令和5年度 スーパーサイエンス 「SS数学Ⅱ」 シラバス

単位数	6 単位	学科・学年・学級	理数科 2年H組
教科書	数学Ⅱ・数学B・数学Ⅲ・数学C (数研出版)	副教材等	4 step数学Ⅱ+B、 4 step数学Ⅲ+C(数研出版)

1 学習の到達目標

いろいろな式、図形と方程式、指数関数・対数関数、三角関数及び微分・積分の考えについて理解させ、基礎的な知識の習得と技能の習熟を図り、 事象を数学的に考察する能力を培い、数学のよさを認識できるようにするとともに、それらを活用する態度を育てる。

2 学習の計画

学	月	単元名	学習項目	学習内容や学習活動	評価の材料等
期		, , - , ,	• • • • • • • • • • • • • • • • • • • •	, , , , , , , , , , , , , , , , , , , ,	
前排	4	数学Ⅱ 第3章 図形と方程式	第1 節 点と直線 1. 直線上の点 2. 平面上の点 3. 直線の方程式 4. 2直線の関係 第2 節 円 5. 円の方程式 6. 円と直列 7. 2つの円 第3 節 軌跡と街域 8. 軌跡と方程式 9. 不等式の表す領域	・数直線上において、2点間の距離、線分の内分点、外分点の座標が 求められる。 ・数直線上の点に関する公式を利用して、平面上の問題を考察しよ うとする。 ・2直線の交点を通る直線を、方程式を用いて考察することができ る。 ・与えられた条件を満たす円の方程式の求め方を理解している。 ・円と直線の位置関係を、2次方程式の判別式や、円の中心から直線 までの距離と円の半径の大小関係により調べようとする。 ・点が満たす条件から得られた方程式がどのような図形を表してい るかを考察しようとする。 ・変数x、yについての不等式を満たす点(x、y)全体の集合がどの ような図形であるかを考察することができる。	・定期考査 ・日々の授業や学習における 行動観察 ・提出物
		数学C 第 1 章 平面上のベクトル 第 2 章	第 1 節 1. 平面上のベクトル 2. ベクトルの演算 3. ベクトルの成分 4. ベクトルの内積 第 2 節 5. 位置ベクトル 6. ベクトルと方程式 7. ベクトル方程式	・有向線分で表されたベクトルについて、加法、減法、実数倍を考 察することができる。 ・成分表示されたベクトルを2つのベクトルの一次結合の形に表現 できる。 ・ベクトルで表された等式を位置ベクトルを用いて証明できる。 ・直線のベクトル方程式を積極的に活用しようとする。 ・空間のベクトルを平面上のベクトルの拡張として捉えることがで きる。	・定期考査 ・日々の授業や学習における 行動観察 ・提出物
	6	空間のベクトル	1. 空間の座標 2. 空間のベクトル 3. ベクトルの成分 4. ベクトルの内積 5. 位置ベクトル 6. ベクトルと図形 7. 座標空間における図形 第1回考査	 ベクトルの諸性質が平面の場合と同じであることを理解して、それらを利用できる。 ベクトルの分解の一意性を理解し、計算に利用できる。 	
	7	数学Ⅱ 第4章 三角関数	第1節 三角関数 1. 一般開数 2. 三角関数 3. 三角関数の世質 4. 三角関数の応用 5. 三角関数の応用 第2節 加定理 6. 加法定理 7. 加法関数の応用 8. 三角関数のの応用	・弧の長さで角を図る方法として、弧度法を考察することができる。 ・単位円周上の点の動きから、三角関数のグラフを考察することができる。 ・変数をおき換えることで、三角関数を含む関数の最大値・最小値を考察することができる。 ・加法定理を利用して、種々の三角関数の値を求めることができる。 ・2倍角の公式を利用して、やや複雑な三角関数を含む方程式・不等式の角を統一して考察することができる。	・定期考査 ・日々の授業や学習における 行動観察 ・提出物
	8 9	数学Ⅱ 第5章 指数関数と対数関数	第1節 指数関数 1. 指数例拡張 2. 指数関数 第2節 対数関数 3. 対数とその性質 4. 対数関 5. 常用対数 第2回考査	・asin # +bcos # の愛形にあたり、同じ周期をもつ2つの関数の合成であることを理解している。 ・指数法則が成り立つようにするには、0乗、負の整数乗、分数乗をどのように定義すればよいかと調べようとする。 ・指数と対数との相互関係に興味・関心をもつ。 ・やや複雑な対数方程式、対数不等式に積極的に取り組もうとする。	・定期考査 ・日々の授業や学習における 行動観察 ・提出物 (レポート等)

学期	月	単元名	学習項目	学習内容や学習活動	評価の材料等
	10	数学B 第2章 統計的な推測	第1節 1.確率変数と確率分布 2.確率変数の変換 4.確率変数の変換 4.確率変数の和と期待値 5.独立な確率変数と期待値・ 分散 6.二項分布 7.正規分布	・確率分布や標本分布の特徴を、確率変数の平均、分散、標準偏差などを用いて考察することができる。 ・二項分布と正規分布の性質や特徴について理解している。	・定期考査 ・日々の授業や学習における 行動観察 ・提出物
			第2節 8. 母集団と標本 9. 標本平均とその分布 10. 推定 11. 仮説検定	・目的に応じて標本調査を設計し、母集団の特徴や傾向を推測する ことができる。 ・標本調査の方法や結果を批判的に考察することができる。 ・正規分布を用いた区間推定及び仮説検定の方法を理解している。	
	11	数学B 第3章 数列	第1節 1. 数列 2. 等差数列とその和 3. 等比数列とその和 4. 和の記号 Σ 5. 階差数列 6. いろいろな数列の和	・条件から等差数列の一般項を決定できる。 ・等比数列の公比、一般項などを理解している。 ・等比数列の和に関する条件が与えられたとき、初項や公比が求め られる。	・定期考査 ・日々の授業や学習における 行動観察 ・提出物
	12		第2節 7. 漸化式と数列 8. 数学的帰納法	・漸化式を適切に変形して、その数列の特徴を考察することができる。 ・数学的帰納法を利用して、いろいろな事柄を積極的に証明しよう とする。	
後期		数学Ⅱ 第6章 微分法と積分法	第3回考査 第1節 微分係数と導関数 1. 微分係数 2. 導関数 第2節 導関数の応用 3. 接線 4. 関数の値の変化 5. 最大値・最小値 6. 関数のグラフと方程式・不 等式	・平均の速さと瞬間の速さに興味をもち、平均変化率や微分係数との関連を考察しようとする。 ・微分係数の図形的な意味と、直線の方程式の公式から、接線の方程式の公式を考察することができる。 ・関数の増減や極値を調べるのに、増減表を書いて考察することができる。 ・方程式や不等式を関数的視点で捉え、微分法を利用して解決しようとする。 ・微分法の逆演算としての不定積分を考察することができる。	・定期考査 ・日々の授業や学習における 行動観察 ・提出物 (レポート等)
	1		第3節 積分法 7. 不定積分 8. 定積分 9. 面積	・定積分の定義や性質を理解し、それを利用する定積分の計算方法 を理解している。 ・直線や曲線で囲まれた部分の面積を、定積分を用いて求めようと する。	
		数学C 第4章 式と曲線	第 1 節 1. 放物線 2. 楕円 3. 双曲線 4. 2次曲線の平行移動 5. 2次曲線の性質 6. 2次曲線の性質	・放物線、楕円、双曲線が二次式で表されること及びそれらの二次 曲線の基本的な性質について理解し、それらを相互に関連付けて捉え、考察することができる。	・定期考査 ・日々の授業や学習における 行動観察 ・提出物 (レポート等)
			第2節 7. 曲線の媒介変数表示 8. 極座標と方程式 9. コンピュータといろいろな 曲線	・曲線の媒介変数表示の方法を理解する。・極方程式の定義を理解し、それを用いた曲線についてグラフをかくことができ、その性質について興味、関心を示す。	
	2	数学Ⅲ 章 閱数学Ⅲ 数第2章 極限	1. 分数関数 2. 無理関数 3. 逆関数と合成関数 第1節 1. 数列の極限 2. 無限等比数列 3. 無限級数	・分数関数、無理関数の定義を理解し、そのグラフをかくことができる。 ・逆関数、合成関数の考え方に興味、関心を示す。 ・収束する数列の極限値の性質を理解し、それを用いて数列の極限 が求められる。 ・繰り返しを含む図形的な問題に興味を持ち、無限等比級数を利用 して考察しようとする。	
	3		第2節 4. 関数の極限 5. 三角関数と極限 6. 関数の連続性 第4回考査	・定義に基づいて、様々な関数の連続性、不連続性を判定すること ができる。	

3 評価の観点

•		
	知識・技能	いろいろな式、図形と方程式、指数関数・対数関数、三角関数、ベクトル、数列、統計的な推測、微分・積分、曲線及び極限の考えについての基本的な概念や原理・法則を体系的に理解するとともに、事象を数学化したり、数学的に解釈したり、数学的に表現・処理したりする技能を身に付けるようにする。
	思考・判断・表現	数の範囲や式の性質に着目し、等式や不等式が成り立つことなどについて論理的に考察する力、座標平面上の図形について構成要素間の関係に着目し、方程式を用いて図形を簡潔・明瞭・的確に表現したり、図形の性質を論理的に考察したりする力、関数関係に着目し、事象を的確に表現してその特徴を数学的に考察する力、関数の局所的な変化に着目し、事象を数学的に考察したり、問題解決の過程や結果を振り返って統合的・発展的に考察したりする力を養う。
	主体的に学習に 取り組む態度	数学のよさを認識し数学を活用しようとする態度、粘り強く柔軟に考え数学的論拠に基づいて判断しようとする態度、問題解決の過程を振り返って考察を深めたり、評価・改善したりしようとする態度や創造性の基礎を養う。

4 評価の方法

知識・技能、思考・判断・表現、主体的に学習に取り組む態度の3観点から評価規準に従い、総合的に評価する。

5 担当者からのメッセージ(確かな学力を身につけるためのアドバイス、授業を受けるにあたって守ってほしい事項など)

- ・必要に応じて予習・復習をすることを心掛けましょう。特にわからないことを次に持ち越すことは絶対にしないように。基礎をおろそかにして発展的な内容は理解は望めません。・問題演習に積極的に取り組むようにしましょう。できる問題をしっかりと解きましょう。