Name:	

all relevant work to receive credit for a standard.

Math 237 – Linear Algebra

Version 1

Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ -1 & 4 & 1 & -7 \\ 1 & 2 & -1 & 0 \end{bmatrix}$$

Solution:

$$2x_1 - x_2 = 1$$
$$-x_1 + 4x_2 + x_3 = -7$$
$$x_1 + 2x_2 - x_3 = 0$$

E3. Solve the system of equations

$$x + 3y - 4z = 5$$
$$3x + 9y + z = 2$$

Solution:

$$RREF\left(\begin{bmatrix} 1 & 3 & -4 & 5 \\ 3 & 9 & 1 & 2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

So the solution set is

$$\left\{ \begin{bmatrix} 1 - 3c \\ c \\ -1 \end{bmatrix} \middle| c \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set of the system of equations

$$x + 2y + 3z + w = 0$$
$$3x - y + z + w = 0$$
$$2x - 3y - 2z = 0$$
$$-x + 2z + 5w = 0$$

Solution:

$$\operatorname{RREF}\left(\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -1 & 1 & 1 \\ 2 & -3 & -2 & 0 \\ -1 & 0 & 2 & 5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} a \\ 2a \\ -2a \\ a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

So a basis for the solution set is $\left\{ \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix} \right\}$.

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

Determine if V is a vector space or not.

Solution: This is not a vector space, as there is no zero vector.

E1:

E3:

E4:

V1:

E2:

Name:

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} -4 & -1 & 3 & 2 \\ 1 & 2 & -1 & 0 \\ -1 & 4 & 1 & 4 \end{bmatrix}$$

Solution:

$$-4x_1 - x_2 + 3x_3 = 2$$
$$x_1 + 2x_2 - x_3 = 0$$
$$-x_1 + 4x_2 + x_3 = 4$$

E3. Solve the following linear system.

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 5$$
$$-2x_3 - 4x_4 = 3$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = -1$$

Solution: Let $A = \begin{bmatrix} 4 & 4 & 3 & -6 & 5 \\ 0 & 0 & -2 & -4 & 3 \\ 2 & 2 & 1 & -4 & -1 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. It follows that the system

is inconsistent with no solutions (since the bottom row implies the contradiction 0 = 1).

E4. Find a basis for the solution set of the system of equations

$$x + 3y + 3z + 7w = 0$$
$$x + 3y - z - w = 0$$
$$2x + 6y + 3z + 8w = 0$$
$$x + 3y - 2z - 3w = 0$$

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix}
-3a - b \\
a \\
-2b \\
b
\end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$

So a basis for the solution set is

$$\left\{ \begin{bmatrix} 3\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\2\\-1 \end{bmatrix} \right\}$$

V1. Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$

Determine if V is a vector space or not.

Solution:

- 1) Since real addition is associative, \oplus is associative.
- 2) Since real addition is commutative, \oplus is commutative.
- 3) $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$, so (1, 1) is an additive identity element.
- 4) $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$, so $(2 x_1, 2 y_1)$ is the additive inverse of (x_1, y_1) .

5)

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c\left(dx_1-(d-1)\right)-(c-1),c\left(dy_1-(d-1)\right))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6)
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

7)

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

8)
$$(c+d) \odot (x_1, y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$

$$= (cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$$

$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

Therefore V is a vector space.

E1: E3: E4: V1: E2:

Name:	

Math 237 – Linear Algebra

Version 3

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 3 & -1 & 0 & 1 & 5 \\ -1 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 0 & -3 \end{bmatrix}$$

Solution:

$$3x_1 - x_2 + x_4 = 5$$
$$-x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 = -3$$

E3. Solve the following linear system.

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 5$$
$$-2x_3 - 4x_4 = 3$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = -1$$

Solution: Let $A = \begin{bmatrix} 4 & 4 & 3 & -6 & 5 \\ 0 & 0 & -2 & -4 & 3 \\ 2 & 2 & 1 & -4 & -1 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. It follows that the system is inconsistent with no solutions (since the bottom row implies the contradiction 0 = 1).

E4. Find a basis for the solution set to the homogeneous system of equations given by

$$3x + 2y + z = 0$$
$$x + y + z = 0$$

Solution: Let $A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$.

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$

Determine if V is a vector space or not.

Solution: V is not a vector space, as one of the distributive laws fails, namely

$$(c+d)\odot(x_1,y_1)=((c+d)^2x_1,(c+d)^3y_1)\neq((c^2+d^2)x_1,(c^3+d^3)y_1)=c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

E1: E3: E4: V1: E2:

Name:	

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 3 & -1 & 0 & 1 & 5 \\ -1 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 0 & -3 \end{bmatrix}$$

Solution:

$$3x_1 - x_2 + x_4 = 5$$
$$-x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 = -3$$

E3. Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\ 3-21a\\ -7a\\ 12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set to the homogeneous system of equations

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 0$$
$$x_1 + x_2 - x_3 + 5x_4 = 0$$

Solution: Let $A = \begin{bmatrix} 2 & 3 & -5 & 14 & 0 \\ 1 & 1 & -1 & 5 & 0 \\ 0 & 1 & -3 & 4 & 2 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} -2 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ 0 \\ 1 \end{bmatrix} \right\}$.

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (0, cy_1)$

Determine if V is a vector space or not.

Solution: V is not a vector space, as $1 \odot (x_1, y_1) = (0, y_1) \neq (x_1, y_1)$.

Name:

all relevant work to receive credit for a standard.

Math 237 – Linear Algebra

Version 5

Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 3 & -1 & 0 & 1 & 5 \\ -1 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 0 & -3 \end{bmatrix}$$

Solution:

$$3x_1 - x_2 + x_4 = 5$$
$$-x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 = -3$$

E3. Find the solution set for the following system of linear equations.

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 8$$
$$x_1 + x_2 - x_3 + 5x_4 = 3$$

Solution: Let $A = \begin{bmatrix} 2 & 3 & -5 & 14 & 8 \\ 1 & 1 & -1 & 5 & 3 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & -3 & 4 & 2 \end{bmatrix}$. It follows that the solution set

is given by
$$\begin{bmatrix} 2-2a-b\\2+3a-4b\\a\\b \end{bmatrix}$$
 for all real numbers a,b .

E4. Find a basis for the solution set of the system of equations

$$x + 3y + 3z + 7w = 0$$
$$x + 3y - z - w = 0$$
$$2x + 6y + 3z + 8w = 0$$
$$x + 3y - 2z - 3w = 0$$

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix}
-3a - b \\
a \\
-2b \\
b
\end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$

So a basis for the solution set is

$$\left\{ \begin{bmatrix} 3\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\2\\-1 \end{bmatrix} \right\}$$

V1. Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$

Determine if V is a vector space or not.

Solution:

- 1) Since real addition is associative, \oplus is associative.
- 2) Since real addition is commutative, \oplus is commutative.
- 3) $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$, so (1, 1) is an additive identity element.
- 4) $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$, so $(2 x_1, 2 y_1)$ is the additive inverse of (x_1, y_1) .

5)

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c\left(dx_1-(d-1)\right)-(c-1),c\left(dy_1-(d-1)\right))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6)
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

7)

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

8)
$$(c+d) \odot (x_1, y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$

$$= (cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$$

$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

Therefore V is a vector space.

E1: E3: E4: V1: E2:

Name:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ -1 & 4 & 1 & -7 \\ 1 & 2 & -1 & 0 \end{bmatrix}$$

Solution:

$$2x_1 - x_2 = 1$$
$$-x_1 + 4x_2 + x_3 = -7$$
$$x_1 + 2x_2 - x_3 = 0$$

E3. Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\3-21a\\-7a\\12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set to the homogeneous system of equations

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 0$$
$$-2x_3 - 4x_4 = 0$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = 0$$

the solution set is given by
$$\left\{ \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 3\\0\\-2\\1 \end{bmatrix} \right\}$$

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$

Determine if V is a vector space or not.

Solution: V is not a vector space, as one of the distributive laws fails, namely

$$(c+d)\odot(x_1,y_1)=((c+d)^2x_1,(c+d)^3y_1)\neq((c^2+d^2)x_1,(c^3+d^3)y_1)=c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

E1: E3: E4: V1: **E2**: