Problem Set 1

Due 9th September 2021

Abstract

Only the questions with a star (*) are compulsory for submission; It is however *strongly* advised to attempt all question.

1 Sets & Logic

1.1 Sets

Question 1 (*). We call R the set of points in the red square, B for the ones in the blue square, and G for the green one.

- a. Express R, G, and B in terms of Cartesian product. 1
- b. Give all (if any) the subsets relations between R, G, and B.
- c. Express $G \cup B \setminus (G \cap B)$ in terms of Cartesian product.
- d. Express $[1/2,1]^2$ in terms of R, G, and B (using intersections, unions, ...).
- e. Express $[1/2, 3/2] \times [1, 3/2] \cup [1, 3/2] \times [1/2, 3/2]$ in terms of R, G, and B.

Question 2. We call R the set of points in the red disc, B for the ones in the blue triangle, and G for the green one.

- a. (*) Express R, G, and B using set notation with predicates (i.e. {object | condition}) of Cartesian product.²
- b. Express $R \cap B$ using set notation.
- c. (*) Draw $R \cap \{(x,y) \mid x \le 0, y \le 0\}$.
- d. The upper half plane \mathcal{H} is $\{(x,y) \mid y > 0\}$; hatch it on your figure.
- e. Which one(s) (if any) of R, G, B is contained in \mathcal{H} ?

1.2 Boolean Algebra

Question 3. Here, $a, b, c, d \in \mathbb{B}$ are boolean numbers.

- a. (*) Show that $abc + \overline{a}bc + a\overline{b}c + ab\overline{c} = bc + ac + ab$
- b. (*) Check that $abc + \bar{a}bc + a\bar{b}c + ab\bar{c} = bc + ac + ab$ using truth tables
- c. Show that $abc + ab\overline{c} + a\overline{b}cd = ab + acd$

Question 4. Here again, $a, b, c \in \mathbb{B}$ are boolean numbers. One wants to add them, and display the result in base 2 using two LEDs (one for the units, one for the twos). The complete truth table is given below; find expressions for the units and twos.

a	b	c	tows of $a + b + c$	units of $a + b + c$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $^{^{1}}G$ is in fact called the unit square in the first quadrant.

 $^{{}^{2}}R$ is in fact called the unit disc.

1.3 Quantified propositions

Question 5 (*). Negate the following³: $\forall \epsilon > 0, \exists N \in \mathbb{N} \ s.t. \ \forall n > N, |x_n - x| < \epsilon$

Question 6. Find the quantified notation of the following sentences:

- a. (*) "Given a number, it always possible to find another one that is greater"
- b. (*) "Any natural number is non-negative"
- c. "There is no negative square"⁴
- d. "There exists a bijection between the naturals and the set of all fractions"

2 Modular Arithmetic

This is not needed for the rest of the course, but is nice to know Read the first two sections of https://en.wikipedia.org/wiki/Modular_arithmetic.

Question 7. a. Show that n^2 is divisible by 3 if and only if n is divisible by 3.

- b. Show that n^2 is divisible by 5 if and only if n is divisible by 5.
- c. (harder) Show that n^2 is divisible by p if and only if n is divisible by p for any prime p^5

3 Proofs Methods

Question 8. a. (*) Show that n divisible by 6 if and only if n divisible by 2 and 3.

- b. Show $\sqrt{3} \notin \mathbb{Q}^{.6}$
- c. Show that 12N 6 is divisible by 6 for every positive integer n.
- d. Show that $2^n \geq 2n$ for all $n \in \mathbb{N}$

4 Functions Properties

Question 9. a. (*) $f: X \to Y, g: Y \to Z$ injectives $\implies f \circ g$ is injective

- b. $f: X \to Y, g: Y \to Z$ surjectives $\implies f \circ g$ is surjective
- c. $f: X \to Y, g: Y \to Z$ bijectives/invertibles $\implies f \circ g$ is bijective/invertible

³This is in fact the definition of x_n converging to x $(x_n \to x)$.

⁴(in the reals)

⁵Hint: look for Euclid's lemma.

⁶See congruence on Wikipedia