$11n_{17} (K11n_{17})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{28} - 2u^{27} + \dots + 2b - 3, -3u^{28} + 8u^{27} + \dots + 2a + 12, u^{29} - 3u^{28} + \dots - 4u + 1 \rangle$$

$$I_2^u = \langle -au + b, -u^2a + a^2 - au + 2u^2 - 2a + u + 3, u^3 + u^2 + 2u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 35 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{28} - 2u^{27} + \dots + 2b - 3, -3u^{28} + 8u^{27} + \dots + 2a + 12, u^{29} - 3u^{28} + \dots - 4u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{3}{2}u^{28} - 4u^{27} + \dots + 8u - 6 \\ -\frac{1}{2}u^{28} + u^{27} + \dots - 8u^{2} + \frac{3}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{28} + u^{27} + \dots - 6u + 1 \\ \frac{1}{2}u^{28} - u^{27} + \dots + 2u - \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{28} - 2u^{27} + \dots + 6u - 6 \\ \frac{1}{2}u^{28} - u^{27} + \dots + u + \frac{3}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + u \\ u^{3} + u \end{pmatrix}$$

$$a_{20} = \begin{pmatrix} u^{3} + 2u \\ \frac{1}{2}u^{28} - 2u^{27} + \dots + 11u - \frac{13}{2} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{18} = \begin{pmatrix} u^{7} + 4u^{7} + 4u^{7} + u^{7} +$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^{28} + \frac{7}{2}u^{27} + \dots \frac{33}{2}u + \frac{19}{2}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{29} + 4u^{28} + \dots + u - 1$
c_2	$u^{29} + 18u^{28} + \dots + 9u - 1$
c_3, c_8	$u^{29} - u^{28} + \dots - 32u - 64$
<i>C</i> ₅	$u^{29} - 4u^{28} + \dots + 7u - 1$
c_6, c_7, c_{10}	$u^{29} + 3u^{28} + \dots - 4u - 1$
c_9	$u^{29} - 3u^{28} + \dots - 244u - 73$
c_{11}	$u^{29} + 3u^{28} + \dots + 8u^2 - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{29} + 18y^{28} + \dots + 9y - 1$
c_2	$y^{29} - 10y^{28} + \dots + 425y - 1$
c_3, c_8	$y^{29} + 35y^{28} + \dots - 31744y - 4096$
<i>c</i> ₅	$y^{29} - 38y^{28} + \dots + 9y - 1$
c_6, c_7, c_{10}	$y^{29} + 29y^{28} + \dots + 16y - 1$
c_9	$y^{29} + 17y^{28} + \dots + 23912y - 5329$
c_{11}	$y^{29} + 37y^{28} + \dots + 16y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.691423 + 0.598710I		
a = 1.37569 - 1.31340I	-8.85458 - 2.60938I	2.88623 + 0.30936I
b = -1.73753 + 0.08448I		
u = 0.691423 - 0.598710I		
a = 1.37569 + 1.31340I	-8.85458 + 2.60938I	2.88623 - 0.30936I
b = -1.73753 - 0.08448I		
u = 0.770996 + 0.462752I		
a = 1.67161 - 1.26096I	-8.40111 + 7.50786I	3.89559 - 5.68378I
b = -1.87232 + 0.19865I		
u = 0.770996 - 0.462752I		_
a = 1.67161 + 1.26096I	-8.40111 - 7.50786I	3.89559 + 5.68378I
b = -1.87232 - 0.19865I		
u = 0.690364 + 0.493803I		
a = -1.54905 + 1.40959I	-4.66644 + 2.28896I	6.38324 - 2.89322I
b = 1.76547 - 0.20820I		
u = 0.690364 - 0.493803I		
a = -1.54905 - 1.40959I	-4.66644 - 2.28896I	6.38324 + 2.89322I
b = 1.76547 + 0.20820I		
u = -0.171803 + 1.253430I		
a = -0.337041 + 0.105101I	-2.92626 - 2.06352I	3.82434 + 4.59366I
b = 0.073833 + 0.440514I		
u = -0.171803 - 1.253430I		
a = -0.337041 - 0.105101I	-2.92626 + 2.06352I	3.82434 - 4.59366I
b = 0.073833 - 0.440514I		
u = -0.674782 + 0.131684I		
a = -0.108599 - 0.371194I	0.280276 - 0.752914I	5.99242 + 0.52273I
b = -0.122161 - 0.236174I		
u = -0.674782 - 0.131684I		
a = -0.108599 + 0.371194I	0.280276 + 0.752914I	5.99242 - 0.52273I
b = -0.122161 + 0.236174I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.019678 + 1.322720I		
a = -0.737573 - 0.279772I	-3.02767 - 1.44830I	4.95474 + 3.01169I
b = -0.384574 + 0.970095I		
u = -0.019678 - 1.322720I		
a = -0.737573 + 0.279772I	-3.02767 + 1.44830I	4.95474 - 3.01169I
b = -0.384574 - 0.970095I		
u = -0.297090 + 1.319120I		
a = 0.044330 - 0.313521I	-4.26542 - 4.32252I	-0.05495 + 2.76648I
b = -0.400401 - 0.151621I		
u = -0.297090 - 1.319120I		
a = 0.044330 + 0.313521I	-4.26542 + 4.32252I	-0.05495 - 2.76648I
b = -0.400401 + 0.151621I		
u = 0.070374 + 1.382890I		
a = 0.882690 + 0.761515I	-4.31077 + 3.55507I	1.62564 - 2.30473I
b = 0.99097 - 1.27426I		
u = 0.070374 - 1.382890I		
a = 0.882690 - 0.761515I	-4.31077 - 3.55507I	1.62564 + 2.30473I
b = 0.99097 + 1.27426I		
u = -0.300475 + 0.478492I		
a = 0.156143 + 0.882607I	-1.43996 - 2.11719I	2.79129 + 5.41296I
b = 0.469237 + 0.190488I		
u = -0.300475 - 0.478492I		
a = 0.156143 - 0.882607I	-1.43996 + 2.11719I	2.79129 - 5.41296I
b = 0.469237 - 0.190488I		
u = -0.11472 + 1.46953I		
a = 0.292500 + 0.496633I	-7.73410 - 3.73497I	0. + 3.25156I
b = 0.763375 - 0.372865I		
u = -0.11472 - 1.46953I		
a = 0.292500 - 0.496633I	-7.73410 + 3.73497I	0 3.25156I
b = 0.763375 + 0.372865I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.24380 + 1.50275I		
a = 0.103696 + 1.362120I	-11.15070 + 5.70562I	3.18778 - 2.80294I
b = 2.02164 - 0.48792I		
u = 0.24380 - 1.50275I		
a = 0.103696 - 1.362120I	-11.15070 - 5.70562I	3.18778 + 2.80294I
b = 2.02164 + 0.48792I		
u = 0.28209 + 1.50525I		
a = 0.024600 - 1.383480I	-14.7787 + 11.3588I	0.97389 - 5.82372I
b = -2.08942 + 0.35324I		
u = 0.28209 - 1.50525I		
a = 0.024600 + 1.383480I	-14.7787 - 11.3588I	0.97389 + 5.82372I
b = -2.08942 - 0.35324I		
u = 0.21267 + 1.54249I		
a = -0.131402 - 1.205960I	-15.9085 + 0.6657I	0
b = -1.83224 + 0.45916I		
u = 0.21267 - 1.54249I		
a = -0.131402 + 1.205960I	-15.9085 - 0.6657I	0
b = -1.83224 - 0.45916I		
u = -0.417634		
a = -0.553347	0.741502	13.5070
b = -0.231097		
u = 0.325642 + 0.098864I		
a = -0.41093 + 3.39717I	0.45415 + 2.26174I	0.65884 - 5.12612I
b = 0.469675 - 1.065640I		
u = 0.325642 - 0.098864I		
a = -0.41093 - 3.39717I	0.45415 - 2.26174I	0.65884 + 5.12612I
b = 0.469675 + 1.065640I		

II. $I_2^u = \langle -au + b, \ -u^2a + a^2 - au + 2u^2 - 2a + u + 3, \ u^3 + u^2 + 2u + 1 \rangle$

(i) Arc colorings

The Arc colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + a - u - 1 \\ au + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} au + a \\ au \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^2a 4au + 5u^2 a + 5u + 12$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2 + u + 1)^3$
c_3, c_8	u^6
C ₄	$(u^2 - u + 1)^3$
c_6, c_7	$(u^3 + u^2 + 2u + 1)^2$
c_9, c_{11}	$(u^3 + u^2 - 1)^2$
c_{10}	$(u^3 - u^2 + 2u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2+y+1)^3$
c_{3}, c_{8}	y^6
c_6, c_7, c_{10}	$(y^3 + 3y^2 + 2y - 1)^2$
c_9,c_{11}	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = 0.706350 + 0.266290I	-3.02413 - 4.85801I	6.43615 + 6.24253I
b = -0.500000 + 0.866025I		
u = -0.215080 + 1.307140I		
a = -0.583789 + 0.478572I	-3.02413 - 0.79824I	2.88198 - 0.84592I
b = -0.500000 - 0.866025I		
u = -0.215080 - 1.307140I		
a = 0.706350 - 0.266290I	-3.02413 + 4.85801I	6.43615 - 6.24253I
b = -0.500000 - 0.866025I		
u = -0.215080 - 1.307140I		
a = -0.583789 - 0.478572I	-3.02413 + 0.79824I	2.88198 + 0.84592I
b = -0.500000 + 0.866025I		
u = -0.569840		
a = 0.87744 + 1.51977I	1.11345 - 2.02988I	12.18187 + 2.43783I
b = -0.500000 - 0.866025I		
u = -0.569840		
a = 0.87744 - 1.51977I	1.11345 + 2.02988I	12.18187 - 2.43783I
b = -0.500000 + 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u + 1)^3)(u^{29} + 4u^{28} + \dots + u - 1)$
c_2	$((u^2 + u + 1)^3)(u^{29} + 18u^{28} + \dots + 9u - 1)$
c_{3}, c_{8}	$u^6(u^{29} - u^{28} + \dots - 32u - 64)$
c_4	$((u^2 - u + 1)^3)(u^{29} + 4u^{28} + \dots + u - 1)$
c_5	$((u^2+u+1)^3)(u^{29}-4u^{28}+\cdots+7u-1)$
c_{6}, c_{7}	$((u^3 + u^2 + 2u + 1)^2)(u^{29} + 3u^{28} + \dots - 4u - 1)$
<i>c</i> ₉	$((u^3 + u^2 - 1)^2)(u^{29} - 3u^{28} + \dots - 244u - 73)$
c_{10}	$((u^3 - u^2 + 2u - 1)^2)(u^{29} + 3u^{28} + \dots - 4u - 1)$
c_{11}	$((u^3 + u^2 - 1)^2)(u^{29} + 3u^{28} + \dots + 8u^2 - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^3)(y^{29} + 18y^{28} + \dots + 9y - 1)$
c_2	$((y^2 + y + 1)^3)(y^{29} - 10y^{28} + \dots + 425y - 1)$
c_3, c_8	$y^6(y^{29} + 35y^{28} + \dots - 31744y - 4096)$
<i>C</i> ₅	$((y^2 + y + 1)^3)(y^{29} - 38y^{28} + \dots + 9y - 1)$
c_6, c_7, c_{10}	$((y^3 + 3y^2 + 2y - 1)^2)(y^{29} + 29y^{28} + \dots + 16y - 1)$
c_9	$((y^3 - y^2 + 2y - 1)^2)(y^{29} + 17y^{28} + \dots + 23912y - 5329)$
c_{11}	$((y^3 - y^2 + 2y - 1)^2)(y^{29} + 37y^{28} + \dots + 16y - 1)$