3

THE DATA LINK LAYER

In this chapter, we will study the design principles for the second layer in our model, the data link layer. This study deals with algorithms for achieving reliable, efficient communication of whole units of information called frames (rather than individual bits, as in the physical layer) between two adjacent machines. By adjacent, we mean that the two machines are connected by a communication channel that acts conceptually like a wire (e.g., a coaxial cable, telephone line, or wireless channel). The essential property of a channel that makes it "wire-like" is that the bits are delivered in exactly the same order in which they are sent.

At first you might think this problem is so trivial that there is nothing to study—machine A just puts the bits on the wire, and machine B just takes them off. Unfortunately, communication channels make errors occasionally. Furthermore, they have only a finite data rate, and there is a nonzero propagation delay between the time a bit is sent and the time it is received. These limitations have important implications for the efficiency of the data transfer. The protocols used for communications must take all of these factors into consideration. These protocols are the subject of this chapter.

After an introduction to the key design issues present in the data link layer, we will start our study of its protocols by looking at the nature of errors and how they can be detected and corrected. Then we will study a series of increasingly complex example protocols, each one solving more and more of the problems present in this layer. Finally, we will conclude with some examples of data link protocols.

3.1 DATA LINK LAYER DESIGN ISSUES

The data link layer uses the services of the physical layer below it to send and receive bits over (possibly unreliable) communication channels that may lose data. It has a number of functions, including:

- 1. Providing a well-defined service interface to the network layer (Sec. 3.1.1).
- 2. Framing sequences of bytes as self-contained segments (Sec. 3.1.2).
- 3. Detecting and correcting transmission errors (Sec. 3.1.3).
- 4. Regulating the flow of data so that slow receivers are not swamped by fast senders (Sec. 3.1.4).

To accomplish these goals, the data link layer takes the packets it gets from the network layer and encapsulates them into **frames** for transmission. Each frame contains a frame header, a payload field for holding the packet, and a frame trailer, as illustrated in Fig. 3-1. Frame management forms the heart of what the data link layer does. In the following sections, we will examine all of the above issues in detail. Also, when unreliable wireless networks are being used, using protocols to improve the data link later often improves performance.

Figure 3-1. Relationship between packets and frames.

Although this chapter is primarily about the data link layer and its protocols, many of the principles we will study here, such as error control and flow control, are found in transport and other protocols as well in some networks. That is because reliability is an overall goal, and it is achieved when all the layers work together. In fact, in many networks, these functions are found mostly in the upper layers, with the data link layer doing the minimal job that is "good enough." However, no matter where they are found, the principles are pretty much the same. They often show up in their simplest and purest forms in the data link layer, making this a good place to examine them in detail.

3.1.1 Services Provided to the Network Layer

The function of the data link layer is to provide services to the network layer. The principal service of the link layer is transferring data from the network layer on the source machine to the network layer on the destination machine. On the source machine is an entity, call it a process, in the network layer that passes packets to the data link layer for transmission to the destination. The job of the data link layer is to transmit the data to the destination machine so they can be handed over to the network layer there, as shown in Fig. 3-2(a). The actual transmission follows the path of Fig. 3-2(b), but it is easier to think in terms of two data link layer processes communicating using a data link protocol. For this reason, we will implicitly use the model of Fig. 3-2(a) throughout this chapter.

Figure 3-2. (a) Virtual communication. (b) Actual communication.

The data link layer can be designed to offer various services. The actual services that are offered vary from protocol to protocol. Three reasonable possibilities that we will consider in turn are:

- 1. Unacknowledged connectionless service.
- 2. Acknowledged connectionless service.
- 3. Acknowledged connection-oriented service.

Unacknowledged connectionless service consists of having the source machine send independent frames to the destination machine without having the destination

machine acknowledge them. Ethernet is a good example of a data link layer that provides this class of service. No logical connection is established beforehand or released afterward. If a frame is lost due to noise on the line, no attempt is made to detect the loss or recover from it in the data link layer. This class of service is appropriate when the error rate is very low, so recovery is left to higher layers. It is also appropriate for real-time traffic, such as voice or video, in which late data are worse than bad data.

The next step up in terms of reliability is acknowledged connectionless service. When this service is offered, there are still no logical connections used, but each frame sent is individually acknowledged. In this way, the sender knows whether a frame has arrived correctly or been lost. If it has not arrived within a specified time interval, it can be sent again. This service is useful over unreliable channels, such as wireless systems. 802.11 (WiFi) is a good example of this type of link layer service.

It is perhaps worth emphasizing that providing acknowledgements in the data link layer is just an optimization. It is never a requirement. The network layer can always send a packet and wait for it to be acknowledged by its peer on the remote machine. If the acknowledgement is not received before a retransmission timer expires, the sender can just send the entire message again. The trouble with this strategy is that it can be inefficient. Links frequently have a strict maximum frame length imposed by the hardware, and known propagation delays. The network layer does not know these parameters. It might send a large packet that is broken up into, say, ten frames, of which two are lost on average. It would then take a very long time for the packet to get through. Instead, if individual frames are acknowledged and retransmitted, then errors can be corrected more directly and more quickly. On reliable channels, such as fiber, the overhead of a heavyweight data link layer protocol may be unnecessary, but on (inherently unreliable) wireless channels the overhead is often worth the cost.

Getting back to our services, the most sophisticated service the data link layer can provide to the network layer is connection-oriented service. With this service, the source and destination machines establish a connection before any data are transferred. Each frame sent over the connection is numbered, and the data link layer guarantees that each frame sent is indeed received. Furthermore, it guarantees that each frame is received exactly once and that all frames are received in the right order. Connection-oriented service thus provides the network layer processes with the equivalent of a reliable bit stream. It is appropriate over long, unreliable links such as a satellite channel or a long-distance telephone circuit. If acknowledged connectionless service were used, it is conceivable that lost acknowledgements could cause a frame to be sent and received several times, wasting bandwidth.

When connection-oriented service is used, transfers go through three distinct phases. In the first phase, the connection is established by having both sides initialize variables and counters needed to keep track of which frames have been received and which ones have not. In the second phase, one or more frames are actually transmitted. In the third and final phase, the connection is released, freeing up the variables, buffers, and other resources used to maintain the connection.

3.1.2 Framing

To provide service to the network layer, the data link layer must use the service provided to it by the physical layer. The physical layer accepts a raw bit stream and attempts to deliver it to the destination. If the channel is noisy, as it is for most wireless and some wired links, the physical layer will add some redundancy to its signals to reduce the bit error rate to a tolerable level. However, the bit stream received by the data link layer is not guaranteed to be error-free. Some bits may have different values, and the number of bits received may be less than, equal to, or more than the number of bits transmitted. It is up to the data link layer to detect and, if necessary, correct errors.

The usual approach is for the data link layer to break up the bit stream into discrete frames, compute a short token called a checksum for each frame, and include the checksum in the frame when it is transmitted. (Checksum algorithms will be discussed later in this chapter.) When a frame arrives at the destination, the receiver recomputes the checksum based on the received frame. If the newly computed checksum is different from the one contained in the frame, the data link layer knows that an error has occurred and takes steps to deal with it (e.g., discarding the bad frame and possibly also sending back an error report).

Breaking up the bit stream into frames is more difficult than it at first appears. A good design must make it easy for a receiver to find the start of new frames while using little of the channel bandwidth. We will look at four methods:

- 1. Byte count.
- 2. Flag bytes with byte stuffing.
- 3. Flag bits with bit stuffing.
- 4. Physical layer coding violations.

The first framing method uses a field in the header to specify the number of bytes in the frame. When the data link layer at the destination sees the byte count, it knows how many bytes follow and hence where the end of the frame is. This technique is shown in Fig. 3-3(a) for four small example frames of sizes 5, 5, 8, and 8 bytes, respectively.

The trouble with this algorithm is that the count can be garbled by a transmission error. For example, if the byte count of 5 in the second frame of Fig. 3-3(b) becomes a 7 due to a single bit flip, the destination will get out of synchronization. It will then be unable to locate the correct start of the next frame. Even if the checksum is incorrect so the destination knows that the frame is bad, it still has no

Figure 3-3. A byte stream. (a) Without errors. (b) With one error.

way of telling where the next frame starts. Sending a frame back to the source asking for a retransmission does not help either, since the destination does not know how many bytes to skip over to get to the start of the retransmission. For this reason, the byte count method is rarely used by itself.

The second framing method gets around the problem of resynchronization after an error by having each frame start and end with special bytes. Often the same byte, called a **flag byte**, is used as both the starting and ending delimiter. This byte is shown in Fig. 3-4(a) as FLAG. Two consecutive flag bytes indicate the end of one frame and the start of the next. Thus, if the receiver ever loses synchronization, it can just search for two flag bytes to find the end of the current frame and the start of the next frame.

However, there is a still a problem left. It may happen that the flag byte occurs in the data, especially when binary data such as photos or songs are being transmitted. This situation would interfere with the framing. One way to solve this problem is to have the sender's data link layer insert a special escape byte (ESC) just before each "accidental" flag byte in the data. Thus, a framing flag byte can be distinguished from one in the data by the absence or presence of an escape byte before it. The data link layer on the receiving end removes the escape bytes before giving the data to the network layer. This technique is called **byte stuffing**.

Of course, the next question is: what happens if an escape byte occurs in the middle of the data? The answer is that it, too, is stuffed with an escape byte. At the receiver, the first escape byte is removed, leaving the data byte that follows it (which might be another escape byte or the flag byte). Some examples are shown in Fig. 3-4(b). In all cases, the byte sequence delivered after destuffing is exactly the same as the original byte sequence. We can still search for a frame boundary by looking for two flag bytes in a row, without bothering to undo escapes.

Figure 3-4. (a) A frame delimited by flag bytes. (b) Four examples of byte sequences before and after byte stuffing.

The byte-stuffing scheme depicted in Fig. 3-4 is a slight simplification of the one actually used in **PPP** (**Point-to-Point Protocol**), which is used to carry packets over communications links and is common on the Internet. We will discuss PPP in Sec. 3.5.1

The third method of delimiting the bit stream gets around a disadvantage of byte stuffing, which is that it is tied to the use of 8-bit bytes. Framing can be also be done at the bit level, so frames can contain an arbitrary number of bits made up of units of any size. It was developed for the once-popular **HDLC** (**High-level Data Link Control**) protocol. Each frame begins and ends with a special bit pattern, 01111110 or 0x7E in hexadecimal. This pattern is a flag byte. Whenever the sender's data link layer encounters five consecutive 1s in the data, it automatically stuffs a 0 bit into the outgoing bit stream. This **bit stuffing** is analogous to byte stuffing, in which an escape byte is stuffed into the outgoing character stream before a flag byte in the data. It also ensures a minimum density of transitions that help the physical layer maintain synchronization. USB (Universal Serial Bus) uses bit stuffing for this reason.

When the receiver sees five consecutive incoming 1 bits, followed by a 0 bit, it automatically destuffs (i.e., deletes) the 0 bit. Just as byte stuffing is completely transparent to the network layer in both computers, so is bit stuffing. If the user data contain the flag pattern, 01111110, this flag is transmitted as 011111010 but stored in the receiver's memory as 01111110. The upper layers are completely unaware that bit stuffing is being used. Figure 3-5 gives an example of bit stuffing.

Figure 3-5. Bit stuffing. (a) The original data. (b) The data as they appear on the line. (c) The data as they are stored in the receiver's memory after destuffing.

With bit stuffing, the boundary between two frames can be unambiguously recognized by the flag pattern. Thus, if the receiver loses track of where it is, all it has to do is scan the input for flag sequences, since they can only occur at frame boundaries and never within the data.

With both bit and byte stuffing, a side effect is that the length of a frame now depends on the contents of the data it carries. For instance, if there are no flag bytes in the data, 100 bytes might be carried in a frame of roughly 100 bytes. If, however, the data consists solely of flag bytes, each flag byte will be escaped and the frame will become roughly 200 bytes long. With bit stuffing, the increase would be roughly 12.5% as 1 bit is added to every byte.

The last method of framing is to use a shortcut from the physical layer. We saw in Chap. 2 that the encoding of bits as signals often includes redundancy to help the receiver. This redundancy means that some signals will not occur in regular data. For example, in the 4B/5B line code 4 data bits are mapped to 5 signal bits to ensure sufficient bit transitions. This means that 16 out of the 32 signal possibilities are not used. We can use some reserved signals to indicate the start and end of frames. In effect, we are using "coding violations" (invalid characters) to delimit frames. The beauty of this scheme is that because they are reserved signals, it is easy to find the start and end of frames and there is no need to stuff the data.

Many data link protocols use a combination of these methods for safety. A common pattern used for Ethernet and 802.11 is to have a frame begin with a well-defined pattern called a **preamble**. This pattern might be quite long (72 bits is typical for 802.11) to allow the receiver to prepare for an incoming packet. The preamble is then followed by a length (i.e., count) field in the header that is used to locate the end of the frame.

3.1.3 Error Control

Having solved the problem of marking the start and end of each frame, we come to the next problem: how to make sure all frames are eventually delivered to the network layer at the destination and in the proper order. Assume for the moment that the receiver can tell whether a frame that it receives contains correct

or faulty information (we will look at the codes that are used to detect and correct transmission errors in Sec. 3.2). For unacknowledged connectionless service, it might be fine if the sender just kept outputting frames without regard to whether they were arriving properly. But for reliable, connection-oriented service it would not be fine at all.

The usual way to ensure reliable delivery is to provide the sender with some feedback about what is happening at the other end of the line. Typically, the protocol calls for the receiver to send back special control frames bearing positive or negative acknowledgements about the incoming frames. If the sender receives a positive acknowledgement about a frame, it knows the frame has arrived safely. On the other hand, a negative acknowledgement means that something has gone wrong and the frame must be transmitted again.

An additional complication comes from the possibility that hardware troubles may cause a frame to vanish completely (e.g., in a noise burst). In this case, the receiver will not react at all, since it has no reason to react. Similarly, if the acknowledgement frame is lost, the sender will not know how to proceed. It should be clear that a protocol in which the sender transmits a frame and then waits for an acknowledgement, positive or negative, will hang forever if a frame is ever lost due to, for example, malfunctioning hardware or a faulty communication channel.

This possibility is dealt with by introducing timers into the data link layer. When the sender transmits a frame, it generally also starts a timer. The timer is set to expire after an interval long enough for the frame to reach the destination, be processed there, and have the acknowledgement propagate back to the sender. Normally, the frame will be correctly received and the acknowledgement will get back before the timer runs out, in which case the timer will be canceled.

However, if either the original frame or the acknowledgement is lost, the timer will go off, alerting the sender to a potential problem. The obvious solution is to just transmit the frame again. However, when frames may be transmitted multiple times there is a danger that the receiver will accept the same frame two or more times and pass it to the network layer more than once. To prevent this from happening, it is necessary to assign sequence numbers to outgoing frames, so that the receiver can distinguish retransmissions from originals.

The whole issue of managing the timers and sequence numbers so as to ensure that each frame is ultimately passed to the network layer at the destination exactly once, no more and no less, is an important part of the duties of the data link layer (and higher layers). Later in this chapter, we will look at a series of increasingly sophisticated examples to see how this management is done.

3.1.4 Flow Control

Another important design issue that occurs in the data link layer (and higher layers as well) is what to do with a sender that systematically wants to transmit frames faster than the receiver can accept them. This situation can occur when the

sender is running on a fast, powerful computer and the receiver is running on a slow, low-end machine. A common situation is when a smartphone requests a Web page from a far more powerful server, which then turns on the fire hose and blasts the data at the poor helpless phone until it is completely swamped. Even if the transmission is error free, the receiver may be unable to handle the frames as fast as they arrive and will lose some.

Clearly, something has to be done to prevent this situation. Two approaches are commonly used. In the first one, **feedback-based flow control**, the receiver sends back information to the sender giving it permission to send more data, or at least telling the sender how the receiver is doing. In the second one, **rate-based flow control**, the protocol has a built-in mechanism that limits the rate at which senders may transmit data, without using feedback from the receiver.

In this chapter, we will study feedback-based flow control schemes, primarily because rate-based schemes are only seen as part of the transport layer (Chap. 5). Feedback-based schemes are seen at both the link layer and higher layers. The latter is more common these days, in which case the link layer hardware is designed to run fast enough that it does not cause loss. For example, hardware implementations of the link layer as **NICs** (**Network Interface Cards**) are sometimes said to run at "wire speed," meaning that they can handle frames as fast as they can arrive on the link. Any overruns are then not a link problem, so they are handled by higher layers.

Various feedback-based flow control schemes exist, but most of them use the same basic principle. The protocol contains well-defined rules about when a sender may transmit the next frame. These rules often prohibit frames from being sent until the receiver has granted permission, either implicitly or explicitly. For example, when a connection is set up the receiver might say: "You may send me *n* frames now, but after they have been sent, do not send any more until I have told you to continue." We will examine the details shortly.

3.2 ERROR DETECTION AND CORRECTION

We saw in Chap. 2 that communication channels have a range of characteristics. Some channels, like optical fiber in telecommunications networks, have tiny error rates so that transmission errors are a rare occurrence. But other channels, especially wireless links and aging local loops, have error rates that are orders of magnitude larger. For these links, transmission errors are the norm. They cannot be avoided at a reasonable expense or cost in terms of performance. The conclusion is that transmission errors are here to stay. We have to learn how to deal with them.

Network designers have developed two basic strategies for dealing with errors. Both add redundant information to the data that is sent. One strategy is to include enough redundant information to enable the receiver to be able to deduce what the transmitted data must have been. The other is to include only enough redundancy to allow the receiver to deduce that an error has occurred (but not which error) and have it request a retransmission. The former strategy uses **error-correcting codes** and the latter uses **error-detecting codes**. The use of error-correcting codes is often referred to as **FEC** (**Forward Error Correction**).

Each of these techniques occupies a different ecological niche. On channels that are highly reliable, such as fiber, it is cheaper to use an error-detecting code and just retransmit the occasional block found to be faulty. However, on channels such as wireless links that make many errors, it is better to add redundancy to each block so that the receiver is able to figure out what the originally transmitted block was. FEC is used on noisy channels because retransmissions are just as likely to be in error as the first transmission.

A key consideration for these codes is the type of errors that are likely to occur. Neither error-correcting codes nor error-detecting codes can handle all possible errors since the redundant bits that offer protection are as likely to be received in error as the data bits (which can compromise their protection). It would be nice if the channel treated redundant bits differently than data bits, but it does not. They are all just bits to the channel. This means that to avoid undetected errors the code must be strong enough to handle the expected errors.

One model is that errors are caused by extreme values of thermal noise that overwhelm the signal briefly and occasionally, giving rise to isolated single-bit errors. Another model is that errors tend to come in bursts rather than singly. This model follows from the physical processes that generate them—such as a deep fade on a wireless channel or transient electrical interference on a wired channel.

Both models matter in practice, and they have different trade-offs. Having the errors come in bursts has both advantages and disadvantages over isolated single-bit errors. On the advantage side, computer data are always sent in blocks of bits. Suppose that the block size was 1000 bits and the error rate was 0.001 per bit. If errors were independent, most blocks would contain an error. If the errors came in bursts of 100, however, only one block in 100 would be affected, on average. The disadvantage of burst errors is that when they do occur they are much harder to correct than isolated errors.

Other types of errors also exist. Sometimes, the location of an error will be known, perhaps because the physical layer received an analog signal that was far from the expected value for a 0 or 1 and declared the bit to be lost. This situation is called an **erasure channel**. It is easier to correct errors in erasure channels than in channels that flip bits because even if the value of the bit has been lost, at least we know which bit is in error. However, we often do not have the benefit of erasures.

We will examine both error-correcting codes and error-detecting codes next. Please keep two points in mind, though. First, we cover these codes in the link layer because this is the first place that we have run up against the problem of reliably transmitting groups of bits. However, the codes are widely used because reliability is an overall concern. Error-correcting codes are also often seen in the

physical layer, particularly for noisy channels, and in higher layers, particularly for real-time media and content distribution. Error-detecting codes are commonly used in link, network, and transport layers.

The second point to bear in mind is that error codes are applied mathematics. Unless you are particularly adept at Galois fields or the properties of sparse matrices, you should get codes with good properties from a reliable source rather than making up your own. In fact, this is what many protocol standards do, with the same codes coming up again and again. In the material below, we will study a simple code in detail and then briefly describe advanced codes. In this way, we can understand the trade-offs from the simple code and talk about the codes that are used in practice via the advanced codes.

3.2.1 Error-Correcting Codes

We will examine four different error-correcting codes:

- 1. Hamming codes.
- 2. Binary convolutional codes.
- 3. Reed-Solomon codes.
- 4. Low-Density Parity Check codes.

All of these codes add redundancy to the information that is sent. A frame consists of m data (i.e., message) bits and r redundant (i.e., check) bits. In a **block code**, the r check bits are computed solely as a function of the m data bits with which they are associated, as though the m bits were looked up in a large table to find their corresponding r check bits. In a **systematic code**, the m data bits are sent directly, along with the check bits, rather than being encoded themselves before they are sent. In a **linear code**, the r check bits are computed as a linear function of the m data bits. Exclusive OR (XOR) or modulo 2 addition is a popular choice. This means that encoding can be done with operations such as matrix multiplications or simple logic circuits. The codes we will look at in this section are linear, systematic block codes unless otherwise noted.

Let the total length of a block be n (i.e., n = m + r). We will describe this as an (n, m) code. An n-bit unit containing data and check bits is referred to as an n-bit **codeword**. The **code rate**, or simply rate, is the fraction of the codeword that carries information that is not redundant, or m/n. The rates used in practice vary widely. They might be 1/2 for a noisy channel, in which case half of the received information is redundant, or close to 1 for a high-quality channel, with only a small number of check bits added to a large message.

To understand how errors can be handled, it is necessary to first look closely at what an error really is. Given any two codewords that may be transmitted or received—say, 10001001 and 10110001—it is possible to determine how many

corresponding bits differ. In this case, 3 bits differ. To determine how many bits differ, just XOR the two codewords and count the number of 1 bits in the result. For example:

10001001 10110001 00111000

The number of bit positions in which two codewords differ is called the **Hamming distance**, named after Richard Hamming (Hamming, 1950). Its significance is that if two codewords are a Hamming distance *d* apart, it will require *d* single-bit errors to convert one into the other.

Given the algorithm for computing the check bits, it is possible to construct a complete list of the legal codewords, and from this list to find the two codewords with the smallest Hamming distance. This distance is the Hamming distance of the complete code.

In most data transmission applications, all 2^m possible data messages are legal, but due to the way the check bits are computed, not all of the 2^n possible codewords are used. In fact, when there are r check bits, only the small fraction of $2^m/2^n$ or $1/2^r$ of the possible messages will be legal codewords. It is the sparseness with which the message is embedded in the space of codewords that allows the receiver to detect and correct errors.

The error-detecting and error-correcting properties of a block code depend on its Hamming distance. To reliably detect d errors, you need a distance d+1 code because with such a code there is no way that d single-bit errors can change a valid codeword into another valid codeword. When the receiver sees an illegal codeword, it can tell that a transmission error has occurred. Similarly, to correct d errors, you need a distance 2d+1 code because that way the legal codewords are so far apart that even with d changes the original codeword is still closer than any other codeword. This means the original codeword can be uniquely determined based on the assumption that a larger number of errors are less likely.

As a simple example of an error-correcting code, consider a code with only four valid codewords:

```
000000000, 0000011111, 1111100000, and 1111111111
```

This code has a distance of 5, which means that it can correct double errors or detect quadruple errors. If the codeword 0000000111 arrives and we expect only single- or double-bit errors, the receiver will know that the original must have been 0000011111. If, however, a triple error changes 000000000 into 0000000111, the error will not be corrected properly. Alternatively, if we expect all of these errors, we can detect them. None of the received codewords are legal codewords so an error must have occurred. It should be apparent that in this example we cannot both correct double errors and detect quadruple errors because this would require us to interpret a received codeword in two different ways.

In our example, the task of decoding by finding the legal codeword that is closest to the received codeword can be done by inspection. Unfortunately, in the most general case where all codewords need to be evaluated as candidates, this task can be a time-consuming search. Instead, practical codes are usually designed so that they have shortcuts to find what was likely the original codeword.

Imagine that we want to design a code with m message bits and r check bits that will allow all single errors to be corrected. Each of the 2^m legal messages has n illegal codewords at a distance of 1 from it. These are formed by systematically inverting each of the n bits in the n-bit codeword formed from it. Thus, each of the 2^m legal messages requires n+1 bit patterns dedicated to it. Since the total number of bit patterns is 2^n , we must have $(n+1)2^m \le 2^n$. Using n=m+r, this requirement becomes

$$(m+r+1) \le 2^r \tag{3-1}$$

Given m, this puts a lower limit on the number of check bits needed to correct single errors.

This theoretical lower limit can, in fact, be achieved using a method due to Hamming (1950). In **Hamming codes** the bits of the codeword are numbered consecutively, starting with bit 1 at the left end, bit 2 to its immediate right, and so on. The bits that are powers of 2 (1, 2, 4, 8, 16, etc.) are check bits. The rest (3, 5, 6, 7, 9, etc.) are filled up with the m data bits. This pattern is shown for an (11,7) Hamming code with 7 data bits and 4 check bits in Fig. 3-6. Each check bit forces the modulo 2 sum, or parity, of some collection of bits, including itself, to be even (or odd). A bit may be included in several check bit computations. To see which check bits the data bit in position k contributes to, rewrite k as a sum of powers of 2. For example, 11 = 1 + 2 + 8 and 29 = 1 + 4 + 8 + 16. A bit is checked by just those check bits occurring in its expansion (e.g., bit 11 is checked by bits 1, 2, and 8). In the example, the check bits are computed for even parity sums for a message that is the ASCII letter "A."

Figure 3-6. Example of an (11, 7) Hamming code correcting a single-bit error.

This construction gives a code with a Hamming distance of 3, which means that it can correct single errors (or detect double errors). The reason for the very careful numbering of message and check bits will become apparent in the decoding

process. When a codeword arrives, the receiver redoes the check bit computations including the values of the received check bits. We call these the check results. If the check bits are correct then, for even parity sums, each check result should be zero. In this case, the codeword is accepted as valid.

If the check results are not all zero, however, an error has been detected. The set of check results forms the **error syndrome** that is used to pinpoint and correct the error. In Fig. 3-6, a single-bit error occurred on the channel so the check results are 0, 1, 0, and 1 for k = 8, 4, 2, and 1, respectively. This gives a syndrome of 0101 or 4 + 1 = 5. By the design of the scheme, this means that the fifth bit is in error. Flipping the incorrect bit (which might be a check bit or a data bit) and discarding the check bits gives the correct message of an ASCII "A."

Hamming distances are valuable for understanding block codes, and Hamming codes are used in error-correcting memory. However, most networks use stronger codes. The second code we will look at is a **convolutional code**. This code is the only one we will cover that is not a block code. In a convolutional code, an encoder processes a sequence of input bits and generates a sequence of output bits. There is no natural message size or encoding boundary as in a block code. The output depends on the current and previous input bits. That is, the encoder has memory. The number of previous bits on which the output depends is called the **constraint length** of the code. Convolutional codes are specified in terms of their rate and constraint length.

Convolutional codes are widely used in deployed networks, for example, as part of the GSM mobile phone system, in satellite communications, and in 802.11. As an example, a popular convolutional code is shown in Fig. 3-7. This code is known as the NASA convolutional code of r = 1/2 and k = 7, since it was first used for the *Voyager* space missions starting in 1977. Since then it has been liberally reused, for example, as part of 802.11.

Figure 3-7. The NASA binary convolutional code used in 802.11.

In Fig. 3-7, each input bit on the left-hand side produces two output bits on the right-hand side that are XOR sums of the input and internal state. Since it deals with bits and performs linear operations, this is a binary, linear convolutional code. Since 1 input bit produces 2 output bits, the code rate is 1/2. It is not systematic since none of the output bits is simply the input bit.

The internal state is kept in six memory registers. Each time another bit is input the values in the registers are shifted to the right. For example, if 111 is input and the initial state is all zeros, the internal state, written left to right, will become 100000, 110000, and 111000 after the first, second, and third bits have been input. The output bits will be 11, followed by 10, and then 01. It takes seven shifts to flush an input completely so that it does not affect the output. The constraint length of this code is thus k = 7.

A convolutional code is decoded by finding the sequence of input bits that is most likely to have produced the observed sequence of output bits (which includes any errors). For small values of k, this is done with a widely used algorithm developed by Viterbi (Forney, 1973). The algorithm walks the observed sequence, keeping for each step and for each possible internal state the input sequence that would have produced the observed sequence with the fewest errors. The input sequence requiring the fewest errors at the end is the most likely message.

Convolutional codes have been popular in practice because it is easy to factor the uncertainty of a bit being a 0 or a 1 into the decoding. For example, suppose –1V is the logical 0 level and +1V is the logical 1 level, we might receive 0.9V and –0.1V for 2 bits. Instead of mapping these signals to 1 and 0 right away, we would like to treat 0.9V as "very likely a 1" and –0.1V as "maybe a 0" and correct the sequence as a whole. Extensions of the Viterbi algorithm can work with these uncertainties to provide stronger error correction. This approach of working with the uncertainty of a bit is called **soft-decision decoding**. Conversely, deciding whether each bit is a 0 or a 1 before subsequent error correction is called **hard-decision decoding**.

The third kind of error-correcting code we will describe is the **Reed-Solomon code**. Like Hamming codes, Reed-Solomon codes are linear block codes, and they are often systematic, too. Unlike Hamming codes, which operate on individual bits, Reed-Solomon codes operate on *m* bit symbols. Naturally, the mathematics are more involved, so we will describe their operation by analogy.

Reed-Solomon codes are based on the fact that every n degree polynomial is uniquely determined by n+1 points. For example, a line having the form ax+b is determined by two points. Extra points on the same line are redundant, which is helpful for error correction. Imagine that we have two data points that represent a line and we send those two data points plus two check points chosen to lie on the same line. If one of the points is received in error, we can still recover the data points by fitting a line to the received points. Three of the points will lie on the line, and one point, the one in error, will not. By finding the line we have corrected the error.

Reed-Solomon codes are actually defined as polynomials that operate over finite fields, but they work in a similar manner. For m-bit symbols, the codewords are $2^m - 1$ symbols long. A popular choice is to make m = 8 so that symbols are bytes. A codeword is then 255 bytes long. The (255, 233) code is widely used; it adds 22 redundant symbols to 233 data symbols. Decoding with error correction is

done with an algorithm developed by Berlekamp and Massey that can efficiently perform the fitting task for moderate-length codes (Massey, 1969).

Reed-Solomon codes are widely used in practice because of their strong error-correction properties, particularly for burst errors. They are used for DSL, data over cable, satellite communications, and perhaps most ubiquitously on CDs, DVDs, and Blu-ray discs. Because they are based on *m*-bit symbols, a single-bit error and an *m*-bit burst error are both treated simply as one symbol error. When 2t redundant symbols are added, a Reed-Solomon code is able to correct up to t errors in any of the transmitted symbols. This means, for example, that the (255, 233) code, which has 32 redundant symbols, can correct up to 16 symbol errors. Since the symbols may be consecutive and they are each 8 bits, an error burst of up to 128 bits can be corrected. The situation is even better if the error model is one of erasures (e.g., a scratch on a CD that obliterates some symbols). In this case, up to 2t errors can be corrected.

Reed-Solomon codes are often used in combination with other codes such as a convolutional code. The thinking is as follows. Convolutional codes are effective at handling isolated bit errors, but they will fail, likely with a burst of errors, if there are too many errors in the received bit stream. By adding a Reed-Solomon code within the convolutional code, the Reed-Solomon decoding can mop up the error bursts, a task at which it is very good. The overall code then provides good protection against both single and burst errors.

The final error-correcting code we will cover is the **LDPC** (**Low-Density Parity Check**) code. LDPC codes are linear block codes that were invented by Robert Gallagher in his doctoral thesis (Gallagher, 1962). Like most theses, they were promptly forgotten, only to be reinvented in 1995 when advances in computing power had made them practical.

In an LDPC code, each output bit is formed from only a fraction of the input bits. This leads to a matrix representation of the code that has a low density of 1s, hence the name for the code. The received codewords are decoded with an approximation algorithm that iteratively improves on a best fit of the received data to a legal codeword. This corrects errors.

LDPC codes are practical for large block sizes and have excellent error-correction abilities that outperform many other codes (including the ones we have looked at) in practice. For this reason, they are rapidly being included in new protocols. They are part of the standard for digital video broadcasting, 10 Gbps Ethernet, power-line networks, and the latest version of 802.11. Expect to see more of them in future networks.

3.2.2 Error-Detecting Codes

Error-correcting codes are widely used on wireless links, which are notoriously noisy and error prone when compared to optical fibers. Without error-correcting codes, it would be difficult to get anything through them. However, over fiber or

high-quality copper, the error rate is much lower, so error detection and retransmission is usually more efficient there for dealing with the occasional error.

We will examine three different error-detecting codes. They are all linear, systematic block codes:

- 1. Parity.
- 2. Checksums.
- 3. Cyclic Redundancy Checks (CRCs).

To see how they can be more efficient than error-correcting codes, consider the first error-detecting code, in which a single **parity bit** is appended to the data. The parity bit is chosen so that the number of 1 bits in the codeword is even (or odd). Doing this is equivalent to computing the (even) parity bit as the modulo 2 sum or XOR of the data bits. For example, when 1011010 is sent in even parity, a bit is added to the end to make it 10110100. With odd parity 1011010 becomes 10110101. A code with a single parity bit has a distance of 2, since any single-bit error produces a codeword with the wrong parity. This means that it can detect single-bit errors.

Consider a channel on which errors are isolated and the error rate is 10^{-6} per bit. This may seem a tiny error rate, but it is at best a fair rate for a long wired cable. Typical LAN links provide bit error rates of $10^{-10}.2$ Let the block size be 1000 bits. To provide error correction for 1000-bit blocks, we know from Eq. (3-1) that 10 check bits are needed. Thus, a megabit of data would require 10,000 check bits. To merely detect a block with a single 1-bit error, one parity bit per block will suffice. Once every 1000 blocks, a block will be found to be in error and an extra block (1001 bits) will have to be transmitted to repair the error. The total overhead for the error detection and retransmission method is only 2001 bits per megabit of data, versus 10,000 bits for a Hamming code.

One difficulty with this scheme is that a single parity bit can only reliably detect a single-bit error in the block. If the block is badly garbled by a long burst error, the probability that the error will be detected is only 0.5, which is hardly acceptable. The odds can be improved considerably if each block to be sent is regarded as a rectangular matrix n bits wide and k bits high. Now, if we compute and send one parity bit for each row, up to k-bit errors will be reliably detected as long as there is at most one error per row.

However, there is something else we can do that provides even better protection against burst errors: we can compute the parity bits over the data in a different order than the order in which the data bits are actually transmitted over the communications channel. Doing so is called **interleaving**. In this case, we will compute a parity bit for each of the n columns and send all the data bits as k rows, sending the rows from top to bottom and the bits in each row from left to right in the usual manner. At the last row, we send the n parity bits. This transmission order is shown in Fig. 3-8 for n = 7 and k = 7.

Figure 3-8. Interleaving of parity bits to detect a burst error.

Interleaving is a general technique to convert a code that detects (or corrects) isolated errors into a code that detects (or corrects) burst errors. In Fig. 3-8, when a burst error of length n = 7 occurs, the bits that are in error are spread across different columns. (A burst error does not imply that all the bits are wrong; it just implies that at least the first and last are wrong. In Fig. 3-8, 4 bits were flipped over a range of 7 bits.) At most 1 bit in each of the n columns will be affected, so the parity bits on those columns will detect the error. This method uses n parity bits on blocks of kn data bits to detect a single burst error of length n or less.

A burst of length n + 1 will pass undetected, however, if the first bit is inverted, the last bit is inverted, and all the other bits are correct. If the block is badly garbled by a long burst or by multiple shorter bursts, the probability that any of the n columns will have the correct parity by accident is 0.5, so the probability of a bad block being accepted when it should not be is 2^{-n} .

The second kind of error-detecting code, the **checksum**, is closely related to groups of parity bits. The word "checksum" is often used to mean a group of check bits associated with a message, regardless of how the bits are calculated. A group of parity bits is one example of a checksum. However, there are other, stronger checksums based on a running sum of the data bits of the message. The checksum is usually placed at the end of the message, as the complement of the sum function. This way, errors may be detected by summing the entire received codeword, both data bits and checksum. If the result comes out to be zero, no error has been detected.

One example of a checksum is the 16-bit Internet checksum used on all Internet packets as part of the IP protocol (Braden et al., 1988). This checksum is a sum of the message bits divided into 16-bit words. Because this method operates on words rather than on bits, as in parity, errors that leave the parity unchanged can still alter the sum and be detected. For example, if the lowest-order bit in two different words is flipped from a 0 to a 1, a parity check across these bits would fail to detect an error. However, two 1s will be added to the 16-bit checksum to produce a different result. The error can then be detected.

The Internet checksum is computed in one's complement arithmetic instead of as the modulo 2^{16} sum. In one's complement arithmetic, a negative number is the bitwise complement of its positive counterpart. Modern computers normally use two's complement arithmetic, in which a negative number is the one's complement plus one. On a two's complement computer, the one's complement sum is equivalent to taking the sum modulo 2^{16} and adding any overflow of the high-order bits back into the low-order bits. This algorithm gives a more uniform coverage of the data by the checksum bits. Otherwise, two high-order bits can be added, overflow, and be lost without changing the sum. There is another benefit, too. One's complement has two representations of zero, all 0s and all 1s. This allows one value (e.g., all 0s) to indicate that there is no checksum, without the need for another field.

For decades, it has always been assumed that frames to be checksummed contain random bits. All analyses of checksum algorithms have been made under this assumption. Inspection of real data by Partridge et al. (1995) has shown this assumption to be quite wrong. As a consequence, undetected errors are in some cases much more common than had been previously thought.

The Internet checksum, in particular, is efficient and simple but provides weak protection in some cases precisely because it is a simple sum. It does not detect the deletion or addition of zero data, nor swapping parts of the message, and it provides weak protection against message splices in which parts of two packets are put together. These errors may seem very unlikely to occur by random processes, but they are just the sort of errors that can occur with buggy hardware.

A better choice is **Fletcher's checksum** (Fletcher, 1982). It includes a positional component, adding the product of the data and its position to the running sum. This provides stronger detection of changes in the position of data.

Although the two preceding schemes may sometimes be adequate at higher layers, in practice, a third and stronger kind of error-detecting code is in wide-spread use at the link layer: the **CRC** (**Cyclic Redundancy Check**), also known as a **polynomial code**. Polynomial codes are based upon treating bit strings as representations of polynomials with coefficients of 0 and 1 only. A k-bit frame is regarded as the coefficient list for a polynomial with k terms, ranging from k-1 to k-1. The high-order (leftmost) bit is the coefficient of k-1, the next bit is the coefficient of k-1, and so on. For example, 110001 has 6 bits and thus represents a six-term polynomial with coefficients k-1, k-1, k-1, k-1, k-1, k-1, k-1, k-2, and k-2, and k-2, and k-2, and k-1, k-1, k-1, k-2, k-1, k-2, k-1, k-2, k-1, k-2, k-1, k-1, k-2, k-1, k-1, k-2, k-1, k-1, k-1, k-1, k-1, k-2, k-1, k

Polynomial arithmetic is done modulo 2, according to the rules of algebraic field theory. It does not have carries for addition or borrows for subtraction. Both addition and subtraction are identical to exclusive OR. For example:

10011011 + 11001010	00110011	11110000	01010101
	+ 11001101	- 10100110	- 10101111
01010001	11111110	01010110	11111010

Long division is carried out in exactly the same way as it is in binary except that the subtraction is again done modulo 2. A divisor is said "to go into" a dividend if the dividend has as many bits as the divisor.

When the polynomial code method is employed, the sender and receiver must agree upon a **generator polynomial**, G(x), in advance. Both the high- and low-order bits of the generator must be 1. To compute the CRC for some frame with m bits corresponding to the polynomial M(x), the frame must be longer than the generator polynomial. The idea is to append a CRC to the end of the frame in such a way that the polynomial represented by the checksummed frame is divisible by G(x). When the receiver gets the checksummed frame, it tries dividing it by G(x). If there is a remainder, there has been a transmission error.

The algorithm for computing the CRC is as follows:

- 1. Let r be the degree of G(x). Append r zero bits to the low-order end of the frame so it now contains m + r bits and corresponds to the polynomial $x^r M(x)$.
- 2. Divide the bit string corresponding to G(x) into the bit string corresponding to $x^r M(x)$, using modulo 2 division.
- 3. Subtract the remainder (which is always r or fewer bits) from the bit string corresponding to $x^r M(x)$ using modulo 2 subtraction. The result is the checksummed frame to be transmitted. Call its polynomial T(x).

Figure 3-9 illustrates the calculation for a frame 1101011111 using the generator $G(x) = x^4 + x + 1$.

It should be clear that T(x) is divisible (modulo 2) by G(x). In any division problem, if you diminish the dividend by the remainder, what is left over is divisible by the divisor. For example, in base 10, if you divide 210,278 by 10,941, the remainder is 2399. If you then subtract 2399 from 210,278, what is left over (207,879) is divisible by 10,941.

Now let us analyze the power of this method. What kinds of errors will be detected? Imagine that a transmission error occurs, so that instead of the bit string for T(x) arriving, T(x) + E(x) arrives. Each 1 bit in E(x) corresponds to a bit that has been inverted. If there are k 1 bits in E(x), k single-bit errors have occurred. A single burst error is characterized by an initial 1, a mixture of 0s and 1s, and a final 1, with all other bits being 0.

Upon receiving the checksummed frame, the receiver divides it by G(x); that is, it computes [T(x) + E(x)]/G(x). T(x)/G(x) is 0, so the result of the computation is simply E(x)/G(x). Those errors that happen to correspond to polynomials containing G(x) as a factor will slip by; all other errors will be caught.

If there has been a single-bit error, $E(x) = x^i$, where *i* determines which bit is in error. If G(x) contains two or more terms, it will never divide into E(x), so all single-bit errors will be detected.

Figure 3-9. Example calculation of the CRC.

If there have been two isolated single-bit errors, $E(x) = x^i + x^j$, where i > j. Alternatively, this can be written as $E(x) = x^j(x^{i-j} + 1)$. If we assume that G(x) is not divisible by x, a sufficient condition for all double errors to be detected is that G(x) does not divide $x^k + 1$ for any k up to the maximum value of i - j (i.e., up to the maximum frame length). Simple, low-degree polynomials that give protection to long frames are known. For example, $x^{15} + x^{14} + 1$ will not divide $x^k + 1$ for any value of k below 32,768.

If there are an odd number of bits in error, E(X) contains an odd number of terms (e.g., $x^5 + x^2 + 1$, but not $x^2 + 1$). Interestingly, no polynomial with an odd number of terms has x + 1 as a factor in the modulo 2 system. By making x + 1 a factor of G(x), we can catch all errors with an odd number of inverted bits. Statistically, that alone catches half the cases.

Finally, and importantly, a polynomial code with r check bits will detect all burst errors of length $\le r$. A burst error of length k can be represented by $x^i(x^{k-1} + \ldots + 1)$, where i determines how far from the right-hand end of the received frame the burst is located. If G(x) contains an x^0 term, it will not have x^i as a factor, so if the degree of the parenthesized expression is less than the degree of G(x), the remainder can never be zero.

If the burst length is r+1, the remainder of the division by G(x) will be zero if and only if the burst is identical to G(x). By definition of a burst, the first and last bits must be 1, so whether it matches depends on the r-1 intermediate bits. If all combinations are regarded as equally likely, the probability of such an incorrect frame being accepted as valid is $\frac{1}{2}^{r-1}$.

It can also be shown that when an error burst longer than r + 1 bits occurs or when several shorter bursts occur, the probability of a bad frame getting through unnoticed is $\frac{1}{2}r$, assuming that all bit patterns are equally likely.

Certain polynomials have become international standards. The one used in IEEE 802 followed the example of Ethernet and is

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$$

Among other desirable properties, it has the property that it detects all bursts of length 32 or less and all bursts affecting an odd number of bits. It has been used widely since the 1980s. However, this does not mean it is the best choice. Using an exhaustive computational search, Castagnoli et al. (1993) and Koopman (2002) found the best CRCs. These CRCs have a Hamming distance of 6 for typical message sizes, while the IEEE standard CRC-32 has a Hamming distance of only 4.

Although the calculation required to compute the CRC may seem complicated, it is easy to compute and verify CRCs in hardware with simple shift register circuits (Peterson and Brown, 1961). Newer and faster implementations are invented regularly (Mitra and Nyack, 2017). In practice, hardware is nearly always used. Dozens of networking standards include various CRCs, including virtually all LANs (e.g., Ethernet, 802.11) and point-to-point links (e.g., packets over SONET).

3.3 ELEMENTARY DATA LINK PROTOCOLS

To introduce the subject of protocols, we will begin by looking at three protocols of increasing complexity. Before we look at the protocols, it is useful to make explicit some of the assumptions underlying the model of communication.

3.3.1 Initial Simplifying Assumptions

Independent Processes. To start with, we assume that the physical layer, data link layer, and network layer are independent processes that communicate by passing messages back and forth. A common implementation is shown in Fig. 3-10. The physical layer process and some of the data link layer process run on dedicated hardware called a **NIC** (**Network Interface Card**). The rest of the link layer process and the network layer process run on the main CPU as part of the operating system, with the software for the link layer process often taking the form of a **device driver**. However, other implementations are also possible (e.g., three processes offloaded to dedicated hardware called a **network accelerator**, or three

processes running on the main CPU on a software-defined radio). Actually, the preferred implementation changes from decade to decade with technology trade-offs. In any event, treating the three layers as separate processes makes the discussion conceptually cleaner and also serves to emphasize the independence of the layers.

Figure 3-10. Implementation of the physical, data link, and network layers.

Unidirectional communication. Another key assumption is that machine A wants to send a long stream of data to machine B, using a reliable, connection-oriented service. Later, we will consider the case where B also wants to send data to A simultaneously. A is assumed to have an infinite supply of data ready to send and never has to wait for data to be produced. Instead, when A's data link layer asks for data, the network layer is always able to comply immediately. (This restriction, too, will be dropped later.)

Reliable machines and processes. We also assume that machines do not crash. That is, these protocols deal with communication errors, but not the problems caused by computers crashing and rebooting.

As far as the data link layer is concerned, the packet passed across the interface to it from the network layer is pure data, whose every bit is to be delivered to the destination's network layer. The fact that the destination's network layer may interpret part of the packet as a header is of no concern to the data link layer.

3.3.2 Basic Transmission and Receipt

When the data link layer accepts a packet from the network layer at the sender, it encapsulates the packet in a frame by adding a data link header and trailer to it (see Fig. 3-1). Thus, a frame consists of an embedded packet, some control information (in the header), and a checksum (in the trailer). The frame is then transmitted to the data link layer on the other machine. We will assume that there exist suitable library procedures *to_physical_layer* to send a frame and *from_physical_layer* to receive a frame. These procedures compute and append or check the checksum (which is usually done in hardware) so that we do not need to worry

about it as part of the protocols we develop in this section. They might use the CRC algorithm discussed in the previous section, for example.

Initially, the receiver has nothing to do. It just sits around waiting for something to happen. In the example protocols throughout this chapter, we will indicate that the data link layer is waiting for something to happen by the procedure call <code>wait_for_event(&event)</code>. This procedure only returns when something has happened (e.g., a frame has arrived). Upon return, the variable <code>event</code> tells what happened. The set of possible events differs for the various protocols to be described and will be defined separately for each protocol. Note that in a more realistic situation, the data link layer will not sit in a tight loop waiting for an event, as we have suggested, but will receive an interrupt, which will cause it to stop whatever it was doing and go handle the incoming frame. Nevertheless, for simplicity, we will ignore all the details of parallel activity within the data link layer and assume that it is dedicated full time to handling just our one channel.

When a frame arrives at the receiver, the receiver computes the checksum. If the checksum in the frame is incorrect (i.e., there was a transmission error), the data link layer is so informed (event = cksum_err). If the inbound frame arrived undamaged, the data link layer is also informed (event = frame_arrival) so that it can acquire the frame for inspection using from_physical_layer. As soon as the receiving data link layer has acquired an undamaged frame, it checks the control information in the header, and, if everything is all right, passes the packet portion to the network layer. Under no circumstances is a frame header ever given to a network layer.

There is a good reason why the network layer must never be given any part of the frame header: to keep the network and data link protocols completely separate. As long as the network layer knows nothing at all about the data link protocol or the frame format, these things can be changed without requiring changes to the network layer's software. This happens whenever a new NIC is installed in a computer. Providing a rigid interface between the network and data link layers greatly simplifies the design task because communication protocols in different layers can evolve independently.

Figure 3-11 shows some declarations (in C) common to many of the protocols to be discussed later. Five data structures are defined there: boolean, seq_nr, packet, frame_kind, and frame. A boolean is an enumerated type and can take on the values true and false. A seq_nr is a small integer used to number the frames so that we can tell them apart. These sequence numbers run from 0 up to and including MAX_SEQ, which is defined in each protocol needing it. A packet is the unit of information exchanged between the network layer and the data link layer on the same machine, or between network layer peers. In our model, it always contains MAX_PKT bytes, but more realistically it would be of variable length.

A *frame* has four fields: *kind*, *seq*, *ack*, and *info*, the first three of which contain control information and the last of which may contain actual data to be transferred. These control fields are collectively called the **frame header**.

```
#define MAX_PKT 1024
                                                          /* determines packet size in bytes */
typedef enum {false, true} boolean;
                                                          /* boolean type */
typedef unsigned int seq_nr;
                                                          /* sequence or ack numbers */
typedef struct {unsigned char data[MAX_PKT];} packet;
                                                          /* packet definition */
typedef enum {data, ack, nak} frame_kind;
                                                          /* frame_kind definition */
typedef struct {
                                                          /* frames are transported in this layer */
                                                          /* what kind of frame is it? */
 frame_kind kind;
 seq_nr seq;
                                                          /* sequence number */
 seq_nr ack;
                                                          /* acknowledgement number */
 packet info;
                                                          /* the network layer packet */
} frame;
/* Wait for an event to happen; return its type in event. */
void wait_for_event(event_type *event);
/* Fetch a packet from the network layer for transmission on the channel. */
void from_network_layer(packet *p);
/* Deliver information from an inbound frame to the network layer. */
void to_network_layer(packet *p);
/* Go get an inbound frame from the physical layer and copy it to r. */
void from_physical_layer(frame *r);
/* Pass the frame to the physical layer for transmission. */
void to_physical_layer(frame *s);
/* Start the clock running and enable the timeout event. */
void start_timer(seq_nr k);
/* Stop the clock and disable the timeout event. */
void stop_timer(seq_nr k);
/* Start an auxiliary timer and enable the ack_timeout event. */
void start_ack_timer(void);
/* Stop the auxiliary timer and disable the ack_timeout event. */
void stop_ack_timer(void);
/* Allow the network layer to cause a network_layer_ready event. */
void enable_network_layer(void);
/* Forbid the network layer from causing a network_layer_ready event. */
void disable_network_layer(void);
/* Macro inc is expanded in-line: increment k circularly. */
#define inc(k) if (k < MAX\_SEQ) k = k + 1; else k = 0
```

Figure 3-11. Some definitions needed in the protocols to follow. These definitions are located in the file *protocol h*.

The *kind* field tells whether there are any data in the frame, because some of the protocols distinguish frames containing only control information from those containing data as well. The *seq* and *ack* fields are used for sequence numbers and acknowledgements, respectively; their use will be described in more detail later.

The *info* field of a data frame contains a single packet; the *info* field of a control frame is not used. A more realistic implementation would use a variable-length *info* field, omitting it altogether for control frames.

Again, it is important to understand the relationship between a packet and a frame (see Fig. 3-1). The network layer builds a packet by taking a message from the transport layer and adding the network layer header to it. This packet is passed to the data link layer for inclusion in the *info* field of an outgoing frame. When the frame arrives at the destination, the data link layer extracts the packet from the frame and passes the packet to the network layer. In this manner, the network layer can act as though machines can exchange packets directly.

A number of procedures are also listed in Fig. 3-11. These are library routines whose details are implementation dependent and whose inner workings will not concern us further in the following discussions. The procedure <code>wait_for_event</code> sits in a tight loop waiting for something to happen, as mentioned earlier. The procedures <code>to_network_layer</code> and <code>from_network_layer</code> are used by the data link layer to pass packets to the network layer and accept packets from the network layer, respectively. Note that <code>from_physical_layer</code> and <code>to_physical_layer</code> pass frames between the data link layer and the physical layer. In other words, <code>to_network_layer</code> and <code>from_network_layer</code> deal with the interface between layers 2 and 3, whereas <code>from_physical_layer</code> and <code>to_physical_layer</code> deal with the interface between layers 1 and 2.

In most of the protocols, we assume that the channel is unreliable and loses entire frames upon occasion. To be able to recover from such calamities, the sending data link layer must start an internal timer or clock whenever it sends a frame. If no reply has been received within a certain predetermined time interval, the clock times out and the data link layer receives an interrupt signal.

In our protocols, this is handled by allowing the procedure *wait_for_event* to return *event = timeout*. The procedures *start_timer* and *stop_timer* turn the timer on and off, respectively. Timeout events are possible only when the timer is running, of course, and before *stop_timer* is called. It is explicitly permitted to call *start_timer* while the timer is running; such a call simply resets the clock to cause the next timeout after a full timer interval has elapsed (unless it is reset or turned off).

The procedures *start_ack_timer* and *stop_ack_timer* control an auxiliary timer used to generate acknowledgements under certain conditions.

The procedures <code>enable_network_layer</code> and <code>disable_network_layer</code> are used in the more sophisticated protocols, where we no longer assume that the network layer always has packets to send. When the data link layer enables the network layer, the network layer is then permitted to interrupt when it has a packet to be sent. We indicate this with <code>event = network_layer_ready</code>. When the network layer is disabled, it may not cause such events. By being careful about when it enables and disables its network layer, the data link layer can prevent the network layer from swamping it with packets for which it has no buffer space.

Frame sequence numbers are always in the range 0 to MAX_SEQ (inclusive), where MAX_SEQ is different for the different protocols. It is frequently necessary to advance a sequence number by 1 circularly (i.e., MAX_SEQ is followed by 0). The macro inc performs this incrementing. It has been defined as a macro because it is used in-line within the critical path. As we will see later, the factor limiting network performance is often protocol processing, so defining simple operations like this as macros (as opposed to procedures) does not affect the readability of the code but does improve performance.

The declarations of Fig. 3-11 are part of each of the protocols we will discuss shortly. To save space and to provide a convenient reference, they have been extracted and listed together, but conceptually they should be merged with the protocols themselves. In C, this merging is done by putting the definitions in a special header file, in this case *protocol.h*, and using the #include facility of the C preprocessor to include them in the protocol files.

3.3.3 Simplex Link-Layer Protocols

In this section, we will examine three simple protocols, each able to handle a more realistic situation than the previous one.

Utopia: No Flow Control or Error Correction

As an initial example, we will consider a protocol that is as simple as it can be because it does not worry about the possibility of anything going wrong. Data are transmitted in one direction only. Both the transmitting and receiving network layers are always ready. Processing time can be ignored. Infinite buffer space is available. And best of all, the communication channel between the data link layers never damages or loses frames. This thoroughly unrealistic protocol, which we will nickname "Utopia," is simply to show the basic structure on which we will build. It's implementation is shown in Fig. 3-12.

The protocol consists of two distinct procedures, a sender and a receiver. The sender runs in the data link layer of the source machine, and the receiver runs in the data link layer of the destination machine. No sequence numbers or acknowledgements are used here, so *MAX_SEQ* is not needed. The only event type possible is *frame_arrival* (i.e., the arrival of an undamaged frame).

The sender is in an infinite while loop just pumping data out onto the line as fast as it can. The body of the loop consists of three actions: go fetch a packet from the (always obliging) network layer, construct an outbound frame using the variable s, and send the frame on its way. Only the *info* field of the frame is used by this protocol, because the other fields have to do with error and flow control and there are no errors or flow control restrictions here.

The receiver is equally simple. Initially, it waits for something to happen, the only possibility being the arrival of an undamaged frame. Eventually, the frame

```
/* Protocol 1 (Utopia) provides for data transmission in one direction only, from
  sender to receiver. The communication channel is assumed to be error free
  and the receiver is assumed to be able to process all the input infinitely quickly.
  Consequently, the sender just sits in a loop pumping data out onto the line as
  fast as it can. */
typedef enum {frame_arrival} event_type;
#include "protocol.h"
void sender1(void)
 frame s;
                                         /* buffer for an outbound frame */
 packet buffer;
                                         /* buffer for an outbound packet */
 while (true) {
     from_network_layer(&buffer);
                                         /* go get something to send */
                                         /* copy it into s for transmission */
     s.info = buffer;
     to_physical_layer(&s);
                                         /* send it on its way */
                                         /* Tomorrow, and tomorrow, and tomorrow,
                                           Creeps in this petty pace from day to day
                                           To the last syllable of recorded time.
                                              - Macbeth, V, v */
void receiver1(void)
 frame r;
 event_type event:
                                         /* filled in by wait, but not used here */
 while (true) {
     wait_for_event(&event);
                                         /* only possibility is frame_arrival */
                                         /* go get the inbound frame */
     from_physical_layer(&r);
                                         /* pass the data to the network layer */
     to_network_layer(&r.info);
```

Figure 3-12. A utopian simplex protocol.

arrives and the procedure <code>wait_for_event</code> returns, with <code>event</code> set to <code>frame_arrival</code> (which is ignored anyway). The call to <code>from_physical_layer</code> removes the newly arrived frame from the hardware buffer and puts it in the variable <code>r</code>, where the receiver code can get at it. Finally, the data portion is passed on to the network layer, and the data link layer settles back to wait for the next frame, effectively suspending itself until the frame arrives.

The utopia protocol is unrealistic because it does not handle either flow control or error correction. Its processing is close to that of an unacknowledged connectionless service that relies on higher layers to solve these problems, though even an unacknowledged connectionless service would do some error detection.

Adding Flow Control: Stop-and-Wait

Now we will tackle the problem of preventing the sender from flooding the receiver with frames faster than the latter is able to process them. This situation can easily happen in practice so being able to prevent it is of great importance. The

communication channel is still assumed to be error free, however, and the data traffic is still simplex.

One solution is to build the receiver to be powerful enough to process a continuous stream of back-to-back frames (or, equivalently, define the link layer to be slow enough that the receiver can keep up). It must have sufficient buffering and processing abilities to run at the line rate and must be able to pass the frames that are received to the network layer quickly enough. However, this is a worst-case solution. It requires dedicated hardware and can be wasteful of resources if the utilization of the link is mostly low. Moreover, it just shifts the problem of dealing with a sender that is too fast elsewhere; in this case to the network layer.

A more general solution to this problem is to have the receiver provide feedback to the sender. After having passed a packet to its network layer, the receiver sends a little dummy frame back to the sender which, in effect, gives the sender permission to transmit the next frame. After having sent a frame, the sender is required by the protocol to bide its time until the little dummy (i.e., acknowledgement) frame arrives. This delay is a simple example of a flow control protocol.

Protocols in which the sender sends one frame and then waits for an acknowledgement before proceeding are called **stop-and-wait**. Figure 3-13 gives an example of a simplex stop-and-wait protocol.

Although data traffic in this example is simplex, going only from the sender to the receiver, frames do travel in both directions. Consequently, the communication channel between the two data link layers needs to be capable of bidirectional information transfer. However, this protocol entails a strict alternation of flow: first the sender sends a frame, then the receiver sends a frame, then the sender sends another frame, then the receiver sends another one, and so on. A half-duplex physical channel would suffice here.

As in protocol 1, the sender starts out by fetching a packet from the network layer, using it to construct a frame, and sending it on its way. But now, unlike in protocol 1, the sender must wait until an acknowledgement frame arrives before looping back and fetching the next packet from the network layer. The sending data link layer need not even inspect the incoming frame as there is only one possibility. The incoming frame is always an acknowledgement.

The only difference between *receiver1* and *receiver2* is that after delivering a packet to the network layer, *receiver2* sends an acknowledgement frame back to the sender before entering the wait loop again. Because only the arrival of the frame back at the sender is important, not its contents, the receiver need not put any particular information in it.

Adding Error Correction: Sequence Numbers and ARQ

Now let us consider the normal situation of a communication channel that makes errors. Frames may be either damaged or lost completely. However, we assume that if a frame is damaged in transit, the receiver hardware will detect this

```
/* Protocol 2 (Stop-and-wait) also provides for a one-directional flow of data from
   sender to receiver. The communication channel is once again assumed to be error
   free, as in protocol 1. However, this time the receiver has only a finite buffer
   capacity and a finite processing speed, so the protocol must explicitly prevent
   the sender from flooding the receiver with data faster than it can be handled. */
typedef enum {frame_arrival} event_type;
#include "protocol.h"
void sender2(void)
  frame s:
                                           /* buffer for an outbound frame */
  packet buffer;
                                           /* buffer for an outbound packet */
                                           /* frame_arrival is the only possibility */
  event_type event;
  while (true) {
      from_network_layer(&buffer);
                                           /* go get something to send */
      s info = buffer:
                                           /* copy it into s for transmission */
      to_physical_layer(&s);
                                           /* bye-bye little frame */
      wait_for_event(&event);
                                           /* do not proceed until given the go ahead */
 }
void receiver2(void)
                                           /* buffers for frames */
  frame r, s;
  event_type event;
                                           /* frame_arrival is the only possibility */
  while (true) {
                                           /* only possibility is frame_arrival */
      wait_for_event(&event);
      from_physical_layer(&r);
                                           /* go get the inbound frame */
                                           /* pass the data to the network layer */
      to_network_layer(&r.info);
                                           /* send a dummy frame to awaken sender */
      to_physical_layer(&s);
}
```

Figure 3-13. A simplex stop-and-wait protocol.

when it computes the checksum. If the frame is damaged in such a way that the checksum is nevertheless correct—an unlikely occurrence—this protocol (and all other protocols) can fail (i.e., deliver an incorrect packet to the network layer).

At first glance it might seem that a variation of protocol 2 would work: adding a timer. The sender could send a frame, but the receiver would only send an acknowledgement frame if the data were correctly received. If a damaged frame arrived at the receiver, it would be discarded. After a while, the sender would time out and send the frame again. This process would be repeated until the frame finally arrived intact.

This scheme has a fatal flaw in it though. Think about the problem and try to discover what might go wrong before reading further.

To see what might go wrong, remember that the goal of the data link layer is to provide error-free, transparent communication between network layer processes. The network layer on machine A gives a series of packets to its data link layer, which must ensure that an identical series of packets is delivered to the network

layer on machine *B* by its data link layer. In particular, the network layer on *B* has no way of knowing that a packet has been lost or duplicated, so the data link layer must guarantee that no combination of transmission errors, however unlikely, can cause a duplicate packet to be delivered to a network layer.

Consider the following scenario:

- 1. The network layer on *A* gives packet 1 to its data link layer. The packet is correctly received at *B* and passed to the network layer on *B*. *B* sends an acknowledgement frame back to *A*.
- The acknowledgement frame gets lost completely. It just never arrives at all. Life would be a great deal simpler if the channel mangled and lost only data frames and not control frames, but sad to say, the channel is not very discriminating.
- 3. The data link layer on A eventually times out. Not having received an acknowledgement, it (incorrectly) assumes that its data frame was lost or damaged and sends the frame containing packet 1 again.
- 4. The duplicate frame also arrives intact at the data link layer on *B* and is unwittingly passed to the network layer there. If *A* is sending a file to *B*, part of the file will be duplicated (i.e., the copy of the file made by *B* will be incorrect and the error will not have been detected). In other words, the protocol will fail.

Clearly, what is needed is some way for the receiver to be able to distinguish a frame that it is seeing for the first time from a retransmission. The obvious way to achieve this is to have the sender put a sequence number in the header of each frame it sends. Then the receiver can check the sequence number of each arriving frame to see if it is a new frame or a duplicate to be discarded.

Since the protocol must be correct and the sequence number field in the header is likely to be small to use the link efficiently, the question arises: what is the minimum number of bits needed for the sequence number? The header might provide 1 bit, a few bits, 1 byte, or multiple bytes for a sequence number depending on the protocol. The important point is that it must carry sequence numbers that are large enough for the protocol to work correctly, or it is not much of a protocol.

The only ambiguity in this protocol is between a frame, m, and its direct successor, m+1. If frame m is lost or damaged, the receiver will not acknowledge it, so the sender will keep trying to send it. Once it has been correctly received, the receiver will send an acknowledgement to the sender. It is here that the potential trouble crops up. Depending upon whether the acknowledgement frame gets back to the sender correctly or not, the sender may try to send m or m+1.

At the sender, the event that triggers the transmission of frame m+1 is the arrival of an acknowledgement for frame m. But this situation implies that m-1 has been correctly received, and furthermore that its acknowledgement has also been

correctly received by the sender. Otherwise, the sender would not have begun with m, let alone have been considering m + 1. As a consequence, the only ambiguity is between a frame and its immediate predecessor or successor, not between the predecessor and successor themselves.

A 1-bit sequence number (0 or 1) is therefore sufficient. At each instant of time, the receiver expects a particular sequence number next. When a frame containing the correct sequence number arrives, it is accepted and passed to the network layer, then acknowledged. Then the expected sequence number is incremented modulo 2 (i.e., 0 becomes 1 and 1 becomes 0). Any arriving frame containing the wrong sequence number is rejected as a duplicate. However, the last valid acknowledgement is repeated so that the sender can eventually discover that the frame has been received.

An example of this kind of protocol is shown in Fig. 3-14. Protocols in which the sender waits for a positive acknowledgement before advancing to the next data item are often called **ARQ** (**Automatic Repeat reQuest**) or **PAR** (**Positive Acknowledgement with Retransmission**). Like protocol 2, this one also transmits data only in one direction.

Protocol 3 differs from its predecessors in that both sender and receiver have a variable whose value is remembered while the data link layer is in the wait state. The sender remembers the sequence number of the next frame to send in <code>next_frame_to_send</code>; the receiver remembers the sequence number of the next frame expected in <code>frame_expected</code>. Each protocol has a short initialization phase before entering the infinite loop.

After transmitting a frame, the sender starts the timer running. If it was already running, it will be reset to allow another full timer interval. The interval should be chosen to allow enough time for the frame to get to the receiver, for the receiver to process it in the worst case, and for the acknowledgement frame to propagate back to the sender. Only when that interval has elapsed is it safe to assume that either the transmitted frame or its acknowledgement has been lost, and to send a duplicate. If the timeout interval is set too short, the sender will transmit unnecessary frames. While these extra frames will not affect the correctness of the protocol, they will hurt performance.

After transmitting a frame and starting the timer, the sender waits for something exciting to happen. Only three possibilities exist: an acknowledgement frame arrives undamaged, a damaged acknowledgement frame staggers in, or the timer expires. If a valid acknowledgement comes in, the sender fetches the next packet from its network layer and puts it in the buffer, overwriting the previous packet. It also advances the sequence number. If a damaged frame arrives or the timer expires, neither the buffer nor the sequence number is changed so that a duplicate can be sent. In all cases, the contents of the buffer (either the next packet or a duplicate) are then sent.

When a valid frame arrives at the receiver, its sequence number is checked to see if it is a duplicate. If not, it is accepted, passed to the network layer, and an

acknowledgement is generated. Duplicates and damaged frames are not passed to the network layer, but they do cause the last correctly received frame to be acknowledged to signal the sender to advance to the next frame or retransmit a damaged frame.

3.4 IMPROVING EFFICIENCY

In the previous protocols, data frames were transmitted in one direction only. In most practical situations, there is a need to transmit data in both directions. Additionally, the link layer can be more efficient if it can send multiple frames simultaneously before receiving an acknowledgement. We explore both of these concepts next, and then provide several example protocols that achieve these goals.

3.4.1 Goal: Bidirectional Transmission, Multiple Frames in Flight

Next, we will explain a concept called piggybacking that can help a link layer protocol achieve bidirectional transmission, and a concept called a sliding window that can improve transmission efficiency by allowing the sender to have multiple bytes in flight.

Bidirectional Transmission: Piggybacking

One way of achieving full-duplex data transmission is to run two instances of one of the previous protocols, each using a separate link for simplex data traffic (in different directions). Each link is then comprised of a "forward" channel (for data) and a "reverse" channel (for acknowledgements). In both cases, the capacity of the reverse channel is almost entirely wasted.

A better idea is to use the same link for data in both directions. After all, in protocols 2 and 3 it was already being used to transmit frames both ways, and the reverse channel normally has the same capacity as the forward channel. In this model the data frames from A to B are intermixed with the acknowledgement frames from A to B. By looking at the *kind* field in the header of an incoming frame, the receiver can tell whether the frame is data or an acknowledgement.

Although interleaving data and control frames on the same link is a big improvement over having two separate physical links, yet another improvement is possible. When a data frame arrives, instead of immediately sending a separate control frame, the receiver restrains itself and waits until the network layer passes it the next packet. The acknowledgement is attached to the outgoing data frame (using the *ack* field in the frame header). In effect, the acknowledgement gets a free ride on the next outgoing data frame. The technique of temporarily delaying outgoing acknowledgements so that they can be hooked onto the next outgoing data frame is known as **piggybacking**.

```
/* Protocol 3 (PAR) allows unidirectional data flow over an unreliable channel. */
 #define MAX_SEQ 1
                                               /* must be 1 for protocol 3 */
 typedef enum {frame_arrival, cksum_err, timeout} event_type;
 #include "protocol.h"
 void sender3(void)
  seq_nr next_frame_to_send;
                                               /* seq number of next outgoing frame */
                                               /* scratch variable */
  frame s:
  packet buffer;
                                               /* buffer for an outbound packet */
  event_type event;
  next_frame_to_send = 0;
                                               /* initialize outbound sequence numbers */
  from_network_layer(&buffer);
                                               /* fetch first packet */
  while (true) {
      s.info = buffer;
                                               /* construct a frame for transmission */
      s.seq = next_frame_to_send;
                                               /* insert sequence number in frame */
      to_physical_layer(&s);
                                               /* send it on its way */
      start_timer(s.seq);
                                                /* if answer takes too long, time out */
      wait_for_event(&event);
                                               /* frame_arrival, cksum_err, timeout */
      if (event == frame_arrival) {
           from_physical_layer(&s);
                                               /* get the acknowledgement */
           if (s.ack == next_frame_to_send) {
                stop_timer(s.ack);
                                                /* turn the timer off */
                from_network_layer(&buffer);
                                               /* get the next one to send */
                inc(next_frame_to_send);
                                                /* invert next_frame_to_send */
      }
  }
 void receiver3(void)
  seq_nr frame_expected;
  frame r, s;
  event_type event;
  frame_expected = 0;
  while (true) {
      wait_for_event(&event);
                                               /* possibilities: frame_arrival, cksum_err */
      if (event == frame_arrival) {
                                                /* a valid frame has arrived */
           from_physical_layer(&r);
                                               /* go get the newly arrived frame */
           if (r.seq == frame_expected) {
                                                /* this is what we have been waiting for */
                to_network_layer(&r.info);
                                                /* pass the data to the network layer */
                inc(frame_expected);
                                               /* next time expect the other sequence nr */
           s.ack = 1 - frame_expected;
                                                /* tell which frame is being acked */
           to_physical_layer(&s);
                                               /* send acknowledgement */
}
```

Figure 3-14. A positive acknowledgement with retransmission protocol.

The principal advantage of using piggybacking over having distinct acknowledgement frames is a better use of the available channel bandwidth. The *ack* field in the frame header costs only a few bits, whereas a separate frame would need a header, the acknowledgement, and a checksum. In addition, fewer frames sent generally means a lighter processing load at the receiver. In the next protocol to be examined, the piggyback field costs only 1 bit in the frame header. It rarely costs more than a few bits.

However, piggybacking introduces a complication not present with separate acknowledgements. How long should the data link layer wait for a packet onto which to piggyback the acknowledgement? If the data link layer waits longer than the sender's timeout period, the frame will be retransmitted, defeating the whole purpose of having acknowledgements. If the data link layer were an oracle and could foretell the future, it would know when the next network layer packet was going to come in and could decide either to wait for it or send a separate acknowledgement immediately, depending on how long the projected wait was going to be. Of course, the data link layer cannot foretell the future, so it must resort to some ad hoc scheme, such as waiting a fixed number of milliseconds. If a new packet arrives quickly, the acknowledgement is piggybacked onto it. Otherwise, if no new packet has arrived by the end of this time period, the data link layer just sends a separate acknowledgement frame.

Sliding Windows

The next three protocols are bidirectional protocols that belong to a class called **sliding window** protocols. The three differ among themselves in terms of efficiency, complexity, and buffer requirements, as discussed later. In these, as in all sliding window protocols, each outbound frame contains a sequence number, ranging from 0 up to some maximum. The maximum is usually $2^n - 1$ so the sequence number fits exactly in an n-bit field. The stop-and-wait sliding window protocol uses n = 1, restricting the sequence numbers to 0 and 1, but more sophisticated versions can use an arbitrary n.

The essence of all sliding window protocols is that at any instant of time, the sender maintains a set of sequence numbers corresponding to frames it is permitted to send. These frames are said to fall within the **sending window**. Similarly, the receiver also maintains a **receiving window** corresponding to the set of frames it is permitted to accept. The sender's window and the receiver's window need not have the same lower and upper limits or even have the same size. In some protocols, they are fixed in size, but in others they can grow or shrink over the course of time as frames are sent and received.

Although these protocols give the data link layer more freedom about the order in which it may send and receive frames, we have definitely not dropped the requirement that the protocol must deliver packets to the destination network layer in the same order they were passed to the data link layer on the sending machine. Nor have we changed the requirement that the physical communication channel is "wire-like," that is, it must deliver all frames in the order sent.

The sequence numbers within the sender's window represent frames that have been sent or can be sent but are as yet not acknowledged. Whenever a new packet arrives from the network layer, it is given the next highest sequence number, and the upper edge of the window is advanced by one. When an acknowledgement comes in, the lower edge is advanced by one. In this way, the window continuously maintains a list of unacknowledged frames. Figure 3-15 shows an example.

Figure 3-15. A sliding window of size 1, with a 3-bit sequence number. (a) Initially. (b) After the first frame has been sent. (c) After the first frame has been received. (d) After the first acknowledgement has been received.

Since frames currently within the sender's window may ultimately be lost or damaged in transit, the sender must keep all of these frames in its memory for possible retransmission. Thus, if the maximum window size is n, the sender needs n buffers to hold the unacknowledged frames. If the window ever grows to its maximum size, the sending data link layer must forcibly shut off the network layer until another buffer becomes free.

The receiving data link layer's window corresponds to the frames it may accept. Any frame falling within the window is put in the receiver's buffer. When a frame whose sequence number is equal to the lower edge of the window is received, it is passed to the network layer and the window is rotated by one. Any frame falling outside the window is discarded. In all of these cases, a subsequent acknowledgement is generated so that the sender may work out how to proceed. Note that a window size of 1 means that the data link layer only accepts frames in

order, but for larger windows this is not so. The network layer, in contrast, is always fed data in the proper order, regardless of the data link layer's window size.

Figure 3-15 shows an example with a maximum window size of 1. Initially, no frames are outstanding, so the lower and upper edges of the sender's window are equal, but as time goes on, the situation progresses as shown. Unlike the sender's window, the receiver's window always remains at its initial size, rotating as the next frame is accepted and delivered to the network layer.

3.4.2 Examples of Full-Duplex, Sliding Window Protocols

We now give examples of a simple one-bit sliding window protocol, as well as protocols that can handle retransmission of erroneous frames when multiple frames are in flight.

One-Bit Sliding Window

Before tackling the general case, let us examine a sliding window protocol with a window size of 1. Such a protocol uses stop-and-wait since the sender transmits a frame and waits for its acknowledgement before sending the next one.

Figure 3-16 depicts such a protocol. Like the others, it starts out by defining some variables. *Next_frame_to_send* tells which frame the sender is trying to send. Similarly, *frame_expected* tells which frame the receiver is expecting. In both cases, 0 and 1 are the only possibilities.

Under normal circumstances, one of the two data link layers goes first and transmits the first frame. In other words, only one of the data link layer programs should contain the *to_physical_layer* and *start_timer* procedure calls outside the main loop. The starting machine fetches the first packet from its network layer, builds a frame from it, and sends it. When this (or any) frame arrives, the receiving data link layer checks to see if it is a duplicate, just as in protocol 3. If the frame is the one expected, it is passed to the network layer and the receiver's window is slid up.

The acknowledgement field contains the number of the last frame received without error. If this number agrees with the sequence number of the frame the sender is trying to send, the sender knows it is done with the frame stored in *buffer* and can fetch the next packet from its network layer. If the sequence number disagrees, it must continue trying to send the same frame. Whenever a frame is received, a frame is also sent back.

Now let us examine protocol 4 to see how resilient it is to pathological scenarios. Assume that computer A is trying to send its frame 0 to computer B and that B is trying to send its frame 0 to A. Suppose that A sends a frame to B, but A's timeout interval is a little too short. Consequently, A may time out repeatedly, sending a series of identical frames, all with seq = 0 and ack = 1.

```
/* Protocol 4 (Sliding window) is bidirectional. */
#define MAX_SEQ 1
                                                   /* must be 1 for protocol 4 */
typedef enum {frame_arrival, cksum_err, timeout} event_type;
#include "protocol.h"
void protocol4 (void)
 seq_nr next_frame_to_send;
                                                   /* 0 or 1 only */
                                                   /* 0 or 1 only */
 seq_nr frame_expected;
                                                   /* scratch variables */
 frame r, s;
 packet buffer;
                                                   /* current packet being sent */
 event_type event;
 next_frame_to_send = 0;
                                                   /* next frame on the outbound stream */
 frame\_expected = 0;
                                                   /* frame expected next */
 from_network_layer(&buffer);
                                                   /* fetch a packet from the network layer */
 s.info = buffer;
                                                   /* prepare to send the initial frame */
 s.seq = next_frame_to_send;
                                                   /* insert sequence number into frame */
 s.ack = 1 - frame_expected;
                                                   /* piggybacked ack */
                                                   /* transmit the frame */
 to_physical_layer(&s);
 start_timer(s.seq);
                                                   /* start the timer running */
 while (true) {
     wait_for_event(&event);
                                                   /* frame_arrival, cksum_err, or timeout */
     if (event == frame_arrival) {
                                                   /* a frame has arrived undamaged */
          from_physical_layer(&r);
                                                   /* go get it */
          if (r.seq == frame_expected) {
                                                   /* handle inbound frame stream */
               to_network_layer(&r.info);
                                                   /* pass packet to network layer */
                                                   /* invert seq number expected next */
               inc(frame_expected);
          }
          if (r.ack == next_frame_to_send) {
                                                   /* handle outbound frame stream */
               stop_timer(r.ack);
                                                   /* turn the timer off */
               from_network_layer(&buffer);
                                                   /* fetch new pkt from network layer */
               inc(next_frame_to_send);
                                                   /* invert sender's sequence number */
          }
     s.info = buffer;
                                                   /* construct outbound frame */
     s.seq = next_frame_to_send;
                                                   /* insert sequence number into it */
     s.ack = 1 - frame_expected;
                                                   /* seg number of last received frame */
     to_physical_layer(&s);
                                                   /* transmit a frame */
     start_timer(s.seq);
                                                   /* start the timer running */
}
```

Figure 3-16. A 1-bit sliding window protocol.

When the first valid frame arrives at computer B, it will be accepted and $frame_expected$ will be set to a value of 1. All the subsequent frames received will be rejected because B is now expecting frames with sequence number 1, not 0. Furthermore, since all the duplicates will have ack = 1 and B is still waiting for an acknowledgement of 0, B will not fetch a new packet from its network layer.

After every rejected duplicate comes in, B will send A a frame containing seq = 0 and ack = 0. Eventually, one of these will arrive correctly at A, causing A to begin sending the next packet. No combination of lost frames or premature timeouts can cause the protocol to deliver duplicate packets to either network layer, to skip a packet, or to deadlock. The protocol is correct.

However, to show how subtle protocol interactions can be, we note that a peculiar situation arises if both sides simultaneously send an initial packet. This synchronization difficulty is illustrated by Fig. 3-17. In part (a), the normal operation of the protocol is shown. In (b) the peculiarity is illustrated. If *B* waits for *A*'s first frame before sending one of its own, the sequence is as shown in (a), and every frame is accepted.

However, if A and B simultaneously initiate communication, their first frames cross, and the data link layers then get into situation (b). In (a) each frame arrival brings a new packet for the network layer; there are no duplicates. In (b) half of the frames contain duplicates, even though there are no transmission errors. Similar situations can occur as a result of premature timeouts, even when one side clearly starts first. In fact, if multiple premature timeouts occur, frames may be sent three or more times, wasting valuable bandwidth.

Figure 3-17. Two scenarios for protocol 4. (a) Normal case. (b) Abnormal case. The notation is (seq, ack, packet number). An asterisk indicates where a network layer accepts a packet.

Go-Back-N

Until now we have made the tacit assumption that the transmission time required for a frame to arrive at the receiver plus the transmission time for the acknowledgement to come back is negligible. Sometimes this assumption is clearly

false. In these situations, the long round-trip time has important implications for the efficiency of the bandwidth utilization. As an example, consider a 50-kbps satellite channel with a 500-msec round-trip propagation delay. Imagine trying to use protocol 4 to send 1000-bit frames via the satellite. At t=0 the sender starts sending the first frame. At t=20 msec the frame has been completely sent. Not until t=270 msec has the frame fully arrived at the receiver, and not until t=520 msec has the acknowledgement arrived at the sender, under the best of circumstances (no waiting in the receiver and a short acknowledgement frame). This means that the sender was blocked 500/520 or 96% of the time. In other words, only 4% of the available bandwidth was used. Clearly, the combination of a long transit time, high bandwidth, and short frame length is disastrous in terms of efficiency.

The problem described here can be viewed as a consequence of the rule requiring a sender to wait for an acknowledgement before sending another frame. If we relax that restriction, much better efficiency can be achieved. Basically, the solution lies in allowing the sender to transmit up to w frames before blocking, instead of just 1. With a large enough choice of w the sender will be able to continuously transmit frames since the acknowledgements will arrive for previous frames before the window becomes full, preventing the sender from blocking.

To find an appropriate value for w we need to know how many frames can fit inside the channel as they propagate from sender to receiver. This capacity is determined by the bandwidth in bits/sec multiplied by the one-way transit time, or the **bandwidth-delay product** of the link. We can divide this quantity by the number of bits in a frame to express it as a number of frames. Call this quantity BD. Then w should be set to 2BD + 1. Twice the bandwidth-delay is the number of frames that can be outstanding if the sender continuously sends frames when the round-trip time to receive an acknowledgement is considered. The "+1" is because an acknowledgement frame will not be sent until after a complete frame is received.

For the example link with a bandwidth of 50 kbps and a one-way transit time of 250 msec, the bandwidth-delay product is 12.5 kbit or 12.5 frames of 1000 bits each. 2BD + 1 is then 26 frames. Assume the sender begins sending frame 0 as before and sends a new frame every 20 msec. By the time it has finished sending 26 frames, at t = 520 msec, the acknowledgement for frame 0 will have just arrived. Thereafter, acknowledgements will arrive every 20 msec, so the sender will always get permission to continue just when it needs it. From then onwards, 25 or 26 unacknowledged frames will always be outstanding. Put in other terms, the sender's maximum window size is 26.

For smaller window sizes, the utilization of the link will be less than 100% since the sender will be blocked sometimes. We can write the utilization as the fraction of time that the sender is not blocked:

link utilization
$$\leq \frac{w}{1 + 2BD}$$

The value above is an upper bound because it does not allow for any frame processing time and treats the acknowledgement frame as having zero length, since it is

usually short. The equation shows the need for having a large window w whenever the bandwidth-delay product is large. If the delay is high, the sender will rapidly exhaust its window even for a moderate bandwidth, as in the satellite example. If the bandwidth is high, even for a moderate delay the sender will exhaust its window quickly unless it has a large window (e.g., a 1-Gbps link with 1-msec delay holds 1 megabit). With stop-and-wait for which w = 1, if there is even one frame's worth of propagation delay the efficiency will be less than 50%.

This technique of keeping multiple frames in flight is an example of **pipelining**. Pipelining frames over an unreliable communication channel raises some serious issues. First, what happens if a frame in the middle of a long stream is damaged or lost? Large numbers of succeeding frames will arrive at the receiver before the sender even finds out that anything is wrong. When a damaged frame arrives at the receiver, it obviously should be discarded, but what should the receiver do with all the correct frames following it? Remember that the receiving data link layer is obligated to hand packets to the network layer in sequence.

Two basic approaches are available for dealing with errors in the presence of pipelining, both of which are shown in Fig. 3-18.

Figure 3-18. Pipelining and error recovery. Effect of an error when (a) receiver's window size is 1 and (b) receiver's window size is large.

One option, called **go-back-n**, is for the receiver to just discard all subsequent frames, sending no acknowledgements for the discarded frames. This strategy

corresponds to a receive window of size 1. In other words, the data link layer refuses to accept any frame except the next one it must give to the network layer. If the sender's window fills up before the timer runs out, the pipeline will begin to empty. Eventually, the sender will time out and retransmit all unacknowledged frames in order, starting with the damaged or lost one. This approach can waste a lot of bandwidth if the error rate is high.

In Fig. 3-18(a) we see the go-back-n case in which the receiver's window is 1. Frames 0 and 1 are correctly received and acknowledged. Frame 2, however, is damaged or lost. The sender, unaware of this problem, continues to send frames until the timer for frame 2 expires. Then it backs up to frame 2 and starts over with it, sending 2, 3, 4, etc. all over again.

Selective Repeat

The go-back-n protocol works well if errors are rare, but if the line is poor it wastes a lot of bandwidth on retransmitted frames. We need to do better than this. And it is possible. An alternative strategy, the **selective repeat** protocol, is to allow the receiver to accept and buffer correct frames received following a damaged or lost one.

When it is used, a bad frame that is received is discarded, but any good frames received after it are accepted and buffered. When the sender times out, only the oldest unacknowledged frame is retransmitted. If that frame arrives correctly, the receiver can deliver to the network layer, in sequence, all the frames it has buffered. Selective repeat corresponds to a receiver window larger than 1. This approach can require large amounts of data link layer memory if the window is large.

Selective repeat is often combined with having the receiver send a negative acknowledgement (NAK) when it detects an error, for example, when it receives a checksum error or a frame out of sequence. NAKs stimulate retransmission before the corresponding timer expires and thus improve performance.

In Fig. 3-18(b), frames 0 and 1 are again correctly received and acknowledged and frame 2 is lost. When frame 3 arrives at the receiver, the data link layer there notices that it has missed a frame, so it sends back a NAK for 2 but buffers 3. When frames 4 and 5 arrive, they, too, are buffered by the data link layer instead of being passed to the network layer. Eventually, the NAK 2 gets back to the sender, which immediately resends frame 2. When that arrives, the data link layer now has 2, 3, 4, and 5 and can pass all of them to the network layer in the correct order. It can also acknowledge all frames up to and including 5, as shown in the figure. If the NAK should get lost, eventually the sender will time out for frame 2 and send it (and only it) of its own accord, but that may be a quite a while later.

These two alternative approaches are trade-offs between efficient use of bandwidth and data link layer buffer space. Depending on which resource is scarcer, one or the other can be used. Figure 3-19 shows a go-back-n protocol in which the

```
/* Protocol 5 (Go-back-n) allows multiple outstanding frames. The sender may transmit up
  to MAX_SEQ frames without waiting for an ack. In addition, unlike in the previous
  protocols, the network layer is not assumed to have a new packet all the time. Instead,
  the network layer causes a network_layer_ready event when there is a packet to send. */
#define MAX_SEQ 7
typedef enum {frame_arrival, cksum_err, timeout, network_layer_ready} event_type;
#include "protocol.h"
static boolean between(seq_nr a, seq_nr b, seq_nr c)
/* Return true if a <= b < c circularly; false otherwise. */
 if (((a <= b) && (b < c)) || ((c < a) && (a <= b)) || ((b < c) && (c < a)))
    return(true);
   else
     return(false);
}
static void send_data(seq_nr frame_nr, seq_nr frame_expected, packet buffer[])
/* Construct and send a data frame. */
 frame s;
                                               /* scratch variable */
 s.info = buffer[frame_nr];
                                               /* insert packet into frame */
                                               /* insert sequence number into frame */
 s.seq = frame_nr;
 s.ack = (frame_expected + MAX_SEQ) % (MAX_SEQ + 1); /* piggyback ack */
 to_physical_layer(&s);
                                               /* transmit the frame */
 start_timer(frame_nr);
                                               /* start the timer running */
void protocol5(void)
 seq_nr next_frame_to_send;
                                               /* MAX_SEQ > 1; used for outbound stream */
 seq_nr ack_expected;
                                               /* oldest frame as yet unacknowledged */
                                               /* next frame expected on inbound stream */
 seq_nr frame_expected;
 frame r;
                                               /* scratch variable */
 packet buffer[MAX_SEQ + 1];
                                               /* buffers for the outbound stream */
 seq_nr nbuffered;
                                               /* number of output buffers currently in use */
 seq_nr i;
                                               /* used to index into the buffer array */
 event_type event;
 enable_network_layer();
                                               /* allow network_layer_ready events */
 ack_expected = 0;
                                               /* next ack expected inbound */
 next_frame_to_send = 0;
                                               /* next frame going out */
 frame_expected = 0;
                                               /* number of frame expected inbound */
 nbuffered = 0:
                                               /* initially no packets are buffered */
 while (true) {
   wait_for_event(&event);
                                               /* four possibilities: see event_type above */
```

```
switch(event) {
     case network_layer_ready:
                                               /* the network layer has a packet to send */
           /* Accept, save, and transmit a new frame. */
           from_network_layer(&buffer[next_frame_to_send]); /* fetch new packet */
           nbuffered = nbuffered + 1;
                                               /* expand the sender's window */
           send_data(next_frame_to_send, frame_expected, buffer);/* transmit the frame */
           inc(next_frame_to_send);
                                               /* advance sender's upper window edge */
           break;
     case frame_arrival:
                                               /* a data or control frame has arrived */
           from_physical_layer(&r);
                                               /* get incoming frame from physical layer */
           if (r.seq == frame_expected) {
                /* Frames are accepted only in order. */
                                               /* pass packet to network layer */
                to_network_layer(&r.info);
                inc(frame_expected);
                                               /* advance lower edge of receiver's window */
           /* Ack n implies n - 1, n - 2, etc. Check for this. */
           while (between(ack_expected, r.ack, next_frame_to_send)) {
                /* Handle piggybacked ack. */
                nbuffered = nbuffered - 1;
                                               /* one frame fewer buffered */
                stop_timer(ack_expected);
                                               /* frame arrived intact; stop timer */
                inc(ack_expected);
                                               /* contract sender's window */
           break;
     case cksum_err: break;
                                               /* just ignore bad frames */
                                               /* trouble; retransmit all outstanding frames */
     case timeout:
           next_frame_to_send = ack_expected;
                                                    /* start retransmitting here */
           for (i = 1; i \le nbuffered; i++) {
                send_data(next_frame_to_send, frame_expected, buffer);/* resend frame */
                inc(next_frame_to_send);
                                               /* prepare to send the next one */
    if (nbuffered < MAX_SEQ)
           enable_network_layer();
    else
           disable_network_layer();
}
```

Figure 3-19. A sliding window protocol using go-back-n.

receiving data link layer only accepts frames in order; frames following an error are discarded. In this protocol, for the first time we have dropped the assumption that the network layer always has an infinite supply of packets. When the network layer has a packet it wants to send, it can cause a <code>network_layer_ready</code> event to happen. To enforce the flow control limit on the sender window or the number of unacknowledged frames that may be outstanding at any time, the data link layer must be able to keep the network layer from bothering it with more work. The library procedures <code>enable_network_layer</code> and <code>disable_network_layer</code> do this job.

The maximum number of frames that may be outstanding at any instant is not the same as the size of the sequence number space. For go-back-n, MAX_SEQ frames may be outstanding at any instant, even though there are $MAX_SEQ + 1$ distinct sequence numbers (which are $0, 1, \ldots, MAX_SEQ$). We will see an even tighter restriction for the next protocol, selective repeat. To see why this restriction is required, consider the following scenario with $MAX_SEQ = 7$:

- 1. The sender sends frames 0 through 7.
- 2. A piggybacked acknowledgement for 7 comes back to the sender.
- 3. The sender sends another eight frames, again with sequence numbers 0 through 7.
- 4. Now another piggybacked acknowledgement for frame 7 comes in.

The question is this: did all eight frames belonging to the second batch arrive successfully, or did all eight get lost (counting discards following an error as lost)? In both cases, the receiver would be sending frame 7 as the acknowledgement. The sender has no way of telling. For this reason, the maximum number of outstanding frames must be restricted to MAX_SEQ (and not $MAX_SEQ + 1$).

Although protocol 5 does not buffer the frames arriving after an error, it does not escape the problem of buffering altogether. Since a sender may have to retransmit all the unacknowledged frames at a future time, it must hang on to all transmitted frames until it knows for sure that they have been accepted by the receiver

When an acknowledgement comes in for frame n, frames n-1, n-2, and so on are also automatically acknowledged. This type of acknowledgement is called a **cumulative acknowledgement**. This property is especially important when some of the previous acknowledgement-bearing frames were lost or garbled. Whenever any acknowledgement comes in, the data link layer checks to see if any buffers can now be released. If buffers can be released (i.e., there is some room available in the window), a previously blocked network layer can now be allowed to cause more $network_layer_ready$ events.

For this protocol, we assume that there is always reverse traffic on which to piggyback acknowledgements. Protocol 4 does not need this assumption since it sends back one frame every time it receives a frame, even if it has already sent that frame. In the next protocol, we will solve the problem of one-way traffic in an elegant way.

Because protocol 5 has multiple outstanding frames, it logically needs multiple timers, one per outstanding frame. Each frame times out independently of all the other ones. However, all of these timers can easily be simulated in software using a single hardware clock that causes interrupts periodically. The pending timeouts form a linked list, with each node of the list containing the number of clock ticks until the timer expires, the frame being timed, and a pointer to the next node.

Figure 3-20. Simulation of multiple timers in software. (a) The queued timeouts. (b) The situation after the first timeout has expired.

As an illustration of how the timers could be implemented, consider the example of Fig. 3-20(a). Assume that the clock ticks once every 1 msec. Initially, the real time is 10:00:00.000; three timeouts are pending, at 10:00:00.005, 10:00:00.013, and 10:00:00.019. Every time the hardware clock ticks, the real time is updated and the tick counter at the head of the list is decremented. When the tick counter becomes zero, a timeout is caused and the node is removed from the list, as shown in Fig. 3-20(b). Although this organization requires the list to be scanned when *start_timer* or *stop_timer* is called, it does not require much work per tick. In protocol 5, both of these routines have been given a parameter indicating which frame is to be timed.

In this protocol, both sender and receiver maintain a window of outstanding and acceptable sequence numbers, respectively. The sender's window size starts out at 0 and grows to some predefined maximum. The receiver's window, in contrast, is always fixed in size and equal to the predetermined maximum. The receiver has a buffer reserved for each sequence number within its fixed window. Associated with each buffer is a bit (arrived) telling whether the buffer is full or empty. Whenever a frame arrives, its sequence number is checked by the function between to see if it falls within the window. If so and if it has not already been received, it is accepted and stored. This action is taken without regard to whether or not the frame contains the next packet expected by the network layer. Of course, it must be kept within the data link layer and not passed to the network layer until all the lower-numbered frames have already been delivered to the network layer in the correct order. A protocol using this algorithm is given in Fig. 3-21.

Nonsequential receive introduces further constraints on frame sequence numbers compared to protocols in which frames are only accepted in order. We can illustrate the trouble most easily with an example. Suppose that we have a 3-bit sequence number, so that the sender is permitted to transmit up to seven frames before being required to wait for an acknowledgement.

```
/* Protocol 6 (Selective repeat) accepts frames out of order but passes packets to the
  network layer in order. Associated with each outstanding frame is a timer. When the timer
  expires, only that frame is retransmitted, not all the outstanding frames, as in protocol 5. */
#define MAX_SEQ 7
                                                  /* should be 2^n - 1 */
#define NR_BUFS ((MAX_SEQ + 1)/2)
typedef enum {frame_arrival, cksum_err, timeout, network_layer_ready, ack_timeout} event_type;
#include "protocol.h"
boolean no_nak = true;
                                                  /* no nak has been sent yet */
seq_nr oldest_frame = MAX_SEQ + 1;
                                                  /* initial value is only for the simulator */
static boolean between(seq_nr a, seq_nr b, seq_nr c)
/* Same as between in protocol 5, but shorter and more obscure. */
 return ((a <= b) && (b < c)) || ((c < a) && (a <= b)) || ((b < c) && (c < a));
}
static void send_frame(frame_kind fk, seq_nr frame_nr, seq_nr frame_expected, packet buffer[])
/* Construct and send a data, ack, or nak frame. */
                                                 /* scratch variable */
 frame s:
 s.kind = fk
                                                 /* kind == data, ack, or nak */
 if (fk == data) s.info = buffer[frame_nr % NR_BUFS];
 s.seq = frame_nr;
                                                 /* only meaningful for data frames */
 s.ack = (frame_expected + MAX_SEQ) % (MAX_SEQ + 1);
 if (fk == nak) no_nak = false;
                                                  /* one nak per frame, please */
 to_physical_layer(&s);
                                                 /* transmit the frame */
 if (fk == data) start_timer(frame_nr % NR_BUFS);
 stop_ack_timer();
                                                  /* no need for separate ack frame */
void protocol6(void)
 seg_nr ack_expected;
                                                  /* lower edge of sender's window */
 seq_nr next_frame_to_send;
                                                  /* upper edge of sender's window + 1 */
 seq_nr frame_expected;
                                                  /* lower edge of receiver's window */
 seq_nr too_far;
                                                  /* upper edge of receiver's window + 1 */
                                                  /* index into buffer pool */
 int i;
 frame r;
                                                  /* scratch variable */
 packet out_buf[NR_BUFS];
                                                 /* buffers for the outbound stream */
 packet in_buf[NR_BUFS];
                                                  /* buffers for the inbound stream */
 boolean arrived[NR_BUFS];
                                                  /* inbound bit map */
 seq_nr nbuffered;
                                                  /* how many output buffers currently used */
 event_type event;
 enable_network_layer();
                                                  /* initialize */
 ack_expected = 0;
                                                  /* next ack expected on the inbound stream */
 next_frame_to_send = 0;
                                                  /* number of next outgoing frame */
 frame_expected = 0;
 too_far = NR_BUFS;
 nbuffered = 0;
                                                  /* initially no packets are buffered */
 for (i = 0; i < NR\_BUFS; i++) arrived[i] = false;
 while (true) {
                                                  /* five possibilities: see event_type above */
   wait_for_event(&event);
```

```
switch(event) {
 case network_layer_ready:
                                             /* accept, save, and transmit a new frame */
      nbuffered = nbuffered + 1;
                                             /* expand the window */
      from_network_layer(&out_buf[next_frame_to_send % NR_BUFS]); /* fetch new packet */
      send_frame(data, next_frame_to_send, frame_expected, out_buf);/* transmit the frame */
      inc(next_frame_to_send);
                                             /* advance upper window edge */
      break.
 case frame arrival:
                                             /* a data or control frame has arrived */
      from_physical_layer(&r);
                                             /* fetch incoming frame from physical layer */
      if (r.kind == data) {
           /* An undamaged frame has arrived. */
           if ((r.seq != frame_expected) && no_nak)
             send_frame(nak, 0, frame_expected, out_buf); else start_ack_timer();
           if (between(frame_expected,r.seq,too_far) && (arrived[r.seq%NR_BUFS]==false)) {
                /* Frames may be accepted in any order. */
                arrived[r.seq % NR_BUFS] = true;/* mark buffer as full */
                in_buf[r.seq % NR_BUFS] = r.info;/* insert data into buffer */
                while (arrived[frame_expected % NR_BUFS]) {
                     /* Pass frames and advance window. */
                     to_network_layer(&in_buf[frame_expected % NR_BUFS]);
                     no_nak = true;
                     arrived[frame_expected % NR_BUFS] = false;
                                            /* advance lower edge of receiver's window */
                     inc(frame_expected);
                     inc(too_far);
                                             /* advance upper edge of receiver's window */
                     start_ack_timer();
                                             /* to see if a separate ack is needed */
                }
           }
      if((r.kind==nak) && between(ack_expected,(r.ack+1)%(MAX_SEQ+1),next_frame_to_send))
           send_frame(data, (r.ack+1) % (MAX_SEQ + 1), frame_expected, out_buf);
      while (between(ack_expected, r.ack, next_frame_to_send)) {
           nbuffered = nbuffered - 1;
                                            /* handle piggybacked ack */
           stop_timer(ack_expected % NR_BUFS); /* frame arrived intact */
           inc(ack_expected);
                                             /* advance lower edge of sender's window */
      break:
 case cksum_err:
      if (no_nak) send_frame(nak, 0, frame_expected, out_buf); /* damaged frame */
      break;
 case timeout:
      send_frame(data, oldest_frame, frame_expected, out_buf); /* we timed out */
      break;
 case ack_timeout:
      send_frame(ack,0,frame_expected, out_buf);
                                                      /* ack timer expired; send ack */
if (nbuffered < NR_BUFS) enable_network_layer(); else disable_network_layer();
             Figure 3-21. A sliding window protocol using selective repeat.
```

Initially, the sender's and receiver's windows are as shown in Fig. 3-22(a). The sender now transmits frames 0 through 6. The receiver's window allows it to accept any frame with a sequence number between 0 and 6 inclusive. All seven frames arrive correctly, so the receiver acknowledges them and advances its window to allow receipt of 7, 0, 1, 2, 3, 4, or 5, as shown in Fig. 3-22(b). All seven buffers are marked empty.

Figure 3-22. (a) Initial situation with a window of size 7. (b) After 7 frames have been sent and received but not acknowledged. (c) Initial situation with a window size of 4. (d) After 4 frames have been sent and received but not acknowledged.

It is at this point that disaster strikes in the form of a lightning bolt hitting the telephone pole and wiping out all the acknowledgements. The protocol should operate correctly despite this disaster. The sender eventually times out and retransmits frame 0. When this frame arrives at the receiver, a check is made to see if it falls within the receiver's window. Unfortunately, in Fig. 3-22(b) frame 0 is within the new window, so it is accepted as a new frame. The receiver also sends a (piggybacked) acknowledgement for frame 6, since 0 through 6 have been received.

The sender is happy to learn that all its transmitted frames did actually arrive correctly, so it advances its window and immediately sends frames 7, 0, 1, 2, 3, 4, and 5. Frame 7 will be accepted by the receiver and its packet will be passed directly to the network layer. Immediately thereafter, the receiving data link layer checks to see if it has a valid frame 0 already, discovers that it does, and passes the old buffered packet to the network layer as if it were a new packet. Consequently, the network layer gets an incorrect packet, and the protocol fails.

The essence of the problem is that after the receiver advanced its window, the new range of valid sequence numbers overlapped the old one. Consequently, the following batch of frames might be either duplicates (if all the acknowledgements were lost) or new ones (if all the acknowledgements were received). The poor receiver has no way of distinguishing these two cases.

The way out of this dilemma lies in making sure that after the receiver has advanced its window there is no overlap with the original window. To ensure that there is no overlap, the maximum window size should be at most half the range of the sequence numbers. This situation is shown in Fig. 3-22(c) and Fig. 3-22(d). With 3 bits, the sequence numbers range from 0 to 7. Only four unacknowledged

frames should be outstanding at any instant. That way, if the receiver has just accepted frames 0 through 3 and advanced its window to permit acceptance of frames 4 through 7, it can unambiguously tell if subsequent frames are retransmissions (0 through 3) or new ones (4 through 7). In general, the window size for protocol 6 will be $(MAX_SEQ+1)/2$.

An interesting question is: how many buffers must the receiver have? Under no conditions will it ever accept frames whose sequence numbers are below the lower edge of the window or frames whose sequence numbers are above the upper edge of the window. Consequently, the number of buffers needed is equal to the window size, not to the range of sequence numbers. In the preceding example of a 3-bit sequence number, four buffers, numbered 0 through 3, are needed. When frame i arrives, it is put in buffer i mod 4. Notice that although i and (i + 4) mod 4 are "competing" for the same buffer, they are never within the window at the same time, because that would imply a window size of at least 5.

For the same reason, the number of timers needed is equal to the number of buffers, not to the size of the sequence space. Effectively, one timer is associated with each buffer. When the timer runs out, the contents of the buffer are retransmitted.

Protocol 6 also relaxes the implicit assumption that the channel is heavily loaded. We made this assumption in protocol 5 when we relied on frames being sent in the reverse direction on which to piggyback acknowledgements. If the reverse traffic is light, the acknowledgements may be held up for a long period of time, which can cause problems. In the extreme, if there is a lot of traffic in one direction and no traffic in the other direction, the protocol will block when the sender window reaches its maximum.

To relax this assumption, an auxiliary timer is started by <code>start_ack_timer</code> after an in-sequence data frame arrives. If no reverse traffic has presented itself before this timer expires, a separate acknowledgement frame is sent. An interrupt due to the auxiliary timer is called an <code>ack_timeout</code> event. With this arrangement, traffic flow in only one direction is possible because the lack of reverse data frames onto which acknowledgements can be piggybacked is no longer an obstacle. Only one auxiliary timer exists, and if <code>start_ack_timer</code> is called while the timer is running, it has no effect. The timer is not reset or extended since its purpose is to provide some minimum rate of acknowledgements.

It is essential that the timeout associated with the auxiliary timer be appreciably shorter than the timeout used for timing out data frames. This condition is required to ensure that a correctly received frame is acknowledged early enough that the frame's retransmission timer does not expire and retransmit the frame.

Protocol 6 uses a more efficient strategy than protocol 5 for dealing with errors. Whenever the receiver has reason to suspect that an error has occurred, it sends a negative acknowledgement (NAK) frame back to the sender. Such a frame is a request for retransmission of the frame specified in the NAK. In two cases, the receiver should be suspicious: when a damaged frame arrives or a frame other than

the expected one arrives (potential lost frame). To avoid making multiple requests for retransmission of the same lost frame, the receiver should keep track of whether a NAK has already been sent for a given frame. The variable *no_nak* in protocol 6 is *true* if no NAK has been sent yet for *frame_expected*. If the NAK gets mangled or lost, no real harm is done, since the sender will eventually time out and retransmit the missing frame anyway. If the wrong frame arrives after a NAK has been sent and lost, *no_nak* will be *true* and the auxiliary timer will be started. When it expires, an ACK will be sent to resynchronize the sender to the receiver's current status.

In some situations, the time required for a frame to propagate to the destination, be processed there, and have the acknowledgement come back is (nearly) constant. In these situations, the sender can adjust its timer to be "tight," just slightly larger than the normal time interval expected between sending a frame and receiving its acknowledgement. NAKs are not useful in this case.

However, in other situations the round-trip time can be highly variable. For example, if the reverse traffic is sporadic, the time before acknowledgement will be shorter when there is reverse traffic and longer when there is not. The sender is faced with the choice of either setting the interval to a small value (and risking unnecessary retransmissions), or setting it to a large value (and going idle for a long period after an error). Both choices waste bandwidth. In general, if the standard deviation of the acknowledgement interval is large compared to the interval itself, the timer is set "loose" to be conservative. NAKs can then appreciably speed up retransmission of lost or damaged frames.

Closely related to the matter of timeouts and NAKs is the question of determining which frame caused a timeout. In protocol 5, it is always $ack_expected$, because it is always the oldest. In protocol 6, there is no trivial way to determine who timed out. Suppose that frames 0 through 4 have been transmitted, meaning that the list of outstanding frames is 01234, in order from oldest to youngest. Now imagine that 0 times out, 5 (a new frame) is transmitted, 1 times out, 2 times out, and 6 (another new frame) is transmitted. At this point, the list of outstanding frames is 3405126, from oldest to youngest. If all inbound traffic (i.e., acknowledgement-bearing frames) is lost for a while, the seven outstanding frames will time out in that order.

To keep the example from getting even more complicated than it already is, we have not shown the timer administration. Instead, we just assume that the variable *oldest_frame* is set upon timeout to indicate which frame timed out.

3.5 DATA LINK PROTOCOLS IN PRACTICE

Within a single building, LANs are widely used for interconnection, but most wide area network infrastructure is built up from point-to-point lines. In Chap. 4, we will look at LANs. Here we will examine the data link protocols found on

point-to-point lines in the Internet in three common situations. The first situation is when packets are sent over SONET optical fiber links in wide area networks. These links are widely used, for example, to connect routers in the different locations of an ISP's network. The second situation is for ADSL links running on the local loop of the telephone network at the edge of the Internet. The third situation is for DOCSIS links in the local loop of a cable network. Both ADSL and DOCSIS connect millions of individuals and businesses to the Internet.

The Internet needs point-to-point links for these uses, as well as dial-up modems, leased lines, cable modems, and so on. A standard protocol called **PPP** (**Point-to-Point Protocol**) is used to send packets over these links. PPP is defined in RFC 1661 and further elaborated in RFC 1662 and other RFCs (Simpson, 1994a, 1994b). SONET, ADSL, and DOCSIS links both apply PPP, but in different ways.

3.5.1 Packet over SONET

SONET, which we covered in Sec. 2.5.3, is the physical layer protocol that is most commonly used over the wide area optical fiber links that make up the backbone of communications networks, including the telephone system. It provides a bitstream that runs at a well-defined rate, for example 2.4 Gbps for an OC-48 link. This bitstream is organized as fixed-size byte payloads that recur every 125 μ sec, whether or not there is user data to send.

To carry packets across these links, some framing mechanism is needed to distinguish occasional packets from the continuous bitstream in which they are transported. PPP runs on IP routers to provide this mechanism, as shown in Fig. 3-23.

Figure 3-23. Packet over SONET. (a) A protocol stack. (b) Frame relationships.

PPP improves on an earlier, simpler protocol called **SLIP** (**Serial Line Internet Protocol**) and is used to handle error detection link configuration, support multiple protocols, permit authentication, and more. With a wide set of options, PPP provides three main features:

 A framing method that unambiguously delineates the end of one frame and the start of the next one. The frame format also handles error detection.

- A link control protocol for bringing lines up, testing them, negotiating
 options, and bringing them down again gracefully when they are no
 longer needed. This protocol is called LCP (Link Control Protocol).
- A way to negotiate network layer options in a way that is independent
 of the network layer protocol to be used. The method chosen is to
 have a different NCP (Network Control Protocol) for each network
 layer supported.

The PPP frame format was chosen to closely resemble the frame format of **HDLC** (**High-level Data Link Control**), a widely used instance of an earlier family of protocols, since there was no need to reinvent the wheel.

The primary difference between PPP and HDLC is that PPP is byte oriented rather than bit oriented. In particular, PPP uses byte stuffing and all frames are an integral number of bytes. HDLC uses bit stuffing and allows frames of, for example, 30.25 bytes.

There is a second major difference in practice, however. HDLC provides reliable transmission with a sliding window, acknowledgements, and timeouts in the manner we have studied. PPP can also provide reliable transmission in noisy environments, such as wireless networks; the exact details are defined in RFC 1663. However, this is rarely done in practice. Instead, an "unnumbered mode" is nearly always used in the Internet to provide connectionless unacknowledged service.

The PPP frame format is shown in Fig. 3-24. All PPP frames begin with the standard HDLC flag byte of 0x7E (01111110). The flag byte is stuffed if it occurs within the *Payload* field using the escape byte 0x7D. The following byte is the escaped byte XORed with 0x20, which flips the fifth bit. For example, 0x7D 0x5E is the escape sequence for the flag byte 0x7E. This means the start and end of frames can be searched for simply by scanning for the byte 0x7E since it will not occur elsewhere. The destuffing rule when receiving a frame is to look for 0x7D, remove it, and XOR the following byte with 0x20. Also, only one flag byte is needed between frames. Multiple flag bytes can be used to fill the link when there are no frames to be sent.

After the start-of-frame flag byte comes the *Address* field. This field is always set to the binary value 11111111 to indicate that all stations are to accept the frame. Using this value avoids the issue of having to assign data link addresses.

Figure 3-24. The PPP full frame format for unnumbered mode operation.

The *Address* field is followed by the *Control* field, the default value of which is 00000011. This value indicates an unnumbered frame.

Since the *Address* and *Control* fields are always constant in the default configuration, LCP provides the necessary mechanism for the two parties to negotiate an option to omit them altogether and save 2 bytes per frame.

The fourth PPP field is the *Protocol* field. Its job is to tell what kind of packet is in the *Payload* field. Codes starting with a 0 bit are defined for IP version 4, IP version 6, and other network layer protocols that might be used, such as IPX and AppleTalk. Codes starting with a 1 bit are used for PPP configuration protocols, including LCP and a different NCP for each network layer protocol supported. The default size of the *Protocol* field is 2 bytes, but it can be negotiated down to 1 byte using LCP. The designers were perhaps overly cautious in thinking that someday there might be more than 256 protocols in use.

The *Payload* field is variable length, up to some negotiated maximum. If the length is not negotiated using LCP during line setup, a default length of 1500 bytes is used. Padding may follow the payload if it is needed.

After the *Payload* field comes the *Checksum* field, which is normally 2 bytes, but a 4-byte checksum can be negotiated. The 4-byte checksum is in fact the same 32-bit CRC whose generator polynomial is given at the end of Sec. 3.2.2. The 2-byte checksum is also an industry-standard CRC.

PPP is a framing mechanism that can carry the packets of multiple protocols over many types of physical layers. To use PPP over SONET, the choices to make are spelled out in RFC 2615 (Malis and Simpson, 1999). A 4-byte checksum is used, since this is the primary means of detecting transmission errors over the physical, link, and network layers. It is recommended that the *Address*, *Control*, and *Protocol* fields not be compressed, since SONET links already run at relatively high rates.

There is also one unusual feature. The PPP payload is scrambled (as described in Sec. 2.4.3) before it is inserted into the SONET payload. Scrambling XORs the payload with a long pseudorandom sequence before it is transmitted. The issue is that the SONET bitstream needs frequent bit transitions for synchronization. These transitions come naturally with the variation in voice signals, but in data communication the user chooses the information that is sent and might send a packet with a long run of 0s. With scrambling, the likelihood of a user being able to cause problems by sending a long run of 0s is made extremely low.

Before PPP frames can be carried over SONET lines, the PPP link must be established and configured. The phases that the link goes through when it is brought up, used, and taken down again are shown in Fig. 3-25.

The link starts in the *DEAD* state, which means that there is no connection at the physical layer. When a physical layer connection is established, the link moves to *ESTABLISH*. At this point, the PPP peers exchange a series of LCP packets, each carried in the *Payload* field of a PPP frame, to select the PPP options for the link from the possibilities mentioned above. The initiating peer proposes options,

Figure 3-25. State diagram for bringing a PPP link up and down.

and the responding peer either accepts or rejects them, in whole or part. The responder can also make alternative proposals.

If LCP option negotiation is successful, the link reaches the *AUTHENTICATE* state. Now the two parties can check each other's identities, if desired. If authentication is successful, the *NETWORK* state is entered and a series of NCP packets are sent to configure the network layer. It is difficult to generalize about the NCP protocols because each one is specific to some network layer protocol and allows configuration requests to be made that are specific to that protocol. For IP, for example, the assignment of IP addresses to both ends of the link is the most important possibility.

Once *OPEN* is reached, data transport can take place. It is in this state that IP packets are carried in PPP frames across the SONET line. When data transport is finished, the link moves into the *TERMINATE* state, and from there it moves back to the *DEAD* state when the physical layer connection is dropped.

3.5.2 ADSL (Asymmetric Digital Subscriber Loop)

ADSL connects millions of home subscribers to the Internet at megabit/sec rates over the same telephone local loop that is used for plain old telephone service. In Sec. 2.5.2, we described how a device called a DSL modem is added on the home side. It sends bits over the local loop to a device called a DSLAM (DSL Access Multiplexer), pronounced "dee-slam," in the telephone company's local office. Now we will explore in more detail how packets are carried over ADSL links.

The overall picture for the protocols and devices used with ADSL is shown in Fig. 3-26. Different protocols are deployed in different networks, so we have

chosen to show the most popular scenario. Inside the home, a computer such as a PC sends IP packets to the DSL modem using a link layer like Ethernet. The DSL modem then sends the IP packets over the local loop to the DSLAM using the protocols that we are about to study. At the DSLAM (or a router connected to it depending on the implementation) the IP packets are extracted and enter an ISP network so that they may reach any destination on the Internet.

Figure 3-26. ADSL protocol stacks.

The protocols shown over the ADSL link in Fig. 3-26 start at the bottom with the ADSL physical layer. They are based on a digital modulation scheme called orthogonal frequency division multiplexing (also known as discrete multitone), as we saw in Sec 2.5.2. Near the top of the stack, just below the IP network layer, is PPP. This protocol is the same PPP that we have just studied for packet over SONET transports. It works in the same way to establish and configure the link and carry IP packets.

In between ADSL and PPP are ATM and AAL5. These are new protocols that we have not seen before. **ATM** (**Asynchronous Transfer Mode**) was designed in the early 1990s and launched with incredible hype. It promised a network technology that would solve the world's telecommunications problems by merging voice, data, cable television, telegraph, carrier pigeon, tin cans connected by strings, and everything else into a single integrated system that could do everything for everyone. This did not happen. In large part, the problems of ATM were similar to those we described concerning the OSI protocols, that is, bad timing, technology, implementation, and politics. Nevertheless, ATM was at least much more successful than OSI. While it has not taken over the world, it remains widely used in niches including some broadband access lines such as DSL, and especially on WAN links inside telephone networks.

ATM is a link layer that is based on the transmission of fixed-length **cells** of information. The "Asynchronous" in its name means that the cells do not always need to be sent in the way that bits are continuously sent over synchronous lines, as in SONET. Cells only need to be sent when there is information to carry. ATM is a connection-oriented technology. Each cell carries a **virtual circuit** identifier in

its header and devices use this identifier to forward cells along the paths of established connections.

The cells are each 53 bytes long, consisting of a 48-byte payload plus a 5-byte header. By using small cells, ATM can flexibly divide the bandwidth of a physical layer link among different users in fine slices. This ability is useful when, for example, sending both voice and data over one link without having long data packets that would cause large variations in the delay of the voice samples. The unusual choice for the cell length (e.g., compared to the more natural choice of a power of 2) is an indication of just how political the design of ATM was. The 48-byte size for the payload was a compromise to resolve a deadlock between Europe, which wanted 32-byte cells, and the U.S., which wanted 64-byte cells. A brief overview of ATM is given by Siu and Jain (1995).

To send data over an ATM network, it needs to be mapped into a sequence of cells. This mapping is done with an ATM adaptation layer in a process called segmentation and reassembly. Several adaptation layers have been defined for different services, ranging from periodic voice samples to packet data. The main one used for packet data is **AAL5** (**ATM Adaptation Layer 5**).

An AAL5 frame is shown in Fig. 3-27. Instead of a header, it has a trailer that gives the length and has a 4-byte CRC for error detection. Naturally, the CRC is the same one used for PPP and IEEE 802 LANs like Ethernet. Wang and Crowcroft (1992) have shown that it is strong enough to detect nontraditional errors such as cell reordering. As well as a payload, the AAL5 frame has padding. This rounds out the overall length to be a multiple of 48 bytes so that the frame can be evenly divided into cells. No addresses are needed on the frame as the virtual circuit identifier carried in each cell will get it to the right destination.

Figure 3-27. AAL5 frame carrying PPP data.

Now that we have described ATM, we have only to describe how PPP makes use of ATM in the case of ADSL. It is done with yet another standard called **PPPoA** (**PPP over ATM**). This standard is not really a protocol (so it does not appear in Fig. 3-26) but more a specification of how to work with both PPP and AAL5 frames. It is described in RFC 2364 (Gross et al., 1998).

Only the PPP protocol and payload fields are placed in the AAL5 payload, as shown in Fig. 3-27. The protocol field indicates to the DSLAM at the far end whether the payload is an IP packet or a packet from another protocol such as LCP. The far end knows that the cells contain PPP information because an ATM virtual circuit is set up for this purpose.

Within the AAL5 frame, PPP framing is not needed as it would serve no purpose; ATM and AAL5 already provide the framing. More framing would be worthless. The PPP CRC is also not needed because AAL5 already includes the very same CRC. This error detection mechanism supplements the ADSL physical layer coding of a Reed-Solomon code for error correction and a 1-byte CRC for the detection of any remaining errors not otherwise caught. This scheme has a much more sophisticated error-recovery mechanism than when packets are sent over a SONET line because ADSL is a much noisier channel.

3.5.3 Data Over Cable Service Interface Specification (DOCSIS)

The DOCSIS (Data Over Cable Service Interface Specification) protocol is generally described as having two components: the physical (PHY) layer, as described in the previous chapter (sometimes called the PMD or physical media dependent sublayer), and the Media Access Control (MAC) layer, which we will cover in more detail in Chapter 4. Above the physical layer, DOCSIS must handle a variety of tasks for the network layer, including bandwidth allocation in the upstream and downstream direction (flow control), framing, and error correction (sometimes error correction is viewed as a physical layer construct, of course). We have described each of these concepts earlier in this chapter. In this section, we explore how DOCSIS addresses each of these problems.

A DOCSIS frame contains various information including quality of service indicators and support for fragmentation or concatenation of frames. Each unidirectional sequence of frames is called a service flow. The primary service flows allow the CMTS (Cable Modern Termination System in the cable company's office) to communicate management messages to each cable modem. Each service flow has a unique identifier and is often associated with a service class, which may be best effort, polling (whereby a cable modern makes explicit requests for bandwidth), and grant service (whereby a cable modern transmits bursts of data at a guaranteed data date). A primary service flow is the default service flow that carries all frames that are not classified to another service. In the many broadband service configurations, there is only a default upstream and default downstream service flow between the CM and CMTS that carries all user traffic as well as all management messages. DOCSIS networks have historically been designed assuming that most data is transmitted in the downstream direction. Certain applications, such as video conferencing, run counter to these trends, although recently announced cloud-gaming services (e.g., Stadia, GeForce Now, xCloud) may result in even more downstream utilization, as these applications are targeting continuous streaming rates of 30–35 Mbps.

Once a cable modem has been powered on, it establishes a connection to the the CMTS, which typically allows it to connect to the rest of the network. When it registers with the CMTS, it acquires upstream and downstream communication channels to use, as well as encryption keys from the CMTS. The upstream and

downstream carriers provide two shared channels for all cable modems. In the downstream direction, all cable modems connected to the CMTS receive every packet transmitted. In the upstream direction, many cable modems transmit, and the CMTS is the single receiver. There can be multiple physical paths between the CMTS and each cable modem.

Prior to DOCSIS 3.1, packets in the downstream direction were divided into 188-byte MPEG frames, each with a 4-byte header and a 184-byte payload (the so-called MPEG transmission convergence layer). In addition to the data itself, the CMTS periodically sends management information to the cable modem, which includes information about ranging, channel assignment, and other tasks related to channel allocation that are performed by the MAC layer (which we will cover in more detail in Chapter 4). Although DOCSIS 3.1 still supports this convergence layer for legacy purposes, it no longer relies on it for downstream communication.

The DOCSIS link layer organizes transmission according to modulation profiles. A modulation profile is a list of modulation orders (i.e., bit-loadings) that correspond to the OFDM subcarriers. In the downstream direction, the CMTS may use different profiles for different cable modems, but typically, a group of cable modems that have the same or similar performance will be grouped into the same profile. Based on the service flow identification and QoS parameters, the link layer (in DOCSIS 3.1), now called the **convergence layer**, groups packets that have the same profile into the same send buffer; typically there is one send buffer per profile, each of which is shallow so as to avoid significant latency. The codeword builder then maps each DOCSIS frame to the corresponding FEC codewords, pulling packets from different profile buffers only at each codeword boundary. FEC encoding views the DOCSIS frame as a bit stream, not as a sequence of bytes. DOCSIS relies on an LDPC codeword. In the downstream direction, a full codeword has up to 2027 bytes, of which up to 1799 bytes are data and 225 are parity. Within each byte of a DOCSIS frame, the least significant bit is transferred first; when a value that is more than one byte is transmitted, the bytes are ordered from most significant to least significant, an order sometimes called network order. The CMTS also adopts byte stuffing: if no DOCSIS frame is available in the downstream direction, the CMTS inserts zero-bit-filled subcarriers into OFDM symbols, or simply stuffs sequences of 1s into codewords, as shown in Fig. 3-28.

Since version 3.0, DOCSIS has supported a technology called **channel bonding**, which allows a single subscriber to use multiple upstream and downstream channels simultaneously. This technology is a form of **link aggregation**, which may combine multiple physical links or ports to create a single logical connection. DOCSIS 3.0 allows up to 32 downstream channels and 8 upstream channels to be bonded, where each channel may be 6–8 MHz wide. Channel bonding in DOCSIS 3.1 is the same as it was in DOCSIS 3.0, although DOCSIS 3.1 supports wider upstream and downstream channels: difference is that the upstream and downstream channels can be much wider (up to 192 MHz in downstream, 96 MHz in upstream, as compared to 6 or 8 MHz downstream and up to 6.4 MHz upstream in

Figure 3-28. DOCSIS Frame to codeword mapping.

DOCSIS 3.0). On the other hand, a DOCSIS 3.1 modem can bond across channels of multiple types (e.g., a DOCSIS 3.1 modem could bond one 192 MHz OFDM channel and four 6-MHZ SC-QAM channels).

3.6 SUMMARY

The task of the data link layer is to convert the raw bit stream offered by the physical layer into a stream of frames for use by the network layer. The link layer can present this stream with varying levels of reliability, ranging from connectionless, unacknowledged service to reliable, connection-oriented service.

Various framing methods are used, including byte count, byte stuffing, and bit stuffing. Data link protocols can provide error control to detect or correct damaged frames and to retransmit lost frames. To prevent a fast sender from overrunning a slow receiver, the data link protocol can also provide flow control. The sliding window mechanism is widely used to integrate error control and flow control in a simple way. When the window size is 1 packet, the protocol is stop-and-wait.

Codes for error correction and detection add redundant information to messages by using a variety of mathematical techniques. Convolutional codes and Reed-Solomon codes are widely deployed for error correction, with low-density parity check codes increasing in popularity. The codes for error detection that are used in practice include cyclic redundancy checks and checksums. All these codes can be applied at the link layer, as well as at the physical layer and higher layers.

We examined a series of protocols that provide a reliable link layer using acknowledgements and retransmissions, or ARQ (Automatic Repeat reQuest), under more realistic assumptions. Starting from an error-free environment in which the receiver can handle any frame sent to it, we introduced flow control, followed by error control with sequence numbers and the stop-and-wait algorithm. Then we used the sliding window algorithm to allow bidirectional communication and introduce the concept of piggybacking. The last two protocols pipeline the transmission of multiple frames to prevent the sender from blocking on a link with a long

propagation delay. The receiver can either discard all frames other than the next one in sequence, or buffer out-of-order frames and send negative acknowledgements for greater bandwidth efficiency. The former strategy is a go-back-n protocol, and the latter strategy is a selective repeat protocol.

The Internet uses PPP as the main data link protocol over point-to-point lines. It provides a connectionless unacknowledged service, using flag bytes to delimit frames and a CRC for error detection. It is used to carry packets across a range of links, including SONET links in wide area networks and ADSL links for the home. DOCSIS is used when Internet service is provided over the existing cable TV network.

PROBLEMS

- 1. Ethernet uses a preamble in combination with a byte count to separate the frames. What happens if a user tries to send data that contains this preamble?
- 2. The following character encoding is used in a data link protocol: A: 01000111 B: 11100011 FLAG: 01111110 ESC: 11100000 Show the bit sequence transmitted (in binary) for the four-character frame A B ESC FLAG when each of the following framing methods is used:
 - (a) Byte count.
 - (b) Flag bytes with byte stuffing.
 - (c) Starting and ending flag bytes with bit stuffing.
- **3.** The following data fragment occurs in the middle of a data stream for which the byte-stuffing algorithm described in the text is used: A B ESC C ESC FLAG FLAG D. What is the output after stuffing?
- **4.** What is the maximum overhead in byte-stuffing algorithm?
- **5.** You receive the following data fragment: A ESC FLAG A B A FLAG FLAG C B ESC FLAG ESC ESC FLAG FLAG. You know that the protocol uses byte stuffing. Show the contents of each frame after destuffing.
- **6.** You receive the following data fragment: 0110 0111 1100 1111 0111 1101. You know that the protocol uses bit stuffing. Show the data after destuffing.
- 7. One of your classmates, Scrooge, has pointed out that it is wasteful to end each frame with a flag byte and then begin the next one with a second flag byte. One flag byte could do the job as well, and a byte saved is a byte earned. Do you agree?
- **8.** A bit string, 01111011111101111110, needs to be transmitted at the data link layer. What is the string actually transmitted after bit stuffing?
- **9.** An upper-layer packet is split into 10 frames, each of which has an 80% chance of arriving undamaged. If no error control is done by the data link protocol, how many times must the message be sent on average to get the entire thing through?

- 10. Can you think of any circumstances under which an open-loop protocol (e.g., a Hamming code) might be preferable to the feedback-type protocols discussed throughout this chapter?
- 11. To provide more reliability than a single parity bit can give, an error-detecting coding scheme uses one parity bit for checking all the odd-numbered bits and a second parity bit for all the even-numbered bits. What is the Hamming distance of this code?
- 12. Sixteen-bit messages are transmitted using a Hamming code. How many check bits are needed to ensure that the receiver can detect and correct single-bit errors? Show the bit pattern transmitted for the message 1101001100110101. Assume that even parity is used in the Hamming code.
- **13.** An 8-bit byte with binary value 10101111 is to be encoded using an even-parity Hamming code. What is the binary value after encoding?
- **14.** A 12-bit Hamming code whose hexadecimal value is 0xE4F arrives at a receiver. What was the original value in hexadecimal? Assume that not more than 1 bit is in error.
- **15.** One way of detecting errors is to transmit data as a block of *n* rows of *k* bits per row and add parity bits to each row and each column. The bit in the lower-right corner is a parity bit that checks its row and its column. Will this scheme detect all single errors? Double errors? Triple errors? Show that this scheme cannot detect some four-bit errors.
- 16. Suppose that data are transmitted in blocks of 1000 bits. What is the maximum error rate under which error detection and retransmission mechanism (1 parity bit per block) is better than using Hamming code? Assume that bit errors are independent of one another and no bit error occurs during retransmission.
- **17.** A block of bits with *n* rows and *k* columns uses horizontal and vertical parity bits for error detection. Suppose that exactly 4 bits are inverted due to transmission errors. Derive an expression for the probability that the error will be undetected.
- **18.** Using the convolutional coder of Fig. 3-7, what is the output sequence when the input sequence is 10101010 (left to right) and the internal state is initially all zero?
- **19.** Suppose that a message 1001 1100 1010 0011 is transmitted using the Internet Checksum (4-bit word). What is the value of the checksum?
- **20.** What is the remainder obtained by dividing $x^7 + x^5 + 1$ by the generator polynomial $x^3 + 1$?
- 21. A bit stream 10011101 is transmitted using the standard CRC method described in the text. The generator polynomial is $x^3 + 1$. Show the actual bit string transmitted. Suppose that the third bit from the left is inverted during transmission. Show that this error is detected at the receiver's end. Give an example of bit errors in the bit string transmitted that will not be detected by the receiver.
- 22. A 1024-bit message is sent that contains 992 data bits and 32 CRC bits. CRC is computed using the IEEE 802 standardized, 32-degree CRC polynomial. For each of the following, explain whether the errors during message transmission will be detected by the receiver:
 - (a) There was a single-bit error.

- (b) There were two isolated bit errors.
- (c) There were 18 isolated bit errors.
- (d) There were 47 isolated bit errors.
- (e) There was a 24-bit long burst error.
- (f) There was a 35-bit long burst error.
- 23. In the discussion of ARQ protocol in Section 3.3.3, a scenario was outlined that resulted in the receiver accepting two copies of the same frame due to a loss of acknowledgement frame. Is it possible that a receiver may accept multiple copies of the same frame when none of the frames (message or acknowledgement) are lost?
- **24.** A channel has a bit rate of 4 kbps and a propagation delay of 20 msec. For what range of frame sizes does stop-and-wait give an efficiency of at least 50%?
- **25.** In protocol 3, is it possible for the sender to start the timer when it is already running? If so, how might this occur? If not, why is it impossible?
- **26.** A 3000-km-long T1 trunk is used to transmit 64-byte frames using protocol 5. If the propagation speed is 6 µsec/km, how many bits should the sequence numbers be?
- 27. Imagine a sliding window protocol using so many bits for sequence numbers that wraparound never occurs. What relations must hold among the four window edges and the window size, which is constant and the same for both the sender and the receiver?
- **28.** If the procedure *between* in protocol 5 checked for the condition $a \le b \le c$ instead of the condition $a \le b < c$, would that have any effect on the protocol's correctness or efficiency? Explain your answer.
- **29.** In protocol 6, when a data frame arrives, a check is made to see if the sequence number differs from the one expected and *no_nak* is true. If both conditions hold, a NAK is sent. Otherwise, the auxiliary timer is started. Suppose that the else clause were omitted. Would this change affect the protocol's correctness?
- **30.** Suppose that the three-statement while loop near the end of protocol 6 was removed from the code. Would this affect the correctness of the protocol or just the performance? Explain your answer.
- **31.** The distance from earth to a distant planet is approximately 9×10^{10} m. What is the channel utilization if a stop-and-wait protocol is used for frame transmission on a 64 Mbps point-to-point link? Assume that the frame size is 32 KB and the speed of light is 3×10^8 m/s.
- **32.** In the previous problem, suppose a sliding window protocol is used instead. For what send window size will the link utilization be 100%? You may ignore the protocol processing times at the sender and the receiver.
- **33.** In protocol 6, the code for *frame_arrival* has a section used for NAKs. This section is invoked if the incoming frame is a NAK and another condition is met. Give a scenario where the presence of this other condition is essential.
- **34.** Consider the operation of protocol 6 over a 1-Mbps error-free line. The maximum frame size is 1000 bits. New packets are generated 1 second apart. The timeout interval is 10 msec. If the special acknowledgement timer were eliminated, unnecessary timeouts would occur. How many times would the average message be transmitted?

- **35.** In protocol 6, $MAX_SEQ = 2^n 1$. While this condition is obviously desirable to make efficient use of header bits, we have not demonstrated that it is essential. Does the protocol work correctly for $MAX_SEQ = 4$, for example?
- **36.** Frames of 1000 bits are sent over a 1-Mbps channel using a geostationary satellite whose propagation time from the earth is 270 msec. Acknowledgements are always piggybacked onto data frames. The headers are very short. Three-bit sequence numbers are used. What is the maximum achievable channel utilization for
 - (a) Stop-and-wait?
 - (b) Protocol 5?
 - (c) Protocol 6?
- **37.** Consider a protocol that uses piggybacking, a sending window size of 4, and 400-bit frames. This protocol is used to transfer data over a 200 kbps channel with a 4 msec one-way propagation delay. Unfortunately, the receiver has no data to send back. It needs to send its acknowledgements in separate frames. What is the maximum amount of time the receiver can wait before sending, such that the bandwidth efficiency does not drop below 50%?
- **38.** Compute the fraction of the bandwidth that is wasted on overhead (headers and retransmissions) for protocol 6 on a heavily loaded 50-kbps satellite channel with data frames consisting of 40 header and 3960 data bits. Assume that the signal propagation time from the earth to the satellite is 270 msec. ACK frames never occur. NAK frames are 40 bits. The error rate for data frames is 1%, and the error rate for NAK frames is negligible. The sequence numbers are 8 bits.
- **39.** Consider an error-free 64-kbps satellite channel used to send 512-byte data frames in one direction, with very short acknowledgements coming back the other way. What is the maximum throughput for window sizes of 1, 7, 15, and 127? The earth-satellite propagation time is 270 msec.
- **40.** A 100-km-long cable runs at the T1 data rate. The propagation speed in the cable is 2/3 the speed of light in vacuum. How many bits fit in the cable?
- **41.** Give at least one reason why PPP uses byte stuffing instead of bit stuffing to prevent accidental flag bytes within the payload from causing confusion.
- **42.** What is the minimum overhead to send an IP packet using PPP? Count only the overhead introduced by PPP itself, not the IP header overhead. What is the maximum overhead?
- **43.** A 100-byte IP packet is transmitted over a local loop using ADSL protocol stack. How many ATM cells will be transmitted? Briefly describe their contents.
- **44.** The goal of this lab exercise is to implement an error-detection mechanism using the standard CRC algorithm described in the text. Write two programs, *generator* and *verifier*. The *generator* program reads from standard input a line of ASCII text containing an *n*-bit message consisting of a string of 0s and 1s. The second line is the *k*-bit polynomial, also in ASCII. It outputs to standard output a line of ASCII text with n + k 0s and 1s representing the message to be transmitted. Then it outputs the polynomial, just as it read it in. The verifier program reads in the output of the generator

program and outputs a message indicating whether it is correct or not. Finally, write a program, *alter*, that inverts 1 bit on the first line depending on its argument (the bit number counting the leftmost bit as 1) but copies the rest of the two lines correctly. By typing

generator <file | verifier

you should see that the message is correct, but by typing

generator <file | alter arg | verifier

you should get the error message.