Nef: Given a P.S. $\sum_{n=0}^{\infty} G_n(n-c)^n$, the number $R \in IR \cup \{\infty\}$

is called the radius of Convergence, where

 $\frac{Recoul:}{\frac{1}{\infty} = 0 \quad \text{if } \frac{1}{0} = \infty$

Moreover, Roses (C-R, C+R) is called the interval of Convergence of the P.S.

#: By Cauchy- Hadamard Hum., for $\sum_{n=0}^{\infty} (a-c)^n s$ with $\frac{1}{R} = \lim_{n \to \infty} \sup_{n \to \infty} \frac{1}{|a_n|}$,

No conclusion about ena prints {e = R}.

If R=0, then the series converges only at x=c.

Remark: Let forn) be a segn of the nos. Then:

liming dn+1 & liming of dn & limsup of not

If $\lim_{n\to\infty} \frac{\alpha_{n+1}}{\alpha_n} = \lim_{n\to\infty} \frac{\alpha_{n+1}}{\alpha_n} = \lim_{n\to\infty} \frac{\alpha_{n+1}}{\alpha_n} = \lim_{n\to\infty} \frac{\alpha_n}{\alpha_n} = \lim_{n\to$

Cor: If $\lim_{n\to\infty} \left| \frac{a_{nH}}{a_n} \right| = xists$, then for $\sum_{n=0}^{\infty} a_n (x-c)^n$, the

radius of Convengence is given by:

$$\frac{1}{R} = \lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

$$\Rightarrow p = \sum_{n=0}^{N} a_n (n-c)^n. \quad \text{for some } N \in \mathbb{N}.$$

i.
$$\frac{1}{R} = \lim_{n \to \infty} \sup_{n \to \infty} \frac{1}{|a_n|} = 0$$

$$\Rightarrow$$
 $R = \infty$.

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\sum_{n=0}^{\infty} \frac{g_n^n}{n!} \qquad \qquad C=0, \quad a_n = \frac{1}{n!} \quad \therefore \quad A \quad P.s.$$

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+1)!} = \frac{1}{n+1}$$

$$\Rightarrow \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_{n+1}} \right| = \lim_{n\to\infty} \frac{1}{n+1} = 0.$$

$$\Rightarrow$$
 $R = \infty$.

We define:
$$e^{\alpha} = \frac{2\pi n!}{n!} + \pi \in \mathbb{R}$$
.

Jaydeb Sankan

(3)
$$\frac{1}{3} - \chi + \frac{\chi^2}{3^2} - \chi^3 + \frac{\chi^4}{3^4} - \chi^5 + \cdots$$

$$Q_n = \begin{cases} \frac{1}{3} & n = 0. \\ \frac{1}{3^n} & n \text{ even.} \end{cases}$$

$$\sum_{m=0}^{\infty} \frac{(n+1)^{m+1}}{(n+1)^{m+1}} \mathcal{D}_{m}$$

$$\left|\frac{Q_n}{G_{n+1}}\right| = \frac{n!}{(n+1)!} \times \frac{(n+2)^{m+2}}{(n+1)^{m+1}}$$

$$= \frac{1}{n+1} \times \frac{(n+2)^{m+2}}{(n+1)^{m+1}} = \left(\frac{n+2}{n+1}\right)^{m+2}$$

$$= \left(1 + \frac{1}{n+1}\right)^{n+2} \longrightarrow e \text{ as } n \to \infty.$$

$$\Rightarrow \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{e}.$$

$$(5) \qquad \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \chi^m$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{m+1}}{n} x^{n} = \frac{n-\frac{n^{2}}{2}+\frac{n^{3}}{3}-\frac{n^{4}}{4}+\cdots}{n}$$

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n}{n+1} = \underline{\underline{\underline{Y}}}.$$

$$\Rightarrow$$
 $R = 1$.

From now on:
$$\sum_{n=0}^{\infty} a_n x^n$$

Recall! If
$$\sum_{n=0}^{\infty} a_n x^n$$
 Converges at $x_0 \in IR$ $(x_0 \neq 0)$,

then $\sum_{n=0}^{\infty} a_n x^n$ converges $\forall x \in IR$ $S.t.$
 $n = 0$
 $|x| \leq |x_0|$

The idea was: Zanza Converges at no => Zan no Cono. => fu E= = 1 7 N + IN S. +. \Rightarrow $a_n x_o^n \rightarrow 0$ anno < 1 +n>N Now if |n/ < |no/, then | an xm | < |an xon | + n>1 $= \sum_{n=0}^{\infty} |a_n g_n^n| \left\langle \sum_{n=0}^{\infty} |a_n g_n^n| \right\rangle$ 2 [an] [not] < 00, By 14- zest, Sian 20 is uniformly convergent Thus; we have the following: # Thm: Let R = radius of Convergence of the P.S. Zanna Then Zanzam is the on all closed intervals = (-R,R) P.S. is M.C. & land. on Subsers | Very weefer property. The radius the radius of Convergence.

Assume R to. The following is now easy: This Let $f(\alpha) = \sum_{n=0}^{\infty} a_n 2^n$ on (-R, R). Then + x E (-R,17), $\int f = \sum_{n=0}^{\infty} \frac{\alpha_n}{nH} \chi^{nH}$ on Compact

Prof: " term-by-term int. is allowed on for u.c. Series.

	1
1	5
>	\cup
	>

Q: What about destivatives of P.S.? R = radius of Notation:
Remork: Let $f(n) = \sum_{n=0}^{\infty} a_n a_n$ on (-R, R). (: R = lim sup Wlant) Def: Given a P.S. Zanan, the descived series is the new P.S. $\sum_{n=1}^{\infty} n \, a_n \, x^{n-1}$ The team - by-team derivatives. Thm: Let $R_d = radius$ of convergence of the descived $P.S. \sum_{n=1}^{\infty} n a_n a_n^{n-1}$. [R = 1/limsup 7/19n] Then R = Ry. Proof: By definition:

1/R, = lim sup n an m x m 19n1 & we know mm -) i as lim sup n | m | an | = lim mm x lim sup m [an]. $=1\times\frac{1}{R}$

=> R=Rz.

Remark: Sulploose

Then we already proved:

$$a_n = \frac{f^{(n)}(o)}{n!} \quad \forall \quad n \geqslant o.$$

$$f(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$

on (-R, R)

The Taylor Series of the fu. of about O.

Q: Let f be a for that is infinitely diff. at in a nod of 0, say on (-E, E) for some E to.

$$\frac{?}{?} \neq (\pi) = \sum_{n=1}^{\infty} \frac{f^{(n)}(o)}{n!} \pi^n \qquad \forall \pi \in (-\epsilon, \epsilon)?$$

The Taylor series of f avoiced o. for = 1000

Am: No!

f:IR->1R defined

$$f(n) = \begin{cases} e^{-1/n^2} \end{cases}$$

Jankarli an= p(m(c)

Then fis infinitely diff. atom, on 1R. (Jaydeb Sarkar. Easy to see + x E 1R 1 for. At n=0: Check (HW). $f^{(n)}(0) = 0 \quad \forall \quad n \geq 0.$ Moneover: => The Taylor expansion of f around o is: $\int \frac{f^{(n)}(s)}{n!} \chi^n \equiv 0.$ $= f(\alpha) \neq \frac{\int f^{(n)}(0)}{n!} \pi^n$ + x (- E, E) fu any 27011 # You will face this in Complex analysis !!] Def: Let f: (a,b) -> IR be a for. We suy that f is analytic at CE (G.b) if there is a p.s. about c that represents f in a not of c. r.c. $f(x) = \sum_{n=0}^{\infty} a_n(x-c)^n \quad \forall \quad x \in (c-s, c+s) \quad f_{n-s}$ Some Sto. # f is analytic at $c \iff f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$, $\forall x \in [c_8]$

The Tayloge series of fabout C.

	-	
11	7/	
16	> 1	ľ
1		٠,

Remark: Clearly, if f is analytic at c, then f is Smooth at C [i.e. f (n)(c) exists + nto]. Of Course, Smooth => analytic. - « Complex analysis"

eq: f(x) = 1/2 is analytic at CEIR \ \$1}.

Infact: remember: $\frac{1}{1-\pi} = \sum_{n=0}^{\infty} \pi^n$ $|\pi| < 1$

In general: if de C + I, then:

 $f(n) = \frac{1}{1-e} \left[\frac{1}{1-\frac{x-e}{1-e}} \right]$

 $=\frac{1}{1-c}\times\sum_{n=0}^{\infty}\left(\frac{n-c}{1-c}\right)^{n}+\left|\frac{n-c}{1-c}\right|<1.$

 $= \frac{1}{(1-c)^{n+1}} (n-c)^{n} \cdot \frac{1}{n-c} \times \frac{1}{1-c}$

n-G < 1-c

i. I is defined on all of IR 7 & IJ, but, the above equality holds only on | 7-4 | 4 | 1-c|

is |1-c| & interval of conv. 15

(G-11-c), E+/1-cl).

All debends an