4、AB 杆长为 L,其 A 瑞在水平面上以匀速 u 直线运动,B 瑞用长为 0.5L 的绳索悬挂在 D 点,杆在铅垂面内运动,如图 6 所示。图示瞬时,绳索 BD 水平, $\theta=45^{\circ}$,求该瞬时杆中点 C 速度的大小 $v_{\rm C}$ 、杆 B 端法向加速度的大小 $a_{\rm B}^{\circ}$ 和 AB 杆的角加速度的大小 $\alpha_{\rm AB}$ 。

			Charles Control Control
1'-	ш	$a_n^* = \underline{\hspace{1cm}}$	$\alpha_{AB} =$
		- 3	****

5、长为 L 的均质杆 AB 用柱铰链悬挂在铅垂平移的框架上,设杆与铅垂线的夹角为 θ ,如图 7 所示。若已知框架的加速度的大小 $a_A=0.5g$,方向如图,不计摩擦和阻力,试建立杆 AB 的运动微分方程。

6、曲柄滑块机构如图 8 所示,已知曲柄 OA 长为 R 质量为 m,连杆 AB 长为 2R 质量为 m,不计滑块 B 的质量和几何尺寸。图示初始瞬时(OA 铅垂,OB 水平)在曲柄上作用一个力偶 M 使系统由静止开始运动,不计摩擦和阻力,求此时曲柄 OA 的角加速度 α_{OA} 和地面作用在滑块 B 上约束力 F_{NB} 的大小。

$$\alpha_{OA} =$$
______ $F_{NB} =$ _____

三、 综合题(本题30分)

要求:给出基本公式、解题基本步骤和计算结果,画出相应速度图、加速度图和受力图质量为m长为L的均质杆用光滑柱铰链与固定轴A连接,另一端用光滑柱铰链与质量;m半径为R的均质圆盘中心B铰接,该圆盘在铅垂面内的大圆弧上纯滚动,设AB杆与水线的夹角为 θ ,如图 9 所示。

二、 填空題(将最简结果填在空格内,每空5分,共60分)

1、AB、AC、AD 和 BC 四个杆铰接,AB 杆上作用有一铅垂力 F,BC 杆上作用有一力偶 M,其力偶矩的大小为 M=Fa,几何尺寸如图 3 所示。若不计摩擦和构件自重,求 D 端约束力 F_D 和杆 AC 内力 F_{AC} 的大小(表示成 F、a、b 的关系式)。

- 2、质量为m 半径为R 的半圆盘放在光滑水平面上,其上放置一个长为4R 质量为m 的均质杆 OB,杆的O 端用光滑柱铰接与地面链接,如图4 所示。若秆与水平面的夹角 $\theta=30^\circ$ 该系统能维持平衡,则杆与半圆盘间的最小静滑动摩擦因数 $f_{\min}=$ ______。
- 3、半径为 R的圆盘以匀角速度 ω 绕 O 轴转动并带动杆 O_1A 转动,如图 5 所示。若取圆盘中心 C 为动点,杆 O_1A 为动系,求图示位置 $\theta=60^\circ$,OC \perp OO_1 时,动点 C 牵连速度的大小 v_e 、相对速度的大小 v_r 和相对加速度的大小 a_r 。

 $v_{\rm e} = \underline{\hspace{1cm}} v_{\rm r} = \underline{\hspace{1cm}} a_{\rm r} = \underline{\hspace{1cm}}$

图 6