Tích phân mặt

Loại I.

Cho một mặt cong S và một hàm số f(M) = f(x,y,z) xác định trên S.

Tích phân mặt loại I của hàm số f(x,y,z) trên mặt S kí hiệu là $\iint_S f(x,y,z) dS$.

Diện tích của mặt S: $\iint_S dS$.

Cách tính

❖ Giả sử mặt S được cho bởi phương trình z = z(x,y), trong đó z là hàm số liên tục, có các đạo hàm riêng $p = z_x'(x,y)$; $q = z_y'(x,y)$ liên tục trong miền đóng giới nội D (hình chiếu của S lên mặt Oxy. Khi đó $dS = \sqrt{1 + p^2 + q^2} dx dy$,

$$\iint_{S} f(x,y,z) dS = \iint_{D} f(x,y,z(x,y)) \sqrt{1+p^{2}+q^{2}} dxdy.$$

Tương tự nếu mặt S cho bởi phương trình x = x(y,z), hs tự rút ra công thức tính.

* Trường hợp mặt S có phương trình tham số $x=x(u,v),\ y=y(u,v),\ z=z(u,v),\ (u,v)\in D\subset R^2.$ f(x,y,z) là hàm xác định liên tục trên S. Khi đó: $\iint_S f(x,y,z)ds=\iint_D f\left(x(u,v),y(u,v),z(u,v)\right)\sqrt{EG-F^2}\,\mathrm{d} u\mathrm{d} v.$

E,F,G là hê số Gauss:

$$E = \left(\frac{\partial x}{\partial u}\right)^{2} + \left(\frac{\partial y}{\partial u}\right)^{2} + \left(\frac{\partial z}{\partial u}\right)^{2}$$

$$G = \left(\frac{\partial x}{\partial v}\right)^{2} + \left(\frac{\partial y}{\partial v}\right)^{2} + \left(\frac{\partial z}{\partial v}\right)^{2}$$

$$E = \frac{\partial x}{\partial u} \cdot \frac{\partial x}{\partial v} + \frac{\partial y}{\partial u} \cdot \frac{\partial y}{\partial v} + \frac{\partial z}{\partial u} \cdot \frac{\partial z}{\partial v}$$

Trọng tâm của mặt

Nếu khối lượng riêng của mặt S tại điểm M(x,y,z) là ho(M).

Tọa độ trọng tâm G của mặt S

Trong đó $m = \iint_{S} \rho(M) dS$ là khối lượng của mặt S.

Bài tập. Tính

a)
$$\iint_S z dS$$
, S là mặt paraboloit hyperbolic $z = x^2 + y^2$ nằm trong mặt trụ $x^2 + y^2 = 4$.

b)
$$\iint_{S} y dS$$
, S là phần của mặt $z = \sqrt{x^2 + y^2}$, $0 \le x \le 1$, $0 \le y2$.

c)
$$\iint_{S} \frac{dS}{\left(1+x+z\right)^{2}}$$
, S là phần mặt phẳng $x+y+z=1$ nằm trong góc phần tám thứ nhất.

d)
$$\iint_{S} (2x+y+z) dS$$
, S là phần mặt phẳng $x+y+z=1$ nằm trong góc phần tám thứ nhất.

e)
$$\iint_{S} (x^{2} + y^{2}) dS$$
, S là phần mặt nón nằm giữa các mặt phẳng $z = 0, z = 1$.

f)
$$\iint_{S} (6x + 4y + 3z) dS$$
, S là phần mặt phẳng $x + 2y + 3z = 6$ thuộc góc phần tám thứ nhất.

g)
$$\iint_{S} \left(z + 2x + \frac{4y}{3}\right) dS$$
, S là phần mặt phẳng $6x + 4y + 3z = 12$ thuộc góc phần tám thứ nhất.

h)
$$\iint_{\mathbb{R}} (x+y+z) dS$$
, S là nửa mặt cầu $x^2 + y^2 + z^2 = a^2$, $z \ge 0$.

i)
$$\iint_{S} (x^2 + y^2) dS$$
, S là mặt cầu $x^2 + y^2 + z^2 = a^2$.

j)
$$\iint_{S} (xy + yz + zx) dS$$
, S là phần của mặt nón $z = \sqrt{x^2 + y^2}$ nằm trong mặt trụ $x^2 + y^2 = 2ax$.

k)
$$\iint_{S} (x^{2}z^{2} + z^{2}y^{2}) dS$$
, S là mặt cầu $x^{2} + y^{2} + z^{2} = a^{2}$, $a > 0$.

1)
$$\iint_{S} (y^2 + z^2) dS$$
, S là phần của mặt paraboloit $x = 4 - y^2 - z^2$ nằm ở trên mặt phẳng $x = 0$.

Loại II.

Tích phân mặt loại II tổng quát $\iint_S Pdydz + Qdzdx + Rdxdy$, Trong đó giả sử ba hàm P(M) = P(x, y, z), Q(x, y, z), R(x, y, z) liên tục trên S.

Cách tính.

Giả thiết mặt S được chiếu đơn trị lên miền D(y,z) của mặt yOz và x = f(y,z) là phương trình của nó, khi đó $\iint_{\mathbb{R}} P dy dz = \pm \iint_{\mathbb{R}} P \Big[f(y,z), y,z \Big] dy dz \ .$

Tương tự ta có

$$\iint_{S} Q dx dz = \pm \iint_{D} Q \left[x, g(x, z), z \right] dx dz$$

$$\iint_{S} R dx dy = \pm \iint_{D} R[x, y, h(x, y)] dx dy$$

Dấu + trong trường hợp nếu phía mặt được chọn $\cos\alpha$, $\cos\beta$, $\cos\gamma>0$, dấu – nếu các cos âm **Bài tập.** Tính các tích phân mặt sau

- a) $\iint_{\mathbb{R}} dx dy$, S là phía ngoài phần mặt nón $z = \sqrt{x^2 + y^2}$ khi $0 \le z \le 1$.
- b) $\iint_{S} -x dy dz + z dx dz + 5 dx dy$, S là phía trên của phần mặt phẳng 2x + 3y + z = 6.
- c) $\iint_{S} \left(x dy dz + y dz dx + z dx dy\right)$, trong đó S là phía ngoài của mặt cầu $x^2 + y^2 + z^2 = a^2$.
- d) $\iint_{S} \sqrt{x^2 + y^2} dx dy$ theo phía dưới của hình tròn $x^2 + y^2 \le R^2$.