Algorithmique des graphes 0 — Rappels

Anthony Labarre

27 janvier 2021

Organisation du cours

Déroulement :

- 12 séances de CM :
- 12 séances de TD :
- Quelques mini-rendus et un projet en Python;
- ... et bien sûr un examen;

Supports de cours :

- Ces transparents;
- Des notes manuscrites couvrant presque toute la matière;

Les chargés de TD :

- Marie-Pierre Béal ;
- Johan Thapper:

• Le cours aurait dû se dérouler au tableau sans transparents;

- Le cours aurait dû se dérouler au tableau sans transparents;
- Il sera forcément moins interactif qu'espéré;

- Le cours aurait dû se dérouler au tableau sans transparents;
- Il sera forcément moins interactif qu'espéré;
- Attention aux pièges des transparents :

Complexité algorithmique

Mises en garde

- Le cours aurait dû se dérouler au tableau sans transparents;
- Il sera forcément moins interactif qu'espéré;
- Attention aux pièges des transparents :
 - 1 la matière avance beaucoup plus vite que ce qui serait idéal;

Mises en garde

- Le cours aurait dû se dérouler au tableau sans transparents;
- Il sera forcément moins interactif qu'espéré;
- Attention aux pièges des transparents :
 - 1 la matière avance beaucoup plus vite que ce qui serait idéal;
 - 2 on **croit** beaucoup plus facilement avoir compris;

Mises en garde

- Le cours aurait dû se dérouler au tableau sans transparents;
- Il sera forcément moins interactif qu'espéré;
- Attention aux pièges des transparents :
 - 1 la matière avance beaucoup plus vite que ce qui serait idéal;
 - 2 on **croit** beaucoup plus facilement avoir compris;
- Étudiez les notes de cours associées, et voyez plutôt ces transparents comme une aide que comme le support officiel;

Mises en garde

- Le cours aurait dû se dérouler au tableau sans transparents;
- Il sera forcément moins interactif qu'espéré;
- Attention aux pièges des transparents :
 - 1 la matière avance beaucoup plus vite que ce qui serait idéal;
 - 2 on **croit** beaucoup plus facilement avoir compris;
- Étudiez les notes de cours associées, et voyez plutôt ces transparents comme une aide que comme le support officiel;
- N'hésitez pas à poser des questions, que ce soit en direct, en différé, ou bien plus tard après réflexion (mais pas la veille de l'examen ...);

Complexité algorithmique

 Une grande partie de l'évaluation de vos programmes se fera à l'aide d'un correcteur automatique;

Concernant les évaluations

- Une grande partie de l'évaluation de vos programmes se fera à l'aide d'un correcteur automatique;
- Il est donc **critique** de suivre les consignes données à la lettre:

- Une grande partie de l'évaluation de vos programmes se fera à l'aide d'un correcteur automatique;
- Il est donc **critique** de suivre les consignes données à la lettre:
 - respecter le nom des fonctions;

Concernant les évaluations

- Une grande partie de l'évaluation de vos programmes se fera à l'aide d'un correcteur automatique;
- Il est donc **critique** de suivre les consignes données à la lettre :
 - respecter le nom des fonctions;
 - respecter la signature des fonctions;

- Une grande partie de l'évaluation de vos programmes se fera à l'aide d'un correcteur automatique;
- Il est donc critique de suivre les consignes données à la lettre :
 - respecter le nom des fonctions;
 - respecter la signature des fonctions;
 - ne pas confondre fonction et méthode;

Complexité algorithmique

Concernant les évaluations

- Une grande partie de l'évaluation de vos programmes se fera à l'aide d'un correcteur automatique;
- Il est donc **critique** de suivre les consignes données à la lettre :
 - respecter le nom des fonctions ;
 - respecter la signature des fonctions;
 - ne pas confondre fonction et méthode;
 - respecter le format d'entrée et de sortie :

- Une grande partie de l'évaluation de vos programmes se fera à l'aide d'un correcteur automatique;
- Il est donc **critique** de suivre les consignes données à la lettre :
 - respecter le nom des fonctions ;
 - respecter la signature des fonctions;
 - ne pas confondre fonction et méthode;
 - respecter le format d'entrée et de sortie :

- Une grande partie de l'évaluation de vos programmes se fera à l'aide d'un correcteur automatique;
- Il est donc critique de suivre les consignes données à la lettre :
 - respecter le nom des fonctions ;
 - respecter la signature des fonctions;
 - ne pas confondre fonction et méthode;
 - respecter le format d'entrée et de sortie ;
- Des jeux de tests vous seront parfois fournis pour vous guider, mais cela ne vous dispense pas d'écrire les vôtres!

Avant de rentrer dans le vif du sujet

Commençons par quelques rappels rapides concernant les prérequis :

- 1 Complexité algorithmique
- 2 Programmation orientée objet en Python
- 3 Pseudocode
- 4 Techniques de preuves

Complexité algorithmique

•0000000

• Un algorithme doit être correct et efficace, c'est-à-dire :

•0000000

Motivations

- Un algorithme doit être correct et efficace, c'est-à-dire :
 - rapide, et

Motivations

- Un algorithme doit être correct et efficace, c'est-à-dire :
 - rapide, et
 - économe en ressources (espace de stockage, mémoire, ...).

- Un algorithme doit être correct et **efficace**, c'est-à-dire :
 - rapide, et
 - économe en ressources (espace de stockage, mémoire, ...).
- Mesurer le temps de calcul réel nécessite d'implémenter (et tester, et débugger, et optimiser, ...) les algorithmes;

Complexité algorithmique

- Un algorithme doit être correct et efficace, c'est-à-dire :
 - rapide, et
 - économe en ressources (espace de stockage, mémoire, ...).
- Mesurer le temps de calcul réel nécessite d'implémenter (et tester, et débugger, et optimiser, ...) les algorithmes;

 Pour éviter cela, on évalue le temps d'exécution théorique à l'aide de la complexité algorithmique, qui donnera une approximation du temps de calcul en fonction de la taille des données, représentée par la notation $O(\cdot)$.

La notation $O(\cdot)$

Complexité algorithmique

0000000

Une fonction f(n) est **en** O(g(n)) ("**en grand O de** g(n)") si :

$$\exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}, \forall n \geq n_0: |f(n)| \leq c|g(n)|.$$

Complexité algorithmique

Une fonction f(n) est **en** O(g(n)) ("**en grand O de** g(n)") si :

$$\exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}, \forall n \geq n_0 : |f(n)| \leq c|g(n)|.$$

Autrement dit : f(n) est en O(g(n)) s'il existe un seuil à partir duquel la fonction $f(\cdot)$ est toujours dominée par la fonction $g(\cdot)$, à une constante multiplicative fixée près.

Complexité algorithmique

Une fonction f(n) est **en** O(g(n)) ("**en grand O de** g(n)") si :

$$\exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}, \forall n \geq n_0: |f(n)| \leq c|g(n)|.$$

Autrement dit : f(n) est en O(g(n)) s'il existe un seuil à partir duquel la fonction $f(\cdot)$ est toujours dominée par la fonction $g(\cdot)$, à une constante multiplicative fixée près.

Exemple 1 (quelques cas où f(n) = O(g(n)))

Complexité algorithmique

Une fonction f(n) est **en** O(g(n)) ("**en grand O de** g(n)") si :

$$\exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}, \forall n \geq n_0 : |f(n)| \leq c|g(n)|.$$

Autrement dit : f(n) est en O(g(n)) s'il existe un seuil à partir duquel la fonction $f(\cdot)$ est toujours dominée par la fonction $g(\cdot)$, à une constante multiplicative fixée près.

Exemple 1 (quelques cas où f(n) = O(g(n)))

Complexité algorithmique

Une fonction f(n) est **en** O(g(n)) ("**en grand O de** g(n)") si :

$$\exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}, \forall n \geq n_0: |f(n)| \leq c|g(n)|.$$

Autrement dit : f(n) est en O(g(n)) s'il existe un seuil à partir duquel la fonction $f(\cdot)$ est toujours dominée par la fonction $g(\cdot)$, à une constante multiplicative fixée près.

Exemple 1 (quelques cas où f(n) = O(g(n)))

Définition 1

Complexité algorithmique

La complexité d'un algorithme est la mesure asymptotique de son temps d'exécution dans le pire cas. Elle s'exprime à l'aide de la notation $O(\cdot)$ en fonction de la taille des données reçues en entrée.

Les deux précisions sur le caractère de cette mesure importent :

Définition 1

Complexité algorithmique

La **complexité** d'un algorithme est la mesure **asymptotique** de son temps d'exécution **dans le pire cas**. Elle s'exprime à l'aide de la notation $O(\cdot)$ en fonction de la taille des données reçues en entrée.

Les deux précisions sur le caractère de cette mesure importent :

1 asymptotique : on s'intéresse à des données très grandes;

Complexité d'un algorithme

Définition 1

La complexité d'un algorithme est la mesure asymptotique de son temps d'exécution dans le pire cas. Elle s'exprime à l'aide de la notation $O(\cdot)$ en fonction de la taille des données reçues en entrée.

Les deux précisions sur le caractère de cette mesure importent :

- **1** asymptotique : on s'intéresse à des données très grandes ;
- 2 "dans le pire cas" : on s'intéresse à la performance de l'algorithme dans les situations où le problème prend le plus de temps à résoudre;

On fait les hypothèses suivantes :

• chaque instruction basique (affectation d'une variable de type basique ou comparaison de deux types basiques, +, -, * $/, \ldots$) consomme un temps constant, noté O(1);

Calcul de la complexité d'un algorithme

On fait les hypothèses suivantes :

- chaque instruction basique (affectation d'une variable de type basique ou comparaison de deux types basiques, +, -, * $/, \ldots$) consomme un temps constant, noté O(1);
- chaque **itération** d'une boucle rajoute la complexité de ce qui est effectué dans le corps de cette boucle;

Calcul de la complexité d'un algorithme

On fait les hypothèses suivantes :

- chaque instruction basique (affectation d'une variable de type basique ou comparaison de deux types basiques, +, -, * $/, \ldots$) consomme un temps constant, noté O(1);
- chaque itération d'une boucle rajoute la complexité de ce qui est effectué dans le corps de cette boucle;
- chaque appel de fonction rajoute la complexité de cette fonction;

Calcul de la complexité d'un algorithme

On fait les hypothèses suivantes :

- chaque instruction basique (affectation d'une variable de type basique ou comparaison de deux types basiques, +, -, * $/, \ldots$) consomme un temps constant, noté O(1);
- chaque itération d'une boucle rajoute la complexité de ce qui est effectué dans le corps de cette boucle;
- chaque appel de fonction rajoute la complexité de cette fonction;
- pour obtenir la complexité de l'algorithme, on additionne le tout.

Complexité algorithmique

00000000

On aura aussi recours aux simplifications suivantes (justifiées par la définition de $O(\cdot)$):

1 on oublie les constantes multiplicatives (elles valent 1);

de $O(\cdot)$):

Complexité algorithmique

00000000

On aura aussi recours aux simplifications suivantes (justifiées par la définition

1 on oublie les constantes multiplicatives (elles valent 1);

- 2 on annule les constantes additives;

de $O(\cdot)$):

Complexité algorithmique

00000000

On aura aussi recours aux simplifications suivantes (justifiées par la définition

- 1 on oublie les constantes multiplicatives (elles valent 1);
- 2 on annule les constantes additives;
- 3 on ne retient que les termes dominants.

Simplifications

On aura aussi recours aux simplifications suivantes (justifiées par la définition de $O(\cdot)$) :

- 1 on oublie les constantes multiplicatives (elles valent 1);
- 2 on annule les constantes additives;
- 3 on ne retient que les termes dominants.

Exemple 2 (simplifications)

Complexité algorithmique

00000000

•

On aura aussi recours aux simplifications suivantes (justifiées par la définition de $O(\cdot)$) :

- 1 on oublie les constantes multiplicatives (elles valent 1);
- 2 on annule les constantes additives;
- 3 on ne retient que les termes dominants.

Exemple 2 (simplifications)

Soit un algorithme effectuant $g(n) = 4n^3 - 5n^2 + 2n + 3$ opérations;

1 on remplace les constantes multiplicatives par 1 : $1n^3 - 1n^2 + 1n + 3$

Complexité algorithmique

00000000

Simplifications

On aura aussi recours aux simplifications suivantes (justifiées par la définition de $O(\cdot)$) :

- 1 on oublie les constantes multiplicatives (elles valent 1);
- 2 on annule les constantes additives;
- 3 on ne retient que les termes dominants.

Exemple 2 (simplifications)

- 1 on remplace les constantes multiplicatives par 1 : $1n^3 1n^2 + 1n + 3$
- 2 on annule les constantes additives : $n^3 n^2 + n + 0$

Simplifications

On aura aussi recours aux simplifications suivantes (justifiées par la définition de $O(\cdot)$) :

- 1 on oublie les constantes multiplicatives (elles valent 1);
- 2 on annule les constantes additives;
- 3 on ne retient que les termes dominants.

Exemple 2 (simplifications)

- 1 on remplace les constantes multiplicatives par 1 : $1n^3 1n^2 + 1n + 3$
- 2 on annule les constantes additives : $n^3 n^2 + n + 0$
- 3 on garde le terme de plus haut degré : $n^3 + 0$

Simplifications

On aura aussi recours aux simplifications suivantes (justifiées par la définition de $O(\cdot)$):

- 1 on oublie les constantes multiplicatives (elles valent 1);
- on annule les constantes additives;
- 3 on ne retient que les termes dominants.

Exemple 2 (simplifications)

- 1 on remplace les constantes multiplicatives par 1 : $1n^3 1n^2 + 1n + 3$
- $n^3 n^2 + n + 0$ on annule les constantes additives :
- $n^3 + 0$ 3 on garde le terme de plus haut degré :

Complexité algorithmique

On additionne les complexités d'opérations en séquence :

$$O(f_1(\cdot)) + O(f_2(\cdot)) = O(f_1(\cdot) + f_2(\cdot))$$

Opérations en séquence

On additionne les complexités d'opérations en séquence :

$$O(f_1(\cdot)) + O(f_2(\cdot)) = O(f_1(\cdot) + f_2(\cdot))$$

Pareil pour les branchements conditionnels :

$$\begin{array}{ll} \textbf{si} \ [\text{condition}] \ \textbf{alors}: & O(g(\cdot)) \\ \textit{\#\# instructions (1)} & O(f_1(\cdot)) \\ \textbf{sinon} & & \\ \textit{\#\# instructions (2)} & O(f_2(\cdot)) \end{array} \right\} = O(g(\cdot) + f_1(\cdot) + f_2(\cdot))$$

Opérations en séquence

On additionne les complexités d'opérations en séquence :

$$O(f_1(\cdot)) + O(f_2(\cdot)) = O(f_1(\cdot) + f_2(\cdot))$$

Pareil pour les branchements conditionnels :

$$\begin{array}{ll} \textbf{si [condition] alors:} & O(g(\cdot)) \\ \textit{\#\# instructions (1)} & O(f_1(\cdot)) \\ \textbf{sinon} & \\ \textit{\#\# instructions (2)} & O(f_2(\cdot)) \\ \end{array} \right\} = O(g(\cdot) + f_1(\cdot) + f_2(\cdot))$$

Les règles de simplification vues plus haut s'appliqueront ensuite. En particulier, une somme constante d'opérations constantes sera constante : O(1) + O(1) = O(1).

Boucles

si on a m itérations
$$\begin{array}{ll} \textbf{tant que} \ [\text{condition}] \ \textbf{faire} & O(g(\cdot)) \\ \text{## instructions} & O(f(\cdot)) \end{array} \right\} = O(m*(g(\cdot)+f(\cdot)))$$

Boucles

La complexité d'une boucle se calcule comme suit :

$$\begin{array}{ll} \textit{## si on a m itérations} \\ \textbf{tant que} \ [\text{condition}] \ \textbf{faire} & O(g(\cdot)) \\ \textit{## instructions} & O(f(\cdot)) \end{array} \right\} = O(m*(g(\cdot)+f(\cdot)))$$

 Si deux boucles sont en séquence, on additionne leurs complexités;

Boucles

- Si deux boucles sont en séquence, on additionne leurs complexités;
- Si deux boucles sont imbriquées :

Complexité algorithmique

- Si deux boucles sont en séquence, on additionne leurs complexités;
- Si deux boucles sont imbriquées :
 - si elles sont **indépendantes**, on multiplie leurs complexités;

Boucles

- Si deux boucles sont en séquence, on additionne leurs complexités;
- Si deux boucles sont imbriquées :
 - si elles sont **indépendantes**, on multiplie leurs complexités;
 - sinon, on devra procéder autrement (voir exemples concrets) plus tard);

Complexités fréquentes et comparaisons

On regroupe les fonctions équivalentes (f = O(g)) et g = O(f)dans une même classe.

En général, on préfère les algorithmes de complexité minimale.

Classe basique en Python

Exemple 3

```
class Promo(object):
    def __init__(self): # constructeur
        self.etudiants = dict()
    def ajouter_etudiant(self, nom):
        if nom not in self.etudiants:
            self.etudiants[nom] = dict()
    def movenne(self, nom):
        return sum(self.etudiants[nom]) / len(self.etudiants[nom])
```

- self \equiv this en Java ou C++;
- __init__ = constructeur;

• On définit les méthodes comme les fonctions avec def, mais :

Complexité algorithmique

- On définit les méthodes comme les fonctions avec def, mais :
 - 1 on doit les indenter pour les mettre dans la classe;

- On définit les méthodes comme les fonctions avec def, mais :
 - on doit les indenter pour les mettre dans la classe;
 - 2 le premier paramètre doit toujours être self;

- On définit les méthodes comme les fonctions avec def, mais :
 - 1 on doit les indenter pour les mettre dans la classe;
 - 2 le premier paramètre doit toujours être self;
- Appeler une méthode :

Complexité algorithmique

- On définit les méthodes comme les fonctions avec def, mais :
 - 1 on doit les indenter pour les mettre dans la classe;
 - 2 le premier paramètre doit toujours être self;
- Appeler une méthode :
 - dans la classe : self.methode(param)

- On définit les méthodes comme les fonctions avec def, mais :
 - 1 on doit les indenter pour les mettre dans la classe;
 - 2 le premier paramètre doit toujours être self;
- Appeler une méthode :
 - dans la classe : self.methode(param)
 - en dehors : mon_instance.methode(param)

- On définit les méthodes comme les fonctions avec def, mais :
 - on doit les indenter pour les mettre dans la classe;
 - 2 le premier paramètre doit toujours être self;
- Appeler une méthode :
 - dans la classe : self.methode(param)
 - en dehors : mon_instance.methode(param)
- Pour les données :

- On définit les méthodes comme les fonctions avec def, mais :
 - on doit les indenter pour les mettre dans la classe;
 - 2 le premier paramètre doit toujours être self;
- Appeler une méthode :
 - dans la classe : self.methode(param)
 - en dehors : mon_instance.methode(param)
- Pour les données :
 - self.data : données membres, accessibles dans toute la classe;

- On définit les méthodes comme les fonctions avec def, mais :
 - 1 on doit les indenter pour les mettre dans la classe;
 - 2 le premier paramètre doit toujours être self;
- Appeler une méthode :
 - dans la classe : self.methode(param)
 - en dehors : mon_instance.methode(param)
- Pour les données :
 - self.data : données membres, accessibles dans toute la classe;
 - data sans self: variable locale, accessible seulement dans la méthode qui la contient.

Pas de surcharge, y compris pour __init__; alternatives :

Complexité algorithmique

- Pas de surcharge, y compris pour __init__; alternatives :
 - 1 paramètres avec valeurs par défaut;

Complexité algorithmique

- Pas de surcharge, y compris pour __init__; alternatives :
 - paramètres avec valeurs par défaut;
 - 2 arguments variables (def methode(self, *args, **kwargs));

Particularités des objets en Python

Complexité algorithmique

- Pas de surcharge, y compris pour __init__; alternatives :
 - paramètres avec valeurs par défaut;
 - 2 arguments variables (def methode(self, *args, **kwargs));
- On simule les champs privés à l'aide du préfixe __ :

Particularités des objets en Python

- Pas de surcharge, y compris pour __init__; alternatives :
 - paramètres avec valeurs par défaut;
 - 2 arguments variables (def methode(self, *args, **kwargs));
- On simule les champs privés à l'aide du préfixe __ :

Exemple 4 (champs "privés")

```
>>> class MaClasse(object):
        def __init__(self):
            self.public = 1
            self.__prive = 0
. . .
>>> x = MaClasse()
>>> print(x.public)
>>> print(x.__prive)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MaClasse' object has no attribute '__prive'
```

Particularités des objets en Python

- Pas de surcharge, y compris pour __init__; alternatives :
 - paramètres avec valeurs par défaut;
 - 2 arguments variables (def methode(self, *args, **kwargs));
- On simule les champs privés à l'aide du préfixe __ :

Exemple 4 (champs "privés")

```
>>> class MaClasse(object):
        def __init__(self):
            self.public = 1
            self.\_prive = 0
. . .
>>> x = MaClasse()
>>> print(x.public)
>>> print(x.__prive)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MaClasse' object has no attribute '__prive'
```

Pas de getters ou setters;

Intérêt de la POO dans ce cours

- Nos buts :
 - pouvoir supposer qu'il existe une classe Graphe avec une certaine interface:
 - décrire des algorithmes s'exécutant de la même manière quelle que soit l'implémentation;
- On verra plus loin qu'il existe plusieurs manières d'implémenter les graphes;
- Elles auront un impact direct sur la complexité de nos algorithmes;

- Nos fonctions devront parfois renvoyer un sous-graphe du même type que celui d'entrée;
- On y arrivera avec la syntaxe suivante :

```
Exemple 5
```

```
def mon_algo(un_graphe):
    resultat = type(un_graphe)()
# ...
    return resultat
```

Les algorithmes seront exprimés en pseudocode. Par exemple :

Algorithme 1 : TrouverMinimum(T)

Entrées : un tableau \mathcal{T} non vide.

Sortie : le plus petit élément de T.

- 1 minimum $\leftarrow T[0]$;
- 2 **pour** *i* allant de 1 à longueur(T) 1 faire
- $si T[i] < minimum alors minimum \leftarrow T[i];$
- 4 renvoyer minimum;

Les algorithmes seront exprimés en pseudocode. Par exemple :

Algorithme 1 : TrouverMinimum(T)

Entrées : un tableau \mathcal{T} non vide.

Sortie : le plus petit élément de T.

- 1 minimum $\leftarrow T[0]$;
- 2 pour i allant de 1 à longueur(T) 1 faire
- $si T[i] < minimum alors minimum \leftarrow T[i];$
- 4 renvoyer minimum;

Instructions pour le pseudocode :

Les algorithmes seront exprimés en pseudocode. Par exemple :

Algorithme 1 : TROUVERMINIMUM(*T*)

Entrées: un tableau T non vide. **Sortie :** le plus petit élément de *T* .

- 1 minimum $\leftarrow T[0]$;
- 2 **pour** *i* allant de 1 à longueur(T) 1 faire
- si $T[i] < minimum alors minimum \leftarrow T[i];$
- 4 renvoyer minimum;

Instructions pour le pseudocode :

 éviter au maximum les détails d'implémentation liés au langage (allocation mémoire, pointeurs, ...),

Complexité algorithmique

eudocode

Les algorithmes seront exprimés en *pseudocode*. Par exemple :

Algorithme 1 : TrouverMinimum(T)

Entrées : un tableau T non vide. **Sortie :** le plus petit élément de T.

- 1 minimum $\leftarrow T[0]$;
- 2 **pour** *i* allant de 1 à longueur(T) 1 faire
- $si T[i] < minimum alors minimum \leftarrow T[i];$
- 4 renvoyer minimum;

Instructions pour le pseudocode :

- éviter au maximum les détails d'implémentation liés au langage (allocation mémoire, pointeurs, . . .),
- être suffisamment précis pour que la traduction de l'algorithme vers n'importe quel vrai langage soit facile et sans ambiguïté.

Conventions

Complexité algorithmique

Le format que nous adopterons sera le suivant :

1 algo_standard(données) : algorithme "trivial" pas nécessairement vu explicitement;

Complexité algorithmique

Le format que nous adopterons sera le suivant :

- 1 algo_standard(données) : algorithme "trivial" pas nécessairement vu explicitement ;
- 2 ALGODUCOURS(données) : algorithme vu dans ce cours;

Complexité algorithmique

- Le format que nous adopterons sera le suivant :
 - 1 algo_standard(données) : algorithme "trivial" pas nécessairement vu explicitement;
 - 2 ALGODUCOURS(données) : algorithme vu dans ce cours;
 - 3 description des problèmes :

Complexité algorithmique

Le format que nous adopterons sera le suivant :

- 1 algo_standard(données) : algorithme "trivial" pas nécessairement vu explicitement;
- 2 ALGODUCOURS(données) : algorithme vu dans ce cours ;
- 3 description des problèmes :
 - Entrée(s) : ce que l'on reçoit, avec les hypothèses nécessaires ;

Complexité algorithmique

Le format que nous adopterons sera le suivant :

- 1 algo_standard(données) : algorithme "trivial" pas nécessairement vu explicitement ;
- 2 ALGODUCOURS(données) : algorithme vu dans ce cours;
- 3 description des problèmes :
 - Entrée(s) : ce que l'on reçoit, avec les hypothèses nécessaires ;
 - Sortie / But / Question / Résultat : le résultat, avec les hypothèses nécessaires;

Techniques de preuves

On devra prouver que nos algorithmes sont corrects, ainsi que certaines propriétés. Généralement, on procèdera :

1 par induction :

Techniques de preuves

On devra prouver que nos algorithmes sont corrects, ainsi que certaines propriétés. Généralement, on procèdera :

- par induction :
 - 1 prouver qu'une propriété P est vraie pour un cas de base;

On devra prouver que nos algorithmes sont corrects, ainsi que certaines propriétés. Généralement, on procèdera :

- par induction :
 - 1 prouver qu'une propriété P est vraie pour un cas de base;
 - 2 puis prouver que si P est vraie pour le cas n, elle l'est aussi pour le cas n+1;

Techniques de preuves

On devra prouver que nos algorithmes sont corrects, ainsi que certaines propriétés. Généralement, on procèdera :

- par induction :
 - 1 prouver qu'une propriété P est vraie pour un cas de base;
 - 2 puis prouver que si P est vraie pour le cas n, elle l'est aussi pour le cas n+1;
- 2 par contraposition : si prouver que $A \Rightarrow B$ est difficile, on tente plutôt de prouver que $\neg B \Rightarrow \neg A$, ce qui est équivalent (cf. cours de logique).

cilliques de preuves

On devra prouver que nos algorithmes sont corrects, ainsi que certaines propriétés. Généralement, on procèdera :

- **1** par induction :
 - 1 prouver qu'une propriété P est vraie pour un cas de base;
 - 2 puis prouver que si P est vraie pour le cas n, elle l'est aussi pour le cas n+1;
- 2) par contraposition : si prouver que $A \Rightarrow B$ est difficile, on tente plutôt de prouver que $\neg B \Rightarrow \neg A$, ce qui est équivalent (cf. cours de logique).
- 3 par l'absurde (ou contradiction): s'il est difficile de prouver que P est vraie, prouvons plutôt qu'il est impossible que P soit fausse;