1st Help Session for Mathematical Finance

Leifu Zhang

This Version: January 23, 2019

How to Solve 1st Order Linear ODEs

• A typical first order linear ODE:

$$y' + a(t)y = h(t).$$

- Its general solution is $y(t) = y_h(t) + y_p(t)$.
- $y_h(t)$ is the general solution to y' + a(t)y = 0:

$$y_h(t) = Ck(t),$$

where $k(t) = e^{-\int_{-t}^{t} a(x)dx}$.

• $y_p(t) = k(t) \int_0^t h(x)/k(x) dx$ is a particular solution.

How to Solve 1st Order Linear ODEs

• A typical first order linear ODE:

$$y' + a(t)y = h(t).$$

- Its general solution is $y(t) = y_h(t) + y_p(t)$.
- $y_h(t)$ is the general solution to y' + a(t)y = 0:

$$y_h(t) = Ck(t),$$

where $k(t) = e^{-\int_{-t}^{t} a(x)dx}$.

- $y_p(t) = k(t) \int_0^t h(x)/k(x) dx$ is a particular solution.
- Exercise: solve $y' + 2y = t^2 + 1$ with y(1) = 1/2.

Quadratic Function Optimization

A quadratic function can be written as

$$f(x) = ax^2 + bx + c,$$

where $a \neq 0$.

- A stationary point of f(x) is a solution to f'(x) = 0.
- The unique stationary point of f(x) is $x^* = -\frac{b}{2a}$.
- First year calculus: f(x) is maximized (minimized) at x^* if a < (>)0.

Leifu Zhang (Finance)

Quadratic Function Optimization

A quadratic function can be written as

$$f(x) = ax^2 + bx + c,$$

where $a \neq 0$.

- A stationary point of f(x) is a solution to f'(x) = 0.
- The unique stationary point of f(x) is $x^* = -\frac{b}{2a}$.
- First year calculus: f(x) is maximized (minimized) at x^* if a < (>)0.
- Exercise: maximize $f(x) = -x^2 + 4x + 5$.

Some Concepts in Probability Theory

Definition: σ -algebra

Let $\Omega \neq \emptyset$ and $\mathcal{F} \subset 2^{\Omega}$. \mathcal{F} is a σ -algebra if (i) $\emptyset \in \mathcal{F}$; (ii) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$; (iii) $A_1, A_2, ...$, belongs to $\mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Some Concepts in Probability Theory

Definition: σ -algebra

Let $\Omega \neq \emptyset$ and $\mathcal{F} \subset 2^{\Omega}$. \mathcal{F} is a σ -algebra if (i) $\emptyset \in \mathcal{F}$; (ii) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$; (iii) $A_1, A_2, ...$, belongs to $\mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Definition: Probability Measure

A mapping $P: \mathcal{F} \to [0,1]$ is a probability measure if (i) $P(\Omega) = 1$; (ii) $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$ where $A_i \cap A_j = \emptyset$ whenever $i \neq j$.

Some Concepts in Probability Theory

Definition: σ -algebra

Let $\Omega \neq \emptyset$ and $\mathcal{F} \subset 2^{\Omega}$. \mathcal{F} is a σ -algebra if (i) $\emptyset \in \mathcal{F}$; (ii) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$; (iii) $A_1, A_2, ...$, belongs to $\mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Definition: Probability Measure

A mapping $P: \mathcal{F} \to [0,1]$ is a probability measure if (i) $P(\Omega) = 1$; (ii) $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$ where $A_i \cap A_j = \emptyset$ whenever $i \neq j$.

Definition: Probability Space

The triple (Ω, \mathcal{F}, P) is a probability space.

Filtration and Martingale

Definition: Filtration

A filtration is an incerasing sequence of σ -algebras $(\mathcal{F}_t)_{t\geq 0}$ with $\mathcal{F}_m\subset\mathcal{F}_n\subset\mathcal{F}$ for all $m\leq n$.

Definition: Martingale

Let $(\mathcal{F}_t)_{t\geq 0}$ be a filtration. A stochastic process $(X_t,\mathcal{F}_t)_{t\geq 0}$ is a martingale if (i) $\mathbb{E}[|X_t|]<\infty, \forall t\geq 0$; (ii) X_t is \mathcal{F}_t -measurable $\forall t\geq 0$; (iii) For any $m\leq t$, $\mathbb{E}[X_t|\mathcal{F}_m]=X_m$ a.s.

Exercise: prove a standard Brownian motion is a martingale w.r.t. to its natural filtration.

Itô's Lemma

A typical Itô process is

$$dX_t = \mu(t)dt + \sigma(t)dW_t.$$

• Itô's Lemma: If $f \in C^2$ (i.e., f is twice continuously differentiable), then

$$df(t,X_t) = \left[\mu(t)f_x + f_t + \frac{1}{2}\sigma^2(t)f_{xx}\right]dt + \sigma(t)f_xdW_t.$$

Leifu Zhang (Finance) 1st Help Session

Itô's Lemma

A typical Itô process is

$$dX_t = \mu(t)dt + \sigma(t)dW_t.$$

• Itô's Lemma: If $f \in C^2$ (i.e., f is twice continuously differentiable), then

$$df(t,X_t) = \left[\mu(t)f_x + f_t + \frac{1}{2}\sigma^2(t)f_{xx}\right]dt + \sigma(t)f_xdW_t.$$

• Exercise: assume $dX_t = \mu(t)dt + \sigma(t)dW_t$; $g(\cdot)$ is smooth enough; $\alpha \geq 0$; find $df(t, X_t)$ if (i) $f(t, x) = g(t) \frac{x^{1-\alpha}}{1-\alpha}$; (ii) $f(t, x) = g(t) \ln(x)$.

Leifu Zhang (Finance) 1st Help Session