Ničelna prisila

Ines Meršak

Mentor: prof. dr. Sandi Klavžar

Definicija

G = (V, E) končen enostaven neusmerjen graf

- $oxed{I} Z \subset V$ množica črnih vozlišč, $V \setminus Z$ množica belih vozlišč
- 2 $\forall u \in Z$, ki ima natanko enega belega soseda v, vozlišče v pobarvamo črno
- drugo točko ponavljamo, dokler še lahko naredimo kakšno spremembo

Definicija

Množica ničelne prisile je tak $Z \subset V$, da so po koncu zgornjega postopka vsa vozlišča G pobarvana črno.

 $Z(G) = \min\{|Z|: Z \subset V, Z \text{ je množica ničelne prisile } G\}$

Motivacija

 $S_n(\mathbb{F})$ – simetrične matrike $n \times n$ nad poljem \mathbb{F} $A \in S_n(\mathbb{F})\colon \mathcal{G}(A)$ je graf z n vozlišči in povezavami $\{\{i,j\}\colon a_{ij} \neq 0, 1 \leq i < j \leq n\}$

Definicija

$$\mathcal{S}(G) = \{A \in S_n(\mathbb{R}) : \mathcal{G}(A) = G\}$$

 $\operatorname{mr}(G) = \min\{\operatorname{rang} A : A \in \mathcal{S}(G)\}$ minimalni rang grafa G
 $\operatorname{M}(G) = \max\{\operatorname{korang} A : A \in \mathcal{S}(G)\}$ maksimalni korang grafa G

$$mr(G) + M(G) = |V|$$

Problem minimalnega ranga grafa

Določiti želimo parameter mr(G) za nek graf G.

Rešitev tega problema je ekvivalentna rešitvi problema maksimalne večkratnosti lastne vrednosti v družini $\mathcal{S}(G)$.

Obraten problem lastnih vrednosti grafa

Določiti želimo, kakšne so lahko lastne vrednosti matrik iz $\mathcal{S}(G)$.

 $supp(x) = \{i : x_i \neq 0\}$ nosilec vektorja x

Trditev

 \mathbb{F} polje, $A \in \mathbb{F}^{n \times n}$, korang A > k za nek $k \in \mathbb{N}$, 0 < k < n. Za poljubno množico k indeksov I obstaja neničelni vektor $x \in \ker A$, da je $\operatorname{supp}(x) \cap I = \emptyset$.

Trditev

Z množica ničelne prisile grafa G, $A \in \mathcal{S}(\mathbb{F}, G)$. Če $x \in \ker A$ in $\operatorname{supp}(x) \cap Z = \emptyset$, je x = 0.

Trditev

 $Z\subseteq V$ množica ničelne prisile grafa G. Velja $\mathrm{M}^{\mathbb{F}}(G)\leq |Z|$ in torej $\mathrm{M}^{\mathbb{F}}(G)\leq Z(G)$ za poljubno polje \mathbb{F} .

$$Z(G) = M(G)$$

lzre<u>k</u>

Za naslednje družine grafov velja Z(G) = M(G):

- I vsi grafi G z $|G| \le 6$
- P_n, C_n, K_n
- 3 drevesa

Karakterizacija grafov z ekstremnimi Z(G)

Trditev

$$Z(G) = 1 \iff G = P_n \text{ za } n \ge 1$$

Trditev

Naj bo G povezan graf z $|G| \ge 2$. Potem velja

$$Z(G) = |G| - 1 \iff G = K_{|G|}$$

$$Z(C_n)=2$$
 za $n\geq 3$

$$Z(S_n)=n-2$$
 za $n\geq 4$

Kartezični produkt

Definicija

Kartezični produkt grafov $G \square H$ je graf, za katerega velja:

- 1 množica vozlišč je $V(G) \times V(H)$,
- 2 vozlišči (u,u') in (v,v') sta sosednji \iff
 - $\blacksquare u = v \text{ in } u' \sim v' \text{ } v \text{ } H \text{ } ali$
 - u' = v' in $u \sim v$ v G.

$\mathsf{Trditev}$

$$Z(G \square H) \le \min\{Z(G) \cdot |H|, Z(H) \cdot |G|\}$$

$$Q_n = Q_{n-1} \square K_2 \implies Z(Q_n) \le 2^{n-1}$$

Zgornja meja

Izrek

Naj bo G graf z n vozlišči, največjo stopnjo vozlišča označimo z Δ in privzamemo, da je najmanjša stopnja vozlišča vsaj 1.

$$Z(G) \le \frac{\Delta}{\Delta + 1} n$$

2 Če je G povezan in velja $\Delta \geq 2$, potem $Z(G) \leq \frac{(\Delta-2)n+2}{\Delta-1}$