POLITECHNIKA WARSZAWSKA Wydział Elektryczny	Laboratorium w ramach przedmiotu:			
Zakład Systemów Informacyjno-Pomiarowych				
Studia: inżynierskie	Ćwiczenie nr			
Kierunek:	Temat:			
Grupa dziekańska:	Pomiary wielkości magnetycznych w polu			
Zespół:	przemiennym			
Nazwisko i Imię				
1	Dzień tygodnia	Ocena		
2	Godzina			
3	Data			

Schemat podstawowego układu połączeń z aparatem Epsteina (pełny schemat układu pomiarowego podano na Rys. 8 w instrukcji wykonawczej do ćwiczenia)

 V_2, V_3 – woltomierz wbudowany w tester HIOKI 3332 wskazujący wartość napięcia $U_2 = U_{sk2}$ lub $U_3 = [U_3 (U_{\pm r2})] \approx 1, 111 \cdot U_{2\pm r}$

W – watomierz wbudowany w tester HIOKI 3332 wskazujący wartość mocy P_w

A – amperomierz wbudowany w tester HIOKI 3332 wskazujący jednocześnie wartość skuteczną I_{sk1} oraz wartość amplitudy I_{m1} natężenia prądu płynącego przez uzwojenie z₁ R_w ≈ 200 kΩ – wartość rezystancji zastępczej obwodu napięciowego watomierza uwarunkowana wpływem głównie rezystancji dzielnika napieciowego

AE - aparat Epsteina, skorygowane jego dane (do zamieszczonych na str.12 w instrukcji podstawowej do ćwiczenia):

 $z_1 = 700 - liczba zwojów uzwojenia pierwotnego$

 $z_2 = 696 - \text{liczba zwojów uzwojenia wtórnego (skorygowana)}$

l_{śr} = 94 cm – średnia długość drogi strumienia magnetycznego w rdzeniu

m = 583,7 g – masa rdzenia wykonanego z badanej blachy elektrotechnicznej

ρ = 7650 kg/m³ – gestość materiałowa (masa właściwa) blachy

8 – liczba pasków w pakiecie

W_b = 30 mm – szerokość paska blachy

0,282 mm – grubość jednego paska blachy

t_b = 8•0,282 mm = 2,256 mm – grubość pakietu złożonych 8 pasków blachy

S = – pole przekroju poprzecznego pakietu 8 pasków blachy, rdzenia

Pomiary wielkości magnetycznych w polu przemiennym

```
oraz H_m \cdot I_{\text{sr}} = I_{m1} \cdot z_1
                                                           - prawo przepływu
H_{sk} \cdot I_{sr} = I_{sk1} \cdot Z_1
k_{mH} = H_m/H_{sk} = I_{m1}/I_{sk1} = k_{ml1} - współczynnik amplitudy krzywej przebiegu
czasowego nateżenia pola/pradu magnesujacego
                                                   - założenia realizowane w układzie
U_2 = U_{sk2} \rightarrow E_{sk2}
                                 U_3 \rightarrow E_2
U_3 = [U_3 (U_{\text{sr2}})] \approx 1, 111 \cdot U_{\text{sr2}}
                                                   - wskazanie woltomierza V<sub>3</sub> po jego
przeskalowaniu w wartości skutecznej napięcia o przebiegu sinusoidalnym
k_{kU2} = U_{sk2}/U_{sr2} \approx 1,111 \cdot (U_{sk2}/U_3)
                                                   - współczynnik kształtu krzywej przebiegu
czasowego napięcia na uzwojeniu wtórnym
B_m = U_{\text{\'e}r2}/(4 \cdot f \cdot z_2 \cdot S \cdot k_r)
                                 - amplituda indukcji magnetycznej w rdzeniu czyli
B_m = U_3/(4,444 \cdot f \cdot z_2 \cdot S \cdot k_r) - amplituda indukcji magnetycznej w rdzeniu wyznaczona
w oparciu o wskazanie woltomierza V<sub>3</sub>
B_m = U_{sk2}/(4 \cdot k_k \cdot f \cdot z_2 \cdot S \cdot k_r) - amplituda indukcji magnetycznej w rdzeniu wyznaczona
w oparciu o wskazanie woltomierza V<sub>2</sub>
k_r = 1,02 dla B_m \le 1 T; k_r = 1,022 dla 1 T < B_m < 1,5 T; k_r = 1,025 dla B_m \ge 1,5 T -
współczynnik korekcyjny
\mu_m = B_m/(\mu_0 \cdot H_m) - względna przenikalność magnetyczna amplitudowa rdzenia
μ<sub>0</sub> – przenikalność magnetyczna próżni
P_{Fe} = P_w - (E_{sk2})^2 / R_w = P_w - (U_{sk2})^2 / R_w - moc czynna tracona w rdzeniu
p<sub>mFe</sub> = P<sub>Fe</sub>/m [W/kg] – stratność magnetyczna masowa rdzenia
```

Pozostałe elementy układu do wyznaczenia dynamicznej pętli histerezy i jej parametrów metodą oscylograficzną (zamieszczone na Rys. 3, 4, 8 instrukcji podstawowej do ćwiczenia): $R_H = 1~\Omega - rezystor$ pomiarowy prądu magnesującego $R = 333~k~\Omega - rezystor$ szeregowy układu całkującego C = 463~nF - kondensator równoległy układu całkującego C = 463~nF - kondensator równoległy układu całkującego C = 50 - stała czasowa układu całkującego C = 50 - stała dzielnika napięciowego C = 50

POMIARY W PODSTAWOWYM UKŁADZIE POŁĄCZEŃ Z APARATEM EPSTEINA

- Należy przeprowadzić wymagane obliczenia załączając ich reprezentatywne przykłady, sporządzić wykresy zawierające wyznaczone charakterystyki magnesowania próbki w polu przemiennym i określone krzywe. Wskazanym jest zestawić obie krzywe B_m (H_{sk}) i B_m (H_m) na wspólnym wykresie celem ich porównania w funkcji dwóch różnych wielkości nateżenia pola magnetycznego.
- Należy porównać stratność p_{mFe} wyznaczoną dla B_m = 1 T _1,5 T_1,7 T z danymi katalogowymi blach elektrotechnicznych i zidentyfikować badany materiał.
- Należy podać źródła popełnionych błędów w wykonanych pomiarach, zaproponować sposoby zmniejszenia tych błędów, przedstawić wnioski i podsumowanie badań.

Pomiary wielkości magnetycznych w polu przemiennym

1. Wyznaczenie charakterystyk magnesowania B_m (H_{sk}) i B_m (H_m) oraz krzywych k_{mH} (B_m), µ_m (B_m), P_{Fe} (H_{sk}) i P_{Fe} (B_m)

Ustawienia w układzie: zasilanie napięciowe sinusoidalne f = 50 Hz przy R =0 Pole przekroju poprzecznego rdzenia S = m²												
L.p	Wyniki pomiarów					$k_r = 1,02$ dla $B_m \le 1$ T $k_r = 1,022$ dla 1 T < $B_m < 1,5$ T $k_r = 1,025$ dla $B_m \ge 1,5$ T Wyniki obliczeń						
	I _{sk1}	I _{m1}	U_{sk2}	U ₃	P _w	k _{mH}	k _{kU2}	H _{sk}	H _m	B _m	μm	P _{Fe}
	mA	mA	V	V	mW		-	A/m	A/m	Т	-	mW
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												

2. Wyznaczenie stratności masowej rdzenia p_{mFe}

Ustawienia w układzie: zasilanie napięciowe sinusoidalne f = 50 Hz przy R =0										
Dane rdzenia: S = m ² ; m = kg										
Ustalone warunki				napięć do		Wyniki pomiarów ≈	Wyniki			
L.p.	magneso	owania	ustawier	nia w układzie)	wyniki	obliczeń			
'	rdzenia					aproksymacji*	<u>, </u>			
	B_{m} k_{r}		$U_{\rm sk2}$	$[U_3 (U_{\pm r2})]$	\mathbf{k}_{kU2}	P_{w}	P_Fe	p _{mFe}		
	T	-	V	V	-	mW	mW	W/kg		
1	1,0									
2	1,5				•					
3	1,7									

^{*/ -} wyniki aproksymacji odcinkowej przeprowadzonej w oparciu o charakterystyki wyznaczone w pkt. 1

BADANIA W UKŁADZIE POŁĄCZEŃ APARATU EPSTEINA Z KOMPUTEROWYM SYSTEMEM POMIAROWYM przy wykorzystaniu programu EMAG

Obiektem badań jest próbka uprzednio testowana w pkt.1 i 2, uzyskane rozbieżności wyników pomiarów powinny być przedmiotem podsumowania końcowego.

- W oparciu o obraz zarejestrowanej pętli histerezy należy wyznaczyć podstawowe jej parametry wielkości magnetycznych H_m , H_c , B_m , B_r , obliczyć odpowiadające im wartości chwilowe natężenia prądu magnesującego i_1 (H_m), i_1 (H_c) oraz wartości chwilowe napięcia wtórnego u_2 (B_m), u_2 (B_r) w układzie podstawowym, także wartości chwilowe napięć u_x (H_m), u_x (H_c), u_y (B_m), u_y (B_r) na wejściach oscyloskopu.