Homework 1.1 (scores=7)

HW 1: Mean-square error (MSE) — Alternative calculation

Can you show that the mean squared error of an estimator $\hat{\Theta}$ can also be calculated as:

$$\mathsf{MSE}_{\theta}(\hat{\Theta}) = \mathsf{E}_{\hat{\Theta}}[(\hat{\Theta} - \theta)^2] = \mathsf{Var}_{\hat{\Theta}}[\hat{\Theta}] + \mathsf{Bias}_{\theta}(\hat{\Theta})^2. \tag{19}$$

Suwanwimolkul (EE) Estimation Theory Semester I, 2023 68 / 221

Homework 1.2 (scores=10)

HW 2: Example for sample mean and variance

Let $X_1, X_2, ...$ be a random sample from a distribution with mean μ and variance σ^2 . Note that the empirical variance is given by the following equation and is not the same as the sample variance.

$$S_{\mu}^{2} = \frac{1}{n} \sum_{i} (X_{i} - \bar{X})^{2} \tag{20}$$

- Q1. Is the empirical variance, defined as Eq.(20), an unbiased estimator for variance σ^2 ? [Check if $\mathbf{E}[S_{\mu}^2] \sigma^2 = 0$?]
- Q2. Is sample variance S^2 an unbiased estimator for variance σ^2 ?
- Q3. At n=10,100,1000,10000, and simulate the bias of both estimators, *i.e.*, $\mathsf{E}[S_\mu^2]$ and $\mathsf{E}[S^2]$.
 - $oldsymbol{1}$ Write the description for each simulation at different n values.
 - **2** Provide **two sets of plots** for the estimators, *i.e.*, S^2 and S^2_{μ} , *i.e.*, the histogram of estimators, the mean of estimators, and the true variance.

Suwanwimolkul (EE) Estimation Theory Semester I, 2023 71 / 221

Homework 1.3 (scores=3)

HW 3: Method of Moment for exponential distribution

Let $X_1, X_2, ..., X_n$ be the random sample from an exponential distribution with parameter λ , *i.e.*, $e^{rate=\lambda}$.

- Q1. What is the estimator for λ using method of moments, *i.e.*, λ_{MME} ?
- Q2. Is the estimator biased or unbiased?
- Q3. What is the efficiency (MSE) of λ_{MME} ?
- Q4. Is λ_{MME} consistent for λ ? \Rightarrow HOMEWORK

Suwanwimolkul (EE) Estimation Theory Semester I, 2023 76 / 221