Licenciatura em Engenharia Informática e Multimédia

Processamento de Imagem e Visão

1º Semestre 2022/2023

Exame de Época de Recurso – 31 de janeiro de 2023 – Duração: 2h30m

Justifique todas as respostas dadas.

As soluções apresentadas carecem do desenvolvimento e justificações necessárias para a resposta completa.

1. Tendo em atenção o número/densidade/distribuição de cones e bastonetes que existem no olho humano, relacione estas características com o detalhe visual ao longo da retina e a diferente sensibilidade da visão humana à luminosidade e cor. (1)

Solução: Desenvolver a influencia do tipo e número dos recetores foto sensíveis, e a sua distribuição na retina no diferente detalhe visual (maior na zona da fóvea) e na maior sensibilidade da visão humana à luminosidade do que à cor.

2. Descreva um método que permita aumentar a resolução de uma imagem monocromática. (1)

Solução: Descrever um método de interpolação.

- 3. Considere que pretende projetar uma câmara cuja lente tem uma distância focal de 10 mm.
 - a. Tendo em atenção a seguinte tabela com as dimensões de sensores que poderá utilizar na câmara, escolha o sensor que permita a câmara ter os seguintes ângulos do campo de visão: $\varphi_L = 27^{\circ}$ (largura) e $\varphi_H = 20,4^{\circ}$ (altura).

Tino	Largura	Altura	
Tipo	(mm)	(mm)	
1/4"	3,60	2,70	
1/3"	4,80	3,60	
1/2"	6,40	4,80	
1"	13,20	8,80	

Solução: Sensor do tipo 1/3".

 b. Determine a distância a que um objeto com uma altura de 2m deverá estar da câmara para que seja totalmente visualizado por esta (apresente a resposta em milímetros).

Solução: 5.555,5mm

4. Considere que uma câmara a cores adquire imagens com uma resolução de 3648x2736 (10 Megapixel) e utiliza a representação RGB para as armazenar.

a. Se forem atribuídos 5 bits para representar as componentes R e B e uma imagem ocupar 19.961.856 Bytes em memória de informação útil sem compressão, determine o número de bits atribuídos à componente G.

Solução: São atribuídos 6 bits à componente G. (1)

b. Comente a distribuição de bits por componente de cor que foi determinada na alínea anterior. Caso não tenha respondido, considere (R = 5, G = 4, B = 5) bits. (1)

Solução: Justificar a diferente atribuição de bits entre componentes de cor face à maior sensibilidade do sistema visual humano ao comprimento de onda da zona da luz visível correspondente à cor verde.

5. Considere que se obteve a seguinte tabela de correspondência de etiquetas após a aplicação do algoritmo clássico de etiquetação de imagens binárias, assumindo vizinhança 4:

Etiqueta da região	1	2	3	4
Etiqueta equivalente	0	1	2	0

a. Dê o exemplo de uma imagem binária que poderá ter gerado a tabela anterior (considere, por exemplo, uma matriz 8x8) e represente a imagem de etiquetas. (1)

Solução:

Exemplo de imagem binária

Imagem de etiquetas

(1)

b. Determine a imagem final das etiquetas depois de aplicar a tabela anterior.

Solução:

		1			
	1	1			
1	1				
			4		

6. Considere que uma imagem monocromática apresenta o histograma da figura 1(a).

a. Esboce, aproximadamente, o histograma da imagem resultante se aplicar a função descrita na figura
1(b) aos valores dos pixéis da imagem original. Justifique a resposta.

Solução:

b. Conclua quanto ao aumento ou diminuição do contraste da imagem original.

Solução: O contracte da imagem aumenta.

7. Considere as seguintes imagens binárias.

0	0	0	0	0	0	0	0		
_	_	_	_		_		_		
0	0	0	0	0	0	0	0		
0	0	1	1	1	1	0	0		
0	0	1	0	0	1	0	0		
0	0	1	0	0	1	0	0		
0	0	1	1	1	1	0	0		
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		
	Imagem 1								

Imagem 1

0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	1	1	1	1	1	0
1	1	1	1	1	1	0
1	1	1	1	1	1	0
1	1	1	1	1	1	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
	0 1 1 1 1 0	0 0 1 1 1 1 1 1 1 1 0 0	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

(1)

Imagem 2

a. Descreva o operador morfológico (tipo de operação e elemento estruturante) que se aplicou à imagem 1 para se obter a imagem 2. (1)

Solução: Dilatação com o seguinte elemento estruturante (pixel realçado define a origem):

1 1 1 1

b. Face ao resultado obtido e comparando as regiões ativas das duas imagens, indique possíveis vantagens e desvantagens da aplicação do operador morfológico. (1)

Solução: A resposta depende do contexto de aplicação, mas por exemplo, vantagem: tapa o buraco que pode ter resultado do processo de segmentação; desvantagem: há um aumento significativo da área da região.

8. Considere a seguinte imagem:

10	20	30	30
20	40	70	70
35	200	200	220
190	220	250	255

a. Dada a seguinte máscara de filtragem, onde K > 0, diga qual o tipo de operação que representa. (1)

$\frac{1}{16}$	1	2	1
	2	К	2
	1	2	1

Solução: Operação de suavização em virtude de todos os coeficientes serem positivos. Dado o padrão dos coeficientes é uma máscara gaussiana.

b. Determine o valor de K.

Solução: K=4 (a soma de todos os coeficientes é unitária).

(0,5)

c. Aplique o filtro à imagem dada (processe somente os pixéis da imagem com sobreposição total com a máscara). (1)

Solução:

10	20	20 30	
20	66	89	70
35	145	179	220
190	220	250	255

9. Considere o seguinte conjunto de padrões de teste e as respetivas classes verdadeiras:

i	1	2	3	4	5	6
X_i	-0,1	0,3	-0,4	0,6	-1,4	1,1
ω_{i}	1	2	1	2	2	1
$g_1(x_i)$	0,1	-0,3	0,4	-0,6	1,4	-1,1
$g_2(x_i)$	-0,1	0,3	-0,4	0,6	-1,4	1,1
$\widehat{\omega}_i$	1	2	1	2	1	2

a. Estime a matriz de confusão do classificador, considerando as seguintes funções discriminantes: (1)

$$g_1(x) = -x \qquad \qquad g_2(x) = x$$

Solução:

$\omega/_{\widehat{\omega}}$	1	2
1	2	1
2	1	2

Solução:
$$P_e = \frac{1}{3}$$

10. Considere as seguintes imagens adquiridas em dois instantes de tempo consecutivos.

	0			- 0 -			
15	55	55	55	55	15	55	15
55	46	55	15	55	46	15	55
55	47	15	63	15	55	15	15
55	55	55	55	15	55	15	55
46	15	15	55	15	15	55	15
55	55	15	55	15	55	15	55
15	63	15	55	15	55	15	55
46	15	55	46	55	15	55	46
	·		(;	t)	·	·	

55	47	55	55	46	55	15	55
55	55	15	55	55	55	55	15
55	55	55	46	55	15	55	46
15	55	55	47	15	63	15	55
15	55	55	55	55	55	15	55
55	15	46	15	15	55	15	15
46	55	55	55	15	55	15	55
15	55	15	63	15	55	15	55
(<i>t</i> +1)							

Utilizando o princípio do método esparso para deteção de movimento, determine justificando, qual o vetor de movimento do pixel localizado na coluna 4, linha 3 da imagem no instante t. (1,5)

Solução: Vetor de movimento ($\Delta x = 2, \Delta y = 1$), considerando o pixel de valor 63, x corresponde às colunas e y às linhas.

11. Suponha que pretende desenvolver um sistema de processamento de imagem para deteção de fogos florestais baseado em câmaras térmicas (sensíveis à temperatura). Considere que as seguintes figuras são exemplos das imagens adquiridas por este tipo de câmaras de vídeo vigilância. As imagens são monocromáticas (figuras 2.a e 2.c) em que a intensidade do pixel é proporcional à temperatura visualizada e temperaturas elevadas podem saturar o sensor. Descreva os principais algoritmos que considera importante para a realização do referido sistema.

Figura 2.a

Figuras 2.b e 2.c – Imagem a cores (esquerda, b) e respetiva imagem térmica (direita, c).

Solução:

- 1. Deteção de zonas de chamas:
 - Hipótese 1 Análise do histograma e determinação, em fase de ajuste do sistema, qual a intensidade que corresponde a zonas de chama para binarização;
 - Hipótese 2 Considera-se que a zona saturada (nível máximo) na imagem corresponde a zonas de chama;
 - Hipótese 3 Caso se tenha também acesso à mesma imagem na zona do visível podem-se utilizar também segmentação baseada em textura e cor.
- 2. Extração das regiões ativas:
 - a. Aplicação de operadores morfológicos para remoção de ruído e regularização das regiões ativas (tapar buracos e suavizar contornos);
 - b. Eiquetação;
- 3. Extração de características das regiões e classificação:
 - a. Remoção de regiões com área inferior a um determinado valor que pode representar ruído;
 - b. Extrair propriedades uteis (características geométricas/forma) para a classificação das regiões nas classes "Chama" e "Não-chama". Caso se tenha acesso à mesma imagem na zona do visível podem-se utilizar também para o classificador características de textura e cor das zonas correspondentes às regiões consideradas chama.