

Profesor Branko Jeren

Osnovn signali

vremenski kontinuirane sinusoide

Signali i sustavi

Profesor Branko Jeren

27. veljače 2008.

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni

vremenski kontinuirane sinusoide

Vremenski jedinični skok – vremenska jedinična step funkcija

• vremenski diskretan jedinični skok μ definiran je kao:

$$\forall n \in Cjelobrojni,$$

$$\mu(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

• vremenski kontinuiran jedinični skok μ definiran je kao:

$$orall t \in \textit{Realni}, \ \mu(t) = \left\{ egin{array}{ll} 1 & t \geq 0 \ 0 & t < 0 \end{array}
ight.$$

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Jedinična kosina

• vremenski diskretna $\forall n \in C$ jelobrojni, $kosina(n) = \begin{cases} n & n \geq 0 \\ 0 & n < 0 \end{cases}$

• vremenski kontinuirana
$$\forall t \in Realni$$
,

$$kosina(t) = \left\{ egin{array}{ll} t & t \geq 0 \ 0 & t < 0 \end{array}
ight.$$

Profesor Branko Jeren

Osnovni signali Jedinični skok

Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Veza jediničnog skoka i jedinične kosine

 veza vremenski diskretne jedinične kosine i jediničnog skoka je

 $\forall n \in \textit{Cjelobrojni},$

$$kosina(n) = \sum_{m=-\infty}^{n} \mu(m-1)$$

$$=\sum_{m=-\infty}^{n-1}\mu(m)$$

 vremenski diskretan jedinični skok možemo definirati pomoću kosine kao diferenciju

$$\mu(n) = kosina(n+1) - kosina(n)$$

 vremenski kontinuiranu jediničnu kosinu definiramo s jediničnim skokom kao

$$orall t \in \mathit{Realni},$$
 $\mathit{kosina}(t) = \int^t \ \mu(au) \mathsf{d} au = t \mu(t)$

 vremenski kontinuiran jedinični skok možemo definirati pomoću kosine kao

$$\mu(t) = \frac{d(\textit{kosina}(t))}{dt}$$

Profesor Branko Jeren

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Veza jediničnog skoka i jedinične kosine

- važno je uočiti analogiju
 - vremenski diskretan jedinični skok i vremenski diskretna jedinična kosina vezani su operacijama akumulacije i diferencije
 - vremenski kontinuiran jedinični skok i vremenski kontinuirana jedinična kosina vezani su operacijama integriranja i deriviranja
 - uočava se prije pokazane analogije
 - derivaciji vremenski kontinuiranog signala odgovara diferencija vremenski diskretnog signala
 - integraciji vremenski kontinuiranih signala odgovara operacija akumulacije za vremenski diskretne signale
 - derivacija i integracija signala suprotne su operacije, tako su i operacije diferencije i akumulacije suprotne operacije

Profesor Branko Jeren

Osnovni

Jedinični skok

Jedinična kosina Jedinični impuls

Jedinični impul: Sinusoidni sign:

Eksponencijaln signal

vremenski kontinuiran

Vremenski diskretan jedinični impuls – Kroneckerova delta funkcija

• vremenski diskretan jedinični impuls δ je vremenski diskretan signal definiran kao:

$$\forall n \in Cjelobrojni, \\ \delta(n) = \left\{ \begin{array}{ll} 1 & n = 0 \\ 0 & n \neq 0 \end{array} \right.$$

 za m koraka pomaknuti vremenski diskretan jedinični impuls definiran je kao

$$\forall n \in \textit{Cjelobrojni},$$

$$\delta(n-m) = \begin{cases} 1 & n=m \\ 0 & n \neq m \end{cases}$$

gdje je
$$m \in Cjelobrojni$$

Profesor Branko Jeren

Jedinična kosina Jedinični impuls

Niz vremenski diskretnih jediničnih impulsa

 definiraju se nizovi jediničnih impulsa označenih vremenski diskretnom funkcijom comb (prema engleskom nazivu ove funkcije - comb = češalj)

$$\forall n \in C$$
jelobrojni,
 $m \in C$ jelobrojni,
 $comb(n) = \sum_{m=-\infty}^{\infty} \delta(n-m)$

$$\forall n \in C$$
jelobrojni,
 $m \in C$ jelobrojni, $\forall M \in C$ jelobrojni,
 $comb_M(n) = \sum_{m=-\infty}^{\infty} \delta(n-mM)$

Profesor Branko Jeren

signali
Jedinični skok
Jedinična kosina
Jedinični impuls
Sinusoidni signal
Eksponencijalni
signal

Otipkavanje vremenski kontinuirane sinusoide

Veza jediničnog skoka i jediničnog impulsa

- analogno vezi vremenski diskretnog jediničnog skoka i vremenski diskretne jedinične rampe, vremenski diskretan jedinični skok i vremenski diskretan jedinični impuls vezani su operacijama akumulacije i diferencije
- vremenski diskretan jedinični skok odgovara akumulaciji jediničnog impulsa

$$\forall n \in C$$
 jelobrojni, $\mu(n) = \sum_{m=-\infty}^{n} \delta(m)$

 s druge strane, jedinični impuls odgovara prvoj diferenciji vremenski diskretnog jediničnog skoka

$$\forall n \in C$$
 jelobrojni, $\delta(n) = \mu(n) - \mu(n-1)$

Profesor Branko Jeren

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Jedinični skok – svojstvo otipkavanja

- analiziramo svojstvo otipkavanja vremenski diskretnog jediničnog impulsa
- pomnožimo li neki vremenski diskretan signal f s jediničnim impulsom $\delta(n-n_0)$, koji se javlja u n_0 , dobijemo signal koji je impuls u n_0 čija je amplituda jednaka vrijednosti signala f u n_0
- kažemo kako jedinični impuls $\delta(n-n_0)$ "vadi" vrijednost, dakle, otipkava funkciju f u n_0

$$f(n)\delta(n-n_0)=f(n_0)\delta(n-n_0)$$

 drugi način iskaza svojstva otipkavanja jediničnog impulsa proizlazi sumacijom gornjeg izraza

$$\sum_{m=-\infty}^{\infty} f(m)\delta(m-n_0) = \sum_{m=-\infty}^{\infty} f(n_0)\delta(m-n_0) = f(n_0)$$

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni

Otipkavanje vremenski kontinuirane sinusoide

Vremenski diskretan jedinični impuls – primjena2

 svaki niz može biti prikazan uz pomoć niza vremenski diskretnih jediničnih impulsa što proizlazi iz:

$$u(n) = u(n) \cdot comb(n) = u(n) \sum_{m = -\infty}^{\infty} \delta(n - m) =$$

$$= \sum_{m = -\infty}^{\infty} u(m)\delta(n - m), \quad \forall n \in Cjelobrojni$$

$$u(n) = .7\delta(n+3) + .2\delta(n+1) + + .5\delta(n-1) - .2\delta(n-2) + + .7\delta(n-4) + .3\delta(n-5) - - .3\delta(n-7)$$

Profesor Branko Jeren

signali
Jedinični skok
Jedinična kosina
Jedinični impuls
Sinusoidni signal
Eksponencijalni
signal

Otipkavanje vremenski kontinuiran sinusoide

Diracova delta funkcija – vremenski kontinuirani jedinični impuls

- definira se vremenski kontinuiran jedinični impuls ili Diracova delta funkcija
- zbog svojih svojstava ona se izdvaja iz skupa regularnih matematičkih funkcija i svrstava se u klasu tzv. distribucija ili singularnih funkcija
- teorija generaliziranih funkcija, koja objedinjuje singularne i regularne funkcije, razvijana je koncem devetnaestog i u prvoj polovici dvadesetog stoljeća, a prvenstveno zbog potreba izučavanja električnih krugova i nekih problema u fizici
- za potrebe ovog predmeta ovdje se uvodi vremenski kontinuirani jedinični impuls ne ulazeći u strogi matematički postupak

2007/2008

signali
Jedinični skok
Jedinična kosina
Jedinični impuls
Sinusoidni signal
Eksponencijalni
signal

Otipkavanje vremenski kontinuirane sinusoide

Diracova delta funkcija – vremenski kontinuirani jedinični impuls

• vremenski kontinuiran jedinični impuls δ , prvi je definirao P. A. M. Dirac kao

$$egin{aligned} orall t \in \textit{Realni}, \ \delta(t) = 0 & ext{za } t
eq 0 \ \int_{-\infty}^{\infty} \delta(t) dt = 1 \end{aligned}$$

• u čast Diracu vremenski kontinuiran jedinični impuls δ naziva se i Diracova delta funkcija

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina

Jedinični impuls

Sinusoidni signali

Eksponencijaln signal

Otipkavanje vremenski kontinuiran

Diracova delta funkcija 1

 izvod za Diracovu delta funkciju započinje s definicijom pravokutnog impulsa površine jednake jedan

$$\forall t \in \textit{Realni}, \\ \delta_{\tau}(t) = \left\{ \begin{array}{ll} \frac{1}{\tau} & -\frac{\tau}{2} \leq t < \frac{\tau}{2} \\ 0 & t < -\frac{\tau}{2}, \ t \geq \frac{\tau}{2} \end{array} \right.$$

signali
Jedinični skok
Jedinična kosina
Jedinični impuls
Sinusoidni signal
Eksponencijalni
signal

Otipkavanje vremenski kontinuirane sinusoide

Diracova delta funkcija 2

- za au o 0 pravokutni impuls $\delta_{ au}$ postaje sve uži i sve viši ali pri tome površina ostaje uvijek vrijednosti jedan
- za granični slučaj slijedi

$$\delta(t) = \lim_{ au o 0} \delta_ au(t)$$

Diracovu delta funkciju prikazujemo kao na slici

- strelica u t=0 ukazuje kako je površina impulsa koncentrirana u t=0, a visina strelice i oznaka "1" označuje jediničnu površinu impulsa
- površina ispod impulsa se naziva "težina" ili njegov "intenzitet"

Profesor Branko Jeren

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuiran sinusoide

Umnožak Diracove delta funkcije i vremenski kontinuirane regularne funkcije

- razmatra se umnožak Diracove delta funkcije s nekom vremenski kontinuiranom regularnom funkcijom f koja je konačna i neprekinuta u t=0
- kako je jedinični impuls različit od nule samo za t=0, a vrijednost od f, u t=0, je f(0) pa slijedi

$$\forall t \in Realni, \quad f(t)\delta(t) = f(0)\delta(t)$$
 (1)

- dakle, umnožak vremenski kontinuirane funkcije f i δ rezultira s impulsom "intenziteta" ili "težine" f(0) (što je vrijednost funkcije f na mjestu impulsa)
- isto tako, za funkciju koja je konačna i kontinuirana u t = t₀, vrijedi

$$\forall t \in Realni, \quad f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0)$$
 (2)

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

vremenski kontinuirane sinusoide

Svojstvo otipkavanja Diracove delta funkcije

• iz jednadžbe (1) slijedi

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0)\int_{-\infty}^{\infty} \delta(t)dt = f(0)$$
 (3)

• isto tako, iz jednadžbe (2), slijedi

$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)\int_{-\infty}^{\infty} \delta(t)dt = f(t_0) \quad (4)$$

- ullet što znači da je površina produkta funkcije i impulsa δ jednaka vrijednosti funkcije u trenutku u kojem je definiran jedinični impuls
- može se također reći da Diracova delta funkcija "vadi" ili "otipkava" vrijednost podintegralne funkcije na mjestu na kojem je impuls definiran, dakle, funkciji f pridružuje broj $f(t_0)$

Profesor Branko Jeren

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Diracova delta funkcija kao generalizirana funkcija

- Diracovu delta funkciju se ne može promatrati kao regularnu funkciju jer ona ima vrijednost nula za sve vrijednosti osim za vrijednost t = 0, a za taj t nije definirana
- zato Diracovu delta funkciju definiramo u smislu teorije distribucija ili generaliziranih funkcija
- generaliziranu funkciju, umjesto njezinih vrijednosti za sve vrijednosti domene, definiramo preko njezina djelovanja na druge, "testne" ("ispitne"), regularne funkcije
- definicija Diracove delta funkcija u smislu teorije distribucija je dana u jednadžbama (3) i (4) dakle:

$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)\int_{-\infty}^{\infty} \delta(t)dt = f(t_0)$$
 (5)

2007/2008

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

vremenski kontinuiran sinusoide

Niz Diracovih delta funkcija

• niz Diracovih delta funkcija, označen kao funkcija $comb_T$ prema engleskom nazivu ove funkcije, definiran je kao

 $\forall t \in Realni$,

$$comb_T(t) = \sum_{m=-\infty}^{\infty} \delta(t-mT), \ m \in \mathit{Cjelobrojni}, T \in \mathit{Realni}$$

Profesor Branko Jeren

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni

Otipkavanje vremenski kontinuirane

Produkt niza Diracovih delta funkcija i vremenski kontinuiranog signala

- produkt niza Diracovih delta funkcija, razmaknutih za T, i kontinuiranog signala f naziva se impulsno otipkavanje kontinuiranog signala ili impulsna modulacija
- rezultat množenja je niz δ funkcija intenziteta koji odgovaraju trenutnim vrijednostima funkcije f na mjestima t = nT za $n \in C$ jelobrojni i $\forall t \in R$ ealni

$$f_{\delta}(t) = f(t) \sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} f(nT)\delta(t - nT)$$

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali

Eksponencijalni signal
Otipkavanje

vremenski kontinuiran sinusoide

Veza vremenski kontinuiranog jediničnog impulsa i vremenski kontinuiranog jediničnog skoka 1

- derivacija funkcije jediničnog skoka svuda je nula osim na mjestu diskontinuiteta u t=0 gdje derivacija nije definirana
- uvodi se tzv. generalizirana derivacija i pokazuje se kako je Diracova δ funkcija generalizirana derivacija funkcije jediničnog skoka
- do ovog zaključka dolazi se sljedećim razmatranjem
- za funkciju f na slici prikazana je i njezina derivacija

Profesor Branko Jeren

signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Veza vremenski kontinuiranog jediničnog impulsa i vremenski kontinuiranog jediničnog skoka 2

- derivacija funkcije t definirana je za svaki t osim za t=- au/2 i t= au/2
- smanjivanjem au funkcija f se u konačnici približava jediničnom skoku, a pravokutni impuls, površine jedan, koji predstavlja df(t)/dt, prelazi u jediničnu Diracovu δ funkciju
- ovako postignuta derivacija naziva se generalizirana derivacija, a jedinični impuls je generalizirana derivacija jediničnog skoka

$$\forall t \in Realni, \quad \delta(t) = \frac{d\mu(t)}{dt}$$

• iz ovoga slijedi i

$$\forall t \in \textit{Realni}, \quad \mu(t) = \int_{-\infty}^{t} \delta(\lambda) d\lambda$$

školska godina 2007/2008 Cielina 4.

Profesor Branko Jeren

Jedinični impuls

Generalizirana derivacija vremenski kontinuiranog jediničnog skoka μ

generaliziranu derivaciju jediničnog skoka možemo odrediti parcijalnom integracijom¹ integrala

$$\int_{-\infty}^{\infty} \mu'(t)f(t)dt = \mu(t)f(t)|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \mu(t)f'(t)dt$$
$$= f(\infty) - 0 - \int_{0}^{\infty} f'(t)dt$$
$$= f(\infty) - f(t)|_{0}^{\infty}$$
$$= f(0)$$

• očigledno je kako μ' zadovoljava svojstvo otipkavanja Diracove delta funkcije δ pa vrijedi

$$\forall t \in \textit{Realni}, \quad \frac{d\mu(t)}{dt} = \delta(t)$$

¹podsjeta: iz (uv)' = uv' + u'v integracijom obje strane slijedi $\int_a^b u'vdt = uv|_a^b - \int_a^b uv'dt$

2007/2008

Osnovni signali

Jedinični skok Jedinična kosina

Jedinični impuls

Sinusoidni siss

Eksponencija

signal

vremenski kontinuirane sinusoide

Generalizirana derivacija funkcije s diskontinuitetom u $t=t_0$

• generalizirana derivacija funkcije g, s diskontinuitetom (prekinute) u $t=t_0$ definirana je kao

 $\forall t \in Realni$,

$$\frac{d}{dt}(g(t)) = \frac{d}{dt}(g(t))_{t \neq t_0} + [g(t_0^+) - g(t_0^-)]\delta(t - t_0)$$

2007/2008

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni

Otipkavanje vremenski kontinuirane sinusoide

Primjer generalizirana derivacija funkcije g s diskontinuitetima

• neka je funkcija $g(t), \forall t \in \textit{Realni}, zadana s$

$$g(t) = \begin{cases} 0 & t < 1 \\ -t + 3 & 1 \le t < 4 \\ 0.5(t - 6) & 4 \le t < 8 \\ 2 & 8 \le t < 9 \\ -t + 11 & 9 \le t < 11 \\ 0 & 11 \ge t \end{cases}$$

odnosno

$$g(t) = (-t+3)[\mu(t-1) - \mu(t-4)]$$

$$+0.5(t-6)[\mu(t-4) - \mu(t-8)]$$

$$+2[\mu(t-8) - \mu(t-9)]$$

$$+(-t+11)[\mu(t-9) - \mu(t-11)]$$

školska godina

Osnovni signali

Jedinični skok Jedinična kosina

Jedinični impuls

Eksponencijalni

Otipkavanje vremenski kontinuiran

Primjer generalizirana derivacija funkcije g s diskontinuitetima

• dakle, za zadanu funkciju g

$$g(t) = (-t+3)[\mu(t-1) - \mu(t-4)] +0.5(t-6)[\mu(t-4) - \mu(t-8)] +2[\mu(t-8) - \mu(t-9)] +(-t+11)[\mu(t-9) - \mu(t-11)]$$

generalizirana derivacija je

$$g'(t) = -1 \cdot [\mu(t-1) - \mu(t-4)]$$

$$+0.5[\mu(t-4) - \mu(t-8)]$$

$$-1 \cdot [\mu(t-9) - \mu(t-11)]$$

$$+[g(1^{+}) - g(1^{-})]\delta(t-1)$$

$$+[g(8^{+}) - g(8^{-})]\delta(t-8)$$

Profesor Branko Jeren

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal

Otipkavanje vremenski kontinuirane

Generalizirana derivacija funkcije s diskontinuitetima

za funkciju g

$$\begin{split} g(t) &= (-t+3)[\mu(t-1) - \mu(t-4)] \quad g'(t) = -1 \cdot [\mu(t-1) - \mu(t-4)] \\ &+ 0.5(t-6)[\mu(t-4) - \mu(t-8)] \quad + 0.5[\mu(t-4) - \mu(t-8)] \\ &+ 2[\mu(t-8) - \mu(t-9)] \quad -1 \cdot [\mu(t-9) - \mu(t-11)] \\ &+ (-t+11)[\mu(t-9) - \mu(t-11)] \quad + [g(1^+) - g(1^-)]\delta(t-1) \\ &+ [g(8^+) - g(8^-)]\delta(t-8) \end{split}$$

generalizirana derivacija je

Osnovni signali

Jedinični skok Jedinična kosina

Jedinični impuls

Sinusoidni signali Eksponencijalni

Otipkavanje vremenski kontinuirane

Generalizirana derivacija funkcije g s diskontinuitetom 2

• prikazana je generalizirana derivacija funkcije g^\prime s diskontinuitetima te integral dobivene funkcije

Profesor Branko Jeren

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Derivacija kontinuiranog jedniničnog impulsa δ

• vremenski kontinuirani jedinični impuls δ definiran je, u smislu teorije distribucija, kao

 $\forall t \in \textit{Realni},$

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0)\int_{-\infty}^{\infty} \delta(t)dt = f(0)$$

• derivaciju kontinuirnog jediničnog impulsa δ' definiramo kao

$$\int_{-\infty}^{\infty} f(t)\delta'(t)dt = -f'(0)$$

• gornji je izraz izveden parcijalnom integracijom integrala

$$\int_{-\infty}^{\infty} f(t)\delta'(t)dt = \underbrace{f(t)\delta(t)|_{-\infty}^{\infty}}_{0} - \int_{-\infty}^{\infty} f'(t)\delta(t)dt = -f'(0)$$

Profesor Branko Jeren

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Derivacija kontinuiranog jedniničnog impulsa δ

dakle, iz

$$\forall t \in Realni,$$

$$\int_{-\infty}^{\infty} f(t)\delta'(t)dt = -f'(0)$$

prepoznajemo svojstvo otipkavanja, jer je očito kako derivacija Diracove delta funkcije otipkava derivaciju signala u t=0 (uz negativni predznak)

• za N-tu derivaciju δ , potrebno je parcijalnu integraciju provesti N puta, i tada se dolazi do

$$\int_{-\infty}^{\infty} f(t)\delta^{(N)}(t)dt = (-1)^N f^{(N)}(0)$$

Profesor Branko Jeren

Osnovni signali

Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Eksponencijalni signal Otipkavanje

vremenski kontinuiran sinusoide

Vremenski kontinuiran sinusoidni signal 1

- u uvodnim izlaganjima navedena je važnost sinusoidnog signala
- vremenski kontinuiran sinusoidni signal definiramo funkcijom

 $f: Realni
ightarrow Realni \ f(t) = A\cos(2\pi F_0 t + heta) = A\cos(\Omega_0 t + heta) = A\cos(rac{2\pi}{T_0} t + heta) \ F_0 = rac{1}{T_0}, \qquad \Omega_0 = 2\pi F_0 \
m gdie\ su$

A = realna amplituda sinusoidnog signala

 T_0 = realni osnovni period signala

 F_0 = realna osnovna frekvencija signala, [Hz]

 Ω_0 = realna kutna frekvencija signala, [rad/s]

 $\theta = \mathsf{faza}, [\mathsf{rad}]$

2007/2008 Cjelina 4. Profesor

Branko Jeren

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Otipkavanje vremenski kontinuirane sinusoide

Vremenski kontinuiran sinusoidni signal 2

Slika 1: Vremenski kontinuiran sinusoidni signal

Profesor Branko Jeren

Osnovni signali Jedinični skok

Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Vtipkavanje vremenski kontinuiran sinusoide

Vremenski kontinuiran kompleksni eksponencijalni signal 1

- kompleksna eksponencijalna funkcija odlikuje se nizom značajki koje mogu poslužiti u jednostavnijem i boljem razumijevanju pojava i postupaka kod realnih signala i sustava
- zato se definira vremenski kontinuiran kompleksni eksponencijalni signal

$$\begin{split} f: Realni &\rightarrow \textit{Kompleksni} \\ \lambda_0 &= \sigma_0 + j\Omega_0 \in \textit{Kompleksni}, \\ C &= Ae^{j\theta} \in \textit{Kompleksni}, \quad A, \theta \in \textit{Realni} \\ f(t) &= Ce^{\lambda_0 t} = Ae^{j\theta} e^{(\sigma_0 + j\Omega_0)t} = Ae^{\sigma_0 t} e^{j(\Omega_0 t + \theta)} \end{split}$$

Profesor Branko Jeren

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Vremenski kontinuirani kompleksni eksponencijalni signal 2

 primjenom Eulerove relacije vremenski kontinuiran kompleksni eksponencijalni signal prikazujemo i kao

 $f: Realni
ightarrow Kompleksni \ f(t) = Ae^{\sigma_0 t}e^{j(\Omega_0 t + heta)} = Ae^{\sigma_0 t}[cos(\Omega_0 t + heta) + j sin(\Omega_0 t + heta)] \ F_0 = rac{1}{T_0}, \qquad \Omega_0 = 2\pi F_0 \
m gdje \ su$

A = realna amplituda kompleksnog eksponencijalnog signala

 $\lambda_0 = \text{kompleksna frekvencija}$

 $T_0 = \text{realni osnovni period sinusoidnog signala}$

 $F_0 = \text{realna osnovna frekvencija sinusoidnog signala, [Hz]}$

 $\Omega_0 = \text{realna kutna frekvencija sinusoidnog signala, } [\text{rad/s}]$

 $\sigma_0 = \text{prigu}$ šenje $\theta = \text{faza}$, [rad]

2007/2008

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanjo vremenski kontinuiran sinusoide

Primjer vremenski kontinuirane kompleksne eksponencijalne funkcije 1

• za $\lambda_0=\sigma_0+j\Omega_0$, i $\theta=0$, kompleksna eksponencijala je

 $\forall t \in Realni$

$$f(t) = Ae^{\lambda_0 t} = Ae^{(\sigma_0 + j\Omega_0)t} = Ae^{\sigma_0 t}[cos(\Omega_0 t) + j sin(\Omega_0 t)]$$

• neka je na primjer $\sigma_0=-0.1$, $\Omega_0=1$ i A=1 tada je

$$\forall t \in Realni$$

$$f(t) = e^{(-0.1+j)t} = e^{(-0.1t)}[\cos(t) + j\sin(t)]$$

 za danu kompleksnu eksponencijalu možemo prikazati realni i imaginarni dio, te modul i fazu²

$$-\pi < arg[e^{(-0.1+j)t}] \le \pi$$

²prikazuje se glavna vrijednost argumenta, dakle, u intervalu

2007/2008

Osnovn

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali

Eksponencijalni signal

vremenski kontinuiran sinusoide Primjer vremenski kontinuirane kompleksne eksponencijalne funkcije 2

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuiran sinusoide

Primjena kompleksne eksponencijale $Ae^{\lambda_0 t}$ u prikazu nekih realnih funkcija 1

• za $\lambda_0 = \sigma_0 + j\Omega_0$, vremenski kontinuiranu kompleksnu eksponencijalu prikazujemo kao

$$Ae^{\lambda_0 t} = Ae^{(\sigma_0 + j\Omega_0)t} = Ae^{\sigma_0 t}[cos(\Omega_0 t) + j\sin(\Omega_0 t)]$$

• za $\lambda_0^* = \sigma_0 - j\Omega_0$, konjugirano od λ_0 , vrijedi $Ae^{\lambda_0^*t} = Ae^{(\sigma_0 - j\Omega_0)t} = Ae^{\sigma_0 t}[cos(\Omega_0 t) - j\sin(\Omega_0 t)]$

 pa dalje slijedi kako prigušenu realnu sinusoidu možemo prikazati uz pomoć kompleksnih eksponencijala

$$Ae^{\sigma_0t}cos(\Omega_0t)=rac{1}{2}[Ae^{\lambda_0t}+Ae^{\lambda_0^*t}]$$

2007/2008

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

vremenski kontinuirane

Prikaz realnog sinusoidnog signala s kompleksnim eksponencijalnim signalom

 iz prije izvedenoga slijedi i drugi način prikaza realnih sinusoida:

$$A\cos(\Omega_0 t + \theta) = \frac{A}{2} e^{j\theta} e^{j\Omega_0 t} + \frac{A}{2} e^{-j\theta} e^{-j\Omega_0 t} = Re\{Ae^{j(\Omega_0 t + \theta)}\}$$

$$A\sin(\Omega_0 t + \theta) = \frac{A}{2} e^{j\theta} e^{j\Omega_0 t} + \frac{A}{2} e^{-j\theta} e^{-j\Omega_0 t} = Im\{Ae^{j(\Omega_0 t + \theta)}\}$$

$$A\sin(\Omega_0 t + \theta) = \frac{A}{2j}e^{j\theta}e^{j\Omega_0 t} - \frac{A}{2j}e^{-j\theta}e^{-j\Omega_0 t} = Im\{Ae^{j(\Omega_0 t + \theta)}\}$$

školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Primjena kompleksne eksponencijale $Ae^{\lambda_0 t}$ u prikazu nekih realnih funkcija 2

- kompleksna eksponencijala $Ae^{\lambda_0 t}$, za konkretnu kompleksnu frekvenciju $\lambda_0=-0.1+j$, i A=1, prikazana je na prethodnoj slici
- pozicija kompleksnih frekvencija $s=\sigma\pm j\Omega$ u kompleksnoj ravnini određuje ponašanje $Ae^{\sigma t}cos(\Omega t)$
- kompleksnu ravninu podijelimo na četiri dijela:
 - imaginarna os $j\Omega$ za $\{s|\sigma=0\}$
 - realna os σ za $\{s|\Omega=0\}$
 - lijeva kompleksna poluravnina za $\{s|\sigma<0\}$
 - desna kompleksna poluravnina za $\{s|\sigma>0\}$

Osnovn

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Otipkavanje vremenski kontinuiran

signal

Primjena kompleksne eksponencijale $Ae^{\lambda_0 t}$ u prikazu nekih realnih funkcija 2

• razmatramo razne mogućnosti za $Ae^{\sigma t}cos(\Omega t)$

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuiran sinusoide

Primjena kompleksne eksponencijale $Ae^{\lambda_0 t}$ u prikazu nekih realnih funkcija 3

- razmatramo šest signala $Ae^{\lambda_0 t}$ za: $\lambda_1=0$, $\lambda_2=-0.1$, $\lambda_3=0.1$, $\lambda_4=\pm j$, $\lambda_5=-0.1\pm j$, $\lambda_6=0.1\pm j$
- za λ na imaginarnoj $j\Omega$ osi, dakle, $\sigma=0$
 - za $\lambda_1=0\Rightarrow$ konstanta $f_1(t)=A$
 - za konjugirano kompleksne $\lambda_4=j\Omega_4$ i $\lambda_4^*=-j\Omega_4\Rightarrow f_4(t)=A\cos(\Omega_4 t)=A\cos(t)$
- za λ na realnoj σ osi, dakle, $\Omega=0$
 - $\lambda_2 = \sigma_2 \Rightarrow f_2(t) = Ae^{\sigma_2 t} = Ae^{-0.1t}$
 - $\lambda_3 = \sigma_3 \Rightarrow f_3(t) = Ae^{\sigma_3 t} = Ae^{0.1t}$
- za konjugirano kompleksne λ i λ^*
 - $\lambda_5 = \sigma_5 + j\Omega_5$ i $\lambda_5^* = \sigma_5 j\Omega_5 \Rightarrow$ $f_5(t) = Ae^{\sigma_5 t}\cos(\Omega_5 t) = Ae^{-0.1t}\cos(t)$
 - odnosno, za $\lambda_6 = \sigma_6 + j\Omega_6$ i $\lambda_6^* = \sigma_6 j\Omega_6 \Rightarrow f_6(t) = Ae^{\sigma_6 t}\cos(\Omega_6 t) = Ae^{0.1t}\cos(t)$

Profesor Branko Jeren

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Primjena kompleksne eksponencijale $Ae^{\lambda t}$ u prikazu nekih realnih funkcija 3

$$f_{1}(t) = A$$

$$\sigma = 0, \Omega = 0$$

$$A$$

$$0$$

$$-A$$

$$0 \quad t \rightarrow$$

$$f_{2}(t) = Ae^{\sigma_{2}l}$$

$$= Ae^{-0.1t}$$

$$\sigma < 0, \Omega = 0$$

$$A = 0$$

$$-A = 0$$

$$0 \quad t \rightarrow$$

$$f_{3}(t) = Ae^{\sigma_{3}t}$$

$$= Ae^{0.1t}$$

$$\sigma > 0, \Omega = 0$$

$$A = 0$$

$$f_{4}(t) = A\cos(\Omega_{4}t)$$

$$= A\cos(t)$$

$$\sigma = 0, \Omega \neq 0$$

$$A$$

$$-A$$

$$0$$

$$0$$

$$t \rightarrow$$

$$f_{5}(t) = Ae^{\sigma_{5}t}\cos(\Omega_{5}t)$$

$$= Ae^{-0.1t}\cos(t)$$

$$\sigma < 0, \Omega \neq 0$$

$$A = 0$$

$$-A = 0$$

$$0 \quad t \rightarrow$$

Slika 4: $Ae^{\sigma t}\cos(\Omega t)$

2007/2008

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Otipkavanje vremenski kontinuirane

signal

Vremenski diskretan kompleksni eksponencijalni signal 1

 vremenski diskretan kompleksni eksponencijalni signal (ili niz) prikazujemo funkcijom

$$ExpD: Cjelobrojni \rightarrow Kompleksni$$

 $ExpD(n) = C\alpha^n$
gdje su $C, \alpha \in Kompleksni$

za

$$C = Ae^{j\theta}, \quad A, \theta \in Realni, \quad A > 0$$

i

$$\alpha = |\alpha| e^{j\omega_0}, \quad |\alpha|, \omega_0 \in Realni$$

vremenski diskretnu kompleksnu eksponencijalu možemo prikazati kao

$$ExpD(n) = Ae^{j\theta} |\alpha|^n e^{j\omega_0 n} = A|\alpha|^n e^{j(\omega_0 n + \theta)}$$

školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

vremenski kontinuirane sinusoide

Kompleksni eksponencijalni niz 2

primjenom Eulerove relacije slijedi

$$ExpD(n) = A|\alpha|^n \cos(\omega_0 n + \theta) + jA|\alpha|^n \sin(\omega_0 n + \theta)$$

- ullet |lpha| i ω_0 definiraju ponašanje kompleksne eksponencijale
 - za $|\alpha|=1$ realni i imaginarni dio kompleksne eksponencijale su sinusoidni nizovi.
 - za $|\alpha| < 1$ realni i imaginarni dio kompleksne eksponencijale su sinusoidni nizovi množeni s eksponencijalom koja se prigušuje te
 - za $|\alpha| > 1$ realni i imaginarni dio kompleksne eksponencijale su sinusoidni nizovi množeni s eksponencijalom koja se raspiruje

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Eksponencijalni signal Otipkavanje

vremenski kontinuirand sinusoide

Primjer eksponencijalnog niza

Profesor Branko Jeren

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali

Eksponencijalni signal

vremenski kontinuirane sinusoide

Eksponencijalni niz u tvorbi realnog prigušenog sinusoidnog niza 1

za kompleksni niz

$$A\alpha^{n} = A|\alpha|^{n}\cos(\omega_{0}n) + jA|\alpha|^{n}\sin(\omega_{0}n)$$

je njegov konjugirano kompleksni

$$A(\alpha^*)^n = A|\alpha|^n \cos(\omega_0 n) - jA|\alpha|^n \sin(\omega_0 n)$$

• pa vrijedi

$$A|\alpha|^n\cos(\omega_0 n) = \frac{1}{2}[A\alpha^n + A(\alpha^*)^n]$$

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal

Eksponencijalni signal

vremenski kontinuiran sinusoide

Eksponencijalni niz u tvorbi realnog prigušenog sinusoidnog niza 2

- analiziramo $A|\alpha|^n\cos(\omega_0 n)$ za razne vrijednosti $|\alpha|$ i ω_0
- za $\omega_0 = 0$
 - $\bullet \ |\alpha=1| \text{, } |\alpha|<1 \text{, } |\alpha|>1$
- za $\omega_0 = \pm \frac{\pi}{8}$
 - $\bullet \ |\alpha=1| \text{, } |\alpha|<1 \text{, } |\alpha|>1$

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuiran sinusoide Primjena kompleksne eksponencijale $C\alpha^n$ u tvorbi realnog prigušenog sinusoidnog niza 3

Slika 6: $A|\alpha|^n \cos(\omega_0 n)$

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuiran sinusoide

Sinusoidni signal 1

 neovisno o načinu nastajanja diskretna se sinusoida definira kao

 $f: Cjelobrojni \rightarrow Realni$ $f(n) = A\cos(\omega_0 n + \theta) = A\cos(2\pi f_0 n + \theta) = A\cos(\frac{2\pi n}{N_0} + \theta)$ $f_0 = \frac{1}{N_0} = \frac{\omega_0}{2\pi}$ gdje su $N_0 \in Cjelobrojni, A \in Realni$

- A je amplituda, ω_0 [radijana/uzorku] kutna frekvencija, a θ [radijana] faza signala
- N₀ je broj uzoraka jedne periode
- f₀ je dimenzije [perioda/uzorku] i predstavlja dio periode koji odgovara jednom uzorku

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuirane

Primjer realnog sinusoidnog niza

• primjer sinusoidnog niza za $\omega_0 = \frac{\pi}{12} \Rightarrow f_0 = \frac{1}{24}$, te $\theta = \frac{\pi}{3}$

Slika 7:
$$\cos(\frac{\pi}{12}n - \frac{\pi}{3})$$

sustavi školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Periodičnost sinusoidnog niza

• niz $u(n)=\cos(\omega_0 n+\theta)$ je periodičan ako vrijedi $\cos[\omega_0(n+N)+\theta]=\cos(\omega_0 n+\theta)$

izvodimo

$$\cos[\omega_0(n+N)+\theta] = \cos(\omega_0 n+\theta)\cos(\omega_0 N) - \sin(\omega_0 n+\theta)\sin(\omega_0 N)$$

- desna je strana jednaka $\cos(\omega_0 n + \theta)$ za $\cos(\omega_0 N) = 1, \quad \mathrm{i} \quad \sin(\omega_0 N) = 0$
- a to je za

$$\omega_0 N = 2\pi k$$
, ili $\frac{\omega_0}{2\pi} = \frac{k}{N}$, ili $f_0 = \frac{k}{N}$

gdje su $N, k \in Cjelobrojni$

sustavi školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuirane

Primjer periodičnog sinusoidnog niza

• za niz $1.8\cos(\frac{2\pi}{15}n - \frac{\pi}{7})$ vrijedi

$$\omega_0=rac{2\pi}{15}$$
 pa je $N=rac{2\pi k}{\omega_0}=rac{2\pi k}{rac{2}{15}\pi}=15$ za $k=1$

Slika 8: Periodični sinusoidni niz

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Primjer neperiodičnog sinusoidnog niza

• za niz $1.8\cos(\frac{\sqrt{5}\pi}{15}n - \frac{\pi}{7})$ vrijedi

$$\omega_0 = \frac{\sqrt{5}\pi}{15}$$
 pa je $N = \frac{2\pi k}{\omega_0} = \frac{2\pi k}{\frac{\sqrt{5}}{15}\pi} = \frac{30}{\sqrt{5}}k$

Slika 9: Neperiodičan sinusojdni niz

školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuiran sinusoide

Nejednoznačnost valnih oblika vremenski diskretne sinusoide

- valni oblici vremenski kontinuirane sinusoide $\cos(\Omega t)$ su jednoznačni za svaku realnu vrijednost Ω iz intervala 0 do ∞
- u slučaju vremenski diskretne sinusoide imamo drugačiju pojavu
- razmotrimo sinusoidne signale kutne frekvencije $\omega_0 + 2k\pi$, za $k \in \mathit{Cjelobrojni}$

$$\cos((\omega_0 + 2k\pi)n + \theta) = \cos((\omega_0 n + \theta) + 2k\pi n) = \cos(\omega_0 n + \theta)$$

- vidi se da su sinusoidni signali frekvencije $\omega_0 + 2k\pi$ identični signalu frekvencije ω_0
- slijedi zaključak kako je dovoljno razmatrati samo vremenski diskretne sinusoide čije su kutne frekvencije unutar intervala $0 < \omega_0 < 2\pi$ odnosno $-\pi < \omega_0 < +\pi$

2007/2008

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuiran sinusoide

Još o periodičnosti vremenski diskretne sinusoide

- zbog upravo pokazane periodičnosti vremenski diskretne sinusoide jasno je da ne postoji kontinuirani porast broja oscilacija dodirnice kako raste ω_0
- na slici koja slijedi ilustrirano je kako s porastom ω_0 od 0 prema π raste broj oscilacija, a s porastom ω_0 od π prema 2π , smanjuje broj oscilacija
- prikazane su sinusoide $\cos(\omega_0 n)$ za $\omega_0 = 0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{5\pi}{4}, \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, \frac{7\pi}{4}, \frac{11\pi}{6}, 2\pi$

Profesor Branko Jeren

Osnovni signali

Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Primjer realnog sinusoidnog niza

Slika 10:
$$\cos(\omega_0 n)$$
 za $\omega_0 = 0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{5\pi}{4}, \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, \frac{7\pi}{4}, \frac{11\pi}{6}, 2\pi$

sustavi školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

signali
Jedinični skok
Jedinična kosina
Jedinični impuls
Sinusoidni signal
Eksponencijalni
signal

Otipkavanje vremenski kontinuirane sinusoide

Još o nejednoznačnosti prikaza vremenski diskretne sinusoide

- prethodni primjer potvrđuje kako će vremenski diskretna sinusoida biti jednoznačnog valnog oblika samo za vrijednosti $\omega \in [-\pi,\pi]$, pa se ovaj interval naziva osnovno frekvencijsko područje
- bilo koja frekvencija ω bez obzira na njezinu visinu bit će identična nekoj frekvenciji ω_a u temeljnom području $(-\pi \leq \omega_a \leq \pi)$
- dakle možemo pisati

$$\omega_a = \omega - 2\pi k$$
, $-\pi \le \omega_a \le \pi$ i $k \in C$ jelobrojni

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Otipkavanji vremenski kontinuiran sinusoide

Još o nejednoznačnosti prikaza vremenski diskretne sinusoide 2

- slično se razmatranje može provesti i za prikaz sinusoide uz pomoć frekvencije f₀ koja predstavlja dio periode koja odgovara jednom uzorku
- pokazuje se da su sve sinusoide čije se frekvencije razlikuju za cjelobrojnu vrijednost identične (npr. za frekvencije 0.4, 1.4, 2.4,...)
- ovaj zaključak slijedi iz

$$\cos[(\omega_0 + 2k\pi)n + \theta] = \cos(\omega_0 n + \theta) \quad \text{za } \omega_0 = 2\pi f_0 \text{ vrijedi}$$
$$\cos[(2\pi f_0 + 2k\pi)n + \theta] = \cos[2\pi (f_0 + k)n + \theta)] = \cos(2\pi f_0 n + \theta)$$

• jednoznačno može biti prikazana vremenski diskretna sinusoida $\cos(2\pi f n + \theta)$ za vrijednosti f iz intervala (-0.5 < f < 0.5)

školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

Osnovni signali Jedinični skok

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Otipkavanje vremenski kontinuirane sinusoide

Veza f i f_a

• zaključujemo kako je svaka frekvencija f, bez obzira na njezin iznos, identična jednoj od frekvencija, f_a u osnovnom intervalu $(-0.5 \le f_a \le 0.5)$

Slika 12: Odnos f i fa

2007/2008

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

vremenski kontinuiran sinusoide

Frekvencijski alias 1

- prethodna razmatranja "sugeriraju" kako za diskretne signale ne postoje frekvencije iza $|\omega|=\pi$ ili $|f|=\frac{1}{2}$ i kako je najviša frekvencije $\omega=\pi(f=0.5)$ i najniža 0
- treba naglasiti kako frekvencije više od ovdje navedenih postoje ali se one "predstavljaju" odgovarajućom frekvencijom unutar osnovnog područja frekvencija dakle one imaju svoj "alias"
- primjer sinusoidnih signala frekvencija unutar i izvan osnovnog frekvencijskog područja ilustrira pojavu koju nazivamo, prema engleskoj terminologiji, aliasing
- bit će pokazano kako signal $\cos(\frac{7\pi}{6})$ ima svoj "alias" u $\cos(\frac{5\pi}{6})$ odnosno $\cos(\frac{11\pi}{6})$ svoj "alias" u $\cos(\frac{\pi}{6})$

sustavi školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Eksponencijalni signal Otipkavanje

vremenski kontinuiran sinusoide

Frekvencijski alias 2

Slika 13: Aliasing

Profesor Branko Jeren

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide

Otipkavanje vremenski kontinuiranih signala

otipkavanjem vremenski kontinuiranog signala

$$u_a: Realni \rightarrow Realni,$$

u diskretnim trenucima vremena t = nT, nastaje vremenski diskretan signal

dakle,

$$\forall t \in Realni \ i \ \forall n \in Cjelobrojni,$$

 $u(n) = u_a(t)|_{t=nT} = u_a(nT)$

sustavi školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide

Otipkavanje vremenski kontinuiranih sinusoidnih signala 1

realna vremenski kontinuirana sinusoida definirana je kao

$$\forall t \in Realni,$$
 $u_a(t) = \cos(2\pi Ft + \theta) = \cos(\Omega t + \theta)$

gdje su F frekvencija signala [Hz] i Ω kutna frekvencija [rad/s]

• za $t=nT=\frac{n}{F_s}=\frac{2\pi n}{\Omega s}$ i $\forall n\in C$ jelobrojni, slijedi $u(n)=u_a(nT)=\cos(2\pi F nT+\theta)=\cos(\Omega T n+\theta)=0$

$$=\cos(\frac{2\pi F}{F_s}n+\theta)=\cos(\frac{2\pi\Omega}{\Omega_s}n+\theta)=\cos(\omega n+\theta)$$

gdje su $F_s=1/T$ frekvencija otipkavanja i $\Omega_s=2\pi F_s$ kutna frekvencija otipkavanja

Profesor Branko Jeren

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide

Otipkavanje vremenski kontinuiranih sinusoidnih signala 2

dakle otipkani signal je

$$u(n) = \cos(\omega n + \theta), \quad \forall n \in Cjelobrojni$$

pri čemu je $\omega = \Omega T$ normalizirana kutna frekvencija (ili korak argumenta) [rad/uzorku] diskretnog signala u(n)

- kako Ω neograničen, to će i ω biti neograničen, pa je očigledno da se, pri otipkavanju vremenski kontinuiranog sinusoidnog signala, može javiti aliasing (za $|\omega| > \pi$)
- ovdje će se razmotriti pod kojim uvjetima otipkavati vremenski kontinuirani sinusoidni signal da bi se izbjegla pojava aliasinga

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide

Jednoznačno otipkavanje vremenski kontinuiranih sinusoidnih signala

• pri otipkavanju vremenski kontinuiranog sinusoidnog signala kutne frekvencije $\Omega_0=2\pi F_0$ s frekvencijom otipkavanja $F_s=\frac{1}{T}$ nastaje vremenski diskretna sinusoida (sinusoidni niz) normalizirane kutne frekvencije

$$\omega_0 = \Omega_0 T = \Omega_0 \frac{1}{F_s} = \frac{2\pi\Omega_0}{\Omega_s}$$

aliasing se ne javlja za $\omega_0 \leq \pi$, pa iz $\frac{2\pi\Omega_0}{\Omega_{\rm s}} \leq \pi$ slijedi

$$\Omega_s \geq 2\Omega_0$$
 ili $F_s \geq 2F_0$

- zaključujemo: vremenski kontinuirana sinusoida će biti jednoznačno otipkana ako je frekvencija otipkavanja dvostruko veća od frekvencije otipkavane vremenski kontinuirane sinusoide
- ovaj zaključak je specijalni slučaj teorema otipkavanja koji će kasnije biti detaljno analiziran

Profesor Branko Jeren

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide

Primjeri otipkavanja vremenski kontinuiranih sinusoidnih signala

- otipkavaju se vremenski kontinuirane sinusoide frekvencija $F_1=4\ kHz, F_2=20\ kHz, F_3=28\ kHz, F_4=44\ kHz,$ a frekvencija otipkavanja neka je $F_s=48\ kHz$
- prethodni zaključak ukazuje da će otipkavanje treće i četvrte sinusoide rezultirati aliasingom, jer frekvencija otipkavanja nije dvostruko veća od frekvencije vremenski kontinuirane sinusoide
- ilustrirajmo postupak otipkavanja

sustavi školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide

Postupak otipkavanja vremenski kontinuiranih sinusoidnih signala

$$\begin{array}{c} \forall t \in Realni, \\ u_1(t) = \cos(2\pi F_1 t) = \cos(2\pi \cdot 4 \cdot 10^3 \cdot t) \\ u_2(t) = \cos(2\pi F_2 t) = \cos(2\pi \cdot 20 \cdot 10^3 \cdot t) \\ u_3(t) = \cos(2\pi F_3 t) = \cos(2\pi \cdot 28 \cdot 10^3 \cdot t) \\ u_4(t) = \cos(2\pi F_4 t) = \cos(2\pi \cdot 44 \cdot 10^3 \cdot t) \end{array}$$
 za $t = nT = \frac{n}{F_s} = \frac{n}{48 \cdot 10^3}$

$$\forall n \in \textit{Cjelobrojni},$$

$$u_1(n) = \cos(2\pi F_1 nT) = \cos(2\pi \cdot \frac{4 \cdot 10^3}{48 \cdot 10^3} \cdot n) = \cos(\frac{\pi}{6}n)$$

$$u_2(n) = \cos(2\pi F_2 nT) = \cos(2\pi \cdot \frac{20 \cdot 10^3}{48 \cdot 10^3} \cdot n) = \cos(\frac{5\pi}{6}n)$$

$$u_3(n) = \cos(2\pi \cdot \frac{28 \cdot 10^3}{48 \cdot 10^3} \cdot n) = \cos(\frac{7\pi}{6}n) = \cos(-\frac{5\pi}{6}n)$$

$$u_4(n) = \cos(2\pi \cdot \frac{44 \cdot 10^3}{48 \cdot 10^3} \cdot n) = \cos(\frac{11\pi}{6}n) = \cos(-\frac{\pi}{6}n)$$

Osnovr signali

Otipkavanje vremenski kontinuirane sinusoide

Otipkavanje vremenski kontinuiranih sinusoida

Slika 14: Aliasing kod otipkavanja vremenski kontinuiranih sinusoidnih signala

Profesor Branko Jeren

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide

Primjer aliasinga kod audio signala1

- otipkava se vremenski kontinuiran signal $0.65\cos(2\pi\cdot 440\cdot t) + 0.12\cos(2\pi\cdot 21527\cdot t)$ frekvencijom otipkavanja $F_s=44100\,\mathrm{Hz}$
- komponenta frekvencije $F=21527\,\mathrm{Hz}$ izvan je slušnog područja, pa je u reprodukciji čujna samo komponenta frekvencije $F=440\,\mathrm{Hz}$ (nota A)
- pri otipkavanju signala s frekvencijom $F_s=22050\,\mathrm{Hz}$ dolazi do pojave aliasinga i komponenta frekvencije $F=21527\,\mathrm{Hz}$ zrcali se u osnovno frekvencijsko područje kao sinusoida frekvencije $F=21527-22050=-523\,\mathrm{Hz}$ (nota C)
- u reprodukciji se čuju komponenta frekvencije $F=440\,\mathrm{Hz}$, te komponenta frekvencije $F=523\,\mathrm{Hz}$ koja je nastala aliasingom komponente frekvencije $F=21527\,\mathrm{Hz}$ dakle signal $0.65\cos(2\pi\cdot440\cdot t)+0.12\cos(2\pi\cdot523\cdot t)$

školska godina 2007/2008 Cjelina 4.

Profesor Branko Jeren

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide

Aliasing kod audio signala 2

prikazan je signal otipkan frekvencijom otipkavanja
 F_s = 44100 Hz i frekvencijom otipkavanja
 F_s = 22050 Hz

Slika 15: Aliasing kod otipkavanja audio signala

Profesor Branko Jeren

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide

Aliasing kod audio signala 3

Slika 16: Aliasing kod otipkavanja audio signala

školska godina

Osnovn

Otipkavanje vremenski kontinuirane sinusoide

Još o aliasingu pri otipkavanju vremenski kontinuiranih sinusoida – stroboskopija

- u slučaju signala koji se sastoji od više vremenski kontinuiranih sinusoida otipkavanje treba biti dvostruko više frekvencije od najviše frekvencije među sinusoidnim komponentama signala
- u slučaju nemogućnosti promjene frekvencije otipkavanja (diskretizacije) može se pojaviti aliasing
- zanimljiv je primjer vrtnje kotača (npr. automobila Formule 1) na televizijskim ekranima gdje gledatelj, u relativno kratkom vremenu, tipično pri naglim promjenama brzine vrtnje kotača, stječe dojam da se kotač povremeno vrti naprijed, povremeno nazad, a ponekad kao i da stoji na mjestu
- efekt je posljedica pojave aliasinga i biti će ilustriran narednom slikom

Profesor Branko Jeren

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide Još o aliasingu pri otipkavanju vremenski kontinuiranih sinusoida – stroboskopija

Slika 17: Aliasing kod otipkavanja vremenski kontinuiranih sinusoidnih signala

Osnovn signali

Otipkavanje vremenski kontinuirane sinusoide Još o aliasingu pri otipkavanju vremenski kontinuiranih sinusoida – stroboskopija

Slika 18: Aliasing kod otipkavanja vremenski kontinuiranih sinusoidnih signala