End-Sem Examination Odd Semester - 2017-18 **Semiconductor Devices and Circuits (SEMI)** B. Tech. (ECE) 2nd Year

Time: 3 Hrs **Total Marks: 50**

All Questions are compulsory and Self-Explanatory.

Q1. Discuss all the steps to determine the Miller Indices of a plane. Also, determine the miller indices for the following planes: [2+3]

- Intercepts are ∞,1,∞
- Intercepts area, 1/2, co
- Miller indices of the plane are: Miller indices of the plane are:

$$\left(\frac{1}{\omega}\frac{1}{1}\frac{1}{\omega}\right) = (010)$$

$$\left(\frac{1}{\infty} \frac{1}{1/2} \frac{1}{\infty}\right) = (020) = (010)$$
 3 ---> 1

Q2. A Si sample is doped with 10^{17} As atoms/cm³. What is the equilibrium hole concentration p_0 at 300 K? Where is E_F relative to E_i ? For your calculation you can use $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$, kT = 0.0259 eV. [2]

Since
$$N_d \gg n_i$$
, we can approximate $n_0 = N_d$ and
$$p_0 = \frac{n_i^2}{n_0} = \frac{2.25 \times 10^{20}}{10^{17}} = 2.25 \times 10^3 \text{ cm}^{-3}$$

$$E_F - E_i = kT \ln \frac{n_0}{n_i} = 0.0259 \ln \frac{10^{17}}{1.5 \times 10^{10}} = 0.407 \text{ eV}$$

- Q3. Define the Hall Effect in n-type semiconductor. How do we identify the type of a material with the help of the Hall Effect? List down the 4 applications of Hall Effect. [3+2+2]You can refer to Hall Effect Slides
- **Q4.** The equilibrium band diagram for a doped direct gap semiconductor is shown below. Is it n-type, ptype or not enough information provided? [1] Ans: P type

intrinsic Fermi level Ei

Fermi level E_F Acceptor level E_a valence band edge E_v

What if any of the following conditions by themselves could lead to the above band diagram?

Choose the correct answer from the following:

- a) Very high temperature
- b) Very high acceptor doping
- c) Very low acceptor doping
- Q5. Consider the following MOSFET characteristic:

a) Is this an n-channel or p-channel device?

[1]

[1]

Ans: n-channel

b) Does this appear to be a long-channel or short-channel device?

[1]

Ans: Long Channel

c) What is the apparent threshold voltage V_T ?

[1]

d) Is this a depletion mode or enhancement mode MOSFET?

[1]

depletion mode

(a) What is threshold voltage in MOSFET? Derive the Threshold Voltage equation for NMOS. Apply the substrate biasing V_{SB} to the derived equation and write down the final equation for the Threshold Voltage. [1+3+2]

Ans: Threshold voltage definition and derivation you can refer to book.

(b) Calculate the threshold voltage V_{T0} at $V_{SB} = 0$, for a polysilicon gate n-channel MOS transistor, with the following parameters: substrate doping density $N_A = 10^{16}$ cm⁻³, polysilicon gate doping density $N_D = 2 \times 10 \text{ cm}^{-3}$, gate oxide thickness $t_{ox} = 50 \text{ nm}$ and oxide-interface fixed charge density $N_{ox} = 4 \times 10^{10} \text{ cm}^{-2}$. kT/q = 0.026 eV, $n_i = 1.45 \times 10^{10} \text{ cm}^{-3}$, $\Phi_F(\text{gate}) = 0.55 \text{ V}$, $\varepsilon_0 = 8.845 \times 10^{-14} \text{ Fcm}^{-1}$, $\varepsilon_{si}/\varepsilon_0 = 11.7$, $q = 1.6 \times 10^{-19} \text{ C}$ [4]

Ans: $V_{T0} = 0.40 \text{ V}$

Q7. Consider the following bipolar junction transistor (BJT) circuit and somewhat idealized transistor characteristics where, in particular, the voltage drop across the forward biased base-emitter junction is assumed to be constant and equal to 1 V for simplicity.

a) What is the (common-emitter) gain β ?

[2]

ans: 50

b) Draw the load line on the transistor characteristics.

[2]

 $V_{CE} = 0 -> Ic = 11 \text{ mA}$

$$Ic = 0mA \rightarrow V_{CE} = 11 V$$

c) What is the collector-emitter voltage drop in this circuit within half a volt?

[2]

$$I_{\scriptscriptstyle B} \frac{(11-1)V}{100k\Omega} = 0.1 mA \to V_{\scriptscriptstyle CE} = 6V$$

d) If voltage V_t could be changed, what value of V_t would drive BJT in this circuit to the edge of saturation? [2]

I_B=0.2 mA at onset of saturation.

$$\frac{V_1 - 1V}{100k\Omega} = 0.2mA \rightarrow V_1 = 21V$$

Q8. Discuss the breakdown mechanisms in a lightly doped and heavily doped p-n junction under reverse biased condition. [2+2]

Ans: Lightly Doped --- Avlanche Breakdown and Heavily doped --- Zener Break down (discussion)

Q9. Write the short note one the followings:

[2+2+2+2]

(a) Channel Length Modulation

- (b) Drain Induced Barrier Lowering
- (c) Excess Charge Carriers in Semiconductors
- (d) Continuity Equation

For these ans you can refer to book