

EECS4030: Computer Architecture

Arithmetic for Computers (II)

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University, Taiwan

(Adapted from textbook slides https://www.elsevier.com/books-and-journals/book-companion/9780128122754/lecture-slides)

Outline

- Addition and subtraction (Sec. 3.2)
- Multiplication (Sec. 3.3)
- Division (Sec. 3.4)
- Floating point (Sec. 3.5)
- Parallelism and computer arithmetic: subword parallelism (Sec. 3.6)
- Streaming SIMD extensions and advanced vector extensions in x86 (Sec. 3.7)
- Subword parallelism and matrix multiply (Sec. 3.8)

Floating Point Numbers: Motivation

• What can be represented in N bits?

Unsigned 0 to $2^n - 1$ 2's Complement -2^{n-1} to $2^{n-1} - 1$

- But, what about ...
 - very large numbers?
 9,349,398,989,787,762,244,859,087,678
 - -very small number?
 0.0000000000000000000000045691

- rationals 2/3

- irrationals $\sqrt{2}$

- transcendentals e, π

• How to represent them in just N bits?

Floating Point Numbers

 In math, we use scientific notation to representation very small and very large numbers, e.g.,

In binary:

Types float and double in C/C++

Floating point:

binary point is not fixed (vs. fixed-point numbers such as integers)

Intuitive Floating Point Representation

- Normalized format: $\pm 1.xxxxxxxxxxx_{two} \times 2^{\pm yyyy}_{two}$
- Can use 32 bits to represent (single-precision):

Exponent represents y's (positive or negative)
Significand represents 1.x's

• Represent numbers from 1.0×10^{-38} to 2.0×10^{38}

Intuitive Floating Point Representation

Can use 64 bits if more precision is needed (double precision)

- Double precision (vs. single precision)
 - Represent numbers almost as small as 1.0×10^{-308} to almost as large as 2.0×10^{308}
 - Main advantage is greater accuracy due to larger significand

Defined by IEEE Std 754-1985

For portability; more efficient use of bits

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

- S: sign bit (0 \Rightarrow non-negative, 1 \Rightarrow negative)
- Normalized significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit) → to pack more bits
 - Significand is Fraction with the "1." restored
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

- Handling exponent:
 - Need to represent positive and negative exponents
 - Also want to compare FP numbers as if they were integers
 - If use 2's complement to represent? e.g., 1.0×2^{-1} versus $1.0 \times 2^{+1}$ (1/2 versus 2)
- - 2 0 0000 0001 000 0000 0000 0000 0000
 - If we use integer comparison for these two words, we would conclude that 1/2 > 2!!!

- Handling exponent: (cont.)
 - Instead, let notation 0000 0000 be the most negative, and 1111 1111 the most positive → biased notation, where bias is the number subtracted to get the real number
 - IEEE 754 uses bias of 127 (0111 1111) for single precision:
 (Exponent 127) to get actual value for exponent

Most positive (127) Most negative (-126)

Actual

2's comp. 0111 1111

1000 0010

Rep

biased

0000 0001

000000000 & _11111111

- 1023 (011 1111 1111) is bias for double precision

reserved

1/2

0 | 0111 1110

000 0000 0000 0000 0000

2

0 1000 0000

000 0000 0000 0000 0000

Biased Number Representation

Decimal	2's Compl.	Bias-3 (011)	Bias-4 (100)
+3	011	110	111
+2	010	101	110
+1	001	100	101
0	000	011	100
-1	111	010	011
-2	110	001	010
-3	101	000	001
-4	100	111	000

Exponent 0000 and 1111 are reserved

Summary (single precision):

31	30	23	22	0
S	Exponent		Fraction	
1 bit	8 bits		23 bits	

$$(-1)^{S}$$
 x (1.Fraction) x $2^{(Exponent-127)}$

 Double precision identical, except with exponent bias of 1023

Single Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 - \Rightarrow actual exponent = 1 127 = –126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $-\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - Exponent: 11111110
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11 \Rightarrow significand ≈ 2.0
 - $-\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $+1.0 \times 2^{-1022} \approx +2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110
 - \Rightarrow actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $-\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating Point Precision

- Relative precision
 - All fraction bits are significant
 - Single precision: approximately 2⁻²³
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double precision: approximately 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single precision: 1011111101000...00
- Double precision: 10111111111101000...00

Floating Point Example

A more difficult case: representing 1/3?

$$= 0.33333..._{10} = 0.0101010101..._{2} \times 2^{0}$$

- = $1.0101010101..._{2} \times 2^{-2}$
- Sign: 0
- Exponent = $-2 + 127 = 125_{10} = 011111101_2$
- Fraction = 0101010101...

0 0111 1101 0101 0101 0101 0101 0101

This 32-bit number is only an approximation of 1/3!
 If we use this number as 1/3 in subsequent computations,
 the error will propagate and magnify

Floating Point Example

 What number is represented by the single-precision floating point?

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = 10000001_2 = 129
- $x = (-1)^{1} \times (1 + 0.01_{2}) \times 2^{(129 127)}$ = $(-1) \times 1.25 \times 2^{2}$ = -5.0
- Can it also represent the following number?
 - 1 1000 0001 0100 0000 0000 0000 0000 000 01

Special Numbers in IEEE 754 Standard

- So far, we have not used the full range of 32/64 bits in defining floating point numbers
- Consider single precision representation:

Exponent	<u>Fraction</u>	Object
0	0	+/- 0
0	nonzero	? ??
1-254	anything	+/- floating-point
255	0	???
255	nonzero	???

Denormalized Numbers

- Represent denormalized numbers (denorms)
 - Exponent: 000...0
 - Fraction: non-zeroes ⇒ hidden bit is 0

$$x = (-1)^S \times (0 + Fraction) \times 2^{-126}$$

0 0000 0000 0100 0000 0000 0000 0000 000

$$= 0.01_2 \times 2^{-126}$$

- Allow a number to degrade in significance until it become 0
 (gradual underflow)
- Smallest normalized number
 - 1.000 ... $000 \times 2^{-126} = 0 0000 0001 0000 ... 0000$
- Smallest/largest de-normalized number

Gradually smaller

• $0.000 \dots 001 \times 2^{-126}$

$$0.111 \dots 111 \times 2^{-126}$$

By Blacklemon67 at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=64391537

Special Numbers in IEEE 754 Standard

- So far, we have not used the full range of 32/64 bits in defining floating point numbers
- Consider single precision representation:

Exponent	<u>Fraction</u>	<u>Object</u>	
0	0	+/- 0	
0	nonzero	denorm	
1-254	anything	+/- floating-point	
255	0	???	
255	nonzero	??? Two representation	

Denormal with fraction = 000...0

 $x = (-1)^S \times (0+0) \times 2^{1-Bias} = \pm 0.0$

of 0.0!

Representation for +/- Infinity

- In FP, divide by zero should produce +/- infinity, not overflow
- Why?
 - OK to do further computations with infinity, e.g., X/0 > Y
 may be a valid comparison
- IEEE 754 represents +/- infinity
 - Most positive exponent reserved for infinity
 - Fraction is all zeroes

Special Numbers in IEEE 754 Standard

- So far, we have not used the full range of 32/64 bits in defining floating point numbers
- Consider single precision representation:

<u>Exponent</u>	<u>Fraction</u>	Object
0	0	+/- 0
0	nonzero	denorm
1-254	anything	+/- floating-point
255	0	+/- infinity
255	nonzero	???

Representation for Not a Number

- What do I get if I calculate sqrt(-4.0) or 0/0?
 - If infinity is not an error, these should not be either
 - They are called Not a Number (NaN)
 - → Exponent = 255, Fraction nonzero
- Why is this useful?
 - Indicates illegal or undefined result
 - Hope NaNs help with debugging
 - They contaminate: op(NaN, X) = NaN
 - OK if calculate but don't use it

Summary: IEEE 754 FP Standard

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1-254	Anything	1-2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Fig. 3.13

Floating Point Addition

Consider a 4-digit decimal example

$$9.999 \times 10^{1} + 1.610 \times 10^{-1}$$

- 1) Align decimal points
 - Shift number with smaller exponent
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2) Add significands
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3) Normalize result and check for over/underflow
 - -1.0015×10^2
- 4) Round and renormalize if necessary
 - -1.002×10^{2}

Floating Point Addition

Now consider a 4-digit binary example

$$1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$$

- 1) Align binary points
 - Shift number with smaller exponent
 - $-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2) Add significands

$$-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

- 3) Normalize result and check for over/underflow
 - $-1.000_2 \times 2^{-4}$, with no over/underflow
- 4) Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

Floating Point Multiplication

Consider a 4-digit decimal example

$$1.110 \times 10^{10} \times 9.200 \times 10^{-5}$$

- 1) Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2) Multiply significands
 - $-1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^{5}$
- 3) Normalize result and check for over/underflow
 - -1.0212×10^6
- 4) Round and renormalize if necessary
 - -1.021×10^6
- 5) Determine sign of result from signs of operands
 - $+1.021 \times 10^{6}$

Floating Point Multiplication

Now consider a 4-digit binary example

$$1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$$

- 1) Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2) Multiply significands
 - $-1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3) Normalize result and check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4) Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5) Determine sign: +ve \times -ve \Rightarrow -ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in RISC-V

- Separate FP registers: f0, ..., f31
 - double-precision
 - single-precision values stored in the lower 32 bits
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - Single precision load/store: flw, fsw
 - Double precision load/store: fld, fsd

FP Instructions in RISC-V F/D Extension

- Single-precision arithmetic
 - fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.s
 - e.g., fadd.s f2,f4,f6
- Double-precision arithmetic
 - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d
 - e.g., fadd.d f2,f4,f6
- Single- and double-precision comparison
 - feq.s, flt.s, fle.s
 - feq.d, flt.d, fle.d
 - Result is 0 or 1 in integer destination register

feq.d x5,f0,f1

FP Example: "F to "C

C code:

```
float f2c(float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in f10, result in f10, literals in global memory space
- Compiled RISC-V code:

```
f2c: flw f0,const5(x3) // f0 = 5.0f
flw f1,const9(x3) // f1 = 9.0f
fdiv.s f0,f0,f1 // f0 = 5.0f/9.0f
flw f1,const32(x3) // f1 = 32.0f
fsub.s f10,f10,f1 // f10 = fahr-32.0
fmul.s f10,f0,f10 // f10 = () * ()
jalr x0,0(x1) // return
```

FP Example: Array Multiplication

- C = C + A × B
 All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of c, a, b in x10, x11, x12, and i, j, k in x5, x6, x7

FP Example: Array Multiplication

RISC-V code:

```
// x28 = 32 (row size/loop end)
   li
         x28,32
   li
        x5,0
                     // i = 0; initialize 1st for loop
L1: li x6,0
                     // j = 0; initialize 2nd for loop
L2: li x7,0
                     // k = 0; initialize 3rd for loop
                     // x30 = i * 2^5  (size of row of c)
   slli x30,x5,5
   add x30,x30,x6
                     // x30 = i * size(row) + j
                     // x30 = byte offset of [i][j]
   slli x30,x30,3
   add x30, x10, x30
                     // x30 = byte address of c[i][j]
   fld f0,0(x30)
                     // f0 = c[i][j]
L3: slli x29,x7,5
                     // x29 = k * 2^5  (size of row of b)
   add x29, x29, x6
                     // x29 = k * size(row) + j
                     // x29 = byte offset of [k][j]
   slli x29,x29,3
   add x29, x12, x29
                     // x29 = byte address of b[k][j]
   fld f1,0(x29) // f1 = b[k][j]
```

FP Example: Array Multiplication

```
slli x29, x5, 5 // x29 = i * 2^5 (size of row of a)
add x29, x29, x7 // x29 = i * size(row) + k
slli x29,x29,3 // x29 = byte offset of [i][k]
add x29,x11,x29 // x29 = byte address of a[i][k]
fld f2,0(x29) // f2 = a[i][k]
fmul.d f1, f2, f1 // f1 = a[i][k] * b[k][j]
fadd.d f0, f0, f1 // f0 = c[i][j] + a[i][k] * b[k][j]
bltu x7,x28,L3 // if (k < 32) go to L3
fsd f0,0(x30) // c[i][j] = f0
addi x6, x6, 1 // j = j + 1
bltu x6,x28,L2 // if (j < 32) go to L2
     x5, x5, 1 // i = i + 1
addi
bltu x5,x28,L1 // if (i < 32) go to L1
```

Accurate Arithmetic

- Integer arithmetic is accurate, exact
 - Because integers can represent exactly every number between the smallest and largest number
- FP arithmetic is approximate, inexact
 - Because FP numbers are just approximations for the actual number they want to represent
 - The approximation errors widen as FP numbers are operated upon to generate new FP numbers
 - Need to be careful in rounding intermediate results
- IEEE Std 754 specifies additional rounding control
 - Use extra bits during HW calculation to preserve precision (guard, round, sticky) and allow choice of rounding modes

Associativity of FP Operations

Is FP add/subtract associative?

		(X + Y) + Z	X + (Y + Z)
X	-1.50 x 10 ³⁸		-1.50 x 10 ³⁸
Υ	1.50×10^{38}	0.0	
Z	1.0	1.0	1.50×10^{38}
		1.0	0.0

- FP add/subtract are not associative!
 - Why? FP result approximates real result!
 - Ex: 1.5×10^{38} is so much larger than 1.0 that $1.5 \times 10^{38} + 1.0$ in floating point representation is still 1.5×10^{38}

Outline

- Addition and subtraction (Sec. 3.2)
- Multiplication (Sec. 3.3)
- Division (Sec. 3.4)
- Floating point (Sec. 3.5)
- Parallelism and computer arithmetic: subword parallelism (Sec. 3.6)
- Streaming SIMD extensions and advanced vector extensions in x86 (Sec. 3.7)
- Subword parallelism and matrix multiply (Sec. 3.8)

Arithmetic for Multimedia

- Graphics and media processing often perform same operations on vectors of 8-bit and 16-bit data
 - These data are often packed into words
- How to operate on these words of short data?
 - Since we have already had 64-bit adder, can we leverage it?
 - Partition the carry chain of the 64-bit adder so that the adder can perform 8 8-bit or 4 16-bit vector add/sub
 - This is called subword parallelism
- Saturating operations
 - On overflow, result is the largest representable value, e.g., clipping in audio, saturation in video

Subword Parallelism

An 8-bit ripple-carry adder:

Turned into two 4-bit ripple-carry adders:

http://ece-research.unm.edu/pollard/classes/338/lademo/LookAheadDemo.htm

Fallacies and Pitfalls

- Left shift by *i* places \rightarrow multiplies an integer by 2^i
- Right shift by i places divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4 $11111011_2 >> 2 = 111111110_2 = -2$
 - If we only do logic shift right, $11111011_2 >> 2 = 001111110_2 = +62$

Summary

- RISC-V arithmetic: successive refinement to final design
 - 64-bit adder and logic unit
 - 64-bit multiplier and divisor
- FP numbers approximate values that we want to use
 - IEEE 754 Standard is most widely accepted representation
 - New RISC-V registers (f0~f31) and instructions:
 - Single-precision (32 bits): **fadd.s**, **fsub.s**, **fmul.s**, **fdiv.s**, **fsqrt.s**, **feq.s**, **flt.s**, **fle.s**
 - Double-precision (64 bits): fadd.d, fsub.d, fmul.d,
 fdiv.d, fsqrt.d, feq.d, flt.d, fle.d

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs
- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow