CONTROLE DIGITAL - SEL0620

Tarefa 7 e 8 - Controlador PID Discreto

Hugo Hiroyuki Nakamura NUSP: 12732037 Isaac Santos Soares NUSP: 12751713

- 1. Mostre no início do relatório desta etapa, os seguintes dados que foram obtidos das experiências anteriores, e que serão utilizados como base para o projeto do controlador PID:
 - a) Período de amostragem, T_{08} , utilizado no laboratório anterior para a malha fechada com controlador proporcional para K=8. O período de amostragem T_{08} não deve ser inferior a 0,2 segundos.

O período de amostragem para K = 8, utilizando $\omega_0 = 7 \cdot \omega_s$, é de $\mathbf{T_0} = \mathbf{0,201}$ [s].

b) Função de transferência da planta do sistema discretizada com retentor de ordem zero para o período de amostragem T_{08} (indicado no item anterior).

$$G(z) = \frac{0.01917z + 0.01664}{z^2 - 1.618z + 0.654}$$

c) Tempo de pico, t_{p1} , do sinal de saída da planta obtido com o sistema de malha fechada com controlador proporcional K=1.

$$t_{p1} = 3,051 [s]$$

d) Tempo de subida, t_{r1} , do sinal de saída da planta obtido com o sistema de malha fechada com controlador proporcional K = 1.

$$t_{r1} = 1,471 [s]$$

e) Tempo de acomodação, t_{s1} , do sinal de saída da planta obtido com o sistema de malha fechada com controlador proporcional K = 1.

$$t_{s1} = 4,019 [s]$$

2. Utilizando a ferramenta RLTOOL do Matlab, projete um controlador PID discreto que proporcione, além do erro de regime nulo, um tempo de pico semelhante (não mais que 20% maior) a t_{p1} , e um sobresinal máximo M_p de 6%. Ao invés de projetar para um tempo de pico semelhante, você pode também projetar para um tempo de subida e um tempo de acomodação semelhante a t_{r1} e t_{s1} , respectivamente. A função de transferência do controlador PID deve ter o seguinte formato:

$$G_{PID}(z) = \frac{q_0 z^2 + q_1 z + q_2}{z^2 - z} = \frac{q_0 + q_1 z^{-1} + q_2 z^{-2}}{1 - z^{-1}}$$

1

Lembre-se que, ao projetar o PID, a saída do controlador não deve ultra-passar os limites de entrada da planta quando o sistema de malha fechada é submetido ao degrau de amplitude r, ou seja, a entrada da planta deve ficar sempre dentro do intervalo -10 < u(k) < 10.

O controlador PID foi projetado com valores de t_p , t_r e t_s semelhantes aos indicados anteriormente. Estes valores encontrados estão dispostos na Tabela 1.

Medida	Valor [s]	Erro [%]
Tempo de pico (t_p)	3,22	5,54
Tempo de subida (t_r)	1,66	12,85
Tempo de acomodação (t_s)	4,05	0,77

Tabela 1: medidas de tempo para o controlador PID.

As Figuras 1 e 2 apresentam o lugar das raízes e a resposta ao degrau do controlador.

Figura 1: lugar das raízes do sistema com o controlador $G_{PID}(z)$ projetado no RLTOOL

Figura 2: resposta ao degrau do sistema com o controlador $G_{PID}(z)$ projetado no RLTOOL

3. Mostre no relatório a função de transferência discreta do controlador projetado $G_{PID}(z)$.

$$G_{PID}(z) = \frac{1.708 - 1.687z^{-1} + 0.178z^{-2}}{1 - z^{-1}}$$

4. Mostre no relatório a função de transferência discreta do sistema de malha fechada (desconsiderando o distúrbio).

$$G(z) = \frac{0.032 - 0.004z^{-1} - 0.024z^{-2} + 0.003z^{-3}}{1 - 2.539z^{-1} + 2.176z^{-2} - 0.630z^{-3}}$$

5. Mostre no relatório os polos e zeros de malha fechada em z.

A Tabela 2 apresenta os zeros e polos da função de transferência de malha fechada em z.

Raizes	Valor de z		
Zeros	-0,868	0,120	0,868
Polos	0.829 + 0.168j	0,829 - 0,168j	0,881

Tabela 2: zeros e polos da função de transferência de malha fechada.

6. Implemente no Simulink o sistema de malha fechada com controlador PID discreto projetado. Mostre no relatório o diagrama de Simulink implementado.

Figura 3: sistema de malha fechada com controlador PID no simulink.

7. Repita nesta experiência o Simulink do sistema de malha fechada com controlador P para K=1, mas utilize na simulação o período de amostragem $T_0=8$.

Figura 4: sistema de malha fechada com controlador P de ganho unitário no simulink.

8. Mostre no relatório as curvas discretas de resposta do sistema (sinal de erro, sinal de controle e sinal de saída do sistema) do sistema de malha fechada no Simulink controlado pelo PID sobrepostas às respectivas curvas para o sistema com controlador proporcional com ganho K=1.

Figura 5: respostas do sistema utilizando o controlador PID e o controlador P.

9. Quais os valores do erro de regime permanente antes do distúrbio e após o distúrbio para o sistema controlado com o PID (utilize o gráfico obtido pelo Simulink para obter os valores)? O que se pode observar comparando esses erros com o sistema de malha fechada com controle proporcional?

Os valores de erro de regime permanente do sistema com controlador PID e P de ganho unitário estão apresentados na Tabela 3 e 4, respectivamente.

Tabela 3: valores de erro em regime permanente do sistema de malha fechada com controlador PID.

Erro PID	Degrau	${f e_{ss}}$	${ m e_{ss}}(\%)$
Pré distúrbio	1 05	$3.194 \cdot 10^{-5}$	0,003
Pós distúrbio	1,25	$2.236 \cdot 10^{-5}$	0,002

Tabela 4: valores de erro em regime permanente do sistema de malha fechada com controlador P de ganho unitário.

Erro P	Degrau	$\mathbf{e_{ss}}$	$\mathrm{e_{ss}}(\%)$
Pré distúrbio	1,25	0,625	50,0
Pós distúrbio	1,20	0,700	56,0

Observa-se que a utilização do controlador PID produz erros baixíssimos, muito próximos de 0%, enquanto o controlador P de ganho unitário apresenta erro de metade do sinal. Além disso, é possível perceber, através da Figura 5b, que a aplicação do distúrbio gera efeitos ainda menores em regime permanente quando utilizado um controlador PID, visto que o sinal volta ao mesmo nível ao decorrer do tempo, diferentemente do sistema com controlador P.

10. Mostre uma tabela comparando o tempo de acomodação (t_s) da resposta do sistema discreto considerando o critério de $\pm 2\%$, o tempo de subida (t_r) da resposta do sistema discreto, o tempo de pico (t_p) , e o sobressinal (M_p) para o sistema controlado com o PID e para o sistema com o controlador proporcional K=1. Comente se o controlador PID atende aos requisitos de projeto.

As medições de tempo e sobressinal do sistema de malha fechada com o controlador P e PID estão na Tabela 5.

Tabela 5: características do sistema de malha fechada com controlador P e PID.

Característica	P	PID	Unidade
Tempo de pico (t_p)	3,051	3,220	[s]
Tempo de subida (t_r)	1,471	1,660	[s]
Tempo de acomodação (t_s)	4,019	4,050	[s]
Sobressinal (M_p)	5,600	4,000	[%]

A Tabela 6 apresenta a variação das características no uso do controlador PID para o controlador P. Observa-se que as variações do tempo estão próximas, com destaque para o tempo de pico, que não houve variação acima de 20%. O sobressinal apesar de ter variado 40%, foi uma variação decremental e esteve abaixo de 6%, como especificado.

Tabela 6: variação das características do sistema com PID para o com P.

Característica	Variação [%]
Tempo de pico (t_p)	5,54
Tempo de subida (t_r)	12,85
Tempo de acomodação (t_s)	0,77
Sobressinal (M_p)	40,00

Dessa forma, o sistema com o controlador PID atende os requisitos do projeto.