Akademia ETI edycja 2019

Programowalne układy cyfrowe FPGA

Autorzy:

- Maciej Brzeski
- Mikołaj Barcikowski
- Jakub Gierowski
- Jan Olencki

Opiekun koła:

dr hab. inż. Bogdan Pankiewicz, prof. nadzwyczajny PG

Plan wykładu

- 1. Czym jest sygnał cyfrowy?
- 2. Algebra Boole'a w elektronice cyfrowej
- 3. Wybrane układy cyfrowe
- 4. System binarny i jego zastosowanie w technice cyfrowej
- 5. Elementarne informacje o układach FPGA

Czym jest sygnał cyfrowy?

Jak wygląda sygnał cyfrowy?

Sygnał to funkcja czasu przenosząca informację. Sygnał cyfrowy przyjmuje tylko skończoną liczbę wartości (dyskretna przeciwdziedzina).

W elektronice cyfrowej sygnały są binarne (przyjmują dwie wartości) oraz najczęściej są reprezentowane przez napięcie zmieniające się w czasie.

Czym jest sygnał cyfrowy?

Sygnał cyfrowy w układach synchronicznych

Stan wysoki – 1 – jedynka – prawda

Stan niski – 0 – zero – fałsz

Układ synchroniczny to taki w którym stan zmienia się w momentach wyznaczanych przez sygnał

zegara.

Algebra Boole'a w elektronice cyfrowej

Iloczyn logiczny – $a \cdot b$

$$a \cdot a = a$$

$$a \cdot 0 = 0$$

$$a \cdot 1 = a$$

Suma	logiczna –	. a	+	h
Sullia	iogiczna –	·u	\top	U

$$a + a = a$$

$$a + 0 = a$$

$$a + 1 = 1$$

Nega	icja	_	\overline{a}
	,		

$$\overline{\overline{a}} = a$$

а	b	$a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

а	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

а	ā
0	1
1	0

Wybrane układy cyfrowe

Układy kombinacyjne – bramka AND, OR i NOT

Bramka AND – Iloczyn logiczny

Bramka OR – Suma logiczna

Bramka NOT – Negacja

а	b	$a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

а	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

а	ā
0	1
1	0

Wybrane układy cyfrowe

Układy sekwencyjne – przerzutnik RS i JK

Przerzutnik D

D	Q_{n+1}	
0	0	
1	1	

Przerzutnik JK

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	\overline{Q}_n

System binarny i jego zastosowanie w technice cyfrowej

Podstawowe informacje o systemie binarnym

Najbardziej popularnym systemem pozycyjnym jest system dziesiętny wykorzystujący do zapisu liczb cyfry od 0 do 9.

W elektronice szeroko stosowany jest system dwójkowy (binarny) wykorzystujący dwie cyfry 0 i 1, które odpowiadają stanowi niskiemu i wysokiemu w sygnale cyfrowym.

$$183_{10} = 1 \cdot 10^{2} + 8 \cdot 10^{1} + 3 \cdot 10^{0} = 100 + 80 + 3$$

$$10110111_{2} = 1 \cdot 2^{7} + 0 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} = 128 + 0 + 32 + 16 + 0 + 4 + 2 + 1 = 183_{10}$$

System binarny i jego zastosowanie w technice cyfrowej

Układ licznika modulo n – na przykładzie modulo 10

Licznik modulo 10

Czym są układy FPGA?

- programowalnymi układami logicznymi pozwalającymi na tworzenie dowolnego układu cyfrowego (synchronicznego)
- złożonym z programowalnych bloków logicznych w ilości do nawet kilku milionów
- wykorzystywanym w prototypowaniu układów scalonych oraz wszędzie tam gdzie potrzeba dużej wydajności lub energooszczędności przy przetwarzaniu równoległym
- przy projektowaniu ich wykorzystywane są języki opisu sprzętu (HDL) takie jak VHDL lub Verilog

Porównanie na podstawie kopania bitcoinów

ASIC - Bitmain BM1385

 $38750 \frac{MHash}{s} \text{ przy } 10,2 W$

$$3802 \frac{MHash}{J}$$

FPGA – Xilinx Spartan-6 LX150

 $200 \frac{MHash}{s}$ przy 8,6 W

23,25
$$\frac{MHash}{J}$$

GPU – Nvidia GeForce GTX460

 $158 \frac{MHash}{s}$ przy 240 W

$$0,658 \frac{MHash}{J}$$

CPU - Intel Core i7 2600

23,9 $\frac{MHash}{s}$ przy 95 W

$$0,25 \frac{MHash}{J}$$

Kluczowe informacje o budowie układów FPGA

Układy FPGA zbudowane są z:

- konfigurowalnych bloków logicznych (CLB)
- bloków wejść/wyjść (IOB)
- ścieżek oraz połączeń pomiędzy nimi pozwalających na łączenie bloków
- dodatkowych bloków pamięci, mnożenia, operacji zmiennoprzecinkowych itp.

Wykorzystanie schematu do opisu układów cyfrowych

Dziękuję za uwagę!

Część laboratoryjna Akademii ETI odbywa się w budynku starego ETI w sali EA 337.