10

Diagram **NOT** accurately drawn

Figure 1

A conical container is fixed with its axis of symmetry vertical. Oil is dripping into the container at a constant rate of $0.4 \text{ cm}^3/\text{s}$. At time t seconds after the oil starts to drip into the container, the depth of the oil is h cm. The vertical angle of the container is 60° , as shown in Figure 1

When t = 0 the container is empty.

(a) Show that
$$h^3 = \frac{18t}{5\pi}$$

(4)

Given that the area of the top surface of the oil is $A \text{ cm}^2$

(b) show that
$$\frac{dA}{dt} = \frac{4}{5h}$$

(6)

(c) Find, in cm²/s to 3 significant figures, the rate of change of the area of the top surface of the oil when t = 10

(2)

DO NOT WRITE IN THIS AREA

Question 10 continue	ed		

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 10 continued	
	(Total for O
	(Total for Question 10 is 12 marks) TOTAL FOR PAPER IS 100 MARKS

