Summary of tight lower bounds

P, Q: Probability distributions on real line with given means and variances.

$$R_P \coloneqq \frac{\left| \mathrm{E}[X]_P - \mathrm{E}[Y]_Q \right|}{\sqrt{\mathrm{Var}[X]_P}}, \qquad R_Q \coloneqq \frac{\left| \mathrm{E}[X]_P - \mathrm{E}[Y]_Q \right|}{\sqrt{\mathrm{Var}[Y]_Q}}, \quad \text{where } X \sim P \text{ and } Y \sim Q$$

Divergence	Lower bound	Equality condition
$KL ext{-divergence}^{[1]} \ \sum p_i \ln rac{p_i}{q_i}$	$\int_0^1 \frac{\lambda}{(1-\lambda)R_P^2 + \lambda R_Q^2 + \lambda(1-\lambda)} d\lambda$	2-point distributions
χ^2 -divergence $\frac{\sum (p_i - q_i)^2}{q_i}$	R_Q^2 (Hammersley-Chapman-Robbins bound)	2-point distributions
Squared Hellinger distance ^[2] $\frac{1}{2}\sum(\sqrt{p_i}-\sqrt{q_i})^2$	$1 - (R_P + R_Q) \sqrt{\frac{1}{(R_P + R_Q)^2 + 1}}$	2-point distributions
Total variation distance ^[3] $\frac{1}{2} \sum p_i - q_i $	$\frac{1}{\left(R_p + R_q\right)^2 + 1}$	3-point distributions

^[1] https://www.mdpi.com/1099-4300/22/5/563

^[2] https://arxiv.org/abs/2105.12972

^[3] https://arxiv.org/abs/2212.05820