007024757

WPI Acc No: 1987-024754/198704

XRAM Acc No: C87-010336

Optically active hydroxyethyl azetidinone derivs. prepn. - from optically inactive acyloxyethyl azetidinone derivs. using microorganisms or enzymes

Patent Assignee: SANKYO CO LTD (SANY)

Number of Countries: 001 Number of Patents: 002

✓ Abstract (Basic): JP 61280295 A

Beta-lactam cpds. are produced by hydrolysing cpd. (dl substance) of formula (I) selectively by means of microorganisms or enzyme to derive optically active cpd. of formula (I) where R1 is H. (R1 is acyl; R2 is (substd.) alkyl, alkenyl, alkinyl, aryl, alkylthio, alkylsulphonyl, arylthio or arylsulphonyl or acyloxy; R3 is H or protective gp. for N atom).

Optically active 3-(1-hydroxyethyl)-2-azetidinone deriv. can be obtd. from optically inactive 3-(1-acyloxyethyl)-2-azetidinone derivs. (dl substance) by means of microorganisms or enzyme. The prods. are important intermediates for prepn. of carbapennem and pennem deriv. having antibacterial activity.

As microorganism may be various bacteria, yeast and fungi. Bacteria yeast and fungi. Bacteria include Arthrobacter simplex SANK 73560 (IAM 1660), Bacillus subtillis SANK 76759 (IAM 1069), Chrombacterium violaceum SANK 72783 (ATCC 31532), Flavobacterium capsulatum SANK 70979 (IFO 12533), and Flavobacterium meningosepticum SANK 70779 (IFO 12535). Yeast includes Aureobacidium pullurans SANK 10877 (ATCC 15232), Candida albicans SANK 50169 (IFO 0683), Pichia farinosa SANK 58062 (LAM 4303), Pichia terricola SANK 51684 (FERM 8001), Rhodotorula minuta SANK 50871 (IFO 0932), and Saccharomyces cerevisiae SANK 50161 (IAM 4512). fungi includes Aspergillus niger SANK 13658 (ATCC 9142) Gliocladium roseum SANK 10560 (FERM 8259), and Humicola asteroidea SANK 14981 (FERM 8260).

Enzyme may be microorganism origin or animal or plant cell origins,

® 公開特許公報(A) 昭61-280295

@Int Cl.4

識別記号

庁内整理番号

④公開 昭和61年(1986)12月10日

C 12 P 41/00 //(C 12 P 41/00 C 12 R 1:01) (C 12 P 41/00 C 12 R 1:645) 7823-4B

審査請求 未請求 発明の数 1 (全22頁)

劉発明の名称 光学活性アゼチジノン誘導体の製法

②特 願 昭60-121479

22出 願 昭60(1985)6月6日

井 功 79発 明 者 岩野· 79発 明者 雄 次 敦 勿発 明 内 者 藤 俊 一 勿発 明 者 宮 越 三共株式会社 ①出 願 弁理士 樫出 庄治 個代 理 人

東京都品川区広町1丁目2番58号 三井株式会社内東京都品川区広町1丁目2番58号 三井株式会社内東京都品川区広町1丁目2番58号 三井株式会社内東京都品川区広町1丁目2番58号 三井株式会社内東京都中央区日本橋本町3丁目1番地の6

明 細 魯

1. 発明の名称

光学活性アゼチジノン誘導体の製法

2. 特許請求の範囲

一般式

〔式中,R1は置換基を有してもよいアンル基、を示し、R2は置換基を有してもよいアルキル基、アルキニル基、アリール基、アルチオ基、アルキルスルホニル基、アールチオ基、マルキルスルホニル基、またはアリールスルホニルを、またはアシルオキン基を、R5は水素原子または窒素原子の保護表を示す。〕を有する化合物(dd 体)を微生物又は酵素を利用して選択的に加水分解し一般式

「式中、R² およびR³ は前述したものと同意殺を示す。〕を有する光学活性な化合物へ導くことを特徴とするβ-ラクタム化合物の製法。

3 発明の詳細な説明

本発明は光学不活性な3-(1-アシルオキシェチル)-2-アゼチジノン誘導体(d&体)を微生物もしくは酵素を利用して光学活性な3-(1-ヒドロキシェチル)-2-アゼチジノン誘導体へ導く製法に関するものである。

本発明によつて得られる光学活性な3 - (1 - ヒドロキシエチル) - 2 - アゼチジノン誘導体は抗関活性を有するカルパペネム及びペネム誘導体へ導く重要中間体である。

光学活性な3-(1-ヒドロキシエチル)-2-アゼチジノン誘導体の製法に関しては種々知られているが、いずれも工程数が多く反応操作が煩雑である。本発明者等は、容易に得られるde-3-(1-アシルオキシエチル)-2-アゼチジノン(!)を微生物ないしは酵素を利用して選択的に加水分解し光学活性な3-(1-ヒ

ドロキシエチル) - 2 - アゼチジノン(2)が効率 よく得られることを見い出し本発明を完成した。 一般式

意義を示す。)などである。)、-SR4(式中、 R⁴は前述したものと同意義を示す。)、-CONR⁶R⁷ (式中、B⁶ およびB⁷は、同一もしくは異なる水 **累原子、アルキル基(たとえばメチル、エチル、** プロピル、プチル、もしくはt-ブチルなど)、 シクロヘキシル、もしくはペンジルなどである。) -OR8 基(式中、R8は、水素原子、アルキル基(たとえばメチル、エチル、もしくはプロピルな ど)もしくはアシル袪(たとえばアセチル、ブ ロピオニル、ブチリル、もしくはペンゾイルな ど)などである)、もしくは-cor9 蒸(式中、 R⁰はメチル、エチル、もしくはフェニルなどで ある)、などである〕、健後基を有してもよい アルケニル葢〔たとえばビニル、アリル、もし くはプテニルであつて以下に示す同一もしくは 異なる遺換基を1~3個有してもよい。その量 換基は、アルキル基(たとえばメチル、エチル、 プロビル、プチル、イソプロピル、もしくはし ープチルなど)、-CO₂R⁴ 基(式中R⁴は前述した ものと同意鉄を示す)、-OOSR5益(式中R5は、

中RAは、水岩原子、アルキル蒸(たとえばメチ ル、エチル、プロピル、プチル、イソプロピル、 もしくはヒープチルなどである。)。健終基を 有してもよいフェニル基(その置換基は、メチ ル、エチル、プロピル、メトキシ、メチルメル カブト、ニトロ、シアノ、アセトアミド、弗素、 塩素もしくは臭素などである。)、もしくは置 換蓋を有してもよいペンジル基(その置換基は、 メトキシ、メチルメルカプト、メチル、エチル、 プロピル、ニトロ、シアノ、アセトアミド、弗 累、塩素もしくは臭素などである。)などであ る。)、ハロゲン原子(たとえば、弗累、塩素、 もしくは臭素などである。)、-OOSR5基(式中、 R⁵は、アルキル基(たとえばメチル、エチル、 プロピルなどである。)、 健 換 基を有してもよ いフエニル茜(その置換基は、先に述べたR⁴が 置換基を有してもよいフェニル基の置換基と同 意義を示す。)、もしくは置換益を有してもよ いペンジル基(その置換基は、先に述べたR4が **置換基を有してもよいペンジル基の懺換基と同**

前述したものと同意義を示す)、-SR⁴ 基(式中 R4は、前述したものと同意義を示す。)、-OR8 基(式中R⁸は、前述したものと同意發を示す。)、 もしくは置換基を有してもよいフェニル基(そ の置換基は、先に述べた№が置換基を有しても よいフェニル基の微換基と同意義を示す)など である〕、置換基を有してもよいアルキニル基 〔たとえばエチニル、もしくはプロパルギル基 であつて以下に示す同一もしくは異なる置換基 を1~3個有してもよい。その罹換蒸はアルキ ル蒸(たとえばメチル、エチル、プロピル、プ チル、イソプロピル、もしくは t - プチルなど)、 -CO2R4基(式中R4は、前述したR4と同意義を示 す)、-008R5基(式中R5は、前述したR5と同意 義を示す。)、-SR4 英(式中R4 は、前述したR4 と同意義を示す。)-OR8基(式中R8は、前述し たR8と同意幾を示す。)、もしくは懺換益を有 してもよいフェニル芸(その健模基は、先に述 べたRIが置換基を有してもよいフェニル基の世 換基と同意義を示す)などである〕、触換基を

有してもよいフェニル蒸(以下に示す同一もし くは異なる厳換葢を1~3個有してもよい。そ の世換基は、アルキル基(たとえばメチル、エ チル、プロピル、もしくはイソプロピルなど)、 アルコキシ基(たとえばメトキシ、エトキシ、 プロポキシ、プトキシ、もしくはtープトキシ など)、ハロゲン(たとえば弗累、塩素、もし 、(は臭素など)、ニトロ、シアノ、アセチル、 アセトキシ、もしくは水酸基などである)、ア ルキルチオ基-SR⁹(式中R⁹は、メチル、エチル、 プロピル、プチル、イソプロピル、もしくはょ ープチルなど)、アルキルスルホニル基-802R9 (式中R⁹は、前述したR⁹と同意義を示す。)、 **遺換基を有してもよいフェニルチオ基(以下に** 示す同一もしくは異なる懺換基を1~3個有し てもよい。その鼠換基は、アルキル基(たとえ はメチル、エチル、プロピル、もしくはイソブ ロビルなど)、アルコキシ基(たとえばメトキ シ、エトキシ、プロポキシ、プトキシ、もしく はt-プトキシなど)、ハロゲン(たとえば弗

異、塩素、もしくは臭異など)、ニトロ、シア ノ、アセチル、アセトキシ、もしくは水田基な どである。)、解換器を有してもよいフェニル スルホニル茶(その置換基は、上述した魔換基 を有してもよいフェニルチオ基の置換器と同意 義を示す。)、またはアシルオキシ基、-000R¹⁰ (式中 R¹⁰ は、 炭素数 1~10個の置換基を有し てもよいアルキル茜(たとえばメチル、エチル、 プロピル、プチル、ペンチル、ヘキシル、ヘブ チル、オクチル、ノニル、もしくはデシルなど)、 その置換基は炭素数1~5個のアルキル基(た とえば、メチル、エチル、ブロピル、プチル、 ベンチル、イソプロピル、もしくはtープチル など))、饋換基を有してもよいフェニル薪(そ の置換蒸は、先に述べたR4が置換基を有しても よいフェニル基の置換基と同意義を示す。)、 もしくは置換蒸を有してもよいペンジル基(そ の健換基は、先に述べたBIが遺換基を有しても よいペンジル基の催換基と同意發を示す。)な どである。)などである。

R³は、水素原子または窒素原子の保護基〔た とえばシリル葢(たとえばトリメチルシリル、 トリエチルシリル、トリフエニルシリル、t-プチルジメチルシリル、もしくは:一プトキシ ジフエニルシリルなど)、置換基を有してもよ いアルキル基(たとえばメチル、エチル、プロ ピル、プチル、ペンチル、ヘキシル、もしくは ヘプチルなどであつて、以下に示す同一もしく は異なる置換基を1~3個有してもよい。その **置換葢は、アルキル葢(たとえば、メチル、エ** チル、プロピル、イソプロピル、ブチル、もし くは1-プチルなど)、CO2R4基(式中R4は、前 述したものと同意袋を示す)、-OR¹塩(式中R¹¹ は水果原子、アルキル酱(たとえばメチル、エ チル、プロピル、もしくはプチルなど)、健侠 基を有してもよいペンジル甚(その健災基は、 先に述べたRIが置換蓋を有してもよいペンジル 茜の置換基と同意袋を示す。)などである。)、 置換基を有してもよいフェニル指(その遺換器 は、先に述べたがが置換基を有してもよいフェ

ニル基の懺換蒸と同意幾を示す。)、もしくは 置換基を有してもよいペンジル基(その置換基 は、先に述べたR4が置换基を有してもよいペン ジル基の遺換基と同意袋を示す。))、 置換基 を有してもよいアルケニル基((たとえば、ビ゛ ニル、もしくはアリル基であつて、以下に示す 同一もしくは異なる1~3個の遺換基を有して もよい。その世換葢は、アルキル葢(たとえば、 メチル、エチル、プロピル、もしくはブチルな ど)、置換基を有してもよいフェニル基(その 磁换基は先に述べたR⁴が置換基を有してもよい フェニル基の 置換基と同意殺を示す。)、もし くは -co₂ R⁴ 基 (式中 R⁴ は、前述したものと同意 錠を示す。))、関換券を有してもよいフェニ ル基、(その置換基は、先に述べたB4が厳換基 を有していてもよいフェニル基の置換基と同意 發であつて、同一もしくは異なる1~3個のこ れらの崔換基を有してもよい。)、置換基を有 してもよいペンジル基(その膛換基は、先に述 べたR⁴が世換基を有してもよいペンジル基の健

後基と同意義であつて、同一もしくは異なる 1 ~ 3 個のこれらの魔袋基を有してもよいシクロアルキル あしくは 世換 基を有してもよいシクロアルキル あ (たとえば シクロペンチル、もしくは シクロペンチル、もしくは シクロペンチル であつて、その 置換 基は 先述 した R³ が 発素原子の保護 基である場合の 置換 基を 有してもよいアルキル 基の 置換 基と 同意 幾を示す) などである〕などである。

一般式(1)を有する化合物のうち好適化合物はR¹が雌換基を有してもよいアシル基(たとりルボルミル、アセチル、港であつて以有して、パーもしくは異ななは、1~3個有エチル、1、一もしくは異ななは、1~3個有エチルと、アルオキシ(メチルオキン、エチカるの性換基を1~20度素をでいまれた。このは換差は、1~20g R⁴ 基をして、R⁴ は前述したものと同意数を示す。)、電影は前述したものと同意数を示す。)、

とができる。

この目的達成のために有効な微生物は細菌から酵母、糸状菌まで多岐にわたる。例えば、以下のごとくである。

(細菌)

Arthrobacter simplex SANK 73560 (IAM 1660)

Bacillus subtilis SANK 76759 (IAM 1069)

Chromobacterium violaceum SANK 72783 (ATCC 31532)

Flavobacterium capsulatum SANK 70979 (IFO 12533)

Flavobacterium meningosepticum SANK 70779 (IFO 12535)

(酵母)

Aureobacidium pullurans SANK 10877 (ATGC 15232)

Candida albicans SANK 50169 (IFO 0683)

Pichia farinosa SANK 58082 (IAM 4303)

Pichia terricola SANK 51684 (PERM 8001)

Rhodotorula minuta SANK 50871 (IFO 0932)

Saccharomyces cerevisiae SANK 50161 (IAM 4512)

〔糸状菌〕

Aspergillus niger SANK 13658 (ATCC 9142)
Gliocladium roseum SANK 10560 (FERM 8259)

を有してもよいアルキニル葢であつて、その遺 換基は -SR4基(式中、R4は前述したものと同意 袋を示す。)もしくは OR8 基(式中R8は、前述 したものと同意義を示す。)、アルキルスルホ ニル基-802R9(式中、R9は前述したものと同意 義を示す)、位換甚を有してもよいフェニルス ルホニル基、もしくはアシルオキシ基 -ocor10 (式中、R10は前述したものと同意袋を示す。) などであり、R3が水気原子、遺換基を有するア ルキル基であつてその置換基が-00gR⁴基(式中、 R⁴は前述したものと同意幾を示す。)、アルキ ル基、もしくは OR11 基(式中、R11 は前述したも のと同意義を示す。)、懺換基を有してもよい アルケニル基であつてその置換基はアルキル基、 もしくは-CO2R4基(式中R4は前述したものと同 意義を示す)、遊換基を有してもよいフェニル 蓋、もしくは置換蓋を有してもよいペンジル基 などである。

本発明の不斉加水分解に供試される微生物ないし酵素は、数多い成者と経験とにより選ぶこ

Humicola asteroidea SANK 14981 (FERM 8260)

これらの微生物を供試する場合の実験方法は、 次に示す A 法 および B 法に大別できる。

A法一供試微生物が良好な生育を示す任意の培地に当該選株を接種し、1~2日間培養(通常は回転扱と5培養一往復振と5培養でも可一)の後、旺盛な発育のみられる時期に20~150g%の基質を添加(微細粉末として直接培地に添加するか、水とよく混和する任意の有機容媒0.5~20%の範囲に容解させて添加する)し、同一条件で培養を続けて加水分解を終了させる、いわゆる生育菌体法である。

例えば、グルコース2%、ポリベプトン1%、 酵母エキス0.1%の各濃度で水道水100 ㎡に溶か し、500 ㎡三角フラスコに分注し、120 ℃、15 ℓbs、にて20分間高圧殺菌する。冷却後、菌を 同一培地で3日間培養した培養液を3㎡接種し、 28℃にて回転撮と5する。1日後、旺盛な生育 のみられる時期に、基質を適当量、適当な水溶 性溶媒に溶かした液を加え、2日間培養を続け る。微生物反応終了時の叫は細菌で叫 7.8~8.9、 酵母あるいは糸状菌でpH 4.8~5.7である。培養液 を酢酸エチルで抽出し、粗生成物が得られる。

なお、 A 法における接種菌体、 B 法における 湿菌体のかわりに容易に入手可能な生菌体、 例 えば市販されている製パン用イーストなどは、 目的達成のために手軽に供試し 5 るものである。 B 法は微生物加水分解終了後の抽出操作にお

などがあるが、加水分解活性の高い菌体を得るためには、天然培地を用いるのが望ましい。天然培地を用いるのが望ましい。天然培地の一例として、グルコース1~5%、ペプトン1~3%、酵母エキス0.05~0.5% pH 6.5の組成の培地などがある。この場合、微生物種によつてはグルコースを展簡または麦芽糖、液糖によってはグルコースを展簡または麦芽糖、液糖に、大豆粉、ファーマメデアなど他の窒素源にかえることもできる。さらに炭素源、窒素源以外に無機塩(例えば PeSO4・7H2O,Mg3O4・7H2O,ZnSO4・7H2Oなど)を0.001~0.01% 添加することで、菌体の加水分解活性が高まることがある。

一万、微生物菌体ではなく、酵素のみを用いても、目的を達成することができる有効な酵素は、微生物ないしは動物細胞由来のもので、リパーゼを始めとするエステラーゼやアミノアシラーゼなどであり、これらによる反応では、加水分解が立体選択的に進行するものが多い。例えば、エステラーゼ(Carboxylic - ester hydrorase, BO 3.1.1.1, 例えばプタ肝臓由来の市販品、PLB)

いて、菌体懸濁液から来る夾雑物が A 法に比べて少なく、従つて目的物質の単離、相製が容易であり、かつ収率が良い。さらに、 A 法の生育 選体法では目的とする一次(加水分解)反応に次いで二次反応が起こりやすく、 B 法の関体懸 微法では微生物反応が単純化され、目的物質のみを効率よく得ることができる。

例えば、市販のパン用イースト28(湿菌体)を38ショ糖を含む20元の水道水に懸満し、0.5~2時間、28℃で回転提とう培養する。ついで適貨の基質をメタノールなどの水溶性溶解に溶かして添加し、加水分解反応を行う。反応開始後1~2日間、反応の経時変化をTLCで確認し、装質みの認められる場合には蔗糖18を追加し、加水分解反応を終了させる。反応液を酢酸エチルで抽出し、粗生成物が得られる。

なお、A法およびB法において微生物の培養に供しうる培地は、微生物の旺盛な生育が見られるものであれば全て本目的を達しうる。これらの培地には天然培地、半合成培地、合成培地

リバーゼ (Triacylglycerol acylkydrolase, EC3 1. 1. 3, 例えば Aspergillus oryzaeまたは Aspergillus niger 由 来の市販品)

アミノアシラーゼ (N-Amino-acid aminohydro lase, EO 3. 5. 1. 14,例えば Aspergillus 属の糸状菌より調 製された市販品)

などの酵素である。また、精製されたこれら標品のかわりに、市販品として安価に入手可能な租精製品を用いることでも目的を達しうる。例えばタカジアスターゼCは Aspergillus oryzae由来の租酵素標品で、リパーゼを含んでいるので精製標品のリバーゼのかわりに用いることができる。

酵素を用いる方法は、微生物菌体による方法に比べて培養のための装能や操作が不要であり、反応時に一次(加水分解)反応以外の反応がほとんど起こらず、微生物菌体由来の英雑物もないため目的物質の抽出精製が容易である点などの利点がある。

例えば、プタ肝臓エステラーゼ (PLE) 500 単

位を pH 8.0 の緩衝液(例えば燐酸緩衝液) 50 ml に溶かし、水とよく混和する溶媒(例えばアルコール、ジメチルホルムアミドなど)少雄に溶かした適量の基質を添加し、攪拌しながら3.5℃にて 2 ~24時間反応させる。反応の経時変化をTLO で確認し、反応終了後、反応液を酢酸エチルなどの溶媒で抽出し、粗生物が得られる。

基質は溶媒に溶かして添加するほか、 直接投入する方法もある。いずれにおいても、 必要に応じて 0.01~0.1 % の界面活性剤(例えば Triton X-100 , Span 80 など)や水を混和する有機容媒(例えばジメチルホルムアミド、 ジメチルスルホキンド、 アセトンなど)を適量添加することにより酵素反応をより効率的に行うことができる。

一般式(2) (式中、R² およびR³ は前述したものと同意義を示す)を有する化合物は、以下のようにして得られる一般式(1)を有する化合物をアルコール、アセトンもしくはジメテルホルムアミドに溶かすか、または直接微生物の培地また

式中R¹、R² およびR³ は前述したものと同意幾を示し、X はハロゲン原子などを示す。

化合物(3)を脱水剤の存在下アミンと反応させることによりシッフの塩基(4)ができる。これとジケテンの反応により化合物(5)が得られる。これを選元し化合物(6)としてこれをアシル化することにより化合物(1)が得られる。

本発明によつて得られる化合物は Scheme 2 に従つてカルパペネムへ導くことができる。

Scheme 2

は解案液に添加して、磁生物反応においては A 法もしくは B 法により 1 ~ 4 日間、解素法にないては 2 ~ 24時間反応させる。この間、 TLC などにより化合物 (2) のの変換を確認である。適当時間後、適当な経媒、例えば酢酸エチル、エーテルなどの密媒で抽出し、抽出物をおれ、クロマトグラフィー、 TLO、または再結ら、クロマトグラフィー、 TLO、または再結らにより、自的とする光学活性なアゼチシノン誘導体 (2) を分離精製する。

本発明の出発物質である化合物(1)は特顯昭59-265962号に開示された方法により得られる。 すなわち Scheme 1 に従つて化合物(3)から 4 工程で(1)が得られる

Scheme 1

すなわち化合物 (1) の水酸基を保護しついてアセチレンのチオフェニル化をすると化合物 (8) が得られる。化合物 (8) の窒 累原子の保護基を T Fukuyama 等 (J. Am. Chem. Soc. 102 2122 (1980)) の方法 に従つて除去しついで特開昭 60-19763 号の方

に従つて除去しついで特開昭 60-19763 号の方法により化合物 (9) が得られる。化合物 (9) からカルパペネム (1) へ導く方法は特開昭 59-46265 号及び特開昭 59-51286 号に示されている。

つぎに実施例および参考例をあげて本発明を説明する。

奥施例1

 $\frac{(38,48)-1-(4-1)+20}{3-((18)-1-1)+10}$ $\frac{7}{4}=\frac{1}{4}$

dl-3,4-トランス-1-(4-メトキシフエニル)-3a-[(1R*)-1-アセトキシエチル]

ー 4 ー エ チ = ルー 2 ー ア ゼ チ ジ ノ ン (60 mg) を Pichia farinosa SANK 58062 (IAM 4303) と 伴 に B 法 に よ り 30 ℃ で 24 時 間 振 と う 培 養 す る。 培 養 液 を 酢 酸 エ チ ル で 抽 出 し て 得 ら れ る 粗 生 績 体 (76 mg)を シ リ カ ゲ ル 薄 層 ク ロ マ ト グ ラ フ イ ー (シ ク ロ へ キ サ ン / 酢 酸 エ チ ル = 1 / 1 、 U.V ラ ン ブ 検 出 、 B.f = 0.32) に よ り 精 製 す る と 目 的 化 合 物 21 mg が 得 ら れ た。

$$(\alpha)_{D}^{24^{\circ}}$$
 -135° (C = 1 , CH c ℓ_{5})

NMR ($CDc\ell_5$) , δppm : 1.27 ($3\,H$, d , $J=6\,Hz$) , 2.55 ($1\,H$, d , $J=2\,Hz$) , 3.38 ($1\,H$, dd , $J=2\,\mathcal{R}\mathcal{U}$ 4 Hz) , 3.75 ($3\,H$, s) , 4.1 ~ 4.5 ($1\,H$, m) , 4.60 ($1\,H$, t , $J=2\,Hz$) , 6.75 ~ 7.60 ($4\,H$, A_2B_2 型)

(3R,4R) -1-(4-メトキシフエニル)

<u>- 3 - [(1R) - ヒドロキシエチル) - 4 - エチ</u>

ニルー2ーアゼチジノン

実施例 2

dl-3.4-トランス-1-(4-メトキシフェニル)-3α-((1R*)-1-ベンゾイルオキシェチル]-4-エチニルー2-アゼチジノン(500mg)を Bacillus subtilis SANK 76759 (IAM 1069)と伴に A 法により28℃で24時間振とう培養する。培養液を酢酸エチルで抽出して得られる租生績体(518mg)をシリカゲル薄層クロマトグラフィー(シクロヘキサン/酢酸エチル=1/1)により精製すると目的化合物 148 mg が得られた。このものをエーテルから再結晶を行つた。

$$(a)_{D}^{24}$$
 -200° (0=1, CHc ℓ_{5})

NMR は実施例 1 で得られた化合物のそれと一致した。

奥施例 4

dl-3.4-トランス-1-(4-メトキシフエニル)-3a-[(1s*)-1-アセトキシエチル]
-4-エチニルー2-アゼチジノン(60 mg) を
実施例1と同様に反応、処理すると目的化合物
13 mg が得られた。

$$R_1 = 0.32$$
 (シクロヘキサン/酢酸エチル= 1/1) [α] $_D^{24}$ +77° ($0=1$, $OHecl_3$) mp $96\sim105$ °

NMR ($GDc\ell_5$) δppm : 1.37 (3 H , d , J=6Rz) , 2.55 (1 H , d , J=2Rz) , 3.40 (1 H , dd , J=2 , 4Rz) , 3.75 (3 H , s) , 3.9~4.4 (1 H , m) , 4.45 (1 H , t , J=2Rz) , 6.75~7.6 (4 H , A_2B_2)

奥施例3

dl-3.4-トランス-1-(4-メトキシフェニル) +3α-[(1R*)-1-ベンゾイルオキシェチル]-4-エチニルー2-アゼチジノン(120 mg)を Aspergillus niger SANK 13658 (ATOO 9142)と伴にA法により28℃で48時間振とう培養する。培養液を酢酸エチル抽出して得られる租生績体(108 mg)をシリカゲル薄層クロマトグラフイー(シクロヘキサン/酢酸エチル=1/1)により精製すると目的化合物21 mg が得られた。

$$(\alpha)_D^{24^{\circ}}$$
 -87. $(0=1, CHe\ell_3)$

NMR は実施例 1 で得られた化合物のそれと一致した。

実施例 5.

(3R , 4R) — 1 — (4 — メトキシフェニル) - 3 [(1R) -ヒドロキシエチル) - 4 - エ チニルー2ーアゼチジノン

dl - 3.4 - トランス-1 - (4 - メトキシフ オキシエチル]ー4ーエチニルー2ーアゼチジ ノン(128 号)を Bacillus subtilis SANK 76569 (IAM 1069) と伴に A 法により 28 ℃で 36 時 間振とう培養する。培養液を酢酸エチル抽出し て得られる粗生緻体(219 号)をシリカゲル簿 層クロマトグラフィー (シクロヘキサン/酢酸 エチル= 1/1)により精製すると目的物 18 号 が得られた。このものをエーテルにより再結晶 を行つた。

 $(\alpha)_{D}^{24^{\circ}} + 170^{\circ} (C=1, OHO8_3)$

NMR (CDCl₃) 8ppm : 1.24 (3H, d, J=6Hz), して得られる粗生緻体(179 m)をシリカゲル 239 (1H, d, J=2Hz), 3.22 (1H, dd, J=2, 5Hz), 3.70 (3H, s), $3.9 \sim 4.4$ (1H, m), 3.95 (1H, d, J=15Hz), 4.59 (1H, d, J=15Hz), 6.70 ~ 7.25 (4H. A₂B₂型)

爽施例 7.

- 3 - [(1B) - 1 - ヒドロキシエチル] - 4 ーエチニルー2ーアゼチジノン

dl - 3, 4 - トランス-1-(4-メトキシ ベンジル) - 3a - { (1R*) - 1 - ホルミルオ キシエチル]ー4ーエチニルー2ーアゼチジノ ン (188 mg) を Pichia farinosa SANK 58062 (IAN 4303)と伴に B 法により 28 とで 48 時 間振とう培養する。培養液を酢酸エチルで抽出

128° mр

实施例 6.

(38, 48)-1-(4-メトキシベンジル) ーエチニルー2ー.アゼチジノン

dl - 3, 4 - トランス - 1 - (4 - メトキシベ $\gamma ジ \nu$) $-3\alpha - ((18*) - 1 - ベッソイル$ オキシエチル] ー 4 ー エチニルー 2 ー アゼチジ ノン(80 mg)を Bacillus subtilis SANK 76759 と伴にA法により 28 ℃で 48 時間振とう培養す る。培養液を酢酸エチルで抽出して得られる粗 生職体(164 号)をシリカゲル薄層クロマトグ ラフィー(シクロヘキサン/酢酸エチル=1/1, UV ランブ検出。 Ri=Q.22)により精製すると目 的化合物 10 甲が得られた。

 $[\alpha]_{D}^{23}$ -19.5° (0=1, OHO ℓ_{3})

薄層クロマトグラフィー(シクロヘキサン/酢 酸エチルニ 1/1) により精製すると 目的化合 物 13 切が得られた。

 $(\alpha)_{n}^{24}$ ° -8° $(0=1, OHC_{\ell_{1}})$

NMR は実施例 6 で得られた化合物のそれと一 致した。

奥施例 8.

(38, 48)-1-(4-メトキシフェニル) - 3 - ((1B) - 1 - ヒドロキシエチル) - 4 ・エチニルー2ーアゼチジノン

dl - 3.4 - 1 - 2 2 2 - 1 - (4 - 1 + 2 2 エニル) — 3α — [(1R*) — 1 —ホルミルオキ シエチル]ー4ーエチニルー2ーアセチジノン (38 %) & Pichia fariuosa SANK 58062 (IAM

う培養する。培養液を実施例1と同様に処理す ると目的化合物 5 切が得られた。

$$(\alpha)_{D}^{24}$$
° -120° (C=0.5, OHO ℓ_3)

NMR は実施例 1 で得られた化合物のそれと一 致した。

奥施例 9..

dl - 3, 4 - トランス-1 - (4-メトキシベ ンジル) — 3α — [(1B*) — 1 — アセトキシエ チル〕- 4 - エチニルー 2 - アゼチジノン (31 ♥) ½ Pichia farinosa SANK 58062 (IAM 4303) と伴に A 法により 28 ℃で 48 時間培養する。 培 **養液を実施例 6 と同様に処理すると目的化合物** 4切が得られた。

$$(\alpha)_{D}^{24}$$
 -16° (0=0.4, OHO ℓ_{5})

[
$$\alpha$$
]_D^{24°} -123° (C=1, CHO ℓ_5)
NMR (ODC ℓ_5) δ_{ppm} : 1.35 (3H, d, J=6Hz),
~ 2.25 (1H, s), 3.41 (1H, dd, J=6,
25Hz), 3.71 (3H, s), 4.28 (1H, q,
J=6Hz), 4.75 (1H, d, J=25Hz),
6.6 ~ 7.6 (9H, m)

実施例 11.

dl - 3, 4 - トランス-1-(4-メトキシ ルオキシエチル] ー 4 ー フェニルチオエチニル - 2 - アセチジノン (160 mg) を Bacillus Subtilis SANK 76759 (IAM 1069)と伴に1日 おきに1%のブルコースを添加しながらA法に NMR は実施例 6 で糾られた化合物のそれとー 致した。

寒 施 例 10.

de - 3.4 - 1 - 1 - (4 - 1 + 2) キシエチル]ー4ーフエニルチオエチニルー2 ーアセチジノン(110 mg)を Bacillus subtilis SANK 76759 (IAM 1069) と伴に A 法により 28 とで3日間培養する。 培養紙を酢酸エチル で抽出して得られる粗生液体(138 号)をシリ カゲル薄脂クロマトグラフィー(シクロヘキサ ン/酢酸エチル= 1/1 , Rf=Q5) により精製 すると目的化合物 22 中が得られた。

より28℃で4日間培養する。培養液を酢酸エ NMR (ODCl₃) δ_{ppm}: 1.35 (3H, d, J=6Hz), チルで抽出して得られる粗生酸体 (92 mg) を シリカゲル薄層クロマトグラフィー(シクロヘ キサン/酢酸エチル=1/1 , UV ランプ検出。 . Bf = 0.4) により精製すると目的化合物 13 m が 得られた。

$$(a)_{D}^{24}$$
° -54° (0=1, CHO ℓ_3)

NMR (ODO ℓ_3) δ_{ppm} : 1.28 (3H, d, J=6.5 Hz), ~ 24 (1H, S), 3.71 (3H, S), 3.30 (1H, dd, J=4, 2Hz), 4.07 (1H, d, J=15Hz), 4.60 (1H, d, J=15Hz), $4.0 \sim 4.3$ (1H, m), 4.28 (1H, d, J=2Hz), 6.7 ~ 7.5 (9H, m)

寒 施 例 12

 $d\ell-3$ 、4-h ランスー 1-T リルー $3\alpha ((1R^*)-1-ベンゾイルオキシエチル)-4-フェニルチオエチニルー <math>2-T$ ゼチジノン (520 写)を Bacillus subtilis SANK 76759 (IAM 1088) と伴に A 法により 28 C C G G 日間 培養する。培養液を酢酸エチルで抽出して得られる租生液体(250 写)をシリカゲル薄階クロマトグラフィー(シクロヘキサン/酢酸エチルニ 1/1, $R_f \Rightarrow 0.4$)により精製すると 目的化合物 43 写が得られた。

(3B, 4B) - 1 - ベンツヒドリル-3 -[(18) - ヒドロキシエチル] - 4 - エチニ

ルー2-アゼチジノン

実施例 13.

- 2 - アゼチジノン

dl-3.4-トランス-1- ベンツヒドリル
-3α-[(1R*)-1-ベンゾイルオキシ エチル]-4-エチニルアゼチジノン(40 平)
を Bacillus subtilis SANK 76759 (IAM 1069)
と伴に 28 ℃で 3 日間培養する。 培養液を実施例 13 と間様に処理すると目的化合物 10 平が得られた。

 $[a]_D^{24}$ ° -52° (0=1,0HO $_5$)

NMR は 参考例 $_6$ で 得られた $_8$ * 化合物 のそれと一致した。

実施例 15.

(38, 48) - 1 - ベンツヒドリル-3 -[(1B) - ヒドロキシエチル] - 4 - フェニル デエチニル-2 - アゼチジノン

dl-3,4-トランス-1-ベンツヒドリル
-3α-((1R*)-ベンゾイルオキシエチル]
-4-エチニル-2-アゼチジノン(90 号)
を Bacillus subtilis SANK 76759 (IAM 1069)
と伴にA 法により 28 とで 3 日間 培養する。 培養液を酢曜エチルで抽出して得られる粗生緑体
(110 号)をシリカゲル薄脂クロマトグラフイー(シクロヘキサン/酢酸エチル=1/1、Rf
+0.35)により精製すると目的化合物 9.4 号 が得られた。

[α]_D +28° (0=0.94, OHOl₃)
NMR は 参考例 6 で得られた化合物のそれと一致した。

実施例14

(38, 48) - 1 - ベンツヒドリル-3 -[(18) - ヒドロキシエチル] - 4 - エチニル

ds - 3, 4 - トランス- 1 - ベンツヒドリルー
3α - ((1R*) - 1 - ベンゾイルオキシエチル]
- 4 - フェニルチオエチニルー 2 - アゼチジノ
ン (160 中)を実施例 13 と同様に培養。 処理
すると目的化合物 6.5 甲が得られた。

[α]_D -13° (C=0.85, OHO ℓ_5)

NMR (ODO ℓ_5) δ_{ppm} : 1.28 (3H, d, J=6Hz),

~ 2.8 (1H, s), 3.35 (1H, dd, J=3,

5Hz), 4.2 (1H, m), 4.34 (1H, d,

J=3Hz), 6.04 (1H, s), 7.2 ~ 7.4

(15H, m)

爽施例 16.

3.4-トランス-1-(4-メトキシフエニ ル)-3α-(1-ヒドロキシエチル)-4-カルボキシメチル-2-アゼチジノン

 $d\ell - 3$ 、 $\ell - 1$ $\ell - 1$ $\ell - 2$ $\ell + 2$ $\ell - 2$ $\ell - 3$ $\ell - 1$ $\ell - 4$ $\ell - 2$ $\ell - 3$ $\ell - 1$ $\ell - 4$ $\ell - 2$ $\ell - 4$ $\ell - 2$ $\ell - 4$ ℓ

 $3.4 - 1.5 \times 2.7 \times 1.0 = 0.00$ $N = 1.00 \times 1.00 \times$

フェニルチオカルボニルメチル-2-Tゼチジ

ノン

dl-3.4-トランス-1-(4-メトキシフェニル)-3α-(1-ベンゾイルオキシェチル)-4-フェニルチオカルボニルメチルー2ーアゼチジノン20 町を Bacillus subtilis

BANK 76759 と伴にA法により36 時間 培養する。

培養液を酢酸エチル抽出して得られる粗生酸体
25 町をシリカゲル薄層クロマトグラフィー
(シクロヘキサン/酢酸エチル=1/1, Bf =

0.4, UV ランブ検出)により精製すると光学活性な目的化合物5 町が得られた。

奥施例 19.

(38, 48) - 1 - (4 - メトキシフエニル) - 3 - ((1R) - 1 - ヒドロキシエチル) -

4 ーエチニルー 2 ーアゼチジノン

 $d\ell-3$ 、4-k ランスー 1-(4-y) トキシフェニル) -3a-(1-x) ブイルオキシエチル) -4- カルボキシメチルー 2- アゼチジノン 80 ♥を N 、 N- ジメチルホルムアミド中、炭酸水業ナトリウムの存在下ベンジルブロマイドと常法に従つて反応、処理するとベンジルエステル体 90 ♥が得られる。この化合物 90 ♥を Bacillus Subtilis SANK 76759 と伴に A 法により 箱 養 する。 培 養 液 を 酢 酸 エチル 抽出して 得られる 租生 敏体(98 ♥)を シリカゲル 海 層 クロマトグラフィー(シクロヘキサン/酢 酸 エチル 1/1 、 1/1

3 4-トランス-1-(4-メトキシフエニ ν)-3α-(1-ヒドロキシエチル)-4-

アミノアシラーゼ(Ν — Acylaminoacid aminohydrolase BO 3.5.1.14)500 単位を 5μg/al

の塩化コパルトを含む蒸留水またはリン酸緩衝液(PH 7.0) 50 配に密かす。これに de - 3.4 ートランスー1 ー (4 ーメトキシフェニル) ー 3αー [(1R*) ー フェトキシエチル] ー 4 ーエチニルー 2 ー アセチジノン 49 時を 0.05 %の Triton 100 と 3 もに加える。この容液を 30 でで 2 日間 撹拌する。反応液を酢酸エチルで抽出して得られる 粗生液体を実施例 1 と同様に処理すると目的 化合物 10 号が得られた。

 $(\alpha)_{0}^{22^{\circ}}$ -40° (0=1, 0H00;)

NMR は実施例 1 で得られた化合物のそれと一致した。

奥施例 20.

(38 , 48) - 1 - (4 - メトキシフエニル)

4-エチニル-2-アゼチジノン

 $[\alpha]_{0}^{22^{3}}$ -85° (0=1, 0H0 ℓ_{5})

NMR は 実施例 1 で 得られた 化合物の それと 一致した。

4.24 (1H, d, J=2Hz), 4.54 (1H, t, J=2Hz), 4.95 \sim 6.15 (3H, m)

IR (Liq.) cm⁻¹ : 1760 , 1712 , 2110 参考例 2

d8-1-ペンツヒドリル-3-アセチルー
4-エチニル-2-アゼチジノン

 公型侧 1

 $\frac{dl-1-T \parallel \nu-3-T + + \nu-4- \perp +}{=\nu-2-T + + \nu/2}$

ブロバルギル アルデヒド 1 g を塩化メチレン 20 ml に溶解し、0.87 ml のアリルアミン 及び無水硫酸マグネシウム 4 g を加え、20 ℃, 20 分間 批拌。 3 過後、3 液にイミダゾール 1.56 g を加えて、 窒素 雰囲気下 - 20 ℃とし、ついでジケテン 1.76 ml を同温にて加える。

約1.5 時間かけて反応温度を 20 でにする。反 応液を水洗し、無水硫酸マグネシウムにて乾燥。 密媒留去後、残瘡をシリカゲルラピット・クロ マトグラフィー(塩化メチレン)に付し、 Rf =0.4 辺の目的化合物 691号を得た。

Bp 95~105°/0.03 mm Hg (油裕温度)

NMR (ODOℓ₃) δ: 2.28 (3H, s), 2.56

(1H, d, J=2Hz), 2.3~4.3 (2H),

乾燥。容媒留去後、残渣をシリカゲル ラビジトクロマトグラフィー(シクロヘキサン:酢碶エチル=3:1)により精製すると目的化合物 3.2 g が得られた。

R_f = 0.35 (シクロヘキサン:酢酸エチル= 2 : 1)

NMR (-ODO \$\delta_5) \$\delta : 2.21 (3H, s), 2.32

(1H, d, J=2Hz), 4.22 (1H, J=2Hz),

4.45 (1H, t, J=2Hz), 5.88 (1H, s),

7.28 (10H, s)

IR (Liq.) (m⁻¹ : 2120, 1760, 1720 含考例 3

 $\frac{d\ell - 3. \ 4 - 1 - 5 \vee x - 1 - 7 \ | \ \nu - 3\alpha - 1 - 1 - 1 + 2 + 2 + 2}{(1 - 1 + 1 + 2 + 2 + 2) - 4 - 1 + 2 + 2 + 2}$

dl - 1 - T リル - 3 - T セチル - 4 - エチ

ニルー2 ー アゼチジノン 400 町をメタノール 5 以に容解し、泳冷下 86 町の NaBH4 をゆつくり加え、同温にて 20 分間操拌後酢酸エチルを 加え 希塩酸水を加え、有機層を水洗 3 回、無水 MgSO4 にて乾燥後容群留去。 得られる残渣をシリカゲルラビッドクロマトグラフィー (シクロヘキサン:酢酸エチル=1:1、 Rf=0.3 近辺)により目的化合物 300 町が得られた。

NMR (CDC ℓ_3) δ : 1.25 (1.25H, d, J=6.5), 1.29 (1.75H, d, J=6.5Hz), 2.45 (1H, m), 3.0 \sim 3.8 (4H, m), 3.8 \sim 4.3 (3H, m), 6.1 (3H, m),

NMR の 1.25 と 1.29 のシグナルの比から $R^*/$ $S^* = 1/1.4$ であることが明らかとなつた。

なお本反応を NaBH4 の代りに K ーセレクトライドを用いても回様な結果が得られた。 参考例 4

dℓ - 3, 4 - トランス-1 - アリル-3α -(1 - ペンゾイルオキシエチル) - 4 - エチニル-2 - アゼチジノン

参考例 5.

ヘキサメチルシンラザン 626 町をテトラヒドロフラン 10 ml に密解し、氷冷下n ーブチルリチウムヘキサン散 (1.62 m モル/ ml) 2.4 ml を加える。そのま」 30 分間 撹拌後 ー78 c に 冷却する。この溶液に参考例 4 で合成したベンゾイル体 (R*, s* のまざり) 917 町の 10 ml テトラヒドロフラン溶液を加え、更に -78 c にて一時間撹拌する。ついで、J. Am. Chem. Soc., 99,4405 (1977) の方法で合成したフェニルベンゼ

参考例 3 により得た 8*: R* = 1.4: 1 の混合物のアルコール体 800 mを 20 mlの 無水テトラヒトロフランに溶解し、トリフエニルホスフィン 234 g 及び安息香酸 1 g を加える。この溶液に室温にてアゾジカルボン酸ジエチル 933 mg を加え、そのま 2 30 分間攪拌。酢酸エチルを加え水洗 2 回、 Mg30 l にて乾燥。 溶媒留去後シリカゲル ラビットクロマトグラフィー(シクロヘキサン: 酢酸エチル= 5: 1)により精製すると目的化合物 917 mが得られた。

NMR (ODO ℓ_3) δ : 1.50 (1.25H, d, J=6.5Hz), 1.54 (1.75H, d, J=6.5Hz), 2.54 (1H), 3.3 \sim 3.8 (3H, m), 3.9 \sim 4.4 (3H, m), 4.9 \sim 6.1 (3H, m), 7.2 \sim 7.6 (3H, m), 7.8 \sim 8.1 (2H, m)

NMR の 1.50 と 1.54 のシグナルの比から R*/8* =1/1.4 であることが明らかとなつた。

ンチオスルホネート(Ø8 SO2 Ø) 972 Ø の 10 *** テトラヒドロフラン溶液を加える。 - 78 ℃ にて一時間撹拌、酢酸エチルを加えついて塩化 アンモニウム水を加える。酢酸エチルにて抽出 後、抽出液を飽和食塩水にて水洗。 MgSO4 にて 乾燥、溶媒留去後シリカゲルラビッドクロマト グラフィー(シクロヘキサン:酢酸エチルニ 10 : 1)により精製し目的の R* 体 520 �� およ び 3* 体 200 �� が得られた。

R* 体: 油状物質、Rf = 0.23 (塩化メチレン)

NMR (ODO&3) ð: 1.52 (CH₅, d, J=6.5Hz),

3.54 (1H, d, d, J=6.5, 2.5Hz), 3.6 ~

4.4 (2H, m), 4.51 (1H, d, J=2.5Hz),

5.0 ~ 6.0 (4H, m), 7.1 ~ 7.6 (8H, m),

7.9 ~ 8.2 (2H, m)

IR (Liquid) cm⁻¹: 1760, 1720

g* 体: mp70 ~ 1 と B_f = 0.31 (塩化メチンン.)

NMR (ODC8₃) b: 1.55 (CH₃, d, J=6.5Hz), 3.3 ~ 4.1 (3H, m), 4.29 (1H, d, J= 25Hz), 4.9 ~ 6.1 (4H, m), 7.1 ~ 7.6 (8H, m), $7.9 \sim 8.2 (2H, m)$

IR (Nujol) cm⁻¹: 1760, 1720

谷考例 6.

dl-3.4-トランス-1-ペンツヒドリル - 3α- [(13*) - 1 - ヒドロキシエチル)-4 - エチニルー2-アゼチジノン

お考例2のdℓ-1-ペンツヒドリル -3-アセチルー 4 ーエチニルー 2 ーアゼチジノン 1.8 9 を 30 fl のメタノールに容解し、-20 で にて NaBH』 250 9を加え同温にて 5 分間 批拌。 希塩酸水及び酢酸エチルを加え、生成物を酢酸 エチル抽出。水洗後、 MgSO』にて乾燥。 溶媒留 去後、シリカゲルラピッドクロマトグラフィー (シクロヘキサン/酢酸エチルニ 1/1)により 精製すると目的化合物 1.7 9 が得られた。

参考例 6 で得た R* 及び S* のまざりのアルコ ール体19をピリジン5×及び無水酢酸5×1に 容解し15時間放復。酢酸エチルエステルを 加 え、希塩酸水、及び飽和食塩水にて洗練後、溶 媒留去。弢遼をシリカゲルラピットクロマトグ ラフィー(塩化メチレン:酢酸エチル= 40:1) により精製すると目的の 8* 体 400 m および R* 体 250 町が得られた。

s* 体: mp 1 2 3°.

Rf=0.64 (塩化メチレン:酢酸エチルニ 20 : 1)

NMR (ODO ℓ_3) δ : 1.35 (3H, d, J=6Hz), 1.88 (CH_{5} , s), 2.40 (1H, d, J=2Hz), 3.40 (1H, t, J=2.5Hz), 3.74 (1H, t, J=2.5Hz), 5.13 (1H, dq, J=6.5, 3Hz), 5.92 (1H, s), 7.28 (10H, s)

B*体:油状物

IR (Nujol) cm⁻¹: 1770, 1735, 1600

これをジェチルエーテルから再結晶すると目 的化合物 600 中が結晶として得られた。

mp 105°

NMR (CDC ℓ_3) δ : 1.29 (3H, d, J=6Hz), 2.32 (1H, d, J=2.5Hz), 3.26 (1H, dd, J=5, 2.5Hz) , 3.89 (1H, 1, J=2.5Hz) , $3.8 \sim 4.2$ (1H, m), 5.93 (1H, s), $7.1 \sim 7.4 \ (10H, m)$

参考例 7.

ds - 3 4 - トランス-1 - ベンツヒドリル - 3a - [(1R*) - アセトキシエチル] - 4 - エチニルー2-アゼチジノンおよび dl -34 - トランスー1ーペンツヒドリルー 3α - [(18*)-1-アセトキシエチル]-4-エチニ ルー2ーアゼチジノン

IR (Liq.) cm⁻¹: 1770, 1740

1.92 (3H, s), 2.38 (1H, d, J=2Hz), 3.36 (1H, dd, J=2.5, 5.5Hz), 4.01 (1H, t, J=2Hz), 5.14 (1H, q, J=5.5 Hz), 5.92 (1H, s), 7.28 (10H, s)

参考例 8.

dl - 3, 4 - トランス-1 - ペンツヒドリル - 3α - [(1R*) - 1 - ペンゾイルオキシ エ チル]-4-エチニル-2-アセチジノンおよ ぴ dl ー 3. 4 ートランスー1ーペンツヒドリル - 3α - [(18*) - 1 - ベンゾイルオキシエ チル]-4-エチニル-2-アゼチジノン

参考例 8 で将た 592 町のアルコール体(R* Rf=0.45 (塩化メチレン:酢酸エチル= 20:1) 及び 8* のまざり)を、 10 flのテトラヒドロフ NMR (ODOl₃) ð: 1.30 (3H, d, J=6Hz), ラン化溶解し、1.05 gの トリフエニルホスフイ

ン及び 440 町の安息香酸を加える。

この名液に氷冷下アゾジカルボンਿ ジェチル417 甲を加え、氷冷剤をとりのぞきそのま」10 分間提祥。酢ロエチルを加え、水洗 3 回。MgSO4 にて乾燥後軽葉留去し、残渣をシリカゲルラピッドクロマトグラフィー(シクロヘキサン:酢酸エチル=10:1) により精製すると目的の R* 体 348 甲および S* 体 117 甲が得られた。

R* 体: mp 111°

NMR (ODO ℓ_5) δ : 1.45 (3H, d, J=6Hz), 2.40 (1H, d, J=2Hz), 3.55 (1H, dd, J=25 \not E \not C $\vec{}$ 6Hz), 4.15 (1H, t, J=2Hz), 5.41 (1H, q, J=6Hz), 5.94 (1H, s), 7.1 \sim 7.5 (13H, m), 7.7 \sim 7.95 (2H, m)

S*体:油状物

NMR (ODO ℓ_3) δ : 1.50 (3H, d, J=6Hz), 2.38 (1H, d, J=2Hz), 3.55 (1H, t, J=2.5Hz), 3.86 (1H, t, J=2.5Hz),

参考例 8 で合成した R* のベンゾイル体 348 m のテトラヒドロフラン溶液を加える。 1 時間 -78 でで撹拌後 270 mの フエニルベンゼンチオ スルホネートを加え、 -78 でにて 30 分撹拌後、 酢酸エチルついで塩化アンモニウム水溶液を加 える。有機層を水洗後 Mg804 にて乾燥。 溶媒留 去後、残渣をシリカゲル薄層クロマトグラフイ - (シクロヘキサン:酢酸エチル=5 : 1) に より精製すると目的の R* 体 370 m が得られた。 NMR (ODOℓ3) ð: 1.46 (3H, d, J=6Hz), 3.61 (1H, dd, J=2.5, 6Hz), 4.42 (1H, d, J=2.5 Hz), 5.50 (1H, q, J=6Hz), 6.06 (1H, s), 7.15 ~ 7.7 (13H, m), 7.8 ~ 8.0 (2H, m)

IR (Liquid) cm⁻¹: 1760, 1720, 1600, 1580 参考例 8 で得られた 8* ペンゾイル体 86 町を 用いて R* ペンゾイル体の場合と同様に反応、 処理すると目的の 8* 体 90 町が得られた。

NMR (ODO ℓ_3) δ : 1.53 (3H, d, J=6Hz), 3.60 (1H, t, J=2.5Hz), 4.11 (1H, d, 5.44 (1H, dq, J=6, 2.5 Hz), 5.90 (1H, s), 7.1 \sim 7.5 (13H, m), 7.7 \sim 7.96 (2H, m)

参考例 9.

 $\frac{d\ell - 3.4 - k + 5 \times 2 \times - 1 - \sqrt{2} \times 2 \times k}{-3\alpha - \left((1R^*) - \sqrt{2} \times 2 \times 4 \times k \times k} \right) - 4 - 7 \times 2 - 7 \times 4 \times 2 \times 2 \times k}$ $\frac{-4 - 7 \times 2 \times 2 \times 4 \times k}{-4 \times 2 \times 2 \times 2 \times k} \frac{-1 \times 2 \times 2 \times k}{-1 \times 2 \times 2 \times 2 \times k} \frac{-1 \times 2 \times 2 \times k}{-1 \times 2 \times 2 \times 2 \times 2 \times k}$ $\frac{-1 \times 2 \times 2 \times 2 \times 2 \times k}{-1 \times 2 \times 2} \frac{-1 \times 2 \times 2}{-1 \times 2 \times 2 \times 2 \times 2 \times 2}$

ヘキサメチルジシラザン 0.22 *** を 無水テトラヒドロフラン 10 *** に 容解し、 0.56 *** の n → ブチルリチウムヘキサン液 (1.62 mモル/***)を加え、30 分間氷冷下撹拌する。 -78 ℃ に冷却し、

 $J=2.5 \, Hz$), 5.54 (1H, dq, J=6.5, 2.5 Hz), 6.03 (1H, s), 7.1 ~ 7.6 (18H, m), 7.8 ~ 8.1 (2H, m)

参考例 10.

・参考例 7 で得られた R* 体 82 9 を用いて参考例 9 と同様に反応、処理すると目的の B* 体 95 9が得られた。

mp 120°

Rf=0.41 (塩化メチレン:酢酸エチル= 20:1)

NMR (CDO ℓ_3) δ : 1.30 (3H, d, J=6Hz), 1.93 (3H, s), 3.39 (1H, dd, J=2.5, 6Hz), 4.20 (1H, d, J=2.5Hz), 5.16 (1H, q, J=6Hz), 5.97 (1H, m), 7.0 \sim 7.4 (15H, m)

参考例 7 で得られた 8* 体 140 9 を用いて 参 考例 9 と同様に反応、処理すると目的の 8* 体 110 9 が得られた。

Rf=0.48 (塩化メチレン:酢酸エチル=20:1)
NMR (CDCℓ₅) δ: 1.38 (3H, d, J=6Hz),
1.92 (3H, s), 3.45 (1H, t, J=25Hz),
3.99 (1H, d, J=25Hz), 5.15 (1H, d,q
J=6, 3Hz), 5.99 (1H, s), 7.1 ~ 7.5
(15H, m)

参考例 11.

参考例 12.

 $\frac{d\ell - 3.4 - h \ni \nu \times \lambda - 1 - (4 - \lambda h + \nu)}{7 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}$ $\frac{d\ell - 3.4 - h \ni \nu \times \lambda - 1 - r + \nu}{\nu \times 2 \times 2 \times 2 \times 2 \times 2}$ $\frac{d\ell - 3.4 - h \ni \nu \times \lambda - 1 - r + \nu}{2 \times 2 \times 2 \times 2 \times 2}$ $\frac{d\ell - 3.4 - h \ni \nu \times \lambda - 1 - r + \nu}{2 \times 2 \times 2 \times 2}$ $\frac{d\ell - 3.4 - h \ni \nu \times \lambda - 1 - r + \nu}{2 \times 2 \times 2 \times 2}$ $\frac{d\ell - 3.4 - h \ni \nu \times \lambda - 1 - r + \nu}{2 \times 2 \times 2 \times 2}$ $\frac{d\ell - 3.4 - h \ni \nu \times \lambda - 1 - r + \nu}{2 \times 2 \times 2 \times 2}$ $\frac{d\ell - 3.4 - h \ni \nu \times \lambda - 1 - r + \nu}{2 \times 2 \times 2 \times 2}$

NMR (CDC ℓ_3) δ : 1.42 (3H, d, J=6.5Hz), 20 (CH₅, s), 2.55 (1H, d, J=2Hz), 3.57 (1H, dd, J=5, 2.5Hz), 3.76 (3H, s), 4.31 (1H, t, J=2.5Hz), 5.30 (1H, dq, J=6.5, 5Hz), 6.7 ~ 7.6 (4H, Λ_2 B₂型)

R* 体: Rf = 0.26 (塩化メチレン)

NMR (CDCℓ3) &: 1.40 (3H, d, J=6.5 Hz),

20 (3H, s), 2.55 (1H, d, J=2Hz),

3.45 (1H, dd, J=6.5, 2Hz), 3.76 (3H,
s), 4.50 (1H, t, J=2Hz), 5.27 (1H,
q, J=6.5 Hz), 6.7 ~ 7.6 (4H, A2B2型)

トキシエチル] - 4 - エチニル- 2 - アゼチジ

OCOCH₃

CH₃

CH₃

CH₃

OCH₃

OCH₃

参考例 1 および 2 の方法に単じて得られる d l ー 3 4 ートランスー1 ー (4 ーメトキシフ・エニル) ー 3 α ー (1 ーヒドロキシエチル) ー 4 ーエチニルー 2 ー アゼチジノン (特顧昭 59-265962 の参考例 12 に記載) 270 町 (R* と S* の 混合物) をピリジン 300 町及び無水酢鍛 300 町に容解し 15 時間室温に放置。 氷水にあけ、酢酸エチルにて抽出。希塩酸水及び水洗後 Mg SO 4 にて乾燥。容葉留去後残渣をシリカゲルラビッド クロマトグラフィー (塩化メチレン) により精製すると目的の S* 体 85 町および R* 体 180 町 が得られた。

8* 体: Bf = 0.34 (塩化メチレン)

参考例 1 および 2 の方法に単じて得られる de

- 3.4 ートランスー1 ー (4 ーメトキシフェニ

ル) ー 3α ー (1 ーヒドロキシエチル) ー 4 ー

エチニルー 2 ーアゼチジノン (特願昭 59-265962
号の参考例 12 に記載) を 分別再結晶法および

母液のクロマトグラフィーにより精製すると 1s*
ーヒドロキシエチル体 (再結晶法) および 1R*
ーヒドロキシエチル体 (クロマト法) が得られ

た。

こ」に得られた 18* - ヒドロキシエチル体 570 町を無水テトラヒドロフラン 20 副に溶解。 更にトリフエニルホスフイン 1.1 9 及び 安息香酸 500 町を加え、氷冷下 700 町のアゾジカルボン酸ジエチルを加える。 寒剤をのぞき、室温にて 3 時間 攪拌。 滅圧下容 媒を留去し、 残値をシリカゲルラピッドクロマトグラフィー (シクロ

ヘキサン:酢酸エチル= 5 : 1)により精製すると目的の R^* 体 500 啊が得られた。

mp 101° (エーテルから再結晶)

R(=0.5 (塩化メチレン)

NMR (CDO ℓ_3) δ : 1.55 (3H, d, J=6.5 Hz), 2.55 (1H, d, J=2.5 Hz), 3.6 (1H, dd, J=6.5, 2.5 Hz), 3.70 (3H, s), 4.6 (1H, t, J=2.5 Hz), 5.46 (1H, q, J= 6.5 Hz), 6.7 ~ 7.6 (7H, m), 7.8 ~ 8.0 (2H, m)

IR (Nujol) cm⁻¹: 3280, 2140, 1745, 1720, 1608, 1590

18*-ヒドロキシエチル体 500 町を無水塩化メチレン中 25 当量のトリエチルアミン 及び触媒量のジメチルアミノビリジンの存在下 25 当 景の安息香酸クロリドと 10 時間~ 15 時間反応させる。反応液に水を加え、有機層を分離する。有機層を希塩酸水にて二度洗滌後、水洗。 Mg304 にて乾燥後溶媒留去すると目的の 8* 体 500 町 が得られた。

で氷冷下 150 町のアンジカルボン酸ジエチル 150 町を加える。反応液を室温にて 5 時間 撹拌後、溶媒留去し残渣をシリカゲル薄質クロマトグラフィー(シクロヘキサン:酢酸エチル= 2:1, Rf=0.4)により精 製すると目的化合物 50 町が得られた。

mp 79 で (ジェチルエーテルから再結晶)
NMR (ODC&3) &: 1.46 (3H, d, J=6.5Hz),
2.54 (1H, d, J=2.5Hz), 3.49 (1H, dd,
J=6.5, 2.5Hz), 3.74 (3H, s), 4.48
(1H, t, J=2.5Hz), 5.38 (1H, q, J=6.5Hz), 6.75 ~ 7.55 (4H, A₂B₂型),
7.98 (1H, s)

参考例14

Bf=0.61 (塩化メチレン)

NMR (ODC ℓ_3) δ : 1.59 (3H, d, J=6.5Hz), 2.55 (1H, d, J=2.5Hz), \sim 3.7 (1H, S), 3.70 (3H, S), 4.38 (1H, t, J=2.5Hz), 5.53 (1H, d.q, J=6.5, 3Hz)

参考例13

参考例 12 に示した方法で得られる d 8 - 3.4 - トランス-1-(4-メトキンフェニル)-3α-[(18*)-1- ヒドロキシエチル]-4-エチニルー2-アゼチジノン 100 町をテトラヒドロフラン3 Wに容解し、ぎ酸 70 町 及びトリフエニルホスフイン 230 甲を加える。つい

参考例 1 および 2 の方法に準じて合成される d 8 - 3 4 - トランス- 1 - (4 - メトキシ ベンジル) - 3 - アセチルー 4 - エチニルー 2 - アゼチジノン (特願昭 59 - 265962 の 参考例 4 に記載) 460 号をテトラヒドロフラン 6 配及びメタノール 3 配の混合液に容解し、0 でにて NaBH4 6.0 号を加える。10 分後 酢酸エチルを加え、さらに希塩酸水を加える。有機層を分離し、水洗後、MgSO4 にて乾燥。溶媒留去後残渣をシリカゲルラピッドクロマトグラフィー(シクロヘキサン:酢酸エチル=1:1, Rf = 0.3) により精製すると目的化合物 460 号が得られた。

NMR (CDO8₃) δ : 1.24 (1H, d, J=6.0 Hz), 1.28 (2H, d, J=6.5 Hz), 2.39 (1H, d, J=2Hz), 3.70 (3H, s), 3.2 ~ 3.4 (1H, m), 3.7 ~ 4.2 (2H, m), 4.59 (1H, d, J=15Hz), 6.70 ~ 7.25 (4H, A₂B₂型)

1.24 と 1.28 のシグナルの比から $R^*/S^* = 1/2$ であることが明らかとなつた。

参考例 15.

 $\frac{dl-3.4-h \ni \nu \times \lambda - 1 - (4-\lambda h + \nu)}{\nu \vee \nu \vee \nu - 3\alpha - (1R^*) - 1 - \nu \vee \nu \wedge \nu}$ $\frac{dl-3.4-h \ni \nu \times \lambda - 1 - \nu \vee \nu \wedge \nu}{\nu \wedge \nu + \nu \times \nu + \nu}$

当該生成物は更にシリカゲル分取用薄層クロマトグラフィーにより、塩化メチレンを展開容

密媒留去後残渣をシリカゲルラピットクロマトグラフィー(シクロヘキサン:酢酸エチル=10:1)によりR*体及びS*体を分離精製するとR*体: 570 町が得られた油状物質
Rf = 0.46 (塩化メチレン:酢酸エチル=20:1)
NMR (ODO&5) ð: 1.45 (3H, d, J=6Hz),
3.54 (1H, dd, J=8, 25Hz), 3.72 (3H,
5), 4.05 (1H, d, J=15Hz), 4.68 (1H,
d, J=15Hz), 4.37 (1H, d, J=2Hz),

鉄として用いる事により R* を分離することが出来る。

R* 体:

NMR (CDO ℓ_5) δ : 1.43 (CH₅, d, J=6Hz), 2.51.(1H, d, J=2Hz), 3.49 (1H, dd, J=6, 2Hz), 3.73 (3H, s), 3.8 ~ 4.3 (2H, m), 4.70 (1H, d, J=15Hz), 5.40 (1H, q, J=5Hz), 6.6 ~ 7.6 (7H, m), 7.6 ~ 7.9 (2H, m)

参考例 16.

 $\frac{d\ell - 3 \cdot 4 - h \cdot 5 \vee x - 1 - (4 - y + 2)}{\sim \vee \psi \nu) - 3\alpha - [(1R^*) - 1 - \sim \vee \psi \cdot 1}$ $\nu + \psi + \psi + \nu - 4 - 2 + \mu + \mu + \mu + \mu$ $- 2 - \tau + \psi \cdot \psi \cdot \psi + \psi \cdot 3 \cdot 4 - h \cdot 5 \vee x - 1$ $- (4 - y + 2 \vee \psi \vee \psi \vee \psi) - 3\alpha - [(18^*)$ $- 1 - \sim \vee \psi \cdot 1 \wedge x + \psi + \mu + \mu + \mu$ $\nu + \mu + \mu + \mu + \mu + \mu$ $\nu + \mu + \mu + \mu + \mu + \mu$ $\nu + \mu + \mu + \mu + \mu + \mu$ $\nu + \mu + \mu + \mu + \mu$ $\nu + \mu + \mu + \mu + \mu$ $\nu + \mu + \mu$ $\nu + \mu + \mu + \mu$ $\nu + \mu$ $\nu + \mu + \mu$ $\nu + \mu$ $\nu + \mu + \mu$ $\nu + \mu$ ν

5.48 (1H, q, J=6Hz), 6.6 ~ 7.6 (12H, m), 7.75 ~ 8.05 (2H, m)

S* 体: 180 mが得られた。 mp 85 ℃ (ジェ チルエーテルから再結晶)

NMR (ODO ℓ_5) δ : 1.54 (1H, d, J=8Hz), 3.5 ~ 3.8 (1H, m), 3.74 (3H, s), 4.0 (1H, d, J=15Hz), 4.72 (1H, d, J=15Hz), 4.12 (1H, d, J=2.5Hz), 5.50 (1H, qd, J=6, 3Hz), 6.5 ~ 7.7 (12H, m), 7.75 ~ 8.05 (2H, m)

IR (Nujol) cm⁻¹: 1755, 1732

参考例 17.

 $\frac{d\ell - 3 \cdot 4 - h \cdot j \cdot \gamma \cdot x - 1 - (4 - \beta \cdot h + \gamma)}{7 \cdot x - n \cdot (18^*) - 1 - \alpha \cdot \gamma \cdot \gamma \cdot 4}$ $\frac{n \cdot x + \gamma \cdot x + n \cdot (18^*) - 4 - 7 \cdot x - n \cdot \gamma \cdot x + \gamma \cdot x + \gamma \cdot x}{-2 - 7 \cdot 4 + \gamma \cdot \gamma \cdot \gamma \cdot x + \gamma \cdot \gamma \cdot x + \gamma \cdot x + \gamma \cdot x + \gamma \cdot x}$ $\frac{-2 - 7 \cdot 4 - \beta \cdot k \cdot \gamma \cdot \gamma \cdot x + \gamma \cdot x + \gamma \cdot x + \gamma \cdot x + \gamma \cdot x}{-3 \cdot 4 - 7 \cdot x - n \cdot \gamma \cdot \gamma \cdot 4 \cdot n \cdot x + \gamma \cdot x + \gamma \cdot x + \gamma \cdot x}$

ヘキサメチルジシラサン 0.4 虬を 無水テトラ ヒドロフラン 10 見に容解し、氷冷下 1.18 紀 の n -プチルリチウムヘキサン液(1.62 m モル/ ml)を加える。 30 分間室温にて撹拌後 − 78 ℃ に合却し、参考例 12 で得られた 8* ベンゾイル オキシ体 560 ぬの無水テトラヒドロフラン密板 を加え、一78℃で1時間撹拌する。ついでフェ ニルベンセンチオスルホネート 430 町の 5 紅テ トラヒドロフラン容液を加え、 -78 ℃にて 25 時間攪拌。 酢酸エチルついで飽和塩化アンモ ニウム水溶液を加え、有機層を分離する。水洗 後 MgSO₄にて乾燥。溶媒留去後、生成物をシリ カゲルクロマトグラフィー(シクロヘキサン: 您懷エチル=5:1, Rf=0.3) により精製す ると目的の s* 体 630 町が得られた。

Rf=0.4 (塩化メチレン)

参考例 14 で得られた化合物 (R*と 8* のま ざり) 440 Wを無水テトラヒドロフランに容解 しトリフエニルホスフイン 890 甲及びぎ殴 0.2 甲 を加える。氷冷下 354 町のアゾジカルポン酸ジ エチルを加え、10時間室温にて攪拌。 酢酸エ チルを加え、有機層を水洗。 Mg80』にて 乾燥後、 **容媒留去。残渣をシリカゲルラピッドクロマト** グラフイー(シクロヘキサン:酢酸エチル= 1:1)により精製すると目的化合物 168 町が 得られた。

Rf=0.33 (塩化メチレン:酢酸エチル=40:1) り精製すると目的化合物 200 wが得られた。 NMR (CDO ℓ_5) δ : 1.35 (3H, d, J=6Hz), 2.48 (1H, d, J=2Hz), 3.33 (1H, dd, J=6, 2Hz), 3.74 (3H, s), 3.90 (1H, t. J=2Hz), 3.95 (1H, d, J=15Hz), 4.62 (1H, d, J=15Hz), 5.21 (1H, q, J=6Hz), 6.6 ~ 7.3 (4H, A_2B_2 型),

NMR (ODC ℓ_5) δ : 1.59 (3H, d, J=6Hz), 3.70 (3H, s), ~ 3.7 (1H), 4.62(1H, d, J=2.5Hz), 5.55 (1H, dq, J=6, 3.5Hz), 6.7 ~ 7.6 (12H, m), 7.8 ~ 8.0 (2H, m)

参考例 12 で得られた B* ペンゾイルオキシ体 を s* ペンソイルオキシ体と同様に反応、 処理 すると目的の B* 体が得られた。

Rf=0.28 (塩化メチレン)

NMR (ODO83) δ : 1.56 (3H, d, J=6Hz), 3.64 (1H, dd, J=8, 2.5Hz), 3.72 (3H, s), 4.81 (1H, d, J=25Hz), 5.51 (1H, q, J=6Hz), 6.7 ~ 7.6 (12H, m), 7.8 ~ 8.0 (2H, m)

IR (Liq.) cm⁻¹: 1750, 1712, 1600, 1580 参考例 18.

d8 - 3.4 - トランス-1 - (4 - メトキシ ペンジル) — 3α — [(1B*) — 1 — ホルミルオ キシエチルー4-エチニルー2-アゼチジノン

7.89 (1H, s)

参考例 19.

d1-34-トランス-1-(4- メトキシ ベンジル) - 3a - [(1R*) - 1 - アセトキ シエチル〕ー4ーエチニルー2ーアゼチジノン

参考例 14 で得られた化合物 (R*と8*の ま ざり) 200 甲を用いて参考例7と同様に反応、 処理しシリカゲルラピッドクロマトグラフィー (シクロヘキサン:酢酸エチルニ1:1)によ

R, = 0.56 (シクロヘキサン:酢酸エチル=1:1) NMR (ODO δ_3) δ : 1.32 (3H, d, J=6Hz), 1.95 (3H, s), 2.45 (1H, d, J=2.5Hz), 3.32 (1H, dd, J=6, 25Hz), 3.75 (3H, s), 3.92 (1H, d, J=15Hz), 4.70 (1H, d, J=15Hz), 3.92 (1H, t, J=25Hz),

5.20 (1H, q, J=6Hz), 6.7 ~ 7.3 (4H, A₂B₂型)

参考例 20.

1-(4-メトキシフェニル)-3-アセチ ルー 4 - (2 2 - ジェトキシェチル) - 2 - ア ゼチジノン

ジエトキシブロピルアルテヒド29をベンゼ ン 30 g に 容解し 1.68 g の p- アニ シジン 及び 5 9 の無水硫酸マグネシウムを加える。 室温に て20分攪拌。ろ過後、 放圧下溶媒留去する。 **幾潦を塩化メチレン20 ≈に溶解し、 これにイ** ミダソール 1.12 g を加える。全系を-30°とし 1.25 st の ジケテンを加え、 2 時間かかり反応温 度を-30°から10 ととする。

塩化メチレンを加え、水洗後MgSO4にて乾燥。 粗生成物をシリカゲルのラピットクロマトグラ

を加え、同温にて5分間撹拌する。酢段エチル ついで希塩酸を加え、有機層を分離する。 MgSO4 にて乾燥後域圧下容媒留去。残渣をクロマトク ラフイー(酢酸エチル:シクロヘキサン=2: 1)により精製すると目的化合物 463 与が得ら れた。

NMR (ODO ℓ_3) δ ppm : 1.02 \sim 1.04 (9H, m), 製すると目的物 260 町が得られた。 1.55 ~ 260 (2H, m), 3.13 (1H, dd, J=25, 6Hz), $3.27 \sim 3.87$ (5H, m), $3.82 \sim 4.32$ (2H, m), 4.60 (1H, d, J= $5.5 \,\mathrm{Hz}$), 3.72 ($3 \,\mathrm{H}$, s), $6.7 \sim 7.3$ ($4 \,\mathrm{H}$, A₂B₂型)

参考例 22

dl-34-トランス-1-(4- メトキシ フエニル)- 3α - (1-ベンゾイルオキシエ チル)-4-(22-ジエトキシエチル)-2 ーアセチジノン

フィー (シクロヘキサン:酢酸エチル=3:1) により精製すると目的化合物 930 中が得られた。 Rf=0.45 (シクロヘキサン:酢酸エチル=1:1) NMR (ODO ℓ_3) δ : 1.15 (3H, t, J=6.5Hz), 1.21 (3H, t, J = 6.5Hz), 1.5 \sim 2.2 (1H, m), 235 ($COCH_5$, s), 3.4 \sim 3.9 (SH_1 m), 4.21 (1H, d, J=2.5Hz), 4.4 \sim 4.85 (2H, m), 6.8 \sim 7.5 (4H, $_{2}B_{2}$ 型)

参考例 21.

dl - 3.4 - トランス-1 - (4 - メトキシ フェニル) -3α -(1-ヒドロキシェチル) -4 - (2 2 - ジエトキシエチル) - 2 - アゼチ シノン

参考例 20 で得られた化合物 600 m をテトラ ヒドロフラン:メタノール= 10 : 1 の 混合谷 媒 15 ml に容解し、-20 ℃にて 150 mgの NaBH4

移考例 21 で得られた化合物 230 mg を 1 alの 無水塩化メチレンに容解し、ピリジン 0.2 🛍 つ いで安息香酸クロリド 150 甲を加え 20 時間 室 温にて攪拌。反応液を常法に従つて処理し得ら れる残渣をシリカゲルクロマトグラフィー(シ クロヘキサン:酢酸エチル=2:1)により精

NMR (ODC ℓ_3) δ : 1.60 (2.25H, d, J=6Hz), 1.55 (0.75H, d, J=6Hz), 3.70 (3H, s), $5.25 \sim 5.75$ (1H, m), $6.7 \sim 7.7$ (7H, m), 4.69 (1H, t, J=5.5Hz), 7.85 \sim 8.25 (2H, m)

参考例 23

dl - 3, 4 - トランス- 1 - (4 - メトキシ フエニル)- 3α -(1-ペンゾイルオキシエチ ル)- 4 - (2 - ホルミルエチル) - 2 - アセ チジノン

参考例 22 で得られた化合物 260 町を テトラヒドロフラン 8 まと水 2 & の混合容供に溶かし、 水冷下 1 まの 没塩酸を加える。 2 時間 攪拌後、 酢酸エチルを加え、水洗。 乾燥溶媒を留去して 得られる残渣をシリカゲル薄層 クロマトグラフィー(シクロヘキサン:酢酸エチル= 1 : 1) により精製すると目的化合物 140 町が得られた。 Rf=0.3 (酢酸エチル:シクロヘキサン= 1:1)

 $R_f = 0.3$ (FREET FIG. 50 LICE TO SHEET).

1.54 (3H, d, J=6Hz), 2.5 ~ 3.5 (3H, m), 3.72 (3H, s), 4.10 ~ 4.55 (2H, m), 5.4 ~ 5.8 (1H, m), 6.7 ~ 7.5 (7H,

m), 7.7 ~ 8.0 (2H, m), 9.74 (1H, br,

参考例 24.

 $\frac{d\ell - 3.4 - 1.5 \times 2.7 - 1 - (4 - 1.4 + 2.4 +$

チル)-4-フエニルチオカルポニルメチル-

2 - アゼチジノン

お考例 24 で得られた化合物 90 のをジメチルホルムアミド:アセトニトリルニ 1 : 1 の混合器媒に容解し、カルボニルジイミダゾライド 60 のを加え室温で 30 分間撹拌する。反応液に 60 ののチオフエノールを加え 2 時間撹拌する。反応液に酢酸エチルを加え、希水酸化ナトリウム水、水の順で洗う。乾燥後溶媒を留去して得られる残渣をシリカゲル薄質クロマトグラフイー(シクロヘキサン:酢酸エチルニ 2 : 1 Rf ÷ 0.3) により精製すると目的物 70 のが得られた。

参考例 26.

(38, 48) - 1 - (4 - メトキシフエニル)

多考例 23 で得られた化合物 140 写を・アセトン 2 北 に 容解し、ジョーンズ試楽 (100 写) により 室温で 3 分間 酸化する。 反応液を酢酸エチルで抽出し、水洗、 Mg304 で乾燥する。 容 葉を留去して得られる残渣をシクロヘキサン:酢酸エチル=1:1の米にて分取用シリカゲル TLC に付し Rf=0.1 近辺より目的化合物 91 写が得られた。

NMR (ODO&s) &: 1.51 (1H, d, J=6Hz),
1.54 (2H, d, J=6Hz), 23 ~ 3.5 (3H,
m), 3.70 (3H, s), 40 ~ 4.4 (2H, m),
5.3 ~ 5.7 (1H, m), 6.7 ~ 7.5 (7H, m),
7.7 ~ 8.0 (2H, m), 8.96 (1H, br. s)

参考例 25.

 $\frac{d8 - 3.4 - 1 + 5 \times 2 \times - 1 - (4 - 1) + 5 \times 2}{2 \times 2 \times 2}$

- 3 - [(1R) - 1 - ブチルジメチルシリル オキシエチル] - 4 - エチニル - 2 - アゼチジ

実施例 3 により得た R 配位のハイドロキシエチル体 90 町を DMF 3 単に溶解し、 1 ープチルジメチルシリルクロリド 160 町及びイミダゾール 36 町を加え 10 時間放置。酢酸エチルを加え、水洗。 Mg SO4 にて乾燥後、溶媒留去。 シクロヘキサン:酢酸エチル= 2:1 にて R f = 0.65 の部分をクロマトグラフィーにより分離する。目的化合物 100 町が得られた。

 $(\alpha)_{D}^{24}^{\circ}$ -112° (c=1, OHO83) NMR (ODC83) δ : 0.06 (6H, s), 0.76 (9H, s), 1.26 (3H, d, J=6Hz), 2.47 (1H, d, J=2.5Hz), 3.29 (1H, dd, J=3, 2.5Hz), 3.75 (3H, s), 4.27 (1H, dq, J=6, 3Hz), A2B2型)

移老例 27.

(38,48)-1-(4-メトキシフエニル) -3-((1R)-1~ ブチルジメチルシリル オキシエチル) - 4 - フェニルチオエチニルー 2 ーアセチジノン

参考例 26 により得たシリル体 60 mを無水テ トラヒドロフラン2 以に容解し、-78 でにて プチルリチウム液 0.25 **(1 **) 中 1.6 ミリモル ブチルリチウム無を含むヘキサン液を-78℃に -て加え30分批抖。ジフエニルジスルイド75 町 の1 fl テトラヒドロフラン液を加え、-78°~ 40°に2時間半攪拌。 酢酸エチルを加え、有機 盾を水洗3回。 Mg30』にて乾燥後シクロヘキサ

液をゆつくり加える。10 分間攪拌。 酢酸エチ ルを加え、水洗。常法通り後処理し、シクロへ キサン:酢酸エチル=2:1の系で Bf=0.54 の部分を単離精製する。目的化合物 30 号が 得 られた。

mp 76°

 $[\alpha]_{D}^{24}$ + 46° (c=1, 0H08₅) NMR (CDC&3) 8: 0.08 (6H, s), 0.89 (9H, s), 1.28 (3H, d, J=6Hz), 3.40 (1H, br.t. J=3Hz), 4.31 (1H, dq, J=6, 4Hz), 4.59 (1H, d, J=2.5Hz), 6.2 (1H, s), 7.32 (5H, m)

> 出雕人 三共株式会社 代理人 弁理士 怪 出 庄 治

4.52 (1H, 1, J=2.5Hz), 6.75 ~ 7.55 (4H, ン:酢級エチル5:1 の深にてシリカゲル薄層 クロマトグラフィーに付し Rf = 0.55 の目的化合 物 38 町が得られた。

> NMR (ODO 8 3) 8 : 0.08 (6H, s), 0.76 (9H, s), 1.30 (3H, d, J=6Hz), 3.37 (1H, t, J=3Hz), 3.74 (3H, s), 4.3 (1H, dq, J=6, 3Hz), 4.77 (1H, d, J=2Hz), 6.7 ~ 7.5 (9H, m)

 $(\alpha)_{D}^{24}$ -96° (c=1, OHO8x)

参考例 28.

(38, 48) - 3 - [(1R) - t - ブチルジ メチルシリルオキシエチル)-4-フェニルチ オエチニルー 2 ーアゼチジノン

参考例 27 で得たチオフェニル化体 60 町を 2 ■1のアセトニトリルに容解し、氷冷下 240 号の セリックアンモニウムナイトライトの 2 以水谷