UE Modélisation et Programmation

Matière Modélisation

- Responsable UE et matière : Marc Pantel http://pantel.perso.enseeiht.fr
- Cours : 5 séances (Marc Pantel)
- ► Travaux Dirigés : 7 séances
- Travaux Pratiques en binôme : 7 séances
- Examen écrit 60% : Similaire TD, Formulaire fourni (sans autres documents)
- ► Bureau d'étude en temps limité 40% : Similaire TP
- Attention : Le vocabulaire et les notations dans ce domaine sont multiples et pas encore stabilisés. Cette matière est la synthèse de nombreux documents. Il n'y a pas d'ouvrage de référence associé.

Objectifs

Informatique et Mathématiques

- Les sciences physiques, de la vie, humaines et sociales s'appuient sur des modèles mathématiques pour la compréhension, la prédiction et la prescription (définition d'un nouveau produit).
 - Modèle en science (compréhension et prédiction) : Approximation de la réalité
 - Le modèle doit être aussi proche que possible de la réalité.
 - Modèle en ingénierie : Prescription de la réalité La réalité doit être aussi proche que possible du modèle.
- Qu'en est il de l'informatique ?
 - Science formelle similaire aux mathématiques
 - Thèse de Church-Turing (calculabilité) : Les programmes informatiques permettent de calculer les même fonctions que les mathématiques
 - Correspondance/Isomorphisme de Curry-Howard : Un programme P bien typé de type τ est isomorphe à la preuve en logique constructive d'une formule isomorphe à τ
- Etude des techniques de modélisation de programmes et de langages
- Etude des techniques de preuve de programmes

Plan

Modélisation

- Modélisation et Preuve de programmes
 - ► Logique des propositions : C1, TD1, TD2, TP1
 - ► Logique des prédicats : C2, TD3, TP2
 - Preuve de programmes fonctionnels : C3, TD4, TP3
 - Preuve de programmes impératifs : C4, TD5, TP4
- ► Modélisation des langages : C5, TD6, TD7, TP5, TP6, TP7
 - ► Théorie des langages
 - Expressions régulières, Grammaires
 - XML, JSON

Notation

Règles de déduction

Soient $J_1, \ldots J_n$ et J des jugements :

	Notation	Signification
Déduction	$\frac{J_1}{J}$	si J_1 et et J_n sont valides alors J est valide
Axiome		J est valide

- $lackbox{lack}$ sémantique : $(\bigwedge_{i\in[1\cdots n]}J_i) o J$ et op J
- méthode de chaînage arrière : pour prouver J, il suffit de prouver J_1 et ... et J_n
- Exemples de jugements :
 - ► Typage : $x_1 : \tau_1, ..., x_n : \tau_n \vdash e : \tau$
 - ► Calcul: $x_1 \mapsto v_1, \dots, x_n \mapsto v_n \vdash e \Rightarrow v$
 - ightharpoonup Preuve : $H_1, \ldots, H_n \vdash \varphi$

Systèmes formels

Définitions

- Syntaxe concrète : Vision utilisateur
 Logique : Formule avec constantes, variables, opérateurs, lieurs (définition variables) et parenthèses
- Syntaxe abstraite : Vision information structurée
 Logique : Arbre étiqueté par constantes, variables, opérateurs, lieurs sans parenthèses
- Sémantique : Signification Logique : Valide, Satisfiable, Invalide, Insatisfiable, Inconnue Notation $\models \varphi$
- Axiomatisation de la sémantique Modélise la sémantique par la construction de preuves (démonstration) Approche syntaxique de la sémantique Logique : Notation $\vdash \varphi$
- Mécanisation de l'axiomatisation
 Construction automatique des preuves

Systèmes formels

Propriétés souhaitées

- Consistance sémantique : La sémantique ne peut pas être
 - Valide et Invalide
 - Satisfiable et Insatisfiable
- Complétude sémantique : La sémantique est toujours
 - ► Valide ou Invalide
 - Satisfiable ou Insatisfiable
 - Jamais inconnue
- ► Correction axiomatisation : $\forall \varphi$. $\vdash \varphi \rightarrow \models \varphi$
- ► Complétude axiomatisation : $\forall \varphi$. $\models \varphi \rightarrow \vdash \varphi$ Exemple : Incomplétude de l'arithmétique (théorème de Gödel)
- Décidabilité : Mécanisation construit une preuve en temps fini
- Semi-décidabilité : Mécanisation calcule en temps fini quand la preuve existe (valide, satisfiable)
- Indécidabilité : Mécanisation peut ne pas se terminer Exemple : Test d'arrêt de la machine de Turing

Syntaxe

Vision algébrique

- Notons Φ l'ensemble dénombrable des formules bien formées de logique des propositions
- Eléments lexicaux :
 - Propositions (variables propositionnelles) : mots, phrases, . . . (ensemble \mathcal{P} dénombrables)
 - ▶ Opérateurs : \bot , \top , \neg , \lor , \land , \rightarrow , \leftrightarrow
 - Contrôle structure (associativité, priorité) : (,)
- ► Eléments grammaticaux :
 - Constantes (Opérateurs zéro-aire) : Propositions, \top (Té) et \bot (Anti-Té)
 - ▶ Opérateur unaire : ¬ (Négation)
 - Opérateurs binaires associatifs et commutatifs : V (disjonction), A (conjonction)
 - ▶ Opérateur binaire commutatif : ↔ (équivalence)
 - lacktriangle Opérateur binaire associatif à droite : ightarrow (implication)
 - ▶ Priorité croissante : \rightarrow , \leftrightarrow , \lor , \land , \neg

Syntaxe

Vision déductive

Soit \mathcal{P} un ensemble dénombrable de variables propositionnelles

Version classique

Axiomes
$$\overline{\top} \in \Phi$$
 $\overline{\bot} \in \Phi$ $\overline{P} \in \Phi$ $P \in \mathcal{P}$

Déductions $\frac{\varphi \in \Phi}{\neg \varphi \in \Phi}$ $\frac{\varphi \in \Phi}{(\varphi \circ p \ \psi) \in \Phi}$ $(op \in \{\land, \lor, \rightarrow, \leftrightarrow\})$

Version stratifiée (élimination paradoxe de Russel)

$$\begin{split} \Phi &= \bigcup_{i \in \mathbb{N}} \Phi_i \\ \overline{\top \in \Phi_0} \quad \overline{\bot \in \Phi_0} \quad \overline{P \in \Phi_0} \quad (P \in \mathcal{P}) \\ \frac{\varphi \in \Phi_n}{\neg \varphi \in \Phi_{n+1}} \quad \frac{\varphi \in \Phi_m \quad \psi \in \Phi_n}{(\varphi \text{ op } \psi) \in \Phi_{m+n+1}} \quad (op \in \{\land, \lor, \rightarrow, \leftrightarrow\}) \end{split}$$

Tables de vérité

- ▶ Valeurs de vérité notées V (vrai) et F (faux) Autres notations possibles (T et F, 1 et 0, ...)
- Opérateurs définis pour chaque valeur de vérité des opérandes

\neg	
F	V
V	F

\wedge	F	$\mid V \mid$
F	F	F
V	F	V

	<i>F</i>	V
F	F	V
V	V	V

\rightarrow	<i>F</i>	V
F	V	V
V	F	V

\leftrightarrow	F	V
F	V	F
V	F	V

► Notation sous la forme de formules élémentaires :

A	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
F	F	V	F	F	V	V
F	V	V	F	V	V	F
V	F	F	F	V	F	F
V	V	F	V	V	V	V

Construction tables de vérité

- ▶ Formule $\varphi \in \Phi$ contient variables $\{P_i\}_{i \in [1 \cdots n]} \subseteq \mathcal{P}$
- ightharpoonup Variables propositionnelles P_i reçoivent valeurs de vérité
- \triangleright *n* variables : 2^n lignes
- ▶ Discriminant ligne $\bigwedge_{i \in [1 \cdots n]} \alpha_i$ avec : $\left\{ \begin{array}{l} \alpha_i = P_i \text{ si valeur } V \\ \alpha_i = \neg P_i \text{ si valeur } F \end{array} \right.$
- ▶ 1 colonne par variable propositionnelle
- ▶ 1 colonne par opérateur de la formule
- dont 1 colonne pour la formule complète

Exemple de tables de vérité

- ▶ Formule : $(A \land B) \rightarrow (B \lor A)$
- ► Table de vérité

Discriminant	A	В	$A \wedge B$	$B \vee A$	$(A \land B) \to (B \lor A)$
$\neg A \wedge \neg B$	F	F	F	F	V
$\neg A \wedge B$	F	V	F	V	V
$A \wedge \neg B$	V	F	F	V	V
$A \wedge B$	V	V	V	V	V

Vocabulaire

Selon sa table de vérité, $\varphi \in \Phi$ est :

- ▶ Valide, tautologie, . . . : Toutes les lignes VNotée $\models \varphi$
- Satisfiable, consistante, cohérente, . . . : Au moins une ligne V (modèle de φ) Si L est son discriminant alors $\models L \rightarrow \varphi$ Notée $\neg \models \neg \varphi$ Si Valide alors Satisfiable
- Invalide, . . . :

 Au moins une ligne FSi et seulement si $\neg \varphi$ satisfiable
 Notée $\neg \models \varphi$
- Insatisfiable, inconsistante, incohérente, antilogie, . . . : Toutes les lignes F Si et seulement si $\neg \varphi$ valide Notée $\models \neg \varphi$ Si Insatisfiable alors Invalide

Relation d'équivalence

- ▶ Soient $\varphi, \psi, \chi \in \Phi$:
- ho $\varphi=\psi$ si et seulement si φ et ψ ont la même table de vérité
- $ightharpoonup \varphi = \psi$ si et seulement si $\models \varphi \leftrightarrow \psi$
- **Equivalence** de \rightarrow et \leftrightarrow :

$$\varphi \to \psi = \neg \varphi \lor \psi$$

$$\varphi \leftrightarrow \psi = (\varphi \to \psi) \land (\psi \to \varphi)$$

$$\varphi \leftrightarrow \psi = (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$$

► Lois de De Morgan :

$$\neg(\varphi \wedge \psi) = \neg\varphi \vee \neg\psi$$
$$\neg(\varphi \vee \psi) = \neg\varphi \wedge \neg\psi$$

Opposé, éléments neutres et absorbants :

$$\begin{array}{lll} \varphi \wedge \neg \varphi = \bot & \varphi \rightarrow \varphi = \top & \varphi \wedge \bot = \bot & \varphi \vee \bot = \varphi \\ \varphi \vee \neg \varphi = \top & \varphi \leftrightarrow \varphi = \top & \varphi \wedge \top = \varphi & \varphi \vee \top = \top & \neg \neg \varphi = \varphi \end{array}$$

Relation d'équivalence

- ▶ Soient $\varphi, \psi, \chi \in \Phi$:
- ► Idempotence :

$$\varphi \wedge \varphi = \varphi \quad \varphi \vee \varphi = \varphi$$

Commutativité :

$$\varphi \wedge \psi = \psi \wedge \varphi \quad \varphi \vee \psi = \psi \vee \varphi \quad \varphi \leftrightarrow \psi = \psi \leftrightarrow \varphi$$

Associativité :

$$(\varphi \wedge \psi) \wedge \chi = \varphi \wedge \psi \wedge \chi = \varphi \wedge (\psi \wedge \chi)$$
$$(\varphi \vee \psi) \vee \chi = \varphi \vee \psi \vee \chi = \varphi \vee (\psi \vee \chi)$$
$$(\varphi \to \psi) \to \chi \neq \varphi \to \psi \to \chi = \varphi \to (\psi \to \chi)$$

Distributivité :

$$\varphi \wedge (\psi \vee \chi) = (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$
$$\varphi \vee (\psi \wedge \chi) = (\varphi \vee \psi) \wedge (\varphi \vee \chi)$$

Simplification :

$$\varphi \lor (\neg \varphi \land \psi) = \varphi \lor \psi \qquad \varphi \lor (\varphi \land \psi) = \varphi$$
$$\varphi \land (\neg \varphi \lor \psi) = \varphi \land \psi \qquad \varphi \land (\varphi \lor \psi) = \varphi$$

Formes normales

Pour toute formule $\varphi \in \Phi$, il existe :

Une formule équivalente en forme normale disjonctive :

$$\varphi = \bigvee_{i \in [1 \cdots n]} \beta_i$$

$$\beta_i = \bigwedge_{j \in [1 \cdots m_i]} \alpha_{i,j}$$

$$\alpha_{i,j} \in \mathcal{P} \cup \{ \neg P \mid P \in \mathcal{P} \}$$

Une formule équivalente en forme normale conjonctive :

$$\varphi = \bigwedge_{i \in [1 \cdots n]} \beta_i$$

$$\beta_i = \bigvee_{j \in [1 \cdots m_i]} \alpha_{i,j}$$

$$\alpha_{i,j} \in \mathcal{P} \cup \{ \neg P \mid P \in \mathcal{P} \}$$

- Ces formules sont obtenues en :
 - ightharpoonup Remplaçant ightarrow et ightarrow par leurs équivalents
 - ▶ Rapprochant les négations ¬ des variables propositionnelles
 - ightharpoonup Effectuant les distributivités de \wedge sur \vee (respectivement de \vee sur \wedge)

Exemple d'équivalence sémantique

- ► Formule : $(A \rightarrow B) \leftrightarrow (\neg B \rightarrow \neg A)$
- Raisonnement équationnel
 - Remplacer \rightarrow et \leftrightarrow par leurs équivalents $((\neg A \lor B) \land (\neg \neg B \lor \neg A)) \lor (\neg (\neg A \lor B) \land \neg (\neg \neg B \lor \neg A))$
 - Rapprocher les négations \neg des variables propositionnelles $((\neg A \lor B) \land (B \lor \neg A)) \lor (\neg (\neg A \lor B) \land \neg (B \lor \neg A))$ $((\neg A \lor B) \land (B \lor \neg A)) \lor ((\neg \neg A \land \neg B) \land (\neg B \land \neg \neg A))$ $((\neg A \lor B) \land (B \lor \neg A)) \lor ((A \land \neg B) \land (\neg B \land A))$
 - Simplification par Idempotence et Commutativité $((\neg A \lor B) \land (B \lor \neg A)) \lor (A \land \neg B)$
 - Distributivité $((\neg A \land (B \lor \neg A)) \lor (B \land (B \lor \neg A))) \lor (A \land \neg B)$ $(((\neg A \land B) \lor (\neg A \land \neg A)) \lor ((B \land B) \lor (B \land \neg A))) \lor (A \land \neg B)$
 - Simplification par Associativité, Idempotence et Commutativité $((\neg A \land B) \lor \neg A) \lor (B \lor (A \land \neg B))$
 - Simplification $\neg A \lor (B \lor A)$ \top

Base minimale d'opérateurs

- La mise en forme normale montre que $\{\lor,\land,\lnot\}$ sont suffisants pour représenter toute formule
- Il existe des bases minimales d'opérateurs
 - $ightharpoonup \{\wedge,\neg\}$ ou $\{\vee,\neg\}$ par De Morgan
 - $\blacktriangleright \ \{\rightarrow, \neg\} \ \mathrm{car} \ \varphi \lor \psi = \neg \varphi \to \psi$
 - $\blacktriangleright \ \{\rightarrow,\bot\} \ \mathrm{car} \ \neg \varphi = \varphi \rightarrow \bot$

Cadre général

- Axiomatisation par des règles de déduction
- ► Approche par chaînage arrière : De la conclusion aux hypothèses
- ▶ Jugement $\Gamma \vdash \psi$ avec $\Gamma = \varphi_1, \dots, \varphi_n$ et $\varphi_1, \dots, \varphi_n, \psi \in \Phi$ φ_i sont les hypothèses disponibles pour prouver ψ
- ightharpoonup Sémantique : $\bigwedge_{i\in[1\cdots n]}\varphi_i\to\psi$
- Axiome de l'hypothèse : $\frac{-}{\Gamma, \ \varphi \vdash \varphi} \ \ \mathsf{Hyp}$

Règles de déduction constructive

Introduction	Élimination		
$\frac{\Gamma, \ \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \ I_{\to}$	$\frac{\Gamma \vdash \varphi \to \psi \Gamma \vdash \varphi}{\Gamma \vdash \psi} \; E_{\to}$		
$\frac{\Gamma \vdash \varphi \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \ I_{\wedge}$	$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \ \mathcal{E}^{\mathcal{G}}_{\land} \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \ \mathcal{E}^{\mathcal{D}}_{\land}$		
$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \ I^{\mathcal{G}}_{\vee} \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \ I^{\mathcal{D}}_{\vee}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\frac{\Gamma,\varphi\vdash\bot}{\Gamma\vdash\neg\varphi}I_{\!$	$\frac{\Gamma \vdash \varphi \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} \; \textit{E}_{\neg}$		
$\frac{\Gamma \vdash \varphi \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} \ I_{\bot}$	$rac{\Gamma dash \bot}{\Gamma dash arphi} \; extcolor{E}_ot$		

Heuristique/Méthode de preuve

- Construire la preuve de bas en haut en appliquant par ordre de préférence :
- Les axiomes (règle de l'hypothèse, ...) ;
- Les régles d'élimination sur les hypothèses pour extraire la conclusion si elle figure dans une hypothèse ;
- Les règles d'introduction pour décomposer la conclusion jusqu'à obtenir un élément disponible dans les hypothèses ou une variable ;
- La règle E_{\perp} (preuve par l'absurde constructive) s'il n'est pas possible de faire apparaître en conclusion un élément figurant dans les hypothèses.
- Exemple

$$\frac{\Gamma, \varphi \wedge \psi \vdash \varphi \wedge \psi}{\Gamma, \varphi \wedge \psi \vdash \psi} E_{\wedge}^{G} \qquad \frac{\Gamma, \varphi \wedge \psi \vdash \varphi \wedge \psi}{\Gamma, \varphi \wedge \psi \vdash \varphi} E_{\wedge}^{D}$$

$$\frac{\Gamma, \varphi \wedge \psi \vdash \psi}{\Gamma, \varphi \wedge \psi \vdash \psi} I_{\wedge} \qquad I_{\wedge}$$

$$\frac{\Gamma, \varphi \wedge \psi \vdash \psi \wedge \varphi}{\Gamma \vdash (\varphi \wedge \psi) \to (\psi \wedge \varphi)} I_{\rightarrow}$$

Logique constructive et classique

- Approche philosophique
- ▶ Interdiction du tiers-exclus (Axiome $\varphi \lor \neg \varphi$)
- ► Interdiction de l'axiome du choix
- La logique classique consiste à utiliser les règles :

Tiers-exclu	Preuve par l'absurde
${\Gamma \vdash \varphi \lor \neg \varphi} TE$	$\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi} Abs$

La preuve par l'absurde exploite le tiers-exclu

$$\frac{1}{\Gamma \vdash \varphi \lor \neg \varphi} TE \qquad \frac{\Gamma, \ \varphi \vdash \varphi}{\Gamma, \ \varphi \vdash \varphi} \qquad \frac{\Gamma, \ \neg \varphi \vdash \bot}{\Gamma, \ \neg \varphi \vdash \varphi} E_{\lor}$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi} \qquad \frac{\Gamma, \ \neg \varphi \vdash \varphi}{\Gamma, \ \neg \varphi \vdash \varphi} E_{\lor}$$

Logique des propositions

Conclusion

La logique des propositions est :

- Complète sémantiquement et axiomatiquement
- Consistante sémantiquement
- Correcte axiomatiquement
- Décidable mécaniquement
- Mais Très peu expressive
- Introduction des quantificateurs, des relations et des structures : Logique des prédicats

Logique des propositions

Mise en pratique

L'assistant de preuve Coq

- Développé au sein d'INRIA
- Système $F: \lambda$ -calcul typé second ordre (Girard et Reynolds)
- Calcul des constructions inductives (Coquant)
- Correspondance de Curry-Howard
 - ► Formule = Type
 - ightharpoonup Preuve = Programme

Le langage de développement prouvé Why3

- Développé au sein du LRI et d'INRIA
- Logique des prédicats du premier ordre et Logique de Hoare
- Passerelle vers de nombreux outils de vérification :
 - Automatique : SAT solver (résolution par saturation), SMT (SAT Modulo Theory)
 - Semi-automatique : Assistants de preuve