SLEMAN ACADEMY PROGRAMAÇÃO MICROCONTROLADORES ARM

Sumário

1	Intro	odução aos Microcontroladores	3
	1.1	O que são Microcontroladores?	3
		Aplicações de Microcontroladores	3
	1.3	Diferença entre Microcontroladores e Microprocessadores	3
2	Arq	uitetura do STM32F103	3
	2.1	Estrutura Geral do STM32F103	3
		2.1.1 Núcleo ARM Cortex-M3	3
		2.1.2 Memória (Flash, RAM, EEPROM)	3
	2.2	Periféricos do STM32F103	3
		2.2.1 GPIO (General Purpose Input/Output)	3
		2.2.2 ADC (Conversor Analógico-Digital)	3
		2.2.3 Timers	3
		2.2.4 USART (Universal Asynchronous Receiver/Transmitter)	3
	2.3	Registradores	3
		2.3.1 O que são registradores?	3
		2.3.2 Estrutura e função dos registradores no STM32F103	3
3	Prog	gramação Bare Metal vs. Uso de Frameworks	3
	3.1	O que é Programação Bare Metal?	3
	3.2	Vantagens e Desvantagens da Programação Bare Metal	3
	3.3	Introdução a Frameworks (Arduino, HAL)	3
	3.4	Comparação: Bare Metal x Framework	3
4	Con	figuração do Ambiente de Desenvolvimento	4
	4.1		4
		4.1.1 Hardware (placa STM32F103, gravador/programador)	4
		4.1.2 Software (IDE, compilador)	4
	4.2	Ideias de IDEs	4
		4.2.1 STM32CubeIDE	4
		4.2.2 Keil uVision	4
		4.2.3 IAR Embedded Workbench	4
	4.3	Uso de Gravadores e Debuggers	4
		4.3.1 Métodos de programação (JTAG, SWD)	4
		4.3.2 Configuração do gravador	4
5	Fun	damentos da Programação em C	4

1 Introdução aos Microcontroladores

- 1.1 O que são Microcontroladores?
- 1.2 Aplicações de Microcontroladores
- 1.3 Diferença entre Microcontroladores e Microprocessadores
- 2 Arquitetura do STM32F103
- 2.1 Estrutura Geral do STM32F103
- 2.1.1 Núcleo ARM Cortex-M3
- 2.1.2 Memória (Flash, RAM, EEPROM)
- 2.2 Periféricos do STM32F103
- 2.2.1 GPIO (General Purpose Input/Output)
- 2.2.2 ADC (Conversor Analógico-Digital)
- **2.2.3 Timers**
- 2.2.4 USART (Universal Asynchronous Receiver/Transmitter)
- 2.3 Registradores
- 2.3.1 O que são registradores?
- 2.3.2 Estrutura e função dos registradores no STM32F103
- 3 Programação Bare Metal vs. Uso de Frameworks
- 3.1 O que é Programação Bare Metal?
- 3.2 Vantagens e Desvantagens da Programação Bare Metal
- 3.3 Introdução a Frameworks (Arduino, HAL)
- 3.4 Comparação: Bare Metal x Framework

4 Configuração do Ambiente de Desenvolvimento

- 4.1 Ferramentas Necessárias
- 4.1.1 Hardware (placa STM32F103, gravador/programador)
- 4.1.2 Software (IDE, compilador)
- 4.2 Ideias de IDEs
- 4.2.1 STM32CubeIDE
- 4.2.2 Keil uVision
- 4.2.3 IAR Embedded Workbench
- 4.3 Uso de Gravadores e Debuggers
- 4.3.1 Métodos de programação (JTAG, SWD)
- 4.3.2 Configuração do gravador
- 5 Fundamentos da Programação em C