Data distributions

Quantifying data distributions in R

Example data distribution

The following distribution comes from data posted by the US Census Bureau:

Example data distribution

The following distribution comes from data posted by the US Census Bureau:

How can we quantify the shape of this distribution?

The following R functions will be useful for computing basic statistical measures of any numerical data column (variable)

• mean(): Computes the average

- mean(): Computes the average
- median(): Computes the median

- mean(): Computes the average
- median(): Computes the median
- min(): Finds the minimum value

- mean(): Computes the average
- median(): Computes the median
- min(): Finds the minimum value
- max(): Finds the maximum value

- mean(): Computes the average
- median(): Computes the median
- min(): Finds the minimum value
- max(): Finds the maximum value
- sd(): Computes the standard deviation

- mean(): Computes the average
- median(): Computes the median
- min(): Finds the minimum value
- max(): Finds the maximum value
- sd(): Computes the standard deviation
- IQR(): Computes the interquartile range

- mean(): Computes the average
- median(): Computes the median
- min(): Finds the minimum value
- max(): Finds the maximum value
- sd(): Computes the standard deviation
- IQR(): Computes the interquartile range
- percent_rank(): Computes percentiles

Every function except percent_rank() will always return a single quantity

Every function except percent_rank() will always return a single quantity

The summarize() function is appropriate here:

Every function except percent_rank() will always return a single quantity

The summarize() function is appropriate here:

```
county %>%
  summarize(
    mean = mean(mean_work_travel),
    median = median(mean_work_travel),
    min = min(mean_work_travel),
    max = max(mean_work_travel),
    sd = sd(mean_work_travel),
    iqr = IQR(mean_work_travel)
)
```

Every function except percent_rank() will always return a single quantity

The summarize() function is appropriate here:

```
county %>%
  summarize(
    mean = mean(mean_work_travel),
    median = median(mean_work_travel),
    min = min(mean_work_travel),
    max = max(mean_work_travel),
    sd = sd(mean_work_travel),
    iqr = IQR(mean_work_travel)
)
```

mean	median	min	max	sd	iqr
22.72558	22.4	4.3	44.2	5.514159	7.1

percent_rank() operates on the full column of values, so it needs to be paired with
mutate()

percent_rank() operates on the full column of values, so it needs to be paired with mutate()

Once we have the percentiles, we can find the cutoff value for each percentile

percent_rank() operates on the full column of values, so it needs to be paired with mutate()

Once we have the percentiles, we can find the cutoff value for each percentile

percent_rank() operates on the full column of values, so it needs to be paired with mutate()

Once we have the percentiles, we can find the cutoff value for each percentile

Interpreting summary statistics: mean, sd

One standard deviation above and below the mean

Interpreting summary statistics: median, IQR

The median and inter-quartile range

Credits

License

Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International