

Universidad Galileo	Guatemala, 6 de marzo de 2020	
Facultad FISICC	Alumno: Josué Benyamin Isaí Galeano Morales	
Curso: Sistemas de Arquitectura	Carnet: 1800 2955	
Sección: A	Horario de laboratorio: 18:00 a 19:00	
Auxiliar: Evelyn Cruz	Día de laboratorio: viernes	

Práctica de Laboratorio #3 Multiplexores

Objetivos:

• Que el estudiante se familiarice con el funcionamiento de un multiplexor y que logre diseñar y construir lógica combinacional con dispositivos de mediana integración.

Materiales:

- Fuente de 5VDC (Proporcionada por el Laboratorio).
- Punta Lógica.
- 1 Bread Board.
- Pinzas para cortar y pelar alambre.
- 1 metro de cable UTP.
- 1 DIP switch de 4 polos.
- 1 Circuito Integrado 74LS151.
- 1 LED Rojo.
- 1 Resistor de $180k\Omega$.
- 3 Resistores de $10k\Omega$

Resumen:

En base al diagrama entregado para hacer el laboratorio, se buscó información del IC 74LS151 tipo N y en base al diagrama se construyó dicho circuito, por la forma construcción que se empleo el led encendía con 0s lógicos y es por esto que se tomó la salida negada para obtener dicho comportamiento.

Marco Teórico:

Los **Multiplexores** son circuitos combinacionales que tienen la característica dejar pasar una señal de las 2^n señales en función de sus n selectores, se utilizan para "colar" la información. Como es de suponer sólo tiene una salida que resulta ser la seleccionada por los selectores. Este es un caso particular de los decodificadores.

Figura 1: Información de SN74LS151 multiplexor empleado para el laboratorio

Datos Prácticos:

Entradas		Salidas	
D_0	D_1	D_2	LED
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Figura 2: tabla de comportamiento del LED

Figura 4: Expresión

Figura 3: mapa de karnaugh

Conclusiones:

- Poder elegir entre múltiples señales es muy importante cuando se diseñan arquitecturas.
- Los multiplexores pueden ser utilizados para obtener una lectura entre varios flip-flops y así poder obtener una palabra en especifico.

Referencias

[Wikipedia, 2020a] Wikipedia (2020a). Charles bachman, https://es.wikipedia.org/w/index.php?title=Charles_Bachman&oldid=122728743.

[Wikipedia, 2020b] Wikipedia (2020b). Charles bachman, https://es.wikipedia.org/w/index.php?title=Charles_Bachman&oldid=122728743.