PPO(proximal policy optimization)

: TRPO(trust region policy optimization) 의 장점도 갖고 있으면서, 적용하기 더 간단하고, 더 일반적이고, 더 좋은 sample complexity를 가짐

- 1. Policy Gradient Methods
- : estimator of policy gradient를 계산하고, stochastic gradient ascent algorithm 에 접 목시킴
- : gradient estimator where 파이(세탁) is a stochastic policy and At is an estimator of the advantage function at timestep t

$$\hat{g} = \hat{\mathbb{E}}_t \left[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \hat{A}_t \right]$$

-> expectation indicates the empirical average over a finite batch of samples

$$L^{PG}(\theta) = \hat{\mathbb{E}}_t \Big[\log \pi_{\theta}(a_t \mid s_t) \hat{A}_t \Big].$$

-> the estimator g is obtained by differentiating the above objective

- 2. Trust Region Methods
- : In TRPO, an objective function (surrogate objective) is maximized subject to a constraint on the size of policy update

$$\underset{\theta}{\text{maximize}} \quad \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right]$$

subject to
$$\hat{\mathbb{E}}_t[\mathrm{KL}[\pi_{\theta_{\mathrm{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)]] \leq \delta.$$

- -> 세타(old) is the vector of policy parameters before the update
- -> using a penalty instead of a constraint for some coefficient 베타

$$\underset{\theta}{\text{maximize }} \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t - \beta \operatorname{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)] \right]$$

- -> a certain surrogate objective forms a lower bound on the performance of the policy 콰이
- 3. Clipped Surrogate Objective

TRPO maximize a surrogate objective

$$L^{CPI}(\theta) = \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right] = \hat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right]$$

without a constraint, maximization of L would lead to an ecxessively large policy update

-> to penalize change to the policy that move rt(세탁) away from 1

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

where epsilon is a hyperparameter, say, 0.2.

- 4. Adaptive KL Penalty Coefficient
- : as an alternative to the clipped surrogate objective or in addition to it (일반적으로 clipped surrogate objective보다 안 좋음)
 - Using several epochs of minibatch SGD, optimize the KL-penalized objective

$$L^{KLPEN}(\theta) = \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t - \beta \operatorname{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)] \right]$$

- Compute $d = \hat{\mathbb{E}}_t[\text{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)]]$
 - If $d < d_{\text{targ}}/1.5$, $\beta \leftarrow \beta/2$
 - If $d > d_{\text{targ}} \times 1.5$, $\beta \leftarrow \beta \times 2$

. .

정리

- 1. PPO는 정책 기반 강화 학습 알고리즘으로, 에이전트가 정책을 직접 최적화하는 방법.
- -목표 함수 정의 : 정책 $\pi_{\theta}(a|s)$ 를 파라미터 θ 에 따라 최적화, 목표는 return 최대
- 그래디언트 추정 : 정책의 파라미터 업데이트를 위해, 정책의 그래디언트 추정
- 업데이트 규칙 : $\theta \rightarrow \theta + \alpha \nabla_{\theta} J\theta$, alpha는 학습률
- 2. Trust Region Methods : 정책 업데이트 시 정책의 급격한 변화를 방지
- -KL divergence : 새로운 정책과 기존 정책 간 차이를 측정하기 위해 Kullback-Leibler divergence를 사용
- 제약 조건 최적화 : 정책 업데이트 시 KL divergence가 일정 임계값을 넘지 않도록 제약을 가함.
- TRPO(Trust Region Policy Optimiztion): 대표적인 신뢰 영역 방법, 목적 함수를 최대화 하면서도 KL divergence 제약조건을 사용하여 안정적인 학습 보장

- 3. Clipped Surrogate Objective : TRPO의 복잡성을 줄이면서 비슷한 안정성 제공
- 대리 목표 함수(surrogate): PPO는 원래 목적 함수를 직접 최적화하는 대신, 대리 목표 함수를 최적화.
- 확률 비율 cliping : 새로운 정책과 기존 정책의 확률 비율을 클립하여 급격한 정책 변화를 방지

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

- -> 여기서 $\hat{A_t}$ 는 advantage 추정치, ϵ 는 클립 한계
- 4. Adaptive KL Penalty Coefficient : 정책 업데이트 시 KL divergence를 적응적으로 조정 KL penalty : KL divergence를 직접 제약 조건으로 사용하는 대신, KL divergence를 penalty항으로 추가

$$L^{\mathrm{KL}}(\theta) = L(\theta) - eta \mathrm{KL}[\pi_{ heta_{\mathrm{old}}} || \pi_{ heta}]$$

- -> β 는 패널티 계수
- 적응적 조정 : 학습 과정에서 KL divergence가 너무 작거나 크면, β 를 동적으로 조정하여 정책 업데이트의 크기를 조절

■ 정리

1. 정책 기반 방법 (Policy-based methods)

PPO는 정책 기반 방법으로, 정책 함수 $\pi_{\theta}(a|s)$ 를 직접 최적화합니다. 여기서 θ 는 정책의 파라미터, a는 행동, s는 상태를 의미합니다. 정책 기반 방법은 가치 함수 기반 방법보다 높은 차원의 행동 공간을 다룰 수 있는 장점이 있습니다.

2. Clipped Surrogate Objective

PPO는 정책의 큰 변화를 제한하기 위해 클리핑 기법을 사용합니다. 이는 "클립된 대리 목적 함수 (Clipped Surrogate Objective)"를 통해 구현됩니다. PPO의 목표는 다음과 같은 목적 함수를 최대화하는 것입니다:

$$L^{CLIP}(heta) = \mathbb{E}_t \left[\min \left(r_t(heta) \hat{A}_t, \operatorname{clip}(r_t(heta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t
ight)
ight]$$

여기서:

- $r_t(heta)=rac{\pi_{ heta}(a_t|s_t)}{\pi_{ heta_{o,t}}(a_t|s_t)}$ 는 현재 정책과 이전 정책의 비율입니다.
- \hat{A}_t 는 시간 t에서의 어드밴티지 함수(Advantage Function)입니다.
- ϵ 은 클리핑 범위를 조절하는 하이퍼파라미터입니다.

이 목적 함수는 정책이 너무 많이 변하지 않도록 제한합니다. 클립핑된 부분은 비율 $r_t(\theta)$ 가 $[1-\epsilon,1+\epsilon]$ 범위를 벗어날 경우, 이 범위로 비율을 제한하여 학습 안정성을 높입니다.

3. 어드밴티지 함수 (Advantage Function)

어드밴티지 함수 \hat{A}_t 는 특정 행동이 현재 상태에서 얼마나 좋은지를 나타내는 값으로, 보통 다음과 같이 정의됩니다:

$$\hat{A}_t = Q(s_t, a_t) - V(s_t)$$

여기서 $Q(s_t,a_t)$ 는 상태-행동 가치 함수, $V(s_t)$ 는 상태 가치 함수입니다. 일반적으로, 어드밴티지 함수는 GAE (Generalized Advantage Estimation)를 사용하여 계산됩니다.

4. 상태 가치 함수 (Value Function)

PPO는 상태 가치 함수 $V(s_t)$ 를 동시에 학습하여 상태의 가치를 평가합니다. 상태 가치 함수는 다음과 같은 손실 함수로 학습됩니다:

$$L^{VF}(heta) = \mathbb{E}_t \left[\left(V_{ heta}(s_t) - V_t^{target}
ight)^2
ight]$$

여기서 V_{t}^{target} 는 타겟 가치로, 보통 미래의 할인된 보상을 기반으로 계산됩니다.

5. 엔트로피 보너스 (Entropy Bonus)

PPO는 탐색을 촉진하기 위해 정책의 엔트로피를 증가시키는 보너스를 추가합니다. 엔트로피 보너스는 정책의 불확실성을 증가시켜 다양한 행동을 시도하게 만듭니다. 이는 다음과 같은 형태로 목적 함수에 추가됩니다:

$$L^S(heta) = \mathbb{E}_t[eta H(\pi_ heta(\cdot|s_t))]$$

여기서 $H(\pi_{\theta}(\cdot|s_t))$ 는 상태 s_t 에서 정책의 엔트로피, β 는 엔트로피 보너스의 가중치를 조절하는 하이퍼파라미터입니다.

PPO 알고리즘의 단계

- 1. **환경과 상호작용**: 에이전트는 현재 정책 π_{θ} 를 사용하여 환경과 상호작용하며 데이터를 수집합니다. 여기에는 상태, 행동, 보상, 다음 상태 등이 포함됩니다.
- 2. **어드밴티지 추정**: 수집된 데이터를 바탕으로 어드밴티지 함수 \hat{A}_t 를 계산합니다. GAE를 사용하여 어드밴티지를 추정하는 경우가 많습니다.
- 3. **정책 업데이트**: 클립된 대리 목적 함수 $L^{CLIP}(\theta)$ 를 최대화하도록 정책 π_{θ} 를 업데이트합니다. 이는 미니배치 단위로 여러 번 반복됩니다.
- 4. **가치 함수 업데이트**: 상태 가치 함수 $V(s_t)$ 를 학습하기 위해 손실 함수 $L^{VF}(\theta)$ 를 최소화하도록 업데이트합니다.
- 5. **엔트로피 보너스 적용**: 정책의 엔트로피를 증가시키는 보너스를 목적 함수에 추가하여 업데이 트합니다.

PPO의 장점

- 안정성: 클리핑 기법을 통해 정책의 급격한 변화를 방지하여 학습의 안정성을 높입니다.
- 단순성: 기존의 복잡한 신뢰 영역 방법 (Trust Region Methods)보다 구현이 간단하고 효율적입니다.
- 효율성: 경험을 효율적으로 재사용하여 샘플 효율성을 높입니다.

** GAE (Generalized Advantage Estimation) : 강화 학습에서 Advantage Function을 계산하는 방법 -> 추정치의 분산을 줄이면서도 편향을 통제할 수 있는 유연한 방법 제공

GAE의 정의

GAE는 다음과 같은 형태로 정의됩니다:

$$\hat{A}_{t}^{GAE(\gamma,\lambda)} = \sum_{l=0}^{\infty} (\gamma \lambda)^{l} \delta_{t+l}$$

여기서 δ_t 는 Temporal Difference (TD) 에러로, 다음과 같이 정의됩니다:

$$\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$$

GAE는 γ (할인율)과 λ (감쇠 인자)라는 두 개의 하이퍼파라미터를 사용합니다. γ 는 미래 보상의 중요도를 결정하고, λ 는 부트스트랩의 길이를 조절합니다. λ 가 1에 가까울수록 GAE는 높은 분산을 가지지만, λ 가 0에 가까울수록 GAE는 낮은 분산과 높은 편향을 가집니다.