

BLG 322E – Computer Architecture Assignment 4 Solutions

1.

All signals are zero-active.

BR1	BR2	BR3	BR4	BG	BR	BG1	BG2	BG3	BG4
0	Х	Х	Х	0	0	0	1	1	1
0	Х	Х	Х	1	0	1	1	1	1
1	0	Х	Х	0	0	1	0	1	1
1	0	Х	Х	1	0	1	1	1	1
1	1	0	Х	0	0	1	1	0	1
1	1	0	X	1	0	1	1	1	1
1	1	1	0	0	0	1	1	1	0
1	1	1	0	1	0	1	1	1	1
1	1	1	1	1	1	1	1	1	1

2.

BR= BR1.BR2.BR3.BR4

BG1 = BR1 + BG

BG2 = BR1' + BR2 + BG

BG3 = BR1' + BR2' + BR3 + BG

BG4 = BR1' + BR2' + BR3' + BR4 + BG

3.

Cycles	CPU	DMAC ₁	DMAC ₂	$DMAC_3$	DMAC ₄
1	IF				
2		1 st word			
3			1 st word		
4			2 nd word		
5			3 rd word		
6			4 th word		
7			5 th word		
8		2 nd word			
9				1 st word	
10		3 rd word			
11				2 nd word	
12		4 th word			
13				3 rd word	
14		5 th word			
15				4 th word	
16					1 st word
17				5 th word	
18					2 nd word
19	OF				
20	EX				3 rd word
21	OW				
22					4 th word

4.

A flow-through (explicit) DMAC first reads a word from the I/O interface then writes it to the memory. Therefore, the transfer of one word takes $2 \times 50 = 100$ ns.

i. DMAC2 completes transfer of the second word at: 340ns

CPU (IF cycle) + DMAC1 (1^{st} word) + DMAC2 (1^{st} and 2ns words) = 40 + 100 + 200 = 340ns

ii. CPU completes the first instruction cycle at: 2160ns

CPU completes first instruction cycle after all DMACs completes transfer of their words and leave the bus to the CPU.

CPU completes the IF cycle: 40ns

DMACs completes the transfer of all words:

 $4 \times 5 \times 100 = 2000$ ns (# of DMACs x # of words x time to transfer a word)

CPU completes OF, EX, OW cycles: 60 + 20 + 40 = 120ns

In total: 40 + 2000 + 120 = 2160ns