【予稿集】

武漢コロナウイルスのホモログマップ作成法の紹介 天野晃*

*無所属

*amano.au1@gmail.com

概要 2020 年初頭、新型コロナウイルスの感染が拡大し、各国で緊急事態宣言が発せられるまでに至った。当該ウイルス(だけではないが)の感染検査には、主に PCR 法が用いられるが、プライマー設計はその精度を左右する大きな要因の一つである。特に False-positive を忌避する場合は他のウイルス/生物のゲノム(断片)のコンタミネーションに対してロバストである必要があるが、ホモログマップによるゲノム特徴の可視化は、その判断の参考となる。本報告では、ホモログマップの作成法について紹介する。また、医療系、生物系が専門でない参加者の方々のために、テクニカルタームの説明を付録として用意する。ポスター閲覧の際の参考にされたい。

Wuhan corona virus homologue mapping Kou AMANO* *independent

1 はじめに

ウイルス等の感染検査の一つに、PCR 検査がある。この検査は、文字通り検出対象となるDNA(RNA) 断片が存在するかを、PCR 増幅により直接的に検出・確認する方法である。PCR の際には、ターゲットとなるゲノム断片の一部と相同性を持つ、さらに短い DNA(RNA) 断片をプライマーとすることによりターゲットを特異的に増幅させるが、当然、ターゲット以外にもプライマーと相同な配列を持つゲノム(断片) は存在する可能性があり、これらがコンタミネーションを起こしている場合は、False-Positive を導く。そのような場合も配列解析を行うことにより、正確な検出が可能となるが、コストは大きくなる。

2 目的

PCR プライマーの設計において、ロバストネスの判断の参考となり得る、簡易かつ低コストなホ

モログマップの作成方法を紹介する。

具体的には、(1) 宿主側ゲノムに対するマップ、(2) ウイルスゲノムに対するマップ、(3) 自身のゲノムの特徴化、について述べる。

3 マッピング方法

3.1 宿主側

[DB 側ゲノム] 宿主のゲノムとして、turkey、rock pigeon、pig、rabbit、Mouse、human、ferret、dog、cat、camel、beluga、bat を用いた。配列情報の取得は、NCBIのサイト [1] より 2020 年3月に行った。完全ゲノムを用いた種と、全ゲノムショットガンシークエンシングの結果を用いた種を含む。DB 作成は、makeblastdb コマンドにより、デフォルトで行った。

[**クエリー側ゲノム**] 武漢コロナウイルス完全ゲノム、MN908947.3。megablast を利用。クエリー条

件は、10塩基以上のマッチ。その他はデフォルト。

3.2 ウイルス側

[**DB** 側ゲノム] 配列情報の取得は、NCBI のサイト [1] より 2020 年 3 月に行った。NCBI のサイトには、ウイルスおよびファージのゲノム配列がまとめられたセクションがあり、これを一括ダウンロードした。

[クエリー側ゲノム] 3.1 に同じ。

3.3 自身のゲノム

自身のゲノムにおいて、どの領域がどの程度の コピー数を持つか、を示すものである。

[DB 側ゲノム] 3.1 と同じ配列を 25 塩基ごとに オーバラップなしで分割したデータを作成し、これ をもとに前述と同じ方法で DB を作成した。

[クエリー側ゲノム] DB 作成時と同じ配列情報をクエリーとして、megablast にて 10 塩基以上のマッチを行った。その他はデフォルト。

[Window-fourier] DNA 配列に対してフーリエ変換を行うことにより、コーディング領域ではコドンの特徴が強調され、長さ3のピークが検出されることや、その他の特徴を強調できることが知られており[2,3,4]、ORFが実際のコーディング領域であるかの傍証等となり得る。次のような条件にて、フーリエ変換を行った。

- 1. 塩基情報を次のように数値列に変換する: A ->1、G->I、C->-I、T->-1
- 2. 1000 ベースごとに配列を分割する
- 3. 分割されたそれぞれの配列に対して直接フーリエ変換を行う
- 4. 分割されたそれぞれの配列に対して変換後の 各値の絶対値を取得する

4 マッピング結果の可視化

4.1 バーマップ

4.2 頻度マップ

4.3 フーリエマップ

4.4 領域マップ

附録:テクニカルターム解説

- ◆ PCR: Polymerase Chain Reaction の略。 DNAポリメラーセ(合成酵素)を利用して DNAを複製する系。DNA鋳型、プライマー、 合成酵素、DNAの構成要素であるデオキシヌ クレオチド(塩基が、アデニン、グアニン、シ トシン、チミンの4種)等をバッファに投入 し、温度サイクルを作成することにより DNA 複製が可能となる。産物を検出する際は電気 泳動を行う。またはリアルタイム定量的(逆転 写) PCRを用い、増幅と同時に検出するのが 一般的である。[5]
- 電気泳動: DNA やタンパクなど、電荷を持つ 分子の分離を行う系。蛍光マーキング等によ り視覚的に産物の確認を行う。
- リアルタイム定量的(逆転写)PCR: DNAの 定量を目的とする PCR。蛍光マーカー等を用 い、これを測定することにより産物の量を計測 (推測)する。増幅中にリアルタイムに計量を 行う。RNA 量を計測する際には逆転写を行う ので、このように呼ばれる。
- プライマー: PCR の際、鋳型 DNA に結合し 合成開始のプライマーとなる短い DNA 断片。
- 全ゲノムショットガンシークエンシング:配 列決定を行う際、chromosome 全体を読み取 ることは困難なため、ゲノムをある程度の大 きさに切断してシークエンシングを行い、後

に計算機により可能性の高い配列を(接合)推 測することが一般的である。完全に接合され ていない状態での配列情報をこう呼ぶ。

- 相同性:特に遺伝子およびアミノ酸の相同性を 指す。基本は文字列の相同性を基にしている が、置換を受けやすい/受けにくいペアが判明しており、マッチングには遺伝学の知識が反映されている。
- blast: "Basic Local Alignment Search Tools"の略。DNA (RNA) およびアミノ酸配 列の相同部分を検索するシステム。複数のコマンドからなり、主にデータベース作成コマンド、 データベース検索コマンドに分かれる。
- ◆ ホモログ:検索による相同部分、あるいは相同な遺伝子をこう呼ぶ。
- コーディング領域: DNA においてタンパク質 に翻訳される領域。あるいは、そうであると予 想される領域。
- ORF: "Open Reading Frame"の略。タンパク質への翻訳は、開始コドンであるメチオニンから始まり、終止コドンである3種のトリプレットで終了することが知られている。この領域をこう呼ぶ。
- コドン: DNA がタンパク質(アミノ酸配列)
 に翻訳される際、3塩基が1組でひとつのアミノ酸をコードする。この3塩基のコード(トリプレットコード)をコドンと呼ぶ。

注・文献

- [1] , (参照:2020-03)
- [2] Sergey V. Petoukhov. The genetic code, 8-dimensional hypercomplex numbers and dyadic shifts. http://symmetry.hu/isabm/petoukhov.html.

- [3] GUY DODIN, PIERRE VAN-DERGHEYNST, PATRICK LEVOIR, CHRISTINE CORDIER, LAURENCE MARCOURT. Fourier and Wavelet Transform Analysis, a Tool for Visualizing Regular Patterns in DNA Sequences. J. theor. Biol. No. 206, 2000, p.323-326.
- [4] V. R. Chechetkina, V.V. Lobzinc aEngelhardt. Large-scale chromosome folding versus genomic DNA sequences: A discrete double Fourier transform technique. DOI:10.1016/j.jtbi.2017.05.0.
- [5] https://www.niid.go.jp/niid/images/lab-manual/2019-nCoV20200217.pdf (参照:2020-03)