Regular expression

Strings and languages

- Regular expression are suitable for describing tokens
- As string is a finite sequence of symbols such as "aabb" or "010"
- The length of a string is denoted by |x|
- The term language means a set of strings formed from some specific alphabet
- Simple sets
 - $-\phi$ which denote an empty set
 - $\{ \in \}$ which denotes containing only the empty string

Strings and languages

Concatenation

- If L and M are languages then
- LM={xy| x is in L and y is in M}

union

- LU $M=\{x \mid x \text{ is in L or x is in M}\}$
- Let L={0,01,110}
- Let M=(00,111,1101,10)
- LUM={0,01,110,00,111,1101,10}
- φUL=LU φ=L
- $\phi L = L \phi = \phi$

Strings and languages

- closure
- $L^* = \bigcup_{i=0}^{\infty} L^i$

Definition of regular expression

- The regular expression over alphabet ∑ are exactly those expressions that can be constructed from the following rules
- Each regular expression denotes a language
- Any set represented by a regular expression is called a regular set
- 1. \in is a regular expression denoting $\{\in\}$, that is, the language containing the empty string
- 2. For each a in \sum , a is a regular expression denoting $\{a\}$
- 3. If R and S are regular expression denoting L_R and L_S respectively, then
 - i. (R) | (S) is a regular expression denoting $L_R U L_S$
 - ii. (R). (S) is a regular expression denoting L_R . L_S
 - iii. (R) * is a regular expression denoting L_R *

Definition of regular expression

- Identifier=letter (letter | digit)*
- (a| b)*
- a|ba*
- Two regular expression are considered equivalent
 - If?

Identities

- (PQ)*R=P(QP)*
- (P+Q)R=PR+QR and R(Q+P)=RP+RQ
- R*R*=R*

Class work

- Represent the following sets by regular expression
 - 1. {0,1,2}
 - 2. $\{1^{2n+1} \mid n>0\}$
 - 3. $\{a^2, a^5, a^8, ...\}$
 - 4. The set of all strings over {a,b} beginning with a and ends with b
 - 5. The set of all strings over {0,1} which has at most two zeros

Next classes topics

- Finite automata
- Deterministic automata
- Non deterministic automata
- Conversion a deterministic automata from a non deterministic automata
- Converting non deterministic finite automata from a regular expression
- Minimized the number of states of a DFA

solution

- 0+1+2
- 111(11)*
- aa(aaa)*
- a(a+b)*b
- 1*+1*01*+1*01*01*