YAMAHAL 5 I

YM2151

8-ch, 4-op. FM sound generator (OPM)

■概 要

Y M2151は8 ビットのバスラインをもち、マイクロプロセッサよりプログラム可能で高品質な音が得られる F M方式のサウンドジェネレータであり、本 I C とペアで使用する様に設計された専用の D / A コンバータ Y M3012を使用することにより 8 音、R、L 2 チャンネルのオーディオ信号が得られます。

その他ノイズ、ピブラート、振幅変調回路、効果音発生回路、タイマー等が内装されています。パッケージは24ピンのデュアルインラインパッケージです。

■特 徴

- ●8音まで発音可能です。但しサイン波に限れば最大32音まで発音が出来ます。
- ●ノイズの発音が出来ます。
- ●音色を時経変化させることが出来ます。
- 基本波に対し高調波を非調和にすることが出来ます。
- ●オクターブ間で非調和にすることが出来ます。
- ●音程を約1.6セントの間隔で設定することが出来ます。
- ●ビブラート、振幅変調が掛けられます。
- ●基本波に対する高調波を非常に非調和にしたり、ピブラートや振幅変調を非常に深 く掛けることにより各種の効果音の発生が可能です。

■F M方式の発音原理概略

FM方式の発音と Fig 1.1の様な基本構成により表わすことが出来ます。

Fig 1.1

■ブロック図

	FUNCTION				M	1							M	2							С	1							С	2			
l	FUNCTION		1	Иo	dul	ate	or	1			. 1	Мo	du.	late	or	2				C	arr	ier	1					С	arr	ier	2		
	SLOT No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	CH No.	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8

この Slot は、

Noise が ENABLE (NE="1") の状態で Noise

の Slot に切り換ります。

■レジスタマップ

●アドレスマップ(1); WRITE MODE

•		· // (1/	, ,,		
HEX	MSB			I	SB
0 0					
1 F					
20~27	R	L I	B	CONECT	`
28~2 F	${}$		КC	;	٦
30~37		KF		\neg	7
38~3 F	\times	PMS	\supset	AMS	3
4 0	7				\top
	$ \setminus $				
	ΙX	DT1		MUL	
5 F	/ /				
6 0					十
	\/				
	ΙX		ΤI		
7 F	$V \setminus$				
8 0	<u> </u>	<u> </u>			_
		- \/			ŀ
	K S	3 X		A R	
9 F		- I/ \I			
A 0		\ \			+
•	E	$ \setminus / $			- {
	AMS-EN	X		D 1 R	
ВF	≪	I/ X			
		/ 			+
CV		- 1\ /1			
	DT	2 X		D 2 R	
DF		/			
E 0	T	<u>, , , , , , , , , , , , , , , , , , , </u>			十
			İ		1
		DIL		RR	
FF					

●アドレスマップ(2); WRITE MODE

•	- X ()) (2) ; W	
HEX	MSB	LSB
0 0		
0 1	TEST	
0 2		
0 3		
0 4		
0 5		_
0 6		
0 7		
0 8	(SN) KON	CH No.
0 9		
0 A		
0 B		
0 C		_
0 D		
0 E		
0 F		NFRQ
1 0	C L K A 1	
1 1		CLKA 2
1 2	CLKB	
1 3		1018
1 4	C S M F RESET	IROEN LOAD B A B A
15		
16		
1 7		
1 8	LFRQ	
1 9	PMD/AM	ID
1 A		
1 B	CT	W
1 C		
1 D		
1 E		
_ 1 F		

●アドレスマップ(3); READ MODE

HEX	MSB	LSB
××	В	ist

■機能説明

●KEY CODE, KEY FRACTION

		C a	327H	z (C (32	7Hz)	-1	(C (5232Hz)		
		ļ			1				ţ		
D6~ D4	0	1	2	3	4	5	6	7			
ост	0	1	2	3	4	5	6	7			
					=				•		

D3~ D0	0	1	2	4	5	6	8	9	10	12	13	14
Mote	C =	D	D#	Е	F	F=	G	G#	A	A #	В	С

		_			 					¥
$D_7 \sim D_2$	0	1	 16	17.	 32	33	 48	49	 63	0
K F (Cent)	0		 25		 50		 75			00

PHASE MULTIPLY

$MUL = (D_2 \sim D_0)$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MULTIPLY	0.5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

ODETUNE (1) $DT1 = (D_7 \sim D_6)$ $OCT = (D_6 \sim D_4)$ $NOTE = (D_3 \sim D_2)$

		DT1=0	DT1=1	DT1=2	DT1=3	DT1=0	DT1=1	DT1=2	DT1=3
OCT	NOTE	D-CENT				D-FREC	(HB)		
Q.	Q.	0.000	0.000	5.025	10.036	0.000	0.000	0.053	0.107
0	1	0.000	0.000	4.228	8.445	0.000	0.000	0.053	0.107
, Q	2	0.000	0.000	3.559	7.110	0.000	0.000	0.053	0.107
o	3	0.000	0.000	2.993	5.980	0.000	0.000	0.053	0.107
1	0	0.000	2.515	5.025	5.025	0.000	0.053	0.107	0.107
1	1	0.000	2.115	4.228	6.338	0.000	0.053	0.107	0.160
1	2	0.000	1.778	3.555	5.330	0.000	0.053	0.107	0.160
1	3	0.000	1.496	2.990	4.483	0.000	0.053	0.107	0.160
2	0	0.000	1.258	2.515	5.025	0.000	0.053	0.107	0.213
2 2	1	0.000	1.057	3.170	4.225	0.000	0.053	0.160	0.213
2	2	0.000	0.889	2.667	3.555	0.000	0.053	0.160	0.213
2 3		0.000	0.748	2.242	3.735	0.000	0.053	0.160	0.267
3	0	0.000	1.258	2.515	3.143	0.000	0.107	0.213	0.267
3	1	0.000	1.057	2.114	3.170	0.000	0.107	0.213	0.320
3	2	0.000	0.889	1.778	2.667	0.000	0.107	0.213	0.320
3	3	0.000	0.748	1.869	2.615	0.000	0.107	0.267	0.373
4	0	0.000	0.629	1.572	2.515	0.000	0.107	0.267	0.427
4	1	0.000	0.793	1.586	2.114	0.000	0.160	0.320	0.427
4	. 2	0.000	0.667	1.334	2.001	0.000	0.160	0.320	0.480
4	3	0.000	0.561	1.308	1.859	0.000	0.160	0.373	0.533
5	0	0.000	0.629	1.258	1.729	0.000	0.213	0.427	0.587
5	1	0.000	0.529	1.057	1.585	0.000	0.213	0.427	0.640
5	2	0.000	0.445	1.001	1.445	0.000	0.213	0.480	0.693
5	3	0.000	0.467	0.935	1.308	0.000	0.267	0.533	0.747
6	0	0.000	0.393	0.865	1.258	0.000	0.267	0.587	0.853
6	1	0.000	0.397	0.793	1.123	0.000	0.320	0.640	0.907
6	2	0.000	0.334	0.723	1.056	0.000	0.320	0.693	1.013
6	3	0.000	0.327	0.654	0.935	0.000	0.373	0.747	1.067
7	0	0.000	0.315	0.629	0.865	0.000	0.427	0.853	1.173
7	1	0.000	0.264	0.562	0.865	0.000	0.427	0.907	1.173
7	2 3	0.000	0.250	0.528	0.865	0.000	0.480	1.013	1.173
7	3	0.000	0.234	0.467	0.865	0.000	0.533	1.067	1.173
		•	, ,		ı			1	

●DETUNE (2)

DT 2 = (I	D;~ D₅)	0	1	2	3
DETUNE	(cent)	0	+600	+781	+950
DETUNE	(倍)	1	+1.41	+1.57	+1.73

OSELF FEED BACK LEVEL

$F L = (D_5 \sim D_3)$	0	1	2	3	4	5	6	7
LEVEL	OFF	π 16	$\frac{\pi}{8}$	π 4	$\frac{\pi}{2}$	π	2π	4π

OPITCH MODULATION SENSITIVITY

$PMS = (D_6 \sim D_4)$	0	1	2	3	4	5	6	7
MOD. MAX (cent)	0	± 5	±10	± 20	±50	±100	±400	±700

●CONECTION=(FS)

●ATTACK, DECAY TIME

- ※Fig. 2.12で決まるキースケーリング後の RATE 6 ピットを、上位 4 ピット、下位 2 ピットに分けて表現してあります。
- ※(10%-90%)or(90%-10%)の表は、レベルが10%から90%又は、90%から10%に達する時間を示します。
- ※(96dB − 0dB)or(0dB − 96dB)の表は、レベルが0%から100%又は、100%から0%に達する時間を示します。

※注)	EG ATTACK TIME	E	G DECAY TIME ===	~== E(3 ATTACK TIME	E	DECAY TIME
RATI		RATE	MSEC (90%-10%)	RATE	mSEC (96dB-0dB)	RATE	mSEC (OdB-96dB)
15 1		15 3 15 2	1.36	15 3 15 2	0.00 0.53	15 3	6.73
$\phi H = 3.6 MHz$ 15	0.27	15 1	1:36	15 1	0.53	15 2 15 1	6.73 6.73
で計算して 15 (15 0 14 3	1.36 1.55	15 0 14 3	0.53 0.64	15 0	6.73
14 1	0.39	14 2	1.81	14 2	0.75	14 3 14 2	7.69 8.97
あります。 14 i		14 1 14 0	2.18 2.72	14 1	0.90	14 1	10.76
13 :		13 3	3.11	14 0 13 3	1.12 1.22	14 0 13 3	13.45 15.39
13 3		13 2	3.63	13 2	1.42	13 2	17.94
13 (13 1 13 0	4.35 5.44	13 0 13 1	1.71 2.13	13 1	21.53
12 :	1.25	12 3	6.22	12 3	2.13	13 0 12 3	26.91 30.75
12 : 12 :		12 2 12 1	7.25	12 2	2.60	12 2	35.68
12 (12 0	8.70 10.89	12 I 12 0	3.11 3.89	12 1	43.05 53.81
!! :		11 3	12.43	11 3	4.45	11 3	61.50
11 : 11 :		11 2	14.51 17.41	11 2	5.19	11.2	
ii (ii ö	21.76	11 1	6.23 7.79	11 1	86.10 107.63
10		10 3	24.87	10 3	B. 90	10 3	123.00
10 : 10 :		10 2 10 1	29.01 34.82	10 2 10 1	10.38	10 2	143.50
10 (0.75	10 0	43.52	10 0	12.46 15.57	10 I 10 0	172.20 215.25
9 ; 9 ;		93 92	49.74	93	17.80	9 3	245.00
9 1		91	59.03 69.63	92 91	20.76 24.92	92	297.00 344.41
9 (17.47	90	87.04	9 0	31.15	90	430. 5 1
e : 8 :		8 3 8 3	99.47 115.05	8 3	35.60	8 3	492.01
9 (27.99	9 1	139.26	8 2 8 1	41.53 49.83	9 2 8 1	574.01 698.81
9 (80	174.08	8 0	62.29	80	851.01
7 3		73 72	198.95 232.11	73 72	71.19 83.06	7.3 - 7.2	994.02
7.1	55.98	7 1	278.53	71	99.67	71	1148.02 1377.62
7 (7 0 6 3	349.16	7 0	124.59	7 0	1722.03
6		62	397.90 464.21	63 62	142.38 166.12	63 62	1958.03 2296.04
6 1		6 1	557.06	6 1	199.34	61	2755.24
6 (5)		60 53	696.32 795.79	6 0 5 3		6.0	3444.05
5 :	185.60	5 2	920.43	5 2	284.77 332.23	5 3	3936.06 4592.07
5 5 (5 1	1114.11	5 1	398.68	5 1	5510.49
4		5 0 4 3	1392.64 1591.59	5 0 4 3	498.35 569.54	.5 0 4 3	6998.11 7872.12
4 :	373.19	4 2	1856.85	4 2	664.46	4 2	9194.14
4 :		4 1 4 0	2228.22 2785.28	4 1	797.35		11029.97
. 3 :	639.76	3 3	3183.18	4 0	996.69 1139.08	4 0	13776.21 15744.24
3 :		3 2	3713.71	3 2	1328.92		18758.28
3 (3 i 3 o	4456.45 5570.56	3 O	1594.71 1993.39	3 1	22041.94
2 :	1279.51	2 3	6366.35	23	2278.16	3 0 2 3	27552.43 31499.49
2 :		2 2 2 1	7427.41 8912.90	2 2	2657.85	2 2	36736.57
2 -	2239.15		11141.12	21	3189.42 3986.77	21	44093.88 55104.85
1.1			12732.71	1 3	4556.31	13	62976.98
1 :			14854.83 17825.79	12	5315.70 6378.84	1 2	73473.14
1	4478.29	10	22282.24	iò	7973.55		88157.77 10209.71
0 :	S INFINITY S INFINITY		irfinity Infinity		INF IN ITY	0.3	In:Finity
9	INFINITY		11:F [11] [Y [RF [11] [Y		infinity Infinity	02	IRF INITY IRF INITY
0	DIMINITY	0 0	INF INITY		INFINITY	00	INF INITY

Fjg. 2.12

OKEY SCALING

- (*) キースケーリングされた後の RATE は下式の様に入力レート (R) の 2 倍に下表の値 (Rks) を加えたものであります。
- (**) AR、D1R、D2Rはレジスタに書き込んだ値を入力レート (R) としますがRRはレジスタに書き 込んだ値の 2 倍に 1 を加えた値を入力レート (R) として計算します。

RATE = $2 * R + R_{KS}$ 計算結果が63より大きな値の時は全て RATE = 63 とします。

- R:入力の各レート (**)
- RKS: KEY CODE と KS で定まる下表による値。
- ●但しここでの KEY CODE は下図の様に Note の下位 2 ピットは切りすてた KC を用います。

κc	KS 0	KS I	KS 2	KS 3
0			0	0
ĭ	ŏ	ŏ	ŏ	i
2	ŏ	ŏ	1	2
3	o	ò	1	3
0 1 2 3 4 5 6 7 8 9	00000001	1	0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9	1 2 3 4 5 6 7 8
5	0	1	2	5
6	0	1	3	6
7	0	1	3	7
8	1	2	4	8
9	1	2	4	9
10	1	2	5	10
11	1	2	5	11
12	1	3	6	12
13	1	3	6	13
14	1	3	7	14
15	1	3	7	15
16	2	4	8	16
17	2	4	8	17
18	2	4	9	18
19	2	4	9	19
20	2	5	10	20
21	2	5	10	21
22	2	5	11	22
23	2	5	11	23
24	3	6	12	24
25	3	6	12	25
26	3	٥	13	26
24 25 26 27 28 29 30	1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	000011112222333344445555666667	13	26 27 28 29
28	١٥	′	14	28
29	3	7	14	29
31	3	7 7	15	30
31	١٥	/	15	31

Fig. 2.13 1st DECAY LEVEL の各ピットと重み付け。

_			
Dη	D 6	Ds	D ₄
dB	dB	dB	dB
24	12	6	3

DIL

* D₇-D₄ が ALL "1" = 45^{bB} の 時は更に48^{dB}減衰量が加算され ます。

Fig. 2.14 TOTAL LEVEL の各ピットと重み付け

			<u> </u>	·		
D ₆	Ds	D4	D ₃	D2	Dι	Do
dB	dB	dB	dB	dB	dB	dB
48	24	12	6	3	1.5	0.75

Fig. 2.15 AMPLITUDE MODULATION SENSITIVITY

AMS	AM MOD (MAX)
0	0
1	23.90625 dB
2	47.8125 dB
3	95.625 dB

●LOW FREQ. OSC

DATA	FREQ.	DATA	FREQ.	DATA	FREO.	DATA	FREQ.
(HEX		(HEX)	(Hz)	(HEX		(HEX)	(Hz)
FF	52.9127	BF	3.3070	7F	0.2067	3F	0.0129
FE	51.2058	BE	3.2004	7E	0.2000	3E	0.0125
FD FC	49.4989 47.7921	BD BD	3.0937 2.9870	70	0.1934	20	0.0121
FB	45.0852	BB	2.8803	7C 7B	0.1867	30	0.0117
FA	44.3784	BA	2.7736	7B 7A	0.1800 0.1734	38 38	0.0113
F9	42.6715	89	2.6670	79	0.1667	39	0.0104
FB	40.9646	88	2.5603	78	0.1600	38	0.0100
F7	39.2578	97	2.4536	77	0.1534	37	0.0098
F&	37.5509	86	2.3469	76	0.1467	36	0.0092
F5	35.8441	85	2.2403	75	0.1400	35	0.0088
F4	34.1372	94	2.1336	74	0.1333	34	0.0083
F3	32.4303	93	2.0269	73	0.1267	33	0.0079
F2	30.7235	82	1.9202	72	0.1200	32	0.0075
FI	29.0166	ÐI	1.8135	71	0.1133	31	0.0071
FO	27.3098	BO	1.7069	70	0.1067	30	0.0067
EF	26.4563	AF	1.6535	6F	0.1033	2F	0.0065
EE ED	25.6029 24.7495	AE	1.6002	36	0.1000	2E	0.0063
EC	23.8960	AD AC	1.5468	6D	0.0967	20	0.0060
EB	23.0426	AB	1.4402	6C	0.0933	2C	0.0058
EA	22.1892	AA	1.3868	68 AA	0.0900	28	0.0056
	21.3358	A9	1.3335	69	0.0833	2A 29	0.0054
	20.4823	AB	1.2801	68	0.0800	29	0.0050
E7	19.6289	A7	1.2268	67	0.0767	27	0.0048
E5	18.7755	A6	1.1735	66	0.0733	26	0.0046
E5	17.9220	A5	1.1291	65	0.0700	25	0.0044
E4	17.0686	A4	1.0668	64	0.0667	24	0.0042
	16.2152	A3	1.0134	63	0.0633	23	0.0040
E2	15.3617	A2	0.9601	62	0.0500	22	0.0038
EI	14.5083	AL	0.9069	61	0.0567	21	0.0035
EO	13.6549	AO	0.8534	60	0.0533	20	0.0033
DF DE	13.2292	9F	0.8268	5F	0.0517	IF	0.0032
	12.3747	9E 9D	0.8001	5E	0.0500	ΙE	0.0031
6C	11.9480	9C	0.7488	50 50	0.0483	1D	0.0039
	11.5213	9B	0.7201	50 58	0.0450	1C 18	0.0029
	11.0946	7A	0.6934	5A	0.0433	IA	0.0028
	10.6679	99	0.6667	59	0.0417	19	0.0026
D8	10.2412	98	0.6401	58	0.0400	18	0.0025
D7	9.8144	97	0.6134	57	0.0383	17	0.0024
06	9.3877	96	0.5867	56	0.0367	16	0.0023
D5	8.9610	95	0.5601	55	0.0350	15	0.0022
D4	8.5343	94	0.5334	54	0.0333	14	0.0021
D3	8.1076	93	0.5067	53	0.0317	13	0.0020
D2	7.6809	92	0.4801	52	0.0300	12	0.0019
DI	7.2542	91	0.4534	51	0.0283	11	0.0018
DO CF	6.8274	90	0.4267	50	0.0267	10	0.0017
CE	6.6141	eF BE	0.4134	4F	0.0258	0F	0.0016
CD	6.1874		0.4000	4E	0.0250	0E	0.0016
CC	5.9740	8C	0.3734	4D 4C	0.0242	00	0.9015
CB	5.7607		0.3600	48	0.0233	OB OB	0.0015
CA	5.5473	BA	0.3467	4A	0.0217	0A	0.0014
C9	5.3339		0.3334	49	0.0208		0.0013
C8	5.1206		0.3200	48	0.0200	Ó8	0.0013
Ç7	4.9072		0.3067	47	0.0192		0.0012
Co	4.6939	86	0.2934	46	0.0183	60	0.0011
C5	4.4805		0.2800	45	0.0175		0.0011
C4	4.2672		0.2667	44	0.0167	04	0.0010
C3	4.0538		0.2534	43	0.0158	03	0.0010
C2	3.8404		0.2400	42	0.0150	02	0.0009
CI	3.6271		0.2267	41	0.0142	01	0.0009
CO	3.4137	80	0.2134	40	0.0133	00	0.0008

●Timing

■端子配置図

YM2151は、24 Lead dual Inline package で端子信号を下図に示します。

■端子機能

- D₀ D₁: Address/Data Bus (input/output/high impedance)
 内部アドレス、データのマルチプレソクス双方向性バスを構成し、外部ディバイスと内部レジスタ間で
 8 ビットの並列信号を入出力します。
- A0 : Address/Data select (input)
 A0="0"の時、D₀-D₁信号をアドレスとし、A0="1"の時D₀-D₁信号をデータとして処理します。
- ●WR: Write (input) このライト信号がある時、バス上の信号を書き込み可能な状態にします。
- ●RD: Read (input) このリード信号がある時、内部信号をバスを介して読み出し可能な状態にします。
- CS: Chip Select (input)

 このチップセレクト信号が有る時、前記のAφ、WR、RD信号が機能し、D₀-D₁のバス上のデータを
 を内部レジスタに書き込み、又 D₀-D₁のバス上に内部データを読み出すことが出来ます。
- I C: initial clear (input)

 この端子を "0" にすることにより、内部レジスタ及び回路を初期化することができます。
- i RQ: interrupt Request (output: open Drain)
 内装する2種のタイマカウンタのキャリアウトが、どちらか一方でも出れば、この信号が"0"LEVEL
 になり、CPUに対し割り込みを要求します。この後CPUには、データをリードすることにより、ど
 ちらのタイマからの割り込み要求かを判断して割り込みの処理をすることになります。
- ●CT1、CT2:Control 1:Control 2 (output) 外部のディバイス、機器をコントロールするための端子で、初期状態では"0" Level です。
- ●SO:Serial output (output)

 Left、Right の2チャンネルに割りふられたトーン信号をシリアルデータとして出力し、YM2151とペアで使用する様に設計された専用のD/AコンバータYM3012に送ります。

● S H 1 、 S H 2 : Sample and Hold

D/Aコンパータ、YM3012 に供給し、シリアルデータの取り込みと、YM3012でのアナログ変換後のサンプリングホールドに使用されます。

 $\bullet \phi_{M}$: system clock (input)

YM2151を駆動する C P Uを含む、システムのクロックφ M を入力して、内部で 1/2 の周波数に分周して使用しています。この φ M がトーン周波数の基準となっています。

D/A を駆動するための clock で、Y M2151の内部クロックと同じ周波数です。又、このφ1の LEVEL が "1"→"0" に変化する時点で、iRQ、CT 1、CT 2、TO、SH 1、SH 2、SO の各信号は変化します。

● V かい: power supply (input) 通常+5 vを供給します。

● V s s : Grand (input)

システムのグランドに接続します。

■電気的特性

1. 絶対最大定格

項目	記号	定格値	単 位
電源電圧	V_{DD}	-0.3~7.0	V
入力電圧	$V_{\rm I}$	$-0.3 \sim V_{DD} + 0.3$	v
動作温度	Тор	0~70	°C
保存温度	Tstg	-50~125	c

2. 直流特性(条件; Top=0~70℃, VDD=5.00±0.25V)

項	1	記号	条	件	最 小	標準	最 大	単位
電源電流		Idd	$V_{DD}=5.0V$				120	mA
入力電圧L	レベル	VIL	全入力端子		-0.3		0.8	V
入力電圧H	レベル	V _{IH}	全入力端子		2.0		V _{DD}	v
入力リーク	電流	Ili	* 1, fig. 4		-0.1		0.1	μА
出力リーク	電流	ILO	* 2	4 29	-10		10	μΑ
出力電圧L	レベル	Vol	IoL = 2 mA		-0.3		0.4	v
出力電圧H	レベル	Vон	$I_{OH} = 100\mu$ A	: :	2.4		V_{DD}	v
入力容量		Сф м	φ M端子		14		10	pF
/IC入力電流	元	Iic	$V_{DD}=5V$, fig. 9	5	-10		-60	μΑ

*1:Vi=0~5V, øM, /WD, /RD, A0端子に適用。

*2:D0~D7,/IRQの各端子に適用。

3. 交流特性 (条件; Top=0~70℃, VDD=5.00±0.25V, 出力容量100pF)

項目	記号	X	最 小	標準	最 大	単位
φMクロック周波数	fc	Fig. 1	3.0	3.58	4.0	MHz
On Time	ton	↑	100			ns
立ち上がり時間	tcr	1			50	ns
立ち下がり時間	tcF	<u> </u>			50	ns
A0アドレスセットアップ時間	tas	Fig. 2-a,	10			ns
A0アドレスホールド時間	tah	2-b	10			ns
/CS ライト幅	tcw	Fig. 2-a	100			ns
/WR ライトパルス幅	tww	1	100			ns
D0~D7 ライトデータセットアップ時間	tDS	↑	50			ns
D0~D7 ライトデータホールド時間	tDHW	1	10			ns
D0~D7 リードデータアクセス時間	tACC	Fig. 2-b			180	ns
D0~D7 リードデータホールド時間	tohr	↑	10		150	ns
出力立ち上がり時間 *1	tor 1	Fig. 3-a			180	ns
出力立ち上がり時間 *2	tor 2	Fig. 3-b			250	ns
出力立ち下がり時間 *1	toF1	Fig. 3-a			120	ns
出力立ち下がり時間 *2	tof 2	Fig. 3-b			250	ns

*1: φ 1 端子に適応、CL=100pF(Fig. 6)

*2:/IRQ, CT1, CT2, SO, SH1, SH2端子に適応、CL=100pF(Fig. 6)

4. タイミング図

Fig. 1

Fig. 2-a

A0 CS WR Data (D0~D7)

〈注〉tDS、tDHNは/CS、/WR のいずれか一つが High Level になった時を基準とする。

<注> taccは/CS、/RDの Low-Level になるのが遅いものを基準とする。
tdhRは/CS、/RDのいずれか一つが High Level になった時を基準とする。

■システムブロック図

●インターフェース

本ディバイスの他にマイクロコンピュータ又はマイクロプロセッサ、DAコンバータ、オーディオアンブとスピーカーを用いた基本的構成のブロックダイアグラムを上図に示します。

このとき、本ディバイスはマイクロコンピュータXはマイクロプロセッサと非同期で作動しデータの交換が可能ですので必要な発音、音程を得るために別にクロックジェネレータを設けて駆動させることが出来ます。

本ディバイスと DAC の間は 次ページに示す様に、構成することにより L、Rの 2 チャンネルの出力を取り出すことができます。

