Barème sur 20 points

Durée : 1 heure 45 minutes

EPF - Lausanne

Contrôle de géométrie analytique N°1

	•	
NOM:		Croupo
PRENOM:		Groupe

1. Dans le plan, muni d'un repère orthonormé $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$, on donne les points A(-6; 4), B(12; -20) et C(4; -1).

On considère le triangle AST.

Déterminer, en le justifiant, les coordonnées des points S et T sachant que

- le point S est le 4ième sommet du parallélogramme ABCS,
- le point T est sur la droite (SC),
- l'aire du triangle AST vaut $\frac{75}{2}$,
- \overrightarrow{ST} et \overrightarrow{SC} ont même sens.

7 pts

2. Dans le plan, on considère un parallélogramme OABC orienté positivement.

On pose
$$\vec{a} = \overrightarrow{OA}$$
 et $\vec{c} = \overrightarrow{OC}$.

Soit le point L défini par le rapport de section $(LC; B) = \frac{1}{4}$.

On considère la droite m, bissectrice intérieure de l'angle \widehat{AOC} et la droite lpassant par A et L.

On pose
$$\|\vec{c}\| = 3 \|\vec{a}\|$$
.

A l'aide du calcul vectoriel et en fonction des données \vec{a} et \vec{c} uniquement, déterminer l'équation vectorielle de la droite m et celle de la droite l.

Puis exprimer en fonction de \vec{a} et \vec{c} le vecteur \overrightarrow{OK} où K est le point d'intersection des droites m et l.

Soit le point M tel que $\{M\} = m \cap (AB)$.

Déterminer dans quel intervalle varie le paramètre de l'équation vectorielle de m pour que le point courant de cette droite décrive le segment KM.

6.5 pts

- 3. Dans le plan, on considère le rectangle de sommets les points OADE et le triangle de sommets les points ABC (voir la figure ci-dessous).
 - a) Soit la **plaque** homogène de forme polygonale *OABCDE*. La surface du rectangle vaut 63 unités et celle du triangle vaut 14 unités.

Exprimer le centre de gravité $\,G\,$ de cette plaque à l'aide de la notion de barycentre.

En le justifiant par un rapport de section, construire le point G rigoureusement et avec soin (règle, équerre, compas) sur le plan ci-dessous.

b) On considère le point K tel que $K = \text{Bar}\{(A, 3); (B, 2); (C, 0); (D, -1); (E, 8)\}$. Le point B est défini par le rapport de section $(BA; O) = \frac{5}{2}$.

A l'aide du **calcul vectoriel uniquement**, exprimer le vecteur \overrightarrow{OK} en fonction de \overrightarrow{OA} et \overrightarrow{OE} .

Montrer que le point $\,K\,$ appartient à la droite $\,(OD)\,$ et déterminer le rapport de section $\,(OD;\,K)\,.$

6.5 pts

