(Shotgun) sequencing

Titus Brown

Three basic problems

Resequencing, counting, and assembly.

1. Resequencing analysis

We know a reference genome, and want to find variants (blue) in a background of errors (red)

2. Counting

We have a reference genome (or gene set) and want to know how *much* we have. Think gene expression/microarrays.

3. Assembly

We don't have a genome or any reference, and we want to construct one.

(This is how all new genomes are sequenced.)

Outline

- Shotgun sequencing
- The magic of polonies, and how Illumina sequencing works
- Sequencing depth, read length, and coverage
- Paired-end sequencing and insert sizes
- Coverage bias
- Long reads: PacBio and Nanopore sequencing

Shotgun sequencing

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness

It was the best of times, it was the wor , it was the worst of times, it was the isdom, it was the age of foolishness mes, it was the age of wisdom, it was th

Ion Torrent

0

1e8 wells

Each one is a mini pH meter

Add A

Did H get released for this well?

— Yes? Then next base was A. -A

-AC

-ACG

~ 6 hrs for sample prep plus run => data \$500 or so.

Two specific concepts:

- First, sequencing everything **at random** is very much easier than sequencing a specific gene region. (For example, it will soon be easier and cheaper to shotgun-sequence all of *E. coli* then it is to get a single good plasmid sequence.)
- Second, if you are sequencing on a 2-D substrate (wells, or surfaces, or whatnot) then any increase in density (smaller wells, or better imaging) leads to a squared increase in the number of sequences yielded.

Random sampling => deep sampling needed

Typically 10-100x needed for robust recovery (300 Gbp for human)

"Coverage"

Genome (unknown)

Reads

Reads (randomly chosen; have errors)

"Coverage" is simply the average number of reads that overlap each true base in genome.

Here, the coverage is ~10 – just draw a line straight down from the top through all of the reads.

Illumina yields the *deepest* sequencing available

- MiSeq
 - 30 million reads per run
 - 300 base paired-end reads
- HiSeq 2500 RR/X 10
 - 6 billion reads per run
 - 150 base paired-end reads
- PacBio
 - 44,000 reads per run
 - 8500 bp in length

http://flxlexblog.wordpress.com/2014/06/11/developments-in-next-generation-sequencing-june-2014-edition/

Illumina basics

(See http://seqanswers.com/forums/showthread.php?t=21 for details)

Bridge amplification and Sequencing-by-synthesis

http://ted.bti.cornell.edu/cgi-bin/epigenome/method-1.cgi

A movie of Illumina sequencing:

https://www.youtube.com/watch?v=tuD-ST5B3QA#t=61

What goes wrong with basic assumptions?

- Not all sequence is as easily sequenced as other, depending on your sequencing technology (e.g. GC/AT bias);
- Some RNA not be as accessible as others (secondary structure);

FASTQ

- @895:1:1:1246:14654/1
- CAGGCGCCCACCACCGTGCCCTCCAACCTGATGGT
- +
-][aaX__aa[`ZUZ[NONNFNNNNNO____^RQ_
- @895:1:1:1246:14654/2
- ACTGGGCGTAGACGGTGTCCTCATCGGCACCAGC
- +
- \UJUWSSV[JQQWNP]]SZ]ZWU^]ZX][^TXR`
- @895:1:1:1252:19493/1
- CCGGCGTGGTTGGTGAGGTCACTGAGCTTCATGTC
- +
- OOOKONNNNN__`R]O[TGTRSY[IUZ]]]__X__

Read length and reconstructability

Figure 3. Percentage of the *E.coli* genome covered by contigs greater than a threshold length as a function of read length.

"Reconstructability"

 Assembling new genomes or transcriptomes...

 Haplotyping - think human genetics & viruses, both.

Repeats! (and shared exons)

Longer reads ... OR ... Paired-end/mate pair sequencing

Paired-end sequencing

http://vallandingham.me/RNA_seq_differential_expression.html

Mate Pair library preparation is designed to generate short fragments that consist of two segments that originally had a separation of several kilobases in the genome. Fragments of sample genomic DNA are end-biotinylated to tag the eventual mate pair segments.

Self-circularization and refragmentation of these large fragments generates a population of small fragments, some of which contain both mate pair segments with no intervening sequence. These Mate Pair fragments are enriched using their biotin tag. Mate Pairs are sequenced using a similar two-adapter strategy as described for paired-end sequencing.

Mate-pair sequencing (long insert)

Longer reads

- PacBio
- Moleculo
- Nanopore

Moleculo (Illumina)

http://labs.mcb.harvard.edu/branton/projects-NanoporeSequencing.htm

Actual yields

- MiSeq
 - 30 million reads per run
 - 300 base paired-end reads
- HiSeq 2500 RR/X 10
 - 6 billion reads per run
 - 150 base paired-end reads
- PacBio
 - 44,000 reads per run
 - 8500 bp in length

http://flxlexblog.wordpress.com/2014/06/11/developments-in-next-generation-sequencing-june-2014-edition/

Your basic data (FASTQ)

- @895:1:1:1246:14654/1
- CAGGCGCCCACCACCGTGCCCTCCAACCTGATGGT
- +
-][aaX__aa[`ZUZ[NONNFNNNNNO____^RQ_
- @895:1:1:1246:14654/2
- ACTGGGCGTAGACGGTGTCCTCATCGGCACCAGC
- +
- \UJUWSSV[JQQWNP]]SZ]ZWU^]ZX][^TXR`
- @895:1:1:1252:19493/1
- CCGGCGTGGTTGGTGAGGTCACTGAGCTTCATGTC
- +
- OOOKONNNNN__`R]O[TGTRSY[IUZ]]]__X__

Mapping

U. Colorado http://genomics-course.jasondk.org/?p=395

- Many fast & efficient computational solutions exist.
- You have to figure out how to choose parameters to maximize sensitivity/specificity, and when to validate.

Assembly

Reassemble random fragments computationally.

UMD assembly primer (cbcb.umd.edu)

Shotgun sequencing

It was the best of times, it was the wor , it was the worst of times, it was the isdom, it was the age of foolishness mes, it was the age of wisdom, it was th

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness

Where does # of reads count?

Resequencing, counting, and assembly.

Where does reconstructability matter?

Resequencing, counting, and assembly.

Summary

- Coverage matters for SNP calls and assembly;
- # of reads matters for counting;
- Length of reads matters for reconstructability (assembly & haplotyping);
- Illumina is still "best" for high coverage;
- PacBio and Moleculo => genome assembly;
- Nanopore: still tricky but lots of progress being made.

Bad data

Lasked:

https://twitter.com/ctitusbrown/status/624721875252420608

I received:

- http://www.bioinfo-core.org/index.php/
 Interesting_NGS_failures
- http://bioinfo-core.org/index.php/
 9th Discussion-28 October 2010
- https://biomickwatson.wordpress.com/2013/01/21/tenthings-to-consider-when-choosing-an-ngs-supplier/

Sequencing Bloopers

Simon Andrews Tim Stevens

Technical sequencer problems

Manifold burst in cycle 26

Specific cycles lost

No priming /signal (Wrong adapters used)

Tile Problems - Overclustering

Tile Problems – Consistent tile fail

Tile problems – transient tile fail

Incorrect Phred Scores

"the NCBI SRA makes all its data available as standard Sanger FASTQ files (even if originally from a Solexa/Illumina machine)"

Nucleic Acids Res. 2010 Apr; 38(6): 1767-1771.

Found LOTS of examples of this in the SRA

Data Extraction

Wrong barcode annotation

Contaminated Barcode Stocks

Odd sequence composition

Read through adapter

Adapter dimer overload

Sequence	%	Possible Source
CCTAAGGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATTAAAAAAAA	9.42	Illumina Single End PCR Primer 1
TCAATGAAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATTAAAAAAAA	7.30	Illumina Single End PCR Primer 1
GAGACTCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATTAAAAAAAA	5.65	Illumina Single End PCR Primer 1

(Single-cell Hi-C)

Positional Sequence Bias Application Specific – BS-Seq

Positional Sequence Biases Expected - RRBS

Also reports of a 'Chinese CRO' whose RRBS libraries have the MspI sites missing due to their proprietary and unexplained pre-processing

Positional Sequence Biases Unavoidable – RNA-Seq

Positional Sequence Biases Unexpected – Doubled Adapters

Overrepresented Individual Sequences

- Adapter dimers
- rRNA
- Satellite sequences

My data doesn't map well...

Contaminated with guessable sequence

www.bioinformatics.babraham.ac.uk/projects/fastq_screen

Contaminated with guessable sequence

4

Yield (Gbases): 8.11

Sequences: 162,116,141 Sampled: 100,000

Reference ID	Species/Reference Genome	Aligned	Aligned %	Error rate	Assigned	Assigned %
Hsa.GRCh37	Homo sapiens (human)	91337	91.3%	0.28%	91337	91.3%
phix174	Phi X 174	4483	4.5%	0.15%	4483	4.5%
Ptr.CHIMP2	Pan troglodytes (chimpanzee)	86152	86.2%	1.21%	641	0.6%
Ggo.gorGor3	Gorilla gorilla	83354	83.4%	1.47%	104	0.1%
fungi.RefSeq	Fungi	3092	3.1%	4.17%	33	0.0%
Nle.Nleu1	Nomascus leucogenys (northern white cheeked gibbon)	67793	67.8%	2.40%	27	0.0%
Cja.calJac1	Callithrix jacchus (marmoset)	29717	29.7%	3.08%	7	0.0%
Mml.MMUL1	Macaca mulatta (macaque)	52073	52.1%	2.90%	6	0.0%
Hsa.NCBI36	Hsa.NCBI36	91106	91.1%	0.28%	5	0.0%
Cfa.BROADD2	Canis familiaris (dog)	3093	3.1%	3.95%	1	0.0%
Xtr.JGI4_1	Xenopus tropicalis (Western clawed frog)	4796	4.8%	3.81%		
Hsa.GRCh37.assembled	Hsa.GRCh37.assembled	91065	91.1%	0.29%		
Hsa.NCBI36.assembled	Hsa.NCBI36.assembled	90978	91.0%	0.29%		
Other	20 others				126	0.1%
Unmapped		3230	3.2%			
Adapter		0	0.0%			

Contamination with unguessable sequence

>AF431889 AF431889.1 Acinetobacter lwoffii type IIs modification

>AF431889 AF431889.1 Acinetobacter lwoffii type IIs modification

TAGC Plots

Assemble
Filter contigs
Plot %GC vs Coverage
Sample and blast

https://github.com/blaxterlab/blobology

Reagent contamination

Salter et al. BMC Biology 2014, 12:87 http://www.biomedcentral.com/1741-7007/12/87

RESEARCH ARTICLE

Open Access

Reagent and laboratory contamination can critically impact sequence-based microbiome analyses

Susannah J Salter^{1*}, Michael J Cox², Elena M Turek², Szymon T Calus³, William O Cookson², Miriam F Moffatt², Paul Turner^{4,5}, Julian Parkhill¹, Nicholas J Loman³ and Alan W Walker^{1,6*}

Molbio grade water is not the same as DNA free water – heat treated but DNA survives

Later this week ---

Many different approaches to evaluating quality/mismatches:

- Quality-score based (FastQC etc)
- Composition based (FastQC etc)
- 3. Reference based ("I know what the answer should look like")
- 4. Assembly-graph / k-mer based

Reference & quality-score independent approaches (k-mers)

...from a well known data set...

