Análise de Algoritmos - T1

Renato Rodrigues Vandré Leal

Universidade Federal de Uberlândia

17/09/2018

(UFU) ALG - T1 17/09/2018 1 / 9

Multiplicação de N bits

O problema

	1100
	$\times 1101$
12	1100
\times 13	0000
36	1100
12	1100
156	10011100
(a)	(b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.

(UFU) ALG - T1 17/09/2018 2 / 9

A derivação formal desta ideia se dá da seguinte maneira:

$$XY = (X1 \ 10^{n/2} + X0) \ (Y1 \ 10^{n/2} + Y0)$$

 $XY = X1Y1 \ 10^n + X1Y0 \ 10^{n/2} + X0Y1 \ 10^{n/2} + X0Y0$
 $XY = X1Y1 \ 10^n + (X1Y0 + X0Y1) \ 10^{n/2} + X0Y0$

Divide and Conquer

```
def divideConquer(x, y, verbose=False):
2
         x = str(x)
 3
         v = str(v)
         if len(x) == 1 and len(y) == 1:
             return int(x) * int(y)
 5
 6
7
         if len(x) < len(v):
             x = zeroPad(x, len(y) - len(x))
8
         elif len(v) < len(x):
10
             v = zeroPad(v, len(x) - len(v))
                                                                           \Theta(n)
11
12
         n = len(x)
13
         m = int(math.ceil(float(n) / 2))
14
         X1 = int(x[:m])
15
         X0 = int(x[m:])
16
         Y1 = int(v[:m])
17
         Y0 = int(y[m:])
18
19
         X0Y0 = divideConquer(X0, Y0)
                                           4 T([n/2])
         X0Y1 = divideConquer(X0, Y1)
20
         X1Y0 = divideConquer(X1, Y0)
21
         X1Y1 = divideConquer(X1, Y1)
22
23
24
         BZeroPad = n - m
         AZeroPad = BZeroPad * 2
25
26
         A = int(zeroPad(str(X1Y1), AZeroPad, False))
27
         B = int(zeroPad(str(X1Y0 + X0Y1), BZeroPad, False))
28
         C = X0Y0
29
                                         \Theta(n)
         return A + B + C
30
```

Divide and Conquer: Análise

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 4T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \end{cases}$$

(UFU) ALG - T1 17/09/2018 5 / 9

```
def karatsuba(x, y, verbose=False):
 2
         x = str(x)
 3
         v = str(v)
         if len(x) == 1 and len(y) == 1:
 4
             return int(x) * int(y)
 6
 7
         if len(x) < len(y):
 8
             x = zeroPad(x, len(y) - len(x))
 9
         elif len(v) < len(x):
                                                                                \Theta(n)
10
             y = zeroPad(y, len(x) - len(y))
11
12
         n = len(x)
         m = int(math.ceil(float(n) / 2))
13
14
         X1 = int(x[:m])
         X0 = int(x[m:])
15
16
         Y1 = int(y[:m])
17
         Y0 = int(y[m:])
18
                                                  3 T([n/2])
19
         X1Y1 = karatsuba(X1, Y1)
         X0Y0 = karatsuba(X0, Y0)
20
         P = karatsuba(X1 + X0, Y1 + Y0)
21
22
23
         BZeroPad = n - m
24
         AZeroPad = BZeroPad * 2
25
         A = int(zeroPad(str(X1Y1), AZeroPad, False))
26
         B = int(zeroPad(str(P - X1Y1 - X0Y0), BZeroPad, False))
27
         C = X0Y0
28
                                       } Θ(n)
29
         return A + B + C
```

6 / 9

Karatsuba: Análise

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 3T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \end{cases}$$

$$\implies T(n) = \Theta(n^{\log_2 3}) = O(n^{1.585})$$

(UFU) ALG - T1 17/09/2018 7 / 9

História da complexidade assintótica do problema

year	algorithm	bit operations
12xx	grade school	$O(n^2)$
1962	Karatsuba-Ofman	$O(n^{1.585})$
1963	Toom-3, Toom-4	$O(n^{1.465})$, $O(n^{1.404})$
1966	Toom-Cook	$O(n^{1+\varepsilon})$
1971	Schönhage-Strassen	$O(n\log n \cdot \log\log n)$
2007	Fürer	$n \log n 2^{O(\log^* n)}$
2018	Harvey-van der Hoeven	$O(n\log n\cdot 2^{2\lg^* n})$
	333	O(n)

8 / 9

Fonte

Algorithm Design - Jon Kleinberg, Eva Tardos - Copyright © 2005 Pearson-Addison Wesley

Divide-and-conquer multiplication - Carl Burch - disponível em: http://www.cburch.com/csbsju/cs/160/notes/31/1.html

(UFU) ALG - T1 17/09/2018 9 / 9