

An Example of TVLA

Three Valued Logic Analyzer

Presenter: Chengpeng Wang

Date: Oct 30th, 2019

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Background: What is shape analysis?

- Definition in [Jones and Muchnick 1981]
 - Determine the possible shapes of a dynamically allocated data structure at a given program point
- Reason the geometry structures of dynamically allocated heap data and their relations
 - Geometry structures
 - Is it a Tree, a DAG, or a Cyclic Graph?
 - Self-defined properties: sorted linked lists ...
 - Structural relationship
 - Overlapping or disjoint?
- In general, shape analysis aims to property reasoning on heap structures

TVLA

- Motivations
 - The expressivity is limited
 - Generate shape invariants by predicates
 - The approach is not general
 - Propose a parametric approach/framework to synthesize different kinds of shape invariants

4

TVLA

- Challenges
 - Dynamically allocated data structures are unbounded

- The trade-off between precision and efficiency
 - More predicates are used, more precise shape information extracted while more overhead in shape analysis

TVLA Motivations Challenges 5

TVLA I: Intraprocedural

• Problem 1: How to abstract

Shape Abstraction

Problem 2: How to use predicates

Problem 3: How to embed

Canonical Embedding

- Problem 4: How to update formula according to the statement
 - Focus and Coerce

Formula Update

Shape Abstraction

- Model shape info in 3-valued logic
 - S: logical structure, denoted by $< U^S$, $l^S >$
 - U^S: A universe of individuals
 - l^S maps arity-k predicate and k-tuple of individuals to o(false), 1(true) or 1/2(unknown)
 - Example

Encode shape graph in a logical way

• sm(v): Does v represent more than one concrete individuals?

 $x, y \longrightarrow u_1 - \cdots \rightarrow u_2 - \cdots$

- q(n): Does pointer variable q point to element n?
- $n(v_1, v_2)$: Does the n field of v_1 point to v_2 ?

Indiv.	x	у	sm	n	u_1	u_2
u_1	1	1	0	u_1	0	1/2
u_2	0	0	1/2	u_2	0	1/2

Sagiv M, Reps T, Wilhelm R. Parametric shape analysis via 3-valued logic[J]. TOPLAS 2002

TVLA: Shape Abstraction

Canonical Embedding

• Most precise embedding
$$f_{embed_c}(v_1) = f_{embed_c}(v_2) \Leftrightarrow p(v_1) = p(v_2) \ \forall p \in A$$

• Abstraction predicates: $A = \{x, y, t, e\}$

Sagiv M, Reps T, Wilhelm R. Parametric shape analysis via 3-valued logic[J]. TOPLAS 2002

Formula Update

- An example
 - Statement y = y->n

• 2-valued Logic structure

Sagiv M, Reps T, Wilhelm R. Parametric shape analysis via 3-valued logic[J]. TOPLAS 2002

An Application of TVLA: Free Analysis

Free analysis

It is safe to free the node pointed by y after line 10

```
public static void main(String args[])
            L x, y, t;
            x = null;
            while (...) {
              y = new L();
              y.n = x;
               x = y;
            y = x;
            while (y != null) {
Line 10
              t = y.n;
               y = t;
```


Use Heap Safety Automata to track *Use* state

```
public static void main(String args[])
           L x, y, t;
           x = null;
           while (...) {
              y = new L();
              y.n = x;
              x = y;
           y = x;
           while (y != null) {
Line 10
            t = y.n;
              y = t;
```

statement	use events are triggered for an object referenced by
x = y	y
x = y.f	y, y.f
x.f = null	x
x.f = y	x, y
x binop y	x, y

Example: the HSA of y at line 10 Accepting state: {0,1}

Loop 1

```
public static void main(String args[])
  L x, y, t;
  x = null;
  while (...) {
     y = new L();
     y.n = x;
     x = y;
  y = x;
  while (y != null) {
     t = y.n;
     y = t;
```

Loop 1, iteration 1

$$n'(u,v) = (y(u) \land x(v)) \lor n(u,v)$$

$$x'(u) = y(u)$$

Predicates	Intended Meaning
after[pt]()	program execution is immediately after program point pt
x(o)	program variable x references the object o
$f(o_1,o_2)$	field f of the object o_1 points to the object o_2
s[q](o)	the current state of o 's automaton is q

Loop 1, iteration 2

$$n'(u, v) = (y(u) \land x(v)) \lor n(u, v)$$

$$x'(u) = y(u)$$

y =	new	L();
y.n	= x;	
x =	у;	

Predicates	Intended Meaning
after[pt]()	program execution is immediately after program point pt
x(o)	program variable x references the object o
$f(o_1,o_2)$	field f of the object o_1 points to the object o_2
s[q](o)	the current state of o 's automaton is q

Loop 1, iteration 3

Loop 1, iteration 4

Jump out of Loop 1, after lc 8

Loop 2

```
public static void main(String args[])
  L x, y, t;
  x = null;
  while (...) {
     y = new L();
     y.n = x;
     x = y;
   y = x;
  while (y != null) {
     t = y.n;
```

Loop 2, iteration 1, program location 9

Loop 2, iteration 1, case 1

$$t'(u) = \exists y(v) \land n(v, u)$$

$$y'(u) = t(u)$$


```
while (y != null) {
    t = y.n;
    y = t;
}
```


Example: the HSA of y at line 10 Accepting state: {0,1}

Formula Update

• Recover the truth: Focus

Semantic transformation

The formulae that define the meaning of st evaluate to definite values

Sagiv M, Reps T, Wilhelm R. **Parametric shape analysis via 3-valued logic**[J]. TOPLAS 2002

Formula Update

• Focus formulae

st	Focus Formulae
x = NULL	Ø
x = t	$\{t(v)\}$
x = t->n	$\{\exists v_1 : t(v_1) \land n(v_1, v)\}$
x->n = t	$\{x(v), t(v)\}$
x = malloc()	Ø
x == NULL	$\{x(v)\}$
x != NULL	$\{x(v)\}$
x == t	$\{x(v), t(v)\}$
x != t	$\{x(v), t(v)\}$
UninterpretedCondition	Ø

Sagiv M, Reps T, Wilhelm R. **Parametric shape analysis via 3-valued logic**[J]. TOPLAS 2002

$$\phi_{focus}(u) = \exists y(v) \land n(v, u)$$

$$t = y.n$$

 u_1 is pointed by y. Use action triggered

$$t = y.n$$

 u_1 is pointed by y. Use action triggered Use is triggered at program location 10, hence $ref_{10,y}$ is triggered.

$$t = y.n$$

 u_2 is pointed by y.n. Use action triggered. No $ref_{10,y}$ is triggered.

Loop 2, iteration 1, case 2

$$t = y.n$$

Formula Update

Recover the truth: Coerce

Semantic transformation

Sagiv M, Reps T, Wilhelm R. **Parametric shape analysis via 3-valued logic**[J]. TOPLAS 2002

Loop 2, iteration 1, case 2

t = y.n

Loop 2, iteration 1 finished


```
while (y != null) {
    t = y.n;
    y = t;
}
```


Loop 2, iteration 2 finished

Loop 2, iteration 3 finished

Loop 2, iteration 4 finished, reaching fixed point


```
while (y != null) {
    t = y.n;
    y = t;
}
```



```
public static void main(String args[]) {
   L x, y, t;
   x = null;
   while (...) {
      y = new L();
      y.n = y;
      x = y;
                                                                              ref_{10}, y
                                                                                                use, ref_{10}, y
                                                            use
  y = x;
                                                              ini∖tial
   while (y != null) {
                                                                     ref_{10},y
      t = y.n;
                                                                                          use
                                                                                                    err
      y = t;
                                                                      Example: the HSA of y at line 10
                                                                           Accepting state: {0,1}
```


TVLA: Summary

- The limitations of analogue pointer analysis in stage 1
 - The expressivity is limited
 - The shape properties are different in previous works(lack of general approach)
- TVLA
 - Abstract memory configuration(shape graph) and transformer(function summary) in logical structures
 - Encode and abstract memory configuration(shape graph) by predicates canonical abstraction
 - Encode the semantics by logic formula predicate update formula
 - Statement guides the pointwise state transformation focus operation General framework

TVLA: Summary

Conclusion

- TVLA is rigorous and elegant
 - Perform more strong updates by symbolic abstraction
 - Given abstract predicates, the logical structures are bounded and the number of them are finite. This guarantee the terminability.
- **BUT** unscalable
 - First order logic constraint solving
 - It is non-trivial to choose proper instrumentation predicates and abstract predicates

Q & A