The Power Triangle

- Objectives
- Description
- □ Example with a single load (use your calculator)
 - Find P, S, Q
 - Draw the power triangle
- Multiple loads/branches
 - Approach
 - In Class Problem
 - □ (A) Find PT (W), QT (VARS), ST (VA)
 - (B) Draw the power triangle
 - (C) Determine Fp
 - □ (D) Find Is

The Power Triangle – Objectives

- Become familiar with the differences between average, apparent, and reactive power and how to calculate each for any combination of resistive and reactive elements.
- Become aware of how the real, apparent, and reactive power are related in an ac network and how to find the total value of each for any configuration.
- Understand the concept of power-factor correction and how to apply it to improve the terminal characteristics of a load.

Ŋ

The Power Triangle – Description

- The discussion of power in Chapter 14 included only the average or real power delivered to an ac network.
- We now examine the total power equation in a slightly different form and <u>introduce two additional types of</u> <u>power: apparent and reactive</u>.

The Power Triangle – Description

For inductive circuits

For **capacitive** circuits

The Power Triangle

The Power Triangle – Example (verify the numbers)

Is this (C) or (L)? Why?

I leads V therefore, capacitive

The Power Triangle – Example (verify the numbers)

Finding **S**:

Drawing the Power Triangle

The Power Triangle – Approach for multiple loads/branches

1)
$$FINO$$
 P , Q FOR $EACH$ $CIRCUIT$ $BRANCH$

2) $P_T = P_1 + P_2 + III$

3) $Q_T = Q_{CT} - Q_{CT}$ Q_R AOD
 Q_R Q_R

Electrical Engineering Technology

In Class Problem

- (A) Find PT (W), QT (VARS), ST (VA)
- (B) Draw the power triangle
- (C) Determine Fp
- (D) Find Is

Approach:

1)
$$FIND$$
 P , Q FOR $EACH$ $CIRCUIT$ $BRANCH$

2) $P_T = P_1 + P_2 + III$

3) $Q_T = Q_{OT} - Q_{LT}$ OR POD
 Q_R $Q_{LT} - Q_{CT}$ OR POD
 $Q_{LT} - Q_{CT}$ OR
 $Q_{LT} - Q_{CT}$ OR