KEYPOINT SUMMARY II

I. PRELIMINARIES

- 1. Biasness: $\hat{\theta}$ is unbiased if $Bias(\hat{\theta}) = \mathbb{E}(\hat{\theta}) \theta = 0$.
- 2. Efficiency: $\hat{\theta}$ is efficient if $Var(\hat{\theta}) \leq Var(\tilde{\theta})$ for all unbiased estimator $\tilde{\theta}$.
- 3. Consistency: $\hat{\theta}$ is consistent if $\hat{\theta} \stackrel{p}{\to} \theta$.
- 4. Mean square error: $\text{MSE}(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} \theta)^2\right]$
- 5. Mean square convergence: $\hat{\theta} \xrightarrow{m.s.} \theta$ if $MSE(\hat{\theta}) \to 0$ as $n \to \infty$.

· MSE(
$$\hat{\theta}$$
) = Var($\hat{\theta}$) + (Bias($\hat{\theta}$, θ))²
· $\hat{\theta} \xrightarrow{m.s.} \theta$ iff Bias($\hat{\theta}$) \rightarrow 0 and Var($\hat{\theta}$) \rightarrow 0

- 6. Small o (Convergence in probability): $X_n = o_p(n^k)$ if $\forall \epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}\left(\left|\frac{X_n}{n^k}\right| > \epsilon\right) = 0$
- 7. Big O (Stochastic boundedness): $X_n = O_p(n^k)$ if $\forall \epsilon > 0, \ \exists K > 0, N > 0 \text{ s.t. } \forall n > N,$ $\mathbb{P}\left(\left|\frac{X_n}{n^k}\right| > K\right) < \epsilon$

II. SIMPLE LINEAR REGRESSION

Let $y_i = \beta x_i + \epsilon_i$. How to find an estimator for β ?

Derive an estimator by solving

$$\min_{\beta} \sum_{i=1}^{n} (y_i - \beta x_i)^2$$

The first-order condition gives

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} = \beta + \frac{\frac{1}{n} \sum_{i=1}^{n} x_i \epsilon_i}{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$$

By Law of Large Numbers (LLN),

$$\cdot \xrightarrow{1} \sum_{i=1}^{n} x_i \epsilon_i \xrightarrow{p} \mathbb{E}(x_i \epsilon_i)$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i^2 \xrightarrow{p} \mathbb{E}(x_i^2)$$

 $\hat{\beta}$ is consistent if $\mathbb{E}(x_i \epsilon_i) = 0$ and $\mathbb{E}(x_i^2) \neq 0$.

To derive the asymptotic normality, consider

$$\sqrt{n}(\hat{\beta} - \beta) = \sqrt{n} \cdot \frac{\frac{1}{n} \sum_{i=1}^{n} x_i \epsilon_i}{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$$

Assume $\mathbb{E}(x_i^2 \epsilon_i^2)$ is finite, by Central Limit Theorem,

$$\cdot \sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^{n} x_i \epsilon_i \xrightarrow{d} \mathcal{N}(0, \operatorname{Var}(x_i \epsilon_i))$$

Since $\frac{1}{n} \sum_{i=1}^{n} x_i^2 \stackrel{p}{\to} \mathbb{E}(x_i^2)$, by Slutsky's Theorem,

$$\sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\to} \mathcal{N}\left(0, \frac{\operatorname{Var}(x_i \epsilon_i)}{[\mathbb{E}(x_i^2)]^2}\right)$$

III. MULTIPLE LINEAR REGRESSION

A. Notation

Suppose the model is specified by

$$y_i = \beta_0 + x_{i1}\beta_1 + \dots + x_{ik}\beta_k + \epsilon_i$$

Let x_i, β be $k \times 1$ vectors,

$$m{x}_i = egin{bmatrix} 1 \ x_{i1} \ dots \ x_{ik} \end{bmatrix}, \quad m{eta} = egin{bmatrix} eta_0 \ eta_1 \ dots \ eta_k \end{bmatrix}$$

Then the model can be written as $y_i = x_i'\beta + \epsilon_i$.

Let X, Y, ϵ be matrices containing all observations,

$$egin{aligned} oldsymbol{X} &= egin{bmatrix} oldsymbol{x}'_1 \ dots \ oldsymbol{x}'_k \end{bmatrix} = egin{bmatrix} 1 & x_{i1} & \cdots & x_{ik} \ dots & dots & dots & dots \ 1 & x_{n1} & \cdots & x_{nk} \end{bmatrix}, oldsymbol{Y} &= egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix}, oldsymbol{\epsilon} &= egin{bmatrix} \epsilon_1 \ dots \ \epsilon_n \end{bmatrix} \end{aligned}$$

Therefore, $Y = X\beta + \epsilon$.

B. Assumptions

- (A1) Linearity: $y_i = x_i'\beta + \epsilon_i = x_{i1}\beta_1 + \dots + x_{ik}\beta_k + \epsilon_i$
- (A2) Full rank: $\mathbb{E}(\boldsymbol{x}_i \boldsymbol{x}_i')$ is nonsingular.
- (A3) Exogeneity: $\mathbb{E}(\epsilon_i|\boldsymbol{x}_i) = 0$, for $i, j = 1, \dots, n$
- (A4) Homoskedasticity and nonautocorrelation: $\operatorname{Var}(\boldsymbol{\epsilon}|\boldsymbol{X}) = \sigma^2 \boldsymbol{I} \left(\operatorname{Var}(\boldsymbol{\epsilon}_i) = \sigma^2 \text{ and } \operatorname{Cov}(\boldsymbol{\epsilon}_i, \boldsymbol{\epsilon}_i) = 0 \right)$
- (A5) Independent and identical data: $\{(y_i, x_i)\}$ are i.i.d.

If the regressors can be treated as nonstochastic (as they would be in an experiment situation in which the analyst choose the values in \boldsymbol{X}), \boldsymbol{X} can be treated as contant matrix. If \boldsymbol{X} is stochastic (random variables), the anasysis should be done conditioned on the observed \boldsymbol{X} . For notation simplicity, in the following text, \boldsymbol{X} is treated as constant wherever possible.

C. The OLS Estimator

Minimizing the sum of squared residuals:

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i' \boldsymbol{\beta})^2$$

or equivalently,

$$\min_{\boldsymbol{\beta}} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})'$$

The first-order condition gives

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}(\boldsymbol{X}'\boldsymbol{Y}) = \left(\sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i'\right)^{-1} \left(\sum_{i=1}^n \boldsymbol{x}_i y_i\right)$$

D. Properties of OLS Estimator

1. Unbiasedness

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta} + \mathbb{E}[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\epsilon}] = \boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\mathbb{E}(\boldsymbol{\epsilon}) = \boldsymbol{\beta}$$

2. Efficiency

OLS is the most efficient unbiased linear estimator.

Proof. Let $\tilde{\boldsymbol{\beta}} = \boldsymbol{C}'\boldsymbol{y}$ be another unbiased linear estimator. Since $\boldsymbol{\beta}$ is unbiased, $\mathbb{E}(\tilde{\boldsymbol{\beta}}) = \mathbb{E}(\boldsymbol{C}'\boldsymbol{y}) = \mathbb{E}(\boldsymbol{C}'(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon})) = \boldsymbol{C}'\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{\beta}$, which implies $\boldsymbol{C}'\boldsymbol{X} = \boldsymbol{I}$. Therefore, $\tilde{\boldsymbol{\beta}} = \boldsymbol{C}'\boldsymbol{X}\boldsymbol{b} + \boldsymbol{C}'\boldsymbol{\epsilon} = \boldsymbol{\beta} + \boldsymbol{C}'\boldsymbol{\epsilon}$.

$$Var(\tilde{\boldsymbol{\beta}}) = Var(\boldsymbol{C}'\boldsymbol{\epsilon}) = \mathbb{E}(\boldsymbol{C}'\boldsymbol{\epsilon}\boldsymbol{\epsilon}'\boldsymbol{C}) = \sigma^2 \boldsymbol{C}'\boldsymbol{C}$$
$$= \sigma^2 (\boldsymbol{X}'\boldsymbol{X})^{-1} + \sigma^2 \boldsymbol{Z}\boldsymbol{Z}'$$
$$\geq \sigma^2 (\boldsymbol{X}'\boldsymbol{X})^{-1}$$

where
$$Z = C' - (X'X)^{-1}X'$$
.

Gauss-Markov Theorem: the least square estimator $\hat{\beta}$ is the minimal variance (most efficient) linear unbiased estimator.

3. Consistency

$$Var(\hat{\boldsymbol{\beta}}) = \mathbb{E}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})']$$

$$= \mathbb{E}\left[\left(\sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1} \left(\sum_{i} \boldsymbol{x}_{i} \epsilon_{i}\right) \left(\sum_{i} \boldsymbol{x}_{i} \epsilon_{i}\right)' \left(\sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1}\right]$$

$$= \mathbb{E}\left[\left(\sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1} \left(\sum_{i} \sum_{j} \boldsymbol{x}_{i} \epsilon_{i} \epsilon_{j} \boldsymbol{x}_{j}'\right) \left(\sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1}\right]$$

$$= \mathbb{E}\left[\left(\sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1} \left(\sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}' \sigma^{2}\right) \left(\sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1}\right]$$

$$= \sigma^{2} \left(\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1} = \frac{\sigma^{2}}{n} \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1}$$

$$\to \mathbf{0} \text{ as } n \to \infty$$

Therefore, $\hat{\boldsymbol{\beta}} \xrightarrow{m.s.} \boldsymbol{\beta}$ and $\hat{\boldsymbol{\beta}} \xrightarrow{p} \boldsymbol{\beta}$.

4. Asymptotic normality

Multiply by the "stabler" \sqrt{n} ,

$$\sqrt{n}(\hat{oldsymbol{eta}} - oldsymbol{eta}) = \left(rac{1}{n}\sum_{i=1}^n oldsymbol{x}_ioldsymbol{x}_i'
ight)^{-1} \left(\sqrt{n}\cdotrac{1}{n}\sum_{i=1}^n oldsymbol{x}_i\epsilon_i
ight)$$

The following properties hold as $n \to \infty$,

$$\cdot \left(\frac{1}{n}\sum_{i=1}^n x_i x_i'\right)^{-1} \stackrel{p}{\to} [\mathbb{E}(x_i x_i')]^{-1} \text{ by LLN};$$

$$\cdot \sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \epsilon_{i} \xrightarrow{d} \mathcal{N}(\boldsymbol{0}, \operatorname{Var}(\boldsymbol{x}_{i} \epsilon_{i})) \text{ by CLT};$$

· Var
$$(\boldsymbol{x}_i \epsilon_i) = \mathbb{E}(\boldsymbol{x}_i \boldsymbol{x}_i' \epsilon_i^2) = \sigma^2 \mathbb{E}(\boldsymbol{x}_i \boldsymbol{x}_i')$$

Therefore,
$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{d}{\to} \mathcal{N}(\boldsymbol{0}, \sigma^2[\mathbb{E}(\boldsymbol{x}_i \boldsymbol{x}_i')]^{-1}).$$

In practice, $\mathbb{E}(x_i x_i')$ is estimated by $\frac{1}{n} \sum_{i=1}^n x_i x_i'$, and σ^2 is estimated by either

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} e_{i}^{2}$$
, or

$$\cdot s^2 = \frac{e'e}{n-k}.$$

where e_i and e both stand for residuals.

E. Violation of Assumptions

1. Multicollinearity

If X'X is "close" to singular, i.e. $\det(X'X) \approx 0$, then $\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2(X'X)^{-1}$ will be very large, which leads to imprecise estimator.

2. Heteroskedasticity

If $\mathbb{E}(\epsilon_i^2|\mathbf{x}_i) = \sigma_i^2$ different for each *i*. Assume $\mathbb{E}(\epsilon_i\epsilon_j) = 0$ for $i \neq j$. Reevaluate the properties of OLS estimator:

$$\mathbb{E}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta} + \left(\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1} \sum_{i=1}^{n} \boldsymbol{x}_{i} \mathbb{E}(\epsilon_{i}) = \boldsymbol{\beta}$$

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \frac{1}{n} \left(\frac{1}{n} \sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1} \left(\frac{1}{n} \sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}' \sigma_{i}^{2}\right) \left(\frac{1}{n} \sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1}$$

$$\rightarrow \mathbf{0} \text{ as } n \rightarrow \infty$$

 $\hat{\boldsymbol{\beta}}$ is still unbiased and consistent.

Asymptotic normality:

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'\right)^{-1} \left(\sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \epsilon_{i}\right)$$

$$\cdot \left(\frac{1}{n}\sum_{i=1}^{n} \boldsymbol{x}_{i}\boldsymbol{x}_{i}'\right)^{-1} \stackrel{p}{\to} [\mathbb{E}(\boldsymbol{x}_{i}\boldsymbol{x}_{i}')]^{-1} \text{ by LLN};$$

· Though ϵ_i is heteroskedastic, we still have \sqrt{n} · $\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i \epsilon_i \stackrel{d}{\to} \mathcal{N}(0, \frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}(\boldsymbol{x}_i \epsilon_i))$ under some conditions.

If we define:

$$\cdot \ oldsymbol{Q} = \mathbb{E}(oldsymbol{x}_i oldsymbol{x}_i')$$

$$\mathbf{R} = \frac{1}{n} \sum_{i} \operatorname{Var}(\mathbf{x}_i \epsilon_i) = \frac{1}{n} \sum_{i} \mathbb{E}(\mathbf{x}_i \mathbf{x}_i') \sigma_i^2$$

Then,
$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{d}{\rightarrow} \mathcal{N}(\boldsymbol{0}, \boldsymbol{Q}^{-1}\boldsymbol{R}\boldsymbol{Q}^{-1}).$$

Therefore, in heteroskedastic case, $\hat{\beta}$ still conforms to asymptotic normality. But the variance is no longer $\sigma^2(X'X)^{-1}$. So traditional statistical inference based on $s^2(X'X)^{-1}$ will be misleading.

Robust standard error:

$$\tilde{\boldsymbol{R}}_{\boldsymbol{n}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}' e_{i}^{2}$$

where e_i is the residual. It can be shown, under some conditions, $\tilde{\mathbf{R}}_n \stackrel{p}{\to} \mathbf{R}$.

3. Problem of dependency

If $\{x_i\}$ are not independent, $\hat{\beta}$ is still unbiased, but it might not be consistent, because LLN and CLT no longer hold.

4. Endogeneity

Endogeneity problem rises when $\mathbb{E}(\boldsymbol{x}_i \epsilon_i) \neq \mathbf{0}$. Two sources of endogeneity: (a) measurement error; (b) ommitted variable.

a. Measurement error

$$y_i = x_i^* \beta + \epsilon_i$$

Suppose x_i^* stands for the measurement error free value of x_i . Let $x_i^u = x_i^* + v_i$ where v_i is the measurement error. For simplicity, assume $\mathbb{E}(x_i^*) = \mathbb{E}(v_i) = 0$, $\operatorname{Var}(v_i) = \sigma_v^2$. And assume the best scenario when there is a measurement error: $x_i^* \perp \epsilon_i, x_i^* \perp v_i, v_i \perp \epsilon_i$.

$$y_i = (x_i^u - v_i)\beta + \epsilon_i^u = x_i^u\beta + \epsilon_i - \beta v_i = x_i^u\beta + \epsilon_i^u$$

where $\epsilon_i^u = \epsilon_i - \beta v_i$.

$$\mathbb{E}(x_i^u \epsilon_i^u) = \mathbb{E}((x_i^* + v_i)(\epsilon_i - \beta v_i)) = \mathbb{E}(-\beta v_i^2) = -\beta \sigma_v^2 \neq 0$$

So we have endogeneity problem. If we regress y_i on x_i^u ,

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i^u y_i}{\sum_{i=1}^{n} (x_i^u)^2} = \beta + \frac{\sum_{i=1}^{n} x_i^u \epsilon_i^u}{\sum_{i=1}^{n} (x_i^u)^2}$$

$$\xrightarrow{p} \beta + \frac{\mathbb{E}(x_i^u \epsilon_i^u)}{\operatorname{Var}(x_i^u)} = \beta \left(1 - \frac{\sigma_v^2}{\operatorname{Var}(x_i^*) + \sigma_v^2}\right)$$

Several observations:

- 1. If $\sigma_v^2 = 0$, $\hat{\beta}$ is consistent.
- 2. The larger the measurement error σ_v^2 , the larger the bias.
- 3. $\hat{\beta}$ always has the same sign as β .
- 4. Attenuation bias: $|\hat{\beta}| \leq |\beta|$. Therefore, if the result is significant in measurement error cases, it is also significant in measurement-error free case.

b. Omitted variable

$$y_i = x_i \beta + z_i \gamma + \epsilon_i$$

Suppose $\mathbb{E}(x_i \epsilon_i) = 0$, $\operatorname{Cov}(x_i, z_i) \neq 0$. If the variable z_i is omitted in the model,

$$y_i = x_i \beta + \delta_i$$

where $\delta_i = z_i \gamma + \epsilon_i$. Then δ_i is corrected with x_i . To resolve the omitted variable bias, we need to use instrumental variable (IV) estimation.

IV. IV ESTIMATION

A. The IV Estimator

Suppose the structural model is

$$y_i = \boldsymbol{x}_i' \boldsymbol{\beta} + \epsilon_i$$

where e_i is correlated with x_i .

Suppose z_i are instruments satisfying:

- $\cdot z_i$ has the same dimension as x_i ;
- $\cdot \mathbb{E}(\boldsymbol{z}_{i}\boldsymbol{x}_{i}^{\prime})$ has full rank;
- $\cdot \mathbb{E}(\boldsymbol{z}_i \boldsymbol{\epsilon}_i) = 0.$

Then we have

$$\mathbb{E}(\boldsymbol{z}_i \epsilon_i) = \mathbb{E}(\boldsymbol{z}_i(y_i - \boldsymbol{x}_i' \boldsymbol{\beta})) = \mathbb{E}(\boldsymbol{z}_i y_i) - \mathbb{E}(\boldsymbol{z}_i \boldsymbol{x}_i') \boldsymbol{\beta} = 0$$

Therefore, $\boldsymbol{\beta} = (\mathbb{E}(\boldsymbol{z}_i \boldsymbol{x}_i'))^{-1} \mathbb{E}(\boldsymbol{z}_i y_i).$

Define the IV estimator:

$$\hat{oldsymbol{eta}}_{IV} = \left(rac{1}{n}\sum_{i=1}^n oldsymbol{z}_i oldsymbol{x}_i'
ight)^{-1} \left(rac{1}{n}\sum_{i=1}^n oldsymbol{z}_i y_i
ight)$$

1. Consistency

$$\hat{\boldsymbol{\beta}}_{IV} = \boldsymbol{\beta} + \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{z}_{i} \boldsymbol{x}_{i}'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{z}_{i} \epsilon_{i}\right)$$

By Law of Large Numbers,

$$\cdot \left(\frac{1}{n}\sum_{i=1}^{n} \boldsymbol{z}_{i} \boldsymbol{x}_{i}'\right)^{-1} \stackrel{p}{\rightarrow} \left[\mathbb{E}(\boldsymbol{z}_{i} \boldsymbol{x}_{i}')\right]^{-1};$$

$$\cdot \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \epsilon_{i} \xrightarrow{p} \mathbb{E}(\mathbf{z}_{i} \epsilon_{i}) = 0.$$

Therefore, $\hat{\boldsymbol{\beta}}_{IV} \stackrel{p}{\to} \boldsymbol{\beta}$.

Note: IV estimator is generally biased, but consistent.

2. Asymptotic normality

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_{IV} - \boldsymbol{\beta}) = \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{z}_{i} \boldsymbol{x}_{i}'\right)^{-1} \left(\sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{z}_{i} \epsilon_{i}\right)$$

$$\cdot \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{z}_{i} \boldsymbol{x}_{i}'\right)^{-1} \stackrel{p}{\to} \left[\mathbb{E}(\boldsymbol{z}_{i} \boldsymbol{x}_{i}')\right]^{-1} \text{ by LLN;}$$

$$\cdot \sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{z}_{i} \epsilon_{i} \stackrel{d}{\to} \mathcal{N}(\boldsymbol{0}, \mathbb{E}(\boldsymbol{z}_{i} \boldsymbol{z}_{i}' \epsilon_{i}^{2})) \text{ by CLT.}$$

Therefore, by Slutsky's Theorem,

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_{IV} - \boldsymbol{\beta}) \stackrel{d}{\to} \mathcal{N}(\mathbf{0}, [\mathbb{E}(\boldsymbol{x}_i \boldsymbol{z}_i')]^{-1} \mathbb{E}(\boldsymbol{z}_i \boldsymbol{z}_i' \epsilon_i^2) [\mathbb{E}(\boldsymbol{z}_i \boldsymbol{x}_i')]^{-1})$$

B. 2SLS Estimator

Suppose in a more general case,

$$oldsymbol{Y} = oldsymbol{X}_{n imes k} oldsymbol{eta} + oldsymbol{\epsilon}$$

where
$$\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_k]$$
, and $\mathbb{E}(\boldsymbol{\epsilon}|\mathbf{X}) \neq 0$.

Suppose $Z_{n\times l}$ are instruments, where $l\geq k$, i.e. there could be more instruments than independent variables.

The following two procedures are equivalent:

- a. IV estimation
 - 1) Regress X on Z, get fitted $\hat{X} = Q$;
 - 2) Regress Y on X using Q as the instrument.
- b. 2SLS estimation
 - 1) Regress X on Z, get fitted $\hat{X} = Q$;
 - 2) Regress \boldsymbol{Y} on $\hat{\boldsymbol{X}}$.

Proof. Regressing X on Z:

$$egin{aligned} \hat{oldsymbol{\gamma}}_1 &= (oldsymbol{Z}'oldsymbol{Z})^{-1}oldsymbol{Z}'oldsymbol{X}_1, & oldsymbol{Q}_1 &= oldsymbol{Z}\hat{oldsymbol{\gamma}}_1 \ &oldsymbol{\gamma}_2 &= (oldsymbol{Z}'oldsymbol{Z})^{-1}oldsymbol{Z}'oldsymbol{X}_2, & oldsymbol{Q}_2 &= oldsymbol{Z}\hat{oldsymbol{\gamma}}_2 \ & dots \ & oldsymbol{\hat{\gamma}}_k &= (oldsymbol{Z}'oldsymbol{Z})^{-1}oldsymbol{Z}'oldsymbol{X}_k, & oldsymbol{Q}_k &= oldsymbol{Z}\hat{oldsymbol{\gamma}}_k \end{aligned}$$

Then,

$$egin{aligned} \hat{m{X}} &= m{Q} = ig[m{Q}_1 \;\; m{Q}_2 \;\; \cdots \;\; m{Q}_k ig] \ &= ig[m{Z} (m{Z}'m{Z})^{-1} m{Z}'m{X}_1 \;\; \cdots \;\; m{Z} (m{Z}'m{Z})^{-1} m{Z}'m{X}_k ig] \ &= m{Z} (m{Z}'m{Z})^{-1} m{Z}'m{X} \end{aligned}$$

If we regress Y on X using Q as IV, then

$$egin{aligned} \hat{oldsymbol{eta}}_{IV} &= (oldsymbol{Q}'oldsymbol{X})^{-1}(oldsymbol{Q}'oldsymbol{Y}) \ &= (oldsymbol{X}'oldsymbol{Z}(oldsymbol{Z}'oldsymbol{Z})^{-1}oldsymbol{Z}'oldsymbol{X})^{-1}(oldsymbol{X}'oldsymbol{Z}(oldsymbol{Z}'oldsymbol{Z})^{-1}oldsymbol{Z}'oldsymbol{Y}) \end{aligned}$$

If we regress Y directly on \hat{X} ,

$$\begin{split} \hat{\boldsymbol{\beta}}_{2SLS} &= (\hat{\boldsymbol{X}}'\hat{\boldsymbol{X}})^{-1}(\hat{\boldsymbol{X}}'\boldsymbol{Y}) \\ &= (\boldsymbol{X}'\boldsymbol{Z}(\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'\cdot\boldsymbol{Z}(\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{X})^{-1} \\ &\quad (\boldsymbol{X}'\boldsymbol{Z}(\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{Y}) \\ &= (\boldsymbol{X}'\boldsymbol{Z}(\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{X})^{-1}(\boldsymbol{X}'\boldsymbol{Z}(\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{Y}) \end{split}$$

Therefore, $\hat{\boldsymbol{\beta}}_{IV} = \hat{\boldsymbol{\beta}}_{2SLS}$.

V. MAXIMUM LIKELIHOOD EXTIMATION

A. The Likelihood Function

Let $\{z_i\}$ be i.i.d. $f(z_i|\boldsymbol{\theta})$ is the pdf for z_i conditioned on a set of parameters $\boldsymbol{\theta}$.

The likelihood function is the joint density function:

$$L(\boldsymbol{\theta}|\boldsymbol{Z}) = f(z_1, \dots, z_n|\boldsymbol{\theta}) = \prod_{i=1}^n f(z_i|\boldsymbol{\theta})$$

It is usually simpler to work with the log of the likelihood function:

$$\ln L(\boldsymbol{\theta}|\boldsymbol{Z}) = \sum_{i=1}^{n} \ln f(z_i|\boldsymbol{\theta})$$

The maximum likelihood estimator (MLE) is

$$\hat{\boldsymbol{\theta}}_{ML} = \operatorname*{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \sum_{i=1}^{n} \ln f(z_i | \boldsymbol{\theta})$$

B. The Likelihood Inequality

Suppose $z_i \sim f(z|\theta_0)$ where θ_0 is the true parameter. Then for any θ , the following inequality holds

$$\mathbb{E}[\ln f(z|\boldsymbol{\theta}_0)] \geq \mathbb{E}[\ln f(z|\boldsymbol{\theta})]$$

Proof.

$$\mathbb{E}[\ln f(z|\boldsymbol{\theta})] - \mathbb{E}[\ln f(z|\boldsymbol{\theta}_0)] = \mathbb{E}[\ln f(z|\boldsymbol{\theta}) - \ln f(z|\boldsymbol{\theta}_0)] =$$

$$\mathbb{E}\left[\ln \frac{f(z|\boldsymbol{\theta})}{f(z|\boldsymbol{\theta}_0)}\right] \le \ln \mathbb{E}\left[\frac{f(z|\boldsymbol{\theta})}{f(z|\boldsymbol{\theta}_0)}\right] = \ln \int \frac{f(z|\boldsymbol{\theta})}{f(z|\boldsymbol{\theta}_0)} f(z|\boldsymbol{\theta}_0) dz = 0$$

C. Assumptions

- (A1) $\{z_i\}$ are i.i.d.
- (A2) θ_0 is the true parameter, Θ is a compact set;
- (A3) $\operatorname{Var}(\nabla_{\boldsymbol{\theta}} \ln f(z_i|\boldsymbol{\theta}_0))$ is nonsingular;
- (A4) First, second and third own and cross derivatives of $\ln f(z_i|\boldsymbol{\theta})$ with respect to $\boldsymbol{\theta}$ are all bounded;
- (A5) Let $\Omega_{\mathbf{Z}}$ be the support of \mathbf{Z} , then either
 - (a) $\Omega_{\mathbf{Z}}$ does not depend on $\boldsymbol{\theta}$, or
 - (b) $f(\mathbf{Z}|\boldsymbol{\theta}) = 0$ on the boundary of $\Omega_{\mathbf{Z}}$.

D. Score Function

Define the score function:

$$s(z_i|\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \ln f(z_i|\boldsymbol{\theta})$$

Properties of the score function:

- 1. $\{s(z_i|\boldsymbol{\theta})\}$ are i.i.d. because $\{z_i\}$ are i.i.d.
- 2. If (A5) holds, then $\mathbb{E}[s(z_i|\boldsymbol{\theta}_0)] = 0$.

Proof. By definition,

$$\int_{\Omega z} f(z_i|\boldsymbol{\theta}) dz = 1$$

Therefore, $\frac{\partial}{\partial \boldsymbol{\theta}} \int_{\Omega_{\boldsymbol{Z}}} f(z_i | \boldsymbol{\theta}) dz = 0$. By Leibniz rule,

$$\int_{A(\boldsymbol{\theta})}^{B(\boldsymbol{\theta})} \frac{\partial}{\partial \boldsymbol{\theta}} f(z_i | \boldsymbol{\theta}) dz + B'(\boldsymbol{\theta}) f(B(\boldsymbol{\theta}) | \boldsymbol{\theta}) - A'(\boldsymbol{\theta}) f(A(\boldsymbol{\theta}) | \boldsymbol{\theta}) = 0$$

Under (A5), either

1.
$$A'(\theta) = B'(\theta) = 0$$
, or

2.
$$f(A(\boldsymbol{\theta})|\boldsymbol{\theta}) = f(B(\boldsymbol{\theta})|\boldsymbol{\theta}) = 0$$

In either case, we conclue

$$\int_{A(\boldsymbol{\theta})}^{B(\boldsymbol{\theta})} \frac{\partial}{\partial \boldsymbol{\theta}} f(z_i | \boldsymbol{\theta}) dz = 0$$

Therefore.

$$\mathbb{E}[s(z_i|\boldsymbol{\theta}_0)] = \int_{\Omega_{\boldsymbol{Z}}} s(z_i|\boldsymbol{\theta}_0) f(z_i|\boldsymbol{\theta}_0) dz$$

$$= \int_{\Omega_{\boldsymbol{Z}}} \frac{\ln f(z_i|\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} f(z_i|\boldsymbol{\theta}_0) dz$$

$$= \int_{\Omega_{\boldsymbol{Z}}} \frac{1}{f(z_i|\boldsymbol{\theta}_0)} \frac{f(z_i|\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} f(z_i|\boldsymbol{\theta}_0) dz$$

$$= \int_{\Omega_{\boldsymbol{Z}}} \frac{\partial}{\partial \boldsymbol{\theta}} f(z_i|\boldsymbol{\theta}_0) dz = 0$$

E. Properties of MLE

1. Consistency

Under some regularity conditions, we have $\hat{\theta} \to \theta_0$.

2. Asymptotic normality

$$\hat{\boldsymbol{\theta}}_{ML} = \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} \ln f(z_i | \boldsymbol{\theta})$$

The first-order condition is

$$\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ln f(z_i|\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}} = 0 \Leftrightarrow \frac{1}{n} \sum_{i=1}^{n} s(z_i|\hat{\boldsymbol{\theta}}) = 0$$

Let
$$\mathbf{H}(z_i|\boldsymbol{\theta}) = \frac{\partial s(z_i|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial^2 s(z_i|\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}$$

Taylor expand the FOC around θ_0 :

$$\frac{1}{n}\sum_{i=1}^{n}s(z_{i}|\boldsymbol{\theta}_{0})+\frac{1}{n}\sum_{i=1}^{n}\mathbf{H}(z_{i}|\boldsymbol{\theta}_{0})(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0})=0$$

Therefore,

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = \left(-\frac{1}{n} \sum_{i=1}^n \mathbf{H}(z_i | \boldsymbol{\theta}_0) \right)^{-1} \left(\sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^n s(z_i | \boldsymbol{\theta}_0) \right)$$

· By Law of Large Numbers,

$$\left(-\frac{1}{n}\sum_{i=1}^{n}\mathbf{H}(z_{i}|\boldsymbol{\theta}_{0})\right)^{-1} \stackrel{p}{\to} \mathbb{E}[-\mathbf{H}(z_{i}|\boldsymbol{\theta}_{0})]^{-1}$$
$$\to \mathbb{E}[s(z_{i}|\boldsymbol{\theta}_{0})s(z_{i}|\boldsymbol{\theta}_{0})']^{-1}$$

· By Central Limit Theorem,

$$\sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^{n} s(z_i | \boldsymbol{\theta}_0) \stackrel{d}{\to} \mathcal{N}(\mathbf{0}, \operatorname{Var}(s(z_i | \boldsymbol{\theta}_0)))$$
$$\to \mathcal{N}(\mathbf{0}, \mathbb{E}[s(z_i | \boldsymbol{\theta}_0) s(z_i | \boldsymbol{\theta}_0)'])$$

By Slutsky's Theorem,

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \stackrel{d}{\rightarrow} \mathcal{N}(\mathbf{0}, \mathbb{E}[s(z_i|\boldsymbol{\theta}_0)s(z_i|\boldsymbol{\theta}_0)']^{-1})$$

3. Asymptotic efficiency

 $\hat{\boldsymbol{\theta}}$ is asymptotic efficient, meaning $\hat{\boldsymbol{\theta}}$ has an asymptotic covariance matrix that is not larger than the asymptotic covariance of any other consistent, asymptotically normally distributed estimator.

4. Invariance

If $\hat{\boldsymbol{\theta}}$ is the MLE of $\boldsymbol{\theta}$, $g(\hat{\boldsymbol{\theta}})$ is the MLE for $g(\boldsymbol{\theta})$ for g a continuously differentiable function.

F. Delta Method

If there is a sequence of random variables $\{x_n\}$ satisfying

$$\sqrt{n}(x_n - \theta) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$$

Then for any g satisfying the perperty that $g'(\theta)$ exists and non-zero valued, we have

$$\sqrt{n}(g(x_n) - g(\theta)) \xrightarrow{d} \mathcal{N}(0, \sigma^2[g'(\theta)]^2)$$

G. Quasi-MLE

Consider the maximum likelihood estimation of the linear model

$$y_i = \boldsymbol{x}_i' \boldsymbol{\beta} + \epsilon_i$$

Assume $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ (ϵ_i may not be normal, but we assume it anyway). Then the log likelihood function is

$$L(\boldsymbol{\beta}, \sigma^2) = \ln f(y_1, \boldsymbol{x}_1, \dots, y_n, \boldsymbol{x}_n | \boldsymbol{\beta}, \sigma^2)$$
$$= \ln f(y_1, \dots, y_n | \boldsymbol{x}_1, \dots, \boldsymbol{x}_n, \boldsymbol{\beta}, \sigma^2)$$
$$+ \ln f(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n | \boldsymbol{\beta}, \sigma^2)$$

We assume β, σ^2 do not depend on x_1, \ldots, x_n , therefore $f(x_1, \ldots, x_n | \beta, \sigma^2) = f(x_1, \ldots, x_n)$. We can drop it from the likelihood function without altering the result.

$$(\boldsymbol{\beta}, \sigma^2) = \underset{\boldsymbol{\beta}, \sigma^2}{\operatorname{argmax}} \ln f(y_1, \dots, y_n | \boldsymbol{x}_1, \dots, \boldsymbol{x}_n, \boldsymbol{\beta}, \sigma^2)$$
$$= \underset{\boldsymbol{\beta}, \sigma^2}{\operatorname{argmax}} \sum_{i=1}^n \ln f(y_i | \boldsymbol{x}_i, \boldsymbol{\beta}, \sigma^2)$$

Since $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, $y_i | \mathbf{x}_i, \boldsymbol{\beta}, \sigma^2 \sim \mathcal{N}(\mathbf{x}_i' \boldsymbol{\beta}, \sigma^2)$.

$$f(y_i|\boldsymbol{x}_i,\boldsymbol{\beta},\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i-\boldsymbol{x}_i'\boldsymbol{\beta})^2}{2\sigma^2}\right)$$

Therefore, the likelihood function can be instantiated as

$$L(\beta, \sigma^{2}) = \sum_{i=1}^{n} \left[-\frac{1}{2} \ln(2\pi) - \frac{1}{2} \ln(\sigma^{2}) - \frac{(y_{i} - x_{i}'\beta)^{2}}{2\sigma^{2}} \right]$$

The first-order condition gives

$$\hat{oldsymbol{eta}} = \left(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i'
ight)^{-1} \left(\sum_{i=1}^n oldsymbol{x}_i y_i
ight) \ \hat{\sigma^2} = rac{1}{n}\sum_{i=1}^n (y_i - oldsymbol{x}_i' \hat{oldsymbol{eta}})^2$$

which is exactly the same as the OLS estimator.