Q-Step: Data visualisation in R

Yi Liu <y.liu3[at]exeter.ac.uk>
09 November 2017

Download materials from Q-Step ELE page (log-in required)

http://vle.exeter.ac.uk/course/view.php?id=6042

or from Github

https://github.com/YiLiu6240/exeter-qstep-data-visualisation-workshop

This is the Exeter Q-step workshop guide to data visualisation in R. We will be covering the basics of plotting in base R and using the package "ggplot2".

For the purpose of this workshop, we will use the **titanic** dataset to demonstrate how data visualisation works in R.

It is recommended to use RStudio for this workshop.

Preparation

\$ Fare

Use the code below to initialise the working environment.

The data set we are going to use is the training split of the titanic data.

We create a tibble dataframe called `df` from `titanic_train

```
df <- titanic_train %>% as_tibble()
df %>% glimpse()
## Observations: 891
## Variables: 12
## $ PassengerId <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
## $ Survived
                 <int> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0,...
## $ Pclass
                 <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3,...
                 <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bra...
## $ Name
                 <chr> "male", "female", "female", "female", "male", "mal...
## $ Sex
## $ Age
                 <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, ...
## $ SibSp
                 <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4,...
## $ Parch
                 <int> 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1,...
## $ Ticket
                 <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", "1138...
```

<dbl> 7.250, 71.283, 7.925, 53.100, 8.050, 8.458, 51.862...

The first 10 rows of the dataset:

```
df %>% head(10) %>% knitr::kable()
```

PassengerId	Survived	Pclass	Name	Sex	Age	${\rm SibSp}$	Parch
1	0	3	Braund, Mr. Owen Harris	male	22	1	0
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0
3	1	3	Heikkinen, Miss. Laina	female	26	0	0
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0
5	0	3	Allen, Mr. William Henry	$_{\mathrm{male}}$	35	0	0
6	0	3	Moran, Mr. James	$_{\mathrm{male}}$	NA	0	0
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1
9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	0	2
10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14	1	0

Meanings of categorical variables

- Survived: whether the passenger survived; 0: Did not survive, 1: Survived
- pclass: ticket class; 1st, 2nd, 3rd
- SibSp: Number of siblings / spouses aboard
- Parch: Numebr of parents / children aboard
- Embarked: Port of Embarkation; C: Cherbourg, Q: Queenstown, S: Southhampton

We would also need to use a factor type for the categorical variables that are not numerical in nature:

```
df <- titanic_train %>% as_tibble() %>%
  mutate_at(vars(PassengerId, Survived, Pclass), as.factor)
df %>% glimpse()
```

```
## Observations: 891
## Variables: 12
## $ PassengerId <fctr> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15...
## $ Survived
                 <fctr> 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0...
## $ Pclass
                 <fctr> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3...
## $ Name
                 <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bra...
## $ Sex
                 <chr> "male", "female", "female", "female", "male", "mal...
                 <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, ...
## $ Age
## $ SibSp
                 <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4,...
## $ Parch
                 <int> 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1,...
## $ Ticket
                 <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", "1138...
## $ Fare
                 <dbl> 7.250, 71.283, 7.925, 53.100, 8.050, 8.458, 51.862...
                 <chr> "", "C85", "", "C123", "", "", "E46", "", "", "", ...
## $ Cabin
                 <chr> "S", "C", "S", "S", "S", "Q", "S", "S", "S", "C", ...
## $ Embarked
```

Base R plotting

The plotting system in base R

Base R plotting is done primarily by the plot function:

```
plot(x = df$Age, y = df$Fare,
    main = "Your plot title", sub = "Your plot subtitle",
    type = "p", col = "#9d0006")
```

Your plot title


```
plot(x = df$Age[df$Survived == 1], y = df$Fare[df$Survived == 1],
    main = "Scatter plot of 'Age ~ Fare'",
    sub = "How can one survive the Titanic accident",
    xlab = "Age", ylab = "Fare",
    type = "p", col = "#458588")
points(x = df$Age[df$Survived == 0], y = df$Fare[df$Survived == 0],
    type = "p", col = "#9d0006")
legend(x = "topright",
    legend = c("Survived", "Did not survive"),
    lty = 2,
    col = c("#458588", "#9d0006"))
```

Scatter plot of 'Age ~ Fare'

Other specialised plots

Histograms

hist(df\$Age)

Histogram of df\$Age

Density plots

```
density_age <- density(na.omit(df$Age))
plot(density_age)</pre>
```

density.default(x = na.omit(df\$Age))

Alternatively, you can chain the procedure using a $\$ pipe:

```
df$Age %>% na.omit() %>%
density() %>% plot()
```

Saving the plot

```
png("base-r-density-plot.png",
    width = 7.2, height = 4.8, units = "in", res = 300)
df$Age %>% na.omit() %>%
    density() %>% plot()
dev.off()
```

ggplot2: Basics

An example

Alternatively you can write the above code as

```
df %>% ggplot(aes(Age, Fare)) +
  geom_point(aes(color = Survived))
```

Aesthetics and the layering system

What if we want a scatter plot of "Sex \sim Fare"?

```
df %>% ggplot(aes(x = Sex, y = Fare)) +
  geom_point(aes(color = Survived))
```


We need to change the main geom (geometric object) to <code>geom_jitter</code> when variables on both axes are categorical.

Alternatively we can do a boxplot:

Counts and values

When you need to supply your own y in a barchart:

```
df %>% group_by(Survived, Pclass) %>%
  summarise(AverageFare = mean(Fare, na.rm = TRUE)) %>%
  ggplot(aes(x = Pclass, y = AverageFare)) +
  # `geom_bar(stat = "identity", ...)` is equivalent to `geom_col(..)`
  geom_col(aes(fill = Survived), position = "dodge")
```


Continuous numerical variables

```
df %>% ggplot(aes(x = Fare)) +
  geom_histogram(aes(fill = Survived), position = "stack")
df %>% ggplot(aes(x = Age)) +
  geom_density(aes(fill = Survived), alpha = 0.6)
```


Line charts

For line charts that represent connections, we ususally need to specify a "group" aesthetics.

Exercise:

Practice with the ggplot2 geoms and aesthetics with the titanic data, using the examples above.

ggplot2: Beyond basics

Facetting: facet_wrap and facet_grid

```
df %>% ggplot(aes(x = Age, y = Fare)) +
  geom_point(aes(color = Survived)) +
  facet_wrap(~ Sex)
```


facet_wrap allows for flexible column layout:

```
df %>% ggplot(aes(x = Age, y = Fare)) +
  geom_point(aes(color = Survived)) +
  facet_wrap(Pclass ~ Sex, ncol = 2)
```


 ${\tt facet_grid}$ is more ideal for facetting with 2 factors:

```
df %>% ggplot(aes(x = Age, y = Fare)) +
  geom_point(aes(color = Survived)) +
  facet_grid(Pclass ~ Sex, scales = "free_y")
```


Figure decorations

Configurations regarding the figure as a whole are provided by the theme() function. Read all the available options here.

Change the position of the figure legend:

```
df %>% ggplot(aes(x = Age, y = Fare)) +
  geom_point(aes(color = Survived)) +
  facet_grid(Pclass ~ Sex, scales = "free_y") +
  theme(legend.position = "bottom")
```


Add title and other elements:

```
df %>% ggplot(aes(x = Age, y = Fare)) +
  geom_point(aes(color = Survived)) +
  facet_grid(Pclass ~ Sex, scales = "free_y") +
  labs(title = "Place your title here",
      subtitle = "Place your subtitle here",
      x = "Age of passengers",
      y = "Trip fare") +
  theme_classic()
```

Place your title here

Place your subtitle here

Saving the plot

Saving a ggplot object is done by the ggsave function.

```
# Option 1: Assign the ggplot object to a variable
fig <- df %>% ggplot(aes(x = Age, y = Fare)) +
 geom_point(aes(color = Survived)) +
 facet_grid(Pclass ~ Sex, scales = "free_y") +
 labs(title = "Place your title here",
      subtitle = "Place your subtitle here",
      x = "Age of passengers",
      y = "Trip fare") +
  theme_classic()
ggsave(filename = "ggplot-figure.png", plot = fig,
      width = 7.2, height = 4.8, units = "in", dpi = 300)
# Option 2: Evaluate your plot within `()` then chain it
  df %>% ggplot(aes(x = Age, y = Fare)) +
   geom_point(aes(color = Survived)) +
   facet_grid(Pclass ~ Sex, scales = "free_y") +
   labs(title = "Place your title here",
         subtitle = "Place your subtitle here",
         x = "Age of passengers",
         y = "Trip fare") +
   theme_classic()
) %>%
  ggsave(filename = "ggplot-figure.png",
         width = 7.2, height = 4.8, units = "in", dpi = 300)
```


Figure 1:

Wrapping up

Plotting in ggplot2 is done by:

- Calling ggplot(data) to initialise the plotting process
- Global aesthetics are specified by a aes(x = ..., y = ..., ...) function
- Specific plotting layers are provided by the geom_ functions
- Fine-tune your plots with other functions

Exercise:

Let us practice what we learn today and see if you could reproduce one of the following figures.

Where to go from here

What can we learn from Titanic data

Exploratory data analysis assisted by visualisation is only the first step in your analysis.

Resources

- Reference manuals and websites:
 - ggplot2 reference: http://ggplot2.tidyverse.org/index.html
 - R graphics cookbook: http://www.cookbook-r.com/Graphs/
 - R for Data Science: http://r4ds.had.co.nz/

Figure 2:

• Extensions to ggplot2:

- ggthemes: https://github.com/jrnold/ggthemes
- $-\ cowplot:\ https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html$

• Interactive plots:

- plotly: https://plot.ly/r/
- bokeh: http://hafen.github.io/rbokeh/index.html

• Other types of plots:

- $-\ correlation\ plots:\ https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html$
- maps: https://github.com/mtennekes/tmap
- tree maps: https://cran.r-project.org/web/packages/tree map/vignettes/tree map-color_mapping. html