$S = \iiint \left(\frac{1}{6} \left(6 \,\mathcal{A}^{\alpha\beta\chi} \,\sigma_{\alpha\beta\chi} + 6 \,f^{\alpha\beta} \,\tau \left(\Delta + \mathcal{K}\right)_{\alpha\beta} + 8 \,r_{\cdot} \,\partial_{\beta}\mathcal{A}_{\alpha_{i}\theta} \,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 4 \,r_{\cdot} \,\partial_{\beta}\mathcal{A}_{\alpha\theta_{i}} \,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 4 \,r_{\cdot} \,\partial_{\beta}\mathcal{A}_{\beta\alpha_{i}\theta} \,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 2 \,r_{\cdot} \,\partial_{\beta}\mathcal{A}_{\alpha\beta\theta} \,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2 \,r_{\cdot} \,\partial_{\beta}\mathcal{A}_{\alpha\beta_{i}\theta} \,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 4 \,r_{\cdot} \,\partial_{\theta}\mathcal{A}_{\alpha\beta_{i}\theta} \,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 4 \,t_{\cdot} \,\mathcal{A}_{\beta\alpha_{i}\theta} \,\partial^{\theta}f^{\alpha_{i}} + 2 \,t_{\cdot} \,\partial_{\alpha}f_{\beta_{i}\theta} \,\partial^{\theta}f^{\alpha_{i}} - t_{\cdot} \,\partial_{\alpha}f_{\beta_{i}\theta} \,\partial^{\theta}f^{\alpha_{i}} + t_{\cdot} \,\partial_{\beta}f_{\alpha\beta_{i}\theta} \,\partial^{\theta}f^{\alpha_{i}} + t_{\cdot} \,\partial_{\beta}f_{\alpha\beta_{i}\theta} \,\partial^{\theta}f^{\alpha_{i}\theta} + 2 \,\partial^{\theta}f^{\alpha_{i}\theta} +$

PSALTer results panel

 $0.^{+}\sigma^{\parallel}$ † $0.^{+}\tau^{\parallel}$ †

					•				-			
			$\frac{6}{(3+k^2)^2 t_{.2}}$					0	0			
		$1.^+\sigma^{\perp}$ †	$\frac{3\sqrt{2}}{(3+k^2)^2t_{.2}^2}$	$\frac{3}{(3+k^2)^2t}$	$\frac{3 i k}{(3+k^2)^2 t}$	0	0	0	0			
		$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t}$	$-\frac{3ik}{(3+k^2)^2t.}$	$\frac{3k^2}{(3+k^2)^2t.}_{2}$	0	0	0	0			
		$^{1}\sigma^{\parallel}$ † $^{\alpha}$	0	0	0	0	0	0	0			
		$\frac{1}{2}\sigma^{\perp} + \alpha$	0 0 0	0	0	0	0	0	0			
		$1^{-}\tau^{\parallel} +^{\alpha}$	0	0	0	0	0	0	0			
		$1^{-}\tau^{\perp} \uparrow^{\alpha}$	0	0	0	0	0	0	0	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{.}\tau^{\parallel}_{\alpha\beta}$	$^{2}\sigma^{\parallel}_{\alpha\beta\chi}$
									$^{2^+}\sigma^{\parallel}\dagger^{\alpha\beta}$	0	0	0
									$2^+\tau^{\parallel} \uparrow^{\alpha\beta}$	0	0	0
									$\dot{\sigma}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0
Source constraints												
Spin-parity form Covariant form												
0,+ T [±] =	== 0	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$ == 0										

$0^+\tau^{\parallel}=0$ xAct

$0.^{+} \tau^{\parallel} == 0$	xAct`xTensor`Private`Reconstruct[1
	Symmetry[4, $0.^+ \check{\mathcal{P}}_b^{\bullet 1 \bullet 2} \tau^{\parallel \bullet 3 \bullet 4}$, $\{\bullet 1 \rightarrow a, \bullet 2 \rightarrow b, \bullet 3 \rightarrow -a, \bullet 4 \rightarrow -b\}$,	
	StrongGenSet[{}, GenSet[]]], {1, {a, -a, b, -b}[[{1, 3, 5, 2}]]}] == 0	
$^{0^+}\sigma^{\parallel}==0$	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} == 0$	1
1-τ ^{⊥α} == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
1- _τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\frac{1}{1}\sigma^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}==0$	3
$1 \sigma^{ \alpha } = 0$	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\alpha}{}_{\chi} == \partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\delta}$	3
$\overline{ik} 1^+_{\cdot} \sigma^{\parallel^{\alpha\beta}} + 1^+_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}==$	3
	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi}$	
$1^+ \sigma^{\parallel}^{\alpha\beta} = 1^+ \sigma^{\perp}^{\alpha\beta}$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\chi \alpha \beta} = 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi}$	3
$2 \sigma^{\parallel \alpha \beta \chi} == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} +$	5
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{\delta}^{\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\beta\epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\alpha}_{\delta} = =$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\delta}{}^{\epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{\delta}$	
$2^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi\beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi}$	
$2^+_{\cdot}\sigma^{\parallel^{\alpha\beta}}=0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi}_{\chi}^{\delta} + 3 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi})$	5
Total expected gauge	e generators:	36

Multiplicities

?

Massive spectrum

Pole residue: $\left| -\frac{1}{r_{i}} > 0 \right|$

		2						
	Square mass:	$-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$						
	Spin:	0						
	Parity:	Odd						
Massless spectrum								

(No particles)

Unitarity conditions

r. < 0 && t. > 0