Countability

CMSC 250

- Two toddlers want to compare their marbles to see who has more.
- They cannot count yet.

- Two toddlers want to compare their marbles to see who has more.
- They cannot count yet.

• They line them up and compare!

They line them up and compare!

• Intuition for us: If we can find such a mapping between two (infinite) sets, we will say that they have the same (infinite) cardinality (or size).

- This matching of marbles
 - Every two different marbles on left go to two different marbles on right
 - Every marble on right is matched by some marble on the left

- This matching of marbles
 - Every two different marbles on left go to two different marbles on right
 - Every marble on right is matched by some marble on the left
- This is a bijection!
- WE DEFINE TWO SETS TO BE THE SAME SIZE IF THERE IS A BIJECTION BETWEEN THEM.

Refresher on bijections

Refresher on bijections

• Are the following functions **bijections**?

Yes

1.
$$f(x) = |x|$$

Quiz on bijections

• Are the following functions **bijections**?

Yes

1.
$$f(x) = |x| No$$

Refresher on bijections

• Are the following functions **bijections**?

Yes

1.
$$f(x) = |x| No$$

2.
$$f(x) = a \cdot x + b$$
, $b \in \mathbb{R}$, $a \in \mathbb{R}^{\neq 0}$

Refresher on bijections

Are the following functions bijections?

Yes No

1.
$$f(x) = |x| No$$

2.
$$f(x) = a \cdot x + b$$
, $b \in \mathbb{R}$, $a \in \mathbb{R}^{\neq 0}$ Yes

Straight line in coordinate plane

Refresher on bijections

Are the following functions bijections?

1.
$$f(x) = |x|$$
 No

2.
$$f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$$
 Yes

3.
$$g(x) = a \cdot x^2, a > 0$$

Refresher on bijections

• Are the following functions **bijections**?

Yes

1.
$$f(x) = |x| No$$

2.
$$f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$$
 Yes

3.
$$g(x) = a \cdot x^2$$
, $a > 0$ No

Refresher on bijections

• Are the following functions **bijections**?

Yes

1.
$$f(x) = |x| No$$

2.
$$f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$$
 Yes

3.
$$g(x) = a \cdot x^2, a > 0$$
 No

4.
$$h(n) = 4n - 1, n \in \mathbb{Z}$$

Refresher on bijections

• Are the following functions **bijections**?

Yes

1.
$$f(x) = |x| No$$

2.
$$f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$$
 Yes

3.
$$g(x) = a \cdot x^2, a > 0$$
 No

4.
$$h(n) = 4n - 1, n \in \mathbb{Z}$$
 No

Non-surjective! Set h(n) = y and solve for n:

$$(4n-1=y) \Rightarrow n=\frac{y+1}{4}$$

There are infinitely many choices of y for which $n \notin \mathbb{Z}$!

Refresher on bijections

• Are the following functions **bijections**?

Yes

1.
$$f(x) = |x|$$
 No

2.
$$f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$$
 Yes

3.
$$g(x) = a \cdot x^2, a > 0$$
 No

4.
$$h(n) = 4n - 1, n \in \mathbb{Z}$$
 No

5.
$$h(x) = 4x - 1, x \in \mathbb{R}$$

Refresher on bijections

Are the following functions bijections?

No

1.
$$f(x) = |x|$$
 No

2.
$$f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$$
 Yes

3.
$$g(x) = a \cdot x^2, a > 0$$
 No

4.
$$h(n) = 4n - 1, n \in \mathbb{Z}$$
 No

5.
$$h(x) = 4x - 1, x \in \mathbb{R}$$

6. Yes

Surjective and injective! Surjective, since, if we set h(n) = y and solve for n:

$$(4x - 1 = y) \Rightarrow x = \frac{y+1}{4}$$

For every real y, there's always a real solution n. Injective, since it's of the form of (2) with $a \neq 0$.

Countable sets

- Definition: A set S is said to be countable if there exists a bijection from a subset of $\mathbb{N}^{\geq 1}$ to S.
 - Sometimes, this bijection is called an enumeration.
 - Alternatively, yet still rigorously: If we can form some sequence out of its elements (or, if we can enumerate its elements)
 - Equivalently, blending in Physics: If every one of its elements can be reached in **finite time**.

• Every finite set is countable.

- Every finite set is countable.
 - Why?

- Every finite set is countable.
 - Why?
 - Suppose that S is a finite set. Since it's finite, it contains n elements, for $n \in \mathbb{N}$. This means that S can be **enumerated**, like so:

$$S = \{s_1, s_2, s_3, \dots, s_n\}$$

But this means that there exists a bijection from $\{1, 2, ..., n\}$ to S, where $\{1, 2, ..., n\} \subseteq \mathbb{N}$!

- Since all finite sets are countable, might as well limit ourselves to the exploration of **infinite sets** that might also be **countable**.
 - We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from $\mathbb{N}^{\geq 1}$ to S.

- Since all finite sets are countable, might as well limit ourselves to the exploration of **infinite sets** that might also be **countable**.
 - We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from $\mathbb{N}^{\geq 1}$ to S.
- Is $b: \mathbb{N}^{\geq 1} \mapsto \mathbb{N}^{\geq 1}$ such that

$$b(n) = n$$

a bijection?

- Since all finite sets are countable, might as well limit ourselves to the exploration of **infinite sets** that might also be **countable**.
 - We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from $\mathbb{N}^{\geq 1}$ to S.
- Is $b: \mathbb{N}^{\geq 1} \mapsto \mathbb{N}^{\geq 1}$ such that

$$b(n) = n$$

a bijection?

- Since all finite sets are countable, might as well limit ourselves to the exploration of **infinite sets** that might also be **countable**.
 - We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from $\mathbb{N}^{\geq 1}$ to S.
- Is $b: \mathbb{N}^{\geq 1} \to \mathbb{N}^{\geq 1}$ such that

$$b(n) = n$$

a bijection?

Conclusion: $\mathbb{N}^{\geq 1}$ is countably infinite

Countability of N

• Is \mathbb{N} countable? (recall, $0 \in \mathbb{N}$)

Yes

Countability of N

• Is \mathbb{N} countable? (recall, $0 \in \mathbb{N}$)

• Through the bijection f(n) = n - 1, like so:

$$\mathbb{N}^{\geq 1}$$
 1, 2, 3, 4, ..., 56, ...
 \mathbb{N} : 0, 1, 2, 3, ..., 55, ...

• Is the set $\{x \mid (x \in \mathbb{N}) \land (x \ge 17)\}$ countable?

Yes

• Is the set $\{x \mid (x \in \mathbb{N}) \land (x \ge 17)\}$ countable?

• Through the bijection f(n) = n + 16, like so:

$$\mathbb{N}^{\geq 1}$$
 1, 2, 3, 4, ..., 56, ...
 $\mathbb{N}^{\geq 17}$: 17, 18, 19, 20, ..., 72 ...

• Is the set $\{x \mid (x \in \mathbb{N}) \land (x \equiv 0 \pmod{2})\}$ countable?

Yes

• Is the set $\{x \mid (x \in \mathbb{N}) \land (x \equiv 0 \pmod{2})\}$ countable?

 $\mathbb{N}^{\geq 1}$: 1, 2, 3, 4, ...

 \mathbb{N}^{even} : 0, 2, 4, 6, ...

• Is the set $\{x \mid (x \in \mathbb{N}) \land (x \equiv 0 \pmod{2})\}$ countable?

$$\mathbb{N}^{\geq 1}$$
: 1, 2, 3, 4, ...
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad f$
 \mathbb{N}^{even} : 0, 2, 4, 6, ...

$$f(n) = 2(n-1)$$

Countability of Z

• Is \mathbb{Z} countable?

Yes

Countability of Z

Is ℤ countable?

• Is \mathbb{Z} countable?

Is
 ℤ countable?

$$f: \mathbb{N}^{\geq 1} \mapsto \mathbb{Z}, f(n) = \begin{cases} 0, & n = 1 \\ \frac{n}{2}, & n \text{ even} \\ \frac{-(n-1)}{2}, & n \text{ odd} \end{cases}$$

Is
 ℤ countable?

• *f* is...

$$f: \mathbb{N}^{\geq 1} \mapsto \mathbb{Z}, f(n) = \begin{cases} 0, & n = 1\\ \frac{n}{2}, & n \text{ even} \\ \frac{-(n-1)}{2}, & n \text{ odd} \end{cases}$$

• Is \mathbb{Z} countable?

- *f* is...

• onto, since every integer is mapped to
$$f\colon \mathbb{N}^{\geq 1} \mapsto \mathbb{Z}, f(n) = \begin{cases} 0, & n = 1 \\ \frac{n}{2}, & n \text{ even} \\ \frac{-(n-1)}{2}, & n \text{ odd} \end{cases}$$

Is
 ℤ countable?

- f is...

$$\begin{array}{c} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \\ \hline \text{is...} \\ \bullet \ \text{onto, since every integer is mapped to} \end{array} \qquad \begin{array}{c} f\colon \mathbb{N}^{\geq 1} \mapsto \mathbb{Z}, f(n) = \begin{cases} 0, & n=1 \\ \frac{n}{2}, & n \ even \\ \hline -(n-1), & n \ odd \end{cases}$$

Is
 ℤ countable?

- f is...

 - So it's a bijection, and \mathbb{Z} is countable!

1 2 3 4 5 6 7

is...

• onto, since every integer is mapped to
• 1-1, since no two naturals map to the same integer
• So it's a bijection, and
$$\mathbb{Z}$$
 is countable!

$$\begin{array}{l}
0, & n=1 \\
\frac{n}{2}, & n \text{ even} \\
-(n-1) \\
2, & n \text{ odd}
\end{array}$$

• Is \mathbb{Z}^{even} countable?

Yes

No

$$f(n) = \begin{cases} 0, & n = 1 \\ n, & n = 2, 4, 6, \dots \\ -n+1, & n = 3, 5, 7, \dots \end{cases}$$

$$f(n) = \begin{cases} 0, & n = 1 \\ n, & n = 2, 4, 6, \dots \\ -n + 1, & n = 3, 5, 7, \dots \end{cases}$$
 Both onto and 1-1

• If f and g are bijections, then $f(g(x)) = (f \circ g)(x)$ is also a bijection

- If f and g are bijections, then $f(g(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!

- If f and g are bijections, then $f(g(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that \mathbb{Z} is countable...

- If f and g are bijections, then $f(g(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that \mathbb{Z} is countable...
 - i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z} ...

- If f and g are bijections, then $f(g(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that \mathbb{Z} is countable...
 - i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z} ...
 - If we find a bijection from \mathbb{Z} to \mathbb{Z}^{even} ...

- If f and g are bijections, then $f(g(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that \mathbb{Z} is countable...
 - i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z} ...
 - If we find a bijection from \mathbb{Z} to \mathbb{Z}^{even} ...
 - We will have a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z}^{even} , and \mathbb{Z}^{even} is, therefore, countable!

- If f and g are bijections, then $f(g(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that \mathbb{Z} is countable...
 - i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z} ...
 - If we find a bijection from \mathbb{Z} to \mathbb{Z}^{even} ...
 - We will have a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z}^{even} , and \mathbb{Z}^{even} is, therefore, countable!

$$..., -6, -4, -2, 0, 2, 4, 6, ...$$
 $f(n) = 2 * n$ $..., -3, -2, -1, 0, 1, 2, 3, ...$

- If f and g are bijections, then $f(g(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that \mathbb{Z} is countable...
 - i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z} ...
 - If we find a bijection from \mathbb{Z} to \mathbb{Z}^{even} ...
 - We will have a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z}^{even} , and \mathbb{Z}^{even} is, therefore, countable!

...,
$$-6$$
, -4 , -2 , 0 , 2 , 4 , 6 , ... $f(n) = 2 * n$..., -3 , -2 , -1 , 0 , 1 , 2 , 3 , ... clearly bijective

• Is $\mathbb{Q}^{>0}$ countable?

Yes

No

	1	2	3	4	•••	
1	1/ ₁ ——	¹ / ₂	1/3	1/4		
2	2/ ₁	2/ ₂	2/3	2/4		
3	3/1	3/2	3/3	3/4		
4	4/1	4/2	4/3	4/4		
	*			••••		

	1	2	3	4	•••
1	1/ ₁ ——	¹ / ₂	1/3	1/4	
2	2/1	2/ ₂	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	••••
	*		···.		

All strictly
positive
rationals are
counted exactly
once (skipping
repetitions like $\frac{1}{1} = \frac{2}{2} = \frac{3}{3} = \cdots),$ so this "snaking"
is a bijection

- If you don't like the proof involving this "snaking" pattern, ProofWiki has 4 (!) different proofs here:
 - http://www.homeschoolmath.net/teaching/rational-numbers-countable.php
 - (1) tries to prove the "snaking" pattern in a way that I don't find very rigorous
 - 2, 3, 4 assume other facts that we won't prove today, but are easy to prove
 - E.g the cartesian product of countable sets is also countable, or the union of countable sets is also a countable set!

• Another way to prove this fact formally is focusing on the diagonals, and realize that the i^{th} diagonal has an interesting property!

$$d_i = \{ \frac{a}{b} \mid (a, i \in \mathbb{N}) \land (b \in \mathbb{N}^{\neq 0}) \land (a+b) = i+2 \}$$

• Another way to prove this fact formally is focusing on the diagonals, and realize that the i^{th} diagonal has an interesting property!

$$d_i = \{ \frac{a}{b} \mid (a, i \in \mathbb{N}) \land (b \in \mathbb{N}^{\neq 0}) \land (a+b) = i+2 \}$$

Because of zero indexing

• Another way to prove this fact formally is focusing on the diagonals, and realize that the i^{th} diagonal has an interesting property!

$$d_i = \{ \frac{a}{b} \mid (a, i \in \mathbb{N}) \land (b \in \mathbb{N}^{\neq 0}) \land (a+b) = i+2 \}$$

• If we can prove that:

Because of zero indexing

• Another way to prove this fact formally is focusing on the diagonals, and realize that the i^{th} diagonal has an interesting property!

$$d_i = \{ \frac{a}{b} \mid (a, i \in \mathbb{N}) \land (b \in \mathbb{N}^{\neq 0}) \land (a+b) = i+2 \}$$

- If we can prove that:
 - 1. $(\forall i \in \mathbb{N})[d_i \text{ is countable}]$
 - 2. The union of countable sets is also countable
- We then have:

$$d_0 \cup d_1 \cup d_2 \cup \cdots = \bigcup_{i=0}^{+\infty} d_i = \mathbb{Q}^{>0}$$
 is countable!

Because of zero indexing

• Suppose A is a countable set and $e \notin A$. Is $A \cup \{e\}$ countable?

Yes

No

Unknown to science

• Suppose A is a countable set and $e \notin A$. Is $A \cup \{e\}$ countable?

- Suppose $a_1, a_2, a_3,...$ is an enumeration of A.
- We then define a new enumeration b of $A \cup \{e\}$, like so:

$$b_n = \begin{cases} e, & n = 1 \\ a_{n-1}, & n \ge 2 \end{cases}$$

• Suppose A is a countable set and $e \notin A$. Is $A \cup \{e\}$ countable?

- Suppose $a_1, a_2, a_3,...$ is an enumeration of A.
- We then define a new enumeration b of $A \cup \{e\}$, like so:

$$b_n = \begin{cases} e, & n = 1 \\ a_{n-1}, & n \ge 2 \end{cases}$$

Pretty much like in the case of \mathbb{N} , we just "move one index over"!

• Suppose A and B are countable sets. Is $A \cup B$ countable?

Yes

No

Unknown to science

• Suppose A and B are countable sets. Is $A \cup B$ countable?

• For simplicity, assume A and B are countably infinite.

1, 2, 3, 4,
$$f$$
 a_1, b_1, a_2, b_2 ...

• Suppose A and B are countable sets. Is $A \cup B$ countable?

• For simplicity, assume A and B are countably infinite.

1, 2, 3, 4, ...
$$a_1, b_1, a_2, b_2...$$

$$f(n) = \begin{cases} a_{(n+1)/2}, & n \text{ odd} \\ b_{n/2}, & n \text{ even} \end{cases}$$

What if A or B (or both) finite?

- Caveat: the previous will not work if A or B end before the other ends.
 - Because some a_i , b_i might not exist.
- We leave it to you to iron out the details of what happens then.

Countability of \mathbb{R}

• Is \mathbb{R} countable?

Yes

No

Unknown to science

Countability of \mathbb{R}

• Is \mathbb{R} countable?

Countability of \mathbb{R}

• Is \mathbb{R} countable?

Cantor's famous diagonal argument!

Countability of R

• Is \mathbb{R} countable?

- Cantor's famous diagonal argument!
- The argument actually proves that the interval [0,1] is uncountable, but the result generalizes to the entirety of $\mathbb R$

• **Proof by contradiction:** Suppose that [0, 1] is countable. Then, there exists some bijection from $\mathbb{N}^{\geq 1}$ to [0, 1], i.e the reals can be enumerated in a sequence:

```
1. 0.28422856231.....
```

- 2. 0.28422856232.....
- 3. 0.28922856233.....

.....

.....

n. 0.28422856001.....

```
r_1 = 0.28422856231 \dots
r_2 = 0.28422856232 \dots
r_3 = 0.28922856233...
r_n = 0.28422856001...
```

• Let's create the real number r = 0. $a_1 a_2 a_3 \dots a_n \dots$ where

$$a_{i} = \begin{cases} 0, & r_{i_{i}} = 9 \\ r_{i_{i}} + 1, & 0 \leq r_{i_{i}} < 9 \end{cases}$$
 Note: $r_{i_{i}}$ is the i^{th} digit of the i^{th} real.

```
r_1 = 0.28422856231 \dots
r_2 = 0.28422856232 \dots
r_3 = 0.28922856233...
r_n = 0.28422856001...
```

• Let's create the real number r = 0. $a_1 a_2 a_3 \dots a_n \dots$ where

$$a_{\pmb{i}} = \begin{cases} 0, & r_{\pmb{i_i}} = 9 \\ r_{\pmb{i_i}} + 1, & 0 \le r_{\pmb{i_i}} < 9 \end{cases}$$
 Note: r_{i_i} is the i^{th} digit of the i^{th} real.

• In this example, r=0.

$$r_1 = 0.28422856231 \dots$$
 $r_2 = 0.28422856232 \dots$
 $r_3 = 0.28922856233 \dots$
 $\vdots = \dots$

• Let's create the real number r = 0. $a_1 a_2 a_3 \dots a_n \dots$ where

$$a_{\pmb{i}} = \begin{cases} 0, & r_{\pmb{i_i}} = 9 \\ r_{\pmb{i_i}} + 1, & 0 \le r_{\pmb{i_i}} < 9 \end{cases}$$
 Note: r_{i_i} is the i^{th} digit of the i^{th} real.

• In this example, r = 0.3

$$r_1 = 0$$
 2
 $8422856231 ...$
 $r_2 = 0.28422856232 ...$
 $r_3 = 0.28922856233 ...$
 $\vdots = ...$
 $\vdots = ...$
 $r_n = 0.28422856001 ...$

• Let's create the real number r = 0. $a_1 a_2 a_3 \dots a_n \dots$ where

$$a_{i} = \begin{cases} 0, & r_{i} = 9 \\ r_{i} + 1, & 0 \le r_{i} < 9 \end{cases}$$

• In this example, r = 0.3

Note: r_{i_i} is the i^{th} digit of the i^{th} real.

First digit yielded by the application of the second rule...

$$r_1 = 0.28422856231 \dots$$
 $r_2 = 0.28422856232 \dots$
 $r_3 = 0.28922856233 \dots$
 $\vdots = \dots$
 $\vdots = \dots$
 $r_n = 0.28422856001 \dots$

• Let's create the real number r = 0. $a_1 a_2 a_3 \dots a_n \dots$ where

$$a_{\pmb{i}} = \begin{cases} 0, & r_{\pmb{i_i}} = 9 \\ r_{\pmb{i_i}} + 1, & 0 \le r_{\pmb{i_i}} < 9 \end{cases}$$
 Note: r_{i_i} is the i^{th} digit of the i^{th} real.

• In this example, r = 0.39

$$r_1 = 0.28422856231 \dots$$
 $r_2 = 0.28422856232 \dots$
 $r_3 = 0.28922856233 \dots$
 $\vdots = \dots$
 $\vdots = \dots$
 $\vdots = \dots$
 $r_n = 0.28422856001 \dots$

• Let's create the real number r = 0. $a_1 a_2 a_3 \dots a_n \dots$ where

$$a_{i} = \begin{cases} 0, & r_{i} = 9 \\ r_{i} + 1, & 0 \le r_{i} < 9 \end{cases}$$

Note: r_{i_i} is the i^{th} digit of the i^{th} real.

• In this example, r = 0.39

Second digit yielded by second rule again!

$$r_1 = 0.28422856231...$$
 $r_2 = 0.28422856232...$
 $r_3 = 0.28922856233...$
 $\vdots = ...$
 $\vdots = ...$
 $r_n = 0.28422856001...$

• Let's create the real number r = 0. $a_1 a_2 a_3 \dots a_n \dots$ where

$$a_{\mathbf{i}} = \begin{cases} 0, & r_{\mathbf{i}_{\mathbf{i}}} = 9 \\ r_{\mathbf{i}_{\mathbf{i}}} + 1, & 0 \le r_{\mathbf{i}_{\mathbf{i}}} < 9 \end{cases}$$

Note: r_{i_i} is the i^{th} digit of the i^{th} real.

• In this example, r = 0.390

$$r_1 = 0.28422856231...$$
 $r_2 = 0.28422856232...$
 $r_3 = 0.28922856233...$
 $\vdots = ...$
 $r_n = 0.28422856001...$

• Let's create the real number r = 0. $a_1 a_2 a_3 \dots a_n \dots$ where

$$a_{\mathbf{i}} = \begin{cases} 0, & r_{\mathbf{i}_{\mathbf{i}}} = 9\\ r_{\mathbf{i}_{\mathbf{i}}} + 1, & 0 \le r_{\mathbf{i}_{\mathbf{i}}} < 9 \end{cases}$$

Note: r_{i_i} is the i^{th} digit of the i^{th} real.

• In this example, r = 0.390

This time we have to use the first rule, since $r_{3_3}=9$.

$$r_1 = 0.28422856231...$$
 $r_2 = 0.28422856232...$
 $r_3 = 0.28422856233...$
 $\vdots = ...$
 $\vdots = ...$
 $r_n = 0.28422856001...$

• Let's create the real number r = 0, $a_1 a_2 a_3 \dots a_n \dots$ where

The proof moves

diagonally,
hence the term

"diagonal"
argument!

$$a_{i} = \begin{cases} 0, & r_{i_{i}} = 9 \\ r_{i_{i}} + 1, & 0 \le r_{i_{i}} < 9 \end{cases}$$

Note: r_{i_i} is the i^{th} digit of the i^{th} real.

• In this example, r = 0.390

```
r_1 = 0.28422856231 \dots
r_2 = 0.28422856232 \dots
r_3 = 0.28922856233 \dots
\vdots = \dots
\vdots = \dots
\vdots = \dots
r_n = 0.28422856001 \dots
```

• Somebody claims that r=0.395 ... is the 17th real in the list.

```
r_1 = 0.28422856231 \dots
r_2 = 0.28422856232 \dots
r_3 = 0.28922856233 \dots
\vdots = \dots
\vdots = \dots
\vdots = \dots
r_n = 0.28422856001 \dots
```

- Somebody claims that r = 0.395 ... is the 17th real in the list.
- But this cannot be true, since our real number was constructed such that it differs from the 17th real in the 17th decimal digit!

```
r_1 = 0.28422856231 \dots
r_2 = 0.28422856232 \dots
r_3 = 0.28922856233 \dots
\vdots = \dots
\vdots = \dots
r_n = 0.28422856001 \dots
```

- Somebody claims that r = 0.395 ... is the 17th real in the list.
- But this cannot be true, since our real number was constructed such that it differs from the 17th real in the 17th decimal digit!
- Generally speaking, r will differ from the i^{th} real in the i^{th} digit!
 - So we can't find an $k \in \mathbb{N}$ such that $0.395 \dots = r_k$.
 - Contradiction, since we assumed we can enumerate all reals in [0,1].

Is $|\mathbb{N}| < |\mathbb{R}|$?

- It has to be, since any given natural maps to a real, but we
 just proved that not all reals can be mapped to a natural!
- But how can we say this rigorously?
- **Defn:** $|A| \leq |B|$ if there is an **injection** from A into B
- **Defn:** |A| < |B| if there is an **injection** from A into B but there is **no surjection** from A into B!

• Is $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ countable?

Yes

No

Unknown to science

• Is $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ countable?

- Proof: $f: \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ such that f(x) = (x, 1) is an injection (1-1)
 - Hence, $\mathbb{R} \times \mathbb{R}$ is at least as big as \mathbb{R} , and \mathbb{R} is uncountable.
 - So , $\mathbb{R} \times \mathbb{R}$ is uncountable.

• Is C (set of complex numbers) countable?

Yes

No

Unknown to science

• Is C (set of complex numbers) countable?

- Remember: complex numbers defined as $a + b \cdot i$ for $a, b \in \mathbb{R}$.
 - $f: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{C}$ such that $f((a, b)) = a + b \cdot i$ is a bijection from $\mathbb{R} \times \mathbb{R}$ to \mathbb{C}
 - But we know that $\mathbb{R} \times \mathbb{R}$ is uncountable. Therefore, \mathbb{C} is uncountable.

• Let A be any uncountable set. Is there any (infinite) $B \subseteq A$ that is countable?

Yes

Unknown to science

• Let A be any uncountable set. Is there any (infinite) $B \subseteq A$ that is

• Consider: [0,1] and $\left\{\frac{1}{x} \mid x \in \mathbb{N}^{\geq 1}\right\} \subseteq [0,1]$

• Let A be any uncountable set. Is there any (infinite) $B \subseteq A$ that is

• Consider:
$$[0,1]$$
 and $\{x \mid x \in \mathbb{N}^{\geq 1}\} \subseteq [0,1]$
All these are positive rationals!

- Let $\{0,1\}^{\infty}$ be the set of infinite bitstrings
 - Is it countable?

Yes

No

Unknown to science

- Let $\{0,1\}^{\infty}$ be the set of infinite bitstrings
 - Is it countable?

The set of infinite bit-strings is uncountable

• Assume that the set is countable, then the strings can be enumerated:

1: 000111010101010...

2: 0101011110001101...

• • •

n: 010101000011100...

- Construct bit-string s which differs from the ith string in the list in the ith digit.
- Since this string is not in the list, we can't enumerate them all.
 Contradiction.

- Let A_1, A_2, A_3 ... be an <u>infinite</u> sequence of <u>count</u>able sets.
- Is $A_1 \times A_2 \times A_3 \times \cdots$ countable?

Yes

No

Unknown to science

- Let A_1, A_2, A_3 ... be an <u>infinite</u> sequence of <u>count</u>able sets.
- Is $A_1 \times A_2 \times A_3 \times \cdots$ countable?

Cantor-like proof in next slide!

Set of **infinite** cartesian product of **countable sets** is **uncountable**

- Notation: $a_i = \{a_{i_1}, a_{i_2}, a_{i_3}, ...\}$
- Suppose that the set is countable. Then, enumeration:

$$(a_{1_1}, a_{1_2}, a_{1_3}, a_{1_4}, ...),$$

 $(a_{2_1}, a_{2_2}, a_{2_3}, a_{2_4}, ...),$
 $(a_{3_1}, a_{3_2}, a_{3_3}, a_{3_4}, ...),$

• •

Set of **infinite** cartesian product of **countable sets** is **uncountable**

- Notation: $a_i = \{a_{i_1}, a_{i_2}, a_{i_3}, ...\}$
- Suppose that the set is countable. Then, enumeration:

$$(a_{1_1}, a_{1_2}, a_{1_3}, a_{1_4}, ...),$$

 $(a_{2_1}, a_{2_2}, a_{2_3}, a_{2_4}, ...),$
 $(a_{3_1}, a_{3_2}, a_{3_3}, a_{3_4}, ...),$

Construct infinite tuple $(a_{1x_1}, a_{2x_2}, a_{3x_2}, ...)$ such that x_i is an element of A_i different from the element used in the ith position of the ith tuple!

• This tuple cannot be in the list, etc etc etc

More reading

- Epp, 7.4
- Rosen, section 2.5 (Rosen presents Set Theory / Countability much earlier than Epp)
- If you're interested in finding out more about the different kinds of infinities, check out these VSauce videos:
 - https://www.youtube.com/watch?v=SrU9YDoXE88
 - https://www.youtube.com/watch?v=s86-Z-CbaHA