浮点数的编码表示

阶码一般用**移码**表示, 便于比较大小——通过机器数比较真值。 n-1 n-2 2 1 0

阶——移码(增码)

定义:设阶为 x ,阶码 E 位数为 n ,则:

$$[x]_{8} = 2^{n-1} + x \quad (-2^{n-1} \le x \le 2^{n-1} - 1)$$

$$X_1 = 0101 \ 0101$$
 $[X_1]_{\stackrel{}{\Rightarrow}} = 0101 \ 0101$
 $[X_1]_{\stackrel{}{\Rightarrow}} = \frac{1}{101} \ 0101$
 $X_2 = \frac{1}{1010} \ 0101$
 $[X_2]_{\stackrel{}{\Rightarrow}} = \frac{1}{1010} \ 0101$
 $[X_2]_{\stackrel{}{\Rightarrow}} = \frac{1}{1010} \ 0101$

阶——移码(增码)

8 位机器数,移码表示:真值 → 在数轴上向右平移了 27(128) 个位置 → 移码。

用 0~255 表示 -128~127。

阶——移码(增码)

$$[x]_8 = 2^{n-1} + x (-2^{n-1} \le x \le 2^{n-1} - 1)$$

讨论:

- 1. 表示范围: -2ⁿ⁻¹≤x≤2ⁿ⁻¹-1,与补码相同。
- 2. $[-2^{n-1}]_{8} = 00...0$, $[-2^{n-1}]_{1} = ?$
- 零的移码表示唯2ⁿ⁻¹:= 10...0
 [+0]₈ = [-0]₈ =

真值 x	真值 x	X ₈	X _补
(十进制)	(二进制)	(+2 ⁷)	$(+2^8)$
-128	-1000 0000	0000 0000	1000 0000
-127	-0111 1111	0000 0001	1000 0001
:			
-1	-0000 0001	0111 1111	1111 1111
0	0000 0000	1000 0000	0000 0000
+1	0000 0001	1000 0001	0000 0001
:			
+127	0111 1111	1111 1111	0111 1111

- 4. 若将移码最高位**看成**是符号位,则有' **0**' 表示负数,' **1**'表示正数,与其它 3 种码制相反;
- 5. 除符号位外,其余各位与补码相同。

阶——移码

- 1. 浮点数做加减运算时需<mark>对阶</mark>,即将阶码 调整相同(小数点对齐);
- 2. 移码的大小**直观**地反映了真值的大小, 便于阶码比较:
- 3. 可将移码看作**无符号数**,直接按无符号数规则比较大小。

码制表示法小结

- 1. 若将最高位看作符号位:
 - 1. 原码,反码,补码:"0"表示正,"1"表示负;
 - 2. [X] _移: "1"表示正号, "0"表示负号。
- 2. 如果 X 为正数,则 $[X]_{g} = [X]_{g} = [X]_{h}$ = X 。
- 3. 0的补码和移码有唯一编码, 0的原码和反码有两种编码。
- 4. 移码与补码的形式相同,只是符号位相反。

码制表示法小结

数据的四种机器表示法中:

- 1. 移码表示法主要用于表示浮点数的<mark>阶码</mark>。
- 2. **补码**表示对**加减法运算**十分方便,因此目前机器中广泛采用补码表示法。
 - 一些机器中,数值用补码存储、补码运算。
 - 2) 有些机器中,数值用原码进行存储和传送, 运算时改用补码。
 - 3) 有些机器在做加减运算时用补码表示,在做 乘除运算时用原码表示。

例 1 将十进制数 65798 转换为下述浮点数格式 (32 位) 1 78 31 数符 阶码 尾数

```
○位:数符S
                                                     26
    1-7位:7位阶码E,移码表示(偏置常数
    8-31 位: 24 位尾数 M , 原码定点小数 (0.101060)<sub>16</sub>x16<sup>5</sup>
    阶码的底: R=16
解: (65798)<sub>10</sub>=(10106)<sub>16</sub>=
数符: S=(2<sup>6</sup>+5)<sub>10</sub>=(100 0101)<sub>2</sub>
                 0001 0000 0001 0000 0110 0000
                     45101060H
    尾数:<u>M =</u>
         00101 000100000001000001100000
```

尾数规格化

- 一个浮点数有不同的表示:
- 0.1011×2⁰ = 0.01011×2¹=0.001011×2² 规格化的目的:
- 1. 为了充分利用尾数的**有效位数**,提高表示精度;
- 2. 为了数据表示的**唯一性**。避免浪费编码 **规格化的尾数**:绝对值大于或等于 1/R , R 为尾数的底。

尾数规格化

非 0 浮点数,尾数规格化后满足<mark>条件</mark>: |M|1/2(R=2 时)

原码规格化后:正数 0.1×...× ,负数 1.1×...×

补码规格化后:正数 0.1×...× ,负数 1.0×...×

一般机器规定,若底为 2 并用**调整** 表示尾数,则**规格化数的标志**为:

尾数的符号位和数值部分最高位具有不同的代码。

浮点数的规格化处理

非规格化的尾数 → 规格化 通过尾数移位和修改阶码实现。

 $0.01011 \times 2^3 = 0.1011 \times 2^2$

如 *R*=2 时:

左规:尾数左移 1 位,阶码减 1

右规:尾数右移 1 位,阶码加 1

 $1.011 \times 2^3 = 0.1011 \times 2^4$

浮点表示

例:设某机器用32位表示一个实数,阶码部分8位(含1位阶符),用定点整数补码表示;尾数部分24位(含数符1位),用规格化定点小数补码表示,底为2。


```
求 y=-256.5 的浮点表示格式。
y = -(256.5)_{10} = -(1\ 0000\ 0000.1)_2
 =-0.100000001\times29
  8 位阶码为: [9] № 000 1001
  24 位尾数为: [-0.100 0000 001] **
    =1.011 1111 1110 0000 0000 0000
  -256.5 的浮点表示格式为:
  0000 1001 1011 1111 1110 0000 0000 0000
  编码的 16 进制表示为 :09BFE000H
```


浮点数的溢出判断

判断规格化后的<mark>阶码: $x = M \times R^{E}$ </mark>

上溢:浮点数阶码大于机器最大阶码

处理方法——中断。

下溢:浮点数阶码小于机器最小阶码

处理方法——零处理。

 上溢区
 负数区
 下溢
 正数区
 上溢区

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <

隐藏位技术

原码规格化后:正数 $0.1 \times ... \times$,负数 $1.1 \times ... \times$ 数值最高位必定为 1 。

隐藏位技术:

- 在保存浮点数到内存前,通过尾数左移,强行 把最高位去掉;
- 用同样多的尾数位可多存一位二进制数;
- 有利于提高数据表示精度。

说明:在取回浮点数到运算器执行运算时, 必须先恢复隐藏位。 例 将十进制数 65798 转换为下述典型的 32 位浮点数格式。

 0
 1
 89

 数符
 阶码
 尾数

○ 位:数符 S

1-8 位: 8 位阶码 E, 移码表示(偏置常数

=128)

9-31 位: 23 位尾数 M, 原码定点小数。 规格化尾数的第一位总是 1 ,故不保存。 即虽只有 23 位,但可表示 24 位数据。

阶码的底: R=2。

0	1 8	3 9	31
数符	阶码	尾数	

解:

 $(65798)_{10} = (10106)_{16} = (1\ 0000\ 0001\ 0000\ 0110)_2$ = $(0.1000\ 0000\ 1000\ 0011)_2 \times 2^{17}$

数符: S=0

阶码: $E=(128+17)_{10}=(1001\ 0001)_2$

尾数: M=1000 0000 1000 0011 0000 0000

浮点数表示为:

0 10010001 0000000100000110000000

0 1 8 9

31

16 进制表示: 48808300H

例: 若浮点数 x 的二进制存储格式为 (41360000)₁₆

, 求其 32 位浮点数的十进制真值。

解:

0100 0001 0011 0110 0000 0000 0000 0000

数符: 0

阶码: 1000 0010

尾数: 011 0110 0000 0000 0000 0000

指数: e = 阶码 -128=0000010=(2)₁₀

包括隐藏位(1)的尾数: 0.1011 0110

真值: x = 0.1011 011×2²

=10.11011

 $=(2.84375)_{10}$

1 89

31

数符|阶码

毛数

同样字长的定点、浮点表示,浮点数的表示 范围和精度都要高得多。

说明:表示范围:取决于阶码位数。

精度:取决于尾数位数。

定点表示与浮点表示

讨论:

- 1. 相同字长(如 32 位)的定点数与浮点数 (规格化)能表示数的**个数**是相同的;
- 定点数分布是等距且紧密的,而浮点数分布是不等距且稀疏的,越远离原点越稀疏。

为了便于软件移植,使用 IEEE(电气和电子工程师协会)标准。

IEEE754标准:尾数用原码;阶码用移

码;底为2。规格化,隐藏位。

单精度和双精度两种浮点数格式:

1. 单精度格式 (32位)

1 位 8 位	23 位	
阶码	尾数	
符号位		

2. 双精度格式 (64位)

1 位 11 位	52 位	
阶码	尾数	
符号位		

规格化:个位为1,隐藏个位。

偏置常数: 2n-1-1

例:将100.25转换成短浮点格式。

- (1) 将十进制转换为二进制数 $(100.25)_{10} = (1100100.01)_2$
- (2) 规格化 1100100.01 = 1.100 1000 1×26
- (3) 阶码 到000 0110+0111 1111=1000 0101
- (4) 浮点编码

0 1000 0101 100 1000 1000 0000 0000 0000

浮点编码: 42C88000H

作业

- 1. 实现下列各数的转换 $(101101.011)_2=()_{10}=()_8=()_{16}=()_{8421}$
- 机器字长8位,1位符号位,求原码、反码、 补码。-0.010100
- 3. 已知原码,求补码、反码 $[x]_{g} = 1.00111$ $[x]_{g} = 110100$
- 6. 已知补码,求真值[x]_补=10000000 [x]_补=11010011
- 7. 已知下列字符编码,求 e,f,7,G,Z,5 的 7 位 ASCII 码。
 - A=100 0001 a=110 0001 0=011 0000
- 8. 在第七题的各个编码的高位前,加入奇校验位

浮点作业

- 1. 有一个字长为 32 位的浮点数, 阶码 10 位(包括1位阶符),用移码表示;尾数 22 位(包括1位尾符)用补码表示,基数 R=2。请写出:
- (1) 最大数的二进制表示;
- (2) 最小数的二进制表示;
- (3) 规格化数所能表示的数的范围;
- (4) 最接近于零的正规格化数与负规格化数

0

浮点作业

2. 将下列十进制数表示成浮点规格化数, 阶码 4 位(包括 1 位阶符),用补码表示 ;尾数 10 位(包括 1 位尾符),用补码 表示,底 R=2。

- (1) 27/64
- (2) -27/64

浮点作业

3. 设浮点数的格式为:

数符	阶码	尾数
1位	5 位移码	6 位补码

- 1. 设阶码的底为 4 ,要求用这种格式表示 下列十进制数: +19 , -1/8 ;
- 2. 写出这种格式所能表示的范围,并与 12 位定点补码整数和定点补码小数的表示范围进行比较。