AGR. Algorithmes. Avancés. Exercices

Exercice 1: Vrai / Faux

	VRAI	FAUX
Le tri par sélection consiste à placer un par un les éléments à leur place définitive.		
Après quelques étapes de tri par insertion, mais avant qu'il ne soit terminé, on est sûr qu'au moins un élément est rangé à sa place définitive.		
Avec un algorithme glouton, on obtient toujours une solution optimale.		
La complexité de l'algorithme de tri par sélection (ou par insertion) est quadratique.		
Une liste triée est la condition pour pouvoir effectuer une recherche dichotomique.		
Dans la zone euro, l'algorithme glouton est optimal pour rendre la monnaie.		

Exercice 2: QCM

Pour chaque question, <u>une seule réponse est correcte</u> parmi les quatre proposées.

Question 1 : On applique un algorithme de tri sur une liste de n éléments déjà triée. Quelle affirmation est vraie ?

- 1. Quel que soit l'algorithme de tri utilisé, le coût est constant.
- 2. Avec le tri par insertion, le coût est quadratique en n.
- 3. Avec le tri par insertion, le coût est linéaire en n.
- 4. Avec le tri par sélection, le coût est linéaire en *n*.

Question 2 : L'algorithme qui suit est celui d'un tri connu. Quelle affirmation est vraie ?

```
def tri(liste) :
for i in range(len(liste)) :
    j = i + 1
    s = liste[j]
while j > 0 and s < liste[j-1] :
    liste[j] = liste[j-1]
    j = j - 1
    liste[j] = s</pre>
```

- 1. Il s'agit du tri par sélection.
- 2. Le programme présente une erreur liée aux indices.
- 3. Le programme présente une erreur d'indentation.
- 4. Le programme ne présente aucune erreur.

Question 3: Voici la définition d'une fonction prenant en argument une liste de nombres.

```
def monte(liste) :
for i in range(len(liste) - 1) :
    if liste[i] > liste[i+1] :
        liste[i], liste[i+1] = liste[i+1], liste[i]
return liste
```

On définit une liste *nombres* = [12, 5, 13, 8, 11, 6] et on exécute le script ci-dessus.

Quelle affirmation est vraie?

- 1. *nombres* = [5, 12, 8, 13, 6, 11].
- 2. *nombres* = [5, 12, 8, 6, 11, 13].
- 3. *nombres* = [5, 12, 8, 11, 6, 13].
- 4. *nombres* = [5, 12, 8, 11, 13, 6].

<u>Question 4</u> (*) : On doit rendre la monnaie avec les pièces dont on dispose dans la caisse. Quelle affirmation est vraie ?

- 1. Avec uniquement des pièces de 1, 4, 5 et 10, un algorithme glouton est optimal.
- 2. Avec uniquement des pièces de 1, 3, 4 et 10, un algorithme glouton est optimal.
- 3. Avec uniquement des pièces de 1, 3, 4 et 5, un algorithme glouton est optimal.
- 4. Avec uniquement des pièces de 1, 3, 5 et 10, un algorithme glouton est optimal.

<u>Question 5</u>: On trie une liste de mots avec la fonction *sorted* selon l'ordre lexicographique. La liste à trier est la suivante : ['bonjour', 'toto', 'comment', 'vas', 'tu']. Quelle est la liste obtenue après le tri?

- 1. ['bonjour', 'comment', 'toto', 'tu', 'vas']
- 2. ['tu, 'vas, 'toto', 'bonjour', 'comment']
- 3. ['bonjour, 'toto', 'comment', 'tu', 'vas']
- 4. ['toto', 'bonjour', 'tu', 'vas', 'comment']

Exercice 3: (Algorithme glouton) Lister les combinaisons possibles d'un rendu de monnaie

On considère le système de monnaie de la zone euro (très simplifié) suivant : S = (1, 2, 5) pour le rendu de centimes d'euros.

- 1/ Quel est le **type** de la variable S?
- 2/ Ecrire un programme listant toutes les combinaisons possibles pour rendre 8 centimes.
- 3/ En déduire la meilleure combinaison.

Aide : on pourra penser à une système de boucles imbriquées, une pour chaque type de pièce.

Exercice 4 (*): (Algorithme glouton) Version fractionnaire du problème du sac à dos

On reprend l'exemple du cours, à savoir les objets suivants :

On suppose qu'un sac à dos peut contenir jusqu'à 15 kg d'objet. Voilà un tableau qui regroupe les caractéristiques des objets disponibles (valeur en euro et masse en kg).

Objets	Valeur (euros)	Masse (kg)	Valeur / Masse (euros/kg)
Objet 1	126	14	9
Objet 2	32	2	16
Objet 3	20	5	4
Objet 4	5	1	5
Objet 5	18	6	3
Objet 6	80	8	10

On suppose désormais qu'il est possible de charger les objets par kilogramme : on peut par exemple prendre 3 kg d'objet 1 et 2 kg de l'objet 6 (mais pas 3 kg de l'objet 4 puisqu'il n'y en a qu'un kg). Ainsi, 1 kg de l'objet 1 a pour valeur 9 euros.

Modifier le programme du cours et **montrer** que l'algorithme glouton propose pour solution :

- 2 kg d'objet 2,
- 8 kg d'objet 6,
- 5 kg d'objet 1,

pour une valeur totale de 157 euros avec le critère valeur/masse