Midterm

Mark Petersen

Exercise 1. Let $P: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}^{n+1} \{0\}$ be a smooth map, with $P(\lambda x) = \lambda^d P(x)$ for all $\lambda \in \mathbb{R}$ and all $x \in \mathbb{R}^{n+1} \setminus \{0\}$. Prove that the map

$$P_*: \mathbb{RP}^n \to \mathbb{RP}^k$$

 $[x] \mapsto [P(x)]$

is well defined and smooth.

Proof: The projective space \mathbb{RP}^n consists of an equivalence class of points defined by the relation $x \sim y$ iff $x = \lambda y$ for some $\lambda \in \mathbb{R} \setminus \{0\}$. Thus for an equivalence class [x], it can be equally represented as $[\lambda x]$. According the function P_*

$$P_* ([\lambda x]) = [\lambda^d P(x)]$$
$$= [\lambda^d y]$$
$$= [y],$$

which shows that P_* maps an equivalence class [x] to an equivalence class [y] regardless of the representation of [x]; therefore, it is well defined. By definition of the function P_* it maps an equivalence class [x] using the smooth function P to the equivalence class [P(x)]. Since the equivalence class is represented using $x \in \mathbb{R}^{n+1} \setminus \{0\}$, and P is a smooth map on $\mathbb{R}^{n+1} \setminus \{0\}$, P_* is smooth.

Exercise 2. If $S^1 = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$, prove that TS^1 is diffeomorphic to $S^1 \times \mathbb{R}$.

Proof: Let $\gamma:(-\epsilon,\epsilon):S^1$ denote a smooth curve on S^1 such that $\gamma(0)=p,\ (U,\varphi)$ be a chart on S^1 and $\tilde{\gamma}=\varphi\circ\gamma$ denote the smooth curve in local coordinates. The tangent space T_pM is defined as the set of equivalence class of curves such that $\tilde{\gamma}_1'(0)=\tilde{\gamma}_2'(0)$. As stated in class, this is independent of the chart used, so we can define the equivalence class in any chart. The derivative of the curve $\tilde{\gamma}$ at p is

$$\left. \frac{d\tilde{\gamma}}{dt} \right|_{t=0} = \alpha \frac{\partial}{\partial x},$$

where $\alpha \in \mathbb{R}$. Thus, all of the curves in the same equivalence class can be identified by α in the chart (U, φ) . Let $[\gamma]$ represent the equivalence class whose derivative at t = 0 in (U, φ) is

$$\alpha \frac{\partial}{\partial x}$$
,

we can then create a map $f:T_pS^1\to \{p\}\times \mathbb{R}$ defined as

$$f(p, [\gamma]) = (p, \alpha).$$

which shows that T_pS^1 is diffeomorphic to $\{p\} \times \mathbb{R}$ since the map is invertible and smooth in both directions. The tangent bundle is the disjoint union of the tangent spaces; therefore, TS^1 is diffeomorphic to $S^1 \times \mathbb{R}$.

Note: I know you mentioned in class that for U a neighborhood of p, TU is diffeomorphic to $U \times \mathbb{R}$; but this is not always true on the global scale. I don't understand it well enough to know when it holds globally and when it doesn't.

Exercise 3. Let M be a smooth compact manifold (without boundary), of dimension n, and $F: M \to \mathbb{R}^n$ a smooth map. Prove that F cannot be a submersion, and it cannot be an immersion.

Proof: Since M is a smooth compact manifold (without boundary) of dimension n, it is not a subset of \mathbb{R}^n and it can be covered by a finite number of charts denoted (U_i, φ_i) . We denote the differential of F as

$$dF = \frac{\partial}{\partial x} \left(F \circ \varphi^{-1} \right).$$

F is a submersion if $\forall p \in M, dF$ is surjective. Since M and \mathbb{R}^n are of the same dimension, this requires that the rank of dF = 2 for all $p \in M$. F is an immersion if $\forall p \in M, dF$ is injective. This also requires that the rank of dF = 2 for all $p \in M$. Now since F is smooth, it is continuous and thus F(M) is compact which means it is closed and bounded. Let $\gamma: (-\epsilon, \epsilon) \to M$ be a smooth curve such that $F \circ \gamma$ is a curve that moves straight towards a boundary in F(M) and $\frac{d\gamma}{dt} = \text{constant}$. Then there is a $t \in (-\epsilon, \epsilon)$ such that $\frac{dF \circ \gamma}{dt} = 0$ since $F \circ \gamma$ must stay inside F(M). At this point $\gamma(p)$, the differential dF is not rank 2; therefore, F cannot be a submersion nor an immersion.

Exercise 4. Let M be a smooth manifold with Riemannian metric g. Let $\gamma:[a,b]\to M$ be a smooth curve, and $\tau:[c,d]\to[a,b]$ a diffeomorphism. Prove that the length of the curve γ is the same as the length of the curve $\gamma\circ\tau:[c,d]\to M$.

Proof: Let (U,φ) be a chart on $M, \tilde{\gamma}$ be the local representation of γ and $\tilde{\tau}$ be the local representation of $\gamma \circ \tau$ defined as

$$\tilde{\tau} = \tilde{\gamma} \circ \tau.$$

Since τ is a diffeomorphism, it is a differentiable and a homeomorphism. This means that τ is a curve that only moves "forward" from a to b. The length of γ is defined as

$$\ell(\gamma) = \int_{a}^{b} g\left(\frac{d\tilde{\gamma}}{dt}\bigg|_{t}, \frac{d\tilde{\gamma}}{dt}\bigg|_{t}\right)^{1/2} dt,$$

and the length of $\tilde{\tau}$ is

$$\ell\left(\gamma \circ \tau\right) = \int_{c}^{d} g\left(\left.\frac{\partial \tilde{\gamma}}{\partial x}\right|_{\tau(t)} \frac{d\tau}{dt}, \left.\frac{\partial \tilde{\gamma}}{\partial x}\right|_{\tau(t)} \frac{d\tau}{dt}\right)^{1/2} dt$$
$$= \int_{c}^{d} g\left(\left.\frac{\partial \tilde{\gamma}}{\partial x}\right|_{\tau(t)}, \left.\frac{\partial \tilde{\gamma}}{\partial x}\right|_{\tau(t)}\right)^{1/2} \left|\frac{d\tau}{dt}\right| dt,$$

where $\frac{d\tau}{dt}$ is a scalar and we are able to pull it out of the inner product. Notice that for every $\beta \in [c,d]$

$$g\left(\left.\frac{\partial\tilde{\gamma}}{\partial x}\right|_{\tau(t)},\left.\frac{\partial\tilde{\gamma}}{\partial x}\right|_{\tau(t)}\right)^{1/2}\bigg|_{t=\beta}=g\left(\frac{d\tilde{\gamma}}{dt},\frac{d\tilde{\gamma}}{dt}\right)^{1/2}\bigg|_{t=\tau(\beta)},$$

which represents the height of the function that is being integrated and $\left|\frac{d\tau}{dt}\right|$ is the change of the infinitesimal width of the integral. This is similar to the change of basis where $\left|\frac{d\tau}{dt}\right|$ is the Jacobian acting as the change in volume. Therefore,

$$\ell\left(\gamma\right) = \ell\left(\gamma \circ \tau\right).$$

Exercise 5. Let M be a smooth manifold of dimension n, and let $\{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ be a collection of coordinate charts which cover M. Suppose that for each $\lambda \in \Lambda$, there are n^2 functions $g_{i,j}^{\lambda}: U_{\lambda} \to \mathbb{R}$, where $1 \leq i,j \leq n$. State a set of necessary and sufficient conditions on the functions $\left\{g_{i,j}^{\lambda}\right\}$ so that there exists a Riemannian metric g on M whose coordinate description under the chart $(U_{\lambda}, \varphi_{\lambda})$ is given by the n^2 functions $\left\{g_{i,j}^{\lambda}\right\}$.

A Riemannian metric is an assignment g of an inner product $g(p) = \langle , \rangle_p$ on each tangent space T_pM such that for any coordinate chart (U, φ) on M, $g_{i,j}(p)$ is a smooth function on U for each $1 \leq i, j \leq n$. An inner product is symmetric, bi-linear, and positive definite.

Let $v, w \in T_pM$ which can be represented as $v = v_i \frac{\partial}{\partial x_i}$ and $w = w_i \frac{\partial}{\partial x_i}$ in local coordinates. We define the metric g^{λ} as

$$g^{\lambda}\left(v,w\right) = \sum_{i,j} g_{ij}^{\lambda} v_{i} w_{j}$$

which we can represent in matrix notation

$$g^{\lambda}(v,w) = [w_1, \dots, w_n] \begin{bmatrix} g_{11}^{\lambda} & \cdots & g_{1n}^{\lambda} \\ \vdots & \ddots & \vdots \\ g_{n1}^{\lambda} & \cdots & g_{nn}^{\lambda} \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix},$$

and we will denote as $\left[g_{ij}^{\lambda}\right]$. By this definition $\left[g_{ij}^{\lambda}\right]$ is bilinear. We then impose the conditions that $g_{ij}^{\lambda}=g_{ji}^{\lambda}$ and that g_{ij}^{λ} is a smooth function on U_{λ} such that $\left[g_{ij}^{\lambda}\right]$ is a positive definite matrix. Lastly, we need the metric to be independent of coordinate chart. Let (U_1,φ_1) and (U_2,φ_2) be coordinate charts on M where $1,2\in\Lambda$ and $U_1\cap U_2\neq\emptyset$. We can express the vectors v and w in either chart, and we want the measure of their length and angle to be independent of the chart we use. In other words, we want

$$g^{1}\left(v,w\right) = g^{2}\left(v,w\right)$$

for all $v, w \in T_pM$. We can show this relation in matrix notation as

$$\begin{bmatrix} w_1^1, \dots, w_n^1 \end{bmatrix} \begin{bmatrix} g_{11}^1 & \cdots & g_{1n}^1 \\ \vdots & \ddots & \vdots \\ g_{n1}^1 & \cdots & g_{nn}^1 \end{bmatrix} \begin{bmatrix} v_1^1 \\ \vdots \\ v_n^1 \end{bmatrix} = \begin{bmatrix} w_1^2, \dots, w_n^2 \end{bmatrix} \begin{bmatrix} g_{11}^2 & \cdots & g_{1n}^2 \\ \vdots & \ddots & \vdots \\ g_{n1}^2 & \cdots & g_{nn}^2 \end{bmatrix} \begin{bmatrix} v_1^2 \\ \vdots \\ v_n^2 \end{bmatrix}$$

where the superscripts are used to denote the chart they are expressed in. Using the differential $d\left(\varphi_2\circ\varphi_1^{-1}\right)$ we can map the vectors from the first chart to the second chart and map them back such that

$$g^{1}\left(d\left(\varphi_{2}\circ\varphi_{1}^{-1}\right)^{-1}d\left(\varphi_{2}\circ\varphi_{1}^{-1}\right)v^{1},d\left(\varphi_{2}\circ\varphi_{1}^{-1}\right)^{-1}d\left(\varphi_{2}\circ\varphi_{1}^{-1}\right)v^{2}\right)=g^{1}\left(v,w\right).$$

Using this relation we get the last condition

$$\left(d\left(\varphi_{2}\circ\varphi_{1}^{-1}\right)^{-1}\right)^{\top}\left[g_{ij}^{1}\right]d\left(\varphi_{2}\circ\varphi_{1}^{-1}\right)^{-1}=\left[g_{ij}^{2}\right].$$

Exercise 6. Define the torus \mathbb{T}^2 as the quotient

$$\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2 = \mathbb{R}^2/\left\{(x,y) \sim (x+n,y+m) \text{ for } m,n \in \mathbb{Z}\right\}.$$

Notice that any open square of the form $(a,a+1)\times(b,b+1)\subset\mathbb{R}^2$ induces a coordinate chart $(U_{a,b},\varphi_{a,b})$ on \mathbb{T}^2 in a natural way. Notice that the map $\omega:\mathbb{R}^2\to\mathbb{R}^3$ defined by

$$\omega\left(\alpha,\beta\right)\left(\left(\cos\left(2\pi\beta\right)+4\right)\cos\left(2\pi\alpha\right),\left(\cos\left(2\pi\beta\right)+4\right)\sin\left(2\pi\alpha\right),\sin\left(2\pi\beta\right)\right)$$

induces a well defined map $\tilde{\omega}:\mathbb{T}^2\to\mathbb{R}^3$, which is a diffeomorphism onto its image $T_2=\tilde{\omega}\left(\mathbb{T}^2\right)$. Equip T_2 with the metric induced by the standard metric on \mathbb{R}^3 . If S is the open square $(0,1)\times(0,1)$ and $S'=\omega\left(S\right)\subset T_2$, then the restriction of ω^{-1} to S' is a coordinate chart $\omega^{-1}:S'\to\mathbb{R}^2$ on T_2 . Compute the coordinate representation of the metric on T_2 in this chart, as well as the associated Christoffel symbols.

We begin by computing the derivative of ω and representing it in matrix notation.

$$\frac{\partial \omega}{\partial x} = \begin{bmatrix} -2\pi \left(\cos \left(2\pi\beta\right) + 4\right) \sin \left(2\pi\alpha\right) & -2\pi \sin \left(2\pi\beta\right) \cos \left(2\pi\alpha\right) \\ 2\pi \left(\cos \left(2\pi\beta\right) + 4\right) \cos \left(2\pi\alpha\right) & -2\pi \sin \left(2\pi\beta\right) \sin \left(2\pi\alpha\right) \\ 0 & 2\pi \cos \left(2\pi\beta\right) \end{bmatrix}.$$

Let $v, w \in T\omega^{-1}(S')$, then the induced metric is

$$\left\langle \frac{\partial \omega}{\partial x} v, \frac{\partial \omega}{\partial x} w \right\rangle = \begin{bmatrix} -2\pi \left(\cos \left(2\pi\beta \right) + 4 \right) \sin \left(2\pi\alpha \right) & 2\pi \left(\cos \left(2\pi\beta \right) + 4 \right) \cos \left(2\pi\alpha \right) & 0 \\ -2\pi \sin \left(2\pi\beta \right) \cos \left(2\pi\alpha \right) & -2\pi \sin \left(2\pi\beta \right) \sin \left(2\pi\alpha \right) & 2\pi \cos \left(2\pi\beta \right) \end{bmatrix}.$$

$$\begin{bmatrix} -2\pi \left(\cos \left(2\pi\beta \right) + 4 \right) \sin \left(2\pi\alpha \right) & -2\pi \sin \left(2\pi\beta \right) \cos \left(2\pi\alpha \right) \\ 2\pi \left(\cos \left(2\pi\beta \right) + 4 \right) \cos \left(2\pi\alpha \right) & -2\pi \sin \left(2\pi\beta \right) \sin \left(2\pi\alpha \right) \\ 0 & 2\pi \cos \left(2\pi\beta \right) \end{bmatrix}$$

$$= \begin{bmatrix} g_{11} & 0 \\ 0 & g_{22} \end{bmatrix}$$

$$= \begin{bmatrix} 4\pi^2 \left(\cos \left(2\pi\beta \right) + 4 \right)^2 \\ 0 & 4\pi^2 \end{bmatrix}.$$

with

$$g_{11} = 4\pi^2 \left(\cos(2\pi\beta) + 4\right)^2 \sin(2\pi\alpha)^2 + 4\pi^2 \left(\cos(2\pi\beta) + 4\right)^2 \cos(2\pi\alpha)^2$$

$$g_{22} = 4\pi^2 \sin^2(2\pi\beta) \cos^2(2\pi\alpha) + 4\pi^2 \sin^2(2\pi\beta) \sin^2(2\pi\alpha) + 4\pi^2 \cos^2(2\pi\beta)$$

Simplifying we get that the induced metric is

$$g = \begin{bmatrix} 4\pi^2 \left(\cos\left(2\pi\beta\right) + 4\right)^2 \\ 0 & 4\pi^2 \end{bmatrix}.$$

The Christoffel symbols are computed as

$$\Gamma_{ij}^{m} = \frac{1}{2} \sum_{k} \left(\frac{\partial}{\partial x_{i}} g_{jk} + \frac{\partial}{\partial x_{j}} g_{ki} - \frac{\partial}{\partial x_{k}} g_{ij} \right) g^{km}.$$

We note that when $k \neq m$ the term $g^{km} = g_{km} = 0$ and $\Gamma^m_{ij} = \Gamma^m_{ji}$. We will use this to simplify our computations

$$\Gamma_{11}^{1} = \frac{1}{2} \left(\frac{\partial}{\partial \alpha} 4\pi^{2} \left(\cos \left(2\pi\beta \right) + 4 \right)^{2} + \frac{\partial}{\partial \alpha} 4\pi^{2} \left(\cos \left(2\pi\beta \right) + 4 \right)^{2} - \frac{\partial}{\partial \alpha} 4\pi^{2} \left(\cos \left(2\pi\beta \right) + 4 \right)^{2} \right) \frac{1}{4\pi^{2} \left(\cos \left(2\pi\beta \right) + 4 \right)^{2}} = 0$$

$$\begin{split} \Gamma_{12}^1 &= \frac{1}{2} \left(\frac{\partial}{\partial \alpha} 0 + \frac{\partial}{\partial \beta} 4\pi^2 \left(\cos \left(2\pi\beta \right) + 4 \right)^2 - \frac{\partial}{\partial \alpha} 0 \right) \frac{1}{4\pi^2 \left(\cos \left(2\pi\beta \right) + 4 \right)^2} \\ &= \frac{-8\pi^3 \left(\cos \left(2\pi\beta \right) + 4 \right) \sin \left(2\pi\beta \right)}{4\pi^2 \left(\cos \left(2\pi\beta \right) + 4 \right)^2} \\ &= \frac{-2\pi \sin \left(2\pi\beta \right)}{\left(\cos \left(2\pi\beta \right) + 4 \right)} \\ \Gamma_{12}^1 &= \frac{1}{2} \left(\frac{\partial}{\partial \beta} 0 + \frac{\partial}{\partial \beta} 0 - \frac{\partial}{\partial \alpha} 4\pi^2 \right) \frac{1}{4\pi^2 \left(\cos \left(2\pi\beta \right) + 4 \right)^2} \\ &= 0 \\ \Gamma_{11}^2 &= \frac{1}{2} \left(\frac{\partial}{\partial \alpha} 0 + \frac{\partial}{\partial \alpha} 0 - \frac{\partial}{\partial \beta} 4\pi^2 \left(\cos \left(2\pi\beta \right) + 4 \right)^2 \right) \frac{1}{4\pi^2} \\ &= \frac{-8\pi^3 \left(\cos \left(2\pi\beta \right) + 4 \right) \sin \left(2\pi\beta \right)}{4\pi^2} \\ &= -2\pi \left(\cos \left(2\pi\beta \right) + 4 \right) \sin \left(2\pi\beta \right) \\ \Gamma_{12}^2 &= \frac{1}{2} \left(\frac{\partial}{\partial \alpha} 4\pi^2 + \frac{\partial}{\partial \beta} 0 - \frac{\partial}{\partial \beta} 0 \right) \frac{1}{4\pi^2} \\ &= 0 \\ \Gamma_{22}^2 &= \frac{1}{2} \left(\frac{\partial}{\partial \beta} 4\pi^2 + \frac{\partial}{\partial \beta} 4\pi^2 - \frac{\partial}{\partial \beta} 4\pi^2 \right) \frac{1}{4\pi^2} \end{split}$$

In summary, the induced metric is

$$g = \begin{bmatrix} 4\pi^2 \left(\cos\left(2\pi\beta\right) + 4\right)^2 \\ 0 & 4\pi^2 \end{bmatrix},$$

and the Christoffel symbols are $\Gamma^2_{22}=\Gamma^2_{12}=\Gamma^1_{22}=\Gamma^1_{11}$ and

$$\Gamma_{11}^{2} = -2(\cos(2\pi\beta) + 4)\sin(2\pi\beta)$$

$$\Gamma_{12}^{1} = \frac{-2\sin(2\pi\beta)}{(\cos(2\pi\beta) + 4)}$$