

Универзитет у Београду, Електротехнички факултет, Катедра за сигнале и системе

Предмет: Роботика и аутоматизација (13E053PA) други домаћи задатка

Пројекти задатак (15п.) Робот се састоји од два ротациона зглоба и два сегмента једнаких дужина I и маса m. Потребно је реализовати кретање робота између 3 тачке у простору (А-В-С). Између тачака A і B потребно је обезбедити кретање трапезним профилом, док је између тачака B и C потребно реализовати кретање интерполацијом полинома петог степена. Претпоставити да се у почетном тренутку робот налазио у фази мировања и да је за позитивни референтни смер кретања усвојен позитиван математички смер кретања. Управљање реализовати у одговарајућиј форми у завосности од групе као у табели у наставку. Реализовати функције које израчунавају кинематику и динамику робота, планирање трајекторије као и нумеричку интеграцију описаног роботског система током времена T који користи моменте као управљачке величине. Током кретања робот у својој хватаљци носи терет масе $m_t = 0.5$ kg. На завршни уређај робота од тренутка 0.9Т до тренутка T делује сила чији је интензитет $F = \begin{bmatrix} -2 \\ -4 \end{bmatrix}$ N. На основу датих ограничења одредити минимално укупно време T потребно за реализацију целокупног кретања. Кретање оба зглоба треба да почне и да се заврши у истом тренутку.

	Група 1	Група 2	Група 3	Група 4
Закон управљања	Централизовано управљање методом инверзије динамике + ПД регулатор (feedback)	Децентрализовано управљање зглобовима ПИД регулаторима	Централизовано управљање методом прорачунатих момената + ПД регулатор (feedback)	Гравитациона компензација + ПД регулатор (feedback)

Слика 1 Референтни смерови кретања робота

Параметри за симулацију:

- **О** дужине сегмената l = 0.5m,
- **O** mace cermenata m=2 kg,
- претпоставити са су сегменти робота хомогени,
- **О** максимална брзина првог зглоба $\dot{q}_{1_{max}}=1.5~\frac{{
 m rad}}{{
 m s}}$, док је максимално убрзање првог зглоба $\ddot{q}_{1_{max}}=2~\frac{{
 m rad}}{{
 m s}^2}$,
- **О** максимална брзина другог зглоба $\dot{q}_{2_{max}}=2~\frac{\mathrm{rad}}{\mathrm{s}}$, док је максимално убрзање другог зглоба $\ddot{q}_{1_{max}}=4~\frac{\mathrm{rad}}{\mathrm{s}^2}$,
- **О** иницијална позиција хватаљке је А: $(q_{A1},q_{A2})=(0,0)$ степени; жељена позиција хватаљке В је $(q_{B1},q_{B2})=(45,70)$ степени; жељена позиција тачке С је $(X_{C},Z_{C})=(0.25,0.933)$ m,
- О Закон управљања који је потребно применити дат је у табели испод,
- **О** Извршити упоредну анализу у случају када су параметри динамике који се користе за дефинисање управљања потпуно познати (поклапају се са моделом робота) и када постоји одређено одступање од стварних параметра динамике: $\widehat{H} = 0.8H$, $\widehat{C} = 0.8C$ и $\widehat{G} = 0.8G$.

Извештај пројектног задатка треба да садржи *Matlab* код задатка и писани извештај у коме треба приказати следеће графике: референтне и остварене вредности унутрашњих координата (позиције, брзине и убрзања), референтне и остварене вредности спољашњих координата (позиције и брзине), погонске моменте у зглобовима робота, вредности сигнала управљања.