Recall the proof structure for weak induction: To prove a infinite sequence of statements P(m), P(m+1), P(m+2), ... for some integer m and predicate $P(\cdot)$:

- Prove P(m).
- Prove that $P(n) \Rightarrow P(n+1)$ for all integers $n \ge m$.

Finally, conclude that, by weak induction, P(m), P(m+1), P(m+2), . . . are all true; that is, for all integers $n \ge m$, P(n) is true.

- 1. Prove or disprove: There is a real number x such that $x^3 < x < x^2$.
- 2. Prove or disprove: There is a real number x such that $x^4 < x < x^2$.
- 3. Prove by weak induction that, for any positive integer n, $\sum_{i=0}^{n} 2^i = 2^{n+1} 1$. Note that the notation $\sum_{i=0}^{n} 2^i$ denotes the finite sum $2^0 + 2^1 + \ldots + 2^n$.
- 4. Prove by weak induction that, for any natural number n, $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$. Note that the notation $\sum_{i=0}^{n} i^2$ denotes the finite sum $1^2 + 2^2 + 3^2 + ... + n^2$.
- 5. Prove by weak induction that, for any natural number $n \ge 12$, that n can be written as a sum of (non-negative multiples of) 4s and 5s. [Hint: Involving cases may be helpful.]
- 6. **Fun with Geometry**: Consider a collection of *n* lines in the plane that are in *general position*, meaning that no two lines are parallel and no three lines intersect at the same point. The *n* lines subdivide the plane into regions.
 - Prove that, for any collection of *n* lines in general position, the regions induced by the lines can be colored with only two colors so that any two adjacent regions have different colors.
 - **To think about later**: How many regions do the *n* lines create? Prove your answer using weak induction.

Review:

Leview:

X Proof
$$\{ \forall x, p(x) \}$$
 $\exists x, p(x) \Rightarrow \text{ easier. find an example.}$

Disproof $\{ \forall x, p(x) \} = \exists x, p(x) \} = \exists x, p(x)$
 $\exists x, p(x) \} = \exists x, p(x)$
 $\exists x, p(x) \} = \exists x, p(x)$
 $\exists x, p(x) \} = \exists x, p(x)$

* Weak induction for
$$P(n)$$
, $n \ge m$

Base case: Prove $P(m)$

IH: Assume $P(n)$ holds.

IS: Prove $P(n) \Rightarrow P(n+1)$ for $\forall n \ge m$

Conclusion: $P(n)$ holds for $\forall n \ge m$

1. Prove or disprove: There is a real number x such that $x^3 < x < x^2$.

Pf: Find an example:
$$X = -2$$
 (- $f = -2 = K$)

2. Prove or disprove: There is a real number x such that $x^4 < x < x^2$.

Direct proof:
$$x^4 - x \ge 0$$
 or $x^2 - x \le 0$
 $\times (x^3 - 1) \ge 0$ or $\times (x - 1) \le 0$
 $\times (x - 1) (x^2 + x + 1) \ge 0$ or $\times (x - 1) \le 0$
 $(x + \frac{1}{4})^2 + \frac{3}{4} > 0$
 $\times (x - 1) \ge 0$ must hold

Method 2:

Prove (**) by contradiction.

Suppose not,
$$\exists x \leq t, \quad x^4 \leq x \leq x^2$$

Since $x^4 \leq x$, we must have $x > 0$

(o/n $x \leq 0$, $x^4 \geq 0 \geq x$ which is a contradiction)

Thus, $x^3 < 1 < x$, but $x^3 > x$ for $x > 1$.

So (**) holds

5. Prove by weak induction that, for any natural number $n \geq 12$, that n can be written as a sum of (non-negative multiples of) 4s and 5s. [Hint: Involving cases may be helpful.]

" + nEN, N>12, 3 a, b EZ + st. n=4a+56"

Q Ease case: Prove PC12)

Note that 12 = 4.3, 6.0 P(12) holds

QIH: Assume P(n) holds for arbitrary NZ 12

@ IS: By IH, = a, b \ Z + 4x. n = 4a+tb

We prove P(N+1) by cases.

1) $a \ge 1$, n+1 = n+5-4

= 4a+ 16+5-V

= 4(a-1) + 5(b+1) 0' = 0 b = 0

2) $\alpha = 0$ N = 16 for 620

 $|h+1| = |b+1| = |b+5-4| \times |b| = |b| + |b-15| = |b| + |b-2| +$

Since N = 12, ne must have b = 3. 6-3=0

=> P(n+1) holds

By weak induction, Pln) holds for +n=12. NEN *

Check: Any two adjacent regions Sall on the left of L

all on the right of L

one left of L

one right of L =) Plati) holds Bry induction, Plus holds for the Et

$$k(1) = 2$$

$$R(\psi) = 1$$

$$R(n) = \frac{n(n+1)}{2} + 1$$