Computational Methods for Astrophysical Applications

lleyk El Mellah & Jon Sundqvist

Centre for mathematical Plasma Astrophysics Instituut voor Sterrenkunde KU Leuven

Lesson 2:

Finite Difference Approximation for linear hyperbolic PDE

- Spatial discretization
 Mesh and data collocation
 Discrete equations
- Time advance
 Von Neumann stability analysis
 Explicit linear schemes

- Preliminary concepts
 - Mesh and data collocation
 - Consistency
 - Stability
- Spatial discretization
 - Discretized function
 - Discretized first order derivatives
 - Discretized second order derivatives
- Temporal discretization
 - Explicit methods
 - Implicit methods
- Time advance
 - Von Neumann stability analysis
 - Explicit linear schemes

Mesh

Numerical schemes require spatial and temporal discretization

Data collocation

- Finite difference (FD): values are located at points, not necessarily regularly distributed. There is no cell.
 - \Rightarrow Intuitive & computationally fast but not conservative and no straightforward refinement strategy
- <u>Finite volume (FV)</u>: values are associated to the whole cell: the value of the function is constant over the cell. Conservative by Gauss' law (a.k.a Green-Ostrogradsky).
 - ⇒ Reconstruction at interfaces required => slower

Consistency of a method

A FD approximation of a PDE is consistent if and only if

$$\mathsf{FD} \xrightarrow{\Delta t, \Delta x \to 0} \mathsf{PDE}$$

- ⇒ Balsara 2.4
- Empirical order of convergence (EOC) : u analytic solution and \tilde{u}_i numerical solution on 1D uniform grid x_i with $i \in [1, N_{\nu} = 2^{\nu}]$. Compute the maximal error $\epsilon_{\nu} = ||u \tilde{u}||_{\infty}$ and deduce EOC :

$$\mathsf{EOC}_{\nu} = \frac{\log\left(\epsilon_{\nu}/\epsilon_{\nu-1}\right)}{\log\left(N_{\nu-1}/N_{\nu}\right)}$$

- \Rightarrow quantify the overall quality of a method, on analytic test-cases
 - ⇒ see Project# 1 of Köln school
 - ⇒ see Balsara chapter 2, slides# 27-32

Von Neumann stability analysis

- round-off errors should not grow during time progression
 - \Rightarrow numerical solution = exact + round-off error $\epsilon(x, t)$
 - \Rightarrow represent $\epsilon(x, t)$ in Fourier series, analyse Fourier term

$$\epsilon_i^n(k) = \hat{\epsilon}_k e^{\lambda t^n} e^{ikx_i}$$

• numerically stable scheme \forall spatial wavenumbers k if

$$\left| \frac{\epsilon_i^{n+1}(k)}{\epsilon_i^n(k)} \right| = \left| e^{\lambda \Delta t} \right| \le 1$$

- Preliminary concepts
 - Mesh and data collocation
 - Consistency
 - Stability
- Spatial discretization
 - Discretized function
 - Discretized first order derivatives
 - Discretized second order derivatives
- Temporal discretization
 - Explicit methods
 - Implicit methods
- 4 Time advance
 - Von Neumann stability analysis
 - Explicit linear schemes

Discretized function

- Balsara 2.3
- We now want to obtain a FD discretized form of the equations to solve

⇒ variables evaluated at the points

Discretized spatial derivatives

- Assume N + 1 points regularly spaced by Δx and u_i the associated values
- Key-question: how to get a FD approximation of the spatial derivatives u'_i, u''_i...?
 - ⇒ Use Taylor series expansions

Backward, forward & central FD

• For instance, to 1st order accuracy in Δx , we have the 1st order forward difference:

$$u_i' \sim \frac{u_{i+1} - u_i}{\Delta x}$$

 \Rightarrow but we also have the 1st order backward difference:

$$u_i' \sim \frac{u_i - u_{i-1}}{\Delta x}$$

 \Rightarrow or the 2nd order central difference:

$$u_i' \sim \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

Which one to choose? Properties (e.g. stencil, accuracy)?

Truncation error and order of accuracy

• Taylor expansions linking u_i to the continuous function u:

$$u_{i+1} = u(0) + u'(0) \Delta x + u''(0) \frac{(\Delta x)^2}{2!} + u^{(3)}(0) \frac{(\Delta x)^3}{3!} + \dots$$
(1)
$$u_i = u(0)$$

$$u_{i-1} = u(0) - u'(0) \Delta x + u''(0) \frac{(\Delta x)^2}{2!} - u^{(3)}(0) \frac{(\Delta x)^3}{3!} + \dots$$
 (3)

$$\Rightarrow$$
 (1)-(3): $u'(0) = \frac{u_{i+1} - u_{i-1}}{2\Delta x} + \underbrace{O\left((\Delta x)^2\right)}_{\text{truncation error}}$

• Order of accuracy (o.a.) = order of first truncated term $\Rightarrow (\Delta x - > \Delta x/2) = > \text{accuracy improved by } 2^{\text{o.a.}}$

Stencil: points required, increases with o.a.

2nd order derivative

Same principle

(1)+(3)-2×(2):
$$u''(0) = \frac{u_{i+1}-2u_i+u_{i-1}}{(\Delta x)^2} + O\left((\Delta x)^2\right)$$

 $\Rightarrow Oa?$ Stencil?

- Exo
 - \Rightarrow 3rd, 4th & 5th order central difference representations of u_i ?
 - ⇒ 2nd order forward/backward differences?

- Preliminary concepts
 - Mesh and data collocation
 - Consistency
 - Stability
- Spatial discretization
 - Discretized function
 - Discretized first order derivatives
 - Discretized second order derivatives
- Temporal discretization
 - Explicit methods
 - Implicit methods
- Time advance
 - Von Neumann stability analysis
 - Explicit linear schemes

Principle

Consider the 1D linear advection equation with constant speed

$$\partial_t \rho + \mathbf{v} \partial_{\mathbf{x}} \rho = \mathbf{0}$$

• Explicit time integration: values at t^{n+1} computed from available information on time level $t^n = t^{n+1} - \Delta t$

Principle

Example: explicit forward 2nd order central difference

$$\frac{u^{n+1} - u^n}{\Delta t} = -v \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x}$$

 \Rightarrow rearrange to

$$u_i^{n+1} = u_i^n - v \frac{\Delta t}{\Delta x} \frac{u_{i+1}^{n} - u_{i-1}^{n}}{2}$$
 (4)

- ⇒ 1st order accurate in time, 2nd order in space
- ⇒ Is this FD approximation consistent?
- <u>Sandbox</u>: Write your 1st solver using the explicit forward 2nd order central difference above. Apply it to the Riemann problem (advection of a step function). Is the numerical solution stable?

Von Neumann stability analysis

Von Neumann stability analysis

$$e^{\lambda \Delta t} = 1 - \frac{v \Delta t}{\Delta x} \frac{e^{ik\Delta x} - e^{-ik\Delta x}}{2} = 1 - i \frac{v \Delta t}{\Delta x} \sin(k\Delta x)$$

 \Rightarrow scheme is unconditionally unstable since for all k

$$\left|\frac{\epsilon_k^{n+1}}{\epsilon_k^n}\right| > 1$$

- 3 possible solutions to stabilize
 - ⇒ add numerical diffusivity to damp nonphysical instability
 - ⇒ impose same space-time symmetry as original PDE
 - ⇒ use implicit scheme (next section)

Numerical diffusivity

adding diffusion: advection-diffusion equation has form

$$\frac{\partial u}{\partial t} = -v \frac{\partial u}{\partial x} + \mathcal{D} \frac{\partial^2 u}{\partial x^2} \quad \text{with } \mathcal{D} \text{ a diffusion coefficient}$$

• <u>Lax-Friedrichs scheme</u>: in (4), if we replace u_i^n by spatial average between i-1 and i+1, we get:

$$u_i^{n+1} = \frac{u_{i+1}^n + u_{i-1}^n}{2} - v \frac{\Delta t}{\Delta x} \frac{u_{i+1}^n - u_{i-1}^n}{2}$$

which can be rearranged to form

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = -v \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} + \frac{(\Delta x)^2}{2\Delta t} \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{(\Delta x)^2}$$

- \Rightarrow numerical dissipation with $\mathcal{D} \equiv (\Delta x)^2/2\Delta t$
- ⇒ 1st order accurate in time, 2nd order in space

CFL condition

perform von Neumann stability analysis for Lax-Friedrichs

$$e^{\lambda \Delta t} = \cos(k\Delta x) - i \frac{v\Delta t}{\Delta x} \sin(k\Delta x)$$

⇒ conditional stability requiring Courant number *C*

$$C \equiv \frac{|v|\Delta t}{\Delta x} \leq 1$$

- \Rightarrow limitation of the time step Δt for a given resolution Δx
- ⇒ Courant-Friedrichs-Lewy condition (1928)
- ⇒ necessary condition for stability
- Rk: see stencil of Lax-Friedrichs scheme in Table on slide 23

The Lax-Wendroff scheme

Lax-Friedrichs has different o.a. in space (2nd) and time (1st)
 ⇒ Taylor expansion in time suggests :

$$u_i^{n+1} = u_i^n - \frac{1}{2} \frac{\Delta t}{\Delta x} v(u_{i+1}^n - u_{i-1}^n) + \frac{1}{2} \frac{(\Delta t)^2}{(\Delta x)^2} v^2(u_{i+1}^n - 2u_i^n + u_{i-1}^n)$$

- ⇒ 2nd order in space and in time
- Conditionally stable
 - \Rightarrow for $\Delta t = \Delta x/v$, we retrieve the Lax-Friedrichs scheme

Space-time symmetry

- How to maintain the space-time symmetry of the PDE in the FD approximation?
 - ⇒ use central discretisation for both time and space
 - ⇒ leapfrog scheme

$$u_i^{n+1} = u_i^{n-1} - v \frac{\Delta t}{\Delta x} \frac{u_{i+1}^n - u_{i-1}^n}{2}$$

- ⇒ conditionally stable and second-order accurate
- \Rightarrow multiple time levels involved: n-1, n, n+1
- ⇒ potential problem: even/odd time levels may 'decouple'
- stencil of leapfrog on slide 23

Examples

Overview of explicit FD methods (from Leveque1 chapter 10)

Name	Difference Equations	Stencil
Backward Euler	$U_j^{n+1} = U_j^n - \frac{k}{2h}A(U_{j+1}^n - U_{j-1}^n)$	T
One-sided	$U_{j}^{n+1} = U_{j}^{n} - \frac{k}{h}A(U_{j}^{n} - U_{j-1}^{n})$	L
One-sided	$U_j^{n+1} = U_j^n - \frac{k}{h}A(U_{j+1}^n - U_j^n)$	L
Lax-Friedrichs	$U_j^{n+1} = \frac{1}{2}(U_{j-1}^n + U_{j+1}^n) - \frac{k}{2h}A(U_{j+1}^n - U_{j-1}^n)$	^
Leapfrog	$U_j^{n+1} = U_j^{n-1} - \frac{k}{2h}A(U_{j+1}^n - U_{j-1}^n)$	\Diamond
Lax-Wendroff	$ U_j^{n+1} = U_j^n - \frac{k}{2h} A(U_{j+1}^n - U_{j-1}^n) $ $ + \frac{k^2}{2h^2} A^2(U_{j+1}^n - 2U_j^n + U_{j-1}^n) $	
Beam-Warming	$ U_j^{n+1} = U_j^n - \frac{k}{2h} A (3U_j^n - 4U_{j-1}^n + U_{j-2}^n) $ $ + \frac{k^2}{2h^2} A^2 (U_j^n - 2U_{j-1}^n + U_{j-2}^n) $	

Finite difference methods for the linear problem $u_t + Au_x = 0$.

h=dx k=dx

Central FD method

Truncation error and order of accuracy

for second order wave equation

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = 0$$

⇒ factorizes to

$$\left(\frac{\partial}{\partial t} - v \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial x}\right) u = 0$$

⇒ general solution has left and right going wave with

$$u = f(x - vt) + g(x + vt)$$

- \Rightarrow initial shapes f(x), g(x) combine
- \Rightarrow 2 characteristics $\frac{dx}{dt} = \pm v$

Consistency of a FDA w/ respect to its PDE

illustrate CFL for second order wave equation:
 the domain of dependence of the differential equation should
 be contained in the DOD of the discretised equations

- \Rightarrow stability means physical DOD contained in stencil bounds (numerical DOD), hence Δt small enough (right case)
- note: linear advection + wave equation: DOD only involves 1 or 2 points from $t=0 \leftrightarrow \text{HD}$: DOD bounds set by $v\pm c_s$ with c_s

- Preliminary concepts
 - Mesh and data collocation
 - Consistency
 - Stability
- Spatial discretization
 - Discretized function
 - Discretized first order derivatives
 - Discretized second order derivatives
- Temporal discretization
 - Explicit methods
 - Implicit methods
- Time advance
 - Von Neumann stability analysis
 - Explicit linear schemes

Principle and necessary stability condition

von Neumann stability analysis for BTCS scheme

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Convergence: Lax-Richtmeyer theorem

von Neumann stability analysis for BTCS scheme

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Lax-Friedrichs

$$u_i^{n+1} = u_i^n - \frac{1}{4}v \frac{\Delta t}{\Delta x} (u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

Lax-Wendroff

$$u_i^{n+1} = u_i^n - \frac{1}{4}v \frac{\Delta t}{\Delta x} (u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

Runge-Kutta

$$u_i^{n+1} = u_i^n - \frac{1}{4}v\frac{\Delta t}{\Delta x}(u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

Upwind FD scheme

$$u_i^{n+1} = u_i^n - \frac{1}{4}v \frac{\Delta t}{\Delta x} (u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

