WHAT CAN POPULATION GENETICS **TELL US ABOUT THE EVOLUTION** OF THE **MUTATION RATE?**

YOAV RAM

HADANY LAB - THE EVOLUTIONARY THEORY LAB

MOLECULAR BIOLOGY AND ECOLOGY OF PLANTS
LIFE SCIENCES FACULTY
TEL-AVIV UNIVERSITY
22 OCTOBER 2013

VARIABILITY IN MUTATION RATES

Between species

Rates are in average number of measurable mutations per genome per generation

Bacteria: 0.0004 Wielgoss et al. G3 2011

Flies: 0.455 Keightley et al. Gen Res 2009

Humans: 41 Lynch, PNAS 2010

NON-ADAPTIVE HYPOTHESES

EVOLUTION IN A STATIC ENVIRONMENT

EVOLUTION IN A STATIC ENVIRONMENT

- Directional selection without change
- A balance between mutation and natural selection

SINGLE LOCUS MODEL

- One bi-allelic locus: wild-type A and mutant a
- fitness(A) > fitness(a)
- The model describes the change in the frequency of A:

$$freq(A)_{next} = \frac{freq(A)_{now} \cdot fitness(A) \cdot Pr(no\ mutation)}{current\ mean\ fitness}$$

In a static environment we can look for an equilibrium:

$$freq(A)_{next} = freq(A)_{now}$$

With some algebraic operations we get:

$$stable\ mean\ fitness = fitness(A) \cdot Pr(no\ mutation)$$

SINGLE LOCUS MSB

 The population mean fitness at the mutation-selection balance (MSB):

 $stable\ mean\ fitness = fitness(A) \cdot Pr(no\ mutation)$

In words:

The population mean fitness is equal to the product of the fitness of the wild-type and the probability that the wild-type does not mutate.

Therefore, the higher the mutation rate the lower the mean fitness

SIMULATION RESULTS

MUTATION RATE IN STATIC ENVIRONMENTS

 $stable\ mean\ fitness \propto Pr(no\ mutation)$

- High mutation rates reduce adaptedness of populations
- Selection will reduce the mutation rate to it's lowest attainable level
- What sets this level?
- Kimura 1967 physical or physiological
- Dawson 1999 "cost of fidelity"
- Lynch 2010 "Drift barrier hypothesis"

EVOLUTION IN A DYNAMIC ENVIRONMENT

- In changing environments rapid adaptation can be favored by natural selection (adaptability)
- The mutation rate must balance between adaptability and adaptedness

MUTATORS IN OSCILLATING ENVIRONMENTS

- Model: Leigh, Am Nat 1970
- Fitness locus with alleles A and a like before
- The environmental changes every n generations
- When it changes, fitness(A) < fitness(a) and vice versa
- The optimal mutation rate is now 1/n
- For n=1,000 the mutation rate is 10^{-3}
- Much higher than 10⁻⁷, the rate of mutation per gene

(Drake, PNAS 1991)

MUTATORS IN OSCILLATING ENVIRONMENTS

The optimal mutation rate is now 1/n

- MSB model -> n is large -> slowly changing environments
- Selection for the standing variation generated by mutators
- Local mutators? Same n for all loci? Averaging on all loci?

VARIABILITY IN MUTATION RATES

Within species

Mutation rate in 69 natural populations of *E. coli* – Matic et al. 1997

MUTATORS IN ADAPTIVE EVOLUTION

- Model: Taddei et al., Nature 1997
- Multiple-locus simulations
- Single environmental change
- No standing variation
- Mutation at the mutator locus

ADAPTATION WITH MUTATOR ALLELES

RISE AND FALL OF THE MUTATOR ALLELE

VARIABILITY IN MUTATION RATES

Within individuals

DNA polymerase error rate – Lynch 2011

STRESS-INDUCED MUTATION

In E. coli:

- Error prone polymerase induced by stress responses:
 - SOS response
 - DNA damage
 - Starvation
- Mismatch repair system
- Other mechanisms:
 - Galhardo et al. 2007
 - Al Mamun, Science 2012

EVIDENCE

EVOLUTION OF STRESS- INDUCED MUTATION

Null hypothesis

Mutagenesis is the by-product of stress

Alternative non-adaptive hypotheses

Cost of fidelity

Drift barrier hypothesis

Adaptive hypothesis

Second order selection

STATIC ENVIRONMENT

Selection against generation of deleterious mutations

x - number of harmful alleles

 f_{x} - frequency

 ω_x - fitness

 m_x - mutation probability

 δ - deleterious mutation β - beneficial mutation

STATIC ENVIRONMENT

General solution

$$sign\frac{\partial \overline{\omega}}{\partial m_{x}} = sign\left(\overline{\omega} - \omega_{x}\right)$$

"Increasing the mutation rate of individuals with below average fitness increases the population mean fitness"

Selection doesn't reduce the mutation rate!

STATIC ENVIRONMENTS

STATIC ENVIRONMENTS

RAPIDLY CHANGING ENVIRONMENTS

The Red Queen hypothesis (van Valen, 1973):

"It takes all the running you can do, to keep in the same place."

- Lewis Carrol, Through the Looking Glass

What happens when the environment changes frequently?

CHANGING ENVIRONMENTS

Simulation model

Moran process

Individual-based simulations

100,000 individuals

1,000 loci

Asexual, Haploid

Overlapping generations

No recombination

No segregation

No mutations at mutator locus

Environmental changes

POPULATIONS WITH SIM ARE FITTER

SIM WINS COMPETITIONS

SIM WINS COMPETITIONS

SUMMARY: EVOLUTION OF STRESS-INDUCED MUTATION

- Stress-induced mutators evolve:
 - In finite & infinite populations
 - In constant & changing environments

- Second-order selection can lead to the evolution of stress-induced mutagenesis in asexual populations
- Selection for evolvability

CONSEQUENCES OF STRESS-INDUCED MUTATION RATE

How does SIM affect evolution?

ADAPTIVE PEAK SHIFTS

This problem was introduces by Sewall Wright in 1931:

If a new adaptation requires several, separately deleterious mutations, how can it evolve?

EXAMPLES

Criteria

- Adaptation requires a change in two or more traits
- Change in only one trait causes reduced fitness

Wings and bones

- Flying with heavy bones is costly
- Walking and climbing with light bones is dangerous

New metabolic pathway

- Two new proteins required pump and enzyme
- each is wasteful without the other

Adaptation to high UV (Haldane 1932, p. 175)

- Dark skin increased pigmentation
- Vitamin D storage in the liver

Xiao et al. 2011

SIM & RUGGED LANDSCAPE

Increasing the mutation rate in individuals below **both** peaks

DETERMINISTIC RESULTS

The rate of adaptation without **normal mutation**:

$$v_{NM} \approx 4NH\mu^2$$

The rate of adaptation without **high mutation**:

$$v_{CM} \approx \tau^2 \cdot v_{NM}$$

The rate of adaptation without **stress-induced mutation**:

$$\nu_{SIM} \approx \tau \cdot \nu_{NM}$$

 ν – adaptation rate; N – population size; τ – mutation rate increase; H – double mutant advantage; μ – beneficial mutation rate

STOCHASTIC MODEL

$$v_{CM} \approx \tau^2 \cdot v_{NM}$$
 $v_{SIM} \approx \tau \cdot v_{NM}$

ADAPTATION RATE

SIM BREAKS THE ADAPTABILITY-ADAPTEDNESS TRADE-OFF

CONCLUSION

- Evolution of Stress-induced mutagenesis:
 - SIM can evolve due to second order selection.
 - In constant and changing environments
- Effects of stress-induced mutagenesis:
 - SIM increases the adaptation rate without reducing the population mean fitness
 - Breaks the trade-off between adaptability and adaptedness

- **y** @yoavram
- ♠ http://www.yoavram.com