Lecture 5: Convolutional Networks in Computer Vision

Haven't it all been about computer vision?

(in fact, No)

What is this?

Ostrich

What is this?

Cat

The art of asking right questions

What is this?

It is a car (and a road and a building)

A lot of applications need to answer Where?

The art of asking right questions

What is this?

It is a human!

A lot of applications need to answer **Who?**/ Is it the same person as X?

Questions answered by computer vision

- What is this?
- Where are the things?
 - ..in the image
 - ..in the 3D world
- Who is this?
- How far is this thing?
- What is he/she/they doing?
- What is the shape?
-

"Excuse me, is this the Society for Asking Stupid Questions?"

Format 1: semantic segmentation

Format 2: object detection

Today -

Format 3: instance segmentation

Images from Chaosmail Blog

- Semantic segmentaion:
 - Relatively fast/easy
 - Allows "complete" explanation
 - Merges instances
- Object detection
 - Relatively fast/easy
 - Distinguishes instances
 - Inaccurate for some classes
 - Incomplete
- Instance segmentation
 - Complete
 - Distinguish instances
 - Accurate
 - Slow/hard

Semantic segmentation

Semantic segmentation networks

Semantic segmentation

Problem 1: the answer is not full-size

Problem 2: limited receptive fields

Bed-of-nails upsampling operation

Nearest upsampling operation

Downsampling-upsampling architectures

These architectures look approximately like:

- Bottom stream ensures large receptive fields
- · Skip connections ensure fine spatial resolution

U-Net

An example of non-equivalent formulation

[Ronnerberger et al. MICCAl15]

U-Net for instance segmentation

[Ronnerberger et al. MICCAl15]

Upweighting thin borders:

Result:

"Fully-convolutional networks"

[Long et al. 2015]

Dilated convolutions

Dilated convolutions

FCN Dilated

[Yu & Koltun ICLR16]

Recap: ideas in semantic segmentation

- Dilated convolutions
- Upsampling layers/upconvolution layers (aka transposed convolution/deconvolution)
- Skip connections (to retain fine-details)
- We can mix and match all of the above

PSPNet

Method	Mean IoU(%)	Pixel Acc.(%)
ResNet50-Baseline	37.23	78.01
ResNet50+B1+MAX	39.94	79.46
ResNet50+B1+AVE	40.07	79.52
ResNet50+B1236+MAX	40.18	79.45
ResNet50+B1236+AVE	41.07	79.97
ResNet50+B1236+MAX+DR	40.87	79.61
ResNet50+B1236+AVE+DR	41.68	80.04

[Zhao et al. CVPR17]

ERFNet

	Layer	Type	out-F	out-Res
ENCODER	1	Downsampler block	16	512x256
	2	Downsampler block	64	256x128
	3-7	5 x Non-bt-1D	64	256x128
	8	Downsampler block	128	128x64
	9	Non-bt-1D (dilated 2)	128	128x64
	10	Non-bt-1D (dilated 4)	128	128x64
	11	Non-bt-1D (dilated 8)	128	128x64
	12	Non-bt-1D (dilated 16)	128	128x64
	13	Non-bt-1D (dilated 2)	128	128x64
	14	Non-bt-1D (dilated 4)	128	128x64
	15	Non-bt-1D (dilated 8)	128	128x64
	16	Non-bt-1D (dilated 16)	128	128x64
DECODER	17	Deconvolution (upsampling)	64	256x128
	18-19	2 x Non-bt-1D	64	256x128
	20	Deconvolution (upsampling)	16	512x256
	21-22	2 x Non-bt-1D	16	512x256
	23	Deconvolution (upsampling)	С	1024x512

[Romera et al. TITS 2018]

ERFNet

 24 ms on Titan X at 1024 x 512 resolution [Romera et al. TITS 2018]

"Deep Learning", Spring 2018: Lecture 5, "ConvNets in Vision"

Detection vs classification

Detection is harder than classification:

- Localization errors
- Huge class disbalance
- Variation in scale and aspect ratio's
- Tricky occlusions, including "intra"-occlusions

Intersection-over-Union measure

Common criterion for correct boxes:

Intersection / Union > threshold (e.g. o.5)

Double detection

Double detection of the same object is penalized as false positive

Non-maximum suppression

Almost invariably used in detection algorithms:

Input: set of detections ($\{B_i, s_i\}$)

- Sort in the descending order of s_i
- For i = 1 to N
- Pick the bounding box i
- Suppress all subsequent boxes with IoU > 50%

Multi-class detection

 Lots of research is going towards object detection for a large number of classes:

General ideas for object detection

- Sliding-window: use binary classification to classify every possible subwindow (infeasible with DL)
- Region proposal: pick a subset of prospective regions and score them with a binary classifier
- Bounding box regression: predict the coordinates of the boxes as real-valued variables

R-CNN framework

R-CNN: Regions with CNN features

1. Input image

- 2. Extract region proposals (~2k)
- 3. Compute CNN features
- **4**. Classify regions

- Use an external box proposal method
- Fine-tune a CNN to score proposal

[Girshik et al. CVPR14]

Example source of external proposals

Graph-based hierarchical segmentation based on maximum-spanning trees [Felsenszwalb & Huttenlocher IJCV2004]:

[Uijlings et al. ICCV11]

Bounding box regression

Goal: predicting 100 boxes that are likely to contain objects:

$$F_{\text{conf}}(x, c) = -\sum_{i,j} x_{ij} \log(c_i) - \sum_{i} (1 - \sum_{j} x_{ij}) \log(1 - c_i)$$

$$F(x,l,c) = \alpha F_{\rm match}(x,l) + F_{\rm conf}(x,c)$$

[Szegedy et al. 2013]

Optimization for bounding box regression

$$F_{ ext{match}}(x,l)=rac{1}{2}\sum_{i,j}x_{ij}||l_i-g_j||_2^2$$
 [Szegedy et al. 2014]

$$F_{ ext{conf}}(x,c) = -\sum_{i,j} x_{ij} \log(c_i) - \sum_{i} (1 - \sum_{j} x_{ij}) \log(1 - c_i)$$

$$F(x, l, c) = \alpha F_{\text{match}}(x, l) + F_{\text{conf}}(x, c)$$

Alternate:

Optimize x (optimal matching)

$$x^* = \arg\min_x F(x, l, c)$$
 subject to $x_{ij} \in \{0, 1\}, \sum x_{ij} = 1$

Optimize network params (backprop)

Fast R-CNN

- Processing lots of overlapping boxes is inefficient
- Alternative: [Girshick ICCV15]

Spatial pyramid pooling

[He et al. ECCV14]

Faster CNN

Faster CNN: Region-proposal network

- [Ren et al. NIPS15]

- Sparse set of positions
- At each positions, 9 centered "anchor" windows
- Each anchor is adjusted and scored for each class

Extension for Instance Segmentation

Mask R-CNN: adding mask prediction

Masks for different classes are predicted and scored independently (decoupling classification and segmentation)

[He et al. 2017]

Mask R-CNN results

[He et al. 2017]

Latest king of the hill: SSD detector

Examples: SSD detection

Localization Network

[Gidaris & Komodakis 2015]

Localization Network

"Deep Learning", Spring 2018: Lecture 5, "ConvNets in Vision"

Recap: ideas for detection

- ROI-pooling: sharing convolutional features
- Anchor+Regression: "fast sliding window"
- External proposals: can be better if there is a good external source

Verification problems in vision

Key question: do two photos show the same object/subject? (verification)

Face recognition datasets (e.g. *MSRA-CF*):

Re-identification datasets (e.g. *ViPER*):

Verification vs Classification

Key question: do two photos show the same object/subject? (verification)

- System must be able to handle unseen "classes"
- During training classes can be numerous, small-sized, imbalanced, etc.
- Example from last lecture: retrieval

Verification as embedding learning

Approach 1: classification-based

- Same idea as "Train on ImageNet, use for retrieval"
- The bigger the classification dataset, the better is the performance
- Training-time classes can be seen as prototypes for test-time classes

Face verification: "Deep face"

[Taigman et al. 2014]

- Classification network trained on 4030 people x ~1000 images.
- Target problem: verification (same vs different)

Face verification: "Deep face"

Different CNNs combined using SVM-learned weights on validation set

Pair-based learning (aka Siamese)

$$L^{+}((x_1, x_2); \theta) = \rho(f(x_1, \theta), f(x_2, \theta))$$

$$L^{-}((x_1, x_2); \theta) = \max(0, M - \rho(f(x_1, \theta), f(x_2, \theta)))$$

Example distances:

- 1 cos
- L2 (equivalent if normalization is added)
- Separate network (verification network)

NB: all embedding-based systems work better with normalized descriptors [Chopra et al. CVPRo5]

Google "FaceNet"

[Schroff et al. CVPR15]

- Use large mini-batches (1800, 40 images for several classes + lots of random)
- Take all positives from the batch
- Mine "semi-hard" negatives

$$||f(x_i^a) - f(x_i^p)||_2^2 < ||f(x_i^a) - f(x_i^n)||_2^2$$

Google "FaceNet" results

[Schroff et al. CVPR15]

Upto 99.63% on LFW (human is ~97%)

Performance vs training data:

<i>-</i>		
#images	VAL	-
2.6M	76.3%	-
26M	85.1%	_
52M	85.1%	
260M	86.2%	-

Oxford Face Recognition

No.	Method	Images	Networks	Acc.
1	Fisher Vector Faces [21]	-	-	93.10
2	DeepFace [29]	4M	3	97.35
3	Fusion [30]	500M	5	98.37
4	DeepID-2,3		200	99.47
5	FaceNet [17]	200M	1	98.87
6	FaceNet [17] + Alignment	200M	1	99.63
7	Ours	2.6M	1	98.95

- Start with classification
- Fine-tune last layers only with moderately hard triplets
- Dataset publicly available
- Models are available in Caffe zoo and MatConvNet zoo

Quadruplet losses: multi-batch loss

$$l(w,\theta;\ x_i,x_j,y_{ij}) = \left(1-y_{ij}\left(\theta-\|f_w(x_i)-f_w(x_j)\||^2\right)\right)_+$$

[Tadmor et al, NIPS16]

Quadruplet losses: histogram loss

$$p_{\text{reverse}} = \int_{-1}^{1} p^{-}(x) \left[\int_{-1}^{x} p^{+}(y) \, dy \right] \, dx = \int_{-1}^{1} p^{-}(x) \, \Phi^{+}(x) \, dx$$

[Ustinova & Lempitsky NIPS16]

Quadruplet losses: histogram loss

[Ustinova & Lempitsky NIPS16]

Jonathan Long, Evan Shelhamer, Trevor Darrell:

Fully convolutional networks for semantic segmentation. CVPR 2015

Olaf Ronneberger, Philipp Fischer, Thomas Brox:

U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI (3) 2015

Fisher Yu, Vladlen Koltun:

Multi-Scale Context Aggregation by Dilated Convolutions. ICLR 2016

Ross B. Girshick:

Fast R-CNN. ICCV 2015

Ross B. Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik:

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. CVPR 2014

Shaoqing Ren, Kaiming He, Ross B. Girshick, Xiangyu Zhang, Jian Sun: Object Detection Networks on Convolutional Feature Maps. NIPS 2015

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. ECCV (3) 2014

Koen E. A. van de Sande, Jasper R. R. Uijlings, Theo Gevers, Arnold W. M. Smeulders:

Segmentation as selective search for object recognition. ICCV 2011

Dumitru Erhan, Christian Szegedy, Alexander Toshev, Dragomir Anguelov: Scalable Object Detection Using Deep Neural Networks. CVPR 2014

Spyros Gidaris, Nikos Komodakis:

LocNet: Improving Localization Accuracy for Object Detection. CoRR abs/1511.07763

Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, Lior Wolf:
DeepFace: Closing the Gap to Human-Level Performance in Face Verification.
CVPR 2014

Sumit Chopra, Raia Hadsell, Yann LeCun: Learning a Similarity Metric Discriminatively, with Application to Face Verification. CVPR (1) 2005

Yi Sun, Yuheng Chen, Xiaogang Wang, Xiaoou Tang: Deep Learning Face Representation by Joint Identification-Verification. NIPS 2014

Florian Schroff, Dmitry Kalenichenko, James Philbin: FaceNet: A unified embedding for face recognition and clustering. CVPR 2015

Omkar Parkhi, Andrea Vedaldi, Andrew Zisserman: Deep Face Recognition. BMVC 2015

Andreas Geiger, Philip Lenz, Raquel Urtasun:

Are we ready for autonomous driving? The KITTI vision benchmark suite. CVPR 2012: 3354-3361

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu, Alexander C. Berg:

SSD: Single Sheep tearring parting 2018; CV-esture & "ConvNets in Vision"

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu, Alexander C. Berg: SSD: Single Shot MultiBox Detector. ECCV (1) 2016: 21-37

Oren Tadmor, Tal Rosenwein, Shai Shalev-Shwartz, Yonatan Wexler, Amnon Shashua: Learning a Metric Embedding for Face Recognition using the Multibatch Method. NIPS 2016: 1388-1389

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, Bernt Schiele: The Cityscapes Dataset for Semantic Urban Scene Understanding. CVPR 2016: 3213-3223

Evgeniya Ustinova, Victor S. Lempitsky: Learning Deep Embeddings with Histogram Loss. NIPS 2016: 4170-4178

Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick Mask R-CNN, ArXiV 2017

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia: Pyramid Scene Parsing Network. CVPR 2017: 6230-6239

Eduardo Romera, Jose M. Alvarez, Luis Miguel Bergasa, Roberto Arroyo: ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic Segmentation. IEEE Trans. Intelligent Transportation Systems 19(1): 263-272 (2018)