Задания

29 февраля 2016 г.

Мы будем говорить, что два множества разрешимо равномощны, если у этих множеств есть аналоги в виде типов языка хаскелл, и между этими типами существуют взаимно обратные функции языка хаскелл Аналогом множества \mathbb{N} является тип $data\ Nat = Zero\ |\ Suc\ Nat.$ Аналогом множества $\{0,1\}^*$ является тип [Bool]. Если X – подмножество $\{0,1\}^*$, то его аналогом является тип typeX = [Bool], но предполагается, что в функции $X \to a$ не передаются аргументы, выходящие за пределы X, и функции $a \to X$ не возвращают результат, выходящий за его пределы.

- 1. Докажите, что \mathbb{N} и $\{0,1\}^*$ разрешимо равномощны, где второе множество это множество последовательностей из 0 и 1.
- 2. Докажите, что $\{0,1\}^*$ и \mathbb{N}_2 разрешимо равномощны, где второе множество это множество двоичных натуральных чисел, то есть последовательностей 0 и 1 без ведущих нулей (кроме случая, когда последовательность состоит из одной цифры).
- 3. Докажите, что $\{0,1\}^*$ и множество корректных программ на какомлибо (любом) языке программирования разрешимо равномощны.
- 4. Определите множество простых чисел.
- 5. Определите следующие функции над $\mathbb Q$ и докажите их корректность:
 - (a) Функция $neg:\mathbb{Q}\to\mathbb{Q},$ возвращающая обратное по сложению число.
 - (b) Функция $inv: \mathbb{Q}_{\neq 0} \to \mathbb{Q}_{\neq 0}$, возвращающая обратное по умножению число.
 - (c) Функция $plus: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$, возвращающая сумму двух чисел.
- 6. Докажите, что существует биекция между двумя вариантами определения множества $\Pi(a \in A)B_a$, приведенных в лекции.
- 7. Пусть Vec(A, n) множество списков длины n, элементы которых лежат в множестве A. В лекции был приведен пример функции index. Опишите аналогичным образом "тип" функций (то есть в каком множестве они лежат, все эти множества будут множествами зависимых

функций), приведенных ниже. Каждая из этих функций должна принимать и возвращать элементы множеств вида Vec(A,n) и, возможно, другие аргументы.

- (a) Функция reverse, разворачивающая список.
- (b) Функция append, конкатенирующая два списка.
- (c) Функция filter, принимающая предикат и список длины n, и возвращающая

8. Задания на хаскелле:

- (a) Cm. cb.hs.
- (b) Пусть $\mathbb{N}_{\geq 2} = \{n \in \mathbb{N} \mid n \geq 2\}$ и $m : \mathbb{N}_{\geq 2} \times \mathbb{N}_{\geq 2} \to \mathbb{N}$ вовзращает произведение чисел, то есть $m(x,y) = x \cdot y$. На лекции мы видели, что существует отношение эквивалентности \sim на $\mathbb{N}_{\geq 2} \times \mathbb{N}_{\geq 2}$, такое что $(\mathbb{N}_{\geq 2} \times \mathbb{N}_{\geq 2})/\sim$ равномощно im(m). Задайте тип на хаскелле, аналогичный $(\mathbb{N}_{\geq 2} \times \mathbb{N}_{\geq 2})/\sim$ (вам понадобится задать $instance\ Eq$ для него). Определите биекцию на хаскелле между этим типом и im(m).
- (c) Определите на хаскелле два варианта рациональных чисел: один через отношение эквивалентности, другой через канонические представители. Определите биекцию между ними.
- 9. Опциональная задача для любителей программирования с зависимыми типами. Реализуйте функции из задания 7 на агде.