b.	Detail the model. Ta	performance metrics for evaluating a classifier machine learning ake through with data $FP = 10$, $TP = 50$, $TN = 100$, $FN = 5$.	10	3	2	5
28. a.		imensionality reduction employing the principal component	10	3	3	2
	X_1	Map the following 2D to 1D.				
	X_2	1 5 3 6 7 8				
		(OR)	10			•
b.		support vector machine SVM hard margin and soft margin in obtaining optimal separating hyper plane.	10	3	3	2
29. a.	Evaluate	the clustering method using any three parameters. Consider	10	4	4	5
		neasures for the given groups A, B and C.				
		A B C				
	5	(OR)				
Ъ.	Compute	the distance matrix (a) employ Euclidean distance (b) Manhattan	10	4	4	5
	distance.					
	S1.nc					
	X V	$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
		TI T	10		_	2
30. a.	Write abo	out decision tree. Enumerate the issues in decision tree learning.	10	3	5	3
		(OR)				
b.		$x_0=1$				
		ω_0				
		χ_1 ω_1 Σ $+$ ω_1 Σ				
		χ_2 ω_2				
			5	4	5	5
	(i)	Analyse the output if $\omega_0 = -0.8$				
		$\omega_1 = 0.5$				
		$\omega_2 = 0.5$				
	(ii)	Analyse the output if	5.			
		$\omega_0 = -0.3$				
		$\omega_{\mathrm{l}}=0.5$				
		$\omega_2 = 0.5$				
	(iii)	Write detailed note on perceptron training rule.	5	4	5	5

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

(B) K-nearest neighbours

(D) Support vector machine

B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth Semester

18	CSE392T -	MACHINE	LEARNING - 1	I
----	-----------	---------	--------------	---

	(For the candidates admitted from the academic year 2018-2019 to 20	19-2020)			
Note: (i) (ii)	Part - A should be answered in OMR sheet within first 40 minutes and ON over to hall invigilator at the end of 40 th minute. Part - B should be answered in answer booklet.	IR sheet shoul	ld be	han	ıded
Time: 2	2½ Hours	Max.	Ma	ırks:	75
	$PART - A (25 \times 1 = 25 Marks)$ Answer ALL Questions	Marks	BL	CO	PO
1	Which one of the following is a non-parametric algorithm?	1	1	1	1

2.	Which one of the following is a sign	gmoid function?	
	(A) (A) 1	(B) $f(z) = 1 + e^{-z}$	

(C)
$$f(z) = \frac{1}{1+e^z}$$
 (D) $f(z) = \frac{1}{1-e^z}$

(A) Decision tree

(C) Linear regression

3.	Given $C = 2$ and its class values	are	$y \in \{0,1\}$. Identify the type of $y \in \{0,1\}$
	classification.		
	(A) Binary classification	(B)	Multi-label classification

- (C) Multi-class classification (D) Multi-level classification
- 4. If a data set has 'K' features, then how many data points is required for requirement of 10 data points for any combination of features (B) 2^{K+10} (A) $2^K \times 10$
- (C) $2^{10} \times K$ 5. The main purpose of learning curve is to (A) Visualize the performance of (B) It is a confusion matrix

(D) K features

accuracy with training size (C) Understand the supervised (D) Find suitability of ML model for a particular application learning

6.	Pick	the library which	is not a part of pyth	on.	1	2	2	
	(A)	Numpy	(B)	Linear program				
	(C)	Tensor flow	(D)	Scikit learn				

- 2 2 3 7. Linear regression is to model
- (A) Linear relationship between (B) Polynomial relationship variables
- (C) Exponential relationship (D) Non-linear relationship

1 1 1 1

age 2 of 4			18MF6	18CSE	392T		Page 3 of 4	618CSI	3921	
	(C) $O(N^2 \log N)$	(D) $O(\log N)$					(OR)			
18.	- (- ')	(B) $O(ND)$	1	2	4	5	x 6 8 10 14 18 y 7 9 13 17.5 18			
1/.	(A) City block distance	(B) Minkowski distance (D) Squared distance		•			27. a. Given the data, apply the curve fit to find the functional mapping $\hat{f}(x)(or)\hat{y}$.	3	2	3
17	(C) Reinforcement learning Generalized form of Euclidean and M	(D) Instant based learning	1	1	4	5	ii. What is cross validation? Draw pictorial representation for a dataset 80 5 with cross validation CV = 4.	4	1	1
16.		(B) Unsupervised machine learning		1	4	5	b.i. Analyse the impact of bias and variance for a machine learning model to be over fitted and under fitted.	4	1	1
15.		l version of (B) SVM classifier (D) PCA	1	2	3	2	ii. Apply KNN algorithm for a classification. (OR)		1	
		(B) Class density(D) Posterior probability			70		26. a.i. Analyze the salient features of supervised, unsupervised and reinforcement learning.	4	1	1
14.	The term $P(Ci/X)$ is the		1	2	3	5	$PART - B (5 \times 10 = 50 \text{ Marks})$ Answer ALL Questions	ks BL	CO	PO
	(A) KNN	(B) SVM (D) Unsupervised learning					DADE DA CONCENT	A		T.
13.	information (C) Classifier problem Kernel trick is associated with	(D) Téxt processing	1	2	3	5	25. XOR function cannot be implemented by (A) Single perceptron (B) Multiple perceptron (C) Back propagation (D) Decision tree	2	5	5
12.	Dimensionality reduction is(A) A pre-processing step for removal of unnecessary	(B) Feature choice	1	2	3	5	(A) Perception (B) Decision tree (C) CART (D) Mart	2	J	3
		(D) $\sum_{j=1}^{p} \beta_j^2$					(C) Inter class (D) Different class 24. Basic unit of neural network	2	5	5
	(A) $\sum_{i=1}^{n} \left(y_i - x_i^T \beta \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$ (C) $\sum_{i=1}^{n} \left(y_i - x_i^T \beta \right)^2$	(B) $\left(y_i - x_i^T \beta\right)^2$ (D) $\sum_i p_i \beta_i^2$					23. Entropy value of 0 indicates all members belong to (A) Same class (B) Dis join class	2	5	5
11.	Ridge regression equation is $(\Lambda) \sum_{n=1}^{n} (1 - n^{T} \rho)^{2} + 1 \sum_{n=0}^{p} \rho^{2}$	(B) $(T_0)^2$	1	1	3	5	(C) CART (D) Entropy			
	4	(B) 2 (D) 0					22. Identify which is not a decision tree algorithm. (A) ID3 (B) C4.5	1	5	5
10.	. Compute distance between $d_1 = [0, 1, 1, 1, 0, 0, 0, 0]$ $d_2 = [1, 0, 0, 0, 0]$	0, 0, 0, 0, 0, 1, 0]	1	2	2	3	21. Learning function is represented by a tree in (A) Decision tree (B) Bayesian classifier (C) Clustering (D) Linear regression	1	5	5
9.	- ` ´	(B) Between -1 and 1 (D) Below 0	1	1	2	3	(A) Purity (B) Rand index (C) SS error (D) Both (A) and (B)			
	2 2 res 5 (34) 31	(D) $SS_{res} = y - f(x)$					20. Metrics used for clustering method	2	4	5
	i=1	(B) $SS_{res} = f(x_i) - y_i $					 (A) Agglomerative clustering (B) Divisive clustering (C) Feature based clustering (D) Felt clustering 			
8.	. Formula for residual (sum of square e	error) is	1	1	2	3	19. Identify the bottom-up clustering	1	4	

Page