SMK NEGERI 1 CIBINONG

BAB 1. LOGIKA MATEMATIKA

A. PERNYATAAN

Definisi : Kalimat yang jelas nilai kebenaranya (Benar atau Salah) dan di simbolkan dengan p , q atau r

Contoh:

 $p \cong Bogor terletak di Jawa Timur (S)$

 $q \cong Jakarta adalah ibu kota Indonesia (B)$

 $r \cong Siapakah$ presiden RI yang pertama ?

(Bukan Peryataan)

 $s \cong Mudah - mudahan tahun kebeli mobil baru.$

(Bukan Pernayataan)

 $t \cong x + 4 = 6$ (Kalimat Terbuka)/ bukan pernyataan

B. Kalimat Berkuantor

a. Universal (∀(p)) dibaca : Semua / Setiap(Pernyataan)

Contoh:

- Semua Ikan bernafas dengan Insang (S)
- b. Eksistensial (∃(p)) dibaca : Ada / Beberapa(pernyataan)

Contoh:

• Ada Kendaraan yang berbahan bakar Solar (B)

C. Negasi / Ingkaran (simbol : \sim) dibaca ; bukan/tidak Contoh :

p ≅ Bogor terletak di Jawa Timur (S)

 \sim p \cong Bogor tidak terletak di Jawa Timur (B)

 $q \cong Jakarta adalah ibu kota Indonesia (B)$

 \sim q \cong Jakarta bukan ibu kota Indonesia (B)

Negasi Kalimat berkuantor

- ∀(p) ≅ Semua Ikan bernafas dengan Insang (S)
 ∼(∀(p)) ≅ ∃(p) ≅ Ada ikan tidak bernafas dengan insang (B)
- \exists (p) \cong Ada Kendaraan yang berbahan bakar Solar(B)
- \sim (\exists (p)) \cong \forall (p) \cong Semua Kendaraan tidak berbahan bakar solar (S)

D. Kalimat Majemuk

1. Konjungsi " p \wedge q " di baca : p dan q

CONTOH:

p ≅ Jakarta adalah ibu kota Indonesia

q ≅ Jakarta terletak di Pulau Jawa

sehingga:

 $p \wedge q \cong$ Jakarta adalah ibu kota Indonesia dan terletak di pulau Jawa

2. Disjungsi " p ∨ q" di baca : p atau q

p ≅ Gunung Merapi adalah gunung tertinggi di pulau jawa

q ≅ Gunung Merapi adalah gunung berapi

Sehingga:

 $p \lor q \cong$ Gunung Merapi adalah gunung tertinggi di pulau jawa atau Gunung Berapi.

3. Implikasi "p ⇒ q" dibaca : jika p maka q

p ≅ Gunung Anak Krakatau Erupsi

 $q \cong Ada$ warga banten panik

Sehingga:

 $p \Longrightarrow q \cong jika$ gunung anak krakatau erupsi maka ada warga banten panik

4. Bi implikasi "p ⇔ q" dibaca : p jika dan hanya jika

 $p \cong Harga BBM naik$

q ≅ Harga Sembako naik

Sehingga

 $p \Longleftrightarrow q \cong$ Harga BBM naik jika dan hanya jika Harga sembako naik.

E, TABEL KEBENARAN

p	q	p∧q	p∨q	$p \Rightarrow q$	p⇔q
В	В	В	В	В	В
В	S	S	В	S	S
S	В	S	В	В	S
S	S	S	S	В	В

p	q	~(p ∧ q)	~(p ∨ q)	~(p ⇒ q)
В	В	S	S	S
В	S	В	S	В
S	В	В	S	S
S	S	В	В	S

Р	q	~p	~q	~p ^ ~q	~p ∨ ~q	p ∧ ~q
В	В	S	S	S	S	S
В	S	S	В	S	В	В
S	В	В	S	S	В	S
S	S	В	В	В	В	S

KESIMPULAN

F. Negasi dari pernyataan Majemuk

1.
$$\sim$$
(p \wedge q) \cong \sim p \vee \sim q

2.
$$\sim$$
(p \vee q) \cong \sim p \wedge \sim 0

3.
$$\sim (p \Longrightarrow q) \cong p \land \sim q$$

Contoh:

1. p ∧ q ≅ Jakarta adalah ibu kota Indonesia dan terletak di pulau Jawa

Sehingga:

 \sim (p \wedge q) \cong Jakarta bukan ibu kota Indonesia atau tidak terletak di pulau jawa.

2. p ∨ q ≅ Gunung Merapi adalah gunung tertinggi di pulau jawa atau Gunung Berapi.

Sehingga:

 \sim (p \vee q) \cong Gunung Merapi bukan gunung tertinggi di pulau jawa dan bukan gunung berapi

3. $p \Longrightarrow q \cong$ Jika gunung anak krakatau erupsi maka ada warga banten panik

Sehingga:

 \sim (p \Longrightarrow q) \cong Gunung anak krakatau erupsi dan semua warga banten tidak panik.

G. KONVERS, INVERS DAN KONTRAPOSISI DARI PERNYATAAN

IMPLIKASI

Contoh:

 $p \Longrightarrow q \cong jika$ gunung anak krakatau erupsi maka ada warga $banten\ panik$

Konvers ($q \Rightarrow p$)	Jika Ada warga banten panik maka Gunung anak krakatau
	erupsi

Invers (~p ⇒ ~q)	jika Gunung anak krakatau tidak erupsi maka Semua
	warga Banten tidak panik
Kontraposisi (~q ⇒ ~p)	Jika Semua warga Banten
, , , , , , , , , , , , , , , , , , ,	tidak panik maka Gunung
	anak krakatau tidak erupsi

H. PENARIKAN KESIMPULAN

1. MODUS PONENS

Formula:

Premis (1): $p \Rightarrow q$

Premis (2) : p

.. q

Contoh:

Premis (1): Jika Harga BBM naik maka harga sembako naik

Premis (2): Harga BBM naik

∴ Harga sembako naik

2. MODUS TOLLENS

Formula:

Premis (1): $p \Rightarrow q$

Premis (2): $\sim q$

∴ ~p

Contoh:

Premis (1): Jika Harga BBM naik maka harga sembako naik

Premis (2): Harga sembako tidak naik

∴ Harga BBM tidak naik

3. MODUS SILOGISME

Formula:

Premis (1): $p \Rightarrow q$

Premis (2) : $q \Rightarrow r$

 $\therefore p \Rightarrow r$

Contoh:

P(1): Jika Harga BBM naik maka harga sembako naik

P(2): Harga Sembako naik maka Semua warga pusing

... Jik haega BBM naik maka semua warga pusing

Latihan soal

Buka: web: matematika-4dh3.blogspot.com

BAB. II TRANSFORMASI GEOMETRI

1. TRANSLASI (PERGESERAN)

Formulasi:

$$A {x \choose y} \xrightarrow{T {a \brack b}} A' {x + a \choose y + b}$$

Contoh:

Tentukanlah bayangan △ABC berikut Oleh translasi

$$T\begin{bmatrix} -6\\ -4 \end{bmatrix}$$

Formulasi;

$$A \begin{pmatrix} 2 \\ 3 \end{pmatrix} \xrightarrow{T \begin{bmatrix} -6 \\ -4 \end{bmatrix}} A' \begin{pmatrix} 2 - 6 \\ 3 - 4 \end{pmatrix} = A' \begin{pmatrix} -4 \\ -1 \end{pmatrix}$$

$$B\begin{pmatrix} 4\\1 \end{pmatrix} \xrightarrow{T\begin{bmatrix} -6\\-4 \end{bmatrix}} A'\begin{pmatrix} 4-6\\1-4 \end{pmatrix} = A'\begin{pmatrix} -2\\-3 \end{pmatrix}$$

$$A \begin{pmatrix} 6 \\ 4 \end{pmatrix} \xrightarrow{T \begin{bmatrix} -6 \\ -4 \end{bmatrix}} A' \begin{pmatrix} 6 - 6 \\ 4 - 4 \end{pmatrix} = A' \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

2. REFLEKSI (PENCERMINAN)

A. Refleksi terhadap sumbu X

Formulasi:

$$A {x \choose y} \xrightarrow{sumbu\ X} A' {x \choose -y}$$

Contoh;

$$A\binom{2}{3} \xrightarrow{sumbu\ Y} A'\binom{-2}{3}$$

$$B\binom{4}{1} \xrightarrow{sumbu\ Y} A'\binom{-4}{1}$$

$$A\binom{6}{4} \xrightarrow{sumbu\ Y} A'\binom{-6}{4}$$

Formulasi:

$$A\binom{2}{3} \xrightarrow{sumbu\ X} A'\binom{2}{-3}$$

$$B\begin{pmatrix} 4\\1 \end{pmatrix} \xrightarrow{sumbu\ X} A'\begin{pmatrix} 4\\-1 \end{pmatrix}$$

$$A \begin{pmatrix} 6 \\ 4 \end{pmatrix} \xrightarrow{sumbu\ X} A' \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$

Formulasi :

$$A \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{garis \ x=h} A' \begin{pmatrix} 2h - x \\ y \end{pmatrix}$$

B. Refleksi terhadap sumbu Y

Formulasi:

$$A \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{sumbu\ Y} A' \begin{pmatrix} x \\ -y \end{pmatrix}$$

Contoh:

Contoh:

Formulasi:

$$A\binom{2}{3} \xrightarrow{sumbu \ x=-1} A'\binom{2(-1)-2}{3} = A'\binom{-4}{3}$$

$$B\binom{4}{1} \xrightarrow{sumbu \ x=-1} A'\binom{2(-1)-4}{1} = A'\binom{-6}{1}$$

$$C\binom{6}{4} \xrightarrow{sumbu \ x=-1} A'\binom{2(-1)-6}{4} = A'\binom{-8}{4}$$

D. Refleksi terhadap garis y = h

Formulasi:

$$\left(A \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{sumbu \ y=h} A' \begin{pmatrix} x \\ 2h-y \end{pmatrix}\right)$$

Contoh:

Formulasi:

$$A \begin{pmatrix} 2 \\ 4 \end{pmatrix} \xrightarrow{sumbu \ y=1} A' \begin{pmatrix} 2 \\ 2(1) - 4 \end{pmatrix} = A' \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

$$B \begin{pmatrix} 4 \\ 2 \end{pmatrix} \xrightarrow{sumbu \ y=1} A' \begin{pmatrix} 4 \\ 2(1) - 2 \end{pmatrix} = A' \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

$$C\binom{6}{5} \xrightarrow{sumbu \ y=1} A'\binom{6}{2(1)-5} = A'\binom{6}{-3}$$

3. ROTASI (PERPUTARAN)

Tips:

Rotasi Terhadap titi pusat (0,0)

A. Sejauh 90° berlawan arah Putaran jarum jam (+)

Formulasi:

$$A {x \choose y} \xrightarrow{R_{90}} A' {-y \choose x}$$

$$I \qquad \qquad II$$

Contoh:

$$A \begin{pmatrix} -5 \\ 4 \end{pmatrix} \xrightarrow{R_{90}} A' \begin{pmatrix} -4 \\ -5 \end{pmatrix}$$

$$\parallel \qquad \qquad \parallel \parallel$$

$$B \begin{pmatrix} 6 \\ -8 \end{pmatrix} \xrightarrow{R_{90}} B' \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

$$\parallel \qquad \qquad \parallel$$

B. Sejauh 90° searah Putaran jarum jam (-)

Formulasi:

$$\begin{pmatrix}
A \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{R_{-90}} A' \begin{pmatrix} y \\ -x \end{pmatrix} \\
I \qquad IV$$

Contoh:

$$A \begin{pmatrix} 5 \\ 4 \end{pmatrix} \xrightarrow{R_{-90}} A' \begin{pmatrix} 4 \\ -5 \end{pmatrix}$$

$$\downarrow V$$

$$B \begin{pmatrix} 6 \\ -8 \end{pmatrix} \xrightarrow{R_{-90}} B' \begin{pmatrix} -8 \\ -6 \end{pmatrix}$$

$$\downarrow V$$

$$\parallel I$$

LATIHAN SOAL

Bayangan Titik Δ ABC oleh refleksi terhadap titik pusat (0,0) sejauh 90° berlawanan arah putaran jarum jam.

C. Sejauh 270° berlawan arah Putaran jarum jam(+)

Formulasi : $R_{270}^{\circ} = R_{-90}^{\circ}$

$$\begin{array}{c|c}
 & A \begin{pmatrix} x \\ y \end{pmatrix} & \xrightarrow{R_{270} = R_{-90}} & A' \begin{pmatrix} y \\ -x \end{pmatrix} \\
 & I & IV
\end{array}$$

Contoh:

$$A \begin{pmatrix} -5 \\ 4 \end{pmatrix} \xrightarrow{R_{270} = R_{-90}} A' \begin{pmatrix} -4 \\ 5 \end{pmatrix}$$

$$II \qquad I$$

$$B \begin{pmatrix} 6 \\ -8 \end{pmatrix} \xrightarrow{R_{270} = R_{-90}} B' \begin{pmatrix} -8 \\ -6 \end{pmatrix}$$

$$IV \qquad III$$

D. Sejauh 270° searah Putaran jarum jam (-)

Formulasi : $R_{-270}^{\circ} = R_{90}^{\circ}$

$$\begin{pmatrix}
A \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{R_{-270} = R_{90}} A' \begin{pmatrix} -y \\ x \end{pmatrix}$$

$$\parallel$$

Contoh:

$$A \begin{pmatrix} 5 \\ 4 \end{pmatrix} \xrightarrow{R_{-270} = R_{90}} A' \begin{pmatrix} -4 \\ 5 \end{pmatrix}$$

$$I \qquad \qquad II$$

$$B \begin{pmatrix} 6 \\ -8 \end{pmatrix} \xrightarrow{R_{-270} = R_{90}} B' \begin{pmatrix} 8 \\ 6 \end{pmatrix}$$

$$IV \qquad \qquad I$$

LATIHAN SOAL

Bayangan Titik Δ ABC oleh refleksi terhadap titik pusat (0,0) sejauh 270° searah putaran jarum jam

E. Sejauh 180° berlawan arah /searah Putaran jarum jam (+/-)

Formulasi : $R_{180^{\circ}} = R_{-180^{\circ}}$

$$\begin{pmatrix}
 A \begin{pmatrix} x \\ y \end{pmatrix} & \xrightarrow{R_{180} = R_{-180}} A' \begin{pmatrix} -x \\ -y \end{pmatrix} \\
 I & III$$

Contoh:

$$A \begin{pmatrix} 5 \\ 4 \end{pmatrix} \xrightarrow{R_{180} = R_{-180}} A' \begin{pmatrix} -5 \\ -4 \end{pmatrix}$$

$$B\begin{pmatrix} -7\\ 8 \end{pmatrix} \xrightarrow{R_{180}=R_{-180}} A'\begin{pmatrix} 7\\ -8 \end{pmatrix}$$

LATIHAN SOAL

Bayangan \triangle ABC dibawah ini oleh Rotasi terhadap titik pusat (0,0) sejauh 90° berlawanan jarum jam.

4. DILATASI (PERBESARAN)

Terhadap titik pusat (0,0) dengan faktor skala k maka :

Formulasi:

$$A \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{D[0,k]} A' \begin{pmatrix} kx \\ ky \end{pmatrix}$$

Contoh:

$$A {\binom{-5}{2}} \xrightarrow{D[0,3]} A' {\binom{-15}{6}}$$

$$B\begin{pmatrix} 8 \\ -12 \end{pmatrix} \xrightarrow{D\left[0,\frac{1}{2}\right]} B'\begin{pmatrix} 4 \\ -6 \end{pmatrix}$$

LATIHAN SOAL

Bayangan ΔABC oleh dilatasi terhdap titik pusat (0,0) dengan faktor skala k = 2

Formulasi:

$$A \begin{pmatrix} 3 \\ 1 \end{pmatrix} \xrightarrow{D[0,2]} A' \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$

$$B \begin{pmatrix} 5 \\ 4 \end{pmatrix} \xrightarrow{D[0,2]} B' \begin{pmatrix} 10 \\ 8 \end{pmatrix}$$

$$A \begin{pmatrix} 2 \\ 4 \end{pmatrix} \xrightarrow{D[0,2]} A' \begin{pmatrix} 4 \\ 8 \end{pmatrix}$$

