

Programmierung und Deskriptive Statistik

BSc Psychologie WiSe 2023/24

Belinda Fleischmann

Datum	Einheit	Thema
11.10.23	Einführung	(1) Einführung
18.10.23	R Grundlagen	(2) R und Visual Studio Code
25.10.23	R Grundlagen	(2) R und Visual Studio Code
01.11.23	R Grundlagen	(3) Vektoren
08.11.23	R Grundlagen	(4) Matrizen
15.11.23	R Grundlagen	(5) Listen und Dataframes
22.11.23	R Grundlagen	(6) Datenmanagement
29.11.23	Deskriptive Statistik	(7) Häufigkeitsverteilungen
06.12.23	Deskriptive Statistik	(8) Verteilungsfunktionen und Quantile
13.12.23	Deskriptive Statistik	(9) Maße der zentralen Tendenz
20.12.23	Leistungsnachweis Teil 1	
20.12.23	Deskriptive Statistik	(10) Maße der Datenvariabilität
	Weihnachtspause	
10.01.24	Deskriptive Statistik	(11) Anwendungsbeispiel (Deskriptive Statistik)
17.01.24	Inferenzstatistik	(12) Anwendungsbeispiel (Parameterschätzung, Konfidenzintervalle)
24.01.24	Inferenzstatistik	(13) Anwendungsbeispiel (Hypothesentest)
25.01.24	Leistungsnachweis Teil 2	

(10) Maße der Variabilität

Stichprobenvarianz

Stich proben standard abweichung

Stichprobenvarianz

Stich proben standard abweichung

Definition (Spannbreite)

 $\boldsymbol{x}=(x_1,...,x_n)$ sei ein Datensatz. Dann ist die Spannbreite von $x_1,...,x_n$ definiert als

$$sb := \max(x_1, ..., x_n) - \min(x_1, ..., x_n).$$
 (1)

Die Spannbreite kann mit range() berechnet werden

```
Г1] 9
```

Γ1**]** 9

Stichprobenvarianz

Stich proben standard abweichung

Definition (Stichprobenvarianz, empirische Stichprobenvarianz)

 $x=(x_1,...,x_n)$ sei ein Datensatz und \bar{x} das Stichprobenmittel. Die $\it Stichprobenvarianz$ von $\it x$ ist definiert als

$$s^2 := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{2}$$

und die empirische Stichprobenvarianz von x ist definiert als

$$\tilde{s}^2 := \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2. \tag{3}$$

Bemerkungen

- s^2 ist ein unverzerrter Schätzer von $\mathbb{V}(\xi)$, \tilde{s}^2 ist ein verzerrter Schätzer $\mathbb{V}(\xi)$.
- Für $n \to \infty$ gilt $\frac{1}{n} \approx \frac{1}{n-1}$, \tilde{s}^2 ist ein asymptotisch unverzerrter Schätzer von $\mathbb{V}(\xi)$.
- \tilde{s}^2 ist der ML Schätzer, s^2 ist der ReML Schätzer von σ^2 bei $\xi_1,...,\xi_n \sim N(\mu,\sigma^2)$.
- Es gelten

$$\tilde{s}^2 = \frac{n-1}{n} s^2, s^2 = \frac{n}{n-1} \tilde{s}^2 \text{ und } 0 \le \tilde{s}^2 < s^2.$$
 (4)

Die Sitchprobenvarianz kann mit var() berechnet werden

```
x <- D$Pre.BDI  # double Vektor der Pre-BDI Werte Werte
n <- length(x)  # Anzahl der Werte
s2 <- (1/(n-1))*sum((x - mean(x))^2) # Stichprobenvarianz
print(s2)

[1] 3.028182
s2 <- var(x)  # "automatische" Stichprobenvarianz</pre>
```

[1] 3.028182

print(s2)

[1] 2.9979

[1] 2.9979

Stichprobenvarianz bei linear-affinen Transformationen

Theorem (Stichprobenvarianz bei linear-affinen Transformationen)

 $x=(x_1,...,x_n)$ sei ein Datensatz mit Stichprobenvarianz s_x^2 und $y=(ax_1+b,...,ax_n+b)$ sei der mit $a,b\in\mathbb{R}$ linear-affin transformierte Datensatz mit Stichprobenvarianz s_x^2 . Dann gilt

$$s_y^2 = a^2 s_x^2. (5)$$

Beweis

$$\begin{split} s_y^2 &\coloneqq \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 = \frac{1}{n-1} \sum_{i=1}^n (ax_i + b - (a\bar{x} + b))^2 \\ &= \frac{1}{n-1} \sum_{i=1}^n (ax_i + b - a\bar{x} - b)^2 \\ &= \frac{1}{n-1} \sum_{i=1}^n (a(x_i - \bar{x}))^2 \\ &= \frac{1}{n-1} \sum_{i=1}^n a^2 (x_i - \bar{x})^2 = a^2 \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = a^2 s_x^2 \end{split} \tag{6}$$

Stichprobenvarianz bei linear-affinen Transformationen

Beispiel: Stichprobenvarianz bei linear-affinen Transformationen

[1] 12.11273

```
# Stichprobenvarianz nach Theorem
s2y <- a^2*s2x  # Stichprobenvarianz y_1,...,y_n
print(s2y)
```

Γ17 12.11273

Theorem (Verschiebungssatz zur empirischen Stichprobenvarianz)

 $x=(x_1,...,x_n)$ sei ein Datensatz, $x^2:=(x_1^2,...,x_n^2)$ sei sein elementweises Quadrat und \bar{x} und $\overline{x^2}$ seien die respektiven Mittelwerte. Dann gilt

$$\tilde{s}^2 = \overline{x^2} - \bar{x}^2 \tag{7}$$

Beweis

$$\begin{split} \vec{s}^2 &:= \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \\ &= \frac{1}{n} \sum_{i=1}^n \left(x_i^2 - 2x_i \bar{x} + \bar{x}^2 \right) \\ &= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2\bar{x} \frac{1}{n} \sum_{i=1}^n x_i + \frac{1}{n} \sum_{i=1}^n \bar{x}^2 \\ &= \overline{x^2} - 2\bar{x}\bar{x} + \frac{1}{n} n\bar{x}^2 \\ &= \overline{x^2} - 2\bar{x}^2 + \bar{x}^2 \\ &= \overline{x^2} - \bar{x}^2 \end{split} \tag{8}$$

Beispiel: Verschiebungssatz zur empirischen Stichprobenvarianz

Γ11 2.9979

```
# Berechnung der empirischen Stichprobenvarianz mit Theorem
s2_tilde <- mean(x^2) - (mean(x))^2  # \bar{x^2} - \bar{x}^2
print(s2_tilde)</pre>
```

[1] 2.9979

Γ1] 3.028182

Stichprobenvarianz

Stichprobenstandardabweichung

Stichprobenstandardabweichung

Definition (Stichprobenstandardabweichung, empirische)

 $x=(x_1,...,x_n)$ sei ein Datensatz. Die Stichprobenstandardabweichung von x ist definiert als

$$s := \sqrt{s^2} \tag{9}$$

und die empirische Stichprobenstandardabweichung von x ist definiert als

$$\tilde{s} := \sqrt{\tilde{s}^2}.$$
(10)

Bemerkungen

- s ist ein verzerrter Schätzer von $\mathbb{S}(\xi)$.
- s^2 misst Variabilität in quadrierten Einheiten, zum Beispiel Quadratmeter (m^2) .
- s misst Variabilität in unquadrierten Einheiten, zum Beispiel Meter (m).
- Es gilt

$$\tilde{s} = \sqrt{(n-1)/n}s. \tag{11}$$

Berechnung der Stichprobenstandardabweichung in R

Die Stichprobenstandardabweichung kann mit sd() berechnet werden.

[1] 1.740167

```
# Automatische Berechnung der Stichprobenstandardabweichung s <- \operatorname{sd}(x) # "automatische" Berechnung print(s)
```

[1] 1.740167

```
[1] 1.731444
```

[1] 1.731444

Theorem (Stichprobenvarianz bei linear-affinen Transformationen)

 $x=(x_1,...,x_n)$ sei ein Datensatz mit Stichprobenstandardabweichung s_x und $y=(ax_1+b,...,ax_n+b)$ sei der mit $a,b\in\mathbb{R}$ linear-affin transformierte Datensatz mit Stichprobenstandardabweichung s_y . Dann gilt

$$s_y = |a|s_x. (12)$$

Beweis

$$\begin{split} s_y \coloneqq & \left(\frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2\right)^{1/2} = \left(\frac{1}{n-1} \sum_{i=1}^n \left(ax_i + b - (a\bar{x} + b)\right)^2\right)^{1/2} \\ & = \left(\frac{1}{n-1} \sum_{i=1}^n \left(a(x_i - \bar{x})\right)^2\right)^{1/2} \\ & = \left(\frac{1}{n-1} \sum_{i=1}^n a^2 (x_i - \bar{x})^2\right)^{1/2} \\ & = \left(a^2\right)^{1/2} \left(\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2\right)^{1/2} \end{split}$$

Also gilt $s_{\mathcal{Y}}=as_{\mathcal{X}}$, wenn $a\geq 0$ und $s_{\mathcal{Y}}=-as_{\mathcal{X}}$, wenn a<0. Dies aber entspricht $s_{\mathcal{Y}}=|a|s_{\mathcal{X}}$.

Stichprobenvarianz bei linear-affinen Transformationen

Beispiel: Stichprobenstandardabweichung bei linear-affinen Transformationen

```
# a >= 0
v <- D$Pre BDT
                                         # double Vektor der Pre-BDT Werte Werte
s_x \leftarrow sd(x)
                                        # Stichprobenvarianz von x
a <- 2
                                        # Multiplikationskonstante
b <- 5
                                        # Additionskonstante
v <- a*x + b
                                        # v i = ax i + b
s_y \leftarrow sd(y)
                                        # Stichprobenvarianz von y
print(s_v)
[1] 3.480334
s_y <- a*s_x
                                        # Stichprobenvarianz von v
print(s_v)
[1] 3.480334
# a < 0
x <- D$Pre.BDT
                                         # double Vektor der Pre-BDI Werte Werte
s_x \leftarrow sd(x)
                                        # Stichprobenvarianz von x
a <- -3
                                        # Multiplikationskonstante
b <- 10
                                        # Additionskonstante
v <- a*x + b
                                        # y_i = ax_i + b
s_y <- sd(y)
                                        # Stichprobenvarianz von y
print(s_v)
Γ17 5.220502
```

Stichprobenvarianz von y

print(s_y)
[1] 5.220502

s_v <- (-a)*s_x

Stichprobenvarianz

Stich proben standard abweichung

Selbstkontrollfragen

- 1. Geben Sie die Definition der Spannbreite eines Datensatzes wieder.
- 2. Berechnen Sie die Spannbreite der Post.BDI Daten.
- 3. Geben Sie die Definition der Stichprobenvarianz und der empirischen Stichprobenvarianz wieder.
- 4. Berechnen Sie die Stichprobenvarianz und die empirische Stichprobenvarianz der Post.BDI Daten.
- 5. Geben Sie das Theorem zur Stichprobenvarianz bei linear-affinen Transformationen wieder.
- 6. Geben Sie den Verschiebungssatz zur empirischen Stichprobenvarianz wieder.
- Geben Sie die Definition der Stichprobenstandardabweichung und der empirischen Stichprobenstandardabweichung wieder.
- Berechnen Sie die Stichprobenstandardabweichung und die empirische Stichprobenstandardabweichung der Post.BDI Daten.
- 9. Geben Sie das Theorem zur Stichprobenstandardabweichung bei linear-affinen Transformationen wieder.