

# Genetic basis of local adaptation

Marine Genomics Week 9

#### From PCA



These populations look "genetically different" - but why?

- Neutral differences
- Selection

#### Learning objectives

- Define local adaptation and how it is inferred from genomic data
- Describe basic measures of genetic diversity and population differentiation
- Use standard analyses to identify 'outlier' SNPs as candidates for local adaptation

#### What is local adaptation?

**Local adaptation** – individuals have the highest fitness at their home site



NOTE: We can't know this from genetic data!

# How do we identify the genomic basis of adaptation?

- Population genetic (genotype only)
  - Genetic differentiation outlier tests
- Phenotype mapping (genotype & phenotype)
  - Candidate genes
  - QTL mapping
  - Genome wide association studies (GWAS)
  - Bulk Segregant Analysis
  - Polygenic Scores
- Environment mapping
  - Genotype-Environment Association (GEA)

#### PCA-associated SNPs



20

# Quantifying genetic diversity: Allele frequencies

- Alleles: B and b
  - *p*=frequency of B
    - 13/30=0.43
  - q=frequency of b
    - *17/30=0.57*
  - p+q=1

## Quantifying genetic diversity Genotype frequencies and HWE

- Two alleles with frequencies p and q:
  - What is the probability that a randomly chosen individual will have genotype BB? Bb? bb?

| Genotype  | BB | Bb  | bb |
|-----------|----|-----|----|
| Frequency | p² | 2pq | q² |

• 
$$p^2+2pq+q^2=1$$

# Quantifying genetic diversity Genotype frequencies and HWE

BB bb

Bb

Bb Bb Bb bb

BB

bb

Why are predicted and observed values different?

bb Bb

Bb

Bb

Bh

|           | '              |     |    |
|-----------|----------------|-----|----|
| Genotype  | ВВ             | Bb  | bb |
| Frequency | p <sup>2</sup> | 2pq | q² |
|           |                |     |    |
|           |                |     |    |
|           |                |     |    |
|           |                |     |    |

## Quantifying population differentiation

• F-statistics are based on inbreeding:  $F = \frac{H_{exp} - H_{obs}}{H_{exp}}$ 

Differentiation between subpopulations (relative to total)

$$F_{ST} = \frac{H_T - H_S}{H_T}$$

 $H_T$ =expected heterozygosity of total population

*H*<sub>S</sub>=expected subpopulation heterozygosity under HWE



 $F_{ST} = 0$  means no differentiation

 $F_{ST}$  = 1 means no shared alleles (complete differentiation)

### Outlier analysis

- Which loci are more differentiated than 'expected'
- Null distribution can be simulated for fit to 'neutral' data



# F<sub>ST</sub> outlier analysis



#### Caution: The problem with tons of data



- When conducting >1000 tests, a
- Some results are likely to be false positives
- We use p-value corrections to attempt to minimize this problem

### Today's exercise:

 Which SNPs drive differences among locations?



... produces two divergent common quail phenotypes that differ in throat coloration, weight, fat reserves, wing shape and migratory behavior.

