INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

LICENCIATURA EM ENGENHARIA INFORMÁTICA

LICENCIATURA EM ENGENHARIA INFORMÁTICA – PÓS-LABORAL

ELETRÓNICA

DURAÇÃO: 2 HORAS

PRIMEIRA FREQUÊNCIA 15 NOVEMBRO 2023

Notas:

- 1) O enunciado deve ser entregue no final da frequência.
- 2) Os alunos necessitam de uma folha de prova.
- 3) As perguntas do exame devem ser respondidas da seguinte forma:
 - a) As perguntas da componente teórica devem ser respondidas numa folha de prova.
 - b) As perguntas da componente prática devem ser respondidas no enunciado.

I - Componente teórica (4 valores)

1. Considere o circuito da figura 1.

Figura 1

- a) Identifique os elementos do circuito que se encontram ligados em série.
- b) Escreva a equação matemática que lhe permite calcular a corrente na resistência R_3 .
- 2. Uma lavandaria possui 4 máquinas de lavar roupa industrial, sendo que cada uma das máquinas apresenta uma potência de 5000 W. Suponha que as referidas máquinas operam 10 horas por dia. Determine o custo diário e mensal de energia, considerando que um mês tem 30 dias e que a energia possui um custo de 0.25 €/kWh.
- **3.** Identifique os principais tipos de materiais, caracterizando-os do ponto de vista dos níveis de energia e suas principais aplicações.
- **4.** Descreva o que sucede quando uma junção *PN* é diretamente polarizada.

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

LICENCIATURA EM ENGENHARIA INFORMÁTICA

LICENCIATURA EM ENGENHARIA INFORMÁTICA – PÓS-LABORAL

ELETRÓNICA

Duração: 2 Horas

PRIMEIRA FREQUÊNCIA 15 NOVEMBRO 2023

II - Componente Prática (16 valores)

1. Considere o circuito da figura seguinte.

(6 valores)

a) Aplicando o método das malhas, calcule a corrente que percorre a resistência R5.

	Calcule a energia.	potentia n								ou a co	
c)	Calcule, e	em Joules (V	$V \times s$), a ϵ	energia lil	oertada na	a resistênc	ia R4 ao	fim de	15 minu	itos.	

2. Considere o circuito da figura seguinte.

(6 valores)

a) Calcule o contributo da fonte de tensão V_1 para a queda de tensão aos terminais da resistência R_3 (V_{AB}). Apresente as equações que lhe permitem chegar ao resultado.

b)	Calcule o contributo da fonte de corrente I_1 para a queda de tensão aos terminais da resistência R_3 (V_{AB}). Apresente as equações que lhe permitem chegar ao resultado.
c)	Calcule a queda de tensão aos terminais da resistência R_3 (V_{AB}), com recurso ao Teorema da Sobreposição.

3. Considere o circuito da figura seguinte (o modelo do díodo, em condução, possui os seguintes parâmetros: R_d = 100 Ω e V_a = 0.7 V). (4 valores)

Determine para que valores da tensão de entrada (v_{in}) o díodo <u>não conduz</u>. Aplique o teorema de *Thevenin* por forma a transformar a malha composta pelos elementos R_4 , R_2 e I_1 no circuito simplificado de Thevenin (V_{th} e R_{th}).