INTERMEZZO: AXIOMATISCH BEWIJSSYSTEEM

Zoals bij propositielogica bestaat er ook een alternatief bewijssysteem, nl axioma's en afleidingsregels

INTERMEZZO: AXIOMATISCH BEWIJSSYSTEEM

Voorbeeld hiervan uit de Wiskunde

► Peano-rekenkunde: theorie voor optellen en vermenigvuldiging van natuurlijke getallen

Constante: 0

Functieletters: +, . , S (opvolgfunctie)

Termen: 0+x, x.y, S(x+Sy)

0, S0, SS0, SSS0, ... komt overeen met 0,1,2,3,...

Axioma's:

PA1:
$$\forall x \neg 0 = Sx$$

0 is van geen enkel getal de opvolger

PA2:
$$\forall x \ \forall y \ (Sx = Sy \rightarrow x = y)$$
 opvolgerfunctie is injectief

PA3:
$$\forall x \ x + 0 = x$$

recursieve definitie van +

$$\forall x \ \forall y \ x + Sy = S(x + y)$$

PA4: $\forall x \ x \ . \ 0 = 0$

recursieve definitie van .

$$\forall x \ \forall y \ x \ . \ Sy = x \ . \ y + x$$

PA5:
$$([0/x] \phi \land \forall x (\phi \rightarrow [Sx/x] \phi)) \rightarrow \forall x \phi$$
 (voor elke formule ϕ)

principe van inductie (op S)

PREDIKAATLOGICA: EEN EENVOUDIGE THEORIE

EENVOUDIGE THEORIE

Inhoud

- Substitutie
- Prenexvormen
- ► Fragmenten van Predikaatlogica

Herinner:

Bewering

Substitutie

Voor termen *t*, *t*' en variabele *x* geldt:

$$V_{M,b}([t/x]t') = V_{M,b[x\mapsto V^{M,b}(t)]}(t')$$

Bewijs: met inductie naar de opbouw van t'.

$$V_{M,b}([t/x]t') = V_{M,b[x \mapsto VM,b(t)]}(t')$$

Bewijs: met inductie naar de opbouw van t'.

- Als t' = x dan [t/x]t' = t, en dan V([t/x]t') = V(t)Anderzijds $V_{b[x \mapsto V(t)]}(t') = V_{b[x \mapsto V(t)]}(x) = V(t)$
- Als t' = y en y is een andere variabele of een constante,

dan
$$[t/x]t' = y$$
 en $V([t/x]t') = V(y)$
Anderzijds $V_{b[x \mapsto V(t)]}(t') = V_{b[x \mapsto V(t)]}(y) = V(y)$

- Inductiehypothese: stel bewering geldt voor termen t_i , i = 1, ..., nDan geldt voor $t'=f(t_1, ..., t_n)$ dat $V([t/x]t') = I(f)(V([t/x]t_1), ..., V([t/x]t_n)) = I(f)(V_{b[x \mapsto V(t)]}(t_1), ..., V_{b[x \mapsto V(t)]}(t_n))$ Anderzijds: $V_{b[x \mapsto V(t)]}(t') = V_{b[x \mapsto V(t)]}(f(t_1, ..., t_n)) = I(f)(V_{b[x \mapsto V(t)]}(t_1), ..., V_{b[x \mapsto V(t)]}(t_n))$

In formules:

<u>Probleem</u>: door substitutie op een vrije variabele kan deze gebonden raken, daarom extra conditie!

Bewering

Als φ een formule is, t een term, x een variabele en t is vrij voor x in φ dan geldt in elk model M en voor elke bedeling b:

$$V_{M,b}([t/x]\varphi) = V_{M,b[x\mapsto V_{M,b}(t)]}(\varphi)$$

$$V_{M,b}([t/x]\varphi) = V_{M,b[x\mapsto V_{M,b}(t)]}(\varphi)$$

Bewijs: met inductie naar de opbouw van φ .

Schets

- Eerst voor $\varphi = P(t_1, ..., t_n)$
- Dan voor $\varphi = \neg \psi$ en alle andere connectieven
- − Dan voor $\varphi = \forall z \Psi$
 - Hierbij 2 gevallen: x niet vrij en x vrij
- En $\varphi = \exists z \ \Psi$ analoog

- $V_{M,b}(\exists x \ \varphi) = 1 \text{ desda } er \text{ is } een \ d \in D \text{ zodat } V_{M,b[x \mapsto d]}(\varphi) = 1$
- $V_{M,b}(\forall x \ \varphi) = 1 \text{ desda } voor \text{ alle } d \in D \text{ geldt } V_{M,b[x\mapsto d]}(\varphi) = 1$

Er bestaat een verband tussen ∀ en ∃

- ► Equivalenties met ∀, ∃ en ¬:
 - $\forall x \neg \varphi$ is logisch equivalent met $\neg \exists x \varphi$ NI.

$$V(\forall x \neg \varphi) = 1$$

desda voor alle $d \in D$ geldt dat $V_{b[x \mapsto d]}(\neg \varphi) = 1$

desda voor alle $d \in D$ geldt dat $V_{b[x \mapsto d]}(\varphi) = 0$

desda er is geen $d \in D$ zodat $V_{b[x \mapsto d]}(\varphi) = 1$

desda $V(\exists x \ \varphi) = 0$

desda $V(\neg \exists x \ \varphi) = 1$

 $ightharpoonup \exists x \neg \varphi$ is logisch equivalent met $\neg \forall x \varphi$

Voorbeeld:

$$\neg\neg\neg\exists x \ \forall y \ \varphi \ \equiv \neg\exists x \ \forall y \ \varphi \ \equiv \forall x \ \neg \forall y \ \varphi \ \equiv \forall x \ \exists y \ \neg \varphi$$

staat voor logisch equivalent met

Equivalenties met \forall , \exists , \land en \lor :

Lemma:

Als φ en ψ formules zijn en x een variabele is die *niet vrij voorkomt in* ψ dan zijn de volgende formules logisch equivalent:

```
(\exists x \ \varphi) \land \psi \text{ en } \exists x \ (\varphi \land \psi)
(\forall x \ \varphi) \land \psi \text{ en } \forall x \ (\varphi \land \psi)
(\exists x \ \varphi) \land \psi \text{ en } \forall x \ (\varphi \land \psi)
(\exists x \ \varphi) \lor \psi \text{ en } \exists x \ (\varphi \lor \psi)
(\forall x \ \varphi) \lor \psi \text{ en } \exists x \ (\varphi \lor \psi)
(\forall x \ \varphi) \lor \psi \text{ en } \forall x \ (\varphi \lor \psi)
(\forall x \ \varphi) \lor \psi \text{ en } \forall x \ (\varphi \lor \psi)
\psi \lor (\exists x \ \varphi) \text{ en } \exists x \ (\psi \lor \varphi)
\psi \lor (\forall x \ \varphi) \text{ en } \forall x \ (\psi \lor \varphi)
```

Als x toch vrij voorkomt in ψ dan kunnen we in $\exists x \ \varphi$ of $\forall x \ \varphi$ overgaan op een alfabetische variant

Equivalenties met \forall , \exists en \rightarrow :

emma

Als φ en ψ formules zijn en x een variabele is die *niet vrij voorkomt in* ψ , dan zijn de volgende formules logisch equivalent:

$$(\forall x \ \varphi) \rightarrow \psi \ \text{en} \ \exists x \ (\varphi \rightarrow \psi) \qquad \psi \rightarrow (\forall x \ \varphi) \ \text{en} \ \forall x \ (\psi \rightarrow \varphi)$$

 $(\exists x \ \varphi) \rightarrow \psi \ \text{en} \ \forall x \ (\varphi \rightarrow \psi) \qquad \psi \rightarrow (\exists x \ \varphi) \ \text{en} \ \exists x \ (\psi \rightarrow \varphi)$

Namelijk (voorbeeld):
$$(\exists x \ \varphi) \rightarrow \psi \equiv \neg(\exists x \ \varphi) \lor \psi \equiv (\forall x \ \neg \varphi) \lor \psi \equiv \forall x \ (\neg \varphi \lor \psi) \equiv \forall x \ (\varphi \rightarrow \psi)$$

≡ staat voor logisch equivalent met

Equivalenties met \forall , \exists en \leftrightarrow

Lemma:

$$\forall x \neg \varphi \equiv \neg \exists x \varphi \qquad \exists x \neg \varphi \equiv \neg \forall x \varphi \qquad = \text{staat voor "is logisch equivalent met"}$$

$$(\exists x \varphi) \land \psi \equiv \exists x (\varphi \land \psi) \qquad \psi \land (\exists x \varphi) \equiv \exists x (\psi \land \varphi) \\ (\forall x \varphi) \land \psi \equiv \forall x (\varphi \land \psi) \qquad \psi \land (\forall x \varphi) \equiv \forall x (\psi \land \varphi) \\ (\exists x \varphi) \lor \psi \equiv \exists x (\varphi \lor \psi) \qquad \psi \lor (\exists x \varphi) \equiv \exists x (\psi \lor \varphi) \\ (\forall x \varphi) \lor \psi \equiv \forall x (\varphi \lor \psi) \qquad \psi \lor (\forall x \varphi) \equiv \forall x (\psi \lor \varphi)$$

$$(\forall x \varphi) \rightarrow \psi \equiv \exists x (\varphi \rightarrow \psi) \qquad \psi \rightarrow (\forall x \varphi) \equiv \forall x (\psi \rightarrow \varphi) \\ (\exists x \varphi) \rightarrow \psi \equiv \forall x (\varphi \rightarrow \psi) \qquad \psi \rightarrow (\exists x \varphi) \equiv \exists x (\psi \rightarrow \varphi)$$

Als φ en ψ formules zijn en x is een variabele die *niet* vrij voorkomt in \(\psi \) en \(\psi \) is een variabele die niet vrij voorkomt in φ en ψ , dan zijn de volgende formules logisch equivalent:

$$(\exists x \ \varphi) \leftrightarrow \psi \text{ en}$$

$$((\exists x \ \varphi) \rightarrow \psi) \land (\psi \rightarrow (\exists x \ \varphi)) \text{ en}$$

$$((\forall x \ (\varphi \rightarrow \psi)) \land (\exists x \ (\psi \rightarrow \varphi)) \text{ en}$$

$$((\forall x \ (\varphi \rightarrow \psi)) \land (\exists y \ (\psi \rightarrow [y/x]\varphi)) \text{ en}$$

$$\forall x \ ((\varphi \rightarrow \psi) \land (\exists y \ (\psi \rightarrow [y/x]\varphi))) \text{ en}$$

$$\forall x \ \exists y \ ((\varphi \rightarrow \psi) \land (\psi \rightarrow [y/x]\varphi))$$

Definitie

Prenexvorm

Een formule van de vorm $Q_1x_1 ... Q_nx_n \psi$, waarbij

- $\triangleright Q_i$ kwantoren (\exists of \forall) zijn,
- i = 1, ..., n
- $\blacktriangleright \psi$ een formule is waarin geen kwantoren meer voorkomen

heet een *prenexvorm* met $Q_1x_1 ... Q_nx_n$ als prefix en ψ als matrix.

Voorbeeld:

PRENEXSTELLING

Prenexstelling:

Voor elke formule φ bestaat er een prenexformule ψ zodat φ en ψ logisch equivalent zijn, i.e $(V(\varphi)=V(\psi))$.

Bewijs: met inductie naar φ .

Voorbeeld:

$$\forall x \neg \varphi \equiv \neg \exists x \varphi \qquad \exists x \neg \varphi \equiv \neg \forall x \varphi \qquad \equiv \text{staat voor "is logisch equivalent met"}$$

$$(\exists x \varphi) \land \psi \equiv \exists x (\varphi \land \psi) \qquad \psi \land (\exists x \varphi) \equiv \exists x (\psi \land \varphi) \\ (\forall x \varphi) \land \psi \equiv \forall x (\varphi \land \psi) \qquad \psi \land (\forall x \varphi) \equiv \forall x (\psi \land \varphi) \\ (\exists x \varphi) \lor \psi \equiv \exists x (\varphi \lor \psi) \qquad \psi \lor (\exists x \varphi) \equiv \exists x (\psi \lor \varphi) \\ (\forall x \varphi) \lor \psi \equiv \forall x (\varphi \lor \psi) \qquad \psi \lor (\forall x \varphi) \equiv \forall x (\psi \lor \varphi)$$

$$(\forall x \varphi) \rightarrow \psi \equiv \exists x (\varphi \rightarrow \psi) \qquad \psi \rightarrow (\forall x \varphi) \equiv \forall x (\psi \rightarrow \varphi) \\ (\exists x \varphi) \rightarrow \psi \equiv \forall x (\varphi \rightarrow \psi) \qquad \psi \rightarrow (\exists x \varphi) \equiv \exists x (\psi \rightarrow \varphi)$$

```
\forall x(\forall y (Ryx \rightarrow Ay) \rightarrow Ax) \rightarrow \forall x Ax
= \forall x (\forall y (Ryx \rightarrow Ay) \rightarrow Ax) \rightarrow \forall x_1 Ax_1  (alfabetische variant)
\equiv \forall x (\forall y (Ryx \rightarrow Ay) \rightarrow Ax) \rightarrow \forall x_1 Ax_1
\equiv \forall x (\exists y ((Ryx \rightarrow Ay) \rightarrow Ax)) \rightarrow \forall x_1 Ax_1
\equiv \forall x (\exists y ((Ryx \rightarrow Ay) \rightarrow Ax)) \rightarrow \forall x_1 Ax_1
\equiv \exists x (\exists y ((Ryx \rightarrow Ay) \rightarrow Ax) \rightarrow \forall x_1 Ax_1)
\equiv \exists x (\exists y ((Ryx \rightarrow Ay) \rightarrow Ax) \rightarrow \forall x_1 Ax_1)
\equiv \exists x \forall y (((Ryx \rightarrow Ay) \rightarrow Ax) \rightarrow \forall x_1 Ax_1)
\equiv \exists x \forall y (((Ryx \rightarrow Ay) \rightarrow Ax) \rightarrow \forall x_1 Ax_1)
\equiv \exists x \forall y \forall x_1(((Ryx \rightarrow Ay) \rightarrow Ax) \rightarrow Ax_1)
```


Opm. De volgorde van de kwantoren vooraan hangt af van de volgorde waarin je ze naar voren haalt.

FRAGMENTEN VAN DE PREDIKAATLOGICA

Men beperkt zich vaak tot delen (fragmenten) van de predikaatlogica

- ► Monadische taal: enkel één-plaatsige predikaatletters
 - ► Voldoende voor behandeling van syllogismen
 - Syllogismen: gevolgtrekkingen met 2 aannames en 1 conclusie van de vorm 'alle/geen/sommige A is/zijn B'
 - voorbeeld: alle kaaimannen zijn reptielen geen reptiel kan fluiten dus geen kaaiman kan fluiten.

FRAGMENTEN VAN DE PREDIKAATLOGICA

- ► Universele formules: alleen universele kwantoren in hun prefix
- ► Horn-zinnen

```
▶zijn universele zinnen van de vorm \forall x_1 ... \forall x_n (A_1 \land ... \land A_k) \rightarrow B waarbij A_1, ..., A_k, B atomaire beweringen zijn Worden gebruikt in de programmeertaal PROLOG Voorbeeld:
```

```
sibling(X,Y) :-
  parentS(F,M,X),
  parentS(F,M,Y),
  X \= Y.
```


PREDIKAATLOGICA: METATHEORIE

- ▶ Inhoud:
 - ► Adequaatheid van semantische tableaus
 - ▶ De volledigheidsstelling

PREDIKAATLOGICA: METATHEORIE

ADEQUAATHEID VAN TABLEAUS

Semantische tableaus zijn een juiste methode om de geldigheid van een gevolgtrekking in de predikaatlogica te bewijzen of te weerleggen.

Herinner:

Beperkt tot taal zonder functiesymbolen, zonder individuele constanten en zonder vrije variabelen

Adequaatheidsstelling (zonder bewijs)

Als Σ een formuleverzameling is en φ een formule, dan geldt: $\Sigma \models \varphi$ desda er bestaat een gesloten semantisch tableau voor $\Sigma \circ \varphi$

VOLLEDIGHEIDSSTELLING

Volledigheidsstelling:

Voor de predikaatlogica geldt dat voor iedere formuleverzameling Σ en iedere formule ϕ

$$\Sigma \vdash \varphi \quad \text{desda } \Sigma \models \varphi$$

- ► Correctheid ("soundness"):
 - $\Sigma \vdash \varphi$ impliceert $\Sigma \vdash \varphi$
- ► Volledigheid ("completeness"):
 - $\Sigma \models \varphi \text{ implice}$ $\Sigma \vdash \varphi$

Logica en formele systemen - Predikaatlogica

EINDE PREDIKAATLOGICA

