PREDICTING THE IMPACT OF COVID-19 ON THE EMERGENCY DEPARTMENTS IN LOMBARDY, ITALY

ANGELA ANDREELLA¹, SPYROS BALAFAS¹, ANTONIETTA MIRA^{1,2}, GIULIA GHILARDI³, GRETA CARRARA³, FABRIZIO RUGGERI ⁴, ERNST WIT², GUIDO BERTOLINI ³, GIOVANNI NATTINO ³

JSM - AUGUST 2021

¹University of Insubria, Varese, Italy

²University of Svizzera Italiana, Lugano, Switzerland

³Institute of Pharmacological Research Mario Negri, Milan, Italy

⁴NATIONAL RESEARCH COUNCIL, INSTITUTE OF APPLIED MATHEMATICS AND INFORMATION TECHNOLOGY, MILAN, ITALY

INTRODUCTION - TSUNAMI PROJECT

The Lombardy region in Italy relies on the emergency medical service called **AREU**.

PROBLEM: The number and type of **calls** to the emergency call center changed dramatically due to **COVID-19** pandemic.

AIM: Predictive model is crucial to **organize** solutions of an emergency event.

TSUNAMI PROJECT

INTRODUCTION - SPATIAL ORGANIZATION

AREU is organized by peripheral structures called **SOREU**: supra-provincial area.

AREU can use: daily-seasonal variations, social and demographic factors, weather circumstances, and epidemiological factors.

- AREU data: information about all the calls received → SOREU, Time, if the calls activated an aid, i.e., it becomes an event, etc;
- ARPA data: weather data collected from sensors located across the Lombardy → Temperature, rainfall, snowfall;

DATA

■ **ISTAT and ISS data**: demographic and epidemiological data → Flu incidence, number of car accidents, etc.

BUT also COVID-19 related factors.

- Department of Civil Protection: number of hospitalized patients with symptoms, swabs, etc;
- **ISS**: reproduction number R_t .

DATA

Events: Received a call, this becomes an event if there is a dispatch of transport and/or equipment.

MODEL

Goal: Predict

- events.
- for the SOREU **Metropolitana** (Milano and Monza provinces).

Method:

- Generalized Additive Model with negative-binomial family;
- The data were aggregated at hour and SOREU levels;
- Final predictions were aggregated at the day level.

MODEL SELECTION

■ Prediction error:

$$\left[\frac{\hat{y}_i - y_i}{y_i}\right],$$

where y_i is the observed value and \hat{y}_i the predicted one at day i level.

- Performance metric: mean absolute error.
- Cross-validating across 4 periods of time in 2020 and 2021.

MODEL

The following covariates were then selected:

- cubic regression spline for Hours with 24 basis;
- cubic regression spline for Quarter with 4 basis;
- P-spline for Day with 7 basis;
- Tensor product smooths between Day and Hour;
- Temperature lagged one day;
- Events of the day before lagged 1-2-3 by hour;
- Events aggregated by day and lagged 1, 2 and 7 days;
- R_t lagged one day;
- Flu incidence lagged one day.

RESULTS

RESULTS - ONE DAY AHEAD

RESULTS - ONE DAY AHEAD

- 87% of predictions has absolute error below 5%;
- \blacksquare MAE = 4.41, MeAE = 3.4.

RESULTS - FIVE DAYS AHEAD

RESULTS - FIVE DAYS AHEAD

- 55% of predictions has absolute error below 5%;
- MAE = 5.24, MeAE = 4.97.

Take home messages and Further Directions

- We proposed a valuable model to predict the number of events occured on the SOREU Metropolitana;
- capturing the daily and seasonal variation and incorporating epidemiological aspects as well as weather information.

Further direction would be applying

- the **Generalized Additive Mixed Models** to better deal with the data autocorrelation structure;
- a Bayesian extension assigning appropriate Markov random field priors with different forms and degrees of smoothness to deal with the trend and seasonal components.