Aproksimacija najdužeg razapinjućeg stabla sa okolinama

Lazar Stanojević mi231013@alas.matf.bg.ac.rs

Geometrijski algoritmi Matematički fakultet, Univerzitet u Beogradu

28. novembar 2023.

Sadržaj

- 📵 Opšte o autorima i radu
 - Autori
 - Opis problema
- Osnovni pojmovi
- Jednostavan algoritam
- Mapredniji algoritam
 - Opis
 - Složenost
 - Analiza faktora aproksimacije
- 5 Doprinos, primene i srodni problemi
 - Doprinos
 - Primene i srodni problemi
- 🜀 Zaključak
- Literatura

Autori

- Journal of Computational Geometry, Vol 14. No. 1 (2023)
- Tema: Approximating longest spanning tree with neighborhoods
- Ahmad Biniaz
 - https://cglab.ca/~biniaz/ lična stranica
 - ahmad.biniaz@gmail.com
 - PhD in Computer Science from Carleton University, Ottawa, Canada, 2013-2017.
 - Interesovanja: algoritmi i strukture podataka, diskretna i računarska geometrija, diskretna matematika

Opis problema

- Problem maksimizacije u Euklidskoj ravni
- Dat je skup okolina/susedstva (unija prostih poligona), ne nužno disjunktnih
- Potrebno izabrati po tačku iz svake okoline, tako da najduže razapinjuće stablo nad tim tačkama ima maksimalnu dužinu

Osnovni pojmovi

- Zvezda sa centrom u čvoru p, je stablo u kom je svaka grana susedna sa čvorom p
 Dupla zvezda sa centrom u čvorovima p i g, je stablo koje sadrži granu
- Dupla zvezda sa centrom u čvorovima p i q, je stablo koje sadrži granu pq i svaka druga grana je susedna ili sa p ili sa q
- Najmanji zatvarajući disk skupa tačaka P, je najmanji disk koji sadrži sve tačke iz P
- Dijametralni par skupa P su tačke p i q takve da dostižu najveće euklidsko rastojanje
- Bihromatski dijametralni par skupa P čine tačke p i q, različite boje, takve da je rastojanje između njih maksimalno, uz pretpostavku da su tačke u skupu P obojene
- Centar mase skupa P (centroid), je tačka m u ravni, takva da za svaku proizvolju tačku u važi:

$$\sum_{p \in P} \overrightarrow{up} = |P| \cdot \overrightarrow{um}$$

Jednostavan algoritam

- Chen i Dumitrescu
- Uzmimo bihromatski par (a, b) od tačaka iz n datih okolina
- Formiramo zvezdu S_a , povezujući a sa b, i a sa proizvoljnom tačkom iz svake ostale okoline
- Formiramo analogno S_b
- Dužina svake grane optimalnog rešenja T je najviše |ab|, odatle je $len(T) \le (n-1) \cdot |ab|$
- Iz nejednakosti trougla imamo: $S_a + S_b \ge n \cdot |ab| \ge len(T)$
- Sledi da je duža od dve zvezde 0.5-aproksimativno rešenje problema

Opis

- 0.548-aproksimativno rešenje problema
- Izračunavamo razapinjuću duplu zvezdu D, i najviše tri razapnjuće zvezde, S_1, S_2 i S_3
- Nađemo (a, b) bihromatski dijametralni par, i za svaku od preostalih okolina, nađemo tačku p koja je najdalja od a, i tačku q koja je najdalja od b
- Ako je $|ap| \ge |bq|$ u D dodajemo p, inače dodajemo q
- ullet Zbog nejednakosti trouglova, svaka grana u D je dužine bar |ab|/2
- ullet Neka je C najmanji zatvarajući disk za X (skup svih okolina)
- ullet Ako C sadrži tačno dve tačke iz X, onda zvezde centriramo u njima
- U suprotnom, biramo tri tačke tako da trougao koji formiraju sadrži centar diska *C*, i njih postavljamo za centre razapinjućih zvezdi

Složenost

- Najmanji zavarajući disk možemo da izračunamo u O(N) vremenskoj složenosti, gde je N broj tačaka koje opisuju svih n okolina
- Bihromatski dijametralni par možemo naći za $O(N \cdot \log N \cdot \log n)$
- Ostatak algoritma uzima linearno vreme, O(N)

Analiza

- Glavna ideja: pokazati da ako je radijus diska C bar $\delta = \frac{\sqrt{7}-1}{3} \approx 0.548$, onda je neka od zvezda S_i željeno stablo, u suprotnom je to dupla zvezda D
- Lema 1: Ako je $r \ge \delta$ i granica diska C sadrži tačno dve tačke, onda je $max(len(S_1), len(S_2)) \ge \delta \cdot len(T)$, gde je T optimalno rešenje
- Lema 2: Ako granica diska C sadrži tri ili više tački, onda za svaku tačku m u ravni, postoji tačka $c_j \in c_1, c_1, c_3$ takva da je $|c_j m| \ge r$
- Lema 3: Ako je $r \ge \delta$ i granica diska C sadrži tri ili više tačaka, onda je $max(len(S_1), len(S_2), len(S_3)) \ge \delta \cdot len(T)$
- Lema 4: Ako je $r \leq \delta$ onda je $len(D) \geq \delta \cdot len(T)$

Doprinos

- Glavni doprinos rada je sledeća teorema:
- nakon nalaženja bihromatskog dijametra

0.548-aproksimacija može da bude izračunata u linearnom vremenu

- Poboljšan je faktor aproksimacije, sa do tada najboljeg 0.517 na 0.548
- Dokazano je da algoritam koji uvek uključuje bihromatski dijametar u rešenje ne može da ima faktor aproksimacije veći od 0.5

Primene i srodni problemi

- Primene:
 - Analiza najgoreg slučaja u raznim heuristikama, u kombinatornoj optimizaciji
 - Aproksimacija maksimalnih triangulacija
 - Algoritmi klasterovanja
- Srodni problemi:
 - Problem euklidskog Steinerovog stabla
 - Problem trgovačkog putnika sa okolinama
 - Konveksni omotač nepreciznih tačaka

Zaključak

- Otvoren je problem daljeg poboljšanja algoritama aproksimacije
- Za to je potrebna detaljnija analiza
- Razmatrane su zvezde i dupla zvezda razdvojeno, možda bi posmatranje zajedno dovelo do poboljšanja

Literatura

 Approximating longest spanning tree with neighborhoods, Ahmad Biniaz, Journal of Computational Geometry, Vol. 14 No. 1, Pages 1-13, 4.4.2023.