1. Calcular las siguientes integrales:

1) $\int \frac{x+1}{x^3 + x^2 - 6x} dx$	$2) \int \frac{3x}{x^2 + 2x + 3} dx$	3) $\int \frac{x^4 - 3x^3 - 3x - 2}{x^3 - x^2 - 2x} dx$
$4) \int \frac{6x+10}{-x^3+x^2+x-1} dx$	$5) \int \frac{x^2 - 1}{x(x^2 + 1)} dx$	$6) \int \frac{x+2}{x^3 - 4x^2 + 4x} dx$
$7) \int \frac{x^2 - x + 1}{x^3 + x} dx$	$8) \int \frac{x^2 - 2}{x^3 - 3x + 2} dx$	9) $\int (x^2 + 2x + 1) \ln x dx$
$10) \int \frac{x^2 + 1}{x^3 - 3x + 2} dx$	$11) \int \frac{x + \sqrt{x}}{x^2} dx$	$12) \int \frac{x+2}{x^2 - 2x + 1} dx$
$13) \int \frac{x^3 + 1}{x^2 + 4} dx$	$14) \int \frac{2}{1+\sqrt{x}} dx$	$15) \int \frac{x}{(x+1)^3} dx$
$16) \int \frac{-x+3}{4x^2+9} dx$	$17) \int \frac{\sqrt{x} + e^{\sqrt{x}}}{\sqrt{x}} dx$	$18) \int \frac{e^{2x} + e^x}{1 + e^{2x}} dx$
$19) \int \frac{x+36}{4+9x^2} dx$	$20) \int (1 + tg^2 x) dx$	$21) \int \operatorname{arc} \operatorname{tg} x dx$
$22) \int \left(1 - \frac{1}{x^2}\right) \ln x dx$	$23) \int \frac{2x^3 - 9x^2 + 9x + 6}{x^2 - 5x + 6} dx$	$24) \int \frac{\cos x}{1 + \sin^2 x} dx$
$25) \int x \ln x dx$	$26) \int \frac{1}{x^3 + x^2} dx$	$27) \int \frac{x+2}{\sqrt{x+1}} dx$
$28) \int (\cos 2x + \sin x \cos x) \ dx$	$29) \int \frac{x^3 - 1}{x + 2} dx$	$30) \int \frac{x^2 - 3x + 1}{x^3 - 5x^2 + 8x - 4} dx$
$31) \int \frac{1+8x}{1+x^2} dx$	$32) \int (x^2 + x) \cos x dx$	$33) \int \frac{\sqrt{x}}{1 + \sqrt{x}} dx$

$34) \int x^2 \sin 2x \ dx$	$35) \int \frac{x^4 - 3x^3 - 3x - 2}{x^3 - x^2 - 2x} dx$	$36) \int \frac{x}{x^2 + 2x + 3} dx$
$37) \int \frac{\cos^3 x}{\sin^4 x} dx$	$38) \int \frac{3x+1}{x^3 - x^2 - x - 1} dx$	$39) \int \frac{x^2 + 2x + 3}{x^3 + x^2 - x - 1} dx$
$40) \int \frac{x^2 - 3}{x^3 - 2x^2 + x - 2} dx$	$41) \int \frac{x}{(x-1)(x^2-1)} dx$	$42) \int e^{3x} \sin 2x \ dx$
$43) \int \frac{dx}{x^3 - 1}$	$44) \int x^2 \arctan \operatorname{tg} x dx$	$45) \int \frac{dx}{(x^2 - x)(x - 1)}$
$46) \int x^2 \ln(2x+1) \ dx$	$47) \int \frac{2x^2 - 4x + 1}{x(x^2 - 2x + 1)} dx$	$48) \int \cos \sqrt{3x} dx$
$49) \int \frac{\sqrt{x+2}}{x+1} dx$	$50) \int (2x+4) e^{-5x} dx$	$51) \int \frac{x^2 + 4}{x^2 - 5x + 4} dx$
$52) \int \frac{x^2 + 1}{x^2 - 4x + 13} dx$	$53) \int x^3 e^{-4x^2} dx$	

- 2. Calcular el área del recinto limitado por las curvas $y = x^2 1$, y = 11 x y el eje OX. Dibujar el recinto.
- 3. Hallar el área del recinto plano delimitado por las curvas de ecuación: $y = x^2 2$ e y = -|x|. Dibujar el recinto.
- 4. Calcular el área de la región plana limitada por la curva $f(x) = |x^2 4x|$ y la recta y = 12. Dibujar el recinto.
- 5. Hallar el área del recinto limitado por la gráfica de la función $f(x) = -2x^2 + 4x$ y las tangentes a dicha gráfica en los puntos en que ésta corta al eje de abscisas. Dibujar el recinto.
- 6. Dada la parábola $\frac{x^2}{4}$ y la recta y = x
 - a) Dibuja las gráficas de la parábola y de la recta.
 - b) Señala el recinto plano comprendido entre las dos gráficas anteriores.
 - c) Calcula el área del recinto plano señalado.
- 7. Dibuja el recinto delimitado por las curvas $y = -x^2 + 2x + 3$ e y = |x + 1|. Halla el área del recinto.
- 8. Dada la función $y = x e^x$ y las rectas x = 1 e y = 0
 - a) Dibuja la gráfica de la función para $x \ge 0$ y la de las rectas.
 - b) Señala el recinto plano comprendido entre las tres gráficas anteriores.
 - c) Calcula el área del recinto plano señalado.
- 9. Halla la ecuación de la recta tangente a la curva de ecuación $y = x^3 3x$ en el punto de abscisa x = -1. Calcula el área del recinto limitado por la recta tangente y la curva dada.
- 10. Dada la curva de ecuación $y=x^2-4x+3$ y la recta y=-x+3
 - a) Dibuja la gráfica de la parábola y de la recta.
 - b) Señala el recinto plano comprendido entre ambas.
 - c) Calcula el área del recinto plano señalado.
- 11. Dada la curva $y = x^2 4x$ y la recta y = 3x 6:
 - a) Dibuja la gráfica de ambas.
 - b) Señala el recinto plano comprendido entre ellas.
 - c) Calcula el área del recinto señalado.
- 12. Calcula la siguiente integral: $\int_{e}^{e^3} \frac{Lx}{x} dx$ (L = logaritmo neperiano)

- 13. De la función f de \mathbb{R} en \mathbb{R} definida por $f(x) = ax^3 + bx^2 + cx + d$, se sabe que tiene un máximo relativo en x = 1 y un punto de inflexión en (0, 0), y que $\int_0^1 f(x)dx = \frac{5}{4}$. Calcula a, b, c y d.
- 14. Dadas las curvas de ecuaciones $y = \sqrt{3x}$; $y = \frac{1}{3}x^2$:
 - a) Dibuja sus gráficas.
 - b) Señala el recinto plano comprendido entre ambas.
 - c) Calcula el área de dicho recinto.
- 15. La curva $y = 2x^2$ divide al cuadrado de vértices A(0,0), B(1,0), C(1,1) y D(0,1) en dos recintos.
 - a) Dibuja dichos recintos.
 - b) Halla el área de cada uno de ellos.
- 16. Considera la función $f(x) = -x^4 + 4x^3$. Calcula:
 - a) Puntos de corte con los ejes.
 - b) Máximos y mínimos.
 - c) Puntos de inflexión.
 - d) Halla el área encerrada por la gráfica y el eje X.
- 17. Considera la función $f(x) = \begin{cases} x^3 & \text{si} \quad x < 1 \\ -x^2 + 2x & \text{si} \quad x \geqslant 1 \end{cases}$
 - a) Haz un dibujo aproximado de su gráfica.
 - b) Calcula el área encerrada por la gráfica y el eje X.
- 18. Consider las funciones $f(x) = x^2 2x + 8$; $g(x) = -x^2 + 8x$
 - a) Dibuja sus gráficas utilizando los mismo ejes.
 - b) Halla el área de la región encerrada por ellas.
- 19. Determina un polinomio P(x) de segundo grado sabiendo que: P(0) = P(2) = 1 y que $\int_0^2 P(x) dx = \frac{1}{3}$
- 20. Dada la función $f(x) = (2x+1) e^{x^2+x}$, determina la función g(x) tal que g'(x) = f(x), con la condición de que su gráfica pase por el punto (0,2).
- 21. Considera la función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = (x-2) e^x$
 - a) Determina los intervalos en los que la función f es creciente.
 - b) Dibuja la región limitada por la gráfica de f, el eje de abscisas y las rectas de ecuaciones x=1 y x=3.

- c) Halla el área de la región descrita en el apartado anterior.
- 22. De la función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = ax^3 + bx^2 + cx + d$ se sabe que tiene un máximo relativo en x = 1, un punto de inflexión en (0,0) y que $\int_0^1 f(x) \ dx = \frac{5}{4}$. Calcula a,b,c y d.
- 23. a) Halla el valor positivo de a para que $\int_0^{a-1} (x+1) dx = \frac{9}{2}$.
 - b) Calcula el área de la superficie comprendida entre el eje OX, la recta y = x + 1 y las rectas x = 0 y x = 2.
- 24. Dadas las funciones $f(x) = x^2 1$ y g(x) = 1 x:
 - a) Esboza el recinto encerrado entre sus gráficas.
 - b) Calcula el área de dicho recinto.
- 25. Dibuja aproximadamente las gráficas de las funciones $f(x) = x^2 3$ y g(x) = 2x, y sombrea el área que queda encerrada entre ellas. Calcula el valor de dicha área.
- 26. Calcula el valor de la integral $\int_0^1 \frac{2 \arctan x}{1+x^2} dx$ (siendo $\arctan x = \frac{\pi}{4}$ y $\arctan x = 0$)
- 27. Para la función $f(x) = \frac{\ln x}{x^2}$ se pide:
 - a) Determina las asíntotas horizontales de dicha función.
 - b) Calcula el área comprendida entre la gráfica de la función f(x), el eje de abscisas, y las rectas x = e y $x = e^2$. (Observa que f(x) es positiva en el intervalo $[e, e^2]$)
- 28. Halla el área encerrada entre la curva $y = x^3 4x^2 + 3x + 2$, y la recta y = 2.
- 29. Sea la función $f(x) = ax e^x + b \operatorname{con} a \in \mathbb{R}, a > 0$ y $b \in \mathbb{R}, b > 0$. Calcula a y b para que la recta tangente a la gráfica de f(x) en x = 0 tenga pendiente 1, y que además se cumpla que el área comprendida entre la gráfica de la función f(x), el eje de abscisas, y las rectas x = 0 y x = 1 sea $3 \operatorname{u}^2$. (Obsérvese que como a > 0 y b > 0 entonces $f(x) \geqslant 0$ en [0, 1])
- 30. Dadas las funciones $f(x) = \frac{1}{x}$ y $g(x) = -x + \frac{5}{2}$, se pide:
 - a) Esboza sus gráficas y sombrea el recinto encerrado entre ellas.
 - b) Calcula el área de dicho recinto.
- 31. Esboza las gráficas de las parábolas $f(x) = 2x^2$ y $g(x) = -x^2 + 3$, sombreando el recinto cerrado que determinan. Calcula el área de dicho recinto.
- 32. Sea $a \in \mathbb{R}$ una constante real no nula, y considera la parábola $f(x) = ax^2 4a$. Encuentra el valor de a para que se verifiquen simultáneamente las dos siguientes condiciones: 1), que el área comprendida entre la parábola y el eje de abscisas sea de 32 unidades cuadradas; 2), que la función f(x) sea cóncava hacia arriba (\cup) .

4

- 33. Encuentra una primitiva de $f(x) = x^2 \cdot \operatorname{sen} x$ que pase por el origen de coordenadas.
- 34. Considera la parábola $f(x) = -x^2 + 4$. Se pide:
 - a) Calcula las ecuaciones de las rectas tangentes a f(x) en x=2 y en x=-2, esbozando una gráfica con la parábola y las dos rectas tangentes.
 - b) Calcula el área comprendida entre la parábola y dichas rectas tangentes.
- 35. Calcula la integral definida $\int_0^{\pi} e^x \sin x \ dx$
- 36. De la función $f(x) = (x+a) \sin x$, donde a es un número real, se sabe que la integral definida $\int_0^\pi f(x) \ dx$ es tres veces el valor de la pendiente de la recta tangente a f(x) en x=0. Calcula el valor de a.
- 37. Definición de primitiva de una función. Sabiendo que $F(x) = e^{x^2}$ es una primitiva de la función f(x):
 - a) Comprueba que f(x) es una función creciente en \mathbb{R} .
 - b) Calcula el área determinada por la gráfica de f(x), el eje de abscisas, y las rectas x = -1 y x = 1.
- 38. Enuncia la regla de Barrow. Calcula la integral definida $\int_0^1 (x^2 + x) e^x dx$.
- 39. Calcula el área determinada por la gráfica de la función $f(x) = x^3 9x$ y el eje de abscisas.
- 40. Calcula la integral definida $\int_{1}^{4} \frac{\sqrt{x} + e^{\sqrt{x}}}{\sqrt{x}} dx$ (puede ayudarte hacer un cambio de variable).
- 41. a) Estudia la continuidad y derivabilidad de la función $f(x) = \begin{cases} x^2 + 4x + 3 & \text{si} \quad x < -1 \\ 1 x^2 & \text{si} \quad x \geqslant -1 \end{cases}$
 - b) Determina el área encerrada por la gráfica de la función f(x) y el eje de abscisas.
- 42. Determina una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ sabiendo que cumple que $f'''(x) = 3 e^x + 2$, f''(0) = 7, f'(0) = 3 y f(1) = 3(e+1).
- 43. Halla una primitiva F(x) de la función $f(x) = 8x^3 + 2x$, que cumpla que $F(x) \geqslant 0$ para todo $x \in \mathbb{R}$, y de forma que el área comprendida entre la gráfica de F(x), el eje de abscisas y las rectas x = 0 y x = 1 sea $\frac{41}{15}$.
- 44. a) Representa gráficamente las parábolas $f(x) = x^2 3x 1$ y $g(x) = -x^2 + x + 5$.
 - b) Calcula el área del recinto limitado por ambas gráficas.
- 45. a) Calcula el dominio de la función $f(x) = \sqrt{2x+1}$.
 - b) Calcula la integral definida: $\int_{-\frac{1}{2}}^{0} f(x) dx$.

- 46. a) Dado un número real a > 0m calcula el área del recinto encerrado entre la gráfica de la función $f(x) = \frac{1}{x^2}$, el eje de abscisas y las rectas x = a y x = a + 1.
 - b) Explica razonadamente que cuando a tiende a ∞ , dicho área tiende a cero.
- 47. Calcula $a \in \mathbb{R}$, siendo a > 0, para que el área de la región limitada por la gráfica de la función $f(x) = 6x^2$, el eje de abscisas y la recta x = a sea igual a 2000 u^2 .
- 48. a) Representa gráficamente la región del primer cuadrante limitada por las gráficas de las funciones $f(x) = \frac{1}{x}$ y $g(x) = \frac{1}{x^2}$, y la recta x = 2.
 - b) Calcula el área de dicha región.
- 49. Sean las funciones $f(x)=x^2$ y g(x)=a, con $a\in\mathbb{R}$, a>0. Calcula el valor del parámetro a para que el área encerrada entre las gráficas de las funciones f(x) y g(x) sea $\frac{32}{3}$.
- 50. a) Representa gráficamente la región limitada por las gráficas de las funciones $f(x) = x^2$ y $g(x) = \frac{1}{x}$, el eje de abscisas y la recta x = e.
 - b) Calcula el área de dicha región.
- 51. a) Representa gráficamente la región encerrada por las gráficas de las funciones $f(x) = x^2 2x 2$ y $g(x) = -x^2 + 2z 2$.
 - b) Calcula el área de dicha región.
- 52. Calcular el área de la figura plana limitada por las gráficas de $y = \frac{x^2}{2} x + 1$; y = x + 1.
- 53. Calcular el área encerrada por la gráfica de $y = \frac{1}{4+x^2}$, el eje de abscisas y las rectas x = 2 y $x = 2\sqrt{3}$.
- 54. Calcular el volumen del cuerpo engengrado al girar alrededor del eje OX el recinto limitado por las gráficas de $y=6x-x^2$; y=x.
- 55. Dibujar el recinto limitado por las gráficas de y = 2x; $y = x^2 8$. Calcular el área de dicho recinto.
- 56. Hallar el área del recinto limitado por las gráficas de las funciones $y = \sin x$; $y = \cos x$ en el intervalo $[0, \pi]$. Indicar otros dos intervalos para los cuales el área sea la misma.
- 57. Dibujar la región del plano limitada por las curvas $y = x^2$; $y = 2 x^2$; y = 4. Calcular su área.
- 58. Representa el recinto plano limitado por las gráficas de $y=4x; y=\frac{x}{4}; y=\frac{1}{x}$. Calcular su área.
- 59. Representar la región del plano limitada por $y = \ln x$; su recta tangente en x = e y el eje OX. Calcular su área.
- 60. Calcular el área del recinto limitado por la gráfica de $y = x^3 x$ y su recta tangente en x = -1.
- 61. Calcular el área limitada por las gráficas $y=2x-x^2; y=\mathrm{e}^x; x=0; x=2.$

- 62. Dibujar el recinto limitado por $y=-x^2+4x-3$, su recta tangente en el punto P(0,-3) y la recta y=-x+3. Calcular su área.
- 63. Dibujar el recinto limitado por $y=x^2; y=\frac{1}{x}; y=\frac{x}{4}$ y el eje OX. Calcular su área.
- 64. Dibuja el recinto limitado por $y = x^2 4x$; y = 2x 5. Calcular su área.
- 65. Dibujar el recinto limitado por las gráficas de $y=\frac{1}{x^2+3}, x^2=4y$. Calcular su área.
- 66. Dibujar el recinto limitado por las gráficas de $y^2 = 2x$, 2x y 2 = 0. Calcular su área.
- 67. Halla la ecuación de la recta tangente a $y = x^2 + 2$, en el punto de abscisa x = 1. Calcular el área del recinto limitado por y = x + 2, la tangente anterior y el eje OY.
- 68. Calcular el área de la región del plano limitada por las gráficas de las funciones: $y = -x^2 + 4x 4$ e y = 2x 7.
- 69. Hallar el área del recinto limitado por las gráficas de las funciones $y=x^2-2x$ e $y=-x^2+4x$

Soluciones:

1. 1)
$$-\frac{1}{6} \ln x + \frac{3}{10} \ln(x-2) - \frac{2}{15} \ln(x+3) + C$$

2)
$$\frac{3}{2}\ln(x^2+2x+3) - \frac{3\sqrt{2}}{2}\arctan \frac{x+1}{\sqrt{2}} + C$$

3)
$$\frac{x^2}{2} - 2x + \ln x + \frac{5}{3}\ln(x+1) - \frac{8}{3}\ln(x-2) + C$$

4)
$$\ln(x-1) - \ln(x+1) + \frac{8}{x-1} + C$$

5)
$$\ln \frac{x^2+1}{x} + C$$

6)
$$\frac{1}{2} \ln x - \frac{1}{2} \ln(x-2) - \frac{2}{x-2} + C$$

7)
$$\ln x - \arctan tg x + C$$

8)
$$\frac{2}{9}\ln(x+2) + \frac{7}{9}\ln(x-1) + \frac{1}{3(x-1)} + C$$

9)
$$\left(\frac{x^3}{3} + x^2 + x\right) \ln x - \frac{x^3}{9} - \frac{x^2}{2} - x + C$$

10)
$$\frac{5}{9}\ln(x+2) + \frac{4}{9}\ln(x-1) - \frac{2}{3(x-1)} + C$$

11)
$$\ln x - \frac{2}{\sqrt{x}} + C$$

12)
$$\ln(x-1) - \frac{3}{x-1} + C$$

13)
$$\frac{x^2}{2} - 2\ln(x^2 + 4) + \frac{1}{2}\arctan \frac{x}{2} + C$$

14)
$$4\sqrt{x} - 4\ln(\sqrt{x} + 1) + C$$

15)
$$-\frac{1}{x+1} + \frac{1}{2(x+1)^2} + C = -\frac{2x+1}{2(x+1)^2} + C$$

16)
$$-\frac{1}{8}\ln(4x^2+9) + \frac{1}{2}\arctan\frac{2x}{3} + C$$

17)
$$x + 2e^{\sqrt{x}} + C$$

18)
$$\frac{1}{2}\ln(1+e^{2x}) + \arctan e^x + C$$

19)
$$\frac{1}{18} \ln(4+9x^2) + 6 \arctan \frac{3x}{2} + C$$

20)
$$tg x + C$$

21)
$$x \arctan \operatorname{tg} x - \frac{1}{2} \ln(1 + x^2) + C$$

22)
$$\left(x + \frac{1}{x}\right) \ln x - x + \frac{1}{x} + C$$

23)
$$x^2 + x + 6\ln(x-3) - 4\ln(x-2) + C$$

24)
$$arc tg(sen x) + C$$

25)
$$\frac{x^2 \ln x}{2} - \frac{x^2}{4} + C$$

26)
$$\ln(x+1) - \ln x - \frac{1}{x} + C$$

27)
$$\frac{2(x+1)\sqrt{x+1}}{3} + 2\sqrt{x+1} + C = \frac{2(x+4)\sqrt{x+1}}{3} + C$$

28)
$$\frac{\sin 2x}{2} + \frac{\sin^2 x}{2} + C$$
. También es solución $\frac{\sin 2x}{2} - \frac{\cos 2x}{4} + C$

29)
$$\frac{x^3}{3} - x^2 + 4x - 9\ln(x+2) + C$$

30)
$$-\ln(x-1) + 2\ln(x-2) + \frac{1}{x-2} + C$$

31)
$$\arctan x + 4 \ln(1 + x^2) + C$$

32)
$$(x^2 + x - 2) \sin x + (2x + 1) \cos x + C$$

33)
$$x - 2\sqrt{x} + 2\ln(1+\sqrt{x}) + C$$

34)
$$-\frac{x^2\cos 2x}{2} + \frac{x\sin 2x}{2} + \frac{\cos 2x}{4} + C = \frac{(1-2x^2)\cos 2x + 2x\sin 2x}{4} + C$$

35)
$$\frac{x^2}{2} - 2x + \ln x + \frac{5}{3}\ln(x+1) - \frac{8}{3}\ln(x+2) + C$$

36)
$$\frac{1}{2}\ln(x^2+2x+3) - \frac{\sqrt{2}}{2}\arctan\left(\frac{x+1}{\sqrt{2}}\right) + C$$

37)
$$\frac{1}{\text{sen } r} - \frac{1}{3 \text{ sen}^3 r} + C$$

38)
$$-\frac{1}{2}\ln(x+1) + \frac{1}{2}\ln(x-1) - \frac{2}{x-1} + C$$

39)
$$\frac{3}{2}\ln(x-1) - \frac{1}{2}\ln(x+1) + \frac{1}{x+1} + C$$

40)
$$\frac{1}{5}\ln(x-2) + \frac{2}{5}\ln(x^2+1) + \frac{8}{5}\arctan x + C$$

41)
$$-\frac{1}{4}\ln(x+1) + \frac{1}{4}\ln(x-1) - \frac{1}{2(x-1)} + C$$

42)
$$\frac{e^{3x}(3 \sin 2x - 2 \cos 2x)}{13} + C$$

43)
$$\frac{1}{3}\ln(x-1) - \frac{1}{6}\ln(x^2+x+1) - \frac{\sqrt{3}}{3}\arctan\left(\frac{2x+1}{\sqrt{3}}\right) + C$$

44)
$$\frac{x^3 \arctan x}{3} - \frac{x^2}{6} + \frac{\ln(x^2 + 1)}{6} + C$$

45)
$$\ln x - \ln(x-1) - \frac{1}{x-1} + C$$

$$46) \ \frac{x^3}{3} \ln(2x+1) - \frac{x^3}{9} + \frac{x^2}{12} - \frac{x}{12} + \frac{1}{24} \ln(2x+1) + C = \frac{(8x^3+1) \ln(2x+1)}{24} - \frac{4x^3 - 3x^2 + 3x}{36} + C$$

47)
$$\ln x + \ln(x-1) - \frac{7}{x-1} + C$$

48)
$$\frac{2}{3}\left(\sqrt{3x}\sin\sqrt{3x}+\cos\sqrt{3x}\right)+C$$

49) $2\sqrt{x+2} - \ln(\sqrt{x+2}+1) + \ln(\sqrt{x+2}-1) + C = 2\sqrt{x+2} + 2\ln(\sqrt{x+2}-1) - \ln(x+1) + C$ Intenta comprobar que la anterior igualdad es, efectivamente, cierta (el programa Derive da como resultado de la integral la segunda parte de la igualdad).

50)
$$-\frac{(2x+4)e^{-5x}}{5} - \frac{2e^{-5x}}{25} + C = -\frac{2e^{-5x}(5x+11)}{25} + C$$

51)
$$x - \frac{5}{3}\ln(x-1) + \frac{20}{3}\ln(x-4) + C$$

52)
$$x + 2\ln(x^2 - 4x + 13) - \frac{4}{3}\arctan\left(\frac{x-2}{3}\right) + C$$

53)
$$-e^{-4x^2}\left(\frac{1}{32} + \frac{x^2}{8}\right) + C$$

2.
$$\frac{343}{6} u^2 \approx 57,17 u^2$$

3.
$$\left(\frac{8\sqrt{2}}{3} - 2\right) u^2 \approx 1,77 u^2$$

4.
$$64 u^2$$

5.
$$\frac{4}{3} u^2 \approx 1,33 u^2$$

6.
$$\frac{8}{3} u^2 \approx 2,67 u^2$$

7.
$$\frac{9}{2}$$
 u² = 4.5 u²

8.
$$1 u^2$$

9.
$$\frac{27}{4}$$
 u² = 6.75 u²

10.
$$\frac{9}{2}$$
 u²

11.
$$\frac{125}{6}$$
 u²

12.
$$4 u^2$$