

Mar 27, 2018

PRESENTER: JongYun Kim

UNIST Autonomous System LAB

Address. 112-#810, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea Tel. +82 52 217 2368 Web. https://sites.google.com/site/aslunist/

CONTENTS

1. Introduction- Idea of logistic regression	02	4. Into Exponential Family	21
2. Logistic Transformation	08	5. Example : cell infusion	27
3. Example: dose response	13	6. Example : spam filter	35

Introduction

Age	SBP
22	131
23	128
24	116
27	106
28	114
29	123
30	117
32	122
33	99
35	121
40	147

Age	SBP	Ag	e SBP
41	139	52	128
41	171	54	105
46	137	56	145
47	111	57	7 141
48	115	58	3 153
49	133	59	157
49	128	63	155
50	183	67	7 176
51	130	71	172
51	133	77	178
51	144	81	217

- Linear Regression
- $y = X\beta + \epsilon$
- Estimates continuous variable
 (blood pressure in the example)
- What about estimating categorical (count) variable or probability (proportion) ??
- Could be **{0, 1}** or **[0, 1]**
- If applying linear regression,?!

Odds and Logistic Transformation

$$Odds = \frac{P(A)}{P(A^c)} = \frac{\pi}{1-\pi} \qquad \Rightarrow \text{ in the range } [0, \infty] \qquad \lambda = \log\{odds\} = \log\frac{\pi}{1-\pi} \qquad \Rightarrow \text{ in the range } [-\infty, \infty]$$

$$\pi = \alpha_0 + \alpha_1 X \qquad \qquad \log \left\{ \frac{\pi}{1-\pi} \right\} = \alpha_0 + \alpha_1 X$$

Now, we can consider count or proportion data as holding linear regression frames

Example: dose response

We are going to model y_i as independent binomials

$$y_i \stackrel{\text{ind}}{\sim} \text{Bi}(n_i, \pi_i)$$
 for $i = 1, 2, ..., N$

Assume that the logit follows linear function of dose

$$\lambda_i = \log\left\{\frac{\pi_i}{1 - \pi_i}\right\} = \alpha_0 + \alpha_1 x_i$$

Example: dose response

10 mice

$$n = 10$$

injection

 $y_i = \#$ of mice dying in *i*-th group

(1~N=11)

 $p_i = y_i/n$

(blue dots)

Group i

MLE provides $(\hat{\alpha}_0, \hat{\alpha}_1)$ which yields the following equation

$$\hat{\lambda} = \log \left\{ \frac{\hat{\pi}}{1 - \hat{\pi}} \right\} = \hat{\alpha}_0 + \hat{\alpha}_1 \mathbf{x}$$

And we finally obtain the linear logistic regression curve

$$\widehat{\pi}(x) = \left(1 + e^{-(\widehat{\alpha}_0 + \widehat{\alpha}_1 x)}\right)^{-1}$$

Note: dose response

- The regression has reduced error (see the table on the right side)
- It is ture unless logit linear model seriously goes wrong
- λ is NOT restricted to the range [0, 1]
- Able to utilize exponential family properties!

x	1	2	3	4	5	6	7	8	9	10	11
$\operatorname{sd} \hat{\pi}(x)$ $\operatorname{sd} p_i$											

Merging Into Exponential Family

The probability density function of Bi(n, y) is given

$$\binom{n}{y}\pi^{y}(1-\pi)^{n-y} = e^{\lambda y - n\psi(\lambda)}\binom{n}{y}$$
 \rightarrow one parameter exponential family (see chapter 5.5; eq 5.54 or 5.46)

, where $\psi(\lambda) = \log\{1 + e^{\lambda}\}$

The independence of the data gives the probability density of full data set y as a function of (α_0, α_1) ,

$$f_{\alpha_0,\alpha_1}(\mathbf{y}) = \prod_{i=1}^N e^{\lambda_i y_i - n_i \psi(\lambda_i)} \binom{n_i}{y_i}$$
$$= e^{\alpha_0 S_0 + \alpha_1 S_1} \cdot e^{-\sum_{i=1}^N n_i \psi(\alpha_0 + \alpha_1 x_i)} \cdot \prod_{i=1}^N \binom{n_i}{y_i}$$

, where $S_0 = \sum_{i=1}^N y_i$ and $S_1 = \sum_{i=1}^N x_i y_i$

Merging Into Exponential Family

Suppose that the deviance is given as follows

$$D(p_i, \hat{\pi}_i) = 2n_i \left[p_i \log \left(\frac{p_i}{\hat{\pi}_i} \right) + (1 - p_i) \log \left(\frac{1 - p_i}{1 - \hat{\pi}_i} \right) \right]$$

The deviance gives us the intuition: it is zero at $\hat{\pi}_i = p_i$, otherwise it increases as $\hat{\pi}_i$ departs further from p_i

The logistic regression MLE value $(\hat{\alpha}_0, \hat{\alpha}_1)$ has to do with minimizing the total deviance between p_i and $\hat{\pi}_i = \pi_{\alpha_0, \alpha_1}(x_i)$

$$(\hat{\alpha}_0, \hat{\alpha}_1) = \underset{(\alpha_0, \alpha_1)}{\operatorname{arg \, min}} \sum_{i=1}^N D\left(p_i, \pi_{\alpha_0, \alpha_1}(x_i)\right)$$

Example: cell infusion

Let π_{ij} denote the true probability of thriving of ratio i during time period j

And take logistic regression

$$\lambda_{ij} = \log\left\{\frac{\pi_{ij}}{1 - \pi_{ij}}\right\} = \mu + \alpha_i + \beta_i$$

MLE and the data set $\{p_{ij}\}$ give estimation $\hat{\pi}_{ij}$ as follows

$$\hat{\pi}_{ij} = \frac{1}{1 + e^{-(\hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j)}}$$

Cell infusion data; human cell colonies infused with mouse nuclei in five ratios over 1 to 5 days and observed to see whether they did or not thrive.

Example: spam filter

George labeled N=4601 emails whether spam or ham(i.e. non-spam) He used 57 words as predictors in the table.

 x_{ij} : relative frequency of keyword j in email i

 $\pi_{i\,i}$: true probability that email i is spam

 λ_i : the logit transformation of π_{ij}

$$\lambda_{ij} = \log\left\{\frac{\pi_{ij}}{1 - \pi_{ij}}\right\} = \alpha_0 + \sum_{j=1}^{57} \alpha_j x_{ij}$$

- Then you are able to predict whether future emails are spam or ham by using these keywords
- The table provides the estimated $\hat{\alpha}_i$ and its se value (by MLE)
- It seems that 'free' and 'your' are good spam predictors large $\hat{\alpha}_i$ and small se; large z-value
- The occasional very large $\hat{\alpha}_i$ may bother MLE

se								
	Estimate	se	z-value		Estimate	se	z-value	
intercept	-12.27	1.99	-6.16	lab	-1.48	.89	-1.66	
make	12	.07	-1.68	labs	15	.14	-1.05	
address	19	.09	-2.10	telnet	07	.19	35	
all	.06	.06	1.03	857	.84	1.08	.78	
3d	3.14	2.10	1.49	data	41	.17	-2.37	
our	.38	.07	5.52	415	.22	.53	.42	
over	.24	.07	3.53	85	-1.09	.42	-2.61	
remove	.89	.13	6.85	technology	.37	.12	2.99	
internet	.23	.07	3.39	1999	.02	.07	.26	
order	.20	.08	2.58	parts	13	.09	-1.41	
mail	.08	.05	1.75	pm	38	.17	-2.26	
receive	05	.06	– .86	direct	11	.13	84	
will	12	.06	-1.87	cs	-16.27	9.61	-1.69	
people	02	.07	35	meeting	-2.06	.64	-3.21	
report	.05	.05	1.06	original	28	.18	-1.55	
addresses	.32	.19	1.70	project	98	.33	-2.97	
free	.86	.12	7.13	re	80	.16	-5.09	
business	.43	.10	4.26	edu	-1.33	.24	-5.43	
email	.06	.06	1.03	table	18	.13	-1.40	
you	.14	.06	2.32	conference	-1.15	.46	-2.49	
credit	.53	.27	1.95	char;	31	.11	-2.92	
your	.29	.06	4.62	char(05	.07	75	
font	.21	.17	1.24	char_	07	.09	78	
000	.79	.16	4.76	char!	.28	.07	3.89	
money	.19	.07	2.63	char\$	1.31	.17	7.55	
hp	-3.21	.52	-6.14	char#	1.03	.48	2.16	
hpl	92	.39	-2.37	cap.ave	.38	.60	.64	
george	-39.62	7.12	-5.57	cap.long	1.78	.49	3.62	
650	.24	.11	2.24	cap.tot	.51	.14	3.75	

THANK YOU

Q&A