Jogos cooperativos na gestão da cadeia de suprimentos

João B. G. Brito, *Esp.* jbgb@uol.com.br

Michel J. Anzanello, *Phd* michel.anzanello@gmail.com

13 de maio de 2016

Resumo

No ambiente de uma gestão cadeia de suprimentos (GCS) as decisões de cada organização tendem a refletir nos seus elos. A análise destas interações é importante para avaliar a colaboração entre seus membros, sugerir acordos e buscar o equilíbrio mais rentável. Para explorar problemas desta espécie propomos o emprego da teoria dos jogos cooperativos (TJC) com oalgorítmo (*Shapley value*) que pondera a participação nos custos de cada parceiro. Para execução, iniciamos com a apreciação dos conceitos da TJC relacionando com a GCS, para então explorar o raciocínio de cada lógica e discutir a comparação deles. Como resultados, encontramos (adicionar os resultados). Concluímos que a aplicação do *Shapley value* tem potencial de instrumentar apoio na definição de diretrizes da GCS pois seu emprego oferece recursos para racionalizar o potencial dos relacionamentos, estratégias conflitantes e colaborativas.

Palavras-chave: Agentes da cadeia de suprimentos. Otimização. Teoria dos Jogos. Shapley value.

Introdução

Na profusão do mundo profissional organizações deparam-se com decisões difíceis de serem tomadas, tanto pela importância de suas consequências, quanto pelos resultados, muitas vezes, incertos (BEKMAN; NETO, 2009). Silver (2012) destaca que a incerteza¹ é usualmente interpretada como risco², complementando que:

Podemos ter uma consciência difusa dos demônios que nos espreitam lá fora. Podemos até estar bastante preocupados com eles. Mas, na realidade, não temos ideia de quantos são e de quando podem atacar (SILVER, 2012).

Na busca do julgamento perfeito, Condorcet (1785) formaliza o primeiro método de decisão ótima, utilizando probabilidade para quantificar opções. Davenport e Harris (2007) enfatizam o uso de ferramentas analíticas e de tomada de decisão para reduzir incertezas, agregar racionalidade e obter inteligência competitiva. Mas, para Kahneman (2012), apesar das pessoas

¹ Incerteza é o risco difícil de aferir (SILVER, 2012).

² Risco, conforme Knight (1921), é algo em que você pode colocar um preço.

em geral serem racionais, com decisões lógicas e sensatas, emoções como medo, apego e ódio explicam na maioria dos casos a irracionalidade das escolhas. Para Ariely (2009), esta conduta define o conceito de economia comportamental, que considera como as pessoas se comportam e não como deveriam se comportar. É natural do ser humano estabelecer comparações para fundamentar suas decisões, sendo influenciado por forçass racionais. Entretanto, pessoas não são tão racionais como os livros descrevem, existindo diversas situações em que podemos contar com sua previsível irracionalidade (ARIELY, 2012).

Mesquita (2009b) defende o uso de ferramentas matemáticas que equacionem a predição de eventos humanos complexos. Assim, introduz o uso da teoria dos jogos como mecanismo para entender comportamentos:

A teoria dos jogos parte do ponto que as pessoas estão buscando o que é bom para elas. O que não parece ser tão chocante embora controverso para muitas pessoas: somos interessados em nós mesmos. E para buscar o que é melhor para si ou o que imaginamos ser melhor, as pessoas tem valores — identificam o que querem e o que não querem (MESQUITA, 2009a).

Originalmente estabelecida em 1838 por Cournot a teoria ganhou proeminência a partir do livro *The Theory of Games and Economic Behavior* de Neumann e Morgenstern (1947) que formalizou modelos matemáticos para estudo do comportamento econômico nas interações entre agentes em cenários de conflito ou cooperação. Trancedendo o ramo econômico, a teoria dos jogos ganhou aplicações nas mais diversas áreas como: militar (HAYWOOD, 1954; RAND, 2004), jurídico (ROSA, 2014), biológico (SMITH, 1982), filosófico (LEWIS, 2002), político (LEVY; RAZIN, 2003).

Wang (2007) defende que a teoria dos jogos tem se tornado cada vez mais importante e amplamente utilizada como uma ferramenta para selecionar estratégias. No ambiente empresarial Golden e Dollinger (1993) discutem a aplicação da teoria dos jogos em alianças de cooperação e competições estratégicas. Lygero, Godbole e Sastry (1996) utilizam modelos da teoria para desenvolver controles híbridos em sistemas complexos. Shen (2002) emprega os jogos para decisões de programação em ambiente de produção.

A chave da cooperação entre empresas está em conseguir a unidade de motivação pelo alinhamento de incentivos (CAO; ZHANG, 2012). Uma cadeia de suprimentos é beneficiada pela colaboração entre seus membros, que pode ocorrer pelo compartilhamento de informações, conhecimentos, custos, riscos e recompensas. Mesmo que as organizações constituam unidades autônomas, temos uma sequência ou rede de relações interdependentes que pode promover alianças estratégicas (CHEN; PAULRAJ, 2004). Em geral, a cooperação vem ganhando cada vez mais importância, principalmente em redes de alta complexidade (DRECHSEL, 2010) onde as decisões de cada um dos membros (agentes) afeta nas decisões dos demais e o acordo entre os agentes é a base da cooperação (YOUNG, 1994).

Pimentel (2007) sugere o equilíbrio entre entre emoções e razão valorizando a busca da cooperação:

As paixões podem nos motivar a agir, mas nem sempre são suficientes para prevalecer sobre todas as razões; da mesma forma, as razões, sozinhas, não são tão fortes que garantam que uma ação aconteça. Algumas vezes é preciso um *acordo* para resolver os nossos dilemas do prisioneiro *internos*, o que envolve a possibilidade de cooperação na escolha que temos de fazer ao longo do tempo entre "prêmios", tais como recompensas, punições e sentimentos de culpa (PIMENTEL, 2007, p. 132).

Estudos sobre a aplicação da teoria dos jogos cooperativos no gerencimento da cadeia de suprimentos abordam como principal questão o gerenciamento harmonioso das decisões entre os elos da cadeia (DOBOS; PINTÉR, 2010b). O pressuposto está na existência de uma estrutura comum entre os agentes de uma cadeia e que o ganho ou custo seja compartilhado seguindo critérios de distribuição (axiomas) (BEZERRA; GRANDE; SILVA, 2009).

Ayers (2006) define uma cadeia de suprimentos como um conjunto de empresas e pessoas que se relacionam trocando informações e produtos. Já o processo de GCS compreende atividades de decisão relacionadas a organização deste ambiente (FREDENDALL, 2001) e abrange planejamento, controle e coordenação dos canais de distribuição (fornecedores, prestadores de serviço, intermediários, clientes) (PANITZ, 2007).

é uma área que recebe grande atenção da comunidade empresarial Huang (2012) teste. $SCOR^{\circledast}$

```
...seguem referências para completar seção...
```

- Theory of games and economic behavior (NEUMANN; MORGENSTERN, 1947)
- Social choice and individual values (FIGUEIREDO, 1994)
- Teoria dos Jogos Cooperativos: Conceitos Fundamentais (MOREIRA, 2002)
- Teoria Dos Jogos (FIANI, 2006)
- Bayesian learning in negotiation (ZENG; SYCARA, 1998)
- Teoria dos Jogos (TAVARES, 2009)
- Teoria dos Jogos (BIERMAN; FERNANDEZ, 2010)
- Cooperação e Conflito (FIANI, 2011)
- Teoria dos Jogos: Crenas, Desejos e Escolhas (BERNI; FERNANDEZ, 2014)
- A Way to Play Claims Problems (GIMÉNEZ-GÓMEZ, 2014)
- Teoria dos Jogos (FIANI, 2015)
- Entrevista com Bruce Bueno de Mesquita (Jornal Globo, 2012)

1 Teoria dos jogos cooperativos

A chave da cooperação entre empresas está em conseguir a unidade de motivação pelo alinhamento de incentivos (CAO; ZHANG, 2012). Uma cadeia de suprimentos é beneficiada pela colaboração entre seus membros, que pode ocorrer pelo compartilhamento de informações, conhecimentos, custos, riscos e recompensas. Mesmo que as organizações constituam unidades autônomas, temos uma sequência ou rede de relações interdependentes que pode promover alianças estratégicas (CHEN; PAULRAJ, 2004). Em geral, a cooperação vem ganhando cada vez mais importância, principalmente em redes de alta complexidade (DRECHSEL, 2010) onde as decisões de cada um dos membros (agentes) afeta nas decisões dos demais e o acordo entre os agentes é a base da cooperação (YOUNG, 1994).

Definição de um jogo cooperativo.

$$\left\{ x \in \Re^n \mid f(x, S) \le c(S), \forall S \subseteq N \right\} \tag{1}$$

...seguem referências para completar seção...

- Linearity of unrestrictedly transferable utilities (AUMANN, 1960)
- Introduction to the Theory of Cooperative Games (PELEG; SUDHÖLTER, 2007)
- Game Theory Cooperative Games with Transferable Utility (PETERS, 2008)
- A cooperative game approach to optimal saving theory: Toward a constitution for savings (FORTE, 1994)
- Water Costs Allocation in Complex Systems Using a Cooperative Game Theory Approach (SECHI; ZUCCA; ZUDDAS, 2013)
- Cooperative Game Theory in Sports (MANUEL; ARANGUENA; POZO, 2013)
- An intersection theorem in TU cooperative game theory (ÉNIZ; RAFELS, 2004)
- Axiomatization in cooperative game theory (SMOL'YAKOV, 2005)
- Applying cooperative game theory to power relations (WIESE, 2009)
- Cooperative game theory and its insurance applications (LEMAIRE, 1993)
- A novel cooperative spectrum sensing method based on cooperative game theory (CAO; YANG, 2010)
- A cooperative game theory analysis for transmission loss allocation (LIMA; CONTRERAS; PADILHA-FELTRIN, 2008)
- Social and Economic Networks in Cooperative Game Theory (RAY, 2002)
- Game theory in cooperative communications (YANG; FANG; XUE, 2012)
- Allocation of Unit Start-Up Costs Using Cooperative Game Theory (HU et al., 2006)
- Compromise values in cooperative game theory (TIJS; OTTEN, 1993)
- Cooperative advertising, game theory and manufacturer–retailer supply chains (XIE; AI, 2006)
- Estimation of price policies in Senegal An empirical test of cooperative game theory (BEGHIN; KARP, 1991)
- Information sharing in DEA: A cooperative game theory approach (LOZANO, 2012)
- Quality of service provisioning in worldwide interoperability for microwave access networks based on cooperative game theory (JIAO et al., 2011)
- A conceptual application of cooperative game theory to liner shipping strategic alliances (SONG; PANAYIDES, 2002)

- Using cooperative game theory to optimize the feature selection problem (SUN et al., 2012)
- Game Theory as a Theory of a Conflict Resolution A Shapley Value for Cooperative Games with Quarrelling (RAPOPORT, 1974)
- Introduction to Game Theory N-Person Cooperative Games (MORRIS, 1994)

2 Gerenciamento da Cadeia de suprimentos

Estudos sobre a aplicação da teoria dos jogos cooperativos no gerencimento da cadeia de suprimentos abordam como principal questão o gerenciamento harmonioso das decisões entre os elos da cadeia (DOBOS; PINTÉR, 2010b). O pressuposto está na existência de uma estrutura comum entre os agentes de uma cadeia e que o ganho ou custo seja compartilhado seguindo critérios de distribuição (axiomas) (BEZERRA; GRANDE; SILVA, 2009).

```
...seguem referências para completar seção...
```

- Supplier bidding strategy based on non-cooperative game theory concepts in single auction power pools (KANG; KIM; HUR, 2007)
- Aplicação de Teoria de Jogos à Alocação de Capacidade Firme em um Sistema Térmico (AYALA, 2008)
- Value Solutions in Cooperative Games (MCCAIN, 2013)
- Cooperative Games, Solutions and Applications (DRIESSEN, 2013)
- A Teoria dos Jogos Aplicada ao Processo Penal (ROSA, 2014)
- Towards a theory of supply chain management: the constructs and measurements (CHEN; PAULRAJ, 2004)
- Game Theory in Supply Chain Analysis (CACHON; NETESSINE, 2004)
- Supply Chain Games: Operations Management and Risk Valuation (KOGAN; TAPIERO, 2007)
- Cooperation: Game-Theoretic Approaches (HART; MAS-COLELL, 2012)
- Quantitative Methods in Supply Chain Management: Models and Algorithms (CHRISTOU, 2012)
- Cooperation in an HMMS-type supply chain: A management application of cooperative game theory (DOBOS; PINTÉR, 2010a)

3 Estudo de caso

```
...linguagem e pacotes da seção...
```

- R: A Language and Environment for Statistical Computing (R Development Core Team, 2016)
- ggmap: Spatial Visualization with ggplot2 (KAHLE; WICKHAM, 2013)

Figura 1 - Custo dos itinerários

Tabela 1 – Tabela de combinações de agentes e custo

S	Ø	{1}	{2}	{3}	{1,2}	{1,3}	{2,3}	{1,2,3}	N
$\nu(S)$	0	5	8	5	10	10	10	14	14

4 Shapley value

4.1 Conceito

Sendo $\forall S \neq \emptyset e S \subset N$

$$\varphi_i = \sum_{S \subset N} \frac{(|s| - 1)!(n - |s|)!}{n!} [\nu(S) - \nu(S - i)]$$
 (2)

Shapley axiomas para $\varphi(v)$

- 1. **Eficiência:** Toda alocação é distribuída sem disperídio $\sum_{i \in N} \varphi_i(v) v(N)$.
- 2. **Simetria:** Se i e j são tal que $v(S \cup \{i\}) = v(S \cup \{j\})$ para cada coalisão S não contenha i e j, então $\varphi_i(v) = \varphi_i(v)$
- 3. **Linearidade:** Se dois agentes em uma coalizão, descritos pelas funões de ganho $\phi_i(v)$ e $\phi_i(w)$, são combinados, então os ganhos são correspondentes $\phi_i(v+w) = \phi_i(v) + \phi_i(w)$.
- 4. Zero jogador: Quando um jogador não contribui na cooperação sua alocação é nula.

...seguem referências para completar seção...

- Aircraft Landing Fees: A Game Theory Approach (LITTLECHILD; THOMPSON, 1977)
- The Shapley value: essays in honor of Lloyd S. Shapley (ROTH, 1988)
- Lloyd Shapley's Matching and Game Theory (SERRANO, 2013)
- Cooperative Game Theory and Applications: Cooperative Games Arising from Combinatorial Optimization Problems (CURIEL, 1997)
- On axiomatizations of the Shapley value for assignment games (BRINK; PINTÉR, 2015)
- 4.2 Aplicação no estudo de caso

Para i = 1.

$$x_{[1]} = \frac{0!2!}{3!}(c(\{1\}) - c(\emptyset)) + \frac{1!1!}{3!}(c(\{1,2\}) - c(\{2\}) + \frac{1!1!}{3!}(c(\{1,3\}) - c(\{3\}) + \frac{2!0!}{3!}(c(\{1,2,3\}) - c(\{2,3\})))$$
(3a)

Ŀ.

$$x_{[1]} = \frac{2}{6}(c(\{5-0\}) + \frac{1}{6}(c(\{10-8\}) + \frac{1}{6}(c(\{10-5\}) + \frac{2}{6}(c(\{14-10\}))))$$
 (3b)

∴.

$$x_{[1]} = \frac{25}{6} \cong 4,1667 \tag{3c}$$

Para i = 2.

$$x_{[2]} = \frac{0!2!}{3!} (c(\{2\}) - c(\emptyset)) + \frac{1!1!}{3!} (c(\{1,2\}) - c(\{1\}) + \frac{1!1!}{3!} (c(\{2,3\}) - c(\{3\}) + \frac{2!0!}{3!} (c(\{1,2,3\}) - c(\{1,3\})) + \frac{2!0!}{3!} (c(\{1,2,3\}) - c(\{1,3\}) + \frac{2!0!}{3!} (c(\{1,2,3\}) - c(\{1,3\}) + \frac{2!0!}{3!} (c(\{1,2,3\}) - c(\{1,3\}) + \frac{2$$

٠.

$$x_{[2]} = \frac{2}{6}(c(\{8-0\}) + \frac{1}{6}(c(\{10-5\}) + \frac{1}{6}(c(\{10-5\}) + \frac{2}{6}(c(\{14-10\})))$$
 (4b)

: .

$$x_{[2]} = \frac{34}{6} \cong 5,6667 \tag{4c}$$

Para i = 3.

$$x_{[3]} = \frac{0!2!}{3!}(c(\{3\}) - c(\emptyset)) + \frac{1!1!}{3!}(c(\{1,3\}) - c(\{1\}) + \frac{1!1!}{3!}(c(\{2,3\}) - c(\{2\}) + \frac{2!0!}{3!}(c(\{1,2,3\}) - c(\{1,2\})) - c(\{1,2\}))$$
 (5a)

٠.

$$x_{[3]} = \frac{2}{6}(c(\{5-0\}) + \frac{1}{6}(c(\{10-5\}) + \frac{1}{6}(c(\{10-8\}) + \frac{2}{6}(c(\{14-10\}))))$$
 (5b)

٠.

$$x_{[3]} = \frac{25}{6} \cong 4,1667$$
 (5c)

A solução para o vetor *x* é:

$$x = \left(\frac{25}{6}; \frac{34}{6}; \frac{25}{6}\right) \tag{6}$$

٠.

$$x \cong (4, 1667; 5, 6667; 4, 1667)$$
 (7)

Onde:

$$x = \left(\frac{25}{6} + \frac{34}{6} + \frac{25}{6}\right) \tag{8}$$

•.•

$$\sum_{i=1}^{3} x_i = 14 = c(N) \tag{9}$$

4.3 Implementacção computacional para o estudo de caso

```
...linguagem R e pacotes da seção...
```

- R: A Language and Environment for Statistical Computing (R Development Core Team, 2016)
- scales: Scale Functions for Visualization (WICKHAM, 2015)
- ggplot2: Elegant Graphics for Data Analysis (WICKHAM, 2009)

```
# Define os custos de coalisoes
coalisoesAgentes <- c(5, 8, 5, 10, 10, 10, 14)

# Nomes dos agentes/jogadores
nomesAgentes <- c('[1] Origem - Assuncion','[2] Origem - UFMS','[3] Origem - UFRJ')

# Define jogo com tres jogadores/agentes
definicaoJogo <- DefineGame(3, coalisoesAgentes)

# Demonstra as coalisoes e res pectivos custos
summary(definicaoJogo)
##</pre>
```

```
## Characteristic form of the game
##
## Number of agents: 3
##
## Coaliton Value(s)
##
       v(i)
##
## 1
          5
## 2
         8
## 3
         5
## 12 10
## 13
         10
## 23
        10
## 123
       14
# Calcula o Shapley Value
shapleyValue <- ShapleyValue(x = definicaoJogo,</pre>
                              Names = nomesAgentes)
# Guarda o resultado
shapleyValue <- summary(shapleyValue)</pre>
## Shapley Value for the given game
##
                           Shapley Value
## [1] Origem - Assuncion
                                4.166667
## [2] Origem - UFMS
                                5.666667
                                4.166667
## [3] Origem - UFRJ
```

Resultado do cálculo do Shapley Value

Figura 2 – Cálculo do Shapley Value

5 Nucleolus

5.1 Conceito

```
... seguem referências para completar seção...
```

- The Nucleolus of a Characteristic Function Game (SCHMEIDLER, 1969)
- Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts (MASCH-LER; PELEG; SHAPLEY, 1979)
- Game theoretic analysis of a bankruptcy problem from the Talmud (AUMANN; MASCH-LER, 1985)
- Game Theory (An Introduction) (BARRON, 2007, p. 219–307)
- Collective Rationality: Equilibrium in Cooperative Games (WEIRICH, 2009)
- Prática na Teoria. Aplicações da Teoria dos Jogos e da Evolução aos Negócios (MARINHO, 2011)
- Common mistakes in computing the nucleolus (GUAJARDO; JÖRNSTEN, 2015)
- O Dilema do Prisioneiro desde Hegel até Lacan: Tomo 1 (FAVERET, 2015)
- 5.2 Aplicação no estudo de caso
- 5.3 Implementacção computacional para o estudo de caso
- 6 Análise comparativa

```
...seguem referências para completar seção...
```

- Comparative cooperative game theory (ICHIISHI, 1990)
- A cooperative game in search theory (HOHZAKI, 2009)

7 Conclusão

```
...seguem referências para completar seção...
```

- O andar do bébado (MLODINOW; ALFARO, 2009)
- Os números (não) mentem: Como a matemática pode ser usada para enganar você (SEIFE, 2012)
- O sinal e o ruído (SILVER, 2012)
- Rápido e devagar: Duas formas de pensar (KAHNEMAN, 2012)
- Subliminar: Como o inconsciente influencia nossas vidas (MLODINOW, 2013)
- O poder do hábito: Por que fazemos o que fazemos na vida e nos negócios (DUHIGG, 2012)
- O sinal e o ruído (SILVER, 2012)

8 *Trabalhos futuros

...seguem referências para completar seção...

- Games with incomplete information played by "Bayesian" players part II. Bayesian equilibrium points (HARSANYI, 1968)
- Equilibrium points in n-person games (NASH, 1950)
- Two-person cooperative games (NASH, 1953)
- Quantum games (FIGUEIREDO, 2004)
- Quantum games and quantum strategies (EISERT; WILKENS; LEWENSTEIN, 1999)
- Nash equilibria in quantum games with generalized two-parameter strategies (FLITNEY; HOLLENBERG, 2007)
- Quantum cooperative games (IQBAL; TOOR, 2002),(??)
- A probabilistic approach to quantum Bayesian games of incomplete information (IQBAL et al., 2014)
- Social optimality in quantum Bayesian games (IQBAL; CHAPPELL; ABBOTT, 2015)

Referências

ARIELY, D. *Predictably Irrational: The Hidden Forces that Shape Our Decisions.* [S.l.]: HarperCollins Publishers, 2009. ISBN 9780007319923.

ARIELY, D. *The (Honest) Truth About Dishonesty*: How we lie to everyone – especially ourselves. [S.l.]: HarperCollins Publishers, 2012. ISBN 9780007477340.

AUMANN, R. J. Linearity of unrestrictedly transferable utilities. *Naval Research Logistics (NRL)*, John Wiley and Sons, v. 7, 1960.

AUMANN, R. J.; MASCHLER, M. Game theoretic analysis of a bankruptcy problem from the talmud. *Journal of Economic Theory*, Elsevier Science, v. 36, 1985.

AYALA, G. A. A. *Aplicação de Teoria de Jogos à Alocação de Capacidade Firme em um Sistema Térmico*. Dissertação (Mestrado) — Pontífice Universidade Catóilica do Rio de Janeiro - PUC-Rio, 04 2008. Disponível em: http://www.maxwell.vrac.puc-rio.br/12366/12366 1.PDF>.

AYERS, J. B. *Handbook of Supply Chain Management*. 2. ed. [S.l.]: Auerbach Publications, 2006. ISBN 9781420013009.

BARRON, E. N. Game theory (an introduction). In: _____. 2. ed. [S.l.]: John Wiley & Sons, 2007. (Wiley Series in Operations Research and Management Science, v. 10.1002/9781118032398), cap. 5. ISBN 9781118533895.

BEGHIN, J. C.; KARP, L. S. Estimation of price policies in senegal an empirical test of cooperative game theory. *Journal of Development Economics*, Elsevier Science, v. 35, 1991.

BEKMAN, O. R.; NETO, P. L. O. C. Análise estatística da decisão. In: _____. 2. ed. São Paulo, Brasil: Blucher, 2009. cap. Introdução à teoria dos jogos, p. 122–140. ISBN 978-85-212-0468-8.

BERNI, D. de A.; FERNANDEZ, B. P. M. *Teoria dos Jogos: Crenas, Desejos e Escolhas*. 1. ed. São Paulo, Brasil: Saraiva, 2014. ISBN 9788502220553.

BEZERRA, F. A.; GRANDE, J. E; SILVA, A. J. da. Análise e caracterização de modelos de custos que utilizam o valor de shapley para alocação de custos entre departamentos. *Gestão & Produção*, SciELO - Scientific Electronic Library Online, São Paulo, Brasil, v. 16, p. 74–84, 03 2009. ISSN 0104-530X. Disponível em: ">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X2009000100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X2009000100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X2009000100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X2009000100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X2009000100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X2009000100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X2009000100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X2009000100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X2009000100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X2009000100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X200900100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X200900100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X200900100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X200900100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X200900100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X200900100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X200900100008&nrm=iso>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=s0104-530X200900100008&nrm=iso>">http://www.scielo.br/scielo.php?script=s

BIERMAN, H. S.; FERNANDEZ, L. *Teoria dos Jogos*. 2. ed. São Paulo, Brasil: Pearson, 2010. ISBN 9788576056966.

BRINK, R. van den; PINTÉR, M. On axiomatizations of the shapley value for assignment games. *Journal of Mathematical Economics*, v. 60, p. 110–114, 10 2015. ISSN 0304-4068.

CACHON, G. P.; NETESSINE, S. Handbook of quantitative supply chain analysis: Modeling in the e-business era. In: ____. Boston, MA: Springer US, 2004. cap. Game Theory in Supply Chain Analysis, p. 13–65. ISBN 978-1-4020-7953-5. Disponível em: http://dx.doi.org/10.1007/978-1-4020-7953-5_2.

CAO, K.; YANG, Z. A novel cooperative spectrum sensing method based on cooperative game theory. *Journal of Electronics (China)*, SP Science Press, v. 27, 03 2010.

CAO, M.; ZHANG, Q. Supply Chain Collaboration: Roles of Interorganizational Systems, Trust, and Collaborative Culture. [S.l.]: Springer London, 2012. ISBN 9781447145905.

CHEN, I. J.; PAULRAJ, A. Towards a theory of supply chain management: the constructs and measurements. *Journal of Operations Management*, Elsevier Science, v. 22, 2004.

CHRISTOU, I. T. *Quantitative Methods in Supply Chain Management: Models and Algorithms*. New York, USA: Springer London Dordrecht Heidelberg, 2012. ISBN 9780857297662.

CONDORCET, M. J. A. N. C. *Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix*. Paris, França: A Paris: de l'Imprimerie royale, 1785. Disponível em: http://www.e-rara.ch/zut/content/titleinfo/1175327>.

COURNOT, A. *Principes Mathématiques*: Théorie des richesses. Paris, France: Chez L. Hachette – Libraire de l'université Royale de France, 1838. Disponível em: http://gallica.bnf.fr/ark:/12148/bpt6k6117257c/f10.item.zoom.

CURIEL, I. *Cooperative Game Theory and Applications: Cooperative Games Arising from Combinatorial Optimization Problems.* [S.l.]: Springer Science+Business Media Dordrecht, 1997. v. 16. ISBN 9781475748710.

DAVENPORT, T. H.; HARRIS, J. G. *Competing on Analytics*. [S.l.]: Harvard Business Review Press, 2007. ISBN 9781422156308.

DOBOS, I.; PINTÉR, M. Cooperation in an hmms-type supply chain: A management application of cooperative game theory= kooperáció egy hmms-típusú ellátási láncban: A kooperatív játékelmélet egy menedzsment alkalmazása. Vállalatgazdaságtan Intézet, 2010.

DOBOS, I.; PINTÉR, M. Cooperation in supply chains: A cooperative game theoretic analysis. Budapest, Hungary, 09 2010. ISSN 1786–3031.

DRECHSEL, J. *Cooperative Lot Sizing Games in Supply Chains*. Springer Berlin Heidelberg, 2010. ISBN 9783642137259. Disponível em: http://www.springer.com/us/book/9783642137242.

DRIESSEN, T. S. H. *Cooperative Games, Solutions and Applications*. [S.l.]: Springer Netherlands, 2013. ISBN 9789401577878.

DUHIGG, C. *O poder do hábito: Por que fazemos o que fazemos na vida e nos negócios.* [S.l.]: Companhia das Letras, 2012. ISBN 9788539004256.

EISERT, J.; WILKENS, M.; LEWENSTEIN, M. Quantum games and quantum strategies. *Physical Review Letters*, APS, v. 83, n. 15, p. 3077, 1999.

ÉNIZ, F. J. M. de A.; RAFELS, C. An intersection theorem in tu cooperative game theory. *International Journal of Game Theory*, Springer-Verlag, v. 33, 12 2004.

FAVERET, D. M. *O Dilema do Prisioneiro desde Hegel at é Lacan: Tomo 1*. 1. ed. São Paulo, Brasil: CreateSpace Independent Publishing Platform, 2015. 94 p. ISBN 9781519451712.

FIANI, R. Teoria dos Jogos. São Paulo, Brasil: Elsevier Brasil, 2006. ISBN 9788535220735.

FIANI, R. *Cooperação e Conflito*. 1. ed. São Paulo, Brasil: CAMPUS - GRUPO ELSEVIER, 2011. 256 p. ISBN 9788535214338.

FIANI, R. *Teoria dos Jogos.* 1. ed. São Paulo, Brasil: CAMPUS - GRUPO ELSEVIER, 2015. 376 p. ISBN 9788535276657.

FIGUEIREDO, J. M. A. F. Quantum games. *Physica A: Statistical Mechanics and its Applications*, Elsevier Science, v. 335, 2004.

FIGUEIREDO, R. S. Teoria dos jogos: conceitos, formalização matemática e aplicação à distribuição de custo conjunto. *Gestão & Produção*, SciELO - Scientific Electronic Library Online, São Paulo, Brasil, v. 1, p. 273–289, 12 1994. ISSN 0104-530X. Disponível em: http://www.scielo.br/scielo.php?script=sci arttext&pid=S0104-530X1994000300005&nrm=iso>.

FLITNEY, A. P.; HOLLENBERG, L. C. Nash equilibria in quantum games with generalized two-parameter strategies. *Physics Letters A*, Elsevier Science, v. 363, 2007.

FORTE, F. A cooperative game approach to optimal saving theory: Toward a constitution for savings. *Public Choice*, Springer US, v. 81, 12 1994.

FREDENDALL, L. D. *Basics of Supply Chain Management.* [S.l.]: CRC Press, 2001. ISBN 9781420025767.

GIMÉNEZ-GÓMEZ, J.-M. A way to play claims problems. *Group Decision and Negotiation*, Springer, v. 23, 05 2014.

GOLDEN, P. A.; DOLLINGER, M. Cooperative alliances and competitive strategies in small manufacturing firms. *Entrepreneurship: Theory and Practice*, Baylor University, v. 17, n. 4, p. 43–57, 1993.

GUAJARDO, M.; JÖRNSTEN, K. Common mistakes in computing the nucleolus. *European Journal of Operational Research*, Elsevier Science, v. 241, 03 2015.

HARSANYI, J. C. Games with incomplete information played by "bayesian" players part ii. bayesian equilibrium points. *Management Science*, INFORMS, University of Maryland, USA, v. 14, n. 5, p. 320–334, 1968.

HART, S.; MAS-COLELL, A. *Cooperation: Game-Theoretic Approaches*. [S.l.]: Springer Berlin Heidelberg, 2012. ISBN 9783642604546.

HAYWOOD, O. G. Military decision and game theory. *Journal of the Operations Research Society of America*, INFORMS, London, UK, v. 2, n. 4, p. 365–385, 1954. ISSN 00963984. Disponível em: http://www.jstor.org/stable/166693?seq=1#page_scan_tab_contents.

HOHZAKI, R. A cooperative game in search theory. *Naval Research Logistics (NRL)*, John Wiley & Sons, v. 56, 2009.

HU, Z. et al. Allocation of unit start-up costs using cooperative game theory. *IEEE Transactions on Power Systems*, IEEE, v. 21, 05 2006.

HUANG, Y. Integrated supplier selection, pricing and inventory decisions in a multi–level supply chain. In: _____. *Decision–Making for Supply Chain Integration*: Supply chain integration. 1. ed. New York, NY, USA: Springer-Verlag London, 2012. (Decision Engineering), cap. 3, p. 47–62. ISBN 978-1-4471-4033-7. Disponível em: http://www.springer.com/us/book/9781447140320.

ICHIISHI, T. Comparative cooperative game theory. *International Journal of Game Theory*, Springer-Verlag, v. 19, 1990.

IQBAL, A.; CHAPPELL, J. M.; ABBOTT, D. Social optimality in quantum bayesian games. *Physica A: Statistical Mechanics and its Applications*, Elsevier Science, v. 436, 10 2015.

IQBAL, A. et al. A probabilistic approach to quantum bayesian games of incomplete information. *Quantum Information Processing*, Springer US, v. 13, 12 2014.

IQBAL, A.; TOOR, A. Quantum cooperative games. *Physics Letters A*, Elsevier Science, v. 293, 2002.

JIAO, Y. et al. Quality of service provisioning in worldwide interoperability for microwave access networks based on cooperative game theory. *IET Communications*, The Institution of Engineering and Technology, v. 5, 2011.

Jornal Globo. *Entrevista com Bruce Bueno de Mesquita*. São Paulo, Brasil: [s.n.], 2012. 2 de agosto de 2012, Programa de TV, acesso em: 13 de maio de 2016. Disponível em: https://www.youtube.com/watch?v=Bki4WlM4YQI.

KAHLE, D.; WICKHAM, H. ggmap: Spatial visualization with ggplot2. *The R Journal*, v. 5, n. 1, p. 144–161, 2013. Disponível em: http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf>.

KAHNEMAN, D. *Rápido e devagar: Duas formas de pensar*. [S.l.]: Companhia das Letras, 2012. ISBN 9788539004010.

KANG, D.-J.; KIM, B. H.; HUR, D. Supplier bidding strategy based on non-cooperative game theory concepts in single auction power pools. *Electric Power Systems Research*, Elsevier Science, v. 77, 2007.

KNIGHT, F. H. Risk, Uncertainty and Profit. New York, EUA: Houghton Mifflin Company, 1921.

KOGAN, K.; TAPIERO, C. S. *Supply Chain Games: Operations Management and Risk Valuation*. Springer US, 2007. ISBN 9780387727769. Disponível em: http://www.springer.com/us/book/9780387727752.

LEMAIRE, J. Cooperative game theory and its insurance applications. *Insurance: Mathematics and Economics*, Elsevier Science, v. 12, 1993.

LEVY, G.; RAZIN, R. It takes two: An explanation of the democratic peace. Centre for Economic Policy Research – CEPR, London, UK, n. 3947, 2003. Disponível em: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=433844.

LEWIS, D. *Convention*: A philosophical study. Oxford, UK: Blackwell Publishers, 2002. ISBN 978-0-631-23256-8.

LIMA, D. A.; CONTRERAS, J.; PADILHA-FELTRIN, A. A cooperative game theory analysis for transmission loss allocation. *Electric Power Systems Research*, Elsevier Science, v. 78, 2008.

LITTLECHILD, S. C.; THOMPSON, G. F. Aircraft landing fees: A game theory approach. *The Bell Journal of Economics*, The RAND Corporation, v. 8, 1977.

LOZANO, S. Information sharing in dea: A cooperative game theory approach. *European Journal of Operational Research*, Elsevier Science, v. 222, 2012.

LYGERO, J.; GODBOLE, D. N.; SASTRY, S. Multiagent hybrid system design using game theory and optimal control. In: . [S.l.]: Proceedings of the 35th — Conference on Decision and Control, 1996. v. 2. ISBN 0-7803-3590-2.

MANUEL, C.; ARANGUENA, E. G. ález; POZO, M. ónica D. Cooperative game theory in sports. *International Game Theory Review*, World Scientific Publishing Company, v. 15, 09 2013.

MARINHO, R. *Pr ática na Teoria. Aplicações da Teoria dos Jogos e da Evolução aos Neg ócios.* Administração. São Paulo, Brasil: Saraiva, 2011. ISBN 9788502116825.

MASCHLER, M.; PELEG, B.; SHAPLEY, L. Geometric properties of the kernel, nucleolus, and related solution concepts. *Mathematics of Operations Research*, INFORMS, University of Maryland, USA, v. 4, 11 1979.

MCCAIN, R. A. *Value Solutions in Cooperative Games*. [S.l.]: World Scientific Publishing Company, 2013. ISBN 9789814417402.

MESQUITA, B. B. de. *A prediction for the future of Iran*. Long Beach, California, USA: TED Conferences, 2009. Disponível em: https://www.ted.com/talks/bruce_bueno_de_mesquita_predicts_iran_s_future?language=pt-br#t-144952>.

MESQUITA, B. B. de. *The Predictioneer's Game*: Using the logic of brazen self-interest to see and shape the future. [S.l.]: Random House Publishing Group, 2009. ISBN 9781588369086.

MLODINOW, L. *Subliminar: Como o inconsciente influencia nossas vidas.* [S.l.]: Zahar, 2013. ISBN 9788537810538.

MLODINOW, L.; ALFARO, D. O andar do bébado. [S.l.]: Zahar, 2009. ISBN 9788537801550.

MOREIRA, R. C. Teoria dos jogos cooperativos: Conceitos fundamentais. In: *Simpósio brasileiro de pesquisa operacional - SBPO*. Instituto Militar de Engenharia - IME, 2002. Mini-Curso B. Disponível em: http://ws2.din.uem.br/~ademir/sbpo/sbpo2002/minic/minic00.htm.

MORRIS, P. Introduction to game theory: N-person cooperative games. In: _____. [S.l.: s.n.], 1994. v. 10.1007/978-1-4612-4316-8, cap. 6. ISBN 978-0-387-94284-1,978-1-4612-4316-8.

NASH, J. Equilibrium points in n-person games. *Proceedings of the National Academy of Sciences of the United States of America*, v. 36, n. 1, p. 48–49, 1950. Disponível em: http://www.calpoly.edu/~aamendes/GTweb/Nash.pdf>.

NASH, J. Two-person cooperative games. *Econometrica: Journal of the Econometric Society*, JSTOR, p. 128–140, 1953.

NEUMANN, J. von; MORGENSTERN, O. *Theory of Games and Economic Behavior*. [S.l.]: Princeton University Press, 1947.

PANITZ, C. E. *Dicionário de Logística: Gestão de cadeia de suprimentos e Operaçoes*. São Paulo, Brasil: Alternativa, 2007. ISBN 9788587658166.

PELEG, B.; SUDHÖLTER, P. *Introduction to the Theory of Cooperative Games*. [S.l.]: Springer Berlin Heidelberg, 2007. ISBN 9783540729457.

PETERS, H. Game theory \parallel cooperative games with transferable utilitys. In: ____. [S.l.: s.n.], 2008. v. 10.1007/978-3-540-69291-1, cap. 10.1SBN 978-3-540-69290-4,978-3-540-69291-1.

PIMENTEL, E. L. A. *Dilema do prisioneiro*: da teoria dos jogos à ética. [S.l.]: Argumentum, 2007. ISBN 9788598885155.

R Development Core Team. *R: A Language and Environment for Statistical Computing*. Vienna, Austria, 2016. ISBN 3-900051-07-0. Disponível em: http://www.R-project.org.

RAND. *Using Game Theory to Analyze Operations Against Time–Critical Targets*. Santa Monica, California, USA: RAND Projet Air Force, 2004.

RAPOPORT, A. Game theory as a theory of a conflict resolution: A shapley value for cooperative games with quarrelling. In: ____. [S.l.: s.n.], 1974. v. 10.1007/978-94-010-2161-6, cap. 9. ISBN 978-90-277-0489-4,978-94-010-2161-6.

RAY, I. Social and economic networks in cooperative game theory. *The Economic Journal*, John Wiley & Sons, v. 112, 2002.

ROSA, A. M. da. *A Teoria dos Jogos Aplicada ao Processo Penal.* 1. ed. [S.l.]: Letras e Conceitos Ltda, 2014. 152 p. ISBN 9789898305824.

ROTH, A. E. *The Shapley value: essays in honor of Lloyd S. Shapley*. New York, USA: Cambridge University Press, 1988. ISBN 9780521361774.

SCHMEIDLER, D. The nucleolus of a characteristic function game. *SIAM Journal on Applied Mathematics*, Society for Industrial and Applied Mathematics, v. 17, 11 1969.

SECHI, G. M.; ZUCCA, R.; ZUDDAS, P. Water costs allocation in complex systems using a cooperative game theory approach. *Water Resources Management*, Springer Netherlands, v. 27, 04 2013.

SEIFE, C. *Os números (não) mentem: Como a matemática pode ser usada para enganar você.* [S.l.]: Zahar, 2012. ISBN 9788537808719.

SERRANO, R. Lloyd shapley's matching and game theory. *The Scandinavian Journal of Economics*, Wiley Online Library, v. 115, n. 3, p. 599–618, 2013.

SHEN, W. Distributed manufacturing scheduling using intelligent agents. *IEEE Intelligent Systems*, v. 17, n. 1, p. 88–94, 01 2002. ISSN 1541-1672.

SILVER, N. O sinal e o ruído. Rio de Janeiro, Brasil: Intrínseca, 2012. ISBN 978-85-8057-353-4.

SMITH, J. *Evolution and the Theory of Games*. [S.l.]: Cambridge University Press, 1982. ISBN 9780521288842.

SMOLYAKOV, E. R. Axiomatization in cooperative game theory. *Computational Mathematics and Modeling*, Springer, v. 16, 2005.

SONG, D.-W.; PANAYIDES, P. M. A conceptual application of cooperative game theory to liner shipping strategic alliances. *Maritime Policy & Management*, Taylor and Francis Group, v. 29, 09 2002.

SUN, X. et al. Using cooperative game theory to optimize the feature selection problem. *Neurocomputing*, Elsevier Science, v. 97, 11 2012.

TAVARES, J. M. *Teoria dos Jogos*. 1. ed. São Paulo, Brasil: LTC - GRUPO GEN, 2009. ISBN 9788521616498.

TIJS, S.; OTTEN, G.-J. Compromise values in cooperative game theory. *TOP - Official Journal of the Spanish Society of Statistics and Operations Research*, v. 1, 12 1993.

WANG, Y. Combining data mining and game theory in manufacturing strategy analysis. *Journal of Intelligent Manufacturing*, Springer US, v. 18, 08 2007.

WEIRICH, P. Collective Rationality: Equilibrium in Cooperative Games. [S.l.]: Oxford University Press, 2009. ISBN 9780199741458.

WICKHAM, H. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York, 2009. ISBN 978-0-387-98140-6. Disponível em: http://had.co.nz/ggplot2/book>.

WICKHAM, H. *scales: Scale Functions for Visualization*. [S.l.], 2015. R package version 0.3.0. Disponível em: https://CRAN.R-project.org/package=scales>.

WIESE, H. Applying cooperative game theory to power relations. *Quality & Quantity*, Springer Netherlands, v. 43, 07 2009.

XIE, J.; AI, S. Cooperative advertising, game theory and manufacturer–retailer supply chains. *Omega*, Elsevier Science, v. 34, 2006.

YANG, D.; FANG, X.; XUE, G. Game theory in cooperative communications. *IEEE Wireless Communications*, IEEE, v. 19, 2012.

YOUNG, H. P. Cost allocation. In: _____. *Handbook of Game Theory with Economic Applications*. Amsterdam, Holanda: Elsevier North Holland, 1994. v. 2, cap. Equitable core solutions. ISBN 9780444894274.

ZENG, D.; SYCARA, K. Bayesian learning in negotiation. *International Journal of Human-Computer Studies*, Elsevier Science, v. 48, n. 1, p. 125–141, 1998.