УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

МАСТЕР РАД

на катедри за

Рачунарство и информатику

на тему

Примена неуронских поља зрачења у рендеровању

Коста Грујчић

Београд, 24. новембар 2022.

Ментор:

проф. др Младен Николић Универзитет у Београду, Математички факултет

Чланови комисије:

проф. др Младен Николић Универзитет у Београду, Математички факултет

проф. др Младен Николић Универзитет у Београду, Математички факултет

проф. др Младен Николић Универзитет у Београду, Математички факултет

Датум одбране: 24. новембар 2022.

Посвета

Наслов мастер рада: Примена неуронских поља зрачења у рендеровању **Резиме**:

Кључне речи: машинско учење, неуронска поља, рендеровање

Списак слика

2.1	Интерпретација тачкастог модела камере	8
4.1	Илустрација NeRF модела према [1]	16
4.2	Илустрација Instant-NGP модела према [2]	16
4.3	Поређење NeRF и Mip-NeRF модела према [3]	16

vi Списак слика

Списак табела

viii Списак табела

Садржај

1	Увод	3
2	Основни појмови рачунарске графике	5
	2.1 Светлост и боја	5
	2.2 Камера	7
	2.2.1 Тачкасти модел камере	7
	2.3 Рендеровање	9
	2.3.1 Запреминско рендеровање	9
3	Основни појмови машинског учења	11
	3.1 Неуронске мреже	12
4	Неуронска поља зрачења	15
	4.1 NeRF	16
	4.2 Mip-NeRF	18
	4.3 Instant-NGP	20
5	Скупови података	23
6	Експерименти	27
	6.1 Време обучавања	27
	6.2 Квалитет резултата	
7	Закъучак	29

2 Садржај

Увод

Један од споредних циљева овог рада је превођење израза који су се безразложно одомаћили у српској научној заједници као англицизми. С друге стране, скраћенице остају у изворном облику и то на латиници, што читаоцу пружа могућност за непосредно претраживање навода.

4 Глава 1. УВОД

Основни појмови рачунарске графике

2.1 Светлост и боја

Светлост представља електромагнетно зрачење чија је таласна дужина у сегменту од око 350 до 700 nm, које побуђује визуелни систем човека. То значи да људи *не виде* светлост осталих таласних дужина, тако да ћемо убудуће под видљивим спектром светлости мислити управо на овај, видљив човеку.

Потребно је увести физичке величине којима се могу квантификовати основна физичка својства светлости. Прво ћемо дефинисати радиометријске величине, а онда одговарајуће фотометријске.

Дефиниција 2.1.1. Фотон је квант електромагнетног зрачења. Енергија фотона је:

$$E = \frac{hc}{\lambda} [J],$$

где је h Планкова константа, c брзина светлотcu, а λ таласна дужина фотона.

Дефиниција 2.1.2. Укупна енергија зрачења извора зрачења је:

$$Q_e = \int_{S^2} E d\Omega \left[\mathbf{J} \right].$$

Дефиниција 2.1.3. Флукс зрачења је укупна енергија зрачења која доспе на неку површину по јединици времена:

$$\Phi_e = \frac{\partial Q_e}{\partial t} \left[\mathbf{W} \right].$$

Дефиниција 2.1.4. Озраченост је укупан флукс зрачења по јединици површине:

$$E_e = \frac{\partial \Phi_e}{\partial A} \left[\frac{\mathbf{W}}{\mathbf{m}^2} \right].$$

Дефиниција 2.1.5. Јачина зрачења је укупан флукс зрачења у неком смеру по јединичном просторном углу:

$$I_{e,\Omega} = \frac{\partial \Phi_e}{\partial \Omega} \left[\frac{\mathbf{W}}{\mathbf{sr}} \right].$$

Дефиниција 2.1.6. Зрачење је је укупан флукс зрачења у неком смеру по јединици површине и јединичном просторном углу:

$$L_{e,\Omega} = \frac{\partial^2 \Phi_e}{\partial \Omega \partial A} \left[\frac{\mathbf{W}}{\mathbf{sr} \cdot \mathbf{m}^2} \right].$$

Спектралне величине се дефинишу у односу на таласну дужину. На пример, спектрално зрачење је $L_{e,\Omega,\lambda}=\frac{\partial L_{e,\Omega}}{\partial \lambda}.$ Аналогно и за остале.

Након дефинисања мноштва физичких величина, коначно долазимо и до фотометријских, или како се још називају и *визуелне*. Кључна разлика у односу на радиометријске, или како се још називају и *енергетске*, је што се у овом случају у обзир узима и спектрална осетљивост посматрача. То одговара интуитивном поимању светлости - човек светлост разликује на основу боје, што је у директној коресподенцији са таласном дужином.

У основи спектралне зависности посматрача је функција релативне светлосне осетљивости V. Помоћу ове функције изражавамо просечну осетљивост човека на светлост одређене таласне дужине. Просечна је у смислу да може варирати у популацији, али представља врло добру апроксимацију у општем случају, поготово имајући у виду да је стандардизована од стране Међународног комитета за осветљење.

Дефиниција 2.1.7. Светлосни флукс је укупна енергија која протекне кроз неку површину у јединици времена:

$$\Phi_v = K \int_0^\infty \Phi_{e,\lambda} V(\lambda) d\lambda \,[\text{lm}] \,.$$

За вредност онстанте K из 2.1.7 се узима $683.002\frac{\mathrm{lm}}{\mathrm{W}}$. Реч је о још једној примеру стандардизације у области фотометрије.

Дефиниција 2.1.8. Јачина светлости је укупна снага коју емитује извор светлости у одређеном смеру по јединичном просторном углу:

$$I_v = K \int_0^\infty I_{e,\lambda} V(\lambda) d\lambda \text{ [cd]}.$$

Дефиниција 2.1.9. Осветљеност је укупан светлосни флукс на некој површини:

$$E_v = K \int_0^\infty I_{e,\lambda} E_{e,\lambda} V(\lambda) d\lambda \left[lx \right].$$

Дефиниција 2.1.10. Сјајност је укупан светлосні флукс који напушта, пролази или пада на површину по јединичном просторном углу и по ортогоналној пројекцији јединичне површине:

$$L_v = \frac{\partial^2 \Phi_v}{\partial \Omega \partial A \cos \theta} \left[\frac{\mathrm{cd}}{\mathrm{m}^2} \right].$$

2.2. KAMEPA 7

Сјајност је једина фотометријска величина коју човек непосредно опажа. Она представља мерило за субјективни утисак о мањој или већој сјајности светлеће или осветљене површине.

Већ смо поменули да људи разликују неке таласне дужине светлости, односно виде светлост одређене боје. Ту способност нам дају три врсте чепића који се налазе у жутој мрљи мрежњаче ока. Према томе, кроз ове рецепторе, наш мозак прима свега три врсте сигнала за сваки очни надражај. Међутим, људско око није идеалан спектрометар, па поједине таласе просто види као светлост исте боје.

Зато се боја на рачунару представља тројкама (R,G,B) где су координате удео црвене, плаве и зелене боје редом, које се узимају за основне. Постоје и други системи боја попут HSV или CMYK, али о њима неће бити речи јер ћемо надаље користити искључиво RGB систем.

На овај начин је могуће чувати тачно 255^3 боја, што је и више него довољно будући да људско око разликује до 10 милиона боја. Даља практична ограничења се тичу квалитета монитора као и графичког процесора, али се тиме нећемо бавити.

2.2 Камера

Можемо сматрати да нам је појам камере познат из стварног света. У овој глави ћемо строго дефинисати камеру и дати један од многобројних начина њеног моделовања у домену рачунарске графике.

Дефиниција 2.2.1. Камера је пресликавање из \mathbb{R}^3 у \mathbb{R}^2 .

У питању је врло општа, готово бескорисна дефиниција. Међутим, ако размислимо о томе да се стваран свет врло добро може представити као простор димензије 3, а да се фотографија може схватити као раван, можемо увидети да је у питању зачиста исправна формулација. Оно што овом дефиницијом није обухваћено јесте како се тачно од света око нас долази до слике. Зато има смисла говорити о моделима камере као различитим парадигмама изведбе поменутог пресликавања. У овом раду ће највише бити коришћен тачкасти модел камере тако да ћемо у наставку поглавља дати његову прецизну дефиницију.

2.2.1 Тачкасти модел камере

Посматрајмо канонски Еуклидски простор димензије 3 и раван z=f коју ћемо звати **раван слике**. У овом моделу камере се произвољна тачка $\mathbf{x_w}=(x,y,z)$ из простора пресликава у тачку $\mathbf{x_p}=(u,v)$ која је тачка пресека равни слике и праве која спаја $\mathbf{x_w}$ и центар камере \mathbf{c} , који ћемо за сад поставити у координатни почетак. Другим речима, у питању је централна пројекција са центром у координатном почетку. Тривијалном применом сличности троуглова долазимо до

$$(x, y, z) \mapsto (fx/z, fy/z).$$
 (2.1)

Права која пролази кроз центар камере и нормална је на раван слике називамо главном осом, а тачка у којој се главна оса и раван слике секу називамо главном тачком. Приметимо још једну особину централног пројектовања - све тачке праве која пролази кроз центар камере се пројектују у исту тачку равни слике. Зато ћемо увести хомогене координате. Отуда можемо писати $\mathbf{x_p} = P\mathbf{x_w}$. Овакво пресликавање се може преписати и у матричном облику

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} fx \\ fy \\ z \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}. \tag{2.2}$$

Ради конзистентности са наставком, раставићемо P на прозивод

$$K\begin{bmatrix} R & t \end{bmatrix},$$
 (2.3)

где је $K \in M_{3,4}(\mathbb{R})$, $R \in M_{3,3}(\mathbb{R})$ и $t \in M_{3,1}(\mathbb{R})$. Уклањајући последњу колону из 2.2 добијамо матрицу K из овако измењеног пресликавања.

Уколико уопштимо положај главне тачке и њене координате означимо са (p_x, p_y) , матрица K поприма облик

$$\begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} . {2.4}$$

Коначно, можемо уопштити и положај центра камере. Тада уочавамо два координатна система - онај с почетка, канонски, у ком нам је лако да баратамо и други, са центром камере као координатним почетком. Није тешко увидети да се кретањем (ротацијом и транслацијом) репер камере може довести до канонског. На тај начин употпуњујемо пресликавање P. На слици 2.1 је дата интепретација овог пресликавања.

Слика 2.1: Интерпретација тачкастог модела камере

Постоји укупно 9 слободних параметара - по 3 за сваку од матрица K, R и t. Матрица K се назива **матрица калибрације**, а њене вредности **унутрашњим параметрима** камере. Вредности матрице $\begin{bmatrix} R & t \end{bmatrix}$ се називају **спољашњим параметрима** камере.

Поменимо још једну терминолошку конвенцију. Координатни систем из којег вршимо пројекцију се назива и *светским координатним системом*, а координатни систем индукован положајем камере *координатни систем камере*. *Координатни систем слике* је онај везан за раван слике.

Корисно је дати додатни коментар у вези са нулом у првом реду матрице калибрације. У питању је коецифијент смицања којим је могуће уопштити раван слике – правоугаоник постаје паралелограм.

2.3 Рендеровање

Када смо говорили о камери, видели смо да слика није ништа друго до дводимензиона пројекција стварног света. Слично је и када комплексну сцену, овог пута виртуелног, света желимо да прикажемо на монитору. Мора доћи до пројектовања света, а слику коју видимо је уствари слика добијена посматрањем света кроз виртуелну камеру. Тај процес се назива *рендеровање*. Дакле, рендеровањем се од сцене долази до конкретне репрезентације слике у пикселима.

Пре него што се упустимо у рендеровање, вратимо се корак уназад. Светлост и камеру смо, на први поглед, увели врло неповезано. Светлост смо дефинисали више експериментално ослањајући се на физичке законе, док смо камеру увели строго геометријски. Сада ћемо оба појма ставити у контекст и објаснити њихову везу.

Праве које смо уочавали у моделу камере су светлосни зраци. Раван слике у пракси није бесконачна, већ има своју ширину и дужину којима се одређују димензије слике. Такође, услед физичких ограничења слика се мора дискретизовати. Посматрамо ли слику на тај начин, видећемо да је она матрица чије елементе називамо пикселима. Како ће који пиксел да изгледа, односно које ће боје бити, одређује количина зрачења која допре до камере. Зрачење смо увели у зависности од правца, што у комбинацији са пројективним особинама модела камере одређује који ће пиксел бити погођен. Такође, природно је увести ограничење по питању дела простора који камера може да опажа. Величину слике смо већ поменули, али не и параметар по г оси. Ради једноставности геометрије, уводимо предњу и задњу раван одсецања. Све испред предње и иза задње равни одсецања не утиче на резултујућу слику.

2.3.1 Запреминско рендеровање

Посматрајмо шта се дешава са светлости приликом проласка кроз неку средину. Може доћи до:

- упијања средина упија фотоне светлосног зрака приликом чега се ослобађа топлота или неки други вид енерије.
- емисије како је светлост зрачење, пролазак светла кроз средину је загрева. Када средина достигне одрђену температуру, може доћи до емитовања светлости.

 расипања – део фотона напушта правац зрака што доводи до мешања фотона са различитих праваца.

Према томе, више чинилаца утиче на коначно зрачење које ће путем неког светлосног зрака доћи до камере. Тачке неког светлосног зрака с почетком у \mathbf{o} и правцем \mathbf{d} једнозначно одређујемо као $\mathbf{r}_{\mathbf{o},\mathbf{d}}(t) = \mathbf{o} + t\mathbf{d}$.

Нека су предња и задња раван одсецања редом $z=t_n$ и $z=t_f$, а светлосне зраке посматрамо из положаја камере ${\bf c}$. Према томе, до камере дуж зрака ${\bf r_{c,d}}$ допире следећа количина зрачења

$$\int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}_{\mathbf{c},\mathbf{d}}(t))L_{e,\Omega}\big|_{\mathbf{r}_{\mathbf{c},\mathbf{d}}(t)}dt,$$
(2.5)

где је $T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r_{c,d}}(s)ds)\right)$ акумулирана пропусност зрака од t_n до t. Ова величина представља вероватноћу да светлосни зрак на путу од t_n до t не удари нити у једну препреку. Напоменимо да се интеграција врши искључиво по фотонима који се налазе на светлосном зраку од интереса, или другим речима, интеграли се само по расутој светлости.

Како нам је боја пиксела крајњи циљ, једначину 2.5 ћемо преписати у колориметријском облику

$$C(\Pi_{\mathbf{r_{c,d}}}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r_{c,d}}(t))C(\mathbf{r_{c,d}}(t))dt,$$
(2.6)

где је $\Pi_{\mathbf{r_{c,d}}}$ тачка пресека светлосног зрака и равни слике, а C поље које сваку тачку пресликава у њену RGB боју.

Приказани поступак одређивања боје пиксела се назива *запреминско рендеро-вање*. У питању је само један од многобројних алгоритама за рендеровање који ће бити коришћен у наставку.

Основни појмови машинског учења

У овој глави ћемо формулисати теоријски оквир неопходан за разматрање и примену машинског учења.

Машинско учење је област вештачке интелигенције. Неформално говорећи, машинско учење обухвата алгоритме изведене из података или како се то често говори - научених из података. То значи да нема експлицитног програмирања, а врло често ни контроле процеса учења, већ се алгоритми дефинишу низом операција параметризованих на основу података који су изложени процесу обучавања. Процес обучавања, дакле, представља одређивање поменутих параметара којима се операције од значаја израчунавају на што исправнији начин. Приметимо да је та исправност прилично неодређен појам и зависи од примене, података и циља обучавања. Такође, врло се често не може ни квантификовати што проблем обучавања чини утолико тежим.

Имајући у виду досег овог рада, потребно је увести појам надгледаног учења. Реч је о врсти учења у којој су уз податке присутни и додатни подаци којима је директно могуће утврдити да ли је излаз алгоритма исправан или није. На пример, ако је потребно утврдити да ли је на датој слици мачка, уз слику би постојао једнобитни податак који то недвосмислено потврђује. Према томе, скуп података можемо посматрати као скуп одбирака $\mathcal{D} = \{x_i, y_i\}$, где x_i представља улаз, а y_i одговарајући излаз. То нам омогућава да посматрамо расподелу таквих одбирака, односно густину расподеле p(x,y). Природно се намеће потреба за што приближнијем одређивању поменуте расподеле, што подразумева одређивање функције f којом успостављамо везу између одговарајућих парова x и y. Кандидата за f има несагледиво много, а нама је потребна она najбољa, при чему се овог пута то мора формално дефинисати.

Претпоставимо да су y_i узорковани из метричког простора. Зато можемо дефинисати функцију грешке \mathcal{L} којом меримо квалитет апроксимације y_i вредношћу $f(x_i)$. Вреднујући одбирке у складу са својом густином дефинишемо puзuk

$$R(f) = \mathbb{E}(\mathcal{L}(y, f(x))) = \int \mathcal{L}(y, f(x))p(x, y)dxy. \tag{3.1}$$

Проблем надгледаног учења покушава да дође до f за које се ризик минимизује. Начелно, обучавање се може извести по свим могућим функцијама f. Како је то практично немогуће, претрага функција се усмерава увођењем додатних претпоставки, односно рестрикција, скупа претраге. Ми ћемо посматрати функције параметризоване скупом параметара Θ , тако да минимизовање ризика посматрамо као

$$\min_{\Theta} R(f_{\Theta}). \tag{3.2}$$

У општем случају пе мора постојати само један исправан излаз за конкретан улаз, што оправдава дефинисање ризика коришћењем заједничке расподеле p(x,y). То за наше потребе неће бити неопходно. Наиме, посматраћемо условну расподелу p(y|x).

Расподела p(y|x) је ретко кад позната. Зато се спроводи стандардни статистички третман - ризик се мења емпиријским ризиком:

$$ER(f_{\Theta}, \mathcal{D}) = \frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \mathcal{L}(y_i, f_{\Theta}(x_i)), \tag{3.3}$$

где је S узорак скупа \mathcal{D} .

Претпоставимо да се скуп параметара састоји од само једног вектора димензије свега 2, тј. $\Theta = \{\mathbf{w}\} = \{(w_1, w_2)\}$, а да је $x_i \in \mathbb{R}^1$. Имајући у виду израз 3.2, за кандидате функције f, између осталог, имамо $\sin(x_iw_1 + w_2)$, $\log(x_iw_1w_2)$, $\exp(w_2x_i^{w_1})$. Иако је проблем постављен као веома једноставан, а параметарском рестрикцијом начињен још једноставнијим, и даље се чини као веома тежак будући да немамо начин да за разумно коначно времена претражимо све такве кандидате. Зато је потребно посматрати тачно одређене класе функција f за које је то могуће, а међу најпознатијим су свакако неуронске мреже. Заправо, потребно је фиксирати конкретну архитектуру модела, а потом вршити оптимизацију параметара у складу са одабраном метриком.

3.1 Неуронске мреже

Дефиниција 3.1.1. Неуронска мрежа је функција облика

$$f_{\Theta}(\mathbf{x}) = \left(\prod_{i=1}^{L} a_i(\beta_i + W_i)\right)(x),$$

где је $\Theta = \{W_i\}_{i=1}^L$ скуп параметара који се обучава, $W_i \in \mathbb{R}^{d_i \times d_{i-1}}$ при чему је $d_0 = \dim(x)$ и $\{a_i\}_{i=1}^L$ функције које се примењују члан по члан. Функције $\{a_i\}_{i=1}^L$ пазивамо активационим функцијама. Параметар L називамо бројем слојева неуронске мреже.

Активационе функције могу бити произвољне, докле год поштују услове димензионалности. Међутим, уколико су оне линеарне, тада неуронска мрежа постаје линеарна, односно постаје линеарна регресија. У циљу добијања што разноврснијих модела, за функције активације се узимају нелинеарне функције. Један од популарних избора је $ReLU(x) = \max\{0, x\}$ [4].

Неуронске мреже су познате и под именом вишеслојни перцептрони, па ће убудуће бити коришћена и скраћеница MLP (енг. multilayer perceptron).

Значајан теоријски резултат даје следећа теорема [5]

Теорема 3.1.1. За сваку функцију $F : \mathbb{R}^n \to \mathbb{R}^m$ интеграбилну у Бохнеровом смислу и свако $\epsilon > 0$, постоји неуронска мрежа f_{Θ} са ReLU активационим функцијама, тако да је $\{d_i = \max\{n+1,m\}\}_{i=1}^L$ и важи

$$\int_{\mathbb{R}^n} \|f_{\Theta}(x) - F(x)\| \, dx < \epsilon.$$

Ово за последицу има да се готово свака функција може произвољно добро апроксимирати неуронском мрежом, али како доказ није конструктиван није очигледно како таква неуронска мрежа изгледа.

Уколико су активационе функције диференцијабилне функције, то ће бити и неуронска мрежа. Зато се поступак минимизације емпиријског ризика спроводи градијентним спустом. Поступак се спроводи у две етапе - прво се неуронска мрежа примени над подацима пропагацијом унапред, а потом се пропагацијом уназад користећи правило ланца изврши ажурирање параметара.

Како је градијентни спуст оптимизација првог реда, није гарантовано да ће пронађени локални минимум бити и глобални. У пракси се показује да градијентни спуст даје веома добра решења.

Када је реч о имплементацији неуронских мрежа и конкретим детаљима њиховог обучавања, важно је разматрати хардверска ограничења. Наиме, ови модели могу бити веома комплексни где се ред величине броја параметара креће и до неколико милиона, па чак и до неколико милијарди. Зато се приликом обучавања прибегава разнородним техникама, често нумеричке или хеуристичке природе, којима се смањује укупно време обучавања или смањује утрошак меморије. Еклатантан пример је стохастички градијентни спуст [6] - параметри се ажурирају на основу само једног одбирка уместо целог скупа података. Овај метод је сушта супротност конвенционалном градијентном спусту, тако да се углавном врши компромис.

Неуронска поља зрачења

Дефиниција 4.1. Поље је пресликавање $F : \mathbb{R}^n \to \mathbb{R}^m$. Специјално, поље је скаларно за m = 1.

Дефиниција 4.2. Неуронско поље је поље макар делимично параметризовано неуронском мрежом.

Неуронско поље зрачења је посебан случај неуронског поља за n=5 и m=3. У питању је параметризација пресликавања које свакој тачки (x,y,z) придружује зрачење и пропусност и то за сваки правац одређен угловима θ и ϕ . Непрозирност се може видети и као вероватноћа да се зрак *зауставља* у тој тачки.

Размотримо шта добијамо оваквом поставком. Претпоставимо да је неуронско поље савршено обучено. То значи да можемо утврдити боју пиксела из сваког могућег угла гледања. Тако се сцена рендерује и из погледа који се нису нашли у скупу за обучавање.

Како је таква неуронска параметризација непозната *a priori*, имамо слободу у виду дизајнирања архитектуре параметризације. Подробно ћемо обрадити оригинални NeRF модел и његово проширење Mip-NeRF, а потом се осврнути на изузетно оптимизован модел InstantNeRF, који се намеће као оптималан избор када је реч о имплементацији неуронских поља зрачења.

4.1 NeRF

Слика 4.1: Илустрација NeRF модела према [1]

Слика 4.2: Илустрација Instant-NGP модела према [2]

Слика 4.3: Поређење NeRF и Mip-NeRF модела према [3]

4.1. NERF 17

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus,

egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

4.2 Mip-NeRF

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan

4.2. MIP-NERF

eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.1-10

4.3 Instant-NGP

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis

elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Скупови података

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus sem-

per, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel

consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibulum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie justo et pede. Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum nunc. In wisi nisl, malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst. Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a, venenatis quis,

sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id dolor.

Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem justo, laoreet vitae, fringilla at, adipiscing ut, nibh. Maecenas non sem quis tortor eleifend fermentum. Etiam id tortor ac mauris porta vulputate. Integer porta neque vitae massa. Maecenas tempus libero a libero posuere dictum. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aenean quis mauris sed elit commodo placerat. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Vivamus rhoncus tincidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a tellus eget pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.

Nulla non mauris vitae wisi posuere convallis. Sed eu nulla nec eros scelerisque pharetra. Nullam varius. Etiam dignissim elementum metus. Vestibulum faucibus, metus sit amet mattis rhoncus, sapien dui laoreet odio, nec ultricies nibh augue a enim. Fusce in ligula. Quisque at magna et nulla commodo consequat. Proin accumsan imperdiet sem. Nunc porta. Donec feugiat mi at justo. Phasellus facilisis ipsum quis ante. In ac elit eget ipsum pharetra faucibus. Maecenas viverra nulla in massa.

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.

Експерименти

- 6.1 Време обучавања
- 6.2 Квалитет резултата

Закључак

Библиографија

- [1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, "Nerf: Representing scenes as neural radiance fields for view synthesis," in *ECCV*, 2020.
- [2] T. Müller, A. Evans, C. Schied, and A. Keller, "Instant neural graphics primitives with a multiresolution hash encoding," *ACM Trans. Graph.*, vol. 41, pp. 102:1–102:15, July 2022.
- [3] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan, "Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields," *ICCV*, 2021.
- [4] K. Fukushima, "Cognitron: A self-organizing multilayered neural network," *Biological Cybernetics*, vol. 20, pp. 121–136, 1975.
- [5] J. L. Sejun Park, Chulhee Yun and J. Shin, "Minimum width for universal approximation," in *Proceedings of American Federation of Information Processing Societies: 1977 National Computer Conference*, ICLR, 2021.
- [6] J. Kiefer and J. Wolfowitz, "Stochastic estimation of the maximum of a regression function," *The Annals of Mathematical Statistics*, vol. 23, pp. 462–466, 1952.