

Модуль 3. Циклические коды Важнейший класс циклических кодов. Коды БЧХ. Алгоритм Горенстейна-Петерсона-Цирлера.

Иванов Ф. И. к.ф.-м.н., доцент

Национальный исследовательский университет «Высшая школа экономики»

12 июня 2020 г.

Определение кода БЧХ

Определение

Кодом Боуза—Чоудхури—Хоквингема (БЧХ) над GF(q) называется такой циклический код, порождающий многочлен g(x) которого имеет своими корнями последовательность идущих подряд степеней некоторого произвольного элемента $\alpha \in GF(q^m)$:

$$\alpha^{\textit{b}}, \alpha^{\textit{b}+1}, ..., \alpha^{\textit{b}+\delta-2},$$

где b любое целое число и $\delta \geq 2$. Последовательность может содержать также только один элемент α^b .

Длина кода БЧХ

Теорема

Либо длина п кода БЧХ равна порядку элемента α^b , если $\delta-2=0$, либо порядку элемента α в противном случае, т.е. когда $\delta>2$.

Доказательство

При $\delta-2=0$ утверждение тривиально. Пусть $\delta>2$. Докажем, что H.O.К порядков корней равно в точности порядку элемента α . Действительно, пусть α порождает циклическую группу G порядка п. Именно к ней принадлежат все последовательные корни. Предположим противное. Пусть найдется такая подгруппа $G'\subset G$, которой принадлежат корни. Тогда все они являются степенями одного элемента α^h , т.е. имеют вид α^h , г.де h есть делитель п. Рассмотрим два соседних элемента α^{b+i} и α^{b+i+1} . По предположению $b+i=hj_0, b+i+1=hj_1$. Это значит, что $b+i+1-(b+i)=hj_1-hj_0=h(j_1-j_0)=1$, что возможно только при b=1 для любых соседних целых чисел $b+i=hj_0, b+i+1=hj_1$. Доказанное означает, что порядки элементов α^{b+i} , $i=0,1,...,\delta 2$ не являются делителями порядка никакой истинной подгруппы $G'\subset G$. Это значит, что они являются делителями только порядка α г.е. делителями порядка элемента α .

Граница БЧХ

Теорема

Минимальное расстояние кода БЧХ с корнями $\alpha^b, \alpha^{b+1}, ..., \alpha^{b+\delta-2}$ порождающего многочлена g(x) равно по меньшей мере δ .

Доказательство

Проверочная матрица кода БЧХ:

$$H = \begin{bmatrix} 1 & \alpha^b & (\alpha^b)^2 & \dots & (\alpha^b)^{n-1} \\ 1 & \alpha^{b+1} & (\alpha^{b+1})^2 & \dots & (\alpha^{b+1})^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & \alpha^{b+\delta-2} & (\alpha^{b+\delta-2})^2 & \dots & (\alpha^{b+\delta-2})^{n-1} \end{bmatrix}$$

Возьмем произвольный $\delta-1$ столбец из **H**:

$$D = \begin{pmatrix} (\alpha^b)^{j_1} & (\alpha^b)^{j_2} & \dots & (\alpha^b)^{j_{\delta-1}} \\ (\alpha^{b+1})^{j_1} & (\alpha^{b+1})^{j_2} & \dots & (\alpha^{b+1})^{j_{\delta-1}} \\ \vdots & \vdots & \ddots & \vdots \\ (\alpha^{b+\delta-2})^{j_1} & (\alpha^{b+\delta-2})^{j_2} & \dots & (\alpha^{b+\delta-2})^{j_{\delta-1}} \end{pmatrix}$$

или:

$$D = \alpha^{b(j_1 + j_2 + \dots + j_{d-1})} \begin{vmatrix} 1 & 1 & \dots & 1 \\ \alpha^{j_1} & \alpha^{j_2} & \dots & \alpha^{j_{\delta-1}} \\ \dots & \dots & \dots & \dots \\ (\alpha^{j_1})^{\delta - 2} & (\alpha^{j_2})^{\delta - 2} & \dots & (\alpha^{j_{\delta-1}})^{\delta - 2} \end{vmatrix}.$$

Пусть
$$\alpha^{b(j_1+j_2+...+j_{\delta-1})} = C, \alpha^{j_i} = a_i.$$

Доказательство - окончание

$$D = C \begin{vmatrix} 1 & 1 & \dots & 1 \\ a_1 & a_2 & \dots & a_{\delta-1} \\ \dots & \dots & \dots & \dots \\ a_1^{\delta-2} & a_2^{\delta-2} & \dots & a_{\delta-1}^{\delta-2} \end{vmatrix}.$$

В этом равенстве справа легко узнать определитель Вандермонда. Известно, что он отличен от нуля тогда и только тогда, когда все a_i различны и принадлежат области целостности: $D \neq 0$.

Тем самым доказано, что любые $\delta-1$ столбцов проверочной матрицы ${\bf H}$ кода БЧХ линейно независимы, а значит $d\geq \delta$

Алгоритм построения g(x)

- Выбирается длина n кода БЧХ как q^m-1 или некоторый делитель этого числа
- Определяем, сколько t ошибок требуется исправить кодом и рассчитывам $\delta = 2t + 1$.
- Выбираем подходящее b и строим последовательность $\alpha^b, \alpha^{b+1}, ..., \alpha^{b+\delta-2}$
- Для каждого элемента последовательности находим минимальную функцию $m_{lpha^{b+i}}(x)$ над GF(q)
- Строим порождающий многочлен g(x) как НОК минимальных функций

$$g(x) = [m_{\alpha^b}(x), m_{\alpha^{b+1}}(x), ..., m_{\alpha^{b+\delta-2}}(x)]$$

Пример построения

Рассмотрим циклический код с корнями g(x): $\alpha, \alpha^3, \alpha^5 \in GF(2^4)$. На самом деле получим последовательность:

$$\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^8, \alpha^9, \alpha^{10}, \alpha^{12},$$

которая автоматически получается из первоначальной добавлением к ней сопряженных элементов. Получилось, что подряд идущих степеней элемента α ровно шесть. Это значит, что $\delta-1=6$, и код заведомо исправляет любую комбинацию из трех и менее независимых ошибок. На самом деле здесь $d=\delta$.

Параметры кодов БЧХ

- Поле элементов: GF(q) выбирается заранее
- ullet Поле корней g(x): $GF(q^m)$ выбирается заранее
- Длина n: делитель q^m-1 выбирается заранее
- Число исправляемых ошибок: t выбирается заранее
- Число информационных символов:

$$k \geq n - 2tm(1 - 1/q)$$

Лучшая оценка:

$$k \ge n - tm$$

достигается для двоичных кодов БЧХ

Декодирование кодов БЧХ - вычисление синдрома

Пусть по каналу связи отправлен кодовый вектор

$$\mathbf{u} = (u_0, u_1, ..., u_{n-1})$$

кода БЧХ, и в канале произошла ошибка, изображаемая вектором

$$\mathbf{e} = (e_0, e_1, ..., e_{n-1})$$

На приёмном конце принят вектор

$$v = u + e$$

И декодер вычисляет

$$S = vH^T = eH^T$$

Вычисление синдрома

Так как i-ая строка матрицы H имеет вид:

$$\left(1\,\alpha^{b+i}\,(\alpha^{b+i})^2\,(\alpha^{b+i})^3\ldots(\alpha^{b+i})^{n-1}\right)$$

то если $\mathbf{S}=(S_0,S_1,...,S_{d-1})$, то:

$$S_{i} = \left(\left(1 \alpha^{b+i} (\alpha^{b+i})^{2} (\alpha^{b+i})^{3} ... (\alpha^{b+i})^{n-1} \right), (v_{0}, v_{1}, ..., v_{n-1}) \right)$$

или

$$S_i = v_0 + v_1 \alpha^{b+i} + v_2 (\alpha^{b+i})^2 + \dots + v_{n-1} (\alpha^{b+i})^{n-1}$$

 $S_i = v (\alpha^{b+i}) = e (\alpha^{b+i})$

Декодирование кодов БЧХ: $q=2,\;t=2$

Пусть t=2, d=5, b=1. Последовательность корней: $\alpha,\alpha^2,\alpha^3,\alpha^4$. В векторе ошибки е отличны от нуля 2 компоненты с неизвестными номерами j_1,j_2 , тогда:

$$S_1 = \alpha^{j_1} + \alpha^{j_2}$$

$$S_2 = (\alpha^2)^{j_1} + (\alpha^2)^{j_2} = S_1^2$$

$$S_3 = (\alpha^3)^{j_1} + (\alpha^3)^{j_2}$$

Положим для удобства $lpha^{j_1}=X_1,\ lpha^{j_2}=X_2$ и составим уравнение, корнями которого являются искомые величины:

$$(X - X_1)(X - X_2) = X^2 + (X_1 + X_2)X + X_1X_2 = 0.$$

Решение уравнения

$$(X - X_1)(X - X_2) = X^2 + (X_1 + X_2)X + X_1X_2 = 0.$$

Выразим коэффициенты через компоненты синдрома:

$$X_1 + X_2 = S_1,$$

$$S_3 = X_1^3 + X_2^3 = (X_1 + X_2)(X_1^2 + X_1X_2 + X_2^2) = S_1(X_1X_2 + S_1^2),$$

откуда

$$X_1 X_2 = S_1^2 + S_3 / S_1$$

Окончательно имеем:

$$X^2 + S_1X + S_1^2 + S_3/S_1 = 0$$

решив которое (перебором) найдем X_1 и X_2 .

Задача

Поле $GF(2^4)$ построено по модулю многочлена $p(x)=x^4+x^3+1$. Корнями порождающего многочлена кода БЧХ являются α и α^3 . Длина кода n=15. В принятом векторе

$$\mathbf{v} = (000101011001000)$$

найти искаженные символы в терминах α^i , исправить ошибку и убедиться, что получившийся после исправления вектор принадлежит коду.

Решение

В многочленной форме принятый вектор имеет вид:

$$v(x) = x^3 + x^5 + x^7 + x^8 + x^{11}$$
.

Проводя операции в поле $GF(2^4)$, построенном по модулю многочлена $p(x) = x^4 + x^3 + 1$, легко вычислить:

$$S_1 = v(\alpha) = \alpha^3 + \alpha^5 + \alpha^7 + \alpha^8 + \alpha^{11} = \alpha^7,$$

$$S_3 = v(\alpha^3) = \alpha^3 + \alpha^9 + \alpha^{15} + \alpha^6 + \alpha^9 = \alpha^{13}.$$

После подстановки найденных элементов $S_1 = \alpha^7$, $S_3 = ^{13}$ синдрома в квадратное уравнение оно станет таким:

$$x^2 + \alpha^7 x + \alpha^{12} = 0.$$

Корни: $X_1 = \alpha^4$, $X_2 = \alpha^8$ то есть ошибки на 5 и 9 позициях.

$$\mathbf{e} = (000010001000000)$$

$$\mathbf{u} = \mathbf{v} + \mathbf{e} = (000111010001000)$$

$$u(x) = x^3 + x^4 + x^5 + x^7 + x^{11}$$

$$u(\alpha) = \alpha^3 + \alpha^4 + \alpha^5 + \alpha^7 + \alpha^{11} = 0$$

$$u(\alpha^3) = \alpha^9 + \alpha^{12} + \alpha^{15} + \alpha^6 + \alpha^3 = 0$$

$$\mathbf{S} = \mathbf{0}$$

то есть вектор (000111010001000) является кодовым словом кода БЧХ.

случай декодирования двоичных кодов БЧХ

Пусть b=1, нужно найти t компонент

$$e_{j_1}, e_{j_2}, ..., e_{j_t}.$$

вектора ошибок е.

Пусть $lpha^{j_i} = X_i$, d = 2t+1. Тогда компоненты синдрома находятся как:

$$S_1 = X_1 + X_2 + \dots + X_t,$$

 $S_2 = X_1^2 + X_2^2 + \dots + X_t^2,$
 \dots
 $S_{2t} = X_1^{2t} + X_2^{2t} + \dots + X_t^{2t}.$

Цель: зная S_i решить систему нелинейных уравнений, то есть найти X_i — локаторы ошибок

Многочлен локаторов ошибок

Составим многочлен (локаторов ошибок)

$$\sigma(z) = (1 - X_1 z)(1 - X_2 z)...(1 - X_t z) = \sigma_0 + \sigma_1 z + \sigma_2 z^2 + ... + \sigma_t z^t,$$

где

$$\sigma_0 = 1,$$

$$\sigma_1 = (X_1 + X_2 + \dots + X_t),$$

$$\sigma_2 = X_1 X_2 + X_1 X_3 + \dots + X_{t-1} X_t,$$
......

 $\sigma_t = (-1)^t X_1 X_2 \dots X_t.$

Задача: зная S_i , найти σ_i .

Тождества Ньютона

$$\sigma'(z) = -\sum_i X_i \prod_{j \neq i} (1 - X_j z)$$

тогда, если не ограничивать степень:

$$-\frac{z\sigma'(z)}{\sigma(z)} = \frac{X_1z}{1 - X_1z} + \frac{X_2z}{1 - X_2z} + \dots + \frac{X_tz}{1 - X_tz},$$

воспользуемся суммой бесконечно убывающей геометрической прогрессии:

$$-\frac{z\sigma'(z)}{\sigma(z)} = X_1 z + (X_1 z)^2 + \dots + X_2 z + (X_2 z)^2 + \dots + X_t z + (X_t z)^2 + \dots$$

$$-\frac{z\sigma'(z)}{\sigma(z)} = z(X_1 + X_2 + \dots) + z^2(X_1^2 + X_2^2 + \dots) + \dots + z^i(X_1^i + X_2^i + \dots) + \dots$$

$$-\frac{z\sigma'(z)}{\sigma(z)} = S(z)$$

Тождества Ньютона

$$z\sigma'(z) = S(z)\sigma(z)$$

или

$$(1+\sigma_1z+\sigma_2z^2+...)(S_1z+S_2z^2+S_3z^3+...)=z(\sigma_1+2\sigma_2z+3\sigma_3z^2+...)$$

Приравнивая коэффициенты при одинаковых степенях z, получим:

$$S_1 + \sigma_1 = 0$$

$$S_2 + S_1\sigma_1 + 2\sigma_2 = 0,$$

$$S_3 + S_2\sigma_1 + S_1\sigma_2 + 3\sigma_3 = 0,$$

$$S_4 + S_3\sigma_1 + S_2\sigma_2 + S_1\sigma_3 + 4\sigma_4 = 0,$$

$$S_5 + S_4\sigma_1 + S_3\sigma_2 + S_2\sigma_3 + S_1\sigma_4 + 5\sigma_5 = 0,$$

Это и есть тождества Ньютона. Берем их через одно и приводим коэффициенты по модулю 2.

Ключевая система

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ S_2 & S_1 & 1 & 0 & \dots & 0 \\ S_4 & S_3 & S_2 & S_1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ S_{2t-4} & S_{2t-5} & S_{2t-6} & S_{2t-7} & \dots & S_{t-3} \\ S_{2t-2} & S_{2t-3} & S_{2t-4} & S_{2t-5} & \dots & S_{t-1} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{t-1} \\ \sigma_t \end{bmatrix} = \begin{bmatrix} S_1 \\ S_3 \\ S_5 \\ \vdots \\ S_{2t-3} \\ S_{2t-1} \end{bmatrix}.$$

В дальнейшем матрицу коэффициентов системы будем обозначать символом \mathbf{M}_t .

Решением системы является набор коэффициентов $\sigma_1, \sigma_2, ..., \sigma_t$ многочлена локаторов ошибок. Далее локаторы ищутся подбором.

Основная теорема о разрешимости системы

Теорема

Матрица \mathbf{M}_t невырождена, и система имеет единственное решение тогда и только тогда, когда произошло t или t-1 ошибок. Матрица \mathbf{M}_t вырождена тогда и только тогда, когда произошло менее, чем t-1 ошибок.

Схема декодера

- 1. По принятому из канала слову у составляется вектор синдромов
- 2. По составленному вектору синдромов составляется матрица \mathbf{M}_t
- 3. Вычисляется $|\mathbf{M}_t|$. Если $|\mathbf{M}_t| \neq 0$, то решается система и находятся $\sigma_1,\sigma_2,...,\sigma_t$
- 4. По $\sigma_1, \sigma_2, ..., \sigma_t$ составляется многочлен локаторов ошибок. Последовательной подстановкой в него всех ненулевых элементов поля $GF(2^m)$ получаются корни многочлена, как величины, обратные локаторам ошибок.
- 5. Компоненты вектора v, отвечающие локаторам, заменяются на противоположные.
- 6. Если $|{f M}_t|=0$, то это означает, что произошло менее, чем t-1 ошибок.
- 7. В матрице ${f M}_t$ удаляются два последних столбца и две последних строки.
- 8. Процесс повторяется i раз до тех пор, пока матрица $\mathbf{M}t-2i$ не станет невырожденной. Решается система t-2i линейных уравнений.

Пример 1

Пусть передавался вектор $\mathbf{u}=(110100011000100)$ кода БЧХ длины n=15 (поле по модулю $1+x+x^4$) из рассмотренного ранее примера. Последовательность корней порождающего многочлена:

$$\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, d = 7, t = 3.$$

Произошло 3 ошибки и принят вектор:

$$\mathbf{v}_1 = (011101101000100).$$

Вычисляем компоненты синдрома:

$$S_1 = \alpha + \alpha^2 + \alpha^3 + \alpha^5 + \alpha^6 + \alpha^8 + \alpha^{12} = \alpha^{11}, S_3 = \alpha^3 + \alpha^6 + \alpha^9 + 1 + \alpha^3 + \alpha^9 + 1 + \alpha^{10} + 1 + \alpha^{10} + 1 + \alpha^{10} + 1 = 0,$$

$$S_2 = S_1^2 = \alpha^7, S_4 = S_2^2 = \alpha^{14}, S_6 = 1.$$

Пример 1 - продолжение

$$\textbf{M}_{3} = \begin{pmatrix} 1 & 0 & 0 \\ \alpha^{7} & \alpha^{11} & 1 \\ \alpha^{14} & 1 & \alpha^{7} \end{pmatrix},$$

 $|{f M}_3| = 1 + lpha^{18} = lpha^{14}
eq 0$ Система линейных уравнений:

$$\begin{cases} \sigma_1 = S_1 = \alpha^{11}, \\ \alpha^7 \sigma_1 + \alpha^{11} \sigma_2 + \sigma_3 = S_3 = 1, \\ \alpha^{14} \sigma_1 + \sigma_2 + \alpha^7 \sigma_3 = S_5 = 0. \end{cases}$$

имеет решение: $\sigma_1 = \alpha^{11}, \sigma_2 = \alpha^8, \sigma_3 = \alpha^9$. Тогда многочлен локаторов ошибок имеет вид:

$$\sigma(z) = 1 + \alpha^{11}z + \alpha^8z^2 + \alpha^9z^3$$

Его корни как величины, обратные локаторам ошибок: $z_1=\alpha^8, z_2=\alpha^{13}, z_3=\alpha^0$, а значит сами локаторы: $X_1=\alpha^7$, $X_2=\alpha^2$, $X_3=\alpha^0$, а значит исказились 1,3,8 позиции.

Пример 2

Произошла одна ошибка и принят вектор $\mathbf{v} = (110101101000100)$. Находим компоненты синдрома:

$$\begin{split} S_1 &= 1 + \alpha + \alpha^3 + \alpha^5 + \alpha^6 + \alpha^8 + \alpha^{12} = \alpha^7, \\ S_3 &= 1 + \alpha^3 + \alpha^9 + 1 + \alpha^3 + \alpha^9 \alpha^6 = \alpha^6, \\ S_5 &= 1 + \alpha^5 + 1 + \alpha^{10} + 1 + \alpha^{10} + 1 = 1\alpha^5 \\ S_2 &= S_1^2 = \alpha^{14}, \, S_4 = S_{14}^2 = \alpha^{13}, \, S_6 = \alpha^{12}. \end{split}$$

$$\mathbf{M}_3 = \begin{pmatrix} 1 & 0 & 0 \\ \alpha^{14} & \alpha^7 & 1 \\ \alpha^3 & \alpha^6 & \alpha^{14} \end{pmatrix},$$

 $|\mathbf{M}_3|=0$, тогда вычеркнем в \mathbf{M}_3 две последние строки и два столбца и получим матрицу $\mathbf{M}_1=[1]$. Откуда $\sigma_1=S_1=\alpha^7,\,\sigma_2=0,\,\sigma_3=0$. Многочлен локаторов ошибок:

$$\sigma(z) = 1 + \alpha^7 z$$

Его корень $z_1 = \alpha^8$, Локатор: α^7 , исказился 8 символ слова.

. случай декодирования недвоичных БЧХ кодов

Нужно искать не только позиции, но и значения ошибок из поля GF(q)!

Вектор ошибки содержит t ненулевых компонент:

$$e_{j_1}, e_{j_2}, ..., e_{j_t} \in GF(q).$$

Вектор ошибки:

$$e(x) = e_{i_1}x^{i_1} + e_{i_2}x^{i_2} + ... + e_{i_t}x^{i_t}.$$

Компоненты синдрома имеют вид: $S_i = e(\alpha^i)$.

Полагаем
$$e_{j_i} = Y_i,^{j_i} = X_i$$
.

$$S_1 = Y_1 X_1 + Y_2 X_2 + \dots + Y_t X_t,$$

$$S_2 = Y_1 X_1^2 + Y_2 X_2^2 + \dots + Y_t X_t^2,$$

 $S_{2t} = Y_1 X_1^{2t} + Y_2 X_2^{2t} + ... + Y_t X_t^{2t}.$

 $Y_i \in GF(q), X_i \in GF(q^m).$

Система линейна относительно Y_i . Если произошло t ошибок, то все X_i , i=1,2,...,t, различны и отличны от нуля. В этих условиях определитель первых t уравнений системы отличен от нуля (???). Следовательно, первые t уравнений системы линейно независимы, и они разрешимы относительно неизвестных Y_i

Нахождение локаторов ошибок

$$\sigma(z) = \sigma_0 + \sigma_1 z + \sigma_2 z^2 + ... + \sigma_t z^t = \prod_{i=1}^t (1 - X_i z)$$

Подставим $z = X_i^{-1}$:

$$\sigma(X_i^{-1}) = 1 + \sigma_1 X_i^{-1} + \sigma_2 X_i^{-2} + \dots + \sigma_t X_i^{-t} = 0,$$

Затем помножим тождество на $Y_i X_i^{j+t}$:

$$Y_i(X_i^{j+t} + \sigma_1 X_i^{j+t-1} + \sigma_2 X_i^{j+t-2} + \dots + \sigma_t X_i^{j}) = 0.$$

При фиксированном j просуммируем все тождества по i=1,2,...,t:

$$\sum_{i=1}^{t} Y_i (X_i^{j+t} + \sigma_1 X_i^{j+t-1} + \sigma_2 X_i^{j+t-2} + \dots + \sigma_t X_i^j) = 0.$$

Раскроем скобки и меняем порядок суммирования.

Нахождение локаторов ошибок

$$\sum_{i=1}^t Y_i X_i^{j+t} + \sigma_1 \sum_{i=1}^t Y_i X_i^{j+t-1} + \sigma_2 \sum_{i=1}^t Y_i X_i^{j+t-2} + \ldots + \sigma_t \sum_{i=1}^t Y_i X_i^j = 0$$
 Ho
$$\sum_{i=1}^t Y_i X_i^{j+t-l} = S_{j+t-l}, l = 0, 1, \ldots, t$$

Поэтому для фиксированного і имеем:

$$S_{i+t} + \sigma_1 S_{i+t-1} + ... + \sigma_t S_i = 0, j = 1, 2, ..., t.$$

Таких уравнений будет t штук, и вместе они составляют систему

$$\begin{cases} \sigma_1 S_t + \sigma_2 S_{t-1} + \dots + \sigma_t S_1 = -S_{t+1}, \\ \sigma_1 S_{t+1} + \sigma_2 S_t + \dots + \sigma_t S_2 = -S_{t+2}, \\ \dots \\ \sigma_1 S_{2t-1} + \sigma_2 S_{2t-2} + \dots + \sigma_t S_t = -S_{2t} \end{cases}$$

Матричное представление

$$\begin{bmatrix} S_t & S_{t-1} & \dots & S_2 & S_1 \\ S_{t+1} & S_t & \dots & S_3 & S_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ S_{2t-1} & S_{2t-2} & \dots & S_{t+1} & S_t \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_t \end{bmatrix} = \begin{bmatrix} -S_{t+1} \\ -S_{t+2} \\ \vdots \\ -S_{2t} \end{bmatrix}$$

Обозначим матрицу системы символом \mathbf{M}_t .

Теорема

Система уравнений имеет единственное решение тогда и только тогда, когда произошло t ошибок.

Нахождение значений ошибок

- Найти значения $\sigma_0=1$, $\sigma_1,...,\sigma_t$, решив систему уравнений
- Найти корни многочлена $\sigma(z) = \sigma_0 + \sigma_1 z + \sigma_2 z^2 + ... + \sigma_t z^t$
- Найти локаторы $X_1,...,X_t$

Вернемся к системе уравнений на Y_i . Ее определитель:

$$\begin{vmatrix} X_1 & X_2 & \dots & X_t \\ X_1^2 & X_2^2 & \dots & X_t^2 \\ \vdots & \vdots & \vdots & \vdots \\ X_1^t & X_2^t & \dots & X_t^t \end{vmatrix} = X_1 X_2 \dots X_t \begin{vmatrix} 1 & 1 & \dots & 1 \\ X_1 & X_2 & \dots & X_t \\ \vdots & \vdots & \vdots & \vdots \\ X_1^{t-1} & X_2^{t-1} & \dots & X_t^{t-1} \end{vmatrix}$$

Справа находится определитель Вандермонда. При наличии t ошибок локаторы X_i различны, и определитель отличен от нуля. Система имеет единственное решение.

Алгоритм

- 1. Подставляя в принятый вектор \mathbf{v} корни порождающего многочлена, вычисляют элементы S_i синдрома. Если все они равны нулю, то считается, что ошибок нет, и процедура окончена.
- 2. В противном случае из элементов синдрома составляется система уравнений \mathbf{M}_t . Если ее матрица \mathbf{M}_t в формул не вырождена, вычисляются коэффициенты $\sigma_1, \sigma_2, ... \sigma_t$ многочлена локаторов ошибок.
- 3. Отыскиваются t корней многочлена локаторов ошибок последовательной подстановкой в него элементов поля $GF(q^m)$. Величины, обратные корням, есть локаторы ошибок.
- 4. Составляется система уравнений на Y_i , которая имеет единственное решение, так как ее матрица не вырождена. Решением системы являются значения ошибок.
- 5. В соответствии с каждой ненулевой парой (X_i, Y_i) из i-го символа вектора $\mathbf v$ вычитается величина Y_i . Восстановлен передававшийся вектор $\mathbf u$. Процедура закончена.
- 6. Если матрица \mathbf{M}_t вырождена, система не разрешима. Это означает, что произошло не более, чем t-1 ошибок. Из матрицы \mathbf{M}_t в следует удалить последние строку и столбец, положить $\sigma_t=0$, а из системы последнее уравнение. Вся процедура выполняется снова после замены t на t-1.