

2-1 簡單的程式

Java 支援的資料型態有浮整數 (floating point)、字元 (char)、整數 (integer)、物件 (object)、布林常數 (Boolean)、空值 (null) 和字串 (string)。記憶體就像是容器可以裝很多東西一樣。在 Java 程式語言中,每一個變數和每一個運算式在編譯時都有一種型態。這個資料包含了原始資料型態和參考型態。參考型態包含了類別型態和介面型態。

範例

Circle.java

第一行我們使用import來輸入javax.swing.JOptionPane套件。

第二行到第十三行我們則宣告了circle類別。

第三行為circle類別的主要方法main()。

第四行宣告了radius半徑的資料型態為雙精度浮點數。

第五行宣告了area面積的資料型態為雙精度浮點數。

第六行宣告了pi的資料型態為雙精度浮點數,並且給予初始值3.14159。

第八行會得到圓的面積。

第九行會顯示圓的面積。

圓的面積是314.159。

2-2 識別名稱

每一個變數都有識別名稱,我們變數宣告時,就是給該變數一個識別名稱。在 circle.java 範例中,radius 半徑爲識別名稱,area 面積也是識別名稱。所有的識別 名稱是由字元、數字、下底線 (_) 和錢符號 (\$) 所組成。識別名稱的命名一定要以 字元或下底線 (_) 開始,而不能以數字開始。識別名稱也不可以是 Java 的保留字。 識別名稱也不可以是布林值 (true,false 或 null)。識別名稱沒有長度的限制。Area、radius、good 都是合法的識別名稱。而 356a 則不是識別名稱,因爲它以數字開頭, Java 編譯器會偵測出錯誤。Java 是有大小寫的區隔,a 和 A 是不一樣的變數。

2-3 變數

這是區域變數宣告。先宣告變數的資料類型,再宣告變數。我們可以將變數宣告寫在同一行,並且用逗號(,,)分開。

在 circle.java 範例中, radius 半徑爲變數, 並且它的資料型態爲 double(雙精度 浮點數); area 面積爲變數, 並且它的資料型態爲 double(雙精度浮點數)。先有資料型態,接下來才是接變數。

1 double radius; 2 double area; 3 double pi=3.14159;

我們可以將 circle.java 範例中的 radius 和 area 變數宣告寫在同一行,並且用逗號(,)分開。

1 double radius, area; 2 double pi=3. 14159;

■ 2-3-1 宣告變數

這是變數宣告,我們也可以使用分配符號 (=) 分配給它初始值。

JaVa 2 程式設計教學 •

在 circle.java 範例中, radius 半徑爲變數, 並且它的資料型態爲 double(雙精度浮點數); area 面積爲變數, 並且它的資料型態爲 double(雙精度浮點數)。先有資料型態,接下來才是接變數。我們宣告 pi 變數爲雙精度浮點數,並且給它初始值3.14159。

1double radius;
2double area;
3double pi=3.14159;

2-4 分配敍述與分配運算式

這是分配敘述。分號;代表運算式結束。

2-5 常數

變數的值是會改變的,但常數的值是不會改變的。我們在資料類型前加上 final 關鍵字,這樣資料的值就無法改變,而成爲常數。

Circle_constant.java

我們在第六行加上關鍵字final,這樣pi就會被當作常數。pi加上final關鍵字後,它的值就不能被改變。

這是執行的情況。

2-6 數值資料型態與運算子

變數 int a=5,c, c=a+5, 變數 c 的値爲 10 在這個中,a=5 是一個運算式,c=a+5 是一個運算式,+ 和 = 是運算子,變數 a 和數値 5 是運算元。我們可以了解運算式就是由運算子和運算元所組成。

byte 為位元組資料型態, int 是整數資料型態, float 是浮點數資料型態, double 是雙精度浮點數資料型態。位元大小是指該資料型態在記憶體所佔的大小。最小數值和最大數值是該資料型態的範圍大小。E+38 是 10 的 38 次方。

資料型態	位元大小	最小數值	最大數值
byte	8位元	-128	127
short	16位元	-32768	32767
int	32位元	-2147483648	2147483647
long	64位元	-9223372036854775808	-9223372036854775807
float	32位元	-3.4E+38	3.4E+38
double	64位元	-1.7E+308	1.7E+308

Datatype.java

我們在第七行將pi2的資料型態設為浮點數,因此將3.14159後面加上浮點數的符號F。因為Java將每一個有小數點的數當作雙精度浮點數,因此我們在該數後面加上F或f來確定這數是浮點數。

這是數值。

■ 2-6-1 運算式

我們的程式主要是由運算子與運算元所組成。我們的想法 轉換成程式的架構, 再由運算子來架構骨架與運算元的組成,這樣就可以組成大部份的程式邏輯。

算數的加 + 減 - 乘 * 除 ÷ 和餘數 % 稱作爲算術運算子。我們常用算術運算子來作運算式,而程式的百分之五十以上都是由算數運算子所組成。

Arithmatic.java

第三行的一加一等於二,再將2指派給變數a,使用加法運算子"+"。 第四行的二減一等於一,再將1指派給變數b,使用減法運算子"-"。

第五行使用除法運算子"/",再將3指派給變數div。

第八行使用乘法運算子"*",再將314.159分配給area變數。

第九行使用餘數運算子,5%3(5取3的餘數為2)值為2。

第十行到第十四行我們使用println()函數。

```
| public class Arithmatic {
| public static void main(String[] args) {
| int a=1+1; |
| int b=2-1; |
| double div=6/2; |
| float pi2=3.14159F; |
| double radius=10; |
| double area=radius*radius*pi2; |
| double area=radius*radius*pi2; |
| double c=5%3; |
| System. out. println("算術運算子+"+a); |
| System. out. println("算術運算子-"+b); |
| System. out. println("算術運算子+"+div); |
| System. out. println("算術運算子+"+area); |
| System. out. println("算術運算子+"+area); |
| System. out. println("算術運算子+"+area); |
| System. out. println("算術運算子+"+c); |
| 6 }
```

這是執行的情況。

C:\PROGRA~1\XINOXS~1\JCREAT~2\GE2001.exe

```
算術運算子+2
算術運算子-1
算術運算子/3.0
算術運算子*314.1590118408203
算術運算子×2.0
```

2-7 數值型態轉換

有時一個數值運算式包含了數種的資料型態, Java 允許在不同的資料型態上作運算, Java 會自動轉換運算元。下面是運算式中,運算元轉換的原則。

假如在數值運算式中,有一個運算元是雙精度浮點數 (double),則其它的資料型態就會轉成雙精度浮點數;否則,如果有一個運算元是浮點數 (float),這其它的運算元就會被轉成 float;否則,如果有一個運算元是 long 資料型態,這其它的運算元就會被轉成 long;否則,這兩個運算元就會被轉成整數 int 資料型態。

這些都是 Java 的自動轉型。運算元會轉型成精密度最高的數值資料型態再作運算。

範例

Numeric_type.java

第三行宣告變數i為位元組資料型態,並給予30的數值。

第四行宣告s為long資料型態。

第五行因為t為雙精度浮點數,所以它會將變數i和變數s轉為雙精度浮點數, 再作運算。

因為t為雙精度浮點數,所以它會將變數i和變數s轉為雙精度浮點數,再作運算,因此得到雙精度浮點數的值216.0,後面有小數點。

C:\PROGRA~1\XINOXS~1\JCREAT~2\GE2001.exe

```
30
153
216.0
Press any key to continue...
```


Force_Numeric_type.java

第八行我們使用強制轉型(int),將t由浮點數轉為整數。我們使用(int)來強制轉型成小括號裏的型態。Java會將精度較低的數值型態,自動轉成精度較高的型態。但要由較高的精度轉較低時,則要用強制轉型,前面要加上要強制轉型的型態。

```
1 public class Force_Numeric_type{
2   public static void main(String[] args){
3     byte i=30;
4     long s=i*5+3;
5     double t=i*5.5+s/3;
6     System.out.println(i);
7     System.out.println(s);
8     System.out.println((int)t);
9   }
10 }
```

這是強制轉型成整數,雙精度浮點數的小數點不見了。

```
F:\java2\3\example>javac Force_Numeric_type.java
F:\java2\3\example>java Force_Numeric_type
30
153
216
```


Cast.java

我們可以將資料作強制()型態轉換。

第四行將浮點數f轉成整數資料型態使用(int),再分配給整數i。

第六行將數值5給整數資料型態s。第六行的浮點數資料型態k被強制轉換成整數。

執行的結果,浮點數s沒有被強制轉換,因此顯示5。

C:\Program Files\Xinox Software\JCreator\73LE\GE2001.exe

5 5.5 5

2-8 字元資料型態與運算子

char 資料型態是用於單一字元。我們使用單引號來將它包住。而字串資料型態是使用雙引號將它包住。

Cha_data.java

我們在第三行宣告letter變數的資料型態為字元,並且將A字元給letter變數, 我們使用單引號將該資料包住。

這是執行的情況。

```
CX C:\Program Files\Xinox Software\JCreator\73LE\GE2001.exe
```

■→2-8-1 Unicode與ASCII碼

Java 使用 Unicode 來編碼,它是屬於 16-bit 的編碼方式。Unicode 是由兩個位元組來組成一個字,前面爲 \u,表示方法是 4 個 16 進位的數,從 \u0000'到 \uFFFF'。

'\u0042'是大寫的 B。Unicode 可以表示 65536 個字元,因爲 FFFF 是 16 進位的 65536。一般的程式軟體是使用 ASCII,七位元的編碼。Unicode 也包含了 ASCII,它是從'\u0000'到'\u0007F'。

範例

Unicode_data.java

第三行使用Unicode來代表,'\u0042'是Unicode,而它是代表大寫的B。 大寫B的Unicode,第一個位元組是00,第二個位元組是42。

這是大寫的'B'。 大寫B的Unicode,第一個位元組是00,第二個位元組 是42。

C:\Program Files\Xinox Software\JCreator\73LE\GE2001.exe

■ 2-8-2 跳脱字元

Java 允許我們使用跳脫字元來代表特殊的符號。

說明	跳脫字元	Unicode
後退鍵	\b	\u0008
Tab鍵	\t	\u0009
反斜線	//	\u005c
單引號		\u0027
雙引號	\"	\u0022

範例

Unicode_escape.java

我們在第四行使用跳脫字元"\"來顯示雙引號。

這是執行的情況,出現雙引號"。

C:\Program Files\Xinox Software\JCreator\3LE\GE2001.exe

小明說:"Java很好用"

2-9 布林資料型態和運算子

比較運算子和邏輯運算子,所得到的結果就是一個布林常數 (true 或 false)。

當 3<5 時會回傳 true,當 3<2 時會回傳 false。比較運算子就是用來比較兩個運算式。

比較運算子	功能	用法
<	小於(less than)	Expr < expr
>	大於(greater than)	Expr > expr
>=	大於或等於	Expr>=expr
==	相等(equal)	Expr==expr
!=	不相等	Expr!=expr
<=	小於等於	Expr <=expr
<>	不等於	Expr<>Expr

範例

Less.java

當3<5時會回傳true(1),當3>5時會回傳false。

```
public class Less{
    public static void main(String[] args){
        System. out. println(3<5);
        System. out. println(3>5);
}
```

3<5為布林値的true,3>5為布林値的false。

```
cx C:\Program Files\Xinox Software\UCreator\Y3LE\GE2001.exe

true
false
```

- 2-9-1 邏輯運算子

邏輯運算子可以結合條件,以一個表達式判斷許多條件,而這些條件的結果不 是真 true 就是假 false。 && 稱爲"與邏輯運算子",只有當所有條件都成立時才會回傳真 true,否則回傳假。

‖稱爲或邏輯運算子,只要運算式中一個條件成立就會回傳真 true,只有當所有的條件都爲假 fasle 時,才會回傳假 false。

! 爲相反邏輯運算子,真 true 的條件加上! 相反邏輯運算子時,就會變成假 false;當假 false 的條件加上! 相反邏輯運算子時,就會變成真 true。

Xor 爲互斥運算子,當只有條件都不相同(互斥)時才會回傳真 true,其它都回傳 false。當(條件 A(true))Xor(互斥)(條件 B(false))傳回真,或當(條件 A(false))Xor(互斥)(條件 B(true))傳回真,其它則傳回 false。

邏輯運算子	功能	用法
&&	邏輯運算and(與)	Expr && expr
	邏輯運算or(或)	Expr expr
!	邏輯運算子not(否)	!expr
^	互斥exclusive or	Expr ^ expr
&	位元旦運算子	Expr&expr
	位元或運算子	Expr expr

這些運算子的結果不是真(成立)就是假(不成立),在寫程式時的邏輯判斷經常用到,可以多練習。在這裏 expr 指的是運算式 expressions。

布林 Boolean 代數定義在一個二元素的集合上,即 B={true,false},true 爲眞,false 爲假,再加上對兩個二元運算子 && 及 || 的規則表。在 && 運算子中只有當 A 和 B 爲眞時才爲眞。在 OR 運算子中,只要 A 或 B 有任何一個爲眞就會爲眞。 NOT(!) 就是相反的意義,當 A 爲眞時! A 就會爲假; 當 B 爲眞時 NOT B 就會爲假,剛好和原來的 Boolean 值相反。A^ B 就是 A EXCLUSIVE OR B,當只有 A 和 B 的 值不相等時,才會回傳眞 true。

在下面的真值表格 A,B 為兩運算式的結果布林值。

А	В	A AND(&&) B	A OR() B	NOT(!) B	A XOR(^) B
真	真	真	真	假	假
假	假	假	假	真	假
真	假	假	真	真	真
假	真	假	真	假	真

範例

Logical.java

第三行不為假所以為true。

第四行5大於3所以true。

第五行兩個都相等所以true。

第六行因為5>3成立,在(3>5)||(5>3)只要有一個條件成立就為真,所以為 true。

第七行3不等於5所以成立true。

第八行3>5不成立所以不成立false。

第九行為exclusive or運算子 $^{\wedge}$,當兩個運算元不相等時,就會回傳 $^{\wedge}$ 以會回傳 $^{\circ}$ 則會回傳 $^{\circ}$ 目

這是執行的結果。

```
ex C:\Program Files\Xinox Software\JCreator\Y3LE\GE2001.exe

true

true

true

true

true

true

false

true

false
```

■→2-9-2 位元邏輯運算子

這些爲位元邏輯運算子,它們是以布林値作運算。

!	邏輯運算子not(否)	!expr
^	互斥exclusive or	Expr ^ expr
&	位元旦運算子	Expr&expr
	位元或運算子	Expr expr

範例練習:And.java

&為位元邏輯運算子。當左邊為0而右邊為1,或左右都為0,或右邊為1左邊 為0時,會傳回0。只有當左右都為1才會傳回為1。

15的二進位表示法為1111,9的二進位表示法為1001,因此在第三行15&9後,會得到1001,而1001就是十進位的9。

語法:

運算式1 & 運算式2

```
1public class And {
2  public static void main(String[] args){
3    System.out.println(15&9);
4  }
5 }
```

這是&位元邏輯運算的結果。

C:\Program Files\Xinox Software\Creator\3LE\GE2001.exe

範例練習:Or.java

个為位元邏輯運算子。當左邊為0而右邊為1,或右邊為1左邊為0時,才會 傳回1,其他傳回為0。

15的二進位表示法為1111,9的二進位表示法為1001,因此在第三行15⁹ 後,會得到0110,而0110就是十進位的6。 語法:

運算式1 个 運算式2

|為位元邏輯運算子。當左邊為0或右邊為1,或右邊為1左邊為0時,或當左邊為1右邊為1,都會傳回1,只有當左右兩邊都為0時才會傳回0。15的二進位表示法為1111,9的二進位表示法為1001,因此在第三行15 | 9後,會得到1111,而1111就是十進位的15。

語法:

運算式1|運算式2

```
1 public class Or {
2   public static void main(String[] args){
3      System.out.println(15^9);
4      System.out.println(15|9);
5   }
6 }
```

15个9為6。15|9為15。

```
C:\Program Files\Xinox Software\JCreator\3LE\GE2001.exe
```

€→2-9-3 其它運算子

我們也會經常在Java中用到一些運算元。

其它運算子	說明
boolean 運算元? 運算元1: 運算元2	這就像是if else的判別式,假如運算元為真,則運算元1, 否則是運算元2。運算元1和運算元2可以是原始資料型態 的資料,也可以是物件。
物件 instanceof 類別	instanceof為型態比較運算子。如果物件是右邊類別的子類別或本類別的物件,則回傳,true,否則會發生編譯錯誤。

Bo.java

第三行bo1為真true,所以第四行會顯示5。

第五行bo2為假false,所以第六行會顯示8。

第九行bo3為假false,所以第十行會顯示字串物件str2"你好"。

```
1 public class Bo {
2    public static void main(String[] args){
3         Boolean bol=true;
4         System.out.println( bol?5:8);
5         Boolean bo2=false;
6         System.out.println(bo2?5:8);
7         String strl=new String("大家好");
8         String str2=new String("你好");
9         Boolean bo3=false;
10         System.out.println(bo2?strl:str2);
11     }
```

這是執行的情況。

```
ex C:\Program Files\Xinox Software\JCreator\V3LE\GE2001.exe
5
8
你好
```


InstanceOf.java

Object類別為我們自訂類別的繼承類別,我們自訂的類別會直接或間接的繼承Object類別。

第一行自訂Element類別,它繼承了Object類別。extends Object,可以省略不寫。

第四行新增Element類別的物件e。

第五行比較e是否為Object類別型態的物件或子類別型態的物件,因為是真 true,所以會執行第六行。

第八行到第九行則是錯誤的,因為e不是布林類別型態的物件。

這是執行的情況。

C:\Program Files\Xinox Software\Creator\3LE\GE2001.exe

e屬於Object物件

2-10 遞增遞減運算子

遞增 (++) 和遞減 (--) 運算子提供一個方便的記號,用來將變數加一或減一,它們經常用來遞增或遞減索引值。根據運算子放置在變數的前後又可分,運算子放置在變數前面稱為前置運算子;運算子放置在變數後面稱為後置運算子。

▶2-10-1 遞增運算子

遞增運算子	名稱	意義
++a	前置遞增	變數a先加1再回傳
a++	後置遞增	變數a先回傳再加1

範例

Increase.java

第四行為前置遞增;將變數a加1後再輸出,所以值為2。

第六行為後置遞增;將變數a先輸出再將變數a加1。

```
public class Increase{
    public static void main(String[] args){
        int a=1;
        System.out.println(++a);
        a=1;
        System.out.println(a++);
}
```

第四行的變數a先加1為2,再輸出顯示。

第六行的變數a++先輸出顯示為1

C:\Program Files\Xinox Software\JCreator\V3LE\GE2001.exe

2 1

▶2-10-2 遞減運算子

遞減運算子就是將變數減 1,根據遞減運算子的所在位址,可分爲前置遞減, 與後置遞減。

遞減運算子	名稱	意義
a	前置遞減	先將變數\$a減1再傳回
a	後置遞減	先將變數\$a傳回再減1

decrease.java

第四行前置遞減運算子,先將變數a減1後再輸出顯示,所以為0。

第六行後置遞減運算子,先將變數a輸出顯示為1,所以顯示為1。

第六行後置遞減運算子,先將變數a輸出顯示為1,再作遞減的動作,所以顯示為1。

C:\Program Files\Xinox Software\JCreator\73LE\GE2001.exe

0 1

2-11 運算子的優先順序

我們在作數學運算時,規則是先乘除後加減。例如 1+2*5 答案大家都知到, 11。程式的設計規則也是一樣,可以把運算子看作是乘和加,是有先後順序的處理。

這是運算子優先順序,++後置遞增的優先權最高,然後依次往下。

運算子	功能	用法
++	後置遞增	a++
	後置遞減	a
++	前置遞增	++a
	後置遞增	a
資料型態轉換	(type Casting)	
!	Not	
*	乘	2*3
/	除	6/2
%	餘數	5%3
+	מל	1+1
-	減	2-1
< \ <= \ > \ >=	小於、小於等於、大於	3<5 \ 3<=5 \ 5>=2
== \!=	等於、不等於	2==2 \ 1!=3
& \ ^ \ \ && \	條件運算子	true false
= \ += \ -= \ *= \ /= \ %=	指派運算子	5=3+2

Order.java

第三行5先乘2再加3,再加上15先除以5在對2取餘數。

第四行括號裏面的先作,5乘2為10,5對2取餘數為1,15再除1

C:\Program Files\Xinox Software\ICreator\73LE\GE2001.exe

14

28

2-12 字串型態

char 爲字元資料型態,如果要顯示字串,則要使用 String 字串參考型態。String 字串型態爲參考型態,而不是原始資料型態。我們可以使用"+"運算子來將兩個字串連接起來,因此"+"在字串運算元的處理爲連接運算子。"+"在數值處理則爲加運算子。

範例

String_type.java

第三行我們宣告message為字串參考型態,並且將字串"歡迎來到java的世界"分配給message字串變數。

第五行使用+字串連接運算子來將字串"第"和字串"章"連接。中文字為 雙位元組,每一個中文字可以當作是一個字串。

第七行使用+=運算子來將"Java簡介"和message2的字串資料連接,再給message2變數。

這是執行的情況。

C:\Program Files\Xinox Software\JCreator\73LE\GE2001.exe

歡迎來到java的世界

第2章

第2章Java簡介

2-13 程式設計的技巧

寫程式要養成好的寫程式習慣。在每一個重要程式的區段要加上註解,讓以後 閱讀程式時可以方便了解。命名變數、物件、類別或方法時,要按照該變數的名稱, 而且命名時要有意義的名子。變數或方法的識別名稱最好用英文的小寫字母開頭。 類別的識別名稱最好用英文的大寫字母作開頭。常數的命名最好都是用大寫。

在程式的區塊中,它包含了許多運算式,而且使用大括號"{"和"}"包起來。這個程式的寫法是將第一個大括號"{"寫在行的後面。

這個程式的寫法是將大括號換行寫。

範例

Programming.java

第一行我們設定Programming類別,類別名稱第一個字最好是大寫。

第五行我們設定常數PI為大寫。

這是執行的結果。

C:\Program Files\Xinox Software\Creator\3LE\GE2001.exe

圓的半徑314.0

1. Java的資料包含了哪兩種資料型態?

【答案】

在Java程式語言中,每一個變數和每一個運算式在編譯時都有一種型態。 這個資料包含了原始資料型態和參考型態。參考型態包含了類別型態和介面型態。

2. 何謂識別名稱?

【答案】

每一個變數都有識別名稱,我們變數宣告時,就是給該變數一個識別名稱。在circle.java範例中,radius半徑為識別名稱,area面積也是識別名稱。所有的識別名稱是由字元、數字、下底線(_)所組成。識別名稱的命名一定要以字元或下底線(_)開始,而不能以數字開始。識別名稱也不可以是Java的保留字。識別名稱也不可以是布林值(true,false或null)。識別名稱沒有長度的限制。Area、radius、good都是合法的識別名稱。而356a則不是識別名稱,因為它以數字開頭,Java編譯器會偵測出錯誤。Java是有大小寫的區隔,a和A是不一樣的變數。

3. 如何宣告變數?

【答案】

這是區域變數宣告。先宣告變數的資料類型,再宣告變數。我們可以將變數宣告寫在同一行,並且用逗號(,,)分開。

4. 請簡述變數官告?

【答案】

這是變數宣告,我們也可以使用分配符號(=)分配給它初始值。

JaVa 2 程式設計教學 ●

5. 何謂分配敘述?

【答案】

6. 何謂常數?

【答案】

變數的值是會改變的,但常數的值是不會改變的。我們在資料類型前加上final關鍵字,這樣資料的值就無法改變,而成為常數。

7. 請簡述資料型態?

【答案】

byte為位元組資料型態,int是整數資料型態,float是浮點數資料型態,double是雙精度浮點數資料型態。位元大小是指該資料型態在記憶體所佔的大小。最小數值和最大數值是該資料型態的範圍大小。E+38是10的38次方。

8. 請簡述比較運算子?

【答案】

比較運算子就是用來比較兩個運算式。

9. 請簡述邏輯運算子?

【答案】

10. 請繪製眞値表?

【答案】

11. 請簡述遞增遞減運算子?

【答案】

12. 請簡述運算子的優先順序?

【答案】

我們在作數學運算時,規則是先乘除後加減。例如1+2*5答案大家都 知到,11。程式的設計規則也是一樣,可以把運算子看作是乘和加, 是有先後順序的處理。

13. 請簡述運算子的結合順序?

【答案】

Java是由左到右的結合優先順序。

【是非題】

- 1. ()在Java程式語言中,每一個變數和每一個運算式在編譯時 都有一種型態。
- 2. () 資料包含了原始資料型態和參考型態。
- 3. () 參考型態包含了類別型態和介面型態。

4. ()每一個變數都有識別名稱,我們變數宣告時,就是給該變 數一個識別名稱。 5. () 識別名稱的命名一定要以字元或下底線()開始,而不能 以數字開始。 6. () 這是區域變數宣告。先宣告變數的資料類型,再宣告變 數。 7. ()變數的值是會改變的,但常數的值是不會改變的。我們 在資料類型前加上final關鍵字,這樣資料的值就無法改 變,而成爲常數。 8. () 位元大小是指該資料型態在記憶體所佔的大小。 9. () 雙精度浮點數的位元大小是32位元。 10. ()有時一個數值運算式包含了數種的資料型態, Java允許在 不同的資料型態上作運算,Java會自動轉換運算元。 【選擇題】 1. () 假如在數值運算式中,有一個運算元是雙精度浮點數 (double),則其它的資料型態就會轉成。 (1) 雙精度浮點數 (2)byte (3) char。 2. () 我們的程式主要是由 與運算元所組成。

(1) 運算子 (2) 邏輯 (3) 例外

3. () 算數的加+ 減- 乘* 除÷和餘數%稱作爲 。

(1) 算術運算子 (2) 邏輯運算子 (3) 流程運算子。

-) 假如在數值運算式中,有一個運算元是雙精度浮點數 4. ((double),則其它的資料型態就會轉成雙精度浮點數; 否則,如果有一個運算元是浮點數(float),這其它的運 算元就會被轉成float;否則,如果有一個運算元是long 資料型態,這其它的運算元就會被轉成long;否則,這 兩個運算元就會被轉成整數int資料型態。這些都是Java 的 。運算元會轉型成精密度最高的數值資料型態 再作運算。 (1) 自動轉型 (2) DAO物件 (3)多型(應用程式)。 5. () char資料型態是用於單一字元。我們使用 來將它包 住。而字串資料型態是使用雙引號將它包住。 (1) 單引號 (2) 分號 (3)()括號。) Java使用Unicode來編碼,它是屬於16-bit的編碼方式。 6. (Unicode是由 位元組來組成一個字,前面為 \u,表示方法是4個16進位的數,從'\u0000'到' \uFFFF' ° (1) 一個 (2) 兩個 (3)三個。 7. () Unicode也包含了ASCII,它是從'\u0000'到。 8. () Java允許我們使用____來代表特殊的符號。 (1)整數 (2)字串 (3) 跳脫字元。
 - (1) 布林常數 (2)整數 (3) 字串。

(true或false)。

) 比較運算子和邏輯運算子,所得到的結果就是一個

9. (

- 10. () 邏輯運算子可以結合條件,以一個表達式判斷許多條件, 而這些條件的結果不是_____就是假false。
 - (1)真true (2)整數 (3)字串。

【填充題】

- 1. _____稱為"與邏輯運算子",只有當所有條件都成立時才會 回傳真true,否則回傳假。
- 2. _____稱爲或邏輯運算子,只要運算式中一個條件成立就會 回傳真true,只有當所有的條件都爲假fasle時,才會回傳假 false。
- 3. ______定義在一個二元素的集合上,即B={true,false}, true 爲真,false爲假,再加上對兩個二元運算子&&及||的規則表。
- 4. A___B就是A EXCLUSIVE OR B, 當只有A和B的値不相等時, 才會回傳真true。
- 5. _____和_____運算子提供一個方便的記號,用來將變數加一 或減一,它們經常用來遞增或遞減索引值。根據運算子放置 在變數的前後又可分,運算子放置在變數前面稱爲前置運算 子;運算子放置在變數後面稱爲後置運算子。
- 6. 我們在作數學運算時,規則是先乘除後加減。例如1+2*5答案 大家都知到,11。程式的設計規則也是一樣,可以把運算子 看作是乘和加,是有____的處理。這是運算子優先順序,++ 後置遞增的優先權最高,然後依次往下。
- 7. char為字元資料型態,如果要顯示字串,則要使用String字串 ____型態。String字串型態為參考型態,而不是原始資料型

態。我們可以使用"+"運算子來將兩個字串連接起來,因此"+"在字串運算元的處理爲連接運算子。"+"在數值處理則爲加運算子。

8. 在程式的區塊中,它包含了許多運算式,而且使用____" {"和"}"包起來。這個程式的寫法是將第一個大括號" {"寫在行的後面。

