CORRECTION TD DE COMPLEXATION

Exercice 1

1)
$$[\text{FeF}]^{2+} = \text{Fe}^{3+} + \text{F}^{-}$$
 $K_{d1} = \frac{\left[Fe^{3+}\right]\left[F^{-}\right]}{\left[FeF\right]^{2+}} = \frac{1}{\beta_{1}} = 10^{-6.0} \text{ donc pK}_{d1} = 6.0.$

$$[\text{FeF}_{2}]^{+} = [\text{FeF}]^{2+} + \text{F}^{-}$$
 $K_{d2} = \frac{\left[\left[FeF\right]^{2+}\right]\left[F^{-}\right]}{\left[\left[FeF_{2}\right]^{+}\right]} = \frac{\beta_{1}}{\beta_{2}} = 10^{-4.7} \text{ donc pK}_{d2} = 4.7.$

$$[\text{FeF}_{3}] = [\text{FeF}_{2}]^{+} + \text{F}^{-}$$
 $K_{d3} = \frac{\left[\left[FeF_{2}\right]^{+}\right]\left[F^{-}\right]}{\left[\left[FeF_{3}\right]\right]} = \frac{\beta_{2}}{\beta_{3}} = 10^{-3.0} \text{ donc pK}_{d3} = 3.0.$

$$[\text{FeF}_{4}]^{-} = [\text{FeF}_{3}] + \text{F}^{-}$$
 $K_{d4} = \frac{\left[\left[FeF_{3}\right]\right]\left[F^{-}\right]}{\left[\left[FeF_{4}\right]^{-}\right]} = \frac{\beta_{3}}{\beta_{4}} = 10^{-2.4} \text{ donc pK}_{d4} = 2.4.$
2)
$$\frac{[\text{FeF}_{4}]^{-}}{2.4} = \frac{[\text{FeF}_{3}]}{3.0} = \frac{\beta_{1}}{3.0} = \frac{\beta_{2}}{3.0} = \frac{\beta_{3}}{3.0} = \frac{\beta_{1}}{3.0} = \frac{\beta_{2}}{3.0} = \frac{\beta_{1}}{3.0} = \frac{\beta_{2}}{3.0} = \frac{\beta_{1}}{3.0} = \frac{\beta_{2}}{3.0} = \frac{\beta_{1}}{3.0} = \frac{\beta_{2}}{3.0} = \frac{\beta_{2}}{3.0} = \frac{\beta_{1}}{3.0} = \frac{\beta_{2}}{3.0} = \frac{\beta_{2}}{3.0} = \frac{\beta_{1}}{3.0} = \frac{\beta_{2}}{3.0} = \frac{\beta_{2}}{3$$

3) Si pF = 4,1 alors $[FeF_2]^+$ prédomine. Si $[F^-] = 3,5.10^{-3}$ mol.L⁻¹ alors pF = -log $[F^-] = 2,46$ donc $[FeF_3]$ prédomine.

Exercice 2

- 1) Le plus à gauche se trouvent les espèces les plus riches en ligands, et à droite les plus pauvres en ligands. Ainsi, la courbe 1 représente l'évolution de $[Co(NH_3)_6]^{3^+}$, la 2 celle de $[Co(NH_3)_5]^{3^+}$, la 3 celle de $[Co(NH_3)_4]^{3^+}$, la 4 celle de $[Co(NH_3)_3]^{3^+}$, la 5 celle de $[Co(NH_3)_2]^{3^+}$, la 6 celle de $[Co(NH_3)]^{3^+}$, la celle 7 celle de $[Co(NH_3)]^{3^+}$.
- 2) 1^{er} complexe : $Co^{3+} + NH_3 = [Co(NH_3)]^{3+}$

$$K_{f1} = \frac{\left[\left[Co(NH_3) \right]^{3+} \right]}{\left[Co^{3+} \right] \left[NH_3 \right]} \log K_{f1} = \log \frac{\left[\left[Co(NH_3) \right]^{3+} \right]}{\left[Co^{3+} \right]} - \log \left[NH_3 \right]$$

$$\log K_{f1} = \log \frac{\left[\left[Co(NH_3) \right]^{3+} \right]}{\left[Co^{3+} \right]} + pNH_3$$

Ainsi si $[\text{Co}(\text{NH}_3)^{3+}] = [\text{Co}^{3+}]$ alors $\log K_{f1} = p \text{NH}_3$. Par le graphique on trouve $\log K_{f1} = 7,2$. On procède de même pour les autres espèces et on trouve $\log K_{f2} = 6,8$; $\log K_{f3} = 5,8$; $\log K_{f4} = 5,5$; $\log K_{f5} = 5,2$; $\log K_{f6} = 4,3$. On en déduit les β_i : $\beta_1 = K_{f1} = 10^{7,2}$; $\beta_2 = K_{f1}.K_{f2} = 10^{14}$; $\beta_3 = K_{f1}.K_{f2}.K_{f3} = 10^{19,8}$; $\beta_4 = K_{f1}.K_{f2}.K_{f3}.K_{f4} = 10^{25,3}$; $\beta_5 = K_{f1}.K_{f2}.K_{f3}.K_{f4}.K_{f5} = 10^{30,5}$; $\beta_4 = K_{f1}.K_{f2}.K_{f3}.K_{f4}.K_{f5} = 10^{34,8}$.

- a. On se place à pNH₃ = 5,0. On lit alors, selon les différentes courbes : $%Co^{3+} = 0$; $%[Co(NH_3)_3]^{3+} = 0$; $%[Co(NH_3)_4]^{3+} = 32$; $%[Co(NH_3)_5]^{3+} = 47$; $%[Co(NH_3)_6]^{3+} = 6$.
 - b. Si $[NH_3] = 3.5.10^{-4} \text{ mol.L}^{-1}$ alors $pNH_3 = -log [NH_3] = 3.5$. Ainsi : $%Co^{3+} = %[Co(NH_3)]^{3+} = %[Co(NH_3)_2]^{3+} = %[Co(NH_3)_3]^{3+} = %[Co(NH_3)_4]^{3+} = 0$; $%[Co(NH_3)_5]^{3+} = 12$; $%[Co(NH_3)_6]^{3+} = 88$.

Exercice 3

3)

1) La concentration initiale en Fe³⁺ est : $\left[Fe^{3+}\right] = \frac{C_1.V_1}{V_1 + V_2} = \frac{2,00.10^{-2} \times 20,0}{20,0 + 20,0} = 1,00.10^{-2} \, \text{mol.L}^{-1}.$

La concentration initiale en SCN est : $\left[S_2O_3^{-2-}\right] = \frac{C_2.V_2}{V_1+V_2} = \frac{3,00.10^{-2}\times20,0}{20,0+20,0} = 1,50.10^{-2} \text{ mol.L}^{-1}.$

	Fe ³⁺ +	$S_2 O_3^{2-} =$	$[\operatorname{Fe} S_2 O_3 \]^{^{\scriptscriptstyle +}}$
EI	0,0100	0,0150	0
Equilibre	0,0100 - x	0,0150 - x	Х

$$K = \beta = \frac{\left[\left[FeS_2O_3 \right]^+ \right]}{\left[Fe^{3+} \right] \left[S_2O_3^{2-} \right]} \qquad \text{Ainsi}: 10^{2,1} = \frac{x}{\left(0,0100 - x \right) \cdot \left(0,0150 - x \right)} \text{ donc } x = 5,46.10^{-3} \text{ mol.L}^{-1}.$$

On en déduit $[Fe^{3+}] = 0.0100 - 5.46.10^{-3} = 4.54.10^{-3} \text{ mol.L}^{-1}$

 $[S2O32^{-}] = 0.0150 - 5.00.10^{-3} = 9.54.10^{-3} \text{ mol.L}^{-1}.$

 $[[FeS2O3]^{+}] = 5,46.10^{-3} \text{ mol.L}^{-1}.$

Exercice 4

1) On a autant de NH₃ que de NH₄⁺ onc pH = pK_a(NH₄⁺/NH₃) = 9,2.

2) On a d'abord la formation du 1^{er} complexe :
$$K_1^0 = 10^{3,3} = \frac{x}{(0,4-x)(10^{-3}-x)}$$
 d'où x ≈ 10⁻³ mol.L⁻¹

Etat	Ag ⁺ +	$NH_3 =$	$Ag(NH_3)^+$
EI	0,4	10 ⁻³	0
EF	0,399	3	10 ⁻³

On ne peut ensuite pas former le 2^{nd} complexe par réaction classique de formation, car il n'y a plus de ligand pour le faire. Par contre, on peut former le 2^{nd} complexe par réaction de dismutation du 1^{er} complexe :

Etat	2 [Ag(NH ₃)] ⁺	=	Ag ⁺ +	$[Ag(NH_3)_2]^+$
EI	10 ⁻³		0,399	0
EF	10 ⁻³ -2x		0,399 + x	х

$$K_2^0 = \frac{K_{f2}}{K_{f1}} = \frac{\beta_2}{\beta_1^2} = 10^{0.6} = \frac{x.(0.399 + x)}{\left(10^{-3} - 2.x\right)^2} \text{ d'où x = 9,60.10}^{-6} \text{ mol.L}^{-1}.$$

D'où la composition finale du système : $[NH_4^+] = [Ag(NH_3)^+] = 10^{-3} \text{ mol.L}^{-1}$; $[Ag^+] = 0,399 \text{ mol.L}^{-1}$; $[Ag(NH_3)_2^+] = 9,60.10^{-6} \text{ mol.L}^{-1}$ et enfin $[NH_3] = \varepsilon = \frac{[Ag(NH_3)]^+}{K_1^0 \cdot [Ag^+]} = \frac{10^{-3}}{10^{3.3} \times 0,399} = 1,26.10^{-6} \text{ mol.L}^{-1}$.

D'où la nouvelle valeur du pH : $pH = pK_a + \log \frac{\left[NH_3\right]}{\left[NH_4^+\right]} = 9,2 + \log \frac{1,26.10^{-6}}{10^{-3}} = 6,3$.

CORRECTION TD DE PRECIPITATION

Exercice 1

	AgCl =	Ag ⁺ +	Cl ⁻	$K_s = [Ag^{\dagger}]_{\acute{eq}} \cdot [CI^{\dagger}]_{\acute{eq}}$
EI	S	0	0	$K_s = s^2$
Equilibre	0	S	S	$s = K_s^{1/2} = 10^{-9,7/2} = 1,41.10^{-5} \text{ mol.L}^{-1}.$

	Ag ₂ CrO ₄ =	2 Ag ⁺ +	CrO ₄ ²⁻	$K_s = [Ag^+]^2_{\text{\'eq}} \cdot [CrO_4^{2-}]_{\text{\'eq}}$
EI	S	0	0	$K_s = (2.s)^2.s = 4.s^3$
Equilibre	0	2.s	S	$s = (K_s/4)^{1/3} = 7,34.10^{-5} \text{ mol.L}^{-1}.$

	Ag ₃ PO ₄ =	3 Ag ⁺ +	PO ₄ ³⁻	$K_s = [Ag^+]^3_{\text{\'eq}} \cdot [PO_4^{3-}]_{\text{\'eq}}$
El	S	0	0	$K_s = (3.s)^3.s = 27.s^4$
Equilibre	0	3.s	S	$s = (K_s/27)^{1/4} = 4,65.10^{-6} \text{ mol.L}^{-1}$

Conclusion : on ne peut rien prédire sur les solubilités d'espèces qui possèdent un ion en commun.

Exercice 2

1)

	AgCl	=	Ag ⁺ +	Cl ⁻
El	S		0	0
Equilibre	0		S	S

$$K_s = [Ag^+]_{\acute{eq}}.[Cl^-]_{\acute{eq}}$$
 $K_s = s^2$
 $s = K_s^{1/2} = (1,8.10^{-10})^{1/2} = 1,34.10^{-5} \text{ mol.L}^{-1}.$

2)

	AgCl =	Ag ⁺ +	Cl
EI	S	0,20	0
Equilibre	0	0,20 + s	S

$$K_s = [Ag^+]_{\acute{e}q}.[CI^-]_{\acute{e}q}$$

 $K_s = s.(0,20 + s)$
 $s = 9.10^{-10} \text{ mol.L}^{-1}.$

3)

	AgCl =	Ag ⁺ +	Cl
EI	S	0	0,50
Equilibre	0	S	0,50 + s

$$K_s = [Ag^+]_{\text{éq}}.[Cl^-]_{\text{éq}}$$

 $K_s = s.(0,50 + s)$
 $s = 3,6.10^{-10} \text{ mol.L}^{-1}.$

Exercice 3

1)
$$AI(OH)_3 = AI^{3+} + 3 HO^-$$

$$K_s = [AI^{3+}]_{\text{\'eq}} \cdot [HO^-]^3_{\text{\'eq}} \text{ donc } \left[HO^-\right] = \left(\frac{K_s}{[AI^{3+}]}\right)^{1/3} = \left(\frac{10^{-33}}{0,10}\right)^{1/3} = 2,2.10^{11} \cdot \text{D'où pH} = 3,33.$$

1	١
2	1
	,

	Al ³⁺ +	3 Ox ²⁻ =	[Al(Ox) ₃] ³⁻
EI	0,10	1	0
Equilibre	3	0,70	0,10

$$\beta = \frac{0{,}10}{{(0{,}70)}^3}.\mathcal{E} \ \, \text{donc} \ \, \epsilon = 2{,}9.10^{-14} \ \, \text{mol.L}^{-1}. \ \, \text{Ainsi, [Al}^{3+}]. [\text{HO}^{-}]^3 = 2{,}9.10^{-14}. \\ \left(\frac{10^{-14}}{10^{-6{,}3}}\right)^3 = 2{,}3.10^{-37} < \text{K}_s \ \, \text{donc il n'y a}$$

pas de précipité.

Cherchons [HO] telle que le précipité apparaisse donc telle que [Al³+].[HO¹] = K_s

$$[HO^{-}] = \left(\frac{K_s}{[Al^{3+}]}\right)^{1/3} = 3,3.10^{-7} \text{ mol.L}^{-1}. \text{ Ainsi } \mathbf{pH} = 7,5.$$

Exercice 4

1) La solution est colorée si $[[Fe(SCN)]^{2+}] > 3,2.10^{-6} \text{ mol.L}^{-1}$.

	Fe ³⁺ +	SCN =	[Fe(SCN)] ²⁺
EI	0,001	0,1	0
Equilibre	0,001 - x	0,1 - x	Х

$$K^0 = \beta = 10^{2.0} = \frac{x}{(0.001 - x)(0.1 - x)}$$
. Ainsi x = 9,1.10⁻⁴ mol.L⁻¹ > 3,2.10⁻⁶ mol.L⁻¹ donc la solution est colorée.

2) La couleur disparait quand $[[Fe(SCN)]^{2+}] = 3,2.10^{-6} \text{ mol.L}^{-1}$

On a [SCN]
$$\approx$$
 0,1 mol.L⁻¹ et $\beta = 10^{2.0} = \frac{\left[\left[Fe(SCN) \right]^{2+} \right]}{\left[Fe^{3+} \right] . \left[SCN^{-} \right]} = \frac{3,2.10^{-6}}{\left[Fe^{3+} \right] . 0,1}$, donc [Fe³⁺] = 3,2.10⁻⁷ mol.L⁻¹.

II se forme Fe(OH)₃ donc K_s = [Fe³⁺].[HO⁻]³. Ainsi [
$$HO^-$$
] = $\left(\frac{K_s}{[Fe^{3+}]}\right)^{1/3}$ = $\left(\frac{10^{-36}}{3,2.10^{-7}}\right)^{1/3}$ = 1,46.10⁻¹⁰ mol.L⁻¹.

Ainsi **pH = 4,2.**

3)

a. Réaction de dosage : Ag⁺ + SCN⁻ = Ag(SCN)

A l'équivalence : n(Ag⁺ initial) = n(SCN⁻ versé) soit $C_{Ag^+}.V_{sol} = C_{SCN^-}.V_{\acute{e}q}$ et donc $V_{\acute{e}q} = \frac{C_{Ag^+}.V_{sol}}{C_{SCN^-}}$

$$V_{\acute{e}q} = \frac{9.5 \cdot 10^{-2} \times 10.10^{-3}}{0.1} = 9.5 mL$$

b. Lorsque la couleur apparait, $[[Fe(SCN)]^{2^+}] = 3,2.10^{-6} \text{ mol.L}^{-1}$. De plus,

$$[Fe^{3+}] = \frac{C'V_{initial}}{V_{sol}} = \frac{C'V_{initial}}{V_{initial} + V_{eq}} = \frac{10^{-2} \times 10}{10 + 9.5} = 5.10^{-3} \, \text{mol.L}^{-1}.$$

D'autre part : $\beta = \frac{[[Fe(SCN)]^{2+}]}{[Fe^{3+}].[SCN^{-}]}$ donc on aboutit à [SCN⁻] = 6,3.10⁻⁶ mol.L⁻¹.

Enfin, comme
$$K_s = [Ag^+].[SCN^-]$$
 alors $[Ag^+] = \frac{K_s}{[SCN^-]} = \frac{10^{-12}}{6.3.10^{-6}} = 1.6.10^{-7} \text{ mol.L}^{-1}$: très faible.

On peut donc considérer que tout Ag^+ a précipité au moment du changement de couleur. Fe³⁺ est donc un bon indicateur coloré.