

Relation Database Service (RDS)

On Prem Database Servers issues

- Customer has to managed on premises database servers.
- Updates, patches on OS by customer.
- Responsible for backups and restore
- No Monitoring dashboard.
- Performance issues, adding new servers for HA.
- Very difficult for DR
- Maintenance windows for upgrades
- Scaling capability Issues.

lurei

Amazon RDS

- Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud.
- So people often develop a misconception, when they confuse RDS with a database.
- RDS is not a database, it's a service that manages databases.

RDS Database Engines

Engine options

Advantage over using RDS vs DB on EC2

- RDS is a AWS managed Service.
- OS patching level
- Continuous backups and restore to specific timestamp (point in time restore)
- Monitoring dashboard.
- Read replicas for improved read performance
- Multi AZ setup for DR
- Maintenance windows for upgrades
- Scaling capability (vertical and horizontal)
- You cant SSH or Remote to RDS instance.

RDS Read Replicas for read scalability

- Up to 5 Read replicas
- With in AZ, Cross AZ or cross region.
- Replication is ASYNC, So reads are eventually Consistent
- Replicas can be promoted to their own DB.
- Applications must update the connection string to leverage read replicas.

Read Replica in Depth

- Read Replicas help scaling read traffic
- A Read Replica can be promoted as a standalone database (manually).
- Read Replicas can be with in AZ, Cross AZ or Cross Region.
- Each Read Replica has its own DNS endpoint.
- You can have Read replicas of Read Replicas.
- Read Replicas can be Multi-AZ
- Read Replicas help with DR by using cross region RR
- RDS Read Replicas are not supported for Oracle.
- Read Replicas can be used to run BI / Analytics Reports for example.

RDS Multi AZ (Disaster Recovery)

- SYNC replication
- One DNS name automatic app failover to standby.
- Increase availability
- Failover in case of loss of AZ, loss of network
- Instance or storage failure.
- No manual intervention in apps
- Not used for scaling.

Application

One DNS name - automatic failover

Multi AZ in Depth

- Multi AZ is not used to support the reads.
- The failover happens only in the following conditions:
 - The primary DB instance fails
 - An Availability Zone outage
 - The DB instance server type is changed.
 - The operating system of the DB instance is undergoing software patching.
 - □ A manual failover of the DB instance was initiated using Reboot with failover
- No failover for DB operations: long-running queries, deadlocks or database corruption errors.
- Endpoint is the same after failover (no URL change in application needed).
- Lower maintenance impact it happens on the standby, which is then promoted to master.
- Backups are created from the standby
- Multi AZ is only within a single region, not cross region. Region outages impact availability

RDS Backup

- Backups are automatically enabled in RDS
- Automated backups:
- Daily full snapshot of the database
- Capture transaction logs in real time
- Ability to restore to any point in time
- 7 days retention (can be increased to 35 days)
- DB Snapshots:
- Manual triggered by the user
- Retention of backup for as long as you want

RDS Encryption

- Encryption at rest capability with AWS KMS AES-256 encryption .
- SSL certificates to encrypt data to RDS in flight
- To enforce SSL:
 - PostgreSQL: rds.force ssl = 1 in the AWS RDS Console (Parameter Groups)
 - MYSQL: Within the DB:

GRANT USAGE ON *.* TO 'mysqluser'@'%' REQUIRE SSL;

- To <u>connect</u> using SSL:
 - Provide the SSL Trust certificate (can be download from AWS).
 - Provide SSL options when connecting to database.

RDS Security

- RDS databases are usually deployed within a private subnet, not in a public one.
- RDS security works by leveraging security groups (the same concept as for EC2 instances) – it controls who can communicate with RDS.
- IAM policies help control who can manage AWS RDS.
- Traditional Username and Password can be used to login to the database.
- IAM users can now be used too (for MYSQL/Aurora NEW)

RDS Security

Encryption at rest:

- Is done only when you first create the DB instance
- Or: unencrypted DB => snapshot=> copy snapshot as encrypted => create DB from snapshot.

Your Responsibility

- Check the ports / IP /Security group inbound rules in DB SG
- In-database user creation and permissions
- Creating a database with or without public access
- Ensure parameter groups or DB is configured to only allow SSL connections.

AWS Responsibility

- No SSH access.
- No manual DB patching
- No manual OS patching
- No way to audit the underlying instance

RDS DB Parameters Group

- You can configure the DB engine using Parameter Groups
- Dynamic parameters are applied immediately.
- Static parameters are applied after instance reboot.
- You can modify parameter group associated with a DB(must reboot).
 - PostgreSQL : rds.force_ssl = 1 in the AWS RDS Console (Parameter Groups)
 - MYSQL: Within the DB:

GRANT USAGE ON *.* TO 'mysqluser'@'%' REQUIRE SSL;

RDS with Cloudwatch

- CloudWatch metrics associated with RDS(gathered from the hypervisor).
 - DatabaseConnections
 - SwapUsgae
 - ReadIOPS / WriteIOPS
 - ReadLatency / WriteLatency
 - ReadThorughPut / WriteThroughPut
 - DiskQueueDepth
 - FreeStorageSpace
- Enhanced Monitoring (gathered from an agent on the DB instance)
 - Useful when you need to see how different processes or threads use the CPU
 - Access to over 50 new CPU, memory, file system and disk I/O metrics

RDS Performance Insights

- Visualize your database performance and analyze any issues that affect it
- With the Performance Insight dashboard, you can visualize the database load and filter the load:
 - By waits => find the resource that is bottleneck(CPU, lock, IO, etc)
 - By SQL statements => find the SQL statement that is the problem
 - By Hosts => find the server that is using the most our DB
 - By Users => find the user that is using the most our DB
- DBLoad = the number of active sessions for the DB engine
- You can view the SQL queries that are putting load on your database.

RDS vs Aurora

- Aurora is a proprietary technology from AWS(not open sourced).
- Postgres and MYSQL are both supported as Aurora DB (that means your drivers will work as if Aurora was a Postgres or MYSQL database).
- Aurora is "AWS Cloud Optimized" and claims 5x performance improvement over MYSQL on RDS, over 3x the performance of Postgres on RDS.
- Aurora storage automatically grows in increments of 10GB, up to 64TB.
- Aurora can have 15 replicas while MYSQL has 5, and the replication process is faster (sub 10 ms replica lag).
- Failover in Aurora is instantaneous. Its HA native
- Aurora costs more than RDS (20% more) but is more efficient

Aurora HighAvailability and Read Scaling

- 6 copies of your data across 3 AZ
 - 4 copies out of 6 needed for writes
 - 3 copies out of 6 need for reads
 - Self healing with peer-to-peer replication
 - Storage is striped across 100s of volumes
- One Aurora Instance takes writes(master)
- Automated failover for master in less than 30 seconds
- Master + up to 15 Aurora Read Replicas
- Supports for Cross Region Replication

Aurora DB Cluster

Features of Aurora

- Automatic Failover
- Backup and Recovery
- Isolation and Security
- Industry Compliance
- Push-button Scaling
- Automated Patching with Zero Downtime
- Advanced Monitoring
- Routine Maintenance
- Backtrack: restore data at any point in time without using backups

Aurora Security

- Encryption at rest using KMS
- Automated backups, snapshots and replicas are also encrypted
- Encryption in flight using SSL
- Authentication using IAM
- You are responsible for protecting the instance with security group.
- You cant SSH.

Aurora Serverless

- No need to choose an instance size
- Only supports MySQL 5.6 (as of Jan 2019) & PostgreSQL (beta)
- Helpful when you cant predict the workload
- DB cluster starts, shutdown and scales automatically based on CPU/connections
- Can migrate from Aurora Cluster to Aurora Serverless and vice versa
- Aurora Serverless usage is measured in ACU (Aurora Capacity Units)
- Billed in 5 minutes increment of ACU

Aurora Overview

- Compatible API for PostgreSQL / MySQL
- Data is held in 6 replicas, across 3 AZ
- Auto healing capability (failovers)
- Multi AZ, Auto Scaling read Replicas
- Read replicas can be Global
- Aurora database can be Global for DR or latency purpose
- Auto scaling of storage from 10 GB to 64 TB
- Define EC2 instance type for aurora instances
- Same security / monitoring / maintenance features as RDS
- Aurora Serverless
- Use Case: same as RDS, but less maintenance / more flexibility / more performance

Aurora for Solutions Architect

- Operations: less operations, auto scaling storage
- Security: AWS responsible for OS security, we are responsible for setting up KMS, security groups, IAM policies, authorizing users in DB, using SSL
- **Reliability**: Multi AZ, highly available, possibly more than RDS, Aurora Serverless option.
- Performance: 5x performance (according to AWS) due to architectural optimization. Up to 15 Read replicas (only 5 for RDS).
- Cost: Pay per hour based on EC2 and Storage usage. Possibly lower cost compared to Enterprise grade databases such as Oracle.

Neptune

Neptune

Fully managed Graph database

When do we user Graphs?

- High relationship data
- Social Networking: Users friends with Users, replied to comment on post of user and like other comments
- Knowledge graphs (Wikipedia)
- Highly available across 3 AZ, with up to 15 read replicas
- Point in time recovery, continuous backup to Amazon S3
- Support KMS encryption at rest + HTTPS

Neptune for Solutions Architect

- Operations: similar to RDS
- **Security**: IAM, VPC, KMS, SSL + IAM Authentication
- Reliability: Multi-AZ, Clustering
- Performance: best Suited for graphs, cluster to improve performance
- Cost: Pay per node provisioned (similar to RDS)
- Remember: Neptune = Graphs

ElasticSearch

ElasticSearch

- Example: In DynamoDB, you can only find by primary key or indexes
- With ElasticSearch, you can search any filed, even partially matches
- Its common to use ElasticSearch as a complement to another database
- ElasticSearch also has some usage for Big Data applications
- You can provision a cluster of instances
- Security though IAM, KMS, SSL and VPC
- Remember : ElasticSearch = Search / Indexing