Группы и алгебры Ли II

Лекция 7

Абстрактные системы корней

Вспомним, что мы узнали про структуру полупростых алгебр Ли.

Теорема 1. (Основная теорема структурной теории полупростых алгебр Πu)

- 1. $\mathfrak{h} = \operatorname{Span}_{\mathbb{C}}(h_{\alpha}), \ \mathfrak{h}^* = \operatorname{Span}_{\mathbb{C}}(R).$
- 2. Каждое корневое подпространство одномерно.
- 3. Для любых двух корней $\alpha, \beta \in R$ число $\beta(h_{\alpha}) = 2(\alpha, \beta)/(\alpha, \alpha)$ целое.
- 4. Ограничение формы Киллинга на $\mathfrak{h}_\mathbb{R} := \mathrm{Span}_\mathbb{R}(h_\alpha)$ положительно определено.
- 5. Отражение корня ортогонально другому корню снова корень:

$$\forall \alpha, \beta \in R, s_{\beta}(\alpha) = \alpha - 2\beta \frac{(\beta, \alpha)}{(\beta, \beta)} \in R$$

- 6. Корни, коллинеарные α есть $\pm \alpha$.
- 7. Для корней $\alpha, \beta \neq -\alpha$ подпространство

$$V = \bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{\alpha + k\beta}$$

неприводимое $(\mathfrak{sl}_2)_{\beta}$ подпредставление.

8. Если для корней α и β $\alpha+\beta$ снова корень, то $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]=\mathfrak{g}_{\alpha+\beta}.$

Эта теорема мотивирует нас определить систему корней как самостоятельный объект.

Определение. Приведенная система корней это конечное подмножество $R \subset E/\{0\}$, где E - евклидово пространство (вещественное векторное пространство с положительно определенной билинейной формой), такое что:

- 1. E = Span(R),
- 2. для любых двух α , $\beta \in R$

$$n_{\alpha\beta} = \frac{2(\alpha, \beta)}{(\beta, \beta)} \in \mathbb{Z};$$
 (1)

3. Определим отражение $s_{\alpha}:E \to E$ по формуле

$$s_{\alpha}(v) = v - \frac{2(\alpha, v)}{(\alpha, \alpha)} \alpha. \tag{2}$$

Тогда для любых двух α , $\beta \in R$ $s_{\alpha}(\beta) \in R$;

4. Echu $\alpha \in R$ u $c\alpha \in R$, mo $c = \pm 1$.

Замечание. Как уже говорилось, пункты 2 и 3 имеют простой геометрический смысл: $n_{\alpha\beta}$ - это удвоенное отношение проекции α на вектор β к длине β , а s_{α} - это отражение относительно гиперплоскости, перпендикулярной α .

Ключевой способ изучения систем корней - это изучение их симметрий.

Определение. Пусть $R_1 \subset E/\{0\}$, $R_2 \subset E/\{0\}$ - системы корней. Тогда $\phi: R_1 \to R_2$ - изоморфизм систем корней, если ϕ - изоморфизм векторных пространств, $\phi(R_1) = R_2$ и $n_{\phi(\alpha)\phi(\beta)} = n_{\alpha\beta}$.

Рассмотрим систему корней R. Нас будет интересовать специальная подгруппа автоморфизмов R, называемая группой Вейля.

Определение. Группа Вейля W системы корней R это подгруппа GL(E), порожденная всеми отражениями s_{α} .

Лемма 1. $W \subset O(E)$ и R инвариантно относительно действия W.

Доказательство. Всякое отражение - это ортогональное преобразование, которое сохраняет R.

Следствие. W конечна.

Лемма 2. Для любого $w \in W$

$$s_{w(\alpha)} = w s_{\alpha} w^{-1} \tag{3}$$

Доказательство. Отражение относительно плоскости, перпендикулярной $w(\alpha)$, после замены координат $w^{-1}: E \to E$ станет отражением относительно плоскости, перпендикулярной α .

Классификация систем корней ранга 2

На прошлой лекции мы установили, что с точностью до изоморфизма имеется 4 системы корней ранга 2: $A_1 \cup A_1, A_2, B_2, G_2$.

Рис. 1: Системы корней ранга 2

Лемма 3. Пусть α , $\beta \in R$. Тогда если $(\alpha, \beta) < 0$, то $\alpha + \beta \in R$.

Доказательство. Ограничимся на плоскость, содержащую α и β . Тогда ее пересечение с R - система корней ранга 2. Для систем корней ранга два утверждение проверяется непосредственно.

Поляризация. Простые корни

Пусть $t \in E$ - регулярный элемент, то есть для всякого корня $\alpha \in R$ $(t,\alpha) \neq 0$. Тогда система корней R разбивается на два непересекающихся множества положительных и отрицательных корней:

$$R = R_{+} \sqcup R_{-},$$

$$R_{+} = \{\alpha \in R | (\alpha, t) > 0\}, \quad R_{-} = \{\alpha \in R | (\alpha, t) < 0\}$$
(4)

Определение. Корень $\alpha \in R_+$ называется простым, если он не представим в виде суммы двух положительных корней. Множество простых корней будем обозначать Π .

Лемма 4. Всякий положительный корень представим в виде суммы простых корней.

Доказательство. Допустим α не простой (иначе мы уже победили). Тогда $\alpha = \alpha_1 + \alpha_2$ для некоторых положительных α_1 и α_2 , да таких, что $(\alpha_1,t) < (\alpha,t)$ и $(\alpha_2,t) < (\alpha,t)$. Если α_1 и α_2 не простые, продолжим разбивать на положительные корни. Этот процесс неизбежно закончится, поскольку скалярных произведений (β,t) , $\beta \in R_+$ конечное число.

Замечание. Неявно этим же рассуждением мы проверили, что П непусто.

Лемма 5. Если $\alpha, \beta \in \Pi$, то $(\alpha, \beta) \leq 0$

Доказательство. Предположим, $(\alpha, \beta) > 0$. Тогда $(-\alpha, \beta) < 0$. Это значит, что $\beta' = \beta - \alpha \in R$ по лемме 3. Если $\beta' \in R_+$, то $\beta = \beta' + \alpha$, а значит не простой. Если $\beta' \in R_-$, то $\alpha = \beta - \beta'$, а значит не простой. Таким образом, $(\alpha, \beta) \leq 0$.

Теорема 2. Пусть выбрана поляризация $R = R_+ \sqcup R_-$, $\Pi = \{\alpha_1, \ldots, \alpha_r\}$ - множество соответствующих ей простых корней. Тогда Π - базис в E.

Доказательство. Мы знаем, что E = Span(R), а по лемме 4 $R \subset Span(\Pi)$. Это значит, что $E = Span(\Pi)$.

Предположим, что простые корни линейно зависимы:

$$\sum_{i=1}^{r} c_i \alpha_i = 0.$$

Это же равенство перепишем в другом виде:

$$\sum_{i \in I} c_i \alpha_i = \sum_{j \in J} d_j \alpha_j,$$

где $I = \{i | c_i > 0\}, \ J = \{j | c_j < 0\}, \ d_j = -c_j > 0.$ Если I или J пустое, это бы значило, что какаято сумма положительных корней с положительными коэффициентами равна 0, что невозможно. Значит I и J оба не пусты. Умножим последнее равенство на $\sum_{i \in I} c_i \alpha_i$. Тогда левая его часть будет положительна, а правая - неположительна.

Следствие. Всякий корень α представим в виде суммы простых корней с целыми коэффициентами. Если $\alpha \in R_+$, то коэффициенты положительные, если $\alpha \in R_-$, то коэффициенты отрицательные.

Камеры Вейля

Наша сверхзадача - классифицировать приведенные системы корней с точностью до изоморфизма. Жизнь была бы сильно проще, если бы простые корни $\Pi(t)$, получаемые по разным поляризациям, были в каком-нибудь смысле эквивалентны и определяли всю систему корней R.

Осуществим сначала первое желание. Пусть L_{α} - это гиперплоскость, ортогональная корню $\alpha \in R$. Поляризация определяется с помощью вектора $t \in E$, который не ортогонален ни одному корню из R, то есть

$$t \in E / \bigcup_{\alpha \in R} L_{\alpha} \tag{5}$$

Определение. Камеры Вейля - это связные компоненты $(E/\bigcup_{\alpha\in R}L_{\alpha}).$

Пусть C - камера Вейля.

Лемма 6. Верно следующее:

- 1. \overline{C} это выпуклый конус:
- 2. $\partial \overline{C}$ это объединение граней коразмерности 1, каждая из которых лежит в одной из гиперплоскостей L_{α} и является выпуклым конусом в ней. Такие гиперплоскости мы будем называть стенками C.

Доказательство. Первая часть сразу следует из того, что \overline{C} задается системой нестрогих неравенств в количестве #R/2 штук (независимых из них - rk(R)). Вторая следует из того, что каждая грань \overline{C} задается одним равенством и #R/2-1 независимыми нестрогими неравенствами.

Пример. Рассмотрим $R = A_2$ (все примеры этого раздела будут для случая A_2). Камеры Вейля в этом случае задаются системой неравенств (если она имеет решение)

$$\begin{cases}
(t, \alpha_1) \leq 0, \\
(t, \alpha_2) \leq 0, \\
(t, \alpha_1 + \alpha_2) \leq 0
\end{cases}$$
(6)

Пемма 7. Между множеством поляризаций и множеством камер Вейля можно установить взаимно-однозначное соответствие.

Доказательство. 1. ϕ : {камеры Вейля} \rightarrow {поляризации}

Рассмотрим камеру Вейля C. Каждый ее элемент $t \in C$ вследствие выпуклости определяет одну и ту же поляризацию

$$R_{+}(C) = \{ \alpha \in R | (\alpha, t) > 0 \quad \forall t \in C \}.$$

2. φ : {поляризации} \rightarrow {камеры Вейля}

Пусть имеется поляризация $R = R_+ \sqcup R_-$. Построим по ней камеру Вейля

$$C_{+} = \{ v \in E | (v, \alpha) > 0 \quad \forall \alpha \in R_{+} \} = \{ v \in E | (v, \alpha) > 0 \quad \forall \alpha \in \Pi \}$$

Это множество непусто, поскольку содержит определяющий поляризацию регулярный вектор, а значит является камерой Вейля.

Во-первых, $\varphi \circ \phi = id$ на множестве камер Вейля, поскольку $C \subseteq C_+$, а значит $C_+ = C$. Во-вторых, $\phi \circ \varphi = id$ на множестве поляризаций, поскольку $R_+ \subseteq R_+(C_+)$, а значит $R_+(C_+) = R_+$.

Пример.

$$C_{+} = \begin{cases} (t, \alpha_{1}) > 0, \\ (t, \alpha_{2}) > 0, \\ (t, \alpha_{1} + \alpha_{2}) > 0 \end{cases}$$
 (7)

Теорема 3. Группа Вейля W действует на множестве камер Вейля транзитивно.

Доказательство. Рассмотрим две камеры Вейля C и C'. Существует последовательность камер Вейля

$$C = C_0 \rightarrow C_1 \rightarrow \ldots \rightarrow C_l = C',$$

такая, что камеры C_i и C_{i+1} смежные, то есть имеют общую гипергрань $L_{\beta_{i+1}}$. Но это значит, что $C_{i+1} = s_{\beta_{i+1}}(C_i)$. Таким образом, $C' = s_{\beta_l} s_{\beta_{l-1}} \dots s_{\beta_1}(C)$.

Пример. Пусть $R = A_2$. Заметим сначала, что смежные камеры Вейля отвечают системам неравенств, которые отличаются одним знаком. С другой стороны, смена знака соответствует отражению относительно соответствующего корня.

$$C = C_{+} = \begin{cases} (t, \alpha_{1}) > 0, \\ (t, \alpha_{2}) > 0, \\ (t, \alpha_{1} + \alpha_{2}) > 0, \end{cases}$$
 (8)

$$C' = \begin{cases} (t, \alpha_1) < 0, \\ (t, \alpha_2) > 0, \\ (t, \alpha_1 + \alpha_2) < 0, \end{cases}$$
(9)

Имеем $C=C_0 \rightarrow C_1 \rightarrow C_2=C'$, где

$$C_1 = s_{\alpha_1}(C) = \begin{cases} (t, \alpha_1) < 0, \\ (t, \alpha_2) > 0, \\ (t, \alpha_1 + \alpha_2) > 0, \end{cases}$$
(10)

 $C' = s_{\alpha_1 + \alpha_2}(C_1), \ u \ e \ umore \ C' = s_{\alpha_1 + \alpha_2}s_{\alpha_1}(C).$

Следствие. Камера Вейля C имеет rk(R) стенок.

Следствие. Пусть $R = R_+ \sqcup R_- \ u \ R = R'_+ \sqcup R'_-$ - две поляризации, а $\Pi \ u \ \Pi'$ - соответствующие простые корни. Тогда найдется $w \in W$ такой, что $\Pi' = w(\Pi)$.

Доказательство. Обе поляризации и как следствие наборы простых корней соответствуют некоторым камерам Вейля C и C'. По предыдущей теореме найдется $w \in W$ такой, что C' = w(C). \square

Осуществим теперь наше второе желание - убедимся, что множество простых корней полностью определяет систему корней.

Зафиксируем поляризацию $R=R_+\sqcup R_-$ и соответствующие ей простые корни $\Pi=\{\alpha_1,\ldots,\alpha_r\}.$ Обозначим $s_i=s_{\alpha_i}.$

Лемма 8. Всякая камера Вейля C можеет быть записана как $C=s_{i_1}s_{i_2}\dots s_{i_l}(C_+)$

Доказательство. По теореме 3 $C=s_{\beta_l}\dots s_{\beta_1}(C_+)$, где $C_i=s_{\beta_i}\dots s_{\beta_1}(C_+)$, и L_{β_i} - общая грань камер Вейля C_{i-1} и C_i . Будем доказывать индукцией по l. В случае l=1 $\beta_1=\alpha_{i_1}$, и $C=s_{i_1}(C_+)$. Теперь пусть $C=s_{\beta_{l+1}}s_{\beta_l}\dots s_{\beta_1}(C_+)=s_{\beta_{l+1}}(C_l)$. По предположению индукции $C_l=s_{i_1}\dots s_{i_l}(C_+)=w(C_+)$, значит $\beta_{l+1}=s_{i_1}\dots s_{i_l}(\alpha_{i_{l+1}})=w(\alpha_{i_{l+1}})$. Но тогда $C=s_{w(\alpha_{i_{l+1}})}(C_l)=ws_{\alpha_{l+1}}w^{-1}w(C_+)=s_{i_1}\dots s_{i_l}s_{i_{l+1}}(C_+)$.

Пример.
$$C' = s_{\alpha_1 + \alpha_2} s_{\alpha_1}(C_+) = s_{s_1(\alpha_2)} s_1(C_+) = s_1 s_2 s_1 s_1(C_+) = s_1 s_2(C_+).$$

Теорема 4. Верно следующее.

- 1. $W(\Pi) = R$,
- 2. Группа Вейля W порождена простыми отражениями $s_i, i \in \{1, \dots, r\}$

Доказательство. Для любого $\alpha \in R$ L_{α} - это стенка какой-то камеры Вейля C. По предыдущей лемме $C = w(C_+)$, где $w = s_{i_1} s_{i_2} \dots s_{i_l}$, значит $\alpha = \pm w(\alpha_i)$ и $s_{\alpha} = w s_i w^{-1}$.