

SEQUENCE LISTING

<110> Wakamiya, Nobutaka

<120> RECOMBINANT HUMAN MANNAN-BINDING PROTEINS AND PROCESS
FOR PRODUCING THE SAME

<130> 19036/36614

<140>

<141>

<150> PCT/JP98/03311

<151> 1998-07-23

<150> JP 10-11864

<151> 1998-01-23

<160> 28

<170> PatentIn Ver. 2.0

<210> 1

<211> 3605

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (66)..(809)

<220>

<221> mat_peptide

<222> (126)..(809)

<400> 1

ggtaaatatg tgttcattaa ctgagattaa ccttccctga gttttctcac accaaggtga 60

ggacc atg tcc ctg ttt cca tca ctc cct ctc ctt ctc ctg agt atg gtg 110

Met Ser Leu Phe Pro Ser Leu Pro Leu Leu Leu Ser Met Val

-20

-15

-10

gca gcg tct tac tca gaa act gtg acc tgt gag gat gcc caa aag acc 158
Ala Ala Ser Tyr Ser Glu Thr Val Thr Cys Glu Asp Ala Gln Lys Thr
-5 -1 1 5 10

tgc cct gca gtg att gcc tgt agc tct cca ggc atc aac ggc ttc cca 206 Cys Pro Ala Val Ile Ala Cys Ser Ser Pro Gly Ile Asn Gly Phe Pro

ggc aaa gat ggg cgt gat ggc acc aag gga gaa aag ggg gaa cca ggc 254 Gly Lys Asp Gly Arg Asp Gly Thr Lys Gly Glu Lys Gly Glu Pro Gly 30 35 40

caa ggg ctc aga ggc tta cag ggc ccc cct gga aag ttg ggg cct cca 302 Gln Gly Leu Arg Gly Leu Gln Gly Pro Pro Gly Lys Leu Gly Pro Pro 45

gga aat cca ggg cct tct ggg tca cca gga cca aag ggc caa aaa gga 350 Gly Asn Pro Gly Pro Ser Gly Ser Pro Gly Pro Lys Gly Gln Lys Gly 60 75

gac Asp	cct Pro	gga Gly	aaa Lys	agt Ser 80	ccg Pro	gat Asp	ggt Gly	gat Asp	agt Ser 85	agc Ser	ctg Leu	gct Ala	gcc Ala	tca Ser 90	gaa Glu	398
aga Arg	aaa Lys	gct Ala	ctg Leu 95	caa Gln	aca Thr	gaa Glu	atg Met	gca Ala 100	cgt Arg	atc Ile	aaa Lys	aag Lys	tgg Trp 105	ct`g Leu	acc Thr	446
ttc Phe	tct Ser	ctg Leu 110	ggc Gly	aaa Lys	caa Gln	gtt Val	999 Gly 115	aac Asn	aag Lys	ttc Phe	ttc Phe	ctg Leu 120	acc Thr	aat Asn	ggt Gly	494
gaa Glu	ata Ile 125	atg Met	acc Thr	ttt Phe	gaa Glu	aaa Lys 130	gtg Val	aag Lys	gcc Ala	t <u>tg</u> Leu	tgt Cys 135	gtc Val	aag Lys	ttc Phe	cag Gln	542
gcc Ala 140	tct Ser	gtg Val	gcc Ala	acc Thr	ccc Pro 145	agg Arg	aat Asn	gct Ala	gca Ala	gag Glu 150	aat Asn	gga Gly	gcc Ala	att Ile	cag Gln 155	590
aat Asn	ctc Leu	atc Ile	aag Lys	gag Glu 160	Glu	gcc Ala	ttc Phe	ctg Leu	ggc Gly 165	atc	act Thr	gat Asp	gag Glu	aag Lys 170	aca Thr	638
gaa Glu	ggg ggg	cag Gln	ttt Phe 175	Val	gat Asp	ctg Leu	aca Thr	gga Gly 180	aat Asn	aga Arg	ctg Leu	acc Thr	tac Tyr 185	aca Thr	aac Asn	686
tgg Trp	aac Asn	gag Glu 190	Gly	gaa Glu	ccc Pro	aac Asn	aat Asn 195	Ala	ggt Gly	tct Ser	gat Asp	gaa Glu 200	Asp	tgt Cys	gta Val	734
ttg Leu	cta Leu 205	Leu	aaa Lys	aat Asn	ggc	cag Gln 210	Trp	aat Asn	gac Asp	gtc Val	ccc Pro 215	Cys	tcc Ser	acc Thr	tcc Ser	782
cat His 220	ctg Leu	gcc Ala	gto Val	tgt Cys	gag Glu 225	ı Phe	cct Pro	atc Ile	tga	aggg	tca	tatc	acto	ag		829
gco	cctcc	ttg	tctt	ttta	act g	gcaac	ccac	a gg	ccca	cagt	atg	cttg	aaa	agat	aaatta	889
tat	caat	ttc	ctca	atato	cca c	gtatt	gtto	c tt	ttgt	gggc	aat	cact	aaa	aato	gatcact	949
aad	cagca	acca	acaa	agca	aat a	aatag	gtagt	a gt	agta	igtta	a gca	gcag	ıcag	tagt	agtcat	1009
gct	caatt	tata	taat	tattt	tt a	aatat	atac	ct at	gagg	gccct	ato	tttt	gca	tcct	cacatta	1069
att	tatct	tagt	ttaa	attaa	atc t	gtaa	atgct	t to	gata	igtgt	taa	actto	gctg	cagt	tatgaaa	1129
ata	aagad	cgga	ttta	atttt	tc o	cattt	tacaa	ac aa	acac	cctgt	gct	ctgt	tga	gcct	tccttt	. 1189
ct	gttt	gggt	agag	gggct	ccc (cctaa	atgad	ca to	cacca	acagt	t tta	aatao	ccac	agct	tttttac	1249
ca	agtti	tcag	gtat	ttaag	gaa a	aatct	att	ct gt	caact	ttct	t cta	atgaa	actc	tgt	tttcttt	1309
ct	aatg	agat	atta	aaac	cat q	gtaaa	agaa	ca ta	aaata	acaa	a ato	ctcaa	agca	aac	agcttca	a 1369
ça	aatt	ctca	caca	acata	aca	tacci	tata	ta ci	cact	ttc	t aga	attaa	agat	atg	ggacatt	1429
tt	tgac	tccc	tag	aagc	ccc (gtta	taac	tc c	teeta	agta	c taa	actco	ctag	gaa	aatacta	a 1489
tt	ct.ga	cctc	cate	gact	aca	caqta	aatt	tc g	tctg	ttta	t aa	acati	tgta	tag	ttggaat	1549
	0050				_											
	, ,				J	3				2-			1			

,

catattgtgt gtaatgttgt atgtcttgct tactcagaat taagtctgtg agattcattc 1609 atglcatgtg tacaaaagtt tcatcctttt cattgccatg tagggttccc ttatattaat 1669 attcctcagt tcatccattc tattgttaat aggcacttaa gtggcttcca atttttggcc 1729 atgaggaaga gaacccacga acattcctgg acttgtcttt tggtggacat ggtgcactaa 1789 tttcactacc tatccaggag tggaactggt agaggatgag gaaagcatgt attcagcttt 1849 agtagatatt accagttttc ctaagtgatt gtatgaattt atgctcctac cggcaatgtg 1909 tggcagtcct agatgctcta tgtgcttgta aaaagtcaat gttttcagtt ctcttgattt 1969 tcattattcc tgtggatgta aagtgatatt tccccatggt tttaatctgt atttccccaa 2029 catgtaataa ggttgaacac ttttttatat gcttattggg cacttgggta tcttcttctg 2089 tgaagtaccc gttcacattt ttgtattttg tttaaattag ttagccaata tttttcttac 2149 tgatttttaa gttatttta cattctgaat atgtcctttt taatgtgtat tacaaatatt 2209 ttgctagttt ttgacttgct cctaatgttg aattttgatg aacaaaattt cctaattttg 2269 agaaagtett atttatteat attttette aaaattagtg etttttgtgt catgtttaag 2329 aaatttttgc ccatcccaaa atcataagat atttttcatg atttttgaaac catgaagaga 2389 tttttcatga ttttgaaatc atgaagatat ttttccattt ttttctaata gttttattaa 2449 taaacattet atetatteet ggtagaatag atateeaett gagacageae tatgtaggaa 2509 agaccatttt teeteeactg aactagggtg gtgeattttt gtaagttagg taactgtatg 2569 tgtgtgtgtc tgtttctggg ctgtctattc tagtctattt gttgatgctt gtgtcaaaca 2629 gtacactatc ttaattattg tacatttata gttgtaactg tagtccagct ttgttcttct 2689 tcaagtcaag atttccatat aaatattaga aacagtttct caatttctac aaaatcctga 2749 tgaggtttct actgggacca cattgagtct atcaatcaac ttatgcagaa ctggcaactt 2809 actactgaat ctctaatcaa tgttcatcat gtatcgcttc atttaactag gatttctcta 2869 acttaattgc tatgttttga gatttttagt ttaaaaacct tgtatatctt gttttggtgg 2929 ttttagtgat tttaataata tattttaaat atttttctt ttctattgtt gtacacagaa 2989 atacagttaa gttttgtgtg tagtcttacg atgtttagta acctcaataa gtttatttct 3049 taaatctaqt aatttqtaqa ttcctctqqa ttttqtatat qcataqtcat qtaaqctqaa 3109 aatatggcaa tacttgcttc ttcccaattg ctttaccttt tttcttacct tattgcactg 3169 gttagcaacc ccaatacaga gaccaccaga gcaggtatag actcctgaaa gacaatataa 3229 tgaagtgete caqteaggee tatetaaact ggatteacag etetgteact taattgetae 3289 atgatctaga gccaqttact ttqtqtttca gccatqtatt tgcaqctgag agaaaataat 3349 cattettatt teatgaaaat tgtggggatg atgaaataag ttaacacett taaagtgtgt 3409 agtaaagtat caggatacta tattttaggt cttaatacac acagttatgc cgctagatac 3469

39

atgcttttta atgagataat gtgatattat acataacaca tatcgatttt taaaaattaa 3529 3605 aaaaaaaaa aaaaaa <210> 2 <211> 747 <212> DNA <213> Homo sapiens <400> 2 atgtccctgt ttccatcact ccctctcctt ctcctgagta tggtggcagc gtcttactca 60 gaaactgtga cctgtgagga tgcccaaaag acctgccctg cagtgattgc ctgtagctct 120 ccaggcatca acggcttccc aggcaaagat gggcgtgatg gcaccaaggg agaaaagggg 180 gaaccaggcc aagggctcag aggcttacag ggcccccctg gaaagttggg gcctccagga 240 aatccagggc cttctgggtc accaggacca aagggccaaa aaggagaccc tggaaaaagt 300 ccggatggtg atagtagcct ggctgcctca gaaagaaaag ctctgcaaac agaaatggca 360 cgtatcaaaa agtggctgac cttctctctg ggcaaacaag ttgggaacaa gttcttcctg 420 accaatggtg aaataatgac ctttgaaaaa gtgaaggcct tgtgtgtcaa gttccaggcc 480 tctgtggcca cccccaggaa tgctgcagag aatggagcca ttcagaatct catcaaggag 540 gaagcettee tgggeateae tgatgagaag acagaaggge agtttgtgga tetgacagga 600 aatagactga cctacacaaa ctggaacgag ggtgaaccca acaatgctgg ttctgatgaa 660 gattgtgtat tgctactgaa aaatggccag tggaatgacg tcccctgctc cacctcccat 720 747 ctggccgtct gtgagttccc tatctga <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: sense DNA <400> 3 41 tatgccgcgg aatcgatgat taccgtacgg aattcgggcc c <210> 4 <211> 39 <212> DNA <213> Artificial Sequence <220>

<223> Description of Artificial Sequence: antisense DNA

acggcgcctt agctactaat ggcatgcctt aagcccggg

<400> 4

<210> 5	
<220> <223> Description of Artificial Sequence: sense DNA	
<400> 5 agetteegeg getgeaggga tecategat	29
<210> 6 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: antisense DNA	
<400> 6 aggcgccgac gtccctaggt agctattaa	29
<210> 7 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 5' sense primer (PS1)	
<400> 7 ccccgcggga attctgtgga atgtgtgtca gttaggg	37
<210> 8 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 3' antisense primer (PS2)	
<400> 8 ccctgcagct ttttgcaaaa gcctaggcct cc	32
<210> 9 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 5' sense primer (PS3)	
<400> 9 ccccgcggtg tggaatgtgt gtcagttagg g	31

	<210> 10		
	<211> 16		
	<212> DNA		
	<213> Artificial Sèquence		
	<220>		
	<223> Description of Artificial Sequence: sense DNA		•
	<400> 10	_	
	aattgggccc atcgat	16	
			,
	<210> 11		
	<211> 16		
	<212> DNA		
	<213> Artificial Sequence	•	
	<220>		
	<223> Description of Artificial Sequence: antisense DNA		
			•
	<400> 11	1.6	
	cccgggtagc tattaa	16	
	.210. 12		
	<210> 12		
	<211> 41		
	<212> DNA		
	<213> Artificial Sequence		er.
	<220>		
	<223> Description of Artificial Sequence: 5' sense		
	primer (PD1)		
	primer (IDI)		
	<400> 12		
	ggctgcagtc cctcatgctt cgaccattga actgcatcgt c	41	
	ggetgeagee ceeedegee egaceaeega acegoacego		
			•
	<210> 13		
	<211> 32	•	
	<212> DNA		
	<213> Artificial Sequence		
	-	•	
	<220>		
	<223> Description of Artificial Sequence: 3' antisense		
	primer (PD2)		
	<400> 13		
	atagatctaa agccagcaaa agtcccatgg tc	32	
		,	
	•		
	<210> 14		
	<211> 28		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Description of Artificial Sequence: 5' sense		
	primer (PN1)		
•	400 14		
	<400> 14	28	
	7777 777 777	7.0	
	ggctgcagct tcacgctgcc gcaagcac	20	
	ggetgeaget teaegetgee geaageae	20	
	ggetgeaget teaegetgee geaageae	20	

•

<210> 15 <211> 29	
<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 3' antisense primer (PN2)	
<400> 15 ggggatccgg ggtgggcgaa gaactccag	29
<210> 16 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: antisense primer	
<400> 16 atcttgttca agcatgcgaa acgatcct	28
<210> 17 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: sense DNA	
<400> 17 agettgatat categatgeg geegeggtae eagatetegt aegtetagag	50
<210> 18 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: antisense primer	
<400> 18 actatagtag ctacgccggc gccatggtct agagcatgca gatctcttaa	50
<210> 19 <211> 47 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: 5' sense primer (PC1)	
<400> 19 ccgattačtt accgccatgt tgacattgat tattgactag ttattaa	47

<210><211><212><212><213>	45	
<220>	Description of Artificial Sequence: 3' antisense primer (PC2)	
<400> ccatco		45
<210> <211>	32	
<212> <213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: 5' sense primer (PB11)	
<400> cctcta	21 agact gtgccttcta gttgccagcc at	32
<210><211><212><212><213>	32	
<220> <223>	Description of Artificial Sequence: 3' antisense primer (PB12)	
<400> ccagat	22 totgt acccatagag cocacegoat co	32
<210><211><211><212><213>	32	
<220> <223>	Description of Artificial Sequence: 5' sense primer (PB21)	
<400> ttgga	23 tecet gtgeetteta gttgeeagee at	32
<210><211><211><212><213>	32	
<220> <223>	Description of Artificial Sequence: 3' antisense primer (PB22)	
<400> ttcgt	24° acgga tcccatagag cccaccgcat cc	32

<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: plasmid pNOW1 <400> 25 gcgcgtttcg gtgatgacgg tgaaaacctc tgacacatgc agctcccgga gacggtcaca 60 gcttgtctgt aagcggatge egggageaga caageeegte agggegegte agegggtgtt 120 ggcgggtgtc ggggctggct taactatgcg gcatcagagc agattgtact gagagtgcac 180 catatgccgc ggtgtggaat gtgtgtcagt tagggtgtgg aaagtcccca ggctccccag 240 caggcagaag tatgcaaagc atgcatctca attagtcagc aaccatagtc ccgccctaa 300 ctccgcccat cccgcccta actccgccca gttccgccca ttctccgccc catggctgac 360 taatttttt tatttatgca gaggccgagg cgcctctgag ctattccaga agtagtgagg 420 aggetttttt ggaggeetag gettt.tgeaa aaaagetgea gtgggettae atggegatag 480 ctagactggg cggttttatg gacagcaagc gaaccggaat tgccagctgg ggcgcctct 540 ggtaaggttg ggaagccctg caaagtaaac tggatggctt tcttgccgcc aaggatctga 600 tggcgcaggg gatcaagatc tgatcaagag acaggatgag gatcgtttcg catgattgaa 660 caagatggat tgcacgcagg ttctccggcc gcttgggtgg agaggctatt cggctatgac 720 tgggcacaac agacaatcgg ctgctctgat gccgccgtgt tccggctgtc agcgcagggg 780 cgcccggttc tttttgtcaa gaccgacctg tccggtgccc tgaatgaact gcaggacgag 840 gcagcgcggc tatcgtggct ggccacgacg ggcgttcctt gcgcagctgt gctcgacgtt 900 gtcactgaag cgggaaggga ctggctgcta ttgggcgaag tgccggggca ggatctcctg 960 tcatctcacc ttgctcctgc cgagaaagta tccatcatgg ctgatgcaat gcggcggctg 1020 catacgettg atceggetae etgeceatte gaccaccaag egaaacateg categagega 1080 gcacgtactc ggatggaagc cggtcttgtc gatcaggatg atctggacga agagcatcag 1140 gggctcgcgc cagccgaact gttcgccagg ctcaaggcgc gcatgcccga cggcgaggat 1200 ctcgtcgtga cccatggcga tgcctgcttg ccgaatatca tggtggaaaa tggccgcttt 1260 tctggattca tcgactgtgg ccggctgggt gtggcggacc gctatcagga catagcgttg 1320 gctacccgtg atattgctga agagcttggc ggcgaatggg ctgaccgctt cctcgtgctt 1380 tacggtatcg ccgctcccga ttcgcagcgc atcgccttct atcgccttct tgacgagttc 1440 ttctgagcgg gactctgggg ttcgaaatga ccgaccaagc gacgcccaac ctgccatcac 1500 gagatttcga ttccaccgcc gccttctatg aaaggttggg cttcggaatc gttttccggg 1560 acgccggctg gatgatcctc cagcgcggga tcacatgctg gattcttcgc ccacccctc 1620

<210> 25

<211> 7635

gateceeteg egagttggtt eagetgetge etgaggetgg aegaeetege ggagttetae 1680 cggcagtgca aatccgtcgg catccaggaa accagcagcg gctatccgcg catccatgcc 1740 cccgaactgc aggagtgggg aggcacgatg gccgctttgg tcgacccgga cgggacgctc 1800 ctgcgcctga tacagaacga attgcttgca ggcatctcat gagtgtgtct tcccgttttc 1860 cgcctgaggt cactgcgtgg atgggatccg tgacataatt ggacaaacta cctacagaga 1920 tttaaagctc taaggtaaat ataaaatttt taagtgtata atgtgttaaa ctactgattc 1980 taattgtttg tgtattttag attccaacct atggaactga tgaatgggag cagtggtgga 2040 atgcctttaa tgaggaaaac ctgttttgct cagaagaaat gccatctagt gatgatgagg 2100 ctactgctga ctctcaacat tctactcctc caaaaaagaa gagaaaggta gaagacccca 2160 aggactttcc ttcagaattg ctaagttttt tgagtcatgc tgtgtttagt aatagaactc 2220 ttgcttgctt tgctatttac accacaaagg aaaaagctgc actgctatac cagaaattat 2280 gaaatattet gtaacettta taagtaggea taacagttat aateataaca taetgttttt 2340 tcttactcca cacaggcata gagtgtctgc tattaataac tatgctcaaa aattgtgtac 2400 ctttagcttt ttaatttgta aaggggttaa taaggaatat ttgatgtata gtgccttgac 2460 tagagatcat aatcagccat accacatttg tagaggtttt acttgcttta aaaaacctcc 2520 cacacctccc cctgaacctg aaacataaaa tgaatgcaat tgttgttgtt aacttgttta 2580 ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca aataaagcat 2640 ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct tatcatgtct 2700 gggcccgata tccgatgtac gggccagata tacgcgttga cattgattat tgactagtta 2760 ttaatagtaa tcaattacgg ggtcattagt tcatagccca tatatggagt tccgcgttac 2820 ataacttacg gtaaatggcc cgcctggctg accgcccaac gacccccgcc cattgacgtc 2880 aataatgacg tatgttccca tagtaacgcc aatagggact ttccattgac gtcaatgggt 2940 ggactattta cggtaaactg cccacttggc agtacatcaa gtgtatcata tgccaagtac 3000 gcccctatt gacgtcaatg acggtaaatg gcccgcctgg cattatgccc agtacatgac 3060 cttatgggaa ctttcctact tggcagtaca tctacgtatt agtcatcgct attaccatgg 3120 tgatgcggtt ttggcagtac atcaatgggc gtggatagcg gtttgactca cggggatttc 3180 caagteteea eeceattgae gteaatggga gtttgttttg geaceaaaat eaaegggaet 3240 ttccaaaatg tcgtaacaac tccgccccat tgacgcaaat gggcggtagg cgtgtacggt 3300 gggaggtcta tataagcaga gcatcgatgc ggccgcggta cctctagact gtgccttcta 3360 gttgccagcc atctgttgtt tggcccccc tccccgtgc cttccttgac cctggaaggt 3420 gccactccca ctgtcctttc ctaataaaat gaggaaattg catcgcattg tctgagtagg 3480 tgtcattcta ttctgggggg tggggtgggg caggacagca agggggagga ttgggaagac 3540

aatagcaggc atgctgggga tgcggtgggc tctatggtct aggctgtgcc ttctagttgc 3600 cagecatetg ttgtttggcc ececetecee egtgeettee ttgaceetgg aaggtgecae 3660 tcccactgtc ctttcctaat aaaatgagga aattgcatcg cattgtctga gtaggtgtca 3720 ttctattctg gggggtgggg tggggcagga cagcaagggg gaggattggg aagacaatag 3780 caggcatgct ggggatgcgg tgggctctat ggcgtacggg atgctagaga attctgtgga 3840 atgtgtgtca gttagggtgt ggaaagtccc caggctcccc agcaggcaga agtatgcaaa 3900 gcatgcatct caattagtca gcaaccatag tecegeeet aacteegee ateeegee 3960 taactccgcc cagttccgcc cattctccgc cccatggctg actaatttt tttatttatg 4020 cagaggccga ggcgcctctg agctattcca gaagtagtga ggaggctttt ttggaggcct 4080 aggettttge aaaaaagetg cagteeetea tggttegaee attgaaetge ategtegeeg 4140 tgtcccaaaa tatggggatt ggcaagaacg gagacctacc ctggcctccg ctcaggaacg 4200 agttcaagta cttccaaaga atgaccacaa cctcttcagt ggaaggtaaa cagaatctgg 4260 tgattatggg taggaaaacc tggttctcca ttcctgagaa gaatcgacct ttaaaggaca 4320 gaattaatat agtteteagt agagaactea aagaaceace aegaggaget cattttettg 4380 ccaaaagttt ggatgatgcc ttaagactta ttgaacaacc ggaattgtca agtaaagtag 4440 acatggtttg gatagtcgga ggcagttctg tttaccagga agccatgaat caaccaggcc 4500 acctcagact ctttgtgaca aggatcatgc aggaatttga aagtgacacg tttttcccag 4560 aaattgattt ggggaaatat aaacttctcc cagaataccc aggcgtcctc tctgaggtcc 4620 aggaggaaaa aggcatcaag tataagtttg aagtctacga gaagaaagac taacaggaag 4680 atgettteaa gttetetget eeceteetaa agetatgeat ttttataaga eeatgggaet 4740 tttgctggct ttaagatccg tgacataatt ggacaaacta cctacagaga tttaaagctc 4800 taaggtaaat ataaaatttt taagtgtata atgtgttaaa ctactgattc taattgtttg 4860 tgtattttag attccaacct atggaactga tgaatgggag cagtggtgga atgcctttaa 4920 tgaggaaaac ctgttttgct cagaagaaat gccatctagt gatgatgagg ctactgctga 4980 ctctcaacat tctactcctc caaaaaagaa gagaaaggta gaagacccca aggactttcc 5040 ttcagaattg ctaagttttt tgagtcatgc tgtgtttagt aatagaactc ttgcttgctt 5100 tgctatttac accacaaagg aaaaagctgc actgctatac cagaaattat gaaatattct 5160 gtaaccttta taagtaggca taacagttat aatcataaca tactgttttt tcttactcca 5220 cacaggcata gagtgtctgc tattaataac tatgctcaaa aattgtgtac ctttagcttt 5280 ttaatttgta aaggggttaa taaggaatat ttgatgtata gtgccttgac tagagatcat 5340 aatcagccat accacatttg tagaggtttt acttgcttta aaaaacctcc cacacctccc 5400 cctgaacctg aaacataaaa tgaatgcaat tgttgttgtt aacttgttta ttgcagctta 5460

taatggttac aaataaagca atagcatcac aaatttcaca aataaagcat ttttttcact 5520 gcattctagt tgtggtttgt ccaaactcat caatgtatct tatcatgtct gggcccctgc 5580 attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc tcttccgctt 5640 cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta tcagctcact 5700 caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag aacatgtgag 5760 caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg tttttccata 5820 ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc 5880 cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg cgctctcctg 5940 ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga agcgtggcgc 6000 tttctcaatg ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc tccaagctgg 6060 gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt aactatcgtc 6120 ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact ggtaacagga 6180 ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg cctaactacg 6240 gctacactag aaggacagta tttggtatct gcgctctgct gaagccagtt accttcggaa 6300 aaagagttgg tagctcttga teeggeaaac aaaceaeege tggtageggt ggtttttttg 6360 tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct ttgatctttt 6420 ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg gtcatgagat 6480 tatcaaaaag gatcttcacc tagatccttt taaattaaaa atgaagtttt aaatcaatct 6540 aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt gaggcaccta 6600 tctcagcgat ctgtctattt cgttcatcca tagttgcctg actccccgtc gtgtagataa 6660 ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg cgagacccac 6720 gctcaccggc tccagattta tcagcaataa accagccagc cggaagggcc gagcgcagaa 678.0 gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg gaagctagag 6840 taagtagttc gccagttaat agtttgcgca acgttgttgc cattgctaca ggcatcgtgg .6900 tgtcacgctc gtcgtttggt atggcttcat tcagctccgg ttcccaacga tcaaggcgag 6960 ttacatgatc ccccatgttg tgcaaaaaag cggttagctc cttcggtcct ccgatcgttg 7020 tcagaagtaa gttggccgca gtgttatcac tcatggttat ggcagcactg cataattctc 7080 ttactgtcat gccatccgta agatgctttt ctgtgactgg tgagtactca accaagtcat 7140 tctgagaata gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaata cgggataata 7200 ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa 7260 aactctcaag gatcttaccg ctgttgagat ccagttcgat gtaacccact cgtgcaccca 7320 actgatcttc agcatctttt actttcacca gcgtttctgg gtgagcaaaa acaggaaggc 7380

aaaatgccgc aaaaaaggga ataagggcga cacggaaatg ttgaatactc atactcttcc 7440 tttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga tacatatttg 7500 aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgccac 7560 ctgacgtcta agaaaccatt attatcatga cattaaccta taaaaatagg cgtatcacga 7620 ggccctttcg tcctc 7635

<210> 26

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 26

aaggaaaaaa gcggccgcat qtccctqttt ccatcactc

39

<210> 27

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 27

gctctagatc agatagggaa ctcacagac

29

<210> 28

<211> 248

<212> PRT

<213> Homo sapiens

<400> 28

Met Ser Leu Phe Pro Ser Leu Pro Leu Leu Leu Ser Met Val Ala

Ala Ser Tyr Ser Glu Thr Val Thr Cys Glu Asp Ala Gln Lys Thr Cys

Pro Ala Val Ile Ala Cys Ser Ser Pro Gly Ile Asn Gly Phe Pro Gly

Lys Asp Gly Arg Asp Gly Thr Lys Gly Glu Lys Gly Glu Pro Gly Gln 55

Gly Leu Arg Gly Leu Gln Gly Pro Pro Gly Lys Leu Gly Pro Pro Gly 65 70 80

Asn Pro Gly Pro Ser Gly Ser Pro Gly Pro Lys Gly Gln Lys Gly Asp

Pro Gly Lys Ser Pro Asp Gly Asp Ser Ser Leu Ala Ala Ser Glu Arg 105 110

Lys Ala Leu Gln Thr Glu Met Ala Arg Ile Lys Lys Trp Leu Thr Phe

		115					120					125		•	
Ser	Leu 130	Gly	Lys	Gln	Val	Gly 135	Asn	Lys	Phe	Phe	Leu 140	Thr	Asn	Gly	Glu
Ile 145	Met	Thr	Phe	Glu	Lys 150	Val	Lys	Ala	Leu	Cys 155	Val	Lys	Phe	Gln	Ala 160
Ser	Val	Ala	Thr	Pro 165	Arg	Asn	Ala	Ala	Glu 170	Asn	Gly	Ala	Ile	Gln 175	Asn
Leu	Ile	Lys	Glu 180	Glu	Ala	Phe	Leu	Gly 185	Ile	Thr	Asp ·	Glu	Lys 190	Thr	Glu
Gly	Gln	Phe 195	Val	Asp	Leu	Thr	Gly 200	Asn	Arg	Leu	Thr	Tyr 205	Thr	Asņ	Trp
Asn	Glu 210	Gly	Glu	Pro	Asn	Asn 215	Ala	Gly	Ser	Asp	Glu 220	Asp	Cys	Val	Leu
Leu 225	Leu	Lys	Asn	Gly	Gln 230	Trp	Asn	Asp	Val	Pro 235	Cys	Ser	Thr	Ser	His 240
Leu	Ala	Val	Cys	Glu 245	Phe	Pro	Ile								