Student: Arfaz Hossain Instructor: Muhammad Awais Assignment: HW-5 [Sections 10.1, 10.2 Date: 02/28/22 Course: Math 101 A04 Spring 2022 & 10.3]

Indicate whether the series converges or diverges. If it converges, find its sum.

$$\sum_{k=1}^{\infty} \frac{k!}{112^k}$$

The nth-term test for divergence states that if the series $\sum_{k=1}^{\infty} a_k$ converges, then $\lim_{k\to\infty} a_k = 0$. Equivalently, if $\lim_{k\to\infty} a_k \neq 0$ or if

 $\lim_{k\to\infty} a_k \text{ does not exist, then the series diverges.}$

Let
$$a_k = \frac{k!}{112^k}$$
.

Notice the following.

$$(k + 1)! = (k + 1)(k)(k - 1)(k - 2)\cdots(3)(2)(1)$$

= $(k + 1)k!$

Similarly, $112^{k+1} = (112)112^k$.

Using these observations, express a_{k+1} in terms of a_k .

$$a_{k+1} = \frac{(k+1)!}{112^{k+1}}$$

$$= \frac{(k+1)k!}{(112)112^k}$$

$$= \frac{k+1}{112} \left(\frac{k!}{112^k}\right)$$

$$= \frac{k+1}{112} a_k$$

Next, notice that for $k \ge 112$, we have $\frac{k+1}{112} > 1$.

Thus, for
$$k \ge 112$$
, $a_{k+1} = \frac{k+1}{112} a_k > a_k$.

Based on these observations, the sequence $\{a_k\}$ becomes an increasing sequence for $k \ge 112$. Therefore, the limit of this sequence cannot equal zero.

Since $\lim_{k\to\infty} a_k \neq 0$, by the nth-term test for divergence, $\sum_{k=1}^{\infty} \frac{k!}{112^k}$ diverges.