Linear regression

Dr. E.S.Gopi

Series editor, Signals and Communication, Springer publications, Co-ordinator and Head, Pattern recognition and Computational intellligence laboratory

Associate professor, Department of ECE National Institute of Technology Tiruchirappalli, Tamil Nadu, India

January 21, 2022

Motivation

Estimate the outcome of the random vector \mathbf{x} based on the noisy observations on the outcome of the random variable $t = f(\mathbf{x}) + \epsilon$.

Linear Regression

- 1. Linear Regression-Parametric approach
- 2. Maximum Likelihood approach
- 3. Least square estimation
- 4. Regularization technique
- 5. Error in Regression= $Bias^2 + var + Noise$
- 6. Bayes technique
- 7. Kernel smoothing

- 1. Consider $t = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon$
- 2. ${\bf t}$ is the observation and ϵ is Guassian distributed random variable with mean zero and variance $\frac{1}{\beta}$

- 1. Consider $t = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon$
- 2. **t** is the observation and ϵ is Guassian distributed random variable with mean zero and variance $\frac{1}{\beta}$
- 3. Training data: $x_1, x_2 \cdots x_N$ and the corresponding noisy observations $t_1, t_2 \cdots t_N$

- 1. Consider $t = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon$
- 2. **t** is the observation and ϵ is Guassian distributed random variable with mean zero and variance $\frac{1}{\beta}$
- 3. Training data: $x_1, x_2 \cdots x_N$ and the corresponding noisy observations $t_1, t_2 \cdots t_N$
- 4. Let us assume that the basis functions $\phi_0(\mathbf{x}), \phi_1(\mathbf{x}), \phi_2(\mathbf{x}) \cdots \phi_{M-1}(\mathbf{x})$ are known.

- 1. Consider $t = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon$
- 2. ${\bf t}$ is the observation and ϵ is Guassian distributed random variable with mean zero and variance $\frac{1}{\beta}$
- 3. Training data: $x_1, x_2 \cdots x_N$ and the corresponding noisy observations $t_1, t_2 \cdots t_N$
- 4. Let us assume that the basis functions $\phi_0(\mathbf{x}), \phi_1(\mathbf{x}), \phi_2(\mathbf{x}) \cdots \phi_{M-1}(\mathbf{x})$ are known.
- 5. The requirement is to estimate obtain the optimal value of ${\bf w}$

- 1. How do we estimate w
- 2. What is needed to estimate w

- 1. How do we estimate w
- 2. What is needed to estimate w
- 3. Let the prior density function of the unknown random vector \mathbf{w} is $f(\mathbf{w})$.

- 1. How do we estimate w
- 2. What is needed to estimate w?
- 3. Let the prior density function of the unknown random vector \mathbf{w} is $f(\mathbf{w})$.
- 4. The posterior density function of the random vector w given the observations $t_1, t_2, \dots, t_N \ \mathbf{x_1}, \mathbf{x_2} \dots \mathbf{x_N}$, is represented as $f(\mathbf{w}/\mathbf{t}, \mathbf{x})$

- 1. How do we estimate w
- 2. What is needed to estimate w?
- 3. Let the prior density function of the unknown random vector \mathbf{w} is $f(\mathbf{w})$.
- 4. The posterior density function of the random vector w given the observations $t_1, t_2, \dots, t_N \ \mathbf{x_1}, \mathbf{x_2} \dots \mathbf{x_2}$, is represented as $f(\mathbf{w}/\mathbf{t}, \mathbf{x})$
- 5. **w** is estimated as the conditional mean of the posterior density function $f(\mathbf{w}/\mathbf{t}, \mathbf{x})$

- 1. MAP Estimate: \mathbf{w} is estimated that maximizes the posterior density function $f(\mathbf{w}/\mathbf{t}, \mathbf{x})$
- 2. The likelihood function is obtained as follows $f(\mathbf{w}/\mathbf{t}, \mathbf{x}) = \frac{f(\mathbf{t}/\mathbf{w}, \mathbf{x})f(\mathbf{w}/\mathbf{x})}{f(\mathbf{t})}$

- 1. MAP Estimate: \mathbf{w} is estimated that maximizes the posterior density function $f(\mathbf{w}/\mathbf{t}, \mathbf{x})$
- 2. The likelihood function is obtained as follows $f(\mathbf{w}/\mathbf{t}, \mathbf{x}) = \frac{f(\mathbf{t}/\mathbf{w}, \mathbf{x})f(\mathbf{w}/\mathbf{x})}{f(\mathbf{t})}$
- 3. In this case, $f(\mathbf{w}/\mathbf{x})$ is assumed to be uniform distributed (Constant).
- 4. Also the denominator (t) is not playing any role in optimizing w that maximizes $f(\mathbf{w}/\mathbf{x})$

- 1. MAP Estimate: \mathbf{w} is estimated that maximizes the posterior density function $f(\mathbf{w}/\mathbf{t}, \mathbf{x})$
- 2. The likelihood function is obtained as follows $f(\mathbf{w}/\mathbf{t}, \mathbf{x}) = \frac{f(\mathbf{t}/\mathbf{w}, \mathbf{x})f(\mathbf{w}/\mathbf{x})}{f(\mathbf{t})}$
- 3. In this case, $f(\mathbf{w}/\mathbf{x})$ is assumed to be uniform distributed (Constant).
- 4. Also the denominator (t) is not playing any role in optimizing w that maximizes $f(\mathbf{w}/\mathbf{x})$
- 5. The optimal value of \mathbf{w} is estimated that maximizes the likelihood function $f(\mathbf{t}/\mathbf{w}, \mathbf{x})$

- 1. Thus optimal value of \mathbf{w} is estimated that maximizes the likelihood function $f(\mathbf{t}/\mathbf{w}, \mathbf{x})$
- 2. THIS IS KNOWN AS MAXIMUM LIKELIHOOD ESTIMATION

Likelihood function with N observations

$$f(t_1t_2\cdots t_N/\mathbf{w},\mathbf{x}) = K \prod_{i=1}^{i=N} e^{-\frac{(t_i-\mathbf{w}^T\phi(\mathbf{x}_i))^2}{2\sigma^2}}$$
(1)

- As logarithm is the increasing function, Maximizing Likelihood function is equivalent to maximizing the logarithm of the Likelihood function
- 2. Taking logarithm of (1), we get the following.

$$\ln(f(t_1t_2\cdots t_N/\mathbf{w},\mathbf{x})) = -\sum_{i=1}^{i=N} \frac{(t_i - \mathbf{w}^T\phi(x_i))^2}{2\sigma^2} + InK \quad (2)$$

Maximum Likelihood versus Least square solution

$$\ln(f(t_1t_2\cdots t_N/\mathbf{w},\mathbf{x})) = -\sum_{i=1}^{i=N} \frac{(t_i - \mathbf{w}^T\phi(x_i))^2}{2\sigma^2} + InK$$
 (3)

1. Maximizing (2) is equivalent to minimizing the following.

$$\frac{(t_i - w^T \phi(x_i))^2}{2\sigma^2} \tag{4}$$

2. This is the Least square solution

Matrix Representation

This can be written in the matrix form as follows.

$$\begin{bmatrix} \phi_0(x_1) & \cdots & \phi_{M-1}(x_1) \\ \phi_0(x_2) & \cdots & \phi_{M-1}(x_2) \\ \cdots & \cdots & \cdots \\ \phi_0(x_N) & \cdots & \phi_{M-1}(x_N) \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_{M-1} \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ \vdots \\ t_N \end{bmatrix}$$
 (5)

This is represented as follows. $\Phi \mathbf{w} = \mathbf{t}$ The solution is obtained using pseudo inverse as $\hat{w} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$

Observation

1. We understand that Maximum Likelihood estimation is identical as that of the Least square estimation $(?) \cdots$

Basis function

Examples of basis functions, showing polynomials on the left, Gaussians of the form in the centre, and sigmoidal of the form on the right.

$$\phi_j(x) = x^j \quad \phi_j(x) = \exp\left\{-\frac{(x - \mu_j)^2}{2s^2}\right\} \phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$
$$\sigma(a) = \frac{1}{1 + \exp(-a)} \quad \tanh(a) = 2\sigma(a) - 1$$

Prediction distribution

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta)p(\mathbf{w}|\mathbf{t}, \alpha, \beta) \,d\mathbf{w}$$
$$p(t|\mathbf{x}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}} \phi(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

where the variance $\sigma_N^2(\mathbf{x})$ of the predictive distribution is given by

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \phi(\mathbf{x}).$$

$$\sigma_{N+1}^2(\mathbf{x}) \leqslant \sigma_N^2(\mathbf{x}).$$

Prediction distribution

Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions

Prediction distribution

Plots of the function $y(x,\mathbf{w})$ using samples from the posterior distributions over \mathbf{w} corresponding to the plots in Figure

Regularization techniques.

- 1. The observation $t = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon$ is the parametric model.
- 2. In this, *t* is the scalar observation corresponding to the input vector **x**.
- 3. ϵ is Gaussian distributed with mean zero and variance $rac{1}{eta}$
- 4. Given the training data, establishing the relationship $y(\mathbf{x}) = w^T \phi(\mathbf{x})$ needs estimating the value of \mathbf{w} .

Regularization techniques.

- 1. Given the training data, establishing the relationship $y(\mathbf{x}) = w^T \phi(\mathbf{x})$ needs estimating the value of \mathbf{w} .
- 2. $f(\mathbf{w})$ is the prior density function
- 3. $f(\mathbf{w}/t_1t_2\cdots t_N)$ is the posterior density function.
- 4. $f(t_1t_2\cdots t_N/\mathbf{w})$ is the likelihood function.
- 5. They are related using Bayes as follows.

$$f(\mathbf{t}/\mathbf{w}) = \frac{f(\mathbf{t}/\mathbf{w})f(\mathbf{w})}{f(\mathbf{t})}$$
 (6)

Regularization techniques

- 1. It is observed that $f(\mathbf{t}/\mathbf{w})$ is modelled as Gaussian distributed with mean $\mathbf{w}^T \phi(x)$ and variance $\frac{1}{\beta}$
- 2. In Likelihood estimation, $f(\mathbf{w})$ is uniform distributed and hence maximizing $f(\mathbf{w}/\mathbf{t})$ (MAP) is identical as that of maximizing $f(\mathbf{t}/\mathbf{w})$
- 3. This is known as Maximum Likelihood estimation
- 4. As log is the increasing function Maximizing $f(\mathbf{t}/\mathbf{w})$ is same as that of maximizing the logarithm of the likelihood function.
- 5. This ends up solving the matrix $\Phi \mathbf{w} = \mathbf{t}$

Regularization Techniques

1.

$$\begin{bmatrix} \phi_0(x_1) & \cdots & \phi_{M-1}(x_1) \\ \phi_0(x_2) & \cdots & \phi_{M-1}(x_2) \\ \cdots & \cdots & \cdots \\ \phi_0(x_N) & \cdots & \phi_{M-1}(x_N) \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_{M-1} \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ \vdots \\ t_N \end{bmatrix}$$
(7)

Using pseudo inverse computation w is estimated as the following.

$$\mathbf{w} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t} \tag{8}$$

- 3. From the above, it is understood that the estimated vector **w** is data dependent
- 4. Ends up with Overfitting.

1. To circumvent this, the Least square problem is formulated with the constraints $\sum_{n=1}^{n=M} |w_n|^2 \le \eta$ as given below.

$$J = \frac{1}{2} \sum_{n=1}^{n=N} (t_n - \mathbf{w}^T \phi(\mathbf{x}))^2 + \frac{\lambda}{2} \sum_{n=1}^{n=M} |w_n|^2$$

2. The estimate is given as the following.

$$\mathbf{w} = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{t}$$
 (9)

3. λ is known as Regularization constant.

- 1. Number of datasets (L) =100
- 2. Number of data points (N) = 25
- 3. Number of Gaussian basis functions=24, i.e M=25

- 1. Number of datasets (L) =100
- 2. Number of data points (N) = 25
- 3. Number of Gaussian basis functions=24, i.e M=25

- 1. Number of datasets (L) =100
- 2. Number of data points (N) = 25
- 3. Number of Gaussian basis functions=24, i.e M=25

Contours of the regularization term in for various values of the parameter q.

$Bias^2 + Variance$

$$\overline{y}(x) = \frac{1}{L} \sum_{l=1}^{L} y^{(l)}(x)$$

$$(\text{bias})^2 = \frac{1}{N} \sum_{n=1}^{N} {\{\overline{y}(x_n) - h(x_n)\}}^2$$

$$\text{variance} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{n=1}^{L} {\{y^{(l)}(x_n) - \overline{y}(x_n)\}}^2$$

$Bias^2 + Variance$

- 1. The observation $t = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon$ is the parametric model.
- 2. In this, t is the scalar observation corresponding to the input vector \mathbf{x} .
- 3. ϵ is Gaussian distributed with mean zero and variance $\frac{1}{\beta}$
- 4. Given the training data, establishing the relationship $y(\mathbf{x}) = w^T \phi(\mathbf{x})$ needs estimating the value of **w**.

- 1. Given the training data, establishing the relationship $y(\mathbf{x}) = w^T \phi(\mathbf{x})$ needs estimating the value of \mathbf{w} .
- 2. $f(\mathbf{w})$ is the prior density function
- 3. $f(\mathbf{w}/t_1t_2\cdots t_N)$ is the posterior density function.
- 4. $f(t_1t_2\cdots t_N/\mathbf{w})$ is the likelihood function.
- 5. They are related using Bayes as follows.

$$f(\mathbf{t}/\mathbf{w}) = \frac{f(\mathbf{t}/\mathbf{w})f(\mathbf{w})}{f(\mathbf{t})}$$
(10)

- 1. It is observed that $f(\mathbf{t}/\mathbf{w})$ is modelled as Gaussian distributed with mean $\mathbf{w}^T \phi(x)$ and variance $\frac{1}{\beta}$
- 2. In Likelihood estimation, $f(\mathbf{w})$ is uniform distributed and hence maximizing $f(\mathbf{w}/\mathbf{t})$ (MAP) is identical as that of maximizing $f(\mathbf{t}/\mathbf{w})$
- 3. This is known as Maximum Likelihood estimation
- 4. As log is the increasing function Maximizing $f(\mathbf{t}/\mathbf{w})$ is same as that of maximizing the logarithm of the likelihood function.
- 5. This ends up solving the matrix $\Phi \mathbf{w} = \mathbf{t}$

1. Using pseudo inverse computation \mathbf{w} is estimated as the following.

$$\mathbf{w} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{x} \tag{11}$$

2. What if **w** is assumed as Multivariate Gaussian density function?

- 1. If the prior density function $f(\mathbf{w})$ is assumed as Multivariate Gaussian density function with mean $\mathbf{m_o}$ and co-variance matrix $\mathbf{S_o}$.
- 2. Then the Aposterior density function of \mathbf{w} given \mathbf{t} is also Gaussian with mean vector $\mathbf{m}_{\mathbf{N}}$ and co-variance matrix $\mathbf{S}_{\mathbf{N}}$ as shown below.

$$\mathbf{m_N} = \mathbf{S_N} (\mathbf{S_o}^{-1} m_o + \beta \mathbf{\Phi}^\mathsf{T} \mathbf{t})$$
$$\mathbf{S_N} = (\mathbf{S_o}^{-1} + \beta (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi}))^{-1}$$

- 1. If the prior density function $f(\mathbf{w})$ is assumed as Multivariate Gaussian density function with mean $\mathbf{m_o}$ and co-variance matrix $\mathbf{S_o}$.
- 2. Then the Aposterior density function of \mathbf{w} given \mathbf{t} is also Gaussian with mean vector $\mathbf{m}_{\mathbf{N}}$ and co-variance matrix $\mathbf{S}_{\mathbf{N}}$ as shown below.

$$\mathbf{m_N} = \mathbf{S_N} (\mathbf{S_o}^{-1} m_o + \beta \mathbf{\Phi}^\mathsf{T} \mathbf{t})$$
$$\mathbf{S_N} = (\mathbf{S_o}^{-1} + \beta (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi}))^{-1}$$

3. What is the Conditional mean , Conditional median and the Conditional mode estimate of the posterior density function $f(\mathbf{w}/\mathbf{t})$?

1. Consider the case when $\mathbf{m_o}$ is zero vector and the covariance matrix is diagonal as shown below.

$$S_o = \frac{1}{\alpha}I\tag{12}$$

2.

$$\begin{aligned} \mathbf{m}_{\mathsf{N}} &= \beta \mathbf{S}_{\mathsf{N}} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \\ \mathbf{m}_{\mathsf{N}} &= \beta ((\mathbf{S}_{\mathsf{o}}^{-1} + \beta (\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}))^{-1})^{-1} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \\ \mathbf{m}_{\mathsf{N}} &= \beta (\alpha \mathbf{I} + \beta (\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}))^{-1} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \end{aligned}$$

1.

$$\begin{split} \mathbf{m}_{N} &= \beta \mathbf{S}_{N} \boldsymbol{\Phi}^{\mathsf{T}} \mathbf{t} \\ \mathbf{m}_{N} &= \beta ((\mathbf{S}_{o}^{-1} + \beta (\boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Phi}))^{-1}) \boldsymbol{\Phi}^{\mathsf{T}} \mathbf{t} \\ \mathbf{m}_{N} &= \beta (\alpha \mathbf{I} + \beta (\boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Phi}))^{-1} \boldsymbol{\Phi}^{\mathsf{T}} \mathbf{t} \\ \mathbf{m}_{N} &= (\boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Phi} + \frac{\alpha}{\beta} \mathbf{I})^{-1} \boldsymbol{\Phi}^{\mathsf{T}} \mathbf{t} \end{split}$$

- 1. $\mathbf{w} = \mathbf{m}_{\mathbf{N}} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi} + \frac{\alpha}{\beta}\mathbf{I})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t}$
- 2. This solution can be viewed as the Regularized least square solution with $\lambda=\frac{\alpha}{\beta}$

$$y(x, \mathbf{w}) = w_0 + w_1 x$$
$$\beta = (1/0.2)^2 = 25$$
$$\alpha = 2.0$$

Kernel smoothing

$$y(\mathbf{x}, \mathbf{m}_N) = \mathbf{m}_N^{\mathrm{T}} \phi(\mathbf{x}) = \beta \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \Phi^{\mathrm{T}} \mathbf{t} = \sum_{n=1}^N \beta \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \phi(\mathbf{x}_n) t_n$$
$$y(\mathbf{x}, \mathbf{m}_N) = \sum_{n=1}^N k(\mathbf{x}, \mathbf{x}_n) t_n$$

$$k(\mathbf{x}, \mathbf{x}') = \beta \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \phi(\mathbf{x}')$$

is known as the smoother matrix or the equivalent kernel.

Kernel smoothing

Reference

- 1. Christopher Bishop, Pattern recognition and Machine Learning, Springer, 2006.
- 2. E.S.Gopi, Pattern recognition and computational intelligence, Springer, 2020.

Book

