

an URI / NEU collaboration

Levo Machine

work status March 2001

Levo ILP Machine

student David Morano

advisors Professor David Kaeli

Professor Augustus Uht

NUCAR seminar 01/03/30

DAM 1

Agenda

- target goal for machine
- where we are
- latest changes to get here
- new Register Filter units
- remaining work items for initial target machine

target goal for machine

- main Levo machine components included
 - branch tracking buffer
 - load buffer
 - active stations
 - processing elements
 - write queue
 - register filter units
 - multiple sharing groups (per column)
 - fetch unit *
 - multiple columns *
 - DEE path handling within execution window *
 - modeled memory subsystem *
- not included
 - memory filter units (not needed for correct operation)
 - predicate forward units (not needed for correct operation)

where we are

- we have
 - correct simulated program execution with multiple Sharing Groups in a single column
 - have used small integer programs as test
 - use of NULLIFY strategy for forwarding
 - scalable number of SGs using Register Filters
 - O(constant) interconnection complexity for scale-up of the number of SGs
 - wide issue machine (tested up to 32 instructions per clock)
- still to go
 - multiple column operation
 - code should all be in place
 - DEE path handling
 - use of the memory subsystem

latest changes to get here

- Register Filter unit has been changed to work w/ the present NULLIFY strategy
- NULLIFYs are treated differently than data (they do not collapse or cancel out lower valued time-tags)
- NULLIFYs act as forwarding barriers within a Register Filter for each register path:address
- data store forward operations still collapse within Register Filters saving bus bandwidth

register filter changes

- all NULLIFYs must be forwarded (they cannot collapse)
- received NULLIFYs flush any existing data value for the same path:address register (barrier function)
- added a FIFO for implementing the barrier function for NULLIFYs
 - two FIFOs are actually used, one for a possible data store value and one for the NULLIFY itself (synchronous "Levo" FIFOs used)
- all FIFOed transactions are handled (written to the output bus) before regular data store forwards
- receiving NULLIFYs at the bottom of all columns initiates a backwarding request (needed for flushing forward any changed register values in the committing column)
- all forwarding buses can be stalled due to FIFO entry exhaustion

new register filter unit

continuing work

multiple column handling

- should be just a matter of bug fixes (all of the components should be there already)
- need aggressive version of i-fetch

DEE path handling is the biggest change coming

- AS code changes
- execution window logic changes
- Register Filter changes
- other?

use of memory subsystem

 will check addresses for faults in fetch and store-queue units before sending requests to memory subsystem