2023 Vill. Mat A2 – 3. gyakorlat

(Inhomogén lineáris e.r., inverz, leképezés mártixa)

Egy $\mathbf{A} \in \mathbf{R}^{m \times n}$ mátrix oszlopai által kifeszített altér $\{\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbf{R}^n\}$, az \mathbf{A} oszloptere. Azon vektorok által kifeszített altér, amelyekel jobbról megszorozva nullát ad eredményül $\{\mathbf{x} \in \mathbf{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0}\}$, az \mathbf{A} nulltere. A sorai által kifeszített altér pedig a sortere. Ha tekintjük az $\mathbf{R}^n \to \mathbf{R}^m : \mathcal{A}\mathbf{x} := \mathbf{A}\mathbf{x}$ leképezést, akkor \mathbf{A} oszloptere ugyanaz, mint $\mathrm{Im} \mathcal{A} = \{\mathcal{A}\mathbf{x} \mid \mathbf{x} \in \mathbf{R}^n\}$, azaz \mathcal{A} képtere, és a nulltér ugyanaz, mint a Ker $\mathcal{A} = \{\mathbf{x} \in \mathbf{R}^n \mid \mathcal{A}\mathbf{x} = \mathbf{0}\}$, azaz \mathcal{A} magtere.

1. Adja meg az alábbi mátrixok a) oszlopterének egy bázisát, b) nullterének egy bázisát és c) a sorterének egy bázisát!

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 & 1 & 2 \\ 2 & 6 & 1 & 4 & 4 \\ 1 & 3 & -3 & -5 & -3 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 2 & -2 & 1 & 0 \\ -1 & 1 & 3 & 1 \\ 1 & -1 & -2 & 2 \end{bmatrix}, \qquad \mathbf{HF} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 4 \\ -2 & 3 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$

2. Az a valós paraméter mely értékeire invertálhatóak az alábbi mátrixok és amikor igen, mi az inverzük?

a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & a \end{bmatrix}$$
 b) $\mathbf{B} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 3 & a \\ 0 & 1 & 1 \end{bmatrix}$ hf.: $\mathbf{A} = \begin{bmatrix} 1 & -1 & a \\ 1 & 3 & 1 \\ 0 & 4 & 2 \end{bmatrix}$

- 3. Legyen $\boldsymbol{A} \in \mathbf{R}^{3\times3}$ a z tengely körül +90°-kal forgató, és $\boldsymbol{B} \in \mathbf{R}^{3\times3}$ az xy síkra tükröző leképezés mátrixa. Mik az alábbi mátrixok? a) \boldsymbol{A}^{-1} b) \boldsymbol{B}^{-1} , c) $\boldsymbol{A}\boldsymbol{B}$, d) $\boldsymbol{B}\boldsymbol{A}$, e) $\boldsymbol{A}^{2023} \cdot \boldsymbol{B}^{2023}$?
- 4. Idézzük fel, hogy a bázisváltó mátrix: $T_{C\to B} = [\mathbf{c_1}, \mathbf{c_2}]$, ahol $C = (\mathbf{c_1}, \mathbf{c_2})$ az új bázis. Egy leképezés mátrixa az új bázisban pedig: $[\mathcal{A}]_C = T_{C\to B}^{-1}[\mathcal{A}]_B T_{C\to B}$. Alább leképezések sztenderd bázisbeli mátrixát látjuk. Adjuk meg mátrixukat a C = ((3;4), (-4;3)) bázisban!

a)
$$\mathbf{A} = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$$
 b) $\mathbf{B} = \begin{bmatrix} 9 & 2 \\ 2 & 6 \end{bmatrix}$ hf.: $\mathbf{A} = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$

iMSc. Az $A, B \in \mathbb{R}^{n \times n}$ mátrixok hasonlók, ha van olyan $C \in \mathbb{R}^{n \times n}$ invertálható mátrix, hogy $C^{-1}AC = B$. Igazoljuk, hogy a hasonlóság ekvivalenciareláció! Igazak-e? Hasonló mátrixok a) oszloptereinek dimenziója ugyanaz, b) oszlopterei ugyanazok, c) sortereinek dimenziója ugyanaz, d) sorterei ugyanazok?