Inner products and Norms

Inner product of 2 vectors (Read sec. 2.2)

▶ Inner product of 2 vectors x and y in \mathbb{R}^n :

$$x_1y_1+x_2y_2+\cdots+x_ny_n$$
 in \mathbb{R}^n

Notation: (x, y) or y^Tx

➤ For complex vectors

$$\overline{(x,y)=x_1ar{y}_1+x_2ar{y}_2+\cdots+x_nar{y}_n}$$
 in \mathbb{C}^n

Note: $(x,y) = y^H x$

An important property: | Given $A \in \mathbb{C}^{m \times n}$ then

$$(Ax,y)=(x,A^Hy) \quad orall \; x \; \in \; \mathbb{C}^n, orall y \; \in \; \mathbb{C}^m$$

Show that when Q is orthogonal then $||Qx||_2 = ||x||_2$

Csci 5304 - September 8, 2013

Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

➤ A vector norm on a vector space X is a real-valued function on X, which satisfies the following three conditions:

$$1. \|x\| \ge 0, \quad \forall \ x \ \in \ \mathbb{X}, \quad \text{and} \quad \|x\| = 0 \text{ iff } x = 0.$$

2.
$$\|\alpha x\| = |\alpha| \|x\|, \quad \forall \ x \in \mathbb{X}, \quad \forall \alpha \in \mathbb{C}.$$

3.
$$||x + y|| \le ||x|| + ||y||$$
, $\forall x, y \in X$.

> 3. is called the triangle inequality.

Csci 5304 - September 8, 2013

Important example: Euclidean norm on $X = \mathbb{C}^n$,

on
$$\mathbb{X}=\mathbb{C}^n$$
,

$$\|x\|_2 = (x,x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}$$

➤ Most common vector norms in numerical linear algebra: special cases of the Hölder norms

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}.$$

Find out (bbl search) how to show that these are indeed norms for any $p \ge 1$ (Not easy for 3rd requirement!)

A few properties:

▶ The limit of $||x||_p$ when p tends to infinity exists:

$$\lim_{p\to\infty}\|x\|_p=\ \max_{i=1}^n|x_i|$$

Defines a norm denoted by $\|.\|_{\infty}$.

▶ The cases p = 1, p = 2, and $p = \infty$ lead to the most important norms in practice. These are:

$$\|x\|_1 = |x_1| + |x_2| + \dots + |x_n|, \ \|x\|_2 = \left[|x_1|^2 + |x_2|^2 + \dots + |x_n|^2\right]^{1/2}, \ \|x\|_\infty = \max_{i=1,\dots,n} |x_i|.$$

➤ The Cauchy-Schwartz inequality (important) is:

$$|(x,y)| \leq ||x||_2 ||y||_2.$$

▶ The Hölder inequality (less important for $p \neq 2$) is:

$$|(x,y)| \leq \|x\|_p \|y\|_q$$
 , with $\frac{1}{p} + \frac{1}{q} = 1$

Equivalence of norms:

In finite dimensional spaces (\mathbb{R}^n , \mathbb{C}^n , ..) all norms are 'equivalent': if ϕ_1 and ϕ_2 are two norms then there is a constant α such that,

$$\phi_1(x) \leq lpha \ \phi_2(x)$$

- How can you prove this result?
- ➤ We can bound one norm in terms of the other:

$$\beta \phi_2(x) \le \phi_1(x) \le \alpha \phi_2(x)$$

- $ilde{oldsymbol{ol}}}}}}}}}}}}}}}}}}}$ } } } }
- What are the "unit balls" $B_p=\{x\mid \|x\|_p\leq 1\}$ associated with the norms $\|.\|_p$ for $p=1,2,\infty$, in \mathbb{R}^2 ?

2-5 ______ Csci 5304 – September 8, 2013

Example: The sequence

$$x^{(k)} = \left(rac{1+1/k}{rac{k}{k+\log_2 k}}
ight)$$

converges to

$$x = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Note: Convergence of $x^{(k)}$ to x is the same as the convergence of each individual component $x_i^{(k)}$ of $x^{(k)}$ to the corresponding component x_i of x.

Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k=1,\ldots,\infty$ converges to a vector x with respect to the norm $\|.\|$ if, by definition,

$$\lim_{k o\infty}\;\|x^{(k)}-x\|=0$$

- ▶ Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.
- ➤ Notation:

$$\lim_{k o\infty}x^{(k)}=x$$

2-6 Csci 5304 – September 8, 2013

Matrix norms

- ➤ See Sec. 2.3 of text
- ▶ Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn} . These norms satisfy the usual properties of vector norms, i.e.,
- 1. $\|A\| \geq 0, \ \forall \ A \in \mathbb{C}^{m \times n}, \ \text{and} \ \|A\| = 0 \ \text{iff} \ A = 0$
- 2. $\|\alpha A\| = |\alpha| \|A\|, \forall A \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C}$
- 3. $||A + B|| \le ||A|| + ||B||, \ \forall \ A, B \in \mathbb{C}^{m \times n}$.
- ➤ However, these will lack (in general) the right properties for composition of operators (product of matrices).
- ▶ The case of $\|.\|_2$ yields the Frobenius norm of matrices.

.3

2-7 Csci 5304 – September 8

Csci 5304 – Sentember 8 20

ightharpoonup Given a matrix A in $\mathbb{C}^{m\times n}$, define the set of matrix norms

$$\|A\|_p = \max_{x \in \mathbb{C}^n, \; x
eq 0} rac{\|Ax\|_p}{\|x\|_p}.$$

- ➤ These norms satisfy the usual properties of vector norms (see previous page).
- ► The matrix norm $\|.\|_p$ is induced by the vector norm $\|.\|_p$.
- ▶ Again, important cases are for $p = 1, 2, \infty$.

2-9 Csci 5304 – September 8, 2013

Frobenius norms of matrices

➤ The Frobenius norm of a matrix is defined by

$$\|A\|_F = \left(\sum_{j=1}^n \sum_{i=1}^m |a_{ij}|^2\right)^{1/2}$$
 .

- ➤ Same as the 2-norm of the column vector in \mathbb{C}^{mn} consisting of all the columns (respectively rows) of A.
- ➤ This norm is also consistent [but not induced from a vector norm]

Consistency / sub-mutiplicativity of matrix norms

➤ A fundamental property of matrix norms is consistency

$$||AB||_p \leq ||A||_p ||B||_p$$
.

[Also termed "sub-multiplicativity"]

- ightharpoonup Consequence: $\left\| \|A^k\|_p \leq \|A\|_p^k
 ight|$
- $ightharpoonup A^k$ converges to zero if any of its p-norms is <1

[Note: sufficient but not necessary condition]

2-10 Csci 5304 – September 8, 2013

Compute the Frobenius norms of the matrices

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & -1 \\ -1 & \sqrt{5} & 0 \\ -1 & 1 & \sqrt{2} \end{pmatrix}$$

- Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]
- Define the 'vector 1-norm' of a matrix A as the 1-norm of the vector of stacked columns of A. Is this norm a consistent matrix norm? [Hint: Result is true Use Cauchy-Schwarz to prove it.]

11 Csci 5304 – September 8, 201

2-12 _____ Csci 5304 – September 8, 201

Expressions of standard matrix norms

> Recall the notation: (for square $n \times n$ matrices)

 $ho(A) = \max |\lambda_i(A)|; \quad Tr(A) = \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \lambda_i(A)$ where $\lambda_i(A)$, $i=1,2,\ldots,n$ are all eigenvalues of A

$$\|A\|_1 = \max_{j=1,...,n} \sum_{i=1}^m |a_{ij}|,$$
 $\|A\|_{\infty} = \max_{i=1,...,m} \sum_{j=1}^n |a_{ij}|,$ $\|A\|_2 = \left[
ho(A^HA)
ight]^{1/2} = \left[
ho(AA^H)
ight]^{1/2},$ $\|A\|_F = \left[Tr(A^HA)
ight]^{1/2} = \left[Tr(AA^H)
ight]^{1/2}.$

13 ______ Csci 5304 – September 8, 2013

- \triangle Is $\rho(A)$ a norm?
- 1. $\rho(A) = \|A\|_2$ when A is Hermitian $(A^H = A)$. \triangleright True for this particular case...
- 2. ... However, not true in general. For

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

we have $\rho(A)=0$ while $A\neq 0$. Also, triangle inequality not satisfied for the pair A, and $B=A^T$. Indeed, $\rho(A+B)=1$ while $\rho(A)+\rho(B)=0$.

- ▶ Eigenvalues of A^HA are real ≥ 0 . Their square roots are singular values of A. To be covered later.
- ▶ $||A||_2 ==$ the largest singular value of A and $||A||_F =$ the 2-norm of the vector of all singular values of A.
- Compute the p-norm for $p=1,2,\infty,F$ for the matrix $A=\left(egin{array}{cc} 0 & 2 \\ 0 & 1 \end{array}
 ight)$
- Show that $\rho(A) \leq ||A||$ for any matrix norm.

14 _____ Csci 5304 – September 8, 2013