Лабораторна робота 1 Первинний статистичний аналіз та відновлення розподілів: розробка власного програмного забезпечення

Мета роботи

Мета роботи – опанувати методи первинного статистичного аналізу даних та відновлення розподілів, набути навички розробки власного програмного забезпечення для їх використання.

Постановка завдання

Написати власну програму для проведення первинного статистичного аналізу даних та відновлення розподілів.

Програма повинна дозволяти завантажити дані з текстового файлу, який має обиратися в діалозі з користувачем.

В рамках проведення первинного статистичного аналізу програма повинна дозволяти:

1. Сформувати варіаційний ряд, результат вивести у таблицю такого виду

№ варіанти	Значення	Частота	Відносна	Значення емпіричної
	варіанти		частота	функції розподілу
1				
2				
•••		•••	•••	•••

- 2. Побудувати графік емпіричної функції розподілу за даними варіаційного ряду.
- **3.** Розбити варіаційний ряд на класи. Кількість класів має обчислюватися автоматично і змінюватися за вимогою користувача. Результатом має бути таблиця такого виду

-	imier ere me	Pireljes	100. 1 00 3 112		J III I WOULINED I TURKOTO BILA
	№ класу	Межі	Частота	Відносна	Значення емпіричної
		класу		частота	функції розподілу
	1	[;]			
	2	[;]			
			•••		•••

- **4.** Побудувати графік гістограми за рядом, розбитим на класи. Якщо користувач змінив кількість класів, гістограма має оновитися.
- **5.** Побудувати графік ядерної оцінки функції щільності і відобразити його на одній площині з гістограмою (слід не забути про масштабування). Ядро можна обрати на свій розсуд. Ширину вікна слід визначити автоматично за правилом Сільвермана або Скотта, також слід надати користувачу можливість змінити ширину вікна з подальшим оновленням графіка.

6. Оцінити незсунені кількісні характеристики показника і вивести їх у таблицю

,	Значення	Середньоквадратичне	95% довірчий інтервал
	Jiia iciiin		узую довірчий штервал
		відхилення	
Середнє арифметичне			[;]
Медіана		_	[;]
Середньоквадратичне			[;]
Коефіцієнт асиметрії			[;]
Коефіцієнт ексцесу			[;]
Коефіцієнт контрексцесу			[;]
Мінімум		_	_
Максимум		_	_

7. Знайти та за вимогою користувача вилучити аномальні значення. Для пошуку аномалій використати один з розглянутих на лекції методів. Для наочності також побудувати графік, де за

віссю абсцис відкласти індекси значень, а за віссю ординат — значення показника; на графік додати дві паралельні лінії, що відповідають межам діапазону [a, b]. Знайдені аномалії потрібно вивести на екран і видалити лише після підтвердження користувача. Після вилучення аномалій необхідно оновити усі таблиці та графіки.

8. Ідентифікувати заданий індивідуальним варіантом розподіл на основі ймовірнісного паперу.

З метою відновлення заданого індивідуальним варіантом розподілу програма повинна дозволяти:

1. Знайти оцінки параметрів заданого розподілу з оцінкою їх точності. Як результат вивести таблицю такого вигляду

Параметр	Значення оцінки	Середньоквадратичне	95% довірчий інтервал
		відхилення	

- **2.** Нанести на одну площину з гістограмою відновлену функцію щільності, на площину з емпіричною функцією розподілу відновлену функцію розподілу, а на площину з ймовірнісним папером лінеаризовану функцію розподілу. Під час виведення графіка відновленої функції щільності слід не забути про її масштабування.
- **3.** Перевірити вірогідність відновленого розподілу за допомогою заданого в індивідуальному варіанті критерію згоди. Як результат вивести статистику критерію, її критичне значення, *p*-значення, а також висновок (розподіл вірогідний чи невірогідний).

Індивідуальні варіанти

Номер індивідуального варіанта відповідає порядковому номеру студента у журналі групи.

Варіант	Розподіл	Критерій згоди
1	Релея	Колмогорова
2	Логарифмічно-нормальний	Пірсона
3	Експоненціальний	Колмогорова
4	Вейбулла	Пірсона
5	Паретто	Колмогорова
6	Нормальний	Пірсона
7	Найбільшого значення	Колмогорова
8	Рівномірний	Пірсона
9	Лапласа	Колмогорова
10	3 класу екстремальних	Пірсона
11	Експоненціальний	Пірсона
12	Нормальний	Колмогорова
13	Вейбулла	Колмогорова
14	Паретто	Пірсона
15	Логарифмічно-нормальний	Колмогорова
16	Лапласа	Пірсона
17	3 класу екстремальних	Колмогорова
18	Експоненціальний	Пірсона
19	Нормальний	Пірсона
20	Рівномірний	Колмогорова
21	Релея	Пірсона
22	Нормальний	Колмогорова
23	Вейбулла	Пірсона

24	Паретто	Колмогорова
25	Логарифмічно-нормальний	Пірсона
26	Найбільшого значення	Колмогорова
27	Релея	Колмогорова
28	Експоненціальний	Колмогорова
29	Рівномірний	Пірсона
30	Найбільшого значення	Пірсона

Рекомендована література

- 1. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Основы моделирования и первичная обработка данных. М.: Финансы и статистика, 1983. 471 с.
- 2. Бабак В.П., Білецький А.Я., Приставка О.П., Приставка П.О. Статистична обробка даних. К.: МІВВЦ, 2001. 388 с.
 - 3. Лагутин М.Б. Наглядная математическая статистика. М.: БИНОМ, 2007. 472 с.
- 4. Приставка П.О., Мацуга О.М. Аналіз даних: Навч. посіб. / затв. МОН України. Д.: РВВ ДНУ, 2008. 92 с.
 - 5. Сигел Э. Практическая бизнес-статистика. М.: Вильямс, 2004. 1056 с.
- 6. Хастингс Н., Пикок Д. Справочник по статистическим распределениям. М.: Статистика, $1980.95\ c.$