Trabajo Práctico No. 3: Coordenadas polares

1. Grafique los siguientes puntos dados en coordenadas polares.

a) $(2, \frac{\pi}{8})$

c) $(3, -\frac{3\pi}{4})$

b) (1,0)

d) $(-4, \frac{\pi}{2})$

2. Encuentre las coordenadas rectangulares para el punto dado en coordenadas polares.

a) $(2, \frac{\pi}{6})$

d) $(-1, \frac{5\pi}{2})$

b) $(6, \frac{2\pi}{3})$

 $e) (5, 5\pi)$

c) $(\sqrt{2}, -\frac{\pi}{4})$

 $f) (-1, 2\pi)$

3. Halle las coordenadas polares (r,θ) con $r\geq 0$ y $0\leq \theta < 2\pi,$ de los siguientes puntos dados en coordenadas cartesianas (x, y):

a) (-1,1)

d) $(\sqrt{3}, -1)$

b) (2,0)

e) (-2, -2)

c) (0, -3)

f) (-3,0)

4. Halle una ecuación polar de las siguientes curvas:

a) $x^2 + y^2 = 9$

e) xy = 1

b) y = 2

 $f) x^2 + y^2 + 4x = 0$

c) $x^2 + y^2 - 6y = 0$

 $q) \ x = 3$

d) y = x

h) $y^2 = 9x$

5. Grafique las siguientes curvas dadas en coordenadas polares. Sugerencia: encuentre primero su ecuación cartesiana.

a) r = 3

 $f) r = \frac{1}{\sin(\theta) - \cos(\theta)}$

b) $\theta = \frac{\pi}{6}$

 $g) r = \frac{1}{1+\sin(\theta)}$

 $c) r \sin(\theta) = -1$

d) $r = 2\sec(\theta)$

 $h) r = 4 \csc(\theta)$

 $e) r = \sin(\theta)$

 $i) r = 3\cos(\theta)$