Database Technology

Topic 2: Relational Databases

Olaf Hartig

Relational Data Model

Relational Model Concepts

- Relational database: represent data as a collection of relations
 - Think of a relation as a table of values

- Each row (tuple) represents a record of related data values
- Facts that typically correspond to a real-world entity or relationship
- Each column (attribute) holds a corresponding value for each row
 - Columns associated with a data type (domain)
 Each column header: attribute name
- LINKÖPING UNIVERSITY

Database Technology Topic 2: Relational Databases

Relational Model Concepts (cont'd)

- Relational database: represent data as a collection of relations
 - Think of a relation as a table of values

- Schema describes the relation
 - · Relation name, attribute names and domains
 - Integrity constraints
- Instance (also called state) denotes the current contents of the relation
 - Set of tuples

Database Technology Topic 2: Relational Databases

Domains

- Domain is a set of atomic values
 - { 0, 1, 2, ... }
 - { Jo Smith, Dana Jones, Ashley Wong, Y. K. Lee, ... }
- Atomic: Each value indivisible
- Domains specified by data type rather than by enumeration
 - Integer, string, date, real, etc.
- Can be specified by format
 - e.g., (ddd)ddd-dddd for phone numbers (where d represents a digit)

Database Technology Topic 2: Relational Databases

Schemas and Attributes

- Relation schema
 - A relation name R and a list of attributes A1, A2, ..., An
 - Denoted by R(A1, A2, ..., An)
- Attribute Ai
 - Name of a role in the relation schema R
 - Associated with a domain dom(Ai)
 - · Attribute names do not repeat within a relation schema, but domains can repeat
- Degree (or arity) of a relation
 - Number of attributes n in its relation schema

Database Technology Topic 2: Relational Databases

NULL Values

- Each domain may be augmented with a special value called NULL
 - Represent the values of attributes that may be unknown or may not apply to a tuple
 - If an attribute of a tuple is NULL, we cannot make any assumption about the value for that attribute (for that tuple)
- Interpretations for NULL values
 - Nothing is known about the value
 - · Value exists but is (currently) not available
 - · Value undefined (i.e., attribute does not apply to this tuple)
- For instance, Ashley's telephone number is NULL could mean
 - · Ashley doesn't have a phone
 - Ashley has a phone but we don't know the number (perhaps withheld)
- · Ashley has a phone that has no number

Database Technology Topic 2: Relational Databases

Quiz

- A relation schema consists of:
 - A) relation name, attribute names and domains, and tuples;

B) relation name, attribute names and domains, and restrictions;

C) relation name, tuples, and NULL values.

Database Technology Topic 2: Relational Databases

Quiz

- A relation schema consists of:
 - A) relation name, attribute names and domains, and tuples;

B) relation name, attribute names and domains, and restrictions; integrity constraints

C) relation name, tuples, and NULL values.

Database Technology Topic 2: Relational Databases

Integrity Constraints

LINKÖPING UNIVERSIT

What are Integrity Constraints?

- Constraints are restrictions on the permitted values in a DB state
 - · Derived from the rules in the miniworld that the DB represents
- 1. Inherent model-based constraints (also called implicit constraints)
 - · Inherent in the data model, enforced by DBMS
 - e.g., duplicate tuples are not allowed in a relation
- 2. Schema-based constraints (also called explicit constraints)
 - Can be expressed in schemas of the data model, enforced by DBMS
 - · e.g., films have only one director
 - Our focus here
- 3. Application-based (also semantic constraints or business rules)
 - · Not directly expressed in schemas
 - Expressed and enforced by application program
 - e.g., this year's salary increase can be no more than last year's

Uniqueness Constraints

- Let R be a relation and K be a (sub)set of attributes of R
- If we specify the uniqueness constraint for K, then for any pair of tuples in R, the tuples must have a different value for at least one of the attributes in K
- Uniqueness must hold in all valid instances of R
- Uniqueness serves as a constraint on updates

LU LINKÖPING

Database Technology Topic 2: Relational Databases

13

Superkeys and Candidate Keys

- A set K of attributes of R is called a superkey of R if it has the Uniqueness property: no two distinct tuples have the same values across all attributes in K (i.e., we may define a uniqueness constraint for K)
- K is called a candidate key of R if, additionally, it also has the Minimality property: no proper subset of K has the uniqueness property

LU LINKÖPING UNIVERSITY Database Technology Topic 2: Relational Databases

Primary Key

- There may be *more than one* candidate key in a relation
- Primary key: a particular candidate key is chosen as the primary
 - Diagrammatically, underline its attribute(s)

CAR

- · Tuples cannot have NULL for any primary key attribute
- Other candidate keys are designated as unique
 - Non-NULL values cannot repeat, but values may be NULL

Figure 3.4
The CAR relation, with two candidate keys: License_number and Engine_serial_number.

12				
License_number	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

LINKÓPING UNIVERSITY Database Technology Topic 2: Relational Databases

15

Other Schema-Based Integrity Constraints

- Entity integrity constraint: No primary key value can be NULL
- Domain constraint: declared by specifying the datatype of attributes
- Referential integrity constraint
- · Specified between two relations
- Allows tuples in one relation to refer to tuples in another
- · Maintains consistency among tuples in two relations
- Foreign key rules:
 - Let PK be the primary key in a relation R1 (i.e., set of attributes in its relational schema declared to be primary key)
 - Let FK be a set of attributes for another relation R2
 - The attribute(s) FK have the same domain(s) as the attribute(s) PK
 - Value of FK in a tuple t2 of the current state of R2 either occurs as a value of PK for some tuple t1 in the current state of R1 or it is NULL

LINKÖPING UNIVERSITY Database Technology Topic 2: Relational Databases 14

Diagramming Referential Constraints

- Show each relational schema
- Underline primary key attributes in each
- Directed arc from each foreign key to the relation it references

Quiz

Instr

Consider the following two relations

ructo	r ↓		
	<u>ID</u>	Name	Office
	4	Jennifer	B308
	35	Paul	B311
	12	Kim	E112

Course					
	CourseID	<u>Year</u>	Instructor		
	cid444	2012	35		
	cid598	2013	4		
	cid444	2013	35		

- Which of the following statements are correct and which are wrong?
 - (a) We can insert a new Course tuple (cid598,2017,2).
 - (b) We can modify the two cid444 *Course* tuples by changing their *Instructor* value to 12.
 - (c) We can modify the cid598 Course tuple by changing its CourseID value to cid444.

Database Technology Topic 2: Relational Databases

18

