Bài 7 và 8 Lập trình mạng với hệ thống phân giải tên miền

Bài 7 và 8: Lộ trình

- Hệ thống phân giải tên miền
- Máy chủ DNS cục bộ
- Hoạt động nhóm

Bài 7 và 8: Lộ trình

- Hệ thống phân giải tên miền
- Máy chủ DNS cục bộ
- Hoạt động nhóm

DNS: Hệ thống phân giải tên miền

Con người: cách nhận dạng:

Tên, số hộ chiếu, CCCD

Internet hosts, routers:

- Địa chỉ IP (32 bit) được sử dụng để gán địa chỉ gói tin datagrams
- "Tên", ví dụ: dhcnhn.vn –
 được sử dụng bởi con người
- Q: Làm cách nào để ánh xạ giữa địa chỉ IP và tên địa chỉ Web, và ngược lại?

Domain Name System (DNS):

- Cơ sở dữ liệu phân tán được triển khai trong phân cấp của nhiều máy chủ tên miền
- Giao thức lớp ứng dụng: giao tiếp giữa hosts và máy chủ DNS để phân giải tên miền (dịch địa chỉ/tên miền)
 - Chú ý: chức năng phần lõi Internet, được triển khai dưới dạng giao thức lớp ứng dụng
 - Sự phức tạp của biên mạng

DNS: Dịch vụ và cấu trúc

Dịch vụ DNS:

- Phân giải địa chỉ IP sang tên miền và ngược lại
- Bí danh cho host
 - Tên chính tắc (canonical), tên bí danh (alias names)
- Bí danh cho máy chủ thư điện tử
- Cân bằng tải cho máy chủ
 - Máy chủ Web được nhân rộng: nhiều địa chỉ IP tương ứng với một tên miền

Q: Tại sao không tập trung hóa DNS?

- Một điểm chịu lỗi
- Lưu lượng truy cập
- Cơ sở dữ liệu tập trung cách xa nơi yêu cầu
- Bảo trì

A: Không mở rộng được quy mô!

- Máy chủ DNS Comcast: 600 tỷ truy vấn DNS/ngày
- Máy chủ DNS Akamai: 2,2 nghìn tỷ truy vấn DNS/ngày

DNS: Cơ sở dữ liệu phân cấp, phân tán

Client muốn có địa chỉ IP đối với www.amazon.com, Client truy vấn đến:

- máy chủ gốc để tìm máy chủ DNS .com
- máy chủ DNS .com để lấy máy chủ DNS amazon.com
- máy chủ DNS <u>amazon.com</u> để lấy địa chỉ IP của <u>www.amazon.com</u>

DNS: Máy chủ tên miền gốc (Root Name Servers)

- Chức năng Internet cực kỳ quan trọng
 - Internet không thể hoạt động mà không có nó!
 - DNSSEC cung cấp bảo mật (xác thực, tính toàn vẹn của tin nhắn)
- IANA (Internet Assigned Numbers Authority) quản lý tên miền DNS gốc

Kiểm tra máy chủ DNS gốc tại IANA:

https://www.iana.org/domains/root/servers

Kiểm tra sự phân bố của bản sao máy chủ DNS trên thế giới:

https://root-servers.org/

Top-Level Domain và Authoritative Servers

Máy chủ tên miền cấp cao nhất, Top-Level Domain (TLD)

- Chịu trách nhiệm cho .com, .org, .net, .edu, .aero, .jobs, .museums, và tất cả tên miền cấp cao nhất của quốc gia, ví dụ: .vn, .cn, .uk, .fr, .ca, .jp
- Network Solutions: đăng ký có thẩm quyền cho .com, .net TLD
- Educause: .edu TLD

Máy chủ DNS thẩm quyền:

- Cung cấp các tên miền thẩm quyền và ánh xạ địa chỉ IP cho các host được đặt tên của tổ chức đó
- Có thể được duy trì bởi tổ chức hoặc nhà cung cấp dịch vụ

Bài 7 và 8: Lộ trình

- Hệ thống phân giải tên miền
- Máy chủ DNS cục bộ
- Hoạt động nhóm

Máy chủ DNS cục bộ

- Khi một host tạo một truy vấn DNS, truy vấn được gửi đến máy chủ DNS cục bộ của nó:
 - Máy chủ DNS cục bộ trả về phản hồi:
 - Từ bộ nhớ đệm cục bộ về các cặp name-to-address gần đây (có thể đã hết hạn!)
 - Chuyển tuyến truy vấn vào trong hệ thống DNS phân cấp
 - Mỗi ISP có máy chủ DNS cục bộ:
 - MacOS: % scutil --dns
 - Windows: >ipconfig /all
- Server DNS cục bộ không hoàn toàn thuộc về hệ thống phân cấp

Phân giải tên miền DNS: truy vấn lặp

Ví dụ: host tại <u>engineering.nyu.edu</u> muốn có địa chỉ IP của <u>gaia.cs.umass.edu</u>

Truy vấn lặp:

- Server được yêu cầu sẽ phản hồi với tên miền của server quản lý vùng liên quan
- "Tôi không biết tên miền mà bạn yêu cầu, nhưng hãy hỏi server này"

Phân giải tên miền DNS: truy vấn đệ quy

Ví dụ: host tại <u>engineering.nyu.edu</u> muốn có địa chỉ IP của <u>gaia.cs.umass.edu</u>

Truy vấn đệ quy:

- Để trách nhiệm phân giải tên miền cho máy chủ tên miền được yêu cầu
- Đặt số lượng lớn lưu lượng truy vấn vào máy chủ phân cấp bậc cao?

Thông tin bộ nhớ đệm DNS

- Một khi máy chủ tên miền biết về 1 ánh xạ địa chỉ IP-tên miền, nó sẽ lưu ánh xạ vào bộ nhớ đệm và ngay lập tức trả về ánh xạ được lưu trong bộ nhớ để phản hồi truy vấn
 - Bộ nhớ đệm cải thiện thời gian phản hồi
 - Các mục cache hết hạn (sẽ bị xóa) sau một khoảng thời gian (TTL)
 - Thông tin máy chủ TLD thường được lưu tạm trong các máy chủ tên miền cục bộ
- Các cặp ánh xạ lưu tạm thời có thể hết hạn
 - Nếu cặp thông tin tên-địa chỉ IP thay đổi,có thể các máy khác trên
 Internet không biết được cho đến khi tất cả TTL hết hạn
 - best-effort name-to-address translation!

Bản ghi DNS

DNS: cơ sở dữ liệu phân tán lưu trữ các bản ghi thông tin (resource records: RR). Định dạng RR: (name, value, type, ttl)

type=A (address)

- name là hostname
- value là địa chỉ IPv4

type=NS (nameserver)

- name là tên miền (ví dụ: foo.com)
- value là tên máy chủ thẩm quyền cho tên miền này

type=CNAME (canonical name)

- name là bí danh của tên chính tắc (tên thực)
- www.ibm.com tên thực là servereast.backup2.ibm.com
- value là tên gốc

type=MX (mail exchange)

 value là tên của máy chủ thư điện tử được liên kết với tên miền

DNS protocol messages

Bản tin truy vấn và phản hồi DNS có chung định dạng:

message header:

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

DNS protocol messages

Bản tin truy vấn và phản hồi DNS có chung định dạng:

Truy vấn DNS

- Sử dụng câu lệnh: nslookup để truy vấn địa chỉ IP được gán với tên miền, ví dụ: dhcnhn.vn và haui.edu.vn
- Sử dụng Wireshark để bắt và phân tích gói tin

Bài 7 và 8: Lộ trình

- Hệ thống phân giải tên miền
- Máy chủ DNS cục bộ
- Hoạt động nhóm

- Viết chương trình truy vấn địa chỉ IPv4 được gán với tên miền, ví dụ: dhcnhn.vn và haui.edu.vn
- Sử dụng Wireshark để bắt và phân tích gói tin

Lời giải: Hoạt động nhóm số 1

```
import dns.resolver
def lookup(hostname):
  qtype = 'A'
  answer = dns.resolver.resolve(hostname, gtype,
raise_on_no_answer=False)
  if answer rrset is not None:
    print(f"Loai bản ghi: {qtype}")
    print(f"Thời gian tồn tại của bản ghi:
{answer.rrset.ttl}")
    print(f"Đia chỉ IPv4:")
    for item in answer.rrset.items:
      print(" ",item)
hostname = 'dhcnhn.vn'
lookup(hostname)
```


- Viết chương trình truy vấn tên máy chủ thẩm quyền cho tên cho tên miền office365.com
- Sử dụng Wireshark để bắt và phân tích gói tin

Lời giải: Hoạt động nhóm số 2

```
import dns.resolver
def lookup(hostname):
  qtype = 'NS'
  answer = dns.resolver.resolve(hostname, qtype,
raise_on_no_answer=False)
  if answer rrset is not None:
    print(f"Loai ban ghi: {qtype}")
    print(f"Thời gian tồn tai của bản ghi:
{answer.rrset.ttl}")
    print(f"Tên máy chủ thấm quyến cho tên miền:
{hostname}")
    for item in answer.rrset.items:
      print(" ",item)
hostname = 'office365.com'
lookup(hostname)
```


- Viết chương trình truy vấn tên chính tắc và tên của máy chủ thư điện tử được liên kết với tên miền outlook.com
- Sử dụng Wireshark để bắt và phân tích gói tin

Lời giải: Hoạt động nhóm số 3

```
import dns.resolver
def lookup(hostname):
 qtypes = ['NS', 'MX']
  for qtype in qtypes:
    answer = dns.resolver.resolve(hostname, qtype,
raise_on_no_answer=False)
    if answer.rrset is not None:
      print(f"Loai ban ghi: {qtype}")
      print(f"Thời gian tồn tại của bản ghi: {answer.rrset.ttl}")
      if qtype=='NS':
        print(f"Tên chính tắc của tên miền: {hostname}")
      elif qtype=='MX':
        print(f"Tên của máy chủ thư điện tử ứng với tên miền:
{hostname}")
      for item in answer.rrset.items:
        print(" ",item)
hostname = 'outlook.com'
lookup(hostname)
```

Bài 7 và 8: Tổng kết

- Hệ thống phân giải tên miền
- Máy chủ DNS cục bộ
- Hoạt động nhóm

Thank you

