Obsah

23 Sv	větlo, vlnové vlastnosti světla	1
23	.1 Základní pojmy	1
	23.1.1 Optické prostředí	1
	23.1.2 Světelný zdroj	1
	23.1.3 Rychlost světla	1
23	.2 Zákony a principy	2
	23.2.1 Zákon přímočarého šíření světla	2
	23.2.2 Princip nezávislosti světelných paprsků	2
	23.2.3 Zákon odrazu	2
	23.2.4 Snellův zákon (zákon lomu)	2
23	.3 Rozklad světla	3
23	.4 Interference světla	4
	23.4.1 Interference na tenké vrstvě	4
23	.5 Ohyb světla na dvojštěrbině, mřížce	4
	23.5.1 Dvojštěrbina	6
	23.5.2 Mřížka	6
23	.6 Polarizace světla	7
	23.6.1 Druhy polarizace	7
	23.6.2 Zdroje	7

23 Světlo, vlnové vlastnosti světla

- speciální typ elmag. záření
- $3.9 \cdot 10^{14} \,\mathrm{Hz} 7.9 \cdot 10^{14} \,\mathrm{Hz}$
- $390 \, \text{nm} 760 \, \text{nm}$

23.1 Základní pojmy

23.1.1 Optické prostředí

- prostředí šíření elmag. záření
- průhledné/průsvitné/neprůhledné, barevné/čiré, homogenní/nehomogenní, izotropní/anizotropní

23.1.2 Světelný zdroj

- zdroj elektromagnetické záření v rozmezí viditelného světla
- přírodní kosmické (hvězdy), chemické (oheň), biologické (luminiscence), elektrické výboje (výboj, blesk)
- umělé žárovky, zářivky, LED diody...
- bodové a plošné zářiče

23.1.3 Rychlost světla

- rychlost světla ve vakuu
- $299792458 \,\mathrm{m\cdot s^{-1}}$
- univerzální fyzikální konstanta
- nejvyšší rychlost, které lze dosáhnout

23.2 Zákony a principy

23.2.1 Zákon přímočarého šíření světla

• v homogenním prostředí se svazek světla šíří přímočaře

23.2.2 Princip nezávislosti světelných paprsků

- jednotlivé světelné paprsky se navzájem při šíření neovlivňují
- při vzájemném protnutí navzájem neinteragují

23.2.3 Zákon odrazu

- "úhel odrazu je roven úhlu dopadu"
- úhel relativní k normálovému vektoru povrchu
- např. při úplném odrazu (α větší než kritický úhel), na zrcadle, ...
- částečně i na rozhraní prostředí

Obr. 23.1: Zákon odrazu

23.2.4 Snellův zákon (zákon lomu)

- popis šíření světla při přechodu přes rozhraní dvou různých prostředí
- poměr sinů úhlů je poměr rychlostí záření v jednotlivých prostředí

$$\frac{\sin\alpha}{\sin\beta} = \frac{v_1}{v_2}$$

- dva druhy
 - lom ke kolmici $\alpha > \beta$, $n_2 > n_1$
 - lom od kolmice $\beta > \alpha$, $n_1 > n_2$

Index Iomu

- bezrozměrná fyzikální veličina
- popis šíření světla v prostředí
- poměr rychlosti světla v prostředí a vakuu

$$n = \frac{c}{v}$$

využití při výpočtu úhlů při lomu světla

$$\frac{\sin \alpha}{\sin \beta} = \frac{v_1}{v_2} \frac{\frac{1}{n_1}}{\frac{1}{n_2}} = \frac{n_2}{n_1}$$

• různá hodnota pro každé prostředí, měřena experimentálně

Látka	index lomu
vakuum	1
vzduch	1,00026
led	1,31
voda	1,33
etanol	1,36
sklo	$1{,}5$ až $1{,}9$

Tab. 23.1: Příklady hodnot n pro různé materiály

Mezní úhel $\alpha_{\rm m}$

- jev při lomu od kolmice
- výsledný úhel lomu β roven 90°
- jestliže $\alpha > \alpha_{\rm m}$, poté dochází k **úplnému odrazu**

Obr. 23.2: Vyobrazení lomu světla, mezního úhlu a úplného odrazu

23.3 Rozklad světla

- bílé světlo složeno z několika složek světla / barev
- různý ohyb jednotlivých složek na optickém rozhraní -> rozklad světla
 - červené světlo nejmenší ohyb
 - fialové světlo největší ohyb
 - vznik duhy
- rozklad světla na hranolu objeveno Newtonem

Obr. 23.3: Rozklad světla na hranolu

23.4 Interference světla

- vzájemné ovlivnění dvou světelných vln
- skládání vln do jedné
- dle posunu a frekvencí se navzájem zesilují nebo naopak zeslabují
- nejčastěji monochromatické světlo
- pozorovatelné u koherentního vlnění (stejné λ a f)
- interferenční maximum dráhový rozdíl roven sudému počtu půlvln

$$\Delta l = 2k\frac{\lambda}{2}$$

- $-\Delta l$ vlnová délka, k přirozené číslo, λ vlnová délka
- interferenční minimum dráhový rozdíl roven lichému počtu půlvln

$$\Delta l = (2k+1)\frac{\lambda}{2}$$

Obr. 23.4: Příklad interference

23.4.1 Interference na tenké vrstvě

- tenká vrstva mýdlová bublina, antireflexní vrstva na brýlích...
- část světla se odrazí na prvním rozhraní, část až na druhém

$$\Delta l = 2nd$$

- -n index lomu prostředí, d tloušťka tenké vrstvy
- výsledné paprsky interferují
- změna fáze
 - dopad na rozhraní řidší-hustší fáze se mění
 - dopad na rozhraní hustší-řidší fáze se nemění

23.5 Ohyb světla na dvojštěrbině, mřížce

- ohyb světla způsoben malými otvory
- světlo dojde ke štěrbině vznik vlnoplochy štěrbina se chová jako zdroj
- interference světla
- podmínka maxima: $b \sin \alpha_k = k\lambda, k \in \mathbb{N}$

Obr. 23.5: Složení světla na tenké vrstvě

Obr. 23.6: Šíření paprsků světla na dvojštěrbině

23.5.1 Dvojštěrbina

• interference světla ze dvou štěrbin

Obr. 23.7: Interference světelných vln na dvojštěrbině

23.5.2 Mřížka

- velký počet štěrbin vedle sebe
- úzká interferenční maxima
- rozklad dopadajícího bílého světla v maximech na jednotlivé barevné složky
 - blíže k nultému maximu fialová, dále od něj červená

Obr. 23.8: Ohyb světla na mřížce

23.6 Polarizace světla

- světlo elektromagnetické vlnění
 - kmitání vektoru elektromagnetické pole ${\bf E}$
 - k němu kolmý vektor magnetického pole ${\bf B}$
 - oba kolmé na směr pohybu
- nepolarizované záření E má náhodný směr/otočení
- polarizované světlo všechny svazky světla E mají stejný směr/otočení

Obr. 23.9: Příklad nepolarizovaného a polarizované světla

23.6.1 Druhy polarizace

- lineárně polarizované světlo
- kruhové polarizované
- · elipticky polarizované

23.6.2 Zdroje

- odraz při odrazu částečná polarizace, ovšem může nastat i úplná při specifickém úhlu
- lom pouze částečná polarizace
- dvojlom
 - na anizotropních krystalech index lomu závislý na směru paprsku
 - rozdělení paprsku na řádný (podléhá zákonům lomu) a mimořádný (nepodléhá zákonům lomu), oba polarizované
- polaroid
 - dovolí projí pouze jeden směr paprsku, ostatní pohltí