Multiplicadores de Lagrange

En ocasiones es necesario encontrar máximos o mínimos de funciones sujetas a ciertas restricciones. En esos casos es útil la siguiente proposición.

Proposición 1 (Multiplicadores de Lagrange). Sean $n, m \in \mathbb{N}$, n > m, $a \in \mathbb{R}^n$ y $f, g_1, \ldots, g_m \in C^1(\mathbb{R}^n, \mathbb{R})$. Supongamos que f restringida a g_1, \ldots, g_n tiene un máximo o mínimo en a. Entonces, existen $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ tal que

$$df(a)^{\top} = \sum_{k=1}^{m} \lambda_k (dg(a))^{\top}$$

Ejemplo 2. Sean $f: \mathbb{R}^2 \to \mathbb{R}$ definida mediante la regla $f(x) := 2 + x_1^2 + x_2^2$, $y g: \mathbb{R}^2 \to \mathbb{R}$ definida mediante $g(x) := x_1^2 + \frac{1}{4}x_2^2 - 1$. Hallar los máximos y mínimos de f sujeta a g(x) = 0.

Demostración. Primero calculamo df y dg en puntos arbitrarios.

$$\mathrm{d}f(x)^{\top} = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}, \quad \mathrm{d}g(x)^{\top} = \begin{bmatrix} 2x_1 \\ \frac{1}{2}x_2 \end{bmatrix}.$$

Entonces, planteamos la igualdad:

$$\begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} = \lambda \begin{bmatrix} 2x_1 \\ \frac{1}{2}x_2 \end{bmatrix}.$$

Y obtenemos el sistema de ecuaciones

$$2x_1 = \lambda 2x_1,$$
$$2x_2 = \lambda \frac{1}{2}x_2.$$

De la primera ecuación, $\lambda = 1$. Sustituyendo en la segunda ecuación, $x_2 = 0$. Como buscamos los máximos y mínimos de f sujeta a g(x) = 0, sustituimos x_2 en g:

$$0 = x_1^2 - 1.$$

Por lo tanto, $x_1 = 1$ ó $x_1 = -1$. Entonces, los puntos críticos de f sujeta a g(x) = 0 para $\lambda = 1$, son (1,0) y (-1,0).

Por otro lado, utilizando la segunda ecuación del sistema de ecuaciones, $\lambda = 4$. Sustituyendo en la primer ecuación, $x_1 = 0$. Luego, utilizando g(x) = 0, tenemos

$$0 = \frac{1}{4}x_2^2 - 1.$$

Luego, $x_2 = 2$ ó $x_2 = -2$. Por lo tanto, los puntos críticos de f sujeta a g(x) = 0 para $\lambda = 4$, son (0, 2) y (0, -2).

Evaluando en f, determinamos si son máximos o mínimos:

$$f(1,0) = 3,$$

$$f(-1,0) = 3,$$

$$f(0,2) = 4,$$

$$f(0,-2) = 4.$$

Así, (1,0) y (-1,0) son mínimos, mientras que (0,2) y (0,-2) son máximos.

Ejercicios

- 1. En los siguientes ejercicios, hallar los máximos y minímos de f sujeta a g(x) = 0. Además, dar una interpretación geométrica de f y las restricciones.
 - a Sean $f: \mathbb{R}^3 \to \mathbb{R}$ dada mediante la regla $f(x) := x_1 + x_3 \text{ y } g: \mathbb{R}^3 \to \mathbb{R}$ dada mediante la regla $g(x) = x_1^2 + x_2^2 + x_3^3 1$.

- b) $f: \mathbb{R}^2 \to \mathbb{R}$ dada mediante la regla $f(x) := x_1^2 x_2^2$ y $g: \mathbb{R}^2 \to \mathbb{R}$ dada mediante la regla $g(x) := x_1^2 + x_2^2 1$.
- c) $f: \mathbb{R}^3 \to \mathbb{R}$ dada mediante la regla $f(x) := 3x_1^2 + x_2$, $g_1: \mathbb{R}^3 \to \mathbb{R}$ dada mediante la regla $g_1(x) := 4x_1 3x_2 9$ y $g_2: \mathbb{R}^3 \to \mathbb{R}$ dada mediante la regla $g_2(x) := x_1^2 x_3^2 9$.
- 2. Consideremos la recla $Ax_1 + Bx_2 = C$ en \mathbb{R}^2 y sea $p \in \mathbb{R}^2$. Encontrar el punto de la recta más cercano a p.