Robust Tensor Factorisations New Algorithms and Extensive Comparisons

Mehdi Bahri

MSc Advanced Computing Imperial College London

Septembre 2016

Outline

Introduction

Non-orthogonal 2D RPCA

Model and base case Variants and extensions Summary and discussion Experimental validation

Link with Sparse Dictionary Learning

Comparison to the State of the Art

Background subtraction
Salt & Pepper noise
Patch corruption

Towards a Bayesian Model

Conclusion

Outline

Introduction

Non-orthogonal 2D RPCA

Model and base case

Variants and extensions

Summary and discussion

Link with Sparse Dictionary L

Link with Sparse Dictionary Learning

Comparison to the State of the Art

Background subtraction

Salt & Pepper noise

Patch corruption

Towards a Bayesian Model

Conclusion

Motivations

- ► Tensor representations: preserve structural information (correlation)
- Low-rank modelling: low-rank data assumption, data compression
- Robustness: Noisy or corrupt data
- Context: Compressed Sensing, inverse problems, signal processing

Compressed Sensing

Fixed-rate sampling: Nyquist (1928), Shannon (1949). **Sufficient conditions**, *not* necessary.

Linear inverse problem:

$$Ax = y$$

A sensing matrix. In general: underdetermined system. Numerically difficult.

Exact reconstruction is possible if:

- ► Signals are *sparse* in some domain: **redundant information**
- Signals are incoherent: largest correlation is small

Compressed Sensing

Restricted Isometry Property (RIP) (Candes & Tao 2005): \mathcal{A} sufficiently close to an isometry. Let x s-sparse:

$$(1 - \delta_s)||\mathbf{x}||_{\ell_2}^2 \le ||\mathcal{A}\mathbf{x}||_{\ell_2}^2 \le (1 + \delta_s)||\mathbf{x}||_{\ell_2}^2$$

Sufficient condition of incoherence for sparse vectors.

Robust PCA (Candes et. al. 2011)

$$\min_{\boldsymbol{A},\boldsymbol{E}} \; \text{rank}(\boldsymbol{A}) + ||\boldsymbol{E}||_0 \quad \text{s.t} \quad \boldsymbol{X} = \boldsymbol{A} + \boldsymbol{E}$$

NP-Hard. Convex relaxation (Basis Pursuit Problem):

$$\label{eq:min_A_E} \min_{\boldsymbol{A},\boldsymbol{E}} \ ||\boldsymbol{A}||_* + ||\boldsymbol{E}||_1 \quad \text{s.t.} \quad \boldsymbol{X} = \boldsymbol{A} + \boldsymbol{E}$$

Exact solution by optimisation with overwhelming probability (≈ 1).

Outline

Introduction

Non-orthogonal 2D RPCA

Model and base case
Variants and extensions
Summary and discussion
Experimental validation
Link with Sparse Dictionary Learning

Comparison to the State of the Art

Background subtraction
Salt & Pepper noise
Patch corruption

Towards a Bayesian Model

Conclusion

 $\mathcal{X} = \{\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N\}$ ordre 3. Samples \leftrightarrow frontal slices. Observation model: $\mathbf{X}_n = \mathbf{U_c} \mathbf{T}_n \mathbf{U_r}^\mathsf{T} + \mathbf{E}_n$.

Robust instance of Tucker2 without orthogonality

$$\mathcal{X} = \mathcal{L} + \mathcal{E}$$
 s.t $\mathcal{L} = \mathcal{T} \times_1 \mathbf{U_c} \times_2 \mathbf{U_r}$
 $\mathcal{X} \in \mathbb{R}^{n \times m \times N}$ $\mathbf{U_c} \in \mathbb{R}^{n \times r}$ $\mathbf{U_r} \in \mathbb{R}^{m \times r}$ $\mathcal{T} \in \mathbb{R}^{r \times r \times N}$

Optimisation problem:

$$\begin{aligned} \min_{\mathbf{U_c}, \mathbf{U_r}, \mathcal{T}, \mathcal{E}} \quad & f(\mathbf{U_c}, \mathbf{U_r}, \mathcal{T}, \mathcal{E}) \\ \text{s.t} \qquad & \forall n, \ \mathbf{X}_n = \mathbf{U_c} \mathbf{T}_n \mathbf{U_r}^\mathsf{T} + \mathbf{E}_n \end{aligned}$$

Restricted form (f):

$$\alpha_c f(\mathbf{U_c}) + \alpha_r f(\mathbf{U_r}) + \alpha_t \sum_n g(\mathbf{T}_n) + \lambda \Omega(\mathcal{E})$$

- ► Separable penalties, different choices possible
- ▶ Non-linear, non-convex, constrained problem
- Ω non-smooth

Base case

$$f(\ldots) = \frac{\alpha_c}{2} ||\mathbf{U_c}||_F^2 + \frac{\alpha_r}{2} ||\mathbf{U_r}||_F^2 + \frac{\alpha_t}{2} \sum_n ||\mathbf{T}_n||_F^2 + \lambda \sum_n ||\mathbf{E}_n||_1$$

- ▶ Schatten-2 (Frobenius) norm on the bases: low rank
- ▶ ℓ_1 norm on \mathbf{E}_n , eq. to $||\mathcal{E}||_1$: unstructured noise
- ▶ Frobenius norm on T_n : Tikhonov regularisation for numerical stability

Numerical solution

Alternating Directions Method (ADMM)

- Primal-dual algorithm
- Based on the Augmented Lagrangian
- Solve for each direction independently in turn
- Stopping criterion: first order conditions (primal feasibility)

Sub-problems:

- penalized least squares, convex
- ► FONC if smooth
- ▶ Non-smooth component (||.||₁): proximal mapping
- ▶ T_n : Stein equation $X + AXB = C \rightarrow Hessenberg-Schur$

Sparse core

$$f(\ldots) = \frac{\alpha_c}{2} ||\mathbf{U_c}||_{\mathsf{F}}^2 + \frac{\alpha_r}{2} ||\mathbf{U_r}||_{\mathsf{F}}^2 + \alpha_t \sum_n ||\mathbf{T}_n||_1 + \lambda \sum_n ||\mathbf{E}_n||_1$$

Inspiration: sparse dictionary learning.

 $\ell_2 \to \ell_1$: automatically discard redundant elements.

Numerical solution by splitting

Introducing K s.t $\forall n$, $K_n = T_n$, augmented problem:

$$\begin{aligned} \min_{\mathbf{U_c}, \mathbf{U_r}, \mathcal{T}, \boldsymbol{\mathcal{E}}} \quad & f(\mathbf{U_c}, \mathbf{U_r}, \mathcal{T}, \boldsymbol{\mathcal{E}}) \\ \text{s.t} \qquad & \forall n, \ \mathbf{X}_n = \mathbf{U_c} \mathbf{K}_n \mathbf{U_r}^\mathsf{T} + \mathbf{E}_n \\ & \forall n, \ \mathbf{T}_n = \mathbf{K}_n \end{aligned}$$

Sparse core

Why?

Augmented Lagrangian:

$$\mathcal{L}(\ldots) = \alpha_t \sum_n ||\mathbf{T}_n||_1 + \frac{\mu}{2} \sum_n ||\mathbf{X}_n - \mathbf{U_c} \mathbf{T}_n \mathbf{U_r}^\mathsf{T} - \mathbf{E}_n||_F^2 + \ldots$$

Augmented Lagrangian with splitting:

$$\mathcal{L}(\ldots) = \alpha_t \sum_{n} ||\mathbf{T}_n||_1 + \frac{\mu_T}{2} \sum_{n} ||\mathbf{T}_n - \mathbf{K}_n||_F^2 + \frac{\mu}{2} \sum_{n} ||\ldots||_F^2 + \ldots$$

 \Rightarrow proximal operator of $||.||_1$.

Alternative?

Linearisation. Challenge: numerically unstable.

Group Lasso variant

Group Lasso: ℓ_1/ℓ_2 norm. Group: columns.

$$f(\ldots) = \alpha_c ||\mathbf{U_c}||_{\ell_1/\ell_2} + \alpha_r ||\mathbf{U_r}||_{\ell_1/\ell_2} + \alpha_t \sum_n h(\mathbf{T}_n) + \lambda \sum_n ||\mathbf{E}_n||_1$$
$$h = ||.||_{\mathsf{F}}^2 \text{ or } ||.||_1$$

Penalises $dim(Span(U_c))$ and $dim(Span(U_r))$. Structural approach as opposed to spectral.

Numerical solution: ADMM with splitting.

Robust estimator of the mean

Iterative procedure.

$$\mathsf{M}^t = rac{1}{\mathsf{N}} (\mathcal{X} - \mathcal{E}^{t+1})$$

Automated removal of the outliers. Selective trimmed mean.

Empirically:

- Improved or comparable performance (background subtraction, some gross corruptions)
- lacktriangle Converges to the sample mean of ${\cal L}$

Non-orthogonal Robust 2D PCA Summary

Components:

- ▶ Pair of dictionaries U_c, U_r
- Core tensor \mathcal{T} : bound $r \geq true \, rank$
- ightharpoonup Outliers tensor \mathcal{E} : unstructured noise

Rank minimisation of $U_cT_nU_r$:

- Spectral approach: Schatten-2 norm
- Structural approach: ℓ_1/ℓ_2 mixed-norm

Regularisation of \mathcal{T} : either *dense* ℓ_2 or *sparse* ℓ_1

Abbreviations:

Core vs Bases	ℓ_2	ℓ_1/ℓ_2
ℓ_2	RPCA2D Fro ℓ_2	RPCA2D GL ℓ ₂
ℓ_{1}	RPCA2D Fro ℓ_1	RPCA2D GL ℓ_1

Implementation and Complexity Analysis

Implementation:

- Matlab 2015b + toolboxes
- ▶ MMX for fast tensor-matrix products, C++, OpenMP
- Personal MEX extensions, C, BLAS/LAPACK, OpenMP

$$O(N(mnr + (m + n)r + mn + min(m, n)r^2 + r^3 + r^2))$$
 FLOP/it:

- ▶ Linear in N
- ▶ Homogeneous in m, n, depends on min: best for rectangular matrices tall & skinny, short & fat ...
- Cubical in r

$$O(N(mn+(m+n)r+r^2))$$
 or $O(Nmn+(m+n)r+r^2)$ space

Experimental validation

100 matrices, 1000×1000 . 30 and 60% noise. True rank U_c : 23, U_r : 41.

Parameters:

- \triangleright λ varies
- $\alpha_c = \alpha_r = 1$ if Fro, 1e 3 if GL
- ▶ $\alpha_t = 1e 2$
- ► Max rank = 100

Measures: relative ℓ_2 -norm error, $nnz \mathcal{E}$, mean FSIM \mathcal{L} .

Experimental validation

Exact reconstruction:

Experimental validation

Exact structural recovery (except density RPCA2D GL ℓ_2)

Experimental validation

Linear convergence. **Important**: non-convex problem, initialisation matters.

New view on the problem

SDL: $\min \sum_{n} ||\mathbf{Dr}_{n} - \mathbf{x}_{n}||_{2}^{2} + \lambda ||\mathbf{r}_{n}||_{1}$ Recall the observation model:

$$\mathbf{X}_n = \mathbf{U_c} \mathbf{T}_n \mathbf{U_r}^\mathsf{T} + \mathbf{E}_n$$

New view on the problem

SDL: $\min \sum_{n} ||\mathbf{Dr}_{n} - \mathbf{x}_{n}||_{2}^{2} + \lambda ||\mathbf{r}_{n}||_{1}$ Recall the observation model:

$$\mathbf{X}_n = \mathbf{U_c} \mathbf{T}_n \mathbf{U_r}^\mathsf{T} + \mathbf{E}_n \to \mathsf{vec}(\mathbf{X}_n) = (\mathbf{U_r} \otimes \mathbf{U_c}) \mathsf{vec}(\mathbf{T}_n) + \mathsf{vec}(\mathbf{E}_n)$$

Note:

$$||\mathbf{A}||_1 = ||\mathsf{vec}(\mathbf{A})||_1$$

New view on the problem

AL of RPCA2D Fro ℓ_1 :

$$\begin{split} &\frac{\mu}{2} \sum_{n} ||\mathbf{U_c} \mathbf{T}_n \mathbf{U_r}^\mathsf{T} + \mathbf{E}_n - \mathbf{X}_n||_{\mathsf{F}}^2 + \alpha_t \sum_{n} ||\mathbf{T}_n||_1 + \lambda \sum_{n} ||\mathbf{E}_n||_1 + \\ &\frac{\alpha_c}{2} ||\mathbf{U_c}||_{\mathsf{F}}^2 + \frac{\alpha_r}{2} ||\mathbf{U_r}||_{\mathsf{F}}^2 + \dots \end{split}$$

New view on the problem

AL of RPCA2D Fro ℓ_1 :

$$\begin{split} &\frac{\mu}{2} \sum_{n} ||\mathbf{U_c} \mathbf{T}_n \mathbf{U_r}^\mathsf{T} + \mathbf{E}_n - \mathbf{X}_n||_{\mathsf{F}}^2 + \alpha_t \sum_{n} ||\mathbf{T}_n||_1 + \lambda \sum_{n} ||\mathbf{E}_n||_1 + \\ &\frac{\alpha_c}{2} ||\mathbf{U_c}||_{\mathsf{F}}^2 + \frac{\alpha_r}{2} ||\mathbf{U_r}||_{\mathsf{F}}^2 + \dots \end{split}$$

Vectorising:

$$\frac{\mu}{2} \sum_{n} ||(\mathbf{U_r} \otimes \mathbf{U_c}) \text{vec}(\mathbf{T}_n) + \text{vec}(\mathbf{E}_n) - \text{vec}(\mathbf{X}_n)||_F^2 + \alpha_t \sum_{n} ||\text{vec}(\mathbf{T}_n)||_1 + \lambda \sum_{n} ||\text{vec}(\mathbf{E}_n)||_1 + \frac{\alpha_c}{2} ||\mathbf{U_c}||_F^2 + \frac{\alpha_r}{2} ||\mathbf{U_r}||_F^2 + \dots$$

A theorem on Schatten norms

Theorem

Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$, then:

$$\forall p > 0, ||\mathbf{A} \otimes \mathbf{B}||_p = ||\mathbf{A}||_p ||\mathbf{B}||_p$$

Where $||.||_p$ denotes the Schatten-p norm.

Note: Also true for (mixed) element-wise norms by construction.

A theorem on Schatten norms

Proof.

Let the SVDs $\mathbf{A} = \mathbf{U}_A \mathbf{\Sigma}_A \mathbf{V}_A^\mathsf{T}$, $\mathbf{B} = \mathbf{U}_B \mathbf{\Sigma}_B \mathbf{V}_B^\mathsf{T}$ then:

$$\mathsf{A} \otimes \mathsf{B} = (\mathsf{U}_A \otimes \mathsf{U}_B)(\Sigma_A \otimes \Sigma_B)(\mathsf{V}_A^\mathsf{T} \otimes \mathsf{V}_B^\mathsf{T})$$

so the singular values of $\mathbf{A} \otimes \mathbf{B}$ are the $\sigma_{A,i}\sigma_{B,j}$ and:

$$||\mathbf{A} \otimes \mathbf{B}||_{p} = \left(\sum_{i,j} (\sigma_{A,i}\sigma_{B,j})^{p}\right)^{1/p}$$
$$= \left(\sum_{i} \sigma_{A,i}^{p}\right)^{1/p} \left(\sum_{j} \sigma_{B,j}^{p}\right)^{1/p}$$
$$= ||\mathbf{A}||_{p} ||\mathbf{B}||_{p}$$

Putting everything together

Therefore:

$$||U_{r}\otimes U_{c}||_{F}=||U_{r}||_{F}||U_{c}||_{F}\leq \frac{1}{2}(||U_{r}||_{F}^{2}+||U_{c}||_{F}^{2})$$

Variational charact, of Nuclear norm:

$$||\mathbf{U_c}\mathbf{U_r}^\mathsf{T}||_* = \inf \frac{1}{2} (||\mathbf{U_c}||_F^2 + ||\mathbf{U_r}||_F^2)$$

Hölder's inequality:

$$||\mathbf{A}\mathbf{B}||_* \leq ||\mathbf{A}||_F ||\mathbf{B}||_F$$

Putting everything together

- Minimise $||\mathbf{U_r} \otimes \mathbf{U_c}||_F$
- ► Minimise $||\mathbf{U_c}\mathbf{U_r}^\mathsf{T}||_*$
- Structured (Kronecker-decomposable) dictionary
- Robust model

Outline

Introduction

Non-orthogonal 2D RPCA

Model and base case

Variants and extensions

Summary and discussion

Experimental validation

Link with Sparse Dictionary Learning

Comparison to the State of the Art

Background subtraction

Salt & Pepper noise

Patch corruption

Towards a Bayesian Model

Conclusion

Background subtraction

Presentation

Video

- Highway static background
- Airport Hall changing background
- Ground-truth available

Methodology

- ▶ Optimise no more than 2 params / method
- grid search
- Robust mean estimator enabled
- Performance metric: AUC

Background subtraction

Five best performances (Highway)

BRTF	TRPCA16	RPCA2D GL ℓ_1	RPCA2D Fro ℓ_1	RCPD
0.9451	0.9449	0.9432	0.943	0.936

Five best performances (Airport Hall)

RPCA2D GL ℓ_1	RPCA2D ℓ_1	RPCA2D ℓ_2	TRPCA16	NCTRPCA
0.895	0.884	0.883	0.864	0.863

Background subtraction Results

Five best performances (Highway)

Background subtraction Results

Five best performances (Airport Hall)

Denoising of grayscale face images

Five best results by FSIM

	1	2	3	4	5
10%	2D GL L1	2D L1	Cauchy ST	2D L2	TRPCA16
	0.987	0.983	0.983	0.979	0.978
30%	2D L1	2D L2	2D GL L1	Cauchy ST	HORPCA-S TC
	0.957	0.947	0.947	0.942	0.935
60%	2D L1	RCPD	2D L2	NCTRPCA	TRPCA16
	0.896	0.882	0.865	0.851	0.843

10% noise

30% noise

60% noise

HORPCA-S TC RPCA2D L1 RPCA2D L2 RPCA2D GL LRPCA2D GL L2 CVPR2014

CVPR2016

Noisy

Partial obstruction of grayscale face images Five best performances by PSNR

	1	2	3	4	5
50	BRPCA	RPCA	HORPCA-S	RHOSVD	2D L2
	38.6465	37.585	37.3662	37.264	33.7598
100	BRPCA	RPCA	HORPCA-S	RHOSVD	2D L2
	33.9074	32.7486	32.5031	32.0228	29.8869
160	BRPCA	RPCA	HORPCA-S	RHOSVD	2D L2
	29.4723	28.2569	28.0179	27.6087	25.413

Max size of 50

Max size of 100

Max size of 160

Outline

Introduction

Non-orthogonal 2D RPCA

Model and base case

Variants and extensions

Experimental validation

Link with Sparse Dictionary Learning

Comparison to the State of the Art

Background subtraction
Salt & Pepper noise
Patch corruption

Towards a Bayesian Model

Conclusion

Bayesian Model

Motivations

- Success of sparse Bayesian learning
- No hyperparameter optimisation
- ► Few existing Bayesian models for robust low-rank modelling
- ▶ No Bayesian treatment of the *Tucker* decomposition

Observation model

$$\mathcal{X} = \mathcal{T} imes_1 \mathsf{U_c} imes_2 \mathsf{U_r} + \mathcal{E} + \mathcal{N}$$

 \mathcal{N} . Gaussian white noise

Hypotheses

Independence of the frontal slices:

$$p(\mathcal{X}) = \prod_{n} p(\mathbf{X}_{n}) \quad p(\mathcal{T}) = \prod_{n} p(\mathbf{T}_{n})$$

Outliers i.i.d:

$$p(\mathcal{E}) = \prod_{i,j,n} p(e_{i,j}^n)$$

Bases:

$$p(\mathbf{U_c}) = \prod_i p(\mathbf{u}_{ci}) \quad p(\mathbf{U_r}) = \prod_i p(\mathbf{u}_{ri})$$

Regularisation and priors

 $\ell_2 o \mathsf{Normal}$ distribution $\ell_1 o \mathsf{Laplace}$ distribution

Problem: Intractable integrals with Laplace distributions

Solution: Hierarchical model: Std Normal + prior on the precision

Inference

Priors

- Precisions: Jeffreys (the sparsest)
- Other variables: Normal distributions (c.f. Thesis)

Graphical model

Approximate inference: Variational Bayes (mean-field)

Outline

Introduction

Non-orthogonal 2D RPCA

Model and base case

Variants and extensions

Summary and discussion

Experimental validation

Link with Sparse Dictionary Learning

Comparison to the State of the Art

Background subtraction

Salt & Pepper noise

Patch corruption

Towards a Bayesian Model

Conclusion

Conclusion

Assessment of the results:

- ▶ Good performance on a range of CV applications
- Robust factorisation for third-order tensors
- Possible applications outside of CV (data compression...)
- Sparse methods more robust overall

Future work and extensions:

- Publication in top conferences and journals (work in progress)
- Extensions to other norms, missing values
- Sparse and/or scalable implementation