

# Global United Technology Services Co., Ltd.

Report No.: GTS201612000141F04

# **FCC REPORT**

Applicant: Autel Intelligent Tech. Corp., Ltd.

**Address of Applicant:** 6th - 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili,

Nanshan, Shenzhen, China

Autel Intelligent Tech. Corp., Ltd. Manufacturer/ Factory:

Address of 6th - 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili,

Nanshan, Shenzhen, China **Manufacturer/ Factory:** 

**Equipment Under Test (EUT)** 

**AUTOMOTIVE DIAGNOSTIC & ANALYSIS SYSTEM** Product Name:

Model No.: MaxiSys, MaxiSys Pro

Trade Mark: **AUTEL** 

FCC ID: WQ8MAXISYSMY908

FCC CFR Title 47 Part 15 Subpart E Section 15.407:2016 **Applicable standards:** 

Date of sample receipt: January 08, 2017

Date of Test: January 09-16, 2017

Date of report issued: January 17, 2017

PASS \* Test Result:

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



# 2 Version

| Version No. | Date             | Description |
|-------------|------------------|-------------|
| 01          | January 17, 2017 | Original    |
|             |                  |             |
|             |                  |             |
|             |                  |             |
|             |                  |             |

| Prepared By: | Tiger Chen       | Date: | January 17, 2017 |  |
|--------------|------------------|-------|------------------|--|
|              | Project Engineer |       |                  |  |
| Check By:    | Andy W           | Date: | January 17, 2017 |  |



# 3 Contents

|   |                    |                                        | Page |
|---|--------------------|----------------------------------------|------|
| 1 | COV                | /ER PAGE                               | 1    |
| 2 | VER                | SION                                   | 2    |
| 3 | CON                | ITENTS                                 | 3    |
| 4 |                    | T SUMMARY                              |      |
|   | 4.1                | MEASUREMENT UNCERTAINTY                |      |
| 5 | GEN                | IERAL INFORMATION                      | 5    |
|   | 5.1<br>5.2         | GENERAL DESCRIPTION OF EUT             |      |
|   | 5.3                | DESCRIPTION OF SUPPORT UNITS           | 7    |
|   | 5.4<br>5.5         | TEST FACILITY TEST LOCATION            |      |
| 6 | TES                | T INSTRUMENTS LIST                     | 8    |
| 7 | TES                | T RESULTS AND MEASUREMENT DATA         | 9    |
|   | 7.1                | ANTENNA REQUIREMENT                    | -    |
|   | 7.2                | CONDUCTED EMISSIONS                    |      |
|   | 7.3                | CONDUCTED PEAK OUTPUT POWER            |      |
|   | 7.4                | CHANNEL BANDWIDTH                      |      |
|   | 7.5                | POWER SPECTRAL DENSITY                 |      |
|   | <b>7.6</b> 7.6.    | BAND EDGES  1 Radiated Emission Method |      |
|   | 7.0.<br><b>7.7</b> | SPURIOUS EMISSION                      |      |
|   | 7.7.               |                                        |      |
|   | 7.8                | FREQUENCY STABILITY                    |      |
| 8 | TES                | T SETUP PHOTO                          | 35   |
| 9 | FUT                | CONSTRUCTIONAL DETAILS                 | 36   |



# 4 Test Summary

| Test Item                        | Section in CFR 47          | Result |
|----------------------------------|----------------------------|--------|
| Antenna requirement              | 15.203                     | Pass   |
| AC Power Line Conducted Emission | 15.207                     | Pass   |
| Conducted Peak Output Power      | 15.407(a)(3)               | Pass   |
| Channel Bandwidth                | 15.407(e)                  | Pass   |
| Power Spectral Density           | 15.407(a)(3)               | Pass   |
| Band Edge                        | 15.407(b)(4)               | Pass   |
| Spurious Emission                | 15.205/15.209/15.407(b)(4) | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

# 4.1 Measurement Uncertainty

| •                                | <u></u>                                                                                               |                         |       |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|-------|--|--|--|
| Test Item                        | Frequency Range                                                                                       | Measurement Uncertainty | Notes |  |  |  |
| Radiated Emission                | 9kHz ~ 30MHz                                                                                          | ± 4.34dB                | (1)   |  |  |  |
| Radiated Emission                | 30MHz ~ 1000MHz                                                                                       | ± 4.24dB                | (1)   |  |  |  |
| Radiated Emission                | 1GHz ~ 40GHz                                                                                          | ± 4.68dB                | (1)   |  |  |  |
| AC Power Line Conducted Emission | 0.15MHz ~ 30MHz                                                                                       | ± 3.45dB                | (1)   |  |  |  |
| Note (1): The measurement u      | Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%. |                         |       |  |  |  |



# **5** General Information

# 5.1 General Description of EUT

| AUTOMOTIVE DIAGNOSTIC & ANALYSIS SYSTEM                                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| MaxiSys, MaxiSys Pro                                                                                                                                                     |  |  |
| MaxiSys                                                                                                                                                                  |  |  |
| Remark: All above models are identical in the same PCB layout, interior structure and electrical circuits. The only difference is the model name for commercial purpose. |  |  |
| 802.11a/802.11n(HT20) @5G Band: 5745MHz ~ 5825MHz                                                                                                                        |  |  |
| 802.11n(HT40) @ 5G Band: 5755MHz ~ 5795MHz                                                                                                                               |  |  |
| 802.11a/802.11n(HT20) @5G Band: 5                                                                                                                                        |  |  |
| 802.11n(HT40) @ 5G Band: 2                                                                                                                                               |  |  |
| 802.11a/802.11n(HT20) @5G Band: 20MHz                                                                                                                                    |  |  |
| 802.11n(HT40) @ 5G Band: 40MHz                                                                                                                                           |  |  |
| 802.11a/802.11g/802.11n(H20)/802.11n(H40):                                                                                                                               |  |  |
| Orthogonal Frequency Division Multiplexing (OFDM)                                                                                                                        |  |  |
| Integral Antenna                                                                                                                                                         |  |  |
| 0.85dBi (declare by Applicant)                                                                                                                                           |  |  |
| Model No.:GFP361DA-1230-1                                                                                                                                                |  |  |
| Input: AC 100~240V~50/60Hz 1.2A                                                                                                                                          |  |  |
| Output: DC 12.0V 3.0A                                                                                                                                                    |  |  |
| DC 3.7V Li-ion Battery                                                                                                                                                   |  |  |
|                                                                                                                                                                          |  |  |



| Operation Frequency each of channel @ 5.8G Band |           |         |           |         |           |         |           |
|-------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                                         | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 149                                             | 5745MHz   | 153     | 5765MHz   | 155     | 5775MHz   | 157     | 5785MHz   |
| 161 5805MHz 165 5825MHz                         |           |         |           |         |           |         |           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

|                 | Frequenc                 | y (MHz)       |  |  |
|-----------------|--------------------------|---------------|--|--|
| Test channel    | 5.8G E                   | 5.8G Band     |  |  |
| rest chamier    | 802.11a<br>802.11n(HT20) | 802.11n(HT40) |  |  |
| Lowest channel  | 5745                     | 5755          |  |  |
| Middle channel  | 5785                     |               |  |  |
| Highest channel | 5825                     | 5795          |  |  |



#### 5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, the duty cycle>98%, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode           | Data rate |
|----------------|-----------|
| 802.11a        | 6Mbps     |
| 802.11n(HT20)  | 6.5Mbps   |
| 802.11n(HT40)  | 13Mbps    |
| 802.11ac(HT20) | 6.5Mbps   |
| 802.11ac(HT40) | 13.5Mbps  |
| 802.11ac(HT80) | 29.3Mbps  |

### 5.3 Description of Support Units

None.

## 5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

#### • Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

#### 5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960



# 6 Test Instruments list

| Radiated Emission: |                                       |                                 |                           |                  |                        |                            |
|--------------------|---------------------------------------|---------------------------------|---------------------------|------------------|------------------------|----------------------------|
| Item               | Test Equipment                        | Manufacturer                    | Model No.                 | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
| 1                  | 3m Semi- Anechoic<br>Chamber          | ZhongYu Electron                | 9.2(L)*6.2(W)* 6.4(H)     | GTS250           | July. 03 2015          | July. 02 2020              |
| 2                  | Control Room                          | ZhongYu Electron                | 6.2(L)*2.5(W)* 2.4(H)     | GTS251           | N/A                    | N/A                        |
| 3                  | EMI Test Receiver                     | Rohde & Schwarz                 | ESU26                     | GTS203           | June. 29 2016          | June. 28 2017              |
| 4                  | Spectrum analyzer                     | Agilent                         | E4447A                    | GTS516           | June. 29 2016          | June. 28 2017              |
| 5                  | Spectrum Analyzer                     | Agilent                         | E4440A                    | GTS533           | June. 29 2016          | June. 28 2017              |
| 6                  | BiConiLog Antenna                     | SCHWARZBECK MESS-<br>ELEKTRONIK | VULB9163                  | GTS214           | June. 29 2016          | June. 28 2017              |
| 7                  | Double -ridged waveguide horn         | SCHWARZBECK MESS-<br>ELEKTRONIK | 9120D-829                 | GTS208           | June. 29 2016          | June. 28 2017              |
| 8                  | Horn Antenna                          | ETS-LINDGREN                    | 3160                      | GTS217           | June. 29 2016          | June. 28 2017              |
| 9                  | EMI Test Software                     | AUDIX                           | E3                        | N/A              | N/A                    | N/A                        |
| 10                 | Coaxial Cable                         | GTS                             | N/A                       | GTS213           | June. 29 2016          | June. 28 2017              |
| 11                 | Coaxial Cable                         | GTS                             | N/A                       | GTS211           | June. 29 2016          | June. 28 2017              |
| 12                 | Coaxial cable                         | GTS                             | N/A                       | GTS210           | June. 29 2016          | June. 28 2017              |
| 13                 | Coaxial Cable                         | GTS                             | N/A                       | GTS212           | June. 29 2016          | June. 28 2017              |
| 14                 | Amplifier(100kHz-3GHz)                | HP                              | 8347A                     | GTS204           | June. 29 2016          | June. 28 2017              |
| 15                 | Amplifier(2GHz-20GHz)                 | HP                              | 8349B                     | GTS206           | June. 29 2016          | June. 28 2017              |
| 16                 | Amplifier (18-40GHz)                  | MITEQ                           | AMF-6F-18004000-29-<br>8P | GTS534           | June. 29 2016          | June. 28 2017              |
| 17                 | Band filter                           | Amindeon                        | 82346                     | GTS219           | June. 29 2016          | June. 28 2017              |
| 18                 | Constant temperature and humidity box | Oregon Scientific               | BA-888                    | GTS248           | June. 29 2016          | June. 28 2017              |
| 19                 | D.C. Power Supply                     | Instek                          | PS-3030                   | GTS232           | June. 29 2016          | June. 28 2017              |
| 20                 | Universal radio communication tester  | Rohde & Schwarz                 | CMU200                    | GTS235           | June. 29 2016          | June. 28 2017              |
| 21                 | Splitter                              | Agilent                         | 11636B                    | GTS237           | June. 29 2016          | June. 28 2017              |
| 22                 | Power Meter                           | Anritsu                         | ML2495A                   | GTS540           | June. 29 2016          | June. 28 2017              |
| 23                 | Power Sensor                          | Anritsu                         | MA2411B                   | GTS541           | June. 29 2016          | June. 28 2017              |

| Con  | Conducted Emission:      |                     |                      |               |                        |                            |  |
|------|--------------------------|---------------------|----------------------|---------------|------------------------|----------------------------|--|
| Item | Test Equipment           | Manufacturer        | Model No.            | Inventory No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1    | Shielding Room           | ZhongYu Electron    | 7.3(L)x3.1(W)x2.9(H) | GTS252        | May 16 2014            | May 15 2019                |  |
| 2    | EMI Test Receiver        | R&S                 | ESCI 7               | GTS552        | June 29 2016           | June 28 2017               |  |
| 3    | Pulse Limiter            | R&S                 | ESH3-Z2              | GTS224        | June 29 2016           | June 28 2017               |  |
| 4    | Coaxial Switch           | ANRITSU CORP        | MP59B                | GTS225        | June 29 2016           | June 28 2017               |  |
| 5    | Artificial Mains Network | SCHWARZBECK<br>MESS | NSLK8127             | GTS226        | June 29 2016           | June 28 2017               |  |
| 6    | Coaxial Cable            | GTS                 | N/A                  | GTS227        | June 29 2016           | June 28 2017               |  |
| 7    | EMI Test Software        | AUDIX               | E3                   | N/A           | N/A                    | N/A                        |  |
| 8    | Thermo meter             | KTJ                 | TA328                | GTS233        | June 29 2016           | June 28 2017               |  |



# 7 Test results and Measurement Data

# 7.1 Antenna requirement

Standard requirement: FCC P

FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### **E.U.T Antenna:**

The antenna is Integral antenna. The best case gain of the antenna is 0.85Bi.





# 7.2 Conducted Emissions

| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |           |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--|
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |           |  |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |           |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |           |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | weep time=auto      |           |  |
| Limit:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Limit (d            | IBuV)     |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quasi-peak          | Average   |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66 to 56*           | 56 to 46* |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56                  | 46        |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                  | 50        |  |
|                       | * Decreases with the logarithn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n of the frequency. |           |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |           |  |
|                       | AUX Equipment E.U.T  Test table/Insulation plane  Remark: E.U.T. Equipment Under Test LISN. Line Impedence Stabilization Network Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |           |  |
| Test procedure:       | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.</li> </ol> |                     |           |  |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |           |  |
| Test mode:            | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |           |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |           |  |



#### Measurement data

Line:



|   | Freq<br>MHz | Reading<br>level<br>dBuV | lISN/ISN<br>factor<br>dB | Cable<br>loss<br>dB | level<br>dBuV | Limit<br>level<br>dBuV | Over<br>limit<br>dB | Remark  |
|---|-------------|--------------------------|--------------------------|---------------------|---------------|------------------------|---------------------|---------|
| _ | 0.167       | 48.12                    | 0.42                     | 0.10                | 48.64         | 65.12                  | -16.48              | QP      |
|   | 0.167       | 28.75                    | 0.42                     | 0.10                | 29.27         | 55.12                  | -25.85              | Average |
|   | 0.337       | 37.93                    | 0.43                     | 0.10                | 38.46         | 59.27                  | -20.81              | QP      |
|   | 0.337       | 28.42                    | 0.43                     | 0.10                | 28.95         | 49.27                  | -20.32              | Average |
|   | 0.675       | 45.98                    | 0.29                     | 0.10                | 46.37         | 56.00                  | -9.63               | QP      |
|   | 0.675       | 42.61                    | 0.29                     | 0.10                | 43.00         | 46.00                  | -3.00               | Average |
|   | 1.456       | 39.06                    | 0.22                     | 0.10                | 39.38         | 56.00                  | -16.62              | QP      |
|   | 1.456       | 32.47                    | 0.22                     | 0.10                | 32.79         | 46.00                  | -13.21              | Average |
|   | 2.513       | 43.39                    | 0.20                     | 0.10                | 43.69         | 56.00                  | -12.31              | QP -    |
|   | 2.513       | 31.92                    | 0.20                     | 0.10                | 32.22         | 46.00                  | -13.78              | Average |
|   | 19.326      | 47.25                    | 0.29                     | 0.21                | 47.75         | 60.00                  | -12.25              | QP      |
|   | 19, 326     | 35, 81                   | 0. 29                    | 0. 21               | 36, 31        | 50, 00                 | -13.69              | Average |



#### Neutral:



| Freq   | Reading<br>level<br>dBuV | 1ISN/ISN<br>factor<br>dB | Cable<br>loss<br>dB | level<br>dBuV | Limit<br>level<br>dBuV | Over<br>limit<br>dB | Remark  |
|--------|--------------------------|--------------------------|---------------------|---------------|------------------------|---------------------|---------|
| 0. 154 | 48.54                    | 0. 41                    | 0. 10               | 49.05         | 65.78                  | -16. 73             | QP      |
| 0. 154 | 32.17                    | 0. 41                    | 0. 10               | 32.68         | 55.78                  | -23. 10             | Average |
| 0. 307 | 38.98                    | 0. 42                    | 0. 10               | 39.50         | 60.06                  | -20. 56             | QP      |
| 0. 307 | 27.54                    | 0. 42                    | 0. 10               | 28.06         | 50.06                  | -22. 00             | Average |
| 0. 675 | 45.28                    | 0. 25                    | 0. 10               | 45.63         | 56.00                  | -10. 37             | QP      |
| 0. 675 | 42.06                    | 0. 25                    | 0. 10               | 42.41         | 46.00                  | -3. 59              | Average |
| 1. 480 | 38.43                    | 0. 25                    | 0. 10               | 38.73         | 56.00                  | -17. 27             | QP      |
| 1.480  | 31.65                    | 0.20                     | 0.10                | 31.95         | 46.00                  | -14.05              | Average |
| 2.540  | 41.44                    | 0.20                     | 0.10                | 41.74         | 56.00                  | -14.26              | QP      |
| 2.540  | 31.46                    | 0.20                     | 0.10                | 31.76         | 46.00                  | -14.24              | Average |
| 19.635 | 47.20                    | 0.31                     | 0.21                | 47.72         | 60.00                  | -12.28              | QP      |
| 19.635 | 37.84                    | 0.31                     | 0.21                | 38.36         | 50.00                  | -11.64              | Average |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.



# 7.3 Conducted Peak Output Power

| Test Requirement: FCC Part15 E Section 15.407(a)(3) |                                                                               |  |  |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| Test Method:                                        | ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01 |  |  |  |  |
| Limit:                                              | 30dBm                                                                         |  |  |  |  |
| Test setup:                                         | Power Meter  E.U.T  Non-Conducted Table  Ground Reference Plane               |  |  |  |  |
| Test Instruments:                                   | Refer to section 6.0 for details                                              |  |  |  |  |
| Test mode:                                          | Refer to section 5.2 for details                                              |  |  |  |  |
| Test results:                                       | Pass                                                                          |  |  |  |  |

#### **Measurement Data**

### 5.8G Band

| Test CH  | Peak Output Power (dBm) | Limit(dBm)  | Result |  |  |
|----------|-------------------------|-------------|--------|--|--|
| Test Off | 802.11a (HT20)          | Limit(dDim) | Nesuit |  |  |
| Lowest   | Lowest 14.73            |             |        |  |  |
| Middle   | 14.67                   |             |        |  |  |
| Highest  | 14.86                   |             |        |  |  |
| Test CH  | Peak Output Power (dBm) |             |        |  |  |
| Test Off | 802.11n (HT20)          |             |        |  |  |
| Lowest   | 15.44                   | 30          | Door   |  |  |
| Middle   | 15.73                   | 30          | Pass   |  |  |
| Highest  | 15.08                   |             |        |  |  |
| Test CH  | Peak Output Power (dBm) |             |        |  |  |
| Test Off | 802.11n (HT40)          |             |        |  |  |
| Lowest   | 15.49                   |             |        |  |  |
| Highest  | 15.84                   |             |        |  |  |



# 7.4 Channel Bandwidth

| Test Requirement: | FCC Part15 E Section 15.407(e)                                        |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | KDB789033 D02 General UNII Test Procedures New Rules v01              |  |  |
| Limit:            | >500KHz                                                               |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 6.0 for details                                      |  |  |
| Test mode:        | Refer to section 5.2 for details                                      |  |  |
| Test results:     | Pass                                                                  |  |  |

#### **Measurement Data**

|         | 5.8G Band |                         |               |       |        |  |  |  |  |  |
|---------|-----------|-------------------------|---------------|-------|--------|--|--|--|--|--|
| Test    |           | Channel Bandwidth (MHz) |               | Limit |        |  |  |  |  |  |
| СН      | 802.11a   | 802.11n(HT20)           | 802.11n(HT40) | (KHz) | Result |  |  |  |  |  |
| Lowest  | 16.584    | 17.823                  | 36.576        |       |        |  |  |  |  |  |
| Middle  | 16.603    | 17.794                  | N/A           | >500  | Pass   |  |  |  |  |  |
| Highest | 16.567    | 17.776                  | 36.584        |       |        |  |  |  |  |  |

# Test plot as follows:



Test mode: 802.11a



#### Lowest channel



### Middle channel



Highest channel



Test mode:

#### 802.11n(HT20) @ 5.8G Band



#### Lowest channel



#### Middle channel



Highest channel



Test mode:

#### 802.11n(HT40) @ 5.8G Band



#### Lowest channel



Highest channel



# 7.5 Power Spectral Density

| Test Requirement: | FCC Part15 E Section 15.407(a)(3)                                     |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | XDB789033 D02 General UNII Test Procedures New Rules v01              |  |  |  |  |  |
| Limit:            | 30dBm/500KHz                                                          |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                      |  |  |  |  |  |
|                   |                                                                       |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                      |  |  |  |  |  |
| Test results:     | Pass                                                                  |  |  |  |  |  |

#### **Measurement Data**

| Test<br>mode      | Channel      | Measured PSD (dBm) | Limit      | Result |
|-------------------|--------------|--------------------|------------|--------|
|                   | Lowest       | 3.66               |            |        |
| 802.11a<br>(HT20) | Middle       | 6.09               |            |        |
|                   | Highest 4.28 | 4.28               |            |        |
|                   | Lowest       | 6.45               | 30dBm/500K |        |
| 802.11n<br>(HT20) | Middle       | 6.16               | Hz         | Pass   |
|                   | Highest      | 6.96               |            |        |
| 802.11n           | Lowest       | 1.39               |            |        |
| (HT40)            | Highest      | 2.88               |            |        |



#### Test plot as follows:

Test mode: 802.11a



#### Lowest channel



#### Middle channel



Highest channel



Test mode:

#### 802.11n(HT20) @ 5.8G Band



#### Lowest channel



#### Middle channel



Highest channel



Test mode:

#### 802.11n(HT40) @ 5.8G Band



#### Lowest channel



Highest channel



# 7.6 Band edges

# 7.6.1 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                      |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:          | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                      |  |  |
| Test Frequency Range: | 30MHz to 40GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | z, only worse o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | case is repo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rted                                                                                                                                                                          |                                                                                                                                                      |  |  |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                      |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBW                                                                                                                                                                           | Value                                                                                                                                                |  |  |
|                       | Ab 21.2 4011-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                          | Peak                                                                                                                                                 |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                          | RMS                                                                                                                                                  |  |  |
| Limit:                | more above of dBm/MHz at above or below above or below above or below above or below above | or below the ba<br>25 MHz above<br>ow the band ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd edge inc<br>or below the<br>ge increasir<br>or below the<br>ge increasir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | reasing linear<br>e band edge,<br>ng linearly to a<br>band edge, a                                                                                                            | and from 25 MHz<br>a level of 15.6<br>and from 5 MHz                                                                                                 |  |  |
| Test setup:           | Tum Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cest Antenna+                                                                                                                                                                 | olifier+                                                                                                                                             |  |  |
| Test Procedure:       | determine the  2. The EUT was antenna, whice tower.  3. The antenna ground to det horizontal and measuremen  4. For each sus and then the and the rota te the maximum  5. The test-rece Specified Bar  6. If the emission the limit spece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a 3 meter came position of the set 3 meters a ch was mounted the ight is varied ermine the mand vertical polarist.  pected emission antenna was turned a turned in guiden the mandwidth with Mandwidth with Mandwidth with Elified, then testifice and in the stified in the set in the position of the Elified in the set in t | aber. The tall he highest race away from the don the top of the to | ble was rotated diation. The interference of a variable of the field some antenna are was arranged that from 1 meters to 360 calculated and Mode. The mode was 10 stopped and | ed 360 degrees to e-receiving -height antenna meters above the strength. Both e set to make the d to its worst case eter to 4 meters degrees to find |  |  |



|                   | <ul> <li>have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.</li> <li>7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.</li> </ul> |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                               |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                               |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                           |

#### Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

#### Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.



| Test mode:         |                         | 802.1                       | 1a(HT20)              | Te                       | st channel:       |                        | Lowest                |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|
| Peak value         | e:                      |                             |                       | •                        |                   | -                      |                       |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 5725.00            | 46.74                   | 32.53                       | 9.83                  | 32.29                    | 56.81             | 68.20                  | -11.39                | Horizontal   |  |
| 5725.00            | 44.36                   | 32.53                       | 9.83                  | 32.29                    | 54.43             | 68.20                  | -13.77                | Vertical     |  |
| RMS value:         |                         |                             |                       |                          |                   |                        |                       |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 5725.00            | 34.00                   | 32.53                       | 9.83                  | 32.29                    | 44.07             | 54.00                  | -9.93                 | Horizontal   |  |
| 5725.00            | 32.53                   | 32.53                       | 9.83                  | 32.29                    | 42.60             | 54.00                  | -11.40                | Vertical     |  |
| Test mode:         |                         | 802.1                       | 11a(HT20)             |                          | est channel:      |                        | Highest               |              |  |
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 5850.00            | 47.38                   | 32.70                       | 9.99                  | 32.22                    | 57.85             | 68.20                  | -10.35                | Horizontal   |  |
| 5850.00            | 46.97                   | 32.70                       | 9.99                  | 32.22                    | 57.44             | 68.20                  | -10.76                | Vertical     |  |
| RMS value:         |                         |                             |                       |                          |                   |                        |                       |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 5850.00            | 35.03                   | 32.70                       | 9.99                  | 32.22                    | 45.50             | 54.00                  | -8.50                 | Horizontal   |  |
| 5850.00            | 34.75                   | 32.70                       | 9.99                  | 32.22                    | 45.22             | 54.00                  | -8.78                 | Vertical     |  |



| Test mode:         |                                      | 802.1                       | 1n(HT20)               | Te                       | st channel:       | L                      | owest                 |              |
|--------------------|--------------------------------------|-----------------------------|------------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value         | <b>e</b> :                           |                             |                        |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)              | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB)  | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5725.00            | 47.88                                | 32.53                       | 9.83                   | 32.29                    | 57.95             | 68.20                  | -10.25                | Horizontal   |
| 5725.00            | 46.62                                | 32.53                       | 9.83                   | 32.29                    | 56.69             | 68.20                  | -11.51                | Vertical     |
| RMS value:         |                                      |                             |                        |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)              | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB)  | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5725.00            | 33.54                                | 32.53                       | 9.83                   | 32.29                    | 43.61             | 54.00                  | -10.39                | Horizontal   |
| 5725.00            | 0 35.41 32.53 9.83 32.29 45.48 54.00 |                             | 54.00                  | -8.52                    | Vertical          |                        |                       |              |
| Test mode:         |                                      | 802.1                       | 1n(HT20) Test channel: |                          |                   | ŀ                      | Highest               |              |
| Peak value:        |                                      |                             |                        |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)              | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB)  | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5850.00            | 46.65                                | 32.70                       | 9.99                   | 32.22                    | 57.12             | 68.20                  | -11.08                | Horizontal   |
| 5850.00            | 44.79                                | 32.70                       | 9.99                   | 32.22                    | 55.26             | 68.20                  | -12.94                | Vertical     |
| RMS value:         |                                      |                             |                        |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)              | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB)  | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5850.00            | 32.74                                | 32.70                       | 9.99                   | 32.22                    | 43.21             | 54.00                  | -10.79                | Horizontal   |
| 5850.00            | 33.83                                | 32.70                       | 9.99                   | 32.22                    | 44.30             | 54.00                  | -9.70                 | Vertical     |



| Test mode:         |                         | 802.1                       | 1n(HT40)              | Te                       | st channel:       | I                      | _owest                |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value         | <b>)</b> :              | ·                           |                       | ·                        |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5725.00            | 48.03                   | 32.53                       | 9.83                  | 32.29                    | 58.10             | 68.20                  | -10.10                | Horizontal   |
| 5725.00            | 46.72                   | 32.53                       | 9.83                  | 32.29                    | 56.79             | 68.20                  | -11.41                | Vertical     |
| RMS value:         |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5725.00            | 36.34                   | 32.53                       | 9.83                  | 32.29                    | 46.41             | 54.00                  | -7.59                 | Horizontal   |
| 5725.00            | 34.86                   | 32.53                       | 9.83                  | 32.29                    | 44.93             | 54.00                  | -9.07                 | Vertical     |
| Test mode:         |                         | 802.1                       | 1n(HT40)              | Te                       | st channel:       | I                      | Highest               |              |
| Peak value:        |                         |                             |                       |                          |                   |                        | _                     |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5850.00            | 47.56                   | 32.70                       | 9.99                  | 32.22                    | 57.94             | 68.20                  | -10.26                | Horizontal   |
| 5850.00            | 48.41                   | 32.70                       | 9.99                  | 32.22                    | 58.79             | 68.20                  | -9.41                 | Vertical     |
| RMS value:         |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5850.00            | 35.41                   | 32.70                       | 9.99                  | 32.22                    | 45.88             | 54.00                  | -8.12                 | Horizontal   |
| 5850.00            | 36.08                   | 32.70                       | 9.99                  | 32.22                    | 46.55             | 54.00                  | -7.45                 | Vertical     |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 7.7 Spurious Emission

# 7.7.1 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ection 15.20 | 9, Part 15E Se | ection 15.40  | 07(b)(4)                       |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|---------------|--------------------------------|--|--|--|--|
| Test Method:          | ANSI C63.10:201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13           |                |               |                                |  |  |  |  |
| Test Frequency Range: | 30MHz to 40GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·            |                |               |                                |  |  |  |  |
| Test site:            | Measurement Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stance: 3m   |                |               |                                |  |  |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Detector     | RBW            | VBW           | Value                          |  |  |  |  |
|                       | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                |               |                                |  |  |  |  |
|                       | Above 1GHz Peak 1MHz 3MHz Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                |               |                                |  |  |  |  |
|                       | Above 1GHz  Peak  1MHz  3MHz  RMS Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                |               |                                |  |  |  |  |
| Limit:                | Frequer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | су           | Limit (dBuV/   | /m @3m)       | Remark                         |  |  |  |  |
|                       | 30MHz-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 40.0           |               | Quasi-peak Value               |  |  |  |  |
|                       | 88MHz-210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 43.5           |               | Quasi-peak Value               |  |  |  |  |
|                       | 216MHz-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 46.0           |               | Quasi-peak Value               |  |  |  |  |
|                       | Above 960<br>Above 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 54.0<br>74.0   |               | Quasi-peak Value<br>Peak Value |  |  |  |  |
|                       | Above 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 54.0           |               | Average Value                  |  |  |  |  |
|                       | 400   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 | EUT+         |                | Test Antenna« |                                |  |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                |               |                                |  |  |  |  |
|                       | ₩ <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .07          | Recei          | iver# Pre     | amplifier d                    |  |  |  |  |



|                   | Test Antenna.    Compage   Preamplifier.                                                                                                                                                                                                                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Procedure:   | 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                                                                                                   |
|                   | 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                             |
|                   | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                        |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                     |
|                   | 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                            |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
|                   | 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.                                                                                                                                                             |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                       |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                   |



#### **Measurement Data**

# ■ Below 1GHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 35.25              | 47.06                   | 14.39                       | 0.61                  | 30.07                    | 31.99             | 40.00                  | -8.01                 | Vertical     |
| 78.97              | 44.80                   | 10.43                       | 1.02                  | 29.80                    | 26.45             | 40.00                  | -13.55                | Vertical     |
| 127.22             | 47.14                   | 11.32                       | 1.41                  | 29.53                    | 30.34             | 43.50                  | -13.16                | Vertical     |
| 211.53             | 41.04                   | 12.93                       | 1.91                  | 29.31                    | 26.57             | 43.50                  | -16.93                | Vertical     |
| 383.93             | 39.64                   | 16.68                       | 2.78                  | 29.57                    | 29.53             | 46.00                  | -16.47                | Vertical     |
| 599.32             | 41.41                   | 20.45                       | 3.72                  | 29.30                    | 36.28             | 46.00                  | -9.72                 | Vertical     |
| 55.81              | 42.80                   | 14.97                       | 0.82                  | 29.95                    | 28.64             | 40.00                  | -11.36                | Horizontal   |
| 104.17             | 35.07                   | 14.78                       | 1.23                  | 29.67                    | 21.41             | 43.50                  | -22.09                | Horizontal   |
| 209.31             | 43.17                   | 12.87                       | 1.89                  | 29.29                    | 28.64             | 43.50                  | -14.86                | Horizontal   |
| 317.70             | 38.17                   | 15.31                       | 2.45                  | 29.90                    | 26.03             | 46.00                  | -19.97                | Horizontal   |
| 389.36             | 49.17                   | 16.83                       | 2.80                  | 29.55                    | 39.25             | 46.00                  | -6.75                 | Horizontal   |
| 513.63             | 47.32                   | 18.89                       | 3.36                  | 29.30                    | 40.27             | 46.00                  | -5.73                 | Horizontal   |



# Above 1GHz:

# 802.11a(HT20) 5745MHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 11490.00           | 28.06                   | 39.85                       | 14.98                 | 34.60                    | 48.29             | 74.00                  | -25.71                | Vertical     |
| 17235.00           | 28.25                   | 45.51                       | 18.98                 | 33.95                    | 58.79             | 74.00                  | -15.21                | Vertical     |
| 11490.00           | 29.70                   | 39.85                       | 14.98                 | 34.60                    | 49.93             | 74.00                  | -24.07                | Horizontal   |
| 17235.00           | 29.52                   | 45.51                       | 18.98                 | 33.95                    | 60.06             | 74.00                  | -13.94                | Horizontal   |
| 11490.00           | 22.63                   | 39.85                       | 14.98                 | 34.60                    | 42.86             | 54.00                  | -11.14                | Vertical     |
| 17235.00           | 18.18                   | 45.51                       | 18.98                 | 33.95                    | 48.72             | 54.00                  | -5.28                 | Vertical     |
| 11490.00           | 20.21                   | 39.85                       | 14.98                 | 34.60                    | 40.44             | 54.00                  | -13.56                | Horizontal   |
| 17235.00           | 17.16                   | 45.51                       | 18.98                 | 33.95                    | 47.70             | 54.00                  | -6.30                 | Horizontal   |

# 802.11a(HT20) 5785MHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 11570.00           | 30.95                   | 39.76                       | 14.99                 | 34.75                    | 50.95             | 74.00                  | -23.05                | Vertical     |
| 17355.00           | 28.94                   | 46.19                       | 18.98                 | 34.45                    | 59.66             | 74.00                  | -14.34                | Vertical     |
| 11570.00           | 28.70                   | 39.76                       | 14.99                 | 34.75                    | 48.70             | 74.00                  | -25.30                | Horizontal   |
| 17355.00           | 28.17                   | 46.19                       | 18.98                 | 34.45                    | 58.89             | 74.00                  | -15.11                | Horizontal   |
| 11570.00           | 21.03                   | 39.76                       | 14.99                 | 34.75                    | 41.03             | 54.00                  | -12.97                | Vertical     |
| 17355.00           | 18.64                   | 46.19                       | 18.98                 | 34.45                    | 49.36             | 54.00                  | -4.64                 | Vertical     |
| 11570.00           | 20.57                   | 39.76                       | 14.99                 | 34.75                    | 40.57             | 54.00                  | -13.43                | Horizontal   |
| 17355.00           | 17.48                   | 46.19                       | 18.98                 | 34.45                    | 48.20             | 54.00                  | -5.80                 | Horizontal   |

### 802.11a(HT20) 5825MHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 11650.00           | 28.67                   | 39.61                       | 14.99                 | 34.86                    | 48.41             | 74.00                  | -25.59                | Vertical     |
| 17475.00           | 30.62                   | 46.78                       | 18.97                 | 34.95                    | 61.42             | 74.00                  | -12.59                | Vertical     |
| 11650.00           | 29.33                   | 39.61                       | 14.99                 | 34.86                    | 49.07             | 74.00                  | -24.93                | Horizontal   |
| 17475.00           | 30.15                   | 46.78                       | 18.97                 | 34.95                    | 60.95             | 74.00                  | -13.05                | Horizontal   |
| 11650.00           | 21.53                   | 39.61                       | 14.99                 | 34.86                    | 41.27             | 54.00                  | -12.73                | Vertical     |
| 17475.00           | 19.00                   | 46.78                       | 18.97                 | 34.95                    | 49.80             | 54.00                  | -4.20                 | Vertical     |
| 11650.00           | 21.34                   | 39.61                       | 14.99                 | 34.86                    | 41.08             | 54.00                  | -12.92                | Horizontal   |
| 17475.00           | 17.01                   | 46.78                       | 18.97                 | 34.95                    | 47.81             | 54.00                  | -6.19                 | Horizontal   |



# 802.11n(HT20) 5745MHz

| Frequency | Read            | Antenna          | Cable        | Preamp         | Level    | Limit Line | Over          |              |
|-----------|-----------------|------------------|--------------|----------------|----------|------------|---------------|--------------|
| (MHz)     | Level<br>(dBuV) | Factor<br>(dB/m) | Loss<br>(dB) | Factor<br>(dB) | (dBuV/m) | (dBuV/m)   | Limit<br>(dB) | polarization |
| 11490.00  | 28.83           | 39.85            | 14.98        | 34.60          | 49.06    | 74.00      | -24.94        | Vertical     |
| 17235.00  | 28.44           | 45.51            | 18.98        | 33.95          | 58.98    | 74.00      | -15.02        | Vertical     |
| 11490.00  | 29.56           | 39.85            | 14.98        | 34.60          | 49.79    | 74.00      | -24.21        | Horizontal   |
| 17235.00  | 29.30           | 45.51            | 18.98        | 33.95          | 59.84    | 74.00      | -14.16        | Horizontal   |
| 11490.00  | 21.13           | 39.85            | 14.98        | 34.60          | 41.36    | 54.00      | -12.64        | Vertical     |
| 17235.00  | 17.57           | 45.51            | 18.98        | 33.95          | 48.11    | 54.00      | -5.89         | Vertical     |
| 11490.00  | 20.83           | 39.85            | 14.98        | 34.60          | 41.06    | 54.00      | -12.94        | Horizontal   |
| 17235.00  | 19.58           | 45.51            | 18.98        | 33.95          | 50.12    | 54.00      | -3.88         | Horizontal   |

# 802.11n(HT20) 5785MHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 11570.00           | 29.06                   | 39.76                       | 14.99                 | 34.75                    | 49.06             | 74.00                  | -24.94                | Vertical     |
| 17355.00           | 28.12                   | 46.19                       | 18.98                 | 34.45                    | 58.84             | 74.00                  | -15.16                | Vertical     |
| 11570.00           | 29.95                   | 39.76                       | 14.99                 | 34.75                    | 49.95             | 74.00                  | -24.05                | Horizontal   |
| 17355.00           | 30.89                   | 46.19                       | 18.98                 | 34.45                    | 61.61             | 74.00                  | -12.39                | Horizontal   |
| 11570.00           | 22.21                   | 39.76                       | 14.99                 | 34.75                    | 42.21             | 54.00                  | -11.79                | Vertical     |
| 17355.00           | 16.82                   | 46.19                       | 18.98                 | 34.45                    | 47.54             | 54.00                  | -6.46                 | Vertical     |
| 11570.00           | 21.94                   | 39.76                       | 14.99                 | 34.75                    | 41.94             | 54.00                  | -12.06                | Horizontal   |
| 17355.00           | 18.61                   | 46.19                       | 18.98                 | 34.45                    | 49.33             | 54.00                  | -4.67                 | Horizontal   |

# 802.11n(HT20) 5825MHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 11650.00           | 29.35                   | 39.61                       | 14.99                 | 34.86                    | 49.09             | 74.00                  | -24.91                | Vertical     |
| 17475.00           | 30.47                   | 46.78                       | 18.97                 | 34.95                    | 61.27             | 74.00                  | -12.73                | Vertical     |
| 11650.00           | 28.84                   | 39.61                       | 14.99                 | 34.86                    | 48.58             | 74.00                  | -25.42                | Horizontal   |
| 17475.00           | 28.32                   | 46.78                       | 18.97                 | 34.95                    | 59.12             | 74.00                  | -14.88                | Horizontal   |
| 11650.00           | 21.28                   | 39.61                       | 14.99                 | 34.86                    | 41.02             | 54.00                  | -12.98                | Vertical     |
| 17475.00           | 17.67                   | 46.78                       | 18.97                 | 34.95                    | 48.47             | 54.00                  | -6.46                 | Vertical     |
| 11650.00           | 22.09                   | 39.61                       | 14.99                 | 34.86                    | 41.83             | 54.00                  | -12.06                | Horizontal   |
| 17475.00           | 19.37                   | 46.78                       | 18.97                 | 34.95                    | 50.17             | 54.00                  | -3.83                 | Horizontal   |



# 802.11n(HT40) 5755MHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 11510.00           | 28.83                   | 39.85                       | 14.98                 | 34.63                    | 49.03             | 74.00                  | -24.97                | Vertical     |
| 17265.00           | 30.47                   | 45.51                       | 18.98                 | 34.09                    | 60.87             | 74.00                  | -13.13                | Vertical     |
| 11510.00           | 28.18                   | 39.85                       | 14.98                 | 34.63                    | 48.38             | 74.00                  | -25.62                | Horizontal   |
| 17265.00           | 30.92                   | 45.51                       | 18.98                 | 34.09                    | 61.32             | 74.00                  | -12.69                | Horizontal   |
| 11510.00           | 20.24                   | 39.85                       | 14.98                 | 34.63                    | 40.44             | 54.00                  | -13.56                | Vertical     |
| 17265.00           | 17.70                   | 45.51                       | 18.98                 | 34.09                    | 48.10             | 54.00                  | -5.90                 | Vertical     |
| 11510.00           | 20.69                   | 39.85                       | 14.98                 | 34.63                    | 40.89             | 54.00                  | -13.11                | Horizontal   |
| 17265.00           | 19.44                   | 45.51                       | 18.98                 | 34.09                    | 49.84             | 54.00                  | -4.16                 | Horizontal   |

# 802.11n(HT40) 5795MHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 11590.00           | 28.80                   | 39.71                       | 14.99                 | 34.78                    | 48.72             | 74.00                  | -25.28                | Vertical     |
| 17385.00           | 30.08                   | 46.49                       | 18.98                 | 34.59                    | 60.96             | 74.00                  | -13.04                | Vertical     |
| 11590.00           | 30.75                   | 39.71                       | 14.99                 | 34.78                    | 50.67             | 74.00                  | -23.33                | Horizontal   |
| 17385.00           | 29.73                   | 46.49                       | 18.98                 | 34.59                    | 60.61             | 74.00                  | -13.39                | Horizontal   |
| 11590.00           | 22.35                   | 39.71                       | 14.99                 | 34.78                    | 42.27             | 54.00                  | -11.73                | Vertical     |
| 17385.00           | 18.00                   | 46.49                       | 18.98                 | 34.59                    | 48.88             | 54.00                  | -5.12                 | Vertical     |
| 11590.00           | 21.24                   | 39.71                       | 14.99                 | 34.78                    | 41.16             | 54.00                  | -12.84                | Horizontal   |
| 17385.00           | 18.47                   | 46.49                       | 18.98                 | 34.59                    | 49.35             | 54.00                  | -4.65                 | Horizontal   |

#### Note:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.



# 7.8 Frequency stability

| Test Requirement: | FCC Part15 C Section 15.407(g)                                                                                                                                                                        |                                                                    |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013, FCC Part 2.1055                                                                                                                                                                     |                                                                    |  |  |  |
| Limit:            | Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified |                                                                    |  |  |  |
| Test Procedure:   | The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.                                                                                            |                                                                    |  |  |  |
| Test setup:       | Spectrum analyzer  Att.  Note: Measurement setup for testing on A                                                                                                                                     | Temperature Chamber  EUT  Variable Power Supply  Antenna connector |  |  |  |
| Test Instruments: | Refer to section 5.10 for details                                                                                                                                                                     |                                                                    |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                      |                                                                    |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                  |                                                                    |  |  |  |



#### Measurement data:

| Frequency stability versus Temp. Power Supply: DC 3.7V |                 |                 |                 |                 |           |  |  |
|--------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------|--|--|
|                                                        |                 |                 |                 |                 |           |  |  |
| Frequency                                              | Measured        | Measured        | Measured        | Measured        |           |  |  |
| (MHz)                                                  | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |           |  |  |
| -30                                                    | 5745            | 5743.0333       | 5744.1556       | 5744.2613       | 5743.3041 |  |  |
|                                                        | 5785            | 5784.1201       | 5783.3088       | 5783.2664       | 5782.7812 |  |  |
|                                                        | 5825            | 5823.8526       | 5824.1625       | 5822.2227       | 5822.8056 |  |  |
| -20                                                    | 5745            | 5744.7299       | 5743.4057       | 5744.7047       | 5744.6214 |  |  |
|                                                        | 5785            | 5783.0067       | 5784.1940       | 5784.3845       | 5784.5720 |  |  |
|                                                        | 5825            | 5824.7684       | 5823.1323       | 5824.7691       | 5824.8299 |  |  |
|                                                        | 5745            | 5743.8662       | 5743.7967       | 5744.9488       | 5744.9848 |  |  |
| -10                                                    | 5785            | 5784.8448       | 5783.7267       | 5784.0480       | 5784.7969 |  |  |
|                                                        | 5825            | 5824.9480       | 5824.5123       | 5824.9075       | 5824.0742 |  |  |
|                                                        | 5745            | 5743.3776       | 5743.7060       | 5744.3406       | 5744.9140 |  |  |
| 0                                                      | 5785            | 5783.0715       | 5784.6229       | 5784.3416       | 5783.7054 |  |  |
|                                                        | 5825            | 5823.0033       | 5824.8055       | 5824.8000       | 5824.0733 |  |  |
|                                                        | 5745            | 5744.5459       | 5743.4945       | 5744.5218       | 5744.5160 |  |  |
| 10                                                     | 5785            | 5784.8936       | 5783.0098       | 5784.3532       | 5784.3318 |  |  |
|                                                        | 5825            | 5823.6037       | 5823.9313       | 5824.1110       | 5824.9953 |  |  |
| 20                                                     | 5745            | 5744.9410       | 5744.2743       | 5744.6371       | 5744.9431 |  |  |
|                                                        | 5785            | 5784.4691       | 5783.6755       | 5784.7238       | 5783.9856 |  |  |
|                                                        | 5825            | 5824.6210       | 5823.8166       | 5824.8046       | 5824.3259 |  |  |
| 30                                                     | 5745            | 5743.8383       | 5743.1869       | 5744.0249       | 5744.8932 |  |  |
|                                                        | 5785            | 5784.5497       | 5784.6526       | 5783.4290       | 5783.1087 |  |  |
|                                                        | 5825            | 5823.6334       | 5824.0741       | 5823.7204       | 5823.9118 |  |  |
| 40                                                     | 5745            | 5744.2785       | 5744.2952       | 5743.8820       | 5744.2352 |  |  |
|                                                        | 5785            | 5784.4654       | 5784.2599       | 5784.2623       | 5784.0802 |  |  |
|                                                        | 5825            | 5824.7652       | 5824.3493       | 5824.2001       | 5824.8649 |  |  |
| 50                                                     | 5745            | 5743.8188       | 5744.5067       | 5744.0265       | 5743.7614 |  |  |
|                                                        | 5785            | 5783.7339       | 5783.2345       | 5784.0107       | 5784.4315 |  |  |
|                                                        | 5825            | 5823.7479       | 5824.7577       | 5824.0267       | 5824.9885 |  |  |

Note: The worst case is FL=5743.0333MHz, FH=5824.0742MHz

| 11010. 1110                        | Note: The worst case is 1 = 3745.0333(vii iz, 111=3024.0742(vii iz |                 |                 |                 |                 |  |  |  |
|------------------------------------|--------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|
| Frequency stability versus Voltage |                                                                    |                 |                 |                 |                 |  |  |  |
| Temperature: 25°C                  |                                                                    |                 |                 |                 |                 |  |  |  |
| Power                              | Operating                                                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |
| Supply                             | Frequency                                                          | Measured        | Measured        | Measured        | Measured        |  |  |  |
| (VDC)                              | (MHz)                                                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |
| 3.3                                | 5745                                                               | 5744.7460       | 5744.3696       | 5744.9550       | 5744.5700       |  |  |  |
|                                    | 5785                                                               | 5784.2273       | 5784.7881       | 5783.7133       | 5784.6475       |  |  |  |
|                                    | 5825                                                               | 5823.6214       | 5824.3046       | 5824.6056       | 5824.8272       |  |  |  |
| 3.7                                | 5745                                                               | 5744.4597       | 5744.5155       | 5743.2279       | 5743.8474       |  |  |  |
|                                    | 5785                                                               | 5783.2630       | 5783.1581       | 5784.5639       | 5783.5271       |  |  |  |
|                                    | 5825                                                               | 5823.4312       | 5824.2821       | 5823.8535       | 5824.4484       |  |  |  |
| 4.1                                | 5745                                                               | 5743.7509       | 5743.4244       | 5744.6991       | 5744.7393       |  |  |  |
|                                    | 5785                                                               | 5784.2143       | 5783.0291       | 5784.3245       | 5784.9476       |  |  |  |
|                                    | 5825                                                               | 5824.1934       | 5824.8501       | 5824.2599       | 5824.9493       |  |  |  |

Note: The worst case is FL=5744.7460MHz, FH=5824.9493MHz



# 8 Test Setup Photo

**Radiated Emission** 







**Conducted Emission** 



# 9 EUT Constructional Details

Reference to the test report No. GTS201612000141F01

----END-----