(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-131610 (P2000-131610A)

(43)公開日 平成12年5月12日(2000.5.12)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

G 0 2 B 15/16

13/18

G 0 2 B 15/16 13/18 2H087

審査請求 未請求 請求項の数24 OL (全 15 頁)

(21)出願番号

特願平10-307337

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(22)出顧日 平成10年10月28日(1998.10.28)

(72)発明者 末吉 正史

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 100069051

弁理士 小松 祐治

最終頁に続く

(54)【発明の名称】 ズームレンズ

(57)【要約】

【課題】 ビデオカメラ、デジタルスチルカメラ等の小型の撮像機器に最適な変倍比3倍程度の小型のズームレンズを提供する。

【解決手段】 物体側から像面IMG側へと順に、正の屈折力を有する第1レンズ群GR1と、負の屈折力を有する第2レンズ群GR2と、正の屈折力を有する第3レンズ群GR3と、正の屈折力を有する第4レンズ群GR4とから成り、第2レンズ群と第4レンズ群とを移動させることによりズーミングを行うようにしたズームレンズにおいて、第1レンズ群を物体側から順に、負の屈折力を有する単レンズの第1レンズL1、光路を折り曲げるプリズムP、正の屈折力を有する単レンズの第2レンズL2によって構成した。

【特許請求の範囲】

【請求項1】 物体側から像面側へと順に、正の屈折力を有する第1レンズ群と、

1

負の屈折力を有する第2レンズ群と、

正の屈折力を有する第3レンズ群と、

正の屈折力を有する第4レンズ群とから成り、

上記第2レンズ群と第4レンズ群とを移動させることに よりズーミングを行うようにされたズームレンズにおい て、

上記第1レンズ群が物体側から順に、負の屈折力を有す 10 る単レンズの第1レンズ、光路を折り曲げるプリズム、正の屈折力を有する単レンズの第2レンズによって構成 されたことを特徴とするズームレンズ。

【請求項2】 以下の条件を満足するようにしたことを 特徴とする請求項1に記載のズームレンズ。

ndL1>1.75

ν d L 1 < 3 0

但し、

ndL1:第1レンズのd線での屈折率、

ν d L 1:第1レンズの d 線でのアッベ数、 とする。

【請求項3】 第1レンズの少なくとも1の面を非球面によって構成したことを特徴とする請求項1に記載のズームレンズ。

【請求項4】 第1レンズの物体側を向いた面を凸面と したことを特徴とする請求項1に記載のズームレンズ。

【請求項5】 第1レンズの物体側を向いた面を凸面と したことを特徴とする請求項2に記載のズームレンズ。

【請求項6】 第1レンズの物体側を向いた面を凸面と したことを特徴とする請求項3に記載のズームレンズ。

【請求項7】第4レンズ群を構成するレンズの各面のうち、少なくとも1面を非球面によって構成したことを特徴とする請求項1に記載のズームレンズ。

【請求項8】第4レンズ群を構成するレンズの各面のうち、少なくとも1面を非球面によって構成したことを特徴とする請求項2に記載のズームレンズ。

【請求項9】第4レンズ群を構成するレンズの各面のうち、少なくとも1面を非球面によって構成したことを特徴とする請求項3に記載のズームレンズ。

【請求項10】第4レンズ群を構成するレンズの各面の 40 うち、少なくとも1面を非球面によって構成したことを 特徴とする請求項4に記載のズームレンズ。

【請求項11】第4レンズ群を構成するレンズの各面の うち、少なくとも1面を非球面によって構成したことを 特徴とする請求項5に記載のズームレンズ。

【請求項12】第4レンズ群を構成するレンズの各面の うち、少なくとも1面を非球面によって構成したことを 特徴とする請求項6に記載のズームレンズ。

【請求項13】 以下の条件を満足することを特徴とする請求項1に記載したズームレンズ。

4. $5 < f_{GR1} / f_w < 1.2$

但し、

f GRI: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、 とする。

【請求項14】 以下の条件を満足することを特徴とする請求項2に記載したズームレンズ。

4. $5 < f_{GR1} / f_{w} < 1.2$

但し、

fga:第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、 とする。

【請求項15】 以下の条件を満足することを特徴とする請求項3に記載したズームレンズ。

4. $5 < f_{GR1} / f_{w} < 1.2$

但し、

f GRI: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、 とする。

20 【請求項16】 以下の条件を満足することを特徴とする請求項4に記載したズームレンズ。

4. $5 < f_{GR1} / f_{w} < 1.2$

但し、

f GRI: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、とする。

【請求項17】 以下の条件を満足することを特徴とする請求項5に記載したズームレンズ。

4. $5 < f_{GRi} / f_{w} < 1.2$

o 但し、

fgn:第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、 とする。

【請求項18】 以下の条件を満足することを特徴とする請求項6に記載したズームレンズ。

4. $5 < f_{GRi} / f_{w} < 1.2$

但し、

f GRI: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

40 とする。

【請求項19】 以下の条件を満足することを特徴とする請求項7に記載したズームレンズ。

4. $5 < f_{GR1} / f_{w} < 1.2$

但し、

f GRI: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、 とする。

【請求項20】 以下の条件を満足することを特徴とする請求項8に記載したズームレンズ。

4. $5 < f_{GR1} / f_{W} < 1.2$

(2

. .

但し、

f GRI: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。

【請求項21】 以下の条件を満足することを特徴とする請求項9に記載したズームレンズ。

4. $5 < f_{GRi} / f_{w} < 1.2$

但し、

f GRI: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。

【請求項22】 以下の条件を満足することを特徴とする請求項10に記載したズームレンズ。

4. $5 < f_{GR1} / f_{w} < 1.2$

但し、

f GRI: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。

【請求項23】 以下の条件を満足することを特徴とする請求項11に記載したズームレンズ。

4. $5 < f_{GR1} / f_{W} < 1.2$

但し、

f GRI: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。

【請求項24】 以下の条件を満足することを特徴とする請求項12に記載したズームレンズ。

4. $5 < f_{GR1} / f_{W} < 1.2$

但し

f GRI: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、小型のビデオカメラ、デジタルスチルカメラ等に最適な、変倍比3倍程度のズームレンズに関する。

[0002]

【従来の技術】近年、ビデオカメラ、デジタルスチルカメラ等の小型撮像装置にあっては、より一層の小型化が 40 求められており、これに伴って、撮影用レンズ、特に、ズームレンズは全長の短縮等による小型化が求められている。

【0003】また、上記撮影用レンズ、特に、デジタルスチルカメラ用のものにあっては、小型化と共に、広角端での画角が70~80°程度の広角域を含むズームレンズに対する要求が高まっており、同時に、撮像素子の高画素化に対応してレンズ性能の向上も求められている。

[0004]

【発明が解決しようとする課題】小型撮像装置用の小型のズームレンズとしては、物体側から順に、負の屈折率を有する第1レンズ群と、正の屈折力を有する第2レンズ群とから成るレトロフォーカスタイプの2群構成のズームレンズがある。しかし、このような2群構成のズームレンズにあっては、変倍比を大きくすることが難しく、また、ズーミング動作に伴って全長も変化するので小型の撮像機器用としては不適格である。

【0005】また、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群 (バリエータ)と、正の屈折力を有する第3レンズ群 (コンペンセータ)と、正の屈折力を有する第4レンズ 群 (マスター)とから成る4群構成のズームレンズがある。しかし、このような4群構成のズームレンズは、全長が長くなってしまうため、小型の撮像機器用としては 不適格である。

【0006】更に、特開平8-248318号公報に記載されたズームレンズ、即ち、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群 (バリエータ)と、正の屈折力を有する第3レンズ群 (コンペンセータ)と、正の屈折力を有する第4レンズ群 (マスター)とから成る4群構成のズームレンズとの間にプリズムを配置し、第1レンズ群をプリズムを間に挟んで、物体側に負、像面側に正の屈折力をするレンズ群に分割してアフォーカル系を構成すると共に、プリズムによって光路を折り曲げることによって前後長を短縮するようにしたものもあるが、このタイプのズームレンズは、レンズの構成枚数が多く、しかも依然として全長も長く、製造コストも高くなってしまうという問題点があった。

【0007】本発明は、上記問題点に鑑み、ビデオカメラ、デジタルスチルカメラ等の小型の撮像機器に最適な変倍比3倍程度の小型のズームレンズを提供することを課題とする。

[8000]

【課題を解決するための手段】上記課題を解決するために、本発明ズームレンズは、物体側から像面側へと順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とから成り、上記第2レンズ群と第4レンズ群とを移動させることによりズーミングを行うようにしたズームレンズにおいて、第1レンズ群を物体側から順に、負の屈折力を有する単レンズの第1レンズ、光路を折り曲げるプリズム、正の屈折力を有する単レンズの第2レンズによって構成したものである。

【0009】従って、ビデオカメラ、デジタルスチルカメラ等の小型の撮像機器に最適な変倍比3倍程度のズー 50 ムレンズを小型化することが可能になる。

[0010]

【発明の実施の形態】以下に、本発明ズームレンズの実施の形態について、添付図面を参照して説明する。尚、図1乃至図4は第1の実施の形態(数値実施例1)、図5乃至図8は第2の実施の形態(数値実施例2)、図9乃至図12は第3の実施の形態(数値実施例3)をそれぞれ示すものである。

【0011】初めに、各実施の形態における共通の事項について説明する。

【0012】尚、以下の説明において、「Si」は物体側から数えてi番目の面、「Ri」は上記面Siの曲率半径、「di」物体側からi番目の面とi+1番目の面との間の面間隔、「ndLi」は第iレンズ(Li)のd線(波長587.6nm)での屈折率、「vdLi」は第iレンズ(Li)のd線でのアッベ数、「f」はレンズ全系の焦点距離、「Fno.」は開放F値、「ω」半画角を示すものとする。但し、nd又はvdの後にP、LP、IR及びCGが付加されたものは、それぞれプリズム、ローパスフィルタ、赤外カットフィルタ及び撮像素子のカバーガラスの屈折率又はアッベ数を示すものとする。

【0013】また、各実施の形態において用いられるレンズには、レンズ面が非球面によって構成されるものも含まれる。

【0014】非球面形状は、非球面の深さ(レンズ面の頂点からの光軸方向の距離)を「x」、レンズ頂点での曲率半径を「r」、円錐定数を「 κ 」とすると、 $x=(y^2/r)/1+(1-\kappa\cdot y^2/r^2)^{1/2}+C4\cdot y^4+C6\cdot y^6+C8\cdot y^8+C10\cdot y^{10}$ によって定義されるものとする。尚、C4、C6、C8 及びC10は、それぞれ4次、6次、8次及び10次の非球面係数である。

【0015】第1乃至第3の実施例におけるズームレンズ1、2及び3は、図1、図5及び図9に示すように、物体側から像面IMG側へと順に、正の屈折力を有する第1レンズ群GR1と、負の屈折力を有する第2レンズ群GR2と、正の屈折力を有する第3レンズ群GR3と、正の屈折力を有する第4レンズ群GR4とから成る。ズームレンズ1乃至3は、第1レンズ群GR1は第1レンズL1及び第2レンズL2から成る2枚のレンズ 40とその間に配置されたプリズム、第2レンズ群GR2は第3レンズL3、第4レンズL4及び第5レンズL5から成る3枚のレンズ、第3レンズ群GR3は第6レンズL6、そして、第4レンズ群GR4は第7レンズL7、第8レンズL8及び第9レンズL9から成る3枚のレンズをそれぞれ有する4群9枚構成のものである。

【0016】また、第2レンズ群GR2と第3レンズ群GR3との間には絞りIDが、第4レンズ群GR4と像面IMGとの間には物体側から順に、ローパスフィルタLP、赤外カットフィルタIR及びCCDのカバーガラ 50

スCGが配置されている。

される。

【0017】そして、上記第2レンズ群GR2と第4レンズ群GR4とを移動させることによりズーミングを行うようにしたものであり、短焦点距離端(広角端)から長焦点距離端(望遠端)にズーミングするときには、第2レンズ銀GR2は物体側から像面側に、第4レンズ群GR4は像位置を保持するように移動するものである。【0018】尚、ズームレンズ1乃至3のフォーカス調整は、第4レンズ群GR4を移動させることによって為

6

【0019】第1レンズ群GR1は、物体側から順に、 負の屈折力を有するメニスカス形状の単レンズの第1レ ンズL1、光路を90°折り曲げるプリズムP、正の屈 折力を有する単レンズの第2レンズL2によって構成し たものである。

【0020】ズームレンズ1乃至3は、以下の条件式1 及び条件式2を満足するか、または、部第1レンズL1 の各面のうち、少なくとも1つの面が非球面によって構 成することが好ましい。

ndL1>1.75 (条件式1) vdL1<30 (条件式2)

但し、n d L 1 は第 $1 \nu \nu x L 1$ の d 線での屈折率であり、 $\nu d L 1$ は第 $1 \nu \nu x L 1$ の d 線でのアッベ数である。

【0021】条件式1は、正の屈折力を有する第1レンズ群GR1を構成する負の屈折力を有する単レンズである第1レンズL1による歪曲収差の発生量を規定するためのものである。即ち、ndL1の値が条件式1によって規定される範囲外となると、必要とされる第1レンズ群GR1の屈折力に対して歪曲収差の発生量が大きくなってしまい、これを第4レンズ群GR4の非球面によって補正することができなくなってしまう。

【0022】条件式2は、正の屈折力を有する第 $1\nu\nu$ ズ群GR1を構成する負の屈折力を有する単 $\nu\nu$ ズである第 $1\nu\nu$ ズによるL1による色収差の発生量を規定するためのものである。即ち、 ν dL1の値が条件式2によって規定される範囲外となると、正の屈折力を有する第 $1\nu\nu$ ズ群GR1内での色収差の発生量が大きくなり、これを補正することは $\nu\nu$ ズ系全体でも困難となる。

【0023】また、ズームレンズ1乃至3の第1レンズ L1の物体側の面S1は、物体側に向けて凸であること が好ましい。これは、上記面S1が物体側に向けて凹で あると、該凹面S1で発生する負の歪曲収差が大きくな り、これをレンズ全系で補正することが困難となるから である。

【0024】ズームレンズ1乃至3の第4レンズ群GR4を構成するレンズの各面のうち、少なくとも1つの面が非球面によって構成されること、特に、最も像面側に位置するレンズの少なくとも1つの面が非球面によって

構成されていることが望ましい。

【0025】このように、第4レンズ群GR4内のレンズ面のうち、少なくとも1つの面を非球面によって構成すると、第1レンズ群GR1によって発生する広角端における負の歪曲収差を補正することができるようになり、これによって、第1レンズ群GR1の負の屈折力を有する単レンズ(第1レンズ) L1のパワーを強くすることができるようになって、より広い画角を得ることができるようになる。

【0026】更に、ズームレンズ1乃至3は、以下の条 10件式3を満足するように構成することが好ましい。

4. 5 < f GR1 / f w < 12 (条件式3)

但し、 f_{GRI} は第1レンズ群GR1の焦点距離であり、 f_{W} はレンズ全系の広角端での焦点距離である。

【0027】条件式3は、正の屈折力を有する第1レンズ群GR1の焦点距離とレンズ全系の焦点距離との比率を規定するものである。即ち、fgl /fwの値が4. 5以下となると、第1レンズ群GR1の正のパワーが強 くなり過ぎて、第1レンズ群GR1内の正の屈折力を有する単レンズである第2レンズL2パワーが大きくなって、この単レンズL2では球面収差の補正ができなくなるか、又は、負の屈折力を有する単レンズである第1レンズのパワーが弱くなってしまって、十分な広画角化が困難になってしまう。また、fgi/fwの値が12以上になると、第1レンズ群GR1の正のパワーが弱くなり過ぎて、ズームレンズ1乃至3の全長が長くなってしまい、小型化が困難となる。

【0028】次に、第1乃至第3の実施例に係わるズームレンズ1乃至3の固有の事項について説明する。

【0029】表1にズームレンズ1の各数値を示す。 尚、Riの数値の後に(ASP)を付記した面は非球面 によって構成されたものである(後述する表4及び表7 も同様。)。

【0030】 【表1】

へ件はパエのエッグ	- 7 7 733		
R1=35. 116	d1=1.8	ndL1=1.85000	ν dL1=23. 5
R2=16. 675	d2=5. 5		
P 3= 00	d3=9. 5	ndP=1. 56883	ν dP=56. 0
R4 =∞	d4=8. 5	ndP=1. 56883	ν dP=56. 0
R 5= 00	d5=0. 5		
RG=46. 647	d6=2. 8	ndL2=1. 76811	ν dL2=49. 7
R7=-38. 962	d7=variable		
R8=-64. 828	d8=1.1	ndL3=1. 84000	v dL3=43. 0
R9=14. 768	d9=1. 1		
R10=140. 620	d10=1.1	ndL4=1.75359	ν dL4=51. 6
R11=8. 989	d11=2. 0	ndL5=1.84666	ν dL5=23. 8
R12=33. 286	d12=variable		
R18=∞	d13=1.5		
R14=9. 334(ASP)	d14=2.0	ndL6=1.80610	ν dL6=40. 7
R15=12. 687	d15=variable		
R16=7. 522	d16=3. 0	ndL7=1. 75955	ν dL7=50. 8
R17=-49. 255	d17=1.5	ndL8=1. 84666	ν dL8=23. 8
R18=8. 007	d18=8. 3	ndL9=1. 69350	ν dL9=53. 3
R19=24. 197(ASP)	d19=variable	·	
P 20= ∞	d20=1.5	ndLP=1.55232	ν dLP=63. 4
P2 1=∞	d21=1. 2	ndIR=1. 51680	ν dIR=64. 2
<u>P22</u> = ∞	d22=1.00		
R23 = ∞	d28=0. 75	ndCG=1. 55671	ν dCG=58. 6
124 = ∞	d24=1.0		
R2 5= ∞			

7、d12、d15及びd19は可変(variable)である。従って、表2に広角端(f=5.3)、望遠端(f=15.6)及び広角端と望遠端との中間焦点位置(f=9.0)におけるd7、d12、d15及びd19の各数値、並びに、FNo.、f及びωを示す。【0032】

【表2】

f	5. 3	9. 0	15. 5
PNo.	2.4	2.6	3.1
ω	37. 0°	24. 0°	14.5°
d7	0.8	8. 36	13. 76
d12	15. 01	7. 45	2. 05
d15	7. 02	4. 96	2.0
d19	4. 82	6. 88	9.84

【0033】また、第3レンズ群GR3の第6レンズL6の物体側の面S14及び第4レンズ群GR4の第9レンズL9の像面側の面S19は非球面によって構成されている。以下の表3に上記面S14及びS19の4次、6次、8次及び10次の非球面係数C4、C6、C8及びC10を示す。

10

[0034]

【表3】

10

	ĸ	C4	C6	C8	C10
S14(R14)	0	-0. 9142B-04	0. 3775E-05	-0. 4308B-06	0. 15 90 E-07
S19(R19)	0	8. 1217E-02	0. 2458E-04	0. 1236B-05	0. 1235E-07

【0035】尚、上記表3中の「E」は、10を底とする指数表現を意味するものとする。(後述する表7及び表11においても同様。)。

【0036】図2乃至図4にズームレンズ1の広角端、広角端と望遠端との中間焦点位置及び望遠端における球面収差、非点収差及び歪曲収差を示す図をそれぞれ示す。尚、球面収差図において、実線はe線(波長546.1nm)、点線(ピッチの短い方の破線)はC線(波長656.3nm)、一点鎖線はd線、破線はF線(波長486.1nm)、二点鎖線はg線(波長435.8nm)における値を示すものであり、非点収差図

において、実線はサジタル像面、破線はメリディオナル 像面における値を示すものである。

【0037】上記ズームレンズ1においては、第4レンズ群GR4を3枚のレンズL7、L8及びL9の接合レンズによって構成することにより、第4レンズ群GR4内での偏心による像面の倒れを小さくし、製造をも容易にするようにしたものである。

【0038】表4にズームレンズ2の各数値を示す。

[0039]

【表4】

40

RI=43. 209	d1=2.0	ndL1=1.84686	ν dL1=23. 8
R2=16. 054	d2=4.0		
P3 = 00	d3=9. 5	odP=1.56883	ν dP=56.0
R4= 00	d4=8.5	ndP=1.56883	ν dP=56. 0
2 5=∞	d5=0. 5		
R6=40. 072	d6=2. 3	ndL2=1. 88500	ν dL2=43. 0
R7=-40. 072	d7=variable		
R8=-130. 120	d8=1. 1	ndL8=1.83500	ע dL3=43. 0
R9=11. 909	d9=1. 29		
R]0=∞	d10=1.0	ndL4=1. 75959	ν dL4=51. 6
R11=7. 755	d11=2. 2	ndL5=1. 84666	ν dL5=23. 8
R12=31. 164	d12=variable		
R13=∞	d13=1. 5		
R14=9.845(ASP)	d14=1.5	ndL6=1. 69350	ν dL6=58. 3
R15=18. 742	d15=variable		
R16=9. 080	d16=2. 5	ndL7=1. 69350	ν dL7=53. 3
R17=-9. 050	d17=1 0	ndL8=1.84666	ν dL8=23.8
R18=-104. 131	d18=4.75		
R19=85. 698 (ASP)	d19=1.0	ndL9=1. 49200	ν dL9=57. 2
R20=24. 197(ASP)	d20=variable		
22 1=∞	d21=1.5	ndLP=1.55232	ν dl.P=63. 4
R22=∞	d22=1.2	ndIR=1. 51680	ν dIR=64. 2
228 = ∞	d23=1.0		
R24=∞	d24=0. 75	ndCG=1.55671	ν dOG=58. 6
R25=∞	d25=1. 0		
R26= ∞		-	

【0040】上記表4に示すように、ズームレンズ2の 30 ズーミング及びフォーカシング動作に伴って面間隔d 7、d12、d15及びd20は可変(variable)である。従って、表5に広角端(f=5.3)、望遠端(f=15.5)及び広角端と望遠端との中間焦点位置(f=9.0)におけるd7、d12、d15及びd20の各数値、並びに、FNo.、f及びωを示す。【0041】

【表5】

f	5. 3	9. 0	15. 5
FNo.	2.8	3.1	9. 8
ω	87. 0°	24.0°	14.5°
d7	0.8	7. 17	11.4
d12	12. 65	6. 28	2. 05
d15	8. 99	8. 09	2. 0
d20	8. 67	6. 57	10.66

【0042】また、第3レンズ群GR3の第6レンズL6の物体側の面S14及び第4レンズ群GR4の第9レンズL9の物体側の面S19及び像面側の面S20は非球面によって構成されている。以下の表6に上記面S14、S19及びS20の4次、6次、8次及び10次の非球面係数C4、C6、C8及びC10を示す。

【0043】 【表6】

40

C4 C6 C8 C10 0.4671E-07 S14(R14) -0. 1224E-03 0.9870E-05 -0. 1144E-05 0. 3720E-04 -0. 6771E-05 0. 3284E-06 S19(R19) -0. 9497E-03 -0. 5412E-04 0. 7292E-04 -0.8809E-05 0.4530B-06 S20(R20)

(8)

【0044】図6乃至図8にズームレンズ2の広角端、 広角端と望遠端との中間焦点位置及び望遠端における球 面収差、非点収差及び歪曲収差を示す図をそれぞれ示 す。尚、球面収差図において、実線はe線、点線はC 線、一点鎖線はd線、破線はF線、二点鎖線はg線にお ける値を示すものであり、非点収差図において、実線は サジタル像面、破線はメリディオナル像面における値を 示すものである。 【0045】また、ズームレンズ2においては、第4レンズ群GR4の第9レンズL9にプラスチック製の非球面レンズを使用し、小型化、高性能化と共に、安価に製造できるズームレンズを構成している。

14

【0046】表7にズームレンズ3の各数値を示す。

[0047]

【表7】

R1=35. 641	d1=1.8	ndL1=1.85000	νdL1=23.5
R2=16. 216(ASP)	d2=5. 5		
23 ×∞	d3=9. 5	ndP=1. 56883	v dP=56.0
k4 = ∞	d4=8.5	ndP=1. 56883	ν dP=56. Q
2 5=∞	d5=0. 5		
R6=32. 208	d6=2. 8	ndL2=1. 76656	ν dL2=49. 9
R7=-56. 283	d7=variable		
R8=-53. 723	d8=1. 1	ndL3=1. 84000	ν dL3=43. 0
R9=17. 458	d9=1.1		
R10= ∞	d10=1. 0	ndL4=1. 84000	ν dI.4=49. 0
R11=7. 869	d11=2.0	ndL5=1.83916	ν dl.5=23. 8
R12=48. 420	d12=variable		
R13=∞	d13=1.5		
R14=10. 484(ASP)	d14=2.0	ndL6=1. 80610	ν dL6=40. 7
R15=15. 006	d15=variable		
R16=7-899	d16=3. 0	ndL7=1. 79554	ν dL7=46. 8
R17=-93. 011	d17=1. 5	ndL8=1.80688	ν dL8=25. 6
R18=6_097	d18=3. 3	ndL9=1. 69850	ν dL9=53. S
R19=22. 085 (ASP)	d19=variable		
220 = ∞	d20=1. 5	ndLP=1.55282	ν dl.P=63. 4
P21 =∞	d21=1. 2	nd1R=1.51680	ν dIR=64. 2
¥22 = ∞	d22=1. 0		
¥28-∞	d23=0. 75	ndOG=1.55871	ν dCG=58. 6
24=∞	d24=1.0		
R25= 00			

【0048】上記表7に示すように、ズームレンズ3の ズーミング及びフォーカシング動作に伴って面間隔 d 7、d12、d15及びd19は可変(variable)である。従って、表8に広角端(f=5. 3)、望遠端(f=15. 5)及び広角端と望遠端との中間焦点位置(f=9. 0)における d7、d12、d15及び d19の各数値、並びに、FNo.、f及び ω を示す。

【表8】

f	5. 3	9. 0	15. 5
FNo.	2.4	2.6	8.1
ω	37. 0°	24.0°	14.5°
đ7	0.8	8. 08	13. 2
d12	14. 41	7. 12	2.0
d15	7. 26	5. 11	2.0
d19	5. 19	7. 84	10. 45

【0050】また、第1レンズ群の第1レンズL1の像面側の面S2、第3レンズ群GR3の第6レンズL6の物体側の面S14及び第4レンズ群GR4の第9レンズL9の像面側の面S19は非球面によって構成されている。以下の表3に上記面S2、S14及びS19の4次、6次、8次及び10次の非球面係数C4、C6、C8及びC10を示す。

[0051]

【表9】

10

	. K	C4	CS	C8	C10
S2(P2)	Ð	-0. 4475E-05	0. 2083E-07	-0. 6283E-10	-0. 7920B-12
S14(R14)	0	-0. 6561E-04	0. 1709E-05	-0. 1885B-06	0. 6981E-08
S19(R19)	0	0. 1058E-02	0. 2442B-04	0. 4797B-06	0. 3475E-07

【0052】ズームレンズ3においては、上記したように、第1レンズ群GR1内の第1レンズL1の像面側の面S2を非球面によって構成することによって、像面湾曲及び長焦点距離域での球面収差を補正するようにして 20いる。

【0053】図10万至図12にズームレンズ3の広角端、広角端と望遠端との中間焦点位置及び望遠端における球面収差、非点収差及び歪曲収差を示す図をそれぞれ示す。尚、球面収差図において、実線はe線、点線はC線、一点鎖線はd線、破線はF線、二点鎖線はg線における値を示すものであり、非点収差図において、実線はサジタル像面、破線はメリディオナル像面における値を

示すものである。

【0054】上記ズームレンズ3においては、第1の実施例におけるズームレンズ1と同様に、第4レンズ群GR4を3枚のレンズL7、L8及びL9の接合レンズによって構成することにより、第4レンズ群GR4内での偏心による像面の倒れを小さくし、製造をも容易にするようにしたものである。

【0055】以下の表10に上記第1乃至第3の実施例に示したズームレンズ1乃至3の条件式1乃至3の各条件を求めるための各数値及び各条件式の値を示す。

[0056]

【表10】

実施の形態	ndl1	ν dL1	fgr1	fw	f _{GR1} /fw
1	1. 85000	23. 5	38. 29	5. 3	7. 22
2	1. 84666	23. 8	32. 99	5. 3	6. 22
3	1. 85000	29. 5	36. 94	5. 3	6- 97

【0057】ズームレンズ1乃至3は、上記表10からも明らかなように、条件式1乃至3の条件を満足し、また、各収差図に示すように、広角端、広角端と望遠端との中間焦点位置及び望遠端において、各種収差もバランス良く補正されている。

【0058】このように、ズームレンズ1乃至3は、広 40 角端における画角が74°と、十分に広角領域を含むも のであり、各種収差も良好に補正されているため、特 に、画素数の多い撮像素子を使用したデジタルスチルカ メラ用として好適なものである。

【0059】尚、前記実施の形態において示した各部の 具体的な形状及び構造は、何れも本発明を実施するに当 たっての具体化のほんの一例を示したものに過ぎず、こ れらによって本発明の技術的範囲が限定的に解釈される ことがあってはならないものである。

[0060]

【発明の効果】以上に記載したところから明らかなように本発明ズームレンズは、物体側から像面側へと順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とから成り、上記第2レンズ群と第4レンズ群とを移動させることによりズーミングを行うようにしたズームレンズにおいて、第1レンズ群を物体側から順に、負の屈折力を有する単レンズの第1レンズ、光路を折り曲げるプリズム、正の屈折力を有する単レンズの第2レンズによって構成したので、ビデオカメラ、デジタルスチルカメラ等の小型の撮像機器に最適な変倍比3倍程度のズームレンズを小型化することができる。

【0061】請求項2に記載したズームレンズにあっては、ndL1を第1レンズのd線での屈折率、vdL1を第1レンズのd線でのアッベ数とすると、ndL1>

1. 75、v d L 1 < 30 の各条件を満足するようにしたので、第1 レンズ群で発生する歪曲収差及び色収差を良好に補正することができる。

【0062】請求項3に記載したズームレンズにあっては、第1レンズの少なくとも1の面を非球面によって構成したので、像面湾曲及び長焦点距離域における球面収差を良好に補正することができる。

【0063】請求項4乃至請求項6に記載した発明にあっては、第1レンズの物体側を向いた面を凸面としたので、レンズ全系で補正することが困難となる負の歪曲収 10 差が大きくなることがない。

【0064】請求項7万至請求項12に記載した発明にあっては、第4レンズ群を構成するレンズの各面のうち、少なくとも1面を非球面によって構成したので、第1レンズ群二より発生する広角端における負の歪曲収差を効果的に補正することができるようになるので、第1レンズ群の負の単レンズのパワーを強くすることが可能になって、より広い画角を得ることができるようになる。

【0065】請求項13乃至請求項24に記載した発明 20にあっては、 f_{GR1} を第1レンズ群の焦点距離、 f_{W} をレンズ全系のワイド端での焦点距離とすると、4.5く f_{GR1}/f_{W} <12の条件を満足するようにしたので、球面収差の補正、十分な広画角化及び小型化を達成することができる。

【図面の簡単な説明】

【図1】図2乃至図4と共に、本発明ズームレンズの第 1の実施の形態を示すものであり、本図はレンズ構成を 示す概略図である。

【図2】広角端における球面収差、非点収差及び歪曲収

差を示す図である。

【図3】広角端と望遠端との中間焦点位置における球面 収差、非点収差及び歪曲収差を示す図である。

【図4】望遠端における球面収差、非点収差及び歪曲収差を示す図である。

【図5】図6乃至図8と共に、本発明ズームレンズの第 2の実施の形態を示すものであり、本図はレンズ構成を 示す概略図である。

【図6】広角端における球面収差、非点収差及び歪曲収 差を示す図である。

【図7】広角端と望遠端との中間焦点位置における球面 収差、非点収差及び歪曲収差を示す図である。

【図8】望遠端における球面収差、非点収差及び歪曲収 差を示す図である。

【図9】図10乃至図12と共に、本発明ズームレンズの第3の実施の形態を示すものであり、本図はレンズ構成を示す概略図である。

【図10】広角端における球面収差、非点収差及び歪曲 収差を示す図である。

【図11】広角端と望遠端との中間焦点位置における球面収差、非点収差及び歪曲収差を示す図である。

【図12】望遠端における球面収差、非点収差及び歪曲 収差を示す図である。

【符号の説明】

1…ズームレンズ、2…ズームレンズ、3…ズームレン ズ、GR1…第1レンズ群、GR2…第2レンズ群、G R3…第3レンズ群、GR4…第4レンズ群、L1…第 1レンズ、L2…第2レンズ、P…プリズム、IMG… 像面

[図4]

【図6】

【図10】

【図11】

[図12]

フロントページの続き

F ターム(参考) 2H087 KA03 MA15 PA06 PA07 PA19 PB09 QA02 QA06 QA17 QA21 QA26 QA32 QA37 QA42 QA45 RA05 RA12 RA32 RA41 RA43 SA23 SA27 SA29 SA32 SA63 SA65 SB03 SB14 SB22 SB34

TA03

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)