Estimate all the {LWE, NTRU} schemes!

Martin R. Albrecht¹, Benjamin R. Curtis¹, Amit Deo¹, Alex Davidson¹, Rachel Player^{1,2}, **Eamonn W. Postlethwaite**¹, Fernando Virdia¹, Thomas Wunderer³,

August 26, 2018

¹Royal Holloway, University of London, UK

²Sorbonne Université, CNRS, INRIA, LIP6, Équipe PoLSys, France

³Technische Universität Darmstadt, Germany

Motivation

NIST "Competition"

This call for proposals aims to standardise post quantum {PKE, KEM, SIG} schemes.

Of 69 valid submissions, 23¹ approximate LWE or NTRU.

Type	LWE or NTRU	Code based	Multivariate	Hash based	Other	Total
#	26	24	13	4	15	82

 $^{^{1}}based \ on \ https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf$

NIST "Competition"

This call for proposals aims to standardise post quantum {PKE, KEM, SIG} schemes.

Of 69 valid submissions, 23¹ approximate LWE or NTRU.

Туре	LWE or NTRU	Code based	Multivariate	Hash based	Other	Total
#	23	_	_	_	_	69

 $^{^{1}}based \ on \ https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf$

Requirements

Submitters were required by NIST² to

- give at least one parameter set
- target at least one (NIST defined) security category
- provide some form of cryptanalysis

 $^{^2} https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf$

Cryptanalysis and Security

In {LWE, NTRU} cryptanalysis and bit security estimation

- there are a variety of attacks
- · lattice reduction (i.e. BKZ) is ubiquitous
- many different cost models exist

Cost Models

```
\{ \text{quantum, not quantum} \} \\ \times \\ \{ \text{complexity of solving SVP in dimension } \beta \} \\ \times \\ \{ \text{number of SVP calls required for given reduction quality} \}
```

Cost Models II

 $\{ \text{complexity of solving SVP in dimension } \beta \}$

Туре	log ₂ (Time complexity)
Sieving ³	$O(s_0\beta + s_1)$
Enumeration I	$O(e_0\beta\log\beta+e_1\beta+e_2)$
Enumeration II	$O(e_0'\beta^2 + e_1'\beta + e_2')$

³Also requires exponential memory.

Cost Models II

 $\{\text{complexity of solving SVP in dimension }\beta\}$

Туре	log ₂ (Time complexity)
Sieving ³	$O(s_0\beta + s_1)$
Enumeration I	$O(e_0\beta\log\beta + e_1\beta + e_2)$
Enumeration II	$O(e_0'\beta^2 + e_1'\beta + e_2')$

{number of SVP calls required for given reduction quality}

Name	Number of SVP calls
Core	1
_	β
_	8 <i>d</i>

³Also requires exponential memory.

Cost Models III

Model	Cost	Schemes
		CRYSTALS [LDK+17,SAB+17]
Core-Sieve Q-Core-Sieve	20.292 <i>β</i> 20.265 <i>β</i>	New Hope [PAA+17] SABER [DKRV17] ThreeBears [Ham17] Titanium [SSZ17] NTRU HRSS [SHRS17] NTRUEncrypt [ZCHW17a] pqNTRUSign [ZCHW17b]
Core-Sieve+ $O(1)$ Q-Core-Sieve+ $O(1)$	$2^{0.292eta+16.4} \ 2^{0.265eta+16.4}$	LIMA [SAL+17]
Core-Sieve (min. space) Q-Core-Sieve (min. space)	$2^{0.368eta} \ 2^{0.2975eta}$	NTRU HRSS [SHRS17]
β -Sieve Q- β -Sieve	$eta 2^{0.292eta} \ eta 2^{0.265eta}$	
8d-Sieve $+O(1)$	$8d2^{0.292eta+16.4}$	Ding Key Exchange [DTGW17] EMBLEM [SPL+17]
Q-8d-Sieve $+O(1)$	$8d2^{0.265\beta+16.4}$	qTESLA [BAA ⁺ 17]
Core-Enum $+O(1)$	$2^{0.187\beta\log\beta-1.019\beta+16.1}$	NTRU HRSS [SHRS17] NTRUEncrypt [ZCHW17a] pqNTRUSign [ZCHW17b]
Q-Core-Enum $+O(1)$	$2^{(0.187\beta\log\beta-1.019\beta+16.1)/2}$	NTRU HRSS [SHRS17]
8d-Enum (quadratic fit)+ $O(1)$	$8d2^{0.000784\beta^2+0.366\beta-0.9}$	NTRU Prime [BCLvV17]
LOTUS-Enum	$2^{0.125\beta\log\beta - 0.755\beta + 2.25}$	LOTUS [PHAM17]

Our Work

What?

Using the LWE estimator we estimated the security

- of every parameter set
- of every scheme
- against⁴ all relevant attacks
- under each cost model included in a NIST submission

and made a human friendly⁵ table which generates code snippets to repeat each experiment.

⁴almost

⁵https://estimate-all-the-lwe-ntru-schemes.github.io/

Website

We wanted to

- offer a meaningful comparison between schemes
- protect against a cost model becoming obsolete
- find {mistakes, intuition, unexpected results}
- display discrepancies in the estimation space

Disclaimers

- Not a promotion of any {scheme, cost model}!
- The estimator is not perfect!

In particular we encourage code review of the estimator⁶.

⁶https://bitbucket.org/malb/lwe-estimator

LWE and NTRU

LWE

LWE/Secret dimension	Modulus	# samples	Error distribution	Secret Distribution
n	q	$m \in \{n, 2n\}$	χ_{ρ}	Ϋ́ς

Notes

For LWE problems we

- consider the dual and primal attacks
- transform {LWR, RLWE, MLWE} to appropriate LWE
- deal with a variety of distributions for χ_e and $\chi_{\rm S}$

Ring	Secrets (short)	Public
$\mathcal{R}_q = rac{\mathbb{Z}_q[X]}{(\phi)}$	$f \in \mathcal{R}_q^{\times}, g \in \mathcal{R}_q$	$h \in \mathcal{R}_q$

Ring Secrets (short) Public
$$\mathcal{R}_q = \frac{\mathbb{Z}_q[X]}{(\phi)}$$
 $f \in \mathcal{R}_q^{\times}, g \in \mathcal{R}_q$ $h \in \mathcal{R}_q$ $h \in \mathcal{R}_q$

Notes

We convert an NTRU instance into an LWE instance

- $n = \deg(\phi)$
- · q modulus of \mathcal{R}_q
- χ_e takes variance $||g||/\sqrt{n}$
- $\cdot m = n$
- $\chi_{\rm S}$ takes the distribution of f

Findings

Cost Swaps

Let P_1 , P_2 be parameter sets for two schemes, and C_1 , C_2 be two cost models. There are occurrences⁷ of

$$C_1(P_1) > C_1(P_2) \wedge C_2(P_1) < C_2(P_2).$$

⁷Bernstein via pqc-forum mailing list https:

^{//}groups.google.com/a/list.nist.gov/forum/i#!msg/pqc-forum/llDNio0sKq4/xjqy4K6SAgAJ.

Cost Swaps II

If χ_s is small or sparse a hybird strategy is to guess entries as 0 and solve smaller dimensional instances.

Regime	log ₂ (Time complexity)	Guessing effect
Enumeration	$O(e_0\beta\log\beta + e_1\beta + e_2)$	Stronger
Sieving	$O(s_0\beta + s_1)$	Weaker

Cost Swaps III

NIST recommended a maximum quantum circuit depth.
Instead, many submissions focussed on asymptotic Q- model.

Security Category I: As hard as AES-128 key recovery. Does this mean

NIST recommended a maximum quantum circuit depth.
Instead, many submissions focussed on asymptotic Q- model.

Security Category I: As hard as AES-128 key recovery. Does this mean

• Aim for Q- cost $\geq 2^{128}$, i.e. given "perfect Grover" as hard to break as AES-128 classically?

NIST recommended a maximum quantum circuit depth.
Instead, many submissions focussed on asymptotic Q- model.

Security Category I: As hard as AES-128 key recovery. Does this mean

- Aim for Q- cost $\geq 2^{128}$, i.e. given "perfect Grover" as hard to break as AES-128 classically?
- Aim for Q- cost \geq 2⁶⁴, i.e. as hard to break as AES-128 given "perfect Grover'?"

NIST recommended a maximum quantum circuit depth.
Instead, many submissions focussed on asymptotic Q- model.

Security Category I: As hard as AES-128 key recovery. Does this mean

- Aim for Q- cost $\geq 2^{128}$, i.e. given "perfect Grover" as hard to break as AES-128 classically?
- Aim for Q- cost \geq 2⁶⁴, i.e. as hard to break as AES-128 given "perfect Grover'?"

Difficult to compare two schemes aiming for Security Category I under these two distinct definitions!

Conclusions

Further work I

The cost swap example implies more understanding is needed of the

- · crossover point between enumeration and sieving
- accurate behaviour of BKZ in low block sizes

Further work II

The quantum cost example implies the need for

- · agreement on how to interpret Q- cost
- concrete estimates of the quantum resources Grover requires
- collaboration with people who understand Q- circuit depth!

Thanks!

