Laboratorio di Fisica - A.A. 2020/2021

Docenti: A. Garfagnini - M. Lunardon

Effetto Zeeman

Cerrone Vanessa 1200361 vanessa.cerrone@studenti.unipd.it Cigagna Simone 1193992 simone.cigagna@studenti.unipd.it Lai Nicolò 1193976 nicolo.lai@studenti.unipd.it

1 Introduzione

L'effetto Zeeman normale è un fenomeno fisico che consiste nella separazione delle righe di emissione di un atomo eccitato in presenza di un campo magnetico esterno L'interazione con il campo è riconducibile a onde elettromagnetiche emesse da dipoli oscillanti, per cui il moto orbitale dell'elettrone può essere scomposto in un moto oscillatorio lungo la direzione di \vec{B} ($\Delta m = 0$) e un moto rotatorio destrogiro o levogiro attorno a \vec{B} ($\Delta m = \pm 1$). Nell'esperienza si analizza tale effetto nell'atomo di Neon, studiando la riga spettrale a 585.3 nm data dalla transizione ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$, cioè tra stati con spin S = 0 e $\Delta L = \Delta J = 1$. Si utilizza lo spettrometro Zeeman 2 e come sorgente di luce una lampada al Neon a scarica a bagliore alimentata in corrente continua: le incertezze sulle dimensioni dei componenti, in particolare della lamina di Lummer, e degli altri dati di costruzione sono trascurabili rispetto alle incertezze statistiche, mentre l'incertezza relativa sul valore del campo magnetico B risulta essere dell' 1%.

Ai fini dello studio dell'effetto Zeeman, in Sezione 2 verrà effettuata una breve analisi dello spettro emissivo del Neon volta a ricercare la riga di interesse a 585.3 nm. Successivamente, in Sezione 3 si verificherà che il potere risolvente dell'apparato sia sufficientemente alto da poter rivelare la separazione dei livelli energetici. Tale separazione verrà poi studiata in dettaglio in Sezione 4 tramite la stima del fattore di Landè. Infine, in Sezione 5 verranno analizzati qualitativamente gli effetti dovuti all'orientazione del campo magnetico esterno, sia in assenza di un filtro polarizzatore, sia in due diverse configurazioni di quest'ultimo.

2 Spettro di emissione del Neon

Si vuole inizialmente studiare lo spettro emissivo del Neon per individuare correttamente la riga a 585.3 nm, corrispondente alla transizione di interesse. Lo spettro viene acquisito con il CCD posizionato orizzontalmente, a campo magnetico spento, e in assenza della lamina di Lummer. Per l'acquisizione dello spettro, si utilizza un tempo di integrazione pari a 100 ms.

Si effettua poi una calibrazione dell'asse orizzontale, convertendo così il numero di pixel relativi al CCD in lunghezze d'onda. A tale scopo, si predispone una regressione lineare delle lunghezze d'onda delle principali righe spettrali del Neon in funzione del numero di pixel corrispondenti ai picchi rivelati dal detector.

In Fig.1 viene rappresentato lo spettro di emissione con l'asse orizzontale calibrato: si osservano evidenti transizioni nella regione 580 – 680 nm, in particolare la riga più intensa a 640.2 nm e la riga di interesse per l'esperienza a 585.3 nm. Si vuole far notare, infine, che in presenza di un campo magnetico esterno lo spettro rimane invariato a meno dell'intensità della radiazione rivelata, che aumenta significativamente.

3 Potere risolvente dell'apparato

Si procede ora restringendo l'intervallo di acquisizione ad un intorno della riga evidenziata in Figure 1: viene quindi ruotato il CCD in posizione verticale e viene inserita la lamina di Lummer. Il tempo di integrazione scelto per l'acquisizione è di 800 ms. Si ricorda inoltre che, per stimare il potere risolvente dell'apparato, il campo magnetico rimane spento.

A campo magnetico spento si vuole determinare il potere risolvente dell'apparato, pari a:

$$R = \frac{\lambda}{\Delta \lambda} \tag{1}$$

In approssimazione di luce radente vale:

Fig. 1. Spettro emissivo del Neon. Asse orizzontale calibrato.

$$\Delta \lambda_{r.u.} \simeq \frac{\lambda^2}{2d} \tag{2}$$

4 Fattore di Landè

In questa sezione si analizzano i dati con il campo magnetico acceso e osservando la radiazione parallelamente a \vec{B} . Poiché un dipolo non emette lungo la direzione che individua, i termini polarizzati circolarmente corrispondenti a $\Delta m = \pm 1$ hanno intensità maggiore dei termini corrispondenti a $\Delta m = 0$. Perciò la transizione centrale è soppressa e si osservano solo le due laterali, separate da $\delta\lambda = 2\Delta\lambda_{zee}$

5 Campo magnetico ortogonale alla radiazione

Si analizzano i dati acquisiti ruotando il campo magnetico, cioè osservando la radiazione emessa in direzione ortogonale a B. In questo caso, i termini associati a $\Delta m = 0$ presentano polarizzazione lineare, mentre quelli relativi a $\Delta m = \pm 1$ sono polarizzati circolarmente in senso orario o antiorario. Ci si aspetta quindi di osservare un tripletto, cioè la formazione di tre righe equispaziate visibili nella direzione di propagazione trasversa al campo. Successivamente, si inserisce un filtro polarizzatore di fronte alla lente condensante, che viene impiegato in due configurazioni, non note a priori. Se il polarizzatore fa passare prevalentemente la componente della luce polarizzata parallelamente alla direzione del campo, allora si osserva una sola riga; se invece, ruotando il filtro, questo fa passare la componente della luce con polarizzazione ortogonale al campo, allora la transizione centrale viene soppressa e si osservano solamente i due picchi laterali. Conseguentemente ci si aspetta che l'intensità della radiazione sia significativamente ridotta con l'inserimento del filtro polarizzatore. In ?? è riportata la proiezione sull'asse y dello spettro bidimensionale, nelle tre configurazioni precedentamente descritte. Si nota che, in generale, l'apparato non permette di risolvere sufficientemente bene le transizioni: questo è particolarmente evidente in assenza del filtro, in quanto non è possibile distinguere i tre picchi di interferenza distinti che ci si aspetterebbe. Inoltre, si osserva che nella prima configurazione lo spettro è caratterizzato dalla presenza di un unico picco, mentre nella seconda da un doppietto: da ciò si deduce che nel primo caso il polarizzatore è posto lungo la direzione del campo, mentre nella seconda è ruotato di 90 gradi.