National University of Computer and Emerging Sciences, Lahore Campus

S. L.
é
COA
III.

Course Name:	Design and Analysis of Algorithms	Course Code:	CS2009
Degree Program:	BSCS	Semester:	Spring 2023
Due Date:	18-05-2023	Total Marks:	70
Section:	All	Page(s):	2
Exam Type:	Assignment 3	CLO	1

Student	: Name:	 Roll No	Section:
	45.1		

Instructions/Notes:

- 1. You have to submit this assignment in hand written form in next Thursday's class, no print/online submission will be accepted.
- 2. No late submission will be entertained.
- 3. Assignment will be collected at the start of class on Thursday, May 18, 2023.

Q1:

Professor Sabatier conjectures the following converse of Theorem 23.1. Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let (S, V - S) be any cut of G that respects A, and let (u, v) be a safe edge for A crossing (S, V - S). Then, (u, v) is a light edge for the cut. Show that the professor's conjecture is incorrect by giving a counterexample.

Q2:

What is the running time of BFS if we represent its input graph by an adjacency matrix and modify the algorithm to handle this form of input?

Q3:

Give an example of a directed graph G=(V,E), a source vertex $s \in V$, and a set of tree edges $E_{\pi} \subseteq E$ such that for each vertex $v \in V$, the unique simple path in the graph (V, E_{π}) from s to v is a shortest path in G, yet the set of edges E_{π} cannot be produced by running BFS on G, no matter how the vertices are ordered in each adjacency list.

Q4:

Modify the pseudocode for depth-first search so that it prints out every edge in the directed graph G, together with its type. Show what modifications, if any, you need to make if G is undirected.

Q5:

Rewrite the procedure DFS, using a stack to eliminate recursion.

Q6:

Give a counterexample to the conjecture that if a directed graph G contains a path from u to v, and if u.d < v.d in a depth-first search of G, then v is a descendant of u in the depth-first forest produced.

Q7:

Give a counterexample to the conjecture that if a directed graph G contains a path from u to v, then any depth-first search must result in $v \cdot d \leq u \cdot f$.