5.1) Principles of Visualization

Vitor Kamada

January 2020

Reference

Tables, Graphics, and Figures from

Principles and Techniques of Data Science

```
Lau et al. (2019): Ch 6 Data Visualization
```

```
https://www.textbook.ds100.org/ch/06/viz_intro.html
```

Report by Americans United for Life

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
%matplotlib inline
sns.set()
sns.set context('talk')
path = 'https://github.com/DS-100/textbook/raw/master/content/'
pp = pd.read_csv(path + 'ch/06/data/plannedparenthood.csv')
```

	year	screening	abortion	
0	2006	2007371	289750	
1	2013	935573	327000	

Principles of Scale

How many data points are plotted?


```
percent change = pd.DataFrame({
    'percent change': [
        pp['screening'].iloc[1] / pp['screening'].iloc[0] - 1,
        pp['abortion'].iloc[1] / pp['abortion'].iloc[0] - 1,
    'procedure': ['cancer', 'abortion'],
    'type': ['percent change', 'percent change'],
})
ax = sns.barplot(x='procedure', y='percent change', data=percent change)
plt.title('Percent Change in Number of Procedures')
plt.xlabel('')
plt.ylabel('Percent Change')
plt.ylim(-0.6, 0.6)
plt.axhline(y=0, c='black');
```


Principles of Conditioning

US Bureau of Labor Statistics


```
cps = pd.read_csv(path + "ch/06/data/edInc2.csv")
ax = sns.pointplot(x="educ", y="income", hue="gender", data=cps)
ticks = ["<HS", "HS", "<BA", "BA", ">BA"]
ax.set_xticklabels(ticks)
ax.set_xlabel("Education")
ax.set_ylabel("Income")
ax.set_title("2014 Median Weekly Earnings\nFull-Time Workers over 25 years old");
```


Principles of Conditioning

Carbon dioxide emissions over time split by country

Code for Previous Chart

```
co2 = pd.read csv(path + "ch/06/data/CAITcountryCO2.csv", skiprows = 2,
                  names = ["Country", "Year", "CO2"])
last_year = co2.Year.iloc[-1]
q = f"Country != 'World' and Country != 'European Union (15)' and Year == {last_year}"
top14_lasty = co2.query(q).sort_values('CO2', ascending=False).iloc[:14]
top14 = co2[co2.Country.isin(top14 lasty.Country) & (co2.Year >= 1950)]
from cycler import cycler
linestyles = (['-', '--', ':', '-.']*3)[:7]
colors = sns.color palette('colorblind')[:4]
lines c = cvcler('linestvle', linestvles)
color c = cvcler('color', colors)
fig, ax = plt.subplots(figsize=(9, 9))
ax.set_prop_cycle(lines_c * color_c)
x, v = 'Year', 'CO2'
for name, df in top14.groupby('Country'):
    ax.semilogv(df[x], df[v], label=name)
ax.set xlabel(x)
ax.set ylabel(y + "Emissions [Million Tons]")
ax.legend(ncol=2, frameon=True);
```

In 1619, Kepler recorded down this data to discover the Third Law of Planetary Motion

	pranet	mean_dist	perioa	
0	Mercury	0.389	87.77	
1	Venus	0.724	224.70	
2	Earth	1.000	365.25	$\log(period) = m\log(dist) + m\log(dist) + k$
3	Mars	1.524	686.95	$period = e^{m \log(dist) + b}$
4	Jupiter	5.200	4332.62	$period = e^b dist^m \\$
5	Saturn	9.510	10759.20	$period = C \cdot dist^m$

```
sns.lmplot(x='mean_dist', y='period',
  data=np.log(planets.iloc[:, [1, 2]]), ci=False);
```


Cherry Blossom Run, an annual 10-mile run in Washington D.C.

runners = pd.read_csv(path + 'ch/06/data/cherryBlossomMen.csv')

	year	place	age	time
0	1999	1	28.0	2819.0
1	1999	2	24.0	2821.0
2	1999	3	27.0	2823.0

70045 rows \times 4 columns

Principles of Smoothing

```
sns.lmplot(x='age', y='time', data=runners, fit_reg=False);
sns.kdeplot(runners['age'], runners['time'])
plt.xlim(-10, 70)
plt.ylim(3000, 8000);
```


