(20) Permutations and eyeles (Stanley § 1.3) Gn = symmetric group on n letters = permutations of [n] G= (123456789 10112) 713122105411698 · two line: Wotatrons: G= (7,3 3,12,2,20,5,4,11,6,9,8) digrayoh (dimected graph) · cycle notation: 0= (1752)(3)(4128)(610)(911) = (8 4 12)(10 6)(52#7)(3)(11 9) =(8412)(106)(119)(7521)= (3)(7521)(106)(119)(1284) Stendard form: each cycle has
its biggest element
first,
and cycles appear with these
biggest elements increasing
left-to-right Q: How many of Sn of cycle type n= (m, n2, --) +n? = 116,2162363.... Countoplicity notation for 2 eg. ney 入= 位目 (a) (b) (s)(d) 1 e.g. 7 = (55532222211) (4)=6 212 (ab)(a)(d) $=1^22^53^14^05^3$ $2^2 = \iint (ab)(cd)$ 3 G=2 G=5 G=1 G=0 G=3 311- III (abc)(d)

6=4!

41= 1111 (abcd)

(21) TROP: There are 100 cycle 100 cycle 200 cycle 100 cycle 200 cycle 100 cycle 200 cycle proof: Recall acts on the set of them transitively via conjugation: (1234567) (abcdefg) (1234) (567) (absdefg) (1234567) = (abcd)(efg) So the size of the orbit is $|9| = \frac{|S_n|}{|Z_n(q)|}$ if G_n has eyele type λ where Zg(5):= {TESn: TG= TaT} the contralizer
i.e. TG=TG of GA MGA > who centralizers $G_{\Lambda} = (a)(b) - (cd)(ef) - ?$ why technis
Equivalent 12, 1-aydes · C2 2-cycles Products of powers of each cycle - there are 19233. counting to of [in] into · Swapping two cycles of same size,

presening cyclic orders - there are Cal S. Cal... $\underbrace{c_1}_{c_2} \underbrace{c_2}_{c_2}$ that gresame standard form? e.g. (1234)(567)(8910) is centralized by T = (4321)(567)= $(1234)^3$ Thus $|O| = \frac{n!}{\prod_{j \geq i} j \leq i} = \frac{n!}{\prod_{j \geq i} j \leq i}$ DEF'N: For a subgroup G of En, define its cycle indicator polynomial $Z_G(t_1, t_2, -) := |G| \sum_{\sigma \in G} t_1 t_2 \cdots$ where $G(\sigma) = \#j$ -cycles of σ .

 $= t(t+1)(t+2) \quad \frac{C(3,2)}{C(3,3)} = 3 \quad \frac{(12)(3)}{(1)(2)(3)=6} \quad \frac{(13)(2)}{(13)(2)} = 0 \quad \frac{$

(13) (14) (23) (24) (34)

(13) (14) (23) (24) (34)

(14) (24) (34)

(154)

(164)

(17)

 mod: 1 (3) (3521)(106)(119)(1284) (3) (3521)(106)(119)(1284) the L-to-R maxes in G

tell you where to put

the left parens"(",
and then add in right
parens ")" just before

them (not at beginning,
one extraoit end)

(2) Can we compute $f_k(n) := expected number of k cycles$ in a random of Eh (using unitoun distribution) i.e. all GEGy have same probability in = 1 5 Ca(0) = 1 24 0 com + color + = [] xn] c(6) (6)]

- [] t = t = ...=1 $= \left[\frac{\partial}{\partial t_{k}} \right] \left[\frac{\partial}{\partial t_{k}} \left[\frac{\partial}{\partial t_{k}} \right] + \frac{1}{2} \left[\frac{x^{2}}{2} + \dots \right] \right]$ $= \left[\frac{x^{k}}{k} e^{\frac{1}{2} + \frac{1}{2} + \frac{x^2}{2} + \dots} \right]_{t=1}$ $= \frac{x^{kq}}{k} e^{\frac{x^{1}}{1} + \frac{x^{2}}{2} + \dots} = \frac{x^{k-1}}{k} e^{-\log(1-x)} = \frac{x^{kq}}{k(1-x)}$ $= \sum_{n \ge k} \frac{1}{k} \cdot x^n \quad \text{i.e. } f_{k}(n) = \begin{cases} \frac{1}{k} & \text{for } n \ge k, \\ 0 & \text{else.} \end{cases}$

RMK: In fact one can show #k-cycles (σ) for σε Gn approaches (as n-> 00) a Poisson remdom variable with expectation $A = \frac{1}{k}$ i.e. Prob(#k-cycles=m) $\stackrel{\sim}{\rightarrow} e^{\lambda}$ $\stackrel{\sim}{\rightarrow} e^{\lambda}$

(3) There are special classes of permutations defined by restrictions on their cycles sizes, so all have nice gen. fins.

(exponential)

e.g. no large cycles: of Gh is an mulition of e (>) o has only 1-cycles and 2-cycles

(ab)(cd)--(x)(y)(z)

Hence $\sum_{n\geq 0}^{\infty} \frac{x^n}{n!} \# \text{modubons} = \begin{bmatrix} t_1x_1^2 + t_2x_2^2 + \dots \end{bmatrix} t_3 = t_4 = t_5 = 0$

or even $\sum_{n\geq 0} \frac{x^n}{n!} = e^{x+\frac{x^2}{2}}$ smilarly $e^{x+\frac{x^2}{2}} = e^{x+\frac{x^2}{2}}$ smilarly

lashat about no small cycles?

DEFIN: A derangement of G is a permutation with no fixed points i.e. $c_1(c) = 0$.

Q: (Perengement) What is the probability that

100 people with hats all get the wrong hat back from the hat-check attendent?

I.e. what is $\frac{dn}{n!}$ where $d_n = \#\{\sigma \in G_n : \sigma \text{ a departy ement}\}$? $\sum_{n=1}^{\infty} \frac{x^n}{n!} dn = \left[\sum_{n=1}^{\infty} t_n \times \frac{x^n}{n!} + \sum_{n=1}^{\infty} t_n - 1\right]$

 $\sum_{n\geq 0} \frac{x^n}{n!} dn = \left[e^{t_1 \frac{x^2}{1} + \frac{t_2 \frac{x^2}{2} + \dots}{2}} \right]_{t_1=0}, t_2=t_3=\dots=1$

 $= e^{-\log(1-x)-\frac{x^{1}}{1}} = \frac{e^{-x}}{1-x}$

 $= (1+\chi+\chi^2+...)(1-\frac{\chi^1}{1!}+\frac{\chi^2}{2!}-\frac{\chi^3}{3!}+...)$

 $= \sum_{n\geq 0}^{1} \chi^{n} \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-0)^{n} \frac{1}{n!} \right)$ $\frac{d_{n}}{n!} \rightarrow e^{-1} = \frac{1}{e}$

(wasisted with Cy(o) - Posson with mean 1)

THM (Polya) The # of G-orbits of k-colorings of X is $\frac{1}{1GI} = \frac{1}{GEG} =$

(27)

poof of Polya's Thim. The engine during it is -..

Burnside's Lemma: For a group Go of permutations of

a finite set X, # G-orbits O on X = 1 ST # (XEX: g(x)=x)

proof: [# {x e X: o(x)=x} = # { (5, x) e G x X: o(x)=x}

= = = freG: o(x)=x} xex Gx:= G-stabilizer of x

G-onlike O (xeX) orbit-stabilizer

on X | O | Gx |= |G| | Temma

i.e. | O | Gx |

= 10|·|G|

=(G: Gx)

=1G/G×1

9/20/2015 = When G pennutes X,

it also permutes k-colonings of X

and GeG fixes a ke adomng () the k-coloning is constant within cycles of o

Hence $\sum_{\alpha_1 \text{ timed a}} a_1^{\text{timed a}} a_2^{\text{timed a}} = \prod_{\alpha_1 + \alpha_2 + \dots + \alpha_k} a_1^{\text{timed a}} = \begin{bmatrix} a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed a}} \\ a_1^{\text{timed a}} a_2^{\text{timed a}} \\ a_2^{\text{timed a}} a_2^{\text{timed$

Hence pattern inventory = $\sum_{G} \frac{a \, \text{colors in } G}{G} = \sum_{G} \frac{a^{G}}{G} + \frac{1}{G} + \frac{1}{$

 $= \left[\frac{1}{|G|} \sum_{\alpha \in G} t_{\alpha}^{(\alpha)} c_{\alpha}^{(\alpha)}\right]_{\xi_{1}^{1} = \alpha^{1} + \alpha^{1}$

• If C-structures of size n are a choice of C_1 about C_2 C_3 C_4 C_5 C_5 C_6 C_6

(30) EXAMPLES (see also Andila \$2,2,2) 1) Let Pe(n) := # partitions Africulta An k (so Aisle Vi) }

(2) Let Pe(n) := # partitions Africal with An k (so Aisle Vi) }

(2) Let Pe(n) := # partitions Africal with An k (so Aisle Vi) }

(2) Let Pe(n) := # partitions Africal with An k (so Aisle Vi) }

(3) Let Pe(n) := # partitions Africal with An k (so Aisle Vi) } = #{partitions 21-1 with l(2) = k } diagram across diagonal Then $P(q) := \sum_{n \geq 0} p_k(n) q^n = \sum_{n \leq k} q^{|n|} = \sum_{\substack{n \leq k \\ \text{orabsk}}} q^{|n|}$ $= \frac{1}{1-g^2} \cdot \frac{1}{1-g^2} \cdot \frac{1}{1-g^k} = \frac{1}{(1-g)(1-g^2)-(1-g^k)}$ $for \ \ \lambda \qquad for \ \ \lambda \qquad (same.)$ $with early \qquad with only quits of size 1 parts of size 2$ i.e. of Aisk J= Seg(Ones) x Seg(Twos) x ... x Seg(k's)) Similarly, $\frac{\sum_{i=1}^{n} g^{i} \lambda_{i} l(\lambda)}{\lambda_{i} \leq k} = \frac{1}{(1-k_{i})(1-k_{i}^{2}) - (1-k_{i}^{2})} = \frac{\sum_{i=1}^{n} g^{i} \lambda_{i}^{2}}{\ell(\lambda) \leq k}$ "X is a composition of " (2) (Andila §20.2 #5) Let an:= #forcompositions (x, xz, -, xe) Eng of any length ! before = $\int_{1}^{2} 2^{n-1} for n \ge 1$ but seen outsternay, $A(x) = \sum_{n \ge 0}^{2} a_n x^n = \frac{1}{1 - (x + x^2 + x^2 + \dots)} = \frac{1 - x}{1 - x} = \frac{1 - x}{1 - x}$ compositions of $n = \frac{1-x}{1-2x} = 1 + \frac{x}{1-2x}$ with one part =1+ \sum_{n>1} 2^{n-1} \times V (Andila \$2.2.2#6)
(5) More interestingly, what about an:= [# compositions XEN }?

	2	a kn withold parts	
~	O	()	1
	1	1	<u> </u>
er.	2	1+1	2
-	3	3 1+1	
Proce	4	3+1 1+3 1+3+1+1	3
	5	5	5
	J	1+3+1 1+1+1+1	
	6		8 /

Quess
$$a_n = \sum_{n=1}^{\infty} f_{n-1}$$
 for $n \ge 1$

1 for $n = 0$

and indeed,
$$A(x) = \sum_{n \ge 0} a_n x^n = \frac{1}{1 - (x^1 + x^3 + x^5 + \dots)}$$

$$= \frac{1}{1 - \frac{1}{1 - x^2}} = \frac{1 - x^2}{1 - x^2 - x} = 1 + \frac{x}{1 - x - x^2}$$
Seen $x = 1 + \sum_{n \ge 1} f_{n-1} x^n x^n x^n$
earlier $x = 1 + \sum_{n \ge 1} f_{n-1} x^n x^n x^n$

(4) Stirling numbers of the 2nd kind

S(n,k):= # set-partitions of [n] into exactly k (nonempty) blocks for neken

for nekern

= rank numbers for the poset (TIn)

[all set partitions]

refinement,

	ne	1	2_	3	4	5	
******	1	1	0	O			
***************************************	2	1	1	O			
***	3	1	3	1	b	~ <u> </u>	
_	4	1	7	6	1	U	
	5	1			10	1	0.

(Pascal-like) Recurrence:

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$
 forker
 n is a singleton in goes in one
block of the k

and
$$S(n_{51}) = 0$$
 $\forall n$
 $S(0,0)=1$
 $S(n,k)=0$ if $k>n$

Let's get $f_k(x) := \sum_{k} |x| = \sum_{n \ge k} S(n,k) x^n$ in 2 ways.

When k blocks (or nzo)

(a) Solve remmence: For k22

$$\frac{\sum S(n,k) \times^{n}}{\sum_{n \geq 0}} = \frac{\sum S(n-1,k-1) \times^{n}}{\sum_{n \geq 0}} + \frac{\sum k S(n-1,k) \times^{n}}{\sum_{n \geq 0}}$$

$$F_k(x) = x F_{k-1}(x) + kx F_k(x)$$

$$F_{k}(x) = \frac{x}{1-kx} F_{k+1}(x)$$
 and for $k=1$,
$$F_{k}(x) = \frac{x}{1-kx} F_{k+1}(x)$$

$$F_{k}(x) = \frac{x}{1-kx} F_{k+1}(x)$$

$$F_{k}(x) = \frac{x}{1-kx} F_{k+1}(x)$$

and for
$$k=1$$
,
 $F_{1}(x) = \sum_{n\geq 0} S(n,1)x = x + x^{2} + x^{2}$

$$\Rightarrow f_{k}(x) = \frac{x}{1-kx} \cdot \frac{x}{1-(k-1)x} \cdot \frac{x}{1-2x} \cdot \frac{x}{1-x}$$

$$\sum_{N\geq k} S(n_1 k) \chi^N = \frac{\chi^k}{(1-\chi)(1-2\chi)-\cdots(1-k\chi)}$$

(b) (India 2,2,2 H13)
(b) Let Am: = the structure strings of letters from [m] that start with an m whose weight is their length, "e.g. for un=3

and
$$A_m(x) = \frac{x}{1 - mx} = x + mx^2 + m^2x^3 + ...$$

91=16

number the blocks O, Q, -, @ according to increasing smallest elements

proof: EXERCISE 1

$$\sum_{i=1}^{n} S(n_i l_2) \times^{l_2} = \frac{x}{1-x} \frac{x}{1-2x} - \frac{x}{1-l_2x} = \frac{x^{l_2}}{(1-x)(1-l_2x)-(1-l_2x)}$$

$$= A_i(k) A_i(k) - A_i(k)$$

(35)

Margarity Common and pure	η	Cn	plane. Usuany bree (trangulations	lattice paths
	0	$1 = \frac{1}{4} \binom{\circ}{\circ}$	©	0 1	(0,0)
	1	$1 = \frac{1}{a} \binom{a}{1}$		0 2	***
•	2	2=\frac{1}{3}(\frac{4}{2})			
	3	5= 4(6)	於 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		阻阻阻阻阻
	4	14= 1(8))		

(1st) proof of THM:

$$C(\alpha) := \sum_{n \geq 0} C_n \alpha^n = 1 + \sum_{n \geq 1} C_n \alpha^n$$

$$=1+((x),x\cdot(x))$$

$$C_{i}$$
 C_{i}
 $C_{i+j-n-1}$
 $C_{i+j-n-1}$

Consequently,
$$C(x)=1+xC(x)^2$$

 $C(x)=1+xC(x)^2-C(x)+1$
 $C(x)=\frac{1\pm\sqrt{1-4x}}{2x}$ $< > let's expand $\sqrt{1-4x}$ to figure out the $+/-$ choice...$

(36)
$$\sqrt{1-4x} = (1-4x)^{\frac{1}{2}} = \frac{1}{n^{2}} (\frac{1}{x})^{(-4x)^{\frac{n}{2}}} = \frac{1}{n^{2}} (\frac{1}{x})^{(-\frac{n}{2})} (\frac{1}{x})^{\frac{n}{2}} \cdots (\frac{1}{2n-3})^{\frac{n}{2}} (\frac{1}{x})^{\frac{n}{2}} (\frac{1}{x$$

If C-structures on [n] are a choice of a partition $[n]=S_1 \sqcup S_2$ with an A-structure on S_1 ("C = A * B") so that $c_m = \sum_{i=1}^n \binom{m}{i} a_i b_{m-i}$, then C(x) = A(x)B(x).

of C-standards are a choice of (unordered) set partition π of [n] and then on A-standard on each block of π , ("C=Set(A)") then $C(x) = e^{A(x)}$ $= e^{A(x)}$

(38)

Proof:
$$C = A + B$$
 is obvious

For $C = A + B$, note $C_n = \sum_{i=0}^{\infty} \binom{n}{i} a_i b_{ni}$
 $C_n = \sum_{i=0}^{\infty} \frac{a_i}{i!} \int_{J_n}^{J_n} \frac{u!}{u!} \int_$

EXAMPLES:

The Recall
$$d_n = \#$$
 derengements in (E_n) $D(x) := \frac{\sum d_n x^n}{n \cdot x^n}$ problem.

The recall $d_n = \#$ derengements in (E_n) $D(x) := \frac{\sum d_n x^n}{n \cdot x^n}$ $\frac{d_n x^n}{d_n x^n}$ $\frac{d_n x^n}$

hat check

$$\frac{1}{1-x} = e^{x} \cdot D(x)$$
i.e. $D(x) = \frac{e^{-x}}{1-x}$, as we saw.

(2)
$$\{ \text{Involutions} \} = \text{Set} \left(\{ \text{Involutions} \} \right)$$

Hence $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$
 $\sum_{n \geq 0} \# \{ \text{GeG}_n : \} \frac{x^n}{n!} = 0$

and I we weight o by

then the weights are multiplicative

to these decompositions

so
$$\frac{1}{\sum_{i=1}^{N} \frac{1}{\sum_{i=1}^{N} \frac$$

$$= e^{\frac{\sum_{n\geq 1}^{n} x_{n}^{n}}} \cdot t_{n} \cdot (n-1)!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n} \cdot a_{n})!$$

$$= e^{\frac{\sum_{n\geq 1}^{n} t_{n} x_{n}^{n}}} \cdot (1 \cdot a_{1} \cdot a_{2} \cdot a_{n} \cdot a_{n}$$

Since {set partitions } = Set ({ single (non-empty) })

 $\frac{\sum_{n \ge 0}^{\infty} x^{n}}{n!} = e^{1 \cdot \frac{x^{1}}{1!}} + 1 \cdot \frac{x^{2}}{2!} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{(e^{x}-1)}$ $= e^{1 \cdot \frac{x^{1}}{1!}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{y(e^{x}-1)}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{x^{1}}$ $= e^{x^{1}} + 1 \cdot \frac{x^{3}}{3!} + \dots = e^{x^{1}}$ $= e^{x^{1}} + 1 \cdot \frac{x^{2}}{3!} + \dots = e^{x^{1}}$ $= e^{x^{1}} + 1 \cdot \frac{x^{2}}{3!} + \dots = e^{x^{1}}$ $= e^{x^{1}} + 1 \cdot \frac{x^{2}}{3!} + \dots = e^{x^{1}}$ $= e^{x^{1}} + 1 \cdot \frac{x^{2}}{3!} + \dots = e^{x^{1}}$ $= e^{x^{1}} + 1 \cdot \frac{x^{2}}{3!} + \dots = e^{x^{1}}$ $= e^{x^{1}} + 1 \cdot \frac{x^{2}}{3!} + \dots = e^{x^{1}}$ $= e^{x^{1}} + 1 \cdot \frac{x^{2}}{3!} + \dots = e^{x^{1}}$ $= e^{x^{1}} + 1 \cdot \frac{x^{2}}{3!} + \dots = e^{$

(40)

(5) Let's count
$$\forall$$
 simple graphs $G = (\bigvee_{[M]} \bigcup_{[M]} \bigcup_{[M]}$

(41) We could rephrase this is
$$\frac{V(x)}{\delta^{n}V(x)} = 3$$

or V(x) is the compositional inverse to A(x)= xex within Occas]

(easy) (PROP: If $A(x) = a_1x + a_2x^2 + ... \in R[[x]]$ has no constant term $(a_5 = a_1)$ so that B(A(x)) is well-defined, then A has a compositional inverse 13 = A (1) satisfying B (A(x)) = x (>> A(B(x))=x by associativity of AOB) ⇒a,eR×)

Does knowing V(x)= A(-1)(x) for A(x)=xe-x help us? In this case, it does, via...

Lagrange Inversion Thm:

If $B(x) = A^{(-)}(x)$, that is, B(A(x)) = x

for some A(x), B(x) & x C[[x]]

then $[x^n]B(x) = \frac{1}{n} [x^n] \left(\frac{1}{A(x)^n}\right) \left(= \frac{1}{n} [x^{n-1}] \left(\frac{x}{A(x)}\right)^n\right)$

Before ne prove it, let's do two examples ...

EXAMPLE:

1)
$$V(x) = \sum_{n \ge 0} v_n x^n$$
 where $v_n = \text{#tvertex-noded brees on } |w|$

$$= n \text{ tn}$$

$$\text{has } V(x) = A^{(-1)}(x) \text{ for } A(x) = xe^{-x}$$

50
$$\frac{\sqrt{n}}{n!} = [x^n] \sqrt{(x)} = \frac{1}{n} [x^{n-1}] (\frac{x}{xe^{-x}})^n = \frac{1}{n} [x^{n-1}] e^{nx} = \frac{1}{n} [\frac{n^{n-1}}{n^n}] = \frac{n^{n-2}}{n^n}$$

$$= \frac{1}{n!} [x^n] \sqrt{(x)} = \frac{1}{n!} [x^n] e^{nx} = \frac{1$$

proof of Lagrange Inversion Thun:

Let
$$B(x) = \sum_{n \geq 1} b_n x^n$$
 and ossuming $x = B(A(x)) = \sum_{m \geq 1} b_n A(x)^m$

we want to show $b_n = \frac{1}{n} [x^n] (A(x)^n)$:

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^{m-1} A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A'(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A'(x)^m - m A'(x)$$

$$\frac{1}{A(x)^n} = \sum_{m \geq 1} m b_m A'(x)^m - m A'(x)$$

$$\frac{1}$$

i.e. $b_n = \frac{1}{n} (x^n) \left(\frac{1}{A(x)^n} \right)$ $b_n = \frac{1}{n} (x^n) \left(\frac{1}{A(x)^n} \right)$

(44) A guick peek at asymptotic welficient estimation (see Wilf \$2.42 Ch.5, Flajolet & Sedgewick "Analytic Combinatorics") THM (Wiff DAM 24.3) If $f(x) = \sum_{n \ge 0}^{\infty} a_n x^n \in C([x])$ has radius of convergence R in O, * C (i.e. it is analytic for 12/CR but has is singularities 25 with)

1201=R every 3 N with that Yn>N, land < (++) and for profinitely many n, 1anl > (七-E)~ (i.e. roughly |an/ = kn) proof: (Complex analysis) But then if the singularities of f(x) at 20 with 12s1=R are tame enough, we can subtract off something we understand, and get emors that grow like 1/R') where the next further out singularités & have |20/=R/>R.

10/12/20157

Then
$$f(x) = \sum_{n \ge 0} \widetilde{B}_n \frac{x^n}{n!} = 1 + \sum_{k \ge 1} \sum_{n \ge 0} \frac{k! \, S(nk) \frac{x^n}{n!}}{n!}$$

$$= 1 + \sum_{k \ge 1} \left(e^{x} - 1 \right)^k = \frac{1}{1 - (e^{x} - 1)} = \frac{1}{2 - e^{x}}$$

(45) Note $f(x) = \frac{1}{2 - e^x}$ has singularities only when g(x)=2-ex has Zerves, i.e. $e^x = 2$ Su x = log 2 + 2 Tri. k for let 1. ani + x ani+log 2 Hence we expect $\frac{B_n}{n!} \approx \left(\frac{1}{\log 2}\right)^n$ But note g(x)=2-ex has g(log2)=0 $\theta'(x) = -e^x$ has $\theta'(\log 2) = -e^{\log 2}$ $R' = \sqrt{(\log 3)^2 + (2\pi)^2} \approx 6.321$ so the pole in f(x) at x=log 2 is simple , and I a constant c (the residue of f(x) at $x = \log 2$ so that h(x)= f(x)- c/x log2 is analytic in 12/2R 2nitlag2 3 mutt. by x-log 2 $(x-\log 2)h(x)=(x-\log 2)f(x)-c$ } take lim x→hog 2 $0 = \lim_{x \to \log 2} \frac{x - \log 2}{2 - e^{x}} - e^{x}$ L'Hôpibal $c = \lim_{x \to lag2} \frac{1}{-e^x} = \frac{1}{-2}$ has coefficients $\approx \left(\frac{1}{R'}\right)$ Hence $h(x) = \frac{1}{2-e^x} - \frac{-\frac{1}{2}}{x-\log 2}$ has coefficiently analytic everywhere but $x=\log 2$ Since A is analytic m/21/<R with 1st poles on 12'1=R'

(46) In other words, $\frac{\sum B_{n}}{N!} x^{n} = f(x) = \frac{1}{2 - e^{x}} = \frac{-\frac{1}{2}}{x - \log 2} + h(x)$ $= \frac{1}{2 \log_{2}(1 - \log_{2})} + h(x)$ $= \frac{$