

Lecture 3: Basic Circuit Laws

ELEC1111 Electrical and Telecommunications Engineering

Never Stand Still

Faculty of Engineering

School of Electrical Engineering and Telecommunications

CONTENTS

- 1. Circuit Elements
- 2. Circuit Variables
- 3. Ohm's Law
- 4. Series and Parallel Resistors
- 5. Voltage Division
- 6. Current Division

Passive element – absorbs energy, so that the total energy delivered to it from the rest of the circuit is non-negative.

$$w = \int_{-\infty}^{t} v \cdot i \ d\tau \ge 0$$
 for all values of t

A resistor is a passive element

Active element – capable of supplying energy.

$$w = \int_{-\infty}^{t} v \cdot i \ d\tau > 0$$
 for at least one value of t

e.g. batteries and generators

Resistors

Resistance – physical property of a circuit element that impedes the flow of charge. The element is a resistor.

Resistivity – a measure of the ability to resist the flow of charge by a certain material.

Copper – a good conductor, low resistivity
 Polystyrene – a good insulator, high resistivity
 Silicon - a good semi-conductor, intermediate resistivity

Resistors

Resistance of a conducting wire of uniform cross-section:

$$R = \frac{\rho L}{A}$$

Independent voltage source

- ✓ Provides a specified voltage which is independent of current through it or any other circuit variables.
- ✓ It is an **ideal source**, used to approximate a practical voltage source.
- ✓ No practical source is truly independent.

Symbols

Independent current source

✓ It provides a specified current which is independent of voltage across the source element or any other circuit variables.

- Circuit Elements: Battery, resistor, conducting wire.
- Circuit variables: Voltage V, current I, resistor R.

	What is known	What is needed
Case 1	Battery voltage, V & resistor value, R	Current, I
Case 2	Battery voltage, V & current, I	Resistor, R
Case 3	Current, I & resistor, R	Battery voltage, V

2. OHM'S LAW

So the voltage across a resistor, V, is directly proportional to the current, I, flowing through the resistor.

$$V = IR$$
 or $I = \frac{V}{R}$ or $R = \frac{V}{I}$

2. OHM'S LAW

✓ Ohm's law can also be written as

$$i = G \cdot v$$

here, G denotes the conductance in siemens (S) or mhos

$$G \triangleq \frac{1}{R}$$

✓ Power delivered to a resistor

$$p = vi = v.\left(\frac{v}{R}\right)$$
 \longrightarrow $p = \frac{v^2}{R}$ $p = vi = (iR).i$ \longrightarrow $p = i^2R$

- ✓ What about energy absorbed by a resistor? a passive element.
- ✓ Example: energy delivery by car battery with lights on for 4 hours?

2. OHM'S LAW - POLARITY CONVENTION

Current flows in the direction from high potential (voltage) to low potential (voltage).

Actual (physical) current flow same in both cases

2. OHM'S LAW - SHORT & OPEN CIRCUIT

SHORT CIRCUIT

As
$$R \to 0$$

$$\downarrow I \qquad R = 0$$

$$\downarrow V = IR = 0$$

OPEN CIRCUIT

As
$$R \rightarrow \infty$$

$$I = \frac{V}{R} = \lim_{R \to \infty} \frac{V}{R} = 0$$

Series: Must have the same current

$$R_T = R_1 + R_2$$

 R_T is the equivalent resistance looking into the terminals A & B

Parallel Must have the same voltage

$$\begin{bmatrix} R_1 \\ R_2 \\ A \\ R_T \end{bmatrix}$$

$$R_T = R_1 \parallel R_2$$

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\Rightarrow R_T = \frac{R_1 R_2}{R_1 + R_2}$$

PROOF FOR SERIES RESISTORS

$$IR_1 + IR_2 = V_{AB}$$

$$\therefore I = \frac{V_{AB}}{R_1 + R_2}$$

$$\therefore \quad \frac{V_{AB}}{I} = R_1 + R_2 = R_T$$
 So
$$R_T = R_1 + R_2$$

$$V_{AB} = V_A - V_B$$

 $V_{BA} = V_B - V_A$
 $V_{AB} = -V_{BA}$

PROOF FOR PARALLEL RESISTORS

We have

$$I = I_1 + I_2$$
 V

$$V_{AB} = I_1 R_1 \Longrightarrow I_1 = \frac{V_{AB}}{R_1}$$

$$V_{AB} = I_2 R_2 \Longrightarrow I_2 = \frac{V_{AB}}{R_2}$$

But

$$I = I_1 + I_2 = \frac{V_{AB}}{R_1} + \frac{V_{AB}}{R_2}$$

So

$$\frac{I}{V_{AB}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R_T}$$

That is

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$R_{T}$$

$$V_{AB}$$
= Potential difference between A & B.

$$\Rightarrow R_T = \frac{R_1 R_2}{R_1 + R_2}$$

EXAMPLE

Find the equivalent resistor between A and B?

EXAMPLE

Find the equivalent resistor between A and B?

Note: Resistors can be connected neither in series nor in parallel

The same current, *I*, flows through both resistors.

The voltage drop across each resistor is the same (because both resistors have the same resistance).
$$V = V_{AB} = V_{BC} = IR$$

Voltage drop from A to C = Voltage drop from A to C = Voltage drop from B to C

$$V_{AC} = V_{AB} + V_{BC}$$
$$V_{AC} = IR + IR = I(2R)$$

But
$$V_{AC} = V$$

$$\therefore I = \frac{V}{2R}$$

$$\therefore V_{AB} = IR = \frac{V}{2R} \times R = 0.5V$$

$$V_{BC} = 0.5V$$

What if
$$R_1 \neq R_2$$
 ?

Again,
$$V = V_1 + V_2$$

$$= IR_1 + IR_2 = I(R_1 + R_2)$$

So,
$$I = \frac{V}{R_1 + R_2}$$

and

$$V_1 = IR_1 = \frac{V}{R_1 + R_2} R_1 = \left(\frac{R_1}{R_1 + R_2}\right) V$$

similarly
$$V_2 = \left(\frac{R_2}{R_1 + R_2}\right)V$$

(Equivalent resistance in circuit is R_1+R_2 i.e. in series)

E.g.
$$R_1 = 1\Omega$$
, $R_2 = 4\Omega$ $\Rightarrow V_1 = 1/5 = 0.2V$, $V_2 = 4/5 = 0.8V$

$$= V_1 + (-V_2) \leftarrow$$
a drop of V_1

$$V_1 = IR_1$$
 and $V_2 = -IR_2$

So
$$V = IR_1 - (-IR_2) = I(R_1 + R_2)$$

An increase of $V_2 =$ a drop of $(-V_2)$

$$V_1 = \left(\frac{R_1}{R_1 + R_2}\right)V$$

$$V_1 = \left(\frac{R_1}{R_1 + R_2}\right)V$$
 $V_2 = -\left(\frac{R_2}{R_1 + R_2}\right)V$

Example

Find the value of the voltage V_1 , V_2 and V_3

The same voltage, V, exists across both resistors.

Current through each resistor is the same (because both resistors have the same resistance)

$$=>I_1=I_2=V/R$$

(Equivalent resistance

in circuit is R/2, i.e. in

Total current,
$$I = {Current through first resistor, I_1} + {Current through second resistor, I_2}$$

i.e.
$$I = I_1 + I_2$$

$$= \frac{V}{R} + \frac{V}{R} = V(\frac{1}{R} + \frac{1}{R})$$

So
$$I=rac{V}{R/2}$$
 or $rac{V}{R}=rac{I}{2}$ and $I_1=I_2=rac{V}{R}=rac{I}{2}$

What if $R_1 \neq R_2$?

Again,

$$I = I_1 + I_2$$

$$= \frac{V}{R_1} + \frac{V}{R_2} = V \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

$$=\frac{V}{\left(\frac{R_1R_2}{R_1+R_2}\right)}$$

$$R_T$$

(Equivalent resistance in circuit is $\frac{R_1R_2}{R_1+R_2}\Omega$, i.e. in parallel)

$$V = I \left(\frac{R_1 R_2}{R_1 + R_2} \right)$$

$$So \quad I_1 = \frac{V}{R_1} = \left(\frac{R_2}{R_1 + R_2}\right)I$$

$$I_2 = \frac{V}{R_2} = \left(\frac{R_1}{R_1 + R_2}\right)I$$

E.g.
$$R_1 = 1 \Omega$$
, $R_2 = 4 \Omega$
$$I_1 = V$$
, $I_2 = \frac{V}{4}$, $I = 1.25 \times V$

Equivalent resistance in circuit = $1 \Omega //4 \Omega = 0.8\Omega$

POLARITY CONVENTION AGAIN

Total current,
$$I= {\rm Current\ ``down''} + {\rm Current\ ``down''} + {\rm Inrough\ } R_2 = I_1 + \left(-I_2\right)$$

$$V=I_1R_1 = \left(-I_2R_2\right) \Longrightarrow I_1 = \frac{V}{R_1}, \ I_2 = -\frac{V}{R_2}$$

So,
$$I = \frac{V}{R_1} + \frac{V}{R_2} = V\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$
 $I_1 = \left(\frac{R_2}{R_1 + R_2}\right)I$, $I_2 = -\left(\frac{R_1}{R_1 + R_2}\right)I$

Example

Find the value of the current I_1 and I_2

Example

Analyze the below circuit to find the value of currents I_1 , I_2 , I_3

Need to apply more advanced circuit analysis methods

