Metode Statistika

Analisis Korelasi dan Regresi

Dr. Kusman Sadik, M.Si

Dept. Statistika IPB - 2015

Hubungan Dua Peubah atau Lebih

PEUBAH	KASUS	PENGUMPULAN DATA	JENIS HUBUNGANNYA
1.Dosis pupuk 2.Banyaknya padi yg di- hasilkan /ha	Diduga dosis pupuk mempengaruhi banyaknya padi yg dihasilkan/ha	Dosis pupuk ditentukan dahulu, faktor-faktor lain yg mempengaruhi banyaknya padi dikendalikan sehingga pengaruhnya konstan, ke-mudian diamati banyaknya padi yg dihasilkan	Perubahan banyaknya padi yg dihasilkan/ha dipengaruhi oleh perubahan dosis pupuk → HUB SEBAB AKIBAT
1.Tinggi badan 2.Berat badan	Diduga tinggi badan dan berat badan memiliki hubungan	Dimulai dengan mengamati tinggi badan da-hulu, disusul mengamati peubah yg dianggap relevan (berat badan), atau sebaliknya.	Pengamatan thdp kedua peubah dilakukan secara bersamaan. Sulit untuk mengatakan bahwa perubahan satu peubah disebabkan oleh perubahan peubah lainnya → bukan HUB SEBAB AKIBAT Ingin diketahui kekuatan dan arah hubungannya

Hubungan Dua Peubah atau Lebih (2)

PEUBAH	KASUS	PENGUMPULAN DATA	JENIS HUBUNGANNYA
1.Banyaknya barang terju- al/minggu 2.Adanya hari libur/tidak 3.Harga barang	Diduga banyaknya ba- rang terjual/minggu dipe-ngaruhi oleh berbagai peubah, misalnya harga barang, ada/ tidaknya hari libur dlm minggu tsb	Harga barang ditentukan lebih dahulu, faktor-faktor lain yg mempengaruhi banyaknya barang terjual dikendalikan sehingga pengaruhnya konstan, kemudian diamati banyaknya barang yg terjual pada minggu ada hari libur dan minggu tanpa hari libur	Perubahan banyaknya barang yg terjual dipengaruhi oleh perubahan harga dan ada/tidaknya hari libur → Hub SEBAB AKIBAT
1.Bobot badan 2.Bobot jantung	Diduga bobot badan dan bobot jantung memiliki hubungan	Dimulai dengan mengamati bobot badan terlebih dahulu, segera disusul mengamati peubah yg dianggap relevan (dalam hal ini bobot jantung), atau sebaliknya.	Pengamatan thdp kedua peubah dilakukan secara bersamaan. Sulit untuk mengatakan bahwa perubahan satu peubah disebabkan oleh peubah lainnya. → bukan SEBAB AKIBAT. Ingin diketahui model matematisnya (HUB KUANTITATIF)

Contoh Kasus Lain

- Umur vs tinggi tanaman
- Biaya promosi vs volume penjualan
- Produktivitas pertanian vs (tanaman bahan pangan, tanaman perkebunan rakyat, peternakan dan perikanan)
- Produksi padi vs luas lahan sawah
- Tinggi badan vs berat badan
- Bobot badan vs bobot jantung

Analisis Hubungan

1. Jenis/tipe hubungan

3.Ukuran Keterkaitan

2.)Skala pengukuran variabel

4. Pemodelan Keterkaitan

Relationship vs Causal Relationship

- Tidak semua hubungan (relationship) berupa hubungan sebab-akibat (causal relationship).
- Penentuan suatu hubungan bersifat sebabakibat memerlukan pendapat/pengetahuan dari bidang ilmu terkait.

Alat Analisis Keterkaitan/Hubungan

- Ditentukan oleh:
 - 1. Skala pengukuran data/variabel
 - 2. Jenis hubungan antar variabel

Relationship	Numerik	Kategorik
Numerik	Korelasi Pearson, Spearman	Tabel Ringkasan
Kategorik	Tabel Ringkasan	Spearman (ordinal), Chi Square

Hubungan Sebab Akibat

(Causal Relationship)

Variabel Y	Variabel X		
variabei i	Numerik	Kategorik	
Numerik	Regresi Linier	Regresi Linier	
Kategorik	Regresi Logistik	Regresi Logistik	

Korelasi (r)

Overview

Variable

10

Relationships between Continuous Variables

Korelasi

Koefisien Korelasi (r)

- Tidak menggambarkan hubungan sebab akibat
- Nilainya berkisar antara -1 dan 1
- Tanda (+) atau (-) → arah hubungan
 - (+) searah;
 - (-) beralawanan arah
- Koefisien Korelasi Pearson → hubungan linier
- Koefisien Korelasi Spearman (rank correlation)
 Trend relationship

Koefisien Korelasi Pearson (r)

$$r_{xy} = \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}}$$

$$S_{xy} = \sum (x_i - \overline{x})(y_i - \overline{y})$$

$$S_{xx} = \sum (x_i - \bar{x})^2 \text{ dan } S_{yy} = \sum (y_i - \bar{y})^2$$

Notasi lain:

$$S_{xx} = \sum x^2 - \frac{(\sum x)^2}{n}, \quad S_{yy} = \sum y^2 - \frac{(\sum y)^2}{n}$$

$$S_{xy} = \sum xy - \frac{(\sum x)(\sum y)}{n}.$$

Korelasi !!!

Misuses of the Correlation Coefficient

Strong correlation does not mean

Missing Another Type of Relationship

Extreme Data Values

Contoh

Diketahui data pengeluaran iklan (x milyar) dengan total profit penjualan suatu produk komputer perbulan (y milyar) selama 4 bulan sebagai berikut:

```
x:2 1 5 0
```

- a. Buat scatter plot untuk data tersebut.
- b. Hitung koefisien korelasinya.

(a) Scatter Plot: x dengan y

(b) Koefien Korelasi (r)

	X	y	x ²	y ²	xy
	2	5	4	25	10
	1	3	1	9	3
	5	6	25	36	30
	0	2	0	4	0
Total	8	16	30	74	43
	$\Sigma \mathbf{x}$	Σy	Σx^2	Σy^2	$\sum xy$

$$r = \frac{43 - \frac{8 \times 16}{4}}{\sqrt{30 - \frac{8^2}{4}} \sqrt{74 - \frac{(16)^2}{4}}} = .930$$

Mendenhall: Example 12.7, hlm. 534

The heights and weights of n = 10 offensive backfield football players are randomly selected from a county's football all-stars. Calculate the correlation coefficient for the heights (in inches) and weights (in pounds) given in Table 12.4.

Heights and Weights of n = 10 Backfield All-Stars

Player	Height, x	Weight, y
1	73	185
2	71	175
3	75	200
4	72	210
5	72	190
6	75	195
7	67	150
8	69	170
9	71	180
10	69	175

Mendenhall: Example 12.7, hlm. 534

Solution You should use the appropriate data entry method of your scientific calculator to verify the calculations for the sums of squares and cross-products,

$$S_{xy} = 328$$
 $S_{xx} = 60.4$ $S_{yy} = 2610$

using the calculational formulas given earlier in this chapter. Then

$$r = \frac{328}{\sqrt{(60.4)(2610)}} = .8261$$

or r = .83. This value of r is fairly close to 1, the largest possible value of r, which indicates a fairly strong positive linear relationship between height and weight.

Analisis Regresi

Definisi

- Linier (linear): linier dalam parameter
- Sederhana (simple): hanya satu peubah penjelas (x)
- Berganda (multiple): lebih dari satu peubah penjelas (x)

ANALISIS REGRESI

• Hubungan Antar Peubah:

- Fungsional (deterministik) → Y=f(X); misalnya:
 Y=10X
- Statistik (stokastik) → amatan tidak jatuh pas pada kurva
- Misal: IQ vs Prestasi, Berat vs Tinggi, Dosis Pupuk vs Produksi, Profit vs Biaya Iklan

Model regresi linear sederhana:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \varepsilon_{i}$$
; $i = 1, 2, ..., n$

Simple Linear Regression Model

Interpretasi : β_0 adalah nilai Y ketika X = 0, sedangkan β_1 adalah perubahan nilai Y untuk setiap perubahan X sebesar satu satuan unit.

The Baseline Model

Analisis Regresi

- Pendugaan terhadap koefisien regresi:
 - \rightarrow b₀ penduga bagi β_0 dan b₁ penduga bagi β_1

$$b_{1} = \frac{S_{xy}}{S_{xx}} = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{\sum x^{2} - \frac{(\sum x)^{2}}{n}}$$

$$b_{0} = \overline{y} - b_{1}\overline{x}$$
Metode
Kuadrat Terkecil
(Least Square)

Analisis Regresi

Bagaimana Pengujian terhadap model regresi??

- parsial (per koefisien) → uji-t
- bersama → uji-F (Anova)

Bagaimana menilai kesesuaian model ??

 R² (Koefisien Determinasi: persentase keragaman Y yang mampu dijelaskan oleh X)

Metoda Kuadrat Terkecil

 Pendugaan parameter pada regresi didapat dengan meminimumkan jumlah kuadrat galat (error).

Response Unknown Population Relationship $\hat{\mathbf{Y}} = \hat{\mathbf{\beta}}_0 + \hat{\mathbf{\beta}}_1 \mathbf{X}$ Predictor

Metoda Kuadrat Terkecil

PRINCIPLE OF LEAST SQUARES

The line that minimizes the sum of squares of the deviations of the observed values of y from those predicted is the best-fitting line. The sum of squared deviations is commonly called the sum of squares for error (SSE) and defined as

$$SSE = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - a - bx_i)^2$$

SSE (Sum of Squares for Error) = JKG (Jumlah Kuadrat Galat)

Keragaman yang Dapat Dijelaskan dan yang Tidak Dapat Dijelaskan oleh Model

Contoh Data

Apakah semakin besar biaya iklan yang dikeluarkan akan semakin besar pula profit yang diperoleh?

Diamati contoh acak 10 perusahaan yang memproduksi *Laptop*, kemudian dicatat pengeluaran iklan (dalam milyar) dan profit (dalam milyar) selama tahun 2015.

- a. Buat scatter plotnya dan jelaskan.
- b. Tentukan persamaan model regresinya.
- Tentukan penduga bagi parameter model regresi tersebut.

Iklan	Profit
31	553
38	590
48	608
52	682
63	752
67	725
75	834
84	752
89	845
99	960

Penyelesaian:

Plot antara pengeluaran Iklan(milyar) dg
Profit (milyar)

Model:
$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
; $i = 1, 2, ..., n$

Penyelesaian:

X	y	X ²	y ²	ху
31	553	961	305,809	17,143
38	590	1,444	348,100	22,420
48	608	2,304	369,664	29,184
52	682	2,704	465,124	35,464
63	752	3,969	565,504	47,376
67	725	4,489	525,625	48,575
75	834	5,625	695,556	62,550
84	752	7,056	565,504	63,168
89	845	7,921	714,025	75,205
99	960	9,801	921,600	95,040
646	7,301	46,274	5,476,511	496,125

Jumlah

$b = S_{xy}$	$\sum xy - \frac{(\sum x)(\sum y)}{n}$
$D_1 = \frac{1}{S_{xx}}$	$=\frac{1}{\sum x^2 - \frac{\left(\sum x\right)^2}{n}}$

$$b_0 = \overline{y} - b_1 \overline{x}$$

Sxy	24,480.4
Sxx	4,542.4
Syy	146,050.9
b ₁	5.39
b _o	381.95

Analisis Regresi

Contoh output regresi dengan Minitab (1)

```
Regression Analysis (Iklan vs Profit)
The regression equation is Profit = 381.95 + 5.39*Iklan
Predictor
                Coef
                           StDev
                                          Т
                                                   P
                                       9.01
              381.95
                           42.40
                                               0.000
Constant
Iklan
              5.3893
                          0.6233
                                       8.65
                                               0.000
S = 42.01
                R-Sq = 90.3%
                                 R-Sq(adj) = 89.1%
Analysis of Variance
Source
                         SS
                                     MS
             DF
Regression
              1
                     131932
                                 131932
                                            74.76
                                                     0.000
              8
                      14118
                                   1765
Error
Total
                     146051
```

Uji Hipotesis

Bagaimana Pengujian terhadap model regresi ??

- parsial (per koefisien) → uji-t
- bersama → uji-F (Anova)

Bagaimana menilai kesesuaian model ??

 R² (Koefisien Determinasi: persentase keragaman Y yang mampu dijelaskan oleh X)

Uji Hipotesis:
$$H_0: \beta_1=0$$
 vs $H_1: \beta_1\neq 0$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$S_{yy} = \frac{S_{xy}^2}{S_{xy}} + SSE$$

Total Variability explained variability of y by linear relation

Residual or unexplained variability

JK Total = JK Regresi + JK Galat → JK : Jumlah Kuadrat

Keragaman total = keragaman yang dapat dijelaskan oleh model + keragaman yang tidak dapat dijelaskan oleh model

 $R^2 = (JK Regresi)/(JK Total) = JKR/JKT$

Uji Hipotesis (1) $H_0: \beta_1=0$ vs $H_1: \beta_1\neq 0$

$$t - hitung = \frac{b_1 - \beta_1}{S_{b_1}} \longrightarrow S_{b_1} \text{ disebut galat baku } (standard of error) \text{ bagi } b_1 \rightarrow \text{SE}(b_1)$$

$$S_{b_1} = \sqrt{\frac{s^2}{\sum (x_i - \overline{x})^2}}$$

$$S^2 = \frac{\text{SSE}}{n-2}$$

$$Tolak \text{ Ho jika:} |t-\text{hit}| > t(\alpha/2; \text{db=n-2})$$

$$s^2 = \frac{SSE}{n-2}$$

SSE =
$$\Sigma (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = S_{yy} - \frac{S_{xy}^2}{S_{xx}}$$

Uji Hipotesis (2) $H_0: \beta_1=0 \text{ vs } H_1: \beta_1>0$

$$t - hitung = \frac{b_1 - \beta_1}{S_{b_1}}$$

$$S_{b_1} = \sqrt{\frac{s^2}{\sum (x_i - \overline{x})^2}}$$
 Tolak Ho jika:
t-hit > t(\alpha; db=n-2)

$$s^2 = \frac{\text{SSE}}{n-2}$$

SSE =
$$\Sigma (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = S_{yy} - \frac{S_{xy}^2}{S_{xx}}$$

Uji Hipotesis (3) $H_0: \beta_1=0 \text{ vs } H_1: \beta_1<0$

$$t - hitung = \frac{b_1 - \beta_1}{S_{b_1}}$$

$$S_{b_1} = \sqrt{\frac{s^2}{\sum (x_i - \overline{x})^2}}$$
 Tolak Ho jika:
t-hit < - t(\alpha; db=n-2)

$$s^2 = \frac{\text{SSE}}{n-2}$$

SSE =
$$\Sigma (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = S_{yy} - \frac{S_{xy}^2}{S_{xx}}$$

Latihan (1)

• Apakah iklan berpengaruh pada profit perusahaan? Uji hipotesis Anda pada taraf nyata α = 0.05

Jawaban Ringkas
$$H_0: \beta_1=0$$
 vs $H_1: \beta_1\neq 0$

(4).
$$t - hitung = \frac{b_1 - \beta_1}{S_{b_1}} = \frac{b_1 - 0}{S_{b_1}} = 5.39/0.623 = 8.64$$

(3).
$$S_{b_1} = \sqrt{\frac{s^2}{\sum (x_i - \overline{x})^2}} = \sqrt{(S^2/S_{xx})} = \sqrt{(1,764.81/4,542.4)} = 0.623$$

(2).
$$s^2 = \frac{\text{SSE}}{n-2} = 1,764.81$$

Sxy	24,480.4
Sxx	4,542.4
Syy	146,050.9

(1). SSE =
$$\Sigma (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = S_{yy} - \frac{S_{xy}^2}{S_{xx}} = 14,118.45$$

$$t(\alpha/2; db=n-2) = t(0.025; 8) = 2.306$$

Karena (t-hit = 8.64) > 2.306 maka **TOLAK** H_0 , artinya iklan berpengaruh pada profit perusahaan untuk taraf uji α = 0.05

Latihan (2)

• Apakah semakin besar iklan akan mengakibatkan semakin besar profit? Uji pada taraf nyata α = 0.05

Jawaban Ringkas
$$H_0: \beta_1=0$$
 vs $H_1: \beta_1>0$

(4).
$$t - hitung = \frac{b_1 - \beta_1}{S_{b_1}} = \frac{b_1 - 0}{S_{b_1}} = 5.39/0.623 = 8.64$$

(3).
$$S_{b_1} = \sqrt{\frac{s^2}{\sum (x_i - \overline{x})^2}} = \sqrt{(S^2/S_{xx})} = \sqrt{(1,764.81/4,542.4)} = 0.623$$

(2).
$$s^2 = \frac{\text{SSE}}{n-2} = 1,764.81$$

Sxy	24,480.4
Sxx	4,542.4
Syy	146,050.9

(1). SSE =
$$\Sigma (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = S_{yy} - \frac{S_{xy}^2}{S_{xx}} = 14,118.45$$

$$t(\alpha; db=n-2) = t(0.05; 8) = 1.860$$

Karena (t-hit = 8.64) > 1.860 maka **TOLAK H**₀, artinya semakin besar iklan akan mengakibatkan semakin besar profit untuk taraf uji α = 0.05

Latihan (3)

 Berapa profit yang dihasilkan jika iklan yang dikeluarkan 76 milyar? Apakah hasil dugaan ini valid? Kenapa?

Latihan (4)

 Tentukan koefisien determinasinya? Apa maknanya?

Koefisien Determinasi (R²)

 $R^2 = (JK Regresi)/(JK Total)$

$$= \frac{\frac{(S_{xy})^2}{S_{xx}}}{S_{yy}} = \frac{(S_{xy})^2}{S_{xx}S_{yy}} = 0.903 = 90.3\%$$

Artinya, 90.3 persen keragaman pada Y (profit) dapat diterangkan oleh keragaman pada X (iklan)

Keterbatasan Korelasi dan Regresi Linear

- Korelasi dan Regresi Linear hanya menggambarkan hubungan yang linear
- Korelasi dan metode kuadrat terkecil pada regresi linear tidak resisten terhadap pencilan
- Prediksi di luar selang nilai X tidak diperkenankan karena kurang akurat
- Hubungan antara dua variabel bisa dipengaruhi oleh variabel lain di luar model

Catatan

- Apa itu analisis regresi?
- Apa bedanya dengan korelasi?

Analisis Regresi → Analisis statistika yang memanfaatkan hubungan antara dua atau lebih peubah kuantitatif sehingga salah satu peubah dapat diramalkan dari peubah lainnya.

Korelasi → mengukur keeratan HUBUNGAN LINEAR dari dua variabel

PR/Tugas

Dikumpulkan di TU Dept Statistika, pada hari Senin minggu depan sebelum jam 12.00 (via Ibu Mar)

```
Catatan : \mathbf{m} = (\text{digit ke-8}) + (\text{digit ke-9}) \text{ dari NIM}
Misal NIM : H24130075 \rightarrow \mathbf{m} = 7 + 5 = 12
```

- Mendenhall (Exercise 12.7 a-c), hal. 511 → y: (data + 0.m)
- 2. Mendenhall (Exercise 12.20 a-c), hal. 520 → y: (data + 0.m)

Terima Kasih

Materi ini bisa di-download di:

kusmans.staff.ipb.ac.id