Instituto Tecnológico de Buenos Aires

22.01 Teoría de Circuitos

Trabajo práctico $N^{\circ}6$

Grupo 3

Mechoulam, Alan	58438
Lambertucci, Guido Enrique	58009
Rodriguez Turco, Martín Sebastian	56629
LONDERO BONAPARTE, Tomás Guillermo	58150
Galdeman, Agustín	59827

Profesores
Jacoby, Daniel Andrés
Belaustegui Goitia, Carlos
Iribarren, Rodrigo Iñaki

Presentado: */*/19

Índice

1.	Introducción	2
	Consideraciones 2.1. Celda universal Fleischer-Tow (FT)	
3.	Selección de componentes	5

1. Introducción

En este informe se explica como se confeccionó el filtro final propuesto por la cátedra.

2. Consideraciones

Dado que el filtro debe ser un rechaza banda, con aproximación de Chebycheff Inverso, se buscó que este cumpla con las siguientes restricciones:

Variable	Valor
f_p^-	$11.712~\mathrm{kHz}$
$\hat{f_a}$	$13.802 \mathrm{kHz}$
f_a^+	$16.301 \mathrm{kHz}$
f_n^+	$19.211 \mathrm{kHz}$
A_a	45 dB
A_p	1dB
k	$\frac{1}{3}$

Tabla 1: Características del filtro realizado.

Para ello, se decidió emplear celdas del tipo universal, más específicamente una Fleischer-Tow. Es por ello que se analiza y se explica la selección de dicho tipo de celda a continuación.

2.1. Celda universal Fleischer-Tow (FT)

En ocasiones es deseable poseer una señal de entrada que alimente varios nodos, obteniendo una única salida. A continuación se presenta la celda Fleischer-Tow, la cual se caracteriza por poder presentar una única transferencia que, dependiendo de los componentes seleccionados, puede ser un pasa bajos, pasa altos, pasa todo, de banda pasante y rechaza banda¹, lo cual es una fuerte ventaja frente a los otros tipos de celdas universales, las cuales requieren más de tres operacionales para conseguir dichas salidas.

Figura 1: Circuito de la celda Universal Fleischer-Tow.

Se analiza el circuito presentado para poder obtener la transferencia de este. Para calcular la función mencionada de esta celda, se observa primero la siguiente configuración:

¹R. Raut and M. N. S. Swamy, Modern Analog Filter Analysis and Design, 1st. ed. Weinheim: John Wiley and Sons, 2010.

Figura 2: Circuito genérico inversor.

Observando la Figura (2), aplicando el teorema de superposición, se presenta una configuración inversora, por lo que se obtiene

$$V_c = -\frac{V_a}{\frac{Z_1}{Z_3} + \frac{Z_1}{Z_3 A_o} + \frac{1}{A_o}} - \frac{V_b}{\frac{Z_2}{Z_3} + \frac{Z_2}{Z_3 A_o} + \frac{1}{A_o}}$$
(1)

Aplicando (1) y considerando los tres operacionales de la Figura (1) iguales, se obtiene el siguiente sistema de ecuaciones:

$$V' = -V_i A - V'' B$$

$$V_o = -V' C - V_i D$$

$$V'' = -V_o E - V_i F$$
(2)

siendo las constantes empleadas las siguientes:

$$A^{-1} = \frac{R_3}{R_2/\frac{1}{sC_1}} + \frac{R_3}{\left(R_2/\frac{1}{sC_1}\right)A_o} + \frac{1}{A_o}$$

$$B^{-1} = \frac{R_1}{R_2/\frac{1}{sC_1}} + \frac{R_1}{\left(R_2/\frac{1}{sC_1}\right)A_o} + \frac{1}{A_o}$$

$$C^{-1} = \frac{R_4}{R_5} + \frac{R_4}{R_5A_o} + \frac{1}{A_o}$$

$$D^{-1} = \frac{R_7}{R_5} + \frac{R_7}{R_5A_o} + \frac{1}{A_o}$$

$$E^{-1} = sC_2R_6 + \frac{sC_2R_6}{A_o} + \frac{1}{A_o}$$

$$F^{-1} = sC_2R_8 + \frac{sC_2R_8}{A_o} + \frac{1}{A_o}$$

Operando algebraicamente, se obtiene que la transferencia de esta configuración es

$$\frac{V_o}{V_c} = \frac{AC - BCF - D}{1 + BCE} \tag{4}$$

Si se consideran ideales los operacionales, es decir, se toma $A_o \to \infty$, se obtiene que la forma de la transferencia final es

$$\frac{V_o}{V_i} = -\frac{R_6}{R_8} \frac{s^2 \frac{C_1 C_2 R_1 R_8 R_4}{R_7} + s \frac{C_2 R_1 R_8 R_4}{R_2} \left(\frac{1}{R_7} - \frac{R_2}{R_3 R_4}\right) + 1}{s^2 \frac{C_1 C_2 R_6 R_1 R_4}{R_5} + s \frac{C_2 R_6 R_1 R_4}{R_2 R_5} + 1}$$
(5)

Es de interés obtener de esta los factores ω_o y Q de los polos, siendo estos los presentados a continuación.

$$\omega_o = \sqrt{\frac{R_5}{R_6 R_1 R_4 C_1 C_2}}$$

$$Q = R_2 \sqrt{\frac{C_1 R_5}{C_2 R_6 R_1 R_4}}$$
(6)

Es así que se destaca la dependencia de ω_o y Q de los capacitores, mientras que resultan ser independientes de R_8 . Además, se destaca la que la frecuencia del polo es independiente de la resistencia R_2 , mientras que Q no, lo que permite modificar la primer variable sin afectar a la segunda.

2.2. Análisis de sensibilidades

En la siguiente sección, se procede a calcular las sensibilidades de H(s), Q y ω_o con respecto de cada componente, definiéndose la sensibilidad de una función y con respecto de x de la forma:

$$S_x^y = \frac{\delta y}{\delta x} \frac{x}{y}$$

Primero, se presentan las sensibilidades de H(s):

$$S_{R_{2}}^{H} = -\frac{s\left[sC_{2}\,R_{6}\,R_{1}\,R_{8}\,R_{7} + R_{3}\,\left(-R_{6}\,R_{7} + R_{8}\,R_{5}\right)\right]C_{2}\,R_{2}\,R_{1}\,R_{4}}{\left[R_{2}\,R_{5} + R_{1}\,\left(C_{1}\,R_{2}\,s + 1\right)R_{4}\,sC_{2}\,R_{6}\right]\left[sR_{1}\,R_{8}\,\left(C_{1}\,R_{2}\,R_{3}\,R_{4}\,s - R_{2}\,R_{7} + R_{3}\,R_{4}\right)C_{2} + R_{2}\,R_{3}\,R_{7}\right]} \tag{7}$$

$$S_{R_6}^H = \frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_6} \left[\frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_6} + 1 \right]^{-1}$$
(8)

$$S_{R_{1}}^{H} = \frac{\left\{\left[sC_{1}\,R_{3}\,\left(-R_{6}\,R_{7} + R_{8}\,R_{5}\right)R_{4} - R_{5}\,R_{8}\,R_{7}\right]R_{2} + R_{4}\,R_{3}\,\left(-R_{6}\,R_{7} + R_{8}\,R_{5}\right)\right\}sC_{2}\,R_{2}\,R_{1}}{\left[\left(C_{1}\,C_{2}\,R_{6}\,R_{1}\,R_{4}\,s^{2} + R_{5}\right)R_{2} + R_{1}\,R_{4}\,sC_{2}\,R_{6}\right]\left\{\left[s^{2}R_{4}\,C_{1}\,C_{2}\,R_{1}\,R_{3}\,R_{8} - R_{7}\,\left(C_{2}\,R_{1}\,R_{8}\,s - R_{3}\right)\right]R_{2} + R_{1}\,R_{4}\,sC_{2}\,R_{8}\,R_{3}\right\}}$$

$$S_{R_3}^H = -\frac{R_2 R_5}{R_3 (C_1 R_2 s + 1) R_4} \left[-\frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_8} + \frac{R_2 R_5}{R_3 (C_1 R_2 s + 1) R_4} - \frac{R_5}{R_7} \right]^{-1}$$
(10)

$$s_{R_8}^H = \frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_8} \left[-\frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_8} + \frac{R_2 R_5}{R_3 (C_1 R_2 s + 1) R_4} - \frac{R_5}{R_7} \right]^{-1}$$
(11)

$$S_{R_7}^H = \frac{R_5}{R_7} \left[-\frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_8} + \frac{R_2 R_5}{R_3 (C_1 R_2 s + 1) R_4} - \frac{R_5}{R_7} \right]^{-1}$$
(12)

$$S_{R_4}^H = \frac{s \left(C_1 \, R_2 \, s + 1\right) \left[s C_2 \, R_6 \, R_1 \, R_8 \, R_7 + R_3 \, \left(-R_6 \, R_7 + R_8 \, R_5\right)\right] C_2 \, R_2 \, R_1 \, R_4}{\left(C_1 \, C_2 \, R_2 \, R_6 \, R_1 \, R_4 \, s^2 + R_1 \, R_4 \, s C_2 \, R_6 + R_2 \, R_5\right) \left[s^2 R_4 \, C_1 \, C_2 \, R_2 \, R_1 \, R_3 \, R_8 + C_2 \, R_1 \, R_8 \, \left(-R_2 \, R_7 + R_3 \, R_4\right) s + R_2 \, R_3 \, R_7\right]} \right) \left(13\right)}$$

$$S_{R_5}^H = \frac{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_6}{R_2 R_5 + R_1 (C_1 R_2 s + 1) R_4 s C_2 R_6}$$
(14)

$$S_{C_{1}}^{H} = \frac{C_{1} s^{2} \left[sC_{2} R_{6} R_{1} R_{8} R_{7} + R_{3} \left(-R_{6} R_{7} + R_{8} R_{5}\right)\right] C_{2} R_{2}^{2} R_{1} R_{4}}{\left[R_{2} R_{5} + R_{1} \left(C_{1} R_{2} s + 1\right) R_{4} sC_{2} R_{6}\right] \left[sR_{1} R_{8} \left(C_{1} R_{2} R_{3} R_{4} s - R_{2} R_{7} + R_{3} R_{4}\right) C_{2} + R_{2} R_{3} R_{7}\right]}$$
(15)

$$S_{C_2}^H = \frac{\left\{ \left[sC_1\,R_3\,\left(-R_6\,R_7 + R_8\,R_5 \right)R_4 - R_5\,R_8\,R_7 \right]R_2 + R_4\,R_3\,\left(-R_6\,R_7 + R_8\,R_5 \right) \right\} sC_2\,R_2\,R_1}{\left[\left(C_1\,C_2\,R_6\,R_1\,R_4\,s^2 + R_5 \right)R_2 + R_1\,R_4\,sC_2\,R_6 \right] \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right] R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right] R_3 + R_1\,R_3\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_3 \right] R_3 + R_1\,R_3\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3 \right] R_3 + R_1\,R_3\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1 \right] R_3 + R_1\,R_3\,R_3 \right\} \left\{ \left[$$

Luego, dado que la sensibilidades de ω_o y Q resultan constantes, independientemente del componente del cual se las calcula, se presenta dichos valores de interés en la siguiente tabla.

	$\mathbf{R_2}$	R_6	$\mathbf{R_1}$	R_3	R_8	R_7	$\mathbf{R_4}$	R_5	$\mathbf{C_1}$	$\mathbf{C_2}$
ω_o	0	-0.5	-0.5	0	0	0	-0.5	0.5	-0.5	-0.5
Q	1	-0.5	-0.5	0	0	0	-0.5	0.5	0.5	-0.5

Tabla 2: Sensibilidades de ω_o y Q con respecto de cada componente

3. Selección de componentes

Elección de componentes:

Componente	Valor	Composición
R_1	33.68K	680 + 33K
R_2	334.28K	3.9K + 330K
R_3	47K	47K
R_4	334.28K	3.9K + 330K
R_5	47K	47K
R_6	49.7K	2.7k + 47k
R_7	47K	47K
R_8	50K	47K+3k
C_1	95P	$68\mathrm{p}//27\mathrm{p}$
C_2	95P	68p //27p

Tabla 3: Componentes seleccionados de la primer etapa.

Componente	Valor	Composición
R_1	27.03	27 + 27K
R_2	371.57k	680k // 820k
R_3	47k	47k
R_4	371.57k	680 k //820 k
R_5	52.5k	56k//820k
R_6	49.77k	2.7k+47k
R_7	47k	47k
R_8	47.5k	47k + 500
C_1	100p	100p
C_2		

Tabla 4: Componentes seleccionados de la segunda etapa.

Componente	Valor	Composición
R_1	27.13	120 + 27k
R_2	$465.31\mathrm{k}$	680 k//1.5 M
R_3	47k	47k
R_4	$465.31\mathrm{k}$	680 k//1.5 M
R_5	42.08k	15k+27k
R_6	49.77k	2.7k + 47k
R_7	47k	47k
R_8	48k	47k+1k
C_1	100p	100p
C_2	100p	100p

Tabla 5: Componentes seleccionados de la tercer etapa.

Componente	Valor	Composición
R_1	10.29k	4.7k + 5.6k
R_2	1.32M	120k + 1.2M
R_3	47k	47k
R_4	1.32M	120k+1.2M
R_5	39.44k	470 + 39k
R_6	49.77K	2.7k + 47k
R_7	47k	47k
R_8	48k	47k+1k
C_1	92p	10p // 82p
C_2	92p	10p // 82p

Tabla 6: Componentes seleccionados de la cuarta etapa.

Componente	Valor	Composición
R_1	10.19k	12k//68k
R_2	918.2k	100k + 820k
R_3	47k	47k
R_4	918.2k	100k + 820k
R_5	56k	56k
R_6	49.77k	2.7k + 47k
R_7	45k	43k+2k
R_8	55k	12k+43k
C_1	88p	82p//5.6p
C_2	88p	82p//5.6p

Tabla 7: Componentes seleccionados de la quinta etapa.

Componente	Valor	Composición
R_1	27.13	120 + 27k
R_2	$465.31\mathrm{k}$	680k//1.5M
R_3	47k	47k
R_4	$465.31\mathrm{k}$	680k//1.5M
R_5	42.08k	15k+27k
R_6	49.77k	2.7k + 47k
R_7	46k	43k+3k
R_8	53k	51k+2k
C_1	70p	68p
C_2	70p	68p

Tabla 8: Componentes seleccionados de la sexta etapa.