MS121: IT Mathematics

FUNCTIONS

ABSOLUTE VALUE & INEQUALITIES

John Carroll School of Mathematical Sciences

Dublin City University

Inequalities involving the Absolute Value Examples

Absolute Value & Inequalities

Outline

Inequalities involving the Absolute Value

Inequalities involving the Absolute Value

Solving More General Inequalities

Outline

- Inequalities involving the Absolute Value
- Solving More General Inequalities

Illustration 1

The equation

$$|2x + 1| = 3$$

has two solutions, obtained from solving

$$2x + 1 = +3$$
 and $2x + 1 = -3$

or x = 1 and x = -2. Therefore, the solution to the absolute value equation |2x + 1| = 3 is the set:

$$\{-2,1\}$$

Absolute Value & Inequalities

Illustration 2

Consider the equation

$$|x| \ge 2$$

Either $x \ge 2$ or $x \le -2$ and the solution may be expressed in interval form as

$$(-\infty,-2] \cup [2,\infty)$$

Functions (4/4)

MS121: IT Mathematics

Inequalities involving the Absolute Value Examples

Absolute Value & Inequalities

Find all the real roots of the equation

$$|x+1| + |2x-3| = 4.$$

Since either |x + 1| = x + 1 or -(x + 1) and |2x - 3| = 2x - 3 or -(2x-3), there are 4 cases to consider:

$$+(x+1) + (2x-3) = 4$$
 $\Rightarrow 3x-2 = 4 \Rightarrow x = 2$
 $-(x+1) + (2x-3) = 4$ $\Rightarrow x-4 = 4 \Rightarrow x = 8$

$$\Rightarrow x-4=4 \Rightarrow x=8$$

$$+(x+1)-(2x-3)=4$$
 $\Rightarrow -x+4=5 \Rightarrow x=0$

$$\Rightarrow -x + 4 = 5 \Rightarrow x = 0$$

$$-(x+1)-(2x-3)=4$$

$$-(x+1)-(2x-3)=4$$
 $\Rightarrow -3x+2=4 \Rightarrow x=-\frac{2}{3}$

The possible solutions are therefore:

Functions (4/4)

$$\left\{2, 8, 0, -\frac{2}{3}\right\}$$

Absolute Value & Inequalities

Solve the inequality $|x^2 - 4| > 3$.

The solutions are found from either:

$$x^{2}-4>3$$
 or $x^{2}-4<-3$
 \downarrow \downarrow
 $x^{2}>7$ $x^{2}<1$
 $|x|>\sqrt{7}$ $|x|<1$

giving 4 cases:

$$x > \sqrt{7}$$
, $x < -\sqrt{7}$, $x < 1$, $x > -1$.

which can be written in interval form as follows:

$$x \in (-\infty, -\sqrt{7}) \cup (-1, 1) \cup (\sqrt{7}, \infty)$$

John Carroll

6 / 14

Inequalities involving the Absolute Value Examples

Absolute Value & Inequalities

Possible solutions: $\{2, 8, 0, -\frac{2}{3}\}$.

Answer (cont'd)

We now test each solution in the original inequality:

$$|x+1| + |2x-3| = 4$$

 $|3| + |1| = 4$ True $x = 2$
 $|9| + |13| \neq 4$ False $x = 8$
 $|1| + |-4| = 4$ True $x = 0$
 $\left|\frac{2}{3}\right| + \left|-\frac{13}{3}\right| \neq 4$ False $x = -\frac{2}{3}$

Therefore, the solutions are x = 0 and x = 2.

Outline

- Inequalities involving the Absolute Value
- Solving More General Inequalities

∢ □)	→ □ →	4 ≣ →	4	≣ →	=	990

Functions (4/4)

MS121: IT Mathematics

John Carroll

Solving More General Inequalities Examples

Absolute Value & Inequalities

$x^2 - 5x + 6 < 0$ (Cont'd)

Then we record these signs in the following chart:

	x-2	<i>x</i> – 3	(x-2)(x-3)
$(-\infty,2)$	_	_	+
(2,3)	+	_	_
$(3,\infty)$	+	+	+

Therefore, $x^2 - 5x - 6 \le 0$ has solution

$${x \mid 2 \le x \le 3} = [2,3]$$

Absolute Value & Inequalities

Question

Solve the inequality $x^2 - 5x + 6 < 0$.

Answer

First we factor the left side:

$$x^2 - 5x + 6 = (x - 2)(x - 3)$$

We know that the corresponding equation has the solutions 2 and 3. The numbers 2 and 3 divide the real line into three intervals:

$$(-\infty,2) \qquad (2,3) \qquad (3,\infty)$$

On each of these intervals we determine the signs of the factors. For instance,

$$x \in (-\infty, 2) \Rightarrow x < 2 \Rightarrow x - 2 < 0$$

John Carroll 10 / 14

Solving More General Inequalities Examples

Absolute Value & Inequalities

$$x^2 - 5x - 6 \le 0$$
 \Rightarrow $\{x \mid 2 \le x \le 3\} = [2, 3]$

Solving More General Inequalities Examples

Absolute Value & Inequalities

Question

Solve the inequality $\frac{(x+1)(x-3)}{(x+4)} > 0$.

Answer

Rather than attempt to sketch the function, we will first determine the points where it changes sign, i.e. those x-values which make the numerator or denominator zero:

$$x+1=0 \Rightarrow x=-1$$

 $x-3=0 \Rightarrow x=3$
 $x+4=0 \Rightarrow x=-4$

We now divide the x-axis into intervals according to these points, namely $(-\infty, -4)$, (-4, -1), (-1, 3) and $(3, \infty)$.

John Carroll

13 / 14

Solving More General Inequalities Examples

$$\frac{(x+1)(x-3)}{(x+4)}>0$$

Answer (Cont'd)

We construct a table with these intervals and with the factors of the function as follows:

	x+1	<i>x</i> – 3	x + 4	f(x)
$(-\infty, -4)$	_	_	_	_
(-4, -1)	_	_	+	+
(-1,3)	+	_	+	_
$(3,\infty)$	+	+	+	+

We see that the function is positive on the two intervals (-4, -1) and $(3, \infty)$. We therefore write

$$\frac{(x+1)(x-3)}{x+4} > 0$$
 on $(-4,-1) \cup (3,\infty)$

John Carroll

14 / 14

Functions (4/4) MS121: IT Mathematics