Категоризация новостей с помощью чат-бота в Telegram

Состав команды:

Афанасьев Денис,

Боттаева Амина,

Гусева Софья,

Склезнёва Ксения

Постановка задачи

- Разработать Telegram-бот, в который пользователь загружает текст новости, а на выходе получает категорию (тему) загруженной новости
- Дальнейшие перспективы:
 - Telegram-бот выдает новости за указанный период по одной конкретной теме
- Используемые данные: датасет, составленный из новостей с сайта Lenta.ru за 2020 год

- "economy": 0,
- "sports": 1,
- "society": 2,
- "life": 3,
- "entertainment": 4,
- "technology": 5,
- "science": 6,
- "russia": 7,
- "history": 8

План работы над проектом

- ✓ Сбор данных
- Поиск подходящих моделей
- Обучение моделей
- > Тестирование и усовершенствование моделей
- 5. Создание телеграм-бота
- 6. Тестирование телеграм-бота

Обзор решений задачи

1. Предобработка текста

- Приведение текста к нижнему регистру
- Удаление специальных символов и цифр
- Токенизация
- Удаление стоп-слов
- Приведение к нормальной форме
- Объединение токенов обратно в строку

2. Обучаемые модели

- RNN
- CNN
- GRU
- BiLSTM
- XgBoost
- SVM

Модель CNN (сверточные нейронные сети)

- Принцип работы: состоит из нескольких типов слоев, каждый из которых выполняет свою функцию:
 - 1. Сверточные слои (Convolutional Layers)
 - 2. Слои подвыборки (Pooling Layers)
 - 3. Полносвязные слои (Fully Connected Layers)
 - 4. Активационные функции
- Преимущества:
 - Автоматическое извлечение признаков
 - Параметрическая эффективность
 - Устойчивость к смещениям

XgBoost

• Алгоритм градиентного бустинга, который объединяет несколько слабых моделей (обычно деревьев решений) в одну сильную модель.

Преимущества XGBoost:

- Эффективность
- Гибкость
- Обработка пропущенных значений
- Интерпретируемость

SVM

• Мощный алгоритм машинного обучения, используемый для задач классификации и регрессии. Он работает на основе концепции нахождения гиперплоскости, которая разделяет данные на классы.

Преимущества:

- Эффективность в высоких измерениях
- Устойчивость к переобучению
- Гибкость
- Отсутствие предположений о распределении данных
- Хорошая производительность на сложных задачах

Сравнение точностей обучения

• Сравнение точностей обучения моделей на тренировочной, валидационной и тестовой выборках

	RNN	CNN	GRU	BiLSTM	XgBoost	SVM
test	0.8164	0.8354	0.8355	0.8161	0.8649	0.8801

Роли участников команды

• Амина: Подготовка данных. Обучение CNN и RNN

• **Ксюша:** Обучение GRU, BiLSTM, XgBoost, SVM. Разработка telegram-бота

• **Соня:** Организационная деятельность. Поиск и обучение еще одной модели. Разработка telegram-бота

• **Денис:** MIFlow. Подготовка тестовых запросов