Viewing TCP/IP Protocols and Wireshark

Ramon Lopez Jr

Department of Cyber Security: University of Advancing Technology

NTW102: Foundations of Network Engineering

Professor Jeremy Bunce

October 16th, 2022

Viewing TCP/IP Protocols and Wireshark

In the field of networking, capturing packets is a vital technique for analyzing network performance and identifying suspicious activity. By examining network traffic, IT professionals can determine whether the network is functioning properly or if unauthorized actions are occurring. One of the most widely used tools for this task is Wireshark, a powerful network protocol analyzer.

Image of Wireshark opened and ready to go

Using Wireshark

The image above displays the Wireshark interface prepared to begin packet capture. In the initial test, packets were captured over a 30-second period. Upon completion, Wireshark reported a total of 239 packets collected. Following this, a longer five-minute capture session was conducted. Although the exact number of packets captured is not recalled, the range was approximately 300 to 3,000 packets. During this session, Wireshark identified a variety of protocols—12 in total. These included:

• **ARP:** Resolves IPv4 addresses to MAC (Media Access Control) addresses.

- CDP (Cisco Discovery Protocol): Enables inspection of connected devices without
 physical access, allowing users to retrieve information such as device type and software
 version.
- **DNS:** Resolves domain names to their corresponding IP addresses.
- LLDP (Link Layer Discovery Protocol): Identifies and communicates device capabilities and configurations on the local network.
- NBSS (NetBIOS Session Service): Handles session-layer communication and naming services, using 16-byte names for unique identification.

Other protocols observed included LOOP, SMB2, SSDP, STP, TCP, and TLS versions 1.2 and 1.3.

3283 284.303848	192.168.5.39	192.168.10.71	TCP	66 53427 → 8089 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
3290 285.317881	192.168.5.39	192.168.10.71	TCP	66 [TCP Retransmission] [TCP Port numbers reused] 53427 → 8089 [SYN] Seq=0 Win=64240 Len=6
3291 285.429837	192.168.5.39	192.168.10.71	TCP	66 53428 + 9997 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
3294 286,444087	192.168.5.39	192.168.10.71	TCP	66 [TCP Retransmission] [TCP Port numbers reused] 53428 → 9997 [SYN] Seq=0 Win=64240 Len=6
				66 [TCP Retransmission] [TCP Port numbers reused] 53427 → 8089 [SYN] Seq=0 Win=64240 Len=6
3297 288.456666	192.168.5.39	192.168.10.71		66 [TCP Retransmission] [TCP Port numbers reused] 53428 → 9997 [SYN] Seq=0 Win=64240 Len=€
3382 291.318632	192.168.5.39	192.168.10.71		66 [TCP Retransmission] [TCP Port numbers reused] 53427 → 8089 [SYN] Seq=0 Win=64240 Len=6
3410 292.462854	192.168.5.39	192.168.10.71		66 [TCP Retransmission] [TCP Port numbers reused] 53428 → 9997 [SYN] Seq=0 Win=64240 Len=6
3 0.909268	13.107.136.9	192.168.5.39	TCP	60 443 → 53357 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
5 1.545828	52.178.17.3	192.168.5.39		60 443 → 53358 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
9 2.304065	52.21.229.150	192.168.5.39	TCP	60 443 → 52319 [ACK] Seq=1 Ack=466 Win=771 Len=0
10 2.346134	52.21.229.150	192.168.5.39	TLSv1.2	1204 Application Data
11 2.346134	52.21.229.150	192.168.5.39	TLSv1.2	92 Application Data
14 2.540942	52.111.245.4	192.168.5.39	TCP	66 443 → 52988 [ACK] Seq=1 Ack=2 Win=2053 Len=0 SLE=1 SRE=2
16 2.607167	142.250.176.3	192.168.5.39	TCP	66 80 + 53376 [ACK] Seq=1 Ack=2 Win=261 Len=0 SLE=1 SRE=2
18 2.772603	52.111.245.5	192.168.5.39	TCP	66 443 → 53273 [ACK] Seg=1 Ack=2 Win=2049 Len=0 SLE=1 SRE=2
22 3.117415	104.16.248.249	192.168.5.39	TLSv1.2	93 Application Data
27 4.764754	13.107.6.171	192.168.5.39	TCP	60 443 ÷ 50934 [ACK] Seq=1 Ack=1441 Win=16379 Len=0
28 4.764844	13.107.6.171	192.168.5.39	TCP	60 443 → 50934 [ACK] Seg=1 Ack=1897 Win=16385 Len=0
29 4.764934	13.107.6.171	192.168.5.39	TCP	60 443 + 50934 [ACK] Seg=1 Ack=1943 Win=16384 Len=0
30 4.765033	13.107.6.171	192.168.5.39	TLSv1.2	
31 4,765116	13,107,6,171	192.168.5.39	TCP	60 443 → 50934 [ACK] Seg=47 Ack=3383 Win=16385 Len=0
32 4.765215	13.107.6.171	192.168.5.39	TCP	60 443 → 50934 [ACK] Seq=47 Ack=4130 Win=16382 Len=0
40 4.877130	104.16.248.249	192.168.5.39	TLSv1.2	
41 4.877530	104.16.248.249	192.168.5.39	TLSv1.2	89 Application Data
43 4,883428	104.16.248.249	192.168.5.39	TLSv1.2	
46 4.895085	104.16.248.249	192.168.5.39	TLSv1.2	
47 4.899273	104.16.248.249	192.168.5.39	TLSv1.2	
49 4.915524	104.16.248.249	192.168.5.39	TLSv1.2	
50 4.917636	52.21.229.150	192.168.5.39	TCP	60 443 → 52319 [ACK] Seq=1189 Ack=817 Win=771 Len=0
51 4.920926	13.107.6.171	192.168.5.39	TLSv1.2	
52 4.920995	13.107.6.171	192.168.5.39	TLSv1.2	
55 4.930270	13.107.6.171	192.168.5.39	TCP	60 443 → 50934 [ACK] Seg=456 Ack=4172 Win=16381 Len=0
57 5.090709	52.21.229.150	192.168.5.39		1205 Application Data
58 5.090709	52.21.229.150	192.168.5.39	TLSv1.2	
65 7.078293	13.107.6.171	192.168.5.39	TCP	60 443 → 50934 [ACK] Seg=456 Ack=4818 Win=16379 Len=0
66 7.078444	13,107,6,171	192.168.5.39	TCP	60 443 → 50934 [ACK] Seq=456 Ack=6258 Win=16385 Len=0
67 7.078543	13,107,6,171	192.168.5.39	TCP	60 443 → 50934 [ACK] Seg=456 Ack=7026 Win=16382 Len=0
68 7.116008	13.107.6.171	192.168.5.39	TLSv1.2	
60 7 116057	12 107 6 171	100 100 5 20	TLCvd 2	

During the five-minute scan, numerous IP destinations were observed. Among the first ten identifiable destinations, the following examples were noted:

192.168.10.71

- **1**3.107.136.9
- **52.21.229.150**

These are only a small sample of the many addresses that appeared during the capture session.

References

- @kmbh. "What Is Cisco Discovery Protocol (CDP)?" *GeeksforGeeks*, 1 Nov. 2021, www.geeksforgeeks.org/what-is-cisco-discovery-protocol-cdp/#:~:text=Benefits%20of%20CDP%3A%201%20It%20allows%20the%20use. Accessed 13 Oct. 2022.
- Mills, Matt. "ARP Protocol: How It Works and Why It Is so Important | ITIGIC." *Itigic.com*, 24

 Oct. 2021, itigic.com/arp-protocol-how-it-works-and-why-it-is-soimportant/#:~:text=In%20short%2C%20the%20ARP%20protocol%20is%20used%20to.

 Accessed 13 Oct. 2022.
- ---. "What Is the DNS Protocol and Why Is It so Important? | ITIGIC." *Itigic.com*, 13 Oct. 2021, itigic.com/what-is-dns-protocol-and-why-is-it-so-important/#:~:text=DNS%20is%20the%20acronym%20for%20the%20domain%20name.

 Accessed 13 Oct. 2022.
- "What Is LLDP? | Comprehensive Guide to LLDP with Benefits." *EDUCBA*, 9 Dec. 2019, www.educba.com/what-is-lldp/.
- "What Is NetBIOS Session Service (NBSS)? Definition from Techopedia." *Techopedia.com*, www.techopedia.com/definition/25190/netbios-session-service-nbss#:~:text=A%20system%20with%20NBSS%20implementation%20has%20the%20fol lowing. Accessed 13 Oct. 2022.