K2 um sistema de gestão do conhecimento com IA e chatbot humanoide

Projeto de Pesquisa

Prof. Dr. Antonio Manoel Ribeiro de Almeida

manoel.ribeiro@unilab.edu.br

Instituto de Engenharia e Desenvolvimento Sustentável Universidade da Integração Internacional da Lusofonia Afro-Brasileira

18 de maio de 2023

Sumário

- 1 Parte I Conceitos
 - Grupo de Pesquisa
 - Inteligência Artificial
- 2 Parte II Projeto K2
 - Arquitetura
 - Requisitos
- 3 Ilustrações

PROSAS

Parte I - Conceitos

Figura: PROSAS - Grupo de pesquisa CNPQ de Sinais, Sistemas e Inovação

Figura: LRSBD - Laboratório de Redes, Sistemas e Banco de Dados

Inteligência Artificial

"Inteligência é a capacidade de um sistema de processamento de informações de se adaptar ao seu ambiente enquanto opera com conhecimento e recursos insuficientes." [1]

"Inteligência artificial (AI), a capacidade de um computador digital ou robô controlado por computador para executar tarefas comumente associadas a seres inteligentes. O termo é frequentemente aplicado ao projeto de desenvolvimento de sistemas dotados de processos intelectuais característicos dos humanos, como a capacidade de raciocinar, descobrir significados, generalizar ou aprender com a experiência passada."[2]

O que define Inteligência Artificial

Correlação - muito pouco

Correlação entre dois ou mais conjuntos de dados.

Descoberta de padrões - pouco

Busca profunda por padrões em conjunto de dados.

Raciocínio Lógico - sim

Raciocínio lógico dedutivo usando lógica nebulosa.

Raciocínio Intuitivo - o futuro

Raciocínio com base em intuição ou Insight.

Knowledge Based System

Um sistema baseado em conhecimento (KBS) é um tipo de sistema de computador que analisa conhecimento, dados e outras informações de fontes diversas para gerar novos conhecimentos, por meio de inferência lógica. As vantagens de um KBS são:

- Uma poderosa ferramenta de raciocínio e decisão em tempo real [3]
- Gerenciar alarmes e eventos quando a reação deve ser imediata
- Atuar em condições de trabalho que ofereça risco de vida

Um KBS pode substituir um especialista humano! Com menor risco e custo! Por isso são também conhecidos por sistemas especialistas de tempo real.

Projeto K2

O projeto K2 visa construir um KBS com capacidade de tomada de decisões em tempo real e utilizando inferência em lógica difusa em uma base de conhecimento. [4] O K2 poderá ser utilizado em vários espaços de trabalho, tais como:

Gerenciar plantas industriais de forma autônoma (PLCs)

Parte II - Projeto K2

- Reduza o tempo de configuração para linhas industriais
- 3 Gerenciar Call centers ou centrais de gerenciamento de serviços
- 4 Defina autonomamente o limite de crédito do cliente
- Definir preços de produtos e serviços de forma autônoma
- Telemedicina, com diagnóstico médico complementar ou preliminar [5] [6]
- Uso militar no controle de lançamento de foguetes e mísseis, guiados
- 8 Na gestão de riscos de qualquer natureza, inclusive ambientais

Arquitetura

Figura: Arquitetura do K2

Arquitetura KBS

Tecnologia embarcada

O projeto K2 utiliza tecnologia consolidadas na construção, tendo em vista seus requisitos de performance e flexibilidade, tais como:

- MongoDB como servidor de armazenamento da base de conhecimento
- GOLANG como linguagem de programação do seu kernel
- Eclipse Mosquitto como broker de mensagens com IoT (MQTT)
- Forward Chaining e Backward chaining como métodos de inferência lógica
- Olivia AI é um chatbot de código aberto construído em Golang usando tecnologias de Machine Learning.
- 6 Avatar humanoide que fala e entende linguagem natural
- 7 i18n Sistema com suporte a internacionalização
- 8 Dashboad o cenário gráfico do problema
- 9 Docker Para infraestrutura do sistema
- 10 Zipkin Para telemetria do sistema

Tecnologia embarcada

Regra de Produção - o coração do KBS

Conjunto de fatos e regras que simulam o raciocínio humano. No K2 fatos possuem grau de certeza, este grau de certeza influencia o funcionamento das regras. Assim como no pensamento humano as regras podem sem ativadas por dois mecanismos: Quais são as regras impactadas por um mudança de fato? E quais são as regras que alteram estes fatos?

Exemplo de Regra de Produção

for any Tank T if the Pressure greater than 2 then set the DegreeValve of T to 50%.

code/tank.k2

Figura: Tank Dashboard

- Sensor de pressão envia continuamente a medida para MQTT
- O Atributo Pressure está configurado com timeout e perde a validade a cada 5 segundo
- Em paralelo a Maquina de inferência, a Leitura externa e a Simulação são disparadas em paralelo com tempo máximo de resposta de 1 segundo
- 4 A leitura externa retornou que existem valores lidos do MQTT e atualiza o atributo
- 5 A Alteração do atributo ativa a maquina de inferência por regas impactadas pela mudança
- A regra exemplo é impactada e ser for conclusiva modifica o valor do Atributo DegreeValve
- 7 Este atributo é externo, portanto seu valor é enviado ao MQTT
- O atuador da válvula lê o parâmetro do MQTT e ajusta a abertura

Quem cria as regras

- Um especialista humano de administra o sistema
- O próprio sistema através de regras especiais de inferência
- As regras podem ser criadas ou deduzidas da interação homem computados, facilitados pela existência de um avatar que fala e compreende a língua falada

Na lógica do ChatlA existem um módulo especializado em criação de regras. Por exemplo, se durante a conversa o homem afirmou que o limite de pressão no tanque é 2 bar e que se isso acontecer a válvula de segurança deve ser colocada em 50% de abertura.

Então o Avatar vai perguntar ao especialista: "Então toda vez que a pressão do tanque chegar a 2 bar a sua válvula de escape deve ser posicionada em 50% de abertura? você confirma?", se a resposta for sim, uma nova regra será criada.

Ficha do Projeto

Código do Projeto PVE1795-2023

Titulo do Projeto K2 Knowledge Based System for general

purpose

Palavra-Chave knowledge based system, Artificial Intelligence

Software Architecture, Ontology, Expert Syster

PROSAS

Área de Conhecimento Sistemas de Computação

Linha de Pesquisa Inteligência Artificial

Principais Pesquisadores Antonio Manoel Ribeiro de Almeida

Antonio Carlos da Silva Barros

Grupo de Pesquisa

Orgranograma

Figura: Organograma do Projeto

					_	_	
	2023	3					
Set	Out	Nov	Dez				
	2024	4					
Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago
		Set Out	2024	Set Out Nov Dez			

Docker

Figura: Infraestrutura - Docker

EBNF

Avatar

Figura: Setup do Avatar

Ilustrações 000000

Login

Figura: Login K2

Home

Figura: Home K2

Referências I

- [1] Pei Wang. "On defining artificial intelligence". Em: Journal of Artificial General Intelligence 10.2 (2019), pp. 1–37.
- [2] B.. Copeland. artificial intelligence. https://www.britannica.com/technology/artificial-intelligence. 2023.
- [3] Clovis de Almeida Junior et al. "Sistema especialista para diagnóstico de problemas no sistema de geração de energia elétrica de uma refinaria de petróleo". Em: (2003).
- [4] Sebastian Ion Ceptureanu, Eduard Gabriel Ceptureanu et al. "Role of Knowledge Based Communities in Knowledge Process". Em: Economia Seria Management 18 (2015), pp. 228–43.
- [5] PAULA MOREIRA BARBOSA LOURENÇO. "Sistema Especialista para Auxilio no Diagnóstico de Diabetes Mellitus". Tese de dout. UNIVERSIDADE PRESIDENTE ANTÔNIO CARLOS, 2014.
- [6] Attila Tóth, Erzsébet Németh e Rozália Lakner. "An Agent-Based Diagnostic System Implemented in G2". Em: ().

Obrigado(a) pela Atenção!

Contato:

manoel.ribeiro@unilab.edu.br https://prosas.unilab.edu.br

