PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-251441

(43)Date of publication of application: 22.09.1997

(51)Int.CI.

G06F 15/00

G06F 17/60

H04L 12/54

H04L 12/58

(21)Application number: 08-059791

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

15.03.1996

(72)Inventor: KAZAMA HISASHI

FUKUI KAZUHIRO

YAMAGUCHI OSAMU

SUZUKI KAORU TANAKA EIJI

TANIGUCHI TAKAHIRO

(54) COOPERATIVE WORK CONTROL DEVICE AND METHOD THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To surely and easily control even a time schedule without compelling each member of the cooperative work to do a special job.

SOLUTION: This device is provided with an image input part 10b which photographs an ambient situation including the persons related to the group work and inputs these photographed images, a situation information conversion part 10c which generates the situation information showing the states of persons included in the images based on the images inputted from the part 10c, a situation information communication part 12 which transmits and receives the situation information, and an applied service offer part 14 which decides the persons who can join in the group work among those persons related to the work based on the situation information generated by the part 10c and produces the messages of the participant persons of the work to offer these messages to one of information processors via a communication part.

LEGAL STATUS

[Date of request for examination]

08.09.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

BEST AVAILABLE COPY

application converted registration]

[Date of final disposal for application]

[Patent number]

3540494

[Date of registration]

02.04.2004

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-251441

(43)公開日 平成9年(1997)9月22日

(51) Int.CL ⁶	識別記号	庁内整理番号	FΙ			技術表示箇所
G06F 15/00	390		G06F 1	5/00	390	
17/60			1	5/21	:	Z
H04L 12/54		9466-5K	H04L 1	1/20	101	В
12/58						
			審査請求	朱龍宋	請求項の数 6	OL (全23頁)
(21)出願番号	特願平8-59791		(71)出願人	0000030	778	
				株式会社	土東芝	
(22)出願日	平成8年(1996)3	月15日		神奈川	県川崎市幸区堀 川	川町72番地
			(72)発明者		•	
						中1丁目1番30号
					上東芝 関西支社P	4
			(72)発明者			
						中1丁目1番30号 ·
					社東芝関西支社 [为
			(72)発明者		-	
						中1丁目1番30号 ·
					社東芝関西支社	勺
			(74)代理人	弁理士	鈴江 武彦	
						最終頁に続く

(54) 【発明の名称】 協同作業調整装置及び協同作業調整方法

(57)【要約】

【課題】協同作業の参加者に特別な作業を強いるととなく、時間的なスケジュールまでを確実かつ容易に調整するととを可能にする。

【解決手段】協同作業に関係する人物を含む周囲の状況を撮影して画像を入力するための画像入力部10bと、画像入力部10bによって入力された画像をもとに、画像中に含まれる人物の状況を表わす状況情報を生成する状況情報変換部10cによって大況情報通信部12と、状況情報変換部10cによって生成された状況情報に応じて協同作業に関係する人物の中で協同作業に参加可能な人物を決定し、参加可能な人物に対するメッセージを生成して通信部を介して何れかの情報処理装置に提供する応用サービス提供部14とを具備する。

【特許請求の範囲】

【請求項 1 】 協同作業に関係する人物を含む周囲の状況を撮影して画像を入力するための画像入力手段を有する複数の情報処理装置と、

1

前記複数の情報処理装置の間で相互に情報の送受信を行なう通信手段とを有し、

前記情報処理装置は、

前記画像入力手段によって入力された画像をもとに、画像中に含まれる人物の状況を表わす状況情報を生成し、前記通信手段を介して他の情報処理装置に送信する状況 10情報変換手段と、

何れかの情報処理装置における前記状況情報変換手段によって生成された状況情報を前記通信手段を介して受信し、前記状況情報に応じて協同作業に関係する人物の中で協同作業に参加可能な人物を決定し、前記参加可能な人物に対するメッセージを生成して前記通信手段を介して何れかの情報処理装置に提供する応用サービス提供手段とを具備したことを特徴とする協同作業調整装置。

【請求項2】 前記応用サービス提供手段は、

前記状況情報変換手段によって生成され前記通信手段を 20 介して送信される状況情報から、協同作業に関係する人 物についての状況情報を受信して蓄積する状況情報参照 手段と

協同作業の依頼入力と、入力された依頼に応じた協同作業の調整結果についての応答出力を行なうアブリケーション入出力手段と、

前記アプリケーション入出力手段によって入力された依頼に応じて、前記状況情報参照手段に蓄積された状況情報を用いて協同作業の調整を行なうアプリケーション制御手段と、

前記アプリケーション制御手段による協同作業の調整結果に応じて、協同作業に関係する人物に対してメッセージを通知するアクション作成手段とを具備したことを特徴とする請求項1記載の協同作業調整装置。

【請求項3】 前記アプリケーション制御手段は、

前記アプリケーション入出力手段によって入力された協 同作業の依頼に含まれる協同作業条件を記憶するための 協同作業情報記憶手段と、

前記協同作業情報記憶手段に記憶された協同作業条件に 基づいて、協同作業の関係者についての状況情報をもと に協同作業の時間調整を行なう当日時間管理手段とを具 備したことを特徴とする請求項2記載の協同作業調整装 置。

【請求項4】 前記当日時間管理手段は、

協同作業の関係者についての状況情報をもとに、各人についての協同作業への参加受入れの可能性を示す依頼受託評価値と、前記依頼受託評価値に基づく協同作業の開催の適当性を示す開催評価値とを求めて、協同作業の調整を行なうことを特徴とする請求項3記載の協同作業調整装置。

【請求項5】 複数の前記応用サービス提供手段の間で、

ある応用サービス提供手段で実行するプロセスを再帰的 に分割し、分割された部分プロセスを他の応用サービス 提供手段において起動することで、部分プロセスの処理 結果を共通利用することを特徴とする請求項1記載の協 同作業調整装置。

【請求項6】 画像入力手段を有する複数の情報処理装置が通信手段を介して互いに接続された情報処理システムにおいて、

前記情報処理装置において、

前記画像入力手段から協同作業に関係する人物を含む周囲の状況を撮影して画像を入力し、

との入力された画像をもとに、画像中に含まれる人物の 状況を表わす状況情報を生成して、前記通信手段を介し て何れかの情報処理装置に送信し、

との送信された状況情報に応じて協同作業に関係する人 物の中で協同作業に参加可能な人物を決定し、

この決定された参加可能な人物に対するメッセージを生) 成して前記通信手段を介して何れかの情報処理装置に提供する協同作業調整方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、計算機ネットワークが整備されたオフィス環境等において利用されるもので、協同作業、例えば会議などの運営を支援する協同作業調整装置及び協同作業調整方法に関する。

[0002]

【従来の技術】近年、オフィス環境には計算機ネットワーク環境が整備され、一人に一台の計算機システムを保有することは当り前になった。また、マルチメディア環境も急速に発展している。一方、各種システムはますます複雑化、増大化しており、こうしたシステムを開発する場合など、個人作業でなく協同作業を必要とする状況はますます増加している。

【0003】協同作業、特に会議などの重要性はますます増加しており、またネットワーク環境の整備やマルチメディア環境が発達してきていることから、ネットワークを介したマルチメディア会議(離れた場所どうして画像や音声をやりとりして行なう会議)なども行なわれるようになって来ている。

【0004】しかしながら、その会議の日程や時間を決める段階では、発起人が会議に出席すべき各メンバ(協同作業の参加者)に、電話なり手紙なりで各人のスケジュールを聞き出して調整すると言った、昔ながらの作業方法がしばしばとられている。この作業によって会議に出席すべき全員を招集するためには、一旦全員のスケジュールを確実に聞き出し、日程と時間を決めた上で、再度全員に伝達事項(日程、時間等)を確実に伝えなけれるのばならない。すなわち、全員との間で、情報をやりとり

をする必要が少なくとも2回発生するために、大きな作業負担となっており、特に会議の出席者が多くなると膨大な作業量となってしまう。

【0005】伝達事項を全員に確実に伝える方法としては、ページャ等の各メンバが携帯する通信機器へメッセージを送信すれば良いため比較的作業負担は軽い。従って、作業負担を軽減するためには、いかに全員の予定を把握し、会議を開催する日程と時間を適切に設定するかという点にかかっている。

【0006】従来、会議出席者全員の予定を把握し、会 10 議を開催する日程と時間を適切に設定する方法として、計算機ネットワークが整ったオフィス環境等において、各メンバが自己のスケジュールを計算機に入力し、そのデータを元にスケジュール自動調整装置が会議の開催時間を決める方法が提唱されている(例えば:"松下温、岡田謙一:コラボレーションとコミュニケーション(共立出版)(1995)"のグループ電子手帳(TeamDesk))。この方法であれば、電話や手紙などを用いて会議出席者のスケジュールを収集する必要がないため作業負担は軽減される。 20

【0007】しかし、各自が自己のスケジュールを計算機に入力するのは、日付レベルでの予定の登録までが限界であって、その日の細かい時間的スケジュールを予め入力する事は、(1)手間がかかり煩わしい、(2)仕事の進み具合により予定は頻繁に変更されるので真のスケジュールを入力することは実際上不可能、(3)計算機に入力したスケジュールの修正が遅れてしまうと多忙であるにも関わらず強制的に呼出しを受ける場合がある、などの問題がある。

【0008】しかし、協同作業を行なう当日においてス 30 ケジュール調整を行なう場合、すなわち協同作業を行な う時間 (特に開始時間)を決定するためには、各メンバの時間的仕事状況が把握できなければ、調整することは 不可能である。

[0009]

【発明が解決しようとする課題】このように従来では、会議等の協同作業を行なう時間を調整する場合には、協同作業の参加者のスケジュールを、電話や手紙等を用いて収集し、それに基づいて日程と時間を決定した上で、伝達事項を参加者全員に通知していたために作業負担が大きかった。

【0010】また、計算機ネットワークが整ったオフィス環境等において、協同作業の参加者のそれぞれに自己のスケジュールを入力させることで、スケジュール自動調整装置によって自動的に各参加者のスケジュールを収集して調整を行なう方法もあるが、参加者に各自のスケジュールを入力する作業を強いるものであるため、日付レベルでの予定の登録までが限界であって、日程的なスケジュールの調整を行なう事はできても、時間的なスケジュールの調整を行なうことが困難となっていた。

【0011】本発明は前記のような事情を考慮してなされたもので、協同作業の参加者に特別な作業を強いるととなく、時間的なスケジュールまでを確実かつ容易に調整することが可能な協同作業調整装置及び協同作業調整

[0012]

方法を提供することを目的とする。

【課題を解決するための手段】本発明に係る協同作業調 整装置は、協同作業に関係する人物を含む周囲の状況を 撮影して画像を入力するための画像入力手段を有する複 数の情報処理装置と、前記複数の情報処理装置の間で相 互に情報の送受信を行なう通信手段とを有し、前記情報 処理装置は、前記画像入力手段によって入力された画像 をもとに、画像中に含まれる人物の状況を表わす状況情 報を生成し、前記通信手段を介して他の情報処理装置に 送信する状況情報変換手段と、何れかの情報処理装置に おける前記状況情報変換手段によって生成された状況情 報を前記通信手段を介して受信し、前記状况情報に応じ て協同作業に関係する人物の中で協同作業に参加可能な 人物を決定し、前記参加可能な人物に対するメッセージ を生成して前記通信手段を介して何れかの情報処理装置 に提供する応用サービス提供手段とを具備したことを特 徴とする。

【0013】これにより、画像入力手段から入力された画像情報から得られる現在の状況を表わす状況情報に基づいて、協同作業の開始時間等の調整を行ない、適切なタイミングで適切な情報を通知することができる。

【0014】また、前記応用サービス提供手段は、前記状況情報変換手段によって生成され前記通信手段を介して送信される状況情報から、協同作業に関係する人物についての状況情報を受信して蓄積する状況情報参照手段と、協同作業の協額入力と、入力された依頼に応じた協同作業の調整結果についての応答出力を行なうアプリケーション入出力手段と、前記アプリケーション入出力手段によって入力された依頼に応じて、前記状況情報参照手段に蓄積された状況情報を用いて協同作業の調整を行なうアプリケーション制御手段とよる協同作業の調整結果に応じて、協同作業に関係する人物に対してメッセージを通知するアクション作成手段とを具備したことを特徴とする。

【0015】 これにより、協同作業の参加者ではない第3者(グループ外の人)から、グループに協同作業の依頼をする場合に、アプリケーション入出力手段を用いることで協同作業の調整できる。

【0016】また前記アプリケーション制御手段は、前記アプリケーション入出力手段によって入力された協同作業の依頼に含まれる協同作業条件を記憶するための協同作業情報記憶手段と、前記協同作業情報記憶手段に記憶された協同作業条件に基づいて、協同作業の関係者についての状況情報をもとに協同作業の時間調整を行なう30当日時間管理手段とを具備したことを特徴とする。

【0017】 これにより、協同作業の参加対象となる人物の現在の状況を状況情報として入力し、この状況情報と協同作業の協同作業条件に基づいて、時間レベルの調整ができる。

【0018】また前記当日時間管理手段は、協同作業の関係者についての状況情報をもとに、各人についての協同作業への参加受入れの可能性を示す依頼受託評価値と、前記依頼受託評価値に基づく協同作業の開催の適当性を示す開催評価値とを求めて、協同作業の調整を行なうことを特徴とする。

【0019】 これにより、協同作業の各参加者についての参加受入れの可能性と、それらを考慮した協同作業の開催の適当性を判別することで、状況情報を用いて協同作業の的確な調整が可能である。

【0020】また複数の前記応用サービス提供手段の間で、ある応用サービス提供手段で実行するプロセスを再帰的に分割し、分割された部分プロセスを他の応用サービス提供手段において起動することで、部分プロセスの処理結果を共通利用することを特徴とする。

[0021] これにより、複数の応用サービス提供手段 20 が接続された場合、再起的にプロセスを分割することで、複数のアプリケーション(応用サービスプロセス)間で、処理部品(各プロセスによる処理結果)の共有化が可能となる。

[0022] 例えば、現在の実際のオフィス環境では、メンバの一人が実際にオフィスの中を歩き回って各メンバの様子を「観察」し、声を掛けてメンバを「召集」する必要などがあったが、各メンバーの時間的仕事状況は、時間表として入力しないでも、例えばカメラを介して個別にメンバの仕事状況を観察すれば「今は忙しそうだ」「今は全員が集合できるようだ」などと判定することが可能である。

【0023】従って、カメラ(画像)の入力と画像処理(および各種入力デバイス)を用いれば、各メンバの様子の観察が可能であり、スケジューラと判定装置により開催時間を決定し、ネットワークを介してメンバにメッセージを伝達しメンバを召集することが可能となる。 【0024】

[発明の実施の形態]以下、図面を参照して本発明の実施の形態について説明する。図1は第1の実施形態に係わる協同作業調整装置の構成を示すブロック図である。図1には、構成要素と信号の流れが表現されている。

【0025】第1の実施形態における協同作業調整装置による調整の対象は、例えば会議の開催、オフィスの協同利用部分の掃除、協同で行なう荷物運びなど、複数人について日程的、時間的スケジュールの決定が必要な協同作業が考えられる。また、協同作業は、必ずしも複数人による作業に限らず、一人以上の人に仕事を依頼する作業であれば本発明を適用することができる。

[0026]図1に示すように、本実施形態における協 50 作業参加可能な人物を把握し、協同作業実行の日時を調

同作業調整装置は、1つ以上の入力部10、状況情報通信部12、1つ以上の応用サービス提供部14、出力情報通信部16、1つ以上の出力部18によって構成されている。

[0027]入力部10は、例えばオフィス環境において利用される計算機によって構成されるもので、画像入力部10bを少なくとも1つ、あるいは画像入力部10bを少なくとも一つと複数の入力デバイス10a、及び状況情報変換部10cを有している。

[0028] 状況情報変換部10cは、入力デバイス10aと画像入力部10bからの入力データを、協同作業の参加者の周囲環境または状況を示す状況情報に変換する。状況情報変換部10cの詳細については後述する。[0029] 入力デバイス10aには、例えばキーボード、マウス等のポインティングデバイス、マイクなどの計算機に対する入力を行なうデバイスである。

【0030】画像入力部10bは、計算機の近傍(またはディスプレイ装置や本体に)設置されたカメラであり、計算機を使用するための位置(計算機に相対する位置)にいる人物やその周囲の画像を撮影する。画像入力部10bは、例えばCCDカメラ、赤外線カメラ、高感度カメラ等によって構成される。本実施形態では、画像入力部10bとしてカラーCCDカメラが設けられ、濃淡画像情報をもつカラー画像を撮影するものとして説明オス

[0031]状況情報通信部12は、1つ以上の入力部10と1つ以上の応用サービス提供部14との間を相互に接続する。状況情報通信部12は、例えば情報をバケットの形式で伝送するもので、形態(有線あるいは無線)やプロトコルのレベルなどは問わない。物理的に複数の電線で構成されるバス構造をとっていても良い。いずれにしろ、入力部10の状況情報変換部10cと応用サービス提供部14が相互に情報を伝達可能な構成であれば良い。

【0032】図2に状況情報通信部12を伝送されるバケットの形態の一例を示している。パケットのへッダ部の発信ID、宛先ID、内容IDに続いて、内容(情報)のデータが含まれている。パケットは、後述する応用サービス提供部14から特に要求されて情報を送信する場合でなければ、通常、宛先IDの部分が「応用サービス提供部一般(応用サービス提供部14を構成する何れの装置がとっても良い)」ことを示すパケットになる。パケットの内容(情報)には、時間的な差分情報、すなわち状況情報変換部10cによって変換された状況情報がある状態からある状態に変化したことを表わす情報が含まれる。

[0033] 応用サービス提供部14は、入力部10の 状況情報変換部10cによって得られる状況情報を状況 情報通信部12を介して入力し、状況情報をもとに協同 作業条加可能な人物を把握し、協同作業実行の日時を調 停するための応用サービスを提供する。

【0034】出力情報通信部16は、1つ以上の応用サービス提供部14と1つ以上の出力部18との間を相互に接続する。

【0035】出力部18は、応用サービス提供部14によって把握された協同作業参加可能な人物に対してメッセージを伝達するために用いられる。

[0036] 本実施形態における協同作業調整装置は、例えば複数の計算機(入力部10)が、ネットワーク等の通信手段(状況情報通信部12、出力情報通信部16)を介して互いに接続された計算機システムによって実現される。

【0037】一般的な計算機は、キーボード等の入力デバイスとディスプレイ装置等の出力デバイスとの対を少なくとも一対有している。従って、計算機には、入力部10と出力部18が一対偏わった構成とみなすことができる。

【0038】また、出力部18は、計算機におけるディスプレイなどの表示装置に限らず、メモリやハードディスクなどの記憶部や、プリンタ、電化製品のスイッチ、ページャ等の通信機器、スピーカなどであっても良く、協同作業の参加者に何等かの方法でメッセージを通知できるものであれば良い。なお、記憶部に出力(記憶)されたメッセージは、例えばディスプレイ上での表示に供されることで協同作業の参加者に通知される。

[0039]次に、入力部10における状況情報変換部10cの詳細について説明する。

【0040】状況情報変換部10cは、入力デバイス10aに相対する人物あるいは環境の状況情報を、入力デバイス10aあるいは画像入力部10bから得られるデ 30ータをもとに抽出する。

【0041】状況情報は、画像入力部10b(カメラ) によって撮影された画像内に写った人の属性、例えば入 力画像から抽出できる情報では、「誰であるか」「着座 している、いない」「立ち上がっている、いない」「あ る方向を向いている、いない」「電話中である、ない」 「視線方向」「表情」などを示す情報を含む。また、入 カデバイス 10 aから入力されるデータに基づいて判別 される属性、例えばキーボードに対するタイピングリズ ムから判別される「仕事が順調に進んでいるか」、入力 データから「今、何の仕事をしているか」などを示す情 報を含む。入力データから実行中の処理を判別する方法 としては、計算機がディスプレイの表示画面上で任意の ウィンドウを設定しながら処理を実行するシステムを実 現している場合、入力データ (コマンド等) に応じて実 行しているプロセス番号を調べることで、どの種のウィ ンドウを用いて動作しているか(どのウィンドウを見て いるか)を認識することによって行なう。

【0042】図3は状況情報変換部10cの詳細な構成 場合には顔の領域とする候補から除き、閾値を越える場を示している。図3に示すように、状況情報変換部10 50 合には顔の領域とする候補として判定する。なお、候補

cは、人検出部20、個人認証部21、頭部方向推定部22、視線方向推定部23、口形状動作推定部24、腕動作推定部25、及び状況情報生成部26を含んで構成される。以下、それぞれの構成部について説明する。

【0043】人検出部20は、画像入力部10b(カメラ)によって撮影された画像中から人間に該当する領域 (顔、肢体に該当する領域等)を判別・抽出するもので、図4に示すように構成されている。

[0044]図4に示すように、人検出部20は、差分検出部20a、顔検出部20b、肢体検出部20c、スコア統合部20d、人数計数部20eによって構成されている。

【0045】差分検出部20aは、画像入力部10b(カメラ)が設置された撮影環境において、誰も撮影されていない状況での画像を予め取得しておき、その画像との差分画像を生成することによって変化のあった領域を、人物の顔または肢体に該当する領域の候補を検出する。差分画像を生成あるいは検出する技術には、(H.Nakai:''Non-Parametrized Bayes Decision Method for Moving Object Detection'', Proc. Second ACCV. Vol 3. pp447-451(1995))などがある。

【0046】差分検出部20aによって検出された領域について、2つの処理を行なう。一方は顔検出部20bによる、検出された領域の濃淡画像情報をそのまま用いて顔の検出を行なうもの、他方は肢体検出部20cによる、検出された領域を二値画像として扱い、領域の配置を含む各種の属性(後述する)の関係を用いて肢体の検出を行なうものである。

【0047】顔検出部20bは、予めさまざまな方向から顔を撮影して得た画像データをもとに作成された、それぞれの方向の平均顔画像データ(辞書画像)と、差分検出部20aによって検出された領域の画像データとについてマッチングを行なうことにより人物の顔の検出を行なう。

【0048】本実施形態では、顔検出部20bによって扱われる辞書画像の大きさは固定とする。一般に、大きな画像を辞書画像として用意すると、マッチング処理に非常に多くの時間を要するため、例えば30×30程度の大きさの辞書画像を用意する。大きさが固定の辞書画像を用いて、撮影して得た画像中に含まれるさまざまな大きさの顔を検出できるようにするため、撮影した画像の解像度を辞書画像の大きさに応じて変化させた上で、辞書画像とのマッチングを行なうものとする。

[0049]マッチングの度合(類似度)については、使用するマッチング方法に応じた類似度、例えば相関、単純、複合、混合類似度などにより設定する。顔検出部20bは、差分検出部20aによって検出された領域の画像データに対する類似度値が、ある関値以下であった場合には顔の領域とする候補から除き、関値を越える場合には顔の領域とする候補として判定する。なお、候補

数は、複数であってもよい。

【0050】肢体検出部20cは、差分検出部20aによって生成された二値画像を用いて得た、差分画像の場所について再度、撮影したカラー画像から、例えば色相情報、彩度情報、明度情報に基づいて、領域分割を行ない、ラベリングする。肢体検出部20cは、それらの領域の位置情報、形状情報、色相、明度といった属性情報を用いて、人間の肢体の部分に該当する領域と考えられる組合せを抽出する。肢体検出部20cは、抽出した領域の組合わせ(人間の肢体の部分に該当すると考えられる領域)の形状、面積などから、足、胴、腕などとの形状モデルに対する信頼度を定義し、その信頼度の総和が最も最大となる組合せの領域を人間の肢体の部分(との段階では仮説)として抽出する。

【0051】顔検出部20b及び肢体検出部20cは、 入力画像中の人間(顔、肢体等)が存在すると考えられ る画像中の領域について、顔の位置、肢体の位置(足、 胴、腕等)の位置を示すデータと信頼度を記述した情報 をスコア統合部20dに送る。

【0052】スコア統合部20dは、顔検出部20bと 肢体検出部20cから得られた顔位置と肢体位置の仮説 を統合し、それぞれの存在確率を2次元空間に投票する。

[0053] 人数係数部20eは、スコア統合部20d によって投票された、仮説についての存在確率を統合的に判断し、画像中に何人の人がどのように撮影されているかを判別する。

【0054】スコア統合部20dによって存在確率が投票された空間に対し、ある関値を設定し、その関値よりも高い部分を人間に該当する領域として、撮影された人数、撮影された人の位置、大きさ(画像中の領域)、概略向き、顔位置、足位置、胴位置、腕位置など位置の情報を判別して記憶する。

【0055】とこで関値は、予測できる情報、環境の場合に応じて変化させる。例えば、午前と午後などの日照条件の変化による全体的な関値の設定方向の改善や、人間が、ある場所から画像入力部10bによる撮影範囲内に動いていることがわかっている場合には、前の場所において、肢体の大きさなどが推定されているため、撮影範囲においては、予測される画像中の位置によって、予40めその領域付近の関値を変化させるなどの制御を行なう。これらに用いるパラメータは、実験によって求められる。

【0056】次に、個人認証部21について説明する。個人認証部21は、人検出部20によって検出された顔位置に撮影されている顔が誰であるかを認証する。個人認証部21は、先に人検出部20で検出された人数分について、それぞれの領域の画像について照合を行なう。認証の方法としては、予め、認識対象として登録された人の中からの識別が主となる。

【0057】図5には人検出部20による処理過程を示している。画像入力部10bによって撮影された画像中から差分検出部20aによって検出された図5(a)に示す入力画像(差分画像)をもとに、顔検出部20bは、図5(b-1)に示すように、顔位置の候補とそれぞれの信頼度を求め、肢体検出部20cは、図5(b-2)に示すように、肢体位置の候補とそれぞれの信頼度を求める。スコア統合部20dは、顔検出部20bと肢体検出部20cによって投票された各候補と信頼度を、図5(c)に示すようにして統合する。人数計数部20eは、スコア統合部20dによって図5(c)に示すように統合された中から、例えばしきい値を「1.0」としてしきい値処理を行ない、図5(d)に示すような結果を得る。この例では、2人が撮影されているものと推定される。

【0058】個人認証部21は、図6に示すように構成され、人検出部20によって得られた顔位置に撮影されている顔が誰であるかを認証する。認証の方法としては、登録された人の中からの識別が主となる。個人認証部21は、図6に示すように、個人認証部21は、正規化部21a、照合部21b、辞書蓄積部21c、及び評価部21dによって構成されている。

【0059】正規化部21aは、人検出部20(顔検出部20b)によって検出された顔位置の画像から目の位置を検出し、その目の位置をもとにして後段の照合部21bにおける処理のために、辞書蓄積部21cに蓄積された辞書画像と同じ大きさの画像(正規化画像)を生成(正規化)する。

【0060】照合部21bは、正規化部21aによって

正規化された顔の部分に画像について、辞書蓄積部21 cに蓄積された複数の辞書画像とそれぞれ照合する。本実施形態において照合部21bは、複合または混合類似度を用いて入力画像と辞書画像との類似度を算出する。 [0061]辞書蓄積部21cは、認識対象とする人のそれぞれについての辞書画像が予め蓄積されている。 [0062]評価部21dは、辞書蓄積部21cに登録された辞書画像(認識対象とする人の数分)のそれぞれについて得られた複数の類似度値のうち最大の類似度値をもつ辞書画像を認識結果、すなわち辞書画像に対応する人の顔が入力画像に含まれているものと決定する。ただし、類似度値が、予め指定した閾値よりも低い場合は、撮影された人が誰であるかを決定せずに認識不能と

【0063】個人認証部21は、先に人検出部20で検出された人の数だけ、複数人の照合が行なう。

する。

[0064]次に、頭部方向推定部22について説明する。頭部方向推定部22は、人検出部20によって検出された、顔の向き、肢体の見え方(頭位置、胴位置、腕位置など)から頭部方向を推定する。

50 【0065】頭部方向推定部22は、人検出部20によ

って検出された顔位置の付近の濃淡情報を用いて、複数 の顔モデルのパターンと照合することにより顔が向いて いる方向を推定する。パターンと照合する際の類似度と しては、相関を用いた公知例(塚本、李、辻:複数のモ デルによる頭の動き推定、電子情報通信学会論文誌Vo

177-D-II, No. 8, PP. 1582-159 0 (1994)) が存在するが、ここでは、複合類似度 を用いてバターンの類似度を調べ、顔の向きを決定す

【0066】また、頭部方向推定部22は、目、鼻など 10 の特徴点から顔の向きを出す方法として(ディシルバリ ヤナゲ、相澤清晴、羽鳥光俊:人間の顔の向きの推定: 信学技報PRU-49-18(1994)) などを用い て、顔の向きを決定しても良い。

【0067】また、頭部方向推定部22は、肢体の方向 も同様に、人検出部20で検出された領域グループ (足、胴、腕等を含む)の画像とパターンとを照合して 向きを求める。

【0068】次に、視線方向推定部23について説明す る。視線方向推定部23は、画像入力部10b(カラー 20 CCDカメラ)によって、離れた位置から撮影された画 像中の顔の位置の目または目の付近から得られる特徴量 を使って視線方向を推定する。

【0069】視線方向の検出方法としては、特開平4-255015号における、視線の相対的な移動量を瞳の 輪郭データを抽出瞳の中心座標の変化から求める方法 や、特開平3-17696号における、ワードプロセッ サ等のカーソル位置を視線によって制御することを目的 として、目の領域を瞳孔中心を通る垂直線と水平線で分 割し、分けられた領域の面積比を特徴量として、視点位 30 置を算出する方法を利用することができる。

【0070】本実施例では、目頭、目尻と瞳の中心の相 対的な位置関係を特徴ベクトルとして、その特徴ベクト ルを線形識別し、パターン認識によって、顔の方向に対 してどの方向を見ているかを推定する。

【0071】次に、口形状動作推定部24について説明 する。口形状動作推定部24は、人検出部20によって 検出された顔位置の画像中の口の部分から、口の開閉を 検出する。口の開閉の検出方法として、(間瀬、A.Pent land: オプティカルフローを用いた読唇の試み、電子情 報通信学会論文誌D-II, Vo1.73-D-II, No.6, pp. 796-803, (1 990)) 🌣 (A.L.Yuille, P.W.Hallman, D.S.Cohen:Featu re Extraction from Faces Using Deformable Template s, International Journal on Computer Vision, Vo18, n o.2,pp,99-111(1992)) を用いることができる。

【0072】本実施例では、例えば口の多段階の開閉具 合(開閉度)に応じた開閉パターンをそれぞれ5種類用 意し、各パターンと入力画像中の口の部分とマッチング した結果、一番近いパターンに応じた開閉度を、現在、 画像入力部10bにより撮影の対象となっている人の口 50 生成された情報の時間的変化から新たなレベルの状况情

の開閉状態とする。時間の経過に伴って各時点での口の 開閉度を判別し、それら口の開閉度の頻度情報を求める ことによって、話している、あくびをしているなどを検 出する。

【0073】次に、腕動作推定部25について説明す る。腕動作推定部25は、例えば色相情報を用いた手検 出による方法を用いる。腕動作推定部25は、人検出部 20で行った領域分割の結果から、顔領域ではなく、肌 色の色相をもつ領域を手領域候補とする。この手領域候 補は、顔位置との相対的な位置関係や、領域の大きさな どのいくつかの制約に基づいて選択される。腕動作推定 部25は、手領域の重心位置を特徴量として取り出し、 時間の経過に伴って入力される画像中の手領域の重心位 置の変化から腕の動作を推定し、さらには歩いている、 手を振っているなどの動作の検出を行なう。

【0074】次に、状況情報生成部26について説明す

る。状況情報生成部26は、上記した各処理部21~2 5における画像解析の情報を統合し、ある人間の状態の 記述(状態情報)を生成する。状況情報生成部26は、 図7に示すように、統合部26a、時刻発生部26b、 場所情報記憶部26c、履歴記憶部26d、統合行動認 識部26e、統合情報記憶部26fから構成される。 【0075】統合部26aは、各処理部21~25にお ける検出結果(認識結果、推定候補)を入力して統合す る。統合部26 a は、統合結果を統合行動認識部26 e に出力すると共に、人検出部20において検出されてい る人数に対応して履歴記憶部26 dに用意される、図8 に示すようような状況登録テーブルのスロットに、各処 理部21~25におけるそれぞれの検出結果を登録す

【0076】時刻発生部26bは、画像取得、認識処理 時間の間隔を考慮して、その間隔が表現できる単位まで 記録できるように日付、時刻を発生する。時刻について は、画像取得が行われた時刻を記録する。

【0077】場所情報記憶部26 cは、画像入力部10 b (カラーCCDカメラ) が設置されている場所に基づ く情報について記述したもので、例えば撮影範囲を考慮 したとき、撮影された画像中での人の大きさから、人と カメラまでの距離がどの程度になるかといった情報や、 先に各情報の検出時に使用した画像に対する座標系の設 定方法、大域的な設置場所の位置情報が記憶される。な お、これらの情報は、ある記憶場所に統合的に管理して おき、その識別番号のみを各状況情報変換部10 c で発 生させる方法でもよい。

【0078】履歴記憶部26dは、統合部26aで生成 された情報を時系列で記憶、蓄積するもので、統合行動 認識部26 eが過去の情報を必要とする際に参照され

【0079】統合行動認識部26eは、統合部26aで

報を生成する。例えば口の開閉が連続的に行われている時には「話をしている」という状況情報を生成したり、人の位置が連続的に移動し腕が降られていることから「歩いている」などの状況情報を、時系列バターンを入力し、統合情報記憶部26fに記憶された行動認識用の辞書を参照することにより認識する。他には例えば、「会話中である・ない」「笑っている・いない」「画面を軽くながめている・いない」「画面を凝視している・

「会話中である・ない」「笑っている・いない」「画面を軽くながめている・いない」「画面を凝視している・いない」「書類を読んでいる・いない」などの状況情報が生成される。

[0080] とのように時間的変化から認識される状況情報を、ととでは「比較的高度なレベルの状況情報」と呼んで説明する。

【0081】これらの比較的高度なレベルの状況情報を、統合部26aで保有する情報の時間変化から認識するためには、例えば以下の方法を用いる。まず、統合部26aで生成されるレベルの状況情報の時系列(時間的推移)と、比較的高度なレベルの状況情報の関係をHMM(Hidden Markov Model)やニューラルネットワークなどを用いて学習する。統合情報記憶部26fは、この20学習データを辞書として記憶しておく。この学習データと実際の場面で入力された時系列データを比較することで、比較的高度なレベルの状況情報を得る。

【0082】センサレベルで得られた状況情報は、図8に示すような状況登録テーブル(その1)にして履歴記憶部26dに登録した。統合行動認識部26eで得られた比較的高度なレベルの状況情報も、図9に示すように状況登録テーブル(その2)にして履歴記憶部26dに登録する。

【0083】状況情報変換部10cは、画像入力部10bからの入力画像だけに基づいて状況情報を生成するのに限らない。例えば、入力デバイス10aから得られる情報、例えばキーボードのタイピングリズムの測定や、椅子の移動量、椅子に座った人物の重心位置なども状況情報として利用することができる。

【0084】キーボードのタイピングリズムを測定する場合では、その基本周波数を測定するとスケールの異なる二つの周波数が抽出される。高周波のリズムは単語のスペルを入力する時のような早いリズムである。低周波のリズムは、文章や文節ごとに考える間が入ることにより生ずるゆっくりしたリズムである。この二つのリズムの基本周波数を測定しておき、その基本周波数からの乱れを測定することで、仕事の進捗状況をリズムとして認識することができる。

[0085]また、椅子の移動量や、椅子への重心位置の変動を検出する場合は、操作者が集中していないことを示すもので、基本位置からのずれや、安定位置から変化した頻度を測定することで、操作者の集中度を表す状況として利用することができる。

【0086】以上のように、各種のレベルの状況情報が 50 ては後述する。

状況情報統合部26によって生成される。状況情報統合部26は、変化のあった状況情報の時間的な差分情報をパケットとして状況情報通信部12を介して送信する。 [0087] 状況情報通信部12への情報の流し方(パケットの形態)については、後述する第2の実施形態の説明の中で様々な方法があることを詳しく説明する。

[0088]次に、応用サービス提供部14の詳細について説明する。図10は応用サービス提供部14の基本構成と信号の流れを示すブロック図である。図10に示すように、応用サービス提供部14は、状況情報参照部30、アプリケーション制御部32、アプリケーション人出力部34、及びアクション作成部36によって構成されている。各部30、32、34、36のそれぞれの詳細な構成は、アプリケーションの内容によって、さまざまな構成をとる。

[0089] 応用サービス提供部14は、状況情報参照部30により状況情報通信部12と接続されている。アプリケーション制御部32は、応用サービス提供部14の中枢をなす部分で、状況情報参照部30、アプリケーション入出力部34、アクション作成部36と接続されている。アクション作成部36は、出力情報通信部16と接続されている。

【0090】状況情報参照部30は、状況情報通信部12を流れる情報(図2に示すパケットの形式で伝送されている)を送受信する。状況情報参照部30は、宛先IDと自らのIDを比較して、一致していれば内容を取り込んで記憶、更新する。あるいは、状況情報参照部30は、入力部10に状況情報を問い合わせるときは、宛先IDの部分を「入力部一般」に設定し、全ての入力部10を対象としてパケットを発信する。

[0091] アプリケーション制御部32は、状况情報 参照部30を介して得られる状況情報に基づいて、協同 作業の日時を調整するサービスを行なうための、サービ ス処理あるいはデータ管理等を実行する。

[0092]アプリケーション入出力部34は、アプリケーションの制御に必要かつ状況情報でないような情報、例えば協同作業の日程(日時)の調整の依頼あるいは応答のためのメール等を状況情報通信部12とは別の通信経路(図示せず)を介して入出力する。ただし、とこでの通信経路は、論理的には状況情報通信部12または出力情報通信部16とは別であっても、物理的に同じネットワーク経路上であっても勿論良い。

[0093] アクション作成部36は、出力部18の選択、出力部18への協同作業依頼のメッセージを表わす出力情報の作成、出力部18への送信などを行なう。

【0094】応用サービス提供部14は図10に示すような基本構成を持つが、応用アブリケーションの内容次第で、構成要素の細かい構造は異なって来る。本実施形態における応用サービス提供部14の詳細な構造についてははまる。

【0095】次に、出力部18の詳細については説明す

【0096】出力部18は、出力情報通信部16を介し て応用サービス提供部14からの送信信号(出力情報) を受けて、例えばディスプレイの画面上におけるウィン ドウ表示方法を更新したり、ウィンドウにメッセージ文 字列を表示する。あるいは、応用サービス提供部 14 が、ある部屋のスイッチをオンする制御信号を出す構成 をとることも可能であり、この場合は部屋のスイッチが 出力部18にあたる。

【0097】出力情報通信部16を流れるパケットも、 図12に示すように発信ID、宛先IDを持つ構造をと り、宛先と発信元がわかる様になっている。出力部18 は、宛先 I Dが自分の I Dであるパケットを受信して、 出力情報に応じて、文字、音、絵などのメディアに変換 し (あるいは機器の制御信号に変換し)出力する。

【0098】次に、本実施形態の協同作業調整装置を実 現するための応用サービス提供部14の構成方法につい て説明する。

【0099】図11は本実施例の応用サービス提供部1 4の詳細な構成図である。

【0100】状況情報参照部30は、通信部30a、メ ンバ情報制御部30b、メンバ情報記憶部30cから構 成され、状況情報通信部12において通信されるパケッ トの、送信、受信、解読や、協同作業を依頼されたメン バについての状況情報の管理、記憶、更新を行なう。

【0101】通信部30aは、要求パケットの生成、状 況情報パケットの受信、解釈を行なう。 メンバ情報制御 部30bは、アプリケーション制御部32からの要求に 基づいて、メンバ情報記憶部30cに登録されているメ ンバ情報(協同作業のメンバに関する状態を表わす情報 (状態テーブルに設定される)) の送信、管理、更新な どを行なう。メンバ情報記憶部30cは、アプリケーシ ョン制御部32の当日時間管理部32cで必要となるメ ンバ情報を記憶する。

【0102】アプリケーション制御部32は、協同作業 情報記憶部32a、日程管理部32b、当日時間管理部 32 c、スケジュール記憶部32 dから構成される。ア プリケーション制御部32は、アプリケーション入出力 部34を介して得られる依頼要求を記憶し、日程スケジ ュールや、当日の時間調整を行なう機能を有する。

【0103】アプリケーション入出力部34は、依頼入 力部34a、依頼応答部34b、スケジュール入力部3 4 c から構成される。アプリケーション入出力部34 は、状況情報とは別の必要なデータの入出力や、作業依 頼を入力する部分である。依頼入力部34aにおいて作 業依頼を入力し、スケジュール入力部34cにおいてス ケジュールデータを入力し、各入力に対する応答を依頼 応答部34bから行なう。

【0104】アクション作成部36は、メッセージ作成 50 ると考えて良い。情報と信号の流れを明確にするため

部36aにより構成され、出力情報通信部16を介して 依頼先の出力部18にメッセージを送出する。

【0105】次に、図11に示す応用サービス提供部1 4の構成を用いた場合の、依頼の入力と日程の決定を行 なう処理の流れについて、図12に示すフローチャート に基づき説明する。

[0]06]まず、各メンパが自分のスケジュールをス ケジュール入力部34cを用いて入力する事から始まる (ステップA1)。 ととで入力するスケジュールは日程 レベルのスケジュールであり、例えば図13の様なスケ ジュール表の中の自分の行(自分の人物インデックスに 該当する行)を埋めることになる。ここでは細かい時間 レベルのスケジュールを入力する必要は無く、休暇(休 暇予定R) や外出(外出予定g) など、オフィスから不 在となる時間帯を入力するだけでよい。

【0107】各メンパのスケジュールは、アプリケーシ ョン入出力部34のスケジュール入力部34cから入力 され、アプリケーション制御部32のスケジュール記憶 部32dに出力される。スケジュール表は、日付インデ ックスに基づき日程テーブルとして記録されるので、週 間の予定でも月間、年間の予定でも何でも良い。入力さ れた各メンパのスケジュールは、図13の日程テーブル の形式で整理され、スケジュール記憶部32 d に記憶さ れる(ステップA2)

一方、協同作業の依頼者(むろんメンパに当人を含んで いて構わない)は、依頼入力部34aに対して依頼する 協同作業の情報(協同作業条件)を入力する。例えば、 依頼する協同作業が会議の場合であれば、入力される依 頼情報には、期日、期日時間、メンバ(参加者)、打ち 合わせ内容、最小興行人数、作業の優先度、会議開催か ら終了までの見込み時間(見通し所要時間)などが入力 される。依頼入力部34aは、入力した依頼情報を、協 同作業情報記憶部32aに記憶させる(ステップA 3).

【0108】日程管理部32bは、依頼者からの依頼要 求の入力に応じて動作を開始し、日程調整処理を行な う。日程調整処理の詳細については後述する。(ステッ プA4)。

【0109】次に、依頼応答部34bは、依頼入力部3 4 a から入力された依頼内容が受託できるか否かを依頼 者に通知するための依頼応答を出力する。例えば、「承 りました」というメッセージであったり、「この条件で は会議開催が不可能です」という応答であったりする (ステップA5)。依頼が受託できない場合は、依頼内 容を入力可能な状態に復帰し、新たな依頼(あるいは修 正された依頼)を待つ(ステップA6)。

【0110】依頼要求は依頼入力部34aから入力され るものとして説明しているが、実際にはネットワークを 構成している計算機のキーボードなどを通して入力され

に、あえて依頼入力部34 aを別にして説明している。 【0111】また、本発明の構成では、各メンバの状況 情報を応用サービス提供部14が利用できるので、作業 の依頼者は、メンバを名前で特定するのでなく、状況情 報に対して属性で指定することもできる。例えば「今、 座席に座っている人を10人集める」「これから1時間 の間に10分以上電子メールを読んでいた人を5人集め る」といった属性の指定が可能である。

17

【0112】日程管理部32bは、指定された属性に該 当する状況情報を抽出することで、指定された条件に一 致するメンバを求めることができる。

[0113] 日程管理部32bによる日程調整処理の結 果に基づき、会議の開催予定候補日が決定される。依頼 された会議が終了する時点まで、開催可能な開催候補日 が日程管理部32bに記憶され候補日待機状態となる。 日程管理部32bは、内部に持つカレンダカウンタによ って日の経過を計数しており、カレンダカウンタが候補 日に一致した場合は、当日時間管理部32 c に当日時間 調整処理を起動する制御信号を送信する(ステップA

【0114】当日時間管理部32 cは、日程管理部32 bからの起動制御信号を受信し、当日時間調整処理を行 う。当日時間調整処理の詳細については後述する(ステ ップA8)。

【0115】会議開催に適した時間になると、当日時間 管理部32 cは、当日時間調整処理の処理結果に基づく メッセージ作成処理起動信号をメッセージ作成部36a に送信する(ステップA9)。

【0116】制御信号を受信したメッセージ作成部36 aは、協同作業情報記憶部32aの情報をもとに各構成 30 メンバへの作業開始メッセージを作成し、出力情報通信 部16を介して、各構成メンバに例えば会議を開催する 旨メッセージを送信する。図14は、本発明の協同作業 調整装置を用いた際に、会議の開催時間が通知されてい るイメージを示した様子である。図14では出力部18 としてディスプレイが用いられ、文字によってメッセー ジが通知されている。スピーカなどの他の出力部18が 用いられても良い。

【0117】以上が全体の処理の流れである。

【0118】次に、日程調整処理について詳しく説明す る。日程調整処理の流れを図15のフローチャートに基 づき説明する。

【0119】ネットワーク環境に接続された計算機を使 用する各メンバはそれぞれの予定をスケジュール入力部 34 cを用いて入力している。この結果、スケジュール 記憶部32 dには図13に示すような日程テーブルが記 憶されている。

【0120】依頼者の入力に応じて日程管理部32b は、スケジュール記憶部32dの日程テーブルの中から 依頼メンバの行を抽出する(ステップB1)。この抽出 50 情報制御部30bは、通信部30aが受信した情報に基

されたテーブルの情報を、日程管理部32bは、各時間 帯毎に論理和をとる処理を行い、誰の予定も入っていな い時間帯を抽出する(ステップB2)。

[0121] 日程管理部32bは、抽出した時間帯の中 で、見通し所要時間より長い時間帯のみを抽出する(ス テップB3)。ことで抽出される区間が会議を行うこと が可能な時間帯(開催候補時間帯)である。

【0122】日程管理部32bは、この時間帯に優先順 位をつけ(依頼者が特殊な仕様を入力していない限り一 般には早い日ほど優先順位が高いことが多い)、開催候 補時間として当日時間管理部32 cに送信する(ステッ

【0123】依頼者の入力内容を満たす候補時間が存在 する場合は依頼受託となるが (ステップB5, B6)、 存在しない場合は、依頼非受託となる(ステップB 7)。この場合、依頼応答部34bから依頼者に対し て、依頼非受託の旨のメッセージを伝達し、再度依頼入 力待ち状態に復帰する。

[0124] この時点で開催候補日が決定するが、この 時点で協同作業の依頼メンバに、開催候補日や会議の内 容、会議の主旨などを通知するメッセージを送信すると とも可能である。との場合は、日程管理部32bからメ ッセージ作成部36aに制御信号を送信することで、メ ッセージ作成部36aが協同作業情報記憶部32aに記 憶された情報をもとに、構成メンパへのメッセージを作 成し、出力情報通信部16を通して各メンバに対応する 各出力部18ヘメッセージを伝達する。

【0125】以上が、日程調整処理の説明である。

【0126】次に、当日時間調整処理について詳しく説 明する。当日時間調整処理の流れを図16のフローチャ ートに基づき説明する。

【0127】当日時間管理部32 cは、日程管理部32 bからの開催候補日となったことを通知する制御信号を 受信すると、状況情報参照部30のメンパ情報制御部3 0 bに、図17に示すような状態テーブルの参照を要求 する。状態テーブルは、メンバ情報記憶部30cに記憶 されるもので、状況情報通信部12を流れる状況情報に 応じて、各メンバ(人物インデックス)毎に現在の状況 を示す情報が更新される。

【0128】状況情報通信部12には、何らかの状況情 報が変化した時に変化情報だけが流れているので、処理 の初期段階では状況情報の初期状態が存在しない。つま りメンバ情報記憶部30cの内容が初期設定値のままで あるので、メンパ情報制御部30bは、通信部30aに 当該メンバの初期状態の獲得を要求することで、通信部 30cが問い合わせ信号を作成し、状況情報通信部10 4を介して初期状態を獲得する(ステップC2)。

【0129】一方、状況情報通信部12には状況の変化 情報が流れているので、初期状態の獲得以後は、メンバ づきメンバ情報記憶部30cを更新する処理を続ければ 良い(ステップC1)。

19

【0130】状況情報通信部104を流れている状況情 報信号は、例えば「着席している・いない」「電話中で ある・ない」「文章執筆中・そうではない」など、画像 入力部10bから入力された画像情報あるいは各種入力 デバイス10aから入力された入力情報に基づいて判別 された各種状況である。

【0131】応用サービス提供部14が提供するサービ ス内容、あるいは依頼者の依頼内容によっては、より複 10 雑な状態の解釈が必要となる場合もある。例えば、「忙 しい仕事をしている・そうではない」「単調な仕事を続 けているので刺激を与えた方が良い・そうではない」な どの解釈である。

【0132】アプリケーション制御部32は、状況情報 通信部12に流れる状況情報を状況情報参照部30を介 して受けとり、この状況情報から状態の解釈が可能とな るように装置が構成されている。

【0133】例えば、状況情報を特徴ベクトルとして、 状態の解釈を出力バターンとするように、学習型ニュー 20 ラルネットワークやパターン認識理論を応用して装置を 構成すれば良い。特徴ベクトルの入力から、パターン出 力を得るための構成方法は、例えば「舟久保登"パター ン認識"共立出版(1991)」「飯島泰蔵"パターン 認識理論"森北出版(1989)」などに詳しい。ま た、状況の解釈を決定論的に処理するのが難しければ、 暖味性を持たせたデータ属性の処理を行う方法も、例え ば「馬場"ファジィ・データベースの現状と動向"Adva nced Database System Symposium '90, pp.207-214(198 9)」において記載されている。

【0134】 ここでは、特徴ベクトルの重みつき線形和 に基づく状況の解釈方法を例として説明する。

【0135】当日時間管理部32cは、これらの状況情 報から、各個人の会議を受け入れる可能性を示す評価値 として依頼受託評価値Pを計算する。依頼受託評価値P は前述した状態の判別値(状況情報)を用いて、式

(1)の重み付き線形和により計算される。

[0136]

【数1】

$$P = \sum_{i=1}^{N} a(i) \cdot x(i) \qquad \cdots (1)$$

(着席しているとき) x - 1

=0 (着席していないとき)

【0137】式(1)式において、x(i)はi番目の 状態の解釈結果に応じて"1"または"0"の値をとる 関数であり、例えば「着席している・いない」を解釈し た場合のxの値は"1"で「着席しているとき」、

"0"で「着席していないとき」を表わす。

[0138] 同様に「電話中である・ない」「文章執筆 50 [0147]

中である・ない」なども同様に1または0の値をとる。 【0139】式(1)式において、a(i)はi番目の 状態の解釈結果に与える重みであって、i=lからNま でのN個の状態の相対的重みを与える値である。

20

[0140] N個の重みa (i) (i=1, …, N) は、各人の協同作業を受け入れる可能性が高い場合に、 依頼受託評価値Pが大きくなるようにそれぞれ調整す る。調整は実験的、経験的に設定すれば良い。

【0141】例えば、着席している時は、着席していな いときより、出力したメッセージが伝わる可能性は高く 作業に参加できる可能性は高い。したがって、重みは正 の値になる。逆に、電話中である場合は、電話中で無い 場合より、作業に参加できる可能性は低い。したがっ て、重みは負の値になる。また、例えば、視点移動が少 なくディスプレイの文字を凝視している場合は、仕事に 集中している可能性が高いので、参加できる可能性は低 くなる。とのように、画像情報には、各メンバの仕事状 況を推測できるデータが多く存在し、それらが、状況情 報として伝送されてくるので、メンバの現在の状態を把 握することができる。

【0142】また、もし、全く作業に参加できる可能性 がない場合(例えば席をはずしていて居所が不明な場合 などが考えられる)は、依頼受託評価値Pが"O"とな るように調整する。

【0143】当日時間管理部32cによって計算された 依頼受託評価値Pは、メンバ情報制御部30bを介して メンパ情報記憶部30cに状態テーブルのデータとして 記憶される。メンバの状況情報に変化がある度に、状況 情報参照部は30は、当日時間管理部32cにメンバ情 報の依頼受託評価値Pの更新を要求する。当日時間管理 32cは、変化のあったメンバの依頼受託評価値Pを計 算する(ステップC3)。ステップC2の後、作業開始 のメッセージを作成処理に移行するまでは、順次、全メ ンバの依頼受託評価値Pについて計算される。

【0144】当日時間管理部32cによる依頼受託評価 値Pについての計算結果に応じて、メンバ情報記憶部3 0 c の依頼受託評価値(状態テーブル)が更新される (ステップC4)。

【0145】次に、当日時間管理部32cは、作業(会 40 議)を開催すべきか否かを判断するための開催評価値∨ の計算を行なう(ステップC5)。会議の開催評価値V の計算は以下のように行う。

[0146]各個人の依頼受託評価値Pは式(1)に基 づいて求められている。会議の構成メンパがM人いると して、各メンパの依頼受託評価値をP(j) (j=1. …, M) と表す。この依頼受託評価値の重み付き線形和 をとり、これを会議開催をすべきか否かを判断するため 適当性を示す評価値Vとし、開催評価値Vと呼ぶ。開催 評価値Vは式(2)により計算される。

【数2】

$$V = \sum_{i=1}^{H} w(j) \cdot P(j) \qquad \cdots (2)$$

[0148] W(j) (j=1, …, M)は、会議を構成 するメンバの参加必要度に応じて設定する重みである。 全員が同等な必要度であれば全ての」に対して一定値 (例えば1)を設定すればよい。あるいは、例えばグル ープのリーダーがどうしても参加する必要があれば、リ ーダーにかかる重みwは大きい値となろう。あるいは、 協同作業が会議でなく、例えば荷物運びであれば若いメ 10 ンパの重みを大きくするなどの応用が考えられる。

【0149】この重みは、協同作業依頼者が設定しても いいし、慣例によく従うように予め調整しておくことも 可能であるし、協同作業の依頼内容から自動設定すると とが可能であれば(例えば同メンバで前回利用した重み を再利用するなどの方法がある)、そのように決めれば 良い。依頼者の入力も、自動設定値もなければ、全員を 一定値にすれば良い。

【0150】次に、当日時間管理部32cは、開催評価 値Vと比較するための評価判断値を用意する(ステップ 20 C6)。この評価判断値は時間変化する値とする。この 評価判断値をしきい値として、開催が適切か否か判定す る。以後の説明では、このしきい値をTと表す。

【0151】図18には評価判断値(しきい値T)を説 明するための一例を示している。

【0152】図18 (e) において、縦軸は開催評価値 Vの軸、横軸は時間軸である。時間軸方向には、日程管 理部32bから送信された開催候補時間帯を時間軸原点 から時間順に並べる。

[0153] 例えば、図18(a) に示すように開催候 30 補時間帯が8:00から14:00であったとする。と とでは、図18(b)に示すように会議の見通し所要時 間が2時間なので、会議は8:00から12:00まで の間に始めなければ、全員の参加可能な時間内に終了し ない。よって、図18(c)に示すように、8:00か ら12:00までの時間を開始候補帯として抽出し、図 18(e) に示す時間軸のO(原点) から配置する。

【0154】図18 (e) において、会議終了の期日時 間を横軸方向の終端Eとし、会議の見通し所要時間分を 時間的に遡った位置Dとする。Dと評価値軸上のSの間 に直線を引き、これをしきい値Tとする。Sの高さは各 メンバの依頼受託評価値Pを満点にした時の開催評価値 Vの値である。

【0155】当日時間管理部32cは、作動している時 間内では開催評価値Vを計算し、Vがしきい値Tと等し いかそれ以上の時点で、会議開催可能と判断する(ステ ップC7)。

【0156】図18に示すしきい値Tは、時間的に早い ほど高く、遅いほど低い。従って、時間的に余裕のある 間は、開催評価値Vが十分高くなるまで開催可能と判断 50 始時間を調整することが可能な協同作業調整装置を構成

22

しないが、時間的余裕がなくなってくると開催可能の判 断が容易になされる。また、期日より、会議所用見込み 時間前までには確実に開催可能の判断をする。

[0157]また、図18 (e) に示す例では、Sから Dに直線的にしきい値Tを変化させたが、半減期を8時 間などと設定し、減少型の指数関数で変化させても良 い。この半減期は構成メンパの経験に応じて設定すれば 良い。あるいは、午前中に優先的に会議が設定される方 が望ましい場合は、午前中のしきい値Tが低めになるよ うに折れ線的に設定すれば良い。との、しきい値Tの時 間変化のさせ方は、環境を利用するメンパの慣習や経験 に基づいて決めれば良いのである。ただ減少関数を使 い、期限より見通し時間分遡った時点までには必ず会議 が開かれる様に設定する必要がある。

【0158】もし、最小興行人数の設定がなされている 場合は、依頼受託評価値PがOでないメンバの人数が、 最小興行人数を超えていることを確認する処理を追加す る(ステップC8)。

【0159】以上のステップで、当日時間管理部32c は、協同作業を開始するのに適した時間を判断すること ができる(会議招集システムの場合は会議開催時間が決 まる)。

【0160】協同作業の開始時間を決定すると、当日時 間管理部32cは、メッセージ作成部36aに制御信号 を送信する。

【0161】制御信号を受信したアクション作成部36 は、協同作業情報記憶部32aの情報をもとに各構成メ ンバへの作業開始メッセージを作成し、出力情報通信部 16を通してメンバがいる出力部18に送信する(ステ

【0162】本実施形態の場合、出力部18は計算機デ ィスプレイや計算機に接続されたスピーカとすると、入 力部10と出力部18は対になっている。従って、メッ セージ作成部36aは、状況情報変換部10cからの状 況情報により得られる個人認証結果に基づき、該当する メンバがいる計算機の出力部18宛てにメッセージを送 信する(ステップC9)。この場合、メッセージの送信 先のメンパが本来いるべき場所(計算機)にいなくて も、ネットワーク環境中の何れかの出力部18が存在す る場所にいればメッセージの伝達が可能である。

[0163]また、メッセージの作成に時間がかかる場 合は、候補日程が決定した段階で、伝達メッセージの予 め作成できる部分をメッセージ作成部36 aが作成して おくことで、当日時間管理部32cの制御信号は発信タ イミングの制御だけに用いる方法をとることも可能であ

【0164】以上詳しく説明してきたが、本発明を利用 する事により、時間的に細かいスケジュールを入力する 事なく、協同作業の参加メンパの現在の状況に応じて開 する事ができる。

【0165】次に、第2の実施形態として、情報の流し方の変形例について説明する。

【0166】第1の実施の形態では、状況情報通信部1 2を流れる状況情報は、入力部10の状況情報に変化が 起きた場合に変化分に限って通信される形態で説明して きた。この際、通信経路上(状況情報通信部12)に流 れるパケットの形式は図2に示す構造とした。

[0 ! 6 7] この他にも通信される情報の形態を様々に変形させることができる。

【0168】(1) ブロードキャストタイプ これは、状況情報の変化の有無に関わらず、ある一定の 時間間隔で状況情報の構造体が伝送される形態である。 この場合、例えば図19に示す様な構造化されたパケットが、例えば100分の1秒おきに通信経路上を流れる。図19の構造化されたパケットの内容は、例えば図17に示す状態テーブルの個人ごとの内容に対応する。 【0169】この形態の場合、状況情報参照部30は、記憶部(図11のメンバ情報記憶部30c)を有する必要がなく、通信部30aが分解した状況情報中の情報を 20アプリケーション制御部32が利用すれば良い。

【0170】(2)要求と応答タイプ

応用サービス提供部14が解釈に必要な状況情報を、状況情報通信部12を介して入力部10に問い合わせる形態である。との場合は、応用サービス提供部14の状況情報参照部30の内部(例えば通信部30a)では、アブリケーション制御部32の要求に従って、必要な情報を問い合わせるパケットを作成し、状況情報通信部12に送信する。

【0171】(3)情報差分タイプ この形態は、第1の実施の形態で説明して来たパケット の形態である。

【0172】何れの形態にしろ、応用サービス提供部 1 4 が状況情報を利用できる通信形式であれば、本発明を 応用することは容易である。

【0173】次に、第3の実施の形態として、状況情報の入力対象が一人の場合について説明する。

【0174】第1の実施の形態では、協同作業として複数のメンバが参加する特に会議の招集について説明したが、状況情報を検出する対象が一人の場合であっても、本発明の構成を応用することができる。この場合、協同作業を行うのが一人の場合と解釈すればよいだけである。例えば、到着と同時に電子メールが読まれる可能性を、従来の方式よりも高くする電子メールシステムを構成することができる。

【0175】以下、到着すると同時に相手が電子メールを読む可能性が従来の方法より高くなる電子メールシステムの実現方法について説明する。

【0176】第1の実施の形態では、アプリケーション 荷の大きい処理である。いま、新たな形態として、人力 制御部32の内部手続きとして、依頼受託評価値Pを定 50 部10の処理量を減らすために、この人物認証処理を応

24

義し、式(1) に基づいて重みつき線形和によって求めた。第3の実施形態では、依頼受託評価値Pに変わって、文章を読む可能性の高い状況で数値が高くなる評価値を導入する。

【0177】届いた電子メールをその場で読む可能性は、例えばディスプレイに視線を向けている状況の方が高いし、タイピングがリズム良く行われている時は文章執筆に集中している可能性があるので読まれる可能性は低い。一方、タイピングが止まり、体の姿勢もあまり変わらず、じっとディスプレイを見つめている時は、何か考え事をしている状況なので、読まれる可能性は高い。【0178】とのように、画像入力部10bから入力される画像情報の中には、電子メールが読まれる可能性をある程度推測するための情報が多数含まれている。との情報を個人性も含めて、パターン認識手法あるいはファジー測度手法を用いて推測することは可能である。

【0179】以上のことから、第3の実施形態の処理の 流れについて、図20に示すフローチャートを参照しな がら説明する。

(0180)まず、応用サービス提供部14のアプリケーション入出力部34から電子メールの送信要求(宛先、本文)を入力する(ステップD1)。アプリケーション制御部32は、状況情報参照部30からメンパ情報の初期状態である状況情報を抽出する(ステップD2~ステップD4)。

[0181] 予め調整された式(1)の係数に基づいて 依頼受託評価値を計算する(ステップD5)。ことで の、依頼受託評価値は、前述のように、文章を読む可能 性の高い状況で数値が高くなる。

【0182】依頼受託評価値が予め設定したしきい値下より大きい場合、アプリケーション制御部32は、アクション作成部36に、メール到着のメッセージを表示するための制御信号を送信する(ステップD6、D7)。例えば、アイコン型の小さなマークを、ディスプレイの画面中に表示させる。

[0183]次に、第4の実施の形態として、アプリケーションの複数化について説明する。

【0184】ことで説明する実施の形態ではアプリケーション実行手段の複数化について詳しく説明する。

【0185】本発明の基本構成を示した図1では、複数の入力部10(N個)、複数の応用サービス提供部14(M個)、出力部18(L個)ある。本発明の構成に従い応用サービス提供部14が複数存在する場合は、複数の応用サービス提供部14同士で解釈結果を利用し合う状況が発生する。

【0186】例えば、人物認証処理は第1の実施の形態では各入力部10の状況情報変換部10cで行った。人物認証処理は参照データも多く、人力部10にとって負荷の大きい処理である。いま、新たな形態として、入力部10の処理量を減らすために、この人物認証処理を応

用サービス提供部14の1つが集中的に行う構成を取る。つまり、処理の一元化を図る。

【0187】との構成にはいつか利点がある。第1の利点は、人物認証処理のために必要なデータ量は膨大であるが、とのデータを一元管理できるので、更新、及び修正が容易になるということ。第2の利点は、「同一人物は複数箇所に同時に存在することはない」という知識を利用できるので、効率的に人物認証処理を実行できること、である。

【0188】しかし、人物認証処理の結果が必要な応用 10 行うことができる。 サービス提供部14は多く存在する。例えば第1の実施 【0198】この』 の形態の協同作業調整装置でも、第3の実施の形態の電 提供部14が全体の 子メールシステムでも「誰がどこにいる」という情報が くると、子の応用す 必要であるから、人物認証処理は欠かせない。 加し、全体の処理

【0189】しかしながら、複数の応用サービス提供部 14で同一の処理が行われることは効率的ではない。

[0]90]とのため、人物認証処理が応用サービス提供部]4で解釈結果(この場合は人物認証処理処理結果)を共有できる構成が必要である。

【0191】以上の例のように、本発明の構成の中に、 応用サービス提供部14が複数接続されてくると、共通 するデータや中間処理結果が発生する。全体の効率を上 げるためには、複数の応用サービス提供部14同士でデ ータを転送しあう仕組みが必要になる。

[0192]複数の応用サービス提供部14同士でデータを転送し合う仕組みを作るためには、例えば人物認証処理の結果の共有化を例にして説明すれば、以下のようにすれば実現できる。

【0193】いま、第1の実施の形態で説明したように、状況情報通信部12を流れるパケットは、データの 30変化時にだけ伝送される情報差分タイプのパケットで、形式は図2の構成であるとする。

【0194】人物認証処理を行った応用サービス提供部は、宛先IDを「不定(全ての応用サービス提供部14宛て)」にして、状況情報通信部12にパケットを送信する。応用サービス提供部14の構成要素である状況情報参照部30には、転送されたパケットの宛先IDが「不定」であるから、内容IDを調べ、人物認証処理の結果を示すIDであれば、その情報を取り込み、自分の解釈部の入力情報として使用する。

【0195】人物認証処理のように、複数の応用サービス提供部14で参照されることが明かなデータは本発明の全体システム(図1)を作成した初期段階から、一つの応用サービス提供部14として接続することが可能だか、これと別の立ち上げ形態もとることが可能である。

【0196】例えば、本発明の全体システム(図1)に新たな応用サービス提供部14を接続した時に、当該応用サービス提供部14が自己の処理プロセスを再帰的に分割して、一部の処理プロセスを別の応用サービス提供部14として独立させるという構成をとることができ

26

る。この新たに分割された応用サービス提供部14を「子の応用サービス提供部」と呼び、母体となった応用サービス提供部14を「親の応用サービス提供部」と呼ぶ。再帰的に分割された場合は、複数の「子の応用サービス提供部」が起動されることになる。

[0197]プロセスが分割しても、「人物認証処理を集中的に行う応用サービス提供部」の説明と同様に、状況情報通信部12を介して情報をやりとりすることにより、親と子の応用サービスが一体の場合と同様な処理を行うことができる。

[0198] このように再帰的に分割する応用サービス提供部14が全体のシステム(図1)に複数接続されてくると、子の応用サービス提供部を共有できる確率が増加し、全体の処理量を抑えることができるようになる。[0199] 親の応用サービス提供部は、自らの処理プロセスを分離分割する前に、状況情報通信部12を流れるパケットの内容1Dを予め規定した時間調査し、分離しようとしている子の応用サービス提供部と同じ処理プロセスである応用サービス提供部14が、全体のシステムに存在しないことを確認してから、プロセスを分離する手続きを取ればよい。

【0200】また、例えば、バケットの流通量が少ないために、同じ処理プロセスである応用サービス提供部14が複数起動された場合でも、処理結果が矛盾するのでなければ問題はない。もし、冗長な処理プロセスを省いて全体の効率を上げたい場合には、各応用サービス提供部14は、他の応用サービス提供部14が送信するパケットを調べ、自らが発信するパケットの内容IDと一致し、かつ、送信元を示す発信IDが自らと異なるパケットを検知したときに、時間的に後から起動された側の応用サービス提供部14が自ら終了する構成を取れば良い。応用サービス提供部14の起動された時間の比較が必要な場合は、応用サービス提供部14の起動された時間の比較が必要な場合は、応用サービス提供部14の起動された時間の比較がで行けば良い。発信IDを比較することで、起動された時間の比較は容易である。

[0201]

【発明の効果】以上説明したように本発明によれば、協同作業の参加者に特別な作業を強いることなく、時間的なスケジュールまでを確実かつ容易に調整することを可能にする。

【図面の簡単な説明】

【図1】本発明の第1の実施形態に係わる協同作業調整 装置の構成を示すブロック図。

【図2】図1中の状況情報通信部12を伝送されるパケットの形態の一例を示す図。

【図3】図1中の状況情報変換部10cの詳細な構成を示す図。

【図4】図3中の人検出部20の詳細な構成を示す図。

50 【図5】人検出部20による処理過程を説明するための

図.

【図6】図3中の個人認証部21の詳細な構成を示す 図

【図7】図3中の状況情報生成部26の詳細な構成を示す図

【図8】図7中の統合部26aによってセンサレベルで 得られた状況情報が登録される状況登録テーブル(その 1)の一例を示す図。

【図9】図7中の統合行動認識部26eによって生成される比較的高度なレベルの状況情報が登録される状況登 10録テーブル(その2)の一例を示す図。

【図 1 0 】応用サービス提供部 1 4 の基本構成と信号の流れを示すブロック図。

【図11】応用サービス提供部14の詳細な構成を示す ブロック図。

【図12】応用サービス提供部14における依頼の入力と日程の決定を行なう処理の流れを説明するためのフローチャート。

【図13】日程レベルのスケジュールを登録するための スケジュール表の一例を示す図。

【図14】本実施形態における協同作業調整装置を用いた際に会議の開催時間が通知されているイメージを示す図。

【図 15】第1の実施形態における日程調整処理の流れ を説明するためのフローチャート。

[図 1 6] 第 1 の実施形態における当日時間調整処理の 流れを説明するためのフローチャート。

【図17】メンバ情報記憶部30cに記憶される状態テーブルの一例を示す図。

【図18】第1の実施形態における評価判断値(しきい 30値T)を説明するための図。

【図19】第2の実施形態において用いられる構造化されたパケットの一例を示す図。

【図20】第3の実施形態の動作を説明するためのフローチャート。

【符号の説明】

10…入力部

10a…入力デバイス

10b…画像入力部

10 c…状況情報変換部

12…状況情報通信部

*14…応用サービス提供部

16…出力情報通信部

18…出力部

20…人検出部

20a…差分検出部

20b…顔検出部

20 c…肢体検出部

20 d … スコア統合部

20e…人数計数部

) 21…個人認証部

21a…正規化部

2 1 b … 照合部

2 1 c…辞書蓄積部

2 1 d…評価部

22…頭部方向推定部

23…視線方向推定部

2 4 …口形状動作推定部

25…腕動作推定部

26…状況情報生成部

0 26a…統合部

26b…時刻発生部

26 c…場所情報記憶部

26 d…履歴記憶部

26e…統合行動認識部

26 f…統合情報記憶部

30…状況情報参照部

30a…通信部

30b…メンバ情報制御部

30 c … メンバ情報記憶部

30 32…アプリケーション制御部

32 a…協同作業情報記憶部

32b…日程管理部

32c…当日時間管理部

32d…スケジュール記憶部

34…アプリケーション入出力部

34a…依頼入力部

3 4 b…依頼応答部

34c…スケジュール入力部

36…アクション作成部

40 36a…メッセージ作成部

*

【図2】

是信! D 宛先! D 内容! D 内容(情報)

【図19】

発信10	报先ID
PI# ID	内容 (情報)
O1 \$ 代	内容 (情報)
•	

[図1]

[図11]

【図13】

日付インデックス	Γ	4001				4002							4003						4004							•••		
Nem 1		8	9	10	11	12	13	8	9	10	11	12	13	8	9	10	11	12	13	8	9	10	II	12	13	8	9	
時間インデックス	301	Ι	T	T	0		9																	_				L
	302	Т														<u> </u>	ø	9	0		_	<u>_</u>	L	L		L		
	303			Τ	0	٥	8					L					Ľ	L	L	L	L	L	L	L	L	L		L
	304	Т	Ī	Τ				R	R	R							L	L		L	L		L	ŀ	0	L	L	L
	305		Ι	Ι				a	8	9	L						L	L	L	L	L	L	L	L	L	L	<u> </u>	L
	306		Г							L	L	L	L	R	R	R	R	R	R		L	L	L	L	Ļ	L	<u>_</u>	L
	301		1											L	L	L	L	L	L	L	L	L	<u>!</u>	L	L	L	<u>L</u>	L
	٠		!	I					L			_	L			<u> </u>	<u>L</u>	<u> </u>	L		<u>!</u>	L	L	<u> </u>	L	L	<u></u>	L
j	人物イ	ンデ	ック	7							: #	出:	戶定															
										R	: 4	10	產															

【図17】

人物 インデックス

+	着床	メール作業中	電影中	文章数章中	上体の方向角度
301	1	0	0	1	0
302	1	0	1	0	- 4 5
303	1	0	0	0	-10
304	1	1	0	1	+10
•••					

終了

【図15】 【図14】 カメラ 開 始 日程テーブルから依頼 メンバの行を抽出する 只今から ★★宝で 会議を 開催します ~B 1 会議内容 〇×の弁 メンバー: 時間帯毎に予定のオアを とり、誰の予定も入って いない時間帯を抽出する **√B2** ディスプレイ 抽出した時間帯の中で見 通し所要時間より長い時 ~B3 間帯のみを抽出する 抽出した時間帯を記憶し ~~B4 候補時間とする ⟨B5 Nο 候補時間が存在する Yes 依賴非受託 依頼受託 WB 7

[図16]

[図18]

フロントページの続き

(72)発明者 鈴木 薫

大阪府大阪市北区大淀中 1 丁目 1 番 30号 株式会社東芝関西支社内 (72)発明者 田中 英治

大阪府大阪市北区大淀中1丁目1番30号 株式会社東芝関西支社内

(72)発明者 谷口 恭弘

大阪府大阪市北区大淀中1丁目1番30号 株式会社東芝関西支社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

refects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.