Data Exploration Using R

OVERVIEW

This project analyses public datasets using statistical and visualisation techniques in R, uncovering key patterns, relationships, and insights.

OBJECTIVES

- 1. Perform univariate and multivariate analyses.
- 2. Use regression models and correlation to study variable relationships.
- 3. Apply PCA for dimensionality reduction and variance analysis.

DATASETS

- 1. USArrests: Crime rates in the US.
- 2. AirQuality: Air quality in New York.
- 3. swiss: Socio-economic data of Swiss provinces.
- 4. mtcars: Vehicle performance metrics.

OUTCOME

The project provides insights into each dataset through robust analysis, supported by clear visuals and reproducible R code.

Submitted by: Prabuddha Durge

Roll No.: 24BM6JP17 Date: 22 Nov 2024

Github Link: https://github.com/prabuddhadurge/DataExplorationUsingR

INDEX

Page 2

Swiss Dataset Analysis

- Overview: Summary of socio-economic variables in Swiss provinces
- Univariate Analysis: Descriptive statistics and distribution of Fertility
- Correlation Analysis: Relationship between Fertility and Education
- Regression Analysis: Predicting Fertility using Agriculture and Examination
- Principal Component Analysis: Variance explained and clustering patterns

Page 3

USArrests Dataset Analysis

- Overview: Crime trends across US states (Murder, Assault, UrbanPop, Rape)
- Univariate Analysis: Descriptive statistics of Murder
- Correlation Analysis: Relationship between Murder and Assault
- Regression Analysis: Predicting Murder using Assault and Rape
- Principal Component Analysis: Key contributors to variance and clustering of high-crime states

Page 4

mtcars Dataset Analysis

- Overview: Vehicle performance metrics (mpg, hp, wt)
- Univariate Analysis: Descriptive statistics of mpg
- Correlation Analysis: Relationship between mpg and hp
- Regression Analysis: Predicting mpg using hp and wt
- Principal Component Analysis: Variance explanation and key variables driving patterns

Page 5

Air Quality Dataset Analysis

- Overview: Air quality measurements in New York (Ozone, Solar Radiation, Wind, Temperature)
- Univariate Analysis: Descriptive statistics of Ozone levels
- Correlation Analysis: Relationship between Ozone and Wind
- Regression Analysis: Predicting Ozone using Solar Radiation and Wind
- Principal Component Analysis: Variance explained and clustering patterns based on Ozone and Solar.R

Exploration of the Swiss Dataset

Overview

The swiss dataset (47 observations, 6 numerical variables) captures socio-economic factors of Swiss provinces, including Fertility, Agriculture, Education, and Infant.Mortality.

Key Findings

Univariate Analysis

• Fertility Summary:

Mean: **70.14**, Median: **70.40**, SD: **12.49**, Range: **35.00–92.50**. The distribution is slightly right-skewed with potential outliers above **90**.

Correlation Analysis

• Fertility vs. Education:

Pearson correlation: -0.664. Higher education is moderately linked to lower fertility.

Regression Analysis

- Predicting Fertility using Agriculture and Examination:
 - Intercept: 94.61.
 - **Examination**: Significant negative effect (p<0.001).
 - o Model Fit: Adjusted R2: 40.7%.

Principal Component Analysis (PCA)

• Explained Variance:

PC1 and PC2 capture **73.1%** of the total variance.

- o **PC1**: Strongly influenced by Fertility and Agriculture.
- o **PC2**: Driven by Education and Examination.
- Insights: Clustering reveals traditional vs. modern socio-economic influences.

Conclusion

Swiss provinces show a clear socio-economic divide. Fertility rates are negatively linked to education and examination performance, while PCA highlights distinct groupings driven by traditional and modern factors.

Exploration of USArrests Dataset

Overview

The USArrests dataset (50 observations, 4 variables) analyses violent crime rates across US states:

• Murder, Assault, UrbanPop, and Rape.

Key Findings

- 1. Univariate Analysis
 - o Murder: Mean: 7.79, SD: 4.36, Range: 0.80–17.40.
 - Distribution is right-skewed, with potential outliers above 15.
- 2. Correlation Analysis
 - Murder vs. Assault: Pearson correlation: 0.802.
 Higher assault rates are strongly associated with higher murder rates.
- 3. Regression Analysis
 - o Model: Predicting Murder using Assault and Rape.
 - **Assault**: Significant positive effect (p<0.001), coefficient: **0.04**.
 - Rape: Not significant.
 - Adjusted R2: 62.95%, FF-statistic: p<0.001.
- 4. Principal Component Analysis (PCA)
 - o **PC1**: Explains **62.01%** variance, driven by Murder, Assault, and Rape.
 - PC2: Adds 24.74%, highlighting UrbanPop.
 - o Biplot reveals clustering of high-crime states.

Conclusion

- Strong correlations exist between violent crimes, particularly Murder and Assault.
- Regression identifies Assault as the vital predictor of Murder.
- PCA highlights socio-demographic groupings among states.

mtcars Dataset Analysis

Overview

The mtcars dataset (32 observations, 11 variables) summarises car attributes, including mpg (miles per gallon), hp(horsepower), and wt (weight in 1000 lbs).

Key Findings

- 1. Univariate Analysis
 - mpg: Mean: 20.09, SD: 6.03, Range: 10.40–33.90.
 Slightly right-skewed distribution.
- 2. Correlation
 - mpg vs. hp: Strong negative correlation (r=−0.776), indicating higher horsepower reduces fuel efficiency.
- 3. Regression Analysis
 - o **Model**: Predicting mpg using hp and wt.
 - **hp**: Negative impact (-0.032 mpg/unit, p=0.001).
 - wt: Larger negative impact (-3.88 mpg/1000 lbs, p<0.001).
 - o Adjusted R2: 81.48%.
- 4. Principal Component Analysis (PCA)
 - o **PC1**: Explains **60.08%** of the variance, driven by mpg, hp, and wt.
 - o PC2: Adds 24.09%, highlighting secondary features.

Conclusion

- Key Drivers: Weight and horsepower significantly reduce fuel efficiency.
- PCA Insights: Vehicle performance dominates variability.

Exploration of Air Quality Dataset

Overview

The airquality dataset (153 observations, 6 variables) contains daily air quality measurements in New York from May to September 1973, including Ozone, Solar Radiation, Wind, and Temperature.

Key Findings

1. Univariate Analysis

Ozone: Mean: 42.13, SD: 32.99, Range: 1.00–168.00.
 Distribution is right-skewed with missing values (37 NAs).

2. Correlation Analysis

Ozone vs. Wind: Pearson correlation: -0.602.
 A negative correlation suggests that higher wind speeds tend to be associated with lower ozone levels.

3. Regression Analysis

- Model: Predicting Ozone using Solar.R and Wind.
 - Intercept: 77.25.
 - **Solar Radiation**: Significant positive effect (p=0.0002), coefficient: **0.1004**.
 - Wind: Significant negative effect (p<0.001), coefficient: -5.40.
- Model Fit: Adjusted R2: 43.93%, indicating moderate explanatory power.
- Residual Analysis: Residuals show variability, ranging from -45.65 to 85.24.

4. Principal Component Analysis (PCA)

PCA on Ozone, Solar.R, Wind, and Temp:

- o **PC1**: Explains **59.0%** variance, dominated by Ozone and Solar . R.
- o PC2: Adds 22.37%, capturing wind and temperature patterns.
- Cumulative Variance: The first two components explain 81.36% of variability.
- Biplot: Reveals a strong clustering of observations based on Ozone and Solar . R.

Conclusion

- Ozone Levels: Strongly influenced by solar radiation and wind, with significant regression effects.
- **PCA Insights**: Variability in the data is mainly driven by ozone levels and solar radiation, with wind and temperature contributing less.
- **Model Performance**: The regression model explains nearly 44% of the variance, with strong effects of both Solar . R and Wind on Ozone.

LEARNINGS

This assignment provided a comprehensive understanding of data exploration and analysis techniques using R programming. Key learnings include:

- 1. <u>Univariate Analysis</u>: Gained proficiency in summarising and interpreting key metrics such as mean, median, standard deviation, and identifying patterns like skewness and outliers through visualisations like histograms and boxplots.
- 2. <u>Correlation and Regression:</u> Understood the importance of correlation coefficients to assess relationships between variables and leveraged linear regression models to predict outcomes and evaluate the significance of predictors.
- Principal Component Analysis (PCA): Learned to reduce dimensionality, interpret explained variance, and visualise data patterns using biplots, gaining insights into dominant factors influencing the dataset.
- 4. **<u>Data Preprocessing</u>**: Developed skills to handle missing values, scale variables, and prepare data for advanced analysis, ensuring accuracy in results.
- Visualisation and Interpretation: Enhanced the ability to create meaningful plots (e.g., scatter plots, biplots) to visualise data relationships and communicate findings effectively.

SUMMARY

This project explores four **datasets** using **statistical techniques** and **R programming** to uncover insights and patterns.

The Swiss dataset reveals that fertility rates are negatively correlated with education (r = -0.664), with regression and PCA showing socio-economic divides and 73.1% variance explained by Fertility, Agriculture, and Education.

The **USArrests dataset** identifies a strong correlation between **Murder** and **Assault** (**r** = **0.802**), with **Assault** being a key predictor of **Murder**, while **PCA** explains **62.01% variance** through **violent crime metrics**.

The mtcars dataset highlights that weight and horsepower significantly reduce fuel efficiency (mpg), with PCA attributing 60.08% variance to vehicle performance factors.

Lastly, the **Air Quality dataset** shows that **ozone levels** are influenced by **solar radiation** and **wind**, with **regression** and **PCA** explaining **81.36% variance**, emphasising **environmental interactions**.