	· The centre of mass of N discrete point masses is
	Ro = (xo, yo, zo) = M & Mici
	· For a continuous body:
	Ro = M SSS Colm
	. COM is important because in many cases we can model an
	extended body as a point mass located at the com. The principle of superposition allows us to find the com of a composite system
	The principle of superposition allows as to that the contract
	with the hole as a negative, mass object.
	me note as a regarder mas object.
	Moments
	. The moment of a vector field about an axis is the scalar
	value of the field x perpendicular distance.
	· Torque; the moment of force: Z = x E
	· For an object to be in equilibrium, & Fi = 0 and & I: = 0.
	La law of the lever: F, l, = F2/2 (about any axis)
	· A couple is a pair of equal opposite but displaced forces
-	· For an object to be in equilibrium, $\xi F_i = 0$ and $\xi T_i = 0$. La law of the lever: $F_i l_i = F_2 l_i$ (about any axis). · A couple is a pair of equal opposite but displaced forces Torque in this case is $Q_i \times F_i$, independent of origin $\xi F_i = 0$.
	Circular motion
	Motion with largest to an ward and he wallt
	into our annular and cadial companent
	· For a tinu seament 151 = 16+50
	· Motion with respect to an origin can be split into an angular and radial component. · For a tiny segment, $121 = 12 + 32$
	The linear velocity is $V = \frac{d f }{df} = \frac{dG}{df}$ direction of G . Angular velocity is defined as $G = W = \frac{dG}{df} = \frac{dG}{df}$ Religion rule.
	· Angular relocity is defined as $G = w = d\theta^{\prime}$ determined using
	at RH grip rule.
10	AZONE

	· Likewise, linear acceleration: $\alpha = L \frac{d^2 \sigma}{dx^2}$
	angular acceleration: $X = \Theta$
	=> V=WxL &= XxC
	· Suppose an object in circular motion has linear a coeleration: $E = d(mv) = mr\ddot{\theta}$
	acceleration: $E = d(mv) = mr\ddot{g}$
	at di
	This is the rotational equivalent of Newton's 2 ^{not} law, were m's is the mass' — moment of inertia I.
	· This is the rotational equivalent of Newton's 2" law,
	were mis the mass' - moment of mertia I.
	$I = \leq m : r^2 \text{ (discrete)} I = \int \int r^2 dm \text{ (cont)}.$
	La r is the perpendicular distance to the axis.
	The parallel axis theorem lets us calculate I about any axis powallel to an axis through the COM, given Is and
	axis powalled to an axis through the COM, given Io and
	the separation $I = M\alpha^2 + I_0$
	7
	The perpendicular axis theorem (for laminas) relates I for 3 perpendicular axes:
	relates I for 3 perpendicular axes:
	$T - T + \Gamma$
	75- TX 1-10
	1
	Angular momentum
	$12 \cdot \text{Cined} / 1 = \text{C} \times 0 = \text{mC} \times V$
	· Defined by $L = L \times P = mL \times V$
	·For a system of N particles:
rue S	L= Zmi(cixvi) => dl = Z Ti => (L= Iw)
or any)	. The sum of all intenal torques is zero by Neuton's 3rd
o(x1).	4> total angular momentum of a custem is constant if no
	External torque is applied.
	·

	Just as linear impulse is $\Delta p = \int E dt$, we can define angular impulse: $\Delta L = \int \overline{L} dt$
	angular impulse:
	$Z = \int Z dt$
	Rotational energy
	For a single particle at a distance r: from the axis:
	· For a single posticle at a distance r; from the axis: KE: = 1 m; v; = 2 m; r; 2 w?
	=> RKEtotal = 2 (5 m; r; 2) w2 = 1 Iw3
1	·
	of linear KE of com and rotational KE about com.
	K = total = = = mv2 + = Iw2
	· This makes it very easy to analyse a physical pendulum
	- no linear motion: Etot = GPE + RKE
	i.e Etot = mgl(1-cos6) + {Iô2
(1-1006)	
(1 (00	É-B-BB, mgl B-B : Q CHM
	Etot = 0 = 0 + mgl 0 = 0 i.e SHM.
	Gyrascopes
	· If a force F is applied to a rotating flywheel,
	a torque is produced.
	This cause a change in L: DL = IDt
	· But Lo = Iw and w is constant
	:. Le + DL = Lo => only direction changing
	i.e circular motion.
	thus there is precession about an axis to both L and I
	to both L and I.

