Inferência: Estimação Pontual e Intervalar

PRI5003 - Lab 6

Instituto de Relações Internacionais - Universidade de São Paulo

3 de Maio de 2018

Outline

Conceitos Básicos

Estimadores

Comunicando Incerteza

Intervalo de Confiança: Proporções

Intervalo de Confiança: Médias

Tamanho da Amostra

Resumo

Estimação pontual e intervalar

Como fazer a ponte entre os dados que coletamos em nossa amostra e o valor verdadeiro do parâmetro populacional?

- Estimativa pontual: o melhor palpite que podemos dar sobre o valor do parâmetro.
- ▶ Estimativa intervalar: um intervalo de valores dentro do qual acreditamos que o parâmetro se encontra.

Propriedades dos estimadores

- Viés: o estimador varia em torno do centro do valor verdadeiro da população?
- ► Eficiência: qual é a precisão do estimador?

Propriedades dos estimadores

Propriedades dos estimadores

(a) High bias, low variance

(b) Low bias, high variance

(c) High bias, high variance

(d) Low bias, low variance

Comunicando Incerteza

Lembre-se de que não estamos olhando para toda a população. Tão importante quanto identificar qual é o "melhor palpite" sobre o valor do parâmetro é comunicar seu grau de incerteza em relação à sua estimativa.

- Intervalo de confiança: estimativa intervalar, <u>calculada</u> pelo pesquisador durante a análise
- Nível de confiança: definido pelo pesquisador antes da análise dos dados
- ▶ Margem de erro: Erro-padrão multiplicado pelo número de desvios-padrões que produzem o nível de confiança definido previamente pelo pesquisador. Simplificando, para nível de confiança de 95%, multiplicamos por $\simeq 2\sigma$

intervalo de confiança = estimativa pontual \pm m. de erro

Curva Normal

Intervalo de Confiança: Proporções

Intervalo de confiança para proporções

$$\hat{\pi} \pm z(ep)$$

Erro-padrão para proporções

$$ep = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$$

Intervalo de Confiança: Proporções

Intervalo de Confiança: Médias

Intervalo de confiança para médias: n grande

$$\bar{y} \pm z \frac{s}{\sqrt{n}}$$

Intervalo de confiança para médias: n pequeno

$$\bar{y} \pm t \frac{s}{\sqrt{n}}$$

Tamanho da amostra

Tamanho da amostra: proporção

$$n = \pi (1 - \pi) (\frac{z}{M})^2$$

Tamanho da amostra: média

$$n = \sigma^2 (\frac{z}{M})^2$$

llustração

FIGURE 5.8: Determining n So That \overline{y} Has Probability 0.95 of Falling within a Margin of Error of M Units of the Population Mean μ

Resumo

Parameter	Point Estimate	Estimation Meth Estimated Standard Error	Confidence Interval	Sample Size to Estimate to Within M
Mean μ	\overline{y}	$se = \frac{s}{\sqrt{n}}$	$\overline{y} \pm t(se)$	$n = \sigma^2 \left(\frac{z}{M}\right)^2$
Proportion π	$\hat{\pi}$	$se = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$	$\hat{\pi} \pm z(se)$	$n=\pi(1-\pi)\left(\frac{z}{M}\right)^2$

Note: z = 1.96 for 95% confidence; for error probability α and confidence level $(1 - \alpha)$, z-score or t-score has right-tail probability $\alpha/2$ (e.g., $\alpha/2 = 0.025$ for 95% confidence).