

Nombre:

Tatiana Doménica Cardenas Jho

Tema:

Regresión de los casos de COVID-19 en Ecuador

Asignatura:

Simulación

Docente:

Ing. Diego Fernando Quisi Peralta

Fecha:

Cuenca, 25 de abril de 2021

Enunciado:

Generar un modelo de regresión de los casos confirmados de COVID dentro del Ecuador, el mismo que permita predecir el comportamiento y/o predicción de la pandemia, tomar los datos desde el inicio e identificar etapas: Confinamiento, Toques de Queda, Feriados, etc.

Desarrollo:

8 rows × 54 columns

La presente práctica fue desarrollada mediante el modelo de regresión lineal y el modelo de regresión polinomial para poder predecir el número de contagios de COVID-19 en el Ecuador.

A continuación, se presenta los datos del dataset que fue utilizado para el desarrollo de la practica:

	iso_code	continent	location	date	total_cases	new_cases	new_cases_smoothed	total_deaths	new_deaths	new_deaths_smoothed	 gdp_per_capita
38	ECU	South America	Ecuador	2020- 04-08	4450	703	243.143	242.0	51.0	21.286	 10581.936
386	ECU	South America	Ecuador	2021- 03-22	312851	253	1479.000	16478.0	27.0	34.000	 10581.936
133	ECU	South America	Ecuador	2020- 07-12	67870	661	844.571	5047.0	16.0	38.000	 10581.936
5	ECU	South America	Ecuador	2020- 03-06	13	0	1.857	NaN	NaN	0.000	 10581.936
179	ECU	South America	Ecuador	2020- 08-27	111219	670	815.857	6471.0	61.0	38.714	 10581.936
5 rows × 59 columns											

Ilustración 1. Dataset COVID-19

	total_cases	new_cases	new_cases_smoothed	total_deaths	new_deaths	new_deaths_smoothed	total_cases_per_million	new_cases_per_million	new_ca
count	407.000	407.000	402.000	394.000	394.000	402.000	407.000	407.000	
mean	137704.005	852.130	849.336	9215.898	43.891	42.604	7804.996	48.298	
std	100545.657	967.507	468.354	5646.413	196.902	75.717	5698.879	54.838	
min	6.000	-7953.000	-525.000	2.000	0.000	0.000	0.340	-450.772	
25%	44440.000	353.000	562.572	4172.750	12.000	21.179	2518.837	20.008	
50%	126419.000	765.000	869.143	11276.000	27.000	31.143	7165.367	43.360	
75%	212012.000	1202.000	1123.750	14059.000	43.000	39.964	12016.736	68.128	
max	346817.000	11536.000	2038.429	17293.000	3852.000	597.000	19657.418	653.855	

Ilustración 2. Descripción del Dataset COVID-19

Pruebas:

Regresión lineal:

La regresión lineal es un campo de estudio que enfatiza la relación estadística entre dos variables continúas conocidas como variables de predicción y respuesta.

1.

```
#PRUEBA 1

m = linear_regressor.coef_[0][0]
c = linear_regressor.intercept_[0]
#Prediccion de x dias desde la fecha inicial del Dataset 2020-03-01
dias=700
label1 = m*dias-c
print("Numero de casos a los ",dias," de la fecha inicial del dataset, se obtien
```

Numero de casos a los 700 de la fecha inicial del dataset, se obtiene una pre diccion de : 679202.5680659452

Ilustración 3. Prueba 1 de regresión lineal

2.

```
#PRUEBA 2

m = linear_regressor.coef_[0][0]
c = linear_regressor.intercept_[0]
#Prediccion de x dias desde la fecha inicial del Dataset 2020-03-01
dias=750
label2 = m*dias-c
print("Numero de casos a los ",dias," de la fecha inicial del dataset, se obtien

Numero de casos a los 750 de la fecha inicial del dataset, se obtiene una pre
diccion de : 721617.2395602312
```


Ilustración 4. Prueba 2 de regresión lineal

3.

```
#PRUEBA 3

m = linear_regressor.coef_[0][0]
c = linear_regressor.intercept_[0]
#Prediccion de x dias desde la fecha inicial del Dataset 2020-03-01
dias=800
label3 = m*dias-c
print("Numero de casos a los ",dias," de la fecha inicial del dataset, se obtien
```

Numero de casos a los 800 de la fecha inicial del dataset, se obtiene una pre diccion de : 764031.9110545174

Ilustración 5. Prueba 3 de regresión lineal

```
#PRUEBA 4

m = linear_regressor.coef_[0][0]
c = linear_regressor.intercept_[0]
#Prediccion de x dias desde la fecha inicial del Dataset 2020-03-01
dias=900
label4 = m*dias-c
print("Numero de casos a los ",dias," de la fecha inicial del dataset, se obtien
```

Numero de casos a los $900\,$ de la fecha inicial del dataset, se obtiene una pre diccion de : $848861.2540430896\,$

Ilustración 6. Prueba 4 de regresión lineal

5.

```
: #PRUEBA 5

m = linear_regressor.coef_[0][0]
c = linear_regressor.intercept_[0]
#Prediccion de x dias desde la fecha inicial del Dataset 2020-03-01
dias=968
label5 = m*dias-c
print("Numero de casos a los ",dias," de la fecha inicial del dataset, se obtien
```

Numero de casos a los 968 de la fecha inicial del dataset, se obtiene una pre diccion de : 906545.2072753186

Ilustración 7. Prueba 5 de regresión lineal

Regresión polinomial:

Predicción de una variable de respuesta cuantitativa a partir de una variable predictora cuantitativa, donde la relación se modela como una función polinomial de orden n

```
#Prediccion de x dias desde la fecha inicial del Dataset 2020-03-01=dia 60
pol_prediccion = regresion_lineal.predict(pf.fit_transform([[700]]))
print("Prediccion para el dia 700 despues del dia 60:")
print(int(pol_prediccion))
```

Prediccion para el dia 700 despues del dia 60: 5806171

Ilustración 7. Prueba Regresión polinomial

Regresión lineal vs Regresión polinomial:

Ilustración 7. Regresión lineal vs regresión polinomial

Como se puede evidenciar en las gráficas presentes, la curva de contagios en la regresión polinomial se ajusta de mejor manera a comparación de la regresión lineal.

Conclusiones

- O La regresión polinomial consigue añadir curvatura al modelo introduciendo nuevos predictores que se obtienen al elevar todos o algunos de los predictores originales a distintas potencias, de tal manera que en la comparación presentada anteriormente se pudo observar como la regresión polinomial se ajustó de mejor manera a la curvatura de contagios.
- Los modelos lineales tienen la ventaja de ser fácilmente interpretables, sin embargo, pueden tener limitaciones importantes en capacidad predictiva.