Projeto A3 - UCs de Inteligência Artificial (IA)

A base de dados escolhida para o projeto A3 foi **"Employee dataset"**, está disponível no Kaggle: https://www.kaggle.com/datasets/tawfikelmetwally/employee-dataset

As colunas da base de dados estão divididas da seguinte forma:

- "Education": coluna referente a qualificação educacional dos funcionários (Tipo String)
- "JoiningYear": coluna referente ao ano em que o funcionário entrou na empresa (Tipo Int)
- "City": coluna referente ao local ou cidade onde cada funcionário está (Tipo String)
- "PaymentTier": coluna referente a categorização dos funcionários em diferentes níveis salariais (Tipo float)
- · "Age": coluna referente a idade (Tipo Int)
- "Gender": coluna referente a identidade de gênero (Tipo String)
- "EverBenched": coluna que indica se um funcionário já esteve temporariamente sem trabalho atribuído (Tipo String)
- "ExperienceInCurrentDomain": coluna referente aos anos de experiência do funcionário na área atual (Tipo String)
- "LeaverOrNot": coluna referente ao destino (Tipo String)

A variável target será '<u>EverBenched</u>', tem objetivo de prever se existem padrões de comportamento de afastamento dos funcionários ou falta de atividades a serem atribuídas. Escolhemos essa variável para entender e facilitar a tomada de decisões e prevenir problemas futuros com funcionários.

Umas das variáveis que precisam ser modificadas serão as "Education" e "Gender", elas serão transformadas em uma variáveis do tipo 'Binária', removendo características não binárias.

1º Método de aprendizagem de máquina

Como primeiro método de aprendizagem de máquina utilizamos a Regressão Logística que deram os seguintes resultados:

```
accuracy 0.40 1862
macro avg 0.11 0.16 0.12 1862
weighted avg 0.26 0.40 0.29 1862
```

Ou seja, os resultados indicam que o modelo pode precisar de melhorias, como em termos de precisão e recall para várias classes. Pode ser útil explorar técnicas de ajuste de modelo ou considerar estratégias de tratamento de desequilíbrios nas classes.

2º Método de aprendizagem de máquina

Como segundo método de aprendizagem de máquina utilizamos KNN (K - *Nearest Neighbors*) que deram os seguintes resultados:

```
[[1036 15]
[113 0]]
```

0.8900343642611683

Com esse método obtivemos 89% de acerto em relação a pessoas que estão empregadas e desempregadas. De 1036 que estão empregadas tivemos apenas 15 previsões erradas e de 113 que estão desempregadas tivemos 100% de acerto nas previsões. Esse método se mostrou eficaz nas previsões podendo passar por melhorias.

3º Método de aprendizagem de máquina

Como terceiro método de aprendizagem de máquina utilizamos Naive Bayes que retornaram os seguintes resultados:

```
A acurácia do modelo 3 foi 90.64%
[[1055 0]
[109 0]]
```

O Naive Bayes é um classificador probabilístico simples, mas eficaz. O fato de alcançar uma taxa de acerto de 90.64% sugere que o modelo está realizando bem a tarefa em relação à distinção entre pessoas empregadas e desempregadas.

Conclusão

Os três testes de análise de dados revelaram insights sobre a predição do status de emprego. O modelo de regressão mostrou uma acurácia de 40%, ou seja, não é possível identificar se as pessoas já ficaram desempregadas ou não. Em contrapartida, o KNN obteve 89% de acurácia, indicando melhor desempenho na identificação de padrões. O Naive Bayes alcançou a maior acurácia, com 90.64%, destacando sua eficácia e assertividade na análise de dados relacionados ao desemprego. Os resultados enfatizam a importância de algoritmos mais robustos, como KNN e Naive Bayes, para uma predição mais precisa e significativa sobre os padrões comportamentais relacionados ao afastamento de funcionários ou à falta de atribuições de tarefas.