LEMMA DEL TAGLIO

Dimostrazione del lemma - I

Dimostrazione del lemma - III

Dimostrazione del lemma - IV

CORRETTEZZA PRIM

Invarianti

Definiamo gli invarianti

IS)

ID)

Esempio base

Correttezza – passo

Correttezza – passo II

Correttezza – passo III

Correttezza – passo IV

```
for ogni v adj ad u then if def[v] = false and d[v] > W(u,v) then \pi[v] <- u d[v] <- W(u,v) decrease\_key(D,v,d[v]) end for
```

Correttezza – conclusione

Quindi, Sè un Minimo Albero Ricoprente di G.

CORRETTEZZA KRUSKAL

Correttezza

Definiamo un invariante.

Caso Base

Passo – caso 1

Passo – caso 2

CORRETTEZZA BELLMAN FORD

CORR PRIM Correttezza

Definiamo l'invariante **KPATH**:

Dopo la k-esima iterazione

Correttezza - II

Sia \mathbf{v}_{k+1} un nodo il cui cammino minimo $\mathbf{s} \sim \mathbf{v}_k \sim \mathbf{v}_{k+1}$ è composto da k+1 archi. Si ha dunque:

$$\delta(s, v_{k+1}) = W(s \sim v_k \sim v_{k+1}) = W(s \sim v_k) + W(v_k, v_{k+1})$$

Ma il cammino s $\sim v_k$ ha k archi, e quindi per ipotesi induttiva $d[v_k] = \delta(s, v_k)$.

Quindi nel corpo del ciclo:

Se $d[v_{k+1}]$ viene aggiornata, $d[v_{k+1}] = d[v_k] + W(v_k, v_{k+1}) = \delta(s, v_k) + W(v_k, v_{k+1}) = \delta(s, v_{k+1})$ Se $d[v_{k+1}]$ non viene aggiornata, poiché $d[v_{k+1}] \ge \delta(s, v_{k+1})$ ($d[v_{k+1}]$ è il peso di

Se d[v_{k+1}] non viene aggiornata, poiché d[v_{k+1}] ≥ δ(s, v_{k+1}) (d[v_{k+1}] è il peso di un cammino da s a v_{k+1} in G) e non essendo stata aggiornata d[v_{k+1}] ≤ d[v_k] + W(v_k, v_{k+1}) = δ(s, v_{k+1}), possiamo avere solo d[v_{k+1}] = δ(s, v_{k+1}) quindi il cammino trovato è comunque minimo.

ORDINAMENTO TOPOLOGICO

Teorema dell'ordinamento topologico

Teorema. Una (qualunque) DFS di un grafo orientato aciclico associa ai vertici tempi di fine visita tali che:

```
f[v] < f[u] per ogni arco <u, v> del grafo.
```

Dimostrazione.

assurdo

HUFFMAN

Invariante di Ciclo

Base dell'induzione

$$\left(c_3:f_3\right)$$

... ...

$$c_n:f_n$$

Dimostrazione del passo induttivo

La parte tratteggiata è T''', che noi non conosciamo

UNICITÀ MAR

Teorema dell'unicità del MAR

TEOREMA.

DIMOSTRAZIONE.

Teorema dell'unicità del MAR

Teorema dell'unicità del MAR - II

INTERVALLI DISGIUNTI

Dimostrazione di correttezza

Situazione a un generico passo intermedio (Invarianti), dove sia S è l'insieme di tutti gl'intervalli finora esaminati:

- 1. MAX
- 2. PRIMAMAX
- 3. PRIMAVISTI

Dimostrazione di correttezza (per induzione): la base

Max:

PrimaMax:

PrimaVisti:

Dimostrazione del passo: caso 1.

caso 1)

Dimostrazione del passo: caso 2.

caso 2)

•

•