Hochschule Esslingen
University of Applied Sciences

BLDC - Motoren

Technische Varianten und Anwendungen

Tim Hilt Emil Slomka

Agenda

- 1. Einleitung. BLDC Motor
- 2. Namensgebung und Abgrenzung zum bürstenbehafteten Gleichstrommotor
- 3. Technische Varianten
- 4. Typische Anwendungen des BLDC-Motors
- 5. Ausführliches Anwendungsbeispiel Akkubohrschrauber Makita DDF481
- 6. Fazit

Quelle: maxonmotor.com

BLDC - Motor

- Wachsende Beliebtheit von BLDC Motoren
- Ein besonders vielfältiger Motorentyp
- Bietet Vorteile gegenüber bürstenbehafteten Gleichstrommotoren
- Wird in verschiedenen Ausführungen gebaut

Namensgebung und Abgrenzung zum bürstenbehafteten Gleichstrommotor

Namensgebung und Abgrenzung zum bürstenbehafteten Gleichstrommotor

Quelle: de.wikipedia.org

Namensgebung und Abgrenzung zum bürstenbehafteten Gleichstrommotor

"Der bürstenlose Gleichstrommotor (englisch Brushless DC Motor, abgekürzt BLDCoder BL-Motor sowie auch electronically commutated Motor, kurz EC-Motor) basiert
entgegen der Namensgebung nicht auf dem Funktionsprinzip der Gleichstrommaschine,
sondern ist aufgebaut wie eine Drehstrom-Synchronmaschine mit Erregung durch
Permanentmagnete. Die (oft dreisträngige) Drehstromwicklung wird durch eine
geeignete Schaltung so angesteuert, dass sie ein drehendes magnetisches Feld erzeugt,
welches den permanenterregten Rotor mitzieht. Das Regelverhalten ähnelt weitgehend
einer Gleichstrom-Nebenschlussmaschine." ¹

Quelle: www.rc-autos.de

Funktionsvergleich

Funktionsvergleich

Bürstenbehafteter Motor

Quelle: www.renesas.com

Funktionsvergleich

Bürstenbehafteter Motor

Quelle: www.renesas.com

Bürstenloser Motor

Quelle: www.renesas.com

Nachteile bürstenbehafteter Gleichstrommotor

Nachteile bürstenbehafteter Gleichstrommotor

- Bürstenfeuer
- Mechanische Abnutzung
- Wartungsanfällig
- Abwärme
- Reibungsverluste

Quelle: de.wikipedia.org

Nachteile bürstenbehafteter Gleichstrommotor

- Bürstenfeuer
- Mechanische Abnutzung
- Wartungsanfällig
- Abwärme
- Reibungsverluste

Quelle: de.wikipedia.org

Vorteile bürstenloser Gleichstrommotor

Vorteile bürstenloser Gleichstrommotor

Quelle: maxonmotorusa.com

- niederer Wartungsaufwand
- hohe Zuverlässigkeit
- großer Drehzahlbereich
- hohe Effizienz (dadurch u.U. kleinere Bauform)
- läuft leiser (da keine mechanische Reibung)

Quelle: Fa. Makita

Quelle: maxonmotorusa.com

Technische Varianten

Quelle: maxonmotor.com

Quelle: maxonmotorusa.com

- Innenläuferausführung
- Außenläuferausführung
- Scheibenläuferausführung
- Nutenloserausführung

Innenläuferausführung

Innenläuferausführung

- Stator außen, Läufer innen
- entspricht den Vorstellungen einer klassischen Motorausführung
- schlanke Konstruktion bessere
 Ausnutzung des magnetischen Kreises
- hohe Drehmoment Trägheitsmoment Verhältnisse
- Anordnung des Rotorrückschlusses auf der Welle führt zu einer steifen Rotorkonstruktion.

Aussenläuferausführung

- Stator innen, Läufer außen
- Motorgehäuse aus Stator und Rotor gemeinsam gebildet
- sehr großes Läuferträgheitsmoment
- hohe Lebensdauer
- besonders gute Laufruhe
- geringe Herstellungskosten

Scheibenläuferausführung

Scheibenläuferausführung

- Leiterplatte als Spulen- und Elektronikträger, welcher in einem printmontierten ferromagnetischen Eisenrückschluss ausgeführt ist
- Ferromagnetische Rückschluss mit einem kunststoffgebundenen Eisenpulververbundwerkstoff spiralförmig geblecht
- gut für eine Integration von Motor und Motorelektronik
- ermöglicht eine sehr kompakte Flachbauweise

Nutenloser BLDC-Motor

- Nutenloser, zylindrischer Wicklungsausführung
- sind den Glockenankerkommutatormotoren nachgebildet
- dreisträngige Rauten- oder Schrägwicklung innen von einem auf der Welle angebrachten Permanentmagneten und außen von einer ebenfalls auf der Welle montierten massiv ausgeführten Eisenjochglocke umschlossen
- haben ein sehr kleines Läuferträgheitsmoment und dadurch bedingt sehr gute dynamische Eigenschaften
- dienen vorzugsweise als Servomotoren

Nutenloser BLDC-Motor

- Nutenloser, zylindrischer Wicklungsausführung
- sind den Glockenankerkommutatormotoren nachgebildet
- dreisträngige Rauten- oder Schrägwicklung innen von einem auf der Welle angebrachten Permanentmagneten und außen von einer ebenfalls auf der Welle montierten massiv ausgeführten Eisenjochglocke umschlossen
- haben ein sehr kleines Läuferträgheitsmoment und dadurch bedingt sehr gute dynamische Eigenschaften
- dienen vorzugsweise als Servomotoren

Quelle: STÖLTING, S. 30

Typische Anwendungen

Fortbewegungsmittel

- E-Bike
- E-Auto
- E-LKW
- Oft nicht nur im Antriebsstrang verbaut, sondern auch in Fensterhebern, Scheibenwischern, Sitzverstellung uvm.

Quelle: Fa. Bosch

Fortbewegungsmittel

- E-Bike
- E-Auto
- E-LKW
- Oft nicht nur im Antriebsstrang verbaut, sondern auch in Fensterhebern, Scheibenwischern, Sitzverstellung uvm.

Quelle: Fa. Tesla Motors

Fortbewegungsmittel

- E-Bike
- E-Auto
- E-LKW
- Oft nicht nur im Antriebsstrang verbaut, sondern auch in Fensterhebern, Scheibenwischern, Sitzverstellung uvm.

Quelle: Fa. Volvo

Haushaltsgeräte

- Haartrockner
- Küchenmaschine
- Ventilator
- Lüfter
- Früher eher nicht in Haushaltsgeräten verortet, da Ansteuerung nicht kompakt und kostengünstig realisierbar, mit steigenden Lebensstandards und technischen Entwicklungen nun aber auch hier zu finden

Quelle: Fa. Dyson

Haushaltsgeräte

- Haartrockner
- Küchenmaschine
- Ventilator
- Lüfter
- Früher eher nicht in Haushaltsgeräten verortet, da Ansteuerung nicht kompakt und kostengünstig realisierbar, mit steigenden Lebensstandards und technischen Entwicklungen nun aber auch hier zu finden

Quelle: Fa. Bosch

Haushaltsgeräte

- Haartrockner
- Küchenmaschine
- Ventilator
- Lüfter
- Früher eher nicht in Haushaltsgeräten verortet, da Ansteuerung nicht kompakt und kostengünstig realisierbar, mit steigenden Lebensstandards und technischen Entwicklungen nun aber auch hier zu finden

Quelle: Fa. be quiet!

Modellfluggeräte

- Drohnen/Quadrocopter
- Batteriebetriebene Hubschrauber
- auch militärische Drohnen
- Alternative zu (traditionell)
 Verbrennungsmotoren, da leiser und mittlerweile auch vergleichbar effizient
- BLDC-Motoren sind der Grund für das populär werden von Drohnen

Quelle: Fa. DJI

Modellfluggeräte

- Drohnen/Quadrocopter
- Batteriebetriebene Hubschrauber
- auch militärische Drohnen
- Alternative zu (traditionell)
 Verbrennungsmotoren, da leiser und mittlerweile auch vergleichbar effizient
- BLDC-Motoren sind der Grund für das populär werden von Drohnen

Quelle: Fa. T-Motor

Batteriebetriebenes Werkzeug

- Bohrmaschinen
- Akkuschrauber
- Stichsägen
- Rasenmäher
- Batteriebetrieb oft überhaupt nur durch Verwendung von BLDC-Motoren möglich, da sonst die Batterielaufzeit oder die Leistung des Geräts leiden würden

Quelle: Fa. Makita

Batteriebetriebenes Werkzeug

- Bohrmaschinen
- Akkuschrauber
- Stichsägen
- Rasenmäher
- Batteriebetrieb oft überhaupt nur durch Verwendung von BLDC-Motoren möglich, da sonst die Batterielaufzeit oder die Leistung des Geräts leiden würden

Quelle: Fa. Stihl

Industrielle Anwendungen

- Pumpen
- Lüfter
- Spindeln (z.B. in CNC-Fräsen)
- Linearaktoren
- Servo- oder Schrittmotoren
- niederer Wartungsaufwand u. hohe Zuverlässigkeit sind hier von besonderer Wichtigkeit

Industrielle Anwendungen

- Pumpen
- Lüfter
- Spindeln (z.B. in CNC-Fräsen)
- Linearaktoren
- Servo- oder Schrittmotoren
- niederer Wartungsaufwand u. hohe Zuverlässigkeit sind hier von besonderer Wichtigkeit

Quelle: Fa. kuka

Ausführliches Anwendungsbeispiel

Quelle: YouTube-Kanal "ave"

Quelle: YouTube-Kanal "ave"

Quelle: YouTube-Kanal "ave"

Fazit

- Bürstenlose Gleichstrommotoren nehmen einen sehr vielfältigen und vielversprechenden Bereich in heutigen Aktorikanwendungen ein.
- Man findet Sie in verschiedensten:

Ausführungen

Größen

Anwendungsgebieten

- Eine steigende Nachfrage nach BLDC
- Spielen wichtige Rolle für E-Mobilität

Quelle: maxonmotor.com

Fazit

- Bürstenlose Gleichstrommotoren nehmen einen sehr vielfältigen und vielversprechenden Bereich in heutigen Aktorikanwendungen ein.
- Man findet Sie in verschiedensten:
 - Ausführungen
 - Größen
 - Anwendungsgebieten
- Eine steigende Nachfrage nach BLDC
- Spielen wichtige Rolle für E-Mobilität

Quelle: Google Trends, Suchbegriff: "bldc motor"

Fazit

- Bürstenlose Gleichstrommotoren nehmen einen sehr vielfältigen und vielversprechenden Bereich in heutigen Aktorikanwendungen ein.
- Man findet Sie in verschiedensten:

Ausführungen

Größen

Anwendungsgebieten

- Eine steigende Nachfrage nach BLDC
- Spielen wichtige Rolle für E-Mobilität

Quelle: Fa. Bosch

Referenzen

- PROBST, Uwe. Servoantriebe in der Automatisierungstechnik: Komponenten, Aufbau und Regelverfahren. Wiesbaden: Vieweg+Teubner, 2011. ISBN 978-3-8348-8169-4.
- STÖLTING, Hans-Dieter; KALLENBACH, Eberhard; AMRHEIN, Wolfgang. *Handbuch Elektrische Kleinantriebe*. München: Hanser, 2011. ISBN 978-3-446-42392-3.
- XIA, Chang-liang. Permanent Magnet Brushless DC Motor Drives And Controls. Singapore: Wiley, 2012. ISBN 978-1-118-18833-0.
- BABIEL, Gerhard. Elektrische Antriebe in der Fahrzeugtechnik: Lehr- und Arbeitsbuch. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. ISBN 978-3-658-03334-7.
- GOPAL, M. Control Systems: Principles and Design. McGraw-Hill Education (India) Pvt Limited, 2002. ISBN 978-0-0704-8289-0.
- ZHANG, P. Industrial Control Technology: A Handbook for Engineers and Researchers. Elsevier Science, 2013. ISBN 978-0-0809-4752-5.
- WIKIPEDIA, Bürstenloser Gleichstrommotor --- Wikipedia{,} Die freie Enzyklopädie, 2019, https://de.wikipedia.org/w/index.php?title=B%C3%BCrstenloser_Gleichstrommotor&oldid=1880 20645, [Online; Stand 15. Juni 2019]