Analyse III

October 5, 2015

Contents

1	Cha	pitre 1	2
	1.1	Def: Gradient (∇)	2
	1.2	Def: Laplacien (Δ)	2
	1.3	Def: Champ vectoriel (F)	2
	1.4	Def: Divergence $(div \text{ ou } \nabla.)$	3
	1.5	Def: Rotationnel $(rot \text{ ou } \Delta \times)$	3
		1.5.1 Pour n=2	3
		1.5.2 Pour n=3	3
	1.6	Propriétés	3
2	Cha	apitre 2	3
	2.1		4
			4
		2.1.2 Ex. 2 : Helix	5
		2.1.3 Ex. 3 : Puissances	6
		2.1.4 Ex. 4: Valeur absolue	6
		2.1.5 Ex. 5 : Courbe "complexe"	7
	2.2	Def 2 : Courbe simple fermée	7
	2.3	Def 3: Courbe régulière	7
		2.3.1 Remarque:	8
	2.4	J #	8
			8
		2.4.2 Ex.:	8
		2.4.3 Somme intégrale	9
	2.5	Def : L'intégrale curviligne pour un champ vectoriel	9
	2.6	Def : courbe régulière par morceau	10
	2.7	Def : Γ régulière par morceau:	10

		2.7.1 Ex. : Périmètre d'un carré
3	Cha	pitre 3
	3.1	Def:
		3.1.1 Exemple
	3.2	Théorème
		3.2.1 Preuve
	3.3	Question:
		3.3.1 Réponse
	3.4	Théorème
		3.4.1 Preuve
	3.5	Def: Convexe
	3.6	Def: Connexe
	3.7	Exemple
	3.8	Exemple
	3.9	Exemple
1.	1 C adien grad	eurs différentiels de la physique $\mathbf{Def: Gradient} \ (abla)$ $\mathbf{t}: \mathbb{R}^n o \mathbb{R}^n$ $f(x) = abla f(x) = \left(\frac{\delta f}{\delta x_1}(x),, \frac{\delta f}{\delta x_n}(x) \right) \in \mathbb{R}^{\ltimes}$ $\mathbf{Def: Laplacien} \ (\Delta)$
Lа		$\operatorname{en}: \mathbb{R}^n \to \mathbb{R}$ $x) = \sum_{i=1}^n \frac{\delta^2 f}{\delta x_i^2}(x) \in \mathbb{R}^2$
1.	3 Г	Def: Champ vectoriel (F)
Ch	F(x)	vectoriel: $\mathbb{R}^n \to \mathbb{R}^n$ $(F_1(x),, F_n(x))$ $\mathbb{R}^n \to \mathbb{R}$

1.4 Def: Divergence ($div \text{ ou } \nabla$.)

Divergence :
$$\mathbb{R}^n \to \mathbb{R}$$

$$\operatorname{div} F = \nabla . F = \sum_{i=1}^n \frac{\delta F_i}{\delta x_i}$$

1.5 Def: Rotationnel (rot ou $\Delta \times$)

Rotationnel : $\mathbb{R}^n \to \mathbb{R}^{\frac{n(n-1)}{2}}$

1.5.1 Pour n=2

$$F: \mathbb{R}^2 \to \mathbb{R}^2, F = (F_1, F_2)$$

$$\text{rot} F = \Delta \times F = \frac{\delta F_2}{\delta x_1} - \frac{\delta F_1}{\delta x_2} \in \mathbb{R}$$

$$\left(= \begin{vmatrix} \frac{\delta}{\delta x_1} & \frac{\delta}{\delta x_2} \\ F_1 & F_2 \end{vmatrix} \right)$$

1.5.2 Pour n=3

$$F: \mathbb{R}^3 \to \mathbb{R}^3, \ F = (F_1, F_2, F_3)$$

$$\operatorname{rot} F = \Delta \times F = \left(\frac{\delta F_3}{\delta x_2} - \frac{\delta F_2}{\delta x_3}, \frac{\delta F_1}{\delta x_3} - \frac{\delta F_3}{\delta x_1}, \frac{\delta F_2}{\delta x_1} - \frac{\delta F_1}{\delta x_2}\right) \in \mathbb{R}^3$$

$$\left(= \begin{vmatrix} \frac{\delta}{\delta x_1} & \frac{\delta}{\delta x_2} & \frac{\delta}{\delta x_3} \\ F_1 & F_2 & F_3 \end{vmatrix}\right)$$

1.6 Propriétés

1.
$$\Delta f = \operatorname{div}(\operatorname{grad} f) = \nabla \cdot (\nabla f)$$

2.
$$f: \mathbb{R}^n \to \mathbb{R} \text{ et } F: \mathbb{R}^3 \to \mathbb{R}^3 \ n = 3 \ \text{rot}(\nabla f) = 0 \in \mathbb{R}^3, \ \text{div}(\text{rot}F) = 0$$
 pour $n = 2 \ \text{rot}(\nabla) = 0 \in \mathbb{R}$

3.
$$\operatorname{div}(f\nabla g) = f\Delta g + \nabla f \nabla g$$

4.
$$\nabla(fg) = g\nabla f + f\nabla g$$

5.
$$\operatorname{div}(fF) = f\operatorname{div}F + \nabla fF$$

6. rot rot
$$F = -\Delta F + \nabla \text{div} F$$

2 Chapitre 2

Intégrales curvilignes

2.1 Def: Courbe simple

 $\Gamma \subset \mathbb{R}^d$ est une courbe simple si $\exists I \subset \mathbb{R}$ (intervalle) et $\gamma: I \to \mathbb{R}^d$: continue. tel que

- 1. $\gamma(I) = \tau$ (courbe)
- 2. $\gamma(t_1) \neq \gamma(t_2) \ \forall t_1, t_2 \in I \ (\text{simple})$

 γ : une paramétrisation.

2.1.1 Ex. 1 : Cercle

 $\Gamma = \{x \in \mathbb{R}^2 : |x| = 1\} \text{ dessin cercle } \gamma : [0, 2\pi] \to \mathbb{R}^2 \ \gamma(\theta) = (\cos \theta, \sin \theta)$

2.1.2 Ex. 2 : Helix

$$\gamma \mathbb{R} \to \mathbb{R}^3 \, \gamma(t) = (\cos t, \sin t, t)$$

2.1.3 Ex. 3: Puissances

 $\mathbb{R} \to \mathbb{R}^2 \, \gamma(t) = (t^3, t^2) \, -$

2.1.4 Ex. 4: Valeur absolue

 $\gamma: \mathbb{R} \to \mathbb{R}^2 \ \gamma(t) = (t, |t|) \ \mathrm{dessin}$

2.1.5 Ex. 5 : Courbe "complexe"

 \mathbb{R}^2 courbe pas simple

2.2 Def 2 : Courbe simple fermée

 τ : courbe simple est dite fermée si $\gamma(a) = \gamma(b)$ (I = [a, b])

- Ex. 1 : fermé $\gamma(0) = \gamma(2\pi) = (1,0)$ image patate.
- Ex. 2,3,4 : non fermé.

2.3 Def 3: Courbe régulière

 Γ : courbe est régulière si $\exists \left[a,b\right] ,\gamma :\gamma \cdot \left[a,b\right] \rightarrow \mathbb{R}^{d}$ tel que

- $\bullet \ \gamma \in C^1\left([a,b]:\mathbb{R}^2\right)$
- $\bullet \ \gamma'(t) \neq 0 \in \mathbb{R}^d \ ((\gamma_1'(t),...,\gamma_d'(t)) \neq (0,...,0))$

- Ex.3 : $\gamma'(t)=(3t^2,2t)$ et $\gamma'(0)=(0,0)$: Γ : n'est pas régulière.
- Ex.4 : γ n'est pas diff. en t=0. Donc Γ n'est pas régulière.

2.3.1Remarque:

• Γ : régulière. La ligne tangente en $\gamma(t_0)$:

(L) : $\gamma(t_0) + \gamma'(t_0)(t - t_0)$

• Γ : courbe $\subset \mathbb{R}^d$

 $f:\Gamma\to\mathbb{R}$: continue.

2.4 Def: $\int_{\Gamma} f$

 $\int\limits_{\Gamma} f := \int\limits_{a}^{b} f(\gamma(t)) ||\gamma'(t)|| dt$ $\gamma : [a,b] \to \mathbb{R}^{d} \text{: une paramétrisation de } \Gamma.$

La longueur de Γ : $\int\limits_{\Gamma} 1 = \int\limits_{a}^{b} ||\gamma'(t)|| dt$

2.4.1 Retour à ex. 1. :

$$\int_{\Gamma} f \text{ avec } f = 1$$

$$= \int_{0}^{2\pi} ||\gamma'(t)|| dt = \int_{0}^{2\pi} 1 dt = 2\pi$$

2.4.2 Ex.:

$$\int\limits_{\Gamma} : f(x,y) = \sqrt{x^2 + 4y^2}$$

$$\Gamma = \{(x, y) \in \mathbb{R}^2; 2y = x^2; x \in [0, 1]\}$$

$$\gamma: [0,1] \to \mathbb{R}^2$$

$$t \to (t, \frac{t^2}{2})$$

$$\int_{\Gamma} f = \int_{0}^{1} f(\gamma(t))||\gamma'(t)||dt$$

$$= \int_{0}^{1} \sqrt{t^2 + 4\frac{t^4}{4}} \sqrt{1 + t^2} dt$$

$$= \int_{0}^{1} \sqrt{t^2 + t^4} \sqrt{1 + t^2} dt$$

$$= \int_{0}^{1} t(1 + t^2) dt = \frac{t^2}{2} + \frac{t^4}{4} \Big|_{0}^{1} = \frac{3}{4}$$

2.4.3 Somme intégrale

$$\int_{\Gamma} f \simeq \sum_{i} |\Gamma_{i}| f(\gamma(t_{i}))$$
$$\gamma(t_{i}) \in \Gamma_{i}$$
$$\simeq \sum_{i} |\Gamma_{i}| f(\gamma(t_{i}))$$

$$\begin{split} \Gamma_i &= \gamma\left([t_i,t_{i+1}]\right): \ \gamma \text{ une paramétrisation } [a,b] \to \mathbb{R}^d \\ &\text{Donc } \int\limits_{\Gamma} f \simeq \sum ||\gamma(t_i)'||(t_{i+1}-t_i)f(\gamma(t_i)) \simeq \int\limits_a^b ||\gamma'(t)||f(\gamma(t))dt \\ &(t_1) \neq \gamma(t_2) \ \forall t_1,t_2 \in I \text{ (simple) } \gamma: \text{ une paramétrisation.} \end{split}$$

2.5 Def : L'intégrale curviligne pour un champ vectoriel.

 $F: \Gamma \to \mathbb{R}^d \ \Gamma$: courbe γ : paramétrisation sur $[a,b] \int_{\Gamma} F d\vec{l} := \int_a^b F(\gamma(t)) \cdot \gamma'(t) dt \ (\cdot = \text{produit scalaire...})$

• Ex :
$$\int_{\Gamma} F \vec{dl}$$

$$\Gamma = \{(x, y) \in \mathbb{R}^2 : y = \cosh x, x \in [0, 1]\}$$
$$F(x, y) = (x^2, 0) \ \gamma : [0, 1] \to \mathbb{R}^2$$

$$\gamma(t) = (t, \cosh t) \int_{\Gamma} F d\vec{l}$$

$$\Gamma = \int_{0}^{1} F(\gamma(t)) \cdot \gamma'(t) dt = \int_{0}^{1} (t^{2}, 0) \cdot (1, \sinh t) dt$$

$$= \int_{0}^{1} t^{2} dt = \frac{1}{3}$$

2.6 Def : courbe régulière par morceau.

 $\exists \gamma [a, b] \to \mathbb{R}^d \ t_0 = a, ..., t_k = b \text{ tel que} : \gamma \in C^1([t_i, t_{i+1}]) \ \gamma'(t) \neq 0 \ \forall t \neq t_i$

2.7 Def : Γ régulière par morceau:

 $f:\Gamma\to\mathbb{R}$: continue.

$$\int_{\Gamma} f := \sum_{i=0}^{k-1} f(\gamma(t)) ||\gamma'(t)|| dt$$

 $F:\Gamma\to\mathbb{R}^d$: champ vectoriel:

$$\int_{\Gamma} F \vec{dl} := \sum_{i=0}^{k-1} \int_{t_i}^{t_{i+1}} F(\gamma(t)) ||\gamma'(t)|| dt$$

2.7.1 Ex. : Périmètre d'un carré

 $\Gamma_2 \cup \Gamma_3 \cup \Gamma_4$

$$\Gamma_1 = \{(t,0) : t \in [0,1]\}$$

$$\Gamma_2 = \{(1,t-1) : t \in [1,2]\}$$

$$\Gamma_3 = \{(3-t,1) : t \in [2,3]\}$$

$$\Gamma_4 = \{(0,4-t) : t \in [3,4]\}$$

$$\gamma:[0,4]\to\mathbb{R}^2$$

$$\gamma(t) = \gamma_1(t)$$
 [0,1]
 $\gamma_2(t)$ [1,2]
 $\gamma_3(t)$ [2,3]
 $\gamma_4(t)$ [3,4]

$$f = 1$$

$$|\Gamma| = \int_{\Gamma} f = \int_{0}^{1} ||\gamma'(t)|| dt + \int_{1}^{2} ||\gamma'(t)|| dt + \int_{2}^{3} ||\gamma'(t)|| dt + \int_{3}^{4} ||\gamma'(t)|| dt$$

$$(||\gamma'(t)|| = 1) = \int_{0}^{1} 1 + \int_{1}^{2} 1 + \int_{2}^{3} 1 + \int_{3}^{4} = 4$$

$$\int\limits_{\Gamma} f = \sum_{i=1}^4 \int\limits_{\Gamma_i}$$

$$\Gamma_2: \{(1,t)t \in [0,1]\}$$

3 Chapitre 3

Champs qui dérivent d'un potentiel

3.1 Def:

 Ω ouvert \mathbb{R}^n

$$F:\Omega\to\mathbb{R}^n$$

$$F(x) = (F_1(x), ..., F_n(x))$$

On dit que F dérive d'un potentiel sur Ω . Si $\exists f: \Omega \to \mathbb{R}$ $f \in C^1(\Omega): \nabla f = Fds\Omega$

3.1.1 Exemple

$$F(x) = x$$

$$f(x) = \frac{1}{2}||x||^2 = \frac{1}{2}\sum_{i=1}^{n} x_i^2$$

$$\nabla f = F$$

F: dérive d'un potentiel.

3.2 Théorème

F dérive d'un potentiel, $F \in C^{1}(\Omega) \text{ Alors}$ $\frac{\delta F_{i}}{\delta x_{j}}(x) = \frac{\delta F_{j}}{\delta x_{i}}(x) \forall i, j \in \{1, ..., n\}, \ \forall x \in \Omega$

3.2.1 Preuve

F dérive d'un potentiel de f $f \in C^{1}(\Omega) \$$ $\nabla f(x) = F(x) \forall x \in \Omega$ $\operatorname{Car} F \in C^{1}(\Omega) \text{ on a}$ $f \in C^{2}(\Omega)$ $\operatorname{Donc} \frac{\delta^{2} f}{\delta x_{i} \delta x_{j}}(x) = \frac{\delta^{2} f}{\delta x_{j} \delta x_{i}}(x) \ \forall i, j \in \{1, ..., n\}, \ \forall x \in \Omega \ (1)$ $\operatorname{On a} F_{i}(x) = \frac{\delta f}{\delta x_{i}}(x) \ \forall x \in \Omega, \ \forall i$ $\frac{\delta^{2} f}{\delta x_{j}}(x) = \frac{\delta^{2} f}{\delta x_{j} \delta x_{i}}(x) \ \forall x \in \Omega, \ \forall i, j \ (2)$ $\frac{\delta^{2} f}{\delta x_{i}}(x) = \frac{\delta^{2} f}{\delta x_{i} \delta x_{j}}(x) \ \forall x \in \Omega, \ \forall i, j \ (3)$ $(1) \ (2) \ (3) \Rightarrow \frac{\delta F_{i}}{\delta x_{j}}(x) = \frac{\delta^{2} f}{\delta x_{i}}(x)$

3.3 Question:

F: régulier, suppossons $\frac{\delta F_i}{\delta x_j} = \frac{\delta F_j}{\delta x_i} \ \forall x \in \Omega, \ \forall i,j$ Est-ce que F dérive d'un potentiel ?

3.3.1 Réponse

Vrai si Ω convexe ou simplement connexe. "pas vrai": si Ω n'est pas simplement connexe.

3.4 Théorème

 Ω : ouver connexe

$$F: \Omega \to \mathbb{R}^n : F \in C(\Omega, \mathbb{R}^n)$$

Les affirmations suivantes sont équivalentes :

- 1. F dérive d'un potentiel
- 2. $\int\limits_{\Gamma} F dl = 0 \ \forall F$: fermée, régulière, par morceaux, dans Ω

3.4.1 Preuve

 $(1) \Rightarrow (2)$

F: dérive d'un potentiel

 $\exists f \in C^1(\Omega) \colon \nabla f(x) = F(x) \ \forall x \in \Omega$

 Γ : courbe fermée régulière.

 $\gamma:[a,b]:\Gamma=\gamma([a,b])$ et $\gamma(a)=\gamma(b)$

On calcule

$$\int_{\Gamma} F d\vec{l} = \int_{a}^{b} F(\gamma(t))\gamma'(t)dt$$

$$= \int_{a}^{b} \nabla f(\gamma(t))\gamma'(t)dt$$

$$= \int_{a}^{b} \frac{d}{dt} [f(\gamma(t))] dt$$

$$= f(\gamma(b)) - f(\gamma(a)) = 0$$

 $(2) \Rightarrow (1)$

On sait :

 $\int\limits_{\Gamma} F \vec{dl} = 0 \ \forall \Gamma$ fermée régulière.

 Ω convexe.

On montre \bar{f} dérive d'un potentiel

On va essayer de trouver f tel que

 $\nabla f = F$

On fixe : $x_0 \in \Omega$.

Pour
$$x \in \Omega$$
, $[x_0, x] = x_0 + t(x - x_0) t \in [0, 1]$

Définition :
$$f(x) = \int F d\vec{l}$$

$$[x_0, x]$$

 $\Omega \text{ convexe} \Rightarrow [x_0, x] \subset \Omega \ \forall x \in \Omega$

On montre:

$$\nabla f(x) = F(x) \ \forall x \in \Omega$$

Rappel

$$\frac{f(y) - f(x)}{f(y) - f(x)} = \nabla f(x)(y - x) + o(||y - z||)
f(y) - f(x) = \int_{[x_0, y]} F dl - \int_{[x_0, x]} F dl$$

On a

$$\int\limits_{[x_0,x]} Fdl + \int\limits_{[x,y]} Fdl + \int\limits_{[y,x_0]} Fdl = 0$$

Donc:

$$f(y) - f(x) = \int_{[x_0, y]} + \int_{[x, y]} + \int_{[y, x_0]}$$
$$= \int_{[x, y]} F d\vec{l}$$

$$[x,y] = \{x + t(y-x) : t \in [0,1]\}$$

$$= \int_{0}^{1} F(\gamma(t))\gamma'(t)dt$$

$$= \int_{0}^{1} F(\gamma(t))(y-x)dt$$

$$\sim \int_{0}^{1} F(x)(y-x)dt = F(x)(y-x)$$

3.5 Def: Convexe

 Ω convexe si et seulement si $\forall x,y\in\Omega$ $[x,y]\subset\Omega$ image non-convexe, convexe

3.6 Def: Connexe

 Ω simplement connexe si et seulement si image connexe

3.7 Exemple

$$F(x,y) = (4x^3y^2, 2x^4y + y)$$
 Montrer que F dérive d'un potentiel dans \mathbb{R}^2 Solution: On cherche $f: \nabla f = F \in \mathbb{R}^2$
$$\frac{\delta f}{\delta x} = 4x^3y^2 \Rightarrow f(x,y) = x^4y^2 + g(y)$$

$$\frac{\delta f}{\delta y} = 2x^4y + y$$

$$\frac{\delta f}{\delta y} = 2x^4y + g'(y) = 2x^4y + y$$
 Donc $g'(y) = y$
$$g(y) = \frac{1}{2}y^2 + C$$
 Alors $f(x,y) = x^4y^2 + \frac{1}{2}y^2 + C$ Autre possiblité:
$$f(x,y) = \int [0,(x,y)] F dl$$

$$\{\gamma(t) = (tx,ty) \ t \in [0,1]\}$$

$$\begin{split} f(x,y) &= \\ &= \int_0^1 F(tx,ty)(x,y)dt \\ &= \int_0^1 (4t^3x^3t^2y^2,2t^4x^4ty+ty)(x,y)dt \\ &= \int_0^1 (4t^5x^4y^2+2t^5x^4y^2+ty^2)dt \\ &= \int_0^1 (6t^5x^4y^2+ty^2)dt \\ &= x^4y^2 + \frac{1}{2}y^2 \end{split}$$

3.8 Exemple

$$F = (2x \sin z, ze^y, x^2 \cos + e^y)$$
Potentiel de F ?
$$\frac{\text{Solution}}{\delta f} \text{ On cherche } f: \nabla f = F$$

$$\frac{\delta f}{\delta x} = 2x \sin z \Rightarrow f(x, y, z) = x^2 \sin + f_1(y, z)$$

$$\frac{\delta f}{\delta x} = ze^y = \frac{\delta f_1}{\delta y}(y, z) \Rightarrow f_1(y, z) = ze^y + f_2(z)$$

$$\frac{\delta f}{\delta z} = x^2 \cos z + e^y = e^y + f_2'(z) + x^2 \cos z$$

$$f_2'(z) = 0 \Rightarrow f_2(z) = C$$

$$f(x, y, z) = x^2 \sin z + ze^y + C$$

3.9 Exemple

$$\begin{split} F &= \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right) \\ &\text{F est d\'efinit sur $\mathbb{R}^2 \setminus \{(0,0)\}$\$\$} \\ &\text{Montrer :} \\ &\frac{\delta F_1}{\delta y} = \frac{\delta F_2}{\delta x} \\ &\text{Montrer : F ne d\'erive pas d'un potentiel} \\ &\frac{\delta F_1}{\delta y} = \frac{-1(x^2 + y^2) + y2y}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \\ &\frac{\delta F_2}{\delta x} = \frac{1(x^2 + y^2) - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \end{split}$$

 Γ L le cercle unité. $\gamma(t) = (\cos t, \sin t) \ t \in [0, 2\pi]$

$$\int_{\Gamma} F dl = \int_{0}^{2\pi} (-\sin t, \cos t)(-\sin t, \cos t)dt$$
$$= \int_{0}^{2\pi} 1 dt = 2\pi$$