

Model 2

produced by the

learned model

given policy on the Data point in the test

set that close to the

generated trajectory

How to Select the Appropriate One From the Trained Models for Model-Based OPE CICAI 2023

¹Chongchong Li, ¹Yue Wang, ²Zhi-Ming Ma, and ¹Yuting Liu ¹Beijing Jiaotong University, ²Academy of Mathematics and Systems Science, Chinese Academy of Sciences **CAAI International Conference** on Artificial Intelligence

1. Motivation

- Model-Based Offline Policy Evaluation (MBOPE):
- Approximate the value of a given policy directly by estimated transition and reward functions of the environment + Monte Carlo.
- A challenge remains in selecting an appropriate model from the trained models:
- Traditional method: train a set of models (ensemble) + select by comparing the validation loss. The local errors of the model and the degree of fit with the policy to be evaluated are ignored. • This study:
- Explore the criterion for selecting models from trained models.

2. Graphical Representation

Policy m

Monte Carlo

Our criterion

Can't tell which

model is better for

policy 1 or policy 2!

3. Theoretical Analysis

Theorem 1 (the upper bound of the discrepancy between the actual value and the approximated value calculated using the learned model.

Let η_{π} be the true value of the policy π , $\hat{\eta}_{\pi}$ be the estimated value using the learned model, then we have:

$$|\eta_{\pi} - \hat{\eta}_{\pi}| \leq C \cdot \mathbb{E}_{t \sim Gemo(\gamma)} \mathbb{E}_{s' \sim P_{mix}^t, a' \sim \pi(s')} \mathcal{L}(s', a'),$$
 Where $P_{mix}^t = \beta P_{\pi}^t + (1 - \beta) \hat{P}_{\pi}^t, C = \frac{2\gamma r_{max}}{(1 - \gamma)^2} \cdot \mathcal{L}(s', a')$, the error of the model at (s', a') is $D_{TV}(P(s|s', a')||\hat{P}(s|s', a'))$ and $Gemo(\gamma)$ is a geometric distribution with parameter γ .

- The error can be upper bounded by the expected error of the learned model over the distribution of trajectories produced by that policy.
- The error depends on how the agent generates trajectories on the learned model and actual environment. The error of the learned model at these generated data points also plays a role.
- The geometric distribution shows that the error of the estimated value of the given policy is more relevant to the front part of the resulting trajectory.
- In this study β is set to zero to provide a more convenient bound since it is not possible to gather trajectories using the given policy on offline policy evaluation tasks.

4. Proposed Method

Geometric Loss Criterion

$$C\frac{1}{N}\sum_{i=1}^{N}\sum_{t=0}^{H}g_{t}(d\left(\left(\hat{s}_{t}^{i},a_{t}^{i}\right),\left(s_{t}^{i*},a_{t}^{i*}\right)\right)+l(s_{t}^{i*},a_{t}^{i*}))$$

where C is $\frac{2\gamma r_{max}}{(1-\gamma)^2}$. The variable g_t represents the probability of the geo metric distribution for sampling t. And d is the distance (MSE) of the generated data and the corresponding nearest data point in validation. l is the prediction loss of the learned model on (s_t^{i*}, a_t^{i*}) .

Algorithm 1 A Criterion for Choosing the Trained Model

Require: the learned models $\{\hat{M}_k\}_{k=1}^K$, policy π_j , discount factor γ , horizon H, set of initial states S_0 , batch size N, r_{max} which is the maximum of the reward in offline datat set.

5. Experimental Results

Benchmark (DM control)

Env: Deepmind control-suite

- Offline data: RL Unplugged
- Policy data: 96 policies from BC, D4PG, CRR, RABM
- Models: 48 models for each env(different hyperparameters)
- **Compare**: select by validation loss and by our critic

Correlation coefficient results

Environment	Validation loss	Ours w/o d	Ours
cartpole swingup	-0.01±0.29	0.28±0.15	0.45±0.20
cheetah run	0.21±0.14	0.18±0.15	0.33±0.13
finger turn hard	-0.30±0.16	-0.17±0.09	-0.19±0.09
fish swim	0.15±0.12	0.12±0.10	0.42±0.26
walker stand	-0.20±0.07	-0.20±0.07	0.18±0.21
walker walk	0.15±0.24	0.16±0.28	0.16±0.29
humanoid run	-0.06±0.04	-0.06±0.04	0.01±0.03

Average Absolute Error results

Environment	Validation loss	Ours w/o d	Ours
cartpole swingup	26.9±15.1	24.2±19.5	17.5±24.2
cheetah run	13.4±8.37	13.2±8.37	8.52±8.49
finger turn hard	31.0±19.4	35.5±24.6	34.2±29.0
fish swim	27.5±14.2	27.7±14.3	20.1±15.5
walker stand	66.5±27.5	55.5±27.6	58.5±27.3
walker walk	66.7±28.3	57.1±30.5	59.6±30.0
humanoid run	34.3±22.4	32.2±24.8	35.4±27.1

Spearman's rank correlation between ground truth values and the estimated ones.

Environment	Validation loss	Ours w/o d	Ours
cartpole swingup	0.71	0.72	0.73
cheetah run	0.55	0.53	0.60
finger turn hard	0.08	-0.13	-0.03
fish swim	0.35	0.37	0.50
walker stand	0.32	0.14	0.41
walker walk	0.20	0.38	0.24
humanoid run	-0.58	0.49	0.24

Env

chongchongli@bjtu.edu.cn or ytliu@bjtu.edu.cn