

Последовательность операций, выполняемых при внутрикадровом сжатии по стандарту MPEG-2

$$x(m,n) = \frac{1}{\sqrt{MN}} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F(k,l) \cos\left(\frac{2m+1}{2M}\pi k\right) \cos\left(\frac{2n+1}{2N}\pi l\right)$$

F(k,l) — коэффициенты ДКП.

B MPEG-2 M, N = 8. B H.264 M, N = 4.

ДКП является обратимой операцией и не создает потерь информации, но и сжатия оно не дает, потому что количество коэффициентов ДКП для блока изображения равно числу элементов в этом блоке.

$$F_q(m,n) = \text{Round}\left(\frac{F(m,n)\cdot 16}{f\cdot Q(m,n)}\right),$$

где m,n =0..7; F (m,n) - коэффициенты ДКП; Fq(m,n) - их квантованные значения; Q(m,n) - элементы весовой матрицы квантования; f - коэффициент для регулировки степени сжатия; Round(x) - операция округления числа x до ближайшего целого значения.

Квантование приводит к потерям информации, но само по себе еще не дает сжатия, а создает предпосылки для него, так как в результате квантования многие из коэффициентов ДКП становятся равными 0, а оставшиеся представляются меньшими количествами битов

Таблина 3.1

59	59	59	60	60	65	64	64
63	62	62	62	61	61	61	62
137	123	111	101	96	89	88	86
237	236	235	233	231	216	213	208
225	229	232	232	231	237	238	239
193	195	197	198	199	204	204	205
182	182	181	181	181	180	180	180
183	182	181	180	179	178	178	177

Таблица 3.2

1249	19	3	1	1	1	0	1
-381	14	3	2	2	0	0	1
-318	-14	3	1	-1	0	1	-2
31	-45	-4	-3	-5	0	2	4
154	-7	-8	-2	-2	0	-1	0
38	20	-3	2	2	0	-2	2
-39	11	8	3	0	1	1	0
-42	3	10	1	-1	1	1	-1

Примерный вид блока изображения, значения сигнала яркости элементов которого приведены в табл. 3.1. Большим значениям яркости должны соответствовать более светлые клетки

количество коэффициентов ДКП для блока изображения равно числу элементов в этом блоке

f1 = 7

f2 = 64

Матрица Fq(m,n) для f=7

357	3	1	0	0	0	0	0
-54	2	1	0	0	0	0	0
-38	-1	0	0	0	0	0	0
3	-5	0	0	0	0	0	0
16	-1	-1	0	0	0	0	0
3	2	0	0	0	0	0	0
-3	1	1	0	0	0	0	0
-4	0	1	0	0	0	0	0

Матрица Fq(m,n) для f=64

52	0	0	0	0	0	0	0
-8	0	0	0	0	0	0	0
-6	0	0	0	0	0	0	0
0	-1	0	0	0	0	0	0
2	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
-1	0	0	0	0	0	0	0
-1	0	0	0	0	0	0	0

f = 64

f = 7

357030-540-380201110-1030160-57-1030-3020-1910-411111EOB

52 1 -8 0 -6 6 2 0 -1 9 -1 14 -1 EOB

f = 7

$$K_{CK} = \frac{64}{N_{\pi K}} = \frac{64}{40} = 1.6$$

f = 64

$$K_{CK} = \frac{64}{N_{IIK}} = \frac{64}{14} = 4.57$$

Таблица деквантованных коэффициентов ДКП

1664	0	0	0	0	0	0	0
-512	0	0	0	0	0	0	0
-456	0	0	0	0	0	0	0
0	-88	0	0	0	0	0	0
176	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
-104	0	0	0	0	0	0	0
-108	0	0	0	0	0	0	0

Самая большая разница между коээфициентами:

$$|-108 - (-42)| = 66 = ^157\%$$

При соотношении исходного изображения с коэффициентами ДКП можно заметить, что светлые участки соответствуют положительным значениям, а темные – отрицательным.

При увеличении коэффициента сжатия и значений элементов матрицы Q(m, n) квантование становится более грубым, большее число коэффициентов Fq(m, n) становятся равными нулю, а число двоичных разрядов, необходимых для передачи оставшихся коэффициентов сокращается. В результате объем передаваемой информации уменьшается

Блочный эффект обусловлен независимым кодированием отдельных блоков, в результате чего ошибки квантования в соседних блоках не связаны между собой. Наблюдаются искажения цветности, причиной которых является независимое кодирование блоков двух цветоразностных сигналов