

BURSA TEKNİK ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ BİLGİSAYAR MÜHENDİSLİĞİ (T) BÖLÜMÜ BİLGİSAYAR OYUNLARDA YAPAY ZEKA

Ödev-7 Raporu

Github: https://github.com/MoussaBane/BOYZ-Ping-Pong-ANN

MOUSSA BANE

24435004029

Giriş:

Bu rapor, "**Yapay Zekâ Destekli Pong Oyunu**" projesinde gerçekleştirdiğimiz adımları ve kullanılan kodları detaylı bir şekilde açıklamak için hazırlanmıştır. Unity'yi ilk kez kullanan bir kişinin de projeyi kolayca tekrarlayabilmesi için adım adım ve detaylı açıklamalar içermektedir.

Proje Hazırlıkları:

1. Yeni 2D Proje Oluşturma:

- ✓ Unity'yi açarak yeni bir 2D proje oluşturun.
- ✓ PongStarter2022 dosyalarını Unity'ye içe aktarın.
- ✓ Pong sahnesini açın.

2. Sahne Düzeni:

√ İki yatay (üst ve alt) ve iki dikey (sol ve sağ) oyun nesnesi ekleyin. Bu nesneler, topun hareket edebileceği sınırları belirler.

- ✓ Yatay nesnelere BoxCollider2D ve RigidBody2D bileşenleri mevcuttur.
- ✓ Dikey nesnelere aynı şekilde bileşenleri mevcut ve kırmızı renkli olan nesnenin etiketi backwall olarak ayarlandı.
- ✓ **Katman Ayarları**: Eğer mevcut değilse, 8 ve 9 numaralı katmanları ekleyin ve nesneleri uygun katmanlara atayın.

Top ve Paddle Ayarları:

1. Top Nesnesi:

- ✓ Top nesnesine RigidBody2D ve CircleCollider2D bileşenlerini mevcut.
- ✓ CircleCollider2D bileşenine Bounce isimli fizik materyali atandı. Bu, topun çarpışmalardan sekmesini sağlar.

2. Paddle (Raket):

✓ Paddle nesnesine BoxCollider2D ve RigidBody2D bileşenleri mevcut. Hareket yalnızca Y ekseninde sınırlandırıldı.

MoveBall Scripti:

Bu script, topun hareketini ve çarpışmalarını kontrol eder.

- ✓ Top başlangıç pozisyonuna dönmesi için ResetBall fonksiyonu kullanılır.
- ✓ Topun backwall ve diğer nesnelere çarpması durumunda ses efektleri (blip ve blop) çalınır.
- ✓ space tuşuna basıldığında top yeniden başlatılır.

Kod Parçası:

```
Oreferences
public class MoveBall: MonoBehaviour

// Stores the initial position of the ball
2references
Vector3 ballStartPosition;

// Reference to the Rigidbody2D component of the ball
3references
Rigidbody2D rb;

// Speed of the ball when launched
1reference
float speed = 400;

// Audio sources for sound effects when the ball hits different objects
1reference
public AudioSource blip; // Played when hitting anything other than the backwall
1reference
public AudioSource blop; // Played when hitting the backwall

// Called when the script instance is loaded
Oreferences
void Start()

// Get the Rigidbody2D component attached to this GameObject
rb = this.GetComponent<Rigidbody2D>();

// Save the initial position of the ball for resetting purposes
ballStartPosition = this.transform.position;

// Initialize the ball's state
ResetBall();

}
```

```
// Called when the ball collides with another GameObject
Oreferences
void OnCollisionEnter2D(Collision2D col)

{
    // Check if the ball collided with the object tagged as "backwall"
    if (col.gameObject.tag == "backwall")
        blop.Play(); // Play the "blop" sound effect
else
        blip.Play(); // Play the "blip" sound effect for other collisions

// Resets the ball's position and launches it in a random direction
2 references
public void ResetBall()

// Reset the ball's position to its initial position
this.transform.position = ballstartPosition;

// Stop any current movement of the ball
rb.velocity = Vector3.zero;

// Generate a random direction for the ball
Vector3 dir = new Vector3(Random.Range(100, 300), Random.Range(-100, 100), 0).normalized;

// Apply a force to the ball to launch it
rb.AddForce(dir * speed);
}
```

```
// Called once per frame
0 references
void Update()
{
    // Check if the "space" key is pressed
    if (Input.GetKeyDown("space"))
    {
        // Reset the ball when the space key is pressed
        ResetBall();
    }
}
```

Brain Scripti:

Yapay zekâ (ANN) ile paddle hareketlerini kontrol etmek için geliştirilmiştir.

1. Girdi Değerleri (Input):

- ✓ Topun pozisyonu ve hızı (bx, by, bvx, bvy).
- ✓ Paddle pozisyonu (px, py).

2. Çıktı Değeri (Output):

✓ Paddle'ın Y eksenindeki hızı (pv).

3. Raycast Kullanımı:

✓ Topun yörüngesini analiz etmek ve paddle ile çarpışma olasılığını hesaplamak için kullanılır.

4. Yapay Sinir Ağı (ANN) Ayarları:

- ✓ Gizli katman: 1
- ✓ Nöron sayısı: 4
- ✓ Aktivasyon fonksiyonu: tanh (-1 ile 1 arası değer döner).

Kod Parçası:

```
public class Brain_sc : MonoBehaviour
    public GameObject paddle; // Reference to the paddle GameObject
   public GameObject ball; // Reference to the ball GameObject
   Rigidbody2D brb;
                              // Rigidbody2D component of the ball
   3 references
float yvel;
                               // Current y-axis velocity for paddle movement
   1 reference
float paddleMinY = 8.8f; // Minimum y-position for the paddle
   1 reference
float paddleMaxY = 17.4f; // Maximum y-position for the paddle
    float paddleMaxSpeed = 15; // Maximum speed at which the paddle can move
    public float numSaved = 0; // Counter for the number of balls successfully intercepted
   public float numMissed = 0; // Counter for the number of balls missed
   ANN ann; // Artificial Neural Network instance
   // Called when the script is initialized
   0 references
       // 1 hidden layer, 4 neurons in the hidden layer, and a learning rate of 0.11
        ann = new ANN(6, 1, 1, 4, 0.11);
        // Get the Rigidbody2D component of the ball
        brb = ball.GetComponent<Rigidbody2D>();
```

```
public class Brain_sc : MonoBehaviour
   void Update()
        float posy = Mathf.Clamp(
            paddle.transform.position.y + (yvel * Time.deltaTime * paddleMaxSpeed),
           paddleMinY,
           paddleMaxY);
       paddle.transform.position = new Vector3(
           paddle.transform.position.x,
           paddle.transform.position.z);
        // List to hold the neural network output
       List<double> output = new List<double>();
       // Raycasting to predict the ball's trajectory
        int layerMask = 1 << 9; // Only detect objects in layer 9</pre>
       RaycastHit2D hit = Physics2D.Raycast(ball.transform.position, brb.velocity, 1000, layerMask);
       // If the raycast hits something
       if (hit.collider != null)
           if (hit.collider.gameObject.tag == "tops")
                Vector3 reflection = Vector3.Reflect(brb.velocity, hit.normal);
               hit = Physics2D.Raycast(hit.point, reflection, 1000, layerMask);
```

```
oublic class Brain_sc : MonoBehaviour
   void Update()
           if (hit.collider != null && hit.collider.gameObject.tag == "backwall")
               // Calculate the vertical difference between the paddle and the predicted hit point
               float dy = (hit.point.y - paddle.transform.position.y);
               // Run the neural network to determine the paddle's velocity
               output = Run(
                   ball.transform.position.x,
                   ball.transform.position.y,
                   brb.velocity.x,
                   brb.velocity.y,
                   paddle.transform.position.x,
                   paddle.transform.position.y,
                   dy,
                   true);
               // Set the paddle's y-velocity to the neural network's output
               yvel = (float)output[0];
           // If no object is hit, stop paddle movement
```

Test ve İyileştirme:

1. Eğitim Seti Zenginleştirme:

✓ Topun sınır nesnelerine çarpması durumunda raycast ile sonraki hareketleri analiz edilerek eğitim setine ek veri sağlandı.

2. Öğrenme Hızının İyileştirilmesi:

✓ Öğrenme hızı, farklı değerlerde test edilerek (ör. 0.001) en iyi sonuç gözlemlendi.

Sonuç:

Proje başarıyla tamamlanmış ve paddle yapay zekâ tarafından kontrol edilebilir hale getirilmiştir. Eğitim seti genişletildiğinde ve daha fazla veri sağlandığında, yapay zekâ performansının iyileştirilebileceği gözlemlenmiştir.

Çalıştırılmış Hali:

