Generative Adversarial Nets

Author: Goodfellow et al.

created by paper2slides

Date: 2014-06-10

https://arxiv.org/abs/1406.2661

Executive Summary

- The paper introduces Generative Adversarial Networks (GANs), a framework for estimating generative models via an adversarial process.
- Two models are trained simultaneously: a generative model G and a discriminative model D.
- lacksquare G aims to generate data indistinguishable from real data, while D attempts to distinguish between real and generated data.
- The framework corresponds to a minimax two-player game.

Introduction

- Deep learning has seen success primarily in discriminative models.
- Generative models face difficulties due to intractable probabilistic computations.
- The proposed adversarial nets framework sidesteps these difficulties.
- GANs train via backpropagation and avoid Markov chains or approximate inference during training and sample generation.

Adversarial Modeling Framework

- Generative model G maps noise variables z to data space via a neural network.
- lacktriangleright Discriminative model D outputs the probability that a sample came from the real data rather than G.
- Training involves a minimax game:

$$\begin{aligned} \min_{G} \max_{D} V(D, G) &= \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] \\ &+ \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))] \end{aligned}$$

 $lackbox{D}$ is trained to maximize classification accuracy, while G is trained to fool D.

Theoretical Results

- Global Optimality: The global minimum of the training criterion is reached if and only if $p_q = p_{\text{data}}$.
- **Proposition**: For any fixed G, the optimal discriminator D is:

$$D_G^*(oldsymbol{x}) = rac{p_{\mathsf{data}}(oldsymbol{x})}{p_{\mathsf{data}}(oldsymbol{x}) + p_g(oldsymbol{x})}$$

lacksquare G converges to p_{data} if D is optimal at each step and G is updated gradually.

Algorithm for Training GANs

- Training involves iterative updates:
 - Update D for k steps to maximize $\log D(x) + \log(1 D(G(z)))$.
 - Update G to minimize $\log(1 D(G(z)))$.
- Usually, k = 1 to alternate updates efficiently.
- Practical implementation avoids reliance on Markov chains or approximate inference.

Figure: Training involves G generating data to fool D and D distinguishing real versus generated data.

Experimental Results

- Experiments conducted on MNIST, TFD, and CIFAR-10 datasets.
- lacktriangle Use of rectifier linear units and maxout units in G and D respectively.
- Dropout used in training *D* for regularization.

Quantitative Results

Model	MNIST	TFD
DBN	138 ± 2	1909 ± 66
Stacked CAE	121 ± 1.6	2110 ± 50
Deep GSN	214 ± 1.1	1890 ± 29
Adversarial nets	225 ± 2	2057 ± 26

Table: Parzen window-based log-likelihood estimates showing competitive results of GANs.

Figure: Samples from GAN on MNIST dataset.

Figure: Samples from GAN on TFD dataset.

Figure: Generated samples on CIFAR-10 using fully connected model.

Figure: Interpolations between generated digits by linearly interpolating in the latent space.

Advantages and Disadvantages

- Advantages:
 - No Markov chains required.
 - Backpropagation sufficient for training.
 - No approximate inference needed.
- Disadvantages:
 - No explicit density estimation.
 - $lue{}$ Requires careful synchronization between G and D.

Conclusions and Future Work

- GANs provide a new way to train generative models through adversarial learning.
- Potential extensions include conditional adversarial nets, semi-supervised learning, and improved training stability.
- Future work can explore more effective ways to synchronize *G* and *D* and other model architectures.