CSC343 Assignment 3 Part2

Fenglun Wu: 1002596684 and Qiangyu Zheng: 1002144128

1.

(a)

LPR+	LPRQST	LPR is not a superkey, so it violates BCNF.
LR+	LRST	LR is not a superkey, so it violates BCNF.
M ⁺	MLO	M is not a superkey, so it violates BCNF.
MR ⁺	MRNLOST	MR is not a superkey, so it violates BCNF.

Therefore, LPR \rightarrow Q, LR \rightarrow ST, M \rightarrow LO, MR \rightarrow N. All FDs violate BCNF.

(b)

First, we decompose R using FD LPR \rightarrow Q.

R1: LPRQST and R2: LMNOPR

Project all FDs on to R1.

Since no single attribute can indicate something other than itself in R1.

Therefore, no need to check a single attribute.

The first FD that violates this relation which includes two attributes is LR→ST

We abort the projection. We must decompose R1 further.

R3: LRST

L	R	S	T	closure	FDs	
✓				L+ = L	nothing	
	✓			R+ = R	nothing	
		✓		S+ = S nothing		
			✓	T+ = T	nothing	
✓	✓			LR+ = LRST	LR is a superkey of R3	

R3 satisfies BCNF.

R4: LPRQ

L	Р	R	Q	closure	FDs	
✓				L+ = L	nothing	
	✓			P+ = P	nothing	
		\		R+ = R nothing		
			✓	Q+ = Q	nothing	
✓	✓	✓		LPR+ = LPRQ	LPR is a superkey of R4	

R4 satisfies BCNF.

R2: LMNOPR

L	М	N	0	Р	R	closure	FDs
✓						L+ = L	nothing
	✓					M+ = MLO	Violates BCNF

Decompose R2 using M→LO

R5: MLO

М	L	0	closure FDs		
✓			M+ = MLO	M is a superkey in R5	
	✓		L+ = L	nothing	
		✓	O+ = O	nothing	

R5 satisfies BCNF.

R6: MNPR

М	N	Р	R	closure	FDs
✓				M+ = M	nothing
	✓			N+ = N nothing	
		✓		P+ = P	nothing
			✓	R+ = R	nothing
✓	✓	✓		MR+ = MRN	Violates BCNF

Decompose R6 using MR→N

R7: MRN

М	R	N	closure	FDs
✓			M+ = M nothing	
	✓		R+ = R	nothing
		✓	N+ = N	nothing
✓	√		MR+ = MRN	MR is a superkey of R7.

R7 satisfies BCNF.

R8: MPR with no FDs.

Final answer:

R3 = LRST, FDs: LR \rightarrow ST R4 = LPQR, FDs: LPR \rightarrow Q R5 = LMO, FDs: M \rightarrow LO R7 = MNR, FDs: MR \rightarrow N R8: MPR with no FDs. (a)

Step 1: Split the RHSs to get our initial set of FDs, S1:

- (1) AB \rightarrow C
- (2) AB \rightarrow D
- (3) ACDE \rightarrow B
- (4) ACDE \rightarrow F
- $(5) B \rightarrow A$
- (6) B \rightarrow C
- $(7) B \rightarrow D$
- (8) CD \rightarrow A
- (9) CD \rightarrow F
- (10) CDE \rightarrow F
- (11) CDE \rightarrow G
- (12) EB \rightarrow D

Step 2: For each FD, try to reduce the LHS:

- (1) B^+ = ACD, so we can reduce the LHS of this FD, yielding the new FD: $B \rightarrow C$, which is already existed, then remove
- (2) B^+ = ACD, so we can reduce the LHS of this FD, yielding the new FD: $B \rightarrow D$, which is already existed, then remove
- (3) $CD^+ = ACDF$, $CDE^+ = ABCDEFG$, so we can reduce the LHS of this FD, yielding the new FD: $CDE \rightarrow B$
- (4) $CD^+ = ACDF$, so we can reduce the LHS of this FD, yielding the new FD: $CD \rightarrow F$
- (5) Only one attribute on the LHS, we cannot reduce the LHS
- (6) Only one attribute
- (7) Only one attribute
- (8) $C^+ = C$, $D^+ = D$, we cannot reduce the LHS
- (9) $C^+ = C$, $D^+ = D$, we cannot reduce the LHS.
- (10) CD⁺ = ACDF, so we can reduce the LHS of this FD, yielding the new FD: CD → F which is already existed, then remove
- (11) $CD^+ = ACDF$, $C^+ = C$, $D^+ = D$, $E^+ = E$, so we cannot reduce the LHS of this FD
- (12) $E^+ = E$, $B^+ = ACD$, so we can reduce the LHS of this FD, yielding the new FD: $B \rightarrow D$, which is repeated, remove

Our new set of FDs, S2 is:

- (1) CDE \rightarrow B
- (2) B \rightarrow A
- (3) B \rightarrow C
- (4) B \rightarrow D
- (5) CD \rightarrow A
- (6) CD \rightarrow F

(7) CDE \rightarrow G

Step 3: Try to eliminate each FD

- (1) $CDE^{+}_{S2-(1)} = ACDEFG$. We need
- (2) $B_{S2-(2)}^+$ = ABCDF. We can remove
- (3) $B_{S2-(3)}^+ = BD$. We need
- (4) $B_{S2-(4)}^+ = BC$. We need
- (5) $CD^{+}_{S2-(5)} = ACD$. We need
- (6) $CD^{+}_{S2-(6)} = CDF$. We need
- (7) $CDE^{+}_{S2-(7)} = ABCDEF$. We need

After combination, our minimal basis is:

$$\{CDE \rightarrow BG, B \rightarrow CD, CD \rightarrow AF\}$$

ABCDEFGH

(b)

Attribute	Appears on	Conclusion	
	LHS	RHS	
Н	-	-	Must be in every
			key
E	√	-	Must be in every
			key
AFG	-	√	Is not in any key
BCD	√	√	Must check

We only need to consider all combinations of B, C, D. For each, we must add in E, H, since they are in every key.

CDEH+ = ABCDEFGH

BEH⁺ = ABCDEFGH

All other possibilities include BEH and CDEH, so we've done.

Therefore, BEH is a key.

(c)

Apply 3NF algorithm:

our minimal basis is:

{ CDE
$$\rightarrow$$
 BG, B \rightarrow CD, CD \rightarrow AF }

R1:(B,C,D,E,G) with FD $CDE \rightarrow BG$.

R2:(B,C,D) with FD $B \rightarrow CD$.

R3:(A,C,D,F) with FD $CD \rightarrow AF$.

Since the attributes BD occur within R1, we do not need to keep the relation R2.

There is no key in these relations, we need to add a relation contains a key.

R4: (B, E, H)

Then, the final set of relations is: R1(B,C,D,E,G), R3(A,C,D,F) and R4 (B,E,H)

(d)

Our schema allows redundancy.

Because we can find a relation that violate BCNF:

 $B \rightarrow CD$ will project onto the relation R1. And $B^+ = ABCDF$, so B is not a superkey of this relation. Then our schema allows redundancy.