

Tarea 1

Pregunta 4

- a) Se dice que una función de Hash tiene Resistencia a Preimagen si no existe un algoritmo eficiente que, dado $x \in \mathcal{H}$, encuentra $m \in \mathcal{M}$ tal que h(m) = x. Se define el juego Hash-PM(n) como sigue:
 - i) Verificador genera $s = Gen(1^n)$ y se lo entrega a Adversario.
 - ii) Adversario elige mensaje $m \in \mathcal{M}$ y la codificación $x \in \mathcal{H}$.
 - iii) Adversario gana si $h^s(m) = x$, en caso contrario pierde.

Una función de hash (Gen, h) se dice resistente a preimagen si para todo adversario que funciona como un algoritmo aleatorizado en tiempo polinomial, existe una función despreciable f(n) tal que:

$$Pr(Adversario\ gana\ Hash-PM(n)) \le f(n)$$

b) Por demostrar, usando contrapositivo, que si (Gen, h) no es resistente a preimagen, entonces (Gen, h) no es resistente a colisiones.

Sea (Gen, h) un hash no resistente a preimagen, entonces existe un adversario que funciona como un algoritmo aleatorizado polinomial tal que su probabilidad de ganar Hash-PM(n) no es despreciable. Sea \mathcal{A} el algoritmo utilizó el Adversario para ganar Hash-PM(n) que eficientemente encuentra x y m tal que $h^s(m) = x$ para un s dado.

Así, se utilizará \mathcal{A} al jugar Hash-Col(n) para encontrar una colisión:

- i) Verificador genera $s = Gen(1^n)$ y se lo entrega a Adversario.
- ii) Adversario elige la codificación $x \in \mathcal{H}$ y utilizando \mathcal{A} calcula un m_1 tal que $h^s(m_1) = x$. Luego, ejecuta nuevamente \mathcal{A} hasta encontrar un m_2 distinto a m_1 tal que $h^s(m_2) = x$.
 - iii) Adversario gana porque $h^s(m_1) = x = h^s(m_2)$.

La probabilidad de ganar no es despreciable. Además, el algoritmo del Adversario se basa en \mathcal{A} aleatorio y polinomial y en otras operaciones (como comparación) también polinomiales por lo que este es completamente polinomial. Por lo tanto, (Gen, h) no es resistente a colisiones.