

- Docker Installation on Mac, Windows & Linux
- Creating Demo Project on Node and Python
- Creating DockerFile
- Creating Docker Image
- Running Containers
- Pre-defined Images
- DockerHub
- Docker Volumes and Network
- Docker Compose

Overview

What is Docker and Why?

What are Containers?

How Container Works?

What is a Docker?

What is a Docker?

 Docker is a containerization platform for developing, packaging, shipping, and running applications.

- It provides the ability to run an application in an isolated environment called a container.
- Makes deployment and development efficient.

Why do we need Docker?

Working Successfully

Working Successfully

Tester

Tester

But it is working on my machine

Tester

What is a Container?

What is a Container?

- A way to package an application with all the necessary dependencies and configuration.
- It can be easily shared
- Makes deployment and development efficient.

Container

APP1

Lib, Dependencies, **Tools**

Docker Engine 🐸

Operating System

aws Hardware \wedge

Lib, Dependencies, Tools

APP2

Lib, Dependencies, Tools

Docker Engine

Operating System

Hardware \wedge

Container

Container

Container

APP1

Lib, Dependencies, **Tools**

APP2

Lib, Dependencies, **Tools**

APP3

Lib, Dependencies, Tools

Docker Engine

Operating System

aws

Hardware \wedge

App1

(js) V14

App2

Hardware 🔔

Docker vs VIVIS

Docker Containers	VMs
Low impact on OS, very fast, low disk space usage	High impact on OS, slower, high disk space usage
Sharing, re-building and distribution is easy	Sharing, re-building and distribution is challenging
Encapsulate apps instead of whole machine	Encapsulate whole machine

Main components of Docker

- DockerFile
- Docker Image
- Docker Container
- Docker Registry

Instance of an Image

Docker Registry

A Docker registry is a central repository for storing and distributing Docker images.

Conclusion:

- Docker is a powerful technology that allows developers to create, package, and deploy applications in containers.
- It provides a consistent environment for development, testing, and deployment,
 and it's compatible with any platform that supports Docker.
- By using Docker, developers can focus on building great applications instead of worrying about infrastructure and compatibility issues.

```
Copy code
bash
# Set the base image to the official Node.js 14 image
FROM node:14
# Create a working directory for our application
WORKDIR /app
# Copy the package.json and package-lock.json files to the container
COPY package*.json ./
# Install dependencies
RUN npm install
# Copy the rest of the application code to the container
COPY . .
# Expose port 3000 so that it can be accessed from outside the container
EXPOSE 3000
# Start the Node.js application
CMD ["npm", "start"]
```

docker build -t my-image

docker pull node:latest

docker run -it --name my-node node /usr/local/bin/node

```
docker stop my-node
docker rm my-node
```

docker images

REPOSITORY	TAG	IMAGE ID	CREATED	SIZE
ubuntu	latest	4e2eef94cd6b	4 weeks ago	72.8MB
node	latest	6c16ef59f5a6	4 weeks ago	936MB

Install Docker Engine

Docker Volumes

Container

Docker Volumes (bind mount)

Communication From/To Containers

Docker Network

Network: my-net

--network my-net

Docker Compose

Configuration file to manage multiple containers running on same machine..

```
services:
  redis:
    image: redis:latest
    configs:
      - my_config
      - my_other_config
configs:
 my_config:
    file: ./my_config.txt
 my_other_config:
    external: true
```


Please Like & SUBSCRIBE