

面向多样化应用需求的TSN 网络定制与评估

全巍

w.quan@nudt.edu.cn

国防科技大学计算机学院

主要内容

■ TSN网络定制的必要性

■ TSN-builder: TSN网络定制与评估环境

■ 基于TSN-builder的网络定制应用

一、TSN网络定制的必要性

TSN定制需求

- 工业互联网络
 - □ 树形/环形、节点规模数十个、延迟保障、可靠性要求不一
- 天基超算平台
 - □ 星型、节点规模数个、抖动保障、可靠性要求高
- 运载火箭网络
 - □ Mesh拓扑、节点规模数个、抖动保障、可靠性要求苛刻
- 列车网络
 - □ 线性/环形、节点数个-数十个、延迟+抖动保障、可靠性要求苛刻

Area	Application	QoS Requirements		
Alca	Application	Latencies	Jitter	
Medical [47]–[49]	Tele-Surgery, Haptic Feedback	3–10 ms	< 2 ms	
Industry [50]	Indust. Automation, Control Syst.	$0.2 \mu s$ – 0.5 ms for netw. with 1 Gbit/s link speeds	meet lat. req.	
		25 μ s–2 ms for netw. with 100 Mbit/s link speeds	meet lat. req.	
	Power Grid Sys.	approx. 8ms	few μ s	
Banking [51]	High-Freq. Trading	< 1 ms	few μs	
Avionics [52]	AFDX Variants	1–128ms	few μs	
	Adv. Driver. Assist. Sys. (ADAS)	$100-250 \ \mu s$	few μs	
Automotive [53]–[56]	Power Train, Chassis Control	$< 10 \mu \mathrm{s}$	few μ s	
	Traffic Efficiency & Safety	< 5 ms	few μ s	
Infotainment [57]	Augmented Reality	7–20 ms	few μs	
	Prof. Audio/Video	2–50 ms	$< 100 \ \mu s$	

TSN的标准体系

- 时间同步
 - □ 1588v1、1588v2、AS6802
- 整形机制
 - □ 802.1Qav-基于信令的整形器,带宽保障
 - □ 802.1Qbv-时间敏感整形器,延迟、抖动保障
 - □ 802.1Qch-循环队列转发,延迟、抖动保障
 - □ ATS-异步整形器,不要求同步,延迟保障
- ■可选功能
 - □ 可靠性: 帧剥夺、帧冗余与消除
 - □ 控制相关:路径控制、流量预留等

TSN实现的关键参数

设备原型		TSN网络配置参数			控制			
网络	接口卡		交换机	网丝	各接口卡		交换机	软件
模块 选择	模块规 格	模块 选择	模块规格	模块	模块参数	模块	模块参数	
		同步	同步频率	同步	主/从	同步	主/从	调度算
同步	同步频率	分类	分类表表项数 目			分类	分类表项	
		转发	转发表表项数 目			转发	转发表项	
输入 控制	输入门控 表项数目	输入 控制	输入门控表项 数目	输入 控制	输入门控 列表;时 间槽	输入 控制	输入门控列表; 流量监管限速; 时间槽	法模块 (调度周 期);
输出 控制	输出门控 表项数目; 队列数目; 队列深度	输出 控制	输出门控表项 数目; 队列数目; 队列深度	输出 控制	输出门控 列表; 时间槽	输出 控制	输出门控列表; 令牌桶深度/速 率; 时间槽	路径规 划模块 (冗余路 径数)等
缓冲区	缓冲区大小	缓冲 区管 理	缓冲区大小	缓冲 区管 理	N/A	缓冲 区管理	N/A	

定制面临的挑战

- 应用需求到TSN功能模块的映射以及参数的自动 化生成
 - □ 根据应用需求选择TSN对应的功能模块
 - □ 确定TSN功能模块的参数
- 快速的TSN网络原型构建
 - □ 自动化TSN原型系统构建工具支撑
- TSN网络功能的精确验证与评估
 - □ 应用流量模型的软件快速仿真
 - □ 原型系统级的验证评估优化TSN模块级参数

快速网络规划定制示例

■ TTE快速定制工具链

■ 特点

- 对应用需求输入和定制 方案输出进行描述
- □ 提供对端系统和交换机 的定制
- □ 致力于实现整个定制流 程的自动化

■ 不足

- □ 目前应用需求到定制方 案的映射方案还未确定
- 」缺乏网络状态反馈和再 优化的闭环控制流程

二、TSN-builder: TSN网络定制与评估环境

TSN-builder简介

- TSN-builder是面向多样化应用需求、基于 FPGA的TSN网络快速定制与评估环境
- TSN-builder的组成

名称	功能		
专家系统	存储关于具体场景/状态与构件组合/优化策略之间的映射规则		
网络定制规划器	构件规格和网络参数的规划		
原型定制工具	根据构件库进行原型设备和控制软件定制		
应用仿真生成器	应用流量特征参数的生成和配置		
构件库	平台相关库,TSN交换库,TSN终端库和控制算法库		
可重构实验网	支持SDN组网和IFSDN组网,包括端系统、接口适配器、交换机、控制系统		
网络分析评估器	网络状态分析,包括应用传输状态,链路状态和交换节点状态等		

TSN-Builder整体架构

TSN-builder整体架构

TSN-builder特点:应用驱动的系统设计

- From Top to Down的设计模式
 - □ 根据上层应用场景需求定制底层的TSN网络,在成本 ,资源,服务质量等方面达到最优
- 系统级设计保障TSN应用的确定性和可靠性
 - □ 端系统,交换机,上层控制的高效协同
 - □ 设备定制、组网、评估,再优化的闭环设计

TSN-builder特点:应用驱动的系统设计

- 软件定义的可重构实验网
 - □ 基于FPGA阵列的可重构数据平面
 - 端到端的抽象适配平面

TSN-builder特点: 模块化的快速原型构建

- 基于硬构件的硬件模块化设计,实现功能逻辑(处理)和模块规格(资源)解耦
 - 对于相同的功能模块,不同的应用需求下所需要的资源规格不同
 - 将模块的规格参数化,在编译之前注入。提高模块的 重用率和开发效率
- 基于软构件的TSN控制器模块化设计,实现 控制器功能的灵活组建
 - □ 良定义的控制器南向接口和功能模块接口

TSN-builder特点:基于Beacon机制的网络深度验证评估

■ 基于时钟同步报文 (PTP/PCF) 封装Beacon报

文, 收集网络状态信息

- 透明时钟信息累积后可以用 于时钟同步精度和故障诊断
- □ 与数据中心中用于带内遥测的INT报文不同,Beacon报文头部不需要携带指令信息,交换机不需要进行复杂的解析,同时可以节省报文负载

TSN-builder目前进展

■ 基于FAST的可重构TSN实验网

应用层 (演示系统) 列车网络验证 TSN交换组网 TTE交换组网 SDN组网 天基超算网络 设备层 (定制板 卡) 全自主交换平台 100G智能网卡 TSN交换节点 舰船网关 教学实验平台 原型层 **FAST-ANT** ? **OpenTSN** NETEXP OpenSec OpenNE (开源项目) 模型层 同步网络 统一安全 软件定义网络 应用加速 (论文) (UniSec) (SyncNet) (DrawerPipe) (?)通信层 流水线模型、分组格式定义、统一模块ID,编程库等 (规范) 器件层 紫光+飞腾 Xilinx Zynq SOPC Altera+Intel (评估系 统)

TSN-builder目前进展

- 可重构TSN实验网---TSN控制器
 - □ TSN网络配置和TS、RC、BE流量管理
- ■构件库
 - □ 硬构件: 802.1AS、802.1Qci、802.1Qav、802.1Qbv、802.1Qch、802.1Qcc等
 - □ 软构件: 资源管理、流表管理、流量调度管理等
- 网络定制分析器
 - □ 网络状态可视化软件TSN_insight
 - □ 网络状态分析器TSN_NA (同步精度、延迟)
- 应用仿真生成器
 - □ 模拟TS、RC、BF等各类具有不同特征的流量

TSN-builder相关进展

- TTE时钟同步标准AS6802
 - □ 将AS6802运用于TSN,提高可靠性
- TSN+SDN
 - □ TSN、RC采用静态配置方式,BE流采用SDN控制

TSN-builder的开源形态-OpenTSN¹

■ OpenTSN的设计代码和文档已经在开源中国(OSCHINA)的代码托管平台码云(gitee)托管

目录	说明	子目录
bin	存放编译后的软硬件可执行文 件	tsn_CNC
		tsn_switch
		tsn_insight
doc	操作手册,设计文档和配置文	设计文档
	件	操作手册
src	OpenTSN软件和硬件源代码	软件代码
		硬件代码
tool	测试仪和流量分析器等工具	ANT测试仪
		流量分析器
sys	硬件平台相关文件	fast
		TFcard

TSN-builder的开源形态-OpenTSN

- OpenTSN进展一预计10月下旬更新gitee内容
 - □测试仪
 - 增加802.1Qbv功能、可控制TS流按不同调度时间槽发送
 - 增加逐流 (8条) 统计功能
 - 増加流量配置界面
 - □ OpenTSN硬件代码
 - 增加星型拓扑功能,Openbox四个端口都支持TSN
 - 基于Beacon机制扩展星型拓扑的配置能力
 - 増加组播功能
 - □ OpenTSN软件代码
 - 扩展星型拓扑配置和管理功能
 - □ 可执行代码和文档相关扩展

OpenTSN星型拓扑最新测试结果

■ 星型拓扑结构下1588时钟同步精度和802.1Qch测试

拓扑结构图

时间槽130us, 经过3跳, 报文长 度64字节, 理论延迟为260us-520us, 抖动260us

CQF延迟---符合CQF理论

当前CQF实现支持的 延迟抖动最小值为8us

三、基于TSN-builder的网络定制应用

天基超算原型系统

天基超算原型系统

- 基于FAST设备Openbox-S4组建天基超算平台原型系统
 - □ 拓扑结构--星型拓扑,一个中心节点,四个边缘节点
 - □ 流量类型--TSN测试仪产生的时间敏感流量和摄像头所采集的带宽 预约视频流量

设备名称	设备类型	配置	功能
TSN交换机	Openbox	TSN转发硬构件	TSN数据交换
TSN测试仪	Openbox	TSN转发硬构件 TSN仿真软构件	产生TSN测试流
TSN_CNC	Openbox	通用转发硬构件 TSN控制软构件	管理和配置时间 敏感环形网络
相机载荷	IP摄像头	-	视频数据采集
成像终端	终端设备	摄像头控制软件	视频数据显示

列车网原型系统

- 基于FAST设备Openbox-S4组建列车骨干网原型系统
 - □ 拓扑结构--环形拓扑结构
 - □ 流量类型--支持时间敏感流量和尽力转发流量

总结与展望

- TSN_builder
 - 自动化的TSN网络定制环境,生成基于FPGA的原型验证系统, 支持对原型系统的验证、评估与优化
- 后续工作
 - □ 期待和更多TSN应用单位交流合作,针对需求定制更多TSN网络 ,进一步完善和优化TSN_builder

谢 谢!