Serverless Parallel Data Analytics

DS 5110/CS 5501: Big Data Systems
Spring 2024
Lecture 8c

Yue Cheng

Learning objectives

- Understand the challenges of supporting "stateful" computations on FaaS
- Know how PyWren works and its limitations
- Know how Wukong addresses some of PyWren's limitations

Confluence: When stateful apps meet serverless computing

Libraries efficient for O(1MB) NumPy | pandas SciPy matpletlib

Libraries efficient for O(1MB)

- Easy to program (writing centralized code)
- Low barrier for environment setup (just installing libs)
- Well understood
- No scalability / elasticity
- Not able to efficiently handle large data

Frameworks for O(100s GB)

- Scale to 100s GB data
- Difficult to program and debug
 - Requires distributed systems knowledge
- No elasticity
- High barrier for environment setup
 - Requires low-level administration skills

Libraries efficient for O(1MB)

- Easy-to-use
- Not scalable
- Not elastic

Frameworks for O(100s GB)

- Scalable
- Not easy-to-use
- Not elastic

Can we achieve all these desirable properties with **Serverless?**

Libraries efficient for O(1MB)

Frameworks for O(100s GB)

Easy-to-use

Elastic

Pay-per-use

Scalable

Recap: What is serverless computing?

Many people define it many ways

A programming abstraction that enables users to upload programs, run them at virtually any scale, and pay only for the resources used

User

Cloud

User

Cloud

API gateway

Cloud function

Python analytics: What we have today

Python analytics: What we have today

User writes interactive analytics and runs it on a notebook server

- No autoscaling for large computations
- Too slow? OOM? Need to scale out manually!
- Too expensive? Idled resources charge \$\$

Python analytics: What we have today

User writes interactive analytics and runs it on a notebook server

- No autoscaling for large computations
- Too slow? OOM? Need to scale out manually!
- Too expensive? Idled resources charge \$\$

High barriers to enter for those who lack CS/systems background

Python analytics: What we would like to have

User writes interactive analytics and runs it on FaaS

- Elastically and automatically scales to the right size
- Pay-per-use with minimal \$\$ cost
- Expertise of writing parallel programs NOT required
- Manual cluster maintenance NOT required

PyWren: Stateful computing over stateless serverless functions

vs.

HTCondor

wren

condor

pywren

^{* [}PyWren] Occupy the Cloud: Distributed Computing for the 99%. In ACM SoCC'17.

```
def fn(input):
    return input + 1
futures = runner.map(fn, dataset)
print([f.result() for f in futures])
                                      Scheduler
        Your laptop
```

S3

Cloud

```
def fn(input):
    return input + 1
futures = runner.map(fn, dataset)
print([f.result() for f in futures])
                                       Scheduler
        Your laptop
```

S3

Cloud

25

```
def fn(input):
    return input + 1
futures = runner.map(fn, dataset)
print([f.result() for f in futures])
                                      Scheduler
        Your laptop
```

Compute


```
def fn(input):
    return input + 1
futures = runner.map(fn, dataset)
print([f.result() for f in futures])
                                      Scheduler
        Your laptop
```



```
def fn(input):
    return input + 1
                                                           Fn
futures = runner.map(fn, dataset)
                                                           Fn
print([f.result() for f in futures])
                                      Scheduler
                                                                                S3
                                                           Fn
                                                           Fn
                                                          Cloud
        Your laptop
```

Lambda functions are terminated

Quantifying the pain of FaaS

How FaaS adds huge amounts of performance taxes

Python analytics on FaaS is slow!

PyWren and numpywren

^{* [}PyWren] Occupy the Cloud: Distributed Computing for the 99%. In ACM SoCC'17.

^{* [}numpywren] Serverless linear algebra. In ACM SoCC'20.

Python analytics on FaaS is slow!

State-of-the-art FaaS frameworks pay huge amounts of FaaS taxes

• Task scheduling bottleneck: Too slow to scale to thousands of functions

^{* [}PyWren] Occupy the Cloud: Distributed Computing for the 99%. In ACM SoCC'17.

^{* [}numpywren] Serverless linear algebra. In ACM SoCC'20.

High HTTP invocation cost for AWS Lambda

Python analytics on FaaS is slow!

State-of-the-art FaaS frameworks pay huge amounts of FaaS taxes

- Task scheduling bottleneck: Too slow to scale to thousands of functions
- I/O bottleneck: Excessive data movement cost due to FaaS constraint

^{* [}PyWren] Occupy the Cloud: Distributed Computing for the 99%. In ACM SoCC'17.

^{* [}numpywren] Serverless linear algebra. In ACM SoCC'20.

Naively porting a stateful cluster computing application to FaaS won't work!

Need a FaaS-centric approach

Insight: A FaaS framework may not care about traditional metrics (load balancing, cluster util.)

Wukong

Wukong is a **FaaS-centric** parallel computing framework

https://github.com/ds2-lab/Wukong

Key idea: Partitions the work of a centralized scheduler across many functions to take advantage of FaaS elasticity

Naturally enables multiple benefits

• Functions schedule tasks by invoking functions

Exploits autoscaling for scalability

 Functions execute multiple tasks to reduce data movement cost

Improved data locality

Functions scale out / in autonomously

No tedious cluster configuration

Scheduling in Wukong

 Combination of static and dynamic scheduling

 Input DAG partitioned into static schedules, or subgraphs of the original DAG

 Serverless executors are assigned a static schedule

 Executors use dynamic scheduling to enforce data dependencies and cooperatively schedule tasks found in multiple static schedules

Static schedule 2 Static schedule 1

```
func MyFunc(data):
    o = algo(data)
    o.compute()
```

```
func MyFunc(data):
    o = algo(data)
    o.compute()
```

func MyFunc(data): o = algo(data) o.compute()

Input DAG C A B

Application DAGs GEMM SVD1 SVD2 TSQR Tree reduction random_sample

Application performance: TSQR

Wukong and numpywren ran on AWS Lambda w/ 3GB memory Dask distributed ran on 125 c5.4xlarge EC2 VMs w/ 2,000 vCPU cores

Application performance: TSQR

Wukong outperforms numpywren considerably for all problem sizes.

Data movement cost: TSQR

Data movement cost: TSQR

Wukong reads and writes considerably less data than numpywren.

Parallelizing Prediction (sklearn.svm.SVC)

```
import pandas as pd
import seaborn as sns
import sklearn.datasets
from sklearn.svm import SVC
import dask ml.datasets
from dask_ml.wrappers import ParallelPostFit
from distributed import LocalCluster, Client
local_cluster = LocalCluster(host='0.0.0.0:8786',
                  proxy_address = '3.83.198.204',
                  num_fargate_nodes = 10)
client = Client(local_cluster)
X, y = sklearn.datasets.make_classification(n_samples=1000)
clf = ParallelPostFit(SVC(gamma='scale'))
clf.fit(X, y)
X, y = dask_ml.datasets.make_classification(n_samples=800000,
                                             random_state=800000,
                                             chunks=800000 // 20)
# Start the computation.
clf.predict(X).compute()
```

GEMM (Matrix Multiplication)

https://github.com/ds2-lab/Wukong