

UNIT III

Relational Database Design

Dependency Preservation

&

Lossless Join Conditions

DECOMPOSING RELATIONS TO ACHIEVE HIGHER NORMAL FORMS

Properties of Relational Decompositions

• Attribute preservation condition: Each attribute in R will appear in at least one relation schema R_i in the decomposition so that no attributes are "lost".

• Another goal of decomposition is to have each individual relation R_i in the decomposition D be in BCNF or 3NF.

Dependency Preservation Property of Relational Decompositions

Let R be a relation with FD set F, decomposed into R1, R2,....Rn with FD sets F1, F2,...Fn

Case 1: If all FDs of F are implied in

{ F1 U F2 U F3.... U F4 },

R with FD set F

R1 with FD set F1

R2 with FD set F2

decomposition is dependency preserving

Case 2: If all FDs of F are not implied in

{ F1 U F2 U F3.... U F4 },

decomposition is not dependency preserving

Dependency Preservation Example

Let a relation R(A,B,C,D) and a set FDs

$$F = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$$

A relation R is decomposed into –

$$R_1 = (A, B, C)$$
 with FDs $F_1 = \{A \rightarrow B, A \rightarrow C\}$

$$R_2 = (C, D)$$
 with FDs $F_2 = \{C \rightarrow D\}$.

$$F' = F_1 \cup F_2 = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$$

$$F' = F$$
.

Thus, the decomposition is dependency preserving decomposition.

Practice Drill

1. Relation R (ABCDE) with FD set

$$F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow E, D \rightarrow B\}$$

 $D = \{AB, BC, CD, DE\}$

2. Relation R (ABCD) with FD set

$$F = \{AB \rightarrow CD, D \rightarrow A\}$$

D = {ABC, BCD, AD}

3. Relation R (ABCDEF) with FD set

$$F = \{A \rightarrow BCDEF, BC \rightarrow ADEF, D \rightarrow E, B \rightarrow F\}$$

 $D = \{ABCD, DE, BF\}$

4. Relation R (ABCDE) with FD set

$$F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$$

 $D = \{ABCE, BD\}$

1.
$$F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow E, D \rightarrow B\}$$

 $D = \{AB, BC, CD, DE\}$

- Finding non-trivial FDs of decomposed relations in D
- $F1 = \{ A \rightarrow B \}$
- $F2 = \{B \rightarrow C, C \rightarrow B\}$
- F3 = { $C \rightarrow D, D \rightarrow C$ }
- $F4 = \{ D \rightarrow E \}$
- Check all FDs of F are implied in { F1 U F2 U F3 U F4 } YES
- Thus, decomposition is dependency preserved

2.
$$F = \{AB \rightarrow CD, D \rightarrow A\}$$

D = $\{ABC, BCD, AD\}$

•
$$F1 = \{AB \rightarrow C\}$$

•
$$F2 = \{BD \rightarrow C\}$$

•
$$F3 = \{D \rightarrow A\}$$

• Check all FDs of F are implied in { F1 U F2 U F3 } – NO

Thus, decomposition is not dependency preserved

3.
$$F = \{A \rightarrow BCDEF, BC \rightarrow ADEF, D \rightarrow E, B \rightarrow F\}$$

D = {ABCD, DE, BF}

- Finding non-trivial FDs of decomposed relations in D
- $F1 = \{A \rightarrow BCD, BC \rightarrow AD\}$
- $F2 = \{ D \rightarrow E \}$
- $F3 = \{B \rightarrow F\}$
- Check all FDs of F are implied in { F1 U F2 U F3 } YES
- Thus, decomposition is dependency preserved

4.
$$F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$$

 $D = \{ABCE, BD\}$

•
$$F1 = \{A \rightarrow BCE, E \rightarrow ABC, BC \rightarrow AE\}$$

•
$$F2 = \{ B \rightarrow D \}$$

- Check all FDs of F are implied in { F1 U F2 U F3 } NO
- Thus, decomposition is not dependency preserved

Cartesian (or Cross) Product Operation

- This operation is used to combine tuples from two relations in a combinatorial fashion.
- In general, the result of $R(A_1, A_2, \ldots, A_n) \times S(B_1, B_2, \ldots, B_m)$ is a relation Q with degree n + m attributes $Q(A_1, A_2, \ldots, A_n, B_1, B_2, \ldots, B_m)$, in that order.
- The resulting relation Q has one tuple for each combination of tuples—one from R and one from S.
- Hence, if R has n_R tuples (denoted as $|R| = n_R$),

and S has n_s tuples, then

 $|R \times S|$ will have $n_R * n_S$ tuples.

 Note: The two operands do NOT have to be "type compatible"

What is Type Compatible?

The operand relations $R_1(A_1, A_2, ..., A_n)$ and $R_2(B_1, B_2, ..., B_n)$ must have the same number of attributes, and the domains of corresponding attributes must be compatible; that is, $dom(A_i)=dom(B_i)$ for i=1, 2, ..., n.

In cartesian product, each row from 1st table joins with all the rows of another table. If first table contains 'x' rows and second table contains 'y' rows, the result set will contain x * y rows

JOIN Operation

- **Join** is a derived operator that uses a sequence of cartesian product followed by selection of related tuples from two relations and then projection of distinct attributes. It is denoted by a $.\bowtie$
- This operation is very important for any relational database with more than a single relation, because it allows us to process relationships among relations.
- The general form of a join operation on two relations $R(A_1, A_2, ..., A_n)$ and $S(B_1, B_2, ..., B_m)$ is:

where R and S can be any relations that result from general relational algebra expressions.

Join Operation Example

C

D

C

Α

		•		
Re	l at	'IA	n	Ľ
116	Lal	.IV		11

A	В	С
2	4	3
3	4	2
4	4	3
5	3	3

Relation S	С	D
	3	4
	2	4
	_	_

Α	В	С	С	D
2	4	3	3	4
2	4	3	3	3
3	4	2	2	4
4	4	3	3	4
4	4	3	3	3
5	3	3	3	4
5	3	3	3	3

Step 2:
$$\sigma_{R.C=S.C}$$
 (R X S)

Α	В	С	D
2	4	3	4
2 3	4	3	3
	4	2	4
4	4	3	4
4	4	3	3
5	3	3	4
5	3	3	3

Step 1: Cross Product R X S

Lossless (Non-additive) Join Property of Relational Decomposition

• Let R be the relational schema decomposed into R1, R2,...Rn. In general,

$$\{R1 \bowtie R2 \bowtie \bowtie Rn\} \supseteq R$$

- If { R1 ⋈ R2 ⋈ ⋈ Rn } = R ⇒ Lossless Join Decomposition
- If { R1 ⋈ R2 ⋈ ⋈ Rn } ⊃ R ⇒ Lossy Join Decomposition

Lossless Join Property (Cont.)

Note: The word loss in *lossless* refers to *loss of information*, not to loss of tuples. In fact, for "loss of information" a better term is "addition of spurious information".

Lossless Join Decompostion Example

EmpInfo

Emp_ID	Emp_Name	Emp_Age	Emp_Loc	Dept_ID	Dept_Name
E001	Jacob	29	Alabama	Dpt1	Operations
E002	Henry	32	Alabama	Dpt2	HR
E003	Tom	22	Texas	Dpt3	Finance

EmpDetails

Emp_ID	Emp_Name	Emp_Age	Emp_Loc
E001	Jacob	29	Alabama
E002	Henry	32	Alabama
E003	Tom	22	Texas

DeptDetails

Dept_ID	Emp_ID	Dept_Name
Dpt1	E001	Operations
Dpt2	E002	HR
Dpt3	E003	Finance

Join Result

Emp_ID	Emp_Name	Emp_Age	Emp_Loc	Dept_ID	Dept_Name
E001	Jacob	29	Alabama	Dpt1	Operations
E002	Henry	32	Alabama	Dpt2	HR YEARS EXCELLE
E003	Tom	22	Texas	Dpt3	Finance

Lossy Join Decompostion Example

THE NORTHCAP UNIVERSITY

EmpInfo

Emp_ID	Emp_Name	Emp_Age	Emp_Loc	Dept_ID	Dept_Name
E001	Jacob	29	Alabama	Dpt1	Operations
E001	Jacob	29	Alabama	Dpt2	HR
E002	Tom	32	Alabama	Dpt1	Operations
E003	Tom	22	Texas	Dpt2	HR

EmpDetails

Emp_ID	Emp_Name	Emp_Age	Emp_Loc
E001	Jacob	29	Alabama
E002	Tom	32	Alabama
E003	Tom	22	Texas

DeptDetails

Dept_ID	Dept_Name	Emp_Name
Dpt1	Operations	Jacob
Dpt2	HR	Jacob
Dpt1	Operations	Tom
Dpt2	HR	Tom

Join Result

Emp_ID	Emp_Name	Emp_Age	Emp_Loc	Dept_ID	Dept_Name
E001	Jacob	29	Alabama	Dpt1	Operations
E001	Jacob	29	Alabama	Dpt2	HR
E002	Tom	32	Alabama	Dpt1	Operations
E003	Tom	22	Texas	Dpt2	HB YEARS OF
E002	Tom	32	Alabama	Dpt2	EXCELLENCE
E003	Tom	22	Texas	Dpt1	Operations

How to Check a Decomposition is Lossless or Loss Rethcap

- Let R be the relational schema decomposed into R1, R2,...Rn and R1 n R2 = X attribute
- Case 1: If X is superkey for atleast one relation R1 or R2, the decomposition is lossless.
- Case 2: If If X is not superkey for atleast one relation R1 or R2, the decomposition is lossy.
- Case 3: If R1 \cap R2 = \emptyset , the decomposition is lossy.

Lossless/Lossy Decomposition Example

Consider a relation schema R (A, B, C, D) with the functional dependencies A → B and C → D. Determine whether the decomposition of R into R₁ (A, B) and R₂ (C, D) is lossless or lossy.

Solution:

$$R_1(A,B) \cap R_2(C,D) = \Phi$$

Clearly, intersection of the sub relations is null.

Thus, the decomposition is lossy.

Practice Drill

Consider a relation schema and decompositions and determine if it is a lossless or lossy decomposition:

1.
$$R(A,B,C,D)$$

 $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow B\}D = (AB, BC, BD)$

2. R (A, B, C, D, E)

$$F = \{AB \rightarrow C, C \rightarrow D, B \rightarrow E\}D = (ABC, CD)$$

3.
$$R(A, B, C, D, E)$$

 $F = \{AB \rightarrow C, C \rightarrow D, B \rightarrow E\}D = (ABC, CDE)$

4.
$$R(A, B, C, D, E)$$

 $F = \{AB \rightarrow C, C \rightarrow D, B \rightarrow E\}D = (ABC, ABDE)$

1.
$$F = \{ A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow B \}$$

 $R_1(A,B), R_2(B,C)$ and $R_3(B,D)$

Case 1	Case 2		
R1 ∩ R2 = B			
B+ = B, C for R2 (B, C) : B is superkey in R2	R2 ∩ R3 = B		
R12 (A, B, C) n R3 = B	B+ = B, C for R2 (B, C) : B is superkey in R2		
B+ = B, C for R12 (A, B, C)	R1 n R23 (B, C, D) = B		
B+ = B for R3 (B, D) : B is not superkey for any	B+ = B, C, D ∴ B is superkey in R23		
sub-relation			

2.
$$F = \{AB \rightarrow C, C \rightarrow D, B \rightarrow E\}$$
 D = (ABC, CD)

C+ = C, D : C is superkey in relation CD

This is a **lossy join decomposition** though common attribute is a superkey for CD sub-relation, because **E attribute** is **lost in decomposition**.

3.
$$F = \{AB \rightarrow C, C \rightarrow D, B \rightarrow E\}$$
 $D = (ABC, CDE)$

Thus, this is lossy join decomposition as C is not superkey for any sub-relation.

4.
$$F = \{AB \rightarrow C, C \rightarrow D, B \rightarrow E\}$$
$$D = (ABC, ABDE)$$

AB+ = A, B, C for sub-relation ABC

∴ AB is superkey in relation ABC

Thus, this is lossless join decomposition.

Thanks!!

