ΟΠΙΣΘΟΔΙΑΔΟΣΗ ΤΟΥ ΛΑΘΟΥΣ (1 από 4: ΑΡΧΙΚΟΠΟΙΗΣΗ) NEYPΩNIKA ΔΙΚΤΥΑ www.psounis.gr

- Αρχικοποιούμε τα διανύσματα:
 - Για κάθε πρότυπο 1,...,Κ: Κατασκευάζουμε το διάνυσμα: $x_i = [x_{i0}, x_{i1}, ..., x_{in}]$ και αρχικοποιούμε την επιθυμητή έξοδο: d_i
- Δίνουμε αρίθμηση στους κόμβους (αν αυτή δεν υπάρχει ήδη)
 - Πρέπει να υπάρχει μία τοπολογική ταξινόμηση στους κόμβους (δηλαδή να μην υπάρχει ακμή από κόμβο σε προηγούμενό του κόμβο)
- Αρχικοποιούμε τις τιμές των βαρών σύμφωνα με την εκφώνηση.
- Εντοπίζουμε την συνάρτηση ενεργοποίησης για κάθε κόμβο καθώς και την παραγωγό της (θα είναι κάποια συνεχής συνάρτηση)
- Δίνουμε τιμή στην παράμετρο μάθησης η: 0<η<1 (από εκφώνηση)

Πραγματοποιούμε κύκλους εκπαίδευσης διαδοχικά για τα πρότυπα.

Εκφώνηση: Δίνεται ένα πολυεπίπεδο ΤΝΔ τοπολογίας 2-1-2 με τη συνδεσμολογία όπως φαίνεται στο παρακάτω σχήμα.

Για την εκπαίδευσή του χρησιμοποιείται η μέθοδος οπισθοδιάδοσης του σφάλματος με ρυθμό εκπαίδευσης n=1, χωρίς χρήση ορμής (momentum).

Η συνάρτηση ενεργοποίησης σε όλους τους νευρώνες είναι η σιγμοειδής συνάρτηση S, όπου: $S(x) = \frac{1}{1 + e^{-x}}$

Πίνακας 1				
Βάρος	Τιμή	Βάρος	Τιμή	
W ₁₃ =	0,5	$w_{30} = \theta_3$	0,4	
W ₁₄ =	0,5	$w_{40} = \theta_4$	0,4	
W ₂₃ =	0,4	$w_{50} = \theta_5$	0,4	
w ₂₅ =	0,4			
W 34 =	0,3			
w 35 =	0,3			

Σε κάποια στιγμή εκπαίδευσής του για την εκμάθηση του προτύπου [0.1,0.6] με επιθυμητή έξοδο [0.0, 1.0] τα βάρη των συνδέσεων και οι τιμές των κατωφλίων έχουν πάρει τις τιμές που δίνονται στον Πίνακα 1. Θεωρείστε ότι τα κατώφλια είναι συνάψεις με είσοδο -1 και βάρος ίσο με την τιμή του κατωφλίου. Να κάνετε τις πράξεις με ακρίβεια 3 δεκαδικών ψηφίων.

Να πραγματοποιήσετε έναν πλήρη κύκλο εκπαίδευσης (προς τα εμπρός και προς τα πίσω πέρασμα)

Συνεπώς:

Χρησιμοποιείται ένα πρότυπο εισόδου Επιθυμητή Έξοδος: Είσοδος:

d₄=0.0 x₁=0.1 $d_5 = 1.0$ $x_2 = 0.6$

ΟΠΙΣΘΟΔΙΑΔΟΣΗ ΤΟΥ ΛΑΘΟΥΣ (2 από 4: ΕΜΠΡΟΣ)

NEYPΩNIKA ΔIKTYA www.psounis.gr

ΠΡΟΣ ΤΑ ΕΜΠΡΟΣ ΠΕΡΑΣΜΑ:

Οι νευρώνες εξετάζονται κατά την αύξουσα αρίθμηση: i=1....N

- Για κάθε νευρώνα εισόδου θέτουμε ως νι την είσοδο που παράγει.
- Για κάθε υπολονιστικό νευρώνα j (κρυφό και εξόδου):

Υπολόνισε το δυναμικό $\omega \varsigma$: $v_i = \sum_{i=0}^p w_{ij} y_i$

- Υπολόνισε την έξοδο από την συνάρτηση ενεργοποίησης: $y_i = \varphi(v_i)$
- Συμβολίζουμε με o_i την έξοδο μόνο των νευρώνων εξόδου

$$o_j = y_j$$

Για κάθε νευρώνα εξόδου:

Υπολόγισε το σφάλμα: $e_i = d_i - o_i$ (επιθυμητή μείον παραγματική)

ρ είναι ο συνολικός αριθμός εισόδων του νευρώνα i

Υπολογίζεται το δυναμικό του νευρώνα ως άθροισμα των νινομένων βαρών-εισόδων

Συμπεριλαμβάνεται η είσοδος κατωφλίου (αν υπάρχει)

$$v_{\Delta} = w_{A\Delta}y_A + w_{B\Delta}y_B + w_{\Gamma\Delta}y_{\Gamma}$$
$$y_{\Delta} = \varphi(v_{\Delta})$$

ΠΡΟΣ ΤΑ ΕΜΠΡΟΣ ΠΕΡΑΣΜΑ

ΝΕΥΡΩΝΑΣ 1 (νευρώνας εισόδου) Η είσοδος μεταφέρεται στην έξοδο, άρα $y_1=x_1=0.1$

ΝΕΥΡΩΝΑΣ 2 (νευρώνας εισόδου) Η είσοδος μεταφέρεται στην έξοδο, άρα ν₂=x₂=0.6

ΝΕΥΡΩΝΑΣ 3 (Κρυφός Νευρώνας) Δυναμικό: $v_3 = (w_{13} \cdot y_1) + (w_{23} \cdot y_2) + (w_{30} \cdot (-1)) =$ $(0.5 \cdot 0.1) + (0.4 \cdot 0.6) + (0.4 \cdot (-1)) = -0.11$

Ενεργοποίηση: $y_3 = \varphi(v_3) = \frac{1}{1 + e^{-(-0.11)}} = 0.473$

ΝΕΥΡΩΝΑΣ 4 (Νευρώνας Εξόδου)

Δυναμικό: $v_4 = (w_{14} \cdot y_1) + (w_{34} \cdot y_3) + (w_{40} \cdot (-1)) =$ $(0.5 \cdot 0.1) + (0.3 \cdot 0.473) + (0.4 \cdot (-1)) = -0.208$

Ενεργοποίηση: γ₄= $\phi(v_4) = \frac{1}{1+e^{-(-0.208)}} = 0.448$

ΝΕΥΡΩΝΑΣ 5 (Νευρώνας Εξόδου)

Δυναμικό: $v_5 = (w_{35} \cdot y_3) + (w_{25} \cdot y_2) + (w_{50} \cdot (-1)) =$ $(0.3 \cdot 0.473) + (0.4 \cdot 0.6) + (0.4 \cdot (-1)) = -0.018$

Ενεργοποίηση: $y_5 = \varphi(v_5) = \frac{1}{1+e^{-(-0.018)}} = 0.496$

Συνεπώς η έξοδος των νευρώνων y_1 y_2 y_3 y_4 y_5 είναι: 0.1 0.6 0.473 0.448 0.496

Υπολογισμός Σφάλματος για τους νευρώνες εξόδου: Νευρώνας $4:e_4 = d_4 - y_4 = 0 - 0.448 = -0.448$

Νευρώνας 5: $e_5 = d_5 - y_5 = 1 - 0.496 = 0.504$

Άρα τα σφάλματα στους νευρώνες εξόδου είναι:

ΟΠΙΣΘΟΔΙΑΔΟΣΗ ΤΟΥ ΛΑΘΟΥΣ (3 από 4: ΠΙΣΩ)

0.126

0.111

0.126

ΠΡΟΣ ΤΑ ΠΙΣΩ ΠΕΡΑΣΜΑ: Α. ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΠΙΚΩΝ ΚΛΙΣΕΩΝ

Οι νευρώνες εξετάζονται κατά την φθίνουσα αρίθμηση j=N, N-1,...,1

Υπολογισμός της τοπικής κλίσης δ για κάθε υπολογιστικό νευρώνα:

Για τους νευρώνες εξόδου $\delta_i(n) = e_i \cdot \varphi'_i(v_i)$

Για τους νευρώνες κρυφού επιπέδου:

 $\delta_j(n) = \varphi'_j(v_j) \cdot \sum_i [\delta_k(n) \cdot w_{jk}(n)]$

Για τους νευρώνες εισόδου: Δεν γίνεται υπολογισμός τοπικής κλίσης

Β. ΔΙΟΡΘΩΣΕΙΣ ΣΤΑ ΒΑΡΗ ΤΩΝ ΑΚΜΩΝ

Διορθώσεις σε όλα τα βάρη:

Υπολογισμός Διόρθωσης των Βαρών των ακμών: $\Delta w_{ij}(n) = \eta \cdot \delta_i(n) \cdot y_i(n)$

Υπολογισμός των βαρών:

 $w_{ij}(n+1) = w_{ij}(n) + \Delta w_{ij}(n)$

Το δ για τους νευρώνες εξόδου υπολονίζεται ως το νινόμενο (Σφάλμα του νευρώνα)χ Την παράγωγο της συνάρτησης ενεργοποίησης)

το γινόμενο (Παράγωγος της ενεργοποίησης) χ [άθροισμα (δ*βάρος) για κάθε έξοδο του νευρώνα]

 $= \varphi'_A(v_A) \cdot [\delta_B(n) \cdot w_{AB}(n)]$ $+\delta_{\Gamma}(n)\cdot w_{\Lambda\Gamma}(n) + \delta_{\Lambda}(n)\cdot w_{\Lambda\Lambda}(n)$

ΠΡΟΣ ΤΑ ΠΙΣΩ ΠΕΡΑΣΜΑ

Το δ για τους κρυφούς νευρώνες υπολογίζεται ως

 $\Delta w_{AB}(n) = \eta \cdot y_{A}(n) \cdot \delta_{B}(n)$

NEYPΩNIKA ΔIKTYA www.psounis.gr

ΝΕΥΡΩΝΑΣ 5 (νευρώνας εξόδου) Υπολογισμός Τοπικής Κλίσης:

 $\delta_5 = e_5 \cdot \varphi'(v_5) = e_5 \cdot [y_5 (1 - y_5)] = 0.504 \cdot [0.496 (1 - 0.496)]$

Διορθώσεις στα Βάρη των Ακμών:

 $\Delta w_{35} = \eta \cdot y_3 \cdot \delta_5 = 1 \cdot 0,473 \cdot 0,126 = 0,060$ $\Delta w_{25} = \eta \cdot y_2 \cdot \delta_5 = 1 \cdot 0.6 \cdot 0.126 = 0.076$

 $\Delta w_{50} = \eta \cdot (-1) \cdot \delta_5 = 1 \cdot (-1) \cdot 0,126 = -0,126$ Υπολογισμός των νέων βαρών:

 $w_{35} = w_{35} + \Delta w_{35} = 0.3 + 0.060 = 0.360$

 $w_{25} = w_{25} + \Delta w_{25} = 0.4 + 0.076 = 0.476$ $w_{50} = w_{50} + \Delta w_{50} = 0.4 - 0.126 = 0.274$

ΝΕΥΡΩΝΑΣ 4 (νευρώνας εξόδου) Υπολογισμός Τοπικής Κλίσης:

Διορθώσεις στα Βάρη των Ακμών:

Υπολονισμός των νέων βαρών: ΝΕΥΡΩΝΑΣ 3 (κρυφός νευρώνας) Υπολονισμός Τοπικής Κλίσης:

 $\delta_3 = \varphi'(v_3) \cdot [w_{34} \cdot \delta_4 + w_{35} \cdot \delta_5] = y_3 (1 - y_3) \cdot [w_{34} \cdot \delta_4 + w_{35} \cdot \delta_5]$ $= 0.473 (1 - 0.473) \cdot [0.3 \cdot (-0.111) + 0.3 \cdot 0.126] = 0.001$ Διορθώσεις στα Βάρη των Ακμών:

 $\Delta w_{23} = \eta \cdot y_2 \cdot \delta_3 = 1 \cdot 0.6 \cdot 0.001 = 0.001$ $\Delta w_{13} = \eta \cdot y_1 \cdot \delta_3 = 1 \cdot 0.1 \cdot 0.001 = 0$

Υπολογισμός των νέων βαρών: $w_{23} = w_{23} + \Delta w_{23} = 0.4 + 0.001 = 0.401$

 $\Delta w_{30} = \eta \cdot (-1) \cdot \delta_3 = 1 \cdot (-1) \cdot 0,001 = -0,001$

 $w_{13} = w_{13} + \Delta w_{13} = 0.5 + 0 = 0.5$ $w_{AB}(n) = w_{AB}(n) + \Delta w_{AB}(n-1)$ $w_{30} = w_{30} + \Delta w_{30} = 0.4 - 0.001 = 0.399$

ΟΠΙΣΘΟΔΙΑΔΟΣΗ ΤΟΥ ΛΑΘΟΥΣ (4 από 4: ΠΡΟΣΘΕΤΑ)

NEYPΩNIKA ΔIKTYA www.psounis.gr

ΠΙΝΑΚΑΣ (ΓΝΩΣΤΩΝ) ΠΑΡΑΓΩΓΩΝ:

Όνομα	Συνάρτηση	Παράγωγος
Σιγμοειδής	$\varphi(x) = \frac{1}{1 + e^{-ax}}$	$\varphi'(x) = a\varphi(x)(1 - \varphi(x))$
Γραμμική	$\varphi(x) = x$	$\varphi'(x)=1$
Υπερβολική Εφαπτομένη	$\varphi(x) = \frac{1 - e^{-ax}}{1 + e^{-ax}}$	$\varphi'(x) = \frac{a}{2} \left[1 - \varphi^2(x) \right]$
Γραμμική με συντελεστή	$\varphi(x) = \alpha x$	$\varphi'(x)=\alpha$
Ημίτονο	$\varphi(x) = \sin(x)$	$\varphi'(x) = \cos(x)$
Συνημίτονο	$\varphi(x) = \cos(x)$	$\varphi'(x) = -\sin(x)$

ΚΡΙΤΗΡΙΟ ΤΕΡΜΑΤΙΣΜΟΥ:

- Το δίκτυο παράγει τις επιθυμητές εξόδους ή έχουν ένα σφάλμα μικρότερο από κριτήριο που έχουμε θέσει.
- Το σφάλμα παρέμεινε ίδιο σε δύο διαδοχικούς κύκλους εκπαίδευσης
- Εκτελέσαμε τον αλγόριθμο για ένα συγκεκριμένο αριθμό βημάτων.