10,1	Intervals, Estimating Functions,
	S-neighborhood of a . The expressions below are all equivalent
	$x \in (\alpha - \delta, \alpha + \delta)$, $\alpha - \delta < x < \alpha + \delta$, $ x - \alpha < \delta$, $x \approx \alpha$
	$f(I) = \{f(x) : x \in I\}$
	=) $f(I)$; the range of $f(x)$ over I , or the image of I under the mapping f
	Completeness Property for Functions:
	- Suppose $f(x)$ is defined on an interval I . If $f(x)$ is bounded above on I , then $\sup_{I} f(x)$ exists; if
	f(x) is bounded below, then inf $f(x)$ exists
	Estimating Functions: Inequalities and Absolute Values
	Error Function: $\operatorname{erf} X = \int_0^x e^{-\frac{t^2}{2}} dt$
10.2	Approximating Functions
	- Approximating functions over intervals which are small is often done using the first few terms of a power series
	$f(x) \approx g(x) \Rightarrow \int_a^b f(x) dx \approx \int_a^b g(x) dx$
10.3	Local Behavior
	- Studying a function in a 8-neighborhood of some point Xo is called studying its "local behavior at Xo"
	Behavior at Infinity
	Terminology
	for $x \gg 1$, for large $x = f$ or x in some interval (a, ∞)
	for $X \ll -1$, for negatively large $X = $ for X in some interval $(-\infty, a)$
	for $ x \gg 1$, for large $ x = for x > some number a$
	Local Properties at a point
	$f(x)$ is locally increasing at x_0 means $f(x)$ is increasing for $x \approx x_0$;
	$f(x)$ is locally bounded at x_0 means $f(x)$ is bounded for $x \approx x_0$; $f(x)$ is locally positive at x_0 means $f(x)$ is positive for $x \approx x_0$;
	7 (2) 22 22 23 4

10,4	Local and Global Properties of Functions
	- We say $f(x)$ is locally bounded on the open interval I if it is locally bounded at every point of I :
	for all $x_0 \in I$, $f(x)$ is bounded for $x \approx x_0$
	- We say $f(x)$ is locally increasing on the open interval I if it is locally increasing at every point x_0 of I
	Local us. Global
	- Let $f(x)$ be defined on an interval $I = [a, b]$. Then $f(x)$ locally bounded on $I \Rightarrow f(x)$ bounded on I