Math 240: Midterm 2 Q6d

Daniel Ko

Spring 2020

Given positive integers a and b, we want to compute some integers s and t such that

$$gcd(a, b) = sa + tb$$

Consider the following iterative program LIN_COMB (a,b) which is supposed to accomplish this: Initialize variables c=a, d=b, $s_0=1$, $t_0=0$, $s_1=0$, $t_1=1$ While $c\neq d$, do the following:

If c< d, then decrement d by c, decrement s_1 by s_0 , decrement t_1 by t_0

Else if c > d, then decrement a by c, decrement s_1 by s_0 , decrement t_1 by t_0 Else if c > d, then decrement c by d, decrement s_0 by s_1 , decrement t_0 by t_1 Return s_0 and t_0

§1 6d

Use the well-ordering principle and (c) to prove that LIN COMB satisfies termination.

Proof. We prove that LIN_COMB terminates. Let c_n and d_n represent the values of c and d after n iterations respectively. Consider the following two cases

- 1. a = bThe algorithm terminates because a = b = c = d.
- 2. $a \neq b$

Let c_n and d_n represent the values of c and d after n iterations respectively. Suppose at the nth iteration, $c_n \neq d_n$. Regardless of the values of c_n and d_n , we can observe that $c_{n+1}+d_{n+1} \leq c_n+d_n-1$. This is because of the following statements. If $c_n > d_n$, then $c_{n+1}=c_n-d_n$. If $c_n < d_n$, then $d_{n+1}=d_n-c_n$. In (c) we have proved that $(c>0) \land (d>0)$ is a loop invariant. This necessarily implies that $c_{n+1} \leq c_n-1$ or $d_{n+1} \leq d_n-1$. So in either case, the sum of c_{n+1} and d_{n+1} will be at least one less the sum of c_n and d_n .

By the well ordering principle, since c_n+d_n is strictly decreasing, there be an iteration s such that c_s+d_s is the smallest sum which is bounded by $(c>0) \land (d>0)$. When this is the case, $c_s=d_s$ because if $c_s\neq d_s$, then you can once again decrement c by d_s or d by c_s and this will lead to a contradiction. Thus, the algorithm terminates if $a\neq b$.

Therefore, LIN COMB satisfies termination.