

Probability and Random Processes ES331

Face Recognition Using EigenFaces

Patel Vrajesh 20110134

Dataset Used: *olivetti_faces from sklearn.datasets (AT&T, The database of faces)*

- The dataset contains 400(M) images of size 64x64(NxN).
- I have split the dataset into train and test as follows: 360 images for training and 40 images for training.
- The dataset contains images of 40 different people and 10 images of each of them.

Problem Statement:

Design a real time face recognition system using eigenfaces.

Principal Component Analysis (PCA) and Eigenfaces:

Using PCA, we can find the vectors that best account for the distribution of face images in the entire image space. So, the PCA algorithm reduces dimensionality of a dataset such that the error during the reconstruction is minimum. It uses Eigenvalues and EigenVectors to reduce dimensionality and project a training sample/data on small feature space.

Using PCA, we can find the eigenvectors with highest eigenvalues. These eigenvectors are named as eigenfaces and all the images can be represented as a linear combination of these eigenfaces.

Algorithm:

Algosithmo	Image (NXN)
1000	
	↓
	(.2.)
	Vector (N2x1)
	─
	Take average of face vectors
	$\mathcal{V} = \underbrace{1}_{\infty} \underbrace{\mathcal{Z}_{i}}_{i=1} \mathbf{X}_{i}$
	m (=)
	$a_i = x_i - y$
	Take all face vectors to get matrix of size
	W/x W ₂
	V - F0 - 7
	$V = [a_1 \ a_2 - \dots a_m]$
We lind	Covariance matrix by multiplying V (size MXN2)
and V	Tree NEXM)
Two option	one are there now,
1.5	

Computationally efficient V.VT => CON-matrix of MxM => Cov-matrix of NXN2 = inefficient > Give MxM matrix which has M eigenvectors of size M. Hence, Ca = V-VT Next, une calculate eigenvalues and eigen vectors of the Coverience Matrix. V.V7Vi = 1:Vi 1 V V V = 1 V V V $C'u_i = \lambda_i u_i$, $C'=V^TV$, $u_i = V^Tv_i$ C'and C'have the same eigenvalues (and eigenvectors) are related as $u_i = V.V_i$. M'eigenvalues of covariance matrix gives M'largest eigenvalues of C.

Now, we select k eigenvectors of C' corresponding to K largest eigenvalues.
We can represent each normalized training faces, as linear combination of these K eigenvectors.
Detection Algorithm:
Given an unknown face y, we first pre-process the face to make it centered in the image.
Now we subtract the face from average face V $\phi = y - V$
Represent ϕ as linear combination of eigenfaces. $\phi = \sum_{i=1}^{k} \omega_i u_i$
From this, we generate the following vector

$$\int_{\omega_{1}} \left[\begin{array}{c} \omega_{1} \\ \omega_{2} \\ \omega_{3} \\ \vdots \\ \omega_{k} \end{array} \right], \quad \omega_{i} = u_{i}^{T} \left(y - \mu \right)$$

Now, we subtract the generated vector from the training image to get the distance or difference between training and testing vectors.

If the value of B is less than the threshold defined (alpha_1 and alpha_2 in the code), we return that the image is detected.

Face Recognition:

For determining the face class that provides the best description, we find R that minimizes the distance between images,

$$\mathcal{N}^{(R)} = \left(\begin{array}{c} \omega_1(R) - \omega_2(R) \\ \omega_2(R) \end{array} \right)$$

$$\left(\begin{array}{c} \omega_2(R) \\ \omega_2(R) \end{array} \right)$$

I have also returned the index of image with best matching and indexes of images whose dictance lie within the threshold.

Results:

img_no	true_label	predicted_label	index
0	15	15	216
1	19	19	235
2	20	20	170
3	10	10	46
4	34	34	243
5	6	6	259
6	17	17	334
7	22	22	215
8	30	30	110
9	29	29	1
10	5	5	79
11	14	14	200
12	9	7	349
13	16	16	281
14	20	20	11
15	34	34	291
16	10	10	37
17	15	15	216
18	16	16	107
19	24	24	333
20	38	38	168
21	4	39	12
22	8	8	70
23	14	14	229
24	30	30	7

25	3	3	213
26	38	38	328
27	20	20	323
28	37	37	208
29	5	5	81
30	20	20	323
31	35	35	86
32	8	8	144
33	26	26	191
34	20	20	170
35	17	17	36
36	21	21	147
37	5	5	79
38	2	2	19
39	29	29	176

Hence, the accuracy of the face detection is = (38/40)*100 = 95%. The accuracy will depend on the value of alpha_2(which is the threshold value). On increasing the value of alpha_2, the accuracy increases and on decreasing the value of alpha_2, the accuracy drops. However, the output will give the message, unknown face, if the value of alpha is too less. Hence, we need to select an optimal value of alpha to get high accuracy. The accuracy also depends on the value of k. Also after a certain value of alpha_2, the accuracy won't increase since instead of throwing an unknown face it will predict any random image with least distance from it but it won't be the correct one in most of the cases.

References:

- M. A. Turk and A. P. Pentland, "Face recognition using eigenfaces," Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991, pp. 586-591, doi: 10.1109/CVPR.1991.139758.
- 2. M. Turk and A. Pentland, "Eigenfaces for Recognition," in Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, Jan. 1991, doi: 10.1162/jocn.1991.3.1.71.

- 3. https://www.geeksforgeeks.org/ml-face-recognition-using-eigenfaces-pca-algorithm/?id=discuss
- 4. https://github.com/Ugenteraan/Face-Recognition-Eigenface-Scratch
- 5. https://www.face-rec.org/databases/
- 6. https://github.com/Shubham1007/Face-Recognition-Using-Eigenfaces
- 7. https://www.youtube.com/watch?v=Agtd-NE4we8