Project Planning Phase

Date	31october2022
Team ID	PNT2022TMID33556
Project Name	Personal Assistance for Senior Who are Self Reliant
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Resources Initialization	US-1	Create the IBM Cloud services which are being used in this project.	6	High	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S
Sprint-1	Create and initialize accounts in various public APIs like OpenWeatherMap API.	US-2	Configure the IBM Cloud services which are being used in completing this project.	4	Medium	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S
Sprint-1	Local Server/Software Run	US-3	IBM Watson IoT platform acts as the mediator to connect the web application to IoT devices, so create the IBM Watson IoT platform.	5	Medium	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S

Sprint-1	Write a Python program that outputs results given the inputs like weather and location.	US-4	In order to connect the IoT device to the IBM cloud, create a device in the IBM Watson IoT platform and get the device credentials.	5	High	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S
Sprint-2	Push the server/software to cloud	US-1	Configure the connection security and create API keys that are used in the Node-RED service for accessing the IBM IoT Platform.	10	High	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S
Sprint-2	Push the code from Sprint 1 to cloud so it can be accessed from anywhere	US-2	Create a Node-RED service.	10	High	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S
Sprint-3	Hardware initialization	US-1	Develop a python script to publish random sensor data such as temperature, humidity, rain to the IBM IoT platform	7	High	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S

Sprint-3	Integrate the hardware to be able to access the cloud functions and	US-2	After developing python code, commands are received just print the statements which represent the control of the devices.	5	Medium	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S
0.000	provide inputs to the same.	110.0	D. Li'al Data to The IDM Obs. I		I.P. I	
Sprint-3		US-3	Publish Data to The IBM Cloud	8	High	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S
Sprint-4	UI/UX Optimization & Debugging	US-1	Create Web UI in Node- Red	10	High	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S
Sprint-4		US-2	Configure the Node-RED flow to receive data from the IBM IoT platform and also use Cloudant DB nodes to store the received sensor data in the cloudant DB	10	High	Nagenthiran M Mathivanan B Kaviyarasan P Naveenkumar S

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burndown charts can be applied to any project containing measurable progress overtime.

