Hubert-matek jegyzetek

Kriván Bálint

2007. március 4. - 2007. április 4.

Tartalomjegyzék

Ι.	\mathbf{K}	oordinátageometria				
1.	Kez	zdetek				
2.	Síkgeometria					
	2.1.	Egyenes egyenlete				
	2.2.	Egyszerű feladatok				
		2.2.1. Előszó				
		2.2.2. Feladatok				
	2.3.	Pont és egyenes távolsága, szakaszfelező				
		2.3.1. Elmélet				
		2.3.2. Feladatok				
	2.4.	Mértani helyek				

I. rész Koordinátageometria

1. fejezet

Kezdetek

- A helyvektorokat és a koordinátákat 1-1 értelműen rendeljük egymáshoz.
- A helyvektorokat és a pontokat 1-1 értelműen rendeljük egymáshoz.
- $\bullet \ \Rightarrow \mathbf{A}$ pontokat és a koordinátákat 1-1 értelműen rendeljük egymáshoz.

A koordinátageometria segítségével a geometriai problémákat algebrai módon tudjuk majd megoldani.

1. Definíció. Vonal és sík egyenlete:

 $Olyan\ 2\ vagy\ 3\ ismeretlenes\ egyenlet,\ egyenletrendszer\ amelynek\ megoldásai,\ mint\ koordinátákhoz\ tartozó\ pontok,\ rajta\ vannak\ a\ vonalon\ ill.\ a\ síkon.$

Az egyenlet(rendszer) megoldásai és az alakzat pontjai összefüggnek \rightarrow a megoldások rendezett számhármasokat alkotnak.

Ne felejtsük el: A háttérben megmaradnak a vektorok!

Először a síkgeometriával kezdünk.

2. fejezet

Síkgeometria

2.1. Egyenes egyenlete

Látható, hogy milyen szoros a kapcsolat a pont és a hozzátartozó helyvektor között.

Egyenes egyenlete:

 \rightarrow menjen át a P_0 ponton

 $\rightarrow \underline{n}\text{-re}$ legyen merőleges

 $\underline{\mathbf{r}} \to \mathrm{fut\acute{o}}$ pontokhoz tartoz
ó helyvektor

$$P_0(p_1; p_2)$$
 $\underline{r}(x; y)$ $\underline{n}(n_1; n_2)$

Tudjuk, hogy \underline{n} és a felírandó egyenes merőleges egymásra, így:

$$(\underline{r} - \overrightarrow{OP_0}) \cdot \underline{n} = 0$$

$$(x - p_1; y - p_2) \cdot \underline{n} = 0$$

$$n_1(x - p_1) + n_2(y - p_2) = 0$$

 $n_1 x + n_2 y = n_1 p_1 + n_2 p_2$

Ez az egyenes normálvektoros alakja.

2. Definíció. Az egyenes normálvektora (\underline{n}) bármely az egyenesre merőleges nem nullvektor.

Most ne az egyenes normálvektora, hanem az irányvektora legyen adott:

Hogy megtudjuk határozni az egyenes egyenletét szükségünk van az egyik normálvektorra.

$$\underline{v}\cdot\underline{n}=0$$

Egy vektor 90°-os elforgatottjait a következő ábra mutatja:

Észrevehetjük, hogy ha $+90^{\circ}$ -al forgatunk, akkor a koordinátákat felcseréljük, és az első koordinátának vesszük a -1-szeresét.

A mi esetünkben csak az a lényeg, hogy a \underline{v} vektor egyik 90°-os elforgatottját találjuk meg, teljesen mindegy, hogy melyiket sőt nem is muszáj, hogy abszolútértékük megegyezzen, hiszen a definícióból tudjuk, hogy a normálvektor bármilyen olyan vektor ami nem nullvektor, és merőleges a meghatározandó egyenesre. Tehát akkor mondjuk legyen a normálvektorunk $\underline{n}=(-v_2;v_1)$. Innen már az előbb tanultak alapján felírhatjuk az egyenes normálvektoros egyenletét, P_0 ismeretében.

Ha az egyenes két pontja adott, akkor könnyedén meghatározhatjuk az egyenes irányvektorát, majd abból az egyik normálvektorát:

$$\underline{v} = \overrightarrow{OQ_0} - \overrightarrow{OP_0}$$

$$\underline{v} = \underline{q_0} - \underline{p_0}$$

Csak az irányvektorból is felírhatjuk egy egyenesnek a képletét:

$$\underline{r}=\underline{p_0}+t\underline{v} \qquad t\in\mathbb{R}$$
 Egyenes paraméteres vektoregyenlete

$$\begin{cases} x = p_1 + t \cdot v_1 \\ y = p_2 + t \cdot v_2 \end{cases}$$
 Egyenes paraméteres egyenletrendszere

Az egyenes normálvektoros egyenletét az alábbi alakra hozhatjuk:

$$Ax + By = C$$
 $A, B, C \in \mathbb{R}$

Az x tengelyt ott metszi, ahol y = 0, tehát:

$$x_0 = \frac{C}{A}$$

Az y tengelyt ott metszi, ahol x = 0, tehát:

$$y_0 = \frac{C}{B}$$

Ha a fenti alakot leosztjuk C-vel (Ha $C \neq 0$, azaz az egyenes nem megy át az origón), és kicsit átrendezzük, akkor a következő alakot kapjuk:

$$\frac{x}{\frac{C}{A}} + \frac{y}{\frac{C}{B}} = 1$$

Láthatjuk, hogy az x-et az x tengellyel való metszéspontjával az y-t az y tengellyel való metszéspontjával osztjuk le. Így elég könnyen megjegyezhető. Ezt az alakot hívjuk tengelymetszetes alaknak.

- 3. Definíció. Abszcisssza: A vektor/pont első koordinátája.
- 4. Definíció. Ordináta: A vektor/pont második koordinátája.

2.2. Egyszerű feladatok

2.2.1. Előszó

A következőkben igencsak egyszerű, 1 perces feladatok lesznek bemutatva. A feladat szövegét általában beírom ide, hogy ne kelljen a jegyzet mellé a Geo II-t is forgatni. Aki az órán már elég rutint szerzett a következő feladatok megoldásához az hagyja ki ezt a részt.

2.2.2. Feladatok

2.2.2.1. Feladat. [Geo. II./569/b.]

Írjuk fel annak az egyenesnek az egyenletét, amely áthalad az origón és az (5; -2) ponton:

Ismerjük tehát az egyik irányvektorát, amit a 2 adott pontból kiszámolhatunk: $\underline{v}(5;-2)$. Ebből rögtön megadhatunk egy normálvektort (koordináta csere, és az egyiket beszorozzuk -1-el): $\underline{n}(2;5)$. Tehát tudjuk az egyenes egy normálvektorát, illetve 2 pontját, amiből nekünk elég 1 is, mégpedig az origó, hogy felírjuk az egyenes normálvektoros egyenletét:

$$2x + 5y = 2 \cdot 0 + 5 \cdot 0 = 0$$

2.2.2. Feladat. [Geo. II./566/b.]

Írjuk fel a (-1;3) ponton áthaladó, és a koordináta-rendszer tengelyeivel párhuzamos egyenesek egyenletét:

Először nézzük az y tengellyel párhuzamos egyenest. Amiatt, hogy az y tengellyel párhuzamos tudjuk, hogy a normálvektora merőleges az y tengelyre, tehát pl. $\underline{n}(1;0)$. Megvan minden ami kellhet az egyenes normálvektoros egyenletéhez:

$$1x + 0y = -1 \cdot -1 + 3 \cdot 0$$
$$x = -1 \quad y \in \mathbb{R}$$

Tehát az egyenes olyan pontokból áll, aminek első koordinátája mindig -1, a második pedig bármely valós szám.

Az x tengellyel párhuzamos egyenest hasonlóképpen írhatjuk fel. Tudjuk, hogy az x tengellyel párhuzamos, tehát a normálvektora merőleges az x tengelyre, így egy normálvektora pl.: $\underline{n}(0;1)$

$$0x + 1y = -1 \cdot 0 + 3 \cdot 1$$
$$y = 3 \quad x \in \mathbb{R}$$

Tehát ez az egyenes pedig olyan pontokból áll, aminek első koordinátája bármely valós szám, a második pedig mindig 3.

2.2.2.3. Feladat. [Geo. II./556/b.]

Mi az egyenlete annak az egyenesnek, amely áthalad a (-2,1) ponton és irányvektora $(3,\sqrt{3})$

Az irányvektorból megadhatunk egy normálvektort: $\underline{n}(-\sqrt{3};3)$, majd egyszerűen felírjuk a normálvektoros alakot:

$$-\sqrt{3}x + 3y = 2\sqrt{3} + 3$$

2.2.2.4. Feladat. [Geo. II./638.]

Ennek a feladatnak a szövegét nem írom le ide, csak a megoldásmenetet:

Nem kell mást tennünk, minthogy megvizsgáljuk az egyenesek normálvektorait. Ha azok párhuzamosak, akkor a két egyenes is párhuzamos, ha merőleges, akkor pedig merőlegesek. A feladat szövege sugallja, hogy csak merőleges és párhuzamos egyenesek vannak, így elég csak a merőlegességet vizsgálni. Mert ami nem merőleges, az párhuzamos. A merőlegességet, pedig nagyon egyszerűen vizsgáljuk: megnézzük a két normálvektor skaláris szorzatát.

2.2.2.5. Feladat. [Geo. II./639./b.]

Határozzuk meg p értékét úgy, hogy az $y = \frac{p}{3}x - 4$ és az $y = \frac{12}{p}x + 3$ egyenesek párhuzamosak legyenek egymással.

Ha párhuzamosak, akkor a normálvektorok koordinátáinak aránya megegyezik. Tehát:

$$\frac{-\frac{p}{3}}{1} = \frac{-\frac{12}{p}}{1}$$

$$\frac{p}{3} = \frac{12}{p}$$

$$p^2 = 36$$

$$p = \pm 6$$

2.2.2.6. Feladat. [Geo. II./639./e.]

Határozzuk meg p értékét úgy, hogy a 3px - 8y + 13 = 0 és a (p+1)x - 2py - 20 = 0 egyenesek párhuzamosak legyenek egymással.

Ha párhuzamosak, akkor a normálvektorok koordinátáinak aránya megegyezik. Tehát:

$$\frac{3p}{-8} = \frac{p+1}{-2p}$$

$$-6p^2 = -8p - 8$$

Ebből kapunk két gyököt: $p = \{2; -\frac{2}{3}\}$

2.2.2.7. Feladat. [Geo. II./641./b.]

Határozzuk meg p értékét úgy, hogy az $y = \frac{a}{b}x - 4$ egyenes merőleges legyen az y = -px + 2 egyenesre.

Nem kell másnak teljesülni, minthogy a normálvektorok skaláris szorzata egyenlő legyen 0-val:

$$(-\frac{a}{b}; 1)(p; 1) = 0$$
$$-\frac{a}{b} \cdot p + 1 = 0$$
$$\frac{a}{b} \cdot p = 1$$
$$p = \frac{b}{a}$$

2.2.2.8. Feladat. [Geo. II./642./d.]

Írjuk fel annak az egyenesnek az egyenletét, amely áthalad a $(\frac{\sqrt{3}}{2}; -\frac{\sqrt{3}}{4})$ ponton, és párhuzamos a (-1; 3) irányvektorú egyenessel.

Tehát egy olyan egyenessel párhuzamos, aminek az egyik irányvektora (-1;3), azaz az egyik normálvektora (3;1), mivel ez a felírandó egyenesnek is a normálvektora, ezért könnyedén felírhatjuk az egyenletet:

$$3x + y = \frac{3\sqrt{3}}{2} - \frac{\sqrt{3}}{4} = \frac{5\sqrt{3}}{4}$$

2.2.2.9. Feladat. [Geo. II./643./b.]

Írjuk fel annak az egyenesnek az egyenletét, amely áthalad az origón, és merőleges az $\frac{x}{a} + \frac{y}{b} = 0$ egyenesre.

Lényegében arról van szó, hogy az $\frac{x}{a} + \frac{y}{b} = 0$ egyenes egy irányvektora megegyezik a felírandó egyenes egy normálvektorával. Mivel a megadott egyenes tengelymetszetes alakban van, így tudjuk, hogy mik a tengelymetszetei: (a;b). Ebből rögtön adódik, hogy akkor egy irányvektora az (a;-b). Tehát akkor a felírandó egyenes egyenlete:

$$ax - by = 0$$

2.2.2.10. Feladat. [Geo. II./643./d.]

Írjuk fel annak az egyenesnek az egyenletét, amely áthalad az (5;2) ponton, és merőleges az $y = \frac{2}{3}x - 1$ egyenesre.

Itt a megadott egyenes normálvektorának a 90°-os elforgatottja lesz a felírandó egyenes normálvektora. A megadott egyenes normálvektora $(-\frac{2}{3};1)$, ennek elforgatottja az $(1;\frac{2}{3})$, tehát:

$$x + \frac{2}{3}y = 5 + \frac{4}{3} = \frac{19}{3}$$

2.2.2.11. Feladat. [Geo. II./644./a.]

Írjuk fel annak az egyenesnek az egyenletét, amely áthalad az (1;5) ponton és párhuzamos, illetve merőleges a (4;-2) és az (5;3) pontokon áthaladó egyenesre.

Először azt írjuk fel, ami merőleges a megadott egyenesre:

A megadott két pontból könnyen kiszámolható az adott egyenes irányvektora: (1;5). Mivel az adott egyenes merőleges a meghatározandó egyenesre, így annak irányvektora merőleges a meghatározandó egyenesre, azaz ő az egyik normálvektora, tehát a merőleges egyenes egyenlete:

$$x + 5y = 1 \cdot 1 + 5 \cdot 5 = 26$$

Ha párhuzamos, akkor az előbb kapott egyenes normálvektora merőleges, a most használandóra, azaz a most meghatározandó egyenes normálvektora (5;-1), így az egyenlet:

$$5x - y = 5 \cdot 1 - 1 \cdot 5 = 0$$

2.2.2.12. Feladat. [Geo. II./645.]

Egy egyenes áthalad a $(3\frac{2}{5}, -3)$ és az $(x; 4\frac{1}{3})$ pontokon, és merőleges az y - 4x + 3 = 0 egyenesre. Számítsuk ki a második pont ismeretlen abszcisszáját¹.

A megadott egyenes egyik normálvektora az egyenlete alapján: (-4;1). Mivel a meghatározandó egyenes merőleges erre az egyenesre, ezért a normálvektorok is merőlegesek egymásra, így a meghatározandó egyenes normálvektora: (1;4). Ez alapján könnyen felírható a normálvektoros egyenlet:

$$3\frac{2}{5} \cdot 1 - 3 \cdot 4 = 1 \cdot x + 4 \cdot 4\frac{1}{3}$$
$$\frac{17}{5} - 12 = x + \frac{52}{3}$$
$$-\frac{389}{15} = x$$

További feladatok: 651/a. 653/a. 655/a. 660.

2.3. Pont és egyenes távolsága, szakaszfelező

2.3.1. Elmélet

$$d(P;e) = |\underline{d}|$$

 \underline{d} az az \overrightarrow{RP} vektor \underline{n} -el párhuzamos komponense.

$$\left| \frac{\underline{n}}{|\underline{n}|} \left(\underline{p} - \underline{r} \right) \right| = |\underline{d}|$$
$$\left| \underline{n}_0 \underline{p} - \underline{n}_0 \underline{r} \right| = |\underline{d}|$$

$$|\underline{d}| = \left| \underline{n_0} \underline{p} - \underline{n_0} \underline{r} \right|$$

$$d = \left| n_{0_1} p_1 + n_{0_2} p_2 - \left(n_{0_1} r_1 + n_{0_2} r_2 \right) \right|$$

Amikor a normálvektor abszolútértéke 1, akkor azt az egyenes normálegyenletének hívjuk. (Innen a $normálás: |\underline{n}|$ -el való osztás)

A következő egyenesek szakaszfelezőit fogjuk meghatározni:

$$e_1: n_{0_1}x + n_{0_2}y + c = 0$$

$$e_2: m_{0_1}x + m_{0_2}y + d = 0$$

A szögfelező(k) a két egyenestől egyenlő távolságra van(nak):

$$|n_{0_1}x + n_{0_2}y + c| = |m_{0_1}x + m_{0_2}y + d|$$

Ez az egyenlet két egyenest ad. Ha mindkét kifejezés abszolútérték nélkül azonos (2.1), vagy ha egymás -1-szeresei (2.2).

$$(n_{0_1} - m_{0_1})x + (n_{0_2} - m_{0_2})y + c - d = 0$$
(2.1)

$$(n_{0_1} + m_{0_1})x + (n_{0_2} + m_{0_2})y + c + d = 0$$
(2.2)

 $^{^{1}}$ lásd 3. definíció a 8. oldalon

2.3.2. Feladatok

2.3.2.1. Feladat.

Határozzuk meg az (-3, -2) és az (5, 8) ponton áthaladó egyenes és a (2, 7) pont távolságát!

Ismerjük az irányvektorát az egyenesnek: (4;5), így egy normálvektorát is: (5;-4). De nekünk a távolsághoz, egység hosszúságú normálvektor kell, tehát: $\underline{n_0} = \left(\frac{5}{\sqrt{41}}; \frac{-4}{\sqrt{41}}\right)$.

$$d = \left| \frac{5}{\sqrt{41}} \cdot 2 - \frac{4}{\sqrt{41}} \cdot 7 - \left(\frac{5}{\sqrt{41}} \cdot 5 - \frac{4}{\sqrt{41}} \cdot 8 \right) \right| = \frac{11}{\sqrt{41}}$$

2.3.2.2. Feladat.

Egyenlő szárú háromszög száregyeneseinek egyenlete:

$$2x - y + 8 = 0$$
 és $x - 2y - 12 = 0$.

Az alap egyik pontja (5;0). Határozzuk meg az alap egyenletét és a csúcsok koordinátáit.

A két egyenes egyenletéből könnyen meghatározhatjuk a csúcspontot: $(\frac{-28}{3}; \frac{-32}{3})$

Ha meghatározzuk a szögfelezőjét (a megfelelőt), akkor tudjuk, hogy annak az egyik normálvektora megegyezik az alap egyenes egyik irányvektorával, hiszen egyenlő szárú háromszögben a szögfelező merőleges az alapra. Ha megvan ez az irányvektor, akkor abból rögtön megvan az egyik normálvektor, ami segítségével, és amiatt, hogy tudjuk, hogy átmegy az (5;0) ponton, könnyen meghatározhatjuk az alap egyenes egyenletét.

Melyik szögfelezőről van szó? Ezt a normálvektorok állásából meghatározhatjuk. Ha jól megnézzük, akkor az (1; -2), illetve a (2; -1) normálvektorok nem befele mutatnak, tehát a szükséges szögfelezőnk egyenese:

$$(1+2)x + (-2-1)y - 4 = 0$$
$$3x - 3y - 4 = 0$$

Nem normáltuk az egyenletet, hiszen a normálvektorok abszolútértéke megegyezik, tehát a végén úgyis felszoroznánk az abszolútértékkel.

Tehát a szögfelező egy normálvektora: (1;-1). Így az alap egyenesének egy normálvektora, ennek a 90° -os elforgatottja, azaz (1;1). Az egyenes normálvektora és egy pontja segedelmével, felírhatjuk az egyenletét:

$$1 \cdot x + 1 \cdot y = 1 \cdot 5 + 1 \cdot 0$$
$$x + y = 5$$

Ezek után már csak a megfelelő oldalegyenesek metszéspontjai alapján meghatározhatjuk a csúcsokat:

$$\begin{array}{rcl} 2x - y + 8 & = & 0 \\ x + y & = & 5 \end{array} \right\} (x; y) = (-1; 6)$$

$$\begin{array}{rcl} x - 2y - 12 & = & 0 \\ x + y & = & 5 \end{array} \right\} (x; y) = \left(\frac{22}{3}; \frac{-7}{3} \right)$$

2.3.2.3. Feladat.

Mi annak a szükséges és elégséges feltétele, hogy az

$$a_1x + b_1y + c_1 = 0;$$
 $a_2x + b_2y + c_2 = 0;$ $a_3x + b_3y + c_3 = 0$

egyenesek egy pontban messék egymást?

$$a_1x + b_1y + c_1 = 0 / b_2$$

$$a_2x + b_2y + c_2 = 0 / b_1$$

$$(a_1b_2 - a_2b_1)x = b_1c_2 - b_2c_1$$

$$x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}$$

$$a_1x + b_1y + c_1 = 0 / a_2$$

$$a_2x + b_2y + c_2 = 0 / a_1$$

$$\begin{cases} b_1a_2 - b_2a_1 \end{pmatrix} = a_1c_2 - a_2c_1$$

$$y = \frac{a_1c_2 - a_2c_1}{b_1a_2 - b_2a_1}$$

Kifejeztük x-et és y-t, írjuk vissza őket a 3. egyenletbe:

$$a_3x + b_3y + c_3 = 0$$

$$a_3 \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1} + b_3 \frac{a_1c_2 - a_2c_1}{b_1a_2 - b_2a_1} + c_3 = 0$$

$$a_3 \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1} - b_3 \frac{a_2c_1 - a_1c_2}{b_1a_2 - b_2a_1} + c_3 = 0$$

Ha jól meggondoljuk (kifejtjük és megvizsgáljuk), akkor ez egy 3×3-ad determináns:

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

Tehát, ennek kell teljesülnie, ahhoz hogy a megadott 3 egyenes egy pontban messe egymást.

2.3.2.4. Feladat.

Bizonyítsuk be, hogy az

$$mx + 3y - 4m + 1 = 0$$

egyenesek egy pontban metszik egymást.

Helyettesítjünk be két m-et, praktikusan m=0, illetve m=1. Majd határozzuk meg a metszéspontot:

$$3y + 1 = 0 (m = 0) x + 3y - 3 = 0 (m = 1)$$
 $(x; y) = (4; -\frac{1}{3})$

Majd ezután írjuk vissza x és y helyére a kapott értéket:

$$mx + 3y - 4m + 1 = 0$$
$$4m + 3 \cdot -\frac{1}{3} - 4m + 1 = 0$$
$$0 = 0$$

Mivel ez igaz, ezért minden ilyen tulajdonságú egyenes átmegy a $\left(4; -\frac{1}{3}\right)$ ponton, tehát ott metszik egymást.

2.3.2.5. Feladat.

Bizonyítsuk be, hogy az

$$(m^2 + 6m + 3)x - (2m^2 + 18m + 2)y - 3m + 2 = 0$$

egyenesek egy ponton metszik egymást.

Hasonlóan az előzőekhez, kipróbálunk két m értéket:

Majd visszahelyettesítjük a kapott x, y értéket:

$$(m^{2} + 6m + 3)x - (2m^{2} + 18m + 2)y - 3m + 2 = 0$$
$$-(m^{2} + 6m + 3) + (m^{2} + 9m + 1)y - 3m + 2 = 0$$
$$0 = 0$$

Tehát valóban egy pontban metszik egymást, mégpedig a $(-1; -\frac{1}{2})$ pontban.

2.3.2.6. Feladat.

Bizonyítsuk be, hogy ha egy egyenes úgy mozog a koodináta-síkon, hogy a tengelyekből lemetszett szeletek hosszának reciprok összege konstans, akkor ezek az egyenesek egy ponton mennek át.

Ha jól meggondoljuk, akkor ezek az egyenesek az y=x egyenesen fogják egymást metszeni, hiszen egy adott e_1 egyenest, tükrözünk, az y=x egyenesre, akkor a tengelyekből lemetszett szeletek hosszának reciprok összege azonos lesz. De mivel tengelyes tükrözésnél a tükörtengelyen lévő pontok helyben maradnak, ezért az y=x egyenesen metszik egymást:

Vegyünk fel három egyenest:

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$
$$a_3x + b_3y = c_3$$

Írjuk át őket tengelymetszetes alakba:

$$\frac{x}{\frac{c_1}{a_1}} + \frac{y}{\frac{c_1}{b_1}} = 1$$

$$\frac{x}{\frac{c_2}{a_2}} + \frac{y}{\frac{c_2}{b_2}} = 1$$

$$\frac{x}{\frac{c_3}{a_2}} + \frac{y}{\frac{c_3}{b_2}} = 1$$

Tudjuk, hogy:

$$\frac{a_1 + b_1}{c_1} = \frac{a_2 + b_2}{c_2} = \frac{a_3 + b_3}{c_3}$$

(Hiszen a tengelyekből lemetszett szakaszok reciprok összege konstans.)

Ahhoz, hogy az előbbiekben felvett három egyenes egy ponton menjen át teljesülnie, kell, hogy:

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

Adjuk hozzá az első oszlophoz a második oszlopot:

$$\begin{vmatrix} a_1 + b_1 & b_1 & c_1 \\ a_2 + b_2 & b_2 & c_2 \\ a_3 + b_3 & b_3 & c_3 \end{vmatrix}$$

De mivel tudjuk, hogy

$$\frac{a_1 + b_1}{c_1} = \frac{a_2 + b_2}{c_2} = \frac{a_3 + b_3}{c_3}$$

Ezért az első oszlop a harmadiknak konstans szorosa, tehát a determináns értéke 0. Így valóban egy ponton mennek át az ilyen típusú egyenesek.

2.3.2.7. Feladat.

Egy négyzet két csúcsa A(3;5) és C(4;2). Határozzuk meg a másik két csúcs koordinátáit.

Meghátrozzuk az M pont koordinátáit: $(3\frac{1}{2}; 3\frac{1}{2})$.

Ezután ha jól megnézzük csak annyit kell tennünk, hogy például az MAt $\pm 90^{\circ}$ -kal elforgatjuk, majd hozzáadjuk az <u>m</u>-et. Ezáltal megkapjuk a D és a B csúcsok koordinátáit.

$$\overrightarrow{MA} = \underline{a} - \underline{m} = (-\frac{1}{2}; \frac{3}{2}).$$

Órajárással megegyező irányban elforgatva: $(\frac{3}{2}; \frac{1}{2})$. Tehát a B csúcs koordinátája: $\underline{m} + (\frac{3}{2}; \frac{1}{2}) = (5; 4).$

Hasonlóan órajárással ellentétes irányban elforgatva: $(-\frac{3}{2}; -\frac{1}{2})$. Így a D csúcs koordinátája: $\underline{m} + (-\frac{3}{2}; -\frac{1}{2}) = (2; 3)$

2.3.2.8. Feladat.

Egy paralelogramma három csúcsa (-1;1); (0;-2) és (3;0). Számítsuk ki a hiányzó csúcs koordinátáit. (Hány megoldás van?)

Felvettük a megadott 3 pontot A(-1;1), B(0;-2) és C(3;0)személyében. A lehetséges D pontot úgy kaphatjuk meg, hogy AB, BC, illetve AC oldalak felezőpontjára tükrüzzük, azaz 3 megoldás lehetséges.

 D_1 : Tükrözzük a B pontot F-re. F koordinátái: $(1; \frac{1}{2})$. $\overrightarrow{BF} =$ $\underline{f} - \underline{b} = (1; 2\frac{1}{2}).$

Így D_1 koordinátái: $\underline{f} + \overrightarrow{BF} = (2; 3)$ $\underline{D_2}$: Tükrözzük a A pontot G-re. G koordinátái: $(\frac{3}{2}; -1)$.

 $\overrightarrow{AG} = \underline{g} - \underline{a} = (2\frac{1}{2}; -2).$

Így D_2 koordinátái: $g + \overrightarrow{AG} = (4; -3)$

Hasonló módszerrel megkaphatjuk D_3 koordinátáit: (-4, -1).

2.4. Mértani helyek

BEPÓTOLNI AZELEJÉT!!

Coming soon...