# Homework 2

Tommaso Pasini & Valentina Pyatkin

(pasini | pyatkin)@di.uniroma1.it

# Supervised POS Tagger with LSTM

## The Tasks

1. Implement a sequence POS tagger with a LSTM.

2. Extends your model to cope with other languages. (Extra Points)

## What we provide:

- We will provide you a folder that has the following structure:
  - homework2/
    - slides.pdf
    - src/
      - homework2.py
    - data/
      - en-ud-train.conllu
      - en-ud-test.conllu
      - en-ud-dev.conllu

# data/ - Universal Dependencies TreeBank

- Universal Dependencies (<a href="http://universaldependencies.org/">http://universaldependencies.org/</a>) is a project that is developing cross-linguistically consistent treebank annotation for many languages.
- The tag set contains 17 POS.
- All the languages have the same tas.
- This enable multi lingual POS-tagging.
- CoNLL format is used. (<a href="http://universaldependencies.org/format.html">http://universaldependencies.org/format.html</a>)

# Input Data - The CoNLL Format

- CoNLL format has one token per line.
- Each line is divided in 10 column tab separated:
  - Word ID: starts from 1 for each sentence and may be a range for multiwords
  - o 2 FORM: the word form or the punctuation symbol.
  - o 3 LEMMA: the lemma of the word form.
  - 4 U-POSTAG: universal part of speech.
  - o 5 X-POSTAG: language specific pos tag (\_ if not defined).
  - 6 FEATS: list of morphological features from universal feature inventory.
  - o 7 HEAD: Word ID of the head of the word.
  - o 8 DEPREL: universal dependency relation.
  - o 9 DEPS: enhanced dependency graph.
  - o 10 MISC: any other annotation.

# Input Data - The CoNLL Format

- CoNLL format has one token per line.
- Each line is divided in 10 column tab separated:
- Word ID: starts from 1 for each sentence and may be a range for multiwords
  - 2 FORM: the word form or the punctuation symbol.
  - o 3 LEMMA: the lemma of the word form.
  - 4 U-POSTAG: universal part of speech.
  - 5 X-POSTAG: language specific pos tag (\_ if not defined).
  - 6 FEATS: list of morphological features from universal feature inventory.
  - o 7 HEAD: Word ID of the head of the word.
  - o 8 DEPREL: universal dependency relation.
  - o 9 DEPS: enhanced dependency graph.
  - 10 MISC: any other annotation.

# Input Data - The CoNLL Format



# Input Data - Tag Set

Universal dependencies define 17 different POS tags:

(http://universaldependencies.org/u/pos/index.html)

- o ADJ: adjective
- ADP: adposition
- o ADV: adverb
- AUX: auxiliary
- o CONJ: coordinating conjunction
- DET: determiner
- o INTJ: interjection
- o NOUN: noun
- o NUM: numeral
- o PART: particle
- o PRON: pronoun
- PROPN: proper noun
- o PUNCT: punctuation
- SCONJ: subordinating conjunction
- SYM: symbol
- VERB: verb
- o X: other

# Input Data - Split

- We will provide you the data.
- Data will be splitted in:
  - Training data: 229.672 tokens.
  - Development data: 29.152 tokens.
  - Test data: 29.250 tokens.
- Do not merge them!

# homework2.py

- homework2.py define 3 abstract classes:
  - AbstractPOSTaggerTrainer
  - AbstractPOSTaggerTester
  - AbstractLSTMPOSTagger
- Homework2.py also define a Test class that implements a test method.
  - Run the homework2.py in order to test your implementation:
     python homework2.py [--no-train] < homework\_dir> < model\_path>
- You need to pass the test in order to be evaluated on this homework.
- homework2.py also contains an utility class (ModellO) which implements methods to save and load a model.

#### What and how to code:

- You have to implement the 3 python abstract classes provided in homework2.py:
  - POSTaggerTrainer
  - POSTaggerTester
  - LSTMPOSTagger
- Each method in each class must be implemented.
- The implementation must be tested with the test() method in the test class Test

# AbstractPOSTaggerTrainer:

- AbstractPOSTaggerTrain er represents a class to train a model.
- Has 1 abstract method train(trainnig\_path) which takes as input the path to the training data and outputs a Sequential model.

# AbstractPOSTaggerTester:

- AbstractPOSTaggerTester represents a class to test a trained model.
- Has 1 abstract method test(model, test\_file\_path) which takes as input a trained sequential model and the path to the gold standard data. It outputs a dictionary containing precision, recall, coverage and f1.

```
class AbstractPOSTaggerTester:
     metaclass = ABCMeta
   @abstractmethod
   def test(self, model, test file path):
       Test the input model against the gold standard.
        :param model: a Sequential model that has to be tested.
       :param test file path: a path to the gold standard file.
        :return: a dictionary that has as keys 'precision', 'recall',
        'coverage' and 'f1' and as associated value their respective values.
       Additional info:
        - Precision has to be computed as the number of correctly predicted
         pos tag over the number of predicted pos tags.
        - Recall has to be computed as the number of correctly predicted
         pos tag over the number of items in the gold standard
        - Coverage has to be computed as the number of predicted pos tag over
         the number of items in the gold standard
        - F1 has to be computed as the armonic mean between precision
         and recall (2*P*R/(P+R))
        pass
```

# AbstractLSTMPOSTagger:

- AbstractLSTMPOSTagge

   r is an abstract pos
   tagger that can predict
   the pos tags given a
   tokenized sentence.
- Has 1 abstract method predict(sentence) which given a list of tokens outputs a list of same length with the pos tags for each word.

```
class AbstractLSTMPOSTagger:
     metaclass = ABCMeta
    def init (self, model):
        self. model = model
    def get model(self):
        return self. model
   @abstractmethod
    def predict(self, sentence):
        predict the pos tags for each token in the sentence.
        :param sentence: a list of tokens.
        :return: a list of pos tags (one for each input token).
        pass
```

#### ModellO:

- ModelIO it's an utility class and implements two methods:
  - save(model, path) that save the model on the specified path.
  - load(path) that load a keras model from the path
- You should use this class in order to ensure that you save and load your model correctly.
- This class will be also used to test that your implementations return the correct objects.

```
class ModelIO:
    @staticmethod
    def save(model, output path):
        Save the model to in the file pointed by the output path variable
        :param model: the trained Sequential model
        :param output path: the path to the file on which the model have to
                            be saved
        :return: no return value is required
        model.save(output path)
    @staticmethod
    def load(model file path):
        Load a sequential model saved in the file pointed by model file path
        :parah model file path: the path to the file that has to be loaded
        :return: a sequential model loaded from the file
        import keras
        return keras.models.load model(model file path)
```

#### The Test class:

- Test class implements a simple type checking test method to ensure that the classes you have implemented return the correct objects.
- You have to run successfully this test in order to ensure that you correctly implemented the homework.
- If the test fail, your homework will not be evaluated.

```
class Test:
   def init (self, training path, model path, gold stanrdar path):
       self. training path = training path
        self. model path = model path
        self, gold standard path = gold stanrdar path
    def test(self, lstm trainer implementation, lstm tester implementation, no trai
       if no train:
            model = ModelIO.load(self. model path)
           print 'TEST 0\t\tNO-TRAIN'
        else:
            model = lstm trainer implementation.train(self. training path)
           assert type(model) == Sequential
           print 'TEST 0\t\tPASSED'
           ModelIO.save(model, self. model path)
           model = ModelIO.load(self. model path)
       assert type(model) == Sequential
        print 'TEST 1\t\tPASSED'
        results = lstm tester implementation.test(model, self. gold standard path)
        assert type(results) == dict
        assert 'precision' in results.keys()
        assert 'recall' in results.keys()
        assert 'coverage' in results.keys()
        assert 'f1' in results.keys()
        print 'TEST 2\t\tPASSED'
        postagger = LSTMPOSTagger(model)
        test sentence = ['this', 'is', 'an', 'easy', 'test']
       prediction = postagger.predict(test sentence)
       assert len(test sentence) == len(prediction)
        print 'TEST 3\t\tPASSED'
        return results
```

## How to run the test

- python homework2.py /path/to/model.keras /path/to/your/submission\_folder/
- Be careful!!! If /path/to/model.keras exist and the --no-train option is not specified then it will be overridden.
- The
   /path/to/your/submission\_folder
   should be structured as specified in
   the previous slide, especially, it
   should contains the src/ folder with
   your implementation and the data/

```
if __name__ == '__main__':
    Main to run the test of the homework 2.
    Use the parameter --no-train in order to skip the training of the model
    @@@@@@@@@@@@@@@@@ WARNING!!! @@@@@@@@@@@@@@@@@
    the program will not check if model path already exist and will overwrite it if it
    if len(sys.argv) < 3:
        print 'usage: python', sys.argv[0], '[--no-train] model path, homework dir'
    model_index = 1
    homework dir index = 2
    no train = False
    if '--no-train' in sys.argv:
        model index = 2
        homework dir index = 3
        no train = True
    model output path = sys.argv[model index]
    homework dir = sys.argv[homework dir index]
    src dir = homework dir + 'src/'
    print ''
    print 'model output:', model output path
    print 'homeword dir:', homework dir
    print 'src dir:', src dir
    print ''
    # dynamic import of modules
    sys.path.append(src_dir)
    from POSTaggerTester import POSTaggerTester
    from LSTMPOSTagger import LSTMPOSTagger
    from POSTaggerTrainer import POSTaggerTrainer
    ## get files
    training data = homework dir + '/data/en-ud-train.comllu'
    test data = homework dir + '/data/en-ud-test.comllu'
    test = Test(training data, model output path, test data)
    trainer = POSTaggerTrainer()
    tester = POSTaggerTester()
    name = ''
    if homework dir.endswith('/'):
        name = homework dir[:-1]
    else:
        name = homework_dir
    name = name[name.rfind("/"):]
   try:
        results = test.test(trainer, tester, no train=no train)
        print results
        print name, "PASSED"
    except Exception as e:
        print name, "FAILED"
        raise traceback.print exc(e)
```

#### What to submit

- You have to submit a folder structured as follow:
  - cognome\_matricola\_homework\_2/
    - homework2.py
    - report.pdf
    - src/
      - POSTaggerTrainer.py
      - POSTaggerTester.py
      - LSTMPOSTagger.py
    - data/
      - en-ud-train.conllu
      - en-ud-test.conllu
      - en-ud-dev.conllu
    - output/
      - pos\_tagged\_sentences.txt
      - results.txt
      - model.keras

#### What to submit - src

- src/ has to contain your source code. Specifically it has to contain one file for each implemented class and the contained class has to be named with the file name.
- POSTaggerTrainer and POSTaggerTester must have a default empty constructor.
- **LSTMPostTagger** has to implement a constructor that takes as input a Sequential model.
- You can include additional files auxiliaries file.

# What to submit - output

#### pos\_tagged\_sentences.txt:

Must contain the output of LSTMPOSTagger#predict called on all test instances (From the test set). Has to be formatted as follow:

sentence\_1
pos-tagged sentence\_1

#### • results.txt:

Must contain a line for each measure (precision, recall, f1, coverage) with its score.

model.keras: your trained model

## The report

- In the root folder you have to include:
  - the **homework2.py** library that we provide.
  - o the **report.pdf** in pdf format.
- The report must be of maximum 2 pages and has to follow the following format:

Abstract: a brief task description.

**Model description**: description of your NN model, what layers you used, how many layers, activation function ecc.

**Optimization**: description of how and which parameters you tuned; how and which word-vector representations you used.

**Experiments**: description of your test and discussion of the results. Create a confusion matrix (12 x 12) of the POStags in which each cell (i,j) contains the number of times the model predicted the i-th POStag but should had predicted the j-th POStag. (A heat map of the confusion matrix would be very appreciated). Discuss interesting findings from the confusion matrix, using examples.

## Extra points

Universal dependencies enables multilingual POS tagging.

 Trainig sets are available for other languages at https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-19
 83

We will provide word-embeddings for other languages.

## Extra points - The Task

- Merge English and Italian universal training set.
- Use the same code you wrote to train your model with the new training set in Italian and English.
- Merge dev and test set of the two languages.
- Tune and Test the multilingual model on the new datasets.

# Extra points - What to submit

- Add multilingual/ folder to the root of your submission.
- Multilingual has to be structured as follow:
  - multilingual/
    - data/
      - ud-merged-train.conll
      - ud-merged-test.conll
      - ud-merged-dev.conll
    - output/
      - pos\_tagged\_sentences.txt
      - results.txt
      - multilingual\_model.keras

# How-To

#### How-To: transforming your labels into y vectors

- Reminder from practical session 4 and 5:
  - Do a label-to-index mapping
  - Do a index-to-label mapping
  - Represent your label as a one-hot-encoding using the label-to-index mapping
  - Retrieve the label from the y-vector given the index-to-label mapping
  - You can use zeros and ones, or booleans (like in the example)

[False False False

## How-To: Getting your input matrix

- Convert your words into appropriate vector representations that can be used as input to your NN (look at slides from practical sessions 4+5)
- Reminder from the last two practical sessions:
  - represent each word as a vector
  - add the word-vectors into another vector to represent the context of the temporal sequence you are looking at
  - add the temporal sequences to the final matrix that you will use as input for the network
  - ! your input is three-dimensional!

```
[[[False False False ..., False False False]
 [False False False False False False]
 [False False False ..., False False False]
 [False False False ..., False False False]
 [False False False False False False]
 [False False False False False False]]
[[False False False ..., False False False]
 [False False False False False False]]
[[False False False ..., False False False]
 [ True False False ..., False False False]
 [ True False False ..., False False False]
 [False False False False False False]
 [False False False ..., False False False]
 [False False False False False False]]
```

. . . ,

## How-To: Word-Vector Representations

 There are many ways to represent your input words as vectors.

• It is up to you to choose an appropriate representation.

 The following slides will give you some ideas on what kind of vectors you can work with.

#### Word-Vector Representations: One-hot encodings

- Reminder: dimensionality of the length of the set of your predefined vocabulary
- Binary or boolean
- Cons: high dimensionality, sparse

[False False False

#### Word-Vector Representations: GloVe

- Use pretrained GloVe vectors: <a href="https://nlp.stanford.edu/projects/glove/">https://nlp.stanford.edu/projects/glove/</a>
- Distributional representation
- Word to word co-occurrence statistics in a corpus
- Cons: stopwords are not included... -> you have to solve this problem yourself:
  - o a solution:
    - have a special "unknown-words"/UNK vector
- Pros: captures semantics of words
  - o related words are closer in the (distributional) semantic space

#### Word-Vector Representations: Word2Vec

- Use pretrained Word2Vec vectors:
   https://github.com/mmihaltz/word2vec-GoogleNews-vectors
- Neural model: Skip-Gram or CBOW with either hierarchical softmax or negative sampling
- Cons: stopwords are not included... -> you have to solve this problem yourself:
  - o a solution:
    - have a special "unknown-words"/UNK vector
- Pros: captures semantics of words
  - embeddings
  - reduced dimensionality

#### Word-Vector Representations: Build-your-own

#### Ideas:

- Build your own vectors by taking distributional counts, over a fixed number of content words and context, and weighting them with tfldf (term frequency - inverse document frequency)
- You could also work with other dimensionality reduction methods like
   PCA and LSA

#### The Neural Network Layers

#### Input layer

- takes your word vector representations
  - Input dimension: your vector dimensions (depend on the representation you chose)
  - Output dimension: same (it's a linear layer)

#### Embedding layer:

- Input: one hot representation of the word.
- Output: latent (embedded) vector with the chosen size.

#### LSTM layer

- Long-Short-Term-Memory Network
  - you can define your own hidden layer size

#### Output layer

- o does a softmax over the hidden layer from the LSTM, in order to predict the most probable PoS
  - you get a matrix with *batchsize x y-vector-size* dimensions, e.g. every vector in your matrix is a probability distribution for the PoS tags for a single word.

# Our Tips

- Start by transforming your input into vector representation(s)
- Start with a simple network and see how it performs. Then make it more complex.
- Keep in mind that training NNs might takesome time (start soon!)

#### The Deadline

Sunday, 7th of May

http://robertonavigli.com/nlp2017/