# FIT1045: Algorithms and Programming Fundamentals in Python Lecture 4 Loops and Euclid's Algorithm



#### Recap

https://flux.qa

Clayton: AXXULH Malaysia: LWERDE

#### Boolean expressions:

 Can you translate the following sentence to a Boolean expression?

A good fruit salad contains one main fruit which can be either oranges or melons and a second fruit that can be either strawberries or pineapple, but it should never contain avocado.

#### Boolean operators have precedence:

• Which parentheses can be avoided?

```
((fruit I == 'orange') and (fruit2== 'orange')) or ((fruit I == 'apple') and (fruit2== 'apple'))
```

#### This lecture

Learn about loops to implement our first textbook algorithm in Python

Learning outcomes

- 2 (choose and implement appropriate problem solving strategies in Python)
- 5 (determine limitations of algorithms)

Concrete goal: An efficient algorithm for computing the greatest common divisor

#### Where am I?

- I. Greatest Common Divisor
- 2. While loops
- 3. Euclid's Algorithm

### Motivation: simplifying fractions



$$\frac{18480831109}{9231418071} = ?$$

#### **Greatest Common Divisor Problem**

**Input:** two positive integers m and n

Output: greatest common divisor, gcd(m, n)

https://flux.qa

Clayton: AXXULH Malaysia: LWERDE

### Let's find an algorithm

#### **Greatest Common Divisor Problem**

**Input:** two positive integers m and n

**Output:** greatest common divisor, gcd(m, n)

#### **Observations**

- the greatest possible common divisor is the smaller of the two numbers, e.g. gcd(178, 89) = 89
- the smallest possible divisor is I, e.g. gcd(97, 53) = I
- we are after the **greatest** divisor, e.g. gcd(24, 18) = 6, not 1, 2, or 3

#### "Brute force" Algorithm

check all integers between  $\min(m, n)$  and 1 (from big to small), output first common divisor encountered

### How to "check every integer"?

#### **Observations**

- Depending on input there can be an arbitrary number of integers to check
- Program will always have only a fixed number of instructions

Need to repeat some instructions many times in a loop.



### How to "check every integer"?



#### "Brute force" Algorithm

check all integers between min(m, n) and I (from big to small), output first common divisor encountered

#### Where am I?

- I. Greatest Common Divisor
- 2. While loops
- 3. Euclid's Algorithm

## While statement in Python for loopy control flows



```
def sum_of_first_n_ints(n):
    """
    Input : positive integer n
    Output: sum of pos. integers up to n"""
```

$$1 + 2 + \dots + n$$
$$= ?$$



```
def sum_of_first_n_ints(n):
    """
    Input : positive integer n
    Output: sum of pos. integers up to n"""
    i = 1  #iteration variable
    res = 0  #accumulation variable
```

$$1 + 2 + \dots + n$$
$$= ?$$



```
def sum_of_first_n_ints(n):
    """
    Input : positive integer n
    Output: sum of pos. integers up to n"""
    i = 1  #iteration variable
    res = 0  #accumulation variable
    while i <= n:
        res = res + i
        i = i + 1</pre>
```

$$1 + 2 + \dots + n$$
$$= ?$$



```
def sum_of_first_n_ints(n):
    """

    Input : positive integer n
    Output: sum of pos. integers up to n"""
    i = 1  #iteration variable
    res = 0  #accumulation variable
    while i <= n:
        res = res + i
        i = i + 1
    return res</pre>
```

$$1 + 2 + \dots + n$$
$$= ?$$



#### Sometimes we want condition last



### Example: approximating $\pi$



$$\pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} \cdots$$
$$= \sum_{i=1}^{\infty} (-1)^{i+1} \frac{4}{2i-1}$$



### Example: approximating $\pi$



$$\pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} \cdots$$
$$= \sum_{i=1}^{\infty} (-1)^{i+1} \frac{4}{2i-1}$$



## To realise condition at end we can use conditional **break** statement



## To realise condition at end we can use conditional **break** statement

break statement exits surrounding loop



#### Loops pose a new kind of danger

 $1 + 2 + \dots + n$ = ?

Forgetting just one line results in this flowchart

Everyone in this unit (including staff) will write an infinite loop by accident at some point

Common mistakes:

- Counter not incremented
- Tautological condition
- Forgot break



https://xkcd.com/1195/

## Using while to implement brute force GCD algorithm



https://flux.qa

Clayton: AXXULH Malaysia: LWERDE

## Using while to implement brute force GCD algorithm



```
def gcd_brute_force(m, n):
    x = min(m, n)
    while not (m % x == 0 and n % x == 0):
        x = x - 1
    return x
```

## Using while to implement brute force GCD algorithm



### Analysing our GCD algorithm

We have implemented an algorithm to find the GCD of two numbers.

But our algorithm is very inefficient!

Is there a better algorithm?

#### Where am !?

- I. Greatest Common Divisor
- 2. While loops
- 3. Euclid's Algorithm

## Let's analyse the problem to derive smarter algorithm

Orange: 24 = 4x6

Blue:  $54 = 9 \times 6$ 

Both stacks are made of 6s.

## Input can be decreased to smaller input with same output

If we *subtract* the smaller stack from the bigger stack, the result will also be made of 6s:



We have (almost) shown that gcd(54, 24) = gcd(24, 30)

## This reduction can be applied repeatedly

We repeat the process, subtracting the new smallest stack from the previous smallest stack:



We have shown that gcd(54, 24) = gcd(24, 6)

## ...but we don't have to stop there

We repeat the process, subtracting the new smallest stack from the previous smallest stack:



We have shown that gcd(54, 24) = gcd(24, 6)



The of a non-zero m number and zero is simply m

## Pattern also holds for unknown number in each box

We have shown that: gcd(9x, 4x) = gcd(4x, 9x - 4x)

We can generalise: gcd(m, n) = gcd(n, m - n)



### We can improve efficiency

What would happen if our m and n started like this:

| m |   |   |   |   |   |   |   |   | n |
|---|---|---|---|---|---|---|---|---|---|
| X | X | X | X | X | X | X | X |   |   |
| X | X | X | X | X | X | X | X | X |   |
| X | X | X | X | X | X | X | X | X | × |
| X | X | X | X | X | X | X | X | X | × |
| X | X | X | X | X | X | X | X | X | X |
| X | X | X | X | X | X | X | X | X |   |

We would have to subtract *n* 17 times!

Instead of subtracting, we get the same result if we take the integer remainder of dividing m by n, i.e., m % n in Python. (This operation is also called modulo).

## Final problem reduction: gcd(m, n) = gcd(n, m % n)





Seems we need m >=n for this to work.

https://flux.qa

Clayton: AXXULH Malaysia: LWERDE

## Final problem reduction: gcd(m, n) = gcd(n, m % n)



But if m <=n reduction simply flips arguments



Thus
gcd(m, n) =
gcd(n, m%n)
is generally
correct and
reduces
problem size
after at most
two
applications

### Euclid's Algorithm





Eukleides of Alexandria 3xx BC – 2xx BC

```
def gcd(m, n):
    """
    Input : integers m and n such that not n==m==0
    Output: the greatest common divisor of m and n
    """
    while n != 0:
        r = m % n
        m = n
        n = r
    return m
```

### Recommended reading

"Introduction to Computing using Python: An Application Development Focus", by L. Perkovic

- §2.3
- §5.3

FIT I 045/53 Workbook

- Chapter 2, §2.2.1
- Chapter 3, §§3.1-3.3

#### Check point for this week

- By the end of this week you should be able to do the following:
- Implement Python programs to:
  - Calculate the average of a list
  - Find a given item in a list
  - Compute specific sums and products

https://flux.qa

Clayton: AXXULH Malaysia: LWERDE

### Coming Up

- More loops and sequence types
- Tables and matrices