33

. . . .

14.74

FIG. 5

for each sample at time n , observe value $Y(n)$ for each path i from root to leaf in PHT $Y'(n, i) = \text{Predict (model, data } \& \text{ error history for path } i)$	PathErr(i) = $\frac{1}{N_i} \sum_{j=n-K}^{n} E^2(j,i)$	where N_i = No. of nodes in path i using predicted values end find $i=i_{min}$ which minimizes $PathErr(i)$; $< Yc(n-K)$, $E(n-K) > = updatePHT(i_{min}, Y'(n, i), Y(n))$ end	updatePHT(i , $Y'(n', j)$, $Y(n)$): begin find $s = \text{level 1 node containing path } i_{min}$ [out of $Y(n-K)$ and $Y'(n-K)$] $< y$, $e > = Y$ and E values of node s PHT \leftarrow subtree of PHT rooted in s to each leaf node j of new PHT, add 1st child $Y(n)$, and if $(E(n,j) > ETH)$ add 2nd child $Y'(n, j)$
90 92 98 98	100	102	108 110 112 116