

DERWENT- 2000-305045
 ACC-NO:

DERWENT- 200279

WEEK:

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE: Brake pad for motor vehicle disc brake has backing plate
 of plastics heat welded to friction block material

INVENTOR: FISHER, K; GRIMME, H; FISCHER, K

PATENT-ASSIGNEE: ALLIEDSIGNAL BREMSBELAG GMBH [ALLC]

PRIORITY-DATA: 1998DE-2021482 (December 2, 1998)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
ES 2174565 T3	November 1, 2002	N/A	000	F16D 065/092
DE 29821482 U1	April 13, 2000	N/A	010	F16D 065/092
EP 1006289 A2	June 7, 2000	G	000	F16D 065/092
AU 9963054 A	June 8, 2000	N/A	000	F16D 065/092
NO 9905857 A	June 5, 2000	N/A	000	B61H 000/00
CZ 9904325 A3	June 14, 2000	N/A	000	F16D 065/092
JP 2000205310 A	July 25, 2000	N/A	004	F16D 065/092
CA 2291376 A1	June 2, 2000	E	000	F16D 065/092
FI 9902578 A	June 2, 2000	N/A	000	B60T 000/00
BR 9905793 A	September 5, 2000	N/A	000	F16D 065/04
CN 1261036 A	July 26, 2000	N/A	000	B61H 007/00
HU 9904442 A2	September 28, 2000	N/A	000	F16D 055/225
KR 2000047852 A	July 25, 2000	N/A	000	F16D 069/00
US 6267206 B1	July 31, 2001	N/A	000	B61H 007/00
EP 1006289 B1	June 5, 2002	G	000	F16D 065/092
DE 59901607 G	July 11, 2002	N/A	000	F16D 065/092

DESIGNATED- STATES: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV
 MC MK NL PT RO SE SI AT BE CH CY DE DK ES FI FR GB GR
 IE IT LI LU MC NL PT SE

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO	APPL-DATE
--------	-----------------	---------	-----------

ES 2174565T3 N/A	1999EP-0123242 November 26, 1999
ES 2174565T3 Based on	EP 1006289 N/A
DE 29821482U1 N/A	1998DE-2021482 December 2, 1998
EP 1006289A2 N/A	1999EP-0123242 November 26, 1999
AU 9963054A N/A	1999AU-0063054 December 2, 1999
NO 9905857A N/A	1999NO-0005857 November 30, 1999
CZ 9904325A3 N/A	1999CZ-0004325 December 2, 1999
JP2000205310AN/A	1999JP-0342449 December 1, 1999
CA 2291376A1 N/A	1999CA-2291376 December 1, 1999
FI 9902578A N/A	1999FI-0002578 December 1, 1999
BR 9905793A N/A	1999BR-0005793 December 2, 1999
CN 1261036A N/A	1999CN-0115973 December 1, 1999
HU 9904442A2 N/A	1999HU-0004442 November 30, 1999
KR2000047852AN/A	1999KR-0054377 December 2, 1999
US 6267206B1 N/A	1999US-0451138 November 30, 1999
EP 1006289B1 N/A	1999EP-0123242 November 26, 1999
DE 59901607G N/A	1999DE-0501607 November 26, 1999
DE 59901607G N/A	1999EP-0123242 November 26, 1999
DE 59901607G Based on	EP 1006289 N/A

INT-CL B60T000/00, B61H000/00 , B61H007/00 , F16D055/225 ,
(IPC) : F16D065/04 , F16D065/092 , F16D069/00

ABSTRACTED-PUB-NO: DE 29821482U

BASIC-ABSTRACT:

NOVELTY - The brake pad (100) for a motor vehicle disc brake has a backing plate (10) of a hard, amorphous and rigid plastics using a macromolecular structure with high mechanical cohesion such as Duroplast (RTM). The material of the backing plate meshes with the backing plate-fee surface (20a) of the friction block (20). The side walls (21) of plate engage the friction block and are heat welded to it.

USE - For motor vehicle disc brake friction pads

ADVANTAGE - Allows reduced weight and heat transfer

DESCRIPTION OF DRAWING(S) - Drawing shows plan view of pad

Brake pad 100

Backing plate 10

Friction block 20

Sidewalls 21

ABSTRACTED-PUB-NO: EP 1006289B

EQUIVALENT-ABSTRACTS:

NOVELTY - The brake pad (100) for a motor vehicle disc brake has a backing plate (10) of a hard, amorphous and rigid plastics using a macromolecular structure with high mechanical cohesion such as Duroplast (RTM). The material of the backing plate meshes with the backing plate-fee surface (20a) of the friction block (20). The side walls (21) of plate engage the friction block and are heat welded to it.

USE - For motor vehicle disc brake friction pads

ADVANTAGE - Allows reduced weight and heat transfer

DESCRIPTION OF DRAWING(S) - Drawing shows plan view of pad

Brake pad 100

Backing plate 10

Friction block 20

Sidewalls 21

US 6267206B

NOVELTY - The brake pad (100) for a motor vehicle disc brake has a backing plate (10) of a hard, amorphous and rigid plastics using a macromolecular structure with high mechanical cohesion such as Duroplast (RTM). The material of the backing plate meshes with the backing plate-fee surface (20a) of the friction block (20). The side walls (21) of plate engage the friction block and are heat welded to it.

USE - For motor vehicle disc brake friction pads

ADVANTAGE - Allows reduced weight and heat transfer

DESCRIPTION OF DRAWING(S) - Drawing shows plan view of pad

Brake pad 100

Backing plate 10

Friction block 20

Sidewalls 21

CHOSEN- Dwg.1/2
DRAWING:

TITLE-TERMS: BRAKE PAD MOTOR VEHICLE DISC BRAKE BACKING PLATE
PLASTICS HEAT WELD FRICTION BLOCK MATERIAL

DERWENT-CLASS: Q18 Q21 Q63

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N2000-228006

⑧ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑫ G brauchsmust rschrift
⑩ DE 298 21 482 U 1

⑥ Int. Cl.⁷:
F 16 D 65/092

DE 298 21 482 U 1

⑪ Akt nzeichen:	298 21 482.2
⑫ Anmeldetag:	2. 12. 1998
⑬ Eintragungstag:	13. 4. 2000
⑭ Bekanntmachung im Patentblatt:	18. 5. 2000

-
- ⑮ Inhaber:
AlliedSignal Bremsbelag GmbH, 21509 Glinde, DE
- ⑯ Vertreter:
Richter & Kollegen, 20354 Hamburg

-
- ⑰ Bremsbelag für Scheibenbremsen
⑱ Bremsbelag (100) für Scheibenbremsen, insbesondere für Straßen- und Schienenfahrzeuge, der aus einer Trägerplatte (10) und einem auf dieser befestigten Block (20) aus einem gepressten Reibwerkstoff besteht, wobei der Reibwerkstoffblock (20) auf der Trägerplatte (10) kraft- und/oder formschlüssig befestigt ist, dadurch gekennzeichnet, daß die Trägerplatte (10) aus einem harten, amorphen und bis zur Zersetzungstemperatur starren Kunststoff, der aus räumlich engmaschig vernetzten Makromolekülen mit hoher mechanischer Festigkeit aufgebaut ist, wie z. B. einem Duroplast, besteht, wobei das Material der Trägerplatte (10) in die trägerplattenfreie Oberfläche (20a) des Reibwerkstoffblockes (20) eingreift und die Seitenwände (21, 22, 23) des auf der Trägerplatte (10) angeordneten Reibwerkstoffblockes (20) übergreift und mit dem Material des Reibwerkstoffblockes (20) verschweißt ist.

DE 298 21 482 U 1

00 10 00
RICHTER, WERDERMANN & GERBAULET

EUROPEAN PATENT ATTORNEYS · PATENTANWÄLTE
EUROPEAN TRADEMARK ATTORNEYS
HAMBURG · BERLIN

DIPL.-ING. JOACHIM RICHTER · BERLIN
DIPL.-ING. HANNES GERBAULET · HAMBURG
DIPL.-ING. FRANZ WERDERMANN · 1986

NEUER WALL 10 · KURFÜRSTENDAMM 216
20354 HAMBURG · 10719 BERLIN
☎ (040) 34 00 45/34 00 56 · ☎ (030) 8 82 74 31
TELEFAX (040) 35 24 15 · TELEFAX (030) 8 82 32 77
IN ZUSAMMENARBEIT MIT
MAINITZ & MAINITZ
RECHTSANWÄLTE · NOTARE

IHR ZEICHEN
YOUR FILE

UNSER ZEICHEN
OUR FILE

HAMBURG

A 98446 III 5470

30.11.1998

Anmelder: AlliedSignal
Bremsbelag GmbH
Glinder Weg 1
D-21509 Glinde

Titel: Bremsbelag für Scheibenbremsen

Die Erfindung betrifft einen Bremsbelag für Scheibenbremsen gemäß dem Oberbegriff des Anspruches 1.

Bremsbeläge für Scheibenbremsen sind in den verschiedensten Ausführungen bekannt. Allen ist jedoch gemeinsam, daß auf einer metallischen Trägerplatte ein Block aus einem Reibwerkstoff angeordnet ist. Da die Trägerbleche aus metallischen Materialien gefertigt sind, weisen sie ein hohes Gewicht und außerdem einen hohen Wärmedurchgang auf.

DE 296 214 82 U1

09/24/2003, EAST Version: 1.04.0000

02.12.98

2

Aufgabe der vorliegenden Erfindung ist es, einen Bremsbelag der ein-
gangs beschriebenen Art zu schaffen, dessen Trägerplatte ein geringes
Gewicht und einen geringen Wärmedurchgang bei hoher mechanischer
Festigkeit aufweist, wobei gleichzeitig das Material der Trägerplatte bei
der Herstellung des Bremsbelages in das Material des Reibwerkstoffblok-
kes integriert wird.

Diese Aufgabe wird bei einem Bremsbelag mit den Merkmalen des An-
spruches 1 gelöst.

Danach besteht die Erfindung in einer Trägerplatte für einen derartigen
Bremsbelag aus einem harten, amorphen und bis zur Zersetzungstempe-
ratur starren Kunststoff, der aus räumlich engmaschig vernetzten Makro-
molekülen mit hoher mechanischer Festigkeit aufgebaut ist. Bevorzugter-
weise besteht die Trägerplatte aus einem Duroplast. Das Material der
Trägerplatte dringt bei der Trägerplattenherstellung in den Randbereichen
und Anlagebereichen des Kunststoffmaterials an dem Reibwerkstoffblock
in das Material des Reibwerkstoffblockes ein und übergreift außerdem die
Seitenwände des auf der Trägerplatte angeordneten Reibwerkstoffblok-
kes, so daß das Material der Trägerplatte quasi mit dem Material des
Reibwerkstoffblockes verschweißt und somit der Reibwerkstoffblock in
das Trägerplattenmaterial integriert ist.

Es hat sich überraschend gezeigt, daß sich als Trägerplattenmaterial be-
sonders vorteilhaft Duroplaste wegen ihrer hohen Festigkeit eignen. Hinzu
kommt das geringe Gewicht und die geringe Wärmedurchlässigkeit. Be-
sonders vorteilhaft ist dabei, daß das Material der Trägerplatte bei dessen
Herstellung, z.B. im Spritzgußverfahren, in das Material des Reibwerk-

DE 298 21482 U1

09/24/2003, EAST Version: 1.04.0000

stoffblockes insbesondere in dessen Seitenwandbereichen eindringt und hier quasi verschweißt, so daß der Reibwerkstoffblock gleichzeitig kraft- und formschlüssig auf der Trägerplatte gehalten und mit dieser verbunden ist, zumal das Material der Trägerplatte auch im Auflagebereich des Reibwerkstoffblockes in dessen Material eingreift.

Ausführungsbeispiele der Erfindung sind in den Unteransprüchen angegeben.

Vorteilhafte Ausgestaltungen der Erfindung sind in den Zeichnungen dargestellt. Es zeigen:

Fig. 1 eine Ansicht von oben auf den aus einer Trägerplatte und einem Reibwerkstoffblock bestehenden Bremsbelag und

Fig. 2 einen vergrößerten senkrechten Schnitt gemäß Linie II – II in Fig. 1 einer weiteren Ausführungsform.

Der Bremsbelag 100 für Scheibenbremsen, insbesondere für Straßen- und Schienenfahrzeuge, besteht gemäß Fig. 1 und 2 aus einem in eine Trägerplatte 10 aus einem Duroplast integrierten Block 20 aus einem Reibwerkstoff. Bei der Herstellung des Bremsbelages 100, z.B. im Spritzgußverfahren, wird die Trägerplatte 10 auf einer der beiden Seiten des Reibwerkstoffblockes 20 ausgebildet und aufgesetzt. Der Reibwerkstoffblock 20 wird nicht auf der in einem gesonderten Arbeitsgang hergestellten Trägerplatte 10 befestigt. Der Reibwerkstoffblock wird bei der Herstellung der Trägerplatte 10 quasi ummantelt, so daß die Seitenwände,

02.12.98

4

insbesondere drei zusammenhängende Seitenwände 21, 22, 23 des Reibwerkstoffblockes 20 vom Material der Trägerplatte 10 umgriffen werden (Fig. 1). Die Seitenwände 21, 22, 23 des Reibwerkstoffblockes 20 sind dann von Seitenwänden 12 umgeben, die bei der Herstellung der Trägerplatte 10 ausgebildet werden. Dabei kann das Material der Trägerplatte 10, das die Seitenwände 21, 22, 23 des Reibwerkstoffblockes 20 übergreift, bis in den Randbereich der trägerplattenfreien Oberfläche 20a des Reibwerkstoffblockes 20 geführt und hier mit dem Material des Reibwerkstoffblockes verschweißt sein und diese übergreifenden Materialabschnitte sind bei 11 angedeutet (Fig. 2). Auch das Material der Trägerplatte 10, das die Seitenwände 21, 22, 23 des Reibwerkstoffblockes 20 übergreift, sintert quasi in das Material des Reibwerkstoffblockes 20 ein, so daß ein inniger Verbund zwischen dem Material der Trägerplatte 10 und dem Material des Reibwerkstoffblockes 20 entsteht.

Als Duroplast für die Herstellung der Trägerplatte 10 kommen insbesondere Phenoplaste oder Aminoplaste zum Einsatz, wobei auch durch Polyaddition und Polymerisation vernetzende Stoffe oder Stoffgemische wie EP- und UP-Harze und PUR-Produkt-Systeme, verwendet werden können.

Der Reibwerkstoffblock 20 kann an der Unterseite 20b mit Vertiefungen 24 versehen werden, die dann mit dem Material 24a der Trägerplatte 10 ausgefüllt sind. Damit greift das Material der Trägerplatte 10 in das Material des Reibwerkstoffblockes 20 und sintert genau in das Material des Reibwerkstoffblockes 20 ein, so daß ein inniger Verbund entsteht.

DE 296 21482 U1

09/24/2003, EAST Version: 1.04.0000

02.12.98

5

Als Maßnahme zur Beeinflussung des Geräuschverhaltens, d.h. zur Beeinflussung der Eigenfrequenz des gesamten Bauteils – Reibbelagblock 20 und Trägerplatte 10 – kann die Rückseite 10a der Trägerplatte 10 in einer geometrisch uneinheitlichen Form, nämlich mit Schrägen oder Vertiefungen / Erhöhungen / Eindrückungen 25 etc. ausgestaltet werden, die aus dem gleichen Material bestehen, aus dem die Trägerplatte gefertigt ist. Es ist ebenso möglich, in das Material der Trägerplatte 10 Materialien mit einer anderen Dichte einzuarbeiten bzw. Einlagen 26 vorzusehen, damit das Geräuschverhalten beeinflußt wird. Die Trägerplatte 10 und die Formgebung 25 bestehen aus den gleichen Materialien.

Einlegeteile 27a, z.B. aus Metall in der Trägerplatte 10, können die mechanischen Eigenschaften des Duroplast-Materials unterstützen in den Bereichen, in denen mechanische Eigenschaften besonders von Nöten sind, z.B. in Führungsflächen 27 oder Kontaktflächen des Bremskolbens. Die Einlegeteile 27a können die verschiedensten Geometrien aufweisen.

Zur mechanischen Entkopplung zwischen Bremsbelag / Trägerplatte und Bremse (Bremskolben) kann in einem weiteren Arbeitsschritt direkt auf die Trägerplatte eine Trennschicht 28 z.B. aus einem Elastomer aufgebracht werden. Nach dem Aufbringen eines Haftvermittlers wird das Elastomer z.B. im Spritzgußverfahren formschlüssig auf die Trägerplatte 10 aufgetragen. Die Trennschicht 28 kann auch auf die Erhöhung 25 und in die Vertiefungen auf der Rückseite 10a der Trägerplatte 10 aufgebracht werden (nicht dargestellt).

DE 296 21482 U1

09/24/2003, EAST Version: 1.04.0000

Ansprüche

1. Bremsbelag (100) für Scheibenbremsen, insbesondere für Straßen- und Schienenfahrzeuge, der aus einer Trägerplatte (10) und einem auf dieser befestigten Block (20) aus einem gepreßten Reibwerkstoff besteht, wobei der Reibwerkstoffblock (20) auf der Trägerplatte (10) kraft- und/oder formschlüssig befestigt ist, dadurch gekennzeichnet,
daß die Trägerplatte (10) aus einem harten, amorphen und bis zur Zersetzungstemperatur starren Kunststoff, der aus räumlich engmaschig vernetzten Makromolekülen mit hoher mechanischer Festigkeit aufgebaut ist, wie z.B. einem Duroplast, besteht, wobei das Material der Trägerplatte (10) in die trägerplattenfreie Oberfläche (20a) des Reibwerkstoffblockes (20) eingreift und die Seitenwände (21, 22, 23) des auf der Trägerplatte (10) angeordneten Reibwerkstoffblockes (20) übergreift und mit dem Material des Reibwerkstoffblockes (20) verschweißt ist.
2. Bremsbelag nach Anspruch 1,
dadurch gekennzeichnet,
daß die Trägerplatte (10) im Spritzgußverfahren auf den Reibwerkstoffblock (20) bei gleichzeitiger Ummantelung der Seitenwände (21, 22, 23) des Reibwerkstoffblockes (20) aufgespritzt wird.
3. Bremsbelag nach einem der Ansprüche 1 und 2,
dadurch gekennzeichnet,
daß das Material der Trägerplatte (10), insbesondere das die Sei-

DE 296 214 82 U1

09/24/2003, EAST Version: 1.04.0000

tenwände (21, 22, 23) des Reibwerkstoffblockes (20) umgreifende Material und auch im Oberflächenbereich des Reibwerkstoffblockes (20) in das Material des Reibwerkstoffblockes eingeschmolzen ist.

4. Bremsbelag nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß der Reibwerkstoff (20) an seiner der Trägerplatte (10) zugewandten Unterseite (20b) Einziehungen und/oder Vertiefungen zur Aufnahme von Material (24a) der Trägerplatte (10) aufweist.
5. Bremsbelag nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß der Reibwerkstoff (20) an seiner der Trägerplatte (10) zugewandten Unterseite (20b) eine Profilierung aus Nuten, Rillen oder Rinnen zur Aufnahme von Material der Trägerplatte (10) aufweist.
6. Bremsbelag nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß die Trägerplatte (10) auf ihrer von dem Reibwerkstoff (20) abgewandten Rückseite (10a) Vertiefungen und /oder Erhöhungen (25) aufweist.
7. Bremsbelag nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß die Trägerplatte (10) auf ihrer von dem Reibwerkstoff (20) abgewandten Rückseite (10a) eine Profilierung aus Vertiefungen und/oder Erhöhungen aufweist.

00-12-98

8

8. Bremsbelag nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
daß die Trägerplatte (10) mindestens eine Einlage (26) und/oder
einen Bereich mit einer vom restlichen Material der Trägerplatte
(10) abweichenden Materialdichte aufweist.
9. Bremsbelag nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
daß die Trägerplatte (10) an einem mechanisch höher beanspruchten Bereich mit mindestens einem Einlegeteil (27a) versehen ist.
10. Bremsbelag nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
daß die Trägerplatte (10) auf ihrer von dem Reibwerkstoff (20) abgewandten Rückseite (10a) mit einer Trennschicht (28) versehen ist.

DE 296 21 482 U1

09/24/2003, EAST Version: 1.04.0000

02-12-98

1/1

Fig.1

Fig.2

DE 298 214 82 U1

09/24/2003, EAST Version: 1.04.0000