ACE Examination Paper 3 Year 12 Mathematics Extension 1 Yearly Examination Worked solutions and marking guidelines

	Solution	Criteria
1.	$\int \frac{dx}{\sqrt{4-x^2}} = \sin^{-1}\frac{x}{2} + C$	1 Mark: C
2.	Graphically vector \overrightarrow{OT} and \overrightarrow{OR} are parallel but in opposite directions.	1 Mark: C
3.	$y = e^{mx}, \frac{dy}{dx} = me^{mx}, \frac{d^2y}{dx^2} = m^2e^{mx}$ $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 0$ $m^2e^{mx} - 2me^{mx} - 3e^{mx} = 0$ $(m^2 - 2m - 3)e^{mx} = 0$ $(m - 3)(m + 1)e^{mx} = 0$ $\therefore m = -1 \text{ or } m = 3$	1 Mark: B
4.	$\cos x - \sin x = R\cos(x + \alpha)$ $= R\cos x \cos \alpha - R\sin x \sin \alpha$ $R\cos \alpha = 1 \text{ (1)}$ $R\sin \alpha = 1 \text{ (2)}$ Equation (2) divided by equation (1) $\tan \alpha = 1$ $\alpha = \frac{\pi}{4}$ Squaring and adding the equations $R^2 = 1^2 + 1^2 \text{ or } R = \sqrt{2}$ $\therefore \cos x - \sin x = \sqrt{2}\cos\left(x + \frac{\pi}{4}\right)$	1 Mark: A

	Solution		Criteria
5.	30 m/s 16 m 18 m		1 Mark: D
	Horizontally	Vertically	
	$a_{x} = \ddot{x} = 0$	$a_y = \ddot{y} = -10$	
	$v_{x} = \dot{x} = c_{1}$	$v_y = \dot{y} = -10t + c_3$	
	At $t = 0$, $v_x = 30\cos\theta$	At $t = 0$, $v_y = 30\sin\theta$	
	$\Rightarrow c_1 = 30\cos\theta$	$\Rightarrow c_3 = 30\sin\theta$	
	$v_x = 30\cos\theta$ $x = 30t\cos\theta + c_2$	$v_y = \dot{y} = -10t + 30\sin\theta$ $y = -5t^2 + 30t\sin\theta + c_4$	
	When $t = 0$, $x = 0 \Rightarrow c_2 = 0$	$y = -5t^{2} + 30t\sin\theta + c_{4}$ When $t = 0$ $y = 0 \Rightarrow c_{4} = 2$	
	$x = 30t\cos\theta$	$y = -5t^2 + 30t\sin\theta + 2$	
6.	$V = \pi \int_{b}^{b} x^{2} dy = \pi \int_{1}^{4} \frac{1}{y} dy$ $= \pi [\ln y]_{1}^{4}$ $= \pi [\ln 4 - \ln 1]$ $= \pi \ln 4 \text{ cubic units}$		1 Mark: D
7.	Let p be the probability of selection $p = \frac{1}{3}, n = 36$ E(X) = np $= 36 \times \frac{1}{3}$ = 12	ng the correct answer.	1 Mark: B
8.	$\overrightarrow{AB} = \overrightarrow{DC} = \overrightarrow{u}$		1 Mark: B
	Opposite sides of a parallelogram	n are equal.	
	$\overrightarrow{BD} = \overrightarrow{BC} - \overrightarrow{DC}$		
	= v - u		
	Diagonals bisect each other in a p		
	$\overrightarrow{OD} = \frac{1}{2}\overrightarrow{BD}$		
	$\overrightarrow{OD} = \frac{1}{2}(y - \underline{u})$		

	Solution	Criteria
9.	$\tan 2x + \tan x = 0$	1 Mark: C
	$\frac{2\tan x}{1 - \tan^2 x} + \tan x = 0$	
	$\tan x \left\{ \frac{2}{1 - \tan^2 x} + 1 \right\} = 0$	
	$\therefore \tan x = 0 \text{ or } \left(\frac{2}{1 - \tan^2 x} + 1\right) = 0$	
	No solutions for $tan x = 0$ in the domain $0^{\circ} < x < 180^{\circ}$	
	$\frac{1-\tan^2 x}{1-\tan^2 x} = -1$	
	$2 = \tan^2 x - 1$ $\tan^2 x = 3$	
	$\tan x = 3$ $\tan x = \pm \sqrt{3}$	
	$\therefore x = 60^{\circ} \text{ or } 120^{\circ}$	
10.	Step 2: Assume true for $n = k$	1 Mark: A
	$S_k = \frac{1}{6}k(k+1)(2k+1)$	
	Step 3: To prove true for $n = k + 1$	
	$S_{k+1} = \frac{1}{6}(k+1)(k+2)(2k+3)$	
	$S_k + T_{k+1} = S_{k+1}$	
	LHS = $\frac{1}{6}k(k+1)(2k+1) + (k+1)^2$	
	$= (k+1) \left[\frac{1}{6}k(2k+1) + (k+1) \right]$	
	$= (k+1)\frac{1}{6}[k(2k+1) + 6(k+1)]$	
	$=\frac{1}{6}(k+1)(2k^2+k+6k+6)$	
	$=\frac{1}{6}(k+1)(2k^2+7k+6)$	
	$=\frac{1}{6}(k+1)(k+2)(2k+3)$	
	= RHS	
Section	LHS = $\tan^2 x - \tan^2 y$	2 Marks: Correct
11(a)		answer.
	$= (\sec^2 x - 1) - (\sec^2 y - 1)$	1 Maula II
	$= \sec^2 x - \sec^2 y$	1 Mark: Uses a relevant
	$=\frac{1}{\cos^2 x} - \frac{1}{\cos^2 y}$	trigonometric
	$\cos^2 y - \cos^2 x$	identity.
	$=\frac{\cos y - \cos x}{\cos^2 x \cos^2 y}$	
	= RHS	
11(b)	$\overrightarrow{CE} = \overrightarrow{CD} + \overrightarrow{DE}$	2 Marks: Correct
(0)	$CE = CD + DE$ $= (\underline{\imath} - 2\underline{\jmath}) + (2\underline{\imath} + 6\underline{\jmath})$	answer.
	$=3\underline{i}+4\underline{j}$	1 Mark: Adds the
	$\left \overrightarrow{CE} \right = \sqrt{3^2 + 4^2}$	component form of
	= 5	each vector.

11(c)	$\int_0^{\frac{\pi}{3}} \sin^2 x dx = \int_0^{\frac{\pi}{3}} \frac{1}{2} (1 - \cos 2x) dx$	2 Marks: Correct answer.
	$= \left[\frac{x}{2} - \frac{1}{4}\sin 2x\right]_0^{\frac{\pi}{3}}$ $= \left(\frac{\pi}{6} - \frac{1}{4}\sin \frac{2\pi}{3}\right) - \left(0 - \frac{1}{4}\sin 0\right)$ $= \frac{\pi}{6} - \frac{\sqrt{3}}{8}$ $= \frac{4\pi - 3\sqrt{3}}{24}$ $f(x) = 3x^2 \cos^{-1} 3x$	1 Mark: Applies the double angle identity.
11(d)	$f(x) = 3x^2 \cos^{-1} 3x$	2 Marks: Correct
	$f'(x) = 3x^{2} \times \frac{-1}{\sqrt{\frac{1}{9} - x^{2}}} + 6x\cos^{-1}3x$ $= \frac{-9x^{2}}{\sqrt{1 - 9x^{2}}} + 6x\cos^{-1}3x$	answer. 1 Mark: Shows some understanding.
11(e)	$u = x^2 - 9$ $\frac{du}{dx} = 2x$	2 Marks: Correct answer.
	$\frac{1}{2}du = xdx$	1 Mark: Shows some
11(0)	$\int x\sqrt{x^2 - 9} dx = \int \frac{1}{2}\sqrt{u} du = \int \frac{1}{2}u^{\frac{1}{2}} du$ $= \frac{1}{2} \times \frac{2}{3}u^{\frac{3}{2}} + C$ $= \frac{(x^2 - 9)^{\frac{3}{2}}}{3} + C$	understanding.
11(f)	Step 1: To prove true for $n = 1$ $3^{2n} - 1 = 3^2 - 1 = 8$	3 marks: Correct answer.
	Result is true for $n = 1$	
	Step 2: Assume true for $n = k$ $3^{2k} - 1 = 8m$ where m is an integer Step 3: To prove true for $n = k + 1$ $3^{2(k+1)} - 1 = 8p$ where p is an integer LHS = $3^{2(k+1)} - 1$ = $3^{2k+2} - 1$ = $3^{2k+2} - 1$ = $3^{2}(8m + 1) - 1$ = $3^{2}(8m) + 3^{2} - 1$ = $9(8m) + 8$ = $8(9m + 1)$ = $8p$	2 marks: Proves the result true for $n = 1$ and attempts to use the result of $n = k$ to prove the result for $n = k + 1$ 1 mark: Proves the result true for $n = 1$.
	= RHS	
	Step 4: True by induction	

12(a)	$T = T_0 + Ae^{-kt}$	1 Mark: Correct
(i)		answer.
	$(Ae^{-kt} = T - T_0)$	
	$\frac{dT}{dt} = -k \times Ae^{-kt}$	
	$dt = -k(T - T_0)$	
12(a)	Initially $t = 0$ and $T = 24$, $T_0 = -40$	4 Marks: Correct
(ii)	$T = T_0 + Ae^{-kt}$	answer.
	$24 = -40 + Ae^{-k \times 0}$	
	A = 64	3 Marks: Makes significant
	Now $t = 5$ and $T = 19$	progress towards
	$T = -40 + 64e^{-kt}$	the solution.
	$19 = -40 + 64e^{-k \times 5}$	
	$e^{-5k} = \frac{59}{64}$	2 Marks: Finds the value of <i>A</i> and an
	64 59	expression for <i>k</i> .
	$-5k = \ln \frac{64}{64}$	
	$e^{-5k} = \frac{59}{64}$ $-5k = \ln \frac{59}{64}$ $k = -\frac{1}{5} \ln \frac{59}{64}$ $= -\frac{1}{5} \ln \frac{59}{64} = 0.0162 \dots$	1 Mark: Finds the
	5 64 1 59	value of A.
	$=-\frac{1}{5}\ln\frac{3}{64}=0.0162$	
	We need to find t when $T = 0$	
	$T = -40 + 64e^{-kt}$	
	$0 = -40 + 64e^{-kt}$	
	$e^{-kt} = \frac{40}{64} = \frac{5}{8}$	
	01 0	
	$-kt = \ln\frac{5}{8}$	
	· ·	
	$t = -\frac{1}{k} \ln \frac{5}{8} = \frac{1}{k} \ln \frac{8}{5}$	
	1 8	
	$= -5 \frac{\ln \frac{8}{5}}{59} = 28.8892$	
	$\ln \frac{59}{64}$	
	≈ 29 seconds	
	∴It will take about 29 seconds for the meal to cool to 0°C.	
12(b)	$x = u^2$	3 Marks: Correct
	dx = 2udu	answer.
	when $x = 1$, $u = 1$ and $x = 3$, $u = \sqrt{3}$	2 Marks: Makes
	$\int_{1}^{3} \frac{dx}{(x+1)\sqrt{x}} = \int_{1}^{\sqrt{3}} \frac{1}{(u^{2}+1)u} \times 2udu$	z Marks: Makes significant
		progress towards
	$=2\int_{1}^{\sqrt{3}}\frac{1}{(u^{2}+1)}du$	the solution.
		1 Mark: Finds
	$=2[\tan^{-1}u]_1^{\sqrt{3}}$	dx = 2udu and
	$= 2(\tan^{-1}\sqrt{3} - \tan^{-1}1)$	changes the limits.
	$=2\left(\frac{\pi}{3}-\frac{\pi}{4}\right)$	
	$=\frac{\pi}{2}$	
	6	

12(c)	$LHS = \frac{\cos A - \cos(A + 2\theta)}{2\sin \theta}$	2 Marks: Correct
	$LHS = {2\sin\theta}$	answer.
	$=\frac{\cos A - (\cos A \cos 2\theta - \sin 2\theta \sin A)}{1 + \cos A \cos 2\theta - \sin 2\theta \sin A}$	4 M 1 H
	$=\frac{1}{2\sin\theta}$	1 Mark: Uses an appropriate
	$= \frac{\cos A - \cos A(1 - 2\sin^2 \theta) + \sin A(2\sin \theta \cos \theta)}{\cos^2 \theta}$	trigonometric
	$={2\sin\theta}$	identity.
	$= \frac{\cos A - \cos A + 2\cos A \sin^2 \theta + 2\sin A \sin \theta \cos \theta}{\cos \theta}$	
	$=$ $\frac{2\sin\theta}$	
	$= \cos A \sin \theta + \sin A \cos \theta$	
	$=\sin(A+\theta)$	
	= RHS	
	= KN3	
4 *		
12(d)	$\int (\cos^2 3x) dx = \int \frac{1}{2} (1 + \cos 6x) dx$	2 Marks: Correct
	3 -	answer.
	$=\frac{1}{2}\left[x+\frac{1}{6}\sin 6x\right]$	1 Mark: Applies
	$=\frac{1}{2}x + \frac{1}{12}\sin 6x + C$	the double angle
	$-\frac{1}{2}x + \frac{1}{12}\sin \alpha x + c$	identity.
10()		21/ 1 2
12(e) (i)	$4\sin\theta + 3\cos\theta + 5 = 4 \times \frac{2t}{1+t^2} + 3 \times \frac{1-t^2}{1+t^2} + 5$	2 Marks: Correct answer.
(1)		answer.
	$=\frac{8t+3-3t^2+5+5t^2}{1+t^2}$	1 Mark:
	110	Substitutes the t -formula for $\sin \theta$
	$=\frac{2t^2+8t+8}{1+t^2}$	and $\cos\theta$.
	- 1 0	
	$=\frac{2(t^2+4t+4)}{1+t^2}$	
	$=\frac{2(t+2)^2}{1+t^2}$	
	$1 + t^2$	
12(0)	2(+ + 2)2	2 Marks: Correct
12(e) (ii)	$4\sin\theta + 3\cos\theta + 5 = \frac{2(t+2)^2}{1+t^2} = 0$	answer.
	t = -2	1.555.77.557
	$t = \tan\frac{\theta}{2} \text{ with } 0 \le \theta \le 360^{\circ}$	1 Mark: Finds
	$t = \tan \frac{1}{2}$ with $0 \le \theta \le 300$	$\tan\frac{\theta}{2} = -2.$
	$\tan\frac{\theta}{2} = -2$	
	2	
	$\frac{\theta}{2} = -63.4349 \dots$	
	<u> </u>	
	$\frac{\theta}{2} = 116.5650$ for $0 \le \frac{\theta}{2} \le 180^{\circ}$	
	$\theta = 233.1301$	
	$\therefore \theta \approx 233^{\circ}$	

13(a)	Let <i>p</i> be the probability of throwing a four.	2 Marks: Correct
	$p = \frac{1}{6}, n = 6$	answer.
		1 Mark: Finds the
	$P(X=x) = {}^{6}C_{x} \left(\frac{1}{6}\right)^{x} \left(\frac{5}{6}\right)^{6-x}$	correct expression
	(6) (6)	for the probability
	$P(X=3) = {}^{6}C_{3} \left(\frac{1}{6}\right)^{3} \left(\frac{5}{6}\right)^{3} = \frac{625}{11.664}$	distribution.
	(1.64)	
13(b)	After 2 seconds $x = 90$ and $y = 4$ $90 = 2V\cos\theta$	3 marks: Correct
(i)	$V\cos\theta = 45 \text{ (1)}$	answer.
	$4 = -5 \times 2^2 + 2V\sin\theta$	2 marks: Makes
	$24 = 2V\sin\theta$	significant
	$V\sin\theta = 12(2)$	progress.
	Dividing the two equations Vsin 0 12	1 mark: Sets up
	$\frac{V\sin\theta}{V\cos\theta} = \frac{12}{45}$ $\tan\theta = \frac{4}{15}$	the two equations
	$\tan \theta = \frac{4}{1}$	or shows some
		understanding.
	$\theta = \tan^{-1}\frac{4}{15} = 14^{\circ}56'$	
	∴ Golf ball has an angle of projection of 14°56′.	
13(b)	Particle reaches the ground when $y = 0$	2 Marks: Correct
(ii)	$y = -5t^2 + Vt\sin\theta$	answer.
	$0 = -5t^2 + Vt\sin\theta$	1 Mark: Finds the
	$0 = t(-5t + V\sin\theta)$	time taken to
	Hence $t = 0$ or $-5t + V\sin\theta = 0$ $V\sin\theta$	reach the ground.
	$t = \frac{V \sin \theta}{5}$	
	From equation (2)	
	$t = \frac{12}{5} = 2.4 \text{ seconds}$	
	Distance travelled by the ball	
	$x = Vt\cos\theta$ Now using equation (1) = 45×2.4	
	= 108 metres	
	∴ Carter hits the ball 108 metres.	
13(c)	y = 5 - x (1)	1 Mark: Correct
(i)		answer.
	$y = \frac{4}{x} \ (2)$	
	Substitute $5 - x$ for y into equation (2)	
	$5 - x = \frac{4}{x}$	
	$\begin{cases} x & x \\ x^2 - 5x + 4 = 0 \end{cases}$	
	$ \begin{aligned} x^2 - 5x + 4 &= 0 \\ (x - 1)(x - 4) &= 0 \end{aligned} $	
	(x-1)(x-4) = 0 x = 1 and $y = 4$	
	x = 4 and $y = 4$	
	∴ Points of intersection are (1, 4) and (4, 1)	
	Points of intersection are (1, 4) and (4, 1)	

$= \left[5x - \frac{x^2}{2} - 4\ln x\right]_1^4$ $= \left[\left(5 \times 4 - \frac{4^2}{2} - 4\ln 4\right) - \left(5 - \frac{1^2}{2} - 4\ln 1\right)\right]$ $= 7\frac{1}{2} - 4\ln 4 = 1.9548 \dots$ $\approx 1.95 \text{ square units}$ 1 Mark: Correctly sets up the integral. $= \left[\left(5 \times 4 - \frac{4^2}{2} - 4\ln 4\right) - \left(5 - \frac{1^2}{2} - 4\ln 1\right)\right]$ $= 7\frac{1}{2} - 4\ln 4 = 1.9548 \dots$	
$= 7\frac{1}{2} - 4\ln 4 = 1.9548 \dots$:
	·
≈ 1.95 square units	-
	-
13(d) $ u = \sqrt{2^2 + (-5)^2}$ 2 Marks: Correct answer.	
$\hat{u} = \frac{u}{ u }$ $= \frac{1}{\sqrt{29}} (2u - 5u)$ 1 Mark: Shows some understanding.	
13(e) Step 1: To prove true for $n = 1$ $LHS = 1 \times 2^{1-1} = 1$ $RHS = 1 + (1-1)2^{1} = 1$ 3 marks: Correct answer.	
RHS = $1 + (1 - 1)2^2 = 1$ Result is true for $n = 1$ Step 2: Assume true for $n = k$ 2 marks: Proves the result true for	
$S_k = 1 + (k-1) 2^k$ $n = 1$ and attempt	ots
Step 3: To prove true for $n = k + 1$ to use the result $n = k$ to prove the	
$S_{k+1} = 1 + k 2^{n-k}$ result for $n = k + 1$	
$S_k + T_{k+1} = S_{k+1}$ LHS = 1 + (k - 1) 2 ^k + (k + 1) 2 ^k	
$= 1 + 2^{k}(k - 1 + k + 1)$ 1 mark: Proves t result true for	he
$= 1 + 2k \times 2^k \qquad \qquad n = 1.$	
$= 1 + k 2^{k+1}$	
= RHS	
Step 4: True by induction	
14(a) Let p be the probability of winning a prize in a game of chance. $p = 0.48$ $P(X = x) = {}^{n}C_{x} \ 0.48^{x} 0.52^{n-x}$ 3 Marks: Correct answer.	
Probability of winning at least once is more than 0.95. Expression is: $P(X = x) = 1 - {}^{n}C_{0} \ 0.48^{0}0.52^{n-0} > 0.95$ 2 Marks: Makes significant progress toward	ls
$1 - 0.52^n > 0.95$ the solution.	
$0.52^n < 0.05$ 1 Mark: Finds th	e
$n > \frac{\ln 0.05}{\ln 0.52}$ general rule for probability distribution.	
> 4.5811	
n = 5 (n is a positive integer)	
∴The least number of games is 5.	

14(h)	3†	3 Marks: Correct
14(b)	$y = 3\sin 2x$	answer.
	2 +	
		2 Marks: Uses the
	1 + /	double angle formula to simplify
		the integral.
	$o \wedge \qquad $	
	$\frac{\pi}{2}$	1 Mark: Shows
	$V = \pi \int_{b}^{b} y^{2} dx = \pi \int_{0}^{\frac{\pi}{2}} 9\sin^{2} 2x dx =$	some understanding.
	$\int_0^{\infty} \int_0^{\infty} \int_0^{\infty} dx = it \int_0^{\infty} \int_0^{\infty} \int_0^{\infty} dx = it \int_0^{\infty} \int_0^$	and or starraing.
	$\int_{0}^{\frac{\pi}{2}} 1$	
	$=9\pi \int_0^{\frac{\pi}{2}} \frac{1}{2} (1 - \cos 4x) dx$	
	π	
	$=\frac{9\pi}{2}\left[x-\frac{1}{4}\sin 4x\right]^{\frac{\pi}{2}}$	
	2 L 1 10	
	$=\frac{9\pi}{2}\left(\frac{\pi}{2}-\frac{1}{4}\sin 2\pi\right)-\left(0-\frac{1}{4}\sin 0\right)$	
	$=\frac{9\pi^2}{4}$ cubic units	
4462	•	2.14 . 1 . 6
14(c) (i)	Let p be the probability of Ryan solving the problem. p = 0.7, n = 7	2 Marks: Correct answer.
	$P(X = x) = {}^{7}C_{x} \ 0.7^{x} 0.3^{7-x}$	
		1 Mark: Finds the
	$P(X=5) = {}^{7}C_{5}(0.7)^{5}(0.3)^{2}$	general rule for probability
	= 0.3176523	distribution
14(c)	$P(X \ge 5) = {}^{7}C_{5}(0.7)^{5}(0.3)^{2}$	2 Marks: Correct
(ii)	$+^{7}C_{6}(0.7)^{6}(0.3)^{1} + ^{7}C_{7}(0.7)^{7}(0.3)^{0}$	answer. 1 Mark: Shows
	= 0.6470695	some
		understanding.
14(d)	$\operatorname{Now}_{c} c = a + b$	2 Marks: Correct
(i)	$ \underline{c} ^2 = \underline{c} \cdot \underline{c}$ = $(a+b) \cdot (a+b)$	answer. 1 Mark: Makes
	$= (\underline{a} + \underline{b}) \cdot (\underline{a} + \underline{b})$ $= \underline{a} \cdot \underline{a} + 2(\underline{a} \cdot \underline{b}) + \underline{b} \cdot \underline{b}$	some progress.
14(d)	Vectors a and b are perpendicular	2 Marks: Correct
(ii)	$\therefore \ a \cdot b = 0$	answer.
	$ \underline{c} ^2 = \underline{a} \cdot \underline{a} + \underline{b} \cdot \underline{b} + 2 \times 0$	1 Mark: Uses the
	$= a ^2+ b ^2$	result $\underline{a} \cdot \underline{b} = 0$ for perpendicular
	121 - 121	vectors
14(e)	$\frac{dr}{dt} = 7, A = \pi r^2$	2 Marks: Correct
	dt dA dA dr	answer.
	$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$	1 Mark: Shows
	$= 2\pi r \times 7$	some
	$= 224\pi \text{ when } r = 16$	understanding of
	∴ The rate of change in the area is 224π .	the rate of change.