In [156]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.preprocessing import StandardScaler
from scipy import stats
import warnings
warnings.filterwarnings('ignore')

%matplotlib inline
```

In [2]:

```
df_train = pd. read_csv('train. csv')
df_train. head()
```

Out[2]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	U1
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	,
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	,
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	,
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	,

5 rows × 81 columns

localhost:8888/notebooks/Desktop/house_price_increase/House_price.ipynb

In [3]:

```
df train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
Id
                  1460 non-null int64
MSSubClass
                  1460 non-null int64
MSZoning
                  1460 non-null object
LotFrontage
                  1201 non-null float64
                  1460 non-null int64
LotArea
Street
                  1460 non-null object
                  91 non-null object
Allev
LotShape
                  1460 non-null object
                  1460 non-null object
LandContour
Utilities
                  1460 non-null object
LotConfig
                  1460 non-null object
                  1460 non-null object
LandS1ope
Neighborhood
                  1460 non-null object
Condition1
                  1460 non-null object
Condition2
                  1460 non-null object
BldgType
                  1460 non-null object
                  1460 non-null object
HouseStyle
OverallQual
                  1460 non-null int64
OverallCond
                  1460 non-null int64
YearBuilt
                  1460 non-null int64
YearRemodAdd
                  1460 non-null int64
RoofStyle
                  1460 non-null object
RoofMat1
                  1460 non-null object
Exterior1st
                  1460 non-null object
Exterior2nd
                  1460 non-null object
MasVnrTvpe
                  1452 non-null object
MasVnrArea
                  1452 non-null float64
ExterQual
                  1460 non-null object
ExterCond
                  1460 non-null object
Foundation
                  1460 non-null object
BsmtQua1
                  1423 non-null object
BsmtCond
                  1423 non-null object
BsmtExposure
                  1422 non-null object
BsmtFinType1
                  1423 non-null object
BsmtFinSF1
                  1460 non-null int64
                  1422 non-null object
BsmtFinType2
BsmtFinSF2
                  1460 non-null int64
BsmtUnfSF
                  1460 non-null int64
TotalBsmtSF
                  1460 non-null int64
Heating
                  1460 non-null object
HeatingQC
                  1460 non-null object
CentralAir
                  1460 non-null object
Electrical
                  1459 non-null object
1stF1rSF
                  1460 non-null int64
                  1460 non-null int64
2ndF1rSF
LowQualFinSF
                  1460 non-null int64
GrLivArea
                  1460 non-null int64
BsmtFullBath
                  1460 non-null int64
                  1460 non-null int64
BsmtHalfBath
                  1460 non-null int64
FullBath
HalfBath
                  1460 non-null int64
BedroomAbvGr
                  1460 non-null int64
                  1460 non-null int64
KitchenAbvGr
                  1460 non-null object
KitchenQual
```

1460 non-null int64 TotRmsAbvGrd Functional 1460 non-null object Fireplaces 1460 non-null int64 FireplaceQu 770 non-null object GarageType 1379 non-null object GarageYrB1t 1379 non-null float64 GarageFinish 1379 non-null object GarageCars 1460 non-null int64 GarageArea 1460 non-null int64 GarageQual 1379 non-null object 1379 non-null object GarageCond PavedDrive 1460 non-null object WoodDeckSF 1460 non-null int64 1460 non-null int64 OpenPorchSF EnclosedPorch 1460 non-null int64 3SsnPorch 1460 non-null int64 ScreenPorch 1460 non-null int64 1460 non-null int64 PoolArea Poo1QC 7 non-null object Fence 281 non-null object MiscFeature 54 non-null object 1460 non-null int64 MiscVal MoSold 1460 non-null int64 YrSold 1460 non-null int64 1460 non-null object SaleType SaleCondition 1460 non-null object 1460 non-null int64 SalePrice dtypes: float64(3), int64(35), object(43)

memory usage: 924.0+ KB

In [4]:

df train.describe(include = 'all')

Out[4]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotSh
count	1460.000000	1460.000000	1460	1201.000000	1460.000000	1460	91	1
unique	NaN	NaN	5	NaN	NaN	2	2	
top	NaN	NaN	RL	NaN	NaN	Pave	Grvl	1
freq	NaN	NaN	1151	NaN	NaN	1454	50	
mean	730.500000	56.897260	NaN	70.049958	10516.828082	NaN	NaN	1
std	421.610009	42.300571	NaN	24.284752	9981.264932	NaN	NaN	1
min	1.000000	20.000000	NaN	21.000000	1300.000000	NaN	NaN	1
25%	365.750000	20.000000	NaN	59.000000	7553.500000	NaN	NaN	1
50%	730.500000	50.000000	NaN	69.000000	9478.500000	NaN	NaN	1
75%	1095.250000	70.000000	NaN	80.000000	11601.500000	NaN	NaN	1
max	1460.000000	190.000000	NaN	313.000000	215245.000000	NaN	NaN	1

11 rows × 81 columns

In [5]:

```
plt.figure(figsize=(10,6))
sns.set()
sns.distplot(df_train['SalePrice'])
plt.show()
```


In [6]:

```
f, axis = plt. subplots(figsize = (10,6))
data = pd. concat([df_train['GrLivArea'], df_train['SalePrice']], axis = 1)
f = data.plot.scatter(y = 'SalePrice', x = 'GrLivArea', ax =axis)
plt. show()
```

'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoid ed as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.

In [7]:

```
data = pd.concat([df_train['SalePrice'], df_train['TotalBsmtSF']], axis=1)
data.plot.scatter(x="TotalBsmtSF", y='SalePrice', ylim=(0,800000))
```

'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoid ed as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0xafe62b0>

In [8]:

```
fig , qaxis = plt.subplots(figsize =(10,6))
data = pd.concat([df_train['SalePrice'], df_train['OverallQual']], axis=1)
fig = sns.boxplot(data = data, x = 'OverallQual', y = 'SalePrice')
qaxis.set(ylim=(0,800000))
```

Out[8]:

[(0, 800000)]

In [9]:

```
a = plt.figure(figsize = (10,6))
data = pd. concat([df_train['YearBuilt'], df_train['SalePrice']], axis = 1)
sns.boxplot(data = data , x = 'YearBuilt', y = 'SalePrice')
plt.show()
```


In [10]:

```
plt.figure(figsize = (16, 12))
sns.heatmap(df_train.corr(), square = True)
```

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0xb893048>

In [13]:

```
val = df_train.corr()
col = val.nlargest(10, 'SalePrice').index
col
```

Out[13]:

In [32]:

```
data_heat = pd. DataFrame(np. corrcoef(df_train[col].values.T), index = col, columns = col)
plt.figure(figsize = (12,8))
sns.heatmap(data_heat, square = True, annot = True)
plt.show()
```


In [33]:

df_train.head()

Out[33]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	U1
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	_,
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	1
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	1
3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI	1
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	1

5 rows × 81 columns

In [36]:

sns.pairplot(df_train[col])

Out[36]:

<seaborn.axisgrid.PairGrid at 0x13d511d0>

In [51]:

```
miss_acount = df_train.isnull().sum().sort_values(ascending = False)
miss_rate = missing_acount/df_train.shape[0]
miss_overview = pd.concat([acount, rate], axis = 1, keys = ['acount', 'rate'])
miss_overview.head(20)
```

Out[51]:

acount	rate
1453	0.995205
1406	0.963014
1369	0.937671
1179	0.807534
690	0.472603
259	0.177397
81	0.055479
81	0.055479
81	0.055479
81	0.055479
81	0.055479
38	0.026027
38	0.026027
37	0.025342
37	0.025342
37	0.025342
8	0.005479
8	0.005479
1	0.000685
0	0.000000
	1453 1406 1369 1179 690 259 81 81 81 81 38 38 37 37 37

In [55]:

```
df_train.drop(miss_overview[miss_overview.acount>1].index,axis = 1,inplace = True)
```

In [59]:

```
df_train.isnull().sum().sort_values(ascending = False).head()
```

Out[59]:

```
Electrical 1
SalePrice 0
Heating 0
BsmtUnfSF 0
BsmtFinSF2 0
dtype: int64
```

In [34]:

```
df_train['TotalBsmtSF'].value_counts().sort_index(ascending = True)[:1]
```

Out[34]:

0 37

Name: TotalBsmtSF, dtype: int64

In [38]:

df_train.head()

Out[38]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	U1
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	,
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	1
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	1
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	,
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	,

5 rows × 81 columns

1

In [69]:

```
data = pd. concat([df_train['GrLivArea'], df_train['SalePrice']], axis = 1)
sns. scatterplot(data = data, x = 'GrLivArea', y = 'SalePrice')
plt. show()
```


In [75]:

```
data.sort_values(by = 'GrLivArea', ascending = False).head()
```

Out[75]:

	GrLivArea	SalePrice
1298	5642	160000
523	4676	184750
1182	4476	745000
691	4316	755000
1169	3627	625000

In [78]:

```
df_train.loc[1298][['GrLivArea', 'SalePrice']]
```

Out[78]:

GrLivArea 5642 SalePrice 160000 Name: 1298, dtype: object

In [113]:

```
df_train.drop([1298, 523], inplace = True)
```

In [114]:

```
data = pd. concat([df_train['GrLivArea'], df_train['SalePrice']], axis = 1)
sns. scatterplot(data = data, x = 'GrLivArea', y = 'SalePrice')
plt. show()
```


In [119]:

```
data = pd. concat([df_train['GrLivArea'], df_train['SalePrice']], axis = 1)
sns. scatterplot(data = data, x = 'SalePrice', y = 'GrLivArea')
```

Out[119]:

 ${\tt matplotlib.axes._subplots.AxesSubplot}$ at ${\tt 0x194d01d0}{\tt >}$

In [172]:

```
a = sns.distplot(df_train['SalePrice'], fit = norm)
plt.figure()
b = stats.probplot(df_train['SalePrice'], plot = plt)
```


In [180]:

```
_ = sns.distplot(np.log(df_train['SalePrice']))
plt.figure()
_ = stats.probplot(np.log(df_train['SalePrice']), plot = plt)
```


In [184]:

```
_ = sns.distplot(df_train['GrLivArea'], fit = norm)
plt.figure()
_ = stats.probplot(df_train['GrLivArea'], plot = plt)
```


In [188]:

```
_ = sns.distplot(np.log(df_train['GrLivArea']), fit = norm)
plt.figure()
_ = stats.probplot(np.log(df_train['GrLivArea']), plot = plt)
```


In [193]:

```
_ = sns.distplot(df_train['TotalBsmtSF'], fit = norm)
plt.figure()
_ = stats.probplot(df_train['TotalBsmtSF'], plot = plt)
```


In [200]:

```
_ = sns.distplot(np.log(df_train[df_train['TotalBsmtSF']!=0]['TotalBsmtSF']), fit = norm)
plt.figure()
_ = stats.probplot(np.log(df_train[df_train['TotalBsmtSF']!=0]['TotalBsmtSF']), plot = plt)
```


In [206]:

sns. scatterplot(np. log(df_train['GrLivArea']), np. log(df_train['SalePrice']))

Out[206]:

<matplotlib.axes._subplots.AxesSubplot at 0xb8546a0>

In [208]:

plt.scatter(np.log(df_train[df_train['TotalBsmtSF']>0]['TotalBsmtSF']), np.log(df_train[df_train['TotalBsmtSF'])

