Continuous Dynamical Systems Assignment - Hw 6

Christopher Mack

Spring 2022

Problem 7.2.12

7.2.12 Show that $\dot{x} = -x + 2y^3 - 2y^4$, $\dot{y} = -x - y + xy$ has no periodic solutions. (Hint: Choose a, m, and n such that $V = x^m + ay^n$ is a Liapunov function.)

We are working with the system

$$\begin{cases} \dot{x} = -x + 2y^3 - 2y^4 \\ \dot{y} = -x - y + xy \end{cases}$$

We want to find a function $V(\mathbf{x})$, where $\mathbf{x} = (xy)$, such that

$$\begin{cases} V(\boldsymbol{x}) > 0 \text{ for } \boldsymbol{x} \neq \boldsymbol{x}^* \\ \dot{V} < 0 \text{ for } \boldsymbol{x} \neq \boldsymbol{x}^* \end{cases}$$

We will be looking at even m, n to satisfy the first condition. Specifically, let's consider

$$V = x^2 + ay^4$$

Then

$$\dot{V} = \frac{\partial V}{\partial x} \frac{dx}{dt} + \frac{\partial V}{\partial y} \frac{dy}{dt}$$

$$= (2x)(-x + 2y^3 - 2y^4) + (4ay^3)(-x - y + xy)$$

$$= -2x^2 + 4xy^3 - 4xy^4 - 4axy^3 - 4ay^4 + 4axy^4$$

$$= -2x^2 + 4xy^3(1 - a) + 4y^4(-x - a + ax)$$

If we have that a=1, then

$$\dot{V} = -2x^2 - 4y^4 < 0 \text{ for all } x, y$$

Then V is a Liapunov function, and all trajectories must move monotonically towards $x^* = (0,0)$, ruling out the existence of closed orbits in our system.

Problem 7.3.1

-7.3.1 Consider $\dot{x} = x - y - x(x^2 + 5y^2)$, $\dot{y} = x + y - y(x^2 + y^2)$.

- a) Classify the fixed point at the origin.
- b) Rewrite the system in polar coordinates, using $r\dot{r} = x\dot{x} + y\dot{y}$ and $\dot{\theta} = (x\dot{y} y\dot{x})/r^2$.
- c) Determine the circle of maximum radius, r₁, centered on the origin such that all trajectories have a radially *outward* component on it.
- d) Determine the circle of minimum radius, r₂, centered on the origin such that all trajectories have a radially *inward* component on it.
- e) Prove that the system has a limit cycle somewhere in the trapping region $r_1 \le r \le r_2$.

Part (a)

We have a nonlinear system, so let's begin by computing the Jacobian:

$$J\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 - 3x^2 - 5y^2 & -1 - 10xy \\ 1 - 2xy & 1 - x^2 - 3y^2 \end{bmatrix}$$

Then evaluating this at the origin,

$$J \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

which has the eigenvalues

$$\begin{cases} \lambda_{-} = 1 + i \\ \lambda_{+} = 1 - i \end{cases}$$

Thus the origin is an unstable spiral.

Part (b)

From the transformation

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ x^2 + y^2 = r^2 \end{cases}$$

we can rewrite our system in polar coordinates using:

$$\begin{cases} r\dot{r} = x\dot{x} + y\dot{y} \\ \dot{\theta} = (x\dot{y} - y\dot{x})/r^2 \end{cases}$$

2

via substitution of our system:

$$\begin{split} r\dot{r} &= x(x - y - x(x^2 + 5y^2)) + y(x + y - y(x^2 + y^2)) \\ &= x^2 - xy - x^2(x^2 + 5y^2) + xy + y^2 - y^2r^2 \\ &= r^2 - r^4\sin^2\theta - r^4\cos^2\theta[\cos^2\theta + 5\sin^2\theta] \\ &= r^2 - r^4\sin^2\theta - r^4\cos^4\theta - 5r^4\cos^2\theta\sin^2\theta \\ &= r^2 - r^4[\cos^4\theta + 6\cos^2\sin^2\theta + \sin^4\theta] \end{split}$$

along with

$$\dot{\theta} = \frac{1}{r^2} [x(x+y-y(x^2+y^2)) - y(x-y-x(x^2+5y^2))]$$

$$= \frac{1}{r^2} [x^2 + xy - xyr^2 - yx + y^2 + xy(x^2+5y^2))]$$

$$= \frac{1}{r^2} [r^2 - r^4 \cos \theta \sin \theta + r^4 \cos \theta \sin \theta (\cos^2 \theta + 5\sin^2 \theta)]$$

$$= 1 - r^2 \cos \theta \sin \theta + r^2 \cos \theta \sin \theta (\cos^2 \theta + 5\sin^2 \theta)$$

$$= 1 + r^2 \cos \theta \sin \theta [-1 + \cos^2 \theta + 5\sin^2 \theta]$$

$$= 1 + 4r^2 \cos \theta \sin^3 \theta$$

And so our system becomes

$$\begin{cases} \dot{r} = r - r^3 [\cos^4 \theta + 6\cos^2 \sin^2 \theta + \sin^4 \theta] \\ \dot{\theta} = 1 + 4r^2 \cos \theta \sin^3 \theta \end{cases}$$

Part (c)

We are interested in the circumstance when $\dot{r} > 0$. From our definition of \dot{r} , let us define

$$q(\theta) = \cos^4 \theta + 6\cos^2 \sin^2 \theta + \sin^4 \theta$$

which, since g is periodic with period 2π , is bounded such that

$$1 \le g(\theta) \le 2$$

for $0 \le \theta \le 2\pi$. Thus, for any θ ,

$$r(1 - 2r^2) \le \dot{r} \le r(1 - r^2) \tag{1}$$

This tells us that $\dot{r} \leq 0$ corresponds to

$$r(1-r^2) \le 0 \implies r \ge 1$$

Clearly, then for r > 1, $\dot{r} < 0$, which tells us that the desired maximum radius, below which all trajectories have a radially outward component, is $r_2 = 1$.

Part (d)

Again appealing to (1), we know that $\dot{r} \geq 0$ corresponds to

$$r(1-2r^2) \ge 0 \implies r \le \frac{1}{\sqrt{2}}$$

Clearly, then for $r < \frac{1}{\sqrt{2}}$, trajectories have radially outward components. Thus $r_1 = \frac{1}{\sqrt{2}}$ is the minimum value for which all trajectories have radially inward components.

Part (e)

We know that the only fixed point of our system, in cartesian, is at (0,0), which corresponds to $(0,\theta)$ in polar coordinates. Thus in polar, our only fixed point is at the origin. Since $r_1 > 0$, we know that there are no fixed points in the trapping region R described by $r_1 \le r \le r_2$, which is closed and bounded. Further, we know that a trajectory C is confined in R. Thus by the Poincare-Bendixson theorem, C is either a closed orbit or asymptotically approaches it, and thus there exists a limit cycle in R.

Problem 7.3.2

7.3.2 Using numerical integration, compute the limit cycle of Exercise 7.3.1 and verify that it lies in the trapping region you constructed.

Code: $_{1} x1p = linspace(-1,1,1001);$ a = 0;b=15000; h = 0.01; $_{5}$ nsteps = (b-a)/h + 1; $_{6}$ x=zeros (1, nsteps); y=zeros(1, nsteps);x(1)=0;9 y(1) = 0.9; $dxdt = @(x,y) x - y - x*(x^2 + 5*y^2);$ $dydt = @(x,y) x + y - y*(x^2 + y^2);$ for n=1:nsteps x(n+1)=x(n)+h*dxdt(x(n),y(n));13 y(n+1)=y(n)+h*dydt(x(n),y(n));end 15 plot(x,y)hold on $y1 = sqrt(1-x1p.^2);$ $y2 = - sqrt(1-x1p.^2);$ $y3 = sqrt(1/2-x1p.^2);$ $y4 = -sqrt(1/2-x1p.^2)$; plot (x1p, y1, 'r', x1p, y2, 'r', x1p, y3, 'r', x1p, y4, 'r') legend ('Approximated Limit Cycle', 'Inner/Outer Radii') $xlabel(``\$\setminus dot\{x\}\$", ``Interpreter", ``latex")$ ylabel('\$\dot{y}\$', 'Interpreter', 'latex') $_{26}$ vlim ([-2 2]) $_{27}$ xlim ([-2 2])

Figure:

Problem 7.3.4

7.3.4 Consider the system

$$\dot{x} = x(1 - 4x^2 - y^2) - \frac{1}{2}y(1 + x),$$
 $\dot{y} = y(1 - 4x^2 - y^2) + 2x(1 + x).$

- a) Show that the origin is an unstable fixed point.
- b) By considering \dot{V} , where $V = (1 4x^2 y^2)^2$, show that all trajectories approach the ellipse $4x^2 + y^2 = 1$ as $t \to \infty$.

Part (a)

Let us begin by finding the Jacobian of our system:

$$J \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 - 12x^2 - y^2 - \frac{1}{2}y & -2xy - \frac{1}{2}(1+x) \\ -8yx + 2 + 4x^2 & 1 - 4x^2 - 3y^2 \end{bmatrix}$$

which evaluated at the origin becomes

$$J \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 2 & 1 \end{bmatrix}$$

which has the eigenvalues

$$\begin{cases} \lambda_+ = 1 + i \\ \lambda_- = 1 - i \end{cases}$$

which is an unstable spiral.

Part (b)

If

$$V = (1 - 4x^2 - y^2)^2$$

then by multi-variable chain rule,

$$\frac{\partial V}{\partial t} = \frac{\partial V}{\partial x} \frac{dx}{dt} + \frac{\partial V}{\partial y} \frac{dy}{dt}$$

We can easily see that

$$\frac{\partial V}{\partial x} = 2(1 - 4x^2 - y^2)(-8x)$$

$$= -16x(1 - 4x^2 - y^2)$$

$$\frac{\partial V}{\partial y} = 2(1 - 4x^2 - y^2)(-2y)$$

$$= -4y(1 - 4x^2 - y^2)$$

Then, for $\{(x,y): (x \neq 0 \land y \neq 0) \lor (4x^2 + y^2 \neq 1)\}$, we have that

$$\frac{\partial V}{\partial t} = -16x(1 - 4x^2 - y^2)[x(1 - 4x^2 - y^2) - \frac{1}{2}y(1 + x)] - 4y(1 - 4x^2 - y^2)[y(1 - 4x^2 - y^2) + 2x(1 + x)]$$

$$= -16x^2(1 - 4x^2 - y^2)^2 + 8xy(1 + x)(1 - 4x^2 - y^2) - 4y^2(1 - 4x^2 - y^2)^2 - 8xy(1 + x)(1 - 4x^2 - y^2)$$

$$= -4\underbrace{[1 - (4x^2 + y^2)]^2}_{>0}\underbrace{(4x^2 + y^2)}_{>0}$$

It is clear, then, that for any initial condition not at the origin or on the ellipse, $\dot{V} < 0$ such that $V \to 0$ as $t \to \infty$. This clearly means that, as $t \to \infty$,

$$(1 - (4x^2 + y^2)) \to 0 \implies 4x^2 + y^2 \to 1$$

If we start on the ellipse, then $V = \dot{V} = 0$, thus we stay on the ellipse. Thus all trajectories approach the ellipse $4x^2 + y^2 = 1$ as $t \to \infty$.

Problem 7.4.2

- **7.4.2** Consider the equation $\ddot{x} + \mu(x^4 1)\dot{x} + x = 0$.
- a) Prove that the system has a unique stable limit cycle if $\mu > 0$.
- b) Using a computer, plot the phase portrait for the case $\mu = 1$.
- c) If $\mu < 0$, does the system still have a limit cycle? If so, is it stable or unstable?

Part (a)

First let us rewrite this second order ODE into a system of first order ODEs:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -x - \mu(x^4 - 1)y \end{cases}$$

Now let us define

$$f(x) := \mu(x^4 - 1)$$
$$g(x) := x$$

We wish to invoke Lienard's Theorem, which requires the following conditions to be satisfied:

- 1. f(x) and g(x) are continuously differentiable for all x. Clearly, this conditions is satisfied since f(x) and g(x) are both polynomials.
- 2. g(-x) = -g(x) for all x. Consider:

$$g(-x) = -x = -g(x)$$

Thus g is an odd function.

- 3. g(x) > 0 for x > 0. This is clearly true.
- 4. f(-x) = f(x) for all x. Consider:

$$f(-x) = \mu((-x)^4 - 1) = \mu((x)^4 - 1) = f(x)$$

Thus f is an even function.

5. The odd function $F(x) = \int_0^x f(u) du$ has exactly one positive zero at x = a, is negative for 0 < x < a, is positive and nondecreasing for x > a, and $F(x) \to \infty$ as $x \to \infty$. Let us find F(x) as defined above:

$$F(x) = \int_0^x \mu(u^4 - 1)du = \mu\left(\frac{x^5}{5} - x\right)$$
$$= \mu x \left(\frac{x^4}{5} - 1\right)$$

9

It is easy to see that

$$F(x) = 0 \iff \begin{cases} x = 0 \\ x = \pm (5)^{1/4} \end{cases}$$

Let us define $(5)^{1/4} := a$. Then F has only one positive root at a. It is also easy to see that

$$0 < x < a \implies \frac{x^4}{5} - 1 < 0 \implies F(x) < 0$$

for positive μ . Then, since f(x) > 0 for x > a, we know that F is nondecreasing for x > a. Lastly,

$$x \to \infty \implies F(x) \to \infty$$

We have shown that all conditions of Lienar's Theorem are satisfied for the system in question. Thus the system has a unique, stable limit cycle surrounding the origin in the phase plane.

Part (b)

Part (c)

For $\mu < 0$, it is easy to see that the first four conditions outlined above for Lienard's theorem are still satisfied. Regarding F(x), though,

$$F(x) = -\int_0^u \mu(u^4 - 1)du = -\mu x \left(\frac{x^4}{5} - 1\right)$$

Clearly $F(x) \to -\infty$ for $x > a := (5)^{1/4}$. This tells us that the damping from f(x) is positive for small |x|, and negative for large |x|. This follows with the fact that (0,0) becomes a **stable** fixed point. Thus while a limit cycle still exists, it is unstable, as initial conditions inside the limit cycle converge towards the fixed point, and initial conditions outside the limit cycle diverge away from it.

