Ph.D. Qualifying Exam, Real Analysis Fall 2018, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems.
 - **a.** Define the function ν from subsets of \mathbb{R} to $[0,\infty]$ as follows. If $A\subset\mathbb{R}$, let $\nu(A)=\infty$ if 0 is in the closure of A, and let $\nu(A)=0$ otherwise. Show that ν is finitely additive but it is not countably additive.
 - **b.** Let m be the Lebesgue measure on \mathbb{R} . Suppose that $f: \mathbb{R} \to \mathbb{R}$ is measurable and let $S = \{x \in \mathbb{R} : m(f^{-1}(\{x\})) > 0\}$. Show that S is countable, and give an example to show that S can be dense in \mathbb{R} .
- Given a Schwartz function $f \in \mathcal{S}(\mathbb{R})$, define the $H^s(\mathbb{R})$ norm by $||f||_{H^s(\mathbb{R})} := ||(1+|\xi|^2)^{\frac{s}{2}} \hat{f}(\xi)||_{L^2(\mathbb{R})}$, where \hat{f} denotes the Fourier transform of f and $s \in \mathbb{R}$.
 - **a.** Prove that for every $s > \frac{1}{2}$, there exists a constant C > 0 (depending only on s) such that for every $f \in \mathcal{S}$,

$$||f||_{L^{\infty}(\mathbb{R})} \le C||f||_{H^{s}(\mathbb{R})}.$$

b. Let $K = \{f \in \mathcal{S}(\mathbb{R}) : \exists d > 0 \text{ such that } \hat{f}(\xi) \neq 0 \Rightarrow d \leq |\xi| \leq 2d\}$. Prove that there exists a constant C > 0 (independent of d) such that for every $f \in K$,

$$||f||_{L^{\infty}(\mathbb{R})} \le C||f||_{H^{\frac{1}{2}}(\mathbb{R})}.$$

- Suppose X is a vector space over \mathbb{C} and \mathcal{F} is a collection of linear maps $X \to \mathbb{C}$. Equip X with the \mathcal{F} -weak topology, i.e. the weakest topology in which all elements of \mathcal{F} are continuous.
 - **a.** Show that the vector space operations $+: X \times X \to X$ and $\cdot: \mathbb{C} \times X \to X$ are continuous in this topology (where $X \times X$ and $\mathbb{C} \times X$ are equipped with the product topology).
 - **b.** Suppose that $\rho: X \to [0, \infty)$ is continuous and is a seminorm. Show that there exist $k \in \mathbb{N}$, $\ell_1, \ldots, \ell_k \in \mathcal{F}$ and C > 0 such that $\rho(x) \leq C \sum_{i=1}^k |\ell_j(x)|$ for all $x \in X$.
- Suppose that X,Y are Hilbert spaces, $P \in \mathcal{L}(X,Y)$, the set of bounded linear operators $X \to Y$. Suppose also that there is $C \ge 0$ such that $\|x\|_X \le C\|Px\|_Y$ for all $x \in X$.
 - **a.** Show that P is surjective if and only if P^* is injective.
 - **b.** Show that if P is surjective then $||v||_{Y^*} \le C||P^*v||_{X^*}$ for all $v \in Y^*$, where C is as above.
- Let $\chi_{[\alpha,\beta]}$ denote the characteristic (indicator) function of the interval $[\alpha,\beta]$, as well as the corresponding multiplication operator. Below let \mathcal{F} be the Fourier transform on $L^2(\mathbb{R})$.
 - **a.** Show that for a, b > 0,

$$\mathcal{F}^{-1}\chi_{[-b,b]}\mathcal{F}\chi_{[-a,a]}\in\mathcal{L}(L^2(\mathbb{R}))$$

is compact.

b. Show that for a, b > 0,

$$\mathcal{F}^{-1}(1-\chi_{[-b,b]})\mathcal{F}\chi_{[-a,a]}\in\mathcal{L}(L^2(\mathbb{R}))$$

is not compact.

Ph.D. Qualifying Exam, Real Analysis Fall 2018, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems.
 - **a.** Show that a Hilbert space is separable as a metric space (i.e. has a countable dense subset) if and only if it has a countable complete orthonormal set (basis).
 - **b.** Show that in a separable Hilbert space the closed unit ball is weakly sequentially compact, i.e. any sequence $\{x_n\}_{n=1}^{\infty}$ in it has a weakly convergent subsequence.
- Suppose X, Y and Banach spaces, $A_j, A \in \mathcal{L}(X, Y), j \in \mathbb{N}$, and A is invertible. (Here $\mathcal{L}(X, Y)$ is the set of bounded linear operators $X \to Y$.)
 - **a.** Suppose that $A_j \to A$ in norm in $\mathcal{L}(X,Y)$. Show that there exists N such that for $j \geq N$, A_j is also invertible.
 - **b.** Suppose now that $A_j \to A$ in the strong operator topology on $\mathcal{L}(X,Y)$. Does it follow that A_j is invertible for sufficiently large j? Prove it, or give a counterexample.
- Suppose that $K \in L^p([0,1] \times [0,1]), 1 . Let q be the dual exponent, <math>p^{-1} + q^{-1} = 1$.
 - **a.** For $f \in L^q([0,1])$, let $(Af)(x) = \int K(x,y)f(y)dy$. Show that (Af)(x) indeed exists for almost every x and $A \in \mathcal{L}(L^q([0,1]), L^p([0,1]))$.
 - **b.** Suppose that for every $f \in L^q([0,1])$, (Af)(x) = 0 for almost every x. Show that K = 0 a.e.
- Suppose $T: X \to Y$ is a Fredholm map between two complex Banach spaces, i.e. has closed range, and KerT, Y/RanT are finite dimensional.
 - **a.** Show that there exist $m, n \ge 0$ integers such that $X \oplus \mathbb{C}^m$ is isomorphic to $Y \oplus \mathbb{C}^n$ as Banach spaces (there is an invertible continuous linear map between them).
 - **b.** Prove that *X* is separable if and only if *Y* is separable.
- 5 Let $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ be the unit circle, and consider the integral $I(r) = \int_{\mathbb{T}} e^{ir\cos\theta} \varphi(\theta) \, d\theta$, $\varphi \in C^{\infty}(\mathbb{T})$, where $d\theta$ is the Lebesgue measure on \mathbb{T} . Show that there exists C>0 such that $|I(r)| \leq Cr^{-1/2}, r \geq 1$. Hint: Show that if φ is supported away from $[0], [\pi] \in \mathbb{R}/(2\pi\mathbb{Z})$, then I(r) is rapidly decreasing as $r \to \infty$; then assume φ is supported near [0] or $[\pi]$, and change variables to obtain an integral of the form $\int e^{\pm irs^2} \tilde{\varphi}(s) \, ds$ (times a prefactor). (Note: I(r) is essentially the Fourier transform, evaluated at (r,0), of a delta distribution on the unit circle in \mathbb{R}^2 .)