```
In [3]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          %matplotlib inline
In [34]:
          #read csv is a pandas function to read csv files
          data=pd.read_csv('E:\\NMDS\Admission_Predict.csv')
          data.head()
                Serial
                           GRE
                                                                                           Chance of
Out[34]:
                                     TOEFL
                                                 University
                                                            SOP LOR CGPA Research
                  No.
                          Score
                                     Score
                                                    Rating
                                                                                              Admit
          0
                    1
                                                             4.5
                                                                                    1
                                                                                                0.92
                            337
                                       118
                                                         4
                                                                  4.5
                                                                        9.65
          1
                    2
                            324
                                       107
                                                         4
                                                             4.0
                                                                  4.5
                                                                        8.87
                                                                                    1
                                                                                                0.76
          2
                    3
                                       104
                            316
                                                             3.0
                                                                        8.00
                                                                                    1
                                                                                                0.72
                                                         3
                                                                  3.5
          3
                    4
                            322
                                       110
                                                         3
                                                             3.5
                                                                  2.5
                                                                        8.67
                                                                                                0.80
          4
                    5
                                       103
                                                         2
                                                             2.0
                                                                                   0
                            314
                                                                  3.0
                                                                        8.21
                                                                                                0.65
          data.isnull().sum()
In [37]:
          Serial No.
                                 0
Out[37]:
          GRE Score
                                 0
          TOEFL Score
                                 0
                                 0
          University Rating
          SOP
                                 0
          LOR
                                 0
                                 0
          CGPA
                                 0
          Research
          Chance of Admit
                                 0
          dtype: int64
 In [5]:
          data.isnull().any()
                                 False
          Serial No.
 Out[5]:
          GRE Score
                                 False
          TOEFL Score
                                 False
          University Rating
                                 False
          SOP
                                 False
          LOR
                                 False
          CGPA
                                 False
          Research
                                 False
          Chance of Admit
                                 False
          dtype: bool
          data.info()
In [35]:
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 9 columns):
```

| # | Column            | Non-Null Count | Dtype   |
|---|-------------------|----------------|---------|
|   |                   |                |         |
| 0 | Serial No.        | 400 non-null   | int64   |
| 1 | GRE Score         | 400 non-null   | int64   |
| 2 | TOEFL Score       | 400 non-null   | int64   |
| 3 | University Rating | 400 non-null   | int64   |
| 4 | SOP               | 400 non-null   | float64 |
| 5 | LOR               | 400 non-null   | float64 |
| 6 | CGPA              | 400 non-null   | float64 |
| 7 | Research          | 400 non-null   | int64   |
| 8 | Chance of Admit   | 400 non-null   | float64 |

dtypes: float64(4), int64(5)

memory usage: 28.2 KB

In [36]: data.shape

Out[36]: (400, 9)

In [6]: #let us rename the column chance of Admit because it has trainling space
data=data.rename(columns={'chance of Admit':'chance of Admit'})

In [7]: data.describe()

Out[7]:

|       | Serial No. | GRE Score  | TOEFL<br>Score | University<br>Rating | SOP        | LOR        | CGPA       | Research   |
|-------|------------|------------|----------------|----------------------|------------|------------|------------|------------|
| count | 400.000000 | 400.000000 | 400.000000     | 400.000000           | 400.000000 | 400.000000 | 400.000000 | 400.000000 |
| mean  | 200.500000 | 316.807500 | 107.410000     | 3.087500             | 3.400000   | 3.452500   | 8.598925   | 0.547500   |
| std   | 115.614301 | 11.473646  | 6.069514       | 1.143728             | 1.006869   | 0.898478   | 0.596317   | 0.498362   |
| min   | 1.000000   | 290.000000 | 92.000000      | 1.000000             | 1.000000   | 1.000000   | 6.800000   | 0.000000   |
| 25%   | 100.750000 | 308.000000 | 103.000000     | 2.000000             | 2.500000   | 3.000000   | 8.170000   | 0.000000   |
| 50%   | 200.500000 | 317.000000 | 107.000000     | 3.000000             | 3.500000   | 3.500000   | 8.610000   | 1.000000   |
| 75%   | 300.250000 | 325.000000 | 112.000000     | 4.000000             | 4.000000   | 4.000000   | 9.062500   | 1.000000   |
| max   | 400.000000 | 340.000000 | 120.000000     | 5.000000             | 5.000000   | 5.000000   | 9.920000   | 1.000000   |

In [8]: sns.distplot(data['GRE Score'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='GRE Score', ylabel='Density'>



In [38]: plt.figure(figsize=(10,7))
sns.heatmap(data.corr(),annot=True)

Out[38]: <AxesSubplot:>



```
In [9]: sns.pairplot(data=data,hue='Research',markers=["^","v"],palette='inferno')
```

Out[9]: <seaborn.axisgrid.PairGrid at 0xa498d00>



In [24]: sns.scatterplot(x='University Rating',y='CGPA',data=data,color='red',s=100)

Out[24]: <AxesSubplot:xlabel='University Rating', ylabel='CGPA'>



```
In [25]:
category = ['GRE Score','TOEFL Score','University Rating','SOP','LOR','CGPA','Research
color = ['yellowgreen','gold','lightskyblue','pink','red','purple','orange','gray']
start = True
for i in np.arange(4):
    fig = plt.figure(figsize=(14,8))
    plt.subplot2grid((4,2),(i,0))
    data[category[2*i]].hist(color=color[2*i],bins=10)
    plt.title(category[2*i])
    plt.subplot2grid((4,2),(i,1))
    data[category[2*i+1]].hist(color=color[2*i+1],bins=10)
    plt.title(category[2*i+1])
    plt.subplots_adjust(hspace = 0.7,wspace = 0.2)
    plt.show()
```

```
KeyError
                                           Traceback (most recent call last)
File C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py:3621, in
Index.get loc(self, key, method, tolerance)
   3620 try:
-> 3621
            return self._engine.get_loc(casted_key)
   3622 except KeyError as err:
File C:\ProgramData\Anaconda3\lib\site-packages\pandas\ libs\index.pyx:136, in panda
s. libs.index.IndexEngine.get loc()
File C:\ProgramData\Anaconda3\lib\site-packages\pandas\ libs\index.pyx:163, in panda
s. libs.index.IndexEngine.get loc()
File pandas\_libs\hashtable_class_helper.pxi:5198, in pandas._libs.hashtable.PyObject
HashTable.get item()
File pandas\ libs\hashtable class helper.pxi:5206, in pandas. libs.hashtable.PyObject
HashTable.get item()
KevError: 'LOR'
The above exception was the direct cause of the following exception:
KeyError
                                          Traceback (most recent call last)
Input In [25], in <cell line: 4>()
      5 fig = plt.figure(figsize=(14,8))
      6 plt.subplot2grid((4,2),(i,0))
----> 7 data[category[2*i]].hist(color=color[2*i],bins=10)
      8 plt.title(category[2*i])
      9 plt.subplot2grid((4,2),(i,1))
File C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py:3505, in DataFra
me. getitem (self, key)
   3503 if self.columns.nlevels > 1:
            return self. getitem multilevel(key)
-> 3505 indexer = self.columns.get loc(key)
   3506 if is_integer(indexer):
   3507
            indexer = [indexer]
File C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py:3623, in
Index.get loc(self, key, method, tolerance)
   3621
            return self. engine.get loc(casted key)
   3622 except KeyError as err:
            raise KeyError(key) from err
-> 3623
   3624 except TypeError:
   3625
            # If we have a listlike key, check indexing error will raise
            # InvalidIndexError. Otherwise we fall through and re-raise
   3626
   3627
            # the TypeError.
            self. check indexing error(key)
   3628
KeyError: 'LOR'
                  GRE Score
                                                               TOEFL Score
60
                                              60
40
                                              40
20
                                              20
```

290

300

310

320

330

340

100

95

105

110

115

120



```
array([[1. , 0.92],
Out[28]:
                [1. , 0.76],
                [1. , 0.72],
                [1. , 0.8],
                [0. , 0.65],
                   , 0.9],
                [1.
                [1., 0.75],
                [0., 0.68],
                   , 0.5],
                [0.
                [0., 0.45],
                [1. , 0.52],
                [1. , 0.84],
                [1. , 0.78],
                [1. , 0.62],
                [1. , 0.61],
                [0., 0.54],
                [0., 0.66],
                [1. , 0.65],
                [0. , 0.63],
                [0. , 0.62],
                [1. , 0.64],
                [0. , 0.7],
                [1., 0.94],
                [1., 0.95],
                [1. , 0.97],
                [1., 0.94],
                [0., 0.76],
                [1. , 0.44],
                [0., 0.46],
                [0., 0.54],
                [1., 0.65],
                [1.
                   , 0.74],
                [1. , 0.91],
                [1. , 0.9],
                [1. , 0.94],
                [1. , 0.88],
                [0., 0.64],
                [0. , 0.58],
                [0. , 0.52],
                [0., 0.48],
                [1. , 0.46],
                [1. , 0.49],
                [1. , 0.53],
                [0., 0.87],
                [1. , 0.91],
                [1. , 0.88],
                [1. , 0.86],
                [0. , 0.89],
                [1., 0.82],
                [1. , 0.78],
                [1. , 0.76],
                [1. , 0.56],
                [1. , 0.78],
                [1. , 0.72],
                [0. , 0.7],
                [0., 0.64],
                [0., 0.64],
                [0. , 0.46],
                [1. , 0.36],
                [0., 0.42],
```

[0., 0.48], [0., 0.47], [1. , 0.54], [1. , 0.56], [0., 0.52], , 0.55], [0. [0. , 0.61], [1. , 0.57], [1. , 0.68], [1., 0.78],[1., 0.94],[1. , 0.96], [1. , 0.93], [1. , 0.84], [0., 0.74], [1. , 0.72], [1. , 0.74], [0., 0.64], [1. , 0.44], [0. , 0.46], [1. , 0.5], [1. , 0.96], [1., 0.92],[1., 0.92],[1. , 0.94], [0., 0.76], [0., 0.72], [0. , 0.66], [0., 0.64], [1., 0.74],[1. , 0.64], [0., 0.38], [0., 0.34], [1. , 0.44], [0. , 0.36], [0., 0.42], [0., 0.48], [1. , 0.86], [1. , 0.9], [1. , 0.79], [1. , 0.71], [0., 0.64], [0., 0.62], [0. , 0.57], [1. , 0.74], [1. , 0.69], [1., 0.87],[1. , 0.91], [1. , 0.93], [0., 0.68], [0. , 0.61], [1. , 0.69], [1. , 0.62], [0. , 0.72], [1. , 0.59], [1. , 0.66], [0. , 0.56], [0., 0.45],[0., 0.47], [1. , 0.71], [1. , 0.94], [1. , 0.94], [0., 0.57], [0., 0.61], [0., 0.57], [1. , 0.64], [1. , 0.85], [1. , 0.78], , 0.84], [1. [1., 0.92],[1. , 0.96], [0., 0.77],[0. , 0.71], [0., 0.79], [1. , 0.89], [1. , 0.82], [0., 0.76], [1. , 0.71], , 0.8], [1. [0. , 0.78], [1. , 0.84], [1. , 0.9], [1., 0.92],[1., 0.97],[1. , 0.8], [1. , 0.81], [0., 0.75], [1. , 0.83], [1. , 0.96], [1. , 0.79], [1. , 0.93], [1. , 0.94], [1. , 0.86], [0., 0.79], [0. , 0.8], [0., 0.77], [0. , 0.7], [0. , 0.65], [0. , 0.61], [0. , 0.52], [0., 0.57], [0. , 0.53], [0., 0.67], [0. , 0.68], [1. , 0.81], [0., 0.78], [0. , 0.65], [0., 0.64], [1., 0.64],[0., 0.65], [1. , 0.68], [1. , 0.89], [1. , 0.86], [1. , 0.89], [1. , 0.87], [1. , 0.85], [1. , 0.9], , 0.82], [0. [0. , 0.72], [0., 0.73], [0., 0.71], [0. , 0.71], [0., 0.68], [0., 0.75], [0. , 0.72], [1. , 0.89], [1. , 0.84], [1. , 0.93], [1. , 0.93], [1., 0.88],[1. , 0.9], [1. , 0.87], [1. , 0.86], [1. , 0.94], [0., 0.77], [1. , 0.78], [0., 0.73], [0., 0.73], [0. , 0.7], [0. , 0.72], [1. , 0.73], [1. , 0.72], [1., 0.97],[1., 0.97],[0. , 0.69], [0., 0.57], [0. , 0.63], [1. , 0.66], [0., 0.64], [1. , 0.68], [1. , 0.79], [1. , 0.82], [1. , 0.95], [1. , 0.96], [1. , 0.94], [1. , 0.93], [1. , 0.91], [1. , 0.85], [1. , 0.84], [0., 0.74], [0., 0.76], [0. , 0.75], [0., 0.76], [0. , 0.71], [0. , 0.67], [0. , 0.61], [0. , 0.63], [0., 0.64], [0. , 0.71], [1. , 0.82], [0., 0.73], [1. , 0.74], [0. , 0.69], [0., 0.64], [1. , 0.91], [1., 0.88],[1., 0.85],, 0.86], [1. [0. , 0.7],

[0., 0.59],

[0. , 0.6], [0. , 0.65], [1. , 0.7], [1. , 0.76], [0. , 0.63], [1. , 0.81], [0., 0.72],[0. , 0.71], [1. , 0.8], [1., 0.77],[1., 0.74],[0. , 0.7], [1. , 0.71], [1. , 0.93], [0., 0.85], [0. , 0.79], [0., 0.76], [1. , 0.78], [1. , 0.77], [1. , 0.9], [1. , 0.87], [0., 0.71], [1. , 0.7], [1. , 0.7], [1., 0.75],[0., 0.71], [0., 0.72], [1. , 0.73], [0. , 0.83], [0., 0.77], [1. , 0.72], [0., 0.54], [0. , 0.49], [1. , 0.52], [0. , 0.58], [1. , 0.78], [1., 0.89],[0. , 0.7], [0. , 0.66], [0. , 0.67], [1. , 0.68], [1. , 0.8], [1. , 0.81], [1. , 0.8], [1. , 0.94], [1. , 0.93], [1., 0.92],[1. , 0.89], [0. , 0.82], [0., 0.79], [0., 0.58], [0., 0.56], [0. , 0.56], [1. , 0.64], [1. , 0.61], [0., 0.68], [0. , 0.76], [0. , 0.86], [1. , 0.9], [0., 0.71], [0., 0.62], [0. , 0.66], [1. , 0.65], [1. , 0.73], [0. , 0.62], [1. , 0.74], [1. , 0.79], [1. , 0.8], [0. , 0.69], [0., 0.7], [1. , 0.76], [1. , 0.84], [1. , 0.78], [0., 0.67], [0., 0.66], [0. , 0.65], [0., 0.54],[0., 0.58], [1. , 0.79], [1. , 0.8], [1. , 0.75], [1. , 0.73], [0., 0.72],[0., 0.62], [0. , 0.67], [1. , 0.81], [0., 0.63], [0. , 0.69], [1. , 0.8], [0., 0.43], [1. , 0.8], [1. , 0.73], [1., 0.75],[1. , 0.71], [1. , 0.73], [1. , 0.83], [0., 0.72], [1. , 0.94], [1. , 0.81], [1. , 0.81], [1. , 0.75], [1. , 0.79], [0., 0.58], [0. , 0.59], [0. , 0.47], [0., 0.49], [0., 0.47],[0. , 0.42], [0. , 0.57], [0. , 0.62], [1. , 0.74], [1. , 0.73], [1. , 0.64], [0. , 0.63], [0., 0.59], [0., 0.73],[1., 0.79],[1. , 0.68], [0. , 0.7], [0., 0.81], [1. , 0.85],

```
[1., 0.93],
                [1. , 0.91],
                [0. , 0.69],
                [1. , 0.77],
                [1. , 0.86],
                [1. , 0.74],
                [0., 0.57],
                [0. , 0.51],
                [1., 0.67],
                [0., 0.72],
                [1. , 0.89],
                [1. , 0.95],
                [1. , 0.79],
                [0. , 0.39],
                [0. , 0.38],
                [0. , 0.34],
                [0., 0.47],
                [0. , 0.56],
                [1. , 0.71],
                [1. , 0.78],
                [1. , 0.73],
                [1. , 0.82],
                [0. , 0.62],
                [1. , 0.96],
                [1. , 0.96],
                [0., 0.46],
                [0., 0.53],
                [0. , 0.49],
                [1. , 0.76],
                [0., 0.64],
                [0. , 0.71],
                [1., 0.84],
                [0., 0.77],
                [1. , 0.89],
                [1., 0.82],
                [1. , 0.84],
                [1. , 0.91],
                [0. , 0.67],
                [1. , 0.95]])
In [11]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=101)
         #random state acts as the seed for the random number generator during the split
         NameError
                                                  Traceback (most recent call last)
         Input In [11], in <cell line: 2>()
               1 from sklearn.model_selection import train test split
         ----> 2 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_stat
         e=101)
         NameError: name 'x' is not defined
In [29]: y_train=(y_train>0.5)
         y_train
```

```
NameError
                                                    Traceback (most recent call last)
         Input In [29], in <cell line: 1>()
          ----> 1 y_train=(<mark>y_train</mark>>0.5)
                2 y_train
         NameError: name 'y train' is not defined
In [30]: y_test=(y_test>0.5)
         NameError
                                                    Traceback (most recent call last)
         Input In [30], in <cell line: 1>()
         ----> 1 y_test=(y_test>0.5)
         NameError: name 'y_test' is not defined
In [31]:
         from sklearn.linear model.logistic import LogisticRegression
          cls =LogisticRegression(random state =0)
          lr=cls.fit(x train,y train)
          c:\Users\Tulasi\anaconda3\lib\site.packages\sklearn\utils\validation.py:760: DataConve
          array was expected please change the shape of y to(n samples,), for example using rave
          y = column or 1d(y,warn=true)
          y pred =lr.predict(x test)
          y_pred
           Input In [31]
              c:\Users\Tulasi\anaconda3\lib\site.packages\sklearn\utils\validation.py:760: Data
          Conversionwarn
         SyntaxError: unexpected character after line continuation character
         #Libraries to train Neural network
In [12]:
          import tensorflow as tf
          from tensorflow import keras
          from tensorflow.keras.layers import Dense,Activation,Dropout
          from tensorfrom.keras.optimizers import Adam
         ModuleNotFoundError
                                                    Traceback (most recent call last)
         Input In [12], in <cell line: 2>()
                1 #Libraries to train Neural network
          ----> 2 import tensorflow as tf
                3 from tensorflow import keras
                4 from tensorflow.keras.layers import Dense, Activation, Dropout
         ModuleNotFoundError: No module named 'tensorflow'
         #Initialize the model
In [32]:
         model=Keras.Sequential()
          #Add input layer
          model.add(Dense(7,activation ='relu',input_dim=7))
          #Add hidden Layer
          model.add(Dense(7,activation ='relu'))
```

```
#Add output Laver
         model.add(Dense(1,activation ='linear'))
         model.summary()
         model: "sequential"
         model.summary()
         model: "sequential"
         NameError
                                                 Traceback (most recent call last)
         Input In [32], in <cell line: 2>()
              1 #Initialize the model
         ----> 2 model=Keras.Sequential()
              4 #Add input layer
               5 model.add(Dense(7,activation = 'relu',input_dim=7))
         NameError: name 'Keras' is not defined
In [14]: model.fit(x train, y train, batch size = 20, epochs = 100)
         NameError
                                                 Traceback (most recent call last)
         Input In [14], in <cell line: 1>()
         ----> 1 model.fit(x_train, y_train, batch_size = 20, epochs = 100)
         NameError: name 'model' is not defined
         model.compile(loss = 'binary crossentropy', optimizer = 'adam', metics = ['accuracy'])
In [15]:
         .....
         NameError
                                                 Traceback (most recent call last)
         Input In [15], in <cell line: 1>()
         ---> 1 model.compile(loss = 'binary crossentropy', optimizer = 'adam', metics = ['acc
         uracy'])
         NameError: name 'model' is not defined
In [16]: model.fit(x_train, y_train, batch_size = 20, epochs = 100)
         NameError
                                                Traceback (most recent call last)
         Input In [16], in <cell line: 1>()
         ----> 1 model.fit(x_train, y_train, batch_size = 20, epochs = 100)
         NameError: name 'model' is not defined
In [17]: from sklearn.metrics import accuracy_score
         #make predictions on the training data
         train_predictions = model.predict(x_train)
         print(train_predictions)
```

```
NameError
                                                    Traceback (most recent call last)
         Input In [17], in <cell line: 6>()
                1 from sklearn.metrics import accuracy score
                5 #make predictions on the training data
          ---> 6 train_predictions = model.predict(x_train)
                8 print(train predictions)
         NameError: name 'model' is not defined
In [18]: # Get the training accuracy
          train_acc = model.evaluate(x_train, y_train,verbos=0)[1]
          print(train_acc)
                                                    Traceback (most recent call last)
         NameError
         Input In [18], in <cell line: 2>()
               1 # Get the training accuracy
          ----> 2 train acc = model.evaluate(x train, y train, verbos=0)[1]
                4 print(train acc)
         NameError: name 'model' is not defined
         #Get the test accuracy
In [19]:
          test_acc = model.evaluate(x_test, y_test, verbose=0)[1]
          print(test acc)
         NameError
                                                    Traceback (most recent call last)
         Input In [19], in <cell line: 2>()
                1 #Get the test accuracy
          ----> 2 test_acc = model.evaluate(x_test, y_test, verbose=0)[1]
                3 print(test acc)
         NameError: name 'model' is not defined
In [20]: print(classification report(v test,pred))
           Input In [20]
              print(classification report(v test,pred))
         SyntaxError: invalid syntax
         pred=model.predict(x test)
In [21]:
          pred = (pred>0.5)
          pred
         NameError
                                                    Traceback (most recent call last)
         Input In [21], in <cell line: 1>()
          ----> 1 pred=model.predict(x_test)
               2 \text{ pred} = (\text{pred} > 0.5)
                3 pred
         NameError: name 'model' is not defined
         from sklearn.metrics import accuracy score, recall score, roc auc score, confusion matrix
          print("\nAccuracy_score: %f" %(accuracy_score(y_test,y_pred)*100))
          print("Recall Score: %f" %(recall_score(y_test,y_pred)*100))
```

```
print("ROC_Score: %f" %(roc_auc_score(y_test,y_pred)*100))
        print(confusion matrix(y test,y pred))
        NameError
                                                  Traceback (most recent call last)
        Input In [39], in <cell line: 2>()
              1 from sklearn.metrics import accuracy_score,recall_score,roc_auc_score,confusi
        ----> 2 print("\nAccuracy_score: %f" %(accuracy_score(y_test,y_pred)*100))
              3 print("Recall Score: %f" %(recall score(y test,y pred)*100))
              4 print("ROC_Score: %f" %(roc_auc_score(y_test,y_pred)*100))
        NameError: name 'y_test' is not defined
In [ ]: #save the model in h5 format
        model.save('model5.h')
In [ ]: import numpy as np
        from flask import Flask, request, jsonify, render_teplate
        import pickle
        app=Flask(__name__)
        #import necessary libraries
        from.tensorflow.keras.models import load_model
        #model=pickle.load(open('university.pkl','rb'))
In [ ]: #Load model trained model
        load.model('model.h5')
In [ ]:
        @pp.route('/')
        def.home():
            retun render template('Demo2.html')
```