Switch (comutador) Ethernet

Dispositivo da camada de enlace: tem um papel ativo

- Armazena e encaminha quadros Ethernet
- Examina o endereço MAC dos quadros de entrada e encaminha <u>de forma seletiva</u> para um ou mais enlaces de saída

Transparente

- hosts não se preocupam com a presença de switches (nós endereçam quadros a outros nós, não ao switch!)
 plug-and-play, self-learning (autodidatas)
- switches não necessitam ser configurados

Switch: permite múltiplas transmissões simultâneas

- hosts têm enlaces dedicados, diretamente conectados c/o switch, full-duplex
- switches armazenam quadros no buffer do enlace de saída pois a taxa de comutação pode exceder taxa de transmissão de algum enlace
- protocolo Ethernet usado em cada enlace de entrada, portanto:
 - Sem colisões; full duplex
 - Cada enlace está no seu próprio domínio de colisão
- comutação: A-para-A' e B-para-B' podem transmitir simultaneamente, sem colisões

mas A para A'e C para A' não podem acontecer simultaneamente!

Tabela de repasse do switch

Como o switch sabe que A' é alcançavel via interface 4 e B' via interface 5?

- R: cada switch tem uma tabela de comutação, onde cada entrada contém:
 - (end. MAC do host, interface p/alcançar o host, TTL)
 - Parece uma tabela de roteamento!

como as entradas são criadas mantidas na tabela do switch?

switch com 6 interfaces (1,2,3,4,5,6)

Switch: autoaprendizagem

- tabela é construída automaticamente, dinamicamente e autonomamente
- não é necessária a intervenção do administrador da rede ou protocolo p/ configuração
- switch aprende quais hosts podem ser alcançados através de quais interfaces
- qdo o quadro é recebido, switch "aprende" a localização do transmissor: o enlace LAN de entrada grava o par transmissor/localização na tabela de comutação

End MAC	interface	TTL
Α	1	60

Tabela de comutação (inicialmente vazia)

Origem: A

Switch: repasse de quadros

Quando um quadro é recebido no switch:

- 1. grava o enlace de entrada e o end MAC do transmissor
- 2. indexa a tabela do switch usando o end. MAC de destino
- 3. se encontrada uma entrada para o destino então {

encaminha o quadro na interface indicada p/ entrada

}

senão usa inundação

Repassa o quadro para todas as demais interfaces exceto aquela em que o quadro foi recebido

Exemplo de autoaprendizagem e repasse

Destino do quadro: A', localização não conhecida:

inundação

Resposta de A': localização do destino A conhecida:

transmite em um único enlace

MAC addr	interface	TTL
Α	1	60
A'	4	60

Tabela de comutação (inicialmente vazia)

Interconectando switches

switches podem ser conectados

Questão: enviando de A p/G - Como S_1 sabe repassar um quadro destinado a G via S_4 e S_3 ?

Resposta: autoaprendizagem! (funciona exatamente da mesma forma que no caso de apenas um switch!)

Autoaprendizagem com múltiplos switches

Suponha que C envia quadro para I, I responde para C

 \mathbb{Q} : mostre as tabelas de comutação e repasse de pacotes em S_1 , S_2 , S_3 e S_4

Rede Institucional

Switch: propriedades

- eliminação de colisões: numa LAN construída com switches (e sem hubs), não existe colisões. Ele armazena os quadros no buffer e nunca transmite mais de um quadro em um enlace por vez. Taxa máx agregada = soma das taxas de cada interface
- enlaces heterogêneos: isola um enlace do outro, podendo cada um operar a velocidades e tecnologias diferentes (necessidade de um buffer)
- gerenciamento: pode desconectar adaptadores que estão funcionando mal, além de fornecer dados estatísticos

Switches x roteadores

ambos são do tipo armazena-erepassa:

> roteadores: dispositivos da camada de rede (examinam cabeçalhos da camada de rede)

- switches: dispositivos da camada de enlace (examinam cabeçalhos da camada de enlace)
- ambos possuem tabelas de repasse:
 - roteadores: obtêm tabelas usando algoritmos de roteamento e endereços IP
 - switches: obtêm tabelas de repasse usando inundação, aprendendo endereços MAC

VLANs: motivação

Considere:

- Único domínio de broadcast: todo tráfego de broadcast da camada 2 (ARP, DHCP, end MAC desconhecido) deve cruzar toda a LAN institucional
- aspectos de segurança/privacidade (gerência executiva/funcionários)
- uso ineficiente dos switches (passa de 3 p/10 grupos?)
- uso ineficiente: 10 switches de 6 portas x 1 de 60 portas
- usuário de CS se muda (sala) p/ EE → switch diferente. E se ele deseja permanecer conectado ao grupo (switch) da CS?

VLANs

Virtual Local Area Network

switch suportando
VLAN pode ser
configurado para
definir múltiplas
virtual LANS sobre
uma única
infraestrutura física.

port-based VLAN: portas do switch são agrupadas (pelo SW de ger. do switch) de forma que um único switch físico

... opera como múltiplos switches virtuais

Electrical Engineering (VLAN ports 1-8)

Computer Science (VLAN ports 9-16)

Port-based VLAN

Isolamento do tráfego: quadros de/para portas 2-8 podem alcançar somente as portas 2-8

 Membros dinâmicos: portas podem ser distribuídas dinamicamente entre as VLANs

- Repasse entre VLANS: feito via roteamento, como se fossem switches separadas conectadas por um roteador
 - Na prática, os dois dispositivos são integrados num único equipamento

Redes locais virtuais (VLANs)

• Conectando 2 comutadores VLAN (um comutador em cada prédio, por ex.) com 2 VLANs: 1 cabo para cada VLAN ⇒ solução não escalável (N VLANS, N cabos)

Redes locais virtuais (VLANs)

Conectando 2 comutadores com 2 VLANs: entroncados

VLANS: interligando múltiplos switches

porta tronco: carrega quadros entre VLANS definidas sobre múltiplos switches físicos

- quadros encaminhados dentro de VLAN entre os switches devem carregar a identificação da VLAN aos quais pertencem (VLAN ID)
- protocolo 802.1Q adiciona/remove os campos de cabeçalho adicionais para os quadros encaminhados entre as duas portas tronco

Formato do quadro 802. I Q VLAN

Informações de controle (campo de 12 bits, VLAN ID, um campo de 3 bits de prioridade, como no IP TOS)

Obs: pode-se também definir uma VLAN baseada nos end. MAC. O administrador define os endereços MAC que pertencem a cada VLAN

Redes de Datacenter - arquitetura

10's a 100's de milhares de hosts, geralmente acoplados próximos uns dos outros:

- e-business (por ex, Amazon)
- Servidores de conteúdo (YouTube, Akamai, Apple, Microsoft)
- Ferramentas de busca, mineração de dados (Google)
- Computação na nuvem (Amazon Web Services, Microsoft Azure, etc)

desafios:

- múltiplas aplicações, cada uma servindo um número enorme de clientes
- confiabilidade
- gerenciamento/balanceamento de carga, evitando gargalos de processamento, de rede e de dados

Inside a 40-ft Microsoft container, Chicago data center

Redes de Datacenter: componentes

Roteadores de borda

Conexões fora do datacenter

Switches de nível 1

Conectando até ~16 Nível 2

Switches de nível 2

Conectando até ~16 TORs

Switch do Topo do Rack (TOR)

- Um por rack
- Conexões de 40-100Gbps Ethernet com os hosts

Racks de servidores

20- 40 server "lâminas": hosts

Redes de Datacenter: componentes

Topologia da rede de um datacenter Facebook F16:

https://engineering.fb.com/data-center-engineering/f16-minipack/ (março/2019)

Redes de Datacenter: roteamento no nível de aplicação

Balanceador de carga: roteamento no nível da aplicação

- Recebe requisições externas dos clientes
- Direciona a carga de trabalho dentro do datacenter
- Retorna os resultados para o cliente externo (escondendo detalhes internos do data center)
- Funciona como um NAT

Obs: um datacenter normalmente tem vários balanceadores de carga, cada um dedicado a um conjunto de aplicações na nuvem específicas

Redes de Datacenter: múltiplos caminhos

Múltiplas conexões entre os switches e racks:

- Vazão aumentada entre os racks (múltiplos caminhos de roteamento possíveis)
- Aumenta a confiabilidade via redundância

Figure 6.31 ♦ Highly interconnected data network topology

Repare nos dois caminhos disjuntos entre os racks 1 e 11 (vermelho e azul)

<u>Síntese: um dia na vida de uma requisição</u> <u>de página web</u>

Jornada completa na pilha de protocolos!

objetivo: identificar, rever, entender os protocolos (de todas as camadas) envolvidos num cenário simples: requisição de uma página Web.

cenário: estudante conecta seu laptop à rede do campus e deseja carregar a página www.google.com através do seu navegador

Um dia na vida de um pedido de página web

Um dia na vida de uma solicitação de página Web

Para um laptop se conectar, ele precisa obter seu próprio endereço IP, o endereço IP do roteador de primeiro salto e o endereço IP do servidor DNS: usar o DHCP

- Requisição DHCP é encapsulada em um segmento UDP, encapsulado em um datagrama IP, encapsulado em um quadro 802.3 Ethernet
- Quadro Ethernet é demuxed p/ IP, demuxed p/ UDP e finalmente, demuxed p/ DHCP, onde a req. é extraída
 Link Layer 5-26

Um dia na vida de uma solicitação de página Web

Servidor DHCP formula um DHCP ACK contendo o end IP do cliente, endereço IP do roteador de primeiro salto, nome & endereço IP do servidor DNS

- encapsulamento no servidor DHCP: quadro é repassado (devido ao aprendizado do switch) através da LAN, demultiplexado no cliente
- Cliente DHCP recebe o DHCP ACK

Cliente agora tem um endereço IP, sabe o nome e endereço IP do servidor DNS, e o endereço IP do roteador de primeiro salto

... ARP (antes da consulta DNS, antes do HTTP)

Antes de enviar a req HTTP, é necessário saber o endereço IP de www.google.com: DNS

- Msg de consulta DNS é encapsulada em segm UDP, que é encapsulado em um datagrama IP, encapsulado num quadro Eth. Para enviar o quadro ao roteador, é necessário saber o endereço MAC da interface do roteador: ARP
- Consulta ARP é enviada via broadcast e recebida pelo roteador, o qual responde com uma msg ARP reply dando o end MAC de sua interface
- Cliente agora sabe o end MAC do roteador de primeiro salto e pode enviar o quadro contendo a consulta DNS

... Usando DNS

Datagrama IP contendo a consulta DNS é repassado, via o switch da LAN, do cliente ao roteador de primeiro salto

- datagrama IP é roteado desde a rede do campus até a rede Comcast (através de tabelas criadas pelos prot. de roteamento OSPF e/ou BGP) até o servidor DNS, sendo demultiplexado por este
- Servidor DNS responde ao cliente com o endereço IP de www.google.com

Link Layer 5-29

...conexão TCP carregando HTTP

- Para enviar a req HTTP, o cliente abre um socket TCP para o servidor Web
- Segmento SYN (passo I da conexão em 3 vias) é roteado até o servidor web
- Servidor web responde com TCP SYNACK (passo 2 da conexão em 3 vias)
- Conexão TCP estabelecida!!

...HTTP request/reply

- Request HTTP enviada para dentro do socket TCP
- Datagrama IP contendo a requisição HTTP é roteado para
- Servidor web, que responde com HTTP reply (contendo a página Web)
- Datagrama IP contendo a resposta (HTTP reply) é roteado de volta para o cliente