

Преподаватель Рудаков И.В.

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>
W-6
Лабораторная работа № <u>4</u>
Дисциплина Моделирование
Тема Моделирование работы обслуживающего аппарата
Студент Игнатьев А.И.
Группа ИУ7-73Б
Оценка (баллы)

Москва. 2020 г.

Условие

Промоделировать систему, состоящую из генератора, памяти и обслуживающего аппарата. Генератор выдает сообщения, распределенные по равномерному закону. Они приходят в память и принимаются на обработку по закону Пуассона (вар. 5 из ЛР 2). Параметры законов задаются. Определить оптимальную длину очереди, при которой не будет потерь сообщений. Реализовать по принципу Δt и по событийному принципу. Параметром а задавать вероятность возврата заявки в очередь.

Теоретические сведения

Для разработки программной модели исходная система должна быть представлена как стохастическая система массового обслуживания. Это можно объяснить следующим: информация от внешней среды поступает в случайные моменты времени, длительность обработки различных типов информации может быть в общем случае различна. Т.е. внешняя среда является генератором сообщений. А комплекс вычислительных устройств (ВС) – обслуживающими устройствами.

Генератор сообщений имитируется моментами времени, отображающими появление очередного сообщения в потоке. В данной работе сообщения генерируются по равномерному закону с параметрами а, b. Блок буферной памяти должен производить запись и считывание чисел, выдавать сигналы переполнения и отсутствия данных в любой момент времени располагать сведениями о количестве требований (заявок) в блоке. Сама запоминающая среда в простейшем случае имитируется одномерным массивом, размер которого определяет ёмкость памяти. Программа-имитатор работы обслуживающего аппарата (ОА) представляет собой комплекс, вырабатывающий случайные отрезки времени, соответствующие длительностям обслуживания требований. В данной работе длительности обработки сообщений ОА генерируются по закону Пуассона с параметром λ.

Принцип Δt заключается в последовательном анализе состояний всех блоков в момент $t + \Delta t$ по заданному состоянию блоков в момент t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов, задаваемых распределениями вероятности. В результате такого анализа принимается решение о том, какие общесистемные события должны имитироваться программной моделью на данный момент времени.

При использовании событийного принципа состояние всех блоков имитационной модели анализируется лишь в момент появления какого-либо события. Момент поступления следующего события определяется минимальным значением из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояния каждого из блоков системы.

Результаты работы

На рис. 1, 2, 3 представлены результаты работы программы после обработки 1000 сообщений.

	+
Вероятность возврата	Минимальная длина очереди
0	+ 5
0.05	l 6
0.1	l 8
0.2	12
0.5	170
0.75	494
0.9	576
 Событийный принцип	+
Событийный принцип	+ Минимальная длина очереди
Событийный принцип	-
Событийный принцип Вероятность возврата	+
Событийный принцип Вероятность возврата 0	+
Событийный принцип Вероятность возврата 0 0.05	+
Обытийный принцип Вероятность возврата 0 0.05 0.1	+
Обытийный принцип Вероятность возврата 0 0.05 0.1 0.2	+

Рисунок 1. Результаты при $a = 1, b = 2, \lambda = 1$

Принцип dt	
Вероятность возврата	Минимальная длина очереди
1 0	
0	5
0.05	8
0.1	6
0.2	9
0.5	190
0.75	462
0.9	545
Событийный принцип	
+	
+	
Вероятность возврата	
+	6
Вероятность возврата +	6
Вероятность возврата 0 0.05 0.1	6 6 9
Вероятность возврата 0 0.05 0.1 0.2	6 6 9 9
Вероятность возврата 0 0.05 0.1 0.2 0.5	6 6 9 9

Рисунок 2. Результаты при $a=1,\,b=5,\,\lambda=2$

Вероятность возврата	Минимальная длина очереди
+	+
0	189
0.05	222
0.1	290
0.2	376
0.5	708
0.75	921
0.9 + Событийный принцип	1086 +
+ Событийный принцип +	1086 + + Минимальная длина очереди
+ 	+
+ 	+
+ 	+ + Минимальная длина очереди + - 199 209
+	+ - Минимальная длина очереди + - 199 209 335
	+ - Минимальная длина очереди + - 199 209 335 401
+ 	+ - Минимальная длина очереди + - 199 209 335

Рисунок 3. Результаты при $a=0,\,b=10,\,\lambda=6$

Выводы

В данной работе была смоделирована система, состоящая из генератора, памяти и обслуживающего аппарата, рассчитана длина очереди, при которой отсутствуют потери.