1 Let $\{x_n\}$ be a Cauchy sequence of a metric space (X,d). Suppose that for some subsequence $\{x_{n_k}\}$, x_{n_k} converges to x_0 as $k \to \infty$, show that x_n converges to x_0 too.

Proof. Let $\varepsilon > 0$ be given. Choose $N \in \mathbb{N}$ for the definitions of both the Cauchyness of $\{x_n\}$ and the convergence of the subsequence $x_{n_k} \to x_0$, with respect to $\varepsilon/2$. For any $n \geq N$, choose any $n_k \geq N$, then

$$||x_n - x_0|| \le ||x_n - x_{n_k}|| + ||x_{n_k} - x_0|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence, we indeed have convergence of the whole sequence $x_n \to x_0$.

2 Construct a sequence $f_n(x)$ of bounded functions on [0,1] converging to zero in L^1 , but f_n converges at no point in [0,1].

For each $k \in \mathbb{N}$ and i = 1, ..., k, define $f_{k,i} = \chi_{\left[\frac{i-1}{k}, \frac{i}{k}\right]}$, i.e., the characteristic function on the interval $\left[\frac{i-1}{k}, \frac{i}{k}\right] \subseteq [0, 1]$. Choose an indexing $k_n, i_n \in \mathbb{N}$ such that the sequence $\{f_{k_n, i_n}\}$ progresses as follows: $f_{k,1}, f_{k,2}, \ldots, f_{k,k}, f_{k+1,1}$. In particular, $k_n \to \infty$ as $n \to \infty$. It follows that the integral

 $\int_{0}^{1} |f_{k,i}(x)| \mathrm{d}x = \int_{0}^{1} \chi_{\left[\frac{i-1}{k}, \frac{i}{k}\right]}(x) \mathrm{d}x = \frac{1}{k}$

converges to zero as $n \to \infty$ (with $k = k_n$). However, for each $x \in [0, 1]$ and $k \in \mathbb{N}$, there is some $i \in \{1, \ldots, k\}$ such that $x \in \left[\frac{i-1}{k}, \frac{i}{k}\right]$, which gives $f_{k,i}(x) = 1$. Since there are infinitely many such pairs of k, i satisfying this, all of which appear in the sequence, the sequence does not converges pointwise at x.

Proof. We will take for granted that this is a normed vector space, as proving this primarily involves expanding definitions. It remains to prove that the space is complete.

Recall that the set $L^{\infty}(M,\mu)$ is a quotient—we denote the equivalence class of f by [f]. Then [f] = [g] whenever $||[f] - [g]||_{\infty} = \operatorname{ess\,sup}_M |f - g| = 0$.

Suppose $\{[f_n]\}$ is a Cauchy sequence in $L^{\infty}(M,\mu)$. By Problem 1, it suffices to show any subsequence converges. For each $k \in \mathbb{N}$, choose $n_k \in \mathbb{N}$ for the definition of Cauchyness with respect to $\varepsilon = 1/2^k$, and such that $n_k \geq n_{k-1}$. Replacing the original sequence with this subsequence, we have the property that

$$n \le m \implies ||[f_n - f_m]||_{\infty} = ||[f_n] - [f_m]||_{\infty} < \frac{1}{2^n}.$$

For $n \leq m$, choose a null set $E_{n,m} \subseteq M$ (i.e., $\mu(E_{n,m}) = 0$) such that

$$||[f_n - f_m]||_{\infty} = \operatorname{ess\,sup}_M |f_n - f_m| \le \sup_{M \setminus E_{n,m}} |f_n - f_m| < \frac{1}{2^n}.$$

Define the set

$$E = \bigcup_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{n,m}.$$

By subadditivity, we have

$$\mu(E) \le \sum_{n=1}^{\infty} \sum_{m=n}^{\infty} \mu(E_{n,n}) = \sum_{n=1}^{\infty} \sum_{m=n}^{\infty} 0 = 0.$$

Moreover, $E_{n,m} \subseteq E$ implies $M \setminus E \subseteq M \setminus E_{n,m}$, so

$$\sup_{M \setminus E} |f_n - f_m| \le \sup_{M \setminus E_{n,m}} |f_n - f_m| < \frac{1}{2^n}.$$

For each $x \in M \setminus E$ and $m \ge n$, we have

$$|f_n(x) - f_m(x)| \le \sup_{M \setminus E} |f_n - f_m| < \frac{1}{2^n}.$$

This means that the sequence $\{f_n(x)\}$ of complex values is Cauchy: given $\varepsilon > 0$, one can choose $N \in \mathbb{N}$ such that $1/2^N < \varepsilon$. Since \mathbb{C} is complete, the sequence converges to some value in \mathbb{C} , which we will denote by f(x). This gives us a function $f: M \setminus E \to \mathbb{C}$, to which the sequence $\{f_n|_{M\setminus E}\}$ converges pointwise. Letting $m \to \infty$ in the previous inequality yields

$$|f_n(x) - f(x)| \le \frac{1}{2^n}.$$

Taking the supremum over all $x \in M \setminus E$ gives us

$$\sup_{M \setminus E} |f_n - f| \le \frac{1}{2^n}.$$

In particular, this value is finite. Since $[f_1] \in L^{\infty}(M,\mu)$, we know $||[f_1]||_{\infty} < \infty$. Choose a null set $E' \subseteq M$ such that $\sup_{M \setminus E'} |f| < \infty$. Then $E'' = E \cap E'$ is also a null set and

$$\sup_{M\setminus E''}|f|=\sup_{M\setminus E''}|f-f_1+f_1|\leq \sup_{M\setminus E'}|f_1-f|+\sup_{M\setminus E'}|f_1|<\infty.$$

We extend f to M by defining $f|_E = 0$. Then

$$||[f]||_{\infty} = \operatorname{ess\,sup}_{M} |f| \le \sup_{M \setminus E''} |f| < \infty,$$

which means $[f] \in L^1(M, \mu)$. Moreover,

$$||[f_n] - [f]||_{\infty} = ||[f_n - f]||_{\infty} \le \sup_{M \setminus E} |f_n - f| \le \frac{1}{2^n},$$

which converges to zero as $n \to \infty$, hence $[f_n] \to [f]$ in $L^1(M, \mu)$.

4 Let X be Banach space and Y be a closed subspace of X. Prove that the quotient space X/Y is a Banach space. Note that if [x] = [y] in X/Y, then $x - y \in Y$, $||[x]|| = \inf_{y \in [x]} ||y||$.

Proof. The quotient of a vector space by a linear subspace is always a vector space, but we must check that the proposed norm is in fact a norm.

Nonnegativity follows immediately from the nonnegativity of the norm in X.

Since $0 \in [0]$, then $||[0]|| \le ||0|| = 0$, so indeed ||[0]|| = 0.

Suppose ||[x]|| = 0. For each $n \in \mathbb{N}$, choose $y_n \in [x]$ such that $||y_n|| \le 1/2^n$. In other words, $\{y_n\}$ is a sequence in [x] converging to zero. Define $z_n = x - y_n \in Y$, then

$$||x - z_n|| = ||-y_n|| \le \frac{1}{2^n}.$$

This means that $\{z_n\}$ is a sequence in Y converging to x. Since Y is closed, this implies $x \in Y$, so [x] = 0.

For all nonzero scalars a, we have $y \in [x]$ if and only if $ay \in [ax]$. And in which case, ||ay|| = |a|||y||, hence we have homogeneity

$$||[ax]|| = \inf_{ay \in [ax]} ||ay|| = |a| \inf_{y \in [x]} ||y|| = |a||[x]||.$$

Lastly, the triangle inequality:

$$\begin{split} \|[x] + [y]\| &= \inf_{z \in [x+y]} \|z\| \\ &= \inf_{u \in [x], v \in [y]} \|u + v\| \\ &\leq \inf_{u \in [x], v \in [y]} (\|u\| + \|v\|) \\ &\leq \inf_{u \in [x]} \|u\| + \inf_{v \in [y]} \|v\| \\ &= \|[x]\| + \|[y]\|. \end{split}$$

We conclude that X/Y is a normed space with the stated norm.

Finally, we show that the space is complete. Let $\{[x_n]\}$ be a Cauchy sequence in X/Y. Our goal is to choose a representative sequence in X which is also Cauchy. By Problem 1, and similar to the proof of Problem 2, we may assume without loss of generality that for all $n \in \mathbb{N}$ and $m \ge n$,

$$||[x_n] - [x_m]|| < \frac{1}{2^n}.$$

(If this is not the case, use Cauchyness to choose a subsequence such that it is true, and re-index.) For each $n \in \mathbb{N}$, choose $y_n \in [x_n - x_{n+1}]$ such that

$$||[x_n] - [x_{n+1}]|| \le ||y_n|| < \frac{1}{2^n}.$$

Set $x_1' = x_1$ and $x_{n+1}' = x_n' - y_n$ for all $n \in \mathbb{N}$. This inductive definition gives us a new representative sequence $\{x_n'\}$ in X with $[x_n'] = [x_n]$. Moreover,

$$||x'_n - x'_{n+1}|| = ||x'_n - (x'_n - y_n)|| = ||y_n|| < \frac{1}{2^n},$$

so $\{x_n'\}$ is a Cauchy sequence in X and, therefore, converges to some $x \in X$. Then

$$||[x_n] - [x]|| = ||[x'_n] - [x]|| = ||[x'_n - x]|| \le ||x'_n - x||,$$

which converges to zero as $n \to \infty$. So $[x_n] \to [x]$ in X/Y, which is therefore is complete. \square

5

(a) Prove that in every inner product space X, the following identity (parallelogram law) holds:

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2, \quad \forall x, y \in X.$$

Proof. Applying the definition of the induced norm and the bilinearity (with respect to real scalars), we calculate

$$||x+y||^2 + ||x-y||^2 = \langle x+y, x+y \rangle + \langle x-y, x-y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$+ \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$$

$$= 2||x||^2 + 2||y||^2.$$

(b) Prove that the parallelogram law characterizes inner product spaces. Namely, suppose that the parallelogram law holds on a normed linear space X, then one can define an inner product $\langle -, - \rangle$ in X in such a way that $||x|| = \langle x, x \rangle^{1/2}$ for all $x \in X$. (Hint: consider the polarization identity

$$\langle x, y \rangle = \frac{1}{4} \left((\|x + y\|^2 - \|x - y\|^2) - i(\|x + iy\|^2 - \|x - iy\|^2) \right).$$

Proof. We first check positive definite:

$$\langle x, x \rangle = \frac{1}{4} \left((\|x + x\|^2 - \|x - x\|^2) - i(\|x + ix\|^2 - \|x - ix\|^2) \right)$$

$$= \frac{1}{4} \left((\|2x\|^2 - 0) - i(\|x + ix\|^2 - (\|-i\|\|ix + x\|)^2) \right)$$

$$= \frac{1}{4} \left(4\|x\|^2 - i(\|x + ix\|^2 - \|x + ix\|^2) \right)$$

$$= \|x\|^2$$

$$\geq 0,$$

with equality if and only if x = 0, by definition of the norm.

We now check conjugate symmetry:

$$\overline{\langle y, x \rangle} = \frac{1}{4} \left((\|y + x\|^2 - \|y - x\|^2) + i(\|y + ix\|^2 - \|y - ix\|^2) \right)$$

$$= \frac{1}{4} \left((\|x + y\|^2 - \|x - y\|^2) + i((|i|\|x - iy\|)^2 - (|-i|\|x + iy\|)^2) \right)$$

$$= \frac{1}{4} \left((\|x + y\|^2 - \|x - y\|^2) - i(\|x + iy\|^2 - \|x - iy\|^2) \right).$$

From the parallelogram law, we deduce

$$||x + x' + y||^2 = 2||x + y||^2 + 2||x'||^2 - ||x - x' + y||^2$$

and

$$||x + x' + y||^2 = 2||x' + y||^2 + 2||x||^2 - ||x' - x + y||^2$$

Then

$$||x + x' + y||^2 = ||x||^2 + ||x'||^2 + ||x + y||^2 + ||x' + y||^2 - ||x - x' + y||^2 - ||x' - x + y||^2$$
 and, similarly,

$$||x + x' - y||^2 = ||x||^2 + ||x'||^2 + ||x - y||^2 + ||x' - y||^2 - ||x - x' - y||^2 - ||x' - x - y||^2.$$

Therefore,

$$||x + x' + y||^2 - ||x + x' - y||^2 = ||x + y||^2 - ||x - y|| + ||x' + y|| - ||x' - y||$$

and, similarly,

$$||x + x' + iy||^2 - ||x + x' - iy||^2 = ||x + iy||^2 - ||x - iy|| + ||x' + iy|| - ||x' - iy||.$$

Substituting into the definition of the inner product gives us

$$\langle x + x', y \rangle = \langle x, y \rangle + \langle x', y \rangle.$$

It follows that the inner product is \mathbb{Z} -linear and therefore \mathbb{Q} -linear in the first argument. Then

$$i\langle x,y\rangle =$$

$$i\langle x, y \rangle = i\frac{1}{4} \left((\|x + y\|^2 - \|x - y\|^2) - i(\|x + iy\|^2 - \|x - iy\|^2) \right)$$

$$= \frac{1}{4} \left(i((|-i|\|ix + iy\|)^2 - (|-i|\|ix - iy\|)^2) + ((|-i|\|ix - y\|)^2 - (|-i|\|ix + y\|)^2) \right)$$

$$= \frac{1}{4} \left((\|ix + y\|^2 - \|ix - y\|^2) - i(\|ix + iy\|^2 - \|ix - iy\|^2) \right)$$

$$= \langle ix, y \rangle.$$

Hence, the inner product is $\mathbb{Q}(i)$ -linear in the first argument. Since $\mathbb{Q}(i)$ is dense in \mathbb{C} and the inner product is continuous, we conclude that it must also be \mathbb{C} -linear.