System Windows 11 x64, Środowisko PyCharm

MOWNiT – Sprawozdanie 7

Rozwiązywanie układów równań liniowych metodami iteracyjnymi

Problem 1:

Dany jest układ równań liniowych **Ax=b**.

Elementy macierzy A są zadane wzorem:

$$\begin{cases} a_{i,i} = 8 \\ a_{i,j} = \frac{1.5}{n - i - j + 0.5} & dla \ i \neq j \end{cases} \quad i, j = 1, 2, ..., n$$

Wektor x to n-elementową permutacja zbioru { 1, -1 }. W zadaniu zastosowano na przemian 1 oraz -1

Metodą Jacobiego rozwiązujemy układ równań liniowych **Ax=b** (przyjmując jako niewiadomą wektor x), przyjmując kolejno kryterium stopu:

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$

2.
$$||Ax^{(i)} - b|| < \rho$$

Obliczenia wykonano dla różnych rozmiarów układu - n: 3, 4, 5, 7, 10, 12, 15, 20, 30, 50, 70, 100, 150, 200, 300, 500.

Dla różnych wektorów początkowych, a także różnych wartości ρ w kryteriach stopu.

Użyto normy średniokwadratowej.

Tabele przedstawiają liczbę iteracji oraz różnicę w czasie obliczeń dla obu kryteriów stopu dla poszczególnych wartości ρ:

Tabela 1 - Błędy otrzymane w problemie pierwszym dla różnych wartości rozmiarów układów, ρ = 0.001 oraz wektora początkowego równego [0,0,0...]

n	l warunek	II warunek	l warunek	II warunek	l warunek	II warunek
	iteracje	iteracje	czas [s]	czas [s]	norma	norma
3	9	11	0.000637	0.000411	0.000650	0.000100
4	12	15	0.000294	0.000565	0.001081	0.000224
5	14	19	0.000288	0.000454	0.001682	0.000120
7	15	19	0.000300	0.000349	0.001434	0.000179
10	17	21	0.000362	0.000393	0.000640	0.000079
12	18	22	0.000317	0.000405	0.000408	0.000050
15	16	20	0.000303	0.000548	0.001340	0.000165
20	18	22	0.000421	0.000599	0.000543	0.000066
30	19	23	0.000315	0.000369	0.000397	0.000048
50	19	23	0.000750	0.000911	0.000514	0.000062
70	19	23	0.000780	0.000398	0.000608	0.000074
100	20	24	0.005528	0.013467	0.000429	0.000052
150	20	24	0.005386	0.011784	0.000526	0.000063
200	20	24	0.006578	0.011887	0.000607	0.000073
300	21	25	0.007024	0.014862	0.000438	0.000053
500	21	25	0.009174	0.015618	0.000566	0.000068

Tabela 2 - Błędy otrzymane w problemie pierwszym dla różnych wartości rozmiarów układów, ρ = 0.001 oraz wektora początkowego równego [100,100,100...]

	I .	11 .	1	11 .	Ι.	Ш.
n	warunek iteracje	warunek iteracje	warunek czas [s]	warunek czas [s]	warunek norma	warunek norma
3	16	18	0.000242	0.000343	0.000404	0.000072
4	22	26	0.000165	0.000187	0.001744	0.000244
5	23	28	0.000318	0.000224	0.000680	0.000055
7	24	28	0.000207	0.000387	0.000512	0.000070
10	23	27	0.000204	0.000243	0.001172	0.000167
12	23	27	0.000186	0.000230	0.001174	0.000167
15	25	29	0.000200	0.000247	0.000415	0.000060
20	23	27	0.000193	0.000233	0.001236	0.000176
30	24	28	0.000209	0.000248	0.000814	0.000116
50	24	28	0.000219	0.000264	0.000900	0.000124
70	24	28	0.000206	0.000270	0.000969	0.000131
100	24	28	0.003186	0.008148	0.001052	0.000138
150	25	28	0.004329	0.006265	0.000706	0.000152
200	25	29	0.003673	0.007807	0.000767	0.000098
300	25	29	0.004243	0.006711	0.000884	0.000110
500	26	29	0.004762	0.009775	0.000633	0.000130

Tabela 3 - Błędy otrzymane w problemie pierwszym dla różnych wartości rozmiarów układów, ρ = 0.0001 oraz wektora początkowego równego [0,0,0...]

n	I warunek iteracje	II warunek iteracje	l warunek czas [s]	II warunek czas [s]	I warunek norma	II warunek norma
3	12	14	0.000403	0.000302	0.000040	0.000006
4	16	20	0.000261	0.000345	0.000135	0.000018
5	19	23	0.000302	0.000414	0.000120	0.000015
7	19	24	0.000381	0.000666	0.000179	0.000013
10	22	26	0.000635	0.000695	0.000047	0.000006
12	22	26	0.000473	0.000717	0.000050	0.000006
15	20	24	0.000706	0.000583	0.000165	0.000020
20	23	27	0.000637	0.000710	0.000039	0.000005
30	23	27	0.000544	0.000684	0.000048	0.000006
50	23	27	0.000687	0.000439	0.000062	0.000008
70	24	28	0.000403	0.000483	0.000043	0.000005
100	24	28	0.006665	0.015733	0.000052	0.000006
150	25	28	0.004849	0.011965	0.000037	0.000008
200	25	29	0.004712	0.025707	0.000043	0.000005
300	25	29	0.006379	0.010916	0.000053	0.000006
500	26	30	0.009280	0.018146	0.000040	0.000005

Tabela 4 - Błędy otrzymane w problemie pierwszym dla różnych wartości rozmiarów układów, ρ = 0.00001 oraz wektora początkowego równego [0,0,0...]

n	l warunek	II warunek	l warunek	II warunek	l warunek	II warunek
	iteracje	iteracje	czas [s]	czas [s]	norma	norma
3	14	16	0.000392	0.000352	0.000006	1.03E-06
4	20	24	0.000308	0.000432	0.000018	2.57E-06
5	24	28	0.000353	0.000458	0.000009	1.06E-06
7	24	28	0.000381	0.000477	0.000013	1.69E-06
10	26	30	0.000403	0.000487	0.000006	7.38E-07
12	26	30	0.000395	0.000470	0.000006	7.78E-07
15	25	29	0.002431	0.000723	0.000012	1.49E-06
20	27	31	0.000446	0.000569	0.000005	5.98E-07
30	27	31	0.000544	0.001068	0.000006	7.25E-07
50	28	32	0.000582	0.000986	0.000004	5.46E-07
70	28	32	0.000819	0.001104	0.000005	6.41E-07
100	28	32	0.011488	0.016086	0.000006	7.63E-07
150	29	33	0.006676	0.014626	0.000005	5.48E-07
200	29	33	0.007849	0.012035	0.000005	6.31E-07
300	30	33	0.008208	0.014460	0.000004	7.70E-07
500	30	34	0.015304	0.018243	0.000005	5.84E-07

Wnioski

Metoda Jacobiego jest to metoda iteracyjna, dlatego możemy w łatwy sposób poprawić niedokładne rozwiązanie układu równań liniowych.

Na jakość uzyskanego rozwiązania wpływa w dużym stopniu wybrana przez nas precyzja co możemy zauważyć w powyższych tabelach.

Porównując tabele 1 oraz 2 można zauważyć, że dla takiej samej precyzji wartość wektora początkowego ma znaczenie. Liczba iteracji znacznie wzrosła przy zmianie wektora początkowego z [0,0,0...] na [100,100,100...].

Liczba iteracji i czas działania zależą od wybranej precyzji, rozmiaru układu macierzy oraz tego, jak blisko wektor początkowy jest rzeczywistego rozwiązania.

W metodzie Jacobiego zostały wykorzystane dwa kryteria, drugie z nich okazało się być bardziej rygorystycznym i skutkowało większą liczbą iteracji, ale również lepszymi wynikami błędów (mniejszymi).

Problem 2

Dowolną metodą znajdź promień spektralny macierzy iteracji (dla różnych rozmiarów układu – takich, dla których znajdowane były rozwiązania układu).

Sprawdź, czy spełnione są założenia o zbieżności metody dla zadanego układu.

Opisz metodę znajdowania promienia spektralnego.

Rozmiary układu, które zostały przetestowane w tym zadaniu to: 3, 4, 5, 7, 10, 12, 15, 20, 30, 50, 70, 100, 150, 200, 300, 500.

Promień spektralny to maksymalna wartość spośród wartości bezwzględnych wartości własnych macierzy. Wartościami własnymi macierzy nazywamy pierwiastki wielomianu charakterystycznego dla tej macierzy.

 $w_A(\lambda) = det(A) - \lambda I$

gdzie I to macierz jednostkowa.

Tabela 4: Wyniki promieni spektralnych macierzy iteracji oraz sprawdzenie czy są spełnione założenia o zbieżności metody dla zadanego układu i dla różnych rozmiarów układu

n	promień spektralny	założenie	
3	0.422512	True	
4	0.611499	True	
5	0.613154	True	
7	0.617553	True	
10	0.619754	True	
12	0.620731	True	
15	0.622103	True	
20	0.622700	True	
30	0.623676	True	
50	0.624439	True	
70	0.624758	True	
100	0.624993	True	
150	0.625173	True	
200	0.625263	True	
300	0.625352	True	
500	0.625423	True	

Wnioski

Możemy zauważyć, że w tym przypadku wszystkie promienie spektralne dla obliczonych rozmiarów układu są mniejsze od 1 czyli spełniają warunek zbieżności metody Jacobiego dla danego układu równań. Również można zauważyć na powyższej tabeli, że dla coraz większych rozmiarów układu wartości promieni spektralnych zwiększają się o bardzo małe wartości.