Quadratic equations

1. Quadratic polynomial: ax+bx+c=0

2. .-- equation:

Solve quadratic equations.

Method 1]: factorise. e.g $x^2+5x-6=0$. $(x+6)(x-1)=0 \Rightarrow x=-6$. x=1.

Method 2: quadratic formula: $\chi = \frac{-b \pm \sqrt{b^2 - 40c}}{2a}$

Sum of roots = $-\frac{b}{a}$

Method3: Complete the square.

$$ax^{2}+bx+c=a(x^{2}+\frac{b}{a}x)+c$$

$$=a(x^{2}+\frac{b}{a}x+(\frac{b}{2a})^{2}-(\frac{b}{2a})^{2})+c$$

$$=a(x^{2}+\frac{b}{a}x+(\frac{b}{2a})^{2}-(\frac{b}{2a})^{2})+c$$

$$=a(x+\frac{b}{2a})^{2}-\frac{b^{2}}{4a}+c$$

$$\forall \text{ vertex}$$

Method 4: Sdving wisehout factorising

$$(\chi-1)^2=5 \Rightarrow \chi-1=\pm \sqrt{5}$$
. $\chi=1\pm \sqrt{5}$

$$x - 6\sqrt{x} + 8 = 0$$

$$(n-2)(u-4)=0$$

 $/: u=2=(x=7)x=-4$
 $2^{\circ} u=4=(x=7)x=16$

Note: $\chi^2 - 5\chi = 0$. $\chi(\chi - 5) = 0$.

Propercies of roots: discriminant = $b^2 - 4aC$ has real roots; $b^2 - 4aC > 0$ 2 real distinct roots $b^2 - 4aC > 0$ 1 real root $b^2 - 4aC > 0$ 1 real root 1 real root

Sketch quadratic roots Vertex