01

Let S be a subset (not necessarily a subspace) of a finite dimensional inner product space V. Show that $(S^{\perp})^{\perp}$ = span S, where

span
$$S := \left\{ \sum_{j=1}^{m} \alpha_{j} s_{j} : \alpha_{j} \in \mathbb{C}, s_{j} \in S, m \in \mathbb{N} \right\}$$

is the smallest subspace of V containing S (think of this as the set of all possible linear combinations of vectors from *S*).

Solution: Write $E = \operatorname{span} S$, and let $\{b_1, \ldots, b_n\}$ be a basis for E^{\perp} .

$$v \in E \iff .$$

Q2

Let V and W be finite dimensional inner product spaces and suppose $ker A = \{0\}$. Find a left inverse for A in terms of A and A^* .

Solution: Begin with the identity,

$$\{0\} = \ker A = \ker A^*A.$$

So the composition of transformations $A^*A:V\to V$ has zero kernel and is injective, and by rank-nullity it must too surjective. Then this map is invertible, and if we take $(A^*A)^{-1}A^*A =$ I, we see that $(A*A)^{-1}A*$ is a left inverse for A.

Q3

Let V be a finite dimensional inner product space.

(a) We can think of any $x \in V$ as a linear map from $\mathbb{C} \to V$ by setting $x(\lambda) := \lambda x$. You do not have to prove that this is linear. Show that $x^* : V \to \mathbb{C}$ satisfies

$$x^*y = \langle y, x \rangle$$
.

Use this to deduce that the map xy^* is given by $xy^*v = \langle v, y \rangle x$. HINT: The inner product on \mathbb{C} is assumed to be $\langle z, w \rangle = z\overline{w}$.

(b) Show that if $T: V \to \mathbb{C}$ is any linear map, then there is a vector y so that $T = y^*$.

Q4

Let V and W be finite dimensional vector spaces. You may find problem 3 useful here.

- (a) Suppose $T: V \to W$ satisfies rank T = 1. Show that there are vectors $x \in W$ and $y \in V$ so that $T = xy^*$.
- (b) Suppose $T: V \to W$ satisfies rank T = k. Show that T is the sum of k rank one operators. Hint: PT = T where P is the orthogonal projection onto ran T.

Q5

Suppose that A and B are unitarily equivalent $n \times n$ matrices. That is, there is a unitary matrix U so that $U^*AU = B$. Show that E is an invariant subspace for B if and only if UE is invariant for A. Recall that a subspace E of V is invariant for T if $Tv \in E$ for all $v \in E$.