Analysis I - Chapter 1

Theorems, Postulates, Definitions & Remarks

1.2 - Ordered Field Axioms

Postulate 1 (FIELD AXIOMS). There are functions + and \cdot , defined on $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R}$, which satisfy the following properties for every $a, b, c \in \mathbb{R}$:

Closure Properties. a + b and $a \cdot b$ belong to \mathbb{R} .

Associative Properties. a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.

Commutative Properties. a + b = b + a and $a \cdot b = b \cdot a$.

Distributive Law. $a \cdot (b+c) = a \cdot b + a \cdot c$.

Existence of the Additive Identity. There is a unique element $0 \in \mathbb{R}$ such that 0+a=a for all $a \in \mathbb{R}$.

Existence of the Multiplicative Identity. There is a unique element $1 \in \mathbb{R}$ such that $1 \neq 0$ and $1 \cdot a = a$ for all $a \in \mathbb{R}$.

Existence of the Additive Inverses. For every $x \in \mathbb{R}$ there is a unique element $-x \in \mathbb{R}$ such that x + (-x) = 0.

Existence of the Multiplicative Inverses. For every $x \in \mathbb{R} \setminus \{0\}$ there is a unique element $x^{-1} \in \mathbb{R}$ such that $x \cdot x^{-1} = 1$.

Postulate 2 (ORDER AXIOMS). There is a relation < on $\mathbb{R} \times \mathbb{R}$ that has the following properties:

Trichotomy Property. Given $a, b \in \mathbb{R}$, one and only one of the following statements holds:

$$a < b$$
, $b < a$, or $a = b$.

Transitive Property. For $a, b, c \in \mathbb{R}$,

$$a < b$$
 and $b < c$ imply $a < c$.

The Additive Property. For $a, b, c \in \mathbb{R}$,

$$a < b$$
 and $c \in \mathbb{R}$ imply $a + c < b + c$.

The Multiplicative Properties. For $a, b, c \in \mathbb{R}$,

$$a < b$$
 and $c > 0$ imply $ac < bc$

and

$$a < b$$
 and $c < 0$ imply $bc < ac$.

Remark 1.1. We will assume that the sets \mathbb{N} and \mathbb{Z} satisfy the following properties.

- i. If $n, m \in \mathbb{Z}$, then n + m, n m, and mn belong to \mathbb{Z} .
- ii. If $n \in \mathbb{Z}$, then $n \in \mathbb{N}$ if and only if $n \ge 1$.
- iii. There is no $n \in \mathbb{Z}$ that satisfies 0 < n < 1.

Definition 1.4. The absolute value of a number $a \in \mathbb{R}$ is the number

$$|a| := \begin{cases} a & a \ge 0 \\ -a & a < 0. \end{cases}$$

Remark 1.5. The absolute value is multiplicative; that is, |ab| = |a||b| for all $a, b \in \mathbb{R}$.

Theorem 1.6 (FUNDAMENTAL THEOREM OF ABSOLUTE VALUES). Let $a \in \mathbb{R}$ and $M \geq 0$. Then $|a| \leq M$ if and only if $-M \leq a \leq M$.

Theorem 1.7. The absolute value satisfies the following three properties.

i.[POSITIVE DEFINITE]. For all $a \in \mathbb{R}$, $|a| \ge 0$ with |a| = 0 if and only if a = 0.

ii. [SYMMETRIC]. For all $a, b \in \mathbb{R}$, |a - b| = |b - a|.

iii.[TRIANGLE INEQUALITIES]. For all $a, b \in \mathbb{R}$,

$$|a + b| \le |a| + |b|$$
 and $|a| - |b| \le |a - b|$.

Theorem 1.9. Let $x, y, a \in \mathbb{R}$.

i. $x < y + \varepsilon$ for all $\varepsilon > 0$ if and only if $x \le y$.

ii. $x > y + \varepsilon$ for all $\varepsilon > 0$ if and only if $x \ge y$.

iii. $|a| < \varepsilon$ for all $\varepsilon > 0$ if and only if a = 0.

1.3 - Completeness Axiom

Definition 1.10. Let $E \subset \mathbb{R}$ be nonempty.

- i. The set E is said to be bounded above if and only if there is an $M \in \mathbb{R}$ such that $a \leq M$ for all $a \in E$ in which case M is called an upper bound of E.
- ii. A number s is called a supremum of the set E if and only if s is an upper bound of E and $s \leq M$ for all upper bounds M of E. (In this case, we shall say that E has a finite supremum s and write $s = \sup E$).

Remark 1.12. If a set has one upper bound, it has infinitely many upper bounds.

Remark 1.13. If a set has a supremum, then it has only one supremum.

Theorem 1.14 (APPROXIMATION PROPERTY FOR SUPREMA). If E has a finite supremum and $\varepsilon > 0$ is any positive number, then there is a point $a \in E$ such that

$$\sup E - \varepsilon < a \le \sup E.$$

Theorem 1.15. If $E \subset \mathbb{Z}$ has a supremum, then $\sup E \in E$. In particular, if the supremum of a set, which contains only integers, exists, that supremum must be an integer.

Postulate 3 (COMPLETENESS AXIOM). If E is a nonempty subset of \mathbb{R} that is bounded above, then E has a finite supremum.

Theorem 1.16 (ARCHIMEDEAN PRINCIPLE). Given real numbers a and b, with a > 0, there is an integer $n \in \mathbb{N}$ such that b < na.

Theorem 1.18 (**DENSITY OF RATIONALS**). If $a, b \in \mathbb{R}$ satisfy a < b, then there is a $q \in \mathbb{Q}$ such that a < q < b.

Definition 1.19. Let $E \subset \mathbb{R}$ be nonempty.

- i. The set E is said to be bounded below if and only if there is an $m \in \mathbb{R}$ such that $a \geq m$ for all $a \in E$ in which case m is called a lower bound of E.
- ii. A number t is called an infimum of the set E if and only if t is a lower bound of E and $t \ge m$ for all lower bounds m of E. In this case, we shall say that E has an infimum t and write $t = \inf E$.
- iii. E is said to be bounded if and only if it is bounded both above and below.

Theorem 1.20 (REFLECTION PRINCIPLE). Let $E \subseteq \mathbb{R}$ be nonempty.

i. E has a supremum if and only if -E has an infimum, in which case

$$inf(-E) = -sup(E).$$

ii. E has an infimum if and only if -E has a supremum, in which case

$$sup(-E) = -inf(E).$$

Theorem 1.21 (MONOTONE PROPERTY). Suppose $A \subseteq B$ are nonempty subsets of \mathbb{R} .

- i. If B has a supremum, then $\sup A \leq \sup B$.
- ii. If B has an infimum, then $\inf A \ge \inf B$.

1.4 - Mathematical Induction

Theorem 1.22 (WELL-ORDERING PRINCIPLE). If E is a nonempty subset of \mathbb{N} , then E has a least element (ie, E has a finite infimum and $inf E \in E$).

Theorem 1.23. Suppose for each $n \in \mathbb{N}$ that A(n) is a proposition (ie, a verbal statement or formula) which satisfies the following properties:

i. A(1) is true.

ii. For every $n \in \mathbb{N}$ for which A(n) is true, A(n+1) is also true. Then A(n) is true for all $n \in \mathbb{N}$.

Lemma 1.25. If $n, k \in \mathbb{N}$ and $1 \le k \le n$, then

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$

Theorem 1.26 (BINOMIAL FORMULA). If $a, b \in \mathbb{R}$, $n \in \mathbb{N}$, and 0^0 is interpreted to be 1, then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Remark 1.27. If x > 1 and $x \notin \mathbb{N}$, then there is an $n \in \mathbb{N}$ such that n < x < n + 1.

Remark 1.28. If $n \in \mathbb{N}$ is not a perfect square (ie, if there is no $m \in \mathbb{N}$ such that $n = m^2$), then \sqrt{n} is irrational.