CN A - Numerical Integration

Felipe B. Pinto 71951 – EQB

18 de janeiro de 2025

Conteúdo

Trapezoidal Rule

(1)

 $h = x_{i+1} - x_i = (x_n - x_0)/n$

$$I=\int_{x_0}^{x_n}f(x)\;\mathrm{d}xpprox \ pprox T_n=h\left(rac{f_n+f_0}{2}+\sum_{i=1}^{n-1}f_i
ight); h=\Delta x=rac{x_n-x_0}{n}$$

$$pprox T_n = h\left(rac{f(x)}{2} + \sum_{i=1}^n f_i
ight); h = \Delta$$

$$I = \int_{x_0}^{x_n} f(x) \, \mathrm{d}x = \begin{pmatrix} + \int_{x_0}^{x_1} f(x) \, \mathrm{d}x \\ + \int_{x_1}^{x_2} f(x) \, \mathrm{d}x \\ \vdots \\ + \int_{x_{n-1}}^{x_n} f(x) \, \mathrm{d}x \end{pmatrix} \approx \begin{pmatrix} +(x_1 - x_0) \frac{f(x_1) + f(x_0)}{2} \\ +(x_2 - x_1) \frac{f(x_2) + f(x_1)}{2} \\ \vdots \\ +(x_n - x_{n-1}) \frac{f(x_n) + f(x_n - 1)}{2} \end{pmatrix} =$$

$$= \sum_{n=1}^{n-1} \left((x_{i+1} - x_i) \frac{f_{i+1} + f_i}{2} \right) =$$

$$=\sum_{i=1}^{n-1}\left(h\frac{f_{i+1}+f_i}{2}\right)=h\left(\frac{f_0+f_1}{2}+\frac{f_1+f_2}{2}+\cdots+\frac{f_{n-1}+f_n}{2}\right)=$$

$$= h\left(\frac{f_0 + f_n}{2} + f_1 + f_2 + \dots + f_{n-1}\right)$$

1 1 Toron and ideal multi-multi

1.1 Trapezoidal rule with end correction
$$Ipprox CT_n=T_n+R_n= = higg(rac{f(x_n)+f(x_0)}{2}+\sum_{i=1}^{n-1}f_iigg)-rac{h^2}{2}\left(f'(x_n)-f'(x_0)
ight)$$

$$R_n \equiv \frac{-h^3}{12} \sum_{i=1}^{n} f_i'' = \frac{-h^2}{12} (x_n - x_0) f''(\xi) = \frac{-h^2}{12} (f'(x_n) - f'(x_0))$$

Exemplo 1

The tendency of a gas to escape or expand is explained by the fugacity property of the gas. For ideal gases, fugacity f is equal to its pressure, but in real gases, it is computed by the following integral:

$$\ln\!\left(rac{f}{P}
ight) = \int_0^P rac{Z(x)-1}{x} \; \mathrm{d}x$$

where P is the pressure, Z is the *compressibility factor*, and f/P is referred to as the *fugacity coefficient*. The data on the compressibility factor of a real gas at a constant temperature are fitted to the curve given below:

$$Z(p) = 1 - 5 \, \mathrm{E}^{-4} \, p \, e^{-p/50}, \quad 0$$

Estimate $\ln(f/P)$ for p=400 atm using the 8-panel Trapezoiadl rule with and without end correction. Calculate the true error and global error bounds for both cases

Resposta

Preparing equation to use trapezoidal rule

$$\ln\left(\frac{f}{P}\right) = \int_0^P \frac{Z(x) - 1}{x} \, dx = \int_0^P \frac{\left(1 - 5E^{-4}xe^{-x/50}\right) - 1}{x} \, dx = \dots =$$

$$= -5E^{-4} \int_0^P xe^{-x/50} \, dx \tag{2}$$

Calculating the value of (2)

$$\ln\left(\frac{f}{P}\right) = -5 \,\mathrm{E}^{-4} \, \int_0^P x \, e^{-x/50} \, \mathrm{d}x =$$

$$\mathrm{P} u \, v' = u \, v - \mathrm{P} \, u' \, v \, \begin{cases} u = p \\ v = e^{-p/50} \end{cases}$$

$$= 1 \,\mathrm{E}^{-3} \left(\left(x \, e^{-x/50} \right) \Big|_0^P - \mathrm{P}_x \left(e^{-x/50} \right) \right) =$$

$$= 1 \,\mathrm{E}^{-3} \left(P \, e^{-P/50} - 0 \, e^{-0/50} - \left(-50 \, e^{-x/50} \right) \Big|_0^P \right) =$$

$$= 1 \,\mathrm{E}^{-3} \left(P \, e^{-P/50} + 50 \, e^{-P/50} - 50 \, e^{-0/50} \right) = 1 \,\mathrm{E}^{-3} \left((P + 50) \, e^{-P/50} - 50 \right) \cong$$

$$\cong 2492.4521$$

Calculating f_i for all points

$$T_n = \sum_{i=0}^n w_i F(i);$$

$$F(i) = e^{-x/50};$$

$$w = \begin{cases} h/2 = 25 & i = \{1, 8\} \\ h = 50 & i = \{2, 3, 4, 5, 6, 7\} \end{cases}$$

i x_i F_i $w_i F_i$ 0 0 0 0.0000 0.0000 1 50 18.3940 919.6986 2 100 13.5335 676.6764 3 150 7.4681 373.4030 4 200 3.6631 183.1564 5 250 1.6845 84.2243 6 300 0.7436 37.1813 7 350 0.3192 15.9579 8 400 0.1342 3.3546 sum: 2293.6526				
1 50 18.3940 919.6986 2 100 13.5335 676.6764 3 150 7.4681 373.4030 4 200 3.6631 183.1564 5 250 1.6845 84.2243 6 300 0.7436 37.1813 7 350 0.3192 15.9579 8 400 0.1342 3.3546	$w_i F_i$	F_{i}	x_i	i
2 100 13.5335 676.6764 3 150 7.4681 373.4030 4 200 3.6631 183.1564 5 250 1.6845 84.2243 6 300 0.7436 37.1813 7 350 0.3192 15.9579 8 400 0.1342 3.3546	0.0000	0.0000	0	0
3 150 7.4681 373.4030 4 200 3.6631 183.1564 5 250 1.6845 84.2243 6 300 0.7436 37.1813 7 350 0.3192 15.9579 8 400 0.1342 3.3546	919.6986	18.3940	50	1
4 200 3.6631 183.1564 5 250 1.6845 84.2243 6 300 0.7436 37.1813 7 350 0.3192 15.9579 8 400 0.1342 3.3546	676.6764	13.5335	100	2
5 250 1.6845 84.2243 6 300 0.7436 37.1813 7 350 0.3192 15.9579 8 400 0.1342 3.3546	373.4030	7.4681	150	3
6 300 0.7436 37.1813 7 350 0.3192 15.9579 8 400 0.1342 3.3546	183.1564	3.6631	200	4
7 350 0.3192 15.9579 8 400 0.1342 3.3546	84.2243	1.6845	250	5
8 400 0.1342 3.3546	37.1813	0.7436	300	6
	15.9579	0.3192	350	7
sum: 2293.6526	3.3546	0.1342	400	8
	2293.6526	sum:		

Calculating interval h

$$h/\text{atm} = \frac{P-0}{8} = 400/8 = 50$$