Introduction to Digital Logic EECS/CSE 31L

Assignment 5

EECS Department Henry Samueli School of Engineering University of California, Irvine

November, 15, 2014

Due on Saturday 11/22/2014 11:00pm. Note: this is a one-week assignment

1 RAM Design [100 points + 5 bonus points]

The goal of this assignment is to practice sequential logic blocks in VHDL.

1.1 Assignment Description

The objective of this project is to assess your understanding of how to implement a Random Access Memory (RAM) blocks. This RAM design will be used as a data memory in the processor design project later.

The RAM block contains 2048 lines, each line 32 bits. It has active-low Chip Select (\overline{CS}) , active-low Output Enable (\overline{OE}) , and Read/Write (R/\overline{W}) control signals. The top-level data port is used for both input and output. The RAM, should be implemented with 512x32 memory blocks.

Table 1: RAM operation of	description	(X, H, and L)	represent do	on't care, Hig	h, and Low	, respectively.)
---------------------------	-------------	---------------	--------------	----------------	------------	------------------

\overline{CS}	\overline{OE}	R/\overline{W}	Mode	dataIO
Н	X	X	Not Selected	High Z
L	Н	Н	Output Disable	High Z
L	L	Н	Read	Data Out
L	X	L	Write	Data In

Code 1: Sample entity of a RAM in VHDL

```
ENTITY ram IS
  port (
    addr : IN std_logic_vector(10 DOWNTO 0);
    rw : IN std_logic;
    csb : IN std_logic;
    oeb : IN std_logic;
    dataIO : INOUT std_logic_vector(31 DOWNTO 0));
END ram;
```

Note: Remember to compress all VHDL files (with rar or zip extension) and name your compressed file as assignment5_STUDENT-ID_codes.rar and your report as assignment5_STUDENT-ID_ram.pdf.