Оформляем единый github-репозиторий, в котором представлены результаты всех 5 лабораторных работ. Github-репозиторий должен обязательно содержать readme + jupyter-notebook, в котором даны комментарии к каждой ячейке с кодом.

Лабораторная работа №1 (Проведение исследований с алгоритмом KNN)

1. Выбор начальных условий

- а. Выбрать набор данных для задачи классификации (у каждого студента должен быть уникальный набор данных) и обосновать его выбор (реальная практическая задача)
- b. Выбрать набор данных для задачи регрессии классификации (у каждого студента должен быть уникальный набор данных) и обосновать его выбор (реальная практическая задача)
- с. Выбрать метрики качества и обосновать их выбор

2. Создание бейзлайна и оценка качества

- а. Обучить модели из sklearn (для классификации и регрессии) для выбранных наборов данных
- b. Оценить качество моделей (для классификации и регрессии) по выбранным метрикам на выбранных наборах данных

3. Улучшение бейзлайна

- а. Сформулировать гипотезы (препроцессинг данных, визуализация данных, формирование новых признаков, подбор гиперпараметров на кросс-валидации и т.д.)
- b. Проверить гипотезы
- с. Сформировать улучшенный бейзлайн по результатам проверки гипотез
- d. Обучить модели с улучшенным бейзлайном (для классификации и регрессии) для выбранных наборов данных

- е. Оценить качество моделей с улучшенным бейзлайном (для классификации и регрессии) по выбранным метрикам на выбранных наборах данных
- f. Сравнить результаты моделей с улучшенным бейзлайном в сравнении с результатами из пункта 2
- g. Сделать выводы

4. Имплементация алгоритма машинного обучения

- а. Самостоятельно имплементировать алгоритмы машинного обучения (для классификации и регрессии)
- b. Обучить имплементированные модели (для классификации и регрессии) для выбранных наборов данных
- с. Оценить качество имплементированных моделей (для классификации и регрессии) по выбранным метрикам на выбранных наборах данных
- d. Сравнить результаты имплементированных моделей в сравнении с результатами из пункта 2
- е. Сделать выводы
- f. Добавить техники из улучшенного бейзлайна (пункт 3c)
- g. Обучить модели (для классификации и регрессии) для выбранных наборов данных
- h. Оценить качество моделей (для классификации и регрессии) по выбранным метрикам на выбранных наборах данных
- Сравнить результаты моделей в сравнении с результатами из пункта 3
- ј. Сделать выводы

Лабораторная работа №2 (Проведение исследований с логистической и линейной регрессией) – повтор пунктов 2-4 из лабораторной работы №1

Лабораторная работа №3 (Проведение исследований с решающим деревом) — повтор пунктов 2-4 из лабораторной работы №1

Лабораторная работа №4 (Проведение исследований со случайным лесом) — повтор пунктов 2-4 из лабораторной работы №1

Лабораторная работа №5 (Проведение исследований с градиентным бустингом) — повтор пунктов 2-4 из лабораторной работы №1 + подведение итогов / сравнение результатов, полученных всеми алгоритмами из лабораторных 1-5)

Таблица 1 Метрика качества на тестовом наборе данных

Алгоритм	Задача	Бейзлайн	Улучшенный	Самостоятельная
			бейзлайн	имплементация
				алгоритма
KNN	классификация			
	регрессия			
Линейные модели	классификация			
	регрессия			
Решающее дерево	классификация			
	регрессия			
Случайный лес	классификация			
	регрессия			
Градиентный	классификация			
бустинг	регрессия			