

RADIO TEST REPORT

Report No: STS1512020F02

Issued for

Xian Aerospace Huaxun Technology Co., LTD

3rd floor, Huihao International Building, No.58 of Technology 3rd road, Xian City, China

Product Name:	smart phone
Brand Name:	画交航天年四科技有限公司 First Artrapeo Internation Vicinities (C.1.1d.
Model No.:	HX5208
Series Model:	N/A
FCC ID:	2AGY5-HX5208
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproducted permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

TEST RESULT CERTIFICATION

Appl	icant's	name	····: Xian A	erospace H	uaxun Techr	nology Co., LTD
------	---------	------	--------------	------------	-------------	-----------------

Address 3rd floor, Huihao International Building, No.58 of Technology 3rd

road, Xian City, China

Manufacture's Name.....: Shenzhen Shouxin Tongda Technology Co.,Ltd

Address Rm.1301-1305A, Fujian Building, Caitian road, Futian District,

Shenzhen, Guangdong, China

Product description

Product name.....smart phone

Model and/or type reference : HX5208

Series Model::

Standards..... FCC Part15.247

Test procedure ANSI C63.10-2013

This device described above has been tested by STS, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, thidocument may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date (s) of performance of tests...... 04 Dec. 2015 ~16 Dec. 2015

Date of Issue...... 17 Dec. 2015

Test Result Pass

Testing Engineer :

(Jin Ming)

Technical Manager

(Vita Li)

Authorized Signatory: [howy] and

(Bovey Yang)

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	5
1.2 MEASUREMENT UNCERTAINTY	5
2. GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 DESCRIPTION OF TEST MODES	8
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.2 TEST PROCEDURE	13
3.3 TEST SETUP	13
3.4 EUT OPERATING CONDITIONS	13
3.5 TEST RESULTS	14
4. RADIATED EMISSION MEASUREMENT	16
4.1 RADIATED EMISSION LIMITS	16
4.2 TEST PROCEDURE	17
4.3 TEST SETUP	18
4.4 EUT OPERATING CONDITIONS	19
4.5 TEST RESULTS	19
4.6 TEST RESULTS (RESTRICTED BANDS REQUIREMENTS)	23
5. CONDUCTED SPURIOUS EMISSIONS	24
5.1 REQUIREMENT	24
5.2 TEST PROCEDURE	24
5.3 TEST SETUP	24
5.4 EUT OPERATION CONDITIONS	24
5.5 TEST RESULTS	25
6. POWER SPECTRAL DENSITY TEST	28
6.1 APPLIED PROCEDURES / LIMIT	28
6.2 TEST PROCEDURE	28
6.3 TEST SETUP	28

Page 3 of 38

Table of Contents	Page
6.4 EUT OPERATION CONDITIONS	28
6.5 TEST RESULTS	29
7. BANDWIDTH TEST	31
7.1 APPLIED PROCEDURES / LIMIT	31
7.2 TEST PROCEDURE	31
7.3 TEST SETUP	31
7.4 EUT OPERATION CONDITIONS	31
7.5 TEST RESULTS	32
8. PEAK OUTPUT POWER TEST	34
8.1 APPLIED PROCEDURES / LIMIT	34
8.2 TEST PROCEDURE	34
8.3 TEST SETUP	34
8.4 EUT OPERATION CONDITIONS	34
8.5 TEST RESULTS	35
9. ANTENNA REQUIREMENT	36
9.1 STANDARD REQUIREMENT	36
9.2 EUT ANTENNA	36
10. EUT TEST PHOTO	37

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)	Peak Output Power	PASS			
15.247 (c)	Radiated Spurious Emission	PASS			
15.247 (d)	Power Spectral Density	PASS			
15.205	Band Edge Emission	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd.

Add.: 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

CNAS Registration No.: L7649;

FCC Registration No.: 842334; IC Registration No.: 12108A-1

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power,conducted	±0.70dB
4	Spurious emissions,conducted	±1.19dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94dB
7	All emissions,radiated(>1G)	±3.03dB
8	Temperature	±0.5°C
9	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	smart phone			
Trade Name	ご かままり、 西文航天中迅料投有限公司 Sin Autografiama Fichalogy Ct. Ltd.			
Model Name	HX5208			
Series Model	N/A			
Model Difference	N/A			
	The EUT is a smart	phone		
	Operation Frequency:	2402~2480 MHz		
	Modulation Type:	GFSK		
Product Description	Radio Technology	BLE		
·	Number Of Channel 40			
	Antenna Designation:	Please see Note 3.		
	Antenna Gain (dBi)	-1 dbi		
Channel List	Please refer to the N	Note 2.		
Adopton	Input: AC100-240V,	200mA, 50/60 Hz		
Adapter	Output: DC 5V, 1000mA			
Battery	Rated Voltage: 3.7V			
Battery	capacity :3200mAh			
Hardware version number	W113-MB REV1.1			
Software versioning number				
Connecting I/O Port(s)	Please refer to the U	Jser's Manual		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2

	Channel List							
Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequency (MHz)	
01	2402	11	2422	21	2442	31	2462	
02	2404	12	2424	22	2444	32	2464	
03	2406	13	2426	23	2446	33	2466	
04	2408	14	2428	24	2448	34	2468	
05	2410	15	2430	25	2450	35	2470	
06	2412	16	2432	26	2452	36	2472	
07	2414	17	2434	27	2454	37	2474	
08	2416	18	2436	28	2456	38	2476	
09	2418	19	2438	29	2458	39	2478	
10	2420	20	2440	30	2460	40	2480	

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
А	西安教天华出与校有限公司 Fire Interpretation Section 1970 Action	HX5208	PIFA Antenna	N/A	-1	BT 4.0 ANT

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX CH1/CH20/CH40
Mode 2	Keeping TX mode

For Conducted Emission		
Final Test Mode	Description	
Mode 2	Keeping TX mode	

For Radiated Emission				
Final Test Mode	Description			
Mode 1	TX CH1/CH20/CH40			
Mode 2	Keeping TX mode			

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported
- (3) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation.

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-1	smart phone	西安族天中市科技有限公司 Sar Autopais Bases Valentings Ca. Lid	HX5208	N/A	EUT
E-2	Adapter	BDD	UT-102C-5010	N/A	EUT
E-3	Earphone	N/A	N/A	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note
C-1	unshielded	NO	102cm	N/A
C-2	unshielded	NO	121cm	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

rtaalation root oq	reduction rest equipment						
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until		
Spectrum Analyzer	Agilent	E4407B	MY50140340	2015.10.25	2016.10.24		
Test Receiver	R&S	ESCI	101427	2015.10.25	2016.10.24		
Bilog Antenna	TESEQ	CBL6111D	34678	2015.11.25	2016.11.24		
Horn Antenna	Schwarzbeck	BBHA 9120D(1201)	9120D-1343	2015.03.06	2016.03.05		
50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.06.06	2016.06.05		
PreAmplifier	Agilent	8449B	60538	2015.10.25	2016.10.24		
Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07		
USB RF power sensor	DARE	RPR3006W	15I00041SNO03	2015.10.25	2016.10.24		
STS-E048	MXA SIGNAL Analyzer	Agilent	N9020A	2015.10.25	2016.10.24		

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	102086	2015.11.20	2016.11.19
LISN	R&S	ENV216	101242	2015.10.25	2016.10.24
LISN	EMCO	3810/2NM	000-23625	2015.10.25	2016.10.24

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

operating frequency band. In case the emission fall within the restricted band specified on Part 15.247&207(a) limit in the table below has to be followed.

Class B	Standard	
Quasi-peak	Average	Standard
66 - 56 *	56 - 46 *	CISPR
56.00	46.00	CISPR
60.00	50.00	CISPR
	Quasi-peak 66 - 56 * 56.00	66 - 56 * 56 - 46 * 56.00 46.00

0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

3.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

EUT:	smart phone	Model Name. :	HX5208
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC120V/60Hz	Test Mode:	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1842	37.84	10.00	47.84	64.29	-16.45	QP
0.1842	22.48	10.00	32.48	54.29	-21.81	AVG
0.2448	34.36	9.96	44.32	61.93	-17.61	QP
0.2448	20.63	9.96	30.59	51.93	-21.34	AVG
1.0097	30.07	9.90	39.97	56.00	-16.03	QP
1.0097	16.04	9.90	25.94	46.00	-20.06	AVG
2.0042	23.33	10.00	33.33	56.00	-22.67	QP
2.0042	12.77	10.00	22.77	46.00	-23.23	AVG
3.8278	25.04	10.20	35.24	56.00	-20.76	QP
3.8278	11.93	10.20	22.13	46.00	-23.87	AVG
14.3906	18.76	10.31	29.07	60.00	-30.93	QP
14.3906	6.70	10.31	17.01	50.00	-32.99	AVG

Remark:

1. Factor = Antenna Factor + Cable Loss - Pre-amplifier. 100.0 dBuV

td.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

EUT:	smart phone	Model Name. :	HX5208
Temperature:	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC120V/60Hz	Test Mode :	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1833	32.41	10.00	42.41	64.33	-21.92	QP
0.1833	26.46	10.00	36.46	54.33	-17.87	AVG
0.6700	30.04	9.98	40.02	56.00	-15.98	QP
0.6700	25.86	9.98	35.84	46.00	-10.16	AVG
1.1400	32.36	10.00	42.36	56.00	-13.64	QP
1.1400	28.19	10.00	38.19	46.00	-7.81	AVG
2.0882	26.32	10.00	36.32	56.00	-19.68	QP
2.0882	20.20	10.00	30.20	46.00	-15.80	AVG
3.4097	24.00	10.17	34.17	56.00	-21.83	QP
3.4097	16.91	10.17	27.08	46.00	-18.92	AVG
14.1220	16.01	10.30	26.31	60.00	-33.69	QP
14.1220	6.46	10.30	16.76	50.00	-33.24	AVG

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

6dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on Part 15.247&205(a), then the Part15.247&209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000M					
Frequencies	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Class B (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier harmonic(Peak/AV)
RB / VB (emission in restricted	1 MHz / 1 MHz AV/ 10 Hz
band)	1 MHz / 1 MHz, AV=10 Hz

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

Report No.: STS1512020F02

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 TEST RESULTS

(Between 9KHz - 30 MHz)

EUT:	smart phone	Model Name. :	HX5208
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	LIDET VIDITARD .	DC 5V from Adapter AC120V/60Hz
Test Mode:	Link mode	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
	/			

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30-1000MHz

EUT:	smart phone	Model Name. :	HX5208
Temperature:	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	Horizontal
Test Voltage :	DC 5V from Adapter AC120V/60Hz	Test Mode :	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
49.5328	18.14	8.33	26.47	40.00	-13.53	QP
114.1136	16.79	11.36	28.15	43.50	-15.35	QP
142.8240	15.85	12.13	27.98	43.50	-15.52	QP
225.3080	29.95	10.76	40.71	46.00	-5.29	QP
519.0647	12.57	20.54	33.11	46.00	-12.89	QP
677.5797	14.45	23.39	37.84	46.00	-8.16	QP

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 21 of 38 Report No.: STS1512020F02

EUT:	smart phone	Model Name. :	HX5208
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	Vertical
Test Voltage:	DC 5V from Adapter AC120V/60Hz	Test Mode :	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
42.3021	17.19	12.18	29.37	40.00	-10.63	QP
57.9992	20.78	5.64	26.42	40.00	-13.58	QP
90.5374	21.70	9.59	31.29	43.50	-12.21	QP
225.3080	27.92	10.76	38.68	46.00	-7.32	QP
389.3548	10.65	17.51	28.16	46.00	-17.84	QP
675.2080	15.10	23.34	38.44	46.00	-7.56	QP

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Above 1000 MHz

EUT:	smart phone	Model Name :	HX5208
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V

Reading (dBuV)	Factor (dB)	Emission Level (dBµV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Comment	
Low Channel (GFSK/2402 MHz)							
67.04	-3.62	63.42	74	-10.58	PK	Vertical	
48.03	-3.62	44.41	54	-9.59	AV	Vertical	
63.13	-0.9	62.23	74	-11.77	PK	Vertical	
42.41	-0.9	41.51	54	-12.49	AV	Vertical	
63.06	-3.65	59.41	74	-14.59	PK	Horizontal	
45.14	-3.65	41.49	54	-12.51	AV	Horizontal	
	Mid	Channel (GFS	SK/2440 MHz)				
66.04	-3.65	62.39	74	-11.61	PK	Vertical	
50.06	-3.65	46.41	54	-7.59	AV	Vertical	
62.07	-0.83	61.24	74	-12.76	PK	Vertical	
45.15	-0.83	44.32	54	-9.68	AV	Vertical	
62.39	-3.68	58.71	74	-15.29	PK	Horizontal	
46.09	-3.68	42.41	54	-11.59	AV	Horizontal	
	High	Channel (GF	SK/2480 MHz)				
62.18	-3.59	58.59	74	-15.41	PK	Vertical	
46.36	-3.59	42.77	54	-11.23	AV	Vertical	
62.13	-0.73	61.40	74	-12.60	PK	Vertical	
46.38	-0.73	45.65	54	-8.35	AV	Vertical	
62.19	-3.59	58.60	74	-15.40	PK	Horizontal	
46.33	-3.59	42.74	54	-11.26	AV	Horizontal	
	(dBuV) 67.04 48.03 63.13 42.41 63.06 45.14 66.04 50.06 62.07 45.15 62.39 46.09 62.18 46.36 62.13 46.38 62.19	(dBuV) (dB) Low 67.04 -3.62 48.03 -3.62 63.13 -0.9 42.41 -0.9 63.06 -3.65 45.14 -3.65 Mid 66.04 -3.65 50.06 -3.65 62.07 -0.83 45.15 -0.83 62.39 -3.68 46.09 -3.68 High 62.18 -3.59 46.36 -3.59 62.13 -0.73 46.38 -0.73 46.38 -0.73	Reading (dBuV) Factor (dB) Level (dBμV/m) 67.04 -3.62 63.42 48.03 -3.62 44.41 63.13 -0.9 62.23 42.41 -0.9 41.51 63.06 -3.65 59.41 45.14 -3.65 41.49 Mid Channel (GFS) 66.04 -3.65 62.39 50.06 -3.65 46.41 62.07 -0.83 61.24 45.15 -0.83 44.32 62.39 -3.68 58.71 46.09 -3.68 42.41 High Channel (GF 62.18 -3.59 58.59 46.36 -3.59 42.77 62.13 -0.73 61.40 46.38 -0.73 45.65 62.19 -3.59 58.60	Reading (dBuV) Factor (dB) Level (dBμV/m) Limit (dBuV/m) 67.04 -3.62 63.42 74 48.03 -3.62 44.41 54 63.13 -0.9 62.23 74 42.41 -0.9 41.51 54 63.06 -3.65 59.41 74 45.14 -3.65 41.49 54 Mid Channel (GFSK/2440 MHz) 66.04 -3.65 62.39 74 50.06 -3.65 46.41 54 62.07 -0.83 61.24 74 45.15 -0.83 44.32 54 62.39 -3.68 58.71 74 46.09 -3.68 42.41 54 High Channel (GFSK/2480 MHz) 62.18 -3.59 58.59 74 46.36 -3.59 58.59 74 46.36 -3.59 42.77 54 62.13 -0.73 61.40 74 46.38 -0.73	Keading (dBuV) Factor (dB) Level (dBμV/m) Limit (dBuV/m) Margin (dB) Low Channel (GFSK/2402 MHz) 67.04 -3.62 63.42 74 -10.58 48.03 -3.62 44.41 54 -9.59 63.13 -0.9 62.23 74 -11.77 42.41 -0.9 41.51 54 -12.49 63.06 -3.65 59.41 74 -14.59 45.14 -3.65 59.41 74 -14.59 Mid Channel (GFSK/2440 MHz) 66.04 -3.65 62.39 74 -11.61 50.06 -3.65 46.41 54 -7.59 62.07 -0.83 61.24 74 -12.76 45.15 -0.83 44.32 54 -9.68 62.39 -3.68 58.71 74 -15.29 46.09 -3.68 42.41 54 -11.59 High Channel (GFSK/2480 MHz) 62.18 -3.59 58.59 74<	Reading (dBuV) Factor (dB) Level (dBμV/m) Limit (dBuV/m) Margin (dB) Detector Low Channel (GFSK/2402 MHz) 67.04 -3.62 63.42 74 -10.58 PK 48.03 -3.62 44.41 54 -9.59 AV 63.13 -0.9 62.23 74 -11.77 PK 42.41 -0.9 41.51 54 -12.49 AV 63.06 -3.65 59.41 74 -14.59 PK 45.14 -3.65 41.49 54 -12.51 AV Mid Channel (GFSK/2440 MHz) 66.04 -3.65 62.39 74 -11.61 PK 50.06 -3.65 46.41 54 -7.59 AV 62.07 -0.83 61.24 74 -12.76 PK 45.15 -0.83 44.32 54 -9.68 AV 62.39 -3.68 58.71 74 -15.29 PK 46.0	

Remark:

^{1.} Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report No.: STS1512020F02

4.6 TEST RESULTS (RESTRICTED BANDS REQUIREMENTS)

EUT:	smart phone	Model Name :	HX5208
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBµV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Comment
			GFSI	K			
2390.0	69.26	-12.99	56.27	74	-17.73	PK	Vertical
2390.0	55.11	-12.99	42.12	54	-11.88	AV	Vertical
2390.0	70.35	-12.99	57.36	74	-16.64	PK	Horizontal
2390.0	54.18	-12.99	41.19	54	-12.81	AV	Horizontal
2483.6	71.07	-12.78	58.29	74	-15.71	PK	Vertical
2483.6	54.12	-12.78	41.34	54	-12.66	AV	Vertical
2483.6	71.19	-12.78	58.41	74	-15.59	PK	Horizontal
2483.6	54.05	-12.78	41.27	54	-12.73	AV	Horizontal

Remark:

Low measurement frequencies is range from 2310 to 2400 MHz, high measurement frequencies is range from 2483.5 to 2500 MHz.

Only show the worst point data of the emissions in the frequency 2310-2400 MHz and 2483.5-2500 MHz.

^{1.} Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report No.: STS1512020F02

5. CONDUCTED SPURIOUS EMISSIONS

5.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Spectrum Parameter	Setting	
Detector	Peak	
Start/Stop Frequency	30 MHz to 10th carrier harmonic	
RB / VB (emission in restricted band)	100 KHz/300 KHz	
Trace-Mode:	Max hold	

For Band edge

Spectrum Parameter	Setting	
Detector	Peak	
Start/Stan Eraguanay	Lower Band Edge: 2310 – 2404 MHz	
Start/Stop Frequency	Upper Band Edge: 2478 – 2500 MHz	
RB / VB (emission in restricted band)	100 KHz/300 KHz	
Trace-Mode:	Max hold	

5.3 TEST SETUP

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

EUT:	smart phone	Model Name :	HX5208
Temperature :	25 ℃	Relative Humidity:	50%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX Mode /CH01, CH20, CH40		

01 CH

20 CH

40 CH

01 CH

40 CH

6. POWER SPECTRAL DENSITY TEST

6.1 APPLIED PROCEDURES / LIMIT

1	FCC Part15 (15.247) , Subpart C				
	Section	Test Item	Limit	Frequency Range (MHz)	Result
	15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: $100 \text{ kHz} \ge \text{RBW} \ge 3 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

EUT:	smart phone	Model Name :	HX5208
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1015 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX Mode /CH01, CH20, CH40		

Frequency	Power Density (dBm)	Limit (dBm)	Result
2402 MHz	-19.223	8	PASS
2440 MHz	-18.862	8	PASS
2480 MHz	-20.160	8	PASS

TX CH01

TX CH40

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW $\geqslant 3$ RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\geqslant 6 \text{ dB}$.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

7.5 TEST RESULTS

EUT:	smart phone	Model Name :	HX5208
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX Mode /CH01, CH20, CH40		

Frequency	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result
2402 MHz	0.686	>=500KHz	PASS
2440 MHz	0.684	>=500KHz	PASS
2480 MHz	0.692	>=500KHz	PASS

TX CH 01

TX CH 20

TX CH 40

8. PEAK OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS		

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&Power meter

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: STS1512020F02

8.5 TEST RESULTS

EUT:	smart phone	Model Name :	HX5208
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX Mode /CH01, CH20, CH40		

TX Mode						
Test Channe	Frequency	Peak Conducted Output Power	LIMIT			
	(MHz)	(dBm)	dBm			
CH01	2402	-3.937	30			
CH20	2440	-3.174	30			
CH40	2480	-4.590	30			

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PIFA Antenna. It comply with the standard requirement.

Conducted Measurement Photos

* * * * * END OF THE REPORT * * * *