1

11.9.4.4

EE23BTECH11027 - K RAHUL*

QUESTION:

A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at $20^{\circ}\text{C} = 343~ms^{-1}$ SOLUTION:

Symbol	Description	Value
v	Velocity of wave on string	$343 \\ ms^{-1}$
T	Tension in the string	
μ	Linear Mass Density	$0.175 \\ kgm^{-1}$

TABLE 0 Parameters

$$v = \sqrt{\frac{T}{\mu}} \tag{1}$$

$$T = v^2 \mu \tag{2}$$

$$= (343)^2 (0.175) \tag{3}$$

$$= 20.59kN \tag{4}$$

Thus, tension in the string is 20.59kN