

$$T(n) = \begin{bmatrix} \Theta(1) & \text{if } n=1 \\ 2T(n/2) + \Theta(n \lg(n)) & \text{if } n>1 \end{bmatrix}$$

- (1) With recursion tree method
- (2) With master theorem method

With recursion tree

$$T(n) = 2T(n/2) + \Theta(n \lg(n))$$

$T(n) = 2T(n/2) + \Theta(n \lg(n))$

cnlg(n)

 $cnlg(\frac{n}{2})$

 $cnlg(\frac{n}{4})$

 $\Theta(2^{\log_2 n})$

With recursion tree

$$T(n) = cn \lg n + cn \lg (n/2) + \dots + cn \lg (n/2^{(\lg n-1)}) + \Theta(2^{\log_2 n})$$

$$= cn * \{ (\lg n + \lg n + \dots) - (0+1+2\dots + (\lg n-1)) + \Theta(2^{\log_2 n}) \}$$

$$= cn * \{ \lg^2 n - \frac{1}{2} \lg n (\lg n-1) \} + \Theta(n)$$

$$T(n) = \Theta(n | g^2(n))$$

With recursion tree

$$T(n) = cn \lg n + cn \lg (n/2) + \dots cn \lg (n/2^{(\lg n-1)}) + cn \lg (n/2^{(\lg n)})$$

$$= cn * \{ (\lg n + \lg n + \dots) - (0+1+2\dots + (\lg n-1) + \lg n \} \}$$

$$= cn * \{ \lg n * (\lg n + 1) - \frac{1}{2} \lg n * (\lg n + 1) \}$$

$$= cn * \{ \frac{1}{2} * \lg n * (\lg n + 1) \}$$

Chapter 4 27

 $T(n) = \Theta(n | g^2(n))$

With master theorem

 $T(n) = 2T(n/2) + \Theta(n \lg(n))$

28

•
$$a = 2$$
, $b = 2$. Thus $n^{\log_b a} = n$

•
$$f(n) = n \lg(n)$$

•
$$f(n) = O(n^{\log_b a - \varepsilon})$$

•
$$f(n) = \Theta(n^{\log} b^a)$$

•
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \to c > 0 \quad \Rightarrow \quad f(n) = \Omega(g(n))$$

Solve the following recurrence equation with master theorem.

$$7(n) = \begin{bmatrix} \Theta(1) & \text{if } n=1 \\ 47(n/4) + \lg(n) & \text{if } n > 1 \end{bmatrix}$$

With master theorem

- a = 4, b = 4. Thus $n^{\log_b a} = n$
- $f(n) = \lg(n)$
- Case1: $f(n) = O(n^{\log_b a \varepsilon})$?

$$lg(n) = O(n^{1-\varepsilon})$$
 for $\varepsilon = \frac{1}{2}$, etc

$$T(n) = \Theta(n)$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}\to c<\infty\quad \Rightarrow\quad f(n)=\mathrm{O}(g(n))$$

- Prove $1 + 3 + 5... + (2n-1) = n^2$
 - Base case:
 - When n = 1, then L.H.S = 1 and R.H.S. = 1² = 1
 - Inductive hypothesis:
 - For *n* greater than 0, assume that $1 + 3 + 5... + (2k-1) = k^2$ holds true all $k \ge 0$ such that k < n.
 - By hypothesis the formula is true when k = n-1, $1 + 3 + 5... + (2n-3) = (n-1)^2$
 - Proof of goal statement:

$$1 + 3 + 5... + (2n-3) + (2n-1) = (n-1)^2 + (2n-1) = n^2$$

Using the recursion tree method, prove that $T(n) = \Theta(n^2)$.

$$T(n) = T(\frac{n}{4}) + T(\frac{n}{2}) + n^2$$

Answer 6

$$T(n) = T(\frac{n}{4}) + T(\frac{n}{2}) + n^2$$

Level by level total:

$$T(n) \le n^2 \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^2 + \dots + \left(\frac{5}{16}\right)^k + \dots\right)$$

 $\le n^2 \left(1/\left(1 - \left(\frac{5}{16}\right)\right) < 2n^2$

Thus, $T(n) = O(n^2)$

And, since $T(n) \ge n^2$ (from recurrence equation)

$$\mathsf{T}(n) = \Omega(n^2)$$

Therefore, $T(n) = \Theta(n^2)$