#### Proyecto de Automatización Industrial

Análisis y control de un servomotor



Alumnos:

**Gabriel Reales** 

Francisco Moreno

Profesores:

Ing. Marcelo Lorenc

Dr.Ramiro Peña





# Objetivos

- Diseño de prototipo para prácticas de Control y Automatización
- Manejo del servocontrolador Lexium05 y servomotor BSH055
- Comunicación industrial Modbus y CAN
- Identificación y control del equipo de práctica
- Programación de un PLC-M340
- Monitoreo y control de variables a través de un sistema SCADA

## Prototipo

#### Características del equipo:

- Controlador Lexium05AD10M2
- Servomotor BSH0551T11A1
- Panel de control para el manejo local



LEXIUM05A



**BSH055** 

#### PLC-M340



- CPU BMX P34 2030 con conexión Ethernet &
  CANopen
- Montado sobre un bastidor, con riel DIN, con
- 1 Módulo de 8 entradas y 8 salidas
  BMXDDM16022
- Tarjeta de memoria Flash SD de 8 MB

bornera de simulación y 8 indicadores luminosos

# Diseño de prototipo



### Comunicación





# Control: Lazo de regulación



#### Software PowerSuite





## Modos de funcionamiento principales

Modo manual

Control por velocidad

Control de posición

Control por corriente

# Método Ziegler-Nichols



$$G_0(s) = \frac{K_0 e^{-s\tau}}{\gamma_0 s + 1}$$

### Identificación del sistema



## Planta identificada



## Identificación del sistema



# Controlador



#### Resultado: Control PI



### Configuración del software de programación: Unity Pro XL











#### Programación en Unity Control de Velocidad



#### SCADA



#### Conclusiones



Se trabajo sobre una problemática real



Ventajas de la conexión Modbus y CAN



Análisis teórico del controlador

# Preguntas

