

目录

精通数据科学。

ONE 加入预测损失项

上一下四分 解决线性不可分

精通数据科学。

精通数据科学

TW)损失函数与惩罚项

定义SVM的损失函数

超通数源和资。

精通数据科学 THREE Hard margin v.s. Soft margin

损失系数、模型隐藏的假设

加入预测损失项

误分类的损失项

对于线性可分,我们有如下的数学表达:

对于类别1, 令y = 1; 对于类别0, 令y = -1

$$\min \frac{1}{2} \|w\|^2$$
 限制条件 $y_i(w \cdot X_i + c) \geq 1$

对于线性不可分,适当放宽限制条件

加入预测损失项

误分类的损失项

越小越好

越小越好

$$\sum_{i} \xi_{i}$$
 此消彼长
$$\frac{1}{2} \| \mathbf{w} \|^{2}$$

$$\min_{\frac{1}{2}} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$

$$y_i(\mathbf{w} \cdot \mathbf{X}_i + c) \ge 1 - \xi_i; \ \xi_i \ge 0$$

目录

TIE 加入预测损失项 解决线性率研究 糖通数概制资。

精通数据科学

精通数据科学

TWO 损失函数与惩罚项

定义SVM的损失函数

糖通数源和灌溉

THREE Hard margin v.s. Soft margin

损失系数、模型隐藏的假设

损失函数与惩罚项

定义SVM的损失函数

$$\min_{\frac{1}{2}} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$

$$y_i(\mathbf{w} \cdot \mathbf{X}_i + c) \ge 1 - \xi_i; \ \xi_i \ge 0$$

$$\begin{cases} \xi_i \ge 1 - y_i(\mathbf{w} \cdot \mathbf{X}_i + c), & \xi_i \ge 0 \\ \xi_i \ge \max(0, 1 - y_i(\mathbf{w} \cdot \mathbf{X}_i + c)) \end{cases}$$

从编楼回的秘深度管

从绝对回的形体改造的

 $\min \left| \frac{1}{2} \parallel \mathbf{w} \parallel^2 \right| + C \sum_{i=1}^{n} \max(0, 1 - y_i(\mathbf{w} \cdot \mathbf{X}_i + c))$

精通数据和资。

无限制条件的最优化问题

损失函数与惩罚项

定义SVM的损失函数

目录

が下である。

「一大人子の別技失项
解決観撃を奇勢

糖通数概测污粉深度等别

精通数据科学

TVV 损失函数与惩罚项 定义SVM的损失函数

村通教师和学生

THREE Hard margin v.s. Soft margin

损失系数、模型隐藏的假设

Hard margin v.s. Soft margin

损失系数

Hard margin v.s. Soft margin

SVM隐藏的模型假设

Hard margin v.s. Soft margin

SVM隐藏的模型假设

精通数据科学。 从验验证到的秘证不改资

THANKSOUS

務通数据科学 从给您回归和深度管

村通教师和强。

精通数据科学。 从绝路的多处深度管

精通数据科学

精通数派科学 从给你回的秘况