WELTORGANISATION FUR GEISTIGES EIGENTUM

Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07C 69/75, 67/303, 51/36, 61/09, C08K

(11) Internationale Veröffentlichungsnummer:

D-68165 Mannheim (DE).

WO 99/32427

A1

(43) Internationales Veröffentlichungsdatum:

1. Juli 1999 (01.07.99)

(21) Internationales Aktenzeichen:

PCT/EP98/08346

(22) Internationales Anmeldedatum:

18. Dezember 1998

(18.12.98)

(30) Prioritätsdaten:

197 56 913.7 198 32 088.4 19. Dezember 1997 (19.12.97) DE DF.

16. Juli 1998 (16.07.98)

(81) Bestimmungsstaaten: AU, BR, CA, CN, ID, IN, JP, KR, MX, SG. US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(74) Anwalt: ISENBRUCK, Günter; Bardehle, Pagenberg, Dost,

Altenburg, Geissler, Isenbruck, Theodor-Heuss-Anlage 12,

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BRUNNER, Melanie [DE/DE]; Anton-Bruckner-Strasse 10, D-67105 Schifferstadt (DE). BÖTTCHER, Arnd [DE/DE]; Karolinenstrasse 24, D-67227 Frankenthal (DE). BREITSCHEIDEL, Boris [DE/DE]; Trifelsring 61a, D-67117 Limburgerhof (DE). HALBRITTER, Klaus [DE/DE]; Leisberg 32, D-69124 Heidelberg (DE). HENKELMANN, Jochem [DE/DE]; Bassermannstrasse 25, D-68165 Mannheim (DE). THIL, Lucien [FR/DE]; Ruwerstrasse 1, D-67117 Limburgerhof (DE). PINKOS, Rolf [DE/DE]; Birkental 3a, D-67098 Bad Dürkheim (DE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen

Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: METHOD FOR HYDROGENATING BENZENE POLYCARBOXYLIC ACIDS OR DERIVATIVES THEREOF BY USING A CATALYST CONTAINING MACROPORES

(54) Bezeichnung: VERFAHREN ZUR HYDRIERUNG VON BENZOLPOLYCARBONSÄUREN ODER DERIVATEN DAVON UNTER VERWENDUNG EINES MAKROPOREN AUFWEISENDEN KATALYSATORS

(57) Abstract

The invention relates to a method for hydrogenating a benzene polycarboxylic acid or a derivative thereof or of a mixture comprised of two or more thereof with a gas containing hydrogen in the presence of a catalyst. Said catalyst comprises ruthenium as an active metal which is deposited alone or together with at least one metal of subgroups I, VII, or VIII of the periodic table on a support, whereby the support contains macropores. The invention also relates to novel hydrogenated products obtained by hydrogenating benzene polycarboxylic acid (derivatives) and to the use thereof as plasticizers in plastics.

(57) Zusammenfassung

Verfahren zur Hydrierung einer Benzolpolycarbonsäure oder eines Derivats davon oder eines Gemischs aus zwei oder mehr davon mit einem Wasserstoff enthaltenden fas in Gegenwart eines Katalysators, der als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII. oder VIII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, wobei der Träger Makroporen aufweist, sowie neue Hydrierungsprodukte erhältlich durch Hydrierung von Benzolpolycarbonsäure(derivaten) sowie deren Verwendung als Weichmacher in Kunststoffen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	***	0 .				
		ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Мопасо	TĐ	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko	••	Amerika
CF	Zentralafrikanische Republik	JР	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
Cl	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen	2	Zimodowe
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

- 1 -

5 Verfahren zur Hydrierung von Benzolpolycarbonsäuren oder Derivaten da-

von unter Verwendung eines Makroporen aufweisenden Katalysators

10

Die vorliegende Erfindung betrifft ein Verfahren zur Hydrierung von Benzolpolycarbonsäuren oder Derivaten davon, wie z.B. Estern und/oder Anhydriden, durch Inkontaktbringen einer oder mehrerer Benzolpolycarbonsäuren oder eines oder mehrerer Derivate davon mit einem Wasserstoff enthaltenden Gas in Gegenwart 15 eines Makroporen aufweisenden Katalysators.

Ferner betrifft die vorliegende Erfindung auch ausgewählte Vertreter der erhaltenen Hydrierungsprodukte an sich, d.h. die entsprechenden Cyclohexanverbindungen, insbesondere Cyclohexandicarbonsäureester und Cyclohexantricarbonsäureester, 20 insbesondere der mit dem erfindungsgemäßen Verfahren erhaltenen Cyclohexandicarbonsäureester und Cyclohexantricarbonsäureester. Außerdem betrifft die vorliegende Erfindung auch die Verwendung der erhaltenen Cyclohexanpolycarbonsäuren als Weichmacher in Kunststoffen.

25 In der US 5,286,898 und der US 5,319,129 wird Dimethylterephthalat an geträgerten Pd-Katalysatoren, die mit Ni, Pt und/oder Ru versetzt sind, bei Temperaturen ≥ 140 °C und einem Druck zwischen 50 und 170 bar zum entsprechenden Hexahydrodimethylterephthalat hydriert. In der DE-A 28 23 165 werden aromatische Carbonsäureester an geträgerten Ni-, Ru-, Rh-, und/ oder Pd-30 Katalysatoren zu den entsprechenden cycloaliphatischen Carbonsäure-estern bei 70 bis 250 °C und 30 bis 200 bar hydriert. In der US 3,027,398 wird die Hydrierung

WO 99/32427 . PCT/EP98/08346

-2-

von Dimethylterephthalat an geträgerten Ru-Katalysatoren bei 110 bis 140 °C und 35 bis 105 bar beschrieben.

Die EP-A 0 603 825 betrifft ein Verfahren zur Herstellung von 1,45 Cyclohexandicarbonsäure durch Hydrierung von Terephthalsäure unter Verwendung eines geträgerten Palladium-Katalysators, wobei als Träger Aluminiumoxid, Siliciumdioxid oder Aktivkohle verwendet wird. Das dort beschriebene Verfahren ist insbesondere dadurch charakterisiert, daß die in einer ersten Stufe erhaltene 1,4-Cyclohexandicarbonsäure enthaltende Lösung mit Dampf in Kontakt gebracht wird und dadurch in dieser Lösung enthaltene Verunreinigungen extrahiert werden. Dieses Verfahren ist jedoch nur auf Säuren anwendbar, da bei der Anwendung auf Derivate, wie z.B. Ester, Anhydride, usw. die Gefahr von Hydrolyse besteht. Die Verwendung eines Makroporen aufweisenden Trägers wird in dieser Anmeldung mit keinem Wort erwähnt.

15

Bislang wurden als Weichmacher in Kunststoffen, wie z.B. PVC sehr häufig Phthalsäureestern, wie z.B. Dibutyl-, Dioctyl- oder Diisononylester der Phthalsäure verwendet, wie dies z.B. aus der FR-A 23 97 131 hervorgeht. Diesen wird jedoch seit kurzer Zeit nachgesagt, daß sie gesundheitlich nicht unbedenklich sind, sodaß ihre Verwendung in Kunststoffen zur Verwendung von z.B. Kinderspielzeug immer stärker in der Kritik steht und in einigen Ländern bereits verboten ist.

Die Verwendung von einigen Cyclohexan-1,2-dicarbonsäureestern als Weichmacher ist ebenfalls aus dem Stand der Technik bekannt. So sind die Verwendung von Cyclohexandicarbonsäuredimethyl oder -diethylestern (DE-A 28 23 165) und Cyclohexan-1,2-dicarbonsäuredi(2-ethylhexyl)ester (DE-A 12 63 296), als Weichmacher in Kunstoffen beschrieben.

Der vorliegenden Erfindung lag die primäre Aufgabe zugrunde, ein Verfahren zur 30 Hydrierung von Benzolpolycarbonsäure(derivate)n, insbesondere Benzoldicarbonsäureestern unter Verwendung spezifischer Katalysatoren zur Verfügung zu stellen, mit deren Hilfe die entsprechenden kernhydrierten Derivate, insbesondere Cyclohexandicarbonsäureester mit sehr hoher Selektivität und Raum-Zeit-Ausbeute ohne signifikante Nebenreaktionen erhalten werden können.

5

Eine weitere Aufgabe der vorliegenden Erfindung lag in der Bereitstellung neuer Produkte, die durch die erfindungsgemäße Hydrierung von Benzolpolycarbonsäure(derivaten) erhältlich sind, und sich vorzugsweise zur Verwendung als Weichmacher in Kunststoffen eignen sollten.

10

Demgemäß betrifft die vorliegende Erfindung ein Verfahren zur Hydrierung einer Benzolpolycarbonsäure oder eines Derivats davon oder eines Gemischs aus zwei oder mehr davon durch Inkontaktbringen der Benzolpolycarbonsäure oder des Derivats davon oder des Gemischs aus zwei oder mehr davon mit einem Wasserstoff enthaltenden Gas in Gegenwart eines Katalysators, der als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, dadurch gekennzeichnet, daß der Träger Makroporen aufweist,

20 mit der Maßgabe, daß

sofern Terephthalsäuredimethylester hydriert wird, die Hydrierung mit einem Katalysator, der

als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII oder VIII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger,

- umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 50 nm und eine BET-Oberfläche von höchstens 30 m²/g aufweist und die Menge des Aktivmetalls 0,01 bis 30 Gew.- %, bezogen auf das Gesamtgewicht des Katalysator, beträgt, und das Verhältnis der Oberflächen des Aktivmetalls und des Katalysatorträgers kleiner 0,05 ist, oder
- 30 einem Katalysator, der als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII oder VIII. Nebengruppe des Periodensystems in

- 4 -

einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei 10 bis 50% des Porenvolumens des Trägers von Makroporen mit einem Porendurchmesser im Bereich von 50 nm bis 10.000 nm und 50 bis 90% des Porenvolumens des Trägers von Mesoporen mit einem Porendurchmesser im Bereich von 2 bis 50 nm gebildet werden, wobei sich die Summe der Anteile der Porenvolumina zu 100% addiert, ausgeschlossen ist.

In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung ein Verfahren zur Hydrierung einer Benzolpolycarbonsäure oder eines Derivats davon oder eines Gemischs aus zwei oder mehr davon, wobei der Katalysator als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 50 nm und eine BET-Oberfläche von höchstens 30 m²/g aufweist und die Menge des Aktivmetalls 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, beträgt (Katalysator 1).

Ferner betrifft sie ein derartiges Verfahren, wobei der Katalysator als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei 10 bis 50% des Porenvolumens des Trägers von Makroporen mit einem Porendurchmesser im Bereich von 50 nm bis 10.000 nm und 50 bis 90% des Porenvolumens des Trägers von Mesoporen mit einem Porendurchmesser im Bereich von 2 bis 50 nm gebildet werden, wobei sich die Summe der Anteile der Porenvolumina zu 100% addiert (Katalysator 2).

In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung 30 ein Verfahren, wie oben definiert, wobei der Katalysator (Katalysator 3) als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems

alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 0,1 μm, und eine BET-Oberfläche von höchstens 15 m²/g aufweist. Als Träger können prinzipiell alle Träger eingesetzt werden, die Makroporen aufweisen, d.h. Träger, die ausschließlich Makroporen aufweisen sowie solche, die neben Makroporen auch Meso- und/oder Mikroporen enthalten.

10 Als Aktivmetall können prinzipiell alle Metalle der VIII. Nebengruppe des Periodensystems eingesetzt werden. Vorzugsweise werden als Aktivmetalle Platin, Rhodium, Palladium, Cobalt, Nickel oder Ruthenium oder ein Gemisch aus zwei oder mehr davon eingesetzt, wobei insbesondere Ruthenium als Aktivmetall verwendet wird. Unter den ebenfalls verwendbaren Metallen der I. oder VII. oder aber der I. und der VII. Nebengruppe des Periodensystems, die ebenfalls allesamt prinzipiell verwendbar sind, werden vorzugsweise Kupfer und/oder Rhenium eingesetzt.

Die Begriffe "Makroporen" und "Mesoporen" werden im Rahmen der vorliegenden 20 Erfindung so verwendet, wie sie in Pure Appl. Chem., 45, S. 79 (1976) definiert sind, nämlich als Poren, deren Durchmesser oberhalb von 50 nm (Makroporen) oder deren Durchmesser zwischen 2 nm und 50 nm liegt (Mesoporen).

Der Gehalt des Aktivmetalls beträgt im allgemeinen ungefähr 0,01 bis ungefähr 30 Gew.-%, vorzugsweise ungefähr 0,01 bis ungefähr 5 Gew.-% und insbesondere ungefähr 0,1 bis ungefähr 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht des verwendeten Katalysators, wobei die bei den im folgenden beschriebenen, vorzugsweise eingesetzten Katalysatoren 1 bis 3 vorzugsweise verwendeten Gehalte nochmals bei der Diskussion dieser Katalysatoren einzeln angegeben sind.

30

Der erfindungsgemäß verwendete Begriff "Benzolpolycarbonsäure oder eines

Derivats davon" umfaßt alle Benzolpolycarbonsäuren an sich, wie z.B. Phthalsäure, Isophthalsäure, Terephthalsäure, Trimellitsäure, Trimesinsäure, Hemimellitsäure und Pyrromellitsäure und Derivate davon, wobei insbesondere Mono-, Di- und ggf. Tri- und Tetraester, insbesondere Alkylester, und Anhydride zu nennen sind. Die vorzugsweise eingesetzten Verbindungen werden untenstehend im Abschnitt "Die Verfahrensführung" nochmals kurz erläutert.

Im folgenden sollen nunmehr die vorzugsweise verwendeten Katalysatoren 1 bis 3 detailliert beschrieben werden. Dabei erfolgt die Beschreibung beispielhaft unter 10 Bezugnahme auf die Verwendung von Ruthenium als Aktivmetall. Die untenstehenden Angaben sind auch auf die anderen verwendbaren Aktivmetalle, wie hierin definiert, übertragbar.

15 KATALYSATOR 1

Die erfindungsgemäß verwendeten Katalysatoren 1 können technisch hergestellt werden durch Auftragen mindestens eines Metalls der VIII. Nebengruppe des Periodensystems und gegebenenfalls mindestens eines Metalls der I. oder VII.

Nebengruppe des Periodensystems auf einem geeigneten Träger.

Die Auftragung kann durch Tränken des Trägers in wäßrigen Metallsalzlösungen, wie z.B. wäßrigen Rutheniumsalzlösungen, durch Aufsprühen entsprechender Metallsalzlösungen auf den Träger oder durch andere geeignete Verfahren erreicht werden. Als Metallsalze der I., VII. oder VIII. Nebengruppe des Periodensystems eignen sich die Nitrate, Nitrosylnitrate, Halogenide, Carbonate, Carboxylate, Acetylacetonate, Chlorokomplexe, Nitritokomplexe oder Aminkomplexe der entsprechenden Metalle, wobei die Nitrate und Nitrosylnitrate bevorzugt sind.

30 Bei Katalysatoren, die neben dem Metall der VIII. Nebengruppe des Periodensystems noch weitere Metalle als Aktivmetall auf dem Träger aufgetragen

WO 99/32427

enthalten, können die Metallsalze bzw. Metallsalzlösungen gleichzeitig oder nacheinander aufgebracht werden.

Die mit der Metallsalzlösung beschichteten bzw. getränkten Träger werden anschlie-5 ßend, vorzugsweise bei Temperaturen von 100 bis 150 °C, getrocknet und wahlweise bei Temperaturen von 200 bis 600 °C, vorzugsweise von 350 bis 450 °C calciniert. Bei getrennter Auftränkung wird der Katalysator nach jedem Tränkschritt getrocknet und wahlweise calciniert, wie oben beschrieben. Die Reihenfolge, in der die Aktivkomponenten aufgetränkt werden, ist dabei frei wählbar.

10

Anschließend werden die beschichteten und getrockneten sowie wahlweise calcinierten Träger durch Behandlung in einem Gasstrom, der freien Wasserstoff enthält, bei Temperaturen von ungefähr 30 bis ungefähr 600 ∘C, vorzugsweise von ungefähr 150 bis ungefähr 450 ∘C aktiviert. Vorzugsweise besteht der Gasstrom aus 15 50 bis 100 Vol.-% H₂ und 0 bis 50 Vol.-% N₂.

Die Metallsalzlösung oder -lösungen werden in einer solchen Menge auf den oder die Träger aufgebracht, daß der Gesamtgehalt an Aktivmetall, jeweils bezogen auf das Gesamtgewicht des Katalysators, ungefähr 0,01 bis ungefähr 30 Gew.-%, vorzugsweise ungefähr 0,01 bis ungefähr 5 Gew.-%, weiter bevorzugt ungefähr 0,01 bis ungefähr 1 Gew.-%, und insbesondere ungefähr 0,05 bis ungefähr 1 Gew.-% beträgt.

Die Metalloberfläche auf dem Katalysator 1 beträgt dabei insgesamt vorzugsweise ungefähr 0,01 bis ungefähr 10 m²/g, weiter bevorzugt ungefähr 0,05 bis ungefähr 5 m²/g und insbesondere ungefähr 0,05 bis ungefähr 3 m²/g des Katalysators. Die Metalloberfläche wird mittels der von J. Lemaitre et al. in "Characterization of Heterogeneous Catalysts", Hrsg. Francis Delanney, Marcel Dekker, New York 1984, S. 310 - 324, beschriebenen Chemisorptionsverfahren bestimmt.

Im erfindungsgemäß verwendeten Katalysator 1 beträgt das Verhältnis der Oberflächen des/der Aktivmetalls/-metalle und des Katalysatorträgers vorzugsweise weniger als ungefähr 0,05, wobei der untere Grenzwert bei ungefähr 0,0005 liegt.

Die zur Herstellung der erfindungsgemäß verwendeten Katalysatoren verwendbaren Trägermaterialien sind solche, die makroporös sind und einen mittleren Porendurchmesser von mindestens ungefähr 50 nm, vorzugsweise mindestens ungefähr 100 nm, insbesondere mindestens ungefähr 500 nm aufweisen und deren Oberfläche nach BET bei höchstens ungefähr 30 m²/g, vorzugsweise höchstens ungefähr 15 m²/g, weiter bevorzugt höchstens ungefähr 10 m²/g, insbesondere höchstens ungefähr 5 m²/g und weiter bevorzugt höchstens ungefähr 3 m²/g liegt. Der mittlere Porendurchmesser des Trägers beträgt vorzugsweise ungefähr 100 nm bis ungefähr 200 μm, weiter bevorzugt ungefähr 500 nm bis ungefähr 50 μm. Die Oberfläche des Trägers beträgt vorzugsweise ungefähr 15 m²/g, weiter bevorzugt ungefähr 0,2 bis ungefähr 15 m²/g, weiter bevorzugt ungefähr 10 m²/g, insbesondere ungefähr 0,5 bis ungefähr 5 m²/g und weiter bevorzugt ungefähr 0,5 bis ungefähr 3 m²/g.

Die Oberfläche des Trägers wird bestimmt nach dem BET-Verfahren durch N₂Adsorption, insbesondere nach DIN 66131. Die Bestimmung des mittleren
20 Porendurchmesser und der Porengrößenverteilung erfolgt durch Hg-Porosimetrie, insbesondere nach DIN 66133.

Vorzugsweise kann die Porengrößenverteilung des Trägers annähernd bimodal sein, wobei die Porendurchmesserverteilung mit Maxima bei etwa 600 nm und etwa 20 μ m bei der bimodalen Verteilung eine spezielle Ausführungsform der Erfindung darstellt.

Weiter bevorzugt ist ein Träger mit einer Oberfläche von 1,75 m²/g, der diese bimodale Verteilung des Porendurchmessers aufweist. Das Porenvolumen dieses bevorzugten Trägers beträgt vorzugsweise etwa 0,53 ml/g.

WO 99/32427 PCT/EP98/08346

-9-

Als makroporöses Trägermaterial verwendbar sind beispielsweise Makroporen aufweisende Aktivkohle, Siliciumcarbid, Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Magnesiumoxid, Zinkoxid oder Gemische aus zwei oder mehr davon, wobei Aluminiumoxid und Zirkoniumdioxid vorzugsweise verwendet werden.

Weitere Details bezüglich Katalysator 1 bzw. zu seiner Herstellung sind der DE-A 196 24 484.6 zu entnehmen, deren diesbezüglicher Inhalt durch Bezugnahme vollständig in die vorliegende Anmeldung einbezogen wird.

10

KATALYSATOR 2

Die erfindungsgemäß verwendeten Katalysatoren 2 enthalten ein oder mehrere Metalle der VIII. Nebengruppe des Periodensystems als Aktivkomponente(n) auf 15 einem Träger, wie hierin definiert. Bevorzugt werden Ruthenium, Palladium und/oder Rhodium als Aktivkomponente(n) verwendet.

Die erfindungsgemäß verwendeten Katalysatoren 2 können technisch hergestellt werden durch Auftragen mindestens eines Aktivmetalls der VIII. Nebengruppe des 20 Periodensystems, vorzugsweise Ruthenium oder Palladium und gegebenenfalls mindestens eines Metalls der I. oder VII. Nebengruppe des Periodensystems auf einem geeigneten Träger. Die Auftragung kann durch Tränken des Trägers in wäßrigen Metallsalzlösungen, wie z.B. Ruthenium- oder Palladiumsalzlösungen, durch Aufsprühen entsprechender Metallsalzlösungen auf den Träger oder durch andere 25 geeignete Verfahren erreicht werden. Als Metallsalze zur Herstellung der Metallsalzlösungen eignen sich die Nitrate, Nitrosylnitrate, Halogenide, Carbonate, Acetylacetonate, Chlorokomplexe, Carboxylate, Nitritokomplexe oder Aminkomplexe der entsprechenden Metalle, wobei die Nitrate und Nitrosylnitrate bevorzugt sind.

30

Bei Katalysatoren, die mehrere Aktivmetalle auf den Träger aufgetragen enthalten,

WO 99/32427 PCT/EP98/08346

- 10 -

können die Metallsalze bzw. Metallsalzlösungen gleichzeitig oder nacheinander aufgebracht werden.

Die mit der Metallsalzlösung beschichteten bzw. getränkten Träger werden anschließend getrocknet, wobei Temperaturen von 100 bis 150 °C bevorzugt sind. Wahlweise können diese Träger bei Temperaturen von 200 bis 600 °C, vorzugsweise von 350 bis 450 °C calciniert werden. Anschließend werden die beschichteten Träger durch Behandlung in einem Gasstrom, der freien Wasserstoff enthält, bei Temperaturen von 30 bis 600 °C, vorzugsweise von 100 bis 450 °C und insbesondere von 100 bis 300 °C aktiviert. Der Gasstrom besteht vorzugsweise aus 50 bis 100 Vol.-% H₂ und 0 bis 50 Vol.-% N₂.

Werden auf die Träger mehrere Aktivmetalle aufgetragen und erfolgt das Auftragen nacheinander, so kann der Träger nach jedem Auftragen bzw. Tränken bei Tempe15 raturen von 100 bis 150 °C getrocknet werden und wahlweise bei Temperaturen von 200 bis 600 °C calciniert werden. Dabei kann die Reihenfolge, in der die Metallsalzlösung aufgetragen oder aufgetränkt wird, beliebig gewählt werden.

Die Metallsalzlösung wird in einer solchen Menge auf den/die Träger aufgebracht, daß der Gehalt an Aktivmetall 0,01 bis 30 Gew.-%, vorzugsweise 0,01 bis 10 Gew.-%, weiter bevorzugt 0,01 bis 5 Gew.-%, und insbesondere 0,3 bis 1 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, beträgt.

Die Metalloberfläche auf dem Katalysator beträgt insgesamt vorzugsweise 0,01 bis 10 m²/g, besonders bevorzugt 0,05 bis 5 m²/g und weiter bevorzugt 0,05 bis 3 m²/g des Katalysators. Die Metalloberfläche wurde durch das Chemisorptionsverfahren gemessen, wie es in J. Lemaitre et al., "Characterization of Heterogeneous Catalysts", Hrsg. Francis Delanney, Marcel Dekker, New York (1984), S. 310 - 324, beschrieben ist.

WO 99/32427

PCT/EP98/08346

Im erfindungsgemäß verwendeten Katalysator 2 beträgt das Verhältnis der Oberflächen des mindestens einen Aktivmetalls und des Katalysatorträgers weniger als ungefähr 0,3, vorzugsweise weniger als ungefähr 0,1 und insbesondere ungefähr 0,05 oder weniger, wobei der untere Grenzwert bei ungefähr 0,0005 liegt.

- 11 -

5

Die zur Herstellung der erfindungsgemäß verwendeten Katalysatoren 2 verwendbaren Trägermaterialien besitzen Makroporen und Mesoporen.

Dabei weisen die erfindungsgemäß verwendbaren Träger eine Porenverteilung auf, dergemäß ungefähr 5 bis ungefähr 50%, vorzugsweise ungefähr 10 bis ungefähr 45%, weiter bevorzugt ungefähr 10 bis ungefähr 30 und insbesondere ungefähr 15 bis ungefähr 25% des Porenvolumens von Makroporen mit Porendurchmessern im Bereich von ungefähr 50 nm bis ungefähr 10.000 nm und ungefähr 50 bis ungefähr 95%, vorzugsweise ungefähr 55 bis ungefähr 90%, weiter bevorzugt ungefähr 70 bis ungefähr 90% und insbesondere ungefähr 75 bis ungefähr 85% des Porenvolumens von Mesoporen mit einem Porendurchmesser von ungefähr 2 bis ungefähr 50 nm gebildet werden, wobei sich jeweils die Summe der Anteile der Porenvolumina zu 100% addiert.

Das Gesamtporenvolumen der erfindungsgemäß verwendeten Träger beträgt ungefähr 0,05 bis 1,5 cm³/g, vorzugsweise 0,1 bis 1,2 cm³/g und insbesondere ungefähr 0,3 bis 1,0 cm³/g. Der mittlere Porendurchmesser der erfindungsgemäß verwendeten Träger beträgt ungefähr 5 bis 20 nm, vorzugsweise ungefähr 8 bis ungefähr 15 nm und insbesondere ungefähr 9 bis ungefähr 12 nm.

25

Vorzugsweise beträgt die Oberfläche des Trägers ungefähr 50 bis ungefähr 500 m^2/g , weiter bevorzugt ungefähr 200 bis ungefähr 350 m^2/g und insbesondere ungefähr 250 bis ungefähr 300 m^2/g des Trägers.

30 Die Oberfläche des Trägers wird nach dem BET-Verfahren durch N₂-Adsorption, insbesondere nach DIN 66131, bestimmt. Die Bestimmung des mittleren

Porendurchmesser und der Größenverteilung erfolgt durch Hg-Porosimetrie, insbesondere nach DIN 66133.

Obwohl prinzipiell alle bei der Katalysatorherstellung bekannten Trägermaterialien, 5 d.h. die die oben definierte Porengrößenverteilung aufweisen, eingesetzt werden können, werden vorzugsweise Makroporen aufweisende Aktivkohle, Siliciumcarbid, Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Magnesiumoxid, Zinkoxid oder deren Gemische, weiter bevorzugt Aluminiumoxid und Zirkoniumdioxid, eingesetzt.

10

Weitere Details bezüglich Katalysator 2 bzw. zu seiner Herstellung sind der DE-A 196 24 485.4 zu entnehmen, deren diesbezüglicher Inhalt durch Bezugnahme vollständig in die vorliegende Anmeldung einbezogen wird.

15

KATALYSATOR 3

Die erfindungsgemäß verwendeten Katalysatoren 3 können technisch hergestellt werden durch Auftragen eines Aktivmetalls der VIII. Nebengruppe des Periodensystems und gegebenenfalls mindestens eines Metalls der I. oder VII. Nebengruppe des Periodensystems auf einen geeigneten Träger. Die Auftragung kann durch Tränken des Trägers in wäßrigen Metallsalzlösungen, wie z.B. Rutheniumsalzlösungen, durch Aufsprühen entsprechender Metallsalzlösungen auf den Träger oder durch andere geeignete Verfahren erreicht werden. Als Rutheniumsalze zur Herstellung der Rutheniumsalzlösungen wie auch als Metallsalze der I., VII. oder VIII. Nebengruppe eignen sich die Nitrate, Nitrosylnitrate, Halogenide, Carbonate, Carboxylate, Acetylacetonate, Chlorokomplexe, Nitritokomplexe oder Aminkomplexe der entsprechenden Metalle, bevorzugt sind dabei die Nitrate und Nitrosylnitrate.

30

Bei Katalysatoren, die mehrere Metalle auf den Träger aufgetragen enthalten,

WO 99/32427

können die Metallsalze bzw. Metallsalzlösungen gleichzeitig oder nacheinander aufgebracht werden.

Die mit der Rutheniumsalz- bzw. Metallsalzlösung beschichteten bzw. getränkten 5 Träger werden sodann getrocknet, vorzugsweise bei Temperaturen von 100 bis 150 °C, und wahlweise bei Temperaturen von 200 bis 600 °C calciniert.

Darauffolgend werden die beschichteten Träger aktiviert durch Behandlung der beschichteten Träger in einem Gasstrom, der freien Wasserstoff enthält, bei 10 Temperaturen von 30 bis 600 °C, vorzugsweise von 150 bis 450 °C. Der Gasstrom besteht vorzugsweise aus 50 bis 100 Vol-% H₂ und 0 bis 50 Vol-% N₂.

Werden auf die Träger neben dem Aktivmetall der VIII. Nebengruppe des Periodensystems Metalle der I. oder VII. Nebengruppe aufgetragen und erfolgt das Auftragen nacheinander, so kann der Träger nach jedem Auftragen bzw. Tränken bei Temperaturen von 100 bis 150 °C getrocknet werden und wahlweise bei Temperaturen von 200 bis 600 °C calciniert werden. Dabei kann die Reihenfolge, in der die Metallsalzlösungen aufgetragen oder aufgetränkt werden, beliebig gewählt werden.

20

Die Metallsalzlösung wird in einer solchen Menge auf den oder die Träger aufgebracht, daß 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, an Aktivmetall auf den Träger aufgebracht vorliegen. Vorzugsweise beträgt diese Menge 0,2 bis 15 Gew.-%, besonders bevorzugt etwa 0,5 Gew.-%.

25

Die Metalloberfläche auf dem Katalysator 3 beträgt insgesamt vorzugsweise 0,01 bis $10 \text{ m}^2/\text{g}$, besonders bevorzugt 0,05 bis $5 \text{ m}^2/\text{g}$, insbesondere 0,05 bis 3 m^2 pro g des Katalysators.

30 Die zur Herstellung der erfindungsgemäß verwendeten Katalysatoren 3 ver-

wendbaren Trägermaterialien sind vorzugsweise solche, die makroporös sind und einen mittleren Porendurchmesser von mindestens 0,1 μm, vorzugsweise mindestens 0,5 μm, und eine Oberfläche von höchstens 15 m²/g aufweisen, vorzugsweise höchstens 10 m²/g, besonders bevorzugt höchstens 5 m²/g, insbesondere höchstens 3 m²/g. Bevorzugt liegt der mittlere Porendurchmesser des Trägers in einem Bereich von 0,1 bis 200 μm, insbesondere von 0,5 bis 50 μm. Bevorzugt beträgt die Oberfläche des Trägers 0,2 bis 15 m²/g, besonders bevorzugt 0,5 bis 10 m²/g, insbesondere 0,5 bis 5 m²/g, speziell 0,5 bis 3 m²/g des Trägers.

Die Oberfläche des Trägers wird bestimmt nach dem BET-Verfahren durch N₂-Adsorption, insbesondere nach DIN 66131. Die Bestimmung des mittleren Porendurchmessers und der Porengrößenverteilung erfolgte durch Hg-Porosimetrie, insbesondere nach DIN 66133. Vorzugsweise kann die Porengrößenverteilung des Trägers annähernd bimodal sein, wobei die Porendurchmesserverteilung mit Maxima bei etwa 0,6 μm und etwa 20 μm bei der bimodalen Verteilung eine spezielle Ausführungsform der Erfindung darstellt.

Besonders bevorzugt ist ein Träger mit einer Oberfläche von etwa 1,75 m²/g, der diese bimodale Verteilung des Porendurchmessers aufweist. Das Porenvolumen 20 dieses bevorzugten Trägers beträgt vorzugsweise etwa 0,53 ml/g.

Als makroporöses Trägermaterial verwendbar sind beispielsweise Makroporen aufweisende Aktivkohle, Siliciumcarbid, Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Magnesiumoxid, Zinkoxid oder deren Gemische.

25 Bevorzugt sind Aluminiumoxid und Zirkoniumdioxid.

Weitere Details bezüglich Katalysator 3 bzw. zu seiner Herstellung sind der DE-A 196 04 791.9 zu entnehmen, deren diesbezüglicher Inhalt durch Bezugnahme vollständig in die vorliegende Anmeldung einbezogen wird.

- 15 -

DIE VERFAHRENSFÜHRUNG

Im Rahmen des erfindungsgemäßen Verfahrens wird die Hydrierung im allgemeinen bei einer Temperatur von ungefähr 50 bis 250 °C, vorzugsweise ungefähr 70 bis 220 °C durchgeführt. Die dabei verwendeten Drücke liegen in der Regel bei oberhalb von 10 bar, vorzugsweise ungefähr 20 bis ungefähr 300 bar.

Das erfindungsgemäße Verfahren kann entweder kontinuierlich oder diskontinuierlich durchgeführt werden, wobei die kontinuierliche Verfahrensdurchführung bevorzugt ist.

Bei der kontinuierlichen Verfahrensführung beträgt die Menge der (des) zur Hydrierung vorgesehenen Benzolpolycarbonsäure(esters) bzw. des Gemischs aus zwei oder mehr davon vorzugsweise ungefähr 0,05 bis ungefähr 3 kg pro Liter Katalysator pro Stunde, weiter bevorzugt ungefähr 0,1 bis ungefähr 1 kg pro Liter Katalysator pro Stunde.

Als Hydriergase können beliebige Gase verwendet werden, die freien Wasserstoff enthalten und keine schädlichen Mengen an Katalysatorgiften, wie beispielsweise 20 CO, aufweisen. Beispielsweise können Reformerabgase verwendet werden. Vorzugsweise wird reiner Wasserstoff als Hydriergas verwendet.

Die erfindungsgemäße Hydrierung kann in Ab- oder Anwesenheit eines Lösungsoder Verdünnungsmittels durchgeführt werden, d.h. es ist nicht erforderlich, die 25 Hydrierung in Lösung durchzuführen.

Vorzugsweise wird jedoch ein Lösungs- oder Verdünnungsmittel eingesetzt. Als Lösungs- oder Verdünnungsmittel kann jedes geeignete Lösungsmittel- oder Verdünnungsmittel eingesetzt werden. Die Auswahl ist dabei nicht kritisch, solange das eingesetzte Lösungs- oder Verdünnungsmittel in der Lage ist, mit der (dem) zu

WO 99/32427 PCT/EP98/08346

- 16 -

hydrierenden Benzoldicarbonsäure(ester) eine homogene Lösung zu bilden. Beispielsweise können die Lösungs- oder Verdünnungsmittel auch Wasser enthalten.

Beispiele geeigneter Lösungs- oder Verdünnungsmittel schließen die folgenden ein:

5

Geradkettige oder cyclische Ether, wie beispielsweise Tetrahydrofuran oder Dioxan, sowie aliphatische Alkohole, in denen der Alkylrest vorzugsweise 1 bis 10 Kohlenstoffatome, insbesondere 3 bis 6 Kohlenstoffatome aufweist.

10 Beispiele bevorzugt verwendbarer Alkohole sind i-Propanol, n-Butanol, i-Butanol und n-Hexanol.

Gemische dieser oder anderer Lösungs- oder Verdünnungsmittel können ebenfalls verwendet werden.

15

Die Menge des eingesetzten Lösungs- oder Verdünnungsmittels ist nicht in besonderer Weise beschränkt und kann je nach Bedarf frei gewählt werden, wobei jedoch solche Mengen bevorzugt sind, die zu einer 10 bis 70 Gew.-%igen Lösung der (des) zur Hydrierung vorgesehenen Benzoldicarbonsäure(esters) führen.

20

Besonders bevorzugt wird im Rahmen des erfindungsgemäßen Verfahrens das bei der Hydrierung gebildete Produkt, also das entsprechende Cyclohexanderivat als Lösungsmittel eingesetzt, gegebenenfalls neben anderen Lösungs- oder Verdünnungsmitteln. In jedem Fall kann ein Teil des im Verfahren gebildeten Produkts der noch zu hydrierenden Benzolpolycarbonsäure oder des Derivats davon beigemischt werden. Bezogen auf das Gewicht der zur Hydrierung vorgesehenen Verbindung wird vorzugsweise die 1- bis 30fache, besonders bevorzugt die 5- bis 20fache, insbesondere die 5- bis 10fache Menge des Umsetzungsproduktes als Lösungs- oder Verdünnungsmittel zugemischt.

30

Wie bereits oben ausgeführt, umfaßt der erfindungsgemäß verwendete Begriff

"Benzolpolycarbonsäuren oder Derivate davon" sowohl die jeweiligen Benzolpolycarbonsäuren an sich sowie Derivate davon, wobei insbesondere Mono-, Di- oder ggf. Tri- oder Tetraester sowie Anhydride der Benzolpolycarbonsäuren zu nennen sind. Die eingesetzten Ester sind Alkyl-, Cykloalkyl- sowie Alkoxyalkylester, wobei die Alkyl-, Cycloalkyl- sowie Alkoxyalkylgruppen in der Regel 1 bis 30, vorzugsweise 2 bis 20 und besonders bevorzugt 3 bis 18 Kohlenstoffatome umfassen und verzweigt oder linear sein können.

Im einzelnen sind zu nennen:

- Terephthalsäurealkylester, wie z.B. Terephthalsäuremonomethylester, Terephthalsäuredi-n-propylester, Terephthalsäuredi-n-butylester, Terephthalsäuredi-tert-butylester, Terephthalsäuredisobutylester, Terephthalsäuremonoglykolester, Terephthalsäurediglykolester, Terephthalsäuredisooctylester, Terephthalsäuredisooctylester, Terephthalsäuredisooctylester,
- Terephthalsäuredi-2-ethylhexylester, Terephthalsäuredi-2-ethylhexylester, Terephthalsäuredi-n-nonylester, Terephthalsäuredi-in-decylester, Terephthalsäuredi-n-undecylester, Terephthalsäurediisodoecylester, Terephthalsäurediisodoecylester, Terephthalsäurediisooctadecylester, Terephthalsäuredi-n-octadecylester, Terephthalsäuredi-n-eicosylester, T

Phthalsäurealkylester, wie z.B. Phthalsäuremonomethylester, Phthalsäuredimethylester, Phthalsäurediethylester, Phthalsäuredi-n-propylester, Phthalsäuredi-n-butyle-Phthalsäuredi-tert.-butylester, Phthalsäurediisobutylester, Phthalsäuremo-25 noglykolester, Phthalsäurediglykolester, Phthalsäuredii-n-octylester, Phthalsäurediisooctylester, Phthalsäuredi-2-ethylhexylester, Phthalsäuredi-n-nonylester, Phthalsäurediisononylester, Phthalsäuredi-n-decylester, Phthalsäurediisodecylester, Phthalsäuredi-n-undecylester, Phthalsäurediisododecylester, Phthalsäuredi-noctadecylester, Phthalsäurediisooctadecylester, Phthalsäuredi-n-eicosylester, 30 Phthalsäuremonocyclohexylester, Phthalsäuredicyclohexylester;

Isophthalsäurealkylester, wie z.B. Isophthalsäuremonomethylester, Isophthalsäuredimethylester, Isophthalsäurediethylester, Isophthalsäuredi-n-propylester, Isophthalsäuredi-n-butylester, Isophthalsäuredi-tert.-butylester, Isophthalsäurediisobutylester, Isophthalsäuremonoglykolester, Isophthalsäurediglykolester, Isophthalsäuredi-n-5 octylester, Isophthalsäurediisooctylester, Isophthalsäuredi-2-ethylhexylester, Isophthalsäuredi-n-nonylester, Isophthalsäurediisononylester, Isophthalsäuredi-ndecylester, Isophthalsäurediisodecylester, Isophthalsäuredi-n-undecylester, Isophthalsäurediisododecylester, Isophthalsäuredi-n-octadecylester, Isophthalsäurediisooctadecylester, Isophthalsäuredi-n-eicosylester, Isophthalsäuremonocycloh-10 exylester, Isophthalsäuredicyclohexylester.

Trimellitsäurealkylester, wie z.B. Trimellitsäuremonomethylester, Trimellitsäuredimethylester. Trimellitsäurediethylester, Trimellitsäuredi-n-propylester, Trimellitsäuredi-n-butylester, Trimellitsäuredi-tert-butylester, Trimellitsäuredii-15 sobutylester, Trimellitsäuremonoglykolester, Trimellitsäurediglykolester, Trimellitsäuredi-n-octylester, Trimellitsäurediisooctylester, Trimellitsäuredi-2-ethylhexylester, Trimellitsäuredi-n-nonylester, Trimellitsäurediisononylester, Trimellitsäuredi-n-decylester. Trimellitsäurediisodecylester, Trimellitsäuredi-n-undecylester, Trimellitsäurediisododecylester, Trimellitsäuredi-n-octadecyl- ester, Trimellitsäure-20 diisooctadecylester, Trimellitsäuredi-n-eicosylester, Trimellitsäuremonocyclohexyle-Trimellitsäuredicyclohexylester ster, sowie Trimellitsäuretrimethylester, Trimellitsäuretriethylester, Trimellitsäuretri-n-propylester, Trimellitsäuretri-n-Trimellitsäuretri-tert-butylester, butylester, Trimellitsäuretriisobutylester, Trimellitsäuretriglykolester, Trimellitsäuretri-n-octylester, Trimellitsäure-25 triisooctylester, Trimellitsäuretri-2-ethylhexylester, Trimellitsäuretri-n-nonylester, Trimellitsäuretriisododecylester, Trimellitsäuretri-n-undecylester, Trimellitsäuretriisododecylester, Trimellitsäuretri-n-octadecylester, Trimellitsäuretriisooctadecylester, Trimellitsäuretri-n-eicosylester, Trimellitsäuretricyclohexylester.

30 Trimesinsäurealkylester, wie z.B. Trimesinsäuremonomethylester, Trimesinsäuredimethylester, Trimesinsäuredien-propylester, Trimesinsäuredien-propylester

WO 99/32427 - PCT/EP98/08346 - 19 -

redi-n-butylester, Trimesinsäuredi-tert-butylester, Trimesinsäurediisobutylester, Trimesinsäuredi-n-Trimesinsäuremonoglykolester, Trimesinsäurediglykolester, Trimesinsäurediisooctylester, Trimesinsäuredi-2-ethylhexylester. octylester, Trimesinsäuredi-n-nonylester, Trimesinsäurediisononylester, Trimesinsäuredi-n-Trimesinsäurediisodecylester, 5 decylester, Trimesinsäuredi-n-undecylester. Trimesinsäurediisododecylester, Trimesinsäuredi-n-octadecylester, Trimesinsäurediisooctadecylester, Trimesinsäuredi-n-eicosylester, Trimesinsäuremonocyclohexylester, Trimesinsäuredicyclohexylester, sowie Trimesinsäuretrimethylester, Trimesinsäuretriethylester, Trimesinsäuretri-n-propylester, Trimesinsäuretri-n-butylester, 10 Trimesinsäuretri-tert-butylester. Trimesinsäuretriisobutylester, sinsäuretriglykolester, Trimesinsäuretri-n-octylester, Trimesinsäuretriisooctylester, Trimesinsäuretri-2-ethylhexylester, Trimesinsäuretri-n-nonylester, Trimesinsäuretriisododecylester, Trimesinsäuretri-n-undecylester, Trimesinsäuretriisododecylester, Trimesinsäuretri-n-octadecylester, Trimesinsäuretriisooctadecylester, Trime-15 sinsäuretri-n-eicosylester, Trimesinsäuretricyclohexylester.

Hemimellitsäurealkylester, wie z.B. Hemimellitsäuremonomethylester, Hemimellitsäuredimethylester, Hemimellitsäurediethylester, Hemimellitsäuredi-n-propylester, Hemimellitsäuredi-n-butylester, Hemimellitsäuredi-tert-butylester, Hemimellitsäure-Hemimellitsäuremonoglykolester, Hemimellitsäurediglykolester, 20 diisobutylester, Hemimellitsäuredi-n-octylester, Hemimellitsäurediisooctylester, Hemimellitsäuredi-2-ethylhexylester, Hemimellitsäuredi-n-nonylester, Hemimellitsäurediisononylester, Hemimellitsäuredi-n-decylester, Hemimellitsäurediisodecylester, Hemimellitsäuredin-undecylester, Hemimellitsäurediisododecylester, Hemimellitsäuredi-n-octadecyle-Hemimellitsäurediisooctadecylester, Hemimellitsäuredi-n-eicosylester, 25 ster. Hemimellitsäuremonocyclohexylester, Hemimellitsäuredicyclohexylester, Hemimellitsäuretrimethylester, Hemimellitsäuretriethylester, Hemimellitsäuretri-n-Hemimellitsäuretri-tert-butylester, Hemimellitsäuretri-n-butylester, propylester, Hemimellitsäuretriisobutylester, Hemimellitsäuretriglykolester, Hemimellitsäuretri-30 n-octylester, Hemimellitsäuretriisooctylester, Hemimellitsäuretri-2-ethylhexylester, Hemimellitsäuretri-n-nonylester, Hemimellitsäuretriisododecylester, Hemimellitsäuretri-n-undecylester, Hemimellitsäuretriisododecylester, Hemimellitsäuretri-n-octadecylester, Hemimellitsäuretriisooctadecylester, Hemimellitsäuretri-n-eicosylester, Hemimellitsäuretricyclohexylester.

5 Pyromellitsäurealkylester, wie z.B. Pyromellitsäuremonomethylester, Pyromellitsäuredimethylester, Pyrromellitsäuredi-n-propylester, Pyromellitsäuredi-n-butylester, Pyromellitsäuredi-tert.-butylester, Pyromellitsäurediisobutylester, Pyromellitsäuremonoglykolester, Pyromellitsäurediglykolester, Pyromellitsäuredi-n-octylester, Pyromellitsäurediisooctylester, Pyromellitsäuredi-2-Pyromellitsäuredi-n-nonylester, Pyromellitsäurediisononylester, 10 ethylhexylester, Pyromellitsäuredi-n-decylester, Pyromellitsäurediisodecylester, Pyromellitsäuredi-nundecylester, Pyromellitsäurediisododecylester, Pyromellitsäuredi-n-octadecylester, Pyromellitsäurediisooctadecylester, Pyromellitsäuredi-n-eicosylester, Pyromellitsäuremonocyclohexylester, Pyromellitsäuretrimethylester, Pyromellitsäuretriethyle-15 ster, Pyromellitsäuretri-n-propylester, Pyromellitsäuretri-n-butylester, Pyromellitsäuretri-tert-butylester, Pyromellitsäuretriisobutylester, Pyromellitsäuretriglykolester, Pyromellitsäuretri-n-octylester, Pyromellitsäuretriisooctylester, Pyromellitsäuretri-2-ethylhexylester, Pyromellitsäuretri-n-nonylester, Pyromellitsäuretriisododecylester, Pyromellitsäuretri-n-undecylester, Pyromellitsäuretriisododecylester, 20 Pyromellitsäuretri-n-octadecylester, Pyromellitsäuretriisooctadecylester, Pyromellitsäuretri-n-eicosylester. Pyromellitsäuretricyclohexylester, sowie Pyromellitsäuretetramethylester, Pyromellitsäuretetraethylester, Pyromellitsäuretetra-n-propylester, Pyromellitsäuretetra-n-butylester, Pyromellitsäuretetra-tert-butylester, Pyromellitsäuretetraisobutylester, Pyromellitsäuretetraglykolester, Pyromellitsäuretetra-n-25 octylester, Pyromellitsäuretetraisooctylester, Pyromellitsäuretetra-2-ethylhexylester, Pyromellitsäuretetra-n-nonylester, Pyromellitsäuretetraisododecylester, Pyromellitsäuretetra-n-undecylester, Pyromellitsäuretetraisododecylester, Pyromellitsäuretetran-octadecylester, Pyromellitsäuretetraisooctadecylester, Pyromellitsäuretetra-neicosylester, Pyromellitsäuretetracyclohexylester.

30

Anhydride der Phthalsäure, Trimellitsäure, Hemimellitsäure und Pyromellitsäure.

Selbstverständlich können auch Gemische aus zwei oder mehr dieser Verbindungen - eingesetzt werden.

Bei den erfindungsgemäß erhaltenen Produkten handelt es sich dabei stets um die 5 entsprechenden Cyclohexanpolycarbonsäuren oder Cyclohexanpolycarbonsäurederivate.

Ferner betrifft die vorliegende Erfindung die folgenden neuen Cyclohexanpolycarbonsäuren oder Cyclohexanpolycarbonsäurederivate an sich:

10

Cyclohexan-1,2-dicarbonsäuredi(isopentyl)ester, erhältlich durch Hydrierung von Di(isopentyl)phthalat mit der Chemical Abstracts Registry- Nummer (im folgenden: CAS Nr.) 84777-06-0;

Cyclohexan-1,2-dicarbonsäuredi(isoheptyl)ester, erhältlich durch Hydrierung von Di(isoheptyl)phthalat mit der CAS Nr. 71888-89-6;

Cyclohexan-1,2-dicarbonsäuredi(isononyl)ester, erhältlich durch Hydrierung eines Di(isononyl)phthalts mit der CAS Nr. 68515-48-0;

Cyclohexan-1,2-dicarbonsäuredi(isononyl)ester, erhältlich durch Hydrierung eines Di(isononyl)phthalats mit der CAS Nr. 28553-12-0, basierend auf n-Buten;

20 Cyclohexan-1,2-dicarbonsäuredi(isononyl)ester, erhältlich durch Hydrierung eines Di(isononyl)phthalats mit der CAS Nr. 28553-12-0 basierend auf Isobuten;

ein 1,2-Di-C₉-Ester der Cyclohexandicarbonsäure, erhältlich durch Hydrierung eines Di(nonyl)phthalts mit der CAS Nr. 68515-46-8;

ein Cyclohexan-1,2-dicarbonsäuredi(isodecyl)ester erhältlich durch Hydrierung eines

25 Di(isodecyl)phthalats mit der CAS Nr. 68515-49-1;

ein 1,2-Di-C₇₋₁₁-Ester der Cyclohexandicarbonsäure, erhältlich durch Hydrierung des entsprechenden Phthalsäureesters mit der CAS Nr. 68515-42-4;

ein 1,2-Di- C_{7-11} -Ester der Cyclohexandicarbonsäure, erhältlich durch Hydrierung der Di- C_{7-11} -Phthalate mit folgenden CAS Nr.

30 111 381-89-6,

111 381 90-9,

111 381 91-0, 68515-44-6, 68515-45-7 und

3648-20-7;

5 ein 1,2-Di-C₉₋₁₁-Ester der Cyclohexandicarbonsäure, erhältlich durch Hydrierung eines Di-C₉₋₁₁-Phthalats mit der CAS Nr. 98515-43-5;

ein 1,2-Di(isodecyl)cyclohexandicarbonsäureester, erhältlich durch Hydrierung eines Di(isodecyl)phthalats, das hauptsächlich aus Di-(2-propylheptyl)phthalt besteht;

ein 1,2-Di- $C_{7.9}$ -Cyclohexandicarbonsäureester, erhältlich durch Hydrierung des entsprechenden Phthalsäureesters, der verzweigtkettige oder lineare $C_{7.9}$ -

Alkylestergruppen aufweist; entsprechende beispielsweise als Ausgangsprodukte verwendbare Phthalsäureester haben die folgende CAS Nr.:

Di-C_{7,9}-Alkylphthalat mit der CAS Nr. 111 381-89-6;

Di-C₇-Alkylphthalat mit der CAS Nr. 68515-44-6; und

15 Di-C₉-Alkylphthalat mit der CAS Nr. 68515-45-7.

Darüberhinaus betrifft die vorliegende Erfindung auch die Verwendung von Cyclohexanpolycarbonsäureestern, insbesondere der mit dem erfindungsgemäßen Verfahren 20 erhaltenen Cyclohexanpolycarbonsäureester als Weichmacher in Kunststoffen, wobei hier allgemein Diester und Triester mit Alkylgruppen mit 3 bis 18 Kohlenstoffatomen bevorzugt und die oben genannten, individuell aufgeführten Ester mit 3 bis 18 Kohlenstoffatomen insbesondere bevorzugt sind.

- Weiter bevorzugt werden die oben explizit aufgeführten neuen C₅-, C₇-, C₉-, C₁₀-, C₇₋₁₁-, C₉₋₁₁- und C₇₋₉-Ester der 1,2-Cyclohexandicarbonsäure, die durch Hydrierung der entsprechenden Phthalate erhältlich sind und weiter bevorzugt die Hydrierungsprodukte der kommerziell erhältlichen Benzolcarbonsäureester mit den Handelsnamen Jayflex DINP (CAS Nr. 68515-48-0), Jayflex DIDP (CAS Nr.
- 30 68515-49-1), Palatinol 9-P, Vestinol 9 (CAS Nr. 28553-12-0), TOTM-I (CAS Nr. 3319-31-1), Linplast 68-TM und Palatinol N (CAS Nr. 28553-12-0) als

WO 99/32427 PCT/EP98/08346

- 23 -

Weichmacher in Kunststoffen eingesetzt. Darunter bevorzugt ist wiederum die Verwendung dieser Verbindungen bzw. von Gemische daraus als Weichmacher in Massenkunststoffen, wie z.B. PVC, PVB, sowie PVAc.

5 Verglichen mit den bislang hauptsächlich als Weichmacher verwendeten Phthalaten besitzen die erfindungsgemäß verwendeten Cyclohexanpolycarbonsäure(derivate) eine niedrigere Dichte und Viskosität und führen u.a. zu einer Verbesserung der Kälteflexibilität des Kunststoffs gegenüber der Verwendung der entsprechenden Phthalate als Weichmacher, wobei Eigenschaften wie Shore A-Härte und 10 mechanische Eigenschaften der resultierenden Kunststoffe identisch zu denen sind, die bei Verwendung von Phthalaten resultieren. Ferner besitzen erfindungsgemäß verwendeten Cyclohexanpolycarbonsäure(derivate) ein besseres Verarbeitungsverhalten im Dry-Blend und als Folge eine erhöhte Produktionsgeschwindigkeit sowie in Plastisol-Verarbeitungen Vorteile durch eine 15 deutlich niedrigere Viskosität gegenüber den entsprechenden Phthalaten.

Im folgenden soll nunmehr das erfindungsgemäße Verfahren anhand einiger Ausführungsbeispiele näher erläutert werden.

20

BEISPIELE

Herstellungsbeispiel

Ein meso-/makroporöser Aluminiumoxidträger in Form von 4 mm-Extrudaten, der eine BET-Oberfläche von 238 m²/g und ein Porenvolumen von 0,45 ml/g besaß, wurde mit einer wäßrigen Ruthenium-(III)-nitrat-Lösung, die eine Konzentration von 0,8 Gew.-% aufwies, getränkt. 0,15 ml/g (ungefähr 33% des Gesamtvolumens) der Poren des Trägers besaßen einen Durchmesser im Bereich von 50 nm bis 10.000 nm und 0,30 ml/g (ungefähr 67% des Gesamt Porenvolumens) der Poren des

WO 99/32427 . PCT/EP98/08346 - 24 -

Trägers wiesen einen Porendurchmesser im Bereich von 2 bis 50 nm auf. Das während des Tränkens vom Träger aufgenommene Lösungsvolumen entsprach dabei in etwa dem Porenvolumen des verwendeten Trägers.

5 Anschließend wurde der mit der Ruthenium-(III)-nitrat-Lösung getränkte Träger bei 120 °C getrocknet und bei 200 °C im Wasserstrom aktiviert (reduziert). Der so hergestellte Katalysator enthielt 0,05 Gew.-% Ruthenium, bezogen auf das Gewicht des Katalysators.

10 Beispiel 1

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators gemäß Herstellungsbeispiel in einem Katalysator-Korbeinsatz vorgelegt und mit 197 g (0,5 mol) Diisooctylphthalat versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 80 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (4 h). Der Reaktor wurde anschließend entspannt. Der Umsatz des Diisooctylphthalats betrug 100%. Die Ausbeute an Diisooctylphthalats lag bei 99,7%, bezogen auf die Gesamtmenge des eingesetzten Diisooctylphthalats.

20

Beispiel 2

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators in einem 25 Katalysator-Korbeinsatz vorgelegt und mit 194 g (0,46 mol) Diisononylphthalat versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 100 bar und einer Temperatur von 80 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (10 h). Anschließend wurde der Reaktor entspannt. Der Umsatz an Diisononylphthalat betrug 100%. Die 30 Ausbeute an Diisononylhexahydrophthalat lag bei 99,5%, bezogen auf die

Gesamtmenge des eingesetzten Diisononylphthalats.

5 Beispiel 3

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators gemäß Herstellungsbeispiel in einem Katalysator-Korbeinsatz vorgelegt und mit 195 g (2,3 mol) Diisododecylphthalat versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 80 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (4 h). Der Reaktor wurde anschließend entspannt. Der Umsatz an Diisododecylphthalat betrug 100%. Die Ausbeute an Diisododecylphthalat.

15

Beispiel 4

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators in einem 20 Katalysator-Korbeinsatz vorgelegt und mit 38,4 g (0,2 mol) Isophthalsäure-dimethylester, gelöst in 100 g THF, versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 80 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde, und der Reaktor anschließend entspannt. Der Umsatz des Isophthalsäuredimethylesters betrug 95,3%. Die Ausbeute an Hexahydro-Isophthalsäuredimethylester lag bei 95,3%.

Beispiel 5

5 In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 25,2 g (0,1 mol) Trimesinsäuretrimethylester, gelöst in 100 g THF, versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 120 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde, und der Reaktor anschließend entspannt. Der Umsatz des Trimesinsäuretrimethylesters betrug 97%. Die Ausbeute an Hexahydro-Trimesinsäuretrimethylester lag bei 93%.

15 Beispiel 6

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 25,2 g (0,1 mol) Trimellitsäuretrimethylester, gelöst in 100 g THF, versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 120 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde, und der Reaktor anschließend entspannt. Der Umsatz des Trimellitsäuretrimethylesters betrug 35%. Die Ausbeute an Hexahydro-Trimellitsäuretrimethylester lag bei 33%.

25

Beispiel 7

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators in einem 30 Katalysator-Korbeinsatz vorgelegt und mit 10,0 g (0,03 mol) Pyromellitsäure-

tetramethylester, gelöst in 100 g THF, versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 80 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde, und der Reaktor anschließend entspannt. Der Umsatz des Pyromellitsäuretetramethylesters betrug 45%. Die Ausbeute an Hexahydro-Pyromellitsäuretetramethylester lag bei 44%.

Beispiel 8

10

In einem 1,2 l-Druckreaktor wurden 53 g des geträgerten Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 800 g (1,9 mol) Jayflex DINP (CAS Nr. 68515-48-0) versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur vom 100°C durchgeführt. Es wurde so lange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (6 h) und der Reaktor anschließend entspannt. Der Umsatz an Jayflex DINP betrug 100%. Die Ausbeute des entsprechenden Cyclohexandicarbonsäureesters lag bei 99,5%, bezogen auf die Gesamtmenge des eingesetzten Jayflex DINP.

20

Beispiel 9

In einem 0,3 l-Druckreaktor wurden 10 g des geträgerten Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 150 g (0,35 mol) Palatinol 9-P versetzt.

25 Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 120°C durchgeführt. Es wurde so lange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (2 h) und der Reaktor anschließend entspannt. Der Umsatz an Palatinol 9-P betrug 100%. Die Ausbeute des entsprechenden Cyclohexandicarbonsäureesters lag bei 99,4%, bezogen auf die 30 Gesamtmenge des eingesetzten Palatinol 9-P (1,2-Di(nonyl, linear und verzweigt)-

WO 99/32427 - PCT/EP98/08346

- 28 -

benzoldicarbonsäureester).

Beispiel 10

In einem 1,2 l-Druckreaktor wurden 53 g des geträgerten Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 780 g (1,87 mol) Vestinol 9 (CAS Nr. 28553-12-0) versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 120°C durchgeführt. Es wurde so lange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (4 h) und der Reaktor anschließend entspannt. Der Umsatz an Vestinol 9 betrug 100%. Die Ausbeute des entsprechenden Cyclohexandicarbonsäureesters lag bei 99,4%, bezogen auf die Gesamtmenge des eingesetzten Vestinol 9.

15 Beispiel 11

In einem 1,2 l-Druckreaktor wurden 53 g des geträgerten Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 760 g (1,7 mol) Jayflex DIDP (CAS Nr. 68515-49-1) versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 100°C durchgeführt. Es wurde so lange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (10 h) und der Reaktor anschließend entspannt. Der Umsatz an Jayflex DIDP betrug 100%. Die Ausbeute des entsprechenden Cyclohexandicarbonsäureesters lag bei 99,5%, bezogen auf die Gesamtmenge des eingesetzten Jayflex DIDP.

Beispiel 12

25

In einem 1,2 l-Druckreaktor wurden 53 g des geträgerten Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 800 g (1,56 mol) TOTM-I (1,2,4-Tri(2-30 ethylhexyl)benzoltricarbonsäureester) versetzt. Die Hydrierung wurde mit reinem

Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 100°C durchgeführt. Es wurde so lange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (20 h) und der Reaktor anschließend entspannt. Der Umsatz an TOTM-I betrug 95%. Die Ausbeute des entsprechenden Cyclohexandicarbonsäureesters lag bei 94%, bezogen auf die Gesamtmenge des eingesetzten TOTM-I.

Beispiel 13

In einem 300 ml-Druckreaktor wurden 10 g des geträgerten Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 150 g (0,32 mol) Linplast 68-TM (1,2,4-Tri(lineare C_{6.8}-alkyl)benzoltricarbonsäureester) versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 120°C durchgeführt. Es wurde so lange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (11 h) und der Reaktor anschließend entspannt. Der Umsatz an Linplast 68-TM betrug 100%. Die Ausbeute des entsprechenden Cyclohexandicarbonsäureesters lag bei 99,2%, bezogen auf die Gesamtmenge des eingesetzten Linplast 68-TM.

20 Beispiel 14

Ein senkrecht stehendes Hochdruckrohr aus Edelstahl mit einem inneren Durchmesser von 30 mm und einer Länge von 2,2 m wurde mit 1,4 l des geträgerten Ru-Katalysators gefüllt. Im Fall der Sumpffahrweise wurden 0,45 kg/h Palatinol N (CAS Nr. 28553-12-0) mit reinem Wasserstoff bei einer mittleren Temperatur von 125°C und einem Druck von 200 bar von unten nach oben durch den Reaktor gepumpt. Ein Teil des Reaktionsproduktes wurde nach Verlassen des Hochdruckreaktors zusammen mit neuem Palatinol N erneut in den Reaktor gepumpt, das restliche Reaktionsprodukt in einem Auffangbehälter entspannt.

30 Abgaskontrolliert wurde mit einem 20%-igem Überschuß des theoretisch benötigten

Wasserstoffs hydriert. Die gaschromatographische Analyse des Reaktionsaustrages zeigte, daß Palatinol N zu 99,5% umgesetzt worden war. Der entsprechende Cyclohexandicarbonsäureester konnte mit einer Selektivität von 99,2% erhalten werden. Um die verbleibenden 0,5% Palatinol N aus dem Reaktionsaustrag zu entfernen, wurde dieser mit 1 kg/h von unten nach oben durch den Reaktor gepumpt und der Austrag in einen Auffangbehälter entspannt. Die Wasserstoffzudosierung wurde wie oben beschrieben beibehalten. Palatinol N konnte danach nicht mehr im Austrag nachgewiesen werden. Die Selektivität zum entsprechenden Cyclohexandicarbonsäureester betrug nach der zweiten Hydrierung 99%. Als Nebenkomponenten konnten etwa 1% Leichtsieder (Komponenten mit einem niedrigeren Siedepunkt, als der des Cyclohexandicarbonsäureester) nachgewiesen werden. Diese liessen sich mittels Wasserdampfdestillation bei 170°C und einem Druck von 50 mbar abreichern. Der Reaktionsaustrag bestand nach dieser Aufarbeitung aus 99,7% Cyclohexandicarbonsäureester.

WO 99/32427 PCT/EP98/08346

- 31 -

Patentansprüche

5

10

15

20

30

1. Verfahren zur Hydrierung

einer Benzolpolycarbonsäure oder eines Derivats davon oder eines Gemischs aus zwei oder mehr davon durch Inkontaktbringen der Benzolpolycarbonsäure oder des Derivats davon oder des Gemischs aus zwei oder mehr davon mit einem Wasserstoff enthaltenden Gas in Gegenwart eines Katalysators, der als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, dadurch gekennzeichnet, daß der Träger Makroporen aufweist,

mit der Maßgabe, daß,

sofern Terephthalsäuredimethylester hydriert wird, die Hydrierung mit einem Katalysator, der als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII. oder VIII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 50 nm und eine BET-Oberfläche von höchstens 30 m²/g aufweist und die Menge des Aktivmetalls 0,01 bis 30 Gew.- %, bezogen auf das Gesamtgewicht des Katalysator, beträgt, wobei das Verhältnis der Oberflächen des Aktivmetalls und des Katalysatorträgers kleiner 0,05 ist,

25 und/oder

eines Katalysators, der als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII. oder VIII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei 10 bis 50% des Porenvolumens des Trägers von Makroporen mit einem Porendurchmesser im Bereich von 50 nm bis 10.000 nm und 50 bis 90% des Porenvolu-

WO 99/32427 - PCT/EP98/08346 _ - 32 -

mens des Trägers von Mesoporen mit einem Porendurchmesser im Bereich von 2 bis 50 nm gebildet werden, wobei sich die Summe der Anteile der Porenvolumina zu 100% addiert, ausgeschlossen ist.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 50 nm und eine BET-Oberfläche von höchstens 30 m²/g aufweist und die Menge des Aktivmetalls 0,01 bis 30 Gew.- %, bezogen auf das Gesamtgewicht des Katalysator, beträgt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator als
 Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei 10 bis 50% des Porenvolumens des Trägers von Makroporen mit einem Porendurchmesser im Bereich von 50 nm bis 10.000 nm und 50 bis 90% des Porenvolumens des Trägers von Mesoporen mit einem Porendurchmesser im Bereich von 2 bis 50 nm gebildet werden, wobei sich die Summe der Anteile Porenvolumina zu 100% addiert.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 0,1 μm, und eine BET-Oberfläche von höchstens 15 m²/g aufweist.

5

- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Benzolpolycarbonsäure oder das Derivat davon ausgewählt wird aus der Gruppe bestehend aus Mono- und Dialkylestern der Phthalsäure, Terephthalsäure und Isophthalsäure, Mono-, Di- und Trialkylestern der Trimellitsäure, der Trimesinsäure und Hemimellitsäure, Mono-, Di-, Tri- und Termalkylestern der Pyrromellitsäure, wobei die Alkyleruppen linear oder
- Tetraalkylestern der Pyrromellitsäure, wobei die Alkylgruppen linear oder verzweigt sein können und jeweils 3 bis 18 Kohlenstoffatome aufweisen, Anhydriden der Phthalsäure, Trimellitsäure und Hemimellitsäure, Pyrromellitsäuredianhydrid und Gemischen aus zwei oder mehr davon.
 - 6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Träger Aktivkohle, Siliciumcarbid, Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Magnesiumoxid, Zinkoxid oder ein Gemisch aus zwei oder mehr davon enthält.
 - Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Hydrierung in Gegenwart eines Lösungs- oder Verdünnungsmittels durchgeführt wird.

20

15

- 8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Hydrierung kontinuierlich durchgeführt wird.
- Cyclohexan-1,2-dicarbonsäuredi(isopentyl)ester, erhältlich durch Hydrierung
 von Di(isopentyl)phthalat mit der Chemical Abstracts Registry- Nummer (im folgenden: CAS Nr.) 84777-06-0;
 - Cyclohexan-1,2-dicarbonsäuredi(isoheptyl)ester, erhältlich durch Hydrierung von Di(isoheptyl)phthalat mit der CAS Nr. 71888-89-6;
- Cyclohexan-1,2-dicarbonsäuredi(isononyl)ester, erhältlich durch Hydrierung eines Di(isononyl)phthalts mit der CAS Nr. 68515-48-0;
 - Cyclohexan-1,2-dicarbonsäuredi(isononyl)ester, erhältlich durch Hydrierung

5

eines Di(isononyl)phthalats mit der CAS Nr. 28553-12-0, basierend auf n-Buten;

Cyclohexan-1,2-dicarbonsäuredi(isononyl)ester, erhältlich durch Hydrierung eines Di(isononyl)phthalats mit der CAS Nr. 28553-12-0, basierend auf Isobuten;

ein 1,2-Di-C₉-Ester der Cyclohexandicarbonsäure, erhältlich durch Hydrierung eines Di(nonyl)phthalts mit der CAS Nr. 68515-46-8;

ein Cyclohexan-1,2-dicarbonsäuredi(isodecyl)ester erhältlich durch Hydrierung eines Di(isodecyl)phthalats mit der CAS Nr. 68515-49-1;

ein 1,2-Di-C₇₋₁₁-Ester der Cyclohexandicarbonsäure, erhältlich durch Hydrierung des entsprechenden Phthalsäureesters mit der CAS Nr. 68515-42-4; ein 1,2-Di-C₇₋₁₁-Ester der Cyclohexandicarbonsäure, erhältlich durch Hydrierung der Di-C₇₋₁₁-Phthalate mit folgenden CAS Nr.:

111 381-89-6,

15 111 381 90-9,

111 381 91-0,

68515-44-6,

68515-45-7 und

3648-20-7;

- ein 1,2-Di-C₉₋₁₁-Ester der Cyclohexandicarbonsäure, erhältlich durch Hydrierung eines Di-C₉₋₁₁-Phthalats mit der CAS Nr. 98515-43-5;
 - ein 1,2-Di(isodecyl)cyclohexandicarbonsäureester, erhältlich durch Hydrierung eines Di(isodecyl)phthalats, das hauptsächlich aus Di-(2-propylheptyl)phthalt besteht;
- ein 1,2-Di-C_{7.9}-Cyclohexandicarbonsäureester, erhältlich durch Hydrierung des entsprechenden Phthalsäureesters, der verzweigtkettige oder lineare C_{7.9}-Alkylestergruppen aufweist.
- Verwendung eines Cyclohexandicarbonsäureesters oder eines
 Cyclohexantricarbonsäureesters oder eines Gemisches aus zwei oder mehr davon als Weichmacher in Kunststoffen.

 Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß der Weichmacher mindestens eine Verbindung gemäß Anspruch 9 umfaßt. THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

national Application No PCT/EP 98/08346

			., 1. 10, 000 10
A. CLASSII IPC 6	FICATION OF SUBJECT MATTER C07C69/75 C07C67/303 C07C51/3	6 C07C61/09	C08K5/12
According to	International Patent Classification (IPC) or to both national classifica	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 6	cumentation searched (classification system followed by classification CO7C CO8K	on symbols)	
Documentat	ion searched other than minimum documentation to the extent that s	uch documents are included	in the fields searched
Electronic d	ata base consulted during the international search (name of data bas	se and, where practical, sear	ch terms used)
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
A	US 5 286 898 A (BRUCE L.GUSTAFSON 15 February 1994 cited in the application see column 3, line 40 - line 59 see column 4, line 49 - column 5, see column 5 - column 8; claims		1
А	EP 0 603 825 A (TOWA CHEMICAL IND CO.LTD.) 29 June 1994 cited in the application see page 10; claims	DUSTRY	1
X	US 2 070 770 A (WILLIAM JOHN AMEN 16 February 1937 see page 2, right-hand column, li line 22 see page 3, left-hand column, lin	ne 12 -	9-11
	line 13		
	-	-/	·
X Furti	her documents are listed in the continuation of box C.	χ Patent family mem	pers are listed in annex.
"A" docume consid "E" earlier of filing of "L" docume which citation other of "P" docume later the	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but than the priority date claimed	T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family	
Date of the	actual completion of the international search		iternational search report
	0 April 1999	29/04/1999)
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Kinzinger	, J

INTERNATIONAL SEARCH REPORT

national Application No

C.(Contine	ation) DOCHMENTO CONCIDENT	PCT/EP 98/08346		
Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
_ ====================================	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	WO 97 21792 A (NEW JAPAN CHEMICAL CO.,LTD) 19 June 1997 * abstract *	9		
X	DATABASE WPI Week 9512 Derwent Publications Ltd., London, GB; AN 95-085556 XP002100461 & JP 07 011074 A (NEW JAPAN CHEMICAL COLTD), 13 January 1995 see abstract	9-11		
X	DATABASE WPI Week 9503 Derwent Publications Ltd., London, GB; AN 95-019405 XP002100462 & JP 06 306252 A (NEW JAPAN CHEMICAL CO LTD), 1 November 1994 see abstract	9-11		

Information on patent family members

1 National Application No PCT/EP 98/08346

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
US 5286898	A	15-02-1994	CA 2165207 A,C CN 1099745 A DE 69412827 D DE 69412827 T EP 0703894 A ES 2120054 T JP 8511775 T SG 47888 A WO 9429260 A	22-12-1994 08-03-1995 01-10-1998 14-01-1999 03-04-1996 16-10-1998 10-12-1996 17-04-1998 22-12-1994
EP 603825	Α	29-06-1994	JP 6184041 A DE 69320775 D US 5430184 A	05-07-1994 08-10-1998 04-07-1995
US 2070770	Α	16-02-1937	NONE	
WO 9721792	Α	19-06-1997	JP 9217073 A JP 9249890 A JP 9221690 A	19-08-1997 22-09-1997 26-08-1997

THIS PAGE BLANK (USPTO)

INTERNATIONALER RECHERCHENBERICHT

nationales Aktenzeichen PCT/EP 98/08346

A KLASSI	EIZIEDUNG DEC ANNEL DUNGGGEGENGTANDEG		
IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07C69/75 C07C67/303 C07C51/3	36 C 07 C61/09	C08K5/12
Nach der In	ternationalen Patentklassifikation (IPK) oder nach der nationalen Klas	opiditation and the IDM	
	RCHIERTE GEBIETE	ssirkation und der IPK	
Recherchie	rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo	ole)	
IPK 6	C07C C08K		
Recherchie	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sc	oweit diese unter die recherchierte	en Gebiete fallen
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	lame der Datenbank und evtl. ve	rwendete Suchbegriffe)
	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie ³	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	e der in Betracht kommenden Tei	le Betr. Anspruch Nr.
A	US 5 005 000 A (DDUOT) 000-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
Α	US 5 286 898 A (BRUCE L.GUSTAFSON 15. Februar 1994	1)	1
	in der Anmeldung erwähnt		
	siehe Spalte 3, Zeile 40 - Zeile	59 2	
	siehe Spalte 4, Zeile 49 - Spalte	5, Zeile	
	7 sigha Shalta E - Shalta 9. Anganii	iaha	
	siehe Spalte 5 - Spalte 8; Ansprü 	icne	
Α	EP 0 603 825 A (TOWA CHEMICAL IND	DUSTRY	1
	CO.LTD.) 29. Juni 1994		
	in der Anmeldung erwähnt siehe Seite 10; Ansprüche		
			·
	_	-/	
χ Weit	ere Veröffentlichungen sind der Fortsetzung von Feld C zu	X Siehe Anhang Patentfar	nille
entn	ehmen		
"A" Veröffe	ntlichung, die den allgemeinen Stand der Technik definiert,	oder dem Prioritätsdatum ve	nach dem internationalen Anmeldedatum röffentlicht worden ist und mit der
	icht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen	Erfindung zugrundeliegender	ondern nur zum Verständnis des der n Prinzips oder der ihr zugrundeliegenden
Anmel	dedatum veröffentlicht worden ist ntlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-	Theorie angegeben ist "X" Veröffentlichung von besonde	erer Bedeutung; die beanspruchte Erfindung
schein	en zu lassen, oder durch die das Veröffentlichungsdatum einer	erfinderischer Tätigkeit beruf	
soll od	ler die aus einem anderen besonderen Grund angegeben ist (wie	kann nicht als auf erfindensc	erer Bedeutung; die beanspruchte Erfindung der Tätigkeit beruhend betrachtet
"O" Veröffe	ntlichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht	Veröffentlichungen dieser Ka	chung mit einer oder mehreren anderen stegorie in Verbindung gebracht wird und
"P" Veröffe	ntlichung, die vor dem internationalen. Anmeldedatum, aber nach	diese Verbindung für einen F "&" Veröffentlichung, die Mitglied	
	Abschlusses der internationalen Recherche	Absendedatum des internation	
2	0. April 1999	29/04/1999	
Name und F	Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bedienstet	er
	Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	_	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Kinzinger, J	
I		1	

INTERNATIONALER RECHERCHENBERICHT

nationales Aktenzeichen
PCT/EP 98/08346

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Te X US 2 070 770 A (WILLIAM JOHN AMEND) 16. Februar 1937 siehe Seite 2, rechte Spalte, Zeile 12 - Zeile 22 siehe Seite 3, linke Spalte, Zeile 6 - Zeile 13 X W0 97 21792 A (NEW JAPAN CHEMICAL CO.,LTD) 19. Juni 1997 * abstract * X DATABASE WPI Week 9512 Derwent Publications Ltd., London, GB; AN 95-085556 XP002100461 & JP 07 011074 A (NEW JAPAN CHEMICAL CO LTD), 13. Januar 1995 siehe Zusammenfassung (DATABASE WPI Week 9503 Derwent Publications Ltd., London, GB; AN 95-019405 XP002100462 & JP 06 306252 A (NEW JAPAN CHEMICAL CO LTD), 1. November 1994 siehe Zusammenfassung	9 9-11 9-11
16. Februar 1937 siehe Seite 2, rechte Spalte, Zeile 12 - Zeile 22 siehe Seite 3, linke Spalte, Zeile 6 - Zeile 13 WO 97 21792 A (NEW JAPAN CHEMICAL CO.,LTD) 19. Juni 1997 * abstract * DATABASE WPI Week 9512 Derwent Publications Ltd., London, GB; AN 95-085556 XP002100461 & JP 07 011074 A (NEW JAPAN CHEMICAL CO LTD), 13. Januar 1995 siehe Zusammenfassung DATABASE WPI Week 9503 Derwent Publications Ltd., London, GB; AN 95-019405 XP002100462 & JP 06 306252 A (NEW JAPAN CHEMICAL CO LTD), 1. November 1994	9 9-11
19. Juni 1997 * abstract * DATABASE WPI Week 9512 Derwent Publications Ltd., London, GB; AN 95-085556 XP002100461 & JP 07 011074 A (NEW JAPAN CHEMICAL COLTD), 13. Januar 1995 siehe Zusammenfassung DATABASE WPI Week 9503 Derwent Publications Ltd., London, GB; AN 95-019405 XP002100462 & JP 06 306252 A (NEW JAPAN CHEMICAL COLTD), 1. November 1994	9-11
Week 9512 Derwent Publications Ltd., London, GB; AN 95-085556 XP002100461 & JP 07 011074 A (NEW JAPAN CHEMICAL CO LTD), 13. Januar 1995 siehe Zusammenfassung DATABASE WPI Week 9503 Derwent Publications Ltd., London, GB; AN 95-019405 XP002100462 & JP 06 306252 A (NEW JAPAN CHEMICAL CO LTD), 1. November 1994	
Week 9503 Derwent Publications Ltd., London, GB; AN 95-019405 XP002100462 & JP 06 306252 A (NEW JAPAN CHEMICAL CO LTD), 1. November 1994	9-11

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentlamilie gehören

nationales Aktenzeichen PCT/EP 98/08346

Im Recherch angeführtes Par		•	Datum der Veröffentlichung		itglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5286	898	A	15-02-1994	CA CN DE DE EP ES JP SG WO	2165207 A,C 1099745 A 69412827 D 69412827 T 0703894 A 2120054 T 8511775 T 47888 A 9429260 A	22-12-1994 08-03-1995 01-10-1998 14-01-1999 03-04-1996 16-10-1998 10-12-1996 17-04-1998 22-12-1994
EP 6038	325	Α	29-06-1994	JP DE US	6184041 A 69320775 D 5430184 A	05-07-1994 08-10-1998 04-07-1995
US 2070	770	Α	16-02-1937	KEIN	 IE	
WO 9721	792	A	19-06-1997	JP JP JP	9217073 A 9249890 A 9221690 A	19-08-1997 22-09-1997 26-08-1997

THIS PAGE BLANK (USPTO)

Europäisches Patentamt

European Patent Office

Office européen des brevets

11) Publication number:

0 603 825 A1

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 93120619.7

2 Date of filing: 21.12.93

(51) Int. CI.5: **C07C 61/09**, C07C 51/36, C07C 51/44

(30) Priority: 21.12.92 JP 355391/92

Date of publication of application:29.06.94 Bulletin 94/26

Designated Contracting States:
DE FR GB IT

 Applicant: TOWA CHEMICAL INDUSTRY CO., LTD.
 8-7, Yeasu 2-chome

Inventor: Tateno, Yoshiaki

Chuo-ku, Tokyo 104(JP)

1333-55, Atsuhara Fuji-shi, Shizuoka, 419-02(JP)

Inventor: Sano, Chihaya

272-1, Mitsuzawa

Fuji-shi, Shizuoka, 417(JP) Inventor: Tanaka, Kotone 5-40, Heigaki-honcho Fuji-shi, Shizuoka, 416(JP) Inventor: Magara, Mitsuo

61-18, Negoya

Numazu-shi, Shizuoka, 410-03(JP)

Inventor: Okamoto, Naoki 4-61-17 Minami-hanajima Matsudo-shi, Chiba, 271(JP) Inventor: Kato, Kazuaki

477, Nakasone Yoshikawa-cho

Kitakatsushika-gun, Saitama, 342(JP)

(4) Representative: Dost, Wolfgang, Dr.rer.nat.,

Dipl.-Chem. et al

Patent- und Rechtsanwälte

Bardehle . Pagenberg . Dost . Altenburg .

Frohwitter . Geissler & Partner

Galileiplatz 1

D-81679 München (DE)

Process for preparing 1,4-cyclohexandicarboxilic acid.

The object of the present invention is to permit to realize an economic hydrogenation by suppressing significantly the catalyzer activity loss of expensive palladium, to obtain a very high purity 1,4-CHDA through a simple operation by bringing the solution containing the hydrogenation reaction product of interest into contact with steam and to produce resins having excellent weather resistance or physical properties or high purity medical drugs.

Namely, the present invention is a process for preparing 1,4-cyclohexandicarboxilic acid characterized by passing consecutively through a first step and a second step wherein the first step comprises the hydrogenation of a solution containing terephtalic acid in the presence of a catalyzer palladium in an acid resistant vessel or in a vessel layered with acid resistant material for preparing 1,4-cyclohexandicarboxilic acid and the second step comprises the contact of the solution containing 1,4-cyclohexandicarboxilic acid obtained in the first step with the steam and the extraction of impurities moved to the steam.

Field of the Invention

5

10

15

20

30

35

The present invention relates to a process for preparing 1,4-cyclohexandicarboxilic acid (hereinafter may be referred to as 1,4-CHDA).

Background of the Invention

1,4-CHDA is useful as raw material for medical drug, synthetic resin, synthetic fiber, paint, etc. and to be more specific, is used as raw material for producing resins and fibers having excellent heat resistance, weather resistance and physical strength, etc.

Among methods for preparing 1,4-CHDA, the representative process consists in obtaining through hydrogenation of benzen ring by using a high purity terephtalic acid (hereinafter may be referred to as TPA) among those produced as industrial raw material, and a plurality of processes have already been disclosed.

These processes may be generally classified into those reducing benzen ring after having once obtained metal salts as sodium and the like or various ester from the acid part of TPA and those reducing directly from the acid.

As the former needs supplementary steps for leaving who raw material TPA as derivative, reducing before rendering it to the form of acid, the direct reduction process is more economic and have been believed to be more promising.

Among a number of trials, few have succeeded in reducing acid as it is, including for instance the process disclosed in (1) Japanese TOKKYO-KOKOKU-KOHO (Publication for Opposition of Examined Patent Appliction) SHOWA 36(1961)-522 wherein TPA with aqueous medium is hydrogenated under the condition of 150 to 300 °C and about 210kg/cm² in a stainless pressure vessel using palladium or ruthenium as catalyzer, the reaction product is dissolved in alkali such as sodium hydroxide, catalyzer is filtered before adding acid for neutralization and acid dipping to obtain 1,4-CHDA of interest.

On the other hand, the process disclosed in (2) Journal of Organic Chemistry, 31(10) pp.3438-9 (1966) comprises the steps of hydrogenating TPA in aqueous medium with rhodium on alumina as catalyzer under 60 to 70 °C and with the hydrogen pressure of less than 3 times the atmospheric pressure, removing catalyzer by high temperature filtering and extracting 1,4-CHDA of interest with chloroform by a yield of approximately 90%.

Moreover, another process is disclosed in (3) Japanese TOKKYO-KOKAI-KOHO (18-month Publication of Unexamined Patent Application) SHOWA 58(1983)-198439 wherein TPA with aqueous medium is hydrogenated under the condition of 150 °C and about 100kg/cm^2 in a stainless steel pressure vessel using palladium or ruthenium as catalyzer, which are then separated under a specific temperature condition within the range of 110 to 180 °C and defined as $t > = 43.5 \times \log_{10} C + 69.5$ (t = degree Celsius, C = 1,4-CHDA dissolved amount to 100 weight parts of water expressed by weight part) to obtain 1,4-CHDA of interest.

Recently, as the demand for product having an international competitive power and high level functions in the filed of medical drugs or the filed of resins where 1,4-CHDA is used as raw material, it is required that raw material of extremely low impurity though offering an international cost competitive power such as high purity product of which 1,4-CHDA purity is approximately 99.9 weigh %, those containing little mineral like chlorine or those containing less impurities such as affinities of cyclohexancarboxilic acid be supplied without a significant rise in price.

1,4-CHDA obtained by the conventional processes, however, was not pure enough to satisfy such a high level quality demand and even if some special preparation method could be considered, it would remain unpractical because it will need extremely complicated and expensive process.

For instance, when followed up, the process (1) above presents difficulties such as a dramatic loss of catalyzer activity which is necessary for the reduction and, in consequence, an extremely high catalyzer cost.

Additionally, a fateful problem remained unresolved, namely, it has been impossible to prevent impurities from being mixed in 1,4-CHDA, impurities such as 4-methylcyclohexancarboxilic acid and other affinities of cyclohexancarboxilic acid, byproducts of the reaction, sodium sulfate, sodium chloride and other minerals produced by the acid for recovering 1,4-CHDA from alkali used for dissolving raw material TPA or from reaction products of the hydrogenation.

In consequence, irregular reactions may be caused by the impurities contained in the raw material during the polymerization of resin or others using as raw material 1,4-CHDA obtained by this process or the heat resistance, the physical strength or the weather resistance of the final product such as resin may be significantly deteriorated by the impurities contained in the raw material and the other disadvantages have been remarked and the improvement of these disadvantages remains unresolved.

In the process (2) above, like the abovementioned (1), though the price is ten times higher than palladium or ruthenium, the catalyzer life of rhodium used as catalyzer is not longer in proportion to the price, the purity of the product of interest in the reaction product is so low as approximately 95% and, moreover, it has been impossible to prevent impurities such as affinities of cyclohexancarboxilic acid, reaction byproducts, from being mixed in 1,4-CHDA.

Additionally, chloroform used as extraction medium in the preparation according to this process dissolves well the above-mentioned impurities equally so, in consequence, the resulting purity of 1,4-CHDA is not significantly different from the purity before the extraction. Moreover, as this medium itself is a poison, its use itself is not preferable and the use of medium other than water requires additional cost for equipment and for extraction of the medium. The improvement of these difficulties has also been left unresolved.

While in the process (3) above, though exempt from sodium sulfate, sodium chloride and other minerals produced from alkalis and acids, affinities of cyclohexancarboxilic acid are produced as byproduct of the hydrogenation in which palladium or ruthenium is used as catalyzer at 110 to 180 °C and it has been impossible to prevent these impurities being mixed in 1,4-CHDA.

As a means to resolve these problem, it would be possible to crystallize the product containing 1,4-CHDA; however, as 1,4-CHDA and impurities are extremely insoluble to the water, it is impossible to obtain a high purity product showing the purity of at least 99.9% by crystallizing 1,4-CHDA of which purity is less than 99.5% when the crystallization is undertaken from the water.

On the other hand, a high temperature and/or a high pressure are required so as not to leave some raw material non reduced in function of the repeated use of the catalyzer, but 1,4-CHDA purity of the reaction product decreases because of such a server temperature condition. This disadvantage has not also been resolved.

In the preparation processes of 1,4-CHDA described above, the example of preparation using new catalyzer which is not deprived of the activity is disclosed and it seems apparently that they would permit to obtain 1,4-CHDA of relatively high purity. The inventors have, however, followed up these processes and found that 1,4-CHDA of low purity is produced almost in any of them and the product could not be used as it is.

The reason seems to be as follows: in many cases, impurities are produced but absorbed preferentially by the absorption points such as active carbon used as catalyzer carrier, in consequence, though the apparent 1,4-CHDA purity is relatively high, as the absorption capacity of active carbon and other is limited, the impurities could be detected at the rate as they are produced in reality once the absorption capacity has been attained.

On the other hand, a stainless steel pressure vessel is adopted for the conventional preparation methods, but the inventors have made a detailed research on a conventional stainless vessel by introducing solution of TPA or 1,4-CHDA therein and making contact with the vessel wall at a temperature at which the hydrogenation will take place and found that nickel, iron, chrome, molybdenum and other components of the stainless steel are dissolved in the solution and, acting as catalytic poison, lower significantly the catalyzer activity.

Given these restrictions, the conventional processes can not allow an economical production due to rapid decrease of catalyzer activity, the reaction product can not meet recent severe requirements because the conventional reaction produces more impurities than the expectation during the preparation of 1,4-CHDA and, moreover, it is also difficult to improve the purity of 1,4-CHDA through the conventional processes, so the development of a method that could resolve various problems mentioned above has been expected eagerly.

Disclosure of the Invention

The inventors have made a study on the behavior of TPA and its alkali salt against various reactions, examined actively the realization of its economical process and the method for improving the product purity, found that the drop of catalyzer activity is provoked by nickel, chromium, molybdenum, iron and others dissolved from the wall of a metal pressure vessel made, for instance, of stainless steel which is conventionally used, succeeded in realizing an economical hydrogenation with a remarkable suppression of the drop of catalyzer activity through the adoption of a vessel providing a high acid resistance or a vessel provided with a layer of acid resistant materiel as a reactor and, moreover, succeeded in obtaining extremely high purity 1,4-CHDA by bringing the solution containing hydrogenation product into contact with the steam and thus in completing the invention.

Now the content of the present invention will be described in detail.

First, the present invention is a process for preparing 1,4-cyclohexandicarboxilic acid characterized by passing consecutively through a first step and a second step wherein the first step comprises the hydrogenation of TPA containing solution in the presence of catalyzer palladium in an acid resistant vessel or in a vessel layered with acid resistant material for preparing 1,4-cyclohexandicarboxilic acid and the second step comprises the contact of the solution containing 1,4-cyclohexandicarboxilic acid obtained in the first step with the steam and the extraction of impurities moved to the steam.

Second, the present invention is a process for preparing 1,4-cyclohexandicarboxilic acid of the claim 1, wherein the hydrogenation of the first step is performed under a hydrogen pressure between 2kg/cm² and less than 10kg/cm².

Third, the present invention is a process for preparing 1,4-cyclohexandicarboxilic acid of the claim 1 or 2, wherein the hydrogenation of the first step is performed in a pressure provided with a vitreous layer.

Fourth, the present invention is a process for preparing 1,4-cyclohexandicarboxilic acid of the claim 1, 2 or 3 wherein, in the second step, 1,4-cyclohexandicarboxilic acid is brought continuously into contact in counterflow with steam by supplying continuously solution containing 1,4-cyclohexandicarboxilic acid continuously from one side of a packed tower, supplying steam continuously from the opposite direction thereof, evacuating 1,4-cyclohexandicarboxilic acid discontinuously or continuously from the other side all the way evacuating steam in the opposite direction thereof and removing impurities moved to the steam side by condensing them with steam or by passing them through an alkaline aqueous solution before heating the steam as necessary for its recycling.

As for the quality of TPA used for the present invention, saying nothing of high purity products that have been used conventionally as raw material of 1,4-CHDA, those of general industrial use quality that have not been used conventionally because of their slightly lower purity can be adopted advantageously; however it is preferable that they contain little metal ions which would act as a catalyzer poison during the hydrogenation reaction.

Additionally, the preferable TPA concentration for the embodiment of the present invention is 5 to 50% for the first step; however, more preferable concentration is 10 to 40%.

In the embodiment of the present invention, a concentration higher or lower than the said concentration range of the first step is not preferable in both cases, because the production will not be so effective as the equipment scale if it is lower than 5% and because the handling will be difficult due to a poor solubility of trans-isomer if it is higher than 50%.

As a catalyzer for the hydrogenation reaction used advantageously in the present invention, metal palladium carried on a catalyst support can be adopted advantageously and as a catalyst support, carbon represented by various activated charcoals is most preferable among alumina, silica or carbon because it is hardly affected by acid.

The palladium supported amount adopted advantageously for the embodiment of the present invention is 2 to 20%, expressed by the rate of metal palladium content in the catalyzer weight, while 5 to 10% is more preferable.

In the embodiment of the present invention, various alcohols, water or 1,4-CHDA can be used as a medium for controlling the concentration; however, the water is most preferable because it is inert to the reaction and the price is low.

Concerning acid resistant material and acid resistant vessel, high acid resistant metals such as hastelloy steel, inconel steel and their compact or non metallic high acid resistant materials such as ceramics, enamel, glass or other vitreous material or their compact can be used; however, vessels made of iron or stainless steel used for an ordinary pressure vessel and provided with a lining of various acid resistant materials mentioned hereabove are economic and can also be adopted advantageously.

The parameters for an advantageous embodiment of the first step of the present invention includes the temperature of 120 to 160 °C, the hydrogen pressure of 1 to 50kg/cm² or more preferably between 2kg/cm² and less than 10kg/cm² and the reaction time of 30 to 120 minutes and the deviation from this range is not desirable in any case because the yield and the purity of the product will be affected adversely.

As for the concentration of the reaction product containing 1,4-CHDA used for the second step, it is most economic to use the concentration of the filtrate as it is after the removal of catalyzer following the hydrogenation; however, given the rate of cis- and trans-1,4-CHDA obtained usually, economic restrictions and the solubility into the water, the concentration range of approximately 2% to 40% is preferable and the range from 5% to 30% is most preferable.

Moreover, there is no specific restriction as for the proportion of cis- and trans-1,4-CHDA contained in the reaction product containing 1,4-CHDA and their proportion which would appear in the reaction product obtained by the hydrogenation of TPA does not interfere the embodiment of the present invention; however

10

20

25

35

40

the dissolution temperature reaction product to the water generally tends to increase as increases the proportion of trans-1,4-CHDA and the proportion of cis-: trans-1,4-CHDA = approximately 80: 20 to 50: 50 is suitable for the operation.

There is also no particular restriction for the steam used in the second step of the present invention and those produced by an ordinary steam generator are satisfactory provided that they allow to meet the temperature requirement of the embodiment of the present invention.

In the second step, solution containing 1,4-cyclohexandicarboxilic acid is brought into contact with steam by batch or continuously and both methods may be adopted for the present invention admitting that the continuous method is more efficient.

On the other hand, the method to remove impurities moved to the steam side after the contact of 1,4-CHDA with the steam may also be carried out both by batch or continuously and it can be performed by removing the mixture of impurities and steam drain by means of condensation of the steam, by injecting steam into the alkaline aqueous solution or by introducing steam into the shower of alkaline aqueous solution.

Moreover, as a preferable embodiment of the second step of the present invention, the said solution containing 1,4-cyclohexandicarboxilic acid and steam may be brought into contact in counterflow.

Steam may arbitrary be recycled in order to reduce the energy loss throughout the process and, as mentioned above, after having removed impurities by means of alkaline aqueous solution, the steam may be heated as necessary for the reuse.

The abovementioned respective operation of the second step may certainly be combined arbitrary, however, among such combinations, the method comprising the steps of bringing solution containing 1,4-CHDA and steam into contact in counterflow, bringing steam containing impurities into contact with alkaline aqueous solution in order to absorb impurities by the alkaline aqueous solution before reusing the steam is most advantageous from the economic point of view.

Now the method of combination will be described more in detail. First, a tower (A) and a tower (B) filled with charge such as Raschig rings are provided, then an upper portion of the tower (A) and an lower portion of the tower (B), a lower portion of the tower (A) and an upper portion of the tower (B) are connected respectively through piping, each of pipings and towers is provided with a structure such as jacket, etc. that would allow to adjust to the predetermined temperature and a pump (P) having a function to circulate the steam in the middle of the piping connecting the lower portion of the tower (A) and the upper portion of the tower (B) positioning the tower (A) at the evacuation side.

Next, operating the pump (P) of the said equipment, heated solution containing 1,4-CHDA is introduced continuously from the upper portion of the tower (A) and evacuated from the lower portion of the tower (A) and at the same time, heated alkaline aqueous solution is introduced continuously from the upper portion of the tower (B) and evacuated from the lower portion of the tower (B).

At this time, the preferable concentration of the solution containing 1,4-CHDA supplied to the tower (A) is 2 to 40%, but more preferable is 5 to 30%.

On the other hand, the preferable concentration of the alkaline aqueous solution supplied to the tower (B) is 1 to 50%, but more preferable is 1 to 20%.

The preferable flow rate of the solution containing 1,4-CHDA supplied to the tower (A) is about 1 to 6 times the capacity of the tower (A) per hour depending on its concentration, temperature or the content of purities contained therein.

Here, the flow rate of 1,4-CHDA less than 1 time per hour is not preferable because it lowers the efficiency of production unnecessarily and the flow rate more than 6 times per hour is also undesirable because the removal of impurities may become imperfect.

Moreover, the preferable flow rate of the alkaline aqueous solution supplied to the tower (B) is about 1 to 6 times the capacity of the tower (B) and the flow rate superior or inferior to this range is, in both case, undesirable because alkali may become excessive or insufficient.

As for the alkali in this invention, sodium hydroxide, potassium hydroxide or sodium triphosphate may be used advantageously, but among various alkalis, salts of calcium often provoke scale and carbonates generate gas; therefore they are both recommended not to adopt though they can be used.

The preferable steam circulation rate by the pump (P) is approximately 0.1 to 1.6 times of the tower (A) capacity per hour when it is converted in the volume of steam condensed water and any deviation from this range in both sides may affect adversely the cost or yield of the second step and, therefore, is not desirable.

When the second step of the abovementioned combination is adopted, it is recommended to keep the temperature of respective tower and piping within 100 to 150 °C or more preferably within 102 to 130 °C and the difference in temperature of the tower (A) and the tower (B) is not undesirable because the supplied

15

20

solution containing 1,4-CHDA may boil or the steam may condensate in a way to imbalance the mass balance on one hand and a temperature inferior to 100 °C may provoke insufficient removal of impurities and a temperature exceeding 150 °C is also undesirable because it may decrease the yield due to the decomposition, etc. on the other hand.

In the said tower (B), the velocity with which impurities contained in the steam is absorbed and move toward alkali side is so rapid, a method wherein the steam containing impurities coming from the upper portion of the tower (A) is brought into contact with a shower-form alkaline aqueous solution or a method wherein the steam is blown directly into the alkaline aqueous solution may be adopted.

As described hereinabove, the embodiment of the present invention permits to suppress the activity drop of hydrogenation catalyzer and to assure a long catalyzer life and this permits to realize economically a method for obtaining 1,4-CHDA by subjecting TPA directly to the hydrogenation reaction and, moreover, to prepare 1,4-CHDA of high quality that will meet with the actual severe requirement.

The embodiment of the present invention permits to realize an economical hydrogenation reaction through a significant suppression of the catalyzer activity loss of expensive palladium, to obtain an extremely high purity 1,4-CHDA with very simple operations by bringing the said solution containing hydrogenation product into contact with the steam and to produce resins showing excellent weather resistance or physical strength or high purity medical drugs.

Brief description of the Drawings

20

Fig. 1 is a schematic diagram for the first Example of the equipment provided with heating jacket to be used for the embodiment of the present invention.

Fig. 2 is a schematic diagram for the second Example of the equipment provided with heating jacket to be used for the embodiment of the present invention.

References in the drawings indicated respectively:

- A: Tower, B: Tower, C: Tower,
- a: Inlet, b: Steam outlet, c: Steam inlet, d: Outlet,
- e: Alkaline liquid inlet, f: Steam outlet, g: Steam inlet,
- h: Alkaline liquid outlet, i: Alkaline liquid inlet,
- j: Steam outlet, k: Alkaline liquid outlet, m: Steam inlet,
 - 1: Vessel, 2: Column, 3: Liquid receiving vessel,
 - 4: Vessel, 5: Column, 6: Liquid receiving vessel,
 - 7: Pump, 8: Pump, 9: Steam circulation pump,
 - 10: Vessel, 11: Alkaline shower equipment,
- 12: Liquid receiving vessel, 13: Pump, 14: Preheater,
 - 15: Preheater

25

40

45

50

55

Preferred Embodiments

Now the present invention will be illustrated more specifically by the followings reference examples and embodiment examples referring to the attached drawings, however, these examples are not intended to limit the scope of the present invention.

[Embodiment example 1] (First step)

30 g of terephtalic acid, 270 g of water and 8 g of 10% palladium-carbon catalyzer (supplied by N.E. Chemcat Corporation) are introduced into a glass autoclave of 500 ml provided with agitator blades made of fluororesin (Teflon) and hydrogenated at 130 °C under a hydrogen pressure of 8.3 to 9.8 kg/cm² and the reaction stops after 50 minutes when the hydrogen absorption is no more observed.

The reaction liquid is evacuated from the autoclave, all the catalyzer is filtered off for recovering, the recovered catalyzer is washed with 2000 ml of boiling water before adding it to the filtrate.

The filtrate is then analyzed by gas-liquid chromatography and the 1,4-CHDA purity in the solid component is found to be 98.4 %, the non reduced material to be 0.02 % and impurities to be composed only of 4-methylcyclohexancarboxilic acid and cyclohexancarboxilic acid.

Then the similar hydrogenation is repeated adding 30 g of terephtalic acid and 270 g of water to the recovered catalyzer.

The hydrogenation is repeated up to 70 times using the recovered catalyzer, however, a significant variation of reaction time, 1,4-CHDA purity or volume of non reduced material that are as much indices of

hydrogenation activity of the catalyzer is not observed.

The results of the repeated hydrogenation are shown in the following Table 1.

Table 1

Repeated times	Reaction time (minute)	Purity of 1,4-CHDA (%)	Non reduced material (%)
1	50	98.4	0.02
10	53	97.7	0.02
20	53	97.6	0.02
40	55	97.7	0.01
70	55	97.6	0.02

[Reference example 1] (First step)

5

10

15

20

25

30

35

The hydrogenation is repeated up to 20 times as in the Embodiment example 1 except that a stainless autoclave is used in place of glass one of the Embodiment example 1.

As the result, the time necessary for the hydrogenation is prolonged and further repetition is abandoned. The results of the repeated hydrogenation are shown in the following Table 2.

Table 2

Repeated times	Reaction time (minute)	Purity of 1,4-CHDA (%)	Non reduced material (%)
1	55	98.4	0.01
10	75	97.1	0.01
20	145	97.8	0.02
Abandoned thereafter			

[Embodiment example 2] (First step)

1.2 kg of terephtalic acid, 4.8 kg of water and 240 g of 10% palladium-carbon catalyzer are introduced into a stainless (SUS306) autoclave of 10,000 ml provided with glass lining on the inner wall and liquid contact portion of agitator blades and hydrogenated at 130 °C under a hydrogen pressure of 8.5 to 9.8 kg/cm² and the reaction stops after 65 minutes from the beginning of the reaction when the hydrogen absorption is no more observed.

The reaction liquid is cooled down, evacuated from the autoclave, filtered at 135 °C by an enamel pressure filter of 10 litters, cooled down and the filtrate is then analyzed to find 1,4-CHDA purity be 97.4 % and the non reduced material be 0.02 %.

5 [Embodiment example 3] (First step)

600g of terephtalic acid, 5.4 kg of water and 120 g of 10% palladium-carbon catalyzer are introduced into the same autoclave as the Example 2 and hydrogenated at 140 °C under a hydrogen pressure of 5 to 6 kg/cm² and the reaction stops after 115 minutes from the beginning of the reaction when the hydrogen absorption is no more observed.

The reaction liquid is cooled down and, as in the Example 2, heat filtered, cooled down and the filtrate is then analyzed to find 1,4-CHDA purity be 96.5 % and the non reduced material be 0.03 %.

[Embodiment example 4] (First step)

The hydrogenation is carried out as in the Example 3 except that 240 g of 7.5% palladium-carbon catalyzer is used, the reaction temperature is 150 °C and the hydrogen pressure is 8.5 to 9.8 kg/cm². In consequence, the reaction time is 75 minutes from the beginning of the reaction. The analysis shows that

.7

TIMENANT TO ASSESS

1,4-CHDA purity is 96.8 % and the non reduced material is 0.03 %.

[Embodiment example 5] (First step)

5

10

35

40

45

50

55

900 g of terephtalic acid, 5.1 kg of water and 400 g of 5% palladium-carbon catalyzer are introduced into the same autoclave as the Example 2 and hydrogenated at 130 °C under a hydrogen pressure of 8.5 to 9.8 kg/cm² and the reaction stops after 65 minutes from the beginning of the reaction when the hydrogen absorption is no more observed.

The reaction liquid is analyzed as in the Example 2 to find 1,4-CHDA purity be 98.2 % and the non reduced material be 0.01 %.

[Embodiment example 6] (Second step)

A equipment provided with a heating jacket shown in Fig. 1 wherein a stainless tower (B) provided with a jacket and the other portions in contact with liquid are respectively layered with a glass lining is supplied and connected to pipings provided with heating jacket as show in the drawing.

The dimensions of respective component of the tower (A) shall be: vessel (1) (inner diameter 5 cm, length 20 cm), column (2) (inner diameter 5 cm, length 198.7 cm, capacity 3900 ml), liquid receiving vessel (3) (inner diameter 5 cm, length 70 cm) and those of the tower (B) shall be: vessel (4) (inner diameter 5 cm, length 20 cm), column (5) (inner diameter 5 cm, length 198.7 cm, capacity 3900 ml), liquid receiving vessel (6) (inner diameter 5 cm, length 70 cm) and the column (2) is filled with ceramic Raschig rings (inner diameter 3 mm, outer diameter 6 mm, length 6 mm) and the column (5) with wire gauze of 5 mm x 12 mm respectively.

On the other hand, are attached respectively an inlet of solution containing 1,4-CHDA (a) on the top and a steam outlet (b) on the side of the vessel (1), a steam inlet (c) on the side and an outlet port (d) of 1,4-CHDA at the bottom of the liquid receiving vessel (3), an inlet of alkaline aqueous solution (e) on the top and a steam outlet (f) on the side of the vessel (4) and a steam inlet (g) on the side and a evacuation port of alkaline aqueous solution (h) at the bottom of the liquid receiving vessel (6).

First, a steam pressure of 4.8 kg/cm² is applied to the jacket portion of the equipment and the temperature in the system is adjusted to 150 °C then the steam circulation pump (9) is driven at a flow rate of 57 ml (volume as water) per minute to advance steam to the steam inlet (c) for circulating the steam in the equipment.

Then the pump (8) is driven to supply 10 % aqueous solution of sodium hydroxide to the inlet (e) through a preheater (15) at a flow rate of 67 ml per minute and the solution containing 1,4-CHDA obtained in the Example 2 (concentration of 20 %, 1,4-CHDA purity of 97.4 %) is supplied by the pump (7) at a flow rate of 133 ml per minute and respective liquids are evacuated from the drain port (d) and evacuation port (h) of respective tower every 10 minutes.

One (1) hour and two (2) hours after, the solution containing the produced 1,4-CHDA is extracted from the evacuation port (d) of the liquid receiving vessel (3), analyzed and no purity is found.

[Embodiment example 7] (Second step)

The treatment is performed adopting the same method as the Example 6 except for the following parameters.

The temperature in the piping and the equipment is adjusted to 130 °C, the solution obtained under the conditions of the Example 5 (concentration of 15 %, 1,4-CHDA purity of 98.2 %) is used as solution containing 1,4-CHDA, the supply rate to the inlet (a) is 266 ml per minute and the supply rate of 10 % aqueous solution of sodium hydroxide to the inlet (e) is 67 ml per minute.

The equipment is driven with the steam circulation pump (9) running at the supply rate of 71 ml (as water volume). One (1) hour and two (2) hours after, the solution is extracted from the evacuation port (d) of the liquid receiving vessel (3), analyzed and no purity is found.

[Embodiment example 8] (Second step)

The equipment is operated same as in the Example 6 except that the temperature in the equipment of the Example 6 is adjusted to 110 °C, the solution obtained under the conditions of the Example 3 (concentration of 10 %, 1,4-CHDA purity of 96.5 %) is used as solution containing 1,4-CHDA, the supply rate to the inlet (a) is 200 ml per minute, and 5 % alkali aqueous solution is used and its supply rate to the

inlet (e) is 134 ml per minute and the equipment is driven as in the Example 6 with the steam circulation pump (9) running at the supply rate of 71 ml (as water volume). One (1) hour and two (2) hours after, the solution is extracted from the evacuation port (d) of the liquid receiving vessel (3), analyzed and no purity is found.

[Embodiment example 9] (Second step)

5

25

35

50

As the tower (B) of the Example 6, a stainless steel vessel (inner diameter 12 cm, length 100 cm, capacity 11300 ml) without filling is adopted and a check valve is mounted between the steam outlet (b) and the steam inlet (g) for preventing the water back flow and for letting the steam flow from the steam outlet (b) to the steam inlet (g).

5000 ml of 20 % potassium hydroxide is introduced so that the steam inlet (g) of the vessel (B) will be under the level of alkali aqueous solution and the temperature of the whole system is maintained at 130 °C.

The solution containing 1,4-CHDA obtained under the conditions of the Example 5 (concentration of 15 %, 1,4-CHDA purity of 98.2 %) is supplied from the inlet (a) at a flow rate of 67 ml per minute and the equipment was operated as in the Example 6 except that the continuous supply and evacuation of alkali is omitted. One (1) hour and two (2) hours after, the solution is extracted from the evacuation port (d) of the liquid receiving vessel (3), analyzed and no purity is found.

[Embodiment example 10] (Second step)

Using only the tower (A) of the Example 6, a piping is connected to the steam inlet (c) so that the steam of the same steam pressure as the outside jacket, a throttle valve and a cooler are attached to the steam outlet (b) so that this structure can condensate the evacuated steam.

A steam pressure of 2.0 kg/cm² is applied to the jacket of the equipment and piping in order to keep the temperature at 120 °C, the steam inlet (c) valve is opened to introduce steam into the-equipment and the steam outlet (b) valve is opened so as to adjust the flow rate of the cooled and evacuated condensate at 57 ml per minute.

Then the solution containing 1,4-CHDA obtained under the conditions of the Example 4 (concentration of 10 %, 1,4-CHDA purity of 96.8 %) is supplied through the preheater (14) to the inlet (a) at a flow rate of 100 ml per minute by the pump (7) and the steam outlet (c) valve is adjusted so that the concentration of refined solution containing 1,4-CHDA evacuated from the evacuation port (d) will be 10 %.

The liquid is evacuated from the evacuation port (d) every 10 minutes, then one (1) hour and two (2) hours after, the extracted liquid is analyzed and no purity is found.

[Embodiment example 11] (Second step)

As shown in Fig. 2, a tower (C) with jacket (made of SUS316) is provided in place of the tower (B) of Example 6. As in the tower (B), the structure of the tower (C) comprises a vessel (10) (inner diameter 17 cm, length 40 cm), an alkali showering apparatus (11) (inner diameter 17 cm, length 99.6 cm, capacity 22600 ml) and a liquid receiving vessel (12) (inner diameter 17 cm, length 49.8 cm, capacity 11300 ml).

Are attached respectively an alkali liquid inlet (i) on the top and a distributor at the extremity of an alkali piping of the vessel (10) so that this structure permits the alkali liquid introduced from the alkali liquid inlet (i) to disperse uniformly in the form of shower in the alkali showering apparatus (11). Additionally, a steam outlet (j) is attached on the side and a throttle valve and a cooler are attached on the outside of the vessel (10).

A liquid outlet port (k) is attached at the bottom and a steam inlet (m) and a valve are attached on the side of the liquid receiving vessel (12), and a pump (13) is mounted between the inlet of alkaline liquid inlet (i) and the liquid outlet port (k) so that this structure permits the liquid to circulate toward the alkali liquid inlet (i)

Moreover, the steam outlet (b) and the steam inlet (m), the steam inlet (c) and the steam outlet (j) are connected by a piping respectively and a steam circulation pump (9) is mounted between the steam inlet (c) and the steam outlet (j) so that the steam circulate toward the steam inlet (c).

First, 5000 ml of 10 % solution of sodium hydroxide is introduced in the vessel (10) of the tower (C), a steam pressure of 2 kg/cm² is applied to each jacket and the temperature is adjusted to 120 °C, then the pump (13) is driven to circulate at a speed of 6000 ml per minute and a steam circular pump (9) in driven at a flow rate of 71 ml (volume as water) per minute. At the same time, the solution containing 1,4-CHDA obtained under the parameters of the Example 5 is supplied to the inlet (a) of the tower (A) at a flow rate of

266 ml per minute and the solution containing 1,4-CHDA is evacuated from the liquid outlet port (d) every 10 minutes.

One (1) hour and two (2) hours after, the quality of the solution extracted from the evacuation port (d) is analyzed and no purity is found.

Claims

5

10

15

25

30

35

40

45

50

55

1. A process for preparing 1,4-cyclohexandicarboxilic acid characterized by passing consecutively through a first step and a second step wherein:

the first step comprises the hydrogenation of a solution containing terephtalic acid in the presence of a catalyzer palladium in an acid resistant vessel or in a vessel layered with acid resistant material for preparing 1,4-cyclohexandicarboxilic acid and:

the second step comprises the contact of the solution containing 1,4-cyclohexandicarboxilic acid obtained in the first step with the steam and the extraction of impurities moved to the steam.

- 2. A process for preparing 1,4-cyclohexandicarboxilic acid of the claim 1, wherein the hydrogenation of the first step is performed under a hydrogen pressure between 2kg/cm² and less than 10kg/cm².
- 3. A process for preparing 1,4-cyclohexandicarboxilic acid of the claim 1 or 2, wherein the hydrogenation of the first step is performed in a pressure provided with a vitreous layer.
 - 4. A process for preparing 1,4-cyclohexandicarboxilic acid of the claim 1, 2 or 3 wherein, in the second step, 1,4-cyclohexandicarboxilic acid is brought continuously continuously into contact in counterflow with steam by supplying continuously solution containing 1,4-cyclohexandicarboxilic acid continuously from one side of a packed tower, supplying steam continuously from the opposite direction thereof, evacuating 1,4-cyclohexandicarboxilic acid discontinuously or continuously from the other side all the way evacuating steam in the opposite direction thereof and removing impurities moved to the steam side by condensing them with steam or by passing them through an alkaline aqueous solution before heating the steam as necessary for its recycling.

F I G. 1

F I G. 2

EUROPEAN SEARCH REPORT

Application Number EP 93 12 0619

Category	Citation of document with indic of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.5)
A	US-A-5 159 109 (BRUCE * column 1, line 65 -	I. ROSEN ET AL.)	1	C07C61/09 C07C51/36
A	US-A-5 118 841 (STEVE * the whole document		1	C07C51/44
A	US-A-4 754 064 (LAWRE * the whole document		1	
A,D	PATENT ABSTRACTS OF J vol. 8, no. 34 (C-210 1984 & JP-A-58 198 439 (TO 1983 * abstract *) (1471) 15 February	-	
pages 3438 - 3439 MORRIS FREIFELDER Hydrogenation of s		tober 1966, COLUMBUS OHIO CET AL. 'Low-pressure some Cylic Acids with Rhodium		TECHNICAL FIELDS SEARCHED (Int.Cl.5) CO7C
	The present search report has been	drawn up for all claims		·
	Place of search	Date of completion of the search		Examiner
	BERLIN	6 April 1994	Kyı	riakakou, G
X : part Y : part doct	CATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anothe ument of the same category unological background	E : earlier patent after the filin D : document cite L : document cite	ed in the application of the design of the d	lished on, or n
Y : part doci	icularly relevant if combined with anothe	L: document cite	d for other reasons	

THIS PAGE BLANK (USPTO)

世界知的所有権機関 際 事 務

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 - C10M 105/36 // C10N 30:00, 30:12,

40:24, 40:30

(11) 国際公開番号

WO97/21792

(43) 国際公開日

1997年6月19日(19.06.97)

(21) 国際出願番号

PCT/JP96/03634

JР

JР

JP

A1

(22) 国際出願日

1996年12月12日(12.12.96)

(30) 優先権データ

1995年12月12日(12.12.95) 特顏平7/346907 1996年1月12日(12.01.96) 特願平8/21880 1996年2月8日(08.02.96) 特願平8/47964 特願平8/286099 1996年10月7日(07.10.96) 1996年10月25日(25.10.96) 特願平8/301264

(71) 出願人(米国を除くすべての指定国について)

新日本理化株式会社

(NEW JAPAN CHEMICAL CO., LTD.)[JP/JP]

〒612 京都府京都市伏見区葭島矢倉町13番地 Kyoto, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

川原康行(KAWAHARA, Yasuyuki)[JP/JP]

〒611 京都府宇治市木幡西浦49番地

リジェール柳田207号 Kyoto, (JP)

斎藤未来生(SAITO, Mikio)[JP/JP]

伏見一郎(FUSHIMI, Ichiro)[JP/JP]

〒610-01 京都府城陽市久世芝ケ原131-64 Kyoto, (JP)

三矢恭久(MITSUYA, Yasuhisa)[JP/JP]

〒520-11 滋賀県高島郡高島町大字永田402番地 Shiga (JP)

吉田安久(YOSHIDA, Yasuhisa)[JP/JP]

〒611 京都府宇治市明星町2-41-27 Kyoto, (JP)

JР 渡嘉敷通秀(TOKASHIKI, Michihide)[JP/JP] JΡ

〒612 京都府京都市伏見区深草石峰寺山町31番地 Kyoto, (JP)

(74) 代理人

弁理士 久保田耕平(KUBOTA, Kohei)

〒101 東京都千代田区三崎町二丁目9番5号

水道橋TJビル4階 久保田特許商標事務所 Tokyo, (JP)

JP, KR, US, 欧州特許 (AT, BE, CH, DE, DK, (81) 指定国 ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調查報告書

LUBRICATING OIL (54)Title:

(54)発明の名称 潤滑油

(57) Abstract

A lubricating oil containing an ester of an alicyclic polycarboxylic acid represented by general formula (I), wherein A represents a cyclohexane or cyclohexene ring, R¹ represents hydrogen or a methyl group, X represents hydrogen or COOR⁵, and R², R³, R⁴, and R⁵ represent each a branched alkyl group having 3 to 18 carbon atoms. This lubricating oil has a good hydrolysis stability and is suitable for use as a lubricating oil for metal working, a lubricating oil for a refrigerator, and the like.

(57) 要約

本発明は、下記の一般式[I]

$$\begin{array}{c|c}
X \\
COOR^2 \\
R^1 - A \\
COOR^3 \\
Y
\end{array}$$
[I]

(Aはシクロヘキサン環またはシクロヘキセン環を、R'は水素またはメチル基を、Xは水素またはCOOR'を、Yは水素またはCOOR'を、Yは水素またはCOOR'を、R²、R³、R'、R°は炭素数3~18の分岐状アルキル基等を、それぞれ表す)で表される脂環式ポリカルボン酸エステルを含有する潤滑油に関する。この潤滑油は加水分解安定性に優れ、金属加工用潤滑油または冷凍機用潤滑油等として好適に使用される。

明細書

潤滑油

発明の技術分野

本発明は、潤滑油に関するものであり、さらに詳しくは、加水分解安定性に優れた有機酸エステルを含有する潤滑油、例えば、工業用潤滑油、自動車用潤滑油および船舶用潤滑油等、特に、金属の切削、圧延、研削、プレス加工、鍜造、押出し加工、引抜き加工等の油剤として用いられる金属加工用潤滑油のほか、冷凍機用潤滑油、油圧作動油等の工業用潤滑油に関するものである。

さらに、本発明は、水溶性油剤として用いられる金属加工用潤滑油、特に、水とのエマルジョンとして用いられる冷間圧延用潤滑油およびフロンを冷媒として用いるカークーラー、冷凍冷蔵庫等の冷凍機用潤滑油等に適した耐加水分解性潤滑油基油を提供するものである。

背景技術

潤滑油にとって、加水分解安定性は水分その他の夾雑物の共存下においてもその潤滑性能を維持するための一つの基本的な要求品質であり、特に、切削油剤、鉄鋼用またはアルミ用圧延油剤、プレス加工用潤滑剤、引抜き油剤等の金属加工用潤滑油、油圧作動油、繊維用油剤等エマルジョンとしてまた水の混入条件下で使用される潤滑油、また、フロンを冷媒とする冷凍機用潤滑油等にとっては加水分解安定性は不可欠な性能として要求されている。

従来、切削、圧延、研削、プレス加工、鍛造、押出し加工、引抜き加工等の金属加工用油剤としては、鉱油や油脂類を用いる不水型油剤と、これらの基油を界面活性剤により水に溶解させるか、またはエマルジョンにした水溶性油剤が用いられてきた。近年、生産性向上のために加工

速度が大きくなる傾向に伴い加工面の冷却が重要性を増し、また、油剤の引火を避けるため難燃化が求められている。水溶性油剤は、経済性、冷却性、そして安全性の面で不水型油剤と比べて優れており、水溶性油剤の比重が大きくなっている。

しかしながら、水溶性油剤は不水型油剤に比べて、特に低速加工条件下での潤滑性が劣ることが欠点であり、この欠点解消の目的で、これまでナフテン系鉱油が主であった水溶性油剤に対して、潤滑性を改善した油剤として、天然油脂や合成エステルも基油として、または基油に対する添加剤として使用されるようになってきた。

水溶性油剤は、一般に、前述の油脂および/または合成エステルに界面活性剤およびその他必要な添加剤を配合したものを、水に10倍~100倍に希釈して使用する。この水溶性油剤は鉱油を用いたものに比べ潤滑性は良好である。しかしながら、エステルであるので、加水分解されるという欠点を持っている。そのため、水系加工油として長時間使用または長期間貯蔵すると、エステルが加水分解により酸とアルコールに分解し、油剤の性能が変化してくる。その結果、金属に錆や腐食を生じたり、油剤が分離不均一化して加工性能が劣化したりする。さらに、不水型油剤においても、油性剤成分としてエステルが用いられており、加水分解による油剤の性能劣化が問題となることもある。

また、金属圧延用潤滑油の場合も薄板圧延用の冷間圧延油には、潤滑性の優れた天然油脂、中でも比較的変質しにくい牛脂が水とのエマルジョンの形で用いられてきているが、近年、圧延速度の高速化に伴う圧延油の温度上昇により、牛脂の加水分解およびそれに起因する種々の問題が生じている。

すなわち、圧延油を高温条件下、エマルジョン状態で使用すると、加水分解により牛脂中より遊離脂肪酸が発生し、それが鉄などの金属と反応して石鹸を生成し、油の性能を劣化させる。石鹸は油、水、鉄粉と混じり合って、除去、清掃が困難なスカムを形成する。さらに、その堆積物は引火しやすく、重大な事故の原因ともなりうる。また、石鹸を多く

含むスカムがエマルジョン中に夾雑すると、なじみ効果、すなわち、表面粗さを減少させる効果が過度になり、ロール表面を早期に磨耗させることもある。

一方、牛脂に代わるものとして各種合成エステル、例えば、トリメチロールプロパンやペンタエリスリトールなどのネオペンチルポリオールとオレイン酸とのエステルや、2ーエチルヘキサノールまたはイソブタノールなどの分岐状アルコールと直鎖状脂肪酸とのエステルなどを使用することも検討されている。これらは、牛脂に比べて高価であるが熱安定性が良いなどの特徴がある。しかしながら、加水分解に対しては牛脂と同様に安定性が充分でない。

また、従来、使用されてきた冷凍機の冷媒として分子中に塩素原子を含有するフロン、例えばCFC-11(トリクロロモノフルオロメタン)、CFC-12(ジクロロジフルオロメタン)、HCFC-22(モノクロロジフルオロメタン)等の揮発物がオゾン層を破壊し、また、地球温暖化の原因となり、人体や地球環境に様々な悪影響を及ぼすことが徐々に判明するに伴い、CFCは既に製造禁止となり、HCFCは段階的に数量を減らしていくことが国際的な取り決めとなっている。そこで、近年、塩素原子を含有せず、オゾン層を破壊することのないHFC-134aを代表とする代替フロンに切りかえられつつある。従来の塩素含有フロンは、鉱油系潤滑油と相溶性が良好であるため、冷凍機用潤滑油として鉱油系潤滑油が用いられていたが、HFC-134a等の代替フロンは、塩素含有フロンに比べて分子極性がより高いため、鉱油系潤滑油との相溶性が不良である。

そこで、代替フロン用潤滑油として、相溶性の良好なポリグリコール類(ポリアルキレングリコール、ポリエーテル)またはエステル類が使用されるようになってきたが、ポリグリコール類は電気絶縁性に問題があり、カーエアコン圧縮機には使用可能であるが、モーター内蔵型の密閉型冷凍圧縮機には使用不能である。一方、エステル類は電気絶縁性が高いのでいずれの用途にも使用可能であり、特にネオペンチルポリオー

ルと一価のカルボン酸のエステルが実用に供されている。

しかし、これらのポリオールエステルであっても直鎖状カルボン酸のエステルは加水分解安定性に難点があるため、分岐状カルボン酸と直鎖状カルボン酸の混合酸または分岐状カルボン酸のみのエステルが用いられている。それでも加水分解安定性は充分でなく、冷凍機の組立や補修の際には空気や水分の管理が必要とされるなど煩雑な操作が要求されている。

このような状況において、各種の分野で耐加水分解性の良好な潤滑油が不可欠なものとなり、その開発が切望されてきた。

発明の開示

本発明の第一の目的は、前記のような金属加工用潤滑油、冷凍機用潤滑油等の開発状況に鑑み、加水分解安定性に優れた新規な潤滑油を提供することにある。

また、本発明の第二の目的は、耐加水分解性に良好な合成エステル系 潤滑油基油を提供することにある。

さらに、本発明の第三の目的は、加水分解安定性に優れた合成エステル系潤滑油基油を提供し、該潤滑油基油を含有する各種金属加工用潤滑油、特に金属圧延用潤滑油、および冷凍機用潤滑油のほか多分野で使用可能な潤滑油を提供することにある。

本発明者らは、上記課題を解決すべく鋭意検討の結果、特定の脂環式ポリカルボン酸エステルが加水分解安定性に優れていることを見いだし、さらに、該脂環式ポリカルボン酸エステルを潤滑油基油として用いることにより所定の目的を達成できることを見いだし、かかる知見に基づいて本発明を完成するに至った。

すなわち、本発明は、一般式[I]

$$R^{1} - A \xrightarrow{COOR^{2}} COOR^{3}$$

(上記一般式 [I] において、Aはシクロヘキサン環またはシクロヘキセン環を表し、R¹は水素原子またはメチル基を表し、Xは水素原子またはCOOR⁵を表し、R²、R³、R⁴、R⁵は互いに同一でもまたは異なるものでもよく、炭素数3~18の分岐状のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~18の直鎖状のアルキル基または炭素数2~18の直鎖状のアルケニル基を表す。)

で表される脂環式ポリカルボン酸エステル (以下、必要に応じ「本エステル」という。)の1種または2種以上を含有することを特徴とする潤滑油に関するものである。

また、本発明は、上記一般式[I]で表される脂環式ポリカルボン酸エステルの1種または2種以上を含有する金属加工用潤滑油、特に金属圧延油、切削油およびプレス加工用潤滑油ならびに冷凍機用潤滑油を提供するものである。

発明を実施するための最良の形態

次に、本発明の潤滑油の成分として用いられる脂環式ポリカルボン酸 エステルについて説明する。

脂環式ポリカルボン酸エステル

脂環式ポリカルボン酸エステルは、次の一般式[I]で表される。

$$R^{1} - A < COOR^{2}$$

$$\downarrow COOR^{3}$$

$$\downarrow Y$$

上記一般式 [I] において、Aはシクロヘキサン環またはシクロヘキセン環を表し、 R^1 は水素原子またはメチル基を表し、Xは水素原子または $COOR^5$ を表し、 R^2 、 R^3 、 R^4 、 R^5 は互いに同一でもまたは異なるものでもよく、炭素数 $3\sim 180$ 分岐状のアルキル基、炭素数 $3\sim 180$ 00シクロアルキル基、炭

素数1~18の直鎖状のアルキル基または炭素数2~18の直鎖状のアルケニル基を表す。

本エステルは、所定の酸成分とアルコール成分とを常法に従って、好ましくは窒素等の不活性化ガス雰囲気下において、エステル化触媒の存在下または無触媒下で加熱撹拌しながらエステル化することにより調製される化合物である。

本エステルを構成する酸成分としては、シクロアルカンポリカルボン酸またはシクロアルケンポリカルボン酸およびそれらの無水物が挙げられ、その1種または2種以上の化合物を混合して用いることができる。 各々のカルボキシル基の置換位置は、シクロヘキサン環またはシクロヘキセン環のいずれでもよく、特に限定されるものではない。

具体的には、1, $2-\sqrt{2}$ $-\sqrt{2}$ $-\sqrt{2}$

酸成分は上記酸を単独で用いることが可能であり、また、2種以上の酸を用いてエステル化することも可能である。

本エステルを構成するアルコール成分としては、炭素数3~18の分

岐状アルコール、炭素数3~10のシクロアルコールまたは炭素数1~ 18の直鎖状アルコールが挙げられる。

具体的な分岐状アルコールとしては、イソプロパノール、イソブタノール、sec-ブタノール、イソペンタノール、イソヘキサノール、2-メチルヘナタノール、2-メチルヘプタノール、2-メチルヘプタノール、イソヘプタノール、2-エチルヘキサノール、2-オクタノール、イソオクタノール、3.5.5-トリメチルヘキサノール、イソデカノール、イソウンデカノール、イソドデカノール、イソトリデカノール、イソテトラデカノール、イソペンタデカノール、イソヘキサデカノール、イソオクタデカノール、2.6-ジメチル-4-ヘプタノール、イソナノール等が例示される。

また、シクロアルコールとしては、シクロヘキサノール、メチルシクロヘキサノール、ジメチルシクロヘキサノール等を例示することができる。

さらに、直鎖状アルコールとしては、メタノール、エタノール、n-プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-ペプタノール、n-オクタノール、n-ナノール、n-デカノール、n-ナノール、n-ナブカノール、n-ナブカノール、n-ナブカノール、n-ナブカノール、n-ナブカノール、n-ナブカノール、n-オクタデカノール、n-オクタデカノール、n-オクタデカノール等を例示することができる。

特に、イソブタノール、シクロヘキサノール、イソヘプタノール、 2-エチルヘキサノール、3,5,5-トリメチルヘキサノール、2, 6-ジメチルー4-ヘプタノール、イソデカノール、イソウンデカノー ル、イソトリデカノール、イソオクタデカノール、n-ヘプタノール、 n-オクタノール、n-デカノール、n-ウンデカノール、n-ドデカ ノール、n-テトラデカノール、n-ヘキサデカノールおよびn-オク タデカノール等が好ましい。

アルコール成分としては、上記アルコールを単独でエステル化反応に

供することが可能であり、また、2種以上のアルコールを混合して用いることも可能である。

エステル化反応を行うに際し、アルコール成分は、例えば、酸成分1 当量に対して1~1.5当量、好ましくは1.05当量~1.2当量程 度用いられる。

さらに、前記酸成分またはアルコール成分の代わりに当該酸成分の低級アルコールエステルおよび/または当該アルコール成分の酢酸エステル、プロピオン酸エステル等を用いて、エステル交換反応により脂環式ポリカルボン酸エステルを得ることも可能である。

エステル化触媒としては、ルイス酸類、アルカリ金属類、スルホン酸類等が例示される。具体的には、ルイス酸としては、アルミニウム誘導体、スズ誘導体、チタン誘導体が例示され、アルカリ金属類としてはナトリウムアルコキシド、カリウムアルコキシド等が例示され、さらに、スルホン酸類としてはパラトルエンスルホン酸、メタンスルホン酸、硫酸等が例示される。その中でも炭素数3~8の有機チタン化合物、炭素数1~4のナトリウムアルコキシド、パラトルエンスルホン酸が好ましい。その使用量は、例えば、エステル合成原料である酸成分およびアルコール成分の総重量に対して0.1重量%~1重量%程度用いられる。

エステル化温度としては、150 $\mathbb{C} \sim 230$ \mathbb{C} が例示され、通常、3 時間 ~ 30 時間で反応は完結する。

エステル化反応終了後、過剰の原料を減圧下または常圧下にて留去する。引き続き、慣用の精製方法、例えば、液液抽出、減圧蒸留、活性炭処理等の吸着精製等により、生成エステルを精製することができる。

また、本発明に係る脂環式ポリカルボン酸エステルは、相当する芳香族ポリカルボン酸エステルを核水添することによっても製造することができる。

かくして得られる脂環式ポリカルボン酸分岐状アルキルエステルおよびシクロアルキルエステルの中でも、特に、1,2-シクロヘキサンジカルボン酸ジイソブチル、1,2-シクロヘキサンジカルボン酸ジシク

ロヘキシル、1,2-シクロヘキサンジカルボン酸ジイソヘプチル、 1、2-シクロヘキサンジカルボン酸ジ(2-エチルヘキシル)、1. 2-シクロヘキサンジカルボン酸ジ(3.5.5-トリメチルヘキシ ル)、1,2-シクロヘキサンジカルボン酸ジ(2,6-ジメチル-4 - ヘプチル)、1,2-シクロヘキサンジカルボン酸ジイソデシル、 1.2-シクロヘキサンジカルボン酸ジイソウンデシル、1,2-シク ロヘキサンジカルボン酸ジイソトリデシル、1.2-シクロヘキサンジ カルボン酸ジイソオクタデシル、4-シクロヘキセン-1、2-ジカル ボン酸ジイソブチル、4-シクロヘキセン-1、2-ジカルボン酸ジシ クロヘキシル、4-シクロヘキセン-1.2-ジカルボン酸ジイソヘプ チル、4-シクロヘキセン-1,2-ジカルボン酸ジ(2-エチルヘキ シル)、4ーシクロヘキセン-1,2-ジカルボン酸ジ(3,5,5-トリメチルヘキシル)、4-シクロヘキセン-1、2-ジカルボン酸ジ (2,6-ジメチル-4-ヘプチル)、4-シクロヘキセン-1,2-ジカルボン酸ジイソデシル、4-シクロヘキセン-1,2-ジカルボン 酸ジイソウンデシル、4-シクロヘキセン-1.2-ジカルボン酸ジイ ソトリデシル、4-シクロヘキセン-1,2-ジカルボン酸ジイソオク タデシル、3-メチル-1,2-シクロヘキサンジカルボン酸ジイソブ チル、3-メチル-1,2-シクロヘキサンジカルボン酸ジシクロヘキ シル、3-メチル-1、2-シクロヘキサンジカルボン酸ジイソヘプチ ル、3-メチル-1,2-シクロヘキサンジカルボン酸ジ(2-エチ ルヘキシル)、3-メチル-1,2-シクロヘキサンジカルボン酸ジ (3,5,5-トリメチルヘキシル)、3-メチル-1.2-シクロヘ キサンジカルボン酸ジ(2,6-ジメチル-4-ヘプチル)、3-メチ ルー1、2-シクロヘキサンジカルボン酸ジイソデシル、3-メチル-1.2-シクロヘキサンジカルボン酸ジイソウンデシル、3-メチルー 1,2-シクロヘキサンジカルボン酸ジイソトリデシル、3-メチル-1,2-シクロヘキサンジカルボン酸ジイソオクタデシル、4-メチル - 1, 2 - シクロヘキサンジカルボン酸ジイソブチル、4 - メチルー

WO 97/21792 PCT/JP96/03634

1.2-シクロヘキサンジカルボン酸ジシクロヘキシル、4-メチル-1.2-シクロヘキサンジカルボン酸ジイソヘプチル、4-メチル-1,2-シクロヘキサンジカルボン酸ジ(2-エチルヘキシル)、4-メチルー1,2-シクロヘキサンジカルボン酸ジ(3,5,5-トリメ チルヘキシル)、4-メチル-1,2-シクロヘキサンジカルボン酸ジ (2,6-ジメチル-4-ヘプチル)、4-メチル-1,2-シクロヘ キサンジカルボン酸ジイソデシル、4-メチル-1,2-シクロヘキサ ンジカルボン酸ジイソウンデシル、4-メチル-1,2-シクロヘキサ ンジカルボン酸ジイソトリデシル、4-メチル-1, 2-シクロヘキサ ンジカルボン酸ジイソオクタデシル、3-メチル-4-シクロヘキセン - 1 . 2 - ジカルボン酸ジイソブチル、3 - メチル-4 - シクロヘキセ ンー1,2-ジカルボン酸ジシクロヘキシル、3-メチル-4-シクロ ヘキセンー1、2-ジカルボン酸ジイソヘプチル、3-メチル-4-シ クロヘキセンー1,2-ジカルボン酸ジ(2-エチルヘキシル)、3-メチルー4ーシクロヘキセンー1,2ージカルボン酸ジ(3,5,5ー トリメチルヘキシル)、3-メチル-4-シクロヘキセン-1:2-ジ カルボン酸ジ(2,6-ジメチル-4-ヘプチル)、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸ジイソデシル、3-メチル-4 ーシクロヘキセンー1,2ージカルボン酸ジイソウンデシル、3ーメチ ルー4ーシクロヘキセンー1、2ージカルボン酸ジイソトリデシル、3 ーメチルー4ーシクロヘキセンー1,2-ジカルボン酸ジイソオクタデ シル、4-メチルー4-シクロヘキセン-1、2-ジカルホン酸ジイソ ブチル、4-メチル-4-シクロヘキセン-1,2-ジカルボン酸ジシ クロヘキシル、4-メチル-4-シクロヘキセン-1,2-ジカルボン 酸ジイソヘプチル、4-メチル-4-シクロヘキセン-1,2-ジカル ボン酸ジ(2-エチルヘキシル)、4-メチル-4-シクロヘキセン-1,2-ジカルボン酸ジ(3,5,5-トリメチルヘキシル)、4-メ チルー4ーシクロヘキセンー1、2ージカルボン酸ジ(2、6ージメチ ルー4-ヘプチル)、4-メチル-4-シクロヘキセン-1,2-ジカ

ルボン酸ジイソデシル、4-メチル-4-シクロヘキセン-1、2-ジカルボン酸ジイソウンデシル、4-メチル-4-シクロヘキセン-1、2-ジカルボン酸ジイソトリデシル、4-メチル-4-シクロヘキセン-1、2-ジカルボン酸ジイソオクタデシルよりなる群から選択される1種または2種以上のエステル等が推奨される。

また、脂環式ポリカルボン酸直鎖状アルキルエステルは、通常、前記の脂環式ポリカルボン酸分岐状アルキルエステルおよび/またはシクロアルキルエステルの1種または2種以上と併用して用いることが好ましい。

脂環式ポリカルボン酸直鎖状アルキルエステルの具体例としては、 1,2-シクロヘキサンジカルボン酸ジヘプチル、1,2-シクロヘキ サンジカルボン酸ジオクチル、1,2-シクロヘキサンジカルボン酸ジ デシル、1,2ーシクロヘキサンジカルボン酸ジウンデシル、1,2-シクロヘキサンジカルボン酸ジドデシル、1,2-シクロヘキサンジカ ルボン酸ジテトラデシル、1,2-シクロヘキサンジカルボン酸ジヘキ サデシル、1,2-シクロヘキサンジカルボン酸ジオクタデシル、4-シクロヘキセンー1,2-ジカルボン酸ジヘプチル、4-シクロヘキセ ンー1,2ージカルボン酸ジオクチル、4ーシクロヘキセンー1,2ー ジカルボン酸ジデシル、4-シクロヘキセン-1.2-ジカルボン酸ジ ウンデシル、4-シクロヘキセン-1,2-ジカルボン酸ジドデシル、 4-シクロヘキセン-1,2-ジカルボン酸ジテトラデシル、4-シク ロヘキセン-1.2-ジカルボン酸ジヘキサデシル、4-シクロヘキセ ンー1,2-ジカルボン酸ジオクタデシル、3-メチルー1,2-シク ロヘキサンジカルボン酸ジヘプチル、3-メチル-1.2-シクロヘキ サンジカルボン酸ジオクチル、3-メチル-1,2-シクロヘキサンジ カルボン酸ジデシル、3-メチル-1,2-シクロヘキサンジカルボン 酸ジウンデシル、3-メチル-1.2-シクロヘキサンジカルボン酸ジ ドデシル、3-メチル-1,2-シクロヘキサンジカルボン酸ジテトラ デシル、3-メチル-1.2-シクロヘキサンジカルボン酸ジヘキサデ

シル、3-メチル-1,2-シクロヘキサンジカルボン酸ジオクタデシ ル、4-メチルー1,2-シクロヘキサンジカルボン酸ジヘプチル、4 - メチル-1. 2-シクロヘキサンジカルボン酸ジオクチル、4-メチ ルー1、2-シクロヘキサンジカルボン酸ジデシル、4-メチルー1、 2 - シクロヘキサンジカルボン酸ジウンデシル、4 - メチルー1, 2 -シクロヘキサンジカルボン酸ジトデシル、4-メチル-1,2-シクロ ヘキサンジカルボン酸ジテトラデシル、4-メチルー1,2-シクロヘ キサンジカルボン酸ジヘキサデシル、4-メチル-1,2-シクロヘキ サンジカルボン酸ジオクタデシル、3-メチル-4-シクロヘキセン-1.2-ジカルボン酸ジヘプチル、3-メチル-4-シクロヘキセン-1.2-ジカルボン酸ジオクチル、3-メチル-4-シクロヘキセン-1.2-ジカルボン酸ジデシル、3-メチル-4-シクロヘキセン-1.2-ジカルボン酸ジウンデシル、3-メチル-4-シクロヘキセン -1,2-ジカルボン酸ジドデシル、3-メチル-4-シクロヘキセン - 1. 2-ジカルボン酸ジテトラデシル、3-メチル-4-シクロヘキ センー1、2-ジカルボン酸ジヘキサデシル、3-メチル-4-シクロ ヘキセン-1.2-ジカルボン酸ジオクタデシル、4-メチル-4-シ クロヘキセンー1.2-ジカルボン酸ジヘプチル、4-メチルー4-シ クロヘキセン-1,2-ジカルボン酸ジオクチル、4-メチル-4-シ クロヘキセンー1.2ージカルボン酸ジデシル、4ーメチルー4ーシク ロヘキセン-1.2-ジカルボン酸ジウンデシル、4-メチル-4-シ クロヘキセンー1、2-ジカルボン酸ジドデシル、4-メチルー4-シ クロヘキセンー1,2-ジカルボン酸ジテトラデシル、4-メチル-4 ーシクロヘキセンー1,2-ジカルボン酸ジヘキサデシル、4-メチル - 4 - シクロヘキセンー1,2 - ジカルボン酸ジオクタデシルよりなる 群から選択される1種または2種以上のエステル等を例示することがで きる。

さらに、アルコール成分として分岐状アルコールおよび/またはシクロアルコールの1種または2種以上と直鎖状アルコールの1種または2

種以上とを混合したものを用いて脂環式ポリカルボン酸混合基エステル を合成することも可能である。

かくして得られる脂環式ポリカルボン酸エステル組成物におけるアルコール成分中、炭素数1~18の直鎖状アルコールの総含有率は50モル%以下であることが推奨される。とりわけ、炭素数12~18の直鎖状アルコールの総含有率が50モル%を超える場合はエステルの融点が高くなり流動性が悪くなる傾向が認められる。

一般に、エステルが水と共存する状態で高温にさらされたとき、所定のカルボン酸とアルコールに分解する。ここでエステルの加水分解生成物の酸価の上昇が小さければ加水分解が抑制されていることを示すものであり、安定性が大と考えられる。この方法で比較すると、例えば、従来から金属加工用潤滑油の基油として用いられてきた牛脂、パルミチン酸2ーエチルヘキシル、ステアリン酸イソブチル、トリメチロールプロパンのオレイン酸エステルは、酸価の上昇が大きく、油中に浸漬した鉄片の重量変化が大きく、鉄、銅、アルミニウム等の金属片の表面も腐食などにより状態が変化する。また、脂肪族ポリカルボン酸エステルおよび芳香族ポリカルボン酸エステルも酸価の上昇が大きい。

これに対し、シクロアルカンポリカルボン酸エステルまたはシクロアルケンポリカルボン酸エステルは酸価の上昇が小さく、また、鉄片の重量変化が僅かで、金属表面の見かけの変化も殆ど観察されない高度の耐加水分解性を有する。

潤滑油中における本エステルの含有量としては10重量%以上が推奨される。10重量%未満では加水分解安定性に難点が生ずるおそれがある。

次に、本発明の脂環式ポリカルボン酸エステルを含有する耐加水分解 性潤滑油基油を用いた金属加工用潤滑油および冷凍機用潤滑油について 説明する。

金属加工用潤滑油

本エステルは金属加工用潤滑油の基油として好適であり、基油として

は、本エステルを単独でまたは本エステルに他の基油、例えば鉱油、合成炭化水素油、動植物油、本エステル以外のエステル(以下「併用エステル」という)よりなる群から選択される1種または2種以上を混合したものも用いることが可能である。

鉱油としては、通常、パラフィン基系原油、中間基系原油、ナフテン 基系原油等の常圧および減圧蒸留により得られる潤滑油留分が例示される。

合成炭化水素油としては、低分子量ポリブテン、低分子量ポリプロピレン、さらには、炭素数8~14のα-オレフィンオリゴマーおよびこれらの水添化合物、アルキルベンゼン、アルキルナフタレン等が例示される。

動植物油としては、牛脂、豚脂、パーム油、ヤシ油、なたね油等が例示される。

併用エステルとしては、脂肪酸モノエステル、アジピン酸エステル、 アゼライン酸エステル、セバシン酸エステル、フタル酸エステル、トリ メリット酸エステルおよびポリオールエステル等が例示される。

金属加工用潤滑油中における鉱油、合成炭化水素油、動植物油および /または併用エステルの含有量としては、組成物全重量基準で10重量 %~90重量%が推奨される。

本発明に係る金属加工用潤滑油には、その基油の性能を向上させるために界面活性剤、極圧添加剤、防錆剤、気相防錆剤、金属防食剤、カップリング剤、流動点降下剤、増粘剤、防腐殺菌剤、消泡剤、染料、香料その他の添加剤の1種または2種以上を適宜配合することも可能である。これらの添加剤の配合量は、従来の金属加工用潤滑油の配合量と同様である。金属加工用潤滑油の添加剤として所定の効果を奏する限り特に限定されるものではないが、その具体的な例を以下に示す。

界面活性剤としては、脂肪酸石ケン、硫酸エステルタイプ、スルホン酸タイプのアニオン系およびポリオキシエチレンタイプ、多価アルコールタイプ、アルキロールアミドタイプの非イオン系等がある。

極圧添加剤としては、塩素化パラフィン、塩素化脂肪酸、塩素化脂肪酸工ステル等の塩素系、硫化鉱油、硫化油脂等の硫黄系、リン酸エステル、亜リン酸エステルなどのリン系等が主であるが、有機金属化合物、固体潤剤を配合することもある。

防錆剤としては、カルボン酸塩、スルホン酸塩、トリエタノールアミン等のアミン類、オレイン酸ジエタノールアミド、アジピン酸シクロヘキシルアミド等のアミド類、ソルビタンオレエート等のエステル類、セバシン酸等の二塩基酸類、亜硝酸塩、リン酸塩、ホウ酸塩等の無機系のものがある。

気相防錆剤としては、低級アミンの亜硝酸塩、モルホリン、シクロヘキシルアミン等がある。

金属防食剤としては、ベンゾトリアゾール、イミダゾリン、メルカプトベンゾチアゾール、チアジアゾール、ポリスルフィド等がある。

カップリング剤としては、ブチルジグリコール、ブチルセロソルブ等がある。

流動点降下剤としては、エチレングリコール、プロピレングリコール 等がある。

増粘剤としては、ポリアルキレングリコール類、セルロース誘導体、 ポリアクリル酸ソーダ等がある。

防腐殺菌剤としては、0-フェニルフェノール、p-クロローm-キシレノール等のフェノール系、ヘキサヒドロトリアジン、2-ヒドロキシメチル-2-ニトロ-1、3-プロパンジオール等のホルムアルデヒド供与体がある。

消泡剤としては、シリコーン、高級アルコール、ポリアルキレングリコール、フッ素系ポリエーテル等がある。

上記の方法により調製した金属加工用潤滑油を水溶性油剤として使用する場合には、水で10倍ないし100倍に希釈して使用することができる。

また、本エステルは、金属加工用潤滑油のうち、金属圧延用潤滑油の

基油としても好適である。金属圧延用潤滑油の基油としての本エステルに鉱油、合成炭化水素油、動植物油、併用エステルを混合したものも使用することができるが、加水分解安定性を損なわないように50重量%以下とすることがさらに好ましい。また、金属圧延用潤滑油に適するように基油の性能を向上させるために油性剤、極圧剤、粘度指数向上剤、酸化防止剤、防錆剤、乳化剤、金属不活性剤、金属腐食防止剤、消泡剤等の公知の添加剤の1種または2種以上を適宜配合することも可能であり、所定の効果を奏する限り、特に限定されるものではないが、その具体的な例を以下に示す。

油性剤としては、高級脂肪酸、高級アルコール等があり、通常、基油に対して0.1重量%~2重量%添加するのが良い。

極圧剤としては、アルキルホスフェート、ジアルキルホスフェート、 アルキルポリエチレンオキシホスフェート等があり、通常、基油に対し て 0.1 重量%~5 重量%添加するのが良い。

粘度指数向上剤としては、ポリアルキルメタクリレート、エチレンープロピレンコポリマー、スチレンーブタジエンコポリマー等があり、通常、基油に対して1重量%~20重量%添加するのが良い。

酸化防止剤としては、フェノール系、アミン系、硫黄系等のものがあり、例えば、2,6-ジーtert-ブチルー4ーメチルフェノール、4.4'ーメチレンビス(2,6-ジーtert-ブチルフェノール)、2,2'ーチオビス(4ーメチルー6ーtert-ブチルフェノール)、フェニルーαーナフチルアミン、オクチルフェニルーαーナフチルアミン、p,p'ージオクチルジフェニルアミン、ジベンジルジサルファイド等を用いることができる。これらの酸化防止剤は、通常、基油に対して0.01重量%~5重量%、好ましくは0.1重量%~2重量%添加するのが良い。

乳化剤としては、脂肪酸アミン石けん、スルホン酸塩、エステル系ノニオン、エーテル系ノニオン等があり、通常、基油に対して0.2重量%~10重量%添加するのが良い。

金属不活性剤および腐食防止剤としては、ベンゾトリアゾール、アルキルベンゾトリアゾール、メルカプトベンゾチアゾール、チアジアゾール誘導体等を使用できる。これらの金属不活性剤および腐食防止剤は、基油に対して 0.01 重量%~1 重量%添加するのが良い。

冷凍機用潤滑油

さらに、本エステルは、冷凍機用潤滑油に用いることができ、基油として本エステルまたは本エステルに他のエステル(以下「併用エステル」という)の1種または2種以上の化合物を混合することにより冷凍機用潤滑油基油を調製することができる。

冷凍機用潤滑油にとって、特に好ましい脂環式ポリカルボン酸エステ ルは、1,2~シクロヘキサンジカルボン酸ジイソブチル、1.2-シ クロヘキサンジカルボン酸ジシクロヘキシル、1,2-シクロヘキサン ジカルボン酸ジイソヘプチル、1,2-シクロヘキサンジカルボン酸 ジ(2-エチルヘキシル)、1.2-シクロヘキサンジカルボン酸ジ (3,5,5-トリメチルヘキシル)、1,2-シクロヘキサンジカル ボン酸ジ(2,6-ジメチル-4-ヘプチル)、1,2-シクロヘキサ ンジカルボン酸ジイソデシル、1,2-シクロヘキサンジカルボン酸ジ イソウンデシル、4-シクロヘキセン-1,2-ジカルボン酸ジシクロ ヘキシル、4-シクロヘキセンー1、2-ジカルボン酸ジイソヘプチ ル、4-シクロヘキセンー1,2-ジカルボン酸ジ(2-エチルヘキシ ル)、4-シクロヘキセン-1, 2-ジカルボン酸ジ(3, 5, 5, -トリメチルヘキシル)、3-メチル-1,2-シクロヘキサンジカルボ ン酸ジ(3,5,5-トリメチルヘキシル)、4-メチル-1,2-シ クロヘキサンジカルボン酸ジ(3,5.5-トリメチルヘキシル)、3 -メチル-4-シクロヘキセン-1,2-ジカルボン酸ジ(3,5,5 ートリメチルヘキシル)、4-メチル-4-シクロヘキセン-1.2-ジカルボン酸ジ(3,5,5-トリメチルヘキシル)、1,2,4,5 -シクロヘキサンテトラカルボン酸テトラ (3,5,5-トリメチルへ キシル)等を挙げることができ、これらは、2種以上混合して用いるこ

ともできる。

併用エステルとしては、アジピン酸エステル、アゼライン酸エステル、セバシン酸エステル、フタル酸エステル、トリメリット酸エステル、およびポリオールエステル等が挙げられるが、体積固有抵抗、フロンとの相溶性、粘度等の冷凍機用潤滑油としての物性バランスを考慮した場合、ネオペンチルポリオールと一価のカルボン酸からなるポリオールエステルは、多価アルコール成分としてネオペンチルグリコール、トリメチロールプロパン、ジトリトリメチロールプロパン、トリトリメチロールプロパン、シトリトリメチロールプロパン、トリトリメチロールプロパン、シースリトール等、また、酸成分としてイソ酪酸、2-エチル酪酸、イソバレリン酸、ピバリン酸、シクロヘキサンカルボン酸、2-メチルペンタン酸、2-メチルペキサン酸、2-エチルペンタン酸、2-メチルヘキサン酸、2-エチルペキサン酸、3,5,5-トリメチルヘキサン酸等からなるエステルが推奨される。

冷凍機用潤滑油中における併用エステルの含有量としては、10重量 %~90重量%が推奨される。

本発明に係る冷凍機用潤滑油には、基油の性能を向上させるために酸化防止剤、金属不活性剤、摩耗防止剤、消泡剤、加水分解抑制剤等の添加剤の1種または2種以上を適宜配合することも可能である。所定の効果を奏する限り特に限定されるものではないが、その具体的な例を以下に示す。

酸化防止剤としては、前記の金属圧延用潤滑油に用いられるフェノール系、アミン系、硫黄系等のものと同一のものを同量使用することができる。

金属不活性剤としては、前記の金属圧延用潤滑油に用いられるベンゾ トリアゾール等と同一のものを同量使用することができる。

摩耗防止剤としては、トリクレジルホスフェート、クレジルジフェニルホスフェート、アルキルフェニルホスフェート類、トリブチルホスフェート、ジブチルホスフェート等のりん酸エステル類、トリブチルホスファイト、ジブチルホスファイト、トリイソプロピルホスファイト等の

亜りん酸エステル類が一般的である。これらの摩耗防止剤は、基油に対して 0.01重量%~5重量%、好ましくは 0.01重量%~2重量%配合するのが良い。

消泡剤としては、液状シリコーンが適しており、好ましくは基油に対して0.005重量%~0.01重量%の量で添加される。

加水分解抑制剤としては、エポキシ化合物、例えば、アルキルグリシジルエーテル類、アルキレングリコールグリシジルエーテル類、脂環式エポキシ化合物類、フェニルグリシジルエーテルおよびその誘導体であり、配合量としては、基油に対して 0.05 重量%~2 重量%が適当である。

実施例

以下、実施例および比較例に基いて本発明を具体的に説明する。なお、各実施例等における潤滑油の特性は次の方法により評価した。

加水分解安定性試験

内径6.6mm、高さ30cmのガラス試験管に長さ4cmの鉄、銅および アルミニウムの針金を入れ、試料エステルを2.0g、蒸留水を0.2 g秤りとる。アスピレーターで脱気しながらその試験管を封じ、オーブ ンに入れて160℃で16時間加熱する。その後試料エステルを取り出 し、酸価を測定するとともに鉄線の表面状態を目視にて観察し、以下の ように3段階に評価する。

○:変化はない

△:若干の変色みられる

×:黒色に変化する

なお、冷凍機用潤滑油として評価する場合は、オーブン中175℃で 20時間加熱する。

動粘度

ウベローデ粘度計を用いてJIS-K-2283に準拠して測定する。

流動点

JIS-К-2269に準拠して測定する。

体積固有抵抗

JIS-С-2101に準拠して25℃にて測定する。

フロン相溶性試験

ガラス管に試料油が10重量%となるように試料油とハイドロフルオロカーボン冷媒HFC-134aを加えて封管し、-60℃~100℃での二相分離温度を測定する。

製造例1

撹拌機、温度計、冷却管付き水分分留器を備えた4ツロフラスコに4ーシクロヘキセンー1、2ージカルボン酸無水物(本品は無水マレイン酸と1、3ープタジエンとを通常のディールスーアルダー反応をすることにより調製した)152、1g(1モル)、2ーエチルヘキサノール286、5g(2・2モル)を仕込み、テトライソプロピルチタネート触媒の存在下、減圧下にて200℃まで昇温した。生成した水を水分分留器にとりながらエステル化反応を約9時間行った。反応後、過剰の2ーエチルヘキサノールを蒸留で除去し、苛性ソーダで中和し、その後中性になるまで水洗した。次いで活性炭処理を行い、濾過後、4ーシクロヘキセンー1、2ージカルボン酸ジ(2ーエチルヘキシル)343、2gを得た。酸価および動粘度を第1表に示す。

製造例2~13

製造例1と同様の方法により、第1表に示す各エステル調製した。各エステルの酸価および動粘度を同表に示す。

製造例14

製造例1と同様の反応装置、反応容器に、トリメリット酸無水物192.0g(1.0モル)、イソデカノール522.1g(3.3モル)を仕込み、製造例1と同様の方法でエステル化を行い、トリメリット酸トリイソデシル598gを得た。続いて、トリメリット酸トリイソデシル)80g(0.15モル)をオートクレーブにとり、核水素化触媒存在下、130℃にて、水素圧力50Kg/cm²Gの条件下で1時間水素化を行い、1、2、4ーシクロヘキサントリカルボン酸トリ(イソデシル)77gを得た。酸価および動粘度を第1表に示す。

第1表 エステルの性状

製造例	エステル名 [略称]	酸価 [mgKOII/g]	動粘度 [mm²/s] 40℃	[mm²/s] 100°C
-	4ーシクロヘキセン-1,2-ジカルボン酸ジ (2-エチルヘキシル) [DOTP]	0.01	17.8	3. 4
2	4-シクロヘキセン-1,2-ジカルボン酸ジ (イソデシル) [DIDTP]	0.02	29.9	4.8
က	4ーシクロヘキセンー1,2ージカルボン酸ジ (nーテトラデシル)	0.02	30.1	6.0
7	混合エステル】	0.03	28.4	5.2
2	混合エステル2	0.03	28.4	g. 0
9	4-メチル-4-シクロヘキセン-1,2-ジカルボン酸ジ(2-エチルヘキシル)	0.01	18.8	3.6
7	1,2-シクロヘキサンジカルボン酸ジ (2-エチルヘキシル)	0.01	18.0	3.4
8	1,2-シクロヘキサンジカルボン酸ジ (イソデシル)	0.01	29.8	4.8
6	1,2-シクロヘキサンジカルボン酸ジ (nーテトラデシル)	0.02	30.4	6.2
1 0	混合エステル3	0.02	30.1	5. 2
	4ーメチルー1,2ーシクロヘキサンジカルボン酸ジ (2ーエチルヘキシル)	0.02	19.0	3.7
1.2	1,3-シクロヘキサンジカルボン酸ジ (2-エチルヘキシル)	0.01	15.1	3. 4
13	1,4ーシクロヘキサンジカルボン酸ジイソデシル	0.02	29.7	5.6
1.4	1,2,4ーシクロヘキサントリカルボン酸トリ (イソデシル)	0.03	89.0	10.0

'nーテトラデカノール50モル%とイソデカノール50モル%との混合物'nーテトラデカノール30モル%とイソデカノール70モル%との混合物トラデカノール50モル%との混合物 : 4ーシクロヘキセンー1,2ージカルボン酸 /nーテト: 4ーシクロヘキセンー1,2ージカルボン酸 /nーテト: 1,2ーシクロヘキサンジカルボン酸/nーテトラデカ アルコール成分 混合エステルの組成: 混合エステル1:4-混合エステル2:4-混合エステル3:1.

製造比較例1~4

製造例1と同様の方法により、第2表に示す各エステルを得た。各エステルの酸価および動粘度を第2表に示す。

第2表 エステルの性状

製造 比較例	エステル名 [略称]	酸価 [mgKON/g]	動粘度 [40℃	num²/s] 100℃
1	トリメチロールブロバントリオレエート 「TMPトリオレエート」	0. 02	58.9	11.2
2	バルミチン1022-エチルヘキシル	0.02	8. 1	2. 7
3	ステアリン西俊イソブチル	0.03	7.5	2. 5
4	トリメリット酸トリ (2-エチルヘキシル)	0.01	97.3	8.9
5	[TOTM] 牛脂	2. 66	41.3	8.7
6	鉱油(500ニュートラル)	0.02	97.4	11.1
7	ヤシ油脂肪酸メチル	0. 10	3.2	1.3

実施例1~14

製造例 $1\sim 14$ で得られたエステルの加水分解安定性を評価した。得られた結果を第3表に示す。

実施例 1_5

製造例2のエステルと製造例3のエステルとを重量比1:1で混合し、実施例15の化合物とし、このものの加水分解安定性を評価した。 得られた結果を第3表に示す。

第3表 加水分解安定性

実施例	エステル名 [略称]	酸価 (試象前	(mgKOH/g) 試験後	鉄線状態 重量変化 (mg)	表面状態
_	4-シクロヘキセン-1,2-ジカルボン酸ジ(2ーエチルヘキシル)[DOTP]	0.01	0. 15	-0.3	0
23	4-シクロヘキセン-1,2-ジカルボン酸ジ (イソデシル)[DIDTP]	0.02	0.03	-0.5	0
33	4ーシクロヘキセンー1,2ージカルボン酸ジ (nーテトラデシル)	0.02	0. 12	9 .0 -	0
4	混合エステル」	0.03	0.14	0	0
ಬ	混合エステル2	0.03	0.14	-0.4	0
9	4-メチル-4-シクロヘキセン-1,2-ジカルボン酸ジ(2ーエチルヘキシル)	0.01	0.15	-0.2	0
7	1,2ーシクロヘキサンジカルボン酸ジ (2ーエチルヘキシル)	0.01	0.11	9 .0-	0
8	1,2-シクロヘキサンジカルボン酸ジ (イソデシル)	0.01	0.12	-0.2	0
6	1,2ーシクロヘキサンジカルボン酸ジ (nーテトラデシル)	0.02	0.14	-0.4	0
1 0	混合エステル3	0.02	0.13	-0.2.	0
-	4ーメチルー1,2ーシクロヘキサンジカルボン酸ジ(2ーエチルヘキシル)	0.02	0.10	-0.5	0
1.2	1,3-シクロヘキサンジカルボン酸ジ (2-エチルヘキシル)	0.01	0.28	-0.6	0
13	1,4ーシクロヘキサンジカルボン酸ジ (イソデシル)	0.02	0.35	-0.5	0
14	1,2,4ーシクロヘキサントリカルボン酸トリ (イソデシル)	0.03	0.27	-0.3	0
15	混合エステル4	0.02	0.10	-0.5	0

混合エステルの組成:酸成分/アルコール成分 混合エステル1:4-シクロヘキセン-1,2-ジカルボン酸 /n-テトラデカノール50モル%とイソデカノール50モル%との混合物 混合エステル2:4-シクロヘキセン-1,2-ジカルボン酸 /n-テトラデカノール30モル%とイソデカノール70モル%との混合物 混合エステル3:1,2-シクロヘキサンジカルボン酸/n-テトラデカノール50モル%とイソデカノール50モル%との混合物 混合エステル4:製造例2の化合物50重量%および製造例3の化合物50重量%

28'SAUC'A 18'0 072178

実施<u>例16</u>

製造例1のエステルと鉱油(500ニュートラル)とを重量比1:1 で混合し、得られた混合油の動粘度、流動点および加水分解安定性を測 定した。その結果を第4表に示す。

実施例17

製造例2のエステルと牛脂とを重量比1:1で混合し、得られた混合油の動粘度、流動点および加水分解安定性を測定した。その結果を第4表に示す。

実施例18

製造例4のエステルと牛脂とを重量比1:1で混合し、得られた混合油の動粘度、流動点および加水分解安定性を測定した。その結果を第4表に示す。

実施例19

製造例4のエステルとトリメリット酸トリ(2-エチルヘキシル)と を重量比1:1で混合し、得られた混合油の動粘度、流動点および加水 分解安定性を測定した。その結果を第4表に示す。

実施例20

製造例4のエステルとトリメチロールプロパントリオレエートとを重量比1:1で混合し、得られた混合油の動粘度、流動点および加水分解安定性を測定した。その結果を第4表に示す。

実施例21

製造例10のエステルと牛脂とを重量比1:1で混合し、得られた混合油の動粘度、流動点および加水分解安定性を測定した。その結果を第4表に示す。

比較例1~4

製造比較例1~4で得られたエステルの加水分解安定性を評価した。 得られた結果を第4表に示す。

比較例5

市販の牛脂をそのまま試料油とし、加水分解安定性を評価した。得ら

れた結果を第4表に示す。

比較例 6

パラフィン系ニュートラル油(500ニュートラル)をそのまま比較 例5の試料油とし、動粘度および流動点を評価した。得られた結果を第 4表に示す。

比較例7

ヤシ油脂肪酸の C12~ C18 留分のメチルエステルの加水分解安定性を評価した。評価結果を第4表に示す。

試験
種物性詞
各種
4表
紙

\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	WAY 121 M			1			19 1 CO 1 CO		_
	基油の成分	流動点	動粘度 [mm²/s]		加水分解安定性	[性、 [mokOH/o]	获禄 状愿	105	
		(2)	40°C 10	၁,0	試験前	Linghour, B.J. 試験後	重量変化 (mg)	表面状態	
実施例 16	DOTP 50重量% がが(500-1-トラル)50重量%	-37.5	57.6 7.		0.02	0.1	-0.2	0	
17)	0	34.4 6.		1.35	11. 2	-0.3	◁	
1 8	混合エステル1 50重量% 中胎 50重量% 中胎 50重量%	0	34.5 6.	6 .	1.38	8. 5	-0.3	\triangleleft	
1 9	混合エステル1 50重量% TOTM 50重量%	-32.5	62.9 7.	-	0.01	0. 2	-0.4	0	
2 0	混合エステル1 50重量%	-30.0	43.7 8.		0.02	2. 6	-0.2	0	
2 1	混合エステル3 50重量% 牛脂 50重量%	-2.5	31.1 6	. 7	1.35	8. 2	-0.2		····
比較例 1	トリメチロールプロバントリオレエート「TMPトリオレエート	-37.5	58.9 11.	. 2	0.02	19.9	-0.2	× .	
2	パルミチン酸2-エチルヘキシル	-2.5	8. 1 2.	. 7	0.02	0.44	-0.3	×	
က	ステアリン酸イソブチル	22.5	7.5 2.	ည	0.03	0.37	+0.5	◁	
4	トリメリット酸トリ(2-エチルヘキシル) 【TOTM】	-43.0	97.38	б	0.01	0.40	-1.3	0	
വ	牛脂	12.5	41.38	. 7	2.66		-3.3	×	
9	鉱油 (500ニュートラル)	-12.5	97.4 11		0.02	0.02	+0.1	\triangleleft	
7	ヤシ油脂肪酸メチル	0	3. 2 1	ი	0. 10	2.8	-1.3	×	

混合エステルの組成:酸成分/アルコール成分 混合エステル1:4-シクロヘキセン-1. 2-ジカルボン酸 /n-テトラデカノール50モル%とイソデカノール50モル%との混合物 混合エステル3:1. 2-シクロヘキサンジカルボン酸/n-テトラデカノール50モル%とイソデカノール50モル%との混合物

製造例15

撹拌機、温度計、冷却管付き水分分留器を備えた4ツロフラスコ1・2-シクロヘキサンジカルボン酸無水物(本品は4-シクロヘキセンー1、2-ジカルボン酸無水物を核水添することにより調整した)243・2g(1・6モル)およびイソヘプタノール408・3g(3・5モル)を仕込み、テトライソプロピルチタネート触媒の存在下、減圧下にて200℃まで昇温した。生成した水を水分分留器にとりながらエステル化反応を約9時間行った。反応後、過剰のイソヘプタノールを蒸留で除去し、苛性ソーダで中和し、その後中性になるまで水洗した。その後、活性炭処理を行い、濾過後、1・2-シクロヘキサンジカルボン酸ジイソヘプチル483・0gを得た。酸価および流動点を第5表に示す。

製造例16~25

製造例13と同様の方法により、第5表に示す各エステルを得た。各エステルの酸価および動粘度を同表に示す。

エステルの性状 の表 紙

15 1,2-	エグナヘングロ	[mgKOH/g]	4 0 °C	100°C
	- シクロヘキサンジカルボン酸ジイソヘプチル	0.01	12.4	2.9
	- シクロヘキサンジカルボン酸ジ (2-エチルヘキシル)	0.01	18.0	3.4
17 1,2-	ーシクロヘキサンジカルボン酸ジ (3,5,5ートリメチルヘキシル)	0.03	28.4	4. 7
18 1.2	2ーシクロヘキサンジカルボン酸ジ (2,6ージメチルー4ーヘプチル)	0.02	25.6	4.6
19 祝台工	合エステル5	0.01	23.2	4. 1
20 混合工	混合エステル6	0.01	135.7	9. 2
21 混合工	混合エステルフ	0.01	. 27. 0	4.6
22 混合工	混合エステル8	0.01	21.0	4.1
23 1,2	1,2-シクロヘキサンジカルボン酸ジイソデシル	0.01	29.8	4.8
24 1,2-	ーシクロヘキサンジカルボン酸ジシクロヘキシル	0.02	243.2	13.6
25 3-4	-メチルー1,2-シクロヘキサンジカルボン酸ジ (2-エチルヘキシル)	0.03	18.2	3.5

(注

混合エステルの組成:酸成分/アルコール成分 混合エステル5:1,2ーシクロヘキサンジカルボン酸/3,5,5ートリメチルヘキサノールと2ーエチルヘキサノールとの等モル混合物 混合エステル6:1,2ーシクロヘキサンジカルボン酸/3,5,5ートリメチルヘキサノールとシクロヘキサノールとの等モル混合物 混合エステル6:1,2ーシクロヘキサンジカルボン酸/3,5,5ートリメチルヘキサノールと2,6ージメチルー4ーヘプタノールとの

混合エステル8: 1, 2 – シクロヘキサンジカルボン酸/n – ノナノールと2, 6 – ジメチルー4ーヘプタノールとの等モル混合物 等モル混合物

製造例26~32

製造例15と同様の方法により、第6表に示す各エステルを得た。各エステルの酸価および動粘度を同表に示す。

製造例33

ピロメリット酸無水物と3.5.5-トリメチルヘキサノールを原料としてエステル化し、得られたピロメリット酸テトラ(3.5.5-トリメチルヘキシル)を核水添することにより1.2.4.5-シクロヘキサンテトラカルボン酸テトラ(3.5.5-トリメチルヘキシル)を調製した。酸価および動粘度を第6表に示す。

第6表 エステルの性状

407				
製造例	生成エステル名	酸 価 [mgKOH/g]	動粘度 40℃	動粘度 [mm²/s] 40℃ 100℃
26	4ーメチルー1,2ーシクロヘキサンジカルボン酸ジ (2ーエチルヘキシル)	0.02	18.8	3.6
2.7	4-シクロヘキセン-1,2-ジカルボン酸ジ (2-エチルヘキシル)	0.01	17.8	3. 4
2 8	4-シクロヘキセン-1,2-ジカルボン酸ジ (3,5,5-トリメチルヘキシル)	0.03	29.4	4. 7
2 9	4-シクロヘキセン-1,2-ジカルボン酸ジイソヘプチル	0.03	12.7	2.9
3.0	4-シクロヘキセン-1,2-ジカルボン酸ジ (シクロヘキシル)	0.02	244.1	13.5
3 1	3-メチルー4ーシクロヘキセンー1,2ージカルボン酸ジ (2ーエチルヘキシル)	0.05	18.2	3. 4
3.2	4-メチルー4-シクロヘキセン-1,2-ジカルボン酸ジ(2-エチルヘキシル)	0.01	18.8	3.6
33	1,2,4,5-シクロヘキサンテトラカルボン酸テトラ (3,5,5,5-トリメチルヘキシル)	0.04	449.3	24.2

製造比較例8~11

製造例15と同様の方法により、第7表に示す各エステルを得た。各エステルの酸価および動粘度を第7表に示す。

製造比較例12

原料としてピロメリット酸無水物および3、5、5-トリメチルヘキサノールを用い、製造例13と同様の方法によりエステル化し、ピロメリット酸テトラ(3、5、5-トリメチルヘキシル)を得た。酸価および流動点を第7表に示す。

製造比較例13~18

市販の可塑剤用として用いる脂肪族二塩基酸エステルおよび芳香族エステルを用意した。

第7表 エステルの性状

製造 性成エステル名 性成工ステル名 B トリメチロールプロバントリ(3,5,5ートリメチルへキサ/エート) 0.02 9 ペンクエリスリトールテトラ (3,5,5ートリメチルへキサ/エート) 0.06 10 混合エステル9 0.03 11 混合エステル10 0.03 12 ピロメリット酸テトラ (3,5,5ートリメチルヘキシル) 0.02 13 アンビン酸ジイソデシル 0.02 14 アンビン酸ジイソデシル 0.02 15 フタル酸ジイソデシル 0.02 16 フタル酸ジイソデシル 0.01 17 フタル酸ジイソデシル 0.02 17 フタル酸ジイソデシル 0.02 17 フタル酸ジイソデシル 0.02 18 トリメリット酸トリ (2ーエチルヘキシル) 0.01 18 トリメリット酸トリ (2ーエチルヘキシル) 0.01					
トリメチロールプロバントリ (3.5.5-トリメチルへキサノエート) 0. ペンクエリスリトールテトラ (3.5.5-トリメチルへキサノエート) 0. 混合エステル9 混合エステル10 にロメリット酸テトラ (3.5.5-トリメチルへキシル) 0. アジピン酸ジイソデシルフシル酸ジイソデシルフクル酸ジイソブチル つ. フタル酸ジイソブチルカキシル) フタル酸ジイソデシル フタル酸ジイソデシル フタル酸ジイソデシル フタル酸ジイソデシル 1. フタル酸ジイソデシル 1. フタル酸ジイソデシル 1. フタル酸ジイソデシル 1. フタル酸ジイソデシル 1. フタル酸シイソデシル 1. カーエチルヘキシル) 0. カーステル 1. カーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカー	製造比較例	生成エステル名	数 届 [mgKOH/g]	動粘度 40°C	動粘度 [mm²/s])で 100℃
ペンクエリスリトールテトラ (3.5,5ートリメチルヘキサノエート) 0. 混合エステル 9 混合エステル 1 0 0. ピロメリット酸テトラ (3,5,5ートリメチルヘキシル) 0. アジピン酸ジイソデシル フジピン酸ジイソデシル フタル酸ジイソデシル フタル酸ジイソブチル フタル酸ジイソブチル フタル酸ジイソデシル 0. フタル酸ジイソデシル 0. カリメリット酸トリ (2ーエチルヘキシル) 0. トリメリット酸トリ (2ーエチルヘキシル)	8	トリメチロールプロパントリ (3,5,5-トリメチルヘキサノエート)	0.02	50.4	7.0
混合エステル9 混合エステル10 ピロメリット酸テトラ (3,5,5ートリメチルヘキシル) 0. アジピン酸ジイソデシル アジピン酸ジ(2ーエチルヘキシル) 0. フタル酸ジイソブチル フタル酸ジイソブチル フタル酸ジ(2ーエチルヘキシル) 0. フタル酸ジイソデシル 0.	6	テトラ		112.9	11.4
混合エステル10 ピロメリット酸テトラ (3,5,5ートリメチルヘキシル) 0. アジピン酸ジイソデシル アジピン酸ジ (2ーエチルヘキシル) 0. フタル酸ジイソブチル フタル酸ジ (2ーエチルヘキシル) 0. フタル酸ジ (2ーエチルヘキシル) 0.	1 0	混合エステル9		80.3	9.0
ピロメリット酸テトラ (3,5,5ートリメチルヘキシル) アジピン酸ジイソデシル アジピン酸ジ (2ーエチルヘキシル) フタル酸ジイソブチル フタル酸ジ (2ーエチルヘキシル) フタル酸ジイソデシル フタル酸ジイソデシル	1 1	混合エステル10		73.8	8. 7
アジピン酸ジイソデシル 0. アジピン酸ジ (2 - エチルヘキシル) 0. フタル酸ジイソブチル 0. フタル酸ジ (2 - エチルヘキシル) 0. トリメリット酸トリ (2 - エチルヘキシル) 0.	1 2			353.9	23.0
アジピン酸ジ (2 - エチルヘキシル) 0. フタル酸ジイソブチル 0. フタル酸ジイソデシル 0. トリメリット酸トリ (2 - エチルヘキシル) 0.	1 3			14.0	3.6
フタル酸ジイソブチル フタル酸ジ (2ーエチルヘキシル) フタル酸ジイソデシル トリメリット酸トリ (2ーエチルヘキシル) 0.	1 4	アジピン酸ジ (2ーエチルヘキシル)		7.8	2.3
フタル酸ジ (2ーエチルヘキシル) フタル酸ジイソデシル トリメリット酸トリ (2ーエチルヘキシル) 0.	1 5	フタル酸ジイソブチル		10.6	2.3
フタル酸ジイソデシル トリメリット酸トリ (2-エチルヘキシル)	16	フタル酸ジ (2ーエチルヘキシル)		27.2	4. 2
トリメリット酸トリ (2-エチルヘキシル)	17	フタル酸ジイソデシル		42.9	5.2
	1 8	_		97.3	8.9

混合エステルの組成:酸成分/アルコール成分 混合エステル9:2-エチルヘキサン酸と3,5,5-トリメチルヘキサン酸との等モル混合物/ペンタエリスリトール 混合エステル10:カプリル酸と3,5,5-トリメチルヘキサン酸との等モル混合物/ペンタエリスリトール (X)

実施例22~32

製造例15~25で得られたエステルの加水分解安定性を評価した。 得られた結果を第8表に示す。

実施例33~4_0

製造例26~33で得られたエステルの加水分解安定性を評価した。 得られた結果を第9表に示す。

比較例8~12

製造比較例8~12で得られたエステルの加水分解安定性を評価した。得られた結果を第10表に示す。

比較例13~18

市販の可塑剤用として用いる脂肪族二塩基酸エステルおよび芳香族エステルを比較例13~18のエステルとし、それらの加水分解安定性を評価した。得られた結果を第10表に示す。

加水分解安定性
第8表

なった	サライン	***************************************				1	
実施例	エステル名	酸価 [mgKOH/g] 試験前 試夥	JH/g] 試験後	磊	靐	7.11.3	試験後の 油の状態
2.2	1,2-シクロヘキサンジカルボン酸ジイソヘブチル	0.01	0.48	0	◁	0	白色
2 3	1,2ーシクロヘキサンジカルボン酸ジ (2ーエチルヘキシル)	0.01	0.52	0	\triangleleft	0	日田
2 4	1,2ーシクロヘキサンジカルボン酸ジ(3,5,5,5ートリメチルヘキシル)	0.02	0.58	\triangleleft	<	0	白色
2 5	1,2ーシクロヘキサンジカルボン酸ジ(2,6ージメチルー4ーヘプチル)	0.03	0.20	0	◁	0	日色
26	混合エステル5	0.01	0.56	0	\triangleleft	0	白色
2.7	混合エステル 6	0.01	0.32	0	⊲	0	日色
2 8	混合エステルフ	0.01	0.29	0	⊲	0	白色
2 9	混合エステル8	0.01	0. 18	0	\Diamond	0	口色
3.0	11,2ーシクロヘキサンジカルボン酸ジイソデシル	0.01	0.18	0	⊲	0	白色
31	1,2-シクロヘキサンジカルボン酸ジシクロヘキシル	0.03	0.18	0	0	0	白色
3 2	3 - メチルー 1, 2 - シクロヘキサンジカルボン酸ジ(2 - エチルヘキシル)	0.03	0.57	⊲	◁	0	白色

注)

混合エステルの組成:酸成分/アルコール成分 混合エステル5:1,2ーシクロヘキサンジカルボン酸/3,5,5ートリメチルヘキサノールと2ーエチルヘキサノールとの等モル混合物 混合エステル6:1,2ーシクロヘキサンジカルボン酸/3,5,5ートリメチルヘキサノールとシクロヘキサノールとの等モル混合物 混合エステル6:1,2ーシクロヘキサンジカルボン酸/3,5,5ートリメチルヘキサノールと2,6ージメチルー4ーヘプタノール

との等モル混合物

:1,2ーシクロヘキサンジカルボン酸/nーノナノールと2,6-ジメチルー4ーヘプタノールとの等モル混合物 混合エステル8

艾	
{ <u>⊬</u> ,	
Ü	
斑	
(
×	
≡	
#*	
5	,
100	

実施例	エステル名	酸価 [mgKOH/g] 試験前 試	0II/g] 試験後	[5] 初期		アルミ	試験後の 油の状態	
33	4-メチルー1,2-シクロヘキサンジカルボン酸ジ(2-エチルヘキシル)	0.02	0.52	◁	◁	0	白色	
3.4	4-シクロヘキセン-1,2-ジカルボン酸ジ (2-エチルヘキシル)	0.01	0.51	\triangleleft	\triangleleft	0	淡黄色	
35	4-シクロヘキセン-1,2-ジカルボン酸シ(3,5,5,5-トリメチルヘキシル)	0, 03	0.55	\triangleleft	\triangleleft	0	淡黄色	· ·
36	4-シクロヘキセン-1,2-ジカルボン酸ジイソヘプチル	0.03	0.52	0	◁	· ()	白色	
3.7	4-シクロヘキセン-1,2-ジカルボン酸ジ (シクロヘキシル)	0.03	0.19	< □	< 1	0	淡黄色	
38	3-メチル-4-シクロヘキセン-1,2-ジカルボン酸シ(2-エチルヘキシル)	0.05	0.70	⊲	⊲	0	淡黄色	
3.9	4-メチル-4-シクロヘキセン-1,2-ジカルボン酸シ(2-エチルヘキシル)	0.01	0.68	◁		0	淡黄色	3!
4 0	1,2,4,5-シクロヘキサンテトラカルボン酸テトラ(3,5,5-トリメチルヘキシル)	0.04	0.35	0	0	0	日色	5

第10表 加水分解安定性

* O T CK	73104X MXXX MXXX						
比較例	エステル名	悠価 [mgKOH/g] 試験前	KOH/g] 試験後	舞	匮	アルミ	試験後の 油の状態
8	トリメチロールプロパントリ (3,5,5ートリメチルヘキサノエート)	0.02	6.07	×	0	0	白色
<u></u>	ペンタエリスリトールテトラ (3,5,5-トリメチルヘキサノエート)	0.06	8.00	×	\triangleleft	0	淡黄色
1 0	混合エステル9	0.03	4.05	0	⊲	0	淡黄色
1	混合エステル10	0.01	36.00	0	0	0	淡黄色
1 2	ピロメリット酸テトラ (3,5,5-トリメチルヘキシル)	0.02	57.39	×	0	\triangleleft	茶
13	アジピン酸ジイソデシル	0.02	47.99	×	0	\triangleleft	濃褐色
1 4	- アジピン酸ジ (2ーエチルヘキシル)	0.02	74.30	×	0	0	茶
1 2	フタル酸ジイソプチル	0.01	2.75	\triangleleft	0	0	白色
16	フタル酸ジ (2ーエチルヘキシル)	0.01	2.26	×	⊲	0	口色
17	フタル酸ジイソデシル	0.02	1. 28	⊲	\triangleleft	0	116
1 8	- トリメリット酸トリ (2ーエチルヘキシル)	0.01	10.02	\triangleleft	\triangleleft	0	白色

混合エステルの組成:酸成分/アルコール成分 混合エステル9:2 - エチルヘキサン酸と3,5,5 - トリメチルヘキサン酸との等モル混合物/ペンタエリスリトール 混合エステル10:カプリル酸と3,5,5 - トリメチルヘキサン酸との等モル混合物/ペンタエリスリトール

注)

種物性試験
7321
ΚΩ
美
_
ALC:

166	動粘度[mm²/s]	体積固有抵抗	フロン相溶性	容性	加水分解安定性	加水分解安定性(酸価[mgKOH/g])
	40°C 100°C	[Q·cm]	低温側(℃) 高温側(℃)	高温側 (C)	試験前	試験前 試験後
実施例41	52. 8 7. 04	2 × 1 0 ¹³	-19	> 1 0 0	0.03	3. 98
実施例42	52. 1 7. 05	2 × 1 0 ¹³	-25		0.03	2. 83
比較例19 比較例20	1 1	7×10^{13} 2×10^{13}	-40 -27	> 1 0 0	l I	i i

実施例41

1,2-シクロヘキサンジカルボン酸ジ(3,5,5-トリメチルヘキシル)とペンタエリスリトールテトラ(3,5,5-トリメチルヘキサノエート)とを重量比1:1で混合し、得られた混合エステルの動粘度、体積固有抵抗、フロン相溶性および加水分解安定性を測定した。その結果を第11表に示す。

実施例42

1,2-シクロヘキサンジカルボン酸ジ(3,5,5-トリメチルヘキシル)、ペンタエリスリトールテトラ(3,5,5-トリメチルヘキサノエート)、トリメチロールプロパントリ(3,5,5-トリメチルヘキサノエート)を重量比1:1:1で混合し、得られた混合エステルの動粘度、体積固有抵抗、フロン相溶性および加水分解安定性を測定した。その結果を第11表に示す。.

比較例19~20

製造比較例8~9のエステルを比較例19~20のエステルとして用い、実施例41と同様の方法により体積固有抵抗、フロン相溶性を測定した。その結果を第11表に示す。

実施例1~15から明らかなように、脂環式ポリカルボン酸エステルは加水分解安定性が良好で酸価の上昇が小さく、金属表面の変化はほとんど観られない。これに対し、比較例1~7に示すようにトリメチロールプロパンオレイン酸エステル、脂肪酸モノエステル、および牛脂は、酸価の上昇が大きく金属の腐食も大きい。また、実施例16~21に示すように、脂環式ポリカルボン酸エステルと比較例の鉱油や他のエステルとを併用した場合も、比較例の試料油を単独で用いた場合に比べて加水分解安定性が改善される。

さらに、実施例22~40で示すように、本発明に係る脂環式ポリカルボン酸エステルは、加水分解安定性に優れると共に実施例41および42で示すように冷凍機油として要求される冷媒相溶性、体積固有抵抗

も良好であり、ハイドロフルオロカーボン系冷媒用として高品質冷凍機 油を提供することができる。

産業上の利用可能性

本発明の脂環式ポリカルボン酸エステルを含有する潤滑油は加水分解安定性に優れ苛酷な条件下において酸価の上昇も低く、金属の表面変化も小さく、また、各用途において要求される性状も有することから、切削油、圧延油、研削油、引抜油、プレス加工油等の金属加工油、油圧作動油、繊維用油剤、グリースをはじめ、エマルジョンとして、または水の混入条件下で使用される種々の用途にわたる潤滑油の基油に用いることができる。また、低温でフロンとの相溶性にも優れ、分子中に塩素原子を含まないハイドロフルオロカーボン、例えば、HFC-134a、HFC-134、HFC-125、HFC-32、HFC-143aおよびそれらの混合物を冷媒とする冷凍機用潤滑油の基油として用いることができ、産業上の利用価値は極めて大きい。

40

請求の範囲

1. 下記の一般式[I]

(上記一般式 [I] において、Aはシクロヘキサン環またはシクロヘキセン環を表し、R¹は水素原子またはメチル基を表し、Xは水素原子またはCOOR⁵を表し、R²、R³、R⁴、R⁵は互いに同一でもまたは異なるものでもよく、炭素数3~18の分岐状のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~18の直鎖状のアルキル基または炭素数2~18の直鎖状のアルケニル基を表す。)

で表される脂環式ポリカルボン酸エステルの1種または2種以上を含有することを特徴とする潤滑油。

2. 前記脂環式ポリカルボン酸エステルが、1,2ーシクロヘキサンジカルボン酸、4ーシクロヘキセン-1,2ージカルボン酸、3ーメチル-1,2ーシクロヘキサンジカルボン酸、3ーメチル-1,2ーシクロヘキサンジカルボン酸、3ーメチル-4ーシクロヘキセン-1,2ージカルボン酸カルボン酸、4ーメチル-4ーシクロヘキセン-1,2ージカルボン酸およびそれらの無水物よりなる群から選択される1種または2種以上の化合物を酸成分とするエステルである請求の範囲第1項に記載の潤滑油。

3. 前記脂環式ポリカルボン酸エステルが、イソブタノール、シクロヘキサノール、イソヘプタノール、2-x チルヘキサノール、3, 5, 5 ートリメチルヘキサノール、2, $6-\tilde{y}$ メチルー4ーヘプタノール、イソデカノール、イソウンデカノール、イソトリデカノール、イソオクタデカノール、n- プタノール、n- プタノール、n- デカノール、n- デカノール・n- デカノール・n- デカノール・n- デカル・n- デカノール・n- デカノール・n- デカノール・n- デカノール・n- デカノール・n- デカー

n-ウンデカノール、n-ドデカノール、n-テトラデカノール、n-ヘキサデカノールおよびn-オクタデカノールよりなる群から選択される1種または2種以上の化合物をアルコール成分とするエステルである請求の範囲第1項に記載の潤滑油。

- 4. 前記潤滑油が金属加工用潤滑油である請求の範囲第1項~第3項のいずれかの項に記載の潤滑油。
- 5. 前記一般式 [1] で表される脂環式ポリカルボン酸エステルにおいて、R²、R³、R⁴およびR⁵中に占める炭素数1~18の直鎖状のアルキル基の含有量が50モル%以下である請求の範囲第4項に記載の金属加工用潤滑油。
- 6. 前記脂環式ポリカルボン酸エステルの含有率が10重量%以上である請求の範囲第4項に記載の金属加工用潤滑油。
- 7. 前記潤滑油が冷凍機用潤滑油である請求の範囲第1項~第3項のいずれかの項に記載の潤滑油。
- 8. 前記脂環式ポリカルボン酸エステルが、1,2-シクロヘキサンジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸およびそれらの無水物よりなる群から選択される1種または2種以上の化合物を酸成分とするエステルである請求の範囲第7項に記載の冷凍機用潤滑油。
- 9. 前記脂環式ポリカルボン酸エステルが、シクロヘキサノール、イソヘプタノール、2-エチルヘキサノールおよび3,5,5-トリメチルヘキサノールよりなる群から選択される1種または2種以上の化合物をアルコール成分とするエステルである請求の範囲第7項に記載の冷凍機用潤滑油。
- 10. 前記脂環式ポリカルボン酸エステルが、1. 2-シクロヘキサンジカルボン酸ジイソブチル、1. 2-シクロヘキサンジカルボン酸ジイソヘプチル、1. 2-シクロヘキサンジカルボン酸ジイソヘプチル、1. 2-シクロヘキサンジカルボン酸ジ(2-エチルヘキシル)、1. 2-シクロヘキサンジカルボン酸ジ(3. 5. 5-トリメチルヘキシル)、1. 2-シクロヘキサンジカルボン酸ジ(2. 6-ジメチル-4

- ヘプチル)、1.2 - シクロヘキサンジカルボン酸ジイソデシル、1.2 - シクロヘキサンジカルボン酸ジイソウンデシル、4 - シクロヘキセンー1,2 - ジカルボン酸ジイソヘプチル、4 - シクロヘキセンー1,2 - ジカルボン酸ジイソヘプチル、4 - シクロヘキセンー1,2 - ジカルボン酸ジ(2 - エチルヘキシル)、4 - シクロヘキセンー1,2 - ジカルボン酸ジ(3,5,5 - トリメチルヘキシル)、3 - メチルー1,2 - シクロヘキサンジカルボン酸ジ(3,5,5 - トリメチルヘキシル)、4 - メチルー1,2 - シクロヘキサンジカルボン酸ジ(3,5,5 - トリメチルヘキシル)、3 - メチルー4 - シクロヘキセンー1,2 - ジカルボン酸ジ(3,5,5 - トリメチルヘキシル)、4 - メチルー4 - シクロヘキセンー1,2 - ジカルボン酸ジ(3,5,5 - トリメチルヘキシル)、4 - メチルー4 - シクロヘキセンー1,2 - ジカルボン酸ジ(3,5 - 5 - トリメチルヘキシル)よりなる群から選択される1種または2種以上のエステルである請求の範囲第7項に記載の冷凍機用潤滑油。

- 11. 前記一般式[1]で表されるR²、R³、R⁴およびR⁵中に占める 炭素数3~18の直鎖状のアルキル基の含有量が50モル%以下である 請求の範囲第7項に記載の冷凍機用潤滑油。
- 12. 前記脂環式ポリカルボン酸エステルの含有率が10重量%以上である請求の範囲第7項に記載の冷凍機用潤滑油。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03634

	SSIFICATION OF SUBJECT MATTER				
	. C1 ⁶ C10M105/36, C10N30:00				
	to International Patent Classification (IPC) or to both	national classification and IPC			
	DS SEARCHED				
	ocumentation searched (classification system followed by				
Int	. C1 ⁶ C10M105/36, C10N30:00), 30:12, 40:24, 40:30	<i>'</i>		
Documentat	ion searched other than minimum documentation to the e	xtent that such documents are included in th	e fields searched		
		•			
Electronic d	ata base consulted during the international search (name o	of data base and, where practicable, search to	erms used)		
	ONLINE	•	•		
		•			
C DOC	MENTS CONSIDERED TO BE RELEVANT				
	T		Relevant to claim No.		
Category*	Citation of document, with indication, where a				
PX	<pre>JP, 8-134481, A (Matsushita Co., Ltd.),</pre>	Electric Industrial	1-3, 7-12		
	May 28, 1996 (28. 05. 96),				
	Claim; columns 3 to 4, 8 to) 12 (Family: none)			
Х	JP, 63-205394, A (New Japar		1 - 6		
. 7	August 24, 1988 (24. 08. 88		7 - 12		
A	Claim; page 2, lower left of left column (Family: none)	column; page 3, upper	7 - 12		
X	JP, 63-139150, A (Shell Int	-ernational Research	1 - 3		
	Maatschappy B.V.),		• •		
	June 10, 1988 (10. 06. 88),				
	Claim; page 7, upper left of EP, 266848, A & US, 47864				
Х	JP, 59-191797, A (Nippon Pe	etrochemicals Co.,	1 - 3		
	Ltd.),				
	October 30, 1984 (30. 10. 8 Claim; page 7 (Family: none	24),			
х	US, 4464277, A (Standard Oi	il Co. (Indiana)),	1		
			<u> </u>		
X Further documents are listed in the continuation of Box C. See patent family annex.					
Special categories of cited documents: "A" later document published after the international filing date or priority date and not in conflict with the application but cited to understand to be of posticular relevance. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
to be of particular relevance "E" earlier document but published on or after the international filling date. "X" document of particular relevance; the claimed invention cannot be					
cited to	"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other				
"O" docume	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such	step when the document is		
	ent published prior to the international filing date but later than prity date claimed	being obvious to a person skilled in th	ne art		
	actual completion of the international search	<u> </u>			
	ch 10, 1997 (10. 03. 97)	Date of mailing of the international sear March 18, 1997 (1	-		
.1011	20, 10, (10, 03, 97)	March 10, 109/ (1			
	nailing address of the ISA/	Authorized officer			
_	anese Patent Office		•		
Facsimile No. Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03634

Category* Citation of document, with indication, where appropriate, of the relevant p August 7, 1984 (07. 08. 84), Claims (Family: none) X JP, 47-42583, A (Monsanto Co.), December 16, 1972 (16. 12. 72), Claim; page 6, lower right column & DE, 2223307, A & FR, 2137753, A & US, 3835050, A & GB, 1394441, A & GB, 1394442, A 7 GB, 1394443, A	ssages Relevant to claim	No.
Claims (Family: none) X JP, 47-42583, A (Monsanto Co.), December 16, 1972 (16. 12. 72), Claim; page 6, lower right column & DE, 2223307, A & FR, 2137753, A & US, 3835050, A & GB, 1394441, A	sages Relevant to claim	
<pre>X JP, 47-42583, A (Monsanto Co.), December 16, 1972 (16. 12. 72), Claim; page 6, lower right column & DE, 2223307, A & FR, 2137753, A & US, 3835050, A & GB, 1394441, A</pre>		
December 16, 1972 (16. 12. 72), Claim; page 6, lower right column & DE, 2223307, A & FR, 2137753, A & US, 3835050, A & GB, 1394441, A	1 2	
Claim; page 6, lower right column & DE, 2223307, A & FR, 2137753, A & US, 3835050, A & GB, 1394441, A	1 - 3	
& DE, 2223307, A & FR, 2137753, A & US, 3835050, A & GB, 1394441, A		
& US, 3835050, A & GB, 1394441, A & GB, 1394442, A 7 GB, 1394443, A		
a GB, 1354442, A / GB, 1554443, A		

国際調査報告

国際出願番号 PCT/JP96/03634

A. 発明の原	属する分野の分類(国際特許分類(IPC))		
Int. Cl ⁶ ClOM	105/36, C10N30:00, 30:12, 40:24, 40:30		
	Tった分野		
砌盤を行った東	是小限資料 (国際特許分類 ([PC))		
Int. Cl ⁶ ClOM	105/36, C10N30:00, 30:12, 40:24, 40:30		
最小限資料以外	トの資料で調査を行った分野に含まれるもの		
	•		
国際調査で使用			
CAS ONI	LINE		
C. 関連する			
引用文献の	C 25.7 J 7 C 27.15		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連すると	: きは、その関連する箇所の表示	請求の範囲の番号
PΧ	JP, 8-134481, A (松下電器産業機		1-3, 7-12
	28.5月.1996 (28.05.96) ** (ファミリーなし)	特許請求の範囲,第3-4,8-12欄	
X	J P 、 6 3 - 2 0 5 3 9 4 、 A (新日本理化や	未式会社)	1-6
	24.8月.1988 (24.08.88) 報		
Α	左上欄 (ファミリーなし)		7 - 1 2
X	 JP, 63-139150. A (シエル・イン	/カーナンコナル・リサーチ・マートフ	1 - 2
Λ	ハツペイ・ベー・ヴエー) 10.6月.198		1-3
	囲,第7頁左上櫃	, , , , , , , , , , , , , , , , , , , ,	
	&EP, 266848, A &US, 4786	3427, A	
X C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献の	ウカテゴリー	の日の後に公表された文献	
	基のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表	
もの 原!佐行文章	状ではあるが、国際出願日以後に公表されたも	て出願と矛盾するものではなく、 論の理解のために引用するもの	発明の原理又は理
(上) たけ入れ	人にはめるが、国际山崎自然後に公安と40にも	「X」特に関連のある文献であって、	当該文献のみで発明
	E張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考	えられるもの
	(は他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、	
	∄由を付す) こる開示、使用、展示等に含及する文献 ■	上の文献との、当業者にとって よって進歩性がないと考えられ	
	百日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	2 600
国際調査を完了	てした日	国際調査報告の発送日	_
	0.03.97	18.03.	97
国際調査機関の	0名称及びあて先	特許庁審査官(権限のある職員)	4H 9547
日本国	国特許庁(ISA/JP)	今村 玲英子 月	1 1
-	3便番号100		4566 O 4 4 4
東京看	『千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3444

国際調査報告

国際出願番号 PCT/JP96/03634

、(続き) .	関連すると認められる文献	
用文献の	TIGHT AND AN AND AND AND AND AND AND AND AND	関連する
テゴリー* X	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 JP, 59-191797, A (日本石油化学株式会社)	請求の範囲の番号 1-3
X	30.10月.1984 (30.10.84) 特許請求の範囲, 第7頁 (ファミリーなし)	1-3
X	US, 4464277, A (Standard Oil Company (Indiana)) 7. 8月. 1984 (07. 08. 84) Claims (ファミリーなし)	1
x	JP, 47-42583, A (モンサント・カンパニー) 16.12月.1972 (16.12.72) 特許請求の範囲,第6頁右下欄 &DE, 2223307, A &FR, 2137753, A &US, 3835050, A &GB, 1394441, A &GB, 1394442, A &GB, 1394443, A	1 - 3

様式PCT/ISA/210 (第2ページの続き) (1992年7月)

BUNDESREPUBLIK DEUTSCHLAND.

EP98/08346

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Bescheinigung

Die BASF Aktiengesellschaft in Ludwigshafen/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Verfahren zur Hydrierung von Benzolpolycarbonsäuren oder Derivaten davon unter Verwendung eines Makroporen aufweisenden Katalysators"

am 16. Juli 1998 beim Deutschen Patent- und Markenamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 07 C, C 08 K und C 07 B der Internationalen Patentklassifikation erhalten.

München, den 13. Januar 1999

Deutsches Patent- und Markenamt

Der Präsident

n Auftrag

Nietiedt

Aktenzeichen: <u>198 32 088.4</u>

- 1 -

BASF Aktiengesellschaft

16. Juli 1998 NAE19980225 IB/Ri/At/bt

5

Verfahren zur Hydrierung von Benzolpolycarbonsäuren oder Derivaten davon unter Verwendung eines Makroporen aufweisenden Katalysators

10

15

Die vorliegende Erfindung betrifft ein Verfahren zur Hydrierung von Benzolpolycarbonsäuren oder Derivaten davon, wie z.B. Estern und/oder Anhydriden, durch Inkontaktbringen einer oder mehrerer Benzolpolycarbonsäuren oder eines oder mehrerer Derivate davon mit einem Wasserstoff enthaltenden Gas in Gegenwart eines Makroporen aufweisenden Katalysators.

Ferner betrifft die vorliegende Erfindung auch die Verwendung von den erhaltenen Hydrierungsprodukten, d.h. der entsprechenden Cyclohexanverbindungen, insbesondere von Cyclohexandicarbonsäureestern und Cyclohexantricarbonsäureestern, insbesondere der mit dem erfindungsgemäßen Verfahren erhaltenen Cyclohexandicarbonsäureester und Cyclohexantricarbonsäureester als Weichmacher in Kunststoffen. 25

In der US 5,286,898 und der US 5,319,129 wird Dimethylterephthalat an geträgerten Pd-Katalysatoren, die mit Ni, Pt und/oder Ru versetzt sind, bei Temperaturen ≥ 140 °C und einem Druck zwischen 50 und 170 bar zum entsprechenden Hexahydrodimethylterephthalat hydriert. In der DE-A 28 23 165 werden aromatische Carbonsäureester an geträgerten Ni-, Ru-, Rh-, und/ oder Pd-Katalysatoren zu den entsprechenden cycloaliphatischen Carbonsäureestern bei 70 bis 250 °C und 30 bis 200 bar hydriert. In der US

3,027,398 wird die Hydrierung von Dimethylterephthalat an geträgerten Ru-Katalysatoren bei 110 bis 140 °C und 35 bis 105 bar beschrieben.

Der vorliegenden Erfindung lag die primäre Aufgabe zugrunde, ein Verfahren zur Hydrierung von Benzolpolycarbonsäure(derivate)n, insbesondere Benzoldicarbonsäureestern unter Verwendung spezifischer Katalysatoren zur Verfügung zu stellen, mit deren Hilfe die entsprechenden kernhydrierten Derivate, insbesondere Cyclohexandicarbonsäureester mit sehr hoher Selektivität und Raum-Zeit-Ausbeute ohne signifikante Nebenreaktionen erhalten werden können.

Demgemäß betrifft die vorliegende Erfindung ein Verfahren zur Hydrierung einer Benzolpolycarbonsäure oder eines Derivats davon oder eines Gemischs aus zwei oder mehr davon durch Inkontaktbringen der Benzolpolycarbonsäure oder des Derivats davon oder des Gemischs aus zwei oder mehr davon mit einem Wasserstoff enthaltenden Gas in Gegenwart eines Katalysators, der als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, dadurch gekennzeichnet, daß der Träger Makroporen aufweist,

mit der Maßgabe, daß sofern Terephthalsäuredimethylester hydriert wird, die Hydrierung mit einem Katalysator, der

als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII oder VIII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 50 nm und eine BET-Oberfläche von höchstens 30 m²/g aufweist und die Menge des Aktivmetalls 0,01 bis 30 Gew.- %, bezogen auf das Gesamtgewicht des Katalysator, beträgt, und das Verhältnis der Oberflächen des Aktivmetalls und des Katalysatorträgers kleiner 0,05 ist,

10

15

20

25

O.Z. 0030/49194

einem Katalysator, der als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII oder VIII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei 10 bis 50% des Porenvolumens des Trägers von Makroporen mit einem Porendurchmesser im Bereich von 50 nm bis 10.000 nm und 50 bis 90% des Porenvolumens des Trägers von Mesoporen mit einem Porendurchmesser im Bereich von 2 bis 50 nm gebildet werden, wobei sich die Summe der Anteile der Porenvolumina zu 100% addiert, ausgeschlossen ist.

10

15

20

25

30

In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung ein Verfahren zur Hydrierung einer Benzolpolycarbonsäure oder eines Derivats davon oder eines Gemischs aus zwei oder mehr davon, wobei der Katalysator als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 50 nm und eine BET-Oberfläche von höchstens 30 m²/g aufweist und die Menge des Aktivmetalls 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, beträgt (Katalysator 1).

Ferner betrifft sie ein derartiges Verfahren, wobei der Katalysator als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei 10 bis 50% des Porenvolumens des Trägers von Makroporen mit einem Porendurchmesser im Bereich von 50 nm bis 10.000 nm und 50 bis 90% des Porenvolumens des Trägers von Mesoporen mit einem Porendurchmesser im Bereich von 2 bis 50 nm gebildet werden,

wobei sich die Summe der Anteile der Porenvolumina zu 100% addiert (Katalysator 2).

In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung ein Verfahren, wie oben definiert, wobei der Katalysator (Katalysator 3) als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 0,1 μm, und eine BET-Oberfläche von höchstens 15 m²/g aufweist. Als Träger können prinzipiell alle Träger eingesetzt werden, die Makroporen aufweisen, d.h. Träger, die ausschließlich Makroporen aufweisen sowie solche, die neben Makroporen auch Meso- und/oder Mikroporen enthalten.

10

15

20

25

30

Als Aktivmetall können prinzipiell alle Metalle der VIII. Nebengruppe des Periodensystems eingesetzt werden. Vorzugsweise werden als Aktivmetalle Platin, Rhodium, Palladium, Cobalt, Nickel oder Ruthenium oder ein Gemisch aus zwei oder mehr davon eingesetzt, wobei insbesondere Ruthenium als Aktivmetall verwendet wird. Unter den ebenfalls verwendbaren Metallen der I. oder VII. oder aber der I. und der VII. Nebengruppe des Periodensystems, die ebenfalls allesamt prinzipiell verwendbar sind, werden vorzugsweise Kupfer und/oder Rhenium eingesetzt.

Die Begriffe "Makroporen" und "Mesoporen" werden im Rahmen der vorliegenden Erfindung so verwendet, wie sie in Pure Appl. Chem., 45, S. 79 (1976) definiert sind, nämlich als Poren, deren Durchmesser oberhalb von 50 nm (Makroporen) oder deren Durchmesser zwischen 2 nm und 50 nm liegt (Mesoporen).

O.Z. 0050/49194

Der Gehalt des Aktivmetalls beträgt im allgemeinen ungefähr 0,01 bis ungefähr 30 Gew.-%, vorzugsweise ungefähr 0,01 bis ungefähr 5 Gew.-% und insbesondere ungefähr 0,1 bis ungefähr 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht des verwendeten Katalysators, wobei die bei den im folgenden beschriebenen, vorzugsweise eingesetzten Katalysatoren 1 bis 3 vorzugsweise verwendeten Gehalte nochmals bei der Diskussion dieser Katalysatoren einzeln angegeben sind.

Der erfindungsgemäß verwendete Begriff "Benzolpolycarbonsäure oder eines Derivats davon" umfaßt alle Benzolpolycarbonsäuren an sich, wie z.B. Phthalsäure, Isophthalsäure, Terephthalsäure, Trimellitsäure, Trimesinsäure, Hemimellitsäure und Pyrromellitsäure und Derivate davon, wobei insbesondere Mono-, Di- und ggf. Tri- und Tetraester, insbesondere Alkylester, und Anhydride zu nennen sind. Die vorzugsweise eingesetzten Verbindungen werden untenstehend im Abschnitt "Die Verfahrensführung" nochmals kurz erläutert.

Im folgenden sollen nunmehr die vorzugsweise verwendeten Katalysatoren 1 bis 3 detailliert beschrieben werden. Dabei erfolgt die Beschreibung beispielhaft unter Bezugnahme auf die Verwendung von Ruthenium als Aktivmetall. Die untenstehenden Angaben sind auch auf die anderen verwendbaren Aktivmetalle, wie hierin definiert, übertragbar.

25 KATALYSATOR 1

10

15

20

30

Die erfindungsgemäß verwendeten Katalysatoren 1 können technisch hergestellt werden durch Auftragen mindestens eines Metalls der VIII. Nebengruppe des Periodensystems und gegebenenfalls mindestens eines Metalls der I. oder VII. Nebengruppe des Periodensystems auf einem geeigneten Träger.

Die Auftragung kann durch Tränken des Trägers in wäßrigen Metallsalzlösungen, wie z.B. wäßrigen Rutheniumsalzlösungen, durch Aufsprühen entsprechender Metallsalzlösungen auf den Träger oder durch andere geeignete Verfahren erreicht werden. Als Metallsalze der I., VII. oder VIII. Nebengruppe des Periodensystems eignen sich die Nitrate, Nitrosylnitrate, Halogenide, Carbonate, Carboxylate, Acetylacetonate, Chlorokomplexe, Nitritokomplexe oder Aminkomplexe der entsprechenden Metalle, wobei die Nitrate und Nitrosylnitrate bevorzugt sind.

- Bei Katalysatoren, die neben dem Metall der VIII. Nebengruppe des Periodensystems noch weitere Metalle als Aktivmetall auf dem Träger aufgetragen enthalten, können die Metallsalze bzw. Metallsalzlösungen gleichzeitig oder nacheinander aufgebracht werden.
- Die mit der Metallsalzlösung beschichteten bzw. getränkten Träger werden anschließend, vorzugsweise bei Temperaturen von 100 bis 150 °C, getrocknet und wahlweise bei Temperaturen von 200 bis 600 °C, vorzugsweise von 350 bis 450 °C calciniert. Bei getrennter Auftränkung wird der Katalysator nach jedem Tränkschritt getrocknet und wahlweise calciniert, wie oben beschrieben. Die Reihenfolge, in der die Aktivkomponenten aufgetränkt werden, ist dabei frei wählbar.

Anschließend werden die beschichteten und getrockneten sowie wahlweise calcinierten Träger durch Behandlung in einem Gasstrom, der freien Wasserstoff enthält, bei Temperaturen von ungefähr 30 bis ungefähr 600 °C, vorzugsweise von ungefähr 150 bis ungefähr 450 °C aktiviert. Vorzugsweise besteht der Gasstrom aus 50 bis 100 Vol.-% H₂ und 0 bis 50 Vol.-% N₂.

25

Die Metallsalzlösung oder -lösungen werden in einer solchen Menge auf den oder die Träger aufgebracht, daß der Gesamtgehalt an Aktivmetall, jeweils

- 7
Katalysators, ungefähr 0,01 bis ungefähr

bezogen auf das Gesamtgewicht des Katalysators, ungefähr 0,01 bis ungefähr 30 Gew.-%, vorzugsweise ungefähr 0,01 bis ungefähr 5 Gew.-%, weiter bevorzugt ungefähr 0,01 bis ungefähr 1 Gew.-%, und insbesondere ungefähr 0,05 bis ungefähr 1 Gew.-% beträgt.

Die Metalloberfläche auf dem Katalysator 1 beträgt dabei insgesamt vorzugsweise ungefähr 0,01 bis ungefähr 10 m²/g, weiter bevorzugt ungefähr 0,05 bis ungefähr 5 m²/g und insbesondere ungefähr 0,05 bis ungefähr 3 m²/g des Katalysators. Die Metalloberfläche wird mittels der von J. Lemaitre et al. in "Characterization of Heterogeneous Catalysts", Hrsg. Francis Delanney, Marcel Dekker, New York 1984, S. 310 - 324, beschriebenen Chemisorptionsverfahren bestimmt.

Im erfindungsgemäß verwendeten Katalysator 1 beträgt das Verhältnis der Oberflächen des/der Aktivmetalls/-metalle und des Katalysatorträgers vorzugsweise weniger als ungefähr 0,05, wobei der untere Grenzwert bei ungefähr 0,0005 liegt.

Die zur Herstellung der erfindungsgemäß verwendeten Katalysatoren verwendbaren Trägermaterialien sind solche, die makroporös sind und einen mittleren Porendurchmesser von mindestens ungefähr 50 nm, vorzugsweise mindestens ungefähr 100 nm, insbesondere mindestens ungefähr 500 nm aufweisen und deren Oberfläche nach BET bei höchstens ungefähr 30 m²/g, vorzugsweise höchstens ungefähr 15 m²/g, weiter bevorzugt höchstens ungefähr 10 m²/g, insbesondere höchstens ungefähr 5 m²/g und weiter bevorzugt höchstens ungefähr 3 m²/g liegt. Der mittlere Porendurchmesser des Trägers beträgt vorzugsweise ungefähr 100 nm bis ungefähr 200 μ m, weiter bevorzugt ungefähr 500 nm bis ungefähr 50 μ m. Die Oberfläche des Trägers beträgt vorzugsweise ungefähr 0,2 bis ungefähr 15 m²/g, weiter

5

10

15

20

25

bevorzugt ungefähr 0,5 bis ungefähr 10 m^2/g , insbesondere ungefähr 0,5 bis ungefähr 5 m^2/g und weiter bevorzugt ungefähr 0,5 bis ungefähr 3 m^2/g .

Die Oberfläche des Trägers wird bestimmt nach dem BET-Verfahren durch N₂-Adsorption, insbesondere nach DIN 66131. Die Bestimmung des mittleren Porendurchmesser und der Porengrößenverteilung erfolgt durch Hg-Porosimetrie, insbesondere nach DIN 66133.

Vorzugsweise kann die Porengrößenverteilung des Trägers annähernd bimodal sein, wobei die Porendurchmesserverteilung mit Maxima bei etwa 600 nm und etwa 20 μ m bei der bimodalen Verteilung eine spezielle Ausführungsform der Erfindung darstellt.

Weiter bevorzugt ist ein Träger mit einer Oberfläche von 1,75 m²/g, der diese bimodale Verteilung des Porendurchmessers aufweist. Das Porenvolumen dieses bevorzugten Trägers beträgt vorzugsweise etwa 0,53 ml/g.

15

20

25

Als makroporöses Trägermaterial verwendbar sind beispielsweise Aktivkohle, Siliciumcarbid, Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Magnesiumoxid, Zinkoxid oder Gemische aus zwei oder mehr davon, wobei Aluminiumoxid und Zirkoniumdioxid vorzugsweise verwendet werden.

Weitere Details bezüglich Katalysator 1 bzw. zu seiner Herstellung sind der DE-A 196 24 484.6 zu entnehmen, deren diesbezüglicher Inhalt durch Bezugnahme vollständig in die vorliegende Anmeldung einbezogen wird.

- 9 -

KATALYSATOR 2

15

20

Die erfindungsgemäß verwendeten Katalysatoren 2 enthalten ein oder mehrere Metalle der VIII. Nebengruppe des Periodensystems als Aktivkomponente(n) auf einem Träger, wie hierin definiert. Bevorzugt werden Ruthenium, Palladium und/oder Rhodium als Aktivkomponente(n) verwendet.

Die erfindungsgemäß verwendeten Katalysatoren 2 können technisch hergestellt werden durch Auftragen mindestens eines Aktivmetalls der VIII. Nebengruppe des Periodensystems, vorzugsweise Ruthenium oder Palladium und gegebenenfalls mindestens eines Metalls der I. oder VII. Nebengruppe des Periodensystems auf einem geeigneten Träger. Die Auftragung kann durch Tränken des Trägers in wäßrigen Metallsalzlösungen, wie z.B. Ruthenium- oder Palladiumsalzlösungen, durch Aufsprühen entsprechender Metallsalzlösungen auf den Träger oder durch andere geeignete Verfahren erreicht werden. Als Metallsalze zur Herstellung der Metallsalzlösungen eignen sich die Nitrate, Nitrosylnitrate, Halogenide, Carbonate, Carboxylate, Acetylacetonate, Chlorokomplexe, Nitritokomplexe oder Aminkomplexe der entsprechenden Metalle, wobei die Nitrate und Nitrosylnitrate bevorzugt sind.

Bei Katalysatoren, die mehrere Aktivmetalle auf den Träger aufgetragen enthalten, können die Metallsalze bzw. Metallsalzlösungen gleichzeitig oder nacheinander aufgebracht werden.

Die mit der Metallsalzlösung beschichteten bzw. getränkten Träger werden anschließend getrocknet, wobei Temperaturen von 100 bis 150 °C bevorzugt sind. Wahlweise können diese Träger bei Temperaturen von 200 bis 600 °C, vorzugsweise von 350 bis 450 °C calciniert werden. Anschließend werden die beschichteten Träger durch Behandlung in einem Gasstrom, der freien Wasserstoff enthält, bei Temperaturen von 30 bis 600 °C, vorzugs-

- 10 -

weise von 100 bis 450 °C und insbesondere von 100 bis 300 °C aktiviert. Der Gasstrom besteht vorzugsweise aus 50 bis 100 Vol.-% H_2 und 0 bis 50 Vol.-% N_2 .

Werden auf die Träger mehrere Aktivmetalle aufgetragen und erfolgt das Auftragen nacheinander, so kann der Träger nach jedem Auftragen bzw. Tränken bei Temperaturen von 100 bis 150 °C getrocknet werden und wahlweise bei Temperaturen von 200 bis 600 °C calciniert werden. Dabei kann die Reihenfolge, in der die Metallsalzlösung aufgetragen oder aufgetränkt wird, beliebig gewählt werden.

Die Metallsalzlösung wird in einer solchen Menge auf den/die Träger aufgebracht, daß der Gehalt an Aktivmetall 0,01 bis 30 Gew.-%, vorzugsweise 0,01 bis 10 Gew.-%, weiter bevorzugt 0,01 bis 5 Gew.-%, und insbesondere 0,3 bis 1 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, beträgt.

Die Metalloberfläche auf dem Katalysator beträgt insgesamt vorzugsweise 0,01 bis 10 m²/g, besonders bevorzugt 0,05 bis 5 m²/g und weiter bevorzugt 0,05 bis 3 m²/g des Katalysators. Die Metalloberfläche wurde durch das Chemisorptionsverfahren gemessen, wie es in J. Lemaitre et al., "Characterization of Heterogeneous Catalysts", Hrsg. Francis Delanney, Marcel Dekker, New York (1984), S. 310 - 324, beschrieben ist.

Im erfindungsgemäß verwendeten Katalysator 2 beträgt das Verhältnis der Oberflächen des mindestens einen Aktivmetalls und des Katalysatorträgers weniger als ungefähr 0,3, vorzugsweise weniger als ungefähr 0,1 und insbesondere ungefähr 0,05 oder weniger, wobei der untere Grenzwert bei ungefähr 0,0005 liegt.

15

Die zur Herstellung der erfindungsgemäß verwendeten Katalysatoren 2 verwendbaren Trägermaterialien besitzen Makroporen und Mesoporen.

Dabei weisen die erfindungsgemäß verwendbaren Träger eine Porenverteilung auf, dergemäß ungefähr 5 bis ungefähr 50%, vorzugsweise ungefähr 10 bis ungefähr 45%, weiter bevorzugt ungefähr 10 bis ungefähr 30 und insbesondere ungefähr 15 bis ungefähr 25% des Porenvolumens von Makroporen mit Porendurchmessern im Bereich von ungefähr 50 nm bis ungefähr 10.000 nm und ungefähr 50 bis ungefähr 95%, vorzugsweise ungefähr 55 bis ungefähr 90%, weiter bevorzugt ungefähr 70 bis ungefähr 90% und insbesondere ungefähr 75 bis ungefähr 85% des Porenvolumens von Mesoporen mit einem Porendurchmesser von ungefähr 2 bis ungefähr 50 nm gebildet werden, wobei sich jeweils die Summe der Anteile der Porenvolumina zu 100% addiert.

10

15

20

25

30

Das Gesamtporenvolumen der erfindungsgemäß verwendeten Träger beträgt ungefähr 0,05 bis 1,5 cm³/g, vorzugsweise 0,1 bis 1,2 cm³/g und insbesondere ungefähr 0,3 bis 1,0 cm³/g. Der mittlere Porendurchmesser der erfindungsgemäß verwendeten Träger beträgt ungefähr 5 bis 20 nm, vorzugsweise ungefähr 8 bis ungefähr 15 nm und insbesondere ungefähr 9 bis ungefähr 12 nm.

Vorzugsweise beträgt die Oberfläche des Trägers ungefähr 50 bis ungefähr 500 m 2 /g, weiter bevorzugt ungefähr 200 bis ungefähr 350 m 2 /g und insbesondere ungefähr 250 bis ungefähr 300 m 2 /g des Trägers.

Die Oberfläche des Trägers wird nach dem BET-Verfahren durch N_2 -Adsorption, insbesondere nach DIN 66131, bestimmt. Die Bestimmung des mittleren Porendurchmesser und der Größenverteilung erfolgt durch Hg-Porosimetrie, insbesondere nach DIN 66133.

Obwohl prinzipiell alle bei der Katalysatorherstellung bekannten Trägermaterialien, d.h. die die oben definierte Porengrößenverteilung aufweisen, eingesetzt werden können, werden vorzugsweise Aktivkohle, Siliciumcarbid, Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Magnesiumoxid, Zinkoxid oder deren Gemische, weiter bevorzugt Aluminiumoxid und Zirkoniumdioxid, eingesetzt.

Weitere Details bezüglich Katalysator 2 bzw. zu seiner Herstellung sind der DE-A 196 24 485.4 zu entnehmen, deren diesbezüglicher Inhalt durch Bezugnahme vollständig in die vorliegende Anmeldung einbezogen wird.

KATALYSATOR 3

15

20

30

Die erfindungsgemäß verwendeten Katalysatoren 3 können technisch hergestellt werden durch Auftragen eines Aktivmetalls der VIII. Nebengruppe des Periodensystems und gegebenenfalls mindestens eines Metalls der I. oder VII. Nebengruppe des Periodensystems auf einen geeigneten Träger. Die Auftragung kann durch Tränken des Trägers in wäßrigen Metallsalzlösungen, wie z.B. Rutheniumsalzlösungen, durch Aufsprühen entsprechender Metallsalzlösungen auf den Träger oder durch andere geeignete Verfahren erreicht werden. Als Rutheniumsalze zur Herstellung der Rutheniumsalzlösungen wie auch als Metallsalze der I., VII. oder VIII. Nebengruppe eignen sich die Nitrate, Nitrosylnitrate, Halogenide, Carbonate, Carboxylate, Acetylacetonate, Chlorokomplexe, Nitritokomplexe oder Aminkomplexe der entsprechenden Metalle, bevorzugt sind dabei die Nitrate und Nitrosylnitrate.

Bei Katalysatoren, die mehrere Metalle auf den Träger aufgetragen enthalten, können die Metallsalze bzw. Metallsalzlösungen gleichzeitig oder nacheinander aufgebracht werden.

Die mit der Rutheniumsalz- bzw. Metallsalzlösung beschichteten bzw. getränkten Träger werden sodann getrocknet, vorzugsweise bei Temperaturen von 100 bis 150 °C, und wahlweise bei Temperaturen von 200 bis 600 °C calciniert.

Darauffolgend werden die beschichteten Träger aktiviert durch Behandlung der beschichteten Träger in einem Gasstrom, der freien Wasserstoff enthält, bei Temperaturen von 30 bis 600 °C, vorzugsweise von 150 bis 450 °C. Der Gasstrom besteht vorzugsweise aus 50 bis 100 Vol-% H₂ und 0 bis 50 Vol-% N₂.

5

10

15

25

Werden auf die Träger neben dem Aktivmetall der VIII. Nebengruppe des Periodensystems Metalle der I. oder VII. Nebengruppe aufgetragen und erfolgt das Auftragen nacheinander, so kann der Träger nach jedem Auftragen bzw. Tränken bei Temperaturen von 100 bis 150 °C getrocknet werden und wahlweise bei Temperaturen von 200 bis 600 °C calciniert werden. Dabei kann die Reihenfolge, in der die Metallsalzlösungen aufgetragen oder aufgetränkt werden, beliebig gewählt werden.

Die Metallsalzlösung wird in einer solchen Menge auf den oder die Träger aufgebracht, daß 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, an Aktivmetall auf den Träger aufgebracht vorliegen. Vorzugsweise beträgt diese Menge 0,2 bis 15 Gew.-%, besonders bevorzugt etwa 0,5 Gew.-%.

Die Metalloberfläche auf dem Katalysator 3 beträgt insgesamt vorzugsweise 0,01 bis $10 \text{ m}^2/\text{g}$, besonders bevorzugt 0,05 bis $5 \text{ m}^2/\text{g}$, insbesondere 0,05 bis 3 m^2 pro g des Katalysators.

Die zur Herstellung der erfindungsgemäß verwendeten Katalysatoren 3 verwendbaren Trägermaterialien sind vorzugsweise solche, die makroporös sind und einen mittleren Porendurchmesser von mindestens $0,1~\mu m$, vorzugsweise mindestens $0,5~\mu m$, und eine Oberfläche von höchstens $15~m^2/g$ aufweisen, vorzugsweise höchstens $10~m^2/g$, besonders bevorzugt höchstens $5~m^2/g$, insbesondere höchstens $3~m^2/g$. Bevorzugt liegt der mittlere Porendurchmesser des Trägers in einem Bereich von 0,1 bis $200~\mu m$, insbesondere von 0,5 bis $50~\mu m$. Bevorzugt beträgt die Oberfläche des Trägers 0,2 bis $15~m^2/g$, besonders bevorzugt 0,5 bis $10~m^2/g$, insbesondere 0,5 bis $5~m^2/g$, speziell 0,5 bis $3~m^2/g$ des Trägers.

10

Die Oberfläche des Trägers wird bestimmt nach dem BET-Verfahren durch N_2 -Adsorption, insbesondere nach DIN 66131. Die Bestimmung des mittleren Porendurchmessers und der Porengrößenverteilung erfolgte durch Hg-Porosimetrie, insbesondere nach DIN 66133. Vorzugsweise kann die Porengrößenverteilung des Trägers annähernd bimodal sein, wobei die Porendurchmesserverteilung mit Maxima bei etwa 0,6 μ m und etwa 20 μ m bei der bimodalen Verteilung eine spezielle Ausführungsform der Erfindung darstellt.

- Besonders bevorzugt ist ein Träger mit einer Oberfläche von etwa 1,75 m²/g, der diese bimodale Verteilung des Porendurchmessers aufweist. Das Porenvolumen dieses bevorzugten Trägers beträgt vorzugsweise etwa 0,53 ml/g.
- Als makroporöses Trägermaterial verwendbar sind beispielsweise Aktivkohle, Siliciumcarbid, Aluminiumoxid, Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Magnesiumoxid, Zinkoxid oder deren Gemische. Bevorzugt sind Aluminiumoxid und Zirkoniumdioxid.

Weitere Details bezüglich Katalysator 3 bzw. zu seiner Herstellung sind der DE-A 196 04 791.9 zu entnehmen, deren diesbezüglicher Inhalt durch Bezugnahme vollständig in die vorliegende Anmeldung einbezogen wird.

DIE VERFAHRENSFÜHRUNG

5

10

15

Im Rahmen des erfindungsgemäßen Verfahrens wird die Hydrierung im allgemeinen bei einer Temperatur von ungefähr 50 bis 250 °C, vorzugsweise ungefähr 70 bis 220 °C durchgeführt. Die dabei verwendeten Drücke liegen in der Regel bei oberhalb von 10 bar, vorzugsweise ungefähr 20 bis ungefähr 300 bar.

Das erfindungsgemäße Verfahren kann entweder kontinuierlich oder diskontinuierlich durchgeführt werden, wobei die kontinuierliche Verfahrensdurchführung bevorzugt ist.

Bei der kontinuierlichen Verfahrensführung beträgt die Menge der (des) zur Hydrierung vorgesehenen Benzolpolycarbonsäure(esters) bzw. des Gemischs aus zwei oder mehr davon vorzugsweise ungefähr 0,05 bis ungefähr 3 kg pro Liter Katalysator pro Stunde, weiter bevorzugt ungefähr 0,1 bis ungefähr 1 kg pro Liter Katalysator pro Stunde.

Als Hydriergase können beliebige Gase verwendet werden, die freien Wasserstoff enthalten und keine schädlichen Mengen an Katalysatorgiften, wie beispielsweise CO, aufweisen. Beispielsweise können Reformerabgase verwendet werden. Vorzugsweise wird reiner Wasserstoff als Hydriergas verwendet.

Die erfindungsgemäße Hydrierung kann in Ab- oder Anwesenheit eines Lösungs- oder Verdünnungsmittels durchgeführt werden, d.h. es ist nicht erforderlich, die Hydrierung in Lösung durchzuführen.

Vorzugsweise wird jedoch ein Lösungs- oder Verdünnungsmittel eingesetzt. Als Lösungs- oder Verdünnungsmittel kann jedes geeignete Lösungsmittel- oder Verdünnungsmittel eingesetzt werden. Die Auswahl ist dabei nicht kritisch, solange das eingesetzte Lösungs- oder Verdünnungsmittel in der Lage ist, mit der (dem) zu hydrierenden Benzoldicarbonsäure(ester) eine homogene Lösung zu bilden. Beispielsweise können die Lösungs- oder Verdünnungsmittel auch Wasser enthalten.

Beispiele geeigneter Lösungs- oder Verdünnungsmittel schließen die folgenden ein:

Geradkettige oder cyclische Ether, wie beispielsweise Tetrahydrofuran oder Dioxan, sowie aliphatische Alkohole, in denen der Alkylrest vorzugsweise 1 bis 10 Kohlenstoffatome, insbesondere 3 bis 6 Kohlenstoffatome aufweist.

15

25

30

Beispiele bevorzugt verwendbarer Alkohole sind i-Propanol, n-Butanol, i-Butanol und n-Hexanol.

Gemische dieser oder anderer Lösungs- oder Verdünnungsmittel können ebenfalls verwendet werden.

Die Menge des eingesetzten Lösungs- oder Verdünnungsmittels ist nicht in besonderer Weise beschränkt und kann je nach Bedarf frei gewählt werden, wobei jedoch solche Mengen bevorzugt sind, die zu einer 10 bis 70 Gew.-%igen Lösung der (des) zur Hydrierung vorgesehenen Benzoldicarbonsäure(esters) führen.

Besonders bevorzugt wird im Rahmen des erfindungsgemäßen Verfahrens das bei der Hydrierung gebildete Produkt, also das entsprechende Cyclohexanderivat als Lösungsmittel eingesetzt, gegebenenfalls neben anderen Lösungsoder Verdünnungsmitteln. In jedem Fall kann ein Teil des im Verfahren gebildeten Produkts der noch zu hydrierenden Benzolpolycarbonsäure oder des Derivats davon beigemischt werden. Bezogen auf das Gewicht der zur Hydrierung vorgesehenen Verbindung wird vorzugsweise die 1- bis 30fache, besonders bevorzugt die 5- bis 20fache, insbesondere die 5- bis 10fache Menge des Umsetzungsproduktes als Lösungs- oder Verdünnungsmittel zugemischt.

Wie bereits oben ausgeführt, umfaßt der erfindungsgemäß verwendete Begriff "Benzolpolycarbonsäuren oder Derivate davon" sowohl die jeweiligen Benzolpolycarbonsäuren an sich sowie Derivate davon, wobei insbesondere Mono-, Di- oder ggf. Tri- oder Tetraester sowie Anhydride der Benzolpolycarbonsäuren zu nennen sind. Die eingesetzten Ester sind Alkyl-, Cykloalkylsowie Alkoxyalkylester, wobei die Alkyl-, Cycloalkyl- sowie Alkoxyalkylgruppen in der Regel 1 bis 30, vorzugsweise 2 bis 20 und besonders bevorzugt 3 bis 18 Kohlenstoffatome umfassen und verzweigt oder linear sein können.

Im einzelnen sind zu nennen:

•

10

15

20

25

30

Terephthalsäuredimethylester, wie z.B. Terephthalsäuremonomethylester, Terephthalsäuredi-n-propylester, Terephthalsäuredi-n-butylester, Terephthalsäuredi-tert-butylester, Terephthalsäurediisobutylester, Terephthalsäuremonoglykolester, Terephthalsäurediisooctylester, Terephthalsäurediisooctylester, Terephthalsäurediisooctylester, Terephthalsäuremono-2-ethylhexylester, Terephthalsäuredi-2-ethylhexylester, Terephthalsäuredi-n-nonylester, Terephthalsäurediisononylester, Terephthalsäurediin-decylester, Terephthalsäurediin- undecylester, Terephthalsäurediisodecyl-

ester, Terephthalsäurediisododecylester, Terephthalsäuredi-n-octadecylester, Terephthalsäurediisooctadecylester, Terephthalsäuredi-n-eicosylester, Terephthalsäuremonocyclohexylester, Terephthalsäuredicyclohexylester;

Phthalsäurealkylester, wie z.B. Phthalsäuremonomethylester, Phthalsäuredimethylester, Phthalsäurediethylester, Phthalsäuredi-n-propylester, Phthalsäuredi-n-butylester, Phthalsäuredi-tert.-butylester, Phthalsäurediisobutylester, Phthalsäuremonoglykolester, Phthalsäurediglykolester, Phthalsäuredi-n-octylester, Phthalsäurediisooctylester, Phthalsäuredi-2-ethylhexylester, Phthalsäuredi-n-nonylester, Phthalsäurediisononylester, Phthalsäuredi-n-decylester, Phthalsäurediisododecylester, Phthalsäuredi-n-octadecylester, Phthalsäurediisooctadecylester, Phthalsäuredi-n-eicosylester, Phthalsäuremonocyclohexylester, Phthalsäuredicyclohexylester;

15

20

25

30

Isophthalsäuredikylester, wie z.B. Isophthalsäuremonomethylester, Isophthalsäuredi-n-propylester, Isophthalsäuredi-n-butylester, Isophthalsäuredi-tert.-butylester, Isophthalsäurediisobutylester, Isophthalsäuremonoglykolester, Isophthalsäurediglykolester, Isophthalsäuredi-n-octylester, Isophthalsäurediisooctylester, Isophthalsäuredi-2-ethylhexylester, Isophthalsäuredi-n-nonylester, Isophthalsäurediisononylester, Isophthalsäuredi-n-decylester, Isophthalsäurediisodecylester, Isophthalsäuredi-n-octadecylester, Isophthalsäuredi-n-octadecylester, Isophthalsäuredi-n-octadecylester, Isophthalsäuredi-n-eicosylester, Isophthalsäu

Trimellitsäurealkylester, wie z.B. Trimellitsäuremonomethylester, Trimellitsäuredi-n-propylester, Trimellitsäuredi-n-propylester, Trimellitsäuredi-n-butylester, Trimellitsäuredi-tert-butylester, Trimellitsäuredi-sobutylester, Trimellitsäuremonoglykolester, Trimellitsäurediglykolester, Trimellitsäuredi-2-mellitsäuredi-n-octylester, Trimellitsäuredi-sobutylester, Trimellitsäuredi-2-

- 19 -

Q.Z. 0050749194

ethylhexylester, Trimellitsäuredi-n-nonylester, Trimellitsäurediisononylester, Trimellitsäuredi-n-decylester, Trimellitsäurediisodecylester, Trimellitsäuredi-nundecylester, Trimellitsäurediisododecylester, Trimellitsäuredi-n-octadecyl- ester, Trimellitsäurediisooctadecylester, Trimellitsäuredi-n-eicosylester, Trimellitsäuremonocyclohexylester, Trimellitsäuredicyclohexylester sowie Trimellitsäuretrimethylester, Trimellitsäuretriethylester, Trimellitsäuretri-n-propylester. Trimellitsäuretri-n-butylester, Trimellitsäuretri-tert-butylester, Trimellitsäuretriisobutylester, Trimellitsäuretriglykolester, Trimellitsäuretri-n-octylester. Trimellitsäuretriisooctylester, Trimellitsäuretri-2-ethylhexylester, Trimellitsäure-Trimellitsäuretriisododecylester, Trimellitsäuretri-n-undecyltri-n-nonylester, ester, Trimellitsäuretriisododecylester, Trimellitsäuretri-n-octadecylester, Trimellitsäuretriisooctadecylester, Trimellitsäuretri-n-eicosylester, Trimellitsäuretricyclohexylester.

Trimesinsäurealkylester, wie z.B. Trimesinsäuremonomethylester, Trimesinsäuredimethylester, Trimesinsäuredi-n-propylester, Trimesinsäuredi-n-propylester, Trimesinsäuredi-n-butylester, Trimesinsäuredi-tert-butylester, Trimesinsäurediisobutylester, Trimesinsäuremonoglykolester. Trimesinsäurediglykolester, Trimesinsäuredi-n-octylester, Trimesinsäuredi-2ethylhexylester, Trimesinsäuredi-n-nonylester, Trimesinsäurediisononylester, Trimesinsäuredi-n-decylester, Trimesinsäurediisodecylester, Trimesinsäuredi-nundecylester, Trimesinsäurediisododecylester, Trimesinsäuredi-n-octadecylester, Trimesinsäurediisooctadecylester, Trimesinsäuredi-n-eicosylester, Trimesinsäuremonocyclohexylester, Trimesinsäuredicyclohexylester, sowie Trimesinsäuretrimethylester, Trimesinsäuretriethylester, Trimesinsäuretri-n-propylester, Trimesinsäuretri-n-butylester, Trimesinsäuretri-tert-butylester, Trimesinsäuretriisobutylester, Trimesinsäuretriglykolester, Trimesinsäuretri-n-octylester, Trimesinsäuretriisooctylester, Trimesinsäuretri-2-ethylhexylester, Trimesinsäuretrin-nonylester, Trimesinsäuretriisododecylester, Trimesinsäuretri-n-undecylester, Trimesinsäuretriisododecylester, Trimesinsäuretri-n-octadecylester, Trimesinsäu-

5

10

15

20

25

30

retriisooctadecylester, Trimesinsäuretri-n-eicosylester, Trimesinsäuretricyclo-hexylester.

5

10

15

20

25

30

Hemimellitsäurealkylester, wie z.B. Hemimellitsäuremonomethylester, Hemimellitsäuredimethylester, Hemimellitsäurediethylester, Hemimellitsäuredi-npropylester, Hemimellitsäuredi-n-butylester, Hemimellitsäuredi-tert-butylester, -Hemimellitsäurediisobutylester, Hemimellitsäuremonoglykolester, Hemimellitsäurediglykolester, Hemimellitsäuredi-n-octylester, Hemimellitsäurediisooctyl-Hemimellitsäuredi-2-ethylhexylester, ester. Hemimellitsäuredi-n-nonylester, Hemimellitsäurediisononylester, Hemimellitsäuredi-n-decylester, Hemimellitsäurediisodecylester, Hemimellitsäuredi-n-undecylester, Hemimellitsäurediisododecylester, Hemimellitsäuredi-n-octadecylester, Hemimellitsäurediisooctadecylester, Hemimellitsäuredi-n-eicosylester, Hemimellitsäuremonocyclohexylester, Hemimellitsäuredicyclohexylester, sowie Hemimellitsäuretrimethylester, Hemimellitsäuretriethylester, Hemimellitsäuretri-n-propylester. Hemimellitsäuretri-n-butylester, Hemimellitsäuretri-tert-butylester, Hemimellitsäuretriisobutylester, Hemimellitsäuretriglykolester, Hemimellitsäuretri-n-octylester, Hemimellitsäuretriisooctylester, Hemimellitsäuretri-2-ethylhexylester, mellitsäuretri-n-nonylester, Hemimellitsäuretriisododecylester, Hemimellitsäuretri-n-undecylester. Hemimellitsäuretriisododecylester, Hemimellitsäuretri-noctadecylester, Hemimellitsäuretriisooctadecylester, Hemimellitsäuretri-n-eicosylester, Hemimellitsäuretricyclohexylester.

Pyromellitsäurealkylester, wie z.B. Pyromellitsäuremonomethylester, Pyromellitsäuredientylester, Pyrome

•

10

15

20

30

isodecylester, Pyromellitsäuredi-n-undecylester, Pyromellitsäurediisododecyl-Pyromellitsäuredi-n-octadecylester, Pyromellitsäurediisooctadecylester, Pyromellitsäuredi-n-eicosylester, Pyromellitsäuremonocyclohexylester, Pyromellitsäuretrimethylester, Pyromellitsäuretriethylester, Pyromellitsäuretri-n-propylester, Pyromellitsäuretri-n-butylester, Pyromellitsäuretri-tert-butylester, Pyromellitsäuretriisobutylester, Pyromellitsäuretriiglykolester, Pyromellitsäuretri-n-octylester, Pyromellitsäuretriisooctylester, Pyromellitsäuretri-2-ethylhexylester, Pyromellitsäuretri-n-nonylester, Pyromellitsäuretriisododecylester, Pyromellitsäuretri-n-undecylester, Pyromellitsäuretriisododecylester, Pyromellitsäuretri-noctadecylester, Pyromellitsäuretriisooctadecylester, Pyromellitsäuretri-n-eicosylester, Pyromellitsäuretricyclohexylester, sowie Pyromellitsäuretetramethylester, Pyromellitsäuretetraethylester, Pyromellitsäuretetra-n-propylester, Pyromellitsäuretetra-n-butylester, Pyromellitsäuretetra-tert-butylester, Pyromellitsäuretetraisobutylester, Pyromellitsäuretetraglykolester, Pyromellitsäuretetra-n-octylester, Pyromellitsäuretetraisooctylester, Pyromellitsäuretetra-2-ethylhexylester, Pyromellitsäuretetra-n-nonylester, Pyromellitsäuretetraisododecylester, Pyromellitsäuretetra-n-undecylester, Pyromellitsäuretetraisododecylester, Pyromellitsäuretetra-n-octadecylester, Pyromellitsäuretetraisooctadecylester, Pyromellitsäuretetran-eicosylester, Pyromellitsäuretetracyclohexylester.

Anhydride der Phthalsäure, Trimellitsäure, Hemimellitsäure und Pyromellitsäure

Selbstverständlich können auch Gemische aus zwei oder mehr dieser Verbindungen eingesetzt werden.

Darüberhinaus betrifft die vorliegende Erfindung auch die Verwendung von Cyclohexanpolycarbonsäureestern, insbesondere der mit dem erfindungsgemäßen Verfahren erhaltenen Cyclohexanpolycarbonsäureester als Weichmacher in Kunststoffen, wobei hier allgemein Diester und Triester mit Alkylgruppen

mit 3 bis 18 Kohlenstoffatomen bevorzugt und die oben genannten, individuell aufgeführten Ester mit 3 bis 18 Kohlenstoffatomen insbesondere bevorzugt sind.

Im folgenden soll nunmehr das erfindungsgemäße Verfahren anhand einiger Ausführungsbeispiele näher erläutert werden.

BEISPIELE

10

15

20

Herstellungsbeispiel

Ein meso-/makroporöser Aluminiumoxidträger in Form von 4 mm-Extrudaten, der eine BET-Oberfläche von 238 m²/g und ein Porenvolumen von 0,45 ml/g besaß, wurde mit einer wäßrigen Ruthenium-(III)-nitrat-Lösung, die eine Konzentration von 0,8 Gew.-% aufwies, getränkt. 0,15 ml/g (ungefähr 33% des Gesamtvolumens) der Poren des Trägers besaßen einen Durchmesser im Bereich von 50 nm bis 10.000 nm und 0,30 ml/g (ungefähr 67% des Gesamt Porenvolumens) der Poren des Trägers wiesen einen Porendurchmesser im Bereich von 2 bis 50 nm auf. Das während des Tränkens vom Träger aufgenommene Lösungsvolumen entsprach dabei in etwa dem Porenvolumen des verwendeten Trägers.

Anschließend wurde der mit der Ruthenium-(III)-nitrat-Lösung getränkte
Träger bei 120 °C getrocknet und bei 200 °C im Wasserstrom aktiviert (reduziert). Der so hergestellte Katalysator enthielt 0,05 Gew.-% Ruthenium, bezogen auf das Gewicht des Katalysators.

Beispiel 1

5

10

15

25

4

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators gemäß Herstellungsbeispiel in einem Katalysator-Korbeinsatz vorgelegt und mit 197 g (0,5 mol) Diisooctylphthalat versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 80 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (4 h). Der Reaktor wurde anschließend entspannt. Der Umsatz des Diisooctylphthalats betrug 100%. Die Ausbeute an Diisooctylphthalat lag bei 99,7%, bezogen auf die Gesamtmenge des eingesetzten Diisooctylphthalats.

Beispiel 2

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 194 g (0,46 mol) Diisononylphthalat versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 100 bar und einer Temperatur von 80 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (10 h). Anschließend wurde der Reaktor entspannt. Der Umsatz an Diisononylphthalat betrug 100%. Die Ausbeute an Diisononylhexahydrophthalat lag bei 99,5%, bezogen auf die Gesamtmenge des eingesetzten Diisononylphthalats.

Beispiel 3

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators gemäß

Herstellungsbeispiel in einem Katalysator-Korbeinsatz vorgelegt und mit 195

g (2,3 mol) Diisododecylphthalat versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 80 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde (4 h). Der Reaktor wurde anschließend entspannt. Der Umsatz an Diisododecylphthalat betrug 100%. Die Ausbeute an Diisododecylphthalat lag bei 99,5%, bezogen auf die eingesetzte Menge an Diisododecylphthalat.

10 Beispiel 4

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 38,4 g (0,2 mol) Isophthalsäuredimethylester, gelöst in 100 g THF, versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 80 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde, und der Reaktor anschließend entspannt. Der Umsatz des Isophthalsäuredimethylesters betrug 95,3%. Die Ausbeute an Hexahydro-Isophthalsäuredimethylester lag bei 95,3%.

Beispiel 5

20

25

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 25,2 g (0,1 mol) Trimesinsäuretrimethylester, gelöst in 100 g THF, versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 120 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde, und der Reaktor anschließend ent-

- 25 -

Q.Z. 0050/49194

spannt. Der Umsatz des Trimesinsäuretrimethylesters betrug 97%. Die Ausbeute an Hexahydro-Trimesinsäuretrimethylester lag bei 93%.

5 Beispiel 6

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 25,2 g (0,1 mol) Trimellitsäuretrimethylester, gelöst in 100 g THF, versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 120 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde, und der Reaktor anschließend entspannt. Der Umsatz des Trimellitsäuretrimethylesters betrug 35%. Die Ausbeute an Hexahydro-Trimellitsäuretrimethylester lag bei 33%.

15

20

25

10

Beispiel 7

In einem 300 ml-Druckreaktor wurden 10 g des Ru-Katalysators in einem Katalysator-Korbeinsatz vorgelegt und mit 10,0 g (0,03 mol) Pyromellitsäuretetramethylester, gelöst in 100 g THF, versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 200 bar und einer Temperatur von 80 °C durchgeführt. Es wurde solange hydriert, bis kein Wasserstoff mehr aufgenommen wurde, und der Reaktor anschließend entspannt. Der Umsatz des Pyromellitsäuretetramethylesters betrug 45%. Die Ausbeute an Hexahydro-Pyromellitsäuretetramethylester lag bei 44%.

- 1 -

BASF Aktiengesellschaft

16. Juli 1998 NAE19980225 IB/Ri/At/bt

Patentansprüche

10

15

20

25

30

5

1. Verfahren zur Hydrierung

einer Benzolpolycarbonsäure oder eines Derivats davon oder eines Gemischs aus zwei oder mehr davon durch Inkontaktbringen der Benzolpolycarbonsäure oder des Derivats davon oder des Gemischs aus zwei oder mehr davon mit einem Wasserstoff enthaltenden Gas in Gegenwart eines Katalysators, der als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, dadurch gekennzeichnet, daß der Träger Makroporen aufweist,

mit der Maßgabe, daß,

sofern Terephthalsäuredimethylester hydriert wird, die Hydrierung mit einem Katalysator, der als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII. oder VIII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 50 nm und eine BET-Oberfläche von höchstens 30 m²/g aufweist und die Menge des Aktivmetalls 0,01 bis 30 Gew.- %, bezogen auf das Gesamtgewicht des Katalysator, beträgt, wobei das Verhältnis der Oberflächen des Aktivmetalls und des Katalysatorträgers kleiner 0,05 ist,

Q.Z. 0050/49194

und/oder

۳.

J

5

10

15

20

25

30

eines Katalysators, der als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII. oder VIII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei 10 bis 50% des Porenvolumens des Trägers von Makroporen mit einem Porendurchmesser im Bereich von 50 nm bis 10.000 nm und 50 bis 90% des Porenvolumens des Trägers von Mesoporen mit einem Porendurchmesser im Bereich von 2 bis 50 nm gebildet werden, wobei sich die Summe der Anteile der Porenvolumina zu 100% addiert, ausgeschlossen ist.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 50 nm und eine BET-Oberfläche von höchstens 30 m²/g aufweist und die Menge des Aktivmetalls 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysator, beträgt.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei 10 bis 50% des Porenvolumens des Trägers von Makroporen mit einem Porendurchmesser im Bereich von 50 nm bis 10.000 nm und 50 bis 90% des Porenvolumens des Trägers von Mesoporen mit einem Porendurchmesser im Bereich

von 2 bis 50 nm gebildet werden, wobei sich die Summe der Anteile Porenvolumina zu 100% addiert.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems alleine oder zusammen mit mindestens einem Metall der I. oder VII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 0,1 μm, und eine BET-Oberfläche von höchstens 15 m²/g aufweist.

5

10

15

20

- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Benzolpolycarbonsäure oder das Derivat davon ausgewählt wird aus der Gruppe bestehend aus Mono- und Dialkylestern der Phthalsäure, Terephthalsäure und Isophthalsäure, Mono-, Di- und Trialkylestern der Trimellitsäure, der Trimesinsäure und Hemimellitsäure, Mono-, Di-, Tri- und Tetraalkylestern der Pyrromellitsäure, wobei die Alkylgruppen linear oder verzweigt sein können und jeweils 3 bis 18 Kohlenstoffatome aufweisen, Anhydriden der Phthalsäure, Trimellitsäure und Hemimellitsäure, Pyrromellitsäuredianhydrid und Gemischen aus zwei oder mehr davon.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekenn zeichnet, daß der Träger Aktivkohle, Siliciumcarbid, Aluminiumoxid,
 Siliciumdioxid, Titandioxid, Zirkoniumdioxid, Magnesiumoxid, Zinkoxid
 oder ein Gemisch aus zwei oder mehr davon enthält.

- 7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Hydrierung in Gegenwart eines Lösungs- oder Verdünnungsmittels durchgeführt wird.
- 8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Hydrierung kontinuierlich durchgeführt wird.
 - 9. Verwendung eines Cyclohexandicarbonsäureesters oder eines Cyclohexantricarbonsäureesters oder eines Gemisches aus zwei oder mehr davon als Weichmacher in Kunststoffen.

10

BASF Aktiengesellschaft

16. Juli 1998 NAE19980225 IB/Ri/At/bt

Zusammenfassung

8

5

Die Erfindung betrifft ein Verfahren zur Hydrierung einer Benzolpolycarbonsäure oder eines Derivats davon oder eines Gemischs aus zwei oder mehr
davon durch Inkontaktbringen der Benzolpolycarbonsäure oder des Derivats
davon oder des Gemischs aus zwei oder mehr davon mit einem Wasserstoff
enthaltenden Gas in Gegenwart eines Katalysators, der als Aktivmetall
mindestens ein Metall der VIII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, wobei der Träger Makroporen aufweist,
mit der Maßgabe, daß,

sofern Terephthalsäuredimethylester hydriert wird, die Hydrierung mit einem Katalysator, der als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII. oder VIII. Nebengruppe des Periodensystems, aufgebracht auf einem Träger, umfaßt, wobei der Träger einen mittleren Porendurchmesser von mindestens 50 nm und eine BET-Oberfläche von höchstens 30 m²/g aufweist und die Menge des Aktivmetalls 0,01 bis 30 Gew.- %, bezogen auf das Gesamtgewicht des Katalysator, beträgt, wobei das Verhältnis der Oberflächen des Aktivmetalls und des Katalysatorträgers kleiner 0,05 ist,

und/oder

eines Katalysators, der als Aktivmetall Ruthenium alleine oder zusammen mit mindestens einem Metall der I., VII. oder VIII. Nebengruppe des Periodensystems in einer Menge von 0,01 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, aufgebracht auf einem Träger, umfaßt, wobei 10

- 2 -

bis 50% des Porenvolumens des Trägers von Makroporen mit einem Porendurchmesser im Bereich von 50 nm bis 10.000 nm und 50 bis 90% des Porenvolumens des Trägers von Mesoporen mit einem Porendurchmesser im Bereich von 2 bis 50 nm gebildet werden, wobei sich die Summe der Anteile der Porenvolumina zu 100% addiert, ausgeschlossen ist.

