Adatszerkezetek és algoritmusok

Horváth Géza

hetedik előadás

Előadások témái

- Az algoritmusokkal kapcsolatos alapfogalmak bevezetése egyszerű példákon keresztül.
- Az algoritmusok futási idejének aszimptotikus korlátai.
- Az adatszerkezetekkel kapcsolatos alapfogalmak. A halmaz, a multihalmaz és a tömb adatszerkezet bemutatása.
- Az adatszerkezetek folytonos és szétszórt reprezentációja. A verem, a sor és a lista.
- Táblázatok, önátrendező táblázatok, hash függvények és hash táblák, ütközéskezelés.
- 6 Fák, bináris fák, bináris keresőfák, bejárás, keresés, beszúrás, törlés.
- Wiegyensúlyozott bináris keresőfák: AVL fák.
- Piros-fekete fák.
- B-fák.
- O Gráfok, bejárás, legrövidebb út megkeresése.
- Párhuzamos algoritmusok.
- Eldönthetőség és bonyolultság, a P és az NP problémaosztályok.
- Lineáris idejű rendezés. Összefoglalás.

Mennyi idő a kulcs megtalálása?

Mennyi idő a kulcs megtalálása?

.

A lineáris és a logaritmus idejű keresés összehasonlítása

n – bemenet mérete m – futási idő

Debrecen, 2023

Kiegyensúlyozott bináris keresőfa.

- Tree-Search $\mathcal{O}(\log_2 n)$
- Tree-Insert $\mathcal{O}(\log_2 n)$
- Tree-Delete $\mathcal{O}(\log_2 n)$

- Tree-Search $\mathcal{O}(n)$
- Tree-Insert $\mathcal{O}(n)$
- Tree-Delete $\mathcal{O}(n)$

Debrecen, 2023

- Tree-Search $\mathcal{O}(n)$
- Tree-Insert $\mathcal{O}(n)$
- Tree-Delete $\mathcal{O}(n)$

- Tree-Search $\mathcal{O}(n)$
- Tree-Insert $\mathcal{O}(n)$
- Tree-Delete $\mathcal{O}(n)$

Debrecen, 2023

Kiegyensúlyozott bináris keresőfa

Definíció

Egy bináris fa kiegyensúlyozott, ha bármely csúcs esetén a baloldali és a jobboldali részfa magassága közötti különbség maximum 1.

További példák a táblán!

Kiegyensúlyozott bináris keresőfa

Tétel

Kiegyensúlyozott bináris keresőfa esetén a keresés, a beszúrás és a törlés művelete is logaritmus időben – $\mathcal{O}(\log_2 n)$ – megvalósítható.

Mely műveletek 'ronthatják el' a kiegyensúlyozottságot?

Az AVL fa

Az AVL fát 1962-ben írták le először, nevét felfedezőiről (Georgy Adelson–Velsky és Evgenii Landis) kapta. Az AVL fa olyan kiegyensúlyozott bináris keresőfa, mely elemek hozzáadása vagy törlése után, – szükség esetén, – visszaállítja a kiegyensúlyozottságot.

Műveletek AVL fákkal, mint adatszerkezetekkel

Műveletek:

- adatszerkezetek létrehozása: folytonos vagy láncolt reprezentációval
- adatszerkezetek módosítása
 - elem hozáadása: Tree-Insert + Rebalance
 - elem törlése: Tree-Delete + Rebalance
 - · elem cseréje: nincs
- elem elérése: Iterative-Tree-Search

AVL fa – egyensúly-faktor

Definíció

Az AVL fa minden csúcsához tartozik egy szám, ami a jobboldali és a baloldali részfa magasságának a különbsége. Ezt a számot egyensúly-faktornak hívjuk.

BalanceFactor(N) = Height(RightSubtree(N)) - Height(LeftSubtree(N)).

Megjegyzés: Azoknak a fáknak a magassága, melyek mindössze egy csúcsot tartalmaznak, definíció szerint 0.

AVL fa – egyensúly-faktor

Definíció

BalanceFactor(N) = Height(RightSubtree(N)) - Height(LeftSubtree(N)).

Az AVL fa – forgatás

Az AVL fa módosítása – elem hozzáadása vagy törlése – esetén néha forgatásra van szükség ahhoz, hogy a fa visszanyerje kiegyensúlyozott alakját. Ez nem mindig szükséges, csak abban az esetben, ha a módosítás következtében valamely csúcsának egyensúly-faktora kilép a [-1,0,1] intervallumból.

Alapvetően 4 különböző eset fordulhat elő, amikor forgatásra van szükség:

- Left-Left Case (LL)
- Left-Right Case (LR)
- Right-Left Case (RL)
- RIGHT-RIGHT CASE (RR)

Az AVL fa – forgatás: LL eset

Left Left Case

Balanced

Az AVL fa – forgatás: RR eset

Right Right Case

Balanced

Az AVL fa – forgatás: LR eset

Az AVL fa – forgatás: RL eset

Right Left Case

Right Right Case

Balanced

