Логика и алгоритмы Ч. 3: Теория моделей Лекция 5

5 апреля 2021

Фильтры и ультрафильтры

Определение. Фильтр на множестве I — это непустое $\mathcal{F}\subset\mathcal{P}(I)$ со свойствами

- $X, Y \in \mathcal{F} \Rightarrow (X \cap Y) \in \mathcal{F}$
- $X \in \mathcal{F} \& X \subset Y \Rightarrow Y \in \mathcal{F}$

Фильтр $\mathcal F$ собственный, если $\varnothing \notin \mathcal F$ Ультрафильтр — максимальный по включению собственный фильтр.

Лемма 4.1.

Свойства ультрафильтров:

- $X \in \mathcal{F} \& Y \in \mathcal{F} \Leftrightarrow (X \cap Y) \in \mathcal{F}$,
- $X \notin \mathcal{F} \Leftrightarrow (I \setminus X) \in \mathcal{F}$.

Лемма 4.2.

Любой собственный фильтр можно расширить до ультрафильтра,

Фильтры и ультрафильтры

Определение. Фильтр \mathcal{F} главный, если $\bigcap \mathcal{F} \neq \emptyset$.

Лемма 4.3.

Ультрафильтр $\mathcal U$ главный, если и только если существует конечное $J\in\mathcal U.$

Определение. Пусть задан ультрафильтр \mathcal{U} на I. Рассмотрим свойства элементов I (одноместные предикаты). Свойство Φ верно noumu scerda (относительно \mathcal{U}), если

$$\{i \mid \Phi(i)\} \in \mathcal{U}.$$

Обозначение: $\forall^{\infty} i \, \Phi(i)$.

Лемма 4.4.

Свойства квантора \forall^{∞} .

- $\forall^{\infty} i (\Phi(i) \wedge \Psi(i)) \Leftrightarrow \forall^{\infty} i \Phi(i) \wedge \forall^{\infty} i \Psi(i),$
- $\forall^{\infty} i \neg \Phi(i) \Leftrightarrow \neg \forall^{\infty} i \Phi(i)$.

Ультрапроизведения

Лемма 4.5.

Пусть $(M_i)_{i\in I}$ — семейство моделей сигнатуры Ω, \mathcal{U} — ультрафильтр на I. Тогда

$$\alpha \approx_{\mathcal{U}} \beta := \forall^{\infty} i \, (\alpha_i = \beta_i)$$

задает отношение эквивалентности на множестве $\prod_{i \in I} M_i$.

Класс элемента $(\alpha_i)_{i\in I}$ обозначается $[\alpha_i]_{i\in I}$.

Ультрапроизведения

Определение. Пусть $(M_i)_{i\in I}$ — семейство моделей сигнатуры $\Omega,$ \mathcal{U} — ультрафильтр на I.

Ультрапроизведение семейства $(M_i)_{i\in I}$ по ультрафильтру \mathcal{U} задается следующим образом.

- Носитель M это $\prod_{i \in I} M_i / \approx_{\mathcal{U}}$.
- $c_M := [c_{M_i}]_{i \in I}$.
- $f_M([m_i^1], \dots, [m_i^k]) := [f_{M_i}(m_i^1, \dots, m_i^k)].$
- $M \vDash P([m_i^1], \dots, [m_i^k]) \Leftrightarrow \forall^{\infty} i M_i \vDash P(m_i^1, \dots, m_i^k).$

Обозначение: $\prod_{\mathcal{U}} M_i$.

Теорема Лося.

$$\prod_{i \neq i} M_i \vDash A([m_i^1], \dots, [m_i^k]) \Leftrightarrow \forall^{\infty} i M_i \vDash A(m_i^1, \dots, m_i^k).$$

Теорема компактности

Теорема компактности (Гёделя – Мальцева).

Пусть T — теория в некоторой сигнатуре. Если каждое конечное подмножество T выполнимо, то T выполнима.

Доказательство. Рассмотрим

$$I := \{S \subset T \mid I \text{ конечно } \}.$$

Для каждого $S \in I$ существует модель $M_S \models S$. Для $A \in T$ пусть

$$J_A := \{ S \in I \mid A \in S \}.$$

Лемма 5.1. Существует ультрафильтр на I, содержащий все J_A . **Доказательство.** $J_{A_1} \cap \ldots \cap J_{A_k} \neq \emptyset$, т.к. содержит $\{A_1, \ldots, A_k\}$. Поэтому найдется фильтр, содержащий все такие пересечения.

Теорема компактности

Пусть \mathcal{U} содержит все J_A для $A \in T$. Тогда

$$\prod_{\mathcal{U}} M_S \vDash T.$$

Действительно,

$$J_A \in \mathcal{U} \Leftrightarrow \forall^{\infty} S A \in S.$$

Тогда

$$\forall^{\infty} S \, M_S \vDash A.$$

По теореме Лося,

$$\prod_{\mathcal{U}} M_S \vDash A.$$

Теоремы о подъеме

Теорема 5.2

Если теория имеет конечные модели неограниченной мощности, то она имеет и бесконечную модель.

Теорема 5.3 (Лёвенгейма — Сколема о подъеме)

Если теория в сигнатуре Ω имеет бесконечную модель, то она имеет модели любой бесконечной мощности $k \geq |\Omega|$.