cs260 lecture 1

Basic storage size

- Most computers handle and store binary data and information in groups of eight bits.
 - 1 byte = 8 bits
 - A byte can represent numerous types of data/information, e.g. char.

System Name	Base	Alphabet of possible symbols
Binary	2	0 1
Octal	8	0 1 2 3 4 5 6 7
Decimal	10	0123456789
Hexadecimal	16	0123456789ABCDEF

Number systems that are commonly used in computer science

We must develop a certain fluency with number formats/systems
 i.e quickly translate numbers from one format to another

Note:

Base:

The base can the thought of as the **size** of the alphabet of possible symbols.

Radix Point:

In other number systems the 'decimal point' is called a radix point

System Name	Base	Alphabet of possible symbols
Binary	2	0 1
Octal	8	01234567
Decimal	10	0123456789
Hexadecimal	16	0123456789ABCDEF

Number systems that are commonly used in computer science

Notation: (number) base

(101) ₂	0b101	
(17) ₈	0o17	
(31) ₁₀	31	
(A1) ₁₆	0xA1	

Reminder: decimal numbers system, base = 10

Example: Consider 1052, decimal number (base-10 number)

- starting with lowest weight of 10°, moving from right-to-left
- the weight of each digit, increases by a factor of 10

The value of a number is weighted sum of its digits:

$$(1052)_{10} = 1.10^3 + 0.10^2 + 5.10^1 + 2.10^0$$

Another example: Consider 537.74, decimal number (base-10 number)

Moving <u>left</u> from the **decimal point: weight** of each digit increases by a factor of 10, starting weight is 10⁰

Moving <u>right</u> from the **decimal point**: The weight of each digit decreases by a factor of 10

The value of a number is weighted sum of its digits:

$$(537.74)_{10} = 5.10^2 + 3.10^1 + 7.10^0 + 7.10^{-1} + 4.10^{-2}$$

more: https://www.mathsisfun.com/decimals.html

translating to decimal number system (from binary number system, from base = 2)

Example: Consider 1011, binary number (base-2 number)

- starting with lowest weight of 2⁰, moving from right-to-left
- the weight of each bit, increases by a factor of 2

The value of a number is weighted sum of its digits:

$$(1011)_2 = 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0$$

Another example: Consider 111.11, binary number (base-2 number)

Moving <u>left</u> from the **decimal point: weight** of each bit increases by a factor of 2, starting weight is 2⁰

Moving <u>right</u> from the **decimal point:** The weight of each bit decreases by a factor of 2

The value of a number is weighted sum of its digits:

$$(111.11)_2 = 1.2^2 + 1.2^1 + 1.2^0 + 1.2^{-1} + 1.2^{-2}$$

more: https://www.mathsisfun.com/decimals.html

 Bits in a byte a numbered sequentially started at zero on the right side and increasing towards the left.

MSB and LSB
 bit on the left side is called the Most Significant Bit
 bit on the right side is called the Least Significant Bit

	MSB							LSB
	1	0	1	1	0	1	0	1
bit number	7	6	5	4	3	2	1	0
weights	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

For unsigned binary integers:

Starting from bit #0 with starting weight of 2⁰, each bit has a weight associated with it that is an increasing power of 2.

	MSB							LSB
	1	0	1	1	0	1	0	1
weights	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

Rinary R	sit Position
_	s (values)

2 ⁿ	Decimal Value	•••	2 ⁿ	Decimal Value
2 ⁰	1		2 ⁸	256
2 ¹	2		2 ⁹	512
2 ²	4		2 ¹⁰	1024
2 ³	8		2 ¹¹	2048
24	16		2 ¹²	4096
2 ⁵	32		2 ¹³	8192
2 ⁶	64		2 ¹⁴	16384
2 ⁷	128		2 ¹⁵	32768

Reminder: sigma sum notation

more: https://www.mathsisfun.com/algebra/sigma-notation.html

A convenient way to calculate the **decimal value** of unsigned binary number.

MSB							LSB
1	0	1	1	0	1	0	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

The decimal value of a binary number is weighted sum of its binary digits:

- We need the following information:
 - weights for each bit position
 - Formula

n

$$(\text{decimal_value})_{10} = \sum_{i=0}^{\infty} \text{bit}_{i}(\text{base}^{i})$$

pure math

$$(\text{decimal_value})_{10} = (1 \cdot 2^{0})_{+} (0 \cdot 2^{1})_{+} (1 \cdot 2^{2}) + (0 \cdot 2^{3})_{+} (1 \cdot 2^{4}) + (1 \cdot 2^{5})_{+} (0 \cdot 2^{6})_{+} (1 \cdot 2^{7})_{+} = 1 + 4 + 16 + 32 + 128_{-} = (181)_{10}_{10}$$

 A word is a group of bits that represents a certain unit of information.

Word size is usually specific to processor design or architecture.

Find the decimal value of: (1110110001101010)₂

To do.

- We need the following information:
 - weights for each bit position
 - Formula

- The double-dabble method avoids addition of large numbers:
 - Write down the left-most 1 in the binary number.
 - Double it and add the next bit to the right.
 - Write down the result under the next bit.
 - Continue with steps 2 and 3 until finished with the binary number.

• Binary numbers verify the double-dabble method:

Given: 1 1 0 1
$$1_2$$

Results: $1 \times 2 = 2$
 $\frac{+1}{3 \times 2} = 6$
 $\frac{+0}{6 \times 2} = 12$
 $\frac{+1}{13 \times 2} = 26$

convert from decimal to other number systems

Repeated Division

This flowchart describes the algorithm that can be used to convert **from decimal** to **any** other number system.

decimal → binary

decimal → octal

decimal → hexadecimal

convert from decimal to binary

$(25)_{10} \rightarrow (?)_2$

Repeated Division

Divide the given decimal number by base=2.

Write the remainder after each division until a quotient of zero is obtained.

	Remainder	Quotient	Division
LSB	1	12	25/2
	0	6	12/2
	0	3	6/2
	1	1	3/2
MSB	1	0	1/2

We read the answer from the remainder column, bottom-up.

answer: (11001)₂

convert from decimal to binary $(37)_{10} \rightarrow (?)_{2}$

Repeated Division Algorithm

	Remainder	Quotient	Division
LSB	1	18	37/2
	0	9	18/2
	1	4	9/2
	0	2	4/2
	0	1	2/2
MSB	1	0	1/2
00101	/10		

 $(100101)_2$

translating to decimal number system (from octal number system, from base = 8)

Weighted-Positional number systems: base-8 to decimal

The decimal value of an octal base-8 number is weighted sum of its digits:

- We need the following information:
 - weights for each digit position
 - Formula

Let n = length(base_8_number) - 1

$$(decimal_value)_{10} = \sum_{i=0}^{n} digit_i (base^i)$$

$$(\text{decimal_value})_{10} = (7 \cdot 8^0)_+ (3 \cdot 8^1)_+ (2 \cdot 8^2) + (1 \cdot 8^3)_+$$

= 7 + 24 + 128 + 512
= $(671)_{10}$

convert from decimal to octal $(781)_{10} \rightarrow (?)_{8}$

Repeated Division

Divide the given decimal number by base=8.

Write the remainder after each division until a quotient of zero is obtained.

Division	Quotient	Remainder	
781/8	97	5	LSD
97/8	12	1	
12/8	1	4	
1/8	0	1	MSD

We read the answer from the remainder column, bottom-up.

answer: (1415)₈

convert from decimal to octal $(143,529)_{10} \rightarrow (?)_{8}$

Repeated Division Algorithm

Division	Quotient	Remainder
143,529/8	17,941	1
17,941/8	2,242	5
2,242/8	280	2
280/8	35	0
35/8	4	3
4/8	0	4

LSD

 $(430251)_{8}$

MSD

translating to decimal number system (from hexadecimal number system, from base = 16)

Weighted-Positional number systems: base-16 to decimal

1. We need to have a way to convert individual digit from hexadecimal alphabet to decimal

hexadecimal	decimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
Е	14
F	15

For example:

lookup_table("B") → 11

 $lookup_table(\frac{hex}{}) \rightarrow dec:$

hex	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Weighted-Positional number systems: base-16 to decimal

MSD LSD
$$(1 D E 8)_{16}$$
 weights

The decimal value of a hexadecimal base-16 number is weighted sum of its digits:

- We need the following information:
 - o weights for each digit position
 - o Formula

Let n = length(base_16_number) - 1

$$(\text{decimal_value})_{10} = \sum_{i=0}^{11} \text{digit}_{i}(\text{base}^{i})$$

$$(\text{decimal_value})_{10} = (8 \cdot 16^{0})_{+} (14 \cdot 16^{1})_{+} (13 \cdot 16^{2}) + (1 \cdot 16^{3})$$

= $8 + 224 + 3,328 + 4,096$
= $(7,656)_{10}$

convert from decimal to hexadecimal $(781)_{10} \rightarrow (?)_{16}$

Repeated Division

Divide the given decimal number by base=16.

Write the remainder after each division until a quotient of zero is obtained.

Division	Quotient	Remainder
781/16	48	13 → d
48/16	3	0
3/16	0	3

LSD

MSD

answer: (30d)₁₆

Because we are converting to the hexadecimal base any value in the remainder column that is greater than or equal to ten has to be converted to a hex digit.

dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
hex	'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'	'8'	'9'	ʻa'	ʻb'	'c'	ʻd'	'e'	'f'

convert from decimal to hexadecimal $(423)_{10} \rightarrow (?)_{16}$

Repeated Division

Divide the given decimal number by base=16.

Write the remainder after each division until a quotient of zero is obtained.

Division	Quotient	Remainder

LSD

MSD

answer: (?)₁₆

Because we are converting to the hexadecimal base any value in the remainder column that is greater than or equal to ten has to be converted to a hex digit.

dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
hex	'0'	'1'	'2'	'3'	'4'	' 5'	'6'	'7'	'8'	'9'	ʻa'	ʻb'	ʻc'	ʻd'	'e'	'f'