

BUREAU D'ÉTUDE : OPTIMISATION DIFFÉRENTIABLE I

LANCERY Hugo / MIMOUNI Bilal / MOREL Arthur

Classes: 3TV4 et 3TS2

Professeur : M. COUFFIGNAL

Date de soumission : 22/04/22

TABLE DES MATIERES

Вu	reau	ı d'étude : Optimisation différentiable I	1
I.	Tł	néorie : La corde vibrante	3
	l.	Justification physique des énergies	3
2	2.	Dérivée directionnelle de l'énergie cinétique	3
3	3.	Dérivée directionnelle de l'énergie potentielle	3
	a.	Développement de Taylor à l'ordre 2	3
	b.	Expression de la dérivée directionnelle	4
4	1.	Dérivée directionnelle $ extbf{ extit{D}} extbf{ extit{VS}}(extbf{ extit{u}})$ de S en $ extbf{ extit{u}}$ dans la direction $ extbf{ extit{v}}$	4
į	5.	Application du principe d'action stationnaire (principe de moindre action)	5
	a.	Fonction continue et intégrale	5
	b.	Equations des ondes non-linéaire	5
(ó.	Fonction et tension	6
	a.	Hypothèses physiques de $m{f}$	6
	b.	Equation des ondes homogènes	6
II.	M	odélisation	7
-	l.	Schéma centré en temps et en espace	7
2	2.	Approximation à l'ordre 2 en temps et en espace de <i>uj</i> 1	9
3	3.	Schéma numérique	10
4	1.	P2 : La matrice définie positive	10
III.		Méthodes numériques	11
	l.	Sans contrainte	11
	1.	Nature du point critique $oldsymbol{u}oldsymbol{n}+oldsymbol{2}$ de $oldsymbol{Q}oldsymbol{n}$	11
	2.	Calcul de ${\it Un}+2$ avec GPC (Cf. code python)	11
	3.	Mouvement de la corde sous python (Cf. code python)	12
	4.	Vidéo (.gif) de la simulation de la corde	13
	5.	Solution exacte du problème	13
	6.	Vérification de la solution exacte avec la solution approchée	14
2	2.	Avec Contrainte	14
	1.	Contrainte sous la forme discrétiser	14
	2.	Calcul du projeté de y sur C	14
	4.	Estimation numérique de l'intervalle de p	15

I. THEORIE: LA CORDE VIBRANTE

1. Justification physique des énergies

Dans la formule $E_c(u)=\int_0^L \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}(x,t)\right)^2 dx$, on remarque la formule de l'énergie cinétique : $E_c=\frac{1}{2}\rho L v^2$. On peut ainsi aisément en déduire que c'est la somme de l'énergie cinétique en tout point de la corde.

Il en est de même pour l'énergie potentielle mais ici, f incarne une loi comportementale de la matière.

2. Dérivée directionnelle de l'énergie cinétique

Nous cherchons à déterminer la dérivée directionnelle de E_c en u dans la direction v. Pour cela, on part de : $D_v E_c(u) = \lim_{\varepsilon \to 0} \frac{E_c(u+\varepsilon v) - E_c(u)}{\varepsilon}$

On obtient :
$$D_v E_C(u(x,t)) = \lim_{\varepsilon \to 0} \frac{\int_0^L \frac{1}{2} \rho \left(\frac{\partial u(x,t)}{\partial t} + \varepsilon \frac{\partial v(x,t)}{\partial t}\right)^2 dx}{\varepsilon} - \frac{\int_0^L \frac{1}{2} \rho \left(\frac{\partial u(x,t)}{\partial t}\right)^2 dx}{\varepsilon}$$

$$D_{v}E_{c}(u) = \lim_{i \to 0} \frac{\frac{1}{2}\rho \int_{0}^{L} \left(2\varepsilon \frac{\partial u}{\partial t} \cdot \frac{\partial v}{\partial t} + \varepsilon^{2} \left(\frac{\partial v}{\partial t}\right)^{2}\right) dx}{\varepsilon}$$
$$D_{v}E_{c}(u) = \int_{0}^{L} \rho \frac{\partial u}{\partial t} \cdot \frac{\partial v}{\partial t} \cdot dx$$

3. Dérivée directionnelle de l'énergie potentielle

a. Développement de Taylor à l'ordre 2

Le développement de Taylor à l'ordre 2 au point $\frac{\partial u}{\partial x}(x,t)$ de $f\left(\frac{\partial u}{\partial x}(x,t) + \varepsilon \frac{\partial v}{\partial x}(x,t)\right)$ est le suivant:

$$f\left(\frac{\partial u}{\partial x}(x,t) + \varepsilon \frac{\partial v}{\partial x}(x,t)\right) = f\left(\frac{\partial u}{\partial x}\right) + \varepsilon f'\left(\frac{\partial v}{\partial x}\right) + \frac{\varepsilon^2}{2!}f''\left(\frac{\partial v}{\partial x}\right)^2 + o(\varepsilon^2)$$

b. Expression de la dérivée directionnelle

A l'aide de la question précédente, on en déduit l'expression de la dérivée directionnelle de E_p en u dans la direction ν :

$$D_v E_p(u) = \lim_{\varepsilon \to 0} \frac{E_p(u + \varepsilon v) - E_{p(u)}}{\varepsilon}$$

$$D_v E_p(u) = \lim_{\varepsilon \to 0} \frac{\int \varepsilon f'\left(\frac{\partial v}{\partial x}\right) + \frac{\varepsilon^2}{2!} f''\left(\frac{\partial v}{\partial x}\right)^2 + o(\varepsilon^2)}{\varepsilon} \ dx$$

$$D_{\nu}E_{p}(u) = \int_{0}^{L} f'\left(\frac{\partial v}{\partial x}\right) dx$$

4. Dérivée directionnelle $D_vS(u)$ de S en u dans la direction v

$$D_{v}S(u) = \int_{t_{0}}^{t_{f}} D_{v}(E_{c}) - D_{v}(E_{p}) dt$$

$$D_{v}S(u) = \int_{t_{0}}^{t_{f}} \int_{0}^{L} \rho\left(\frac{\partial u}{\partial t}\frac{\partial v}{\partial t}\right) - f'\left(\frac{\partial u}{\partial x}\right)\frac{\partial v}{\partial x} dxdt$$

On procède par intégration par partie des deux composantes de $D_vS(u)$

- On a:

$$\int_{t_0}^{t_f} \int_0^L \rho\left(\frac{\partial u}{\partial t}\frac{\partial v}{\partial t}\right) \ dxdt = \left[\int_0^L \rho\left(\frac{\partial u}{\partial t}\right)\right]_{t_0}^{t_f} - \int_{t_0}^{t_f} \int_0^L \rho v \frac{\partial^2 u}{\partial t^2} \ dxdt$$

Or, comme $v(x, t_0) = v(x, t_f) = 0$ alors, nous avons $\left[\int_0^L \rho v(x, t) \left(\frac{\partial u}{\partial t} \right) \right]_{t_0}^{t_f} = 0$

$$\int_{t_0}^{t_f} \int_0^L \rho\left(\frac{\partial u}{\partial t}\frac{\partial v}{\partial t}\right) dxdt = -\int_{t_0}^{t_f} \int_0^L \rho v \frac{\partial^2 u}{\partial t^2} dxdt$$

- Et:

$$\int_{0}^{L} -f'\left(\frac{\partial u}{\partial x}\right) \frac{\partial v}{\partial x} \ dxdt = \left[-v(x,t)f'\left(\frac{\partial u}{\partial x}\right)\right]_{0}^{L} + \int_{0}^{L} f'\left(\frac{\partial u}{\partial x}\right)v \ dx$$

Or, comme $v(x, t_0) = v(x, t_f) = 0$ alors, nous avons $\left[-v(x, t)f'\left(\frac{\partial u}{\partial x}\right) \right]_0^L = 0$

$$\int_{0}^{L} -f'\left(\frac{\partial u}{\partial x}\right) \frac{\partial v}{\partial x} \ dxdt = \int_{0}^{L} f''\left(\frac{\partial u}{\partial x}\right) v \ dx$$

Ainsi, nous avons:

$$D_{v}S(u) = \int_{t_{0}}^{t_{f}} \int_{0}^{L} \rho\left(\frac{\partial u}{\partial t}\frac{\partial v}{\partial t}\right) - f'\left(\frac{\partial u}{\partial x}\right)\frac{\partial v}{\partial x} dxdt$$

$$D_{v}S(u) = \int_{t_{0}}^{t_{f}} \left(\int_{0}^{L} \left(\frac{\partial^{2} u}{\partial x^{2}} f'' \left(\frac{\partial u}{\partial x} \right) - \rho \frac{\partial^{2} u}{\partial t^{2}} \right) v(x, t) dx \right) dt$$

Avec
$$\left(\frac{\partial^2 u}{\partial x^2} f''\left(\frac{\partial u}{\partial x}\right) - \rho \frac{\partial^2 u}{\partial t^2}\right) = \varphi(x, t)$$

Donc

$$D_{v}S(u) = \int_{t_{0}}^{t_{f}} \left(\int_{0}^{L} \varphi(x,t) v(x,t) dx \right) dt$$

5. Application du principe d'action stationnaire (principe de moindre action)

a. Fonction continue et intégrale

D'après le lemme fondamental du calcul variationnel, nous avons :

Soit $g:[a,b] \to \mathbb{R}$ et $h:[a,b] \to \mathbb{R}$ deux fonctions continues.

Soit $\int_a^b g(s) \cdot h(s) = 0$ et on pose g(s) = h(s). En posant ceci, on en déduit :

$$\int_{a}^{b} h^{2}(s) ds = 0 \text{ et } h^{2}(s) > 0 \text{ donc } h(s) = 0$$

En parallèle, nous savons que toute fonction positive sur un intervalle est nulle si et seulement si h(s) = 0.

On a bien montré que l'intégrale du produit de ces 2 fonctions est nul si et seulement si g est la fonction nulle.

b. Equations des ondes non-linéaire

D'après la question précédente, on reconnait :

$$g(s) = \varphi(x,t)$$

Et

$$h(s) = v(x,t)$$

Avec φ continue car et f et u sont de classe C^2 et h également continue car c est la vitesse d'un point de la corde.

Les points critiques de l'action S sont vérifiés si et seulement si :

$$D_v S(u) = 0$$

$$\frac{\partial^2 u}{\partial x^2} f'' \left(\frac{\partial u}{\partial x} \right) - \rho \frac{\partial^2 u}{\partial t^2} = 0$$

$$\rho \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} f'' \left(\frac{\partial u}{\partial x} \right) = 0$$

L'opération est possible car nous procédons à une dérivée d'une composée de fonction.

D'où:

$$\rho \frac{\partial^{2} u}{\partial t^{2}} - \frac{\partial}{\partial x} \left(f' \left(\frac{\partial u}{\partial x} \right) \right) = 0$$

6. Fonction et tension

Dans cette partie, nous supposerons que la fonction f s'écrit sous la forme :

$$f(s) = \frac{1}{2}Ts^2$$

a. Hypothèses physiques de f

On peut supposer que l'expression de f reflète l'expression d'un ressort avec T comme tension constante de la corde.

b. Equation des ondes homogènes

Tout d'abord,

$$f''(s) = T$$

Donc,

$$\rho \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} T = 0$$

Ici, on retrouve l'équation des ondes dites homogènes de la forme suivante :

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$$

Par identification, la célérité vaut :

$$c = \sqrt{\frac{T}{\rho}}$$

II. MODELISATION

1. Schéma centré en temps et en espace

- Consistance et stabilité :

Nous avons:

$$u_i^n = \xi^n e^{ik\pi j\Delta x}$$

Et

$$\begin{cases} \delta_x^2 u_j^{n+1} = u_{j+1}^{n+1} - u_j^{n+1} - u_{j-1}^{n+1} \\ \delta_x^2 u_j^{n+1} = \xi^{n+1} (2\cos(k\pi\Delta x) - 2) \end{cases}$$

Ainsi, d'après le critère de stabilité de Von Neumann-Fourier, nous avons le schéma suivant

$$\begin{split} \xi^{n+1}e^{ik\pi j\Delta x} - 2\xi^n e^{ik\pi j\Delta x} - \xi^{n-1}e^{ik\pi j\Delta x} \\ - \frac{c^2\Delta t^2}{(\Delta x)^2} \left(\frac{\theta}{2} \xi^{n+1}e^{ik\pi (j+1)\Delta x} - (1-\theta)\xi^{n+1}e^{ik\pi j\Delta x} + \frac{\theta}{2} \xi^{n+1}e^{ik\pi (j-1)\Delta x} \right) = 0 \end{split}$$

D'où.

$$\xi^2 - 2\xi + 1 - \frac{c^2 \Delta t^2}{(\Delta x)^2} \left(\xi^2 \left(\frac{\theta}{2} e^{ik\pi \Delta x} - (1 - \theta) + \frac{\theta}{2} e^{-ik\pi \Delta x} \right) \right) = 0$$

$$\xi^{2} - 2\xi + 1 - \frac{c^{2}\Delta t^{2}}{(\Delta x)^{2}} (\xi^{2}\theta(\cos(k\pi\Delta x) - 1) + 2\xi(1 - \theta)(\cos(k\pi\Delta x) - 1) + \theta(\cos(k\pi\Delta x) - 1))$$

$$= 0$$

Pour alléger les calculs, on pose $y = \frac{c\Delta t}{\Delta x}$

Donc.

$$\xi^2 - 2\xi + 1 - y^2[(\cos(k\pi\Delta x) - 1)(\xi^2\theta + 2\xi(1-\theta) + \theta)] = 0$$

$$\xi^{2} - 2\left(\frac{1 + y^{2}(\cos(k\pi\Delta x) - 1)(1 - \theta)}{1 - y^{2}(\cos(k\pi\Delta x) - 1)\theta}\right)\xi + 1 = 0$$

Bureau d'étude : Optimisation différentiable I

On retrouve ici une équation du second degré, avec $\xi_1 \xi_2 = 1$

Cas (i):
$$\delta_1 < 1$$
 et $\delta_2 > 1$

Le cas (i) est impossible car $\|\xi\| = 1$

Cas (ii) et (iii) :
$$\delta_1 = \delta_2 = {}^+1$$

Impossible car cela dépend de k.

Nous n'avons donc pas de racines réelles mais uniquement complexe tel que : $\Delta \leq 0$

$$(1 + y^{2}(\cos(k\pi\Delta x) - 1)(1 - \theta))^{2} \le (1 - y^{2}(\cos(k\pi\Delta x) - 1)\theta)^{2}$$

$$\Leftrightarrow y^{4}(\cos(k\pi\Delta x) - 1)^{2}(1 - 2\theta) + 2y^{2}(\cos(k\pi\Delta x) - 1) \le 0$$

On sait que:

$$(\cos(k\pi\Delta x) - 1)^2 \ge 0 & (\cos(k\pi\Delta x) - 1) \le 0$$

$$\Leftrightarrow 1 - 2\theta \le 0$$

$$\boxed{1 \ge \theta \ge \frac{1}{2}}$$

Le schéma est donc inconditionnellement stable.

Le schéma numérique est d'ordre deux en espace et en temps. Il est également approximé par un développement de Taylor à l'ordre 2, donc le schéma numérique est également consistant.

- Convergence

Le schéma est inconditionnellement stable et consistant au sens de Von Neumann-Fourier. La stabilité est une condition nécessaire et suffisante pour assurer la convergence du schéma d'après le théorème de Lax.

2. Approximation à l'ordre 2 en temps et en espace de u_i^1

Partons de l'équation d'onde :

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$

$$\Leftrightarrow \frac{u_{j+1} - 2u_j + u_{j+1}}{\Delta t^2} - c^2 \frac{u_{j+1} - 2u_j + u_{j+1}}{\Delta x^2} = 0$$

On cherche u_i^1 , on effectue alors son développement de Taylor :

$$u_{j}^{1} = u(x_{j}, \Delta t) = u(x_{j}, 0) + \Delta t \frac{\partial u}{\partial t}(x_{j}, 0) + \frac{(\Delta t)^{2}}{2!} \frac{\partial^{2} u}{\partial t^{2}}(x_{j}, 0)$$

$$\Leftrightarrow u_{0}(x) + \Delta t v_{0}(x) - \varphi \frac{(\Delta t)^{2}}{2!} \frac{\partial^{2} u_{0}(x)}{\partial x^{2}}$$

$$\Leftrightarrow u_{0}(x) + \Delta t v_{0}(x) - \varphi \frac{(\Delta t)^{2}}{2!} \left(\frac{u_{j+1}^{0} - 2u_{j}^{0} + u_{j-1}^{0}}{(\Delta x)^{2}} \right)$$

$$\Leftrightarrow u_{0}(x) + \Delta t v_{0}(x) - \frac{\varphi(\Delta t)^{2}}{2(\Delta x)^{2}} (Au_{0}(x))$$

$$A \operatorname{vec} A = \begin{pmatrix} -2 & 1 & \cdots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 1 & -2 \end{pmatrix}$$

Nous avons comme équation :

$$\begin{split} \frac{u^{n+1}-2u^n+u^{n-1}}{\Delta t^2}-\frac{c^2}{\Delta x^2}\Big(\frac{\theta}{2}\partial_x^2u^{n+1}+(1-\theta)\partial_x^2u^n+\frac{\theta}{2}\partial_x^2u^{n-1}\Big)&=0\\ \Leftrightarrow u^{n+1}-2u^n+u^{n-1}+\cdots\\ \varphi\left(\frac{\theta}{2}\big(u_{j+1}^{n+1}-2u_j^{n+1}+u_{j-1}^{n+1}\big)+(1-\theta)\big(u_{j+1}^n-2u_j^n+u_{j-1}^n\big)+\frac{\theta}{2}\big(u_{j+1}^{n-1}-2u_j^{n-1}+u_{j-1}^{n-1}\big)\right)&=0 \end{split}$$

3. Schéma numérique

Posons la matrice de Laplace A ainsi qu'un φ pour simplifier les calculs : $\varphi = -\frac{c^2 \Delta t^2}{\Delta x^2}$

$$\begin{split} P_{0}u^{n-1} &= u^{n-1} + \varphi \frac{\theta}{2} \left(u_{j+1}^{n-1} - 2u_{j}^{n-1} + u_{j-1}^{n-1} \right) u^{n-1} \\ \Leftrightarrow \boxed{P_{0} &= - \left(I_{m} + \frac{\varphi \theta}{2} A \right)} \\ P_{1} &= -2u^{n} + \varphi (1 - \theta) \left(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n} \right) u^{n} \\ \Leftrightarrow \boxed{P_{1} &= 2I_{m} - \varphi (1 - \theta) A} \\ \boxed{P_{2} &= -P_{0}} \end{split}$$

On a alors : $u^{n+2}P_2 = u^{n+1}P_1 + u^nP_0$

4. P_2 : La matrice définie positive

$$P_2 = -P_0$$

$$P_2 = \left(I_m + \frac{\varphi\theta}{2}A\right)$$

 P_2 est une matrice carrée à coefficients réels. Cette matrice est dite à diagonale dominante puisque le module de chaque terme diagonal est supérieur ou égal à la somme des autres termes de sa ligne tel que :

$$\left|a_{i,i}\right| \ge \sum_{j=1, j \ne i}^{n} \left|a_{i,j}\right|$$

Ainsi, on peut en déduire que la matrice P_2 est une matrice symétrique et définie-positive.

III. METHODES NUMERIQUES

1. Sans contrainte

1. Nature du point critique u^{n+2} de Q_n

Pour justifier que u^{n+2} est un point critique de Q_n calculons son gradient puis vérifions que $\nabla Q_n(u^{n+2}) = 0$:

$$\nabla Q_n(x) = P_2 x - (P_1 u^{n+1} + P_0 u^n)^T$$

$$\Rightarrow \nabla Q_n(u^{n+2}) = P_2 u^{n+2} - (P_1 u^{n+1} + P_0 u^n)^T$$

$$\Leftrightarrow \nabla Q_n(u^{n+2}) = P_2 u^{n+2} - P_2 u^{n+2} = 0$$

Ainsi:

$$\nabla Q_n(\mathbf{u}^{n+2}) = 0$$

2. Calcul de Un + 2 avec GPC (Cf. code python)

```
#Fonction calculant les M itérations de Un2 sans contraintes
def Un2_no_contrainte(x,Un00,Un01,M,c,dx,dt,teta):
    A=Matrix_Laplace(M,1,-2,1)
    #gamma permet de rendre le code plus lisible
    gamma=-(c**2)*(dt**2)/(dx**2)
    #Pi trouvé dans la partie théorique
    P0=-np.eye(M)-(gamma*A*teta/2)
    P1=2*np.eye(M)-(gamma*(1-teta)*A)
    P2=-P0
    #Puis on retourne l'approximation de la solution de Un2 en fonction
de Un1 et Un0
    return GPC(P2,P1@Un01+P0@Un00,np.ones((M)),10**-4)
```

Nous posons les conditions initiales d'Un ainsi que les variables nécessaires, puis nous calculons les Pi vu précédemment.

Puis l'on retourne le calcul d'Un+2 en utilisant la fonction du gradient à pas constant.

3. Mouvement de la corde sous python (Cf. code python)

```
def simulation corde(contrainte=0,T=10,L=1,M=200,N=300,c=1,teta=1):
    dt=T/N
    dx=L/M
    x=np.linspace(0,L,M)
    #alpha=1
    #M=np.max(np.abs(np.linalg.eigvals(P2)))
    \#cvmax=2*alpha/(M**2)
    #Initialisation des conditions initiales
    Un00=Un0(x)
    Un01=Un1(x,dt,dx,M,c)
    Un00[0]=Un00[M-1]=0
    Un01[0]=Un01[M-1]=0
    #Un sera la matrice contenant tout les Un02 calculé a chaque pas
    Un=np.zeros((N+1,M))
    solN=np.zeros((N+1,M))
    #Initialisation de compteurs
    compteur dt=0
    compteur itération=0
    #On applique l'itération N fois suivant le choix de l'utilisateur
avec ou sans contraintes
    for compteur itération in tqdm(range (N)):
        compteur dt+=dt
        compteur itération+=1
        if contrainte ==0:
            Un02=Un2 no contrainte(x,Un00,Un01,M,c,dx,dt,teta)
            Un02=Un2 contrainte(x,Un00,Un01,M,c,dx,dt,teta)
        Un00, Un01 = copy.copy(Un01), copy.copy(Un02)
        Un02[0]=Un02[M-1]=0
        Un[compteur itération,:]=Un02
        solN[compteur_itération,:]=U(x,compteur_dt)
    if contrainte ==0:
        #On compare notre solution avec celle réelle
        print("erreur totale: ",np.linalg.norm(Un-solN))
        print("erreur pour le début: ",np.linalg.norm(Un[:N//2,:]-
solN[:N//2,:])
    #On enregistre la video de la corde (Un)
    affichage enregistre (contrainte, Un, solN, dt, M, N)
    return Un, solN
```

Nous posons les variables nécessaires, puis nous calculons les pas. Puis on initialise les Un initiaux ainsi que la matrice totale d'Un et de solN pour l'affichage à la fin.

On itère ensuite pour chaque dt jusqu'à T (temps max de simulation) et on insère le Un+2 calculé de chaque itération dans la matrice globale.

4. Vidéo (.gif) de la simulation de la corde

Rendu:

 $simulation_corde (Un0,Vn0,Vn0_int,0,T=10,L=1,M=200,N=300,c=1,teta=1,Path="C:/Users/hugol/Desktop/BE321_LANCERY_MIMOUNI_MOREL")$

5. Solution exacte du problème

De même, la solution exacte du problème est donnée par,

$$u(x,t) = \frac{1}{2} [u_0(x-ct) + u_0(x+ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} v_0(s) ds$$

On dérive deux fois la fonction u en fonction du temps.

D'où,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{c^2}{2} \left[u_0(x-ct) + u_0(x+ct) \right] + \frac{1}{2c} \left[v_0(x+ct) - v_0(x-ct) \right]$$

De même cette fois, en fonction de x

D'où,

$$c^{2} \frac{\partial^{2} u(x,t)}{\partial x^{2}} = \frac{c^{2}}{2} \left[u_{0}(x-ct) + u_{0}(x+ct) \right] + \frac{1}{2c} \left[v_{0}(x+ct) - v_{0}(x-ct) \right]$$

On retrouve bien l'équation des ondes homogènes :

$$c^{2} \frac{\partial^{2} u(x,t)}{\partial x^{2}} = \frac{\partial^{2} u(x,t)}{\partial t^{2}}$$

En s'appuyant sur les questions précédentes, on peut dire : $\begin{cases} u_0 = \frac{1}{2} \cdot \sin(\pi x) \\ v_0 = -4\sin(\pi x) \\ c = 1 \end{cases}$

6. Vérification de la solution exacte avec la solution approchée

Nous obtenons sur la simulation entière de 10s pour une précision à 10^{-3} :

$$Erreur\ totale(10s) = 23.84170575560516$$

 $Erreur\ pour\ le\ début(1s) = 0.9732326621896522$

Evidement plus la durée de simulation augmente plus la divergence aussi de manière exponentielle.

2. Avec Contrainte

1. Contrainte sous la forme discrétiser

Dans cette partie u(x,t) est compris entre -1/2 et 1/2 ce qui signifie que la corde est située dans un cylindre de diamètre égal à 1.

Cependant, si on discrétise l'espace de déplacement et de temps tout en posant les points $x_i := j \cdot \Delta x$ et les instants $t_n := n \cdot \Delta t$. On en déduit : $u_i^n = u(x_i, t^n)$.

A cela s'ajoute le fait que les contraintes sont valables quelques soit l'instant et le point.

D'où:
$$-\frac{1}{2} \le u(x,t) \le \frac{1}{2}$$
.

2. Calcul du projeté de y sur C

Soit l'ensemble
$$C := \left\{ x \in \mathbb{R}_1^M \forall j \in [1, M] - \frac{1}{2} \le x_j \le \frac{1}{2} \right\}$$

Nous calculons le projeté de y sur *C* à l'aide de la contrainte :

$$\begin{cases} \frac{1}{2} \sin x_j \ge \frac{1}{2} \\ y \sin -\frac{1}{2} \le x_j \le \frac{1}{2} \\ -\frac{1}{2} \sin x_j \le -\frac{1}{2} \end{cases}$$

On cherche alors à minimiser la valeur de y par rapport à $\frac{1}{2}$ et à la maximiser vis-à-vis de $-\frac{1}{2}$.

On en déduit la fonction qui traduit ce projeté:

$$x_{proj} = minimum \left(maximum \left(x, -\frac{1}{2}I_m \right), \frac{1}{2}I_m \right)$$

3. Mouvement de la corde dans un tube

On pose $x = u^{n+2}$ d'où $x_i = u_i^{n+2}$

Avec la forme quadratique $Q_n x = \frac{1}{2} x^T P_2 x - P_1 u^{n+1} + P_0 u^n x$

On sait également que P_2 est une matricé définie positive

Ainsi, nous devons résoudre :

 $min(Q_n(x))$

Avec

 $x \in C$

4. Estimation numérique de l'intervalle de p

Déterminons l'intervalle de p qui fait converger la méthode du gradient projeté.

Pour cela, montrons que $\nabla Q_n x - \nabla Q_n y^T - y = \alpha x - y_2^2$

Ainsi, on a:

$$\nabla Q_{n}x - \nabla Q_{n}y^{T} - y = P_{2}x - P_{1}u^{n+1} - P_{0}u^{n} - P_{2}y - P_{1}u^{n+1} + P_{0}u^{nT}(x - y)$$

$$\nabla Q_{n}x - \nabla Q_{n}y^{T} - y = 2P_{2}^{T}P_{2}x - 2P_{2}^{T}P_{1}u^{n+1} + P_{0}u^{n} - 2P_{2}^{T}P_{2}y + P_{2}^{T}P_{1}u^{n+1} + P_{0}u^{nT}(x - y)$$

$$\nabla Q_{n}x - \nabla Q_{n}y^{T} - y = 2P_{2}^{T}P_{2}x - y^{T}(x - y)$$

$$\nabla Q_{n}x - \nabla Q_{n}y^{T} - y = 2P_{2}^{T}P_{2}x - y, x - y$$

$$\nabla Q_{n}x - \nabla Q_{n}y^{T} - y = 2P_{2}x - y, P_{2}x - y$$

$$\nabla Q_{n}x - \nabla Q_{n}y^{T} - y = 2P_{2}x - y, P_{2}x - y$$

$$\nabla Q_{n}x - \nabla Q_{n}y^{T} - y = 2P_{2}x - y^{2}$$

$$\nabla Q_{n}x - \nabla Q_{n}y^{T} - y \geq 2\min_{\lambda \in SpP_{2}} \lambda^{2}x - y^{2}_{2}$$

$$\nabla Q_{n}x - \nabla Q_{n}y^{T} - y \geq 2\min_{\lambda \in SpP_{2}} \lambda^{2}x - y^{2}_{2}$$

Avec $\alpha = 2 \min_{\lambda \in SpP_2} \lambda^2 = 2 \lambda_{min}^2$

Pour montrer que Q_n est lipschitzienne, nous devons montrer que :

$$\begin{split} \nabla Q_n \cdot x - \nabla Q_n \cdot y_2 &\leq M \cdot x - y_2 \\ \text{On a} : \ \nabla Q_n \cdot x - \nabla Q_n \cdot y_2 &= \ 2P_2^T P_2 x - y_2 \\ &\Leftrightarrow \nabla Q_n \cdot x - \nabla Q_n \cdot y_2 \leq 2 \cdot P_2^T P_{2_2} x - y_2 \\ &\Leftrightarrow \nabla Q_n \cdot x - \nabla Q_n \cdot y_2 \leq 2 \max_{\lambda \in S_p P_2} \lambda x - y_2 \\ &\Leftrightarrow \nabla Q_n \cdot x - \nabla Q_n \cdot y_2 \leq M x - y_2 \end{split}$$

Avec
$$M = \underset{\lambda \in S_p P_2}{\text{2max}} \lambda = 2\lambda_{\text{max}}$$

Le pas qui fait converger la méthode du gradient projeté s'exprime de la manière suivante :

$$0 < \rho < \frac{2\alpha}{M^2}$$

En remplaçant, on a:

$$0 < \rho < \frac{\lambda_{\min}^2}{\lambda_{\max}^2}$$

Rendu:

```
simulation_corde(Un0,Vn0,Vn0_int,1,T=10,L=1,M=200,N=300,c=1,teta=1,
Path="C:/Users/hugol/Desktop/BE321_LANCERY_MIMOUNI_MOREL")
```


5. Retrouver Un + 2 sous python

```
#Fonction calculant les M itérations de Un2 avec contraintes

def Un2_contrainte(x,Un00,Un01,M,c,dx,dt,teta):
    A=Matrix_Laplace(M,1,-2,1)
    #gamma permet de rendre le code plus lisible
    gamma=-(c**2)*(dt**2)/(dx**2)
    #Pi trouvé dans la partie théorique
    P0=-np.eye(M)-(gamma*A*teta/2)
    P1=2*np.eye(M)-(gamma*(1-teta)*A)
    P2=-P0
    #Puis on retourne l'aproximation de la solution de Un2 en fonction
de Un1 et Un0
    return Gproj(P2,P1@Un01+P0@Un00,0.02,np.ones((M)),10**-4)
```

Nous posons les conditions initiales d'Un ainsi que les variables nécessaires, puis nous calculons les Pi vu précédemment.

Puis l'on retourne le calcul d'Un+2 en utilisant la fonction du gradient projeté.

6. Autre exemple avec des conditions initiales différentes

Conditions initiales:

```
#Fonctions définissant les conditions initiales
def Un0(x):
    return x*0
def Vn0(x):
    return 4*np.sin(np.pi*x*2)
def Vn0_int(x):
    return -4*np.cos(np.pi*x*2)/(2*np.pi)
```


On remarque que l'erreur pour le début(1s) vaut 1.8599198733619895 ce qui pourrait correspondre à une augmentation de la divergence de notre résultat plus le schéma simulé est complexe.