Lista 1

Konwersatorium 12.10.2022, Ćwiczenia 19.10.2022.

Oznaczenia zadań i ich części: S: do samodzielnego wykonania, K: do omówienia na konwersatorium.

- 0S. Materiał teoretyczny (definicje, twierdzenia, przykłady): działanie w zbiorze, łączność, przemienność, element neutralny. Definicja grupy i pierwsze przykłady grup. Transport działania poprzez bijekcję.
- 1K. Sprawdzić czy następujące działanie * na danym zbiorze A jest łączne, przemienne i czy ma element neutralny.
 - (i) $A = \mathbb{N}_{>0}$; $m * n = m^n$.
 - (ii) $A = \{0, 1\}; m * n = m \cdot n.$
- 2K. Niech $A = \{0,1\}$ będzie zbiorem z działaniem *, $B = \{\text{Fałsz}, \text{Prawda}\}$, natomiast $f \colon A \to B$ będzie bijekcją taką, że f(0) = Fałsz. Niech \heartsuit będzie działaniem w zbiorze B indukowanym przez działanie * poprzez bijekcję f. Czym jest działanie \heartsuit , jeśli:
 - (i) $m * n = m \cdot n$.
 - (ii) $m * n = \min(m, n)$.
 - 2. Dla r > 0 niech $K_r = \{z \in \mathbb{C} : |z| \leqslant r\}$.
 - (i) Narysować na płaszczyźnie Gaussa zbiór K_r .
 - (ii) Dla których r>0 mnożenie liczb zespolonych jest działaniem w zbiorze K_r ?
 - 3. Sprawdzić czy następujące działanie * na danym zbiorze A jest łączne, przemienne i czy ma element neutralny. Sprawdzić też, czy (A,*) jest grupą.
 - (i) $A = \mathbb{Q}; \ a * b = \frac{a+b}{2}.$
 - (ii) $A = \mathbb{Q} \setminus \{0\}; a * b = \frac{a}{b}$.
 - (iii) $A = \mathbb{R}; \ x * y = x + y + 2.$
 - (iv) $A = \mathbb{N}$; $m * n = \min(m, n)$.
 - (v) $A = \mathbb{N}$; $m * n = \max(m, n)$.
 - (vi) $A = \mathbb{N}$; m * n = m.
 - (vii) $A = \mathbb{N}; m * n = 2^{m+n}.$
 - (viii) $A = \mathbb{Z}$; m * n = m n.
 - (ix) A to płaszczyzna; P*Q to środek odcinka o końcach P,Q.
 - 4. Załóżmy, że $f:A\to B$ jest bijekcją, o jest działaniem na zbiorze A i * jest działaniem indukowanym w zbiorze B przez działanie o poprzez funkcję f. Udowodnić, że:

- (i) jeśli ∘ jest przemienne, to * jest przemienne (na wykładzie był dowód analogicznego faktu dla łączności);
- (ii) jeśli \circ ma element neutralny w A, to * ma element neutralny w B;
- (iii) jeśli (A, \circ) jest grupą, to (B, *) jest grupą.
- 5. Załóżmy, że o jest działaniem łącznym w skończonym zbiorze A. Udowodnić, że istnieje $a \in A$ takie, że $a \circ a = a$.

Wskazówka

Dla $x \in A$ oraz l > 0 niech x^l oznacza $\underbrace{x \circ \cdots \circ x}_{l \text{ razy}}$.

(i) Zauważyć, że dla każdych k, l > 0 oraz $x \in A$ mamy:

$$(x^k)^l = x^{kl}, \quad x^k x^l = x^{k+l}.$$

- (ii) Dla $c \in A$ rozważyć elementy c^{2^k} , gdzie $k = 0, 1, 2, \ldots$ i znaleźć $b \in A$ oraz $l \geqslant 2$, takie że $b^l = b$.
- (iii) Udowodnić, że jeśli b i l są jak w (b) powyżej, to dla $a:=b^{l-1}$ mamy $a\circ a=a.$
- 6. Podać przykład działania * na zbiorze {0,1}, takiego że

$$0 * (0 * 0) \neq (0 * 0) * 0.$$

Ile istnieje takich działań?