Ranking Based on the paper 'Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks'

A) CNN Architecture

Figure 2: Our deep learning architecture for reranking short text pairs.

1) Entity(document) and Query (Type) matrix:

The input to our sentence model is a sentence s treated as a sequence of words: $[w\ 1\ ,..,\ w\ |s|\].$ For entity, it will be the context words in order of their positions. Where

2) Convolution: [Same as paper]3) Activation: [Same as paper]4) Pooling: [Same as paper]

Till here we will get the representation of type and entity

5) Matching Type and Entity

Given the output of our sentence ConvNets for processing queries and documents, their resulting vector representations x q and x d , can be used to compute a query-document similarity score.

$$sim(\mathbf{x}_q, \mathbf{x}_d) = \mathbf{x}_q^T \mathbf{M} \mathbf{x}_d,$$
 (2)

where $\mathbf{M} \in \mathbb{R}^{d \times d}$ is a similarity matrix. The Eq. 2 can be viewed

Output Layer: Last layers will be the probability distribution over labels.

B) Non-linguistic features

Entity Salience Task could be used as non linguistic features

1. A New Entity Salience Task with Millions of Training Examples:

- i) Index of the sentence in which the first mention of the entity appears.
- ii) Number of times the head word of the entity's first mention appears.
- iii) Number of mentions of that entity.

Entity centrality: All the features described above use only information available within the document. But articles are written with the assumption that the reader knows something about at least some of the entities involved. An entity may be mentioned just once but may be closely related to other entities.

Entity Centrality using Weighted page rank as a measture. Where a directed edge between E1 -> E2 represents P(E2|E1), the probability of observing E2 in a document given that we have observed E1. We estimate P (E 2 |E 1) by counting the number of training documents in which E 1 and E 2 co-occur

and normalizing by the number of training documents in which E1 occurs.

The nodes' initial PageRank values act as a prior, where the uniform distribution, used in the classic PageRank algorithm, indicates a lack of prior knowledge. Since we have some prior signal about salience, we initialize the node values to the normalized mention counts of the entities in the document. We use a damping factor d, allowing random jumps between nodes with probability 1-d, with the standard value d=0.85.

2. Understanding document aboutness-Identifying Salient Entities

- i) tf.idf of entity in D.
- ii) length of D
- iii) Norm frequency of entity

3. SEL: a Unified Algorithm for Entity Linking and Saliency Detection

Table 2: Light Features for Supervised Candidate Pruning: features are relative to a candidate entity c_j

1. positions	first, last, average, and standard deviation of the normalized positions of the spots referring to c_j
2. first field positions	document D is subdivided in 4 fields: the title, the first three sentences, the last three sentences, and the
	middle sentences; the normalized position of the first spot referring to c_j is computed for each field
3. average position in sen-	the average position of spots referring to c_j across the sentences of the document (salient entities are
tences	usually mentioned early)
4. field frequency	number of spots referring to c_j computed for each field of the document
5. capitalization	True iff at least one mention of c_j is capitalized
6. uppercase ratio	maximum fraction of uppercase letters among the spots referring to c_j
7. highlighting	True iff at least one mention of c_j is highlighted in bold or italic
8. average lengths	average term- and character-based length of spots referring to c_j
9. idf	maximum Wikipedia inverse document frequency among the spots referring to c_j
10. tf-idf	maximum document spot frequency multiplied by idf among the spots referring to c_j
11. is title	True iff at least one mention of c_j is present in the document title
12. link probabilities	maximum and average link probabilities of the spots referring to c_j
13. is name/person	True iff at least one mention of c_j is a common/person name (based on Yago – http://goo.gl/glfBYN)
14. entity frequency	total number of spots referring to c_j
15. distinct mentions	number of distinct mentions referring to c_j
16. not ambiguity	True iff at least one mention of c_j for which c_j is the only candidate entity
17. ambiguity	minimum, maximum and average ambiguity of the spots referring to c_j ; spot ambiguity is defined as 1
	minus the reciprocal of the number of candidate entities for the spot
18. commonness	maximum and average <i>commonness</i> of the spots referring to c_j
19. max commonness ×	maximum commonness multiplied by the maximum link probability among the spots referring to c_j
max link probability	
20. entity degree	in-degree, out-degree and (undirected) degree of c_j in the Wikipedia citation graph
21. entity degree ×	maximum commonness among the spots of c_j multiplied by the degree of c_j
max commonness	
22. document length	number of characters in D