Developing IEEE-TCPP Parallel/Distributed Curriculum and NSF CyberTraining Program

Sushil K Prasad

National Science Foundation

Georgia State University

Former Chair, IEEE Technical Committee on Parallel Processing (TCPP)

SCEC-18

TCPP Curriculum Initiative:

http://www.cs.gsu.edu/~tcpp/curriculum/

Outline

- IEEE-TCPP Curriculum
 - Why this curriculum initiative and what are the opportunities for the audience?
 - Key Activities and Milestones
 - ACM/IEEE 2013 CS Curriculum Taskforce
 - provided direct link to us for rigorous coverage
 - How was the curriculum formulated?
 - How is it getting evaluated?
 - Current Activities
- NSF CyberTraining Program
 - Computational and Data-driven Science for All
 - Goals; Communities of Concern
 - Award Framework

Who are we?

- Chtchelkanova, Almadena NSF
- Dehne, Frank University of Carleton, Canada
- Gouda, Mohamed University of Texas, Austin, NSF
- Gupta, Anshul IBM T.J. Watson Research Center
- JaJa, Joseph University of Maryland
- Kant, Krishna George Mason University
- La Salle, Anita NSF
- LeBlanc, Richard, Seattle University
- Lumsdaine, Andrew Indiana University
- Padua, David- University of Illinois at Urbana-Champaign

- Parashar, Manish- Rutgers
- Prasad, Sushil- Georgia State University
- Prasanna, Viktor- University of Southern California
- Robert, Yves- INRIA, France
- Rosenberg, Arnold- Northeastern
- Sahni, Sartaj- University of Florida
- Shirazi, Behrooz- Washington State University
- Sussman, Alan University of Maryland
- Weems, Chip, University of Massachussets
- Wu, Jie Temple University

Why now?

- Computing Landscape has changed
 - Mass marketing of multi-cores
 - General purpose GPUs even in laptops (and handhelds)
- A student with even a Bachelors in Computer Science (CS) or Computer Engineering (CE) must acquire skill sets to develop parallel software
 - No longer instruction in parallel and distributed computing primarily for research or high-end specialized computing
 - Industry is filling the curriculum gap with their preferred hardware/software platforms and "training" curriculums as alternatives with an eye toward mass market.

Stakeholders

- CS/CE Students
- Educators teaching core courses as well as PDC electives
- Universities and Colleges
- Employers
- Developers
- Vendors
- Authors
- Researchers
- NSF and other funding agencies
- IEEE Technical Committees/Societies, ACM SIGs,
- Curriculum Task Forces such as CS2013 ACM/IEEE

How was the curriculum formulated?

Why would they come?

Field of Dreams (1989): "If you build it, he will come"

Curriculum Planning Workshops at DC (Feb-10) and at Atlanta (April-10)

Goals

- setup mechanism and processes which would provide periodic curricular guidelines
- employ the mechanism to develop sample curriculums

Agenda:

- Review and Scope
- Formulate Mechanism and Processes
- Preliminary Curriculum Planning
 - Core Curriculum
 - Introductory and advanced courses
- Impact Assessment and Evaluation
 Plan

Main Outcomes

- Priority:Core curriculum revision at undergraduate level
- Preliminary Core Curriculum Topics
- -Sample Intro and Advanced Course Curriculums

Weekly Tele-Meetings on Core Curriculum (May-Dec'10; Aug'11-Feb'12)

Goal: Propose core curriculum for CS/CS graduates

- <u>Every individual</u> CS/CE undergraduate must be at the proposed level of knowledge as a result of their *required* coursework

Process: For each topic and subtopic

1. Assign **Bloom's classification**

K= Know the term (basic literacy)

- C = Comprehend so as to paraphrase/illustrate
- A = Apply it in some way (requires operational command)
- 1. Write learning outcomes
- 2. Identify core CS/CE courses impacted
- 3. Assign number of hours
- 4. Write suggestions for "how to teach"

4 Curriculum Areas

Architecture, Programming, Algorithms, Cross-cutting

TCPP Curriculum Example

Algorithms Topics		Bloom #	Course	Learning Outcome	
Algorithmic problems				The important thing here is to emphasize the parallel/distributed aspects of the topic	
Communication					
	broadcast	C/A	Data Struc/Algo	represents method of exchanging information - one-to-all broadcast (by recursive doubling)	
	multicast	K/C	Data Struc/Algo	Illustrate macro-communications on rings, 2D-grids and trees	
	scatter/gather	C/A	Data Structures/Algorithms		
	gossip	N	Not in core		
	Asynchrony	K	CS2	asynchrony as exhibited on a distributed platform, existence of race conditions	
Synchronization		K	CS2, Data Struc/Algo	aware of methods of controlling race condition,	
	Sorting	С	CS2, Data Struc/Algo	parallel merge sort,	
	Selection	K		min/max, know that selection can be accomplished by sorting	

Prasad/SCEC-18

How is the Curriculum being evaluated?

Early Adopter Program

EduPar/EduHPC/Euro-EduPar Workshop

series

Early Adopter Program

- Over 100 institutions worldwide
 - Spring-11: 16 institutions; Fall'11: 18;
 - Spring-12: 21; Fall-12: 25 institutions, Fall-13: 25 institutions,
 Fall-14: 25, Fall-15: 13
 - Most from US (4 year to research institutions, one high school)
 - Some from South America, a few from Europe, fewer from Asia (India, China, Indonesia, Singapore), Middle East
- Next competition: Deadline Feb 12, 2019
 - NSF/Intel funded Cash Award/Stipend up to \$1500-5000/proposal
 - Which course(s), topics, evaluation plan?
- **Instructors** for core **CS/CS** courses such as CS1/2, Systems, Data Structures and Algorithms department-wide multi-course multi-semester adoption preferred
 - Elective courses; graduate courses

Edu* Workshop Series

- EduPar-11 at Alaska, IPDPS-2011
 - Receive feedback from the Adopters
 - Stimulate discussion of curricular and other educational issues.
- EduPar-12 at Shanghai, IPDPS-2012
 - A regular satellite workshop of IPDPS
- EduPar-13 in Boston + EduHPC Workshop at SC-13 + BOF at SIGCSE-14
- EduHPC-14 @ SC-14, Nov New Orleans; EduHPC-15 in Austin, EduHPC-16, EduHPC-17, EduHPC-18 in Dallas
- EduPar-15 @IPDPS, May, India; EduPar-16, Chicago, EduPar-17 in Orlando; EduPar-18 in Vancouver
- Euro-EduPar Aug 2015; Euro-EduPar-2016, EEP-2017, EEP-18
- EduHiPC 2018 @ HiPC in Banglore for India and the region
 - Monday, Dec 2018
- EduPar-19 @ IPDPS in Rio in May'19
 - Deadline Jan 18, 2019

NOW OPEN - CDER Courseware Website

Upload and Search Course Material

Type:

- Slides, Syllabus, Tutorial, Video
- Animation, Article, Award,
 Blog, Book, Competition
- Course Template, Course
 Module, Data
- Hardware Access,Software/Tools
- Proposal, Report

Courses:

CS1, CS2, Systems, Data
 Structures and Algorithms, ...

NSF/TCPP Topic/Subtopic Classification:

AI GORITHMS

Parallel and Distributed Models and Complexity

Algorithmic Paradigms

Divide & conquer (parallel aspects)

Algorithmic problems

ARCHITECTURE PROGRAMMING CROSS-CUTTING

CDER Book Project

- Lack of suitable textbooks to integrate PDC topics into the core courses
 - CS1, CS2, Systems, and Data Structures and Algorithms
- Part I For instructors: Basic Concepts and References on what and how to teach
- Part 2: For students: Supplemental teaching material for core courses
- 9 chapters
 - over 27K chapter downloads free downloads
- 2nd Volume Published Nov'19
- Vol 3 Early Adoptor course and topic exemplars and accompanying resources

Curriculum Version II Activities

	Areas	Architecture	Algorithms	Programming
New Aspects	Area Lead/ Aspect Lead	Chip Weems	Arnold Rosenberg	Alan Sussman
Exemplars	Sushil Prasad	Karen Karavanic, Eric Freudenthal	Erik Saule, Duane Merril, David Bunde	David Brown, Eric Freudenthal
Distributed	Vaidyanathan Ramachandran	Vaidyanathan Ramachandran, Manish Parashar	Vaidyanathan Ramachandran, Costas Busch, Denis Trystram	Alan Sussman, Chi Shen
Big Data	Trilce Estrada	Craig Stunkel	Cynthia Phillips,	Debzani Deb
Energy	Krishna Kant, Craig Stunkel	Craig Stunkel, Karen Karavanic	Denis Trystram	John Dougherty
Crosscutting	Sheikh Ghafoor Arny Rosenberg Anshul Gupta	Craig Stunkel, Eric Freudenthal	Robert Robey, Martina Barnas	Sheikh Gafoor, Eric Freudenthal

Sponsorship Acknowledgements

— NSF

- NSF/TCPP Curriculum Initiative
- Early adopter competitions (stipend, travel)
- EduPar/EduHPC workshop series
- CRI-ADDO CDER (2012-15)

Intel

international early adopter institutions (stipend, travel)

- nVIDIA

 GPU cards to all the 50+ early adopters from Spring'11, Fall'11 and Spring'12 rounds.

- IEEE TCPP, IBM

Keynotes in the past

Innovations in NSF Advanced Cyberinfrastructure Research Workforce Development and Education Programs

Office of Advanced Cyberinfrastructure (OAC)
Computer and Information Science & Engineering (CISE)
National Science Foundation
Sushil K Prasad,

Questions: sprasad@nsf.gov

Dec 2018

National Science Foundation WHERE DISCOVERIES BEGIN

NSF Office of Advanced Cyberinfrastructure

Program Staff

Computing

Data

Software

Networking & Cybersecurity

Learning & Workforce Development

* IPA Appointment

Join NSF/OAC: Multiple Program Officer openings

- What does ACI/OAC do OAC's Mission?
 - 1. Advanced CI cyberinfrastructure funding in HW, SW, Data, Networking, Security
 - 2. Forward looking research and education, but...
- Status of research and education programs in OAC
 - Dwindling when arrived in 2015 participation in CAREER, CRII, REU site; NRT
 - Multidisciplinary, use-inspired focus
- My IEEE TCPP experience
 - Massive Outreach
 - Connecting with diverse, multidisciplinary research communities

- What does ACI/OAC do OAC's Mission?
 - Advanced CI cyberinfrastructure funding in HW, SW, Data, Networking, Security
 - Forward looking research and education, but...
- Status of research and education programs in OAC
 - Dwindling when arrived in 2015 participation in CAREER, CRII, REU site; NRT
 - Multidisciplinary, use-inspired focus
- My IEEE TCPP experience
 - Massive Outreach
 - Connecting with diverse, multidisciplinary research communities

- What does ACI/OAC do OAC's Mission?
 - Advanced CI cyberinfrastructure funding in HW, SW, Data, Networking, Security
 - Forward looking research and education, but...
- Status of research and education programs in OAC
 - Dwindling when arrived in 2015 participation in CAREER, CRII, REU site; NRT
 - Multidisciplinary, use-inspired focus
- My IEEE TCPP experience
 - Massive Outreach
 - Connecting with diverse, multidisciplinary research communities

- What does ACI/OAC do OAC's Mission?
 - Advanced CI cyberinfrastructure funding in HW, SW, Data, Networking, Security
 - Forward looking research and education, but...
- Status of research and education programs in OAC
 - Dwindling when arrived in 2015 participation in CAREER, CRII, REU site; NRT
 - Multidisciplinary, use-inspired focus
- My IEEE TCPP experience
 - Massive Outreach
 - Connecting with diverse, multidisciplinary research communities

- OAC mission: 2. Forwarding looking research and education
 - Multidisciplinary, use-inspired focus ambiguos
- Continual Internal discussions within OAC and NSF
- Studied current and past programs
- Workshops; NSCI, NAS study
- Converged on a key gap in training/education=>
 CyberTraining Program
 - Computational and data-driven science for all
 - 2 competitions in 2017 and 2018
 - extraordinary response and growth

- OAC mission: 2. Forwarding looking research and education
 - Multidisciplinary, use-inspired focus
- Continual Internal discussions within OAC and NSF
- Studied current and past programs
- Workshops; NSCI, NAS study
- Converged on a key gap in training/education=>
 CyberTraining Program
 - Computational and data-driven science for all
 - 2 competitions in 2017 and 2018
 - extraordinary response and growth

- OAC mission: 2. Forwarding looking research and education
 - Multidisciplinary, use-inspired focus
- Continual Internal discussions within OAC and NSF
- Studied current and past programs
- Workshops; NSCI, NAS study
- Converged on a key gap in training/education=>
 CyberTraining Program
 - Computational and data-driven science for all
 - 2 competitions in 2017 and 2018
 - extraordinary response and growth

- OAC mission: 2. Forwarding looking research and education
 - Multidisciplinary, use-inspired focus
- Continual Internal discussions within OAC and NSF
- Studied current and past programs
- Workshops; NSCI, NAS study
- Converged on a key gap in training/education => CyberTraining Program
 - Computational and data-driven science for all
 - 2 competitions in 2017 and 2018
 - extraordinary response and growth

Planning for the Future CI Ecosystem

Key Drivers

- Changing application landscape & workload profile
- Changing technology, services landscape

- Increasing availability of (exp., obs.) data
- Growing role of ML, data-driven approaches

Communities of Concern

Cyber Scientists to develop new capabilities

Professional Staff to deploy & support new capabilities

Area Scientists to exploit new capabilities

Training-based Workforce
Development for Advanced
Cyberinfrastructure (**CyberTraining**)
NSF 19-524
(replaced NSF 18-516)

Submission Deadline: Feb 6, 2019

CyberTraining –Training-based Workforce Development for Advanced Cyberinfrastructure (NSF 19-524)

Overarching and Solicitation Goals

- Overarching Goal: prepare, nurture and grow scientific <u>research</u> workforce
- Goal 1: ensure <u>broad adoption</u> of CI tools, methods, and resources, OR
- Goal 2: integrate skills into educational <u>curriculum/instructional</u> <u>material fabric</u> in
 - advanced cyberinfrastructure (CI) +
 - computational and data science and engineering (CDS&E)
 - spanning undergraduate and graduate courses.
- Innovative, scalable training, education, and curricular programs addressing
 - targeting one or both of the solicitation goals
 - Emerging needs and Unresolved bottlenecks
 - Undergrads, grad students, instructors, faculty, research CI professionals

Prasad/SCEC-18

CyberTraining –Training-based Workforce Development for Advanced Cyberinfrastructure (NSF 19-524)

Overarching and Solicitation Goals

- Overarching Goal: prepare, nurture and grow scientific <u>research</u> workforce
- Goal 1: ensure <u>broad adoption</u> of CI tools, methods, and resources, OR
- Goal 2: integrate skills into educational <u>curriculum/instructional</u> <u>material fabric</u> in
 - advanced cyberinfrastructure (CI) +
 - computational and data science and engineering (CDS&E)
 - spanning undergraduate and graduate courses.
- Innovative, scalable training, education, and curricular programs addressing
 - targeting one or both of the solicitation goals
 - Emerging needs and Unresolved bottlenecks
 - Undergrads, grad students, instructors, faculty, research CI professionals

NSF-wide Participation

- CISE/OAC Office of Advanced Cyberinfrastructure lead
 - Sushil K Prasad(Includes BD Hub)
- CISE/CCF Computing and Communication Foundation
 - Almadena Chtchelkanova
- EHR/DGE Division of Graduate Education
 - Victor Piotrowski; Chun-Hsi (Vincent) Huang
- ENG Directorates of Engineering
 - Joanne Culbertson, ENG/CMMI
 - Ronald Joslin; Christina Payne, ENG/CBET
 - Anthony Kuh, ENG/EECS
- GEO Directorate for Geosciences
 - Eva Zanzerkia
- MPS Directorate for Mathematical & Physical Sciences
 - Nigel A. Sharp, MPS/AST; Daryl W. Hess, MPS/DMR; Bogdan Mihaila, MPS/PHY
- SBE Social Behavioral and Economic Sciences
 - Sara Kiesler and Kenneth C. Land

- Intent: stimulate cofunding between OAC and one or more domains
- Consult OAC + other
 Cognizant Program Officers
 - At least one month in advance of the submission deadline

NSF-wide Participation

- CISE/OAC Office of Advanced Cyberinfrastructure lead
 - Sushil K Prasad(Includes BD Hub)
- CISE/CCF Computing and Communication Foundation
 - Almadena Chtchelkanova
- EHR/DGE Division of Graduate Education
 - Victor Piotrowski; Chun-Hsi (Vincent) Huang
- ENG Directorates of Engineering
 - Joanne Culbertson, ENG/CMMI
 - Ronald Joslin; Christina Payne, ENG/CBET
 - Anthony Kuh, ENG/EECS
- GEO Directorate for Geosciences
 - Eva Zanzerkia

- Intent: stimulate cofunding between OAC and one or more domains
- Consult OAC + other
 Cognizant Program Officers
 - At least one month in advance of the submission deadline
- MPS Directorate for Mathematical & Physical Sciences
 - Nigel A. Sharp, MPS/AST; Daryl W. Hess, MPS/DMR; Bogdan Mihaila, MPS/PHY
- SBE Social Behavioral and Economic Sciences
 - Sara Kiesler

FY 19: Award Framework

- Excellent community response
 - 40% additional submissions in 2nd round!
 - About 25 awards made in FY 16 and FY17
- Three project classes:
 - Pilot: Exploratory activities
 - \$300K, 2 yrs
 - Implementation: Broadly accessible to community
 - Small: \$500K, 4 yrs
 - Medium: foster a community,
 - \$1M, 4 yrs
 - Large-scale Project Conceptualization:
 - Planning grants for potential future institute-like CyberTraining projects
 - \$500k, 2 yrs

- No separate tracks, still 3 communities of concerns
 - CI Professionals, CI Contributors, and CI Users
- Next Deadline:
 - Feb 6, 2019
 - Webinar on Nov 26

FY 19: Award Framework

- Excellent community response
 - 40% additional submissions in 2nd round!
 - About 25 awards made in FY 16 and FY17
- Three project classes:
 - Pilot: Exploratory activities
 - \$300K, 2 yrs
 - Implementation: Broadly accessible to community
 - Small: \$500K, 4 yrs
 - Medium: foster a community,
 - \$1M, 4 yrs
 - Large-scale Project Conceptualization:
 - Planning grants for potential future institute-like CyberTraining projects
 - \$500k, 2 yrs

- No separate tracks, still 3 communities of concerns
 - CI Professionals, CI Contributors, and CI Users
- Next Deadline:
 - Feb 6, 2019
 - Webinar on Nov 26

Developing IEEE-TCPP Parallel/Distributed Curriculum and NSF CyberTraining Program

Sushil K Prasad

National Science Foundation

Georgia State University

Former Chair, IEEE Technical Committee on Parallel Processing (TCPP)

SCEC-18

TCPP Curriculum Initiative:

http://www.cs.gsu.edu/~tcpp/curriculum/