T.D. XIV - Nombres complexes

I - Écritures

Exercice 1. Écrire sous forme algébrique les nombres complexes suivants:

1.
$$(2+6i)(6+i)$$
.

2.
$$(4-3i)^2$$
.

3.
$$(1-2i)(1+2i)$$
.

4.
$$(2-3i)^4$$
.

5.
$$\frac{1}{3-i}$$

6.
$$\frac{1-i\sqrt{3}}{-1-i\sqrt{3}}$$

7.
$$\frac{1-i}{1+i\sqrt{3}}$$

14. $\frac{\sqrt{2}-i\sqrt{2}}{1-i\sqrt{2}}$.

9. $2(\cos(2\theta) - i\sin(2\theta))$.

11. $\left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)(1-i)$.

Exercice 2. Déterminer le module et un argument des nombres complexes suivants:

2.
$$\frac{3}{2}$$
 i.

4.
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}$$
 i.

5.
$$-2i$$
.

6.
$$\frac{1+i}{1-i}$$

7.
$$\left(\frac{i}{1+i}\right)^4$$
.

8. $-3(\cos\theta + i\sin\theta)$.

Exercice 3. Soit $z = \frac{1+\sqrt{2}+i}{1+\sqrt{2}-i}$

- **1.** Calculer |z|.
- 2. Mettre z sous forme algébrique.
- **3.** Calculer z^{2021} .

Exercice 4. Soit $a, b \in \mathbb{C}$ de modules 1 tels que $a \neq b$. Montrer que $\frac{a+b}{a-b}$ est un nombre imaginaire pur.

Exercice 5. Soit $x \in \mathbb{R} \setminus \pi\mathbb{Z}$ et $n \in \mathbb{N}$.

1. Calculer
$$\sum_{k=0}^{n} e^{ikx}$$
.

2. En déduire
$$\sum_{k=0}^{n} \cos(kx)$$
 et $\sum_{k=0}^{n} \sin(kx)$.

II - Résolution d'équations

Exercice 6. Déterminer les nombres complexes z solutions des équations suivantes:

1.
$$z^2 + 9 = 0$$

2.
$$z^2 - z + 1 = 0$$

3.
$$z^2 + z + 1 = 0$$

4.
$$3z^2 - 6z + 6 = 0$$

$$5. \ z^4 + z^2 + 1 = 0$$

1.
$$z^2 + 9 = 0$$
4. $3z^2 - 6z + 6 = 0$.2. $z^2 - z + 1 = 0$.5. $z^4 + z^2 + 1 = 0$.3. $z^2 + z + 1 = 0$.6. $z^2 - 2\cos(\theta)z + 1 = 0$.

Exercice 7. Soit $n \ge 2$ un entier naturel. Soit z un réel tel que $z^n = 1$.

- 1. Montrer que |z| = 1. On pose dans la suite $z = e^{i\theta}$.
- **2.** Déterminer les valeurs possibles pour θ .
- 3. Représenter graphiquement les solutions des équations :

a)
$$z^2 = 1$$
.

c)
$$z^4 = 1$$

b)
$$z^3 = 1$$
.

d)
$$z^5 = 1$$

III - Géométrie

Exercice 8. Soit z un nombre complexe de module 1.

- **a)** Calculer $|1+z|^2 + |1-z|^2$.
- **b)** Représenter géométriquement les points d'affixes 1, z, 1-z et 1+zpuis interprétez le résultat obtenu.

Exercice 9. Décrire les transformations du plan complexe définies par :

- 1. $z \mapsto (1+i)z + 2 i$.
- **2.** $z \mapsto (-3 + 4i)z + 12 + 16i$.
- **3.** $z \mapsto iz + 1$.

Exercice 10. Déterminer l'ensemble des nombres complexes $z \in \mathbb{C} \setminus \{1\}$ tels que $\left(\frac{z+1}{z-1}\right)^2$ soit réel.