HW 1

EE40 Maharbiz Spring 2012 Posted Monday 1/30/2012

- Due Monday 2/6/2012
- 1. A steady flow resulted in 3×10^{15} electrons entering a device in 0.1 ms. What is the current?
- 2. Determine the current i(t) flowing through a certain device if the cumulative charge that has flowed through it up to time t is given by
 - (a) q(t) = 3.6t [mC]
 - (b) $q(t) = 5\sin(377t)$ [mC]
 - (c) $q(t) = 0.3[1-e^{-0.4t}]$ [pC]
 - (d) $q(t) = 0.2t \sin(120\pi t) [nC]$
- 3. The plot below displays the cumulative amount of charge q(t) that has entered a certain device up to time t. What is the current at
 - (a) t = 1 s
 - (b) t = 3 s
 - (c) t = 6 s

4. For each of the eight devices in the circuit below, determine whether the device is a supplier or a recipient of power and how much power it is supplying or receiving.

Please reproduce and fill in the following table after showing your work:

Device	Supplier or Recipient?	Power [W]
1		
2		
3		
4		
5		
6		
7		
8		

5. Determine currents I1, I2 and I3 in the circuit below.

6. Determine I_x in the circuit below. Apply KCL once (and provide the equation). Apply KVL once (and provide a second equation). Then provide a solution for I_x .

7. Determine currents I1, I2, I3 and I4 in the circuit below. Again, write KCL and KVL equations, then solve them for the unknown variables.

