Chapitre 5 : Modèles probabilistes pour la recherche d'information

- Modèle tri probabiliste (BIR et BM25)
- Modèle de Langue

Introduction

- Pourquoi les probabilités ?
 - La RI est un processus incertain et imprécis
 - Imprécision dans l'expression des besoins
 - Incertitude dans la représentation des informations
 - La théorie des probabilités semble adéquate pour prendre en compte cette incertitude et imprécision

Modèle probabiliste

- Le modèle probabiliste tente d'estimer la probabilité d'observer des événements liés au document et à la requête
- Plusieurs modèles probabilistes, se différencient selon
 - Les événements qu'ils considèrent
 - P(pert/d, q) : probabilité de pertinence de d vis à vis de q
 - P(q,d)
 - P(q|d)
 - P(d|q)
 - Les distributions (lois) qu'ils utilisent

RI et probabilité

Modèle probabiliste classique

Modèle inférentiel

Modèle de langue

BIR

2-Poisson

Inquery

Modèle de croyances

Unigram

Ngram

Tree
Depend.

DFR

Depend.

Plan

- Chapitre 5.1:
 - Rappel théorie des probabilités
 - Modèle de tri probabiliste (Probabilistic Ranking Principle)
 - Modèle BIR
 - Modèle BM25 (2-Poisson)
- Chapitre 6:
 - Modèle inférentiel
- Chapitre 5.2
 - Introduction au modèle de langue
 - Modèle de langue et RI

- Probabilité d'un événement
 - P(s) probabilité d'un événement
 - P("pile") = P("face") = 1/2
 - $-\Sigma P(s) = 1$ (tous les événements possibles)
 - P(non s) = 1 P(s)
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$

- Probabilité conditionnelle
 - P(s|M) probabilité d'un événement s sachant M
 - P("retrieval" | "information") > P("retrieval" | "politic")

Distribution de probabilités

- Une distribution de probabilités donne la probabilité de chaque évenement
- P(RED) = probabilitié de tirer une boule rouge
- P(BLUE) = probabilité de tirer une boule bleur
- P(ORANGE) =...

Estimation de la distribution de probabilités

- L'estimation de ces probabilités (compter le nombre de cas favorable sur le nombre de cas total)
 - P(Rouge) = ?
 - P(Bleu) = ?
 - P(Orange) = ?
- Deux conditions
 - Probabilité entre 0 et 1
 - La somme des probabilités (de tous les événements est égale à 1)

Probabilité conditionnelle

$$P(A,B) = P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$
 Règle de Bayes

– Evénements indépendants

$$-P(A,B) = P(A) . P(B)$$

- Evénements dépendants

$$-P(A,B,C) = P(A) \cdot P(B|A) \cdot P(C|A,B)$$

- Formule des probabilités totales

$$P(A) = \sum_{i} P(A \mid \mathbf{B}_{i}) * P(\mathbf{B}_{i})$$

B1, ...Bn est un système complet

Qu'est ce que l'on peut faire avec ces distributions de probabilités

- On peut assigner des probabilités à différentes situations
 - Probabilité de tirer 3 boules orange
 - Probabilité de tirer une orange, une bleue puis une orange

•
$$P(\bigcirc) = 0.25$$

•
$$P(-) = 0.5$$

•
$$P(\bigcirc \bigcirc \bigcirc \bigcirc) = 0.25 \times 0.25 \times 0.25$$

•
$$P(\bigcirc \bigcirc \bigcirc \bigcirc) = 0.25 \times 0.25 \times 0.25$$

•
$$P(\bigcirc \bigcirc \bigcirc \bigcirc) = 0.25 \times 0.50 \times 0.25$$

•
$$P(\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc) = 0.25 \times 0.50 \times 0.25 \times 0.50$$

Variable aléatoire

 Une fonction qui associe à chaque résultat d'une expérience aléatoire un nombre (un réel)

```
X: \Omega \rightarrow R
\omega \rightarrow X(\omega)
```

- Exemple
 - Jet de deux dés (bleu, rouge), Ω={(b=1,r=1), (b=1,r=2),
 (b=6,r=6)}, la somme S des deux dés est une variable aléatoire discrète à valeurs entre 2 et 12
 - ω est un couple (b, r), $X(\omega) = b+r$ (valeurs possibles, 2, 3, ...12)
 - Ce qui nous intéresse : P(X=k)
 - P(X=2) = 1/36, P(X=3)=2/36, ...
- Une VA peut être discrète (ensemble des valeurs est dénombrable) ou continue

- Loi de probabilité d'une variable aléatoire (discrète)
 - Décrit la probabilité de chaque valeur x_i d'une V.A, on note : p_i =Pr(X= x_i) avec $0 \le p_i \le 1$ et $\sum p_i$ =1
 - Loi uniforme : v.a prend ses valeurs $X=\{1,2,...,n\}$ $P(X=k) = \frac{I}{n}$
 - Loi de Bernoulli : $X=\{0,1\}$ P(X = 1) = p P(X = 0) = 1 p $P(X = x) = p^{x} (1 p)^{(1-x)}$

- Loi binomiale : une v.a. obtenue par le nombre de fois où on a obtenu 1 en répétant n fois, indépendamment, une même v.a. de Bernoulli de paramètre p, $X=\{0,1,2,...,n\}$

$$Pr(X = k) = \frac{n!}{k!(n-k)!} p^k q^{n-k} \qquad q = 1-p, \ k = 0,...,n$$

Peut être réécrite

$$Pr(X_1 = k_1 X_2 = k_2) = \frac{n!}{k_1! k_2!} p_1^{k_1} p_2^{k_2} \quad k_1 + k_2 = n \text{ et } p_1 + p_2 = 1$$

 Loi multinomiale : généralisation de la binomiale à m résultats possibles au lieu de 2

$$Pr(X_1 = k_1 X_2 = k_2 ... X_m = k_m) = \frac{n!}{k_1! ... k_m!} p_1^{k_1} p_2^{k_2} ... p_m^{k_n} \qquad \sum_{i=1}^{m} k_i = n$$

14

Loi de Poisson :

$$^{1}P(k=x) = \lambda^{x} \frac{\stackrel{-\lambda}{e^{-\lambda}}}{x!}$$

For example, the probability that k = 4 sunny days occur in a week; the average is 180/360*7=3. 5 sunny days per week

$$P(k=4) = 3.4^4 \frac{.e^{-3.5}}{4!} \approx 0.1888$$

Chapitre 5.1 : Modèle PRP

Probability Ranking Principle (principe du tri probabiliste)

- Probability Ranking Principle (Robertson 1977)
 - "Ranking documents in decreasing order of probability of relevance to the user who submitted the query, where probabilities are estimated using all available evidence, produces the best possible effectiveness"
 - Effectiveness : l'éfficacité est définie en termes de précision

Probability Ranking Principle

- L'idée principale dans PRP
 - Ranking documents in decreasing order of probability of relevance
 - P(pertinent | document) \rightarrow P(R|d) (ou P(R=1|d))
 - On peut aussi estimer de la même façon la probabilité de non pertinence
 - P(Non pertinence | document) \rightarrow P(NR|d) (ou P(R=0|d))
 - Un document est sélectionné si : P(R|d) > P(NR|d)
 - Les documents peuvent être triés selon

$$RSV(q,d) = \frac{P(R \mid d)}{P(NR \mid d)}$$

Probabilistic Ranking Principle

Règle de Bayes

$$P(R \mid d) = \frac{P(d \mid R)P(R)}{P(d)}$$

$$P(NR \mid d) = \frac{P(d \mid NR)P(NR)}{P(d)}$$

• PRP: Ordonner les documents selon

$$RSV(q,d) = \frac{P(d \mid R)}{P(d \mid NR)} * \frac{P(R)}{P(NR)}$$

$$= \frac{P(d \mid NR)}{P(d \mid NR)}$$

Comment estimer ces probabilités ?

- Options
 - Comment représenter le document d?
 - Quelle distribution pour P(d | R) et P(d|NR)?

- Plusieurs solutions
 - BIR (Binary Independance Retrieval model)
 - "Two poisson model"

Binary Independance Retrieval (BIR)

Hypothèses

 1) Un document est représenté comme un ensemble d'événements (t;)

$$d = (t_1, \dots, t_n)$$

• Un événement t_i dénote la présence ou l'absence d'un terme dans le document

 2) Les termes apparaissent dans les documents de manière indépendante

Binary Independence Retrieval (BIR)

Considérons un document comme une liste de termes

$$RSV(q,d) = \frac{P(d \mid R)}{P(d \mid NR)} = \frac{P((t_1, t_2, ..., t_n) \mid R)}{P((t_1, t_2, ..., t_n) \mid NR)}$$

• En s'appuyant sur l'hypothèse d'indépendance des termes

$$\frac{P(d \mid R)}{P(d \mid NR)} = \prod_{i=1}^{n} \frac{P(t_i \mid R)}{P(t_i \mid NR)}$$

Binary Independence Retrieval (BIR)

• t_i peut être vu comme, une variable aléatoire (Bernoulli)

$$d=(t_1=x_1\ t_2=x_2\ ...\ t_n=x_n)$$

$$x_i=\begin{cases} 1 & terme\ present\\ 0 & terme\ absent \end{cases}$$

- $p_i = P(t_i=1|R)$ 1- $p_i = P(t_i=0|R)$
- $q_i = P(t_i=1|NR)$ 1- $q_i = P(t_i=0|NR)$

$$P(d \mid R) = \prod_{i=1}^{n} P(t_i = x_i \mid R) = \prod_{i=1}^{n} p_i^{x_i} (1 - p_i)^{(1 - x_i)}$$

$$P(d \mid NR) = \prod_{i=1}^{n} P(t_i = x_i \mid NR) = \prod_{i=1}^{n} q_i^{x_i} (1 - q_i)^{(1 - x_i)}$$

Binary Independence Retrieval (BIR)

$$RSV(d,q) = \log \frac{P(d \mid R)}{P(d \mid NR)} = \log \frac{\prod_{i=1}^{n} p_{i}^{x_{i}} (1 - p_{i})^{(1-x_{i})}}{\prod_{i=1}^{n} q_{i}^{x_{i}} (1 - q_{i})^{(1-x_{i})}}$$

$$= \sum_{i:x_{i}=1}^{n} x_{i} \log \frac{p_{i} (1 - q_{i})}{q_{i} (1 - p_{i})} + \sum_{i=1}^{n} \log \frac{1 - p_{i}}{1 - q_{i}}$$

$$\propto \sum_{i:x_{i}=1}^{n} \log \frac{p_{i} (1 - q_{i})}{q_{i} (1 - p_{i})}$$
Constante (quelque soit le document)

Comment estimer p_i and q_i ?

Estimation avec des données d'apprentissage

· En considérant pour chaque terme ti

Documents	Pertinent (R)	Non-Pertinent (NR)	Total
t _i =1	r	n-r	n
t _i =O	R-r	N-n-R+r	N-n
Total	R	N-R	N

r: nombre de documents pertinents contenant ti

n: nombre de documents contenant ti

R : nombre total de documents pertinents

N: nombre de documents dans la collection

$$p_i = \frac{r}{R} \qquad q_i = \frac{n - r}{N - R}$$

Estimation par maximun de vraisemblance

Estimation des pi et qi

$$p_{i} = \frac{r}{R}$$
 et
$$q_{i} = \frac{n-r}{N-R}$$

$$RSV(q,d) = \sum \log \frac{p(1-q)}{q(1-p)} =$$

$$= \sum \log \frac{\frac{r}{R} * \frac{N-n-R+r}{N-R}}{\frac{n-r}{N-R} * \frac{R-r}{R}} =$$

$$= \sum \log \frac{r/(R-r)}{(n-r)/(N-n-R+r)}$$

Modèle probabiliste BIR

• Lisser les probabilités pour éviter 0

$$RSV(q,d) = \sum \log \frac{\frac{r+0.5}{R-r+0.5}}{\frac{(n-r+0.5)}{(N-n-R+r+0.5)}}$$

Estimation sans données d'apprentissage

- Estimation de p_i
 - Constante (Croft & Harper 79)
 - Proportionnel à la probabilité d'occurrence du terme dans la collection (n/N)
- Estimation de q_i
 - prendre tous les documents ne comportant pas t_i

$$RSV(Q, D) \approx \sum_{i=1, d_i = k_i = 1}^{k} \log \frac{N - n_i + 0.5}{n_i + 0.5}$$
 $IDF' = \log \frac{N - n_i}{n_i}$

Avantages et inconvénients du modèle BIR

Avantages

- Formalisation puissante
- Modélisation explicite de la notion de pertinence

• Inconvénients

- La fréquence des termes n'est pas prise en compte
- Difficulté d'estimer les probabilités sans données d'apprentissage
- Hypothèse d'indépendance entre termes souvent critiquée ...mais pas d'amélioration significative pour les modèles qui considèrent cette dépendance

Modéliser la fréquence des termes

Point de départ

$$P(R \mid d) = \prod_{i=1}^{n} \frac{P(t_i = x_i \mid R)}{P(t_i = x_i \mid NR)}$$

Hypothèse

- la v.a t_i prend des valeurs entières x_i qui représentent la fréquence du terme.
- − → Estimer $P(t_i=x_i|R)$: probabilité que t_i apparaisse x_i fois dans les documents pertinents

Estimation naive

Calculer P(t_i=x_i|R) pour tous les x_i potentiels − Px₁, Px₂, Px₃, ...
 →plusieurs paramètres à estimer.

– Modèle paramétrique :

On suppose que la v.a t_i suit une certaine loi de probabilité

Modèle 2-Poisson [Harter]

- Idée de base
 - les occurrences d'un mot dans un document sont distribuées de façon aléatoire: la probabilité qu'un mot apparaisse k fois dans un document suit une loi de Poisson

$$P(t=k) = \lambda^k \frac{.e^{-\lambda}}{k!}$$

• λ Moyenne des fréquences des termes dans le document

Wiki

Modèle 2-Poisson [Harter]

- Les termes (mots) ne sont pas distribués selon une loi de Poisson dans tous les documents
 - Les mots qui traitent le sujet du document ont une distribution différente de ceux apparaissent de manière marginale dans le document
- On distingue alors
 - Les documents élites qui traitent du sujet représenté par le terme
 - Les documents non élites qui ne traitent pas du sujet du terme

Modèle 2-Poisson [Harter]

• La distribution des termes dans les documents suit une distribution mixte 2-Poisson

$$P(t = k) = P(E)\lambda_{1}^{k} \frac{e^{-\lambda_{1}}}{k!} + P(\neg E)\lambda_{0}^{k} \frac{e^{-\lambda_{0}}}{k!}$$

- P(E) : probabilité à priori que le document soit élite
- $-\lambda_1, \lambda_0$ Moyennes des fréquences des termes dans les documents élites et non élites respectivement

 Intégrer la notion d'élite dans le calcul des probabilités de pertinence d'un terme

$$-p_i = P(E|R)$$

$$-q_i = P(E|NR)$$

$$P(t_i = k | \mathbf{R}) = P(E | \mathbf{R}) \lambda_1^k \frac{e^{-\lambda_1}}{k!} + P(\neg E | \mathbf{R}) \lambda_0^k \frac{e^{-\lambda_0}}{k!}$$

$$P(t_i = k|NR) = P(E|NR)\lambda_1^k \frac{e^{-\lambda_1}}{k!} + P(\neg E|NR)\lambda_0^k \frac{e^{-\lambda_0}}{k!}$$

Modèle probabiliste de de base

$$P(R \mid d) = \prod_{i=1}^{rank} \frac{P(t_i \in d \mid R) * P(t_i \notin d \mid NR)}{P(t_i \in d \mid NR) * P(t_i \notin d \mid R)}$$

Avec les fréquences

$$P(R \mid d) = \prod_{i=1}^{rank} \frac{P(t_i = tf \mid R) * P(t_i = 0 \mid NR)}{P(t_i = tf \mid NR) * P(t_i = 0 \mid R)}$$

$$P(t_i = tf \mid \mathbf{R}) = p \lambda_1^{tf} \frac{e^{-\lambda_1}}{tf!} + (1 - p) \lambda_0^{tf} \frac{e^{-\lambda_0}}{tf!}$$

$$P(t_i = tf \mid NR) = q\lambda_1^{tf} \frac{e^{-\lambda_1}}{tf!} + (1 - q)\lambda_0^{tf} \frac{e^{-\lambda_0}}{tf!}$$

• Réécriture de la fonction de tri (en passe au log)

$$P(R \mid d) = \sum_{i=1}^{n} \log(\frac{(p\lambda_{1}^{tf}e^{-\lambda_{1}} + (1-p)\lambda_{0}^{tf}e^{-\lambda_{0}})(qe^{-\lambda_{1}} + (1-q)e^{-\lambda_{0}})}{(q\lambda_{1}^{tf}e^{-\lambda_{1}} + (1-q)\lambda_{0}^{tf}e^{-\lambda_{0}})(pe^{-\lambda_{1}} + (1-p)e^{-\lambda_{0}})})$$

- Quatre paramètres à estimer
- S. Walker et S. Robertson ont estimé ces paramètres selon la formule : BM25 (Roberston et. al sigir 1994)

Approximation de la fonction de poids

- La fonction de poids doit respecter les caractéristiques suivantes :
 - (a) 0 si t = 0
 - (b) monotone croissante avec tf
 - (c) a un maximum asymptotique
 - (d) approximé par le poids du modèle de base

Approximation .. (suite)

On réarrange la fonction

$$P(w) = \log \frac{(p + (1-p)(\frac{\lambda_0}{\lambda_1})^{tf} e^{\lambda_1 - \lambda_0})(qe^{\lambda_0 - \lambda_1} + (1-q))}{(q + (1-q)(\frac{\lambda_0}{\lambda_1})^{tf} e^{\lambda_1 - \lambda_0})(pe^{\lambda_0 - \lambda_1} + (1-p))}$$

• $\lambda_0 << \lambda_1$ et $tf \to \infty$

$$P(w) = \log \frac{p(1-q)}{q(1-p)}$$

Approximation.. (suite)

La forme (finale) de BM25

$$RSV^{BM25} = \sum_{i \in q} \log \frac{N}{df_i} \cdot \frac{(k_1 + 1)tf_i}{k_1((1 - b) + b\frac{dl}{avdl}) + tf_i}$$

- *k*₁ contrôle term frequency
 - $-k_1 = 0 \rightarrow \text{modèle BIR};$
 - − *b* controle la normalisation de la longueur
 - $-b = 0 \rightarrow$ pas de normalisation; b = 1 fréquence relative
- k_1 est entre 1.2–2 et b autour de 0.75

• BM25 est un des modèles les plus importants dans le domaine de la RI sur les deux plans théorique et performance (rappel précision)