

Software Qualität

- Einführung
- Software Fehler
- Konstruktive Qualitätssicherung
- Software Test
 - Statische Analyse

Literatur zu Software Test

 Andreas Spillner, Tilo Linz: Basiswissen Softwaretest: Aus- und Weiterbildung zum Certified Tester - Foundation Level nach ISTQB-Standard (iSQI-Reihe), dpunkt.verlag

 Dirk W. Hoffmann: Software-Qualität, 2 Auflage, Springer Vieweg

Software Test

- Motivation
- Testklassifikation
- Black Box Testtechniken
- White Box Testtechniken
- Testmetriken
- Grenzen des Software Tests
- Testautomatisierung

Motivation

Siehe z.B.
 http://de.wikipedia.org/wiki/Liste_von_Programmfehlerbeispielen

 https://jaxenter.de/top-10-der-softwarekatastrophen-181?utm_source=nl&utm_medium=email

Software Test

- Motivation
- Testklassifikation
 - Black Box Testtechniken
 - White Box Testtechniken
 - Testmetriken
 - Grenzen des Software Tests
 - Testautomatisierung

Testklassifikation

In welcher Entwicklungsphase Prüfebene Quelle der Abb.: Dirk W. Hoffmann: wird der Test durchgeführt? Software-Qualität, 2 Auflage, Springer Vieweg Abnahmeebene Systemebene Integrationsebene Unit-Ebene Testfall Welche Wie werden die inhaltlichen Black-box Funktional Testfälle Aspekte werden White-box Operational konstruiert? geprüft? Temporal Grav-box Prüfkriterium Prüfmethodik

Testklassifikation

Prüfebenen

- Unit Tests: Test von atomaren Einheiten, die groß genug sind, um eigenständig getestet zu werden.
- Integrationstests: einzelne Einheiten werden zu größeren Komponenten zusammengeführt - Test, ob das Zusammenspiel funktioniert.
- Systemtest: Test des Systems als Ganzes auf Einhaltung der im Pflichtenheft festgelegten Eigenschaften.
- Abnahmetest: Ist ein Systemtest in der Umgebung und der Verantwortung des Auftraggebers.

Unit Tests

Unit Tests

Sie testen einzelne Einheiten isoliert.

- Einheiten sind typischerweise:
 - Einzelne Methoden
 - Klassen mit mehreren Attributen und Methoden.
 - Zusammengesetzte Komponenten mit definierten Schnittstellen.

Unit Tests

- Die Testfälle sollen zeigen, dass die Komponente tut, was sie soll.
- Wenn Defekte enthalten sind, sollen sie aufgezeigt werden.

Zwei Arten von Unit Test Cases

- Normale Programmausführung: Die Komponente tut, was sie soll.
- Ungewöhnliche Eingaben, falsche Eingaben etc: Die Komponente geht entsprechend der Spezifikation damit um.

Automatisierte Unit Tests

- Ziel: Möglichst viele Modultests automatisieren.
- Durchführung: Verwendung eines Testautomatisierungs-Frameworks (z.B. JUnit) um Tests zu schreiben und durchzuführen.
- →Ermöglicht, bei jeder Änderung ALLE Tests laufen zu lassen und das Ergebnis graphisch anzuzeigen.

Modultests

Komponenten:

Aufbau:

Sie definieren die Testfälle mit Eingaben und erwarteten Ergebnissen.

Aufruf

Sie rufen die zu testenden Objekte oder Methoden auf.

Auswertung

Vergleich des wirklichen mit dem erwarteten Ergebnis.

Integrationstests

Prof. Dr. Michael Bulenda S. 14

Integrationstests

 Nächsthöhere Abstraktionsebene gegenüber Unit Test.

 Wird eingesetzt, wenn einzelne Programmmodule zu größeren Software Komponenten zusammengesetzt werden.

 Stellt sicher, dass die Komposition der separat getesteten Komponenten ein funktionsfähiges System ergibt.

Integrationsstrategien

Big Bang Integration

- Strukturorientierte Integration
 - Bottom-Up
 - Top-Down
 - Outside-in
 - Inside-Out

Funktionsorientierte Integration

- Termingetrieben
- Risikogetrieben
- Testgetrieben
- Anwendungsgetrieben

Integrationsstrategien in der Praxis

Big Bang Integration

Entwicklung sämtlicher Module, anschließend Integration auf einen Schlag.

Nachteile

- Beginn erst wenn alle Module fertig sind.
- Gleichzeitige Integration aller Komponenten führt zu schwieriger Fehlersuche.

Vorteil:

■ Testtreiber und Mocks sind nicht nötig.

Integrationsstrategien in der Praxis

Strukturorientierte Integration Inkrementelle Integration der Module zum Gesamtsystem. Reihenfolge der Integration richtet sich nach den Abhängigkeiten der Module

- Bottom Up Ausgangpunkt: Basiskomponenten, Verwendung von Testtreibern.
- Top Down Ausgangspunkt: Module der höchsten Schicht, Verwendung von Stubs.
- Outside-In Integration von beiden Seiten nach innen.
- Inside Out Integration von innen nach außen.

Integrationsstrategien im Vergleich

Quelle des Bilds: D. Hoffmann, Software-Qualität, Springer, 2013

Integrationsstrategien in der Praxis

Funktionsorientierte Integration Integration anhand funktionaler oder operationaler Kriterien

- Termingetriebene Integration entsprechend der Verfügbarkeit
- Risikogetriebene Integration riskanteste als erstes
- Testgetriebene Integration Integration für bestimmte Testfälle
- Anwendungsgetriebene Integration Integration für bestimmte Usecases

Systemtests

Merkmalsräume der Testklassifikation

Systemtest

- Start, sobald alle Komponenten erfolgreich integriert sind.
- Findet in einer separaten Testumgebung statt, die der Produktivumgebung ähnelt.

Abnahmetests

Systemtest - Abnahmetest

Typische Phasen des System- und Abnahmetests eines KFZ-Steuergeräts.

Springer, 2013

Abnahmetests - Individualentwicklung

Abnahmetests sind ähnlich dem Systemtest

Unterschiede:

- Abnahmetest unter Federführung des Auftraggebers.
- Abnahmetest findet in der realen Einsatzumgebung des Kunden statt. Durchführung mit authentischen Daten.

Abnahmetests sind juristisch relevant.

Empfehlenswert: Kunden bereits in die Systemtests einzubinden.

- → Kunde ist früh informiert
- → Teilabnahmen sind möglich

Testklassifikation

Merkmalsräume der Testklassifikation

Prüfkriterien

Testklassifikation

Erstellen von Testfällen

Ziel: Systematisches Vorgehen um mit möglichst wenig Aufwand möglichst viele Anforderungen zu überprüfen bzw. Fehler zu finden.

Vorgehen:

- 1. Die durch den Test verfolgten Ziele sowie Bedingungen und Voraussetzungen festlegen.
- 2. Testfälle spezifizieren.
- 3. Testausführung festlegen.

Prüfmethodik

- Black Box Tests
 Testfälle werden aus der Anforderungs- und Schnittstellenanalyse hergeleitet.
- White Box Tests
 Testfälle werden systematisch aus der inneren Programmstruktur hergeleitet
- Gray Box Tests
 Testfälle werden sowohl aus der
 Anforderungs- und Schnittstellenanalyse als auch aus der Kenntnis der inneren
 Programmstruktur hergeleitet.

