

Least-Squares-Methode – Theorie und Anwendung

Von verrauschten Messdaten zum linearen Modell

Bachelor Studiengänge im 2. Semester

Abbildung: Erstellt mit GenSpark.ai (Mai 20

Überblick

- Historischer Anwendungsfall
- Die Methode der kleinsten Quadrate am einfachen Beispiel
 - Modelleigenschaften
 - Fehlermaße
 - Berechnung der Ausgleichsgeraden
- Anwendungen von damals bis heute
- Mini-Quiz

Einsatz der Least-Squares-Methode damals & heute

- Im Jahr 1801 entdeckte der Astronom Giuseppe Piazzi den Himmelskörper Ceres
 - Ceres war nur wenige Tage sichtbar
 - Nur wenige Positionsdaten erfasst
- Gauss entwickelte die Methode der kleinsten Quadrate, mit der er die Bahn des Himmelskörpers bestimmen konnte
- Ende 1801 wurde Ceres tatsächlich genau an der von Gauss berechneten Stelle entdeckt.

Carl Friedrich Gauß auf der Terrasse "seiner" Sternwarte Abbildung: Uni Göttingen, Uni|iniform, Ausgabe Nr.4/2004

Die Methode der kleinsten Quadrate am einfachen Beispiel

- Besucherzahlen der letzten Tage bekannt
- Wetterdaten der letzten Tage bekannt
- Für morgen sind 33°C angesagt
- Wie viele Besucher sind morgen zu erwarten?

Temperatur in °C (x)	28	23	24	36	35	29	30	27	28	35	33
Gästezahl (y)	400	60	180	625	560	290	620	440	250	480	?

- Besucherzahlen der letzten Tage bekannt
- Wetterdaten der letzten Tage bekannt

Das Verfahren am einfachen Beispiel - Modelleigenschaften

- Besucherzahlen der letzten Tage bekannt
- Wetterdaten der letzten Tage bekannt
- Für morgen sind 33°C angesagt
- Wie viele Besucher sind morgen zu erwarten?

Das Verfahren am einfachen Beispiel - Modelleigenschaften

- Besucherzahlen der letzten Tage bekannt
- Wetterdaten der letzten Tage bekannt
- Für morgen sind 33°C angesagt
- Wie viele Besucher sind morgen zu erwarten?

Das Verfahren am einfachen Beispiel - Modelleigenschaften

- Besucherzahlen der letzten Tage bekannt
- Wetterdaten der letzten Tage bekannt
- Für morgen sind 33°C angesagt
- Wie viele Besucher sind morgen zu erwarten?

• Was ist der Abstand, der möglichst klein sein soll?

• Was ist der Abstand, der möglichst klein sein soll?

- Was ist der Abstand, der möglichst klein sein soll?
- Problemstellung hilft:
 - \circ Modell: f(x) = y -- nicht in x und y gleichberechtigt
 - Temperatur ist bekannt (x, unabhängige Variable)
 - Besucherzahl ist gesucht (y, abhängige Variable)

- Was ist der Abstand, der möglichst klein sein soll?
- Problemstellung hilft:
 - \circ Modell: f(x) = y -- nicht in x und y gleichberechtigt
 - Temperatur ist bekannt (x, unabhängige Variable)
 - Besucherzahl ist gesucht (y, abhängige Variable)
- Fehler bewertet die Vorhersage des Modells
- Residuum: Differenz zwischen den tatsächlichen beobachteten Werten und den vorhergesagten Werten einer statistischen Analyse

SOE =
$$r_1 + r_2 + r_3 = 0 + (-1,5) + (1,5) = 0$$

Gesamtfehler =
$$r_1 + r_2 + r_3 = (-1) + (-2,5) + (-1) = -4,5$$

Sum of Errors (SOE)

- Vorteile:
 - Intuitiv
- Nachteile:
 - Positive und negative Fehler heben sich auf

$SOE = \sum_{i=1}^{n} r_i$

Sum of Absolute Errors (SAE) / **Mean Absolute Error** (MAE)

- Vorteile:
 - Interpretierbar
- Nachteile:

Seite 17

Nicht differenzierbar bei Null

$$SAE = \sum_{i=1}^{n} |r_i|$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |r_i|$$

Sum of Squared Errors (SSE) / **Mean Squared Error** (MSE)

- Vorteile:
 - o Differenzierbar
 - Bestraft große Fehler stark
- Nachteile:
 - Empfindlich gegenüber Ausreißern

Root Mean Squared Error (RMSE)

- Vorteil:
 - Differenzierbar
 - Bestraft große Fehler stark
 - Fehlermaß interpretierbar
- Nachteil:
 - Empfindlich gegenüber Ausreißern

$$SSE = \sum_{i=1}^{n} r_i^2$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} r_i^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} r_i^2}$$

Gesamtfehler:
$$SSE = \sum_{i=1}^{n} r_i^2$$
, $n = \text{Anzahl der Punkte}$

Gesamtfehler:
$$SSE = \sum_{i=1}^{n} r_i^2$$
, $n = \text{Anzahl der Punkte}$

SSE =
$$r_1^2 + r_2^2 + r_3^2 = (-1)^2 + (-2,5)^2 + (-1)^2 = 8,25$$

- 2-dimensionale Daten liegen vor (x_i, y_i) , für i=1,...,n, mit n=10
- Annahme: Linearer Zusammenhang

- 2-dimensionale Daten liegen vor (x_i, y_i) , für i=1,...,n, mit n=10
- Annahme: Linearer Zusammenhang
- Modell: f(x): $\hat{y} = mx + b$

- 2-dimensionale Daten liegen vor (x_i, y_i) , für i=1,...,n, mit n=9
- Annahme: Linearer Zusammenhang
- Modell: f(x): $\hat{y} = mx + b$
- "Beste" Gerade: $\min \sum_{i=1}^{n} (r_i)^2$

- 2-dimensionale Daten liegen vor (x_i, y_i) , für i=1,...,n, mit n=9
- Annahme: Linearer Zusammenhang
- Modell: f(x): $\hat{y} = mx + b$
- "Beste" Gerade: $\min \sum_{i=1}^{n} (r_i)^2$
- Residuum: $r_i = \hat{y}_i y_i$

- 2-dimensionale Daten liegen vor (x_i, y_i) , für i=1,...,n, mit n=9
- Annahme: Linearer Zusammenhang
- Modell: f(x): $\hat{y} = mx + b$
- "Beste" Gerade: $\min \sum_{i=1}^{n} (r_i)^2$
- Residuum: $r_i = \hat{y}_i y_i$ $\Leftrightarrow r_i = mx_i + b - y_i$

- 2-dimensionale Daten liegen vor (x_i, y_i) , für i=1,...,n, mit n=9
- Annahme: Linearer Zusammenhang
- Modell: f(x): $\hat{y} = mx + b$
- "Beste" Gerade: $\min \sum_{i=1}^{n} (r_i)^2$
- Residuum: $r_i = \hat{y}_i y_i$ $\Leftrightarrow r_i = mx_i + b - y_i$
- $f(b, m) = \sum_{i=1}^{n} (mx_i + b y_i)^2$

• Gesucht: Minimum der Funktion
$$f(b, m) = \sum_{i=1}^{n} (mx_i + b - y_i)^2$$

- Gesucht: Minimum der Funktion $f(b, m) = \sum_{i=1}^{n} (mx_i + b y_i)^2$
- Minimum: Partielle Ableitungen gleich null:

$$f_{b}'(b, m) = \sum_{i=1}^{n} 2(b + mx_{i} - y_{i}) = 0$$

$$f_{m}'(b, m) = \sum_{i=1}^{n} 2(b + mx_{i} - y_{i}) x_{i} = 0$$

- Gesucht: Minimum der Funktion $f(b, m) = \sum_{i=1}^{n} (mx_i + b y_i)^2$
- Minimum: Partielle Ableitungen gleich null:

$$f_{b}'(b, m) = \sum_{i=1}^{n} 2(b + mx_{i} - y_{i}) = 0$$

$$f_{m}'(b, m) = \sum_{i=1}^{n} 2(b + mx_{i} - y_{i}) x_{i} = 0$$

• Lineares Gleichungssystem (2 Lin. Unabh. Gleichungen & 2 Unbekannte: 1 Lösung)

- Gesucht: Minimum der Funktion $f(b, m) = \sum_{i=1}^{n} (mx_i + b y_i)^2$
- Minimum: Partielle Ableitungen gleich null:

$$f_b'(b, m) = \sum_{i=1}^{n} 2(b + mx_i - y_i) = 0$$

$$f_m'(b, m) = \sum_{i=1}^{n} 2(b + mx_i - y_i) x_i = 0$$

- Lineares Gleichungssystem (2 Lin. Unabh. Gleichungen & 2 Unbekannte: 1 Lösung)
- $egin{aligned} ullet & ext{L\"osung:} \ m = rac{\sum_{i=1}^n (x_i ar{x})(y_i ar{y})}{\sum_{i=1}^n (x_i ar{x})^2} \ b = ar{y} mar{x} \end{aligned}$

 $Mit \ \bar{x} \ \text{und} \ \bar{y}$, den Mittelwerten von x, und y,

$$\{(x_i, y_i)\} = \{(28, 400), (23, 60), (24, 180), (36, 625), (35, 560), (29, 290), (30, 620), (27, 440), (28, 250), (35, 480)\}$$

$$m = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^{n}(x_i - ar{x})^2} \qquad b = ar{y} - mar{x}$$

$$\{(x_i, y_i)\} = \{ (28, 400), (23, 60), (24, 180), (36, 625), (35, 560), (29, 290), (30, 620), (27, 440), (28, 250), (35, 480) \}$$

$$m = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^{n}(x_i - ar{x})^2} \qquad b = ar{y} - mar{x}$$

$$\bar{x} = (28 + 23 + 24 + 36 + 35 + 29 + 30 + 27 + 28 + 35)/10 = 295/10 = 29,5$$

 $\bar{y} = (400 + 60 + 180 + 625 + 560 + 290 + 620 + 440 + 250 + 480)/10 = 390,5/10 = 390,5/10$

$$\{(x_i^{},y_i^{})\}=\{(28,400),(23,60),(24,180),(36,625),(35,560),\\(29,290),(30,620),(27,440),(28,250),(35,480)\}$$

$$m = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^{n}(x_i - ar{x})^2} \qquad \quad b = ar{y} - mar{x}$$

$$\bar{x} = (28 + 23 + 24 + 36 + 35 + 29 + 30 + 27 + 28 + 35)/10 = 295/10 = 29,5$$

 $\bar{y} = (400 + 60 + 180 + 625 + 560 + 290 + 620 + 440 + 250 + 480)/10 = 390,5/10 = 390,5/10$

$$m = \frac{6492,5}{186.5} \approx 34,812 \qquad b = 390,5 - (6492,5/186,5) \ 29,5 \approx -636,464$$

$$f(x)$$
: $\hat{y} = 34,812 x - 636,464$

$$f(x)$$
: $\hat{y} = 34.812 x - 636.464$

$$f(33) = 512.34$$

$$f(x)$$
: $\hat{y} = 34.812 x - 636.464$

$$f(33) = 512.34$$

Bitte beachten Sie folgende Voraussetzungen:

- Modell begrenzt gültig
- Modellwahl muss stimmen
- Empfindlich bei Ausreißern
- Annahme: Fehler normalverteilt

Least Squares Methode - Die erste Anwendung

- Im Jahr 1801 entdeckte der Astronom Giuseppe Piazzi den Himmelskörper Ceres
- Lösungsansatz von Gauss:
 - Keplers 1. Gesetz:
 Die Bahn eines jeden Planeten ist eine Ellipse,
 wobei die Sonne in einem der beiden
 Brennpunkte steht.
 - Bestimme die Bahn, die die Summe der quadrierten Abweichungen minimiert.
- Ende 1801 wurde Ceres tatsächlich genau an der von Gauss berechneten Stelle entdeckt.

Carl Friedrich Gauß auf der Terrasse "seiner" Sternwarte Abbildung: Uni Göttingen, Uni|in|form, Ausgabe Nr.4/2004

Messpunkte P_i mit "Ausgleichskurve"

L. Papula; Mathematik für Ingenieure und Naturwissenschaftler, Band 3, Vieweg+Teubner Verlag, 2011, https://doi.org/10.1007/978-3-8348-8133-5

Least Squares Methode - Die erste Anwendung

- Es gab nur drei unsichere Positionsmessungen
- Gauss arbeitete mit der Modellannahme einer Ellipse
- Er minimierte die Summe der Fehlerquadrate:

Minimiere
$$\sum (y_i - f(x_i, \text{Parameter}))^2$$

J. Tennenbaum, B. Director; How Gauss Determined The Orbit of Ceres https://archive.schillerinstitute.com/fid 97-01/982 orbit ceres.pdf

Einsatz der Least-Squares-Methode heute

- Neuronale Netze kommen heute in vielen Gebieten zum Einsatz
 - Gesichtserkennung
 - Tumordiagnose
 - Generative KI
- Neuronale Netze sind KI-Modelle, die grob wie ein vereinfachtes Gehirn funktionieren
 - "künstlichen Neuronen" bilden echte Neuronen nach
 - Neuron berechnet gewichtete Summe
 - Aktivierungsfunktion entscheidet über Ausgabe

Einsatz der Least-Squares-Methode heute

- Neuronale Netze lernen durch Anpassung der Gewichte
 - Neuronen schichtweise angeordnet
 - Gewichte simulieren die Signalstärke
 - Lernen durch Anpassung der Gewichte
- Bewertung des Neuronalen Netzes anhand des Vorhersagefehlers
 - MSE: Der Mittlere Vorhersagefehler soll minimiert werden
 - Backpropagation: Gewichte werden angepasst um den Fehler zu minimieren

Was ist das Ziel der Methode der kleinsten Quadrate?

- Die Anzahl der Quadrate zu minimieren
- Die Summe der Abweichungen zwischen Vorhersage und Messwert zu minimieren
- Die Summe der quadrierten Abweichungen zwischen Vorhersage und Messwert zu minimieren

Was ist das Ziel der Methode der kleinsten Quadrate?

- Die Anzahl der Quadrate zu minimieren
- Die Summe der Abweichungen zwischen Vorhersage und Messwert zu minimieren
- Die Summe der quadrierten Abweichungen zwischen Vorhersage und Messwert zu minimieren

Welche Aussage über Residuen ist korrekt?

- Ein Residuum ist die Differenz zwischen beobachtetem und vorhergesagtem Wert
- Große Residuen deuten auf eine gute Modellanpassung hin
- Residuen sind immer positiv

Welche Aussage über Residuen ist korrekt?

- Ein Residuum ist die Differenz zwischen beobachtetem und vorhergesagtem Wert
- Große Residuen deuten auf eine gute Modellanpassung hin
- Residuen sind immer positiv

Welche Aussage zur Methode der kleinsten Quadrate ist korrekt?

- Die Methode kann auch bei nichtlinearen Zusammenhängen verwendet werden
- Die Methode funktioniert nur bei exakt linearen Daten
- Die Methode ist ungeeignet für verrauschte Daten

Welche Aussage zur Methode der kleinsten Quadrate ist korrekt?

- Die Methode kann auch bei nichtlinearen Zusammenhängen verwendet werden
- Die Methode funktioniert nur bei exakt linearen Daten
- Die Methode ist ungeeignet für verrauschte Daten

Vielen Dank!

Fragen & Diskussion

Vorlesungsfolien Übung mit Lösung Ergänzende Materialien

https://github.com/MartinaEchtenbruck/ Least-Squares-Materials Kontakt:

Dr. Martina Echtenbruck martina.echtenbruck@th-koeln.de