ANALYTIC GEOMETRY, PROBLEM SET 1

Rectangular (cartesian) coordinates

- 1. Give the coordinates of the vertices of the rectangular parallelepiped whose faces are the coordinate planes and the planes x = 1, y = 3 and z = 6.
- **2.** Describe the locus of points $P(x,y,z) \in \mathcal{E}_3$ if their Cartesian coordinates satisfy: a) xyz = 0; b) $x^2 + y^2 + z^2 = 0$; c) $(x+1)^2 + (y-2)^2 + (z+3)^2 = 0$; d) (x-2)(z-8) = 0; e) $z^2 - 25 = 0$.
- **3.** Find $x \in \mathbb{R}$ if:
 - a) $P_1(x,2,3)$, $P_2(2,1,1)$ and $P_1P_2=\sqrt{21}$; b) $Q_1(x,x,1)$, $Q_2(0,3,5)$ and $Q_1Q_2=5$.
- **4.** Show that the given points are collinear:
 - a) $P_1(1,2,0)$, $P_2(-2,-2,-3)$, $P_3(7,10,6)$; b) $Q_1(2,3,2)$, $Q_2(1,4,4)$, $Q_3(5,0,-4)$.
- 5. The coordinates of the midpoint of the segment $[P_1P_2]$, determined by $P_1(x_1,y_1,z_1)$ and $P_2(2,3,6)$ are (-1,-4,8). Find the coordinates of P_1 .
- **6.** Let P_3 be the midpoint of the segment joining the points $P_1(-3,4,1)$ and $P_2(-5,8,3)$. Find the coordinates of the midpoint of the segment: a) joining P_1 and P_3 ; b) joining P_3 and P_2 .
- 7. Compute the area of the triangle whose vertices have coordinates $P_1 = (-1, 0, 1), P_2 =$ (0,2,2) and $P_3 = (0,-1,2)$.
- 8. Consider a triangle ABC in space, whose vertices have coordinates $A(x_A, y_A, z_A)$, $B(x_B, y_B, z_A)$ z_B) and $C(x_C, y_C, z_C)$. Find, with proof, the coordinates of its centroid G.
- 9. Suppose a plane and a system of rectangular coordinates are fixed. Is it possible to construct an equilateral triangle ABC in this plane, such that the coordinates of the vertices are all integer numbers?
- 10*. Let \mathcal{R} be the region consisting of the set of points in the coordinate plane that satisfy both $|8-x|+y\leq 10$ and $3y-x\geq 15$. When \mathcal{R} is revolved around the line whose equation is 3y-x=15, the volume of the resulting solid is $\frac{m\pi}{n\sqrt{p}}$, where m, n, and p are positive integers, m and n are relatively prime, and p is not divisible by the square of any prime. Find m+n+p.