

Contactless respiratory rate monitoring

Yekun Wang, Justin Trobec, Karen Wong W251-001, Fall 2020

Respiratory rate is a sensitive signal for clinical worsening, but current assessments have downsides

- Manually counting breaths per minute
- Rough estimation
- Equipment: capnographers, oximeters

Contactless respiratory rate monitoring has several advantages

HOME

- Assist telemedicine assessments
- Use equipment patients already have at home

CLINICAL SETTING

- Reduce infectious or other hazardous exposure
- Reduce medical waste
- More natural breathing pattern

Monitoring using pose detection models can preserve privacy

Goal: detect respiratory rate from keypoint motion

Pose detection on Jetson with pre-trained ResNet18

- Simultaneous person detection and keypoint estimation
- Pre-trained on data from MSCOCO
- Our model: 8 upper body keypoints (eyes, ears, shoulders, nose, neck)
 and 3 distances (ear-shoulder x2, nose-neck)

Respiratory rate estimation using fast Fourier transform ensembled with CNN-based model

Training respiratory rate detection model

- >200 video clips annotated with respiratory rate
- Model trained on Jetson devices (NX, AGX) for 100 epochs

Model	Training MAE	Validation MAE
Frequency Estimation + Heuristics	n/a	10.89
Frequency Estimation + LR	8.44	7.91
FFT + Feedforward Network	6.31	9.50
CNN	3.42	7.37
Ensemble: FFT FNN + CNN	2.79	5.49

Results

Validation MAE for
 15-second clips ~5.49

Breaths/min (test data)

Example: 15-second clip of breathing at 15
 BPM

Clip1	13.74
Clip2	15.48
Clip3	15.93
Clip4	19.38
Average	16.14

Demo

Breath Rate Detector

Live Streaming

Start Breath Rate Detection

Detector Status

Rate: 12.10 breaths/min

Implications

- Contactless monitoring can be cheap, accurate, and privacy-preserving
- Other applications: baby monitors, home sleep studies, seizure detection

Next steps

- Expand training examples
 - Different poses (side view, full body, lying down)
 - Include other types of motion (e.g., talking)
- Monitor multiple people in frame (e.g., disaster field hospitals)
- Optical flow for motion estimation may improve accuracy over keypoints alone

Questions?

EXTRA SLIDES

Respiration Rate Detector

Predict 14 breaths/min

- -> Flatten
- -> Dense
- -> Output layer w/ linear activation

