Assignment -3 Problem Statement :- Build CNN Model for Classification Of Flowers

Assignment Date	09 October 2022
Student Name	S.UMESH
Student Roll Number	923119106010
Maximum Marks	2 Marks

1.Download the dataset

Dataset is downloaded from the question paper

In [7]:

```
from google.colab import drive
drive.mount('/content/drive')
Drive already mounted at /content/drive; to attempt to forcibly remount, ca
ll drive.mount("/content/drive", force remount=True).
```

Unzip the data

In [8]:

Extract data

```
!unzip '/content/drive/MyDrive/Flowers-Dataset.zip'
Archive: /content/drive/MyDrive/Flowers-Dataset.zip
inflating: flowers/daisy/100080576 f52e8ee070 n.jpg
  inflating: flowers/daisy/10140303196 b88d3d6cec.jpg
  inflating: flowers/daisy/10172379554 b296050f82 n.jpg
  inflating: flowers/daisy/10172567486 2748826a8b.jpg
  inflating: flowers/daisy/10172636503 21bededa75 n.jpg
  inflating: flowers/daisy/102841525 bd6628ae3c.jpg
  inflating: flowers/daisy/10300722094 28fa978807 n.jpg
  inflating: flowers/daisy/1031799732 e7f4008c03.jpg
  inflating: flowers/daisy/10391248763 1d16681106 n.jpg
  inflating: flowers/daisy/10437754174_22ec990b77_m.jpg
  inflating: flowers/daisy/10437770546_8bb6f7bdd3_m.jpg
  inflating: flowers/daisy/10437929963 bc13eebe0c.jpg
  inflating: flowers/daisy/10466290366 cc72e33532.jpg
  inflating: flowers/daisy/10466558316 a7198b87e2.jpg
  inflating: flowers/daisy/10555749515 13a12a026e.jpg
  inflating: flowers/daisy/10555815624_dc211569b0.jpg
  inflating: flowers/daisy/10555826524 423eb8bf71 n.jpg
  inflating: flowers/daisy/10559679065 50d2b16f6d.jpg
  inflating: flowers/daisy/105806915 a9c13e2106 n.jpg
  inflating: flowers/daisy/10712722853 5632165b04.jpg
  inflating: flowers/daisy/107592979 aaa9cdfe78 m.jpg
  inflating: flowers/daisy/10770585085 4742b9dac3 n.jpg
  inflating: flowers/daisy/10841136265 af473efc60.jpg
  inflating: flowers/daisy/10993710036 2033222c91.jpg
  inflating: flowers/daisy/10993818044 4c19b86c82.jpg
  inflating: flowers/daisy/10994032453 ac7f8d9e2e.jpg
  inflating: flowers/daisy/11023214096 b5b39fab08.jpg
```

2.Image augmentation In [9]: # Import necessary lib. from tensorflow.keras.preprocessing.image import ImageDataGenerator In [10]: # Data Augmentation on training variable train datagen = ImageDataGenerator(rescale=1./255, zoom range=0.2, horizontal flip=True) In [12]: # Data Augmentation on flowers data xtrain = train datagen.flow from directory('/content/flowers', target size=(64,64), class mode='categorical', batch size=100) Found 4317 images belonging to 5 classes. 3.Create model In [13]: # Importing reg lib from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Convolution2D, MaxPooling2D, Flatten, Dense 4.Build the model In [14]: # Build a CNN block model = Sequential() # Initializing sequential model model.add(Convolution2D(32,(3,3),activation='relu',input shape=(64,64,3)))

model.add(MaxPooling2D(pool size=(2, 2))) # Max pooling layer

model.add(Dense(300,activation='relu')) # Hidden layer 1
model.add(Dense(150,activation='relu')) # Hidden layer 2
model.add(Dense(4,activation='softmax')) # Output layer

convolution layer

model.add(Flatten()) # Flatten layer

5. Compile the model

```
In [69]:
# Compiling the model
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
```

6.Fit the model

Here we have only one folder of flowers, we did not have separate folder like train nand test so we could not fit here

7. Save model

pred = np.argmax(model.predict(x))

op[pred]

op = ['daisy','dandelion','rose','sunflower','tulip']

'dandelion'
In [58]:

```
image.load_img('/content/flowers/tulip/5543457754_89c44c88de_n.jpg',target_size=(64,64)) # Reading image
x = image.img_to_array(img)
x = np.expand_dims(x,axis=0)
pred = np.argmax(model.predict(x))
op = ['daisy','dandelion','rose','sunflower','tulip']
op[pred]
```

Out[58]:

Out[50]:

```
'dandelion'
In [65]:
xtrain.class_indices
Out[65]:
{'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}
```