Learning Objectives:

- 1. Calculate the orthogonal projection of a vector onto a subspace.
- 2. Interpret the orthogonal projection geometrically.

1 Orthogonal projections to lines

Example 1. Suppose we are given two vectors \mathbf{u} and \mathbf{y} . The orthogonal projection of \mathbf{y} onto \mathbf{u} is the vector $\hat{\mathbf{y}}$ that is the "shadow" of \mathbf{y} cast down in the direction of \mathbf{u} .

To make this more rigorous, the picture below shows the essential ideas: starting with \mathbf{u} and \mathbf{y} , if we drop a line segment from the tip of \mathbf{y} perpendicular to \mathbf{u} then we get the projection $\hat{\mathbf{y}}$. The vector \mathbf{z} is the same as the perpendicular dotted line (just translated).

So, we have

$$y = \hat{y} + z$$

where $\hat{\mathbf{y}}$ is some scalar multiple of \mathbf{u} and \mathbf{z} and $\hat{\mathbf{y}}$ are orthogonal. Is there a nice formula for these different vectors? Yes!

Remark: The orthogonal projection of \mathbf{y} onto \mathbf{u} can be interpreted in the following equivalent way. Let $L = \text{span}\{\mathbf{u}\}$. That is, L is the line spanned by \mathbf{u} . Then $\hat{\mathbf{y}}$ is the point on the line L that is closest to $\hat{\mathbf{y}}$. Some people use the notation $\text{proj}_L(\mathbf{y})$ for this, so we have

$$\hat{\mathbf{y}} = \operatorname{proj}_L(\mathbf{y}).$$

Also, notice that since **z** is perpendicular to L, it must be in the orthogonal complement, L^{\perp} .

Example 2. Find a formula for $\hat{\mathbf{y}}$ from the example above.

Solution. From our picture we want $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some value of α . To determine the value of α we need, take the dot product of both sides of the equation with \mathbf{u} . Then

$$\mathbf{y} \cdot \mathbf{u} = \alpha \mathbf{u} \cdot \mathbf{u} + \mathbf{z} \cdot \mathbf{u}.$$

From the above, we also want \mathbf{z} to be perpendicular to \mathbf{u} so we must have $\mathbf{z} \cdot \mathbf{u} = 0$! Thus we can solve our equation for α :

 $\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}.$

That is, we have determined a formula for the projection. The **orthogonal projection** of y onto the vector u is given by

 $\mathbf{\hat{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$

Once we know $\hat{\mathbf{y}}$ then the orthogonal component is easy to compute:

$$\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$$

Take-away: Given vectors \mathbf{y} and \mathbf{u} , the projection of \mathbf{y} onto \mathbf{u} is the point on the line spanned by \mathbf{u} , called L, that is closest to \mathbf{y} . We have

$$\hat{\mathbf{y}} = \operatorname{proj}_L(\mathbf{y}) = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u},$$

and the orthogonal component \mathbf{z} is $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

Example 3. Let $\mathbf{y} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ and $\mathbf{u} = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$. Compute the orthogonal projection of \mathbf{y} onto \mathbf{u} . In addition, compute the distance from \mathbf{y} to the line spanned by \mathbf{u} .

Solution. From the formulas above, the orthogonal projection is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{30}{100} \mathbf{u} = \frac{3}{10} \begin{pmatrix} 8 \\ 6 \end{pmatrix} = \begin{pmatrix} 12/5 \\ 9/5 \end{pmatrix}.$$

The distance from y to the line spanned by u can be found by first finding the orthogonal vector

$$\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 12/5 \\ 9/5 \end{pmatrix} = \begin{pmatrix} 3/5 \\ -4/5 \end{pmatrix}.$$

The distance between y and the line spanned by u is simply the length of this vector z:

$$\|\mathbf{z}\| = \sqrt{(3/5)^2 + (-4/5)^2} = \sqrt{1} = 1.$$

Example 4. Let $\mathbf{y} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$ and $\mathbf{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$. Find the projection of \mathbf{y} onto \mathbf{u} and the orthogonal component $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

Solution.

$$\hat{y} = \frac{y \cdot u}{u \cdot u} u = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

and the component of y orthogonal to u is

$$y - \hat{y} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}.$$

2 Orthogonal projection to more general subspaces

Our previous discussion can generalize quite nicely to other subspaces!

Example 5. Suppose that W is a plane in \mathbb{R}^3 spanned by the orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$. If $\mathbf{y} \in \mathbb{R}^3$, then write the orthogonal projection of \mathbf{y} onto the space W.

Solution. Since the basis is orthogonal, we can write a representation of $\hat{\mathbf{y}}$ easily:

$$\hat{\mathbf{y}} = \operatorname{proj}_W(\mathbf{y}) = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2.$$

As before, this points to the point on the plane closest to the vector y. Then

$$\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} \in W^{\perp}.$$

As before, $\|\mathbf{z}\|$ is the distance from \mathbf{y} to W.

Theorem: (The Orthogonal Decomposition Theorem) Let W be a subspace of \mathbb{R}^n . Then each $y \in \mathbb{R}^n$ can be written

$$y = \hat{y} + z$$

where $\hat{y} \in W$ and $z \in W^{\perp}$. In fact, letting $\{u_1, \ldots, u_p\}$ be any orthogonal basis of W then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p,$$

and $z = y - \hat{y}$.

Example 6. Let $\mathbf{u}_1 = \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Then, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set. Letting $W = \mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$, find the distance from \mathbf{y} to W.

Solution. The orthogonal projection of y onto W is

$$proj_W(y) = \frac{9}{30}u_1 + \frac{15}{30}u_2 = \begin{pmatrix} -2/5\\2\\1/5 \end{pmatrix}.$$

Then the component of y orthogonal to W is

$$y - proj_W(y) = \begin{pmatrix} 7/5 \\ 0 \\ 14/5 \end{pmatrix}.$$

So the distance is

$$||y - proj_W(y)|| = \sqrt{49/25 + 196/25} = \sqrt{245/25} = \sqrt{49/5}.$$

Example 7. T/F: If W has orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ and \mathbf{z} is orthogonal to both \mathbf{u}_1 and \mathbf{u}_2 , then $\mathbf{z} \in W^{\perp}$.

Example 8. Confirm that if $W \subseteq \mathbb{R}^n$ has orthogonal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ and $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ with $\hat{\mathbf{y}} \in W$ the orthogonal projection, then $\mathbf{z} \in W^{\perp}$.

Solution. Since $\hat{\mathbf{y}} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$ we can compute

$$(y - \hat{y}) \cdot u_i = 0$$

for each i. Thus **z** is orthogonal to each basis vector of W and thus is in W^{\perp} .