Lineare Optimierung und Operations Research

Armin Hoffmann

TU Ilmenau

Sommersemester 2008

03.04.2008

Primale Simplexmethode

- 1. Hauptsatz der LO
- 2. Kanonisches Tableau des LOP
- 3. Primaler Algorithmus
- 4. Geometrie des Simplex-Algorithmus

1. Hauptsatz der LO

Satz: (HS der LO, 1. Form) Wenn

$$\mathsf{MAX}\; \{\boldsymbol{c}^T\boldsymbol{x}|\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b},\boldsymbol{x}\geq \boldsymbol{0}\}$$

lösbar ist, dann gehört ein Extremalpunkt \hat{x} zur Lösungsmenge \widehat{M} .

2.1 Kanonisches Tableau des LOP

Geg.: LOP: MAX $\{c^Tx|Ax = a_0, x \geq 0\}, M \neq \emptyset$

Anfangstableau mit Basiszuordnung (überflüssige Zeilen)

$$egin{array}{c|cccc} 1 & -oldsymbol{x}_I^T & -oldsymbol{x}_J^T & -oldsymbol{x}_J^T & -oldsymbol{c}_J^T & -oldsymbol{c}_J^T & = z \ \hline oldsymbol{b} & oldsymbol{B} & oldsymbol{N} & = 0 \end{array}$$

JT mit Basismatrix $B\Longrightarrow$ kanonisches Tableau des LOP

Streichen
$$egin{array}{c|c} 1 & -m{x}_J^T \ \hline & q_{oo} & -(m{q}^o)^T \ \hline & q_o & m{Q} \ \hline \end{pmatrix} = z$$
 der Nullspalten $\Rightarrow egin{array}{c|c} q_{oo} & m{Q} & m{Q} \ \hline & m{q}_o & m{Q} \ \hline \end{pmatrix}$

2.2 Beispiel zum kanonischen Tableau

Erläuterung des Programmes PSimplex

Eingabe eines Beispiels mit 4 Gleichungen,

8 nichtnegativen Variablen

Bestimmung eines 1. kanonischen Tableaus

!!!: Psimplex entfernt überflüssige Zeilen und Spalten nicht

Tableau-Bezeichnungen (teilweise unterdrückt):

ZF-Zeile:
$$(\boldsymbol{q}_{\boldsymbol{J}}^0)^T := (q_{0j})_{j \in J}^T$$
,

1. Index = Zeilenindex = 0

Abs. Elem. in ZF: $:= q_{00}$

Wert von ZF in BL

Abs. Spalte: $q_{I0} := (q_{i0})_{i \in I}$,

2. Index = Spaltenindex = 0

Matrix:

 $oldsymbol{Q} := (q_{ij})_{i \in I, j \in J}, \quad \text{Zeilen: } (oldsymbol{q}^i)_{i \in I}^T, \, \text{Spalten: } (oldsymbol{q}_i)_{j \in J}$

Piv.elem.:

Kollektive : $Q_{I_0J_0} := (q_{ij})_{i \in I_0, j \in J_0}, \quad x_I := (x_i)_{i \in I}, \quad c_J^T, \dots \text{ etc.}$

Indizes

Zeilenindex r, Spaltenindex s

3.1 Primaler Simplex-Algorithmus am Bsp.

Bsp.: mit ablesbarem zulässigen kanonischen Tableau

NBV

3.2 Regel: $q_{rs} > 0$ u. ZF Tabl.Koeff. ≤ 0

$$1 - x_1 - x_2$$

ZBL:
$$oldsymbol{x}^0$$

$$= z \rightarrow \max$$

$$6 \mid 1$$

$$=x_3$$

$$3 \mid 1$$

$$= x_4$$

$$=x_{!}$$

$$-x_1$$
 $-x_5$

BL:
$$oldsymbol{x}^6$$

$$-x_1$$
 $-x_3$

ZBL:
$$x^4$$

$$1/2$$
 –

$$1/2 =$$

$$-6$$
 -2

$$= z$$

$$=x_3$$

$$\hat{\mathbf{j}}$$

$$=x_2$$

$$| = x$$

$$= x_4$$

$$|-1/2|$$

$$-1/2$$
 -

$$-1/2$$

$$=x_2$$

0

$$=x_5$$

3.3 Regel: $q_{rs} > 0$ und ????

$$1 \quad -x_1 \quad -x_2$$

ZBL: $oldsymbol{x}^0$

$$0 \mid -1 \quad 1$$

 $= z \rightarrow \max$

$$6 \mid \langle 1 \rangle$$

 $=x_3$

$$3 \mid \langle 1 \rangle$$

 $= x_4$

$$1 \mid 1 -2$$

$$=x_5$$

$$1 -x_4$$

 $-x_2$ BL: x^3

Beispiel 4.1

 $x_4 = 0$

 $x_3 = 0$

 $= x_3$

Armin Hoffmann

 $=x_1$

6

 $-x_3$

 $-x_2$ BL: x^8

Lineare Optimierung und OR FS 2008

21. April 2008

 $=x_1$

3.3 Regel: $q_{rs} > 0$ und Engpass-Bedingung

$$1 \quad -x_1 \quad -x_2$$

 $\mathsf{ZBL}: oldsymbol{x}^0$

$$0 \mid -1 \quad 1$$

 $= z \rightarrow \max$

$$6 \mid 1$$

 $=x_3$

$$1 \mid \langle 1 \rangle -2$$

$$1 \quad -x_5 \quad -x_2$$

 $-x_2$ ZBL: x^1

$$1 \mid 1 -1$$

$$= z$$

$$5 \mid -1$$

$$| = x_3|$$

$$2 \mid -1$$

$$2\rangle \mid = x$$

$$=x_1$$

$$1 \quad -x_5 \quad -x_4$$

ZBL:
$$x^2 = \hat{x}$$

$$2 \mid 1/2$$

$$1/2 =$$

$$2 \mid 1/2$$

$$-3/2 =$$

$$1 \mid -1/2$$

$$=x_2$$

$$=x$$

3.4 Optimalitätstest bzw. Unlösbarkeit

Optimalitätskriterium

ZF-Zeile:
$$-\boldsymbol{q}^0 \geq \boldsymbol{0}$$

Absolut-Spalte:
$$q_0 \ge 0$$

$$\hat{\boldsymbol{x}}_I = \boldsymbol{q}_0, \ \hat{\boldsymbol{x}}_J = \boldsymbol{0}, \ \hat{\boldsymbol{x}} \in \widehat{M}$$

Unbeschränktheit der ZF

$$M \neq \emptyset, \quad \sup_{x \in M} c^T x = +\infty$$

Leerer zulässiger Bereich

$$M = \emptyset$$

	1
\oplus	Θ
\oplus	$\cdots \ominus \cdots$
\oplus	\(\to \)

3.5 Kleinste Kosten- u. Antizyklus-Regel

Kleinste Kosten-Regel:

Wähle Pivotspalte s mit minimalem ZF-Zeilen-Koeffizient

$$q_{0s} := \min_{j \in J} q_{0j}$$

Antizyklus-Regel

Zu Beginn alle Variablen durchnummerieren. Bei mehrdeutiger Auswahlmöglichkeit für Zeile r oder Spalte s stets die Variante mit dem kleinsten Index nehmen.

3.6 Simplex-Algorithmus

Algorithmus P: (Primaler Simplexalgorithmus)

Voraussetzung: Starttableau mit $q_0 \ge 0$ (ZBL)

- S1. if $-q^0 \geq 0$ then ZBL $x_I = q_o, x_J = 0$ ist optimal mit Optimalwert $z = q_{oo}$ von ZF, STOPP.
- S2. Bestimme $J_1\subseteq J$ mit $(-q_{0j})<0$ für $j\in J_1$ if $\exists j\in J_1: {m q}_j\le 0$ then $\sup_{{m x}\in M}z({m x})=+\infty$, ZF unbeschränkt, STOPP.
- S3. Spaltenindex $s=\min J_1$ Zeilenindex $r=\min I_1$ mit Engpass-Indexmenge $I_1:=\left\{
 ho\in I\; \left|\; rac{q_{
 ho o}}{q_{
 ho s}}=\min\left\{rac{q_{io}}{q_{is}}\; \middle|\; q_{is}>0, i\in I \right.
 ight\}
 ight\}$ JT mit q_{rs} , goto S1.

3.7 Konvergenzsatz

Satz: Der Algorithmus P ist endlich. Er endet entweder mit einer optimalen ZBL (Ecke) oder zeigt die Unbeschränktheit von ZF an.

Bem.: Spalten-Index-Auswahl

 $S3_{mod}$: Spalte: Kleinste Kosten-Regel

Zeile: Wie in S3.

Vorteil: Verfahren oft viel schneller

Nachteil: Zyklen bei ausgearteten ZBL möglich

damit keine Konvergenz gesichert

Bem.: andere Antizyklen-Regeln: lexikographischer Simplex, ...

3.8 Beispiel mit Zyklus

Auswahlregel: $S3_{mod} \Rightarrow Zyklus$ nach 6 Iterationen,

S3

Lösung nach 6 Iterationen

Beachte!!

Lösung mit 2 Iterationen erreichbar durch

$$x_1 \leftrightarrow x_6, \ x_3 \leftrightarrow x_7$$

$$1 \quad -x_1 \quad -x_2 \quad -x_3 \quad -x_4$$

0	-3/4	20	-1/2	6	=z o extstyle extstyl
0	$\langle 1/4 \rangle$	-8	-1	9	$=x_5$
0	1/2	-12	-1/2	3	$=x_6$
1	0	0	1	0	$=x_7$

Benutzung von PSIMPLEX: $(x_5:=y_1,\ x_6:=y_2,\ x_7:=y_3)$ Lösung: $\boldsymbol{x}^T=(1,0,1,0,3/4,0,0)$, $z_{\max}=5/4$

4. Zur Geometrie des Simplex-Algorithmus

Zulässige Richtungen d in $x \in M$: $\exists \varepsilon > 0 : x + \varepsilon d \in M$

bilden abgeschl. konv. Kegel K_{zul}

Anstiegsrichtungen: $c^T d > 0$

bilden offenen Halbraum $int H_+$

Brauchbare Richtungen d in $x \in M$: $d \in K_{zul} \cap int H_+ =: K_b$

bilden konv. Kegel (i.a. nicht abgeschl.)

Charakterisierung für ZBL (Extremalpunkte):

$$oldsymbol{x}_I = oldsymbol{q}_0 + oldsymbol{Q}(-oldsymbol{x}_J) \; \mathsf{mit} \; oldsymbol{x} \geq oldsymbol{0}$$

Parametrische Darstellung

$${f 0} \le {m x}_I = {m q}_0 + {m Q}(-{m \lambda}) = {m q}_0 + (-{m Q}){m \lambda}$$

$$\mathbf{0} \leq \boldsymbol{x}_J = \boldsymbol{\lambda} = \mathbf{0} + (+\boldsymbol{E})\boldsymbol{\lambda}$$

"Parametervektor" $\lambda \geq 0$ (!! nicht explizit bekannt)

Satz: Vor. $\boldsymbol{x}_I = \boldsymbol{q}_0 > 0, \boldsymbol{x}_j \geq \boldsymbol{0}$. Beh.: \boldsymbol{x} opt. ZBL $\Rightarrow \boldsymbol{q}^0 \geq \boldsymbol{0}$.