 3.704 15.3031 15.0616 -22.8319 3. 5.5556 31.6745 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 53.4900 54.5386 12.3861 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 44.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 43.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 77. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 7.8217 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 12040 444.480 7.9265 4.0666 12.5087 12040 444.480 7.9265 4.0666 12.5087 12040 444.480 7.9265 4.0666 12.5087 12040 444.480 7.9265 4.0666 12.5087 12040 444.480 7.9265 4.0666 12.5087 12040 444.480 7.9265 4.0666 12.5087 12040 444.480 7.9265 4.0666 12.5087 12040 444.480 7.9265 4.0666 12.5087	40.	74.080	35.5348	35.2260	39.5457	
60. 111.120		92.600	31.8955	31.6439	42.5023	
75. 138.900 23.2591 22.9323 40.3630 90. 166.680 17.4405 19.0049 37.2775 120. 222.240 14.3366 13.5521 29.3917 180. 333.360 9.3352 7.4333 17.3851 240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5739 0.6301 11.7383 600. 1111.200 7.5351 0.3103 7.6245 720. 1333.440 4.9639 0.1025 -6.6188 MIND, HOUR 20 7 1. 1.852 5.8491 4.5236 -58.1521 2. 3.704 15.3031 15.0616 -22.8319 3. 5.556 31.6745 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 30. 55.560 40.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 7.2626 7.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 138.360 444.480 7.9265 4.0666 12.5087 7.6265 1.5307 12.1834		111.120		27.9150	42.5355	
120. 222.240 14.3366 13.5521 29.3917 180. 333.360 9.3352 7.4333 17.3851 240. 444.480 7.52.89 4.0952 12.1178 360. 666.720 7.62.95 1.4431 11.4411 480. 888.960 7.57.39 0.6301 11.7333 600. 1111.200 7.5351 0.3103 7.6245 720. 1333.446 4.96.39 0.1025 -6.6188 WIND, HOUR 20 7 1. 1.852 5.84.91 4.5236 -58.1521 2. 3.704 15.30.31 13.0616 -22.8319 3. 5.556 31.67.45 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.80.56 52.1772 6.3979 6. 11.112 55.67.64 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.29.09 55.42.89 11.162.8 9. 16.668 53.49.00 54.5386 12.3841 10. 18.520 54.29.68 53.2621 13.5252 15. 27.780 48.68.38 47.4276 18.22.87 20. 37.040 45.12.81 44.1740 25.3132 25. 46.300 42.51.21 41.9100 32.3032 30. 55.560 43.52.84 40.12.61 37.4110 40. 74.080 35.15.86 35.90.69 42.64.94 50. 92.600 31.46.13 31.22.70 43.540.5 60. 111.120 27.26.26 27.0013 42.3935 75. 138.900 22.26.34 21.9178 39.4404 90. 166.680 13.58.53 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 120. 333.360 9.18.01 7.2034 16.8972 240. 444.480 7.92.65 4.0666 12.5087 17.62.58 1.5307 12.1834			23.2591	22.9323	40.3830	
120. 222.240		-	19.4405	19.0049		
180. 333.360					29.3917	
240. 444.480 7.9289 4.0952 12.1178 360. 666.720 7.6295 1.4431 11.4411 480. 888.960 7.5789 0.6301 11.7383 660. 1111.200 7.5351 0.3103 7.6245 720. 1333.440 4.9639 0.1025 -6.6188 WIND, HOUR 20 7 1. 1.852 5.8491 4.5236 -58.1521 2. 3.704 15.3031 15.0616 -22.8319 3. 5.5550 31.6745 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 43.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
360. 666.720					_	
480. 888.960						
600. 1111.200						
720. 1333.440			_			
NIND, HOUR 1. 1.852 5.8491 4.5236 -58.1521 2. 3.704 15.3031 15.0616 -22.8319 3. 5.556 31.6745 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 56.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 40.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
1. 1.852 5.8491 4.5236 -58.1521						
2. 3.704 15.3031 15.0616 -22.8319 3. 5.556 31.6745 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 56.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5262 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 40.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834		_			-58.1521	laternoletion between
3. 5.556 31.6745 31.1321 -4.0379 4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 53.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 43.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						•
4. 7.408 45.2941 44.7367 3.0175 5. 9.260 52.8056 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 43.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						Snapshous 4 et 5
5. 9.260 52.80 56 52.1772 6.3979 6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 55.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 43.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834					3.0175	
6. 11.112 55.6764 54.9776 8.3532 7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 53.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 43.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
7. 12.964 55.5360 55.7612 9.8517 8. 14.816 55.2909 55.4289 11.1628 9. 16.668 53.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 43.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834					8.3532	
8. 14.816 55.2909 55.4289 11.1628 9. 16.668 53.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 43.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
9. 16.668 53.4900 54.5386 12.3841 10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 43.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834					11.1628	
10. 18.520 54.2968 53.2621 13.5252 15. 27.780 48.6838 47.4276 18.2287 20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 43.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834		-			12.3841	
15. 27.780		_				
20. 37.040 45.1281 44.1740 25.3132 25. 46.300 42.5121 41.9100 32.3032 30. 55.560 40.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
25. 46.300 42.5121 41.9100 32.3032 30. 55.560 40.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
30. 55.560 40.5284 40.1261 37.4110 40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834		_		41.9100	32.3032	
40. 74.080 35.1586 35.9069 42.6494 50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
50. 92.600 31.4613 31.2270 43.5405 60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
60. 111.120 27.2626 27.0013 42.3935 75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
75. 138.900 22.2634 21.9178 39.4404 90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
90. 166.680 13.5853 18.1153 35.9769 120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
120. 222.240 13.8112 12.9681 27.9855 180. 333.360 9.1801 7.2034 16.8972 240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
180. 333.360						
240. 444.480 7.9265 4.0666 12.5087 360. 666.720 7.6258 1.5307 12.1834						
360. 666.720 7.6258 1.5307 12.1834						
YOU - 000 TOU (A)(1) U (U (O ALARUY)						
	600. 720.					

Figure C14. (Sheet 4 of 12)

			Speed		
Redius (n.m.)	Redius (km)	Scalar Avg. (m/sec)	Vector Avg. (m/sec)	(+ = in, - = out) (deg)	
WIND,	HDUR	20	8		
1.	1.852	7.0426	5.0716	-54.7408	
2.	3.704	17.1757	16.5115	-18.2037	Snapshot 5
3.	5.556	32.4857	31.9070	-1.9445	
4-	7.408	44.2867	43.6128	3.8353	
5.	9.260	50.5559	49.7581	6.2712	
6.	11.112	53.2640	52.4012	7.5746	
7.	12.964	54.2964	53.3844	8.7047	
8.	14.816	54.4636	53.4694	9.9306	
9.	16.668	54.1409	53.0254	11.2704	
10.	18.520	53.4684	52.2117	12.6752	
15.	27.780	51.3944	48.7947	20.3304	
20.	37.040	43.4448	47.5966	31.2649	
25.	46.300	45.0761	45.6723		
30-	55.560	43.3528	43-0839	43.4863	
40. 50.	74.080	35.8795	36 - 6723	45.6317	
	92.600	31-0389		44.6116	
60.	111.120	25.3489	26.0853	42.2429	
75. 90.	138.900	21.2724	20.9049	38-3987	
120.	166.680 222.240	17.7416	17 - 2313	34.5203	
180.	333.360	13.2931	12.3823	26.4577	
240.	444.480	9.0301 7.9248	6.9736	16.3809 12.9052	
360.	666-720	7.6209	4.0382		
480.	888.960	7.5641	1-6167 0-7856	12.8425 13.0809	
600.	1111-200	7.5185	0-4267	9.9572	
720.	1333,440	4.9536	0-1582	0.7499	
WIND,		20	9	0.1477	
1.	1.852	5.9981	5.0795	-54.8159	Interpolation between
2.	3.704	17.1768	16.5351	-18.2056	Snepshots 5 & 6
3.	5.556	32.5058	31.9429	-1.9150	
4-	7-408	44.2801	43-6174	3.8725	
5.	9.260	53 - 47 46	49.6803	6-2548	
6.	11.112	53.1378	52.2742	7.4287	
7.	12.964	54.1663	53.2625	8.4029	
8.	14-816	54.3547	53.3862	9.4955	
9.	16.668	54-0787	53.0050	10.7557	
10-	18.520	53.4631	52 - 2558	12.1347	
15.	27.780	53-7277	49.1375	19.9558	
20.	37.040	49.04.89	48 - 2190	31-2943	
25.	46.300	45.7582	46.3703	39.4880	
30.		44.0145	43.7565	43.6872	
40-	74-080	37-4074	37 - 2072	45.7600	
50. 60.	92.600	31.4470	31 - 2338	44-6753	
	111.120	25-6654	26.4072	42.2520	
75.	138.900	21.4959	21.1338	38.3407	
90-	166.680	17.9024	17.3978	34.4100	
20.	222-240	13.3829	12.4762	26.2241	
80-	333.360	9.0683	7.0029	15.9467	
240.	444.480	7.9528	4-0419	12.4316	
860 -	666.720	7.6355	1.6109	12.3296	
80.	888-960	7.5744	0.7805	12-4548	
20.	1111.200 1333.440	7.5258 4.9565	0.4218 0.1548	9.4619 0.8799	

Figure C14. (Sheet 5 of 12)

		Wind !	Speed	Inflow Angle.	
Redius	Redius	Scalar Avg.	•	(+ = in, - = out)	
(n.m.)	(km)	(m/sec)	(m/sec)	(deg)	
• • • • • • • • • • • • • • • • • • • •		•	10	,,	
WIND,		20	5.0869	-54.8961	
1.	1.852	5.9537 17.1782	16.5585	-18.2091	
2. 3.	3.704	32.5267	31.9786	-1.8853	Snepshot 6
4.	5.556	44.2750	43.6215	3.9100	
5.	7.408 9.260	53.3961	49.6013	6.2389	
6.	11.112	53.0167	52.1447	7.2816	
7.	12.964	54.0441	53.1380	8.0985	
8.	14.816	54.2563	53.3016	9.0584	
9.	16.668	54.0279	52.9847	10.2410	
10.	18.520	53.4681	52.3011	11.5953	
15.	27.780	51.0640	49.4815	19.5878	
20.	37.040	49.6522	48.8398	31.3240	
25.	46.300	47.4393	47. 0666	39.6742	
30.	55.560	44.67 52	44.4276	43.8827	
40.	74.080	37.9347	37.7411	45.8854	
50.	92.600	31.8548	31.6470	44-7400	
60.	111.120	25.9819	26.7288	42-2611	
75.	138.900	21.7196	21.3627	38.2847	
90.	166-680	13.0638	17.5646	34.3006	
120.	222.240	13.4730	12.5704	25.9949	
180.	333.360	9.1069	7.0325	15.5172	
240.	444.480	7.9816	4.0458	11.9602	
36û.	666.720	7.6511	1.6052	11.8140	
480.	888.960	7.5856	0.7755	11.8209	
600.	1111-200	7.5338	0.4170	8.9545	
720.	1333-440	4.9598	0.1515	1.0131	
WIND,	HOUR .	20	11		
1.	1.852	3.7297	7.8357	-13.2877	
2.	3.704	15.9519	16.5147	-6.2784	Interpolation between
3.	5.556	25.1567	25.7571	0.5053	Snapshots 6 & 7
4.	7-408	32.99 76	32.5674	3.7029	
5.	9.260	35-6307	36.1683	5.0838	
6-	11.112	33.31 53	37.6633	5.7924	
7.	12.964	39.0787	38.6623	6.5059	
8.	14.816	39.2626	38.8826	7-4000	
9.	16.668	39.9661	38.7132	8-4502	
10-	18.520	33.55 91	38.2241	9.5350	
15-	27.780	35.5052	36.1724	13.9470	
20-	37.040	35.8351 38.2610	36.5306	20.8314 28.2281	
25.	46.300		37.9182	34.0331	
30.	55 - 560	39.2255	38.8999	40.1687	•
40. 50.	74-080 92-600	35.8223 32.2816	36.6041 32.0769	41.0231	
60.	111.120	23.2033	27.9708	39.6747	
75.			23.1454	36.7160	
90.	138-900 166-680	23.4524 23.0079	19.6021	33.6159	
120-	222-240	15.5677	14.8986	27.1520	
180-	333.360	11.1093	9.7741	18.8237	
			6.8459	15.5806	
240-	444-480	3.9368	3.9343	14.4370	
360-	666-720	7.8636	2.5745	14.8996	
480-	888.960	7.6628	1.8281	14.1238	
600-	1111.200	7.5550 4.9576	0.9003	12.5738	
720.	1333.440	7.7710	V. 7VVJ		

Figure C14. (Sheet 6 of 12)

		Wind 8	Speed	inflow Angle,	
Radius	Radius	Scalar Avg.	_	$(+ = in, \cdot = out)$	
(n.m.)	(km)	(m/sec)	(m/sec)	(deg)	
WIND,	HOUR	20	12		
1.	1.852	12.3410	11.8551	3.7051	
2.	3.704	17.3732	17.0704	5.5010	Snapshot 7
3.	5.556	13.8249	19.5672	4.8894	
4.	7.408	21.3645	21.1058	4.0851	
5.	9.260	22.3264	22.0409	3.5390	
6.	11.112	22.9808	22.6516	3.4733	
7.	12.964	23.4277	23.0439	3.8438	
8.	14.816	23.6688	23.2223	4.4859	
9.	16-668	23.7225	23.2100	5.1796	
10.	18.520	23.5859	23.0055	5.6476	
15.	27.780	23.2624	22.4453	1.8611	
20.	37.040	25-1342	25.5009	0.3552	
25.	46.300	31.0352	30.4071	10.2215	
30.	55.560	35.0799	34.4948	21.2548	
40.	74.080	35.0679	35.7961	34.1508	
50.	92.600	32.8376	32.6266	37.4436	
60.	111.120	29.4805	29.2604	37.3449	
75.	138.900	25.21 07	24.9394	35.4033	
90.	166.680	21-9817	21.6405	33.0628	
120.	222.240	17.7000	17.1812	28.0628	
180.	333.360	13.3470	12.4114	21.4052	
240.	444.480	17.9123	9.5324	17.4889	
360.	666.720	3-6205	6.1845	15.2893	
480.	888.960	7.9491	4.2965	15.4385	
600.	1111.200	7-6724	3.1780	14.7235	
720.	1333.440	5.0044	1.6352	13.5201	
WIND,	HOUR .	20	13		
1.	1.852	7.7009	6.5613	-2.0170	Interpolation between
2.	3.704	11-4624	10.8461	-1.3424	Snepshots 7 & 8
3.	5.556	14.6585	14.2437	-0.4647	
4.	7.408	17.3708	17.0409	0.1374	
5.	9.260	19.5312	19.2268	0.5209	
6.	11.112	21.1956	20.8754	0.9853	
7.	12.964	22-4706	22,1060	1.7251	
8.	14.816	23.3862	22 - 9570	2.6858	
9.	16.668	23.9666	23.4606	3.6873	
10.	18.520	24.2226	23.6335	4.4648	
15.	27.780	24.8182	23.9490	1.5678	
20.	37.040	23-1526	27.4695	0.8347	
25.	46.300	33.2867	32.4993	10.3299	
30.	55.560	37.8870	37.1112	21.6899	
40.	74-080	43-1685	39 - 6787	37.0295	
50.	92-600	37 - 22 99	37.0326	41.6416	
60.	111-120	33.6495	33.4597	42.3094	
75.	138.900	23.6322	28.4091	40.7412	
90.	166.680	24.6445	24.3656	38.3392	
.20.	222.240	19.1697	18.7279	32.5782	
.08	333.360	13.6240	12. 7291	23.5062	
40.	444.480	13.6611	9-2116	17.6683	
360.	666.720	8.2944	5.3560	14.5539	
-08	888.960	7.7899	3-4564	14.7954	
00.	1111.200	7.5948	2.4277	14.0900	
720.	1333.440	4.9736	1.1949	12.8509	

Figure C14. (Sheet 7 of 12)

		Wind 9	Speed	inflow Angle,	
Redius (n.m.)	Radius (km)	Scalar Avg. (m/sec)	Vector Avg. (m/sec)	(+ = in, - = out) (deg)	
WIND.	10UR	20	14		
1.	1.852	5.7881	1.0245	-54.9114	
2.	3.704	5.4541	3.9720	-24.5178	Snepshot 8
3.	5.556	9.4686	8.6090	-11.9362	
4.	7.408	13.4829	13.0106	-6.3941	
5.	9.260	15.7968	16.4585	-3.6516	
6.	11.112	19.4415	19.1273	-2.0103	
7.	12.964	21.5386	21.1914	-0.5934	
8.	14.816	23.1255	22.7110	0.8438	
9.	16.668	24.2274	23.7256	2.2342	
10.	18.520	24-8698	24.2708	3.3539	
15.	27.780	25.3710	25.4490	1.3220	
20.	37.040	33.1687	29.4218	1.2605	
25.	46.300	35.5447	34.5681	10.4418	
30.	55.560	43.6915	39.6964	22.0873	
40.	74.080	44.2657	43.9524	39.3821	
50.	92.600	41.4690	41.4767	44.9398	
60.	111.120	37.9086	37.7362	46.1393	
75.	138.900	32.1717	31.9795	44.8648	
90.	166.680	27.4255	27.1891	42.4840	
120.	222.240	23.7241	20.3404	36.3204	
180.	333.360	13.9054	13.0482	25.5059	
240-	444.480	13.4115	8.8880	17.8943	
360.	666.720	3.0717	4.5179	13.6535	
480-	888.960	7.6928	2.6034	13.7065	
600.	1111-200	7.5579	1.6662	12.8807	
	1333.440	4.9537	0.7413	11.2853	
WIND,H		20	15		
1.	1.852	5.2786	3.6952	-21.4673	Interpolation between
2.	3.704	9.6598	8.8585	-8.8558	Snepshots 8 & 9
3.	5.556	13.9015	13.4537	-3.6455	
4.	7.408	17.2845	16.9501	-1.3335	
5.	9.260	19.9031	19.5926	-0.1562	
6.	11.112	21-8548	21 - 51 98	0.7374	
7.	12.964	23-2916	22.9027	1.7017	
8.	14.816	24.2837	23.8207	2.7128	
9.	16-668	24.8923	24.3430	3.6006	
10.	18.520	25-1624	24.5209	4.1324	
15.	27.780	25.3268	25.4590	0.4130	
20.	37-040	33-7382	30.0349	2.6953	
25.	46-300	35 - 34 98	35.5371	14.4592	
30.	55.560	4).5023	39.6200	25.8454	
40.	74.080	41-5230	41.2674	39.3602	
50.	92-600	37.9830	37.7975	43.0899	
60.	111.120	34-0207	33.8370	43.3371	
75.	138.900	23.6710	26.4499	41.4519	
90.	166.680	24.4793	24.1978	39.8298	
120.	222-240	13.7628	18.3017	32.6069	
180-	333.360	13.0273	12.0419	22-6556	
240.	444.480	13.0310	8.3815	16.5407	,
360.	666.720	8-0627	4.5075	13.6395	
480.	888.960	7.6978	2.7350	13.7344	
	1111.200	7.5589	1.8231	12.9673	
	1333.440	4.9534	0.8437	11.6417	

Figure C14. (Sheet 8 of 12)

			Speed	inflow Angle,	
Redius (n.m.)	Redius (km)	Scalar Avg. (m/sec)	Vector Avg. (m/sec)	(+ = in, - = out) (deg)	
WIND.	HOUR	20	16		
1.	1.852	7.5921	6.3574	-15.8577	
2.	3.704	13.8447	13.4131	-2.9746	Snepshot 9
3.	5.556	13.2339	17.9469	0.7354	
4.	7.408	21.1606	20.8925	1.7994	
5.	9-260	23.0540	22.7538	2-2868	
6.	11.112	24.2866	23.9272	2.8904	
7.	12.964	25.0617	24.6285	3.6555	
8.	14.816	25.4596	24.9436	4-4044	
9.	16.668	25.5713	24.9689	4.8958	
10.	18.520	25.4633	24.7739	֥8956	
15.	27.780	25.2953	25.4727	-0.4949	
20.	37-040	31.3771	30.6556	4.0804	
25.	46.300	37.3395	36.6335	18.2633	
30.	55.560	43.53 97	46.0771	29.5947	
40.	74-080	33.7619	36.5545	39.3625	
50.	92.600	34-2823	34.0974	40.8550	
60.	111.120	33.1596	29.9541	39.8027 37.0471	
75. 90.	138.900 166.680	25.2403 21.6228	24.9736 21.2727	34.0914	
120.	222-240	15.8975	16.3266	27.8725	
180.	333.360	12-1601	11.0181	19.3734	
240.	444.480	3.6775	7.8774	15.0447	
360.	666.720	3.0558	4.4971	13.6266	
480.	888.960	7-7047	2.8664	13.7609	
600.	1111-200	7.5622	1.9796	13.0339	
720.	1333.440	4.9545	0.9461	11.9152	
WIND,	HOUR .	20	17		
1.	1.852	5-1944	3.3138	-17.8760	Interpolation between
2.	3.704	3.2681	7.2138	-6.8815	Snepshots 9 & 10
3.	5.556	13.7056	16.0051	-4.1496	
4.	7-408	12.7647	12.1956	-3.0712	
5.	9.260	14.7353	14. 2314	-2.2659	
5.	11.112	15.6943	16.2217	-1.2957	
7.	12.964	13.5415	18.0779	-0.2965	
8.	14-816	23.2149	19.7445	0.5915	
9.	16-668	21.6830	21.1908	1.2304 1.6022	
10.	18-520	22.9397	22.4105 27.2105	1.0022	
15. 20.	27-780 37 040	27.8821	32.0467	5.5850	
25.	37.040 46.300	32.6080 35.3954	35.8652	14.8451	
30.	55-560	38.17.57	37.7211	22.5590	
40.	74.080	37.0872	36.7704	30.7857	
50.	92.600	34-60 84	34.3532	34.4098	
60.	111-120	32.1141	31.8807	36.0672	
75.	138.900	28.4567	28.2119	36.6382	
90.	166.680	25.2441	24.9620	35.9514	
120-	222-240	23.3278	19.9233	32-5304	
180.	333-360	14.6386	13.8605	25.1756	
240.	444.480	11.3865	10.1154	19.1383	
360.	666.720	3.4428	5.7836	14.1522	
480-	888.960	7-8172	3.5385	13.6463	
600.	1111.200	7.5980	2.3437	12.9271	
720.	1333.440	4.9691	1.0852	11.8318	

Figure C14. (Sheet 9 of 12)

		Wind 9	Speed ———	inflow Angle,	
Redius (n.m.)	Redius (km)	Scalar Avg. (m/sec)	Vector Avg. (m/sec)	(+ = in, - = out) (deg)	
WIND,	HOUR	20	18		
1.	1.852	5.8467	0.1474	-88.3850	
2.	3.704	5.8913	0.3323	-80.3511	Snepshot 10
3.	5.556	5.9854	0.7624	-51.3616	
4.	7-408	5-1382	2.1004	-27.6604	
5.	9.260	5.7706	4.7446	-17.3690	
6.	11-112	9.0271	8.0799	-12.3260	
7.	12.964	12.0708	11.4742	-8.8906	
8.	14.816	15.0533	14.6107	-6.1866	
9.	16.668	17.8664	17.4786	-4.1897	
10.	18.520	23.4882	20.1007	-2.5294	
15.	27.780	29.5051	28.9509	2.6555	
20.	37.040	33.9718	33.4147	6.9510	
25.	46.300	35.6832	35.1937	11.2949	
30.	55.560	35.3991	35.8866	14.7093	
40.	74.080	35.2753	35.7456	21.5719	
50.	92.600	35.3740	34.9881	28.1950	
60.	111-120	34.2038	33.9125	32.8383	
75.	138.900	31.6678	31.4230	36.3589	
90.	166.680	23.8703	28.6221	37.3360	
120.	222.240	23.8659	23.5513	35.6325	
180.	333.360	17.1794	16.6087	29.1446	
240.	444.480	13.2542	12.2959	22.2227	
360.	666.720	9.1195	7.0444	14.5881	
48 0 .	888.960	7.9716	4.2027	13.5547	
600.	1111.200	7.6452	2.7066	12.8437	
720.	1333.440	4.9840	1.2224	11.7472	
WIND,		20	19		
1.	1.852	5.8873	0.1315	267.8173	Interpolation between
2.	3.704	5.9185	0.2864	-85.9611	Snepshots 10 & 1
3.	5.556	5-9876	0.5704	-62.3600	Simponous IO & I
4.	7.408	5-0828	1.4068	-35.5808	
5.	9.260	5.4022	3.4218	-21.5389	
6.	11.112	7.7488	6.4805	-15.1524	
7.	12.964	13.6217	9.8852	-11.4492	
8.	14.816	13.7639	13.2437	-8.3193	
9.	16-668	15.7812	16.3407	-5.9519	
10.	18.520	13.6647	19.2310	4.1128	
15.	27.780	3).2064	29.6647	1.3036	
20.	37.040	35.6643	35.1813	7.1232	
25.	46-300	37.6751	37.1826	12.9720	,
30.	55.560	38.4773	37.9349	17.8365	
40.	74.080	37.8872	37.4660	26-6277	
50.	92.600	35-1374	35.8437	32.4841	
60.	111.120	34.0912	33.8478	35.6165	
75.	138.900	37.5693	30.3335	37.1984	
90.	166-680	27.21 03	26.9485	36.9100	
120.	222-240	21.8017	21.4339	33.6605	
180.	333.360	15.3121	14.5863	25.7770	
240.	4 44 - 480	11.6306	10.3863	18.7814	
360.	666.720	3.3756	5.5758	13-0014	
80.	888.960	7.7792	3.2149	12.4173	
	1111-200	7.5839	2.0212	11.7434	
720.	1333.440	4.9611	0.8834	10.6389	

Figure C14. (Sheet 10 of 12)

		Wind 8	Speed	Inflow Angle,	
Redius	Redius	Sceler Avg.		(+ = in, - = out)	
(n.m.)	(km)	(m/eec)	(m/sec)	(deg)	
WIND	• HOUR	20	20		
1.	1.852	5.9287	0.1162	262.9949	
2.	3.704	5.9470	0.2442	266.3879	Snepshot 11
3.	5.556	5.9963	0.4185	-82-6926	
4.	7.408	5.0763	0.7876	-57.0778	
5.	9-260	5.1921	2.0833	-30.7253	
6.	11.112	5-8094	4.8376	-19.6630	
7.	12.964	7.1999	8.2625	-14.5830	
8.	14.816	12.4422	11.8214	-10.8999	
9.	16.668	15.7084	15.2023	-7.9758	
10-	18.520	13.8605	18.3726	-5.8433	
15.	27.780	33.9314	30.3868	0.0276	
20.	37-040	37.4365	36.9167	7.2898	
25.	46-300	39.7792	39.1634	14.4881	
30-	55.560	43-6823	40.0401	20.6426	
40. 50.	74-080	39.7404	39.3892	31.2106	
60.	92-600	37.0910	36.8561	36.5571	
75.	111.120 138.900	34.0673 29.4841	33.8533	38.4093	
90.	166-680	25.5521	29.2478 25.2662	38.1131 36.4341	
120.	222-240	13.7706	19.3250	31.2195	
180.	333.360	13.5125	12.5523	21.3094	
240.	444.480	17.1318	8.4430	14.2101	
360.	666.720	3-0124	4.0795	10.4747	
480.	888.960	7.6745	2.2099	10.1812	
600.	1111.200	7.5460	1.3164	9.3948	
720.	1333.440	4.9515	0.5429	8.0716	
WIND,	HOUR	20	21		
1.	1-852	5.8757	0.1576	268-9495	Interpolation between
2.	3.704	5.9111	0.3922	-77-2274	Snepshots 11 & 12
3.	5.556	5.9792	1.0670	-45-1869	•
4.	7.408	5.2267	2.7191	-27.0611	
5. 6.	9.260	7.1538	5.3461	-17.8151	
7.	11.112 12.964	9.9381 13.2739	9.1108 12.7167	-12.9344 -9.3226	
8.	14.816	15.5174	16.0578	-5.5766	
9.	16.668	13.5786	19.1314	-4.5214	
10.	18.520	22.3568	21.8765	-2.8559	
15.	27-780	31.7253	31.1325	1.6857	
20.	37.040	35.4453	35.8979	7.4276	
25.	40.300	33.1408	37.5264	13.7821	
30.	55.560	33.9178	38.2712	19.6641	•
40.	74-080	33.2284	37.8720	30.4967	
50.	92.600	35.6980	35.4598	35.9404	
60.	111.120	32.7401	32.5198	37.7223	
75-	138-900	23.2836	28.0357	37.3035	
90.	166-680	24.4976	24.1939	35.5394	
120.	222.240	13.9903	18.5127	30.2212	
180.	333.360	13.0686	12.0446	20.4458	
240. 360.	444.480 666.720	9.6837	8.1095	13.8851 10.7447	
680.	888.960	7.9783 7.5647	3.9614 2.1807	10.4759	
500.	1111.200	7.5406	1.3178	9.6964	
720.	1333.440	4.9487	0.5516	8.3981	

Figure C14. (Sheet 11 cf 12)

		Wind 9	Speed	inflow Angle,	
Redius	Redius	Soeler Avg.	Vector Avg.		
(n.m.)	(km)	(m/eec)	(m/sec)	(deg)	
HIND,	HOUR	20	22		
1.	1.852	5.8255	0.2000	-87-6107	
2.	3.704	5.8812	0.5546	-70.1721	Snepshot 12
3.	5.556	5.0218	1.8204	-37.1198	
4.	7-408	5.7394	4.6981	-21.8820	
5.	9.260	9.6611	8-8197	-14-1624:	
6.	11.112	13.5649	13.0636	-9-2704	
7.	12.964	17.2198	16.8280	-6.1336	
8.	14.816	23.5720	20.1906	-3.9692	
9.	16.668	23.4862	23.0649	-2.2587	
10-	18.520	25.8745	25.3865	-0.7408	
15.	27.780	32.5430	31 - 8957	3-2647	
20-	37.040	35.4582	34.8746	7.5786	
25.	46.300	35.5038	35.8823	13.0151	
30.	55.560	37.1546	36.4978	18.5939	
40-	74.080	35.71 30	36.3500	29.7262	
50-	92.600	34.3014	34.0590	35.2759	
60-	111.120	31.41 08	31.1831	36.9782	
75.	138.900	27.0841	26 . 8226	36.4202	
90.	166.680	23.4467	23.1226	34.5579	
120.	222.240	13.2176	17.7032	29.1176	
180.	333.360	12.6231	11.5294	19.5335	
240.	444.480	3.6441	7.7750	13.5450	
360.	666.720	7.9456	3.8433	11-0326	
480.	888.960	7.6550	2.1516	10.7810	
600.	1111.200	7.5351	1.3193	9-9973	
720-	1333.440	4.9459	0.5603	8.7143	
FORTR	AN STOP				

Figure C14. (Sheet 12 of 12)

Appendix D Sample Application of Upgraded CE Model to Simulation of 36-Hr Period of Hurricane Gilbert in the Gulf of Mexico

This appendix provides information related to a 36-hr simulation of Hurricane Gilbert in the Gulf of Mexico. The simulation was performed by OWI as an additional test with the upgraded CE model. The simulation time period begins 1200 UTC (Universal Time Coordinate, formerly known as Greenwich Mean Time) 15 September 1988. The four snapshots used in the simulation all took advantage of the double exponential form for pressure profile specification. Input file information on the snapshots and storm track specification is provided in this appendix.

The appendix also includes plots of Hurricane Gilbert wind fields. Model wind fields at 19-m elevation are given at 6-hr intervals throughout the simulation period. Wind speed and direction is represented with the conventional weather map "wind barb" notation. The shaft of each wind arrow indicates the direction and the barbs or "feathers" indicate wind speed. A half-barb denotes 5 knots, full barb denotes 10 knots, and solid flag denotes 50 knots.

Figure D1. Snapshot and storm track specification, Hurricane Gilbert

Figure D2. Modelled surface wind field in Hurricane Gilbert (Sheet 1 of 7)

Figure D2. (Sheet 2 of 7)

Figure D2. (Sheet 3 of 7)

Figure D2. (Sheet 4 of 7)

Figure D2. (Sheet 5 of 7)

Figure D2. (Sheet 6 of 7)

Figure D2. (Sheet 7 of 7)

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to exercise 1 hour per response, including the time for reviewing instructions, searching existing data securces, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other expect of this collection of information, including suggestions for reducing this burden, to Weshington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of Management and Burdent, Properties (0704-0185), Weshington, DC 20803.

1.	AGENCY USE ONLY (Leave blank)	2. REPORT DATE July 1994	3. REPORT TYPE Final report	AND DATES COVERED
4.	TITLE AND SUBTITLE Upgrade of Tropical Cyclone Surfa	ce Wind Field Model		5. FUNDING NUMBERS WU 32683
6.	AUTHOR(8) Vincent J. Cardone, Andrew T. Co Edward F. Thompson	x, J. Arthur Greenwood,		
7.	PERFORMING ORGANIZATION NAM Oceanweather, Inc., 5 River Road, U.S. Army Engineer Waterways E 3909 Halls Ferry Road, Vicksburg	Suite 1, Cos Cob, CT (experiment Station	06807	8. PERFORMING ORGANIZATION REPORT NUMBER Miscellaneous Paper CERC-94-14
9.	SPONSORING AMONITORING AGENC U.S. Army Corps of Engineers Washington, DC 20314-1000	Y NAME(S) AND ADDRES	S(E3)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
11.	SUPPLEMENTARY NOTES Available from National Technic	al Information Service, 5	285 Port Royal Road, S	pringfield, VA 22161.
12:	Approved for public release; dis		<u></u>	12b. DISTRIBUTION CODE
13.	ABSTRACT (Maximum 200 words) The U.S. Army Corps of Engineresponse modeling for more than a			odel has been a very useful tool in ocean

The U.S. Army Corps of Engineers (CE) tropical cyclone surface wind field model has been a very useful tool in ocean response modeling for more than a decade. Recently, its limitations were assessed in light of present knowledge and technology. Model limitations were identified and evaluated in terms of their perceived importance to ocean response modeling and the level of effort required to develop improved solutions. The limitations are summarized in this report.

Two aspects of the CE model were targeted for improvement. This report describes the improvements developed for the upgraded model. First, the model was upgraded to include more computationally intensive options which give improved resolution and areal coverage. Up to seven nested grids are now available, compared to only five nests in the standard model. In a typical application, this upgrade can be used to achieve 2-km resolution around the eye (as compared to 5-km resolution often used in the standard model) and an expanded total coverage area.

The second upgrade allows a more general specification of the axisymmetric pressure profile. This upgrade can be used to create wind fields with maxima at two different radii or with a broad maximum extending over a range of radii. It also provides more flexibility in fitting the shape of single peaked wind profiles.

(Continued)

							(Conunted)
14.		Wind	-			15.	NUMBER OF PAGES 101
	Numerical modeling Tropical storms	Wind	fields			16.	PRICE CODE
17.	SECURITY CLASSIFICATION OF REPORT	18.	SECURITY CLASSIFICATION OF THIS PAGE	19.	SECURITY CLASSIFICATION OF ABSTRACT	20.	LIMITATION OF ABSTRACT
	UNCLASSIFIED		UNCLASSIFIED				

13. (Concluded).

The upgraded model is demonstrated with historical hurricanes. The five-nest and seven-nest models are applied to Hurricane Camille. The fully upgraded model, with seven nests and general pressure specification, is applied to Hurricane Gilbert. This hurricane was chosen because it is well-documented by Black and Willoughby (1992) and it evolved into some nontraditional storm structures. The upgraded model was more effective than the standard CE model in simulating the storm.