# Introduction to Computer Vision

Dr. Eman Gouda

## What is a Digital Image?

#### Image as a Function

- An image can be represented as a 2D function f(x,y).
- x,y: spatial coordinates (location on the plane).
- f(x,y): intensity or gray level at point (x,y).

#### Digital Image

- When x,y and intensity values are finite and discrete, the image is called a digital image.
- · Digital images are processed by a computer.

#### Pixels

- A digital image consists of a finite number of elements.
- · Each element has a specific location and value.



Figure 1.1 The 2-D Cartesian coordinate space of an M x N digital image

## Types of Digital Image Representation

#### • Binary Images:

- Binary images are black and white images that contain only two colors, black and white.
- They are often used for object detection or segmentation.

#### Grayscale Images:

• Grayscale images contain shades of gray between black and white. They are often used for medical images.

#### Color Images:

- Color images contain multiple colors and are the most common type of digital image.
- Color images can be represented using different color models, such as RGB (Red, Green, Blue), CMYK (Cyan, Magenta, Yellow, Black), or HSL (Hue, Saturation, Lightness).



## Resolution vs. Color Depth

#### Resolution:

• The number of pixels in the image.

#### Color depth

 The number of bits that are used to represent each color component. Higher bit depths let more shades and colors be shown.





Image with different Resolution

## Images in Human and Machine Perception

#### Human Vision

- Vision is the most advanced human sense.
- Images play a central role in human perception.
- Humans are limited to the visible band of the electromagnetic (EM) spectrum.

#### Machine Vision

- Imaging machines can capture data across almost the entire EM spectrum: From gamma rays to radio waves.
- Digital Image Processing covers a wide range of applications in science, medicine, and technology.



## Relationship Between Image Processing and Computer Vision

#### Digital Image Processing

Often defined as operations where input and output are images.

#### **Computer Vision**

- Enable computers to emulate human vision.
- Includes learning, inference, and decision-making from visual data.
- A branch of Artificial Intelligence (AI).

## Early Application of Digital Images

- 1920s Newspaper Industry
- 1921 Bartlane Cable Picture Transmission System
  - Cut transfer time from >1 week (by ship) to <3 hours (by cable).</li>



A digital picture produced in 1921 from a coded tape by a **telegraph printer** with special typefaces.

## Early Application of Digital Images

- Poor distribution of intensity (gray) levels.
- Improved Printing (1921)
  - Early printing method abandoned.
  - Replaced by photographic reproduction from perforated tapes at telegraph terminals.
  - Better tonal quality and resolution.



Unretouched cable picture of Generals Pershing (right) and Foch, transmitted in 1929 from London to New York by 15-tone equipment.

## Origins of Digital Image Processing

- 1960s: First powerful computers capable of meaningful image processing.
- Digital image processing emerged with the space program.
- 1964 Ranger 7 (NASA/JPL):Captured first U.S. spacecraft image of the Moon.
- Computers corrected distortions from the onboard TV camera.



The first picture of the moon by a U.S. spacecraft. Ranger 7 took this image on July 31, 1964, at 9:09 A.M. EDT, about 17 minutes before impacting the lunar surface.

## Early Applications Beyond Space

- Medical Imaging and CT Scans
  - Late 1960s early 1970s: Digital image processing expanded to:
    - Medical imaging
    - Remote Earth observation
- Computerized Tomography (CT / CAT) early 1970s
  - Detectors arranged in a ring around patient
  - Rotating X-ray source passes through the body
  - Algorithms reconstruct cross-sectional "slices"
  - Multiple slices form a 3D view of the interior
  - Inventors Awarded 1979 Nobel Prize in Medicine



Photo from the Nobel Foundation archive.

Allan M. Cormack

Prize share: 1/2



Photo from the Nobel Foundation archive.

Godfrey N. Hounsfield

Prize share: 1/2

## Growth of Digital Image Processing (1960s – Present)

- Expanded beyond medicine and space program
- Medical & biological sciences → enhance X-rays, color coding for interpretation
- Geography → study pollution patterns via aerial & satellite images
- Restoration → recover degraded or unique experimental images
- Physics → enhance images in plasma studies, electron microscopy
- Law enforcement, defense, industry

## What is Computer Vision?

- Computers understanding visual data (images, videos, etc.)
  - Different image types (RGB, grayscale, ...)
  - Different sensors
- Develop algorithms/ representation that will enable a computer to autonomously analyze/ interpret the visual information.



## What is Computer Vision?

- Automate human visual tasks
  - Humans easily distinguish and localize objects, can machines do the same?
- Extracting meaning from pixels
  - Images = just numbers for computers
  - Variations (scale, viewpoint, illumination, ...)
    make recognition harder



## What is Computer Vision?

- Make computers understand images and video or any visual data.
- What kind of scene? Where are the cars?
  How many cars? How far is the building?



## Why Study Computer Vision?

- Engineering / Business point of view:
  - Solves practical problems (e.g., analyzing long videos)
- Scientific point of view:
  - Simulates the human visual system
- Data-driven Need:
  - Massive visual data on the internet:
    - Facebook: 250+ billion photos, 300 million images a day
    - YouTube: 100 hours uploaded every minute
  - Enables modern CV systems (deep learning methods)
- Adoption:
  - From academia → industry (Google, Facebook, Apple, ...)
- · Applications:
  - · Safety, healthcare, security, and more





**Face Detection** 



**Face Recognition** 





**Generic object Recognition and Detection** 

**Vision-based Biometrics** 







**Object recognition** 

**Face Expression** 

#### **Biometrics**



Fingerprint scanners on many new laptops, other devices





Face recognition systems now beginning to appear more widely http://www.sensiblevision.com/

Source: S. Seitz



**High Density Crowded Scenes** 

#### **Biometrics**