

Port resilience in the post-COVID-19 era

汇报人: 闫林枝

CONTENT__

- 01 背景___
- 02 方法__
- 03 实验___
- 04 结论—

ART ONE

背景

文献综述-弹性

● 系统概念,被广泛应用于各个领域

● 两个维度:缓解性弹性、适应性弹性

缓解性弹性:系统防止或减少意外变化风险的能力

适应性弹性:系统通过主动采取措施适应变化的能力

最近的研究强调适应性弹性,因为它代表了系统可以主动采取努力,以减少对意外变化的脆弱性。

文献综述-弹性

先前的文献提出了三种弹性建模和测量的方法

- 采用**各节点弹性的加权和**作为整个网络的弹性 没有注意到弹性概念的系统本质
- 采用**随机混合整数规划**来考虑整个系统的弹性 提出使用一组指标的数学聚合来量化系统的弹性
- 采用一种**综合指标**来衡量弹性 提出应将弹性具体化为一组可观察到的变量

文献综述-港口应对突发紧急事件的弹性

- 先前的文献为了检验应对突发事件的港口特性
 - 开发场景设置来识别港口弹性特征
 - 为特定港口开发复合指标体系

五个维度: 自然环境、社会、建成环境、港口治理、港口面临风险

六个维度: 社会、社区能力、经济、制度、基础设施、危害

不足:以往的大多数研究只考察了港口适应气候变化的弹性,而忽视了来自其他突发事件的挑战。

研究背景

- 全球疫情严重影响全球贸易和供应链,特别是就全球港口而言,疫情导致
- 全球港口吞吐量大幅下降
- 加剧了集装箱港口供应链和物流系统的不确定性,导致航运线路关闭,并扰乱全球运输系统
- 加剧了港口拥堵

所以,如何管理一个弹性的港口系统,即使面临意想不到的全球流行病挑战,也能保证港口的正常运营,这是所有主要港口都应该考虑的基本问题。

研究空白:港口弹性和港口治理绩效

- **港口弹性的测量方法**:本文从多个利益相关者(港口、腹地、地方政府)的系统角度 建立一个更普遍的港口弹性指标体系,用来比较不同的港口;
- 港口弹性指数对港口治理绩效的影响:通过实证研究了港口弹性指数对港口吞吐量和 拥堵的直接影响,这是两个最重要的港口治理绩效指标。

ART THREE

方法

方法

样本:选择中国为研究背景,选择了中国最大的22个港口

- 中国港口是全球最大港口的代表
- 使用中国港口作为研究样本可以保证每个港口之间有足够的多样性, 而不会失去一般性
- 评估港口应对全球疫情时的弹性进行跨国比较是不合理的

选取的中国22个港口

The detailed port ranking in the port resilience index during 2020-2021.

Ports	PRI in 2020	PRI ranking in 2020	PRI in 2021	PRI ranking in 2021	Upward trend
Guangzhou	0.909892595	1	0.913691448	1	
Nanjing	0.856994359	2	0.888384534	2	
Tianjin	0.851688924	3	0.856684157	4	
Ningbo-zhoushan	0.844644101	4	0.862847763	3	✓
Qingdao	0.824473168	5	0.842082199	5	
Chongqing	0.630667399	6	0.643762962	9	
Xiamen	0.589933399	7	0.716474207	8	
Shanghai	0.588275926	8	0.589236248	10	
Dalian	0.519995431	9	0.794785691	6	✓
Nantong	0.477815415	10	0.489274001	12	
Zhenjiang	0.472092043	11	0.483276614	14	
Jingtang	0.469125208	12	0.783767566	7	✓
Taizhou	0.461720178	13	0.481304863	15	
Huanghua	0.402359475	14	0.419507793	16	
Qinhuangdao	0.40156841	15	0.418674013	17	
Shenzhen	0.337609604	16	0.376683047	18	
Fuzhou	0.267034076	17	0.486464013	13	✓
Dongguan	0.260945091	18	0.267309253	20	
Yantai	0.235215881	19	0.267728751	19	
Beihai	0.213617817	20	0.521311201	11	✓
Zhanjiang	0.185872313	21	0.197611881	21	
Jiujiang	0.17092364	22	0.180260308	22	

自变量-港口弹性指数 (PRI)

● 港口:港口治理效率、智能港口、国家物流枢纽

● 腹地: ICT基础设施、数字产业融合

● 地方政府: 地方政府的应对措施、地方治理评分

上述所有指标综合起来,构建港口弹性指数

Stakeholder	Distribution
Port	mean = 0.48, S.D. = 0.23
Port	1 = smart port; 0 = otherwise; mean
	= 0.78, S.D. $= 0.41$
Port	1 = national logistics hub; 0 =
	otherwise; mean = 0.32 , S.D. = 0.47
Hinterland	mean = 71.46, S.D. = 13.02
Hinterland	mean = 61.12, S.D. = 16.11
Government	mean = 54.70, S.D. = 11.38
Government	mean = 68.57, S.D. = 15.97
	Port Port Port Hinterland Hinterland Government

PRI

计算方法: 熵权法(EWM)

第i个港口在时间t时 第j个指标的值

(1) 对每个指标的原始值进行标准化

$$y_{ijt} = \frac{x_{ijt} - \min(x_{ijt})}{\max(x_{ijt}) - \min(x_{ijt})}, i = 1, 2, \dots, m; j = 1, 2, \dots, n; t = 1, 2, \dots, l$$
(1)

(2) 计算每个指标的熵

$$p_{ijt} = \frac{y_{ijt}}{\sum_{i=1}^{m} y_{ijt}}, i = 1, 2, \dots, m; j = 1, 2, \dots, n; t = 1, 2, \dots, l$$
 (2)

$$E_{jt} = -\frac{1}{lnm} \sum_{i=1}^{m} p_{ijt} \ln(p_{ijt}), i = 1, 2, \dots, m; j = 1, 2, \dots, n; t = 1, 2, \dots, l$$

PRI

(3) 计算每个指标的权重

$$g_{jt} = 1 - E_{jt}, j = 1, 2, \dots, n; t = 1, 2, \dots, l$$
 (4)

$$w_{jt} = \frac{g_{jt}}{\sum_{j=1}^{n} g_{jt}}, j = 1, 2, \dots, n; t = 1, 2, \dots, l$$
(5)

(4) 计算每个港口i在时刻t的港口弹性指数

$$PRI_{it} = \sum_{j=1}^{m} w_{jt} * y_{ijt}, i = 1, 2, \dots, m; j = 1, 2, \dots, n; t = 1, 2, \dots, l$$
 (6)

PRI得分与排名

2020年和2021年每个港口的详细PRI得分和排名

The detailed port ranking in the port resilience index during 2020-2021.

Ports	PRI in 2020	PRI ranking in 2020	PRI in 2021	PRI ranking in 2021	Upward trend
Guangzhou	0.909892595	1	0.913691448	1	
Nanjing	0.856994359	2	0.888384534	2	
Tianjin	0.851688924	3	0.856684157	4	
Ningbo-zhoushan	0.844644101	4	0.862847763	3	✓
Qingdao	0.824473168	5	0.842082199	5	
Chongqing	0.630667399	6	0.643762962	9	
Xiamen	0.589933399	7	0.716474207	8	
Shanghai	0.588275926	8	0.589236248	10	
Dalian	0.519995431	9	0.794785691	6	✓
Nantong	0.477815415	10	0.489274001	12	
Zhenjiang	0.472092043	11	0.483276614	14	
Jingtang	0.469125208	12	0.783767566	7	✓
Taizhou	0.461720178	13	0.481304863	15	
Huanghua	0.402359475	14	0.419507793	16	
Qinhuangdao	0.40156841	15	0.418674013	17	
Shenzhen	0.337609604	16	0.376683047	18	
Fuzhou	0.267034076	17	0.486464013	13	✓
Dongguan	0.260945091	18	0.267309253	20	
Yantai	0.235215881	19	0.267728751	19	
Beihai	0.213617817	20	0.521311201	11	✓
Zhanjiang	0.185872313	21	0.197611881	21	
Jiujiang	0.17092364	22	0.180260308	22	

PRI的平均趋势

中国港口的平均弹性指数整体呈上升趋势

Fig. 3. Port resilience index over 2020-2021.

因变量-港口治理绩效

港口吞吐量

- 国内贸易货物吞吐量(DTCT)
- 外贸的总货物吞吐量(FTCT)

港口拥堵情况

- 泊位的平均等待时间(AWT)
- 等待在港口的船只数量(SWP)

控制变量

- 新增确诊病例(NCC)
- 国内生产总值(GDP)
- 消费者价格指数(CPI)
- 制造业增加值(MVA)
- 人口密度(PD)

审查统计模型

审查统计模型:双向固定效应模型,用来调查疫情控制措施对港口吞吐量以及港口拥堵情况的影响。

Port Throughput_{it} =
$$\beta_0 + \beta_1 Port$$
 Resilience Index_{i,t-1} + $\beta_2 X_{i,t-1}$
+ $\beta_3 Port$ Throughput_{i,2019} + $\gamma_i + \mu_t + \varepsilon_{it}$ (7)

Port Congestion_{it} =
$$\beta_0 + \beta_1 Port$$
 Resilience Index_{i,t-1} + $\beta_2 X_{i,t-1}$
+ $\beta_3 Port$ Congestion_{it2019} + $\gamma_i + \mu_t + \varepsilon_{it}$ (8)

该模型的目标是估计系数(β_0 、 β_1 、 β_2 、 β_3),来了解弹性指数、控制变量和过去港口水平(在2019年)的变化如何与当前港口情况相关。固定效应(γ_i 和 μ_t)有助于控制个别港口和月份的不可观测因素。误差项 ϵ_i t代表了模型无法解释的吞吐量和拥堵变化,这些变化无法由模型中的其他变量解释。通过估计这些系数并测试它们的显著性,可以评估流行病控制措施(反映在弹性指数中)和其他因素对港口拥堵的影响,同时控制各种来源的变化。

ART FOUR-

为了保证模型估计的一致性和有效性,避免自变量之间相互影响,在检验假设之前分析了所有变量的多重共线性。所有变量的方差膨胀因子(VIF)都小于10,这表明多重共线性不是研究的主要关注点。表3给出了描述性统计和相关性。

Table 3
Descriptive statistics and correlation matrix.

Variables	Mean	S.D.	Min	Max	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) FTCT	6.505	1.341	2.996	8.523								
(2) DTCT	7.443	0.494	5.472	8.889	0.250***							
(3) AWT	3.248	0.683	0	4.940	0.248***	0.053						
(4) SWP	3.135	1.147	0	5.147	0.341***	0.313***	0.634***					
(5) PRI	0.524	0.240	0.073	0.955	0.333***	0.428***	0.158***	0.367***				
(6) GDP	10.283	0.868	7.957	11.731	0.080*	0.188***	-0.129**	-0.027	-0.030			
(7) NCC	66.432	140.941	0	940	0.002	-0.076	-0.037	-0.049	0.011	-0.041		
(8) CPI	101.77	1.618	98.2	106.6	0.001	-0.118***	-0.026	-0.057	-0.070	-0.214***	0.239***	
(9) IAV	6.236	4.612	-15.9	23.2	-0.058	0.151***	0.151***	-0.090*	0.021	0.125**	-0.298***	-0.348***

Note: This table reports means, standard deviations, minimum values, maximum values, and Pearson correlation coefficients.

Note. FTCT = Foreign Trade Cargo Throughput, DTCT = Domestic Trade Cargo Throughput, AWT = Average Waiting Time, SWP = Ships Waiting at Port; PRI = Port Resilience Index; GDP = Gross Domestic Product; NCC = New Confirmed Cases; CPI = Consumer Price Index; IAV = Industry Added Value.

The Correlation Matrix is based on the First Difference of the Variables.

FTCT, DTCT, AWT, SWP, and GDP are log transformed.

p < 0.05, p < 0.01, p < 0.001, p < 0.001.

Regression results of DTCT, FTCT, AWT, and SWP.

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
Variables	DT	СТ	FT	CT	A	WT	S	WP
PRI (t-1)	-0.703	-0.983	1.223**	1.517**	-1.203*	-1.256*	-1.923*	-2.025
	(0.579)	(0.551)	(0.506)	(0.581)	(0.689)	(0.644)	(1.012)	(1.046)
DTCT		-0.076						
2019		(0.064)						
FTCT				0.241*				
2019				(0.123)				
AWT						0.003		
2019						(0.002)		
SWP								-0.003
2019								(0.004)
NCC (t-1)		0.000		-0.000		-0.000		0.000
		(0.000)		(0.000)		(0.000)		(0.000)
CPI (t-1)		-0.040		0.019		-0.003		-0.095
		(0.025)		(0.032)		(0.148)		(0.123)
lnGDP (t-1)		1.360		0.233		-1.252		4.578
		(1.096)		(0.888)		(2.962)		(5.422)
lnPD (t-1)		-9.628		0.505		5.769		-35.73
		(7.598)		(6.208)		(20.082))		(37.809
IAV (t-1)		0.002		0.003		0.009		0.005
		(0.003)		(0.003)		(0.012)		(0.008)
Port FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	237	237	235	235	238	238	236	236
R-squared	0.892	0.978	0.897	0.995	0.645	0.776	0.900	0.922

Note. FTCT = Foreign Trade Cargo Throughput, DTCT = Domestic Trade Cargo Throughput, AWT = Average Waiting Time, SWP = Ships Waiting at Port; PRI = Port Resilience Index; GDP = Gross Domestic Product; NCC = New Confirmed Cases; CPI = Consumer Price Index; IAV = Industry Added Value. Robust standard errors in parentheses.

*p < 0.1, **p < 0.05, ***p < 0.01 : P值越小,结果越显著,研究的统计证据越强

模型1、3、5和7报告了基本回归,其中仅包括独立变量(滞后一个月的港口弹性指数)和固定效应

● 模型2、4、6和8报告了全面回归,在这些回归中包括了所有其他控制变量

^{*}p < 0.1, **p < 0.05, ***p < 0.01.

- 模型1和2中,PRI的系数为负,不具有统计学显著性,考虑到2019年同期的DTCT和所有其他控制变量。这一发现表明,港口弹性对DTCT没有显著影响;
- 模型3中, PRI的系数为1.223, 在5%的水平上具有统计学显著性。
- 模型4中PRI的系数为1.517,考虑到2019年同期的FTCT和所有其他控制变量后仍然具有统计学显著性。这一发现表明,港口弹性对FTCT产生积极影响;
- 模型5中,PRI的系数为-1.203,在10%的水平上具有统计学显著性。
- 模型6中,PRI的系数为-1.256,考虑到2019年同期的AWT和所有其他控制变量后仍然具有统计学显著性。这一发现表明,港口弹性对AWT产生负面影响。
- 模型7中,PRI的系数为-1.923,在10%的水平上具有统计学显著性。
- 模型8中,PRI的系数为-2.025,考虑到2019年同期的SWP和所有其他控制变量后仍然具有统计学显著性。这一发现表明,港口弹性对SWP产生负面影响。

分析结果

- ✓ 港口弹性指数与FTCT之间存在积极关联
- ✓ 港口弹性指数与AWT和SWP之间存在负相关关系

鲁棒性测试

为了确认该发现的总体有效性以及稳定性, 该论文

- 扩展了研究样本,2020年以及2021年共438个港口月观察值
- 为了解决内生性问题(自变量与误差项之间存在相关性),采用工具变量两阶段最小
 - 二乘法(IV-2SLS)

使用地方政府服务作为排除工具变量

鲁棒性测试

Robustness test: IV-2SLS.

	Model 1	Model 2	Model 3	Model 4	Model 5
Dependent	PRI	DTCT	FTCT	AWT	SWP
variables	First-				
	stage				
PRI	0.037***				
	(0.011)				
PRI		-0.109	0.579**	-0.777**	-1.443**
(instrumented)					
		(0.198)	(0.262)	(0.384)	(0.610)
Controls	Yes	Yes	Yes	Yes	Yes
Port FE	Yes	Yes	Yes	Yes	Yes
Month FE	Yes	Yes	Yes	Yes	Yes
Wald exogeneity		18.36***	18.99***	18.24***	17.98***
Chi-Squared					
Test					
Sargan-Hansen		0.338	0.353	0.192	0.233
test of over					
identification					
Observations	438	437	437	431	431
R-squared	0.924	0.916	0.992	0.978	0.876

Note. FTCT = Foreign Trade Cargo Throughput, DTCT = Domestic Trade Cargo Throughput, AWT = Average Waiting Time, SWP = Ships Waiting at Port; PRI = Port Resilience Index; GDP = Gross Domestic Product; NCC = New Confirmed Cases; CPI = Consumer Price Index; IAV = Industry Added Value. Robust standard errors in parentheses.

测试结果

- 港口弹性与DTCT没有显著影响
- 港口弹性与FTCT之间的正相关关系不是由港口 治理的内生选择所驱动
- 港口弹性与AWT的负相关关系不是由港口治理 的内生选择所驱动
- 港口弹性与SWP之间的负相关关系不是由港口 治理的内生选择所驱动

结论: 这些结果支持主要发现,研究结果具有稳健性和可靠性

^{*}p < 0.1, **p < 0.05, ***p < 0.01.

结论

结论

- 本文采用多利益相关者的观点,从港口、腹地、地方政府三个角度建立 港口弹性指数,用于港口间的比较;
- 本文考察了港口弹性指数对港口吞吐量和拥堵的直接影响,这是港口治 理绩效的两个最关键指标。
- ✓ 结果表明,弹性港口将实现更高的吞吐量和更低的拥堵,这表明弹性系 统将使港口能够适应全球疫情带来的意外挑战,同时保持比同行更好的 性能。

感谢观看!

汇报人: 闫林枝