IMDB Dataset Classifier: ML Algorithms

Load Dependencies

```
In [1]:
```

```
%%capture
!pip install nltk
```

In [2]:

```
import nltk
nltk.download('punkt')
nltk.download('stopwords')
```

Out[2]:

True

In [3]:

```
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from nltk import pos_tag, word_tokenize
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import svm
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
```

In [4]:

```
import pandas as pd
import numpy as np
```

Data Exploration

```
In [5]:
```

```
df = pd.read_csv("IMDB_Dataset.csv")
```

In [6]:

```
df.head()
```

Out[6]:

	review	sentiment
0	One of the other reviewers has mentioned that	positive
1	A wonderful little production. The	positive
2	I thought this was a wonderful way to spend ti	positive
3	Basically there's a family where a little boy	negative
4	Petter Mattei's "Love in the Time of Money" is	positive

In [7]:

```
df.groupby('sentiment').count()
```

Out[7]:

review

negative 25000 positive 25000

The dataset is balanced with 25K each of positive and negative reviews

Data Pre-Processing

In [8]:

```
# Change Lower case

def ChangeLower(msg):
    # converting messages to Lowercase
    msg = msg.lower()
    return msg

df['review']=df['review'].apply(ChangeLower)
```

```
In [9]:
df['review'].head()
Out[9]:
     one of the other reviewers has mentioned that ...
     a wonderful little production. <br /><br />the...
1
     i thought this was a wonderful way to spend ti...
     basically there's a family where a little boy ...
3
     petter mattei's "love in the time of money" is...
4
Name: review, dtype: object
Remove Stop Words
In [10]:
stopwords = set(stopwords.words('english'))
In [11]:
def RemoveStop (msg):
    msg = [word for word in msg.split() if word not in stopwords]
    return msg
df['review']=df['review'].apply(RemoveStop)
In [12]:
df['review'].head()
Out[12]:
     [one, reviewers, mentioned, watching, 1, oz, e...
0
     [wonderful, little, production., <br, /><br, /...
1
     [thought, wonderful, way, spend, time, hot, su...
2
3
     [basically, there's, family, little, boy, (jak...
```

Check for Most Common Words & Remove if not Meaninful

[petter, mattei's, "love, time, money", visual...

Name: review, dtype: object

In [13]:

```
from collections import Counter
df['review']=df['review'].apply(lambda a: ' '.join(a))
Counter(" ".join(df["review"]).split()).most_common(100)
```

Out[13]:

```
[('/><br', 100974),
 ('movie', 61492),
 ('film', 55086),
 ('one', 44983),
 ('like', 37281),
 ('would', 23807),
 ('even', 23681),
 ('good', 23467),
 ('really', 21805),
 ('see', 20901),
 ('-', 18201),
 ('get', 17689),
 ('much', 17278),
 ('story', 16810),
 ('also', 15743),
 ('time', 15657),
 ('great', 15465),
  'first', 15455),
 ('make', 15028),
 ('people', 15028),
 ('could', 14927),
 ('/>the', 14702),
 ('made', 13562),
 ('bad', 13494),
 ('think', 13304),
 ('many', 12877),
 ('never', 12621),
 ('two', 12189),
 ('<br', 12028),
 ('little', 11827),
 ('well', 11692),
 ('watch', 11461),
 ('way', 11375),
 ('it.', 11169),
 ('know', 10784),
 ('movie.', 10764),
 ('love', 10748),
 ('best', 10743),
 ('seen', 10611),
 ('characters', 10599),
 ('character', 10386),
 ('movies', 10349),
 ('ever', 10218),
 ('still', 9778),
 ('films', 9578),
 ('plot', 9455),
 ('acting', 9378),
 ('show', 9376),
 ('better', 9045),
 ('film.', 8921),
 ('say', 8824),
 ('go', 8798),
 ('something', 8764),
```

```
("i'm", 8262),
 ('scene', 8235),
 ('makes', 8222),
 ('watching', 8146),
 ('film,', 8120),
 ('real', 8041),
 ('movie,', 8040),
 ('find', 8002),
 ('back', 7904),
 ('actually', 7798),
 ('scenes', 7797),
 ('every', 7791),
 ('going', 7659),
 ('man', 7659),
 ('life', 7570),
 ('new', 7502),
 ('/>i', 7498),
  'nothing', 7417),
 ('look', 7409),
 ('another', 7379),
 ('lot', 7356),
 ('quite', 7120),
 ('thing', 7113),
 ('&', 7063),
 ('want', 7048),
 ('end', 6962),
 ('pretty', 6953),
 ('old', 6946),
 ('seems', 6860),
 ("can't", 6847),
 ('got', 6774),
 ('take', 6632),
 ('actors', 6612),
 ('give', 6556),
 ('years', 6517),
 ('part', 6515),
 ('may', 6390),
 ('young', 6340),
 ("that's", 6301),
 ("i've", 6247),
 ('us', 6241),
 ('without', 6202),
 ('big', 6198),
 ('thought', 6184),
 ('things', 6168),
 ('around', 6085),
 ('it,', 6068)]
In [14]:
```

In [15]:

```
stopwords.update(morewords)
```

```
In [16]:
```

```
df.head()
```

Out[16]:

	review	sentiment
0	one reviewers mentioned watching 1 oz episode	positive
1	wonderful little production. the f	positive
2	thought wonderful way spend time hot summer we	positive
3	basically there's family little boy (jake) thi	negative
4	petter mattei's "love time money" visually stu	positive

In [17]:

```
def RemoveStop (msg):
    msg = [word for word in msg.split() if word not in stopwords]
    return msg

df['review']=df['review'].apply(RemoveStop)
```

Carry out a second scan of most common words & remove

```
In [18]:
```

```
df['review']=df['review'].apply(lambda a: ' '.join(a))
Counter(" ".join(df["review"]).split()).most_common(100)
```

```
Out[18]:
```

```
[('like', 37281),
 ('would', 23807),
('even', 23681),
('good', 23467),
 ('really', 21805),
 ('see', 20901),
 ('get', 17689),
 ('much', 17278),
 ('story', 16810),
 ('also', 15743),
 ('time', 15657),
 ('great', 15465),
 ('first', 15455),
 ('make', 15028),
 ('people', 15028),
 ('could', 14927),
 ('made', 13562),
 ('bad', 13494),
 ('think', 13304),
 ('many', 12877),
 ('never', 12621),
 ('little', 11827),
 ('well', 11692),
 ('watch', 11461),
 ('way', 11375),
 ('know', 10784),
 ('movie.', 10764),
 ('love', 10748),
 ('best', 10743),
 ('seen', 10611),
 ('characters', 10599),
 ('character', 10386),
 ('movies', 10349),
 ('ever', 10218),
 ('still', 9778),
 ('films', 9578),
 ('plot', 9455),
 ('acting', 9378),
 ('show', 9376),
('better', 9045),
 ('film.', 8921),
 ('say', 8824),
('go', 8798),
  'something', 8764),
 ('scene', 8235),
('makes', 8222),
('watching', 8146),
 ('film,', 8120),
 ('real', 8041),
 ('movie,', 8040),
 ('find', 8002),
 ('back', 7904),
 ('actually', 7798),
('scenes', 7797),
```

```
('every', 7791),
('going', 7659),
('man', 7659),
('life', 7570),
('new', 7502),
('nothing', 7417),
('look', 7409),
('another', 7379),
('lot', 7356),
('quite', 7120),
('thing', 7113),
('want', 7048),
('end', 6962),
('pretty', 6953),
('old', 6946),
('seems', 6860),
("can't", 6847),
('got', 6774),
('take', 6632),
('actors', 6612),
('give', 6556),
('years', 6517),
('part', 6515),
('may', 6390),
('young', 6340),
("that's", 6301),
('us', 6241),
('without', 6202),
('big', 6198),
('thought', 6184),
('things', 6168),
('around', 6085),
('it,', 6068),
('saw', 6051),
('gets', 6049),
('almost', 6020),
('must', 6004),
('though', 6000),
('director', 5960),
('always', 5898),
('whole', 5796),
('horror', 5766),
('come', 5765),
('work', 5689),
('might', 5653),
("there's", 5615)]
```

In [19]:

```
morewords={"there's",'it,''things','may',"can't",'seems','quite','thing','movie,','film,','
```

In [20]:

```
stopwords.update(morewords)
```

```
In [21]:
```

```
def RemoveStop (msg):
    msg = [word for word in msg.split() if word not in stopwords]
    return msg

df['review']=df['review'].apply(RemoveStop)
```

Final scan of most common words

In [22]:

```
df['review']=df['review'].apply(lambda a: ' '.join(a))
Counter(" ".join(df["review"]).split()).most_common(100)
```

```
Out[22]:
```

```
[('like', 37281),
 ('even', 23681),
('good', 23467),
('really', 21805),
 ('see', 20901),
 ('get', 17689),
 ('much', 17278),
 ('story', 16810),
 ('also', 15743),
 ('time', 15657),
('great', 15465),
 ('first', 15455),
 ('make', 15028),
 ('people', 15028),
 ('could', 14927),
 ('made', 13562),
 ('bad', 13494),
 ('think', 13304),
 ('many', 12877),
 ('never', 12621),
 ('little', 11827),
 ('well', 11692),
 ('watch', 11461),
 ('way', 11375),
 ('know', 10784),
  'love', 10748),
 ('best', 10743),
 ('seen', 10611),
 ('ever', 10218),
 ('still', 9778),
 ('films', 9578),
 ('plot', 9455),
 ('acting', 9378),
 ('show', 9376),
 ('better', 9045),
 ('say', 8824),
 ('go', 8798),
 ('scene', 8235),
 ('makes', 8222),
 ('watching', 8146),
 ('real', 8041),
 ('find', 8002),
('back', 7904),
 ('actually', 7798),
 ('scenes', 7797),
('every', 7791),
('going', 7659),
 ('man', 7659),
 ('life', 7570),
 ('new', 7502),
 ('nothing', 7417),
 ('look', 7409),
 ('another', 7379),
('lot', 7356),
```

```
('want', 7048),
('end', 6962),
('pretty', 6953),
('old', 6946),
('got', 6774),
('take', 6632),
('actors', 6612),
('give', 6556),
('years', 6517),
('part', 6515),
('young', 6340),
("that's", 6301),
('us', 6241),
('without', 6202),
('big', 6198),
('thought', 6184),
('things', 6168),
('around', 6085),
('it,', 6068),
('saw', 6051),
('gets', 6049),
('almost', 6020),
('must', 6004),
('though', 6000),
('director', 5960),
('always', 5898),
('whole', 5796),
('horror', 5766),
('come', 5765),
('work', 5689),
('might', 5653),
('"the', 5592),
('cast', 5545),
("he's", 5476),
('enough', 5430),
('bit', 5404),
('probably', 5365),
('least', 5359),
('feel', 5316),
('last', 5277),
('since', 5267),
('long', 5254),
('far', 5205),
('funny', 5163),
('kind', 5094),
('rather', 5063)]
```

Final Scan of Data before next stage

```
In [23]:
```

```
df.head()
```

Out[23]:

	review	sentiment
0	reviewers mentioned watching 1 oz episode hook	positive
1	wonderful little production. filming technique	positive
2	thought wonderful way spend time hot summer we	positive
3	basically family little boy (jake) thinks zomb	negative
4	petter mattei's "love time money" visually stu	positive

Set up Data

In [24]:

```
X_train_raw, X_test_raw, y_train, y_test = train_test_split(df['review'], df['sentiment'],
```

In [25]:

```
### STEP 2 - Declare Features Vectors to use
### Create TfidfVectorizer.

vectorizer = TfidfVectorizer()

### STEP 3 - Fit and transform.
### Note there's no need to create TF-IDF vectors for y - labels

X_train = vectorizer.fit_transform(X_train_raw)

### Note vectorizer was fitted prior in X_train process
X_test = vectorizer.transform(X_test_raw)
```

Training & Evaluation

1. Logistic Regression

In [26]:

```
from sklearn.linear_model import LogisticRegression

### STEP 4 - Prediction
### Create and run Classifier

classifier = LogisticRegression()

### Fitting requires training TF_IDF vectors and labels
classifier.fit(X_train, y_train)

### X_test is the transformed test TF-IDF vectors
predictions = classifier.predict(X_test)
```

In [27]:

```
# testing against testing set

y_pred = classifier.predict(X_test)
print(confusion_matrix(y_test, y_pred))

print(classification_report(y_test,y_pred))
```

[[4409 590] [414 4587]]				
	precision	recall	f1-score	support
negative	0.91	0.88	0.90	4999
positive	0.89	0.92	0.90	5001
accuracy			0.90	10000
macro avg	0.90	0.90	0.90	10000
weighted avg	0.90	0.90	0.90	10000

2. Naive Bayes

In [28]:

```
from sklearn.naive_bayes import MultinomialNB

### STEP 4 - Prediction
### Create and run Classifier

classifierNB = MultinomialNB()

### Fitting requires training TF_IDF vectors and labels
classifierNB.fit(X_train, y_train)

### X_test is the transformed test TF-IDF vectors
predictions = classifierNB.predict(X_test)
```

In [29]:

```
y_pred = classifierNB.predict(X_test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test,y_pred))
```

```
[[4382 617]
[ 714 4287]]
               precision
                             recall
                                    f1-score
                                                 support
    negative
                    0.86
                               0.88
                                          0.87
                                                    4999
    positive
                    0.87
                               0.86
                                          0.87
                                                    5001
                                          0.87
                                                   10000
    accuracy
                                          0.87
                    0.87
                               0.87
                                                   10000
   macro avg
                               0.87
                                          0.87
weighted avg
                    0.87
                                                   10000
```

3. Support Vector Machine

In [30]:

```
from sklearn.svm import LinearSVC

### STEP 4 - Prediction
### Create and run Classifier

classifierSVC = LinearSVC()

### Fitting requires training TF_IDF vectors and labels
classifierSVC.fit(X_train, y_train)

### X_test is the transformed test TF-IDF vectors
predictions = classifierSVC.predict(X_test)
```

In [31]:

```
y_pred = classifierSVC.predict(X_test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test,y_pred))
```

```
[[4419
       580]
 [ 444 4557]]
               precision
                             recall
                                     f1-score
                                                  support
    negative
                    0.91
                               0.88
                                          0.90
                                                     4999
                               0.91
                                          0.90
    positive
                    0.89
                                                     5001
                                          0.90
                                                    10000
    accuracy
                    0.90
                               0.90
                                          0.90
                                                    10000
   macro avg
weighted avg
                    0.90
                               0.90
                                          0.90
                                                    10000
```

SVM gives the best results at 0.9 accuracy, precision & recall

Explore Prediction Output of Best Algorithm of SVM

```
In [32]:
X_test_raw.head()
Out[32]:
46331
         hey guys girls! ever rent, god forbid, buy pie...
         wonderful "revenge" everyone wakes morning bel...
13679
11177
         timeless proverb reverberates heart. many year...
14515
         hate show poorly leads written. women self-res...
         okay, guess pretty much fan spindled, mutilate...
46263
Name: review, dtype: object
In [69]:
X_test_raw.shape
Out[69]:
(10000,)
In [34]:
y_test.head()
Out[34]:
         negative
46331
13679
         negative
11177
         positive
14515
         negative
46263
         negative
Name: sentiment, dtype: object
In [70]:
y_pred.shape
Out[70]:
(10000,)
In [71]:
y_test.shape
Out[71]:
(10000,)
```

Create new dataframe with review, actual & predicted labels

```
In [77]:
```

```
df2 = pd.DataFrame(data = X_test_raw)
```

In [78]:

```
df2['truth']=pd.DataFrame(data=y_test)
```

In [79]:

```
c = y_pred.reshape((10000,1))
df2['predict']=c
```

In [80]:

```
df2.head()
```

Out[80]:

	review	truth	predict	
46331	hey guys girls! ever rent, god forbid, buy pie	negative	negative	
13679	wonderful "revenge" everyone wakes morning bel	negative	negative	
11177	timeless proverb reverberates heart. many year	positive	positive	
14515	hate show poorly leads written. women self-res	negative	negative	
46263	okay, guess pretty much fan spindled, mutilate	negative	negative	

Create Dataframe of mis-labelled items

In [81]:

```
df3 = df2[df2['truth']!=df2['predict']]
```

In [82]:

```
df3.head()
```

Out[82]:

	review	truth	predict
14351	think great movie!! fun, maybe little unrealis	negative	positive
9768	viewing, please make sure seen night living de	positive	negative
23280	out movie. sorry say, showed cleveland	negative	positive
44259	ok start? saw screening couple weeks ago shock	negative	positive
10914	gets score 3 dared different. features cast ac	negative	positive

Total Mis-labelled items 1024 is consistent with Confusion Matrix items

In [83]:

```
df3.count()
```

Out[83]:

review 1024 truth 1024 predict 1024 dtype: int64

First Item: Actual Negative, Predict Positive

In [84]:

```
df3.iloc[0,0]
```

Out[84]:

'think great movie!! fun, maybe little unrealistic, fun dramatic!! like see again, showing tv!! 1 question: still talking movie???'

Second Item: Actual Positive, Predict Negative

In [86]:

```
df3.iloc[1,0]
```

Out[86]:

"viewing, please make sure seen night living dead... might well best 7 minut e parody ever seen! absurd, crappy 'special effects' (the rope, rope!!!), ma neating slices bread... need???
(do watch eating bread... might get sca red!)"

Third Item: Actual Negative, Predict Positive

In [87]:

```
df3.iloc[2,0]
```

Out[87]:

'...out movie.

'sorry say, showed cleveland international festival. copy subtitles, asked festival crew problem print received. "not so..." told. "the director wants way". />again, sorry say, french barely high school elective level (more 3 decades ago). much initial dialog french, sure missed nuance many details understanding key words. />i\'ve rated "1", primarily irony director worked subtitles refusing put subtitles seen american audience. excuse me, even americans know europe map, even festival audience assumed know "the native language" given even us know finnish, still expect subtitles "dolts" sophisticated enough expertise 37 different languages presented. i\'ll put e go david lynch, litvack.'

In	[]:			