Decomposition Project

Goal:

Decompose the signals into faulty and non-faulty components.

$$Y = L + S + E$$

L: Low rank component representing the mean of the signal

S: Sparse component (anomaly)

E: Noise component

Assumptions:

- The within-period change of the mean signal is smooth;
- The between-periods change of the mean signal is smooth;
- The mean signal possessing low rank characteristics should be nonnegative;
- The sparse anomalous component should be negative.

Method

- Reformulate the signal into a matrix form where the row represents the time within a day while the column represents the index of a day within a given period.
- Use matrix factorization and B spline basis:

$$Y = UV + B_1S_aB_2 + E$$

So, we need to solve this optimization problem:

$$argmin_{U,V,S_{a}} ||E||_{F}^{2} + \mu_{L} ||D_{2}U||_{F}^{2} + \mu_{R} ||D_{2}'V^{T}||_{F}^{2} + \lambda ||S_{a}||_{1}$$

$$St. \ Y = UV + B_{1}S_{a}B_{2} + E$$

$$UV \ge 0$$

$$B_{1}S_{a}B_{2} \le 0$$

- D₁, and D₂ are the second difference matrix.
- The optimization problem can be solved efficiently using block coordinate descent (BCD) method.
- To solve the constrained convex subproblems efficiently, alternating direction method of multipliers (ADMM) is implemented.

Results

MEAN AND VARIANCE OF MISS DETECTION RATE

Duration of Faults (hours)	Percentage of Power Drop			
	30%	50%	70%	
3	0.0180 ± 0.00160	0.0015 ± 0.00007	0.0005 ± 0.00003	
5	0.0056 ± 0.00035	0.0005 ± 0.00003	0 ± 0	
7	0.0030 ± 0.00014	0 ± 0	0 ± 0	

Fault Diagnosis Project

Table 1 Results on the Simulated Dataset

	Precision	Recall	F1-score	Support
Voltage Fault	0.99	0.96	0.97	20
Current Fault	0.99	0.98	0.98	20
Series Resistance Fault	0.90	0.87	0.88	20
Shunt Resistance Fault	0.91	0.96	0.93	20
Periodic Shading Fault	0.80	0.85	0.82	20
Snow Fault	0.92	0.89	0.90	20
Tracker Fault	0.91	0.97	0.93	20
Outage Fault	0.78	0.68	0.72	20

The classification result for individual site data

Backup Slide

$$argmin_{U,V,S_a} ||E||_F^2 + \mu_L ||D_2U||_F^2 + \mu_R ||D_2'V^T||_F^2 + \lambda ||S_a||_1$$

$$St. \ Y = UV + B_1 S_a B_2 + E$$

$$UV \ge 0$$

$$B_1 S_a B_2 \le 0$$

*penalizes the second order difference along the columns of U, which helps to achieve smoothness in the within-period change of the mean signal.

*penalizes the second order difference along the columns of V, which helps to achieve smoothness in the between-periods change of the mean signal.

*The L-1 norm penalty encourages sparsity in the decomposed anomaly component.

An example of fault detection on the power to irradiance ratio signal with the presence of a fault leading to 30% power drop over 3 hours.

