Workshop - Text Mining with Python (Part2)

Kanda Tiwatthanont @ TNI

Wed 17 and Mon 22 May 2017

Agenda - Day 1

- Part 1: Introduction (10.00 11.00)
 - What is Data Mining?
 - Text Mining -- Social Mind Extraction
- Part 2: Python (11.00 12.00 / 13.00 14.00)
 - Python Introduction
 - Anaconda Installation (Data Science Distribution of Python)
 - Jupyter Introduction (Next Generation Engineering Notebook)
 - "Hello World!" in Jupyter, and so on.
- Part3 : Pandas / Seaborn (14.00 15.00)
 - Pandas (Structured Data Analysis Tool)
 - Seaborn (Statistical Data Visualization)

Agenda - Day 2

- Part 4 : Data Mining Framework (10.00 12.00)
 - Framework Overview
 - Scikit-learn -- Machine Learning Tool for Data Scientist
 - Data Prediction Hands-on
- Part 5 : Sentiment Analysis (13.00 15.00)
 - Introduction Text Mining
 - Unstructured to Structured Data
 - Text Classification

Workshop Part 2 - Python

Kanda Tiwatthanont @ TNI

- ★ Python is a widely used high-level programming language
- ★ Python is an interpreted language
- Python has a design philosophy which emphasizes code readability
- **\(\struct \)** Python supports memory management
- ★ A bundle of software to be installed

History of Python

Python Data Analytics

Guido Van Rossum, 1989

Organizations Using Python

What the most demand programming language?

Part 2

Workshop Python

- Dynamic language with Interpreter,
- Numerous contributed additional packages (libraries),
- Bundled with 'pip' package manager.

Highly recommend <u>installing Anaconda</u>. **Anaconda** conveniently installs Python, the Jupyter Notebook, and other commonly used packages for scientific computing and data science.


```
kanda@Tik:~/Working at Offices/2017 TNI workshop$ conda search -- -*tensor*
Fetching package metadata ......
tensorflow
                            0.10.0rc0
                                                np111py27 0
                                                             defaults
                            0.10.0rc0
                                                np111py34 0
                                                             defaults
                            0.10.0rc0
                                                np111py35 0
                                                             defaults
                                                np112py27 0
                                                             defaults
                            1.0.1
                            1.0.1
                                                np112py35 0 defaults
                            1.0.1
                                                np112py36 0
                                                             defaults
                            1.1.0
                                                np111py27 0
                                                             defaults
                            1.1.0
                                                np111py35 0
                                                            defaults
                            1.1.0
                                                np111py36 0
                                                            defaults
                                                np112py27 0
                            1.1.0
                                                             defaults
                            1.1.0
                                                np112py35 0
                                                             defaults
                            1.1.0
                                                np112py36 0
                                                             defaults
```


The Jupyter Notebook is an **interactive computing** environment that enables users to author notebook documents that include: Live code, Interactive widgets, Plots, Narrative text.

- **1980** -- Python was born ..
- 2005 -- First notebook system was found, but NOT succeeded.
- 2011 -- IPython Notebook team got awards.
- 2013 -- Funded by the Alfred P.
 Sloan Foundations. Renamed to
 Jupyter

Kanda Tiwatthanont @ TNI

Jupyter Notebook

Overview

- System and Kernel
- Cells or Element
- Shortcut Keys
- Hand-on: Let's make the Journal

Workshop Part 3 - Python Package

Matplotlib & Pandas & Seaborn

Python Packages

Matplotlib Package

- plot sample data
- plot sample data with labelled
- very quick data analysis

Pandas Package

- Series Data vs. DataFrame
- Import csv file
- Statistics with Pandas

Seaborn Package

Plot graph with Seaborn

• • •

import matplotlib.pyplot as plt
plt.plot([1,2,3,4])

• • •

import matplotlib.pyplot as plt
plt.plot([1,2,3,4])

• • •

plt.plot(...)

Line #1

Line # 2

Parameter of pyplot


```
plt.plot( [1,2,3,4], [2,5,1,4] )
plt.plot( [1,2,3,4], [4,5,3,1] )
```

```
plt.plot(

[1,2,3,4], [4,5,3,1],'r-',

[1,2,3,4], [2,5,1,4], 'g-'
```

Parameter → color & linestyle help(plt)

plt.plot([1,2,3,4,5,7], [2,8,6,10,8,3], ...)

import random as rd

x = rd.sample(range(1,100),50)

y = rd.sample(range(1,100),50)

- Red are weight & height of women
- Blue are men
- Random 10 sample of each


```
x1 = [45, 66, 59, 72, 67, 46, 75, 61, 59]

x2 = [156, 180, 167, 182, 178, 154, 183,163, 158]

y = [0,0,0,1,1,0,1,0,1]

plt.scatter(x1,x2,c=y)
```



```
x1 = [45, 66, 59, 72, 67, 46, 75, 61, 59]
x2 = [156, 180, 167, 182, 178, 154, 183, 163, 158]
X = [ [45,156], [66,180], [59,167], [72,182], [67,178],
      [46,155], [75,185], [61,163], [59,158]
       plt.scatter(x1,x2,c=y)
                                           plt.scatter( X[:,0], X[:,1], c=y )
```

Numpy Package

```
x1 = [45, 66, 59, 72, 67, 46, 75, 61, 59]
x2 = [156, 180, 167, 182, 178, 154, 183, 163, 158]
X = np.array ([ [45,156], [66,180], [59,167], [72,182], [67,178],
      [46,155], [75,185], [61,163], [59,158]
      plt.scatter(x1,x2,c=y)
                                          plt.scatter( X[:,0], X[:,1], c=y )
```

It's time to predict who is a man or woman?

Scikit-learn Package

```
X = np.array ([ [45,156], [66,180], ... ])
y = [0,0,0,1,1,0,1,0,1]

from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier()
clf = clf.fit(X, y)
```

clf.predict([[45,156]])

Analysis a huge and more complicated data

	Α	В	C	D	E	F	G	Н
1	Account Number	Account Name	sku	category	quantity	unit price	ext price	date
2	803666	Fritsch-Glover	HX-24728	Belt	1	98.98	98.98	2016-09-28 11:56:02
3	64898	O'Conner Inc	LK-02338	Shirt	9	34.8	313.2	2016-04-24 16:51:22
4	423621	Beatty and Sons	ZC-07383	Shirt	12	60.24	722.88	2016-09-17 17:26:22
5	137865	Gleason, Bogisich and Franecki	QS-76400	Shirt	5	15.25	76.25	2016-01-30 07:34:02
6	435433	Morissette-Heathcote	RU-25060	Shirt	19	51.83	984.77	2016-08-24 06:18:12
7	198887	Shanahan-Bartoletti	FT-50146	Shirt	4	18.51	74.04	2016-09-05 07:24:23

Data Analysis with Pandas Package

```
import numpy as np
import pandas as pd
                                                       Pandas
X = pd.DataFrame([1,2,6,7])
                                                           Matplotlib
Y = [1,2,6,7]
                                                              Numpy
                                X.plot()
              print(X)
                                                             Machine
                                Y.plot()
              print(Y)
```


Import data from CSV file

```
sales = pd.read_csv( ' datasets/sample-sales.csv ' )
sales.head()
```

sales.head(n=2)

Describe sales

Number of sales records ---- print(len(sales))

Select 'ext price' column ---- ext_price = sales['ext price']

Minimum of ext price ---- ext_price.min()

Mode of ext price ---- ext_price.mode()

Describe ext price ---- ext_price.describe()

---- sales.**describe**()

See 'ext price' of 500 customers (hint using matplotlib)

What does the 'ext price' of each customer (Account Name)?

What does the 'ext price' of each customer (Account Name)?

```
customer = sales [['Account Name', 'ext price']][: 10]
print(customer)
customer group = customer.groupby('Account Name')
total = customer_group.sum()
total.plot(kind='bar')
```

Pandas Seaborn

Matplotlib

Numpy

Machine

What does the 'ext price' of each customer (Account Name)?

```
import seaborn as sns
sns.set style('darkgrid') # style must be one of white, dark, whitegrid, darkgrid, ticks
bar plot = sns.barplot( x=customer['Account Name'],
                          v=customer['ext price'][:10])
plt.xticks(rotation=90)
```

What does the 'ext price' of each customer (Account Name)?

Let's see

```
import seaborn as sns
sns.set_style('darkgrid') #style must be one of white, dark, whitegrid, darkgrid, ticks
sns.barplot(x='Account Name', y='ext price', data=sales[:15])
plt.xticks(rotation=90)
```

Let's see

```
import seaborn as sns
sns.set_style('darkgrid')
sns.barplot(x='Account Name', y='ext price', hue='category', data=sales[:15])
plt.xticks(rotation=90)
```

Let's see

import seaborn as sns

sns.distplot(sales['unit price'])

Next Part 4 - Data Mining

Kanda Tiwatthanont @ TNI