Fall 2020 EE 236A

Prof. Christina Fragouli

TAs: Mine Dogan and Kaan Ozkara

EE236A Linear Programming Quiz 2 Tuesday October 27, 2020

NAME:	UID:
INAIVIL'I.	OID.

This quiz has 3 questions, for a total of 20 points.

Open book.

The exam is for a total of 1:00 hour. Please, write your name and UID on the top of each sheet.

Good luck!

Problem	Mark	Total
P1		6
P2		7
P3		7
Total		20

Problem 1 (6 points) The following two questions are not related to each other.

1) (3 points) Consider the set

$$C = \{ x \in \mathbb{R}^n \mid ||x||_{\infty} \le n \} \tag{1}$$

Argue that this set is a pointed polyhedron in \mathbb{R}^n , by expressing it through a set of linear inequalities in \mathbb{R}^n . Find what form the vertices of this polyhedron have. How many vertices are there?

2) (3 points) Is the point $x_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ a vertex in the polyhedron P described next?

$$P = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_i \ge 0, \quad x_1 + x_2 \ge 2, \quad x_1 + x_3 \ge 2, \quad 3x_1 + 2x_2 + x_3 \ge 6 \right\}$$
 (2)

Problem 2 (7 points): Which of the following statements are true and which are false? Give a brief justification (answers without justification do not get points).

- (i) (2 points) Consider m points in \mathbb{R}^n with m > n. The convex hull of these points is a polyhedron with exactly m vertices.
- (ii) (2 points) The minimal face of a polyhedron is always a single point.
- (iii) (3 points) Let $P \subseteq \mathbb{R}^d$ and $Q \subset \mathbb{R}^e$ be polytopes. Then the following set $\mathbb{S} \subseteq \mathbb{R}^{d+e+1}$ is also a polytope, where:

$$\mathbb{S} = \left\{ z \in \mathbb{R}^{d+e+1} | z = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y \\ 1 \end{pmatrix}, \text{ with } x \in P \text{ and } y \in Q \right\}$$
 (3)

Problem 3 (7 points) Assume $x_1, x_2, y_1, y_2, z \in \mathbb{R}^n$, A is a given $m \times n$ matrix, λ is a constant and c is a given column vector of dimension $n \times 1$. Prove that the following two programs, (4) and (5), are equivalent.

$$\min_{x_1, x_2, y_1, y_2} -c^T (x_1 - x_2)$$
subject to $A(x_1 - x_2) + y_1 - y_2 = 0$

$$y_1 + y_2 = \lambda \mathbf{1}$$

$$x_1 \ge 0, x_2 \ge 0, y_1 \ge 0, y_2 \ge 0$$

$$(4)$$

$$\max_{z} c^{T}z$$

subject to $||Az||_{\infty} \le \lambda$ (5)