

TEST REPORT

CE SIGFOX Test for SRM200A

APPLICANT
SEONG JI INDUSTRIAL CO.,LTD.

REPORT NO. HCT-RF-1911-CE015

DATE OF ISSUENovember 08, 2019

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

REPORT NO. HCT-RF-1911-CE015

DATE OF ISSUE November 08, 2019

Applicant	SEONG JI INDUSTRIAL CO.,LTD 54-33, DongtanHana 1-gil, Hwaseong-si, Gyeonggi-do, 18423, Korea
Eut Type Model Name	Monarch Quad-mode module SRM200A
Date of Test	September 09, 2019 ~ November 06, 2019
Test Standard Used	ETSI EN 300 220-1 V3.1.1 (2017-02) ETSI EN 300 220-2 V3.1.1 (2017-02)
Test Results	Approval for CE Temperature : (22.5 \pm 3.0) °C, Relative Humidity : (54.6 \pm 3.0) % R. H. Results, Measurement uncertainty : Refer to the attachment
Manufacturer Frequency alignment range	SEONG JI INDUSTRIAL CO.,LTD. Tx: 868.055 MHz ~ 868.205 MHz, Rx: 869.525 MHz
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the standard.
	Tested by Hyeong Hoon Lee
	Technical Manager Seul Ki Lee

HCT CO., LTD.

Accredited by KOLAS. Republic of KOREA

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No. Date of Issue		Description
0	November 08, 2019	Initial Release

F-TP22-03 (Rev. 01) Page 3 of 53

CONTENTS

1. CLIENT INFORMATION	6
2. EQUIPMENT UNDER TEST (EUT)	6
3. DESCRIPTION OF THE EQUIPMENT UNDER TEST	7
3.1 Manufacturers declarations	7
4. TEST SUMMARY	8
5. TEST EQUIPMENT	10
6. TRANSMITTER MEASUREMENTS – RESULTS	11
6.1 Maximum transmit power (Conducted)	11
6.1.1 Test Setup	11
6.1.2 Test Procedure	11
6.1.3 Limit	12
6.1.4 Test Result	13
6.2 Occupied Bandwidth	14
6.2.1 Test Setup	14
6.2.2 Test Procedure	14
6.2.3 Limit	15
6.2.4 Test Result	16
6.3 Frequency error	17
6.3.1 Test Setup	17
6.3.2 Test Procedure	17
6.3.3 Test Result	18
6.4 Tx Out Of Band Emissions	19
6.4.1 Test Setup	19
6.4.2 Test Procedure	19
6.4.3 Limit	21
6.4.4 Test Result	22
6.5 Unwanted emissions in the spurious domain	37
6.5.1 Test Setup	37
6.5.2 Test Procedure	37
6.5.3 Limit	38
6.5.4 Test Result	39
6.6 Unwanted emissions in the spurious domain(Radiated)	40
6.6.1 Test Setup	40
6.6.2 Test Procedure	41

F-TP22-03 (Rev. 01) Page 4 of 53

	6.6.3 Limit	42
	6.6.4 Test Result	43
	6.7 Transient power	44
	6.7.1 Test Setup	44
	6.7.2 Test Procedure	44
	6.7.3 Limit	46
	6.7.4 Test Result	47
7.	RECEIVER MEASUREMENTS	48
	7.1 Blocking	48
	7.1.1 Test Setup	48
	7.1.2 Test Procedure	48
	7.1.3 Limit	50
	7.1.4 Test Result	51
8.	PHOTOGRAPHS OF THE EUT	52
9.	SETUP PHOTO	53

1. CLIENT INFORMATION

The EUT has been tested by request of

Company	SEONG JI INDUSTRIAL CO.,LTD 54-33, DongtanHana 1-gil, Hwaseong-si, Gyeonggi-do, 18423, Korea
---------	---

2. EQUIPMENT UNDER TEST (EUT)

Equipment	Monarch Quad-mode module	
Model	SRM200A	
Additional Model	-	
Serial number	-	
Manufacturer	SEONG JI INDUSTRIAL CO.,LTD.	
Rating	DC 3.30 V	

F-TP22-03 (Rev. 01) Page 6 of 53

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

3.1 Manufacturers declarations

No. of units:	One (Transceiver)			
Receiver category:	2			
Application:	Monarch Quad-mode module			
Equipment category:	Short Range Device			
Model No.:	SRM200A			
Serial No.:	-			
Type of modulation:	DBPSK			
Specification(s):	ETSI EN 300 220-1 V3.1.1 (2017-02) ETSI EN 300 220-2 V3.1.1 (2017-02)			
Tx frequency(MHz):	868.034 MHz ~ 868.226 MHz			
Rx frequency(MHz):	869.429 MHz ~ 869.621 MHz			
Voice Application:	Not applicable			
Duty cycle(%):	≤ 1.0 %			
System:	Narrowband system			
Listen Before Talk (LBT):	applicable			
Adaptive Frequency Agility:	applicable			
Version:	Hardware: v1.4			
version.	Software: v1.0.1			
	Normal voltage :	DC 3.3 V		
Power source:	Extreme lower voltage :	DC 2.7 V		
	Extreme upper voltage :	DC 3.6 V		
	Normal Temperature :	+22.5°C		
Temperature range:	Extreme lower Temperature :	-30.0°C		
	Extreme upper Temperature : +85.0°C			
Antenna type:	External antenna (Dipole Antenna)			
Peak. antenna gain:	1.76 dBi			

F-TP22-03 (Rev. 01) Page 7 of 53

4. TEST SUMMARY

The list of measured parameters called for in ETSI EN 300 220-1 V3.1.1 is given below:

Clause	Transmitter Parameter	Test method	Result
5.1	Operating frequency	N/A	(See note1)
5.2	Effective Radiated Power	Conducted	Pass
5.3	Maximum Effective Radiated Power spectral density	N/A	(See note5)
5.4	Duty Cycle	N/A	(See note2)
5.5	Duty Cycle Template	N/A	(See note2)
5.6	Occupied Bandwidth	Conducted	Pass
5.7	Frequency error	Conducted	Pass
5.8	Tx Out Of Band Emissions	Conducted	Pass
5.9	Unwanted emissions in the spurious domain	Radiated	Pass
5.10	Transient power	Conducted	Pass
5.11	Adjacent Channel Power	N/A	(See note3)
5.12	TX behaviour under Low Voltage Conditions	N/A	(See note6)
5.13	Adaptive Power Control	N/A	(See note4)

Note:

1. Operational Frequency band: 868.034 MHz ~ 868.226 MHz, Norminal Operating frequencies: 868.055 MHz ~ 868.205 MHz, Operating Channel width(s): 600 kHz

- 2. Manufacturers declaration : Duty cycle \leq 1.0 %
- 3. The operating channel width is not less than or equal to 25 kHz.
- 4. Not annex C band AA.
- 5. Not annex B bands I, L.

Maximum e.r.p. spectral density applies to transmitters using DSSS or wideband techniques other than FHSS modulation, in annex C band X.

6. TX behaviour under low voltage condition applies to battery powered EUT.

F-TP22-03 (Rev. 01) Page 8 of 53

Clause	Receiver Parameter	Test method	Result
5.14	RX sensitivity level	N/A	(See note1)
5.15	Adjacent channel selectivity	N/A	(See note1,2)
5.16	Receiver saturation at Adjacent Channel	N/A	(See note1,2)
5.17	Spurious response rejection	N/A	(See note1,2)
5.18	Blocking	Pass	(See note1)
5.19	Behaviour at high wanted signal level	N/A	(See note1)
5.21.2	Clear Channel Assessment threshold	N/A	(See note3)
5.21.3	Polite spectrum access timing parameters	N/A	(See note3)
5.21.4	Adaptive Frequency Agility	N/A	(See note4)

Note:

1. Operational Frequency band : 869.429 MHz \sim 869.621 MHz

2. No Receiver category 1

3. Manufacturers declaration : Duty cycle \leq 1.0 %

4. The Adaptive Frequency Agility is not supported.

F-TP22-03 (Rev. 01) Page 9 of 53

5. TEST EQUIPMENT

No.	Instrument	Model No.	Due to Calibration	Manufacture	Serial No.
\boxtimes	Signal Analyzer (20 Hz ~ 40.0 GHz)	FSV40-N	2020-09-26	ROHDE & SCHWARZ	101068-SZ
\boxtimes	Signal Analyzer (20 Hz ~ 26.5 GHz)	N9020A	2019-12-24	AGILENT	MY50200666
\boxtimes	SIGNAL GENERATOR (100kHz~40GHz)	SMB100A	2020-07-15	Rohde&Schwarz	177633
\boxtimes	Communication Tester	CMW500	2020-05-23	Rohde&Schwarz	127521
\boxtimes	High Pass Filter	WHKX10-2700-3000- 18000-40SS	2020-07-22	WAINWRIGHT INSTRUMET	3
\boxtimes	Band rejection filter (2 400 MHz ~ 2 483.5 MHz/DC ~ 4 GHz)	WRCJV2400/2483.5- 2370/2520-60/12SS	2020-06-19	WAINWRIGHT INSTRUMET	2
\boxtimes	BI-LOG Antenna (25 MHz ~ 1 GHz)	VULB9160	2020-08-09	Schwarzbeck	9160-3368
\boxtimes	Full anechoic chamber	10m×5m×5m	-	EMERSON&CUMING	-
\boxtimes	Fixed Attenuator (10 dB, DC ~ 26.5 GHz)	56-10	2020-09-24	WEINSCHEL	72324
\boxtimes	Fixed Attenuator (20 dB, DC ~ 26.5 GHz)	8493C	2020-06-04	НР	17280
\boxtimes	Fixed Attenuator (30 dB, DC ~ 26.5 GHz)	8493C-030	2020-07-08	Agilent	77640
\boxtimes	DC power supply	E3632A	2020-06-18	HP	KR94907553
\boxtimes	Temp & Humidity Chamber	SU-642	2020-03-12	ESPEC	0093008124
\boxtimes	POWER AMP (0.1 GHz ~ 18 GHz)	CBLU1183540B-01	2020-03-20	CERNEX	28548
\boxtimes	Horn Antenna (1 GHz ~ 18 GHz)	BBHA9120D	2021-09-25	Schwarzbeck	9120D-1298
×	Power Divider-2way (DC ~ 26.5 GHz)	11636B	2020-02-15	HP	51942

Note:

- 1. All equipment is calibrated with traceable calibrations.
- 2. Each calibration is traceable to the national or international standards.

F-TP22-03 (Rev. 01) Page 10 of 53

6. TRANSMITTER MEASUREMENTS - RESULTS

6.1 Maximum transmit power (Conducted)

6.1.1 Test Setup

6.1.2 Test Procedure

Refer to ETSI EN 300 220-1 V3.1.1 (2017-02) Clause 5.2.2.1.2

The transmitter shall be connected to a dummy load as described in clause 4.3.7 and the conducted power delivered shall be measured with a measurement receiver according to clause 4.3.10.

In the case of non-constant envelope modulation, a peak detector shall be used.

The maximum gain of the antenna to be used together with the equipment shall be declared by the manufacturer and this shall be recorded in the test report.

Perp, the radiated power (e.r.p.) limit applies to the maximum measured conducted power (Pconducted) value adjusted by the antenna gain (relative to a dipole) (Perp=Pconducted+antenna gain).

F-TP22-03 (Rev. 01) Page 11 of 53

6.1.3 Limit

Frequency	Maximum effective	Channel access and	Maximum occupied
Bands/frequencies	radiated power, e.r.p.	occupation rules	bandwidth
		(e.g. Duty cycle or LBT +	
		AFA)	
865,000MHz	25 mW e.r.p.	≤ 1% duty cycle or	The whole band except
to 868,000 MHz		polite spectrum access	for audio & video
			applications
			limited to 300 kHz

F-TP22-03 (Rev. 01) Page 12 of 53

6.1.4 Test Result

TEST CONDITIONS		Effective Radiated Power (dBm)			
		868.055 MHz	868.130 MHz	868.205 MHz	
T nom	V normal	14.218	14.212	14.217	
T low	V max	14.792	14.803	14.807	
	V min	14.807	14.804	14.813	
T b:-b	V max	13.832	13.832	13.841	
T high	V min	13.844	13.850	13.849	
Measurement Uncertainty: 0.54 dB (about 95 %, $k=2$)					

Note:

1. unmodulated carrier

2. P= A + G

(P: Effective Radiated Power, A: Measured conducted power, G: Antenna gain)

3. Peak. Ant gain(dBd): 1.76 dBi - 2.15 = -0.39 dBd

F-TP22-03 (Rev. 01) Page 13 of 53

6.2 Occupied Bandwidth

6.2.1 Test Setup

6.2.2 Test Procedure

Refer to ETSI EN 300 220-1 V3.1.1 (2017-02) Clause 5.6.3.4

Step 1:

Operation of the EUT shall be started, on the highest operating frequency as declared by the manufacturer, with the appropriate test signal.

The signal attenuation shall be adjusted to ensure that the signal power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals on either side of the power envelope being included in the measurement.

Step 2:

When the trace is completed the peak value of the trace shall be located and the analyser marker placed on this peak.

<u>Step 3:</u>

The 99 % occupied bandwidth function of the spectrum analyser shall be used to measure the occupied bandwidth of the signal.

F-TP22-03 (Rev. 01) Page 14 of 53

6.2.3 Limit

The Operating Channel shall be declared and shall reside entirely within the Operational Frequency Band.

The Maximum Occupied Bandwidth at 99 % shall reside entirely within the Operating Channel defined by Flow and Fhigh.

F-TP22-03 (Rev. 01) Page 15 of 53

6.2.4 Test Result

TEST CONDITIONS	Occupied Bandwidth (kHz)			
	868.055 MHz	868.130 MHz	868.205 MHz	
T nom	28.049	28.226	28.035	
T low	27.687	27.690	27.738	
T high	27.593	27.717	27.705	
Measurement Uncertainty: 3.35 kHz (about 95 %, k = 2)				

Note:

1. Normal conditions

F-TP22-03 (Rev. 01) Page 16 of 53

6.3 Frequency error

6.3.1 Test Setup

6.3.2 Test Procedure

Refer to ETSI EN 300 220-1 V3.1.1 (2017-02) Clause 5.7.2.4

Step 1:

Operation of the EUT shall be started on the nominal frequency as declared by the manufacturer under extreme high temperature and extreme voltage conditions.

Step 2:

Operation of the EUT shall be started on the nominal frequency as declared by the manufacturer under extreme low temperature and extreme voltage conditions.

The frequency of the unmodulated carrier shall be measured and noted.

F-TP22-03 (Rev. 01) Page 17 of 53

6.3.3 Test Result

TEST CONDITIONS		Frequency error		
		868.055 MHz	868.205 MHz	
T nom	V nom	868.054637	868.504627	
Tlow	V max	-0.000090	-0.300089	
	V min	-0.000053	-0.300049	
T high	V max	-0.000046	-0.300082	
	V min	-0.000068	-0.300045	
Measurement Uncertainty: 23.1 kHz (about 95 %, $k=2$)				

Note:

1. Un-modulation test

F-TP22-03 (Rev. 01) Page 18 of 53

6.4 Tx Out Of Band Emissions

6.4.1 Test Setup

6.4.2 Test Procedure

Refer to ETSI EN 300 220-1 V3.1.1 (2017-02) Clause 5.8.3.4

Step 1:

Operation of the EUT shall be started, on the highest operating frequency as declared by the manufacturer, with the appropriate test signal.

The signal shape is recorded when stable and shall be below the spectrum mask Out Of Band for operating channel.

Step 2:

The test equipment shall be reconfigured as appropriate for the parameter shown in Table 17.

Table 17: Test Parameter Setting for Lower Out Of Band Measurement

Spectrum Analyser	Value	Notes	
Setting			
Centre frequency	fclow	The lowest Operating Frequency in the	
		band	
Span	2 x (500 kHz + fclow -	Ensures that the left most mask	
	flow_OFB)	specification remains within the span	
NOTE: flow_OFB is the lower edge of the Operational Frequency Band.			

F-TP22-03 (Rev. 01) Page 19 of 53

Operation of the EUT is restarted, with the appropriate test signal, on the lowest operating frequency as declared by the manufacturer. If the equipment is using only one operating Frequency in the operational Frequency Band, measurement shall be performed the nominal operating frequency. The signal shape is recorded when stable; and shall be below the spectrum mask for operating channel and the spectrum mask for operational frequency band.

Step 3:

The test equipment shall be reconfigured as appropriate for the parameter shown in Table 18.

Table 18: Test Parameter Setting for upper Out Of Band Measurement

Spectrum Analyser	Value	Notes	
Setting			
Centre frequency	fchigh	the highest Operating Frequency in the	
		band	
Span	2 x (500 kHz + fhigh_OFB -	Ensures that the rightmost mask	
	fchigh)	specification remains within the span	
NOTE: fhigh_OFB is the higher edge of the operational frequency Band.			

Operation of the EUT is restarted, with the appropriate test signal, on the highest Operating Frequency as declared by the manufacturer.

If the equipment is using only one Operating Frequency in the Operational Frequency Band, measurement shall be performed at the nominal Operating Frequency

The signal shape is recorded when stable and shall be below the spectrum mask for Out Of Band emissions for operating channel and for operational Frequency Band.

Step 4:

For frequency agile devices, the measurement shall be repeated in each Operational Frequency Band.

Step 5:

Where required (see clause 5.8.3.1 condition 1), the measurements in step 1 to step 5 shall be repeated under extreme test conditions.

F-TP22-03 (Rev. 01) Page 20 of 53

6.4.3 Limit

The EUT emissions level in OOB domains for the Operating Channel and the Operational Frequency Band shall be less or equal to Table 15 spectrum mask.

Domain	Frequency Range	RBWREF	Max power
		İ	limit
OOB limits applicable	f ≤ flow_OFB - 400 kHz	10 kHz	-36 dBm
to	Flow_OFB - 400 kHz \leq f \leq flow_OFB -	1 kHz	-36 dBm
Operational	200 kHz	İ	
Frequency	flow - 200 kHz ≤ f < flow_OFB	1 kHz	See Figure 6
Band (See Figure 6)	f = flow_OFB	1 kHz	0 dBm
	f = fhigh_OFB	1 kHz	0 dBm
	Fhigh_OFB < f ≤ fhigh_OFB + 200 kHz	1 kHz	See Figure 6
	Fhigh_OFB + 200 kHz \leq f \leq fhigh_OFB +	1 kHz	-36 dBm
	400 kHz	ı	
	Fhigh_OFB + 400 kHz ≤ f	10 kHz	-36 dBm
OOB limits applicable	f = fc- 2.5 x OCW	1 kHz	-36 dBm
to	$fc - 2,5 \times OCW \le f \le fc - 0,5 \times OCW$	1 kHz	See Figure 5
Operating Channel	f = fc - 0,5 x OCW	1 kHz	0 dBm
(See Figure 5)	f = fc + 0,5 x OCW	1 kHz	0 dBm
	$fc + 0.5 \times OCW \le f \le fc + 2.5 \times OCW$	1 kHz	See Figure 5
	f = fc+ 2,5 x OCW	1 kHz	-36 dBm

NOTE: f is the measurement frequency.

fc is the Operating Frequency.

Flow_OFB is the lower edge of the Operational Frequency Band.

Fhigh_OFB is the upper edge of the Operational Frequency Band.

OCW is the operating channel bandwidth.

F-TP22-03 (Rev. 01) Page 21 of 53

6.4.4 Test Result

Operating Channel Normal Temperature

F-TP22-03 (Rev. 01) Page 22 of 53

F-TP22-03 (Rev. 01) Page 23 of 53

F-TP22-03 (Rev. 01) Page 24 of 53

- Temperature : Low

F-TP22-03 (Rev. 01) Page 25 of 53

F-TP22-03 (Rev. 01) Page 26 of 53

F-TP22-03 (Rev. 01) Page 27 of 53

- Temperature : High

F-TP22-03 (Rev. 01) Page 28 of 53

F-TP22-03 (Rev. 01) Page 29 of 53

F-TP22-03 (Rev. 01) Page 30 of 53

Operating Frequency Band

Normal Temperature

F-TP22-03 (Rev. 01) Page 31 of 53

F-TP22-03 (Rev. 01) Page 32 of 53

- Temperature : Low

F-TP22-03 (Rev. 01) Page 33 of 53

F-TP22-03 (Rev. 01) Page 34 of 53

- Temperature : High

F-TP22-03 (Rev. 01) Page 35 of 53

F-TP22-03 (Rev. 01) Page 36 of 53

6.5 Unwanted emissions in the spurious domain

6.5.1 Test Setup

6.5.2 Test Procedure

- Refer to ETSI EN 300 220-1 V3.1.1 (2017-02) Clause 5.9.3.3.1

The antenna port of the EUT shall be connected to the dummy load and the output of the dummy load connected to the measuring receiver.

The operation of the EUT shall be started.

For TX mode clause 5.9.3.1 applies.

The measuring receiver shall be tuned over the frequency range shown in Table 21.

Table 21: Spurious Radiations conducted Measurement Frequency Range

Frequency Range 9 kHz to 6 GHz NOTE: The measurements need only to be performed over the frequency range 4 GHz to 6 GHz if emissions are detected within 10 dB of the specified limit between 1,5 GHz and 4 GHz.

F-TP22-03 (Rev. 01) Page 37 of 53

6.5.3 Limit

The power of any unwanted emission in the spurious domain shall not exceed the values given in Table 19.

Table 19: Spurious domain emission limits

Frequency	47 MHz to 74 MHz	Other frequencies	Frequencies
ranges	87,5 MHz to 118 MHz	≤1 000 MHz	> 1 000 MHz
Chaha	174 MHz to 230 MHz		
State	470 MHz to 790 MHz		
TX mode	-54 dBm	-36 dBm	-30 dBm
RX and all other modes	-57 dBm	-57 dBm	-47 dBm

F-TP22-03 (Rev. 01) Page 38 of 53

6.5.4 Test Result

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
No Peak Found					
Marananallianala	Below 1 GHz : 5.16 dB (about 95 %, <i>k</i> = 2)				
Measurement Uncertainty		Above 1 GHz: 5.57 dB (about 95 %, $k = 2$)			

Note:

1. Test Frequency: 868.055 MHz

2. Spurious emissions were measured from 9 kHz to 6 GHz

3. State: DUT is supported only TX mode.

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
No Peak Found					
Management Una	Below	1 GHz : 5.16	dB (about 95	%, <i>k</i> =2)	
Measurement Unce	ertainty	Above 1 GHz: 5.57 dB (about 95 %, <i>k</i> = 2)			, <i>k</i> = 2)

Note:

1. Test Frequency: 868.205 MHz

2. Spurious emissions were measured from 9 kHz to 6 GHz

3. State: DUT is supported only TX mode.

F-TP22-03 (Rev. 01) Page 39 of 53

6.6 Unwanted emissions in the spurious domain(Radiated)

6.6.1 Test Setup

F-TP22-03 (Rev. 01) Page 40 of 53

6.6.2 Test Procedure

- Refer to ETSI EN 300 220-1 V3.1.1 (2017-02) Clause 5.9.3.3.2

A suitable test site shall be selected from those described in clause C.1. The EUT shall be connected to its normal operating antenna.

The output of the test antenna shall be connected to a measuring receiver. The measurements described shall be performed using appropriate radiated measurement methods described in clause C.5.1 (or clause C.5.2) depending on the test site, followed by clause C.5.3. The operation of the EUT shall be started.

For TX mode clause 5.9.3.1 applies.

The measuring receiver shall be tuned over the frequency range shown in Table 22.

Table 22: Spurious Radiations radiated Measurement Frequency Range

Frequency Range 25 MHz to 6 GHz NOTE: The measurements need only to be performed over the frequency range 4 GHz to 6 GHz if emissions are detected within 10 dB of the specified limit between 1,5 GHz and 4 GHz.

F-TP22-03 (Rev. 01) Page 41 of 53

6.6.3 Limit

The power of any unwanted emission in the spurious domain shall not exceed the values given in Table 20.

Table 20: Parameters for TX Spurious Radiations Measurement

Operating Mode	Frequency Range	RBW _{REF} (see note 2)
Transmit mode	9 kHz ≤ f < 150 kHz	1 kHz
	150 kHz ≤ f < 30 MHz	10 kHz
	$30 \text{ MHz} \le f < f_C - m$	100 kHz
	$f_C - m \le f < f_C - n$	10 kHz
	$f_C - n \le f < f_C - p$	1 kHz
	$f_C + p < f \le f_C + n$	1 kHz
	$f_C + n < f \le f_C + m$	10 kHz
	$f_C + m < f \le 1 GHz$	100 kHz
	1 GHz < f ≤ 6 GHz	1 MHz

NOTE 1: f is the measurement frequency.

f_C is the Operating Frequency.

m is $10 \times OCW$ or 500 kHz, whichever is the greater. n is $4 \times OCW$ or 100 kHz, whichever is the greater. p

is 2,5 x OCW.

NOTE 2: If the value of RBW used for measurement is different from RBW_{REF}, use bandwidth correction from clause 4.3.10.1.

F-TP22-03 (Rev. 01) Page 42 of 53

6.6.4 Test Result

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
96.40	Н	-65.67	-57	8.67	RMS
144.59	Н	-61.77	-57	4.77	RMS
1248.58	V	-54.70	-47	7.70	RMS
Macaurana ont Un soutaintu		Below 1 GHz : 5.16 dB (about 95 %, <i>k</i> = 2)			5 %, <i>k</i> = 2)
Measurement Uncertain	ty	Above 1	GHz : 5.57 dB	(about 95 %	, k = 2)

Note:

1. Test Frequency: 869.525 MHz

2. Spurious emissions were measured from 9 kHz to 6 GHz

3. State: DUT is supported only RX mode.

F-TP22-03 (Rev. 01) Page 43 of 53

6.7 Transient power

6.7.1 Test Setup

6.7.2 Test Procedure

- Refer to ETSI EN 300 220-1 V3.1.1 (2017-02) Clause 5.10.3.2

The output of the EUT shall be connected to a spectrum analyser or equivalent measuring equipment. The measurement shall be undertaken in **zero span** mode. The analyser's centre frequency shall be set to an offset from the operating centre frequency. These offset values and their corresponding RBW configurations are listed in Table 24.

Table 24: RBW for Transient Measurement

Measurement points: offset from centre frequency	Analyser RBW	RBWREF
-0,5 x OCW - 3 kHz		
0,5 x OCW + 3 kHz	1 kHz	1kHz
Not applicable for OCW < 25 kHz		
\pm 12,5 kHz or \pm OCW	Max (RBW pattern 1, 3, 10 kHz) ≤ Offset	1kHz
whichever is the greater	frequency/6 (see note)	
-0,5 x OCW - 400 kHz	100 141-	1kHz
0,5 x OCW + 400 kHz	100 kHz	IKHZ
-0,5 x OCW -1 200 kHz	200 141-	11.11-
0,5 x OCW + 1 200 kHz	300 kHz	1kHz

NOTE: Max (RBW pattern 1, 3, 10 kHz) means the maximum bandwidth that falls into the commonly implemented 1, 3, 10 kHz RBW filter bandwidth incremental pattern of spectrum analysers.

EXAMPLE: If OCW is 25 kHz then the RBW value corresponding to one OCW offset frequency is 3 kHz. The rest of the analyser settings are listed in Table 25, and if OCW is 250 kHz then the RBW value corresponding to one OCW offset frequency is 30 kHz.

F-TP22-03 (Rev. 01) Page 44 of 53

Table 25: Parameters for Transient Measurement

Spectrum Analyser Setting	Value	Notes
VBW/RBW	10	At higher RBW values VBW may be clipped to its maximum value
Sweep time	500 ms	
RBW filter	Gaussian	
Trace Detector Function	RMS	
Trace Mode	Max hold	
Sweep points	501	
Measurement mode	Continuous sweep	

NOTE: The ratio between the number of sweep points and the sweep time shall be the same ratio as above if

different number of sweep points is used.

The used modulation shall be D-M3. The analyser shall be set to the settings of Table 25 and a measurement shall be started for each offset frequency. The EUT shall transmit at least five D-M3 test signal. The peak value shall be recorded and the measurement shall be repeated at each offset frequency mentioned in Table 24. The recorded power values shall be converted to power values measured in RBWREF by the formula in clause 4.3.10.1.

F-TP22-03 (Rev. 01) Page 45 of 53

6.7.3 Limit

The transient power shall not exceed the values given in Table 23.

Table 23: Spurious domain emission limits

Absolute offset from centre frequency	RBWREF	Peak power limit applicable at measurement points
≤ 400 kHz	1 kHz	0 dBm
> 400 kHz	1 kHz	-27 dBm

F-TP22-03 (Rev. 01) Page 46 of 53

6.7.4 Test Result

Measurement points: offset from centre frequency	Transient power (dBm)	Limit (dBm)	Margin (dB)
-0,5 x OCW - 3 kHz	-56.499	0	56.499
0,5 x OCW + 3 kHz	-57.882	0	57.882
$\pm 12,\!5$ kHz or ± 0 CW whichever is the greater	-51.317	-27	24.317
±12,5 kHz or ±0CW whichever is the greater	-53.961	-27	26.961
-0,5 x OCW - 400 kHz	-53.204	-27	26.204
0,5 x OCW + 400 kHz	-53.582	-27	26.582
-0,5 x OCW -1 200 kHz	-55.449	-27	28.449
0,5 x OCW + 1 200 kHz	-56.16	-27	29.160

Note:

1. Test Frequency: 868.055 MHz

2. Measurement Uncertainty : 0.70 dB (about 95 %, k=2)

Measurement points: offset from centre frequency	Transient power (dBm)	Limit (dBm)	Margin (dB)
-0,5 x OCW - 3 kHz	-56.159	0	56.159
0,5 x OCW + 3 kHz	-56.975	0	56.975
$\pm 12,\!5$ kHz or ± 0 CW whichever is the greater	-51.08	-27	24.080
± 12 ,5 kHz or \pm OCW whichever is the greater	-51.53	-27	24.530
-0,5 x OCW - 400 kHz	-52.852	-27	25.852
0,5 x OCW + 400 kHz	-53.544	-27	26.544
-0,5 x OCW -1 200 kHz	-55.349	-27	28.349
0,5 x OCW + 1 200 kHz	-55.859	-27	28.859

Note:

1. Test Frequency: 868.205 MHz

2. Measurement Uncertainty : 0.70 dB (about 95 %, k=2)

F-TP22-03 (Rev. 01) Page 47 of 53

7. RECEIVER MEASUREMENTS

7.1 Blocking

7.1.1 Test Setup

7.1.2 Test Procedure

Signal generator A shall be set to an appropriate modulated test signal at the operating frequency of the EUT receiver.

Signal generator B shall be unmodulated.

Measurements shall be carried out at frequencies of the unwanted signal at approximately the frequency(ies) offset(s) defined in technical requirement avoiding those frequencies at which spurious responses occur. Additional measurement points may be requested by technical requirements clause.

If several operational frequency bands are used by the equipment, at least one blocking measurement by bands has to be performed.

Step 1:

Signal generator B shall be powered off. Signal generator A shall be set to the minimum level which gives the wanted performance criterion of EUT or the reference level in Table 32, whichever is the higher The output level of generator A shall then be increased by 3 dB unless otherwise specified in technical requirement.

Step 2:

Signal generator B is powered on and set to operate at the nominal operating frequency - offset

F-TP22-03 (Rev. 01) Page 48 of 53

frequency.

Signal generator B is then switched on and the signal amplitude is adjusted to the minimum level at which the wanted performance criterion is not achieved.

With signal generator B settings unchanged, the receiver shall be replaced with a suitable RF power measuring equipment. The power into the measuring equipment shall be measured and noted.

The blocking level is then the conducted power received from generator B at the EUT antenna connector.

This can either be measured on the antenna connector for conducted test or be calculated for radiated test (see clause C.5.4).

The blocking level shall be higher or equal to the blocking power level requested in the technical requirement clause.

Step 3:

The measurement in steps 1 to 3 shall be repeated with signal offsets at required frequencies.

Step 4:

The information shown in Table 44 shall be recorded in the test report for each measured signal level and unwanted signal offset.

F-TP22-03 (Rev. 01) Page 49 of 53

7.1.3 Limit

The blocking levels at the specified frequency offsets shall be equal to or greater than the limits Table 41, except at frequencies where spurious responses are found.

Table 41: Blocking level parameters for RX category 2

Requirement	Limits
	Receiver category 2
Blocking at ± 2 MHz from OC edge fhigh and flow	≥ -69 dBm
Blocking at ± 10 MHz from OC edge fhigh and	≥ -44 dBm
flow	
Blocking at $\pm 5\%$ of Centre Frequency or 15 MHz,	≥ -44 dBm
whichever is the greater	

F-TP22-03 (Rev. 01) Page 50 of 53

7.1.4 Test Result

Frequency offset from OC edge	Blocking signal frequency (MHz)	Signal generator A (dBm)	Blocking signal level (dBm)
±2 MHz	871.225 867.225 871.825 867.825		-50
±10 MHz	879.225 859.225 879.825 859.825	-110.18	-32
Frequency offset from Center frequency	Blocking signal frequency (MHz)	Signal generator A (dBm)	Blocking signal level (dBm)
$\pm 5\%$ or ± 15 MHz (whichever is the greater)	884.225 854.225	-110.18	-32

Note:

1. Type of blocking signal : CW

2. Nominal centre frequency of receiver: 869.525 MHz

F-TP22-03 (Rev. 01) Page 51 of 53

8. PHOTOGRAPHS OF THE EUT

Photographs is described in Appendix A. Please refer to Appendix A.

F-TP22-03 (Rev. 01) Page 52 of 53

9. SETUP PHOTO

Setup photo is described in Appendix B. Please refer to Appendix B.

F-TP22-03 (Rev. 01) Page 53 of 53