String Theory meets Machine Learning - (Variational) Autoencoder

Robin Schneider

Uppsala University

November 2020

1/21

Unsupervised learning

What is unsupervised learning?

- Cluster analysis, anomaly detection, learning latent variables, generating data
- Supervised learning is conditional probability $p_{\theta}(y|X)$, unsupervised is learning true distribution $p_{\theta}(X) \approx p^*(X)$
- Self learning

Unsupervised learning

What is unsupervised learning?

- Cluster analysis, anomaly detection, learning latent variables, generating data
- Supervised learning is conditional probability $p_{\theta}(y|X)$, unsupervised is learning true distribution $p_{\theta}(X) \approx p^*(X)$
- Self learning

Algorithms

- K-means clustering
- Principal component analysis
- Generative Adversial Networks (GANs)
- (Variational) Autoencoder
- (Persistent homology)

Autoencoders

Figure: A fully connected autoencoder with two latent dimensions.

Applications

What are autoencoders good for?

- Data denoising
- Data compression to latent dimension
- Data visualization (clustering)
- Anomaly detection

Let's go back to out favourite data set MNIST.

MNIST autoencoder

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 28, 28, 64)	640
max_pooling2d (MaxPooling2D)	(None, 14, 14, 64)	θ
conv2d_1 (Conv2D)	(None, 12, 12, 64)	36928
max_pooling2d_1 (MaxPooling2	(None, 6, 6, 64)	θ
conv2d_2 (Conv2D)	(None, 4, 4, 64)	36928
flatten (Flatten)	(None, 1024)	θ
dense (Dense)	(None, 2)	2050
Total params: 76,546 Trainable params: 76,546 Non-trainable params: 0		

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	3136)	9408
reshape (Reshape)	(None,	7, 7, 64)	θ
conv2d_transpose (Conv2DTran	(None,	14, 14, 64)	36928
conv2d_transpose_1 (Conv2DTr	(None,	28, 28, 64)	36928
conv2d transpose 2 (Conv2DTr	(None,	28, 28, 1)	577

Total params: 83,841 Trainable params: 83,841 Non-trainable params: θ

Figure: Neural network architecture for encoder and decoder applied to MNIST data set with two latent dimensions.

MNIST denoising

Figure: On the top row noisy hand written numbers of the MNIST data set. On the bottom row the denoised pictures after running through an auto encoder.

MNIST compression

Figure: (De-)compression of MNIST images to two latent dimensions. On the top row five hand written digits and on the bottom after running through the encoder.

MNIST visualization

Figure: On the left clustering of MNIST digits to two latent dimensions via encoder, on the right decoded images of samples from the two latent dimensions.

Standard Like Model

Heterotic string compactification with three ingredients [1106.4804,1202.1757,1307.4787].

- Calabi Yau manifold M.
- 2 Line bundle sum $V = \bigotimes_{a=1}^{5} L_a$.
- **\odot** Freely acting discrete symmetry Γ for Wilson line.

For example:

$$\mathcal{M}_{5302} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}_{-48}^{6,30} \text{ and } V = \begin{bmatrix} -1 & -1 & 0 & 1 & 1 \\ -1 & -1 & 1 & 0 & 1 \\ -1 & -1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & -2 \\ 1 & 1 & -2 & 1 & -1 \\ 1 & 1 & 0 & -2 & 0 \end{bmatrix}$$

and $|\Gamma| = 4$. There are a total of 17329 such models.

SLM autoencoder

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 330)	0
dense (Dense)	(None, 32)	10592
dense_1 (Dense)	(None, 16)	528
dense_2 (Dense)	(None, 8)	136
dense_3 (Dense)	(None, 4)	36
dense_4 (Dense)	(None, 2)	10
Total params: 11 302		==========

Layer (type)	Output Shape	Param #
dense_5 (Dense)	(None, 4)	12
dense_6 (Dense)	(None, 8)	40
dense_7 (Dense)	(None, 16)	144
dense_8 (Dense)	(None, 32)	544
dense_9 (Dense)	(None, 330)	10890
reshape (Reshape)	(None, 30, 11)	θ

Total params: 11,630 Trainable params: 11,630 Non-trainable params: 0

Figure: Neural network architecture for encoder and decoder applied to SLM data set with two latent dimensions.

Trainable params: 11,302

Non-trainable params: 0

SLM visualization

Figure: Image of clustered Standard like models. First investigated in [2003.13339]. To the left with norm V < 5. To the right all SLMs.

Variational Autoencoders

Variational Autoencoders are generative modeling $p_{\theta}(X|z)$. They

- combine stochastic gradient descent and Bayesian inference into deep generative models [1312.6114,1401.4082,1906.02691],
- are with GANs the most popular generative model,
- are used in Physics, e.g. at CERN or in astronomy.

Variational Autoencoders

Variational Autoencoders are generative modeling $p_{\theta}(X|z)$. They

- combine stochastic gradient descent and Bayesian inference into deep generative models [1312.6114,1401.4082,1906.02691],
- are with GANs the most popular generative model,
- are used in Physics, e.g. at CERN or in astronomy.

Starting point: Assume there are some latent variables z controlling your data X. Take a deterministic function (decoder) $f(\theta): z \to X$. Here z is a random variable. Then $f(z,\theta)$ also becomes random.

Probability Density Function

Assume that p(z) and $p_{\theta}(X|z)$ follow some PDF we can then marginalize

$$p_{\theta}(X) = \int p_{\theta}(X, z) dz = \int p_{\theta}(X|z) p(z) dz$$
 (1)

This integral is often intractable, see e.g [1601.00670].

Probability Density Function

Assume that p(z) and $p_{\theta}(X|z)$ follow some PDF we can then marginalize

$$p_{\theta}(X) = \int p_{\theta}(X, z) dz = \int p_{\theta}(X|z) p(z) dz$$
 (1)

This integral is often intractable, see e.g [1601.00670]. We take

$$p_{\theta}(X|z) = \mathcal{N}(X|\mu = f(z,\theta), \sigma^2)$$
 (2)

and introduce an approximation to posterior $p_{\theta}(z|X)$, an inference model

$$q_{\phi}(z|x) = \mathcal{N}(X|\mu, \sigma^2), \text{ with } (\mu, \sigma^2) \sim h(X, \phi)$$
 (3)

Assume there exists no single good interpretation of z, hence the prior is

$$p(z) = \mathcal{N}(0, I). \tag{4}$$

ELBO and KL

Want to maximize $\log p_{\theta}(X)$:

$$\mathbb{E}_{q_{\phi}(z|X)}[\log p_{\theta}(X)] = \mathbb{E}_{q_{\phi}(z|X)} \left[\log \frac{p_{\theta}(X,z)}{p_{\theta}(z|X)} \right]$$

$$= \mathbb{E}_{q_{\phi}(z|X)} \left[\log \frac{p_{\theta}(X,z)}{q_{\phi}(z|X)} \frac{q_{\phi}(z|X)}{p_{\theta}(z|X)} \right]$$

$$= \mathbb{E}_{q_{\phi}(z|X)} \left[\log \frac{p_{\theta}(X,z)}{q_{\phi}(z|X)} \right] + \mathbb{E}_{q_{\phi}(z|X)} \left[\log \frac{q_{\phi}(z|X)}{p_{\theta}(z|X)} \right]$$

$$:= \mathcal{L}_{\theta,\phi}(x) \qquad := \mathcal{D}_{KL}(q_{\phi}(z|X)||p_{\theta}(z|X))$$
(5)

ELBO and KL

Want to maximize $\log p_{\theta}(X)$:

$$\mathbb{E}_{q_{\phi}(z|X)}[\log p_{\theta}(X)] = \mathbb{E}_{q_{\phi}(z|X)} \left[\log \frac{p_{\theta}(X,z)}{p_{\theta}(z|X)} \right]$$

$$= \mathbb{E}_{q_{\phi}(z|X)} \left[\log \frac{p_{\theta}(X,z)}{q_{\phi}(z|X)} \frac{q_{\phi}(z|X)}{p_{\theta}(z|X)} \right]$$

$$= \mathbb{E}_{q_{\phi}(z|X)} \left[\log \frac{p_{\theta}(X,z)}{q_{\phi}(z|X)} \right] + \mathbb{E}_{q_{\phi}(z|X)} \left[\log \frac{q_{\phi}(z|X)}{p_{\theta}(z|X)} \right]$$

$$:= \mathcal{L}_{\theta,\phi}(x) \qquad := \mathcal{L}_{\theta,\phi}(x) \qquad := \mathcal{L}_{\kappa L}(q_{\phi}(z|X)||p_{\theta}(z|X)) \qquad (5)$$

First term is Evidence Lower BOund (ELBO), second term is Kullback-Leibler divergence, which measures the relative 'difference' between two probability distributions (always positive)¹. Want to **maximize** ELBO 1. maximizes log likelihood, 2. minimize KL divergence.

¹Recall entropy: $H = -\sum_{i=1}^{N} p(x_i) \cdot \log p(x_i)$

Optimizing and Monte Carlo sampling

Gradient descent on ELBO

$$\nabla_{\theta} \mathcal{L}_{\theta,\phi} = \nabla_{\theta} \mathbb{E}_{q_{\phi}(z|X)} \left[\log \frac{p_{\theta}(X,z)}{q_{\phi}(z|X)} \right]$$

$$\simeq \nabla_{\theta} \log p_{\theta}(X,z)$$
(6)

works just fine. However, $\nabla_{\phi}\mathcal{L}_{\theta,\phi}$ more tricky, since we can't pull ∇_{ϕ} into $\mathbb{E}_{q_{\phi}(z|X)}$.

Optimizing and Monte Carlo sampling

Gradient descent on ELBO

$$\nabla_{\theta} \mathcal{L}_{\theta,\phi} = \nabla_{\theta} \mathbb{E}_{q_{\phi}(z|X)} \left[\log \frac{p_{\theta}(X,z)}{q_{\phi}(z|X)} \right]$$

$$\simeq \nabla_{\theta} \log p_{\theta}(X,z)$$
(6)

works just fine. However, $\nabla_{\phi}\mathcal{L}_{\theta,\phi}$ more tricky, since we can't pull ∇_{ϕ} into $\mathbb{E}_{q_{\phi}(z|X)}$.

Solution: Use reparametrization trick. Generate samples from $z \sim q_{\phi}(z|x)$. Reparametrize $z = g(\epsilon, X, \phi)$, where ϵ has independent distribution, e.g. $p(\epsilon) = \mathcal{N}(0,1)$. Then $\mathbb{E}_{q_{\phi}(X)} = \mathbb{E}_{p(\epsilon)}$ and we get a new Monte Carlo estimator

$$\nabla_{\phi} \mathcal{L}_{\theta,\phi} = \nabla_{\phi} \mathbb{E}_{p(\epsilon)} = \mathbb{E}_{p(\epsilon)} \left[\nabla_{\phi} \log \frac{p_{\theta}(X,z)}{q_{\phi}(z|X)} \right]$$
$$= \nabla_{\phi} \mathbb{E}_{p(\epsilon)} \left[\log p_{\theta}(X|z) + \log \frac{p(z)}{q_{\phi}(z|X)} \right]$$
(7)

KL divergence

How does the KL divergence for two Gaussians look like?

$$D_{KL}(\mathcal{N}_0||\mathcal{N}_1) = \frac{1}{2} \left(\operatorname{tr}(\Sigma_1^{-1}\Sigma_0) + (\mu_1 - \mu_0)^T \Sigma_1^{-1} (\mu_1 - \mu) - k + \ln\left[\frac{\det \Sigma_1}{\det \Sigma_0}\right] \right)$$
(8)

Hence, for k=2 latent dimensions and $\mathcal{N}_0=q_\phi(z|X)=\mathcal{N}(\mu_\phi,\sigma_\phi)$ and $\mathcal{N}_1=p(z)=\mathcal{N}(0,I)$, we simplify to KL loss

$$J_{KL} = \sigma_{\phi}^2 + \mu_{\phi}^2 - 1 - \log(\sigma_{\phi}^2) \tag{9}$$

In total:

$$J = J_{\text{cross entropy}} + J_{KL} \tag{10}$$

VAE

Figure: A fully connected Variational Autoencoder with two latent dimensions.

VAE MNIST architecture

Layer (type)	Output Shape	Param #				
conv2d_3 (Conv2D)	(None, 28, 28, 64)	640	"Layer (type)	Output	Shape	Param #
max_pooling2d_2 (MaxPooling2	(None, 14, 14, 64)	0	-dense_3 (Dense)	(None,	3136)	9408
conv2d_4 (Conv2D)	(None, 12, 12, 64)	36928	-reshape_1 (Reshape)	(None,	7, 7, 64)	0
max_pooling2d_3 (MaxPooling2	(None, 6, 6, 64)	0	-conv2d_transpose_3 (Conv2DTr	(None,	14, 14, 64)	36928
conv2d_5 (Conv2D)	(None, 4, 4, 64)	36928	-conv2d_transpose_4 (Conv2DTr	(None,	28, 28, 64)	36928
flatten_1 (Flatten)	(None, 1024)	0	-conv2d_transpose_5 (Conv2DTr	(None,	28, 28, 1)	577
dense_2 (Dense)	(None, 4)	4100	-Total params: 83,841 Trainable params: 83,841			
Total params: 78,596 Trainable params: 78,596 Non-trainable params: 0			"Non-trainable params: 0			

Figure: Architecture of encoder and decoder of the VAE.

VAE MNIST visualization

Figure: On the left clustering of MNIST digits to two latent dimensions via encoder, on the right decoded images of samples from the two latent dimensions.

VAE SLM visualization

Figure: Image of clustered Standard like models. To the left with norm V < 5. To the right all SLMs.

Application: Clustering of SLM

Clustering of SLMs

- Compactification data is usually given in terms of integer matrices
- SLM from heterotic on orbifolds [1811.05993]
- SLM from $E_8 \times E_8$ on CICY [2003.13339]
- SLM from *SO*(32) on CICY [2003.11880]

Application: Clustering of SLM

Clustering of SLMs

- Compactification data is usually given in terms of integer matrices
- SLM from heterotic on orbifolds [1811.05993]
- SLM from $E_8 \times E_8$ on CICY [2003.13339]
- SLM from *SO*(32) on CICY [2003.11880]

To do list:

- Create data
- Go down to two latent dimension to visualize
- Find clusters of SLM
- Profit.