Intervals, Transformations, and Slope Solution (version 142)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(2,4) \cup (8,9)$
Negative	$(-5,2) \cup (4,8)$
Increasing	$(-1,3) \cup (6,9)$
Decreasing	$(-5, -1) \cup (3, 6)$
Domain	(-5,9)
Range	(-9,3)

Intervals, Transformations, and Slope Solution (version 142)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=65$ and $x_2=81$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} \hline x & g(x) \\ \hline 13 & 81 \\ 41 & 65 \\ 65 & 13 \\ 81 & 41 \\ \hline \end{array}$$

$$\frac{f(81) - f(65)}{81 - 65} = \frac{41 - 13}{81 - 65} = \frac{28}{16}$$

The greatest common factor of 28 and 16 is 4. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{7}{4}$$

2