

Megamodel-driven Traceability Recovery & Exploration of Correspondence & Conformance Links

Bachelorarbeit

zur Erlangung des Grades eines Bachelor of Science im Studiengang Informatik

vorgelegt von

Maximilian Meffert

Erstgutachter: Prof. Dr. Ralf Lämmel

Institut für Informatik

Zweitgutachter: Msc. Johannes Härtel

Institut für Informatik

Koblenz, im Juli 2017

Erklärung

Hiermit bestätige ich, dass die vorliegende Arbeit von mir selbständig verfasst wurde und ich keine anderen als die angegebenen Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet–Quellen – benutzt habe und die Arbeit von mir vorher nicht in einem anderen Prüfungsverfahren eingereicht wurde. Die eingereichte schriftliche Fassung entspricht der auf dem elektronischen Speichermedium (CD-Rom).

	Ja	Nein
Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden.		
Der Veröffentlichung dieser Arbeit im Internet stimme ich zu.		
(Ort, Datum) (Maxim	ilian	 Meffert)

Zusammenfassung

TBD.

Abstract

Contents

1	Intr	oductio	on	1							
2	ork	2									
3	Bacl	Background									
	3.1	Predic	cate Logic	3							
	3.2	Relati	ons	3							
	3.3	Merec	ology	12							
		3.3.1	Parthood	12							
		3.3.2	Supplementation	13							
		3.3.3	Sum, Product & Difference	14							
		3.3.4	Universal Top & Bottom	17							
		3.3.5	Unrestricted Fusion	17							
		3.3.6	Mereology Theories	17							
	3.4	Forma	al Languages & Grammars	17							
		3.4.1	Context-Free Languages & Grammars	17							
	3.5	Tracea	ability	17							
		3.5.1	Traceability Relationship	18							
		3.5.2	Traceability Link	18							
		3.5.3	Traceability Recovery	18							
		3.5.4	Traceability Exploration	18							
	3.6	Ontol	ogies	18							
	3.7	Megai	modeling	18							
		3.7.1	MegaL	18							
	3.8	Progra	am Analysis	18							
	3.9	XMI I	Data Binding	18							

	••
CONTENTS	11
CONTLINIS	1.1

	3.9.1 Java Architecture for XML Binding (JAXB)	18
	3.10 Object Relational Mapping	18
	3.10.1 Java Persistence API (JPA)	19
	3.10.2 Hibernate	19
	3.11 Another Tool For Language Recognition (ANTLR)	19
4	Hypotheses	20
	4.1 Fragments	20
	4.2 Correspondence	20
	4.3 Conformance	20
5	Methodology	21
	5.1 The 101companies Human Resource Management System	21
	5.2 Link Proper Part Ratio	21
6	Requirements	22
7	Design	23
8	Implementation	24
	8.1 Context-Free Grammar Fragmentation	24
	8.2 Name Correspondence Heuristic	24
9	Results	25
10	Conclusion	26

List of Figures

3.1	A schematic depiction of Overlap & Underlap	13
3.2	A schematic example of the Supplementation Axiom	14
3.3	A schematic example of the Sum Axiom	15
3.4	A schematic example of the Product Axiom	16
3.5	A schematic example of the Difference Axiom	17

Introduction

Related Work

Background

This section summarizes the necessary background topics of the thesis. Each topic is introduced as independent as possible, interrelation is done during synthesis of hypotheses for this thesis in chapter 4. However, some of the following sections are sorted in a way that one may be based on its predecessor. In particular sections on the necessary mathematical background share definitions. Introducing them repeatedly would be redundant.

3.1 Predicate Logic

3.2 Relations

This section introduces the necessary aspects of mathematical relations for this thesis. The concept of relations is a generalization of semantic dependencies between two or more mathematical objects. This section is based on [2].

Relations are based on set-theory. We also introduce the necessary constructs of set-theory in order to clarify terminology and notation. A set is a collection of well distinguishable mathematical objects. Objects in a set are called elements of the set. A set does not contain two or more identical elements. The notation $x \in X$ denotes that x is an element of the set X. The symbol \emptyset denotes the *empty set*, which contains no elements. The symbol Ω denotes the universal set, which contains all elements.

Definition 1 (Inclusion) *Let X and Y be a sets. Y includes X if and only if:*

$$X \subset Y : \Leftrightarrow \forall x [x \in X \to x \in Y] \Leftrightarrow \forall x [x \notin X \lor x \in Y]$$
 (3.1)

Then X is called subset of Y and Y is called superset of X. For an arbitrary set $Z \neq \emptyset$, the statement $\emptyset \subset Z$ is always true, respectively $Z \subset \emptyset$ is always false.

We also define the opposite property: *Y* does not include *X* if and only if:

$$X \not\subset Y : \Leftrightarrow \exists x [x \in X \land x \not\in Y] \tag{3.2}$$

Definition 2 (Union) *Let X and Y be a sets.*

$$X \cup Y := \{x | x \in X \lor x \in Y\} \tag{3.3}$$

 $X \cup Y$ *is called* union *of* X *and* Y.

Definition 3 (Intersection) *Let X and Y be a sets.*

$$X \cap Y := \{x | x \in X \land x \in Y\} \tag{3.4}$$

 $X \cap Y$ is called intersection of X and Y.

Definition 4 (Power-Set) *Let X be a set, then the* power-set of *X is defined as:*

$$\mathcal{P}(X) := \{Y | Y \subset X\} \tag{3.5}$$

The definition of inclusion provides an order for power-sets. So we may compare two sets *A* and *B* in the sense of *smaller* and *larger*, i.e.:

A is smaller than
$$B \Leftrightarrow A \subset B$$
 (3.6)

A is larger than
$$B \Leftrightarrow B \subset A$$
 (3.7)

A is the smallest subset of
$$B \Leftrightarrow \forall C \in \mathcal{P}(B) : A \subset C$$
 (3.8)

A is the largest subset of
$$B \Leftrightarrow \forall C \in \mathcal{P}(B) : C \subset A$$
 (3.9)

Definition 5 (Upper & Lower Bound) *Let* Ω *be a universe,* $X \in \mathcal{P}(\Omega)$ *be a set in the* universe and $A \subset \mathcal{P}(U), A \neq \emptyset$, non-empty subsets in the universe.

X is an upper bound for
$$A : \Leftrightarrow \forall Y \in A : Y \subset X$$
 (3.10)

X is a lower bound for
$$A : \Leftrightarrow \forall Y \in A : X \subset Y$$
 (3.11)

We also define:

$$\mathbf{U}_A := \{ U \in \mathcal{P}(\Omega) | \forall Y \in A : Y \subset U \}$$
 (3.12)

$$\mathbf{L}_A := \{ L \in \mathcal{P}(\Omega) | \forall Y \in A : L \subset Y \}$$
(3.13)

as sets of all upper/lower bounds for A.

Because our definition of upper and lower bounds is based on power-sets, existence is guaranteed: Given an arbitrary set S, the S and \emptyset are always elements of $\mathcal{P}(S)$. For each element Y of a non-empty selection $A \subset \mathcal{P}(S)$ of the power-set, $Y \subset S$ and $\emptyset \subset Y$ holds. So S is an upper and \emptyset is a lower bound for A.

Definition 6 (Supremum & Infimum) *Let* Ω *be a universe,* $X \in \mathcal{P}(\Omega)$ *be sets in the* universe and $A \subset \mathcal{P}(\Omega)$, $A \neq \emptyset$ a non-empty selection of sets in the universe. If

$$X = \sup A := \bigcup_{Y \in A} Y : \Leftrightarrow X \in \mathbf{U}_A \land \forall U \in \mathbf{U}_A : X \subset U$$
 (3.14)

$$X = \sup A := \bigcup_{Y \in A} Y : \Leftrightarrow X \in \mathbf{U}_A \land \forall U \in \mathbf{U}_A : X \subset U$$

$$X = \inf A := \bigcap_{Y \in A} Y : \Leftrightarrow X \in \mathbf{L}_A \land \forall L \in \mathbf{L}_A : L \subset X$$
(3.14)

then *X* is called supremum/infimum for *A*.

Existence for supremum and infimum is guaranteed, because upper and lower bounds exist as shown above. Thus, for any non-empty selection $A \subset \mathcal{P}(S)$ of a power-set, \mathbf{U}_A and \mathbf{L}_A are not empty. So we need to proof, that $X = \bigcup_{Y \in A} Y$ respectively $X = \bigcap_{Y \in A} Y$ are in fact the smallest upper and the largest lower bound. Or in other words: Does another bound $X' \in \mathbf{U}_A$ respectively $X' \in \mathbf{L}_A$ exist with $X' \neq X$ and $X' \subset X$ respectively $X \subset X'$?

1. Supremum: We assume $X' \in \mathbf{U}_A$ with $X' \neq X$ and $X' \subset X$ for $X = \bigcup_{Y \in A} Y$ exists, then an element $x \in X$ exists, which is not element of X'. Because X

is the union of all sets in selection A, x must be element of at least one of its sets. However, then X' cannot include sets containing x. Thus, X' cannot be an upper bound for A and $X = \sup A$.

2. Infimum: We assume $X' \in \mathbf{L}_A$ with $X' \neq X$ and $X \subset X'$ for $X = \bigcap_{Y \in A} Y$ exists, then an element $x \in X'$ exists, which is not element of X. Because X is the intersection of all sets in selection A, x cannot be element of at least one of its sets. However, then X' must include sets containing x. Thus, X' cannot be a lower bound fo A and $X = \inf A$.

Supremum and Infimum are unique for any non-empty selection of sets in a universe and can be obtained by its union respectively its intersection. [2]

Definition 7 (Cartesian Product) *Let* U *be a universe and* $X_n \in \mathcal{P}(U)$ *sets with* $i = 1...n, n \in \mathbb{N}$, *then:*

$$X_1 \times ... \times X_n := \{(x_1, ..., x_n)\}$$
 (3.16)

is called Cartesian product.

Definition 8 (Relation) A relation is a subset of a Cartesian product:

$$R \subset X_1 \times \dots \times X_n \tag{3.17}$$

The relation of only two sets is called binary relation. Instead of writing $(x, y) \in R$ we may also use the shorter notation xRy.

An arbitrary relation $R \subset A \times B$ is called *homogeneous* if A = B, otherwise it is called *heterogeneous*. However, an arbitrary relation $R \subset A \times B$ is also homogeneous in the sense of $R \subset A \times B \subset (A \cup B) \times (A \cup B)$. For the remainder of this section we focus on homogeneous relations unless noted otherwise.

In order to clarify our notation, when we are specifically working with relations instead of ordinary sets, we use the symbols \Box for inclusion, $\not\Box$ for non-inclusion, \Box for union and \Box for intersection, i.e.:

$$R \sqsubset S : \Leftrightarrow \forall x, y [(x, y) \in R \to (x, y) \in S]$$
 (3.18)

$$R \not\sqsubset S : \Leftrightarrow \exists x, y [(x, y) \in R \land (x, y) \not\in S]$$
 (3.19)

$$R \sqcup S := \{(x,y) | (x,y) \in R \lor (x,y) \in S\}$$
 (3.20)

$$R \sqcap S := \{(x, y) | (x, y) \in R \land (x, y) \in S\}$$
(3.21)

Furthermore, we use $\mathcal{R}(A)$ to denote the set of all homogeneous relations in set A and the symbols \mathcal{O} and \mathcal{A} to denote the empty relation and the universal relation:

$$\mathcal{R}(A) := \{ R | R \subset A \times A \} \tag{3.22}$$

$$(\mathcal{O} := \emptyset) \subset A \times A \qquad \Leftrightarrow \forall R \in \mathcal{R}(A)[\mathcal{O} \sqsubset R] \qquad (3.23)$$

$$(\mathcal{A} := A \times A) \subset A \times A \qquad \Leftrightarrow \forall R \in \mathcal{R}(A)[R \sqsubset \mathcal{A}] \qquad (3.24)$$

Definition 9 (Composition of Binary Relations) *Let* $R, S \in \mathcal{R}(A)$ *. Then* $R \circ S \in \mathcal{R}(A)$ *is defined*

$$R \circ S = RS := \{ (r, s) \in A \times A | \exists x \in A : (r, x) \in R \land (x, s) \in S \}$$
 (3.25)

and called composition or multiplication of R and S. Instead of writing $R \circ S$ we also write simply RS.

In conjunction with \Box composition is monotone:

$$\forall P, Q, R \in \mathcal{R}(A) : P \sqsubset Q \to R \circ P \sqsubset R \circ Q \tag{3.26}$$

$$\forall P, Q, R \in \mathcal{R}(A) : P \sqsubset Q \to P \circ R \sqsubset Q \circ R \tag{3.27}$$

(⇒) Following the definition of composition, it can easily be observed, if Q includes P, all elements of P are also in Q:

$$\forall x, y : (x, y) \in R \circ P \tag{3.28}$$

$$\rightarrow \exists z : (x, z) \in R \land (z, y) \in P \stackrel{P \subseteq Q}{\rightarrow} \exists z : (x, z) \in R \land (z, y) \in Q$$
 (3.29)

$$\to (x, y) \in R \circ Q \tag{3.30}$$

An analogous deduction can be shown for the right hand side composition of *R*.

(⇐) The opposite direction can be proven indirectly, assuming R∘P

R∘Q
holds, but P
Q does not:

Definition 10 (Identity Relation) *The relation* $\mathcal{I} \in \mathcal{R}(A)$

$$\mathcal{I} := \{ (a, b) \in A \times A | a = b \} = \{ (a, a) | a \in A \} \subset A \times A$$
 (3.31)

is called identity relation.

 $(\mathcal{R}(A), \circ, \mathcal{I})$ is a monoid, i.e. for all relations in $\mathcal{R}(A)$ composition is associative and \mathcal{I} serves as it's identity element:

$$(Q \circ R) \circ S = Q \circ (R \circ S) \tag{3.32}$$

$$R \circ \mathcal{I} = \mathcal{I} \circ R = R \tag{3.33}$$

Also, \mathcal{O} serves as absorbing element for composition:

$$R \circ \mathcal{O} = \mathcal{O} \circ R = \mathcal{O} \tag{3.34}$$

Because $(\mathcal{R}(A), \circ, \mathcal{I})$ is a monoid, we can define exponentiation:

Definition 11 (Exponentiation of Relations) *Let* $R \in \mathcal{R}(A)$ *and* $n \in \mathbb{N}$ *.*

$$R^0 := \mathcal{I} \tag{3.35}$$

$$R^n := R \circ R^{n-1} \tag{3.36}$$

Consider the following example:

$$A = \{a, b, c, d\} \tag{3.37}$$

$$R = \{(a,b), (a,c), (c,d)\}\tag{3.38}$$

$$R^{0} = \{(a, a), (b, b), (c, c), (d, d)\}$$
(3.39)

$$R^{1} = R \circ R^{0} = R \circ \mathcal{I} = \{(a, b), (a, c), (c, d)\}$$
(3.40)

$$R^{2} = R \circ R^{1} = R \circ R = \{(a, d)\}$$
(3.41)

$$R^3 = R \circ R^2 = \mathcal{O} \tag{3.42}$$

$$R^4 = R^5 = R^6 = \dots = R \circ \mathcal{O} = \mathcal{O}$$
 (3.43)

Definition 12 (Reflexivity) A relation $R \in \mathcal{R}(A)$ is called:

reflexive :
$$\Leftrightarrow \forall a \in A : (a, a) \in R$$
 (3.44)

irreflexive :
$$\Leftrightarrow \forall a \in A : (a, a) \notin R$$
 (3.45)

Definition 13 (Reflexive Closure) *Let* $R \in \mathcal{R}(A)$ *. Then*

$$R^{\circ} := \inf\{S | R \sqsubset S \land S \text{ reflexive }\} = R \sqcup \mathcal{I}$$
 (3.46)

is called reflexive closure of R.

The reflexive closure of a homogeneous relation R is the infimum or largest lower bound of the set $A = \{S | R \sqsubset S \land S \text{ reflexive}\}$ containing all reflexive relations, which include R. The smallest reflexive relation is \mathcal{I} . The smallest relation including R is R itself. So, for an arbitrary relation $R' \in A$ the inclusions $R \sqsubset R'$, $\mathcal{I} \sqsubset R'$ and $(R \sqcup \mathcal{I}) \sqsubset R'$ hold. Thus $R \sqcup \mathcal{I}$ is a lower bound for A and $(R \sqcup \mathcal{I}) \sqsubset \inf A$ holds. Vice versa, $R \sqcup \mathcal{I}$ is an element of A and any relation $R'' \sqsubset (R \sqcup \mathcal{I})$ does either not include R or is not reflexive. Thus $R \sqcup \mathcal{I}$ is also the smallest relation in A and $\inf A \sqsubset (R \sqcup \mathcal{I})$. From $(R \sqcup \mathcal{I}) \sqsubset \inf A$ and $\inf A \sqsubset (R \sqcup \mathcal{I})$ follows $\inf A = (R \sqcup \mathcal{I})$. [2]

Definition 14 (Symmetry) A relation $R \in \mathcal{R}(A)$ is called:

symmetric:
$$\Leftrightarrow \forall a, b \in A : (a, b) \in R \Rightarrow (b, a) \in R$$
 (3.47)

asymmetric :
$$\Leftrightarrow \forall a, b \in A : (a, b) \in R \Rightarrow (b, a) \notin R$$
 (3.48)

antisymmetric :
$$\Leftrightarrow \forall a, b \in A : (a, b) \in R \land (b, a) \in R \Rightarrow a = b$$
 (3.49)

Definition 15 (Transitivity) A relation $R \in \mathcal{R}(A)$ is called:

transitive :
$$\Leftrightarrow R^2 \sqsubset R$$
 (3.50)

$$:\Leftrightarrow \forall a,b,c\in A: (a,b)\in R \land (b,c)\in R \rightarrow (a,c)\in R \tag{3.51}$$

intransitive :
$$\Leftrightarrow R^2 \not\sqsubset R$$
 (3.52)

$$:\Leftrightarrow \forall a,b,c\in A: (a,b)\in R\land (b,c)\in R\rightarrow (a,c)\not\in R \tag{3.53}$$

The equivalent characterization of transitivity is $R^2 \sqsubset R$ is easily obtained:

$$\forall a, b, c \in A : (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R \tag{3.54}$$

$$\Leftrightarrow \forall a, c \in A : (a, c) \in RR \to (a, c) \in R \tag{3.55}$$

$$\Leftrightarrow \forall a, c \in A : (a, c) \in \mathbb{R}^2 \to (a, c) \in \mathbb{R}$$
(3.56)

$$\Leftrightarrow R^2 \sqsubset R \tag{3.57}$$

If $\mathcal{T}(A) := \{R \in \mathcal{R}(A) | R^2 \subset R\}$ is the set over all transitive relations of set A, it's infimum $I := \inf \mathcal{T}(A)$ is also transitive. Assuming it is not, at least one element exists, which is in I^2 , but not in I. Because I is the infimum of $\mathcal{T}(A)$, all transitive relations R must include it. Thus the same element is in R^2 , but not in R. However, this is a contradiction, because R is transitive and all elements in R^2 must be in R.

$$\neg (I^2 \sqsubset I) \Leftrightarrow \forall x, y : \neg [(x, y) \in I^2 \to (x, y) \in I] \tag{3.58}$$

$$\Leftrightarrow \forall x, y : (x, y) \in I^2 \land (x, y) \notin I \tag{3.59}$$

$$\Leftrightarrow \forall x, y \exists z : (x, z) \in I \land (z, y) \in I \land (x, y) \notin I \tag{3.60}$$

$$\Leftrightarrow \forall x, y \exists z : (x, z) \in R \land (z, y) \in R \land (x, y) \notin R$$
 (3.61)

$$\Leftrightarrow \forall x, y : (x, y) \in R^2 \land (x, y) \notin R \tag{3.62}$$

$$\Leftrightarrow \forall x, y : \neg[(x, y) \in R^2 \to (x, y) \in R] \tag{3.63}$$

$$\Leftrightarrow \neg (R^2 \sqsubset R) \not$$
 (3.64)

Definition 16 (Transitive Closure) *Let* $R \in \mathcal{R}(A)$ *and* $i \in \mathbb{N}$ *. Then*

$$R^{+} := \inf\{S | R \sqsubset S \land S \text{ transitive }\} = \sup\{R^{i} | i \ge 1\}$$
 (3.65)

is called transitive closure of R.

The transitive closure of a relation is the infimum or greatest lower bound of the set $A = \{S | R \sqsubset S \land S \text{ transitive }\}$ containing all transitive relations, which include R. Because A contains only transitive relations, its infimum $I = \inf A$ is also transitive.

$PR \sqsubset QS$

```
\Leftrightarrow \forall x,y:(x,y)\in PR \to (x,y)\in QS \Leftrightarrow \forall x,y\exists z:(x,z)\in P \land (z,y)\in R \to (x,z)\in Q \land (z,y)\in S \Leftrightarrow \forall x,y\exists z:(x,z)\not\in P \lor (z,y)\not\in R \lor [(x,z)\in Q \land (z,y)\in S] \Leftrightarrow \forall x,y\exists z:[(x,z)\not\in P \lor (z,y)\not\in R \lor (x,z)\in Q] \land [(x,z)\not\in P \lor (z,y)\not\in R \lor (z,y)\in S] \Leftrightarrow \forall x,y\exists z:[(z,y)\not\in R \lor [(x,z)\not\in P \lor (x,z)\in Q]] \land [(x,z)\not\in P \lor [(z,y)\not\in R \lor (z,y)\in S]] \Leftrightarrow \forall x,y\exists z:[(z,y)\not\in R \lor [(x,z)\in P \to (x,z)\in Q]] \land [(x,z)\not\in P \lor [(z,y)\in R \to (z,y)\in S]]
```

 $\Leftrightarrow \forall x, y \exists z : [(z, y) \not\in R \lor P \sqsubset Q] \land [(x, z) \not\in P \lor R \sqsubset S]$

$PR \not\sqsubset QS$

```
\Leftrightarrow \exists x,y: (x,y) \in PR \land (x,y) \not \in QS
\Leftrightarrow \exists x,y,z: [(x,z) \in P \land (z,y) \in R] \land \neg [(x,z) \in Q \land (z,y) \in S]
\Leftrightarrow \exists x,y,z: [(x,z) \in P \land (z,y) \in R] \land [(x,z) \not \in Q \lor (z,y) \not \in S]
\Leftrightarrow \exists x,y,z: [(x,z) \in P \land (z,y) \in R \land (x,z) \not \in Q] \lor [(x,z) \in P \land (z,y) \in R \land (z,y) \not \in S]
\Leftrightarrow \exists x,y,z: [P \not \sqsubseteq Q \land (z,y) \in R] \lor [(x,z) \in P \land R \not \sqsubseteq S]
\Leftrightarrow \forall x,y,z: \neg ([P \not \sqsubseteq Q \land (z,y) \in R] \lor [(x,z) \in P \land R \not \sqsubseteq S])
\Leftrightarrow \forall x,y,z: [P \vdash Q \lor (z,y) \not \in R] \land [(x,z) \not \in P \lor R \vdash S]
\Leftrightarrow \forall x,y,z: [[P \vdash Q \lor (z,y) \not \in R] \land (x,z) \not \in P] \lor [[P \vdash Q \lor (z,y) \not \in R] \land R \vdash S]
\Leftrightarrow \forall x,y,z: [P \vdash Q \land (x,z) \not \in P] \lor [(z,y) \not \in R \land (x,z) \not \in P] \lor [P \vdash Q \land R \vdash S] \lor [(z,y) \not \in R \land R \vdash S]
\Leftrightarrow \forall x,y,z: [P \vdash Q \land (x,z) \not \in P] \lor [(x,y) \not \in PR] \lor [P \vdash Q \land R \vdash S] \lor [(z,y) \not \in R \land R \vdash S]
```

Definition 17 (Transitive-Reflexive Closure) $R^* := R^+ \cup I$ is called reflexive-transitive closure

Definition 18 (Order Relation) content...

3.3. MEREOLOGY 12

3.3 Mereology

Mereology is the logical study on the semantics of parthood. "As a formal theory, mereology is simply an attempt to set out the general principles underlying the relationships between a whole and its constituent parts [...]" [3]. Achille C. Varzi describes a collection of formal theories, i.e. sets of distinct axioms, of mereology in [3], which will be summarized in this section.

ToDo: add paragraph with applications of mereology in computer science

The first part of this section will just introduce the axioms of mereology. Then, at the end of this section, we will use these axiom to build some of the theories described in [3]. Note, that the terms relation, relationship and predicate may be used synonymously throughout this section.

3.3.1 Parthood

First we define the intuitive notion of the parthood relationship:

Definition 19 (partOf) *Let* x *and* y *objects of interest. We define:*

$$x \text{ partOf } y :\Leftrightarrow x \text{ is a constituent part of } y$$
 (3.66)

We further assume, that partOf satisfies the following properties:

(P1)
$$x \text{ partOf } x$$
 (Reflexivity) (3.67)

(P2)
$$x \text{ partOf } y \land y \text{ partOf } x \rightarrow x = y$$
 (Antisymmetry) (3.68)

(P3)
$$x \text{ partOf } y \land y \text{ partOf } z \rightarrow x \text{ partOf } z$$
 (Transitivity) (3.69)

Thus, partOf induces a partial order of things.

However, since the reflexive parthood may be to week for some cases, we also define a stricter, irreflexive parthood relationship as follows:

$$x \text{ properPartOf } y :\Leftrightarrow x \text{ partOf } y \land \neg(y \text{ partOf } x)$$
 (Proper Part) (3.70)

Proper parthood induces a strict partial order of things.

3.3. MEREOLOGY 13

In addition to the relationships above we introduce the following predicates in order to provide a more concise notation:

$$x ext{ overlaps } y : \Leftrightarrow \exists z : z ext{ partOf } x \wedge z ext{ partOf } y ext{ (Overlap)}$$

$$x \text{ underlaps } y : \Leftrightarrow \exists z : x \text{ partOf } z \wedge y \text{ partOf } z$$
 (Underlap) (3.72)

Overlap models situations, where two things share at least on distinct part. Underlap models situations, where two things are part of the same distinct thing. Figure 3.1 illustrates both in a schematic fashion.

These Venn-style diagrams depict schematic illustrations of Overlap & Underlap:

- ullet x overlaps y: x and y share a distinct part z, which is emphasized as gray area.
- x underlaps y: x and y are both parts of z, which is emphasized as gray area.

Figure 3.1 A schematic depiction of Overlap & Underlap

3.3.2 Supplementation

The fourth axiom, which can be assumed in an universe described by means of mereology, is the supplementation axiom. It models the effects of situations more precisely, where one thing is not part of another. Namely, if this is the case, a third thing may exist, which is part of the former but not part of the latter.

(P4)
$$\neg (x \text{ partOf } y) \rightarrow \exists z (z \text{ partOf } x \land \neg (z \text{ overlaps } y))$$
 (3.73)

The supplementation axiom reads: If a thing x is not part of another thing y, then at least one part of x does not share further parts with y. Figure 3.2 depicts a schematic example of the supplementation axiom.

3.3. MEREOLOGY

14

This Venn-style diagram exemplifies the supplementation axiom: x is not part of y. z is emphasized as gray area. x contains z, but z shares no further parts with y.

Figure 3.2 A schematic example of the Supplementation Axiom

ToDo: add paragraph explaining "strong" and "weak" supplementation

One can also observe from figure 3.2, that the supplementation axiom can be interpreted as analogue to set-theoretic difference.

3.3.3 Sum, Product & Difference

The next three axioms allow for the notions of sum, product and difference in a mereological context.

3.3.3.1 Sum

The fifth axiom, which can be assumed in an universe described by means of mereology, is the sum axiom. It models the intuitive notion, where all parts of one thing and all parts of another thing are exactly the constituent parts of a third thing.

(P5)
$$\begin{array}{c} x \text{ underlaps } y \\ \to \exists z \forall w (w \text{ overlaps } z \leftrightarrow (w \text{ overlaps } x \lor w \text{ overlaps } y)) \end{array}$$

The sum axiom reads: If things x and y are two parts of the same thing, then another thing z exist, which only shares parts with things, which in turn share parts with x or y. Then z can be interpreted as the sum of x and y. This notion is captured by following definition of the term z = x + y:

$$z = x + y : \Leftrightarrow \forall w(w \text{ overlaps } z \leftrightarrow (w \text{ overlaps } x \lor w \text{ overlaps } y))$$
 (3.75)

Figure 3.3 depicts a schematic example of the sum axiom.

This Venn-style diagram exemplifies the sum axiom: x and y are part of u. z = x + y is emphasized as gray area. All w_i share parts with z, if and only if they share parts with x or y.

Figure 3.3 A schematic example of the Sum Axiom

One can also observe similarities between the sum axiom and set-theoretic union from figure 3.3 and the definition 3.75.

3.3.3.2 Product

The sixth axiom, which can be assumed in an universe described by means of mereology, is the product axiom. It models the intuitive notion, where all things, which are parts of two things at the same time, are exactly the constituent parts of a third thing.

$$(P6) \qquad x \text{ overlaps } y \\ \rightarrow \exists z \forall w (w \text{ partOf } z \leftrightarrow (w \text{ partOf } x \land w \text{ partOf } y)) \qquad (3.76)$$

The sum axiom reads: If things x and y share at least one part, then another thing z exists, which only consists of parts, which in turn are parts of x and y at the same time. Then z can be interpreted as the product of x and y. This notion is captured by the following definition of the term $z = x \cdot y$:

$$z = x \cdot y : \Leftrightarrow \forall w(w \text{ partOf } z \leftrightarrow (w \text{ partOf } x \land w \text{ partOf } y))$$
 (3.77)

Figure 3.4 depicts a schematic example of the product axiom.

This Venn-style diagram exemplifies the product axiom: x and y share arts. $z = x \cdot y$ is emphasized as gray area. All w_i are part of z, if and only if they are part of x and y.

Figure 3.4 A schematic example of the Product Axiom

One can also observe similarities between the sum axiom and set-theoretic intersection from figure 3.4 and the definition 3.77.

3.3.3.3 Difference

The seventh axiom, which can be assumed in an universe described by means of mereology, is the difference axiom. It models the intuitive notion, where things may be split, so that their constituent parts are regrouped into disjoint things, which share no parts.

(P7)
$$\exists z (z \text{ partOf } x \land \neg (z \text{ overlaps } y)) \\ \rightarrow \exists z \forall w (w \text{ partOf } z \leftrightarrow (w \text{ partOf } x \land \neg (w \text{ overlaps } y)))$$
 (3.78)

The difference axiom reads: If for things x and y a supplementary thing exists, which is part of x, but shares no parts with y, then another thing z exists, consisting of parts, which are also part of x, but share no parts with y. Then z can be interpreted as the difference between x and y, in that order. This notion is captured by the following definition of the term z = x - y:

$$z = x - y :\Leftrightarrow \forall w(w \text{ partOf } z \leftrightarrow (w \text{ partOf } x \land \neg(w \text{ overlaps } y)))$$
 (3.79)

One can also observe again similarities between the sum axiom and set-theoretic difference from figure 3.5 and the definition 3.79.

ToDo: Outline dependencies with supplementation axiom

This Venn-style diagram exemplifies the difference axiom: x is not part of y and parts of x exists, which do not share parts with y. z = x - y is emphasized as gray area. All w_i are part of z, if and only if they are part of x and do not share further parts with y.

Figure 3.5 A schematic example of the Difference Axiom

- 3.3.4 Universal Top & Bottom
- 3.3.5 Unrestricted Fusion
- 3.3.6 Mereology Theories
- 3.4 Formal Languages & Grammars
- 3.4.1 Context-Free Languages & Grammars
- 3.5 Traceability

[4] [1] TBD.

- 3.5.1 Traceability Relationship
- 3.5.2 Traceability Link
- 3.5.3 Traceability Recovery
- 3.5.4 Traceability Exploration
- 3.6 Ontologies

TBD.

3.7 Megamodeling

TBD.

- 3.7.1 MegaL
- 3.7.1.1 MegaL/Xtext

3.8 Program Analysis

TBD.

3.9 XML Data Binding

TBD.

- 3.9.1 Java Architecture for XML Binding (JAXB)
- 3.10 Object Relational Mapping

- 3.11. ANOTHER TOOL FOR LANGUAGE RECOGNITION (ANTLR) 19
- 3.10.1 Java Persistence API (JPA)
- 3.10.2 Hibernate
- 3.11 Another Tool For Language Recognition (ANTLR)

Hypotheses

- 4.1 Fragments
- 4.2 Correspondence
- 4.3 Conformance

Methodology

TBD.

5.1 The 101companies Human Resource Management System

Description of the 101companies Human Resource Management System

5.2 Link Proper Part Ratio

The ratio between all proper parts of two artifacts and the proper parts of the same artifacts in a relationship.

$$\pi_{R,A_1,A_2} = \frac{|\{(p_1,p_2) \in R: p_1 \text{ properPartOf } A_1 \land p_2 \text{ properPartOf } A_2\}|}{|\{p: p \text{ properPartOf } A_1 \lor p \text{ properPartOf } A_2\}|}$$

Requirements

TBD.

R1 asdf

R2 asdf

R3 asdf

R4 asdf

Design

Implementation

TBD.

8.1 Context-Free Grammar Fragmentation

8.2 Name Correspondence Heuristic

Heuristics are quick and "simple" methods for finding good approximate solutions for complex problems. The Name Correspondence Heuristic determines correspondence between artifacts simply by finding similarities of names in those artifacts.

Results

Conclusion

Bibliography

- [1] Orlena Gotel et al. "Traceability Fundamentals". In: *Software and Systems Traceability.* 2012, pp. 3–22. DOI: 10.1007/978-1-4471-2239-5_1. URL: https://doi.org/10.1007/978-1-4471-2239-5_1.
- [2] Gunther Schmidt and Thomas Ströhlein. *Relationen und Graphen*. Mathematik für Informatiker. Springer, 1989. ISBN: 3-540-50304-8.
- [3] Achille C. Varzi. "Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopology". In: *Data Knowl. Eng.* 20.3 (1996), pp. 259–286. DOI: 10.1016/S0169-023X(96)00017-1. URL: http://dx.doi.org/10.1016/S0169-023X(96)00017-1.
- [4] Stefan Winkler and Jens Pilgrim. "A Survey of Traceability in Requirements Engineering and Model-driven Development". In: *Softw. Syst. Model.* 9.4 (Sept. 2010), pp. 529–565. ISSN: 1619-1366. DOI: 10.1007/s10270-009-0145-0. URL: http://dx.doi.org/10.1007/s10270-009-0145-0.