

PSG INSTITUTE OF TECHNOLOGY AND APPLIED RESEARCH NEELAMBUR, COIMBATORE

FINAL YEAR PROJECT REVIEW - 3

DESIGN AND IMPLEMENTATION OF EFFICIENT PROCESSING ELEMENT ARRAY FOR CNN ACCELERATOR

Review Date: 10-05-2025

Project Guide:

Dr. M. Jayasanthi

Professor, ECE

Team members:

- 1. Nithila Shri R P (715521106032)
- 2.Sarveshware S (715521106042)
- 3.Shanmuga Priya M- (715521106043)
- 4.Durai Murugan S (715521106302)

PROBLEM STATEMENT

The project aims to address the computational complexity and power consuming challenges of deploying CNN accelerator on resource-constrained devices by optimizing their performance using a Processing Element (PE) Array architecture.

OBJECTIVES

- To optimize data movement and computation.
- To minimize power consumption of processing element.
- To reduce the area of the PE array.

CNN Accelerator Chip

CNN Processing element array

Idea Flow

Block diagram of a single processing element

ALU Operations:

's' input determines the operation performed by the ALU

- $s = 3'b000 \rightarrow Addition$ (In Hybrid Adder)
- $s = 3'b001 \rightarrow Multiplication (Dadda Multiplier)$
- $s = 3'b010 \rightarrow Bitwise AND$
- $s = 3'b011 \rightarrow Bitwise OR$
- $s = 3'b100 \rightarrow Bitwise NOT of A$
- $s = 3'b101 \rightarrow Bitwise NOT of B$
- Default case \rightarrow No operation \rightarrow Output remains unchanged (C <= C).

Register Operations:

'cui' signal controls how data flows in and out of Register

- $cui = 2'b00 \rightarrow Load input data$
- $cui = 2'b01 \rightarrow Store input data$
- $cui = 2'b10 \rightarrow Load$ output data
- $cui = 2'b11 \rightarrow Store$ output data

Convolution Operation Flow in PE Array

Block diagram of Hybrid Adder

Block diagram of multiplier

- A Dadda multiplier is a hardware circuit that multiplies binary numbers using adders.
- The Dadda multiplier forms a partial product matrix using AND gates.
- Dadda multipliers are known for their efficiency, requiring fewer additions and logical operations compared to other multipliers, leading to lower power dissipation.

Clock gating- Minimizes the power

Clock gating is a technique that reduces power consumption by temporarily disabling the clock signal for parts of a circuit that aren't in use. It's a popular power management technique used in many synchronous circuits.

Clock gating- Single Processing Element

TOOLS USED

Xilinx Vivado:

- Simulation
- Synthesis
- FPGA implementation

Cadence:

- Simulation
- Synthesis
- Power, area and timing report

Simulation Output of Hybrid adder

Simulation Output of Dadda Multiplier

Simulation Output of Processing element

In the above simulation we have performed Addition of two 4-bit inputs and Multiplication of two 4-bit inputs. The operations are:

- Addition: in1=5 and in2=3 ----> pe_out=5+3=8
- Multiplication: in1=6 and in2=3 ----> $pe_out=6*3=18$

RTL Schematics

Normal Processing Element

Normal PE Array

Low Power Processing Element

Low Power PE Array

FPGA Pin assignment diagram

Comparison Table

	Actual Processing Element Array	Optimized Processing Element Array
Area	17328.469μm	16933.367 μm
Power	13.1807 milliwatts	8.84629 milliwatts
Delay	492 ps	500 ps

Graphical representation

In summary, the optimized processing element array shows improvements in both area and power consumption. However, there is a slight increase in delay compared to the actual array, which might be acceptable depending on the specific performance requirements and trade-offs considered during the optimization process.

Real-World Use Cases of the Proposed CNN Accelerator

Real-World Use Cases of the Proposed CNN Accelerator

Simulation Output of PE Array

Smoothing Filter Output:

Application of Our Work-

TIMELINE

2024 **JAN-FEB 2025 FEB 2025 APRIL-MAY2025 MAY-2025** 3rd Review: **Topic and Idea** 1st Review: 2nd Review: **Completion of Pitching** Report and **Project and** Normal **Low Power Documentation Architecture Architecture Research Paper** Design Design

Real-World Use Cases of the Proposed CNN Accelerator

1. Edge AI Devices

Smart cameras, drones, robotics – Low-power, real-time object detection.

2. Medical Imaging

Portable diagnostic tools – Fast, energy-efficient analysis of X-rays/MRI scans.

3. Autonomous Vehicles

Lane/pedestrian detection – High-speed processing with minimal power.

4. IoT & Smart Farming

Crop disease monitoring – TinyML integration for low-cost sensors.

5. Surveillance Systems

24/7 anomaly detection – Power-efficient CCTV processing.

REFERENCES

- Li, T., Jiang, HL., Mo, H. et al. Approximate Processing Element Design and Analysis for the Implementation of CNN Accelerators. J. Comput. Sci. Technol. 38, 309–327 (2023).
- H. Xiao, H. Xu, X. Chen, Y. Wang and Y. Han, "Fast and High-Accuracy Approximate MAC Unit Design for CNN Computing," in IEEE Embedded Systems Letters, vol. 14, no. 3, pp. 155-158, Sept. 2022, doi: 10.1109/LES.2021.3137335.
- Fasih Ud Din Farrukh1, Tuo Xie1, Chun Zhang2, Zhihua Wang1, Fellow, IEEE 1 Institute of Microelectronics, Tsinghua University, Beijing 100084, China. 2 Research Institute of Tsinghua University in Shenzhen, ShenZhen 518055, China.
- Zhang, C.; Wang, X.; Yong, S.; Zhang, Y.; Li, Q.; Wang, C. An Energy-Efficient Convolutional Neural Network Processor Architecture Based on a Systolic Array. Appl. Sci. 2022, 12, 12633. https://doi.org/10.3390/app122412633
- Y. Choi, D. Bae, J. Sim, S. Choi, M. Kim and L. -S. Kim, "Energy-Efficient Design of Processing Element for Convolutional Neural Network," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 11, pp. 1332-1336, Nov. 2017, doi: 10.1109/TCSII.2017.2691771.
- Awad, O. M., Mahmoud, M., Edo, I., Zadeh, A. H., Bannon, C., Jayarajan, A., Pekhimenko, G., & Moshovos, A. (2020). FPRaker: A processing element for accelerating neural network training [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2010.08065

REFERENCES

- Author(s). (2019, May). A solution to optimize multi-operand adders in CNN architecture on FPGA. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. xx–xx). IEEE. https://doi.org/10.1109/ISCAS.2019.8702777
- Zhou, Y., Yan, J., Zhou, Y., Shao, Z., & Chen, J. (2024). Stochastic-binary hybrid spatial coding multiplier for convolutional neural network accelerator. IEEE Transactions on Nanotechnology, 23, 600–605. https://doi.org/10.1109/TNANO.2024.3444278
- El Khaili, M. (2014, October). 1354-bit processing unit design using VHDL structural modeling for multiprocessor architecture. IRACST Engineering Science and Technology: An International Journal (ESTIJ), 4(5), 1354–1359. ISSN:
- Vinutha, C. R., Bharathi, M., & Divya, D. (n.d.). A survey on Brent-Kung, Han-Carlson and Kogge-Stone parallel prefix adders for their area, speed and power consumption
- Son, H., Na, Y., Kim, T., Al-Hamid, A. A., & Kim, H. (2021). CNN accelerator with minimal on-chip memory based on hierarchical array. In Proceedings of the 2021 18th International SoC Design Conference (ISOCC) (pp. 411–412). IEEE. https://doi.org/10.1109/ISOCC53507.2021.9613997
- Akin, B. (2019). FPGA-based CNN accelerator architecture (PE: processing element) [Figure]. ResearchGate.
- Son, H.-W., Al-Hamid, A. A., Na, Y.-S., Lee, D.-Y., & Kim, H.-W. (2024). CNN accelerator using proposed diagonal cyclic array for minimizing memory accesses. Computers, Materials & Continua, 77(2),. https://doi.org/10.32604/cmc.2023.038760

REFERENCES

- T. Yuan, W. Liu, J. Han and F. Lombardi, "High Performance CNN Accelerators Based on Hardware and Algorithm Co-Optimization," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 1, pp. 250-263, Jan. 2021, doi: 10.1109/TCSI.2020.3030663.
- Kiningham, K., Graczyk, M., & Ramkumar, A. (n.d.). Design and analysis of a hardware CNN accelerator. Stanford University
- Shawahna, A., Sait, S. M., & El-Maleh, A. (2019). FPGA-based accelerators of deep learning networks for learning and classification: A review. IEEE Access, 7, 7823–7859. https://doi.org/10.1109/ACCESS.2018.2890150
- Sarkar, A. (2024). A novel FPGA-based CNN hardware accelerator: Optimization for convolutional layers using Karatsuba Ofman multiplier. arXiv. https://doi.org/10.48550/arXiv.2412.20393
- Munawar, M., Shabbir, Z., & Akram, M. (2023). Area, delay, and energy-efficient full Dadda multiplier. arXiv. https://doi.org/10.48550/arXiv.2307.05677
- Amin, M. A. A., Kartiwi, M., Yaacob, M., Hamidi, E. A. Z., Gunawan, T. S., & Ismail, N. (2022). Design of Brent Kung prefix form carry look-ahead adder. In 2022 8th International Conference on Wireless and Telematics (ICWT) (pp. 1–6). IEEE. https://doi.org/10.1109/ICWT55831.2022.9935137
- Sasireka, S., & Marimuthu, C. N. (2015). Implementation of Han-Carlson adder for error tolerant applications. International Journal of Electrical and Electronics Research, 3(4), 39–50. Retrieved from http://www.researchpublish.com

THANK YOU