4. Espaços vetoriais \mathbb{R}^n

Seja n um número natural. Recorde-se que

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid x_1, x_2, \dots, x_n \in \mathbb{R}\}.$$

 \acute{e} o conjunto das sequências ordenadas de n números reais.

As sequências $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ serão chamadas *vetores* do "espaço" \mathbb{R}^n e representam-se frequentemente na forma de matrizes:

$$x = [x_1 \ x_2 \ \cdots \ x_n]$$
 "vetor" linha
$$\lceil x_1 \rceil$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 "vetor" coluna.

O vetor $(0,0,\ldots,0)$ é designado o *zero* ou *vetor nulo* de \mathbb{R}^n , e é representado por $0_{\mathbb{R}^n}$ (ou simplesmente por 0).

O vetor
$$-x = (-x_1, -x_2, \dots, -x_n)$$
 é o simétrico de $x = (x_1, x_2, \dots, x_n)$.

Define-se uma operação + de adição de vetores de \mathbb{R}^n

$$(x_1, x_2, \ldots, x_n) + (y_1, y_2, \ldots, y_n) = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$$

e uma operação \cdot de multiplicação de números reais (chamados escalares) por vetores de \mathbb{R}^n ,

$$\alpha \cdot (x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$$

Note-se que o símbolo \cdot , que denota a operação de multiplicação por escalares, é habitualmente omitido, denotando-se assim por simples justaposição, $\alpha(x_1, x_2, \dots, x_n)$ em vez de $\alpha \cdot (x_1, x_2, \dots, x_n)$.

Por exemplo, em \mathbb{R}^4 , tem-se

$$(0, \pi, \frac{3}{2}, -1) + 5(\sqrt{2}, -1, 1, 0) = (0, \pi, \frac{3}{2}, -1) + (5\sqrt{2}, -5, 5, 0)$$
$$= (5\sqrt{2}, \pi - 5, \frac{13}{2}, -1).$$

José Carlos Costa DMA-UMinho 5 de dezembro de 2013 3/44

PROPRIEDADES

Sejam x, y, z elementos quaisquer de \mathbb{R}^n e $\alpha, \beta \in \mathbb{R}$. Então,

(i)
$$x+y=y+x$$
; [comutatividade de +]

(ii)
$$x+(y+z) = (x+y)+z$$
; [associatividade de +]

(iii)
$$x+0_{\mathbb{R}^n}=x$$
; $[0_{\mathbb{R}^n} \text{ \'e elemento neutro para } +]$

(iv)
$$x+(-x) = 0_{\mathbb{R}^n}$$
; $[-x \text{ \'e elemento sim\'etrico de } x]$

(v)
$$\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$$
; [distributividade de · em relação a + em \mathbb{R}^n]

(vi)
$$(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$
; [distributividade de · em relação a + em \mathbb{R}]

(vii)
$$\alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x$$
; [associatividade de ·]

(viii)
$$1 \cdot x = x$$
. [o real 1 é elemento neutro para ·]

José Carlos Costa DMA-UMinho 5 de dezembro de 2013

Demonstração: Demonstraremos apenas (\mathbf{v}). Denotando $x = (x_1, x_2, \dots, x_n)$ e $y = (y_1, y_2, \dots, y_n)$, deduz-se

$$\alpha \cdot (x+y) = \alpha \cdot (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

$$= (\alpha(x_1 + y_1), \alpha(x_2 + y_2), \dots, \alpha(x_n + y_n))$$

$$= (\alpha x_1 + \alpha y_1, \alpha x_2 + \alpha y_2, \dots, \alpha x_n + \alpha y_n)$$

$$= (\alpha x_1, \alpha x_2, \dots, \alpha x_n) + (\alpha y_1, \alpha y_2, \dots, \alpha y_n)$$

$$= \alpha \cdot (x_1, x_2, \dots, x_n) + \alpha \cdot (y_1, y_2, \dots, y_n)$$

$$= \alpha \cdot x + \alpha \cdot y.$$

Devido a estas propriedades diz-se que \mathbb{R}^n (algebrizado com as operações + e \cdot definidas acima) é um espaço vetorial.

DEFINIÇÃO

Um subconjunto F de \mathbb{R}^n diz-se um subespaço vetorial de \mathbb{R}^n (ou simplesmente um subespaço de \mathbb{R}^n), e escreve-se $F \leq \mathbb{R}^n$, se são satisfeitas as seguintes condições:

$$(s_1)$$
 $0_{\mathbb{R}^n} \in F$;

$$(s_2)$$
 $x, y \in F \Rightarrow x + y \in F$;

$$(s_3) \ \alpha \in \mathbb{R}, \ x \in F \ \Rightarrow \ \alpha \cdot x \in F.$$

[F contém o vetor nulo de \mathbb{R}^n]

[F é fechado para +]

[F é fechado para ·]

EXEMPLOS

- 1. $\{0_{\mathbb{R}^n}\}$ e \mathbb{R}^n são subespaços de \mathbb{R}^n (os chamados subespaços triviais).
- 2. O conjunto $\{(x,y,z)\in\mathbb{R}^3:y=1\}$ não é um subespaço de \mathbb{R}^3 pois não contém o vetor nulo de \mathbb{R}^3 .
- 3. O conjunto $\{(a,b) \in \mathbb{R}^2 \mid a=0\} = \{(0,b) \mid b \in \mathbb{R}\}$ é um subespaço de \mathbb{R}^2 .

José Carlos Costa DMA-UMinho 5 de dezembro de 2013 7/44

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ uma matriz de ordem $m \times n$. O núcleo de A,

$$N(A) = \{x \in \mathbb{R}^n : Ax = 0\},\$$

é um subespaço vetorial do espaço vetorial \mathbb{R}^n .

Demonstração: Comecemos por notar que N(A) é um subconjunto de \mathbb{R}^n . Basta agora provar as condições $(s_1) - (s_3)$ da definição de subespaço vetorial.

- (s_1) Como já referimos, e é evidente, o sistema homogéneo Ax = 0 admite a solução nula. Ou seja, o vetor nulo de \mathbb{R}^n é um elemento de N(A) e, portanto, a condição (s_1) é verificada.
- (s₂) Sejam $x, y \in N(A)$. Então $x, y \in \mathbb{R}^n$ e Ax = 0 = Ay. Logo A(x + y) = Ax + Ay = 0 + 0 = 0, donde se conclui que $x + y \in N(A)$.
- (s₃) Sejam $x \in N(A)$ e $\alpha \in \mathbb{R}$. Então $x \in \mathbb{R}^n$ e Ax = 0. Logo $A(\alpha x) = \alpha(Ax) = \alpha 0 = 0$ e, portanto, $\alpha x \in N(A)$.

De (s_1) a (s_3) resulta que N(A) é um subespaço de \mathbb{R}^n .

José Carlos Costa DMA-UMinho 5 de dezembro de 2013

Exercício

Determine quais dos seguintes conjuntos são subespaços do espaço vetorial real \mathbb{R}^3

$$E = \{(a, b, c) \in \mathbb{R}^3 : c = 0\},$$

$$F = \{(a, b, c) \in \mathbb{R}^3 : a + b = 0\},$$

$$G = \{(a, b, c) \in \mathbb{R}^3 : a + b = 1\}.$$

José Carlos Costa DMA-UMinho 5 de dezembro de 2013

O resultado seguinte mostra que a interseção de subespaços do espaço vetorial \mathbb{R}^n ainda é um subespaço de \mathbb{R}^n .

TEOREMA

Sejam E_1 e E_2 subespaços de \mathbb{R}^n . Então $E_1 \cap E_2$ é um subespaço de \mathbb{R}^n .

Demonstração: Como é evidente, $E_1 \cap E_2 \subseteq \mathbb{R}^n$.

- (s_1) Dado que E_1 e E_2 são subespaços vetorais de \mathbb{R}^n , $0_{\mathbb{R}^n} \in E_1$ e $0_{\mathbb{R}^n} \in E_2$. Logo $0_{\mathbb{R}^n} \in E_1 \cap E_2$.
- (s_2) Sejam $x, y \in E_1 \cap E_2$. Então $x, y \in E_1$ e $x, y \in E_2$, pelo que $x + y \in E_1$ e $x + y \in E_2$ pois E_1 e E_2 são subespaços vetoriais de \mathbb{R}^n . Logo $x + y \in E_1 \cap E_2$.
- (s₃) Sejam $x \in E_1 \cap E_2$ e $\alpha \in \mathbb{R}$. Então $x \in E_1$ e $x \in E_2$, pelo que $\alpha \cdot x \in E_1$ e $\alpha \cdot x \in E_2$, atendendo a que E_1 e E_2 são subespaços vetoriais de \mathbb{R}^n . Logo $\alpha \cdot x \in E_1 \cap E_2$.

Conclui-se assim que $E_1 \cap E_2$ é subespaço vetorial de \mathbb{R}^n .

EXEMPLO

Considere os subespaços

$$E = \{(a, b, c) \in \mathbb{R}^3 : c = 0\}, \quad F = \{(a, b, c) \in \mathbb{R}^3 : a + b = 0\}$$

do espaço vetorial \mathbb{R}^3 . Tem-se que

$$E \cap F = \{(a, b, c) \in \mathbb{R}^3 : c = 0, a + b = 0\}$$
$$= \{(a, b, c) \in \mathbb{R}^3 : c = 0, a = -b\}$$
$$= \{(-b, b, 0) : b \in \mathbb{R}\}$$

é um subespaço de \mathbb{R}^3 , como se pode verificar.

E quanto a $E \cup F$? Tem-se que

$$x = (1,1,0) \in E \subseteq E \cup F$$
 e $y = (2,-2,5) \in F \subseteq E \cup F$.

No entanto, $x+y=(3,-1,5)\not\in E\cup F$, pelo que $E\cup F$ não verifica a condição (s_2) da definição de subespaço vetorial. Logo $E\cup F$ não é um subespaço de \mathbb{R}^3 .

Em ℝ³ tem-se

$$(5,7,-2) = 5(1,0,0) + 7(0,1,0) - 2(0,0,1).$$

Diz-se então que o vetor (5,7,-2) é uma "combinação linear" dos vetores (1,0,0), (0,1,0) e (0,0,1).

DEFINIÇÃO

Sejam v_1, v_2, \ldots, v_k elementos de \mathbb{R}^n . Um vetor $v \in \mathbb{R}^n$ diz-se uma combinação linear dos vetores v_1, v_2, \ldots, v_k se existem escalares $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ (não necessariamente únicos) tais que

$$\mathbf{v} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \cdots + \alpha_k \mathbf{v_k}.$$

Os escalares $\alpha_1, \alpha_2, \ldots, \alpha_k$ dizem-se os *coeficientes* da combinação linear ou, mais precisamente, $(\alpha_1, \alpha_2, \ldots, \alpha_k)$ é a *sequência dos coeficientes* da combinação linear.

José Carlos Costa DMA-UMinho 5 de dezembro de 2013 16/44

EXEMPLOS

1. Considere os vetores $v=(3,4), \ f_1=(2,2)$ e $f_2=(-1,2)$ de \mathbb{R}^2 . Tem-se $v=\frac{5}{3}f_1+\frac{1}{3}f_2$

donde v é uma combinação linear dos vetores f_1, f_2 .

2. Em \mathbb{R}^3 o vetor (3,3,0) é combinação linear dos vetores (1,1,0) e (2,2,0). Os coeficientes da combinação linear não são únicos pois de

$$(3,3,0) = \alpha_1(1,1,0) + \alpha_2(2,2,0)$$

resulta

$$(3,3,0) = (\alpha_1 + 2\alpha_2, \alpha_1 + 2\alpha_2, 0).$$

Assim, quaisquer escalares $\alpha_1,\alpha_2\in\mathbb{R}$ tais que $\alpha_1+2\alpha_2=3$ estão nas condições pretendidas. Por exemplo, para $(\alpha_1=1\ e\ \alpha_2=1)$ ou $(\alpha_1=3\ e\ \alpha_2=0)$ ou $(\alpha_1=5\ e\ \alpha_2=-1)$ obtém-se,

$$(3,3,0) = 1(1,1,0) + 1(2,2,0)$$

= 3(1,1,0) + 0(2,2,0)
= 5(1,1,0) + (-1)(2,2,0).

Exemplos (continuação)

3. Para cada vetor $v = (a_1, a_2, \dots, a_n)$ do espaço vetorial \mathbb{R}^n tem-se

$$v = a_1(1,0,\ldots,0) + a_2(0,1,0,\ldots,0) + \cdots + a_n(0,\ldots,0,1).$$

Conclui-se assim que qualquer vetor v de \mathbb{R}^n é combinação linear dos vetores

$$\begin{array}{rcl} \mathbf{e}_1 & = & (1,0,0,...,0) \\ \mathbf{e}_2 & = & (0,1,0,...,0) \\ & \vdots & \\ \mathbf{e}_n & = & (0,0,...,0,1). \end{array}$$

4. Se v_1, v_2, \ldots, v_k são elementos do espaço vetorial \mathbb{R}^n , então cada vetor v_i ($i \in \{1, \ldots, k\}$) é combinação de v_1, v_2, \ldots, v_k . Basta atender a que

$$v_i = 0v_1 + \cdots + 0v_{i-1} + 1v_i + 0v_{i+1} + \cdots + 0v_k$$

EXEMPLOS (CONTINUAÇÃO)

- 5. Consideremos o espaço vetorial \mathbb{R}^n .
 - ▶ O vetor nulo $0_{\mathbb{R}^n}$ é combinação linear de quaisquer vetores v_1, v_2, \ldots, v_k de \mathbb{R}^n .

De facto tem-se

$$\mathbf{0}_{\mathbb{R}^n}=0\mathbf{v}_1+0\mathbf{v}_2+\cdots+0\mathbf{v}_k.$$

No entanto, pode haver outras formas de escrever O_{ℝⁿ} como combinação linear dos vetores v₁, v₂, ..., v_k.

Por exemplo, em \mathbb{R}^3 , para os vetores (1,1,0) e (2,2,0) do Exemplo 2 tem-se

$$(0,0,0) = 0(1,1,0) + 0(2,2,0)$$

= -2(1,1,0) + 1(2,2,0)
= 8(1,1,0) + (-4)(2,2,0).

Exemplos (continuação)

- 6. Sejam $v_1, \ldots, v_k, u_1, \ldots, u_\ell \in \mathbb{R}^n$.
 - ▶ Se w é combinação de $v_1, v_2, ..., v_k$, então w é combinação de $v_1, ..., v_k, u_1, ..., u_\ell$.

De facto, se w é combinação de v_1, v_2, \ldots, v_k , então existem escalares $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ tais que

$$\mathbf{w} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_k \mathbf{v_k}.$$

Basta então notar que

$$\mathbf{w} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k + 0 \mathbf{u}_1 + 0 \mathbf{u}_2 + \dots + 0 \mathbf{u}_\ell.$$

Exercício

Em \mathbb{R}^3 , considere os seguintes vetores

$$v_1 = (-1, 2, 4), \quad v_2 = (0, 4, 5),$$

 $v_3 = (1, 2, 1), \quad v_4 = (0, 8, 10).$

Justifique que:

- a) Existe mais do que uma forma de escrever o vetor (0, 4, 5) e o vetor (0, 0, 0) como combinação linear dos vetores v_1, v_2, v_3, v_4 .
- b) Existem elementos de \mathbb{R}^3 que não são combinação linear dos vetores v_1, v_2, v_3, v_4 e indique dois elementos nessas condições.

Sejam v_1, v_2, \ldots, v_k vetores do espaço vetorial \mathbb{R}^n e seja

$$\mathcal{L}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} = \{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k : \alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}\}$$

o conjunto de todas as combinações lineares de v_1, v_2, \ldots, v_k . Então,

- (i) $\mathcal{L}\{v_1, v_2, \dots, v_k\}$ é um subespaço de \mathbb{R}^n ;
- (ii) $v_1, v_2, \ldots, v_k \in \mathcal{L}\{v_1, v_2, \ldots, v_k\};$
- (iii) se E é um subespaço de \mathbb{R}^n tal que $v_1, v_2, \ldots, v_k \in E$, então $\mathcal{L}\{v_1, v_2, \ldots, v_k\} \subseteq E$.

DEFINIÇÃO

Este teorema mostra que $\mathcal{L}\{v_1,\ldots,v_k\}$ é o menor subespaço de \mathbb{R}^n que contém os vetores v_1,\ldots,v_k . Diz-se então que é o *subespaço de* \mathbb{R}^n *gerado* pelos vetores v_1,\ldots,v_k , ou pelo conjunto $\{v_1,\ldots,v_k\}$, ou ainda pela sequência (v_1,\ldots,v_k) , e denota-se por (v_1,\ldots,v_k) .

José Carlos Costa DMA-UMinho 5 de dezembro de 2013 22/44

Demonstração (do Teorema):

- (i) Denotemos $\mathcal{L}\{v_1, v_2, \dots, v_k\}$ simplesmente por L. É claro que $L \subseteq \mathbb{R}^n$. Por outro lado,
- (s_1) O vetor nulo de \mathbb{R}^n pertence a L pois

$$0_{\mathbb{R}^n} = 0v_1 + 0v_2 + \cdots + 0v_k.$$

 (s_2) Sejam $x, y \in L$. Então

$$\begin{aligned} \mathbf{x} &= \alpha_1 \mathbf{v_1} + \dots + \alpha_k \mathbf{v_k} \quad \mathbf{e} \quad \mathbf{y} &= \beta_1 \mathbf{v_1} + \dots + \beta_k \mathbf{v_k}, \\ \mathsf{com} \ \alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_k &\in \mathbb{R}. \ \mathsf{Logo} \\ &\qquad \qquad \mathbf{x} + \mathbf{y} = (\alpha_1 + \beta_1) \mathbf{v_1} + \dots + (\alpha_k + \beta_k) \mathbf{v_k}, \end{aligned}$$

donde se deduz que $x + y \in L$.

(s_3) Sejam $\mathbf{x} \in \mathbf{L}$ e $\alpha \in \mathbb{R}$. Então $\mathbf{x} = \alpha_1 \mathbf{v_1} + \dots + \alpha_k \mathbf{v_k}$ com $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ e

$$\alpha \mathbf{x} = (\alpha \alpha_1) \mathbf{v_1} + \dots + (\alpha \alpha_k) \mathbf{v_k},$$

donde $\alpha x \in L$.

Conclui-se assim que $\mathcal{L}\{x_1, x_2, \dots, x_k\} \leq \mathbb{R}^n$.

(ii), (iii) Exercício.

EXEMPLOS

1. O subespaço de \mathbb{R}^2 gerado pelo vetor $\mathbf{e}_2 = (0,1)$ é o conjunto

$$\langle \mathbf{e}_2 \rangle = \{ a(0,1) : a \in \mathbb{R} \} = \{ (0,a) : a \in \mathbb{R} \},$$

dos vetores de R² cuja primeira componente é nula.

2. Consideremos $E = \{(x, y, z) \in \mathbb{R}^3 : x - 2y = 0, y = 4z\}$. Tem-se

$$E = \{(x, y, z) \in \mathbb{R}^3 : x = 2y, \ z = \frac{1}{4}y\}$$

$$= \{(2y, y, \frac{1}{4}y) : y \in \mathbb{R}\}$$

$$= \{y(2, 1, \frac{1}{4}) : y \in \mathbb{R}\}$$

$$= \langle (2, 1, \frac{1}{4}) \rangle.$$

Isto prova, em particular, que E é um subespaço vetorial de \mathbb{R}^3 .

3. O exemplo 3 da página 18 permite-nos afirmar que

$$\mathbb{R}^n = \langle \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \rangle.$$

Sejam v_1, v_2, \ldots, v_k vetores de \mathbb{R}^n e seja $w = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$ uma combinação linear de v_1, v_2, \ldots, v_k . Então,

$$\langle v_1, v_2, \ldots, v_k \rangle = \langle v_1, v_2, \ldots, v_k, w \rangle.$$

Demonstração: Sejam $E = \langle v_1, v_2, \dots, v_k \rangle$ e $F = \langle v_1, v_2, \dots, v_k, w \rangle$. Para provar que E = F mostraremos que $E \subseteq F$ e que $F \subseteq E$.

▶ Para mostrar $E \subseteq F$ basta notar que o conjunto $\{v_1, v_2, \ldots, v_k\}$ que gera E está contido no conjunto gerador de F, $\{v_1, v_2, \ldots, v_k, w\}$. Alternativamente, poderia deduzir-se

$$u \in E \Rightarrow u = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_k v_k \quad \text{com os } \beta_i \in \mathbb{R}$$

 $\Rightarrow u = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_k v_k + 0w$
 $\Rightarrow u \in F.$

Para a inclusão F ⊆ E note-se que

$$u \in F \Rightarrow u = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_k v_k + \beta_{k+1} w$$

$$\Rightarrow u = \beta_1 v_1 + \dots + \beta_k v_k + \beta_{k+1} (\alpha_1 v_1 + \dots + \alpha_k v_k)$$

$$\Rightarrow u = (\beta_1 + \beta_{k+1} \alpha_1) v_1 + \dots + (\beta_k + \beta_{k+1} \alpha_k) v_k$$

$$\Rightarrow u \in E.$$

Sejam v_1, v_2, \ldots, v_k vetores de \mathbb{R}^n e seja $i \in \{1, \ldots, k\}$. Se $w = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$ é uma combinação linear de v_1, v_2, \ldots, v_k com $\alpha_i \neq 0$, então $\langle v_1, \ldots, v_{i-1}, v_i, v_{i+1}, \ldots, v_k \rangle = \langle v_1, \ldots, v_{i-1}, w, v_{i+1}, \ldots, v_k \rangle$.

Demonstração: Exercício.

Exercício

Sejam $u_1, u_2, u_3 \in \mathbb{R}^n$. Justifique que:

a)
$$\langle u_1, u_2, u_3 \rangle = \langle u_1, u_1 + u_2, u_1 + u_2 + u_3 \rangle$$
.

b)
$$\langle u_1, u_2, u_3 \rangle = \langle -u_3, -u_1 + u_2, 2u_1 + u_3 \rangle.$$

DEFINIÇÃO

Sejam $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$. Os vetores v_1, v_2, \ldots, v_k , ou a sequência (v_1, v_2, \ldots, v_k) , dizem-se:

- ▶ linearmente independentes se, para $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}$, $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0}_{\mathbb{R}^n} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \dots = \alpha_k = 0.$
- Innearmente dependentes se não são linearmente independentes, ou seja, se existem $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}$ não todos nulos tais que $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = 0_{\mathbb{R}^n}$.

José Carlos Costa DMA-UMinho 5 de dezembro de 2013 29/44

EXEMPLOS

1. Os vetores $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$ de \mathbb{R}^3 são linearmente independentes. De facto, tem-se para $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$,

$$\alpha_{1}\mathbf{e}_{1} + \alpha_{2}\mathbf{e}_{2} + \alpha_{3}\mathbf{e}_{3} = \mathbf{0}_{\mathbb{R}^{3}} \Rightarrow$$

$$\Rightarrow \quad \alpha_{1}(1,0,0) + \alpha_{2}(0,1,0) + \alpha_{3}(0,0,1) = (0,0,0)$$

$$\Rightarrow \quad (\alpha_{1},\alpha_{2},\alpha_{3}) = (0,0,0)$$

$$\Rightarrow \quad \alpha_{1} = \alpha_{2} = \alpha_{3} = 0.$$

2. Os vetores $\mathbf{e_1}$, $\mathbf{e_2}$, f=(2,-5,0) de \mathbb{R}^3 são linearmente dependentes. De facto, consegue-se escrever o vetor nulo de \mathbb{R}^3 como combinação linear dos três vectores apresentados utilizando escalares não nulos, da seguinte forma

$$2\mathbf{e}_1 + (-5)\mathbf{e}_2 + (-1)f = (0,0,0).$$

Exercício

Mostre que:

a) Em \mathbb{R}^3 , os vetores

$$(1,2,3),(0,-1,1),(0,0,2)$$

são linearmente independentes.

b) Em \mathbb{R}^4 , os vetores

31/44

são linearmente dependentes.

Vetores v_1, \ldots, v_k do espaço vetorial \mathbb{R}^n são linearmente dependentes se e só se algum deles é combinação linear dos restantes.

Demonstração:

(\Rightarrow) Suponhamos que v_1,\ldots,v_k são linearmente dependentes. Então, $\alpha_1v_1+\alpha_2v_2+\cdots+\alpha_kv_k=0_{\mathbb{R}^n}$ para alguns $\alpha_1,\alpha_2,\ldots,\alpha_k\in\mathbb{R}$ não todos nulos. Seja $i\in\{1,\ldots,k\}$ tal que $\alpha_i\neq 0$. Logo,

$$\mathbf{v}_{i} = -\frac{\alpha_{1}}{\alpha_{i}}\mathbf{v}_{1} - \cdots - \frac{\alpha_{i-1}}{\alpha_{i}}\mathbf{v}_{i-1} - \frac{\alpha_{i+1}}{\alpha_{i}}\mathbf{v}_{i+1} - \cdots - \frac{\alpha_{k}}{\alpha_{i}}\mathbf{v}_{k},$$

Ou seja, v_i é uma combinação linear dos restantes vetores.

(\Leftarrow) Suponhamos agora que existe um $i \in \{1, \ldots, k\}$ e que existem $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_k \in \mathbb{K}$ tais que

$$\mathbf{v}_i = \alpha_1 \mathbf{v}_1 + \dots + \alpha_{i-1} \mathbf{v}_{i-1} + \alpha_{i+1} \mathbf{v}_{i+1} + \dots + \alpha_k \mathbf{v}_k.$$

Então existe uma combinação linear nula dos vetores v_1, v_2, \dots, v_k ,

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_{i-1} \mathbf{v}_{i-1} + (-1) \mathbf{v}_i + \alpha_{i+1} \mathbf{v}_{i+1} + \cdots + \alpha_k \mathbf{v}_k = \mathbf{0}_{\mathbb{R}^n},$$

em que pelo menos um dos coeficientes é não nulo. Os vetores v_1, v_2, \ldots, v_k são portanto linearmente dependentes.

П

Observações

Num espaço vetorial \mathbb{R}^n :

1. Qualquer conjunto de vetores $\{0_{\mathbb{R}^n}, v_1, v_2, \dots, v_k\}$, que contenha o vetor nulo, é linearmente dependente pois

$$\mathbf{0}_{\mathbb{R}^n} = 1 \cdot \mathbf{0}_{\mathbb{R}^n} + 0 \cdot \mathbf{v}_1 + 0 \cdot \mathbf{v}_2 + \cdots + 0 \cdot \mathbf{v}_k.$$

- 2. Um vetor v é linearmente independente se e só se $v \neq 0_{\mathbb{R}^n}$.
- 3. Se $X = \{v_1, v_2, \dots, v_k\}$ é um conjunto de vetores linearmente independentes, então qualquer subconjunto de X é também linearmente independente.
- 4. Se $X = \{v_1, v_2, \dots, v_k\}$ é um conjunto de vetores linearmente dependentes, então qualquer conjunto contendo X é também linearmente dependente.
- 5. Se v_1, v_2, \ldots, v_k são vetores linearmente independentes e w é um outro vetor tal que v_1, v_2, \ldots, v_k, w são linearmente dependentes, então w é combinação linear de v_1, v_2, \ldots, v_k .

DEFINIÇÃO

Seja E um subespaço de \mathbb{R}^n e seja $\mathbb{B} = \{v_1, \dots, v_k\}$ um conjunto de vetores de E. Diz-se que \mathbb{B} é uma base de E se:

- i) \mathcal{B} é um conjunto gerador de E (ou seja, $\langle v_1, \dots, v_k \rangle = E$).
- ii) B é um conjunto de vetores linearmente independentes.

Se $E = \{0_{\mathbb{R}^n}\}$, então convenciona-se que E tem por base o conjunto vazio e diz-se que E tem dimensão nula.

OBSERVAÇÃO

- 1. $\{(1,0),(0,1)\}$ é um conjunto gerador de \mathbb{R}^2 e é linearmente independente.
- 2. $\{(1,0),(0,1),(2,-1)\}$ gera \mathbb{R}^2 mas não é linearmente independente.
- 3. $\{(1,0),(2,0)\}$ não gera \mathbb{R}^2 e não é linearmente independente.
- 4. $\{(1,1)\}$ não gera \mathbb{R}^2 mas é linearmente independente.

José Carlos Costa DMA-UMinho 5 de dezembro de 2013 34/44

EXEMPLOS

- 1. O conjunto $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ de vetores de \mathbb{R}^3 forma uma base de \mathbb{R}^3 (chamado a base canónica de \mathbb{R}^3). Com efeito, vimos já que:
 - $ightharpoonup \mathbb{R}^3 = \langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$, no exemplo 3 da página 24.
 - e₁, e₂, e₃ são vetores linearmente independentes, no exemplo 1 da página 30.
- 2. Mais geralmente, o conjunto

$$\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}=\{(1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,\ldots,0,1)\}$$

forma uma base de \mathbb{R}^n , chamada a base canónica de \mathbb{R}^n , e representada por $bc_{\mathbb{R}^n}$.

3. Um subespaço vetorial pode ter mais do que uma base. Assim, para além da base canónica $bc_{\mathbb{R}^2} = (\mathbf{e}_1, \mathbf{e}_2)$, \mathbb{R}^2 admite também, por exemplo, a base $\{(-1, 2), (1, 1)\}$.

Seja $\mathcal{B} = \{v_1, v_2, \dots, v_k\}$ uma base de um subespaço vetorial E. Cada vetor $w \in E$ pode ser escrito de uma única forma

$$\mathbf{w} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_k \mathbf{v_k}$$

como combinação linear dos vetores v_1, v_2, \ldots, v_k . Diz-se então que os coeficientes $\alpha_1, \alpha_2, \ldots, \alpha_k$ são as coordenadas de w na base \mathcal{B} .

Demonstração: Seja $w \in E$. Como $\{v_1, v_2, \dots, v_k\}$ é uma base de E, tem-se $\langle v_1, v_2, \dots, v_k \rangle = E$ e, consequentemente, $w \in \langle v_1, v_2, \dots, v_k \rangle$. Suponhamos que $w = \alpha_1 v_1 + \dots + \alpha_k v_k = \beta_1 v_1 + \dots + \beta_k v_k$. Então

$$(\alpha_1 - \beta_1)\mathbf{v_1} + \cdots + (\alpha_k - \beta_k)\mathbf{v_k} = 0$$

e, dado que v_1, v_2, \ldots, v_k são linearmente independentes, conclui-se que $\alpha_i - \beta_i = 0$, donde $\alpha_i = \beta_i$, para todo o $i = 1, \ldots, k$.

EXEMPLOS

- 1. Em \mathbb{R}^2 , as coordenadas do vetor v = (-2,7) relativamente à base:
 - ▶ $bc_{\mathbb{R}^2} = \{\mathbf{e}_1, \mathbf{e}_2\}$ são -2, 7.
 - $\{(-1,2),(1,1)\}$ são 3,1.
- 2. As coordenadas do vetor $(a_1, a_2, ..., a_n)$ relativamente à base canónica $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ de \mathbb{R}^n são $a_1, a_2, ..., a_n$.
- 3. Note-se que dada uma base de um subespaço *E*, qualquer vetor de *E* fica bem determinado se conhecermos as coordenadas relativamente a essa base.

Por exemplo, se $\mathcal{B} = \{(1, -2, 3), (2, 0, 1)\}$ é uma base de um subespaço E de \mathbb{R}^3 , então o vetor que em relação à base \mathcal{B} tem as coordenadas 6, -2 é o vetor

$$6(1,-2,3)+(-2)(2,0,1)=(2,-12,16).$$

Exercício

Em \mathbb{R}^4 , considere a base

$$\mathcal{B} = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}$$

e a base canónica

$$bc_{\mathbb{R}^4} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$$
$$= \{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}.$$

- a) Determine as coordenadas do vetor (4, 3, 2, 1) em cada uma das bases \mathcal{B} e $bc_{\mathbb{R}^4}$.
- b) Determine as coordenadas de um vetor arbitrário $(a, b, c, d) \in \mathbb{R}^4$ em cada uma das bases \mathcal{B} e $bc_{\mathbb{R}^4}$.
- c) Determine o vetor que tem as coordenadas 2, -1, -2, 3 relativamente:

- i) à base B.
- ii) à base $bc_{\mathbb{R}^4}$.

Seja E um subespaço de \mathbb{R}^n . Se $\{u_1, \ldots, u_k\}$ é um conjunto de vetores linearmente independentes de E e $\{v_1, \ldots, v_\ell\}$ é um conjunto gerador de E, então $k \leq \ell$.

COROLÁRIO

Seja E um subespaço de \mathbb{R}^n . Se E tem uma base com k vetores, então todas as bases de E têm k vetores. Diz-se então que E tem dimensão k, e escreve-se dim(E) = k.

Demonstração: Sejam $\mathcal{B} = \{u_1, \dots, u_k\}$ e $\mathcal{B}' = \{v_1, \dots, v_\ell\}$ bases de E.

- ► Como \mathfrak{B} é um conjunto de vetores linearmente independentes e \mathfrak{B}' é um conjunto gerador, deduz-se do teorema anterior que $k < \ell$.
- ▶ Reciprocamente, dado que $\underline{\mathcal{B}}'$ é um conjunto independente e $\underline{\mathcal{B}}$ é um conjunto gerador, $\ell \leq k$.

Conclui-se assim que $k = \ell$, como queríamos provar.

José Carlos Costa DMA-UMinho 5 de dezembro de 2013

EXEMPLO

Tem-se o seguinte:

- 1. $dim(\mathbb{R}^n) = n$.
- 2. Se $E = \{0_{\mathbb{R}^n}\}$, então dim(E) = 0.
- 3. Em \mathbb{R}^2 , as retas que passam pela origem têm dimensão 1.
- 4. O conjunto $\{(1,0,0),(0,1,2)\}$ é uma base do subespaço $E = \{(x,y,z) \in \mathbb{R}^3 : z = 2y\}$ de \mathbb{R}^3 . Portanto, dim(E) = 2.

Exercício

Mostre que o subespaço

$$F = \{(a, b, c, d) \in \mathbb{R}^4 : a - b = c - d\}$$

de \mathbb{R}^4 , tem dimensão 3.

Proposição

Seja E um subespaço vetorial e sejam v_1, v_2, \ldots, v_k vetores linearmente independentes de E. Se w é um vetor de E que não é combinação linear dos vetores v_1, v_2, \ldots, v_k , então

- v_1, v_2, \dots, v_k, w são vetores linearmente independentes,

EXEMPLO

Os vetores de \mathbb{R}^3

$$v_1 = (1, 0, 0), v_2 = (1, 2, 0).$$

são linearmente independentes. O vetor w=(1,0,1) não é combinação linear de v_1,v_2 (ou seja, $w \notin \langle v_1,v_2 \rangle$) e, portanto, os vetores v_1,v_2,w são linearmente independentes. Como geram \mathbb{R}^3 (verifique) conclui-se que $\{v_1,v_2,w\}$ é uma base de \mathbb{R}^3 .

Seja E um subespaço de dimensão k. Então

- Dado um conjunto de vetores linearmente independentes de E, se esse conjunto não é uma base de E (ou seja, não é gerador) então é possível acrescentar-lhe vetores de E para obter uma base de E.
- 2. Qualquer conjunto de *k* vetores linearmente independentes de *E* é uma base de *E*.
- Dado um conjunto finito de vetores que geram E, se esse conjunto não é uma base de E (ou seja, não é linearmente independente) então é possível retirar-lhe vetores de forma a obter uma base de E.
- 4. Qualquer conjunto de k vetores que geram E é uma base de E.

Corolário

Seja E um subespaço de \mathbb{R}^n . Então

- (i) $dim(E) \leq n$.
- (ii) dim(E) = n se e só se $E = \mathbb{R}^n$.

EXEMPLO

No espaço vetorial real \mathbb{R}^3 , consideremos os vetores

$$v_1 = (-1, 0, 0), v_2 = (1, 0, 1), v_3 = (0, 0, 2), v_4 = (1, -1, 1), v_5 = (1, 1, 0).$$

Como se pode verificar, $\{v_1, v_2, v_3, v_4, v_5\}$ é um conjunto de vetores linearmente dependentes que gera \mathbb{R}^3 .

- ▶ Observe-se que $v_3 = 2v_1 + 2v_2 + 0v_4 + 0v_5$, donde, pelo teorema da página 27, $\mathbb{R}^3 = \langle v_1, v_2, v_3, v_4, v_5 \rangle = \langle v_1, v_2, v_4, v_5 \rangle$.
- ▶ Por outro lado, $dim(\mathbb{R}^3) = 3$ e portanto os vetores v_1, v_2, v_4, v_5 são linearmente dependentes. Por exemplo, tem-se $v_2 = v_1 + v_4 + v_5$ pelo que $\mathbb{R}^3 = \langle v_1, v_2, v_4, v_5 \rangle = \langle v_1, v_4, v_5 \rangle$.

Os vetores v_1 , v_4 , v_5 são linearmente independentes (pois são 3 e geram um subespaço de dimensão 3). Logo $\{v_1, v_4, v_5\}$ é uma base de \mathbb{R}^3 .

Exercício

1. Em \mathbb{R}^3 , considere os vetores

$$v_1 = (1, 2, 1), \ v_2 = (2, -1, -3), \ v_3 = (0, 1, 1)$$

e o subespaço

$$E = \langle v_1, v_2, v_3 \rangle.$$

- a) Verifique que o conjunto $\{v_1, v_2, v_3\}$ não é uma base de E.
- b) Determine um subconjunto de $\{v_1, v_2, v_3\}$ que seja uma base de E.
- 2. Em \mathbb{R}^3 , considere o conjunto

$$X = \{(1,0,1),(2,0,-1)\}.$$

- a) Verifique que o conjunto X é linearmente independente.
- b) Indique uma base de \mathbb{R}^3 que contenha X.