Biochemistry

Proteins

Isoelctric Point

Average pKa of the zwitterion: pi = $\frac{pKa1*pKa2}{2}$

Enzymes

Overview

- · Active site vs Induced fit model: In the former the active site matches the substrate while in the former the substrate slightly temporarily alters the active site creating a better fit
- · Co-Enzyme: Organic carrier molecules
- · Enzyme cofactor is a an inorganic molecule that is nessecary for an enzyme to function
- · Vitamins and Minerals: The former being organic and the latter being inorganic and both of which not being produced naturally and are often used as co-factors and co-enzymes

Catalytic Strategies

- · Acid/Base
- · Covalent
- · Electrostatic
- · Proximity/Orientation

Types

- · Transferase: Transfers a functional group from A to B
- · Ligase: Joins together A and B through dehydration reaction
- · Oxidoreductase: Assist w/ a redox reaction
- · Isomerase: Converts a molecule to one of its isomers
- \cdot Hydrolase: Breaks molecule in two parts through hydrolysis
- · Lyase: Breaks molecule without using hydrolysis or redox typically using double bonds

Enzyme Kinetics

Michaelis-Menten and Lineweaver Burke

Values

 V_{max} : Fastest speed for a given Enzyme and substrate

 K_{M} is the [S] where $\frac{1}{2}V_{max}$ is achieved

 k_{cat} : Turnover rate

Relations

 K_M is the [S] where $\frac{1}{2}V_{max}$ is achieved

Catalytic Efficiency = $\frac{k_{cat}}{K_M}$ $V_{max} = k_{cat}[E]$

 $K_M \propto \text{Substrates affinity of an enzyme}$

Michaelis-Menten

$$V_0 = \frac{V_{max}[S]}{k_m + [S]}$$

[S]

Lineweaver-Burk

$$\frac{1}{V_0} = \frac{k_m}{V_{max}[S]} + \frac{1}{V_{max}}$$

Enzyme Inhibition

Competitive Inhibitor: Binds to [E] Control Competitive

 $\overline{[S]}$

Control $\overline{V_0}$ Un-Competitive $\overline{[S]}$

Un-Competitive Inhibitor: Binds to [ES]

Cooperativity

Allosteric Regulation

Activator: \uparrow Vmax and \downarrow Km Inhibitor: \downarrow Vmax and \uparrow Km

Homotropic Regulator: Same as the substrate

Heterotropic Regulator: Different than the substrate

$Enzyme\ Modification$

Types

Methylation: Adding a methyl group Acetylation: Adding an acetyl group Glycosylation: Adding a sugar

Suicide Inhibitors utilize covalent modification to irriversably

bind to an enzyme

Zymogens

 \cdot Inactive enzyme that require chemical modification

 \cdot Enzymes of this type end in -ogen

 \cdot Often used in digestive system to avoid breaking down in

wrong location