THE REVERSE ISING PROBLEM

ISAAC MARTIN

1. Introduction and Terminology

Definition 1.1. Let $\Sigma = \{-1, +1\}$. An **Ising circuit** is a function $f : \Sigma^N \to \Sigma^M$ where N and M are finite subsets of \mathbb{N} . For convenience we always assume $N = \{1, ..., n\}$ and $M = \{n+1, ..., n+m\}$.

2. PSEUDO-BOOLEAN OPTIMIZATION AND POLYNOMIAL FITTING

A pseudo boolean function (PBF) is any function $f:\{0,1\} \to \mathbb{R}$. It is a well known fact that any such PBF can be uniquely represented by a multilinear polynomial in n variables [pseudo-boolean optimization Boros, Hammer]; that is, a polynomial

$$g(x_1, ..., x_n) = \sum_{S \subset [n]} a_S \prod_{j \in S} x_j$$

with $a_S \in \mathbb{R}$ which equals f pointwise on $\{0,1\}^n$. To be clear, here S iterates over all subsets of $[n] = \{1,...,n\}$.

It is another well-known fact that the optimization of any pseudo-boolean function can be reduced in polynomial time to an optimization problem on a quadratic polynomial. The original method for accomplishing this was first written by Rosenberg, and since then a reputable zoo of alternative algorithms have been introduced. Most methods share the same basic idea: reduce degree ≥ 3 monomial terms appearing in the polynomial g by introducing auxiliary variables subject to constraints.

<copy Rosenberg algorithm from Boros, Hammer pg 168>

Theorem 2.1. Let f be a multilinear polynomial in n variables. There exists an algorithm Reduce which produces a multilinear polynomial g in n + a variables such that

$$\min_{(\mathbf{x}, \mathbf{a}) \in \mathbb{B}^n \times \mathbb{B}^a} g(\mathbf{x}, \mathbf{a}) = \min_{\mathbf{x} \in \mathbb{B}^n} f(\mathbf{x})$$

and if $(\mathbf{x}, \mathbf{a}) = \arg\min_{(\mathbf{x}, \mathbf{a}) \in \mathbb{B}^n \times \mathbb{B}^a} g(\mathbf{x}, \mathbf{a})$ then $\mathbf{x} = \arg\min_{\mathbf{x} \in \mathbb{B}^n} f(\mathbf{x})$.

Boros Hammer Pseudo Boolean Optimization 2002.

We need a slightly stronger statement however.

Theorem 2.2. Let $f: \Sigma^N \to \Sigma^M$ be a circuit. Then there exists an Ising circuit with auxiliary spins given by Hamiltonian H which solves f.

Proof. Fix $G = N \cup M$ and consider the hamming objective function $ham : \Sigma^N \times \Sigma^M \longrightarrow \mathbb{R}$ defined

$$ham(s,t) = d(t, f(s))$$

where d(t, f(s)) is the Hamming distance between t and the correct output f(s). Then there exists some multilinear polynomial g in |G| variables which recovers ham pointwise. We now apply Rosenberg reduction to g and set H equal to the terminal quadratic polynomial we obtain. All that remains to show is that on any input level s the output which minimizes H is f(s).

Fix an input s and suppose that the minimizer of $g^k(s,\cdot)$ has output coordinates f(s). To obtain g^{k+1} we replace some pair x_ix_j by x_{k+1} and add the expression $M(x_ix_j-2x_ix_{k+1}-2x_jx_{k+1}+3x_{k+1})$. Observe that this expression

Date: Summer 2023.

2 ISAAC MARTIN

is zero if $x_ix_j=x_{k+1}$ and is strictly positive otherwise. It follows that $g^k(\mathbf{x})=g^{k+1}(\mathbf{x},x_{k+1})$ if $x_{k+1}=x_ix_j$ and $g^k(\mathbf{x})< g^{k+1}(\mathbf{x},x_{k+1})$ if $x_{k+1}\neq x_ix_j$. Hence the minimizer of g^{k+1} on input level s also has the correct output coordinates, and inductively, we conclude that H is an Ising Hamiltonian reproducing the circuit f.