

## Feed-forward Neural Networks

CS-585

Natural Language Processing

Derrick Higgins

## TEXT CATEGORIZATION WITH NEURAL NETWORKS



## Text categorization with neural networks

- Neural networks
  - Use vector/matrix/tensor representations
  - Apply a sequence of algebraic operations (matrix multiplication, etc.)
  - Trained using some variant of gradient descent
- Text categorization architecture
  - Bag of words representation (embeddings) at input layer (for now)
  - One or more hidden layers ("fully-connected" layers)
  - Probabilistic output layer: logistic sigmoid (binary classification) or softmax (multiclass classification)















## Feed-forward text categorization network: summary

Words → document representation

$$d = \sum_{i=1}^{n} \frac{E_{w_i}}{n}$$

Document representation → hidden layer

$$h = Sigmoid(d^{T}W_{1}) = \frac{e^{d^{T}W_{1}}}{1 + e^{d^{T}W_{1}}}$$

Hidden layer → output probability

$$p = Sigmoid(h^{T}o) = \frac{e^{h^{T}o}}{1 + e^{h^{T}o}}$$

### Comparison to logistic regression



### Logistic regression: summary

Words → document representation

$$d = \sum_{i=1}^{n} \frac{E_{w_i}}{n}$$

Document representation → output probability

$$p = Sigmoid(d^{T}o) = \frac{e^{d^{T}o}}{1 + e^{d^{T}o}}$$

## Feed-forward neural network: multiple hidden layers



### What is the point of nonlinearities?

### Expressive capacity

Some functions cannot be expressed
 / represented / learned without them

### **XOR**

- A well-known example is the exclusive OR (XOR) problem
- Given two input nodes  $x_1, x_2 \in \{0,1\}$  and a single output node y it is impossible to set hidden layer weights such that y = 1 iff  $x_1 \neq x_2$

$$h_1 = w_1^1 x_1 + w_2^1 x_1$$
  

$$h_2 = w_1^2 x_2 + w_2^2 x_2$$
  

$$y = o_1 h_1 + o_2 h_2$$



#### **XOR**

 With a nonlinearity in the network the function can be represented

$$h_1 = \theta(w_1^1 x_1 + w_2^1 x_1, 0.25)$$

$$h_2 = \theta(w_1^2 x_2 + w_2^2 x_2, -0.75)$$

$$y = \theta(o_1 h_1 + o_2 h_2, 0.75)$$





#### **XOR**

Matrix
 multiplication is
 just a linear
 operation, and
 XOR requires a
 non-linear decision
 boundary



### Expressive capacity of neural networks

- A feed-forward neural network with fullyconnected layers, at least one hidden layer with nonlinear activations (such as sigmoid) can represent any function of its inputs with arbitrary precision
  - Depends only on number of hidden nodes in the network
- Can be thought of as a "universal function approximator"

# What is the point of multiple hidden layers?

- A network with a single hidden layer can represent any function as well as a network with multiple hidden layers
- But it may require an exponentially greater number of nodes
- Deeper networks are better for representing complex relationships between inputs and outputs
- But they can introduce difficulties for optimization
  - Regularization helps
  - Also residual connections (advanced topic)

## Hidden layers are only useful with nonlinearities

- Remember that without nonlinear activation functions, each layer of a feedforward neural network is just a linear transform of the previous layer (matrix multiplication)
- And successive matrix multiplications are always expressible as a single matrix multiplication



$$M \stackrel{\text{def}}{=} ABCD$$
$$y = x^T M$$



#### Multilabel classification



#### Multilabel classification



#### Multiclass classification



### Multilabel vs. multiclass

- Multilabel classification
  - Labels are not mutually exclusive
  - Probabilities do not sum to one
  - Logistic sigmoid nonlinearity at output layer
- Multiclass classification
  - Labels are mutually exclusive
  - Probabilities must sum to one
  - Softmax nonlinearity at output layer

## NEURAL NETWORK TOOL CHEST



### Nonlinearities

- Softmax and logistic sigmoid are the most common nonlinearities used in neural networks for NLP, but there are a few others to be familiar with.
- The general constraints on nonlinearities (or activation functions) is that they be monotonic (continuously increasing or decreasing) and differentiable
- The primary nonlinear functions used are
  - Softmax
  - Logistic sigmoid
  - Hyperbolic tangent (tanh)
  - Rectified linear (ReLU)

### Nonlinearities: softmax

- Softmax is typically only used at the output layer of a network in order to get probabilistic/normalized outputs for multiclass classification problems
- It is sometimes treated as part of the loss function, rather than part of the network per se.



$$Softmax(\vec{x}) = \left[ \frac{e^{\vec{x}_i}}{\sum_{\forall j} e^{\vec{x}_j}} \right]_{\forall i}$$

## Nonlinearities: logistic sigmoid

- Most commonly-used activation function for hidden layer of network
- Also at output layer for binary classification tasks
- Produces activations constrained to range [0,1]



$$Sigmoid(\vec{x}) = \frac{e^{\vec{x}}}{1 + e^{\vec{x}}}$$



### Nonlinearities: hyperbolic tangent

- Sigmoid-like activation function that allows negative outputs
- Used in LSTMs (later this semester)
- Produces activations constrained to range [-1,1]



$$htan(\vec{x}) = \frac{e^{\vec{x}} - e^{-\vec{x}}}{e^{\vec{x}} + e^{-\vec{x}}}$$

#### Nonlinearities: ReLU

- Rectified Linear Unit
- Produces sparse activations (many zeroes)
- Technically not differentiable at 0, but can be dealt with computationally
- Produces activations constrained to range  $[0, \infty]$



$$rectifier(\vec{x}) = \max(\vec{x}, 0)$$



### Loss functions

| Loss function             | Usage                                                  | Formula                                                             |
|---------------------------|--------------------------------------------------------|---------------------------------------------------------------------|
| Binary cross-<br>entropy  | Binary or multilabel classification                    | $\mathcal{L} = -y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i)$ |
| Categorical cross-entropy | Multiclass classification                              | $\mathcal{L} = -\sum_{i} y_{i} \log \hat{y}_{i}$                    |
| Squared error             | Regression<br>(prediction of a real-<br>valued output) | $\mathcal{L} = \sum_{i} (y_i - \hat{y}_i)^2$                        |

Also hinge, Huber, absolute error...



### Logits

 The logistic sigmoid function is also referred to as the *inverse logit* function

$$Sigmoid(a) = b \Leftrightarrow Logit(b) = a$$

 The logit function translates probabilities into log odds

$$Logit(p) = \log \frac{p}{1-p}$$

## Logits

|      | Odds ratio      | Logits              |
|------|-----------------|---------------------|
| p    | $\frac{p}{1-p}$ | $\ln \frac{p}{1-p}$ |
| 0.10 | 0.11            | -2.20               |
| 0.25 | 0.33            | -1.10               |
| 0.50 | 1.00            | 0.00                |
| 0.75 | 3.00            | 1.10                |
| 0.90 | 9.00            | 2.20                |

Sigmoid



Logit



## THE ART OF NETWORK ENGINEERING



### Parameters and Hyperparameters

- Parameters: model-internal values that are set through training in order to optimize against some loss function
  - Examples: word embeddings, weight matrices between network layers
- Hyperparameters: model architecture or optimization decisions that are fixed in advance of training
  - Examples: learning rate, number of hidden layers, number of nodes per layer, regularization hyperparameters

### Hyperparameters in neural networks

- Many model types have hyperparameters
  - Naïve Bayes Smoothing hyperparameter
  - Logistic Regression L1/L2 penalty
  - KNN k neighbors
- But neural networks have a lot of them. How to search?
  - Choose a value and hope for the best
  - Search many values and select the best one based on development data
- Performance may also vary across training runs with a different random seed

### Regularization in neural networks

- Regularization: discouraging or regulating model complexity
  - Especially important for neural networks due to the curse of dimensionality
- In a high-dimensional space, there are many possible parameterizations (decision surfaces) that have equivalent performance according to our loss function (perhaps perfect accuracy on the training set)

### Regularization in neural networks

- L1 and L2 penalties we learned about in connection with logistic regression are used in neural networks as well
  - Different regularization penalties may be associated with weights at different layers
- Another regularization technique is early stopping—halting training before the loss has been fully minimized
  - Crude, but can be simpler than tweaking hyperparameters to get the desired result
  - Monitor performance on development dataset

### Regularization in neural networks

## Dropout is a regularization technique specific to neural networks

- During training, a fixed percentage of outputs at each layer are randomly set to zero
- This introduces noise into the inputs of the next layer, discouraging large weights
- It also discourages "co-adaptation" nodes in a layer that jointly perform a single function and can cause training to stall in a local minimum





## Frozen and tied weights

- In a neural network, some weights may be fixed, rather than updating in the course of training. These are referred to as frozen.
  - For instance, word embeddings from word2vec may be used at the input layer of the network, but not updated in training a task-specific model
  - Alternatively, the embedding weights may be further refined through task-specific training. This is called *fine-tuning*
- Tied or shared weights are constrained to be the same within a network.
  - For instance, we could build a network to classify pairs of documents, and constrain the portions of the network specific to a single document to be the same across both.

# TROUBLESHOOTING NEURAL NETWORKS



#### Evaluation

- Neural networks have great expressive capacity
  - Therefore, we need to ensure that we monitor performance on held-out data to avoid overtraining
- Neural networks are difficult to optimize non-convex error functions with local minima
  - Therefore, we need to monitor performance to ensure convergence

## Common issues: overtraining

Monitor
 performance on
 held-out set



### Common issues: non-convergence

- Reduce learning rate
- If convergence is too slow, increase learning rate



### Common issues: model complexity

- Start simple remember, logistic regression is a neural network
- A single-layer bag-of-words model is a strong baseline!