Assignment 1: Introduction to Systems Programming

Kevin Rich, Francis Vo, Soo-Hyun Yoo

October 16, 2012

1 Mathematical Analysis

1.1 Algorithm 1

```
Data: Integer array A of size N Result: Greatest Sum of Subarray for i \leftarrow 0 to N do for j \leftarrow i to N do s \leftarrow 0; for k \leftarrow i to j do s \leftarrow s + A[k]; end if s > max then max \leftarrow s; end end end
```

Algorithm 1: Pseudocode for Basic Enumeration

This Algorithm has 3 for-loops so it is $O(n^3)$.

1.2 Algorithm 2

```
 \begin{aligned} \textbf{Data: Integer array A of size N} \\ \textbf{Result: Greatest Sum of Subarray} \\ \textbf{for } i \leftarrow 0 \textbf{ to } N \textbf{ do} \\ s \leftarrow 0; \\ \textbf{for } j \leftarrow i \textbf{ to } N \textbf{ do} \\ s \leftarrow A[j]; \\ \textbf{if } s > \max t \textbf{ then} \\ \max \leftarrow s; \\ \textbf{end} \\ \textbf{end} \end{aligned}
```

Algorithm 2: Pseudocode for Better Enumeration

This Algorithm has 2 for-loops so it is $O(n^2)$.

1.3 Algorithm 3

Data: Integer array A of size N Result: Greatest Sum of Subarray

```
def MaxSubarray:
    sums = MaxSubarray_recursive(A)
    return max(sums)
```

Algorithm 3.1: Starting function pseudocode for Divide and Conquer

```
Data: Integer array A of size N
Result: Integer array of size 4
def MaxSubarray_recursive:
    if A.size <= 1:
        sums.all = A[0]
        sums.left = A[0]
        sums.right = A[0]
        sums.overall = A[0]
    left_sums = MaxSubarray_recursive(A, left_branch)
    right_sums = MaxSubarray_recursive(A, right_branch)
    sums.all = left_sums.all + right_sums.all
    sums.left = max(left_sums.left, left_sums.all + right_sums.left)
    sums.right = max(right_sums.right, left_sums.right + right_sums.all)
    m = left_sums.right + right_sums.left
    sums.overall = max(sums.all, sums.left, sums.right, m)
    return sums
```

Algorithm 3.2: Recursive function pseudocode for Divide and Conquer

This algorithm is recursive and decreases by half every step. Each lower step has double the number of calls. Thus, this algorithm is $O(n \log n)$.

2 Theoretical Correctness

The sum of all the elements in array denoted as Sum_All The largest sum starting from the left denoted as Sum_Left The largest sum starting from the right denoted as Sum_Right The overall max sum denoted as Sum_Overall

Base case: Let n = 1. Then Sum_All = A[0], Sum_Left = A[0], Sum_Right = A[0], Sum_Overall = A[0]

```
Inductive hypothesis:
```

```
\label{eq:local_local_local_local_local_local} \begin{subarray}(A[0:\frac{n}{2}-1]) \\ Right = MaxSubarray(A[\frac{n}{2}:n]) \\ Sum\_All = Left.Sum\_All + Right.Sum\_All \\ Sum\_Left = Left.Sum\_Left \ or \ Left.Sum\_All + Right.Sum\_Left \\ Sum\_Right = Left.Sum\_Right + Left.Sum\_All \ or \ Right.Sum\_Right \\ Sum\_Overall = Sum\_Left \ or \ Sum\_Right \ or \ Left.Sum\_Overall \ or \ Right.Sum\_Overall \ or \ Left.Sum\_Right + Right.Sum\_Left \\ \end{subarray}
```

Proof:

Case 1: Contained entirely in the first half

This will be returned from the recursive call on the Left.

Case 2: Contained entirely in the second half

This will be returned from the recursive call on the Right.

Case 3: Made of a suffix of the first half of maximum sum and the prefix of the second half of the maximum This will be found using Left.Sum_Right + Right.Sum_Left

3 Testing

Student ID	Answer
931678074	5703
930569466	8184
932086449	4949

4 Experimental Analysis

4.1 Algorithm 1

4.2 Algorithm 2

4.3 Algorithm 3

5 Extrapolation and Interpretation

5.1 Extrapolation

The functions were calculated using gnuplot's fit function.

5.2 Interpretation

The functions were calculated using gnuplot's fit function and fitting the data to $f(n) = 10^{m \log_{10} n + c}$. The slopes for each algorithm is a little lower than the actual power because of the creation overhead of the function has a larger affect on arrays with small sizes. This will cause the left side to be higher and therefore decreases slope.

5.3 Algorithm 1

5.3.1 Extrapolation

$$f(n) = 4.71599 \times 10^{-10} \times n^3$$

 $f(n) = 3600 \rightarrow n = \boxed{19690}$

5.3.2 Interpretation

Slope =
$$2.99734$$

5.4 Algorithm 2

5.4.1 Extrapolation

$$f(n) = 1.87761 \times 10^{-9} \times n^2$$

$$f(n) = 3600 \rightarrow n = \boxed{1384678}$$

5.4.2 Interpretation

Slope =
$$1.99602$$

5.5 Algorithm 3

5.5.1 Extrapolation

$$f(n) = 1.74832 \times 10^{-8} \times n \times log(n)$$

$$f(n) = 3600 \rightarrow n = 8984428998 = \boxed{8.98 \times 10^9}$$

5.5.2 Interpretation

Slope =
$$1.00506$$

6 Code

6.1 Files

```
alg1.cpp - Function for algorithm 1
alg2.cpp - Function for algorithm 1
alg3.cpp - Function for algorithm 1
analysis.cpp - Code to run algorithm and measure times for the number of array then outputs .t file makefile - To compile files
maxSubarray.pdf - This writeup
maxSubarray.tex - TEXfile for PDF
test.cpp - Allows input of file and runs algorithm on input file
analysis/ - Contains compiled executables for running analysis
test/ - Contains compiled executables for running tests on code, and test array files
timingfiles/ - Contains files for creating plots
timingfiles/*.t - Log of runtimes for different array sizes
timingfiles/*.gp - Code for gnuplot. 2 plots of each algorithm: 1 normal plot, and 1 log-log plot
```

6.2 Algorithm 1

```
* Enumeration
     Loop over each pair of indices i; j and compute the sum from k=i to j of a[k].
   * Keep the best sum you have found so far.
  using namespace std;
  int MaxSubarray(int a[], int n){
    int i, j, k;
13
    int max = a[0];
    int sum;
14
    for(i = 0; i < n; ++i)
15
       for (j = i; j < n; ++j){
16
        sum = 0;
         for (k = i; k \le j; ++k){
          sum += a[k];
19
20
         if(max < sum){
21
           \max = \sup;
22
23
24
25
    return max;
```

alg1.cpp

6.3 Algorithm 2

```
\ast Notice that in the previous algorithm, the same sum is computed many times.
   * In particular, notice that sum from k=i to j of a[k] can be computed from sum from k=
   using namespace std;
  int MaxSubarray(int a[], int n){
12
13
    \begin{array}{ll} \mbox{int} & i \;, j \;, k \,; \\ \mbox{int} & \max \; = \; a \; [ \; 0 \; ] \,; \end{array}
14
15
    int sum;
16
    for (i = 0; i < n; ++i)
17
      sum = 0;
18
      for (j = i; j < n; ++j){
    sum += a[j];
20
         if(max < sum){
21
22
           \max = \sup;
23
         }
      }
24
25
    return max;
26
```

alg2.cpp

6.4 Algorithm 3

```
* Divide and Conquer
    * If we split the array into two halves, we know that the maximum subarray will either
           * contained entirely in the frst half,
            * contained entirely in the second half, or
           * made of a suffix of the frst half of maximum sum and a prefix of the second
        half of maximum sum
    * The frst two cases can be found recursively. The last case can be found in linear
  #define ALL
10
  #define LEFT
                      1
  #define RIGHT
                      2
  #define OVERALL 3
   using namespace std;
   void MaxSubarray_h(int array[], int size, int sums[]) {
     // Base case.
18
     if(size \ll 1)
       sums [ALL]
                        = array [0];
                                         // Sum of entire array
20
                                         // Largest sum from left end of array
// Largest sum from right end of array
                       = array [0];
       sums [LEFT]
21
       sums [RIGHT]
                       = array [0];
22
                                         // Largest sum found so far
       sums[OVERALL] = array[0];
23
24
25
     int i = size/2; // Index of middle element
26
27
28
     // Recurse.
     int *left = new int [4];
int *right = new int [4];
29
30
     MaxSubarray_h(array,i,left);
MaxSubarray_h(array+i, size-i, right);
31
32
     // Calculate various possible maximum sums.
34
     int a = left [ALL] + right [ALL];
                                               // Sum of everything
35
     int l = left [ALL] + right [LEFT];
36
                                                 // Possible max sum from the left
     int r = left [RIGHT] + right [ALL];
int m = left [RIGHT] + right [LEFT];
                                                  // Possible max sum from the right
// Possible max sum straddling both branches
37
39
     40
42
43
44
     overall = overall > m ? overall : m;
45
     // Final answers!
46
     sums[0] = a;
47
     sums[1] = 1;
48
     sums[2] = r;
     sums[3] = overall;
50
51
52
53
  int MaxSubarray(int a[], int n){
     int *p = new int [4];
     MaxSubarray_h(a,n,p);
     \begin{array}{l} \text{int } s1 = p[0] > p[1] ? p[0] : p[1]; \\ \text{int } s2 = p[2] > p[3] ? p[2] : p[3]; \\ \text{s1} = \text{s1} > \text{s2} ? \text{s1} : \text{s2}; \\ \end{array}
59
     return s1;
60
61
```

alg3.cpp