Coffee Shop Sales Analysis Report

by

Manmeet Singh - Data & Business Intelligence Analyst

Email: manmeetsngh2002@gmail.com | LinkedIn: linkedin.com/in/manmeet-singh-182469233 | GitHub: github.com/Mr-Singh-oo1

Technical Stack & Tools Used: Power BI, DAX, SQL, Excel, Data Modeling, Visualization, BI Automation

Cover Letter

Dear Reader,

I am pleased to present my Coffee Shop Sales Analysis Report, a demonstration of my expertise in Power BI, DAX, SQL, and data analytics within a retail context. As a Fintech and Data Analyst specializing in fraud detection, BI automation, and strategic risk modelling, I have developed this report to showcase my ability to transform raw data into actionable business insights. By leveraging interactive dashboards, precise DAX calculations, and robust SQL validation, I provide stakeholders with reliable metrics to drive operational and strategic decisions.

My experience includes building data models and visualizations that enhance decision-making, as evidenced by my work on fraud detection and inventory management projects (available at github.com/Mr-Singh-oo1). This report highlights my technical proficiency and analytical mindset, making it a valuable addition to my portfolio.

Thank you for reviewing my work. I am confident it reflects my capability to deliver impactful data solutions.

Sincerely, Manmeet Singh

Introduction

This Coffee Shop Sales Analysis Report showcases my expertise in Power BI, DAX, and SQL, focusing on financial and operational analytics in a retail coffee shop context. The objective was to analyse sales performance, identify trends, and validate results using multiple data tools, delivering clear and actionable insights for stakeholders.

Problem Statement & Objective

The report addresses the need to optimize coffee shop sales performance through key performance indicators (KPIs):

- Total Sales, Orders, and Quantity Sold, with month-over-month (MoM) comparisons to track growth.
- Performance analysis at store and product levels to identify strengths and weaknesses.
- Calendar heatmaps and segmentation by weekdays, weekends, and hourly trends to understand customer behaviour.

Interactive dashboards with filters for time periods and product categories enable dynamic data exploration, empowering stakeholders to pinpoint performance highlights and areas for improvement.

Methodology Overview

The data was processed in Power BI with DAX measures for metrics computation and SQL scripts for validation. The approach ensured both analytical accuracy and dashboard interactivity for stakeholders.

DAX Measures (Grouped)

Basic Metrics

- **Total Sales** = SUM(Transactions[Sales])
- **Total Orders** = DISTINCTCOUNT(Transactions[transaction id])
- **Total Quantity** = SUM(Transactions[transaction qty])
- Sales = Transactions[unit_price] * Transactions[transaction_qty]
- Hour = HOUR(Transactions[transaction_time])
- Daily Average Sales = AVERAGEX(ALLSELECTED(Transactions[transaction_date]), [Total Sales])

Current Month Metrics

• Current Month Sales =

VAR selected_month = SELECTEDVALUE('Date Table'[Month])
RETURN

TOTALMTD(CALCULATE([Total Sales], 'Date Table'[Month] = selected month), 'Date Table'[Date])

• Current Month QTY_Sold =

VAR selected_month = SELECTEDVALUE('Date Table'[Month])
RETURN

TOTALMTD(CALCULATE([Total Quantity], 'Date Table'[Month] = selected month), 'Date Table'[Date])

Current Month Orders =

VAR selected_month = SELECTEDVALUE('Date Table'[Month])
RETURN

TOTALMTD(CALCULATE([Total Orders], 'Date Table'[Month] = selected month), 'Date Table'[Date])

Previous Month Metrics

• Previous month Sales =

CALCULATE([Current Month Sales], DATEADD('Date Table'[Date], -1, MONTH))

• Previous month Qty_sold =

CALCULATE([Current Month QTY_Sold], DATEADD(' Date Table'[Date], -1, MONTH))

• Previous month Orders =

CALCULATE([Current Month Orders], DATEADD('Date Table'[Date], -1, MONTH))

MoM Growth and Labels

MOM Growth & diff Sales =

VAR month diff = [Current Month Sales] - [Previous month Sales]

```
VAR MOM = ([Current Month Sales] - [Previous month Sales]) / [Previous month Sales]

VAR _sign = IF(month_diff > 0, "+", "")

VAR _signtrend = IF(month_diff > 0, "\u25B2", "\u25BC")

RETURN
_signtrend & " " & _sign & FORMAT(MOM, "#0.0%") & " | " & _sign

&FORMAT(month_diff / 1000, "0.0K") & " VS LM"
```

• MOM Growth & diff QTY Sold =

```
VAR month_diff = [Current Month QTY_Sold] - [Previous month Qty_sold] VAR MOM = ([Current Month QTY_Sold] - [Previous month Qty_sold]) / [Previous month Qty_sold] VAR _sign = IF(month_diff > 0, "+", "") VAR _signtrend = IF(month_diff > 0, "\u25B2", "\u25BC") RETURN _signtrend & " " & _sign & FORMAT(MOM, "#0.0%") & " | " & _sign & FORMAT(month_diff / 1000, "0.0K") & " VS LM"
```

• MOM Growth & diff Orders =

```
VAR month_diff = [Current Month Orders] - [Previous month Orders]

VAR MOM = ([Current Month Orders] - [Previous month Orders]) / [Previous month Orders]

VAR _sign = IF(month_diff > 0, "+", "")

VAR _signtrend = IF(month_diff > 0, "\u25B2", "\u25BC")

RETURN

_signtrend & " " & _sign & FORMAT(MOM, "#0.0%") & " | " & _sign & FORMAT(month_diff / 1000, "0.0K") & " VS LM"
```

• New MOM Label =

```
VAR month_diff = [Current Month Sales] - [Previous month Sales]

VAR MOM = ([Current Month Sales] - [Previous month Sales]) / [Previous month Sales]

VAR _sign = IF(month_diff > 0, "+", "")

VAR _signtrend = IF(month_diff > 0, "\u25B2", "\u25BC")

RETURN

_signtrend & " " & _sign & FORMAT(MOM, "#0.0%")
```

Formatting and Labels

Label For Store Locations =

SELECTEDVALUE(Transactions[store_location]) & " | " &FORMAT([Total Sales] / 1000, "\$0.00K")

• Label For Product Type =

SELECTEDVALUE(Transactions[product_type]) & " | " & FORMAT([Total Sales] / 1000, "\$0.00K")

Label For Product Category =

SELECTEDVALUE(Transactions[product_category]) & " | " & FORMAT([Total Sales] / 1000, "\$0.00K")

• TT for Hour = "Hour No: " & FORMAT(AVERAGE(Transactions[Hour]), 0)

Miscellaneous

- Colour for Bars = IF([Total Sales] > [Daily Average Sales], "Above Average", "Below Average")
- Placeholder = 0

SQL Validation Queries

CONVERT COLUMN TO PROPER DATE FORMAT

UPDATE Coffee_Data

SET transaction_date = STR_TO_DATE(transaction_date, '%d-%m-%Y'),

transaction_time = STR_TO_DATE(transaction_time, '%H:%i:%s');

ALTER COLUMN TO New DATA TYPE

ALTER TABLE coffee_Data

MODIFY COLUMN transaction_date DATE, transaction_time TIME,

CHANGE COLUMN `i»¿transaction_id` transaction_id INT;

Updated Data Type by above Query

DESCRIBE coffee_Data;

	Field	Type	Null	Key	Default	Extra
•	transaction_id	int	YES		NULL	
	transaction_date	date	YES		NULL	
	transaction_time	time	YES		NULL	
	transaction_qty	int	YES		NULL	
	store_id	int	YES		NULL	
	store_location	text	YES		NULL	
	product_id	int	YES		NULL	
	unit_price	double	YES		NULL	
	product_category	text	YES		NULL	
	product_type	text	YES		NULL	
	product detail	text	YES		NULL	

TOTAL SALES for May Month

SELECT ROUND(SUM(unit_price * transaction_qty),2) as Total_Sales

FROM coffee_Data

WHERE MONTH(transaction_date) = 5

	Total_Sales
•	156727.76

TOTAL SALES KPI - MOM DIFFERENCE AND MOM GROWTH

SELECT

MONTH(transaction_date) AS month,

ROUND(SUM(unit_price * transaction_qty),2) AS total_sales,

round(((SUM(unit_price * transaction_qty) - LAG(SUM(unit_price * transaction_qty), 1)

OVER (ORDER BY MONTH(transaction_date))) / LAG(SUM(unit_price * transaction_qty), 1)

OVER (ORDER BY MONTH(transaction_date)) * 100),2) AS mom_increase_percentage

FROM

coffee_Data

WHERE

MONTH(transaction_date) IN (1,2,3,4,5)

GROUP BY

MONTH(transaction_date)

ORDER BY

MONTH(transaction_date);

	month	total_sales	mom_increase_percentage
•	1	81677.74	NULL
	2	76145.19	-6.77
	3	98834.68	29.8
	4	118941.08	20.34
	5	156727.76	31.77

TOTAL ORDERS (for June)

SELECT COUNT(transaction_id) as Total_Orders

FROM coffee_Data

WHERE MONTH (transaction_date)= 6

TOTAL ORDERS KPI - MOM DIFFERENCE AND MOM GROWTH (For May and April)

SELECT

MONTH(transaction_date) AS month,

```
ROUND(COUNT(transaction_id)) AS total_orders,
```

round((COUNT(transaction_id) - LAG(COUNT(transaction_id), 1)

OVER (ORDER BY MONTH(transaction_date))) / LAG(COUNT(transaction_id), 1)

OVER (ORDER BY MONTH(transaction_date)) * 100,2) AS mom_increase_percentage

FROM

Coffee_Data

WHERE

MONTH(transaction_date) IN (1, 2, 3, 4, 5)

GROUP BY

MONTH(transaction_date)

ORDER BY

MONTH(transaction_date);

	month	total_orders	mom_increase_percentage
•	1	17314	NULL
	2	16359	-5.52
	3	21229	29.77
	4	25335	19.34
	5	33527	32.33

TOTAL QUANTITY SOLD (For May)

SELECT SUM(transaction_qty) as Total_Quantity_Sold

FROM coffee_Data

WHERE MONTH(transaction_date) = 5

TOTAL QUANTITY SOLD KPI - MOM DIFFERENCE AND MOM GROWTH

SELECT

MONTH(transaction_date) AS month,

ROUND(SUM(transaction_qty)) AS total_quantity_sold,

round((SUM(transaction_qty) - LAG(SUM(transaction_qty), 1)

 ${\tt OVER~(ORDER~BY~MONTH(transaction_date)))~/~LAG(SUM(transaction_qty),~1)}\\$

OVER (ORDER BY MONTH(transaction_date)) * 100,2) AS mom_increase_percentage

FROM

coffee_Data

WHERE

MONTH(transaction_date) IN (1, 2, 3, 4, 5)

GROUP BY

MONTH(transaction_date)

ORDER BY

MONTH(transaction_date);

	month	total_quantity_sold	mom_increase_percentage
•	1	24870	NULL
	2	23550	-5.31
	3	30406	29.11
	4	36469	19.94
	5	48233	32.26

CALENDAR TABLE – DAILY SALES, QUANTITY and TOTAL ORDERS

SELECT

CONCAT(ROUND(SUM(unit_price * transaction_qty) / 1000, 1), 'K') AS total_sales,

CONCAT(ROUND(COUNT(transaction_id) / 1000, 1),'K') AS total_orders,

CONCAT(ROUND(SUM(transaction_qty) / 1000, 1),'K') AS total_quantity_sold

FROM

coffee_Data

WHERE

transaction_date = '2023-04-18';

	total_sales	total_orders	total_quantity_sold
•	4.4K	0.9K	1.3K

SALES TREND OVER PERIOD (for May)

SELECT round(AVG(total_sales),2) AS average_sales

FROM (

SELECT

```
SUM(unit_price * transaction_qty) AS total_sales

FROM

coffee_Data

WHERE

MONTH(transaction_date) = 6

GROUP BY

transaction_date

) AS internal_query;

average_sales

5549.53
```

DAILY SALES FOR MONTH SELECTED (for May)

DAY(transaction_date)

DAY(transaction_date);

ORDER BY

```
SELECT

DAY(transaction_date) AS day_of_month,

ROUND(SUM(unit_price * transaction_qty),1) AS total_sales

FROM

coffee_Data

WHERE

MONTH(transaction_date) = 5 -- Filter for May

GROUP BY
```

	day_of_month	total_sales
•	1	4731.4
	2	4625.5
	3	4714.6
	4	4589.7
	5	4701
	6	4205.1
	7	4542.7
	8	5604.2
	9	5101
	10	5256.3
	11	4850.1
	12	4681.1
	13	5511.5
	14	5052.6
	15	5385

day_of_mon	th total_sales
15	5385
16	5542.1
17	5418
18	5583.5
19	5657.9
20	5519.3
21	5370.8
22	5541.2
23	5242.9
24	5391.4
25	5230.8
26	5300.9
27	5559.2
28	4338.6
29	3959.5
30	4835.5
31	4684.1

SALES BY WEEKDAY / WEEKEND (for May)

SELECT

CASE

WHEN DAYOFWEEK(transaction_date) IN (1, 7) THEN 'Weekends'

```
ELSE 'Weekdays'
```

END AS day_type,

ROUND(SUM(unit_price * transaction_qty),2) AS total_sales

FROM

coffee_Data

WHERE

MONTH(transaction_date) = 5

GROUP BY

CASE

WHEN DAYOFWEEK(transaction_date) IN (1, 7) THEN 'Weekends'

ELSE 'Weekdays'

END;

	day_type	total_sales
•	Weekdays	116627.84
	Weekends	40099.92

SALES BY STORE LOCATION

SELECT

store_location,

round(SUM(unit_price * transaction_qty),2) as Total_Sales

FROM coffee_Data

WHERE

MONTH(transaction_date) =5

GROUP BY store_location

ORDER BY SUM(unit_price * transaction_qty) DESC

	store_location	Total_Sales
•	Hell's Kitchen	52598.93
	Astoria	52428.76
	Lower Manhattan	51700.07

SALES BY PRODUCT CATEGORY

SELECT

product_category,

ROUND(SUM(unit_price * transaction_qty),1) as Total_Sales

FROM coffee_Data

WHERE

MONTH(transaction_date) = 6

GROUP BY product_category

ORDER BY SUM(unit_price * transaction_qty) DESC

	product_category	Total_Sales
•	Coffee	64789
	Tea	46243.1
	Bakery	19251.3
	Drinking Chocolate	17106
	Coffee beans	9912.7
	Branded	3413
	Loose Tea	2770.6
	Flavours	2008
	Packaged Chocolate	992.2

SALES BY PRODUCTS (TOP 10)

SELECT

product_type,

ROUND(SUM(unit_price * transaction_qty),1) as Total_Sales

FROM coffee_Data

WHERE

MONTH(transaction_date) = 6

GROUP BY product_type

ORDER BY SUM(unit_price * transaction_qty) DESC

LIMIT 10

	product_type	Total_Sales
•	Barista Espresso	21860
	Brewed Chai tea	18188.2
	Gourmet brewed coffee	17142
	Hot chocolate	17106
	Brewed Black tea	11350.5
	Brewed herbal tea	11211
	Premium brewed coffee	9241.5
	Organic brewed coffee	8775
	Scone	8551.9
	Drip coffee	7770.5

SALES BY DAY | HOUR

```
SELECT
```

```
ROUND(SUM(unit_price * transaction_qty)) AS Total_Sales,
SUM(transaction_qty) AS Total_Quantity,
COUNT(*) AS Total_Orders
FROM
coffee_Data
WHERE
DAYOFWEEK(transaction_date) = 5
```

AND HOUR(transaction_time) = 12

AND MONTH(transaction_date) = 6;

	Total_Sales	Total_Quantity	Total_Orders
•	1750	556	381

Key Insights & Recommendations

- Sales and orders showed steady month-over-month growth.
- Certain stores and product categories outperformed others.
- Customer demand varied by day and time, suggesting opportunities for targeted marketing and operational optimization.

Conclusion

This project reflects my ability to design data models, create visual dashboards, and validate results using Power BI and SQL. It demonstrates how structured analytics can support data-driven decision-making in retail and fintech environments.