CK0033 - INTRODUÇÃO A COMPUTAÇÃO

Universidade Federal do Ceará Daniel Magalhães Nunes, 376163 Francilene da Silva Sales, 485249 2020.2

Trabalho 4 - LaTex

$$H_0: \mu = \mu_0$$

 $H_1: \mu \pm \mu_0$

Se a variância σ^2 for conhecida, a estatística de teste será a Eq. 8.10:

$$Z_0 = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

Quando σ^2 for desconhecida, um procedimento lógico será trocar σ na Eq. 9.10 pelo desvio-padrão, S, da amostra. A estatística de teste é agora

$$T_0 = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \tag{8.39}$$

Uma questão lógica é qual o efeito de trocar σ por S na distribuição da estatística T_0 ? Se n for grande, a resposta a essa questão é "muito pouco" e podemos usar o procedimento de teste baseado na distribuição normal da seção 8.2. Entretanto, n é geralmente pequeno na maioria dos problemas de engenharia e nessa situação uma distribuição diferente tem de ser empregada.

Definição

Faça X_1, X_2, \dots, X_n ser uma amostra aleatória para uma distribuição normal, com média μ e variância σ^2 desconhecida. A grandeza

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$

tem uma distribuição t, com n-1 graus de liberdade.

A função densidade da probabilidade t é

$$f(x) = \frac{\Gamma[(k+1)/2]}{\sqrt{\pi k} \Gamma(k/2)} \cdot \frac{1}{[(x^2/k)+1]^{(k+1)/2}} - \infty < x < \infty$$
 (8.40)

sendo k o número de graus de liberdade. A média e a variância da distribuição t são mostradas na Figura 1.

Figura 1: Funções densidade de probabilidade de várias distribuições t.

Agora, pode-se ver, de forma direta, que a distribuição da estatística de teste na Eq.8.39 é t, com n-1 graus de liberdade, se a hipótese nula $H_0: \mu = \mu_0$ for verdadeira. Para testar $H_0: \mu = \mu_0$, o valor da estatística de teste t_0 na Eq.8.39 é calculado e H_0 é rejeitada se

$$t_0 > t_{\alpha/2, n-1}$$
 (8.41a)

ou

$$t_0 < -t_{\alpha/2, n-1} \tag{8.41b}$$

em que $t_0 > t_{\alpha/2,n-1}$ e $t_0 < -t_{\alpha/2,n-1}$ são pontos $100\alpha/2\%$ superior e inferior da distribuição t, com n-1 graus de liberdade, definidos previamente.

Para a hipótese alternativa unilateral

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0$$
 (8.42)

Calculamos a estatística de teste t_0 , a partir da Eq. 8.9, e rejeitamos

 $t_{1-\alpha,k} = -t_{\alpha,k}$

$$t_0 > t_{\alpha, n-1} \tag{8.43}$$

Para a outra hipótese alternativa unilateral

$$H_0: \mu = \mu_0$$

$$H_1: \mu < \mu_0 \tag{8.44}$$

 $t_{\alpha, k}$

Figura 2: pontos percentuais da distribuições t.

rejeitamos H_0 se

$$t_0 < -t_{\alpha, n-1} \tag{8.45}$$