

EMC TEST REPORT

Report No.: TS13070084-EME

Model No.: T647

Issued Date: Jul. 22, 2013

Applicant: Kobo Inc.

135 Liberty Street, Suite 101 Toronto, Ontario, M6K1A7

Canada

Test Method/ Standard: FCC Part 15 Subpart C Section §15.205 \ §15.207 \ §15.209 \

§15.247, DA 00-705 and ANSI C63.4/2003.

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li,

Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

The test report was prepared by:

Sunny Liu / Senior officer

Testing Laboratory 0597

These measurements were taken by:

Arthur Tsai/ Engineer

The test report was reviewed by:

Name Jimmy Yang Title Engineer

Table of Contents

Summary of Tests	4
1. General information 1.1 Identification of the EUT 1.2 Adapter information 1.2 Additional information about the EUT 1.3 Antenna description	5 5
2. Test specifications 2.1 Test standard 2.2 Operation mode 2.3 Peripherals equipment 2.3 Test equipment	7 7
3. 20dB Bandwidth test	9 9
4. Carrier Frequency Separation test 4.1 Operating environment 4.2 Test setup & procedure 4.3 Measured data of Carrier Frequency Separation test result	15 15
5. Number of hopping frequencies test 5.1 Operating environment 5.2 Test setup & procedure 5.3 Measured data of number of hopping frequencies test result.	19 19
6. Time of Occupancy (dwell time) & Duty Cycle Correction Factor test 6.1 Operating environment	22
7. Maximum Output Power test 7.1 Operating environment 7.2 Test setup & procedure 7.3 Measured data of Maximum Output Power test results	30 30
8. RF Antenna Conducted Spurious test 8.1 Operating environment 8.2 Test setup & procedure 8.3 Measured data of the highest RF Antenna Conducted Spurious test resu	31 31
9. Radiated Emission test 9.1 Operating environment 9.2 Test setup & procedure 9.3 Emission limits 9.4 Radiated spurious emission test data 9.4.1 Measurement results: frequencies equal to or less than 1 GHz 9.4.2 Measurement results: frequency above 1GHz	37 40 41 41

10. Emission on the band edge §FCC 15.247(d)	46
10.1 Test setup & procedure	
10.2 Test Result	
11 Power Line Conducted Emission test 8FCC 15 207	48

10.2 Test Result	47
11. Power Line Conducted Emission test §FCC 15.207	48
11.1 Operating environment	
11.2 Test setup & procedure	
11.3 Emission limit.	
11.4 Power Line Conducted Emission test data	49

Summary of Tests

Test	Reference	Results
20dB Bandwidth test	15.247(a)(1)	Pass
Carrier Frequency Separation test	15.247(a)(1)	Pass
Number of hopping frequencies test	15.247(a)(1)	Pass
Time of Occupancy (dwell time) test	15.247(a)(1)	Pass
Maximum Output Power test	15.247(b)	Pass
RF Antenna Conducted Spurious test	15.247(d)	Pass
Radiated Spurious Emission test	15.205, 15.209	Pass
Emission on the Band Edge test	15.247(d)	Pass
AC Power Line Conducted Emission test	15.207	Pass

Report No.: TS13070084-EME

Page 5 of 50

1. General information

1.1 Identification of the EUT

Product: Tablet Model No.: T647

FCC ID.: ZJLKOBOT647

Frequency Range: 2402 MHz ~ 2480 MHz

Channel Number: 79 channels

Frequency of Each Channel: 2402 + k MHz; $k = 0 \sim 78$ Type of Modulation: GFSK, $\pi/4$ DPSK, 8DPSK Rated Power: 1. DC 3.7 V from battery

2. DC 5.35 V from adapter

Power Cord: N/A

Sample Received: Jul. 10, 2013

Test Date(s): Jul. 11, 2013 ~ Jul. 18, 2013

Note 1: This report is for the exclusive use of Intertek's Client and is

provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek

certification program.

Note 2: When determining the test conclusion, the Measurement

Uncertainty of test has been considered.

1.2 Adapter information

The EUT will be supplied with a power supply from below list:

No.	Brand	Model no.	Specification
Adapter	Kobo	PXATIOR_0500	I/P: 100-240Vac, 50-60Hz, 0.3A O/P: 5.35 Vdc, 2.0 A

Report No.: TS13070084-EME Page 6 of 50

1.2 Additional information about the EUT

The EUT is a Tablet(BT2.0), and was defined as information technology equipment.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

1.3 Antenna description

The EUT uses a permanently connected antenna.

Antenna Gain : 1.79 dBi max Antenna Type : Chip antenna

Connector Type : N/A

Report No.: TS13070084-EME Page 7 of 50

2. Test specifications

2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section §15.205 \ §15.207 \ §15.209 \ §15.247, DA 00-705 and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

2.2 Operation mode

The EUT is supplied with DC 3.7 V from battery for all test items except for conducted emission test.

The EUT is supplied with DC 5.35 V from adapter (Test voltage: 120VAC, 60Hz) for conducted emission test.

The EUT executes test by "MS-DOS" and key-in commands provided by Wistron.

2.3 Peripherals equipment

Peripherals	Brand	Model No.	Serial No.	Description of Data Cable
Notebook PC	DELL	ECL089	E5420	USB shielded cable 1 meter × 1

2.3 Test equipment

Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Test Receiver	Rohde&schwarz	ESCS30	833364/011	2013/06/11	2014/06/11
EMI Test Receiver	Rohde & Schwarz	ESCI	100018	2012/11/30	2013/11/29
Spectrum Analyzer	Rohde&schwarz	FSP30	100137	2013/06/21	2014/06/21
Spectrum Analyzer	Rohde&schwarz	FSEK30	100186	2013/01/23	2014/01/23
Horn Antenna (1-18G)	Schwarzbeck	BBHA 9120 D	9120D-456	2012/09/03	2014/09/03
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	2012/09/05	2014/09/05
Broadband Antenna	SCHWARZBECK	VULB 9168	9168-172	2011/07/26	2013/07/25
Loop Antenna	RolfHeine	LA-285	02/10033	2012/03/20	2014/03/20
Pre-Amplifier	MITEQ	AFS44-00102650 42-10P-44	1495287	2011/10/27	2013/10/26
Pre-Amplifier	MITEQ	JS4-260040002 7-8A	828825	2012/09/18	2014/09/18
Two-Line -V-Network	Rohde&schwarz	ESH3-Z5	825562/003	2012/10/29	2013/10/29
Power Meter	Anritsu	ML2495A	0844001	2012/10/09	2013/10/09
Power Senor	Anritsu	MA2411B	0738452	2012/10/09	2013/10/09

Note: The above equipments are within the valid calibration period.

Report No.: TS13070084-EME Page 9 of 50

3. 20dB Bandwidth test

3.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

3.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The 20dB bandwidth per FCC §15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100 kHz, the video bandwidth≥RBW, and the SPAN may equal to approximately 2 to 3 times the 20dB bandwidth. The test was performed at 3 channels (lowest, middle and highest channel). The maximum 20dB modulation bandwidth is in the following Table.

3.3 Measured data of modulated bandwidth test results

Mode	Channel	Frequency (MHz)	20dB Bandwidth (kHz)
	0	2402	0.8254
GFSK	39	2441	0.8269
	78	2480	0.8249
	0	2402	1.219
π/4DPSK	39	2441	1.220
	78	2480	1.215
	0	2402	1.248
8DPSK	39	2441	1.248
	78	2480	1.247

Please see the plot below.

20 dB Bandwidth @ GFSK mode channel 0

20 dB Bandwidth @ GFSK mode channel 39

20 dB Bandwidth @ GFSK mode channel 78

20 dB Bandwidth @ π/4DPSK mode channel 0

20 dB Bandwidth @ π/4DPSK mode channel 39

20 dB Bandwidth @ π/4DPSK mode channel 78

20 dB Bandwidth @ 8DPSK mode channel 0

20 dB Bandwidth @ 8DPSK mode channel 39

20 dB Bandwidth @ 8DPSK mode channel 78

Report No.: TS13070084-EME Page 15 of 50

4. Carrier Frequency Separation test

4.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

4.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The carrier frequency separation per FCC 15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at $\ge 1\%$ of the span, the video bandwidth RBW, and the SPAN was wide enough to capture the peaks of two adjacent channels. The carrier frequency separation result is in the following Table.

4.3 Measured data of Carrier Frequency Separation test result

Mode	Channel	Frequency (MHz)	Adjacent channel separation (MHz)	20dB down Bandwidth (MHz)	Minimum limit 20dB BW*2/3(kHz)
	0	2402	1.010	0.8254	0.55
GFSK	39	2441	1.002	0.8269	0.55
	78	2480	1.010	0.8249	0.55
	0	2402	1.002	1.248	0.83
8DPSK	39	2441	1.014	1.248	0.83
	78	2480	1.018	1.247	0.83

Please see the spectrum plot of worst value.

Carrier Frequency Separation @ GFSK mode channel 0

Carrier Frequency Separation @ GFSK mode channel 39

Date: 22.JUL.2013 16:05:02

20 dB Bandwidth @ GFSK mode channel 78

Carrier Frequency Separation @ 8DPSK mode channel 0

Carrier Frequency Separation @ 8DPSK mode channel 39

20 dB Bandwidth @ 8DPSK mode channel 78

Date: 22.JUL.2013 16:11:44

Report No.: TS13070084-EME Page 19 of 50

5. Number of hopping frequencies test

5.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

5.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The number of hopping frequencies per FCC \$15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at $\ge 1\%$ of the span, the video bandwidth \ge RBW, and the SPAN was the frequency band of operation. The carrier frequency separation result is in the following Table.

5.3 Measured data of number of hopping frequencies test result

Frequency Range (MHz)	Total hopping channels
2400 ~ 2483.5	79

Please see the spectrum plot of worst value.

Number of hopping frequencies @ GFSK mode

Number of hopping frequencies @ $\pi/4$ DPSK mode

Number of hopping frequencies @ 8DPSK mode

6. Time of Occupancy (dwell time) & Duty Cycle Correction Factor test

6.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

6.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The time of occupancy (dwell time) per FCC §15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 1MHz, the video bandwidth ≥ RBW, and the zero span function of spectrum analyzer was enable. The EUT has its hopping function enable.

The total sweep time is 0.4(79)=31.6 seconds

Due to the number of hops in the 31.6s sweep we determined to reduce the sweep time to 5s, count the number of hops and multiply by 6.32. The total number of hops will be multiplied by the measured time of one pulse.

(1)Mode: GFSK

Time of occupancy (dwell time) for DH1

Number of Hops in 5s=29, Total Number of Hops in 31.6s = 29(6.32) = 183.28

Single Pulse Width = 0.368 ms

Dwell time = Pulse Width * 183.28= 67.447 ms

Time of occupancy (dwell time) for DH3

Number of Hops in 5s=23, Total Number of Hops in 31.6s = 23(6.32) = 145.36

Single Pulse Width = 1.613ms

Dwell time = Pulse Width * 145.36= 234.46 ms

Time of occupancy (dwell time) for DH5

Number of Hops in 5s=15, Total Number of Hops in 31.6s = 15(6.32) = 94.8

Single Pulse Width = 2.867ms

Dwell time = Pulse Width * 94.8= 271.7916 ms

(2) Mode: 8DPSK

Time of occupancy (dwell time) for 3-DH1

Number of Hops in 5s=25, Total Number of Hops in 31.6s = 25(6.32) = 158

Single Pulse Width = 0.376 ms

Dwell time = Pulse Width * 183.28= 59.408 ms

Time of occupancy (dwell time) for 3-DH3

Number of Hops in 5s=21, Total Number of Hops in 31.6s = 21(6.32) = 132.72

Single Pulse Width = 1.619ms

Dwell time = Pulse Width * 145.36= 214.87 ms

Time of occupancy (dwell time) for 3-DH5

Number of Hops in 5s=15, Total Number of Hops in 31.6s = 15(6.32) = 94.8

Single Pulse Width = 2.861ms

Dwell time = Pulse Width *94.8 = 271.22 ms

Mode	Mode	Pulse Width (ms)	Time of Occupancy (ms)	Limit (sec)
	DH1	0.368	67.447	
GFSK	DH3	1.613	234.460	0.4
	DH5	2.867	271.792	
	DH1	0.376	59.408	
8DPSK	DH3	1.619	214.87	0.4
	DH5	2.861	271.22	

Please see the spectrum plot of worst value.

Dwell time (Number of Pulses) @ GFSK mode DH 1

Date: 18.JUL.2013 22:49:53

Dwell time (Number of Pulses) @ 8-DPSK mode DH 1

Date: 20.JUL.2013 16:54:24

Dwell time (Number of Pulses) @ 8-DPSK mode DH 3

20.JUL.2013 17:00:23

Date: 20.JUL.2013 17:12:21

Dwell time (Number of Pulses) @ 8-DPSK mode DH 5

Date: 20.JUL.2013 17:04:10

Report No.: TS13070084-EME Page 30 of 50

7. Maximum Output Power test

7.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

7.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (2 dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

7.3 Measured data of Maximum Output Power test results

Mode	Channel	Frequency (MHz)	Output Power (PK) (dBm)	Total Power (PK) (mw)	Limit (dBm)
	0	2402	-0.23	0.95	21
GFSK	39	2441	0.36	1.09	21
	78	2480	0.69	1.17	21
	0	2402	-1.31	0.74	21
π/4DPSK	39	2441	-0.76	0.84	21
	78	2480	-0.46	0.90	21
	0	2402	-1.31	0.74	21
8DPSK	39	2441	-0.78	0.84	21
	78	2480	-0.44	0.90	21

Report No.: TS13070084-EME Page 31 of 50

8. RF Antenna Conducted Spurious test

8.1 Operating environment

Temperature: 25 °C Relative Humidity: 58 % Atmospheric Pressure: 1008 hPa

8.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The measurements were performed from lowest oscillator frequency to 10th fundamental frequency RF antenna conducted per FCC 15.247 (c) was measured from the EUT antenna port using a 50ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz.

Harmonics and spurious noise must be at least 20dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The table below is the results from the highest emission for each channel within the authorized band. This table was used to determine the spurious limits for each channel.

8.3 Measured data of the highest RF Antenna Conducted Spurious test result

The test results please see the plot below.

Conducted spurious @ GFSK channel 0

Conducted spurious @ GFSK channel 39

Title: Conductied Spurious
Comment A: GFSK ch39 2441 DH3
Date: 18.JUL.2013 20:36:07

Conducted spurious @ GFSK channel 78

Conducted spurious @ π /4 DPSK channel 0

Conducted spurious @ π /4 DPSK channel 39

Title: Conductied Spurious
Comment A: GFSK ch39 2441 DH3
Date: 18.JUL.2013 20:55:03

Conducted spurious @ π /4 DPSK channel 78

Title: Conductied Spurious
Comment A: GFSK ch78 2480 DH3
Date: 18.JUL.2013 20:56:22

Conducted spurious @ 8DPSK channel 0

Conducted spurious @ 8DPSK channel 39

Title: Conductied Spurious Comment A: 8DPSK ch39 2441 DH3 Date: 18.JUL.2013 20:46:20

Conducted spurious @ 8DPSK channel 78

Title: Conductied Spurious
Comment A: BDPSK ch78 2480 DH3
Date: 18.JUL.2013 20:47:22

Report No.: TS13070084-EME

Page 37 of 50

9. Radiated Emission test

9.1 Operating environment

Temperature: 23 $^{\circ}$ C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

9.2 Test setup & procedure

The test procedure was according to FCC measurement guidelines DA 00-705 and ANSI C63.4/2003.

The Diagram below shows the test setup, which is utilized to make these measurements.

Radiated emission from 9kHz to 30MHz uses Loop Antenna:

Report No.: TS13070084-EME Page 38 of 50

Radiated emission from 30MHz to 1GHz uses Bilog Antenna:

Radiated emission above 1GHz uses Horn Antenna:

The signal is maximized through rotation and placement in the three orthogonal axes. According to §15.33(a), the spectrum shall be investigated from the lowest radio frequency signal generated in the device, to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Spectrum Analyzer Resolution Bandwidth is 100kHz or greater for frequencies 30MHz to 1GHz, 1MHz – for frequencies above 1GHz.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent 3 meter reading using inverse scaling with distance.

The signal is maximized through rotation and placement in the three orthogonal axes.

After verifying three axes, we found the maximum electromagnetic field was occurred at X-plane configuration. The final test data was executed under this configuration.

The EUT configuration, please refer to the "Spurious set-up photo.pdf".

Report No.: TS13070084-EME Page 40 of 50

9.3 Emission limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency	Field Strength
(MHz)	(microvolts/meter)
0.009~0.490	2400/F(kHz)
0.490~1.705	2400/F(kHz)
1.705~30	30
30-88	100
88-216	150
216-960	200
Above 960	500

Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Measurement Uncertainty:

Measurement uncertainty was calculated in accordance with TR 100 028-1.

Parameter	Uncertainty						
	Below 1 GHz	Vertical	3.90 dB				
Radiated Emission	Delow I GHZ	Horizontal	3.86 dB				
Radiated Emission	Above 1 GHz	Vertical	5.74 dB				
	Above I GHZ	Horizontal	5.55 dB				
Conducted Emission	2.08 dB						

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

9.4 Radiated spurious emission test data

9.4.1 Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under GFSK, $\pi/4DPSK$ and 8DPSK continuously transmitting mode. The worst case occurred at GFSK Tx channel 0.

EUT : T647

Worst Case : GFSK Tx channel 0

Antenna Polarization	Freq. (MHz)	Receiver Detector	Corr. Factor (dB/m)	Reading (dBuV)	Level	Limit @ 3 m (dBuV/m)	Margin (dB)
Vertical	57.16	QP	12.90	17.87	30.76	40.00	-9.24
Vertical	165.80	QP	15.70	14.63	30.33	43.50	-13.17
Vertical	276.33	QP	13.24	20.08	33.31	46.00	-12.69
Vertical	404.42	QP	16.47	14.56	31.03	46.00	-14.97
Vertical	511.12	QP	18.56	12.52	31.07	46.00	-14.93
Vertical	714.82	QP	22.29	11.58	33.86	46.00	-12.14
Horizontal	135.80	QP	12.32	25.11	37.43	43.50	-6.07
Horizontal	202.66	QP	10.78	25.47	36.24	43.50	-7.26
Horizontal	276.38	QP	13.21	23.72	36.92	46.00	-9.08
Horizontal	305.48	QP	14.32	20.29	34.60	46.00	-11.40
Horizontal	404.42	QP	16.81	17.57	34.38	46.00	-11.62
Horizontal	664.38	QP	21.52	11.51	33.02	46.00	-12.98

Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor

Note: The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

9.4.2 Measurement results: frequency above 1GHz

EUT : T647

Test Condition : GFSK at channel 0

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4804.00	PK	V	35.1	38.54	38.45	41.89	54	-12.11
4980.00	PK	V	35.1	38.54	45.36	48.80	54	-5.20
4804.00	PK	V	35.1	38.54	38.45	41.89	54	-12.11
4980.00	PK	V	35.1	38.54	45.36	48.80	54	-5.20

Remark:

1. Corr. Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor

3. The frequency measured ranges from 1GHz to 25GHz.

EUT : T647

Test Condition : GFSK at channel 39

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4882.00	PK	V	35.1	38.54	35.95	39.39	54	-14.61
4980.00	PK	V	35.1	38.54	44.67	48.11	54	-5.89
4882.00	PK	Н	35.1	38.54	35.85	39.29	54	-14.71
4980.00	PK	Н	35.1	38.54	41.68	45.12	54	-8.88

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.

EUT : T647

Test Condition : GFSK at channel 78

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4960.00	PK	V	35.1	38.54	44.13	47.57	54	-6.43
4960.00	PK	Н	35.1	38.54	40.92	44.36	54	-9.64

Remark:

1. Corr. Factor = Antenna Factor + Cable Loss

- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.

EUT : T647

Test Condition : $\pi/4$ DPSK at channel 0

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4804.00	PK	V	35.1	38.54	35.8	39.24	54	-14.76
4980.00	PK	V	35.1	38.54	41.92	45.36	54	-8.64
4804.00	PK	Н	35.1	38.54	36.34	39.78	54	-14.22
4980.00	PK	Н	35.1	38.54	40.43	43.87	54	-10.13

Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.

EUT : T647

Test Condition : $\pi/4$ DPSK at channel 39

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4882.00	PK	V	35.1	38.54	34.65	38.09	54	-15.91
4980.00	PK	V	35.1	38.54	43.41	46.85	54	-7.15
4882.00	PK	Н	35.1	38.54	35.9	39.34	54	-14.66
4980.00	PK	Н	35.1	38.54	41.23	44.67	54	-9.33

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.

EUT : T647

Test Condition : $\pi/4$ DPSK at channel 78

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4960.00	PK	V	35.1	38.54	37.93	41.37	54	-12.63
4980.00	PK	V	35.1	38.54	44.81	48.25	54	-5.75
4960.00	PK	Н	35.1	38.54	38.2	41.64	54	-12.36
4980.00	PK	Н	35.1	38.54	40.53	43.97	55	-11.03

Remark:

1. Corr. Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor

3. The frequency measured ranges from 1GHz to 25GHz.

EUT : T647

Test Condition : 8DPSK at channel 0

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4804.00	PK	V	35.1	38.54	35.88	39.32	54	-14.68
4980.00	PK	V	35.1	38.54	44.8	48.24	55	-6.76
4804.00	PK	Н	35.1	38.54	36.03	39.47	54	-14.53
4980.00	PK	Н	35.1	38.54	41.42	44.86	55	-10.14

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.

Report No.: TS13070084-EME

Page 45 of 50

EUT : T647

Test Condition : 8DPSK at channel 39

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4882.00	PK	V	35.1	38.54	36.09	39.53	54	-14.47
4980.00	PK	V	35.1	38.54	42.52	45.96	55	-9.04
4882.00	PK	Н	35.1	38.54	36.42	39.86	54	-14.14
4980.00	PK	Н	35.1	38.54	40.79	44.23	55	-10.77

Remark:

1. Corr. Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor

3. The frequency measured ranges from 1GHz to 25GHz.

EUT : T647

Test Condition : 8DPSK at channel 78

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4960.00	PK	V	35.1	38.54	43.86	47.30	54	-6.70
4960.00	PK	Н	35.1	38.54	39.52	42.96	54	-11.04

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor + Duty Cycle Correction Factor
- 3. The frequency measured ranges from 1GHz to 25GHz.

Report No.: TS13070084-EME Page 46 of 50

10. Emission on the band edge §FCC 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

10.1 Test setup & procedure

Please refer to the clause 9.2 of this report.

10.2 Test Result

Test Mode: GFSK mode

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin	Restricted
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m		band
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	(MHz)
2339.49	PK	V	38.01	31.61	64.54	58.14	74	-15.86	2310~2390
2339.49	AV	V	38.01	31.61	51.84	45.44	54	-8.56	2310~2390
2402.00	PK	V	38.02	31.91	103.01	96.89	-	96.89	ı
2402.00	AV	V	38.02	31.91	84.91	78.79	-	78.79	-
2480.00	PK	V	38.04	32.28	102.60	96.83	-	96.83	ı
2480.00	AV	V	38.04	32.28	84.74	78.97	-	78.97	ı
2483.50	PK	V	38.05	32.29	65.78	60.03	74	-13.97	2483.5~2500
2483.50	AV	V	38.05	32.29	56.53	50.78	54	-3.22	2403.3~2300

Test Mode: π /4 DPSK mode

Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin	Restricted
	Analyzer	Pol.	Gain	Factor		Reading	@ 3 m		band
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	(MHz)
2338.91	PK	V	38.01	31.61	64.41	58.01	74	-15.99	2310~2390
2338.91	AV	V	38.01	31.61	51.83	45.43	54	-8.57	2310~2390
2402.00	PK	V	38.02	31.91	101.97	95.85	-	95.85	-
2402.00	AV	V	38.02	31.91	83.25	77.13	-	77.13	-
2480.00	PK	V	38.04	32.28	101.59	95.82	-	95.82	-
2480.00	AV	V	38.04	32.28	83.03	77.26	-	77.26	-
2483.50	PK	V	38.05	32.29	65.08	59.33	74	-14.67	2483.5~2500
2483.50	AV	V	38.05	32.29	56.49	50.74	54	-3.26	2403.3~2300

Test Mode: 8DPSK mode

Frequency	Spectrum Analyzer	Ant. Pol.	Preamp. Gain	Correction Factor	Reading	Corrected Reading	Limit @ 3 m	Margin	Restricted band
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	(MHz)
2340.07	PK	V	38.01	31.61	64.58	58.18	74	-15.82	2310~2390
2340.07	AV	V	38.01	31.61	51.82	45.42	54	-8.58	2310 -2370
2402.00	PK	V	38.02	31.91	101.82	95.70	-	95.70	-
2402.00	AV	V	38.02	31.91	83.27	77.15	-	77.15	-
2480.00	PK	V	38.04	32.28	101.48	95.71	-	95.71	-
2480.00	AV	V	38.04	32.28	83.06	77.29	-	77.29	-
2483.50	PK	V	38.05	32.29	65.78	60.03	74	-13.97	2483.5~2500
2483.50	AV	V	38.05	32.29	55.85	50.10	54	-3.90	2403.3/~2300

Report No.: TS13070084-EME Page 48 of 50

11. Power Line Conducted Emission test §FCC 15.207

11.1 Operating environment

Temperature: 25 °C Relative Humidity: 55 % Atmospheric Pressure 1008 hPa

11.2 Test setup & procedure

The test procedure was according to ANSI C63.4/2003.

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm/50uH coupling impedance with 50 ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement. The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9 kHz.

The EUT configuration please refer to the "Conducted set-up photo.pdf".

11.3 Emission limit

Freq.	Conducted Limit (dBuV)				
(MHz)	Q.P.	Ave.			
0.15~0.50	66 – 56*	56 – 46*			
0.50~5.00	56	46			
5.00~30.0	60	50			

^{*}Decreases with the logarithm of the frequency.

11.4 Power Line Conducted Emission test data

Phase: Line Model No.: T647

Operating mode: Adapter mode

Frequency	Corr. Factor	Level Qp	Limit Qp	Level Av	Limit Av		rgin HB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qр	Av
0.175	0.13	43.13	64.72	32.95	54.72	-21.59	-21.77
0.267	0.15	34.43	61.20	25.17	51.20	-26.78	-26.04
0.361	0.16	36.48	58.69	30.74	48.69	-22.22	-17.96
0.435	0.16	31.90	57.15	21.19	47.15	-25.25	-25.96
2.915	0.31	35.16	56.00	28.98	46.00	-20.84	-17.02
7.137	0.51	35.14	60.00	28.86	50.00	-24.87	-21.15

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Phase: Neutral Model No.: T647

Operating mode: Adapter mode

Frequency	Corr. Factor	Level Qp	Limit Qp	Level Av	Limit Av		rgin dB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qр	Av
0.186	0.10	41.48	64.20	34.50	54.20	-22.71	-19.69
0.274	0.11	40.46	60.98	35.36	50.98	-20.52	-15.62
0.456	0.13	43.14	56.76	36.13	46.76	-13.62	-10.63
0.532	0.13	31.25	56.00	22.72	46.00	-24.75	-23.28
0.974	0.16	35.28	56.00	28.23	46.00	-20.72	-17.77
6.805	0.41	35.72	60.00	29.81	50.00	-24.28	-20.19

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

