Grundlagen der Rechnerarchitektur Blatt 4

Marco Deuscher

Carolin Schindler

18. November 2019

1 Aufgabe: Negativ, Positiv: So viele Möglichkeiten

(a)

vorzeichenbehaftet: -554_{10}

110001010102

negative Zahl mit Betrag: $1000101010_2 \rightarrow (2+2^3+2^5+2^9)_{10} = 554_{10}$

b-Komplement: 469₁₀

Umwandlung in vorzeichenbehaftet: 00111010101_2

positive Zahl mit Betrag: $0111010101_2 \rightarrow (1+2^2+2^4+2^6+2^7+2^8)_{10} = 469_{10}$

b-1-Komplement: 470_{10}

Vorzeichen: wie bei b-Komplement \rightarrow positiv

Betrag: $\|b\text{-Komplement} + 1\| \rightarrow 470_{10}$

(b)

vorzeichenbehaftet: 122_{10}

 01111010_2

positive Zahl mit Betrag: $1111010_2 \rightarrow (2+2^3+2^4+2^5+2^6)_{10} = 122_{10}$

b-Komplement: -5_{10}

Umwandlung in vorzeichenbehaftet: 10000101_2

negative Zahl mit Betrag: 0001012 $\rightarrow (1+2^2)_{10} = 5_{10}$

b-1-Komplement: -6_{10}

Vorzeichen: wie bei b-Komplement \rightarrow negativ

Betrag: $\|b\text{-Komplement} + 1\| \rightarrow 6_{10}$

(c)

vorzeichenbehaftet: -63_{10}

 1111111_2

negative Zahl mit Betrag: $111111_2 \rightarrow (1+2++2^2+2^3+2^4+2^5)_{10} = 63_{10}$

b-Komplement: 0_{10}

Umwandlung in vorzeichenbehaftet: 0000000_2 positive Zahl mit Betrag: $000000_2 \rightarrow 0_{10}$

b-1-Komplement: 1_{10}

Vorzeichen: wie bei b-Komplement \rightarrow positiv

Betrag: $\|b\text{-Komplement} + 1\| \to 1_{10}$

2 Aufgabe: Multiplikation und Division

(a)

XXX

(b)

XXX

3 Keine Brüche, nur Kommas

(a) $1,453125_{10} \rightarrow 000001011101$ (ohne Abschneiden)

0,453125 * 2 = 0,90625

0,90625 * 2 = 1,8125

0,8125 * 2 = 1,625

0,625 * 2 = 1,25

0,25*2=0,5

0,5*2=1

(b) $0, \overline{3}_{10} \rightarrow 000000010101_2$ (mit Abschneiden)

$$\frac{1}{3} \cdot 2 = \frac{2}{3}$$

$$\frac{2}{-} \cdot 2 = \frac{4}{3}$$

$$\frac{1}{2} \cdot 2 = \frac{2}{3}$$

$$\frac{2}{2}$$
 $\frac{4}{2}$

)

. . .

Es gibt (abgesehen von der Einführung eines Periodenzeichens: $0, \overline{3}_{10} \to 000000\overline{01}_2$) keine Möglichkeit die Zahl als 12 Bit Festkommazahl darzustellen.

Multiplizieren und Dividieren, aber schnell 4 $1001010100_2 \text{ (entspricht } \ll 1_{10})$ (b) 010100_2 (entspricht $\ll 2_{10}$) (c) 000000000001_2 (entspricht $\gg 9_{10}$) (d) XXX Binär und doch Dezimal 5 (a) XXX(b) XXX(c) XXX(d) XXXWas passiert hier? 6 (a) XXX(b) XXX

7 Knobelaufgabe

Es gibt Zahlen, die im Dezimalsystem weder irrational noch periodisch sind und im Dualsystem nicht durch eine endliche Anzahl an Stellend darstellbar sind.

Ein Beispiel hierfür ist die Zahl $0,1_{10} \rightarrow 0,0\overline{0011}_2$:

 $0,1\cdot 2=0,2$

 $0,2\cdot 2=0,4$

 $0,4\cdot 2=0,8$

 $0,8\cdot 2=1,6$

 $0, 6 \cdot 2 = 1, 2$

 $0,2\cdot 2=0,4$

. . .