MATLAB HW 6

MATH 3043

- a. Write a MATLAB function that solves a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ by the gradient method. It should accept as inputs the matrix \mathbf{A} , the right handside \mathbf{b} , an error tolerance ϵ and an initial guess \mathbf{x}_0 . It should output an approximation, \mathbf{x}^* , and N, the number of iterations it takes to reach the error tolerance ϵ .
- b. Use the Poisson matrix code provided to generate a matrix A and a vector b by taking m = 18 and a matrix A' and vector b' by taking m = 98. Set $\mathbf{A} = -A$, $\mathbf{A}' = -A'$. We do this so that the matrices are positive definite, otherwise they are in fact negative definite.
- c. Use your function from (1) to solve the linear system $\mathbf{A}\mathbf{x} = -\mathbf{b}$ and $\mathbf{A}'\mathbf{x} = -\mathbf{b}'$ using an error tolerance of 10^{-8} . This will give two approximations, \mathbf{x}^* and \mathbf{x}'^* and two integers N and N'.
- d. Let $M = \max\{N, N'\}$. Modify your function in (1) so that instead of accepting an error tolerance ϵ as input, the function accepts n, the number of iterations to perform.
 - Use this modification to plot (using semilogy) the error between approximations generated and \mathbf{x}^* and \mathbf{x}'^* on the grid $(1 : \Delta : M)$, where Δ chosen so that you have around 50 100 grid points.
- e. Now repeat a. d. for the conjugate gradient method. Try plotting everything on a single semilogy plot. Be sure to fully label the plot in detail.

Date: May 2017.