(a) Show that -it_ = The is Lorentz - invariant. We have $\frac{1}{4}(n) = \frac{1}{4}(n)$ for $(0, \frac{1}{2})$ representation $\Psi_{L}(z) = \left[\Psi_{1}(z) \right]$ for $\left(\frac{1}{2}, 0 \right)$ representation Recall how these Weyl spinors transforms under is & bj $\Psi_{R} \rightarrow e^{\frac{1}{2}(i\gamma_{j}\sigma_{j}+b_{j}\sigma_{j})}\Psi_{R} = \left(1+\frac{i}{2}\gamma_{j}\sigma_{j}+\frac{1}{2}b_{j}\sigma_{j}+...\right)\Psi_{R}$ $\Psi_{L} \rightarrow e^{\frac{1}{2}(i\gamma_{j}\sigma_{j}-b_{j}\sigma_{j})}\Psi_{L} = \left(1+\frac{i}{2}\gamma_{j}\sigma_{j}-\frac{1}{2}b_{j}\sigma_{j}+...\right)\Psi_{L}$ Giving us the fact that these Spinors infinitesimally transform like: $SY_{R} = \frac{1}{2}(iy_{j} + b_{j})\sigma_{j}Y_{R}$; $SY_{L} = \frac{1}{2}(iy_{j} - b_{j})\sigma_{j}Y_{L}$ $\delta \Psi_{R} = \frac{1}{2}(-iv_{j} + b_{j})\Psi_{R}^{\dagger} - j$ $\delta \Psi_{L}^{\dagger} = \frac{1}{2}(-iv_{j} - b_{j})\Psi_{L}^{\dagger} - j$ Note: Y; & b; are real numbers. 8(4,0,4) = [(842) -242 + 4, -2(842)] $= \left[\frac{1}{2}(iy_j - k_i)\right] Y_L \sigma_j \sigma_z Y_L + Y_1 \sigma_z \frac{1}{2}(iy_j - k_j) \sigma_j Y_L$ $= \frac{1}{2} \left[-(iy_{j} - b_{j}) + (iy_{j} - b_{j})$ This shows that the term (Y2-2 42) is inverignt under infinctesimal rotations & boosts. · This also shows that $\Psi_{L} = \Psi_{L}^{*}$ is invariant under such a transformation as it is just the Complex Conjugate of *

