

Lab Report -08

Name of the Department: Computer Science and Engineering

Course Code: CSE 0713-1104

Course Title: Electrical Circuit Lab

Experiment No.: 08

Name of the Experiment: Study of Resonance behavior of a series of RLC circuits

with variable Capacitance.

Date of Experiment: 06-04-2025

Date of Submission: 13-04-2025

Instructor Signature & Date

Submitted by – Submitted to –

Name: Md Sojib Ahmed

ID Number: 06224205101006

Lecturer

Batch No: 18th

Semester: 1st Year 2nd Semester Khwaja Yunus Ali University Lecturer

Department of EEE

Khwaja Yunus Ali University

Name of the Experiment:

Measurement of Power and Power Factor using AC Circuit

Objectives:

- To measure power and power factor in a series RLC circuit using simulation.
- To understand the phase relationship between voltage and current.

Theory:

In AC circuits, power can be classified into three types:

- **Real Power (P):** The actual power consumed (in Watts).
- Apparent Power (S): The product of RMS voltage and current (in Volt-Amperes).
- Power Factor (pf): The ratio of real power to apparent power, given by:

Power Factor
$$= \cos \theta = \frac{P}{S}$$

For sinusoidal signals:

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$
, $I_{rms} = \frac{I_m}{\sqrt{2}}$

Power factor indicates whether the circuit is resistive, inductive, or capacitive in nature.

Circuit Diagram:

Fig. (1) AC Circuit for Power and Power Factor Measurement

Apparatus Used:

- AC Signal Generator
- Ammeter
- Voltmeter
- Resistor (R = 10Ω)
- Inductor (L = 0.1H)
- Proteus 8 Professional Software
- Connecting Wires

Working Procedure:

- 1. Opened Proteus 8 and constructed the circuit as shown.
- 2. Connected the ammeter in series and voltmeter in parallel with the load.

- 3. Used a VSM Signal Generator to supply AC voltage.
- 4. Measured the RMS current and peak voltage.
- 5. Calculated the real and apparent power.
- 6. Computed the power factor using the given formula.

Given Data:

- Peak Voltage, $V_m = 52 \text{ V}$
- Current, I = 0.37 A
- Real Power, P = 3.53 W

Calculation:

Apparent Power (S):

$$V_{rms} = \frac{V_m}{\sqrt{2}} = \frac{52}{1.414} = 36.77 \text{ V}$$

 $S = V_{rms} \times I = 36.77 \times 0.37 = 13.6 \text{VA}$

Power Factor (pf):

$$\cos\theta = \frac{P}{S} = \frac{3.53}{13.6} \approx 0.26$$

SL No.	Peak Voltage (V)	RMS Voltage (V)	Current (A)	Apparent Power (VA)	Real Power (W)	Power Factor
1	52	36.77	0.37	13.60	3.53	0.26
2	48	33.94	0.35	11.88	3.10	0.26
3	44	31.11	0.33	10.27	2.80	0.27
4	40	28.28	0.30	8.48	2.30	0.27

Result and Discussion:

- The apparent power was calculated to be **13.6 VA**, and the real power measured was **3.53 W**.
- This resulted in a **power factor of 0.26**, indicating a predominantly inductive circuit.
- The simulation verified the effect of phase difference between voltage and current on power factor.
- A low power factor suggests inefficiency due to reactive components.

Conclusion:

In this experiment, we successfully measured real and apparent power and determined the power factor of a series RLC circuit. The observed low power factor demonstrates the influence of inductive reactance, validating the concept of reactive power in AC circuits.