

AEAT-9922

ИМС с программируемым угловым магнитным энкодером с разрядностью от 10 до 18 бит для применения на осях и вне осей

Технический паспорт

представляются в цифровой форме для оценки по стандартному протоколу связи SSI (с контролем четности) и SPI (с опцией CRC и контроля четности). При желании пользователь может также выбрать получение абсолютного углового положения в виде выходных сигналов с ШИМ-кодированием и возможностью инициализации и битов ошибок.

Инкрементные позиции отображаются на сигналах ABI и UVW с широким настраиваемым пользователем разрешением от 1CPR и до 10 000 CPR для сигналов ABI и парами полюсов от 1 до 32 пар полюсов (от 2 до 64 полюсов) для сигналов коммутации UVW.

Описание

^{Broadcom®} AEAT-9922 - это угловой магнитоповоротный датчик, обеспечивающий точное измерение углов на полных 360 градусах вращения.

Это сложная система, в которой используются интегрированные элементы датчика Холла со сложной аналоговой и цифровой обработкой сигнала в рамках одного устройства.

Простой двухполюсный магнит создает необходимое магнитное поле, вращаясь перпендикулярно. Широкие конфигурации датчиков магнитного поля позволяют применять их в режимах On-Axis (на конце вала) или Off-Axis (на боковой поверхности вала).

Broadcom AEAT-9922 - это универсальное решение, способное поддерживать широкий спектр приложений благодаря своей надежной архитектуре, позволяющей измерять и передавать как абсолютные, так и инкрементальные сигналы.

Измерение абсолютного угла обеспечивает мгновенную индикацию углового положения магнита с выбираемым и перепрограммируемым разрешением от 10 до 18 бит.

При выборе этого параметра данные позиционирования

Характеристики

- Работа при напряжении 5 В и 3,3 В
- Программируемое абсолютное разрешение от 10 до 18 бит
- Гибкая инкрементальная разрешающая способность ПВБ в диапазоне от 1 до 10 000 CPR
- Выход угла коммутации UVW от 1 до 32 пар полюсов
- Режимы ШИМ-выхода с возможностью инициализации и битов ошибки
- Программируемые пользователем нулевое положение, направление, ширина индекса и положение индекса
- Программируемый гистерезис
- Абсолютный выход по 2-проводному SSI, 3проводному SSI и 4-проводному SPI. Каждый из них работает в своем режиме.
- Компактный корпус QFN-24 (4 мм × 4 мм)
- Соответствие требованиям RoHS
- Коррекция угла INL для высокой точности
- Широкая рабочая температура -40°C 125°C

Приложения

Broadcom

- Бесщеточный двигатель постоянного тока и шаговый двигатель
- Замена резольвера и потенциометра
- Промышленная автоматизация и робототехника
- Промышленные швейные машины и текстильное оборудование

ПРИМЕЧАНИЕ: Данный продукт не

предназначен для использования в какомлибо конкретном устройстве. Заказчики несут полную ответственность за определение пригодности данного изделия для использования по назначению и несут полную ответственность за все потери, ущерб, расходы или обязательства в связи с таким использованием.

Функциональное описание

Рисунок 1: Блок-схема АЕАТ-9922

АЕАТ-9922 изготавливается по стандартному КМОП-технологическому процессу. Он способен точно измерять угол поворота магнита, когда тот расположен соосно и перпендикулярно устройству, используя встроенные датчики Холла для определения его магнитного поля. Обнаруженные магнитные сигналы используются в качестве входных сигналов, которые должны быть соответствующим образом обработаны, чтобы свести на нет его влияние. неидеальности перед подачей их на аналоговые усилители для усиления и фильтрации. После этого усиленные аналоговые сигналы поступают на внутренний аналого-цифровой преобразователь (АЦП) для преобразования в цифровые сигналы, которые поступают на заключительный этап цифровой обработки. В результате цифровой обработки на выходе получаются оцифрованные абсолютные и инкрементальные сигналы.

Используемый магнит должен обладать достаточной напряженностью магнитного поля мТл для создания магнитного поля, необходимого для генерации сигнала (см. раздел "Рекомендуемые характеристики магнитного входа"). Прибор выдает цифровую информацию о высокой напряженности магнитного поля МНі и низкой напряженности магнитного поля МLо из выходных протоколов, чтобы указать, находятся ли магниты слишком близко или слишком далеко от поверхности нашего прибора.

Доступ к оцифрованным абсолютным данным устройства осуществляется по стандартным протоколам Synchronous Serial Interface (SSI) или Serial Peripheral Interface (SPI). Кроме того, абсолютное угловое представление может быть выбрано с помощью сигнала широтно-импульсной модуляции (ШИМ).

Инкрементные выходы доступны с цифровых выходов выделенных выводов A, B и I. Коммутационные выходы U, V и W переключаются на общих выводах ввода/вывода.

Назначение выводов

Рисунок 2: Конфигурации выводов

Описание выводов

Вывод QFN24	Название вывода	ВВОД/В ЫВОД	Тип	Функциональное описание
1 - 6	NC	-	-	Нет связи
7	VDDA	-	Мощность	3,3 В/5 В Вход питания (аналоговый)
8	VSSA	-	Мощность	Заземление питания (аналог)
9	MO	ВВОД/В ЫВОД	Цифрово й	Выбор SPI3 и SSI/выбор микросхемыSPI/выход ERR
10	M1	ВВОД/В ЫВОД	Цифрово й	Вход данных SPI/вывод NSL/выход коммутации (UVW)
11	M2	ВВОД/В ЫВОД	Цифрово й	Вход тактового генератора SPI/SSI/V Выход коммутации (UVW)
12	M3	0	Цифрово й	Выход данных SPI/SSI/Выход коммутации (UVW)/Выход ШИМ
13 - 18	NC	-	-	Нет связи
19	MSEL	I	Цифрово й	Выбор режима
20	I	0	Цифрово й	Вывод инкрементного индекса (ABI)
21	VDD	-	Мощность	Вход питания 3,3 В/5 В (цифровой)
22	VSS	-	Мощность	Заземление питания (цифровое)
23	В	0	Цифрово й	Инкрементный выход В (ABI)
24	А	0	Цифрово й	Инкрементный выход A (ABI)
25	VSS	-	Мощность	Заземление источника питания

Электрические характеристики

Абсолютные максимальные значения

Таблица 1: Максимальный номинал

Параметр	Символ	Мин.	Макс.	Единицы	Прим ечани я
Температура хранения	TS	-40	125	°C	
Напряжение питания постоянного тока Вывод VDDA	VDD	-0.3	6	V	
Диапазон входного напряжения	Vin	-0.3	6	V	
Электростатический разряд (НВМ)		-4.0	+4.0	кВ	
Уровень чувствительности к влаге		-	1		

ВНИМАНИЕ!

- Воздействие на изделие нагрузок, превышающих указанные в данном разделе, может привести к необратимому повреждению устройств.
- Это только номинальные значения нагрузки, и они не означают, что устройства будут работать сверх этих значений. Длительное воздействие экстремальных условий может повлиять на надежность изделия.

Рекомендуемые условия эксплуатации

Таблица 2: Рекомендуемые условия эксплуатации ИС кодера

Параметр	Символ	Мин.	Тип.	Макс.	Единицы	Прим ечани я
Рабочая температура окружающей среды	TA	-40	-	125	°C	
Напряжение питания постоянного тока на выводе VDD	VDD				V	
Работа при напряжении 5 В		4.5	5.0	5.5		
Работа при напряжении 3,3 В		3.0	3.3	3.6		
Частота инкрементального выхода	fMAX	-	-	1.0	МГц	Частота = Скорость (об/мин) × CPR/60
Емкость нагрузки	CL	-	-	15	пФ	

Параметры систем

Таблица 3: Параметры систем

Параметр	Символ	Мин.	Тип.	Макс.	Единицы	Прим ечани я
Потребление тока						
Ток питания Нормальный режим	IDD	-	25	-	мА	5V
работы	IDD	-	24	-	мА	3.3V
Цифровые выходы (DO)						
Выходное напряжение высокого уровня	VOH	VDD - 0,5	-	-	V	Нормальная работа
Выходное напряжение низкого уровня	VOL	-	-	GND + 0,4	V	
Время включения питания Абсолютный выход Инкрементный	tPwrUp	-	10	-	ms	
выход ШИМ-выход						
Цифровые входы (DI)						
Входной высокий уровень	VIH	0,7 × VDD	-	-	V	
Низкий уровень входного сигнала	вил	-	-	0,3 × VDD	V	
Входной ток низкого уровня Pull- Up	IIL	-	-	120	мкА	
Входной ток высокого уровня	IIH	-	-	120	мкА	

ПРИМЕЧАНИЕ: Электрические характеристики превышают рекомендуемые условия эксплуатации. Типовые значения указаны при VDD = 5,0 В и температуре 25°C, при оптимальном расположении магнита.

Характеристики кодирования

Таблица 4: Выходные характеристики кодирования

Параметр	Символ	Мин.	Тип.	Макс.	Единиц	Прим ечани я
Абсолютный выход						
Разрешение	РЭС	10	-	18	Бит	Программируемые 10-18 бит
Интегральная нелинейность по оси	INLnom	-	± 0.1	-	Степень	Линия наилучшего соответствия,
Интегральная нелинейность вне оси		-	± 0.15	-		центрированный магнит. _{ТА} = 25°C, напряжение = 5 В, Коррекция угла наклона ИНЛ
Интегральная нелинейность по оси	INLdis	-	± 0.2	-	Степень	Линия наилучшего соответствия, по смещению
Интегральная нелинейность вне оси		-	± 0.3	-		магнита. _{TA} = 25°C, напряжение = 5 В
Интегральная нелинейность по оси	INLtemp	-	± 0.5	-	Степень	Линия наилучшего соответствия, по смещению
Интегральная нелинейность вне оси		-	± 0.7	-		магнита и изменению температуры. $_{\text{TA}}$ = от -40°C до +125°C, Напряжение = 5 В
Монотонность кода		-	1	-	LSB	14-разрядный абсолютный (статический)
Частота дискретизации выходного сигнала	fS	-	10	-	МГц	На основе протокола SSI3
Латентность		-	80	-	ns	
Инкрементный выход (канал АЕ	31)					
Разрешение	РИНЦ	1	-	10000	CPR	Программируемый
Ширина импульса индекса	PO	90	-	360	°e	Программируемые опции: 90, 180, 270 или 360 °e. См. Рисунок 25.
Состояние индекса		90	-	360	°e	Программируемые опции: 90, 180, 270 или 360 °e. См. Рисунок 25.
Относительная угловая точность	%	-	10	-	%	Ссылка на период выходного сигнала на выходах А и В, при 512 СРR, 5 В и 3000 об/мин
ШИМ-выход						
Частота ШИМ	fPWM	122	-	976	Гц	Регулируется в зависимости от настроек ШИМ
Минимальная ширина импульса	PWMIN	-	1	-	МКС	
Максимальная ширина импульса	PWMAX	-	16,384		МКС	

ПРИМЕЧАНИЕ: Характеристики кодирования в рекомендуемом рабочем диапазоне, если не указано иное.

Временные характеристики кодирования

Таблица 5: Временные характеристики кодера

ИМС с программируемым угловым магнитным энкодером с разрядностью от 10 до 18

Параметр	Символ	Мин.	Тип.	Макс.	Единицы	Прим ечани я
Инкрементный выход (ABI и UV	W)					
Время реакции системы	tdelay	-	10	-	ms	Обнаружение первого импульса АВІ при включении питания.

Механические и магнитные характеристики

Рекомендуемые характеристики магнитного входа

Таблица 6: Технические характеристики магнита

Параметр	Символ	Мин.	Тип.	Макс.	Единицы	Прим ечани я
Диаметр Идентификатор дискового магнита Кольцевой магнит /OD	d	4 -	6 ID,15 OD,25		ММ ММ ММ	Рекомендуемый магнит: Цилиндрический магнит или кольцевой магнит с диаметральным намагничиванием и 1- полюсной парой.
Толщина Дисковый магнит Кольцевой магнит	t	-2	2.5 6	-	ММ	
Величина входного магнитного поля По оси (дисковый магнит) Вне оси (кольцевой магнит)	Bpk	45 30	-	100 150	mT mT	Требуемая вертикальная/горизонтальная составляющая напряженности магнитного поля на поверхности штампа, измеренная по концентрической окружности.
Радиус смещения магнита	R_m	-	-	0.25	ММ	Смещение между осью магнита и центром прибора.
Рекомендуемый материал магнита и температурный дрейф		-	-0.12	-	%/K	NdFeB (неодим-железо-бор), марка N35SH.

Рисунок 3: Определение направления при вращении магнита

Рисунок 4: Диаметрально намагниченный магнит

Протокол связи

AEAT-9922 имеет в общей сложности 10 интерфейсов, один из которых выделен для инкрементального ABI, а остальные мультиплексированы на выводы ввода/вывода M0, M1, M2 и M3. Каждый выход конфигурируется с помощью выводов M0, MSEL и регистров PSEL, как показано в следующей таблице.

Таблица 7: Конфигурируемые интерфейсы ввода-вывода и их выбор

	Режи м														
Pin	SPI-3	SSI-3(A)	SSI-3(B) SSI-2(A) SSI-2(B) SPI-4(A) SPI-4(B) UVW ШИМ П												
MSEL	0	0	0	0	0	1	1	1	1	Контакт ввода/вы вода					
PSEL[1]	Х	х	х	х	х	0	0	1	1	Память					
PSEL[0]	Х	0	1	0	1	0	1	0	1	Память					
МО	0	1	1	1	1	NCS	NCS	ERR	ERR	Контакт ввода/вы вода					
M1	DIN	NSL	NSL	0	0	MOSI	MOSI	U	N/A	Контакт ввода/вы вода					
M2	SCK	SCL	SCL	SCL	SCL	SCK	SCK	V	N/A	Контакт ввода/вы вода					
M3	DO	DO	DO	DO	DO	MISO	MISO	W	ШИМ	Контакт ввода/вы вода					

ПРИМ ЕЧАН

ИЕ:

- 1. PSEL[1] и PSEL[0] конфигурируются через память.
- 2. Конфигурирование MSEL, M0, M1, M2 и M3 осуществляется через колодки ввода/вывода.

Рисунок 5: Выбор интерфейса и выводов ввода-вывода

Протокол SPI4

Протокол SPI4 использует четыре вывода от AEAT-9922. Эти четыре вывода являются общими для протоколов UVW, SSI и SPI. MSEL (входной вывод) одновременно выбирает один из этих протоколов. Подайте 1 на вывод MSEL для выбора протокола SPI4.

Протоколы SPI4 позволяют пользователю получить доступ к чтению или записи в память и позиционным данным. Для триггера используется CPOL=0, CPHA=1.

- M0 → Сигнал SPI_Chip Select (NCS) для протокола SPI, вход для AEAT-9922
- M1 → Входной сигнал SPI Data (MOSI) для протокола SPI, входной сигнал для AEAT-9922
- M2 → Входной сигнал SPI Clock (SCK) для протокола SPI, входной сигнал для АЕАТ-9922
- M3 → Выходной сигнал SPI Data (MISO) для протокола SPI, выводимый с AEAT-9922

Рисунок 6: Временная диаграмма SPI4

Таблица 8: Временные характеристики SPI4

Символ	Описание	Мин.	Тип.	Макс.	Единицы
tL	Время между спадающим фронтом NCS и нарастающим фронтом CLK	350	-	-	ns
tclk	Период последовательного тактового генератора	100	-	-	ns
tclkL	Низкий период последовательного генератора	50	-	-	ns
tclkH	Старший период последовательного генератора	50	-	-	ns
tH	Время между последним спадающим фронтом SCK и нарастающим фронтом NCS	tclk /2	-	-	ns
tCSn	Высокое время NCS между двумя передачами	350	-	-	ns
tMOSI	Входные данные действительны по фронту тактовой частоты	20	-	-	ns
tMISO	Фронт SCK на выходе данных действителен	-	51	-	ns
tOZ	Время между нарастающим фронтом NCS и MISO	-	10	-	ns

ПРИМЕЧАНИЕ: Пользователь должен считать данные, чтобы убедиться, что запись прошла успешно.

Кадр команд и данных SPI4

Рисунок 7: Последовательность чтения SPI4

Рисунок 8: Последовательность записи в SPI4

Рисунок 9: SPI-4(A) 16-бит (четность)

По умолчанию микросхема сконфигурирована на 16-разрядный выбор SPI4, PSEL [1] = 0, PSEL [0] = 0 в настройках регистра.

	Data Format																			
	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Master to Slave					Р	RW	0	0	0	0	0	0			Add	r/Da	ta[7	:0]		
Slave to Master (memory)	P EF 0 0 0 0 0 0 Data[7:0]																			
Slave to Master (pos 10b)					Р	EF					Pos[9:0]					0	0	0	0
Slave to Master (pos 11b)					Р	EF					Pos[10:0]					0	0	0
Slave to Master (pos 12b)					Р	EF					Pos[11:0]						0	0
Slave to Master (pos 13b)					Р	EF					Pos[12:0]							0
Slave to Master (pos 14b)					Р	EF					Pos[13:0]							
Slave to Master (pos 15b)				Р	EF						Pos[14:0]							
Slave to Master (pos 16b)			Р	EF							Pos[15:0]								
Slave to Master (pos 17b)		Р	EF								Pos[16:0]								
Slave to Master (pos 18b)	Р	EF				Pos[17:0]														

ПРИМЕЧАНИЕ: Р: четность; ЕF: флаг ошибки; RW: чтение = 1, запись = 0

Рисунок 10: SPI4-(B) 24-битный (CRC)

Для конфигурирования микросхемы на 24-разрядную выборку SPI4 необходимо в настройках регистра установить **PSEL [1] = 0**, **PSEL [0] = 1**.

	Data Format																											
	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Master to Slave					0	RW	0	0	0	0	0	0			Addr	/Da	ta[7	:0]					С	RC[7	':0]			
Slave to Master (memory)					W	Е	0	0	0	0	0	0			Da	ta[7:0]						С	RC[7	':0]			
Slave to Master (pos 10b)					W	Е					Pos[9:0]					0	0	0	0			С	RC[7	':0]			
Slave to Master (pos 11b)					W	Ε					Pos[10:0]						0	0	0			C	RC[7	':0]			
Slave to Master (pos 12b)					W	Ε					Pos[11:0]							0	0			C	RC[7	':0]			
Slave to Master (pos 13b)					W	Е					Pos[12:0]								0			С	RC[7	':0]			
Slave to Master (pos 14b)					W	Е					Pos[13:0]											С	RC[7	':0]			
Slave to Master (pos 15b)				W	Ε						Pos[14:0]											С	RC[7	':0]			
Slave to Master (pos 16b)			W	Ε							Pos[:	15:0]											С	RC[7	':0]			
Slave to Master (pos 17b)		W	Е				Pos[16:0]								C	RC[7	':0]											
Slave to Master (pos 18b)	W	Ε								F	Pos[1	L7:0]											C	RC[7	':0]			

ПРИМЕЧАНИЕ: W: предупреждение; E: ошибка; RW: чтение = 1, запись = 0

Должность Читать

Данные об абсолютном положении можно получить, отправив команду чтения по адресу 0x3F.

Рисунок 11: Команда чтения

В случае более высокого разрешения одиночного поворота (15 бит и выше) размер кадра команд и данных корректируется соответствующим образом.

Рисунок 12: Пример кадра команды и данных для 18-битного кадра (позиция) + 2-битный кадр (четность и ошибка)

Бит предупреждения и ошибки

Бит ошибки срабатывает при наличии либо высокого уровня магнита (MHI), либо низкого уровня магнита (MLO), либо ошибки памяти (MEM Err), либо ошибки связи. Подробные сведения о битах ошибок приведены в следующих по адресу регистрах.

Таблица 9: Регистр битов ошибок

Адрес					Би т				
[десятичн ый]	[hex].	7	6	5	4	3	2	1	0
33	0x21	RDY	MHI	MLO	MEM_Err				

- Ошибка Magnet High (MHI): Это указывает на то, что сила магнита, определяемая микросхемой, слишком велика. При постоянном высоком значении этого параметра следует перейти на более слабый магнит или увеличить расстояние между микросхемой и магнитом.
 - Значение для этого сигнала представлено в виде 1.
- Ошибка низкого уровня магнита (MLO): Это указывает на то, что сила магнита, определяемая микросхемой, слишком слаба. При постоянном высоком уровне этого флага следует заменить магнит на более сильный или уменьшить расстояние между микросхемой и магнитом.

Значение для этого сигнала представлено в виде 1.

AEAT-9922-DS105 Broadcom

- **Ready (RDY)**: Микросхема готова, и значение готовности равно 1.
- Ошибка памяти (MEM_Err): Содержимое памяти микросхемы повреждено (согласно проверке CRC)

Протокол SPI3

Протоколы SPI3 разрешают доступ только к чтению-записи в память. Для конфигурирования необходимо подать 0 на выводы **MSEL** и **M0**.

- M1 → SPI_Data Входной (DIN) сигнал для протокола SPI, входной для AEAT-9922
- M2 → Входной сигнал SPI Clock (SCK) для протокола SPI, входной сигнал для АЕАТ-9922
- M3 → SPI Data Выходной сигнал (DO) для протокола SPI, выводимый с AEAT-9922

Рисунок 13: Временная диаграмма SPI3

Таблица 10: Временные характеристики SPI3

Символ	Описание	Мин.	Тип.	Макс.	Единицы
tSW	Время между спадающим фронтом M0 и спадающим фронтом SCK	1	-	-	мкс
tclk	Период последовательного тактового генератора	-	-	100	ns
tclkH	Время высокого уровня тактового сигнала SCK после окончания последнего тактового периода	300	-	-	ns

ПРИМЕЧАНИЕ: Пользователь должен считать данные, чтобы убедиться, что запись прошла успешно.

Рисунок 14: Чтение по интерфейсу SPI3

Рисунок 15: Запись по интерфейсу SPI3

Последовательный синхронный интерфейс 3-wire (SSI3)

Протокол SSI3 использует три вывода от AEAT-9922. Эти три вывода являются общими для протоколов UVW, SSI и SPI. MSEL (входной вывод) выбирает один протокол за один раз. Подайте 0 на вывод **MSEL** и 1 на вывод **M0** для выбора протокола SSI.

- M1 → SSI NSL Входной сигнал (NSL) для протокола SSI, подается на вход от AEAT-9922
- $M2 \rightarrow B$ ходной сигнал SSI Clock (CLK) для протокола SSI, входной сигнал для AEAT-9922
- $M3 \rightarrow SSI$ Data Выходной сигнал (DO) для протокола SSI, выводимый с AEAT-9922

Рисунок 16: Временная диаграмма протокола SSI-3A

По умолчанию: Вывод данных при использовании 3-проводного SSI с тактовой частотой 10 МГц.

Таблица 11: Временные характеристики протокола SSI3

Символ	Описание	Мин.	Тип.	Макс.	Единицы
tsw	Время между фронтами переключения M0 и NSL	1	-	-	мкс
tclk	Период последовательного тактового генератора	100	-	-	ns
tREQ	Время высокого уровня CLK между спадающим фронтом NSL и первым спадающим фронтом CLK	300	-	-	ns
tREQ2	Низкое время NSL после нарастающего фронта последнего тактового периода для чтения SSI	200	-	-	ns
tNSLH	Время высокого уровня NSL между двумя последовательными чтениями SSI	200	-	-	ns

SSI3 доступен в двух вариантах в соответствии с настройками регистра PSEL,

Рисунок 17: SSI-3(A)

Вывод DO удерживается в высоком состоянии, когда вывод NSL находится в высоком состоянии.

Рисунок 18: SSI-3(B)

При высоком уровне напряжения на выводе NSL вывод DO находится в трехсостоянии (высокий импеданс).

Последовательный синхронный интерфейс 2-Wire (SSI2)

Протокол SSI2 использует два вывода от AEAT-9922. Эти два вывода являются общими для протоколов UVW, SSI и SPI. MSEL (входной вывод) выбирает один протокол за один раз. При включении питания необходимо подать 0 на вывод **MSEL** и вывод **M1** и 1 на вывод **M0**.

- M2 → Входной сигнал SSI Clock (CLK) для протокола SSI, входной сигнал для АЕАТ-9922
- $M3 \rightarrow SSI$ Data Выходной сигнал (DO) для протокола SSI, выводимый с AEAT-9922

Рисунок 19: Временная диаграмма SSI 2-Wire

Таблица 12: Временные характеристики SSI 2-Wire

Символ	Описание	Мин.	Тип.	Макс.	Единицы
tclk	Время низкого уровня СLK после первого спадающего фронта для чтения SSI	250	-	_{tM} / 2	ns
tM	Время высокого уровня CLK между двумя последовательными чтениями SSI	-	16.5	18.0	МКС

SSI2 доступен в двух вариантах в соответствии с настройками регистра PSEL:

Рисунок 20: SSI-2(A)

Вывод единичной позиции данных и остается низким после LSB до истечения следующего монофлопа (tM).

Рисунок 21: SSI-2(B)

Одни и те же данные о положении можно выдавать непрерывно, посылая тактовую последовательность, при этом данные разделяются одним импульсом низкого уровня. Обновление данных происходит по истечении очередного монофлопа $(_{tM})$.

Рисунок 22: Формат данных чтения SSI2

	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
22-b								18bit	s posi	tion d	ata								3bits	s statu	S	1bit parity
21-b							17	bits p	ositio	n data								3bit	s statu	IS	1	bit parity
20-b							16bit	s posi	tion d	ata							3bit	s statı	ıs	1	bit pa	rity
19-b						15	bits p	ositio	n data							3bit	s stati	us	1	bit pa	rity	
18-b						14bit	s posi	tion d	ata						3bit	s statı	ıs	1	Lbit pa	rity		
17-b					13	bits p	ositior	n data						3bits	s statı	IS	1	lbit pa	rity			
16-b					12bit	s posi	tion da	ata					3bits	statu	S	1	bit pa	arity				
15-b				11	lbits p	ositior	n data					3bits	statu	s	1	bit pa	rity					
14-b				10bit	s posi	tion da	ata				3bit	s statu	s	1	bit pa	rity						

ПРИМЕЧАНИЕ: Статус 3-b: {Ready, MHI, MLO}.

- Ошибка Magnet High (MHI): Это указывает на то, что сила магнита, определяемая микросхемой, слишком велика. При постоянном высоком значении этого параметра следует заменить магнит на более слабый или увеличить расстояние между микросхемой и магнитом.
 - Значение для этого сигнала представлено в виде 1.
- Ошибка низкого уровня магнита (MLO): Это указывает на то, что сила магнита, определяемая микросхемой, слишком слаба. При постоянном высоком значении этого параметра следует заменить магнит на более сильный или уменьшить расстояние между микросхемой и магнитом. Значение для этого сигнала представлено в виде 1.
- Ready: Микросхема готова, и значение готовности равно 1.
- **Четность**: 1-b четность четная четность.

ШИМ

Протокол PWM использует один выходной вывод (W_PWM) от AEAT-9922. Обратите внимание, что вывод W_PWM является общим для протоколов UVW и PWM. Период ШИМ-сигналов может составлять 1025, 2049, 4097, 8193 или 16385 мкс. При включении питания сигнал ШИМ равен 0 до готовности микросхемы.

Рисунок 23: Сигналы ШИМ (период = 1025/2049/4097/8193/16385 мкс)

Также доступны протоколы ШИМ с информацией Init, Error_n и Exit вместе с информацией Data.

Рисунок 24: Сигналы ШИМ (период = 1047/2071/4119/8215/16407 мкс)

Формат инкрементного вывода

AEAT-9922 выдает сигналы ABI и UVW для индикации инкрементного положения двигателя.

ABI

Имеется инкрементный интерфейс ABI, обеспечивающий передачу данных о положении и направлении с трех выходных выводов (A, B и I).

Сигнал индекса отмечает абсолютное угловое положение и обычно возникает один раз за оборот Сигнал АВІ конфигурируется с помощью регистров карты памяти. Он поддерживает следующие конфигурации:

- Программируемый CPR: от 1 до 10 000 CPR
- Программируемая ширина I 90, 180, 270 или 360 электрических градусов (°e)
- Программируемое I-состояние: 90, 180, 270 или 360 электрических градусов (°e)

Рисунок 25: Сигнал ABI (4096 CPR, с различными настройками I-Width)

ПРИМЕЧАНИЕ: Предполагается, что пользователь устанавливает

гистерезис на уровне 0,02 механических градусов. Положение индекса

настраивается среди инкрементальных состояний.

Индексный сигнал повышается один раз за оборот в положении абсолютного нуля.

Рисунок 26: Конфигурация индексного сигнала

UVW

Трехканальный интегрированный коммутационный выход (U, V, W) эмулирует обратную связь с датчиком Холла и доступен через три выходных контакта. AEAT-9922 может конфигурировать от 1 до 32 пар полюсов, что эквивалентно от 2 до 64 полюсов.

Обратите внимание, что вывод W_PWM является общим для протоколов UVW и PWM.

Рисунок 27: Коммутационный выход

Обратите внимание, что сигнал U из протокола UVW помечен на сигнал I из протокола ABI, как показано на следующем рисунке.

Рисунок 28: Метки U-to-I

Чертежи упаковки

Размеры указаны в мм, если не указано иное.

Рисунок 29: Размеры AEAT-9922, 24 QFN

Рекомендуемый рисунок поверхности печатной платы и профиль пайки

Рисунок 30: Размеры схемы рельефа в мм

Рисунок 31: Рекомендуемый температурный профиль пайки бессвинцовыми припоями

Информация для заказа продукции

Номер заказанно й детали	Описание продукта	Пакет	Форма поставки
AEAT-9922-100	Магнитный энкодер 18 бит Ось включения-выключения	QFN 24 вывода, 4 мм × 4 мм	Лента и катушка
	Лента и катушка, 1000 штук		
AEAT-9922-102	Магнитный энкодер 18 бит Ось включения-выключения	QFN 24 вывода, 4 мм × 4 мм	Лента и катушка
	Лента и катушка, 100 шт.		
AEAT-9922-Q24	Магнитный энкодер 18 бит Ось включения-выключения	QFN 24 вывода, 4 мм × 4 мм	Трубка
	Труба, 73 шт.		

Информация для заказа аксессуаров

Номер заказанной	Описание продукта	Примеча
детали		ния
HEDS-9922PRGEVB	Комплект для программирования АЕАТ-9922,	1 комплект для SPI-программирования, 2 платы для
	оценочная плата и набор для оценки магнитов	датчиков,
	·	2 осевых магнита, USB-кабель для подключения к
		ПК и соответствующее программное обеспечение
HEDS-9922EVB	Оценочная плата АЕАТ-9922	1 единица платы датчика

Информация об упаковке

Рисунок 32: Размеры катушки

Рисунок 33: Направление подачи пользователя

Рисунок 34: Размеры верхней полости

Рисунок 35: Маркировка корпусов серии АЕАТ-9922

Таблица 13: Маркировка корпусов серии АЕАТ-9922

Ряд	Длина	Описание
1	9 цифр	Номер детали изделия
2	4 цифры	Код даты изготовления, "YY" - год, "WW" - рабочая неделя
3	6 цифр	Номер партии пластин

Broadcom, логотип pulse, Connecting everything, Avago Technologies, Avago и логотип A являются товарными знаками компании Broadcom и/или ее филиалов в США, некоторых других странах и/или ЕС.

Copyright © 2021 Broadcom. Все права защищены.

Термин "Broadcom" относится к компании Broadcom Inc. и/или ее дочерним предприятиям. Дополнительную информацию можно найти на сайте www.broadcom.com.

Компания Broadcom оставляет за собой право вносить изменения без дополнительного уведомления в любые продукты или данные, приведенные в настоящем документе, с целью повышения надежности, улучшения функционирования или дизайна. Информация, предоставленная компанией Broadcom, считается точной и надежной. Однако компания Broadcom не берет на себя никакой ответственности, связанной с применением или использованием данной информации, а также с применением или использованием любого продукта или схемы, описанных в данном документе, и не передает никаких лицензий на свои патентные права или права других лиц.

