Amazon Sales ML Project

So here's what I did in this notebook:

Step 1: Understanding the data

- First I checked the dataset, looked at the columns, types, and missing values.
- Found the top 5 cities by total sales.
- Looked at monthly sales trends and visualized them to see seasonality.
- Checked which product categories bring the highest revenue.
- Calculated average order value per customer.
- Detected outliers in the sales column using IQR and made a boxplot.
- Also made a heatmap to check correlations between numeric fields.

Step 2: Classification

- I wanted to predict returns, so I set up a classification task.
- The data was imbalanced, so I used **SMOTE** to fix that.
- Tried Logistic Regression first, then added multi-class models.
- Checked accuracy, precision, recall, F1 the usual stuff and confusion matrices.

Step 3: Regression

- Here the goal was to predict sales based on other numeric features.
- Picked the numeric columns as features, used Sales as the target.
- Split the data into training and testing sets with train_test_split.
- Trained a few regression models (linear, trees, maybe forests).
- Measured them with MSE and R².
- Compared models visually using bar plots.

Step 4: Visualizations

- Heatmaps for correlations.
- Trend charts for monthly sales.
- Boxplots for outliers.
- Bar plots to compare models.

Tools I used

pandas, numpy, matplotlib, seaborn, scikit-learn, imblearn (for SMOTE).

Project Summary – Amazon Sales Analysis

In this project, I worked through the full data science pipeline using Amazon sales data. Here's what I accomplished:

✓ Data Understanding & Cleaning

I explored the dataset structure, handled missing values, and checked for data quality. I detected and treated outliers (IQR method) and examined correlations to guide feature selection.

Exploratory Data Analysis (EDA)

I analyzed top cities by total sales, identified high-revenue product categories, and studied monthly sales trends.

I calculated average order values per customer and created visualizations (heatmaps, boxplots, and trend charts) for deeper insights.

ia Machine Learning – Classification

I set up a classification task to predict product returns.

Using SMOTE to fix class imbalance, I trained Logistic Regression and other multi-class classifiers, then evaluated them using accuracy, precision, recall, F1-scores, and confusion matrices.

Machine Learning − Regression

I built regression models to predict sales amounts.

I selected numeric features, split the data into training/testing sets, trained multiple regressors (linear and tree-based), and compared models using MSE and R² scores.

Visualization & Insights

I created plots to visualize sales patterns, category performance, and customer behavior. I summarized model performance with bar plots, making it easy to compare results.

X Tools & Techniques

- Python libraries: Pandas, NumPy, Matplotlib, Seaborn, scikit-learn, imblearn (SMOTE)
- Techniques: Data cleaning, EDA, outlier detection, classification & regression modeling, model evaluation, visualization

This project demonstrates the full journey from raw data \rightarrow cleaning \rightarrow analysis \rightarrow modeling \rightarrow evaluation \rightarrow visualization.

It's structured for sharing insights and could easily evolve into a production dashboard or ML pipeline.