Computer Problem Set 2

Simulation of the Brownian motion

The present problem set is attached to Chapter 4 of the lectures notes. All implementations should be run with the value T=1. For a positive integer n, we denote $\Delta T:=2^{-n}T$, $t_i^n:=i$ ΔT , $i=0,\ldots,2^n$. Our objective is to simulate a discretization of a Brownian motion W, and to study some properties.

- 1. Forward simulation of $\{W_{t_1^n}, \ldots, W_{t_n^n}\}$.
 - (a) Justify that $W_{t_i^n} = W_{t_{i-1}^n} + Z_i \sqrt{\Delta T}$ where $(Z_i)_{1 \leq i \leq 2^n}$ is an iid family of $\mathcal{N}(0,1)$ random variables.
 - (b) Draw a sample of 1000 copies of the discretized Brownian motion $\{W_{t_1^n}, \ldots, W_{t_n^n}\}$.
 - (c) Compute the corresponding sample mean and variance of W_T , and the sample covariance of $(W_T, W_{T/2})$. Comment the results by varying the value of n.
- 2. Backward simulation of $\{W_{t_1^n}, \ldots, W_{t_n^n}\}$.
 - (a) For $0 \le s_1 < s_2$, we recall that the pair (W_{s_1}, W_{s_2}) is a centered Gaussian vector with variance matrix $\begin{pmatrix} s_1 & s_1 \\ s_1 & s_2 \end{pmatrix}$, and we verify therefore that $W_{s_1}|W_{s_2}$ is also Gaussian with characteristics

$$\mathbb{E}\big[W_{s_1}|W_{s_2}\big] = \frac{s_1}{s_2}W_{s_2} \quad \text{and} \quad \mathbb{V}ar\big[W_{s_1}|W_{s_2}\big] = s_1\Big(1 - \frac{s_1}{s_2}\Big).$$

With $\bar{s}:=\frac{s_1+s_2}{2}$, justify that $W_{\bar{s}}|(W_{s_1}=x_1,W_{s_2}=x_2)$ has a Gaussian distribution with conditional mean $\bar{x}:=\frac{x_1+x_2}{2}$ and conditional variance $\frac{s_2-s_1}{4}$.

- (b) Justify that the conditional distribution of $W_{\bar{s}}|(W_{s_1} = x_1, W_{s_2} = x_2, (W_u)_{u \notin [s_1, s_2]})$ is $\mathcal{N}(\bar{x}, \frac{s_2 s_1}{4})$.
- (c) Use the last property to simulate backward the discretized Brownian motion: start by drawing copies of W_T , then $W_{T/2} = W_{t_1^1}$, then $W_{T/4} = W_{t_1^2}$ and $W_{3T/4} = W_{t_2^2}$, etc...
- (d) Compute the corresponding sample mean and variance of W_T , and the sample covariance of $(W_T, W_{T/2})$. Comment the results by varying the value of n.
- 3. Using successively the forward and backward simulated samples, compute an approximation of $QV^n(W)_T$, the quadratic variation of the Brownian motion along the partition $(t_i^n)_i$. Provide two graphs displaying the departure from the limit T as a function of $n \in \{10, \ldots, 20\}$.