2-Bit Dual-Supply **Non-Inverting Level Translator**

The NLSV2T244 is a 2-bit configurable dual-supply voltage level translator. The input A_n and output B_n ports are designed to track two different power supply rails, V_{CCA} and V_{CCB} respectively. Both supply rails are configurable from 0.9 V to 4.5 V allowing universal low-voltage translation from the input A_n to the output B_n port.

Features

- Wide V_{CCA} and V_{CCB} Operating Range: 0.9 V to 4.5 V
- High-Speed w/ Balanced Propagation Delay
- Inputs and Outputs have OVT Protection to 4.5 V
- Non-preferential V_{CCA} and V_{CCB} Sequencing
- Outputs at 3-State until Active V_{CC} is Reached
- Power-Off Protection
- Outputs Switch to 3-State with V_{CCB} at GND
- Small Packaging: UDFN8, SO-8, Micro8
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

• Mobile Phones, PDAs, Other Portable Devices

Important Information

• ESD Protection for All Pins: HBM (Human Body Model) > 5000 V

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

UDFN8 MU SUFFIX CASE 517AJ

= Specific Device Code = Date Code

= Pb-Free Package

SO-8 **D SUFFIX CASE 751**

= Assembly Location

= Wafer Lot = Year = Work Week = Pb-Free Package

Micro8 **DM SUFFIX CASE 846A**

= Assembly Location

= Year

= Work Week = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NLSV2T244MUTAG	UDFN8 (Pb-Free)	3000 / Tape & Reel
NLSV2T244DR2G	SO-8 (Pb-Free)	2500 / Tape & Reel
NLSV2T244DMR2G	Micro8 (Pb-Free)	4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. Logic Diagram

PIN ASSIGNMENTS

PIN ASSIGNMENT

PIN	FUNCTION
V _{CCA}	Input Port DC Power Supply
V _{CCB}	Output Port DC Power Supply
GND	Ground
A _n	Input Port
B _n	Output Port
ŌĒ	Output Enable

TRUTH TABLE

In	Outputs	
ŌĒ	A _n	B _n
L	L	L
L	Н	Н
Н	Х	3-State

MAXIMUM RATINGS

Symbol	Rating		Value	Condition	Unit
V _{CCA} , V _{CCB}	DC Supply Voltage		-0.5 to +5.5		V
VI	DC Input Voltage	A _n	-0.5 to +5.5		V
V _C	Control Input	OE	-0.5 to +5.5		V
Vo	DC Output Voltage (Power Down)	B _n	-0.5 to +5.5	$V_{CCA} = V_{CCB} = 0$	V
	(Active Mode)	B _n	-0.5 to +5.5		V
	(Tri-State Mode)	B _n	-0.5 to +5.5		V
I _{IK}	DC Input Diode Current		-20	V _I < GND	mA
lok	DC Output Diode Current		-50	V _O < GND	mA
Io	DC Output Source/Sink Current		±50		mA
I _{CCA} , I _{CCB}	DC Supply Current Per Supply Pin		±100		mA
I _{GND}	DC Ground Current per Ground Pin		±100		mA
T _{STG}	Storage Temperature		-65 to +150		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CCA} , V _{CCB}	Positive DC Supply Voltage	0.9	4.5	V	
VI	Bus Input Voltage	GND	4.5	V	
V_{C}	Control Input	ŌĒ	GND	4.5	V
V_{IO}	Bus Output Voltage (Power Down Mode)	B _n	GND	4.5	V
	(Active Mode)	B _n	GND	V _{CCB}	V
	(Tri–State Mode)	B _n	GND	4.5	V
T_A	Operating Temperature Range	-40	+85	°C	
Δt / ΔV	Input Transition Rise or Rate V _I , from 30% to 70% of V _{CC} ; V _{CC} = $3.3 \text{ V} \pm 0.3 \text{ V}$		0	10	nS

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

					−40°C to	o +85°C	
Symbol	Parameter	Test Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
V _{IH}	Input HIGH Voltage		3.6 – 4.5	0.9 – 4.5	2.2	_	V
	(An, $\overline{\text{OE}}$)		2.7 – 3.6	1	2.0	-	1
			2.3 – 2.7	1	1.6	_	
			1.4 – 2.3	1	0.65 * V _{CCA}	_	1
			0.9 – 1.4		0.9 * V _{CCA}	_	
V _{IL}	Input LOW Voltage		3.6 – 4.5	0.9 – 4.5	-	0.8	V
	(An, \overline{OE})		2.7 – 3.6		_	0.8	
			2.3 – 2.7		-	0.7	
			1.4 – 2.3		_	0.35 * V _{CCA}	
			0.9 – 1.4		_	0.1 * V _{CCA}	
V _{OH}	Output HIGH Voltage	$I_{OH} = -100 \mu A; V_I = V_{IH}$	0.9 – 4.5	0.9 – 4.5	V _{CCB} - 0.2	-	V
		$I_{OH} = -0.5 \text{ mA}; V_I = V_{IH}$	0.9	0.9	0.75 * V _{CCB}	_	
		$I_{OH} = -2 \text{ mA}; V_I = V_{IH}$	1.4	1.4	1.05	_	
		$I_{OH} = -6 \text{ mA}; V_I = V_{IH}$	1.65	1.65	1.25	_	
			2.3	2.3	2.0	_	
		$I_{OH} = -12 \text{ mA}; V_I = V_{IH}$	2.3	2.3	1.8	_	
			2.7	2.7	2.2	_	
		$I_{OH} = -18 \text{ mA}; V_I = V_{IH}$	2.3	2.3	1.7	_	
			3.0	3.0	2.4	_	
		$I_{OH} = -24 \text{ mA}; V_I = V_{IH}$	3.0	3.0	2.2	_	
V_{OL}	Output LOW Voltage	$I_{OL} = 100 \mu A; V_I = V_{IL}$	0.9 - 4.5	0.9 – 4.5	-	0.2	V
		$I_{OL} = 0.5 \text{ mA}; V_I = V_{IL}$	1.1	1.1	-	0.3	
		$I_{OL} = 2 \text{ mA}; V_I = V_{IL}$	1.4	1.4	-	0.35	
		$I_{OL} = 6 \text{ mA}; V_I = V_{IL}$	1.65	1.65	_	0.3	
		$I_{OL} = 12 \text{ mA}; V_I = V_{IL}$	2.3	2.3	_	0.4	
			2.7	2.7	-	0.4	
		$I_{OL} = 18 \text{ mA}; V_I = V_{IL}$	2.3	2.3	-	0.6	
			3.0	3.0	-	0.4	
		I_{OL} = 24 mA; V_I = V_{IL}	3.0	3.0	-	0.55	
l _l	Input Leakage Current	$V_I = V_{CCA}$ or GND	0.9 - 4.5	0.9 – 4.5	-1.0	1.0	μΑ
l _{OFF}	Power-Off Leakage Current	OE = 0 V	0 0.9 – 4.5	0.9 – 4.5 0	-1.0 -1.0	1.0 1.0	μΑ
I _{CCA}	Quiescent Supply Current	$V_I = V_{CCA}$ or GND; $I_O = 0$, $V_{CCA} = V_{CCB}$	0.9 – 4.5	0.9 – 4.5	_	1.0	μΑ
I _{CCB}	Quiescent Supply Current	$V_I = V_{CCA}$ or GND; $I_O = 0$, $V_{CCA} = V_{CCB}$	0.9 – 4.5	0.9 – 4.5	-	1.0	μΑ
CA + I _{CCB}	Quiescent Supply Current	$V_I = V_{CCA}$ or GND; $I_O = 0$, $V_{CCA} = V_{CCB}$	0.9 – 4.5	0.9 – 4.5	-	2.0	μΑ
ΔI_{CCA}	Increase in I _{CC} per Input Voltage, Other Inputs at V _{CCA} or GND	$V_I = V_{CCA} - 0.6 \text{ V};$ $V_I = V_{CCA} \text{ or GND}$	4.5 3.6	4.5 3.6	-	10 5.0	μΑ
ΔI_{CCB}	Increase in I _{CC} per Input Voltage,	$V_I = V_{CCA} - 0.6 V;$	4.5 3.6	4.5 3.6	-	10	μΑ
CCB	Other Inputs at V _{CCA} or GND	$V_I = V_{CCA}$ or GND	3.0	3.0		5.0	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TOTAL STATIC POWER CONSUMPTION ($I_{CCA} + I_{CCB}$)

					-40°C to	o +85°C					
					V _{CCI}	_B (V)					
	4.	.5	3	.3	2.	.8	1.	.8	0.	.9	
V _{CCA} (V)	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
4.5		2		2		2		2		< 1.5	μΑ
3.3		2		2		2		2		< 1.5	μΑ
2.8		< 2		< 1		< 1		< 0.5		< 0.5	μΑ
1.8		< 1		< 1		< 0.5		< 0.5		< 0.5	μΑ
0.9		< 0.5		< 0.5		< 0.5		< 0.5		< 0.5	μΑ

NOTE: Connect ground before applying supply voltage V_{CCA} or V_{CCB}. This device is designed with the feature that the power–up sequence of V_{CCA} and V_{CCB} will not damage the IC.

AC ELECTRICAL CHARACTERISTICS

							-40°C t	o +85°C					
							V _{CC}	_B (V)					
			4.	.5	3	.3	2	.8	1	.8	1.	.2	
Symbol	Parameter	V _{CCA} (V)	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation	4.5		1.6		1.8		2.0		2.1		2.3	nS
t _{PHL} (Note 1)	Delay,	3.3		1.7		1.9		2.1		2.3		2.6	
(Note 1)	A _n to B _n	2.8		1.9		2.1		2.3		2.5		2.8	
		1.8		2.1		2.4		2.5		2.7		3.0	
		1.2		2.4		2.7		2.8		3.0		3.3	
t _{PZH} ,	Output	4.5		2.6		3.8		4.0		4.1		4.3	nS
t _{PZL} (Note 1)	Enable,	3.3		3.7		3.9		4.1		4.3		4.6	
(Note 1)	OE to B _n	2.5		3.9		4.1		4.3		4.5		4.8	
		1.8		4.1		4.4		4.5		4.7		5.0	
		1.2		4.4		4.7		4.8		5.0		5.3	
t _{PHZ} ,	Output	4.5		2.6		3.8		4.0		4.1		4.3	nS
t _{PLZ}	Disable,	3.3		3.7		3.9		4.1		4.3		4.6	
(Note 1)	OE to B _n	2.5		3.9		4.1		4.3		4.5		4.8	
		1.8		4.1		4.4		4.5		4.7		5.0	
		1.2		4.4		4.7		4.8		5.0		5.3	
t _{OSHL} ,	Output to	4.5		0.15		0.15		0.15		0.15		0.15	nS
toslh	Output Skew,	3.3		0.15		0.15		0.15		0.15		0.15	
(Note 1)	Time	2.5		0.15		0.15		0.15		0.15		0.15	
		1.8		0.15		0.15		0.15		0.15		0.15	
		1.2		0.15		0.15		0.15		0.15		0.15	

^{1.} Propagation delays defined per Figure 2.

CAPACITANCE

Symbol	Parameter	Test Conditions	Typ (Note 2)	Unit
C _{IN}	Control Pin Input Capacitance	$V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCA/B}$	3.5	pF
C _{I/O}	I/O Pin Input Capacitance	$V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCA/B}$	5.0	pF
C _{PD}	Power Dissipation Capacitance	$V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCA}, f = 10 \text{ MHz}$	20	pF

Typical values are at T_A = +25°C.
 C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: I_{CC(operating)} ≅ C_{PD} x V_{CC} x f_{IN} x N_{SW} where I_{CC} = I_{CCA} + I_{CCB} and N_{SW} = total number of outputs switching.

Figure 2. AC (Propagation Delay) Test Circuit

Test	Switch
t _{PLH} , t _{PHL}	OPEN
t _{PLZ} , t _{PZL}	V _{CCO} x 2
t _{PHZ} , t _{PZH}	GND

C_L = 15 pF or equivalent (includes probe and jig capacitance)

 $R_L = 2 k\Omega$ or equivalent

 Z_{OUT} of pulse generator = 50 Ω

Waveform 1 – Propagation Delays

 $t_R = t_F = 2.0 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_W = 500 \text{ ns}$

Waveform 2 - Output Enable and Disable Times

 $t_R = t_F = 2.0 \ \text{ns}, \ 10\% \ \text{to} \ 90\%; \ f = 1 \ \text{MHz}; \ t_W = 500 \ \text{ns}$

Figure 3. AC (Propagation Delay) Test Circuit Waveforms

		V _{CC}							
Symbol	3.0 V – 4.5 V	2.3 V – 2.7 V	1.65 V – 1.95 V	1.4 V – 1.6 V	0.9 V – 1.3 V				
V _{mA}	V _{CCA} /2								
V _{mB}	V _{CCB} /2								
V _X	V _{OL} x 0.1								
V_{Y}	V _{OH} x 0.9								

SCALE 4:1

DATE 08 NOV 2006

MOUNTING FOOTPRINT SOLDERMASK DEFINED

DIMENSIONS: MILLIMETERS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED
- DINICIPION D APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN
 0.15 AND 0.30 mm FROM TERMINAL TIP.
 MOLD FLASH ALLOWED ON TERMINALS
 ALONG EDGE OF PACKAGE, FLASH MAY
 NOT EXCEED 0.03 ONTO BOTTOM
 SURFACE OF TERMINALS.
 DETAIL A SHOWS ODTIONAL
- DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

	MILLIMETERS						
DIM	MIN	MAX					
Α	0.45	0.55					
A1	0.00	0.05					
A3	0.127	REF					
b	0.15	0.25					
b2	0.30	REF					
D	1.80	BSC					
E	1.20	BSC					
е	0.40	BSC					
L	0.45	0.55					
L1	0.00	0.03					
L2	0.40	REF					

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON23417D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	UDFN8 1.8X1.2, 0.4P		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 **ISSUE AK**

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		IILLIMETERS INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC 0.10 0.25		0.050 BSC	
Н			0.10 0.25 0.004 0.0	0.010
7	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot

= Year = Work Week

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww

= Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 3: PIN 1. DRAIN, PIE #1 CTOR, #1 CTOR, #2 CTOR, #1 CTOR, #2 CTOR, #2 CTOR, #2 CTOR, #2 CTOR, #1	2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #1 Vd STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN 8. TYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #1
E PIN 1. INPUT 2. EXTERNAL BY 3. THIRD STAGE 4. GROUND E 5. DRAIN 6. GATE 3 7. SECOND STAGE 8. FIRST STAGE STYLE 11: ID PIN 1. SOURCE 1 2. GATE 1 T 3. SOURCE 2 ID 4. GATE 2 ID 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 ID 8. DRAIN 1 ID	PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 Vd 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN 8. TYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2
ID PIN 1. SOURCE 1 2. GATE 1 T 3. SOURCE 2 ID 4. GATE 2 ID 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 ID 8. DRAIN 1 STYLE 15: RCE PIN 1. ANODE 1 E 2. ANODE 1 RCE 3. ANODE 1	PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2
STYLE 15: RCE PIN 1. ANODE 1 E 2. ANODE 1 RCE 3. ANODE 1	PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2
N 7. CATHODE, CON N 8. CATHODE, CON	MMON 5. COLLECTOR, DIE #2 MMON 6. COLLECTOR, DIE #2 MMON 7. COLLECTOR, DIE #1 MMON 8. COLLECTOR, DIE #1
STYLE 19: PIN 1. SOURCE 1 E 2. GATE 1 E 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 DE 7. DRAIN 1 DE 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 23: E1 PIN 1. LINE 1 IN DN CATHODE/VCC 2. COMMON ANC DN CATHODE/VCC 3. COMMON ANC E3 4. LINE 2 IN DN ANODE/GND 5. LINE 2 OUT E4 6. COMMON ANC E5 7. COMMON ANC DN ANODE/GND 8. LINE 1 OUT	ODE/GND 2. EMITTER ODE/GND 3. COLLECTOR/ANODE
STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V MON 6. VBULK 7. VBULK 8. VIN
1 1	
;	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ E 5. SOURCE E 6. SOURCE E 7. SOURCE 8. DRAIN

DOCUMENT NUMBER:	98ASB42564B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		' '
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Micro8 CASE 846A-02 ISSUE K

DATE 16 JUL 2020

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DDES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

RECOMMENDED MOUNTING FOOTPRINT

MID	MI	MILLIMETERS	
DIM	MIN.	N□M.	MAX.
Α	-	-	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
С	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
e	0.65 BSC		
HE	4.75	4.90	5.05
L	0.40	0.55	0.70

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

Υ = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
SOURCE	2. GATE 1	2. N-GATE
SOURCE	3. SOURCE 2	P-SOURCE
GATE	4. GATE 2	4. P-GATE
DRAIN	5. DRAIN 2	5. P-DRAIN
DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"		
DESCRIPTION:	MICRO8		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NLSV2T244DMR2G NLSV2T244DR2G NLSV2T244MUTAG NLVSV2T244DMR2G