

Water pump distribution in Tanzania

> -

Rahul Krishnan

Business Objective

To build a model for the Govt of Tanzania that will help predict the status of a water pump based on certain input information.

The water pump will be classified as follows:

- 1. Functional
- 2. Non-Functional
- 3. Functional needs repair

Dataset

Dataset sourced from:

https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/page/23/

Water pump distribution by class

Process Steps

Perform EDA Optimize hyper parameters Use Ensemble methods

Compare baseline models and pick one for optimization

Feature Importance Output

Baseline models stats

Since this is a multi-classification problem, we will look at the F1-score, which combines both accuracy and recall.

	Logistic Pogression	Decision Tree	KNN
	Logistic Regression	Decision free	IXIVIV
F1 - Score	0.33	0.64	0.49

Compare Optimized, GridSearch and RandomForest models

Confusion Matrix – Random Forest

Balanced vs Unbalanced

Final Results

Next Steps

- Re-frame this as a binary classification problem i.e., functional vs non-functional and see if we can build a better model.
- Optimize balanced dataset models.

Rahul Krishnan