Computing Arbitrary Functions of Encrypted Data

Klev

September 14, 2015

- $\bullet\,$ Fully homomorphic encryption scheme.
- Keep data private, only people with access can decrypt it.
- Still, possible to compute on the encrypted data.
- Cloud computing compatible with privacy
- Fully homomorphic encryption
- Fully: No restrictions on the operations that can be performed
- Send description of function f to the server. Server computes the function on the encrypted data. Returns encrypted data. User decrypts.
 - Useful whenever the response can be encrypted.
 - Alice and her jewelry store.

1 Homomorphic Encryption: Funcitonality

Three algorithms: KeyGen, Encrypt, Decrypt

Symmetric encryption scheme: Key used for both encryption and decryption

- Asymmetric encryption scheme: Public key for encryption, Private key for decryption
 - HE can be either symmetric or asymmetric. Focus on asymmetric.
- Fourth algorithm: Evaluate. A set of permitted functions F_e . Evaluate can handle functions in F_e . Others are undefined.

2 Requirements

- Require that decrypting c (output from Evaluate) takes the same amount of time as decrypting c_1 (output from Encrypt).
 - c is the same size as c_1
 - "Compact ciphertext requirements"

- Size of c and the time required to decrypt it is independent of f
- Fully homomorphic if it can handle all functions, has compact ciphertexts and Evaluate is efficient.
- The work required by Alice to extract jewelry has no connection to the time spent by workers to assemble the piece.
- Measure complexity of function f: Running time T_f and size S_f of a boolean circuit.
 - Break down the computation of f into AND, OR and NOT gates.
- Obtain fully homomorphic encryption by operating on ciphertexts using add, subtract and multiply.
- If encrypted, random-access can not speed up the work. Evaluate must touch all points. Runtime is at least linear.
- Not touching them would leak information, saying that they are irrelevant for function f.
- Trade off: the data is contained in 1% of my area. Reduce computation by factor 100.
- Should be able to specify the amount of data received from query. Unavoidable with padding and truncating.

3 Homomorphic Encryption: Security

- Semantic security against chosen-plaintext attacks (CPA)
- Given c and two messages m_1 and m_2 , it is *hard* for an adversary to determine which plaintext the ciphertext decrypts to.
 - "Hard": Guesses correctly with probability 1/2 + e = Advantage
 - Deterministic: Same plaintext encrypts to same ciphertext every time.
- The scheme must be probabilistic; a plaintext encrypts to multiple ciphertexts.
 - Malleability weakens deterministic schemes, not semantically secure.

4 A Somewhat Homomorphic Encryption Scheme

- First as a symmetric encryption scheme.
 - $N = \lambda$, $P = \lambda^2$, $Q = \lambda^5$
 - KeyGen: Key is random P-bit odd integer p
- Encrypt(e,m): $m' = \text{random N-bit number such that } m' = m \mod 2.$ $c \leftarrow m' + pq$
- Decrypt(p,c): (cmodp)mod2, where cmodp is the integer c' in (-p/2, p/2) such that p divides c-c'.
- cmodp is the noise associated to a ciphertext. Distance to nearest multiple of p.
- Consider $Mult_e$: $c=c_1*c_2$. Noise to $c_i=m_i'$. We have that $c=m_1'*m_2'+pq'$

- Multiplication tends to increase the noise faster than addition and subtraction.
 - c_1 and c_2 with k_1 and k_2 -bit noises = roughly $(k_1 + k_2)$ -bit noises.
- The functions that can be handled are those where $|f^{\dagger}(a_1,...,a_t)|$ is always less than p/2.

5 Bootstrappable Encryption

- Work on box 1, put it inside box 2 which contains key 1, open box 1 and continue work through box 2.
- Somewhat homomorphic encryption: Supports Add, Subtract, Multiply, and a limited set of operations, until the noise gets too large.
 - Key for box i represents an encrypted secret decryption key.
- Most important function: The decryption function (Open up the inner box to continue work)
 - Decrypts itself \rightarrow bootstrappable

5.1 Boostrappable to Fully Homomorphic

- Suppose e can handle decryption, ADD, SUB and MULT.
- If these four algorithms are in f_e , we can construct an encryption scheme that is fully homomorphic.
- $Recrypt_e(pk_2, D_e, sk_1, c_1)$ Recrypt outputs an encryption of m, but under the new key pk_2 . The message is encrypted twice under different keys pk_1 and pk_2 .
- Can "peel off" the layers like an onion, but the *evaluate* algorithm "opens" the inner encryption. (Like in the box example).
- Decryption the inner layer removes noise. Using Evaluate with pk_2 adds new noise. If the added noise is less than what we remove in the decryption, we've made progress.
- Public key consists of a sequence of public keys $(pk_1, pk_2, ..., pk_n$ encrypted under secret keys sk_{i+1}

5.2 Circular Security

- Safe to reveal the encryption of a secret key s_k under its own associated public key p_k .

5.3 Greasing the Decryption Circuit

- $-m \leftarrow (cmodp)mod2 == m \leftarrow LSB(c) \oplus LSB(\lfloor c/p \rfloor)$
- If not $\lfloor c/p \rceil$ is complicated, then e is bootstrappable and FHE is possible. Not possible with the current scheme. Let's create e*
- Replace e's decryption function, which multiples two long numbers, with a decryption function that adds a fairly small set of numbers.

Transformation

- KeyGen: Run the algorithm to obtain p_k and $s_k(s_k)$ is an odd integer p.
- Generate a subset from s_k of rational numbers that sums up to roughly 1/p. s_k will then be the subset y of the numbers encoded as a vector. $p_k* \leftarrow (pk,y)$
- This is a "hint" about the secret key. Adds the "grease" to the system. Revealing this obviously impacts security.
- Encrypt: Run Encrypt (p_k, \mathbf{m}) to obtain ciphertext c. For $i \in \{1, ..., \beta\}$, set $z_i \leftarrow c * y_i mod 2$. The ciphertext c * is now c and $z = \{z_1, ..., z_\beta\}$
- The hint is used to postprocess the ciphertext. The idea is to leave less work for the Decrypt algorithm.
 - Used in 'Server-aided cryptography'.
- The hint is statistically dependent on s_k , but enough for the server to decrypt efficiently on its own.
 - In our case: The encrypter or evaluator plays the role as server
 - Decrypt: Output $LSB(c) \oplus LSB(\lfloor \sum s_i z_i \rfloor)$
- Works because $\sum s_iz_i=\sum c*s_iy_i=c/pmod2$ Important: Replace the multiplication of c and 1/p with a summation that contains only α nonzero terms.
- Add: (p_k*, c_1*, c_2*) . Extract c_1 and c_2 from c_1* and c_2* . Run $c \leftarrow$ $Add(p_k, c_1, c_2)$. The result consist of ciphertext c*. c* = c and the result of postprocessing c with y.

How to Add Numbers

- Let us consider the computation of $\sum s_i z_i$.

Security of the Transformed Scheme 5.5

- The encryption key contains a hint about the secret p.

4