Name:		
Class:	_	

SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12

HSC ASSESSMENT TASK 3

JUNE 2008

MATHEMATICS Extension 1

Time Allowed:

70 minutes

Instructions:

- Write your name and class at the top of each page
- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start <u>each</u> question on a <u>new page</u>.
- Standard integrals can be found on the last page.

Question 1	Question 2	Question 3	Question 4	Question 5	Total
/12	/12	/12	/12	/12	/60

QUESTION1 - 12 Marks

a) Find i)
$$\int \frac{x}{9+x^2} dx$$

ii)
$$\int \frac{1}{9+x^2} dx$$

Solve for
$$x$$

$$\log_2 x = \log_2 10 - \log_2(x-3)$$
3

c) Differentiate i)
$$5^x$$

ii)
$$x^2 \sin^{-1} 2x$$
 2

d) Find the exact value of
$$\tan \left(\cos^{-1}\left(\frac{-3}{4}\right)\right)$$

QUESTION 2 (Start a new page) - 12 Marks

a) Solve
$$\cos^2 \theta - \sin^2 \theta = 0.1$$
 for $0 \le \theta \le \pi$ (answer(s) in radians correct to 2 decimal places)

b) Find the general solution for
$$\sin \theta = \frac{1}{\sqrt{2}}$$

c) i) Write
$$x^2 + 6x + 10$$
 in the form $(x + a)^2 + b$

ii) Hence find
$$\int \frac{dx}{x^2 + 6x + 10}$$

d) i) Sketch
$$y = \sin^{-1} x$$

ii) Find the exact area bounded by $y = \sin^{-1} x$, the x axis and the line x = 1 3

QUESTION 3 (Start a new page) - 12 Marks

a) i) Find
$$\frac{d}{dx} \sqrt{1-x^2}$$

ii) Using part i) show that

$$\int_0^1 \frac{1+x}{\sqrt{1-x^2}} \ dx = \frac{\pi}{2} + 1$$

b) i) If
$$f(x) = (x - 1)^2$$
 for $x \le 1$, find $f^{-1}(x)$ and state its domain and range 3

ii) Find any points(s) of intersection of
$$y = f(x)$$
 and $y = f'(x)$

c) i) If
$$\tan^{-1} x = \alpha$$
 and $\tan^{-1} y = \beta$ prove that
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$$
 2

ii) Hence evaluate
$$\tan^{-1} \left(\frac{1}{2}\right) + \tan^{-1} \left(\frac{1}{3}\right)$$
 (in exact form)

QUESTION 4 (Start a new page) - 12 Marks

a) Find
$$\int \frac{dx}{\sqrt{x}(1+x)}$$
 using the substitution $u = \sqrt{x}$ or otherwise 3

b) A cylindrical solid of height 10cm is being turned on a cutting machine so that the radius is being <u>reduced</u> by 0.3cm/min.

Find at what rate the surface area is decreasing, when the radius is 5cm (in exact form) (surface area = $2 \pi r^2 + 2 \pi rh$)

3

- The rate of cooling of an object is proportional to the excess of the object's temperature above the surrounding temperature, $\frac{dT}{dt} = k \ (T T_0)$
 - T is the object's temperature T_0 is the surrounding temperature.

A pot of hot water cools from 90°C to 85°C in 1 minute at a room temperature of 30°C.

- i) Show that $T = T_0 + Ae^{kt}$ satisfies the above equation
- ii) Find the exact values of A and k.
- iii) How long would it take to cool to 60°C? (nearest second)
- iv) What would be the temperature after 4 minutes? (2 dec. places)

QUESTION 5 (Start a new page) 12 Marks

a) A (t, e^{-t}) and B $(-t, e^{-t})$ are points on the curve $y = e^{x}$, where t > 0.

- i) Prove that $e^t e^{-t} = 2$
- ii) Solve this equation to prove $t = ln(\sqrt{2} + 1)$

2

1

2

b) Find $\int \sin^2 3x \, dx$

- 2
- c) P is the point of intersection of the graphs $y \tan x$ and $y = A \sin x$ where A > 1. The x co ordindate of P is α , and α lies between 0 and $\frac{\pi}{2}$
 - i) Sketch $y = \tan x$ and $y = A \sin x$ on the same axes for $0 \le x \le \frac{\pi}{2}$ Label the point P

2

ii) Prove $\cos \alpha = \frac{1}{A}$ at P

1

iii) If 0 is the origin, prove that the area enclosed by the arcs OP, on both graph is (A - 1 - 1nA) unit ²

3

(End of Paper)

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

$$A = 60 T = 85 t = 1$$

 $S = 30 + 60 e^{4t}$
 $S = e^{4t}$
 $(\frac{11}{12}) = 4t$

m= 2 ± 18 = 2 (1 ± 12)

一、 ユニーナな

m= 2+14-4x1x-1

w2 - 1 = 2 w

ii) Let u= e

m2-2m-1=0

$$t = \frac{\ln(12)}{\ln(\sqrt{112})}$$
 $t = \frac{1}{\ln(\sqrt{112})}$
 $t = \frac{1}{\ln(\sqrt{112})}$

= 30 + 60e

T = 72.36°C

tion S

b)
$$\cos 2\theta = \cos^{2}\theta - \sin^{2}\theta$$

 $= (1 - \sin^{2}\theta) - \sin^{2}\theta$
 $= 1 - 2\sin^{2}\theta$
 $2\sin^{2}\theta = 1 - \cos 2\theta$
 $\sin^{2}\theta = \frac{1}{2}(1 - \cos 2\theta)$

et let

'n

Orea = -1 + In A" + A = (A-1-In A) unit

i) A
$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}{1}$

et = 1-62 et >0 ...o solution