

which is the path integral of the "linear differential form"
Path integrals have imperent applications in pure and applied mathematics, and are connected
to double megrals through Green's Theorem
Line Integrals The expression L,
L = P(n,y) dn + Q(n,y) dy
is called a linear differential form. These appear in path/line integrals over a given curve
appear in path/line integrals over a given curve
C in ny-plane. Such Megrals can be
evaluated/computed by mong the specification of (to covert L to be expressed in one of the
to conert L to be expressed in only me
variables only Example Courider L= 10 rily da + (3x+2y) dy
3 rample contract Live along ourse C which is defined
and integrate this along surve C which is defined by $C: y = n^2$, from $(0,0)$ to $(1,1)$.
$C \cdot \left(y = x^{2} \right) $
$I = \int $
and $n:0 \longrightarrow 1$
= \int 10 nd y dn + (3 n + 2y) dy convert everything to x
Con 15 of 1 young 1

$$= \int_{0}^{1} |0x^{4}| dx + (3x + 2x^{2}) 2x dx.$$

$$= \int_{0}^{1} (10x^{4} + 4x^{3} + 6x^{2}) dx., \text{ a familiar}$$

$$= \left[2x^{5} + x^{4} + 2x^{3} \right]_{0}^{1}$$

$$= 2 + (x + 2) = 5$$
Theorem (Some backing propolities of path integrals).

1. Path Titing als are linear.

$$\int_{0}^{1} |x| + |y| + |y|$$

2. Reversing direction. y 1 C & B $\int L = - \int L$ where C' is the curre C, y 1 c's B fraversed in the opposite direction. $\int_{0}^{b} f(n) dn = - \int_{0}^{a} f(n) dn$ a b 3. Subdividing the curve. Concatenation. C_2 C_3 C_4 C_5 C_7 $\int_{C_{1}} L = \int_{C_{1}} L + \int_{C_{2}} L.$ Recall b $f(n) dn = \int_{a}^{b} f(n) dn + \int_{a}^{b} f(n) dn$

Example Let's integrate L from prev. example. from (0,0) to (1,1), this time along the curve C_2 y_1 C_4 $C_2 = C_3 + C_4$ $(0,0) C_3 1. \qquad \mathcal{D} = (1,0)$ $\int L = \int L + \int L , \text{ by subdividing } C_2$ $C_2 \qquad C_3 \qquad C_4$ $On \quad C_3: \quad y=0, \quad n: \quad 0 \longrightarrow 1,$ $\Rightarrow dy=0$ On C_4 : n = 1, dn = 0, $y: 0 \longrightarrow 1$. L= 10 n² y dn + (3n + 2y) dy. So $\int L = \int 10.\pi \cdot 0. dn + (3n + 2.0) \cdot 0 \int 0 C_3$ + 1 10 y. 0 + (3 + 2y) dy, on C4. = \int \(\langle \) (3 + 2y) dy, all other contributions.

 $[3y+y^2]_0$ = 4.) And recall from previous example. C_{2} \(\frac{1}{2} = 5\) Although holh integrals went betreen the same endpoints A= (0,0), B=(1,1), they went along différent curves, and so produced différent values. this is typical behaviour. This is known as path dependence 1 L. But in some special cases the form L along different arrows, but betveen some endpoints, will always give some value. See later. Parametrised parles. Sometimes a curve C n parametrised by a Hird variable, & say. $C: \{(n(t), y(t)): t_0 \leq t \leq t, \}$

(n(to), y(to)) (x(t), y(t))Integrals along such curves can be by constring them to "touly". y

Example:

Upper

La from

La from も0と七台七, (-1,0) to (1,0) Chas the parametrisation as

(: f(los(t), sin(t)): , meanined

The parametrisation as t: T -> 0 } Jndy-yndn Evaluate the integral I= Transform using: $n = \log(t)$, $y = \sin(t)$ hy chain rule. dn = -sm(H) dt, dy = cos(H) dt, $I = \int \cos^2(t) \cos(t) dt - \sin(t) \cos(t) (-\sin(t) dt)$ $= \int_{-\pi}^{0} \cos(t) \left(\cos^{2}(t) + \sin^{2}(t) \right) dt.$

$$= h \frac{1}{n+g^{2}} + k \frac{1}{n+y^{2}} \frac{2y}{n+y^{2}}$$
So (Df) (1,0) = h + 0 = h

N=2

$$\frac{N=2}{2} + k^{2} \frac{2^{2}f}{2n^{2}} + 2hk \frac{3^{2}f}{2n^{2}y}$$

$$= h^{2} \frac{3^{2}f}{2n^{2}} + k^{2} \frac{3^{2}f}{2y^{2}} + 2hk \frac{3^{2}f}{2n^{2}y}$$

$$= h^{2} \left(\frac{-1}{(n+y^{2})^{2}}\right) + 2k^{2} \left(\frac{-y \cdot hy}{(n+y^{2})^{2}} + \frac{1}{n+y^{2}}\right)$$

$$+ 2hk \left(\frac{-2y}{(n+y^{2})^{2}}\right)$$
So ($b^{2}f$) (1,0)
$$= -h^{2} + 2k^{2}$$
So $f(1+h,k) \approx 0 + h + \frac{1}{2}(-h^{2}+2k^{2})$

 $=h+\frac{1}{2}(-h^2+2k^2)$

as required.