MATH 2080 Test 2

- QI
 - a) Every bounded infinite subset of the real numbers has at least one accumulation point.
- b) For every E>O there exists \$>0 such that $0 < |x-x_0| < S$ implies $|f(x)-L| < \varepsilon$.
- c) for every LETR there exists $\varepsilon>0$ such that for all $\varepsilon>0$ there exists $\varepsilon>0$ such that $|f(x)-L|\geq \varepsilon$.
- d) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence, and $\{n_k\}_{k=1}^{\infty}$ a sequence of natural numbers with $n_1 < n_2 < n_3 < \dots$. Then $\{a_n_k\}_{k=1}^{\infty}$ is a subsequence of $\{a_n\}_{n=1}^{\infty}$.
- e) A point x, ER 13 an accumulation point of S=R if every neighbourhood of x, contains a point of S other than x.
- f) Consider $a_n = 1$ for all n. Then $\{a_n\}_{n=1}^{\infty}$ converges to 1 but the set $\{a_n \mid n \in \mathbb{N}\}$ has no accumulation points because it is finite.

Q2 Let E>O. We need to find S such that 0<1x-11<8 implies |f(x)-4| < E. We compute 1(x2+3)-4/ < & (=) |x2-1 | < E (⇒) |x-1||x+|| < €.</p> Now as long as $S \le 1$, we know |x+1| will take as inputs $x \in [0,2]$ and so $|x+1| \le 3$.

So if $\delta \leq \frac{\varepsilon}{3}$ and $\delta \leq 1$ then

 $|(x^2+3)-4| = |x-1||x+|| < \delta \cdot \frac{\varepsilon}{3} = \varepsilon.$

Suppose $\{a_n\}_{n=1}^{\infty}$ is increasing and bounded. Then $\{a_n \mid n \in \mathbb{N}\}$ is bounded above, so $s = \sup\{a_n \mid n \in \mathbb{N}\}$ exists.

Let 270. Suppose $a_n \leq 3-\epsilon$ for all n.

Then $S-\epsilon$ would be an upper bound for $\{a_n \mid n \in \mathbb{N}\}$ meaning S is not the sup, a contradiction.

So, In such that $a_n > S-\epsilon$. But then since the sequence is increasing, $S \geqslant a_m \geqslant a_n > S-\epsilon$ for all $m \geqslant n$, and thus $|a_m - S| < \epsilon$ for all $m \geqslant n$.

Therefore $\{a_n\}_{n=1}^\infty$ converges to S.

Q4 Suppose $f:\mathbb{R} \to \mathbb{R}$ is one-to-one on $(x_0 - \xi, x_0 + \xi)$, and $\lim_{x \to x_0} f(x) = L$. Let \mathbb{Q} be a neighbourhood of L, and choose ε such that $(L-\varepsilon, L+\varepsilon) \subset \mathbb{Q}$. Choose $\xi' < \xi$ such that $0 < |x-x_0| < \xi'$ implies $|f(x)-L| < \varepsilon$. Since x, is an accumulation point of ξ , there's $\xi \in \xi$ with $|y-x_0| < \xi'$. By choosing a different ξ if necessary, we can ensure that $f(\xi) \neq L$ since ξ is one-to-one. Then $f(\xi) \in (L-\varepsilon, L+\varepsilon)$ shows that L is an accumulation point of ξ .

The claim fails if f(x) = C is constant, since f(s) is finite and so has no accumulation points no matter the set S.

Alternative solution:

Choose a sets sequence $\{x_n\}_{n=1}^{\infty}$ of points in S, $x_n \neq x_n$ for all n, converging to x_n . We can assume $\{x_n\}_{n=1}^{\infty}$ is not eventually constant since x_n is an accumulation point of S. Since $\lim_{x\to x_n} f(x_n) = L$, $\{f(x_n)\}_{n=1}^{\infty}$ converges to $\lim_{x\to x_n} f(x_n) = L$, $\lim_{x\to x_n} f(x_n) = L$, are mapped to distinct points $\lim_{x\to x_n} f(x_n) = \lim_{x\to x_n}$