Rank-76355 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_3 + X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1503225177

General information

Number of lines	7
Number of points	29
Number of singular points	0
Number of Eckardt points	1
Number of double points	6
Number of single points	20
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	57
Type of lines on points	$3, 2^6, 1^{20}, 0^2$

Singular Points

The surface has 0 singular points:

The 7 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{21} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{21} = \mathbf{Pl}(1,0,0,0,0,1)_{102}$$

$$\ell_{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \mathbf{Pl}(0,1,1,0,0,0)_{6}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & \omega^{2} & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{68} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{68} = \mathbf{Pl}(1,1,1,0,2,1)_{240}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & \omega & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{47} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{47} = \mathbf{Pl}(1,1,1,0,3,1)_{300}$$

Rank of lines: (0, 16, 21, 356, 100, 68, 47)

Rank of points on Klein quadric: (0, 2, 102, 1, 6, 240, 300)

Eckardt Points

The surface has 1 Eckardt points: $0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0).$

Double Points

The surface has 6 Double points: The double points on the surface are:

$$P_0 = (1,0,0,0) = \ell_0 \cap \ell_1$$

$$P_1 = (0,1,0,0) = \ell_0 \cap \ell_2$$

$$P_8 = (1,0,1,0) = \ell_1 \cap \ell_2$$

$$P_9 = (2,0,1,0) = \ell_1 \cap \ell_5$$

 $P_{10} = (3, 0, 1, 0) = \ell_1 \cap \ell_6$ $P_{42} = (0, 1, 1, 1) = \ell_5 \cap \ell_6$

Single Points

The surface has 20 single points: The single points on the surface are:

0: $P_3 = (0,0,0,1)$ lies on line ℓ_3 1: $P_5 = (1,1,0,0)$ lies on line ℓ_0 2: $P_6 = (2,1,0,0)$ lies on line ℓ_0 3: $P_7 = (3,1,0,0)$ lies on line ℓ_0 4: $P_{12} = (1,1,1,0)$ lies on line ℓ_2 5: $P_{16} = (1,2,1,0)$ lies on line ℓ_2 6: $P_{20} = (1,3,1,0)$ lies on line ℓ_2 7: $P_{23} = (1,0,0,1)$ lies on line ℓ_4 8: $P_{28} = (2,1,0,1)$ lies on line ℓ_5 9: $P_{29} = (3,1,0,1)$ lies on line ℓ_6 10: $P_{38} = (0,0,1,1)$ lies on line ℓ_3 11: $P_{39} = (1,0,1,1)$ lies on line ℓ_4 12: $P_{53} = (0,0,2,1)$ lies on line ℓ_3 13: $P_{54} = (1,0,2,1)$ lies on line ℓ_4 14: $P_{58} = (1,1,2,1)$ lies on line ℓ_5 15: $P_{59} = (2,1,2,1)$ lies on line ℓ_6 16: $P_{69} = (0,0,3,1)$ lies on line ℓ_3 17: $P_{70} = (1,0,3,1)$ lies on line ℓ_4 18: $P_{74} = (1,1,3,1)$ lies on line ℓ_6 19: $P_{76} = (3,1,3,1)$ lies on line ℓ_5

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line: The points on the surface but not on lines are:

$$0: P_{65} = (0, 3, 2, 1) 1: P_{77} = (0, 2, 3, 1)$$

Line Intersection Graph

	0123456
0	0110000
1	1011111
2	1100000
3	0100100
4	0101000
5	0100001
6	$\begin{array}{c} 0.110000\\ 0.110000\\ 1011111\\ 1100000\\ 0.10100\\ 0.10100\\ 0.10100\\ 0.10001\\ 0.100010\\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_0	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_0	P_8	P_2	P_2	P_9	P_{10}

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_1	P_8

Line 3 intersects

Line	ℓ_1	ℓ_4
in point	P_2	P_2

Line 4 intersects

Line	ℓ_1	ℓ_3
in point	P_2	P_2

 ${\bf Line~5~intersects}$

Line	ℓ_1	ℓ_6	
in point	P_9	P_{42}	

Line 6 intersects

Line	ℓ_1	ℓ_5
in point	P_{10}	P_{42}

The surface has 29 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$7: P_8 = (1,0,1,0)$	14: $P_{28} = (2, 1, 0, 1)$
$1: P_1 = (0, 1, 0, 0)$	$8: P_9 = (2,0,1,0)$	$15: P_{29} = (3, 1, 0, 1)$
$2: P_2 = (0, 0, 1, 0)$	$9: P_{10} = (3, 0, 1, 0)$	16: $P_{38} = (0, 0, 1, 1)$
$3: P_3 = (0,0,0,1)$	$10: P_{12} = (1, 1, 1, 0)$	17: $P_{39} = (1, 0, 1, 1)$
$4: P_5 = (1, 1, 0, 0)$	11: $P_{16} = (1, 2, 1, 0)$	18: $P_{42} = (0, 1, 1, 1)$
$5: P_6 = (2, 1, 0, 0)$	$12: P_{20} = (1, 3, 1, 0)$	19: $P_{53} = (0, 0, 2, 1)$
$6: P_7 = (3, 1, 0, 0)$	13: $P_{23} = (1, 0, 0, 1)$	$20: P_{54} = (1,0,2,1)$

$21: P_{58} = (1, 1, 2, 1)$	$24: P_{69} = (0,0,3,1)$	$27: P_{76} = (3, 1, 3, 1)$
$22: P_{59} = (2, 1, 2, 1)$	$25: P_{70} = (1,0,3,1)$	$28: P_{77} = (0, 2, 3, 1)$
$23: P_{65} = (0, 3, 2, 1)$	$26: P_{74} = (1, 1, 3, 1)$	