

ĐẠI HỌC ĐÀ NẪNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

VIETNAM - KOREA UNIVERSITY OF INFORMATION AND COMMUNICATION TECHNOLOGY

한-베정보통신기술대학교

Nhân bản – Phụng sự – Khai phóng

Chapter 9

Recommender Systems

Machine Learning

CONTENTS

- Introduction to Recommender Systems
- Content-based Recommender Systems
- Collaborative Filtering

Machine Learning 2

Introduction to Recommender Systems

Recommender systems capture the pattern of peoples' behavior and use it to predict what else they might want or like.

Applications

- What to buy?
 - · E-commerce, books, movies, beer, shoes
- Where to eat?
- Which job to apply to?
- Who you should be friends with?
 - LinkedIn, Facebook, ...
- Personalize your experience on the web
 - News platforms, news personalization

Advantages of Recommender Systems

- Broader exposure
- Possibility of continual usage or purchase of products
- Provides better experience

Implementing Recommender Systems

- Memory-based
 - Uses the entire user-item dataset to generate a recommendation
 - Uses statistical techniques to approximate users or items
 e.g., Pearson Correlation, Cosine Similarity, Euclidean Distance, etc.
- Model-based
 - Develops a model of users in an attempt to learn their preferences
 - Models can be created using Machine Learning techniques like regression, clustering, classification, etc.

Two types of Recommender Systems

Content-based Recommender Systems

Collaborative Filtering

Two types of Recommender Systems

Weighing the genres

Weighted Genre Matrix

									Comedy	Adventure	Super Hero	Sci-Fi
		***	Cornedy	Adventure	nato	Sci-Fi			0	2	2	0
2			U	1	1	1 0	Stafferr Andreas					
10	X		1	1	1	1	=		10	10	10	10
8		*	1	0	1	0			8	0	8	0
Input User Ratings		Movies Matrix										
									Comedy	Adventure	Super Hero	Sci-Fi
					Us	ser Pro	ofile	9	18	12	20	10

Weighing the genres

Weighted Genre Matrix

User Profile

	Comedy	Adventure	Super Hero	Sci-Fi
-	0.3	0.2	0.33	0.16

Candidate movies for recommendation

Finding the recommendation

	Comedy	Adventure	Super Hero	Sci-Fi		Comedy	Adventure	Hero	Sci-Fi	L .	Average	
	1	1	0	1		0.3	0.2	0	0.16		0.66	
*	0	0	1	0	=	0	0	0.33	0	—∑ →	0.33	
	1	0	1	0		0.3	0	0.33	0		0.63	
Movies Matrix						Weighted Movies Matrix				Recon	Recommendation Matrix	

...Content-based Recommender Systems

Content-based Recommender Systems

Collaborative Filtering

- User-based collaborative filtering
 - · Based on users' neighborhood
- Item-based collaborative filtering
 - · Based on items' similarity

User-based Collaborative Filtering

User ratings matrix

Ratings Matrix

Learning the similarity weights

Creating the weighted ratings matrix

SUMMARY

• Introduction to Recommender Systems

Content-based Recommender Systems

Collaborative Filtering

Machine Learning 32

ĐẠI HỌC ĐÀ NẪNG

ĐẠI HỌC ĐA NANG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

Nhân bản - Phụng sự - Khai phóng

Enjoy the Course...!

Machine Learning