3.
$$\beta_{n} = \alpha$$
 $\overline{O_{n}}$
 $\overline{O_{n}} = 0$
 $Q_{n+1} = Q_{n} + \text{StepSize}(R_{n} - Q_{n})$
 $= Q_{n} + \beta_{n}(R_{n} - Q_{n})$
 $= \beta_{n}R_{n} + (1 - \beta_{n})Q_{n}$
 $= \beta_{n}R_{n} + (0 - \alpha)Q_{n}$
 $= \beta_{n}R_{n} + (0 - \alpha)Q_{n}$

Similarly,

 $Q_{n} = \beta_{n}R_{n} + (0 - \alpha)Q_{n}$
 $= \beta_{n$

Generalised formula: $Q_{n+1} = \sum_{i=0}^{\infty} \left(\frac{O_{n-i}}{O_n} \right) (1-\alpha)^i \beta_{n-i} \beta_{n-i} \beta_{n-i}$ $+ \left(\frac{O_0}{O_n} \right) (1-\alpha)^n Q_1$ As we know $O_0 = 0$, $Q_{n+1} = \sum_{i=0}^{\infty} \left(\frac{O_{n-i}}{O_n} \right) (1-\alpha)^i \beta_{n-i} \beta_{n-i} \beta_{n-i}$ As we don't have any term of Q_1 in the final expression, Q_{n+1} is independent of initial bias (Q_{-1})

Inthecase of non-Stationary & greedy performs the best followed by tell and Optimistic and VCB. In the beginning optimistic performs better as it takes ' only best possible action without exploring but in the long run, & greedy gets a better reward. In the case of Stationary, VCB and optimistic perform better than 18-greedy method. Here, again optimistic performs better in the start. UCB and optimistic and very dose in perfor - mance but UCB is better (slightly).

2. Observation:	We observe spikes in the intial sleps of learning	as most of the agents would by to go through	all passible actions and seceive works ponding	sewonds. Now based on these sew ands, they	have a very high chance to pick the	sinon the bost remard.		Similar at start leut Egreedy oviertakes as for a	long sum enploying with exploiting is better than	just enploiting.	
2.	We	20	m	gen	4	oin.	6	5,4	3	, S	