ELECTRÓNICA DE POTENCIA – PARCIAL 1

FACULTAD DE ING. ELÉCTRICA UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

Nombre: Herry Durling Prof. Abdiel Bolaños

Cédula. <u>Co-7-14-1065</u> Fecha: 26 – 9 – 2012

I- RESPONDA LAS SIGUIENTES PREGUNTAS (6 puntos cada una)

Para el circuito de la figura 1, cual sería el espesor de la región n- si se quiere obtener el mayor valor de voltaje de colector-emisor apagado (VCES)

Cuál es el valor mínimo del voltaje que debe aplicarse a la compuerta del transistor de la figura 2 para asegurar que fluya una corriente de 80A si la temperatura de

3. Es recomendable utilizar un SCR con un V_{RRM}=400V en un circuito con un voltaje de alimentación de 277Vrms ±10%, por qué?

4. A qué elemento y evento se debe el pico de corriente que se dá en el disparo de un transistor que conmuta cargas inductivas.

5. A qué-se debe que un diodo de 1000V presente mayores pérdidas de operación cuando remplaza a un diodo de 400V (usando el mismo disipador de calor), si ambos llevan la misma corriente?

II. RESUELVA LOS SIGUIENTES PROBLEMAS

? - Power a . Da

Londida Sa co.

Se quiere utilizar un IGBT IRG4PF50W para conmutar una carga inductiva de 18A y 400V. La frecuencia de operación puede ser 2.5kHz o 6kHz y el ciclo de trabajo La temperatura ambiente varía entre 20 y 35°C. puede variar entre 0.2 y 0.85. Por cuestión de costos el disipador debe ser lo menor posible.

a. Calcule la resistencia térmica máxima del disipador de calor. 20 ptos

b. Calcule los snubber de bloqueo y disparo considerando que Cs=Cs1 y que 30 ptos $\Delta Vce=0.35Vd$ y $\Delta Vce_{MAX}=.1Vd$.

c. Vuelva a calcular el valor de la resistencia térmica del disipador de calor.

20 ptos

1 pagaw

Hozu

80A +77=150C 1000 Q Base Q Emitter Collector-to-Emiller Current (A) 10 jun 1019 100 Base thickness Tj = 150 °C 5-20 µm cm-3 1016 Ty= 25 °C 50-200 μm 10 cm^{-3} 1014 (collector drift region) o V.CC = 50V Sus PULSE WIDTH 250 µm cm^{-3} 1019 VGE. Gate-to-Emitter Voltage (V) o Collector Figura 2 Figura 1

DATA DE FABRICANTE IRG4PF50W

Features

- · Optimized for use in Welding and Switch-Mode Power Supply applications
- · Industry benchmark switching losses improve efficiency of all power supply topologies
- 50% reduction of Eoff parameter
- · Low IGBT conduction losses
- · Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability

Thermal R	esistance	Тур.	Max.	Units
	Parameter		0.64	
Rajo	Junction-to-Case	0.24	-	•C/W
Rocs	Case-to-Sink, Ftat. Greased Surface	The state of the s	40	
Rima	Junction-to-Ambient, typical socket mount	6 (0.21)		0 tosi
141	Weight			

Absolute Maximum Rating	JS
-------------------------	----

bsolute Maximum Ratings		Max.	Units	
	Parameter	900	V	
CES	Collector-to-Emilter Breakdown Voltage	51		
@ To = 25°C	Genterious Collector Current	28	A	
@ Tc = 100°C	Continuous Collector Current	204		
1	Dulepri Collector Current	204		
1	Clamped Inductive Load Current ®	± 20	V	
E	Gate-to-Emitter Voltage	186	·md	
FV	Reverse Voltage Avalanche Energy ®	200	W	
@ Tc = 25°C	Maximum Power Dissipation	78		
@ Tc = 100°C	Maximum Power Crasipanion	-55 to + 150		
	Coperating Junction and		7	
79	Storage Temperature Range Soldering Temperature, for 10 seconds	300 (0:063 In. (1.6mm from case.)		
	Soldering remperature, for the second			

-	Turn-On Delay Time		28		T _J = 150°C.
10 0 1	Rise Time		26	ns	Ic = 28A, Vcc = 720V
LS:6111	Turn-Off Delay Time		280		$V_{GE} = 15V$, $R_{G} = 5.0\Omega$
	Fall Time		90		Energy losses include "tall"
	Total Switching Loss	1-	3.45	mJ	See Fig. 13, 14

