Week 1

???

1.1 Holomorphic Functions

3/19: • We begin by reviewing some properties of the **complex numbers**.

• Complex numbers: The field of elements z = x + iy where $x, y \in \mathbb{R}$ and $i^2 = -1$. Denoted by \mathbb{C} .

Figure 1.1: The complex plane.

- Can be visualized as a two-dimensional plane with the number z corresponding to the point (x, y).
- Real part: The number x. Denoted by Re(z).
- Imaginary part: The number y. Denoted by Im(z).
- Complex conjugate (of z): The complex number defined as follows. Denoted by \bar{z} . Given by

$$\bar{z} := x - iy$$

- Now recall the definition of a real function that is **differentiable** at a point $x_0 \in \mathbb{R}$.
 - $-f'(x_0)(x-x_0)$ is the "best linear approximation" of f near x_0 , where $f'(x_0)$ is also defined below.
- **Differentiable** $(f \text{ at } x_0)$: A function $f: \mathbb{R} \to \mathbb{R}$ for which the following limit exists. Constraint

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} =: f'(x_0)$$

- We now build up to defining a notion of complex differentiability.
 - Observe that the constraint above is equivalent to the constraint

$$f(x) = f(x_0) + \underbrace{[f'(x_0) + e(x)]}_{\Delta(x)}(x - x_0)$$

where $e(x) \to 0$ as $x \to x_0$.

- Note that we are defining a new function $\Delta(x)$ above, with the property that $\Delta(x_0) = f'(x_0)$.

Week 1 (???) MATH 27000

• Holomorphic (f at z_0): A function $f: \mathbb{C} \to \mathbb{C}$ for which the following limit exists. Also known as \mathbb{C} -differentiable. Constraints

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0) \qquad \iff \qquad f(z) = f(z_0) + \Delta(z)(z - z_0)$$

where Δ is continuous at z_0 and $\Delta(z_0) = f'(z_0)$.

- Is this the true definition of "holomorphic" / "ℂ-differentiable" function, or is this just a naive first pass??
- Properties of holomorphic functions: Let $U \subset \mathbb{C}$ be open.
 - 1. The holomorphic functions on U form a ring $\mathcal{O}(U)$.
 - Equivalently, the \mathbb{C} -differentiation operator is \mathbb{C} -linear.
 - Equivalently, if f, g are holomorphic, then f + g and fg are holomorphic, too.
 - Equivalently (and most simply), we have the sum rule and the product rule (and the quotient rule if the function in the denominator is nonzero).
 - 2. We have the chain rule.
 - 3. Holomorphic implies continuous.
- Examples: Polynomials, rational functions p(z)/q(z) (away from their **poles**).
- Noney^[1]: Consider the function $f: \mathbb{C} \to \mathbb{C}$ defined by

$$z\mapsto \bar{z}$$

- TPS^[2]: Why?
- Notice that

$$f(0) = 0 f(t) = t f(it) = -it$$

- Thus,

$$\Delta(t) = 1 \qquad \qquad \Delta(it) = -1$$

for all t.

- But this means that Δ can't be continuous!
- Yet f is clearly \mathbb{R} -differentiable! What gives?!
- Note that viewing f as a mapping of $\mathbb{R}^2 \to \mathbb{R}^2$ we have

$$Df = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

¹What does "Noney" mean??

²What does "TPS" mean??