Model Optimizations: Pruning

 Reducing latency and cost for inference for both cloud and edge devices (e.g. mobile, IoT)

- Reducing latency and cost for inference for both cloud and edge devices (e.g. mobile, IoT)
- Deploying models on edge devices with restrictions on processing, memory and/or power-consumption

- Reducing latency and cost for inference for both cloud and edge devices (e.g. mobile, IoT)
- Deploying models on edge devices with restrictions on processing, memory and/or power-consumption
- Reducing payload size for over-the-air model updates

- Reducing latency and cost for inference for both cloud and edge devices (e.g. mobile, IoT)
- Deploying models on edge devices with restrictions on processing, memory and/or power-consumption
- Reducing payload size for over-the-air model updates
- Enabling execution on hardware restricted-to or optimized-for fixed-point operations
- Optimizing models for special purpose hardware accelerators.

The MLOps Personas

ML Engineer

ML Researcher

Data Scientist

Data Engineer

Software Engineer

DevOps

Business Analyst

Copyright (c) 2022 TinyMLedu. All rights reserved. CC BY-NC-SA 4.0

CPU

2X Faster Execution

Pruning

PRUNING SYNAPSES

Magnitude Pruning

Sparse models are easier to compress

$$thresh(w_i) = \left\{ \begin{array}{ll} w_i : if |w_i| > \lambda \\ 0 : if |w_i| \le \lambda \end{array} \right\}$$

Magnitude Pruning

- Sparse models are easier to compress
- We can skip the zeroes
 during inference for latency
 improvements

$$thresh(w_i) = \left\{ \begin{array}{ll} w_i : if |w_i| > \lambda \\ 0 : if |w_i| \le \lambda \end{array} \right\}$$

Magnitude Pruning

- Sparse models are easier to compress
- We can skip the zeroes
 during inference for latency
 improvements
- Up to **6x improvement**

$$thresh(w_i) = \left\{ \begin{array}{ll} w_i : if |w_i| > \lambda \\ 0 : if |w_i| \le \lambda \end{array} \right\}$$

$$thresh(w_i) = \left\{ \begin{array}{l} w_i : if |w_i| > \lambda \\ 0 : if |w_i| \le \lambda \end{array} \right\}$$

 $\lambda = s * \sigma_l$ where σ_l is the std of layer l as measured on the dense model

Unstructured Pruning

Structured Pruning

Image Classification

Model	Non-sparse Top-1 Accuracy	Sparse Accuracy	Sparsity
InceptionV3	78.1%	78.0%	50%
		76.1%	75%
		74.6%	87.5%
MobilenetV1 224	71.04%	70.84%	50%
The models were tested	d on Imagenet.		

Language Translation

Model	Non-sparse BLEU	Sparse BLEU	Sparsity
GNMT EN-DE	26.77	26.86	80%
		26.52	85%
		26.19	90%
GNMT DE-EN	29.47	29.50	80%
		29.24	85%
		28.81	90%

Keyword Spotting

Model	Non-sparse Accuracy	Structured Sparse Accuracy (2 by 4 pattern)	Random Sparse Accuracy (target sparsity 50%)
DS-CNN-L	95.23	94.33	94.84

