- 19. (a) Prove that if n is even, then n^2 is divisible by 4.
 - (b) Prove that if n is odd, then $n^2 1$ is divisible by 8.

Solution:

- (a) Recall that an <u>even number</u> is an integer which is divisible by 2. An integer that is not an even number is an <u>odd number</u>. (See Sheet 2, Exercise 11 for the divisibility relation)

 Since n is even, then n is written as n = 2m where $m \in \mathbb{Z}$. It follows that $n^2 = 4m^2$ where $m^2 \in \mathbb{N}$. This means there exists an integer $k = m^2$ such that $n^2 = 4k$. Therefore, we get $4|n^2$.
- (b) Since n is odd, then n is written as n = 2m + 1 where $m \in \mathbb{Z}$. Then

$$n^2 - 1 = 4m^2 + 4m = 4m(m+1).$$

Here, we discus two cases:

- if m is even, by the definition of even integer, m is divisible by 2. This is, there exists $q \in \mathbb{Z}$ such that m = 2q. It follows that $n^2 1 = 4m(m+1) = 8q(2q+1)$, which is divisible by 8.
- If m is odd, then we have m+1 is even. Again, we get m+1 is divisible by 2. Then, similar to the first case, there exists $p \in \mathbb{Z}$ such that m+1=2p and it follows that $n^2-1=4(2p-1)(2p)=8p(2p-1)$. Therefore, we get $8|(n^2-1)$.

- 20. Let A and B be non-empty subsets of \mathbb{R} , and let $A \subset B$. Prove that:
 - (a) if $\sup A$ and $\sup B$ exist, then $\sup A \leq \sup B$,
 - (b) if $\inf A$ and $\inf B$ exist, then $\inf A \ge \inf B$.
 - (c) Let C and D be non-empty subsets of \mathbb{R} , and let $x \leq y$, for all $x \in C$ and $y \in D$. Then $\sup C \leq \inf D$.

Solution:

In this exercise, we suppose that $\sup A$, $\sup B$, $\sup C$, $\inf A$, $\inf B$, $\inf D$ exist.

- (a) Since $A \subset B$, it follows that, for all $a \in A$, we have $a \in B$. By the definition of the supremum of B (sup B is an upper bound of B), we have $a \leq \sup B$, for all $a \in A$. Hence, $\sup B$ is an upper bound of A too. Again, by the definition of the supremum of A, we have $\sup A$ is the smallest upper bound among the upper bounds of A, it follows that $\sup A \leq \sup B$.
- (b) The proof for the infimum is similar. Since $A \subset B$, it follows that, for all $a \in A$, we have $a \in B$. By the definition of the infimum of B (inf B is a lower bound of B), we have $\inf B \leq a$, for all $a \in A$. Hence $\inf B$ is a lower bound of A too. By the definition of $\inf A$, we have $\inf A$ is the largest lower bound of A among the lower bounds of A. This means $\inf A \geq \inf B$.
- (c) Fix $y \in D$. Since $x \leq y$ for all $x \in C$, it follows that y is an upper bound of C. Again, by the definition of the supremum of C (which is $\sup C$ is the smallest among the upper bounds of C), this gives us $y \geq \sup C$. Now, for all $y \in D$ and $x \leq y$, we have $\sup C$ is a lower bound of D. We recall that $\inf D$ is the largest among the lower bounds of D. Then, we get $\sup C \leq \inf D$. This completes the proof.

21. Prove by induction the following equality: for all $n \in \mathbb{N}$, we have

$$2^n = \sum_{k=0}^n \binom{n}{k}.\tag{1}$$

Solution:

Induction basis: For n = 1, we have

$$2 = \sum_{k=0}^{1} \binom{1}{k} = \binom{1}{0} + \binom{1}{1} = 2.$$

Where we use the fact that $\binom{1}{0} = \binom{1}{1} = 1$. **Induction step**: We assume that

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

holds for some $n \in \mathbb{N}$, and we want to prove that it is true for n+1, i.e., we want to show that

$$2^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k}.$$

By using the binomial identity (Lemma 1.41), we can write the above binomial as follows:

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$

Then, we have

$$\sum_{k=0}^{n+1} \binom{n+1}{k} = \sum_{k=0}^{n+1} \binom{n}{k} + \sum_{k=0}^{n+1} \binom{n}{k-1}$$

$$= \sum_{k=0}^{n} \binom{n}{k} + \binom{n}{n+1} + \sum_{k=0}^{n+1} \binom{n}{k-1}$$

$$= \sum_{k=0}^{n} \binom{n}{k} + \sum_{k=0}^{n+1} \binom{n}{k-1},$$
(2)

where we used $\binom{n}{n+1} = 0$. Moreover, we have

$$\sum_{k=0}^{n+1} \binom{n}{k-1} = \binom{n}{-1} + \sum_{k=1}^{n+1} \binom{n}{k-1} = \sum_{k=1}^{n+1} \binom{n}{k-1},$$

where $\binom{n}{-1} = 0$.

Now we use index shift argument, recall that $\sum_{k=\ell}^{n} a_k = \sum_{k=\ell+m}^{n+m} a_{k-m}$ such that in our setting $a_k = \binom{n}{k-1}$, $\ell = 0$ and m = 1. Hence we get

$$\sum_{k=0}^{n+1} \binom{n}{k-1} = \sum_{k=1}^{n+1} \binom{n}{k-1} = \sum_{k=0}^{n} \binom{n}{k}.$$
 (3)

From (2) and (3) we find that

$$\sum_{k=0}^{n+1} \binom{n+1}{k} = \sum_{k=0}^{n} \binom{n}{k} + \sum_{k=0}^{n+1} \binom{n}{k-1}$$
$$= \sum_{k=0}^{n} \binom{n}{k} + \sum_{k=0}^{n} \binom{n}{k} = 2 \sum_{k=0}^{n} \binom{n}{k}$$
$$= 2 \cdot 2^{n} = 2^{n+1},$$

where we used the induction hypothesis. Therefore, we conclude that equality (1) is true for all $n \in \mathbb{N}$.

22. Let

$$A = \left\{ \frac{1}{n^2 - n - 3} : n \in \mathbb{N} \right\}.$$

Compute, if they exist, the following quantities:

 $\inf A$, $\sup A$, $\max A$, $\min A$.

Solution:

For $n \in \mathbb{N}$, we have

$$A = \left\{ -\frac{1}{3}, -1, \frac{1}{3}, \frac{1}{9}, \frac{1}{17}, \frac{1}{27}, \frac{1}{39}, \dots \right\}.$$

In other words, we have

$$A = \left\{ -\frac{1}{3}, -1, \right\} \bigcup \left\{ \frac{1}{3}, \frac{1}{9}, \frac{1}{17}, \frac{1}{27}, \frac{1}{39}, \dots \right\}$$
$$= \left\{ -\frac{1}{3}, -1, \right\} \bigcup \left\{ \frac{1}{n^2 - n - 3} : n \in \{3, 4, 5, \dots\} \right\}$$
$$= A_1 \bigcup A_2$$

Indeed the sign of the elements in A_2 are characterized by n^2-n-3 which is equal to $(n-\frac{1-\sqrt{13}}{2})(n-\frac{1+\sqrt{13}}{2})$. Since $\frac{1-\sqrt{13}}{2}<0$, then the only place where A_2 is negative is when $n \leq \lfloor \frac{1+\sqrt{13}}{2} \rfloor = 2$, that is n=1 and n=2 which are not part of A_2 . Then we conclude that all the elements of A_2 are positive. Hence A_1 contains only negative numbers while A_2 contains only positive numbers. Then inf A and min A are the same as $\inf A_1 = -1$ and $\min A_1 = -1$ respectively. That is $\inf A = \inf A_1 = \min A_1 = \min A = -1$. Since A_2 contains only positive numbers then $\sup A = \sup A_2$ and $\max A = \max A_2$. First, we show that $P(n) = n^2 - n - 3$ is an increasing function for all $n \in \mathbb{N}$ such that $n \geq 3$. Which implies that $\frac{1}{n^2-n-3}$ is a decreasing function for all $n \in \mathbb{N}$ such that $n \geq 3$, and then it attends its maximum and supremum in the first position, that is, when n = 3. Indeed, to show that $P(n) = n^2 - n - 3$ is an increasing function we compute P(n+1) - P(n) if its positive than P(n) is an increasing function.

$$P(n+1) - P(n) = (n+1)^{2} - (n+1) - 3 - (n^{2} - n - 3)$$
$$= n^{2} + 2n + 1 - n - 1 - 3 - n^{2} + n + 3$$
$$= 2n > 0$$

the last inequality holds true since $n \geq 3$. Now we conclude that P(n) is an increasing function, which implies that $\frac{1}{n^2-n-3}$ is a decreasing function for all $n \in \mathbb{N}$ such that $n \geq 3$. Hence $\max A = \max A_2 = \sup A_2 = \sup A = \frac{1}{P(3)} = \frac{1}{3}$.

Thus, we find that $\sup A = \max A = \frac{1}{3}$ and $\inf A = \min A = -1$.

23. Suppose that $n, k \in \mathbb{N}$.

Let B be the set of k-element subsets of $\{1, \ldots, n\}$.

Let U be the set of (k+1)-element subsets of $\{1, \ldots, n+1\}$ containing the element n+1.

- (a) Determine the sets B and U and construct a bijection $B \longrightarrow U$ under the assumption that n = 4 and k = 2.
- (b) Construct a bijection $B \longrightarrow U$ for all $n, k \in \mathbb{N}$.
- (c) Express the cardinality |U| in terms of n and k.

Solution:

(a) For n = 4 and k = 2, we define:

B :=the set of 2-element subsets of the set $\{1, 2, 3, 4\}$,

U := the set of 3-element subsets of $\{1,2,3,4,5\}$ containing 5.

We can read the sets B and U in another way:

• B is the set formed out from $6 = {4 \choose 2}$ subsets, such that each subset contains two elements chosen of the set $\{1, 2, 3, 4\}$. Namely

$$B = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}.$$

• U is the set of subsets, such that each subset contains three elements chosen of $\{1, 2, 3, 4, 5\}$, where one of these elements should be number 5. This means: two elements are chosen from the set $\{1, 2, 3, 4\}$, and the third one should be number 5. Namely

$$U = \{\{1, 2, 5\}, \{1, 3, 5\}, \{1, 4, 5\}, \{2, 3, 5\}, \{2, 4, 5\}, \{3, 4, 5\}\}.$$

Notice that |U| = 6.

Now, we construct a function $f: B \longrightarrow U$, such that:

$$f(\{1,2\}) = \{1,2,5\}, \ f(\{1,3\}) = \{1,3,5\}, \ f(\{1,4\}) = \{1,4,5\}, \ f(\{2,3\}) = \{2,3,5\}, \ f(\{2,4\}) = \{2,4,5\}, \ f(\{3,4\}) = \{3,4,5\}.$$

From above, it is easy to see that f is bijective, and then |B| = |U| = 6, (Precisely what we have seen before).

(b) • Let B be the set formed out from $\binom{n}{k}$ subsets, such that each subset contains k elements chosen of $\{1, \ldots, n\}$. Namely

$$B = \{\{b_1, \dots, b_k\}; b_1, \dots, b_k \in \{1, 2, \dots, n\}\}.$$

• Let U be the set of subsets, such that each subset contains k+1 elements chosen of $\{1, \ldots, n, n+1\}$, where one of these elements should be the number n+1. This means, k elements can be chosen from the set $\{1, 2, 3, \ldots, n\}$ and the last element k+1 should be the number n+1. Namely,

$$U = \{\{b_1, \dots, b_k, n+1\}; b_1, \dots, b_k \in \{1, 2, \dots, n\}\}.$$

We construct the function $f: B \longrightarrow U$, such that: $f(\{b_1, \ldots, b_k\}) = \{b_1, \ldots, b_k, n+1\}$. One can check that every subset of B has an unique partner of U. It follows that f is a bijective.

(c) Since the function f is a bijective, then we have $|B| = |U| = \binom{n}{k} = \frac{n!}{k!(n-k)!}$.

24. Prove the following identity for all $r, m, n \in \mathbb{N}_0$ such that $r \leq m + n$:

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}.$$

Hint. Let A and B be sets such that |A| = m, |B| = n and $|A \cup B| = m + n$. For all r-element subsets $U \subset A \cup B$ we have that $A \cap U$ is an k-element subset of A and $B \cap U$ is an (r - k)-element subset of B where $k = |A \cap U|$.

Solution:

This identity is called the Chu-Vandermonde identity. Its proof can be algebraic, geometrical, or Combinatorial. In this exercise, we show the combinatorial proof.

- Let A and B be sets such that |A| = m, |B| = n, and $|A \cup B| = m + n$.
- Let U be a subset consisting of r elements chosen from $A \cup B$. Namely |U| = r.

Then, there are $\binom{m+n}{r}$ ways to choose U from $A \cup B$.

Now, we notice that $U = (A \cap U) \cup (B \cap U)$. Hence $|U| = r = |A \cap U| + |B \cap U|$.

- Let $A \cap U$ be a subset from U consisting of k elements chosen from A, namely $|A \cap U| = k$. Here, we see that k can be $0, 1, 2, \ldots, r$.
- Let $B \cap U$ be a subset from U consisting of r k elements chosen from B, namely $|B \cap U| = r k$. Again, we have (r k) can be $r, r 1, r 2, \dots, 2, 1, 0$.

Then, there are $\binom{m}{k}$ ways to choose the subset $A \cap U \subset U$ of k elements from A, and $\binom{n}{r-k}$ ways to choose the subset $B \cap U \subset U$ of (r-k) elements from B. Therefore, the sum over all possible values of k, of the number of subsets consisting of k elements from A and (r-k) elements from B is same to the number of subsets consisting of k elements from k0. That means:

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}.$$

This completes the proof.