## Dissertation update and stats questions

Levi King Indiana University

October 2020

## Recap: Data Collection

I collected native speaker (NS; n=50) and non-native speaker (NNS; n=70) responses to a picture description task (PDT).

| 10 intransitive items   | 10 transitive items    | 10 ditransitive items  |
|-------------------------|------------------------|------------------------|
|                         |                        |                        |
| What is the girl doing? | What is the boy doing? | What is the boy doing? |

## Recap: Feature annotation



Table: Annotated for five features: Core event (C), Answerhood (A), Grammaticality (G), Interpretability (I) and Verifiability (V).

## Recap: Feature annotation weights

I used a preference test to establish feature weights. In this toy example, weights are based on 3 pairs. The net score for the preferred responses for each feature is divided by the sum of all 5 net scores (sum=6; e.g., C weight: 2/6=.333). The real weights\* are based on 1200 pairs across all items.

| What is the boy doing?           | Pref? | С    | Α    | G    | ı    | V    |
|----------------------------------|-------|------|------|------|------|------|
|                                  |       |      |      |      |      |      |
| He is eating food.               | yes   | 0    | 1    | 1    | 1    | 1    |
| He may get fat eating.           | no    | 0    | 0    | 1    | 1    | 0    |
|                                  |       |      |      |      |      |      |
| He is hungry.                    | no    | 0    | 0    | 1    | 0    | 1    |
| the boy is eating pizza          | yes   | 1    | 1    | 1    | 1    | 1    |
|                                  |       |      |      |      |      |      |
| The child is about to eat pizza. | yes   | 1    | 0    | 1    | 1    | 1    |
| he eating.                       | no    | 0    | 1    | 0    | 1    | 1    |
|                                  |       |      |      |      |      |      |
| Totals preferred responses       |       | 2    | 2    | 3    | 3    | 3    |
| Totals dispreferred responses    |       | 0    | 1    | 2    | 2    | 2    |
| Net preferred (pref - dispref)   |       | 2    | 1    | 1    | 1    | 1    |
| Feature weight                   |       | .333 | .167 | .167 | .167 | .167 |
|                                  |       |      |      |      |      |      |
| *Real feature weight             |       | .365 | .093 | .055 | .224 | .263 |

#### Recap: Gold Standard

I applied the feature weights to the annotations to establish a gold standard (GS) score for each NNS response (n=70) for each PDT item. I ranked by GS score to get a GS ranking. (I use the real weights in this example.)

| Participant | What is the boy doing?    | С | Α | G | - | V | GS score | GS rank |
|-------------|---------------------------|---|---|---|---|---|----------|---------|
| p1          | The boy is eating.        | 0 | 1 | 1 | 1 | 1 | 0.635    | 4       |
| p2          | A baby is eating pizza    | 0 | 0 | 1 | 1 | 0 | 0.279    | 5       |
| р3          | The boy enjoys his pizza. | 1 | 0 | 1 | 1 | 1 | 0.907    | 2       |
| p4          | the boy is eating pizza   | 1 | 1 | 1 | 1 | 1 | 1.0      | 1       |
| p5          | The kid is eats pizza     | 1 | 0 | 0 | 1 | 1 | 0.852    | 3       |

# Recap: Auto scoring

I have a system for automatically scoring the NNS responses. (The details aren't really important here, but  $\ldots$ )

For each item, the process is like this: For the collection of NS responses (n=50 per PDT item):

- 1) dependency parse;
- 2) get tf-idf score for each unique dependency (Compare against a large balanced corpus; common dependencies get low scores, rare dependencies get higher scores).

For each NNS response, repeat  $\it 1$  and  $\it 2$ , then compare NS vs NNS (dependency scores vectors) – use cosine. This is the NNS response score.

By selecting different parameters in this approach, I arrive at 12 different system configurations. Each configuration scores and ranks all NNS responses (n=70).

#### Recap: Configurations

Rather than the full set of 12 configurations, let's consider this simplified set of 2 parameters x 2 settings = 4 configurations.

#### Parameters:

- Dependency format:
  - labeled: e.g., nsubj(eat,boy); nobj(eat,pizza)
  - unlabeled: e.g., \( \text{null} \) (eat, boy); \( \text{null} \) (eat, pizza)
- ▶ NS response model: Each NS participant gave two responses per PDT item
  - ▶ first: Model contains only the first response from NS (n=50)
  - mixed: Model is half first reponses (n=25) and half second responses (n=25)

| dep\model | first       | 1st & mixed |
|-----------|-------------|-------------|
| labeled   | lab_first   | lab_mixed   |
| unlabeled | unlab_first | unlab_mixed |

Table: Four system configurations for scoring NNS responses.

#### Recap: Gold Standard

I run the NNS responses through my system using the four different configurations. This yields a score and ranking for each response.

| Р  | С | Α | G |   | V | GS s | GS r | lf s | lf r | uf r | uf r | lm s | lm r | um r | um r |
|----|---|---|---|---|---|------|------|------|------|------|------|------|------|------|------|
| p1 | 0 | 1 | 1 | 1 | 1 | 0.63 | 4    | .53  | 4    | .11  | 5    | 0.29 | 4    | .39  | 3    |
| p2 | 0 | 0 | 1 | 1 | 0 | 0.27 | 5    | .13  | 5    | .15  | 4    | 0.15 | 5    | .53  | 5    |
| р3 | 1 | 0 | 1 | 1 | 1 | 0.90 | 2    | .91  | 1    | .68  | 1    | 0.33 | 3    | .55  | 1    |
| р4 | 1 | 1 | 1 | 1 | 1 | 1.0  | 1    | .80  | 2    | .41  | 2    | 0.70 | 1    | .24  | 2    |
| р5 | 1 | 0 | 0 | 1 | 1 | 0.85 | 3    | .77  | 3    | .20  | 3    | 0.63 | 2    | .22  | 4    |

Table: Response scores (s) and ranks (r) for: gold standard (GS); four configurations: labeled\_first (lf), unlabeled\_first (uf), labeled\_mixed (lm), unlabeled\_mixed (um).

## Stats questions

That brings us to where I'm stuck...

- ► I have three basic categories of PDT item intransitive, transitive, ditransitive. (There is some variation, e.g., She is riding a bike vs. She is bicycling, but these categories are roughly true.)
- Ideally, I'd like to find trends that allow me to optimize my configuration for each item category.
- What I've tried:
- ► I used the GS ranking and the configuration rankings to calculate a single Spearman correlation for each configuration, for each item.
- ▶ 12 configurations x 30 items = 360 Spearman scores.
- ▶ I used these scores to generate hierarchical clusters of items. I did this in nearly every conceivable way; I used: all items; individual items; I averaged Spearman scores for a given parameter setting, e.g., to compare labeled and unlabeled, I averaged labeled\_first + labeled\_mixed, then averaged unlabeled\_first + unlabeled\_mixed, then clustered items based on these two sets of values.
- ▶ I hoped to find intransitive items clustered together, transitive items clustered together, etc. Any such trends appear very weak, however.

#### Stats questions

- I need guidance on to how to approach this in a sound way.
- ► I've begun experimenting with T-test and Wilcox test. In this case, the idea is to analyze individual features. For example, for a given item and for a given configuration, group all responses where Core event is annotated "1", then group all the "0" responses. Then run a paired sample T-test using the system score for those groups to see if there are significant differences between them. If I do this for all items, I can look for differences between the intransitive, transitive, ditransitive items across all configurations.
- An important note here the feature annotations are heavily skewed. For a handful of the (30 items x 5 features =) 150 cases, a feature is "1" for all responses.
- ► I'm also considering this approach but using average precision instead of T-test. In this case, I'd be looking for configurations that maximize the separation of "0" and "1" responses.

### References