

❖ 图的线性表形式的表示:

顶点:形成线性表,其结点数据域指向该顶点参与的边形成的线性表

边:形成线性表,其结点数据域指向该边对应的另一个顶点

❖ 图的线性表表示:

(a) Linked lists

- ❖ 图的集合形式的表示:
 - **DEFINITION**: A digraph G consists of a set V, called the vertices of G, and, for all $v \in V$, a subset A_v of V, called the set of vertices adjacent to v. (A_v 称为v的邻接点集合)
 - Set as a bit string (位串):

```
template <int max_set>
struct Set {
    bool is_element[max_set];
};
```


- ❖ 图的集合形式的表示: (续)
 - Digraph as a bit-string set
 template <int max_size>
 class Digraph {
 int count; //number of vertices, at most max_size
 Set<max_size> neighbors[max_size];
 };
 - Digraph as an adjacency table (邻接表格、邻接矩阵) template <int max_size> class Digraph {

int count; //number of vertices, at most max_size
bool adjacency[max_size][max_size];

❖ 图的集合形式的表示: (续)

Adjacency sets

vertex	Set
0	{ 1, 2 }
1	{ 2, 3 }
2	Ø
3	{ 0, 1, 2 }

Adjacency table

定义:矩阵的元素为

——无向图的邻接矩 阵为对称矩阵

0	1	0	0	1	0
1	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	0	1
1	1	0	0	0	0
0	1	1	1	0	0

无向图的邻接矩阵为对称矩阵,有向图的邻接矩阵 通常为非对称矩阵

0	1	0	0	1
0	0	1	0	0
0	0	0	1	0
1	1	0	0	0
0	0	1	0	0

Weighted Graph Representation

∞	2	3	9	∞	∞
2	∞	∞	1	∞	∞
3	∞	∞	2	8	∞
9	1	2	∞	2	5
∞	∞	8	2	∞	2
00	90	90	5	2.	∞

❖ 图的邻接表表示(adjacency list)

```
typedef int Vertex;
  template <int max_size>
  class Digraph {
    int count; //number of vertices, at most max_size
    List<Vertex> neighbors[max_size];
  };
```


❖ 图的邻接表表示(adjacency list)

(c) Mixed

• 图的邻接表表示(adjacency list)

• 图的邻接表表示(adjacency list)

——可见,在有向图的邻接表中不易 找到指向该顶点的弧。

