$\rho(i) = \begin{cases} 1, & \text{if request No. } i \text{ is accepted.} \\ 0, & \text{if request No. } i \text{ is denied.} \end{cases}, \forall i \in \{1, 2, \dots, |M|\}.$ (1)

$$Rev(M_i) = \rho(i) \times Dur_i^V \times \left[\sum_{n_i^V \in N_i^V} dem^V(n_i^V) \times cpu^V(n_i^V) + \sum_{l_i^V \in L_i^V} dem^V(l_i^V) \times bw^V(l_i^V) \right].$$
(2)

$$Cost(M_i) = \rho(i) \times Dur_i^V \times \left[\sum_{n_i^V \in N_i^V} lev^S(M_{i,N}(n_i^V)) \times cpu^V(n_i^V) + \sum_{l^V \in L^V} lev^S(M_{i,L}(l_i^V)) \times len(M_{i,L}(l_i^V)) \times bw^V(l_i^V) \right].$$

$$(3)$$

$$\max \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \rho(i)}{n}, where \rho(i) = \begin{cases} 1, & \text{if } VNR_i \text{ accepted.} \\ 0, & \text{if } VNR_i \text{ denied.} \end{cases}$$
(4)

$$\max \lim_{T \to \infty} \frac{\sum_{i=1}^{|\mathbf{M}|} Rev(M_i)}{T}, \qquad (5)$$

$$\max \lim_{T \to \infty} \frac{Rev(\mathbf{M})}{T} / \lim_{T \to \infty} \frac{Cost(\mathbf{M})}{T}.$$

$$\sum_{i=1}^{|N^{S}|} x_{i,qr} = 1, \qquad \forall n_{i,q} \in N_{i}^{V},$$
(6)

$$\sum_{r=1} x_{i,qr} = 1, \qquad \forall n_{i,q} \in N_i^V , \tag{7}$$

$$|P^S|$$

$$\sum_{r=1}^{|P^S|} y_{i,qr} = 1, \qquad \forall l_{i,q} \in L_i^V,$$
(8)

$$\sum_{i=1}^{|N|} x_{i,qr} cpu_i^V(n_{i,q}) \le cpu^S(n_r), \quad \forall n_{i,q} \in N_i^V, n_r \in N^S,$$

$$|N|$$

$$(9)$$

$$\sum_{i=1}^{|N|} y_{i,qr} b w_i^V(l_{i,q}) \le \min_{l_j \in p_r} b w^S(l_j), \quad \forall l_{i,q} \in L_i^V, p_r \in P^S,$$

$$x_{qr} dem^S(n_r) \le lev^V(n_q), \quad \forall n_q \in N_i^V, n_r \in N^S,$$

$$(10)$$

$$x_{qr}dem^V(n_q) \le lev^S(n_r), \quad \forall n_q \in N_i^V, n_r \in N^S,$$
 (12)

$$x_{qr}dem^{V}(n_{q}) \leq lev^{C}(n_{r}), \quad \forall n_{q} \in N_{i}^{C}, n_{r} \in N^{C},$$

$$\max\{dem^{S}(n_{r}), \max_{r, r} dem^{V}(n_{q})\}$$

$$(12)$$

$$\leq \min\{lev^{S}(n_r), \min_{x_{qr}=1} lev^{V}(n_q)\}, \quad \forall n_q \in N_i^V, n_r \in N^S, \quad (13)$$

$$dem^{V}(l_q) \le \min_{l_i \in p_r, y_{qr} > 0} lev^{S}(l_i), \quad \forall l_q \in L_i^V, p_r \in P^S.$$
 (14)

$$H^{(t+1)}(n,k) = \lambda \sum_{(m,n)\in Link(n)} PC((m,n),k)H^{(t)}(m,k) + (1-\lambda)H^{(t)}(n,k), \quad (16)$$