กระแสไฟฟ้า

และวงจรไฟฟ้า

กระแสไฟฟ้า ความต้านทานและกฎของโอห์ม วงจรไฟฟ้า วงจรไฟฟ้าที่มีตัวต้านทานหลายตัว พลังงานและกำลังในวงจรไฟฟ้า ไฟฟ้ากระแสสลับ ความปลอดภัยเกี่ยวกับการใช้ไฟฟ้า

ประจุไฟฟ้า และ กระแสไฟฟ้า

นิยามของกระแสไฟฟ้า (I) คือปริมาณของประจุที่เคลื่อนที่ผ่านพื้นที่หน้าตัด หนึ่ง ๆ ในหนึ่งหน่วยเวลา หรือ "อัตราการไหลของประจุผ่านพื้นที่หน้าตัดหนึ่ง ๆ"

หน่วยคือคูลอมบ์ต่อวินาที (C/s) หรือแอมแปร์ (A)

$$1A = 1 C/s$$

ทิศของกระแสไฟฟ้ากำหนดให้เป็นทิศที่ประจุบวกเคลื่อนที่ ดังนั้นจะตรงข้ามกับทิศที่ประจุลบ (หรืออิเล็กตรอน)เคลื่อนที่

การเคลื่อนที่ของประจุไฟฟ้า

ประจุไฟฟ้าพวกนี้เคลื่อนที่ได้อย่างไร?

ประจุไฟฟ้าหรืออิเล็กตรอนเคลื่อนที่ได้เพราะมี สนามไฟฟ้าอยู่ภายในตัวนำ (อยู่ในสภาวะที่ไม่ สมดุลทางไฟฟ้าเพราะที่ปลายทั้งสองมีศักย์ไฟฟ้า)

ตารางที่ 11.1 กระแสและความต่างศักย์ที่ใช้ใน เครื่องใช้ไฟฟ้าชนิดต่าง ๆ

อุปกรณ์	กระแสไฟฟ้า	ความต่างศักย์
	(A)	(V) gru
เครื่องคิดเลข 0.3 m	A 0.0003	3
หลอดไฟ 100 W	0.83	120 220
เครื่องกระตุ้นหัวใจ	10-20	10,000
ไฟฉาย	0.1	3
เครื่องปิ้งขนมปัง	10	120
ฟ้าผ่า	20,000	100,000,000

เรามักเปรียบเทียบการไหล ของกระแสกับการไหลของน้ำ

ความต่างศักย์ศักย์ไฟฟ้า=ศักย์ไฟฟ้าสูง-ศักย์ไฟฟ้าตำ

สมบัติทางไฟฟ้าของสสาร

สสารแบ่งเป็นตามความสามารถในการนำ ไฟฟ้าได้หลักๆ สองประเภท คือ

• ตัวนำไฟฟ้า • ฉนวนไฟฟ้า

• สารกึ่งตัวนำ

ข้อแตกต่างที่สำคัญระหว่างตัวนำไฟฟ้ากับฉนวนไฟฟ้าก็คือจำนวน อิเล็กตรอนอิสระ (free electron) ที่มีอยู่ในวัสดุ อิเล็กตรอนอิสระคืออิเล็กตรอนที่สามารถเคลื่อนที่ไปมาได้อย่างเป็น อิสระ ไม่ถูกดึงดูดไว้ ตัวนำไฟฟ้าจะมีอิเล็กตรอนอิสระอยู่มาก ในขณะที่ฉนวนไฟฟ้ามี อิเล็กตรอนอิสระน้อย ดังนั้น เมื่อให้ความต่างศักย์กับตัวนำไฟฟ้า อิเล็กตรอนอิสระจำนวน มากเหล่านี้จึงสามารถเคลื่อนที่และให้กระแสไฟฟ้าที่มีขนาดมาก ในขณะที่ในฉนวนไฟฟ้าไม่ มีอิเล็กตรอนที่สามารถเคลื่อนที่ได้มากนัก กระแสไฟฟ้าจึงมีค่าต่ำ

กฎของโอห์ม

เนื่องจากประจุในตัวนำไม่สามารถเคลื่อนที่ ได้อย่างเป็นอิสระ เราสามารถเรียกการ ต่อต้านการไหลของกระแสไฟฟ้าของตัวนำ ได้ว่า "ความต้านทานไฟฟ้า" (resistance)

จากการทดลองพบว่า กระแสแปรผันตรงกับความต่างศักย์

กฎของโอห์ม

(Ohm's law)

$$I = \frac{\Delta V}{R}$$

ความต้านทาน

R มีหน่วยเป็น โอห์ม (Ohm) ใช้สัญลักษณ์ Ω

$$1\Omega = 1 \text{ V/A}$$

ความต้านทานไฟฟ้าของลวดตัวนำ

ในลวดตัวนำ ค่าของความต้านทานอาจจะขึ้นอยู่กับ

- ชนิดของวัสดุที่ใช้นำไฟฟ้า เช่น เงิน, ทองแดง, เหล็ก, เป็นต้น
- ความยาว (ยาวมากความต้านทานก็มาก)
- พื้นที่ตัดขวางของตัวนำ (พื้นที่มากความต้านทานจะน้อยลง)

สภาพต้านทานไฟฟ้า

$$R = \rho \frac{L}{A}$$

โดยที่ ρ คือค่าคงตัวการแปรผัน หรือ เรียกว่าเป็น สภาพต้านทาน (Electrical resistivity) มีหน่วยเป็น โอห์มเมตร (Ω·m) ค่า ρ นี้ไม่ขึ้นกับขนาด ความยาว หรือ พื้นที่หน้าตัดของตัวนำ แต่จะขึ้นกับชนิด ของตัวนำ (และอาจจะขึ้นกับอุณหภูมิ) ตัวนำต่างชนิดกันจะมีค่า ρ ต่างกัน

Wighty marred 44

สภาพความต้านทานไฟฟ้าของ		
สารชนิดต่างๆ (Ω·m)		
ู เงิน	1.59×10^{-8}	
ทอง	2.44×10^{-8}	
อลูมิเนียม	2.82×10^{-8}	
ทองแดง	1.7×10 ⁻⁸	
เหล็ก	10×10^{-8}	
ตะกั่ว	22×10 ⁻⁸	
คาร์บอน	3.5×10 ⁻⁵	
แก้ว	10 ¹⁰ -10 ¹⁴	
ยาง	10 ¹³	
เก้วควอทช์	75×10^{16}	

1.
$$I = \frac{Q}{t}$$
 มีหน่วยเป็น C/s = A (แอมแปร์)

2.
$$I = nevA$$

n = จำนวน e ใน 1 หน่วยปริมาตร

e = ประจุของ e = 1.6 x 10⁻¹⁹ C

A = พื้นที่หน้าตัดของตัวนำ

v = ความเร็วลอยเลื่อน

$$3. R = \rho \frac{l}{A}$$

R = ความต้านทาน (Ω)

 ρ = аภาพต้านทาน (Ω - m)

l = ความยาวของลวด (m)

 $A = \vec{N}$ นที่หน้าตัด (m²)

ในกรณีเปรียบเทียบกัน

3.1
$$\frac{R_1}{R_2} = \frac{\rho_1 l_1 A_2}{\rho_2 l_2 A_1}$$

$$3.2 \quad \frac{R_1}{R_2} = \frac{l_1 A_2}{l_2 A_1}$$

(ลวดชนิดเดียวกัน)

3.3
$$\frac{R_1}{R_2} = \left(\frac{l_1}{l_2}\right)^2 = \left(\frac{A_2}{A_1}\right)^2 = \left(\frac{r_2}{r_1}\right)^4$$
 (ลวดชนิดเดียวกันที่มีปริมาตรเท่ากัน) (r = รัศมีของพื้นที่หน้าตัด)

4.
$$S = \frac{1}{\Omega}$$
 = สภาพนำไฟฟ้า (Ω - m)⁻¹ = semen/m

ตัวอย่างโจทย์ สภาพต้านทานไฟฟ้า

สายไฟ 2 เส้น ทำด้วยโลหะ 2 ชนิด เส้นแรกมีสภาพความต้านทานเป็น 3 เท่าของเส้นที่สอง ถ้า ความยาวและความต้านทานเท่ากัน อัตราส่วนพื้นที่หน้าตัดของเส้นที่หนึ่งต่อเส้นที่สองคือ

1. 1:3
$$P_{1} = 3P_{2}$$
 A_{1}
3. 3:1 $A_{1} = A_{2}$

ลวดตัวนำเส้นหนึ่งมีพื้นที่หน้าตัด A ยาว l ถ้านำมารีดให้มีขนาดพื้นที่หน้าตัด

ของลวดเส้นใหม่ เมื่อเทียบกับเส้นเดิม 💛 🔠 🥫

- 1. ความต้านทานเพิ่มขึ้นเป็น 4 เท่า
- 3. ความต้านทานเพิ่มขึ้นเป็น 2 เท่า

4. ความต้านทานลดลงเป็น 2 เท่า

ตัวอย่างโจทย์ กระแสไฟฟ้า

ตัวอย่างที่ **11.1** ให้หาว่ามีจำนวนอิเล็กตรอนเท่าไรที่เคลื่อนที่ผ่านเครื่องคิดเลขที่ใช้กระแสไฟฟ้า 0.2 mA เมื่อเราใช้ เครื่องคิดเลขไปเป็นเวลา 1 ชั่วโมง (อิเล็กตรอนหนึ่งตัวมีประจุไฟฟ้า $e = 1.6 \times 10^{-19} \; \mathrm{C}$) วิธีทำ

จากนิยามของกระแสไฟฟ้าในสมการที่ 11.1 เราสามารถคำนวณหาปริมาณของประจุไฟฟ้าที่เคลื่อนที่ได้โดย $\Delta Q = I \Delta t$ เพราะฉะนั้น (เปลี่ยนหน่วยให้ถูกต้อง)

$$\Delta Q = I\Delta t = (0.2 \times 10^{-3} \text{ mA})(3600 \text{ s}) = 0.72 \text{ C}$$

อิเล็กตรอนหนึ่งตัวมีประจุไฟฟ้า $e=1.6\times 10^{-19}~{
m C}$ จำนวนอิเล็กตรอน N ทั้งหมดจึงเท่ากับ

$$N = \frac{\Delta Q}{e} = \frac{0.72 \text{ C}}{1.6 \times 10^{-19} \text{ C}} = 4.5 \times 10^{18} \text{ ตัว}$$

ตัวอย่างโจทย์ กระแสไฟฟ้า

ลวดเส้นหนึ่งยาว 4 เมตร มีอิเล็กตรอนอิสระ 2 x 10²² ตัว ถ้ามีกระแสไฟฟ้าไหลผ่านลวดเส้นนี้ 1.6 แอมแปร์ ความเร็วลอยเลื่อนของอิเล็กตรอนในเส้นลวดนี้จะเป็นเท่าไร ถ้าประจุของอิเล็กตรอน

1 ตัวเท่ากับ 1.6 x 10⁻¹⁹ คูลอมบ์ **ไ**= ทย\/ → ไร 1.6 s 2 x 16 x x x x x A

1. 250 เมตร/วินาที

3. 2.5 เมตร/วินาที่

2. 4 x 10⁻³ เมตร/วินาที

💃 2 x 10⁻³ เมตร/วินาที

กระแสไฟฟ้าใหลผ่านตัวนำตัวหนึ่งไปมีค่าเปลี่ยนแปลง กับเวลาดังกราฟที่กำหนดให้ อยากทราบว่าเมื่อสิ้น วินาทีที่ 4 ประจุไฟฟ้าจะไหลผ่านตัวนำไปเท่าไร

- 1 80 คูลอมบ์
- 2. 60 คูลอมบ์
- 40 คูลอมบ์
- 4. 5 คูลอมบ์

47. Promise

ตัวนำยิ่งยวด (superconductor)

สารบางชนิดเมื่ออุณหภูมิต่ำกว่าค่า
อุณหภูมิวิกฤติค่าหนึ่ง T_c ความต้านทาน
ไฟฟ้าจะเป็นศูนย์ สารนี้เรียกว่า ตัวนำ
ยิ่งยวด (superconductor)

รู้ใหมว่าแม่เหล็กที่ใช้ในเครื่อง MRI นะเป็น superconducting magnet! ไม่ใช่แม่เหล็กติดตู้เย็นธรรมดา!

Weyngrass

แล้วเขายังเอา superconducting magnet ไปใช้ทำ รถไฟลอยฟ้า (MagLev) อีกด้วยน่ะ ถ้าไม่มีฟิสิกส์ ก็ไม่มีสิ่งอำนวยความสะดวกเหล่านี้!!!!

MagLev in Shanghai: top speed at 431 km/hr

inside

Malaysia would be soon having MagLev?

What about Thai?

สัญลักษณ์ในแผนภาพวงจรไฟฟ้า

รูปที่ 11-7 (ก) สัญญลักษณ์ของส่วนประกอบต่างๆ ของวงจรไฟฟ้า (ข) วงจรไฟฟ้าแบบที่ง่ายที่สุดประกอบไป ด้วยแหล่งกำเนิดความต่างศักย์และตัวต้านทาน (ค) ตัวอย่างการต่อวงจรไฟฟ้าในชีวิตจริง

เนื่องจากอุปกรณ์ไฟฟ้าทั้งหลายมีความต้านทานเสมอ ดังนั้นเรา สามารถใช้สัญลักษณ์ของตัวต้านทานแทนอุปกรณ์ไฟฟ้าต่างๆ

โดยปกติแล้ว ในวงจรไฟฟ้าหนึ่งๆ จะมีตัว ต้านทานมากกว่าหนึ่งตัว เราสามารถ พิจารณาหากระแสที่ไหลในวงจรได้โดยการ หา ความต้านทานสมมูล (equivalent resistance) ของการต่อตัวต้านทาน

- •การต่อตัวต้านทานแบบอนุกรม (series)
- •การต่อตัวต้านทานแบบขนาน (parallel)
- •การต่อตัวต้านทานแบบผสม (combination)

รูปที่ 11-9 วงจรไฟฟ้าประกอบด้วยตัว

ต้านทานมากกว่าหนึ่งตัว

Electronics Board

สุดท้ายแล้ว ความต้านทานสมมูลคือความต้านทานที่ใช้แทน ความต้านทานรวมทั้งหมดในวงจรนั่นเอง

a Req C

การต่อตัวต้านทานแบบอนุกรม

$$V_{ab} = IR_1 \qquad V_{bc} = IR_2$$

$$V = V_{ab} + V_{bc}$$

$$= IR_1 + IR_2$$

$$= I(R_1 + R_2)$$

$$= IR_{eq}$$

$$R_{\rm eq} = R_1 + R_2 + R_3 + \cdots$$

การต่อตัวต้านทานแบบขนาน

$$I_1 = \frac{V}{R_1} \qquad I_2 = \frac{V}{R_2}$$

$$I_{\text{total}} = I_1 + I_2 = \frac{V}{R_1} + \frac{V}{R_2}$$

= $V \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = V \left(\frac{1}{R_{\text{eq}}} \right) = \frac{V}{R_{\text{eq}}}$

6Ω 7Ω 2Ω 9Ω

รูปที่ 11-14 การคำนวณหาความต้านทานรวม (สมมูล) ในกรณีที่ตัวต้านทานต่อแบบผสม

การต่อตัวต้านทานแบบผสม

$$R_{ab} = 4 \Omega + 3 \Omega = 7 \Omega$$

$$\frac{1}{R_{bc}} = \frac{1}{6 \Omega} + \frac{1}{3 \Omega} = \frac{1}{2 \Omega}$$
$$R_{bc} = 2 \Omega$$

$$R_{\rm ac} = 7 \Omega + 2 \Omega = 9 \Omega$$

ตัวอย่างโจทย์ การคำนวณหาค่ากระแสไฟฟ้า

ตัวอย่างที่ 11.8 พิจารณาวงจรไฟฟ้าดังรูป ถ้า $R=5~\Omega$ และ

$$\Delta V = 15 \text{ V}$$

- (ก) จงคำนวณหากระแสไฟฟ้ารวมของวงจร
- (ข) ความต่างศักย์คร่อมตัวต้านทาน R
- (ค) ความต่างศักย์คร่อมตัวต้านทาน 3*R*

จากรูป จงแปลงเป็นวงจรอย่างง่าย

กำลังไฟฟ้า

เราจะพิจารณาถึงพลังงานที่เกิดขึ้น (หรือสูญเสียไป) ในวงจรไฟฟ้า

เมื่อประจุไหลจากจุด a ไปยังจุด b พลังงานศักย์ไฟฟ้าที่ลดลง

$$\Delta U = q \Delta V = (\Delta Q) \Delta V$$

อัตราการลดลงของพลังงานศักย์ใฟฟ้าคร่อมตัวต้านทาน

$$\frac{\Delta U}{\Delta t} = \left(\frac{\Delta Q}{\Delta t}\right) \Lambda V$$

$$\Delta U/\Delta t = P$$

$$\Delta Q/\Delta t = I$$

$$P = I\Delta V = I^2 R = \frac{\left(\Delta V\right)^2}{R}$$

หรืออาจเขียนย่อๆ เป็น

$$P = IV = I^2R = \frac{V^2}{R}$$

รูปที่ 11-15 วงจรไฟฟ้าอย่างง่าย

เซลล์ไฟฟ้าในวงจร

$$I=rac{nE}{R+nr}$$
 หรือ $I=rac{E}{rac{R}{n}+r}$ n = จำนวน cell ไฟฟ้าใน 1 แถว

ต่อแบบขนาน

$$I = \frac{E}{R + \frac{r}{m}}$$

ตัวอย่างโจทย์การวิเคราะห์วงจรไฟฟ้า

จากวงจรที่กำหนด จงหากระแสไฟฟ้า $\mathbf{I_1}$ และ $\mathbf{I_2}$

fi.
$$I_1 = 0.22 \text{ A}$$
; $I_2 = 0.34 \text{ A}$

$$I_1 = 1.02 \text{ A}$$
; $I_2 = 0.78 \text{ A}$

$$I_1 = 0.34 \text{ A}$$
; $I_2 = 0.22 \text{ A}$

$$I_1 = 0.78 \text{ A}$$
; $I_2 = 1.02 \text{ A}$

$$\frac{27}{1} = \frac{8}{1+247} = 1.8$$

$$V = 1.8 \times 24$$

$$= 6.2 \times 7$$

เครื่องใช้ไฟฟ้า

สมการนี้บอกอัตราการสูญเสียพลังงานไฟฟ้าเมื่อมีกระแสไฟฟ้าไหลผ่านตัวต้านทานในวงจร

$$P = IV = I^2 R = \frac{V^2}{R}$$

$$I = \frac{P}{V} = \frac{40 \text{ W}}{220 \text{ V}} = 0.18 \text{ A}$$

รูปที่ 11-16 อุปกรณ์ไฟฟ้าส่วนมากจะมี การระบุกำลังไฟฟ้าที่ใช้

ไฟฟ้ากระแสสลับ

ทิศทางของกระแสไฟฟ้าจะ กลับไปกลับมา ไฟฟ้ากระแสตรงได้จากถ่านไฟฉาย
แบตเตอรี่ หรือ จากหมอแปลง
L = Line = 220 Vac
N = Neutron = 0V
G = ground
ไฟฟ้าตามบ้านเป็นไฟฟ้ากระแสสลับ
(alternating current, a.c.) 220 Volt 50 Hz

ค่ายังผล (Effective Value)

ตัวอย่างโจทย์ กำลังไฟฟ้ากระแสสลับ

ตัวอย่างที่ 11.12 หลอดไฟหลอดหนึ่งใช้งานที่ 220 V มีความต้านทาน 484 Ω

- (ก) จงหากระแสยังผลที่ใหลผ่านหลอดใฟ
- (ข) ขนาดของกระแสไฟฟ้าสูงสุดที่ไหลผ่านหลอดไฟฟ้า
- (ค) หากำลังใฟฟ้าของหลอดไฟ

วิธีทำ

(ก) จากกฎของโอห์ม กระแสไฟฟ้าที่ใหลผ่านหลอดไฟมีค่าเท่ากับ

$$I = \frac{\Delta V}{R} = \frac{220 \text{ V}}{484 \Omega} = 0.45 \text{ A}$$

เนื่องจากเราใช้ความต่างศักย์ 220 V ซึ่งเป็นความต่างศักย์ยังผลมาคำนวณ ดังนั้นค่าของกระแสไฟฟ้าที่ได้เป็น กระแสไฟฟ้ายังผลด้วยเช่นกัน นั่นคือเราอาจจะพิจารณากฎของโอห์มว่าอยู่ในรูปของ I_{eff} = V_{eff} /R ก็ได้ (ข) กระแสไฟฟ้าสูงสุดมีค่า

$$I_0 = \sqrt{2}I_{\text{eff}} = \sqrt{2}(0.45 \text{ A}) = 0.64 \text{ A}$$

(ค) ในการคำนวณกำลังไฟฟ้า เราต้องใช้ค่ายังผลเท่านั้น เพราะฉะนั้นกำลังไฟฟ้ามีค่าเท่ากับ

$$P = I_{\text{eff}}V_{\text{eff}} = (0.45 \text{ A})(220 \text{ V}) = 100 \text{ W}$$

หรือเราอาจจะคำนวณจาก

$$P = \frac{V_{\text{eff}}^2}{R} = \frac{(220 \text{ V})^2}{484 \Omega} = 100 \text{ W}$$

ก็ใต้เช่นเดียวกัน

Figure 9.9 Voltage-current relations for a resistor in the:

(a) time domain, (b) frequency domain.

Figure 9.10 Phasor diagram for the resistor.

Figure 9.2 Two sinusoids with different phases.

เฟเซอร์ของ ตัวเหนี่ยวนำ และ ตัวจุไฟฟ้า

Although it is equally correct to say that the inductor voltage leads the current by 90°, convention gives the current phase relative to the voltage.

Figure 9.11 Voltage-current relations for an inductor in the:

(a) time domain, (b) frequency domain.

dt

By following the same steps as we took for the inductor or by applying Eq. (9.27) on Eq. (9.36), we obtain

$$\mathbf{I} = j\omega C\mathbf{V}$$
 \Longrightarrow $\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$ (9.37)

showing that the current and voltage are 90° out of phase. To be specific, the current leads the voltage by 90°. Figure 9.13 shows the voltage-current

Figure 9.12 Phasor diagram for the inductor; I lags V.

Figure 9.13 Voltage-current relations for a capacitor in the:

(a) time domain, (b) frequency domain.

ความต้านทานเชิงซ้อน (Impedance)

relations for the capacitor; Fig. 9.14 gives the phasor diagram. Table 9.2 summarizes the time-domain and phasor-domain representations of the circuit elements.

TABLE 9.2	Summary of voltage-current
relationshi	ps.

Element	Time domain	Frequency domain
R	v = Ri	V = RI
L	$v = L \frac{di}{dt}$	$\mathbf{V} = j\omega L\mathbf{I}$
C	$i = C \frac{dv}{dt}$	$\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$

Figure 9.14 Phasor diagram for the capacitor; I leads V.

ตัวอย่างโจทย์ การวิเคราะห์วงจรไฟฟ้ากระแสสลับ

Ex. Motor มีโครงสร้างภายในเป็น R-L Series โดยที่ R = 50 Ω and L = 0.08 H ใช้ไฟบ้าน 220 V 50 Hz

$$Z^2 = (25.1^2 + 50^2)$$
 \Rightarrow $Z = 55.9 \Omega$ \Rightarrow $I = V/Z = 220 / 55.9 = 3.9 A \Rightarrow $\theta = tan^{-1} (VL/VR) = tan^{-1} (XL/R) = 26.7^{\circ}$$

p.f =
$$\cos \theta = \cos 26.7^{\circ} = 0.89$$

$$P = V. I. (p.f) = 220 * 3.9 * 0.89 = 766.8 W$$

ตัวอย่างโจทย์ การวิเคราะห์วงจรไฟฟ้ากระแสสลับ (2)

เมื่อนำตัวต้านทานและขดลวดเหนี่ยวนำอย่างละ 1 ตัวมาต่ออนุกรมกัน และต่อกับแหล่ง จ่ายไฟฟ้า กระแสสลับที่มีความต่างศักย์เปลี่ยนแปลงตามเวลา V = 100 sin (2000 t) โวลต์ เมื่อโวลต์มิเตอร์มาวัดความต่างศักย์คร่อมขดลวดเหนี่ยวนำอ่านค่าได้ 10 โวลต์ อยากทราบว่า ถ้านำไปวัดคร่อมตัวต้านทานจะอ่านได้กี่โวลต์

- 1. 10 V
- 2. 30 V
- 3. 70 V
- 4. 90 V

ทำไมเราจึงใช้ไฟ AC แทนที่จะใช้ไฟ DC?

รูปที่ 11-20 สายส่งไฟฟ้าแรงสูง

ไฟฟ้าที่ส่งมายังบ้านเราจากโรงไฟฟ้าจะส่งด้วย ค่าความต่างศักย์ที่สูงมาก เช่น 20,000 V ทำไม ถึงต้องส่งด้วยค่าความต่างศักย์ที่สูงเช่นนี้

สายไฟมีค่าความต้านทานอยู่ ถ้าสายไฟที่ใช้ยาว ความต้านทานจะสูง ทำให้อัตราการสูญเสีย พลังงานในรูปของความร้อนหรือกำลังมาก แต่ถ้าเราส่งไฟฟ้าด้วยความต่างศักย์ที่สูง เช่น 20,000 V ความร้อนที่เกิดในสายไฟจะลดลง ทั้งนี้ เพราะสิ่งที่ส่งตามสายไฟคือกำลัง P (P = IV) เมื่อ V สูง I จะน้อย ดังนั้นความร้อนที่สูญเสียจะต่ำ โดยอัตราการสูญเสียความร้อนคือ I²R

ทำไมเราจึงใช้ไฟ AC แทนที่จะใช้ไฟ DC?

ไฟฟ้าที่ส่งมายังบ้านเราจากโรงไฟฟ้าจะส่งด้วย ค่าความต่างศักย์ที่สูงมาก เช่น 20,000 V ทำไม ถึงต้องส่งด้วยค่าความต่างศักย์ที่สูงเช่นนี้

นอกจากนี้ การเปลี่ยนค่าความต่าง ศักย์ของ AC ทำได้ง่ายุกว่าของ DC โดยต้องมีการปรับลดความต่าง ศักย์ให้เหลือ 220 V ก่อนนำไปใช้

รูปที่ 11-21 ตัวตัดวงจรไฟฟ้า หรือ เบรกเกอร์

ตัวตัดวงจร (circuit breaker)

รูปที่ 11-22 ฟิวส์

ฟิวส์ (fuse)

न्त्र भी केंद्रगण ।

ไฟฟ้าลัดวงจร (short circuit)

สายดิน (grounding)

SO/FEE

SOUTH

bhimin

15/68

SHITKE

SO(THE)

15/818

15/000

Link with Medical Science 11-1

Electrocardiogram (ECG) : เครื่องตรวจสัญญาณไฟฟ้าหัวใจ

Pacemaker

ของฝากก่อนจบ

- -การบ้าน 5 คะแนน **ให้ทำกั**วอิชา 7 ไวทุง ทุก 3 วิ
- ■แนบไฟล์ส่ง elect_buu@hotmail.com
- •หัวข้อ email : 886204 (*กลุ่มเรียน) ส่ง HW.
- *กลุ่มเรียน หมายถึง 01, 02, 03 หรือ 3401
- ส่งก่อนวันสอบกลางภาค(2 วัน)
 4 7
 157
- *** พิจารณาแล้วพบว่า ลอกส่ง ให้ 0 คะแนนทุกสำเนา