A Systematic Preparation of New Contracted Gaussian-Type Orbital Sets. VIII. MINI-1 and MIDI-1 Sets for Ga through Cd

Yoshiko Sakai,* Hiroshi Tatewaki,† and Sigeru Huzinaga

Department of Chemistry, The University of Alberta, Edmonton, Alberta, Canada Received 5 January 1981; accepted 13 March 1981; corrected proof received 9 September 1981

Minimal contracted Gaussian basis sets are presented for Ga through Cd. Characteristically these Gaussian-based minimal sets give far better d orbital energies than those by minimal STO basis sets. These new basis sets were tested on Br_2 for which a new benchmark calculation was also performed. The test result is satisfactory in that these basis sets produce good general agreement with the near Hartree–Fock calculation with respect to the molecular spectroscopic constants.

I. INTRODUCTION

A variety of compact contracted Gaussian-type (CGTO) basis sets have been prepared for Li through Zn.¹⁻³ This article is a continuation of that work. Minimal-type basis sets are presented for Ga through Cd. They are termed MINI-1 in accordance with our previously adopted nomenclature.¹ Three primitive GTOs are used for each of the CGTOs in MINI-1. Orbital exponents and contraction coefficients were determined by optimizing total energies as was explained in detail in a previous article.³

For the first-row transition metal atoms, the MINI-1 basis sets were shown to give far better 3d orbital energies than those by the STO SZ basis sets, 3,4 but the magnitude of errors for 3d still remained large in comparison with those for p and s orbital energies. For the second-row transition metal atoms, however, the MINI-1 basis sets turn out to be capable of producing d orbital energies in equally good accuracy as p and s orbital energies, while performance of STO SZ sets still remains rather poor.

The split-type basis sets, MIDI-1, are derived

from MINI-1 in much the same way as done in the previous article.^{1,2} MINI-1, MIDI-1, and some other related basis sets were tested in a series of *ab initio* molecular orbital calculations on the Br₂ molecule. For testing purposes we have carried out a new benchmark calculation on Br₂ using a large GTO basis set. The test result seems quite satisfactory and encourages the use of MINI-1 and MIDI-1 basis sets for molecular calculations.

II. ATOMIC WAVEFUNCTIONS

A. MINI-1

In the minimal basis sets, the radial functions of the atomic orbitals are expressed as

$$R_{ns}(r) = \sum_{i=1}^{N} C_{ns,i} s_i(r),$$

$$N = 4 \text{ for Ga to Kr and } N = 5$$
for Rb to Cd (1)

$$R_{np}(r) = \sum_{i=1}^{N} C_{np,i} p_i(r), \qquad N = 3$$
 (2)

$$R_{nd}(r) = \sum_{i=1}^{N} C_{nd,i} d_i(r),$$

$$N = 1$$
 for Ga to Sr and $N = 2$
for Y to Cd (3)

^{*} Permanent address: College of General Education, Kyushu University, Ropponmatsu, Fukuoka, Japan. † Permanent address: Research Institute for Catalysis, Hokkaido University, Sapporo, Japan.

where n is the principal quantum number. In the MINI-1 sets, three primitive Gaussian-type functions (GTOs) are used to construct each $s_i(r)$, $p_i(r)$, or $d_i(r)$, which can be written as

$$s_i(r) = \sum_{k=1}^{3} d_{s_i,k} g_{s_i}(\alpha_{s_i,k},r)$$
 (4)

$$p_{i}(r) = \sum_{k=1}^{3} d_{p_{i},k} g_{p_{i}}(\alpha_{p_{i},k},r)$$
 (5)

$$d_{i}(r) = \sum_{k=1}^{3} d_{d_{i},k} g_{d_{i}}(\alpha_{d_{i},k}, r)$$
 (6)

where g_{s_i} , g_{p_i} , and g_{d_i} are normalized 1s-type, 2p-type, and 3d-type Gaussian functions, respectively. The convenient shorthand notations are (3333/333/3) for Ga to Kr, as (33333/333/3) for Rb and Sr, and (33333/333/33) for Y to Cd. The orbital exponents and the contraction coefficients have been determined in the same method reported elsewhere,³ and the values are shown in Table I.

B. MIDI-1

The MIDI-1 basis set can be described as (33321/33321/3) for Ga through Kr, as (333321/333/3) for Rb and Sr, and (333321/333/321) for Y through Cd. These basis sets were obtained merely by splitting the valence shell orbitals of parent MINI-1 sets into two parts without changing any exponents and contraction coefficients given in Table I. If more flexibility is required for molecular calculations we may split all the outermost orbitals of s, p, and d types. Renormalization is, of course, necessary for each orbital.

C. Total and Orbital Energies

Total energies given by MINI-1 are given in Table II together with those given by STO SZ and DZ.⁵

MINI-1 give shallower total energies than STO SZ. If we are interested in getting total energies

Table 1. Exponents and expansion coefficients for MINI-1.

	Ga (² P)		Ge (Ge (³ P)		As (⁴ S)		Se (³ P)	
	Expn.	Coef.	Expn.	Coef.	Expn.	Coef.	Expn.	Coef.	
s ₁	4734.41355	0.06309	5051.83305	0.06300	5373.14930	0.06302	5715.38313	0.06291	
Т	717.03507	0.37424	765.60521	0.37380	814,78055	0.37369	866.51303	0.37333	
	157,21175	0.68356	167.92334	0.68395	178.87522	0.68395	190.30059	0.68429	
s ₂	210.73599	-0.10547	224.89110	-0.10575	239.79458	-0.10606	255.23194	-0.10632	
- 2	19.80157	0.70740	21.17763	0.71096	22.62844	0.71297	24.11743	0.71498	
	8.05193	0.35963	8.60725	0.35613	9.19347	0.35423	9.81016	0.35219	
s ₃	16.35935	-0.22833	17.80747	-0.22737	19,15505	-0.22929	20.57072	-0.23096	
-3	2.65530	0.71475	2.83908	0.73090	3.04553	0.74777	3,26003	0,76658	
	1.06085	0.41843	1.15055	0.39992	1,24742	0.38296	1.34144	0.36426	
s ₄	1.36765	-0.15175	1.56709	-0,17525	1.80148	-0.19726	1.99401	-0.21281	
4	0.17557	0.63645	0.22753	0.65370	0.28185	0.66024	0.34561	0.65746	
	0.06392	0.46415	0.08390	0,45949	0.10550	0.46353	0.13017	0.47783	
P ₁	274.38968	0.09025	293,42083	0.09040	314.18656	0.09024	334.71076	0.09028	
- 1	62,99802	0.44471	67.61106	0.44478	72,50029	0.44456	77.57597	0.44372	
	18.18102	0.61916	19.57164	0.61848	21.05251	0.61828	22.61235	0.61840	
P ₂	49.28530	-0.02996	51.45157	-0.02837	54.49322	-0.02795	58.64604	-0.02808	
- 2	4.87363	0.49982	5,48857	0.48023	6.05515	0.47159	6.58902	0.46930	
	1.54803	0.59638	1.76997	0.61319	1.98879	0.61908	2,20366	0.61892	
P3	3.50273	-0.01665	3.74397	-0.02791	4.03778	-0.03641	4.50393	-0.04306	
r 3	0.22420	0.40308	0.27991	0.47089	0.34465	0.50577	0.41935	0.51696	
	0.06333	0.69855	0.08399	0.63015	0.10735	0.59335	0.12751	0.58734	
d ₁	21.01067	0.16409	24.19805	0.15871	27,29366	0.15545	30.33647	0.15381	
~1	5.35109	0.51096	6.19837	0.51173	7.05451	0.51179	7,90696	0.51289	
	1.32896	0.58838	1.58341	0.58485	1.84965	0.58110	2.12105	0.57605	

	Br (²	P)	Kr (¹ s)		Rb (² s)		Sr (¹ s)	
	Expn.	Coef.	Expn.	Coef.	Expn.	Coef.	Expn.	Coef.
1	6056.16497	0.06292	6403.47848	0.06300	6798.68464	0.06267	7168.17620	0.0627
1	918.96445	0.37320	972.11100	0.37324	1031.18763	0.37233	1087,95601	0.3722
	201.95153	0.68434	213.90882	0.68414	226.72378	0.68521	239.43879	0.6851
2	271.08548		286.63799		303.82934		321.01596	
	25.64521	0.71758	27.30120	0.71661	28.91348	0.71895 0.34833	30.61798 12.51542	0.7197
	10.42605	0.34967	11.12031	0.35081	11.79429	V+34633	12+31342	0.34/
3		-0.23334	23.35643 3.78626	-0.23725 0.77893	24.98156 4.03664	-0.23841 0.79345	26.49582 4.33825	0.7964
	3,51591 1,47196	0.77093 0.36035	1.59752	0.35441	1.71074	0.33979	1.85991	0.3384
4		-0.23248		-0.24458	2.87318	0.26899	3,19349 0,58231	0.289
	0.39404	0.69098	0.45455 0.17236	0.70001 0.44933		-0.74611 -0.40879	0.24611	
	0.14891	0.45098	0.17236	V+44733	0.21020	01400//		
5					0.18298	0.16877	0.34953	0.212
,						-0.53007	0.05049	
					0.01882	-0.58362	0.02089	-0.406
1	357,75879	0.08978	380.87992	0.08957	403.69176	0.08965	428 • 64434	0.089
L	82.99850	0.44305	88.48672	0.44246	94.00665	0.44229	99.98830	0.441
	24.22208	0.61909	25.90023	0.61930	27.61504	0.61885	29,44175	0.619
2	58.80826	-0.02696	63.25696	-0.02702	66,84737		70.21220	
•	7.38264	0.45008	7.95380	0.45070	8.61285	0.44641	9.30971	0.442
	2.48846	0.63644	2.72394	0.63383	2.99560	0.63608	3,28131	0.638
3	4.91469	-0.05456	5.39516	-0.06079	5.88651	-0.06536	6.37433	-0.068
3	0.49001	0.53523	0.56568	0.54950	0,66752	0.56989	0.77594	0.587
	0.14913	0.57153	0.17336	0.55797	0.22333	0.52709	0.27408	0.503
_	33.65964	0.15137	37.11330	0.14929	40:74243	0.14722	44.44350	0.145
_	8+83353	0.51292	9,79757	0.51317	10.81593	0.51299	11.85644	0.513
	2.41386	0.57342	2,72046	0.57091	3.04633	0.56918	3.38306	0.566
	2		2				_	
	Y (² D)	Zr (³ F	·)	Nb (⁶ D)) 	Mo (⁷ s	S)
	Expn.	Coef.	Expn.	Coef.	Expn.	Coef.	Expn.	Coef.
s ₁	7646.54686	0.06190	8091.57553	0.06152	8462,16233	0.06184	8893.77639	0.0617
_	1156.48810 253.66802	0.37034 0.68762	1222.35237 267.78250	0.36930 0.68887	1280,70714 281,17818	0.36992 0.68793	1346.18544 295.58720	0.3695
	233.00002	V.00/02	207.70230	V+08887	201+1/010	0.00773	273+30720	V+000.
⁵ 2	339.25556		358.28747	0.10760	375,98738	0.10800	395.55716	0.108
-	32.33314		33.99419		36,02687		37.85443	
	13.19845	0.34561	13.82193	-0.339/3	14.76801	-0.345/0	15.48815	~0.343
3	28.14338	-0.24383	29.92585	-0.24448	31.45914	-0.24901	33.28502	-0.249
3	4.61767	0.80904		0.83513		0.82425	5.53855	0.834
	1.98973	0.32644	2.06110	0.30042	2.28040	0.31375	2,39993	0.303
4							A E () 1 -7 (
	3.52328	0.30368	3.85239	-0.31103	4.16157	0.31516	4.001/6	-0.321
4		0.3036B -0.80432	3.85239 0.73421	-0.31103 0.82268		0.31516 -0.80469	0.90160	
4	0.66088				0.82176			0.811
	0.66088 0.28219	-0.80432 -0.36575	0.73421 0.31201	0.82268 0.35238	0.82176 0.34317	-0.80469 -0.37647	0.90160 0.37414	0.811 0.374
	0.66088 0.28219 0.43043	-0.80432	0.73421 0.31201 0.49679	0.82268	0.82176 0.34317 0.57325	-0.80469	0.90160	0.811 0.374 -0.217
	0.66088 0.28219 0.43043 0.05676	-0.80432 -0.36575 0.21985	0.73421 0.31201 0.49679 0.06432	0.82268 0.35238 -0.21791	0.82176 0.34317 0.57325 0.06685	-0.80469 -0.37647 0.21915	0.90160 0.37414 0.65463	0.811 0.374 -0.217 0.657
⁵ 5	0.66088 0.28219 0.43043 0.05676 0.02283	-0.80432 -0.36575 0.21985 -0.71871 -0.39672	0.73421 0.31201 0.49679 0.06432 0.02540	0.82268 0.35238 -0.21791 0.70789 0.40696	0.82176 0.34317 0.57325 0.06685 0.02620	-0.80469 -0.37647 0.21915 -0.68648 -0.42232	0.90160 0.37414 0.65463 0.07346 0.02841	0.8113 0.374 -0.217 0.657 0.448
5	0.66088 0.28219 0.43043 0.05676	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668	0.73421 0.31201 0.49679 0.06432	0.82268 0.35238 -0.21791 0.70789	0.82176 0.34317 0.57325 0.06685	-0.80469 -0.37647 0.21915 -0.68648	0.90160 0.37414 0.65463 0.07346	0.8113 0.374 -0.217 0.657 0.448
55	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393	0.82268 0.35238 -0.21791 0.70789 0.40696	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023	0.811 0.374 -0.217 0.657 0.448 0.086 0.434
5 1	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.71430 31.60437	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076 33.58589	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995 37.59737	0.811 0.374 -0.217 0.657 0.448 0.086 0.434 0.626
5 1	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.71430	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600 -0.02784	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645 82.65639	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995	0.811 0.374 -0.217 0.657 0.448 0.086 0.434 0.626
5 1	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.71430 31.60437	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600 -0.02784 0.42750	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076 33.58589 76.32777	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705 -0.02817	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645 82.65639	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666 -0.02869	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995 37.59737 86.07180	0.811 0.374 -0.217 0.657 0.448 0.086 0.434 0.626 -0.028 0.426
55 1	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.71430 31.60437 72.11967 10.21290 3.62596	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600 -0.02784 0.42750 0.65186	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076 33.58589 76.32777 10.94733 3.92986	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705 -0.02817 0.42509 0.65291	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645 82.65639 11.50209 4.18622	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666 -0.02869 0.43360 0.64320	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995 37.59737 86.07180 12.36927 4.52531	0.811 0.374 -0.217 0.657 0.448 0.086 0.434 0.626 -0.028 0.426 0.648
55 1	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.71430 31.60437 72.11967 10.21290 3.62596	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600 -0.02784 0.42750	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076 33.58589 76.32777 10.94733 3.92986	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705 -0.02817 0.42509	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645 82.65639 11.50209 4.18622 7.96180	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666 -0.02869 0.43360 0.64320	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995 37.59737 86.07180 12.36927 4.52531 8.72443	0.811 0.374 -0.217 0.657 0.448 0.086 0.434 0.626 -0.028 0.426 0.648
55 1	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.71430 31.60437 72.11967 10.21290 3.62596	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600 -0.02784 0.42750 0.65186 -0.07092	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076 33.58589 76.32777 10.94733 3.92986	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705 -0.02817 0.42509 0.65291 -0.07757	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645 82.65639 11.50209 4.18622	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666 -0.02869 0.43360 0.64320 -0.07312	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995 37.59737 86.07180 12.36927 4.52531	0.811 0.374 -0.217 0.657 0.448 0.086 0.434 0.626 -0.028 0.426 0.648 -0.078 0.605
55 2 2	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.71430 31.60437 72.11967 10.21290 3.62596 6.87643 0.89761 0.32154	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600 -0.02784 0.42750 0.65186 -0.07092 0.58442 0.50658	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076 33.58589 76.32777 10.94733 3.92986 7.41492 0.99682 0.35952	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705 -0.02817 0.42509 0.65291 -0.07757 0.60120 0.49061	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645 82.65639 11.50209 4.18622 7.96180 1.12239 0.39650	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666 -0.02869 0.43360 0.64320 -0.07312 0.59302 0.50174	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995 37.59737 86.07180 12.36927 4.52531 8.72443 1.22256 0.43315	0.811 0.374 -0.217 0.657 0.448 0.086 0.434 0.626 -0.028 0.426 0.648 -0.078 0.605 0.4900
55 1	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.71430 31.60437 72.11967 10.21290 3.62596 6.87643 0.89761	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600 -0.02784 0.42750 0.65186 -0.07092 0.58442	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076 33.58589 76.32777 10.94733 3.92986 7.41492 0.99682	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705 -0.02817 0.42509 0.65291 -0.07757 0.60120	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645 82.65639 11.50209 4.18622 7.96180 1.12239 0.39650 58.90744	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666 -0.02869 0.43360 0.64320 -0.07312 0.59302 0.50174 0.13397	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995 37.59737 86.07180 12.36927 4.52531 8.72443 1.22256 0.43315	0.8113 0.3740 -0.2170 0.6570 0.4481 0.0860 0.43440 0.6260 -0.0282 0.4260 0.6480 -0.0783 0.6050 0.4900 0.1323
3 3	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.71430 31.60437 72.11967 10.21290 3.62596 6.87643 0.89761 0.32154	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600 -0.02784 0.42750 0.65186 -0.07092 0.58442 0.50658 0.13739	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076 33.58589 76.32777 10.94733 3.92986 7.41492 0.99682 0.35952 54.74788	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705 -0.02817 0.42509 0.65291 -0.07757 0.60120 0.49061 0.13473	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645 82.65639 11.50209 4.18622 7.96180 1.12239 0.39650	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666 -0.02869 0.43360 0.64320 -0.07312 0.59302 0.50174	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995 37.59737 86.07180 12.36927 4.52531 8.72443 1.22256 0.43315	0.811 0.374 -0.217 0.657 0.448 0.086 0.434 0.626 -0.028 0.426 0.648 -0.078 0.605 0.490 0.132 0.499
3 3	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.771430 31.60437 72.11967 10.21290 3.62596 6.87643 0.89761 0.32154 50.20651 13.48765	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600 -0.02784 0.42750 0.65186 -0.07092 0.58442 0.50658 0.13739 0.50268	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076 33.58589 76.32777 10.94733 3.92986 7.41492 0.99682 0.35952 54.74788 14.78336 4.35912	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705 -0.02817 0.42509 0.65291 -0.07757 0.60120 0.49061 0.13473 0.50035 0.57914	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645 82.65639 11.50209 4.18622 7.96180 1.12239 0.39650 58.90744 15.97346 4.75368	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666 -0.02869 0.43360 0.64320 -0.07312 0.59302 0.50174 0.13397 0.50076 0.57716	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995 37.59737 86.07180 12.36927 4.52531 8.72443 1.22256 0.43315 63.62405 17.32439 5.20606	0.811 0.374 -0.217 0.657 0.448 0.086 0.434 0.626 -0.028 0.426 0.648 -0.078 0.605 0.490 0.132 0.499 0.577
;5]1]2	0.66088 0.28219 0.43043 0.05676 0.02283 463.18703 107.71430 31.60437 72.11967 10.21290 3.62596 6.87643 0.89761 0.32154 50.20651 13.48765 3.93233	-0.80432 -0.36575 0.21985 -0.71871 -0.39672 0.08668 0.43653 0.62600 -0.02784 0.42750 0.65186 -0.07092 0.58442 0.50658 0.13739 0.50268 0.57778	0.73421 0.31201 0.49679 0.06432 0.02540 490.62393 114.26076 33.58589 76.32777 10.94733 3.92986 7.41492 0.99682 0.35952 54.74788 14.78336	0.82268 0.35238 -0.21791 0.70789 0.40696 0.08625 0.43534 0.62705 -0.02817 0.42509 0.65291 -0.07757 0.60120 0.49061 0.13473 0.50035	0.82176 0.34317 0.57325 0.06685 0.02620 517.92436 120.61760 35.54645 82.65639 11.50209 4.18622 7.96180 1.12239 0.39650 58.90744 15.97346	-0.80469 -0.37647 0.21915 -0.68648 -0.42232 0.08616 0.43541 0.62666 -0.02869 0.43360 0.64320 -0.07312 0.59302 0.50174 0.13397 0.50076 0.57716 -0.18097	0.90160 0.37414 0.65463 0.07346 0.02841 545.81023 127.31995 37.59737 86.07180 12.36927 4.52531 8.72443 1.22256 0.43315 63.62405 17.32439	0.657 0.448 0.086 0.434 0.626 -0.028 0.426 0.648 -0.078 0.605 0.490 0.132 0.499 0.5774

Table I (continued)

	rc ((⁶ s)	Ru (⁵ D)	Rh (⁴ F	')	Pd (³	³ F)
	Expn.	Coef.	Expn.	Coef.	Expn.	Coef.	Expn.	Coef.
sı	9308.51311	0.06186	9762.42755	0.06176	10168.67800	0.06204	10617.05300	0.06211
-	1410.27943	0.36968	1478.94003	0.36936	1543,46969	0.36984	1612.55164	–
	310.00996	0.68802	325.11374	0.68835	339.93137	0,68759	355,42988	
s ₂	414.51989	0.10837	435,79809	0.10847	455.18478	0.10873	475.82299	0.10890
_		-0.72405	41.73579	-0.72779	43.87346	-0.72620	45.95156	-0.72719
	16.36004	-0.34331	17.11364	-0.33945	18,02635	-0.34122		-0.34016
s ₃	35.18833	-0.25104	36.98192	-0.25388	38,91606	-0.25534	40,88737	-0.25686
3	5.80761	0.86326	6.18247	0.86223	6.50293	0.87730	6.84073	0.88892
	2.45072	0.27594	2.64082	0.27857	2.73084	0.26461	2.84227	0.25396
s ₄	4.88475	-0.32361	5.24896	-0.32655	5.61933	-0.32787	6.01395	-0.32853
4	0.98099	0.83276	1.06822	0.83630	1.15960	0.83561	1.25526	0.83129
	0.41423	0.35356	0.44949	0.35297	0.48773	0.35588	0.52935	0.36161
s ₅	0.66696	-0.19285	0,72301	-0.18442	0.76938	-0.17330	0.84107	-0.17355
5	0.08235	0.66652	0.08878	0.65667	0.09520	0.64125	0.10050	0.63436
	0.03139	0.44085	0.03341	0.44896	0.03544	0.46233	0.03716	0.46803
P ₁	575.73023	0.08561	609,37087	0.08473	639,89385	0.08458	670.01554	0.08469
1	134.44586	0.43389	142.18142	0.43218	149.47131	0.43174	156.61377	0.43215
	39.74762	0.62785	42.05361	0.62986	44.28510	0.63008	46.49444	0.62934
P ₂	88.80042	-0.02863	94.05284	-0.02914	100.06831	-0.02962	102.36581	-0.02932
2	13.26387	0.42324	14.10237	0.42054	14.77666	0.42683	15.87528	0.41838
	4.88241	0.65198	5.23451	0.65364	5.54210	0.64653	5.95619	0.65468
P_3	9,24648	-0.08493	9,96347	-0.09127	10.60883	-0.08966	11.32390	-0.09817
3	1.35111	0.61070	1.45824	0.62289	1.59637	0.62097	1.71267	0.62893
	0.49111	0.48342	0.53067	0.47227	0.58082	0.47466	0.62412	0.46836
d ₁	68.39346	0.13074	73.77392	0.12830	78,88641	0.12701	83.87933	0.12643
Ţ	18.72078	0.49768	20.23333	0.49578	21.71417	0.49472	23,16072	0.49480
	5.68803	0.57761	6.18422	0.57958	6.68261	0.57985	7,17487	0.57869
d ₂	2.55438	0.22506	2.82333	0.23423	3.12134	-0.24035	3,32885	-0.25612
2	0.84792	0.55642	0.93494	0.55917		-0.56233		-0.56670
	0.26692	0.42967	0.29122	0.42118	0.31987	-0.41334		-0.39447

	Ag (²	D)	Cd (¹ s)		
	Expn.	Coef.	Expn.	Coef.	
s	11132.04700	0.06183	11642.86600	0.06167	
_	1689.14072	0.36917	1765.63136	0.36871	
	371.97182	0.68831	388.67995	0.68884	
s ₂	498.52302	0.10902	519.57443	0.10925	
-	48.02736	-0.72984	50.34785	-0.72686	
	19.69818	-0.33765	20.74846	-0.34066	
s ₃	42.85646	-0.25899	44.72610	-0.26259	
3	7.22675	0.89260	7,70343	0.87938	
	3,00079	0.25175	3.30829	0.26693	
s ₄	6.43796	-0.32866	6.80698	-0.33275	
4	1.34580	0.83322	1.46122	0.82012	
	0.56674	0.36005	0.61611	0.37760	
s ₅	0.89644	-0.16527	0.90799	-0.14946	
2	0.10418	0.64081	0.11289	0.60191	
	0.03800	0.45918	0.04094	0.49650	
P ₁	702.68354	0.08441	741.36190	0.08334	
1	164.46615	0.43135	173.37779	0.42944	
	48.86936	0.63007	51,42797	0.63266	
P ₂	105.52626	-0.02959	103,19923	-0.02984	
- 2	16.87123	0.41462	18.45493	0.39529	
	6.35646	0.65798	6.88682	0.67790	
P_3	12.06102	-0.10190	12.71306	-0.11088	
د	1.84203	0.63204	1.99280	0.62401	
	0.67149	0.46627	0.73043	0.47652	
d ₁	89.31070	0.12526	94.99985	0.12393	
1	24.73402	0.49381	26.38241	0.49253	
	7.70690	0.57906	8.26172	0.57996	
d ₂	3.68020	-0.25628	4.01795	-0.25796	
2	1.21609	-0.56737	1.33278	-0.56716	
	0.37661	-0.39381	0.41373	-0.39167	

Table II. Total energies (in a.u.).

Atom	State	MINI-1	sz ^a	DZ^{b}
Ga	2 _P	-1914.9825	-1916.5167	-1923.1110
Ge	3 _P	-2066.6059	-2068.5139	-2075.2284
As	^{4}s	-2224.9857	-2227.2649	-2234.120
Se	3 _P	-2390.0932	-2392.7274	-2399.7563
Br	2 _p	-2562.1269	-2565.1131	-2572.341
Kr	ls	-2741.1811	-2744.5197	~2751.961
Rb	2 _S	-2926.9241	-2930.6931	-2938.270
Sr	1 _S	~3119.5363	-3123.7176	-3131.465
Y	2 _D	-3319.1984	-3324.7806	-3331.653
Zr	$3_{\mathbf{F}}$	-3525.9125	-3531.3181	-3538.963
Nb	6 _D	-3739.8616	C	-3753.559
Mo	7 _S	-3961.1736	C	-3975.512
Tc	6 _S	-4189.7958	-4196.0536	-4204.759
Ru	5 _D	-4425.8149	-4432.3604	-4441.456
Rh	^{4}F	-4669.4301	-4676.2637	-4685.769
Pd	$_{\rm 3_F}$	-4920.6953	-4927.8059	-4937.750
Ag	2 _D	-5179.6989	-5187.0705	-5197.483
Cd	$1_{\mathbf{S}}$	-5446.5644	-5454.1908	-5465.097

^{a,b} From single-zeta (SZ) calculation and double-zeta (DZ) calculations in ref. 5.

better than those of STO SZ, all we have to do is add one more s-type primitive GTO to the innermost s-type CGTO. For example, the (4333/333/3) basis set, termed MINI-3 according to our convention, for the Br atom gives the total energy of -2567.3767 a.u., which is a good deal lower than -2565.1131 a.u. given by the STO SZ set.

As for orbital energies, the values given by MINI-1 are much better than those given by STO SZ except for 1s orbitals. Percentage error defined by the following formula may be used as an indicator of the accuracy of calculated orbital energies ϵ_i relative to the Hartree–Fock values ϵ_{HF} ,

$$Error = [|\epsilon_{HF} - \epsilon_i|/|\epsilon_{HF}|] \times 100\%$$
 (7)

where i may distinguish MINI-1, SZ, and DZ. The average values of percentage errors for the valence orbitals are summarized in Table III. The errors for the first transition metal atoms are also included in the table for easy comparison. Figure 1 is a graphic presentation of the percentage errors for d-type valence orbital energies. Anomalies at Nb and Mo are due primarily to the fact that we have chosen the electronic configuration $4d^45s$ instead of $4d^35s^2$ for Nb and likewise $4d^55s$ instead of $4d^45s^2$ for Mo. These open-5s configurations yield lower total energies than the closed-5a configurations.

Table III shows that STO SZ basis sets fail to give reasonable d valence orbital energies for all the

Table III. Average of the percentage errors for the valence orbital energies (in %).^a

basis sets	Cr-Zn	Ga-Sr	y-Cd ^b
d orbital ^C			
SZ	75.2	36.9	97.3
MINI-1	16.2	7.0	2.4
MINI-2	4.8		
DZ	4.4	1.5	1.2
s orbital ^d			
sz	15.8	14.6	23.2
MINI-1	4.8	2.2	1.9
MINI-2	2.6		
DZ	2.5	0.9	1.5
p orbital ^e			
sz	9,9	15.7	11.9
MINI-1	2.7	2.4	1.0
MINI-2	1.7		
DZ	0.9	1.0	0.4

^a The values for SZ and DZ were calculated by using the data given in ref. 5. The data for Cr to Zn were taken from ref. 3, STD-SET(1) and DZC-SET(1) are renamed MINI-1 and MINI-2, respectively, in this article.

^b The error of Nb (⁶D) and Mo (⁷S) are excluded for all of the basis sets, because no data are available for SZ calculation. See text for details.

 $^{\rm c}\,d$ is an abbreviation of 3d for Cr to Sr and 4d for Y to Cd.

 $^{\rm d}$ s is an abbreviation of 4s for Cr to Kr and 5s for Ru to Cd

atoms listed. Especially troublesome is yttrium for which the value given by SZ is +0.74275 a.u. while the Hartree–Fock value is -0.24987 a.u. The average percentage error (97.3%) reduces to 47.8% if yttrium is excluded. Compared to STO SZ, MINI-1 give far better values to all types of valence orbital energies. In fact, MINI-1 yield fairly close values to those given by STO DZ for the second-row transition metal atoms. This is in contrast to the fact that for the first-row transition metal atoms MINI-1 performance is not quite as good as that of DZ for the 3d orbital energies, although it is much better than that of SZ.

III. MOLECULAR CALCULATIONS ON Br₂

MINI-i, MIDI-i, and MIDI- i^* (i = 1 and 3) have been used for *ab initio* molecular calculations on

^c No data are available in ref. 5.

e p is an abbreviation of 4p for Cr to Cd.

Figure 1. A graphic presentation of the percentage errors for d-type valence orbital energies.

 ${\rm Br}_2~(^1\Sigma_g^+)$ to test their effectiveness in molecular calculations. MINI-3 basis set parameters are given in Table IV. The asterisk indicates the addition of one d-type polarization function. All calculations are within the framework of the restricted Roothaan–Hartree–Fock self-consistent field (SCF) method and performed by a modified version of the MOLECULE program originally developed by Almlöf. 7

A large basis set with one d-type polarization function was also used to produce a reference calculation on Br₂. The basis set was derived from Huzinaga's (14s, 11p, 5d) primitive GTO basis set⁸ and the contraction pattern is (51111111111/ 5111111/411). The total atomic energy given by this basis set is -2572.3810 a.u., while STO DZ gives -2572.3415 a.u. and the Hartree-Fock value is -2572.4408 a.u. In the Br₂ molecular calculation one d-type polarization function is added and the exponent was determined by maximizing the radial overlap integral between the polarization function and the valence orbitals, s_4 and p_3 of MINI-1 in Table I, and the value thus obtained, 0.43, was used for MIDI-1*, MIDI-3*, and the large basis set.

The total energy (t.e.), the atomization energy (a.e.), the bond length (r_e) , and other spectroscopic constants (the vibrational constant ω_e , the rota-

Table IV. Exponents and expansion coefficients for MINI-3.

	Br (² P)						
_	Expn.	Coef.					
s ₁	17548.57600	0.01744					
1		0.12092					
	608,75893	0.43713					
	164.73326	0.55694					
s ₂	249.60059						
2	27,27452						
	11.29386	0.40031					
s ₃	21.66133						
3	3,52265	0.77236					
	1.48875	0.36049					
s ₄	2.29982	-0.22710					
4	0.39404	0.69205					
	0.14891	0.44808					
р ₁	358.38429	0.08959					
1	83.09605	0.44281					
	24.24066	0.61949					
р ₂	58.86345	-0.02710					
Z	7,36869	0.45108					
	2,48501	0.63544					
р ₃	4.91466	-0.05438					
3	0.48979	0.53536					
	0.14902	0.57143					
d ₁	33,71618	0.15102					
1	8.84532	0.51264					
	2.41595	0.57400					

Table V. Total energy, atomization energy, geometry, and spectroscopic constants of Br₂ (${}^{1}\Sigma_{g}^{+}$).

Basis sets	t.e. (a.u.)	a.e. (a.u.) ^b	r _e (A)	ω _e (cm ⁻¹)	B _e (cm ⁻¹)	K _e (dyn/cm)
MINI-1	-5124.2793	0.0023	2.448	353	0.0704	2.93 x 10 ⁵
MINI-3	-5134.7721	0.0001	2.479	330	0.0688	2.57
MIDI-1	-5124.4060	0.0014	2.458	305	0.0698	2.19
MIDI-3	-5134.9962	0.0018	2.458	308	0.0699	2.23
MIDI-1*	-5124.8886	0.0382	2.274	360	0.0816	3.04
MIDI-3*	-5135.3138	0.0342	2.281	355	0.0811	2.96
Extended ^C	-5144.7294	0.0298	2.287	352	0.0806	2.91
Extended ^d	-5144.7261	0.0925 ^f	2.29	358		3.02
Expt1.e		0.0732	2.284	323	0.0809	2.46

^a 4s and 4p orbitals are split in MIDI-1, MIDI-1*, MIDI-3*, while in MIDI-3, all of 4s, 4p, and 3d orbitals are split.

tional constant B_e , and the force constant κ_e) have been calculated. The calculational result is shown in Table V, where those of Straub and McLean⁹ are also included. Their basis set consists of STO DZ plus two 4d- and two 4f-type polarization functions.

In the MINI-1 calculation scaling factors were used for d_1 , s_4 , and p_3 to optimize the molecular calculation, and their values were found to be 0.999, 1.003, and 1.015, respectively. The fact that they are all nearly equal to 1.0 suggests that scaling of orbital exponents would not be necessary for molecular calculations. It may be recalled that MINI-i and MIDI-i were shown to be capable of producing quite satisfactory results without using scale factors for a number of ab initio calculations on molecules containing various third-row atoms. ¹⁰ Accordingly, no scale factor is used for the basis sets listed in Table V except for MINI-1.

The s_4 and the p_3 of MINI-i (before scaling) are

split to create MIDI-1, MIDI-1*, and MIDI-3*, while in MIDI-3 splitting is done also in d_1 as well as s_4 and p_3 . From Table V we may conclude that the effect of splitting the 3d orbital is negligible. The only difference between the basis sets with i = 1and i = 3 is that i = 1 means there are three primitive GTCs in the innermost orbital s_1 while i = 3 means there are four primitive GTOs in s_1 . The numerical results for r_e , ω_e , B_e , and κ_e in Table V show a clear grouping tendency of MINI-i, MIDI-i, and MIDI-i* with i = 1 and 3. We have already observed the same situation in our previous works. 1,10 It should also be noted that MIDI- i^* give excellent agreement with the large basis set calculation in all aspects of molecular properties computed here.

A more convincing benchmark would be a metal diatomic like Ag₂, but the high computing cost has prevented us from carrying out such calculations.

^b In order to calculate atomization energy, the atomic energy is corrected with additional 3s orbital¹ which inevitably appears in molecular calculations when six-membered d functions $(x^2, y^2, z^2, xy, yz, zx)e^{-\gamma r^2}$ are employed. The atomic energies thus obtained are -2562.1385 (MINI-1), -2567.3860 (MINI-3), -2562.2023 (MIDI-1), -2567.4972 (MIDI-3), -2562.4252 (MIDI-1*), -2567.6398 (MIDI-3*), and -2572.3498 (extended basis) (in a.u.).

^c This calculation has been done by the present authors. See text for details.

d See ref. 9.

e G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand Reinhold, New York, 1950.

f A typographical error is suspect here. A near Hartree-Fock atomization energy is not expected to be larger than the experimental value.

IV. CONCLUDING REMARKS

Among many interesting observations that can be made in the present work the most gratifying observation would be that the MIDI- i^* basis sets produce numerical results consistently close to those by much more extended basis sets except for, of course, the total atomic and molecular energies. This finding is a repetition of our previous experiences in the present series of works. We feel confident that the MIDI-i* could be recommended for a wide range of serious ab initio molecular calculations, although the testing could never be claimed to be complete. Another pleasant observation is the good performance of the minimaltype basis sets MINI-1. It should be regarded as somewhat fortuitous in the tradition of STO-3G but here again we stress the fact that our MINI-1 basis sets are far superior to STO SZ in representing valence orbitals, especially d-type orbitals, properly.

References

- 1. H. Tatewaki and S. Huzinaga, J. Comput. Chem., 1, 205 (1980).
- 2. Y. Sakai, H. Tatewaki, and S. Huzinaga, *J. Comput. Chem.*, **2**, 96 (1981).
- H. Tatewaki and S. Huzinaga, J. Chem. Phys., 71, 4339 (1979).
- H. Tatewaki and S. Huzinaga, J. Chem. Phys., 72, 399 (1980).
- 5. E. Clementi and C. Roetti, At. Data Nucl. Data Tables, 14, 177 (1974).
- R. Carbo, O. Gropen, and S. Huzinaga, private communication, 1977.
- J. Almlöf, USIP Rep. 72-09, University of Stockholm, 1972.
- 8. S. Huzinaga, J. Chem. Phys., 66, 4245 (1977).
- 9. P. A. Straub and A. D. McLean, *Theor. Chim. Acta*, 32, 227 (1974).
- 10. Y. Sakai, H. Tatewaki, and S. Huzinaga, *J. Comput. Chem.*, **2**, 100 (1981).