i Front side Emnekode: DAT320 Emnenavn: Operativsystemer og systemprogrammering År og semester: 2022 Høst **Eksamensdato: 16.12.2022** Klokkeslett: 09:00-13:00

Tillate hjelpemidler: Kalkulator

Faglærer: Robert Ewald - 51875111

¹ Process

What is a process?	
Select one alternative:	
A hardware driver	
The operating system	
A program in memory	
A program on disk	
	Maximum marks: 1
I/O Changes	
Which of the following is responsible to notify the CPU about I/O changes? Select one alternative:	
Exception	
○ Signal	
 Notification 	
Interrupt	
	Maximum marks: 1

³ Address translation

Which device is responsible for address translation? Select one alternative:
○ Translation Look-aside Buffer
○ Virtual Frame Translator
Memory Management Unit
O Page Table Converter
○ Address Bus
Maximum marks: 1
State transition
Which state transitions are possible between RUNNING, READY and BLOCKED? Select one or more alternatives:
■ BLOCKED - READY
RUNNING - READY
READY - RUNNING
■ BLOCKED - RUNNING
RUNNING - BLOCKED
READY - BLOCKED
Maximum marks: 2

⁵ create process

Which system call is used to create a process? Select one alternative:	
<pre>create_proc()</pre>	
ofork()	
○ spawn()	
onew()	
	Maximum marks: 1
Terminate process	
Which shell command is used to terminate a process? Select one alternative:	
terminate	
end	
○ conclude	
○ kill	
	Maximum marks: 1

⁷ Restrict process

8

Which feature allows to restrict a process? Select one alternative:	
pipelining	
ouser accounts	
kernel/user mode	
access control lists	
	Maximum marks: 1
return	
The fork() system call returns twice Select one alternative :	
O True	
○ False	
	Maximum marks: 1
Execution mechanism	
What is the mechanism called which isolat	es processes efficiently and securely?
	Maximum marks: 1

¹⁰ Context switch

	Which resources don't need to be saved in a context switch? Select one alternative:	
	O Program counter	
	General Purpose CPU registers.	
	○ Stack pointer	
	Translation look-aside buffer	
		Maximum marks: 1
11	Parent child 1	
	Select one or more alternatives. All ticks need to be correct get points:	
	☐ Alternative 3	
	☐ Alternative 4	
	☐ Alternative 2	
	☐ Alternative 1	
		Maximum marks: 2

¹² Parent Child 2

	Select one or more alternatives:	
	☐ Alternative 2	
	☐ Alternative 4	
	☐ Alternative 3	
	☐ Alternative 1	
		Maximum marks: 2
13	preemptive context switch	
	What hardware feature is needed to enable preemptive scheduling? Select one alternative:	
	O preemption register	
	○ disk interrupt	
	O timer interrupt	
	○ system call	
		Maximum marks: 1

14 System call

Which statements are true about system calls?

Please match the values:

	False	True
Executed using a trap (software interrupt)	0	0
Are defined at boot time	0	0
Executed in user mode	\circ	

Maximum marks: 3

¹⁵ Memory virtualization

Select one alternative:	
Virtualization of the whole memory is described by which term	n?

- Virtual address
- Address space
- Base and bounds
- Paging

Memory types

17

18

This is a memory type allocated by the operating system. True or false?

This is a memory type allocated by the operating sys	stom. True of false.	
	False	True
Read only memory	0	
Random access memory		
Stack		
Неар	0	0
Memory accesses	Λ	laximum marks
onsider paging without caching.		
Memory accesses Consider paging without caching. Low many memory accesses are necessary to load	d a value from an address:	
onsider paging without caching. ow many memory accesses are necessary to load	d a value from an address:	
onsider paging without caching.	d a value from an address:	aximum marks

¹⁹ TLB

What is the translation look-aside buffer? Select one alternative:	
A cache for main memory	
a buffer for translated instructions	
A cache for page tables	
Memory for page tables	

²⁰ Allocation

Replace with question text

Mark the statements as true or false

	True	False
The function returns a pointer		0
Memory space for r is allocated in ROM		0
Another thread can safely use the returned value		0
Memory space for r is allocated on the stack		0
Memory space for r is allocated on the heap		0
		•

Maximum marks: 5

²¹ Address Resolution 1

Given a 16 bit architecture and a page size of 256 bytes.

Pag	e T	Γal	ole
ı uy	·	ı	-

PFN	Р	U/S	R/W	V
a1	1	0	1	1
b2	1	1	0	1
c4	1	0	1	1
		250 items omitted		
01	1	0	1	1
02	1	0	1	0
03	1	0	0	0

What is the physical address for virtual address 02fe ? Enter the address in hex:	
What is the physical address for virtual address 0201 ? Enter the address in hex:	
What is the physical address for virtual address 0101 ? Enter the address in hex:	
What is the physical address for virtual address feab ? Enter the address in hex:	

²² Address Resolution 2

23

Given a 16 bit architecture and a page size of 512 bytes.

Page 7	Гab	le
	_	

. 5.95 .5.51					
PFN	P	U/S	R/W	V	
a2	1	0	1	1	
b2	1	1	0	1	
c4	1	0	1	1	
		- 122 items omit	ted		
01	1	0	1	1	
02	1	0	1	0	
03	1	0	0	0	

What is the physical address for virtual address 02fe ? Enter the address in hex:
What is the physical address for virtual address 0201 ? Enter the address in hex:
What is the physical address for virtual address 0101 ? Enter the address in hex:
What is the physical address for virtual address feab ? Enter the address in hex:
Maximum marks: 8
Critical section
After which line must the mutex be locked? Enter the line number here:
After which line must the mutex be unlocked? Enter the line number here:

²⁴ Trace

Fill out the trace table for the segmentation fault case.

Thread 1	Thread 2		
Select alternative (c, not running, b, a)	Select alternative (c, b, a, not running)		
Select alternative (c, b, not running, a)	Select alternative (not running, a, b, c)		
Select alternative (b, a, not running, c)	Select alternative (a, c, b, not running)		

²⁵ deadlock

Which conditions need to be present to cause a deadlock?

Please match the values:

	required	not required
hold-and-wait		
no preemption		
circular wait		0
I/O operations	0	0
mutual exclusion	0	0
multiple CPUs	0	0
limited memory	0	0

Maximum marks: 7

²⁶ Create thread

Which	function	is	used:	to	create	а	thread?
V V I II C I I	IGIIOGOII	10	uscu	w	Oloato	ч	uncaai

Select one alternative:

pt	hread	for	k()

pthread_create()

pthread_start()

pthread_new()

²⁷ Wait for another thread

	Maximum marks: 1
<pre>pthread_suspend()</pre>	
<pre>pthread_join()</pre>	
<pre>pthread_wait()</pre>	
○ sleep()	
Which function is used wait for completion of another thread? Select one alternative:	

28 Turnaround time

Assume the First Come First Served / First In First Out scheduling algorithm is used. The processes arrived in the order noted in the table. The jobs are not preempted. Calculate the average turnaround time.

Process	Arrival Time	Job runtime
P ₁	0	10
P ₂	0	100
P ₂	0	10

Enter the average turnarount time here:		

²⁹ Round Robin

Consider these statements about round-robin scheduling. Which are true/false? **Please match the values:**

	False	True
RR is fair		
RR enables low response time		
RR takes into account I/O		0
RR enables low turnaround time	0	0

Maximum marks: 4

30 Multi-level feedback queue

Which rules apply for multi-level feedback queues to avoid causing starvation? **Please match the values:**

	applies	does not apply
If a job gives up CPU before the time slice is up, it stays at the same priority level		0
If priority(A) > priority(B): A runs	0	0
When a job enters the system it is placed at the highest priority	0	0
After some time period S, move all the jobs in the system to the topmost queue	0	0
If priority(A) = Priority(B): A & B run in RR	0	0
Once a job uses up its time allotment at a given level its priority is reduced		

³¹ Process Priority

Which shell command is used to change the priority of a process Select one alternative:
○ chgpri
○ nice
○ yield
priority
Maximum marks:
Page access cache
Consider a newly-created process that has been allocated a cache size of 5 pages, and then generates the following page accesses: A C E F D B A B F F D C C G A G C E F D G E B D G G
How many cache misses are observed for this access stream when using of the FIFO page replacement algorithm?
What is its hit rate in percent? Hit rate %
How many cache misses are observed for this access stream when using of the FIFO page replacement algorithm and a cache size of 6?
The cache algorithm is replaced with the least frequently used algorithm. The cache size remains at 6. How many cache misses can be observed?
Maximum marks: 12

33 Locality

Which properties of the access pattern enable a cache perform well?

Please match the values:

	Does enable	Does not enable
Process locality		
Address locality		
Temporal locality		0
Remote locality		0
Spatial locality		

Maximum marks: 5

34 Harddisk

Loud noise around a harddisl	k increases its latency
------------------------------	-------------------------

Select one alternative:

_
True

False

35 RAID

failed drive? Select one alternative
O RAID5
O RAID0
O RAID1
○ RAID4
Which raid configuration should be used to minimize latency and ensure operation with one failed drive? Select one alternative:
O RAID4
O RAID5
○ RAID0
O RAID1
Maximum marks: 2

Which raid configuration should be used to maximize capacity and ensure operation with one

Question 11

Attached


```
Which outputs of this program are possible?
 1 int main(int argc, char *argv[]) {
 2
      printf("hello world (pid:%d)\n", (int) getpid());
 3
      int rc = fork();
 4
      if (rc < 0) {
                            // fork failed; exit
 5
        fprintf(stderr, "fork failed\n");
 6
        exit(1);
 7
      } else if (rc == 0) {
        printf("hello, I am child (pid:%d)\n", (int) getpid());
 8
9
      } else {
        int rc_wait = wait(NULL);
10
11
        printf("hello, I am parent of %d (rc_wait:%d) (pid:%d)\n",
12
        rc, rc_wait, (int) getpid());
13
      }
14
      return 0;
15 }
   • Alternative 1
    hello world (pid:29146)
    hello, I am child (pid:29147)
    hello, I am parent of 29147 (pid:29146)
   • Alternative 2
    hello world (pid:29146)
    hello, I am parent of 29147 (pid:29146)
    hello, I am child (pid:29147)
   • Alternative 3
    hello world (pid:29146)
    hello world (pid:29147)
    hello, I am parent of 29147 (pid:29146)
    hello, I am child (pid:29147)
   • Alternative 4
    hello world (pid:29147)
    hello, I am child (pid:29147)
    hello world (pid:29146)
```

hello, I am parent of 29147 (pid:29146)

Question 12

Attached

Consider the program carefully. Which outputs of this program are possible?

```
1 int main(int argc, char *argv[]) {
     printf("hello world (pid:%d)\n", (int) getpid());
3
      int rc = fork();
4
      if (rc < 0) {
                            // fork failed; exit
        fprintf(stderr, "fork failed\n");
5
6
        exit(1);
7
      } else if (rc == 0) { // child (new process)
        printf("hello, I am child (pid:%d)\n", (int) getpid());
8
                            // parent goes down this path (main)
9
      } else {
        printf("hello, I am parent of %d (pid:%d)\n",
10
        rc, (int) getpid());
11
12
      }
13
      return 0;
14 }
  • Alternative 1
    hello world (pid:29146)
    hello, I am child (pid:29147)
    hello, I am parent of 29147 (pid:29146)
  • Alternative 2
    hello world (pid:29146)
    hello, I am parent of 29147 (pid:29146)
    hello, I am child (pid:29147)
   • Alternative 3
    hello world (pid:29146)
    hello world (pid:29147)
    hello, I am parent of 29147 (pid:29146)
    hello, I am child (pid:29147)
   • Alternative 4
    hello world (pid:29147)
    hello, I am child (pid:29147)
    hello world (pid:29146)
    hello, I am parent of 29147 (pid:29146)
```

Question 20

Attached

Consider the following code.

```
1 int *some_function() {
2    int r;
3    r = 1;
4    return &r;
5 }
```

Question 23

Attached

Consider the following code. The function queue_enqueue can be called by multiple threads. Identify the critical section in this function.

```
typedef struct __node_t {
 2
      int value;
      struct __node_t *next;
 4 } node_t;
 6
   typedef struct __queue_t {
 7
     node_t *head;
      node_t *tail;
8
     pthread_mutex_t lock;
10
   } queue_t;
11
12
   void queue_init(queue_t *q) {
13
      node_t *tmp = malloc(sizeof(node_t));
      tmp->next = NULL;
14
15
      q->head = q->tail = tmp;
      pthread_mutex_init(&q->lock0, NULL);
16
17
   }
18
19
   void queue_enqueue(queue_t *q, int value) {
      node_t *tmp = malloc(sizeof(node_t));
21
      assert(tmp != NULL);
22
      tmp->value = value;
      tmp->next = NULL;
23
      q->tail->next = tmp;
25
      q->tail = tmp;
26 }
```

Question 24

Attached

1 Trace

Consider the following code. This code sometimes fails with a Segmentation fault. Fill out the trace table for this case. Assume a single CPU.

```
#include <pthread.h>
 1
 2
 3
    typedef struct __info {
      int counter = 0;
 5
    } __info_t;
7
    __info_t *info;
8
9
    void *count() {
10
      if (info) { // a
        info->counter = info->counter + 11; // b
11
      }
12
    }
13
14
15
    void *ended() {
      info = NULL; // c
16
17
    }
18
19
    int main(int argc, *char[] argv) {
20
      info = malloc(sizeof(__info_t));
21
      assert(info != NULL);
22
      pthread_t thread_1, thread_2;
23
      phtread_create(&t1, NULL, count);
24
      pthread_create(&t2, NULL, ended);
25 }
```