2주차 강의자료

1. GPIO Control

LED(Light-Emitting Diode)

Symbol of LED

■ Type of LED

- DIP(Duel In-Line Package) Type
- SMD(Surface Mount Device/Diode) Type

[SMD type]

LED(Light-Emitting Diode)

■ How to calculate LED connection resistance

LED(1.7V, 10mA 기준)

$$R = \frac{V_{supply} - V_{LED}}{I_{LED}} = \frac{3.3V - 1.7V}{10mA} = 160\Omega$$

List of examples

Using Linux command line

Control LED on/off

Using C compiler

- Control LED on/off
- Control LED with switch

Using the Arduino IDE

■ Control LED on/off

Using Linux Command Line

Required Hardware

- ARTIK 5 beta developer kit
- DIP type LED
- 220 ohm resistor
- Breadboard
- Connector wires

Using Linux Command Line

Command

- Request control of the desired GPIO pin.
 - # echo 135 > /sys/class/gpio/export
 - This command makes a GPIO-specific directory created.
- Configure the GPIO pin to be an output.
 - # echo out > /sys/class/gpio/gpio135/direction
- Set the output level by writing the value file contents to "0" or "1".
 - # echo 1 > /sys/class/gpio/gpio135/value
 - # echo 0 > /sys/class/gpio/gpio135/value
- Unexport GPIO pin
 - # echo 135 > /sys/class/gpio/unexport

```
[root@localhost ~]# echo 135 > /sys/class/gpio/export
[root@localhost ~]# echo out > /sys/class/gpio/gpio135/direction
[root@localhost ~]# echo 1 > /sys/class/gpio/gpio135/value
[root@localhost ~]# echo 0 > /sys/class/gpio/gpio135/value
[root@localhost ~]# echo 135 > /sys/class/gpio/unexport
[root@localhost ~]# [
```


C Compiler Example (1)

Required Hardware

- ARTIK 5 beta developer kit
- DIP type LED
- 220 ohm resistor
- Breadboard
- Connector wires

C Compiler Example (1)

Source Code

```
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#define HIGH 1
#define LOW 0
#define INPUT 1
#define OUTPUT 0
int outputPin = 121;
bool digitalPinMode(int pin, int dir)
  FILE * fd;
  char fName[128];
  // Exporting the pin to be used
  if((fd = fopen("/sys/class/gpio/export", "w")) == NULL){
    printf("Error: unable to export pin\u00c4n");
    return false:
  fprintf(fd, "%d₩n", pin);
  fclose(fd);
  // Setting direction of the pin
  sprintf(fName, "/sys/class/gpio/gpio%d/direction". pin);
  if((fd = fopen(fName, "w")) == NULL){
    printf("Error: can't open pin direction\(\forall n\);
    return false:
  if(dir == OUTPUT) { fprintf(fd, "out₩n"); }
  else {fprintf(fd, "in₩n"); }
  fclose(fd);
  return true;
```

```
bool digitalWrite(int pin, int val)
  FILE * fd;
  char fName[128];
  // Open pin value file
  sprintf(fName, "/sys/class/gpio/gpio%d/value", pin);
  if((fd = fopen(fName, "w")) == NULL)
    printf("Error: can't open pin value₩n");
    return false;
  if(val == HIGH) { fprintf(fd, "1 \forall n"); }
  else {fprintf(fd, "0\text{\psi}n"); }
  fclose(fd);
  return true;
int setup()
  if (!digitalPinMode(outputPin, OUTPUT)) return -1;
  return 0;
int main(void)
 if (setup() == -1) \{exit(1);\}
  while(1)
    digitalWrite(outputPin, HIGH);
    sleep(1);
    digitalWrite(outputPin, LOW);
    sleep(1);
  return 0;
```


C Compiler Example (1)

Execution result

- Before executing code : LED off
- After executing code : LED repeats on / off at 1 second intervals

ARTIK 520

PS-ED500

C Compiler Example (2)

Required Hardware

- ARTIK 5 beta developer kit
- LED
- 220 ohm resistor
- Momentary button or Switch
- Breadboard
- Connector wires

C Compiler Example (2)

Source Code

```
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#define HIGH 1
#define LOW 0
#define INPUT 1
#define OUTPUT 0
int inputPin = 121;
bool digitalPinMode(int pin, int dir)
  FILE * fd;
  char fName[128];
  // Exporting the pin to be used
  if((fd = fopen("/sys/class/gpio/export", "w")) == NULL){
    printf("Error: unable to export pin\u00c4n");
    return false:
  fprintf(fd, "%d₩n", pin);
  fclose(fd);
  // Setting direction of the pin
  sprintf(fName, "/sys/class/gpio/gpio%d/direction". pin);
  if((fd = fopen(fName, "w")) == NULL){
    printf("Error: can't open pin direction\(\forall n\);
    return false:
  if(dir == OUTPUT) {fprintf(fd, "out\Psin");}
  else {fprintf(fd, "in₩n"); }
  fclose(fd);
  return true;
```

```
int digitalRead(int pin)
  FILE * fd;
  char fName[128];
  char val[2];
  // Open pin value file
  sprintf(fName, "/sys/class/gpio/gpio%d/value", pin);
  if((fd = fopen(fName, "r")) == NULL)
    printf("Error: can't open pin value₩n");
    return false;
  fgets(val, 2, fd);
  fclose(fd);
  return atoi(val);
int setup()
  if (!digitalPinMode(inputPin, INPUT)) return -1;
  return 0;
int main(void)
  if (setup() == -1) \{ exit(1); \}
  while(1)
    int sensorVal;
    sensorVal = digitalRead(inputPin);
    printf("sensorVal is %d\u00fcmn". sensorVal);
    sleep(1);
  return 0;
```


C Compiler Example (2)

Execution result

- Before executing code : LED off
- After executing code
 - Switch is pressed LED on, sensorVal = 1
 - Switch is released— LED off, sensorVal = 0

ARTIK 520

Using the Arduino IDE

GPIO Pin Number

External Pin	A520-GPIO	Arduino Pin
J26[2]	121	2
J26[3]	122	3
J26[4]	123	4
J26[7]	124	7
J27[8]	125	8
J27[9]	126	9
J27[10]	127	10
J27[11]	129	11
J27[12]	134	12
J27[13]	135	13

Using the Arduino IDE

Required Hardware

- ARTIK 5 beta developer kit
- DIP type LED
- 220 ohm resistor
- Breadboard
- Connector wires

Using the Arduino IDE

Arduino Source Code

```
LED_GPIO

void setup() {
  pinMode(13, OUTPUT);
}

void loop() []
  digitalWrite(13, HIGH);
  delay(1000);
  digitalWrite(13, LOW);
  delay(1000);
}
```

Execute result

- Enter [Ctrl]+[u] or using menu, compile and upload your code to ARTIK.
- Then, you should see LED blinking.

