固体物理学作业

Charles Luo

2025年3月30日

目录

1	第一章习题	3
2	第二章习题	g

1 第一章习题

习题 1. 在正交直角坐标系中, 若矢量 $\mathbf{R}_n = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$, 其中 \mathbf{i} , \mathbf{j} , \mathbf{k} 为单位矢量, n_i (i = 1, 2, 3) 为整数。问下列情况属于什么点阵?

- (a) 当 n_i 为全奇加全偶时;
- (b) 当 n_i 之和为偶数时。

解答.

(a) 据题意,全奇加全偶应是两个布拉维格子的叠加。

若 n_i (i = 1, 2, 3) 全为偶数,可以提取公因子 2 得到 $\mathbf{R}_n = n_1'(2\mathbf{i}) + n_2'(2\mathbf{j}) + n_3'(2\mathbf{k})$,此时 n_i' (i = 1, 2, 3) 为整数,对应简单立方点阵,格矢长度为 2 个单位长度。

同理可得 n_i (i = 1, 2, 3) 全为奇数时也为简单立方点阵,可由全为偶数时点阵沿 (1, 1, 1) 方向平移移一个单位长度得到。

- 二者的嵌套为体心立方点阵。
- (b) 据题意, $n_1 + n_2 + n_3 = 2k$, $k \in \mathbb{N}$ 。

不妨取 k=1 和 k=2 来猜测,可以得到格点坐标为 $(1,1,0),\cdots,(0,1,1),(2,0,0),\cdots,(0,0,2)$. 为面心立方点阵。

习题 1 的注记.

• (b) 可取 $k_1 = k - n_1, k_2 = k - n_2, k_3 = k - n_1 - n_2$, 得到 $\mathbf{R}_n = (k_2 + k_3)\mathbf{i} + (k_3 + k_1)\mathbf{j} + (k_1 + k_2)\mathbf{k}$.

习题 2. 分别证明:

- (a) 面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角 θ 相等,对 fcc 为 60° ,对 bcc 为 $109^{\circ}27'$;
- (b) 在金刚石结构中,作任一原子与其四个最近邻原子的连线。证明任意两条线之间夹角 θ 均为 $\arccos\left(-\frac{1}{3}\right)=109^{\circ}27'.$

解答.

(a) fcc 三个基矢为
$$\mathbf{a_1} = \left(0, \frac{1}{2}, \frac{1}{2}\right), \mathbf{a_2} = \left(\frac{1}{2}, 0, \frac{1}{2}\right), \mathbf{a_3} = \left(\frac{1}{2}, \frac{1}{2}, 0\right).$$
故 $\cos \theta = \frac{\mathbf{a_1} \cdot \mathbf{a_2}}{|\mathbf{a_1}| |\mathbf{a_2}|} = \frac{\mathbf{a_2} \cdot \mathbf{a_3}}{|\mathbf{a_2}| |\mathbf{a_3}|} = \frac{\mathbf{a_3} \cdot \mathbf{a_1}}{|\mathbf{a_3}| |\mathbf{a_1}|} = \frac{1}{2}, \quad \mathbb{H} \ \theta = 60^{\circ}.$
bcc 三个基矢为 $\mathbf{a_1} = \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \mathbf{a_2} = \left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right), \mathbf{a_3} = \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right).$
故 $\cos \theta = \frac{\mathbf{a_1} \cdot \mathbf{a_2}}{|\mathbf{a_1}| |\mathbf{a_2}|} = \frac{\mathbf{a_2} \cdot \mathbf{a_3}}{|\mathbf{a_2}| |\mathbf{a_3}|} = \frac{\mathbf{a_3} \cdot \mathbf{a_1}}{|\mathbf{a_3}| |\mathbf{a_1}|} = -\frac{1}{3}, \quad \mathbb{H} \ \theta = \arccos\left(-\frac{1}{3}\right) = 109^{\circ}27'.$

(b) 金刚石结构中坐标为 $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ 的原子相邻的 4 个原子坐标分别为 (0,0,0) , $\left(0, \frac{1}{2}, \frac{1}{2}\right)$, $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$,

$$\left(\frac{1}{2}, \frac{1}{2}, 0\right). \Leftrightarrow \mathbf{l_1} = \left(-\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}\right), \mathbf{l_2} = \left(-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right), \mathbf{l_3} = \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}\right), \mathbf{l_4} = \left(\frac{1}{4}, \frac{1}{4}, -\frac{1}{4}\right).$$

习题 3. 证明在六角晶系中米勒指数为 (hkl) 的晶面族间距为

$$d = \left[\frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} + \frac{l^2}{c^2}\right)\right]^{-\frac{1}{2}}.$$

解答. 米勒指数以单胞的三条棱为坐标系.

正点阵的一族晶面 (hkl) 垂直于倒格矢 $\mathbf{K_h} = h\mathbf{b_1} + k\mathbf{b_2} + l\mathbf{b_3}$,晶面间距 $\frac{2\pi}{|\mathbf{K_h}|}$.

在六角晶系中
$$\mathbf{a} = (a, 0, 0), \mathbf{b} = \left(-\frac{1}{2}a, \frac{\sqrt{3}}{2}a, 0\right), \mathbf{c} = (0, 0, c).$$

求倒点阵基矢:

$$\mathbf{b_1} = 2\pi \frac{\mathbf{a_2} \times \mathbf{a_3}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = \frac{2\pi}{a} \left(1, \frac{\sqrt{3}}{3}, 0\right).$$

$$\mathbf{b_2} = 2\pi \frac{\mathbf{a_3} \times \mathbf{a_1}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = \frac{2\pi}{a} \left(0, \frac{2\sqrt{3}}{3}, 0 \right).$$

$$\mathbf{b_3} = 2\pi \frac{\mathbf{a_1} \times \mathbf{a_2}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = \frac{2\pi}{c} \, (0, 0, 1).$$

倒格矢
$$\mathbf{K_h} = \left(\frac{2\pi}{a}h, \frac{2\sqrt{3}\pi}{3a}h + \frac{4\sqrt{3}\pi}{3a}k, \frac{2\pi}{c}l\right)$$
, 故 $d = \frac{2\pi}{|\mathbf{K_h}|} = \left[\frac{4}{3}\left(\frac{h^2 + hk + k^2}{a^2} + \frac{l^2}{c^2}\right)\right]^{-\frac{1}{2}}$.

习题 4. 证明底心正交点阵的倒点阵仍为底心正交点阵。

解答. 底心正交阵基矢
$$\mathbf{a_1} = (a,0,0), \mathbf{a_2} = \left(\frac{a}{2}, \frac{b}{2}, 0\right), \mathbf{a_3} = (0,0,c).$$

倒点阵基矢:

$$\mathbf{b_1} = 2\pi \frac{\mathbf{a_2} \times \mathbf{a_3}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = 2\pi \left(\frac{1}{a}, -\frac{1}{b}, 0\right).$$

$$\mathbf{b_2} = 2\pi \frac{\mathbf{a_3} \times \mathbf{a_1}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = 2\pi \left(0, \frac{2\pi}{b}, 0\right).$$

$$\mathbf{b_3} = 2\pi \frac{\mathbf{a_1} \times \mathbf{a_2}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = 2\pi \left(0, 0, \frac{1}{c}\right).$$

倒点阵仍为底心正交阵,底面边长为 $\frac{4\pi}{a}$ 和 $\frac{4\pi}{b}$, 高为 $\frac{2\pi}{c}$.

习题 5. 试证明具有四面体对称性的晶体,其介电常量为一标量介电常量:

$$\boldsymbol{\varepsilon}_{\alpha\beta} = \varepsilon_0 \delta_{\alpha\beta}.$$

解答. 根据电动力学有

$$\mathbf{D} = \boldsymbol{\varepsilon} \mathbf{E}, \; \boldsymbol{\varepsilon} = egin{pmatrix} arepsilon_{11} & arepsilon_{12} & arepsilon_{13} \ arepsilon_{21} & arepsilon_{22} & arepsilon_{23} \ arepsilon_{31} & arepsilon_{32} & arepsilon_{33} \end{pmatrix}.$$

四面体对称性包括三个四重反演轴,绕 x,y,z 轴旋转的操作分别记为 A_x,A_y,A_z ,反演操作记为 I.

$$\mathbf{A}_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \mathbf{A}_y = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \mathbf{A}_z = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{I} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

由题意,应有 $(\mathbf{IA}_x) \varepsilon (\mathbf{IA}_x)^T = \varepsilon$. 即

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix}$$

可得 $\varepsilon_{13} = \varepsilon_{12} = 0$, $\varepsilon_{21} = -\varepsilon_{31}$, $\varepsilon_{32} = -\varepsilon_{23}$, $\varepsilon_{22} = \varepsilon_{33}$.

利用 $(\mathbf{IA}_y) \varepsilon (\mathbf{IA}_y)^T = \varepsilon$ 及 $(\mathbf{IA}_z) \varepsilon (\mathbf{IA}_z)^T = \varepsilon$ 可知 $\varepsilon_{\alpha\beta} = \varepsilon_0 \delta_{\alpha\beta}$.

习题 6. 若 AB_3 的立方结构如图所示,设 A 原子的散射因子为 $f_A(\mathbf{K}_{hkl})$,B 原子的散射因子 $f_B(\mathbf{K}_{hkl})$.

- (a) 求其几何结构因子 $F(\mathbf{K}_{hkl}) = ?$
- (b) 找出 (hkl) 衍射面的 X 射线衍射强度分别在什么情况下有

$$I\left(\mathbf{K}_{hkl}\right) \propto egin{cases} \left|f_A(\mathbf{K}_{hkl}) + 3f_B(\mathbf{K}_{hkl})\right|^2 \\ \left|f_A(\mathbf{K}_{hkl}) - f_B(\mathbf{K}_{hkl})\right|^2 \end{cases}$$

(c) 设 $f_A(\mathbf{K}_{hkl}) = f_B(\mathbf{K}_{hkl})$, 问衍射面指数中哪些反射消失? 试举出五种最简单的。

解答.

- (a) 取原子坐标 A (0,0,0), B $\left(\frac{1}{2},\frac{1}{2},0\right)$, $\left(\frac{1}{2},0,\frac{1}{2}\right)$, $\left(0,\frac{1}{2},\frac{1}{2}\right)$. $F(hkl) = \sum_{j} f_{j} e^{-2\pi i(hr_{j1}+kr_{j2}+lr_{j3})} = f_{A} + f_{B}\left(e^{-\pi i(h+k)} + e^{-\pi i(k+l)} + e^{-\pi i(h+l)}\right).$
- (b) 当 (h+k), (h+l), (k+l) 均为偶数时, $F(hkl) = f_A + 3f_B$, $I(\mathbf{K}_{hkl}) \propto |f_A(\mathbf{K}_{hkl}) + 3f_B(\mathbf{K}_{hkl})|^2$. 当 (h+k), (h+l), (k+l) 两奇一偶时, $F(hkl) = f_A - f_B$, $I(\mathbf{K}_{hkl}) \propto |f_A(\mathbf{K}_{hkl}) - f_B(\mathbf{K}_{hkl})|^2$.
- (c) 消光条件 F(hkl) = 0, 据此可得 (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1).

习题 7. 在某立方晶系的铜 $\mathbf{K}_{\alpha}X$ 射线粉末相中,观察到的衍射角 θ_i 有下列关系:

 $\sin \theta_1 : \sin \theta_2 : \sin \theta_3 : \sin \theta_4 : \sin \theta_5 : \sin \theta_6 : \sin \theta_7 : \sin \theta_8$

$$=\sqrt{3}:\sqrt{4}:\sqrt{8}:\sqrt{11}:\sqrt{12}:\sqrt{16}:\sqrt{19}:\sqrt{20}.$$

- (a) 试确定对应于这些衍射角的晶面的衍射面指数;
- (b) 问该立方晶体时简单立方、面心立方还是体心立方?

解答.

(a) 晶面间距 $d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$,布拉格反射定律 $2d_{hkl}\sin\theta = n\lambda$,

可得
$$\sin \theta \propto \sqrt{(nh)^2 + (nk)^2 + (nl)^2}$$
.

故衍射面指数 (1,1,1), (2,0,0), (2,2,0), (1,1,3), (2,2,2), (4,0,0), (3,3,1), (4,2,1).

(b) 简单立方允许所有 (hkl) 值,没有消光.

体心立方要求 (h+k+l) 为偶数.

面心立方则要求 h, k, l 全奇或全偶.

故该立方晶体是面心立方。

习题 8. X 射线衍射的线宽。

假定一个有限大小的晶体,点阵节点由 $R_l = \sum_{i=1}^3 l_i \mathbf{a}_i$ 确定,其中 l_i 取整数 $0,1,2,\cdots,N_i-1$,每个结点处有全同的点散射中心。散射振幅可写为

$$u_{\mathbf{k}\to\mathbf{k}'} = c \sum_{l=0}^{N_i-1} e^{-i(\mathbf{k}'-\mathbf{k}) \cdot \sum_{i=1}^{3} l_i \mathbf{a}_i}.$$

- (a) 证明散射强度 $I = |u|^2 = u^* u = c^2 \prod_{i=1}^3 \frac{\sin^2 \frac{1}{2} N_i \left(\Delta \mathbf{k} \cdot \mathbf{a}_i\right)}{\sin^2 \frac{1}{2} \left(\Delta \mathbf{k} \cdot \mathbf{a}_i\right)}, \ \Delta k = k' k;$
- (b) 当 $\Delta \mathbf{k} \cdot \mathbf{a}_i = 2\pi h_i$ (h_i 为整数) 时,出现衍射极大值,函数 $\sin^2 \frac{1}{2} N_i (\Delta \mathbf{k} \cdot \mathbf{a}_i)$ 的第一个零点定义了 X 射线衍射的线宽 Δ_i ,证明 $\Delta_i = \frac{2\pi}{N_i}$;
- (c) 对于一个无限大的晶体, $N_i \to \infty$, 证明 $I = c^2 N^2 \delta_{\mathbf{k}' \mathbf{k}, \mathbf{K}_h}$.

解答.

(a) 对散射振幅分析,
$$u_{\mathbf{k}\to\mathbf{k}'} = c\sum_{l_i=0}^{N_i-1} \mathrm{e}^{-i(\mathbf{k}'-\mathbf{k})\cdot\sum\limits_{i=1}^3 l_i\mathbf{a}_i} = c\sum_{l_i=0}^{N_i-1} \mathrm{e}^{-il_1(\Delta\mathbf{k}\cdot\mathbf{a}_1)}\cdot\mathrm{e}^{-il_2(\Delta\mathbf{k}\cdot\mathbf{a}_2)}\cdot\mathrm{e}^{-il_3(\Delta\mathbf{k}\cdot\mathbf{a}_3)}.$$

写成连乘形式
$$u_{\mathbf{k} \to \mathbf{k}'} = c \prod_{i=1}^{3} \sum_{l_i=0}^{N_i-1} \mathrm{e}^{-il_i(\Delta \mathbf{k} \cdot \mathbf{a}_i)}.$$

$$\sum_{l_i=0}^{N_i-1} \mathrm{e}^{-il_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)} = \frac{1-\mathrm{e}^{-iN_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)}}{1-\mathrm{e}^{-i(\Delta\mathbf{k}\cdot\mathbf{a}_i)}} = \frac{\mathrm{e}^{-i\frac{1}{2}N_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)} \left(\mathrm{e}^{i\frac{1}{2}N_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)} - \mathrm{e}^{-i\frac{1}{2}N_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)}\right)}{\mathrm{e}^{-i\frac{1}{2}(\Delta\mathbf{k}\cdot\mathbf{a}_i)} \left(\mathrm{e}^{i\frac{1}{2}(\Delta\mathbf{k}\cdot\mathbf{a}_i)} - \mathrm{e}^{-i\frac{1}{2}(\Delta\mathbf{k}\cdot\mathbf{a}_i)}\right)}.$$

曲欧拉公式可化简为
$$\sum_{l_i=0}^{N_i-1} \mathrm{e}^{-il_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)} = \frac{\mathrm{e}^{-i\frac{1}{2}N_i(\Delta\mathbf{k}\cdot\mathbf{a}_i)}\sin\frac{1}{2}N_i\left(\Delta\mathbf{k}\cdot\mathbf{a}_i\right)}{\mathrm{e}^{-i\frac{1}{2}(\Delta\mathbf{k}\cdot\mathbf{a}_i)}\sin\frac{1}{2}\left(\Delta\mathbf{k}\cdot\mathbf{a}_i\right)}.$$

故
$$I = |u|^2 = u^* u = c^2 \prod_{i=1}^3 \frac{\sin^2 \frac{1}{2} N_i \left(\Delta \mathbf{k} \cdot \mathbf{a}_i\right)}{\sin^2 \frac{1}{2} \left(\Delta \mathbf{k} \cdot \mathbf{a}_i\right)}, \ \Delta k = k' - k.$$

- (b) 函数 $\sin^2 \frac{1}{2} N_i (\Delta \mathbf{k} \cdot \mathbf{a}_i)$ 的第一个零点出现在: $\frac{1}{2} N_i (\Delta \mathbf{k} \cdot \mathbf{a}_i) = \pi \implies \Delta \mathbf{k} \cdot \mathbf{a}_i = \frac{2\pi}{N_i}$. 即 $\Delta_i = \frac{2\pi}{N_i}$.
- (c) 当 $N_i \to \infty$ 时,每个求和式 $\sum_{l_i=0}^{N_i-1} \mathrm{e}^{(-il_i(\Delta \mathbf{k} \cdot \mathbf{a}_i))}$ 转换为 δ 函数。因此,散射强度 I 表现为 δ 函数的形式:

$$I = c^2 N^2 \delta_{\mathbf{k}' - \mathbf{k}, \mathbf{K}_h}$$

其中 \mathbf{K}_h 是倒格矢,满足布拉格条件。

习题 8 的注记.

• (c) 不是很理解。

2 第二章习题

习题 9. 导出 NaCl 型离子晶体中排斥势指数的下列关系式:

$$n = 1 + \frac{4\pi\varepsilon_0 \times 18Br_0^4}{\alpha e^2}$$
 (SI 单位)

其中 r_0 为近邻离子间距, α 为以 r_0 为单位的马德隆常数,B 为体积弹性模量。已知 NaCl 晶体的 $B=2.4\times 10^{10} {\rm N/m^2}, \, r_0=2.81 \mathring{A},\,\,$ 求 NaCl 的 n=?

解答.

习题 10.