

The effective Deuring correspondence the key to the next generation of isogeny based cryptography?

Luca De Feo
IBM Research Zürich

May 5, 2021 Seminario UMI Crittografia e Codici

Why isogenies?

Quantum-safe crypto

• Shortest ciphertexts and public keys for Encryption:

SIDH/SIKE CSIDH*

Shortest public key + Signature:

SQISign CSIDH*

Only efficient Non-Interactive Key Exchange:

CL FIGH

Acceptable Threshold Signatures:

CSI-FiSh*

Time-delay crypto (not quantum safe)

• Only efficient alternative to group-based Verifiable Delay Functions

Asiacrypt '19

Only known instantiation of Delay Encryption

Eurocrypt '21

^{*}Secure parameter sizes still debated, big impact on performance.

Brief history of isogeny-based cryptography

- 1997 Couveignes introduces the Hard Homogeneous Spaces framework. His work stays unpublished for 10 years.
- 2006 Rostovtsev & Stolbunov independently rediscover Couveignes ideas, suggest isogeny-based Diffie–Hellman as a quantum-resistant primitive.
- 2006-2010 Other isogeny-based protocols by Teske and Charles, Goren & Lauter.
- 2011-2012 D., Jao & Plût introduce SIDH, an efficient post-quantum key exchange inspired by Couveignes, Rostovtsev, Stolbunov, Charles, Goren, Lauter.
 - 2017 SIDH is submitted to the NIST competition (with the name SIKE, only isogeny-based candidate).
 - 2018 Castryck, Lange, Martindale, Panny & Renes create an efficient variant of the Couveignes–Rostovtsev–Stolbunov protocol, named CSIDH.
 - 2019 Isogeny signature craze: SeaSign (D. & Galbraith; Decru, Panny & Vercauteren), CSI-FiSh (Beullens, Kleinjung & Vercauteren), VDF (D., Masson, Petit & Sanso).
 - 2020 Isogeny signatures get interesting: SQISign (D., Kohel, Leroux, Petit, Wesolowski). SIKE is an Alternate candidate finalist in NIST's 3rd round.

The axioms of a dlog group:

prod:
$$[a][b] = [a + b]$$
,
exp: $n[a] = [na]$.

dlog:
$$[a] \mapsto a$$
.

Diffie-Hellman

Alice Bob

The axioms of a dlog group:

prod:
$$[a][b] = [a + b]$$
,
exp: $n[a] = [na]$.

dlog:
$$[a] \mapsto a$$
.

The axioms of a dlog group:

prod:
$$[a][b] = [a + b]$$
,
exp: $n[a] = [na]$.

dlog:
$$[a] \mapsto a$$
.

$$[a]$$
 —— $2[a]$

The axioms of a dlog group:

prod:
$$[a][b] = [a + b]$$
,
exp: $n[a] = [na]$.

dlog:
$$[a] \mapsto a$$
.

$$[a]$$
 —— $2[a]$

$$[a]$$
 ——— $6[a]$

The axioms of a dlog group:

prod:
$$[a][b] = [a + b]$$
,
exp: $n[a] = [na]$.

dlog:
$$[a] \mapsto a$$
.

$$[a]$$
 —— $2[a]$

$$[a]$$
 ——— $6[a]$

The axioms of a dlog group:

prod:
$$[a][b] = [a + b]$$
,
exp: $n[a] = [na]$.

The hard problem:

dlog:
$$[a] \mapsto a$$
.

$$[a]$$
 —— $2[a]$

$$[a]$$
 ——— $6[a]$

Automorphism group: $(\mathbb{Z}/13\mathbb{Z})^{\times}$.

Group action

 $\mathcal{G} \circlearrowleft \mathcal{E}$: A (finite) set \mathcal{E} acted upon by a group \mathcal{G} freely and transitively:

$$*: \mathcal{G} imes \mathcal{E} \longrightarrow \mathcal{E} \ \mathfrak{g} * E \longmapsto E'$$

Compatibility: $\mathfrak{g}'*(\mathfrak{g}*E)=(\mathfrak{g}'\mathfrak{g})*E$ for all $\mathfrak{g},\mathfrak{g}'\in\mathcal{G}$ and $E\in\mathcal{E};$

Identity: e * E = E if and only if $e \in G$ is the identity element;

Regularity: for all $E, E' \in \mathcal{E}$ there exist a unique $\mathfrak{g} \in \mathcal{G}$ such that $\mathfrak{g} * E' = E$.

Cryptographic Group Actions (Alamati, D., Montgomery, Patranabis 2021)

Hard Homogeneous Space (HHS) — Couveignes 1997 (eprint:2006/291)

 $\mathcal{G} \ \mathcal{E}$ such that \mathcal{G} is commutative and:

- Evaluating $E' = \mathfrak{g} * E$ is easy;
- Inverting the action is hard.

Example

Let G be a group of order 13, then $(\mathbb{Z}/13\mathbb{Z})^{\times} \circlearrowleft G$ defined by

$$a*g:=g^a$$

is an HHS...

Cryptographic Group Actions (Alamati, D., Montgomery, Patranabis 2021)

Hard Homogeneous Space (HHS) — Couveignes 1997 (eprint:2006/291)

 $\mathcal{G} \circlearrowright \mathcal{E}$ such that \mathcal{G} is commutative and:

- Evaluating $E' = \mathfrak{g} * E$ is easy;
- Inverting the action is hard.

Example

Let G be a group of order 13, then $(\mathbb{Z}/13\mathbb{Z})^{\times} \circlearrowleft G$ defined by

$$a*g:=g^a$$

is an HHS...But

$$g^a \cdot g^b = g^{a+b}$$

has no interpretation as a group action!

Key exchange from group actions

Public parameters:

- A HHS $\mathcal{G} \circlearrowright \mathcal{E}$ of order N (large, but not necessarily prime);
- A starting set element $E_0 \in \mathcal{E}$.

Notation:
$$[\mathfrak{a}] := \mathfrak{a} * E_0$$
.

Quantum security

Fact: Shor's algorithm does not apply to Diffie-Hellman protocols from group actions.

Subexponential attack

 $\exp(\sqrt{\log p \log \log p})$

- Reduction to the hidden shift problem by evaluating the class group action in quantum supersposition (subexpoential cost);
- Well known reduction from the hidden shift to the dihedral (non-abelian) hidden subgroup problem;
- Kuperberg's algorithm solves the dHSP with a subexponential number of class group evaluations.
- ullet Recent work suggests that 2^{64} -qbit security is achieved somewhere in $512 < \log p < 2048$.

Modular functions

$$j(z) = \frac{1}{q} + 744 + 196884q + \cdots$$

Abelian extensions

of
$$\mathbb{Q}(\sqrt{-D})$$

Elliptic curves with

$$\operatorname{End}(E)\subset \mathbb{Q}(\sqrt{-D})$$

Modular functions

Let $\omega_1,\omega_2\in\mathbb{C}$ be linearly independent complex numbers. Set

$$\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$$

 \mathbb{C}/Λ is a complex torus.

Addition law induced by addition on \mathbb{C} .

Addition law induced by addition on \mathbb{C} .

Addition law induced by addition on $\ensuremath{\mathbb{C}}$

Addition law induced by addition on \mathbb{C} .

$$\alpha\Lambda_1=\Lambda_2$$

$$\alpha\Lambda_1=\Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$\alpha\Lambda_1=\Lambda_2$$

$$\alpha \Lambda_1 = \Lambda_2$$

$$\alpha\Lambda_1=\Lambda_2$$

$$\alpha\Lambda_1=\Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$\alpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$\alpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

Uniformization theorem

One to one correspondence: Complex tori \leftrightarrow Elliptic curves over $\mathbb C$

- Isomorphic as Riemann surfaces,
- Isomorphic as groups,
- Homotheties of lattices = Isomorphisms of elliptic curves.

The *j*-invariant

$$j(E) = 1728 \frac{4a^3}{4a^3 - 27b^2}$$

classifies curves/tori up to isomorphism/homothety.

Let α be such that $\alpha \Lambda \subset \Lambda$, then

$$\phi_{lpha}: z \mapsto lpha z \mod \Lambda$$

is an endomorphism of \mathbb{C}/Λ .

Let ℓ be an integer, the kernel of ϕ_ℓ is:

$$egin{aligned} (\mathbb{C}/\Lambda)[oldsymbol{\ell}] &= \langle \, a, \, b \,
angle \ &\simeq (\mathbb{Z}/oldsymbol{\ell}\mathbb{Z})^2 \end{aligned}$$

Complex Multiplication (CM)

Endomorphisms form a subring of \mathbb{C} : indeed $\alpha \Lambda \subset \Lambda$ and $\beta \Lambda \subset \Lambda$ imply

- \bullet $(\alpha + \beta)\Lambda \subset \Lambda$,
- \bullet $(\alpha\beta)\Lambda\subset\Lambda.$

Theorem

Let C/Λ be a complex torus, its endomorphism ring is one of:

- The ring of integers \mathbb{Z} ,
- An order in an imaginary quadratic field $\mathbb{Q}(\sqrt{-D})$.

Corollary

For any endomorphism ϕ_{α} there exist integers t, n such that

$$\phi_{\alpha}^2 - t\phi_{\alpha} + n = 0.$$

^aA subring that is a lattice of dimension 2.

Let $\alpha\Lambda \subset \Lambda'$, the map

$$\phi_{lpha} : \mathbb{C}/\Lambda o \mathbb{C}/\Lambda' \ z \mapsto lpha z \mod \Lambda'$$

is a morphism of complex Lie groups.

It is called an isogeny, and it is completely characterized by its kernel $\alpha^{-1}\Lambda'$.

Let $\alpha\Lambda \subset \Lambda'$, the map

$$\phi_lpha \ : \ \mathbb{C}/\Lambda o \mathbb{C}/\Lambda' \ z \mapsto lpha z \mod \Lambda'$$

is a morphism of complex Lie groups.

It is called an isogeny, and it is completely characterized by its kernel $\alpha^{-1}\Lambda'$.

Let $\alpha\Lambda \subset \Lambda'$, the map

$$\phi_lpha \ : \ \mathbb{C}/\Lambda o \mathbb{C}/\Lambda' \ z \mapsto lpha z \mod \Lambda'$$

is a morphism of complex Lie groups.

It is called an isogeny, and it is completely characterized by its kernel $\alpha^{-1}\Lambda'$.

$Isogenies \leftrightarrow ideals$

- Let E be an elliptic curve/complex torus with endomorphism ring $\mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$.
- Let $G \subset E(\mathbb{C})$ be a finite subgroup.

Define the kernel ideal

$$\operatorname{Ann}(G)=\{\alpha\in\mathcal{O}\mid \alpha(G)=0\}.$$

Conversely, given an ideal $\mathfrak{a} \subset \mathcal{O}$, define

$$E[\mathfrak{a}] = \bigcap_{lpha \in \mathfrak{a}} \ker lpha.$$

Finally, let $\mathcal{I}(\mathcal{O})$ be the group of (fractional) ideals of \mathcal{O} and let $\mathcal{P}(\mathcal{O})$ be the subgroup of principal ideals, define the class group

$$\mathrm{Cl}(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

CM dictionary

Quadratic imaginary fields	Elliptic curves
Integers of $\mathbb{Q}(\sqrt{-D})$	Endomorphisms of ${\it E}$
Integral ideals of $\mathbb{Q}(\sqrt{-D})$	Isogenies of $\it E$
Ideal classes in $\mathrm{Cl}(-D)$	Isogenies • • •
Ideal norm	Isogeny degree
Conjugate ideal	Dual isogeny

The fundamental theorem of CM

- Let E be an elliptic curve with CM by a quadratic imaginary order \mathcal{O} .
- Let $\mathfrak{a} \subset \mathcal{O}$ be an integral ideal.
- Denote by $E/E[\mathfrak{a}]$ the image curve of the unique isogeny $\phi_{\mathfrak{a}}$ of kernel $E[\mathfrak{a}]$.

Theorem

The operator $\mathfrak{a}*E:=E/E[\mathfrak{a}]$ defines a transitive action of the group of fractional ideals of \mathcal{O} on the (finite) set $\mathcal{E}(\mathcal{O})$ of elliptic curves with complex multiplication by \mathcal{O} . The action factors through principal ideals. In other words, the class group $\mathrm{Cl}(\mathcal{O})$ acts regularly on $\mathcal{E}(\mathcal{O})$.

Reduction at p

Complex multiplication over $\mathbb{C}\sim \mathsf{Discrete}$ log in $\mathbb{Q}(e^{2i\pi/N})$

Theorem

Let E be an elliptic curve over a number field L, with CM by an order $\mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$. Let p be a prime split in L, denote by E_p the reduction of E at a place above p, and assume that E_p is non-singular.

- ullet If $\left(rac{-D}{p}
 ight)=1$ then E_p is said to be ordinary and $\operatorname{End}(E_p)\simeq \mathcal{O}.$
- ullet If $\left(rac{-D}{p}
 ight)=-1$ then E_p is said to be supersingular and $\mathcal{O}\subsetneq \operatorname{End}(E_p)$.

Complex multiplication over \mathbb{F}_p : Couveignes '06, Rostovtsev–Stolbunov '06, CSIDH '18, ...

A partial converse

Deuring's lifting theorem

Let E_p be an elliptic curve in characteristic p, with an endomorphism ω_p which is not trivial. Then there exists an elliptic curve E defined over a number field L, an endomorphism ω of E, and a non-singular reduction of E at a place $\mathfrak p$ of L lying above p, such that E_p is isomorphic to $E(\mathfrak p)$, and ω_p corresponds to $\omega(\mathfrak p)$ under the isomorphism.

The full endomorphism ring

Theorem (Deuring)

Let E be a supersingular elliptic curve, then

- E is isomorphic to a curve defined over \mathbb{F}_{p^2} ;
- Every isogeny of E is defined over \mathbb{F}_{p^2} ;
- Every endomorphism of E is defined over \mathbb{F}_{p^2} ;
- End(E) is isomorphic to a maximal order in a quaternion algebra ramified at p and ∞ .

In particular:

- If E is defined over \mathbb{F}_p , then $\operatorname{End}_{\mathbb{F}_p}(E)$ is strictly contained in $\operatorname{End}(E)$.
- Some endomorphisms do not commute!

An example

The curve of j-invariant 1728

$$E:y^2=x^3+x$$

is supersingular over \mathbb{F}_p iff $p=-1 \mod 4$.

Endomorphisms

 $\operatorname{End}(E)=\mathbb{Z}\langle\iota,\pi
angle$, with:

- π the Frobenius endomorphism, s.t. $\pi^2 = -p$;
- \bullet ι the map

$$\iota(x,y)=(-x,iy),$$

where $i \in \mathbb{F}_{p^2}$ is a 4-th root of unity. Clearly, $\iota^2 = -1$.

And $\iota \pi = -\pi \iota$.

•
$$j = 1728$$

Quaternion algebra?! WTF?²

The quaternion algebra $B_{p,\infty}$ is:

- A 4-dimensional \mathbb{Q} -vector space with basis (1, i, j, k).
- A non-commutative division algebra $B_{p,\infty}=\mathbb{Q}\langle i,j \rangle$ with the relations:

$$i^2=a$$
, $j^2=-p$, $ij=-ji=k$,

for some a < 0 (depending on p).

- All elements of $B_{p,\infty}$ are quadratic algebraic numbers.
- $B_{p,\infty}\otimes \mathbb{Q}_{\ell}\simeq \mathcal{M}_{2\times 2}(\mathbb{Q}_{\ell})$ for all $\ell\neq p$. I.e., endomorphisms restricted to $E[\ell^e]$ are just 2×2 matrices $\mathrm{mod}\ell^e$.
- $B_{p,\infty} \otimes \mathbb{R}$ is isomorphic to Hamilton's quaternions.
- $B_{p,\infty} \otimes \mathbb{Q}_p$ is a division algebra.

¹All elements have inverses.

²What The Field?

The Deuring correspondence

Let $\mathcal{O}, \mathcal{O}' \subset B_{p,\infty}$ be two maximal orders. They have the same type if there exists α s.t.

$$\mathcal{O}=lpha\mathcal{O}'lpha^{-1}.$$

Theorem (Deuring)

Maximal order types of $B_{p,\infty}$ are in one-to-one correspondence with supersingular curves up to Galois conjugation in $\mathbb{F}_{p^2}/\mathbb{F}_p$.

The Deuring correspondence

Two left ideals $\mathfrak{a},\mathfrak{b}\subset\mathcal{O}$ are in the same class if there exists β s.t. $\mathfrak{a}=\mathfrak{b}\beta$.

An equivalence of categories (Kohel, roughly) $\{\alpha \in B_{p,\infty} \mid \alpha \mathfrak{a} = \mathfrak{a}\}$ connecting ideal (class) $\{\alpha \in B_{p,\infty} \mid \mathfrak{a}\alpha = \mathfrak{a}\}$ left order right order supersingular curve supersingular curve isogeny (class)

Supersingular isogeny graphs

- There is a unique isogeny class of supersingular curves over $\overline{\mathbb{F}}_p$ of size $\approx p/12$.
- The graph of isogenies of degree ℓ is $(\ell + 1)$ -regular.
- It is a Ramanujan graphs, i.e., an optimal expander.
- Related to Hecke operators, modular forms, Brandt matrices...

Figure: 3-isogeny graph on \mathbb{F}_{97^2} .

Effective correspondences (over finite fields)

$$g \longrightarrow g^n$$

schoolbook method

$$E \longrightarrow \mathfrak{a} \in \operatorname{Cl}(\mathcal{O}) \longrightarrow E'$$

Vélu '71, Elkies '92, and many others...

Deuring correspondence:

$$E \longrightarrow \mathfrak{a} \subset B_{p,\infty} \longrightarrow E'$$

- all of the above.
- Kohel, Lauter, Petit, Tignol '14 (KLPT),
- D., Kohel, Leroux, Petit, Wesolowski '20 (part of SQISign).

SQISign: Signatures from the effective Deuring correspondence

Most compact PQ signature scheme: PK + Signature combined **5**×**smaller** than Falcon.

Secret Key (bytes)	Public Key (bytes)	Signature (bytes)	Security
16	64	204	NIST-1

