Krzysztof Pszeniczny

nr albumu: 347208 str. 1/3 Seria: 6

Zadanie 1

Oznaczmy wierzchołki tego siedmiokąta przez A_1, \ldots, A_7 (w tej kolejności), przy czym w razie potrzeby będę przyjmował $A_8 = A_1, A_9 = A_2, \ldots$

Oznaczmy X_i – zbiór punktów leżących po tej stronie prostej A_iA_{i+3} , po której nie leżą punkty A_{i+1}, A_{i+2} (tj. nie leży tam czworokąt $A_i, A_{i+1}, A_{i+2}, A_{i+3}$).

Teza sprowadza się do pokazania, że $X_1 \cap X_2 \cap ... \cap X_7 \neq \emptyset$. Istotnie, punkt o którym mowa w tezie należy do tego przecięcia, zaś łatwo widać, że to przecięcie leży we wnętrzu siedmiokąta (np. zauważając, że $X_1 \cap X_5$ jest kątem o wierzchołku w punkcie A_1 , i przecinając go z półpłaszczyzną X_3 łatwo widzimy, że uzyskamy zbiór ograniczony zawarty wewnątrz siedmiokąta.

Jednak zbiory X_i są wypukłe w \mathbb{R}^2 , zatem wystarczy pokazać (na mocy lematu udowodnionego na ćwiczeniach), że dowolne trzy zbiory X_i, X_j, X_k mają niepuste przecięcie.

Rozpatrzmy więc pewne X_i, X_j, X_k . Oczywiście można rozpatrywać tylko takie trójki, że i, j, k są parami różne, gdyż naszych zbiorów jest więcej niż dwa, więc żadne przypadki zdegenerowane nie wchodzą w grę. (Gdyby np. $X_i \cap X_j = \emptyset$, to wystarczy dobrać dowolne inne X_k , nie trzeba powtarzać i lub j).

Rozpatrzmy punkty $A_i, A_j, A_k, A_{i+3}, A_{j+3}, A_{k+3}$, tj. wierzchołki rozważanych przekątnych. Mamy dwa przypadki: albo pewne dwa spośród nich się pokrywają, albo są one parami różne i wtedy po prostu są to wszystkie wierzchołki siedmiokąta za wyjątkiem jednego.

Rysunek 1: Rysunki do zadania pierwszego

W pierwszym przypadku, widzimy, że mamy sytuację, że rozpatrujemy dwie przekątne wychodzące z tego samego wierzchołka R, zatem przecięcie odpowiednich zbiorów X. jest kątem, a dorzucenie kolejnej przekątnej obetnie ten kąt, ale z wypukłości danego siedmiokąta widzimy, że ta trzecia przekątna musi przecinać tamten kąt, bo inaczej R nie byłby wierzchołkiem wypukłego siedmiokąta.

W drugim przypadku bez straty ogólności możemy założyć, że mamy użyte (każdy dokładnie raz) wszystkie wierzchołki siedmiokąta za wyjątkiem A_1 . Teraz widzimy, że z A_5 wychodzi teraz tylko jedna przekątna odcinająca czworokąt, mianowicie przekątna A_2A_5 . Zatem musieliśmy jej użyć, skąd nie mogliśmy użyć przekątnej A_2A_6 , zatem musieliśmy użyć przekątnej A_6A_3 (bo coś musi być incydentne z A_6), zatem nie mogliśmy użyć A_3A_7 , zatem musieliśmy użyć A_4A_7 .

Stąd w tym przypadku badamy przecięcie $X_2 \cap X_3 \cap X_4$, ale jak łatwo widać, A_1 wraz z pewnym swoim otoczeniem należy do $X_2 \cap X_3 \cap X_4$, zatem jest to zbiór niepusty.

Stąd dowolne trzy spośród zbiorów X_i się przecinają, zatem wszystkie się przecinają.

Krzysztof Pszeniczny

nr albumu: 347208 str. 2/3 Seria: 6

Zadanie 3

Ujednorodnijmy równanie: $x^4 + y^4 - x^2yz = 0$ i oznaczmy $F(x,y,z) = x^4 + y^4 - x^2yz$. Na mocy faktu z ćwiczeń, punkt osobliwy (a,b,c) ma $F'_x(a,b,c) = F'_y(a,b,c) = F'_z(a,b,c) = 0$. Ale $F'_z(a,b,c) = -a^2b$, zatem a = 0 lub b = 0. Stąd jednak łatwo uzyskujemy, że a = b = 0, przez wstawienie do równania krzywej.

Zatem jedynym punktem osobliwym jest [0:0:1], czyli (0,0), i istotnie spełnia on $F'_x(a,b,c) = F'_y(a,b,c) = F'_z(a,b,c) = 0$.

Jak łatwo widać, jeśli dla jakiegoś punktu mamy x = 0, to y = 0, zatem dowolny punkt różny od (0,0) możemy połączyć z punktem (0,0) prostą nierównoległą do osi OY.

Zapiszmy więc równanie $y=\alpha x$. Wtedy mamy $x^4+\alpha^4 x-\alpha x^3=0$, zatem (ponieważ punkt (0,0)) nas nie interesuje, uzyskujemy $x=\frac{\alpha}{1+\alpha^4}$, skąd $y=\frac{\alpha}{1+\alpha^4}$.

Stąd ponieważ dla jednego α uzyskaliśmy dokładnie jeden punkt, i dla każdego niezerowego punktu można dobrać α , widzimy, że $\alpha \mapsto \left(\frac{\alpha}{1+\alpha^4}, \frac{\alpha^2}{1+\alpha^4}\right)$ jest parametryzacją tej krzywej.

Ponadto przyjmując $\alpha=0$ uzyskujemy punkt (0,0), zatem pomimo naszego pierwotnego wykluczenia go, uzyskaliśmy go i łatwo widać, że $\alpha=0$ to jedyny możliwy wybór α , dla którego go uzyskamy. Zatem jest to parametryzacja.

Zadanie 4

Zapiszmy $g(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$, $h(x) = b_m x^m + b_{m-1} x^{m-1} + \ldots + b_m$. Połóżmy $F([x:z]) = [a_n x^n z^0 + a_{n-1} x^{n-1} z^1 + a_{n-2} x^{n-2} z^2 + \ldots + a_0 x^0 z^n : b_m x^m z^0 + b_{m-1} x^{m-1} z^1 + \ldots + b_0 x^0 z^m]$. Jest to na każdej współrzędnej wyrażenie jednorodne, zatem jest to dobrze zdefiniowane przekształcenie przestrzeni rzutowej w samą siebie.

Ponadto jeśli $h(x) \neq 0$, zaś z = 1, uzyskujemy łatwo, że F([x, 1]) = [f(x), 1].

Zadanie 5

Możemy patrzeć na formę dwuliniową $f(\mathbf{x}, \mathbf{y})$ opisaną macierzą A, niech ponadto $\mathbf{e}_0, \dots, \mathbf{e}_{n-1}$ będzie bazą standardową.

Dla n=1 mamy, że macierz ta już jest diagonalna (bo jest zerowa), więc ona sama jest odpowiedzią. Dla n>1 widzimy, det $A\neq 0$. Istotnie, gdyby dodać do pierwszego wiersza tej macierzy wszystkie pozostałe, uzyskalibyśmy, że składałby się on z samych (n-1)-ek, dzieląc przez (n-1) mielibyśmy tam wiersz złożony z samych jedynek, i teraz odejmując go od każdego pozostałego wiersza uzyskalibyśmy, że te pozostałe wiersze byłyby zerowe, za wyjątkiem minus jedynek na przekątnej, i teraz dodając te wiersze do pierwszego uzykalibyśmy już macierz diagonalną z niezerowymi wyrazami na przekątnej. Stąd jest to macierz nieosobliwa.

Wtedy
$$f(\mathbf{x}, \mathbf{y}) = f((x_0, \dots, x_{n-1}), (y_0, \dots, y_{n-1})) = \sum_{i \neq i} x_i y_i$$
.

Rozważmy najpierw $n = 2^k$. Zauważmy teraz, że jeśli $y_0 + \ldots + y_{n-1} = S$, to

$$f(\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{n-1} x_i (S - y_i)$$
 (1)

Zatem w szczególności dla S=0, mamy, że

$$f(\mathbf{x}, \mathbf{y}) = -\sum_{i=0}^{n-1} x_i y_i \tag{2}$$

Oznaczmy $\mathbf{v}_{r,r+2p-1}=(\mathbf{e}_r+\ldots+\mathbf{e}_{r+p-1})-(\mathbf{e}_{r+p}+\ldots+\mathbf{e}_{r+2p-1})$. Wszystkie te wektory mają S (to jest sumę współrzędnych równą zeru).

Wtedy łatwo widzimy, że jeśli $[r,r+2p-1]\cap [r',r'+2p'-1]=\varnothing$, to $f(\mathbf{v}_{r,r+2p-1},\mathbf{v}_{r'+2p'-1})=0$, co wynika łatwo z 2, gdyż pozycje niezerowych współrzędnych są różne. Tak samo mamy, jeśli $[r,r+2p-1]\subseteq [r',r'+p'-1]$: we wzorze 2 mamy wtedy, że dla x_i niezerowych (tj. $i\in [r,r+2p-1]$) mamy $y_i=1$, zatem $f(\mathbf{v}_{r,r+2p-1},\mathbf{v}_{r'+2p'-1})=-\sum x_i=0$. Analogicznie dla $[r,r+2p-1]\subseteq [r'+p',r'+2p'-1]$ – mamy tam $y_i=-1$.

Krzysztof Pszeniczny

nr albumu: 347208 str. 3/3Seria: 6

Widać, że układ $W = (\mathbf{v}_{2^s d, 2^s (d+1)-1})_{s=1,\dots,kd=1,2,\dots,2^{k-s-1}}$ ma tę własność, że jego wektory są parami ortogonalne, zaś każdy z nich ma kwadrat (w sensie formy) ujemny. Istotnie, każda para różnych wektorów podpada pod któryś z wymienionych wyżej przypadków. Intuicyjnie: bierzemy najpierw wektory e dwójkami: zerowy z pierwszym, drugi z trzecim, czwarty z piątym, ..., potem czwórkami: od zerowego do trzeciego, od czwartego do siódmego, ..., potem ósemkami, szesnastkami, ..., przy czym w każdej takiej grupie pierwszą połowę bierzemy ze znakiem plus, a drugą ze znakiem minus. Ponadto dowolny taki wektor ma kwadrat ujemny, co wynika wprost ze wzoru 2, gdyż wystąpi tam minus suma kwadratów współrzędnych wektora.

Biorąc jeszcze wektor $s=e_0+\ldots+e_{n-1}$ widzimy, że jego kwadrat (w sensie formy) jest dodatni (przez bezpośredni rachunek). Gdy teraz weźmiemy dowolny wektor $\mathbf{u} \in W$, to licząc $f(\mathbf{s}, \mathbf{u})$ ze wzoru 2 uzyskujemy łatwo, że ponieważ wszystkie $x_i=1$, to $f(\mathbf{s},\mathbf{u})=-\sum y_i=0$. Zatem układ $W\cup\{\mathbf{s}\}$ jest układem ortogonalnym wektorów, z których jeden ma kwadrat dodatni, zaś $2^{k-1}+2^{k-2}+\ldots+1=2^k-1$ kwadrat ujemny. Tych wektorów jest n, zatem jest to baza. Zatem w przypadku $n = 2^k$ dla k > 0, wynikową macierzą jest $diag(1,-1,-1,-1,-1,\ldots,-1).$

Rozpatrzmy teraz dowolne n > 1. Istnieje takie k, żeby $2^k \ge n$. Niech F będzie formą dwuliniową opisaną macierzą jak z zadania, lecz wymiaru 2k, niech V będzie przestrzenią na której działa forma F, zaś V₁ będzie przestrzenią rozpiętą przez pierwszych n wektorów bazowych. Wtedy oczywiście $f = F_{|V_1 \times V_1}$. Mamy, że f i F są nieosobliwe, zatem wystarczy wyznaczyć tylko sygnaturę f.

Sygnatura f musi zawierać chociaż jedną jedynkę, gdyż wektor $s = e_0 + \ldots + e_{n-1}$ ma kwadrat dodatni (dowód jak wyżej dla $n=2^k$), więc forma ta nie może być ujemnie określona. Gdyby jednak zawierała więcej niż jedną jedynkę, mielibyśmy sprzeczność, gdyż biorąc V_2 – dopełnienie ortogonalne do sumy prostej mielibyśmy, że liczba jedynek w sygnaturze F (która jest równa jeden) jest sumą liczby jedynek w sygnaturze $F_{|V_1 \times V_1}$ (większej niż jeden) oraz $F_{|V\rangle \times V\rangle}$ (nieujemnej). Zatem sprzeczność, i f ma sygnaturę: jedna jedynka, n-1minus jedynek, zatem A jest kongruentna do macierzy diag $(1,-1,-1,-1,\ldots,-1)$.

Zadanie 6

Przez de facto przeformułowanie definicji widzimy: X jest podprzestrzenią izotropową wtedy i tylko wtedy, gdy $X \subseteq X^{\perp}$, zaś $f_{|X \times X}$ jest niezdegenerowana wtedy i tylko wtedy, gdy $X \cap X^{\perp} = \emptyset$.

Mamy teraz, że $(U+W)^{\perp}=U^{\perp}\cap W^{\perp}$. Istotnie, jeśli coś jest ortogonalne do sumy U i W, to musi też oczywiście być ortogonalne do każdego z U, W, a jeśli coś jest ortogonalne do U i do W, to z dwuliniowości formy musi być też ortogonalne do U+W. Teraz mamy, że $(U+W)\cap (U+W)^{\perp}=(U+W)\cap U^{\perp}\cap W^{\perp}=(\dagger)$.

Ponieważ $U \subseteq U^{\perp}$, to $(U + W) \cap U^{\perp} = U + (W \cap U^{\perp})$ (gdyż dodawanie elementów U nie wyprowadza nas $z U^{\perp}$). Teraz $(\dagger) = (U + (W \cap U^{\perp})) \cap W^{\perp}$. Ponieważ $W \cap U^{\perp} \subseteq W \subseteq W^{\perp}$, to $(\dagger) = (U \cap W^{\perp}) + (W \cap U^{\perp})$.

Załóżmy teraz, że $f_{|(U+W)\times(U+W)}$ jest niezdegenerowana. Wtedy $\{0\}=(U+W)\cap(U+W)^{\perp}=(\dagger)=(\dagger)$ $(U \cap W^{\perp}) + (W \cap U^{\perp})$. Zatem $U \cap W^{\perp} = W \cap U^{\perp} = \{0\}$. Oznaczając $n = \dim V$ mamy $\dim U + (n - \dim V) \leq n$, $\dim W + (n - \dim U) \leq n$, skąd $\dim U = \dim W$, zatem $U \oplus W^{\perp}$ jest wymiaru n, czyli $U \oplus W^{\perp} = V$. Analogicznie $W \cap U^{\perp} = V$.

Załóżmy teraz, że $V=U\oplus W^{\perp}$. Zauważmy, że ponieważ $U\subseteq (U^{\perp})^{\perp}$ oraz $X^{\perp}+Y^{\perp}\subseteq (X\cap Y)^{\perp}$ (gdyż $X \cap Y \subseteq X, Y$), to $V = W^{\perp} + U \subseteq W^{\perp} + (U^{\perp})^{\perp} \subseteq (W \cap U^{\perp})^{\perp}$, zatem $(W \cap U^{\perp})^{\perp} = V$, skąd z niezdegenerowaności formy mamy $W \cap U^{\perp} = \{0\}$. Stąd ponieważ $U \cap W^{\perp} = W \cap U^{\perp} = \{0\}$, to $(U + W) \cap (U + W)^{\perp} = (\dagger) = \{0\}$, zatem $f_{|(U+W)\times(U+W)}$ jest niezdegnerowana.

Analogicznie postępujemy, jeśli $V = W \oplus U^{\perp}$.