МПС РФ

Омский государственный университет путей сообщения Факультет довузовской подготовки и профориентации Кафедра физики и химии

КРАТКИЙ СПРАВОЧНИК ПО ЭЛЕМЕНТАРНОЙ ФИЗИКЕ (7–11 классы)

МЕХАНИКА

Кинематика материальной точки

Tennewa mai	ериальной точки
Проекции перемещения на ко-	$s_x = x_2 - x_1, s_y = y_2 - y_1$
ординатные оси	
Скорость, перемещение и координата при равномерном движении (движении с постоянной скоростью $\vec{v} = const$) Сложение скоростей в нереля-	$\vec{\upsilon} = \frac{\vec{s}}{t}, \vec{s} = \vec{\upsilon} t, x = x_0 + \upsilon_x t$
тивистском случае (относительность движения)	$\vec{v}_{(Mam.moчки\ omh.\ henoobs.\ CO)} = \ = \vec{v}_{(Mam.moчкu\ omh.\ noobs.\ CO)}' + \ + \vec{u}_{(noobs.\ CO\ omh.\ henoobs.\ CO)}$
топыность дынженный)	или $\vec{v}'_{(21)} = \vec{v}_2 - \vec{v}_1$
Формулы кинематики равно- ускоренного движения (движения с постоянным ускоре- нием $\vec{a} = const$).	$\vec{s} = \vec{v}_0 t + \frac{\vec{a}t^2}{2}$ $\vec{v} = \vec{v}_0 + \vec{a}t$
нием $a=const$). При свободном падении тела $\vec{a}=\vec{g}$.	$\vec{s} = \frac{\vec{v} + \vec{v}_0}{2} t$ $v^2 - v_0^2 = 2 \vec{a} \vec{s}$
	$x = x_0 + v_{0x}t + \frac{a_x t^2}{2}$
Скорость и перемещение при неравномерном (произвольном) движении.	$\vec{v} = \frac{d\vec{s}}{dt}, \vec{s} = \int_{t_1}^{t_2} \vec{v}(t)dt$
Ускорение и скорость при произвольном движении	$\vec{a} = \frac{d\vec{v}}{dt}, \vec{v} = \vec{v}_0 + \int_{t_0}^{t} \vec{a}(t)dt$
Средняя скорость	$<\vec{v}> = \frac{\vec{s}_1 + \vec{s}_2 + \dots}{t_1 + t_2 + \dots} = \frac{\vec{s}}{t}$
Средняя путевая скорость	$\langle v \rangle = \frac{\ell_1 + \ell_2 + \dots}{t_1 + t_2 + \dots} = \frac{\ell}{t}$

Центростремительное (нор-	$a_n = \frac{v^2}{R} = 4\pi^2 n^2 R = w^2 R$
мальное) ускорение при дви-	$a_n = \frac{1}{R} = 4\pi \ n \ R = W R$
жении по окружности	10
Период и частота обращения	$T = \frac{\ell}{\upsilon} = \frac{2\pi R}{\upsilon}, n = \frac{1}{T}, T = \frac{t}{N}$
Угловая скорость при равно-	$\varphi = 2\pi N$ 2π
мерном вращении и ее связь с	$w = \frac{\varphi}{t} = \frac{2\pi N}{t} = 2\pi n = \frac{2\pi}{T}$
частотой вращения и периодом	
Путь при движении с постоян-	
ной по модулю скоростью	$\ell = \upsilon t$
Связь линейной скорости точки	
на окружности и нормального	$v = wR$, $a_n = w^2R$
ускорения с угловой скоростью	- <i>n</i>

Динамика материальной точки

Alliumini mare	phanbhun tuakn
Второй закон Ньютона	$\vec{a} = \frac{\vec{F}}{m}$
Третий закон Ньютона	$\vec{F}_{12} = -\vec{F}_{21}$
Условие равновесия материальной точки	$\vec{F}_{pes} = \Sigma \vec{F}_i = \vec{F}_1 + \vec{F}_2 + \dots = 0$
Уравнение движения	$m\vec{a} = \Sigma \vec{F}_i = \vec{F}_1 + \vec{F}_2 + \dots$
Закон Гука	$(F_{ynp})_x = -kx, F_{ynp} = k \ell - \ell_0 $
Закон всемирного тяготения	$F = G \frac{m_1 m_2}{r^2}$
Сила тяжести	$\vec{F}_{m_{\mathcal{R}}} = m\vec{g}$

Сила трения скольжения	$F_{mp} = \mu N$
Сила трения покоя	F_{mp} . F_{mp} скольжение $F_{mp} = F_{su}$ покой F_{su}
Выталкивающая сила (сила Архимеда)	$F_{_A}= ho_{_{\mathcal{H}\!c}}gV$
Давление столба жидкости (газа)	$p = p_0 + \rho gh$
Плотность	$ \rho = \frac{m}{V} $
Гидравлический пресс	$p = \frac{F_1}{S_1} = \frac{F_2}{S_2}$

Статика

Момент силы	$M = F\ell = Fr\sin\alpha$
Условия равновесия тела	$\vec{F}_{pes} = \Sigma \vec{F}_i = \vec{F}_1 + \vec{F}_2 + \dots = 0,$
	$M_{pe3z} = \sum M_{iz} = M_{1z} + M_{2z} + = 0$

Законы сохранения

341101121 1011111111111111111111111111111	
Импульс тела	$\vec{p} = m\vec{v}$
Закон сохранения импульса (в замкнутой системе тел)	$\sum_{i=1}^{n} \vec{p}_{i} = const$
Кинетическая энергия тела	$W_k = \frac{mv^2}{2}$

Потенциальная энергия силы	$W_{p} = mgh$
тяжести	p C
Поточника и над оноврид ониц	1 2
Потенциальная энергия силы	$W_p = \frac{kx^2}{2}$
упругости	2
Потенциальная энергия грави-	$m_1 m_2$
тационного взаимодействия	$W_p = -G \frac{m_1 m_2}{r}$
Механическая работа (работа	$A = F s \cos \alpha $ (при $\vec{F} = const$)
силы)	$A = F S \cos \alpha \text{ (IIPM } F = CONSt \text{)}$
Мощность	1
Мощность	$P = \frac{A}{t}, P = \vec{F} \vec{v}$
T	ι
Теорема о кинетической энергии	$A = W_{k2} - W_{k1}$
Работа консервативной силы	$A = -(W_{p2} - W_{p1}) = -\Delta W_p$
Механическая энергия тела	$W_{\text{Mex}} = W_k + W_p$
Закон сохранения механической	$W_{\text{new}} = const$
энергии (в замкнутой системе	MEA
при отсутствии сил трения)	$W_{k1} + W_{p1} = W_{k2} + W_{p2}$
Закон сохранения энергии	W = const
(в замкнутой системе тел)	
Коэффициент полезного дей-	A P
ствия	$\eta = rac{A_{noлезная}}{A_{coвершенная}} = rac{P_{noлезная}}{P_{sampa ченная}}$
412101	A совершенная $^{\Gamma}$ затраченная
Применение законов сохранения	$m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{u}_1 + m_2 \vec{u}_2$
импульса и энергии к абсолютно	$m_1)^2$ $m_1)^2$ $m_1)^2$ $m_1)^2$
упругому удару двух тел	$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{m_1 u_1^2}{2} + \frac{m_2 u_2^2}{2}$ $m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{u}$
H	2 2 2
Применение законов сохране-	$m_1 v_1 + m_2 v_2 = (m_1 + m_2) \vec{u}$
ния импульса и энергии к аб-	$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{(m_1 + m_2)u^2}{2} + \Delta W_{eH}$
солютно неупругому удару	$\begin{bmatrix} -\frac{1}{2} + \frac{2}{2} = \frac{1}{2} & \frac{2}{2} \end{bmatrix} + \Delta W_{6H}$
двух тел	

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА Молекулярная физика

толскулирнай физика	
Количество вещества, молярная масса	$v = \frac{N}{N_A}, M = m_0 N_A, v = \frac{m}{M}$
Концентрация молекул, давление	$n = \frac{N}{V}, p = \frac{\langle F_{\perp} \rangle}{S}$
Основное уравнение молеку- лярно-кинетической теории	$p = \frac{1}{3} m_0 n < v^2 >, p = \frac{2}{3} n < W_k >$
Температура как мера средней кинетической энергии поступательного движения молекул	$\langle W_k \rangle = \frac{3}{2} k_E T$
Среднеквадратичная скорость движения молекул	$\upsilon_{cp.\kappa B.} = \sqrt{\langle \upsilon^2 \rangle} = \sqrt{\frac{3RT}{M}}$
Уравнение состояния идеального газа (уравнение Менделеева—Клапейрона)	$p = nk_B T$, $pV = \frac{m}{M}RT$
Закон Дальтона о парциальных давлениях смеси газов	$p = p_1 + p_2 + p_3 + \dots$
Закон Бойля-Мариотта (при $m = const$, $T = const$)	$pV = const, p_1 V_1 = p_2 V_2$
Закон Гей-Люссака (при $m = const$, $p = const$)	$\frac{V}{T} = const, \frac{V_1}{T_1} = \frac{V_2}{T_2}$
Закон Шарля (при $m = const$, $V = const$)	$\frac{p}{T} = const, \frac{p_1}{T_1} = \frac{p_2}{T_2}$
Закон Авогадро (при нормальных условиях)	$V\big _{_{V=1,MO,7b}}=22,4\pi$

Термодинамика

1 ермодинамика	
Внутренняя энергия идеального одноатомного газа, изменение внутренней энергии	$W_{\scriptscriptstyle GH} = \frac{3}{2} \frac{m}{M} RT, \Delta W_{\scriptscriptstyle GH} = \frac{3}{2} \frac{m}{M} R \Delta T$
Внутренняя энергия идеального многоатомного газа	$W_{\scriptscriptstyle{ ext{ iny BH}}} = rac{i}{2} rac{m}{M} RT$
Работа газа при расширении, $(p = \text{const})$	$A = p(V_2 - V_1) = p \ \Delta V$
Работа газа при расширении в произвольном процессе	$A = \int_{V_1}^{V_2} p dV$
Теплоемкость, удельная теплоемкость емкость, молярная теплоемкость	$C = \frac{Q}{\Delta T}, c_m = \frac{C}{m} = \frac{Q}{m\Delta T}, c_v = \frac{C}{v}$
Теплота, необходимая при нагревании тела или отдаваемая телом при остывании	$Q_{\scriptscriptstyle H} = cm(t_{\scriptscriptstyle K}^{\scriptscriptstyle O} - t_{\scriptscriptstyle H}^{\scriptscriptstyle O})$
Теплота парообразования (конденсации)	$Q_n = rm (Q_{\kappa} = -rm)$
Теплота плавления (кристал- лизации)	$Q_{n\pi} = \lambda m, (Q_{\kappa p} = -\lambda m)$
Теплота сгорания топлива	$Q_{cz} = -qm$
Первый закон термодинамики	$Q = \Delta W_{_{\mathit{BH}}} + A$
Адиабатный процесс	$Q = \Delta W_{\rm \tiny GH} + A = 0$
Уравнение теплового баланса	$Q_1 + Q_2 + Q_3 + \dots + Q_n = 0$
КПД тепловой машины, КПД идеальной тепловой машины	$\eta = \frac{A}{Q_{_{H}}} = \frac{Q_{_{H}} - Q'_{_{X}}}{Q_{_{H}}}, \eta_{_{\max}} = \frac{T_{_{H}} - T_{_{X}}}{T_{_{H}}}$

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Электростатика

Ciainka
$q = \pm Ne$, $N = 1, 2, 3,$
$q - \pm ive$, $iv - 1, 2, 3,$
$q_1 + q_2 + q_3 + \ldots + q_n = const$
$ q_1 q_2 $, 1
$F = k_e \frac{ q_1 q_2 }{r^2}, \ k_e = \frac{1}{4\pi\epsilon_0}$
1770
$ q_1 q_2 $
$F = k_e \frac{ q_1 q_2 }{\varepsilon r^2}$
$\vec{E} = \frac{\vec{F}}{}$
E = -
9
$\vec{F} = q\vec{E}$
I' - qE
1 1
$E = k_e \frac{ q }{G r^2}$
$r^{e} \varepsilon r^{2}$
$E = egin{cases} k_e \dfrac{ q }{arepsilon r^2}, & r > R \ 0, & r < R \end{cases}$
$E = \left\{ \frac{\kappa_e}{\varepsilon r^2}, r > K \right\}$
0, r < R
$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots$
$\overline{E_0}$
$\varepsilon = \frac{E_0}{E}$
$W_{p} = qEx$
r -

Потенциальная энергия взаимодействия двух точечных зарядов	$W_p = k_e rac{q_1 q_2}{r}$
Потенциал электростатического поля	$\varphi = \frac{W_p}{q}$
Потенциал поля точечного заряда (в вакууме $\varepsilon=1$)	$\varphi = k_e \frac{q}{\varepsilon r}$
Потенциал электростатического поля заряженной сферы радиуса R (в вакууме $\varepsilon = 1$)	$arphi = \left\{ egin{aligned} k_e rac{q}{arepsilon r}, & r \geq R \ k_e rac{q}{arepsilon R}, & r \leq R \end{aligned} ight.$
Потенциал поля, созданного точечными зарядами (следствие принципа суперпозиции полей)	$\varphi = \varphi_1 + \varphi_2 + \dots + \varphi_n$
Работа электрического поля	$A = -\Delta W_p = q(\varphi_1 - \varphi_2) = qU$
Связь между напряженностью однородного электрического поля и разностью потенциалов	$E = \frac{U}{\Delta d}$
Электроемкость конденсаторов	$C = \frac{q}{U}$
Электроемкость плоского конденсатора, заряженной сферы	$C = \frac{\varepsilon \varepsilon_0 S}{d}, C = 4\pi \varepsilon \varepsilon_0 R$
Энергия заряженного конденсатора (электрического поля)	$W_p = \frac{qU}{2} = \frac{q^2}{2C} = \frac{CU^2}{2}$ $W_p = \frac{W_p}{V} = \frac{\varepsilon \varepsilon_0 E^2}{2}$
Объемная плотность энергии плоского конденсатора (энергия единицы объема)	$w_p = \frac{W_p}{V} = \frac{\varepsilon \varepsilon_0 E^2}{2}$
Параллельное соединение конденсаторов	$C = C_1 + C_2 +$ $q = q_1 + q_2 + + q_n$ $U = U_1 = U_2 = = U_n$
	"

Последовательное соединение конденсаторов	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
	$q_1 = q_2 = \dots = q_n = q$ $U = U_1 + U_2 + \dots + U_n$

Постоянный электрический ток

	ектрическии ток
Сила тока	$I = \frac{\Delta q}{\Delta t}, I = q_0 n v_{\partial p} S$
Квазистационарный ток	$i = \frac{dq}{dt}, q = \int_{t_1}^{t_2} i(t)dt$
Плотность тока	$j = \frac{I}{S}, \vec{j} = q_0 n \vec{v}_{\partial p}$
Закон Ома для участка цепи	$I = \frac{U}{R}$
Сопротивление проводников постоянного сечения	$R = \rho_e \frac{l}{S_{ceq}}$
Последовательное соединение проводников	$R = R_1 + R_2 + + R_n$ $I_1 = I_2 = = I_n = I$ $U = U_1 + U_2 + + U_n$
Параллельное соединение проводников	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$ $I = I_1 + I_2 + \dots + I_n$ $U = U_1 = U_2 = \dots = U_n$
Закон Джоуля-Ленца	$Q = IU\Delta t = I^2 R\Delta t = \frac{U^2}{R} \Delta t$
Мощность тока	$P = IU = I^2 R = \frac{U^2}{R}$

Электродвижущая сила	$\mathcal{E} = \frac{A_{cm}}{q}$
Закон Ома для замкнутой цепи, содержащей ЭДС	$I = \frac{\mathcal{E}}{R+r}$
Закон Фарадея	$m = kI \Delta t, k = \frac{1}{eN_A} \frac{M}{n}$

Магнетизм

Закон Ампера	$F = k_m \frac{2I_1I_2}{b} \ell, k_m = \frac{\mu_0}{4\pi}$
Сила Ампера	$F_{A} = B I \Delta \ell \sin \alpha$
Сила Лоренца	$F_{_{I\!I}} = q \upsilon B \sin \alpha$

Электромагнитная индукция

Магнитный поток	$\Phi = BS \cos \alpha$
Закон электромагнитной ин- дукции Фарадея–Ленца	$\mathcal{E}_i = -\frac{\Delta\Phi}{\Delta t}, \mathcal{E}_i = -\frac{d\Phi}{dt}$
ЭДС индукции, возникающая в катушке, имеющей N витков (Φ_N – полный поток, пронизывающий N витков катушки)	$\mathcal{E}_{i} = -N \frac{\Delta \Phi}{\Delta t}, \mathcal{E}_{i} = -\frac{d\Phi_{N}}{dt},$ $\Phi_{N} = N\Phi$
ЭДС индукции в движущихся	$\mathcal{E}_i = B\ell \upsilon \sin \alpha$
проводниках	$\mathcal{E}_i = \frac{1}{2}B\ell^2 w = \pi n B\ell^2$
ЭДС самоиндукции	$\mathcal{E}_{is} = -L \frac{\Delta I}{\Delta t}, \mathcal{E}_{is} = -L \frac{dI}{dt}$
Индуктивность	$\Phi_N = N\Phi = LI$
Энергия магнитного поля	$W_M = \frac{LI^2}{2}$

Страницы 12 – 13:

ТАБЛИЦА Д.И. МЕНДЕЛЕЕВА

колебания и волны

Механические колебания и волны

Период, частота, циклическая частота и фаза колебаний	$T = \frac{t_N}{N}, v = \frac{1}{T}, \omega = \frac{2\pi}{T},$
	$\omega = 2\pi v, \varphi = \omega t + \varphi_0$
Закон изменения координаты	$x = x_m \sin(\omega t + \varphi_0),$
при гармонических колебаниях	$x = x_m \cos(\omega t + \varphi_0)$
Амплитуды скорости и ускорения	$v_m = \omega x_m, a_m = \omega^2 x_m$
Периоды колебаний пружинно-	$T = 2\pi \sqrt{\frac{m}{k}}, T = 2\pi \sqrt{\frac{l}{g}}$
го и математического маятников	$I = 2k\sqrt{\frac{1}{k}}, I = 2k\sqrt{\frac{1}{g}}$
Длина волны	$\lambda = vT, \lambda = \frac{v}{-}$
	ν
Энергия гармонических коле-	$W = \frac{mv^2}{2} + \frac{kx^2}{2} = \frac{mv_m^2}{2} = \frac{kx_m^2}{2}$
баний груза на пружине	$W = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

Электромагнитные колебания и волны

outen pomui mii me	Holledanina ii Bollingi
Уравнение колебаний в колебательном контуре	$q'' = -\omega^2 q, \omega = \frac{1}{\sqrt{LC}}$
Закон изменения заряда конденсатора в колебательном контуре	$q = q_m \sin(\omega t + \varphi_0),$ $q = q_m \cos(\omega t + \varphi_0)$
Амплитуды напряжения и силы тока	$U_{\scriptscriptstyle m} = \frac{q_{\scriptscriptstyle m}}{C}, I_{\scriptscriptstyle m} = \omega \ q_{\scriptscriptstyle m}$
Формула Томсона	$T = 2\pi\sqrt{LC}$
Энергия колебаний в колебательном контуре	$W = \frac{LI^2}{2} + \frac{q^2}{2C} = \frac{LI_m^2}{2} = \frac{q_m^2}{2C}$
Длина волны $(c - $ скорость света)	$\lambda = cT, \lambda = \frac{c}{v}$

Оптика

Оптика	
Абсолютный и относительный показатель преломления	$n = \frac{c}{v}, n_{21} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$
Законы отражения и преломления света (α , γ , β – углы падения, отражения, преломления)	$\alpha = \gamma, \frac{\sin \alpha}{\sin \beta} = n_{21}$
Предельный угол полного внутреннего отражения	$\sin \alpha_0 = \frac{n_2}{n_1} = \frac{1}{n_1} \bigg _{npu \ n_2 = 1}$
Формула тонкой линзы (собирающая линза), оптическая сила линзы	$\frac{1}{d} \pm \frac{1}{f} = \frac{1}{F}, D = \frac{1}{F}$
Формула тонкой линзы (рас- сеивающая линза)	$\frac{1}{d} - \frac{1}{f} = -\frac{1}{F}, D = -\frac{1}{F}$
Линейное увеличение линзы	$\Gamma = \frac{H}{h} = \frac{f}{d}$
Оптическая разность хода	$\Delta = n_2 \ell_2 - n_1 \ell_1$
Условие максимума при наложении когерентных волн	$\Delta = m\lambda = 2m\frac{\lambda}{2}, m = 0, 1, 2, \dots$
Условие минимума при наложении когерентных волн	$\Delta = (2m+1)\frac{\lambda}{2}, m = 0, 1, 2,$
Разность хода интерферирую- щих лучей в опыте Юнга	$\Delta = \frac{y d}{\ell}$
Условие главных максимумов при дифракции на дифракци- онной решетке	$d\sin\varphi_m = \pm m\lambda, m = 0, 1, 2, \dots$

СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

CHEHIMIDIMM TEOTIM (, in entreviende in
Лоренцево сокращение длины	$l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$
Замедление хода часов в движущейся системе отсчета	$\Delta t = \frac{\tau}{\sqrt{1 - \frac{v^2}{c^2}}}$
Сложение скоростей в релятивистской механике	$\upsilon = \frac{\upsilon' + u}{1 + \frac{\upsilon'u}{c^2}}$
Релятивистская масса	$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$
Релятивистский импульс	$\vec{p} = m\vec{v} = \frac{m_0\vec{v}}{\sqrt{1 - \frac{v^2}{c^2}}}$
Связь массы и энергии (Формула Энштейна), энергия покоя частицы	$W = m c^2, W_0 = m_0 c^2$
Кинетическая энергия релятивистской частицы	$W_k = W - W_0 = mc^2 - m_0 c^2$

КВАНТОВАЯ И АТОМНАЯ ФИЗИКА

Квантовая физика

Энергия, масса и импульс фотона	$W = hv = \hbar\omega = \frac{hc}{\lambda} = mc^{2}$ $p = mc = \frac{W}{c} = \frac{h}{\lambda}$
Уравнение Эйнштейна для фотоэффекта	$hv = A_{\text{вых}} + \frac{m_e v_{\text{max}}^2}{2}$

Красная граница фотоэффекта	$A_{\rm gas} = hv_{\rm min} = \frac{hc}{\lambda_{\rm max}}$
Задерживающая разность потенциалов	$\frac{m_e v_{\text{max}}^2}{2} = e U_{3a\partial ep.}$

Атомная физика

Условие квантования стацио-	
нарных электронных орбит	h
атома водорода (первый по-	$m v_n r_n = n\hbar = n \frac{h}{2\pi}, n = 1, 2,$
стулат Бора)	
Энергетические уровни атома	W_{126}^{1} $(-p)$
водорода	$W_n = -13.6 \frac{1}{n^2} \left(9B \right)$
Излучение и поглощение света	hc w w
атомом водорода (второй по-	$hv_{kn} = \frac{hc}{\lambda_{kn}} = W_k - W_n$
стулат Бора)	- Kn

ЯДЕРНАЯ ФИЗИКА

Массовое число	A = Z + N
Правила смещения	$_{Z}^{A}X\rightarrow_{Z-2}^{A-4}Y+_{2}^{4}He$
	$_{Z}^{A}X \rightarrow_{Z+1}^{A}Y +_{-1}^{0}e$
Закон радиоактивного распада	$N = N_0 e^{-\lambda t}, \lambda = \frac{\ln 2}{T_{1/2}}$
	$N = N_0 2^{-\frac{t}{T_{1/2}}}$
Дефект масс	$\Delta m = Zm_p + Nm_n - m_s$
	$\Delta m = Zm_H + Nm_n - m_{am}$
Энергия связи	$W_{cs} = \Delta m c^2$
Удельная энергия связи	$W_{cs.yd.} = \frac{W_{cs}}{A}$

МАТЕМАТИЧЕСКИЕ ФОРМУЛЫ

Векторы

Denropei				
Сложение и вычитание векторов	$\vec{c} = \vec{a} \pm \vec{b} \iff c_x = a_x \pm b_x \\ c_y = a_y \pm b_y$			
Умножение вектора на число	$\vec{b} = c \vec{a} \iff b_x = c a_x \\ b_y = c a_y$			
Скалярное произведение	$\vec{a}\vec{b} = ab\cos\alpha = a_x b_x + a_y b_y$			
Проекция вектора \vec{a} на ось ОХ	$a_x = a \cos \alpha$			
Модуль вектора \vec{a}	$a = \sqrt{a_x^2 + a_y^2}$			
Составляющие вектора	$\vec{a} = \vec{a}_x + \vec{a}_y, \vec{a} = \vec{a}_\perp + \vec{a}_\parallel$			

Алгебра, тригонометрия, геометрия и начала анализа

Turicopa, iphronomerphi, reomerphi in na iasia anasinsa			
Корни квадратного уравнения $ax^2 + bx + c = 0$	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
Основное тригонометрическое тождество	$\sin^2\alpha + \cos^2\alpha = 1$		
Функции двойного угла	$\sin 2\alpha = 2\sin \alpha \cos \alpha,$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$		
Функции суммы (разности) углов	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$		
Сумма (разность) функций	$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}$ $\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$		
	$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$		

Формулы приведения	$\sin(\pi/2\pm\alpha) = \cos\alpha$
	$\cos(\pi/2\pm\alpha) = \mp\sin\alpha$
Теорема Пифагора	$c^2 = a^2 + b^2$
Теорема косинусов	$c^2 = a^2 + b^2 - 2ab\cos\alpha$
Площадь круга	$S = \pi R^2$
Площадь поверхности сферы	$S = 4\pi R^2$
Объем шара	$V = \frac{4}{3}\pi R^3$
Формулы приближенных вы-	$(1\pm x)^n \approx 1\pm n x$
числений (при <i>x</i> << 1)	$e^x \approx 1 + x$
	$\ln(1+x) \approx x$
	$\sin x \approx x$, $([x] = pa\theta)$
	$\cos x \approx 1 - \frac{x^2}{2}, ([x] = pa\theta)$
Некоторые производные	$\left(x^{n}\right)'=nx^{n-1},$
	$\left(\sin ax\right)' = a\cos ax,$
	$(\cos ax)' = -a\sin ax$
Геометрический смысл производной: производная численно равна тангенсу угла наклона касательной к графику функции в данной точке	$f'(x) _{x=x_0} = = tg\alpha = = \frac{y_2 - y_1}{x_2 - x_1} y_1 $
Геометрический смысл интеграла: интеграл <u>численно</u> равен площади под графиком функции	$S = \int_{x_1}^{x_2} f(x) dx$ x_1 x_2

СПРАВОЧНЫЕ ДАННЫЕ Основные физические постоянные

Senoblible than it	основные физи иские постоянные				
Скорость света в вакууме	$c = 3,00 \times 10^8 \text{ m/c}$				
Гравитационная постоянная	$G = 6.67 \times 10^{-11} \text{ m}^3/(\kappa_{\Gamma} \times c^2)$				
Число Авогадро	$N_A = 6.02 \times 10^{23} \text{ моль}^{-1}$				
Универсальная газовая постоянная	$R = 8,31 \; Дж/(моль × K)$				
Постоянная Больцмана	$k_{\rm B} = 1.38 \times 10^{-23}$ Дж/К				
Молярная масса воздуха	$M_{603dyxa} = 29 \times 10^{-3} \text{ кг/моль}$				
Нормальное атм. давление	$p_0 = 101,3 \ к\Pi a$				
Элементарный заряд	$e = 1,60 \times 10^{-19} \mathrm{K}$ л				
Масса электрона	$m_e = 9,11 \times 10^{-31} \text{ кг}$				
Масса протона	$m_p = 1,672 \times 10^{-27} \text{ кг}$				
Масса нейтрона	$m_n = 1,674 \times 10^{-27} \text{ кг}$				
Электрическая постоянная	$\varepsilon_0 = 8.85 \times 10^{-12} \Phi/M$				
Коэффициент в законе Кулона	$k_e = 9.0 \times 10^9 \text{ H} \times \text{m}^2 / \text{K} \text{J}^2$				
Магнитная постоянная	$\mu_0 = 4\pi \times 10^{-7} \Gamma_{\mathrm{H/M}}$				
Постоянная Планка	$h = 6.63 \times 10^{-34} \text{Дж} \times \text{c}$				
Постоянная Дирака (Планка)	$\hbar = 1,05 \times 10^{-34} \text{Дж} \times \text{c}$				
Ускорение свободного падения	$g = 9.81 \text{ m/c}^2$				
Средний радиус и масса Земли	$R_3 = 6370$ км, $M_3 = 5.98 \times 10^{24}$ кг				
Радиус и масса Луны	$R_{\mathcal{I}} = 1737 \text{ км}, \ M_{\mathcal{I}} = 7,35 \times 10^{22} \text{ кг}$				
Средний радиус орбиты Луны	R = 384 Mm				

Внесистемные единицы измерений

Ангстрем	$1 \text{ Å} = 10^{-10} \text{ M}$
Атомная единица массы	1 а.е.м. = $1,67 \times 10^{-27}$ кг
Киловатт-час	$1 \kappa B_{\text{T}} \times \text{ч} = 3,6 \times 10^6 \text{Дж}$
Калория	1 кал = 4,19 Дж
Литр	$1 \text{ л} = 1 \text{ дм}^3 = 10^{-3} \text{ м}^3$
Миллиметр ртутного столба	1 мм. рт. ст. = 133 Па
Электрон-вольт	$1 \text{ 9B} = 1,60 \times 10^{-19} \text{ Дж}$

Десятичные приставки

Назва-	Обозна-	Множи-	Назва-	Обозна-	Множи-
ние	чение	тель	ние	чение	тель
деци	Д	10 ⁻¹	дека	да	10^{1}
санти	c	10 ⁻²	гекто	Γ	10^{2}
милли	M	10 ⁻³	кило	К	10^{3}
микро	МК	10^{-6}	мега	M	10^{6}
нано	Н	10 ⁻⁹	гига	Γ	10^{9}
пико	П	10 ⁻¹²	тера	T	10^{12}
фемто	ф	10 ⁻¹⁵	пета	П	10^{15}
атто	a	10 ⁻¹⁸	экса	Э	10^{18}

Физические свойства веществ

Вещество	Плот-	Удельная	Темпера-	Удельная теп-
	ность,	теплоем-	тура плав-	лота плавле-
	Γ/cm^3	кость,	ления	ния (** парооб-
		кДж/(кг×К)	(* кипения),	разования),
			°C	МДж/кг
	TE	вердые т	ела	
Алюминий	2,7	0,88	660	0,38
Лед	0,9	2,1	0	0,33
Медь	8,9	0,38	1083	0,18
Олово	7,3	0,23	232	0,059
Свинец	11,3	0,13	327	0,025
Серебро	10,5	0,21	960	0,087
Сталь	7,8	0,46	1400	0,082
		Жидкост	И	
Вода	1,0	4,2	* 100	** 2,3
Керосин	0,80	2,1	_	_
Нефть	0,80	_	_	_
Ртуть	13,6	0,13	* 357	** 0,29
Спирт	0,79	2,4	* 78	** 0,85

Удельная теплота сгорания топлива, МДж/кг

Бензин	46	Нефть	43
Дерево	10	Порох	3,8
Дизельное топливо	42	Спирт	29
Каменный уголь	29	Условное топливо	29
Керосин	46		

Диэлектрические проницаемости веществ

Вода	81	Парафин	2,1
Керосин	2,1	Слюда	6
Масло	2,5	Стекло	7

Удельные сопротивления при $t=20^{\circ}$ С, нОм × м

Алюминий	28	Нихром	1120
Вольфрам	55	Свинец	210
Латунь	71	Серебро	16
Медь	17	Сталь	120
Никелин	420		

Электрохимические эквиваленты, мг/Кл

Алюминий	0,093	Никель	0,36
Водород	0,0104	Серебро	1,12
Кислород	0,083	Хром	0,18
Медь	0,33	Цинк	0,34
Олово	0,62		

Показатели преломления (относит. воздуха t=20°C, λ =589,3 нм)

Алмаз	2,42	Ацетон	1,36
Изумруд	1,58	Вода	1,33
Корунд	1,77	Глицерин	1,47
Лед	1,31	Канадский бальзам	1,53
Плексиглас	1,50	Скипидар	1,47
Стекло	1,6	Спирт этиловый	1,36
Шпат исландский	1,66	Толуол	1,50

Работа выхода электронов, эВ

Алюминий	4,25	Никель	4,5
Вольфрам	4,54	Олово	4,38
Германий	4,76	Платина	5,32
Железо	4,31	Свинец	4,0
Золото	4,30	Серебро	4,3
Калий	2,2	Хром	4,58
Литий	2,38	Цезий	2,7
Медь	4,40	Цинк	3,9
Молибден	4,3		

12-7-5-14-12

Печать на Seikosha правой страницы – поля 15,5 и 2,5, а левой – 17,2 и 0,8