C. SUBIECTUL III – (15 puncte)

Rezolvați următoarea problemă:

Un reşou electric are două rezistoare de rezistențe R_1 şi R_2 . Când conectăm rezistorul de rezistență R_1 la o sursă care asigură la borne o tensiune constantă $U=210\,\mathrm{V}$, puterea electrică dezvoltată de acesta este $P_1=450\,\mathrm{W}$. Când se conectează la bornele aceleiaşi surse al doilea rezistor de rezistență R_2 , puterea electrică dezvoltată este $P_2=600\,\mathrm{W}$.

- a. Determinați valoarea rezistenței R₁.
- **b.** Determinați intensitatea curentului electric debitat de sursă dacă la bornele ei se leagă în paralel cele două rezistențe R_1 și R_2 .
- **c.** Dacă 80% din energia furnizată de reşou în cazul conectării la tensiunea U a rezistenței R_2 este preluată de apa dintr-un vas, iar apa are nevoie de energia $W = 420 \,\text{kJ}$ pentru a fi adusă la fierbere, determinați timpul necesar acestui proces.
- d. Dacă R_{01} şi R_{02} reprezintă rezistențele la temperatura de 0^{0} C ale celor doi rezistori, iar coeficienții termici ai rezistivităților electrice ale materialelor din care sunt confecționați rezistorii sunt α_{1} , respectiv α_{2} , stabiliți relația ce trebuie să existe între aceste mărimi pentru ca rezistența echivalentă a celor doi rezistori conectați în serie să nu varieze cu temperatura. Se neglijează variația dimensiunilor celor doi rezistori cu temperatura.