

COMPOSITES ENGINEERING

An International Journal

Editor-in-Chief: Professor David Hui, Department of Mechanical Engineering, University of New Orleans, Lakefront, New Orleans, LA 70148, USA. Tel. 504-286-6192. Fax 504-286-5539. email dxhme@uno.edu.

Editorial Board

Gary L. Anderson, US Army Research Office, Research Triangle Park, NC, USA

Roshdy Barsoum, Office of Naval Research, Arlington, VA, USA

Peter W. R. Beaumont, Cambridge University, UK

Charles Bert, University of Oklahoma, Norman, USA

Victor Birman, University of Missouri-Rolla, St Louis, USA

Alexander Bogdanovich, Latvian Academy of Sciences, Latvia

Anthony R. Bunsell, Ecole Nationale Supérieure des Mines de Paris, Evry, France

Eugene T. Camponeschi, Jr., Naval Surface Warfare Center, Annapolis, MD, USA

W. Cantwell, University of Liverpool, Liverpool, UK

C. C. Chao, National Tsing-Hua University, Hsinchu, Taiwan 30043, Republic of China

Victor L. Chen, McDonnell Douglas Aerospace West, Long Beach, CA, USA

Richard Christensen, Lawrence-Livermore Laboratories, Livermore, CA, USA

Subhendu K. Datta, University of Colorado, Campus Box 427, Boulder, CO, USA

Piyush Dutta, US Army Cold Regions Research Lab., Hanover, NH, USA

Mauro Ferrari, University of California, Berkeley, CA, USA

Faramarz Gordaninejad, University of Nevada, Reno, USA

John P. Gyekenyesi, NASA Lewis Research Center, Cleveland, OH, USA

Carl T. Herakovich, University of Virginia, Charlottesville, USA

Chun-Hway Hsueh, Oak Ridge National Lab., Oak Ridge, TN, USA

Walter F. Jones, Department of the Air Force, Bolling Air Force Base, DC, USA

Rakesh K. Kapania, Virginia Polytechnic Institute and State University, Blacksburg, USA

Anthony Kelly CBE, FRS, FEng, University of Surrey, Guildford, UK

Jim Kelly, Defense Advanced Research Projects Agency, Arlington, VA, USA

Isao Kimpara, University of Tokyo, Japan

Akira Kobayashi, University of Tokyo, Japan

Yiu-Wing Mai, The University of Sydney, Sydney, New South Wales 2006, Australia

Ayman Mosallam, California State University, Fullerton, CA, USA

Don Oplinger, FAA Technical Center, Atlantic City International Airport, NJ, USA

Nicholas J. Pagano, Wright Patterson Air Force Base, OH, USA

Su-Seng Pang, Louisiana State University, LA, USA

Marek-Jerzy Pindera, University of Virginia, Charlottesville, USA

Clarence C. Poe, NASA Langley Research Center, Hampton, VA, USA

Yapa Rajapakse, Office of Naval Research, Arlington, VA, USA

Franz G. Rammerstorfer, Vienna University of Technology, Austria

Karl Schulte, Technical University of Hamburg-Harburg, Germany

Huai-Min Shang, National University of Singapore, Singapore

Wanda Sigur, Martin Marietta Manned Space Systems, New Orleans, LA, USA

George J. Simitses, University of Cincinnati, OH, USA

Kostas P. Soldatos, University of Nottingham, UK

Vijay K. Stokes, Solid Mechanics Laboratory, General Electric Company, Schenectady, NY, USA

Kenneth N. Street, National Defense Headquarters, Ottawa, Canada, K1A 0K2

Stephen R. Swanson, University of Utah, Salt Lake City, USA

Ramesh Talreja, Georgia Institute of Technology, Atlanta, GA, USA

Rod C. Tennyson, University of Toronto, Canada

Geoffrey J. Turvey, Lancaster University, UK

Viggo Tvergaard, Technical University of Denmark, Lyngby, Denmark

Viktor E. Verijenko, University of Natal, Durban, South Africa

Jack R. Vinson, University of Delaware, Newark, USA

Anthony M. Waas, University of Michigan, Ann Arbor, USA

James Whitney, University of Dayton, OH, USA

Spencer Wu, Air Force Office of Scientific Research, Washington, DC, USA

COMPOSITES ENGINEERING

An International Journal

AIMS AND SCOPE

In response to the growing use of composites in the aerospace, mechanical and ocean engineering industries across the world, the international journal *Composites Engineering* will serve as a forum for the publication of original papers in the broad area of composite materials and engineering structures.

The journal will seek submissions from authors on theoretical and experimental investigation of composite structures and materials. Particular emphasis will be placed on the design and analysis of new structures and new materials in all application areas but particularly in the new vehicle-related environments.

The journal will specifically deal with the design and manufacturing of composite materials as intended for and used in engineering structures and their performance under high temperatures, high stresses and corrosive environments. Other aspects included will be buckling, vibration and non-linear behaviour of structures made from these novel materials.

Letters to the Editor, reviews and announcements of forthcoming conferences are invited.

ContentsDirect delivers the table of contents of this journal, by e-mail, approximately two to four weeks prior to each issue's publication. To receive this free service complete and return the form at the back of this issue or send an e-mail message to c.green@elsevier.co.uk.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinion or statement appears in this journal, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the sole responsibility of the contributor or advertiser concerned. Accordingly, the publishers, the editorial board and editors and their respective employees, officers and agents accept no responsibility or liability whatsoever for the consequences of any such inaccurate or misleading data, opinion or statement.

CONTENTS OF VOLUME 5

NUMBER 1

- William E. Bachrach and Srinivas Kodiyalam**
- G. M. Bond and O. T. Inal**
- L. Daudeville, O. Allix and P. Ladevèze**
- Michael C. Larson**
- H. J. Böhm, H. P. Degischer, W. Lacom and J. Qu**
- M. Hojjati, V. Safavi Ardebili and S. V. Hoa**
- J. Ro and A. Baz**
- J. Ro and A. Baz**
- J. Ro and A. Baz**
- Erik Adolfsson and Peter Gudmundson**
- David Hui**
- 1 Effective mechanical properties strategy for modal analysis and optimization of composite structures
- 9 Shock-compacted aluminum/boron carbide composites
- 17 Delamination analysis by damage mechanics: Some applications
- 25 Fracture propagation near a frictionally-constrained fiber interface
- 37 Experimental and theoretical study of the thermal expansion behavior of aluminium reinforced by continuous ceramic fibers
- 51 Design of domes for polymeric composite pressure vessels
- 61 NITINOL-reinforced plates: Part I. Thermal characteristics
- 77 NITINOL-reinforced plates: Part II. Static and buckling characteristics
- 91 NITINOL-reinforced plates: Part III. Dynamic characteristics
- 107 Matrix crack induced stiffness reductions in $[0_m/90_n/+\theta_p/-\theta_q]_M$ composite laminates
- 125 List of Reviewers for Vol. 4. (1994)
- 127 Announcement

NUMBER 2

- G. Leisk and A. Saigal**
- R. Le Riche and R. T. Haftka**
- Edmundo Corona and Ashok Rodrigues**
- Sung Yi and Harry H. Hilton**
- 129 Taguchi analysis of heat treatment variables on the mechanical behavior of alumina/aluminum metal matrix composites
- 143 Improved genetic algorithm for minimum thickness composite laminate design
- 163 Bending of long cross-ply composite circular cylinders
- 183 Hygrothermal effects on viscoelastic responses of laminated composites

F. Ju, H. P. Lee and K. H. Lee	195	Finite element analysis of free vibration of delaminated composite plates
S. A. Matemilola and W. J. Stronge	211	Impact induced dynamic deformations and stresses in CFRP composite laminates
Ching-Hwei Chue and Thomas Jin-Chee Liu	223	The effects of laminated composite patch with different stacking sequences on bonded repair
David Hui	231	List of Reviewers for Vol. 4 (1994)
	233	Announcement
 NUMBER 3		
Dong Sheng Li and Michael R. Wisnom	235	Factors controlling the transverse tensile properties of unidirectional SiC/Ti-6Al-4V
S. W. Gong, V. P. W. Shim and S. L. Toh	257	Impact response of laminated shells with orthogonal curvatures
J. T. Wang, I. S. Raju and D. W. Sleight	277	Composite skin-stiffener debond analyses using fracture mechanics approach with shell elements
C. C. Chao and T. P. Tung	297	Consistent higher-order analysis on shock response of cross-ply curved panels
L. Poussin, Y. A. Bertin and A. Hardy	313	Characterization of polypropylene texture
Mahesh D. Pandey, Mohammad Z. Kabir and Archibald N. Sherbourne	321	Flexural-torsional stability of thin-walled composite I-section beams
David Hui	343	List of Reviewers for Vol. 4 (1994)
	345	Announcement
 NUMBER 4		
William C. Revelos and Joseph L. Kroupa	347	Stress-free edge influence on thermal fatigue damage in an SCS-6/Ti-24Al-11Nb composite
Kurt Gramoll and Srinivasan Ramaprasad	363	Effects of band weaving on fiber strength in filament-wound composite structures
Boon Y. Low, Steven D. Gardner, Charles U. Pittman, Jr and Robert M. Hackett	375	A micromechanical characterization of residual thermal stresses in carbon fiber/epoxy composites containing a non-uniform interphase region
Haim Abramovich, Moshe Eisenberger and Oleg Shulepov	397	Vibrations of multi-span non-symmetric composite beams

- Y. Frostig and Y. Shenhar** 405 High-order bending of sandwich beams with a transversely flexible core and unsymmetrical laminated composite skins
- C. Suri and D. Perreux** 415 The effects of mechanical damage in a glass fibre/epoxy composite on the absorption rate
- Heoung-Jae Chun, Isaac M. Daniel and Shi-Chang Wooh** 425 Residual thermal stresses in a filamentary SiC/Al composite
- Boon Y. Low, Kelly L. Anderson, Matthew Vincent, Steven D. Gardner, Charles U. Pittman, Jr and Robert M. Hackett** 437 Toughened carbon fiber/epoxy composites: the relative influence of an elastomer interphase and elastomer dispersed in the matrix

NUMBER 5

- A. P. Christoforou and A. S. Yigit** 459 Transient response of a composite beam subject to elasto-plastic impact
- C.-H. Lu, R. Mao and D. C. Winfield** 471 Stress analysis of thick laminated conical tubes with variable thickness
- Yavuz Başar and Yunhe Ding** 485 Interlaminar stress analysis of composites: Layer-wise shell finite elements including transverse strains
- Jerome T. Tzeng and Ara S. Abrahamian** 501 Dynamic compressive properties of composites at interior ballistic rates of loading—experimental method
- N. P. Hung, W. Zhou, E. T. Peh and C. S. Chan** 509 Fracture toughness and low cycle fatigue of 6061/Al₂O_{3p} composites
- Dag Lukkassen, Lars-Erik Persson and Peter Wall** 519 Some engineering and mathematical aspects on the homogenization method
- Cristovão M. Mota Soares, N. M. Marques Cordeiro and J. Infante Barbosa** 533 A discrete model for the design sensitivity analysis of multi-layered composite shells of revolution
- M. Kaliske and H. Rother** 551 Damping characterization of unidirectional fibre reinforced polymer composites

NUMBER 6**FIBER-MATRIX INTERFACE**

Prasanna Karpur, Theodore E. Matikas and Nicholas J. Pagano

vii Editorial

Joseph L. Kroupa and Noel E. Ashbaugh

569 Stress-free edge effects on the transverse response of a unidirectional metal matrix composite

G. Rajesh, A. Sinharoy and R. B. Bhagat	583 A fracture mechanics based numerical analysis for predicting optimum interface properties in a metal matrix composite
David R. Veazie and Jianmin Qu	597 Effects of interphases on the transverse stress-strain behavior in unidirectional fiber reinforced metal matrix composites
Kishore Pochiraju, Alan C. W. Lau and Albert S. D. Wang	611 Analysis of fiber pullout or push-in with frictional sliding at the fiber-matrix interface
Roger D. Cordes and Isaac M. Daniel	633 Determination of interfacial properties from observations of progressive fiber debonding and pullout
C. Eric Yen and Bernhard R. Tittmann	649 Fiber-matrix interface study of carbon-carbon composites using ultrasonics and acoustic microscopy
N. Rattanawangcharoen, P. Ngotanasuwan, S. K. Datta and A. H. Shah	663 Fiber-matrix interphase and guided waves in a composite cylinder
Krishnan Balasubramaniam, Yuyin Ji and Steven Gardner	675 A study on the influence of fiber-matrix interphase properties on ultrasonic wave behavior using effective elastic property models
Prasanna Karpur, Theodore E. Matikas and S. Krishnamurthy	697 Ultrasonic characterization of the fiber-matrix interphase/interface for mechanics of continuous fiber reinforced metal matrix and ceramic matrix composites
S. I. Rokhlin, Y. C. Chu and W. Huang	713 Determination of fiber-matrix interphase elastic moduli from ultrasonic phase velocity and attenuation data
Manohar Bashyam	735 Ultrasonic technique to measure stiffness coefficients of CMC and its implications on characterizing material degradation

NUMBER 7**USE OF COMPOSITES IN MULTI-PHASED AND FUNCTIONALLY GRADED MATERIALS**

Marek-Jerzy Pindera, Jacob Aboudi, Steven M. Arnold and Walter F. Jones	vii Foreword
Fumio Nogata and Hideaki Takahashi	743 Intelligent functionally graded material: Bamboo
F. Erdogan	753 Fracture mechanics of functionally graded materials
Jacob Aboudi, Marek-Jerzy Pindera and Steven M. Arnold	771 A coupled higher-order theory for functionally graded composites with partial homogenization
Robert K. Goldberg and Dale A. Hopkins	793 Thermal analysis of a functionally graded material subject to a thermal gradient using the boundary element method

Joseph R. Zuiker	807 Functionally graded materials: choice of micro-mechanics model and limitations in property variation
J. C. Nadeau and M. Ferrari	821 Second-rank equilibrium and transport properties of fibrous composites: effective predictions and bounds
Jacob Aboudi	839 Micromechanical analysis of thermo-inelastic multiphase short-fiber composites
R. L. Williamson, B. H. Rabin and G. E. Byerly	851 FEM study of the effects of interlayers and creep in reducing residual stresses and strains in ceramic–metal joints
K. Kokini and B. D. Choules	865 Surface thermal fracture of functionally graded ceramic coatings: effect of architecture and materials
C. Y. Jian, Toshiyuki Hashida, Hideaki Takahashi and Masahiro Saito	879 Thermal shock and fatigue resistance evaluation of functionally graded coating for gas turbine blades by laser heating method
Robert S. Salzar	891 Functionally graded metal matrix composite tubes
Frank J. Rooney and M. Ferrari	901 Torsion and flexure of inhomogeneous elements
Victor Birman	913 Stability of functionally graded hybrid composite plates
Donald W. Radford	923 Volume fraction gradient induced warpage in curved composite plates
H. N. G. Wadley, L. M. Hsiung and R. L. Lankey	935 Artificially layered nanocomposites fabricated by jet vapor deposition
Thomas D. McGarry, Marek-Jerzy Pindera and Franklin E. Wawner	951 Evaluation of reaction barrier compensating coatings on SCS-6 fibers in Ti–24Al–11Nb(at%) composites

NUMBER 8

JOINTS AND ADHESION

Paul D. Herrington	vii Foreword
Paul D. Herrington	975 Stress–strength interference theory for a pin-loaded composite joint
Meng-Kao Yeh and Yui-Long You	983 Vibration of laminated plates with adhesive joints
B. W. Barber and D. W. Radford	995 Impact-fatigue behavior of composite tube/metal end fitting bonded joints
Su-Seng Pang, Chihsiar Yang and Yi Zhao	1011 Impact response of single-lap composite joints
R. S. Bushby and V. D. Scott	1029 Joining aluminium/Nicalon composite by diffusion bonding

Gengkai Hu

**Ingvar Eriksson, Jan Bäcklund
and Peter Möller**

**K. Hokamoto, A. Chiba,
M. Fujita and T. Izuma**

**Shinji Fukumoto, Akio Hirose
and Kojiro F. Kobayashi**

1043 Mixed mode fracture analysis of adhesive lap joints

1051 Design of multiple-row bolted composite joints under general in-plane loading

1069 Single-shot explosive welding technique for the fabrication of multilayered metal base composites: effect of welding parameters leading to optimum bonding condition

1081 An effective joint of continuous SiC/Ti-6Al-4V composites by diffusion bonding

NUMBER 9

**Andrew C. Hansen
and Mark R. Garnich**

**A. E. Bogdanovich, C. M. Pastore
and B. P. Deepak**

E. Breval

**J. K. Chen, A. Perea
and F. A. Allahdadi**

**S. Adanur, Y. P. Tsao
and C. W. Tam**

**Youjiang Wang, Jian Li
and Dongming Zhao**

**Yasser Gowayed
and Jhy-Cherng Hwang**

**R. McIlhagger, B. J. Hill,
D. Brown and L. Limmer**

1091 A multicontinuum theory for structural analysis of composite material systems

1105 A comparison of various 3-D approaches for the analysis of laminated composite structures

1127 Synthesis routes to metal matrix composites with specific properties: A review

1135 Laser effects on the dynamic response of laminated composites

1149 Improving fracture resistance of laminar textile composites by third direction reinforcement

1159 Mechanical properties of fiber glass and Kevlar woven fabric reinforced composites

1177 Thermal conductivity of composite materials made from plain weaves and 3-D weaves

1187 Construction and analysis of three-dimensional woven composite materials

NUMBER 10-11**CERAMIC COMPOSITES**

Chun-Hway Hsueh and David Hui

vii Foreword

**Li-Min Zhou, Yiu-Wing Mai
and Lin Ye**

1199 Analyses of fibre push-out test based on the fracture mechanics approach

Genady P. Cherepanov

1221 Weight versus strength: a case study

H. Ho and L. T. Drzal

1231 Non-linear numerical study of the single-fiber fragmentation test. Part I: Test mechanics

H. Ho and L. T. Drzal	1245 Non-linear numerical study of the single-fiber fragmentation test. Part II: A parametric study
Benlian Zhou	1261 The biomimetic design of worst bonding interface for ceramic matrix composites
Byung-Koog Jang, Manabu Enoki, Teruo Kishi and Hee-Kap Oh	1275 Effect of second phase on mechanical properties and toughening of Al_2O_3 based ceramic composites
Raj N. Singh and Hongyu Wang	1287 Thermal shock behavior of fiber-reinforced ceramic matrix composites
Xiaomin Deng	1299 Mechanics of debonding and delamination in composites: Asymptotic studies
C. P. Osterdag	1317 <i>In-situ</i> crack propagation in pressureless sintered fiber reinforced composites
Christopher K. Y. Leung and Yiping Geng	1331 Effect of lateral stresses on fiber debonding/pull-out
B. Mobasher and Cheng Yu Li	1349 Modeling of stiffness degradation of the interfacial zone during fiber debonding
S. Sutherland, K. P. Plucknett and M. H. Lewis	1367 High temperature mechanical and thermal stability of silicate matrix composites
F. Lamouroux, J. L. Vallés and M. Steen	1379 Influence of damage on the creep behaviour of ceramic matrix composites
C. H. Hsueh, F. Rebillet, J. Lamon and E. Lara-Curzio	1387 Analyses of fiber push-out tests performed on Nicalon/SiC composites with tailored interfaces

NUMBER 12

WAVE PROPAGATION IN COMPOSITES AND NON-DESTRUCTIVE EVALUATION

Subhendu K. Datta and R. K. Nimal D. Rajapakse	vii Foreword
Shi-Chang Wooh, Isaac M. Daniel and Heoung-Jae Chun	1403 Real-time ultrasonic and acoustic emission monitoring of damage in graphite/epoxy laminates
Patrick T. MacLellan, David A. Stubbs and Prasanna Karpur	1413 <i>In-situ</i> ultrasonic surface wave assessment of mechanical fatigue damage accumulation in metal matrix composites
Joon-Hyun Lee and Young-Chul Park	1423 Nondestructive characterization of metal matrix composite by ultrasonic measurement

**Krishnan Balasubramaniam,
Satyanarayana Alluri,
Praveen Nidumolu,
P. Raju Mantena,
James G. Vaughan
and Murthy Kowsika**

E. Rhian Green

**A. Safaeinili, D. E. Chimenti,
B. A. Auld and S. K. Datta**

**J. Zhu, S. K. Datta and
A. H. Shah**

**G. R. Liu, K. Y. Lam
and H. M. Shang**

**Muhammad A. Hawwa
and Adnan H. Nayfeh**

**R. K. N. D. Rajapakse
and D. Gross**

**1433 Ultrasonic and vibration methods for the
characterization of pultruded composites**

1453 Acoustic emission sources in a cross-ply laminated plate

**1471 Floquet analysis of guided waves propagating in
periodically layered composites**

**1477 Modal representation of transient dynamics of
laminated plates**

**1489 A new method for analysing wave fields in laminated
composite plates: two-dimensional cases**

**1499 The general problem of thermoelastic waves in
anisotropic periodically laminated composites**

**1519 Transient displacements of a composite medium with
defects due to a surface pulse**

I Index for Volume 5, 1995

