

M54/74HCT125 M54/74HCT126

QUAD BUS BUFFERS (3-STATE)

- HIGH SPEED
 - $t_{PD} = 12 \text{ ns} (TYP.) AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.) AT 25 °C}$
- OUTPUT DRIVE CAPABILITY
 15 LSTTL LOADS
- BALANCED PROPAGATION DELAYS
 tplh = tphl
- SYMMETRICAL OUTPUT IMPEDANCE IOL = IOH = 6 mA (MIN.)
- COMPATIBLE WITH TTL OUTPUTS V_{IH} = 2V (MIN.) V_{IL} = 0.8V (MAX)
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS125/126

DESCRIPTION

The M54/74HCT125/126 are high speed CMOS QUAD BUS BUFFER (3-STATE) FABRICATED IN SILICON GATE C²MOS technology. They have the same high speed performance of LSTTL combined with true CMOS low power consumption. These devices require the same 3-STATE control input G to be taken high to make the output go into the high impedance state. This integrated circuit has input and output characteristics that are fully compatible with 54/74 LSTTL logic families. M54/74HCT devices are designed to directly interface HSC²MOS systems with TTL and NMOS components. They are also plug in replacements for LSTTL devices giving a reduction of power consumption. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

October 1993 1/10

CHIP CARRIER

TRUTH TABLE (HCT125)

Α	G	Υ
X	Н	Z
L	L	L
Н	L	Н

TRUTH TABLE (HCT126)

Α	G	Y
X	L	Z
L	Н	L
Н	Н	Н

PIN DESCRIPTION (HCT125)

PIN No	SYMBOL	NAME AND FUNCTION
1, 4, 10, 13	G1 to G4	Output Enable Input
2, 5, 9, 12	A1 to A4	Data Inputs
3, 6, 8, 11	Y1 to Y4	Data Outputs
7	GND	Ground (0V)
14	Vcc	Positive Supply Voltage

PIN DESCRIPTION (HCT126)

PIN No	SYMBOL	NAME AND FUNCTION			
1, 4, 10, 13	G1 to G4	Output Enable Input			
2, 5, 9, 12	A1 to A4	Data Inputs			
3, 6, 8, 11	Y1 to Y4	Data Outputs			
7	GND	Ground (0V)			
14	Vcc	Positive Supply Voltage			

IEC LOGIC SYMBOLS

CIRCUIT DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Source Sink Current Per Output Pin	± 35	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P_{D}	Power Dissipation	500 (*)	mW
T_{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	4.5 to 5.5	V
VI	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
Тор	Operating Temperature: M54HC Series M74HC Series	-55 to +125 -40 to +85	°C
t _r , t _f	Input Rise and Fall Time (V _{CC} = 4.5 to 5.5V)	0 to 500	ns

DC SPECIFICATIONS

		Test Conditions						Value				
Symbol Parameter		V cc (V)				_A = 25 ^c C and 7			85 °C HC	1	125 °C HC	Unit
		(۷)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	4.5 to 5.5			2.0			2.0		2.0		V
V _{IL}	Low Level Input Voltage	4.5 to 5.5					0.8		0.8		0.8	V
V _{OH}	High Level Output Voltage	4.5	V _I = V _{IH}	Ι _Ο =-20 μΑ	4.4	4.5		4.4		4.4		V
		4.5	or V _{IL}	I _O =-6.0 mA	4.18	4.31		4.13		4.10		V
V _{OL}	Low Level Output Voltage	4.5	V _I = V _{IH}	Ι _Ο = 20 μΑ		0.0	0.1		0.1		0.1	V
		4.5	or V _{IL}	Io= 6.0 mA		0.17	0.26		0.33		0.4	V
II	Input Leakage Current	5.5	V _I = '	V _{CC} or GND			±0.1		±1		±1	μΑ
Icc	Quiescent Supply Current	5.5	V _I = '	V _{CC} or GND			4		40		80	μΑ
l _{OZ}	3 State Output Off State Current	6.0		$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.5		±5		±10	μΑ
Δl _{CC}	Additional worst case supply current	5.5	V _I : V Othe	Input pin = 0.5V or I = 2.4V er Inputs at C or GND Io= 0			2.0		2.9		3.0	mA

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 6 \text{ ns}$)

		Te	est Co	nditions	Value							
Symbol	Parameter	V _{CC}	C L (pF)	_		T _A = 25 °C 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(۷)	(pr)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition Time	4.5	50			7	12		15		18	ns
t _{PLH}	Propagation	4.5	50			13	21		26		32	ns
t _{PHL}	Delay Time	4.5	150			17	27		34		41	ns
t _{PZL}	3 State Output	4.5	50	$R_L = 1 K\Omega$		15	24		30		36	ns
tpzh	Enable Time	4.5	150	$R_L = 1 K\Omega$		19	30		38		45	ns
t _{PLZ}	3 State Output Disable Time	4.5	50	$R_L = 1 \text{ K}\Omega$		17	24		30		36	ns
C _{IN}	Input Capacitance					5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance					56						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$

TEST CIRCUIT Icc (Opr.)

SWITCHING CHARACTERISTICS TEST WAVEFORM

Plastic DIP14 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

Ceramic DIP14/1 MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7.0			0.276	
D		3.3			0.130		
E	0.38			0.015			
e3		15.24			0.600		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	1.52		2.54	0.060		0.100	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO14 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	8.55		8.75	0.336		0.344
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8	_	4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
D.III.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

