

表面物理

大尺寸单晶石墨烯的超快制备

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

北京大学>>

张志斌

刘士琦

石蓓蓓

徐霖强

程旭

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

石墨烯的制备方法

石墨烯历史简述

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

Andre Konstantin Geim, 1958-?

Konstantin Novoselov, 1974-?

石墨烯的奇异性质

- 02-1. 极限的力学性能
- 02-2. 特殊的光学透光性
- 02-3. 优越的电学性质

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

较少的缺陷而拥有极高的机械强度:

- 杨氏模量 1.0 TPa (钢: ~100GPa)
- 极限抗拉强度 130.5 GPa (钢: ~500 Mpa)

最薄、最坚硬的材料 (没有之一)

ULTRAFAST GROWTH OF LARGE SCALE SINGLE, CRYSTAL GRAPHENE

2.3%吸光率

几乎是完全透明的导电材料

- 超高迁移率, 单层石墨烯中可达350,000 cm2/(V·s), (硅仅为1350)
- 电子的运动速度达到了光速的1/300
- 而电阻率只有1*10-8 Ω·m, 比银还要低35%, 目前室温下电阻率最小的材料

石墨烯的制备方法

- 03-1. 机械剥离石墨法
- 03-2. 晶体表面外延生长法
- 03-3. 化学气相沉积法

3M胶带剥离技术

毫米量级单层石墨烯

- 单晶质量高,石墨烯性能好
- 单价高,单晶畴区小,不宜量产

SiC基底上生长石墨烯

BN基底上生长石墨烯

- 生产过程相对简单,适合大规模生产制备。
- 受基底的限制,石墨烯质量不太高

- 生长速度快,性价比高。
- 易于得到高质量的单层石墨烯,且制备手段简单。

石墨烯的应用前景

柔性触摸屏

太阳能电池

石墨烯防腐涂层

石墨烯-海水淡化

轻质高强材料

石墨烯LED灯

大尺寸单晶石墨烯的超快制备

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

单个成核点不断生长

缺点 无法实现快速生长

多个成核点同时生长, 无缝拼接

四个挑战

- 1.大尺寸单晶衬底的生长
- 2.取向一致的石墨烯
- 3.石墨烯的无缝拼接
- 4.每个核的快速生长

石墨烯的超快生长

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

1.57 eV

0.62 eV

0.84 eV

0.24 eV

With oxygen

石墨烯的超快生长

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

大尺寸Cu(111)的制备

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

Polycrystalline Cu

Clear grain boundaries

单晶铜与多晶铜的光学区分

WHY Cu(111)

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

取 向 一 致

无缝拼接

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

Xu, X et al. "Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply." Nature nanotechnology11.11 (2016)

Xu X et al. Ultrafast epitaxial growth of metre-sized singlecrystal graphene on industrial Cu foil. Sci Bull (2017)

ULTRAFAST GROWTH OF LARGE SCALE SINGLE CRYSTAL GRAPHENE

微博微信 | English | 公务邮箱 | 加入收藏

中华人民共和国科学技术部

Ministry of Science and Technology of the People's Republic of China

站內搜索

首 页 | 组织机构 | 新闻中心 | 信息公开 | 科技政策 | 科技计划 | 办事服务 | 公众参与 | 专题专栏

当前位置: 科技部门户 > 新闻中心 > 科技动态 > 国内外科技动态

www.most.gov.cn

【字体:大中小】

我国实现米级单晶石墨烯的制备

日期: 2017年11月20日 来源: 科技部

石墨烯是典型的二维轻元素量子材料体系,具有优越的量子特性。科学界在石墨烯体系中观察到了许多量子现象和量子效应,石墨烯已经成为凝聚态物理研究领域的重要量子体系,在未来量子信息、量子计算和量子通讯等领域具有广泛的应用前景。如何获得大尺寸单晶石墨烯是石墨烯研究领域的热点和难点,是实现石墨烯工业化应用的基础。虽然利用化学气相沉积方法(CVD)方法已经实现了米级多晶石墨烯薄膜的制备,但是米级单晶石墨烯薄膜技术还未被突破。

最近,在量子调控与量子信息重点专项项目的支持下,北京大学刘开辉研究员、俞大鹏院士、王恩哥院士及其合作者,继2016年首次实现石墨烯单晶的超快生长之后,在米级单晶石墨烯的生长方面再次取得重要进展。研究团队将工业多晶铜箔转化成了单晶铜箔,得到了世界上目前最大尺寸的单晶Cu(111)箔,利用外延生长技术和超快生长技术成功在20分钟内制备出世界最大尺寸(5×50 cm2)的外延单晶石墨烯材料。该研究结果为快速生长米级单晶石墨烯提供了必要的科学依据,为石墨烯单晶量子科技的产业化应用奠定基础。

该研究成果于2017年8月在《科学通报》(Science Bulletin)发表,并被选为封面文章。中国科学院沈阳金属研究所成会明院士同期在Science Bulletin发表重点推荐评论文章。

