PCT

国際事務局

特許協力条約に基づいて公開された国際出願

JF JF JF	日産化学工業株式会社 生物科学研究所内 Saitama, (JP) (74) 代理人 中理士 專 経夫,外(HANABUSA, Tuneo et al.) 下 101 東京都千代田区神田駿河台1丁目6番地
JF JF JF	7
JP JP JP	(31) 〒349-02 埼玉県南埼玉郡白岡町大字白岡1470 日産化学工業株式会社 生物科学研究所内 Saitama, (JP) (74) 代理人 チ理土 専 経夫,外(HANABUSA, Tuneo et al.) 〒101 東京都千代田区神田駿河台1丁目6番地 お茶の水スクエアB館,等特許事務所 Tokyo,(JP) (81) 指定国
	DK(欧州特許), ES(欧州特許), FR(欧州特許), GB(欧州特 GR(欧州特許), IT(欧州特許), LU(欧州特許), NL(欧州特 SE(欧州特許). 添付公開書類 国際調查報

(54) Title: SUBSTITUTED PYRAZOLE DERIVATIVE AND AGROHORTICULTURAL BACTERICIDE

(54) 発明の名称 置換ビラゾール誘導体および農園芸用殺菌剤

$$\begin{array}{c|c}
 & Y - A \\
 & X - B \\
 & R^2 & [1]
\end{array}$$

(57) Abstract

A novel substituted pyrazole derivative represented by general formula (1) and an agrohorticultural bactericide containing the same, wherein R¹ represents hydrogen, halogen, alkyl, alkoxy, alkylthio or haloalkyl; R² represents hydrogen, alkyl, haloalkyl, optionally substituted phenylalkyl, -COR⁶ or -SO₂R⁷; X represents -S(O)₀₋₂-, -NR³-, -CO- or -CR⁴R⁵-; Y represents -O- or -S(O)₀₋₂-; A represents optionally substituted phenyl or heterocyclic group; and B represents optionally substituted pyridyl, diazinyl, 1, 3, 6- or 1, 3, 4- triazinyl or thiazolyl. The above compound is useful as an agrohorticultural bactericide, because it has an excellent agrohorticultural bactericidal action and is free from chemical injury against useful crops.

(57) 要約

一般式 [1]で表される新規の置換ピラゾール誘導体およびこれららを含有する農園芸用殺菌剤。これらの化合物は、優れた農園芸用殺菌の作用を示し、有用作物に対する

薬害も認められないため、農園芸用殺菌剤として有用である。〔式 [1] 中、R¹は、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基またはハロアルキル基を表し;R²は、水素原子、アルキル基、ハロアルキル基、任意に置換したフェニルアルキル基、-COR・または-SO2R⁷を表し;Xは、-S(0)0-2-、-N(R³)-、-CO-または-C(R⁴)(R⁵)-を表し;Yは、酸素原子または-S(0)0-2-を表し;Aは、任意に置換したピリジル、ジアジニル、1,3,6-または1,3,4-トリアジニルまたはチアゾリル基を表す。〕

情報としての用途のみ

PCTに基づいて公開される国際出願のパンフレット第1頁にPCT加盟国を同定するために使用されるコード

AT オーストリア AU オーストリテリ BB バルバー BE ベルバギー BF ブブルキリア BG ベルギリア BG ベルギリア BR ブラダル CA カナンジル CA ウナアコー CH フェー CH コート・ジン CM コート・ジン CM カナイン CM カナイン CM カナイン

ES スペイン FI スペインラス GA カースス GI フラボア GB ギャリンカリー IT イン・リンカリー IT イヤー IT イ本 KP 朝鮮民民 シューク II スリクナン II スリクナン II スリクナコ MC マグカル

⁺SUの指定はロシア連邦の指定としての効力を有する。しかし、その指定が旧ソヴィエト連邦のロシア連邦以外の他の国で効力を 有するかは不明である。

6

明 細 書

発明の名称

置換ピラゾール誘導体および農園芸用殺菌剤 技術分野

本発明は、新規なピラゾール誘導体および該誘導体を有効成分として含有する農園芸用殺菌剤に関する。

背景技術

これまで種々の殺菌剤が開発されてきているが、その 効力や耐性菌の出現等で必ずしも満足すべきものとは言 えない。

また特開平 1-125379 号公報には、ある種のピラゾール誘導体が殺菌活性を有することが記載されている。

上記の公開公報に記載されている化合物においても、 効力、残効性、薬害等の点で満足すべきものではなく、 植物病害に対して更に有用な農園芸用殺菌剤の開発が要 望されている。

発明の開示

本発明者らは、このような状況に鑑み、優れた殺菌活性を有する化合物を開発すべく種々検討を重ねた結果、下記一般式 [1] で示される置換ピラゾール誘導体が、優れた殺菌活性を有することを見出し本発明に至った。すなわち、本発明は、一般式 [1]

〔上記式中、R¹は、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基またはハロアルキル基を表し、

R²は、水素原子、アルキル基、ハロアルキル基、無置換もしくは置換基を有するフェニルアルキル基、-COR⁶または-SO₂R⁷を表し、

X は、-S- 、-S0-、-S0₂- 、-N(R*)- 、-C0-または-C(R4)(R5)- を表し、

R^sは、水素原子、アルキル基、ハロアルキル基、アルケニル基、アルキニル基、アルコキシアルキル基、シアノアルキル基、アルキルカルボニルアルキル基、アルコキシカルボニルアルキル基、ニトロソ基、アミノ基、無置換もしくは置換基を有するフェニルアルキル基、

-COR f または-SO2R を表し、

R⁴およびR⁵は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、ハロアルキル基、アルケニル基、アルキニル基または-OR⁸を表し、

R⁸は、水素原子、アルキル基、ハロアルキル基、アルケニル基、アルキニル基、アルコキシアルキル基、シアノアルキル基、アルコルボニルアルキル基、アルコ

キシカルボニルアルキル基、無置換もしくは置換基を有するフェニルアルキル基、-COR®または-SO2R7を表し、

R⁶は、水素原子、アルキル基、ハロアルキル基、無置換もしくは置換基を有するフェニル基、無置換もしくは置換基を有するフェニルアルキル基、アルコキシ基または

$$-N < \frac{R^9}{R^{10}}$$

を表し、

R⁷は、アルキル基、ハロアルキル基、無置換もしくは 置換基を有するフェニル基または

$$-N<_{R^{10}}^{R^9}$$

を表し、

R°およびR¹°は、それぞれ独立に水素原子、アルキル基または無置換もしくは置換基を有するフェニル基を表し、

Yは、酸素原子、-S-、-S0-、または -S0₂-を表し、 Aは、無置換もしくは置換基を有するフェニル基また は無置換もしくは置換基を有する複素環基を表し、

B は、

を表し、

Z¹およZ²は、それぞれ独立に水素原子、ハロゲン原子、 アルキル基、アルコキシ基、ハロアルキル基を表す。〕 で表される置換ピラゾール誘導体および該誘導体を有効 成分として含有する農園芸用殺菌剤に関するものである。 次に、一般式 [1] で表される本発明化合物を第1表 ~第2表に示す。但し、本発明化合物はこれらのみに限 定されるものではない。

化合物No. は、後の記載において参照される。なお各表中のPh はフェニル基を、i はイソを、t はターシャリを示す。

第 1 表

で表される化合物において

		発	裘	(発験)		
化合物Na	자 -	자 2	×	Ā	W "	В
-	H	CH s	S	S	=	B 1
7	CH 8	СНв	S	: S	Ħ	B 1
တ	CF3	CH 8	S	S	н	B 1
Ť	H	СНв	S	∽	4-61	B 1
വ	cH3	CH 3	S	S	4-61	B 1
9	CF3	СНз	တ	S	4-61	B
2	cH 3	cH s	S	<i>S</i>	4 - CH ₈	B 1
∞	CF3	CH 3	S	S	4 - CH s	B 1
6	CH 3	H	S	<i>S</i>	4-61	B 1
0	CH 3	Н	S	ေ	4 - CH ₈	B 1
1 1	cH3	CF 3	S	S	4 - C 1	B 1
	-					

			第 1	栽	(続き)	(
化合力	物 Na	R 1	R 2	×	Y	W n	В
-	2	c H s	CF 8	S	S	4-CH ₈	B 1
 1	တ	c H s	в но	S	S	4-CF ₈	B 1
—	ħ	CH3	cH s	S	S	4-Br	B 1
-	വ	в н э	cH s	S	S	$4-NO_2$	B 1
	9	cH 3	cH _s	S	S	4-0CH ₈	B 1
_	7	c H _s	cH _s	တ	S	4 - C ₂ H ₅	B 1
	&	c H _s	CH3	S	S	2-61	B 1
-	ග	СНз	cH _s	S	S	2-61, 4-61	B 1
2	0	cH s	СНз	S	S	2-C1, 4-CH ₈	B 1
2		CH3	cH 3	S	တ	4-C1	B 2
2	2	CF3	снз	S	S	4-01	B 2

	-	第 1	榖	。 第	(
化合物 Na	Na R 1	ж 2	×	¥	W "	В
5 . 3	cH s	c H s	S	S	4-CHs	B 2
2 4	CFs	cH 3	S	S	4 - CH ₈	B 2
2 2	CH 3	снв	S	S	2-61, 4-61	B 2
2 6	cH s	cH s	တ	S	2-C1, 4-CH ₃	B 2
2 7	CH 3	cH s	S	0	4-01	B 2
2 8	CH 3	cH s	တ	0	4-CH ₈	B 2
5 3	CF.	cH s	S	0	4 – CH 3	B 2
3	c H ³	CH 8	S	0	3-C1, 4-CH ₈	B 2
3 1	C ₂ H ₅	¢H3	S	S	П	B 1
3	C ₂ H ₅	снв	S	S	4-61	B 1
			-			

			無	裘	統		
为 合	物 Na	R 1	R 2	×	Y	W n	В
က	හ	C ₂ H ₅	СНз	S	S	4-CH ₈	B 1
က	4	C ₂ H ₅	cH s	S	S	4-0CH ₈	B 1
က	വ	C ₂ H ₅	CH 8	S	S	3-CF3	B 1
က	9	C ₂ H ₅	cH ₃	S	S	2-01, 4-01	B 1
က	7	C ₂ H ₅	cH ₃	S	S	3-C1, 4-C1	B 1
က	∞	C ₂ H ₅	cH3	S	S	2-C1, 4-CH ₈	B 1
က	6	1-C3H7	cH ₃	S	S	4-01	B 1
4	0	1-C3H7	CH 8	S	S	4 - CH ₃	B 1
4		1-C3H7	CH ₈	S	S	4 - 0 C H ₈	B 1
4	2	t - C 4 H 9	CH3	S	S	4 - C 1	B 1

			第	栽	(如號)		
4 分	合物 No.	ж.	R 2	×	Υ	W ,	В
4	က	t-C4H9	СНв	S	S	4 - CH 3	B 1
4	7	t - C 4 H 9	снз	S	S	4-0CH ₈	. B 1
4	വ	CH 3	C ₂ H ₅	S	S	4 - C 1	B 1
4	9	CH3	C a H 7	S	တ	4-61	B 1
7	2	CH ₃	снз	HN	S	H	B 1
4	æ	CF3	снв	HN	S	H	B 1
7	6	CH3	снв	HN	S	4 - C 1	B 1
2	0	CF3	CH 3	HN	·	4 - C1	B 1
ນ	-	Ħ	в Н Э	HN	S	4 - C 1	B 1
വ	2	CH 3	CH 3	NH	S	4 ~ CH ₃	B 1

			—			_						
	<u> </u>	ф	A	В	В	B	В	B	В	Ħ	В	
	W n	4 – CH ₈	4 – CH 3	4 - F	4 – B r	I - Þ	2-F	2-01	2-Br	2 - I	3 - F	
		7	4	4	Þ	4	8	8	8	62	C.D	
(続き)	>											
(%)		S	S	S	S	S	S	S	S	S	S	
栽	×	HN	NHN	NH	HN	HN	NH	HN	NH	NH	ΗN	
無	R 2	c H 3	CH 3	CH 3	CH 3	CH3	cH 3	СНз	CH 3	СНз	в но	
	ద	CF3	H	CH 3	CH3	СНз	СНз	СНз	СНз	СНз	СНз	
	Na											
	合 物 Na	က	4	5	9	7	8	6	0		2	
	力	വ	വ	വ	വ	വ	വ	വ	9	9	9	

		第 1	裘	(光號)			
化合物 No.	R 1	요 2	×	>	M w	B	
6 3	CH 8	CH 8	NH	S	3-61	B 1	
6 4	cH s	СНз	HN	S	3-Br	B 1	
6 5	CH a	CH3	HN	S	3 - I	B 1	
9 9	CH a	c H _s	HN	S	2-0CH ₈	B 1	
2 9	CH a	CH 3	HN	S	3-0CH3	В 1	
8	c H ⁸	CH 8	NH	S	4-0CH ₈	B 1	
6 9	c H s	CH 8	HN	S	2-CF3	B 1	
0 2	cH3	СНз	HN	တ	3-CF3	B 1	
. 1 2	cH s	CH3	HN	တ	4-CF ₈	B 1	
7 2	CH 3	CH _s	HN	S	4-C ₂ H ₅	B 1	

	В	B 1	B 1	B 1	B 1	B 1	B 1	B 1	B 1	B 1	B 1
	W n	4-C ₈ H ₇	4-C4H8	4 - i - C ₈ H ₇	4-t-C4H9	2-0CF ₈	3-0CF3	4-0CF ₈	3-N0 ₂	$4-N0_2$	3-NH ₂
(親子)	¥	S	S	S	S	S	S	S	S	S	S
裘	×	HN	HN	HN	HN	HN	HN	HN	HN	NH	N
鎌	Я 2	снв	cH s	cH s	CH 3	CH 8	cH s	CH3	CH3	CH3	CH 3
	~	CH 8	CH 3	CH 3	cH ₃	CH3	cH3	CH3	CH3	CH3	CH 3
	化合物 Na	7 3	7 4	7 5	9 2	1 1	8 2	6 2	8 0	8 1	8

					-	
化合物 Na	요 .	교 2	×	X	W "	æ
က	СНз	сня	NH	8	4-NH2	B 1
4	CH 3	CH 3	HN	S	4-NHCOCH ₈	B 1
വ	CH3	CH3	NH	S	4-NHSO2CH8	B 1
. 9	CH 3	CH 3	HN	S	4-NHCOCF3	B 1
2	CH3	CH 3	HN	S	4-NHSO2CF3	B 1
8	CH 8	CH 3	NH	S	4 - P h	B 1
6	CH 8	cH 3	HN	S	4-0Ph	B 1
0	CH3	CH3	HN	S	4-0CF2CF2H	B 1
	CH ₃	cH 3	N	S	4-C0CH ₈	B 1
2	CH3	CH 8	NH	S	4-NHCOPh	B 1

				第 1	表	(競別)			
化合	₹.	h Na	자	R 2	×	Y	W "	ф	
6		တ	CH3	в Н Э	NH	S	4-NHCOOCH®	Щ	
G		4	CH3	°H3	HN	S	4-NHCON(CH ₈) ₂	ф	
0,	<u>ت</u>	വ	CH3	cH s	NH	S	2-0.1, 3-0.1	Э	_
OJ.) ი	9	CH 3	CH3	HN	S	2-0.1, 4-0.1	В	
<u> </u>	- ල	2	CH 3	СНз	HN	S	2-01, 5-01	В	—
<i>-</i> 22	ග	. 😄	cH3	cH s	H	S	2-C1, 6-C1	ф	
<i></i>	ත	6	c H 3	CH 3	H	S	3-C1, 4-C1	В	
-	0	0	°H2	c H _s	NH	S	3-01, 5-01	B	-
	0	,	cH s	c H s	HN	S	2-CH ₈ , 3-CH ₈	В	_
-	0	2	CH3	CH3	NH	S	2-CH ₈ , 4-CH ₈	В	

Ð

				無	— #K	と		
ين	<ı́±	W Na	R 1	R 2	×	Y	W "	В
	0	န	° HO	CH s	NH	S	2-CH3, 5-CH3	B
	0	4	CH3	CH 3	HN	S	2-CH ₈ , 6-CH ₈	B 1
-	0	2	CH 8	CH 3	HN	S	3-CH ₈ , 4-CH ₈	B 1
←	0	9	CH 3	cH 3	HN	S	3-CH ₈ , 5-CH ₈	B 1
	0	2	CH 8	CH 3	HN	S	2-C1, 3-CH ₈	B
_	0	8	CH 3	СНв	HN	S	2-C1, 4-CH ₈	B 1
	0	6	CH 3	CH 3	NH	S	2-C1, 5-CH ₈	B 1
		0	CH 3	CH 3	HN	S	3-C1, 4-CH ₈	B 1
	-		CH 3	c H _s	HN	S	3-C1, 5-CH ₈	B 1
		2 3	CH3	CH3	NH	S	2-CH ₈ , 3-C1	B 1

ŝ

			第 1	搬	(新然)		
1 2	化合物Na	R 1	я 2	×	Y	W "	В
1 1	ಕಾ	CH 3	cH,	HN	S	2-CH3, 4-C1	B 1
+I	4	cH s	CH 8	HN	S	2-CH ₈ , 5-C1	B 1
	ല	cH s	CH 3	HN	S	2-F, 3-F	B 1
	9]	cH s	cH _s	N	S	2-F, 4-F	B 1
	1 7	cH s	c H _s	HN	S	2-F, 5-F	B 1
-	8 1	СНз	cH3	HN	S	2-F, 6-F	B 1
-	6 1	CH3	cH s	NH	S	2-F, 3-C1	B 1
-	2 0	CH3	CH3	HN	S	2-F, 4-C1	B 1
7	2 1	CH3	СНз	HN	S	2-F, 5-C1	B 1
	2 2	в Н Э	cH ₃	HN	S	2-F, 6-C1	B 1

NH S S S S S NH S S S S S S S S S S S S		
NH N NH N S S NH N NH N S S S S S S S S	Y W n	æ
S S HN N N HN S S HN S S HN S S HN N HN S S HN N HN N S S S S	S 2-F, 3-CH ₈	B 1
NH S NH N S HN NH N S NH N NH N S NH	S 2-F, 4-CH ₈	B 1
NH S HN NH S NH N	S 2-F, 3-Br	B 1
NH S HN NH N	S 2-F, 4-Br	B 1
NH S HN	S 3-F, 4-C1	B 1
S HN 8	S 3-F, 5-C1	B 1
s HN 8	S 3-F, 4-CH ₈	B 1
	S 3-F, 5-CH ₈	B 1
	S 2-Br, 4-C1	B 1
CH ₈ NH S	S 2-Br, 4-Br	B 1

R 2 X Y W n B CH 8 NH S 2-Br, 4-CH 8 B 1 CH 8 NH S 3-Br, 4-CH 8 B 1 CH 8 NH S 3-Br, 4-CH 8 B 1 CH 8 NH S 3-Br, 4-CH 8 B 1 CH 8 NH S 2-C1, 4-Br B 1 CH 8 NH S 2-C1, 4-H B 1 CH 8 NH S 3-C1, 4-H B 1 CH 8 NH S 3-C1, 4-H B 1 CH 8 NH S 3-C1, 4-Br B 1			無 1	報	(競迷)		
NH S 2-Br, 4-CH ₈ NH S 3-Br, 4-C1 NH S 3-Br, 4-Br NH S 2-C1, 4-Br NH S 2-C1, 4-Br NH S 3-C1, 4-I	고 1	1	1	×	Y	M "	В
NH S 3-Br, 4-C1 NH S 3-Br, 4-Br NH S 2-C1, 4-Br NH S 2-C1, 4-I NH S 2-C1, 4-I NH S 3-C1, 4-Br NH S <	cH s		cH s	HN	S	4 – CH	B 1
NH S 3-Br, 4-Br NH S 2-C1, 4-Br NH S 3-C1, 4-Br NH S 2-C1, 4-I NH S 2-C1, 4-I NH S 3-C1, 4-I NH S 3-F, 4-Br NH S 3-F, 4-Br NH S 3, 4-0CH ₂ 0-	cH _s		CH3	HN	S	3-Br, 4-Cl	B 1
NH S 3-Br, 4-CH ₈ NH S 2-C1, 4-Br NH S 3-C1, 4-I NH S 2-C1, 4-I NH S 3-C1, 4-I NH S 3-C1, 4-I NH S 3-C1, 4-Br NH S 3-F, 4-Br NH S 3, 4-OCH ₂ O-	СНв		cH ₃	HN	S	3-Br, 4-Br	B 1
NH S 2-C1, 4-Br NH S 3-C1, 4-Br NH S 2-C1, 4-I NH S 3-C1, 4-I NH S 3-F, 4-Br NH S 3, 4-OCH 20-	c H 3		ch s	HN	S	4 – CH	B 1
NH S 3-C1, 4-Br NH S 2-C1, 4-I NH S 3-C1, 4-I NH S 3-F, 4-Br NH S 3, 4-0 CH 20-	CH 8		CH 8	HN	S	4-	B 1
NH S 2-C1, 4-I NH S 3-C1, 4-I NH S 8-F, 4-Br NH S 3, 4-0 CH 20-	cH _s		cH s	HN	S	3-C1, 4-Br	B 1
8 NH S 3-C1, 4-I 8 NH S 3-F, 4-Br 8 NH S 3, 4-0CH ₂ 0-	cH 3		¢H3	HN	S	4-	B 1
8 NH S 3-F, 4-Br 8 NH S 3, 4-0CH ₂ 0-	СНз		¢H3	HN	S	3-C1, 4-I	B 1
s NH S 3, 4-0CH ₂ 0-	CH 8		снв	HN	S	3-F, 4-Br	B 1
	СНз		СНз	HN	S	3, 4-0CH ₂ 0-	B 1

		-					-			-	-	
	77	—	-	₩.			, , 	П		-		
	B	A	B	B	В	В	B	В	В	В	В	
	W n	2-CF ₈ , 3-C1	2-CF ₈ , 4-C1	2-CF ₈ , 3-Br	2-CF8, 4-Br	2-F, 4-N0 ₂	3-F, 4-N0 ₂	2-C1, 4-N0 ₂	3-C1, 4-NO ₂	2-F, 4-0CH ₈	3-F, 4-0CH ₈	
(競強)	Ϋ́	S	S	S	S	S	S	S	S	တ	S	
崧	×	HN	HN	HN	HN	H	HN	HN	HN	HN	NH	
第 1	Д ²	°H 3	cH _s	CH 3	c H _s	вно	cH s	cH _s	c H _s	CH ⁸	СНз	
	R 1	CH 8	CH ₈	c H s	cH s	c H _s	cH s	CH 3	cH 3	CH 3	снз	
	r 物 Na	တ	4	อ	9	7	&	G	0	 -	67	
	化合	1 4	1 4	1 4	1 4	1 4	1 4	1 4	1 5	 	1 5	

	W " B	2-C1, 4-0CH ₈ B 1	C1, 4-0CH ₈ B 1	H3, 4-0CH B 1	H3, 4-0CH B 1	2-C1, 3-C1, 4-C1 B 1	1-C1, 5-C1 B 1	2-C1, 4-C1, 6-C1 B 1	4-C1, 5-C1 B 1	3-C1, 4-CH ₈ B 1	2-C1, 3-C1, 4-Br B 1
(松蝎)	Ϋ́	S 2-C1	S 3-C1	S 2-0CH ₈ ,	S 3-0CH ₈ ,	S 2-C1, 8	S 2-C1, 4-C1,	S 2-C1,	S 3-C1,	S 2-C1, 3	S 2-C1,
1	×	HN	HN	HN	HZ	H N	E	N	HN	H	HN
無	۸ 2	cH s	CH 3	c H s	cH s	cH s	CH 8	cH s	cH s	cH 3	CH3
	R 1	CH 8	CH ⁸	CH 8	CH 3	CH 3	CH 3	cH ₃	CH ₈	CH ⁸	CH 3
	化合物Na	1 5 3	1 5 4	1 5 5	1 5 6	1 5 7	1 5 8	1 5 9	1 6 0	1 6 1	1 6 2

			第	報	統	$\widehat{}$			
名 	化合物Na	고 권	R 2	×	> -		W n	В	
1 6	ಕಾ	в НО	c H _s	HN	S	2-61, 8	2-C1, 3-C1, 4-I	В	-
1 6	4	СНз	CH3	HN	S	2-61,	2-C1, 4-Br, 6-C1	m .	
1 6	വ	CH3	CH 3	HN	S	2-61,	2-C1, 4-CH ₈ , 6-C1	В	 1
1 6	9	CH3	c H s	HN	တ ့	2-Br,	2-Br, 4-C1, 6-C1	<u>m</u>	-
1 6	7	сн з	в Н Э	NCHO		S	4-01	<u>A</u>	
1 6	8	CH 3	СНз	NCOCH8		S	4-01	B	 1
1 6	ග	CH 3	в НЭ	NCOOCH3	-	S	4-61	В	—
1 7	0	СНз	СНз	NCON(CH ₈)	2 2	S	4-61	В	 1
1 7	-	CH 3	снз	NCONHPh		S	4-61	В	
1 7	7	c H ₃	CH3	NCH 8		S	4-01	B	 1

NC2H5 S $4-C1$ B NC8H7 S $4-C1$ B NCH2OCH8 S $4-C1$ B NCH2CH2CH2 S $4-C1$ B NCH2CH=CH2 S $4-C1$ B NCH2COCH8 S $4-C1$ B NCH2COCH8 S $4-C1$ B NCH2COOCH8 S $4-C1$ B	R 1 R
NC_2H_5 S NC_8H_7 S NCH_2OCH_8 S $NCH_2CH=CH_2$ S $NCH_2CH=CH_2$ S NCH_2COCH_8 S NCH_2COCH_8 S NCH_2COCH_8 S NCH_2COOCH_8 S NCH_2COOCH_8 S	4
NC $_{8}$ H $_{7}$ S $_{4}$ – C $_{1}$ NC $_{4}$ C $_{2}$ D C $_{18}$ S $_{4}$ – C $_{1}$ NC $_{2}$ C $_{1}$ = C $_{1}$ S $_{4}$ – C $_{1}$ NC $_{1}$ C D C C $_{18}$ S $_{4}$ – C $_{1}$ NC $_{1}$ C D C C $_{18}$ S $_{4}$ – C $_{1}$ NC $_{12}$ C D C C $_{2}$ H $_{5}$ S $_{4}$ – C $_{1}$ NC $_{12}$ C D C C $_{2}$ H $_{5}$ S $_{4}$ – C $_{1}$ NC $_{12}$ C D C C $_{2}$ H $_{5}$ S $_{4}$ – C $_{1}$ NC $_{12}$ C D C C $_{2}$ H $_{5}$ S $_{4}$ – C $_{1}$ N C $_{12}$ C D C C $_{2}$ H $_{5}$ S $_{4}$ – C $_{1}$ N C $_{12}$ C D C C $_{2}$ H $_{5}$ S $_{4}$ – C $_{1}$ N C $_{12}$ C D C C $_{2}$ H $_{5}$ S $_{4}$ – C $_{1}$ N C $_{12}$ C D C C D C D C D C D C D C D C D C D	СНз
NCH2OCH8 S $4-C1$ NCH2CH2OCH8 S $4-C1$ NCH2CH=CH2 S $4-C1$ NCH2COCH8 S $4-C1$ NCH2COCH8 S $4-C1$ NCH2COOCH8 S $4-C1$ NCH2COOC2H5 S $4-C1$ NCH2COOC2H5 S $4-C1$ NCH2COOC2H5 S $4-C1$	CH 3
$NCH_2CH_2OCH_8$ S $4-C1$ $NCH_2CH=CH_2$ S $4-C1$ NCH_2COCH_8 S $4-C1$ NCH_2COCH_8 S $4-C1$ NCH_2COOCH_8 S $4-C1$ $NCH_2COOC_2H_5$ S $4-C1$ $NCH_2COOC_2H_5$ S $4-C1$ $NCH_2COOC_2H_5$ S $4-C1$	СНз
$NCH_2CH = CH_2$ S $4 - C1$ NCH_2COCH_3 S $4 - C1$ NCH_2COCH_3 S $4 - C1$ $NCH_2COOC_2H_3$ S $4 - C1$ $NCH_2COOC_2H_5$ S $4 - C1$ $NCH_2COOC_2H_5$ S $4 - C1$ $NCH_2COOC_2H_5$ S $4 - C1$	СНз
$NCH_2C \equiv CH$ S $4-C1$ NCH_2C0CH_8 S $4-C1$ NCH_2C00CH_8 S $4-C1$ $NCH_2C00C_2H_5$ S $4-C1$ $NCH_2C00C_2H_5$ S $4-C1$ $NCH_2C00C_3H_5$ S $4-C1$	СНз
NCH ₂ COCH ₈ S 4-C1 NCH ₂ COOCH ₈ S 4-C1 NCH ₂ COOC ₂ H ₅ S 4-C1 NCH ₂ CN S 4-C1	СНз
NCH ₂ C00CH ₈ S 4-C1 NCH ₂ C00C ₂ H ₅ S 4-C1 NCH ₂ CN S 4-C1	СНз
NCH ₂ C00C ₂ H ₅ S 4-C1 NCH ₂ CN S 4-C1	СНз
S 4-C1	СНз
	СНз

				無	1 表 ((親)			
भ	√ □	合物 Na	R 1	R 2	X		Ϋ́	W "	В
-	8	ಣ	в Н Э	CH 3	NCH ₂ Ph	-	S	4-61	B 1
	∞	4	СНз	CH 3	NCH2C9H4-4-C1		S	4-61	B 1
	∞	വ	в но	CH 3	NCH2CeH4-4-CH8		S	4-61	B 1
-	∞	9	сня	CH 3	NCH2CH2Ph		S	4-C1	B 1
-	∞		в Н Э	СНв	NS02CH8		S	4-61	B 1
—	∞	œ	c H _s	CH 3	NSO ₂ N(CH ₈)	81	S	4-61	B 1
	∞	6	вно	СНз	NCHO		S	4-01	B 2
-	6	0	СНз	CH 8	NCH 8		S	4-61	B 2
	6	, 	c H s	Ħ	HN		S	4-61	B 1
-	တ	2	CH 3	H	HN	• •	S	2-01, 4-01	B 1
		-				:			

	В	B 1	B 1	B 1	B 1	B 1	B 1	B 1	B 1	B 1	B 1	
	W "	3-C1, 4-CH ₈	4-61	4-Br	2-61, 4-61	2-C1, 4-CH ₈	4-61	4-Br	2-61, 4-61	2-C1, 4-CH ₈	4-61	
(続 %)	¥	S	S	S	S	S	S	S	S	S	တ	
表	×	NH	NH	HN	NH	HN	NH	HN	HN	NH	NH	
第 1	요 2	H	C ₂ H ₅	i - C 8 H 7	1-CsH7	i - C 8 H 7	1 - C 8 H 7	t-C4H8				
	고	c H s	CH3	CH3	CH3	CH 3	CH 3	cH _s	CH B	CH 3	CH3	
	公合物 Na	8 6	9 4	6 2	961	1 9 7	1 9 8	1 9 9	2 0 0	2 0 1	2 0 2	
	7	1	—	_		• •	• •					

		-		-	-	 1	+1	8	2	2	8	
	m	B	\mathbf{B}	\mathbf{B}	B	\mathbf{p}	B	\mathbf{B}	В	B	$\mathbf{\Omega}$	
-												
	W n	2-61, 4-61	3-C1, 4-CH ₈	4-61	4-Br	2-61, 4-61	3-C1, 4-CH ₈	4-61	2-61, 4-61	4-01	4-61	
₩ ₩												
) 第	Ā	S	S	S	S	S	S	S	S	S	S	
裘	×	HN	HN	HN	HN	NH	HN	HN	NH	HN	HN	-
	м	t - C 4 H 9	- C 4 H 9	&	89	\$	8			2	C a H 7	
無	24	٠.	- 1	CF	CF	CF	CF	H	H	C ₂ H	i - C	
	R 1	CH3	CH3	CH3	CH3	CH 3	CH3	CH3	CH3	CH3	CH3	
	No.										٠	
	\$	က	4	រប	9	2	∞	တ	0	-	2	
	<□	0	0	0	. 0	0	0	0		-	1	
	五	2	8	2	2	87	2	2	8	2	2	

		第 1	#K	(続 %)		
化合物加	Na R 1	R 2	×	X	W n	В
က	CH 3	t - C 4 H 9	HN	S	4-01	B 2
4	CH 8	CF3	HN	S	2-61, 4-61	B 2
വ	CH 8	CH ₂ Ph	HN	S	4-C1	B 1
6	CH3	CH2Ph	HN	S	2-C1, 4-C1	B 1
_	CH 3	CH2Ph	NCHO	S	2-C1, 4-C1	B 1
∞ .	CH 3	CHO	HN	S	4 - C 1	B 1
6 _1	CH 3	СНО	NCHO	S	4-C1	B 1
2 0	c H s	CHO	HN	S	2-01, 4-01	B 1
2 1	CHB	0 H O	NCHO	S	2-C1, $4-C1$	B 1
2 2	CH3	внооо	HN	S	4-01	B 1

1	·		無	栽	(新路)		
5	合物	Na R 1	ጸ ²	×	>	M u	В
2	2 3	CH3	в нэоэ	HN	S	4-Br	B 1
7	2 4	CHB	COCH 8	H	S	2-61, 4-61	B 1
27	2 5	c H s	8 H O O O	NCHO	S	2-61, 4-61	B 1
2	2	CH 8	SO2CH8	HN	S	4-61	B 1
2	2 7	CH 8	SO2CH3	HN	S	2-01, 4-01	B 1
2 2	∞	CH 8	SO2CH3	HN	S	3-C1, 4-CH ₈	B 1
2	6	CH 8	CONHCH 8	HN	S	4-61	B 1
2 3	0	CH 8	CONHCH 8	HN	S	4 - Br	B 1
2 3		CH 8	CONHCH	HN	တ	2-61, 4-61	B 1
2 3	87	CH 3	CONHCHS	HN	S	3-C1, 4-CH ₈	B 1
		-				-	

S 4-C1 B 2 S 2-C1, 4-C1 B 2 S 4-C1 B 2 S 4-C1 B 2 S 2-C1, 4-C1 B 2 S 2-C1, 4-C1 B 1 S 2-C1, 4-C1 B 1 S 3-C1, 4-C1 B 1 S 4-C1 B 1	業 ⋈	郑 四
S 2-C1, 4-C1 B S 4-C1 B S 4-C1 B S 2-C1, 4-C1 B S 2-C1, 4-C1 B S 2-C1, 4-C1 B S 3-C1, 4-C1 B S 3-C1, 4-C1 B S 4-C1 B	NH	CH ₂ Ph N
S 4-C1 B S 4-C1 B S 4-C1 B S 2-C1, 4-C1 B S 4-C1 B S 2-C1, 4-C1 B S 3-C1, 4-C1 B S 4-C1 B	HN	CH ₂ Ph N
S 4-C1 B S 4-C1 B S 4-C1 B S 2-C1, 4-C1 B S 4-C1 B S 3-C1, 4-C1 B S 3-C1, 4-C1 B S 3-C1, 4-C1 B	NH	COCH 8 N
S 4-C1 B S 2-C1, 4-C1 B S 4-C1 B S 2-C1, 4-C1 B S 2-C1, 4-C1 B S 3-C1, 4-CH B S 4-C1 B	HN	CONHCH ₈ NE
S 2-C1, 4-C1 B S 4-C1 B S 2-C1, 4-C1 B S 3-C1, 4-CH ₈ B	HN	SO2CH3 NF
S 4-C1 S 2-C1, 4-C1 S 3-C1, 4-CH ₈ S 4-C1	NH	S02CH3 NF
S 2-C1, 4-C1 S 3-C1, 4-CH ₈ S 4-C1	NH	CH 8 NH
S 3-C1, 4-CH ₈ S 4-C1	NH	CH ₈ NH
S 4-C1	HN	CH 8 NH
	ΗN	CH ₃ NI

A brack R 1 R 2 X Y W n B 2 4 8 CF 8 CH 8 NH S 4 - Br B 1 2 4 4 CF 8 CH 8 NH S 2 - C1, 4 - C1 B 1 2 4 5 CF 8 CH 8 NH S 2 - C1, 4 - CH 8 B 1 2 4 6 C 2 H 5 CH 8 NH S 4 - CH B 1 2 4 7 C 2 H 5 CH 8 NH S 4 - Br B 1 2 4 8 C 2 H 5 CH 8 NH S 2 - C1, 4 - CH 8 B 1 2 4 9 C 2 H 5 CH 8 NH S 2 - C1, 4 - CH 8 B 1 2 5 0 i - C 8 H 7 CH 8 NH S 2 - C1, 4 - CH 8 B 1 2 5 1 i - C 8 H 7 CH 8 NH S 2 - C1, 4 - CH 8 B 1 2 5 2 i - C 8 H 7 CH 8 NH S 2 - C1, 4 - CH 8 B 1 2 5 2 i - C 8 H 7 CH 8 </th <th></th> <th></th> <th></th> <th>-</th> <th>第</th> <th>榖</th> <th>(</th> <th></th> <th></th>				-	第	榖	(
4 3 CF8 CH8 NH S 4-Br 4 4 CF8 CH8 NH S 2-C1, 4-C1 4 5 C2H5 CH8 NH S 2-C1, 4-CH8 4 6 C2H5 CH8 NH S 4-C1 4 7 C2H5 CH8 NH S 2-C1, 4-CH8 4 9 C2H5 CH8 NH S 2-C1, 4-CH8 5 0 1-C8H7 CH8 NH S 2-C1, 4-CH8 5 1 1-C8H7 CH8 NH S 2-C1, 4-CH8 5 2 1-C8H7 CH8 NH S 2-C1, 4-CH8	和	4	DA Na	유 -	li i	×	¥		В
4 CF 8 CH 8 NH S 2-C1, 4-C1 4 5 C2 H 5 NH S 2-C1, 4-CH 8 4 6 C2 H 5 NH S 4-C1 4 7 C2 H 5 CH 8 NH S 4-Br 4 8 C2 H 5 NH S 2-C1, 4-CH 8 4 9 C2 H 5 NH S 2-C1, 4-CH 8 5 0 1-C 8 H 7 NH S 2-C1, 4-CH 8 5 1 1-C 8 H 7 NH S 2-C1, 4-CH 8 5 1 1-C 8 H 7 NH S 2-C1, 4-CH 8 5 1-C 8 H 7 NH S 2-C1, 4-CH 8 6 1-C 8 H 7 NH S 2-C1, 4-CH 8 7 1-C 8 H 7 NH S 2-C1, 4-CH 8	2	1	က	CFs	CH ₈	HN	S	4 - Br	B 1
4 5 CCF 8 CH 8 NH S 2-C1, 4-CH 8 4 6 C ₂ H 5 CH 8 NH S 4-C1 4 7 C ₂ H 5 CH 8 NH S 4-Br 4 8 C ₂ H 5 CH 8 NH S 2-C1, 4-C1 5 9 C ₂ H 5 CH 8 NH S 2-C1, 4-CH 8 5 1 1-C 8H 7 CH 8 NH S 2-C1, 4-CH 8 5 1 1-C 8H 7 CH 8 NH S 2-C1, 4-CH 8 5 2 1-C 1, 4-CH 8 S 2-C1, 4-CH 8	% 1		4	CF 3	CH 3	HN	S	2-61, 4-61	B 1
4 6 C ₂ H ₅ CH ₈ NH S 4-C1 4 7 C ₂ H ₅ CH ₈ NH S 4-Br 4 8 C ₂ H ₅ CH ₈ NH S 2-C1, 4-C1 5 9 C ₂ H ₅ CH ₈ NH S 4-C1 5 0 i-C ₈ H ₇ CH ₈ NH S 4-C1 5 1 i-C ₈ H ₇ CH ₈ NH S 2-C1, 4-C1 5 2 i-C ₈ H ₇ CH ₈ NH S 2-C1, 4-C1	87		ച		CH 8	HN	S	4 – CH	B 1
4 7 C 2 H 5 CH 8 NH S 4 - Br 4 8 C 2 H 5 CH 8 NH S 2 - C 1, 4 - C H 4 9 C 2 H 5 CH 8 NH S 2 - C 1, 4 - C H 8 5 0 i - C 8 H 7 CH 8 NH S 4 - C 1 5 1 i - C 8 H 7 CH 8 NH S 2 - C 1, 4 - C 1 5 2 i - C 8 H 7 CH 8 NH S 2 - C 1, 4 - C 1	2		9	C ₂ H ₅	CH 3	HN	S	4 - C 1	B 1
4 8 C ₂ H ₅ CH ₈ NH S 2-C1, 4-C1 4 9 C ₂ H ₅ CH ₈ NH S 2-C1, 4-CH ₈ 5 0 i-C ₈ H ₇ CH ₈ NH S 4-C1 5 1 i-C ₈ H ₇ CH ₈ NH S 2-C1, 4-C1 5 2 i-C ₈ H ₇ CH ₈ NH S 2-C1, 4-C1	87		7	2 H	СНз	NH	S	4-Br	B 1
4 9 C ₂ H ₅ CH ₈ NH S 2-C1, 4-CH ₈ 5 0 1-C ₈ H ₇ CH ₈ NH S 4-C1 5 1 1-C ₈ H ₇ CH ₈ NH S 2-C1, 4-C1 5 2 1-C ₈ H ₇ CH ₈ NH S 3-C1, 4-CH ₈	23		∞	3 H	CH 8	HN	S	2-01, 4-01	B 1
5 0 i - C ₈ H ₇ CH ₈ NH S 4 - C1 5 1 i - C ₈ H ₇ CH ₈ NH S 2 - C1, 4 - C1 5 2 i - C ₈ H ₇ CH ₈ NH S 3 - C1, 4 - CH ₈	2		ග	2 H	CH 3	HN	S	4 - CH	B 1
5 1 i-C ₈ H ₇ CH ₈ NH S 2-C1, 4-C1 5 2 i-C ₈ H ₇ CH ₈ NH S 3-C1, 4-CH ₈	87			H 8) -	CH 3	HN	S	4-C1	B 1
5 2 i-C ₈ H ₇ CH ₈ NH S 3-C1, 4-CH ₈	87	2		н в Э –	CH3	NH	S	2-01, 4-01	B 1
	87			- C ₈ H	CH 3	HN	S	4 – CH	B 1

				₩	表	(競別)			
<u>7</u>	合物 Na) No.	R 1	R 2	×	Y	W n	В	
17.7	5 3		t - C 4 H 9	СНз	HN	S	4-61	В	
	5 4		t - C 4 H 8	CH 3	HN	S	4-Br	В	—
	5		t - C 4 H 9	cH s	HN	တ	2-61, 4-61	В	 1
	5 6		t-C4H9	cH3	HN	S	3-C1, 4-CH ₈	B	
	5 7		Ħ	cH s	HN	S	4-C1	В	2
	5	~~	Н	cH s	HN	S	2-61, 4-61	В	2
	5	~	C ₂ H ₅	cH s	HN	S	4-C1	B	2
_	0 9		i - C 8 H 7	CH 3	NH	S	4-01	B	2
	6 1		CF.	СНз	NH	S	4-C1	B	2
-	6 2	~ 3	CF3	CH 3	HN	S	2-61,4-61	В	2

CH 8 NH S CH 8 NH S CH 8 NH S CH 8 NCHO S CH 8 NCH S CH 8 NCH S		無		嵌	(競迷)		-
CH ₈ CH	고		.	×	Y	W n	В
CH ₈ CH	C 1	СНв		NH	S	4-61	B 1
CH ₈ NH S CH ₈ NCHO S CH ₈ NCHO S CH ₈ NCHO S CH ₈ NH S CH ₈ NH S	C 1	CH 3		HN	S	2-61, 4-61	B 1
CH ₈ NCHO S 4-C1 CH ₈ NH S 4-Br CH ₈ NCHO S 2-C1, 4-C1 CH ₈ NH S 4-C1 CH ₈ NH S 4-Br	C1	c H _s		HN	S	3-C1, 4-CH ₈	B 1
CH ₈ NCHO S 2-C1, 4-C1 CH ₈ NCHO S 2-C1, 4-CH CH ₈ NH S 4-C1 CH ₈ NH S 4-C1	C 1	cH s		NCH0	S	4-C1	B 1
CH ₈ NCHO S 2-C1, 4-C1 CH ₈ NCHO S 2-C1, 4-CH CH ₈ NH S 4-C1 CH ₈ NH S 4-Br	C1	cH s		HN	တ	4 - Br	B 1
CH ₈ NCHO S 2-C1, 4-CH CH ₈ NH S 4-C1 CH ₈ NH S 4-Br	C1	cH ₈		OHON	S	2-61, 4-61	B 1
CH ₈ NH S CH ₈ NH S	C 1	cH3	_	OHON	S	4 - C H	B 1
CH ₈ NH S	0 H H O	c H s		HN	S	1	B 1
	0 % H 3	CH 3		HN	S	4 - B r	B 1
CH ₈ NH S	CH 3	CH _B		HN	S	2-01, 4-01	B 1

	1	•									
									-	 i	 1
	В	. 🛚	В	В	В	В	В	В	В	В	В
	W "	2-C1, 4-CH ₃	4-61	2-61, 4-61	3-C1, 4-CH ₈	4-61	4-8r	2-01, 4-01	3-C1, 4-CH ₃	4-61	2-61, 4-61
が変し、	Ā	S	S	S	S	S	S	S	S	S	S
裘	×	HN	NCHO	NCHO	NCHO	NH	HN	N	NH	NCH0	NCHO
## 	R 2	c H _s	cH 3	в Н Э	cH s	CH 3	cH _s	CH ⁸	СНз	cH s	СНв
	Г	0 ° H O	0 8 H O	CH 8 0	0 H 3	CH 8 S	CH 8 S	CH s S	CH s S	S & H O	S & HO
	化合物加	7 3	7 4	7 5	9 2	7 7	8 2	6 2	8 0	8 1	8 2
	5	2	2	2	2	2	2	2	2	2	2

NA R 1 X Y Wn B C1 CH 8 NH S 4-C1 B 2 CH 8 0 CH 8 NH S 2-C1, 4-C1 B 2 CH 8 0 CH 8 NH S 2-C1, 4-C1 B 2 CH 8 0 CH 8 NH S 2-C1, 4-C1 B 2 CH 8 0 CH 8 NH S 2-C1, 4-C1 B 1 CH 8 0 CH 8 NH S 4-C1 B 1 CH 8 0 CH 8 0 NH SO 2 4-C1 B 1 CH 8 0 CH 8 0 NH SO 2 4-C1 B 1 CH 8 0 CH 8 0 NH SO 2 4-C1 B 1 CH 9 0 CH 8 0 NH SO 2 2-C1, 4-C1 B 1 CH 9 0 CH 8 0 NH SO 2 2-C1, 4-C1 B 1 CH 9 0 CH 9 0 CH 9 0 CH 1, 4-C1 B 1				#	嵌	(※ 號)		
CH 8 NH S 4-C1 B CH 8 NH S 2-C1, 4-C1 B CH 8 NH S 2-C1, 4-C1 B CH 8 NH S 2-C1, 4-C1 B B CH 8 SO 2 S 4-C1 B B CH 8 NH SO 2 2-C1, 4-C1 B B CH 8 NH SO 2 2-C1, 4-C1 B B CH 8 NH SO 2 2-C1, 4-C1 B	化合物加	ĕ			×	≻-		В
CH 8 NH S 2-C1, 4-C1 B CH 8 NH S 2-C1, 4-C1 B CH 8 NH S 2-C1, 4-C1 B CH 8 NH S 4-C1 B CH 9 NH S 2-C1, 4-C1 B CH 8 NH S 2-C1, 4-C1 B	က		C 1	cH s	NH	S	4-61	
CH 8 NH S 2-C1, 4-C1 B CH 8 NH S 2-C1, 4-C1 B CH 8 SO2 S 4-C1 B CH 8 NH SO2 2-C1, 4-C1 B CH 8 NH SO2 2-C1, 4-C1 B CH 8 NH SO2 2-C1, 4-C1 B	4		0.1	CH ₃	HN	S	2-61, 4-61	
cH 8 NH S 2-C1, 4-C1 B cH 8 S0 2 S 4-C1 B cH 8 NH S0 2 2-C1, 4-C1 B cH 8 NH S0 2 2-C1, 4-C1 B cH 8 NH S0 2 2-C1, 4-C1 B	ಬ		0 H 3	СНз	HN	S	2-61, 4-61	
CH s SO 2 S 4-C1 CH s NH SO 2 2-C1, 4-C1 CH s NH SO 2 2-C1, 4-C1	9		CH 8 S	CH 8	HN	S	2-C1, 4-C1	
CH B SO 2 S 4-C1 CH B NH SO 2 4-C1 CH B NH SO 2 4-C1 CH B NH SO 2 2-C1, 4-C1 CH B NH SO 2 2-C1, 4-C1	7		CH3	CH 3	80	S	4-01	B 1
CH ₈ NH SO 4-C1 CH ₈ NH SO ₂ 4-C1 CH ₈ NH SO 2-C1, 4-C1 CH ₈ NH SO ₂ 2-C1, 4-C1	8		CH 8	cH _s	S 0 2	S	4-61	B 1
CH ₈ NH SO ₂ 4-C1 CH ₈ NH SO 2-C1, 4-C1 CH ₈ NH SO ₂ 2-C1, 4-C1	6		CH3	cH s	NH	8.0	4-61	B 1
CH ₃ NH SO 2-C1, 4-C1 CH ₃ NH SO ₂ 2-C1, 4-C1	0		CH3	CH3	H	S 0 2	4-01	B 1
CH ₃ NH SO ₂ 2-C1, 4-C1			c H 3	CH3	NH	8.0	2-61, 4-61	B 1
	2		CH 3	CH3	HN	S 0 2	2-01, 4-01	B 1

化合物 Na R ¹ R ² X Y W ⁿ 2 9 3 CH ₈ CH ₈ CH ₈ NH SO 3-C1, 4-CH ₈ 2 9 4 CH ₈ CH ₈ CH ₈ NH SO ₂ 3-C1, 4-CH ₈ 2 9 5 CH ₈ CH ₈ CH ₈ SO 0 4-C1 2 9 6 CH ₈ CH ₈ SO 0 4-C1 2 9 7 CH ₈ CH ₈ SO 0 2-C1, 4-C1 2 9 8 CH ₈ CH ₈ SO 0 2-C1, 4-C1 2 9 9 CH ₈ CH ₈ SO 0 2-C1, 4-C1 3 0 0 CH ₈ CH ₈ SO 0 2-C1, 4-C1 3 0 1 CH ₈ CH ₈ NH 0 4-C1 3 0 2 CH ₈ NH 0 4-C1 4 - C1 CH ₈ NH 0 4-C1 6 0 0 CH ₈ CH ₈ NH 0 4-C1 7 0 1 CH ₈ CH ₈ NH 0 4-C1					第 1	裘	(光麗)		
9 3 CH ₈ CH ₈ NH SO 3-C1, 9 4 CH ₈ CH ₈ NH SO ₂ 3-C1, 9 5 CH ₈ CH ₈ SO 0 4-C1 9 6 CH ₈ CH ₈ SO 0 4-C1 9 7 CH ₈ CH ₈ SO 0 2-C1, 9 8 CH ₈ CH ₈ SO 0 2-C1, 0 0 CH ₈ CH ₈ SO 0 2-C1, 0 1 CH ₈ CH ₈ NH 0 4-C1 0 2 CH ₈ CH ₈ NH 0 4-C1	75	40	M Na	R 1		×	¥	1	В
9 4 CH 8 CH 8 NH SO 2 3 - C1, 9 5 CH 8 CH 8 SO 0 4 - C1 9 6 CH 8 CH 8 SO 0 4 - C1 9 7 CH 8 CH 8 SO 0 4 - C1 9 8 CH 8 CH 8 SO 0 2 - C1, 9 9 CH 8 CH 8 SO 0 2 - C1, 0 0 CH 8 CH 8 NH 0 4 - C1, 0 1 CH 8 CH 8 NH 0 4 - CH 8 0 2 CH 8 CH 8 NH 0 4 - CH 8			တ	CH3	cH s	HN	8.0	3-C1, 4-CHs	B 1
9 5 CH ₈ CH ₈ S 0 4-C1 9 6 CH ₈ CH ₈ S 0 4-C1 9 7 CH ₈ CH ₈ S 0 4-C1 9 8 CH ₈ CH ₈ S 0 2-C1, 9 9 CH ₈ CH ₈ S 0 2-C1, 0 0 CH ₈ CH ₈ NH 0 4-C1 0 2 CH ₈ CH ₈ NH 0 4-CH ₈ 0 2 CH ₈ CH ₈ NH 0 4-CH ₈	8	6	4	cH3	CH 3	HN	S 0 2	3-C1, 4-CH ₈	B 1
9 6 CH ₈ CH ₈ SO ₂ 0 4-C1 9 7 CH ₈ CH ₈ SO ₂ 0 4-C1 9 8 CH ₈ CH ₈ SO ₂ 0 2-C1, 0 0 CH ₈ CH ₈ SO ₂ 0 2-C1, 0 1 CH ₈ CH ₈ NH 0 4-CH ₈ 0 2 CH ₈ CH ₈ NH 0 4-CH ₈	87		ച	в НЭ	CH 3	S	0	4-61	B 1
9 7 CH ₈ CH ₈ SO ₂ 0 4-C1 9 8 CH ₈ CH ₈ SO ₂ 0 2-C1, 9 9 CH ₈ CH ₈ SO ₂ 0 2-C1, 0 0 CH ₈ CH ₈ NH 0 4-C1 0 2 CH ₈ CH ₈ NH 0 4-CH ₈	2	6	9	СНз	c H _s	80	0	4-C1	B 1
9 8 CH ₈ CH ₈ S 0 2-C1, 9 9 CH ₈ CH ₈ S 0 2-C1, 0 0 CH ₈ CH ₈ N 0 4-C1 0 2 CH ₈ CH ₈ N 4-CH ₈ 0 2 CH ₈ CH ₈ N 4-CH ₈	2	6	7	CH 3	c H ₃	S 0 2	0	4-01	B 1
9 9 CH ₈ CH ₈ SO ₂ 0 2-C1, 0 0 CH ₈ CH ₈ NH 0 4-C1 0 1 CH ₈ CH ₈ NH 0 4-CH ₈ 0 2 CH ₈ CH ₈ NH 0 4-CH ₈	2	6	&	CH3	c H 3	S	0	2-01,4-01	B 1
0 0 0 CH ₈ CH ₈ SO ₂ 0 0 0 1 CH ₈ CH ₈ NH 0 0 0 2 CH ₈ CH ₈ NH 0	7	6	6	CH 3	c H _s	80	0	2-61,4-61	B 1
0 1 CH ₃ CH ₈ NH 0 0 0 2 CH ₈ CH ₈ NH 0	က	0	0	c H ³	c H ₃	S 0 2	0	2-01, 4-01	B 1
0 Z CH ₃ CH ₃ NH 0	က	0	,	СНз	cH _s	HN	0	4-61	B 1
	က	0	2	CH3	CH 3	H	0	4 – CH ₃	B 1

교				
	×	>	W u	В
CH 3	HN	0	2-61, 4-61	B 1
c H _s	HN	0	2-C1, 4-CH ₈	B 1
c H _s	HN	0	3-C1, 4-CH ₈	B
c H ₃	NH	0	2-F, 4-C1	B 1
cH 3	NCHO	0	4-01	B 1
CH 3	NCH &	0	4-01	B 1
cH 3	HN	0	4 - C 1	B 2
CH 3	HN	0	2-01, 4-01	B 2
CH 3	HN	S	4 - F	B 2
CH3	HN	S	4-C1	B 2

				無 1	裘	(松麗)		
. √ ⊔ 1	化合物	物 No.	٦. ا	R 2	×	Y	W "	В
	<i>හ</i>		ch s	CH 3	HN	S	4 - CH ₈	B 2
	4		cH _s	CH 3	HN	S	2-01, 4-01	B 2
	വ		cH ₈	СНз	HZ	S	3-C1, 4-C1	B 2
1	9 1		CH3	CH3	HN	S	2-C1, 4-CH ₈	B 2
,	1 7		CH 8	c H _s	HN	S	3-C1, 4-CH ₈	B 2
	1 8		в НЭ	c H _s	HN	S	2-F, 4-F	B 2
	1 9		CH3	c H s	NH	S	2-F, 4-C1	B 2
	2 0	_	CH 3	cH ₃	HN	S	2-F, 4-Br	B 2
	2 1		c H _s	cH _s	HN	S	2-F, 4-CH ₈	B 2
	2 2	•	CH 3	в Н Э	HN	S	3-F, 4-CH ₃	B 2
				:				

:							
Ma Na	R 1	고 2	×	7	W n	В	
6	CH 8	c H s	NCHO	S	4-61	æ	2
4	CH 3	CH 8	NCHO	S	2-61, 4-61	B	2
ລ	CH3	СНз	NCHO	·w	3-C1, 4-CH ₈	В	2
9	CH 3	CH 8	HN	S	4 - C 1	В	က
7	CH 3	CH 8	HN	S	4 - Br	В	ිත
æ	CH a	CH 8	HN	S	2-61, 4-61	В	က
6	c H _s	CH 8	HN	S	2-C1, 4-CH ₈	В	တ
0	СНз	CH3	HN	S	3-C1, 4-CH ₈	Щ	က
_	СНз	СНв	NH	S	4 - C 1	В	₽
	cH 3	CH 8	HN	S	2-C1, 4-C1	B	4

ļ			第 1	報	(松 媛)		
合物 Na	Na	R 1	አ 2	×	>	W n	В
<u>က</u>		CH3	c H s	HN	S	4 - C 1	B 5
3 4		CH3	в н э	H	S	2-01, 4-01	B 5
3 5		cH s	°H3	HN	S	4-01	B 6
3 6		CH3	cH ₃	H	S	2-61, 4-61	B 6
3 7		cH s	CH 8	HN	S	4-01	B 7
8		cH 3	cH _s	NH	S	2-C1, 4-CH ₈	B 7
ත හ		CH3	CH ⁸	HN	S	4-61	B 8
4 0		CH 3	CH 8	HN	S	2-C1, 4-C1	B 8
4		CH3	СНз	HN	S	4-61	B 9
4 2	A 1	СНз	CH 3	HN	S	2-C1, 4-CH ₈	B 9

				第	裘	(競別)	-	
5	<□	物 Na	~ ~	R 2	×	¥	W "	В
က	4	85	CH 8	CH s	HN	S	4-C1	B 1 0
က	4	₩	cH 3	cH _s	NH	S	2-61, 4-61	B 1 0
က	4	വ	cH _s	в н э	NH	S	3-61, 4-61	B 1 0
က	4	9	CH 3	СНв	HN	S	2-F, 4-CH ₈	B 1 0
လ	Ą	_	cH s	CH 3	ΗN	S	3-F, 4-CH ₃	B 1 0
က	4	&	cH _s	CH 8	HN	S	2-F, 4-C1	B 1 0
က	4	6	в Н Э	CH 8	HN	S	4-61	B 1 1
က	ប	0	CH 3	СНз	HN	S	2-C1, 4-CH ₈	B 1 1
က	១		CH 8	CH ₃	HN	S	4-01	B 1 2
တ	က	23	CH3	CH ⁸	HN	S	2-01, 4-01	B 1 2

				第	裘	(発)		
à	₫ □	合物 Na	고 건	고 2	×	Y	W n	В
တ	2	က	CH 8	CH 3	HN	S	2-F, 4-CH ₈	B 1 2
က	വ	4	снв	cH s	HN	S	3-F, 4-CH ₈	B 1 2
က	2	പ	CH 3	CH 3	HN	S	2-C1, 4-CH ₃	B 1 2
က	2	9	СНз	CH 3	HN	S	3-C1, 4-CH ₈	B 1 2
က	ស	7	СНз	СНз	0HON	S	4-61	B 1 2
က	2	&	снв	c H s	NCHO	S	2-0.1, 4-0.1	B 1 2
က	2	6	СНз	cH s	HN	S	4-61	B 1 3
က	9	0	cH 3	c H s	NH	S	2-C1, 4-C1	B 1 3
က	9	1	CH 3	CH3	NH	S	2-C1, 4-CH ₈	B 1 3

		က	4	4	4	4	ro:	2	വ	വ	9	
	-	• +	-	-	-	-	-	₩	 i	-		
	В	B	\Box	В	B	В	B	\mathbf{m}	<u> </u>	B	B	
						-						
	W "	2-F, 4-CH ₈	4-01	2-01, 4-01	2-C1, 4-CH ₃	2-F, 4-CH ₈	4-C1	2-61, 4-61	2-C1, 4-CH ₈	2-F, 4-CH ₈	4-61	
(競迷)	Ā	S	S	S	S	S	S	S	S	S	S	
米	×	HN	ΗN	HN	HN	HN	HN	HN	HN	NH	HN	
T												
無	R 2	CH3	CH 3	CH 3	CH3	CH _s	CH3	CH 3	CH 3	CH3	CH3	
	R 1	СНв	CH3	CH a	CH ₃	CH3	CH 8	CH 8	CH 8	CH 3	CH 3	
	物 Na	7	က	4	വ	9	7	œ	6.	0	 1	
	台	9	9	9	9	9	9	9	9	~	7	
	和	က	က	က	က	က	က	က	က	က	က	

.

<u>*</u>

物 Na R 1 R 2 X Y W n 2 CH 8 CH 8 NH S 2-C1, 4-C1 3 CH 8 CH 8 NH S 2-C1, 4-CH 8 4 CH 8 CH 8 NH S 2-C1, 4-CH 8 5 CH 8 CH 8 NH S 2-C1, 4-CH 8 6 CH 8 CH 8 NH S 2-C1, 4-CH 8 7 CH 8 CH 8 NH S 2-C1, 4-CH 8 9 CH 8 CH 8 NH S 2-C1, 4-CH 8 9 CH 8 CH 8 NH S 2-C1, 4-CH 8 0 CH 8 CH 8 NH S 2-C1, 4-CH 8 1 CH 8 CH 8 NH S 2-C1, 4-CH 8										
2 CH ₈ CH ₈ NH S 2-C1, 4-C1 8 CH ₈ CH ₈ NH S 2-C1, 4-CH ₈ 4 CH ₈ CH ₈ NH S 2-F, 4-CH ₈ 5 CH ₈ CH ₈ NH S 2-C1, 4-C1 6 CH ₈ CH ₈ NH S 2-C1, 4-CH ₈ 7 CH ₈ CH ₈ NH S 2-C1, 4-CH ₈ 8 CH ₈ CH ₈ NH S 2-F, 4-CH ₈ 9 CH ₈ CH ₈ NH S 2-C1, 4-C1 10 CH ₈ CH ₈ NH S 2-C1, 4-CH ₈ 11 CH ₈ CH ₈ NH S 2-C1, 4-CH ₈	令 参	Na	- P.	1	×	Y	1	В		
3 CH ₈ CH ₈ NH S 2-C1, 4-CH ₈ 4 CH ₈ CH ₈ NH S 2-F, 4-CH ₈ 5 CH ₈ CH ₈ NH S 2-C1, 4-CH ₈ 6 CH ₈ CH ₈ NH S 2-C1, 4-CH ₈ 7 CH ₈ CH ₈ NH S 2-C1, 4-CH ₈ 8 CH ₈ CH ₈ NH S 2-F, 4-CH ₈ 9 CH ₈ CH ₈ NH S 2-F, 4-CH ₈ 10 CH ₈ CH ₈ NH S 2-C1, 4-CH 11 CH ₈ CH ₈ NH S 2-C1, 4-CH 12 CH ₈ CH ₈ NH S 2-C1, 4-CH)H 8	сня	HN	S	2-61, 4-61	В	1 6	
4 CH ₈ CH ₈ NH S 2-F, 4-CH ₈ 5 CH ₈ CH ₈ NH S 4-C1 6 CH ₈ CH ₈ NH S 2-C1, 4-C1 7 CH ₈ CH ₈ NH S 2-C1, 4-CH ₈ 8 CH ₈ CH ₈ NH S 4-C1 9 CH ₈ CH ₈ NH S 2-F, 4-CH ₈ 10 CH ₈ CH ₈ NH S 2-C1, 4-CH 11 CH ₈ CH ₈ NH S 2-C1, 4-CH			3 H 3	СНз	HN	S	2-C1, 4-CH ₈	P	1 6	
5 CH ₈ CH ₈ NH S 4-C1 6 CH ₈ CH ₈ NH S 2-C1, 4-C1 7 CH ₈ CH ₈ NH S 2-C1, 4-CH 8 CH ₈ CH ₈ NH S 2-F, 4-CH 9 CH ₈ CH ₈ NH S 4-C1 0 CH ₈ CH ₈ NH S 2-C1, 4-CH 1 CH ₈ CH ₈ NH S 2-C1, 4-CH			3 H 3	CH3	HN	S	2-F, 4-CH ₈	щ	1 6	
6 CH ₈ CH ₈ NH S 2-C1, 4-C1 7 CH ₈ CH ₈ NH S 2-C1, 4-CH 8 CH ₈ CH ₈ NH S 2-F, 4-CH 9 CH ₈ CH ₈ NH S 2-F, 4-CH 10 CH ₈ CH ₈ NH S 2-C1, 4-C1 11 CH ₈ CH ₈ NH S 2-C1, 4-CH			3H 3	СНз	HN	S	4-61	В	1 7	_
7 CH ₈ CH ₈ NH S 2-C1, 4-CH 8 CH ₈ CH ₈ NH S 2-F, 4-CH ₈ 9 CH ₈ CH ₈ NH S 4-C1 0 CH ₈ CH ₈ NH S 2-C1, 4-CH 1 CH ₈ CH ₈ NH S 2-C1, 4-CH			ЗНз	CH3	HN	S	2-61,4-61	В		7
8 CH ₈ CH ₈ NH S 2-F, 4-CH ₈ 9 CH ₈ CH ₉ NH S 4-C1 0 CH ₈ CH ₈ NH S 2-C1, 4-CH 1 CH ₈ CH ₈ NH S 2-C1, 4-CH			3H 3	CH3	HN	S	2-C1, 4-CH ₃	В	—	2
9 CH ₈ CH ₈ NH S 4-C1 0 CH ₈ CH ₈ NH S 2-C1, 4-CH 1 CH ₈ CH ₈ NH S 2-C1, 4-CH			c H s	CH 3	HN	S	2-F, 4-CH ₃	В	- 	7
0 CH ₈ CH ₈ NH S 2-C1, 4-C1 1 CH ₈ CH ₈ NH S 2-C1, 4-CH			е н з	cH 3	HN	S	4-61	В		∞
1 CH, CH, NH S 2-C1, 4-CH			CH3	cH3	HN	S	2-01, 4-01	2	-	œ
	8		CH 3	cH3	NH	S	2-C1, 4-CH ₃	В	-	∞

	,		第 1	嵌	(競迷	(
5	合物 Na	R 1	요 2	×	>	M M	æ
<u>့</u> က	8 2	CH 8	6 H 3	HN	တ	2-F, 4-CH ₃	B 1 8
က	8 8	СНз	c H _s	NCHO	S	2-61, 4-61	B 1
က	8 4	СНв	c H _s	NCHO	S	3-61, 4-61	B 1
က	8 2	CH ₃	CH 8	NCHO	S	2-F, 4-Cl	B 1
က	9 8	CH3	CH 3	NCHO	S	2-F, 4-CH ₈	B 1
က	8 7	CH 3	CH 8	NCHO	S	3-F, 4-C1	B 1
က	8 8	в н э	CH 8	NCHO	S	3-F, 4-CH ₈	B 1
က	6 8	cH _s	cH s	NCHO	S	2-C1, 4-CH ₈	B 1
က	0 6	CH3	CH 3	NCHO	S	3-C1, 4-CH ₈	B 1
က	9 1	ен з	CH 3	NCHO	S	2-61, 3-61, 4-61	B 1
.							

	В	B 1	B 1	B 1	B 1	B 1	B 1	B 1	B 1	B 1	B 1	
	W "	2-61, 4-61, 5-61	2-61, 4-61	3-61, 4-61	2-F, 4-CH ₃	2-01, 3-01, 4-01	2-01, 4-01	3-C1, 4-CH ₈	2-61, 4-61	3-C1, 4-CH ₈	4-61	
(新路)	Y	S	S	S	S	S	S	S	S	∽	S	
嵌	×	NCHO	NCOCHS	NCOCHS	NCOCHS	NCOCHS	NCHs	NCHs	0 N N	0 N N	NNH 2	
第 1	R 2	СНв	cH s	cH 3	CH3	CH3	CH3	CH3	CH3	cH s	CH3	
	~	CH 3	cH s	cH 3	CH 3	CH3	CH3	CH3	CH3	CH3	CH3	
	化合物 Na	73	တ	7	2	9	7	∞	6	0	-	
	4	6	6	တ	တ	တ	တ	တ	တ	0	0	
	1 71	က	က	တ	က	က	က	တ	တ	4	Ť	

		-		兼	1	號	(
تد	√□	合物 No.	7 .	R 2	X	¥	M ,,	В		*
=	0	2	СНз	в н э	NNH 2	S	2-01, 4-01	В	₩	
 -	0	က	c H s	CH ₈	NNH 2	S	3-C1, 4-CH ₈	В	-	
₹'	0	7	c H _s	CH 8	NSO2CH3	S	2-01, 4-01	B		
₩.	0	വ	c H _s	CH 3	NSO 2 CH 8	S	2-F, 4-CH ₈	B		
	0	9	CH ₈	c H s	NSO 2 CH 3	S	2-61, 3-61, 4-61	A ·		
~	0	7	CH 8	снв	CH 2	S	4-61	B		
	0	8	CH 3	CH 3	CH 2	S	2-61, 4-61	M.		
	0	6	CH 3	CH 3	CH 2	S	2-C1, 4-CH ₈	В		
	-	0	CH 3	CH 3	CH ₂	S	2-F, 4-CH ₈	B	-	
***			CH3	CH3	(H()H)	S	4-61	B		

ž.

				無	1	(松號)		
和	√□	化合物胍	고 1	R 2	X	>	W "	B
4		23	° НЭ	CH 3	CH(0H)	S	2-61, 4-61	B 1
4		တ	CH 3	cH3	(H0)H0	S	2-C1, 4-CH ₈	B 1
4	-	7	CH 3	CH3	CH()H)	S	3-C1, 4-CH ₈	B 1
4		വ	c H ³	CH 3	CH()H)	S	2-F, 4-CH ₃	B 1
4	Ţ	9	CH3	CH3	(HO)H)	S	3-F, 4-CH ₃	B 1
4	—	7	СНз	CH3	CH(0CH3)	S	4-01	B 1
4		∞	CH3	CH3	CH(0CH ₈)	S	2-61, 4-61	B 1
4	-	6	CH 3	СНз	CH(0C0CH3)	S	4-61	B 1
Ą	2	0	СНз	CH3	CH(0C0CH3)	s	2-61, 4-61	B 1
4	2	1	CH3	CH3	CH(0C0CH3)	s	2-C1, 4-CH ₈	B 1
į	İ							

				無	1	(岩 號)		
1 22	4	化合物 Na	٦. 1	R 2	×	- X	M "	В
4	87	81	CH 3	вно	(вноооо) но	S	2-F, 4-CH ₈	B 1
4	2	က	СНз	CH 3	CH(F)	S	4-01	B 1
4	~	4	СНв	CH 3	CH(F)	S	2-61, 4-61	B 1
4	2	വ	CH 3	CH3	CH(C1)	S	4-61	B 1
4	. 2	. 9	CH 3	CH 3	CH(C1)	S	2-61, 4-61	B 1
4	2	7	CH 3	cH 3	0 = 0		4-61	B 1
4	2	∞	cH s	cH s	0=0	S	2-61, 4-61	B 1
4	2	6	CH 3	CH3	0 = 0	S	2-C1, 4-CH ₈	B 1
4	က	0	СНз	cH3	0 = 0	S	2-F, 4-CH ₃	B 1
4	က	·	СНз	cH3	CH 2	S	4-61	B 2
					-			

ŝ

CH ₂ S 2-C1, 4-C1 CH ₂ S 2-C1, 4-C1 CH ₂ S 2-F, 4-CH ₃ CH(OH) S 4-C1 CH(OH) S 2-C1, 4-C1 CH(OH) S 2-C1, 4-CH ₃ CH(OH) S 2-C1, 4-CH ₃ CH(OH) S 2-C1, 4-CH ₃ CH(OH) S 3-F, 4-CH ₃ CH(OH) S 2-F, 4-CH ₃ CH(OH) S 3-F, 4-CH ₃	-	班 0	1	(W	п
CH2 S 2-C1, 4-C1 B CH2 S 2-C1, 4-CH3 B CH(0H2 S 2-F, 4-CH3 B CH(0H) S 2-C1, 4-CH3 B CH(0H) S 2-C1, 4-CH3 B CH(0H) S 3-C1, 4-CH3 B CH(0H) S 2-F, 4-CH3 B CH(0H) S 3-F, 4-CH3 B CH(0H3) S 4-C1 B		K	∢	H	r //	Q
CH2 S 2-C1, 4-CH8 B CH(0H) S 2-F, 4-CH3 B CH(0H) S 2-C1, 4-CH3 B CH(0H) S 2-C1, 4-CH3 B CH(0H) S 2-F, 4-CH3 B CH(0H) S 2-F, 4-CH3 B CH(0H) S 3-F, 4-CH3 B CH(0H) S 4-C1 B	c H 3	в НЭ	CH ₂	S	2-0.1, 4-0.1	
CH (0H) S 2-F, 4-CH B B CH (0H) S 4-C1 B CH (0H) S 2-C1, 4-CH B B CH (0H) S 2-C1, 4-CH B B CH (0H) S 3-C1, 4-CH B B CH (0H) S 2-F, 4-CH B B CH (0H) S 3-F, 4-CH B B CH (0H) S 4-C1 B	CH3	CH3	CH ₂	S	$2-61, 4-611_{3}$	
CH(0H) S 4-C1 B CH(0H) S 2-C1, 4-C1 B CH(0H) S 2-C1, 4-CH ₃ B CH(0H) S 3-C1, 4-CH ₃ B CH(0H) S 2-F, 4-CH ₃ B CH(0CH ₃) S 4-C1 B	СНз	cH3	CH2	S	2-F, 4-CH ₃	
CH(0H) S 2-C1, 4-C1 B CH(0H) S 2-C1, 4-CH ₈ B CH(0H) S 3-C1, 4-CH ₈ B CH(0H) S 2-F, 4-CH ₈ B CH(0H) S 3-F, 4-CH ₈ B CH(0CH ₈) S 4-C1 B	СНз	СНз	(HO)HO	S	4-01	
CH(0H) S 2-C1, 4-CH ₈ B CH(0H) S 3-C1, 4-CH ₈ B CH(0H) S 2-F, 4-CH ₈ B CH(0H) S 3-F, 4-CH ₈ B CH(0CH ₈) S 4-C1 B	СНз	CH3	CH(0H)	S	2-61, 4-61	
CH(0H) S 3-C1, 4-CH3 B CH(0H) S 2-F, 4-CH3 B CH(0H) S 3-F, 4-CH3 B CH(0CH3) S 4-CI B	CH3	CH 3	(HO)HO	S	2-C1, 4-CH ₃	
CH(0H) S 2-F, 4-CH * B CH(0H) S 3-F, 4-CH * B CH(0CH *) S 4-CI B	CH3	CH 3	(H(OH)	S	3-C1, 4-CH3	
CH(0H) S 3-F, 4-CH ₃ B CH(0CH ₃) S 4-Cl B	CH3	CH3	(HO)HO	S	2-F, 4-CH ₃	
CH(0CH ₈) S 4-C1 B	ĊН3	СНз	(HO)H)	S	3-F, 4-CH ₃	
	CH 3	CH3	CH(0CH3)	S	4-61	

				兼	1	(海)				÷
تد	√ □	合物 Na	R 1	兄.	X	7.	W "	М		
	4	2	СНв	CH 8	CH(OCH ₈)	S	2-61, 4-61	eq.	2	
	Ť	က	СНз	CH 3	CH(0C0CH3)	S	4-61	B	87	
	4	4	cH3	CH 3	CH(0C0CH3)	S	2-61, 4-61	B	87	
	4	വ	СНз	CH 3	CH(0C0CH8)	တ	2-C1, 4-CH ₃	В	87	
	Ť	9	c H 3	CH 3	CH(0COCH ₈)	S	2-F, 4-CH _B	B	2	
	4	7	CH3	CH3	CH(F)	S	4-61	B	8	
	4	. &	CH3	CH3	(H(F)	S	2-61, 4-61	<u>m</u>	8	
	4	6	CH3	CH 3	CH(C1)	S	4-61	B	6 2	
	ıc	. 0	CH3	СНв	CH(C1)	S	2-01, 4-01	<u>M</u>	%	
	വ	, 1	CH3	СНз	0 = 0	S	4-61	B	2	
į										-

			無	1 表 (饒き)			
72	化合物加	R 1	R 2	X	7	W n	В
4	2 2	CH3	CH 3	0=0	S	2-61, 4-61	B 2
4	2 3	cH _s	ch,	0=0	S	2-C1, 4-CH ₈	B 2
4	5 4	cH3	¢H3	0 = 0	S	2-F, 4-CH ₈	B 2
4	5 5	CH 3	CH3	C(CH ₈)(OH)	S	4-61	B 2
4	2 6	CH 8	CH3	C(CH ₈)(OH)	S	2-61, 4-61	B 2
4	2 2	CH3	CH3	C(CH3)(0COCH3)	S	4-61	B 2
4	2 8	CH 3	CH 3	C(CH3)(0COCH3)	S	2-61, 4-61	B 2
4	5 9	CH3	CH3	C(CH ₈)(F)	S	4-61	B 2
Ť	0 9	в но	CH 3	C(CH ₈)(F)	S	2-0.1, 4-0.1	B 2
4	6 1	cH3	CH3	C(C ₂ H ₅)(OH)	S	4-01	B 2

	-			無	 概	(松杉)					
氘	化合物	物 Na	고 2	~	×	X	M M		В		
4	9	67	СНз	CH 8	C(C ₂ H ₅)(OH)	(10)	S	2-01, 4-01	B	2	1
Ť	9	က	CH3	CH 3	C(i-C ₈ H ₇)(0H)	(HO)(1	S	4-01	m ₋	2	
4	9	Ť	СНз	CH 3	C(i-C ₈ H ₇)(0H)	(HO)(1	S	2-01, 4-01	B	2	
4	9	വ	CH3	CH3	C(i-C ₈ H ₇)(0H)	7)(0H)	S	2-C1, 4-CH ₈	В	87	
4	9	. 9	CH 3	CH 3	C(i-C ₈ H ₇)(0H)	1)(0H)	S	2-F, 4-CH ₈	В	67	
4	9	7	СНв	CH 3	CH(CH ₈)	(₈	တ	4-01	В	83	
4	9	&	CH3	CH 3	CH(CH3)	8	S	2-61, 4-61	B	83	
Ą	9	6	CH3	CH3	CH(CH3)	8	S	2-C1, 4-CH ₈	B	2	
4	<u>~</u>	0	CH ₈	СНз	CH(CH³)	8)	S	2-F, 4-CH ₈	B	2	
Ą	7		C 1	CH3	CH 2		S	4-61	B	2	

				無	T 概	(光観)			
ند	4	と合物 Na	л 1	R 2	×	Y	W n	B	
₩.	2	2	0.1	сн в	CH2	S	2-61, 4-61	B 2	
₹	2	က	10	в н э	CH2	S	2-C1, 4-CH ₈	B 2	
Ŧ	_	4	0.1	CH 3	CH2	S	2-F, 4-CH ₃	B 2	
4	_	വ	0 8 H O	CH 3	CH ₂	S	4-61	B 2	
Ā	_	9	CH 3 O	CH 3	CH2	S	2-61, 4-61	B 2	
₹	7	2	CH 3 O	c H ³	CH2	S	2-C1, 4-CH ₈	B 2	
Ą	2	∞	CH 3 O	CH 8	CH 2	S	2-F, 4-CH ₈	B 2	

		A	A 1	A 1	A 2
		Ÿ	တ	S	S
表		×	HN	NH	HN
第 Y—A X—X—B	おされ	R 2	CH 3	CH3	CH 3
	れる化合物において	R 1	сня	cH s	CH 3
Z-Z R2-Z	₹ 12 10	化合物Na	6	0	_
지 	で表	4	7	8	∞
	r	75	ゼ	4	4

				第 2	举	(続き)		
5	√□	合物 Na	R 1	R 2	×	Y	W »	В
4	∞	2	cH3	c H _s	HN	S	A 2	B 2
4	∞	တ	cH s	СНз	HN	S	A 3	B 1
4	8	4	CH 8	CH 8	HN	S	A 3	B 2
4	∞	2	cH s	cH s	HN	S	A 4	B 1
4	∞	9	cH s	CH3	HN	S	A 4	B 2
4	∞	2	cH3	cH3	HN	တ	A 5	B 1
4	8	80	c H ³	c H _s	HN	S	A 5	B 2
4	∞	6.	CH3	CH 3	HN	S	A 6	B 1
4	6	0	CH 3	СНз	HN	တ	A 6	B 2
4	6		c H ³	СНз	HN	တ	A 7	B 1

				無	83	()	(岩)					
- 1	₹ □	物 Na	R 1	요 2		×	¥	M	5	В		1
	6	2	снв	СНв		HN	S	A	2	B	7	1
	6	တ	CH ⁸	cH 3	~ →	HN	S	¥	&	æ		
	တ	4	в Н Э	снв	~	HN	S	¥	· ∞	В	7	
	<u>-</u> -	വ	cH s	CH 8		HN	<u>د</u>	V	6	B		
	_ ත	9	CH 8	CH 3	~	HN	S	¥	6	B	2	
	- ග	7	c H _s	СНз	- -	HN	S	∀	1 0	B	-	
	တ	∞	СНз	cH _s	Z ,	HN	S	A	1 0	B	2	
	<u>ග</u>	6	CH3	cH s	~	HN	S	∀	1 1	B	-	
_	0	0	СНз	c H _s	2	HN	S	A	. 1	B	2	
1												

上記表中において、B1-B18は以下の化学構造を表す。

$$CH_3$$
 N
 CH_3
 CH_3

$$\begin{array}{c|c} & & \text{OCH}_3 \\ & & \\ N & & \\ & & \\ B9 & \text{OCH}_3 \end{array}$$

58

上記表中において、A1-A11は以下の化学構造を表す。

$$-$$
CF₃

$$CI$$
 CF_3
 N
 $A9$

次に本発明化合物の製造法を反応スキームで示し、以下に説明する。

[1]

反応スキーム

(製法1)

(製法2)

(製法3)

 $X=N-R^3$, $R^3 \neq H$ の時

(製法1)

一般式[2]

〔式中、R¹、R²、X、YおよびAは前記と同じ意味を 表す。〕

で示される置換ピラゾールと

一般式[3]

L - B [3]

〔式中、Lはハロゲン原子等の脱離基を表し、Bは前記と同じ意味を表す。〕

で示される複素環とを反応させることによって本発明化合物を製造することができる。この際にXが-NCOR4または-NSO₂R⁵ である時は、後処理等において加水分解をうけ、Xが -NHで得られる場合もある。

上記反応に於いて、溶媒は必ずしも必要ではないが、 用いられる溶媒としては、例えば、トルエン、キシレン 、クロルベンゼン等の炭化水素類、ジクロロエタン等の ハロゲン化炭化水素類、ジイソプロピルエーテル、ジオ キサン等のエーテル類、酢酸エチル等のエステル類、ア セトニトリル等のニトリル類、ジメチルスルホキシド、 ジメチルホルムアミド等の極性溶媒が挙げられる。

また必要に応じて有機塩基(ピリジン、トリエチルアミンなど)や無機塩基(炭酸カリウム、水素化ナトリウムなど)を加えてもよい。

また必要に応じて、銅塩や銅錯体を触媒として加えて もよい。

上記反応に用いられる試剤の量は、一般式 [2] で示される置換ピラゾール 1 当量に対して、一般式 [3] で示される複素環は 1 ~ 5 当量の範囲である。

上記反応に於いて反応温度は任意にとりうるが通常、室温~200℃もしくは溶媒の還流温度が好ましい。

反応終了後は通常の後処理を行なうことにより目的物 を得ることができる。

(製法2)

(a) 一般式[4]

〔式中R¹, R²および X は前記と同じ意味を表す。〕で示されるピラゾールと一般式 [3]で示される複素環とを必要に応じて適当な溶媒と塩基を用いて反応させることによって一般式 [7]

[式中R¹, R², XおよびBは前記と同じ意味を表す。] を製造する。この際にXが-NCOR⁴または-NSO₂R⁵ である 時は、後処理等において加水分解をうけ、Xが -NHで得 られる場合もある。

上記反応に於いて、用いられる溶媒としては、例えば、

トルエン、キシレン、クロルベンゼン等の炭化水素類、 ジクロロエタン等のハロゲン化炭化水素類、ジイソプロ ピルエーテル、ジオキサン等のエーテル類、酢酸エチル 等のエステル類、アセトニトリル等のニトリル類、ジメ チルスルホキシド、ジメチルホルムアミド等の極性溶媒 が挙げられる。

また用いられる塩基としては、例えば炭酸カリウム、 水素化ナトリウムなどが挙げられる。

また必要に応じて、銅塩や銅錯体等を触媒として加えてもよい。

上記反応において反応温度は、任意にとりうるが通常、 室温~200℃もしくは溶媒の還流温度が好ましい。

(b) 一般式[5]

〔式中R¹, R²は前記と同じ意味を表し、Lはハロゲン原子等の脱離基を表す。〕 で示されるピラゾールと一般式 [6]

$$HX - B$$
 [6]

〔式中XおよびBは前記と同じ意味を表す。〕 で示される複素環とを必要に応じて適当な溶媒と塩基を 用いて反応させることによって一般式 [7]

〔式中R¹, R², XおよびBは前記と同じ意味を表す。〕を製造する。この際にXが-NCOR⁴または-NSO₂R⁵ である時は、後処理等において加水分解をうけ、Xが-NH で得られる場合もある。

上記反応に於いて、用いられる溶媒としては、例えば、 トルエン、キシレン、クロルベンゼン等の炭化水素類、 ジクロロエタン等のハロゲン化炭化水素類、ジイソプロ ピルエーテル、ジオキサン等のエーテル類、酢酸エチル 等にエステル類、アセトニトリル等のニトリル類、ジメ チルスルホキシド、ジメチルホルムアミド等の極性溶媒 が挙げられる。

また用いられる塩基としては、炭酸カリウム、水素化ナトリウムなどが挙げられる。

また必要に応じて、銅塩や銅錯体等を触媒として加えてもよい。

上記反応において反応温度は任意にとりうるが通常、 室温~200℃もしくは溶媒の還流温度が好ましい。

次の上記(a) または(b) で得られた一般式 [7] で示されるピラゾールと一般式 [8]

$$A - Y - L \qquad [8]$$

〔式中Aは前記と同じ意味を表し、Yは酸素原子を除く前記と同じ意味を表し、Lはハロゲン原子等の脱離基を表す〕

で示される化合物とを必要に応じて適当な溶媒と塩基を 用いて反応させることによって本発明化合物を製造する ことができる。

上記反応に於いて、用いられる溶媒としては、例えば、トルエン、キシレン、クロルベンゼン等の炭化水素類、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、ジイソプロピルエーテル、ジオキサン等のエーテル類、酢酸エチル等のエステル類、アセトニトリル等のニトリル類、ジメチルスルホキシド、ジメチルホルムアミド等の極性溶媒が挙げられる。

また用いられる塩基としては、ピリジン、トリエチルアミン、炭酸カリウム等が挙げられる。

上記反応において反応温度は任意にとりうるが、通常 0 $\mathbb{C} \sim 1$ 0 0 \mathbb{C} が好ましい。

(製法3) X=N-R³、R³ ≠ Hの時一般式[9]

ž

(式中R¹, R², Y, AおよびBは前記と同じ意味を表す。) で示されるピラゾールと一般式 [10]

 $R^{s} - L \qquad [1 0]$

〔式中R®は水素原子を除く前記と同じ意味を表し、Lはハロゲン原子等の脱離基を表す。〕

で示される化合物とを必要に応じて適当な溶媒と塩基を用いて反応させることによって本発明化合物を製造することができる。

上記反応に於いて、用いられる溶媒としては、例えば、ベンゼン、トルエン、キシレン等の炭化水素類、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン炭化水素類、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル等のエステル類、アセトニトリル等のニトリル類、ジメチルスルホキシド、ジメチルホルムアミド等の極性溶媒が挙げられる。

また用いられる塩基としては、ピリジン、トリエチルアミン等の有機塩基や炭酸カリウム、水素化ナトリウム 等の無機塩基が挙げられる。

上記反応において、反応温度は任意にとりうるが、通常 0 \mathbb{C} \sim 1 0 0 \mathbb{C} が好ましい。

実施例

次に具体的な製造例を示す。

製造例1 (本発明化合物 Na 5 の合成)

4 - (4 - クロロフェニルチオ) - 1,3 - ジメチルー 5 - メルカプトピラゾール1.4 gおよび2 - クロロピリ ミジン1.2 gを加え、120 °Cで 1.5 時間加熱撹拌した。空冷後、酢酸エチル60 mlを加え、撹拌した後不溶分を濾別した。濾液を濃縮後、シリカゲルカラムクロマトグラフィー(展開液;クロロホルム:酢酸エチル=9:1)で精製することにより、4-(4-)0 ロフェニルチオ)-1,3-0 ジメチル-5-(2-0 ピリミジルチオ) ピラゾール0.6 gを得た。

油状物 n p ^{21.0} = 1.6465

製造例2 (本発明化合物 No. 49の合成)

① N-(1,3-ジメチル-5-ピラゾリル) ホルムアミドの合成

5-アミノー1,3-ジメチルピラゾール20gをぎ酸(85%)29gに溶解し、氷冷下、無水酢酸55gを滴下して加えた。室温で3日間撹拌後、減圧濃縮して、シリカゲルカラムクロマトグラフィー(展開液;クロロホルム)で精製してN-(1,3-ジメチル-5-ピラゾリル)ホルムアミド12.8gを得た。

② 1,3 - ジメチル - 5 - (2 - ピリミジルアミノ) ピラゾールの合成

水素化ナトリウム(5 5 %) 1.6 gの懸濁した N, N ージメチルホルムアミド 7 0 ml の溶液に、氷冷下、Nー(1,3-ジメチルー5-ピラゾリル)ホルムアミド 4.1 g(2 9 mmol)と N, N ージメチルホルムアミド 1 0 ml の混合溶液を滴下して加えた。室温で 2 時間撹拌後、 2 ークロロピリミジン 3.4 g(30 mmol)と N, N ージメチ

ルホルムアミド10 m1 の混合溶液を加えた。そして、 100℃で加熱撹拌を2日間行った後、溶媒を減圧下留 去して、水を加えてから、クロロホルムで抽出し、水洗 いして、無水硫酸ナトリウムで乾燥した。ろ過後、溶媒 を減圧留去して残渣をシリカゲルカラムクロマトグラフ ィーで精製することにより、1,3-ジメチル-5-(2 -ピリミジルアミノ)ピラゾールを2.4 g得た。

融点 179.0 ~182.0 ℃

③ 本発明化合物 No. 49の合成

1,3 - ジメチル-5-(2-ピリミジルアミノ) ピラ ゾール1.1 gをクロロホルム30 ml に溶解した。この 溶液に室温下で4-クロロフェニルスルフェニルクロラ イド0.5 gを滴下し、1 時間撹拌反応した。有機層を水 30 ml で洗浄した後、無水硫酸ナトリウムで乾燥した。

製造例 3 (本発明化合物 No. 172 の合成)

① 1,3-ジメチル-5-(N-(2-ピリミジル)-N-メチルアミノ)ピラゾールの合成

水素化ナトリウム (5 5 %) 0.25g の懸濁したTHF 1 0 m 1 の溶液に、氷冷下、1,3-ジメチルー 5 - (2 -ピリミジルアミノ) ピラゾール1.0 g を少しづつ加えた 後、60℃で1時間攪拌した。この溶液を室温に冷却し、 ヨウ化メチル4.1 gを加え、ゆるやかに2時間還流した。 空冷後、水10 m1 を加え、ジエチルエーテル30 m1 で3 回抽出した。エーテル層を無水硫酸ナトリウムで乾燥し 、溶媒を減圧留去して残渣をシリカゲルカラムクロマト グラフィー(展開液;クロロホルム)で精製することに より1,3-ジメチルー5ー(Nー(2ーピリミジル)ーN ーメチルアミノ)ピラゾール 0.5gを得た。(黄色油状物)

② 本発明化合物 № 172 の合成

1,3-ジメチル-5-(N-(2-ピリミジル)-N-メチルアミノ) ピラゾール 0.2gを溶解したクロロホル ム溶液 10m1 に、p-クロロフェニルスルフェニルクロ ライド 0.14 gを滴下し、室温下で15時間攪拌した。

溶媒を減圧留去して残渣をシリカゲルカラムクロマトグラフィー(展開液;クロロホルム)で精製することにより4-(4-クロロフェニルチオ)-1,3-ジメチル-5-(N-(2-ピリミジル)-N-メチルアミノ)ピラゾール0.25gを得た。融点 77.0~78.0℃ 製造例4(本発明化合物 № 314 の合成)

① 1,3 - ジメチル - 5 - (2 - ピリジルアミノ) ピラゾールの合成

N-(1,3-ジメチル-5-ピラゾリル) ホルムアミド 10 gと2-ブロモピリジン 10.2gのN,N-ジメチルホルムアミド60 ml の混合溶液に、無水炭酸カリウム 9.9g と銅(II)アセチルアセトナート1gを加え、3時間加熱還流した。溶媒を減圧留去した後、水を加えクロロホルムで抽出した。有機層を水洗し、無水硫酸ナトリウムで乾燥した。

溶媒を減圧留去して残渣をシリカゲルカラムクロマトグラフィー(展開液;クロロホルムー酢酸エチル)で精製することにより1,3 - ジメチル-5-(2-ピリジルアミノ)ピラゾール 4.6gを得た。

融点 113.0 ~115.0 ℃

② 本発明化合物 No. 314 の合成

1,3 - ジメチル-5-(2-ピリジルアミノ) ピラゾール 1.27gをクロロホルム50m1に溶解し、氷水で冷却した。この溶液に 2,4-ジクロロフェニルスルフェニルクロライド 1.55gを滴下し、室温下で15時間攪拌した。

この溶液を炭酸水素ナトリウム水溶液、次に水で洗浄した後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して残渣をシリカゲルカラムクロマトグラフィー(展開液;クロロホルム)で精製することにより、4-(2,4-ジクロロフェニルチオ)-1,3-ジメチル-5-(2-ピリジルアミノ)ピラゾール 1.75gを得た。

融点 144.0 ~145.0 ℃

製造例 5 (本発明化合物 No. 4 3 5 の合成)

① 2-ピリジル-(1, 3-ジメチル-5-ピラゾリル)メタノールの合成

2 - ブロモピリジン5. 5 gを溶解した乾燥テトラヒ

ドロフラン溶液 3 0 0 m1を - 7 8 ℃に冷却し、これに n - ブチルリチウムヘキサン溶液(1 5 W / W %) 5 . 4 5 gをゆっくりと滴下し、3 0 分間撹拌した。次に、1,3-ジメチル-5-ホルミルピラゾール4.2 gを - 7 8 ℃でゆっくりと滴下した。この後ゆっくりと室温にまで昇温し1 5 時間撹拌した。

この溶液に 2 規定の塩酸を加えて中性にした後、酢酸エチル 1 5 0 m1で 3 回抽出した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して残渣をシリカゲルカラムクロマトグラフィー(展開液;クロロホルム)で精製することにより、 2 ーピリジルー (1, 3 ージメチルー 5 ーピラゾリル)メタノール 5. 2 gを褐色油状物として得た。

②本発明化合物 No. 4 3 5 の合成

2 ーピリジルー(1,3ージメチルー5ーピラゾリル)メタノール3gを溶解した乾燥クロロホルム溶液60mlに室温下でpークロロフェニルスルフェニルクロライド3.4gを滴下し、12時間撹拌した。溶媒を留去した溶液50mlを加えて30分間撹拌した。有機層を無水硫酸ナトリウムで乾燥したった合物性たちで、2ーピリンルー(4ー(4ークロフェニルチオ)-1,3ージルー(4ー(4ークロフェニルチオ)-1,3ージルー(4ー(4ークロフェニルチオ)-1,3ージ

メチル-5-ピラゾリル)メタノール1.2gを白色結晶として得た。融点90.0~91.0℃ 製造例6(本発明化合物 No.451の合成)

製造例 5 で得られた本発明化合物 N o . 4 3 5 1 . 2 gを乾燥ジクロロメタン 5 0 mlに溶解した溶液に、室温で二酸化マンガン 1 . 5 gを加え 2 時間撹拌した。無機物をセライトで濾別した後溶媒を減圧留去し、残渣をジイソプロピルエーテルで結晶化させることにより 2 ーピリジルー(4 ー (4 ー クロロフェニルチオ) - 1 , 3 ージメチルー 5 ーピラゾリル)ケトン 1 . 0 gを白色結晶として得た。融点 1 1 1 . 0 ~ 1 1 3 . 0 ℃

これらの方法に準じて製造した化合物の物性を第3表に示す。

က 無

裘

	S
-	T M
	\vdash
	質
	Ð
	對
	膨
	$\widehat{}$
IMR	CDC18
1 H-NMR	(ppm,
	6
	新
	₩
	2 557
A	
合物	
نذ	್ತ

 $n_{D}^{2} \cdot \cdot \cdot \cdot = 1.6465$ 油状物

വ

 $158.0 \sim 159.0$ $170.0 \sim 171.0$

വ

വ

 $150.0 \sim 152.0$ 181.0 \sim 182.0 9

വ

 $190.0 \sim 193.0$

വ

 $159.0 \sim 162.0$ ≡. ∞

ഥ

	¹ H-NMR	m, CDC1。)、標準物質TMS									
(松 端)	H ₁	S (ppm,	ာ့	ပ္	ပ္	ာ့	ပ္	ပ္	ပ္	္	ာ့
第3表(和	$168.5 \sim 171.5$	$157.0 \sim 158.0$	$170.5 \sim 172.5$	$160.0 \sim 162.0$	$156.0 \sim 157.0$	$180.0 \sim 183.0$	$125.5 \sim 127.0$	$154.0 \sim 157.0$	$126.0 \sim 127.0$
	.D	\$	m. p.	m. p.	m.p.	m.p.	m.p.	m.p.	m.p.	m.p.	m. p.
	令		6	0	—	က	Ā	9	2	8	တ
	2	Na	വ	9	9	9	9	9	9	9	9

和
湾
裘
က
lets
紙

第 3 表 (続き)	1 H-NMR	n 性 δ (ppm, CDC1s)、標準物質TMS	. 178.0∼179.0 °C	$163.5 \sim 167.5$ °C	$174.0 \sim 176.0$ °C	132. $5 \sim 135.5$ °C	$148.0 \sim 151.0$ °C	$127.5 \sim 128.5$ °C	$180.0 \sim 184.0$ °C	$175.0 \sim 177.0$ °C
		軐	178.0~	163.5	174.0	132.5 \sim	$148.0 \sim$	$127.5 \sim$	$180.0 \sim$	$175.0 \sim$
	整	整	m. p.	m.p.	m.p.	m.p.	m.p.	m. p.	m.p.	m.p.
	化合物	Na	7 0	7 1	7 2	7 3	9 2	6 2	8 1	တ

第 3 表 (続き)	H-NMR	性 & CDC1s)、標準物質TMS	160.0~162.0 °C	$180.0 \sim 181.5$ °C	$186.0 \sim 188.5$ °C	$201.0 \sim 205.0$ °C	$166.0 \sim 168.0$ °C	$164.5 \sim 166.5$ °C	$161.0 \sim 163.0$ °C	$148.5 \sim 150.0$ °C	$134.5 \sim 137.0$ °C
က		新	$160.0 \sim 16$	$180.0 \sim 18$	$186.0 \sim 18$	$201.0 \sim 20$	$166.0 \sim 16$	$164.5 \sim 10$	$161.0 \sim 16$	48.5~	$134.5 \sim 13$
\$1L/		整	m. p.	m.p.	m.p.	m.p.	m. p.	m. p.	m.p.	m.p.	m.p.
	\$		വ	9	2	∞	6	0	2	2	9
	化合物		6	တ	ဝ	6	6	0	0	0	0
:	新	N									→

410
旓
<u> </u>
榖
က
無

化合物	多			¹ H-NMR
No		\$	却	δ (ppm, CDC1。)、標準物質TMS
1 0	8	m. p.	189.0 \sim 191.0	Ç
-	0	m. p.	$135.0 \sim 137.0$	Ç
<u> </u>	က	m. p.	$178.0 \sim 180.0$	Ç
<u> </u>	9	m. p.	$158.0 \sim 160.0$	Ç
1 2	0	m. p.	$164.0 \sim 166.0$	ာ့
1 2	4	m. p.	$140.0 \sim 141.0$	Ç
1 2	9	m. p.	$159.0 \sim 161.0$, in the second
1 2	6	m. p.	$147.0 \sim 148.0$	ာ့
1 3	23	m. p.	181.0 \sim 183.0	ာ့

作合物			、標準物質TMS										
# 3 表 (続き) "H-NME "p. 196.0~198.0 ℃ "p. 162.0~164.0 ℃ "p. 162.0~145.0 ℃ "p. 151.5~153.5 ℃ "p. 151.5~153.5 ℃ "p. 139.0~140.0 ℃ "p. 192.5~195.5 ℃ "p. 192.5~195.5 ℃ "p. 192.5~195.5 ℃ "p. 190.5~193.5 ℃ "p. 123.0~124.0 ℃			$\overline{}$										
第 3 表 (続		~	CDC13										
第 3 表 () () () () () () () () () (HU	1 H - N M	(ppm,										
第 3 表 物 性 m.p. 196.0~198. m.p. 162.0~164. m.p. 151.5~153. m.p. 214.0~216. m.p. 214.0~216. m.p. 139.0~140. m.p. 192.5~195. m.p. 190.5~193.	쳝		6	ာ့	ပ္	ပ္	ပ္		ပ္				
を	報			~ 198.0		145.	153.	216.	~ 140.0	195.	193.	~ 124.0	
を	က			3.0	2.0	3.0	5	4.0	9.0	2.5	0.5	3.0	
m. m. m. m. p	Sent?		和	19(165	14	15	21,	13	192	19	12	
\$\begin{align*} \pi & \p	3117		整	m. p.	p.	m. p.	m.p.			m.p.		m.p.	
1		\$		က	2	Ą	9	6	4	7	တ	7	
4		√ □		က	4	Ą	4	4	വ	ស	ប	9	
力 &		र्भ	No		-	\leftarrow							

-	第	報	(続き)
化合物			¹ H – NMR
	物 性		δ (ppm, CDC1s)、標準物質TMS
8 9	m.p. 152.0~	152.0~154.0 °C	
6 9	半結晶状		2.20(s, 3H), 3.65(s, 3H), 3.69(s, 3H),
	2		6.60~7.00(m,5H), 8.35(d,2H,J=5Hz)
0 2	m.p. 183.0~184.0		Ç
7 2	m.p. 77.0 \sim	78.0	ပ္
2 2	m.p. 70.0 ~	72.0	ŗ
9 2	油状物 np	2 1 . 0 ==	1,5957
1 1	m.p. 84.0 ~	87.0	ာ့
7 8	m.p. 83.0	85.0	ာ့

			第 3 表 (続き)
र्भ	√ □		1 H – NMR
No.			物 性 δ (ppm, CDC1s)、標準物質TMS
	7	6	油状物 2.08(s,3H), 2.19(s,3H), 3.79(s,3H),
			4.09(d,1H, J=18Hz), 5.10(d,1H, J=18Hz)
			6.54(t,1H,J=5Hz), 6.90(s,4H), 8.13(d,2H,J=
	∞	0	m.p. 98.0~100.0°C
₩	∞	23	m.p. 128.0~129.0 °C
	∞	4	油状物 2.20(s,3H), 3.21(s,3H), 4.50(d,1H,J=14H
			5.52(d, 1H, J=14Hz), 6.58(t, 1H, J=5Hz),
			6.91(s,4H), 7.08(s,4H), 8.18(d,2H,J=5Hz
 1	∞	7	m.p. 164.0~166.0 °C

語を
- salect
3 港
無

	-	-		無	တ	崧	222445567787899999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999	(
يد	√□	化合物						1 H-NMR	~		
No.			4		軐		60	(bbm,	CDC13)、標準物質	T M S	
-	∞	∞	m. p.	1	$189.0 \sim 191.$	- 191.0	ပ္				
-	6	4	m. p.		142.0 \sim	- 143.5	ပ္စ				
	6	ប	m.p.		$140.5 \sim 14$	-141.5	ပ္စ	.			
_	6		m.p.		$149.0 \sim$	-152.0	ပ္စ				
-	6	∞	m.p.		$168.5 \sim$	~ 169.5	ပ္စ	•			
	တ	ტ	m. p.		$164.5 \sim$	-167.0	ပ္စ				
8	0		m. p.		183.0 \sim	- 187.0	ပ္စ	. .			
8	-	9	m. p.		$205.0 \sim$	~ 207.0	ပ္စ	•			
2	6		m.p.		$194.0 \sim 196.$	-196.0	ပ္				

		M S										
		準物質工										
		凝										
		,										
		<u> </u>										
	. 8	CDC1 s										
(続き)	1 H - NMR	S (ppm,										
鏡		6	ລຸ	ပ္	ပ္	ပ္	ပ္စ	ပ္	ာ့	ပ္	ပ္	
			0.	0.0	0 :	. 0	3.0	5.0	3.0	7.0). 0	
裝			$186.0 \sim 188.0$	~ 150.0	~ 166.0	~ 128.0	~ 168.0	~ 145 .	~ 128.0	$145.0 \sim 147.0$	118.0 \sim 120.0	
တ			3.0	$148.0 \sim$	$165.0 \sim$	127.0~	$167.0 \sim$	$144.0 \sim$	$126.0 \sim$	5.0	8.0	
Jah		轨	18	148	16	12	16	14	12	14	11	
兼		ゆ	m.p.	m.p.	m. p.	m.p.	m. p.	m. p.	m.p.	m.p.	m. p.	
	₽		2	~	က		2	4	വ	9	2	
	化合物		ග	0	0	_		-				
	名	Na	2	တ	က	က	က	က	က	က	က	

	¹ H – NMR	(bbm, CDC1s)、標準物質TMS										
統		9 (I	ပ္စ	ပ္	ပ္	ပ္	ပ္	ပ္	ပ္	ပ္	ပ္	
			l	0	0	0	0	0	0	0		
羰			$112.0 \sim 114.0$	~ 100.	~ 100°.	- 124.	$107.0 \sim 108.$	~ 160.	J 69.	~ 148.	- 130.0	
က			2.0~	0.66	$99.0\sim$	122.0~	~ 0.7	$158.0\sim$	8.0	$147.0 \sim$	$128.0 \sim$	
鯸		輧			-				168.		128	
-		数	m. p.	m. p.	m. p.	m. p.	m. p.	m. p.	m.p.	m. p.	m. p.	
				-		_					_	
	合物		8	6	2 0	2 1	2 2	2 6	2 8	9 9	4 1	
	77	Na	က	က	က	က	တ	က	က	က	တ	

₹

第 3 表 (続き)	1 H – NMR	物 性 & CDC13)、標準物質TMS	m.p. 128.0~131.0 °C	m.p. 180.0~181.0 °C	m.p. $301.0 \sim 302.0$ °C	m.p. 185.0~186.0 °C	m.p. $106.0 \sim 107.0$ °C	m.p. $160.0 \sim 161.0$ °C	m.p. 161.0 \sim 163.0 °C	m.p. 142.0 \sim 144.0 °C	m.p. 128.0~130.0 °C	
		働	m. p.	m. p.	m. p.	m. p.	m. p.	m. p	m. p	m. p	m. p	
	化合物	No.	3 4 3	3 4 4	3 4 5	3 4 6	3 4 7	3 5 1	3 5 2	3 5 4	3 5 5	

ar .

$\overline{}$
410
滤
裘
က
継

力	₹E	参	軐	1H-NMR δ (ppm, CDC1。)、標準物質TMS
3 6	89	m. p.	148.0~149.0	2,
3 9		m. p.	172. $0 \sim 174.0$	ລ
3 6	2	m.p.	132.0 \sim 133.0	Ç
ა მ		m.p.	$140.0 \sim 141.0$	٦ [°]
4 0	87	極脂	*	2.15(s, 3H), 3.70(s, 3H), 4.62(bs, 2H),
				$6.50 \sim 7.20$ (m, 4H), 8.16 (d, 2H, $J=5Hz$)
တ	ល	m. p.	$90.0 \sim 91.0$	Ç
4 3	9	m. D.	$142.0 \sim 145.0$	Ş

第 3 表 (続き)	¹H-NMR 物 性 & O(ppm, CDC1s)、標準物質TMS	射脂状 2.20(s,6H), 3.55(s,3H), 5.10(bs,1H), 6.05(s,1H), 6.50~7.60(m,6H),	8.40(d,1H,J=5Hz) 由状物 2.17(s,3H), 3.30(s,3H), 3.68(s,3H), 5.68(s,1H), 6.80~7.70(m,7H),	8.30~8.50(m,1H) 由状物 2.10(s,3H), 2.25(s,3H), 4.05(s,3H), 6.80~8.70(m,9H),
無			油沃物	
	化合物	4 4 0	4 4 1	4 4 3

-	
	\sim
	批
	滌
-	裘
	က
	鈱

物 物性 る(ppm, CDC1s)、標準物質TMS	7 油状物 2.19(s, 3H), 3.77(s, 3H), 6.67(d, 1H, J=45Hz),	$6.90 \sim 7.70 (m, 7H)$, $8.51 (d, 1H, J=5Hz)$	1 m.p. 111.0 \sim 113.0 °C	5 油状物 2.03(s,3H), 2.16(s,3H), 3.69(s,3H),	6.00(bs, 1H), 6.80 \sim 8.51(m, 8H)	3 横脂状 0.50(d,3H,J=7Hz), 1.00(d,3H,J=7Hz),	$2.02(s, 3H), 3.21 \sim 3.65(m, 1H), 3.87(s, 3H),$	6.00(bs, 3H), 6.61 \sim 8.35(m, 8H)
\$								
化 合 配	4 4 7		4 5 1	4 5		4 6 3		

(続き)	1 H – NMR	δ (ppm, CDC1。)、標準物質TMS	2.26(s, 3H), 3.72(s, 3H), 6.62(t, 1H, J=5Hz)	6.88(t,1H,J=5Hz), 7.61(bs,1H),	8.23(d, 2H, J=5Hz), 8.34(d, 2H, J=5Hz)	ට. O	သ	ာ့ (ာ့ (
3 漢		軐	张			$167.0 \sim 169.0$	$187.0 \sim 189.0$	$204.0 \sim 206.0$	$159.0 \sim 161.0$
無			皿笠						
		极	北			р.	. p.	р.	р.
			**			Ė	E	ë	E
	藝					က	2	2	6
	化合物	_•	∞			∞	∞	6	<u>ත</u>
	名	No.	4			Ţ	4	4	7

**

本発明化合物を農園芸用殺菌剤として使用するにあたっては、一般には適当な担体、例えばクレー、タルク、ベントナント、珪藻土等の固体担体あるいは水、コール類(メタノール、エタノール等)、塩素化炭化水素類、エーテル類、ケトン類、エステル類(酢酸エチル等)、酸アミド類(ジメチルホルムアミド等)などの乳化体と混用して適用することができ、所望により乳化剤、分散剤、懸濁剤、浸透剤、皮着剤、安定剤などの乳化剤、分散剤、懸濁剤、水和剤、粉剤、粒剤、フロアブル剤等任意の剤型にて実用に供することができる。

また、必要に応じて製剤または散布時に他種の除草剤、各種殺虫剤、殺菌剤、植物生長調節剤、共力剤などと混合施用してもよい。

本発明化合物の施用薬量は適用場面、施用時期、施用方法、対象病害、栽培作物等により差異はあるが一般には有効成分量としてヘクタール当たり0.005~50kg程度が適当である。

次に、本発明化合物を有効成分とする殺菌剤の製剤例を示すがこれらのみに限定されるものではない。なお、 以下の製剤例において「部」は重量部を意味する。

製剤例1 乳剤

本発明化合物 ------ 20 部 キシレン ------ 55 部 N, N-ジメチルホルムアミド ----- 20 部 7.

ソルポール2680

----- 5 部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業(株)商品名)

以上を均一に混合して乳剤とする。使用に際しては上記乳剤を50~ 20000倍に希釈して有効成分量がヘクタール当たり 0.005~50kgになるように散布する。

製剤例2 水和剤

本発明化合物

----- 25 部

ジークライトPFP

----- 66 部

(カオリナイトとセリサイトの混合物;ジークライト 工業(株)商品名)

ソルポール5039

4 部

(アニオン性界面活性剤:東邦化学工業(株)商品名)

カープレックス#80

マ 並

(ホワイトカーボン: 塩野義製薬(株) 商品名)

リグニンスルホン酸カルシウム-----2 部

以上を均一に混合粉砕して水和剤とする。

使用に際しては上記水和剤を50~ 20000倍に希釈して有効成分量がヘクタール当たり 0.005~50kgになるように 散布する。

製剤例3 油 剤

本発明化合物

----- 10 部

メチルセルソルブ

----- 90 部

以上を均一に混合して油剤とする。使用に際して上記油剤を有効成分量がヘクタール当たり 0.005~50kgにな

	1_	~	1-		—		-	
(2)	Æ	າ	4	ĦΥ	布	-g	(2)	^

製	剤	例	4	粉	剤	

本発明化合物 ------ 3.0部 カープレックス#80 ----- 0.5部

(ホワイトカーボン:塩野義製薬(株)商品名)

クレー ----- 95 部

リン酸ジイソプロピル ----- 1.5部

以上を均一に混合粉砕して粉剤とする。使用に際して上記粉剤を有効成分量がヘクタール当たり 0.005~50kg になるように散布する。

製剤例 5 粒 剤

本発明化合物 ----- 5 部 ベントナイト ----- 54 部

タルク ----- 40 部

リグニンスルホン酸カルシウム----- 1 部

以上を均一に混合粉砕して少量の水を加えて撹拌混合 し、押出式造粒機で造粒し、乾燥して粒剤とする。使用 に際して上記粒剤を有効成分量がヘクタール当たり 0.0 05~50kgになるように散布する。

製剤例6 フロアブル剤

本 発 明 化 合 物 ----- 25 部

ソルポール 3 3 5 3 ----- 10 部

(非イオン性界面活性剤:東邦化学工業(株)商品名)

ルノックス 1 0 0 0 C ----- 0.5 部

(陰イオン界面活性剤:東邦化学工業(株)商品名)

1 % ザンサンガム水溶液 ----- 20 部 (天然高分子)

水 ----- 44.5部

有効成分(本発明化合物)を除く上記の成分を均一に溶解し、ついで本発明化合物を加えよく撹拌した後、サンドミルにて湿式粉砕してフロアブル剤を得る。使用に際しては、上記フロアブル剤を50~ 20000倍に希釈して有効成分量がヘクタール当たり 0.005~50kgになるように散布する。

次に、本発明化合物によって防除できる植物病害とし ては、イネのいもち病 (Pyricularia oryzae)、 ごま葉枯病 (Cochliobolus miyabeanus)、 紋枯病 (Rhizoctonia solani)、ムギ類のうどんこ病 (Erysiphe graminis f.sp.hordei,f. sp.tritici) 、 斑葉病 (Pyrenophora graminea)、網斑病(Pyrenophora teres)、赤かび病(Gibberella zeae)、 さび病 (Puccinia striiformis, P.graminis, P.recondita, P.hordei)、雪腐病(Typhula sp., Micronectriella nivais)、裸黒穂病 (Ustilago tritici, U. nuda)、アイスポット(Pseudocercosporella herpotrichoides)、雲形病 (Rhynchosporium secalis)、 葉枯病(Septoria tritici)、ふ枯病 (Leptosphaeria nodorum)、カンキツの黒点病 (Diaporthe citri)、 そうか病(Elsinoe fawcetti)、果実腐敗病 (Penicillium digitatum, P. italicum) 、リンゴのモニリア病

(Sclerotinia mali)、腐らん病 (Valsa mali)、 うどんこ病 (Podosphaera leucotricha)、斑点落葉病 (Alternaria mali) 、黒星病 (Venturia inaequalis) 、 ナシの黒星病(Venturia nashicola)、黒斑病 Kikuchiana)、赤星病(Gymnosporangium (Alternaria haraeanum)、モモの灰星病 (Sclerotinia cinerea)、 黒星病(Cladosporium carpophilum)、フォモプシス腐敗 病(Phomopsis sp.)、ブドウのべと病(Plasmopara viticola)、黒とう病 (Blsinoe ampelina)、 晩腐病(Glomerella cingulata)、うどんこ病(Uncinula necator)、さび病 (Phakopsora ampelopsidis)、 カキの炭そ病(Gloeosporium kaki)、落葉病 (Cercospora kaki, Mycosphaerella nawae)、ウリ類の べと病(Pseudoperenospora cubensis)、炭そ病 (Colletotrichum lagenarium)、うどんこ病 (Sphaerotheca fuliginea)、つる枯病(Mycosphaerella melonis)、トマトの疫病(Phytophthora infestans)、 輪紋病 (Alternaria solani)、葉かび病(Cladosporium fulvam)、ナスの褐紋病 (Phomopsis vexans)、うどん こ病 (Erysiphe cichoracoarum)、アプラナ科野菜の黒 斑病 (Alternaria japonica)、白斑病(Cerocosporella brassicae)、ネギのさび病(Puccinia allii)、ダイズの 紫斑病 (Cercospora kikuchii)、黒とう病 (Elsinoe glycines)、黒点病 (Diaporthe phaseololum)、インゲ ンの炭そ病 (Colletotrichum lindemuthianum)、ラッカ

セイの黒渋病 (Mycosphaerella personatum)、褐斑病 (Cercospora arachidicola)、エンドウのうどんこ病 (Erysiphe pisi)、ジャガイモの夏疫病 (Alternaria solani)、イチゴのうどんこ病 (Sphaerotheca humuli)、チャの網もち病 (Exobasidium reticulatum)、白星病 (Elsinoe leucospila)、タバコの赤星病 (Alternaria longipes)、うどんこ病 (Erysiphe cichoracearum)、炭 そ病 (Colletotrichum tabacum)、テンサイの褐斑病 (Cercospora beticola)、バラの黒星病 (Diplocarpon rosae)、うどんこ病 (Sphaerotheca pannosa)、キクの褐斑病 (Septoria chrysanthemiindici)、白さび病 (Puccinia horiana)、種々の作物の灰色かび病 (Botrytis cinerea)、菌核病 (Sclerotinia sclerotiorum)等が挙げられる。

本発明化合物の有用性について、以下の試験例において具体的に説明する。但し、これらのみに限定されるものではない。

試験例1 灰色かび病防除効果試験

直径7cmのポットで育成した2~3葉期のトマト(品種:福寿)に、本発明化合物乳剤を水で希釈して500ppm に調製した薬液をスプレーガンを用いポット当たり20 ml 散布した。

散布翌日トマト灰色かび病菌(Botrytis cinerea)の 胞子懸濁液(1.0 %グルコース、2.5 %酵母エキス含有、 × 1 5 0 ・ 4 0 個/視野)を噴霧し、温度 2 5 ℃、湿度

PCT/JP91/01538

95%以上の接種箱に5日間置き、その後に形成された病斑が接種葉に占める割合を測定し、下記の式に従い、防除価を算出した。

防除価=

〔1-(処理区病斑面積率/無処理区病斑面積率)〕× 100

直径 5 cmのポットで育成した 3 ~ 4 葉期のイネ(品種:日本晴)に、本発明化合物乳剤を水で希釈して 5 0 0 ppm に調製した薬液を5m1 株元潅注した直後、同一ポットにポット当たり15 m1 散布した。

処理 3 日後に紋枯病 (Rhizoctonia solani) 汚染籾穀を株元に置き接種した。

その後ポットを、温度28℃、湿度95%以上の接種

箱に置き、接種5日後に形成された病斑の地極よりの高さを測定し下記の式に従い防除価を算出した。

防除価=〔1-(処理区病斑高/無処理区病斑高)〕× 100

本 の 結果以下 の 化 合物 が 防 除 価 1 0 0 を 示 した。
本発明 化 合物 Na 5 、 Na 4 7 、 Na 4 9 、 Na 5 2 、 Na 5 5 、 Na 7 0 、 Na 7 1 、 Na 7 2 、 Na 7 9 、 Na 8 1 、 Na 9 6 、 Na 9 7 、 Na 9 9 、 Na 100 、 Na 102 、 Na 105 、 Na 108 、 Na 110 、 Na 113 、 Na 124 、 Na 126 、 Na 129 、 Na 168 、 Na 144 、 Na 175 、 Na 175 、 Na 178 、 Na 179 、 Na 182 、 Na 188 、 Na 194 、 Na 291 、 Na 292 、 Na 319 、 Na 312 、 Na 321 、 Na 322 、 Na 326 、 Na 328 、 Na 345 、 Na 435 、 Na 436 、 Na 440 、 Na 441 、 Na 447 、 Na 451 、 Na 481 、 Na 483 、 Na 485 、 Na 499 。

請求の範囲

1. 一般式[1]:

〔上記式中、R¹は、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基またはハロアルキル基を表し、

R²は、水素原子、アルキル基、ハロアルキル基、無置換もしくは置換基を有するフェニルアルキル基、-COR⁶または-SO₂R⁷を表し、

X は、-S- 、-SO-、-SO₂- 、-N(R³)- 、-CO-または-C(R⁴)(R⁵)- を表し、

R®は、水素原子、アルキル基、ハロアルキル基、アルケニル基、アルキニル基、アルコキシアルキル基、シアノアルキル基、アルキルカルボニルアルキル基、アルコキシカルボニルアルキル基、ニトロソ基、アミノ基、無置換もしくは置換基を有するフェニルアルキル基、-COR® または-SO₂R⁷を表し、

R⁴およびR⁵は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、ハロアルキル基、アルケニル基、アルチニル基、アルキニル基または-OR⁸を表し、

R*は、水素原子、アルキル基、ハロアルキル基、アル

3

ケニル基、アルキニル基、アルコキシアルキル基、シアノアルキル基、アルキルカルボニルアルキル基、アルコキシカルボニルアルキル基、無置換もしくは置換基を有するフェニルアルキル基、-COR® または-SO₂R⁷を表し、

R⁶は、水素原子、アルキル基、ハロアルキル基、無置換もしくは置換基を有するフェニル基、無置換もしくは置換基を有するフェニルアルキル基、アルコキシ基または

$$-N < \frac{R^9}{R^{10}}$$

を表し、

R⁷は、アルキル基、ハロアルキル基、無置換もしくは 置換基を有するフェニル基または

$$-N<_{R^{10}}^{R^9}$$

を表し、

R°およびR¹°は、それぞれ独立に水素原子、アルキル基または無置換もしくは置換基を有するフェニル基を表し、

Yは、酸素原子、-S-、-S0-、または -S0₂-を表し、 Aは、無置換もしくは置換基を有するフェニル基また は無置換もしくは置換基を有する複素環基を表し、

B は、

または N Z¹ Z² S

を表し、

Z¹およびZ²は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、ハロアルキル基を表す。〕で表される置換ピラゾール誘導体。

2. Aが、置換基を有するフェニル基である請求 項1記載の置換ピラゾール誘導体。

3. Xが、-N(R⁸)- である請求項1記載の置換ピ

ラゾール誘導体。

- 4. Yが、-S- である請求項2記載の置換ピラゾール誘導体。
- 5. R¹およびR²が、低級アルキル基で、Xが、-N(R³)-で、Yが、-S-で、Aが、置換基を有するフェニル基で、且つBが、無置換のピリジル基もしくは無置換のピリミジル基である請求項1記載の置換ピラゾール誘導体。
- 6. 請求項1記載の置換ピラゾール誘導体の1種または2種以上を有効成分として含有する農園芸用殺菌剤。

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP91/01538

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶							
According to International Patent Classification (IPC) or to both Na							
C07D401/06,401/12,401/14,403/ 417/14,A01N43/54,43/56,43/58,	06,403/12,403/14,417/06,417/12,						
II. FIELDS SEARCHED							
Minimum Docume	ntation Searched 7						
Classification System	Classification Symbols						
IPC C07D401/06-401/14, A01N43/54-43/62, 43	403/06-403/14, 417/06-417/14, /707, 43/78						
Documentation Searched other to the Extent that such Document	than Minimum Documentation s are Included in the Fields Searched ⁸						
III. DOCUMENTS CONSIDERED TO BE RELEVANT 9							
Category * Citation of Document, 11 with indication, where app	propriate, of the relevant passages 12 Relevant to Claim No. 13						
A JP, A, 01-125379 (Sumitor							
Co., Ltd.), May 17, 1989 (17. 05. 89), (Family: none)							
* Special categories of cited documents: 10	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to						
"A" document defining the general state of the art which is not considered to be of particular relevance understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an							
"L" document which may throw doubts on priority claim(s) or "Y" document of particular relevance; the claimed invention cannot							
which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other special reason (as specified) be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art							
other means "&" document member of the same patent family document published prior to the international filing date but later than the priority date claimed							
IV. CERTIFICATION							
Date of the Actual Completion of the International Search	Date of Mailing of this International Search Report						
January 8, 1992 (08. 01. 92)	January 28, 1992 (28. 01. 92)						
International Searching Authority	Signature of Authorized Officer						
Japanese Patent Office							

I. 発明の属する分野の分類		
403/06, 403/12, 40	07D401/06, 401/12, 401/1 3/14, 417/06, 417/12, 417, 43/58, 43/60, 43/707, 43/	/14,
	20,00,10,00,10,00,	
Ⅱ.国際調査を行った分野	二 上县 小阳 次 村	
調査を		
分類体系		
IPC C07D401/ 417/06-4 43/707, 4	06-401/14, 403/06-403/14 17/14, A01N43/54-43/62, 3/78	! ,
最小限資料以外の資料で調査を行ったもの		
Ⅲ.関連する技術に関する文献		
I M The C	関連するときは、その関連する箇所の表示 請求の範囲	間の番号
	9(住友化学工業株式会社), 1-5 05.89), (ファミリーなし)	, 6
 ※ 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準下と」先行文献ではあるが、国際出願日以後に公表でし、一般の大きに、	されたもの のために引用するもの 成の発行日 「X」特に関連のある文献であって、当該文献のみで到 用する文献 規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の」 文献との、当業者にとって自明である組合せによ	の理解 き明の新 以上の
IV. iz ie		
際調査を完了した日 08.01.92	国際調査報告の発送日 28.01.92	
	権限のある職員 4C88	3 2 9
日本国特許庁(ISA/JP)	特許庁審査官 小 柳 正 之	(B)