

PUB-NO: WO003100248A1 ✓

DOCUMENT-IDENTIFIER: WO 3100248 A1

TITLE: METHOD AND CRANE FOR INSTALLING, MAINTAINING
AND DECOMMISSIONING WIND TURBINES

PUBN-DATE: December 4, 2003

INVENTOR-INFORMATION:

NAME	COUNTRY
INGRAM, JAMES	GB
WILLIS, STEWART KENYON	GB
MCINTYRE, STUART	GB

ASSIGNEE-INFORMATION:

NAME	COUNTRY
BOREAS CONSULTANTS LTD	GB
INGRAM JAMES	GB
WILLIS STEWART KENYON	GB
MCINTYRE STUART	GB

APPL-NO: GB00302287

APPL-DATE: May 27, 2003

PRIORITY-DATA: GB00212258A (May 28, 2002) , GB00219994A (August 29, 2002)

GB00227870A (November 29, 2002)

INT-CL (IPC): F03D001/00

EUR-CL (EPC): F03D001/00

ABSTRACT:

Method and apparatus for installing, maintaining and decommissioning wind turbines, both onshore and offshore, comprises a crane having extendable legs that allow it to climb a tower that it is erecting in sections by engaging the tower by friction or mechanical interference. The crane may carry

the wind
turbine nacelle on its upper members during construction of the tower
and may
be fitted with a crane for handling tower sections, or it may carry
an "A"
crane for lifting the nacelle and its components once the tower is
complete or
for constructing heavy maintenance. The crane may be fitted with
various
lifting and handling means to facilitate maintenance or the
installation,
maintenance or removal of airfoil rotor blades.

PUB-NO: WO003100178A1
DOCUMENT-IDENTIFIER: WO 3100178 A1
TITLE: METHODE OF MOUNTING A WIND TURBINE, A WIND
TURBINE FOUNDATION AND A WIND TURBINE ASSEMBLY
PUBN-DATE: December 4, 2003

INVENTOR-INFORMATION:

NAME	COUNTRY
MORTENSEN, HENRIK KINDBERG	DK

ASSIGNEE-INFORMATION:

NAME	COUNTRY
VESTAS WIND SYSTEMS AS	DK
MORTENSEN HENRIK KINDBERG	DK

APPL-NO: DK00200359

APPL-DATE: May 27, 2002

PRIORITY-DATA: DK00200359W (May 27, 2002)

INT-CL (IPC): E02D027/42, E02D027/52 , F03D011/04 , E02D007/18 ,
B63B027/00EUR-CL (EPC): E02B017/00 ; E02D007/18, E02D027/42 , E02D027/52 ,
F03D001/00

ABSTRACT:

CHG DATE=20031216 STATUS=0>The invention relates to a method of mounting a wind turbine at a mounting location, said method comprising the steps of providing a foundation (33A, 33B), said foundation comprising a foundation body and pre-fitted upper attachment means vibrating at least a part of the foundation into the earth by transferring of vibrations into the structure of

the foundation, mounting at least a part of said wind turbine to said upper attachment means (12) of said foundation. According to the invention, large scale wind turbines, especially offshore wind turbines, may be transported and mounted at the site in a cost-effective and expedient way.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 December 2003 (04.12.2003)

PCT

(10) International Publication Number
WO 03/100248 A1

(51) International Patent Classification⁷: **F03D 1/00**

(21) International Application Number: **PCT/GB03/02287**

(22) International Filing Date: 27 May 2003 (27.05.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0212258.8 28 May 2002 (28.05.2002) GB
0219994.1 29 August 2002 (29.08.2002) GB
0227870.3 29 November 2002 (29.11.2002) GB

(71) Applicant (*for all designated States except US*): **BOREAS CONSULTANTS LIMITED [GB/GB]**; 3 Bon Accord Square, Aberdeen AB11 6DJ (GB).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **INGRAM, James** [GB/GB]; 12 Newlands Crescent, Aberdeen AB10 6LH

(GB). **WILLIS, Stewart, Kenyon** [GB/GB]; 2 Burnside Walk, Aboyne, Aberdeenshire AB34 5GJ (GB). **MCINTYRE, Stuart** [GB/GB]; 12 Caledonian Place, Aberdeen AB11 6TT (GB).

(74) Agent: **KENNEDYS PATENT AGENCY LIMITED**; Floor 4, Queens House, 29 St Vincent Place, Glasgow G1 2DT (GB).

(81) Designated States (*national*): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: METHOD AND CRANE FOR INSTALLING, MAINTAINING AND DECOMMISSIONING WIND TURBINES

WO 03/100248 A1

(57) Abstract: Method and apparatus for installing, maintaining and decommissioning wind turbines, both onshore and offshore, comprises a crane having extendable legs that allow it to climb a tower that it is erecting in sections by engaging the tower by friction or mechanical interference. The crane may carry the wind turbine nacelle on its upper members during construction of the tower and may be fitted with a crane for handling tower sections, or it may carry an "A" crane for lifting the nacelle and its components once the tower is complete or for constructing heavy maintenance. The crane may be fitted with various lifting and handling means to facilitate maintenance or the installation, maintenance or removal of airfoil rotor blades.

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHOD AND CRANE FOR INSTALLING, MAINTAINING AND DECOMMISSIONING WIND TURBINES

4 The present invention relates to a self-installing tower,
5 nacelle and blades which may be used in the onshore and
6 offshore wind farm industry.

7

8 The use of fossil fuels such as coal, oil and natural
9 gas, has become increasingly undesirable as evidence has
10 emerged that the burning of these fuels is a key factor
11 in environmental problems, such as global warming, air
12 quality deterioration, oil spills and acid rain. These
13 problems, together with the depletion of fossil fuel
14 resources, have encouraged the search for alternative
15 energy resources.

16

17 Wind energy is recognised world wide as a proven
18 technology which can be utilised to meet the world's
19 increasing electricity demands in a sustainable
20 economical and, most importantly, environmentally
21 friendly manner. In particular, wind power can be used
22 to generate electricity without air emissions, water
23 pollution or waste products, and can greatly reduce the
24 pollution which is currently generated by fossil fuels.

1
2 As a result of its advantageous properties, wind energy
3 is currently the fastest growing source of electricity in
4 the world. However, the erection of onshore wind farms
5 is often controversial due to the visual impact of large
6 and cumbersome wind turbines, which are visible for miles
7 around. Often, the erection of wind farms is opposed by
8 residents of nearby populated areas who regard them as
9 unsightly or feel that their presence will reduce
10 property values in the area. In addition, a variety of
11 restrictions have affected the construction of these wind
12 farms, including planning constraints and restrictions on
13 the visual impact and sound emissions from the turbines.

14
15 Because of these underlying problems, the idea of taking
16 the wind industry offshore has developed. Offshore wind
17 farms have minimal environmental effects and do not
18 encounter the same planning restrictions or difficulties
19 with nearby residents that have arisen with the
20 development of onshore wind farms. As a consequence, the
21 size and sound emissions of the farms do not have to be
22 strictly regulated and much larger multi-megawatt
23 machines can be used. In addition, the size of the
24 offshore resource is huge, even when restrictions such as
25 shipping lanes, areas of limited sea depth and known
26 dumping grounds are taken into account.

27
28 Whilst the erection of wind farms offshore has some
29 advantages over on-land farms, construction of the
30 turbines used to generate electricity is more expensive
31 than onshore farms. In fact it is estimated that capital
32 costs are in the region of 30% to 50% higher offshore due
33 to the larger machine size, maintenance and operational
34 costs, including the cost of transporting and installing

1 the wind turbines (including the towers) at sea. It will
2 be appreciated that the construction of the wind towers,
3 delivery to site and assembly of these large machines
4 require specialised equipment and this greatly increases
5 the cost in installation, maintenance and decommissioning
6 an offshore farm.

7

8 A problem with wind turbines is that they are big, and
9 produce a relatively small amount of power (revenue).
10 Therefore, they need to be installed as efficiently and
11 cheaply as possible, whilst at the same time minimising
12 the risks to personnel. The construction industry as a
13 whole is one of the most dangerous commercial activities
14 undertaken in Europe, with the wind industry being no
15 different. Given the low energy density of wind
16 generation, poor safety statistics would mean that the
17 industry as a whole would run the risk of being seen as a
18 dangerous means of generation when measured on a "per
19 unit of power generated" basis. Apparatus is therefore
20 required to make construction of wind farms safer and
21 deliver improved cost, safety and environmental outcomes.
22 They should ultimately operate very reliably for many
23 years.

24

25 At present, a commonly used method for constructing
26 offshore wind turbines uses a floating crane vessel.
27 Typically a specially adapted ship is piloted to the area
28 where the turbine is to be constructed. Generally as a
29 result of the size of the crane and tower structure they
30 must carry, these vessels are large in size, and thus
31 relatively expensive to use. Once the vessel has reached
32 the area where the turbine is to be positioned, a
33 concrete structure often known as a "gravity foundation"
34 is placed onto the seabed. A pylon-like turbine tower is

1 then fitted onto the concrete foundation using the
2 cranes, the turbine tower carrying the blades which spin
3 upwind of the tower itself. However, this process incurs
4 significant costs as it is necessary for the crane
5 carrying vessel to be of a sufficiently large size to
6 carry the pylon-like turbine tower and the vessel must
7 remain in the area in order to support the operation.

8

9 It is therefore an object of the present invention to
10 provide a self-installing or self-erecting wind tower,
11 nacelle and blades, which can be erected in a manner,
12 which is easier and cheaper than conventional wind
13 towers, nacelles and blades. Particularly it is an
14 object of the present invention to provide a self-
15 installing or self-erecting wind tower which is
16 reversible, i.e. can be dismantled, either in entirety or
17 in part, as easily as it can be erected, is complete and
18 "self sufficient" - i.e., can be built from an already
19 constructed structure.

20

21 It is a particular object of the present invention to
22 provide a wind tower, which can be self-erected both
23 offshore and onshore without the need for specialist
24 vessels or cranes.

25

26 According to the present invention there is provided
27 apparatus for use in the onshore and offshore wind farm
28 industry, said apparatus comprising a jacking crane and a
29 plurality of tower sections which can be combined to
30 erect a tower on which a nacelle and one or more blades
31 can be mounted using the same jacking crane.

32

33 Advantageously the jacking crane can be extended and
34 climb upwards on the tower as the tower is erected from

1 the tower sections and is used to position each of the
2 tower sections during erection.

3
4 The tower is erected from the tower sections on a
5 foundation platform. The jacking crane, tower sections
6 and nacelle may be attached to or loaded onto the
7 foundation platform before it is towed to the offshore
8 location. Alternatively, the jacking crane, tower
9 sections and nacelle may be loaded onto the foundation
10 platform after it has been towed to the offshore
11 location.

12
13 Preferably the nacelle is positioned on top of the
14 jacking crane. Where the jacking crane, tower structure
15 and nacelle are loaded onto the foundation platform after
16 it has been towed to the offshore location, the jacking
17 crane may be transferred from a vessel such as a ship or
18 boat onto the foundation platform with the nacelle
19 positioned on top of the jacking crane.

20
21 Most preferably the jacking crane acts as a motion
22 compensation system during transferral from the vessel to
23 the foundation platform.

24
25 The jacking crane may be hydraulically operated.

26
27 The jacking crane comprised a number of legs which can
28 extend and retract. Preferably the jacking crane has
29 four legs.

30
31 The tower sections may be approximately 10 - 25 metres in
32 length.

33

1 Preferably the tower sections are air and water-tight, or
2 can contain buoyancy units. Most preferably the tower
3 sections are buoyant. Advantageously, this aids towing
4 of the foundation platform to the offshore location.

5

6 Preferably the jacking crane has a winch or which can be
7 used to lift each of the tower sections into position, on
8 top of the previous tower section. The winch may be
9 located within the nacelle.

10

11 The tower sections may be mounted on or attached to the
12 foundation platform. Alternatively, the tower sections
13 may be transferred from a vessel onto the foundation
14 platform.

15

16 Optionally the nacelle may rotate on top of the jacking
17 crane to facilitate lifting operations.

18

19 Optionally the nacelle may be equipped with a winch or
20 crane intended to assist with the installation of the
21 nacelle or blades and their subsequent maintenance or
22 replacement of the equipment within the nacelle or blades
23 and then may be used to assist installation.

24

25 Optionally a boom may be attached to the jacking crane.

26

27 Optionally offshore the apparatus may also comprise a
28 seawater ballast to counterbalance the boom.

29

30 Preferably the jacking crane is securely anchored to the
31 tower during and after erection and may have a mechanism
32 to prevent detachment from the tower. The tower sections
33 may be provided with purpose built attachment points,
34 which are adapted to receive the jacking crane.

1
2 Optionally the purpose built attachment points are
3 pockets. The jacking crane may have a first and second
4 grip assembly which are adapted to fit into the pockets.

5
6 Optionally the jacking crane may have one or more clamps,
7 which engage the tower sections. Advantageously this
8 provides a secure and safe anchorage of the jacking crane
9 to the tower.

10
11 Preferably the one or more clamps grip the tower sections
12 by compression and friction.

13
14 The one or more clamps may include contact pads, which
15 are made from a compliant material such as polyurethane.
16 The contact pads can be brought into contact with one of
17 the tower sections and will develop vertical frictional
18 resistance upon the application of pressure.

19
20 Preferably the one or more clamps are mounted on an
21 arrangement of struts, ties and beams which can be
22 adjusted to accommodate a change in the cross section of
23 the tower or tower sections. In this manner the jacking
24 crane can be adapted for use on a variety of wind turbine
25 tower designs, or on a tapered wind turbine tower.

26
27 Preferably the contact pads are mounted on a flexible
28 backing substrate that is tensioned at the ends.

29 Preferably the flexible backing substrate contacts the
30 tower in a plurality of locations or sections to provide
31 even distribution of load.

32
33 Preferably the length of the flexible backing substrate
34 can be altered to ensure the clamp maintains a secure fit

1 to the tower. In a preferred embodiment this is achieved
2 by the inclusion of rollers or sprockets. The ends of
3 the flexible substrate are preferably made from, or
4 covered with a compliant material and are adapted to be
5 passed around the rollers or sprockets which rotate as
6 the length of the substrate is altered.

7

8 Preferably the one or more clamps can be locked.

9

10 Preferably the tower sections have means for improving
11 the attachment of the jacking crane. For example they
12 may have a high grip surface achieved by the use of anti-
13 slip paint or glue-on grip strips.

14

15 Mechanical toothed wedges may also be incorporated into
16 the tower, tower sections, jacking crane or clamps which
17 engage a wedging action between the tower and jacking
18 crane.

19

20 Preferably the jacking crane is also used to transport
21 the blades up the tower, for attachment to the nacelle.
22 This process can also be carried out in reverse to
23 transport the blades down the tower during
24 decommissioning.

25

26 The jacking crane may also be used for maintenance
27 purposes.

28

29 Preferably the jacking crane can be connected to a
30 variety of interface tools. For example, the jacking
31 unit may be adapted to carry tools, which are used for
32 inspection and/or replacement and / or repair of the
33 blades, nacelle or tower sections.

34

- 1 The jacking crane may comprise framework or a crane
- 2 capable of plumbing or reaching into the nacelle.
- 3
- 4 The framework or additional crane can lift the nacelle or
- 5 a sub component of the nacelle. Advantageously this
- 6 allows the nacelle to be lifted after the tower is
- 7 completed.
- 8
- 9 The framework or additional crane can also be used for
- 10 maintenance of the tower and tower sections.
- 11
- 12 Optionally the framework or additional crane is
- 13 extendible.
- 14
- 15 Where the jacking crane comprises a crane, said crane may
- 16 be a knuckle boom crane.
- 17
- 18 The jacking crane may comprise a working platform and
- 19 facilities for construction or maintenance personnel.
- 20 These may be testing, monitoring, or service facilities,
- 21 or welfare facilities for personal use.
- 22
- 23 According to a second aspect of the present invention,
- 24 there is provided a method for installing the apparatus
- 25 of the first aspect of the present invention in an
- 26 offshore location, the method comprising the steps of:
- 27
- 28 (a) loading or attaching tower sections on to the
- 29 foundation platform;
- 30 (b) towing the foundation platform to an offshore
- 31 location using a transportation vessel;
- 32 (c) anchoring the foundation platform in the offshore
- 33 position, removing buoyancy from tower sections or
- 34 other buoyancy units(possibly by flooding);

- 1 (d) transporting the jacking crane and nacelle from the
- 2 transportation vessel to the foundation platform;
- 3 (e) removing the transportation vessel, if required;
- 4 (f) extending the jacking crane vertically;
- 5 (g) winching a first tower section from the foundation
- 6 platform into position with the jacking crane;
- 7 (h) extending the jacking crane;
- 8 (i) winching a second tower section from the foundation
- 9 platform into position with the jacking crane and on
- 10 top of the first tower section;
- 11 (j) repeating steps (f) to (i) with further tower
- 12 sections to erect a tower; and
- 13 (k) mounting turbine blades on to the nacelle.

14
15 The tower sections may be used to provide buoyancy to
16 foundation platform as it is towed to the offshore
17 location.

18
19 Optionally the transportation vessel may be removed
20 during anchoring of the foundation platform, and may
21 return for step (d).

22
23 Preferably the jacking crane is used to raise the turbine
24 blades up to the nacelle. The winch in the nacelle may
25 be used to transport the blades from the boat to the
26 platform.

27
28 The method may be automated.

29
30 The method may be controlled by remote control.

31
32 According to a third aspect of the present invention
33 there is provided a method for installing the apparatus
34 of the first aspect of the present invention on an

1 offshore foundation platform, the method comprising the
2 steps of:

3

- 4 (a) towing a foundation platform to an offshore location
5 using a transportation vessel;
- 6 (b) transporting the jacking crane and nacelle from the
7 transport vessel to the foundation platform;
- 8 (c) transporting a first tower section onto the
9 foundation platform from the transportation vessel;
- 10 (d) positioning the first tower section within and
11 attached to the jacking crane;
- 12 (e) transporting a second tower section onto the
13 foundation platform from the transportation vessel;
- 14 (f) extending the jacking crane;
- 15 (g) winching the second tower section into position on
16 top of the first tower section within the jacking
17 crane;
- 18 (h) repeating step d) to f) with further tower sections
19 to erect a tower;
- 20 (i) transporting a blade onto the foundation platform
21 for mounting on the nacelle from the transportation
22 vessel, possibly using winch inside nacelle;
- 23 (j) moving the jacking crane up the tower to a position
24 where the blade can be mounted on the nacelle; and
- 25 (k) repeating steps g) to h) for subsequent blades.

26

27 The method may be automated.

28

29 The method may be controlled by remote control.

30

31 According to a fourth aspect of the present invention,
32 there is provided a method for installing the apparatus
33 of the first aspect of the present invention on an
34 foundation platform, the method comprising the steps of:

- 1
- 2 (a) loading the nacelle, tower sections and jacking
- 3 crane onto an foundation platform;
- 4 (b) towing the foundation platform to an offshore
- 5 location using a transportation vessel;
- 6 (c) anchoring the foundation platform to the sea bed at
- 7 the offshore location;
- 8 (d) removing the transportation vessel;
- 9 (e) extending the jacking crane;
- 10 (f) winching a first tower section from the foundation
- 11 platform into position with the jacking crane;
- 12 (g) extending the jacking crane;
- 13 (h) winching a second tower section from the foundation
- 14 platform into position with the jacking crane and on
- 15 top of the first tower section;
- 16 (i) repeating steps (e) to (h) with further tower
- 17 sections to erect a tower;
- 18 (j) mounting the nacelle on the top of the tower; and
- 19 (k) mounting turbine blades on to the nacelle.

20

21 The method may be automated.

22

23 The method may be controlled by remote control.

24

25 Preferably the jacking crane is used to raise the turbine

26 blades up to the nacelle. The winch in the nacelle may

27 be used to transport the blades from the boat to the

28 platform.

29

30 According to a fifth aspect of the present invention,

31 there is provided a method for installing the apparatus

32 of the first aspect of the present invention on a

33 foundation platform or other foundation, the method

34 comprising the steps of:

- 1
- 2 (a) delivering the nacelle, tower sections and jacking
- 3 crane over a foundation platform or other foundation
- 4 using a transport vehicle;
- 5 (b) lifting the nacelle onto the foundation platform or
- 6 foundation;
- 7 (c) removing the transport vehicle;
- 8 (d) assembling crane and jacking crane;
- 9 (e) extending the jacking crane;
- 10 (f) delivering tower sections to the foundation platform
- 11 or foundation using a transport vehicle;
- 12 (g) winching a first tower section from the transport
- 13 vehicle using crane;
- 14 (h) sliding the first tower section into position within
- 15 the jacking crane using the crane;
- 16 (i) supporting the nacelle on the tower section whilst
- 17 adjusting jacking crane to provide clearance for one
- 18 or more clamps;
- 19 (j) attaching clamps to securely and safely anchor
- 20 jacking crane to tower;
- 21 (k) repeating steps (g) to (j) with further tower
- 22 sections to erect a tower;
- 23 (l) mounting the nacelle on top of the tower; and
- 24 (m) mounting turbine blades on to the nacelle.

25

26 An embodiment of the present invention will now be
27 described by way of an example only, with reference to
28 the following Figures, in which:

29

30 Figure 1 is a schematic view of the vessel in position
31 next to an foundation platform ready for the erection of
32 the self-installing tower in an offshore environment
33 according to the preferred embodiment of the present
34 invention;

1
2 Figures 2 to 22 are schematic views showing installation
3 of the self-installing tower;

4
5 Figure 23 is a schematic view of the self-installing
6 tower when installed and when ready for attachment of the
7 turbine blades;

8
9 Figures 24 to 30 are schematic views of the turbine
10 blades being attached to the self-installing foundation
11 platform;

12
13 Figure 31 shows a foundation platform with tower sections
14 attached being towed to an offshore location;

15
16 Figure 32 shows the foundation platform of Figure 31
17 after the transportation vessel has left and being
18 anchored in place;

19
20 Figures 33 and 34 show the nacelle and jacking crane
21 being loaded onto the foundation platform; and

22
23 Figures 35 to 46 show the tower being erected.

24
25 Figures 47 to 58 illustrate a method of erecting a wind
26 turbine system on an foundation platform or other
27 foundation.

28
29 Figures 59 to 67 are schematic drawings of the framework
30 and jacking crane in position with the tower and tower
31 sections.

32
33 The self-installing wind energy tower, with nacelle and
34 blades can be erected in an onshore and offshore position

1 in a first manner illustrated in Figures 1 to 14. The
2 Figures illustrate the apparatus in an offshore
3 environment, although use in an onshore environment is
4 also possible. Referring firstly to Figure 1, in one
5 embodiment, vessel 1 has a small crane 2 which is used to
6 lift the self installing tower, nacelle and blades onto
7 an installation (working) platform 3. The foundation
8 platform will be secured in position on the ocean bed 4,
9 and tested prior to construction of the remaining parts
10 of the finished wind turbine. The apparatus described in
11 the present Application is particularly adapted for
12 erection on the foundation platform described in the
13 Applicant's co-pending UK Patent Application No 0206569.6
14 and International Application No GB2003/001159. It is
15 envisaged that the apparatus described in the present
16 invention is suitable for use in both offshore and
17 onshore locations. The apparatus brings significant cost
18 savings by eliminating the requirement for large cranes,
19 both onshore and offshore.

20
21 In the first step shown in Figure 2 a jacking crane 5,
22 together with the nacelle 6 of the turbine is transferred
23 onto the foundation platform 3. The jacking crane acts
24 as a motion compensation system when it is initially
25 transferred to the platform with the nacelle on top.
26 This effectively means that the nacelle can be
27 transferred from vessel 1 onto the foundation platform
28 ready for erection in poorer weather conditions (i.e.
29 worse sea states) than otherwise possible. Thus,
30 offshore work will not be disrupted.

31
32 One of the essential requirements for the jacking crane
33 herein described, is that it must have a secure and safe
34 anchorage to the tower. This ensures that the turbine is

1 erected safely and efficiently and allows cranes and
2 other construction operations to be supported from the
3 frame.

4

5 The jacking crane, as illustrated in the diagrams,
6 comprises a frame supporting four legs (although the
7 number of legs is not limited to this) which can extend
8 and retract. These are attached to upper and lower grip
9 assemblies that can be moved relative to each other by
10 the actuation of the jack legs. The grip assemblies
11 grasp the tower using arms that fit into pockets in the
12 tower sections. The top works of the device contains
13 winches and a trolley to mechanically handle the tower
14 sections into place under the nacelle for bolting to
15 sections already in place.

16

17 The apparatus and method described in the present
18 Application may be used, not only to construct and erect
19 new wind turbine towers, but also to dismantle or carry
20 out maintenance on existing towers. Where the tower is
21 new-build, purpose built attachment points can be
22 provided within the tower sections to ensure anchorage of
23 the jacking crane. However, where the tower is already
24 erected a secure anchorage may be provided either by
25 using fixed attachment points or without fixed attachment
26 points.

27

28 In one embodiment a secure anchorage is provided by
29 employing one or more clamps that grip the tower sections
30 by compression and friction alone. Contact pads made of
31 a compliant material such as Polyurethane are brought
32 into contact with the tower section and pressure is
33 applied sufficient to develop the vertical frictional
34 resistance necessary to support the desired loads.

1
2 An important aspect of these clamps lies in the fact that
3 adjustment is provided within the clamps and support
4 structure to accommodate changes in the shape of the
5 tower being climbed, and to ensure verticality in the
6 climbing frame at all times. The adjustment should
7 include as a minimum for the pronounced taper currently
8 employed in wind turbine tower designs.

9
10 The compliant pads may be mounted on a flexible backing
11 substrate that is tensioned at its ends. To allow for a
12 more even distribution of the loads imposed by the clamp,
13 the flexible substrate should contact the tower in a
14 number of sections. In the embodiment shown in Figures
15 47 to 58, four equal (quadrant) sections are shown,
16 although it will be appreciated that the number is not
17 restricted.

18
19 Each clamp is mounted on an arrangement of struts, ties
20 and beams that can be adjusted to accommodate changes in
21 the tower cross section, and that can be locked to
22 provide a fail-safe operation. Adjustment of the length
23 of the flexible substrate can be achieved by passing its
24 ends around rollers or sprockets that can rotate as the
25 length is increased or decreased. Preferably these
26 sections of the flexible substrate comprise an
27 arrangement of links similar to the tracks of a tracked
28 vehicle, and are also covered with compliant material.
29 An arrangement of screw-jacks between the sprocket wheels
30 of adjacent sections of flexible substrate allows tension
31 to be applied and the length of substrate to be adjusted
32 whilst allowing an efficient load path of hoop tension
33 within the flexible substrate/sprocket wheel system.

1 Further more the friction coefficient of the tower/clamp
2 interface can be improved by preparing the relevant
3 sections of tower with high-grip surfaces such as anti-
4 slip paint and glue-on grip strips.

5

6 A further safety feature which may be provided is the
7 inclusion of mechanical toothed wedges that can be
8 activated as necessary that engage by a wedging action
9 between the tower and climbing frame.

10

11 Once the jacking crane 5 and nacelle 6 are in position on
12 the foundation platform 3 the installation tower can be
13 erected. An important aspect of the present invention is
14 that the tower is supplied in manageable sections. These
15 may be around 10 to 25 metres in length, and offshore can
16 be transferred onto the foundation platform in the same
17 manner as the jacking system. As the tower is supplied
18 in sections the vessel 1 can be smaller than
19 conventionally used or proposed for offshore wind farm
20 construction as it will not have to carry or tow a large
21 cumbersome, unitary or two parts pre-made tower unit. As
22 the decks of these vessels are frequently very obstructed
23 and congested in any event, this is a significant
24 advantage. A tower section 7 is transferred onto the
25 platform 3 and can be positioned within the jacking crane
26 using hydraulic means 8 as shown in Figures 6 and 7.

27 Once first section 7 is in position, a second tower
28 section 9 can be transferred onto the foundation platform
29 3 as shown in Figure 8.

30

31 A crane 10 in the nacelle 6 can be used to perform all
32 the lifting operation after the initial lift of the
33 sections from vessel 1. In a first embodiment this may
34 be achieved by allowing the nacelle 6 to rotate while it

1 is temporarily installed on top of the jacking crane 5.
2 In an alternative embodiment a temporary boom (not shown)
3 is attached to the jacking crane 5. In either case the
4 winch 10 can be located within the nacelle 6. A boom may
5 also be required to enable the crane to reach over the
6 side of the foundation platform to be able to lift the
7 tower sections (located around the side of the foundation
8 platform) and also the blades in the supply boat. The
9 boom may require a counterbalance. This can be achieved
10 using a seawater ballast, again removing the requirement
11 for a large lift.

12
13 The jacking crane 5 may simply be considered as a device
14 for safely climbing the tower as it is constructed from
15 the tower sections. In other words, the jacking crane
16 climbs the tower during construction. Initially it is
17 used for installing tower sections as shown in Figures 7
18 to 23. The jacking crane is also used to erect the
19 nacelle and then the blades 11 and 12 as shown in Figures
20 24 to 30. Whilst the depicted embodiment uses two blades
21 it will be appreciated that the number of blades mounted
22 on the tower is not restricted to this. The jacking
23 crane 5 moves up the tower as it is erected and is used
24 to install a section of the tower on top of those sections
25 which have previously been installed, using the crane 10
26 of the nacelle 6, which lifts the sections up to the
27 jacking crane 5. The jacking crane 5 can subsequently be
28 used for inspection (e.g. non-destructive testing of the
29 tower and blades to look for cracks), painting, replacing
30 parts (e.g. blades) and any form of maintenance requiring
31 access up the outside of the tower. All these different
32 activities will require specially designed tools and
33 lifting baskets that have a common interface so they can
34 simply be plugged into the jacking crane.

1
2 The jacking crane 5, is anchored and used to combine the
3 tower sections that make up the tower. The jacking crane
4 5 carries a framework 35 such as an 'A' frame (tool) or
5 knuckle boom crane (tool) capable of plumbing or reaching
6 inside the nacelle 6 so as to enable nacelle components
7 to be removed for maintenance or to be replaced
8 completely. This is shown in Figures 59 to 61. In figure
9 59 the "A" frame has a runway beam which is plumbed over
10 the nacelle centreline.

11
12 In an alternative embodiment the jacking crane may carry
13 an 'A' frame that is capable of lifting the assembled
14 nacelle or of lifting the largest sub assemblies of the
15 nacelle such that the nacelle is lifted after the tower
16 is completed instead of being carried by the jacking
17 crane during installation of the tower sections (as shown
18 in Figure 63). This alternative "A" frame configuration
19 can also be used for maintenance and it may need to be
20 extendible to allow removed components to be lowered
21 passed to back of the nacelle. This is shown in Figures
22 62 to 67.

23
24 The advantage of using an "A" frame to install the
25 nacelle, rather than lifting the nacelle with the jacking
26 crane, is that it allows for much longer hydraulic rams
27 in the jacking unit. This is because the "A" frame is
28 much lighter than the nacelle and the reduced buckling
29 loads then allow greater extension, providing sufficient
30 clearance for full length tower sections to be installed.
31 It is likely that the tower will not need to be modified
32 significantly when compared with conventional tower
33 installation using a crane.

1 The tower sections themselves are typically air and
2 water-tight and in one embodiment suited to offshore
3 applications may actually be attached to the foundation
4 platform 3 when it is floated to position. In this
5 manner they may be used to control buoyancy - i.e. an
6 integral part of the installation process. The tower
7 sections can be flooded when the platform has reached
8 location. This may aid installation of the platform by
9 providing added weight.

10

11 The jacking crane 5 has a fail-safe mechanism that
12 prevents it from becoming detached from the tower under
13 construction and falling. The jacking crane may also be
14 used for maintenance purposes and to provide welfare
15 facilities for construction and/or maintenance personnel.

16

17 The jacking crane can be connected to a variety of
18 interface tools and thus adapted for multiplicity. For
19 example, the jacking unit may be adapted to carry tools,
20 which are used for inspection and/or replacement of the
21 blades, nacelle or tower sections. The jacking crane may
22 include an access platform and a variety of tools.

23

24 It is also possible that the erection process described
25 herein can be automated to a significant degree. This
26 may be achieved using remote control and further improves
27 safety and reduces costs. The design of the self
28 installing tower facilitates maintenance and
29 decommissioning works and thus is particularly useful for
30 inspecting blades and replacing if necessary.

31

32 In a second embodiment of the present invention, depicted
33 in Figures 31 to 46, tower sections 13 are pre-mounted or
34 attached onto a foundation platform 14, and towed into

1 an offshore position by a transportation vessel 15. In
2 this embodiment, it is of a particular advantage that the
3 tower sections 13 are air and water-tight and buoyant,
4 and thus help transportation of the foundation platform
5 to its offshore position. Once the foundation platform
6 has been towed to its position, it is anchored 16 onto
7 the seabed, and the transportation vessel 15 will depart
8 from the area. As the capital and operational costs of
9 these vessels make them hugely expensive, it will be
10 appreciated that this is a significant advantage over
11 existing methods.

12

13 In a preferred embodiment, the foundation platform is of
14 the type described in the Applicant's co-pending UK
15 Patent Application No 0206569.6 and International
16 Application No GB2003/001159, and is anchored to the
17 ocean bed in the manner described in these earlier
18 Applications.

19

20 Referring to Figure 33, once the foundation platform has
21 been anchored onto the seabed, a transportation vessel
22 carrying the jacking cranes 17 and nacelle 18 arrives. A
23 transportation vessel has a crane 19 which can be used to
24 lift the jacking crane 17 and nacelle 18 onto the
25 foundation platform, as shown in Figure 34. The
26 transportation vessel may then be removed, as shown in
27 Figure 35, leaving the foundation platform with the
28 entire apparatus required to install a wind turbine.
29 Erection of the wind turbine may be fully operated and
30 may be controlled by remote control. Advantageously, the
31 following steps can be carried out after the
32 transportation vessel 15 has been removed, thus greatly
33 reducing costs.

34

1 Referring now to Figures 36 to 46, the jacking crane 17
2 is extended on the foundation platform 14, thereby
3 lifting nacelle 18, as shown in Figures 36 to 37.
4 Nacelle 18 has a winch or crane 19 which is activated and
5 used to winch up tower sections 20 and 21 from their
6 location on the foundation platform 14, as shown in
7 Figure 38. From the position shown in Figure 38, tower
8 section 20 can be moved into position within the jacking
9 crane 17 and in the centre of foundation platform 14
10 using hydraulic moving part 22, as shown in Figure 39.
11 Once tower section 20 is in position on the foundation
12 platform within the jacking crane 17, the jacking crane
13 can be further extended, as shown in Figure 40. The
14 crane or winch 19 can thereafter be used to winch up
15 tower section 21, as shown in Figures 40 to 41, and then
16 moved into position within the jacking crane 17 on top of
17 first tower section 20 by a hydraulic moving part 22.
18 Thus, tower sections 20 and 21 are transferred into
19 position within the jacking crane 17, as shown in Figure
20 42 to produce the beginning of turbine tower 23.

21

22 This process can be repeated using further tower
23 sections, as shown at 24 and 25 in Figures 42 to 45,
24 until the complete tower 23 is erected, as shown in
25 Figure 46. Following erection of the tower 23, the
26 turbine blades can be erected in the manner previously
27 described.

28

29 It will be appreciated that whilst the depicted
30 embodiment for tower sections 20, 21, 24 and 25 are
31 illustrated, the number of tower sections is not limited
32 to this.

33

1 It is also recognised that an alternative option is to
2 load or attach not only the tower sections, but also the
3 jacking crane and nacelle onto the foundation platform 14
4 before it is towed into a location by transportation
5 vessel 15. This will completely eliminate the need for
6 the transportation vessel to be present near the
7 foundation platform at any stage after the initial towing
8 process, and will greatly reduce costs. In this option,
9 the size of the foundation platform may be increased, or
10 may comprise a temporary extension to allow room for a
11 drilling unit 26 to anchor the platform, together with
12 the remainder of the apparatus.

13

14 Referring now to Figures 47 to 58 a further method of
15 installing the apparatus described in the present
16 invention on an foundation platform or other foundation
17 27 is illustrated.

18 The nacelle 28, tower sections and jacking crane are
19 transported over an foundation platform or other
20 foundation using a transport vehicle 29 as shown in
21 Figure 47 and the nacelle is lifted onto the foundation
22 platform or other foundation. The transport vehicle may
23 then be removed. A crane 30 can then be assembled as
24 shown in Figures 50 and 51 for use in winching the tower
25 sections into position. The nacelle can the be
26 temporarily supported whilst the jacking crane 31 is
27 assembled and/or placed in position, as shown in Figure
28 52. The jacking crane is then extended. The tower
29 sections can then be delivered to the foundation platform
30 or foundation using a transport vehicle, as shown in
31 Figure 53.

32

33 In order to erect the wind turbine tower a first tower
34 section 32 is winched from the transport vehicle using

1 the crane (Figure 54). This section is then slid into
2 position within the jacking crane using the crane (Figure
3 55). The first tower section can thereafter be used to
4 support the nacelle whilst the jacking crane is adjusted
5 to provide clearance blocks at 33 for one or more clamps
6 34 which are used to safely and securely attach the
7 jacking crane to the tower. This is shown in Figures 56
8 and 57. This process is then repeated with further tower
9 sections to erect a tower having the nacelle located at
10 the top, on which turbine blades can be mounted. In the
11 example embodiment and outline procedure for erecting a
12 wind turbine is as follows:

13

14 (a) The nacelle and hub is delivered over the foundation
15 (or assembled there if it is very large) and the
16 jacking crane is assembled around it using a small
17 site crane.

18

19 (b) The jacks lift the nacelle off the transporter or
20 support platform to a height sufficient for the
21 onboard cranes to upend and insert a tower section
22 directly beneath the nacelle.

23

24 (c) The jacks extend further to make space for a second
25 tower section, and the upper grippers engage with
26 the top of the first tower section.

27

28 (d) The second section is lifted, inserted, and bolted
29 to the first.

30

31 (e) The upper grips now release and the jacks extend
32 slightly so that the upper grippers now engage with
33 the bottom of the newly installed upper tower
34 section.

1

2 (f) With the upper set of grippers locked, the jacks
3 contract to bring a bottom set of grippers to engage
4 with the top of the lower section of tower.

5

6 (g) The top set of grippers can now release and the
7 jacking crane extends to make space for the third
8 tower section. The upper grips engage with the top
9 of the tower before the next section is fitted.

10

11 (h) The process repeats from step (c) until the tower is
12 complete.

13

14 (i) When the tower is complete, the jacks lower the
15 nacelle onto the tower for bolting, and the onboard
16 cranes lift the blades into the hub for bolting.

17

18 It will be appreciated that there are fundamental
19 differences between the jacking crane and a conventional
20 crane. A conventional crane is optimised for
21 flexibility, whilst the jacking crane is designed for a
22 specific task - to erect large wind turbines. In
23 practice this means:

24

25 • there is no need for a road-going chassis - it only
26 climbs towers.

27

28 • there is no need for a slew capability.

29

30 • the hook is replaced by a transfer carriage in the
31 top-works of the jacking crane to provide precision
32 handling and mechanical control at all times.

33

1 An advantage of the jacking system herein described lies
2 in the fact that it can be used, not only to erect and
3 disassemble towers, but can also be used to climb
4 existing towers for maintenance. A particular advantage
5 of the present invention lies in the fact that the wind
6 turbine can be erected in its entirety (including the
7 erection of the tower, nacelle and blades) in an offshore
8 location, without the requirement for a specialist vessel
9 is required to be in attendance. As a consequence
10 lifetime costs are greatly reduced. In addition the
11 process has desirable reversibility and thus the wind
12 turbine can be removed, or the blades, nacelle or indeed
13 tower can be replaced if required. This facilitates
14 ongoing maintenance. The apparatus described herein and
15 in the Applicant's co-pending UK Application No 0206569.6
16 and International Application No GB2003/001159 is also
17 self sufficient, in other words all of the delicate
18 lifting and handling operations are controlled from the
19 already constructed structure. The vessel may therefore
20 deliver the jacking mechanism and the tower sections and
21 leave and does not need to remain in the area.

22 Components are landed onto the foundation platform in a
23 conventional way, but from there they are handled by
24 handling equipment that is supported by the already
25 erected structure. This eliminates relative movement
26 (e.g. between vessel hook and structure) which makes the
27 operation safer and eliminates the requirement for
28 massive offshore cranes.

29

30 A further advantage is that erection of the self
31 installing turbine is inherently safer than convention
32 methods because all of the lifts are controlled and do
33 not require high unsupported loads. Thus the safety of

1 the construction crew is ensured. The apparatus brings
2 significant cost savings by eliminating the requirement
3 for large cranes both on and offshore, and is less
4 sensitive to weather and geotechnical conditions. This
5 is of particular advantage as offshore work will not be
6 disrupted by sea state (tide and waves or wind).

7

8 A yet further important advantage lies in the use of one
9 or more clamps which ensure that the jacking crane is
10 securely and safely attached to the tower or tower
11 sections. Other advantages are inherent in the described
12 apparatus as a low cost crane is used, the tower sections
13 are easier to handle and transport, the cost and time of
14 erection is minimised and the apparatus can also be used
15 for the maintenance of existing turbines, as well as
16 building new turbines.

17

18 Various modifications may be made to the invention herein
19 described, without departing from the scope thereof.

1 CLAIMS

2

3 1. Apparatus for use in the onshore and offshore wind
4 farm industry, said apparatus comprising a jacking
5 crane and a plurality of tower sections which can be
6 combined to erect a tower on which a nacelle and one
7 or more blades can be mounted using the same jacking
8 crane.

9

10 2. Apparatus as claimed in Claim 1, wherein the jacking
11 crane can be extended and climb upwards on the tower
12 as the tower is erected from the tower sections and
13 is used to position each of the tower sections
14 during erection.

15

16 3. Apparatus as claimed in Claims 1 and 2, wherein the
17 tower is erected from the tower sections on a
18 foundation platform.

19

20 4. Apparatus as claimed in Claim 3, wherein the jacking
21 crane, tower sections and nacelle are attached to or
22 loaded onto the foundation platform before it is
23 towed to an offshore location.

24

25 5. Apparatus as claimed in Claim 3, wherein the jacking
26 crane, tower sections and nacelle are loaded onto
27 the foundation platform after it has been towed to
28 an offshore location.

29

30 6. Apparatus as claimed in Claim 5, wherein the jacking
31 crane is transferred from a vessel, such as a ship
32 or boat, onto the foundation platform with the
33 nacelle positioned on top.

34

- 1 7. Apparatus as claimed in Claim 6, wherein the jacking
- 2 crane acts as a motion compensation system during
- 3 transferral from the vessel to the foundation
- 4 platform.
- 5
- 6 8. Apparatus as claimed in any one of the preceding
- 7 Claims, wherein the nacelle is positioned on top of
- 8 the jacking crane.
- 9
- 10 9. Apparatus as claimed in any one of the preceding
- 11 Claims, wherein the jacking crane is hydraulically
- 12 operated.
- 13
- 14 10. Apparatus as claimed in any one of the preceding
- 15 Claims, wherein the jacking crane comprises a number
- 16 of legs which can extend and retract.
- 17
- 18 11. Apparatus as claimed in Claim 10, wherein the
- 19 jacking crane has four legs.
- 20
- 21 12. Apparatus as claimed in any one of the preceding
- 22 Claims, wherein the tower sections are approximately
- 23 10 - 25 metres in length.
- 24
- 25 13. Apparatus as claimed in any one of the preceding
- 26 Claims, wherein the tower sections are air and
- 27 water-tight.
- 28
- 29 14. Apparatus as claimed in any one of the preceding
- 30 Claims, wherein the tower sections are buoyant.
- 31
- 32 15. Apparatus as claimed in Claim 14, wherein the tower
- 33 sections aid towing of the foundation platform to
- 34 the offshore location.

- 1
- 2 16. Apparatus as claimed in any one of the preceding
3 Claims, wherein the jacking crane has a winch which
4 can be used to lift each of the tower sections into
5 position, on top of the previous tower section.
- 6
- 7 17. Apparatus as claimed in Claim 16, wherein the winch
8 is located within the nacelle.
- 9
- 10 18. Apparatus as claimed in any one of the preceding
11 Claims, wherein the tower sections are mounted on or
12 attached to the foundation platform.
- 13
- 14 19. Apparatus as claimed in any one of Claims 1 to 17,
15 wherein the tower sections are transferred from a
16 vessel onto the foundation platform.
- 17
- 18 20. Apparatus as claimed in any one of the preceding
19 Claims, wherein the nacelle rotates on top of the
20 jacking crane to facilitate lifting operations.
- 21
- 22 21. Apparatus as claimed in any one of the preceding
23 Claims, wherein the nacelle is equipped with a winch
24 or crane intended to assist with the installation of
25 the nacelle or blades and their subsequent
26 maintenance or replacement.
- 27
- 28 22. Apparatus as claimed in any one of the preceding
29 Claims, wherein a boom is attached to the jacking
30 crane.
- 31
- 32 23. Apparatus as claimed in Claim 22, which when used
33 offshore also comprises a seawater ballast to
34 counterbalance the boom.

- 1
- 2 24. Apparatus as claimed in any one of the preceding
3 Claims, wherein the jacking frame is securely
4 anchored to the tower during and after erection, and
5 may have a mechanism to prevent detachment from the
6 tower.
- 7
- 8 25. Apparatus as claimed in any one of the preceding
9 Claims, wherein the tower sections are provided with
10 purpose built attachment points, which are adapted
11 to receive the jacking mechanism.
- 12
- 13 26. Apparatus as claimed in Claim 25, wherein the
14 purpose built attachment points are pockets.
- 15
- 16 27. Apparatus as claimed in any one of Claim 26, wherein
17 the jacking crane has a first and second grip
18 assembly adapted to fit into the pockets.
- 19
- 20 28. Apparatus as claimed in any one of the preceding
21 Claims, wherein the jacking crane has one or more
22 clamps which engage the tower sections.
- 23
- 24 29. Apparatus as claimed in Claim 28, wherein the one or
25 more clamps grip the tower sections by compression
26 and friction.
- 27
- 28 30. Apparatus as claimed in Claims 28 to 29, wherein the
29 one or more clamps include contact pads, which are
30 made from a compliant material.
- 31
- 32 31. Apparatus as claimed in Claim 30, wherein the
33 contacts pads are made from polyetherene.
- 34

- 1 32. Apparatus as claimed in any one of Claims 28 to 31,
2 wherein the contact pads can be brought into contact
3 with one of the tower sections, and will develop
4 vertical frictional resistance upon the application
5 of pressure.
- 6
- 7 33. Apparatus as claimed in any one of Claims 28 to 32,
8 wherein the one or more clamps are mounted on an
9 arrangement of struts, ties and beams which can be
10 adjusted to accommodate a change in the cross
11 section of the tower or tower sections.
- 12
- 13 34. Apparatus as claimed in any one of Claims 28 to 33,
14 wherein the contact pads are mounted on a flexible
15 backing substrate that is tensioned at the ends.
- 16
- 17 35. Apparatus as claimed in Claim 34, wherein the
18 flexible backing substrate contacts the tower in a
19 plurality of locations or sections to provide even
20 distribution of load.
- 21
- 22 36. Apparatus as claimed in Claims 33 to 35, wherein the
23 length of the flexible backing substrate can be
24 altered to ensure the clamp maintains a secure fit
25 to the tower.
- 26
- 27 37. Apparatus as claimed in Claim 36, wherein the length
28 of the flexible backing substrate is altered using
29 rollers or sprockets.
- 30
- 31 38. Apparatus as claimed in Claim 37, wherein the ends
32 of the flexible substrate are made from or covered
33 with a compliant material, and are adapted to be

1 passed around the rollers or sprockets which rotate
2 as the length of the substrate is altered.

3

4 39. Apparatus as claimed in any one of Claims 28 to 38,
5 wherein the one or more clamps can be locked.

6

7 40. Apparatus as claimed in any one of the preceding
8 Claims, wherein the tower sections have means for
9 improving the attachment of the jacking crane.

10

11 41. Apparatus as claimed in Claim 40, wherein the tower
12 sections have a high grip surface achieved by the
13 use of anti-slip paint or glue-on grip strips.

14

15 42. Apparatus as claimed in any one of the preceding
16 Claims, wherein mechanical toothed wedges are
17 incorporated into the tower, tower sections, jacking
18 crane or clamps, and which engage a wedging action
19 between the tower and jacking crane.

20

21 43. Apparatus as claimed in any one of the preceding
22 Claims, wherein the jacking crane is used to
23 transport the blades up the tower, for attachment to
24 the nacelle.

25

26 44. Apparatus as claimed in any one of the preceding
27 Claims, wherein the jacking crane is used to
28 transport the blades down the tower during
29 decommissioning.

30

31 45. Apparatus as claimed in any one of the preceding
32 Claims, wherein the jacking crane is used for
33 maintenance purposes.

34

- 1 46. Apparatus as claimed in any one of the preceding
2 Claims, wherein the jacking crane is connected to a
3 variety of interface tools, which are used for the
4 inspection, replacement and repair of the blades,
5 nacelle or tower sections.
- 6
- 7 47. Apparatus as claimed in any one of the preceding
8 Claims, wherein the jacking crane comprises
9 framework or an additional crane capable of plumbing
10 or reaching into the nacelle.
- 11
- 12 48. Apparatus as claimed in Claim 47, wherein the
13 framework or additional crane can lift the nacelle
14 or a sub component of the nacelle.
- 15
- 16 49. Apparatus as claimed in Claims 47 to 48, wherein the
17 framework or additional crane can be used for
18 maintenance of the tower and tower sections.
- 19
- 20 50. Apparatus as claimed in Claims 47 to 49, wherein the
21 framework or additional crane is extendible.
- 22
- 23 51. Apparatus as claimed in Claims 47 to 50, wherein the
24 additional crane is a knuckle boom crane.
- 25
- 26 52. Apparatus as claimed in any one of the preceding
27 Claims, wherein the jacking crane comprises
28 facilities for construction or maintenance
29 personnel.
- 30
- 31 53. A method for installing the apparatus described in
32 Claims 1 to 52 in an offshore location, the method
33 comprising the steps of:
- 34

- 1 (a) loading or attaching tower sections on to the
 - 2 foundation platform;
 - 3 (b) towing the foundation platform to an offshore
 - 4 location using a transportation vessel;
 - 5 (c) anchoring the foundation platform in the
 - 6 offshore position, removing buoyancy from tower
 - 7 sections or other buoyancy units (possibly by
 - 8 flooding);
 - 9 (d) transporting the jacking crane and nacelle from
 - 10 the transportation vessel to the foundation
 - 11 platform;
 - 12 (e) removing the transportation vessel, if
 - 13 required;
 - 14 (f) extending the jacking crane vertically;
 - 15 (g) winching a first tower section from the
 - 16 foundation platform into position with the
 - 17 jacking crane;
 - 18 (h) extending the jacking crane;
 - 19 (i) winching a second tower section from the
 - 20 foundation platform into position with the
 - 21 jacking crane and on top of the first tower
 - 22 section;
 - 23 (j) repeating steps (f) to (i) with further tower
 - 24 sections to erect a tower; and
 - 25 (k) mounting turbine blades on to the nacelle.
- 26
- 27 54. A method as claimed in Claim 53, wherein the tower
 - 28 sections are used to provide buoyancy to the
 - 29 foundation platform as it is towed to the offshore
 - 30 location.
- 31
- 32 55. A method as claimed in Claims 53 to 54, wherein the
 - 33 transportation vessel is removed during anchoring
 - 34 of the foundation platform.

1

2 56. A method as claimed in Claims 53 to 55, wherein the
3 jacking crane is used to raise the turbine blades up
4 to the nacelle.

5

6 57. A method as claimed in Claims 53 to 56, wherein the
7 winch is used to transport the blades from the boat
8 to the platform.

9

10 58. A method as claimed in Claims 53 to 57, which is
11 automated.

12

13 59. A method as claimed in Claims 53 to 58 controlled by
14 remote control.

15

16 60. A method for installing the apparatus as claimed in
17 Claims 1 to 52 on an offshore foundation platform,
18 the method comprising the steps of:

19

- 20 (a) towing a foundation platform to an offshore
21 location using a transportation vessel;
- 22 (b) transporting the jacking crane and nacelle from
23 the transport vessel to the foundation
24 platform;
- 25 (c) transporting a first tower section onto the
26 foundation platform from the transportation
27 vessel;
- 28 (d) positioning the first tower section within and
29 attached to the jacking crane;
- 30 (e) transporting a second tower section onto the
31 foundation platform from the transportation
32 vessel;
- 33 (f) extending the jacking crane;

- 1 (g) winching the second tower section into position
2 on top of the first tower section within the
3 jacking crane;
- 4 (h) repeating step d) to f) with further tower
5 sections to erect a tower;
- 6 (i) transporting a blade onto the foundation
7 platform for mounting on the nacelle from the
8 transportation vessel, possibly using winch
9 inside nacelle;
- 10 (j) moving the jacking crane up the tower to a
11 position where the blade can be mounted on the
12 nacelle; and
- 13 (k) repeating steps g) to h) for subsequent blades.

14
15 61. A method as claimed in Claim 60 which is automated.

16
17 62. A method as claimed in Claims 60 to 61 controlled by
18 remote control.

19
20 63. A method for installing the apparatus claimed in any
21 one of Claims 1 to 52 on an foundation platform, the
22 method comprising the steps of:

- 23 (a) loading the nacelle, tower sections and jacking
24 crane onto an foundation platform;
- 25 (b) towing the foundation platform to an offshore
26 location using a transportation vessel;
- 27 (c) anchoring the foundation platform to the sea
28 bed at the offshore location;
- 29 (d) removing the transportation vessel;
- 30 (e) extending the jacking crane;
- 31 (f) winching a first tower section from the
32 foundation platform into position with the
33 jacking crane;

- 1 (g) extending the jacking crane;
- 2 (h) winching a second tower section from the
- 3 foundation platform into position with the
- 4 jacking crane and on top of the first tower
- 5 section;
- 6 (i) repeating steps (e) to (h) with further tower
- 7 sections to erect a tower; and
- 8 (j) maintaining the nacelle on top of the tower;
- 9 and
- 10 (k) maintaining turbine blades onto the nacelle.

11

12 64. A method as claimed in Claim 63 which is automated.

13

14 65. A method as claimed in Claims 63 to 64 controlled by
15 remote control.

16

17 66. Apparatus as claimed in Claims 63 to 65, wherein the
18 jacking crane is used to raise the turbine blades up
19 to the nacelle for mounting.

20

21 67. Apparatus as claimed in Claims 63 to 66, wherein the
22 winch in the nacelle is used to transport the blades
23 from the boat to the platform.

24

25 68. A method for installing the apparatus claimed in any
26 one of Claims 1 to 52 on a foundation platform or
27 other foundation, the method comprising the steps
28 of:

29

- 30 (a) delivering the nacelle, tower sections and
31 jacking crane over a foundation platform or
32 other foundation using a transport vehicle;
- 33 (b) lifting the nacelle onto the foundation
34 platform or other foundation;

- 1 (c) removing the transport vehicle;
- 2 (d) assembling crane and jacking crane;
- 3 (e) extending the jacking crane;
- 4 (f) delivering tower sections to the foundation
5 platform or foundation using a transport
6 vehicle;
- 7 (g) winching a first tower section from the
8 transport vehicle using crane;
- 9 (h) sliding the first tower section into position
10 within the jacking crane using the crane;
- 11 (i) supporting the nacelle on the tower section
12 whilst adjusting jacking crane to provide
13 clearance for one or more clamps;
- 14 (j) attaching clamps to securely and safely anchor
15 jacking crane to tower;
- 16 (k) repeating steps (g) to (j) with further tower
17 section to erect a tower; and
- 18 (l) maintaining the nacelle on top of the tower;
19 and turbine blades on to the nacelle.

FIG. 6

FIG. 10

FIG.12

FIG 13

Fig 15

FIG.16

Fig.24

Fig. 26

Fig. 27

Autodesk

F16.30

FIG. 31

FIG. 34

FIG. 35

FIG. 36

FIG. 37

Fig. 3B

FIG. 39

FIL-AQ

FIG. 11

Fig. 42

Fed43

Fu44

Fid 45

En46

Fn6.47

Fn6.48

Fig.49

Fig.50

Fig. 51

Fig. 52

Fig. 53

Fig. 54

Fig. 55

Fig. 56

Fig. 57

Fig. 58

Fig. 59

Fm. 60

Fig 61

Fig. 62

Ful 63

Fig. 64

Ful 65

Fit 66

Fig. 67

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 03/02287

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 F03D1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 F03D E04H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 197 41 988 A (PEITER KARIN) 1 April 1999 (1999-04-01)	1-3, 9-12, 16, 18, 20, 24-30, 32, 33, 39-50, 52
Y	the whole document column 1, line 1-9 column 1, line 36 - line 64 column 2, line 36 - line 64 column 3, line 17 - line 24 column 3, line 66 -column 4, line 58 column 5, line 57 -column 8, line 6; figures	4-6, 19, 53, 55-68
Y		7
Y		13-15
Y		17, 21, 22
Y		23
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

16 September 2003

Date of mailing of the International search report

29/09/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Criado Jimenez, F

INTERNATIONAL SEARCH REPORT

Inte onal Application No
PCT/GB 03/02287

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y		31
Y		51
A		34-38
Y	WO 99 43956 A (THOMSEN JENS SCHIERSING ; OLESEN AGNETE (DK); BONUS ENERGY AS (DK);) 2 September 1999 (1999-09-02) abstract; figures 1-10	4-6, 19, 53, 55-68
Y	US 5 028 194 A (ROBINSON JAMES S) 2 July 1991 (1991-07-02) abstract; figure 1	7
Y	GB 2 090 894 A (OCEAN DRILLING EXPLORATION) 21 July 1982 (1982-07-21) abstract page 2, line 46 - line 61	13-15
Y	WO 96 10130 A (HEHENBERGER GERALD) 4 April 1996 (1996-04-04) abstract; figure 2	17, 21, 22
Y	GB 2 169 570 A (BROWN & ROOT CONST; GOETAVERKEN ARENDAL AB) 16 July 1986 (1986-07-16) abstract	23
Y	US 5 497 857 A (BEARD BOB J ET AL) 12 March 1996 (1996-03-12) column 7, line 26-38; claim 1	31
Y	US 4 828 125 A (SVEDAKER OLLE) 9 May 1989 (1989-05-09) abstract	51
X	DE 196 47 515 A (OTTO GERD ALBRECHT) 20 May 1998 (1998-05-20) abstract; claims; figures	1-3
X	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 08, 30 June 1999 (1999-06-30) & JP 11 082285 A (NKK CORP), 26 March 1999 (1999-03-26) abstract	1

INTERNATIONAL SEARCH REPORT

Inte	inal Application No
PCT/GB 03/02287	

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
DE 19741988	A	01-04-1999	DE	19741988 A1		01-04-1999
WO 9943956	A	02-09-1999	AU	2610999 A		15-09-1999
			WO	9943956 A1		02-09-1999
			EP	1058787 A1		13-12-2000
US 5028194	A	02-07-1991	NONE			
GB 2090894	A	21-07-1982	NONE			
WO 9610130	A	04-04-1996	AT	401674 B		25-11-1996
			AT	183494 A		15-03-1996
			WO	9610130 A1		04-04-1996
			AT	188276 T		15-01-2000
			AU	3464995 A		19-04-1996
			DE	59507537 D1		03-02-2000
			DK	783630 T3		13-06-2000
			EP	0783630 A1		16-07-1997
			ES	2143652 T3		16-05-2000
GB 2169570	A	16-07-1986	NONE			
US 5497857	A	12-03-1996	AU	700769 B2		14-01-1999
			AU	2660995 A		04-03-1996
			CA	2196274 A1		15-02-1996
			WO	9604157 A1		15-02-1996
US 4828125	A	09-05-1989	SE	454351 B		25-04-1988
			AU	7879787 A		24-03-1988
			FI	881946 A		26-04-1988
			NO	881809 A		29-04-1988
			SE	8603660 A		02-03-1988
			WO	8801600 A1		10-03-1988
DE 19647515	A	20-05-1998	DE	19647515 A1		20-05-1998
JP 11082285	A	26-03-1999	NONE			