추천시스템 구현 프로젝트 Recommender System

Contents

- 1. 추천시스템 이해
 - 1) 추천시스템 개념
 - 2) 추천시스템 방법론
 - 3) 기업에서의 추천시스템
 - 4) 추천시스템 Trend
- 2. 추천시스템 구현
 - 1) 과거 추천시스템
 - 2) 컨텐츠 기반의 추천시스템
 - 3) 협업필터링 기반 추천시스템
 - 4) 딥러닝 기반의 추천시스템

- "연관분석"에 의한 추천
 - 룰 기반의 모델로서 상품과 상품 사이에 어떤 연관이 있는지 찾아내는 알고리

증

• 장바구니 분석

- 연관분석평가지표
 - 지지도 전체 거래 중 상품 A, B를 동시에 구매하는 거래의 비율
 - 신뢰도 상품 A가 포함된 거래 중 상품 B를 포함하는 거래의 비율
 - 향상도 상품 B를 구매한 고객 대비 상품 A를 구매한 후 상품 B를구매하는 고객에 대한 확률

For the rule
$$A \rightarrow B$$
, $support(A) = P(A)$

$$lift(A \rightarrow B) = \frac{P(A, B)}{P(A) \cdot P(B)}$$

$$confidence(A \rightarrow B) = \frac{P(A, B)}{P(A)}$$

● 연관 분석 알고리즘 : 가능한 모든 경우의 수를 탐색해서 지지도, 신뢰도, 향상도 가 높은 규칙을 찾아내는 방식

상품이 4개일 때, 전체 경우의 수

- 4C1:4
- 4C2:6
- 4C3:4
- 4C4:1

전체 경우의 수: 4 + 6 + 4 + 1 = 15

● 연관 분석 알고리즘 : 가능한 모든 경우의 수를 탐색해서 지지도, 신뢰도, 향상도 가 높은 규칙을 찾아내는 방식

* 아이템 수에 따른 규칙의 수

■ Apriori 알고리즘 : "빈번한 아이템 셋은 하위 아이템 셋 또한 빈번할 것이다."
"빈번하지 않은 아이템 셋은 하위 아이템 셋도 빈번하지 않다."

아이디어

{2, 3}의 지지도 〉 {0, 2, 3}, {1, 2, 3}의 지지도

- P(item 2, item 3) > P(item 0, item 2, item 3)
- P(item 2, item 3) > P(item 1, item 2, item 3)

■ Apriori 알고리즘 : "빈번한 아이템 셋은 하위 아이템 셋 또한 빈번할 것이다." "빈번하지 않은 아이템 셋은 하위 아이템 셋도 빈번하지 않다."

- K개의 아이템을 가지고 단일항목집단 생성
- 단일항목집단에서 최소 지지도 이상의 항목만 선택
- 앞 단계에서 선택된 항목만을 대상으로 2개 항목집 단

생성

- 2개 항목집단에서 최소 지지도 혹은 신뢰도 이상의 항목만선택
- 위의 과정을 k개의 k-item frequent set을 생성할 때까지반복

■ Apriori 알고리즘(예)

상품

우유, 기저귀, 쥬스, 양상추, 맥주

거래 번호	상품 목록
	우유, 기저귀, 쥬스
1	양상추, 기저귀, 맥주
2	우유, 양상추, 기저귀, 맥주
3	양상추, 맥주

거래 번호	99	양상추	기저귀		맥주
	1	0	1	1	0
1	0	1	1	0	1
2	1	1	1	0	1
3	0	1	0	0	1

■ Apriori 알고리즘(예)

- K개의 아이템을 가지고 단일항목집단 생성
- 단일항목집단에서 최소 지지도 이상의 항목만 선 택
- 앞 단계에서 선택된 항목만을 대상으로 2개 항목 집단 생성
- 2개 항목집단에서 최소 지지도 혹은 신뢰도 이상 의
 항목만 선택
- 위의 과정을 k개의 k-item frequent set을 생성할 때까지 반복

우유, 기저귀, 쥬스, 양상추, 맥주

■ Apriori 알고리즘(예)

- K개의 아이템을 가지고 단일항목집단 생성
- 단일항목집단에서 최소 지지도 이상의 항목만 선 택
- 앞 단계에서 선택된 항목만을 대상으로 2개 항목 집단 생성
- 2개 항목집단에서 최소 지지도 혹은 신뢰도 이상 의
 항목만 선택
- 위의 과정을 k개의 k-item frequent set을 생성할 때까지 반복

최소지지도: 0.5 이상

P(우유): 0.5

P(양상추): 0.75

P(기저귀): 0.75

P(A 4) : 0.25

P(맥주): 0.75

■ Apriori 알고리즘(예)

- K개의 아이템을 가지고 단일항목집단 생성
- 단일항목집단에서 최소 지지도 이상의 항목만 선 택
- 앞 단계에서 선택된 항목만을 대상으로 2개 항목 집단 생성
- 2개 항목집단에서 최소 지지도 혹은 신뢰도 이상 의
 - 항목만 선택
- 위의 과정을 k개의 k-item frequent set을 생성할 때까지 반복

```
{우유, 양상추, 기저귀, 맥주}
   2개 항목집단 생성
    {우유, 양상추}
    {우유, 기저귀}
     {우유, 맥주}
   {양상추, 기저귀}
    {양상추, 맥주}
    {기저귀, 맥주}
```

■ Apriori 알고리즘(예)

- K개의 아이템을 가지고 단일항목집단 생성
- 단일항목집단에서 최소 지지도 이상의 항목만 선 택
- 앞 단계에서 선택된 항목만을 대상으로 2개 항목 집단 생성
- 2개 항목집단에서 최소 지지도 혹은 신뢰도 이상 의
 - 항목만선택
- 위의 과정을 k개의 k-item frequent set을 생성할 때까지 반복

최소지지도: 0.5 이상

P(우유, 양상추): 0.25

P(우유, 기저귀): 0.5

P(우유, 맥주): 0.25

P(양상추, 기저귀): 0.5

P(양상추, 맥주): 0.75

P(기저귀, 맥주): 0.5

■ Apriori 알고리즘(예)

- K개의 아이템을 가지고 단일항목집단 생성
- 단일항목집단에서 최소 지지도 이상의 항목만 선 택
- 앞 단계에서 선택된 항목만을 대상으로 2개 항목 집단 생성
- 2개 항목집단에서 최소 지지도 혹은 신뢰도 이상 의 항목만 선택
- 위의 과정을 k개의 k-item frequent set을 생성할 때까지 반복

■ Apriori 알고리즘 : "빈번한 아이템 셋은 하위 아이템 셋 또한 빈번할 것이다."
"빈번하지 않은 아이템 셋은 하위 아이템 셋도 빈번하지 않다."

• 장점

- 원리가 간단하여 사용자가 쉽게 이해할 수 있고 의미를 파악할 수 있음
- 유의한 연관성을 갖는 구매패턴을을 찾아줌

• 단점

- 데이터가 클 경우(item이 많은 경우)에 속도가 느리고 연산량이 많음
- 실제 사용시에 많은 연관상품들이 나타나는 단점이 있음

- FP-Growth : FP Tree 구조를 사용, Apriori의 속도 측면의 단점을 개선한 알고리즘
- 알고리즘
 - 모든 거래를 확인하여, 각 아이템마다의 지지도(support)를 계산하고 최소 지지도 이상의 아이템만 선택
 - 모든 거래에서 빈도가 높은 아이템 순서대로 순서를 정렬
 - 부모 노드를 중심으로 거래를 자식노드로 추가해주면서 tree를 생성
 - 새로운 아이템이 나올 경우에는 부모노드부터 시작하고, 그렇지 않으면 기존의 노드에서 확장
 - 지지도가 낮은 순서부터 시작하여 조건부 패턴을 생성, 모든 아이템에 대해 반복
 - 조건부 패턴을 기반으로 패턴 생성

- FP-Growth 알고리즘(예)
 - 1. 모든 거래를 확인하여, 각 아이템마다의 지지도(support)를 계산하고 최소 지지도 이상의 아이템만 선택
 - 2. 모든 거래에서 빈도가 높은 아이템 순서대로 순서를 정렬

거래번호	아이템
0	우유, 기저귀, 쥬스
1	양상추, 기저귀, 맥주
2	우유, 양상추, 기저귀, 맥주
3	양상추, 맥주

거래번호	정렬된 아이템
0	기저귀, 우유
1	양상추, 기저귀, 맥주
2	양상추, 기저귀, 맥주, 우유
3	양상추, 맥주

쥬스가 삭제되고, 빈도가 높은 {양상추, 기저귀, 맥주} -> {우유} 순서대로 정렬

- FP-Growth 알고리즘(예)
 - 3. 부모 노드를 중심으로 거래를 자식노드로 추가해주면서 tree를 생성

거래번호	정렬된 아이템
0	기저귀, 우유
1	양상추, 기저귀, 맥주
2	양상추, 기저귀, 맥주, 우유
3	양상추, 맥주

- FP-Growth 알고리즘(예)
 - 4. 새로운 아이템이 나올 경우에는 부모노드부터 시작하고, 그렇지 않으면 기존의 노드에서 확 장

거래번호	정렬된 아이템
0	기저귀, 우유
1	양상추, 기저귀, 맥주
2	양상추, 기저귀, 맥주, 우유
3	양상추, 맥주

- FP-Growth 알고리즘(예)
 - 4. 새로운 아이템이 나올 경우에는 부모노드부터 시작하고, 그렇지 않으면 기존의 노드에서 확장

거래번호	정렬된 아이템
0	기저귀, 우유
1	양상추, 기저귀, 맥주
2	양상추, 기저귀, 맥주, 우유
3	양상추, 맥주

- FP-Growth 알고리즘(예)
 - 4. 새로운 아이템이 나올 경우에는 부모노드부터 시작하고, 그렇지 않으면 기존의 노드에서 확

거래번호	정렬된 아이템
0	기저귀, 우유
1	양상추, 기저귀, 맥주
2	양상추, 기저귀, 맥주, 우유
3	양상추 , 맥주

- FP-Growth 알고리즘(예)
 - 5. 지지도가 낮은 순서부터 시작하여 조건부 패턴을 생성, 모든 아이템에 대해 반복
 - * <u>异</u>
 - {양상추, 기저귀, 맥주} : 2
 - {기저귀}: 1

아이템	지지도	Conditional Pattern bases
기저귀	0.75	
양상추	0.75	
맥주	0.75	
우유	0.5	{양상추, 기저귀, 맥주} : 2 {기저귀} : 1

- FP-Growth 알고리즘(예)
 - 5. 지지도가 낮은 순서부터 시작하여 조건부 패턴을 생성, 모든 아이템에 대해 반복

* <u>맥주</u>

- {양상추, 기저귀}: 2

- {양상추}: 1

아이템	지지도	Conditional Pattern bases
기저귀	0.75	
양상추	0.75	
맥주	0.75	{양상추, 기저귀} : 2 {양상추} : 1
우유	0.5	{양상추, 기저귀, 맥주} : 2 {기저귀} : 1

- FP-Growth 알고리즘(예)
 - 5. 지지도가 낮은 순서부터 시작하여 조건부 패턴을 생성, 모든 아이템에 대해 반복

* <u>양상</u>축

아이템	지지도	Conditional Pattern bases
기저귀	0.75	
양상추	0.75	{ }
맥주	0.75	{양상추, 기저귀} : 2 {양상추} : 1
우유	0.5	{양상추, 기저귀, 맥주}: 2 {기저귀}:1

- FP-Growth 알고리즘(예)
 - 5. 지지도가 낮은 순서부터 시작하여 조건부 패턴을 생성, 모든 아이템에 대해 반복

* <u>기저귀</u>

- {양상추}: 2

아이템	지지도	Conditional Pattern bases
기저귀	0.75	{양상추}: 2
양상추	0.75	{ }
맥주	0.75	{양상추, 기저귀} : 2 {양상추} : 1
우유	0.5	{양상추, 기저귀, 맥주} : 2 {기저귀} : 1

- FP-Growth 알고리즘(예)
 - 6. 조건부 패턴을 기반으로 패턴 생성

Conditional Pattern bases를 기반으로 패턴 생성

아이템	지지도	Conditional Pattern bases
기저귀	0.75	{양상추}: 2
양상추	0.75	{ }
맥주	0.75	{양상추, 기저귀} : 2 {양상추} : 1
우유	0.5	{양상추, 기저귀, 맥주} : 2 {기저귀} : 1

■ FP-Growth : FP Tree 구조를 사용, Apriori의 속도 측면의 단점을 개선한 알고리즘

• 장점

- Apriori 알고리즘보다 빠르고 2번의 탐색만 필요
- 후보 item sets을 생성할 필요없이 진행 가느
- 단점
 - 대용량의 데이터 셋에서 메모리를 효율적으로 사용하지 않음
 - Apriori 알고리즘에 비해서 설계하기 어려움
 - 지지도의 계산이 FP-Tree가 만들어지고 나서야 가능함

■ Aprioir 코드

```
#mlxtend 모듈은 데이터의 전처리부터 분류, 군집 등의 모델링 기능 제공
import mlxtend
import numpy as np
import pandas as pd
data = np.array([
['우유', '기저귀', '쥬스'],
['양상추', '기저귀', '맥주'],
['우유', '양상추', '기저귀', '맥주'],
['양상추', '맥주']
```

■ Aprioir 코드

```
from mlxtend.preprocessing import TransactionEncoder #연관성분석을 위한 데이터셋으로 변환 te = TransactionEncoder()
te_ary = te.fit(data).transform(data) #2차원 list or array형태를 받아서 matrix로 변환 df = pd.DataFrame(te_ary, columns=te.columns_) #데이터프레임으로 변경 df
```

	기저귀	맥주	양상추	우유	쥬스
0	True	False	False	True	True
1	True	True	True	False	False
2	True	True	True	True	False
3	False	True	True	False	False

■ Aprioir 코드

	support	itemsets
0	0.75	(기저귀)
1	0.75	(맥주)
2	0.75	(양상추)
3	0.50	(우유)
4	0.50	(기저귀, 맥주)
5	0.50	(기저귀, 양상추)
6	0.50	(기저귀, 우유)
7	0.75	(맥주, 양상추)
8	0.50	(기저귀, 맥주, 양상추)

■ FP-Growth 코드

	support	itemsets
0	0.75	(기저귀)
1	0.50	(우유)
2	0.75	(양상추)
3	0.75	(맥주)
4	0.50	(기저귀, 맥주)
5	0.50	(기저귀, 양상추)
6	0.50	(기저귀, 맥주, 양상추)
7	0.50	(기저귀, 우유)
8	0.75	(맥주, 양상추)

감/사/합/니/다