Fundamental mathematical concepts of ML (Linear & Non-Linear Models)

October 21, 2017

Model equations are given as follows:

Model name	Equation
AR(p)	$\hat{x}[t] = \sum_{i=1}^{p} (\alpha_i \times x_{t-i}) + \epsilon_t$
$\mathrm{MA}(\mathrm{q})$	$\hat{x}[t] = \mu + \epsilon_t + \sum_{i=1}^{q} (\beta_i \times \epsilon_{t-i})$
ARMA(p, q)	$\hat{x}[t] = \sum_{i=1}^{p} (\alpha_i \times x_{t-i}) + \sum_{i=1}^{q} (\beta_i \times \epsilon_{t-i}) + \epsilon_t$
ARIMA(p, q, d)	$\hat{x}[t] = x_t - x_{t-1} \text{ (details omitted)}$
ARCH(q)	$\epsilon_t = s_t z_t \text{ (details omitted)}$
GARCH(p, q)	$y_t = x_t' + \epsilon_t$ (details omitted)
Neural Network (sigmoid SLP)	$f(x) = \begin{cases} 1 & \text{if } \sigma(\Sigma_i^m w_i x_i + b) > 0 \\ 0 & \text{otherwise} \end{cases}$
Gradient Descent	solve $\nabla C(x, y)$ to find $\frac{\partial C}{\partial w}(w) = 0$
NARMAX(p)	$x_{t+s} = \beta_0 + \sum_{j=1}^{D} B_j g(\gamma_{0j} + \sum_{i=1}^{m} \gamma_{ij} x_{t-(i-1)d})$

where

 ϵ is gaussian white noise (GWN)

 $\alpha \& \beta$ are model coefficients μ is the expected value of x σ is the sigmoid function ϕ ware the weights of the neuron

C(x,y) is the cost function