UCS 1703 GRAPHICS AND MULTIMEDIA

CSE-A

ASSIGNMENT-1: CLIPPING ALGORITHMS

97.09.23

MAME: FATHIMA MAUSHIN A'R

Reg. No: 205001037

Liang Barksy Line Clipping Algorithm:

Given:

W.K.T.

for an integer k, Pk and 9k are defined as

$$k=1$$
 \Rightarrow : $-u \triangle n \leq nu - nuin $\Rightarrow P_1 = -\Delta n \quad q_1 = nu - nuin $\Rightarrow v_1 = q_1/\rho_k$$$

Ψ K, we have PK ≠0 > we find all the intersection points (σk)

K	a k	PK	8K=9K
1	8-10=-2	- 8	1/4
2 .	20-8=12	8	3/2
3	8-4 =4	-6	-213
4	9-8 = 1	+6	116

W.K.T, for any k, TK < 1 ad 2k≥0

=> We ignore r2 (: r2>1) and r3 (: r3 <0)

Now, 4k for which PK <0, Unin = max (0, 8k)

for which PK>0, wmax = min(1, 8K) 4K

Here, Umin > Vmax => The line connecting points P1 (818) and P2 (16,14) is ontside the clipping window.

Sutherland Hodgeman Clipping Algorithm:

(12, T2) Lz and T2 arimide Add F2

	cq r			
Pair of vertices	Description	Condition	New Vertex list	left.
(8, ()	Bad (are inside	Add C	C	
(40)	c and D are invide	Add D	D	8 0
LO,E)	Dad & are inide	Add E	6	12
(E, F)	E and f are inide	Add F	F	٤, ٤
(F,4)	Fad 4 ausinide	Add 4	G	
(4,4)	G is enide A is article	Add interesting print, L1	Li	a
(A1B)	A is outside B is siride	Add introcuta	L2	
		print, L2 and B	В	
(9,0)	Bad Care	Nothing		Top:
(40)	C in outside	Add interesting print, Ti ad D	T, D	
(D, F)	Both are inside	ALL E	€	12 72 71
(E,F)	E and f are inside	Add F	F	L+ _E
(F, 4)	Fady are smide	add G	G	
(4,4)	Gadl, are inide	Add Li	Li	a
(4, 4,)	Hadly arinide	Add Lz	L ₂	
(L2, B)	Lz is inside 3 is outside	Add intendin		
(F21T1)	To and To are simile	Add Ti	T) .	Right:
(1,0)	To in which	Add interestru proint, RI	RI	Tr T1
(D, E)	D is outside E is incide	Add untersection print, Rz & E	P ₂	44
(E,F)	Eadf au inside	Add F	E	L1 E
(4,4)	fada an invide	Add 4	4	
14,4)	Gad Ly are inide	Add 4	Ц	6
(4,62)	4 ad by an inide	Add Lz	4	
4				

12

(6,Ti)	To ad Transmide	
(Ti, RI)	PI and The are inich	-
(R1,R2)	R, and R, are involve	-
(Pz, E)	Re and E are inside	-
(E, 4)	Fis attide	
(4,4)	Fady one outside	Daniel or Street
(4,41)	4 in actide 4 in inide 61 and 62 out inide	1
(21, 62)		
(L2, 52)	by and To are inside	

17 bla	٦٢
Add RI	PI
Add P2	P2
Add E	E
Add intersection print, BI	В
Add intersection print, By of L1	BZ
print, By of L1	Li
Add Lz	12
Add TI	TI

Bottom:

Clipped Polygon

clipping Algorithm. 3 Weiler - Atherton

For the given polygon, mark the intersection points of the tides with the dipping window as V1, V2, V3, V4, V5, V6, V7 and vg. Inside the dipping window, (1) V1 → V2 is going from outside to inside, > follow the polygon boundary (V1-V1) (2) V2 -> B is going from invide to outside, = follow the dipping window (V2-V3) (3) v3 → v4 is going from outride to simile, = four the polygm (v3-v4)

(4) V4 + 1 is going from inside to outside => follow the mindow (V4+V5) (5) V5 → E is gring from ontact to inide > follow the polyon (V5-E-V6) (b) $V_b \rightarrow V_{QF}$ is going from which to outside =, follow the window (V_b -V_Q) (7) vy -> V8 is going for outside to mide >> follow the polygon (V1-V0) is ging for invide to outside > follow the winds (VB-V1) G - A : stop dipping

