Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Outline

- Image-to-image translation
- Other types of translation

Available from: https://twitter.com/citnaj/status/1124904251128406016

Available from: https://github.com/NVIDIA/pix2pixHD

Available from: https://youtu.be/3RYNThid23g

Paired Image-to-Image Translation

Labels to facade

Black-and-white to color

Paired Image-to-Image Translation

Day to night

Edges to photo

Paired Image-to-Image Translation

Clothes and pose to pose with clothes

Available from: https://arxiv.org/abs/1705.09368

Other Translations

"This bird is red with white and has a very short beak"

Other Translations

Summary

- Image-to-image translation transforms images into different styles
- GANs' realistic generation abilities are well-suited to image-to-image translation tasks
- Other types of translation include text-to-image or image-to-video

deeplearning.ai

Pix2Pix Overview

Outline

- Overview of Pix2Pix
- Comparison with conditional GAN
- Upgraded generator and discriminator architectures

Pix2Pix for Paired Image-to-Image Translation

Image-to-Image ----> Pix-to-Pix ----> Pix2Pix

Pix2Pix Generator

Pix2Pix Generator

Pix2Pix Generator

Pix2Pix Discriminator

Pix2Pix Upgrades

Based on: https://arxiv.org/abs/1611.07004

Pix2Pix Upgrades

(Left) Based on: https://arxiv.org/abs/1611.07004 (Right) Based on: https://arxiv.org/abs/1803.07422

Pix2Pix Upgrades

(Left) Based on: https://arxiv.org/abs/1611.07004 (Right) Based on: https://arxiv.org/abs/1803.07422

Goal is still to produce realistic outputs!

Summary

- Inputs and outputs of Pix2Pix are similar to a conditional GAN
 - Take in the original image, instead of the class vector
 - No explicit noise as input
- Generator and discriminator models are upgraded

deeplearning.ai

Pix2Pix: PatchGAN

Outline

- PatchGAN discriminator architecture
- Matrix output vs. single output

Summary

- PatchGAN discriminator outputs a matrix of values, each between 0 and 1
- Label matrices:
 - 0's = fake
 - o 1's = real

deeplearning.ai

Pix2Pix: U-Net

Outline

- Net framework
 - Encoder-Decoder
- U-Skip connections
- Pix2Pix generator

Image Segmentation

Image Segmentation

Available from: https://developer.nvidia.com/blog/image-segmentation-using-digits-5/

Available from: https://developer.nvidia.com/blog/image-segmentation-using-digits-5/

U-Net Framework: Encoder-Decoder

U-Net Framework: Skip Connections

U-Net Framework: Skip Connections

Forward pass

Skip connections allow information flow to the decoder

U-Net Framework: Skip Connections

Backward pass

Skip connections improve gradient flow to encoder

Pix2Pix Decoder

Pix2Pix Decoder

Pix2Pix U-Net

Pix2Pix U-Net

Pix2Pix U-Net Skip connections concatenate encoder to decoder blocks at the same resolutions **Block Block** Block **Block Block** Block Block Block **Block** Block Block Block **Block** Block Block Block

Summary

- Pix2Pix's generator is a U-Net
- U-Net is an encoder-decoder, with same-size inputs and outputs
- U-Net uses skip connections
 - Skip connections help the decoder learn details from the encoder directly
 - Skip connections the encoder learn from more gradients flowing from decoder

deeplearning.ai

Pix2Pix: Pixel Distance Loss Term

Outline

- Regularization and additional loss term
- Encourage pixel distance between generated and real outputs
- Additional loss term for Pix2Pix generator

Additional Loss Term

$$\min_{q} \max_{c}$$
 Adversarial Loss + λ * Other loss term

Additional Loss Term

$$\min_{q} \max_{c}$$
 Adversarial Loss + λ * Pixel loss term

Pixel Distance Loss Term

Pix2Pix Generator Loss

BCE Loss +
$$\lambda \sum_{i=1}^{n}$$
 $i=1$

Pix2Pix Generator Loss

BCE Loss +
$$\lambda \sum_{i=1}^{n}$$
 | generated_output - real_output

Summary

- Pix2Pix adds a Pixel Distance Loss term to the generator loss function
- This loss term calculates the difference between the fake and the real target outputs
- Softly encourages the generator with this additional supervision
 - The target output labels are the supervision
 - Generator essentially "sees" these labels

deeplearning.ai

Pix2Pix: Putting It All Together

Outline

- Put the Pix2Pix architecture together!
 - U-Net generator
 - Pixel Distance Loss term
 - PatchGAN discriminator

Real input

Pix2Pix: Discriminator Loss

Pix2Pix: Discriminator Loss

Pix2Pix: Generator Loss

Summary

- U-Net generator: image \rightarrow image
- PatchGAN discriminator
 - Inputs input image and paired output (either real target or fake)
 - Outputs classification matrix
- Generator loss has a regularization term

Pix2Pix Advancements

Outline

- Improvements and extensions of Pix2Pix for paired image-to-image translation
 - Higher resolution images
 - Image editing

Pix2PixHD

Available from: https://github.com/NVIDIA/pix2pixHD

GauGAN

Available from: https://blogs.nvidia.com/blog/2019/03/18/gaugan-photorealistic-landscapes-nvidia-research/

Summary

- Pix2PixHD and GauGAN are successors of Pix2Pix
- They are designed for higher resolution images
- They highlight opportunities for image editing using paired image-to-image translation
 - Pix2Pix can do this too, of course!

