Course Title IoT Wireless & Cloud Emerging Technologies

Modules

- 1. IoT Business & Products
- 2. IoT Architecture & Technologies
- 3. IoT Networks
- 4. Wi-Fi & Bluetooth
- 5. Cloud Technology
- 6. IoT Bluetooth & Wi-Fi and EC2 Cloud Projects

IoT Architecture & Technologies

IoT Architecture

Sensor Layer

- Made up of sensors and smart devices
- Real-time information to be collected and processed
- Sensors use low power and low data rate connectivity
- WSN (Wireless Sensor Network) formation
- Sensors are grouped according to their purpose and data types
 - Environmental sensors, Military sensors, Body sensors, Home sensors, Surveillance sensors, etc.

IoT Architecture

Sensor Aggregators (Gateways)

- LAN (Local Area Network)
 - Ethernet and Wi-Fi connections
 - WLAN (Wireless LAN)→ Wi-Fi
- PAN (Personal Area Network)
 - WPAN (Wireless PAN)
 - Bluetooth, ZigBee, and 6LowPAN
- Sensors that do not require connectivity to a LAN gateway can be directly connected to the Internet through a WAN (Wide Area Network) interface

Gateway & Network Layer

IoT Architecture

Gateway & Network Layer

- Must support massive volumes of IoT data produced by wireless sensors and smart devices
- Requires a robust and reliable performance
- Supports private, public, hybrid network models
- Network model QoS requirements
 - Low Latency & Error Probability
 - High Throughput & Energy Efficiency
 - High Levels of Security & Scalability

Gateway & Network Layer

- It is important to integrate different types of networks into a single IoT platform
- IoT sensors are aggregated with various types of protocols and heterogeneous networks using different technologies
- IoT networks need to be scalable to efficiently serve a wide range of services and applications over large scale networks

IoT Architecture

❖ Management Service Layer

Management Service Layer

- Management Service Layer is in charge of
 - Information Analytics
 - Security Control
 - Process Modeling
 - Device Management
- Data Management
 - · Periodic IoT sensor data requires filtering
 - Aperiodic event triggered IoT sensor data may require immediate delivery & response
 - Example: Patient medical emergency sensor data

IoT Architecture

❖ Management Service Layer

- Data Management
 - · Manages data information flow
 - · Information access, integration, control
- Data Abstraction
 - Information extraction processing
 - Used as a common business model

❖ Application Layer

IoT Architecture

❖ Application Layer

- Various applications from industry sectors can use IoT for service enhancement
- Application Classification
 - Business Model, Type of network
 - Availability, Heterogeneity
 - Coverage, Size
 - Real-Time or Non-Real-Time requirements

Application Layer

- Personal and Home
 - · IoT at the scale of an individual or home
- Enterprise
 - IoT at the scale of a company or community
- Utility
 - · IoT at a national or regional scale
- Mobile
 - Devices are usually spread across other domains mainly due to their mobility

IoT Architecture

❖ Application Layer

Smart Environment Application Domains

	Smart Home	Smart Office	Smart Retail	Smart City	Smart Agriculture	Smart Energy & Fuel	Smart Transportation	Smart Military
Network Size	Small	Small	Small	Medium	Medium /Large	Large	Large	Large
Network Connectivity	WPAN, WLAN, 3G, 4G, Internet	WPAN, WLAN, 3G, 4G, Internet	RFID, NFC, WPAN, WLAN, 3G, 4G, Internet	RFID, NFC, WLAN, 3G, 4G, Internet	WLAN, Satellite Comm., Internet	WLAN, 3G, 4G, Microwave links, Satellite Comm.,	WLAN, 3G, 4G, Satellite Comm.	RFID, NFC, WPAN, WLAN, 3G, 4G, Satellite Comm.
Bandwidth Requirement	Small	Small	Small	Large	Medium	Medium	Medium~Large	Medium~Large

- WLAN: Wi-Fi, WAVE, IEEE 802.11 a/b/g/p/n/ac/ad, etc.
- WPAN: Bluetooth, ZigBee, 6LoWPAN, IEEE 802.15.4, UWB, etc.

❖ Application Layer

Smart Environment Application Domains

Service Domain	Services					
Smart Home	Entertainment, Internet Access					
Smart Office	Secure File Exchange, Internet Access, VPN, B2B					
Smart Retail	Customer Privacy, Business Transactions, Business Security, B2B, Sales & Logistics Management					
Smart City	City Management, Resource Management, Police Network, Fire Department Network Transportation Management, Disaster Management					
Smart Agriculture	Area Monitoring, Condition Sensing, Fire Alarm, Trespassing					
Smart Energy & Fuel	Pipeline Monitoring, Tank Monitoring, Power Line Monitoring, Trespassing & Damage Management					
Smart Transportation	Road Condition Monitoring, Traffic Status Monitoring, Traffic Light Control, Navigation Support, Smart Car Support, Traffic Information Support, ITS (Intelligent Transportation System)					
Smart Military	Command & Control, Communications, Sensor Network, Situational Awareness, Security Information, Military Networking					

IoT Architecture & Technologies

Reference

References

- J. Bradley, J. Barbier, and D. Handler, "Embracing the Internet of Everything To Capture Your Share of \$14.4 Trillion," Cisco, White Paper, 2013.
- J. Bradley, C, Reberger, A. Dixit, and V. Gupta, "Internet of Everything: A \$4.6 Trillion Public-Sector Opportunity," Cisco, White Paper, 2013.
- D. Evans, "The Internet of Everything," Cisco IBSG, White Paper, 2012.
- S. Mitchell, N. Villa, M. Stewart-Weeks, and A. Lange, "The Internet of Everything for Cities," Cisco, White Paper, 2013.
- O. Hersent, D. Boswarthick, and O. Elloumi, The Internet of Things: Key Applications and Protocols. John Wiley & Sons, Dec. 2011.
- "Machine 2 Machine Perspective on Industry Status (Key Challenges and Opportunities)," Frost & Sullivan, Research Paper, Nov. 2011.
- "M2M Sector Map," Beecham Research, Sep. 2011. [Online] Available from: http://www.beechamresearch.com/download.aspx?id=18 [Accessed June 1, 2015]

References

- F. Behmann and K. Wu, Collaborative Internet of Things (C-IoT). John Wiley & Sons, 2015.
- J. Gubbia, R. Buyyab, S. Marusica, and M. Palaniswamia, "Internet of Things (IoT): A vision, architectural elements, and future directions," Future Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sep. 2013.
- L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, Oct. 2010.
- S. Li, L. D. Xu, and S. Zhao, "The Internet of Things: a Survey," Information Systems Frontiers, vol. 17, no, 2, pp. 243-259, Apr. 2015.
- A. J. Jara, L. Ladid, and A. Skarmeta, "The Internet of Everything through IPv6: An Analysis of Challenges, Solutions and Opportunities," Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 4, no. 3, pp. 97-118, 2013.
- O. Vermesan and P. Friess, Internet of Things Global Technological and Societal Trends From Smart Environments and Spaces to Green ICT. River Publishers, 2011.

References

- O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I. S. Jubert, M. Mazura, M. Harrison, M. Eisenhauer, and P. Doody, "Internet of Things Strategic Research Roadmap," European Research Cluster on the Internet of Things, Sep. 2011.
- IEEE Std. 802.15.4-2006, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE, Sep. 2006.
- N. Kushalnagar, G. Montenegro, and C. Schumacher, "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals," IETF RFC 4919, Aug. 2007.
- G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," IETF RFC 4944, Sep. 2007.
- ZigBee Alliance, "ZigBee specification: ZigBee document 053474r13 Version 1.1," Dec. 2006.
- ZigBee Alliance, www.zigbee.org