Economia applicata all'ingegneria

Riccardo Rasori

A.A. 2024/2025

Indice

1	Intr	roduzio	one
	1.1	Analis	i degli investimenti
		1.1.1	Introduzione alla matematica finanziara
		1.1.2	Costo opportunità del capitale
		1.1.3	Interesse e montante semplice
		1.1.4	Montante semplice di rate stabili
			Interesse e montante composto
		1.1.6	Valore futuro (VF)
		1.1.7	Composizione degli interessi
			Valore attuale (VA)
		1.1.9	Flussi di cassa multipli
		1 1 10	Δnnualità

Capitolo 1

Introduzione

1.1 Analisi degli investimenti

1.1.1 Introduzione alla matematica finanziara

Valori nominali \rightarrow anno corrente Valori reali \rightarrow determinato anno (regolato a indice)

```
Vk_t = (VC_t/IPC_t) * 100
```

Formula

Formula

 $C \to C(1+r)$ r \to tasso di crescita

 $C \rightarrow capitale$

il tasso

1.1.2Costo opportunità del capitale

Interesse e montante semplice 1.1.3

Formula

$$I = C * r * t$$

Formula

M = C(1 + rt)

 $M \to montante \to somma del capitale e degli interessi maturati nel tempo$

Dimostrazione:

$$M = C + I = C + Crt = C(1 + rt)$$

1.1.4 Montante semplice di rate stabili

Formula

 $M=R(n+\frac{rn\pm 1}{2})$ +1 se la rata è anticipata, -1 se la rata è posticipata

Es. 300€ canone mensile, 1,8% saggio, 12 mesi $M=300(12+0,018*\frac{12+1}{2})=3\,636,10€$

1.1.5 Interesse e montante composto

Formula

$$M_n = C(1+r)^n$$
n = numero degli anni $C = \frac{R}{1+r}$

$$M_1 = C(1+r)$$

 $M_2 = M_1(1+r) = C(1+r)^2$

Es. Ho 1000€e li investo con +10% ogni anno

1.1.6 Valore futuro (VF)

Definizione

È l'ammontare di una somma di denaro complessiva degli interessi in un determinato periodo.

1.1.7 Composizione degli interessi

1000€, 2 anni, 10% $M_2 = 1000(1+0,1)^2 = 1210$ € Interesse composto

1.1.8 Valore attuale (VA)

Quanto devo investire oggi per avere 2 000€ tra un anno con saggio 11%? $VA = \frac{2\,000}{1+0,11} = 1\,801,80$ €

Formula

$$VA = \frac{FV}{(1+r)^n}$$

Desidero avere a disposizione $10\,000\mathbb{C}$ per un viaggio negli States tra 4 anni dopo che mi laureo tutto pelato \cong

Quale somma dovrò accantonare ogni mese al saggio del 3%?

Quale somma dovrò depositare sul conto corrente bancario oggi?

 $\frac{10\,000}{(1,03)^4} = 8\,884,87$ €

1.1.9 Flussi di cassa multipli

$$VA = \frac{2500}{(1+0.09)^1} + \frac{900}{(1+0.09)^4} + \frac{3600}{(1+0.09)^6} = 5077,70$$

1.1.10 Annualità

Sono valori che si ripetono a intervalli regolari di anno in anno

Formula

$$VF(A_n) = a * \frac{(a+r)^n - 1}{r}$$

 $a = VF(A_n) * \frac{r}{(1+r)^n - 1}$

 A_n = accumulazione finale a = ricerca dell'annualità media

Es.
$$a = 10\,000$$
 \in * $\frac{0.03}{(1+0.03)^4-1} = 2\,390.27$ \in Rata mensile = $\frac{2\,390.27}{12+0.03*\frac{12+1}{2}} = 192,25$ \in

$$VA = \frac{VF}{(1+r)^n} = a * \frac{(1+r)^n - 1}{r(1+r)^n}$$
 VA = 800 000€
n = 20 anni
r = 3%

$$a = VA * \frac{r}{(1+r)^n - 1}$$
 Rata = 800 000 € * $\frac{(1+0.03)^{20}}{(1+0.03)^{20} - 1} = 53\,772,56$ €