Fallstudien II

Laura Kampmann, Christian Peters, Alina Stammen

12. Dezember 2020

Inhalt

1. Task I - Vorhersage der Datenrate

Gradient Boosted Trees

Regression mit ARMA-Fehlern

Validierung

Task II: Handover Vorhersage und Link Lifetime Lösungsansatz Task II

Task I - Vorhersage der

Datenrate

Task I - Vorhersage der Datenübertragungsrate

- Ziel: Evaluation von neuen *anticipatory vehicular communication* systems durch möglichst realitätsnahe Simulationen [2]
 - ⇒ Ansatz: Data-Driven Network Simulation
- Durch Machine Learning Modelle sollen möglichst realistische Vorhersagen der Datenraten generiert werden
- Hoffnung: Bessere Aussagekraft der Simulationen durch Einsatz echten Datenmaterials

Task I - Vorhersage der Datenrate

Gradient Boosted Trees

Gradient Boosted Trees

- Kann man aus vielen "schwachen" Lernern einen starken Lerner konstruieren?
 - ⇒ Ja, Boosting ist eines der mächtigsten Konzepte des Machine Learning [1]
- Kombination von einfachen CART Bäumen zu einem starken Ensemble
 - ⇒ Ähnlich zu Random Forest
- Der Unterschied zum Random Forest liegt im Training!

Training von Gradient Boosted Trees

- Bäume werden nacheinander zum Ensemble hinzugefügt
- Jeder neue Baum versucht, die Schwächen seiner Vorgänger "auszubügeln"
 - ⇒ Additives Training
- Je mehr Bäume aufgenommen werden, desto geringer wird der Training-Error (das Modell wird aber komplexer)
 - ⇒ Kontrolle des Bias-Variance Tradeoffs
 - ⇒ Zusätzlich gibt es Regularisierungs-Parameter

Task I - Vorhersage der Datenrate

Datenrate

Regression mit ARMA-Fehlern

Figure 1: Grafik der auf der ersten Testfahrt im Szenario "Highway" gemessenen Datenübertragungsrate.

- Zeitreihe $y_1, ..., y_n$ (Zielvariable)
- k Zeitreihen $x_{i,1},...,x_{i,n}$ für i=1,...,k (Einflussvariablen)

Regression mit ARMA-Fehlern

Lineares Regressionsmodell

$$y_t = c + \beta_1 x_{1,t} + ... + \beta_k x_{k,t} + \epsilon_t$$
 mit Fehler ϵ_t und Konstante c

Annahmen an Fehler:

- $E((\epsilon_1,...,\epsilon_n)^T)=0$
- $Cov((\epsilon_1, ..., \epsilon_n)^T) = \sigma^2 \mathbb{1}_n$

Annahmen sind in unserer Situation nicht einhaltbar!

Regression mit ARMA-Fehlern

ARMA(p, q): Zusammengesetzes Modell aus

- AR(p) (Auto Regressive): Linearkombination aus
 - p vorherige Beobachtungen,
 - Konstante
 - Fehler
- MA(q) (Moving Average): Linearkombination aus
 - q vorherige Fehler
 - Konstante
 - aktueller Fehler

Regression mit ARMA-Fehlern

Anwendung auf Regressionsfehler

<u>Erinnerung</u>: Fehler $(\epsilon_1, ..., \epsilon_n)$ des linearen Modells sind autokorreliert \Rightarrow erfüllen Voraussetzungen nicht

Lösung: Wende ARMA-Modell auf Fehler an

Modellgleichung Regression mit ARMA-Fehlern:

$$y_t = c + \sum_{i=1}^k \beta_i x_{i,t} + \sum_{j=1}^p \phi_j \epsilon_{t-j} + \sum_{\substack{k=1 \ \text{vergangene Fehler LM}}}^q \theta_k e_{t-k} + e_t$$

8

Datenrate

Task I - Vorhersage der

Validierung

Validierung

k-fache Kreuzvalidierung

- beachtet Abhängigkeit der Datenpunkte nicht
- zerstört zeitliche Komponente
- verwendet eventuell zukünftige Beobachtungen für Prognose der Gegenwart
- ⇒ Kreuzvalidierung für Zeitreihen

Validierung

Figure 2: Einteilungen in Trainings- und Testdatensätze bei der Kreuzvalidierung für Zeitreihen.

Task II: Handover Vorhersage

und Link Lifetime

Aufgabenstellung Task II

Vorhersage des Handovers und Link Lifetime

- Vergleich des RSRP Wertes zur verbundenen Zelle sowie zu den Nachbarzellen
- Vorhersage des Handovers durch Angabe der Link Lifetime

Task II: Handover Vorhersage

und Link Lifetime

Lösungsansatz Task II

Lösungsansatz Task II

Idee: Prädiktionsmodell für Link Lifetime mit Einfluss des RSRP der verbunden sowie der Nachbarzellen

- \rightarrow Datentransformation nötig
 - Anpassen der RSRP Messwerte in "Cells" an RSRP Werte in "Context"
 - Cell Id \rightarrow eNodeB
 - ullet eNodeB Wechsel o Response Variable Link Lifetime

time_s [‡]	rsrp_dbm	ci [‡]	scenario [‡]	provider	enodeb [‡]	drive_id [‡]	rsrp_neighbor [‡]	link_lifetime
0.06	-98	13828122	campus	02	54016	1	-99	18.01
1.07	-101	13828122	campus	02	54016	1	-104	17.00
2.07	-101	13828122	campus	o2	54016	1	-104	16.00
3.07	-94	13828122	campus	02	54016	1	-100	15.00
4.07	-94	13828122	campus	02	54016	1	-100	14.00

Prädiktionsmodell Task II

- Anwendung des Prädiktionsmodells XGBoost um Link Lifetime vorherzusagen
- Validierung analog zu Task I mit Zeitreihenkreuzvalidierung

Literatur i

T. Hastie, R. Tibshirani, and J. Friedman.

The elements of statistical learning: data mining, inference and prediction.

Springer, 2 edition, 2009.

B. Sliwa and C. Wietfeld.

Data-driven network simulation for performance analysis of anticipatory vehicular communication systems.

IEEE Access, 7:172638-172653, 2019.