Problema 8.1

A estrutura da alumina (Al₂O₃) pode ser descrita como uma estrutura CFC de iões O²⁻, em que os catiões Al³⁺ ocupam interstícios octaédricos.

- a) Determine a % de interstícios ocupada.
- b) Mostre a que relação devem obedecer os raios iónicos para que a estrutura seja estável.

Resolução:

CFC de iões O²⁻, com parte dos interstícios octaédricos ocupados pelos catiões Al³⁺

N° de interstícios octaédricos na cél. base de uma estrutura compacta = N° de átomos da cél. un.

Para a estrutura CFC este número é 4.

Se todos os interstícios estivessem ocupados, a proporção Al³+:O² seria 1:1.

Como Al³⁺:O² = 2:3, a fracção de interstícios ocupada é de 2/3 (66.7%).

Plano equatorial do octaedro na situação limite:

$$a_{oc} \ge 2r_A$$

 $d = 2r_A + 2r_C$
 $d^2 = 2a_{oc}^2 \longrightarrow d = \sqrt{2} a_{oc}$

Donde:

$$2r_A + 2r_C = \sqrt{2}a_{oc} \ge 2\sqrt{2} r_A$$
 Confirmação:
 $2r_C \ge 2\sqrt{2} r_A - 2r_A$ $r(O^{2-}) = 140 \text{ pm}$
 $r_C \ge (\sqrt{2}-1) r_A = 0.414r_A$ $r(Al^{3+}) = 53.5 \text{ pm}$
 $r(Al^{3+}) / r(O^{2-}) = 0.382$

(a ligação Al-O tem ~45% de carácter covalente...)

Problema 8.4

DEQ
DEPARTAMENTO
DE ENGENHARIA QUÍMICA
TÉCNICO LISBOA

Estime a massa volúmica do cloreto de sódio (NaCl).

Tome para os raios iónicos os valores:

 $r(Cl^{-}) = 181 pm e r(Na^{+}) = 95 pm.$

Resolução:

CFC de iões Cl⁻, com 100% dos interstícios octaédricos preenchidos por Na⁺

Nº de interstícios octaédricos na cél. base = Nº de átomos da cél. base = 4

Para a massa da cél. base contribuem: 4 iões Cl⁻ + 4 iões Na⁺

m(cél. base) =
$$(4 \times 23 \times 10^{-3}) + (4 \times 35.5 \times 10^{-3})$$
 kg
N_A

$$a = 2r(Cl^{-}) + 2r(Na^{+}) = 552 pm$$

$$\mu = \frac{(4 \times 23 \times 10^{-3}) + (4 \times 35.5 \times 10^{-3})}{(552 \times 10^{-12})^3 \times N_A} = 2300 \text{ kg m}^{-3} = 2.3 \text{ g cm}^{-3}$$

$$\mu_{\text{expimental}}$$
 = 2.165 g cm⁻³ !!!

Problema 8.7

c) Ordene por temperatura de fusão e dureza os seguintes compostos: LiF, NaBr, MgCl₂

r(F⁻)= 133 pm; r(Li⁺)= 76 pm; r(Na⁺)= 95 pm; r(Br⁻)= 196 pm; r(Mg²⁺)= 72 pm; r(Cl⁻)= 181 pm Resolução:

A temperatura de fusão e a dureza dos cristais iónicos aumentam com o módulo da energia reticular, |U |

$$U = -\frac{kAN_AZ_CZ_A}{r_0} \times (1-1/n)$$

Para estequiometria 1:1, a constante de Madelung é a mesma (~1.7) e admitindo que a constante n é pouco significativa, tem-se: $|U| \propto Z_c \times Z_A / (r_c + r_A)$

$$Z_C \times Z_A$$
 (LiF) = $Z_C \times Z_A$ (NaBr) = 1
 r_0 (LiF)< r_0 (NaBr): 209< 291 pm
(sendo $r_0 = r_A + r_C$)

Para estequiometria 1:2 a constante A tem o valor ~2.5 e $Z_C \times Z_A$ (MgCl₂) = 2

A soma dos raios iónicos (253 pm) não compensa estes dois efeitos. Logo, $T_f(MgCl_2)$ será a mais elevada.

Ordenando: $T_f(MgCl_2) > T_f(LiF) > T_f(NaBr)$. Idem para a dureza.