

RD-A139 895

ON THE FORM OF THE COLLECTIVE BREMSSTRAHLUNG RECOIL
FORCE IN A NONEQUILIBRIUM RELATIVISTIC BEAM-PLASMA
SYSTEM(U) HARRY DIAMOND LABS ADELPHI MD H E BRANDT

1/1

UNCLASSIFIED

JAN 84 HDL-TR-2026

F/G 20/8

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1953-A

AD A139895

HDL-TR-2026

January 1984

**On the Form of the Collective Bremsstrahlung Recoil Force in a
Nonequilibrium Relativistic Beam-Plasma System**

by Howard E. Brandt

**U.S. Army Electronics Research
and Development Command
Harry Diamond Laboratory
Adolph**

Approved for public release; distribution unlimited.

DTIC FILE COPY

The findings in this report are not to be construed as an official Department
of the Army position unless so designated by other authorized documents.

Citation of manufacturers' or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the
originator.

A preliminary version of this report was issued as
HDL-PRL-83-17 in August 1983.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE

UNCLASSIFIED

1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

CONTENTS

	<u>Page</u>
1. INTRODUCTION	5
2. PARTICLE BALANCE EQUATIONS	6
3. SOFT PHOTON AND SMALL MOMENTUM TRANSFER APPROXIMATION	11
4. INDUCED RECOIL FORCE DUE TO BREMSSTRAHLUNG	16
5. CONCLUSION	28
SELECTED BIBLIOGRAPHY	30
DISTRIBUTION	33

FIGURES

1. Elementary bremsstrahlung process which removes particles of species α from point \vec{p}_α in momentum space 6
2. Inverse bremsstrahlung process which removes particles of species α from point \vec{p}_α in momentum space 7
3. This process adds particles at point \vec{p}_α in momentum space 8
4. This process also adds particles at point \vec{p}_α in momentum space 8

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/>	
DTIC TAB <input checked="" type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Classification _____	

Distribution/	
Availability Codes	
Dist	Avail and/or Special
A1	

1. INTRODUCTION

The collective bremsstrahlung recoil force on a relativistic test particle participating in a bremsstrahlung process in a nonequilibrium relativistic beam-plasma system is given by^{1,2}

$$\hat{F}_\alpha^\sigma = - \int (2\pi)^{-9} d^3 p_\beta d^3 k d^3 k' \hat{k} (\hat{k}' - \hat{k}) \cdot (\hat{v}_{p_\beta p_\beta} f_{p_\beta}) \quad (1)$$

$$\times v_{p_\alpha, p_\beta}^\sigma (\hat{k}, \hat{k}') N_k^\sigma \delta(\omega_k^\sigma - \hat{k} \cdot \hat{v}_\alpha + (\hat{k}' - \hat{k}) \cdot \hat{v}_\beta) .$$

Here, $v_{p_\alpha, p_\beta}^\sigma (\hat{k}, \hat{k}') \delta(\omega_k^\sigma - \hat{k} \cdot \hat{v}_\alpha + (\hat{k}' - \hat{k}) \cdot \hat{v}_\beta)$ is the bremsstrahlung transition rate (probability per unit time) for scattering of particles of species α and β , velocities v_α and v_β , and momenta p_α and p_β , where the scattering produces momentum transfer \hat{k} and the emission of a photon in mode σ with wave vector \hat{k} and frequency ω_k^σ ; N_k^σ is the photon (plasmon) distribution function; and f_{p_β} is the charged particle distribution function. Here and throughout, the units are chosen such that $\hbar = 1$. In this report equation (1) is derived from first principles. This expression is useful in obtaining an expression for the collective bremsstrahlung transition rate by direct comparison with another expression for the collective bremsstrahlung recoil force, which is determined from the equation of motion for a dynamically polarized test particle undergoing bremsstrahlung.^{1,2} This transition rate is important in calculations of collective bremsstrahlung and the conditions for the occurrence of the bremsstrahlung radiative instability in relativistic beam-plasma systems (see the work of Akopyan and Tsytovich, Selected Bibliography).

In section 2 the particle balance equations, including bremsstrahlung and inverse bremsstrahlung processes, are derived in terms of the basic bremsstrahlung transition rate. In section 3, the soft photon or quasiclassical limit of these equations is obtained and separated into spontaneous and

¹V. N. Tsytovich, Bremsstrahlung of a Relativistic Plasma, Tr. Fiz. Inst. Akad. Nauk SSSR, 66 (1973), 191 [Proc (TRUDY) of P. N. Lebedev Physics Inst., 66 (1975), 199].

²A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium Plasma, Fiz. Plasmy, 1 (1975), 673 [Sov. J. Plasma Phys., 1 (1975), 371].

induced contributions. Expressions are obtained for the diffusion coefficient and induced recoil force due to induced bremsstrahlung. In section 4, the general form of the induced recoil force is determined in terms of the bremsstrahlung radiation field, particle distributions, dielectric permittivity, and bremsstrahlung transition rate. Section 5 summarizes the main results of the derivation.

2. PARTICLE BALANCE EQUATIONS

We here derive the particle balance equations in terms of the basic bremsstrahlung transition rate, for beam-plasma configurations in which bremsstrahlung and inverse bremsstrahlung are the dominant processes. For this purpose, consider the elementary bremsstrahlung process depicted in figure 1. Here a particle of species α and momentum \vec{p}_α scatters off a particle of species β and momentum \vec{p}_β and emits a photon of momentum \vec{k} . Figure 1 is not a Feynman diagram since it represents the probability for the process and not its amplitude. If the momentum decrease of particle α is denoted by $\vec{\kappa}$, then the momentum \vec{p}'_α of particle α after the collision is given by

$$\vec{p}'_\alpha = \vec{p}_\alpha - \vec{\kappa} . \quad (2)$$

Then, by conservation of momentum, the momentum of particle β after the collision is given by

$$\vec{p}'_\beta = \vec{p}_\beta + \vec{\kappa} - \vec{k} . \quad (3)$$

Figure 1. Elementary bremsstrahlung process which removes particles of species α from point \vec{p}_α in momentum space.

The quantity $w_{\vec{p}_\alpha, \vec{p}_\beta}^g(\vec{k}, \vec{k})$ is the probability per unit time that in the scattering of a particle of the species α and initial momentum \vec{p}_α off a particle of species β and initial momentum \vec{p}_β , a photon of momentum \vec{k} in mode σ is emitted, and there occurs momentum transfer $\vec{k} - \vec{k}$ to particle β . By time-reversal invariance, the transition rate for the inverse process (in which a particle of momentum \vec{p}_α absorbs a photon of momentum \vec{k} and scatters off a particle of momentum \vec{p}_β with momentum transfer \vec{k} to particle α) is then given by $w_{\vec{p}_\alpha + \vec{k}, \vec{p}_\beta - \vec{k} + \vec{k}}^g(\vec{k}, \vec{k})$. This process is depicted in figure 2 in the leftmost figure, which is the time-reversed process of the figure to its right; therefore, the transition probabilities of the two processes are equal. The inverse process is denoted by $w_{\vec{p}_\alpha + \vec{k}, \vec{p}_\beta - \vec{k} + \vec{k}}^g(\vec{k}, \vec{k})$ in the notation of figure 1. The equality of the probabilities of the direct and inverse processes due to time-reversal invariance is also known as the principle of microscopic reversibility or reciprocity, and leads to the principle of detailed balance. The processes of figures 1 and 2 both deplete the density of particles of type α at point \vec{p}_α in momentum space by adding or subtracting momentum.

Figure 2. Inverse bremsstrahlung process which removes particles of species α from point \vec{p}_α in momentum space. First equality follows from time-reversal invariance.

The particle density at point \vec{p}_α increases because of the following two processes. The inverse process to that in figure 1 produces gain at point \vec{p}_α . By time-reversal invariance, this is again given by $w_{\vec{p}_\alpha, \vec{p}_\beta}^g(\vec{k}, \vec{k})$, as depicted in figure 3. Similarly, the time reversal of the process in figure 2 also adds particles at point \vec{p}_α with transition rate $w_{\vec{p}_\alpha + \vec{k}, \vec{p}_\beta - \vec{k} + \vec{k}}^g(\vec{k}, \vec{k})$, as depicted in figure 4.

Figure 3. This process adds particles at point \vec{p}_α in a momentum space.

Figure 4. This process also adds particles at point \vec{p}_α in momentum space.

Taking these four processes into account including both spontaneous and induced emission, we find that the particle-balance equation giving the time rate of change of the particle distribution $f_{\vec{p}_\alpha}$ for particles of type α at point \vec{p}_α in momentum space is

$$\begin{aligned}
\frac{\partial f_{p_\alpha}^+}{\partial t} = & - \int (2\pi)^{-9} d^3\vec{k} d^3\vec{p}_\beta d^3\vec{k}' f_{p_\alpha}^+ f_{p_\beta}^+ w_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}') (N_k^\sigma + 1) \\
& - \int (2\pi)^{-9} d^3\vec{k} d^3\vec{p}_\beta d^3\vec{k}' N_k^\sigma f_{p_\alpha}^+ f_{p_\beta}^+ w_{p_\alpha + \vec{k}, p_\beta - \vec{k} + \vec{k}'}^\sigma (\vec{k}, \vec{k}') \\
& + \int (2\pi)^{-9} d^3\vec{k} d^3\vec{p}_\beta d^3\vec{k}' N_k^\sigma f_{p_\alpha - \vec{k}}^+ f_{p_\beta + \vec{k} - \vec{k}'}^+ w_{p_\alpha + \vec{k}, p_\beta - \vec{k} + \vec{k}'}^\sigma (\vec{k}, \vec{k}') \\
& + \int (2\pi)^{-9} d^3\vec{k} d^3\vec{p}_\beta d^3\vec{k}' f_{p_\alpha + \vec{k}}^+ f_{p_\beta - \vec{k} + \vec{k}'}^+ w_{p_\alpha + \vec{k}, p_\beta - \vec{k} + \vec{k}'}^\sigma (\vec{k}, \vec{k}') (N_k^\sigma + 1)
\end{aligned} \tag{4}$$

The first term in equation (4) represents the rate of decrease of particle density at point \vec{p}_α due to the bremsstrahlung process of figure 1. The function $f_{p_\beta}^+$ is the distribution function for particles of species β , and N_k^σ is the photon distribution function. The factor $N_k^\sigma + 1$ takes account of both induced and spontaneous emission. An integral over all possible photon wave vectors, scattered particle momenta \vec{p}_β , and momentum transfers \vec{k} also necessarily appears in equation (4). The factors of 2π arise from counting quantum states. Thus, for example, $d^3\vec{k}/(2\pi)^3$ is the number of quantum states per unit volume with momentum \vec{k} in the interval $d^3\vec{k}$. The same phase-space normalization for the particle distribution function as in Tsytovich¹ is used here, namely,

$$n_\alpha = \int \frac{d^3\vec{p}_\alpha}{(2\pi)^3} f_{p_\alpha}^+ , \tag{5}$$

where n_α is the number of particles of species α per unit volume. The second term in equation (4) represents the rate of decrease due to the inverse bremsstrahlung process of figure 2. The third term represents the rate of increase

¹V. N. Tsytovich, *Bremsstrahlung of a Relativistic Plasma*, Tr. Fiz. Inst. Akad. Nauk SSSR, 66 (1973), 191 [Proc (TRUDY) of P. N. Lebedev Physics Inst., 66 (1975), 199].

due to the inverse bremsstrahlung process of figure 3. The fourth term represents the rate of increase due to the bremsstrahlung process of figure 4.

Combining terms in equation (4) produces

$$\begin{aligned} \frac{\partial f_{\vec{p}_\alpha}}{\partial t} = & - \int \frac{d^3 \vec{k} d^3 \vec{p}_\beta d^3 \vec{k}}{(2\pi)^9} W_{\vec{p}_\alpha, \vec{p}_\beta}^\sigma (\vec{k}, \vec{k}) \left[f_{\vec{p}_\alpha} f_{\vec{p}_\beta} \left(N_{\vec{k}}^\sigma + 1 \right) - N_{\vec{k}}^\sigma f_{\vec{p}_\alpha - \vec{k}} f_{\vec{p}_\beta + \vec{k} - \vec{k}} \right] \\ & - \int \frac{d^3 \vec{k} d^3 \vec{p}_\beta d^3 \vec{k}}{(2\pi)^9} W_{\vec{p}_\alpha + \vec{k}, \vec{p}_\beta - \vec{k} + \vec{k}}^\sigma (\vec{k}, \vec{k}) \left[f_{\vec{p}_\alpha} f_{\vec{p}_\beta} N_{\vec{k}}^\sigma - f_{\vec{p}_\alpha + \vec{k}} f_{\vec{p}_\beta - \vec{k} + \vec{k}} \left(N_{\vec{k}}^\sigma + 1 \right) \right]. \end{aligned} \quad (6)$$

Breaking equation (6) into its induced and spontaneous parts results in

$$\frac{\partial f_{\vec{p}_\alpha}}{\partial t} = \left(\frac{\partial f_{\vec{p}_\alpha}}{\partial t} \right)_i + \left(\frac{\partial f_{\vec{p}_\alpha}}{\partial t} \right)_s \quad (7)$$

where the induced part $(\partial f_{\vec{p}_\alpha}/\partial t)_i$ is that proportional to the photon number density $N_{\vec{k}}^\sigma$ and the spontaneous part $(\partial f_{\vec{p}_\alpha}/\partial t)_s$ is that independent of $N_{\vec{k}}^\sigma$. Thus

$$\begin{aligned} \left(\frac{\partial f_{\vec{p}_\alpha}}{\partial t} \right)_i = & - \int \frac{d^3 \vec{k} d^3 \vec{p}_\beta d^3 \vec{k}}{(2\pi)^9} N_{\vec{k}}^\sigma \left\{ W_{\vec{p}_\alpha, \vec{p}_\beta}^\sigma (\vec{k}, \vec{k}) \left[f_{\vec{p}_\alpha} f_{\vec{p}_\beta} - f_{\vec{p}_\alpha - \vec{k}} f_{\vec{p}_\beta + \vec{k} - \vec{k}} \right] \right. \\ & \left. + W_{\vec{p}_\alpha + \vec{k}, \vec{p}_\beta - \vec{k} + \vec{k}}^\sigma (\vec{k}, \vec{k}) \left[f_{\vec{p}_\alpha} f_{\vec{p}_\beta} - f_{\vec{p}_\alpha + \vec{k}} f_{\vec{p}_\beta - \vec{k} + \vec{k}} \right] \right\} \end{aligned} \quad (8)$$

$$\left(\frac{\partial f_{\alpha}}{\partial t} \right)_S = - \int \frac{d^3 k}{(2\pi)^3} d^3 p_{\beta} d^3 k' \left[w_{p_{\alpha}, p_{\beta}}^{\sigma} (\vec{k}, \vec{k}') f_{p_{\alpha} + \vec{k}} f_{p_{\beta} - \vec{k}' + \vec{k}} - w_{p_{\alpha} + \vec{k}, p_{\beta} - \vec{k}' + \vec{k}}^{\sigma} (\vec{k}, \vec{k}') f_{p_{\alpha} + \vec{k}'} f_{p_{\beta} - \vec{k} + \vec{k}'} \right] . \quad (9)$$

3. SOFT PHOTON AND SMALL MOMENTUM TRANSFER APPROXIMATION

We next assume that the momentum transfer \vec{k} and the momentum \vec{k}' of the radiated quantum are small relative to the relativistic particle momenta \vec{p}_{α} and \vec{p}_{β} , thereby enabling Taylor series expansions for $w_{p_{\alpha} + \vec{k}, p_{\beta} - \vec{k}' + \vec{k}}^{\sigma}$, $f_{p_{\alpha} + \vec{k}}$, $f_{p_{\beta} + \vec{k} - \vec{k}'}$, $f_{p_{\alpha} + \vec{k}'}$, and $f_{p_{\beta} - \vec{k} + \vec{k}'}$ in equation (8). Thus we assume that

$$\{|\vec{k}|, |\vec{k}'|\} \ll \{|\vec{p}_{\alpha}|, |\vec{p}_{\beta}|\} . \quad (10)$$

This is evidently consistent with the Born approximation for plasma, namely that the relativistic particle momentum is much greater than the electromagnetic impulse received by a plasma particle in a time interval given by the inverse plasma frequency.¹⁻⁵ First expanding $w_{p_{\alpha} + \vec{k}, p_{\beta} - \vec{k}' + \vec{k}}^{\sigma}$ about \vec{p}_{α} in the first variable, we obtain

¹V. N. Tsytovich, Bremsstrahlung of a Relativistic Plasma, Tr. Fiz. Inst. Akad. Nauk SSSR, 66 (1973), 191 [Proc (TRUDY) of P. N. Lebedev Physics Inst., 66 (1975), 199].

²A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium Plasma, Fiz. Plasmy, 1 (1975), 673 [Sov. J. Plasma Phys., 1 (1975) 371].

³H. E. Brandt, Nonlinear Dynamic Polarization Force on a Relativistic Test Particle in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories, HDL-TR-1994 (1983).

⁴H. E. Brandt, Nonlinear Force on an Unpolarized Relativistic Test Particle to Second-Order in the Total Field in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories, HDL-TR-1995 (1983).

⁵H. E. Brandt, The Total Field in Collective Bremsstrahlung in a Nonequilibrium Relativistic Beam-Plasma System, Harry Diamond Laboratories, HDL-TR-1996 (1983).

$$W_{\vec{p}_\alpha + \vec{k}, \vec{p}_\beta - \vec{k} + \vec{k}}^Q = W_{\vec{p}_\alpha, \vec{p}_\beta - \vec{k} + \vec{k}}^Q + \kappa_i \frac{\partial}{\partial p_{\alpha i}} W_{\vec{p}_\alpha, \vec{p}_\beta - \vec{k} + \vec{k}}^Q$$

$$+ \frac{1}{2} \kappa_i \kappa_j \frac{\partial^2 W_{\vec{p}_\alpha, \vec{p}_\beta - \vec{k} + \vec{k}}^Q}{\partial p_{\alpha i} \partial p_{\beta j}} . \quad (11)$$

Next expanding equation (11) to second order about \vec{p}_β in the second variable gives

$$W_{\vec{p}_\alpha + \vec{k}, \vec{p}_\beta - \vec{k} + \vec{k}}^Q = W_{\vec{p}_\alpha, \vec{p}_\beta}^Q + (\kappa_i - \kappa_i) \frac{\partial}{\partial p_{\beta i}} W_{\vec{p}_\alpha, \vec{p}_\beta}^Q$$

$$+ \frac{1}{2} (\kappa_i - \kappa_i)(\kappa_j - \kappa_j) \frac{\partial^2 W_{\vec{p}_\alpha, \vec{p}_\beta}^Q}{\partial p_{\beta i} \partial p_{\beta j}} + \kappa_i \frac{\partial W_{\vec{p}_\alpha, \vec{p}_\beta}^Q}{\partial p_{\alpha i}}$$

$$+ \kappa_i (\kappa_j - \kappa_j) \frac{\partial^2 W_{\vec{p}_\alpha, \vec{p}_\beta}^Q}{\partial p_{\alpha i} \partial p_{\beta j}} + \frac{1}{2} \kappa_i \kappa_j \frac{\partial^2 W_{\vec{p}_\alpha, \vec{p}_\beta}^Q}{\partial p_{\alpha i} \partial p_{\alpha j}} . \quad (12)$$

Also in equation (8) the following Taylor series expansion applies:

$$\left[f_{\vec{p}_\alpha}^* f_{\vec{p}_\beta}^* - f_{\vec{p}_\alpha - \vec{k}}^* f_{\vec{p}_\beta + \vec{k} - \vec{k}}^* \right] = f_{\vec{p}_\alpha}^* f_{\vec{p}_\beta}^*$$

$$- \left[f_{\vec{p}_\alpha}^* - \kappa_i \frac{\partial f_{\vec{p}_\alpha}^*}{\partial p_{\alpha i}} + \frac{1}{2} \kappa_i \kappa_j \frac{\partial^2 f_{\vec{p}_\alpha}^*}{\partial p_{\alpha i} \partial p_{\alpha j}} \right] \left[f_{\vec{p}_\beta}^* \right]$$

$$+ (\kappa_\ell - \kappa_\ell) \frac{\partial f_{\vec{p}_\beta}^*}{\partial p_{\beta \ell}} + \frac{1}{2} (\kappa_\ell - \kappa_\ell)(\kappa_m - \kappa_m) \frac{\partial^2 f_{\vec{p}_\beta}^*}{\partial p_{\beta \ell} \partial p_{\beta m}} ; \quad (13)$$

or combining terms produces

$$\begin{aligned}
\left[\frac{\mathbf{f}_P}{P_\alpha} \frac{\mathbf{f}_P}{P_\beta} - \frac{\mathbf{f}_P}{P_\alpha + \mathbf{k}} \frac{\mathbf{f}_P}{P_\beta + \mathbf{k} - \mathbf{k}} \right] &= -(\kappa_l - \kappa_\ell) \frac{\mathbf{f}_P}{P_\alpha} \frac{\partial \mathbf{f}_P}{\partial P_{\beta l}} \\
&\quad - \frac{1}{2} (\kappa_l - \kappa_\ell)(\kappa_m - \kappa_m) \frac{\mathbf{f}_P}{P_\alpha} \frac{\partial^2 \mathbf{f}_P}{\partial P_{\beta l} \partial P_{\beta m}} + \kappa_i \frac{\partial \mathbf{f}_P}{\partial P_{\alpha i}} \frac{\mathbf{f}_P}{P_\beta} \\
&\quad + \kappa_i (\kappa_l - \kappa_\ell) \frac{\partial \mathbf{f}_P}{\partial P_{\alpha i}} \frac{\partial \mathbf{f}_P}{\partial P_{\beta l}} - \frac{1}{2} \kappa_i \kappa_j \frac{\partial^2 \mathbf{f}_P}{\partial P_{\alpha i} \partial P_{\alpha j}} \frac{\mathbf{f}_P}{P_\beta} . \tag{14}
\end{aligned}$$

Also,

$$\begin{aligned}
\left[\frac{\mathbf{f}_P}{P_\alpha} \frac{\mathbf{f}_P}{P_\beta} - \frac{\mathbf{f}_P}{P_\alpha + \mathbf{k}} \frac{\mathbf{f}_P}{P_\beta - \mathbf{k} + \mathbf{k}} \right] &= -(\kappa_i - \kappa_i) \frac{\mathbf{f}_P}{P_\alpha} \frac{\partial \mathbf{f}_P}{\partial P_{\beta i}} \\
&\quad - \frac{1}{2} (\kappa_l - \kappa_\ell)(\kappa_m - \kappa_m) \frac{\mathbf{f}_P}{P_\alpha} \frac{\partial^2 \mathbf{f}_P}{\partial P_{\beta l} \partial P_{\beta m}} - \kappa_i \frac{\mathbf{f}_P}{P_\beta} \frac{\partial \mathbf{f}_P}{\partial P_{\alpha i}} \\
&\quad - \kappa_i (\kappa_l - \kappa_\ell) \frac{\partial \mathbf{f}_P}{\partial P_{\alpha i}} \frac{\partial \mathbf{f}_P}{\partial P_{\beta l}} - \frac{1}{2} \kappa_i \kappa_j \frac{\mathbf{f}_P}{P_\beta} \frac{\partial^2 \mathbf{f}_P}{\partial P_{\alpha i} \partial P_{\alpha j}} . \tag{15}
\end{aligned}$$

Substituting equations (12), (14), and (15) in equation (8) produces

$$\begin{aligned}
 \left(\frac{\partial f_{p_\alpha}}{\partial t} \right)_i = & - \int \frac{d^3 k}{(2\pi)^3} \frac{d^3 p_\beta}{(2\pi)^3} \frac{d^3 k}{(2\pi)^3} N_k^\sigma \left\{ W_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}) \left[-(\kappa_l - \kappa_\ell) f_{p_\alpha} \frac{\partial f_{p_\beta}}{\partial p_{\beta l}} \right. \right. \\
 & - \frac{1}{2} (\kappa_l - \kappa_\ell)(\kappa_m - \kappa_m) f_{p_\alpha} \frac{\partial^2 f_{p_\beta}}{\partial p_{\beta l} \partial p_{\beta m}} + \kappa_i \frac{\partial f_{p_\alpha}}{\partial p_{\alpha i}} f_{p_\beta} \\
 & + \kappa_i (\kappa_l - \kappa_\ell) \frac{\partial f_{p_\alpha}}{\partial p_{\alpha i}} \frac{\partial f_{p_\beta}}{\partial p_{\beta l}} - \frac{1}{2} \kappa_i \kappa_j \frac{\partial^2 f_{p_\beta}}{\partial p_{\alpha i} \partial p_{\alpha j}} f_{p_\beta} \\
 & - (\kappa_i - \kappa_i) f_{p_\alpha} \frac{\partial f_{p_\beta}}{\partial p_{\beta i}} - \frac{1}{2} (\kappa_l - \kappa_\ell)(\kappa_m - \kappa_m) f_{p_\alpha} \frac{\partial^2 f_{p_\beta}}{\partial p_{\beta l} \partial p_{\beta m}} - \kappa_i f_{p_\beta} \frac{\partial f_{p_\alpha}}{\partial p_{\alpha i}} \\
 & \left. \left. - \kappa_i (\kappa_l - \kappa_\ell) \frac{\partial f_{p_\alpha}}{\partial p_{\alpha i}} \frac{\partial f_{p_\beta}}{\partial p_{\beta l}} - \frac{1}{2} \kappa_i \kappa_j f_{p_\beta} \frac{\partial^2 f_{p_\alpha}}{\partial p_{\alpha i} \partial p_{\alpha j}} \right] \right. \\
 & + \frac{\partial W_{p_\alpha, p_\beta}^\sigma}{\partial p_{\beta i}} \left[-(\kappa_i - \kappa_i)(\kappa_m - \kappa_m) f_{p_\alpha} \frac{\partial f_{p_\beta}}{\partial p_{\beta m}} - (\kappa_i - \kappa_i) \kappa_m f_{p_\beta} \frac{\partial f_{p_\alpha}}{\partial p_{\alpha m}} \right] \\
 & + \frac{\partial W_{p_\alpha, p_\beta}^\sigma}{\partial p_{\alpha i}} \left. \left[-\kappa_i (\kappa_m - \kappa_m) f_{p_\alpha} \frac{\partial f_{p_\beta}}{\partial p_{\beta m}} - \kappa_i \kappa_\ell f_{p_\beta} \frac{\partial f_{p_\alpha}}{\partial p_{\alpha l}} \right] \right\}. \tag{16}
 \end{aligned}$$

The first and sixth terms of equation (16) cancel. Also, the third and eighth terms cancel. Combining the fifth and tenth terms, the second and seventh terms, and the fourth and ninth terms, and integrating the eleventh and twelfth terms by parts, we find that equation (16) becomes

$$\begin{aligned}
\left(\frac{\partial f^+}{\partial t} \right)_i = & - \int \frac{d^3 \vec{k} d^3 p_\beta d^3 \vec{k}}{(2\pi)^9} N_K^\sigma \left\{ W_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}) \left[-(\kappa_\ell - \kappa_\ell) (\kappa_m - \kappa_m) f^+_{p_\alpha} \frac{\partial^2 f^+}{\partial p_{\beta\ell} \partial p_{\beta m}} \right. \right. \\
& + 2\kappa_i (\kappa_\ell - \kappa_\ell) \frac{\partial f^+}{\partial p_{\alpha i}} \frac{\partial f^+}{\partial p_{\beta\ell}} - \kappa_i \kappa_j \frac{\partial^2 f^+}{\partial p_{\alpha i} \partial p_{\alpha j}} f^+_{p_\beta} \Big] \\
& + W_{p_\alpha, p_\beta}^\sigma \left[(\kappa_i - \kappa_i) (\kappa_m - \kappa_m) f^+_{p_\alpha} \frac{\partial^2 f^+}{\partial p_{\beta m} \partial p_{\beta i}} \right. \\
& + (\kappa_i - \kappa_i) \kappa_m \frac{\partial f^+}{\partial p_{\beta i}} \frac{\partial f^+}{\partial p_{\alpha m}} \Big] \\
& \left. \left. + \frac{\partial W_{p_\alpha, p_\beta}^\sigma}{\partial p_{\alpha i}} \left[-\kappa_i (\kappa_m - \kappa_m) f^+_{p_\alpha} \frac{\partial f^+}{\partial p_{\beta m}} - \kappa_i \kappa_\ell f^+_{p_\beta} \frac{\partial f^+}{\partial p_{\alpha\ell}} \right] \right\} . \tag{17}
\end{aligned}$$

The first and fourth terms cancel; the second and fifth terms combine; and after terms are rearranged, equation (17) becomes

$$\begin{aligned}
\left(\frac{\partial f^+}{\partial t} \right)_i = & \int \frac{d^3 \vec{k} d^3 p_\beta d^3 \vec{k}}{(2\pi)^9} \left[\kappa_i \kappa_j \frac{\partial W_{p_\alpha, p_\beta}^\sigma}{\partial p_{\alpha i}} N_K^\sigma f^+_{p_\beta} \frac{\partial f^+}{\partial p_{\alpha j}} \right. \\
& + \kappa_i \kappa_j W_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}) N_K^\sigma f^+_{p_\beta} \frac{\partial^2 f^+}{\partial p_{\alpha i} \partial p_{\alpha j}} \\
& \left. - \kappa_i (\kappa_j - \kappa_j) \frac{\partial f^+}{\partial p_{\beta j}} \frac{\partial W_{p_\alpha, p_\beta}^\sigma}{\partial p_{\alpha i}} (\vec{k}, \vec{k}) N_K^\sigma f^+_{p_\alpha} \right. \\
& \left. - \kappa_i (\kappa_j - \kappa_j) \frac{\partial f^+}{\partial p_{\beta j}} W_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}) N_K^\sigma \frac{\partial f^+}{\partial p_{\alpha i}} \right] . \tag{18}
\end{aligned}$$

Equivalently,

$$\begin{aligned} \left(\frac{\partial f_a}{\partial t} \right)_i &= \frac{\partial}{\partial p_{ai}} \left\{ \left[\int \frac{d^3 \vec{k} d^3 \vec{k} d^3 \vec{p}_\beta}{(2\pi)^9} \kappa_i \kappa_j w_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}) N_k^\sigma f_\beta \right] \frac{\partial f_\beta}{\partial p_{aj}} \right\} \\ &+ \frac{\partial}{\partial p_{ai}} \left\{ \left[- \int \frac{d^3 \vec{k} d^3 \vec{k} d^3 \vec{p}_\beta}{(2\pi)^9} \kappa_i (\kappa_j - \kappa_j) \frac{\partial f_\beta}{\partial p_{bj}} w_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}) N_k^\sigma f_\beta \right] f_\alpha \right\} . \end{aligned} \quad (19)$$

4. INDUCED RECOIL FORCE DUE TO BREMSSTRAHLUNG

Equation (19) may be rewritten in the form of a diffusion equation as follows:

$$\left(\frac{\partial f_a}{\partial t} \right)_i = \frac{\partial}{\partial p_{ai}} \left(D_{aij}^\sigma \frac{\partial f_\beta}{\partial p_{aj}} \right) + \frac{\partial}{\partial p_{ai}} \left(F_{ai}^\sigma f_\beta \right) , \quad (20)$$

where the induced diffusion coefficient D_{aij}^σ is given by

$$D_{aij}^\sigma = \int \frac{d^3 \vec{k} d^3 \vec{k} d^3 \vec{p}_\beta}{(2\pi)^6} \frac{d^3 \vec{p}_\beta}{(2\pi)^3} \kappa_i \kappa_j w_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}) N_k^\sigma f_\beta , \quad (21)$$

and the induced dynamic friction force or bremsstrahlung recoil force is given by

$$\dot{F}_a^\sigma = - \int \frac{d^3 \vec{k} d^3 \vec{k} d^3 \vec{p}_\beta}{(2\pi)^9} \vec{k} (\vec{k} - \vec{k}) \cdot (\vec{v}_{p_\beta} f_\beta) w_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}) N_k^\sigma . \quad (22)$$

Equation (22) is the sought-after expression for the recoil force on particle a due to the induced bremsstrahlung process. Energy conservation can be explicitly factored out of the transition rate appearing in equation (22) as follows. The bremsstrahlung transition probability $w_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k})$ in equation (22) must conserve energy. Therefore

$$\epsilon_{\vec{p}_\alpha} + \epsilon_{\vec{p}_\beta} = \epsilon_{\vec{p}_{\alpha-\vec{k}}} + \epsilon_{\vec{p}_{\beta+\vec{k}-\vec{k}}} + \omega_k^\sigma , \quad (23)$$

where $\epsilon_{\vec{p}_\alpha}$ denotes the total energy of the particle of species α and momentum \vec{p}_α . Using the conditions in equation (10) produces, to lowest order,

$$\epsilon_{\vec{p}_{\alpha-\vec{k}}} = \epsilon_{\vec{p}_\alpha} - \vec{k} \cdot \vec{v}_{\vec{p}_\alpha} \epsilon_{\vec{p}_\alpha} \quad (24)$$

and

$$\epsilon_{\vec{p}_{\beta+\vec{k}-\vec{k}}} = \epsilon_{\vec{p}_\beta} + (\vec{k} - \vec{k}) \cdot \vec{v}_{\vec{p}_\beta} \epsilon_{\vec{p}_\beta} . \quad (25)$$

Next, using relativistic kinematics, we obtain

$$\vec{v}_{\vec{p}_\alpha} \epsilon_{\vec{p}_\alpha} = \vec{v}_{\vec{p}_\alpha} [(m_\alpha c^2)^2 + p_\alpha^2 c^2]^{1/2} = \frac{\vec{p}_\alpha c^2}{\epsilon_{\vec{p}_\alpha}} = \vec{v}_\alpha . \quad (26)$$

Using equation (26) in equations (23) to (25), then to lowest order in \vec{k} and \vec{k} , we obtain

$$\omega_k^\sigma = \vec{k} \cdot \vec{v}_\alpha + (\vec{k} - \vec{k}) \cdot \vec{v}_\beta . \quad (27)$$

Factoring this expression of energy conservation explicitly into the bremsstrahlung probability $w_{\vec{p}_\alpha, \vec{p}_\beta}^\sigma(\vec{k}, \vec{k})$, we define the quantity $v_{\vec{p}_\alpha, \vec{p}_\beta}^\sigma(\vec{k}, \vec{k})$ by

$$w_{\vec{p}_\alpha, \vec{p}_\beta}^\sigma(\vec{k}, \vec{k}) = v_{\vec{p}_\alpha, \vec{p}_\beta}^\sigma(\vec{k}, \vec{k}) \delta(\omega_k^\sigma - \vec{k} \cdot \vec{v}_\alpha + (\vec{k} - \vec{k}) \cdot \vec{v}_\beta) . \quad (28)$$

Substituting equation (28) in equation (22) gives

$$\begin{aligned} \hat{F}_\alpha^\sigma = & - \int \frac{d^3 \hat{p}_\beta d^3 \hat{k} d^3 \hat{k}}{(2\pi)^9} \hat{k}(\hat{k} - \hat{k}) \cdot (\hat{\nabla}_{p_\beta} f_{p_\beta}) v_{p_\alpha, p_\beta}^\sigma(\hat{k}, \hat{k}) \\ & \times N_k^\sigma \delta(\omega_k^\sigma - \hat{k} \cdot \hat{v}_\alpha + (\hat{k} - \hat{k}) \cdot \hat{v}_\beta) . \end{aligned} \quad (29)$$

Equation (29) expresses the recoil force on a particle of species α due to induced bremsstrahlung as an integral over particle momentum \hat{p}_β , photon wave vector \hat{k} , and momentum transfer \hat{k} . The integrand involves the particle distribution f_{p_β} of the scattering particle, the bremsstrahlung transition rate $v_{p_\alpha, p_\beta}^\sigma(\hat{k}, \hat{k})$, and the photon distribution N_k^σ .

The delta function in equation (29) expresses energy conservation in the bremsstrahlung process in the soft photon and small momentum transfer approximation for relativistic particles. Equation (29) agrees with Tsytovich's (4.1)¹ exactly. It differs in sign from equation (3) of Akopyan and Tsytovich,² which apparently has a typographical error.

The photon density N_k^σ in equation (29) can be expressed in terms of the associated field as follows. The power density delivered to the electromagnetic field is given by

$$\frac{du}{dt} = -\hat{j} \cdot \hat{E} . \quad (30)$$

¹V. N. Tsytovich, *Bremsstrahlung of a Relativistic Plasma*, Tr. Fiz. Inst. Akad. Nauk SSSR, 66 (1973), 191 [Proc (TRUDY) of P. N. Lebedev Physics Inst., 66 (1975), 199].

²A. V. Akopyan and V. N. Tsytovich, *Bremsstrahlung in a Nonequilibrium Plasma*, Fiz. Plasmy, 1 (1975), 673 [Sov. J. Plasma Phys., 1 (1975), 371].

Using Maxwell's equation

$$\hat{\nabla} \times \hat{H} = \hat{j} + \frac{\partial \hat{D}}{\partial t} \quad (31)$$

in equation (30) produces

$$\frac{du}{dt} = - \left(\hat{\nabla} \times \hat{H} - \frac{\partial \hat{B}}{\partial t} \right) \cdot \hat{E} . \quad (32)$$

Equivalently,

$$\frac{du}{dt} = \hat{\nabla} \cdot (\hat{E} \times \hat{H}) - \hat{H} \cdot \hat{\nabla} \times \hat{E} + \hat{E} \cdot \frac{\partial \hat{B}}{\partial t} . \quad (33)$$

Substituting Maxwell's equation

$$\hat{\nabla} \times \hat{E} = - \frac{\partial \hat{B}}{\partial t} \quad (34)$$

in equation (33) produces

$$\frac{du}{dt} = \hat{\nabla} \cdot (\hat{E} \times \hat{H}) + \left(\hat{H} \cdot \frac{\partial \hat{B}}{\partial t} + \hat{E} \cdot \frac{\partial \hat{B}}{\partial t} \right) . \quad (35)$$

Equation (35) is the energy conservation theorem

$$\frac{du}{dt} = \hat{\nabla} \cdot \hat{s} + \frac{\partial u}{\partial t} , \quad (36)$$

where \hat{S} is the Poynting vector

$$\hat{S} = \hat{E} \times \hat{H} , \quad (37)$$

u is the energy density in the electromagnetic field, and

$$\frac{\partial u}{\partial t} = \hat{H} \cdot \frac{\partial \hat{B}}{\partial t} + \hat{E} \cdot \frac{\partial \hat{D}}{\partial t} . \quad (38)$$

The Fourier representation of the electric field is

$$\hat{E} = \int d^3k dw E_k e^{i(\vec{k} \cdot \vec{r} - wt)} \quad (39)$$

and

$$\hat{D} = \int d^3k dw D_k e^{i(\vec{k} \cdot \vec{r} - wt)} . \quad (40)$$

Also, by the plasma constitutive relations

$$D_{ki} = \epsilon_{ij}(\vec{k}, \omega) E_{kj} . \quad (41)$$

Furthermore, taking the Fourier transform of equation (34) produces

$$\hat{B}_k = \frac{\vec{k} \times \vec{E}_k}{\omega} . \quad (42)$$

Also,

$$\hat{H} = \frac{\hat{B}}{\mu_0} = \epsilon_0 c^2 \hat{B} . \quad (43)$$

Next, using equations (39) to (43) and the appropriate Fourier representations in equation (38) gives

$$\frac{\partial u}{\partial t} = \int d^3k \, dw \, d^3k' \, dw' \, E_{ki} e^{i(\vec{k} \cdot \vec{r} - \omega t)} (-i\omega') \epsilon_{ij}(\vec{k}', \omega') E_{k'j} e^{i(\vec{k}' \cdot \vec{r} - \omega' t)} \quad (44)$$

$$+ \epsilon_0 c^2 \int d^3k \, dw \, d^3k' \, dw' \, \frac{(\vec{k} \times \vec{E}_k)_i}{\omega} e^{i(\vec{k} \cdot \vec{r} - \omega t)} (-i\omega') \frac{(\vec{k}' \times \vec{E}_{k'})_i}{\omega'} e^{i(\vec{k}' \cdot \vec{r} - \omega' t)} .$$

By an ordinary vector identity,

$$(\vec{k} \times \vec{E}_k)_i (\vec{k}' \times \vec{E}_{k'})_i = (\vec{k} \times \vec{E}_k) \cdot (\vec{k}' \times \vec{E}_{k'})$$

$$= \vec{k} \cdot \vec{k}' \vec{E}_k \cdot \vec{E}_{k'} - \vec{k} \cdot \vec{E}_k \cdot \vec{k}' \cdot \vec{E}_{k'} . \quad (45)$$

Substituting equation (45) in equation (44) gives

$$\frac{\partial u}{\partial t} = -i \int dk \, dk' \left[\omega' E_{ki} \epsilon_{ij}(\vec{k}', \omega') E_{k'j} + \frac{\epsilon_0 c^2}{\omega} (\vec{k} \cdot \vec{k}' \vec{E}_k \cdot \vec{E}_{k'} - \vec{k} \cdot \vec{E}_k \cdot \vec{k}' \cdot \vec{E}_{k'}) \right]$$

$$\times e^{i[(\vec{k} + \vec{k}') \cdot \vec{r} - (\omega + \omega')t]} , \quad (46)$$

where $dk \equiv d^3k \, dw$. Symmetrizing equation (46) in k and k' produces

$$\begin{aligned}
 \frac{\partial u}{\partial t} = & -\frac{i}{2} \int dk dk' \left\{ E_{k'i} \epsilon_{ij}(\vec{k}, \omega) \omega E_{kj} + E_{ki} \omega' \epsilon_{ij}(k', \omega') E_{k'j} \right. \\
 & + \epsilon_0 c^2 (\omega + \omega') \left[\frac{\vec{k} \cdot \vec{k}'}{\omega \omega'} \vec{E}_k \cdot \vec{E}_{k'} - \frac{(\vec{k} \cdot \vec{E}_{k'}) (\vec{k}' \cdot \vec{E}_k)}{\omega \omega'} \right] \left. \right\} \\
 & \times e^{i[(\vec{k} + \vec{k}') \cdot \vec{r} - (\omega + \omega') t]} .
 \end{aligned} \tag{47}$$

The total field involved in the bremsstrahlung process, \hat{E}_k , is given elsewhere,⁵ namely,

$$\hat{E}_k = \hat{E}_k^{\sigma(0)} + \hat{E}_k^R , \tag{48}$$

where $\hat{E}_k^{\sigma(0)}$ is the lowest order stochastic bremsstrahlung radiation field and \hat{E}_k^R is the regular nonradiative component. The bremsstrahlung field written in terms of its polarization vector \hat{e}_k^σ is given by

$$\hat{E}_k^{\sigma(0)} = \hat{e}_k^\sigma E_k^{\sigma(0)} , \tag{49}$$

where

$$\hat{e}_k^\sigma \cdot \hat{e}_k^{\sigma*} = 1 . \tag{50}$$

⁵H. E. Brandt, *The Total Field in Collective Bremsstrahlung in a Nonequilibrium Relativistic Beam-Plasma System*, Harry Diamond Laboratories, HDL-TR-1996 (1983).

The stochastic properties of the bremsstrahlung field are approximated to the needed order by

$$\langle E_{ki}^{\sigma(0)} \rangle = 0 \quad (51)$$

and

$$\langle E_{ki}^{\sigma(0)} E_{k_1 j}^{\sigma(0)} \rangle = e_{ki}^{\sigma} e_{kj}^{\sigma*} |E_k^{\sigma(0)}|^2 \delta(k + k_1) \quad (52)$$

(these are eq (49) and (50) of a previous work⁵). Therefore, substituting equation (48) in equation (47), keeping only the lowest order bremsstrahlung field, integrating equation (47) over time, and using equation (51), we find that the ensemble average energy density in the field is given by

$$\langle u \rangle = \langle u \rangle^{\sigma} + \langle u \rangle^R , \quad (53)$$

where

$$\begin{aligned} \langle u \rangle^{\sigma} = \int \langle \frac{du}{dt} dt \rangle &= \frac{1}{2} \int dk dk' \left\{ \frac{1}{\omega + \omega'} \left[\epsilon_{ij}(\vec{k}, \omega) \omega \langle E_{kj}^{\sigma(0)} E_{k'i}^{\sigma(0)} \rangle \right. \right. \\ &\quad \left. \left. + \omega' \epsilon_{ij}(\vec{k}', \omega') \langle E_{ki}^{\sigma(0)} E_{k'j}^{\sigma(0)} \rangle \right] + \epsilon_0 c^2 \frac{\vec{k} \cdot \vec{k}'}{\omega \omega'} \langle \vec{E}_k^{\sigma(0)} \cdot \vec{E}_{k'}^{\sigma(0)} \rangle \right. \\ &\quad \left. - \frac{\epsilon_0 c^2 \langle \vec{k} \cdot \vec{E}_k^{\sigma(0)} \cdot \vec{k}' \cdot \vec{E}_{k'}^{\sigma(0)} \rangle}{\omega \omega'} \right\} e^{i[(\vec{k} + \vec{k}') \cdot \vec{r} - (\omega + \omega') t]} \end{aligned} \quad (54)$$

is the bremsstrahlung part, and $\langle u \rangle^R$ is the regular nonradiative part. Only $\langle u \rangle^{\sigma}$ is needed for the present work.

⁵H. E. Brandt, *The Total Field in Collective Bremsstrahlung in a Nonequilibrium Relativistic Beam-Plasma System*, Harry Diamond Laboratories, HDL-TR-1996 (1983).

Substituting equation (52) in equation (54) and using the definition of the four-dimensional delta function,

$$\delta(\mathbf{k}) = \delta^3(\mathbf{k})\delta(\omega) = (2\pi)^{-4} \int d^3k dt e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}, \quad (55)$$

produces

$$\langle u \rangle^\sigma = \frac{1}{2} \int dk dk' \left\{ \frac{1}{\omega + \omega'} \left[e_{ki}^{\sigma*} \epsilon_{ij}(\mathbf{k}, \omega) \omega e_{kj}^\sigma + e_{ki}^\sigma \omega' \epsilon_{ij}(\mathbf{k}', \omega') e_{kj}^{\sigma*} \right] \delta(\omega + \omega') \right. \\ \left. + \epsilon_0 c^2 \left[\frac{\mathbf{k} \cdot \mathbf{k}'}{\omega \omega'} \hat{e}_k^\sigma \cdot \hat{e}_k^{\sigma*} - \frac{\mathbf{k} \cdot \hat{e}_k^{\sigma*} \mathbf{k}' \cdot \hat{e}_k^\sigma}{\omega \omega'} \right] \delta(\omega + \omega') \right\} |E_k^\sigma(0)|^2 \delta^3(\mathbf{k} + \mathbf{k}') . \quad (56)$$

In equation (56) we define

$$I(\mathbf{k}) = \int dk' \frac{\delta(\omega + \omega')}{(\omega + \omega')} \delta^3(\mathbf{k} + \mathbf{k}') [e_{ki}^{\sigma*} \epsilon_{ij}(\mathbf{k}, \omega) \omega e_{kj}^\sigma + e_{ki}^\sigma \omega' \epsilon_{ij}(\mathbf{k}', \omega') e_{kj}^{\sigma*}] . \quad (57)$$

Changing the variable ω' to $\omega'' = \omega + \omega'$ and integrating over \mathbf{k}' , equation (57) becomes

$$I(\mathbf{k}) = \int \frac{d\omega''}{\omega''} \delta(\omega'') [e_{ki}^{\sigma*} \epsilon_{ij}(\mathbf{k}, \omega) \omega e_{kj}^\sigma + (\omega'' - \omega) e_{ki}^\sigma \epsilon_{ij}(-\mathbf{k}, \omega'' - \omega) e_{kj}^{\sigma*}] . \quad (58)$$

Expanding the second term in the integrand of equation (58) in a Taylor series about $\omega'' = 0$, then

$$I(\mathbf{k}) = \int \frac{d\omega''}{\omega''} \delta(\omega'') \left\{ e_{ki}^{\sigma*} \epsilon_{ij}(\mathbf{k}, \omega) \omega e_{kj}^\sigma - \omega e_{ki}^\sigma \epsilon_{ij}(-\mathbf{k}, -\omega) e_{kj}^{\sigma*} \right. \\ \left. + \omega'' \frac{\partial}{\partial \omega''} \left[(\omega'' - \omega) e_{ki}^\sigma \epsilon_{ij}(-\mathbf{k}, \omega'' - \omega) e_{kj}^{\sigma*} \right] \right\} . \quad (59)$$

By the reality of the fields, it follows from equation (41) that

$$\epsilon_{ij}(-\mathbf{k}, -\omega) = \epsilon_{ij}^*(-\mathbf{k}, \omega) . \quad (60)$$

Substituting equation (60) in equation (59) and simplifying the second term causes equation (59) to become

$$I(k) = 2i \int \frac{d\omega''}{\omega''} \delta(\omega'') \omega \operatorname{Im} e_{ki}^{\sigma*} \epsilon_{ij}(\vec{k}, \omega) e_{kj}^{\sigma} + \frac{\partial}{\partial \omega} [\omega e_{ki}^{\sigma} \epsilon_{ij}(-\vec{k}, -\omega) e_{kj}^{\sigma*}] . \quad (61)$$

The dielectric constant $\epsilon^{\sigma}(\vec{k}, \omega)$ for mode σ is defined in terms of the dielectric permittivity tensor $\epsilon_{ij}(\vec{k}, \omega)$ and the unit electric polarization vectors \hat{e}_k^{σ} by

$$\epsilon^{\sigma}(\vec{k}, \omega) = e_{ki}^{\sigma*} \epsilon_{ij}(\vec{k}, \omega) e_{kj}^{\sigma} + \epsilon_0 \frac{c^2}{\omega^2} (\vec{k} \cdot \hat{e}_k^{\sigma}) (\vec{k} \cdot \hat{e}_k^{\sigma*}) \quad (62)$$

(see Other Works by Tsytovich, Selected Bibliography).

Noting that the second term of equation (62) is real, and substituting equation (62) in equation (61), we obtain

$$I(k) = 2iw \operatorname{Im} \epsilon^{\sigma}(k, \omega) \int \frac{d\omega''}{\omega''} \delta(\omega'') + \frac{\partial}{\partial \omega} [\omega e_{ki}^{\sigma} \epsilon_{ij}(-\vec{k}, -\omega) e_{kj}^{\sigma*}] . \quad (63)$$

If mode decay or growth are ignorable, then the mode dielectric constant $\epsilon^{\sigma}(\vec{k}, \omega)$ is real and the first term of equation (63) may be dropped. In that case equation (63) becomes

$$I(k) = \frac{\partial}{\partial \omega} [\omega e_{ki}^{\sigma} \epsilon_{ij}(-\vec{k}, -\omega) e_{kj}^{\sigma*}] . \quad (64)$$

If we next integrate the second term in equation (56) and substitute equations (50), (57), and (64), equation (56) becomes

$$\langle u \rangle^{\sigma} = \frac{1}{2} \int dk \left[\frac{\partial}{\partial \omega} (e_{ki}^{\sigma} \omega \epsilon_{ij}(-\vec{k}, -\omega) e_{kj}^{\sigma*}) + \frac{\epsilon_0 c^2}{\omega^2} (k^2 - \vec{k} \cdot \hat{e}_k^{\sigma*} \vec{k} \cdot \hat{e}_k^{\sigma}) \right] |E_k^{\sigma(0)}|^2 . \quad (65)$$

Changing the variable of integration from k to $-k$ in the first term only, using the reality property of the fields to replace $e_k^\sigma E_k^\sigma(0)$ by $e_k^{\sigma*} E_k^{\sigma(0)*}$, substituting equation (62), and simplifying, causes equation (65) to become

$$\begin{aligned} \langle u \rangle^\sigma = & \frac{1}{2} \int dk \left[\frac{\partial}{\partial \omega} \left(\omega \epsilon^\sigma(k, \omega) - \epsilon_0 \frac{c^2}{\omega} \vec{k} \cdot \vec{e}_k^\sigma \vec{k} \cdot \vec{e}_k^{\sigma*} \right) \right. \\ & \left. + \frac{\epsilon_0 c^2}{\omega^2} (k^2 - \vec{k} \cdot \vec{e}_k^\sigma \vec{k} \cdot \vec{e}_k^{\sigma*}) \right] |E_k^\sigma(0)|^2 . \end{aligned} \quad (66)$$

Simplifying equation (66) results in

$$\langle u \rangle^\sigma = \frac{1}{2} \int dk \left[\epsilon^\sigma(k, \omega) + \omega \frac{\partial \epsilon^\sigma(k, \omega)}{\partial \omega} + \epsilon_0 \frac{k^2}{\omega^2} c^2 \right] |E_k^\sigma(0)|^2 . \quad (67)$$

The zeroth-order dispersion relation for the bremsstrahlung wave is given by the poles of the photonic Green's function G_{ij} in equation (22) of a previous paper⁵ or, equivalently, the zeros of the determinant of G_{ij}^{-1} in equation (18) of that paper.⁵ Thus the bremsstrahlung field $E_{kj}^{\sigma(0)}$ must satisfy

$$\left[\frac{1}{\mu_0(\omega + i\delta)^2} (k_i k_j - k^2 \delta_{ij}) + \epsilon_{ij} \right] E_{kj}^{\sigma(0)} = 0 . \quad (68)$$

Taking the inner product of equation (68) with $e_{ki}^{*\sigma}$ and using equations (49), (50), and (62) and $\mu_0^{-1} = \epsilon_0 c^2$ produces

$$\frac{\epsilon_0 c^2}{\omega^2} (\vec{e}_k^{\sigma*} \cdot \vec{k} \vec{e}_k^\sigma \cdot \vec{k} - k^2) + \epsilon^\sigma - \epsilon_0 \frac{c^2}{\omega^2} (\vec{k} \cdot \vec{e}_k^\sigma)(\vec{k} \cdot \vec{e}_k^{\sigma*}) = 0 \quad (69)$$

or

$$\frac{k^2 c^2}{\omega^2} = \frac{\epsilon^\sigma}{\epsilon_0} . \quad (70)$$

⁵H. E. Brandt, *The Total Field in Collective Bremsstrahlung in a Nonequilibrium Relativistic Beam-Plasma System*, Harry Diamond Laboratories HDL-TR-1996 (1983).

Substituting equation (70) in equation (67) results in

$$\langle u \rangle^\sigma = \frac{1}{2} \int d\vec{k} (2\epsilon^\sigma(\vec{k}, \omega) + \omega \frac{\partial \epsilon^\sigma}{\partial \omega}(\vec{k}, \omega)) |E_k^\sigma(0)|^2 . \quad (71)$$

Equivalently, equation (71) becomes

$$\langle u \rangle^\sigma = \frac{1}{2} \int d^3\vec{k} d\omega \frac{1}{\omega} \frac{\partial}{\partial \omega} (\epsilon^\sigma(\vec{k}, \omega) \omega^2) |E_k^\sigma(0)|^2 . \quad (72)$$

One can also express the energy density in the field in terms of the photon number density N_k^σ as follows:

$$\langle u \rangle^\sigma = \int \frac{d^3\vec{k}}{(2\pi)^3} \omega_k^\sigma N_k^\sigma , \quad (73)$$

where ω_k^σ is the frequency of the mode σ as determined by the dispersion relation. Equivalently, equation (73) may be written

$$\langle u \rangle^\sigma = \int \frac{d^3\vec{k} d\omega}{(2\pi)^3} \omega N_k^\sigma \delta(\omega - \omega_k^\sigma) . \quad (74)$$

Comparing equations (72) and (74), we find

$$N_k^\sigma \delta(\omega - \omega_k^\sigma) = \frac{4\pi^3}{\omega^2} \frac{\partial}{\partial \omega} (\epsilon^\sigma(\vec{k}, \omega) \omega^2) |E_k^\sigma(0)|^2 . \quad (75)$$

Equation (29) may be equivalently written

$$\hat{F}_\alpha^\sigma = - \int \frac{d^3\vec{k} d\omega d^3\vec{k} d^3\vec{p}_\beta}{(2\pi)^9} \vec{k}(\vec{k} - \vec{k}) \cdot (\hat{v}_{p_\beta} f_{p_\beta}) v_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}) N_k^\sigma$$

$$\times \delta(\omega - \vec{k} \cdot \vec{v}_\alpha + (\vec{k} - \vec{k}) \cdot \vec{v}_\beta) \delta(\omega - \omega_k^\sigma) , \quad (76)$$

where the integral of a delta function over ω has been inserted. Therefore, after substituting equation (75) in equation (76), we finally obtain

$$\hat{F}_\alpha^\sigma = -4\pi^3 \int \frac{d^3\vec{k} d\omega d^3\vec{k} d^3\vec{p}_\beta}{(2\pi)^9} \frac{1}{\omega^2} \frac{\partial}{\partial \omega} (\omega^2 \epsilon^\sigma(\vec{k}, \omega)) \vec{k}(\vec{k} - \vec{k}) \cdot (\hat{v}_{p_\beta} f_{p_\beta})$$

$$\times v_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k}) |E_k^\sigma(0)|^2 \delta(\omega - \vec{k} \cdot \vec{v}_\alpha + (\vec{k} - \vec{k}) \cdot \vec{v}_\beta) . \quad (77)$$

Equation (77) expresses the general form for the force on a particle due to induced bremsstrahlung. The dispersive properties of the beam-plasma system enter explicitly in equation (77) through the dielectric constant $\epsilon^\sigma(\vec{k}, \omega)$ and implicitly through the transition probability.

5. CONCLUSION

The general form has been derived for the collective bremsstrahlung recoil force in a nonequilibrium relativistic beam-plasma system, namely,

$$\hat{F}_\alpha^\sigma = - \int \frac{d^3\vec{p}_\beta d^3\vec{k} d^3\vec{k}}{(2\pi)^9} \vec{k}(\vec{k} - \vec{k}) \cdot (\hat{v}_{p_\beta} f_{p_\beta}) v_{p_\alpha, p_\beta}^\sigma (\vec{k}, \vec{k})$$

$$\times N_k^\sigma \delta(\omega_k^\sigma - \vec{k} \cdot \vec{v}_\alpha + (\vec{k} - \vec{k}) \cdot \vec{v}_\beta) . \quad (78)$$

Here \vec{F}_α^0 is the force on a particle of species α and velocity \vec{v}_α due to its participation in a bremsstrahlung process in which it interacts with a particle of species β and velocity \vec{v}_β , resulting in a momentum transfer $\vec{k} - \vec{k}'$ to that particle. A bremsstrahlung photon of wave vector \vec{k} and frequency ω_k^σ in mode σ is emitted. The functions $f_{p_\beta}^0$ and N_k^σ are the particle and photon distributions, respectively, and V_{p_α, p_β}^0 is the bremsstrahlung transition rate with energy conservation already factored out. The photon distribution function N_k^σ can be expressed in terms of the bremsstrahlung field by equation (75) to obtain an equivalent form given by equation (77). Equation (78) was used by Akopyan and Tsytovich^{1,2} to obtain an expression for the collective bremsstrahlung transition rate by means of direct comparison with another expression for the collective bremsstrahlung recoil force, which was determined from the equation of motion for a dynamically polarized test particle undergoing bremsstrahlung.

The present calculation, together with previous work by the author (see Selected Bibliography), is important for ongoing work in calculating collective radiation processes and conditions for the occurrence of radiative instability in relativistic beam-plasma systems.

¹V. N. Tsytovich, *Bremsstrahlung of a Relativistic Plasma*, Tr. Fiz. Inst. Akad. Nauk SSSR, 66 (1973), 191 [Proc (TRUDY) of P. N. Lebedev Physics Inst., 66 (1975), 199].

²A. V. Akopyan and V. N. Tsytovich, *Bremsstrahlung in a Nonequilibrium Plasma*, Fiz. Plasmy, 1 (1975), 673 [Sov. J. Plasma Phys., 1 (1975), 371].

SELECTED BIBLIOGRAPHY

Work of Akopyan and Tsytovich

V. N. Tsytovich, Bremsstrahlung of a Relativistic Plasma, Tr. Fiz. Inst. Akad. Nauk SSSR, 66 (1973), 191 [Proc (TRUDY) of P. N. Lebedev Physics Inst., 66 (1975), 199].

A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium Plasma, Fiz. Plasmy, 1 (1975), 673 [Sov. J. Plasma Phys., 1 (1975), 371].

A. V. Akopyan and V. N. Tsytovich, Transition Bremsstrahlung of Relativistic Particles, Zh. Eksp. Teor. Fiz., 71 (1976), 166 [Sov. Phys. JETP, 44 (1976), 87].

A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung Instability of Relativistic Electrons in a Plasma, Astrofizika, 13 (1977), 717 [Astrophysics 13 (1977), 423].

A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung of Relativistic Electrons in Plasmas, in Proc. of XIIIth International Conference on Phenomena in Ionized Gases, Physical Society of German Democratic Republic, Berlin (1977), 917.

V. N. Tsytovich, Collective Effects in Bremsstrahlung of Fast Particles in Plasmas, Comments, Plasma Phys. Conf. Fusion, 4 (1978), 73.

Other Work by Tsytovich

V. N. Tsytovich, Nonlinear Effects in Plasma, Plenum Publishing Corp., New York (1970), p 314.

V. N. Tsytovich, An Introduction to the Theory of Plasma Turbulence, Pergamon Press, New York (1972).

V. N. Tsytovich, Theory of Turbulent Plasma, Consultants Bureau, Plenum Publishing Corp., New York (1977), pp 63-65.

Work of Brandt

H. E. Brandt, The Gluckstern-Hull Formula for Electron-Nucleus Bremsstrahlung, Harry Diamond Laboratories, HDL-TR-1884 (May 1980).

H. E. Brandt, Symmetries of the Nonlinear Conductivity for a Relativistic Turbulent Plasma, Harry Diamond Laboratories, HDL-TR-1927 (March 1981).

H. E. Brandt, Exact Symmetry of the Second-Order Nonlinear Conductivity for a Relativistic Turbulent Plasma, Phys. Fluids, 24 (1981), 1760.

H. E. Brandt, Second-Order Nonlinear Conductivity Tensor for an Unmagnetized Relativistic Turbulent Plasma, in Plasma Astrophysics, Course and Workshop Organized by the International School of Plasma Physics, 27 August to 7 September 1981, Varenna (Como), Italy (European Space Agency ESA SP-161, November 1981), 361 (also to be published by Pergamon Press).

SELECTED BIBLIOGRAPHY (Cont'd)

H. E. Brandt, On the Nonlinear Conductivity Tensor for an Unmagnetized Relativistic Turbulent Plasma, Harry Diamond Laboratories, HDL-TR-1970 (February 1982).

H. E. Brandt, Comment on Exact Symmetry of the Second-Order Nonlinear Conductivity for a Relativistic Turbulent Plasma, *Phys. Fluids*, 25 (1982), 1922.

H. E. Brandt, Symmetry of the Complete Second-Order Nonlinear Conductivity Tensor for an Unmagnetized Relativistic Turbulent Plasma, *J. Math. Phys.*, 24 (1983), 1332, 2250.

H. E. Brandt, Nonlinear Dynamic Polarization Force on a Relativistic Test Particle in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories, HDL-TR-1994 (1983).

H. E. Brandt, Nonlinear Force on an Unpolarized Relativistic Test Particle to Second-Order in the Total Field in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories, HDL-TR-1995 (1983).

H. E. Brandt, The Total Field in Collective Bremsstrahlung in a Nonequilibrium Relativistic Beam-Plasma System, Harry Diamond Laboratories, HDL-TR-1996 (1983).

DISTRIBUTION

ADMINISTRATOR
DEFENSE TECHNICAL INFORMATION CENTER
ATTN DTIC-DDA (12 COPIES)
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314

COMMANDER
US ARMY MATERIEL DEVELOPMENT & READINESS
COMMAND
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

DIRECTOR
DEFENSE ADVANCED RESEARCH PROJECTS
AGENCY
ATTN R. GULLICKSON
ATTN L. C. MARQUET
ATTN R. SEPUCHA
1400 WILSON BLVD
ARLINGTON, VA 22209

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
WASHINGTON, DC 20305

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
ATTN D. SPOHN
ATTN DT-1, NUCLEAR & APPLIED
SCIENCES DIV
ATTN ELECTRONIC WARFARE BRANCH
WASHINGTON, DC 20301

UNDER SECRETARY OF DEFENSE
FOR RESEARCH & ENGINEERING
ATTN DEPUTY UNDER SECRETARY
(RESEARCH & ADVANCED TECH)
ATTN D. L. LAMBERSON
WASHINGTON, DC 20301

OFFICE OF THE UNDER SECRETARY OF
DEFENSE FOR RESEARCH & ENGINEERING
DIR ENERGY TECHNOLOGY OFFICE
THE PENTAGON
WASHINGTON, DC 20301

DIRECTOR
DEFENSE NUCLEAR AGENCY
ATTN DEPUTY DIRECTOR
SCIENTIFIC TECHNOLOGY
ATTN G. BAKER
ATTN RAEV, ELECTRONIC VULNERABILITY
ATTN J. Z. FARBER
ATTN G. K. SOPER
ATTN V. VAN LINT
WASHINGTON, DC 20305

DIRECTOR
NATIONAL SECURITY AGENCY
ATTN TECHNICAL LIBRARY
ATTN F. BEDARD
FT MEADE, MD 20755

ASSISTANT SECRETARY OF THE ARMY (RDA)
ATTN DEP FOR SCI & TECH
WASHINGTON, DC 20301

OFFICE, DEPUTY CHIEF OF STAFF
FOR OPERATIONS & PLANS
DEPT OF THE ARMY
ATTN DAMO-SSN, NUCLEAR DIV
WASHINGTON, DC 20310

OFFICE OF THE DEPUTY CHIEF OF STAFF
FOR RESEARCH, DEVELOPMENT,
& ACQUISITION
DEPARTMENT OF THE ARMY
ATTN DIRECTOR OF ARMY RESEARCH,
M. E. LASER
ATTN DAMA-CSS-N, NUCLEAR TEAM
ATTN DAMA-ARZ-O, F. D. VERDERAME
WASHINGTON, DC 20310

COMMANDER
US ARMY ABERDEEN PROVING GROUND
ATTN STEAP-TL, TECH LIB
ABERDEEN PROVING GROUND, MD 21005

COMMANDER
BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER
ATTN D. SCHENK
PO BOX 1500
HUNTSVILLE, AL 35807

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN DRDAR-TSB-S (STINFO)
ATTN D. ECCLESHALL
ATTN C. HOLLANDSWORTH
ATTN R. KREMENS
ABERDEEN PROVING GROUND, MD 21005

US ARMY ELECTRONICS TECHNOLOGY &
DEVICES LABORATORY
ATTN DELET-DD
ATTN N. WILSON
FT MONMOUTH, NJ 07703

US ARMY ERADCOM
ATTN C. M. DESANTIS
FT MONMOUTH, NJ 07703

COMMANDER
US ARMY FOREIGN SCIENCE
& TECHNOLOGY CENTER
FEDERAL OFFICE BLDG
ATTN DRXST-SD, SCIENCES DIV
ATTN T. CALDWELL
220 7TH STREET, NE
CHARLOTTESVILLE, VA 22901

DIRECTOR
US ARMY MATERIEL SYSTEMS
ANALYSIS ACTIVITY
ATTN DRXSY-MP
ABERDEEN PROVING GROUND, MD 21005

DISTRIBUTION (Cont'd)

COMMANDER US ARMY MATERIALS & MECHANICS RESEARCH CENTER ATTN DRXMR-H, BALLISTIC MISSILE DEF MATLS PROG OFC WATERTOWN, MA 02172	NAVAL RESEARCH LABORATORY (Cont'd) ATTN J. T. SCHRIEMPF ATTN R. F. WENZEL ATTN R. HETTCHE ATTN J. GOLDEN ATTN V. L. GRANATSTEIN ATTN M. A. REED ATTN R. K. PARKER ATTN P. A. SPRANGLE ATTN S. GOLD ATTN C. A. KAPETANAKOS ATTN S. AHN ATTN T. P. COFFEY ATTN R. JACKSON ATTN I. M. VITKOVITSKY ATTN M. FRIEDMAN ATTN J. PASOUR ATTN G. COOPERSTEIN WASHINGTON, DC 20375
COMMANDER US ARMY MISSILE COMMAND ATTN DRDMI-TR, PHYSICAL SCIENCES DIR REDSTONE ARSENAL, AL 35809	COMMANDER NAVAL SURFACE WEAPONS CENTER ATTN V. PUGLIELLI ATTN DX-21, LIBRARY DIV DAHLGREN, VA 22448
COMMANDER US ARMY MISSILE & MUNITIONS CENTER & SCHOOL ATTN ATSK-CTD-F REDSTONE ARSENAL, AL 35809	COMMANDER NAVAL SURFACE WEAPONS CENTER ATTN J. Y. CHOE ATTN F. SAZAMA ATTN H. UHM ATTN V. KENYON ATTN E. NOLTING ATTN WA-13, HIGH-ENERGY LASER BR ATTN WA-50, NUCLEAR WEAPONS EFFECTS DIV ATTN WR, RESEARCH & TECHNOLOGY DEPT ATTN WR-40, RADIATION DIV ATTN E-43, TECHNICAL LIB WHITE OAK, MD 20910
ARMY RESEARCH OFFICE (DURHAM) PO BOX 12211 ATTN H. ROBL ATTN R. LONTZ ATTN B. D. GUENTHER ATTN TECH LIBRARY RESEARCH TRIANGLE PARK, NC 27709	COMMANDER NAVAL WEAPONS CENTER ATTN 315, LASER/INFRARED SYS DIV ATTN 381, PHYSICS DIV CHINA LAKE, CA 93555
COMMANDER US ARMY RSCH & STD GP (EUR) ATTN CHIEF, PHYSICS & MATH BRANCH FPO NEW YORK 09510	HQ USAF/SAMI WASHINGTON, DC 20330
NAVAL AIR SYSTEMS COMMAND ATTN LCDR G. BATES, PMS-405 WASHINGTON, DC 20361	ASSISTANT SECRETARY OF THE AIR FORCE (RESEARCH & DEVELOPMENT) WASHINGTON, DC 20330
NAVAL INTELLIGENCE SUPPORT CENTER ATTN M. KOONTZ 4301 SUITLAND RD SUITLAND, MD 20390	DIRECTOR AF OFFICE OF SCIENTIFIC RESEARCH BOLLING AFB ATTN NP, DIR OF PHYSICS ATTN M. A. STROSCIO ATTN R. BARKER WASHINGTON, DC 20332
NAVAL MATERIAL COMMAND ATTN T. HORWATH 2211 JEFFERSON DAVIS HWY WASHINGTON, DC 20301	
OFFICE OF NAVAL RESEARCH ATTN C. ROBERSON ATTN W. J. CONDELL 800 N. QUINCY ST ARLINGTON, VA 22217	
SUPERINTENDENT NAVAL POSTGRADUATE SCHOOL ATTN LIBRARY, CODE 2124 MONTEREY, CA 93940	
DIRECTOR NAVAL RESEARCH LABORATORY ATTN 2600, TECHNICAL INFO DIV ATTN 5540, LASER PHYSICS ATTN 6000, MTL & RADIATION SCI & TE ATTN B. RIPIN ATTN L. A. COSBY ATTN E. E. KEMPE	

DISTRIBUTION (Cont'd)

COMMANDER AF WEAPONS LAB, AFSC ATTN J. GENEROSA ATTN A. H. GUNTHER ATTN W. E. PAGE ATTN LR, LASER DEV DIV KIRTLAND AFB, NM 87117	B. K. DYNAMICS ATTN R. J. LINZ 15825 SHADY GROVE RD ROCKVILLE, MD 20850
WRIGHT-PATTERSON AFB FOREIGN TECHNOLOGY DIVISION/ETD ATTN J. BUTLER WRIGHT-PATTERSON AFB, OH 45433	BOEING AEROSPACE ATTN H. T. BUSHER PO BOX 3999 MS 8R-10 SEATTLE, WA 98124
CENTRAL INTELLIGENCE AGENCY ATTN R. PETTIS ATTN D. B. NEWMAN PO BOX 1925 WASHINGTON, DC 20013	BROOKHAVEN NATIONAL LABORATORY ASSOCIATED UNIVERSITIES, INC ATTN PHYSICS DEPT UPTON, LONG ISLAND, NY 11973
DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS ATTN LIBRARY ATTN CENTER FOR RADIATION RESEARCH ATTN C. TEAGUE ATTN E. MARX WASHINGTON, DC 20234	CALIFORNIA INSTITUTE OF TECHNOLOGY THEORETICAL ASTROPHYSICS ATTN K. THORNE 130-33 PASADENA, CA 91125
DEPARTMENT OF ENERGY ATTN O. P. MANLEY WASHINGTON, DC 20585	UNIVERSITY OF CALIFORNIA DEPT OF APPL PHYS & INFORMATION SCIENCE ATTN H. ALFVEN LA JOLLA, CA 92093
NATIONAL AERONAUTICS & SPACE ADMINISTRATION ATTN R. RAMATY GOODARD SPACE FLIGHT CENTER GREENBELT, MD 20771	CALIFORNIA INSTITUTE OF TECHNOLOGY JET PROPULSION LABORATORY ATTN J. C. HUBBARD IRVINE, CA 92717
ADMINISTRATOR NASA HEADQUARTERS WASHINGTON, DC 20546	UNIVERSITY OF CALIFORNIA ELECTRICAL ENGINEERING DEPARTMENT ATTN C. K. BIRDSALL BERKELEY, CA 94720
DIRECTOR NASA GOODWARD SPACE FLIGHT CENTER ATTN 250, TECH INFO DIV GREENBELT, MD 20771	UNIVERSITY OF CALIFORNIA PHYSICS DEPT ATTN A. N. KAUFMAN BERKELEY, CA 94720
AMES LABORATORY (ERDA) IOWA STATE UNIVERSITY ATTN NUCLEAR SCIENCE CATEGORY AMES, IA 50011	UNIVERSITY OF CALIFORNIA, DAVIS APPLIED SCIENCES ATTN J. DEGROOT DAVIS, CA 95616
ASTRONOMICAL INSTITUTE--ZONNENBURG 2 ATTN M. KUPERUS 3512 NL Utrecht, THE NETHERLANDS	UNIVERSITY OF CALIFORNIA, IRVINE DEPT OF PHYSICS ATTN G. BENFORD ATTN N. ROSTOKER ATTN M. MAYER IRVINE, CA 92717
THE AUSTRALIAN NATIONAL UNIVERSITY DEPT OF THEORETICAL PHYSICS ATTN D. B. MELROSE PO BOX 4 CANBERRA A.C.T. 2600 AUSTRALIA	UNIVERSITY OF CALIFORNIA, LOS ANGELES DEPT OF PHYSICS ATTN K. NOZAKI LOS ANGELES, CA 90025
	CAMBRIDGE UNIVERSITY INSTITUTE OF ASTRONOMY MADINGLEY ROAD ATTN M. REES CAMBRIDGE CB 3 0 HA, ENGLAND

DISTRIBUTION (Cont'd)

CHALMERS UNIV OF TECHNOLOGY
 INST OF ELECTROMAGNETIC FIELD
 THEORY
 ATTN H. WILHELMSSON
 S-41296 GOTHENBURG, SWEDEN

UNIVERSITY OF CHICAGO
 LAB FOR ASTROPHYSICS & SPACE RESEARCH
 ATTN E. PARKER
 CHICAGO, IL 60637

UNIVERSITY OF COLORADO
 DEPT OF ASTROGEOPHYSICS
 ATTN M. GOLDMAN
 ATTN D. SMITH
 BOULDER, CO 80309

COLUMBIA UNIVERSITY
 ATTN S. JOHNSTON
 216 MUDD BLDG
 NEW YORK, NY 10027

CORNELL UNIVERSITY
 ATTN R. LOVELACE
 ATTN R. N. SUDAN
 ATTN J. NATION
 ATTN D. HAMMER
 ATTN H. FLEISHMANN
 ITHACA, NY 14853

DARTMOUTH COLLEGE
 PHYSICS DEPT
 ATTN J. E. WALSH
 HANOVER, NH 03755

UNIVERSITY OF THE DISTRICT
 OF COLUMBIA
 VAN NESS CAMPUS
 DEPT OF PHYSICS
 ATTN M. J. SMITH
 4200 CONNECTICUT AVE, NW
 WASHINGTON, DC 20008

ENGINEERING SOCIETIES LIBRARY
 345 EAST 47TH STREET
 ATTN ACQUISITIONS DEPARTMENT
 NEW YORK, NY 10017

GENERAL DYNAMICS
 ATTN K. H. BROWN
 PO BOX 2507 MZ 44-21
 POMONA, CA 91769

UNIVERSITY OF ILLINOIS AT
 URBANA--CHAMPAIGN
 DEPT OF PHYSICS
 ATTN N. INAMOTO
 URBANA, IL 61801

ISTITUTO DI FISICA DELL' UNIVERSITA
 VIA CELORIA 16
 ATTN P. CALDIROLA
 ATTN C. PAIZIS
 ATTN E. SINDOMI
 20133 MILANO, ITALY

ISTITUTO DI FISICA DELL' UNIVERSITA
 ATTN A. CAVALIERE
 ATTN R. RUFFINI
 ROME, ITALY

ISTITUTO DI FISICA GENERALE
 DELL' UNIVERSITA
 CORSO M. D'AZEGLIO
 ATTN A. FERRARI
 46 TORINO, ITALY

JAYCOR
 ATTN E. CONRAD
 205 S. WHITING ST
 ALEXANDRIA, VA 22304

KAMAN SCIENCES CORP
 ATTN T. A. TUMOLILLO
 1500 GARDEN OF THE GODS
 COLORADO SPRINGS, CO 80907

LAWRENCE BERKELEY LAB
 ATTN A. FALTENS
 ATTN A. M. SESSLER
 ATTN D. KEEFE
 BERKELEY, CA 94720

LAWRENCE LIVERMORE LABORATORY
 UNIVERSITY OF CALIFORNIA
 ATTN L. MARTIN
 ATTN P. WHEELER
 ATTN H. S. CABAYAN
 ATTN R. BRIGGS
 ATTN E. K. MILLER
 ATTN R. ZIOLKOWSKI
 ATTN R. SCARPETTI
 ATTN R. MINICH
 ATTN S. BURKHART
 ATTN G. VOGTLIN
 ATTN V. W. SLIVINSKY
 ATTN S. L. YU
 ATTN G. CRAIG
 ATTN R. ALVAREZ
 ATTN G. LASCHE
 ATTN J. H. YEE
 ATTN H. W. MELDNER
 ATTN J. S. PETTIBONE
 ATTN A. J. POGGIO
 ATTN M. LOYD
 PO BOX 808
 LIVERMORE, CA 94550

CHIEF
 LIVERMORE DIVISION, FIELD COMMAND, DNA
 LAWRENCE LIVERMORE LABORATORY
 PO BOX 808
 LIVERMORE, CA 94550

LOS ALAMOS SCI LAB
 ATTN S. COLGATE
 ATTN D. P. DUBOIS
 ATTN D. FORSLAND
 ATTN C. M. FOWLER
 ATTN B. WARNER

DISTRIBUTION (Cont'd)

LOS ALAMOS SCI LAB (Cont'd)

ATTN J. LANDT
 ATTN R. HOEBERLING
 ATTN T. R. KING
 ATTN A. KADISH
 ATTN K. LEE
 ATTN R. W. FREYMAN
 ATTN A. W. CHURMARTZ
 ATTN L. M. DUNCAN
 ATTN D. B. HENDERSON
 ATTN L. E. THODE
 ATTN H. A. DAVIS
 ATTN T. KWAN
 PO BOX 1663
 LOS ALAMOS, NM 87545

UNIVERSITY OF MARYLAND
 DEPT OF ELECTRICAL ENGINEERING
 ATTN M. REISER
 ATTN W. DESTLER
 ATTN C. D. STRIFFLER
 ATTN M. T. RHEE
 COLLEGE PARK, MD 20742

UNIVERSITY OF MARYLAND
 DEPT OF PHYSICS & ASTRONOMY
 ATTN H. R. GRIEM
 ATTN E. OTT
 ATTN C. GREBOGI
 ATTN K. PAPADOPOULOS
 ATTN J. WEBER
 COLLEGE PARK, MD 20742

MASSACHUSETTS INSTITUTE
 OF TECHNOLOGY
 PLASMA FUSION CENTER
 ATTN G. BEKEFI
 ATTN J. BELCHER
 ATTN T. CHANG
 ATTN B. COPPI
 ATTN R. DAVIDSON
 ATTN C. LIN
 ATTN S. OLBERT
 ATTN B. ROSSI
 CAMBRIDGE, MA 02139

MAX PLANCK INST, FUR AERONOMIE
 3411 KATLENBURG
 ATTN J. AXFORD
 ATTN E. MARSH
 LINDAU 3, WEST GERMANY

MAX PLANCK INSTITUTE OF PHYSICS
 & ASTROPHYSICS
 ATTN M. NORMAN
 ATTN J. TRUMPER
 GARCHING BEI MUNICH, WEST GERMANY

MAXWELL LABORATORIES
 ATTN J. S. PEARLMAN
 8835 BALBOA AVE
 SAN DIEGO, CA 92123

MISSION RESEARCH CORP
 ATTN B. GODFREY
 ATTN D. J. SULLIVAN
 ATTN M. BOLLEN
 ATTN C. LONGMIRE
 ATTN D. VOSS
 1720 RANDOLPH RD, SE
 ALBUQUERQUE, NM 87106

UNIVERSITY OF NAGOYA
 DEPT OF PHYSICS
 ATTN S. HAYAKAWA
 NAGOYA, JAPAN

NATIONAL RESEARCH COUNCIL
 DIVISION OF PHYSICS
 ATTN P. JAANIMAGI
 OTTAWA, ONTARIO
 CANADA

NATIONAL SCIENCE FOUNDATION
 DIVISION OF ASTRONOMICAL SCIENCES
 ATTN M. AIZENMAN
 1800 G STREET, NW
 WASHINGTON, DC 20550

OAK RIDGE NATIONAL LABORATORY
 PO BOX Y
 ATTN A. C. ENGLAND
 OAK RIDGE, TN 37830

OCCIDENTAL RESEARCH CORP
 ATTN D. B. CHANG
 2100 SE MAIN
 IRVINE, CA 92713

OXFORD UNIVERSITY
 DEPARTMENT THEORETICAL PHYSICS
 1 KEBLE RD
 ATTN D. TER HAAR
 OXFORD OX1 3NP, ENGLAND

OXFORD UNIVERSITY
 ASTROPHYSICS DEPARTMENT
 SOUTH PARK ROAD
 ATTN A. HALL
 OXFORD--OXI 3 RQ, ENGLAND

OXFORD UNIVERSITY
 DEPT OF ENGINEERING SCIENCE
 PARKS ROAD
 ATTN L. M. WICKENS
 ATTN J. E. ALLEN
 OXFORD, UNITED KINGDOM

PHYSICS INTERNATIONAL
 ATTN B. A. LIPPMANN
 ATTN R. D. GENUARO
 2700 MERCER ST
 SAN LEANDRO, CA 94577

DISTRIBUTION (Cont'd)

PRINCETON UNIVERSITY
ASTROPHYSICAL SCIENCES
PETON HALL
ATTN R. KULSRUD
PRINCETON, NJ 08540

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
ATTN R. WHITE
PRINCETON, NJ 08540

QUEEN MARY COLLEGE
DEPT OF APPLIED MATH
MILE END ROAD
ATTN D. BURGESS
LONDON E1 4NS, ENGLAND

RUHR UNIVERSITY
ATTN W. SEBOLD
ATTN W. ZWINGMANN
4630 BOCHUM 1, WEST GERMANY

INSTITUTE OF EXPERIMENTAL PHYSICS
RUHR-UNIVERSITY
POSTFACH 2148
ATTN H. KUNZE
436 BOCHUM, WEST GERMANY

SACHS/FREEMAN ASSOC
ATTN R. A. MAHAFFEY
19300 GALLANT FOX
SUITE 214
BOWIE, MD 20715

SANDIA LABORATORIES
ATTN R. B. MILLER
ATTN J. POWELL
ATTN W. BALLARD
ATTN C. EKDAHL
ATTN W. D. BROWN
ATTN S. HUMPHRIES, JR.
ATTN G. ROHWEIN
ATTN K. PRESTWICH
4244 SANDIA LABS
ALBUQUERQUE, NM 87115

SCIENCE APPLICATIONS, INC
ATTN E. P. CORNET
ATTN A. DROBOT
ATTN E. KANE
1710 GOODRIDGE DR
PO BOX 1303
MCLEAN, VA 22012

SCIENCE APPLICATIONS, INC
ATTN F. CHILTON
1200 PROSPECT ST
PO BOX 2351
LA JOLLA, CA 92038

SERVICE DE CHEMIE PHYSIQUE
ATTN R. BALESCU
CAMPUS PLAINE U.L.B.
CODE POSTAL n° 231
BOULEVARD DU TRIOMPHE
10 50 BRUXELLES, BELGIUM

SPECOLA VATICANA
ATTN W. STOEGER, S. J.
I-00120 CITTA DEL VATICANO
ITALY

SRI INTERNATIONAL
ATTN G. AUGUST
ATTN C. L. RINO
333 RAVENSWOOD AVE
MENLO PARK, CA 94025

STANFORD UNIVERSITY
INST PLASMA RES
ATTN P. A. STURROCK
STANFORD, CA 94305

STERREWACHT-LEIDEN
ATTN C. A. NORMAN
ATTN P. ALLAN
2300 RA LEIDEN, THE NETHERLANDS

TEL-AVIV UNIVERSITY
DEPT OF PHYSICS & ASTRONOMY
ATTN G. TAUBER
TEL AVIV, ISRAEL

TELEDYNE BROWN ENGINEERING
CUMMINGS RESEARCH PARK
ATTN MELVIN L. PRICE, MS-44
HUNTSVILLE, AL 35807

INSTITUTE FOR THEORETICAL MECHANICS-
RUG
KRIJGSLAAN 271-S9
ATTN F. VERHEEST
B-9000 GENT, BELGIUM

UNIVERSITY OF TENNESSEE
DEPT OF ELECTRICAL ENGINEERING
ATTN I. ALEXEFF
ATTN J. R. ROTH
KNOXVILLE, TN 37916

UMEA UNIVERSITY
DEPT OF PLASMA PHYSICS
ATTN J. LARSSON
ATTN L. STENFLO
S-90187 UMEA
SWEDEN

UNIVERSITY OF WASHINGTON
DEPT OF PHYSICS
ATTN M. BAKER
SEATTLE, WA 98195

DISTRIBUTION (Cont'd)

WEIZMANN INSTITUTE
DEPT OF NUCLEAR PHYSICS
ATTN AMRI WANDEL
REHOVOT, ISRAEL

WESTERN RESEARCH CORP
ATTN R. O. HUNTER
225 BROADWAY, SUITE 1600
SAN DIEGO, CA 92101

US ARMY ELECTRONICS RESEARCH
& DEVELOPMENT COMMAND
ATTN COMMANDER, DRDEL-CG
ATTN TECHNICAL DIRECTOR, DRDEL-CT
ATTN PUBLIC AFFAIRS OFFICE, DRDEL-IN

HARRY DIAMOND LABORATORIES
ATTN CO/TD/TSO/DIVISION DIRECTORS
ATTN RECORD COPY, 81200
ATTN HDL LIBRARY, 81100 (3 COPIES)
ATTN HDL LIBRARY (WOODBRIDGE), 81100
ATTN TECHNICAL REPORTS BRANCH, 81300
ATTN LEGAL OFFICE, 97000
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN MORRISON, R. E., 13500
ATTN CHIEF, 21000
ATTN CHIEF, 21100
ATTN CHIEF, 21200
ATTN CHIEF, 21300
ATTN CHIEF, 21400
ATTN CHIEF, 21500
ATTN CHIEF, 22000
ATTN CHIEF, 22100
ATTN CHIEF, 22300
ATTN CHIEF, 22800
ATTN CHIEF, 22900
ATTN CHIEF, 20240
ATTN CHIEF, 11000
ATTN CHIEF, 13000
ATTN CHIEF, 13200
ATTN CHIEF, 13300
ATTN CHIEF, 15200

HARRY DIAMOND LABORATORIES (Cont'd)
ATTN BROWN, E., 00211
ATTN SINDORIS, A., 00211
ATTN GERLACH, H., 11100
ATTN LIBELO, L., 11200
ATTN LOKERSON, D., 11400
ATTN CROWNE, F., 13200
ATTN DROPKIN, H., 13200
ATTN LEAVITT, R., 13200
ATTN MORRISON, C., 13200
ATTN SATTLER, J., 13200
ATTN KULPA, S., 13300
ATTN SILVERSTEIN, J., 13300
ATTN FAZI C., 13500
ATTN LOMONACO, S., 15200
ATTN CORRIGAN, J., 20240
ATTN FARRAR, F., 21100
ATTN GARVER, R., 21100
ATTN TATUM, J., 21100
ATTN MERKEL, G., 21300
ATTN MCLEAN, B., 22300
ATTN OLDHAM, T., 22300
ATTN BLACKBURN, J., 22800
ATTN GILBERT, R., 22800
ATTN KLEBERS, J., 22800
ATTN VANDERWALL, J., 22800
ATTN BROMBORSKY, A., 22900
ATTN DAVIS, D., 22900
ATTN GRAYBILL, S., 22900
ATTN HUTTLIN, G. A., 22900
ATTN KEHS, A., 22900
ATTN KERRIS, K., 22900
ATTN LAMB, R., 22900
ATTN LINDSAY, D., 22900
ATTN LITZ, M., 22900
ATTN RUTH, B., 22900
ATTN STEWART, A., 22900
ATTN SOLN, J., 22900
ATTN WHITTAKER, D., 22900
ATTN ELBAUM, S., 97100
ATTN BRANDT, H. E., 22300
(60 COPIES)

END

FILED

5-84

DPIC