Московский государственный технический университет им. Н. Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчёт по лабораторной работе №3

по курсу «**Введение в машинное обучение**»

Исполнила: Алиева Д.Г., ИУ5-41

Проверил: Гапанюк Ю.Е.

Условие ЛР: Необходимо решить задачу предсказания стоимости дома в зависимости от его характеристик.

- 1. Провести предподготовку данных
- 2. Разделить данные
- 3. Обучить модель из sklearn
- 4. Реализовать линейную регрессию
- 5. Эксперименты с моделью

Код и результат работы программы:

In [26]: #распредеение площади домов и цен plt.plot(data['GrLivArea'], data['SalePrice'], 'ro')

Out[26]: [<matplotlib.lines.Line2D at 0x25a665920b8>]


```
In [31]: def cleaning(data):
                  categorical_columns = [c for c in data.columns if data[c].dtype.name == 'object']
                  numerical_columns = [c for c in data.columns if (data[c].dtype.name != 'object' and c != 'SalePrice')]
answer_column = [c for c in data.columns if c == 'SalePrice']
                  #заполняем пустые количественные медианным значением
                  data = data.fillna(data.median(axis=0), axis=0)
#заполняем пустые категориальные самым частым значением по признаку
                  data_describe = data.describe(include=[object]) #получение сводной информации по таблице
                  for c in categorical_columns:
                       data[c] = data[c].fillna(data_describe[c]['top']) #fillna() - метод для замены отсутствующих значений на числовые
                  #начинаем векторизацию - переводим категориальные признаки в количественные binary_columns = [c for c in categorical_columns if data_describe[c]['unique'] == 2] #винарные nonbinary_columns = [c for c in categorical_columns if data_describe[c]['unique'] > 2] #невинарные
                  for c in binary_columns:
                       top = data_describe[c]['top']
                       top_items = data[c] == top
                       data.loc[top_items, c] = 0
                       data.loc[np.logical_not(top_items), c] = 1
data_nonbinary = pd.get_dummies(data[nonbinary_columns]) #8озврат нового столбца для каждого элемента
                  #начинаем нормализацию количественных признаков
                  data_numerical = data[numerical_columns]
data_numerical = (data_numerical - data_numerical.mean()) / data_numerical.std()
data_answer = data[answer_column] #не требуется нормализация
                  #соединяем всё в таблицу
                  data = pd.concat((data_numerical, data[binary_columns], data_nonbinary, data_answer), axis=1)
                  data = pd.DataFrame(data, dtype=float)
                  return data
```

Out[41]:

In [41]: data.corr()

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFin SF1	 Sal
ld	1.000000	0.011156	-0.009921		-0.028365	0.012609	-0.012713	-0.021998	-0.051071	-0.005024	
MSSubClass	0.011156	1.000000	-0.356718	-0.139781	0.032628	-0.059316	0.027850	0.040581	0.023573	-0.069836	
LotFrontage	-0.009921	-0.356718	1.000000	0.304522	0.234812	-0.053281	0.116685	0.083348	0.178469	0.214367	
LotArea	-0.033226	-0.139781	0.304522	1.000000	0.105806	-0.005636	0.014228	0.013788	0.103321	0.214103	
OverallQual	-0.028365	0.032628	0.234812	0.105806	1.000000	-0.091932	0.572323	0.550684	0.407252	0.239666	
OverallCond	0.012609	-0.059316	-0.053281	-0.005636	-0.091932	1.000000	-0.375983	0.073741	-0.125694	-0.048231	
YearBuilt	-0.012713	0.027850	0.116685	0.014228	0.572323	-0.375983	1.000000	0.592855	0.311600	0.249503	
YearRemodAdd	-0.021998	0.040581	0.083348	0.013788	0.550684	0.073741	0.592855	1.000000	0.176529	0.128451	
MasVnrArea	-0.051071	0.023573	0.178469	0.103321	0.407252	-0.125694	0.311600	0.176529	1.000000	0.261256	
BsmtFinSF1	-0.005024	-0.069836	0.214367	0.214103	0.239666	-0.046231	0.249503	0.128451	0.261256	1.000000	
BsmtFin\$F2	-0.005968	-0.065649	0.042463	0.111170	-0.059119	0.040229	-0.049107	-0.067759	-0.071330	-0.050117	
BsmtUnfSF	-0.007940	-0.140759	0.124098	-0.002618	0.308159	-0.136841	0.149040	0.181133	0.113862	-0.495251	
TotalBsmtSF	-0.015415	-0.238518	0.363472	0.260833	0.537808	-0.171098	0.391452	0.291066	0.380087	0.522396	
1stFlrSF	0.010496	-0.251758	0.413773	0.299475	0.476224	-0.144203	0.281986	0.240379	0.339850	0.445863	
2ndFIrSF	0.005590	0.307886	0.072388	0.050986	0.295493	0.028942	0.010308	0.140024	0.173800	-0.137079	
LowQualFinSF	-0.044230	0.046474	0.037469	0.004779	-0.030429	0.025494	-0.183784	-0.062419	-0.068628	-0.064503	
GrLivArea	0.008273	0.074853	0.368007	0.263116	0.593007	-0.079686	0.199010	0.287389	0.388052	0.208171	
BsmtFullBath	0.002289	0.003491	0.090343	0.158155	0.111098	-0.054942	0.187599	0.119470	0.083010	0.649212	
BsmtHalfBath	-0.020155	-0.002333	-0.006979	0.048046	-0.040150	0.117821	-0.038162	-0.012337	0.027403	0.067418	
FullBath	0.005587	0.131608	0.180534	0.126031	0.550600	-0.194149	0.468271	0.439046	0.272999	0.058543	
HalfBath	0.006784	0.177354	0.047222	0.014259	0.273458	-0.060769	0.242656	0.183331	0.199108	0.004262	
BedroomAbvGr	0.037719	-0.023438	0.236840	0.119690	0.101676	0.012980	-0.070651	-0.040581	0.102775	-0.107355	
KitchenAbvGr	0.002951	0.281721	-0.004905	-0.017784	-0.183882	-0.087001	-0.174800	-0.149598	-0.038450	-0.081007	
TotRmsAbvGrd	0.027239	0.040380	0.320518	0.190015	0.427452	-0.057583	0.095589	0.191740	0.279568	0.044316	
Fireplaces	-0.019772	-0.045569	0.233221	0.271364	0.396765	-0.023820	0.147716	0.112581	0.247015	0.260011	
GarageYrBlt	-0.000122	0.081396	0.062996	-0.025865	0.514231	-0.306276	0.777182	0.616444	0.244444	0.148782	
GarageCars	0.016570	-0.040110	0.269539	0.154871	0.600671	-0.185758	0.537850	0.420622	0.361945	0.224054	

```
In [42]: data.corr()['SalePrice'].abs().sort_values(ascending=False)
Out[42]: SalePrice
                                      1.000000
           OverallOual
                                       0.790982
                                       0.708624
           GrLivArea
           GarageCars
                                       0.640409
           GarageArea
                                       0.623431
           TotalBsmtSF
                                       0.613581
           1stFlrSF
                                       0.605852
           ExterQual_TA
                                       0.589044
           FullBath
                                       0.560664
           BsmtQual_Ex
                                       0.553105
           TotRmsAbvGrd
                                       0.533723
           YearBuilt
                                       0.522897
           KitchenQual_TA
                                       0.519298
           GarageFinish_Unf
                                       0.513906
           YearRemodAdd
                                       0.507101
           KitchenQual_Ex
                                       0.504094
           BsmtQual_TA
                                       0.498545
           Foundation_PConc
                                       0.497734
           MasVnrArea
                                       0.472614
           Fireplaces
                                       0.466929
           GarageYrBlt
                                       0.466754
           ExterQual_Gd
                                       0.452466
           ExterQual_Ex
                                       0.451164
           BsmtFinType1_GLQ
                                       0.434597
          HeatingQC_Ex
GarageFinish_Fin
                                       0.434543
                                       0.419678
           Neighborhood_NridgHt
                                       0.402149
                                       0.386420
           BsmtFinSF1
           MasVnrType_None
                                       0.367456
           SaleType_New
                                       0.357509
           Functional_Sev
                                       0.017116
           BsmtHalfBath
                                       0.016844
           Exterior2nd_Stone
                                       0.016754
           RoofStyle_Flat
                                       0.016433
           PoolQC_Fa
                                       0.016127
           Functional Mod
                                       0.016073
           SaleCondition_Alloca
                                       0.015525
          Neighborhood_SawyerW
Condition2_RRAn
                                       0.014560
                                       0.014510
In [43]: data['GrLivArea'].corr(data['TotalBsmtSF'])
Out[43]: 0.45486820254790294
In [47]: data = data[['OverallQual','GrLivArea','GarageCars','TotalBsmtSF','ExterQual_TA','FullBath','BsmtQual_Ex',
'TotRmsAbvGrd','YearBuilt','KitchenQual_TA','GarageFinish_Unf','KitchenQual_Ex','SalePrice']]
plt.plot(data['GrLivArea'], data['SalePrice'], 'ro')
Out[47]: [<matplotlib.lines.Line2D at 0x25a68390cf8>]
            700000
            600000
            500000
            400000
            300000
            200000
```

100000

```
In [49]: # Разделить данные
           x = data.drop(('SalePrice'), axis=1) # входные фичи
           y = data['SalePrice'] # omθem
           x_train, x_valid, y_train, y_valid = train_test_split(x, y, test_size = 0.25, random_state = 11)
           #Обучить модель из sklearn, реализовать линейную регрессию
           regr = linear_model.LinearRegression(fit_intercept=True)
           regr.fit(x_train, y_train)
           y_valid_predict = regr.predict(x_valid)
           print('Коэффициенты: \n', regr.coef_)
           print("МАЕ(средний модуль ошибки): %.2f" % mean_absolute_error(y_valid, y_valid_predict))
           print('Оценка дисперсии: %.2f' % r2_score(y_valid, y_valid_predict))
          Коэффициенты:

    [ 20040.67868727
    21282.06721516
    10568.03838394
    8025.47815134

    -5591.26260915
    -1630.22122407
    33991.18852775
    2996.11055473

    6258.80121185
    -9984.24646655
    -7607.93499391
    29703.13546797]

           МАЕ(средний модуль ошибки): 21247.26
          Оценка дисперсии: 0.83
 In [51]: #прогон модели по тестовой выборке
            x_test = pd.read_csv('./KaggleLab3/test.csv')
            y_test = pd.read_csv('./KaggleLab3/sample_submission.csv')
            x_test = cleaning(x_test)
            x_test = x_test[['OverallQual','GrLivArea','GarageCars','TotalBsmtSF','ExterQual_TA','FullBath','BsmtQual_Ex','TotRmsAbvGrd','Yea
            y_test = y_test[['SalePrice']]
            #предсказание
            y_test_predict = regr.predict(x_test)
            print('Коэффициенты: \n', regr.coef_)
            print("MAE: %.2f" % mean_absolute_error(y_test, y_test_predict))
            print('Оценка дисперсии: %.2f' % r2_score(y_test, y_test_predict))
```

Коэффициенты:

MAE: 52785.16

Оценка дисперсии: -15.53