EE1005 - Digital Logic Design

Quiz# 5 (SE 2A)

Solution Manual

Question 1: Design a circuit that takes a 3-bit binary input and outputs a 2-bit binary number representing the count of '1's in the input. Use a 3-to-8 decoder, OR gates, and a 4-to-2 encoder for implementation. **[5 marks]**

Solution

Truth Table:

A2	A1	A0	Number of 1's	B1	B0
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	2	1	0
1	0	0	1	0	1
1	0	1	2	1	0
1	1	0	2	1	0
1	1	1	3	1	1

Design Implementation:

Question 2: Implement the following Boolean function with 4X1 MUX and external gates where AB are select lines and C D are data lines.

- a) $F(A,B,C,D) = \sum (1,3,4,11,12,13,14,15)$
- **b)** $F(A, B, C,D) = \sum (1, 2, 5, 7, 8, 10, 11, 13, 15)$

Solution:

<u>OR</u>

		362	A	В	C	D	F	
	Α	В	0	0	O	0	0	
I,	0	0	0	0	0	1	1	F = D
8	-	Ψ.,	0	0	1	0	0	
			0	0	1	1	1	
		98	0	1	0	0	1	
I,	I, 0	1	0	1	0	1	0	F = C' D'
-1	Ų.	0	0	1	1	0	0	r-c b
			0	1	1	1	0	
		2.5	1	0	0	0	0	
	945	_	1	0	0	1	0	F = CD
I2	1	0	1 0 1 0	0	1-45			
			1	0	1	1	1	
		-	1	1	0	0	1	
I,	4	1	1	1	0	1	1	F = 1
-,	1	•	1	1	1	0	1	
			1	1	1	1	1	

b)

SOLUTION:

$$F = S(1, 2, 5, 7, 8, 10, 11, 13, 15)$$

Question 3: Design a combinational circuit with a decoder to accept a 3-bit number and generate the output binary number equal to the square of the input number. Implement this using 2:4 decoder.

Solution:

A2	A 1	A0	Decimal Input	Y5	Y4	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	1
0	1	0	2	0	0	0	1	0	0
0	1	1	3	0	0	1	0	0	1
1	0	0	4	0	1	0	0	0	0
1	0	1	5	0	1	1	0	0	1
1	1	0	6	1	0	0	1	0	0
1	1	1	7	1	1	0	0	0	1

Equations:

Y0=C

Y1 = 0

Y2 = BC' Y3 = A'BC + AB'C = C(A⊕B) Y4 = AB' + AC

Question 4: A sequential circuit with two D flip-flops A and B, two inputs, x and y; and one output z is specified by the following next-state and output equations.

[15 Marks]

$$A(t+1) = xy' + xB$$

$$B(t+1) = xA + xB'$$

$$z = A$$

Implement the following

a) Draw the logic diagram of the circuit.

b) List the state table for the sequential circuit.

c) Draw the corresponding state diagram.

5 marks

6 marks

4 marks

Solution:

	Presen	t State	Inp	uts			- 4		Next	State	Output
ĺ	A	В	x	у	xy'	хB	xA	xB'	A	В	Z
Ī	0	0	0	0	0	0	0	0	0	0	0
ľ	0	0	0	1	0	0	0	0	0	0	0
ĺ	0	0	1	0	1	0	0	1	1	1	1
ĺ	0	0	1	1	0	0	0	1	0	1	0
I	0	1	0	0	0	0	0	0	0	0	0
ľ	0	1	0	1	0	0	0	0	0	0	0
ľ	0	1	1	0	1	1	0	0	1	0	1
Ī	0	1	1	1	0	1	0	0	1	0	1
Ī	1	0	0	0	0	0	0	0	0	0	0
Ì	1	0	0	1	0	0	0	0	0	0	0
ľ	1	0	1	0	1	0	1	1	1	1	1
ĺ	1	0	1	1	0	0	1	1	0	1	0
Ī	1	1	0	0	0	0	0	0	0	0	0
Ī	1	1	0	1	0	0	0	0	0	0	0
ĺ	1	1	1	0	1	1	1	0	1	1	1
ĺ	1	1	1	1	0	1	1	0	1	1	1

For Learning purpose: https://www.youtube.com/watch?v=bg65gCzDNhA

Question 5: Given the following state diagram, perform the following tasks: [5+5+5=15 marks]

- a) Construct the state table that corresponds to the given state diagram.
- b) Reduce the state table to its minimized form step by step.
- c) Draw the reduced state diagram

a)

Present state	Next	state	Output		
	X=0	X=1	X=0	X=1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	g	f	0	1	
g	а	f	0	1	

b)

Step1: eliminate the g state in the state table and wherever g is present replace it with e. Because e and g both are the same i.e. e=g.

Present state	Next s	tate	Output		
	X=0	X=1	X=0	X=1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	e(g=e)	f	0	1	

Here d and f are having the same next state value and output. So eliminate f and wherever f is present replace it with d. Because both are the same d=f

Present state	Next	state	Output		
	X=0	X=1	X=0	X=1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	d(d=f)	0	1	
е	а	d(d=f)	0	1	

Step 3: Further observe if any similar states are present or not. The states c and e are having same next states but they are having different outputs. So we cannot consider it a reduction state.

c)

BONUS TASK:

Puzzle:

In a car race, Alex finishes before Ben and Carl, but behind Dave. Ben finishes before Carl but behind Emma. Who finishes the race first?

Answer:

From the clues:

- Alex finishes before Ben and Carl but behind Dave.
- Ben finishes before Carl but behind Emma. Ordering the racers:
- Dave finishes before Alex (from the first clue).
- Alex finishes before Ben and Carl.

• Emma finishes before Ben (from the second clue).

Thus, the order must be: Dave, Emma, Alex, Ben, Carl. <u>So.</u> <u>Dave finishes the race first.</u>