

STGB10NB40LZ

N-CHANNEL CLAMPED 20A - D²PAK INTERNALLY CLAMPED PowerMESH™ IGBT

TYPE	V _{CES}	V _{CE(sat)}	Ic	
STGB10NB40LZ	CLAMPED	< 1.8 V	20 A	

- POLYSILICON GATE VOLTAGE DRIVEN
- LOW THRESHOLD VOLTAGE
- LOW ON-VOLTAGE DROP
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- HIGH VOLTAGE CLAMPING FEATURE

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH™ IGBTs, with outstanding performances. The built in collector-gate zener exhibits a very precise active clamping while the gate-emitter zener supplies an ESD protection.

APPLICATIONS

AUTOMOTIVE IGNITION

ORDERING INFORMATION

SALES TYPE	MARKING	PACKAGE	PACKAGING
STGB10NB40LZT4	GB10NB40LZ	D ² PAK	TAPE & REEL

August 2003 1/10

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	CLAMPED	V
V _{ECR}	Emitter-Collector Voltage	18	V
V _{GE}	Gate-Emitter Voltage	CLAMPED	V
I _C	Collector Current (continuos) at T _C = 25°C	20	А
Ic	Collector Current (continuos) at T _C = 100°C	10	А
I _{CM} (•)	Collector Current (pulsed)	40	А
Eas	Single Pulse Energy Tc = 25°C	300	mJ
Ртот	Total Dissipation at T _C = 25°C	150	W
	Derating Factor	1	W/°C
E _{SD}	ESD (Human Body Model)	4	KV
T _{stg}	Storage Temperature	- 55 to 175	°C
Tj	Operating Junction Temperature	- 55 to 175	

^(•)Pulse width limited by safe operating area

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	1	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25~^{\circ}C$ UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _(CES)	Clamped Voltage	$I_C = 2 \text{ mA}, V_{GE} = 0,$ $T_{j=} - 40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	380	410	440	V
BV _(ECR)	Emitter Collector Break-down Voltage	I _C = 75 mA, Tj= 25°C	18			V
BV _{GE}	Gate Emitter Break-down Voltage	$I_G = \pm 2 \text{ mA}$	12		16	V
I _{CES}	Collector cut-off Current	V _{CE} = 15 V, V _{GE} = 0 ,T _j = 150 °C			10	μΑ
	$(V_{GE} = 0)$	V _{CE} = 200 V, V _{GE} = 0 ,T _j = 150°C			100	μΑ
IGES	Gate-Emitter Leakage Current (V _{CE} = 0)	V _{GE} = ± 10V , V _{CE} = 0			± 700	μA
R _{GE}	Gate Emitter Resistance			20		ΚΩ

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}, I_{C} = 250 \mu\text{A},$ $T_{C} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	0.6		2.2	V
V _{CE} (SAT)	Collector-Emitter Saturation	V _{GE} =4.5V, I _C = 10 A, Tj= 25°C		1.2	1.8	V
	Voltage	V _{GE} =4.5V, I _C = 20 A, Tj= 25°C		1.3		V

2/10

ELECTRICAL CHARACTERISTICS (CONTINUED) DYNAMIC

Symbol	Parameter	Test Conditions	Min. Typ.		Max.	Unit
9fs	Forward Transconductance	V _{CE} = 15 V , I _C = 10 A		18		S
C _{ies}	Input Capacitance	$V_{CE} = 25V, f = 1 \text{ MHz}, V_{GE} = 0$		1300		pF
C _{oes}	Output Capacitance			105		pF
C _{res}	Reverse Transfer Capacitance			12		pF
Qg	Gate Charge	V _{CE} = 328V, I _C = 10 A, V _{GE} = 5V		28		nC

FUNCTIONAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
II	Latching Current	V_{Clamp} = 328 V, T_{C} = 125 °C R _{GOFF} = 1K Ω , V_{GE} = 5 V		40		Α
U.I.S.	Functional Test Open Secondary Coil	$R_{GOFF} = 1K\Omega$, L = 1 mH , Tc= 125°C	13			Α

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{CC} = 328 V, I _C = 10 A		1300		ns
t _r	Rise Time	$R_G = 1K\Omega$, $V_{GE} = 5 V$		270		ns
(di/dt) _{on}	Turn-on Current Slope	V_{CC} = 328 V, I_{C} = 10 A R_{G} =1K Ω , V_{GE} = 5 V		60		A/µs
Eon	Turn-on Switching Losses	V_{CC} = 328 V, I_{C} = 10 A, T_{C} = 25 °C R_{G} = 1K Ω , V_{GE} = 5 V, T_{C} = 125 °C		2.4 2.6		mJ mJ

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _c	Cross-over Time	V _{CC} = 328 V, I _C = 10 A,		3.6		μs
$t_r(V_{\text{off}})$	Off Voltage Rise Time	$R_{GE} = 1K \Omega$, $V_{GE} = 5 V$		2		μs
t _d (off)	Delay Time			8		μs
t _f	Fall Time			1.4		μs
E _{off} (**)	Turn-off Switching Loss			5		mJ
t _c	Cross-over Time	V _{CC} = 328 V, I _C = 10 A,		5.7		μs
$t_r(V_{\text{off}})$	Off Voltage Rise Time	$R_{GE} = 1K\Omega$, $V_{GE} = 5$ V Tj = 125 °C		2.7		μs
t _d (off)	Delay Time	1) = 123 0		9.2		μs
t _f	Fall Time			2.8		μs
E _{off} (**)	Turn-off Switching Loss			8.7		mJ

⁽¹⁾Pulse width limited by max. junction temperature. (**)Losses Include Also the Tail

Output Characteristics

Transconductance

Collector-Emitter On Voltage vs Temperature

Transfer Characteristics

Normalized Collector-Emitter On Voltage vs Temp.

Collector-Emitter On Voltage vs Collector Current

477. 4/10

Gate Threshold vs Temperature

Normalized Clamping Voltage vs Temperature HV18280

Capacitance Variations

Gate Charge vs Gate-Emitter Voltage

Total Switching Losses vs Temperature

Total Switching Losses vs Collector Current

Turn-Off SOA

Thermal Impedance

6/10

 V_{CC}

SC090130

 V_{CLAMP}

Fig. 1: Unclamped Inductive Load Test Circuit

I c ____

Fig. 2: Unclamped Inductive Waveform

Fig. 3: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 4: Gate Charge test Circuit

 V_{CC}

A7/.

D²PAK MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	00		80			

8/10

D²PAK FOOTPRINT

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*

* on sales type

47/.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

477.