Problem 13-42

Given the information provided for Rockland, Inc.:

Annual	Price per	Oversight Cost	Transport		Cost to Store	
Demand	Unit	per Unit	Cost per Unit	Order Cost	One Unit	Time in Days
(D)	(P)	(O)	(C_t)	(C_o)	One year (C_h)	(L)
200,000	\$7.87	\$0.40	\$4.54	\$340	\$9.00	25

If order quantity Q=16,000 unit, and the supply chain operates 250 days per year. We can calculate the following:

Total procurement cost $(D \cdot P)$

$$=200000 \cdot 7.87$$

$$= 1574000$$

Total management oversight cost $(D \cdot O)$

$$= 200000 \cdot 0.40$$

$$= 80000$$

Total annual transportation cost $(D \cdot C_t)$

$$=200000 \cdot 4.54$$

$$=908000$$

Annual order cost $(\frac{D}{Q} \cdot C_0)$

$$=\frac{200000}{16000}\cdot 340$$

$$= 4250$$

Annual holding cost $(\frac{Q}{2}\cdot C_h)$

$$= \frac{16000}{2} \cdot 9.00$$

$$= 72000$$

Average annual pipeline inventory cost $(\frac{D}{250} \cdot L \cdot C_h)$

$$=\frac{200000}{250}\cdot 25\cdot 9.00$$

$$= 180000$$

Total supply chain costs:

$$=2818250$$

If the supplier increases the order quantity to 40,000 units for a price discount of one percent, we have D = 40000, P = 7.7913. Using the same formulas for part (a), we have:

Total procurement cost $(D \cdot P) = 1558,260$

Total management oversight cost $(D \cdot O) = 80000$

Total annual transportation cost $(D \cdot C_t) = 908000$

Annual order cost $(\frac{D}{Q} \cdot C_0) = 1700$

Annual holding cost $(\frac{Q}{2} \cdot C_h) = 180000$

Average annual pipeline inventory cost $(\frac{D}{250} \cdot L \cdot C_h) = 180000$

Total supply chain costs: = 2907960

We can see that the total supply chain costs would increase, so you should reject the new deal.