1 Metody Krylovových podprostorů

1.1 Vlastnosti Krylovových podprostorů

Definice 1 (Krylovův podprostor). Nechť $A \in \mathbb{C}^{n \times n}$ a $v \in \mathbb{C}^n$. Posloupnost v, Av, A^2v, \ldots nazýváme Krylovova posloupnost, a podprostor

$$\mathcal{K}_k(A, v) := \operatorname{span}\{v, Av, \dots, A^{k-1}v\},\$$

 $kde \ k \leq n, \ k$ -tý Krylovův podprostor.

Úloha 1. Nechť máme matici

$$A = \begin{bmatrix} 1 & 0 & \cdots & & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 & \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

a uvažujme jako počáteční vektor v nějaký kanonický vektor $v = e_j$, $j \in 1, 2, ..., n$. Ukažte, jak vypadá Krylovův podprostor $\mathcal{K}_k(A, v)$. Pokud bychom na $\mathcal{K}_k(A, v)$ aproximovali nějaký vektor w jeho ortogonální projekcí, jak bude vypadat? Jaká bude chyba a jak se bude vyvíjet pro rostoucí k?

 \check{R} ešení. Zřejmě $Ae_j=e_j+e_{j+1}$ pro $1\leq j< n$, případně $Ae_n=e_n+e_1$. Předpokládáme-li pro jednoduchost značení, že $j+k\leq n$, pak

$$\mathcal{K}_k(A, e_j) = \operatorname{span}\{e_j, e_{j+1}, \dots e_{j+k-1}\}.$$

Pro $w = (w_1, w_2, ..., w_n)^T$, je

$$w|_{\mathcal{K}_k(A,e_j)} = (0,\ldots,0,w_j,\ldots,w_{j+k-1},0,\ldots,0)^T$$

a

$$\|w - w|_{\mathcal{K}_k(A, e_j)}\|^2 = \sum_{i=1}^{j-1} w_i^2 + \sum_{i=j+k}^n w_i^2.$$

1.2 Arnoldiho metoda

Arnoldiho algoritmus počítá ortogonální bázi Krylovova prostoru. Výsledkem této ortogonalizace jsou matice:

$$V_k = [v_1, \dots, v_k], \qquad H_k = \begin{bmatrix} h_{1,1} & h_{1,2} & \cdots & h_{1,k} \\ h_{2,1} & h_{2,2} & \cdots & h_{2,k} \\ & \ddots & \ddots & \vdots \\ & & h_{k,k-1} & h_{k,k} \end{bmatrix}.$$

Matce splňují následující rovnici:

$$AV_k = V_k H_k + h_{k+1,k} v_{k+1} e_k^T$$

1

Matici H_k nazýváme horní Hessenbergovou maticí. Její vlastní čísla nazýváme Ritzova čísla a vektory $V_k y$, kde y jsou vlastní vektory H_k , nazýváme Ritzovy vektory. Ritzova čísla jsou aproximací vlastních čísel matice A (ne všech, stále se jedná o metodu částečného problému vlastních čísel) a Ritzovy vektory jsou aproximací vlastních vektorů matice A.

Co je tedy Arnodiho metoda? Jedná se o metodu využívající Arnoldiho algoritmus k výpočtu matice V_k , H_k a vlastních čísel a vlastních vektorů matice H_k . Ritzova čísla a vektory jsou pak aproximací vlastních čísel a vektorů matice A.

Pro obecnou nesymetrickou matici je problém říci cokoliv o blízkosti spočtené aproximace μ k nejbližšímu vlastnímu číslu matice A. Víme jen, že platí vztah:

$$||Ax - \mu x|| = h_{k+1,k} |e_k^T y|,$$

kde y je vlastní vektor matice H_k příslušný k vlastnímu číslu μ a $x = V_k y$.

Úloha 2. Spusťte skript baze_krylovova_prostoru.m a spočtete bázi Krylovova prostoru pomocí Gram-Schmidtova procesu. Pozorujte ztrátu ortogonality i přesnost rozkladu použitím CGS, MGS a ICGS. Jak se změní ztráta ortogonality a přesnost výpočtu použijeme-li Arnoldiho metodu Arnoldicgs.m nebo Arnoldimgs.m?

Úloha 3. Zvolme náhodnou matici větších rozměru a náhodný vektor odpovídajícího rozměru. Doplňte skript Arnoldi_pro_vetsi_matici.m, kde spočteme bázi Krylovova prostoru pomocí Arnoldiho metody Arnoldicgs.m. Vykreslete ztrátu ortogonality $||I - V_k^T V_k||$ pro k = 1, 2, ..., n v logaritmickém měřítku. Jak se bude vyvíjet ztráta ortogonality, když použijeme Arnoldings.m?

1.3 Lanczosova metoda

Jedná se o Arnoldiho metodu aplikovanou na hermitovské matice A. Z Arnoldiho algoritmu aplikovaného na A dostaneme

$$H_k = \begin{bmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & \beta_k \\ & & & \beta_k & \alpha_k \end{bmatrix}.$$

Horní Hessenbergova matice je tedy tridiagonální maticí a značíme ji T_k . Dále platí vztah:

$$AV_k = V_k T_k + \beta_{k+1} v_{k+1} e_k^T.$$

Ortogonální bázi Krylovova prostoru lze tak počítat tříčlennou rekurencí. Výhodou je i to, že díky symetrii lze odhadnout vzdálenost vlastního čísla μ matice T_k od nejbližšího vlastního čísla matice A vztahem:

$$\min_{\lambda \in \rho(A)} |\lambda - \mu| \le \beta_{k+1} \frac{\left| e_k^T y \right|}{\|x\|},$$

kde y je vlastní vektor matice T_k příslušný k vlastnímu číslu μ a $x = V_k y$.

Úloha 4. Ve skriptu baze_pro_symetrickou_matici provedte Arnoldiho algoritmus pro symetrickou matici a sledujte velikost prvků v pravém horním rohu matice H_k , které by měly být nulové.

2 Vlastnosti Jacobiho matic

Reálnou symetrickou tridiagonální matici s kladnými prvky na vedlejších diagonálách

$$J_{k} = \begin{bmatrix} \alpha_{1} & \beta_{2} & & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & & \\ & \beta_{3} & \ddots & \ddots & \\ & & \ddots & \ddots & \beta_{k} \\ & & & \beta_{k} & \alpha_{k} \end{bmatrix}, \qquad \beta_{i} > 0, \quad i = 2, \dots, k,$$

nazveme Jacobiho maticí.

Úloha 5. Ukažte, že vlastní vektory Jacobiho matic mají nenulovou první a poslední složku.

 $\check{R}e\check{s}en\acute{\iota}$. Nechť $(\lambda,v),\,v=(v_1,v_2,\ldots,v_k)^T\neq 0$ jsou vlastní číslo a vlastní vektor matice J_k . Rozepíšemeli si vztah $(J_k-\lambda I)v=0$, dostáváme z první rovnice

$$(\alpha_1 - \lambda)v_1 + \beta_2 v_2 = 0.$$

Nechť $v_1 = 0$, pak tedy i $v_2 = 0$ (protože $\beta_2 > 0$). Dosazením do druhé rovnice

$$0 = \beta_2 v_1 + (\alpha_2 - \lambda)v_2 + \beta_3 v_3 = 0 + 0 + \beta_3 v_3,$$

a tedy i $v_3=0$. Podobně ukážeme, že $v_i=0$ pro $i=4,5,\ldots,k,$ což je spor s $v\neq 0.$

Důkaz tvrzení o nenulové poslední složce se provede analogicky, s tím, že začneme s poslední rovnicí a postupujeme k první. \Box

Úloha 6. Uvažujme charakteristické polynomy Jacobiho matice J_k ,

$$\chi_0(\lambda) \equiv 1, \quad \chi_k(\lambda) = \det(\lambda I - J_k), \quad k = 1, 2, \dots$$

Ukažte, že platí rekurence

$$\chi_0 = 1, \quad \chi_1(\lambda) = \lambda - \alpha_1, \quad \chi_k(\lambda) = (\lambda - \alpha_k)\chi_{k-1}(\lambda) - \beta_k^2 \chi_{k-2}(\lambda), \quad k = 2, 3, \dots$$
 (1)

 $\check{R}e\check{s}en\acute{\iota}$. Pro charakteristické polynomy χ_1 matice J_1 a χ_2 matice J_2 postupně dostaneme

$$\chi_1(\lambda) = \lambda - \alpha_1 = (\lambda - \alpha_1)\chi_0(\lambda)$$

$$\chi_2(\lambda) = (\lambda - \alpha_1)(\lambda - \alpha_2) - \beta_2^2 = (\lambda - \alpha_2)\chi_1(\lambda) - \beta_2^2 \chi_0(\lambda).$$

Rozvojem determinantu $\lambda I - J_k$ podle posledního sloupce $k \geq 3$ dostaneme

$$\chi_k(\lambda) = \det \begin{bmatrix} \lambda I - J_{k-2} & -\beta_{k-1} & 0 \\ -\beta_{k-1} & \lambda - \alpha_{k-1} & -\beta_k \\ 0 & -\beta_k & \lambda - \alpha_k \end{bmatrix}
= (\lambda - \alpha_k) \det(\lambda I - J_{k-1}) + \beta_k \det \begin{bmatrix} \lambda I - J_{k-2} & -\beta_{k-1} \\ 0 & -\beta_k \end{bmatrix}
= (\lambda - \alpha_k) \chi_{k-1}(\lambda) + \beta_k (-\beta_k) \det(\lambda I - J_{k-2})
= (\lambda - \alpha_k) \chi_{k-1}(\lambda) - \beta_k^2 \chi_{k-2}(\lambda).$$

Úloha 7. Ukažte pomocí rekurence (1), že dvě po sobě jdoucí Jacobiho matice nemohou mít stejná vlastni čísla.

Rešení. Je-li λ kořenem polynomu χ_k a χ_{k-1} , je i kořenem $\chi_{k-2}, \ldots, \chi_0$, což je ve sporu s $\chi_0 = 1$.