(A)
$$Y_{t} = Y_{t-1} - 0.25 Y_{t-2} + e_{t} - 0.1 e_{t-1}$$

 $P = 2 g = 1 \quad \phi_{1} = 1 \quad \phi_{2} = 0.25$
 $\theta_{1} = -0.1$

(B)
$$Y_{t=0.5}Y_{t-1} - 0.5Y_{t-2} + e_{t} - 0.5e_{t-1} + 0.25e_{t-2}$$

 $P=28=2$ $\phi_{1}=-0.5$ $\phi_{2}=0.25$
 $\theta_{1}=-0.5$ $\theta_{2}=0.25$

(2B)
$$\phi(B)=1-0.64B^2$$
 $1-0.64B^2=0$
 $1=0.64B^2$
 $\frac{1}{0.64}=B^2$
 $\sqrt{\frac{1}{0.64}}=B$
 $\sqrt{\frac{1}{1.25}}=B$ \Rightarrow causal because roots are >1

also stationary for same reason

$$(1-0.8B)(1-1.2B)(1-B) = e_{t}$$

$$\phi(B) = (1-0.8B)(1-1.2B)(1-B)$$

$$\phi(B) = (1-0.8B)(1-1.2B)(1-B)$$

$$\phi(B) = 1 \Rightarrow Not \text{ an } ARMA \text{ model because } (1-B)$$
is unit root

(3B) Not stationary because (1-B) is a unit root

(9)
$$(1-\phi B)Y_{t} = (1-\theta B)e_{t}$$
 $X_{t} = (1-yB)Y_{t}$
 $Y_{T} = \frac{1-\theta B}{1-\phi B}e_{t}$ $X_{t} = (1-yB)Y_{t}$
 $Y_{t} = (1-\phi B)e_{t}$ $Y_{t} = (1-yB)Y_{t}$
 $Y_{t} = (1-\phi B)e_{t}$ $Y_{t} = (1-yB)Y_{t}$
 $Y_{t} = (1-\phi B)e_{t}$ $Y_{t} = (1-\phi B)Y_{t}$
 $Y_{t} = (1-\phi B)Y_{t}$