- 1. Mit einem Massstab wird eine Strecke von 15.4 cm mit einer Genauigkeit von 1 mm abgemessen. Wie gross ist der relative Fehler der Messung?
- 2. Die Masse eines Elektrons soll mit einer Genauigkeit von 2‰ bestimmt werden. Wie gross darf der absolute Fehler höchstens sein?
- 3. Eine Grösse a wird mit einer Genauigkeit von 1% gemessen. Wie gross sind die relativen Fehler der Grössen  $a^2$  und  $\sqrt{a}$ ?
- 4. Berechnen Sie die Dichte eines Würfels der Kantenlänge  $(3.20\pm0.10)$  cm, dessen Masse  $(88.21\pm0.35)$  g beträgt. Um welches Material handelt es sich?
- 5. Ein Wägelchen legt in 1.08 s eine Strecke von 3.29 m zurück. Die Zeitangaben sind auf 0.03 s genau, die Positionsangaben auf 4 cm. Berechnen Sie die Geschwindigkeit des Wägelchens.
- 6. Eine Kugel hat einen Radius von  $(5.34 \pm 0.12)$  cm. Wie gross ist das Volumen der Kugel?
- 7. Ein kugelähnliches Objekt hat ein Volumen von  $(783.0 \pm 1.8)\,\mathrm{cm}^3$ . Wie gross ist der Radius einer volumengleichen Kugel?
- 8. Bestimmen Sie durch Ausprobieren den Fehler von  $\cos(\omega \cdot t)$  nach  $(4.32 \pm 0.02)$  s, wenn die Winkelgeschwindigkeit  $\omega = (7.18 \pm 0.01)$  s<sup>-1</sup> beträgt.
- 9. \* Bei einer Messung des Luftwiderstands bestimmen Sie für verschiedene Geschwindigkeiten die Widerstandskraft. Der Fehler bei der Geschwindigkeitsmessung beträgt 0.04 m/s, bei der Kraftmessung 1.0 mN. Erstellen Sie anhand der Tabelle ein Diagramm und entscheiden Sie, ob der Luftwiderstand proportional zum Quadrat der Geschwindigkeit ist.

| v  (m/s)             | 1   | 2    | 2.5  | 3    | 3.5  |
|----------------------|-----|------|------|------|------|
| $F_L  (\mathrm{mN})$ | 8.0 | 33.9 | 48.7 | 72.3 | 99.8 |

Hinweis: Alle Resultate müssen in korrekter Form mit absolutem Fehler angegeben werden!

## Lösung

**1.** 0.7% **2.**  $1.9 \cdot 10^{-33}$  kg **3.** 2%; 0.5% **4.**  $(2.7 \pm 0.3)$  g/cm<sup>3</sup> **5.**  $(3.0 \pm 0.2)$  m/s **6.**  $(638 \pm 43)$  cm<sup>3</sup> **7.**  $(5.718 \pm 0.005)$  cm **8.**  $0.92 \pm 0.09$ 

## Musterlösung

- 1. Der relative Fehler beträgt:  $r_s = \frac{\Delta s}{s} = \frac{0.1 \text{ m}}{15.4 \text{ cm}} = 0.064 = 0.64\% \approx 0.7\%$
- 2. Der absolute Fehler beträgt:  $\Delta m = r_m \cdot m = 0.002 \cdot 9.109382 \cdot 10^{-31} \,\text{kg} = 1.9 \cdot 10^{-33} \,\text{kg}$ .
- 3. Der relative Fehler auf a ist  $r_a = 1\% = 0.01$ .

Mit Fehlerfortplanzung: Der relative Fehler der Grössen  $a^2$  beträgt:  $r_a^2 = \frac{\Delta a^2}{a^2} = 2 \cdot r_a = \underline{2\%}$ . (relativer Fehler mit Potenz multiplizieren).

Mit Intervallarithmetik:  $A=a^2=a\cdot a$  und  $A_{max}=a_{max}\cdot a_{max}=(a+\Delta a)\cdot (a+\Delta a)=(a+r_a\cdot a)\cdot (a+r_a\cdot a)=a^2\cdot (1+r_a)^2=a^2\cdot (1.01)^2=a^2\cdot 1.0201$ . Der absolute Fehler beträgt:  $\Delta A=0.0201\cdot a^2$ . Der relative Fehler beträgt dann:  $r_a^2=\frac{\Delta A}{A}=\frac{0.0201\cdot a^2}{a^2}=0.0201\approx 2\%$ 

Der relative Fehler der Grössen  $\sqrt{a}=a^{0.5}$  beträgt:  $r_{a^{0.5}}=\frac{\Delta a^{0.5}}{a^{0.5}}=0.5 \cdot r_a=\underline{0.5\%}$ . (Potenz multiplizieren)

4. Gegeben sind die Kantenlänge  $a=(3.20\pm0.10)$  cm und Masse des Würfels  $m=(88.21\pm0.35)$  g.

Die Dichte beträgt:  $\rho = \frac{m}{V} = \frac{m}{a^3} = \frac{88.21 \,\mathrm{g}}{(3.20 \,\mathrm{cm})^3} = 2.69196 \,\mathrm{g/cm^3} = 2.69 \,\mathrm{g/cm^3}.$ 

Mit Intervallarithmetik:  $\rho_{max} = \frac{m_{max}}{V_{min}} = \frac{m + \Delta m}{(a - \Delta a)^3} = \frac{88.56 \,\mathrm{g}}{(3.10 \,\mathrm{cm})^3} = 2.97271 \,\mathrm{g/cm}^3$ . Die Abweichung entspricht den absoluten Fehler:  $\Delta \rho = \rho_{max} - \rho = 0.28075 \,\mathrm{g/cm}^3 \approx 0.3 \,\mathrm{g/cm}^3$  (immer aufrunden).

Die Dichte beträgt dann:  $\rho = (2.7 \pm 0.3) \,\mathrm{g/cm^3}$ . Es ist wahrscheinlich Aluminium (siehe FoTa).

5. Die Strecke beträgt:  $s=(3.29\pm0.04)\,\mathrm{m}$  und die Zeitdauer beträgt:  $t=(1.08\pm0.03)\,\mathrm{s}$ .

Die Geschwindigkeit des Wägelchens ist  $v = \frac{s}{t} = \frac{3.29 \,\mathrm{m}}{1.08 \,\mathrm{s}} = 3.0463 \,\mathrm{m/s}.$ 

Mit Intervallarithmetik:  $v_{max} = \frac{s_{max}}{t_{min}} = \frac{s + \Delta s}{t - \Delta t} = \frac{(3.29 + 0.04) \text{ m}}{(1.08 - 0.03) \text{ s}} = 3.1714 \text{ m/s}$ . Die Abweichung entspricht den absoluten Fehler:  $\Delta v = v_{max} - v = 0.125 \text{ m/s} \approx 0.13 \text{ m/s}$  (immer aufrunden).

Die Geschwindigkeit dann:  $v = (3.0 \pm 0.2) \,\mathrm{g/cm^3}$ .

6. Gegeben ist der Kugelradius von  $r=(5.34\pm0.12)$  cm. Gesucht ist das Volumen der Kugel.  $V=\frac{4}{3}\pi\cdot r^3=637.84\,\mathrm{cm}^3=638\,\mathrm{cm}^3.$ 

Mit Fehlerfortplanzung gilt:  $r_V = \frac{\Delta V}{V} = 3 \cdot \frac{\Delta r}{r}$ . Aufgelöst nach  $\Delta V$  gibt:  $\Delta V = 3 \cdot \frac{\Delta r}{r} \cdot V = 3 \cdot \frac{\Delta r}{r} \cdot \frac{4}{3}\pi \cdot r^3 = 4\pi \cdot r^2 \cdot \Delta r = 43.0 \,\mathrm{cm}^3$ .

Das Volumen beträgt dann:  $V = (638 \pm 43) \,\mathrm{cm}^3$ .

7. Aus dem Volumen  $V=(783.0\pm1.8)\,\mathrm{cm^3}$  kann man den Radius berechnen:  $r=\sqrt[3]{\frac{3\cdot V}{4\cdot\pi}}=\sqrt[3]{\frac{3\cdot783.0\,\mathrm{cm^3}}{4\cdot\pi}}=5.7177\,\mathrm{cm}$ 

Der relative Fehler beträgt:  $r_r = \frac{\Delta r}{r} = \frac{1}{3} \cdot \frac{\Delta V}{V}$ . Nach  $\Delta r$  umgeformt gibt:  $\Delta r = \frac{1}{3} \cdot \frac{\Delta V}{V} \cdot r = \frac{1}{3} \cdot \frac{1.8 \, \mathrm{cm}^3}{783.0 \, \mathrm{cm}^3} \cdot 5.7177 \, \mathrm{cm} = 0.00438 \, \mathrm{cm} = 0.005 \, \mathrm{cm}$ . (Fehler immer aufrunden auf höchstens 2 signifikante Stellen).

Der Radius beträgt:  $r = (5.718 \pm 0.005) \text{ cm}$ .

8. Wir definieren die Funktion  $f(t,\omega) = \cos(\omega \cdot t)$  Wir berechnen die Funktion bei  $t_0$  und  $\omega_0$ :

$$f_0 = f(t = t_0, \omega = \omega_0) = \cos(\omega_0 \cdot t_0) = 0.9217.$$

Da die Funktion Cosinus nicht monoton ist, muss man alle Kombinationen von t und  $\omega$  betrachten, um die  $f_{max}$  und  $f_{min}$  zu finden.

$$f_1 = f(t_{max}, \omega_{max}) = \cos(7.19 \cdot 4.34) = 0.97775 = f_{max}$$
 (1)

$$f_2 = f(t_{min}, \omega_{min}) = \cos(7.17 \cdot 4.30) = 0.83375 = f_{min}$$
 (2)

$$f_3 = f(t_{max}, \omega_{min}) = \cos(7.19 \cdot 4.30) = 0.878096$$
 (3)

$$f_4 = f(t_{min}, \omega_{max}) = \cos(7.17 \cdot 4.34) = 0.95589$$
 (4)

Die grösste Abweichung von  $f_0$  ist  $\Delta f = f_0 - f_{min} = 0.08795 \approx 0.09$  (Fehler immer aufrunden auf höchstens 2 signifikante Stellen). Es folgt:  $f = 0.92 \pm 0.09$ .

9. Die Messpunkte weichen nur geringfügig von der Geraden ab und liegen innerhalb der Fehlerbalken. Der Luftwiderstand ist also proportional zum Quadrat der Geschwindigkeit.

Für die Fehlerrechnung von  $v^2$  gilt:  $\frac{\Delta(v^2)}{v^2} = 2 \cdot \frac{\Delta v}{v}$ . Es folgt:  $\Delta(v^2) = 2 \cdot \Delta v \cdot v$ . Die berechnete Kraft beträgt:  $F = m \cdot v^2$ , mit m die Steigung der Anpassungskurve (hier  $m = 8.0844\,\mathrm{mN}\cdot\mathrm{s}^2/\mathrm{m}^2$ ).

## **Aufgabe 9 Fehlerrechnung**

| v (m/s) | F (mN) | v^2 (m^2/s^2) | ΔF (mN) | ∆v(m/s) | Δv^2(m^2/s^2) | F_th (mN) |
|---------|--------|---------------|---------|---------|---------------|-----------|
|         |        |               |         |         |               |           |
| 1       | 8.0    | 1             | 1.0     | 0.04    | 0.08          | 8.0844    |
| 2       | 33.9   | 4             | 1.0     | 0.04    | 0.16          | 32.3376   |
| 2.5     | 48.7   | 6.25          | 1.0     | 0.04    | 0.2           | 50.5275   |
| 3       | 72.3   | 9             | 1.0     | 0.04    | 0.24          | 72.7596   |
| 3.5     | 99.8   | 12.25         | 1.0     | 0.04    | 0.28          | 99.0339   |

