Textbook sections: 8.1, 8.2, 8.3

* Non-linear first order IVPs

We're approximating IVPs of the form...

$$rac{dy}{dt}=f(t,y),\quad y(t_0)=y_0$$

Euler's Method (8.1)

To approximate the value of a DE at t_0, t_1, t_2, \ldots ,

$$y_{n+1} = y_0 + f(t_n, y_n)(t_{n+1} - t_n).$$

In other words:

- 1. Given that we want to approximate y at t=b, starting at t=a, we break up the interval into n steps $t_0(=a),\ t_1,\ t_2,\ \ldots,\ t_n(=b)$.
- 2. Then, at step k, compute the tangent line at (t_k, y_k) to get y_{k+1} .
- 3. Repeat until you reach (t_n, y_n) .

Error Analysis (8.2)

Characterizing errors by numerical approaches:

type of error	description
global truncation error	accounts for all errors made in approximating IVP solution
round off errors	arise from carrying computations with a finite num. of digits
local truncation error	error introduced in one step from use of approximate formula

Our analysis will only focus on local truncation errors.

Local truncation error

Let $\phi(t)$ = exact solution.

We seek an expression for the local truncation error at iteration n+1:

$$e_{n+1} = \phi(t_{n+1}) - y_{n+1}.$$

We can use a Taylor expansion for $\phi(t)$ about t_n :

$$\phi(t_n+h)=\phi(t_n)+\phi'(t_n)h+rac{1}{2}\phi''(c)h^2,\quad c\in(t_n,t_n+h)$$

* We can skip 3rd order + so on, because we're approximating error

Let $t_{n+1} = t_n + h$, then the error becomes:

$$egin{aligned} e_{n+1} &= \phi(t_{n+1}) - y_{n+1} \ &= \left(\phi(t_n) + \phi'(t_n)h + rac{1}{2}\phi''(c)h^2
ight) - (y_n + hf(t_n, y_n)) \end{aligned}$$

Since we're only considering error introduced in each step, we assume $y_n=\phi(n)$ (and consequently $y_n'=\phi'(n)$).

Thus, terms cancel out, leaving:

$$e_{n+1} = rac{1}{2} \phi''(c) h^2, \quad c \in (t_n, t_n + h).$$

Note: error is proportional to h^2 .

∃ Example ∨

Find the error for:

$$y' = y, \quad y(0) = 1$$

Solution

Note that $\phi' = y' = y$.

$$e_{n+1} = rac{1}{2}\phi''(c)h^2 \ = rac{1}{2}y'(c)h^2$$

\equiv Example \vee

Find the error for:

$$y' = 0.5 - t + 2y, \quad y(0) = 1$$

Solution

Note that $\phi' = y' = \frac{1}{2} - t + 2y$.

$$\phi'' = -1 + 2\phi'$$
= 1 - 2t + 4y - 1
= -2t + 4y

Plugging this into the error equation:

$$e_{n+1} = rac{1}{2}(-2c+4y)h^2$$

Improved Methods (8.3)

Euler's method uses...

$$y_{n+1} = y_n + h f(t_n, y_n)$$

You can expand this into...

$$y_{n+1} = y_n + h(w_1k_1 + w_2k_2 + w_nk_n),$$

where $\sum w_i = 1$, k_i is f(t, y) at specific points.

Improved Euler's Method

Instead of using the slope at $t=t_n$ ($f(t_n,y_n)$), Improved Euler's uses the average of the slopes at $t=t_n$ and $t=t_{n+1}$:

$$\underbrace{f(t_n,y_n) + f(t_{n+1}, \underbrace{y_n + hf(t_n,y_n)}^{ ext{approx. of }\phi(n+1)}_{2})}$$

Runge-Kutta (RK) Method

Instead of using $f(t_n, y_n)$, RK replaces with a weighted average of four values of f(x, y):

$$\frac{1}{6}(k_{n1}+2k_{n2}+2k_{n3}+k_{n4})$$

weight	k_{ni}
1/6	$f(t_n,y_n)$
2/6	$f(t_n+rac{h}{2},y_n+rac{1}{2}hk_{n1})$
2/6	$f(t_n+rac{h}{2},y_n+rac{1}{2}hk_{n2})$
1/6	$f(t_n+h,y_n+hk_{n3})$

∃ Example ∨

Use one iteration of Improved Euler and RK methods to the estimate solution to the given IVP at specified point.

y' = y, y(0) = 1. Estimate the solution at t = 1.

(Note that y(1) = e.)

Euler's

$$y_1 = y_0 + hf(t, y)$$

= 1 + 1(0)
= 1.

Improved Euler's

$$m = rac{f(t,y) + f(t+h,y+hf(t,y))}{2}$$
 $= rac{1 + f(t,1+1)}{2}$
 $= rac{3}{2}$
 $y_1 = y_0 + hm$
 $= 1 + 1\left(rac{3}{2}
ight)$
 $= rac{5}{2}$

Runge-Kutta

$$m=rac{1}{6}(k_{n1}+2k_{n2}+2k_{n3}+k_{n4})$$

k_{ni}	value
k_{n1}	1
k_{n2}	$f\left(t+rac{h}{2},y+rac{1}{2}hk_{n1} ight)=y_0+rac{1}{2}(1)=rac{3}{2}$
k_{n3}	$f\left(t+rac{h}{2},y+rac{1}{2}hk_{n2} ight)=y_0+rac{1}{2}ig(rac{3}{2}ig)=rac{7}{4}$
k_{n4}	$f(t+h,y+hk_{n3})=y_0+1\left(rac{7}{4} ight)=rac{11}{4}$

etc.

∷ Example ∨

Use one iteration of Improved Euler and RK methods to the estimate solution to the given IVP at specified point.

$$y'=rac{1}{2}-t+2y, y(0)=1.$$
 Estimate the solution at $t=1.$

Euler's

$$egin{aligned} y_1 &= y_0 + h f(t,y) \ &= y_0 + h \left(rac{1}{2} - t + 2y
ight) \ &= 1 + 1 \left(rac{1}{2} - 0 + 2
ight) \ &= rac{7}{2} \end{aligned}$$

Improved Euler's

$$m = rac{f(t,y) + f(t+h,y+hf(t,y))}{2} \ = rac{rac{5}{2} + \left(rac{1}{2} - (t-h) + 2\left(y+h\left(rac{5}{2}
ight)
ight)}{2} \ = rac{rac{5}{2} + \left(rac{1}{2} + 1 + 2\left(1 + rac{5}{2}
ight)
ight)}{2} \ = rac{11}{2}$$