Metoda najszybszego spadku

Implementacja w języku Julia

1. O metodzie

Metoda najszybszego spadku została wynalezione w 1847 roku przez Cauchy'ego. Jest metodą gradientową, która wykorzystuje fakt, że gradient jest w stanie wskazać kierunek największego wzrostu funkcji, więc poruszając się w kierunku przeciwnym możliwe jest znalezienie najszybszego spadku.

2. Algorytm działania

- Wybieramy się punkt początkowy x_{1.}
- Następnie wyznaczamy kierunek poszukiwać jako s_i korzystając ze wzoru $S_i = -\nabla f_i = -\nabla f(x_i)$
- Wybieramy optymalną długość kroku λ_i* wzdłuż danego kierunku s_i
- Wyznaczamy kolejne punkty do sprawdzenia optimum według wzoru $x_{i+1}=x_i+\lambda_i s_i=x_i-{\lambda_i}^* \pmb{\nabla} f_i$
- Jeśli dany punkt jest optimum algorytm zostaje przerwany. Jeśli nie jest zwiększamy iterację o 1 i wracamy do wyznaczania kierunku.

3. Harmonogram prac

31.05.2019r – przygotowanie szkicu programu, przedstawienie algorytmu na przykładzie

14.06.2019r – implementacja algorytmu

4. Źródła

- Wiki (https://en.wikipedia.org/wiki/Method of steepest descent)
- Adam Woźniak, Gradientowe algorytmy rozwiązywania zadań optymalizacji bez ograniczeń, Politechnika Warszawska
- Implementation of Gradient Descent in Python (https://medium.com/coinmonks/implementation-of-gradient-descent-in-python-a43f160ec521)
- Andrzej Stachurski, Wprowadzenie do optymalizacji