Package 'msSPChelpR'

January 23, 2024
Title Helper Functions for Second Primary Cancer Analyses
Version 0.9.1
Description A collection of helper functions for analyzing Second Primary Cancer data, including functions to reshape data, to calculate patient states and analyze cancer incidence.
License GPL-3
<pre>URL https://marianschmidt.github.io/msSPChelpR/</pre>
BugReports https://github.com/marianschmidt/msSPChelpR/issues
Depends R (>= 3.5)
Imports cli, dplyr (>= 1.0.0), lubridate, magrittr, purrr, rlang (>= 0.1.2), sjlabelled, stringr, tidyselect, tidytable (>= 0.9.0), tidyr (>= 1.0.0)
Suggests haven, tibble, rmarkdown, knitr, testthat (>= 3.0.0)
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.3.0
Language en-US
LazyData true
Config/testthat/edition 3
NeedsCompilation no
Author Marian Eberl [aut, cre] (https://orcid.org/0000-0001-6584-3197)
Maintainer Marian Eberl <marian.eberl@tum.de></marian.eberl@tum.de>
Repository CRAN
Date/Publication 2024-01-23 22:40:02 UTC
R topics documented:
asir

2 asir

calc_refrates	8
histgroup_iarc	10
ir_crosstab	11
ir_crosstab_byfutime	13
pat_status	15
pat_status_tt	17
population_us	19
renumber_time_id	20
renumber_time_id_tt	21
reshape_long	22
reshape_long_tidyr	23
reshape_long_tt	24
reshape_wide	25
reshape_wide_tidyr	26
reshape_wide_tt	27
sir_byfutime	28
sir_ratio	30
standard_population	32
summarize_sir_results	32
us_refrates_icd2	34
us_seesing_emiser	35
vital_status	36
vital_status_tt	37
3	39

asir

Index

Calculate age-standardized incidence rates

Description

Calculate age-standardized incidence rates

Usage

```
asir(
  df,
  dattype = NULL,
  std_pop = "ESP2013",
  truncate_std_pop = FALSE,
  futime_src = "refpop",
  summarize_groups = "none",
  count_var,
  stdpop_df = standard_population,
  refpop_df = population,
  region_var = NULL,
  age_var = NULL,
  sex_var = NULL,
```

asir 3

```
year_var = NULL,
site_var = NULL,
futime_var = NULL,
pyar_var = NULL,
alpha = 0.05
)
```

Arguments

df dataframe in wide format

dattype can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is

"seer" or "zfkd". Default is NULL.

std_pop can be either "ESP2013, ESP1976, WHO1960, WHO2000

truncate_std_pop

if TRUE standard population will be truncated for all age-groups that do not

occur in df

futime_src can be either "refpop" or "cohort". Default is "refpop".

summarize_groups

option to define summarizing stratified groups. Default is "none". If you want to define variables that should be summarized into one group, you can chose from region_var, sex_var, year_var. Define multiple summarize variables by

summarize_groups = c("region", "sex", "year")

count_var variable to be counted as observed case. Should be 1 for case to be counted.

stdpop_df df where standard population is defined. It is assumed that stdpop_df has the

columns "sex" for biological sex, "age" for age-groups, "standard_pop" for name of standard population (e.g. "European Standard Population 2013) and "population_n" for size of standard population age-group. stdpop_df must use the same

category coding of age and sex as age_var and sex_var.

refpop_df df where reference population data is defined. Only required if option futime

= "refpop" is chosen. It is assumed that refpop_df has the columns "region" for region, "sex" for biological sex, "age" for age-groups (can be single ages or 5-year brackets), "year" for time period (can be single year or 5-year brackets), "population_pyar" for person-years at risk in the respective age/sex/year cohort. refpop_df must use the same category coding of age, sex, region, year and site

as age_var, sex_var, region_var, year_var and site_var.

region_var variable in df that contains information on region where case was incident. De-

fault is set if dattype is given.

age_var variable in df that contains information on age-group. Default is set if dattype is

given.

sex_var variable in df that contains information on biological sex. Default is set if dat-

type is given.

year_var variable in df that contains information on year or year-period when case was

incident. Default is set if dattype is given.

site_var variable in df that contains information on ICD code of case diagnosis. Default

is set if dattype is given.

4 asir

variable in df that contains follow-up time per person (in years) in cohort (can only be used with futime_src = "cohort"). Default is set if dattype is given.

pyar_var variable in refpop_df that contains person-years-at-risk in reference population (can only be used with futime_src = "refpop") Default is set if dattype is given.

significance level for confidence interval calculations. Default is alpha = 0.05 which will give 95 percent confidence intervals.

Value

df

```
#load sample data
data("us_second_cancer")
data("standard_population")
data("population_us")
#make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
                    #only use sample
                    dplyr::filter(as.numeric(fake_id) < 200000) %>%
                    msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
                    time_id_var = "SEQ_NUM", timevar_max = 2)
#create count variable
usdata_wide <- usdata_wide %>%
                   dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
                    TRUE \sim 0))
#remove cases for which no reference population exists
usdata_wide <- usdata_wide %>%
             dplyr::filter(t_yeardiag.2 %in% c("1990 - 1994", "1995 - 1999", "2000 - 2004",
                                                        "2005 - 2009", "2010 - 2014"))
#now we can run the function
msSPChelpR::asir(usdata_wide,
      dattype = "seer",
      std_pop = "ESP2013",
      truncate_std_pop = FALSE,
      futime_src = "refpop",
      summarize_groups = "none",
      count_var = "count_spc",
      refpop_df = population_us,
      region_var = "registry.1",
      age_var = "fc_agegroup.1",
      sex_var = "sex.1",
      year_var = "t_yeardiag.2",
      site_var = "t_site_icd.2",
      pyar_var = "population_pyar")
```

calc_futime 5

calc_futime	Calculate follow-up time per case until end of follow-up depending on pat_status - tidyverse version

Description

Calculate follow-up time per case until end of follow-up depending on pat_status - tidyverse version

Usage

```
calc_futime(
  wide_df,
  futime_var_new = "p_futimeyrs",
  fu_end,
  dattype = NULL,
  check = TRUE,
  time_unit = "years",
  status_var = "p_status",
  lifedat_var = NULL,
  fcdat_var = NULL,
  spcdat_var = NULL,
  quiet = FALSE
)
```

Arguments

wide_df	dataframe in wide format	
futime_var_new	Name of the newly calculated variable for follow-up time. Default is p_futimeyrs.	
fu_end	end of follow-up in time format YYYY-MM-DD.	
dattype	can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is "seer" or "zfkd". Default is NULL.	
check	Check newly calculated variable p_status by printing frequency table. Default is TRUE.	
time_unit	Unit of follow-up time (can be "days", "weeks", "months", "years"). Default is "years".	
status_var	Name of the patient status variable that was previously created. Default is p_status.	
lifedat_var	Name of variable containing Date of Death. Will override dattype preset.	
fcdat_var	Name of variable containing Date of Primary Cancer diagnosis. Will override dattype preset.	
spcdat_var	Name of variable containing Date of SPC diagnosis Will override dattype preset.	
quiet	If TRUE, warnings and messages will be suppressed. Default is FALSE.	

6 calc_futime_tt

Value

wide_df

Examples

```
#load sample data
data("us_second_cancer")
#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
                    msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
                    time_id_var = "SEQ_NUM", timevar_max = 10)
#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
                dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2) ~ "No SPC",
                                                !is.na(t_site_icd.2) ~ "SPC developed",
                                                       TRUE ~ NA_character_)) %>%
                 dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
                                                              TRUE \sim 0))
#prep step - create patient status variable
usdata_wide <- usdata_wide %>%
                  msSPChelpR::pat_status(., fu_end = "2017-12-31", dattype = "seer",
                                        status_var = "p_status", life_var = "p_alive.1",
                               birthdat_var = "datebirth.1", lifedat_var = "datedeath.1")
#now we can run the function
msSPChelpR::calc_futime(usdata_wide,
                        futime_var_new = "p_futimeyrs",
                        fu_{end} = "2017-12-31",
                        dattype = "seer",
                        time_unit = "years"
                        status_var = "p_status",
                        lifedat_var = "datedeath.1",
                        fcdat_var = "t_datediag.1",
                        spcdat_var = "t_datediag.2")
```

 ${\tt calc_futime_tt}$

Calculate follow-up time per case until end of follow-up depending on pat_status - tidytable version

Description

Calculate follow-up time per case until end of follow-up depending on pat_status - tidytable version

calc_futime_tt 7

Usage

```
calc_futime_tt(
  wide_df,
  futime_var_new = "p_futimeyrs",
  fu_end,
  dattype = NULL,
  check = TRUE,
  time_unit = "years",
  status_var = "p_status",
  lifedat_var = NULL,
  fcdat_var = NULL,
  spcdat_var = NULL,
  quiet = FALSE
)
```

Arguments

wide_df	dataframe or data.table in wide format
<pre>futime_var_new</pre>	Name of the newly calculated variable for follow-up time. Default is p_futimeyrs.
fu_end	end of follow-up in time format YYYY-MM-DD.
dattype	can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is "seer" or "zfkd". Default is NULL.
check	Check newly calculated variable "p_futimeyrs" by printing frequency table. Default is TRUE.
time_unit	Unit of follow-up time (can be "days", "weeks", "months", "years"). Default is "years".
status_var	Name of the patient status variable that was previously created. Default is p_status .
lifedat_var	Name of variable containing Date of Death. Will override dattype preset.
fcdat_var	Name of variable containing Date of Primary Cancer diagnosis. Will override dattype preset.
spcdat_var	Name of variable containing Date of SPC diagnosis Will override dattype preset.
quiet	If TRUE, warnings and messages will be suppressed. Default is FALSE.

Value

wide_df

8 calc_refrates

```
time_id_var = "SEQ_NUM", timevar_max = 10)
#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
                dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2) ~ "No SPC",
                                                !is.na(t_site_icd.2) ~ "SPC developed",
                                                       TRUE ~ NA_character_)) %>%
                 dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
                                                              TRUE \sim 0))
#prep step - create patient status variable
usdata_wide <- usdata_wide %>%
                  msSPChelpR::pat_status(., fu_end = "2017-12-31", dattype = "seer",
                                        status_var = "p_status", life_var = "p_alive.1",
                               birthdat_var = "datebirth.1", lifedat_var = "datedeath.1")
#now we can run the function
msSPChelpR::calc_futime_tt(usdata_wide,
                        futime_var_new = "p_futimeyrs",
                        fu_{end} = "2017-12-31",
                        dattype = "seer",
                        time_unit = "years",
                        status_var = "p_status",
                        lifedat_var = "datedeath.1",
                        fcdat_var = "t_datediag.1",
                        spcdat_var = "t_datediag.2")
```

calc_refrates

Calculate age-, sex-, cohort-, region-specific incidence rates from a cohort

Description

Calculate age-, sex-, cohort-, region-specific incidence rates from a cohort

Usage

```
calc_refrates(
   df,
   dattype = NULL,
   count_var,
   refpop_df,
   calc_totals = FALSE,
   fill_sites = "no",
   region_var = NULL,
   age_var = NULL,
   sex_var = NULL,
   year_var = NULL,
```

calc_refrates 9

```
race_var = NULL,
site_var = NULL,
quiet = FALSE
)
```

Arguments

df dataframe in long format

dattype can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is

"seer" or "zfkd". Default is NULL.

count_var variable to be counted as observed case. Should be 1 for case to be counted.

refpop_df df where reference population data is defined. Only required if option futime

= "refpop" is chosen. It is assumed that refpop_df has the columns "region" for region, "sex" for biological sex, "age" for age-groups (can be single ages or 5-year brackets), "year" for time period (can be single year or 5-year brackets), "population_pyar" for person-years at risk in the respective age/sex/year cohort. refpop_df must use the same category coding of age, sex, region, year and site

as age_var, sex_var, region_var, year_var and site_var.

calc_totals option to calculate totals for all age-groups, all sexes, all years, all races, all

sites. Default is FALSE.

fill_sites option to fill missing sites in observed with incidence rate of 0. Needs to define

the coding system used. Can be either "no" for not filling missing sites. "icd2d" for ICD-O-3 2 digit (C00-C80), "icd3d" for ICD-O-3 3digit, "icd10gm2d" for ICD-10-GM 2-digit (C00-C97), "sitewho" for Site SEER WHO coding (no 1-89 categories), "sitewho_b" for Site SEER WHO B recoding (no. 1-111 categories), "sitewho_epi" for SITE SEER WHO coding with additional sums, "sitewhogen" for SITE WHO coding with less categories to make compatible for international rates, "sitewho_num" for numeric coding of Site SEER WHO coding (no 1-89 categories), "sitewho_b_num" for numeric coding of Site SEER WHO B recoding (no. 1-111 categories), "sitewhogen_num" for numeric international

rates, c("manual", char_vector) of sites manually defined

region_var variable in df that contains information on region where case was incident. De-

fault is set if dattype is given.

age_var variable in df that contains information on age-group. Default is set if dattype is

given.

sex_var variable in df that contains information on sex. Default is set if dattype is given.

year_var variable in df that contains information on year or year-period when case was

incident. Default is set if dattype is given.

race_var optional argument, if rates should be calculated stratified by race. If you want

to use this option, provide variable name of df that contains race information. If

race_var is provided refpop_df needs to contain the variable "race".

site_var variable in df that contains information on ICD code of case diagnosis. Cases

are usually the second cancers. Default is set if dattype is given.

quiet If TRUE, warnings and messages will be suppressed. Default is FALSE.

10 histgroup_iarc

Value

df

Examples

histgroup_iarc

Create variable for groups of malignant neoplasms considered to be histologically 'different' for the purpose of defining multiple tumors, ICD-O-3

Description

Create variable for groups of malignant neoplasms considered to be histologically 'different' for the purpose of defining multiple tumors, ICD-O-3

Usage

```
histgroup_iarc(df, hist_var, new_var_hist = t_histgroupiarc, version = "3.1")
```

Arguments

df dataframe in long or wide format

hist_var variable in df that contains first 4 digits of tumor histology (without behavior)

new_var_hist Name of the newly calculated variable for histology groups. Default is t_histgroupiarc.

version Version of ICD-O-3 classification used. Can be either "3.0" for 2000 publica-

tion, "3.1" for 2013 first revision or "3.2" for 2019 second revision. Default is

version = "3.1" for ICD-O-3 revision 1, released 2013.

Value

df

ir_crosstab 11

Examples

```
#load sample data
data("us_second_cancer")

us_second_cancer %>%
   msSPChelpR::histgroup_iarc(., hist_var = t_hist) %>%
   dplyr::select(fake_id, t_hist, t_histgroupiarc)
```

ir_crosstab

Calculate crude incidence rates and crosstabulate results by break variables

Description

Calculate crude incidence rates and crosstabulate results by break variables

Usage

```
ir_crosstab(
   df,
   dattype = NULL,
   count_var,
   xbreak_var = "none",
   ybreak_vars,
   collapse_ci = FALSE,
   add_total = "no",
   add_n_percentages = FALSE,
   futime_var = NULL,
   alpha = 0.05
)
```

Arguments

df	dataframe in wide format
dattype	can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is "seer" or "zfkd". Default is NULL.
count_var	variable to be counted as observed case. Should be 1 for case to be counted.
xbreak_var	variable from df by which rates should be stratified in columns of result df. Default is "none".
ybreak_vars	variables from df by which rates should be stratified in rows of result df. Multiple variables will result in appended rows in result df. y_break_vars is required.
collapse_ci	If TRUE upper and lower confidence interval will be collapsed into one column separated by "-". Default is FALSE.
add_total	option to add a row of totals. Can be either "no" for not adding such a row or "top" or "bottom" for adding it at the first or last row. Default is "no".

ir_crosstab

add_n_percentages

option to add a column of percentages for n_base in its respective yvar_group. Can only be used when xbreak_var = "none". Default is FALSE.

futime_var

variable in df that contains follow-up time per person (in years). Default is set if

dattype is given.

alpha

significance level for confidence interval calculations. Default is alpha = 0.05

which will give 95 percent confidence intervals.

Value

df

```
#load sample data
data("us_second_cancer")
#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
                    msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
                    time_id_var = "SEQ_NUM", timevar_max = 10)
#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
                dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2) ~ "No SPC",
                                                !is.na(t_site_icd.2) ~ "SPC developed",
                                                       TRUE ~ NA_character_)) %>%
                 dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
                                                               TRUE \sim 0))
#prep step - create patient status variable
usdata_wide <- usdata_wide %>%
                  msSPChelpR::pat_status(., fu_end = "2017-12-31", dattype = "seer",
                                        status_var = "p_status", life_var = "p_alive.1",
                               birthdat_var = "datebirth.1", lifedat_var = "datedeath.1")
#now we can run the function
usdata_wide <- usdata_wide %>%
                 msSPChelpR::calc_futime(.,
                        futime_var_new = "p_futimeyrs",
                        fu_{end} = "2017-12-31",
                        dattype = "seer",
                        time_unit = "years",
                        status_var = "p_status",
                        lifedat_var = "datedeath.1",
                        fcdat_var = "t_datediag.1"
                        spcdat_var = "t_datediag.2")
#for example, you can calculate incidence and summarize by sex and registry
msSPChelpR::ir_crosstab(usdata_wide,
     dattype = "seer",
     count_var = "count_spc",
```

ir_crosstab_byfutime 13

```
xbreak_var = "none",
ybreak_vars = c("sex.1", "registry.1"),
collapse_ci = FALSE,
add_total = "no",
add_n_percentages = FALSE,
futime_var = "p_futimeyrs",
alpha = 0.05)
```

ir_crosstab_byfutime

Calculate crude incidence rates and cross-tabulate results by break variables; cumulative FU-times as are used as xbreak_var

Description

Calculate crude incidence rates and cross-tabulate results by break variables; cumulative FU-times as are used as xbreak_var

Usage

```
ir_crosstab_byfutime(
    df,
    dattype = NULL,
    count_var,
    futime_breaks = c(0, 0.5, 1, 5, 10, Inf),
    ybreak_vars,
    collapse_ci = FALSE,
    add_total = "no",
    futime_var = NULL,
    alpha = 0.05
)
```

Arguments

df	dataframe in wide format
dattype	can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is "seer" or "zfkd". Default is NULL.
count_var	variable to be counted as observed case. Should be 1 for case to be counted.
futime_breaks	vector that indicates split points for follow-up time groups (in years) that will be used as xbreak_var. Default is c(0, .5, 1, 5, 10, Inf) that will result in 5 groups (up to 6 months, 6-12 months, 1-5 years, 5-10 years, 10+ years).
ybreak_vars	variables from df by which rates should be stratified in rows of result df. Multiple variables will result in appended rows in result df. y_break_vars is required.
collapse_ci	If TRUE upper and lower confidence interval will be collapsed into one column separated by "-". Default is FALSE.

option to add a row of totals. Can be either "no" for not adding such a row or "top" or "bottom" for adding it at the first or last row. Default is "no".

futime_var variable in df that contains follow-up time per person (in years). Default is set if

dattype is given.

alpha significance level for confidence interval calculations. Default is alpha = 0.05

which will give 95 percent confidence intervals.

Value

df

```
#load sample data
data("us_second_cancer")
#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
                    #only use sample
                    dplyr::filter(as.numeric(fake_id) < 200000) %>%
                    msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
                    time_id_var = "SEQ_NUM", timevar_max = 2)
#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
                dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2) ~ "No SPC",
                                                !is.na(t_site_icd.2) ~ "SPC developed",
                                                       TRUE ~ NA_character_)) %>%
                 dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
                                                               TRUE \sim 0))
#prep step - create patient status variable
usdata_wide <- usdata_wide %>%
                  msSPChelpR::pat_status(., fu_end = "2017-12-31", dattype = "seer",
                                        status_var = "p_status", life_var = "p_alive.1",
                               birthdat_var = "datebirth.1", lifedat_var = "datedeath.1")
#now we can run the function
usdata_wide <- usdata_wide %>%
                 msSPChelpR::calc_futime(.,
                        futime_var_new = "p_futimeyrs",
                        fu_{end} = "2017-12-31",
                        dattype = "seer",
                        time_unit = "years"
                        status_var = "p_status",
                        lifedat_var = "datedeath.1",
                        fcdat_var = "t_datediag.1",
                        spcdat_var = "t_datediag.2")
#for example, you can calculate incidence and summarize by sex and registry
msSPChelpR::ir_crosstab_byfutime(usdata_wide,
     dattype = "seer",
```

pat_status 15

```
count_var = "count_spc",
futime_breaks = c(0, .5, 1, 5, 10, Inf),
ybreak_vars = c("sex.1", "registry.1"),
collapse_ci = FALSE,
add_total = "no",
futime_var = "p_futimeyrs",
alpha = 0.05)
```

pat_status

Determine patient status at specific end of follow-up - tidyverse version

Description

Determine patient status at specific end of follow-up - tidyverse version

Usage

```
pat_status(
  wide_df,
  fu_end = NULL,
  dattype = NULL,
  status_var = "p_status",
  life_var = NULL,
  spc_var = NULL,
  birthdat_var = NULL,
  lifedat_var = NULL,
  lifedatmin_var = NULL,
  fcdat_var = NULL,
  spcdat_var = NULL,
  life_stat_alive = NULL,
  life_stat_dead = NULL,
  spc_stat_yes = NULL,
  spc_stat_no = NULL,
  lifedat_fu_end = NULL,
  use_lifedatmin = FALSE,
  check = TRUE,
  as_labelled_factor = FALSE
)
```

Arguments

wide_df dataframe in wide format

fu_end end of follow-up in time format YYYY-MM-DD.

dattype can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is "seer" or "zfkd". Default is NULL.

pat_status

status_var	Name of the newly calculated variable for patient status. Default is p_status.	
life_var	Name of variable containing life status. Will override dattype preset.	
spc_var	Name of variable containing SPC status. Will override dattype preset.	
birthdat_var	Name of variable containing Date of Birth. Will override dattype preset.	
lifedat_var	Name of variable containing Date of Death. Will override dattype preset.	
lifedatmin_var	Name of variable containing the minimum Date of Death when true DoD is missing. Will override dattype preset. Will only be used if use_lifedatmin = TRUE.	
fcdat_var	Name of variable containing Date of Primary Cancer diagnosis. Will override dattype preset.	
spcdat_var	Name of variable containing Date of SPC diagnosis Will override dattype preset.	
life_stat_alive		
	Value for alive status in life_var. Will override dattype preset.	
life_stat_dead	Value for dead status in life_var. Will override dattype preset.	
spc_stat_yes	Value for SPC occurred in spc_var. Will override dattype preset.	
spc_stat_no	Value for no SPC in spc_var. Will override dattype preset.	
lifedat_fu_end	Date of last FU of alive status in registry data. Will override dattype preset (2017-03-31 for zfkd; 2018-12-31 for seer).	
use_lifedatmin	If TRUE, option to use Date of Death from lifedatmin_var when DOD is missing. Default is FALSE.	
check	Check newly calculated variable p_status. Default is TRUE.	
as_labelled_fac	ctor	
	If TRUE, output status_var as labelled factor variable. Default is FALSE.	

Value

wide_df

pat_status_tt 17

pat_status_tt

Determine patient status at specific end of follow-up - tidytable version

Description

Determine patient status at specific end of follow-up - tidytable version

Usage

```
pat_status_tt(
 wide_df,
  fu_end,
  dattype = NULL,
  status_var = "p_status",
  life_var = NULL,
  spc_var = NULL,
  birthdat_var = NULL,
  lifedat_var = NULL,
  lifedatmin_var = NULL,
  fcdat_var = NULL,
  spcdat_var = NULL,
  life_stat_alive = NULL,
  life_stat_dead = NULL,
  spc_stat_yes = NULL,
  spc_stat_no = NULL,
  lifedat_fu_end = NULL,
  use_lifedatmin = FALSE,
  check = TRUE,
  as_labelled_factor = FALSE
)
```

Arguments

wide_df

dataframe or data.table in wide format

18 pat_status_tt

fu_end end of follow-up in time format YYYY-MM-DD. can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is dattype "seer" or "zfkd". Default is NULL. Name of the newly calculated variable for patient status. Default is p_status. status_var life_var Name of variable containing life status. Will override dattype preset. spc_var Name of variable containing SPC status. Will override dattype preset. birthdat_var Name of variable containing Date of Birth. Will override dattype preset. Name of variable containing Date of Death. Will override dattype preset. lifedat_var lifedatmin_var Name of variable containing the minimum Date of Death when true DoD is missing. Will override dattype preset. Will only be used if use_lifedatmin = TRUE. fcdat_var Name of variable containing Date of Primary Cancer diagnosis. Will override dattype preset. spcdat_var Name of variable containing Date of SPC diagnosis Will override dattype preset. life_stat_alive Value for alive status in life_var. Will override dattype preset. life_stat_dead Value for dead status in life_var. Will override dattype preset. Value for SPC occurred in spc_var. Will override dattype preset. spc_stat_ves Value for no SPC in spc_var. Will override dattype preset. spc_stat_no lifedat_fu_end Date of last FU of alive status in registry data. Will override dattype preset (2017-03-31 for zfkd; 2018-12-31 for seer). use_lifedatmin If TRUE, option to use Date of Death from lifedatmin_var when DOD is missing. Default is FALSE. check Check newly calculated variable p_status. Default is TRUE. as_labelled_factor

If TRUE, output status_var as labelled factor variable. Default is FALSE.

Value

wide_df

population_us 19

population_us

US Populations Data

Description

Dataset that contains different standard populations needed to run some package functions

Usage

```
population_us
```

Format

A data frame with the following variables:

```
region Region / Registry

year Year group

sex Sex

age Age group

race Race

population_pyar Population Years used for rate calculation (PYAR)

population_n_per_year Absolute Population in single years or periods (PYAR / 5 years)]
```

20 renumber_time_id

renumber_time_id

Renumber the time ID per case (i.e. Tumor sequence)

Description

Renumber the time ID per case (i.e. Tumor sequence)

Usage

```
renumber_time_id(
   df,
   new_time_id_var,
   dattype = NULL,
   case_id_var = NULL,
   time_id_var = NULL,
   diagdat_var = NULL,
   timevar_max = Inf
)
```

Arguments

dataframe new_time_id_var Name of the newly calculated variable for time_id. Required. can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is dattype "seer" or "zfkd". Default is NULL. case_id_var String with name of ID variable indicating same patient. E.g. case_id_var="PUBCSNUM" for SEER data. String with name of variable that indicates diagnosis per patient. E.g. time_id_var="SEQ_NUM" time_id_var for SEER data. String with name of variable that indicates date of diagnosis per event. E.g. diagdat_var diagdat_var="t_datediag" for SEER data. Numeric; default Inf. Maximum number of cases per id. All tumors > timevar_max timevar_max

Value

df

Examples

```
data(us_second_cancer)
us_second_cancer %>%
  #only select first 10000 rows so example runs faster
dplyr::slice(1:10000) %>%
```

will be deleted.

renumber_time_id_tt 21

```
\begin{tabular}{ll} renumber\_time\_id\_tt & Renumber\ the\ time\ ID\ per\ case\ (i.e.\ Tumor\ sequence)\ -\ tidytable\ version \\ \end{tabular}
```

Description

Renumber the time ID per case (i.e. Tumor sequence) - tidytable version

Usage

```
renumber_time_id_tt(
   df,
   new_time_id_var,
   dattype = NULL,
   case_id_var = NULL,
   time_id_var = NULL,
   diagdat_var = NULL,
   timevar_max = Inf
)
```

Arguments

df	dataframe
new_time_id_var	•
	Name of the newly calculated variable for time_id. Required.
dattype	can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is "seer" or "zfkd". Default is NULL.
case_id_var	String with name of ID variable indicating same patient. E.g. case_id_var="PUBCSNUM" for SEER data.
time_id_var	String with name of variable that indicates diagnosis per patient. E.g. $time_id_var="SEQ_NUM"$ for SEER data.
diagdat_var	String with name of variable that indicates date of diagnosis per event. E.g. diagdat_var="t_datediag" for SEER data.
timevar_max	Numeric; default Inf. Maximum number of cases per id. All tumors > timevar_max will be deleted.

Value

df

22 reshape_long

Examples

reshape_long

Reshape dataset to long format - stats::reshape version

Description

Reshape dataset to long format - stats::reshape version

Usage

```
reshape_long(wide_df, case_id_var, time_id_var, datsize = Inf, chunks = 1)
```

Arguments

case_id_var String with name of ID variable indicating same patient. E.g. idvar="PUBCSNUM" for SEER data. time_id_var String with name of variable that indicates diagnosis per patient. E.g. timevar="SEQ_NUM" for SEER data. datsize Number of rows to be taken from df. This parameter is mainly for testing. Default is Inf so that df is fully processed. chunks Numeric; default 1. Technical parameter how the data is split during reshaping.	wide_df	dataframe in wide format
for SEER data. Number of rows to be taken from df. This parameter is mainly for testing. Default is Inf so that df is fully processed.	case_id_var	
Default is Inf so that df is fully processed.	time_id_var	
chunks Numeric; default 1. Technical parameter how the data is split during reshaping.	datsize	
	chunks	Numeric; default 1. Technical parameter how the data is split during reshaping.

Value

long df

reshape_long_tidyr 23

reshape_long_tidyr

Reshape dataset to wide format - tidyr version

Description

Reshape dataset to wide format - tidyr version

Usage

```
reshape_long_tidyr(wide_df, case_id_var, time_id_var, datsize = Inf)
```

Arguments

wide_df	dataframe
case_id_var	String with name of ID variable indicating same patient. E.g. idvar="PUBCSNUM" for SEER data.
time_id_var	String with name of variable that indicates diagnosis per patient. E.g. timevar="SEQ_NUM" for SEER data.
datsize	Number of rows to be taken from df. This parameter is mainly for testing. Default is Inf so that df is fully processed.

Value

long_df

24 reshape_long_tt

```
case_id_var = "fake_id",
time_id_var = "SEQ_NUM")
```

reshape_long_tt

Reshape dataset to wide format - tidytable version

Description

Reshape dataset to wide format - tidytable version

Usage

```
reshape_long_tt(wide_df, case_id_var, time_id_var, datsize = Inf)
```

Arguments

wide_df dataframe

case_id_var String with name of ID variable indicating same patient. E.g. idvar="PUBCSNUM"

for SEER data.

time_id_var String with name of variable that indicates diagnosis per patient. E.g. timevar="SEQ_NUM"

for SEER data.

datsize Number of rows to be taken from df. This parameter is mainly for testing.

Default is Inf so that df is fully processed.

Value

long_df

reshape_wide 25

mat	
-----	--

Description

Reshape dataset to wide format

Usage

```
reshape_wide(
   df,
   case_id_var,
   time_id_var,
   timevar_max = 6,
   datsize = Inf,
   chunks = 10
)
```

Arguments

df	dataframe
case_id_var	String with name of ID variable indicating same patient. E.g. idvar="PUBCSNUM" for SEER data.
time_id_var	String with name of variable that indicates diagnosis per patient. E.g. $timevar="SEQ_NUM"$ for SEER data.
timevar_max	Numeric; default 6. Maximum number of cases per id. All tumors > timevar_max will be deleted before reshaping.
datsize	Number of rows to be taken from df. This parameter is mainly for testing. Default is Inf so that df is fully processed.
chunks	Numeric; default 10. Technical parameter how the data is split during reshaping.

Value

df

26 reshape_wide_tidyr

reshape_wide_tidyr

Reshape dataset to wide format - tidyr version

Description

Reshape dataset to wide format - tidyr version

Usage

```
reshape_wide_tidyr(
   df,
   case_id_var,
   time_id_var,
   timevar_max = 6,
   datsize = Inf
)
```

Arguments

df	dataframe
case_id_var	String with name of ID variable indicating same patient. E.g. idvar="PUBCSNUM" for SEER data.
time_id_var	String with name of variable that indicates diagnosis per patient. E.g. $timevar="SEQ_NUM"$ for SEER data.
timevar_max	Numeric; default 6. Maximum number of cases per id. All tumors > timevar_max will be deleted before reshaping.
datsize	Number of rows to be taken from df. This parameter is mainly for testing. Default is Inf so that df is fully processed.

Value

df

reshape_wide_tt 27

reshape_wide_tt	Reshape dataset to wide format - tidytable version	

Description

Reshape dataset to wide format - tidytable version

Usage

```
reshape_wide_tt(df, case_id_var, time_id_var, timevar_max = 6, datsize = Inf)
```

Arguments

df	dataframe
case_id_var	String with name of ID variable indicating same patient. E.g. idvar="PUBCSNUM" for SEER data.
time_id_var	String with name of variable that indicates diagnosis per patient. E.g. $timevar="SEQ_NUM"$ for SEER data.
timevar_max	Numeric; default 6. Maximum number of cases per id. All tumors > timevar_max will be deleted before reshaping.
datsize	Number of rows to be taken from df. This parameter is mainly for testing. Default is Inf so that df is fully processed.

Value

wide_df

28 sir_byfutime

sir_byfutime

Calculate standardized incidence ratios with custom grouping variables stratified by follow-up time

Description

Calculate standardized incidence ratios with custom grouping variables stratified by follow-up time

Usage

```
sir_byfutime(
  df,
  dattype = NULL,
 ybreak_vars = "none",
  xbreak_var = "none",
  futime_breaks = c(0, 0.5, 1, 5, 10, Inf),
  count_var,
  refrates_df = rates,
  calc_total_row = TRUE,
  calc_total_fu = TRUE,
  region_var = NULL,
  age_var = NULL,
  sex_var = NULL,
  year_var = NULL,
  race_var = NULL,
  site_var = NULL,
  futime_var = NULL,
  expect_missing_refstrata_df = NULL,
  alpha = 0.05,
  quiet = FALSE
)
```

Arguments

df da	ataframe in	wide 1	format
-------	-------------	--------	--------

dattype can be "zfkd" or "seer" or NULL. Will set default variable names if dattype is

"seer" or "zfkd". Default is NULL.

ybreak_vars variables from df by which SIRs should be stratified in result df. Multiple vari-

ables will result in appended rows in result df. Careful: do not chose any variables that are dependent on occurrence of count_var (e.g. Histology of second cancer). If $y_{preak} = "none"$, no stratification is performed. Default is

"none".

xbreak_var One variable from df by which SIRs should be stratified as a second dimension

in result df. This variable will be added as a second stratification dimension to ybreak_vars and all variables will be calculated for subpopulations of x and y

29 sir_byfutime

> combinations. Careful: do not chose any variables that are dependent on occurrence of count_var (e.g. Year of second cancer). If y_break_vars = "none", no stratification is performed. Default is "none".

futime_breaks

vector that indicates split points for follow-up time groups (in years) that will be used as xbreak_var. Default is c(0, .5, 1, 5, 10, Inf) that will result in 5 groups (up to 6 months, 6-12 months, 1-5 years, 5-10 years, 10+ years). If you don't want to split by follow-up time, use futime_breaks = "none".

count_var

variable to be counted as observed case. Cases are usually the second cancers. Should be 1 for case to be counted.

refrates_df

df where reference rate from general population are defined. It is assumed that refrates_df has the columns "region" for region, "sex" for biological sex, "age" for age-groups (can be single ages or 5-year brackets), "year" for time period (can be single year or 5-year brackets), "incidence_crude_rate" for incidence rate in the respective age/sex/year cohort. The variable "race" is additionally required if the option "race_var" is used. refrates_df must use the same category coding of age, sex, region, year and t_site as age_var, sex_var, region_var, year_var and site_var.

calc_total_row option to calculate a row of totals. Can be either FALSE for not adding such a row or TRUE for adding it at the first row. Default is TRUE.

calc_total_fu

option to calculate totals for follow-up time. Can be either FALSE for not adding such a column or TRUE for adding. Default is TRUE.

region_var

variable in df that contains information on region where case was incident. Default is set if dattype is given.

age_var

variable in df that contains information on age-group. Default is set if dattype is given.

sex_var year_var variable in df that contains information on sex. Default is set if dattype is given.

variable in df that contains information on year or year-period when case was incident. Default is set if dattype is given.

race_var

optional argument, if SIR should be calculated stratified by race. If you want to use this option, provide variable name of df that contains race information. If race_var is provided refrates_df needs to contain the variable "race".

site_var

variable in df that contains information on site or subsite (e.g. ICD code, SEER site code or others that matches t_site in refrates_df) of case diagnosis. Cases are usually the second cancers. Default is set if dattype is given.

futime var

variable in df that contains follow-up time per person between date of first cancer and any of death, date of event (case), end of FU date (in years; whatever event comes first). Default is set if dattype is given.

expect_missing_refstrata_df

optional argument, if strata with missing refrates are expected, because incidence rates of value 0 are not explicit, but missing from refrates df. It is assumed that expect_missing_refstrata_df is a data.frame has the columns "region" for region, "sex" for biological sex, "age" for age-groups (can be single ages or 5-year brackets), "year" for time period (can be single year or 5-year brackets), and "t_site" for The variable "race" is additionally required if the option "race_var" is used. refrates_df must use the same category coding of 30 sir_ratio

age, sex, region, year and t_site as age_var, sex_var, region_var, year_var and site_var.

significance level for confidence interval calculations. Default is alpha = 0.05 which will give 95 percent confidence intervals.

If TRUE, warnings and messages will be suppressed. Default is FALSE.

. .

alpha

quiet

Examples

```
#There are various preparation steps required, before you can run this function.
#Please refer to the Introduction vignette to see how to prepare your data
## Not run:
usdata_wide %>%
 sir_byfutime(
        dattype = "seer",
        ybreak_vars = c("race.1", "t_dco.1"),
        xbreak_var = "none",
        futime_breaks = c(0, 1/12, 2/12, 1, 5, 10, Inf),
        count_var = "count_spc",
        refrates_df = us_refrates_icd2,
        calc_total_row = TRUE,
        calc_total_fu = TRUE,
        region_var = "registry.1",
        age_var = "fc_agegroup.1",
        sex_var = "sex.1"
        year_var = "t_yeardiag.1",
        site_var = "t_site_icd.1", #using grouping by second cancer incidence
        futime_var = "p_futimeyrs",
        alpha = 0.05)
## End(Not run)
```

sir_ratio

Calculate Ratio of two SIRs or SMRs

Description

Calculate ratio of two SIRs by providing observed and expected counts to sir_ratio The related functions sir_ratio_lci and sir_ratio_uci can also calculate lower and upper estimates of the confidence interval Calculations are based on formulas suggested by Breslow & Day 1987

Usage

```
sir_ratio(o1, o2, e1, e2)
sir_ratio_lci(o1, o2, e1, e2, alpha = 0.05)
sir_ratio_uci(o1, o2, e1, e2, alpha = 0.05)
```

sir_ratio 31

Arguments

o1	observed count for SIR 1
o2	observed count for SIR 2
e1	expected count for SIR 1
e2	observed count for SIR 2
alpha	alpha significance level for confidence interval calculations. Default is alpha = 0.05 which will give 95 percent confidence intervals.

Value

num numeric value of SIR / SMR estimate

References

Breslow NE, Day NE. Statistical Methods in Cancer Research Volume II: The Design and Analysis of Cohort Studies. Lyon, France: IARC; 1987. (IARC Scientific Publications IARC Scientific Publications No. 82). Available from: http://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Statistical-Methods-In-Cancer-Research-Volume-II-The-Design-And-Analysis-Of-Cohort-Studies-1986

```
#provide the two expected and observed count to get the ratio of SIRs/SMRs
msSPChelpR::sir_ratio(o1 = 2140, o2 = 3158, e1 = 1993, e2 = 2123)
#calculate lower confidence limit
msSPChelpR::sir_ratio_lci(o1 = 2140, o2 = 3158, e1 = 1993, e2 = 2123, alpha = 0.05)
#calculate upper confidence limit
msSPChelpR::sir_ratio_uci(o1 = 2140, o2 = 3158, e1 = 1993, e2 = 2123, alpha = 0.05)
#functions can be easily used inside dplyr::mutate function
library(dplyr)
test_df <- data.frame(sir_oth = c(1.07, 1.36, 0.96),
                  sir\_smo = c(1.49, 1.81, 1.41),
                  observed_oth = c(2140, 748, 1392),
                  expected_oth = c(1993, 550, 1443),
                  observed_smo = c(3158, 744, 2414),
                  expected\_smo = c(2123, 412, 1711))
test_df %>%
 mutate(smo_ratio = sir_ratio(observed_oth, observed_smo, expected_oth, expected_smo),
      smo_ratio_lci = sir_ratio_lci(observed_oth, observed_smo, expected_oth, expected_smo),
      smo_ratio_uci = sir_ratio_uci(observed_oth, observed_smo, expected_oth, expected_smo))
```

32 summarize_sir_results

```
standard_population Standard Populations Data
```

Description

Dataset that contains different standard populations needed to run some package functions

Usage

```
standard_population
```

Format

```
A data frame with the following variables:
```

```
standard_pop Standard Population
sex Sex
age Age group
population_n Absolute Population number in standard population age group
group_proportion Proportion of age-group in gender-specific total population
```

summarize_sir_results Summarize detailed SIR results

Description

Summarize detailed SIR results

Usage

```
summarize_sir_results(
 sir_df,
  summarize_groups,
  summarize_site = FALSE,
  output = "long",
  output_information = "full",
  add_total_row = "no",
  add_total_fu = "no",
  collapse_ci = FALSE,
  shorten_total_cols = FALSE,
  fubreak_var_name = "fu_time"
 ybreak_var_name = "yvar_name",
  xbreak_var_name = "none",
  site_var_name = "t_site",
  alpha = 0.05
)
```

33 summarize_sir_results

Arguments

sir_df

dataframe with stratified sir results created using the sir or sir_byfutime func-

summarize_groups

option to define summarizing stratified groups. Default is "none". If you want to define variables that should be summarized into one group, you can chose from age, sex, region, year. Define multiple summarize variables e.g. by summarize_groups = c("region", "sex", "year")

summarize_site If TRUE results will be summarized over all t site categories. Default is FALSE.

output

Define the format of the output. Can be either "nested" for nested dataframe with fubreak_var and xbreak_var in separate sub_tables (purrr). Or "wide" for wide format where fubreak_var and xbreak_var are appended as columns. Or "long" for long format where sir_df is not reshaped, but just summarized (ybreak_var, xbreak_var and fubreak_var remain in rows). Default is "long".

output_information

option to define information to be presented in final output table. Default is "full" information, i.e. all variables from from sir_df. "reduced" is observed, expected, sir, sir_ci / sir_lci+sir_uci, pyar, n_base. "minimal" is observed, expected, sir, sir ci. Default is "full".

add_total_row

option to add a row of totals. Can be either "no" for not adding such a row or "start" or "end" for adding it at the first or last row or "only" for only showing totals and no yvar. Default is "no".

add_total_fu

option to add totals for follow-up time. Can be either "no" for not adding such a column or "start" or "end" for adding it at the first or last column or "only" for only showing follow-up time totals. Default is "no".

collapse_ci

If TRUE upper and lower confidence interval will be collapsed into one column separated by "-". Default is FALSE.

shorten_total_cols

Shorten text in all results columns that start with "Total". Default == FALSE.

fubreak_var_name

Name of variable with futime stratification. Default is "fu_time".

ybreak_var_name

Name of variable with futime stratification. Default is "yvar_name".

xbreak_var_name

Name of variable with futime stratification. Default is "xvar name".

site_var_name

Name of variable with site stratification. Default is "t_site".

alpha

significance level for confidence interval calculations. Default is alpha = 0.05which will give 95 percent confidence intervals.

```
#There are various preparation steps required, before you can run this function.
#Please refer to the Introduction vignette to see how to prepare your data
## Not run:
summarize_sir_results(.,
   summarize_groups = c("region", "age", "year", "race"),
```

34 us_refrates_icd2

```
summarize_site = TRUE,
output = "long", output_information = "minimal",
add_total_row = "only", add_total_fu = "no",
collapse_ci = FALSE, shorten_total_cols = TRUE,
fubreak_var_name = "fu_time", ybreak_var_name = "yvar_name",
xbreak_var_name = "none", site_var_name = "t_site",
alpha = 0.05
)
## End(Not run)
```

us_refrates_icd2

US Reference Rates for Cancer Data (ICD-O 2digit code)

Description

Synthetic dataset of reference incidence rates for the US population to demonstrate package functions Cancer site is coded using ICD-O 2digit code

Usage

```
us_refrates_icd2
```

Format

A data frame with the following variables:

```
t_site Tumor Site

region Region / Region groups

year Year / Periods

sex Sex

age Age / Age groups

race Race

comment Comment

incidence_cases Incident Cases (raw count)

incidence_crude_rate Incidence Rate (crude rate)

population_pyar Population Years used for rate calculation (PYAR)

population_n_per_year Absolute Population number used for rate calculation (PYAR / 5 years)
```

us_second_cancer 35

us_second_cancer

US Second Cancer Data

Description

Synthetic dataset of patients with cancer to demonstrate package functions

Usage

```
us_second_cancer
```

Format

A data frame with the following variables:

fake_id ID of patient

SEQ_NUM Original tumor sequence

registry SEER registry

sex Biological sex of patient

race Race

datebirth Date of birth

t_datediag Date of diagnosis of tumor

t_site_icd Primary site of tumor in ICD-O coding

t_hist Histology, i.e. ICD-O-3-Code on tumor morphology (4 digits)

t_dco Tumor diagnosis is based on Death Certificate only

fc_age Age at first primary cancer in years

datedeath Date of death

p_alive Patient alive at end of follow-up 2019

p_dodmin Minimum Date of Death if datedeath is missing

fc_agegroup Age group of first cancer diagnosis

t_yeardiag Time period of diagnosis of tumor

36 vital_status

vital_status	Determine vital status at end of follow-up depending on pat_status -
	tidyverse version

Description

Determine vital status at end of follow-up depending on pat_status - tidyverse version

Usage

```
vital_status(
  wide_df,
  status_var = "p_status",
  life_var_new = "p_alive",
  check = TRUE,
  as_labelled_factor = FALSE
)
```

Arguments

If true, output life_var_new as labelled factor variable. Default is FALSE.

Value

wide_df

vital_status_tt 37

vital_status_tt

Determine vital status at end of follow-up depending on pat_status - tidytable version

Description

Determine vital status at end of follow-up depending on pat_status - tidytable version

Usage

```
vital_status_tt(
  wide_df,
  status_var = "p_status",
  life_var_new = "p_alive",
  check = TRUE,
  as_labelled_factor = FALSE
)
```

Arguments

wide_df dataframe or data.table in wide format

status_var Name of the patient status variable that was previously created. Default is
p_status.

life_var_new Name of the newly calculated variable for patient vital status. Default is p_alive.

check Check newly calculated variable life_var_new by printing frequency table. Default is TRUE.

as_labelled_factor

If true, output life_var_new as labelled factor variable. Default is FALSE.

38 vital_status_tt

Value

wide_df

```
#load sample data
data("us_second_cancer")
#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
                   msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
                    time_id_var = "SEQ_NUM", timevar_max = 10)
#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
                dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2) ~ "No SPC",
                                               !is.na(t_site_icd.2) ~ "SPC developed",
                                                       TRUE ~ NA_character_)) %>%
                 dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
                                                              TRUE \sim 0))
#prep step - create patient status variable
usdata_wide <- usdata_wide %>%
                 msSPChelpR::pat_status(., fu_end = "2017-12-31", dattype = "seer",
                                        status_var = "p_status", life_var = "p_alive.1",
                               birthdat_var = "datebirth.1", lifedat_var = "datedeath.1")
#now we can run the function
msSPChelpR::vital_status_tt(usdata_wide,
                       status_var = "p_status",
                       life_var_new = "p_alive_new",
                       check = TRUE,
                        as_labelled_factor = FALSE)
```

Index

```
* datasets
    population_us, 19
    standard\_population, 32
    us_refrates_icd2, 34
    us_second_cancer, 35
asir, 2
{\tt calc\_futime}, {\tt 5}
calc_futime_tt,6
calc_refrates, 8
histgroup_iarc, 10
ir_crosstab, 11
ir_crosstab_byfutime, 13
pat_status, 15
pat_status_tt, 17
population_us, 19
renumber_time_id, 20
renumber_time_id_tt, 21
reshape_long, 22
reshape_long_tidyr, 23
reshape_long_tt, 24
reshape_wide, 25
reshape_wide_tidyr, 26
reshape_wide_tt, 27
sir_byfutime, 28
sir_ratio, 30
sir_ratio_lci (sir_ratio), 30
sir_ratio_uci (sir_ratio), 30
standard_population, 32
summarize_sir_results, 32
us\_refrates\_icd2, 34
us_second_cancer, 35
vital_status, 36
vital_status_tt, 37
```