Transform and Conquer

(Chapter 6)

Transform and Conquer:

This technique solves a problem by a transformation to

- Instance simplification

 a more convenient instance of the same problem
- Representation change
 a different representation of the same instance

Transform and Conquer:

Instance simplification (Pre-sorting)

- Checking element uniqueness in an array
- Computing a mode

Representation change

- Heap
 - Implementation
 - Insert and Delete
 - Construction
- Heap sort

Element uniqueness in an array

- Brute force algorithm
 - Compare all pairs of elements
 - Efficiency: $O(n^2)$
- Instance simplification (presorting)
 - Stage 1: sort by efficient sorting algorithm (e.g. mergesort)
 - Stage 2: scan array to check pairs of adjacent elements
 - Efficiency: O(nlog n) + O(n) = O(nlog n)

Element uniqueness in an array

```
ALGORITHM PresortElementUniqueness (A[0..n-1])

//Solves the element uniqueness problem by sorting the array first

//Input: An array A[0..n-1] of orderable elements

//Output: Returns "true" if A has no equal elements, "false" otherwise sort the array A

for i \leftarrow 0 to n-2 do

if A[i] = A[i+1] return false

return true
```

Transform and Conquer:

- Instance simplification (Pre-sorting)
 - Checking element uniqueness in an array
 - Computing a mode

2. Representation change

- Heap
 - Implementation
 - Insert and Delete
 - Construction
- Heap sort

A *mode* is a value that occurs most often in a given list of numbers.

5 1 6	7	6	5	7	6
-------	---	---	---	---	---

Mode: 6

- Brute Force:
 - Scan the list
 - Compute the frequencies of all distinct values
 - Find the value with the largest frequency.

5	1	6	7	6	5	7	6

Brute Force:

Data 5
Frequencies 1

Brute Force:

Data

5	1
1	1

Brute Force:

5	1	6	7	6	5	7	6
		i					

Data 5 1 Frequencies 1 1

Brute Force:

Data

5	1	6	7
1	1	1	1

Brute Force:

Data

5	1	6	7
1	1	2	1

Brute Force:

Data

5	1	6	7
2	1	2	1

Brute Force:

5	1	6	7	6	5	7	6
				i †			

Data

5	1	6	7
2	1	2	2

Brute Force:

5	1	6	7	6	5	7	6

- Efficiency (worst-case) :
 - A list with no equal elements
 - ith element is compared with i − 1 elements

Data		
Frequencies		

- Efficiency (worst-case):
 - Creating auxiliary list: $0 + 1 + 2 + \cdots + n 1 = O(n^2)$
 - Finding max: O(n)

Efficiency (worst-case): $O(n^2)$

Computing a mode(pre-sorting)

- Sort the input
- All equal values will be adjacent to each other
- Find the longest run of adjacent equal values in the sorted array

Computing a mode(pre-sorting)

```
ALGORITHM PresortMode(A[0..n-1])
    //Computes the mode of an array by sorting it first
    //Input: An array A[0..n-1] of orderable elements
    //Output: The array's mode
    sort the array A
    i \leftarrow 0
                               //current run begins at position i
    modefrequency \leftarrow 0 //highest frequency seen so far
    while i \le n-1 do
        runlength \leftarrow 1; \quad runvalue \leftarrow A[i]
         while i + runlength \le n - 1 and A[i + runlength] = runvalue
             runlength \leftarrow runlength + 1
        if runlength > modefrequency
             modefrequency \leftarrow runlength; modevalue \leftarrow runvalue
         i \leftarrow i + runlength
    return modevalue
```

Computing a mode(pre-sorting)

Efficiency:

$$T(n) = T_{sort}(n) + T_{search}(n) = (n \log n) + (n) = (n \log n)$$

Searching with presorting

Problem: Search for a given K in A[0..n–1]

Presorting-based algorithm:

Stage 1 Sort the array by an efficient sorting algorithm

Stage 2 Apply binary search

Efficiency: $O(n \log n) + O(\log n) = O(n \log n)$

Good or bad? (sequential search is O(n))
Why do we have our dictionaries, telephone directories, etc. sorted?

Transform and Conquer:

- Instance simplification (Pre-sorting)
 - Checking element uniqueness in an array
 - Computing a mode

Representation change

- Heap
 - Implementation
 - Insert and Delete
 - Construction
- Heap sort

Sample problem

- You're running a hospital
- patients are coming in with different priority

Simple Implementations

- Arraylist
 - Insert: O(1)
 - deleteMax: O(n)

7 5	8	1	9
-----	---	---	---

- SortedArraylist
 - Insert: O(logn + n)
 - deleteMax: O(n)

9 8 7 5 1

Representation change

- Idea:
 - Given an array
 - Transform to a new data structure (Make a "heap" out of it)
- Efficiency of heap:
 - Insert an item: O(logn)
 - Delete an item with max priority: O(logn)

Heap definition

- Almost complete binary tree.
 - filled on all levels, except last, where filled from left to right
- Every parent is greater than (or equal to) child

Heap or No Heap?

Heap properties

- Max element is in root.
- Heap with N elements has height = $\lfloor \log_2 N \rfloor$.

$$N = 6$$

Height = 2

Heap Implementation

- Use an array: no need for explicit parent or child pointers.
 - Parent(i) = $\lfloor i/2 \rfloor$
 - Left(i) = 2i
 - Right(i) = 2i + 1

0	1	2	3	4	5	6
	9	5	8	2	4	6

Example 1

draw the tree representation of this heap

Example 2

draw the array representation of this heap

Index	1	2	3	4	5	6	7	8	9	10	11	12
value	24	13	17	9	6	11	15	5	7	2	4	10

Heap insertion

- Insert into next available slot.
- Bubble up until it's heap ordered (heapify)

Insert to heap Example

Insert 17

34

Insert to heap Example

Insert to heap Example

Insert to heap Example

Insert to heap Example

A = 17 18 10 14 15 9 3 2 8 1 7

Insert to heap Example

Efficiency is O(log n)

Delete max from Heap

- Exchange root with rightmost leaf
- Delete element
- Bubble root down until it's heap ordered

Delete from heap Example

Efficiency is O(log n)

Heap Construction

Step 0: Initialize the structure with keys in the order given

Step 1: Starting with the last (rightmost) parental node, fix the heap rooted at it, if it doesn't satisfy the heap condition: keep exchanging it with its largest child until the heap condition holds

Step 2: Repeat Step 1 for the preceding parental node

Example of Heap Construction

Construct a heap for the list 2, 9, 7, 6, 5, 8

Transform and Conquer:

- Instance simplification (Pre-sorting)
 - Checking element uniqueness in an array
 - Computing a mode

2. Representation change

- Heap
 - · Implementation
 - Insert and Delete
 - Construction
- Heap sort

HeapSort

How can we use a Heap to sort an arbitrary array?

- 1. transform the array into a heap (Construct a heap)
- 2. call RemoveMax to get all array elements in sorted order

Example of Sorting by Heapsort

Sort the list 2, 9, 7, 6, 5, 8 by heapsort

```
Stage 1 (heap construction)
2 9 <u>7</u> 6 5 8
2 <u>9</u> 8 6 5 7
<u>2</u> 9 8 6 5 7
9 <u>2</u> 8 6 5 7
9 6 8 2 5 7
```

```
stage 2
  6 7 2 5
  6 5 2
```

Analysis of Heapsort

Stage 1: Build heap for a given list of *n* keys O(nlogn)

Stage 2: Repeat operation of root removal *n*–1 times (fix heap)
O(nlogn)

Try it/ homework

- 1. Chapter 6.1, page 205, questions 2, 3, 7
- 2. Chapter 6.4, page 233, question 1,2,7