Introduction to Robotics

Lecture 4

Kacper Jastrzębski 260607@student.pwr.edu.pl

Date: Tuesday 11:15, 21-3-2023

Contents

1	Forward kinematics	2				
2	Denavit-Hartenberg (1955) solution					
	2.1 Preliminary assumptions	2				
	2.2 Algorithm:	2				

1 Forward kinematics

Let's recapitulate the naming conventions for a exemplary manipulator:

2 Denavit-Hartenberg (1955) solution

Jacques Denavit and Richard Hartenberg introduced this convention in 1955 in order to standardize the coordinate frames for spatial linkages. They came up with an universal algorithm for describing the motion (or in other words: attaching a reference frames to the links) of a manipulator.

2.1 Preliminary assumptions

- 1. motion allowed only along z-axis
- 2. rigid body assumed

2.2 Algorithm:

- 1. Step: assign axes of rotation $z_0 \dots z_{n-1}$
- 2. Step: describe base frame $O_0x_0y_0z_0^{-1}$
- 3. Step: create a loop $i = 1, \ldots, n-1$ (repeat steps 4-6)
- 4. Step: determine O_i (the origin of next frame), consider 3 cases:
 - (a) case: $O_i = z_{i-1} \cap z_i$
 - (b) case: a point where normal line passing through O_{i0-1} crosses Z_i
 - (c) case: a point where normal line to both Z_{i-1} and Z_i crosses Z_i
- 5. Step: determine x_i axis, for each case:
 - (a) $x_i = z_{i-1} \times Z_i$
 - (b) b and c: x_i along normal line selected previously
- 6. Step: calculate missing axis y_i such the $x_iy_iz_i$ is a right-handed frame
- 7. Step: end-effector frame:
 - (a) origin O_n between fingers of a grabbing, two fingered effector
 - (b) $z_n \mid\mid z_{n-1}$ inherited from the last joint
 - (c) y_n finger motion direction
 - (d) $x_n \to x_n y_n z_n \to \text{right-handed}$

¹Axis should be chosen wisely, in respect to the surroundings, context, and the use case.

8. Step: determine D-H parameters described in table below:

	θ_i	d_i	a_i	α_i
1				
2				
n				

This is the procedure that is using th D-H parameters

$$Rot(z, \theta_i) \to Tran(z, d_i) \to Tran(x, a_i) \to Rot(x, \alpha_i)$$
 (1)

note-1 with pictures