What Gives?

Vanessa Ma | Shyamsunder Sriram

BUSN 37304

Context

Optimizing Philanthropy

- Nature: not-for-profit organization
- Operations: provides programs and services for US veterans with spinal cord injuries or disease
- How they make money: direct mail fundraising with an in-house database of over 13 million donors

Goal: Increase Philanthropic Returns for Direct Mailing Campaigns

- Maximize profit: increase the funds received from upcoming philanthropic campaigns, through 2 possible ways:
 - Increase recurring donor pool
 - Increase number of big ticket donors
- Lower costs: reduce number of 'failed' mailings, i.e. mailings to people who will not respond
- Possible particular group of interest: reining back lapsed donors
 - Defined as: donors who last gave 12-14 months ago
 - Believe that the longer a donor goes without giving, the more likely he / she will fall off the map

Objective

Can we increase returns by selective mail?

Predicting **WHO** Will Donate

2

Predicting HOW MUCH They Will Give

^{*}The presentation is structured according to the best practices shown in session 1 of this class, providing a 'recipe' for good algorithm-making:

Key Recommendation and Model Results Yes! Go Forth and Target

\$14,468

RAW PROFIT \$2,139

ABOVE BASELINE*

^{*}The presentation is structured according to the best practices shown in session 1 of this class, providing a 'recipe' for good algorithm-making:

Contents*

- 1. Context
- 2. Objective
- 3. Key Recommendations
- 4. Theory
- 5. Model
- 6. Data
- 7. Methods
- 8. Implementation
- 9. Monitoring
- 10. Adaptation
- 11. Limitations
- 12. Further Research

^{*}The presentation is structured according to the best practices shown in session 1 of this class, providing a 'recipe' for good algorithm-making:

Theory & Model

Theory

Two Utilities for Two Separate Decisions

Decision 1: To Donate Or Not?

Similar to choice to buy or not to buy

- Functionally not different from committing to a "method" of spending money
- Binary decision, classification question
- Hypothesis: driven by connection to the organization (i.e. census, interest variables)

Utility theory applies:

- $U_1(X_i^1) = \alpha^1 + \beta^1 X_i^1 + \epsilon$
- X_i¹: for individual i, a characteristic set (1) that helps them understand the utility gain from this decision (e.g. neighbourhood, connections)
- α^1 : baseline utility value.
- committing to donating gives them more utility than not donating

Decision 2: If I Donate, How Much?

Dissimilar to purchasing!

- The donation is not fixed there is no price, customer freely decides
- Continuous variable, regression question
- Hypothesis: largely driven by ability to give (i.e. income, wealth)

Utility theory applies:

- $U_2(X_i^2) = \alpha^2 + \beta^2 D(X_i^2) + \epsilon$
- X_i^2 : for same individual i, different characteristic set
- *D*(...): function that outputs giving amount based on individual characteristics
- α²: baseline utility value, likely 0.
- donating to this organization gives them more utility than giving to any other

Theory

Modelling the Two Utilities Separately

Logistic Regression

- To Donate or Not is a binary variable
 - classification question
- Linear models would not make sense
- Chosen for simplicity

Output: probability of donating

$$P(W_i = 1) = \frac{1}{1 + e^{-(\alpha + \beta X_i)}}$$

- P(...): probability distribution of logit
- W_i: individual i's choice to donate (1) or not to donate (0)
- $\alpha + \beta X_i$: individual's utility regarding the choice to donate or not to donate

Generalized Linear Regression

- How Much to Donate is a continuous variable
- Conditional probability question, given that a person is classified with response = donate
- Linear regression model would work well
- Chosen for simplicity and lower requirements for computing power

Output: expected donation value

$$D(X_i) = mX_i + C$$

- D(...): function for donation value given individual i's parameters
- m : weights vector for predictive parameters

Data

Exploratory Data Analysis

Dataset Overview

Results a mailing that was dropped in June 1997 to a total of 3.5 million PVA donors

- included a gift "premium" of personalized name & address labels plus an assortment of 10 note cards and envelopes
- donors were acquired through similar mailings in the past.

Types of Variables

Demographics

- First record, frequency of giving
- Age, location, gender, income

Mail Order Responses

- Number of times donor has responded to other types of mailing offers
- · E.g. Craft hobbies, gardening, magazines

Sources of Overlay Data

- Solicitation limits, connection to PVA-related organizations e.g. Military, Government
- Third party data origin

Interests

- Donor interests collected from third-party sources (binary variables)
- E.g. stereo, pets, collectables

Census

- Characteristics of donor neighbourhood from 1990 Census
- E.g. race, education level, poverty level

Promotions

- Giving history for last 24 mailings
- Lifetime giving statistics: total amount, frequency, first gift, average gift etc

Propensity Scores

UPSHOT: MAILINGS ARE NOT RANDOMIZED EXPERIMENTS

Propensity Scoring to verify randomized nature of the data

- Only conducted on 5 of 24 available mailings
 - ADATE3, ADATE7 examples shown on right
- Key assumption made: replicable mailing policy, such that results from one mailing can be cross-applied to all mailings)

Findings

- skew heavily towards 1 (Should be at 0.5)
- indicating non-randomization / possible selection bias

Conclusion

- Current policy is a "blast mailing" policy
- · Mail to nearly all without discrimination

Covariate (Im)Balance

UPSHOT: THERE IS NO CONTROL GROUP

The "accidental" non-mailed minorities – can they be treated as a control?

 Due to sheer amount of covariates (>500), only 10 were analysed

Cluster as example (right):

- Serves as needed **proxy** for weighted average of a few key variables:
- E.g. socioeconomic status, gender, geographical location, age
- Coded for and provided by PVA

Findings

- Differing % make-up of Treated and Non-Treated Set – <u>at the least, different modes</u>
- Similarly non-comparable results found for other tested variables
 - Income, Homeowners, Wealth (Socioeconomic)
 - Domain, PVA State, Age (Demographics)
 - Veterans, Fisher, Collect1 (Logged Interests)

Conclusion: No

Cluster Frequencies for Non-Treated Set (Mailing ADATE7)

Defining a Target Measure

LIFT

=

TARGET PROFITS

-

BASELINE

Target Profits

Typically

- For every customer: Spend* Cost
- Choose to target N[^] people out of population N, depending on targeting policy
- If Lift > 0, then the policy is good!

For us

- No meaningful difference, directly applicable for N[^] donors targeted (N[^] <= N)
- Cost = \$0.68, flat rate for sending a promotion
- Spend* = Donation = \$??
 - · Value determined by donor
 - \$0 if no response

Profits = SUM(Donations) - Cost * N^

Baseline

Typically

- For each customer: Spend (without marketing)
- Assumes:
- there are other methods to acquire the same product / service / item
- Control group exists upon which to make these estimates

For us, **Key Assumptions Violated:**

- no other way of donating except for campaign
- no control group exists

Thus, baseline is status quo:

Profits if everyone (N) was mailed

Baseline = SUM(Donations) - Cost * N

^{*} Spend* refers to amount spent post marketing campaign. Presumably, spend* > spend.

Final Profit Model

Model Goal

- Let X be a random variable that represents whether a prospective donor donates.
 - X = 1 if the person is a donor
 - X = 0 if the person is NOT a donor.
- Let Y be a random variable that represents the value of the donation given.
- Let Z be the cost of mailing.
- We want to figure out the predicted donations for each donor of the joint distribution (X, Y).

Model Approach

- Calculate f₁(X) from our logistic regression model.
- Calculate $f_2(Y \mid X = 1)$ from our **linear regression** model.
 - In other words $f_2(Y \mid X = 1)$ translates to: given a set of people willing to donate, how much do you predict that they will donate.
 - Thus $f_2(Y \mid X = 0) = 0$ since people that do not donate give a total donation of zero.
- Subtract cost of mailing from predicted donations. We can do this because we inherently assume that people we do not mail to do not donate.

Predicted Profits =
$$\sum_{x \in X, y \in Y} f(x, y) = f(y \mid x) f(x) - z$$

Methods

Feature Engineering

- Problem: The dataset is not clean many values are missing, and most variables are nonbinary, posing as difficulties in running predictive models.
- **Solution:** Cleaned data using helper functions, and dropped some variables out of >500 original variables

REMOVED

70 variables

Usual justification

- Insufficient data: over 50% missing
- Inconsistent data
- Redundant data

IMPUTE TO MEAN

68 variables

Impute missing values to mean of dataset.

IMPUTE TO 0

16 variables

Impute missing values to zero.

AS INDICATOR

4 variables

- Variable only has entries in a fraction of the data
- more important that the variable exists rather than the value

Data Splits:

Given

KDD provided 50% training data and 50% testing data.

Modification

- Split KDD training data into 80-20 training:val
- Final: Train 40% Validation 10% Test 50%

"Quick Stepwise" Procedure Outline

Main Problems - Exact methods

- Running this dataset (90000 x 500) using CPU would take a long time for random forest using R. Logistic regressions do not converge.
- Cumbersome to run stepwise methods for both logistic and linear regressions for all predictors

Need a <u>reasonable approximation</u> to the stepwise procedure in order to remove unnecessary predictors in our model.

Pseudocode for "Quick Stepwise"

numtrials = 5

oldmodel = regression on full model (without intercepts)

for trial in range(numtrials){

predictorset Remove predictors that have p-

values < 0.08

newmodel = regression using predictors on

predictorset (without intercept)

oldmodel = newmodel

return **newmodel** }

Why Quick Stepwise works

- Many useless predictors are non-significant
- To be have p-values less than 0.08, 5 times in separate regression requires to predictor to be very significant.
- Reducing the p-value threshold below 0.08 or increasing number above 5 makes it too conservative dropping certain significant predictors that improve our model.
- Since our goal is prediction, we don't mind having a few substandard predictors with a model with mostly significant predictors.

Implementation

Predicting Responses

Logistic Regression Implementation

Final Model Coefficients

Estimate HOMEOWNRH -9.423e-03 HOMEOWNRU -1.161e-02 NUMCHLD -3.407e-03 INCOME 2.743e-03 MBCRAFT 6.014e-03 ETH10 1.589e-03 HUR1 -2.963e-04 HUR2 2.934e-04 RHP2 -1.150e-03 TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_3 3.415e-03 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04 LASTGIFT -5.895e-04	Coefficients:	
HOMEOWNRU -1.161e-02 NUMCHLD -3.407e-03 INCOME 2.743e-03 MBCRAFT 6.014e-03 ETH10 1.589e-03 HHD8 1.418e-03 HUR1 -2.963e-04 HUR2 2.934e-04 RHP2 -1.150e-03 TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04		Estimate
NUMCHLD -3.407e-03 INCOME 2.743e-03 MBCRAFT 6.014e-03 ETH10 1.589e-03 HHD8 1.418e-03 HUR1 -2.963e-04 HUR2 2.934e-04 RHP2 -1.150e-03 TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_3 3.415e-03 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 0.362e-03 MAXRAMNT 1.012e-04	HOMEOWNRH	-9.423e-03
INCOME 2.743e-03 MBCRAFT 6.014e-03 ETH10 1.589e-03 HHD8 1.418e-03 HUR1 -2.963e-04 HUR2 2.934e-04 RHP2 -1.150e-03 TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_3 3.415e-03 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	HOMEOWNRU	-1.161e-02
MBCRAFT 6.014e-03 ETH10 1.589e-03 HHD8 1.418e-03 HUR1 -2.963e-04 HUR2 2.934e-04 RHP2 -1.150e-03 TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	NUMCHLD	-3.407e-03
ETH10 1.589e-03 HHD8 1.418e-03 HUR1 -2.963e-04 HUR2 2.934e-04 RHP2 -1.150e-03 TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 0.362e-03 MAXRAMNT 1.012e-04	INCOME	2.743e-03
HHD8 1.418e-03 HUR1 -2.963e-04 HUR2 2.934e-04 RHP2 -1.150e-03 TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 0.362e-03 MAXRAMNT 1.012e-04	MBCRAFT	6.014e-03
HUR1 -2.963e-04 HUR2 2.934e-04 RHP2 -1.150e-03 TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	ETH10	1.589e-03
HUR2 2.934e-04 RHP2 -1.150e-03 TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	HHD8	1.418e-03
RHP2 -1.150e-03 TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	HUR1	-2.963e-04
TPE3 8.180e-03 TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	HUR2	2.934e-04
TPE4 -8.611e-03 TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	RHP2	-1.150e-03
TPE5 -8.939e-03 TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	TPE3	8.180e-03
TPE6 -9.312e-03 TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	TPE4	-8.611e-03
TPE12 5.251e-04 EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	TPE5	-8.939e-03
EC1 2.656e-04 VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_12 2.265e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	TPE6	-9.312e-03
VC4 -2.717e-04 HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	TPE12	5.251e-04
HC21 5.026e-04 CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_9 4.172e-04 RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04		
CARDPM12 1.362e-03 RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_9 4.172e-04 RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 0.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04		
RAMNT_3 3.415e-03 RAMNT_8 5.479e-04 RAMNT_9 4.172e-04 RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	HC21	5.026e-04
RAMNT_8 5.479e-04 RAMNT_9 4.172e-04 RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	CARDPM12	1.362e-03
RAMNT_9 4.172e-04 RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	RAMNT_3	3.415e-03
RAMNT_12 2.265e-04 RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	RAMNT_8	5.479e-04
RAMNT_13 3.943e-04 RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04		4.172e-04
RAMNT_14 6.511e-04 RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04		2.265e-04
RAMNT_19 2.257e-04 RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04		3.943e-04
RAMNTALL -4.830e-05 NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	RAMNT_14	6.511e-04
NGIFTALL 9.365e-04 CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	RAMNT_19	2.257e-04
CARDGIFT 1.282e-03 MAXRAMNT 1.012e-04	RAMNTALL	-4.830e-05
MAXRAMNT 1.012e-04	NGIFTALL	
	CARDGIFT	
LASTGIFT -5.895e-04	MAXRAMNT	1.012e-04
	LASTGIFT	-5.895e-04

After implementing "Quick Stepwise" we got a result of 31 predictors that incorporated data from the following:

- % of Homeowners
- Number of children
- Income
- Statistics on methods of transportation
- Median years of school completed by adults age 25+,
- % Veterans serving in last 23 years.
- % Houses with telephones
- Number of card promotions received in last 12 months
- · Past promotion giving history

$AUC_ROC = 0.585$

Predicting Responses Logistic Regression Results

- We calculated the predicted logit values on the validation dataset and organized them by decile.
- We organized the logit values by decile and captured the amount of donors captured in our validation dataset.
- The % Donors captured generally decreases as we lower our threshold.
 This indicates stability in our model.

Conversions by decile	% Donors Captured in Validation Set
Top 10%	17.33%
Top 20%	12.62%
Top 30%	12.00%
Top 40%	10.36%
Top 50%	8.51%
Top 60%	9.23%
Top 70%	8.51%
Top 80%	7.49%
Top 90%	6.97%
All of the data	6.97%

Predicting Donations

Linear Regression

Final Model Coefficients

Coefficients: Estimate ETH14 0.235313 ETHC1 0.070619 EIC14 0.132659 AC2 0.101813 RAMNT_7 0.098910 RAMNT_8 0.057342 RAMNT_10 -0.073629 RAMNT_11 0.033000 RAMNT_12 0.006177 RAMNT_14 0.051580 RAMNT_17 0.095553 RAMNTALL 0.012203 NGIFTALL -0.121073 MINRAMNT 0.180471 LASTGIFT 0.701332

After implementing "Quick Stepwise" for our linear model we got **15** predictors that incorporated data from the following:

- Statistics on method of transportation
- Percent employed in educational services
- Communities with white people of age < 15
- Past giving history
- Percent adults age 60-64

Optimal Linear Regression Fit

Precautions taken

- Removed predictors that were highly correlated and had high collinearity (if there was any)
- Limited correlation between residuals and predictors (checking residual plots)
- Removed outlier points. By checking studentized residuals.

$$R^2 = 0.8166$$

Adjusted $R^2 = 0.8159$

Key Insight

Note that in both regression models, there is a heavy reliance on <u>past</u> giving history.

Profit Methodology

Logit Thresholds for Targeting

- These logit probabilities indicate the probability that a given person will donate
- Our targeting scheme will target consumers who have a greater probability of buying above a certain threshold probability
- People in the top 10% are over twice as likely to buy than people in the bottom 10%!

Profit Formula Used

Variable	Description
LP	Logit Probabilities
D	Predicted Donations
Т	Targeting indicator (if LP > threshold then 1 else 0)
С	Cost of mailing promotion

Deciles	Logit Thresholds
Top 10%	0.072
Top 20%	0.064
Top 30%	0.058
Top 40%	0.054
Top 50%	0.049
Top 60%	0.045
Top 70%	0.041
Top 80%	0.036
Top 90%	0.030
All of the data	0

Profit Results on Validation Set

Profit Predictions on Validation Set

Logit Score Thresholds	Incremental Profits by Decile	Profits Including Decile and Up
Top 10%	\$649.30	\$649.30
Top 20%	\$478.17	\$1127.26
Top 30%	\$360.06	\$1487.20
Top 40%	\$365.79	\$1852.96
Top 50%	\$336.84	\$2189.65
Top 60%	\$298.00	\$2487,77
Top 70%	\$170.86	\$2658.28
Top 80%	\$90.89	\$2749.35
Top 90%	- \$8.55	\$2740.78
All of the data	- \$308.19	\$2365.94

Validation Results

- Our model answers the question by evaluating people who are NOT our donors, by taking the top 80% of logit scores
- Through this approach we get excellent results in our validation set
- This exercise has helped us choose our threshold for the testing dataset

Actual Profits	\$2664.74
Predicted Profits	\$2749.35

Profit Results on Testing Set

While we underestimated the baseline profits, our net profits were very accurate.
 This is very encouraging because we replicated the same results form our validation set.

	KDD Testing Set* Actual Results (provided by organization)	Our Predicted Results
Net Profits	\$14,712	\$14,468
Baseline Profits if entire population is targeted	\$10,560	\$12,329
Increase in Net Donation	\$4,152	\$2,139
% Increase	39.32%	\$17.35%

Achieved similar results as organizing committee despite utilizing much simpler models than winners

^{*} https://www.kdnuggets.com/meetings-past/kdd98/gain-kddcup98-release.html (KDD Actual figures taken from the winner's site.):

Monitoring & Adaptation

Since we did not work directly with the client, these are recommendations only

Monitoring

Model Evaluation

Evaluate the model yearly

- As new mailings are sent out every year
- Crucial, as giving history (RAMNT_??) variables tend to be predictive of future giving behaviour
- New donors can be sourced and added to the dataset with every mailing

Possible Adjustments

- Probability thresholds from logistic regression for deciles
- Ensure that all deciles that yield donations are profitable.

Tracking Model Performance

Key indicators

- AUC_ROC: measuring logistic regression model fit
- Capture rate by decile. The more skewed it is towards higher deciles, the better the model.
- Adjusted R^2 Of those who gave, were the amounts comparable with predictions?
- Linear regression assumptions. If it does not, we have to incorporate a different machine learning framework. Linear models are powerful only if they obey the assumptions.

Adaptation

New Data Elements

New Mailing Types

- Rise of digital / non-print advertising campaigns in philanthropy
- "Premiums" sent with the mailing campaigns may change
- Response variables remain unchanged

New Data Variables

- Online footprint variables
- Old interest variables no longer predictive

Incorporating / Selecting New Predictors

- Model automatically does this whenever rerun through the step-wise procedure
- Provided data is coded correctly

New Campaign Types

May need to consider a new baseline if

- Donors are able to give passively without need for targeted campaigns
- Why? Because the "blanket policy" baseline will now overestimate profits from targeting

How to calculate a new baseline

- Run a randomized experiment to create a control group
- Duration: a year, or the usual time window for responses to a campaign
- Establish baseline donation amount that does not require cost of targeting and promotion

Limitations

Dataset

Many variables either had dirty or insufficient data

- Data was not consistently coded, and we did not have a way of inferring what certain entries meant
- Many variables had over >50% blanks, could not possibly impute the rest
- Some of these variables may have been predictive if coded accurately
 - Gender
 - Wealth
- Some indicator variables are predictive but not defensible
 - E.g. CLUSTER each cluster has unique socioeconomic, interest and demographic characteristics. Some cluster numbers were predictive, but the assignment of clusters was not known to us

Model

Limited cost information affecting profitability calculus

- PVA has different types of mailings, and they presumably have an effect on responses as well as cost
- Differentiated cost information was not given, and we were forced to treat all mailing types as the same

May cause donor pool shrinkage

- The catch: All who are not targeted in the upcoming campaign will definitely not donate.
- Feedback loop: if you don't donate this time (whether not targeted, or no response), model unlikely to target you again
- Mitigation: must constantly add new donors from new sources

. *

Alternative Approaches

Classification

We could have tried multiple methods and pick the one with the best accuracy:

- Random Forest / Ensemble Methods / Decision Tree
- Support Vector Machines

Clustering

 K-means to discover heterogenous relationships. Since there was limited heterogeneity, we could have done Kmeans and trained separate regression models for each cluster, giving us a more nuanced result.

Regression

- Forward Stepwise Method in choosing predictors.
- Selective Inference (to choose predictors judiciously). Using this framework, we can use the same predictors across multiple mailings because of the strength of significance.
- Regression Trees (in case linear model assumptions do not hold.)
 - In our model we faced a mild heteroskedasticity problem. In other mailings we cannot guarantee the validity of the linear model. Regression trees can help us get out of this problem.

The Bottom Line

- Modelled philanthropy as a joint distribution of 2 utility functions
 - Give / Not Give
 - How Much
- 2. Gain by saving on cost:

 by not mailing those who would not have given (omitting bottom 20%)

\$14,468

Raw Profit

\$2,139

Above Baseline