# Konvolúciós és transformer alapú képfeldolgozó neurális hálók összehasonlítása

Szakdolgozatot készítette: Péter István

Konzulens: Dr. Kiss Bálint

Céges konzulens: Nemes Ádám Gyula (Asura Technologies ZRT)

### Motiváció

- Önálló laboratórium téma: Deep Learning alapú objektumkövetés
- Az objektumkövetés (MOT Multiple Object Tracking) máig nehéz problémának számít
- A követés minősége nagyban függ a használt detektortól
- Az elmúlt 2-3 évben a Transformer architektúrát sikeresen alkalmazták az objektumdetekció területén
- A konvolúciós, néha FCN-nek (Fully Convolutional Networks) nevezett egy- és kétfázisú detektor hálók már egy "érett" architekturális modellt képviselnek

# Szakdolgozat célja

- Egy fix objektumkövetési algoritmus mellett össze akartam hasonlítani a két architektúra teljesítményét
- Fully Convolutional Network (FCN) pl.: FRCNN,
  SSD, You Only Look Once (YOLO)
- Transformer: Detection Transformer (DETR)
- MOT algoritmus: Simple Online Realtime

**Tracking (SORT)** 



**Figure 2:** The Model. Our system models detection as a regression problem. It divides the image into an  $S \times S$  grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an  $S \times S \times (B * 5 + C)$  tensor.



# Konkrét modellek, mérőszámok

- Két nagyjából kortárs detektor:
  - DETR (2020) (ResNet 50 és 101 backbone)
  - YOLOv5 (2020) nano, small, medium, large, extra large
  - Mindkettő MS-COCO (Microsoft Common Objects in Context) adatbázison előtanítva
- Objektumkövetés általános metrikái: CLEAR MOT: MOTA, MOTP, FN, FP, IDSW
- UA-DETRAC: tanító/teszt adatbázis + benchmark specifikáció, saját mérőszám: *PR-MOTA*



An ID switch occurs when the mapping switches from the previously assigned red track to the blue one

A track fragmentation is counted in frame 3 because the target is tracked in frames 1-2, then interrupts, and then reacquires its 'tracked' status at a later point with a different ID

$$\text{MOTA} = 100 \cdot (1 - \frac{\sum_{v} \sum_{t} (\text{FN}_{v,t} + \text{FP}_{v,t} + \text{IDS}_{v,t})}{\sum_{v} \sum_{t} \text{GT}_{v,t}}) [\%]$$

#### **UA-DETRAC**

- Detekció és tracking annotációk MOTChallenge formátumban
- Benchmark szoftver (MATLAB) és teszt annotációk már nem elérhetők a hivatalos weboldalon (<a href="https://detrac-db.rit.albany.edu/">https://detrac-db.rit.albany.edu/</a>), mivel a beléptetés nem működik
- Saját implementáció az UA-DETRAC cikkből kiindulva
  - https://github.com/peter-i-istvan/bsc-thesis
  - https://detracdb.rit.albany.edu/Data/DETRAC-benchmarkreport.pdf





# Mérés folyamata



### Eredmények

- PR-MOTA: YOLOv5 nano modell
- Bevett confidence threshold-ok mellett: medium és large modellek
- A PR-MOTA metrika nem bizonyult elég informatívnak
- Az eredeti DETR lassú a real-time működéshez és még nem elég pontos

|          | yolov5n | yolov5s | yolov5m | yolov5l | yolov5x | detr-resnet-50 | detr-resnet-101 |
|----------|---------|---------|---------|---------|---------|----------------|-----------------|
| Time (s) | 1313.99 | 1155.18 | 482.8   | 599.88  | 611.18  | 654.18         | 668.11          |
| FPS      | 637     | 725     | 1710.2  | 1391.7  | 1369.1  | 1279.1         | 1253.5          |



|         | D101  | D50   | YL    | YM    | YN    | YS    | YX    |
|---------|-------|-------|-------|-------|-------|-------|-------|
| PR-MOTA | -1.33 | -1.51 | -0.42 | -0.37 | -0.19 | -0.33 | -0.46 |

|          | yolov5n | yolov5s | yolov5m | yolov5l | yolov5x | detr-resnet-50 | detr-resnet-101 |
|----------|---------|---------|---------|---------|---------|----------------|-----------------|
| avg (ms) | 7.38    | 7.38    | 8.99    | 12.00   | 20.88   | 43.98          | 64.53           |
| std (ms) | 1.16    | 0.24    | 0.24    | 0.18    | 0.27    | 0.80           | 0.66            |
| FPS      | 135.5   | 135.5   | 111.2   | 83.3    | 47.89   | 22.73          | 15.49           |

# Bírálói kérdés: valós idejű DETR lehetőségei

• **Kérdés:** A sebesség egy fontos tényező az objektumdetektálás és követés során, hogy az valós időben végrehajtható legyen. A dolgozatban bemutatott DETR nem alkalmas erre. Jelenleg van erre irányuló fejlesztés, amit valós időben lehetne alkalmazni?

# Bírálói kérdés: valós idejű DETR lehetőségei

- Publikált, mért adatokban még nincs érdemi előrelépés
- DETR: 10-28 FPS @ V100, 42 mAP
- Swin (detekcióra csak backbone): 10-22 FPS @ V100, 47-58 mAP
- Swin (Shifted WINdows) elviekben hatékonyabb lehet, a csúszóablakos megközelítés miatt elvileg lineáris komplexitás
- DINO 10-24 FPS @ A100 ResNet backbone-nal 51 mAP
- DINO Swin-L backbone-nal 63 mAP, de itt FPS-t nem közöltek

# Valós idejű DETR lehetőségei - források

- DETR: <a href="https://arxiv.org/pdf/2005.12872.pdf">https://arxiv.org/pdf/2005.12872.pdf</a>
- Swin Transformer: <a href="https://arxiv.org/pdf/2103.14030.pdf">https://arxiv.org/pdf/2103.14030.pdf</a>
- DINO: <a href="https://arxiv.org/pdf/2203.03605v4.pdf">https://arxiv.org/pdf/2203.03605v4.pdf</a>

Köszönöm a figyelmet!