Bevezetés a lágy számítás módszereibe

Nem fuzzy halmaz kimenetű fuzzy irányítási rendszerek Egy víztisztító berendezés szabályozását megvalósító modell Viselkedésjósló tervezési példa

Nem fuzzy halmaz kimenet

Sugeno 80-as évek közepe Előnyök:

- csökken a számítási igény a modell bonyolultságának csökkenése miatt
- struktúrája és működése egyszerűbb, mint a Mamdani irányítóké

A szabályok általános alakja:

Ha $x_1=A_{1,i},\ldots,x_n=A_{n,i}$ akkor $y_i=f_i(x_1,\ldots,x_n)$ ahol $x_i,\,i\in[1,n]$ a bemenő változók, f_i tetsz. n-dimenziós függvény

Irányító típusok

Az f_i függvény bonyolultságától függően:

- f_i konstans (nulladrendű) Sugeno-irányító
- f_i a bemenetek lineáris függvénye (elsőrendű)
 Sugeno-Takagi-irányító
- f_i magasabbrendű függvény Sugeno-Tkagi-Kang-irányító

Irányítók működési elve

A bemenetek fuzzifikálása után a megfigyelés és a szabályok kiértékelésével meghatározható az egyes szabályok w_i illeszkedési mértéke: $w_i = min_{i=1}^n w_{j,i}$

Ennek alapján meghatározható a következtetés:

$$y = \frac{\sum_{i=1}^{r} w_i y_i}{\sum_{i=1}^{r} w_i} = \frac{\sum_{i=1}^{r} w_i f_i(x_1, ..., x_n)}{\sum_{i=1}^{r} w_i}$$

Nulladrendű Sugeno-irányítók esetén:

$$y = \frac{\sum_{i=1}^{r} w_i c_i}{\sum_{i=1}^{r} w_i}$$
, ahol c_i konstans

Tovább redukálható egydimenziós bemenet esetén, ha a szabálybázis Ruspini-partíciót alkot $(\sum_{i=1}^n A_i = 1)$ Ekkor az illeszkedési mértékek összege 1 lesz, így

$$y = \sum_{i=1}^{r} w_i c_i$$

Víztisztító berendezés

Sugeno-modell: a szabályok konzekvens részében függvényt használunk

- Egy víztisztítónak tiszta vizet kellett nyerni egy folyó zavaros vizéből.
- A folyóvizet egymás után 3 tartályban kémiai anyagokkal kezelik, szűrik.
 - 1. tartály: kémiai anyagokkal pl. klór
 - tartály: kémiai anyagokkal megkötik és ülepítik a szennyeződéseket
 - 3. tartály: tovább szűrik a vizet

Tartályonként 3-5 órás kezelés.

A maradandó szennyezettség foka függ

- a folyóvíz korábbi szennyezettségi fokától
- \circ az első tartályba kerülő víz T_1 mennyiségétől

Víztisztító berendezés

Szabályozó működése: a víz SZ1 szennyezettségfokának függvényében meghatározza azt a T1 mennyiséget, amelynél a kezelt víz szennyezettségfoka SZ2 alatt marad

- A szabályozót mérési adatok elemzésével határozták meg: a víz szennyezettségfoka SZ1, SZ2 mellett figyelembe vették
 - 1. a víz lugosságát: AL
 - 2. ph-értékét: PH
 - 3. hőmérsékletét: TE

Adatgyűjtésből származó adatok elemzése.

Függvényillesztéssel meghatározták a Sugano-modell keresett paramétereit.

Víztisztító működése – nyelvi változók értékei és hozzájuk tartozó fuzzy halmazok

Víztisztító berendezés

8 szabály, formája:

```
IF A is x_1 AND B is x_2 AND C is x_3 THEN T1 = p_0 + p_1x_4 + p_2x_5 + p_3x_1 + p_4x_2 + p_5x_3
```

```
A \longrightarrow PH
```

$$B \longrightarrow AL$$

 $C \longrightarrow TE$ input nyelvi változók valamely értékét jelöli.

$$x_1 \longrightarrow PH$$

$$x_2 \longrightarrow AL$$

$$x_3 \longrightarrow TE$$

$$x_4 \longrightarrow SZ1$$

 $x_5 \longrightarrow SZ2$ nyelvi változók input adatai.

 $p_0, p_1, p_2, p_3, p_4, p_5$ paraméterek a szabály lineáris függvényének együtthatói.

ST.	8h	Fuzzy-alkalmazások						
SZ1	PH	TE	AL	TI	SZ2			
0	7.1	18.8	53	1300	1.0			
7	7.0	18.6	50	1300	1.0			
22	7.3	19.4	46	1400	2.0			
50	7.1	19.5	40	1400	1.0			
9	7.3	23.3	48	900	40			
11	7.1	20.7	50	900	1.0			
12	7.2	21.3	50	900	3.0			
14	7.2	23.6	53	900	40			
35	7.0	17.8	35	1200	1.0			
20	7.0	16.6	40	1100	1.0			
20	6.9	17.8	42	1100	1.0			
18	7.1	17.3	40	1100	1.0			
12	7.2	18.8	55	900	3.0			
8	7.2	18.0	50	1000	1.5			
11	7.1	19.2	49	1000	2.0			
50	7.0	18.0	37	1200	1.5			
35	7.0	17.7	42	1200	1.5			
30	7.0	17.3	41	1100	1.5			
16	7.1	19.3	42	1100	3.0			

R _i .	PH	AL	TE	p0	p1	p2	p3	p4	p5
1	K	K	K	8858	2664	-8093	11230	-1147	-2218
2	K	K	N	-7484	124	-427	761	52	-17
3	K	N	K	7270	42	-54	-1368	10	158
4	K	N	N	2202	5	-34	-221	-8	40
5	N	K	K	-13918	3	-6	2110	-3	2
6	N	K	N	770	22	11	64	-8	-9
7	N	N	K	-14819	159	-14	2337	-25	-68
8	N	N	N	-317	-13	-16	29	6	41

· A víztisztító szabálybázisa

Kicsi

Viselkedésjósló tervezési példához

Viselkedésjósló tervezési példa

Felhajtó forgalmi lámpával szabályozott gyorsító sávos becsatlakozásának vezérlése Fuzzy logikával pontosabbá tehető a rendszer:

- a zöld időszakok az autópálya sebességi és sűrűségi adataitól függjenek;
- folyamatosan figyeli a bemeneteket és ezekből határozza meg a megfelelő kimeneti válaszokat

Numerikus bemeneteket vesz figyelembe az érzékelőkről és numerikus adatokkal vezérli a jelzőlámpát. Két bemenet:

- sebesség: a pillanatnyi átlagos sebesség
- forgalom: a pillanatnyi átlagos forgalmi sűrűség az autópályán

Viselkedésjósló tervezési példa

forgalom:

- alacsony a követési távolság maximális
- közepes a követési távolság névleges
- erős a követési távolság minimális

sebesség:

- lassú
- közepes a sebesség korlátozásnak megfelelő értéken folyik
- nagy a forgalom meghaladja a sebességkorlátozást

Viselkedésjósló tervezési példa

zöldfény: másodpercekben mért időtartam, amíg a zöld fény világít

- rövid
- közepes
- hosszú

pirosfény: a vörös fény időtartama másodpercekben

- rövid
- közepes
- hosszú

Szabályhalmaz: 9 szabály megadása

9 szabály felírása

- 1. Ha (a FORGALOM erős és a SEBESSÉG lassú) akkor (a PIROSFÉNY hosszú, a ZÖLDFÉNY rövid)
- 2. Ha (a FORGALOM erős és a SEBESSÉG közepes) akkor (a PIROSFÉNY közepes, a ZÖLDFÉNY közepes)
- Ha (a FORGALOM erős és a SEBESSÉG nagy) akkor (a PIROSFÉNY rövid, a ZÖLDFÉNY közepes)
- 4. Ha (a FORGALOM közepes és a SEBESSÉG lassú) akkor (a PIROSFÉNY közepes, a ZÖLDFÉNY közepes)
- 5. Ha (a FORGALOM közepes és a SEBESSÉG közepes) akkor (a PIROSFÉNY rövid, a ZÖLDFÉNY hosszú)
- 6. Ha (a FORGALOM közepes és a SEBESSÉG nagy) akkor (a PIROSFÉNY rövid, a ZÖLDFÉNY hosszú)
- 7. Ha (a FORGALOM alacsony és a SEBESSÉG lassú) akkor (a PIROSFÉNY rövid, a ZÖLDFÉNY hosszú)
- 8. Ha (a FORGALOM alacsony és a SEBESSÉG közepes) akkor (a PIROSFÉNY rövid, a ZÖLDFÉNY hosszú)
- 9. Ha (a FORGALOM alacsony és a SEBESSÉG nagy) akkor (a PIROSFÉNY rövid, a ZÖLDFÉNY hosszú)

Gyakorló feladat

Ha egy mosógépet fuzzy logikával szeretnénk működtetni, hogyan valósítaná meg a rendszer irányítását?

Figyelembe kívánjuk venni:

- a tisztítandó ruha tömegét (nyelvi változó: tömeg, értékei: kevés (0-4 kg), sok (2-6 kg)),
- a szennyezettségét (nyelvi változó: piszkos, értékei: kevésbé (0-5), közepes (2,5-7,5), nagyon (5-10), 0-10 intervallumon mérjük a szennyezettség mértékét.

A működéshez meg kell határozni:

- a víz mennyiségét (mennyiség: kevés (0-6 liter), sok (4-10 liter)
- a tisztítószer mennyiségét (kevés (0-6 dkg), sok (3-9 dkg)).

Írja fel a rendszer logikus működéséhez szükséges szabályokat!

Mutassa be részletesen milyen lépések és elvek valósítják meg a működést, ha 4 kg 8 szennyezettségi mértékű ruhát kell kimosatnunk!

Számolja ki mennyi mosószerre és vízre van szükség! Rajzoljon is!