CLAIMS

5

1. A stable labeled camptothecin analogs of formula (I)

wherein

each of R₂, R₃, R₄, R₅, R₆, R₇, R₈ and R₉ independentently represents ²H or H;

each of X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈ and X₉ independently represents ¹³C or C;

Y is ¹⁵N or N; and

15 R_1 is a hydroxyl group or a group of formula (i)

$$\begin{array}{c} R_{18} \\ R_{19} \\ X_{18} \\ X_{17} \\ X_{18} \\ X_{17} \\ X_{16} \\ X_{16} \\ X_{16} \\ X_{16} \\ X_{16} \\ X_{16} \\ X_{17} \\ X_{16} \\ X_{17} \\ X_{16} \\ X_{17} \\ X_{17$$

wherein

WO 2004/056398 - 63 - PCT/EP2003/014801

5

10

15

20

25

30

. : . :

each of R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} and R_{28} independently represents ²H or H, each of X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , X_{19} and X_{20} independently represents ¹³C or C,

each of Y_1 and Y_2 independently represents ^{15}N or N; with the proviso that at least one of R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} , R_{28} , X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 , X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , X_{19} , X_{20} , Y, Y_1 and Y_2 is isotopically labeled; or a pharmaceutically acceptable salt thereof.

- 2. A compound of formula (I) as claimed in claim 1, wherein R_1 is a hydroxyl group.
 - 3. A compound of formula (I) as claimed in claim 1, wherein R_1 is a group of formula (i) as defined in claim 1.

4. A compound of formula (I) as claimed in claim 1, wherein R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 are all H, X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 and X_9 are all C, Y is N and

R₁ is a group (i) as defined in claim 1.

5. A compound of formula (I) as claimed in claim 1, wherein each of R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 independently represents 2H of H, each of X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 and X_9 independently represents ^{13}C or C, Y is ^{15}N or N, R_1 is a hydroxyl group or a group of formula (i) wherein R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} and R_{28} are all H, X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , X_{19} and X_{20} are all C and Y_1 and Y_2 are N.

6. A compound of formula (I')

- 5 as defined in TABLE 1.
 - 7. A compound of formula (I"), optionally in the form of a pharmaceutical acceptable salt,

10

as defined in TABLE 2.

Y is 15N or N,

8. A process for the preparation of a stable labeled camptothecin analog of formula (I) as defined in 15 claim 1, wherein R₁ is a hydroxyl group, each of R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 independently represents 2H or H, each of X_1 , X_2 , X_3 , X_4 , X₅, Χ6, X_7 , X₈ and 20 independently represents ¹³C or C, and

WO 2004/056398 - 65 - PCT/EP2003/014801

with the proviso that at least one of R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 and Y is isotopically labeled,

which comprises:

5 (a) reacting a compound of formula (II)

wherein

each of R_7 , R_8 and R_9 independently represents 2H or H, each of X_4 , X_5 , X_6 , X_7 , X_8 and X_9 independently represents ^{13}C or C, and Y is ^{15}N or N,

with a compound of formula (III)

$$\begin{array}{c|c}
R_2 & R_3 \\
R_6 & X_1 \\
R_5 & R_4
\end{array}$$
(III)

15

20

10

wherein

each of $R_2,\ R_3,\ R_4,\ R_5$ and R_6 independently represents 2H or H, and

each of X_1 , X_2 and X_3 independently represents ^{13}C or C, to obtain the compound of formula (IV)

wherein

each of R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 and Y, are as above described, so that at least one of R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 and Y is isotopically labeled;

(b) cleaving a compound of formula (IV) to obtain a compound of formula (V)

10

25

5

wherein

 R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 and Y are as above described for the compound (IV); and

15 (c) reacting a compound of formula (V) with the compound of formula (VI)

- to obtain the desired compound of formula (I).
 - 9. A process for preparing a compound of formula (I) as defined in claim 1, wherein each of R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 independently represents 2H or H,

WO 2004/056398 - 67 - PCT/EP2003/014801

each of X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 and X_9 independently represents ^{13}C or C,

Y is 15N or N, and

R₁ is a group of formula (i)

5

wherein

each of R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} and R_{28} independently represents 2H or H,

each of X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , X_{19} and X_{20} independently represents 13 C or C, and

each of Y_1 and Y_2 independently represents ^{15}N or N,

with the proviso that at least one of R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 and Y is isotopically labeled, and that at least one of R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} , R_{28} , X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , X_{19} , X_{20} , Y_1 and Y_2 is isotopically labeled,

which comprises:

(d) reacting a compound of formula (I) as obtaned in step (c) above with a compound of formula (VII)

wherein

each of R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R₂₀, R_{21} , R₂₂, R_{23} , R_{24} , R_{25} , R_{26} , R₂₇ and R_{28} independentently represents 2H or H, 5 each of $X_{10},\ X_{11},\ X_{12},\ X_{13},\ X_{14},\ X_{15},\ X_{16},\ X_{17},\ X_{18}$ and X_{20} independently represents 13C or C, and each of Y₁ and Y₂ independently represents ¹⁵N or N, with the proviso that at least one of R_{10} , R_{11} , R_{12} , R_{13} , 10 R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} , R_{28} , X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , $X_{19},\ X_{20},\ Y_1$ and Y_2 is isotopically labeled, to obtain the desired compound of formula (I).

10. A process for preparing a compound of formula (I) as defined in claim 1, wherein R₂, R₃, R₄, R₅, R₆, R₇, R₈ and R₉ are all H; X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, and X₉ are all C, Y is N and R₁ is a group of formula (i)

wherein

each of R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} and R_{28} independently represents 2H or H, each of X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , X_{19} and X_{20} independently represents ^{13}C or C, and each of Y_1 and Y_2 independently represents ^{15}N or N, with the proviso that at least one of R_{10} , R_{11} , R_{12} , R_{13} ,

with the proviso that at least one of R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} , R_{28} , X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , X_{19} , X_{20} , Y_{1} and Y_{2} is isotopically labeled,

which comprises:

(e) reacting the compound of formula

15

20

5

10

with a compound of formula (VII) as above described to obtain the desired compound of formula (I), and optionally converting it into a pharmaceutically acceptable salt thereof.

11. A process for preparing a compound of formula (I) as defined in claim 1, wherein

each of R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 and Y, are as above described, with the proviso that at least one of R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 and Y is isotopically labeled, and

WO 2004/056398 - 70 -

 R_1 is a group of formula (i) wherein R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} , R_{28} are all H and X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , X_{19} and X_{20} are all C, Y_1 and Y_2 are N, which comprises:

PCT/EP2003/014801

(f) reacting a compound of formula (I) as obtained in step (c) above with the compound of formula

to obtain the desired compound of formula (I), and optionally converting it into a pharmaceutically acceptable salt thereof.

12. Use of a stable labeled camptothecin analog of formula
(I) as claimed in claim 1, for ADME studies.

13. Use of a stable labeled camptothecin analog of formula (I) as claimed in claim 1, as an internal standard in an analytical method for the quantitative detection of the corresponding unlabeled camptothecin analog in a biological sample.

14. Use of a stable labeled camptothecin analog of formula (I') as claimed in claim 6 and formula (I") as claimed in claim 7 or a pharmaceutically acceptable salt thereof as an internal standard in an analytical method for the quantitative detection of the corresponding unlabeled camptothecin analog in a biological sample.

5

15

20

25