Monday, August 10, 2020 9:32 AM

- I. ADCs
- II. Discrete Frequency Domain
 - a. Intuitive Review of DFT Matrix
 - b. Sampling Frequency and the DFT
 - c. Sampling and Aliasing Examples
- III. Sampling
 - a. Nyquist Theorem
 - b. Sampling Window
 - i. Application Example
- IV. Anti-Aliasing Filter

Sampling and Aliasing

(Post lecture notes in purple) (Impt equations boxed in green)

The world is continuos

I. Analog to Digital Converter (ADC)

Given a cont. time waveform and an ADC that samples at freq (f s), collect N samples

Sampling freq , fs

Sampling Window N

[x6) x(Ts) x(ZTs) - x(Na)Ts)

o 500 f wintingeres.

Fx = \(\alpha \) to discrete

freg

II. Intuitive Review of DFT

Purpose of DFT?

- Find how much of each frequency is an a signal (data analysis)
 - -- filter design
 - -- signal processing
- Project the signal into a basis of orthogonal sinusoids (math easier)
 - --phasor domain
 - -- convolution

a. DFT Matrix

$$F_{X} = \begin{bmatrix} U_{0} & & & & \\ & U_{1} & & & \\ &$$

ton Nsamples VISTAl Representation of

b. Sampling Frequency and the DFT

How f s relates to our DFT matrix

$$W = \frac{ZAL}{N}$$
 where $\frac{K}{N} = \frac{f}{f_s}$

(for preasant integer spaces of f_s)

Draw Prev e xomple

Aliasina only happens in sampled Signals

c. Examples of Sampling and Aliasing

Ex 1 MAI Tone Signal

$$\frac{ADC}{+S} = |SOH_2|$$

$$V = 10$$

Convert fr-10142 & f2 = 40 Hz into K

$$\frac{N}{k} = \frac{L^2}{L}$$

$$f = 1014z$$
 $\frac{k}{N} = \frac{f}{f_3} = \frac{10}{100} = \frac{10}{100} = \frac{10}{100}$

$$\int_{2}^{2} = 40 \text{ Hz} \qquad \qquad \frac{k}{10} = \frac{40}{100} \Rightarrow 4 \cdot 10^{-4}$$

Han freg vs Allastra:

I can create a signal x'(t) which has the same x[n] and Fx[n]

create a signal x'(t) which has the same x[n] and Fx[n]

$$x'(4) = d_1 \cos(z_{+} \cdot 9DH_z \cdot +) - d_2 \sin(z_{+} \cdot GOH_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 10H_z \cdot 4) + d_2 \sin(z_{+} \cdot 140H_z \cdot 4)$$

$$x''(4) = d_1 \cos(z_{+} \cdot 140H_z \cdot 4)$$

Ex2. Visual Aliasing Helicopter floating! (also technically aliasing, but without the complex conjugate)

II. Sampling Theorem

a. Nyquist Sampling Theorem

Let's agree that when we sample, all of our frequencies will be the positive frequency, and all of our aliasing is just a copy

*

Nyquist Sampling Theorem:

A bandlimited, cont time signal can be sampled and perfectly represented/ perfectly reconstructed from its samples, IF the sampling freq (f_s) is over twice as fast as the signals highest freq component (B)

If you remember nothing else, remember this!

Note: Stratly greater + nan

Bandwidth is the signal's highest frequency (all higher frequencies are zero)

Frequency

b. Sampling Freq and Sampling Window

Intuition

- Sample fast -> to get all the high, small freq details w/o aliasing

- Collect data over a long time period, represent low frequencies

large N:
$$\frac{k}{N} = \frac{f}{f_s} = \frac{1}{N} = \frac{f_{min}}{f_s} = \frac{f_s}{N}$$

Zest life

Ex Application Heart-Rate Sensor

Healthy avg human: 60-100 beats/min -> ~1beat/sec : 40 beat/min -> 2/3 beat/sec Fastest recorded : 480 beats/min -> 8 beats/sec

How fast must our ADC sample?

$$f_s > ZB$$

 $f_s > Z(8) > 16H_8$

How many samples are needed

$$\frac{K}{N} = \frac{f_{mh}}{f_s} \implies \frac{1}{N} = \frac{2/3}{16} \implies N \ge 24 \times mp$$