JUMO GmbH & Co. KG

Hausadresse: Moritz-Juchheim-Straße 1, 36039 Fulda, Germany Lieferadresse: Mackenrodtstraße 14, 36039 Fulda, Germany

Postadresse: 36035 Fulda, Germany

Telefon: +49 661 6003-727
Telefax: +49 661 6003-508
E-Mail: mail@jumo.net
Internet: www.jumo.net

Typenblatt 70.2070

Seite 1/7

JUMO cTRON 04/08/16 Kompaktregler mit Timer und Rampenfunktion

Kurzbeschreibung

Die Reglerserie besteht aus drei frei konfigurierbaren, universell einsetzbaren Kompaktreglern in unterschiedlichen DIN-Formaten zur Regelung von Temperatur, Druck und anderen Prozessgrößen. Die Haupteinsatzgebiete sind Wärmeschränke, Temperier- und Kühlanlagen, Trocknungs- und Gefrieranlagen, Laboröfen und Sterilisatoren in der Lebensmittel-, Kunststoff- und Verpackungsindustrie.

Zur Anzeige von Prozesswerten und Parametern dienen bei allen Bauformen eine rote und eine grüne 7-Segment-LED-Anzeige. Zusätzlich sind sieben Leuchtdioden zur Anzeige von Schaltstellungen, Handbetrieb, Rampenfunktion und Timer-Betrieb vorhanden. Die Bedienung erfolgt über vier frontseitige Tasten.

Je nach Hardware-Ausführung können die Geräte als Zweipunktregler, Dreipunktregler, Dreipunkt-Schrittregler oder Stetige Regler eingesetzt werden. Selbstoptimierung, Rampenfunktion mit einstellbarem Gradienten, Handbetrieb, Netz-Ein-Verzögerung, zwei Limitkomparatoren, umfangreiche Timer-Funktionen sowie ein Servicezähler sind bereits in der Grundausführung enthalten.

Jedes Gerät besitzt einen universellen Messeingang für Widerstandsthermometer, Thermoelement und Einheitssignale (Strom, Spannung); die Linearisierungen von mehr als 20 Messwertgebern sind gespeichert. Alle Typen sind mit maximal zwei Binäreingängen, einem Logikausgang und zwei Relaisausgängen ausgestattet. Darüber hinaus kann jeder Typ optional mit einem dritten Relaisausgang oder einem Analogausgang geliefert werden.

Zur Konfiguration mit dem Setup-Programm (Option) ist eine serienmäßige Setup-Schnittstelle vorhanden. Über eine optionale RS485-Schnittstelle können die Geräte in einen Datenverbund (Modbus) integriert werden.

Der elektrische Anschluss erfolgt rückseitig über Schraubklemmen (steckbare Klemmleisten).

JUMO cTRON 16 Typ 702071/ ...

JUMO cTRON 08 Typ 702072/ ...

JUMO cTRON 04 Typ 702074/ ...

Blockstruktur

Besonderheiten

- Programmierbare Anwenderebene
- Sollwertumschaltung
- Rampenfunktion
- Netz-Ein-Verzögerung
- 2 Limitkomparatoren
- Timer-Funktion
- Selbstoptimierung
- Servicezähler
- Schnelle komfortable Konfiguration mit Setup-Programm (Zubehör)
- RS485-Schnittstelle (optional)

Zulassungen/Prüfzeichen (siehe Technische Daten)

Selbstoptimierung

Zur Serienausstattung gehört die bewährte Selbstoptimierung (Schwingungsmethode), die dem Anwender ohne regelungstechnische Kenntnisse eine Anpassung des Reglers an die Regelstrecke ermöglicht. Dabei werden die Reaktion der Regelstrecke auf bestimmte Stellgrößenänderungen ausgewertet und die Reglerparameter Proportionalbereich, Nachstellzeit, Vorhaltezeit, Schaltperiodendauer und Filterzeitkonstante berechnet.

Anwenderebene

Parameter, die vom Anwender öfters verändert werden, können in einer eigens erstellten Anwenderebene zusammengefasst werden (im Setup-Programm). Die werkseitig vorhandene Bedienerebene wird dann ausgeblendet.

Binärfunktionen

- Start/Abbruch der Selbstoptimierung
- Umschaltung in den Handbetrieb
- Verriegelung Handbetrieb
- Regler aus/ein
- Rampe anhalten/abbrechen/zurücksetzen
- Sollwertumschaltung
- Tastatur-/Ebenenverriegelung
- Display-Abschaltung
- Quittierung der Limitkomparatoren
- Quittierung des Timers
- Timer starten/anhalten/abbrechen

Die Binärfunktionen sind miteinander kombinierbar (im Setup-Programm).

Funktionen der Ausgänge

- Analogeingangsgröße
- Istwert, Sollwert
- Rampenendwert, -sollwert
- Stellgrad, Reglerausgänge
- Timer-Laufzeit/-Restzeit
- Binäreingänge
- Limitkomparatoren
- Timer-Signale
- Toleranzband-Signal
- Rampenende-Signal
- Service-Alarm

Rampenfunktion

Die Rampenfunktion ermöglicht ein definiertes Anfahren des Istwertes vom Zeitpunkt t_0 bis zum eingestellten Sollwert SP. Die Steigung wird über einen Gradienten (Kelvin pro Minute, pro Stunde oder pro Tag) in der Konfigurationsebene eingestellt. Sie ist bei einer Sollwertänderung steigend oder fallend aktiv. Beim Einschalten der Netzspannung startet die Rampenfunktion mit dem aktuellen Istwert.

Limitkomparatoren

Es stehen zwei Limitkomparatoren mit jeweils acht unterschiedlichen Schaltfunktionen zur Verfügung. Beim Überschreiten des Grenzwertes kann ein Signal ausgegeben oder eine geräteinterne Funktion ausgelöst werden. Dadurch lassen sich umfangreiche Alarm- und Grenzwertfunktionen realisieren.

Timer

Das Timer-Signal kann auf Binärausgänge geschaltet oder intern weiterverarbeitet werden. So lassen sich zeitabhängige Funktionen wie z. B. eine zeitbegrenzte Regelung oder Sollwertumschaltung realisieren.

Zusätzlich kann eine Zeit nach Timer-Ende festgelegt werden, um nach Ablauf des Timers ein zeitlich begrenztes Signal auszugeben oder die Dauer einer zeitverzögerten Regelung festzulegen.

Servicezähler

Mit dem Servicezähler kann die Einschaltdauer oder die Schalthäufigkeit eines Binärsignals (z. B. eines Relais) überwacht werden. Bei Überschreiten eines definierbaren Grenzwertes wird ein Signal erzeugt, das auf einem Binärausgang ausgegeben werden kann.

Schnittstellen

Setup-Schnittstelle

Die Setup-Schnittstelle ist serienmäßig im Gerät vorhanden. Über sie kann zusammen mit dem Setup-Programm (Zubehör) und einem Setup-Interface (Zubehör) das Gerät konfiguriert werden.

Schnittstelle RS485

Die serielle Schnittstelle dient zur Kommunikation mit übergeordneten Systemen.

Als Übertragungsprotokoll kommt Modbus zum Einsatz.

Setup-Programm

Das Setup-Programm dient zum Konfigurieren des Gerätes und unterstützt mehrere Sprachen (u. a. Deutsch, Englisch, Französisch). Mit ihm können Datensätze erstellt, editiert und ans Gerät übertragen sowie von dort ausgelesen werden. Die Daten können gespeichert und ausgedruckt werden. Das Setup-Programm kann durch weitere Programm-Module ergänzt werden.

Startup

Die Startup-Funktion ist Bestandteil des Setup-Programms und dient zur Aufzeichnung von Prozessgrößen während der Inbetriebnahme (max. 24 Stunden). Die aufgezeichneten Diagramme stehen im PC zur Verfügung und können z. B. zur Anlagendokumentation verwendet werden.

Anzeige- und Bedienelemente

- (1) **7-Segment-Anzeige** (werkseitig: Istwert)
 vierstellig, rot; konfigurierbare Kommastelle
 (automatische Anpassung bei Überschreiten der Anzeigekapazität)
- (2) 7-Segment-Anzeige (werkseitig: Sollwert)
 vierstellig, grün; konfigurierbare Kommastelle;
 dient auch zur Bedienerführung (Anzeige von Parameter- und Ebenensymbolen)
- (3) Signalisierung gelbe LED
 Schaltstellungen der Binärausgänge 1...4 (K1...K4)
 (Anzeige leuchtet = ein)
- (4) Tasten
 programmieren/eine Ebene tiefer; Wert verkleinern/vorheriger Parameter; Wert vergrößern/nächster Parameter; eine Ebene verlassen/Funktionstaste (programmierbar)
- (5) Signalisierung grüne LED
 Handbetrieb aktiv; Rampenfunktion aktiv; Timer

Reglerparameter

In der Tabelle sind alle Parameter und deren Bedeutung aufgeführt. Je nach Reglerart entfallen bestimmte Parameter bzw. sind ohne Funktion.

Parameter	Wertebereich	werkseitig	Bedeutung
Proportionalbereich	09999 Digit	0 Digit	Größe des proportionalen Bereiches Bei 0 ist die Reglerstruktur nicht wirksam!
Vorhaltezeit	09999s	80s	Beeinflusst den differenziellen Anteil des Reglerausgangssignales
Nachstellzeit	09999s	350s	Beeinflusst den integralen Anteil des Reglerausgangssignales
Schaltperiodendauer	0999,9s	20,0s	Bei schaltendem Ausgang sollte die Schaltperiodendauer so gewählt werden, dass einerseits die Energiezufuhr zum Prozess nahezu kontinuierlich erfolgt andererseits die Schaltglieder nicht überbeansprucht werden.
Kontaktabstand	0,0999,9 Digit	0,0 Digit	Abstand zwischen den beiden Regelkontakten bei Dreipunkt- reglern und Dreipunktschrittreglern
Schaltdifferenz	0,0999,9 Digit	1,0 Digit	Hysterese bei schaltenden Reglern mit Proportionalbereich = 0
Stellgliedlaufzeit	53000s	60s	Genutzter Laufzeitbereich des Regelventils bei Dreipunkt- Schrittreglern
Arbeitspunkt	-100+100%	0%	Stellgrad bei P- und PD-Reglern (bei x = w ist y = Y0)
Stellgradbegrenzung	0100%	100%	Maximaler Stellgrad
	-100+100%	-100%	Minimaler Stellgrad

Technische Daten

Eingang Thermoelement

Bezeichnung		Messbereich ²		Messgenauigkeit ¹ (inkl. Vergleichsstelle)	Umgebungs- temperatureinfluss
Fe-CuNi "L"		-200 +900°C		≤ 0,25%	100ppm/K
Fe-CuNi "J"	DIN EN 60584	-200 +1200°C		≤ 0,25%	100ppm/K
Cu-CuNi "U"		-200 +600°C		≤ 0,25%	100ppm/K
Cu-CuNi "T"	DIN EN 60584	-200 +400°C		≤ 0,25%	100ppm/K
NiCr-Ni "K"	DIN EN 60584	-200 +1372°C		≤ 0,25%	100ppm/K
NiCr-CuNi "E"	DIN EN 60584	-200 +900°C		≤ 0,25%	100ppm/K
NiCrSi-NiSi "N"	DIN EN 60584	-100 +1300°C		≤ 0,25%	100ppm/K
Pt10Rh-Pt "S"	DIN EN 60584	0 +1768°C		≤ 0,25%	100ppm/K
Pt13Rh-Pt "R"	DIN EN 60584	0 +1768°C		≤ 0,25%	100ppm/K
Pt30Rh-Pt6Rh "B"	DIN EN 60584	0 +1820°C		\leq 0,25% ³	100ppm/K
W5Re-W26Re "C"		0 +2320°C		≤ 0,25%	100ppm/K
W3Re-W25Re "D"		0 +2495°C		≤ 0,25%	100ppm/K
W3Re-W26Re		0 +2400°C		≤ 0,25%	100ppm/K
Vergleichsstelle	·		Pt 100	intern	·

¹ Die Genauigkeiten beziehen sich auf den maximalen Messbereichsumfang. Bei kleinen Messspannen verringert sich die Linearisierungsgenauigkeit.

Eingang Widerstandsthermometer

Bezeichnung		Anschlussart	Messbereich	Messgen	auigkeit ¹	Umgebungs-
				3-Leiter	2-Leiter	temperatureinfluss
Pt 100	DIN EN 60751	2-Leiter/3-Leiter	-200 +850°C	≤ 0,1%	≤ 0,4%	50ppm/K
Pt 1000	DIN EN 60751	2-Leiter/3-Leiter	-200 +850°C	≤ 0,1%	≤ 0,2%	50ppm/K
KTY11-6		2-Leiter	-50 +150°C		≤ 2,0%	50ppm/K
Sensorleitungswiderstand		max. 30Ω je Leitung bei Dreileiterschaltung				
Messstrom		ca. 250 µA				
Leitungsabgleich		Bei Dreileiterschaltung nicht erforderlich. Bei Zweileiterschaltung kann ein Leitungsabgleich durch eine Istwertkorrektur durchgeführt werden.				

¹ Die Genauigkeiten beziehen sich auf den maximalen Messbereichsumfang. Bei kleinen Messspannen verringert sich die Linearisierungsgenauigkeit.

Eingang Einheitssignale

Bezeichnung	Messbereich	Messgenauigkeit ¹	Umgebungs- temperatureinfluss
Spannung	$0(2) \dots 10V$ Eingangswiderstand $R_E > 100 k\Omega$	≤ 0,1%	100ppm/K
Strom	0(4) 20mA, Spannungsabfall ≤ 2,2V	≤ 0,1%	100ppm/K

¹ Die Genauigkeiten beziehen sich auf den maximalen Messbereichsumfang. Bei kleinen Messspannen verringert sich die Linearisierungsgenauigkeit.

Die Genaufgkeiten beziehen sich auf den maximaten Messbereichsum ² Die Angaben beziehen sich auf eine Umgebungstemperatur von 20°C. ³ im Bereich 300...1820°C

Binäreingänge

Potenzialfreier Kontakt	offen = inaktiv; geschlossen = aktiv
1 Otoriziani olor Romant	onon = markin, goodinooddi = arkin

Messkreisüberwachung

Im Fehlerfall nehmen die Ausgänge definierte Zustände ein (konfigurierbar).

Messwei	rtgeber	Messbereichs- unterschreitung	Messbereichs- überschreitung	Fühler-/ Leitungskurzschluss	Fühler-/ Leitungsbruch
Thermoel	lement	•	•	-	•
Widersta	ndsthermometer	•	•	•	•
Spannun	g 210V 010V	•	•	•	• -
Strom	420mA 020mA	•	•	•	• -

^{• =} wird erkannt - = wird nicht erkannt

Ausgänge

Relais (Schließer) Schaltleistung Kontaktlebensdauer	max. 3A bei 230V AC ohmsche Last 150.000 Schaltungen bei Nennlast/350.000 Schaltungen bei 1A 310.000 Schaltungen bei 1A und cosφ > 0,7
Logikausgang	0/14V / 20mA max.
Spannung (Option) Ausgangssignale Lastwiderstand Genauigkeit	$010V / 210V$ $R_{Last} \ge 500\Omega$ $\le 0,5\%$
Strom (Option) Ausgangssignale Lastwiderstand Genauigkeit	$\begin{array}{c} 020\text{mA}/420\text{mA} \\ \text{R}_{\text{Last}} \leq 500\Omega \\ \leq 0.5\% \end{array}$

Regler

Reglerart	Zweipunktregler,	
	Dreipunktregler, Dreipunktschrittregler, Stetiger Regler	
Reglerstrukturen	P/PI/PD/PID	
A/D-Wandler	Auflösung 16 Bit	
Abtastzeit	250ms	

Timer

Ganggenauigkeit	±0,8% ± 25ppm/K
-----------------	-----------------

Elektrische Daten

Spannungsversorgung (Schaltnetzteil)	AC 110240V -15/+10%, 4863Hz
	AC/DC 2030V, 4863Hz
Elektrische Sicherheit	nach DIN EN 61010, Teil 1
	Überspannungskategorie III, Verschmutzungsgrad 2
Leistungsaufnahme	max. 13VA
Datensicherung	EEPROM
Elektrischer Anschluss	Rückseitig über Schraubklemmen (steckbare Klemmleisten),
	Leiterquerschnitt bis max. 2,5 mm ² (Typ 702071: bis max. 1,3 mm ²);
	siehe Montagehinweis auf Seite 5
Elektromagnetische Verträglichkeit	DIN EN 61326-1
Störaussendung	Klasse A - Nur für den industriellen Einsatz -
Störfestigkeit	Industrie-Anforderung

Schnittstelle

Schnittstellenart	RS485
Protokoll	Modbus
Baudrate	9600. 19200, 38400
Geräteadresse	0255
Max. Anzahl der Teilnehmer	32

Gehäuse

Gehäuseart	Kunststoffgehäuse für den Schalttafeleinbau nach DIN IEC 61554
Einbautiefe	
Typ 702071	90,5mm
Typ 702072	67,0mm
Typ 702074	70,0mm
Umgebungs-/Lagertemperaturbereich	-5+55°C / -40+70°C
Klimafestigkeit	rel. Feuchte < 90 % im Jahresmittel ohne Betauung
Gebrauchslage	beliebig
Schutzart	nach DIN EN 60529, frontseitig IP 65, rückseitig IP 20
Gewicht (voll bestückt)	
Typ 702071	ca. 123 g
Typ 702072	ca. 173 g
Typ 702074	ca. 252 g

Zulassungen/Prüfzeichen

Prüfzeichen	Prüfstelle	Zertifikate/Prüfnummern	Prüfgrundlage	gilt für
c UL us	Underwriters Laboratories	E201387-A2-UL-1	UL 61010-1	alle Ausführungen
			CAN/CSA-C22.2 No. 61010-1	

Anschlussplan Typ 702071 (48mm x 48mm)

Anschlussplan Typ 702072 und Typ 702074

Montagehinweis für Leiterquerschnitte

	Тур 702071	Typ 702072 Typ 702074
eindrähtig	≤ 1,3 mm ²	≤ 2,5 mm ²
feindrähtig, mit Aderendhülse	≤ 1,0 mm ²	≤ 1,5 mm ²

- (1) Ausgang 1 (K1): Relais 230 V AC / 3A
- (2) Ausgang 2 (K2): Relais 230V AC / 3A
- (3) Ausgang 3 (K3): Logik 0/14V (bei Typ 702071 alternativ zu Binäreingang 1, konfigurierbar)
- (4) Ausgang 4 (K4), optional: Analogausgang (0/4...20mA oder 0/2...10V) oder Relais 230V AC / 3A
- (5.1) Binäreingang 1 (für potenzialfreien Kontakt; bei Typ 702071 alternativ zu Ausgang 3, konfigurierbar)
- (5.2) Binäreingang 2 (für potenzialfreien Kontakt; alternativ zu Eingang 0/2...10V, konfigurierbar mit Setup-Programm)
- (6) Analogeingang
- (6.1) Einheitssignale: 0/4...20mA oder 0/2...10V (Eingang 0/2...10V alternativ zu Binäreingang 2)
- (6.2) Thermoelement
- (6.3) Widerstandsthermometer (3-Leiter)
- (6.4) Widerstandsthermometer (2-Leiter)
 - (7) RS485-Schnittstelle (Option)
 - (8) Spannungsversorgung 110-240V AC (Option: 20-30V AC/DC)

Abmessungen

Typ 702071

- (1) PC-Interface-Adapter (Setup-Stecker)
- (2) Schalttafelausschnitt

Dicht-an-dicht-Montage Mindestabstände der Schalttafelausschnitte				
Тур	horizontal	vertikal		
ohne Setup-Stecker:				
702071	> 8mm	> 8mm		
702072	> 10mm	> 10mm		
702074	> 10mm	> 10mm		
mit Setup-Stecker:	<u>.</u>			
702071	> 8mm	> 65 mm		
702072	> 10mm	> 10mm		
702074	> 10mm	> 10mm		

Typ 702072

Typ 702074

Typenerklärung

Grundtyp

702071	Typ 702071 (Nennmaß 48mm x 48mm)
	1 Analogeingang, 2 Binäreingänge (alternativ zum Logikausgang bzw. Eingang 0/210V)
702072	Typ 702072 (Nennmaß 48mm x 96mm)
	1 Analogeingang, 2 Binäreingänge (ein Binäreingang alternativ zum Eingang 0/210V)
702074	Typ 702074 (Nennmaß 96mm x 96mm)
	1 Analogeingang, 2 Binäreingänge (ein Binäreingang alternativ zum Eingang 0/210V)

Grundtypergänzung 8 Standard mit werkseitigen Einstellungen Kundenspezifische Programmierung nach Angaben 9 Ausgänge 1 - 2 - 3 - 4 1130 Relais - Relais - Logik 0/14V 1131 Relais - Relais - Logik 0/14V - Relais Relais - Relais - Logik 0/14V - Analogausgang 1134 Spannungsversorgung 23 AC 110...240V, 48...63Hz 25 AC/DC 20...30V, 48...63Hz Schnittstelle 00 ohne Schnittstelle RS485 mit galvanischer Trennung 53 Typenschlüssel 702071 1130 23 8 00 **Beispiel**

Lieferumfang: - Regler

- Dichtung

- Befestigungselemente

- Betriebsanleitung B70.2070.0 im Format DIN A6 $\,$

Eine CD mit Demo-Setup-Software und PDF-Dokumenten (Betriebsanleitung und weiterer Dokumentation) kann separat bestellt werden. Ein Download der einzelnen Dokumente und Programme ist über www.jumo.net möglich (Software kann kostenpflichtig freigeschaltet werden).