

GRUNDLAGEN DER ELEKTROTECHNIK 1

Teil 7:

b) Mesung von Widerständen

GLEICHSTROM

Inhalte der Kapitel 1 – 4: Gleichstrom

4 WIDERSTANDSMESSUNG

4.1 Ohmmeter mit Stromquelle

- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

WAS IST EIN OHMMETER?

Eine Stromquelle mit Voltmeter:

Widerstände nie in einer Schaltung messen!

4 WIDERSTANDSMESSUNG

- 4.1 Ohmmeter mit Stromquelle
- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

VIERLEITER-ANSCHLUSSTECHNIK

Problem:

$$R_{Ltg} = \ddot{U}$$
bergangswiderstand

+ Zuleitungswiderstand

 \Rightarrow Fehlmessung durch $I \cdot R_{Ltg}$

4-Leiter-Technik für höchste Genauigkeit

Lösung:

 R_{Ltg} ist zwar ebenso groß, aber $I_U << I$

→ kaum Auswirkung auf Spannungsmessung

WIDERSTANDSMESSUNG MIT VIERLEITERTECHNIK

 R_S : Strombegrenzung

 R_{ref} : bekannterReferenzwiderstand 5/1/m $\Gamma = V_{Ref}$: bekannterPermission 5/1/m Γ

 R_x : Prüfling (unbekannter Widerstand)

$$Rx = \frac{Ux}{T} = \frac{Ux}{Unf}$$

4 WIDERSTANDSMESSUNG

- 4.1 Ohmmeter mit Stromquelle
- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

DIE WHEATSTONE'SCHE BRÜCKENSCHALTUNG

- Ziel: Messung von Widerständen
- zuerst beschrieben von Samual Hunter Christie

- Aber: Wheatstone hat als erster den Nutzen der Brückenschaltung zur präzisen Messung von Widerständen erkannt.
- Wann? /833
- Wheatstone erfand darauf den variablen Widerstand in 1840

WIE MESSEN WIR DAMIT DEN WIDERSTAND?

Mey = Me,0 = No: Ry = No: 22 Ry= Ry = R

Aufgabe: Mit einem Voltmeter $(R_{I,V} >> 1k\Omega)$ messen Sie

$$U_{ab} = 1,667 V.$$

Wie groß ist R₁?

- A. $3 k\Omega$
- B. $2 k\Omega$
- C. $1 k\Omega$

Betriebsart

 $\Rightarrow \text{Ausschlagbrücke} \xrightarrow{0.733}$

Einer von 4 Widerständen ist der "Sensor"

⇒ Viertelbrücke

ANDERE BETRIEBSART: ABGLEICHBRÜCKE

SIMULATION DER BRÜCKENSPANNUNG

VORTEIL DER ABGLEICHBRÜCKE

Frage:

Was ist der Hauptvorteil der Abgleichbrücke?

- 💢 Man benötigt 4 Widerstände.
- B. Bereits geringe Widerstandsabweichungen können erkannt werden.
- C. Sehr genaue Messung, da kein Strom durch das Messgerät fließt.

AUSSCHLAGBRÜCKE FÜR DIE MESSUNG VON ΔR_1

 U_{ab} für kleine Abweichungen von R_1 vom Abgleichpunkt $U_{ab} = 0 \implies V_{ab} = 0 + kleine Kirky$

Es gilt im Abgleich:
$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \Leftrightarrow R_1 \cdot R_4 = R_2 \cdot R_3$$

Es gilt im Abgleich:
$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \Leftrightarrow R_1 \cdot R_4 = R_2 \cdot R_3$$
Es gilt bei $R_1 + \Delta R_1$:
$$U_{ab} = U_{R4} - U_{R2} = U_0 \cdot \left(\frac{R_4}{R_3 + R_4} - \frac{R_2}{R_1 + \Delta R_1} + R_2\right)$$

$$\Leftrightarrow \frac{U_{ab}}{U_0} = \frac{R_4 \cdot (R_1 + \Delta R_1 + R_2) - R_2 \cdot (R_3 + R_4)}{(R_3 + R_4) \cdot (R_1 + \Delta R_1 + R_2)}$$

$$\Leftrightarrow \frac{U_{ab}}{U_0} = \frac{R_1 R_4 + \Delta R_1 R_4 + R_2 R_4 - R_2 R_3 - R_2 R_4}{(R_3 + R_4) \cdot (R_1 + \Delta R_1 + R_2)}$$

$$\Leftrightarrow \frac{U_{ab}}{U_0} = \frac{\Delta R_1 R_4}{(R_3 + R_4) \cdot (R_1 + \Delta R_1 + R_2)}$$

$$\Rightarrow \frac{U_{ab}}{U_0} \approx \frac{R_4}{(R_3 + R_4) \cdot (R_1 + R_2)} \cdot \Delta R_1$$

Spezialfall:
$$R_1 = R_2 = R_3 = R_4 = R$$

$$U_{ab} \approx U_0 \cdot \frac{\Delta R}{4R}$$

AUSSCHLAGBRÜCKE FÜR DIE MESSUNG VON ΔR_1

 U_{ab} bei kleinen Abweichungen von R_1 vom Abgleichpunkt

Wir nennen:

Brückenverhältnis

$$a = \frac{R_2}{R_1} = \frac{R_4}{R_3}$$

• relative Verstimmung der Brücke

$$v = \frac{\Delta R_1}{R_1}$$

$$\frac{U_{ab}}{U_0} \approx \frac{R_4}{(R_1 + R_2)(R_3 + R_4)} \cdot \Delta R_1 \quad \Rightarrow \quad \frac{U_{ab}}{U_0} \approx \frac{a}{(1+a)^2} \cdot v$$

BRÜCKENEMPFINDLICHKEIT

Anderung von U_{ab} in Abhängigkeit von R_1 im Abgleichpunkt

$$E_0 = \frac{dU_{ab}}{dR_1} \approx \frac{\Delta U_{ab}}{\Delta R_1} = \frac{U_{ab}}{\Delta R_1} \quad \text{für} \quad \frac{R_1}{R_2} = \frac{R_3}{R_4}$$

Für
$$\Delta R_1 << R_1$$
 ergibt sich mit $\frac{U_{ab}}{U_0} \approx \frac{a}{(1+a)^2} \cdot \frac{\Delta R_1}{R_1}$

$$E_0 = \frac{\alpha}{(1+\alpha)^2} \cdot \frac{1}{2} \cdot \text{No}$$

MAXIMALE BRÜCKENEMPFINDLICHKEIT - MATHEMATISCH

Der mathematische Weg:
$$E_0 \approx \frac{U_0}{R_1} \cdot \frac{a}{(1+a)^2} = k \cdot \frac{a}{(1+a)^2}$$

Extremum

$$\Leftrightarrow$$

$$dE_0/da = 0$$

Regel:

$$(u/v)' = u'v - v'u$$

$$u = \alpha \quad \Rightarrow u' = 1$$

$$v = (1+a)^2 \Rightarrow v' = 2 \cdot (1+a)$$

$$\frac{dE_0}{da} = \frac{u'v - v'u}{v^2} = 0 \Leftrightarrow u'v = v'u$$

$$\Leftrightarrow$$

$$\alpha^2 = 1$$

$$\Leftrightarrow \cdots \in \alpha^2 = 1$$

MAXIMALE BRÜCKENEMPFINDLICHKEIT – GRAPHISCH

$$E_0 \approx \frac{U_0}{R_1} \cdot \frac{a}{(1+a)^2}$$

Für a = 1 erhalten wir:

$$E_{0,MUX} = \frac{1}{R_{1}} \left(\frac{1}{1H} \right)^{2}$$

$$= \frac{1}{2} \left(\frac{1}{1H} \right)^{2}$$

$$= \frac{1}{2} \left(\frac{1}{1H} \right)^{2}$$

EINFLUSS DES BRÜCKENVERHÄLTNISSES a AUF E_0

KONSEQUENZ FÜR BRÜCKENSCHALTUNGEN

Frage: Welche Konsequenz folgt aus dem Verlauf von E_0 und a?

$$\Rightarrow a = 1$$

$$\Rightarrow R_1 = 2$$

$$\Rightarrow R_1 = 2$$

$$R_3 = \mathbf{7}$$

⇒ Typische Konfiguration:

$$U_{ab} \approx U_0 \cdot \frac{\Delta R}{4R}$$

Viertelbrücke:

1 von 4 Widerständen ist aktiv

HALBBRÜCKE

Berechnen Sie die Brückenspannung für 2 aktive Widerstände.

Funktioniert dies auch, wenn die Widerstände sich gleichsinnig verändern?

$$\begin{aligned} u_{ab} &= u_{ab} - u_{2} = u_{a} - u_{b} \\ &= u_{a} - u_{a} \cdot \frac{R - DR}{(R + DR) + (R - DR)} \end{aligned}$$

$$= \frac{U_0}{2} - 1.\left(\frac{R-\Delta R}{2R}\right) = \frac{U_0}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

VOLLBRÜCKE

Berechnen Sie die Brückenspannung für 4 aktive Widerstände. Achten Sie dabei auf die Anordnung der Widerstände.

ANWENDUNGSBEISPIELE

- Messtechnik
 - Temperatur
 - Durchflussgeschwindigkeit
 - Dehnungsmessstreifen

4 WIDERSTANDSMESSUNG

- 4.1 Ohmmeter mit Stromquelle
- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

TEMPERATURMESSUNG

Uab≈ Uo - R T= 0° ()

Typische Sensoren f
ür die Temperaturmessung

- Pt-100
 - Platin
 - Nennwiderstand von 100 Ω bei θ₀=0°
 - Gebräuchlichster Typ
- Ni-100
 - Nickel

HAW Hamburg

Technik und Informatik

TEMPERATURABHÄNGIGKEIT

aktuelle Tomp

Wiederholung Grundlagen :

- für Temperaturmessung:
 - für hohe Genauigkeit ist die lineare Approximation nicht ausreichend
 - Bezugstemperatur $\theta_0 = 0^{\circ}$

$$R(\vartheta) = R_0(1 + \alpha(\vartheta - \vartheta_0) + \beta(\vartheta - \vartheta_0)^{2} + \beta(\vartheta - \vartheta_0)^{2})$$

Rote Kurve

Sensor	α	β	γ
Pt-100 0 850°C	3.90802·10 ⁻³ /K	– 0.580195·10 ⁻⁶ /K²	0
Ni-100 −60 180° <i>C</i>	5.485·10 ⁻³ /K	+ 6.65·10 ⁻⁶ /K ²	28.05·10 ⁻¹² /K

PT-100 VERSUS NI-100

Vorteil des Pt-100: gnte Vähong ühr linere Approximation ühr großen Temp ratur bris Vorteil des Ni-100:

TEMPERATURMESSBRÜCKE

Bestimmen Sie U_{ab} als Funktion der Temperatur ϑ .

$$R_{\text{ploo}} = R_{o} (1 + L(v - o^{\circ}))$$

$$R_{\text{ploo}} - R_{o} = \Delta R = \Delta \cdot R_{o} (v)$$

Lösung:
$$Vab = Vab \cdot \frac{BR}{R}$$

$$R_t = R_0 \cdot (1 + \alpha \cdot \vartheta)$$

$$U_{ab} \approx U_0 \cdot \frac{\Delta R}{4R_0}$$

$$\Delta R = R_t - R_0$$

$$\Rightarrow Vab \approx Vab \cdot \frac{\Delta \cdot R_0 \cdot \vartheta}{4 \cdot R_0} \approx Vab \cdot \frac{\Delta \cdot R_0 \cdot \vartheta}{4 \cdot R_0}$$

4 WIDERSTANDSMESSUNG

- 4.1 Ohmmeter mit Stromquelle
- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

MESSUNG DER DURCHFLUSSGESCHWINDIGKEIT

mittels eines Widerstandsthermometers

4 WIDERSTANDSMESSUNG

- 4.1 Ohmmeter mit Stromquelle
- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

DEHNUNGSMESSSTREIFEN (DMS)

Messung der Verformung

Messprinzip:

$$R = f(L"ange)$$

WIESO HÄNGT DER WIDERSTAND VON DER LÄNGE AB?

- Metallischer Leiter
 - ρ: spezifischer Widerstand
 - ℓ : Länge
 - A: Querschnittsfläche

$$R = S \cdot \frac{Q}{A}$$

• Es habe der Leiter einen Durchmesser D

$$A = \prod_{1}^{2} \frac{5^{2}}{4}$$

$$\Rightarrow R = 4.9 \cdot \frac{2}{\pi n^2}$$

WAS PASSIERT, WENN SICH ALLE VARIABLEN ÄNDERN?

Zieht man an dem Leiter, wird er länger und dünner Wie verändert sich dann der Widerstand? ⇒ totales Differential

$$\Rightarrow \Delta y = \frac{\partial f}{\partial x_1} \Delta x_1 + \frac{\partial f}{\partial x_2} \Delta x_2 + \dots + \frac{\partial f}{\partial x_N} \Delta x_N \text{ von } R = \frac{4 \cdot \rho \cdot \ell}{\pi \cdot D^2} = y = f(\rho, \ell, D)$$

•
$$\frac{\partial R}{\partial \rho} = \frac{4 \cdot 25}{10} = \frac{R}{5}$$

•
$$\frac{\partial R}{\partial \ell} = \frac{R}{\ell}$$

•
$$\frac{\partial R}{\partial D} = -2 \cdot \frac{482}{\pi D^3} \frac{1}{10} = -2 \cdot \frac{R}{D}$$

• $\frac{\Delta R}{R} = \frac{\Delta S}{S} + \frac{\Delta D}{C} = -2 \cdot \frac{\Delta D}{D}$

•
$$\frac{\Delta R}{R} = \frac{\Delta S}{S} + \frac{\Delta Q}{D} - 2 \cdot \frac{\Delta D}{D}$$

ZUGBELASTUNG

- $\Delta \rho / \rho = \theta$ (für Halbleiter-DMS ist dies jedoch signifikant)
- $\Delta \ell / \ell$ Dehnung ϵ
- △D/D Querkontraktion
- $\mu = -\frac{\Delta D/D}{\Delta \ell/\ell}$ Poissonzahl

Metalle haben eine Poissonzahl von $\mu \approx 0.5$ $\Rightarrow \frac{\Delta D}{D} \approx -\frac{1}{2} \frac{\Delta \ell}{\ell}$

$$\Rightarrow \frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} + \frac{\Delta \ell}{\rho} - \frac{2\Delta D}{D} = \mathcal{E} - 2 \cdot (\frac{1}{2}\mathcal{E}) = 2\mathcal{E} = \mathcal{K} \cdot \mathcal{E}$$

Der sogenannte K-Faktor ist für Metalle **K ≅ 2**.

DMS UND WHEATSTONE'SCHE BRÜCKE

Viertelbrücke

$$U_{ab} = \frac{U_0}{4} \frac{\Delta R}{R} = \varepsilon \cdot K \cdot \frac{U_0}{4}$$

Halbbrücke

$$U_{ab} = \frac{U_0}{2} \frac{\Delta R}{R} = \varepsilon \cdot K \cdot \frac{U_0}{2}$$

WAS SIE MITNEHMEN SOLLEN ...

- Umgang mit dem Ohmmeter
- Messung von sehr kleinen Widerständen
- Wheatstone'sche Brückenschaltung
 - Abgleichbrücke
 - Ausschlagbrücke
 - viertel halb voll
- Anwendungen
 - Temperaturmessung
 - Messung der Durchflussgeschwindigkeit
 - Dehnungsmessung

