# SOLAR POWER DESIGN FOR THE ROADSIDE UNIT

#### **OVERVIEW**

- SOLAR POWER COMPONENTS
- SYSTEM POWER CONSUMPTION
- SOLAR PANEL SIZING
- BATTERY SIZING
- CHARGE CONTROLLER
- INSTALLATION CONCEPT

#### SOLAR POWER COMPONENTS

- 12V SOLAR PANEL, 8-18V DEPENDING ON SUNLIGHT
- CHARGE CONTROLLER, MAX POWER POINT TRACKING (MPPT)
- 5V EMBEDDED SYSTEM AS LOAD
- 12V, SLA OR LIFEPO4



#### SYSTEM POWER CONSUMPTION

5 WATTS WHILE TRANSMITTING DATA, 1 W WHILE AT IDLE



Fig 1: Power consumption cycle of the roadside unit

$$P_{avg} = \frac{1}{240s} [(5W * 30s) + (1W * 210s)]$$

$$= \frac{360Ws}{240s}$$

$$= 1.5W$$

$$E_{avg} per day = P_{avg} * 24hrs$$

$$= 1.5W * 24hrs$$

$$= 36Wh$$

THEREFORE, THE ROADSIDE SYSTEM ON AVERAGE CONSUMES **36WH PER DAY** 

#### BATTERY BANK SIZING

- SYSTEM POWER CONSUMPTION = 36WH / DAY
- WE WANT THE SYSTEM TO FUNCTION EVEN WITH 2 CONTINUOUS DAYS WITHOUT SUN
- WE WANT TO DISCHARGE ONLY TO 50% TO PROLONG LIFE OF BATTERY
- Assuming 21°C and 12V battery

$$P_{bat} = \frac{36Wh * 2}{0.5} = 144Wh$$
$$I_{bat} = \frac{144Wh}{12V} = 12Ah$$

Therefore, the battery must have at least 144Wh capacity (12Ah at 12V)

#### BATTERY COMPARISONS



#### LIFEPO4

- POPULAR IN VEHICLE APPLICATIONS
- STABLE AND SAFER THEN LICOPO4
- >10 YEAR LIFETIME, 2000 CYCLES
- 3.2V NOMINAL UNTIL EXHAUSTED
- 70% APPARENT CAPACITY AT -20°C
- MPRACTICAL CHARGE RATES BELOW FREEZING (0.02-0.05C), WOULD NEED A THERMAL BLANKET





- BIG AND SLUGGISH, TAKES A LONG TIME TO FULLY CHARGE (70% IN 5-8 HOURS)
- 70% RETENTION CAPACITY AFTER 5 YEARS @ 21°C
- CAN CHARGE AT 0.3C BETWEEN -20°C TO 50°C

#### SOLAR PANEL SIZING

- SIZING BASED OFF POWER CONSUMPTION AND WORST MONTH OF SUNSHINE IN AREA
- Worst case in Toronto is December
- 2.5 HOURS AVERAGE SUN PER DAY
- ADD 30% FOR INEFFICIENCIES

Solar Panel Wattage = 
$$1.3 * \frac{36Wh}{2.5h} = 18.72W$$
  
=  $20W$ 



| Sun                                  |                |                |                |                |                |                |                |                |                |                |                |                |
|--------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                                      | JAN            | FEB            | MAR            | APR            | MAY            | JUN            | JUL            | AUG            | SEP            | ОСТ            | NOV            | DEC            |
| Total hours bright sunshine          | 88             | 110            | 156            | 185            | 229            | 256            | 276            | 241            | 188            | 148            | 84             | 75             |
| Days with measurable bright sunshine | 21             | 21             | 24             | 26             | 28             | 28             | 30             | 30             | 27             | 27             | 20             | 19             |
| Extreme daily bright sunshine hours  | 9              | 10             | 12             | 13             | 15             | 15             | 14             | 14             | 12             | 10             | 10             | 9              |
| Date                                 | Jan 22<br>1989 | Feb 20<br>1972 | Mar 27<br>1973 | Apr 22<br>1975 | May 30<br>1996 | Jun 26<br>1999 | Jul 19<br>1997 | Aug 04<br>1972 | Sep 01<br>1986 | Oct 20<br>1986 | Nov 04<br>1975 | Dec 01<br>1971 |
|                                      |                |                |                |                |                |                |                |                |                |                |                |                |

https://www.theweathernetwork.com/forecasts/statistics/suncloud/cl6158350/caon0696

Therefore, a **20W solar panel** is needed.

### CHARGE CONTROLLER

- LT3652 POWER TRACKING 2A
  BATTERY CHARGER FOR SOLAR
  POWER
- 5-32V INPUT, 2A CHARGE RATE
- ACCOMMODATES LIPO, LIFEPO4, AND SLA
- EMPLOYS MPPT (MAXIMUM POWER POINT TRACKING), WHICH ADJUSTS THE PANEL VOLTAGE TO MATCH THE BATTERY CHARGE VOLTAGE FOR MAXIMUM POWER

#### Solar Panel Input Voltage TYPICAL APPLICATION Regulation, Tracks Max Power Point to Greater Than 98% 2A Solar Panel Power Manager With 7.2V LiFePO<sub>4</sub> Battery and 17V Peak Power Tracking $T_A = 25$ °C SOLAR PANEL INPUT INPUT REGULATION VOLTAGE (V) (<40V OC VOLTAGE) CMSH3-40MA CMSH3-40MA LT3652 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 CHARGER OUTPUT CURRENT (A) 2-CELL LiFePO<sub>4</sub> (2 × 3.6V) BATTERY PACK

## INSTALLATION CONCEPT











