Московский физико-технический институт (национальный исследовательский университет)

Факультет физической и квантовой электроники Кафедра фотоники

Лабораторная работа

Лазерная гравировка

Выполнили:

Мазуренко Илья Б04-006 Белостоцкий Артемий Б04-006 Яшин Прохор Б04-006 Ионидис Екатерина Б04-006 Шарапов Алексей Б04-006 Плюскова Наталья Б04-004

Содержание

1	Цель работы	2			
2	Теоретические основы процесса гравировки 2.1 Удаление материала 2.2 Оптическая система 2.3 Устройство и принцип работы лазера 2.3.1 Режим свободной генерации 2.3.2 Режим модуляции добротности	2 2 3 3 4 5			
3	Экспериментальная установка	7			
4	Эксперимент и обработка	8			
5	Выводы	10			
6 Приложение 1. Дополнительные задачи					
	6.1 1. 6.2 2. 6.3 3. 6.4 4. 6.5 5. 6.6 6. 6.7 7. 6.8 8. 6.9 9. 6.10 10.	11 12 12 13 13 14 15 15			
	6.11 .11	16			

1 Цель работы

- 1. Измерение зависимости мощности излучения от мощности накачки в режиме свободной генерации.
- 2. Измерение зависимости мощности излучения от мощности накачки в режиме модуляции добротности.
- 3. Измерение зависимости длительности импульса от мощности накачки в режиме модуляции добротности.
- 4. Гравировка различных изображений, надписей и картинок.

2 Теоретические основы процесса гравировки

2.1 Удаление материала

Основа гравировки материалов – тепловое воздействие: нагревание, плавление и испарение с образованием углублений. Оно описывается с помощью соответствующих формул:

$$Q_1 = cm\Delta t, \ Q_2 = \lambda m, \ Q_3 = Lm, \tag{1}$$

 ${
m m}$ – масса материала, с – удельная теплоёмкость, λ – удельная теплота плавления, L – удельная теплота парообразования. Размер и глубина влияет на количество материала, что сказывается на времени его обработки. Кроме того, нужно учитывать теплопроводность материала.

Рис. 1. Воздействие лазера на подложку 1 – испарённый материал, 2 – расплавленный материал; 3 – прогретая область

Процесс обработки выполняется с помощью воздействия лазерного излучения. Оно частично отражается, а частично проникает внутрь материала, где поглощается и переходит в тепло. Изменение плотности лазерного потока описывается законом Бугера-Ламберта:

$$I(x) = I_0 A \exp - \int_0^x \alpha(x) dx,$$
 (2)

 I_0 — интенсивность падающего излучения, A — коэффициент поглощения материала, α — линейный коэффициент поглощения, x — глубина проникновения.

Коэффициент отражения, как правило, увеличивается с ростом длины волны падающего излучения λ , также он зависит от рельефа поверхности (ρ_{α}) и угла падения φ :

$$R = R_0 \exp\left[-\left(\frac{5\pi\rho_\alpha\cos\varphi}{\lambda}\right)^2\right]. \tag{3}$$

В начальный момент область нагревания совпадает с областью вещества, в которую проникает излучение. Для дальнейшего распределения тепла можно найти решение уравнения теплопроводности:

$$\frac{\partial T}{\partial t} - a\nabla T = \frac{\alpha(x)q(y,z,t)\exp{-\int_0^x \alpha(x)dx}}{\rho_C}.$$
(4)

q(y,z,t) — функция распеделения плотности поглощённого светового потока на поверхности материала. За счёт плавления стенок отверстие растёт в ширину, а в глубину — из-за испарения. Можно получить следующие выражения для глубины и диаметра:

$$h = \sqrt[3]{\left(\frac{r_0}{\lg \varphi}\right)^3 + \frac{3E}{\pi \lg^2 \varphi L_0}} - \frac{r_0}{\lg \varphi},\tag{5}$$

$$d = 2\sqrt{r_0^3 + \frac{3E \operatorname{tg} \varphi}{\pi L_0}},\tag{6}$$

E – энергия излучения в импульсе, r_0 – радиус светового пятка, φ – половинный угол раствора, L_0 – скрытая удельная теплота испарения вещества.

Таким образом, определяющий фактор – $\operatorname{tg} \varphi$ для получения узких глубоких отверсий должен равняться 0, т.е. когда световой конус вырождается в трубку.

При повышении мощности происходит образование ионизированной плазмы, которая поглощает излучение и экранирует материал. Однако нижняя граница поглощения в плазме приходится на порог разрушения материала, поэтому в работе мы можем её не учитывать.

2.2 Оптическая система

Следующий важный шаг – подведение луча к месту воздействия. В нашем случае используется схема с двумя неподвижными зеркалами, так как область воздействия достаточно малая.

Рис. 2. Оптические системы с тремя (а – два неподвижных и одно подвижное) и двумя зеркалами (б – подвижные, в – неподвижные)

Затем лазерный луч фокусируется с помощью линзы. Первичное формирование пучка происходит в линейном резонаторе лазера. Выходное зеркало удобно делать плоским, чтобы уменьшить дифракционную расходимость. Как известно, она описывается формулой:

$$\Theta = \frac{\lambda}{\pi \omega_0},\tag{7}$$

 ω_0 – перетяжка (радиус) пучка. Таким пучком удобно управлять, позиционируя его в нужное место, после чего фокусировать с помощью линзы. Рассчитать геометрические размеры пучка после прохождения линзы можно с помощью оптики гауссовых пучков (по закону ABCD), в частности, рассчитать размеры пучка в фокальной плоскости линзы, куда и помещается предмет. Так можно определить облать, на которую оказывается термическое воздействие.

2.3 Устройство и принцип работы лазера

В этой работе мы рассматриваем действие лазера в двух режимах: в режиме «свободной генерации» и в режиме «модуляции добротности».

2.3.1 Режим свободной генерации

Лазер на $YAG:Nd^{3+}$ на длине волны 1,064 мкм работает по четырёхуровневой схеме. Электроны с помощью накачки забрасываются с 0-го на 3-й уровень, а затем быстро переходят на метастабильный уровень 2, при переходе с которого на уровень 1 происходит генерация.

Рис. 3. Четырёхуровневая схема работы лазера

Накачка может осуществляться различными способами и быть как непрерывной, так и импульсной. В нашем случае используется непрерывная оптическая накачка некогерентным светом (дуговая лампа).

Работа лазера описывается *скоростными уравнениями*, в основе которых лежит пространственнонезависимая модель:

$$\frac{dN}{dt} = R_p - B_\phi N - \frac{N}{\tau},\tag{8}$$

$$\frac{d\phi}{dt} = \left[BV_a N - \frac{1}{\tau_c} \right] \phi. \tag{9}$$

Уравнение (8) описывает изменение инверсии населённости. В случае четырёхуровнего лазера можно считать, что населённость 1 и 3-го уровней $N_1 \approx N_3 \approx 0$, так как на этих уровнях происходит быстрая релаксация, таким образом, будем считать, что N — инверсия населённости, а фактически населённость второго уровня.

В уравнении (8) R_p отвечает за скорость накачки. Его можно определить как

$$R_p = \eta \frac{P}{Slh\nu},\tag{10}$$

где η – КПД накачки, S и l – площадь поперечного сечения и длина активной среды, P – мощность накачки, ν – частота перехода между 0-м и 3-м уровнями, τ – время жизни электрона на рабочем уровне. Второй и третий члены $(B_\phi N$ и $\frac{N}{\tau})$ описывают вынужденное и спонтанное излучение, здесь $B=\frac{\sigma c}{V}$ – коэффициент Эйнштейна для вынужденного излучения, он означает вероятность перехода для одного электрона между уровнями под воздействием одного фотона, где σ – сечение перехода, V – эффективный объём моды в резонаторе, V_a – эффекивный объём моды в активной среде, таким образом $V=(L_e/l)V_a$, где L_e – оптическая длина резонатора, l – длина активной среды.

Уравнение (9) описывает изменение фотонов в резонаторе. τ_c – время жизни фотона в резонаторе, оно определяется как $\tau_c = -2L_e/(c\ln R_1R_2(1-T)^2))$, где R_i – коэффициенты отражения соответствующих зеркал, T – относительные внутренние потери.

Решения этих уравнений дают зависимость инверсии населённостей и фотонов в резонаторе от времени.

Рис. 5. Зависимость числа фотонов в резонаторе от времени

Как видно из графиков, в режиме свободной генерации значения N и количества фотонов ϕ принимают со временем стационарные значения. Найдём их, приравняв к нулю производные в левых частях уравнений. Тогда $N_0=\frac{1}{BV_a\tau_c}, \phi_0=\frac{R_p-\frac{N_0}{\tau}}{BN_0},$ а мощность излучения находится по формуле

$$P_{out} = \left(\frac{-\ln(1-T)c}{2L_e}h\nu_l\phi_0\right),\tag{11}$$

где ν_l – частота излучения лазера, T – коэффициент пропускания выходного зеркала.

2.3.2 Режим модуляции добротности

При модуляции добротности в резонаторе лазера используется акустооптический модулятор, который препятствует генерации излучения, увеличивая потери. В результате происходит рост инверсии населённостей, который описывается как

$$N(t) = N_{\infty} [1 - \exp(-t/\tau)],$$
 (12)

где $N_{\infty}=R_p\tau$, а t – время нахождения модулятора в закрытом состоянии. Таким образом, можно получить намного большую инверсию населённости, чем в режиме свободной генерации.

После открытия модулятора возникает генерация и происходит резкое увеличение фотонов в резонаторе, а инверсия населённости N при этом уменьшается.

Рис. 6. Динамика процесса модуляции добротности. Зависимости от времени а)потерь резонатора, б) инверсии населённостей, в) числа фотонов

Рис. 7. Развитие модулированных лазерных импульсов при непрерывной накачке с модуляцией добротности. Зависимости от времени а) скорости накачки, б) потерь резонатора, в) числа фотонов, г) инверсии населённостей

Начало отсчёта на графиках — время открытия модулятора. Также заметим, что момент максимального значения количества фотонов соответствует пороговому значению N для данного лазера.

Динамика генерации лазера также описывается с помощью уравнений (8) и (9). Когда количество фотонов в резонаторе максимально, значение $N_p = N_0$, что видно из уравнения (9), то есть равно своему пороговому значению. Количество фотонов при этом

$$\phi_p = V_a N_p \left(\frac{N_i}{N_p} - \ln \frac{N_i}{N_p} - 1 \right), \tag{13}$$

где N_i – инверсия в момент открытия модулятора, она определяется из (12). Тогда значение мощности излучения определяется как

$$P_p = \left(\frac{-\ln(R_2)c}{2L_e}\right)h\nu_l\phi_p,\tag{14}$$

в этих формулах L – потери в активной среде за проход луча, и энергия в импульсе определяется как

$$E = \left(\frac{-\ln(R_2)c}{2L_e}\right)h\nu_l \int_0^\tau \phi_p dt.$$
 (15)

Подставляя в это уравнение выражение, связанное с населённостями, получим

$$E = \left(\frac{\ln R_2}{2\ln((1-L)\sqrt{R_1R_2})}\right)(N_i - N_f)(V_a h \nu_l),\tag{16}$$

где N_f – инверсия в момент окончания импульса, $N_f \ll N_i$. Притом выполняется соотношение

$$\frac{N_i - N_f}{N_i} = \frac{N_p}{N_i} \ln \frac{N_i}{N_f}.$$
 (17)

Приблизительное значение длительности импульса можно оценить как

$$\Delta \tau_p = \tau_c \frac{(N_i/N_p)\eta_{\varepsilon}}{(\frac{N_i}{N_p}) - \ln(\frac{N_i}{N_p}) - 1},\tag{18}$$

где $\eta_{\varepsilon}(N_i/N_p) = -\ln(1-\eta_{\varepsilon}).$

Изменяя частоту работы модулятора, можно добиться параметров излучения, необходимых для обработки того или иного материала.

3 Экспериментальная установка

Рис. 8. Общая схема установки

Рис. 9. Схема оптической части

В состав экспериментальной установки (рис. 8) входят: твердотельный лазер на YAG:Nd³⁺, блок питания и система охлаждения, акустооптический модуль с блоком управления, в который входит мощный ВЧ-генератор, система линз, сканер, предметный столик, осциллограф и компьютер. С помощью компьютера можно контролировать блок питания и акустооптический модуль, меняя мощность накачки и период открытого состояния модулятора, что и используется при гравировке различных материалов. В процессе работы лазера происходит водное охлаждение активного элемента и AO-модулятора.

Оптическая система показана на рис. 9. Линейный резонатор лазера состоит из двух зеркал. Плоское зеркало на выходе и большая длина резонатора нужны, чтобы уменьшить расходимость выходящего излучения. После этого луч попадает в телескопическую систему, где его поперечный размер увеличивается. Далее для управления излучением применяется оптическая система с неподвижными зеркалами и собирающая линза для фокусировки.

4 Эксперимент и обработка

На основании полученных данных построим график зависимости мощности излучения от мощности накачки лазера в режиме свободной генерации.

Рис. 10. Зависимость мощности излучения от мощности накачки лазера в режиме свободной генерации

Повторим эти действия для режима модуляции добротности.

Рис. 11. Зависимость мощности излучения от мощности накачки лазера в режиме модуляции добротности

Построенные кривые качественно совпадают с теоретическими:

Рис. 12. Теоретическая зависимость мощности излучения от мощности накачки лазера в режиме свободной генерации

Построим график зависимости длительности импульса от мощности накачки лазера в режиме моду-

Рис. 13. Зависимость длительности импульса от мощности накачки

Как видно, при малых значениях мощности наблюдается пик, после которого идёт затухание.

5 Выводы

B этой работе мы изучили принципы работы $YAG:Nd^{3+}$ лазера, его воздействие на поверхности и управление его параметрами при помощи модуляции добротности.

В частности, мы нашли КПД и пороговую мощность лазера:

Режим	Свободной генерации	Модуляции добротности
η , %	0,19	0,16
P_{max} , BT	2357	2390

КПД лазера в режиме модуляции добротности меньше, чем в непрерывном режиме. Это происходит из-за того, что в режиме модуляции добротности отсутствует вынужденное излучение при закрытом модуляторе и поэтому в среднем больше инверсная населённость, а значит, больше потери на спонтанное излучение.

В работе мы получили, что пороговая мощность лазера не зависит от режима его работы. (значения лежат в пределах погрешности друг друга) Это объясняется тем, что при достижении пороговой мощности усиление в активной среде сравнивается с потерями в резонаторе, и дальше она изменяться не может.

Кроме того, мы измерили зависимость длительности импульса от мощности накачки в режиме модуляции добротности и убедились, что при больших значениях P она подчиняется логарифмическому закону. Длительность импульса, после прохождения пика, снижается, поскольку пороговая мощность лазера ограничена, и при дальнейшем увеличении накачки КПД стремится к нулю.

Лазерная гравировка имеет множество преимуществ перед другими способами: небольшая зона прогрева, неконтактное воздействие (отсутсвие износа инструмента, работа в труднодоступных местах и условиях), отсутсвие загрязнения и высокую точность позиционирования.

6 Приложение 1. Дополнительные задачи

6.1 1.

Определить величину энергии, которая должна быть в импульсе лазера на YAG: Nd^{3+} (длина волны 1.064 мкм) для того, чтобы испарить 1 мм 3 алюминия.

Дано:
алюминий
 $V=1~\text{мм}^3$
 $T_{\text{пл}}=660^{\circ}C$
 $c=897\frac{\text{Дж}}{\text{кг-К}}$
 $\lambda=390\text{кДж/кг}$
 $\rho=2700\frac{\text{кг}}{\text{м}^3}$
 $L=10900\frac{\text{кДж}}{\text{кг}}$
Q-? $Q_1=cm(T_{\text{пл}}-T_{\text{K}})=897\cdot2700\cdot10^{-9}\cdot635=1,53~\text{Дж}$
 $Q_2=\lambda m=\lambda \rho V=390\cdot10^3\cdot2700\cdot10^{-9}=1,053~\text{Дж}$
 $Q_3=Lm$
 $Q_3=L\rho V=10,9\cdot10^6\cdot2700\cdot10^{-9}=29,43~\text{Дж}$
 \Rightarrow
 $Q=\frac{Q_1+Q_2+Q_3}{1-R}\approx\frac{32,013}{0,07}\approx521~\text{Дж}$

 $Omeem: Q \approx 512$ Дж

6.2 2.

Рассчитать расходимость пучка диаметром 1 см, генерируемого лазером YAG:Nd³⁺

Дано:

$$\omega_0 = r = 1 \text{ см}$$

 $\lambda = 1,064 \text{ мкм}$
 $\theta = \frac{\lambda}{\pi \omega_0}$
 $\theta = \frac{1,064 \cdot 10^{-4}}{\pi \cdot 10^{-2}} = 0,0034 \text{ рад}$

Ответ: 0,0034 рад

6.3 3.

Оценить минимальный диаметр пучка лазера на YAG:Nd³⁺ при его фокусировке линзой с фокусным расстоянием f=20 см. В какой области вдоль пучка размер перетяжки будет меняться менее чем в $\sqrt{2}$ раз (конфокальный параметр), радиус пучка на выходе телескопа лазера 1 см. Считать волновыой фронт пучка до линзы плоским.

Дано: f = 20 см $\lambda = 1,064 \text{ мкм}$ $\omega = 1 \text{ см}$ $\frac{d_{min}-?}{[x_1,x_2]-?}$

Решение:

$$M = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} = \begin{pmatrix} 1 - \frac{x}{f} & x \\ -\frac{1}{f} & 1 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

$$\frac{1}{q} = \frac{1}{\infty} - i \frac{\lambda}{\pi \omega_0^2} \Rightarrow q = i \frac{\pi \omega_0^2}{\lambda} = i\alpha$$

$$\frac{1}{q'} = \frac{Cq + D}{Aq + B} = \frac{-\frac{1}{f}i\alpha + 1}{(1 - \frac{x}{f})i\alpha + x} = \dots = \frac{x - \frac{\alpha^2}{f}(1 - \frac{x}{f}) - i\alpha}{x^2 + \alpha^2(1 - \frac{x}{f})^2}$$

$$\Rightarrow \frac{\lambda}{\pi R^2} = \frac{\alpha}{x^2 + \alpha^2(1 - \frac{x}{f})^2} \Rightarrow R^2 = \frac{\lambda}{\pi \alpha} \cdot \left[x^2(1 + \frac{\alpha^2}{f^2}) - 2\frac{\alpha^2}{f}x + \alpha^2 \right]$$

$$\Rightarrow R^2 = \frac{\lambda \alpha}{\pi} \cdot \left[x^2(\frac{1}{\alpha^2} + \frac{1}{f^2}) - \frac{2}{f}x + 1 \right] = \omega_0^2 \cdot \left[x^2(\frac{1}{\alpha^2} + \frac{1}{f^2}) - \frac{2}{f}x + 1 \right]$$

1). Определим наименьший радиус по минимуму параболической части:

$$\begin{split} R_{min}^2 &= \omega_0^2 \cdot \left[-\frac{(-\frac{2}{f})^2}{4(\frac{1}{\alpha^2} + \frac{1}{f^2})} + 1 \right] = \omega_0^2 \frac{1}{\frac{\alpha^2}{f^2}} \\ R_{min}^2 &= \omega_0^2 \frac{1}{\frac{\pi^2 \omega_0^4}{\lambda^2 f^2}} = 1^2 \frac{1}{\frac{\pi^2 1^2}{(1,064 \cdot 10^- 4)^2 20^2} + 1} = 4,677 \cdot 10^{-7} \text{ cm}^2 \\ R_{min} &= 6,77 \text{ MKM} \end{split}$$

2). Определим искомый промежуток через неравенство:

$$R^{2} = \omega_{0}^{2} \cdot \left[x^{2} \left(\frac{1}{\alpha^{2}} + \frac{1}{f^{2}} \right) - \frac{2}{f} x + 1 \right] \ge \frac{\omega_{0}^{2} 2}{2}$$

$$\Rightarrow x^{2} \left(\frac{1}{\alpha^{2}} + \frac{1}{f^{2}} \right) - \frac{2}{f} x + 1 \ge \frac{1}{2}$$

$$\Rightarrow x^{2} \left(\frac{1}{\alpha^{2}} + \frac{1}{f^{2}} \right) - \frac{2}{f} x + \frac{1}{2} \ge 0$$

$$D = \left(\frac{2}{f} \right) - 4 \left(\frac{1}{\alpha^{2}} + \frac{1}{f^{2}} \right) \frac{1}{2} = \frac{2}{f^{2}} - \frac{2}{\alpha^{2}}$$

$$\alpha \sim \frac{1}{\lambda} \Rightarrow \alpha \gg f \Rightarrow D > 0$$

$$x_{1,2} = \frac{\frac{2}{f} \pm \sqrt{2(\frac{2}{f^{2}} - \frac{2}{\alpha^{2}})}}{2\frac{1}{\alpha^{2}} + \frac{1}{f^{2}}} = \frac{\frac{2}{f} \pm \sqrt{2} \frac{\sqrt{\alpha^{2} - f^{2}}}{\alpha f}}{2\frac{\alpha^{2} + f^{2}}{\alpha^{2} f^{2}}} \approx$$

$$\approx \frac{\frac{1}{f} \left(1 \pm \frac{\sqrt{2}}{2} \right) \cdot \alpha^{2} f^{2}}{\alpha^{2} + f^{2}} \approx f \left(1 \pm \frac{\sqrt{2}}{2} \right) = 20 \left(1 \pm \frac{\sqrt{2}}{2} \right)$$

$$\Rightarrow x_{1} = 5,85 \text{ cm}; x_{2} = 34,1 \text{ cm}$$

Ответ: $d_{min} = 6,77 \text{ мкм} \cdot 2 = 13,54 \text{ мкм}$

Размеры пуска изменяются менее чем в $\sqrt{2}$ раз на расстояниях, меньших 5,85 см и больших 34,1 см.

6.4 4.

Рассчитать глубину и размеры отверстия, проделанного в алюминии с помощью лазера на $YAG:Nd^{3+}$, работающего в импульсном режиме. Энергию в импульсе и параметры пучка взять из задач 1 и 3.

Дано: Решение: f = 20 cm $h = \sqrt[3]{\left(\frac{r_0}{\lg \varphi}\right)^3 + \frac{3E}{\pi \lg \varphi^2 L_0}} - \frac{r_0}{\lg \varphi}$ $= \sqrt[3]{\left(\frac{r_0}{\lg \varphi}\right)^3 + \frac{3E}{\pi \lg \varphi^2 L\rho}} - \frac{r_0}{\lg \varphi}$ $\lambda = 1,064 \text{ MKM}$ $r_0 = 1 \text{ cm}$ E = 29,43 Дж $\rho = 2700 \frac{\text{K}\Gamma}{\text{M}^3}$ $L_0 = 10900 \frac{\text{кДж}}{\text{кг}}$ $d = 2\sqrt[3]{r_0^3 + \frac{3E \lg \varphi}{\pi L_0}} = 2\sqrt[3]{r_0^3 + \frac{3E \lg \varphi}{\pi L\rho}}$ d-?h-? $\operatorname{tg} \varphi = \frac{r_0}{f} = 0,05 \Rightarrow \frac{r_0}{\operatorname{tg} \varphi} = f$ $r_0 = R_{min} = 6,77 \text{ MKM}$ $h = \sqrt[3]{20^3 + \frac{3 \cdot 29,43}{\pi \cdot 0,05^2 \cdot 10900 \cdot 10^3 \cdot 2700 \cdot 10^{-6}}} - 20$ = 0.000318305 cm = 3,2 mkm $$\begin{split} d &= 2\sqrt[3]{(6,77\cdot 10^{-4})^3 + \frac{3\cdot 29,43\cdot 0,05}{\pi\cdot 2700\cdot 10^{-6}}} \approx \\ &\approx 2\sqrt[3]{(\frac{3\cdot 29,43\cdot 0,05}{\pi\cdot 109000\cdot 10^3\cdot 2700\cdot 10^{-6}}} = 0,057~\text{mm} \end{split}$$

Ответ:

$$h = 3, 2 \text{ MKM}$$

 $d = 0,057 \text{ MM}$

6.5 5.

Определить время жизни фотона в резонаторе лазера: длина резонатора - 81,5 см, длина активного элемента - 10 см, показатель преломления граната - 1.8, одно из зеркал - глухое, пропускание другого - 20%, поглощение в активном элементе - 1%.

Дано:	Решение:
L = 81, 5 cm	$2L_e$
l = 10 cm	$\tau_c = -\frac{2L_e}{(c \ln R_1 R_2 (1 - T)^2))}; \ L_e = nL$
n = 1, 8	
$R_1 = 1$	$\tau_c = -\frac{2 \cdot 81, 5 \cdot 10^{-2}}{2 \cdot 10^{81} \cdot (1 - 0.8) \cdot (1 - 0.01)^{2}} = 223, 4 \cdot 10^{-10} = 22, 3$ Hz
$R_2 = 80\%$	$ au_c = -\frac{1}{3 \cdot 10^8 \ln(1 \cdot 0, 8 \cdot (1 - 0, 01)^2)} = 223, 4 \cdot 10^{-10} = 22, 3$ HC
T=1%	
τ_c -?	

Ответ: 22,3 нс

6.6 6.

Определить мощность излучения лазера на YAG:Nd³+, работающего в нерерывном режиме. Мощность накачки - 3 кВт, КПД накачки - 0.3%, длина резонатора - 81,5 см, длина активного элемента - 10 см,показатель преломления граната - 1.8, одно из зеркал - глухое, пропускание другого - 20%, поглощение в активном элементе - 1%, диаметр активного элемента - 6 мм,время жизни верхнего уровня - 230 мкс, сечение перехода $2,8\cdot10^{-19}$ см, энергия между 0-м и 3-м уровнями соответсвует энергии фотона с длиной волны 808 нм.

\upmu ано: $P=3~\mbox{кВт}$ $\eta=0.3\%$ $au=230~\mbox{мкс}$ $f_0=50~\mbox{к}\mbox{Гц}$ $\lambda_{13}=808~\mbox{нм}$ $d=6~\mbox{мм}$ $l=10~\mbox{см}$ $L=81,5~\mbox{см}$ $l=10~\mbox{см}$ n=1,8 $R_1=1$ $R_2=80\%$ T=1% $\sigma=2,8\cdot 10^{-19}~\mbox{cm}^2$

Решение:

В режиме свободной генерации по формуле (11)

$$P_{out} = \left(\frac{-\ln{(1-T)c}}{2L_e}h\nu_l\phi_0\right)$$

Произведём грубую оценку. При малом Т

$$-ln(1-T) \approx 1$$
, $c/n = v_{\text{среды}}$, $v_{\text{среды}}/L_e \approx \tau_{\text{с}}$.

Поэтому

$$P_{out} \approx \frac{h\nu_l}{2\tau_c}\phi_0$$

Кроме того, известно, что

$$N_0 = rac{1}{BV_a au_c}, \quad \phi_0 = rac{R_p - rac{N_0}{ au}}{BN_0}, \quad R_p = \eta rac{P}{Slh
u}, \quad P_{max} pprox rac{E_{ ext{ iny MII}}}{ au_{ ext{ iny MII}}}$$

А следовательно, подстановкой в ϕ_0 этих соотношений получаем

$$\phi_0 = V_a \tau_{\rm c} R_p - \frac{1}{B_0 \tau} = \frac{h}{B \tau} (\frac{P}{P_{max}} - 1) \Rightarrow P_{out} = \frac{h \nu}{2 \tau_{\rm c}} (\frac{P}{P_{max}} - 1)$$

Пороговую мощность оценим как

$$P_{max} \approx \frac{E_{\text{имп}}}{\tau_{\text{имп}}} = \frac{1}{\tau} \frac{Slh\nu}{B\eta} \approx 2,5 \; \text{кВт}$$

Итого,

$$P_{out} pprox rac{h
u}{2 au_{
m c}} (rac{P}{P_{max}} - 1) pprox 21 {
m \, Br}.$$

Omeem: $P_{out} \approx \frac{h\nu}{2\tau_c} (\frac{P}{P_{max}} - 1) \approx 21 \text{ Bt.}$

6.7 7.

Рассчитать инверсную населенность на момент открытия модулятора для лазера на YAG:Nd $^{3+}$, мощность накачки - 3 кВт, КПД накачки - 0.3%, время жизни верхнего уровня - 230 мкс, частота импульсов - 50 к Γ ц, энергия между 0-м и 3-м уровнями соответсвует энергии фотона с длиной волны 808 нм, диаметр активного элемента - 6 мм, его длина - 10 см.

Дано:
P=3 к B т
$\eta = 0.3\%$
au=230 мкс
$f_0=50$ к Γ ц
$\lambda_{13} = 808$ нм
d=6 mm
l = 10 cm
N - ?

Решение:

$$\begin{split} N(t) &= N_{\infty} (1 - \exp(-\frac{t}{\tau})) \\ N_{\infty} &= R_p \tau; \ R_p = \eta \frac{P}{Sl \frac{hc}{\lambda_{13}}}; \ t = \frac{T}{2} = \frac{1}{2f_0}; \\ N &= \eta \frac{P}{\frac{\pi d^2}{4} l \frac{hc}{\lambda_{13}}} \cdot \tau \cdot \left(1 - \exp\left(-\frac{1}{2f_0 \tau}\right)\right) = \\ &= 0,003 \frac{3 \cdot 10^3}{\frac{\pi (6 \cdot 10^{-3})^2}{4} \cdot 10^{-1} \cdot \frac{6.6 \cdot 10^{-34} 3 \cdot 10^8}{808 \cdot 10^{-9}}} \cdot 230 \cdot 10^{-6} \cdot \\ &\cdot \left(1 - \exp\left(-\frac{1}{2 * 50 \cdot 10^3 \cdot 230 \cdot 10^{-6}}\right)\right) \\ N &= 5, 5 \cdot 10^{23} \end{split}$$

Omeem: $5, 5 \cdot 10^{23}$

6.8 8.

Рассчитать длительность импульса лазера на YAG:Nd³⁺, работающего в режиме модуляции добротности с частотой 50 кГц. Мощность накачки - 3 кВт, КПД накачки - 0.3%, длина резонатора - 81,5 см, диаметр активного элемента 6 мм, его длина 10 см, показатель преломления граната 1.8, одно из зеркал глухое, пропускание другого - 20%, поглощение в активном элементе - 1%, время жизни верхнего уровня - 230 мкс, сечение перехода $2, 8 \cdot 10^{-19}$ см², энергия между 0-м и 3-м уровнями соответсвует энергии фотона с длиной волны 808 нм.

$egin{aligned} \mathbf{Д}\mathbf{a}\mathbf{Ho}\mathbf{c}: \\ P &= 3 \ \mathrm{KBT} \\ \eta &= 0.3\% \\ \tau &= 230 \ \mathrm{MKC} \\ f_0 &= 50 \ \mathrm{K}\Gamma \mathrm{H} \\ \lambda_{13} &= 808 \ \mathrm{HM} \\ d &= 6 \ \mathrm{MM} \\ l &= 10 \ \mathrm{cM} \\ L &= 81, 5 \ \mathrm{cM} \\ l &= 10 \ \mathrm{cM} \\ n &= 1, 8 \\ R_1 &= 1 \\ R_2 &= 80\% \\ T &= 1\% \\ \sigma &= 2, 8 \cdot 10^{-19} \ \mathrm{cm}^2 \\ \hline \Delta \tau_p &= ? \end{aligned}$

Решение:

Рис. 14. Коэффициент использования энергии η_{ε} в зависимость от отношения N_i/N_p начальной инверсии к пиковой

$$\Delta\tau_p = \tau_c \frac{(N_i/N_p)\eta_\varepsilon}{(\frac{N_i}{N_p}) - \ln{(\frac{N_i}{N_p})} - 1}$$

$$N_p = N_0 \Rightarrow \frac{1}{N_p} = BV_a\tau_c$$

$$B = \frac{\sigma c}{V} = \frac{\sigma c \, l}{L_e V_a} \Rightarrow \frac{1}{N_p} = \frac{\sigma c \, l}{L_n}\tau_c$$
 из задачи $7: N_i = 1,08\cdot 10^{24}$ из задачи $5: \tau_c = 22,3$ нс
$$\frac{N_i}{N_p} = N_i \frac{\sigma c \, l}{L_n}\tau_c =$$

$$= 5.5\cdot 10^{23} \cdot \frac{2,8\cdot 10^{-19}\cdot 10^{-4}\cdot 3\cdot 10^8\cdot 10\cdot 10^{-2}}{81,5\cdot 10^{-2}\cdot 1,8} \cdot 22,3\cdot 10^{-9}$$

$$= 6.9$$
 из рисунка : $\eta_\varepsilon = 1$
$$\Delta\tau_p = 22,3\cdot 10^{-9} \frac{6,9\cdot 1}{6.9-\ln 6.9-1} = 22,3\cdot 10^{-9}\cdot 1,35 = 30$$
 нс

Ответ: 30 нс

6.9 9.

Как зависит энергия в импульсе лазера от мощности накачки?

Дано:	Решение:
$P_{ m max}$	Исходя из формул (15,16)
η	
au	$-\ln R_2 \cdot c$. $f^{ au}$
S	$E = -rac{\ln R_2 \cdot c}{2L_c}h u_l \int_0^{ au} \phi dt$
l	$ZBe = J_0$
ν	
R_1	$E = -\frac{\ln R_2}{2\ln(1-L)\sqrt{R_1R_2}} \cdot (N_i - N_f)V_a h\nu_l,$
R_2	$2\ln(1-L)\sqrt{R_1R_2} \qquad (1-t) \qquad (1-t)^{-1}$
	$N \ll N \rightarrow$
$E(P_{\mathrm{max}})$ - ?	где $N_f \ll N_i \Rightarrow$
	$E \approx AN_i V_a h \nu_l = \tilde{A} \frac{P_{\text{\tiny HAK}}}{h V_a} V_a h \nu_l = \tilde{A} P_{\text{\tiny HAK}} \nu_l,$
	следовательно,
	$E \sim P_{ ext{ iny Hak}}.$
	$_{L}\sim r_{ m Hak}.$

Omsem: E прямо пропорционально $P_{\text{нак}}.$

6.10 10.

Показать зависимость энергии излучения в импульсе от частоты открывания модулятора.

Дано:	Решение:	
$ u_{ m MOД}$	При открытии акустического модулятора происходит рост населённостей, который	
$E(\nu_{ ext{mod}})$ - ?	описывается формулой (12)	
	$N(t) = N_p[1 - \exp(-t/\tau)],$	
	Предельное значение $N=N_p$ не зависит от частоты. Так как t – время открытия модулятора, то $t=1/\nu_{\text{мод}}$. Поскольку $\exp\left(-\frac{1}{\nu_{\text{мод}}\tau}\right)$ – возрастающая функция в зависимости от $\nu_{\text{мод}}$, то $N(t)$ наоборот убывает, то есть чем больше частота, тем меньше времени проиходит накачка фотонов. Как известно из формулы (16)	
	$E = \left(\frac{\ln R_2}{2\ln\left((1-L)\sqrt{R_1R_2}\right)}\right)(N_i - N_f)(V_ah\nu_l) \sim N_i \sim 1 - \exp\left(-\frac{1}{\nu_{\text{mog}}\tau}\right)$	
	Это значит, с ростом частоты модулятора $\nu_{\text{мод}}$ энергия в импульсе падает.	

Ответ: $E \sim 1 - \exp\left(-\frac{1}{\nu_{\text{mog}} \tau}\right) \sim \frac{1}{\nu \tau}$.

6.11 11.

Рассчитать энергию в импульсе и пиковую мощность для лазера и задачи 7.

Дано:

P=3 кВт $\eta=0.3\%$ au=230 мкс $f_0=50$ кГц $\lambda_{13}=808$ нм d=6 мм l=10 см $R_1=1$ $R_2=0,8$ L("T")=1% $\nu_l=1064$ нм

 $E, P_{max} - ?$

Решение:

Как следует из скоростных уравнений, со временем ϕ_0 примет стационарное знанение

$$\phi_0 = \frac{R_p - \frac{N_0}{\tau}}{BN_0} = \frac{R_p - \frac{1}{\tau BV_a \tau_c}}{\frac{1}{V_a \tau_c}} = R_p V_a \tau_c - \frac{1}{B\tau}$$

$$\int_0^{\tau_{\rm m} \rm 3 \pi} \phi_0 dt = (R_p V_a \tau_c - \frac{1}{b\tau}) \tau_{\rm mm \pi}$$

$$\varepsilon = -\frac{\ln R_2 \cdot c}{2L} h\nu_l \cdot (R_p V_a \tau_c - \frac{1}{B\tau}) \frac{1}{\nu}$$

$$\varepsilon = -\frac{\ln 0,8 \cdot 3 \cdot 10^8}{2 \cdot 1,8 \cdot 0,815} 6,63 \cdot 10^{-34} \cdot \frac{3 \cdot 10^8}{1,064 \cdot 10^{-6}} (1,3 \cdot 10^2 5 \cdot \frac{1}{4} \cdot \pi \cdot 0,006^2 \cdot 40 \cdot 10^{-9} - \frac{1}{230 \cdot 10^{-6}} \cdot \frac{1}{2 \cdot 10^{-6}}) \frac{1}{50 \cdot 10^3} = 12,5 \cdot 10^{-4}$$
Дж

Пиковую мощность можно оценить как:

$$P_{max} = \max(-\frac{\ln R_2 \cdot c}{2L_e}h\nu_e\phi) = -\frac{\ln R_2 \cdot c}{2L_e}h\nu_e\phi_o = \frac{\varepsilon}{\tau_{\text{\tiny MMII}}}$$

$$P_{max} = 12, 5 \cdot 10^{-4} \cdot 50 \cdot 10^3 = 62, 5$$
BT

 $Omeem: E \approx 1,25$ мДж, $P_{max} \approx 63$ Вт.