

"Development of constraint based robot description method for automatic kinematics calculation of parallel manipulator"

"Разработка метода описания робота с помощью геометрических ограничений для автоматического расчета кинематики параллельного манипулятора"

• • •

Student: Dmitry Ermachenkov Scientific Adviser: Professor Dzmitry Tsetserukou

Motivation: Recybot project challenges

Motivation: Recybot project challenges

Recybot 2.0 Delta robot

Serial UR robot

Motivation: ROS flaws

Tree mechanism[1]

```
<robot name="test robot">
  link name="link1" />
 link name="link2" />
 link name="link3" />
 link name="link4" />
 <joint name="joint1" type="continuous">
   <parent link="link1"/>
   <child link="link2"/>
  <joint name="joint2" type="continuous">
 <parent link="link1"/>
   <child link="link3"/>
  <ioInt name="joint3" type="continuous">
 <parent link="link3"/>
   <child link="link4"/>
 </foint>
```

URDF of tree mechanism[1]

Serial robot in ROS motion planning

Motivation: ROS flaws

Close-loop mechanism

```
<robot name="test_robot">
     k name="link1" />
     link name="link2" />
     k name="link3" />
     <joint name="joint1" type="continuous">
    cparent link="link1"/>
      <child link="link2"/>
     <joint name="joint2" type="continuous">
      <parent link="link1"/>
    <child link="link3"/>
    </foint>
     <joint name="joint3" type="continuous">
    <parent link="link2"/>
     <child link="link1"/>
     </joint>
17 (/robot)
```

URDF of closeloop mechanism

Motion planning of close-loop robot in ROS

Aims

Develop a description method, that supports both parallel and serial robots

Create a practical instrument (ROS package) for parallel robot kinematics solution and integrate it into ROS

Solidworks geometric constraints

Objectives

Make literature review about prior work

Propose description format

Choose correct GCS for robot description

Make simulation with simple mechanism and delta-robot,

solved by GCS

Develop ROS package for parallel robot control

Test developed package on real robot

Methods

Literature review

Comparative analysis

Simulation of robot kinematics

Software prototyping and development

Architecture synthesis

CAD model design

Hardware experiment

Results: GCS comparison

GCS	Open-Source API	Easy to install	Docs	Constraint types #	Speed	3D support	Aim
GeoSolver	yes	no	no	small	slow	yes	CAD
KDL Orocos	yes	?	no	large	medium	yes	Simulation
ShapeOp	yes	no	no	small	slow	yes	Tissue model
pygeosolve	yes	yes	no	small	slow	no	2d sketches
SketchSolve	yes	no	no	medium	medium	no	2d sketches
V-REP GCS	yes	no	no	medium	medium	yes	Simulation
PAROSOLID	no	?	yes	large	fast	yes	CAD
C3D SOLVER	no	?	yes	large	fast	yes	CAD
SolveSpace	yes	yes	no	medium	fast	yes	CAD

- Good speed for 2d
- Many constraints
- Easy to install

Drawbacks:

- Small documentation
- Mostly for Windows
- Some crucial API is closed

Results: Simple mechanism description

Simple mechanism description

Simple mechanism simulation

Results: Simple mechanism GCRDF file

```
1 robot name="2d serial robot">
2 <geometry type="origin">
    cpoint3d name="OriginP", xyz="0,0,0"/>
     <normal3d name="WNormal", qwxyz="1,0,0,0"/>
     <plane name="WPlane", origin="OriginP", normal="WNormal"/>
6 </geometry>
7 <geometry type="fixed", plane="WPlane">
    <point2d name="p1", xy="0,0"/>
    to continue = "sp2", xy="20,0"/>
11 </geometry>
12 <geometry type="moving", plane="WPlane">
13 <point2d name="p2", xy="3.0*sqrt(2),0"/>
    1 name="11", p1="p1", p2="p2"/>
     17 </geometry>
18 <constraints plane="WPlane">
    <on obj1="p3", obj2="s11"/>
    <distance value="3.0*sqrt(2)", p1="p1", p2="p2"/>
    <distance value="3.0*sqrt(2)", p1="p2", p2="p3"/>
21
     <angle name="alfa", obj1="OA", obj2="lo", value="0.0", mutable="yes"/>
23 </constraints>
24 </rebot>
```

Results: Delta mechanism simulation

Delta mechanism structure

Delta mechanism simulation Step 1

Results: Delta mechanism simulation

Delta mechanism simulation Step 2

Delta mechanism simulation Step 3

(14)

Results: Delta workspace simulation

Python workspace simulation

GCP workspace simulation

Results: GCS simulation comparison

- GCS approach is slower
- GCS approach is less accurate

GCS can be applied to mechanisms of different complexity in an unified way

Benchmarks for serial mechanism					
SolveSpace		Geosolver	Python		
Time	0.258s	0.326s	0.00001s		
Accuracy	0.104mm	0.122mm	-		

Benchmarks for delta mechanism[5]					
SolveSpace Geoso		Geosolver	Python		
Time	0.361s	failed	0.014s		
Accuracy	0.133mm	failed	-		

GCP software architecture

Structural scheme of experiment setup

Experiment setup scheme

Delta robot 3d model

Experiment video

Experiment and simulation workspace

- 500 dots
- Mean experiment accuracy: 0.2 mm
- HTC Vive accuracy: submillimiter (~0.1 mm)

Application

- Different industrial parallel robots
- Control of robot structures
 with underived kinematics
- Integration into MoveIt! (part of robotic software stack used worldwide)

NGP Recybot demo

Conclusions & innovation

Parallel and serial robots can be controlled in unified way

More complex parallel structures can now be studied and used in practice

My novelty: new approach to parallel robots description, that is

- As natural as designing a mechanism in CAD
- Practical and extendable
- Applicable to other mechanism structures

Acknowledgements

Professor Dzmitry Tsetserukou (Skoltech ISR)

Professor Kamal Youcef-Toumi (MIT MECHE)

Ph.D. student Dmitry Mironov (Skoltech ISR)

My Accomplishments

Cofounder of Tyler - mosaics service (preparing patent)

Startup fair 1st place - Feb 2018, Skoltech

Mosgortech contest finalist - Nov 2017, Moscow

Startup Sauna Russia finalist - Apr 2017, Moscow

Factory Hack 1st place - Mar 2017, Germany

"Eureka concept" finalist - Dec 2016, Moscow

Junction "Intelligent buildings" track & "Smart lighting"

challenge winner - Nov 2016, Finland

Thank you!

Middleware position

- 1. http://moveit.ros.org/documentation/concepts/
- 2. http://wiki.ros.org/urdf/Tutorials/Create%20your%20own%20urdf%20file
- 3. P.J. Zsombor-Murray, "Descriptive Geometric Kinematic Analysis of Clavel's "Delta" Robot". 2004
- 4. Matlab simulation toolbox for serial, parallel and hybrid robots 10.1109/ICAR.2017.8023639
- 5. P. J. Zsombor-Murray, Descriptive geometric kinematic analysis of Clavel's "Delta" Robot., Montreal: McGill University, 2004.
- 6. Modeling and control of a Delta-3 robot, Andre Olson, 2009
- 7. S. Kucuk and Z. Bingul, "An off-line robot simulation toolbox," Computer

Serial vs parallel robots comparison

	Parallel robots	Serial robots	
Type of kinematic chain	Closed-loop	Open-loop	
Workspace	Small and complicated	Large	
FK solution	Problematic	Simple	
IK solution	Simple	Problematic	
Position error	Averages	Accumulates	
Force error	Accumulates	Averages	
Maximum force	Sum of all motors forces	Limited by minimum actuator	
Maximum force	oun of an motors forces	force	
Stiffness	High	Low	
Inertia	Small	Large	
Payload/weight ratio	Large	Small	
Accuracy	High	Low	
Calibration	Complicated	Simple	
Workspace/robot size ratio	Small	Large	
Motors position	Near fixed base	On links	

Middleware position

Middleware comparison

Criteria	OpenRTM-aist	OPROL	ROS	Oroces
System model	Component-based framework, model-driven architecture, Platform independent model, platform- specific model	Component-based frameworks, validation/test tools	Component-based framework, publisher/subscribe	C++ libraries OCL, KDL, BFL
Control model	Component-based	Client/server mechanism for control flow and publisher/subscriber mechanism for data/event flow	Message oriented frameworks	Event-based control
Simulator	OpenHRP3	Yes	Yes	No, Orocos Simulink Toolbox
Behavior coordination	No	No	Yes	No
Distributed environment	Yes	Yes	Yes	No
Robot software architecture independent	Xea	Xes	Xes	Yes
Real-time	Yes	No	Planned	Yes
Open-source	Yes	Yes	Yes	Yes
Windows	yes	Partial functions	Yes	Yes
Linux	Yes	Yes	Yes	Yes

Robot creation workflow

Kinematic pairs classification

Туре	Mobility	Link numbe r	3D image	2D image	Joint example and load forces	Joint example name
Lower	I	5	1887	∞-≖	3 X	Ball-point slides
				44	(松)	One-tier alignment bearing
			i many		面量	Ball screw
	п	:4:		*		Alignment bearing fixed in X axis
	ш	3 .	50	-9,		Spherical bearing fixed in X axis
	#20		Major.	4	- Ma	Step bearing
Higher	IV	2	1	-	-x 1/2, x	Spherical bearing free in X sxis
	v	1		9	融心	Complex

Kinematic pairs constraints analysis

Kinematic pairs constraints analysis

Kinematic pairs constraints analysis

Delta robot GCRDF file

```
1 (cobot name="test robot">
   int3d name="p1", xyz="0,0,0"/>
    troint 3d name="pF3", xyz="8,0,0"/>
    ineld name="p1p2", p1="p1", p2="p2"/>
    d name="plp3", pl="p1", p2="p3"/>
    <!i>ineld name="p2p3", p1="p3", p2="p2"/>
    <!!ine3d name="sl1", p1="p1", p2="pF3"/>
    (linead name="s12", p1="p2", p2="pF1"/>
    imad name="s13", p1="p3", p2="pF2"/>
   kgeometry type="moving", in3d="yes">
    noint3d name="pJ2", xyz="8,9,8"/>
    <point3d name="p33", xyz="0,0,0"/>
    <nointid name="pF11", xyz="0,0,0"/>
    chaint3d name="pE", xyz="0,0,0"/>
    cpoint3d name="p11", xyz="0,0,0"/>
    cngint3d name="p22", xyz="0,0,0"/>
    int3d name="p33", xyz="0,0,0"/>
```

```
line3d name="p11p22", p1="p11", p2="p22"/>
       cline3d name="p22p33", p1="p22", p2="p33"/>
       1ine3d name="p11p33", p1="p11", p2="p33"/>
       cline3d name="pF1pJ1", p1="pF1", p2="pJ1"/>
       11ne3d name="pF2pJ2", p1="pF2", p2="pJ2"/>
       line3d name="pF3pJ3", p1="pF3", p2="pJ3"/>
       cline3d name="pF11pJ1", p1="pF11", p2="pJ1"/>
       lineld name="pF22pJ2", p1="pF22", p2="pJ2"/>
       cline3d name="pF33pJ3", p1="pF333", p2="pJ3"/>
     </geometry>
     <constraints in3d="yes">
       <midpoint3d point="pF11", line="p11p33"/>
       <midpoint3d point="pF22", line="p11p22"/>
       <midpoint3d point="pF33", line="p22p33"/>
       <parallel3d ob1="p11p22", obj2="p1p2"/>
       <parallel3d ob1="p22p33", obj2="p2p3"/>
       <parallel3d ob1="p11p33", obi2="p1p3"/>
       <angle3d name="alfa1" obj1="sl1", obj2="pF3pJ3", value="0.0", mutable="yes"/>
       <angle3d name="alfa2" obj1="sl2", obj2="pF1pJ1", value="0.0", mutable="yes"/>
       <amgle3d name="alfa3" obj1="sl3", obj2="pF2pJ2", value="0.0", mutable="yes"/>
     </constraints>
56 </reduct>
```

Movelt! architecture

HTC Vive Tracking equipment

Experiment setup photo

