CC2: 10 mai 2021: 10h-11h30 (1h; 1h20 pour les tiers temps)

On attachera le plus grand soin à la présentation et aux calculs. Aucun document ni appareil numérique autorisé. Le barême est indicatif. Les questions avec * sont plus difficiles (questions bonus).

Le sujet est recto-verso.

Exercice 1. (5 points). Répondre uniquement par vrai ou faux aux cinq assertions suivantes (on ne demande pas de justifier).

- 1. Si $A \in M_3(\mathbb{R})$ vérifie $A^2 = 0$, alors la transposée de A vérifie $A^{\top} = 0$.
- 2. Si un système linéaire homogène a plus d'inconnues que d'équations, alors il possède une infinité de solutions.
- 3. Soit a, b deux paramètres réels et soit le système linéaire dans \mathbb{R}^2

$$\begin{cases} x + ay = 1 \\ x + by = 0 \end{cases}.$$

Alors, il existe $a, b \in \mathbb{R}$ tels que ce système n'ait pas de solution.

- 4. Soit $n \in \mathbb{N}^*$. Si F et G sont deux sous-espaces vectoriels de \mathbb{R}^n de dimension 2 et 3 respectivement et en somme directe, alors $n \geq 5$.
- 5. La matrice A ci-dessous est inversible

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ -2 & -5 & 3 \\ 2 & 4 & 2 \end{array}\right).$$

- 1. Faux : $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ vérifie $A^2 = 0$ et A comme A^\top n'est pas nulle.
- 2. Vrai : on écrit AX=0 le système linéaire homogène avec $A\in M_{m,n}(\mathbb{R})$ et m< n. Par le théorème du rang, on a n=rg(A)+dim(Ker(f)) où f est l'endomorphisme défini par la matrice A dans la base canonique de \mathbb{R}^n . On a $rg(A) \leq m$. Il vient $dim(Ker(f))=n-rg(A) \geq n-m>0$ d'où le résultat.
- 3. Vrai : prendre a = b = 1.
- 4. Vrai : Par la formule de Grassmann $5 = 2 + 3 0 = dim(F) + dim(G) dim(F \cap G) = dim(F + G) \le n$. Par contre, c'est faux si la somme n'est pas directe : prendre n = 3 et F un hyperplan et $G = \mathbb{R}^3$ l'espace tout entier.
- 5. Faux : la 3ème ligne = 2 fois la première, donc le déterminant est nul.

Exercice 2. (4 points). Soit $a \in \mathbb{R}$ et A la matrice

$$A = \left(\begin{array}{ccc} a & 1 & 2 \\ 4 & 2 & 2 \\ 6 & 3 & 5 \end{array}\right).$$

- 1) Calculer le déterminant de A.
- 2) Pour chaque valeur de $a \in \mathbb{R}$, donner le rang de A (justifier).

On trouve det(A) = 4a - 8. Si $a \neq 2$, la matrice est inversible et son rang est 3. Si a = 2, alors son rang vaut 1 ou 2 (car A n'est pas nulle et non inversible). De plus, les deux premières lignes pour a = 2 sont deux vecteurs non colinéaires, donc son rang vaut 2.

Exercice 3. (8 points) Dans \mathbb{R}^4 , on pose $F = Vect(u_1, u_2)$ et $G = Vect(u_3, u_4, u_5)$ où :

$$u_1 = (1, -1, 0, 2)$$
; $u_2 = (0, -9, -9, 6)$; $u_3 = (1, 2, 3, 0)$; $u_4 = (0, -1, 2, -2)$; $u_5 = (3, 7, 7, 2)$.

- 1) Trouver une relation de liaison entre u_1 , u_2 , et u_3 . Quelle inégalité déduit-on sur $\dim(F \cap G)$?
- 2) Trouver une relation de liaison entre u_3 , u_4 , et u_5 puis déterminer dim(G) (justifier).
- 3) Montrer que $u_1 \notin Vect(u_2, u_4)$. Que peut-on en déduire sur la famille $\{u_1, u_2, u_4\}$?
- 4^*) A l'aide de ce qui précède, déterminer dim(F+G). Donner une base de F+G.
- 1) On trouve facilement $u_2 = 3u_1 3u_3$. On déduit que $u_3 \in F \cap G$ et que donc $dim(F \cap G) \ge 1$.
- 2) On trouve facilement $u_5 = 3u_3 u_4$. Or u_3 et u_4 ne sont pas colinéaires, donc dim(G) = 2.
- 3) La première composante de u_2 et u_4 est nulle;, donc u_1 ne peut pas être une combinaison linéaire de ces deux vecteurs. Par conséquent, comme u_2 et u_4 ne sont pas colinéaires, la famille en question est libre.
- 4) Formule de Grassman : $dim(F+G) = dim(F) + dim(G) dim(F \cap G)$. Or dim(F) = 2 car u_1 et u_2 ne sont pas colinéaires. On a vu que dim(G) = 2. Enfin, $F \cap G$ est de dimension au moins 1 (et inférieure ou égale à 2). Mais, comme $u_4 \notin F$ par la question 3, l'intersection $F \cap G$ est de dimension 1. En conclusion, dim(F+G) = 3.

Pour une base de F + G, on prend déjà une base de G, $\{u_4, u_5\}$. Puis on complète par $u_2 \in F$. On montre facilement que est libre $\{u_2, u_4, u_5\}$. Cette famille est aussi dans F + G, donc c'est une base de F + G (de dimension 3). D'où le résultat.

TSVP

Exercice 4. (8 points) Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par

$$A = \left(\begin{array}{rrr} 1 & -1 & -2 \\ -3 & -3 & -3 \\ 2 & 2 & 2 \end{array}\right).$$

- 1) Calculer une base de Ker(f) puis en déduire dim(Ker(f)) et rg(f) (le rang de f).
- 2) a) Calculer A^2 et A^3 .
- b) En déduire que f^2 est non nul et $f^3 = 0$ (ici $f^2 = f \circ f$ et $f^3 = f \circ f \circ f$).
- 3) On admet qu'il existe un vecteur $x \in \mathbb{R}^3$ tel que la famille $\{f^2(x), f(x), x\}$ soit une base de \mathbb{R}^3 . Donner la matrice de f dans cette base.
- 4*) Montrer qu'il existe $x \in \mathbb{R}^3$ tel que la famille $\{f^2(x), f(x), x\}$ soit une base de \mathbb{R}^3 (indication : après avoir trouvé un vecteur $x \in \mathbb{R}^3$ judicieux, montrer que la famille est libre en appliquant f à une relation de liaison).
- 1) On résout le système linéaire AX = 0 où $X = (x, y, z)^{\top}$ ce qui donne x = z/2 et y = -3z/2 où $z \in \mathbb{R}$. Ainsi, $Ker(f) = \mathbb{R}u$ où u = (1/2, -3/2, 1). Une base de Ker(f) est donc $\{u\}$. Le noyau de f est de dimension 1 et rg(f) = 2 par le théorème du rang.
- 2) a) Par le calcul:

$$A^{2} = \begin{pmatrix} 0 & -2 & -3 \\ 0 & 6 & 9 \\ 0 & -4 & -6 \end{pmatrix} \; ; \; A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- b) La matrice de f^2 dans la base canonique est $A^2 \neq 0$ donc $f^2 \neq 0$. De plus $A^3 = 0$, donc $f^3 = 0$.
- 3) La matrice de f dans la base $\{f^2(x), f(x), x\}$ est

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

4) Comme $f^2 \neq 0$, il existe $x \neq 0$ t.q. $f^2(x) \neq 0$. Ecrivons une relation de liaison

$$af^2(x) + bf(x) + cx = 0.$$

Alors, en appliquant f^2 , il vient $cf^2(x)=0$ car $f^3=f^4=0$. D'où comme $f^2(x)\neq 0$, c=0. On ré-applique f une fois ce qui donne $af^3(x)+bf^2(x)=0$ et donc b=0. Finalement, on déduit a=0. Il s'agit d'une famille libre de 3 vecteurs dans \mathbb{R}^3 , c'est donc une base de \mathbb{R}^3 .