Pee Stain Pathology

Emily Gillott

Joseph Fishwick

Desiccation Pattern Diagnostics

Dried droplets of various body fluids used as diagnostic tool for many diseases

Most use visual inspection for classification

ML classification have been applied to blood diagnosis, not much for urine.

<u>Diagnostic tests based on pattern formation in drying body fluids – A mapping review | Elsevier Enhanced Reader</u>

Urological diseases

Diseases in urinary tract can alter composition of urine

- Kidney stones contain CaC₂O₄
- Kidney failure, cystitis, pregnancy issues release albumins

Project Aims

Test & compare different image classification models to be used for urological diagnostics.

Models used to detect high concentrations of disease biomarkers in dried samples of artificial urine.

Biomarkers used in study:

- Calcium oxalate CaC_2O_4
- Ovalbumin

$$Ca^{2+}\begin{bmatrix} O & O \\ C & C \end{bmatrix}^{2-}$$

Physics of Drying Droplets

Diffusion limited model

Modes of evaporation

Capillary and crystallisation driven internal flows

<u>Dynamics of droplet drying -Crystallization-Driven Flows within</u> <u>Evaporating Aqueous Saline Droplets |</u>

Desiccation patterns

Capillary flow advect and deposit particles to the drop perimeter, coffee ring effect.

Key patterns:

- Crystallisation of salts
- Cracking of protein gels

Image Processing

Raw image

Minkowski analysis

Voronoi analysis

Minkowski Analysis

Minkowski functionals: A, P, χ

Scan image binarise threshold

Marching matrix calculation of functionals

Functionals normalised then concatenated to a "Minkowski signature"

$$Q_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad Q_2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \quad Q_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$Q_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad Q_D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Voronoi Analysis

Extract crack skeleton, find branch points, seed Voronoi mosaic

Parameters extracted from Voronoi mosaic:

- Number of nodes
- Number of vertices
- Angular defect
- Isoperimetric ratio

$$D = \frac{1}{\sum_{i}^{v} |\theta_{i} - \frac{(v-2)\pi}{v}| + 1}$$

$$\lambda = rac{4\pi A}{L^2}$$

Machine learning

Metrics

Accuracy
$$A = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision
$$P = \frac{TP}{TP + FP}$$

Recall
$$R = \frac{TP}{TP + FN}$$

Total population: TP+FN+FP+TN		Predicted class	
		High conc	Low
Actual class	High conc	TP	FN
	Low	FP	TN

Machine Learning Models

Neural networks vs non-neural networks

Raw image data vs image mined data

Neural Networks

- CNN
- Raw NN
- Voronoi NN
- Minkowski NN

Non-NN

- Voronoi logistic regression
- Voronoi k-nearest neighbours

CNN Results

Minkowski Analysis Results

Voronoi Parameters Results

Model Comparison

Calcium oxalate results

Model	Accuracy	Precision	Recall
NN	0.697	0.692	0.728
CNN	0.755	0.824	0.724
Minkowski NN	0.799	0.855	0.768
Voronoi log reg	0.451	0.723	0.412
Voronoi NN	0.391	0.660	0.311
K means	0.563	0.853	0.540

Ovalbumin results

Model	Accuracy	Precision	Recall
NN	0.709	0.855	0.662
CNN	0.783	0.769	0.792
Minkowski NN	0.873	0.879	0.868
Voronoi log reg	0.521	0.785	0.812
Voronoi NN	0.521	0.652	0.647
K means	0.671	0.829	0.623

Discussion

- Model urine
- Tweaking within models, vary architectures
- Overfitting issues

Conclusions

- Neural networks outperformed non neural networks
- Minkowski analysis was optimal, closely followed by CNN
- Models performed better at protein detection than salt detection