

Algoritmos em Matemática Discreta (M2007)

1° teste

16/10/2018

Duração: 50 minutos

Não é permitido o uso de computadores nem de telemóveis.

Recomenda-se o uso do lápis para o preenchimento dos quadrados. Nesse caso, o resultado deve ser suficientemente escuro de modo a permitir a leitura automática.

Todas as questões têm a cotação 1,2.

Nas questões de 1 a 4, a resposta deve ser dada assinalando o quadrado respetivo, preenchendo-o completamente. Se for assinalado mais do que um quadrado, correspondendo a mais do que uma resposta para a mesma questão, a resposta será tratada como se não fosse assinalado nenhum quadrado. Cada resposta errada nessas questões é penalizada com um desconto de 0,2. A resposta, devidamente justificada, à questão 5 deve ser dada no espaço disponibilizado para o efeito.

Questão 1 linha. Quantas		-	,	ordenadas lexicente) a permutae	9		notação de uma	
143	3 🗌	139 [193	134 144	<u> </u>	<u> </u>	133	
Questão 2 De quantas formas é que se podem arranjar as letras de DABBADABBA?								
3150 2150		210 301		35 20		2510 3105		

Questão 3 Para uma sessão de fotografia, n animais (todos distintos) e k sacos de ração (todos idênticos) vão ser dispostos circularmente de forma a que hão haja sacos de ração consecutivos. De quantas formas é possível fazer estas disposições circulares?

Questão 4 Há figos, laranjas, romãs e pêssegos com os quais se formarão cabazes, cada um contendo exatamente 10 peças de fruta. Quantos cabazes diferentes é possível formar?

$ 10! \times \binom{13}{3} $	$ 10! \times \binom{10}{4} $	
$ 10! \times 10^4 $		

Questão 5 Para $n \ge 2$, determine uma fórmula para o número de Stirling S(n, n-2), que representa o número de partições do conjunto $[n] = \{1, \ldots, n\}$ com n-2 blocos. **Justifique a resposta de forma clara e concisa.** Resolução: Dada uma partição de [n] com n-2 blocos, temos duas hipóteses mutuamente exclusivas:

- 1. Há um bloco com três elementos e os restantes blocos são singulares.
- 2. Há dois blocos com dois elementos cada e os restantes blocos são singulares.

No primeiro caso, o número de partições com essa propriedade é $\binom{n}{3}$, uma vez que basta escolher os três elementos do bloco não singular e colocar os restantes em blocos singulares.

No outro caso, há $\binom{n}{4}$ escolhas possíveis para os quatro elementos que não pertencem a blocos singulares e depois $\frac{1}{2!}\binom{4}{2,2} = 3$ formas de os distribuir pelos dois blocos de dois elementos cada.

Logo, temos $S(n, n-2) = 3\binom{n}{4} + \binom{n}{3}$.