66.70 Estructura del Computador

Diseño de circuitos combinacionales

Lógica combinacional

- Sigue siendo útil una tabla de verdad cuando existen varias salidas?

Definiciones básicas

- Qué es analizar un circuito?
- Qué es sintetizar un circuito?
- Qué es diseñar un circuito?
- Qué es implementar un circuito?

Lógica combinacional

- Lógica de dos niveles
 - Suma de productos
 - Producto de sumas
- Lógica multinivel

Ejemplo: x'y + xy' + xz = x'y + x(y' + z)

Buscando un método

Necesitamos expresiones algebraicas simples...

⇒ Menor costo, menor tamaño, menor consumo...

- ► Con qué criterio comparamos dos expresiones equivalentes
- ▶ Cómo llegamos a una expresión más simple?

Desde el álgebra a los costos

Medidas de simplicidad:

- > Cantidad de términos
- Cantidad de literales por término

Costo de las Compuertas

1 ° Cantidad de compuertas

2° Cantidad de entradas

PIN CONNECTIONS

Obtención de circuitos simples

Criterio:

Definición de *expresión mínima*

- Métodos simplificación
 - Algebraicos
 - Gráficos
 - Tabular

Simplificación por método algebraico

- Se trabaja directamente sobre la expresión algebraica (prueba y error)
- Se basa en eliminar términos y literales aplicando los postulados y los teoremas del Algebra de Boole

Simplificación por método algebraico

Ejemplo:

$$F = A'C' + ABC + BC' + A'B'C + A'BC$$

$$F = A'C' + BC' + BC(A + A') + A'C(B + B')$$

$$F = A'C' + BC' + BC + A'C$$

$$F = A'(C' + C) + B(C' + C)$$

$$F = A' + B$$

Simplificación por método algebraico

Características de este método:

- No incluye un procedimiento formal que asegure llegar a una expresión mínima
- Proclive a que se comentan errores de copia en los literales
- Se torna difícil con más de 4 o 5 variables

- Relación entre el mapa de K y la tabla de verdad
- Definiciones:
 - Adyacencias
 - Implicante primo
 - Implicante primo esencial
- Permite encontrar las expresiones mínimas en forma de Suma de Productos o Producto de Sumas (mínima cantidad de términos y mínima cantidad de entradas)
- Se basa en: (1) encontrar todos los implicantes primos
 - (2) seleccionar un conjunto mínimo de implicantes que cubra la función

Por los 1's de la función

F(A, B, C, D)

Tabla de verdad

- 1. Marcar implicantes primos
- 2. Marcar Imp. primos esenciales
- 3. Construir expr.algebr c/ IPE
- 4. Agregar 1's hasta completar F

EXPRESION/es MÍNIMA/s

"Suma de Productos"

Resolver:

F = A'C' + ABC + BC' + A'B'C + A'BC

Por los 1's de la función

Por los 0's de la función

F(A, B, C, D)

Tabla de verdad

- 1. Marcar implicantes primos
- 2. Marcar Imp. primos esenciales
- 3. Construir expr.algebr c/ IPE
- 4. Agregar 0's hasta completar F

EXPRESION/es MÍNIMA/s

"Producto de Sumas"

Resolver:

F = A'C' + ABC + BC' + A'B'C + A'BC

Redundancias

o "Funciones incompletamente especificadas"

Significado. Casos de aplicación.

- Mapas de K que contienen redundancias
 - ✓ Cuando conviene incluirlas en un implicante
 - ✓ Relación entre las redundancias de distintos implicantes
 - ✓ Redundancias e implicantes primos esenciales

Con redundancias

F(A, B, C, D)

Tabla de verdad

1	X	1	1			
	Х	Х				
	1	1				

"Aprovechar" redundancias

Sólo sin son útiles para simplificar

- 1. Marcar implicantes primos
- 2. Marcar Imp. primos esenciales
- 3. Construir expr.algebr c/ IPE
- 4. Agregar 1's hasta completar F

EXPRESION/es MÍNIMA/s

"Producto de Sumas"

Mapas de Karnaugh de 5 variables

Vecindades?

Mapas de Karnaugh de 6 variables

Vecindades?

Ventajas

- Da un procedimiento formal hacia la expresión mínima
- Aplicable para S de P y para P de S
- Fácil de aplicar (con pocas variables)

Desventajas

- No es aplicable a más de 5 o ¿6? variables
- Depende de la habilidad visual y experiencia
- No es apropiado para implementar en software

Bajando más los costos

- ✓ Reducir número de compuertas y mínimo número de entradas
- Elegir entre solución por suma de productos o por producta de sumas
- Reducir el número de inversores
- Reducir el número de circuitos integrados
 (los CI comerciales incluyen varias compuertas en el mismo chip dependiendo del número de entradas)
- Utilizar sólo compuertas NAND
 - Ventajas:
 - Menor costo que AND OR
 - Unificar el tipo de compuertas utilizadas en la implementación
 - Como?
- Compuertas NOR: idem NAND

Problemas de salida múltiple

Ejemplo: columna de 8 leds encendida en correspondencia con datos de tres bits a la entrada

Problemas de salida múltiple

```
F_1(A, B, C, D) = \sum m(11, 12, 13, 14, 15)

F_2(A, B, C, D) = \sum m(3, 7, 11, 12, 13, 15)

F_3(A, B, C, D) = \sum m(3, 7, 12, 13, 14, 15)
```


¿Qué compuertas puedo ahorrar respecto del problema de salida única?

Problemas de salida múltiple

$$F_1(A, B, C, D) = \sum m(11, 12, 13, 14, 15)$$

 $F_2(A, B, C, D) = \sum m(3, 7, 11, 12, 13, 15)$
 $F_3(A, B, C, D) = \sum m(3, 7, 12, 13, 14, 15)$

Implementación directa de F₁ F₂ y F₃

Consideradas como salida múltiple

Pasos para diseñar un circuito lógico combinacional

- 1. Planteo informal del problema
- 2. Identificación de variables dependientes e independientes
- 3. Formalizar las salidas como funciones lógicas
- 4. Encontrar todas las expresiones mínimas posibles (por 1's y por 0's)
- 5. Diagrama circuital de una de esas expr. mínimas (cuál?)
- 6. Elegir circuitos integrados (un único tipo de compuerta?)
- 7. Implementación física

Ver tranparencia:
"Bajando más los costos"

- > Resulta apropiado para implementarlo en **software**
- > Se organiza en forma tabular
- No impone límites, en principio, sobre el número de variables

Básicamente consiste en:

- Eliminar tanto literales como sea posible aplicando sistemáticamente XY + XY' = X
- Usar una tabla de implicantes primos para seleccionar un conjunto mínimo de implicantes primos que combinados por medio de OR producen la función a simplificar

Pueden combinarse

No pueden combinarse

A'BC'D + A'BCD' 0 1 0 1 + 0 1 1 0

- 1. Encontrar todos los implicantes primos
 - 1. Agrupar minitérminos según la cantidad de 1's
 - 2. Comparar grupos adyacentes solamente
 - 3. Combinar minitérminos -> implicantes
 - 4. Combinar implicantes en pasos sucesivos (tildar cada implicante usado en cada combinación)
 - 5. Eliminar implicantes duplicados
- 2. Elegir un conjunto mínimo de implicantes primos
 - 1. Construir la tabla de implicantes con:
 - a. Los implicantes de menor orden que no fueron tildados
 - b. Los implicantes de mayor orden
 - 2. Elegir los implicantes primos esenciales
 - 3. Completar por medio de otros implicantes primos todos los minitérminos de la función

Ejemplo: $F(A,B,C,D) = \sum m(0,1,2,5,6,7,8,9,10,14)$

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Paso 1

Agrupar minitérminos según la cantidad de 1's

Sólo debemos comparar grupos adyacentes

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Paso 2 (Combinar implicantes de grupos vecinos)

Columna I			Colun	Columna II				
grupo 0	0	0000		0,2				
grupo 1 {	2	0010 1000		0,8 1,5 1,9				
grupo 2 {				2,6 2,10 8,9 8,10	0-10 -010 100- 10-0			
grupo 3 {	7 14	0111 1110		5,7 6,7 6,14 10,14	011- -110			

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Paso 3 (Agrupar la columna 2 y combinar implic. de grupos vecinos)

Columna I	Columna II	Columna III			
grupo 0 0000	0,1 000- ■ 0,2 00-0 ■ 0,8 -000 ■ 1,5 0-01	0,1,8,9 -00- 0,2,8,10 -0-0 0,8,1,9 -00- 0,8,2,10 -0-0			
grupo $2\begin{cases} 5 & 0101 \\ 6 & 0110 \\ 9 & 1001 \\ 10 & 1010 \end{cases}$ grupo $3\begin{cases} 7 & 0111 \\ 14 & 1110 \end{cases}$	1,9 -001	2,6,10,1410 2,10,6,1410			

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Paso 4 (Eliminar combinaciones repetidas)

	Columna I	Columna II	Columna III			
grupo 0 grupo 1	0 0000 1 0001 2 0010 8 1000	0,1 000-	0,1,8,9 -00- 0,2,8,10 -0-0 0,8,1,9 -00- 0,8,2,10 -0-0			
	5 0101	2,6 0-10 = 2,10 -010 = 8,9 100- = 8,10 10-0 =	2,6,10,1410 2,10,6,1410			
grupo 3 {	7 0111 I .14 1110 I	5,7 01-1 6,7 011- 6,14 -110 1 10,14 1-10 1				

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Paso 5 (Formar F con los términos no tildados)

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Resultado obtenido:

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Resultado obtenido:

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$
 Quine-McCluskey

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Resultado obtenido:

Quine-McCluskey

Necesitamos un método para eliminar los términos redundantes

(Segunda parte del algoritmo de Quine-McCluskey)

			minitérminos									
S			0	1	2	5	6	7	8	9	10	14
primos	(0,1,8,9)	b'c'	X	X					X	X		
pri	(0,2,8,10)	b'd'	X		X				X		X	
	(2,6,10,14)	cď'			X		X				X	X
ant	(1,5)	a'c'd		X		X						
<u>SS</u>	(5,7)	a'bd				X		X				
nplicantes	(6,7)	a'bc					X	X				

¿Cómo sabemos cuáles son los ímplicantes primos esenciales?

(Segunda parte del algoritmo de Quine-McCluskey)

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

			minitérminos									
S			0	1	2	5	6	7	8	9	10	14
primos	(0,1,8,9)	b'c'	X	X					X	(X)		
pri	(0,2,8,10)	b'd'	X		X				X		X	
	(2,6,10,14)	cď'			X		X				X	(X)
ij	(1,5)	a'c'd		X		X						
<u></u>	(5,7)	a'bd				X		X				
nplicantes	(6,7)	a'bc					X	X				

Una vez que un implicante fue incluido en F, todos los minitérminos que este abarca dejan de ser tenidos en cuenta para formar F

(Segunda parte del algoritmo de Quine-McCluskey)

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

Una vez que un implicante fue incluido en F, todos los minitérminos que este abarca dejan de ser tenidos en cuenta.

(Segunda parte del algoritmo de Quine-McCluskey)

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

Con los Implicantes primos esenciales no cubrimos toda la función.

Con qué criterio elegimos la cantidad mínima de IP- NE?

(Segunda parte del algoritmo de Quine-McCluskey)

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

Con los Implicantes primos esenciales no cubrimos toda la función.

Con qué criterio elegimos la cantidad mínima de IP- NE?

Elegimos los implicantes que incluyen mayor cantidad de minitérminos

Bibliografía

----- SISTEMAS NUMERICOS -----

- Teoría de Conmutación y Diseño Lógico Hill F., Peterson G. Ed. Limusa Capitulo 2
- La PC por dentro Ginzburg Mario Ed. Biblioteca Técnica Superior 3º Edición Apéndice 1

Aritmética binaria:

- La PC por dentro – Ginzburg Mario - Ed. Biblioteca Técnica Superior - 3º Edición Complemento a la unidad 1 (al final del libro)

Adicionalmente una referencia a la norma IEEE 754 puede consultarse en: http://es.wikipedia.org/wiki/IEEE_punto_flotante

- ------ ALGEBRA DE BOOLE Y DISEÑO DE CIRCUITOS COMBINACIONALES ------
- Introducción a las Técnicas Digitales con CI GinzburgMario Ed Biblioteca Técnica Superior 8º Ed.
 Capítulos 4, 5 y 6
- Teoría de Conmutación y Diseño Lógico Hill F., Peterson G. Ed. Limusa Capítulos 3, 4, 6 y 7