

Ejercicio 6

Dado el siguiente problema de optimización:

Min
$$23x_1 + 20x_2$$

st
$$-6x_1 + 16x_2 \le 48$$

$$12x_1 - 6x_2 \ge 42$$

$$x_1 \ge 0, x_2 \ge 0$$

- 1) Clasificar
- 2) Resolver por SIMPLEX
- 3) Comprobar por método gráfico

Ejercicio 7

Una empresa envasa cerveza en barriles.

Se planifica la producción para 4 semanas. En el cuadro [1], se adjunta demanda por mes.

La planta trabaja a horas regulares. En el cuadro [2], se describe el costo de producción, además el costo de almacenar.

En el cuadro [3], se describe la capacidad máxima de producción.

- 1. Construir el grafo asociado al problema.
- 2. Armar un modelo de programación matemática.
- 3. Se busca penalizar al modelo en 25 millones, si se decide no stockear. ¿Cómo se agregaría esta condición al modelo?

[1]	Mes	Demanda (unidades)
	1	300.500
	2	261.500
	3	350.200
	4	310.100

[2]	Mes	costo (\$/l)
	Regulares	175
	Stock	55

[3]	Mes	capacidad (l)
	Regulares	320.000
	Stock	100.000

Ejercicio 8

En un problema de optimización primal, se busca armar un mix óptimo de comercialización de dos productos. Ambos dependen de dos recursos: papel y cartulina; que tienen capacidades máximas de utilización.

En el problema de optimización dual relacionado, las variables resultan:

$$y_1 = 0.68$$

 $y_2 = 0.18$

Teniendo la oportunidad de aumentar la capacidad total de papel y cartulina:

- 1) ¿Qué recuso debería aumentarse? Justificar.
- 2) ¿Qué pasaría si el costo de aumentar ambos recursos por unidades es de:
 - 1) 0.20
 - 2) 0.05
 - 3) 1.00?

