SVM

- 지도학습 분류모델

- 1. SVM 개요
- 2. 특징으로 학습하기
- 3. 예측하기
- 4. IRIS 데이터 실습
- 5. Feature와 Label의 연관성

SVM 개요

000

Classification - SVM

- SVM (Support Vector Machine)
- ▶ 주로 분류(classification) 및 회귀분석에 쓰이는 지도학습 모델
 - 비확률적 이진 선형 분류 모델
 - ▶ 두 집단을 분류하는 경계선을 찾는다고 생각
- 데이터를 선형으로 분리하는 최적의 선형 결정 경계를 찾는 알고리즘
- ▶ 마진이란 두 데이터군이 결정경계와 떨어져있는 정도를 말한다.
- ▶ 참고사이트
 - https://bskyvision.com/163
 - ▶ https://bkshin.tistory.com/entry/머신러닝-2서포트-벡터-머신-SVM

H3은 두 클래스의 점들을 제대로 ^日 분류하고 있지 않다. H1과 H2는 두 클래스의 점들을 분류하는데, H2가 H1보다 더 큰 마진을 갖고 분류하는 것을 확인할 수 있다.

- Support vector
 - ▶ 분류하는 경계선 또는 경계면이 가장 가까운 점과 가장 먼 거리를 가지도록 함
 - ▶ Support vector란 경계를 결정하는(support) 데이터 점(vector)들을 가리킴

그림4. 마진, 결정 경계, 서포트 벡터.

서포트 벡터들은 두 클래스 사이의 경계에 위치한 데이터 포인트들(그림4에서 점선 위에 있는 데이터들)이다. 많은 데이터가 있지만 그중에 서포트 벡터들이 결정 경계를 만드는데 영향을 준다. 이 데이터들의 위치에 따라 결정 경계의 위치도 달라질 것이다. 즉, 이 데이터들이 결정 경계를 지지(support)하고 있다고 말할 수 있기 때문에, 서포트벡터라고 불리는 것이다.

000

- ▶ SVM의 기본 형태는 두 클래스(집단)를 선형으로 분리시킴
- 매개변수 cost (비용)
 - ▶ 얼마나 세심하게 경계를 찾을지
 - ▶ cost가 낮으면, outliers를 많이 허용하여 좀 더 일반적인 경계를 찾음
 - ▶ cost가 높으면, 최대한 세심하게 분류하는 경계를 찾음

그림6. 매개변수 C의 영향

000

- ▶ SVM의 기본 형태는 두 클래스(집단)를 선형으로 분리시킴
- ▶ But 선형 분리가 안 되는 데이터일 경우..?
 - ▶ 1) 더 높은 차원에서 경계를 찾아 분류함
 - ▶ 2) 이상치(outliers)들을 몇 개 정도 허용함

그림5. 이상치(outlier)가 존재하는 경우.

서포트 벡터 머신(SVM)의 사용자로서 꼭 알아야할 것들 - 매개변수 C와 gamma

- ▶ 커널 함수
 - ▶ 기본적으로는 가우시안 방사 기저 함수(Gaussian Radial Basis Function)
 - ▶ 더 높은 차원으로 데이터를 사상시키는(mapping) 함수
- ▶ 커널 함수의 gamma
 - ▶ 각 데이터 점들이 영향을 미치는 거리
 - ▶ gamma가 클수록, 거리가 짧아져서 경계가 더 굴곡짐
 - ▶ gamma가 작으면, 거리가 길고 더 일반화된 경계를 찾음
- ▶ 커널 함수의 cost
 - ▶ C는 얼마나 많은 데이터 샘플이 다른 클래스에 놓이는 것을 허용하는지를 결정한다

C = 0.1000 gamma = 10.0000

C = 1.0000 gamma = 10.0000

C는 두 데이터를 정확하게 구분하는데 초점을 두고 있고, gamma는 개별 데이터마다 결정선을 지정하는 것에 초점을 둔다. C는 아무리 커져도 결정선이 하나인데 반해서 gamma는 여러 개의 결정선을 만들 수 있다.

두 값 모두 커질수록 알고리즘의 복잡도는 증가한다. 성능을 높이는 것과 overfit을 줄이는 것 사이의 균형을 잘 맞춰야 한다.

인간의 지도 학습 과정- 특징으로 학습하기

지도학습 - 특징들로 학습

Binary Classification

입 길이	1초당 꼬리 흔드는 횟수	label 종류	
1	0	고양이	
5	11	개	
1.1	1	고양이	
0.9	2	고양이	
0.8	15	개	
1.4	0	고양이	
5.2	13	개	
1.2	1	고양이	

Feature

지도학습 – 특징들로 학습

입 길이	1초당 꼬리 흔드는 횟수	종류	
1	0	고양이	
5	11	개	
1.1	1	고양이	
0.9	2	고양이	
0.8	15	개	
1.4	0	고양이	
5.2	13	개	
1.2	1	고양이	

지도학습 - 특징들로 학습

000

training model

000

지도학습 - 예측하기

000

입의 길이가 0.9cm이고, 꼬리 흔드는 횟수가 3회면

강아지?? 고양이???

지도학습 – 예측하기

지도학습 - 실습하기 제공 iris.csv

01	ML	SVM	iriso1.i	ים	ynb
					,

	Α	A B		D	Е
1	sepal.length	sepal.width	petal.length	petal.width	variety
2	5.5	3.5	1.3	0.2	Setosa
3	5.6	2.7	4.2	1.3	Versicolor
4	6.5	3.2	5.1	2	Virginica
5	5.1	3.5	1.4	0.2	Setosa
6	5.1	3.5	1.4	0.3	Setosa
7	6.4	2.8	5.6	2.1	Virginica
8	6.7	3	5	1.7	Versicolor
9	6.1	3	4.9	1.8	Virginica
10	79	3 8	64	2	Virginica

147	4.9	3.1	1.5	0.1 Setosa
148	5.5	2.6	4.4	1.2 Versicolor
149	5.6	3	4.5	1.5 Versicolor
150	6.3	2.9	5.6	1.8 Virginica
151	5.1	3.8	1.9	0.4 Setosa

000

데이터의 일부만 학습용으로 사용

나머지는 검증용으로 사용

지도학습 - 실습하기 제공 iris.csv

	А	В	С	D	Е
1	sepal.length	sepal.width	petal.length	petal.width	variety
2	5.5	3.5	1.3	0.2	Setosa
3	5.6	2.7	4.2	1.3	Vers'
4	- 5	3.2	5.1	2	
5		3.5	1.4		
6		3.5	1.4		etosa
7	6.4			4.1	Virginica
8	6.7		Ť	1.7	Versicolor
9	6.1		<	1.8	Virginica
10	79			2	Virginica
147		3.1	1.5		
14	5.5	2.6	4.4	1.2	
149	5.6	3	4.5	1.5	Versic
150	6.3	2.9	5.6	1.8	Virginica
151	5.1	3.8	1.9	0.4	Setosa

지도학습 – 실습하기 제공 iris.csv

지도학습 – 실습하기 제공 iris.csv

	А	В	С	D	E
1	sepal.length	sepal.width	petal.length	petal.width	variety
2	5.5	3.5	1.3	0.2	Setosa
3	5.6	2.7	4.2	1.3	Versicolor
4	6.5	3.2	5.1	2	Virginica
5	5.1	3.5	1.4	0.2	Setosa
6	5.1	3.5	1.4	0.3	Setosa
7	6.4	2.8	5.6	2.1	Virginica
8	6.7	3	5	1.7	Versicolor
9	6.1	3	4.9	1.8	Virginica
10	79	3.8	6.4	2	Virginica

Training Data train_data | train_label

Validation test

Test Data test_data | test_label

Inferance test

지도학습 - 실습하기 제공 iris.csv

Code Processing

- 1. Module Configuration
- 2. Data Loader
- 3. Data분리 label, data
- 4. Model Generate
- 5. Training
- 6. Predict
- 7. Accuracy

o2_ML_SVM_iriso2.ipynb

- Dog 품종 예측하기

- 데이터 수집하기

	Α	В	С	
1	발톱 길이	하루에 밥먹는 횟수	강아지 품종	
2	0.164132	5	시츄	
3	2.910402	3	치와와	label
4	3.376386	4	진돗개	label
5	3.886729	6	푸들	
6	1.675287	1	치와와	
7	1.437852	6	허스키	
8	0.23381	6	시츄	
9	0.168098	2	허스키	footuro
10	2.508716	4	치와와	feature
11	1.031392	3	진돗개	

가

000

,,

나::

그러면,

발톱의 길이가 1.5 cm이고 밥 먹는 횟수가 3회면

무슨 종류의 강아지야???

머신:

음...진돗개??

나::

공부 안 했구나~~!!

Featuer

Feature Engineering

000

앞에서 살펴보았던

꽃잎의 길이, 꽃잎의 넓이 꽃받침의 길이, 꽃받침의 넓이는

붓꽃의 품종을 나누는데 있어서 아주 중요한 특징임을 알 수 있다. **Feature**

Label

타이타닉 생존자 예측하기

- Feature Engineering - 누락 데이타 처리하기

1. Drop

2.

3. 가 - > binding

000

지도학습 — Feature Engineering

000

1. Data PreProcessiong - 문자는 숫자로 매핑

```
sex_mapping = {"male": 0, "female": 1}
embarked_mapping = {"S": 0, "C": 1, "Q": 2}
title_mapping = {"Mr": 0, "Miss": 1, "Mrs": 2, "etc": 3}
```

	Survived	Pclass	Sex	Age	Fare	Embarked	Title	FamilySize
0	0	3	0	1.0	0.0	0	0	1
1	1	1	1	3.0	2.0	1	2	1
2	1	3	1	1.0	0.0	0	1	0
3	1	1	1	2.0	2.0	0	2	1
4	0	3	0	2.0	0.0	0	0	0

2. Data PreProcessiong - 데이터의 구간화(binning)

```
for dataset in train_test_data:
    dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0
    dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 26), 'Age'] = 1
    dataset.loc[(dataset['Age'] > 26) & (dataset['Age'] <= 36), 'Age'] = 2
    dataset.loc[(dataset['Age'] > 36) & (dataset['Age'] <= 62), 'Age'] = 3
    dataset.loc[ dataset['Age'] > 62, 'Age'] = 4
```

나이를 구간화

요금을 구간화

```
for dataset in train_test_data:
    dataset.loc[ dataset['Fare'] <= 17, 'Fare'] = 0
    dataset.loc[(dataset['Fare'] > 17) & (dataset['Fare'] <= 30), 'Fare'] = 1
    dataset.loc[(dataset['Fare'] > 30) & (dataset['Fare'] <= 100), 'Fare'] = 2
    dataset.loc[ dataset['Fare'] > 100, 'Fare'] = 3
```

3. Data PreProcessiong - 누락데이타채우기

```
train["Age"].fillna(train.groupby("Title")["Age"].transform("median"), inplace=True)
test["Age"].fillna(test.groupby("Title")["Age"].transform("median"), inplace=True)
```

```
train["Fare"].fillna(train.groupby("Pclass")["Fare"].transform("median"), inplace=True)
test["Fare"].fillna(test.groupby("Pclass")["Fare"].transform("median"), inplace=True)
```


decision tree가 overfitting

000

Ensemble

overfitting

지도학습 - 학습결과 검증하기

지도학습 - 학습결과 검증하기

지도학습 - 학습결과 검증하기

