

Barak Gonen

Network Layer Topics

- Routing
- Router
- ▶ IPv4, IPv6
- NAT
- **ICMP**
- DHCP
- Routing protocols OSPF

Routing

- Choose path for packet from A to B
- Possible criteria:
 - Shortest time
 - Minimal hops
 - Cheapest
- Path has to be dynamic

Routing

- Historical review why things are as they?
- Evolution:
 - Simple telephony network
 - PSTN and Telephony Exchange
 - Arpanet

Invention of Telephone

Patent March 1876

Alexander Graham Bell Opening New-York to Chicago line, 1892

Telephony Network

- Assume we built the first telephony network
- Each device is physically connected via cable to others
 - Connection is called Physical Circuit
 - Network topology is Mesh Network
- Easy deployment
- Impossible to scale up

Telephony Exchange

- To reduce cables, routing element is required
- The telephony exchange is linked to all phones
- The operator connects two phones
 - Virtual Circuit the endpoints are not aware that their link is ad-hoc, not Physical Circuit
 - Topology is Star Network
- Can one telephony exchange serve a country?

Local Telephony Exchanges

- Divide a country to several regions, each covered by a local telephone exchange
 - Name as much area codes in Israel as possible
 - https://www.youtube.com/watch?v=0jUsVX-gb70
- A new element is required national telephony exchange

PSTN

- Public Switched Telephone Network
- If both endpoints belong to same local exchange, it will connect them
- Calls outside of local exchange are "long distance"
- Hierarchy of exchanges:
 - Class 1 Regional Center
 - Class 2 Sectional Center
 - Class 3 Primary Center
 - Class 4 Toll Center
 - Class 5 Local Exchange
- A telephony exchange with higher hierarchy will transfer the call

www.voicenewengland.com

PSTN Example

- Up to 1970's establishment of virtual circuit was manual
- The national telephony exchange instructs the local operator how to route the call
 - Note how it begins with routing instructions
 - Afterwards, the operator "connects the dots" to establish connection
- https://data.cyber.org.il/networks/links/long_distance_call.mp3
 - Credit: Wikipedia, Long distance calls

The Cold War

- The PSTN model is problematic
 - If the higher class exchanges are hit...
- US MoD sets new network requirements

1945-1989

ARPANET

- US MoD network
- Technological break-throughs:
 - No specific element controls routing
 - Packet switched network

Packet Switched Network

- Circuit switched network:
 - Routing is predetermined, fixed
 - Physical medium (cables etc.) is temporarily owned by the endpoints
- Packet switched network:
 - Communication is divided to packets
 - Reassembled in destination
 - Packets may have different routes
 - Physical medium is shared between users

Arpanet

- More resilient to attacks
 - No critical location
 - Many routes, alternatives
 - More suitable to digital communication
 - If a packet is lost retransmit

Routing

- What is needed for routing?
- ▶ To find that, first find the shortest path:

Routing

- Find the shortest path again
- What is the conclusion?

Routing in the Internet

- Endpoint addresses
- Routing devices
- Routing protocol
 - Dynamic
- We shall cover each

Topics

- IP addresses
 - Network / host ID
- IPv4 header
- IPv6 addresses
 - Network / subnet /host ID
 - Global
 - Unique local
 - Link local
 - Localhost
- IPv6 header
- ▶ IPv6 tunnelling over IPv4

IPv4

- Designed in 1980
- 32 bits = 4 Giga addresses
- Network ID the network
- Host ID the network interface
- Example:
 - Assume office has Network ID 200.100
 - Assume PC in office has host ID 0.1
 - Full IP address: 200.100.0.1

Network ID

- Assume our IP is 192.168.0.5
- Is 192.168.10.3 also on the same network?

- To tell if two IP addresses are in the same network, we need to know how many bits represent the Network ID
- Example or IP is 192.168.0.5
- Binary 11000000 10101000 0000000 00000101
- If the Network ID is...:
 - 8 bits all IP starts with 11000000 has same network
 - 16 bits all IP starts with 11000000 10101000 has same network
 - 18 bits all IP starts with 11000000 10101000 00 has same network
 - Network ID does not have to be multiple of 8 bits

- The number of bits in Network ID is noted by:
 - Slash and number, as 192.168.0.5/16 indicates first 16 bits are Network ID
 - Subnet mask, as 255.255.0.0 indicates first 16 bits are "up" and part of the Network ID

Example: 255.0.0.0 indicates first 8 bits are network ID

- Use ipconfig to find your subnet mask
- Make sure you and the default gateway belong to the same network

Subnet

- A collection of network interfaces with the same Network ID are called "subnet"
- It is possible to have a subnet within a subnet
 - Like a family tree
- Subnets are linked by routers
 - Router is a networking device which has an IP in more than one network

Subnets

- School network is 200.100.0.0/20
- Lab A has network 200.100.1.0/24
- Lab B has network 200.100.2.0/24
- Lab C has network 200.100.2.240/28
- How many computers each subnet may contain?

IP Header

- Header length may change
 - Not good for speedy processing
- IP packet length is 16 bit = 64KB
 - Typically 1500 bytes or less
- Upper layer TCP, UDP, ICMP
- TTL prevent infinite loops

IP Fragmentation

- Data link connection have MTU Maximum Transmission Unit
- If the IP packet size is bigger, need to fragment
- IP header bits indicates fragmentation and put back in order at destination

IPv6 Addresses

- ▶ 128 bit
- Each nibble (4 bit) is one hex digit
- Each 4 nibbles separated with ":"
- Example:
 - 2a0d:6fc2:131c:0000:0000:b653:34de:624b
- Zeroes are omitted, using "::"
 - 2a0d:6fc2:131c:: b653:34de:624b
 - "::" may be used only once

IPv6 Addresses

Site prefix (ISP)	Subnet	Interface ID
48 bits	16 bits	64 bits

- Global can route through internet
 - 2000::/3 starts with 001
- Unique local can route in organization network
 - FC00::/7 starts with 1111 110
- Link local can not route, used only in LAN
 - FE80::/10 starts with 1111 1110 10
- Localhost
 - · ::1/128 0000 ... 0001
- Sender shall always use the IPv6 address with less possible routing

IPv6 Header

- Fixed size
- Flow label indicate packets belong to the same flow, like file or stream
 - Helps middleboxes make decisions
- Next header transport layer protocol
- ▶ Hop limit TTL

IPv6 Tunnelling Over IPv4

Credit: Kurose