Premium Session

Data Science Project Best Practices & Tips

KIRTHIKKA DEVI VENKATARAM

Lead at WWC Data Science

Session Agenda

- Advanced evaluation methods and metric selection
- Improving our project advanced techniques
- Implementing our project
- Takeaways & Perks

Machine Learning Problems

Supervised

Semi supervised

Unsupervised

Reinforcement

Data Science Life Cycle

Types of Classification Problems

Binary Classification

- Balanced Dataset Binary Classification
- Imbalanced Dataset Binary Classification

Multiclass Classification

ML Classification Problem

ML Classification Problem - KPI & Metrics

- Logistic Regression
- K-Nearest Neighbors
- Decision Trees
- Support Vector Machines (SVM)
- Naive Bayes

- Accuracy
- Precision
- Recall
- F1 Score
- ROC
- AUC
- Entropy
- Gini Index
- Information Gain

<u>Python:</u> Libraries such as Scikit-Learn, TensorFlow, and PyTorch.

Types of Other Regression Problems

- Linear Regression
- Polynomial Regression
- Ridge Regression
- Lasso Regression

ML Regression Problem

ML Regression Problem - KPI & Metrics

- Linear Regression
- Polynomial Regression
- Support Vector Regression
- Decision Tree Regression
- Random Forest Regression

- Mean Absolute Error
- Mean Squared Error
- Root Mean Squared Error
- Coefficient of Determination

<u>Python:</u> Libraries such as Scikit-Learn, TensorFlow, and PyTorch.

ML Models

- Linear Regression
- Logistics Regression
- Decision Tree
- Random Forest
- Neural Networks

ML Model Evaluation & Validation methods

- Hold-out
- K-folds
- Leave-one-out
- Leave-p-out
- Stratified K-folds
- Repeated K-folds
- Nested K-folds
- Time series CV

KPI & Metrics - Machine Learning Problem

Link to General Evaluation Metrics

KPI identification

KPI identification

SHAP - SHapley Additive exPlanations

SHAP feature importance for XGBoost

SHAP feature importance for Decision Tree

AutoML Demo

Takeaways

Thank you!

