HAI923 Machine Learning II An Overview

Konstantin Todorov

LIRMM - UM - CNRS

Programme HAI923

- Introduction et rappel des notions vues en M1
- Gradient descent
- Réseaux de neurones
- Sous-apprentissage et sur-apprentissage
- Extraction de trajectoire (si on a le temps)
- Deep learning
- Embeddings pour le texte et pour les graphes

Projet: classification d'images à l'aide des réseaux de neurones profonds

Organisation du module HAI923

Résponsables:

Pascal Poncelet et Konstantin Todorov⇒ prénom.nom@lirmm.fr

MCC:

- Soutenance des projets (en groupe)
- Encadrants: Pasal Poncelet, Salim Hafid

Moodle:

- Notebooks
- Supports
- Rendus
- Infos et actualités

Machine Learning?

Sentiment Classification

Machine Learning?

Could computers be made to *learn* and to *improve* automatically with experience?

Can we develop algorithms that can *learn from* and *make predictions* on data?

(Almost) like we humans do...

Types of Al

(A vision of)

Artificial Intelligence

Symbolic

Expert Systems

Logical rules

Computational theory

Sub-symbolic

Machine Learning

DATA

Connectionist theory

Supervised

Classification Regression...

Unsupervised

Reinforcement Learning
Clustering
Outlier Detection...

A Brief Al History Line

18 th - 20 th	Advances in probability theory (Bayes, Markov Chains,)		
1950	Turing: a learning machine that can become artificially intelligent		
1956	Darthmouth Conference: Minsky, McCarthy		
1957	Rosenblatt: the perceptron and its rise and fall		
1967	Pattern recognition with nearest neighbours		
1970-80s	Al winter, due to unrealised promises of Al research		
1980s	Expert systems, rule-based systems for NLP and Computer Vision		
1982	Recurrent neural networks		
1986	LeCun: back-propagation reinvented		
1989	Reinforcement learning		
1990s	Vapnik and Cortes: Support Vector Machines shadow NN		
	Statistics/probability-based NLP and CV: Hidden Markov Mode		
	CNNs		
2000s	NN regaining popularity due to advanced computational powers		
2010s	Rapid acceleration of Deep Learning research		
2010-20s	Representation learning, Vaswani's Transformers, Generative Al		

Defining the Machine Learning Problem

The Defining Question of ML

How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?

Computer Science

How can we build machines that solve problems, and which problems are inherently tractable?

Statistics

What can be inferred from data and a set of modelling assumptions, with what reliability?

A Multidisciplinary Field

Artificial Intelligence

Probabilities

Statistics

Philosophy

Machine Learning Information Theory

Psychology & Neuroscience

Control Theory

Optimization & Computational Complexity

A Definition of Machine Learning

"A computer program is said to learn from experience **E** with respect to some class of tasks **T** and a performance measure **P**, if its performance at tasks in T, as measured by P, improves with experience E."

- Tom M. Mitchell

- An operational, not a cognitive or an etymological definition
- A. Turing: Can machines think? →
 Can machines do what thinking beings can do?

Depending on how we define T, P, and E, the learning task might also be called by names such as data mining, classification, clustering, reinforcement learning, etc...

A Definition of Machine Learning

An example: filtering spam from emails

- T task: decide whether an email is spam or not
- P performance measure: the percent of correctly filtered emails
- E training experience: a dataset of emails with associated classes (spam / email)

A long list of applications...

web page ranking, recommendation, automatic translation, autonomous cars, diagnostics, face recognition...

Kinds of Machine Learning

Supervised Machine Learning

Infer input/output functions from labelled data.

Unsupervised Machine Learning

Infer a latent structure from unlabelled data.

Maximize inter-cluster distances

Data Representation: Features

Remember our spam filtering example: data-points are emails.

Model instances as **vectors** described by a number of **features** (variables, attributes).

What features best describe instances and allow to separate classes or form clusters? → *Feature (variable) selection*

- remove noisy features
- analyse their explanatory strength
- reduce dimensionality

Model Selection and Assessment

Overfitting vs. Generalisation

- how well the learned function performs on unseen data?
- select a model (a set of parameters) that generalises well
- evaluate and avoid overfitting

Model Selection, Model Validation

Model Validation

Confusion matrix and accuracy

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Model Validation

Cross-validation

Classical Methods, Tools and Applications (Examples)

K Nearest Neighbours

Bayesian Classifiers

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Reinforcement Learning

observation

Support Vector Machines

Neural Networks / Deep Learning

Cluster Analysis

K Nearest Neighbours

Financial distress prediction

Process control

Fraud detection

Medical diagnosis

Bayesian Classifiers

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Text Categorization Automatic translation Web search Computer vision Image retrieval

autonomous cars

Trading stradegies

Gene clustering Topic discovery

Market segmentation

Robotics

Driving

Playing games

internal state environment action

Learning

Reinforcement

observation

Support Vector **Machines**

Neural Networks / Deep Learning

Cluster Analysis

Decision trees

Supervised / Classification

Fits data into a tree
Attributes → nodes
Values → branches
Easy to interpret
Overfitting occurs often

From T. Mitchell's "Machine Learning"

Applications

Biomedical engineering: selecting features for implantable devices

Manufacturing, production: process control

Molecular biology: analyzing amino acid sequences

Fraud detection

Bayesian Classifiers

Supervised / Classification

Creates a model per class, using probability theory.

Attributes are assumed independent.

Probabilities are estimated from data.

Applications

Text categorisation
Speech recognition
Automatic medical diagnosis

$$P(class | data) = \frac{P(data | class) \times p(class)}{p(data)}$$

K Nearest Neighbours

Supervised / Classification

Lazy instance-based learners. Uses distance calculation over all instance pairs.

Applications

Cancer diagnosis
Financial distress prediction
Computer vision

margin

Support Vector Machines

Supervised / Classification

Learns a maximum margin separating hyperplane.

Deals with non-linearly separable data Uses kernels

hyper plane support vectors

Applications

Text categorisation
Automatic translation
Computer vision
Handwriting / face / facial expression recognition
Content-based image retrieval

Reinforcement Learning

Unsupervised or Semi-supervised

Take actions according to rewards.

Behaviour optimisation with respect to the environment.

Applications

Driving autonomous vehicles
Robot vision
Playing games

Neural Networks / Deep Learning

Supervised and Unsupervised

Bio-inspired: a complex net of interconnected neurones

Applications

Driving autonomous vehicles
Computer vision
Speech / face / handwriting recognition
Sensor data interpretation
Image retrieval
Text and language models

Cluster Analysis

Unsupervised / Clustering

Group together instances into subsets Maximise intra-cluster instance similarities and inter-cluster distances.

K-means, DBSCAN, Descriptive Statistics, ...

Applications

Market segmentation
Gene clustering
News summarisation
Topic discovery

Deep neural networks and representation learning

Deep Learning?

Used in many domains: language models, computer vision, robotics, natural language processing (NLP), music, arts

For example, in NLP and speech:

- Sentiment Analysis
- Machine Translation (Google Translate)
- Question Answering
 Systems (Bot)
- Language models to generate Text (GPT-3)
- Speech Recognition automatic subtitling (Youtube)

Deep Learning

Traditional machine learning: heavy feature engineering to represent data

- Text Analysis: Bag of Words
- Image Analysis: Hog (Histogram of Oriented gradient), SIFT (Scale Invariant Feature Transform)

Deep learning: no need for hand-crafted features

Deep Learning / Representation Learning

- ⇒ Learn automatically features / vector representations
- ⇒ Perform various prediction / classification tasks
- ⇒ Do both! Start doing machine *learning*, instead of 80% manual feature design and selection

A class of machine learning techniques

Exploit many layers of (non-)linear information processing for supervised or unsupervised feature extraction and transformation and pattern analysis and classification.

Most commonly, based on neural networks with several hidden layers.

Representation Learning

A set of methods that allow a machine to be fed with raw

data and to automatically discover the needed <u>vector</u> representation

for detection, classification or prediction tasks.

Distributional semantics

 Look at the neighbourhood (context) of a word in many different documents (large corpora).

"You shall know a word by the company it keeps"

(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in saying that Europe needs unified banking regulation to replace the hodgepodge

Predict the textual context == understand the meaning of a word.

Word meaning defined by vectors

We will build a dense vector for each word type, chosen so that it is good at predicting other words appearing in its context

... those other words also being represented by vectors ... it all gets a bit recursive

linguistics = 0.286 0.792 -0.177 -0.107 0.109 -0.542 0.349 0.271

Skip-gram prediction model

Goal: → Choose vector representations of words that maximize the probability distributions of context words.

Assumption:

→ there is 1 probability distribution (all words follow the same law)

Word meaning in a vector

The result: → close in meaning words are represented by close in a vector space points.

Vectors of high dimensions

Difficult to interpret...

→ Dimensionality reduction techniques (e.g. PCA)

Embeddings are astonishing

Some interesting outcomes... for example, analogies

man:woman ::

king: x?

vec(man) vec(woman) +
vec(king) = ???

More analogies

```
Paris – France + Italy ----> Rome
bigger – big + cold ----> colder
sushi – Japan + Germany ----> bratwurst
```


Hybrid AI: Combining Knowledge Representation with ML

Hybrid AI?

- In the 70s-80s: neural networks are failing
 ⇒ the future belongs to symbolic approaches!
- In the early 2000s: symbolic approaches don't seem to work
 ⇒ long live the deep neural networks!

How about taking the best of combining machine learning with symbolic approaches?

Expert systems

Mimic the decision making abilities of humans in a specific field (medicine, finance, etc.)

A knowledge base of facts (well, knowledge) about the specific field

A reasoning engine that infers new knowledge or shapes a decision

Knowledge Bases / Knowledge Graphs

Still in the focus today

- growing importance
- a compelling abstraction for organizing world's knowledge over the internet
- a way to integrate information extracted from multiple data sources

- relations between entities
- play a central role in machine learning as a method to incorporate world knowledge and for explaining what is learned

High level human structured and curated semantics
Precious sources of knowledge for machines and algorithms *and* humans

The web and hybrid AI?

From a web of documents towards a web of structured knowledge and facts

A web of structured knowledge and facts

A paradigm shift: from keywords-based to entity-centric search

A growing effort in *building and publishing structured data* on the Web

Graph Neural Networks

Discover automatically new drugs, predict gene adaptation to new diseases, improve transportation, model and predict social network behaviour, study online discourse...

Graph Neural Networks

Represent nodes and relations as **vectors** - **graph embeddings**. Learning these vectors by requiring them to have certain properties

- e.g. place more "similar" nodes closer in the embedding space

Applying Graph Embeddings

Tools for Doing ML

Tools and Their Usefulness

A long list of open source tools and software...

Scikit-learn, Torch, Keras, Weka, R, RapidMiner*,...

Often balck boxes for users.

- → How to implement a given ML solution (which API)?
 Algorithms don't change from one API to another...
- → What and how much data is needed? How to select a model? Which method for what problem?

An empirical science... with some heuristics.

- → How deep an understanding of the algorithms is required? Investing in statistical inference:
 - hiring a statistician / data scientist, training engineers

ML and Hybrid AI projects at LIRMM

Al4Sci: A Hybrid Al Approach for Interpretation of Scientific Online Discourse

- computational methods at the intersection of machine learning, distributional semantics and structured knowledge
- trace, detect, interpet, link and classify scientific claims in online news & social media

Fighting back science-related mis- and disinformation online Create tools for social scientists and journalists

Beyond Facts: a Web of Claims and Discourse

ANR DACE-DL: Data Centric Al Driven Data Linking

Doing linked knowledge graphs by using graph neural networks and ML

Establishing typed links between resources across two knowledge graphs.

⇒ Difficult when data are highly heterogeneous or domain specific!

http://yago-knowledge.org/resource/Ludwig_van_Beethoven, owl:sameAs, http://dbpedia.org/resource/Ludwig_van_Beethoven

Human genetics, agro-ecology...

Collaboration with the IGH - the Human Genetics Institute Montpellier

- Predict the adaptive defensive strategy and immune response of human organisms when exposed to pathogens

Collaboration with Elzeard, a Bardeaux-based start-up in agro-ecology

- Assist farmers in the culture rotation processes in order to decrease the use of pesticides and optimize crops

Thank you for listening.