INF0615 – Aprendizado de Máquina Supervisionado

Trabalho 2 - Regressão Logistica

Rodolfo Dalla Costa

Nicole Nogueira

9/11/2021

Introdução

O sistema imunológico humano é o sistema responsável por proteger o corpo de antígenos como vírus e bactérias. A produção de glóbulos brancos, nome dado às células que compoem o sistema imunologico, é originada por algumas cadeias proteicas presentes no antigeno. Desse modo, propoe-se utilizar um modelo de regressao logistica com o objetivo, a partir de determinadas caracteristicas de uma cadeia proteica, a mesma pode gerar uma resposta do sistema imunilogico.

Banco de dados

Tabela 1: Estatísticas sumárias do banco de dados

$end_position$	chou_fasman	emini
Min. : 6	Min. :0.534	Min.: 0.00
1st Qu.: 96	1st Qu.:0.912	1st Qu.: 0.25
Median: 202	Median: 0.991	Median: 0.56
Mean : 308	Mean :0.996	Mean: 1.06
3rd Qu.: 391	3rd Qu.:1.074	3rd Qu.: 1.21
Max. :3033	Max. :1.546	Max. :25.14

kolaskar_tongaonkar	parker	$isoelectric_point$
Min. :0.849	Min. :-9.03	Min.: 3.69
1st Qu.:0.986	1st Qu.: 0.60	1st Qu.: 5.62
Median :1.020	Median: 1.79	Median: 6.52
Mean :1.021	Mean: 1.77	Mean: 7.07
3rd Qu.:1.055	3rd Qu.: 2.99	3rd Qu.: 8.68
Max. :1.255	Max. : 9.12	Max. :12.23

aromaticity	hydrophobicity	stability	target
Min. :0.0000 1st Qu.:0.0625 Median :0.0749 Mean :0.0757 3rd Qu.:0.0913	Min. :-1.971 1st Qu.:-0.606 Median :-0.331 Mean :-0.409 3rd Qu.:-0.190	Min.: 5.4 1st Qu.: 31.7 Median: 42.3 Mean: 43.8 3rd Qu.: 49.1	Min. :0.000 1st Qu.:0.000 Median :0.000 Mean :0.271 3rd Qu.:1.000
Max. :0.1823	Max. : 1.267	Max. :137.0	Max. :1.000

Na 1 pode ser observado os dados que foram utilizados para o desenvolvimento do trabalho. Nota-se que todos praticamente sao dados numericos, e a coluna target é a coluna resultado. A base foi dividida em 3

partes da base e uma outra base externa para testes, sendo portanto, 1 parte de treino, 1 de validação, 1 de teste e 1 de teste sobre o virus SARS. Cada uma contem respectivamente 9204, 2303, 2878 e 520 linhas e um total de 11 colunas (como observado acima).

Análise Descritiva

[1] "Dados Faltantes no treino: FALSE"

[1] "Dados Faltantes na validação: FALSE"

[1] "Dados Faltantes no teste: FALSE"

[1] "Dados Faltantes no SARS: FALSE"

Como pode ser observado, a base nao possui nenhum dado faltante para nenhuma das partes.

Figura 1: Correlações 2 a 2 das variáveis.

Dado o mapa de correlacoes da Figura 1, observa-se que a variavel target nao possui correlacoes com um valor evidentemente alto, sendo notavel uma correlacao inversa com a variavel target com a variavel isoeletric_point e uma correlacao inversa mais baixa com start_position e end_position. Em contrapartida nota-se um correlacao positiva, porem mais fraca, com as variaveis chou_fasm, hydrophobicity, emini e aromaticity.

Metodologia

Apos a etapda de inspecao dos dados, foi realizada a normalizacao utilizando o metodo Z-Norm. Em seguida, a partir dos dados nao balanceados foi gerada uma Baseline considerando todas as variaveis num polinomio de grau 1. Apos isso, foram aplicadas 3 tecnicas de balanceamento: SMOTE, undersample e a ponderada por pesos; dentre elas o balanceamento ponderado gerou melhores resultados. A partir disso, uma serie de hipoteses foram testadas para gerar o modelo: polinomios de 1 a 12, combinacoes considerando as variaveis de maior correlação e a propria baseline.

Resultados e Conclusão