Ingegneria e Tecnologia dei Sistemi di Controllo

- Controllo della Virata di un aeromobile -

Alessandro Scopigno

Eugenio Carocci

Università degli studi dell'Aquila Anno Accademico 2012 - 2013

SOMMARIO

- Descrizione fisica del modello
- Modello matematico del movimento dell'aereo
- Controllo manuale con piattaforma Arduino
- Implementazione del controllo manuale in Matlab
- Schema del Plant controllato
- Implementazione del controllo automatico in Matlab
- Conclusioni

RAPPRESENTAZIONE FISICA DELL'AEREO

PRESENTAZIONE DEL MODELLO MATEMATICO

$$\begin{bmatrix} \dot{\beta} \\ \dot{r} \\ \dot{p} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} Y_v & -U_0 & V_0 & g_0 \cos \theta_0 \\ N_v & N_r & N_p & 0 \\ L_v & L_r & L_p & 0 \\ 0 & \tan \theta_0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \beta \\ r \\ p \\ \phi \end{bmatrix} + \begin{bmatrix} Y_{\delta_r} & Y_{\delta_a} \\ N_{\delta_r} & N_{\delta_a} \\ L_{\delta_r} & L_{\delta_a} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_r \\ \delta_a \end{bmatrix}$$

 β = angolo di derapata laterale, $\beta = \frac{v}{U_0}$,

r = velocità d'imbardamento

p = velocità di rollio

 ϕ = angolo di rollio

 Y_{v,δ_r,δ_a} = derivata parziale della forza aerodinamica in direzione y rispetto alle perturbazioni $\beta, \delta_r, \delta_a$,

 $N_{v,r,p,\delta_r,\delta_a}$ = derivate di stabilità del momento aerodinamico (imbardamento),

 $L_{v,r,p,\delta_r,\delta_a} = \text{derivate di stabilità del momento aerodinamico (rollio)},$

 δ_{τ} = deflessione del timone,

 δ_a = deflessione dell'alettone,

DISCRETIZZAZIONE DEL MODELLO MATEMATICO

- Il modello illustrato è continuo, per i nostri obiettivi viene discretizzato.
- La discretizzazione viene realizzata in Matlab utilizzando
- la funzione contenuta nel Control System Toolbox,
- denominata c2d(sysC, Ts, 'method')
- sysC è il sistema tempo continuo, Ts è il sample time e il
- terzo campo della funzione indica quale metodo si utilizza
- per la discretizzazione
- Per la conversione abbiamo scelto lo Zero Order Hold con
- un sample time di 0.05 s

ARDUINO

 Arduino is an open-source microcontroller board, with an associated development environment.

- Arduino is an inexpensive open-source microcontroller board, well suited for a wide range of projects
- Arduino + ArduinoIO package + MATLAB = inexpensive and interactive Analog and Digital IO from the MATLAB command line

ARDUINO

- interfacciamento con Matlab -

RAPPRESENTAZIONE COLLEGAMENTI FISICI

CONTROLLO MANUALE

- schema -

$$\begin{bmatrix} \dot{\beta} \\ \dot{r} \\ \dot{p} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} Y_v & -U_0 & V_0 & g_0 \cos \theta_0 \\ N_v & N_r & N_p & 0 \\ L_v & L_r & L_p & 0 \\ 0 & \tan \theta_0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \beta \\ r \\ p \\ \phi \end{bmatrix} + \begin{bmatrix} Y_{\delta_r} & Y_{\delta_a} \\ N_{\delta_r} & N_{\delta_a} \\ L_{\delta_r} & L_{\delta_a} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_r \\ \delta_a \end{bmatrix}$$

CONTROLLO MANUALE

- azioni -

- Utente sceglie angoli di :
- Rollio → beta
- Imbardata → phi
- Mediante controllo diretto di rudder e degli ailerons si cerca
- di stabilizzare l'aereo
- Come si vedrà durante la simulazione sarà un compito molto arduo!
- Tutto ciò è dovuto agli autovalori del Plant che non consentono un volo agevole

- assegnazione degli autovalori -

- Specifiche di controllo :
- Smorzamento > 0.5
- Pulsazione Naturale < 0.5

 Le specifiche di controllo determinano la posizione dei poli del controllore.

 I poli dell'osservatore vengono scelti in relazione ai poli del controllore.

- assegnazione degli autovalori -

LEGENDA:

VERDE: Poli Controllore **ROSSO**: Poli Osservatore

- schema -

- azioni -

- Utente sceglie angoli di :
- . Rollio ── beta
- Imbardata → phi
- Tutto il resto viene elaborato in modo automatico via software

INTERFACCIA GRAFICA

LINK UTILI

- Official Arduino web site: http://arduino.cc/en/
- Knowledge base: http://www.freeduino.org/

- Official Getting Started guide: http://arduino.cc/en/Guide/HomePage
- The LadyAda Tutorial: http://www.ladyada.net/learn/arduino/