Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1.	If the wrench $-\mathcal{F}$ is applied to the end-effector, to stay at equilibrium the robot must apply the joint forces and torques $ au=J^{\mathrm{T}}(\theta)\mathcal{F}$ to resist it. If the robot has 4 one-dof joints, what is the dimension of the subspace of 6-dimensional end-effector wrenches that can be resisted by $ au=0$?	1 / 1 point
	2-dimensional.	
	At least 2-dimensional.	
	O 4-dimensional.	
	O At least 4-dimensional.	
	\bigcirc Correct The rank of a matrix and its transpose is the same. The maximum rank of the Jacobian (and therefore its transpose) is 4. If the rank is 4, then there is a $6-4=2$ -dimensional subspace of wrenches that map to $\tau=0$. (The "6" is from the dimension of the wrench space.) But if the robot is at a	

singularity, the rank could drop below 4, and then there would be an even higher-dimensional subspace of wrenches that map to au=0.

1.	If the wrench $-\mathcal{F}$ is applied has 4 one-dof joints, what is
	2-dimensional.
	At least 2-dimensional.
	O 4-dimensional.
1.	If the wrench $-\mathcal{F}$ is applied has 4 one-dof joints, what is
	O 2-dimensional.
	At least 2-dimensional.
	O 4-dimensional.
	O At least 4-dimensional.
	✓ Correct

The rank of a matrix a $6-4=2\text{-}\mathsf{dimensio}$ singularity, the rank o