	Uteah
Name:	\$
Roll No.:	The Planner Of Samuelelan State Experient
Inviailator's Signature :	

2012

FORMAL LANGUAGE & AUTOMATA THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) The basic limitation of FSM is that
 - a) it can't remember arbitrary large amount of information
 - b) it sometimes recognize grammar that is not regular
 - c) it sometimes fails to recognize grammar that is regular
 - d) all of these.

4358 [Turn over

- ii) Choose the correct statements:
 - a) Moore & Mealy machine are FSM with output capabilities
 - b) Any given Moore machine has an equivalent Mealy machine
 - c) Any given Mealy machine has an equivalent Moore machine
 - d) Moore machine is not an FSM.
- iii) The intersection of CFL & regular language
 - a) need not be regular b) need not be CF
 - c) is always regular d) none of these.
- iv) Palindromes can't be recognized by any FSM because
 - a) an FSM can't be remember arbitrary large amount of information
 - b) an FSM can't deterministically fix the mid point

2

- c) FSM can't find whether 2nd half of the string machines the 1st half or not
- d) None of these.
- v) Can a DFA simulate NFA?
 - a) no

- b) yes
- c) some times
- d) depends on DFA.

4358

- vi) $(P + Q)^* = ?$
 - a) $(P^* + Q^*)$
- c) $(P^* Q^*)^*$
- d) both (a) and (c).
- vii) What is the RE for the language set strings with atleast one 1, one 2 and one 3?
 - 1 + 2 + 3a)
- b) 11* 22* 33*
- c) 1* 2* 3

- d) both (a) and (b).
- viii) Which of the following sets is regular?
 - a) $\{a^i : i = n^2, n > 1\}$
 - b) $\{a^p : p \text{ is prime }\}$
 - c) $\{ ww : w \text{ is in } (a, b) + \}$
 - d) { $a^{2n}: n > = 1$ }.
- The regular expression representing the set of all strings ix) over $\{x, y\}$ ending with XX beginning with Y is
 - a) XX(X+Y)*Y b) YY(X+Y)*X
 - c) Y(X+Y)*XX d) Y(XY)*XX.
- Regular expression (a/b)(a/b) denotes the set x)
 - { a, b, ab, aa } a)
- b) $\{a, b, ba, bb\}$
- c) both (a) and (b)
- d) none of these.

4358

3

[Turn over

GROUP – B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2

- 2. Show that $L = \{ O^n \mid n \mid n > 1 \}$ is not regular.
- 3. Write the CFG for the following language

$$L = \{ 0^i 1^j 2^k | I = j j = k \}$$

4. Design a PDA which accepts the language

 $L = \{ w \in (a,b)^* \mid w \text{ has equal no. of } a \& b \}.$

- 5. a) Give DFA which reads strings from {a,b} and with aaa. 3
 - b) Construct a DFA equivalent to M = { $\{q_0, q, \}, \{0, 1\}, \delta q_0, \{q_0\}\}, \delta$ is given by the state table.

State /	0	1
q_0	q ₀	q ₁
q1	q_1	q ₀ , q1

6. Find a GNF grammar equivalent to the following CFG:

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1 \mid b$$

$$A_3 \rightarrow A_1 A_2 \mid a$$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Construct a *DFA* diagram to the *NFA* given below. 6

4358 4

6

b) Convert Mealy Machine to Moore Machine.

- c) What are Kleene Closure and Positive Closure? Give example for both. 2 + 1
- 8. a) What are distinguishable and Indistinguishable state? 3
 - b) Use Myhill Nerode Theorem to minimize the following finite automata.

4358 5 [Turn over

Give the Regular Expression for the *DFA* using arder Theorem.

b) What is Griebach Normal Form (*GNF*) for Context Free grammar?

Convert the following grammar into GNF

 $S \rightarrow ABb/a$

9.

a)

 $A \rightarrow aaA/B$

$$B \rightarrow bAb$$
 1 + 4

- c) Using Pumping Lemma show that $L = \{a^nb^n : n > 0\}$ is not regular.
- 10. a) Construct a NFA with ε or λ transition for

$$r = (11 + 0)*(00 + 1)*$$
 5

b) What is PDA?

c) Construct PDA for $L = \{ww^R : w \text{ belongs to } (0, 1)^* \}$ 5

4358 6

11.

PS	NS, Z		
	I_1	I_2	I_3
A	C,O	E,1	
В	C,O	<i>E</i> ,	
C	В,	C,O	A,
D	B,O	C,	<i>E</i> ,
E		E	A,

For the incompletely specified machine shown above find the minimum state reduced machine containing the original one.

PS	NS,Z		
	x = 0	x = 1	
A	B, 1	Н, 1	
В	F, 1	D, 1	
C	D, 0	E, 1	
D	C, 0	F, 1	
E	D, 1	C, 1	
F	C, 1	C, 1	
G	C, 1	D, 1	
Н	C, 0	A, 1	

Using this table

a) Find the equivalence partition.

- 3
- b) Find the standard form of the corresponding reduced machine.
- c) What is the minimum length sequence that distinguishes state *A* from state *B*?

4358 7 [Turn over