suppose A lies between 0 and 90^{o} and

$$\sec A + \tan A = 4$$

determine $\cos(A)$

$$\frac{2}{15} = \cos^2 A$$

$$\int \frac{2}{15} = \cos A$$

= 15 cos² A

c) home of these

Suppose we know a triangle has $c=14,\,b=5,\,a=12$, WHICH application of the LAW of COSINES

would result in an equation with only ONE unknown quantity?

A)
$$c^2 = b^2 + a^2 - 2ba \cos(C)$$
B) $a^2 = b^2 + c^2 - 2bc \cos(A)$

2:18 PM

One solution to the equation $\frac{2}{5} = \cos(x)$ is approx 66.422°

What is the NEXT real solution to the right?

Suppose we know a triangle has $A = 79^{\circ}$, b = 10, c = 7, Solve the triangle:

$$a^2 = 10^2 + 1^2 - 2(10)(1) \cos(79^4)$$
 $a^2 \approx 122.2867$
 $a \approx 11.06$

$$\frac{\sin(79^{\circ})}{11.06} = \frac{\sin(6^{\circ})}{7}$$

$$\frac{\sin(79^{\circ})}{7.5\sin(79^{\circ})} = \frac{\sin(6^{\circ})}{11.06}$$

$$7. \frac{\sin(1)}{11.06} = \frac{\sin(1)}{\sin(19^{\circ})}$$
 $\sin(1) = \frac{\cos(1)}{11.06}$
 $\approx 38.41 = \frac{\cos(1)}{11.06}$

10.
$$\frac{\sin(79^\circ)}{11.06} = \frac{\sin(8^\circ)}{10}$$

10. $\frac{\sin(79^\circ)}{11.06} = \sin(8^\circ)$

(Assume none of the quantities are zero) Suppose we know

$$\frac{A}{B} = \frac{X}{Y}$$

Select variations of the same statement as above [i.e. equivalent statements.]

$$B \cdot A = X \cdot B$$
 $A \times X \cdot A = X \cdot A$
 $A \times X \cdot A = X \cdot A$

$$A = \frac{BX}{Y}$$

$$\frac{BX}{A} = Y$$

$$A) A = \frac{B \times}{Y}$$

$$c)\frac{B}{A} = \frac{Y}{X}$$

c)
$$\frac{B}{A} = \frac{Y}{X}$$
 D) X is to Y as A is to B

$$t AY - BX F) \frac{Y}{X} = \frac{B}{A}$$

2:18 PM

Suppose a circle is inscribed in an equilateral triangle. Find the radius r if the side is s = 8

c) none of these

Consider the following trigonometric equation

$$\sin(x) = \frac{1}{\sqrt{3}}$$

$$\left(\sin(\chi)\right)^{2} = \left(\frac{1}{\sqrt{3}}\right)^{2}$$

$$\sin^{2}(\chi) = \frac{1}{3}$$

$$A) \sin^2(x) = \frac{1}{3}$$