PROBLEM 1

In [25]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings("ignore")
```

In [6]:

```
#reading the data
df=pd.read_csv('Consumo_cerveja.csv')
df
```

Out[6]:

0 2015- 01-01 27,3 23,9 32,5 0 0.0 25 1 2015- 01-02 27,02 24,5 33,5 0 0.0 28	32.5 0 00 20			Minima (C)	Media (C)		
1 01-02 27,02 24,5 33,5 0 0.0 28	0 0.0 23	0	32,5	23,9	27,3		0
	33,5 0 0.0 26	0	33,5	24,5	27,02		1
2 2015- 01-03 24,82 22,4 29,9 0 1.0 30	29,9 0 1.0 36	0	29,9	22,4	24,82	2015- 01-03	2
3 2015- 01-04 23,98 21,5 28,6 1,2 1.0 29	28,6 1,2 1.0 29	1,2	28,6	21,5	23,98		3
4 2015- 01-05 23,82 21 28,3 0 0.0 28	28,3 0 0.0 26	0	28,3	21	23,82		4
<u></u>							
936 NaN NaN NaN NaN NaN	NaN NaN NaN	NaN	NaN	NaN	NaN	NaN	936
937 NaN NaN NaN NaN NaN NaN	NaN NaN NaN	NaN	NaN	NaN	NaN	NaN	937
938 NaN NaN NaN NaN NaN	NaN NaN NaN	NaN	NaN	NaN	NaN	NaN	938
939 NaN NaN NaN NaN NaN NaN	NaN NaN NaN	NaN	NaN	NaN	NaN	NaN	939
940 NaN NaN NaN NaN NaN	NaN NaN NaN	NaN	NaN	NaN	NaN	NaN	940

941 rows × 7 columns

In [7]:

df.describe()

Out[7]:

Final de Semana Consumo de cerveja (litros)

count	365.000000	365.000000
mean	0.284932	25.401367
std	0.452001	4.399143
min	0.000000	14.343000
25%	0.000000	22.008000

```
        50%
        Final de Semana
        Consumo de cerveja (fitros)

        75%
        1.000000
        28.631000

        max
        1.000000
        37.937000
```

In [8]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 941 entries, 0 to 940
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Data	365 non-null	object
1	Temperatura Media (C)	365 non-null	object
2	Temperatura Minima (C)	365 non-null	object
3	Temperatura Maxima (C)	365 non-null	object
4	Precipitacao (mm)	365 non-null	object
5	Final de Semana	365 non-null	float64
6	Consumo de cerveja (litros)	365 non-null	float64

dtypes: float64(2), object(5)

memory usage: 51.6+ KB

In [9]:

df.shape

Out[9]:

(941, 7)

In [10]:

#removing nan values and duplicate values
df=df.dropna(axis=0).reset_index(drop=True)
df.drop_duplicates()

Out[10]:

	Data	Temperatura Media (C)	Temperatura Minima (C)	Temperatura Maxima (C)	Precipitacao (mm)	Final de Semana	Consumo de cerveja (litros)
0	2015- 01-01	27,3	23,9	32,5	0	0.0	25.461
1	2015- 01-02	27,02	24,5	33,5	0	0.0	28.972
2	2015- 01-03	24,82	22,4	29,9	0	1.0	30.814
3	2015- 01-04	23,98	21,5	28,6	1,2	1.0	29.799
4	2015- 01-05	23,82	21	28,3	0	0.0	28.900
•••							
360	2015- 12-27	24	21,1	28,2	13,6	1.0	32.307
361	2015- 12-28	22,64	21,1	26,7	0	0.0	26.095
362	2015- 12-29	21,68	20,3	24,1	10,3	0.0	22.309
363	2015- 12-30	21,38	19,3	22,4	6,3	0.0	20.467
364	2015- 12-31	24,76	20,2	29	0	0.0	22.446

365 rows × 7 columns

```
In [11]:
```

```
#converting the data into float
import re
for column in ['Temperatura Media (C)','Temperatura Minima (C)','Temperatura Maxima (C)'
,'Precipitacao (mm)']:
    df[column]=df[column].apply(lambda x: np.float(re.sub(r',','.',x)))
```

In [12]:

```
#splitting data to month year and day
df["Data"]=pd.to_datetime(df["Data"])
df["Year"]=df["Data"].apply(lambda x: x.year)
df["Month"]=df["Data"].apply(lambda x: x.month)
df["Day"]=df["Data"].apply(lambda x: x.day)
df=df.drop("Data",axis=1)
```

In []:

In [13]:

df.head()

Out[13]:

	Temperatura Media (C)	Temperatura Minima (C)	Temperatura Maxima (C)	Precipitacao (mm)	Final de Semana	Consumo de cerveja (litros)	Year	Month	Day
0	27.30	23.9	32.5	0.0	0.0	25.461	2015	1	1
1	27.02	24.5	33.5	0.0	0.0	28.972	2015	1	2
2	24.82	22.4	29.9	0.0	1.0	30.814	2015	1	3
3	23.98	21.5	28.6	1.2	1.0	29.799	2015	1	4
4	23.82	21.0	28.3	0.0	0.0	28.900	2015	1	5

In [14]:

df.nunique()

Out[14]:

Temperatura Media (C)	277
Temperatura Minima (C)	110
Temperatura Maxima (C)	151
Precipitacao (mm)	93
Final de Semana	2
Consumo de cerveja (litros)	359
Year	1
Month	12
Day	31
dtype: int64	

In [15]:

#handling outliers
df.describe(include='all')

Out[15]:

	Temperatura Media (C)	Temperatura Minima (C)	Temperatura Maxima (C)	Precipitacao (mm)	Final de Semana	Consumo de cerveja (litros)	Year	Month	Day
count	365.000000	365.000000	365.000000	365.000000	365.000000	365.000000	365.0	365.000000	365.000000
mean	21.226356	17.461370	26.611507	5.196712	0.284932	25.401367	2015.0	6.526027	15.720548
std	3.180108	2.826185	4.317366	12.417844	0.452001	4.399143	0.0	3.452584	8.808321

min	Temperatora Media (C)	Tem <u>peratora</u> Minima (C)	Tenperatura Maxima (C)	Precipitação	o Fioa bde Semana	Consumo de 14.343000 cerveja	2015.0	1.000000	1.000 <u>000</u>
25%	19.020000	15.300000	23.800000	(mm) 0.000000	0.000000	22.di#000	2015.0	4.000000	8.000000
50%	21.380000	17.900000	26.900000	0.000000	0.000000	24.867000	2015.0	7.000000	16.000000
75%	23.280000	19.600000	29.400000	3.200000	1.000000	28.631000	2015.0	10.000000	23.000000
max	28.860000	24.500000	36.500000	94.800000	1.000000	37.937000	2015.0	12.000000	31.000000

```
In [16]:
#outliers
for column in df.columns[0:-1]:
     plt.figure(figsize=(10,1))
     sns.boxplot(x=(column), data=df)
                              18
                                        20
                                                  22
                                    Temperatura Media (C)
            12
                                   16
                                                                      22
                        14
                                               18
                                                          20
                                                                                 24
                                    Temperatura Minima (C)
      15
                                                             30
                                   Temperatura Maxima (C)
                     20
                                                                        80
                                                       60
                                      Precipitacao (mm)
                    0.2
                                    0.4
                                                                                    1.0
    0.0
                                                    0.6
                                                                    0.8
                                      Final de Semana
      15
                       20
                                        25
                                                         30
                                                                          35
                                  Consumo de cerveja (litros)
       1925
                 1950
                           1975
                                     2000
                                                                   2075
                                                                             2100
                                               2025
                                                         2050
                                                                                       2125
                                                       8
                                                                      10
                                                                                    12
                                           Month
```

In [18]:

```
corelation=df.corr(method='pearson')
corelation
plot=df.hist(figsize=(10,8))
```


In [19]:

```
#data splitting and training and testing
#splitting
X=df.drop("Consumo de cerveja (litros)",axis=1).copy()
Y=df["Consumo de cerveja (litros)"].copy()
```

In [20]:

Χ

Out[20]:

	Temperatura Media (C)	Temperatura Minima (C)	Temperatura Maxima (C)	Precipitacao (mm)	Final de Semana	Year	Month	Day
0	27.30	23.9	32.5	0.0	0.0	2015	1	1
1	27.02	24.5	33.5	0.0	0.0	2015	1	2
2	24.82	22.4	29.9	0.0	1.0	2015	1	3
3	23.98	21.5	28.6	1.2	1.0	2015	1	4
4	23.82	21.0	28.3	0.0	0.0	2015	1	5
	•••	•••						
360	24.00	21.1	28.2	13.6	1.0	2015	12	27
361	22.64	21.1	26.7	0.0	0.0	2015	12	28
362	21.68	20.3	24.1	10.3	0.0	2015	12	29
363	21.38	19.3	22.4	6.3	0.0	2015	12	30
364	24.76	20.2	29.0	0.0	0.0	2015	12	31

365 rows × 8 columns In [21]:

```
Υ
Out[21]:
0
      25.461
1
      28.972
2
      30.814
3
      29.799
4
      28.900
       . . .
360
     32.307
     26.095
361
     22.309
362
363
     20.467
364
      22.446
Name: Consumo de cerveja (litros), Length: 365, dtype: float64
In [22]:
X train, X test, y train, y test=train test split(X,Y,test size=0.33,random state=24)
In [23]:
#feature scaling
sc=StandardScaler()
X train=sc.fit transform(X train)
X test=sc.transform(X test)
In [26]:
\#LR
regressor=LinearRegression()
regressor.fit(X_train,y_train)
print(regressor.intercept_)
print(regressor.coef )
25.55133606557377
[-3.10342010e-01 1.81660610e-01 2.79429927e+00 -6.69461945e-01
  2.44604248e+00 -8.88178420e-16 2.64216219e-01 -8.87725270e-02]
In [ ]:
```

```
In [1]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings("ignore")
In [2]:
df=pd.read csv('california housing train.csv')
Out[2]:
       longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median
         -114.31
                                                                                       472.0
    0
                   34.19
                                       15.0
                                                 5612.0
                                                                1283.0
                                                                           1015.0
                                                                                                     1.4936
         -114.47
                   34.40
                                       19.0
                                                 7650.0
                                                                1901.0
                                                                           1129.0
                                                                                       463.0
                                                                                                     1.8200
    1
         -114.56
                   33.69
                                       17.0
                                                  720.0
                                                                 174.0
                                                                            333.0
                                                                                       117.0
                                                                                                     1.6509
    3
         -114.57
                   33.64
                                       14.0
                                                 1501.0
                                                                 337.0
                                                                            515.0
                                                                                       226.0
                                                                                                     3.1917
         -114.57
                   33.57
                                       20.0
                                                 1454.0
                                                                 326.0
                                                                            624.0
                                                                                       262.0
                                                                                                     1.9250
16995
         -124.26
                   40.58
                                       52.0
                                                 2217.0
                                                                 394.0
                                                                            907.0
                                                                                       369.0
                                                                                                     2.3571
         -124.27
                   40.69
                                       36.0
                                                 2349.0
                                                                 528.0
                                                                           1194.0
                                                                                       465.0
                                                                                                     2.5179
16996
16997
         -124.30
                   41.84
                                       17.0
                                                 2677.0
                                                                 531.0
                                                                           1244.0
                                                                                       456.0
                                                                                                     3.0313
16998
         -124.30
                   41.80
                                       19.0
                                                 2672.0
                                                                 552.0
                                                                           1298.0
                                                                                       478.0
                                                                                                     1.9797
16999
         -124.35
                   40.54
                                       52.0
                                                 1820.0
                                                                 300.0
                                                                            806.0
                                                                                       270.0
                                                                                                     3.0147
17000 rows × 9 columns
In [4]:
df.shape
Out[4]:
(17000, 9)
In [7]:
df.isnull()
Out[7]:
```

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	media
0	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	
2	. False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	
16995	False	False	False	False	False	False	False	False	
40000									

16996	raise longitude	⊦aise latitude	raise housing_median_age	raise total_rooms	raise total_bedrooms	raise population	raise households	raise median_income media
16997	False	Faise	False	Faise	False	Faise	False	Faise
16998	False	False	False	False	False	False	False	False
16999	False	False	False	False	False	False	False	False
17000 r	rows × 9 d	columns						<u>,</u>

In []:

#data splitting and training and testing
#splitting
X=df.drop("Consumo de cerveja (litros)",axis=1).copy()
Y=df["Consumo de cerveja (litros)"].copy()

PROGRAM 3

import numpy as np
import pandas as pd
import seaborn as sns

import matplotlib.pyplot as plt

In [24]:

```
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.linear model import LinearRegression
from sklearn.metrics import r2 score
In [17]:
df=pd.read csv('insurance.csv')
df
Out[17]:
                   bmi children smoker
     age
            sex
                                          region
                                                    charges
                                  yes southwest 16884.92400
      19 female 27.900
                             0
   0
      18
           male 33.770
                             1
                                       southeast
                                                1725.55230
                                   no
      28
           male 33.000
                                       southeast
                                                 4449.46200
                                   no
      33
           male 22.705
                             0
                                       northwest 21984.47061
                                   no
           male 28.880
      32
                             0
                                   no
                                       northwest
                                                 3866.85520
  ---
       ...
              ...
                            ...
1333
      50
           male 30.970
                             3
                                       northwest 10600.54830
      18 female 31.920
                                                2205.98080
1334
                             0
                                       northeast
                                   no
1335
       18 female 36.850
                                   no
                                       southeast
                                                 1629.83350
1336
      21 female 25.800
                             0
                                       southwest 2007.94500
1337
      61 female 29.070
                                       northwest 29141.36030
1338 rows × 7 columns
In [18]:
df.shape
Out[18]:
(1338, 7)
In [19]:
df.isnull().sum()
Out[19]:
age
              0
sex
              0
bmi
children
             0
             0
smoker
              0
region
charges
              0
dtype: int64
In [20]:
```

```
y=df['charges']
x=df.drop('charges',axis=1)
x1=pd.get_dummies(x,drop_first=True,columns=['sex','smoker','region'])
x1
```

Out[20]:

	age	bmi	children	sex_male	smoker_yes	region_northwest	region_southeast	region_southwest
0	19	27.900	0	0	1	0	0	1
1	18	33.770	1	1	0	0	1	0
2	28	33.000	3	1	0	0	1	0
3	33	22.705	0	1	0	1	0	0
4	32	28.880	0	1	0	1	0	0
1333	50	30.970	3	1	0	1	0	0
1334	18	31.920	0	0	0	0	0	0
1335	18	36.850	0	0	0	0	1	0
1336	21	25.800	0	0	0	0	0	1
1337	61	29.070	0	0	1	1	0	0

1338 rows × 8 columns

In [41]:

```
X_train, X_test, y_train, y_test=train_test_split(x1, y, test_size=0.33, random_state=24)
```

In [42]:

```
#feature scaling
sc=StandardScaler()
X_train=sc.fit_transform(X_train)
X_test=sc.transform(X_test)
```

In [43]:

```
#LR
regressor=LinearRegression()
regressor.fit(X_train,y_train)
print(regressor.intercept_)
print(regressor.coef_)
```

13408.230184920762

[3787.4913775 2253.98199903 553.08164946 -138.41198423 9433.53013528 -49.25705854 -432.02542667 -358.37822796]

In []:

In []:

PROGRAM4

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings("ignore")
```

In [3]:

```
df=pd.read_csv("50_Startups.csv")
df
```

Out[3]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54

27	R& T2\$\$ \$66	Admih îsîbût i 5 5	Marketihii \$600 fid	New State	1050 98a%it
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

```
In [5]:
```

```
df.isnull().sum()
```

Out[5]:

R&D Spend 0
Administration 0
Marketing Spend 0
State 0
Profit 0
dtype: int64

In [6]:

df.shape

Out[6]:

(50, 5)

In [25]:

```
x=df['State'].replace(['California','Florida','New York'],[0,1,2],inplace=True)
df
```

Out[25]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	2	192261.83
1	162597.70	151377.59	443898.53	0	191792.06
2	153441.51	101145.55	407934.54	1	191050.39

3	R& D SSSEAd	Admihistration	Marketing Spend	State	1829 01 99
4	142107.34	91391.77	366168.42	1	166187.94
5	131876.90	99814.71	362861.36	2	156991.12
6	134615.46	147198.87	127716.82	0	156122.51
7	130298.13	145530.06	323876.68	1	155752.60
8	120542.52	148718.95	311613.29	2	152211.77
9	123334.88	108679.17	304981.62	0	149759.96
10	101913.08	110594.11	229160.95	1	146121.95
11	100671.96	91790.61	249744.55	0	144259.40
12	93863.75	127320.38	249839.44	1	141585.52
13	91992.39	135495.07	252664.93	0	134307.35
14	119943.24	156547.42	256512.92	1	132602.65
15	114523.61	122616.84	261776.23	2	129917.04
16	78013.11	121597.55	264346.06	0	126992.93
17	94657.16	145077.58	282574.31	2	125370.37
18	91749.16	114175.79	294919.57	1	124266.90
19	86419.70	153514.11	0.00	2	122776.86
20	76253.86	113867.30	298664.47	0	118474.03
21	78389.47	153773.43	299737.29	2	111313.02
22	73994.56	122782.75	303319.26	1	110352.25
23	67532.53	105751.03	304768.73	1	108733.99
24	77044.01	99281.34	140574.81	2	108552.04
25	64664.71	139553.16	137962.62	0	107404.34
26	75328.87	144135.98	134050.07	1	105733.54
27	72107.60	127864.55	353183.81	2	105008.31
28	66051.52	182645.56	118148.20	1	103282.38
29	65605.48	153032.06	107138.38	2	101004.64
30	61994.48	115641.28	91131.24	1	99937.59
31	61136.38	152701.92	88218.23	2	97483.56
32	63408.86	129219.61	46085.25	0	97427.84
33	55493.95	103057.49	214634.81	1	96778.92
34	46426.07	157693.92	210797.67	0	96712.80
35	46014.02	85047.44	205517.64	2	96479.51
36	28663.76	127056.21	201126.82	1	90708.19
37	44069.95	51283.14	197029.42	0	89949.14
38	20229.59	65947.93	185265.10	2	81229.06
39	38558.51	82982.09	174999.30	0	81005.76
40	28754.33	118546.05	172795.67	0	78239.91
41	27892.92	84710.77	164470.71	1	77798.83
42	23640.93	96189.63	148001.11	0	71498.49
43	15505.73	127382.30	35534.17	2	69758.98
44	22177.74	154806.14	28334.72	0	65200.33
45	1000.23	124153.04	1903.93	2	64926.08
46	1315.46	115816.21	297114.46	1	49490.75
47	0.00	135426.92	0.00	0	42559.73

```
48 R&D $120 Administration Marketing Spend State 35677311
        0.00
                116983.80
                              45173.06
                                         0 14681.40
49
In [29]:
y=df['State']
In [30]:
X train, X test, y train, y test=train test split(df, y, test size=0.22, random state=1)
In [31]:
#feature scaling
sc=StandardScaler()
X train=sc.fit transform(X train)
X test=sc.transform(X test)
In [32]:
\#LR
regressor=LinearRegression()
regressor.fit(X_train,y_train)
print(regressor.intercept_)
print(regressor.coef )
0.8717948717948718
[-2.94662527e-16 3.46944695e-16 3.74700271e-16 7.90309488e-01
  5.55111512e-17]
In [ ]:
In [ ]:
In [ ]:
```