dimostrazione

introduzione

 \forall Per dimostrare $\forall .P(x)$ (per ogni x vale P (x)): "sia x (un insieme) fissato; . . ." (i ". .." sono una prova di P (x))Per dimostrare $P \implies Q$: "Assumo P (H). . . ." ("H") è il nome dell'ipotesi; i ". . ." sono una prova di Q) Per dimostrare $P \iff Q$ si dimostra sia $P \implies Q$ che $Q \implies P$. \land Per dimostrare $P \wedge Q$ (P e Q) si dimostrano sia P che Q. Per dimostrare $P \vee Q$ (P o Q) basta dimostrare P oppure Q dichiarandolo: " $dimostro\ P$ " oppure " $dimostro\ Q$ " \exists Per dimostrare $\exists x.P(x)$ (esiste un x per cui vale P (x)): "scelgo E e dimostro P (E) ; . . ."

(i ". . ." sono una prova di P (E))

E può essere un'espressione qualsiasi (es. $B \cap C$).

eliminazione

 \forall

Da un'ipotesi o un risultato intermedio $\forall x.P(x)$ potete concludere che P valga per ciò che volete.

 \Longrightarrow

Da un'ipotesi o un risultato intermedio $P \implies Q$ e da un'ipotesi o un risultato intermedio P potete concludere che Q vale.

(variante)

Da un'ipotesi o un risultato intermedio $P \implies Q$ di nome H , se volete concludere Q, potete procedere dicendo

"per H , per dimostare Q mi posso ridurre a dimostrare P"

 \iff

L'ipotesi $P \iff Q$ può essere usata sia come un'ipotesi $P \implies Q$, che come un'ipotesi $Q \implies P$.

Assurdo

Se ho dimostrato l'assurdo posso concludere qualunque cosa.

 \land

Un'ipotesi o un risultato intermedio $P \wedge Q$ può essere usato sia come P che come Q. In alternativa, invece di concludere o assumere $P \wedge Q$ (H), si può direttamente concludere o assumere P (H1) e Q (H2).

V

Data un'ipotesi o un risultato intermedio $P \vee Q$, si può proseguire nella dimostrazione per casi, una volta assumendo che P valga e una volta che Q valga:

"procedo per casi:

caso in cui valga P(H): . . . caso in cui valga Q(H): . . . "

Da un'ipotesi o un risultato intermedio $\exists x. P(x)$ potete procedere nella prova dicendo

```
"sia x t.c. P (x ) (H )"
```

x deve essere una variabile non in uso in nessuna ipotesi o nella conclusione

altro e abbreviazioni

Per ogni tale che

```
"sia x tale che P (x ). . . ." abbrevia "sia x (un insieme) fissato; assumo P (x ); . . ." per dimostrare \forall x.P(x) \implies Q(x)
```

dove ogni Hi ha la forma $\forall x.Qi1(x) \Longrightarrow \cdots \Longrightarrow Qini(x)$ abbrevia l'applicazione di un numero arbitrario di regole di eliminazione del per ogni e dell'implicazione applicate a partire dalle ipotesi H1, . . . , Hn e tali per cui la conclusione finale sia P . Il nome H verrà poi usato quando P è una conclusione intermedia.

Quindi

"quindi" e sinonimi sono un modo per fare riferimento all'ultima ipotesi/risultato intermedio, magari omettendone del tutto il nome nel testo

Ovvio

il lettore è in grado da se di ricostruire la prova, non indica che la prova è intuitiva

Espansione di definizioni "P , ovvero Q" usato per espandere da qualche parte in P una definizione, ottenendo la frase Q Esempio: $A \subseteq B$ ovvero $\forall X.(X \in A \implies X \in B)$.

Esplicitazione della conclusione

Talvolta conviene esplicitare la conclusione corrente (cosa resta da dimostrare) attraverso " $dobbiamo\ dimostrare\ P$ ".

Negazione

Non P è un'abbreviazione per $P \implies$ assurdo. Pertanto per dimostrare non P si assume che P valga e si dimostra l'assurdo. Inoltre, data un'ipotesi (o

risultato intermedio) non P e un'altra ipotesi o risultato intermedio P si conclude l'assurdo.