

Trabajo práctico Nº1

Autores:

- Gonzalo Ezequiel Filsinger Leg. 403797
- Ignacio Ismael Perea Leg. 406265
- Manuel Leon Parfait Leg. 406599
- **Curso:** 3R1
- **Asignatura:** Tecnicas Digitales.
- Institución: Universidad Tecnológica Nacional Facultad Regional de Córdoba.

<u>Índice</u>

1.	Actividad 2.1: Conversor de BCD a Exceso-3	1
	1.1. Tabla de verdad	. 1
	1.2. Funciones lógicas de salida	. 1
	1.3. Minimización por mapas de Karnaugh	. 1
	1.4. Circuito lógico en Falstad	
2.	Actividad 2.2: Comparador Binario	2
	2.1. Tabla de verdad	. 2
	2.2. Funciones lógicas de salida	3
	2.3. Minimización por mapas de Karnaugh	. 3
	2.4. Circuito lógico en Falstad	
3.	Imagenes de Circuitos	4
	3.1. Circuito 2.1	
	3.2. Circuito 2.2	

1. Actividad 2.1: Conversor de BCD a Exceso-3

Diseñar y armar un conversor de código BCD a XS3 (exceso 3). Realizar:

- Tabla de verdad.
- Obtener las funciones lógicas de salidas con circuitos combinacionales.
- Minimizar las funciones canónicas obtenidas de la tabla de verdad.
- Armar el circuito y verificar su funcionamiento en el MiniLab.
- Armar el circuito y verificar su funcionamiento en el simulador "falstad.com"

1.1. Tabla de verdad

A	В	C	D	W	X	Y	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

Tabla de verdad para el conversor BCD a Exceso-3

1.2. Funciones lógicas de salida

- $Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot C \cdot D + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot C \cdot D + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot C \cdot D + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}$
- $Z = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot C \cdot \overline{D}$ $\overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$

1.3. Minimización por mapas de Karnaugh

`	CD AB	00	01	11	10	_
	00	0	0	0	0	Salida W
	01	0	1	1	1	Sanda W
	11	x	X	X	X	
	10	1	1	х	х	

 $W = B \cdot D + B \cdot C + A$

CD AB	00	01	11	10	_
00	0	1	1	1	Salida X
01	1	0	0	0	Sanda A
11	X	X	X	X	
10	0	1	X	X	

 $X = B \cdot \overline{C} \cdot \overline{D} + \overline{B} \cdot D + \overline{B} \cdot C$

CD AB	00	01	11	10	_
00	1	0	1	0	Salida Y
01	1	0	1	0	Sanua 1
11	x	X	X	X	
10	1	0	X	X	

 $Y = \overline{C} \cdot \overline{D} + C \cdot D$

CD AB	00	01	11	10	_
00	1	0	0	1	Salida Z
01	1	0	0	1	Sanua Z
11	X	X	X	X	
10	1	0	X	X	

 $\blacksquare W = \overline{D}$

1.4. Circuito lógico en Falstad

Figura 1: Circuito lógico implementado en Falstad para *W Bits usados para ejemplo 0101.*

Figura 2: Circuito lógico implementado en Falstad para *X Bits usados para ejemplo 0010.*

Figura 3: Circuito lógico implementado en Falstad para *Y Bits usados para ejemplo 0011.*

Figura 4: Circuito lógico implementado en Falstad para *Z Bits usados para ejemplo 0001.*

2. Actividad 2.2: Comparador Binario

El circuito de la figura es un comparador binario de dos números (A y B) de dos bits cada uno. Las salidas (S_0 , S_1 y S_2) representan la salida del comparador y $S_0 = 1$ cuando A > B, $S_1 = 1$ cuando A < B y $S_2 = 1$ A = B, en caso de no darse la condición la salida permanece en cero.

Figura 5: Comparador binario de dos bits

Realizar:

- Tabla de verdad.
- Obtener las funciones lógicas de salidas con circuitos combinacionales.
- Minimizar utilizando mapas de Karnaugh.
- Minimizar utilizando los teoremas y postulados del algebra de Boole.
- Armar el circuito y verificar su funcionamiento en el MiniLab.
- Armar el circuito y verificar su funcionamiento en el simulador "falstad.com"

2.1. Tabla de verdad

A 1	A0	B1	В0	S0	S 1	S2
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	0	1

Tabla de verdad del comparador binario de dos bits

2.2. Funciones lógicas de salida

 $\begin{array}{l} \bullet \quad S0 = \overline{A_1} \cdot A_0 \cdot \overline{B_1} \cdot \overline{B_0} + A_1 \cdot \overline{A_0} \cdot \overline{B_1} \cdot \overline{B_1} + A_1 \cdot \overline{A_0} \cdot \overline{B_1} \cdot B_0 + \\ A_1 \cdot A_0 \cdot \overline{B_1} \cdot \overline{B_0} + A_1 \cdot A_0 \cdot \overline{B_1} \cdot B_0 + A_1 \cdot A_0 \cdot B_1 \cdot \overline{B_0} \end{array}$

 $\underline{S1} = \overline{A_1} \cdot \overline{A_0} \cdot \overline{B_1} \cdot B_0 + \overline{A_1} \cdot \overline{A_0} \cdot B_1 \cdot \overline{B_0} + \overline{A_1} \cdot \overline{A_0} \cdot B_1 \cdot B_0 + \overline{A_1} \cdot A_0 \cdot B_1 \overline{B_0} + \overline{A_1} \cdot A_0 \cdot B_1 \cdot B_0 + A_1 \cdot \overline{A_0} \cdot B_1 \cdot B_0$

 $S2 = \overline{A_1} \cdot \overline{A_0} \cdot \overline{B_1} \cdot \overline{B_0} + \overline{A_1} \cdot A_0 \cdot \overline{B_1} \cdot B_0 + A_1 \cdot \overline{A_0} \cdot B_1 \cdot \overline{B_0} + A_1 \cdot A_0 \cdot B_1 \cdot B_0$

2.3. Minimización por mapas de Karnaugh

B_1B_0 A_1A_0	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
10	1	1	0	0

Mapa de Karnaugh para S_0 con la celda 1100 mostrando los tres colores

Grupo rojo: 1100, 1101, 1000, 1001.

Grupo cyan: 0100 y 1100.

Grupo verde: 1110 y 1100.

 $S_0 = A_1 \cdot \overline{B_1} + A_0 \cdot \overline{B_1} \cdot \overline{B_0} + A_1 \cdot A_0 \cdot \overline{B_0}$

B_1B_0 A_1A_0	00	01	11	10
00	0	1	1	1
01	0	0	1	1
11	0	0	0	0
10	0	0	1	0

Mapa de Karnaugh para S_1 con agrupaciones

Grupo rojo: 0011, 0010, 0111, 0110.

Grupo cyan: 0001 y 0011.

■ **Grupo verde:** 1011.

 $S_1 = \overline{A_1} \cdot B_1 + \overline{A_1} \cdot \overline{A_0} \cdot B_0 + B_1 \cdot B_0 \cdot \overline{A_0}$

B_1B_0 A_1A_0	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1
Mana da V		ah ma	C	

Mapa de Karnaugh para S_2

 $S_2 = \overline{A_1} \cdot \overline{A_0} \cdot \overline{B_1} \cdot \overline{B_0} + \overline{A_1} \cdot A_0 \cdot \overline{B_1} \cdot B_0 + A_1 \cdot \overline{A_0} \cdot B_1 \cdot \overline{B_0} + A_1 \cdot A_0 \cdot B_1 \cdot B_0$

En este caso, Karnaugh no es util para al simplificar, por lo que debemos hacerlo mediante los teoremas y postulados del álgebra de Boole.

$$S_2 = \overline{A_1} \cdot \overline{A_0} \cdot \overline{B_1} \cdot \overline{B_0} + \overline{A_1} \cdot A_0 \cdot \overline{B_1} \cdot B_0 + A_1 \cdot \overline{A_0} \cdot B_1 \cdot \overline{B_0} + A_1 \cdot A_0 \cdot B_1 \cdot B_0$$

$$\bullet (\overline{A_1} \cdot \overline{B_1}) \cdot (\overline{A_0} \cdot \overline{B_0} + A_0 \cdot B_0) + (A_1 \cdot B_1) \cdot (A_0 \cdot B_0 + \overline{A_0} \cdot \overline{B_0})$$

$$\blacksquare \overline{A_1} \cdot \overline{B_1} \cdot (\overline{A_0 \oplus B_0}) + A_1 \cdot B_1 \cdot (\overline{A_0 \oplus B_0})$$

$$\blacksquare (\overline{A_0 \oplus B_0}) \cdot (\overline{A_1 \oplus B_1})$$

2.4. Circuito lógico en Falstad

Figura 6: Circuito lógico implementado en Falstad para S_2 *Bits usados para ejemplo 1110.*

Figura 7: Circuito lógico implementado en Falstad para S_2 *Bits usados para ejemplo 0011.*

Figura 8: Circuito lógico implementado en Falstad para S_2 *Bits usados para ejemplo 1111.*

3. Imagenes de Circuitos

3.1. Circuito 2.1

Circuito lógico implementado en protoboard para la actividad 2.1

3.2. Circuito 2.2

Circuito lógico implementado en protoboard para la actividad 2.2

