Отчет по лабораторной работе №1

Операционные системы

Зоригоо Номун

Содержание

1	Чель работы Задание				
2					
3	Выполнение лабораторной работы 3.1 Создание виртуальной машины				
	3.3 Работа с операционной системой после установки3.4 Установка программного обеспечения для создания документации	20 27			
4	Выводы	28			
5 Ответы на контрольные вопросы		29			
6	Выполнение дополнительного задания				
Сг	писок литературы	33			

Список иллюстраций

3.1	Окно Virtualbox	8
3.2	Создание виртуальной машины	9 3.3
Указ	вание объема памяти	9 3.4
Жес	ткий диск	10
3.5	Тип жесткого диска	10
3.6	Размер жесткого диска	11
3.7	Формат хранения жесткого диска	12
3.8	Выбор образа оптического диска	
3.9	Выбранный образ оптического диска	13
3.10	Окно загрузчика	13
3.11	Интерфейс начальной конфигурации	14
	Запуск терминала	
3.13	Выбор языка интерфейса	15
3.14	Выбор раскладки клавиатуры	16
3.15	Выбор часового пояса	16
3.16	Выбор места установки	17
3.17	Задание сетевого имени компьютера	17
3.18	Создание аккаунта администратора	18
3.19	Создание пользователя	19
3.20	Завершение установки операционной системы	19
3.21	Просмотр оптического диска	20
3.22	Отключение оптического диска	20
3.23	Вход в ОС	21
3.24	Запуск терминала	21
3.25	Обновления	22
3.26	Установка tmux и mc	22
3.27	Установка программного обеспечения для автоматического обнов-	
	ления	22
3.28	Запуск таймера	23
3.29	Поиск файла	23
3.30	Изменение файла	24
3.31	Перезагрузка виртуальной машины	24
3.32	Запуск терминального мультиплексора	24
3.33	Переключение на роль супер-пользователя	25
3.34	Установка пакета dkms	25
3.35	Примонтирование диска	25
3.36	Установка драйвера	25

3.37	Перезагрузка виртуальной машины	26
3.38	Поиск файла, вход в тс	26
3.39	Редактирование файла	26
3.40	Перезагрузка виртуальной машины	26
	Переключение на роль супер-пользователя	
3.42	Установка pandoc	27
3.43	Установка расширения pandoc	27
3.44	Установка texlive	27
6.1	Анализ последовательности загрузки системы	31
6.2	Анализ последовательности загрузки системы Поиск версии ядра Поиск частоты процессора	31
6.2 6.3	Поиск версии ядра.	31 32
6.2 6.3 6.4	Поиск версии ядраПоиск частоты процессора	31 32 32
6.26.36.46.5	Поиск версии ядраПоиск частоты процессора	31 32 32
6.2 6.3 6.4 6.5 6.6	Поиск версии ядра	31 32 32 32
6.2 6.3 6.4 6.5 6.6 6.7	Поиск версии ядра	31 32 32 32 32

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задания

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины

Virtualbox я устанавливала и настраивала при выполнении лабораторной рабо- ты в курсе "Архитектура компьютера и Операционные системы (раздел" Архитек- тура компьютера")", поэтому сразу открываю окно приложения (рис. 3.1).

Рис. 3.1: Окно Virtualbox

Нажимая "создать", создаю новую виртуальную машину, указываю ее имя, путь к папке машины по умолчанию меня устраивает, выбираю тип ОС и версию (рис. 3.2).

Рис. 3.2: Создание виртуальной машины

Указываю объем основной памяти виртуальной машины размером 4096MБ (рис. 3.3).

Рис. 3.3: Указание объема памяти

Выбираю создание нового виртуального жесткого диска (рис. 3.4).

Рис. 3.4: Жесткий диск

Задаю конфигурацию жесткого диска: загрузочеый VDI (рис. 3.5).

Рис. 3.5: Тип жесткого диска

Задаю размер диска - 80 ГБ, оставляю расположение жесткого диска по умолчанию, т. к. работаю на собственной технике и значение по умолчанию меня устраивает (рис. 3.6).

Рис. 3.6: Размер жесткого диска

Выбираю динамический виртуальный жесткого диска при указании формата хранения (рис. 3.7).

Рис. 3.7: Формат хранения жесткого диска

Выбираю в Virtualbox настройку своей виртуальной машины. Перехожу в"Носители", добавляю новый привод привод оптических дисков и выбираю скачанный образ операционной системы Fedora (рис. 3.8).

Рис. 3.8: Выбор образа оптического диска

Скачанный образ ОС был успешно выбран (рис. 3.9).

Рис. 3.9: Выбранный образ оптического диска

3.2 Установка операционной системы

Запускаю созданную виртуальную машину для установки (рис. 3.10).

Рис. 3.10: Окно загрузчика

Вижу интерфейс начальной конфигурации. Нажимаю Enter для создания конфигурации по умолчанию, далее нажимаю Enter, чтобы выбрать в качестве модификатора кливишу Win (рис. 3. 11)

Рис. 3.11: Интерфейс начальной конфигурации

Нажимаю Win+Enter для запуска терминала. В терминале запускаю liveinst (рис. 3.12).

Рис. 3.12: Запуск терминала

Чтобы перейти к раскладке окон с табами, нажимаю Win+w. Выбираю язык для использования в процессе установки русски (рис. 3.13).

Рис. 3.13: Выбор языка интерфейса

Раскладку клавиатуры выбираю и русскую, и английскую (рис. 3.14).

Рис. 3.14: Выбор раскладки клавиатуры

Корректирую часовой пояс, чтобы время на виртуальной машине совпадало с временем в моем регионе (рис. 3.15).

Рис. 3.15: Выбор часового пояса

Проверяю место установки и сохраняю значение по умолчанию (рис. 3.16).

Рис. 3.16: Выбор места установки

Задаю сетевое имя компьютера в соответствии с соглашением об именовании (рис. 3.17).

Рис. 3.17: Задание сетевого имени компьютера

Диск не отключался автоматически, поэтому отключаю носитель информации с образом (рис. 3.21).

Рис. 3.21: Просмотр оптического диска

Носитель информации с образом отключен (рис. 3.22).

Рис. 3.22: Отключение оптического диска

3.3 Работа с операционной системой после установки

Запускаю виртуальную машину. Вхожу в ОС под заданной мной при установке учетной записью (рис. 3.23).

Нажимаю Win+Enter для запуска терминала и переключаюсь на роль суперпользователя(рис. 3.24).

Рис. 3.24: Запуск терминала

Обновляю все пакеты (рис. 3.25).

```
[sudo] password for zorigoonomun:
[root@fedora ~]# dnf -y update
```

Рис. 3.25: Обновления

Устанавливаю программы для удобства работы в концсоли: tmux для открытия нескольких "вкладок" в одном терминале, mc в качестве файлового менеджера в терминале (рис. 3.26).

Рис. 3.26: Установка tmux и тс

Устанавливаю программы для автоматического обновления (рис. 3.27).

Рис. 3.27: Установка программного обеспечения для автоматического обновления

Запускаю таймер (рис. 3.28).

```
[root@fedora ~]# systemctl enable --now dnf-automatic.timer
Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.timer → /u
sr/lib/systemd/system/dnf-automatic.timer.
```

Рис. 3.28: Запуск таймера

Перемещаюсь в директорию /etc/selinux, открываю md, ищу нужный файл (рис.

3.29).

Рис. 3.29: Поиск файла

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive (рис. 3.30).

```
\oplus
                                                                 Q
                           mc [root@fedora]:/etc/selinux
                                                                       ▤
                  [-M--] 18 L:[ 7+15 22/ 30] *(929 /1188b) 0010 0x00A [*][X]
# https://docs.fedoraproject.org/en-US/quick-docs/getting-started-with-selinux/#
fully disable SELinux during boot. If you need a system with SELinux
fully disabled instead of SELinux running with no policy loaded, you
# need to pass selinux=0 to the kernel command line. You can use grubby
    grubby --update-kernel ALL --args selinux=0
 To revert back to SELinux enabled:
    grubby --update-kernel ALL --remove-args selinux
SELINUX=permissive
 SELINUXTYPE= can take one of these three values:
     targeted - Targeted processes are protected,
SELINUXTYPE=targeted
1Help 2Save 3Mark 4Replac 5Copy 6Move 7Search 8Delete 9PullDn10Quit
```

Рис. 3.30: Изменение файла

Перезагружаю виртуальную машину (рис. 3.31).

[root@fedora xorg.conf.d]# reboot

Рис. 3.31: Перезагрузка виртуальной машины

Снова вхожу в ОС, снова запускаю терминал, запускю терминальный мультиплексор (рис. 3.32).

[zorigoonomun@fedora ~]\$ tmux

Рис. 3.32: Запуск терминального мультиплексора

Переключаюсь на роль супер-пользователя (рис. 3.33).

```
[zorigoonomun@fedora ~]$ sudo -i
[sudo] password for zorigoonomun:
[root@fedora ~]#
```

Рис. 3.33: Переключение на роль супер-пользователя

Устанавливаю пакет dkms (рис. 3.34).

[root@fedora ~]# dnf install dkms

Рис. 3.34: Установка пакета dkms

В меню виртуальной машины подключаю образ диска гостевой ОС и примонтирую диск с помощью утилиты mount (рис. 3.35).

```
[root@fedora ~]# mount /dev/sr0 /media mount: /media: WARNING: source write-protected, mounted read-only.
```

Рис. 3.35: Примонтирование диска

Устанавливаю драйвера (рис. 3.36).

```
[root@evdvorkina ~]# /media/VBoxLinuxAdditions.run
Verifying archive integrity... All good.
Uncompressing VirtualBox 6.1.38 Guest Additions for Linux.....
VirtualBox Guest Additions installer
Copying additional installer modules ...
Installing additional modules ...
```

Рис. 3.36: Установка драйвера

Перезагружаю виртуальную машину (рис. 3.37).

[root@fedora selinux]# reboot

Рис. 3.37: Перезагрузка виртуальной машины

Перехожу в директорию /tc/X11/xorg.conf.d, открываю mc для удобства, открываю файл 00-keyboard.conf (рис. 3.38).

```
[zorigoonomun@fedora ~]$ sudo -i
[sudo] password for zorigoonomun:
[root@fedora ~]# cd /etc/X11/xorg.conf.d/
[root@fedora xorg.conf.d]# mc
```

Рис. 3.38: Поиск файла, вход в тс

Редактирую конфигурационный файл (рис. 3.39).

Рис. 3.39: Редактирование файла

Перезагружаю виртуальную машину (рис. 3.40).

[root@fedora selinux]# reboot

Рис. 3.40: Перезагрузка виртуальной машины

3.4 Установка программного обеспечения для создания документации

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя (рис. 3.41).

Рис. 3.41: Переключение на роль супер-пользователя

Устанавливаю pandoc с помощью утилиты dnf и флага -у, который автоматически на все вопросы системы отчевает "yes" (рис. 3.42).

[root@fedora ~]# d Last metadata expi Dependencies resol	ration check: 1:3	doc 3:08 ago on Sat 24 F	eb 2024 05:44:05 PM	MSK.
Package	Architecture	 Version	======================================	Size
Installing: pandoc Installing depende	x86_64 ncies:	2.14.0.3-14.fc35	fedora	21 M
pandoc-common	noarch	2.14.0.3-14.fc35	fedora	434 k

Рис. 3.42: Установка pandoc

Устанавливаю необходимые расширения для pandoc (рис. 3.43).

Puc. 3.43: Установка расширения pandoc [root@fedora ~]# pip install pandoc-fignos pandoc-eqnos pandoc-tablenos pandoc-s ecnos --user Requirement already satisfied: pandoc-fignos in ./.local/lib/python3.10/site-pac kages (2.4.0)

Устанавливаю дистрибутив texlive (рис. 3.44).

```
[root@fedora ~]# dnf −y install texlive texlive-\*
Last metadata expiration check: 1:36:53 ago on Sat 24 Feb 2024 05:44:05 PM MSK.
```

Рис. 3.44: Установка texlive

4 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: —help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id про- цесса>. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выполнение дополнительного задания

Ввожу в терминале команду dmesg, чтобы проанализировать последовательность загрузки системы (рис. 6.1).

```
zorigoonomun@fedora:~
[zorigoonomun@zorigoo-nomun ~]$ dmesg
     0.000000] Linux version 6.0.12-100.fc35.x86_64 (mockbuild@bkernel02.iad2.fe
doraproject.org) (gcc (GCC) 11.3.1 20220421 (Red Hat 11.3.1-3), GNU ld version 2
.37-25.fc35) #1 SMP PREEMPT_DYNAMIC Thu Dec 8 16:53:55 UTC 2022
[ 0.000000] Command line: BOOT_IMAGE=(hd0,gpt2)/vmlinuz-6.0.12-100.fc35.x86_6
4 root=UUID=2163b2a2-5170-4749-b9b3-83ed244e96f3 ro rootflags=subvol=root rhgb q
     0.000000] [Firmware Bug]: TSC doesn't count with P0 frequency!
    0.000000] x86/fpu: x87 FPU will use FXSAVE
    0.000000] signal: max sigframe size: 1440
    0.000000] BIOS-provided physical RAM map:
     0.000000] BIOS-e820: [mem 0x000000000000000000000000000009ffff] usable
     0.000000] BIOS-e820: [mem 0x0000000000100000-0x0000000000ffffff] usable
     0.000000] BIOS-e820: [mem 0x0000000001000000-0x0000000004clefff] reserved
     0.000000] BIOS-e820: [mem 0x0000000004c1f000-0x000000005e19cfff] usable
     0.000000] BIOS-e820: [mem 0x000000005e19d000-0x000000006003ffff] reserved
     0.000000] BIOS-e820: [mem 0x0000000060040000-0x000000007fffefff] usable
     0.000000] BIOS-e820: [mem 0x000000007ffff000-0x00000007fffffff] reserved
     0.000000] BIOS-e820: [mem 0x0000000080000000-0x000000009e1b6fff] usable
      \hbox{\tt 0.000000]} \ \ {\tt BIOS-e820:} \ \ [{\tt mem} \ \ 0x0000000009e1b7000-0x000000009e1fffff] \ \ \underline{ \ \ reserved } 
     0.000000] BIOS-e820: [mem 0x000000009e200000-0x000000009eceefff] usable
     0.000000] BIOS-e820: [mem 0x000000009ecef000-0x000000009ef6efff] reserved
     0.000000] BIOS-e820: [mem 0x000000009ef6f000-0x000000009ef7efff] ACPI data
     0.000000] BIOS-e820: [mem 0x000000009ef7f000-0x000000009effefff] ACPI NVS
```

Рис. 6.1: Анализ последовательности загрузки системы

С помощью поиска, осуществляемого командой 'dmesg | grep -i ', ищу версию ядра Linux: 6.1.10-200.fc37.x86_64 (рис. 6.2).

```
[zorigoonomun@zorigoo-nomun ~]$ dmesg | grep -i "Linux version"

[ 0.000000] Linux version 6.0.12-100.fc35.x86_64 (mockbuild@bkernel02.iad2.fe

doraproject.org) (gcc (GCC) 11.3.1 20220421 (Red Hat 11.3.1-3), GNU ld version 2

.37-25.fc35) #1 SMP PREEMPT_DYNAMIC Thu Dec 8 16:53:55 UTC 2022
```

Рис. 6.2: Поиск версии ядра

К сожалению, если вводить "Detected Mhz processor" там, где нужно указывать, что я ищу, то мне ничего не выведется. Это происходит потому, что запрос не предусматривает дополнительные символы внутри него (я проверяла, будет ли работать он с маской - не будет). В таком случае я оставила одно из ключевых

слов (могла оставить два: "Mhz processor") и получила результат: 1992 Mhz (рис. 6.3).

```
[zorigoonomun@zorigoo-nomun ~]$ dmesg | grep -i "Detected Mhz processor"
[zorigoonomun@zorigoo-nomun ~]$ dmesg | grep -i "processor"
[    0.000017] tsc: Detected 2595.032 MHz processor
[    0.856766] smpboot: Total of 2 processors activated (10380.12 BogoMIPS)
[    0.909723] ACPI: Added _OSI(Processor Device)
[    0.909723] ACPI: Added _OSI(Processor Aggregator Device)
```

Рис. 6.3: Поиск частоты процессора

Аналогично ищу модель процессора (рис. 6.4).

```
[zorigoonomun@zorigoo-nomun ~]$ dmesg | grep -i "CPU0"
[ 0.818228] smpboot: CPU0: AMD Ryzen 3 5300U with Radeon Graphics (family: 0x
17, model: 0x68, stepping: 0x1)
```

Рис. 6.4: Поиск модели процессора

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и там (рис. 6.5).

```
igoonomun@zorigoo-nomun ~]$ dmesg | grep -i "Memory:
0.604821] PM: hibernation: Registered nosave memory:
                                                                : [mem 0x00000000-0x0000
     0.604824] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000
|
| 0.604824] PM: hibernation: Registered nosave memory: [mem 0x000a0000-0x000f
offf]
ffff]
     0.604826] PM: hibernation: Registered nosave memory: [mem 0x01000000-0x04c1
     0.604827] PM: hibernation: Registered nosave memory: [mem 0x5e19d000-0x6003
     0.604829] PM: hibernation: Registered nosave memory: [mem 0x7ffff000-0x7fff
     0.604830] PM: hibernation: Registered nosave memo
                                                               y: [mem 0x9d35e000-0x9d37
     0.604831] PM: hibernation: Registered nosave memor
                                                               ry: [mem 0x9e1b7000-0x9e1f
     0.604832] PM: hibernation: Registered nosave men
                                                               y: [mem 0x9ecef000-0x9ef6
     0.604833] PM: hibernation: Registered nosave mem
                                                               y: [mem 0x9ef7f000-0x9eff
     0.604834] PM: hibernation: Registered nosave me
     0.645938] Memory: 2351832K/2511800K available (16393K kernel code, 3222K rw
data, 12460K rodata, 3004K init, 4752K bss, 159708K reserved, 0K cma-reserved)
```

Рис. 6.5: Поиск объема доступной оперативной памяти

Haxoжy тип обнаруженного гипервизора (рис. 6.6). [zorigoonomun@zorigoo-nomun ~]\$ dmesg | grep -i "Hypervisor detected" [0.000000] Hypervisor detected: KVM

Рис. 6.6: Поиск типа обнаруженного гипервизора

Тип файловой системы корневого раздела можно посомтреть с помощью утилиты fdisk (рис. 6.7).

```
[zorigoonomun@zorigoo-nomun ~]$ sudo fdisk -l
[sudo] password for zorigoonomun:
Disk /dev/sda: 18.22 GiB, 19565953024 bytes, 38214752 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 4B8400C4-398B-456E-AC28-E9A906481C2B
Device
            Start
                      End Sectors Size Type
/dev/sdal
            2048 1230847 1228800 600M EFI System
/dev/sda2 1230848 3327999 2097152
                                     1G Linux filesystem
Disk /dev/zram0: 2.31 GiB, 2478833664 bytes, 605184 sectors
Units: sectors of 1 * 4096 = 4096 bytes
Sector size (logical/physical): 4096 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
```

Рис. 6.7: Поиск типа файловой системы корневого раздела

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату dmesg слово mount (рис. 6.8).

```
[zorigoonomun@zorigoo-nomun ~]$ dmesg | grep -i "mount"
[ 0.698013] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, line ar)
[ 0.698358] Mountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 7.246436] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ 7.281743] systemd[1]: Mounting Huge Pages File System...
[ 7.288171] systemd[1]: Mounting POSIX Message Queue File System...
[ 7.296397] systemd[1]: Mounting Kernel Debug File System...
[ 7.396397] systemd[1]: Mounting Kernel Trace File System...
[ 7.342426] systemd[1]: Mounted Huge Pages File System...
[ 7.392508] systemd[1]: Mounted Huge Pages File System.
[ 9.605970] EXT4-fs (sda2): mounted filesystem with ordered data mode. Quota mode: none.
[ 11.655702] 16:14:38.821231 automount vbsvcAutomounterMountIt: Running outdated vboxsf module without support for the 'tag' option?
[ 11.655961] 16:14:38.821619 automount vbsvcAutomounterMountIt: Successfully mounted 'D_DRIVE' on '/media/sf_D_DRIVE'
```

Рис. 6.8: Последовательность монтирования файловых систем

Список литературы

- Dash P. Getting started with oracle vm virtualbox. Packt Publishing Ltd, 2013. 86
 p.
- 2. Colvin H. Virtualbox: An ultimate guide book on virtualization with virtualbox. CreateSpace Independent Publishing Platform, 2015. 70 p.
- 3. van Vugt S. Red hat rhcsa/rhce 7 cert guide : Red hat enterprise linux 7 (ex200 and ex300). Pearson IT Certification, 2016. 1008 p.
- 4. Робачевский А., Немнюгин С., Стесик О. Операционная система unix. 2-е изд. Санкт-Петербург: БХВ-Петербург, 2010. 656 р.
- 5. Немет Э. et al. Unix и Linux: руководство системного администратора. 4-е изд. Вильямс, 2014. 1312 р.
- 6. Колисниченко Д.Н. Самоучитель системного администратора Linux. СПб.: БХВ-Петербург, 2011. 544 р.
- 7. Robbins A. Bash pocket reference. O'Reilly Media, 2016. 156 p.