PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-222325

(43)Date of publication of application: 17.08.2001

(51)Int.Cl.

G05D 3/12 G05B 11/36 G11B 7/09 G11B 21/10

(21)Application number: 2000-030797

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

08.02.2000

(72)Inventor: KANEAKI TETSUHIKO

KONO KAZUHIKO MORITA SHUJI

(54) POSITION CONTROLLER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a position controller constituting a loop filter having frequency response characteristic for reducing a frequency band showing phase delay and increasing a gain in a low frequency band while using a filter whose order is low a muck as possible.

SOLUTION: A loop filter 1 is composed of a low pass filter IL and a high pass filter IH connected in parallel. The low pass filter 1L includes a low band compensating means 5 being a primary digital filter in the pre-stage of an integrator ILa being a primary digital filter. In the low band compensating means 5, the gain is made relatively larder in a low band frequency band than a prescribed frequency band, and phase delay is made relatively layer only in the frequency band.

LEGAL STATUS

[Date of request for examination]

04.03.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Date of registration]

3696025

08 07 2005

[Number of appeal against examiner's decision of rejection]

(19)日本頃特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特:期2001-222325

(P2001-222325A) (43)公開日 平成13年8月17日(2001.8.17)

(51) Int.Cl.7		献別紅号		FΙ			5	r-73-ト*(参考)
G 0 5 D	3/12	305		C 0 5 D	3/12		305Z	5 D 0 9 6
							w	5D118
G 0 5 B	11/36			C 0 5 B	11/36		С	5 H 0 0 4
		501					501E	5 H 3 O 3
G11B	7/09			C11B	7/09		Λ	
			審査請求	未補求 請:	求項の数3	OL	(全 8 頁)	最終質に続く

(21)出顧番号 特職2000-30797(P2000-30797)

(22) 出顧日 平成12年2月8日(2000.2.8)

(71) 出職人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 金秋 有彦

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 甲野 和彦

大阪府門真市大字門真1006番地 松下電器

產業株式会社内

(74)代理人 100062926

弁理士 東島 隆治

最終質に続く

(54) 【発明の名称】 位置制御装置

(57)【要約】

【課題】 できるだけ低い次数のフィルタを用いなが ら、位相遅れを示す周波数常報を狭く抑え、低周波数帯 域での利得が高い周波数応答特性を有するループフィル タを構成した位置創御途電を提供する。

【解決手段】 ループフィルタ1が、並列に接続された ローパスフィルタ11とハイバスフィルタ111とから構成さ れる。ローパスフィルタ11は、一次のデジタルフィルタ である積分器112の制度に、一次のデジタルフィルタ さる低速網帯を形定を全か、低速機衛を再停ごは、利得が 所定の間波数よりも低周波数帯域において比較的大き く、また。位相遅れがその間波数帯域においてのみ比較 的大きい。

【特許請求の範囲】

【請求項1】 (A) 位置制御対象の実際の位置と制御 目標位置との誤差を検出する誤差検出器と、前記誤差検 出器が検出した誤差をアナログ信号からデジタル信号へ 変換して出力するアナログ・デジタル変換器と、を有す る誤差検出手段:

- (B) (a) 前記誤差検出手段が出力する前記誤差を表す デシウル信号(以下、脱差信号という)に対して、(1) 第一の間波数よりも低間波を構成における利格が他の周 波数帯域における利得に比べ大きく、かつ、(ii) 前記第 一の間波数まりも高間波数帯域における位相遅れが他の 周波数帯域における位相遅に比べ小さい、一次のデジ タルフィルタである低域補債手段と、前記低域補債手段 の出力する前記誤差信号を積分する積分器と、を含むロ ーパスフィルター
- (b) 前記訓差線則手段が出力する制記訓差信号に対し て、(i)前記第一の周波数より高い第二の周波数よりも 高周波数帯域における利得が他の周波数帯域における利 得に比べ大きく、かつ、(ii)前記第二の周波数帯域における 周波数帯域における位相連本が他の周波数帯域における 位相進みに比べ大きい、一次のデジタルフィルタである ハイパスフィルタ、及び、
- (c) 前記ローパスフィルタ及び前記ハイパスフィルタ それぞれの出力同士を加える加算器、を有するループフィルタ;並びに、
- (C) 前記ループフィルタから出力される前記説差信号をアナログ信号に交換するデジタル・アナログ変換器 と、前記デジタル・アナログ変換器から出力される前記 誤差信号に基づいて前記位置制御対象を駆動するドライブ回路と、を有する駆動手段;を具備する位置制御装 要

【請求項2】 前記ハイパスフィルタが、

前記誤差検出手段から出力される前記誤差信号に所定の 第一の定数をかけて出力する第一の乗算器、 前記誤差検出手段から出力される前記誤差信号を所定の

時間だけ保持した後に出力する遅延手段、 前記遅延手段から出力される前記誤差信号に所定の第二

前記遅延手段から出力される前記誤差信号に所定の第二 の定数をかけて出力する第二の乗算器、及び、

前記第一の乗算器の出力から前記第二の乗算器の出力を 滅じて出力する第二の加算器を有する請求項1記載の位 置制御装置。

【請求項3】 前記低域補償手段が、

前記誤差検出手段から出力される前記誤差信号に所定の 第三の定数をかけて出力する第三の乗算器。

前記誤差検出手段から出力される前記誤差信号に所定の 第四の定数をかけて出力する第四の乗算器、

前記第三の乗算器から出力される前記誤差信号を積分す る第二の積分器、及び、

前記第四の乗算器の出力と前記第二の積分器の出力とを 加えて出力する第三の加算器を有する請求項1または請

求項2記載の位置制御装置。

【発明の詳細な説明】 【0001】

【発明の属する技術分野】本発明は位置制御装置に関 し、特に、ハードディスク装置やコンパクトディスク (CD) プレーヤ等のアクチュエータに対するものに関 する。

[0002]

【従来の技術】従来の位置制御装置には、ループフィル タが一次のフィルタのみら成るために比較的簡単な構 板のものがあった。例えば、特別限36-29361号で開示 されている。CDプレーヤのフォーカスサーボ回路が知 られている。それは、図4のブロック図に示されてひる。 ような、アクチュエータ4に対する位置制弾装置であ り、ループフィルタ11、誤差検出手段2及び駆動手段3か eng 2

ら成る。 【0003】 舗差検出手段2は誤差検出器2A及びアナロ グ・デジラル(A/D)変換器2sより成り、次のように 動作する。まず、アクチュエータ4の実際の位置(とか チュエータ位置)と目標位置(ディスク位置)とが領差 検出器2aへ入力される。続差検出器2aは、入力されたア

検出器2aへ入力される。誤差検出器2aは、入力されたア クチュエーク位置とディスク位置との間の誤差を検出 し、検出されぶ差をアナログ信号としてA、D 契填器 2aへ出力する。A/D 変換器2aは、アナログ信号である 誤差信号をデジタル信号へ変換してループフィルタ11へ 出力する。

【0004】ループフィルタ11は、ローパスフィルタ11 L. ハイパスフィルタ11H及び加算器11aから成る。ルー プフィルタ11に入力された誤差信号は、ローバスフィル タ11L及びハイパスフィルタ11Hそれぞれに入力される。 そして、それぞれで以下に述べるように処理された後、 加算器11aへと出力される。加算器11aは両フィルタから の誤差信号を加え合わせて、駆動手段3へと出力する。 【0005】ローパスフィルタ11Lは、加算器11La、レ ジスタ11Lb、及び、乗算器11Lcから成る。外部からの入 力信号は加算器11Laに入力され、そこでレジスタ11Lbか らフィードバックされた信号と加算される。加算器11La の出力は、レジスタ11Lbと乗算器11Lcに入力される。レ ジスタ11Lbは、加算器11Laからの信号を所定の時間だけ 保持した後に加算器11Laにフィードバックする。乗算器 11Lcは、加算器11Laからの信号に所定の定数Ki をかけて 外部へと出力する。このように、ローパスフィルタ11し は通常のデジタル積分器、すなわち、一次のフィルタで あって、その伝達関数はH_L(z)=K_L/(1-z-1)である。 【0006】ハイパスフィルタ11Hは、乗算器11Ha、レ ジスタ11Hb、乗算器11Hc、及び、加算器11Hdから成る。 外部からの入力信号は、乗算器11lka及びレジスタ11lbに それぞれ入力される。乗算器11Haは入力信号に所定の定 数Kuiをかけて、加算器11Hdへ出力する。レジスタ11Hb は入力信号を所定の時間だけ保持した後、乗算器11Hcへ 出力する、乗賃器11kはレジスタ11lkの出力に所定の定数kg。をかけて加資器11kの出力する。加算器11kkは、東資器11kの出力から乗算器11kの出力を決策して外部へと出力する。この構成により、ハイパスフィルタ11lkは伝達限数fg(22)=Kg1-Kg2z-1を有する一次のフィルタである。

【0007】ループフィルタ11の伝達関数は、上記のロ ーパスフィルタ11L及びハイパスフィルタ11Hそれぞれの 伝達関数の和H_L(z)+H_H(z)である。従って、乗算器11L c、11Ha及び11Hcが入力信号にかけるそれぞれの定数 K₁、K₁1及びK₁₁を調節すると、A/D変換器2bのサンプ リング周波数が十分高い時、ループフィルタ11の周波数 応答特性が図5のように近似される。尚、図5の横軸は周 波数の対数を表す。この周波数応答特性は、周波数ωL より低周波数帯域ではローバスフィルタ11Lの周波数応 答特性で近似される。つまり、ループフィルタ11は低周 波数帯域では積分制御動作を行う。これにより、位置制 **御における定常偏差が補償される。また、ループフィル** タ11の周波数応答特性は、周波数ωHより高周波数帯域 ではハイバスフィルタ11Hの周波数応答特性で近似され る。つまり、ループフィルタ11は高周波数帯域では位相 進み補償回路として動作する。これにより、高周波数帯 域での位相遅れによる位置制御の不安定性が補償され る.

[0008]ループフィルク打により以上のように処理された説差信号が販動手段3へと出力される。駆動手段3 はデジタル・アナログ (D/A) 突換機3a及びドライブ 回路3から成る。ループフィルク11から入力された誤差信号は、D/A 交換器34によってデジタル信号からアナログ信号に変換され、ドライブ回路30は、入力された誤差信号からアクチュエータに対するが開業を求め、その前側重だけアクチュエーク4を駆動する。このようにして、アクチュエータ位置が衝撃される。ドフクチュエータ位置が衝撃される。

[0009]

【発明が解決しようとする報節】上記のような健来の位 画削算装置では、定常優差をより良く補償するために低 周波数帯散在のループフィルタ11の利料を大きくする と、ループフィルタ11の出力がより広い間波数帯域で位 相遅れを示す。すると、位置制御の応答が強くなると共 に、十分に位相進み補償が行えないため位置制御が不安 定になるという問題点があった。この問題点を解決する ために望ましいループフィルタ11の周波数が高等特性、す なわち、位相遅れを示す間波数常域が狭く低別級数帯域 での利料が高いという間波数に浴特性は、ローバスフィ ルタ11し及びハイスフィルタ11日それぞれの数を上げ れば実現できる。しかし、ループフィルタ11に比べ次数 の高いフィルタの構造は複雑にならざるを得ないという 問題占があった。 【0010】そこで、本発明は、できるだけ低い次数の フィルタを用いながら、位租遅れを示す周波数帯域を狭 く即え、低周波数帯域での利得が高い周波数広答特性を 有するループフィルタを構成した位置制御装置を提供す ることを目的とする。

[0011]

【課題を解決するための手段】上記の問題点を解決する ために、本発明による位置制御装置は、(A) 位置制御 対象の実際の位置と制御目標位置との誤差を検出する誤 差検出器と、前記誤差検出器が検出した誤差をアナログ 信号からデジタル信号へ変換して出力するアナログ・デ ジタル変換器と、を有する誤差検出手段;(B)(a) 前 記認差検出手段が出力する前記認差を表すデジタル信号 (以下、誤差信号という)に対して、(i)第一の周波数 よりも低周波数帯域における利得が他の周波数帯域にお ける利得に比べ大きく、かつ、(ii)前記第一の周波数よ りも高周波数帯域における位相遅れが他の周波数帯域に おける位相遅れに比べ小さい、一次のデジタルフィルタ である低域補償手段と、前記低域補償手段の出力する前 記載差信号を精分する精分器と、を含むローパスフィル タ、(b) 前記誤差検出手段が出力する前記誤差信号に 対して。(i)前記第一の周波数より高い第一の周波数よ りも高周波数帯域における利得が他の周波数帯域におけ る利得に比べ大きく、かつ、(ii)前記第二の周波数より も高周波数帯域における位相准みが他の周波数帯域にお ける位相准みに比べ大きい。一次のデジタルフィルタで あるハイパスフィルタ、及び、(c) 前記ローパスフィ ルタ及び前記ハイパスフィルタそれぞれの出力同士を加 える加算器、を有するループフィルタ:並びに、(C) 前記ループフィルタから出力される前記課差信号をアナ ログ信号に変換するデジタル・アナログ変換器と、前記 デジタル・アナログ変換器から出力される前記誤差信号 に基づいて前記位置制御対象を駆動するドライブ回路 と、を有する駆動手段;を具備する。

【0012] これにより、本条明によるループフィルタ の周波数は容約性は、第一の周波数よりも低周波数帯域 では健果よりも大きい利得を得る一方、第一の周波数よ りも高周波数帯域では従来と同様な位相を示す。従っ 、本発明の位置制御装置は、一次のデジクトフィルタ から成るループフィルタにより、従来よりも定常偏差を 良く補償する一方で、従来と同様な位置制御における安 定性を維持ち、

【0013】他の製点による位置制制経電では、好まし くは、前記パイスフィルクが、前記記差性出手扱から 出力される前記説差信号に所定の第一の定数をかけて出 力する第一の集算器、加速記差検出手段から出力される 所記記差信号を所定の時間が1度特した後に出力する遅 延手段、前記運延手段から出力される前記就差信号に所 定の第二の定数をかけて出力する第二の乗算器、及び、 前記率一の乗算器の出力から前記第二の乗算器の出力を 級ビで出力する第二の加速器を有する。これにより、上 配の周波数配容特性を有するハイパスフィルタが一次の デジタルフィルタのみから、望ましい第二の周波数を有 するように構成できる。特に、第一及び第二の乗算器へ の入力信号のビット数を、誤差検出手段の出力する誤差 信号のビット数以上にする必要がない。

[0014] さらに他の概点による位置制制総置では、 好ましくは、前記低級補償手段が、前記滤差検出手段から出力される前記録差信号に所定の第三の変数をかけて 出力する第三の乗算器、前記談差検出手段から出力される 高前記談差信号に所定の部四の定数をかけて出力する第 四の乗算器。部記第三の乗事器あら出力される前記談差 信号を積分する第二の積分器、及び、前記郊四の乗算器 の出力と前記等二の積分器の出力とを加えて出力する第 っ加重器を含する。

[0015] これにより、上記の周波数応答特性を有す るローパスフィルタが一次のデジタルフィルタのみか 6、望ましい第一の周波数を有するように構成できる。 特に、第三及び第四の乗算器への入力信号のビット数 を、誤差検出手段の出力する誤差信号のビット数以上に する必要がない。

[0016]

【発明の実施の形態】以下、本発明の実施の形態について、好ましい実施例を挙げて説明する。図のプロック 図は本発明の位置訓辨装置の実施例を示す、この実施例 はループフィルタ1、該差検出手段2及び駆動手段3から 成る。銭差検出手段2は、図4に示した従来例同様の構成 を有し、従来例同様に動作する。すなわち、入力され アクチュエータ位置とディスク位置との差から説差検出 器2aが誤差を検出する。検出された誤差信号をA/D変 検器2がデジタル信号としてループフィルタ1へと出力 する。

【〇〇18】ハイパスフィルタ川は、乗算器HBa、レジ スタ1Hb、乗算器Hbc、及び、加算器Hdから成る。外部 からの入力信号は、乗算器Hbは入力信号に所定の定数k₁₁を れ入力される。乗算器Hbは入力信号に所定の定数k₁₁を かけて、加算器Hbは上力する。レジスタ1Hbは入力信号 を所定の時間だけ保持した後、乗算器Hbc・出力する。 乗算器1Hcはレジスタ1Hbの出力に所定の定数KH2をかけ て加算器1Hdへ出力する。加算器1Hdは、乗算器1Haの出 力から乗算器1Hcの出力を減算して外部へと出力する。 このように、ハイパスフィルタ1Hは、図4に示した従来 例のハイパスフィルタ11Hと同じ構成を有する。つま り ハイパスフィルタ1Hは、従来例同様、伝達関数H $u(z) = K_u, -K_{u} \circ z^{-1}$ を有する一次のフィルタである。そ の周波数応答特性は、利得については、A/D変換器2b のサンプリング周波数が十分大きければ、図2(d)の折れ 線で近似できる。また、位相については図3(d)のように なる。尚、図2及び図3の各横軸は周波数の対数を表す。 図2(d)の折れ線が示すように、ハイパスフィルタ1Hは、 定数Ku,、Kuo及びサンプリング周波数で決まる折点Pdの 周波数ωhまではほぼ一定の利得を保ち、それ以上の周 波数になると+6dB/octの割合で利得を増加させる。ま た、図3(d)が示すように、ハイパスフィルタ1Hは、周波 数ωhを超える高層波数帯域で位相を+45°よりも大き

【0019】ローパスフィルタ1Lは、積分器1La、シフ タ1Lb及び低域補償手段5から成る。外部からの入力信号 はまず低域補償手段5に入力され、そこで後述のように 処理された後 積分器1Laへと出力される。積分器1Laに 入力された信号はその入力以前に入力された信号と積分 されて、シフタ1Lbに出力される。シフタ1Lbに入力され た信号は所定のビット数だけビットシフトされて、すな わち、所定の定数S1倍だけ増幅されて、加算器1aへと出 力される。ここで、積分器1Laは通常用いられる一次の デジタルフィルタで良く、シフタ1Lbも通常のもので良 い。つまり、積分器1La及びシフタ1Lbは従来例のローパ スフィルタ11L(図4)に相当し、その伝達関数はH_c(z)=S 1/(1-z-1)である。図2(b)及び図3(b)は積分器1La及 びシフタ1Lbの周波数応答特性を合成したものを示す。 図2(b)が示すように、積分器1la及びシフタ1Lbは周波数 の増加に伴い-6dB/octの割合で利得を減少させる。ま た、図3(b)が示すように、積分器1La及びシフタ1Lbは、 サンプリング周波数に対して十分低い周波数帯域で、位 相を-90°に保つ。

10 20 1 低波補償手段5は、乗算器5a及び5b、積分器5c。シフク5d、並びに、加算器5eから成る。外部から
の入力信号は乗算器5a及び5kにそれぞれ入力される。乗 算器5aは入力信号に所定の定数は。をかけて積分器5cへ 出力する。乗算器5bは大力信号に所定の定数な。をかけて て加算器5cへ出力する。積余器6は通常のデジタル積分 器であり、乗算器5aの出力をその入力以前に入力された 信号と積分してシフタ5dへ出力する。シフク5dは、積分 器5cの出力方便たのビット数ではデレットントして所定 の定数5cの出力方便たのビット数ではデレットントして所定 の定数5cが出力がある。地方等3cの出力である。加算器5c は、シフク5d及び乗算器0をれぞれの出力同士を加算 し、積分器1aの出力する。

【0021】この構成により、低域補償手段5の伝達関

数はH_{Lc}(z)=K_{Lb}+K_{La}·S₂/(1-z-1)となる。低域補 債手段5の周波数応答特性は、利得については図2(a)に 示された折れ線で近似され、位相については図3(a)のよ うになる。図2(a)の折れ線が示すように、低域補償手段 5は、定数KLa、KLa及びS。で決まる折点Paの周波数ωcま では-6dB/octで利得を減少させ、周波数ωc以上では利 得を一定に保つ。また、図3(a)が示すように、低域補償 手段5は、周波数ωcまでの低周波数帯域では-45°を招 える大きな位相遅れを示す一方、周波数ωcを超える高 周波数帯域ではほぼ位相遅れを示さなくなる。従って、 低域補償手段5に入力された信号は、周波数ωcより低い 周波数帯域で大きく増幅される一方、-45°を超えるよ うな大きな位相遅れはその周波数帯域内に限られる。 【0022】ローパスフィルタ1Lの伝達関数は、低域補 償手段5、積分器1La及びシフタ1Lbそれぞれの伝達関数 をかけ合わせたもの、すなわち、H₂(z)・H₂(z)とな る。従って、ローパスフィルタ1Lの周波数応答特性は、 図2(a)及び図3(a)が示す低域補償手段5の周波数応答特 性と、図2(b)及び図3(b)が示す積分器1La及びシフタ1Lb の周波数応答特性とを加えたもの、すなわち、図2(c)及 び図3(c)のようになる。図2(c)の折れ線が示すように、 ローパスフィルタ1Lは折点Pcの周波数ωcより低周波数 帯域では-12dB/octで、周波数ωcより高周波数帯域で は-6dB/octでそれぞれ利得を減少させる。また、図3 (c)が示すように、ローパスフィルタ1Lは周波数ωcより も低い周波数帯域では-135°を超える位相遅れを示 し、周波数ωcを超える高周波数帯域ではほぼ-90°に 一定の位相遅れを示す。

【0023】ループフィルタ1の伝達関数は、ハイパス フィルタ1Hの伝達関数H₈(z)とローパスフィルタ1Lの伝 達開数H_c(z)・H_c(z)との和である。従って、周波数ωc においてハイパスフィルタ1Hの利得Kd(図2(d))をローパ スフィルタ1Lの利得Kb(図2(b))に比べて十分に小さく し、かつ、図2(d)の折点Pdでの周波数ωhを図2(a)の折 点Paでの周波数ωcより十分に高くすると、ループフィ ルタ1の周波数応答特性は利得については図2(e)の折れ 線で近似される。この折れ線が示すように、ループフィ ルタ1は、周波数ωcより高周波数帯域では従来例のルー プフィルタ11(図4)と同様の利得(図5)を有する一方、周 波数ωc以下の低周波数帯域では-12dB/octの割合で利 得を変化させる。このため、低周波数帯域では従来より も大きな利得を得ることができ、定常偏差を従来より良 く補償できる。その一方で、ループフィルタ1の周波数 応答特性は、位相については図3(e)のようになる。従っ て、従来例のループフィルタ11(図4)の位相(図5)に対す る遅れの増大は、周波数ωc程度よりも低周波数帯域に 限られる。従って、高周波数帯域では従来同様、位相准 み補償動作により位置制御を安定に保つことができる。 【0024】この実施例のループフィルタ1は、上記の

ように一次のフィルタのかて構成される、従って、同様 な制波数化等特性を通常のようにBi-Quad型のデ ジクルフィルケで構成する場合に比べ、構成が順単であ る、特に、Bi-Quad型のデジクルフィルケでは乗 算器がかなくとも五つ必要となるのに対して、本実施例 のループフィルク1では乗算器が四つあれば良い。この ため、回路規模を縮小できるだけでなく、演算処理時間 は脳管できる、

「0025」 従来のローバスフィルタ111. (図4)では、乗 舞器11はが加算器11はとレジスタ111はとから成る精分器 の後段にある。この場合、信号が積分される時の丸め駅 差を抑えるために、従来の乗舞器111とは、A/D変換器 かからの観差信号よりも大きいビット数の入力信号を投 対構成にならざるを得ない。一方、本発明の実施例で は、ローバスフィルタ11の乗算器58及び5かで積分器56及 び114の前段にあり、A/D変換器かからの出力をその まま入力する。従って、その入力信号のビット数は、A /D変換器かの出力する過差信号と同じビット数で良 い、従って、従来の乗算器111とよりも回路規模を縮小で きる。これは、ハイバスフィルタ11の乗算器118及び116 についても同様である。

[0026]

【符号の説明】

【図1】本発明による位置制御装置の実施例を表すブロック図である。

【図2】本発明の実施例に含まれるループフィルタ1及び その各構成要素における、利得についての周波数応答符 性を表す図である。

【図3】本発明の実施例に含まれるループフィルタ1及び その各構成要素における、位相についての周波数応答特 性を表す図である。

【図4】従来の位置制御装置を表すブロック図である。 【図5】従来のループフィルタ11における周波数応答特性を表す図である。

1Ha、1Hc、5a、5b、11Lc、11Ha、11Hc	乗算器
1La 、5c	積分器
1a、1Hd、5e、11a、11La、11Hd	加算器

【図1】

【図4】

【図5】

フロントページの続き

(51)Int.Cl.7 G11B 21/10 FI G11B 21/10 (参考) R

(72) 発明者 森田 周司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 50096 RR01 RR02 RR18

5D118 AA13 BA01 CA03 CB06

5H004 GA02 GA04 GB20 HA07 HB07

JA03 KB04 KB23 KB24 KB29

MA12 MA13 MA42 MA43 5H303 AA22 BB01 BB06 CC04 DD01

FF06 HH05 KK03 KK04 KK07

MM05