作業二 测验, 20 个问题

10 points

1.

Questions 1-2 are about noisy targets.

Consider the bin model for a hypothesis h that makes an error with probability μ in approximating a deterministic target function f (both h and f outputs $\{-1,+1\}$). If we use the same h to approximate a noisy version of f given by

$$P(\mathbf{x}, y) = P(\mathbf{x})P(y|\mathbf{x})$$

$$P(y|\mathbf{x}) = egin{cases} \lambda & y = f(\mathbf{x}) \ 1 - \lambda & ext{otherwise} \end{cases}$$

What is the probability of error that h makes in approximating the noisy target y?

$$\bigcap$$
 1 – λ

$$\bigcap$$
 μ

$$\lambda(1-\mu)+(1-\lambda)\mu$$

none of the other choices

10 points

作》	<u></u> 上
测验,	20 个问题

Following Question 1, with what value of λ will the performance of h be independent of μ ?

none of the other choices

10 points

3。

Questions 3-5 are about generalization error, and getting the feel of the bounds numerically. Please use the simple upper bound $N^{d_{ ext{vc}}}$ on the growth function $m_{\mathcal{H}}(N)$, assuming that $N \geq 2$ and $d_{vc} \geq 2$.

For an ${\cal H}$ with $d_{vc}=10$, if you want 95% confidence that your generalization error is at most 0.05, what is the closest numerical approximation of the sample size that the VC generalization bound predicts?

420,000

440,000

 \bullet 460,000

480,000

500,000

10 points

4.

作業二 测验, 20 个问题

There are a number of bounds on the generalization error ϵ , all holding with probability at least $1-\delta$. Fix $d_{\rm vc}=50$ and $\delta=0.05$ and plot these bounds as a function of N . Which bound is the tightest (smallest) for very large N , say N=10,000?

Note that Devroye and Parrondo & Van den Broek are implicit bounds in $\boldsymbol{\epsilon}$.

- Original VC bound: $\epsilon \leq \sqrt{rac{8}{N} \ln rac{4m_{\mathcal{H}}(2N)}{\delta}}$
- Rademacher Penalty Bound: $\epsilon \leq \sqrt{\frac{2\ln(2Nm_{\mathcal{H}}(N))}{N}} + \sqrt{\frac{2}{N}\ln\frac{1}{\delta}} + \frac{1}{N}$
- Parrondo and Van den Broek: $\epsilon \leq \sqrt{rac{1}{N}\left(2\epsilon + \lnrac{6m_{\mathcal{H}}(2N)}{\delta}
 ight)}$
- lack lack Devroye: $\epsilon \leq \sqrt{rac{1}{2N}\left(4\epsilon(1+\epsilon) + \lnrac{4m_{\mathcal{H}}(N^2)}{\delta}
 ight)}$
- O Variant VC bound: $\epsilon \leq \sqrt{\frac{16}{N} \ln \frac{2m_{\mathcal{H}}(N)}{\sqrt{\delta}}}$

10 points

5.

Continuing from Question 4, for small N , say N=5 , which bound is the tightest (smallest)?

- Original VC bound
- Rademacher Penalty Bound
- Parrondo and Van den Broek
- Devroye
- Variant VC bound

6.

In Questions 6-11, you are asked to play with the growth function or VC-dimension of some hypothesis sets.

What is the growth function $m_{\mathcal{H}}(N)$ of "positive-and-negative intervals on $\mathbb R$ "? The hypothesis set $\mathcal H$ of "positive-and-negative intervals" contains the functions which are +1 within an interval $[\ell,r]$ and -1 elsewhere, as well as the functions which are -1 within an interval $[\ell,r]$ and +1 elsewhere.

For instance, the hypothesis $h_1(x)=\mathrm{sign}(x(x-4))$ is a negative interval with -1 within [0,4] and +1 elsewhere, and hence belongs to $\mathcal H$. The hypothesis $h_2(x)=\mathrm{sign}((x+1)(x)(x-1))$ contains two positive intervals in [-1,0] and $[1,\infty)$ and hence does not belong to $\mathcal H$.

- $N^2 N + 2$
- \bigcap N^2
- \bigcap N^2+1
- none of the other choices.
- $N^2 + N + 2$

10 points

7。

Continuing from the previous problem, what is the VC-dimension of the hypothesis set of "positive-and-negative intervals on $\mathbb R$ "?

- \odot 3
- \bigcirc :
- \bigcirc \propto

2

10 points

8. What is the growth function $m_{\mathcal{H}}(N)$ of "positive donuts in \mathbb{R}^2 "?

The hypothesis set \mathcal{H} of "positive donuts" contains hypotheses formed by two concentric circles centered at the origin. In particular, each hypothesis is +1 within a "donut" region of $a^2 \leq x_1^2 + x_2^2 \leq b^2$ and -1 elsewhere. Without loss of generality, we assume $0 < a < b < \infty$.

- \bigcirc N+1
- $\binom{N+1}{3}+1$
- none of the other choices.
- $\binom{N}{2}+1$

10 points

9.

Consider the "polynomial discriminant" hypothesis set of degree D on $\mathbb R$, which is given by

$$\mathcal{H} = \left\{ h_{\mathbf{c}} \, \middle| \, h_{\mathbf{c}}(x) = \mathrm{sign}\!\left(\sum_{i=0}^{D} c_{i} x^{i}
ight)
ight\}$$

What is the VC-dimension of such an ${\cal H}$?

- \bigcirc D+1
- \bigcirc ∞
- none of the other choices.
- \bigcirc D+2

10 points

10。

Consider the "simplified decision trees" hypothesis set on \mathbb{R}^d , which is given by

$$\mathcal{H} = \{h_{\mathbf{t},\mathbf{S}} \mid \ h_{\mathbf{t},\mathbf{S}}(\mathbf{x}) = 2[[\mathbf{v} \in S]] - 1, \ ext{where} \ v_i = [[x_i > t_i]],$$
 $\mathbf{S} \ ext{a collection of vectors in} \ \{0,1\}^d, \mathbf{t} \in \mathbb{R}^d \ \ \}$

That is, each hypothesis makes a prediction by first using the d thresholds t_i to locate ${\bf x}$ to be within one of the 2^d hyper-rectangular regions, and looking up ${\bf S}$ to decide whether the region should be +1 or -1.

What is the VC-dimension of the "simplified decision trees" hypothesis set?

- \bigcirc 2^d
- $\bigcirc 2^{d+1}-3$
- \bigcirc ∞
- none of the other choices.
- 2^{d+1}

11。

Consider the "triangle waves" hypothesis set on $\ensuremath{\mathbb{R}}$, which is given by

$$\mathcal{H} = \{h_lpha \mid \ h_lpha(x) = \operatorname{sign}(|(lpha x) mod 4 - 2| - 1), lpha \in \mathbb{R}\}$$

Here $(z \bmod 4)$ is a number z-4k for some integer k such that $z-4k \in [0,4)$. For instance, $(11.26 \bmod 4)$ is 3.26 , and $(-11.26 \bmod 4)$ is 0.74 . What is the VC-dimension of such an $\mathcal H$?

- \bigcirc 1
- \bigcirc 2
- \bigcirc ∞
- none of the other choices.
- \bigcirc 3

10 points

12。

In Questions 12-15, you are asked to verify some properties or bounds on the growth function and VC-dimension.

Which of the following is an upper bounds of the growth function $m_{\mathcal{H}}(N)$ for $N \geq d_{vc} \geq 2$?

- $\bigcap m_{\mathcal{H}}\left(\lfloor \frac{N}{2} \rfloor\right)$
- \bigcirc 2 $^{d_{vc}}$
- $igotimes \min_{1 \leq i \leq N-1} 2^i m_{\mathcal{H}}(N-i)$

none of the other choices

10 points

13。

Which of the following is not a possible growth functions $m_{\mathcal{H}}(N)$ for some hypothesis set?

- \bigcirc 2^N
- $igodesign{ igorem{1}{c}} 2^{\lfloor \sqrt{N}
 floor} \end{array}$
- \bigcirc 1
- N^2-N+2
- none of the other choices

10 points

14.

For hypothesis sets $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_K$ with finite, positive VC-dimensions $d_{vc}(\mathcal{H}_k)$, some of the following bounds are correct and some are not.

Which among the correct ones is the tightest bound on $d_{vc}(\bigcap_{k=1}^K \mathcal{H}_k)$, the VC-dimension of the intersection of the sets?

(The VC-dimension of an empty set or a singleton set is taken as zero.)

$$\bigcirc \quad 0 \leq d_{vc}(igcap_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$\bigcirc \quad 0 \ \le \ d_{vc}(igcap_{k=1}^K \mathcal{H}_k) \ \le \ \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K$$

$$\min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \ \le \ d_{vc}(igcap_{k=1}^K \mathcal{H}_k) \ \le \ \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K$$

$$\bigcap \min\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \leq d_{vc}(igcap_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

10 points

15.

For hypothesis sets $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_K$ with finite, positive VC-dimensions $d_{vc}(\mathcal{H}_k)$, some of the following bounds are correct and some are not.

Which among the correct ones is the tightest bound on $d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k)$, the VC-dimension of the **union** of the sets?

$$igg(igcup_{0} = 0 \le d_{vc}(igcup_{k=1}^K \mathcal{H}_k) \le K - 1 + \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$igcup_{k=1}^K \leq d_{vc}(igcup_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$igcap \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \ \le \ d_{vc}(igcup_{k=1}^K \mathcal{H}_k) \ \le \ \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$igotimes \max\{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \ \le \ d_{vc}(igcup_{k=1}^K \mathcal{H}_k) \ \le \ K-1 + \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

$$\bigcirc \quad 0 \leq d_{vc}(igcup_{k=1}^K \mathcal{H}_k) \leq \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

10 points

16.

作業二 测验, 20 个问题

For Questions 16-20, you will play with the decision stump algorithm.

In class, we taught about the learning model of "positive and negative rays" (which is simply one-dimensional perceptron) for one-dimensional data. The model contains hypotheses of the form:

$$h_{s,\theta}(x) = s \cdot \operatorname{sign}(x - \theta).$$

The model is frequently named the "decision stump" model and is one of the simplest learning models. As shown in class, for one-dimensional data, the VC dimension of the decision stump model is $\bf 2$.

In fact, the decision stump model is one of the few models that we could easily minimize E_{in} efficiently by enumerating all possible thresholds. In particular, for N examples, there are at most 2N dichotomies (see page 22 of lecture 5 slides), and thus at most 2N different E_{in} values. We can then easily choose the dichotomy that leads to the lowest E_{in} , where ties an be broken by randomly choosing among the lowest E_{in} ones. The chosen dichotomy stands for a combination of some "spot" (range of θ) and s, and commonly the median of the range is chosen as the θ that realizes the dichotomy.

In this problem, you are asked to implement such and algorithm and run your program on an artificial data set. First of all, start by generating a one-dimensional data by the procedure below:

- (a) Generate x by a uniform distribution in $\left[-1,1\right]$.
- (b) Generate y by $f(x)=\tilde{s}(x)$ + noise where $\tilde{s}(x)={\rm sign}(x)$ and the noise flips the result with 20% probability.

For any decision stump $h_{s, heta}$ with $heta\in[-1,1]$, express $E_{out}(h_{s, heta})$ as a function of heta and s .

$$\bigcirc \quad 0.3 + 0.5s(|\theta|-1)$$

$$0.3 + 0.5s(1 - |\theta|)$$

作業二 测验, 20 个问题	$\bigcirc 0.5 + 0.3s(1 - heta)$ none of the other choices
	17. Generate a data set of size 20 by the procedure above and run the one-dimensional decision stump algorithm on the data set. Record E_{in} and compute E_{out} with the formula above. Repeat the experiment (including data generation, running the decision stump algorithm, and computing E_{in} and E_{out}) 5, 000 times. What is the average E_{in} ? Please choose the closest option.
	() 0.05

0.05
 0.15
 0.25
 0.35

0.45

10 points

19。

Decision stumps can also work for multi-dimensional data. In particular, each decision stump now deals with a specific dimension i, as shown below.

$$h_{s,i, heta}(\mathbf{x}) = s \cdot \mathrm{sign}(x_i - heta).$$

Implement the following decision stump algorithm for multi-dimensional data:

- a) for each dimension $i=1,2,\cdots,d$, find the best decision stump $h_{s,i, heta}$ using the one-dimensional decision stump algorithm that you have just implemented.
- b) return the "best of best"' decision stump in terms of E_{in} . If there is a tie , please randomly choose among the lowest- E_{in} ones

The training data \mathcal{D}_{train} is available at:

https://www.csie.ntu.edu.tw/~htlin/mooc/datasets/mlfound_math/hw2_train.dat

The testing data \mathcal{D}_{test} is available at:

https://www.csie.ntu.edu.tw/~htlin/mooc/datasets/mlfound_math/hw2_test.dat

Run the algorithm on the \mathcal{D}_{train} . Report the $E_{ ext{in}}$ of the optimal decision stump returned by your program. Choose the closest option.

- $) \quad 0.05$
- () 0.15
- 0.25

作業二	\bigcirc 0.35
测验, 20 个问题	\bigcirc 0.45
	10 points
	20. Use the returned decision stump to predict the label of each example within \mathcal{D}_{test} . Report an estimate of E_{out} by E_{test} . Please choose the closest option.
	\bigcirc 0.05
	$\bigcirc 0.15$
	\bigcirc 0.25
	left 0.35
	$\bigcirc 0.45$
	我(伟臣 沈)了解提交不是我自己完成的作业 将永远不会通过 此课程或导致我的 Coursera 帐号被关闭。 了解荣誉准则的更多信息
	提交测试

