#### Képfeldolgozás 7. hét

Mozgás felhasználása a képfeldolgozásban Mozgásparallaxis Mozgásérzékelés differenciaképek segítségével Zajszűréssel egybekötött mozgásérzékelés Optical flow Mozgás alapú szegmentálás

## Az előző rész tartalmából...

#### Térlátás összetevői

Mai ismereteink szerint három kategóriába sorolhatók:

- monokuláris ("egy szemmel")
  - Lineáris perspektíva
  - A tárgy elvárt mérete és textúra torzítás
  - Árnyalás és takarás
  - Légköri torzítások
- 2. extraretinális (nem látványból származó)
- 3. binokuláris ("két szemmel")







#### Műszaki megoldások

#### Shape from X, ahol az X:

- Shading
- Focus
- Texture
- Motion
- Stereo











#### Sztereó látás és nehézségei

Bal kamera képe



Jobb kamera képe



Elképzelhető, hogy

- Valami nem látszik mindkét képen
- A keresett pont takarásba kerül más objektumok által

Diszparitás probléma: Keressük meg mindkét képen az egymásnak megfelelő pontokat

(képjellemzőket)!





Jobb kamera képe

#### Megfeleltetési módszerek

- 1. Korrelációs módszerek
  - Tömbök összehasonlításán alapul
    - Négyzetösszeg (Sum of square distance SSD)

$$c(dx, dy) = \sum_{k=-M}^{M} \sum_{l=-N}^{N} \psi \left( I_{L}(x_{L} + k, y_{L} + l), I_{R}(x_{L} + dx + k, y_{L} + dy + l) \right)$$

$$\Psi(u,v) = -(u-v)^2$$

Abszolútérték-összeg (Sum of absolute distance – SAD)

$$\Psi(u,v) = -|u-v|$$

- 2. Képjellemzőkre alapuló módszerek
  - SIFT (Skálázás invariáns képjellemző transzformáció) (eltolás, elforgatás, átskálázás és kismértékű torzításra invariáns képleírókat )







#### Sztereó látás matematikai alapjai

Párhuzamos optikai tengelyek esetén (koplanáris elrendezés)

A mélységi információ meghatározásához a

kalibrációból származik:

- fókusztávolság
- bázistávolság (két kamera távolsága)

$$Z = \frac{fb}{x_1 - x_2} = \frac{fb}{dx}$$

A képek alapján mérhető a

megfelelő képpont eltolódás dx távolsága



#### Sztereó látás általános esetben

Rektifikálás: Képek torzítása úgy, hogy visszakapjuk a koplanáris elrendezést

Bal kamerakép Jobb kamerakép





# Mozgásból származó információ felhasználása a képfeldolgozásban

#### Mozgás

Ha folyamatában nézzük a képeket, akkor **többletinformáció** nyerhető ki → a **mozgás** vizsgálata

A mozgás rengeteg információt hordoz magában:

- A perspektíván keresztül térérzetet illetve térbeli információt ad az objektumokról (motion parallax)
- Sebesség érzékelés (veszélyek felismerése)
- Mozgó objektum elkülönítése (objektumszegmentálás)
- Objektumfelismerés és azonosítás
   (pl. viselkedés, mozgás alapján)



• ...

Érdemes átemelni a számítógépes látórendszerekbe is ezt a tudást!

#### Mozgás észlelése az élőlényeknél

Már a retina szintjén megtörténik a képjellemzők és a mozgás szegmentálása, az agy tömörített információt kap!



animáció



On-Off irányszelektív sejtek, és az Off Sluggish sejtek tüzelése a retinában

11





#### Mozgás alapú képfeldolgozás

#### Alkalmazások:

- Biztonságtechnika: "Valami mozog, figyelj oda!"
- Kameramozgás korrekciója: képstabilizálás
- Objektumkövetés (összefüggő régió követése)
- Mozgás alapú felismerés (egyéni sajátosságok)
- Mozaikozás (képek egymáshoz igazítása, pl. panoráma)
- Kameramozgás alapján 3D rekonstrukció
- Videó tömörítés (mpeg)

• . . .



#### Egy korábbi példa (motion parallax)

Alakmeghatározás mozgás alapján (shape from motion). Ha az objektum a képsíkkal párhuzamosan mozog, nagyon hasonló a sztereó látáshoz, hiszen mindegy, hogy az objektum kis mértékben elmozdul vagy egy másik közeli pontból nézek rá.



animáció

1. állapot

2. állapot



# Mozgásparallaxis matematikai alapjai (Motion stereo)

#### Mozgásparallaxis, mozgás sztereó

Monokuláris (egykamerás) elrendezés, több felvételt készítünk ugyanarról a jelenetről (mozgó térbeli pontról).

A megoldás a korábban tárgyalttal megegyezik.

Most **ne a sztereó diszparitást** (optikai tengelyre merőleges, képsíkkal párhuzamosan történő elmozdulást) vizsgáljuk, hanem az optikai tengellyel párhuzamos, tehát mélység irányú különbségeket nézzük!

#### Kérdés:

Hogyan számíthatjuk ki a mélységinformációt?

Megjegyzés: A "mozgássztereó (motion stereo)" és a "mozgásparallaxis (motion parallax)" kifejezések gyakorlatilag szinonimaként használhatók, mivel mindkét esetben két képsíkunk van, csak az egyik esetben a két képsík egymás mellett, a másik esetben egyik a másik előtt helyezkedik el.



Elméletileg mindegy, hogy a tárgy mozog a kamera optikai tengelyével párhuzamosan, vagy a kamera mozdult el b távolsággal.

Mozgásparallaxis és mozgássztereó



Ismét a hasonló háromszögek elvét használtuk fel.

A vizsgált képpont elmozdulása (képeken mért távolsága) kifejezhető:

$$D = r_1 - r_2 = Rf\left(\frac{1}{z_1} - \frac{1}{z_2}\right)$$

#### Mozgásparallaxis, mozgássztereó

Ha a bázistávolság b = z2 - z1 és b << z1, z2, akkor

$$D = Rf\left(\frac{1}{z_1} - \frac{1}{z_2}\right) = Rf\left(\frac{z_2 - z_1}{z_1 z_2}\right) = \frac{Rfb}{Z^2}$$
Képsík x<sub>2</sub>
Képsík

Az ábrából kiolvasható, hogy

$$\frac{R}{Z} = \frac{r}{f}$$
, ahol  $r \approx \frac{r_1 + r_2}{2}$   $x_1$ 

Így:

$$D = \frac{Rfb}{Z^2} = \frac{R}{Z}\frac{fb}{Z} = \frac{r}{f}\frac{fb}{Z} \implies Z = \frac{br}{D}$$

Tehát ha ismert a kamera vagy a tárgy tengelyirányú elmozdulása (b), a képpont távolsága a középponttól (r), illetve a képpont (nem feltétlenül vízszintes) elmozdulása a képen (D), akkor kiszámolható a tárgypont távolsága (Z).

2024. 10. 14.

(X, Y, Z)

Kameratengely

# Mozgásérzékelés differenciaképek segítségével

#### Mozgásfelismerés

Képezzük a különböző időpontban készült képek különbségét!



A cél a mozgó régió ROI (Region of Interest) kijelölése, elkülönítése, ami a további feldolgozást (pl. felismerést) hatékonyabbá teheti.



A zaj miatt akár a teljes kép változhat, így a ROI a teljes kép lesz!

#### Akkumulatív differencia képek

A szomszédos frame-ek pixelein a differencia képet a céljainknak megfelelően többféleképpen vizsgálhatjuk.



Definiáljuk a pozitív akkumulatív differencia (PDP), a negatív akkumulatív differencia (NDP), és az abszolút akkumulatív differencia (ADP) fogalmat két egymás után felvett képen:

• PDP
$$(x, y) =$$

$$\begin{cases} 1, \text{ha } F_1(x, y) - F_2(x, y) > T_P \\ 0, \text{egy\'ebk\'ent} \end{cases}$$

• NDP
$$(x, y) =$$

$$\begin{cases} 1, \text{ha } F_1(x, y) - F_2(x, y) < T_N \\ 0, \text{egyébként} \end{cases}$$

• ADP
$$(x, y) =$$

$$\begin{cases} 1, \text{ha } |F_1(x, y) - F_2(x, y)| > T_A \\ 0, \text{egyébként} \end{cases}$$

# A képsorozatok akkumulatív differencia képei

Például homogén objektum egyirányú mozgása



# Zajszűréssel egybekötött mozgásérzékelés

#### LoG (Laplacian of Gaussian) szűrő képtartományban (emlékeztető)

Zajszűrés és élkeresés egyben

$$\sigma$$
:=1,4 (ez egy változtatható paraméter)
A konvolúciós ablak:
$$LoG_{5}x5 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 1 & 2 & -16 & 2 & 1 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$LoG_{9}x9 = \begin{bmatrix} 0 & 0 & 1 & 2 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & 5 & 5 & 5 & 5 & 3 & 1 & 0 \\ 1 & 3 & 5 & 3 & 0 & 3 & 5 & 3 & 1 \\ 2 & 5 & 3 & -12 & -23 & -12 & 3 & 5 & 2 \\ 2 & 5 & 0 & -23 & -40 & -23 & 0 & 5 & 2 \\ 2 & 5 & 3 & -12 & -23 & -12 & 3 & 5 & 2 \\ 1 & 3 & 5 & 3 & 0 & 3 & 5 & 3 & 1 \\ 0 & 1 & 3 & 5 & 5 & 5 & 3 & 1 & 0 \\ 0 & 0 & 1 & 2 & 2 & 2 & 1 & 0 & 0 \end{bmatrix}$$



#### LoG szűrő időtartományban

Alkalmazzuk az LoG szűrőt időtartományban úgy, hogy az adott pixelnek egy időablakban felvett értékeit súlyozzuk vele.

Ezzel egyszerre oldjuk meg a pixelek termikus zajának a csökkentését (Gauss) és a drasztikus intenzitásváltozás (mozgás) kiemelést (Laplace).



#### Morfológiai zajszűrés (ld. következő előadás)

A képen a termikus és pixelszerű zajok miatt kisméretű foltok keletkeznek.

A következő előadáson látunk módszereket ezeknek a kisméretű foltoknak az eltüntetésére.





### Optical flow (optikai áramlás)

#### A mozgás mesterséges ábrázolása





t+1.



Nyilak mutatják a képrészlet elmozdulásának irányát és nagyságát

#### Az optical flow definíciója

Az optikai áramlás egy vizuális jelenetben a megfigyelő és az objektumok relatív elmozdulása által létrejött látszólagos intenzitásmintázat változás.

Képpontokhoz vektor hozzárendelése <del>></del> megmutatja, hogyan jutunk el a következő képkockához

vektormező → optical flow (mező)

Bár sokan nem teljesen helyesen **elmozdulásmező**nek hívják, de igazából **sebességmező**! Hol van jelen a képben az idő a sebesség interpretációhoz?



#### Objektumkövetés stratégiák

 Az objektumon lévő jellegzetes pontok (pl. sarkok) alapján Feature Tracking

Előnye, hogy csak a jellegzetes pontokat kell követni → kisebb számítási igény

2. A teljes képen a textúraelemek elmozdulása alapján Optical Flow

Előnye, hogy homogén számítási jellege van a teljes képre (például GPU-n hatékonyabb)

A FT interpretációs ereje nagyobb, a jellegzetes pontok önálló jelentést hordozhatnak

(pl. szájzug).



#### Optical flow alkalmazás: Mozgás alapú szegmentálás





Figyelem! Bizonyíthatóan digitálisan manipulált videó!

#### Sebességmező nehézségek

- Homogén mező mozgásakor mit tapasztalunk?
- A gömb minden pontja ugyanakkora sebességgel forog! Látható, hogy a sebességmező nem a valódi sebességet mutatja! Mi okozza az eltérést?
- Később még lesz néhány példa a nehézségekre.



#### Képfeldolgozási stratégiák

Független feldolgozás: képek vagy képrészletek egymástól függetlenül történő feldolgozása



#### Képfeldolgozási stratégiák

Az optical flow esetén erősebb függés nem csak a képrészletek, hanem a szomszédos képek között is. (Párhuzamosíthatóság?)



#### Optical flow feladat összefoglalása

Bemenet: két, egymást követő képkocka

Kimenet: optical flow mező



#### Elmozdulás számítás

Összetartozó pixelek: ugyanannak a térbeli pontnak a két projekciója

Kérdés: Hogyan lehet az összetartozó pixeleket megtalálni?

Hogyan lehet egy pixel elmozdulását kiszámítani?

- A t. képen egy pixel párját megkeressük a t+1. képen
- A helyzetek különbsége lesz az elmozdulás



#### Optical flow feltételezések

- Egyelőre egyetlen kamerával dolgozunk
- Tegyük fel, hogy a háromdimenziós térben történő mozgás leképzése a képsíkon is mozgást eredményez.
- Az információ szinte mindig redukálódik!
- Legalább két kép kell a meghatározásához (a panorámaképnél láttuk, hogy a mozgás egy képen is megjelenhet, de abban az esetben is több pillanatot rögzítettünk)
- A képrészlet két képkocka között nagyon kis mértékben mozdul el  $\Delta x$  és  $\Delta y$  irányban, miközben intenzitása legfeljebb nagyon kis mértékben változik.

$$E(x, y, t) \approx E(x + \Delta x, y + \Delta y, t + \Delta t)$$

#### Állandó intenzitás leírása 1.

#### Rendelkezésre álló adatok:

- A mozgó pont helyzete  $x(t), y(t) \rightarrow$  a t. időpillanatban a pont koordinátái
- A pixel leírása:
  - $\circ$  E(x,y,t)  $\rightarrow$  a t. időpillanatban az (x,y) pixel intenzitását adja meg

A mozgó pont intenzitása a t. időpillanatban:

E(x(t), y(t), t)

#### Állandó intenzitás leírása 2.

A mozgó pont intenzitása állandó:

$$E(x(t+\Delta t), y(t+\Delta t), t+\Delta t) = E(x(t), y(t), t)$$

Írjuk fel az egyenlet Taylor-sorát:

$$E(x, y, t) \approx E(x + \Delta x, y + \Delta y, t + \Delta t) =$$

$$= E(x, y, t) + \frac{\partial E}{\partial x} \cdot \Delta x + \frac{\partial E}{\partial y} \cdot \Delta y + \frac{\partial E}{\partial t} \cdot \Delta t + \text{magasabb rendű, elhanyagolt tagok}$$

A magasabb rendű tagokat azért hanyagoljuk el, mert két képkocka között csak kis mértékű, lineáris változást feltételezünk.

Az egyenlet mindkét oldalából levonható a képrészlet eredeti helyen, a korábbi képkockán mért intenzitása:

$$\frac{\partial E}{\partial x} \cdot \Delta x + \frac{\partial E}{\partial y} \cdot \Delta y + \frac{\partial E}{\partial t} \cdot \Delta t \approx 0$$

2024. 10. 14.

39

#### Az optical flow korlátozás

A fenti egyenletet leosztva a  $\Delta t$  idővel

$$\frac{\partial E}{\partial x} \cdot \frac{\Delta x}{\Delta t} + \frac{\partial E}{\partial y} \cdot \frac{\Delta y}{\Delta t} + \frac{\partial E}{\partial t} \approx 0$$

Nagyon kicsi változásokat feltételezve adódik az **optical flow korlátozás** egyenlete:



#### Az optical flow alapegyenlet

Bevezetve az (u, v) sebességvektorokat, kapjuk az optical flow

alapegyenletét:

$$\frac{\partial E}{\partial x} \cdot u + \frac{\partial E}{\partial y} \cdot v + \frac{\partial E}{\partial t} \approx 0$$

Vagy egyszerűbb alakokban:

vektoros alak:

$$E_x \cdot u + E_y \cdot v + E_t \approx 0$$

$$\nabla E(\mathbf{x},t) \cdot \mathbf{v} + E_t(\mathbf{x},t) = 0$$

Az egyenlet értelmezése:

A változást 3 komponensre (tagra) bontottuk fel:

- Az intenzitás x irányú megváltozása (képgradiens x irányú komponense) \* x irányú u sebességvektor
- Az intenzitás y irányú megváltozása (képgradiens y irányú komponense) \* y irányú v sebességvektor
- Az intenzitás időben történő kismértékű változása

#### Geometriai értelmezés

**t**. időpillanatban az (x,y) pont körüli területet egy olyan 3D felülettel lehet jellemezni, amelynek a meredeksége x irányban  $E_x$ , y irányban  $E_y$ 

Ha a felszín a **t+1**. időpillanatig (u,v)-t mozdul el, akkor a fényesség változása  $E_t$  az (x,y) pontban



#### Optical flow egyenlet problémája

Az optical flow alapegyenlete v és u szerint nézve egy lineáris egyenlet

$$I_x \cdot u + I_y \cdot v + I_t \approx 0$$



$$v = -u \cdot \frac{I_x}{I_y} - \frac{I_t}{I_y}$$

egyenes egyenlet

Látható, hogy az egyenes összes pontja megoldja az egyenletet (végtelen darab), de valójában csak egyetlen pont adja a tényleges megoldást, azt a sebességet, amivel a képrészlet elmozdult: (u', v')

### Optical flow egyenlet problémájának következménye

Két ismeretlen (u és v), de csak egy egyenlet  $\rightarrow$  nincs egyértelmű megoldás

Csak a **gradiensvektorral párhuzamos** irányú elmozdulást lehet kiszámítani

$$E_x u + E_y v + E_t = 0$$



#### Apertúra probléma

Egy képrészlet (apertúra) alapján egyes esetekben a mozgásirányt nem tudjuk egyértelműen meghatározni.

Az oka az, hogy az optical flow alapegyenlet alulhatározott, ezért további korlátozásokat kell bevezetni.



"Barberpole" illúzió animáció



#### Az optical flow korlátozás kiegészítése

Szinte minden módszer alapját – közvetlenül, vagy közvetetten az optical flow korlátozás adja

Különbségek -> hogyan egészítik ki a hiányos egyenletet, hogy egyértelmű legyen a megoldás

Különböző típusú technikák:

- Differenciális módszerek
- Korrelációs technikák
- Spektrumképre épülő módszerek

#### Differenciális technikák

Legrégibb módszerek

Nagyon jó minőség  $\rightarrow$  az újabb *klasszikus* technikáknak sem sikerült érdemi javulást hozniuk

Sok egyéb technika alapját képezik

Legjelentősebb képviselői:

- Horn és Schunck módszere
- Lucas és Kanade módszere

#### Horn és Schunck módszere

A legelső optical flow számító módszer (1980-1981)

Neveikhez fűződik az alapok lefektetése (optical flow fogalma, konstans intenzitás kényszere, optical flow korlátozás levezetése stb.)

Az ún. **egyenletességi korlátozással** (smoothness constraint) egészítették ki az optical flow kényszeregyenletet





Nem egyenletes vektormező



Egyenletes vektormező

### Egyenletességi korlátozás

Feltételezi, hogy a szomszédos pontok közel azonos sebességgel mozognak -> a képsíkon a sebességvektorok egyenletesen változnak

Vagyis egy kis területen nincsen hirtelen ugrás a sebességek változásában

Az objektumok határát (ahol lehet hirtelen változás) nem kezeli (!)

Hibás!





#### Egyenletességi korlátozás formálisan

Sebességvektorok változása:

$$\frac{\partial u}{\partial x}$$
,  $\frac{\partial u}{\partial y}$ ,  $\frac{\partial v}{\partial x}$ ,  $\frac{\partial v}{\partial y}$ 

A vektorok összes változása:

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2$$

#### Az optical flow egyenlet kiszámítása

Vezessük be az optical flow korlátozás mellé az egyenletességi korlátozást, tehát vizsgáljuk azt, hogy egy kis területen egyenletes-e a sebességmező.

Az optical flow egyenlet egy újabb taggal bővül, ami a sebességekben lévő változásokat összegezi  $\alpha$  súllyal:

$$\varepsilon_{b} = E_{x}u + E_{y}v + E_{t}$$

$$\varepsilon_{c}^{2} = \left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial v}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial y}\right)^{2}$$

$$\varepsilon^{2} = \iint_{D} \left(\varepsilon_{b}^{2} + \alpha^{2}\varepsilon_{c}^{2}\right) dx dy$$

A feladat tehát ε² minimalizálása, amire vannak numerikus módszerek.

#### Megjegyzések Horn és Schunck módszeréhez

- A fenti összefüggés minden pontra két egyenletet ad → hagyományos módszerrel már megoldható → De! időigényes
- Helyette iteratív megoldás: először egy durva becslés, utána lépésenként egyre finomítjuk (~30-100 iteráció)
- Fontos kérdés még a deriváltak kiszámításához használt módszer kiválasztása is

### Horn és Schunck módszerére példa MATLAB környezetben

```
vidReader = VideoReader('visiontraffic.avi');
opticFlow = opticalFlowHS;
h = figure;
while hasFrame(vidReader)
  frameRGB = readFrame(vidReader);
  frameGray = rgb2gray(frameRGB);
  flow = estimateFlow(opticFlow,frameGray);
  imshow(frameRGB)
  hold on
  plot(flow, 'DecimationFactor', [5 5], 'ScaleFactor', 60);
  hold off
  pause(10^-3)
end
```

# Horn és Schunck MATLAB példa eredménye



#### Lucas és Kanade módszere

- Feltételezi, hogy a kép kisméretű szegmenseiben a sebesség állandó értékű → egy sebességvektorhoz több egyenlet tartozik
- Lokális technika: egy pont sebessége csak a lokális környezettől függ Formálisan: Az optical flow korlátozásból kiindulva:

$$E_{x}u + E_{y}v + E_{t} = 0$$

A vizsgált pixel és a négyzetes szomszédságában lévő képpontok sebessége ugyanaz. Tehát egy pont sebessége a környezetében lévő m x m méretű ablakot alapul véve ( $\Omega$  tartomány), a t időpillanatban:

$$\begin{bmatrix} E_{x}(x_{1}, y_{1}) & E_{y}(x_{1}, y_{1}) \\ E_{x}(x_{2}, y_{2}) & E_{y}(x_{2}, y_{2}) \\ \vdots & \vdots & \vdots \\ E_{x}(x_{m}, y_{m}) & E_{y}(x_{m}, y_{m}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} E_{t}(x_{1}, y_{1}) \\ E_{t}(x_{2}, y_{2}) \\ \vdots \\ E_{t}(x_{m}, y_{m}) \end{bmatrix}$$

### Konstans lokális sebesség kényszere

Ha az [A|b] mátrixban pontosan 2 lineárisan független egyenlet van  $\rightarrow$  egyértelmű megoldás

A redundancia miatt viszont valószínűleg több mint kettő a lineárisan független sorok száma  $\rightarrow$  túlhatározott egyenletrendszer.

Ezért minimalizálási célt kell keresni és így kell megoldani:

$$|\mathbf{A}\mathbf{v} - \mathbf{b}|^2 \rightarrow \min$$

$$\sum_{(x,y)\in\Omega} \left[ E_x(x,y)u + E_y(x,y)v + E_t(x,y) \right]^2 \to \min$$

### Konstans lokális sebesség kényszere

Ez egy legkisebb négyzet (LS) becslési probléma  $\rightarrow$  létezik "szabványos" megoldás:

$$\mathbf{A}^{T} \mathbf{A} \mathbf{v} = \mathbf{A}^{T} \mathbf{b}$$
$$\mathbf{v} = \left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}$$

#### Megjegyzések:

A megoldhatósághoz az  $A^TA$  mátrixnak invertálhatónak kell lennie

- Az objektumhatárok mentén továbbra is probléma van

#### A megoldás általánosítása/javítása

- Ahogy haladunk a magas felbontás felé, a sebességek egyre jobban változhatnak

Ezért érdemes az egyes pixelekhez súlyokat rendelni (általában Gauss eloszlás szerint)

Ezzel a korábbi egyenletek így módosulnak:

$$\mathbf{W}\mathbf{A}\mathbf{v} = \mathbf{W}\mathbf{b}$$

$$\sum_{\mathbf{x} \in \Omega} \mathbf{W}^{2}(\mathbf{x}) \left[ \nabla E(\mathbf{x}) \cdot \mathbf{v} + E_{t}(\mathbf{x}) \right]^{2}$$

$$\mathbf{A}^{T}\mathbf{W}^{2}\mathbf{A}\mathbf{v} = \mathbf{A}^{T}\mathbf{W}^{2}\mathbf{b}$$

$$\mathbf{v} = (\mathbf{A}^{T}\mathbf{W}^{2}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{W}^{2}\mathbf{b}$$

#### Megjegyzések Lucas és Kanade módszeréhez

#### Hátrány:

Csupán kisméretű elmozdulásokat tud detektálni

Megoldás: iteratív eljárás

- 1. Elsőként az eredeti kép alacsony felbontású változatán hajtjuk végre az algoritmust (nagy mozgás is csak néhány pixel elmozdulást jelent) (A képi piramisok alkalmazását már korábban is láttuk!)
- 2. Ezután egyre finomítjuk a vektormezőt

#### Korrelációs technikák

Eddig differenciális technikákat használtunk > numerikus differenciálás

Ez problémát jelenthet, ha:

- Alacsony a jel-zaj viszony (zajos a kép)
- Alacsony a képkockák száma
- A képnyerési folyamatban jelentkező torzításoknál

Ekkor jönnek számításba a korrelációs technikák

#### Illeszkedések leírása

A kép n x n méretű régióit vizsgáljuk az egyes pixelek helyett

Összevetjük a t. kép egy régióját a t+1. kép régióival  $\rightarrow$  Hozzárendelünk minden illesztéshez egy arányszámot. Két gyakori technika:

Keresztkorreláció (Cross-Correlation)

$$CC_{1,2}(\mathbf{x},\mathbf{d}) = \sum_{j=-n}^{+n} \sum_{i=-n}^{+n} W(i,j) \left[ E_1(\mathbf{x} + (i,j)) E_2(\mathbf{x} + (i,j) + \mathbf{d}) \right]$$

Eltérések négyzetösszege (Sum of Squared Differences)

$$SSD_{1,2}\left(\mathbf{x},\mathbf{d}\right) = \sum_{j=-n}^{+n} \sum_{i=-n}^{+n} W(i,j) \left[ E_1\left(\mathbf{x} + (i,j)\right) - E_2\left(\mathbf{x} + (i,j) + \mathbf{d}\right) \right]^2$$

Végül (attól függően, hogy világos vagy sötét régiót követünk) a legnagyobbat / legkisebbet kiválasztva kapjuk meg az elmozdulást.

#### Megjegyzések a korrelációs módszerekhez

A szomszédos pixelek erős összefüggésben állnak egymással

Az optical flow számítások hatékonyabbá tehetők, ha csökkentjük ezt a kapcsolatot

Példa: Laplace piramis



#### Spektrumképre épülő módszerek

 Néhány esetben érdemes frekvenciatérben végrehajtani az optical flow számításokat.

Pl. véletlen pontmintázatok mozgása → nincsen elég információ a differenciális vagy a korrelációs módszerekhez

A korábbiakhoz hasonlóan fel lehet írni az állandósági összefüggéseket

#### Két csoport:

- Energiára épülő technikák -> amplitúdót használják
- Fázisra épülő technikák → fázist veszik figyelembe

### Mozgás alapú szegmentálás

#### Szegmentálás az optical flow mezőn

#### Mi legyen a hasonlósági kritérium?



#### Optical flow mintapéldák

Az objektum áll

A kamera mozog, az objektum más irányban szintén

Az objektum az optikai tengely körül forog











A kamera áll, az objektum közelít





Az objektum az optikai tengelyre merőleges tengely körül forog ld. korábban a gömb

### Optical flow alkalmazás - Tágulási fókusz

Tágulási fókusz (focus of expansion – FoE) az a pont, ami felé közeledünk.

#### Felhasználható pl.:

- Akadálykerülés
- Ütközés-előrejelzés



## Köszönöm a figyelmet!