Algoritma Çalışma Zamanı Büyüme Hızlarının Karşılaştırılması

$n \sim g(n)$	$f(n) \prec g(n) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\lim_{n o \infty} rac{f(n)}{g(n)} = L$ limit var ve sabit bir sayı	Büyüme hızları eşittir. $f(n) pprox g(n)$
$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$	$f(n) \succ g(n)$ $f(n)$ daha hızlı büyür

1. Aşağıdaki büyüme hızlarını karşılaştırınız.

$$n^n$$
, a^n , $n!$ $a > 1$

Çözüm:

$$\lim_{n\to\infty}\left(\frac{n.(n-1).(n-2)\dots 2.1}{\underbrace{\alpha \cdot \alpha \cdot \alpha \quad \dots \ \alpha \cdot \alpha}_{n \ \mathrm{times}}}\right) = \infty$$

$$\lim_{n\to\infty} \left(\frac{n.(n-1).(n-2)...2.1}{\underbrace{n.n.n..n.n}_{n \text{ times}}} \right) = 0$$

Sonuç:
$$a^n \prec n! \prec n^n$$

Sonuç: $(\log_{\mathfrak{a}} \mathfrak{n})^k \prec \mathfrak{n}^{\varepsilon}$

 $_{2}$ $k>0,~\alpha>1,~$ ve $_{\varepsilon}>0~$ olmak üzere

 $(\log_{\mathfrak{a}} \mathfrak{n})^k$ ile $\mathfrak{n}^{\varepsilon}$ büyüme hızlarını karşılaştırınız

$$\begin{split} &\lim_{n\to\infty} \frac{n^\varepsilon}{(\log_\alpha n)^k} = \qquad b \leftarrow \frac{\varepsilon}{k} \\ &\lim_{n\to\infty} \frac{(n^b)^k}{(\log_\alpha n)^k} = \\ &\lim_{n\to\infty} \left(\frac{n^b}{\log_\alpha n}\right)^k = \qquad k \quad \mathrm{positive} \\ &\lim_{n\to\infty} \frac{n^b}{\log_\alpha n} = \qquad l'H\hat{\mathrm{o}}\mathrm{pital's\ rule} \\ &\lim_{n\to\infty} \frac{bn^{b-1}}{\left(\frac{1}{\ln\alpha}\right)\left(\frac{1}{n}\right)} = \\ &\lim_{n\to\infty} (\ln\alpha)b\,n^b = \infty \end{split}$$

3. Aşağıdaki karşılaştırmalar için Doğru/Yanlış yorumlarını yapınız.

$2^{2^{n+1}} \succ 2^{2^n}$	D	$2^{2^{n+1}} = 2^{2 \cdot 2^n} = 2^{2^n} \times 2^{2^n}$.
$2^{2^n} > (n+1)!$	D	Her iki tarafın logaritması alınırsa
_ , (15) 1)1		2^{n} ? $\lg ((n+1)!) \approx (n+1) \lg (n+1) \approx n \lg n$.
		$2^{n} \succ n \lg n$.
		Dolayısıyla $2^{2^n} \succ (n+1)!$
$(n+1)! \succ n!$	D	Dolayisiyla $(n+1)!$
(It + 1): ~ It:		$\lim_{n \to \infty} \frac{(n+1)!}{n!} = \infty$
		$(n+1)! = (n+1) \times n! \qquad \qquad n \to \infty \qquad n!$
$n! \succ e^n$	D	
		$\lim_{n\to\infty} \left(\frac{n.(n-1).(n-2)2.1}{\underbrace{a.a.aa.a}} \right) = \infty$
		$n\to\infty$ $a.a.a.a.a$
		n times /
$e^n > n.2^n$	D	$\lim_{n \to \infty} \frac{n \cdot 2^n}{e^n} = \lim_{n \to \infty} \frac{n}{\frac{e^n}{2n}} = \lim_{n \to \infty} \frac{n}{\left(\frac{e}{2}\right)^n} = 0$
		$n \to \infty$ e^n $n \to \infty$ $\frac{e^n}{2^n}$ $n \to \infty$ $\left(\frac{e}{2}\right)^n$
$n.2^n \succ 2^n$	D	$\lim_{n\to\infty}\frac{n.2^n}{2^n}=\lim_{n\to\infty}n=\infty$
2. 7		
$2^{n} \succ \left(\frac{3}{2}\right)^{n}$.	D	$\lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n}{2^n} = \lim_{n \to \infty} \left(\frac{3}{4}\right)^n = 0$
$\left(\frac{3}{2}\right)^{n} \succ n^{\lg(\lg n)}.$	D	$n. \lg \left(\frac{3}{2}\right)$? $\lg n. \lg (\lg n)$.
		$\lg^2 n > \lg n \cdot \lg n \cdot \lg n$
		$\mathfrak{n} \succ \lg^2 \mathfrak{n}$
		$n \succ \lg n \cdot \lg (\lg n)$
(1) lg n lg (lg n)	D	Her iki tarafın logaritması alındı Her iki tarafın logaritması alındı
$(\lg n)^{\lg n} = n^{\lg (\lg n)}$		
$(\lg n)^{\lg n} \succ (\lg n)!$	D	Logx=n olsun. n ⁿ ile n! karşılaştırması gibi düşünebiliriz.
		n.(n-1).(n-2)2.1
		$\lim_{n\to\infty} \left(\frac{n.(n-1).(n-2)2.1}{\underbrace{n.n.nn.n}_{n \text{ times}}} \right) = 0$
		n times
$(\lg n)! \succ n^3.$	D	Her iki tarafın logaritması alınırsa $\frac{\lg ((\lg n)!)}{ }$ ile $\frac{3 \cdot \lg n}{2}$ e bakılır.
		$\lg n! \approx n \lg n$
		$\lg((\lg n)!) \approx (\lg n).(\lg(\lg n)).$ Bu durumda
		$\lim_{n\to\infty} \frac{3.\lg n}{(\lg n).(\lg (\lg n))} = \lim_{n\to\infty} \frac{3}{\lg (\lg n)} = 0$
$(\sqrt{2})^{\lg n} \succ 2^{\sqrt{2 \lg n}}.$	D	$\lg n \succ \sqrt{\lg n}$
		$\frac{1}{2} \cdot \lg n \succ \sqrt{2} \cdot \sqrt{\lg n} = \sqrt{2 \lg n}.$ $(\sqrt{2})^{\lg n} \succ 2^{\sqrt{2 \lg n}}.$
		$(\sqrt{2}) \lg n = 2\sqrt{2 \lg n}$
		(V2) ~ ~ 2. ° .

$n \succ (\sqrt{2})^{\lg n}$		$\sqrt{2}$) ^{$\lg n$} = $2^{\frac{1}{2}\lg n}$ = $2^{\lg \sqrt{n}}$ = \sqrt{n}
		$n \succ \sqrt{n}$.
$\lg^2 n \succ \ln n$.		$\ln n = \frac{\lg n}{\lg e}.$
$n \approx 2^{\lg n}$		$n = 2^{\lg n}$
$\frac{1}{n} \prec 1 - \frac{1}{n}$	D	$\lim_{n\to\infty}\left(\frac{\frac{1}{n}}{1-\frac{1}{n}}\right)=\lim_{n\to\infty}\left(\frac{\frac{1}{n!}}{\frac{n-1}{n!}}\right)=\lim_{n\to\infty}\frac{1}{n-1}=0$
$2^{\frac{1}{n}} \prec 2^{1-\frac{1}{n}}$	Υ	$\lim_{n\to\infty} \left(\frac{2^{\frac{1}{n}}}{2^{1-\frac{1}{n}}}\right) = \lim_{n\to\infty} \left(\frac{2^{\frac{2}{n}}}{2^1}\right) = \mathrm{const}$
$\frac{1}{n^2} \prec \frac{1}{n}$	D	$\lim_{n \to \infty} \left(\frac{\frac{1}{n^2}}{\frac{1}{n}} \right) = 0$
$2^{\frac{1}{n^2}} \prec 2^{\frac{1}{n}}$	Υ	$\lim_{n\to\infty} \left(\frac{2^{\frac{1}{n^2}}}{2^{\frac{1}{n}}}\right) = \lim_{n\to\infty} \left(2^{\frac{1}{n^2} - \frac{1}{n}}\right) = 1 \text{ Çünkü}$
		$\lim_{n\to\infty} \left(\frac{1}{n^2} - \frac{1}{n}\right) = \lim_{n\to\infty} \left(\frac{1-n}{n^2}\right) = \lim_{n\to\infty} \left(\frac{\frac{1}{n}-1}{n}\right) = 0$
α ve ε sabit ve $\alpha > 1$ ve $\varepsilon > 0$.	D	Her iki tarafın logaritmasını alırsak
$\mathfrak{n}^\varepsilon \prec \mathfrak{a}^\mathfrak{n}$		$\epsilon \cdot \log_a n$? $n \log_a n$
		$\epsilon \cdot \log_a n \prec n \log_a n$