

PROCESAMIENTO DE SEÑALES E IMÁGENES DIGITALES

IEE239

INGENIERÍA MECATRÓNICA

Facultad de Ciencias e Ingeniería

MORFOLOGÍA MATEMÁTICA

- En biología se utiliza la palabra morfología para describir la forma, tamaño y estructuras de los animales, plantas y microrganismos.
- En procesamiento de señales/imágenes se utiliza la denominación morfología matemática para describir y representar las formas de una región; como el contorno, el esqueleto,...
- La morfología es una herramienta matemática que nos permite analizar estructuras espaciales y planares, así como las formas de lo objetos.
- La aplicación de Morfología Matemática es exitosa por la aplicación de una matemática simple y que abre la oportunidad a tener herramientas de procesamiento de imágenes muy poderosa.

MORFOLOGÍA MATEMÁTICA

- Surge a finales de los 70's (Ecole des mines. Paris)
- Se introduce y populariza a partir de las publicación:
 - 1. Matheron, G. Elements pour une Theorie del Milieux Poreux Masson. Paris, 1967.
 - 2. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, London 1982.
- Muy útil para las aplicaciones donde la forma de los objetos son importantes.
- El enfoque clásico del procesamiento de imágenes es aproximar el cálculo matemático (concepto de función imagen, operadores lineales, ...).
- El enfoque morfológico se basa en álgebra no lineal y trabaja con conjuntos de puntos, su forma y conectividad.

Imagen en tonos de Gris

 La gráfica G (superficie de intensidad) de una imagen f es el conjunto de puntos (x,t) tal que x pertenece al plano de f y t = f(x):

$$G(f) = \{(x, t) \in \mathbb{Z}^n \times \mathbb{N}_0 | t = f(x) \}$$

• El subgráfico SG de una imagen f es el conjunto de puntos de $\mathbb{Z}^n \times \mathbb{N}_0$ que están debajo de la gráfica de la imagen:

$$SG(f) = \{(x, t) \in \mathbb{Z}^n \times \mathbb{N}_0 | 0 \le t \le f(x) \}$$

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	0	0	1	3	2	2	4	4	0	5	5	3	0	0

Señal discreta 1-D de f

Imagen en tonos de Gris

(b) Graph of the signal f defined in (a).

(c) Subgraph of f.

(d) Grey tone image.

(e) Subgraph of (d).

Fuente: Morphological Image Analysis, Principles and Applications, P. Soille

OPERACIONES LÓGICAS

 Las operaciones lógicas primarias en procesamiento de imagen son AND, OR y NOT (complemento).

OPERACIONES LÓGICAS

Propiedades de las Transformaciones de Imágenes

- Invariante a la traslación.
- Invariante a la rotación.
- Linealidad.
- Idempotencia.
- Invariante a la descomposición por umbral
- Extensividad

Propiedades de las Transformaciones de Imágenes

- Ψ es invariante a la traslación $\Leftrightarrow \forall f, \forall b, \Psi(f_b) = [\Psi(f)]_b$
- Ψ es invariante a la rotación $\Leftrightarrow \Psi\Theta = \Theta\Psi$
- Ψ es lineal $\Leftrightarrow \Psi(\sum_i a_i f_i) = \sum_i a_i [\Psi f_i]$
- Ψ es idempotente $\Leftrightarrow \Psi\Psi = \Psi$
- Ψ es invariante a la descomposición por umbral $\Leftrightarrow \Psi = \sum_{t=1}^{t_{max}} \Psi(\mathcal{CS}_t)$
 - CS (Cross-section) Sección transversal.

Ejemplos:

$$f \lor g = \sum_{t=1}^{t_{max}} [CS_t(f) \cup CS_t(g)]$$

$$f \wedge g = \sum_{t=1}^{t_{max}} [CS_t(f) \cap CS_t(g)]$$

f	0	1	2	3	3	4	2	0	g	3	2	2	4	1	0	2	3
>0																	
>1																	
>2																	
>3																	

f	g				
	>0				
	>1				
	>2				
	>3				

Propiedades de las Transformaciones de Imágenes

- Ψ es extensiva $\Leftrightarrow I \leq \Psi$
- Ψ es anti-extensiva $\Leftrightarrow I \geq \Psi$
- Ψ es creciente $\Leftrightarrow \forall f, g, f \leq g \Rightarrow \Psi(f) \leq \Psi(g)$
- Ψ y Φ son duales respecto a la operación complemento $\mathcal{C} \Leftrightarrow \Psi = \mathcal{C}\Phi\mathcal{C}$
 - Ψ es idempotente $\Rightarrow \Phi$ es idempotente
 - Ψ es extensiva $\Rightarrow \Phi$ es anti-extensiva
 - Ψ es anti-extensiva $\Rightarrow \Phi$ es extensiva
 - Ψ es creciente $\Rightarrow \Phi$ es creciente
- Ψ es dual a sí mismo respecto a la operación complemento $C \Leftrightarrow \Psi = C\Psi C$

Propiedades de las Transformaciones de Imágenes

Dos conjuntos son homotópicos si sus árboles de homotopía son idénticos.

• Una transformación es homotópica si para cualquier imagen f, $\Psi(f)$ es homotópica a f.

P. Soille

Elemento Estructurante

• Un Elemento Estructurante es un conjunto pequeño usado para probar la imagen bajo estudio.

Erosión

• Sean $A \vee B$ conjuntos en \mathbb{Z}^2 . La Erosión de A por B (SE) se caracteriza como: $A \ominus B = \{x | (B)_x \subseteq A\} = \varepsilon_B(A)$

Fuente: Digital Image Processing. R.C. Gonzalez y R. Woods.

Dilatación

Sean A y B conjuntos en \mathbb{Z}^2 . La Dilatación de A por B se caracteriza como:

$$A \oplus B = \{x | (\widehat{B})_x \cap A \neq \phi\}$$

= \{x | [(\hat{B})_x \cap A] \subseteq A\} = \delta_B(A)

Fuente:

Digital Image Processing. R.C. Gonzalez y R. Woods.

Propiedades de la Erosión y Dilatación

- No preservan la homotopía de la imagen.
- Son duales una respecto a la otra: $\varepsilon_B = C \delta_B C$
- Son invariantes a la traslación
- Son crecientes:

$$f \le g \Longrightarrow \begin{cases} \varepsilon(f) \le \varepsilon(g) \\ \delta(f) \le \delta(g) \end{cases}$$

Son operadores planos (solo usan SE planos)

$$\delta_B = \sum_{t=1}^{t_{max}} \delta_B(CS_t) \qquad \qquad \varepsilon_B = \sum_{t=1}^{t_{max}} \varepsilon_B(CS_t)$$

Composición:

$$\delta_{B2}\delta_{B1} = \delta_{(\delta_{\widehat{B2}}B1)}$$
 $\varepsilon_{B2}\varepsilon_{B1} = \varepsilon_{(\delta_{\widehat{B2}}B1)}$

• Relación de Orden $\varepsilon_B \leq \delta_B$

Opening

- Opening suaviza el contorno, eliminando las saliencias que se encuentra en los bordes. $A \circ B = (A \ominus B) \oplus B$ $\gamma_B(f) = \delta_{\hat{B}}[\varepsilon_B(f)]$
- También se puede definir a base de operaciones de conjunto:

$$\gamma_B(A) = \bigcup \{B_{\chi} | B_{\chi} \subseteq A\}$$

Opening

Digital Image Processing. R.C. Gonzalez y R. Woods.

Opening

Closing

- Closing es similar al opening, suaviza los contornos, eliminando los agujeros que se encuentran en el contorno.
- Se puede expresar como la composición de una dilatación seguida de una erosión.

$$A \cdot B = (A \oplus B) \ominus B$$

$$\phi_B(f) = \varepsilon_{\widehat{B}}[\delta_B(f)]$$

• Aquí aplica: "¿El SE está dentro del fondo?". Si es afirmativo, entonces todos los puntos del SE pertenecen al complemento del "closing" del conjunto.

$$\phi_B(X) = [\cup \{B | B \subseteq X^c\}]^c$$

Closing

Closing

Digital Image Processing. R.C. Gonzalez y R. Woods.

Propiedades del Open y el Close

- Invariante a la traslación del SE.
- Idempotencia: $\gamma \gamma = \gamma$; $\phi \phi = \phi$
- Dualidad: $\gamma_B = C\phi_B C$
- El open es anti-extensivo y el close extensivo:

$$\gamma_B \leq I \leq \phi_B$$

Operadores crecientes:

$$f \le g \Longrightarrow \begin{cases} \gamma(f) \le \gamma(g) \\ \phi(f) \le \phi(g) \end{cases}$$

