POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych

MODELOWANIE I SYMULACJA SYSTEMÓW MECHATRONIKI

Kierunek Automatyka i Robotyka Studia stacjonarne 1-giego stopnia, sem. 5

TEMATYKA WYKŁADU/LABORATORIUM

Wyznaczanie parametrów dynamicznego modelu obwodowego SPS na podstawie danych katalogowych producenta

Mieczysław RONKOWSKI

2012-2013

WYZNACZANIE WARTOŚCI PARAMETRÓW DYNAMICZNEGO MODELU OBWODOWEGO SILNIKA PRĄDU STAŁEGO

(Modelu o stałych parametrach)

Rys. 1. Dynamiczny model maszyny (silnika) prądu stałego — wzorcowego sprzężenia elektromechanicznego w ujęciu obwodowym (analog elektryczny)

Uwaga: Strzałkowanie na rys. 1. przyjęto wg konwencji silnikowej (odbiornikowej).

1. Wielkości modelu na rys. 1A.

u_a - napięcie twornika

u_f - napięcie wzbudzenia

i_a - prąd twornika

if - prąd wzbudzenia

e_a - sem rotacji

T_e - moment elektromagnetyczny (wewnętrzny)

ω_{rm} - prędkość kątowa (mechaniczna) wirnika

T_L - moment obciążenia (zewnętrzny)

2. Parametry modelu na rys. 5b.

R_a - rezystancja obwodu twornika

 R_f - rezystancja obwodu wzbudzenia

L_{aa} - indukcyjność własna obwodu twornika L_{ff} - indukcyjność własna obwodu wzbudzenia

 G_{af} - $indukcyjność\ rotacji\ (sprzężenia\ elektromechanicznego)$

J - moment bezwładności

B_m - współczynnik tarcia lepkiego

dc_motor3_x_sme_poprawka3.em

Rys. 2. Dynamiczny model maszyny (silnika) prądu stałego — wzorcowego sprzężenia elektromechanicznego w ujęciu grafów wiązań

Tablica1. Dane katalogowe silników prądu stałego – producent firma SIEMES

Wielkość	U _{an}	n _n	Pn	J	l an	$\eta_{\rm h}$	P_{fn}	U _{fn}	R _a	L _{aa}
mechaniczna	V	obr/min	kW	kgm²	А	%	W	٧	Ω	mН
100L	300	1850	1,25	0,0115	5	75	145	180	4,6	42
112L	400	2700	4,6	0,0301	13,5	83	130	180	1,97	16
160M	400	3500	19,2	0,121	54,0	86	480	180	0,13	2
225L	440	2300	38,0	0,65	94,0	90,4	650	310	0,15	2,3
225L	600	2950	136,0	0,75	245	91,1	800	310	0,12	1,5

W powyższej tabeli producent podał wartości tylko dla części parametrów (J, R_a , L_{aa}) - wartości pozostałych parametrów wyznacza się wg podanych niżej zależności.

Indukcyjność rotacji

wyznacza się z równania równowagi dla obwodu twornika przy warunkach znamionowych:

$$U_{an} = (G_{af} I_{fn}) \Omega_{rmn} + R_a I_{an}$$
 [V]

po przekształceniu otrzymuje się

$$G_{af} = (U_{an} - R_a I_{an})/(I_{fn} \Omega_{rmn})$$
 [H]

gdzie, znamionowy prąd wzbudzenia

$$I_{fn} = P_{fn} / U_{fn} \tag{3}$$

oraz znamionowa prędkość kątowa [rad/s]

$$\Omega_{rmn} = 2\pi n_n / 60$$
 [rad/s]

Rezystancja obwodu wzbudzenia

$$R_f = U_{fn}^2 / P_{fn}$$
 [\Omega]

Współczynnik tarcia lepkiego

$$B_m \cong \frac{\Delta P_{mn}}{\Omega_{mm}^2} \tag{6}$$

gdzie, znamionowe strat mechaniczne szacuje się następująco

$$\Delta P_{mn} \cong \frac{(0,3...1)\%}{100} P_n \tag{7}$$

Elektromagnetyczna stała czasowa (stała czasowa obwodu twornika)

$$\tau_a = L_{aa} / R_a \tag{8}$$

Elektromechaniczna stała czasowa

$$\tau_m = \frac{JR_a}{(G_{af}I_{fn})^2}$$
 [s]

Indukcyjności obwodu wzbudzenia

ze względu na jej brak w danych katalogowych, szacuje się z następującej relacji między stałą czasową obwodu wzbudzenia ($\tau_f = L_{ff}/R_f$) a elektromagnetyczną stałą czasową (stała czasowa obwodu twornika)

$$\tau_f \ge 20 \ \tau_a \qquad \qquad \text{lub } L_{ff} / R_f = 20 \ L_{aa} / R_a \qquad (10)$$

zatem

$$L_{ff} \ge 20L_{aa}R_f/R_a \tag{11}$$

Uwaga:

Powyższa relacja jest słuszna dla silnika o napięciu twornika takim samym jak napięcie wzbudzenia. W przypadku różnych napięć należy wyznaczyć wartość indukcyjności wg relacji (11), a następnie skorygować jej wartość do poziomu danego napięcia wzbudzenia, zakładając, że energia pola magnetycznego obwodu wzbudzenia jest taka sama w obu przypadkach.

Indukcyjność obwodu twornika

w przypadku braku jej wartości w danych katalogowych, można oszacować następująco:

$$L_{aa} \cong 120 c_a \frac{U_{an}}{I_{an} P n_n} \tag{12}$$

gdzie, stała c_a przyjmuje wartości:

- w przedziale **0,05...0,07** dla maszyn bez uzwojenia kompensacyjnego;
- około **0,032** dla maszyn z uzwojeniem kompensacyjnym.

Uwaga: P – oznacza liczbę biegunów maszyny!.

KOMENTARZ DO NIELINIOWOŚCI INDUKCYJNOŚCI ROTACJI Gaf

Na rys. 3 podano zależność indukcyjności rotacji do prądu wzbudzenia. Wykres sporządzono na podstawie charakterystyki biegu jałowego (w innej skali charakterystyka magnesowania) $E_a = E_a$ (I_f) maszyny prądu stałego przy stałej prędkości kątowej Ω_{rm} . Obliczenia wykonano wg zależności:

Rys. 3. Przykładowa charakterystyki biegu jałowego (w innej skali charakterystyka magnesowania) i indukcyjności rotacji maszyny prądu stałego