

planetmath.org

Math for the people, by the people.

coadjoint orbit

Canonical name CoadjointOrbit
Date of creation 2013-03-22 13:59:11

Last modified on 2013-03-22 13:59:11

Owner bwebste (988) Last modified by bwebste (988)

Numerical id 5

Author bwebste (988)
Entry type Definition
Classification msc 53D05

Let G be a Lie group, and \mathfrak{g} its Lie algebra. Then G has a natural action on \mathfrak{g}^* called the coadjoint action, since it is dual to the adjoint action of G on \mathfrak{g} . The orbits of this action are submanifolds of \mathfrak{g}^* which carry a natural symplectic structure, and are in a certain sense, the minimal symplectic manifolds on which G acts. The orbit through a point $\lambda \in \mathfrak{g}^*$ is typically denoted \mathcal{O}_{λ} .

The tangent space $T_{\lambda}\mathcal{O}_{\lambda}$ is naturally idenified by the action with $\mathfrak{g}/\mathfrak{r}_{\lambda}$, where \mathfrak{r}_{λ} is the Lie algebra of the stabilizer of λ . The symplectic form on \mathcal{O}_{λ} is given by $\omega_{\lambda}(X,Y) = \lambda([X,Y])$. This is obviously anti-symmetric and non-degenerate since $\lambda([X,Y]) = 0$ for all $Y \in \mathfrak{g}$ if and only if $X \in \mathfrak{r}_{\lambda}$. This also shows that the form is well-defined.

There is a close association between coadoint orbits and the representation theory of G, with irreducible representations being realized as the space of sections of line bundles on coadjoint orbits. For example, if \mathfrak{g} is compact, coadjoint orbits are partial flag manifolds, and this follows from the Borel-Bott-Weil theorem.