MIE 1807 Principles of Measurement

2017-02-07 Neil Montgomery

Lecture notes: https://github.com/mie1807-winter-2017

Limit theorems not always useful in practice, but the CLT is!

The importance of the CLT is due to the speed of convergence:

$$P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le u\right) \approx P(Z \le u)$$

for n "large enough". How large? It depends on the shape of the underlying distribution.

 n
 2
 10
 20
 50

 shape
 Normal
 Symmetric
 Moderate
 Very non-Non-normal

 MIE1807 - Neil Montgomery

CLT example

Engine lifetimes follow a roughly symmetric distribution with mean 3.4 years and s.d. 2.1 years.

What is the chance that the average life of 25 engines exceeds 4 years?

$$P(\overline{X} > 4) = P\left(\frac{\overline{X} - 3.4}{2.1/\sqrt{25}} > \frac{4 - 3.4}{2.1/\sqrt{25}}\right)$$
$$\approx P(Z > 1.43) = 0.0766$$

MIE1807 - Neil Montgomery

3

An accurate plot for detecting deviation from Normal

Consider a sample of size 10 (say) from N(0,1)

On average such a sample will be centered at 0 with the same amount of probability between each point.

MIE1807 - Neil Montgomery

Normal Quantile Plot (NQP)

The Computer can calculate what these theoretical quantiles $z_{(1)}, z_{(2)}, \ldots, z_{(10)}$ should be.

$z_{(1)}$	1	2	3	4	5	6	7	8	9	10
Probabilities	0.06	0.16	0.26	0.35	0.45	0.55	0.65	0.74	0.84	0.94
Quantiles	-1.55	-1.00	-0.66	-0.38	-0.12	0.12	0.38	0.66	1.00	1.55

 \dots and so on for any sample size n.

A Normal Quantile Plot of a univariate, numerical dataset, is a scatterplot of the data versus normal quantiles.

MIE1807 - Neil Montgomery

Ę

(Light and Heavy Tailed Distributions)

Right and left skew has already been defined. In addition, we can have:

Mini-Recap – What are the Models in Use?							
Wørd	Informal Definition	How Modeled?					
Population	"All possible obversations under consideration"	Distribution X					
Sample	"Subset of the population"	X_1, \dots, X_n Independent Same distribution					
Dataset	x_1,\dots,x_n List of observations. A realization of a sample. MIE1807 - Neil Montgomery	Nothing to model!					

Mini-Recap: "Sample Average"

Distribution if population is Normal

Approximate distribution if sample size is "large enough"

N(0, 1)

N(0,1)

Verify using NQP

MIE1807 - Neil Montgomery

15

Definition - "Parameter"

A parameter (tends to be) a fixed constant that characterizes some aspect of the distribution of a population. e.g.:

$$N(\mu, \sigma^2)$$

The parameters are μ and σ^2 .

MIE1807 - Neil Montgomery

"Statistics" - The General Problem

The distribution used to model the population might not be fully specified.

$$N(4,2)$$
 $N(\mu,2)$ $N(\mu,\sigma^2)$

"Some distribution with a mean and a variance (both unknown)"

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$
, ε_{ij} have the same variance.

Unknown quantities are often *parameters* of a distribution.

MIE1807 - Neil Montgomery

17

"Statistics" - The General Solution

Obtain a sample, e.g.: X_1, \ldots, X_n

(Or:
$$Y_{11}, ..., Y_{1n}, Y_{21}, ..., Y_{2n}, ...,$$
 for example)

Use probability to *infer* some statement about the population. "Statistical inference"

In many cases it might be intuitively clear how to use the sample ...

MIE1807 - Neil Montgomery

What types of inferences might be made?

Given a $N(\mu, \sigma^2)$ population, guess values for μ and/or σ^2 : Estimation.

or

Given a model $Y_{ij} = \mu_i + \varepsilon_{ij}$, see if $\mu_1 = \cdots = \mu_I$, or not. Hypothesis testing.

or

Given a model $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, predict the value of Y at a new input x. Prediction.

MIE1807 - Neil Montgomery

19

What types of inferences might be made?

A population has an unknown distribution. Determine what the distribution might be, from some suitable family of candidates.

Distribution fitting.

MIE1807 - Neil Montgomery

How will all this be done? Definition of Statistic

A *statistic* is a function of a sample.

Sample mean.
$$\overline{X} = \frac{\sum_{i=1}^{\bar{n}} X_i}{n}$$

Sample mean.
$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
Sample variance. $S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$

In the $N(\mu, \sigma^2)$ case these statistics are used to make statements about the obvious corresponding parameters. CLT...

MIE1807 - Neil Montgomery

21

Agenda

- Overview of Statistical Inference
 - Estimation
 - Prediction
 - Hypothesis testing
- But there will be a digression...
 - ...to discuss an important distribution related to the Normal distribution.

MIE1807 - Neil Montgomery

Point Estimation

Again: the population model X may not be completely specified:

$$N(\mu, 25)$$
 $N(\mu, \sigma^2)$ $F(\mu)$

We can plan to obtain a sample: X_1, X_2, \ldots, X_n to guess unknowns. The guesses will have certain properties.

The actual guesses themselves will use the observed sample $x_1, x_2, \dots x_n$

MIE1807 - Neil Montgomery

23

Point "Estimator"

An estimator is a statistic (in particular, a random variable) used to guess the value of a parameter.

Desirable properties:

accurate (correct on average)
$$\leftarrow E(\cdot)$$

precise (not too variable)

consistent (improves as $n \nearrow$)

Var (\cdot)

MIE1807 - Neil Montgomery

Example point estimators

Population: $N(\mu, 25)$ Sample X_1, \ldots, X_n

Usual estimator: \overline{X} Stupid estimator: $\frac{X_1+X_2}{2}$

Both are "accurate":

$$E\left(\overline{X}\right) = \mu$$
 $E\left(\frac{X_1 + X_2}{2}\right) = \mu$

MIE1807 - Neil Montgomery

25

Example estimators

The usual estimator is more precise:

$$\operatorname{Var}\left(\overline{X}\right) = \frac{25}{n} \quad \operatorname{Var}\left(\frac{X_1 + X_2}{2}\right) = \frac{25}{2}$$

Also from this, the usual estimator gets better with $n \nearrow$, but stupid one just sits there being stupid.

Most situations have a "usual" estimator.

MIE1807 - Neil Montgomery

Another example point estimator

One factor experiment with only two levels, 1 and 2. Population divided into two groups $N(\mu_1, 100)$ and $N(\mu_2, 100)$.

Usual question: what is the difference?

Estimate $\mu_1 - \mu_2$

Sample: $Y_{11}, \dots, Y_{1n}, Y_{21}, \dots Y_{2n}$

Usual estimator: \overline{Y}_1 . $-\overline{Y}_2$.

MIE1807 - Neil Montgomery

27

Another example estimator

$$E(\overline{Y}_{1.} - \overline{Y}_{2.}) = \mu_{1} - \mu_{2}$$

$$Var(\overline{Y}_{1.} - \overline{Y}_{2.}) = Var(\overline{Y}_{1.}) + Var(\overline{Y}_{2.})$$

$$= \frac{100 + 100}{n}$$

MIE1807 - Neil Montgomery

Interval Estimation

Point estimators do not provide any assessment of precision.

One could instead report a range of plausible values based on two statistics L and U that satisfy (e.g. in the case of estimating a mean μ):

$$P(L \le \mu \le U) = 1 - \alpha$$

MIE1807 - Neil Montgomery

29

"Confidence Interval"

$$P(L \le \mu \le U) = 1 - \alpha$$

(L,U) is a $100(1-\alpha)\%$ confidence interval

L and U are the confidence limits.

 $100(1-\alpha)$ is the *confidence level* and is typically close to 100, such as 90, 95, 99 etc.

MIE1807 - Neil Montgomery

Example of such an L and U

Population:
$$N(\mu, 25)$$
 Sample X_1, \dots, X_n
 $\alpha = 0.05$

$$P\left(-1.96 \le \frac{\overline{X} - \mu}{5/\sqrt{n}} \le 1.96\right) = 0.95$$

$$P\left(\overline{X} - 1.96 \frac{5}{\sqrt{n}} \le \mu \le \overline{X} + 1.96 \frac{5}{\sqrt{n}}\right) = 0.95$$

Informally: "
$$\overline{X} \pm 1.96 \frac{5}{\sqrt{n}}$$
"

MIE1807 - Neil Montgomery

31

Numerical Example

Calcium concentration in an oil additive is $N(\mu, 400)$. A sample of size 25 is taken. The observed sample average is 491ppm.

A 95% confidence interval for μ is:

$$491 \pm 1.96 \frac{20}{5} = (483.16, 498.84)$$

MIE1807 - Neil Montgomery

Use/Myth/Meaning

USE: To give a range of plausible values for μ that accounts for the sampling procedure undertaken.

MYTH: $P(483.16 \le \mu \le 498.84) = 0.95$

LITERAL MEANING: If many (hypothetical) samples were observed, and a C.I. computed each time, then $100(1-\alpha)\%$ of the intervals will contain μ .

MIE1807 - Neil Montgomery

33

34

MIE1807 - Neil Montgomery

What influences the width of a confidence interval?

Generally: $\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

MIE1807 - Neil Montgomery

35

Sample size for a given "margin of error"

The difference between estimator and parameter (e.g. \overline{X} and μ) can be called margin of error denoted by m

Problem: determine n so that $|\overline{X} - \mu| < m$ with probability $1 - \alpha$.

Solution: since $|m| = \left| z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right|$, just solve for n in:

$$m = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \quad \longrightarrow \quad n = \left(\frac{z_{\alpha/2}\sigma}{m}\right)^2$$

MIE1807 - Neil Montgomery

Sample size numerical example

Calcium concentration in an oil additive is $N(\mu, 400)$. What sample size is required to obtain an estimate for μ within 5ppm with probability 0.95?

$$n = \left(\frac{z_{\alpha/2}\sigma}{m}\right)^2 = \left(\frac{1.96 \cdot 20}{5}\right)^2$$
$$= 61.4656$$

Sample size required is 62 (conservative).

MIE1807 - Neil Montgomery

37

A more realistic situation

It is unlikely to have $N(\mu, 400)$, say, as a population model, i.e. with variance known.

More realistic: $N(\mu, \sigma^2)$ both parameters unknown.

Confidence interval based on:

$$P\left(-z_{\alpha/2} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha$$

MIE1807 - Neil Montgomery

What to do about the unknown variance?

What is the obvious thing to try?

Estimate σ^2 with something—obviously (?) with the sample variance s^2

Proposed new formula: $\overline{X} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$

Is it valid? No - the "coverage" probability is too low for small to moderate n.

MIE1807 - Neil Montgomery

39

A new (family of) distribution(s)

Sample X_1, X_2, \ldots, X_n from a $N(\mu, \sigma^2)$

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \qquad \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

"t distribution" with parameter n-1, where n is the sample size.

Notation: t_{n-1}

MIE1807 - Neil Montgomery

Fundamental Difference between t and Z

Densities:

$$f_Z(z) \propto e^{-z^2/2}$$

$$f_Z(z) \propto e^{-z^2/2}$$

$$f_t(t) \propto \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$$

MIE1807 - Neil Montgomery

41

"One Sample t confidence interval for the mean"

$$\overline{X} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$

Calcium concentration in an oil additive is $N(\mu, \sigma^2)$. A sample of size 25 is taken. The observed sample average is 491ppm and the observed sample variance is 426..

A 95% confidence interval for μ is:

$$491 \pm 2.064 \frac{\sqrt{426}}{5} = (482.47, 499.56)$$
MIE1807 - Neil Montgomery