Chemotactic Network Designing

Yichen Lu

May 24, 2025

Contents

1	Models	2
	1.1 Thinking Process	2
	1.2 Definitions	3
2	Continuum model	3
3	Behaviors	4

1 Models

1.1 Thinking Process

$$\dot{\mathbf{r}}_i(t) = \alpha_c \nabla c - \nabla_{\mathbf{r}_i} V + \sqrt{2D_p} \eta_i \tag{1a}$$

$$\dot{c}(\mathbf{r},t) = D_c \nabla^2 c - k_c c + \beta_c \sum_{j} \delta(\mathbf{r} - \mathbf{r}_j^*)$$
(1b)

for $i=1,2,\cdots,N$ and $j=1,2,\cdots,M$. Here, $\mathbf{r}_i,\mathbf{r}_j^*$ is the position of the *i*-th particle, *j*-th target node, respectively, c is the concentration of the chemical, $\alpha_c<0$ is the chemotactic sensitivity, V is the potential field of short-range repulsion, D_c is the diffusion coefficient, k_c is the decay rate of the chemical, and β_c is the production rate of the target nodes.

Figure 1: The simulation of the above model with $\alpha_c = -5$, $D_p = 0$, $D_c = 2$, $k_c = 0.001$ and $\beta_c = 0.3$. When the horizontal distance of nodes d_n is small, the nodes are connected by the particles. While, when d_n is large, the particles are not connected.

Add new chemical u to the model, which is produced by the particles and decays with time. The chemical u will also affect the movement of the particles.

$$\dot{\mathbf{r}}_i(t) = \alpha_u \nabla u + \alpha_c \nabla c - \nabla_{\mathbf{r}_i} V + \sqrt{2D_p} \eta_i$$
(2a)

$$\dot{u}(\mathbf{r},t) = D_u \nabla^2 c - k_u u + \beta_u \sum_{i} \delta(\mathbf{r} - \mathbf{r}_i)$$
(2b)

$$\dot{c}(\mathbf{r},t) = D_c \nabla^2 c - k_c c + \beta_c \sum_{j} \delta\left(\mathbf{r} - \mathbf{r}_{j}^*\right)$$
 (2c)

New ideas:

- Reverse density production: too high density of particles will lead to the decrease of the production rate of the chemical.
- Nonlinear coupling and decay: the chemical u will decay when c is too high (almost useless).

$$\dot{u}(\mathbf{r},t) = D_u \nabla^2 c - (k_u + \gamma c) u + \beta_u \frac{c}{K_1 + c} \cdot \frac{K_2}{K_2 + c} \sum_i \delta(\mathbf{r} - \mathbf{r}_i)$$
(3)

1.2 Definitions

$$\dot{\mathbf{r}}_i(t) = \alpha_u \nabla u + \alpha_v \nabla v - \nabla_{\mathbf{r}_i} V + \sqrt{2D_p} \eta_i \tag{4a}$$

$$\dot{u}(\mathbf{r},t) = D_u \nabla^2 u - uv^2 + k_f (1 - u) + k_u \sum_{i} \delta(\mathbf{r} - \mathbf{r}_i) + \beta_u \sum_{i} \delta(\mathbf{r} - \mathbf{r}_i^*)$$
(4b)

$$\dot{v}(\mathbf{r},t) = D_v \nabla^2 v + uv^2 - k_d v + k_v \sum_{i} \delta(\mathbf{r} - \mathbf{r}_i) + \beta_v \sum_{i} \delta(\mathbf{r} - \mathbf{r}_i^*)$$
(4c)

for $i=1,2,\cdots,N$. Here, \mathbf{r}_i is the position of the *i*-th particle, $D_{u,v}$ is the diffusion coefficient, $k_{f,d}$ is the production rate, $k_{u,v}$ is the degradation rate, α_u and α are the chemotactic sensitivity, V is the potential field, $\beta_{u,v}$ is the chemotactic sensitivity to the target, and η_i is a Gaussian white noise with zero mean and unit variance.

$$\dot{\mathbf{r}}_i(t) = \alpha_u \nabla u + \alpha_v \nabla v + \alpha_c \nabla c - \nabla_{\mathbf{r}_i} V + \sqrt{2D_p} \eta_i$$
(5a)

$$\dot{u}(\mathbf{r},t) = D_u \nabla^2 u - uv^2 + k_f (1 - u) + k_u \sum_{i} \delta(\mathbf{r} - \mathbf{r}_i)$$
(5b)

$$\dot{v}(\mathbf{r},t) = D_v \nabla^2 v + u v^2 - k_d v + k_v \sum_{i} \delta(\mathbf{r} - \mathbf{r}_i)$$
(5c)

$$\dot{c}(\mathbf{r},t) = D_c \nabla^2 c - k_c c + \beta_c \sum_{i} \delta(\mathbf{r} - \mathbf{r}_i^*)$$
(5d)

2 Continuum model

3 Behaviors