Lab 1 - Pre-Lab & Pseudo Code Caleb Farnie, Noah Terry

Introduction

This lab will allow us to communicate with the car for future labs. We will be able to send messages to and from the robot car which will be very helpful for debugging future labs. We will also need to communicate with the robot car to control its movement in lab 5. Additionally, we will be able to implement an event driven framework where the messages will be the events.

Pseudocode

Functions in SerialIO.h/c

FUNCTION usb send byte(byte)

DESCRIPTION Adds a character to the output buffer **INPUTS** Byte to send **RETURNS** NONE

CALL push back() from the homework to add byte to the output buffer

END FUNCTION

FUNCTION usb_send_data(p_data, data_len)

DESCRIPTION Adds data buffer to the output ring buffer **INPUTS** Pointer to the data to send, length of data **RETURNS** NONE

FOR index IN data_len
CALL usb_send_byte() WITH p_data AT index AS INPUT
END FOR

END FUNCTION

FUNCTION usb send str(p str)

DESCRIPTION Adds a null-terminated c-string to the output buffer **INPUTS** Pointer to c-string to send **RETURNS** NONE

SET index TO 0 to increment in the while loop WHILE p_str AT index IS NOT null_character DO

CALL usb_send_byte() WITH character at index AS INPUT INCREMENT index BY 1 END WHILE

END FUNCTION

FUNCTION usb send msg(format, char cmd, p data, data len)

DESCRIPTION Sends data from the car to the host machine using USB message format **INPUTS**

Format: Defines the interpretation of the data bytes (char, int, unsigned int, etc.) cmd: Command that the message is responding to.

p data: Pointer to the data that is to be sent.

data len: Size of the data that is to be sent.

RETURNS NONE

CALCULATE the length of the format string

CALCULATE the length of the message to be sent

// Send the data

CALL usb send_byte() to send the length of the message

CALL usb send str() to send the format of the message

CALL usb send byte() to send cmd

CALL usb send data() to send p data

END FUNCTION

FUNCTION usb msg read into(p obj, data len)

DESCRIPTION Populates the object with the data in the receive buffer and removes the bytes as they are read.

INPUTS pointer to object that gets populated with data in receive buffer, length of data RETURNS FALSE if the receive buffer does not contain enough bytes to fill the container and terminates without reading or removing, otherwise TRUE

FOR data len

CALL pop_front() WITH receive_buffer AS INPUT AND SET TO value CALL push_back() WITH p_obj AND value AS INPUTS END FOR

END FUNCTION

Functions in Lab1 Tasks.h/c

FUNCTION Multiply And Send(value left, value right);

DESCRIPTION Multiplies two values together and sends the result to the host machine. **INPUTS** Two numeric values, the left value and the right value **RETURNS** NONE

MULTIPLY value_left and value_right together *AND STORE AS* product CALL the usb_send_msg function to send the product calculated in the previous step

END FUNCTION

FUNCTION Divide_And_Send(float value_left, float value_right)

Same as Multiply_And_Send(float value_left, float value_right) but with division.

END FUNCTION

FUNCTION Subtract_And_Send(float value_left, float value_right);

Same as Multiply_And_Send(float value_left, float value_right) but with subtraction.

END FUNCTION

Planned Schedule and Task Assignment

We will start by pair programming on the weekend of January 1/27. Here we will begin implementing our pseudo code and making changes as necessary. We plan on spending time Monday, Wednesday, and Thursday continuing our work on lab 1. We plan on finishing the majority of the lab during the week and will then spend the weekend debugging the code. Responsibilities will be shared between the two partners. We plan to pair programming for the entirety of the lab, such as to provide the fairest mode of collaboration.