

- Deney
- Örneklem Birimi
- Örneklem Uzayı
- Olay
- Olasılık Hesaplama
- İmkansız Olay, Kesin Olay
- Birleşim ve Kesişim
- Tümleyen Olaylar
- Bütüne Tamamlayan Olaylar
- Karşılıklı Ayrık Olaylar

Deney (Experiment)

- Deney, sonucu kesin olarak bilinmeyen ve tekrarlanabilen olaylara ilişkin gözlem yapma ya da veri toplama süreci olarak tanımlanabilir.
- Deney tekrarlanan denemelerden oluşur.

Örneklem Birimi (Sample Point)

• Bir deneyin çıktılarından herbirine örneklem birimi denir.

Örneklem Uzayı (Sample Space)

- Bir deneyin olası tüm çıktılarına örneklem uzayı denir.
- $S = \{H,T\}, S = \{1,2,3,4,5,6\}$

(a,b)	1	2	3	4	5	6
1	(<mark>1,1</mark>)	(<mark>2</mark> ,1)	(3,1)	(4,1)	(5,1)	(<mark>6,1</mark>)
2	(1,2)	(<mark>2,2</mark>)	(3,2)	(<mark>4,2</mark>)	(<mark>5,2</mark>)	(<mark>6,2</mark>)
3	(1,3)	(<mark>2,3</mark>)	(3,3)	(4,3)	(5,3)	(6,3)
4	(1,4)	(<mark>2,4</mark>)	(3,4)	(4,4)	(5,4)	(6,4)
5	(1,5)	(<mark>2,5</mark>)	(3,5)	(4,5)	(5,5)	(6,5)
6	(1,6)	(<mark>2</mark> ,6)	(3,6)	(4,6)	(5,6)	(6,6)

Olay (Event)

- Bir deneyde belirli özelliğe sahip sonuçların oluşturduğu kümeye olay denir.
- Bir örneklem uzayının alt kümelerine olay denir.

Probability of an Event

Probability of an Event

The probability of an event A is calculated by summing the probabilities of the sample points in the sample space for A.

Example 6 Refer to Example 4 and 5. If $A = \{H\}$, $P(A) = p_1 = 0.5$. If $A = \{H, T\}$, $P(A) = p_1 + p_2 = 1$.

Probability Rules for Sample Points

Let p_i represent the probability of sample point i. Then

- 1. All sample point probabilities must lie between 0 and 1 (i.e. $0 \le p_i \le 1$).
- 2. The probabilities of all the sample points within a sample space must sum to 1 (i.e., $\sum p_i = 1$)

Olasılık Hesaplama Adımları

Steps for Calculating Probabilities of Events

- 1. Define the experiment; that is, describe the process used to make an observation and the type of observation that will be recorded.
- 2. List the sample points.
- 3. Assign probabilities to the sample points.
- 4. Determine the collection of sample points contained in the event of interest.
- 5. Sum the sample point probabilities to get the probability of the event.

Bir zar havaya atılıyor üst yüze gelen sayının çift olma olasılığını inceleyiniz.

Deney: Zarın havaya atılması.

Olay: Zarın çift gelmesi olayıdır.

Örnek Uzay: 1,2,3,4,5,6

Çıktı: 2,4,6

Örnek

- A ve B oyuncuları tarafından oynanan tenis maçında A'nın kazanma şansı B'nin 2 katıdır.
- A ve B'nin 2 maç yaptığını düşünelim.
- A'nın en az 1 maç kazanması olasılığını hesaplayınız.

Çözüm

- SS={AA, AB, BA, BB}
- □ P(A)=2/3 **2**
- □ P(B)=1/3 **③**

<u>Örnek uzay</u>	Olasılık 4
AA	4/9
AB	2/9
BA	2/9
BB	1/9

P(en az bir A)=P(AA)+P(AB)+P(BA)=8/9

Impossible event, Certain event

Birleşim ve Kesişim(Union and Intersection)

- A ve B olaylarının birleşim kümesi,
 - A, B ya da her ikisine ait olan elemanların oluşturduğu kümedir.
- ------
- A ve B olaylarının kesişim kümesi,
 - A, B olaylarının ortak elemanlarının oluşturduğu kümedir.

A U B

A or B

A ve B, aynı S örneklem uzayında tanımlanmış iki olay olmak üzere;

- -A ve B olaylarının birleşimi AUB olarak gösterilir. AUB olayının sonuçları ya A ya B ya da her ikisinden birinden ortaya çıkar.
- -A ve B olaylarının kesişimi A∩B olarak gösterilir. A∩B olayının sonuçları hem A hem de B olayından ortaya çıkar.

 Ayrık Olay: Eğer A ve B gibi iki olay aynı anda geçekleşemiyor ise bu olaylara ayrık(birbirini engelleyen) olaylar denir

Örnek: Madeni para atılması sonucunda yazı veya tura gelmesi ayrık olaylardır.

Zarın atılması sonucu 1 ve tek sayı gelmesi olayları ayrık olaylar değildirler. Çünkü aynı anda gerçekleşebilirler.

 Eşit Olasılıklı Olaylar: Bir örnek uzayındaki tüm basit olayların ortaya çıkma olasılığı eşit ise bu olaylara eşit olasılıklı olaylar denir.

Örnek: Bir deste iskambil kağıdından bir adet kağıt çekilmesi.

Tümleyen Olaylar (Complementary Events)

• A kümesine ait olmayan, örnek uzaya ait olan elemanların oluşturduğu kümeye A'nın tümleyeni denir.

$$P(A) + P(A^c) = 1.$$

Set Operations and Venn Diagrams

Set A

A' the complement of A

A and B are disjoint sets

B is proper $B \subset A$ subset of A

Both A and B $A \cap B$ A intersect B

Either A or B $A \cup B$ A union B

Olasılıkta Toplama Kuralı

Additive Rule of Probability

The probability of the union of events A and B is the sum of the probability of event A and the probability of event B, minus the probability of the intersection of events A and B; that is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bütüne Tamamlayan Olaylar (Collectively Exhaustive Events)

• E1, E2, ... Ek olaylarının kesişimleri boş küme, birleşimleri örnek uzaya eşit ise bu olaylar bütüne tamamlayan olaylardır. (E1 U E2 U . . . U Ek = S)

Mutually exclusive and exhaustive system of events: Let S be the sample space associated with a random experiment. Let A_1 , A_2 A_n be subsets of S such that

(i)
$$A_i \cap A_j = \phi \ \ ext{for} \ i
eq j \ \ ext{and}$$

(ii)
$$A_1 \cup A_2 \cup \ldots \cup A_n = S$$

Then the collection of events A_1 , A_2 ,, A_n is said to form a mutually exclusive and exhaustive system of events.

In this sytem,

$$P\left(A_{1}\cup A_{2}\cup \ldots \cup A_{n}\right) = \ P\left(A_{1}\right) \ + \ P\left(A_{2}\right) \ + \ \ldots \ + P\left(A_{n}\right) = 1$$

Karşılıklı Ayrık Olaylar (Mutually Exclusive Events)

Events A and B are **mutually exclusive** if $A \cap B$ contains no sample points—that is, if A and B have no sample points in common. For mutually exclusive events,

$$P(A \cap B) = 0$$

S

Probability of Union of Two Mutually Exclusive Events

If two events A and B are mutually exclusive, the probability of the union of A and B equals the sum of the probability of A and the probability of B; that is, $P(A \cup B) = P(A) + P(B)$.

Örnek

Let the Sample Space be the collection of all possible outcomes of rolling one die:

$$S = [1, 2, 3, 4, 5, 6]$$

Let A be the event "Number rolled is even"

Let B be the event "Number rolled is at least 4"

Then

$$A = [2, 4, 6]$$
 and $B = [4, 5, 6]$

$$A = [2, 4, 6]$$

Complements:

$$\overline{A} = [1, 3, 5]$$

$$\overline{B} = [1, 2, 3]$$

Intersections:

$$A \cap B = [4, 6]$$

$$\overline{A} \cap B = [5]$$

Unions:

$$A \cup B = [2, 4, 5, 6]$$

$$A \cup \overline{A} = [1, 2, 3, 4, 5, 6] = S$$

$$A = [2, 4, 6]$$

$$B = [4, 5, 6]$$

- Mutually exclusive:
 - A and B are not mutually exclusive
 - The outcomes 4 and 6 are common to both
- Collectively exhaustive:
 - A and B are not collectively exhaustive
 - A∪B does not contain 1 or 3

