Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Физтех-школа прикладной математики и информатики Кафедра «Интеллектуальные системы»

Панченко Святослав Константинович

Геометрическая алгебра для решения задачи декодирования сигналов

03.03.01 - Прикладные физика и математика

Выпускная квалификационная работа магистра

Научный руководитель: д.ф.-м.н. Стрижов Вадим Викторович

Москва 2020

Содержание

	Вве	дение	4
1	Пос	становка задачи восстановления плотности	6
2	Реш	ление задачи восстановления плотности	8
	2.1	Распределение Кента как способ описания распределения углов	8
	2.2	Выбор плотности распределения компоненты смеси	10
	2.3	Алгоритм нахождения оптимальных параметров смеси	11
	2.4	Обновление параметров распределения Кента	12
		2.4.1 Стохастическая модификация ЕМ-алгоритма	12
		2.4.2 Моментные оценки параметров распределения Кента	13
		2.4.3 Аналитические формулы для моментных оценок	13
	2.5	Определение числа компонент в модели смеси распределений	14
	2.6	Инициализация параметров смеси в алгоритме	15
	2.7	Окончательный вид алгоритма поиска оптимальных параметров	16
3	Вы	числительный эксперимент	17
	3.1	Экспериментальные данные	17
	3.2	Восстановление плотности распределения пространственных конфигу-	
		раций пары ALA-C _{ar}	17
		$3.2.1$ Иллюстрации для $r = 7 \text{Å} \dots \dots \dots \dots \dots$	19
		3.2.2 Иллюстрации для $r = 11 \text{Å} \dots \dots \dots \dots \dots \dots$	20
		3.2.3 Иллюстрации для $r = 15 \text{Å}$	21
	3.3	Установление соответствия с другими моделями	22
	Зак	лючение	23
	Спи	исок литературы	2 5

[ДАЛЕЕ СЛЕДУЕТ ШАБЛОН, АКТУАЛЬНЫЙ ТЕКСТ РАБОТЫ БУДЕТ ПРЕДОСТАВЛЕН 31-ОГО МАЯ]

Аннотация

Рассмотрена задача восстановления плотности распределения трёхмерного случайного вектора, две компоненты которого представляют собой пару сферических углов. Требуется, чтобы полученные плотности были интерпретируемы с точки зрения эксперта, согласовывались с ранее полученными результатами, а модель восстановления учитывала периодичность углов. Предлагается рассматривать значения пары углов как реализации случайного вектора, областью значений которого является сфера в трёхмерном пространстве. Искомая плотность в таком подходе моделируется в виде смеси, в каждой компоненте которой углы распределены в соответствии с распределением Кента. Параметры смеси находятся с помощью модификации алгоритма Stochastic Expectation-Maximization. Проведено восстановление плотностей распределения пространственных ориентаций различных пар молекул. Демонстрируется, что результаты восстановления согласуются с мнением эксперта и результатами других моделей.

Ключевые слова: трёхмерная структура белка, восстановление плотности распределения, модель смеси распределений, распределение Кента, алгоритм Stochastic Expectation-Maximization.

Введение

Актуальность темы. Трёхмерная структура белковой молекулы — это ключ к пониманию её биологических функций и свойств. Однако, определение строения белковой цепи, обычно с помощью рентгеновской кристаллографии или спектроскопии ядерного магнитного резонанса, весьма дорого и трудоёмко. Поэтому число экспериментально определённых белковых структур существенно меньше числа идентифицированных белковых цепочек. Отсюда возникает задача предсказания по последовательности образующих молекулу компонент её трёхмерной структуры. С проблемой можно ознакомиться в работах [1,2].

Решение данной задачи — одна из самых важных целей биоинформатики и теоретической химии. Оно позволит значительно улучшить существующие генеративные и предсказательные модели в области исследования молекулярных последовательностей. Полученные при помощи этих моделей данные активно используются в медицине и биотехнологии.

Существующие решения. Один из фундаментальных подходов к решению данной задачи — построение потенциала, функции, минимумы которой соответствуют энергетически устойчивым конфигурациям молекул, образующих химическую связь. Имеются два основых подхода к построению таких потенциалов:

Физический подход: в этом подходе потенциал строится на основе законов молекулярной химии, описывающих взаимомодействия молекул. Такие потенциалы, как правило, точны, но их вычисление весьма трудоёмко. Они лучше подходят для описания одной конкретной цепочки и мало применимы для анализа произвольных последовательностей. Примеры использования подобных подходах рассмотрены в исследованиях [3, 4].

Статистический подход: в этом подходе предполагается стохастическая модель порождения данных: для каждой пары потециально взаимодействующих молекул на основе известных и изученных молекулярных структур строятся функции плотности совместной вероятности параметров химической связи, определяющих взаимную пространственную ориентацию этих молекул. С помощью полученных плотностей формируются статистические потенциалы, описывающие структуру неизученной молекулярной цепи на основе вероятностного обобщения известных структур. Многочисленные исследования в этой области представлены в статьях [5–10].

Второй, статистический, подход существенно опирается на оценку совместных плотностей распределения величин, характеризующих молекулярную связь. Для определённого набора хорошо изученных молекул существуют базы данных, содержащие информацию о параметрах химических связей, которую эти молекули формировали между собой в исследованных структурах. Одна пара таких молекул характеризуется десятками тысяч зарегистрированных конфигураций с различными параметрами. Такое множесто конфигураций объясняется тем, что рассматриваемая пара молекул входила в состав громадного количества различных молекулярных последовательностей, каждый элемент которых мог повлиять на значения этих параметров.