Conservatorio di Musica Santa Cecilia

Dipartimento di Nuove Tecnologie e Linguaggi Musicali

Tesi di Laurea Biennale in Musica Elettronica

Sistemi Complessi Adattivi per la performance musicale in Live Electronics

Relatore:

Giuseppe Silvi

Candidato:

Luca Spanedda

Correlatore:

Agostino Di Scipio

Anno Accademico 2021/2022

Dichiarazione

Dichiaro che il sottoscritto nonché autore del documento è il responsabile del suo contenuto, e per le parti tratte da altri lavori, queste vengono espressamente dichiarate citando le fonti.

Luca Spanedda

Ringraziamenti

Prima di entrare nel merito, voglio ringraziare qui le persone che hanno reso possibile e significativo questo percorso che ho intrapreso. La mia famiglia, che mi ha sempre supportato durante il mio percorso. Tutti i miei amici, che sono artisti, pensatori, e persone dal grande valore umano. I miei compagni di corso, che sono fantastici compositori dalle idee più stravaganti, e questi ultimi insieme ad i miei amici si sono rivelati esser stati per me importanti compagni di vita. Giuseppe Silvi, che mi ha accompagnato e guidato in questi ultimi anni sia da maestro che da amico, sempre amorevolmente nel mio percorso compositivo, ed insieme a lui, voglio ringraziare tutti i grandi Maestri e Professori del dipartimento di Musica Elettronica, a cui devo tanto del mio percorso, della mia crescita e del mio operato: Pasquale Citera, Nicola Bernardini, Marco Giordano, Luigi Pizzaleo, Federico Scalas. E il caro ex-Maestro Michelangelo Lupone, che ha formato il mio pensiero compositivo, e che mi ha sempre incoraggiato a fare del mio meglio e rinnovare il mio entusiasmo per la musica giorno per giorno. E infine ringrazio di cuore Agostino Di Scipio e Dario Sanfilippo, che sono per me grandi mentori e persone straordinarie, e che mi hanno accompagnato in questo ultimo periodo del mio percorso, aiutandomi e incentivandomi a portare avanti le mie idee idee visionarie per la composizione elettroacustica, rinnovando le mie prospettive. Sono grato a tutti voi senza il quale questo percorso non sarebbe stato lo stesso e non sarei giunto a questo grande traguardo, o meglio, punto di partenza per nuovi orizzonti. Grazie a tutti di cuore.

Abstract

Il lavoro qui presentato è uno studio di analisi, implementazione e esecuzione di tre Sistemi Complessi Adattivi per la performance musicale in Live Electronics. La scelta di questi tre sistemi corrisponde a tre diversi casi di studio nell'implementazione di dinamiche nonlineari sfruttate per la generazione dei comportamenti emergenti nei Sisitemi Complessi. Una prima parte del lavoro tratterà dell'implementazione e l'analisi di due brani rispettivamente di Agostino Di Scipio e Dario Sanfilippo. Di Agostino di Scipio un sistema con nonlinearità provenenti dal mondo fisico, che sfrutta fenomeni generati dalla catena elettroacustica all'interno dell'ambiente e riportati poi all'interno del sistema digitale. Di Dario Sanfilippo invece un sistema che sfrutta nonlinearità appositamente programmate dal compositore nel mondo digitale, controllate tramite agenti di autoregolazione scritti nel software. Infine l'ultima parte del lavoro è dedicata alla composizione di un mio brano, che sfrutta elementi di logica ibridi appresi dai due casi di studio presentati qui, e che andrà a conclusione del lavoro di ricerca svolto durante il corso della tesi.

Contents

1	Introduzione					
	1.1 La Cibernetica	3				
	1.2 Le cibernetiche nella musica	5				
	1.3 Il Feedback	11				
2	Ecosistemi Udibili	14				
	2.1 L'interazione Uomo-Macchina-Ambiente	14				
	2.2 Il Meccanismo LAR	15				
3	Sistemi Autonomi	20				
4	La Composizione di RITI : un sistema caotico ibrido	21				
\mathbf{A}	A First appendix					
В	Second appendix	22				
\mathbf{L}_{i}	ist of Tables					
L	st of Figures					

1 Introduzione

All'inizio del XX Secolo si manifestò una situazione globale di importanti cambiamenti in tutti gli ambiti.

Nel mondo dell'arte con la nascita delle avanguardie artistiche e in risposta alla problematica del dover trovare nuovi modi di fare che riflettano le tematiche della società attuale. Nelle scienze, con l'esigenza di dover introdurre nuovi paradigmi per far fronte alla grande crisi dei fondamenti e delle certezze. Durante il corso del secolo poi, questi cambiamenti hanno portato ad importanti punti di incontro non più occasionali fra questi due ambiti. La figura dell'artista inizia ad interessarsi alle nuove tecnologie e teorie scientifiche, e questo è stato un importante punto in comune a tutte le avanguardie dell'epoca, inclusa quella musicale.

Nel caso di questa tesi, l'attenzione che ripongo a questo scenario del XX Secolo è in particolare su un cambio di paradigma scientifico nascente durante la seconda guerra mondiale e consolidato al termine di questa, la nascita della cibernetica e la conseguente formulazione di scienze della complessità. La complessità, non è un ambito trattato da una sola scienza, ma più un nuovo modo di pensare e di osservare i fenomeni della realtà.

Se nella cosmologia greca, questa realtà veniva spiegata come caos per l'insieme disordinato e indeterminato degli elementi materiali, contrapposto al cosmos che rappresenta l'ordine, come si può osservare fra i miti delle varie Teogonie fra cui la più famosa quella scritta da Esiodo. Oggi la parola caos ha invece un significato decisamente meno generale. Il caos, anzi il caos deterministico, è la scienza che studia i sistemi dinamici che esibiscono una sensibilità esponenziale rispetto alle condizioni iniziali. O, in termini più rigorosi, è la scienza che studia la dinamica dei sistemi non lineari. Questo cambio di paradigma ha avuto inizio verso la fine del XIX secolo, quando uno studioso nell'ambito della meccanica classica, Henri Poincaré, osservò e analizzò la possibilità di un comportamento fortemente irregolare di alcuni sistemi dinamici studiando il problema dei tre corpi, che lo portò alla scoperta del caos matematico.

¹the free encyclopedia Wikipedia. *Teogonia (Esiodo)*. URL: https://it.wikipedia.org/wiki/Teogonia_(Esiodo). (accessed: 03.11.2022).

²June Barrow-Green. L'Ottocento: astronomia. Il problema dei tre corpi e la stabilità del Sistema solare. URL: https://www.treccani.it/enciclopedia/l-ottocento-astronomia-il-problema-dei-tre-corpi-e-la-stabilita-del-sistema-solare_%28Storia-della-Scienza%29/#:~:text=La%20formulazione%20del%20problema%20dei,il%20moto%20negli%20istanti%20successivi.. (accessed: 03.11.2022).

La scoperta di Poincaré segnerà un punto di svolta che verrà ripreso poi solamente negli anni '50 del secolo successivo dal meteorologo Edward Norton Lorenz, quando nel '63 Lorenz pubblicherà il suo articolo *Deterministic Nonperiodic Flow*³, nel quale tratta del comportamento caotico in un sistema semplice e deterministico, con la formazione di un attrattore strano, e aprendo di fatto ufficialmente la strada quella che diverrà poi la Teoria del Caos, mostrando come in realtà all'interno dell'ordine emergano forme di disordine, e all'interno del disordine siano presenti forme di ordine.

1.1 La Cibernetica

Tornando a questo complesso scenario del XX secolo, al termine della seconda guerra mondiale e qualche decennio prima della formulazione della Teoria del Caos, uno dei più importanti avanzamenti nelle scienze che contribuì alla formazione del primo paradigma della complessità, risiedette nell'introduzione della cibernetica.

La cibernetica è la scienza che studia i principi astratti di organizzazione nei sistemi complessi, ed ebbe inizio durante gli anni della seconda guerra mondiale, merito del fisico e matematico Norbert Wiener. Nel '40 Wiener insieme ad altre ad altre prominenti figure provenienti da diversi ambiti scientifici, come Ross Ashby, Margaret Mead, Gregory Bateson, Heinz von Foerster, partecipano ad una serie di conferenze multidisciplinari chiamate "The Macy Conferences", inizialmente intitolate come "Feedback Mechanism in Biology and the Social Sciences" con l'obiettivo comune di andare a definire gli ambiti di interesse della nuova scienza. A seguito nel '48, ispirato dalla meccanica ed i suoi risultati conseguiti durante la guerra e contemporaneamente dallo sviluppo della teoria della comunicazione (o informazione) di Claude Shannon, con la volontà di sviluppare una teoria generalizzata dei principi di organizzazione e controllo nei sistemi emersi durante le conferenze, pubblicherà un libro: La cibernetica, controllo e comunicazione nell'animale e nella macchina; in cui definiva l'ambito di interesse e gli obiettivi della nuova disciplina inaugurando anche l'uso del nuovo termine da lui coniato. A seguito di questo libro che riscuoterà un importante successo, le conferenze presero il nome di "Cybernetics, Circular Causal, and Feedback Mechanism

³Edward Lorenz. "Deterministic Nonperiodic Flow". In: *Journal of Atmospheric Sciences* 20.2 (1963), pp. 130–148.

in Biological and Social Systems", ⁴ riconoscendo Wiener come la principale figura di spicco della nuova scienza.

In particolare come evidenziato fino ad ora dalla sua natura multidisciplinare, la cibernetica non si interessa di individuare in cosa consistano questi sistemi, ma più che altro comprenderne il loro funzionamento.

Le fortunate premesse iniziali della cibernetica risiedevano in una convinzione da parte di questi scienziati provenienti dai differenti ambiti disciplinari, che esistesse uno "schema processuale" comune ad organismi viventi e macchine, rintracciato attraverso una ricerca uniforme garantita dall'utilizzo di un metodo "sintetico" e "comportamentale". L'aspetto meta-disciplinare del pensiero cibernetico, esplicito nella sua fondazione, godrà di una fama più popolare che conseguirà in importanti realizzazioni tra l'inizio degli anni '60 e la metà del '70, grazie al contributo degli scienziati Heinz von Foerster, Margaret Mead, Gregory Bateson, e altri. In quel periodo si compierà un ulteriore passo fondamentale che porterà il pensiero sistemico verso il consolidamento in una scienza più concreta, dando vita alla "Cibernetica di secondo ordine", ⁵ anche chiamata come "la cibernetica dei sistemi di osservazione", che consiste nell'applicazione ricorsiva della cibernetica a se stessa e la pratica riflessiva della cibernetica secondo tale critica. La differenza fra cibernetica di primo e secondo ordine risiede nel fatto, che mentre nel primo periodo lo studioso di cibernetica (di primo ordine) studiava un sistema da un punto di vista passivo, da quello dell'osservatore dei comportamenti di un sistema. Il cibernetico di secondo ordine lavora ed interviene nel comportamento e nella costruzione di un sistema complesso, riconoscendo il sistema come un agente con cui interagire e riconoscendo esso stesso come agente nell'interazione col sistema.⁶

A partire dalle sue importanti premesse, la cibernetica ha conseguentemente poi avuto un ruolo centrale nello sviluppo di molti studi scientifici e la nascita di nuovi ambiti come: l'intelligenza artificiale, la teoria del caos, la teoria della

⁴Luca Fabbris e Alberto Giustiniano. *CFP18 cibernetica, sistemi, teorie, modelli.* URL: https://philosophykitchen.com/2022/03/cfp18-cibernetica-sistemi-teorie-modelli/. (accessed: 03.11.2022).

 $^{^5}$ the free encyclopedia Wikipedia. $Second\text{-}order\ cybernetics.}$ URL: https://en.wikipedia.org/wiki/Second-order_cybernetics. (accessed: 03.11.2022).

⁶Bernard Scott. "Second-order cybernetics: an historical introduction". In: *Kybernetes* 33.9.10 (2003), pp. 1365–1378. DOI: doi:10.1108/03684920410556007. URL: https://sites.ufpe.br/moinhojuridico/wp-content/uploads/sites/49/2021/10/Ciber-2b-22-out.-second-order-cybernetcs.pdf.

catastrofe, la teoria dei controlli, la teoria generale dei sistemi, la robotica, la psicologia, le scienze sociali, e così via.

1.2 Le cibernetiche nella musica

All'inizio degli anni '60 in seno alle nascita delle scienze complesse, l'uso di sistemi di feedback e la rilevanza dei circuiti informativi chiusi nelle strutture organizzate ha goduto di uno slancio popolare anche nel mondo della musica e più in generale dell'arte.

Tuttavia come vedremo, a parte casi popolari di deliberate dichiarazioni formali da parte degli artisti, non bisogna pensare ai lavori che andremo a citare come atti pionieristici che sanciscono una volta per tutte la nascita della cibernetica in musica, ma è più corretto pensare alle questioni sistemiche come ad una sensibilità comune condivisa in un certo periodo da diversi autori provenienti da diverse parti del mondo, che sono stati influenzati e si sono influenzati a vicenda con le stesse idee per un interesse condiviso riguardo le teorie cibernetiche di Weiner e delle Macy Conferences.

In Europa nel '51, Herbert Eimert e Werner Meyer-Eppler persuasero il direttore della NWDR, Hanns Hartmann, a creare uno Studio per la Musica Elettronica, che Eimert diresse fino al '62. Questo è diventato lo studio più influente al mondo durante gli anni '50 e '60, con ospiti alcuni dei più importanti compositori contemporanei provenienti da tutta Europa, come Roland Kayn, Franco Evangelisti, Karlheinz Stockhausen, Herbert Brun, Cornelius Cardew, e molti altri. In quel periodo il lavoro di ricerca condotto da Werner-Meyer Eppler, scienziato, musicista ideatore e direttore dello studio di Colonia, pone una certa attenzione in quelle che sono state le teorizzazioni della teoria dell'informazione e della cibernetica, che porteranno l'autore alla scrittura di importanti testi di ricerca. Dalle esperienze dello studio di Colonia ne usciranno molti compositori interessati alle teorie cibernetiche. Un caso importante in questo scenario è quello del compositore Roland Kayn, Il progetto di musica cibernetica di Kayn ha ricevuto il suo impulso iniziale quando nel '53, ad allora giovane musicista e studente universitario, venne in contatto con il filosofo Max Bense professore all'Università Tecnica di Stoccarda. Subito dopo il suo primo incontro con Bense sempre nel '53, Kayn entrò in contatto con Herbert Eimert presso lo studio elettron-

⁷ Electronic Music Studio (Colonia). URL: https://it.frwiki.wiki/wiki/Studio_de_musique_%C3%A9lectronique_(Cologne). (accessed: 17.10.2022).

ico della Westdeutscher Rundfunk di Colonia. Roland Kayn era affascinato dal potenziale sonoro offerto dalle nuove tecnologie, ma trovava che l'estetica serialista dominante nello studio in quegli anni era per lui qualcosa di troppo restrittivo, esperienza che lo portò per i successivi dieci anni a concentrarsi principalmente sulla composizione strumentale e le applicazioni delle teorie cibernetiche in modo formale.⁸ Sempre in quel periodo, sostanzialmente diverso e molto importante è il caso di Franco Evangelisti, che dopo essersi avvicinato alla musica elettronica anche lui sotto la guida e su invito di Herbert Eimert allo studio elettronico della Westdeutscher Rundfunk di Colonia nel '56, dove ebbe, tra l'altro, contatti decisivi con H. Brün, H. G. Helms, G. M. König, H. K. Metzger, K. Stockhausen (a cui Evangelisti aveva dedicato Proiezioni sonore): iniziò le sue ricerche che dopo un anno e mezzo di intenso lavoro lo portarono al completamento della sua prima composizione elettronica, Incontri di fasce sonore, trasmessa da Radio Colonia nel '57. Nel '59, Evangelisti è nuovamente in Italia, dove fu tra i promotori della Settimana Internazionale di Nuova Musica a Palermo. L'anno seguente, assieme ad altri musicisti fondò l'Associazione Nuova Consonanza, con lo scopo di diffondere "la musica contemporanea italiana e straniera con concerti convegni ed eventi di vario tipo. Dall'associazione nacque più tardi l'omonimo Gruppo di improvvisazione che allora veniva presentato come "il primo ed unico gruppo formato da compositori-esecutori" e che permise ad Evangelisti di mettere in pratica le proprie teorie sull'improvvisazione, riguardo queste citerà più volte deliberatamente in interviste, scritti, e altre documentazioni, il suo approccio sistemico/cibernetico in quelle che saranno le esperienze con il Gruppo. Nel '60 si trasferisce a Roma Roland Kayn da vincitore del Prix de Rome, dove dal '64 assieme ad Aldo Clementi e Franco Evangelisti prende parte al Gruppo di improvvisazione Nuova Consonanza del quale fece parte sino al '68, ed è in quel periodo che Kayn ispirato dalle teorie della cibernetica iniziò a sperimentare estensivamente con sistemi di autoregolazione basati su feedback loops, non più solo come modelli formali per composizioni strumentali ma anche come reti di generatori di segnale analogici.

Sempre negli anni '50 in Europa, uno dei primi artisti nella storia dell'arte ad evocare l'uso della cibernetica nei propri lavori è stato Nicolas Schoeffer con il suo ciclo di lavori "spazio-dinamici", in acronimo CYSP - Cybernetic

⁸Thomas W. Patteson. "The Time of Roland Kayn's Cybernetic Music". In: (), pp. 1–11. URL: https://kayn.nl/wp-content/uploads/2016/12/The-Time-of-Roland-Kayns-Cybernetic-Music-Thomas-Patteson.pdf.

Spatiodynamic. In particolare Schoeffer ha creato la prima installazione ad implementare meccanismi di auto-regolazione, il CYSP-1⁹, capace di essere sensibile all'ambiente esterno e a se stesso grazie ad una serie di tecnologie offerte dalla compagnia Philips (fotocellule e microfoni), questa prima scultura spazio-dinamica, è dotata di totale autonomia di movimento (viaggio in tutte le direzioni a due velocità) e di rotazione assiale ed eccentrica (messa in moto delle sue 16 lastre policrome pivotanti), ed era capace di reagire sonoramente a questi stimoli riproducendo una serie di registrazioni composte dal compositore francese Pierre Henry, collaboratore di Pierre Schaeffer ed insieme a lui figura centrale nella nascita della Musique concrète. Questa scultura è celebrata come una prima e prima opera di carattere cibernetico che è entrata nel mondo dell'arte.

Se cambiamo Continente e passiamo dall'Europa ad osservare cosa accadeva in America in quegli anni, possiamo trovare tanti altri atti pioneristici, come ad esempio quelli che sono stati i lavori di Louis e Bebe Barron. Louis e Bebe Barron furono due compositori e pianisti che si interessarono alla musica elettronica sin dal periodo della sua origine. Intorno al '50 i due si trasferirono al Greewitch Village a New York dove furono attivi in collettivi di musica sperimentale collaborando con persone come John Cage ed altri. I Barron trasformarono la loro casa in una specie di studio di musica Elettronica dove scrivevano soundtracks per film sperimentali. Per Louis e Bebe il grande passo arrivò nel '56, quando i due si ritrovarono a scrivere la soundtrack per il film Forbidden Planet, questo sarà il primo film mainstream di Hollywood ad utilizzare una soundtrack composta solamente ed interamente da elettronica. L'elettronica di Forbidden Planet è stata costituita a partire da circuiti appositamente creati da Louis e Bebe, i due deliberatamente ispirati dalle teorie cibernetiche di Wiener dichiareranno: 10

What we did was pretty elementary: we would attach resistors and capacitors to activate these circuits... negative and positive feedback was involved - Wiener talks about all that. The same conditions that would

⁹Dario Sanfilippo and Andrea Valle. "Feedback Systems: An Analytical Framework". In: *Computer Music Journal* 37.2 (2013), pp. 12–27. DOI: doi:10.1162/COMJa00176. URL: https://direct.mit.edu/comj/article-abstract/37/2/12/94420/Feedback-Systems-An-Analytical-Framework?redirectedFrom=PDF.

¹⁰Christina Dunbar-Hester. "Listening to Cybernetics: Music, Machines, and Nervous Systems, 1950-1980". In: *re:place conference, Berlin, November 2007*. Cornell University, 2007.

INTRODUZIONE

produce breakdowns and malfunctions in machines, made for some wonderful music. The circuits would have a "nervous breakdown" and afterwards they would be very relaxed, and it all came through in the sounds they generated.

Bebe Barron in Vale and Juno 1994: 200, emphasis in original

I circuiti in retroazione erano destinati al corto circuito, e utilizzati appositamente come materiale per la generazione acustica di trame incise su nastro. Se pensiamo ad altri compositori americani nello stesso periodo, troviamo invece ai primi lavori che sfruttano ed esplorano il Feedback in modo artistico: John Cage, David Tudor, Robert Ashley, Gordon Mumma e Steve Reich.¹¹

Un secondo periodo costituito da un approccio sistemico più consapevole che inizia a tracciare la strada per un pensiero ecosistemico della composizione, inizia invece dal lavoro di Alvin Lucier, che nel '69 scriverà quello che sarà un brano emblematico per la cibernetica in musica "I'm sitting in a room", è un altro brano importante per quelle che sono le logiche di interazione sistemiche fra uomo/macchina/ambiente e che sancisce una volta per tutte l'interazione sistemica dove il musicista l'ambiente e lo strumento sono parti di un insieme del sistema "più complesso", dove il sistema stesso si osserva tramite l'ambiente nel corso della sua evoluzione, proprio come nella cibernetica di secondo ordine. In I'm sitting in a room, un performer al centro della stanza recita in un microfono un testo che descrive il fenomeno che avverrà poco a poco, la voce recitante nel microfono viene registrata e poi riprodotta da altoparlanti posti nella stanza, il suono della registrazione riprodotta da questi altoparlanti viene registrato nuovamente durante la riproduzione, e l'operazione viene ripetuta in un in una casualità circolare di volta in volta fino alla fine dove rimarranno solo i contributi provenienti dalle frequenze di risonanza della stanza, dalla voce e dalla catena elettroacustica, dando vita nel loro insieme ad un processo molto lento di Feedback positivo dove la natura non lineare del processo e degli agenti porterà di volta in volta ad un risutato sempre differente. Lucier racconta di essere stato originariamente ispirato a creare I Am Sitting in a Room dopo aver partecipato a una conferenza al MIT, in cui Amar Bose, imprenditore, ingegnere elettrico

¹¹Sanfilippo and Valle, "Feedback Systems: An Analytical Framework".

e tecnico del suono, descrisse come testava le caratteristiche degli altoparlanti che stava sviluppando, ri-diffondendo l'audio prodotto nella stanza e poi riprendendolo tramite i microfoni, in quella che è la stessa casualità circolare ripresa ed utilizzata artisticamente da Lucier. ¹² Dopo l'esperienza di Lucier, Nicolas Collins, formatosi nella tradizione compositiva sperimentale con Alvin Lucier, David Behrman e David Tudor, con i quali ha lavorato a stretto contatto, nel '74 compone "pea soup" mentre è studente alla Wesleyan University. In Pea Soup una rete auto-stabilizzante di circuiti analogici (originariamente tre Countryman Phase Shifter) sposta il tono del feedback elettoacustico su una frequenza di risonanza diversa ogni volta che questo si inizia a costruire. Il suono familiare del fenomeno è sostituito da schemi instabili che danno vita ad un raga site-specific rispecchiando la personalità acustica della stanza. 13 Anche in questo lavoro come per quello di Lucier è chiaro come la sensibilità nei confronti del fenomeno di feedback sia passata ad una logica più vicina a quella della cibernetica di secondo ordine. Per citare un'ultima esperienza americana rilevante, c'è infine il caso della Neural Synthesis di David Tudor. David Tudor nel '89 incontrò il progettista e designer Forrest Warthman dopo uno show a Berkeley, che che lo introdusse all'idea di utilizzare reti neurali analogiche per combinare tutta la sua complessa attività live-electronics in un unico computer. ¹⁴ Un risultato è il CD "Neural Synthesis" in cui Warthman scrive nelle note di copertina:

This recording combines the art of music, the engineering of electronics, and the inspiration of biology. In it, David Tudor orchestrates electronic sound in ways analogous to our biological bodies' orchestration of consciousness... The neural-network chip forms the heart of the synthesizer. It consists of 64 non-linear amplifiers (the electronic neurons on the chip) with 10240 programmable connections. Any input signal can be connected to any neuron, the output of which can be fed back to any input via on-chip or off-chip paths, each with variable connection strength. The same floating-gate devices used in EEPROMs (electrically erasable,

¹²Massachusetts Institute of Technology. Alvin Lucier on "I am sitting in a room". URL: https://www.youtube.com/watch?v=v9XJWBZBzq4. (accessed: 04.11.2022).

¹³Nicolas Collins. "'Pea Soup' - A History". In: (September, 2011), pp. 1-23. URL: http://www.nicolascollins.com/texts/peasouphistoryOLD.pdf.

¹⁴Mathis Nitschke. *Analog Neural Synthesis*. URL: https://mlure.art/analog-neural-synthesis/. (accessed: 04.11.2022).

programmable, read-only memories) are used in an analog mode of operation to store the strengths of the connections. The synthesizer adds R-C (resistance-capacitance) tank circuits on feedback paths for 16 of the 64 neurons to control the frequencies of oscillation. The R-C circuits produce relaxation oscillations. Interconnecting many relaxation oscillators rapidly produces complex sounds. Global gain and bias signals on the chip control the relative amplitudes of neuron oscillations. Near the onset of oscillation the neurons are sensitive to inherent thermal noise produced by random motions of electron groups moving through the monolithic silicon lattice.

This thermal noise adds unpredictability to the synthesizer's outputs, something David found especially appealing. The synthesizer's performance console controls the neural-network chip. R-C circuits, external feedback paths and output channels. The chip itself is not used to its full potential in this first synthesizer. It generates sound and routes signals but the role of learner, pattern-recognizer and responder is played by David, himself a vastly more complex neural network than the chip Neural Synthesis No.6-9

liner notes by Forrest Warthman, Palo Alto 1995¹⁵

Ad oggi svariati compositori a partire dalle trame delineate dalle scienze complesse e dai lavori citati, operano nell'ambito della musica elettronica con un approccio sistemico, fra questi molti sono italiani.

Ci sono casi particolarmente rilevanti come quello di Agostino Di Scipio, uno dei maggiori compositori con più contributi all'attivo, da prima con i suoi studi sul caos e sui sistemi complessi in modo formale ad inizio anni '90¹⁶, e poi verso metà anni '90 con l'inizio del lavoro sulla composizione ecosistemica con il suo ciclo di lavori - ecosistemico udibile, che come vedremo a seguito riprende quelle che sono le tematiche della cibernetica di secondo ordine dove il sistema si osserva tramite l'ambiente circostante. O dell'(ex)allievo di Di Scipio, Dario Sanfilippo, compositore e ricercatore con all'attivo recenti importanti pubblicazioni e lavori nell'ambito dei sistemi autonomi DSP in musica, tematiche che rimandano alle proposte che vanno dai Barron fino alla Neural Synthesis di Tudor, seppure in forme più primordiali nel caso di questi ultimi, così come Di Scipio nella sua sensibilità ecosistemica sembra

¹⁵http://www.lovely.com/albumnotes/notes1602.html.

¹⁶Agostino Di Scipio. "Composition by exploration of non-linear dynamic systems". In: *ICMC Glasgow 1990 Proceedings.* C.S.C. University of Padova, 1990, pp. 324–327.

rimandarci ai lavori pionieristici di Lucier e Collins.

C'è poi il caso di Michelangelo Lupone, che a sua volta è stato maestro di Agostino Di Scipio, che con i suoi lavori di Feedback sulla materia è arrivato durante il corso degli anni '90 allo sviluppo pionieristico di strumenti aumentati in Feedback, quale ad esempio il Feed-Drum, innovativo strumento elettroacustico a percussione. E ci sono poi anche altri compositori internazionalmente riconosciuti con all'attivo composizioni e ricerche rilevanti in lavori con il Feedback e i sistemi autonomi, come Andrea Valle e Simone Pappalardo.

Parlando delle questioni italiane e tornando all'origine delle questioni romane, nonostante la natura frammentaria e sottile della musica elettronica romana, in effetti è comunque possibile individuare e tracciare una sorta di collegamento che ci porta sin dalle prime suggestioni sulla cibernetica avute da Evangelisti con gli altri membri di Nuova Consonanza, fino ad oggi. Michelangelo Lupone ad esempio che abbiamo citato per i suoi lavori e per esser stato maestro di Agostino Di Scipio, studia dal '70 al '79, sotto la guida di Domenico Guaccero per la Composizione e Giorgio Nottoli per la Musica elettronica. Domenico Guaccero è a sua volta fra i fondatori, insieme ad Evangelisti ed altri compositori quali Aldo Clementi, Daniele Paris, Francesco Pennisi, dell'Associazione di Nuova Consonanza. Walter Branchi, noto anche lui per aver preso parte al Gruppo di Improvvisazione Nuova Consonanza, durante gli anni '80 darà vita a degli incontri internazionali su Musica complessità, che radunavano compositori e scienziati di tutto il mondo. Di Scipio e Lupone in questo scenario, si sono interessati alle questioni sul Feedback in contemporanea portando avanti il discorso in maniera indipendente intorno alla fine degli anni '80, Di Scipio nel 1989, scrive gli appunti a base di semplici funzioni iterate da cui nacque poi il suo brano Fractus, Lupone dal 1988, fonda ed inizia con il Centro Ricerche Musicali il suo lavoro con team multidisciplinari di ricerca, con la collaborazione di persone come Lorenzo Seno direttore scientifico del CRM. Tutto questo mette in luce come le problematiche relative alla cibernetica e i sistemi complessi siano stato un argomento molto sentito e vivo nella prassi della composizione elettroacustica in tutto il mondo.

1.3 Il Feedback

Il feedback (o retroazione) è un concetto cibernetico che sta ad indicare la capacità di un sistema di autoregolarsi tenendo conto degli effetti scaturiti

dalla modificazione delle caratteristiche del sistema stesso. In termini appartenenti alla fisica, è la capacità di un sistema dinamico di tenere conto dei risultati prodotti dal sistema per modificare le caratteristiche del sistema stesso. Quello che osserviamo in un ciclo di feedback è il passato che viene influenzato dal presente, e che sta per essere compensato dall'immediato futuro. Negli esseri viventi, ad esempio, i sistemi a retroazione negativa e positiva sono ampiamente utilizzati per regolare l'omeostasi dell'organismo. Esistono idealmente due tipologie di Feedback:

- a Retroazione Positiva
- a Retroazione Negativa

In un sistema soggetto a questi stimoli, il feedback positivo può creare una risposta con crescite o decadimenti esponenziali dal punto di equilibrio naturale del sistema. Questo viene spesso visto come una reazione a catena dove le perturbazioni che tendono verso una certa direzione saranno amplificate ricorsivamente dal sistema stesso, determinando ulteriori spostamenti nella medesima direzione. D'altra parte invece, i circuiti di feedback negativo hanno un comportamento complementare al feedback positivo e tendono ad oscillare attorno ad un punto di stabilità. In effetti, i sistemi di feedback negativo sono in equilibrio dinamico e svolgono un azione di controbilanciamento nei confronti degli stimoli esterni per mantenere uno stato di equilibrio.¹⁸ Nel corso della tesi ritorneremo su questi temi riguardo le proprietà del feedback, affrontandoli di volta in volta nei casi specifici. Per ora ci basti pensare che nel controllo di un sistema complesso come può essere quello del feedback elettroacustico, introdurre delle linearità tramite retroazione all'interno del ciclo di feedback potrebbe voler dire costringere la complessità a dei comportamenti prevedibili, uno stato di convergenza verso l'equilibrio, un esempio pratico e conosciuto è quello dell'intonazione del fenomeno Larsen, che da un comportamento complesso della sorgente e del ricettore arriva ad uno stato stazionario, di stabilità. Mentre introdurre delle non linearità nel sistema tramite la retroazione, potrebbe voler dire portare il sistema verso comportamenti non più prevedibili, in divergenza dall'equilibrio dello stato stazionario, e in alcuni casi verso la soglia del caos. Questi due tipi di comportamento

¹⁷Dario Sanfilippo. "The Aesthetics of Musical Complex Systems". In: *Organised Sound* 28 (2023).

¹⁸Sanfilippo, "The Aesthetics of Musical Complex Systems".

possono essere ottenuti per l'appunto sia velocizzando che rallentando questi processi in maniera dipendente dal caso specifico. Un secondo esempio esemplare è quello dei filtri digitali nell'audio, questi possono essere pensati come un valido strumento di contrasto o favoreggiamento rispetto a questo tipo di comportamenti, dove se si allineano le fasi si creano dei poli, mentre se si disallineano si punta generalmente alla complessità del sistema. Di fatto la storia delle tecnologie elettroacustiche ha più in generale da sempre incorporato il principio del feedback sin dalle sue origini, basti pensare a tecnologie come il triodo, chiamato inizialmente valvola audion di Lee De Forest, o i circuiti di feedback negativo - negative feedback amplifier - di Harold Black¹⁹.

 $^{^{19}\}mathrm{Agostino}$ Di Scipio. A Relational Ontology of Feedback. URL: https://echo.orpheusinstituut.be/article/a-relational-ontology-of-feedback. (accessed: 17.10.2022).

2 Ecosistemi Udibili

Quello di cui abbiamo parlato fino ad ora nella tesi ha trattato la storia di un cambio di pardigma nella musica, in cui essenzialmente si è smesso di scrivere musica per strumenti interattivi con cui farla, e viceversa, e si è passati invece al comporre le interazioni tramite gli strumenti.

Le interazioni sistemiche che ho ritenuto importante affrontare all'interno di questa tesi come anticipato nell'abstract sono di due tipi, di sistemi che interagiscono con l'ambiente circostante appartenente al mondo fisico, e sistemi che interagiscono con il proprio ambiente nel mondo digitale.

Quello che si manifesta quando un sistema entra in interazione non distruttiva con l'ambiente circostante, che è il suo spazio vitale, è un Ecosistema. In effetti nessun sistema è separabile e isolabile dall'ambiente circostante, a prescindere dal fatto che il suo spazio vitale sia nel mondo fisico o digitale. Proprio come ha mostrato Heinz Von Foerster non si può parlare di auto-organizzazione se non ci si riferisce essenzialmente a un ambiente che racchiude il sistema al suo interno. I lavori del ciclo Ecosistemico Udibile di Agostino di Scipio, in tal senso, trovano fondamento a partire da fenomeni e relazioni che possono esistere e manifestarsi solamente nell'ambiente circostante da cui prende vita il sistema, che in questo caso è proprio lo spazio acustico reale. Lavori come lo studio sul feedback, lo studio sul rumore di fondo, lo studio sulle risposte all'impulso, o lo studio sul silenzio, sono in essenza dei sistemi che interrogano un determinato comportamento appartenente allo spazio acustico reale, delimitato in questi studi da una stanza, per costruirne una storia di relazioni dove il sistema si osserva attraverso lo spazio fisico, si manifesta e vive solo attraverso di esso. In questo senso l'interprete, lo spazio, e gli ascoltatori, divengono essi stessi parte integrante del sistema dove l'ascolto è parte dell'insieme delle cose e delle relazioni che lo costituisce.

2.1 L'interazione Uomo-Macchina-Ambiente

Qual'è dunque l'esigenza alla base del comporre le interazioni invece che limitarsi al comporre musica per strumenti interattivi? Superare la relazione uomo-macchina, iniziando a pensare allo sconfinato universo delle nuove possibilità della complessità. Secondo Agostino Di Scipio, per l'appunto, alla possibilità che la macchina possa rappresentarsi, senza mediazione umana,

attraverso l'ambiente circostante, ²⁰ e dunque poi alla possibilità di stabilire un flusso di relazioni macchina-ambiente. Consentendo al performer la possibilità di potersi aprire ad un flusso di relazioni complesso fra uomo-macchina-ambiente dove le tre sono fortamente connesse e dipendenti l'una dall'altra.

Interazione Uomo-Macchina-Ambiente²¹

la mossa decisiva è: passare da un lavoro che mira a usare mezzi interattivi per creare forme sonore desiderate ad un lavoro che mira a creare le interazioni desiderate e ad ascoltarne le tracce udibili. Nel secondo caso, si tratta di progettare, implementare, e rendere operativo un reticolo di componenti interconnesse il cui comportamento sonoro emergente si può chiamare musica.²²

Il modo in cui andrò a discutere in questo capitolo la composizione di interazioni ecosistemiche, è ponendo il focus su un lavoro di Agostino Di Scipio, l'Ecosistemico Udibile n.2, studio sul feedback. Andando ad analizzare il ruolo e il compito dei singoli agenti all'interno del sistema che compongono nella loro totalità l'ecosistema e il brano.

2.2 Il Meccanismo LAR

Il feedback elettroacustico (effetto Larsen), che abbiamo visto esser stata una delle risorse centrali dei primi compositori cibernetici, è la condizione

 $^{^{20}{\}rm Agostino}$ Di Scipio. "Polveri Sonore - Una prospettiva ecosistemica della composizione". it. In: La Camera Verde (2014). Publisher: La Camera Verde, 17–42 Pages. (Visited on 11/22/2022).

²¹Di Scipio, "Polveri Sonore - Una prospettiva ecosistemica della composizione".

²²Di Scipio, "Polveri Sonore - Una prospettiva ecosistemica della composizione".

di partenza su cui Agostino Di Scipio opera per la costruzione degli Ecosistemi Udibili. Addentrandoci verso una spiegazione più tecnica del feedback elettroacustico, possiamo citare una definizione che Di Scipio ha esposto in un suo articolo pubblicato presso la rivista Online: ECHO dell' Orpheus Institute, in Ghent.²³

A condenser microphone (M1) and a dynamic loudspeaker (L1) stand in the performance place (S), few or several meters apart, maybe not too far from walls (or curtains, or other larger surfaces). They are connected (through one or more amplification stages) to realize a very basic electroacoustic chain: $M1 \rightarrow L1 \rightarrow S$. There's no sound M1 should capture, though, no sound source save the minimal, barely audible turbulence of the background noise, in a situation of 'silence'. This 'sound-of-nothing' is amplified and heard through L1, whence it comes back in S.

If amplification suffices, the L1 sound feeds back into M1 and the chain design closes onto itself, making a 'reinjection' circuit – a feedback loop. The amplitude level, the transductive technical features of M1 and L1, their relative distance, the distance from walls, etc. – all of that (and much more) sets the actual feedback loop gain. With not-too-high gain levels, what is engendered is an audible nuisance, a kind of 'halo': the sound reinjection decays more or less rapidly, in a kind of badly sounding, spectrally uneven reverb effect. With higher gain levels, the loop eventually enters a self-oscillatory regime, it may 'ring' or 'howl', as is often said. Because of the iterated reinjection, the barely audible but spectrally wide background noise accumulates in the loop and finally (quickly) yields an increasingly louder sustained sound of narrower spectrum – this is often heard as a peaking tone of definite pitch, or a tone cluster. That's the Larsen effect: a self-sustaining feedback resonance occasioned by a positive feedback loop (FB+) ('positive' here means greater than unit gain).²⁴

 $^{^{23}\}mathrm{Agostino}$ Di Scipio. A Relational Ontology of Feedback. en. Jan. 2022. DOI: 10.47041/TKUL7223. URL: https://echo.orpheusinstituut.be/article/a-relational-ontology-of-feedback (visited on 11/22/2022).

²⁴Di Scipio, A Relational Ontology of Feedback.

L'effetto Larsen: (dal nome del fisico Søren Absalon Larsen che per primo ne scoprì il principio), detto anche feedback elettroacustico, come abbiamo appena letto è un fenomeno di retroiniezione che tende idealmente ad un'accumulazione infinita, che viene limitata in realtà dalla saturazione dei sistemi che la generano (relativi alla potenza massima, all'amplificazione, nonché alla sensibilità dei trasduttori e all'elasticità delle membrane). Che può però anche essere oltre al microfono, un pick-up di uno strumento musicale elettrico, come una chitarra o un basso, o un trasduttore di altra natura...

In common sound engineering practice, audible feedback phenomena are a nuisance, a problem one should get rid of or substantially minimize. When direct level manipulation is not enough, one resorts to hard-limiting circuits, 'feedback killers' and alike devices... In a different attitude, one may instead consider feedback as a resource, a deliberately designed sound-making mechanism one can play with.²⁶

per utilizzare quindi il feedback come una risorsa, evitando quindi questa sua crescita che porti alla saturazione dei sistemi, possiamo far calcolare al computer in tempo reale tramite diverse tecniche di amplitude following la stima dell'ampiezza del segnale, ed utilizzare conseguentemente la feature extraction come segnale di controllo in retroazione al sistema di Feedback Elettroacustico. Questo meccanismo di controbilanciamento del guadagno del fenomeno è chiamato da Agostino Di Scipio col nome di LAR: Audio Feedback with Self-regulated Gain, e che può essere implementato in DSP in diversi modi e configurazioni.

²⁵Di Scipio, A Relational Ontology of Feedback.

²⁶Di Scipio, A Relational Ontology of Feedback.

Schema del meccanismo LAR^{27}

Ci sono poi, diversi modi per realizzare un algoritmo di controbilanciamento del feedback in tempo reale nella tradizione della computer music. Alcuni di questi possono riguardare controbilanciamenti nel dominio della frequenza, con tecniche di filtraggio automatizzate (adattive) che eliminino dallo spettro la presenza dell'autoscillazione prodotta dal Larsen Larsen Suppressors, o come nel nostro caso d'interesse possono riguardare controbilanciamenti in ampiezza automatizzati, che non permettano al Feedback di avere un guadagno troppo troppo elevato e giungere dunque ad uno stato di saturazione del sistema. Nel secondo caso possono dunque essere implementati algoritmi di amplitude following in tempo reale con dei filtri che operano la media RMS, a media mobile, filtri peakholder che mantengono il valore di picco, o di altra natura.

Passiamo ora ad una parte più operativa, discutendo l'implementazione di alcune di queste tecniche nel linguaggio di programmazione FAUST (Grame), l'ambiente in cui sono stati scritti i codici di tutti i lavori sviluppati per questa tesi e le relative compilazioni, diagrammi, softwares.

²⁷Di Scipio, A Relational Ontology of Feedback.

²⁸²⁹ Il modo più semplice per mantenere l'effetto Larsen in uno stato stazionario, è attraverso un valore costante in retroazione che controbilancia l'ampiezza del segnale in ingresso; quando questa costante in ingresso nel filtro corrisponde al valore di picco maggiore di una finestra di campioni, il controbilanciamento in questione è chiamato tramite *Peakholder*. Il modo più semplice per implementare un Peakholder è tramite una finestra di campioni idealmente infinita IIR *Infinite Impulse Response*. L'algoritmo presenta comunque alcuni problemi: non possedendo una funzione di smoothing del segnale, si verificano problemi di segnali di differenza a banda molto larga che possono generare aliasing e contributi spuri che tendono a permanere nel segnale complessivo.

²⁸FAUST (Grame) (Functional Audio Stream), è un linguaggio di programmazione specifico per il Digital Signal Processing sviluppato da Yann Orlarey, Dominique Fober, e Stephane Letz nel 2002. Nello specifico, FAUST è un linguaggio di programmazione ad alto livello scritto in C++, che permette di tradurre delle istruzioni date e create appositamente per il digital signal processing (DSP), in un largo raggio di linguaggi di programmazione non specifici per il dominio dell'Audio Digitale.

²⁹https://faust.grame.fr/.

3 Sistemi Autonomi

- proseguire partendo dagli articoli di Dario Sanfilippo e dalla sua tesi PhD, ed arrivare al porting del suo lavoro Order From Noise. Discutere gli elementi del sistema e in Order From Noise + Codici Faust degli agenti. In coda al capitolo rimandare al codice completo in Appendice A e plot grafici di Faust in Appendice B -

4 La Composizione di RITI : un sistema caotico ibrido

- parlare del brano e della sua realizzazione + Codici Faust degli agenti e delle varie parti. Le analisi condotte e il contributo proveniente dai lavori di Agostino Di Scipio e Dario Sanfilippo. In coda al capitolo rimandare al codice completo in Appendice A e plot grafici di Faust in Appendice B - + Partitura dopo gli appendici (o appendice C)

- A First appendix
- B Second appendix

REFERENCES REFERENCES

References

- Alberto Giustiniano, Luca Fabbris e. *CFP18 cibernetica, sistemi, teorie, modelli.* URL: https://philosophykitchen.com/2022/03/cfp18-cibernetica-sistemi-teorie-modelli/. (accessed: 03.11.2022).
- Barrow-Green, June. L'Ottocento: astronomia. Il problema dei tre corpi e la stabilità del Sistema solare. URL: https://www.treccani.it/enciclopedia/l-ottocento-astronomia-il-problema-dei-tre-corpi-e-la-stabilita-del-sistema-solare_%28Storia-della-Scienza%29/#:~:text=La%20formulazione%20del%20problema%20dei,il%20moto%20negli%20istanti%20successivi.. (accessed: 03.11.2022).
- Collins, Nicolas. "'Pea Soup' A History". In: (September, 2011), pp. 1-23. URL: http://www.nicolascollins.com/texts/peasouphistoryOLD.pdf.
- Di Scipio, Agostino. A Relational Ontology of Feedback. en. Jan. 2022. DOI: 10.47041/TKUL7223. URL: https://echo.orpheusinstituut.be/article/a-relational-ontology-of-feedback (visited on 11/22/2022).
- "Polveri Sonore Una prospettiva ecosistemica della composizione". it. In: *La Camera Verde* (2014). Publisher: La Camera Verde, 17–42 Pages. (Visited on 11/22/2022).
- Dunbar-Hester, Christina. "Listening to Cybernetics: Music, Machines, and Nervous Systems, 1950-1980". In: re:place conference, Berlin, November 2007. Cornell University, 2007.
- Electronic Music Studio (Colonia). URL: https://it.frwiki.wiki/wiki/Studio_de_musique_%C3%A9lectronique_(Cologne). (accessed: 17.10.2022).
- Lorenz, Edward. "Deterministic Nonperiodic Flow". In: Journal of Atmospheric Sciences 20.2 (1963), pp. 130–148.
- Nitschke, Mathis. Analog Neural Synthesis. URL: https://mlure.art/analog-neural-synthesis/. (accessed: 04.11.2022).
- Patteson, Thomas W. "The Time of Roland Kayn's Cybernetic Music". In: (), pp. 1-11. URL: https://kayn.nl/wp-content/uploads/2016/12/The-Time-of-Roland-Kayns-Cybernetic-Music-Thomas-Patteson.pdf.
- Sanfilippo, Dario. "The Aesthetics of Musical Complex Systems". In: Organised Sound 28 (2023).
- Sanfilippo, Dario and Andrea Valle. "Feedback Systems: An Analytical Framework". In: Computer Music Journal 37.2 (2013), pp. 12-27. DOI: doi: 10.1162/COMJa00176. URL: https://direct.mit.edu/comj/article-

REFERENCES REFERENCES

- abstract / 37 / 2 / 12 / 94420 / Feedback Systems An Analytical Framework?redirectedFrom=PDF.
- Scipio, Agostino Di. A Relational Ontology of Feedback. URL: https://echo.orpheusinstituut.be/article/a-relational-ontology-of-feedback. (accessed: 17.10.2022).
- "Composition by exploration of non-linear dynamic systems". In: *ICMC Glasgow 1990 Proceedings*. C.S.C. University of Padova, 1990, pp. 324–327.
- Scott, Bernard. "Second-order cybernetics: an historical introduction". In: *Kybernetes* 33.9.10 (2003), pp. 1365-1378. DOI: doi:10.1108/03684920410556007. URL: https://sites.ufpe.br/moinhojuridico/wp-content/uploads/ sites/49/2021/10/Ciber-2b-22-out.-second-order-cybernetcs. pdf.
- Technology, Massachusetts Institute of. Alvin Lucier on "I am sitting in a room". URL: https://www.youtube.com/watch?v=v9XJWBZBzq4. (accessed: 04.11.2022).
- Wikipedia, the free encyclopedia. Second-order cybernetics. URL: https://en.wikipedia.org/wiki/Second-order_cybernetics. (accessed: 03.11.2022).
- Teogonia (Esiodo). URL: https://it.wikipedia.org/wiki/Teogonia_(Esiodo). (accessed: 03.11.2022).