This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Text: Patent/Publication No.: JP11087831

SEMICONDUCTOR LIGHT EMITTING ELEMENT, OPTICAL PICKUP DEVICE AND OPTICAL RECORDING AND/OR REPRODUCING DEVICE SONY CORP

Inventor(s): :IWAMOTO KOJI ;NAGASAKI HIROKI ;MATSUNAGA KATSUICHIRO ;HIRATA SHOJI

Application No. 09237089 JP09237089 JP, Filed 19970902, A1 Published 19990330

Abstract: PROBLEM TO BE SOLVED: To provide an easily manufacturable semiconductor light emitting element capable of improving light emitting efficiency, reducing an operation current, and improving the reliability of the element and an optical pickup device and an optical recording and/or reproducing device using such a semiconductor light emitting element as a light source.

SOLUTION: In an AlGaInP system semiconductor laser, on an (n) type GaAs substrate 1, an (n) type $(Al_{x1}Ga_{1\cdot x1})_{1\cdot y1}In_{y1}P$ clad layer 2 provided with the

lattice inconsistency of more than 2.0 7 10-4 and less than 3.0 7 10-3 to the (n)

type GaAs substrate 1, an $(Al_{x2}Ga_{1\cdot x2})_{1\cdot y2}In_{y2}P$ optical waveguide layer 3, the active layer 4 of an MQW structure composed of a $Ga_{1\cdot z}In_zP$ quantum well layer and an $(Al_{x2}Ga_{1\cdot x2})_{1\cdot y2}In_{y2}P$ barrier layer, the $(Al_{x2}Ga_{1\cdot x2})_{1\cdot y2}In_{y2}P$ optical waveguide layer 5 and a (p) type $(Al_{x1}Ga_{1\cdot x1})_{1\cdot y1}In_{y1}P$ clad layer 6 are successively laminated and provided.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-87831

(43)公開日 平成11年(1999) 3月30日

(51) Int.Cl.6

識別記号

FΙ

H01S 3/18

H01S 3/18

審査請求 未請求 請求項の数39 OL (全 12 頁)

(21)出願番号	特願平9-237089	(71)出願人	000002185
			ソニー株式会社
(22)出顧日	平成9年(1997)9月2日		東京都品川区北品川6丁目7番35号
		(72)発明者	岩本 浩治
			東京都品川区北品川6丁目7番35号 ソニ
			一株式会社内
		(72)発明者	長崎 洋樹
			東京都品川区北品川6丁目7番35号 ソニ
			一株式会社内
		(72)発明者	松永 勝一郎
			東京都品川区北品川6丁目7番35号 ソニ
			一株式会社内
		(74)代理人	
		(, ,),(,2,)	最終質に続く

(54) 【発明の名称】 半導体発光素子、光ピックアップ装置ならびに光記録および/または再生装置

(57)【要約】

することができる半導体発光素子、ならびに、そのような半導体発光素子を光源として用いた光ピックアップ装置ならびに光記録および/または再生装置を提供する。【解決手段】 AlGaInP系半導体レーザにおいて、n型GaAs基板1上に、n型GaAs基板1に対して2.0×10⁻⁴以上3.0×10⁻³以下の格子不整合を有するn型(Alx1Gal-x1)1-y1Iny1Pクラッド層2、(Alx2Ga1-x2)1-y2Iny2P光導波層3、Ga1-x InxP量子井戸層4aと(Alx2Ga1-x2)1-y2Iny2P光導波層5およびp型(Alx1Ga1-x1)1-y2Iny2P光導波層5およびp型(Alx1Ga1-x1)1-y1Iny1Pクラッド層6を順次積層して設ける。

の信頼性の向上を図ることができ、しかも、容易に製造

発光効率の向上、動作電流の低減および素子

【特許請求の範囲】

【請求項1】 半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発 光素子において、

上記 p 型クラッド層および上記 n 型クラッド層のうち少なくとも一方が、上記半導体基体に対して 2.0 × 10 $^{-4}$ 以上 3.0 × 10 $^{-3}$ 以下または-1.5 × 10 $^{-3}$ 以上 -2.0 × 10 $^{-4}$ 以下の格子不整合を有することを特徴とする半導体発光素子。

【請求項2】 上記p型クラッド層および上記n型クラッド層のうち少なくとも一方が、上記半導体基体に対して3. 0×1 0 $^{-3}$ 以下または-1. 5×1 0 $^{-3}$ 以上-3. 0×1 0 $^{-4}$ 以下の格子不整合を有することを特徴とする請求項1記載の半導体発光素子。

【請求項3】 上記格子不整合が、上記p型クラッド層内または上記n型クラッド層内でほぼ一様であることを特徴とする請求項1記載の半導体発光素子。

【請求項4】 上記格子不整合が、上記p型クラッド層内または上記n型クラッド層内で変化していることを特徴とする請求項1記載の半導体発光素子。

【請求項5】 上記p型クラッド層が、上記半導体基体に対して2.0×10⁻⁴以上3.0×10⁻³以下の格子不整合を有し、かつ、上記n型クラッド層が、上記半導体基体に対して-1.5×10⁻³以上-2.0×10⁻⁴以下の格子不整合を有することを特徴とする請求項1記載の半導体発光素子。

【請求項6】 上記p型クラッド層と上記活性層との間に第1の光導波層を有し、かつ、上記n型クラッド層と上記活性層との間に第2の光導波層を有することを特徴とする請求項1記載の半導体発光素子。

【請求項7】 上記第1の光導波層および上記第2の光導波層のうち少なくとも一方が、上記半導体基体に対して2.0×10⁻⁴以上3.0×10⁻³以下または-1.5×10⁻³以上-2.0×10⁻⁴以下の格子不整合を有することを特徴とする請求項6記載の半導体発光素子。

【請求項8】 上記活性層は多重量子井戸構造を有することを特徴とする請求項1記載の半導体発光素子。

【請求項9】 上記半導体発光素子はAlGaInP系 半導体発光素子であり、上記半導体基体はGaAs基板 であることを特徴とする請求項1記載の半導体発光素 子。

【請求項10】 上記格子不整合は、上記p型クラッド 層および上記n型クラッド層を構成するAIGaInPのInの組成比を調節することにより与えられたものであることを特徴とする請求項9記載の半導体発光素子。

【請求項11】 上記格子不整合は、上記p型クラッド 層および上記n型クラッド層を構成するAlGalnPのAlおよびGaの全体の組成比を調節することにより 与えられたものであることを特徴とする請求項9記載の 半導体発光素子。

【請求項12】 上記半導体発光素子は屈折率導波型の 半導体発光素子であることを特徴とする請求項1記載の 半導体発光素子。

【請求項13】 上記半導体発光素子は利得導波型の半 導体発光素子であることを特徴とする請求項1記載の半 導体発光素子。

【請求項14】 上記半導体発光素子は自励発振型の半 導体発光素子であることを特徴とする請求項1記載の半 導体発光素子。

【請求項15】 半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発光素子において、

上記 p 型クラッド層および上記 n 型クラッド層のうち少なくとも一方と上記活性層とが、上記半導体基体に対して2.0×10⁻⁴以上3.0×10⁻³以下または-1.5×10⁻³以上-2.0×10⁻⁴以下の格子不整合を有することを特徴とする半導体発光素子。

【請求項16】 上記p型クラッド層および上記n型クラッド層のうち少なくとも一方と上記活性層とが、上記半導体基体に対して3.0×10⁻³以上3.0×10⁻³以下または-1.5×10⁻³以上-3.0×10⁻⁴以下の格子不整合を有することを特徴とする請求項15記載の半導体発光素子。

【請求項17】 上記格子不整合が、上記p型クラッド層、上記n型クラッド層および上記活性層間でほぼ一様であることを特徴とする請求項15記載の半導体発光素子。

【請求項18】 上記格子不整合が、上記p型クラッド 層内、上記n型クラッド層内または上記活性層内でほぼ 一様であることを特徴とする請求項15記載の半導体発 光素子。

【請求項19】 上記格子不整合が、上記p型クラッド 層内、上記n型クラッド層内または上記活性層内で変化 していることを特徴とする請求項15記載の半導体発光 素子。

【請求項20】 上記p型クラッド層が、上記半導体基体に対して2.0×10⁻⁴以上3.0×10⁻³以下の格子不整合を有し、かつ、上記n型クラッド層が、上記半導体基体に対して−1.5×10⁻³以上−2.0×10⁻⁴以下の格子不整合を有することを特徴とする請求項15記載の半導体発光素子。

【請求項21】 上記p型クラッド層と上記活性層との間に第1の光導波層を有し、かつ、上記n型クラッド層と上記活性層との間に第2の光導波層を有することを特徴とする請求項15記載の半導体発光素子。

【請求項22】 上記第1の光導波層および上記第2の 光導波層のうち少なくとも一方が、上記半導体基体に対 して2.0×10⁻⁴以上3.0×10⁻³以下または一 1.5×10⁻³以上-2.0×10⁻⁴以下の格子不整合 を有することを特徴とする請求項21記載の半導体発光 索子。

【請求項23】 上記活性層は多重量子井戸構造を有することを特徴とする請求項15記載の半導体発光素子。

【請求項24】 上記半導体発光素子はAIGaInP 系半導体発光素子であり、上記半導体基体はGaAs基 板であることを特徴とする請求項15記載の半導体発光 素子。

【請求項25】 上記p型クラッド層および上記n型クラッド層の上記格子不整合は、上記p型クラッド層および上記n型クラッド層を構成するAlGalnPのInの組成比を調節することにより与えられたものであることを特徴とする請求項24記載の半導体発光素子。

【請求項26】 上記p型クラッド層および上記n型クラッド層の上記格子不整合は、上記p型クラッド層および上記n型クラッド層を構成するAlGaInPのAlおよびGaの全体の組成比を調節することにより与えられたものであることを特徴とする請求項24記載の半導体発光素子。

【請求項27】 上記活性層の上記格子不整合は、上記活性層を構成するGaInPのInの組成比を調節することにより与えられたものであることを特徴とする請求項24記載の半導体発光素子。

【請求項28】 上記活性層の上記格子不整合は、上記活性層を構成するGaInPのGaの組成比を調節することにより与えられたものであることを特徴とする請求項24記載の半導体発光素子。

【請求項29】 上記半導体発光素子は屈折率導波型の 半導体発光素子であることを特徴とする請求項15記載 の半導体発光素子。

【請求項30】 上記半導体発光素子は利得導波型の半 導体発光素子であることを特徴とする請求項15記載の 半導体発光素子。

【請求項31】 上記半導体発光素子は自励発振型の半 導体発光素子であることを特徴とする請求項15記載の 半導体発光素子。

【請求項32】 半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発光素子を光源として用いた光ピックアップ装置において、

上記半導体発光素子は、

上記 p 型クラッド層および上記 n 型クラッド層のうち少なくとも一方が、上記半導体基体に対して 2. 0×10^{-3} 以上 3. 0×10^{-3} 以下または-1. 5×10^{-3} 以上 -2. 0×10^{-4} 以下の格子不整合を有することを特徴とする光ピックアップ装置。

【請求項33】 上記半導体発光素子はAIGaInP 系半導体発光素子であり、上記半導体基体はGaAs基 板であることを特徴とする請求項32記載の光ピックア ップ装置。

【請求項34】 半導体基体上に活性層をp型クラッド

届とn型クラッド層とにより挟んだ構造を有する半導体 発光素子を光源として用いた光ピックアップ装置におい て、

上記半導体発光素子は、

上記 p 型クラッド層および上記 n 型クラッド層のうち少なくとも一方と上記活性層とが、上記半導体基体に対して2. 0×1 0 ⁻⁴以上3. 0×1 0 ⁻³以下または-1. 5×1 0 ⁻³以上-2. 0×1 0 ⁻⁴以下の格子不整合を有することを特徴とする光ピックアップ装置。

【請求項35】 上記半導体発光素子はAIGaInP 系半導体発光素子であり、上記半導体基体はGaAs基 板であることを特徴とする請求項34記載の光ピックア ップ装置。

【請求項36】 半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発光素子を光源として用いた光記録および/または再生装置において、

上記半導体発光素子は、

上記 p 型クラッド層および上記 n 型クラッド層のうち少なくとも一方が、上記半導体基体に対して 2.0×10^{-3} 以下または -1.5×10^{-3} 以上 -2.0×10^{-4} 以下の格子不整合を有することを特徴とする光記録および/または再生装置。

【請求項37】 上記半導体発光素子はAlGalnP 系半導体発光素子であり、上記半導体基体はGaAs基 板であることを特徴とする請求項36記載の光記録およ び/または再生装置。

【請求項38】 半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発光素子を光源として用いた光記録および/または再生装置において、

上記半導体発光素子は、

上記 p 型クラッド層および上記 n 型クラッド層のうち少なくとも一方と上記活性層とが、上記半導体基体に対して2. 0×10^{-4} 以上3. 0×10^{-3} 以下または-1. 5×10^{-3} 以上-2. 0×10^{-4} 以下の格子不整合を有することを特徴とする光記録および/または再生装置。

【請求項39】 上記半導体発光素子はAlGaInP 系半導体発光素子であり、上記半導体基体はGaAs基 板であることを特徴とする請求項38記載の光記録およ び/または再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、半導体発光素 子、光ピックアップ装置ならびに光記録および/または 再生装置に関する。

[0002]

【従来の技術】半導体レーザ、特に、活性層とクラッド層との間でヘテロ接合の障壁の高さを十分に取ることができないAIGaInP系半導体レーザにおいては、不

純物ドーピングの制御技術が素子特性に重大な影響を与える。

【0003】具体的には、従来より、製造の際に不純物のドーピング位置を制御することにより、活性層近傍のクラッド層をノンドープとしたAIGaInP系半導体レーザが知られている。この従来のAIGaInP系半導体レーザによれば、活性層近傍のクラッド層をノンドープとしたことにより、クラッド層の不純物が活性層中に拡散することを防止することができるという利点を有する。

[0004]

【発明が解決しようとする課題】しかしながら、上述の従来のAIGaInP系半導体レーザにおいては、不純物ドーピングの位置が活性層から遠いと、注入電流が光に変換される効率が低下し、動作電流が上昇するという問題が生じ、逆に、不純物ドーピングの位置が活性層に近いと、熱プロセスなどにより、不純物の拡散が活性層中にまで達し、素子の劣化が数時間程度の短時間で発生するために素子寿命が低下し、ひいては、素子の信頼性が低下するという問題が生じる。

【0005】このように、従来のAlGalnP系半導体レーザは、不純物ドーピングを高精度に制御する必要があり、製造にかなりの困難を伴っていた。

【0006】ここで、特許第2536713号において は、次のようなAIGaInP系半導体レーザの構造が 提案されている。すなわち、この特許第2536713 号によるAlGaInP系半導体レーザは、p型AlG a In Pクラッド層中に、活性層と隣接して、厚さ10 AのGana Ino.4 P層と厚さ20Aの (Alo.7G a_{0.3})_{0.5} I n_{0.5} P層とが交互に積層された多層薄 膜構造を設けることにより、p型AIGaInPクラッ ド層中のp型キャリア濃度を高くするために、p型Al GalnPクラッド層中にZnを高濃度に導入した場合 であっても、p型AIGaInPクラッド層中のZn が、活性層中に拡散することを防止するようにしたもの である。このAIGaInP系半導体レーザの場合、p 型AIGaInPクラッド層中に不純物を高濃度にドー プしても、活性層中への不純物拡散を防止することがで きるため、製造時における不純物ドーピングの制御の困 難性を緩和することには有効である。

【0007】しかしながら、この場合、 $Ga_{0.6}$ In 0.4 P層と($Al_{0.7}$ $Ga_{0.3}$)0.5 In 0.5 P層とが交互に積層された多層薄膜構造を、均一に形成することは容易ではない上に、このような多層薄膜構造はキャリアの注入を妨げる働きを有するため、素子抵抗が上昇し、動作電圧が上昇するという問題が生じる。

【0008】したがって、この発明の目的は、発光効率の向上、動作電流の低減および素子の信頼性の向上を図ることができ、しかも、容易に製造することができる半導体発光素子、ならびに、そのような半導体発光素子を

光源として用いた光ピックアップ装置ならびに光記録および/または再生装置を提供することにある。

[0009]

【課題を解決するための手段】上記目的を達成するために、この発明の第1の発明は、半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発光素子において、p型クラッド層およびn型クラッド層のうち少なくとも一方が、半導体基体に対して2. 0×10^{-4} 以上3. 0×10^{-3} 以下または 1.5×10^{-3} 以上 -2.0×10^{-4} 以下の格子不整合を有することを特徴とするものである。

【0010】この発明の第2の発明は、半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発光素子において、p型クラッド層およびn型クラッド層のうち少なくとも一方と活性層とが、半導体基体に対して2.0×10⁻⁴以上3.0×10⁻³以下または−1.5×10⁻³以上−2.0×10⁻⁴以下の格子不整合を有することを特徴とするものである。

【0011】この発明の第3の発明は、半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発光素子を光源として用いた光ピックアップ装置において、半導体発光素子は、p型クラッド層およびn型クラッド層のうち少なくとも一方が、半導体基体に対して2.0×10⁻⁴以上3.0×10⁻³以下または-1.5×10⁻³以上-2.0×10⁻⁴以下の格子不整合を有することを特徴とするものである。

【0012】この発明の第4の発明は、半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発光素子を光源として用いた光ピックアップ装置において、半導体発光素子は、p型クラッド層およびn型クラッド層のうち少なくとも一方と活性層とが、半導体基体に対して2.0×10⁻³以上3.0×10⁻³以下または-1.5×10⁻³以上-2.0×10⁻⁴以下の格子不整合を有することを特徴とするものである。

【0013】この発明の第5の発明は、半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発光素子を光源として用いた光記録および/または再生装置において、半導体発光素子は、p型クラッド層およびn型クラッド層のうち少なくとも一方が、半導体基体に対して2.0×10⁻⁴以上3.0×10⁻³以下または-1.5×10⁻³以上-2.0×10⁻⁴以下の格子不整合を有することを特徴とするものである。

【0014】この発明の第6の発明は、半導体基体上に活性層をp型クラッド層とn型クラッド層とにより挟んだ構造を有する半導体発光素子を光源として用いた光記録および/または再生装置において、半導体発光素子は、p型クラッド層およびn型クラッド層のうち少なく

とも一方と活性層とが、半導体基体に対して 2.0×1 0^{-4} 以上 3.0×10^{-3} 以下または -1.5×10^{-3} 以上 -2.0×10^{-4} 以下の格子不整合を有することを特徴とするものである。

【0015】ここで、半導体基体上に積層された半導体層が、半導体基体に対して格子不整合を有する場合、その格子不整合の大きさ $\Delta a/a$ は、半導体基体の格子定数を a_1 、半導体層の格子定数を a_2 とすると、 $\Delta a/a$ $\equiv (a_2-a_1)/a_1$ と表される。なお、この発明において、格子不整合の大きさは、不純物の拡散を効果的に防止する観点と、結晶に転位を生じさせないようにする観点とから、例えば、 2.0×10^{-4} 以上3.0×10 $^{-4}$ 以下に選ばれ、好適には、例えば、 3.0×10^{-4} 以上3.0×10 $^{-4}$ 以下に選ばれ、好適には、例えば、 3.0×10^{-4} 以上3.0×10 $^{-4}$ 以下に選ばれる。

【0016】この発明の第1の発明、第3の発明および第5の発明において、格子不整合は、p型クラッド層内またはn型クラッド層内でほぼ一様であってもよいし、変化していてもよい。この発明の第2の発明、第4の発明および第6の発明において、格子不整合は、p型クラッド層内、n型クラッド層内または活性層内でほぼ一様であってもよいし、変化していてもよく、あるいは、p型クラッド層、活性層およびnクラッド層の間でほぼ一様であってもよい。

【OO17】この発明においては、p型クラッド層およ びn型クラッド層のうち、いずれか一方が格子不整合を 有していてもよいし、双方が格子不整合を有していても よい。p型クラッド層およびn型クラッド層の双方が格 子不整合を有する場合、例えば、p型クラッド層が半導 体基体に対して 2. 0×10⁻⁴以上 3. 0×10⁻³以下 の格子不整合を有し、かつ、n型クラッド層が半導体基 体に対して-1.5×10⁻³以上-2.0×10⁻⁴以下 の格子不整合を有していてもよい。また、半導体発光素 子は、p型クラッド層と活性層との間に第1の光導波層 を有するとともに、n型クラッド層と活性層との間に第 2の光導波層を有していてもよい。この場合、第1の光 導波層および第2の光導波層のうち少なくとも一方が、 半導体基体に対して2.0×10⁻⁴以上3.0×10⁻³ 以下または-1.5×10⁻³以上-2.0×10⁻⁴以下 の格子不整合を有していてもよい。

【0018】この発明において、半導体発光素子は典型的にはAlGaInP系半導体発光素子であり、この場合、半導体基体としては例えばGaAs基板が用いられる。

【0019】上述のように構成されたこの発明によれば、 $p型クラッド層および n型クラッド層のうち少なくとも一方が、半導体基体に対して <math>2.0\times10^{-3}$ 以下または -1.5×10^{-3} 以上 -2.0×10^{-3} 以下の格子不整合を有することにより、ある

いは、p型クラッド層およびn型クラッド層のうち少なくとも一方と活性層とが、半導体基体に対して2.0×10⁻³以下または−1.5×10⁻³以上−2.0×10⁻⁴以下の格子不整合を有することにより、p型クラッド層中またはnクラッド層中の不純物の拡散を抑制することができる。このため、p型クラッド層中またはn型クラッド層中の不純物が活性層にまで拡散することを防止することができる。

【0020】ここで、クラッド層中の不純物の拡散抑制 のメカニズムの詳細については現時点では不明ではある が、例えば、GaAs基板に対してプラスの格子不整合 を有するクラッド層中のII族不純物は、GaAs基板 と反対側に拡散する方が系のエネルギーが低下し、Ga A s 基板に対してマイナスの格子不整合を有するクラッ ド層中のVI族不純物は、GaAs基板側に拡散する方 が系のエネルギーが低下するため、クラッド層中の不純 物の活性層中への拡散が防止されると考えられる。ま た、GaAs基板に対してプラスまたはマイナスの格子 不整合を有するクラッド層中では、不純物のマイグレー ションエネルギーが高くなることにより、不純物が拡散 が抑制されるとも考えられ、さらには、GaAs基板に 対してプラスの格子不整合を有するクラッド層中では、 III族原子と置換してアクセプタ不純物となるII族 不純物またはIII族原子と置換してドナー不純物とな るIV族不純物の拡散に関与するIII族空孔の密度が 低下し、一方、GaAs基板に対してマイナスの格子不 整合を有するクラッド層中では、V族原子と置換してド ナー不純物となるVI族不純物の拡散に関与するV族空 孔の密度が低下することにより、不純物の拡散が抑制さ れるとも考えられる。

[0021]

【発明の実施の形態】以下、この発明の実施形態について図面を参照しながら説明する。なお、実施形態の全図において、同一または対応する部分には同一の符号を付す。

【0022】まず、この発明の第1の実施形態について説明する。図1は、この第1の実施形態による屈折率導波型のA1GaInP系半導体レーザの断面図である。このA1GaInP系半導体レーザは、SCH(Separa te Confinement Heterostructure) 構造を有し、活性層は多重量子井戸(MQW)構造を有する。また、図2は、このA1GaInP系半導体レーザのエネルギーバンド図を示し、特に、その伝導帯を示す。なお、図2において、Ec は伝導帯下端のエネルギーを示す。

【0023】図1および図2に示すように、この第1の 実施形態によるAlGaInP系半導体レーザにおいて は、n型GaAs基板1上に、n型(Al_{x1}Ga_{1-x1}) _{1-y1}In_{y1}Pクラッド層2、(Al_{x2}Ga_{1-x2})_{1-y2}I n_{y2}P光導波層3、Ga_{1-x}In_xP量子井戸層4aと (Al_{x2}Ga_{1-x2})_{1-y2}In_{y2}P障壁層4bとからなる MQW構造の活性層 4、 $(A l_{x2}G a_{1-x2})_{1-y2}I n_{y2}$ P光導波層 5、 p型 $(A l_{x1}G a_{1-x1})_{1-y1}I n_{y1}$ Pクラッド層 6、 p型 G a I n P中間層 T および p型 G a A s キャップ層 8 が順次積層されている。 p型 $(A l_{x1}G a_{1-x1})_{1-y1}I n_{y1}$ Pクラッド層 6 の上層部、 p型 G a I n P中間層 T および p型 G a A s E キャップ層 E は、一方向に延びるストライプ形状を有している。このストライプ部の両側の部分には、 n型 E a E る 電流狭窄層 E が 埋め込まれ、これにより電流狭窄構造が形成されている。

【0024】p型GaAsキャップ層8およびn型GaAs電流狭窄層9の上には、例えばTi/Pt/Au電極のようなp側電極10が設けられている。一方、n型GaAs基板1の裏面には、例えばAuGe/Ni/Au電極のようなn側電極11が設けられている。

【0025】ここで、n型($Al_{x1}Ga_{1-x1}$) $_{1-y1}In_{y1}P$ クラッド層2およびp型($Al_{x1}Ga_{1-x1}$) $_{1-y1}I$ $n_{y1}P$ クラッド層6のAl組成比x1は、($Al_{x2}Ga_{1-x2}$) $_{1-y2}In_{y2}P$ 光導波層3, 5および活性層4の($Al_{x2}Ga_{1-x2}$) $_{1-y2}In_{y2}P$ 障壁層4bのAl組成比x2よりも大きく、具体的には、例えば、x1=0.7であり、x2=0.5である。

は、Ga₁₋₂ In, P量子井戸層4aを、例えば3~7 層程度有している。

【0028】このAIGaInP系半導体レーザにおい ては、n型(AlxiGal-xi) l-yi Inyi Pクラッド層 2、 (A l _{x2}G a _{1-x2}) _{1-y2} I n _{y2} P 光導波層 3、活性 層4のGa₁₋₂ In,P量子井戸層4aおよび(Al_{x2} Ga_{1-x2})_{1-y2}In_{y2}P障壁層4b、(Al_{x2}G a_{1-x2})_{1-v2} I n_{v2} P 光導波層 5 ならびに p 型(A l_{x1} Ga_{1-x1})_{1-v1}In_{v1}Pクラッド層6が、n型GaAs 基板1に対して一様に、例えば、2. 0×10⁻⁴以上 3. 0×10⁻³以下、好適には、例えば、3. 0×10 ~4以上3. 0×10~3以下、具体的には、例えば、1. 0×10⁻³の格子不整合を有している。したがって、こ の場合、n型(Al_{xi}Ga_{1-xi})_{1-yi}In_{yi}Pクラッド 層 2 、 (A l x2G a 1-x2) 1-y2 I n y2 P 光導波層 3 、活 性層4のGa₁₋₂In,P量子井戸層4aおよび(Al _{x2}Ga_{1-x2})_{1-y2}In_{y2}P障壁層4b、(Al_{x2}Ga 1-x2) 1-y2 I n y2 P 光導波層 5 ならびに p 型 (A l x1 G a_{1-x1})_{1-y1} I n_{y1} P クラッド層 6 の格子定数 a₂ は、 n型GaAs基板1の格子定数alよりも大きくなって いる。なお、p型GalnP中間層7、p型GaAsキ ャップ層8は、n型GaAs基板1と等しい格子定数a ,を有している。

【0030】ここで、n型GaAs基板1に対する格子不整合の大きさ $\Delta a/a$ とIn組成比との関係について、まず、 Ga_{1-2} In, P量子井戸層4aの場合を例にとって説明する。すなわち、GaPの格子間隔は5.4512 Å、InPの格子間隔は5.8688 Åであるから、GaAs(格子定数5.6533 Å)と格子整合する Ga_{1-2} In, P量子井戸層4aの組成は、 $5.4512+0.4176 \times z=5.6533$ より、z=0.484 であるから、 $Ga_{0.516}$ In0.484 Pとなる。

【0031】 これに対して、この Ga_{1-z} In_z P 量子 井戸層4a が、n 型GaAs 基板1 に対してプラスの格 子不整合、具体的には、例えば Δa Δa

5. 4512+0. $4176 \times z = 5$. 6533×1 .

001

より、z=0.497であるから、Ga_{0.503}In, o_{0.497}Pとなる。したがって、Ga₁₋₂In, P量子井戸層4aが、n型GaAs基板1に対してプラスの格子不整合を有する場合のIn組成比zは、Ga₁₋₂In, P量子井戸層4aがn型GaAs基板1と格子整合する場合のIn組成比zよりも大きくなる。

【0032】一方、例えば、この Ga_{1-2} I n_2 P量子井戸層4aが、n型GaAs 基板1に対してマイナスの格子不整合、具体的には、例えば $\Delta a/a=-1$. 0×10^{-3} の格子不整合を有する場合の組成は、

5. 4512+0. $4176 \times z = 5$. 6533×0 . 999

より、z=0. 470であるから、 $Ga_{0.503}$ In $_{0.470}$ Pとなる。したがって、 Ga_{1-z} In $_z$ P量子井戸層 4a が、n型GaAs 基板1に対してマイナスの格子不整合を有する場合の In組成比z は、 Ga_{1-z} In $_z$ P量子井戸層 4a が n型GaAs 基板1 と格子整合する場合の In組成比z よりも小さくなる。

【0033】n型 (Al_{xi}Ga_{l-xi}) _{l-yi}In_{yi}Pクラ

【0035】次に、上述のように構成されたこの第1の 実施形態によるAlGaInP系半導体レーザの製造方 法について説明する。

【0036】このAIGaInP系半導体レーザを製造するためには、このAIGaInP系半導体レーザを構成する半導体層を、例えばMOCVD法により形成する。この際、III-V族化合物半導体の原料としては、トリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、トリメチルインジウム(TMIn)、アルシン(AsH₃)、フォスフィン(PH₃)を用い、ドナー不純物の原料としては、例えばHSe、アクセプタ不純物の原料としては例えばジメチルズィンク(DMZ)を用いる。

【0037】具体的には、まず、図3に示すように、n型GaAs基板1上に、n型(Al_{xi}Ga_{1-xi})_{1-yi}!

n vi P クラッド層2、(Alx2G a 1-x2)1-y2 I n y2 P 光導波層3、Ga₁₋₂In₂P量子井戸層4aと(Al 構造の活性層 4 、(A l x2G a 1-x2) 1-y2 I n y2 P 光導 波層 5、 p型(Al_{xl}Ga_{l-xl})_{1-yl}In_{yl}Pクラッド 層6、p型GaInP中間層7およびp型GaAsキャ ップ層8を、MOCVD法により順次成長させる。この とき、n型(Al_{xl}Ga_{l-xl})_{l-yl}In_{yl}Pクラッド層 2、 (A l x2G a 1-x2) 1-v2 I n v2 P 光導波層 3、活性 層4のGa_{1-z} In_z P量子井戸層4aおよび(Al_{x2} Ga_{1-x2})_{1-y2}In_{y2}P障壁層4b、(Al_{x2}G a_{1-x2})_{1-y2} I n_{y2} P 光導波層 5 ならびに p 型(A l_{x1} Ga_{1-x1})_{1-y1} In_{y1}Pクラッド層6に所定の格子不整 合が与えられるように、TMInの流量を調節する。な お、このときのTMInの流量の制御は、組成を厳密に 決定する必要がある活性層を形成するときの制御よりは 緩やかである。

【0038】次に、図4に示すように、p型GaAsキャップ層8の全面に例えばCVD法によりSiO2膜やSiN膜を形成した後、これをエッチングによりパターニングして所定幅のストライプ形状のマスク12を形成する。次に、このマスク12をエッチングマスクとして用いて、ウエットエッチング法によりp型($Al_{xi}Gal_{-xi}$)、 $l_{-yi}In_{yi}Pクラッド層6の厚さ方向の途中の深さまでエッチングする。これによって、p型(<math>Al_{xi}Gal_{-xi}$) $l_{-yi}In_{yi}Pクラッド層6の上層部、p型GaIn P中間層7およびp型GaAsキャップ層8が、一方向に延びる所定幅のストライプ形状にパターニングされる。$

【0039】次に、図5に示すように、エッチングマスクとして用いたマスク12を成長マスクとして用いて、ストライプ部の両側の部分にn型GaAs電流狭窄層9を例えばMOCVD法により成長させる。

【0040】次に、マスク12をエッチング除去した後、図1に示すように、p型GaAsキャップ層8およびn型電流狭窄層9の全面にp側電極10を形成するとともに、n型GaAs基板1の裏面にn側電極11を形成する。以上により、目的とする屈折率導波型のAlGaInP系半導体レーザが製造される。

【0041】上述のように構成されたこの第1の実施形態によれば、n型(Al_{x1}Ga_{1-x1})_{1-y1}In_{y1}Pクラッド層2、(Al_{x2}Ga_{1-x2})_{1-y2}In_{y2}P光導波層3、活性層4のGa_{1-x}In_xP量子井戸層4aおよび(Al_{x2}Ga_{1-x2})_{1-y2}In_{y2}P障壁層4b、(Al_{x2}Ga_{1-x2})_{1-y2}In_{y2}P障壁層4b、(Al_{x2}Ga_{1-x2})_{1-y2}In_{y2}P光導波層5ならびにp型(Al_{x1}Ga_{1-x1})_{1-y1}In_{y1}Pクラッド層6が、n型GaAs基板1に対して一様に、例えば、2.0×10⁻⁴以上3.0×10⁻³以下、好適には、例えば、3.0×10⁻⁴以上3.0×10⁻³以下、具体的には、例えば、1.0×10⁻³の格子不整合を有することにより、n型(A

I_{xl}G a_{1-xl})_{1-yl}I n_{yl}Pクラッド層 2 中および p 型 (A l_{xl}G a_{1-xl})_{1-yl}I n_{yl}Pクラッド層 6 中の不純 物の拡散を抑制することができる。

【0042】ここで、効果を明らかにするために、n型 (Al, Gal-xi) 1-vi Invi Pクラッド層2、(Al _{x2}G a _{1-x2}) _{1-y2} I n _{y2} P 光導波層 3 、活性層 4 の G a 1-, In, P量子井戸層 4 a および(A l_{x2}G a _{1-x2}) 1-v2 I n v2 P 障壁層 4 b 、 (A l x2 G a 1-x2) 1-v2 I n v2P光導波層 5 ならびにp型(Al_{x1}Ga_{1-x1})_{1-v1} [n_{vi}Pクラッド層6が、n型GaAs基板1に対して一 様に、Δa/a=+1×10⁻³の格子不整合を有する素 子と、△a/a=+3×10⁻⁴の格子不整合を有する素 子と、 $\Delta a / a = 0$ (格子整合した場合) の素子とを作 製し、ロット毎にエージング歩留まりを調べた。具体的 には、1ロット当たり30素子を投入し、素子を一定時 間、定格出力で動作させた場合に、素子の動作電流の上 昇が少ない場合を合格とし、ロット毎の合格率を調べ た。この場合、 $\Delta a / a = 0$ の素子では合格率がほぼ 0%であったのに対して、 Δ a/a=+3.0×10 $^{-4}$ の 素子では合格率が向上し、 $\Delta a/a = +1$. 0×10^{-3} の素子ではほぼ100%に近い合格率となった。これ は、特に、p型(Al_{xl}Ga_{l-xl})_{l-yl}In_{yl}Pクラッ ド層 6 が、 n 型 G a A s 基板 1 に対して格子不整合を有 していることにより、数時間単位での急速な素子の劣化 に関与する活性層4中へのZnの拡散が防止された結果 得られた効果である。

【0043】したがって、この第1の実施形態によれ ば、製造時における不純物ドーピングの制御が容易とな り、活性層4に対して極めて近い位置に不純物をドーピ ングした場合であっても、注入された不純物が活性層 4 中に拡散することを効果的に防止することができるの で、AIGaInP系半導体レーザの発光効率を向上さ せ、動作電流の低減を図ることができるとともに、素子 の信頼性の向上を図ることができ、さらに、素子の高温 動作特性を改善することができる。また、このようなA 1GalnP系半導体レーザを、n型(AlѫG a_{1-x1})_{1-v1}In_{v1}Pクラッド層2、(Al_{x2}G a_{1-x2})_{1-x2} I n_{x2} P 光導波層 3、活性層 4 の G a_{1-x} In, P量子井戸層4 a および (Al_{x2}G a_{1-x2})_{1-y2} In_{v2}P障壁層4b、(Al_{x2}Ga_{1-x2})_{1-y2}In_{y2}P 光導波層 5 ならびに p型(A I xl G a l-xl) l-vl I n yl Pクラッド 層6に一様な格子不整合を与えるという制御 の容易な手法で実現することができる。

「以上3.0×10⁻³以下、具体的には、例えば、1.0×10⁻³の格子不整合を有している。この場合、(A $_{x2}$ Ga $_{1-x2}$) $_{1-y2}$ In $_{y2}$ P光導波層3,5および活性層4は、例えばn型GaAs基板1と格子整合している。その他のことは、上述の第1の実施形態と同様であるので、説明を省略する。

【0045】この第2の実施形態によっても、第1の実 施形態と同様な効果を得ることができる。

【0046】次に、この発明の第3の実施形態について説明する。すなわち、この第3の実施形態によるAlGaInP系半導体発光素子においては、p型(Al_{xl}Ga_{1-xl})_{1-yl}In_{yl}Pクラッド層6が、n型GaAs基板1に対して、例えば、2.0×10⁻⁴以上3.0×10⁻³以下、好適には、例えば、3.0×10⁻⁴以上3.0×10⁻³以下、具体的には、例えば、1.0×10⁻³の格子不整合を有し、n型(Al_{xl}Ga_{1-xl})_{1-yl}In_{yl}Pクラッド層2が、n型GaAs基板1に対して、例えば、-1.5×10⁻³以上-2.0×10⁻⁴以下、好適には、例えば、-1.5×10⁻³以上-3.0×10⁻⁴以下、具体的には、例えば、-1.0×10⁻³の格子不整合を有している。この場合、(Al_{x2}Ga_{1-x2})_{1-y2}In_{y2}P光導波層3,5および活性層4は、例えば n型GaAs基板1と格子整合している。

【0047】ここで、n型GaAs基板1に対してー1.0×10⁻³の格子不整合を有するn型(Al_{x1}Ga l_{-x1}) $_{1-y1}$ In_{y1}Pクラッド層2のIn組成y1は、このn型(Al_{x1}Ga_{1-x1}) $_{1-y1}$ In_{y1}Pクラッド層2が n型GaAs基板1と格子整合するときのIn組成y1 より小さい。この場合、具体的には、n型(Al_{x1}Ga l_{-x1}) $_{1-y1}$ In_{y1}Pクラッド層2のIn組成比y1は 0.470である。一方、p型(Al_{x1}Ga_{1-x1}) $_{1-y1}$ In_{y1}Pクラッド層6のIn組成比y1は0.497で ある。その他のことは、上述の第1の実施形態と同様であるので、説明を省略する。

【0048】この第3の実施形態によれば、第1の実施 形態と同様な効果を得ることができる。なお、この場 合、n型 (Al_{x1}Ga_{l-x1})_{1-y1}In_{y1}Pクラッド層 2 が、n型GaAs基板1に対してマイナスの格子不整合 を有し、かつ、p型(AlxiGai-xi)i-yiInyiPク ラッド層2が、n型GaAs基板1に対してプラスの格 子不整合を有しているので、n型(Al_{xl}Ga_{l-xl}) _{I-vI}I n_{vI}Pクラッド層2中では、Seの拡散に関与す るV族空孔の密度が低く、p型(AlxIGal-xI)1-yI InvIPクラッド層6中では、Znの拡散に関与するI I I 族空孔の密度が低くなっていると考えられる。この ため、第3の実施形態によれば、n型(AlxiG a_{1-x1})_{1-y1} I n_{y1} P クラッド層 2 中および p 型(A 1 xl G a l-xl) l-yl I n yl P クラッド層 6 中のそれぞれに おいて、極めて有効に不純物の拡散を抑制することがで きる。

【0049】次に、この発明の第4の実施形態について説明する。すなわち、この第4の実施形態によるAlGaInP系半導体発光素子においては、p型(AlxIGaI-xI) 1-yi InyiPクラッド層6が、n型GaAs基板1に対して一様に、例えば、2.0×10⁻⁴以上3.0×10⁻³以下、好適には、例えば、3.0×10⁻⁴以上3.0×10⁻³以下、好適には、例えば、1.0×10⁻³の格子不整合を有している。この場合、p型(AlxIGaI-xI) 1-yi InyiPクラッド層6のIn組成比y1は0.497である。また、この場合、n型(AlxIGaI-xi) 1-yi InyiPクラッド層2、(Alx2GaI-xi) 1-yi InyiPクラッド層3、5および活性層4は、例えばn型GaAs基板1と格子整合している。その他のことは、上述の第1の実施形態と同様であるので、説明を省略する。

【0051】次に、この発明の第5の実施形態について説明する。すなわち、この第5の実施形態によるAIG aInP系半導体レーザにおいては、n型(AI $_{x1}$ Ga $_{1-x1}$) $_{1-y1}$ In $_{y1}$ Pクラッド層2が、n型GaAs基板1に対して一様に、例えば、-1. 5×10^{-3} 以上-2. 0×10^{-4} 以下、好適には、例えば、-1. 5×10^{-3} 以上-3. 0×10^{-4} 以下、具体的には、例えば、-1. 0×10^{-3} の格子不整合を有している。この場合、n型(AI $_{x1}$ Ga $_{1-x1}$) $_{1-y1}$ In $_{y1}$ Pクラッド層2のIn組成比y1は0. 470である。また、この場合、(AI $_{x2}$ Ga $_{1-x2}$) $_{1-y2}$ In $_{y2}$ P光導波層3, 5、活性層4およびp型(AI $_{x1}$ Ga $_{1-x1}$) $_{1-y1}$ In $_{y1}$ Pクラッド層6は、例えばn型GaAs基板1と格子整合している。その他のことは、上述の第1の実施形態と同様であるので、説明を省略する。

【0052】この第5の実施形態によれば、n型(A1 $_{xi}Ga_{1-xi}$) $_{1-yi}In_{yi}P$ クラッドB2中の不純物の拡散を抑制することにより、第1の実施形態と同様な効果を得ることができる。

【0053】次に、この発明の第6の実施形態について 説明する。図6は、この第6の実施形態による利得導波 型のAlGaInP系半導体レーザを示す断面図であ る。このAlGaInP系半導体レーザはSCH構造を 有し、活性層はMQW構造を有する。

【0054】図6に示すように、この第6の実施形態によるAlGaInP系半導体レーザにおいては、p型(AlxiGai-xi)i-yiInyiPクラッド層6の上層部、p型GaInP中間層7およびp型GaAsキャップ層8が一方向に延びるストライプ形状を有し、このストライプ部の両側の部分におけるp型(AlxiGai-xi)i-yiInyiPクラッド層6の上層部、p型Ga

InP中間層 7 および p型 GaAs キャップ層 8 に、Bなどがイオン注入されることにより形成された高抵抗領域 13 が設けられ、これによって、電流狭窄構造が形成されている。 p側電極 10 は、p型 GaAs キャップ層 8 および高抵抗領域 13 上に設けられている。

【0055】このAlGaInP系半導体レーザにおいては、例えば、第1の実施形態によるAlGaInP系半導体レーザと同様に、n型(Al $_{x1}$ Ga $_{1-x1}$) $_{1-y1}$ In $_{y1}$ Pクラッド層2、(Al $_{x2}$ Ga $_{1-x2}$) $_{1-y2}$ In $_{y2}$ P光導波層3、活性層4、(Al $_{x2}$ Ga $_{1-x2}$) $_{1-y2}$ In $_{y2}$ P光導波層5およびp型(Al $_{x1}$ Ga $_{1-x1}$) $_{1-y1}$ In $_{y1}$ Pクラッド層6が、n型GaAs基板1に対して一様に、例えば、2.0×10⁻⁴以上3.0×10⁻³以下、好適には、例えば、3.0×10⁻⁴以上3.0×10⁻³以下、具体的には、例えば、1.0×10⁻³の格子不整合を有する。その他の構成は、第1の実施形態によるAlGaInP系半導体レーザと同様であるので、説明を省略する。

【0056】この第6の実施形態によるAlGaInP系半導体レーザの製造方法は、第1の実施形態によるAlGaInP系半導体レーザの製造方法と同様な工程により、n型GaAs基板1上に、n型(Alx1Ga1-x1)1-y1Iny1Pクラッド層2、(Alx2Ga1-x2)1-y2Iny2P障壁層とからなるMQW構造の活性層4、(Alx2Ga1-x2)1-y2Iny2P障壁層とからなるMQW構造の活性層4、(Alx2Ga1-x2)1-y2Iny2P光導波層5、p型(Alx1Ga1-x1)1-y1Iny1Pクラッド層6、p型GaInP中間層7およびp型GaAsキャップ層8を、MOCVD法により順次成長させる。

【0057】次に、p型GaAsキャップ層8上に所定形状のマスク(図示せず)を形成し、このマスクを注入マスクとして、イオン注入法により、p型GaAsキャップ層8、p型GaInP中間層7およびp型(Alxl Galxl)1-yl Inyl Pクラッド層6の上層部に、選択的にBをドープすることにより、高抵抗領域13を形成する。次に、注入マスクとして用いたマスクをエッチング除去した後、図6に示すように、p型GaAsキャップ層8および高抵抗領域13の全面にp側電極10を形成するとともに、n型GaAs基板1の裏面にn側電極11を形成する。以上により、目的とする利得導波型のAlGaInP系半導体レーザが製造される。

【0058】この第6の実施形態によれば、利得導波型のAlGalnP系半導体レーザにおいて、第1の実施形態と同様な効果を得ることができる。

【0059】次に、上述の第1、第2、第3、第4、第5または第6の実施形態によるAlGaInP系半導体レーザを光源として用いた光ディスク再生装置について説明する。図7にこの光ディスク再生装置の構成を示す。

【0060】図7に示すように、この光ディスク再生装置は、光源として半導体レーザ101を備えている。この半導体レーザ101としては、上述の第1、第2、第3、第4、第5または第6の実施形態によるAlGaInP系半導体レーザが用いられる。この光ディスクを設置はまた、半導体レーザ101の出射光を光ディスクDに違くとともに、この光ディスクDによる反射光(信号光)を再生するための公知の光学系、すなわち、コリメートレンズ102、ビームスプリッタ103、1/4波長板104、対物レンズ105、検出レンズ106、信号光検出用受光素子107および信号光再生回路108を備えている。

【0061】この光ディスク再生装置においては、半導体レーザ101の出射光Lはコリメートレンズ102のよって平行光にされ、さらにビームスプリッタ103を経て1/4波長板104により偏光の具合が調整された後、対物レンズ105により集光されて光ディスクDに入射される。そして、この光ディスクDで反射された信号光L「が対物レンズ105および1/4波長板104を経てビームスプリッタ103で反射された後、検出レンズ106を経て信号光検出用受光素子107に入射し、ここで電気信号に変換された後、信号光再生回路108において、光ディスクDに書き込まれた情報が再生される。

【0062】この光ディスク再生装置によれば、光源の 半導体レーザ101として、上述の第1、第2、第3、 第4、第5または第6の実施形態によるAlGaInP 系半導体レーザが用いられていることにより、信頼性の 向上を図ることができるともに、高温動作特性の改善を 図ることができる。

【0063】なお、ここでは、第1、第2、第3、第4、第5または第6の実施形態によるAlGaInP系半導体レーザを光ディスク再生装置の光源に適用した場合について説明したが、光ディスク記録再生装置や光ディスク記録装置の光源に適用することも可能であることは勿論、光ピックアップ装置の光源などに適用することも可能である。

【0064】以上この発明の実施形態について具体的に 説明したが、この発明は、上述の実施形態に限定される ものではなく、この発明の技術的思想に基づく各種の変 形が可能である。例えば、実施形態において挙げた材 料、数値および構造などはあくまで例にすぎず、必要に 応じて、これと異なる材料、数値および構造などを用い てもよい。

【0065】また、上述の第1~第6の実施形態においては、各半導体層の格子不整合が、その層内で一様となっているが、各半導体層の格子不整合は、その層内で変化していてもよい。また、第1~第3または第6の実施形態のように、n型GaAs基板1に対して格子不整合を有する半導体層を複数設ける場合は、各層間で格子不

整合の大きさが異なっていてもよい。具体的には、例えば、第1の実施形態においては、例えば、活性層4の格子不整合を、他の半導体層の格子不整合に比べて小さくすることも可能である。

【0067】また、上述の第1~第6の実施形態におい て、基板や各半導体層の導電型を逆にしてもよい。ま た、各半導体層の成長には、分子線エピタキシー(MB E) 法などのMOCVD法以外の方法を用いてもよい。 【0068】さらに、上述の第1~第6の実施形態にお いては、この発明をSCH構造のAlGalnP系半導 体レーザに適用した場合について説明したが、この発明 は、DH (Double Heterostructure) 構造のAlGal nP系半導体レーザに適用してよいことは勿論、AIG a In P系発光ダイオードあるいは自励発振型のA I G a In P系半導体レーザに適用してもよい。また、この 発明は、上述のAlGaInP系半導体発光素子以外 に、AIGaAs系半導体発光素子、II-VI族化合 物半導体を用いた半導体発光素子、窒化物系III-V 族化合物半導体を用いた半導体発光素子またはGaIn AsP系半導体発光素子などに適用することも可能であ り、これらの半導体発光素子を光源として用いた光ピッ クアップ装置ならびに光記録および/または再生装置に 適用することも可能である。

[0069]

【発明の効果】以上説明したように、この発明による半導体発光素子によれば、p型クラッド層およびn型クラッド層のうち少なくとも一方が、半導体基体に対して2.0×10⁻³以下または<math>-1.5×10⁻³以上 -2.0×10^{-4} 以下の格子不整合を有することにより、あるいは、 $p型クラッド層およびn型クラッド層のうち少なくとも一方と活性層とが、半導体基体に対して2.0×10⁻⁴以上3.0×10⁻³以下または<math>-1.5\times10^{-3}$ 以上 -2.0×10^{-4} 以下の格子不整合を有することにより、p型クラッド層中またはnクラッド層中の不純物の拡散を抑制することができ、活性層中への不純物の拡散を効果的に防止することができ

る。これにより、製造時における不純物ドーピングの制御が容易となり、活性層に対して極めて近い位置に不純物をドーピングした場合であっても、この不純物が活性層にまで拡散することによる素子の劣化を防止することができるので、半導体発光素子の発光効率の向上、動作電流の低減および信頼性の向上を図ることができ、しかも、このような半導体発光素子を容易に製造することができる。また、半導体発光素子の高温動作特性の改善を図ることもできる。

【0070】また、この発明による光ピックアップ装置ならびに光記録および/または再生装置によれば、この発明による半導体発光素子を光源として用いていることにより、信頼性の向上および高温動作特性の改善を図ることができる。

【図面の簡単な説明】

【図1】 この発明の第1の実施形態による屈折率導波型のAlGalnP系半導体レーザを示す断面図である

【図2】 この発明の第1の実施形態による屈折率導波型のAlGalnP系半導体レーザのエネルギーバンド図である。

【図3】 この発明の第1の実施形態による屈折率導波

型のAlGalnP系半導体レーザの製造方法を説明するための断面図である。

【図4】 この発明の第1の実施形態による屈折率導波型のAlGaInP系半導体レーザの製造方法を説明するための断面図である。

【図5】 この発明の第1の実施形態による屈折率導波型のAlGaInP系半導体レーザの製造方法を説明するための断面図である。

【図6】 この発明の第6の実施形態による利得導波型のAlGaInP系半導体レーザを示す断面図である。

【図7】 この発明の第1、第2、第3、第4、第5または第6の実施形態によるAlGaInP系半導体レーザを光源として用いた光ディスク再生装置を示す略線図である。

【符号の説明】

1・・・n型G a A s 基板、2・・・n型(A l x1 G a l-x1) l-y1 I n y1 P クラッド層、3, 5・・・(A l x2 G a l-x2) l-y2 I n y2 P 光導波層、4・・・活性層、4 a・・・G a l-x2 I n x P 量子井戸層、4 b・・・(A l x2 G a l-x2) l-y2 I n y2 P 障壁層。6・・・p型(A l x1 G a l-x1) l-y1 I n y1 P クラッド層

【図1】

【図3】

【図4】

フロントページの続き

(72)発明者 平田 照二

東京都品川区北品川6丁目7番35号 ソニー株式会社内