BENTUK PANGKAT, AKAR, DAN LOGARITMA

1. BENTUK PANGKAT

1.1 PANGKAT BULAT POSITIF

Jika $a \in \mathbb{R}$ dan $n \in A$ maka didefinisikan : $a^n = a \times a \times a \times ... \times a$ sebanyak n faktor. a disebut bilangan pokok (dasar) dan n disebut eksponen (pangkat)

Contoh 1 : Tentukan nilai dari 2^5 dan $\begin{bmatrix} -\frac{1}{3} \end{bmatrix}^4$

$$2^{5} = \dots$$

$$\left[-\frac{1}{3} \right]^{4} = \dots$$

Contoh 2 : Dengan menguraikan menjadi perkalian, tentukan bentuk eksponen yang paling sederhana dari :

a)
$$2^3 \times 2^4$$

c)
$$(2^3)^4$$

a)
$$2^3 \times 2^4$$
 c) $(2^3)^4$ e) $\left[\frac{2}{3}\right]^4$

b)
$$\frac{3^7}{3^2}$$

b)
$$\frac{3^7}{3^2}$$
 d) $(pq)^5$

Jawab: a) $2^3 \times 2^4 = \dots$

b)
$$\frac{3^7}{3^2} = \dots$$

c)
$$(2^3)^4 = \dots$$

d)
$$(pq)^5 = \dots$$

e)
$$\left\| \frac{2}{3} \right\|^4 = \dots$$

Dari contoh 2 di atas dapat disimpulkan :

Jika $a,b \in R$, $m \in A$ dan $n \in A$ maka berlaku sifat-sifat eksponen sbb:

1.
$$a^{m}.a^{n} = ...$$

2.
$$\frac{a^m}{a^n} = ...$$

1.
$$a^{m}.a^{n} = ...$$
2. $\frac{a^{m}}{a^{n}} = ...$
3. $(a^{m})^{n} = ...$
4. $(ab) = ...$
5. $\left\| \frac{a}{b} \right\|^{n} = ...$

3.
$$(a^m)^n = ...$$

Contoh 3: Dengan menggunakan sifat-sifat eksponen di atas, sederhanakan bentuk berikut:

a)
$$\chi^2 . \chi^7$$

d)
$$(x^2y)^3$$

b)
$$\frac{n^7}{n^2}$$

a)
$$\chi^{2}.x^{7}$$
 d) $(x^{2}y)^{3}$
b) $\frac{n^{7}}{n^{2}}$ e) $\left[\frac{2p^{2}}{q}\right]^{4}$
c) $(x^{2})^{5}$ f) $(2xy^{3})^{4}.x^{2}y$

c)
$$(x^2)^5$$

f)
$$(2xy^3)^4 \cdot x^2y$$

Jawab : a) $\chi^2 \cdot \chi^7 = ...$

b)
$$\frac{n^7}{n^2} = ...$$

c)
$$(x^2)^5 =$$

d)
$$(x^2y)^3 = ...$$

e)
$$\begin{bmatrix} 2p^2 \end{bmatrix}^4 = \dots$$

f)
$$(2xy^3)^4 . x^2 y = ...$$

LATIHAN SOAL

1. Sederhanakan

a)
$$p^6 p^4$$

f)
$$\chi^{10}:\chi^{3}$$

k)
$$(-3k^3)^3$$

b)
$$4a \times 2a^3$$

g)
$$8k^5:2k^2$$

l)
$$2(5p^2)^3$$

c)
$$2p^2 \times p \times 6p$$

h)
$$4d^3x 2d^2: d^4$$

m)
$$(3p^2q^3)$$

d)
$$\left\| \frac{1}{2} \right\|$$

Sederhanakan

a)
$$p^6p^4$$
 f) x^{10} : x^3 k) $(-3k^3)^3$ b) $4a \times 2a^3$ g) $8k^5$: $2k^2$ l) $2(-3k^3)^3$ d) $4d^3x^2 + 2d^2 + 2d^4$ m) $(3p^2q^3)$ d) $4d^3x^2 + 2d^4$ j) $4d^3x^2 + 2d^4$ g) $4d^3x^2 + 2d^3x^2 + 2d^4$ g) $4d^3x^2 + 2d^3x^2 + 2d^4$ g) $4d^3x^2 + 2d^3x^2 +$

n)
$$\frac{(4p^2qr^5)^3}{8pq^2r^2}$$

e)
$$\frac{2}{3}$$

j)
$$(2p^2)$$

o)
$$\frac{2(x^2y^3)^3}{8x^5y^4}$$

2. Sederhanakan

a)
$$\frac{a^{n+1}}{a}$$

b)
$$(2p^{n+2})p^{n-1}$$
 c) 2^{x+3}

c)
$$2^{x+3}$$

d)
$$5.2^{2x+1}$$

1.2. PANGKAT BULAT NEGATIF DAN NOL

Contoh 1: Dengan menggunakan sifat-sifat eksponen, tentukan hubungannya dari:

a)
$$\frac{2^3}{2^3}$$

b)
$$\frac{3^5}{3^5}$$

c)
$$\frac{2^3}{2^5}$$

a)
$$\frac{2^3}{2^3}$$
 b) $\frac{3^5}{3^5}$ c) $\frac{2^3}{2^5}$ d) $\frac{3^2}{3^6}$

Jawab : a)
$$\frac{2^3}{2^3} = \dots$$

b)
$$\frac{3^5}{3^5} = \dots$$

c)
$$\frac{2^3}{2^5} = \dots$$

d)
$$\frac{3^2}{3^6} = \dots$$

Dari contoh 1 di atas dapat disimpulkan bahwa : Untuk setiap $a \in R, a \neq 0$ dan $n \in R$ berlaku sifat-sifat :

1.
$$a^0 = ...$$

2. $a^{-n} = ...$

2.
$$a^{-n} = ...$$

Contoh 2: Sederhanakan dan jadikan pangkat positif dari :

a)
$$5^{-3}$$
 b) $\frac{1}{2^{-3}}$

c)
$$(-2x^2y)^{-2}$$

Jawab : a)
$$5^{-3} = ...$$

b)
$$\frac{1}{2^{-3}} = \dots$$

c)
$$(-2x^2y)^{-2} = ...$$

LATIHAN SOAL

1. Sederhanakan dan nyatakan dengan eksponen positif dari :

a)
$$a^{-5}$$

f)
$$a^{-6}b^4 \times a^2b^{-2}$$

$$k) \begin{bmatrix} \frac{1}{2} 5q^{-2} \\ \frac{1}{2} h^3 \end{bmatrix}^{-2}$$

b)
$$3k^{-2}$$

q)
$$4m^7n^{-4} \times 2m^{-6}n^{-1}$$

1)
$$(3a^2b^{-3})^3 \times (2a^4)^{-3}$$

c)
$$\frac{2}{5}k^{-4}$$

h)
$$\frac{8a^{-6}}{2a^4}$$

d)
$$\frac{4}{x^{-3}}$$

i)
$$\frac{56t^5}{7t^{-2}}$$

e)
$$(4a)^{-2}$$

$$j) \begin{bmatrix} \frac{1}{3} 8x^2y^3 \\ \frac{1}{3} 16x^5y \end{bmatrix}^3$$

2. Jika a = 2, b = 3 dan c = -2. maka tentukan

a)
$$\begin{bmatrix} a^2b \\ c \end{bmatrix}^{-2}$$

b)
$$\frac{(2bc^3)^{-2}}{4a}$$

b)
$$\frac{(2bc^3)^{-2}}{4a}$$
 c) $\frac{a^2b^5}{b^3c} \times \frac{4c}{a^{-2}}$

1.3 EKSPONEN RASIONAL (PECAHAN)

Seperti kita ketahui jika $2^3 = 8$ maka $2 = \sqrt[3]{8}$

Maka jika $2^2 = \dots$ maka $2 = \dots$

$$2^4 = \dots$$
 maka $2 = \dots$

$$3^4 = \dots$$
 maka $3 = \dots$

Misal $a = \chi^{m/n}$, jika kedua ruas dipangkatkan n, maka :

$$a^n = (x^{m/n})^n$$

$$a^n = x^{\dots}$$

$$a = \sqrt{\dots}$$

$$x^{m/n} = \dots$$

Contoh 1: Ubah ke bentuk akar dari : a) $2^{1/2}$ b) $6^{3/5}$ c) $2x^{3/2}$

Jawab

- : a) $2^{1/2} = \dots$
 - b) $6^{3/5} = \dots$
 - c) $2x^{3/2} = \dots$

Contoh 2: Ubah ke bentuk pangkat dari :

a)
$$\sqrt{3}$$

a)
$$\sqrt{3}$$
 b) $\frac{1}{\sqrt[3]{x^2}}$

Jawab : a)
$$\sqrt{3} = \dots$$

b)
$$\frac{1}{\sqrt[3]{x^2}} =$$

Contoh 3: Tentukan nilai dari 163/4

Jawab :
$$16^{3/4} = (\dots)^{3/4} = \dots = \dots$$

LATIHAN SOAL

1. Ubah menjadi bentuk akar

- b) $5^{-1/3}$ c) $4^{3/4}$ d) $x^{4/9}$

e)

$$\frac{1}{3}x^{-2/3}$$

2. Ubah ke bentuk pangkat

- a) $2\sqrt{5}$
- b) $\frac{1}{\sqrt[5]{2}}$

- c) $\sqrt[3]{5^2}$ d) $\frac{3}{\sqrt[3]{3^4}}$ e) $\frac{2^{\sqrt[5]{x^2}}}{7}$

3. Tentukan nilainya

- a) $\sqrt[3]{64}$ b) $8^{2/3}$ c) $32^{3/5}$ d) $81^{3/8}$ e) $\left\|\frac{27}{64}\right\|^{2/3}$

4. Sederhanakan dalam bentuk akar

- a) $2^{3/4} \cdot 2^{1/8}$

- b) $(\sqrt{6})^2$ c) $2\sqrt{2}.\sqrt{18}$ d) $\frac{2}{\sqrt{2}}$ e) $\frac{12}{\sqrt{2}.\sqrt{3}}$

5. Jika a = 1, b = 3 dan c = -18, maka tentukan x dari
$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

2. BENTUK AKAR

2.1 OPERASI BENTUK AKAR

Bentuk akar termasuk bilangan irasional, yaitu bilangan yang tidak dapat dinyatakan dengan pecahan a/b, a dan b bilangan bulat dan $b \neq 0$

Contoh bentuk akar : $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt[3]{2}$, $\sqrt[3]{4}$, $\sqrt[5]{7}$ dsb bukan bentuk akar : $\sqrt{4}$, $\sqrt{9}$, $\sqrt[3]{8}$, $\sqrt[4]{16}$ dsb

Catatan : \sqrt{a} adalah bilangan non negatif, jadi $\sqrt{a} \ge 0$

Operasi Pada Bentuk Akar

$$4. \ \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Contoh 1: Sederhanakan :

a)
$$\sqrt{20}$$

b)
$$\sqrt{75}$$

c)
$$\sqrt{x^3}$$

a)
$$\sqrt{20}$$
 b) $\sqrt{75}$ c) $\sqrt{\chi^3}$ d) $\sqrt[3]{a^8}$

Jawab

: a)
$$\sqrt{20} = ...$$

b)
$$\sqrt{75} =$$

c)
$$\sqrt{x^3} =$$

d)
$$\sqrt[3]{a^8} =$$

Contoh 2: Sederhanakan :

a)
$$3\sqrt{2} + 4\sqrt{2}$$

b)
$$4\sqrt{3} + 7\sqrt{3} - 5\sqrt{3}$$
 c) $\sqrt{8} + \sqrt{18}$

c)
$$\sqrt{8} + \sqrt{18}$$

Jawab : a)
$$3\sqrt{2} + 4\sqrt{2} = ...$$

b)
$$4\sqrt{3} + 7\sqrt{3} - 5\sqrt{3} = \dots$$

c)
$$\sqrt{8} + \sqrt{18} = ...$$

Contoh 3: Sederhanakan:

a)
$$\sqrt{6} \times \sqrt{3}$$

b)
$$(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})$$
 c) $(2\sqrt{2} + \sqrt{3})^2$

Jawab

: a)
$$\sqrt{6} \times \sqrt{3} =$$

b)
$$(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3}) = \dots$$

c)
$$(2\sqrt{2} + \sqrt{3})^2 = \dots$$

LATIHAN SOAL

1. Sederhanakan

a)
$$\sqrt{72}$$

b)
$$\sqrt{160}$$

b)
$$\sqrt{160}$$
 c) $\sqrt{1200}$ d) $2\sqrt{80}$ e) $\sqrt{8x^2}$

d)
$$2\sqrt{80}$$

e)
$$\sqrt{8x}$$

f)
$$3\sqrt{12a^5b^3}$$
 g) $\frac{2}{\sqrt{2}}$ h) $\frac{9}{\sqrt{3}}$ i) $\sqrt{\frac{8}{9}}$ j) $2\sqrt{\frac{a^3b^2}{4c^4}}$

h)
$$\frac{9}{\sqrt{3}}$$

i)
$$\sqrt{\frac{8}{9}}$$

j)
$$2\sqrt{\frac{a^3b^2}{4c^4}}$$

2. Sederhanakan

a)
$$\sqrt{12} + \sqrt{50} - \sqrt{48}$$

d)
$$\frac{\sqrt{72} + \sqrt{180}}{\sqrt{45} + \sqrt{18}}$$

b)
$$2\sqrt{16} - 3\sqrt{18} + \sqrt{27}$$

a)
$$\sqrt{12} + \sqrt{50} - \sqrt{48}$$
 d) $\frac{\sqrt{72} + \sqrt{180}}{\sqrt{45} + \sqrt{18}}$ b) $2\sqrt{16} - 3\sqrt{18} + \sqrt{27}$ e) $\frac{\sqrt{2x^2 + x\sqrt{8}}}{4x}$

c)
$$\frac{3\sqrt{20} + 4\sqrt{45}}{2\sqrt{5}}$$

3. Sederhanakan

a)
$$(\sqrt{2} + 3)(\sqrt{2} - 3)$$

b)
$$(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})$$
 c) $(3\sqrt{5} + 2\sqrt{3})(3\sqrt{5} - 2\sqrt{3})$ d) $(x\sqrt{x} - \sqrt{y})^2$

b)
$$(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})$$

d)
$$(x\sqrt{x} - \sqrt{y})^2$$

2.2 MERASIONALKAN PENYEBUT PECAHAN BENTUK AKAR

Jika kita menghitung bilangan, operasi perkalian lebih mudah daripada pembagian. Apalagi operasi pembagian dengan bentuk akar.

Ada 3 cara merasionalkan penyebut bentuk pecahan bentuk akar, yaitu :

1. Pecahan Bentuk $\frac{a}{\sqrt{b}}$

Diselesaikan dengan mengalikan $\frac{\sqrt{b}}{\sqrt{b}}$

Contoh 1: Rasionalkan penyebut dari pecahan :

a)
$$\frac{2}{\sqrt{3}}$$

b)
$$\frac{2}{3\sqrt{3}}$$

Jawab : a)
$$\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times ... =$$

b)
$$\frac{2}{3\sqrt{3}} = \frac{2}{3\sqrt{3}} \times ... =$$

2. Pecahan Bentuk $\frac{a}{b+\sqrt{c}}$

Diselesaikan dengan mengalikan $\frac{b$ - \sqrt{c}

Contoh 2 : Rasionalkan penyebut pecahan $\frac{8}{3-\sqrt{5}}$

Jawab :
$$\frac{8}{3-\sqrt{5}} = \frac{8}{3-\sqrt{5}} \times ... = ...$$

3. Pecahan Bentuk $\frac{a}{\sqrt{b} + \sqrt{c}}$

Diselesaikan dengan mengalikan $\frac{b+\sqrt{c}}{b+\sqrt{c}}$

Contoh 3: Rasionalkan penyebut dari pecahan $\frac{12\sqrt{3}}{\sqrt{6}-\sqrt{2}}$

Jawab :
$$\frac{12\sqrt{3}}{\sqrt{6} - \sqrt{2}} = \frac{12\sqrt{3}}{\sqrt{6} - \sqrt{2}} \times \dots = \dots$$

LATIHAN SOAL

1. Rasionalkan penyebutnya

a)
$$\frac{12}{\sqrt{3}}$$

b)
$$\frac{10}{\sqrt{5}}$$

c)
$$\frac{9}{2\sqrt{3}}$$

d)
$$\frac{7\sqrt{3}}{\sqrt{7}}$$

e)
$$\frac{4\sqrt{3}}{5\sqrt{2}}$$

a)
$$\frac{9}{5+\sqrt{7}}$$

b)
$$\frac{20}{4 - \sqrt{6}}$$

c)
$$\frac{5}{\sqrt{11} + 6}$$

d)
$$\frac{2\sqrt{5}}{7 - \sqrt{13}}$$

a)
$$\frac{12}{\sqrt{3}}$$
 b) $\frac{10}{\sqrt{5}}$ c) $\frac{9}{2\sqrt{3}}$ d) $\frac{7\sqrt{3}}{\sqrt{7}}$ e) $\frac{4\sqrt{3}}{5\sqrt{2}}$ 2. Rasionalkan penyebutnya a) $\frac{9}{5+\sqrt{7}}$ b) $\frac{20}{4-\sqrt{6}}$ c) $\frac{5}{\sqrt{11}+6}$ d) $\frac{2\sqrt{5}}{7-\sqrt{13}}$ e) $\frac{4\sqrt{6}}{8-2\sqrt{3}}$

a)
$$\frac{14}{\sqrt{10} + \sqrt{13}}$$
 b) $\frac{-10}{\sqrt{2} - \sqrt{7}}$

c)
$$\frac{8\sqrt{3}}{\sqrt{11} - \sqrt{7}}$$

a)
$$\frac{14}{\sqrt{10} + \sqrt{13}}$$
 b) $\frac{-10}{\sqrt{2} - \sqrt{7}}$ c) $\frac{8\sqrt{3}}{\sqrt{11} - \sqrt{7}}$ d) $\frac{6}{\sqrt{10} + 2\sqrt{3}}$ e) $\frac{3\sqrt{2}}{3\sqrt{5} - 4\sqrt{2}}$

3. PERSAMAAN EKSPONEN (SEDERHANA)

Persamaan eksponen yaitu persamaan yang eksponen/pangkatnya mengandung variabel/peubah.

1. Jika
$$a^{f(x)} = a^p$$
 maka $f(x) = p$

2. Jika
$$a^{f(x)} = a^{g(c)} \text{ maka } f(x) = g(x)$$

dimana p suatu konstanta

Contoh 1: Tentukan HP dari:

a)
$$4^{2x+3} = 8$$

b)
$$8^{2x-1} = 16^{3x+2}$$

Jawab : a) $4^{2x+3} = 8$

a)
$$4^{2x+3} - 0$$

b)
$$8^{2x-1} = 16^{3x+2}$$

$$(2^{...})^{2x=3}=2^{...}$$

LATIHAN SOAL

Tentukan HP dari:

1.
$$27^{x+2} = 81^{2x-5}$$

6.
$$5^{x-9} = 25^{3-x}$$

2.
$$8^{2x+1} = 1$$

7.
$$\left\| \frac{1}{2} \right\|^x = 8^{2x}$$

3.
$$9^{4x+5} = \frac{1}{27}$$

$$8. \ \frac{1}{25^x} = 125^{3x+2}$$

4.
$$5^{2x} = \frac{\sqrt{5}}{5}$$

9.
$$16^{2x-1} = \frac{8}{2^{x+1}}$$

5.
$$(\sqrt{3})^{x-5} = 1$$

$$10. \ \frac{8^{2x+3}}{4} = \frac{1}{32} \sqrt{8}$$

3. LOGARITMA

3.1 PENGERTIAN LOGARITMA

Seperti telah kita ketahui bahwa:

Jika
$$5^2 = 25$$
 maka $5 = ...$

Jika
$$2^3 =$$
 maka $2 =$

Jika
$$2^5 =$$
 maka $2 = ...$

Pada $2^3 = 8$, bagaimana menyatakan 3 dengan 2 dan 8?

Untuk itu diperlukan notasi yang disebut Logaritma untuk menyatakan pangkat dengan bilangan pokok (basis) dengan hasil pangkat (numerus).

Jadi jika $2^3 = 8$ maka $3 = \log 8$ dibaca "2 log 8"

Sehingga logaritma merupakan invers dari perpangkatan.

Secara umum dapat dinyatakan :

Jika
$$a^x = y$$
 maka $x =$

syarat : a > 0, $a \ne 1 dan y > 0$

a: basis logaritma

y : numerus

x : hasil logaritma

Khusus untuk bilangan pokok 10, bisa dituliskan bisa juga tidak.

Jadi jika log 5 maksudnya ¹⁰log5.

Contoh 1: Nyatakan dalam bentuk logaritma dari perpangkatan :

a.
$$3^4 = 81$$

a.
$$3^4 = 81$$
 b. $2^n = 128$ c. $a^b = c$

c.
$$a^b = a$$

Jawab : a.
$$3^4 = 81 \Leftrightarrow 4 = \dots$$

b.
$$2^n = 128 \Leftrightarrow n = \dots$$

c.
$$a^b = c \Leftrightarrow b = \dots$$

Contoh 2 : Nyatakan dalam perpangkatan dari bentuk logaritma :

a.
$$4 = 3 \log 81$$

b.
$$log 100 = 2$$

c.
$$p \log q = r$$

Jawab : a.
$$4 = 3 \log 81 \Leftrightarrow \dots$$

c.
$$p \log q = r \Leftrightarrow \dots$$

Contoh 3: Hitunglah:

a.
$$^{2}\log 64$$

a.
$$^{2}\log 64$$
 b. $^{2}\log \frac{1}{8}$ c. $\log 1000$ d. $^{3}\log \sqrt{27}$

d.
$$3\log\sqrt{27}$$

f.
$$\frac{1}{2}\log 4$$

e.
$${}^{5}log1$$
 f. ${}^{\frac{1}{2}}log4$ g. ${}^{\frac{1}{3}}log\frac{1}{81}$

: a.
$$^{2}\log 64 = x \Leftrightarrow \dots = 64 \Leftrightarrow x = \dots$$

b.
$$^{2}\log \frac{1}{8} = x \Leftrightarrow \dots = \dots \Leftrightarrow x = \dots$$

c.
$$\log 1000 = x \Leftrightarrow \dots = \dots \Leftrightarrow x = \dots$$

d.
$$3\log\sqrt{27} = x \Leftrightarrow \dots = \dots \Leftrightarrow x = \dots$$

e.
$${}^{5}\log 1 = x \Leftrightarrow ... = ... \Leftrightarrow x =$$

f.
$$\frac{1}{2}\log 4 = x \Leftrightarrow \dots = \dots \Leftrightarrow x = \dots$$

g.
$$\frac{1}{3} \log \frac{1}{81} = x \Leftrightarrow \dots = \dots \Leftrightarrow x = \dots$$

LATIHAN SOAL

1. Nyatakan dalam bentuk logaritma dari :

a.
$$5^2 = 25$$

b.
$$3^{-2} = \frac{1}{9}$$

c.
$$5^0 = 1$$

d.
$$9^{1/2} = 3$$

a.
$$5^2 = 25$$
 b. $3^{-2} = \frac{1}{9}$ c. $5^0 = 1$ d. $9^{1/2} = 3$ e. $\left[\frac{1}{2} \right]_{0}^{4} = \frac{1}{16}$

2. Nyatakan dalam bentuk perpangkatan dari :

a.
$$\log 10.000 = 4 \text{ b.}^{2} \log \frac{1}{16} = -4 \text{ c.}^{7} \log 1 = 0 \text{ d.}^{9} \log 3 = \frac{1}{2} \text{ e.}^{\frac{1}{4}} \log \frac{1}{16} = 2$$

c.
$$^{7}\log 1 = 0$$

d.
$$9\log 3 = \frac{1}{2}$$

e.
$$\frac{1}{4} \log \frac{1}{16} = 2$$

3. Tentukan nilainya dari:

a.
$${}^{5}\log 625$$
 b. ${}^{4}\log 4$ c. ${}^{7}\log 1$ d. $\log 0.1$ e. ${}^{2}\log \frac{1}{4}$

f.
$$^{2}\log\sqrt{16}$$

$$\text{f. } {}^{2}log\sqrt{16} \qquad \qquad \text{g. } {}^{3}log\frac{1}{\sqrt{27}} \qquad \quad \text{h. } {}^{\frac{1}{2}}log1 \qquad \qquad \text{i. } {}^{\frac{1}{2}}log8 \qquad \qquad \text{j. } {}^{\frac{1}{2}}log\frac{1}{8}$$

j.
$$\frac{1}{2}\log\frac{1}{8}$$

k.
$$\sqrt{2} \log 8$$

k.
$$\sqrt{2} \log 8$$
 I. $\sqrt{3} \log \frac{1}{\sqrt{81}}$ m. $\sqrt{3} \log 9$

m.
$$3\sqrt{3}\log 9$$

3.2 SIFAT-SIFAT LOGARITMA

Jika a > 0, b > 0, c > 0 dan $a \ne 1$, maka :

1.
$$a \log bc = a \log b + a \log c$$

5.
$$a^{a \log b} = b$$

$$2. {}^{a}\log \frac{b}{c} = {}^{a}\log b - {}^{a}\log c$$

$$6. \, \, a^m \log b^n = \frac{n}{m} a \log b$$

3.
$$a \log b^c = c^a \log b$$

7.
$$a \log b \cdot \log c = a \log c$$

$$4. {}^{a}\log b = \frac{1}{{}^{b}\log a}$$

$$8. {}^{a}\log b = \frac{{}^{c}\log b}{{}^{c}\log a}$$

<u>Bukt</u>i:

Sifat 1: Misal $a \log b = m \Leftrightarrow b = \dots$

$$a \log c = n \Leftrightarrow c = \dots$$

Maka bc =
$$\Rightarrow$$
 $a \log bc =$ \Rightarrow ... \Rightarrow ...

Sifat 6: Misal
$${}^a\log b = x \Leftrightarrow b = \Leftrightarrow b^{mn} = \Leftrightarrow nx = {}^{a^m}\log b^{mn} \Leftrightarrow nx = m^{a^m}\log b^n \Leftrightarrow n$$

Sifat 8: Misal
$${}^a\log b = m \Leftrightarrow b = \Leftrightarrow {}^c\log b = {}^c\log a^m \Leftrightarrow m^c\log a = \Leftrightarrow m = \Leftrightarrow {}^a\log b =$$

Contoh 1: Sederhanakan :

a.
$$3^{3 \log 5}$$

b.
$$25^{5 \log 3}$$

c.
$$^{2}\log 3 + ^{2}\log 6 + ^{2}\log 2$$

e.
$$^{2}\log 2^{10}$$

f.
$$\frac{^2\log 4}{^2\log 3} + ^3\log 16$$

g. 8log 256

Jawab

: a.
$$3^{3 \log 5} = \dots$$

b.
$$25^{5 \log 3} = \dots$$

c.
$$^{2}\log 3+^{2}\log 6+^{2}\log 2 = ...$$

d.
$$^{2}\log 3.^{5}\log 8.^{3}\log 5 =$$

e.
$$^{2}\log 2^{10} =$$

f.
$$\frac{^2 \log 4}{^2 \log 3} + ^3 \log 16 = \dots$$

Contoh 2: Jika $\log 2 = 0.3010$ dan $\log 3 = 0.4771$, maka tentukan $\log 24$

Jawab : $\log 24 = \dots$

Contoh 3: Jika ${}^{3}\log 4 = a \ dan \ {}^{4}\log 5 = b$, maka tentukan ${}^{5}\log 9$

Jawab : ${}^{5}\log 9 = {}^{5}\log 3^{2} =$

LATIHAN SOAL

1. Sederhanakan

a. ${}^{6}\log 8 - {}^{6}\log 2 + {}^{6}\log 9$

f. ²log15.³log16.¹⁵log9

b. $^{2}\log 50 + ^{2}\log 4 - ^{2}\log 10$

g. ³log 4.² log 3.⁴ log 8

c. $2\log 3 + \log 2 - \log 18$

h. 8log16

 $\text{d. } \frac{\log 2 + \log \sqrt{3} + \log 3\sqrt{2}}{\log 6}$

i. 16 log 625

e. $\frac{^{3}\log 5 + ^{3}\log 6 - ^{3}\log 2}{^{9}\log 15}$

 $j. \ \frac{^{3}log2+^{3}log25-^{3}log5}{^{3}log10}$

2. Jika $\log 2 = 0.3010$ dan $\log 5 = 0.6990$, maka tentukan :

- a. log 20
- b. log 500
- c. log 40
- d. ²log5

e. 5log8

3. Jika $^{2}\log 3 = m \ dan \ ^{3}\log 5 = n$, maka tentukan :

- a. ²log5 b. ²log75 c. ²log500
- d. 8log 25
- e. 125 log 4