

Dr. N MEHALA

Department of Computer Science and Engineering

Module 4 [Unsupervised Learning]

Dr. N MEHALA

Department of Computer Science and Engineering

Mining Association Rules

Two-step approach:

- 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

 Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Mining Association Rules: Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property

$$c(ABC \rightarrow D)$$
 can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
- e.g., $L = \{A,B,C,D\}$:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

THANK YOU

Dr. N MEHALA

Department of Computer Science and Engineering mehala@pes.edu

Dr. N MEHALA

Department of Computer Science and Engineering

Module 4 [Unsupervised Learning]

Dr. N MEHALA

Department of Computer Science and Engineering

Association Rule Mining: Example

PES UNIVERSITY ON LINE

CONSIDER THE FOLLOWING DATASET WITH THE FOLLOWING INPUTS.

Minimum support (i.e coverage): 60% Minimum confidence (i.e. accuracy): 80%

- STEP 1: FREQUENT ITEMSET GENERATION
- STEP2: RULE GENERATION

Association Rule Mining: Example

STEP 1: FREQUENT ITEMSET GENERATION

Association Rule Mining: Example

U 1

Minimum support (i.e coverage): 60%

Minimum confidence (i.e. accuracy): 80%

Trans_id	Itemlist		
T1	{K, A, D, B}		
T2	{D, A C, E, B}		
T3	{C, A, B, E}		
T4	{B, A, D}		

1-ItemSet	Support Count
{A}	4
{B}	4
{C}	2
{D}	3
{E}	2
{K}	1

Association Rule Mining: Example

Now let's form the item sets containing 2 items.

1-ItemSet	Support Count
{A}	4
{B}	4
{D}	3

1-ItemSet	Support Count
{A}	4
{B}	4
{C}	2
{D}	3
{E}	2
{K}	1

2-ItemSet	Support Count
{A, B}	4
{B, D}	3
{A, D}	3

Association Rule Mining: Example

PES UNIVERSITY ONLINE

• STEP 3. The item sets containing 3 items. We only take the item sets from the previous phase whose support is 60% or more.

2-ItemSet	Support Count
{A, B}	4
{B, D}	3
{A, D}	3

3-ItemSet	Support Count
{A, B, D}	3

Association Rule Mining: Example

STEP2: Rule Generation

• Lets now form the rules and calculate their confidence (c). We only take the item sets from the previous phases whose support is 60% or more. <u>Minimum confidence (i.e. accuracy): 80%</u>

T1

Trans_id Itemlist

{K, A, D, B}

Association Rule Mining: Example

{D, A C, E, B} T2 {C, A, B, E} T3

T4

{B, A, D}

FREQUENT ITEM SETS

{A, B}

{A, D}

BINARY PARTITIONING:

{B, D}

{A,B,D}

 $A \rightarrow B$

 $B \rightarrow A$

 $A \rightarrow D$

 $A \rightarrow B$

 $P(B|A) = |B \cap A| / |A| = 4/4, c: 100%$

D -> A

 $B \rightarrow D$

 $B \rightarrow A$

c: 100%

 $D \rightarrow B$

AB -> **D**

A -> D

c: 75%

D -> **AB**

AD -> **B**

B - > AD

BD -> A

A -> BD

Association Rule Mining: Example

A -> B	P(B A) = B ∩	∩A / A = 4/4, c: 100%
B -> A	c: 100%	
A -> D	c: 75 %	
D -> A	c: 100%	
B -> D	c: 75 %	The rules with a confidence
D -> B	c: 100%	measure of 75% are pruned,
AB -> D	c: 75 %	•
D -> AB	c: 100%	and we are left with the
AD -> B	c: 100%	following rule set:
B - > AD	c: 75 %	A -> B
BD -> A	c: 100%	B -> A
A -> BD	c: 75 %	D -> A
		D -> B
		D -> AB
		AD-> B
		DB-> A

Association Rule Mining: Example 2

Association Rule Mining: Example 2

Student	Grade	Income	Buys
CS	High	Low	Milk
CS	High	High	Bread
Math	Low	Low	Bread
CS	Medium	High	Milk
Math	Low	Low	Bread

Association Rule Mining: Example 2

CONVERTED DATA

Student	Grade	Income	Buys
CS	High	Low	Milk
CS	High	High	Bread
Math	Low	Low	Bread
CS	Medium	High	Milk
Math	Low	Low	Bread

Student = CS (I1)	Student =math (I2)	Grade = high (I3)	Grade =mediu m (I4)	Grade =low (I5)	Income =high (I6)	Income =low (I7)	Buys=mi lk (I8)	Buys =bread (I9)
+	-	+	-	-	-	+	+	-
+	-	+	-	-	+	-	-	+
-	+	-	-	+	-	+	-	+
+	-	-	+	-	+	-	+	-
-	+	-	-	+	-	+	-	+

Summary

- Association Rule Mining Task
- Frequent Item Set Generation : Apriori Algorithm
- Factors Affecting Complexity

Resources

- http://www2.ift.ulaval.ca/~chaib/IFT-4102 7025/public html/Fichiers/Machine Learning in Action.pdf
- http://wwwusers.cs.umn.edu/~kumar/dmbook/.
- ftp://ftp.aw.com/cseng/authors/tan
- http://web.ccsu.edu/datamining/resources.html

THANK YOU

Dr. N MEHALA

Department of Computer Science and Engineering mehala@pes.edu