

Eötvös Loránd Tudományegyetem

Informatikai Kar

Komputeralgebra Tanszék

Prímszita algoritmusok összehasonlítása

Vatai Emil Adjunktus Nagy Péter

Programtervező Informatikus BSc

Tartalomjegyzék

1.	\mathbf{Bev}	ezetés	2
	1.1.	Motiváció	2
	1.2.	Dolgozat eredményei	2
2.	Felhasználói dokumentáció		3
	2.1.	A megoldott feladat	3
	2.2.	A program telepítése és futtatása	3
	2.3.	A szitatábla-generátor	3
	2.4.	Mintaadatbázis karbantartása	3
	2.5.	Szitatáblák ellenőrzése	3
	2.6.	Minta megjelenítése	3
	2.7.	Minta közelítése függvényekkel	3
3.	Fejl	esztői dokumentáció	4
	3.1.	A program komponensei	4
	3.2.	A forráskód felosztása	4
	3.3.	Adatszerkezetek	4
	3.4.	Numerikus algoritmusok	4
	3.5.	Sziták	4
	3.6.	Prioritásos sorok	4
		3.6.1. Bináris kupac	5
		3.6.2. Bigyó	5
	3.7.	Memória	6
	3.8.	Teszt	6
		3.8.1. Adatszerkezetek	6
		3.8.2. Numerikus pontosság és sebesség	6
		3.8.3. Sziták	6
		3.8.4. Elmélet vs. mért	6
	2.0	П / 1	c

1. fejezet

Bevezetés

Motiváció

Sziták összehasonlítása azonos környezetben. Hatékonyság összehasonlítása az elmélet szerint várható értékekkel. Ellenőrzésként a prímek néhány statisztikájának összevetése az elméleti értékekkel, és az ismert eredményekkel. Hatékonyság és implementálhatóság.

Dolgozat eredményei

2. fejezet

Felhasználói dokumentáció

A megoldott feladat

A program telepítése és futtatása

A szitatábla-generátor

Mintaadatbázis karbantartása

Szitatáblák ellenőrzése

Minta megjelenítése

Minta közelítése függvényekkel

3. fejezet

Fejlesztői dokumentáció

A program komponensei

A forráskód felosztása

Adatszerkezetek

Numerikus algoritmusok

Egyenletrendszerek. Összeadás. Körül kéne írni, hogy igazán tudjuk, hogy hipotézisvizsgálatra nem vállalkozunk.

Sziták

Eratosztenész szitája, szegmentáltan is. COLS. Prioritásos sorral. Atkin szitája.

Szegmentált szita inicializálása.

Trial division. Pszeudoprím teszt.

Feltételek. Elméleti sebesség.

Prioritásos sorok

```
1: q \leftarrow \text{ÚJ-SOR}

2: \mathbf{for} \ i \leftarrow 2, n \ \mathbf{do}

3: \mathbf{while} \ \exists (p, k) \in q : k \leq i \ \mathbf{do}

4: (p, k) \leftarrow \text{Sor-Eltávolít-Min}(q)

5: \text{Megjel\"ol}(i)

6: \text{Sor-Besz\'ur}(q, (p, k+p))
```

```
    7: end while
    8: if ¬ MEGJELÖLT?(i) then
    9: SOR-BESZÚR(q, (i, 2i))
    10: end if
    11: end for
```

Bináris kupac

A mérések grafikonják pixelei alapján lassú. A beszúrásonkénti elméleti $\mathcal{O}(log|q|)$ ideje se biztató.

Bigyó

A bigyó egy természetesszám-párokat tartalmazó monoton prioritásos sor. A szám-párok egy prímet, és a prím egy szitálási pozícióját reprezentálják. A sor monoton, minden állapotához tartozik egy érték, a sor aktuális pozíciója, aminél kisebb vagy egyenlő pozíciójú értéket a sor nem tartalmazhat. A bigyó edények egy végtelen sorozatát is tárolja, a sor elemei ezekbe az edényekbe kerülnek. Egy eltárolt elem helyét a sorozatban az elem pozíciójának és a sor aktuális pozíciójának távolsága határozza meg.

A távolságfüggvény legyen

$$d(x,y) := |\log_2(x \oplus y)| \qquad (x,y \in \mathbb{N}, y > x \ge 0)$$

ahol \oplus a bitenkénti XOR.

d(x, y) a legnagyobb bit-index, ahol x és y eltér.

Ha q egy bigyó, legyen q.a q aktuális pozíciója, és q.e[i] q i. edénye. AZ edények, és a számpárok struktúrája...

Egy q bigyó invariánsa

$$\forall (p,k) \in q:$$

$$q.a < k$$

$$\forall i \in \mathbb{N}_0: (p,k) \in q.e[i] \iff i = d(q.a,k)$$

$$\forall (p,k) \not\in q: \forall i \in \mathbb{N}_0: (p,k) \not\in q.e[i]$$

Új, üres sor létrehozása tetszőleges kezdőpozíciótól, és meglévő sorba elem beszúrása...

A sor elemeinek feldolgozása i-ig

1: while q.a < i do

```
j \leftarrow d(q.a, q.a + 1)
 2:
       q.a \leftarrow q.a + 1
 3:
       for all (p,k) \in q.e[j] do
 4:
           EDÉNY-KIVESZ(q.e[j], (p, k))
 5:
 6:
           if k = i then
 7:
               VISSZAAD((p, k))
           {f else}
 8:
               Edény-Beszúr(d(q.a, k), (p, k))
 9:
           end if
10:
       end for
11:
12: end while
```

Helyesség

Idő

Hely

Számrendszer

Cache

Memória

Összes prím, és pozíciója 2^32 -ig. Garbage collector.

Teszt

Adatszerkezetek

Numerikus pontosság és sebesség

Sziták

Elmélet vs. mért

Források