

Networking Fundamentals and Security - IPV6 -

Mauro Cesar Bernardes

Calendário 2º Sem

Novembro 2022							
N°	Se	Te	Qu	Qu	Sá	Do	
44		1	2	3	4	5	6
45	7	8	9	10	11	12	13
46	14	<u>15</u>	16	17	18	19	20
47	21	22	23	24	25	26	27
48	28	29	30				

Programação Final:Outubro

Setembro

Semana 37: Atividade Prática: DNS e WiFi (Camada de Aplicação – CAP14 NetAcademy)

Semana 38: IPV6 (Camada de Rede - Capítulo 12 NetAcademy)

Semana 39: 2º Checkpoint

Semana 40: Switching Ethernet (Camada de Aplicação – CAP07 NetAcademy)

Semana 41: Redes Wireless e Segurança

Semana 42: NAT IPv4 e IPV6

Semana 43: 3º Checkpoint

Calendário FIAP

Plano de Aula

Objetivo

- Compreender os conceitos relacionados a IPv6
- Compreender o funcionamento de uma rede com IPv6
- Configurar IPv6 em uma rede de comunicação

Conteúdo

Configuração de IPv6 e redes de comunicação

Metodologia

 Aula expositiva sobre os conceitos e desenvolvimento de atividade prática com configuração em simulador (*Packet Tracer*)

Referência para Estudo

Estrutura da Apresentação

- A necessidade IPv6
- A origem do IPv6
- Coexistência IPv4 x IPv6
- Representação do endereço IPv6
- Tipos de Endereçamento IPv6
- Configurando de Endereços IPv6 em Dispositivos de Rede

A Necessidade do IPv6

- O esgotamento de endereços IPv4 públicos tem sido o principal fator para migrar para o IPv6.
- O IPv4 possibilita um máximo teórico de 4,3 bilhões de endereços.
- Combinados à NAT (tradução de endereços de rede Privado X Público), os endereços privados foram imprescindíveis para retardar a redução do espaço de endereços IPv4.
- No entanto, NAT pode trazer impactos negativos e tem limitações que impedem fortemente as comunicações ponto a ponto.
- Com uma população cada vez maior na Internet, espaço de endereços IPv4 limitado, problemas com NAT e uma Internet das Coisas, chegou o momento de iniciar a transição para o IPv6.

A Necessidade do IPv6

IANA e RIRs

5 Regional Internet Registries (<u>RIRs</u>) foram estabelecidos para assumer a alocação e gerenciamento regional em cooperação com a IANA: <u>ARIN</u>, <u>LACNIC</u>, <u>RIPENCC</u>, <u>AFRINIC</u> e <u>APNIC</u>.

Origem do IPv6

- Projetado para ser o sucessor do IPv4, o IPv6 tem um espaço de endereços de 128 bits, possibilitando ~340 undecilhões de endereços.
 - Esse valor é escrito com o número 340 seguido de 36 zeros.
- No entanto, o IPv6 é mais do que somente uma maior possibilidade de endereços:
 - Quando a IETF começou o desenvolvimento de um sucessor para o IPv4, aproveitou para corrigir as limitações do IPv4 e incluir aprimoramentos
 - Um exemplo é o ICMPv6 (*Internet Control Message Protocol* versão 6), que inclui a resolução de endereços e a configuração automática de endereços, não encontradas no ICMP para IPv4 (ICMPv4).

Comparativo IPv4 x IPv6

	Internet Protocol version 4 (IPv4)	Internet Protocol version 6 (IPv6)					
Publicação	1981	1999					
Tamanho do Endereço	32-bit	128-bit					
Notação	Decimal: 192.149.252.76	Hexadecimal: 3FFE:F200:0234:AB00: 0123:4567:8901:ABCD					
Notação em Prefixo	192.149.0.0/24	3FFE:F200:0234::/48					
Quantidade de Endereços	232 = ~4,294,967,296	2 ¹²⁸ = ~340,282,366, 920,938,463,463,374, 607,431,768,211,456					

IPv4		IPv6
Endereço de 32	bits	Endereço de 128bits
Suporte opciona	al de IPSec	Suporte obrigatório de IPSec
Nenhuma refere (Quality of Serv	ncia a capacidade de QoS ice)	Introduz capacidades de QoS utilizando para isso o campo Flow Label
Processo de fra router	gmentação realizada pelo	A fragmentação deixa de ser realizada pelos routers e passa a ser processada pelos host emissores
O cabeçalho inc	lui os campos de opção	Todos os campos de opção foram mudados para dentro do campo extension header
	ution Protocol (ARP), s do tipo Broadcast	O ARP foi abandonado, sendo substituídos pelas mensagens Neibhbor Discovery
	ion Management é utilizado para gerir de sub-redes	O IGMP foi substituído por mensagens <i>Multcast Listner Discovery</i>
	e <i>Broadcast</i> são utilizados ego para todos os <i>host</i> de	Deixa de existir o endereço de <i>Broadcast</i> , para utilizar endereços <i>multicast</i>
O endereço tem manualmente	de ser configurado	Adição de funcionalidades de autoconfiguração
Suporta pacotes de serem fragm	s de 576 bytes, passiveis entados	Suporta pacotes de 1280 bytes, sem fragmentação

Comparativo IPv4 x IPv6

Cabeçalhos de IPv4 e IPv6

Cabeçalho de IPv4

Versão	IHL	Tipo de serviço	Tamanho total								
	Identif	icação	Flags	Deslocamento de fragmento							
Tempo de	vida	Protocolo	Soma de verificação do cabeçalho								
		Endereço de or	igem								
		Endereço de de	stino								
	O	pções	Padding								

Legenda

- Nomes de campos mantidos do IPv4 para o IPv6
- Campos não mantidos no IPv6
- Nome e posição alterados no IPv6
- Novo campo no IPv6

Cabeçalho de IPv6

Comparativo IPv4 x IPv6

Coexistência IPv4 x IPv6

- Não há uma data exata para migrar para o IPv6.
- IPv4 e IPv6 coexistirão durante um tempo na Internet.
- A transição deve levar anos.
- A IETF criou vários protocolos e ferramentas para ajudar os administradores de rede a migrarem as redes para IPv6.
- As técnicas de migração podem ser divididas em três categorias:
 - Pilha dupla Os dispositivos de pilha dupla executam os protocolos IPv4 e IPv6 simultaneamente.
 - **Tunelamento** Um método de transporte de pacotes IPv6 através de uma rede IPv4. O pacote IPv6 é encapsulado dentro de um pacote IPv4.
 - Tradução: a NAT64 (Network Address Translation 64) permite que os dispositivos habilitados para IPv6 se comuniquem com os dispositivos habilitados para IPv4 usando uma técnica de tradução semelhante à NAT IPv4.

Coexistência IPv4 x IPv6

Tanto o IPv4 como o IPv6 coexistirão no futuro próximo e a transição levará vários anos.

A IETF criou vários protocolos e ferramentas para ajudar os administradores de rede a migrarem as redes para IPv6. As técnicas de migração podem ser divididas em três categorias:

- Pilha dupla Os dispositivos de pilha dupla executam os protocolos IPv4 e IPv6 simultaneamente.
- Tunelamento Um método de transporte de pacotes IPv6 através de uma rede IPv4. O pacote IPv6 é encapsulado dentro de um pacote IPv4.
- Tradução: a NAT64 (Network Address Translation 64) permite que os dispositivos habilitados para IPv6 se comuniquem com os dispositivos habilitados para IPv4 usando uma técnica de tradução semelhante à NAT IPv4.

Observação: O tunelamento e a tradução são para transição para IPv6 nativo e só devem ser usados quando necessário. O objetivo deve ser as comunicações IPv6 nativas da origem até o destino.

Coexistência IPv4 x IPv6: Pilha Dupla

- A Pilha dupla permite que IPv4 e IPv6 coexistam na mesma rede.
- Os dispositivos de pilha dupla executam os protocolos IPv4 e IPv6 simultaneamente.

Coexistência IPv4 x IPv6 : Tunelamento

- Tunelamento é um método que permite transportar um pacote IPv6 por uma rede IPv4.
- O pacote IPv6 é encapsulado dentro de um pacote IPv4, de forma semelhante a outros tipos de dados.

Coexistência IPv4 x IPv6 : Tradução

- O NAT64 (**tradução de endereços** de rede 64) permite que dispositivos habilitados para IPv6 se comuniquem com dispositivos habilitados para IPv4 por meio de uma técnica de tradução semelhante à NAT para IPv4.
- Um pacote IPv6 é convertido em um pacote IPv4, e vice-versa

Observação: tunelamento e tradução são usados apenas quando ainda não houver IPv6 fim-a-fim.

O objetivo deve ser as comunicações IPv6 nativas da origem até o destino.

Representação do endereço IPv6: Revisão

A Figura apresenta uma revisão da relação entre decimal, binário e hexadecimal.

Decimal	Binário	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Representação do endereço IPv6

Os endereços IPv6 têm 128 bits e são escritos como uma sequência de valores hexadecimais, muitas vezes chamados de hextetos.

Cada 4 bits são representados por um único dígito hexadecimal, totalizando 32 dígitos

hexadecimais, como mostra a Figura.

 Os endereços IPv6 não diferenciam maiúsculas e minúsculas e podem ser escritos tanto em minúsculas como em maiúsculas

Representação do endereço IPv6: Formato preferencial

- Como mostrado na Figura, o formato preferencial para escrever um endereço IPv6 é:
 - x: x: x: x: x: x: x, com cada "x" consistindo de quatro valores hexadecimais.
- Quando falamos de 8 bits de um endereço IPv4, usamos o termo **octeto** (um endereço IPv4 é representado 4 octetos).
- No IPv6, um hexteto é o termo não oficial usado para se referir a um segmento de 16 bits ou quatro valores hexadecimais (um endereço IPv6 é representado por 8 hextetos).
- Cada "x" equivale a um único hexteto, 16 bits ou quatro dígitos hexadecimais.

Representação do endereço IPv6: Formato preferencial

- Formato preferencial significa que o endereço IPv6 é gravado usando todos os 32 dígitos hexadecimais.
- Isso n\u00e3o significa necessariamente que \u00e9 o m\u00e9todo ideal para representar o endere\u00f3o IPv\u00e3.

 Veremos duas regras para ajudar a reduzir o número de dígitos necessários para representar um endereço IPv6.

Representação do endereço IPv6: Formato preferencial

A Figura apresenta exemplos de endereços IPv6 no formato preferencial.

					•				,						
32 dígitos	2001	:	0DB8	:	0000	:	1111	:	0000	:	0000	:	0000	:	0200
	2001	:	0DB8	:	0000	:	00A3	:	ABCD	:	0000	:	0000	:	1234
	2001	:	0DB8	:	000A	:	0001	:	0000	:	0000	:	0000	:	0100
	2001	:	0DB8	:	AAAA	:	0001	:	0000	:	0000	:	0000	:	0200
	FE80	:	0000	:	0000	:	0000	:	0123	:	4567	:	89AB	:	CDEF
	FE80	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
	FF02	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
	FF02	:	0000	:	0000	:	0000	:	0000	:	0001	:	FF00	:	0200
	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000

Omitir 0 à esquerda:

- A primeira regra para ajudar a reduzir a notação de endereços IPv6 é omitir os 0s (zeros) à esquerda de qualquer seção de 16 bits ou hexteto. Por exemplo:
 - 01AB pode ser representado como 1AB
 - 09F0 pode ser representado como 9F0
 - 0A00 pode ser representado como A00
 - 00AB pode ser representado como AB
- Essa regra se aplica somente aos 0 à esquerda, e NÃO aos 0 à direita.
- Caso contrário, o endereço ficaria ambíguo.
- Por exemplo, o hexteto "ABC" poderia ser "OABC" ou "ABCO", mas essas duas representações não se referem ao mesmo valor

- As Figuras mostram vários exemplos de como a omissão dos 0 à esquerda pode ser usada para reduzir o tamanho de um endereço IPv6.
- O formato preferencial é exibido para cada exemplo.
- Observe como a omissão dos 0 à esquerda em cada exemplo resulta em uma representação menor do endereço

Preferencial	0000:0000:0000:0000:0000:0000:0000:0000	Preferencial	2001:0DB8:0000:A300:ABCD:0000:0000:1234
Nenhum 0 à esquerda	0: 0: 0: 0: 0: 0: 0	Nenhum 0 à esquerda	2001: DB8: 0:A300:ABCD: 0: 0:1234
Preferencial	2001:0DB8:000A:1000:0000:0000:0000:0100	Preferencial	FE80:0000:0000:0000:0123:4567:89AB:CDEF
Nenhum 0 à esquerda	2001: DB8: A:1000: 0: 0: 100	Nenhum 0 à esquerda	FE80: 0: 0: 123:4567:89AB:CDEF
Preferencial	FF02:0000:0000:0000:0000:0000:0000:0001	Preferencial	FF02:0000:0000:0000:0000:FF00:0200
Preferencial Nenhum 0 à esquerda	FF02: 0: 0: 0: 0: 0: 0: 1	Preferencial Nenhum 0 à esquerda	FF02: 00: 0: 0: 0: 1:FF00: 200

Omitir todos os segmentos 0

- A segunda regra para ajudar a reduzir a notação de endereços IPv6 é que o uso de dois-pontos duplo
 (::) pode substituir uma única sequência contígua de um ou mais segmentos de 16 bits (hextetos)
 compostos exclusivamente por 0.
- Os dois-pontos em dobro (::) só podem ser usados uma vez em um endereço; caso contrário, haveria mais de um endereço resultante possível.
- Quando associada à técnica de omissão dos 0 à esquerda, a notação de endereço IPv6 pode ser bastante reduzida.
- É o chamado formato compactado.
- Possíveis expansões do endereço ambíguo compactado:
 - 2001:0DB8::ABCD:0000:0000:1234
 - 2001:0DB8::ABCD:0000:0000:0000:1234
 - 2001:0DB8:0000:ABCD::1234
 - 2001:0DB8:0000:0000:ABCD::1234
- Endereço incorreto:
 - 2001:0DB8::ABCD::1234

As Figuras mostram vários exemplos de como o uso de dois-pontos duplo (::) e a omissão de **0** à esquerda podem reduzir o tamanho de um endereço IPv6.

Preferencial	200	1	: 0 D	B 8	:00	0 0	: 11	11	: 00	00	: (90	9 0	: 0	00	0 :	0 2	0 0
Nenhum 0 à esquerda	200	9 1	: D	В 8	:	0	: 11	11	:	9	:		0	:		0:	2	0 0
Compactado	200	91	: DB	8:	0:1	11:	1::	20	9									
Preferencial	FE8	0 :	00	00	: 00	9 0	: 00	0 0	: 01	2 3	: 4	4 5	6 7	: 8	9 A	В	: C I	DEF
Nenhum 0 à esquerda	FE8	0:		0	:	0	:	0	: 1	2 3	: 4	4 5	6 7	: 8	9 A	В	: C1	DEF
Compactado	FE8	0:	: 1	2 3	: 45	5 7	: 89	ΑВ	: C D	E F								
Preferencial	FF0	2 :	00	00	: 00	90	: 00	9 0	: 00	00	: (90	0 1	: F	F Ø	0	0	200
Nenhum 0 à esquerda	FF0	2:		0	:	0	:	0	:	e	:		1	: F	F 0	0	:	200
Compactado	FF0	2:	: 1	: F	F00	: 2 (9 0											
Preferencial	000	0:	00	00	: 000	9 0 :	000	9 0	0 0	0 0	: (90	9 0	: 0	00	0	0 (9 9 9
Nenhum 0 à esquerda		0:		0	:	0 :		0	:	0	:		0	:		0 :		0
Compactado	::																	

Preferencial	2001:0DB8:0000:0000:ABCD:0000:0000:0100
Nenhum 0 à esquerda	2 01: DB8: 0: 0:ABCD: 0: 0: 100
Compactado	2001:DB8:4:ABCD:0:0:100
ou	
	1 1
Compactado	2001:DB8:0:0:ABCD::100
Preferencial	FF02:0000:0000:0000:0000:0000:0000:0001
Nenhum 0 à esquerda	FF02: 0: 0: 0: 0: 1
Compactado	FF02::1
Preferencial	0000:0000:0000:0000:0000:0000:0000:0000
Nenhum 0 à esquerda	0: 0: 0: 0: 0: 0: 1
Compactado	::1

Exercício 1

Tipos de Endereçamento IPv6

Há três tipos de endereço IPv6:

- Unicast Um endereço IPv6 unicast identifica exclusivamente uma interface em um dispositivo habilitado para IPv6.
 Como mostrado na figura, um endereço IPv6 origem deve ser um endereço unicast.
- Multicast Um endereço IPv6 multicast é usado para enviar um único pacote IPv6 para vários destinos.
- Anycast Um endereço IPv6 anycast é qualquer endereço IPv6 unicast que possa ser atribuído a vários dispositivos.
 Um pacote enviado a um endereço de anycast é roteado para o dispositivo mais próximo que tenha esse endereço.

Ao contrário do IPv4, o IPv6 <u>não possui um endereço de *broadcast*</u>. No entanto, há um endereço *multicast* para todos os nós IPv6 que fornece basicamente o mesmo resultado

Comprimento de Prefixo

- Lembre-se de que o prefixo (a parte de rede) de um endereço IPv4 pode ser identificado pelo comprimento do prefixo (notação em barra) ou por uma máscara de sub-rede decimal com pontos. Por exemplo, o endereço IPv4 192.168.1.10 com máscara de sub-rede decimal com pontos 255.255.255.0 é equivalente a 192.168.1.10/24.
- O IPv6 usa o comprimento do prefixo para representar a parte de prefixo do endereço. O IPv6 não usa a notação de máscara de sub-rede decimal com pontos. O comprimento do prefixo indica a parte de rede de um endereço IPv6 no formato:

endereço IPv6 / comprimento do prefixo

 O comprimento do prefixo pode variar de 0 a 128. Um comprimento do prefixo IPv6 típico para LANs e para a maioria dos outros tipos de redes é /64. Isso significa que o prefixo ou a parte de rede do endereço é de 64 bits, restando outros 64 bits para a ID da interface (parte de host) do endereço

Um endereço IPv6 *unicast* identifica exclusivamente uma interface em um dispositivo habilitado para IPv6.

• Um pacote enviado a um endereço unicast é recebido pela interface à qual foi atribuído esse endereço. Semelhante ao IPv4, o endereço IPv6 origem deve ser um endereço unicast.

O endereço IPv6 destino pode ser um endereço unicast ou multicast.

Os tipos mais comuns de endereços IPv6 *unicast* são endereços *unicast globais (GUA)* e

endereços *unicast de link local*.

Unicast global

 Um endereço unicast global é semelhante a um endereço IPv4 público. São endereços de Internet roteáveis e globalmente exclusivos. Os endereços unicast globais podem ser configurados estaticamente ou atribuídos de forma dinâmica.

Link local

Os endereços de *link local* são usados para comunicação com outros dispositivos no mesmo link local. No IPv6, o termo *link* se refere a uma sub-rede. Os endereços de link local são limitados a um único link. Sua exclusividade só deve ser confirmada nesse *link*, porque eles não são roteáveis além do *link*. Em outras palavras, os roteadores não encaminham pacotes com um endereço de link local origem ou destino.

Unique local

• Outro tipo de endereço *unicast* é o endereço *unicast unique local*. Os endereços *IPv6 unique local* têm alguma semelhança com endereços privados do RFC 1918 para o IPv4, mas há diferenças significativas também. Os endereços *unique local* são utilizados para endereçamento local dentro de um site ou entre um número limitado de sites. Esses endereços não devem ser roteados no IPv6 global nem traduzidos para um endereço *IPv6 global*. Os endereços *unique local* estão no intervalo de FC00::/7 a FDFF::/7.

- No IPv4, os endereços privativos são combinados com **NAT/PAT** para fazer uma tradução de endereços vários para um, **privados** para **públicos**.
- Isso ocorre devido à disponibilidade limitada do espaço de endereços IPv4.
- Muitos locais usam a natureza privada de endereços da RFC 1918 (endereços IP privados) para proteger sua rede contra possíveis riscos à segurança ou ocultá-la. No entanto, essa nunca foi a finalidade dessas tecnologias.
- A IETF sempre recomendou que os *sites* tomassem as devidas precauções de segurança em seu roteador de Internet.
- Os endereços unique local podem ser usados para dispositivos que nunca precisarão ou terão acesso por outra rede

Endereços IPv6 *Unicast* de Link Local

- Um endereço IPv6 de link local permite que um dispositivo se comunique com outros dispositivos habilitados para IPv6 no mesmo link e somente nesse link (sub-rede).
- Os pacotes com endereço de link local origem ou destino não podem ser roteados além do link de onde o pacote foi originado.
- A Figura mostra um exemplo de comunicação usando endereços IPv6 de link local.

Endereços IPv6 *Unicast* de Link Local

- O endereço *unicast global* não é um requisito.
- No entanto, cada interface de rede habilitada para IPv6 precisa ter um endereço de link local.
- Se um endereço de link local não estiver configurado manualmente em uma interface, o dispositivo criará automaticamente um próprio, sem se comunicar com um servidor DHCP.
- Os hosts habilitados para IPv6 criarão um endereço IPv6 de link local mesmo que não tenha sido atribuído um endereço IPv6 unicast global ao dispositivo.
- Isso permite que dispositivos habilitados para IPv6 se comuniquem com outros dispositivos semelhantes na mesma sub-rede.
- Isso inclui a comunicação com o gateway padrão (roteador).

Endereços IPv6 *Unicast* de Link Local

Os endereços IPv6 de link local estão no intervalo FE80::/10. O /10 Indica que os primeiros 10 bits são 1111 1110 10xx xxxx. O primeiro hexteto tem um intervalo de 1111 1110 1000 0000 (FE80) a 1111 1110 1011 1111 (FEBF)

 A Figura 1 mostra um exemplo de comunicação usando endereços IPv6 de link local e a Figura 2 mostra alguns dos usos de endereços IPv6 de link local.

Arquivo:

2oSemestre08ConfiguringIPv6Address.pkt

Tabela de Endereçamento

Dispositivo	Interface	Endereço IPv6/Prefixo	Gateway Padrão
R1	G0/0	2001:DB8:1:1::1/64	N/D
	G0/1	2001:DB8:1:2::1/64	N/D
	S0/0/0	2001:DB8:1:A001::2/64	N/D
	Link local	FE80::1	N/D
Sales	NIC	2001:DB8:1:1::2/64	FE80::1
Billing	NIC	2001:DB8:1:1::3/64	FE80::1
Accounting	NIC	2001:DB8:1:1::4/64	FE80::1
Design	NIC	2001:DB8:1:2::2/64	FE80::1
Engineering	NIC	2001:DB8:1:2::3/64	FE80::1
CAD	NIC	2001:DB8:1:2::4/64	FE80::1

Parte 1: Configurar o Endereçamento IPv6 no Roteador

Etapa 1: Habilite o roteador para encaminhar pacotes IPv6.

 Insira o comando de configuração global ipv6 unicast-routing. Esse comando deve ser configurado para permitir que o roteador encaminhe pacotes IPv6. Esse comando será discutido em um semestre posterior.

R1(config) # ipv6 unicast-routing

Etapa 2: Configure o endereçamento IPv6 em GigabitEthernet0/0.

- a. Clique em R1 e depois na guia CLI. Pressione Enter.
- Entre no modo EXEC privilegiado.
- Insira os comandos necessários para fazer a transição para o modo de configuração de interface de GigabitEthernet0/0.
- d. Configure o endereço IPv6 com o seguinte comando:

```
R1(config-if) # ipv6 address 2001:DB8:1:1::1/64
```

e. Configure o endereço IPv6 de link local com o seguinte comando:

```
R1(config-if) # ipv6 address FE80::1 link-local
```

Ative a interface.

Etapas 1 e 2 da Parte 1 (slide anterior)

Etapa 3: Configure o endereçamento IPv6 em GigabitEthernet0/1.

- Insira os comandos necessários para fazer a transição para o modo de configuração de interface de GigabitEthernet0/1.
- b. Consulte a Tabela de Endereçamento para obter o endereço IPv6 correto.
- Configure o endereço IPv6 e o endereço de link local e ative a interface.

Etapa 4: Configure o endereçamento IPv6 em Serial0/0/0.

- Insira os comandos necessários para fazer a transição para o modo de configuração de interface de Serial0/0/0.
- b. Consulte a Tabela de Endereçamento para obter o endereço IPv6 correto.
- c. Configure o endereço IPv6 e o endereço de link local e ative a interface.

Etapas 3 e 4 Parte 1 (slide anterior)

Parte 2: Configurar o Endereçamento IPv6 em Servidores

Etapa 1: Configure o endereçamento IPv6 no servidor Accounting (Contabilidade).

- a. Clique em Accounting (Contabilidade) e na guia Desktop > IP Configuração de IP).
- Defina IPv6 Address (Endereço IPv6) como 2001:DB8:1:1::4 com o prefixo /64.
- c. Defina IPv6 Gateway (Gateway IPv6) como o endereço de link local, FE80::1.

Etapa 2: Configure o endereçamento IPv6 no servidor CAD.

Repita as etapas 1a a 1c no servidor CAD. Consulte o endereço IPv6 na Tabela de Endereçamento.

/ 64

Х

Parte 3: Configurar o Endereçamento IPv6 em Clientes

Etapa 1: Configure o endereçamento IPv6 nos clientes Sales (Vendas) e Billing (Cobrança).

- a. Clique em Billing (Cobrança) e selecione a guia Desktop seguida de IP Configuração de IP).
- Defina IPv6 Address (Endereço IPv6) como 2001:DB8:1:1::3 com o prefixo /64.
- Defina IPv6 Gateway (Gateway IPv6) como o endereço de link local, FE80::1.
- Repita as etapas 1a a 1c para Sales (Vendas). Consulte o endereço IPv6 na Tabela de Endereçamento.

Etapa 2: Configure o endereçamento IPv6 nos clientes Design (Projeto) e Engenharia (Engenharia).

- Clique em Engineering (Engenharia) e selecione a guia Desktop seguida de IP Configuration (Configuração de IP).
- b. Defina IPv6 Address (Endereco IPv6) como 2001:DB8:1:2::3 com o prefixo /64.
- Defina IPv6 Gateway (Gateway IPv6) como o endereço de link local, FE80::1.
- d. Repita as etapas 1a a 1c para Design (Projeto). Consulte o endereço IPv6 na Tabela de Endereçamento.

Parte 4: Testar e Verificar a Conectividade da Rede

Etapa 1: Abra as páginas Web do servidor nos clientes.

- Clique em Sales (Vendas) e na guia Desktop. Feche a janela IP Configuration (Configuração de IP), se necessário.
- b. Clique em Web Browser (Navegador Web). Digite 2001:DB8:1:1::4 na caixa URL e clique em Go (Ir). O site Accounting (Contabilidade) será exibido.
- c. Digite 2001:DB8:1:2::4 na caixa URL e clique em Go (Ir). O site CAD será exibido.
- Repita as etapas 1a a 1d para o restante dos clientes.

Etapa 2: Faça ping no ISP.

- a. Abra a janela de configuração de qualquer computador cliente clicando no ícone.
- Clique na guia Desktop > Command Prompt (Prompt de comando).
- Teste a conectividade com o ISP inserindo o seguinte comando:

```
PC> ping 2001:DB8:1:A001::1
```

Repita o comando ping com outros clientes até que toda conectividade seja verificada.

Parte 4: Testar e Verificar a Conectividade da Rede

Etapa 1: Abra as páginas Web do servidor nos clientes.

- Clique em Sales (Vendas) e na guia Desktop. Feche a janela IP Configuration (Configuração de IP), se necessário.
- b. Clique em Web Browser (Navegador Web). Digite 2001:DB8:1:1::4 na caixa URL e clique em Go (Ir). O site Accounting (Contabilidade) será exibido.
- c. Digite 2001:DB8:1:2::4 na caixa URL e clique em Go (Ir). O site CAD será exibido.
- Repita as etapas 1a a 1d para o restante dos clientes.

Etapa 2: Faça ping no ISP.

- a. Abra a janela de configuração de qualquer computador cliente clicando no ícone.
- b. Clique na guia Desktop > Command Prompt (Prompt de comando).
- Teste a conectividade com o ISP inserindo o seguinte comando:

```
PC> ping 2001:DB8:1:A001::1
```

Repita o comando ping com outros clientes até que toda conectividade seja verificada.

Atividade 3 para o 2º Checkpoint

Utilize o Arquivo: 2oSemestre08ConfiguringIPv6Address.pkt
Passos

- Separe os últimos 4 dígitos de seu RM
 Por exemplo, para o RM 85433 utilize 5433.
- 2. Para a topologia ao lado, substitua os endereços IPV6 da seguinte forma

```
de 2001:db8:1:1::/64 para 2001:db8:1:5433::/64
de 2001:db8:1:2::/64 para 2001:db8:5433:2::/64
```

- 3. Como os novos endereços, refaça a configuração da topologia repetindo os passos dos slides anteriores
- 4. Execute o comando ping a partir do equipamento Vendas com destino para o equipamento CAD.
- 5. Faça um *printscreen* da tela com o resultado do Ping (como no próximo slide) e realize o *upload* do arquivo no formato .pdf na área de trabalhos do portal da FIAP

Atividade 3 do 2º Checkpoint

Resultado esperado para a atividade:

Uma tela, como a tela abaixo deverá ser entregue no formato .pdf

```
Vendas
             Desktop
                     Programming
  Command Prompt
 C:\>
 C:\>ping 2001:db8:5433:2::2
 Pinging 2001:db8:5433:2::2 with 32 bytes of data:
 Reply from 2001:DB8:5433:2::2: bytes=32 time=10ms TTL=127
 Reply from 2001:DB8:5433:2::2: bytes=32 time<1ms TTL=127
 Reply from 2001:DB8:5433:2::2: bytes=32 time<1ms TTL=127
 Reply from 2001:DB8:5433:2::2: bytes=32 time<1ms TTL=127
 Ping statistics for 2001:DB8:5433:2::2:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
      Minimum = 0ms, Maximum = 10ms, Average = 2ms
Top
```

Referências Bibliográficas

Kurose, James F. Redes de computadores e a Internet: uma abordagem topdown/James F. Kurose e Keith W. Ross; 6ª edição, São Paulo: Addison Wesley, 2013. ISBN 978-85-8143-677-7.

Tanenbaum, Andrew S; Wetherall, David. Redes de Computadores. São Paulo: Pearson Prentice Hall, 2011. 5ª edição americana. ISBN 978-85-7605-924-0.

BIRKNER, Mathew H. Projeto de Interconexão de Redes. São Paulo: Pearson Education do Brasil, 2003. ISBN 85.346.1499-7.

Referências Bibliográficas

- Tanenbaum, A.; Wetherall, D. Redes de Computadores. 5^a ed. Pearson, 2011.
- Wikipedia. IEEE 802.1Q. Disponível em http://en.wikipedia.org/wiki/IEEE_802.1Q
- IEEE. 802.1Q-2011 IEEE Standard for Local and metropolitan area networks--Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks. Disponível em http://standards.ieee.org/findstds/standard/802.1Q-2011.html
- ODOM, W. CCNA ICND2 Guia Oficial de Certificação do Exame. 2ª ed. Alta Books, 2008.