

Complex Function: 复变函数

A notebook for Complex Function

作者:John Pink 组织:John 的数学小栈 时间:March 3, 2024 版本:0.1

目录

第1章	复数的基本概念	1
第2章	复变函数	2
	Cauchy 积分	3
3.1	解析函数与调和函数	5
第4章	解析函数的幂级数表示	6
4.1	复级数的基本概念	6
4.2	一致收敛	7
4.3	幂级数	9
	4.3.1 收敛半径	9
	4.3.2 Taylor 展式	9
第5章	解析函数的零点与奇点	11
5.1	解析函数的零点	11
5.2	解析函数的唯一性	12
5.3	洛朗 (Laurent) 展式	12
5.4	孤立奇点	13
5.5	解析函数在无穷远点的性质	15
5.6	整函数与亚纯函数	16
第6章	留数 (Residue)	17

第1章 复数的基本概念

定义 1.1 (复数 (Complex number))

我们将形如

z = x + iy

的数称为复数。其中 x, y 均为实数。

注(虚数单位 i) 为了表示某个数的平方为负数,引入虚数单位 i,其满足如下性质

 $i^2 = -1$

定义 1.2 (幅角)

从正实轴旋转到 (x,y) 所在的射线的角度称为复数 z 的幅角,记为 $\mathrm{Arg}z$ 。

第2章 复变函数

定义 2.1 (复函数一致收敛)

一个函数 f(z) 在区域 E 上一致收敛, 当且仅当

 $\forall \varepsilon > 0, \exists \delta = \delta_{\varepsilon} > 0 s.t.z', z'' \in E,$ 只要满足 $|z' - z''| < \delta, 有: |f(z') - f(z'')| < \varepsilon.$

定理 2.1 (Cauchy-Riemann 定理)

设函数 f(z) 为一个复变函数,且

$$f(z) = u(x, y) + iv(x, y).$$

则这个复函数可微的充分必要条件为

- 1. u,v 均可微;
- 2. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$;
- 3. $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

C

定义 2.2 (解析函数与可微)

如果复函数 f(z) 在区域 D 内的每一点都可微, 则称复函数 f(z) 在 D 内解析; 如果 f(z) 在 z_0 的某一个邻域内解析, 则称 f(z) 在 z_0 解析.

连续函数在有界闭区间上的性质(复函数版本)

命题 2.1

- 1. 设函数 f(z) 在简单曲线或者有界闭区域 E 上连续,则它在 E 上一致连续.
- 2. 设函数 f(z) 在简单曲线或者有界闭区域 E 上连续,则它在 E 上有界.
- 3. 设函数 f(z) 在简单曲线或者有界闭区域 E 上连续,则它在 E 上能够达到最大模与最小模.

•

第3章 Cauchy 积分

定理 3.1 (Cauchy 积分公式)

设区域D的边界为C,若

- 1. f 在 D 内解析;
- 2. $f c \bar{D} = D \cup C$ 内连续;

则 $\forall z \in D$, 有

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$$

 \sim

定义 3.1 (Cauchy 积分)

将这种形式的积分称为 Cauchy 积分。

$$\frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$$

•

例题 3.1 求积分 $\oint_C \frac{e^z}{z^2+1} dz$, 其中 C: |z|=2 的正向.

例题 3.2 设 C 为椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 的正向,设 $f(z) = \oint_C \frac{\zeta^2 - 2}{\zeta - z} d\zeta$,求 f(z), f'(z), f''(z), f''(z),的值。

推论 3.1 (平均值定理)

如果函数 f(z) 在圆 $|\zeta-z| < R$ 内解析,在闭圆 $|\zeta-z| \le R$ 上连续,则

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\varphi}) d\varphi$$

 \sim

证明 令 $z-z_0=R\mathrm{e}^{\mathrm{i}\varphi},\,\varphi\in[0,2\pi]$ 。则由 Thm3.1Cauchy 积分公式有:

$$f(z_0) = \frac{1}{2\pi i} \int_{|\zeta-z| < R} \frac{f(z)}{z - z_0} dz$$

代入 $z = Re^{i\varphi} + z_0$ 有:

$$f(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + Re^{i\varphi})iRe^{i\varphi}d\varphi}{Re^{i\varphi}}$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\varphi})d\varphi$$

定理 3.2 (高阶导数定理)

在 3.1 的条件下, f(z) 在 D 内有任意阶导数,则有

$$f^{(n)} = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} dz, \ (z \in D, n = 1, 2, 3, \dots)$$

0

证明 对柯西积分公式 3.1两边同时多次求导

定理 3.3

f(z) 在 \mathbb{C} 平面上的区域 D 内解析,则 f(z) 在 D 内的任意阶导数,且均在 D 内解析。

 \odot

定理 3.4 (Cauchy 不等式)

设函数 f(z) 在区域 D 内解析,a 为 D 内一点,以 a 为圆心作圆周 γ : $|\zeta-a|=R$,只要 γ 及其内部 K 均含于 D,则有

$$|f^{(n)}| \le \frac{n!M(R)}{R^n}$$

其中 $M(R) = \max_{|z-a|=R} |f(z)|, n = 1, 2, \dots$

 \Diamond

定义 3.2 (整函数)

我们将在整个复平面上解析的函数称为整函数。

*

定理 3.5 (Liouville 定理 (模有界定理))

有界整函数 f(z) 必为常数。

 \Diamond

定理 3.6 (代数学基本定理)

在复平面 \mathbb{C} 上,n次多项式函数

$$p(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n, \ a_0 \neq 0$$

至少有一个零点。

 \sim

证明 [反证法] 如果函数 f(z)=p(z) 在 \mathbb{C} 上没有零点, 令 F(z)=1/f(z), 则函数 F(z) 在 \mathbb{C} 上解析, 由于 $\lim_{z\to\infty}f(z)=\infty$, 则

$$\lim_{z \to \infty} F(z) = 0.$$

从而一定存在一个足够大的正数 R, 使得 |z| > R 时, 有

$$|F(z)| < 1.$$

而当 |z| < R 时,根据连续函数在闭区域上连续必有界,设

$$|F(z)| < M$$
.

从而在 €上,

$$|F(z)| < M + 1.$$

由 Liouville 定理得 F(z) 必为常数, 也即 f(z) 为常数, 与条件矛盾. 作为 Cauchy 积分定理的逆定理, 我们有 Morera 定理, 如下

定理 3.7 (Morera 定理)

若函数 f(z) 在单连通区域 D 内连续, 且对 D 内任一周线 C, 有

$$\int_C f(z)dz = 0$$

则 f(z) 在 D 内解析

 \Diamond

定理 3.8

函数 f(z) 在区域 G 内解析的充要条件为

- f(z) 在 G 内连续;
- 对任一周线 C, 只要 C 及其内部全含于 G 内, 就有

$$\int_{C} f(z)dz = 0$$

 \odot

3.1 解析函数与调和函数

f(z) = u + iv 在区域 D 内解析,则由 C.-R. 方程有

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

同时对 u 和 v 继续求偏导得

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y},$$
$$\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial x \partial y}$$

从而有

$$\begin{split} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} &= 0 \\ \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} &= 0 \end{split}$$

则函数 u, v 均满足 Laplace 方程, $\Delta u = \Delta v = 0$.

定义 3.3 (调和函数)

如果二元实函数 H(x,y) 在区域 D 内有二阶连续偏导数,且满足 $\Delta H=0$,则称 H 为调和函数.

*

定义 3.4 (共轭调和函数)

在区域D内满足C.-R.方程

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

的两个调和函数 u,v 中,v 称为 u 在区域 D 内的共轭调和函数.

注 共轭调和函数的关系并不是对等的,注意上述定义的顺序不可改变。

定理 3.9

若函数 f(z) = u(x,y) + iv(x,y) 在区域 D 内解析,则在区域 D 内 v 必是 u 的共轭调和函数.

第4章 解析函数的幂级数表示

4.1 复级数的基本概念

定义 4.1 (复级数的收敛与发散)

对于复数项的级数

$$\sum_{n=1}^{\infty} \alpha_n = \alpha_1 + \alpha_2 + \dots + \alpha_n + \dots$$

令 $S_n = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, 称其为复数项级数的部分和. 若复数列 S_n 以有限复数 s 为极限,即如果

$$\lim_{n \to \infty} S_n = s$$

则称复数项无穷级数收敛于s,则称s为级数的和,记为

$$s = \sum_{n=1}^{\infty} \alpha_n$$

若复数列无有限极限, 则称其发散

定理 4.1 (复级数收敛的充要条件)

设 $\alpha_n = a_n + \mathrm{i} b_n$, a_n 与 b_n 为实数列,则复数列 α_n 收敛于 $s = a + \mathrm{i} b$ 的充要条件为: 实级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 分别收敛于 a, b.

证明 设 $s_n = \sum_{k=1}^n \alpha_k$, $A_n = \sum_{k=1}^n a_k$, $B_n = \sum_{k=1}^n b_n$, 则

$$S_n = A_n + iB_n$$

则

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} (A_n + iB_n) = \lim_{n \to \infty} A_n + i \lim_{n \to \infty} B_n = a + ib$$

的充要条件为

$$\lim_{n \to \infty} A_n = a, \lim_{n \to \infty} B_n = b.$$

定理 4.2 (Cauchy 收敛准则)

复级数 $\sum_{n=1}^{\infty} \alpha_n$ 收敛的充分必要条件为: $\forall \epsilon$, 存在 $N(\epsilon) \in \mathbb{N}^+$, 当 n > N 时, $\forall p \in \mathbb{N}^+$, 有

$$|\alpha_{n+1} + \alpha_{n+2} + \dots + \alpha_{n+p}| < \epsilon$$

注 若只改变级数中的有限项,则产生的新级数与原级数的同敛散

定理 4.3

复级数 $\sum_{n=1}^{\infty} \alpha_n$ 收敛的一个充分条件为: 级数 $\sum_{n=1}^{\infty} |\alpha_n|$ 收敛

证明 级数 $\sum_{n=1}^{\infty} |\alpha_n|$ 收敛,则由Cauchy 收敛准则知 $\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}^+, s.t. \forall n > N:$

$$|\alpha_{n+1}| + |\alpha_{n+2}| + \dots + |\alpha_{n+p}| < \varepsilon \ (\forall p \in \mathbb{N}^+)$$

又由绝对值不等式

$$|\alpha_{n+1} + \alpha_{n+2} + \dots + \alpha_{n+p}| < |\alpha_{n+1}| + |\alpha_{n+2}| + \dots + |\alpha_{n+p}| < \varepsilon. (\forall p \in \mathbb{N}^+)$$

故级数 $\sum_{n=1}^{\infty} \alpha_n$ 收敛.

定义 4.2 (绝对收敛)

若级数 $\sum_{n=1}^{\infty} |\alpha_n|$ 收敛,则原级数 $\sum_{n=1}^{\infty} \alpha_n$ 称为绝对收敛; 非绝对收敛的级数称为条件收敛.

*

定理 4.4

- 1. 一个绝对收敛的复级数的各项次序可以重排, 其收敛值不变
- 2. 两个绝对收敛的复级数

$$s = \alpha_1 + \alpha_2 + \dots + \alpha_n + \dots$$
$$s' = \alpha'_1 + \alpha'_2 + \dots + \alpha'_n + \dots$$

可按照对角线方法得出乘积级数, 又称为 Cauchy 级数:

$$\sum_{n=1}^{\infty} \sum_{k=1}^{n} \alpha_k \alpha'_{(n+1)-k} = \alpha_1 \alpha'_1 + (\alpha_1 \alpha'_2 + \alpha_2 \alpha'_1) + \dots + (\alpha_1 \alpha'_n + \alpha_2 \alpha'_{n-1} + \dots + \alpha_n \alpha'_1) + \dots$$

也绝对收敛于 ss'

 \mathbb{C}

4.2 一致收敛

定义 4.3 (和函数)

设复函数项级数

$$f_1(z) + f_2(z) + \dots + f_n(z) + \dots$$
 (4.1)

的各点均在点集 E 上定义,且在 E 上存在一个函数 f(z),对于 E 上的每一点 z,级数 **4.1**均收敛于 f(z),则 称 f(z) 为级数 4.1的和函数.

$$\left| f(z) - \sum_{k=1}^{n} f_k(z) \right| < \varepsilon$$

这里的 N 是一个依赖于 ε 和 z 的量,这种收敛性依赖于所选取的点,因此称之为点态收敛。

定义 4.4 (一致收敛)

对于级数 $\sum_{n=1}^{\infty} f_n(z)$, 如果在点集 E 上有一个函数 f(z), 使得对任意给定的 $\epsilon>0$, 存在正整数 $N=N(\varepsilon)$, 当 n>N 时,对一切的 $z\in E$, 均有

$$\left| f(z) - \sum_{k=1}^{n} f_k(z) \right| < \varepsilon$$

$$\left| f(z) - \sum_{k=1}^{n} f_k(z) \right| < \varepsilon (\forall z \in E)$$

定义 4.5 (非一致收敛)

级数 $\sum_{n=1}^{\infty} f_n(z)$ 不一致收敛:

 $\exists \varepsilon_0 > 0, \forall N \in \mathbb{N}^+, \exists n_0 > N, \exists z_0 \in E, s.t.$

$$\left| f(z_0) - \sum_{k=1}^{n_0} f_k(z_0) \right| \ge \varepsilon_0$$

*

定理 4.5 (Cauchy 一致收敛准则)

级数 $\sum_{n=1}^{\infty} f_n(z)$ 在点集 E 上一致收敛于某个函数的充要条件为:

任给 $\varepsilon > 0$, 存在正整数 $N = N(\varepsilon)$, 使得当n > N时, 对一切的 $z \in E$, 均有

$$|f_{n+1}(z) + f_{n+2}(z) + \dots + f_{n+p}(z)| < \varepsilon \ (p = 1, 2, 3, \dots)$$

 $\sum_{n=1}^{\infty} f_n(z)$ 在点集 E 上一致收敛

 \Leftrightarrow

 $\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}^+, s.t. \forall n > N, \forall z \in E :$

$$|f_{n+1}(z) + f_{n+2}(z) + \dots + f_{n+p}(z)| < \varepsilon \ (p = 1, 2, 3, \dots)$$

定理 4.6 (优级数准则)

如果有正数列 $M_n(n=1,2,...)$, 使得对一切 $z \in E$, 有

$$|f_n(z)| \leq M_n \ (n = 1, 2, \ldots)$$

而且正项级数 $\sum_{n=1}^\infty M_n$ 收敛,则复函数项级数 $\sum_{n=1}^\infty f_n(z)$ 在点集 E 上绝对收敛且一致收敛。这样的正项级数 $\sum_{n=1}^\infty M_n$ 称为复函数项级数 $\sum_{n=1}^\infty f_n(z)$ 的优级数

 \sim

定理 4.7 (连续性定理)

设级数 $\sum_{n=0}^{\infty} f_n(z)$ 在点集 E 上一致收敛于 f(z),则当

$$f_n \in C(E), \forall n \in \mathbb{N}^+$$

时, $f \in C(E)$.

C

定理 4.8 (逐项积分)

若有以下两个条件成立

- 1. 在C上, $f_n \in C(E)$, $\forall n \in \mathbb{N}^+$;
- 2. 在 C 上, $\sum f_n \Rightarrow f$.

则有

$$\int_{C} f(z)dz = \sum_{C} \int_{C} f_{n}(z)dz.$$

 \odot

定理 4.9 (逐项求导)

若有以下两个条件成立

- 1. 在区域 D 内, $f_n(z)$ 解析, $\forall n \in \mathbb{N}^+$;
- 2. 在区域 D 上, $\sum f_n(z)$ 内闭一致收敛到 f(z).

则有

- 1. 函数 f(z) 在区域 D 内解析
- 2. $f^{(p)}(z) = \sum f^{(p)}(z), (z \in D, p = 1, 2, \cdots)$
- 3.

 \sim

定理 4.10 (Montel 定理)

设复函数序列 $\{f_n(z)\}_{n=1}^\infty$ 在区域 D 内解析, 并且在 D 上内闭一致收敛, 函数列 $\{f_n(z)\}_{n=1}^\infty$ 在 D 上一定存在子序列 $\{f_{n_k}(z)\}_{n=1}^\infty$ 在 D 上内闭一致收敛, 并且这个子序列的极限函数 f(z) 在区域 D 内解析.

4.3 幂级数

定义 4.6 (幂级数)

具有以下形式的级数称为幂级数

$$\sum_{n=0}^{\infty} c_n (z-a)^n = c_0 + c_1 (z-a) + c_2 (z-a)^2 + \cdots$$
(4.2)

其中 $c_i, i \in \mathbb{N}$ 和 a 均为复常数.

定理 4.11 (Abel 定理)

如果幂级数 4.2在某点 $z_1 \neq a$) 处收敛, 则它必在圆 $K: |z-a| < |z_1-a|$ 内绝对收敛且内闭一致收敛.

4.3.1 收敛半径

定理 4.12 (Cauchy-Hadamard 公式)

如果幂级数 $\sum_{n=0}^{\infty} c_n (z-a)^n$ 的系数 c_n 满足

$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = l,$$

或者

$$\lim_{n \to \infty} \sqrt[n]{|c_n|} = l,$$

或者

$$\overline{\lim_{n\to\infty}}\sqrt[n]{|c_n|}=l.$$

则幂级数的收敛半径为

$$R = \begin{cases} \frac{1}{l}, & l \neq 0, l \neq +\infty; \\ 0, & l = +\infty; \\ +\infty, & l = 0. \end{cases}$$

4.3.2 Taylor 展式

定理 4.13 (Taylor 定理)

设复函数 f(z) 在区域 D 内解析, $a \in D$, 则只要圆 K: |z-a| < R 在 D 中, 则 f(z) 在 K 内能够展开为幂级数

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n,$$

其中系数

$$c_n = \frac{1}{2\pi i} \int_{\Gamma_0} \frac{f(\zeta)}{(\zeta - a)}^{n+1} d\zeta = \frac{f^{(n)}(a)}{n!}.$$

定理 4.14

函数 f(z) 在区域 D 上解析的充要条件为: 对于任意一点 $a \in D$, 函数 f(z) 在 a 的邻域内可以展成 Taylor 级数 (幂级数).

定理 4.15

设幂级数 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 的收敛半径为 R>0, 且

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n.$$

则 f(z) 在收敛圆周 C:|z-a|=R 上至少存在一个奇点.

 \Diamond

第5章 解析函数的零点与奇点

5.1 解析函数的零点

定义 5.1 (零点)

设函数 f(z) 在解析区域区域 D 内的一点 a 满足

$$f(a) = 0.$$

则称 a 为解析函数 f(z) 的零点.

定理 5.1

不恒为零的解析函数 f(z) 以 a 为 m 阶零点的充要条件为

$$f(z) = (z - a)^m \phi(z).$$

其中 $\phi(z)$ 在点 a 的邻域 |z-a| < R 内解析, 且 $\phi(a) \neq 0$.

证明

(必要性)根据m 阶零点的定义,f(z) 在点a 的邻域内可以展开为

$$f(z) = \sum_{n=m}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n.$$

从而

$$f(z) = (z - a)^m \sum_{n=m}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^{n-m}.$$

则只需令

$$\phi(z) = \sum_{n=m}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^{n-m}.$$

即可.

(充分性) 假设 $f(z) = (z - a)^m \phi(z)$, 则

$$f^{(n)}(z) = \sum_{k=0}^{n} \binom{n}{k} [(z-a)^m]^{(k)} \cdot \phi^{(n-k)}(z).$$

于是当 n < m 时, $[(z-a)^m]^{(k)}|_{z=a} = 0$, 从而 $f^{(n)}(a) = 0$.

而当 n = m 时, $f^{(m)}(a) = m! \phi(a)$, 由于 $\phi(a) \neq 0$, 从而 $f^{(m)}(a) \neq 0$, 则由 m 阶零点的定义可知 a 为 f(z) 的 m 阶零点.

定理 5.2

不恒为 0 的解析函数的零点必是孤立的.

 $^{\circ}$

证明 设a为函数f(z)的m阶零点,则由以上定理有

$$f(z) = (z - a)^m \phi(z).$$

其中 $\phi(z)$ 在点 a 的邻域 |z-a| < R 内解析,而且 $\phi(a) \neq 0$,从而在这个邻域内没有异于 a 的零点.

引理 5.1

如果

- 函数 f(z) 在 a 的邻域 K:|z-a|< R 内解析,
- 在 K 内, f(z) 有一列零点 $\{z_n\}(z_n \neq a)$ 且 $\lim_{n\to\infty} z_n = a$

则 f(z) 在 K 内必为常数.

注 这个 Lemma 就是相当于: 存在非孤立奇点的解析函数一定为常数.

5.2 解析函数的唯一性

定理 5.3 (唯一性定理)

假设

- 函数 $f_1(z)$ 和函数 $f_2(z)$ 均在区域 D 内解析,
- 在区域 D 内有一个点列 $\{z_n\}$ 收敛于点 $a(a \in D)$, 在点列 $\{x_n\}$ 上有 $f_1(z) = f_2(z)$.

则

$$f_1(z) = f_2(z)(\forall z \in D).$$

引理 5.2

若函数 $f_1(z)$, $f_2(z)$ 为区域 D 上的解析函数, 且在 D 的某一子区域上

$$f_1(z) = f_2(z).$$

则 $\forall z \in D$

$$f_1(z) = f_2(z).$$

 \Diamond

定理 5.4 (最大模原理)

函数 f(z) 在 D 内解析且不恒为常数,则 |f(z)| 在 D 内任何点都不能达到最大值.

 \sim

注 解析函数只有可能在边界点达到最大值.

5.3 洛朗 (Laurent) 展式

定义 5.2 (双边幂级数)

将如下形式的级数定义为双边幂级数

$$\sum_{n=-\infty}^{\infty} c_n (z-a)^n.$$

其在圆环 H: r < |z-a| < R 上收敛.

*

定理 5.5 (Laurent 定理)

在圆环 $H:r<|z-a|< R(r\geq 0,R\leq +\infty)$ 上的解析函数 f(z) 一定可以展开为双边幂级数:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n,$$

其中

$$c_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta \ (n = 0, \pm 1, \pm 2, \cdots),$$

 Γ 为一个圆周 $|\zeta - a| = \rho(r < \rho < R)$, 而且展式是唯一的.

 \odot

注 f(z) 的以上形式展示称为 Laurent 展式, 级数 $\{c_n\}$ 称为 Laurent 级数.

5.4 孤立奇点

定义 5.3 (孤立奇点)

如果函数 f(z) 在点 a 的某一去心邻域 $K\setminus\{a\}:0<|z-a|< R$ 内解析, 而且点 a 为 f(z) 的奇点, 则称 a 为 f(z) 的一个孤立奇点.

命题 5.1

设函数 f(z) 有孤立奇点 a, 则函数在 a 的某去心邻域 $K\setminus\{a\}$ 内可以展为 Laurent 级数

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n.$$

称非负幂部分 $\sum_{n=0}^{\infty} c_n(z-a)$ 为 f(z) 在点 a 的正则部分, 称负幂部分 $\sum_{n=1}^{\infty} c_{-n} z^{-n}$ 为 f(z) 在点 a 的主要部分.

定义 5.4 (孤立奇点的类型)

设函数 f(z) 以点 a 为孤立奇点,

- 1. 如果 f(z) 在点 a 的主要部分为 0, 则称 a 为 f(z) 的可去奇点.
- 2. 如果 f(z) 在点 a 的主要部分为有限多项, 设为

$$\frac{c_{-m}}{(z-a)^m} + \frac{c_{-(m-1)}}{(z-a)^{m-1}} + \dots + \frac{c_{-1}}{z-a} \ (c_{-m} \neq 0).$$

则称 a 为 f(z) 的 **m** 阶极点.

3. 如果 f(z) 在点 a 的主要部分为无穷多项,则称 a 为 f(z) 的本质奇点.

定理 5.6 (可去奇点的等价刻画)

如果 a 为函数 f(z) 的孤立奇点,以下条件均为 a 为可去奇点的充要条件

- 1. f(z) 在点 a 的主要部分为 0;
- 2. $\lim_{z\to a} f(z) = b(\neq \infty);$
- 3. f(z) 在点 a 的某去心邻域内有界.

证明

 $(1. \rightarrow 2.)$ 因为 f(z) 的主要部分为 0, 则 f(z) 的 Laurent 展式可以表示为:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n.$$

从而 $\lim_{z\to a} f(z) = c_0$.

 $(2. \rightarrow 3.)$ 由于 $\lim_{z\to a} f(z) = b$, 则 $\forall \epsilon > 0$, 存在 $\delta > 0$, 使得如果 $|z-a| < \delta$, 则

$$|f(z) - b| < \epsilon$$
.

从而由三角不等式

$$|f(z)| < |b| + \epsilon.$$

即 f(z) 在点 a 的去心邻域 $N_{\delta}(a)\setminus\{a\}$ 上是有界的.

 $(3. \to 1.)$ 设函数 f(z) 在点 a 某一去心邻域 $K\setminus\{a\}$ 内以 M 为界. 假设 f(z) 在点 a 的主要部分为

$$\frac{c_{-m}}{(z-a)^m} + \frac{c_{-(m-1)}}{(z-a)^{m-1}} + \dots + \frac{c_{-1}}{z-a}.$$

其中

$$c_{-n} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{-n+1}} d\zeta.$$

Γ 是完全包含在 K 内的圆周 $|\zeta - a| = \rho$. 则

$$|c_{-n}| = \frac{1}{2\pi} \left| \int_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{-n+1}} d\zeta \right|$$

$$\leq \frac{1}{2\pi} \frac{M}{\rho^{-n+1}} 2\pi \rho = M \rho^{n}.$$

因为 ρ 可以充分小, 从而 $c_{-n} = 0$ (n = 1, 2, ...). 也即 f(z) 的主要部分为 0.

引理 5.3 (Schwarz Lemma)

如果函数 f(z) 在单位圆 |z| < 1 内解析, 并且满足条件

$$f(0) = 0, |f(z)| = 1 (|z| < 1).$$

则在单位圆|z|<1上恒有

$$|f(z)| \le |z|, |f'(0)| \le 1.$$

定理 5.7 (m 阶极点的等价刻画)

如果 a 为函数 f(z) 的孤立奇点,以下条件均为 a 为 m 阶极点的充要条件

1. f(z) 在点 a 的主要部分为

$$\frac{c_{-m}}{(z-a)^m} + \frac{c_{-(m-1)}}{(z-a)^{m-1}} + \dots + \frac{c_{-1}}{z-a} \ (c_{-m} \neq 0).$$

2. f(z) 可以在点 a 的某去心邻域内表示为

$$f(z) = \frac{\lambda(z)}{(z-a)^m}.$$

其中 $\lambda(z)$ 在点 a 的邻域内解析, 且 $\lambda(a) \neq 0$. 3. $g(z) = \frac{1}{f(z)}$ 以点 a 为 m 阶零点 (可去奇点看作解析点).

定理 5.8 (极点的充要条件)

函数 f(z) 以孤立奇点 a 为极点的充要条件为

$$\lim_{z \to a} f(z) = \infty.$$

定理 5.9 (本质奇点的充要条件)

函数 f(z) 的孤立奇点 a 为本质奇点的充要条件为

$$\lim_{z \to z} f(z)$$
不存在 (不是有限数和无穷).

定理 5.10

如果函数 f(z) 以 a 为本质奇点, 且在 a 的邻域内恒不为 0, 则 a 一定为 $\frac{1}{f(z)}$ 的本质奇点.

 \Diamond

定理 5.11 (Picard 定理)

设函数 f(z) 以点 a 为本质奇点, 则 $\forall A \in \hat{\mathbb{C}}$, 都存在一个收敛于 a 的点列 $\{z_n\}$, 使得

$$\lim_{n \to \infty} f(z_n) = A.$$

 \Diamond

5.5 解析函数在无穷远点的性质

由于无穷远点一定为解析函数的奇点,故可以讨论无穷远点这个奇点的某些性质.

定义 5.5 (无穷远点为孤立奇点)

设函数 f(z) 在无穷远点的(去心)邻域

$$N\backslash\{\infty\}: +\infty > |z| > r \ge 0.$$

内解析, 则称 ∞ 为 f(z) 的孤立奇点.

做一个变量替换

$$z' = \frac{1}{z}$$
.

且令

$$\phi(z') = f(\frac{1}{z'}) = f(z).$$

则 $\phi(z')$ 就在原点的去心邻域 $K\setminus\{0\}: 0 < |z'| < 1/r$ 内解析, 且以 0 为孤立奇点.

定义 5.6 (无穷远点孤立奇点的分类)

 $\ddot{z}'=0$ 为 $\phi(z')$ 的可去奇点 (解析点)、m 阶极点、本质奇点,则相应的, $z=\infty$ 为 f(z) 的可去奇点 (解析点)、m 阶极点、本质奇点.

定义 5.7 (∞ 点处的 Laurent 展式)

设 $\phi(z')$ 在去心邻域 $K\setminus\{0\}$ 内的Laurent展式为

$$\phi(z') = \sum_{n = -\infty}^{\infty} c_n z'^n.$$

从而做替换z'=1/z之后, f(z)在 ∞ 点可以展开为

$$f(z) = \sum_{n = -\infty}^{\infty} c_n z^{-n}.$$

记为

$$f(z) = \sum_{n = -\infty}^{\infty} b_n z^n.$$

其中 $b_n=c_{-n}, (n=0,\pm 1,\pm 2,\cdots)$,即为 f(z) 在 ∞ 点的 Laurent 展式. 将 $\sum_{n=1}^{\infty}b_nz^n$ 称为主要部分.

*

定理 5.12 (∞ 为可去奇点的等价刻画)

函数 f(z) 以 ∞ 点为可去奇点的充要条件为

- f(z) 在 ∞ 点处的主要部分为 0.
- $\lim_{z\to\infty} f(z) = b(\neq \infty)$.
- 函数 f(z) 在 $z = \infty$ 的某去心邻域 $N \setminus \{\infty\}$ 内有界.

 \odot

定理 5.13 (∞ 为 m 阶极点的等价刻画)

函数 f(z) 以 ∞ 点为 m 阶极点的充要条件为

• f(z)∞ 的主要部分为

$$\sum_{n=1}^{m} b_n z^n, (b_m \neq 0).$$

• f(z) 在 ∞ 的某去心邻域内 $N\setminus\{\infty\}$ 可以表示为

$$f(z) = z^m \mu(z).$$

其中 $\mu(z)$ 在 $N\backslash \{\infty\}$ 解析, 而且 $\mu(\infty)\neq 0$.

• $g(z)=\frac{1}{f(z)}$ 以 ∞ 为 m 阶零点.(令 $g(\infty)=0$))

定理 5.14 (∞ 为极点的充要条件)

f(z) 以 ∞ 为极点的充要条件为

$$\lim_{z \to \infty} f(z) = \infty.$$

定理 5.15 (∞ 为本质奇点的等价刻画)

函数 f(z) 以 ∞ 点为本质奇点充要条件为

- f(z) 在 ∞ 点的主要部分有无穷多项.
- $\lim_{z\to\infty} f(z)$ 不存在 (不等于有限数或者 ∞).

5.6 整函数与亚纯函数

如果 f(z) 为一个整函数,则其只以 ∞ 为孤立奇点,则 f(z) 可以写为

$$f(z) = \sum_{n=0}^{\infty} c_n z^n.$$

定理 5.16

如果 f(z) 为一个整函数,则

- 1. $z = \infty$ 为 f(z) 的可去奇点 $\iff f(z)$ 为常数.
- 2. $z = \infty$ 为 f(z) 的 m 阶极点 \iff ($\{c_n\}$ 有有限多项)

$$f(z) = \sum_{n=0}^{m} c_n z^n, (c_m \neq 0).$$

3. $z = \infty$ 为 f(z) 的本质奇点 \iff $\{c_n\}$ 有无穷多项.

定义 5.8 (亚纯函数)

在2平面上除极点外没有其他类型的奇点的单值解析函数称为亚纯函数.

定理 5.17

有理函数一定为亚纯函数.

定义 5.9 (超越亚纯函数)

非有理函数的亚纯函数称为超越亚纯函数.

第6章 留数 (Residue)

定义 6.1 (留数 (residue))

设函数 f(z) 以点 a 为孤立奇点, 即 f(z) 在点 a 的某去心邻域 0 < |z-a| < R 内解析, 则称积分

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) dz.$$

其中 $\Gamma: |z-a| = \rho, 0 < \rho < R$, 为 f(z) 在点 a 处的留数 (residue), 记为 $\mathop{\mathrm{Res}}_{z=a} f(z)$.

注 如果函数 f(z) 在点 a 的去心邻域内的 Laurent 展式为

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n.$$

则沿 Γ 积分后, 只有

$$\frac{c_{-1}}{z-a}$$

的积分结果不是0,从而f(z)在a点的留数为

$$\operatorname{Res}_{z=a} f(z) = c_{-1}.$$

定理 6.1 (Cauchy 留数定理)

f(z) 在周线或复周线 C 的内部 D, 除去 a_1, a_2, \ldots, a_n 外解析, 在在闭区域 $\bar{D} = D + C$ 上除 a_1, a_2, \ldots, a_n 连续, 则

$$\int_C f(z)dz = 2\pi i \sum_{k=1}^n \mathop{\mathrm{Res}}_{z=a_k} f(z).$$

 \sim

定理 6.2 (n 阶极点的留数)

设a为f(z)的n阶极点,则f(z)可以写为

$$f(z) = \frac{\phi(z)}{(z-a)^n}.$$

其中 $\phi(z)$ 在 a 点解析, 且 $\phi(a) \neq 0$, 则

Res_{z=a}
$$f(z) = \frac{\phi^{(n-1)}(a)}{(n-1)!}$$
.

证明

$$\operatorname{Res}_{z=a} f(z) = \frac{1}{2\pi i} \int_{\Gamma} f(z) dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{\phi(z)}{(z-a)^n} dz = \frac{\phi^{(n-1)}(a)}{(n-1)!}.$$

 \Diamond

引理 6.1

设a为f(z)的1阶极点.

$$\phi(z) = (z - a)f(z),$$

则

$$\operatorname{Res}_{z=a} f(z) = \phi(a).$$

 \sim

引理 6.2

设a为f(z)的2阶极点.

$$\phi(z) = (z - a)^2 f(z),$$

则

$$\operatorname{Res}_{z=a} f(z) = \phi'(a).$$

 \bigcirc

定理 6.3

设a 为函数 $f(z) = \frac{\phi(z)}{\psi(z)}$ 的 1 阶极点, 则

$$\operatorname{Res}_{z=a} f(z) = \frac{\phi(a)}{\psi'(a)}.$$

证明 设

$$\varphi(z) = \frac{\phi(z)}{\psi(z)}(z-a),$$

由于 $\varphi(z)$ 在 a 点解析,则

$$\varphi(a) = \lim_{z \to a} \varphi(z) = \lim_{z \to a} \frac{\phi(z)}{\psi(z)} (z - a) = \lim_{z \to a} \frac{\phi(z)}{\frac{\psi(z)}{z - a}} = \frac{\phi(a)}{\psi'(a)}.$$

定义 6.2 (∞ 点的留数)

设 ∞ 为函数 f(z) 的孤立奇点, 即 f(z) 去心邻域 $N\backslash \{\infty\}: 0 \leq r < |z| < +\infty$ 内解析, 则称

$$\frac{1}{2\pi i} \int_{\Gamma^-} f(z) dz \; (\Gamma:|z|=\rho > r).$$

为 f(z) 在 ∞ 点的留数, 记为 $\mathop{\mathrm{Res}}_{z=\infty} f(z)$.

 $\dot{\mathbf{L}}$ 这里的 Γ^{-} 沿着顺时针方向, 也可以理解为绕 ∞ 点的正方向.

如果函数 f(z) 在 ∞ 点的去心邻域内有 Laurent 展式

$$f(z) = \sum_{n = -\infty}^{\infty} c_n z^n.$$

则由定义可以计算出 f(z) 在 ∞ 点的留数为

$$\operatorname{Res}_{z=\infty} f(z) = -c_{-1}.$$

定理 6.4

如果函数 f(z) 在 \mathbb{C}_{∞} 上只有有限个孤立奇点, 设为 $a_1,a_2,\ldots,a_n,\infty$, 则

$$\sum \operatorname{Res} f(z) = 0.$$

也即所有点的留数之和为 0.

 \Diamond

证明 以原点为圆心作圆周 Γ , 使得 a_1, a_2, \ldots, a_n 均在 Γ 内部, 则由 Cauchy 留数定理得

$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} \underset{z=a_k}{\text{Res }} f(z).$$

也即

$$\sum_{k=1}^{n} \mathop{\mathrm{Res}}_{z=a_k} f(z) - \frac{1}{2\pi i} \int_{\Gamma} f(z) dz = 0.$$

则

$$\sum_{k=1}^{n} \underset{z=a_k}{\text{Res }} f(z) + \frac{1}{2\pi i} \int_{\Gamma^{-}} f(z) dz = 0.$$

再根据∞点留数的定义得到

$$\sum_{k=1}^{n} \operatorname{Res}_{z=a_k} f(z) + \operatorname{Res}_{z=\infty} f(z) = 0.$$

命题 6.1 (∞ 点留数转化为 0 点留数)

$$\mathop{\mathrm{Res}}_{z=\infty} f(z) = - \mathop{\mathrm{Res}}_{t=0} \, \left[f(\frac{1}{t}) \frac{1}{t^2} \right].$$