Test powtórzeniowy 2. Magnetyzm

1. Wybierz poprawne uzupełnienie zdania oraz jego uzasadnienie.

Żelazo	1.	można zastosować jako rdzeń w elektromagnesie, ale nie można go użyć jako materiału na obudowę kompasu,	ponieważ jest ono	Α.	przewodnikiem elektrycznym.
	2.	można zastosować jako rdzeń w elektromagnesie lub jako materiał na obudowę kompasu,			
	3.	nie może zostać użyte jako rdzeń w elektromagnesie, ale można je zastosować jako materiał na obudowę kompasu,		В.	ferromagnetykiem.

2. Na rysunku przedstawiono schematycznie budowę amperomierza. Zwojnica ze stalowym rdzeniem w kształcie walca pełni w nim funkcję elektromagnesu. Jeśli w zwojnicy płynie prąd elektryczny, oddziałuje ona z magnesami i powoduje wychylenie wskazówki przymocowanej do rdzenia. Wskazówka wychyla się dopóty, dopóki siła oddziaływania między zwojnicą a magnesami nie zostanie zrównoważona przez siłę sprężystości zwiniętej sprężyny.

Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest falszywe.

1.	Jeżeli przyjmiemy, że silnik elektryczny to urządzenie zmieniające energię elektryczną w energię mechaniczną, to przedstawiony amperomierz spełnia tę definicję.	P	F
2.	Wraz ze wzrostem natężenia prądu w zwojnicy zwiększa się siła oddziaływania magnetycznego między zwojnicą a magnesami, a zmniejsza się siła, z jaką działa sprężyna.		F
3.	Niezależnie od kierunku przepływu prądu w zwojnicy wskazówka zawsze wychyla się w tę samą stronę.	P	F

3. Wybierz poprawne dokończenie zdania.

Silnik elektryczny może zamieniać energię elektryczną w energię mechaniczną w wyniku oddziaływania

- **A.** mechanicznego jedynie między magnesem a elektromagnesem.
- **B.** magnetycznego między magnesem a elektromagnesem lub między elektromagnesami.
- C. magnetycznego jedynie między magnesem a elektromagnesem.
- **D.** mechanicznego między magnesem a elektromagnesem lub między elektromagnesami.
- **4.** Obok tekturowego walca, na który nawinięto drut, z lewej strony zawieszono metalową kulkę, a z prawej namagnesowaną igłę kompasu (rysunek obok). Następnie drut podłączono do źródła prądu elektrycznego i co jakiś czas zmieniano kierunek przepływu prądu.

Dokończ opis zachowania przedmiotów – wybierz odpowiednie uzupełnienie zdania i dopisz uzasadnienie.

a)	Metalowa kulka, jeśli nie jest wykonana z ferromagnetyku, A/ B/ C/ D, ponieważ
b)	Metalowa kulka, jeśli jest wykonana z ferromagnetyku, A/B/C/D , ponieważ
c)	Igła magnetyczna A/B/C/D, ponieważ

- A. będzie przyciągana
- **B.** będzie odpychana
- C. będzie przyciągana lub odpychana
- D. nie będzie ani przyciągana, ani odpychana

