Exercises (13) May 14, 2024

- 1. A set $A \subseteq \mathbb{R}^n$ has measure zero if for each $\epsilon > 0$ there is a sequence $\{R_j\}$ of rectangles whose union contains A and such that $\sum_j |R_j| < \epsilon$.
 - (a) (4 points) Show that, in the definition of "measure zero" given above, we can require the rectangles to be open cubes.
 - (b) (3 points) Show that the union of a countable family of sets with measure zero has measure zero.
 - (c) (3 points) Show that every compact set A with measure zero also has Vol(A) = 0.
- 2. (10 points) Let $E \subseteq \mathbb{R}^n$ be a Jordan region. Show that

$$Vol(E) = \int_{E} 1 dx.$$

3. Define f on the square $Q = [0,1] \times [0,1]$ as follows:

$$f(x,y) = \begin{cases} 1 & \text{if } x \text{ is rational,} \\ 2y & \text{if } x \text{ is irrational.} \end{cases}$$

(a) (6 points) Prove that $G(x,t) \equiv \int_0^t f(x,y) dy$ exists for $0 \le t \le 1$ and that

(U)
$$\int_0^1 G(x,t)dx = t$$
 and (L) $\int_0^1 G(x,t)dx = t^2$.

This shows that $\int_0^1 (\int_0^1 f(x,y)dy)dx = 1$.

(b) (4 points) Prove that the double integral $\int_{Q} f(X)dX$ does not exist.