Chapter 2 - Unsuperised Learning Dimensionality Reduction and Clustering

Maschinelles Lernen 1 - Grundverfahren WS19/20

Prof. Gerhard Neumann KIT, Institut für Anthrophomatik und Robotik

Wrap-Up for Chapter 1: "Simple" Supervised Learning

Algorithm	Reg / Class	Representation	Optimization	Loss

Unsupervised Learning

Trainings data does not include target values

Density estimation: Model the data

Clustering:

Dimensionality reduction:

Gerhard Neumann | Machine Learning 1 | KIT | WS 2020/202

Learning Outcomes

- Understand what dimensionality reduction means and why do use it
- Understand what we mean with a "projection" of a vector
- What makes a dimensionality reduction a "good" reduction
- What are the principal components in the data and what is the relation to the covariance matrix
- Learn about constraint convex optimization

Today's Agenda!

Dimensionality Reduction:

- Linear Dimensionality Reduction
- Linear Orthogonal Projections
- Reproduction Error
- Principal Component Analysis

Basics: Convex Constraint Optimization

- Lagrangian Multipliers and Constraint Optimization
- Dual Optimization Problem

Slides are largely based on Slides from Jan Peters

Dimensionality Reduction

Supervised Learning:

Learn a mapping from input x to output y

Sometimes, it is quite helpful to analyze the data points themselves

- Unsupervised learning
- Particularly:
 - Reduce the dimensionality of the data

Possible application:

- Visualization of the data
- Preprocessing for any learning algorithm

Motivation from Linear Least-squares Regression

In least-squares linear regression the parameters are computed as

$$m{w} = (m{X}^Tm{X})^{-1}m{X}^Tm{y}$$
 where $m{X} \in \mathbb{R}^{N imes d}$ and $m{y} \in \mathbb{R}^{n imes 1}$

- We need to invert a d \times d matrix, which naively costs O(d³)
- Hence, it would be helpful to find a new d_{new} << d to gain computational advantage while not loosing prediction performance

Dimensionality Reduction

- How can we find more efficient representations for our data?
- How can we capture the "essence" of the data?

Example: images of the digit 3

• The images can be represented as points in a high-dimensional space (e.g., with one dimension per pixel, in a 4k image there are around 9 million dimensions!)

Linear Dimensionality Reduction

To make things easier, we will once again assume linear models. A data point (here: one image) can be written as a linear combination of bases (here: basis images)

Linear Dimensionality Reduction

 What linear transformations of the data can be used to define a lower-dimensional subspace that captures most of the structure?

Linear Dimensionality Reduction

Problem definition:

- Original data point i: $oldsymbol{x}_i \in \mathbb{R}^D$
- Low-dimensional representation of data point i: $z_i \in \mathbb{R}^M$ with D << M
- Goal: find a mapping

$$oldsymbol{x}_i
ightarrow oldsymbol{z}_i$$

Restrict this mapping to be a linear function

$$oldsymbol{z}_i = oldsymbol{W} oldsymbol{x}_i, ext{ with } oldsymbol{W} \in \mathbb{R}^{M imes D}$$

Orthonormal Basis Vectors

We can always write a vector in terms of an orthonormal basis coordinate system

$$\boldsymbol{x} = \sum_{i=1}^{D} z_i \boldsymbol{u}_i$$
, where $\boldsymbol{u}_i^T \boldsymbol{u}_j = \delta_{ij}$ and $\delta_{ij} = 1$ if $i = j$, 0 otherwise

 Orthonormality condition: The product of 2 different basis vectors is 0. The norm of each basis vector is 1.

Example:

$$\left[\begin{array}{c} 3\\7 \end{array}\right] = 3 \left[\begin{array}{c} 1\\0 \end{array}\right] + 7 \left[\begin{array}{c} 0\\1 \end{array}\right]$$

Projections

The coefficients z_i can be obtained by projecting \mathbf{x} on the basis vector \mathbf{u}_i

$$z_i$$
 = $u_i^T x$ scalar coefficient projection

Example:

$$egin{aligned} oldsymbol{x} &= z_1 oldsymbol{u}_1^T oldsymbol{x} = z_1 oldsymbol{u}_1^T oldsymbol{u}_1 + z_2 oldsymbol{u}_2^T oldsymbol{u}_2 = z_1 \ &= 1 \end{aligned}$$

Projection of 2 vectors

Decomposition

Use M << D basis vectors:

$$oldsymbol{x} = \underbrace{\sum_{i=1}^{M} z_i oldsymbol{u}_i}_{ ilde{oldsymbol{x}} pprox oldsymbol{x}} + \underbrace{\sum_{j=M+1}^{D} z_j oldsymbol{u}_j}_{ ext{skip}}$$

Find the M basis vectors u_i that minimize the mean squared reproduction error:

$$\underset{\boldsymbol{u}_1,...,\boldsymbol{u}_M}{\operatorname{arg\,min}} E(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_M) = \underset{\boldsymbol{u}_1,...,\boldsymbol{u}_M}{\operatorname{arg\,min}} \sum_{i=1}^N ||\boldsymbol{x}_i - \tilde{\boldsymbol{x}}_i||^2$$

Minimizing the error

Assuming a single basis vector, the error can be written as

$$E(\boldsymbol{u}_{1}) = \sum_{i=1}^{N} ||\boldsymbol{x}_{i} - \tilde{\boldsymbol{x}}_{i}||^{2} = \sum_{i=1}^{N} ||\boldsymbol{x}_{i} - (\boldsymbol{u}_{1}^{T}\boldsymbol{x}_{i})\boldsymbol{u}_{1}||^{2}$$

$$= \sum_{i=1}^{N} \boldsymbol{x}_{i}^{T}\boldsymbol{x}_{i} - 2(\boldsymbol{u}_{1}^{T}\boldsymbol{x}_{i})^{2} + (\boldsymbol{u}_{1}^{T}\boldsymbol{x}_{i})^{2}\boldsymbol{u}_{1}^{T}\boldsymbol{u}_{1} = \sum_{i=1}^{N} \boldsymbol{x}_{i}^{T}\boldsymbol{x}_{i} - (\boldsymbol{u}_{1}^{T}\boldsymbol{x}_{i})^{2}$$

$$= \sum_{i=1}^{N} \boldsymbol{x}_{i}^{T}\boldsymbol{x}_{i} - z_{i1}^{2}$$

Minimizing the error

The error can be written as

$$E(\boldsymbol{u}_1) = \sum_{i=1}^{N} \boldsymbol{x}_i^T \boldsymbol{x}_i - z_{i1}^2$$

$$\Rightarrow \underset{\boldsymbol{u}_1}{\operatorname{arg\,min}} E(\boldsymbol{u}_1) = \underset{\boldsymbol{u}_1}{\operatorname{arg\,max}} \sum_{i=1}^N z_{i1}^2 = \underset{\boldsymbol{u}_1}{\operatorname{arg\,max}} \sum_{i=1}^N (\boldsymbol{u}_1^T \boldsymbol{x}_i)^2$$

- Minimizing the error is equivalent to maximizing the variance of the projection. (Assuming a zero mean on the data)
- We can ensure a zero mean projection by subtracting the mean from the data

$$ar{oldsymbol{x}}_i = oldsymbol{x}_i - oldsymbol{\mu}$$

Illustration

$$ilde{oldsymbol{x}} = \sum_{i=1}^M z_i oldsymbol{u}_i + oldsymbol{\mu}$$

- Projecting onto u₁ captures the majority of the variance and hence projecting onto it minimizes the error
- Note that these axes are orthogonal and decorrelate the data
 - i.e. in the coordinate frame of these axes, the data is uncorrelated (side note: this only works for Gaussians)

Principle component analysis (PCA)

Goal: find the so-called principal directions, and the variance of the data along each principal direction

• λ_i is the marginal variance along the principal direction $oldsymbol{u}_i$

Principle component analysis

 The first principal direction u₁ is the direction along which the variance of the projected data is maximal

$$u_1 = \underset{\boldsymbol{u}}{\operatorname{arg max}} \frac{1}{N} \sum_{i=1}^{N} \left(\boldsymbol{u}^T \underbrace{\left(\boldsymbol{x}_i - \boldsymbol{\mu} \right)}_{\bar{\boldsymbol{x}}_i} \right)^2 \quad \text{s.t. } \boldsymbol{u}^T \boldsymbol{u} = 1$$

- The directions all have unit norm.
- The second principal direction maximizes the variance of the data in the orthogonal complement of the first principal direction

Derivation...

Objective in matrix form...

$$E(\boldsymbol{u}) = \frac{1}{N} \sum_{i=1}^{N} \left(\boldsymbol{u}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right)^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\boldsymbol{u}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} \boldsymbol{u} \right)$$

$$= \boldsymbol{u}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} \right) \boldsymbol{u} = \boldsymbol{u}^{T} \boldsymbol{\Sigma} \boldsymbol{u}$$
covariance $\boldsymbol{\Sigma}$

The objective can be written in terms of the sample covariance!

Derivation...

We obtain the following constrained optimization problem

$$u_1 = \underset{\boldsymbol{u}}{\operatorname{arg\,max}} \ \boldsymbol{u}^T \boldsymbol{\Sigma} \boldsymbol{u} \quad \text{s.t. } \boldsymbol{u}^T \boldsymbol{u} = 1$$

We need to look at constraint optimization first!

Constraint Optimization

Basics: Constrained Optimization

Simple constrained optimization problem: $\underset{x}{\operatorname{arg \, min}} x^2$ s.t. $x \ge b$

How do we solve the constrained optimization problem? Lagrangian Multipliers!

Basics: Lagrangian Multipliers

$$\min_{x} x^2$$
 s.t. $x \ge b$

The Lagrangian:

• L = objective - multiplier * constraint

$$L(x,\alpha) = \underbrace{x^2}_{\text{objective}} - \underbrace{\alpha}_{\text{multiplier}} \cdot \underbrace{(x-b)}_{\text{constraint}}$$

Lagrangian optimization:

$$\min_{x} \max_{\alpha} L(x, \alpha), \quad \text{s.t. } \alpha \ge 0$$

Why is this equivalent?

Min fights max!

- x < b:
 - $(x-b) < 0 \to \max_{\alpha} -\alpha(x-b) = \infty$
 - min won't let that happen
- x > b:
 - $-(x-b) > 0, \alpha \ge 0 \to \alpha^* = 0$
 - L is the same as original objective
 - x=b:
 - α can be anything
 - L is the same as original objective

Min forces *max* to behave such that constraints are satisfied

General formulation

General Formulation:
$$\min_{\boldsymbol{x}} f(\boldsymbol{x}),$$

s.t. $h_i(\boldsymbol{x}) \geq b_i$, for $i = 1 \dots K$

Several inequality constraints (equality constraints also possible)

Lagrangian optimization:
$$\min_{\boldsymbol{x}} \max_{\boldsymbol{\lambda}} L(\boldsymbol{x}, \boldsymbol{\lambda}), \quad L(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) - \sum_{i=1}^K \lambda_i \left(h_i(\boldsymbol{x}) - b_i \right)$$

s.t. $\lambda_i \geq 0$, for $i = 1 \dots K$

Dual formulation

Primal optimization problem:

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}),$$

s.t.
$$h_i(\boldsymbol{x}) \geq b_i$$
, for $i = 1 \dots K$

Dual optimization problem:

$$\lambda^* = \underset{\lambda}{\operatorname{arg \, max}} g(\lambda), \quad g(\lambda) = \underset{x}{\min} L(x, \lambda)$$
s.t. $\lambda_i \ge 0$, for $i = 1 \dots K$

- *g* is also called the dual function of the optimization problem
- We essentially swapped min and max in the definition of L

Slaters condition: For a convex objective and convex constraints, solving the dual is equivalent to solving the primal!

Optimal primal parameters can be obtained from optimal dual parameters, i.e.

$$m{x}^* = rg\min L(m{x}, m{\lambda}^*)$$
 Gerhard Neumann | Machine Learning 1 FKIT | WS 2019/2020

Example:

$$\min_{x} x^2$$
 s.t. $x \ge 1$

Back to the PCA Derivation...

We obtain the following constrained optimization problem

$$u_1 = \underset{\boldsymbol{u}}{\operatorname{arg\,max}} \ \boldsymbol{u}^T \boldsymbol{\Sigma} \boldsymbol{u} \quad \text{s.t. } \boldsymbol{u}^T \boldsymbol{u} = 1$$

We now know what to do... Lagrangian optimization

The Lagrangian is given by:

$$L(\boldsymbol{u}, \lambda) = \boldsymbol{u}^T \boldsymbol{\Sigma} \boldsymbol{u} + \lambda (\boldsymbol{u}^T \boldsymbol{u} - 1)$$

Optimal solution for u:

$$rac{\partial L(m{u},\lambda)}{\partial m{u}} = 2m{\Sigma}m{u} + 2\lambdam{u} \stackrel{!}{=} m{0} \quad \Rightarrow m{\Sigma}m{u} = \lambdam{u} \quad ext{ This is an Eigen-value problem!}$$

Basics: Eigenvalues and Eigenvectors

• Let the Eigenvectors and Eigenvalues of **C** be $\mathbf{u_k}$ and λ_k for $k \leq D$ i.e., $C\mathbf{u}_k = \lambda_k \mathbf{u}_k \quad \text{with } \lambda_1 > \lambda_2 > \cdots > \lambda_D$ Ordered list of Eigenvalues

In matrix form:

$$CU = U\Lambda$$
 with $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_D)$ and $U = [u_1, \ldots, u_D]$

- Because **U** is orthonormal (eigenvectors have unit norm), we know that $m{U}m{U}^T = m{I}$
- This mean that we can decompose C as

$$(CU)U^T = (U\Lambda)U^T \Rightarrow C = U\Lambda U^T$$

Basics: Eigenvalues and Eigenvectors

Every positive definite symmetric matrix can be decomposed in its Eigendecomposition

$$m{C} = m{U} m{\Lambda} m{U}^T = egin{bmatrix} m{u}_1 & \dots & m{u}_D \end{bmatrix} egin{bmatrix} \lambda_1 & & & \ & \ddots & & \ & \vdots & \ m{u}_D^T \end{bmatrix}$$
Eigenvalues

Back to PCA

Eigenvalues-Eigenvectors of the covariance matrix

$$\Sigma u = \lambda u$$

- The largest Eigenvalue gives us the maximal variance
- The corresponding Eigenvector gives us the direction with maximal variance

Principal Component Analysis

• **Observation:** If $\lambda_k \approx 0$ for k > M for some M << D, then we can use the subset of the first D eigenvectors to define a basis for approximating the data vectors with loosing accuracy

$$oldsymbol{x}_i - oldsymbol{\mu} = \sum_{j=1}^M z_{ij} oldsymbol{u}_j + \sum_{j=M+1}^D z_{ij} oldsymbol{u}_j \Rightarrow oldsymbol{x}_i pprox oldsymbol{\mu} + \sum_{j=1}^M z_{ij} oldsymbol{u}_j$$

 This representation has the minimal mean squared error (MSE) of all linear representations of dimension D

$$\underset{\boldsymbol{u}_1,...,\boldsymbol{u}_M}{\operatorname{arg\,min}} E(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_M) = \underset{\boldsymbol{u}_1,...,\boldsymbol{u}_M}{\operatorname{arg\,min}} \sum_{i=1}^N ||\boldsymbol{x}_i - \tilde{\boldsymbol{x}}_i||^2$$

Principal Component Analysis

Now we know how we can represent our data in a lower dimensional space in a principled way

- Center the data around the mean (compute the mean of the data and subtract it)
- Compute the covariance matrix, decompose it, and choose the first D largest Eigenvalues and corresponding Eigenvectors
- This gives us an (Eigen)basis for representing the data
 - Projection to low-D: $oldsymbol{z}_i = oldsymbol{B}^T (oldsymbol{x}_i oldsymbol{\mu})$
 - Reprojection to high-D: $ec{oldsymbol{x}}_i = oldsymbol{\mu} + oldsymbol{B} oldsymbol{z}_i$

with
$$oldsymbol{B} = \left[egin{array}{cccc} oldsymbol{u}_1 & \dots & oldsymbol{u}_M \end{array}
ight]$$

It is also common to normalize the variance of each dimension (i.e. unit variance)

How to choose M

- A larger M leads to a better approximation. In the limit, when M = D we stay in the initial data dimensions
- There are at least 2 good possibilities for choosing D
 - Choose D based on application performance, i.e. choose the smallest D that makes the application work well enough
 - Choose D so that the Eigenbasis captures some fraction of the variance (for example η = 0.9).

The eigenvalue λ_i describes the marginal variance captured by $\mathbf{u_i}$

Choose
$$D$$
 s.t. $\sum_{i=1}^{M} \lambda_i = \eta \sum_{i=1}^{D} \lambda_i$ Total variance of the data

Image representation with PCA

Image representation with PCA

Eigenfaces

- The first popular use of PCA for object recognition was for the detection and recognition of faces [Turk and Pentland, 1991]
- Collect a face ensemble
- Normalize for contrast, scale, & orientation
- Remove backgrounds
- Apply PCA & choose the first D eigen-images that account for most of the variance of the data

Image Morphing with PCA

Generic Image Ensembles

Is there a low-dimensional model describing natural images?

PCA of natural image patches

8x8 image patches

PCA Model of body shapes

PCA on a detailed triangle model of human bodies [Anguelov et al. 05]

Wrap-up

Summary:

- PCA projects the data into a linear subspace
- PCA maximizes the variance of the projection
- PCA minimizes the error of the reconstruction

Applications:

- PCA allows us to transform a high-dimensional input space to a low-dimensional feature space, while capturing the essence of the data
- PCA finds a more natural coordinate system for the data
- PCA is a very common preprocessing step for high-dimensional input data

Takeaway messages

What have we learned today?

- What does dimensionality reduction mean?
- What is PCA? What are the three things that it does?
- What are the roles of the Eigenvectors and Eigenvalues in PCA?
- Can you describe applications of PCA?

