Quiz-II **PH 441** Total Marks 05

- Simply put √ against the correct options
- <u>Or</u>, alternatively write down the correct options in a piece of paper and upload it.

More than one option may be correct. Marks will be awarded for fully correct answer only.

1. The density matrix of a system is given as: $\frac{1}{5}\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$.

2

- (A) The density matrix represents a pure state.
- (B) The density matrix represents a mixed state
- (C) The probability that a measurement of the system will find it in state $|0\rangle$ is 1/5
- (D) The expectation value of σ_x in this state is 1/5.

2. Let a density matrix be represented by $\rho=m|0\rangle\langle 0|+n|1\rangle\langle 1|.$ It follows that

1

- (A) m+n=1
- (B) $m^2+n^2=1$
- (C) $(m+n)^2=1$
- (D) trace(ρ^2) = m² + n²

3. Consider a two qubit state $\frac{1}{\sqrt{7}} (|00\rangle + \sqrt{2}|01\rangle + \sqrt{3}|10\rangle + |11\rangle)$. If the first qubit is measured, and we obtain $|0\rangle$, then the second qubit collapses to:

(A)
$$\frac{1}{\sqrt{3}} \left[\left| 0 \right\rangle + \sqrt{2} \left| 1 \right\rangle \right]$$

(B)
$$\frac{1}{\sqrt{3}}[|1\rangle + \sqrt{2}|0\rangle]$$

(C)
$$\frac{1}{\sqrt{7}}[|0\rangle + \sqrt{2}|1\rangle]$$

(D)
$$\frac{1}{\sqrt{7}} \left[2 \left| 0 \right\rangle + \sqrt{3} \left| 1 \right\rangle \right]$$