

Questão 3 (2.º teste) / Questão 5 (Exame final): resolução

(a) Estuda a natureza das seguintes séries numéricas. Em caso de convergência indica se é simples ou absoluta.

i.
$$\sum_{n=1}^{+\infty} \frac{\sqrt{n}\cos(n\pi)}{2n^2 + 3n}$$

Sejam $a_n = \frac{\sqrt{n}\cos(n\pi)}{2n^2 + 3n} = \frac{\sqrt{n}(-1)^n}{2n^2 + 3n}$ e $b_n = \frac{1}{n^{3/2}} > 0$, termo geral de uma série convergente (3/2 > 1). **Não se podem aplicar** *diretamente* **os critérios de comparação** porque a_n não tem sinal constante.

• Como $\lim_{n \to +\infty} \frac{|a_n|}{b_n} = \lim_{n \to +\infty} \frac{\left|\frac{\sqrt{n(-1)^n}}{2n^2+3n}\right|}{\frac{1}{n^{3/2}}} = \lim_{n \to +\infty} \frac{\sqrt{n} \, n^{3/2}}{n^2(2+\frac{3}{n})} = \lim_{n \to +\infty} \frac{1}{2+\frac{3}{n}} = \frac{1}{2} \in \mathbb{R}^+, \text{ pelo critério}$

do limite a série $\sum_{n=0}^{\infty} |a_n|$ tem a natureza de $\sum_{n=0}^{\infty} b_n$, ou seja, converge.

• Alternativamente, $0 \le |a_n| = \frac{\sqrt{n}}{2n^2 + 3n} \le \frac{\sqrt{n}}{2n^2} = \frac{1}{2n^{3/2}} \le b_n$, $\forall n \in \mathbb{N}$, portanto $\sum_{n=1}^{+\infty} |a_n|$ converge pelo critério de comparação.

Então, por definição, a série dada converge absolutamente.

ii.
$$\sum_{n=0}^{+\infty} \frac{n!(n+1)!}{(3n)!}$$

Seja $a_n = \frac{n!(n+1)!}{(3n)!} > 0$ para todo o $n \in \mathbb{N}_0$. Visto que

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} a_{n+1} \cdot \frac{1}{a_n} = \lim_{n \to +\infty} \frac{(n+1)!(n+2)!}{(3n+3)!} \cdot \frac{(3n)!}{n!(n+1)!}$$

$$= \lim_{n \to +\infty} \frac{(n+2)(n+1)n!(3n)!}{(3n+3)(3n+2)(3n+1)(3n)!n!} = \lim_{n \to +\infty} \frac{n+2}{3(3n+2)(3n+1)} = 0 < 1,$$

a série dada converge (absolutamente) pelo critério de d'Alember

(b) Determina a soma da série numérica convergente $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2-1}$

Seja $a_n = \frac{(-1)^n}{n^2 - 1} = \frac{(-1)^n}{(n-1)(n+1)}$. Sabe-se que existem $A, B \in \mathbb{R}$ tais que, para todo o $n \ge 2$,

$$\frac{1}{(n-1)(n+1)} = \frac{A}{n-1} + \frac{B}{n+1} = \frac{n(A+B) + A - B}{n^2 - 1} \iff 1 = n(A+B) + A - B,$$

que acontece se e só se A+B=0 $\wedge A-B=1 \Leftrightarrow A=\frac{1}{2}$ $\wedge B=-\frac{1}{2}$. Já que $(-1)^n=(-1)^{n+2}$, pode-se escrever

$$a_n = \frac{(-1)^n}{n^2 - 1} = \frac{(-1)^n}{2(n-1)} - \frac{(-1)^n}{2(n+1)} = \frac{(-1)^n}{2(n-1)} - \frac{(-1)^{n+2}}{2(n-1)} = u_n - u_{n+2}, \text{ com } u_n = \frac{(-1)^n}{2(n-1)}.$$

Portanto, a série dada é uma série redutível, cuja soma parcial calcula-se, por exemplo, da seguinte forma:

$$S_k = \sum_{n=2}^k a_n = \sum_{n=2}^k (u_n - u_{n+2}) = \sum_{n=2}^k u_n - \sum_{n=2}^k u_{n+2} = u_2 + u_3 + \sum_{n=4}^k u_n - \sum_{n=4}^{k+2} u_n = u_2 + u_3 - u_{k+1} - u_{k+2}, \ k \ge 4.$$

Assim, por definição

$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{n^2 - 1} = \sum_{n=2}^{+\infty} a_n = \lim_{k \to +\infty} S_k = \lim_{k \to +\infty} u_2 + u_3 - u_{k+1} - u_{k+2}$$

$$= \lim_{k \to +\infty} \frac{1}{2(2-1)} + \frac{-1}{2(3-1)} - \frac{(-1)^{k+1}}{2k} - \frac{(-1)^{k+2}}{2(k+1)} = \frac{1}{2} - \frac{1}{4} - 0 - 0 = \frac{1}{4}.$$