如图所示,空气中有一无限长金属薄壁圆筒,在表面上沿圆周方向均匀

流着一层随时间变化的面电流 i(t), 『

- A. 圆筒内无涡旋电场:
- B. 圆筒外无涡旋电场:
- C. 圆筒内均匀地分布着磁场且随时间变化和有轴对称分布的涡旋电场
- D. 圆筒外有处处数值相等的均匀涡旋电场。

电流全产生磁场,无论电流是否时变

因此內部会有沿轴向的石兹场且随电流变化

石兹场变化会导致 φ变化. 从而有轴对称分布的涡旋电场

5. 若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对

- 性,则该磁场分布
 - A. 不符合安培环路定理;
 - B. 可以直接用安培环路定理求出;
 - C. 只能用毕奥一萨伐尔定律求出;
 - D. 可以用安培环路定理和磁感应强度的**全**如原理求出。

B的分布不对称时,不可直接用Ampère 环路定理

但可以分别求出,再关量相か

8. 一圆铜盘水平放置在均匀磁场中, B 的方向垂直盘面向上, 当铜盘绕通过

中心垂直于盘面的轴沿图示方向转动时

- C. 铜盘上有动生电动势产生、铜盘边缘处电势最高;
- D. 铜盘上有动生电动势产生,铜盘中心处电势最高。

没有闭合回路,因此没有涡电流

/A=1×10-10m,往往用于波长

$$C = \frac{\varepsilon S}{d}$$
取役分: $dC = \frac{\varepsilon S}{d}$ dd $\Rightarrow \frac{dC}{C} = \frac{dd}{d}$

冰箱制冷系数= $\sqrt{}$, 电流每天要做功A= $\sqrt{}$.

冰箱冷凝器向室内致热包含Qi和W

11. 无铁芯的长直螺线管的自感系数表达式为 $L=\mu_0 n^2 V$,其中 n 为单位长度上的匝数,V为螺线管的体积. 若考虑端缘效应时,实际的自感系数应。

(填:大于、小于或等于)此式给出的值。

- 1. (本圈 10 分) PM2.5 是直径小于或等于 2.5 μ m 颗粒物,其在大气中浓度用 μ g/m³表示,颗粒平均质量约为 m₀=1.0×10⁻¹⁴kg,并且 PM2.5 在地面附近分布 特性均同理想气体分布规律,如平均平动动能和遵从玻尔兹曼分布律等。已知,空气的等效分子质量为 m=4.87×10⁻²⁶kg(摩尔质量=29×10⁻³kg);标准状态为: 1个标准大气压(1.01×10⁵N/m²),温度为 0°C; 玻尔兹曼常数 k=1.38×10⁻²³J/K; 普适气体常数 R=8.31J/(m01·K)。
- (1) 分别求 PM2.5 颗粒与空气分子在标准状态下的平均平动动能的比 $E_0/E_X=?$ 和方均根速率的比 $\sqrt{\frac{V_0^2}{V^2}}=?$ (方均根速率的比说明了为何 PM2.5 颗粒形成的靏横向扩散远小于空气);

(2) 若地面 PM2.5 颗粒数密度为 no, 写出同温度下密度 n(z)随高度变化的关系式。

$$P = P_0 e^{-\frac{mgz}{kT}}$$

$$N = N_0 e^{-\frac{mgz}{kT}}$$