Logică computațională Curs 2

Lector dr. Mihiș Andreea-Diana

. . .

Reprezentarea binară a nr.

• într-o locație de memorie – k octeți = n biți (8, 16, 32, 64)

n-1	n-2	•••	2	1	0

cel mai semnificativ

cel mai puțin semnificativ

Reprezentarea nr. întregi fără semn

$$\mathbf{x}_{(10)} \rightarrow \mathbf{y}_{(2)}$$

Intervale de reprezentare

0	0	•••	0	0	0	= 0
n-1	n-2		2	1	0	U

1	1	•••	1	1	1	$= 2^{n} - 1$
n-1	n-2	• • •	2	1	0	<u> </u>

$$n = 8$$
 [0, 255]

$$n = 16$$
 [0, 65535]

$$n = 32$$
 [0, 4294 967 295]

Aritmetica nr. întregi fără semn

• înmulțirea

• împărțirea

Algoritmul de înmulțire a întregilor fără semn

DATE deînmulțitul M și înmulțitorul Q

C A←0	M	$ \mathbf{C} $	A	Q
PENTRU i ← 1,n EXECUTĂ				
DACĂ $\mathbf{Q_0}$ =1 ATUNCI				
$CA \leftarrow A + M$				
SF. DACĂ				
CAQ se deplasează spre dreapta cu 1 poziție	;			

SF. PENTRU
REZULTATE AQ

Algoritmul de împărțire a întregilor fără semn

DATE deîmpărțitul AQ și împărțitorul M

PENTRU i \leftarrow 1,n EXECUTĂ

CAQ se deplasează spre stânga cu 1 poziție

DACĂ **CA** ≥ **M** ATUNCI

$$\mathbf{Q_0} \leftarrow 1$$

 $CA \leftarrow CA-M$

ALTFEL

$$\mathbf{Q_0} \leftarrow 0$$

SF. DACĂ

SF. PENTRU

REZULTATE câtul Q și restul A

M	C	A	Q

Coduri de reprezentare a întregilor cu semn

- scopul: simplificarea operațiilor (-)
- convenție întreagă (supraunitară)

bitul de semn

Codul direct

$$x \in \mathbb{Z}, |x| < 2^{n-1}$$

$$[x]_{dir} = \begin{cases} x & , dacă \ x \ge 0 \\ \\ 2^{n-1} + |x|, dacă \ x \le 0 \end{cases}$$

dezavantaj: $[+0]_{dir}$: |0|0...0| şi $[-0]_{dir}$: |1|0...0|

Codul invers

$$x \in \mathbb{Z}, |x| < 2^{n-1}$$

$$[x]_{inv} = \begin{cases} x & , dacă \ x \ge 0 \\ \\ 2^{n}-1-|x|, dacă \ x \le 0 \end{cases}$$

dezavantaj: $[+0]_{inv}$: |0|0...0| şi $[-0]_{inv}$: |1|1...1|

Codul complementar

$$x\!\in\! Z\!\!\!Z,\,|x|<2^{n\text{-}1}$$

$$[x]_{compl}=\begin{cases} x\;,\,dac\,\check{a}\;x\geq 0\\ \\ 2^n\text{-}|x|,\,dac\,\check{a}\;x\leq 0 \end{cases}$$

Obs.: dacă
$$x \le 0$$
, $[x]_{compl} = [x]_{inv} + 1$
dacă $x \ge 0$, $[x]_{compl} = [x]_{inv} = [x]_{dir}$

avantaj: $[+0]_{compl}$: |0|0...0| nu e nr.: |1|0...0|

Intervale de reprezentare

```
n= 8 [-127, 127]

n=16 [-32767, 32767]

n=32 [-2 147 483 647, 2 147 483 647]

n=64 [-9 223 412 376 694 775 807, +9 223 412 376 694 775 807]
```


$$\forall a,b\!\in\![0,\!2^n),\,a\oplus b= \begin{cases} a+b &\text{, dacă }a\!+\!b < 2^n\\\\ a+b &\text{-}2^n \text{, dacă }a\!+\!b \geq 2^n \end{cases}$$

Reguli: dacă a și b au același semn \neq semnul a \oplus b – depășire t_{n-1} se pierde (nu se păstrează în rezultat)

$$[x+y]_{compl} = [x]_{compl} \oplus [y]_{compl} \forall x,y \in \mathbb{Z}, \text{ a. î. } |x|, |y|, |x+y| < 2^{n-1}$$

$$[x-y]_{compl} = [x]_{compl} \oplus [-y]_{compl}$$

Convenția subunitară

 $n \in \{8, 16, 32, 64\}$

bitul de semn

Coduri

 $x \in |R|, |x| < 1$ cu max. n-1 cifre după ","

$$[x]_{compl} = \begin{cases} x, dacă & x \ge 0 \\ \\ 2-|x|, dacă & x \le 0 \end{cases}$$

Obs.: dacă
$$x \le 0$$
, $[x]_{compl} = [x]_{inv} + 2^{-n+1}$
dacă $x \ge 0$, $[x]_{compl} = [x]_{inv} = [x]_{dir}$

Operații

$$\forall a,b \in [0,1), \, a \oplus b = \begin{cases} a+b & \text{, dacă } a+b < 2 \\ a+b-2 & \text{, dacă } a+b \geq 2 \end{cases}$$

Reguli: dacă a și b au același semn \neq semnul a \oplus b – depășire t_{n-1} se pierde (nu se păstrează în rezultat)

$$\begin{aligned} [x+y]_{compl} = & [x]_{compl} \oplus [y]_{compl} \\ \forall x,y \in & [R \text{, a. î. } |x|, |y|, |x+y| < 1 \text{ cu max. n-1 cifre după ","} \\ & [x-y]_{compl} = & [x]_{compl} \oplus & [-y]_{compl} \end{aligned}$$

Reprezentări ale nr. reale

• se aproximează la nr. raționale

• pe k octeți (biți: 8, 16, 32 – cuvânt, 64 – dublu cuvânt)

Reprezentarea în virgulă fixă

- n biți
- $-2^{I} + 2^{-F} \le |x| \le 2^{I} 2^{-F}$
- Dezavantaj: pierderea cifrelor cele mai semnificative

bitul de semn

Reprezentarea în virgulă mobilă (flotantă)

• precizie mai mare (pt. nr. f. mari / f. mici)

- la depășire se pierd cifrele cel mai puțin semnificative
- $\forall x \in |R, x = \pm 0, m *b^e$
 - m mantisa numărului
 - b bază de numerație
 - e exponent
- ! b=2

Mantisă subunitară

- <u>Def 1</u>: Un număr real x se scrie cu *mantisă subunitară* și exponent al unei baze b, dacă $x = \pm 0, m * b^e$
- Def 2: Un număr real x, x ≠0, se scrie cu mantisa subunitară normalizată, dacă x este scris cu mantisă subunitară și exponent al bazei b și dacă are loc: 1/b ≤ m < 1.

Ex: $0,12345678 * 10^4$ - este scris normalizat $0,004371 * 10^{-4}$ - nu este scris normalizat

Mantisa "supraunitară"

- Def 3: Un număr real x, $x \ne 0$, este scris cu *mantisa între* 1 şi 2, dacă x se scrie în baza 2 sub forma : $x = \pm 1, m * 2^e$
- <u>Def 4</u>: Un număr real x este reprezentat în calculator în *virgulă mobilă* dacă pentru reprezentarea internă se utilizează scrierea lui x în baza 2 cu exponent și cu *mantisă subunitară* sau cu *mantisă între 1 și 2*.

Reprezentarea în virgulă mobilă

n∈{32,64} <u>IEEE P754 Simplă precizie</u> / <u>Dublă precizie</u>

C pe 8/11 biţi; M pe 23/52

 $Q-deplasament \in \{127,1023\}$

Valori speciale

Valoare	S (semn)	C (caracteristica)	M (mantisa)
0_{+}	0	00	00
0-	1	00	00
-inf	1	11	00
+inf	0	11	00
NaN (not a	1 sau 0	11	valoare
number)			nenulă

Intervale de reprezentare

Precizie	Binar	Zecimal
	Valoare absolută	Valoare absolută
Simplă	$minim = 2^{-126}$	minim $\approx 10^{-38}$
	$maxim = (2-2^{-23})*2^{127}$	$maxim \approx 10^{38}$
Dublă	minim = 2^{-1022}	minim $\approx 10^{-308}$
	$\mathbf{maxim} = (2-2^{-52}) * 2^{1023}$	$maxim \approx 10^{308}$