

HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- 3.3V and 5V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5V offset.
- Lower di/dt gate driver for better noise immunity
- Output source/sink current capability 1.4A/1.8A
- Also available LEAD-FREE (PbF)

Packages

Description

The IR2184(4)(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a

IR2181/IR2183/IR2184 Feature Comparison

Part	Input logic	Cross- conduction prevention logic	Dead-Time	Ground Pins	Ton/Toff	
2181	HIN/LIN	no	none	COM	180/220 ns	
21814	TIIIN/LIIN	110	VS			
2183	HIN/LIN	yes	Internal 500ns	COM	180/220 ns	
21834	I IIIN/LIIN	yes	Program 0.4 ~ 5 us	VSS/COM	100/220 115	
2184	IN/SD	Vec	Internal 500ns	COM	680/270 ns	
21844	114/30	yes	Program 0.4 ~ 5 us	VSS/COM	000/2/0118	

high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
VB	High side floating absolute voltage	-0.3	625		
Vs	High side floating supply offset voltage	V _B - 25	V _B + 0.3		
V _{HO}	High side floating output voltage		Vs - 0.3	V _B + 0.3	
V _{CC}	Low side and logic fixed supply voltage		-0.3	25] ,,
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	V
DT	Programmable dead-time pin voltage (IR21	844 only)	V _{SS} - 0.3	V _{CC} + 0.3	
VIN	Logic input voltage (IN & SD)		V _{SS} - 0.3	V _{SS} + 10	
V _{SS}	Logic ground (IR21844 only)		V _{CC} - 25	V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transient		_	50	V/ns
P _D	Package power dissipation @ T _A ≤ +25°C	(8-lead PDIP)	_	1.0	
		(8-lead SOIC)	_	0.625	1
		(14-lead PDIP)	_	1.6	W
		(14-lead SOIC)	_	1.0	
Rth _{JA}	Thermal resistance, junction to ambient	(8-lead PDIP)	_	125	
		(8-lead SOIC)	_	200	
		(14-lead PDIP)	_	75	°C/W
		(14-lead SOIC)	_	120	Ţ
TJ	Junction temperature		_	150	
Ts	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	Ī

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The Vs and Vss offset rating are tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	Note 1	600	
V _{HO}	High side floating output voltage	Vs	V _B	
V _C C	Low side and logic fixed supply voltage	10	20	
V_{LO}	Low side output voltage	0	Vcc	V
V _{IN}	Logic input voltage (IN & SD)	V _{SS}	V _{SS} + 5	
DT	Programmable dead-time pin voltage (IR21844 only)	V _{SS}	Vcc	
V _{SS}	Logic ground (IR21844 only)	-5	5	
TA	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Note 2: IN and SD are internally clamped with a 5.2V zener diode.

Dynamic Electrical Characteristics

V_{BIAS} (V_{CC}, V_{BS}) = 15V, V_{SS} = COM, C_L = 1000 pF, T_A = 25°C, DT = VSS unless otherwise specified.

Symbol	Definition		Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	680	900		V _S = 0V
toff	Turn-off propagation delay	_	270	400		V _S = 0V or 600V
tsd	Shut-down propagation delay	_	180	270		
MTon	Delay matching, HS & LS turn-on	_	0	90	nsec	
MToff	Delay matching, HS & LS turn-off	_	0	40		
t _r	Turn-on rise time	_	40	60		V _S = 0V
tf	Turn-off fall time	_	20	35		V _S = 0V
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) &	280	400	520		RDT= 0
	HO turn-off to LO turn-on (DTHO-LO)	4	5	6	μsec	RDT = 200k
MDT	Deadtime matching = DTLO - HO - DTHO-LO	_	0	50	ncoc	RDT=0
		_	0	600	nsec	RDT = 200k

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, V_{SS} = COM, DT= V_{SS} and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads: IN and \overline{SD} . The V_O , I_O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition		Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage for HO & logic "0" for LO	2.7	_	_		V _{CC} = 10V to 20V
V _{IL}	Logic "0" input voltage for HO & logic "1" for LO		_	0.8		V _{CC} = 10V to 20V
V _{SD,TH+}	SD input positive going threshold	2.7	_	_	V	V _{CC} = 10V to 20V
V _{SD,TH} -	SD input negative going threshold	_	_	0.8		V _{CC} = 10V to 20V
V _{OH}	High level output voltage, V _{BIAS} - V _O	_	_	1.2		I _O = 0A
V _{OL}	Low level output voltage, VO	_	_	0.1		I _O = 0A
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 600V
I _{QBS}	Quiescent V _{BS} supply current	20	60	150	μA	V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} supply current	0.4	1.0	1.6	mA	V _{IN} = 0V or 5V
I _{IN+}	Logic "1" input bias current		25	60	μA	IN = 5V, SD = 0V
I _{IN-}	Logic "0" input bias current	_	_	1.0	μΑ	$IN = 0V, \overline{SD} = 5V$
V _{CCUV+} V _{BSUV+}	V _{CC} and V _{BS} supply undervoltage positive going threshold	8.0	8.9	9.8		
V _{CCUV} - V _{BSUV} -	V_{CC} and V_{BS} supply undervoltage negative going threshold	7.4	8.2	9.0	.,	
VCCUVH	Hysteresis	0.3	0.7	_	V	
V _{BSUVH}						
I _{O+}	Output high short circuit pulsed current	1.4	1.9			V _O = 0V,
					_	PW ≤ 10 µs
I _{O-}	Output low short circuit pulsed current	1.8	2.3	-	Α	V _O = 15V,
						PW ≤ 10 µs

Functional Block Diagrams

Lead Definitions

Symbol	Description		
IN	Logic input for high and low side gate driver outputs (HO and LO), in phase with HO (referenced to COM		
	for IR2184 and VSS for IR21844)		
SD	Logic input for shutdown (referenced to COM for IR2184 and VSS for IR21844)		
DT	Programmable dead-time lead, referenced to VSS. (IR21844 only)		
VSS	Logic Ground (21844 only)		
V _B	High side floating supply		
НО	High side gate drive output		
Vs	High side floating supply return		
V _{CC}	Low side and logic fixed supply		
LO	Low side gate drive output		
COM	Low side return		

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Shutdown Waveform Definitions

Figure 4. Deadtime Waveform Definitions

Figure 5. Delay Matching Waveform Definitions

Figure 4A. Turn-on Propagation Delay vs. Temperature

Figure 4B. Turn-on Propagation Delay vs. Supply Voltage

Figure 5A. Turn-off Propagation Delay vs. Temperature

Figure 5B. Turn-off Propagation Delay vs. Supply Voltage

Figure 6A. SD Propagation Delay vs. Temperature

Figure 6B. SD Propagation Delay vs. Supply Voltage

Figure 7A. Turn-on Rise Time vs. Temperature

Figure 7B. Turn-on Rise Time vs. Supply Voltage

Figure 8A. Turn-off Fall Time vs. Temperature

Figure 8B. Turn-off Fall Time vs. Supply Voltage

Figure 9A. Deadtime vs. Temperature

Figure 9B. Deadtime vs. Supply Voltage

Figure 9C. Deadtime vs. $R_{\rm DT}$

Figure 10A. Logic "1" Input Voltage vs. Temperature

Figure 10B. Logic "1" Input Voltage vs. Supply Voltage

Figure 11A. Logic "0" Input Voltage vs. Temperature

Figure 11B. Logic "0" Input Voltage vs. Supply Voltage

Figure 12A. SD Input Positive Going Threshold vs. Temperature

Figure 12B. SD Input Positive Going Threshold vs. Supply Voltage

Figure 13A. SD Input Negative Going Threshold vs. Temperature

Figure 13B. SD Input Negative Going Threshold vs. Supply Voltage

Figure 14A. High Level Output vs. Temperature

Figure 14B. High Level Output vs. Supply Voltage

Figure 15A Low Level Output vs. Temperature

Figure 15B. Low Level Output vs. Supply Voltage

Figure 16A. Offset Supply Leakage Current vs.
Temperature

Figure 16B. Offset Supply Leakage Current vs. $V_{\rm B}$ Boost Voltage

Figure 17A. V_{BS} Supply Current vs. Temperature

Figure 17B. $\rm V_{BS}$ Supply Current vs. $\rm V_{BS}$ Floating Supply Voltage

Figure 18A. $V_{\rm CC}$ Supply Current vs. Temperature

Figure 18B. $V_{\rm CC}$ Supply Current vs. $V_{\rm CC}$ Supply Voltage

Figure 19A. Logic "1" Input Bias Current vs. Temperature

Figure 19B. Logic "1" Input Bias Current vs. Supply Voltage

Figure 20A. Logic "0" Input Bias Current vs. Temperature

Figure 20B. Logic "0" Input Bias Current vs. Supply Voltage

Figure 21. V_{CC} and V_{BS} Undervoltage Threshold (+) vs. Temperature

Figure 22. $\rm V_{CC}$ and $\rm V_{BS}$ Undervoltage Threshold (-) vs. Temperature

Figure 23A. Output Source Current vs. Temperature

Figure 23B. Output Source Current vs. Supply Voltage

Figure 24A. Output Sink Current vs. Temperature

Figure 24B. Output Sink Current vs. Supply Voltage

Figure 21. \mathbb{R} 2181 vs. Frequency (\mathbb{R} FBC 20), $R_{\text{gabs}} = 33 \Omega, V_{\text{CC}} = 15 V$

Figure 22.R2181 vs.Frequency (RFBC30), $R_{\rm gab} = 22 _{ { \Omega }}, V_{\rm CC} = 15 V$

Figure 23. \mathbb{R} 2181 vs. Frequency (\mathbb{R} FBC 40), $R_{\text{gate}} = 15 \Omega, V_{\text{CC}} = 15 V$

Figure 24. \mathbb{R} 2181 vs. Frequency (\mathbb{R} FPE50), $R_{\text{gabs}} = 10_{\Omega}, V_{\text{CC}} = 15 V$

Figure 25.R21814 vs.Frequency (RFBC 20), $R_{\rm gate} = 33 \Omega \text{,V}_{\rm CC} = 15 \text{V}$

Figure 26.R21814 vs.Frequency (RFBC30), $R_{_{\tt cabe}} = 22 {\Omega}, V_{_{\tt CC}} = 15 V$

Figure 27.R21814 vs.Frequency (RFBC 40), $R_{\rm gate} = 15 \Omega, V_{\rm CC} = 15 V$

Figure 28.R21814 vs.Frequency (RFPE50), $R_{\rm gate} = 10 \, \Omega \, , V_{\rm CC} = 15 V \label{eq:RFPE50}$

Figure 29.R2181s vs.Frequency (RFBC20), $R_{\rm gate} = 33 \Omega, V_{\rm CC} = 15 V$

Figure 30.R2181s vs.Frequency (RFBC30), $R_{\rm gate} = 22 \Omega \text{, V}_{\rm CC} = 15 \text{V}$

Figure 31. \mathbb{R} 2181s vs. Frequency (\mathbb{R} FBC 40), $\mathbf{R}_{\text{gate}} = 15 \mathbf{\Omega}, \mathbf{V}_{\text{CC}} = 15 \mathbf{V}$

Figure 32. IR2181s vs. Frequency (IRFPE50), $R_{\text{oate}} {=} 10 \Omega, \, V_{\text{CC}} {=} 15 \text{V}$

Figure 33. IR21814s vs. Frequency (IRFBC20), R_{oate} =33 Ω , V_{cc} =15V

Figure 34. IR21814s vs. Frequency (IRFBC30), ${\rm R_{gate}}{=}22\underline{\Omega},\,{\rm V_{CC}}{=}15{\rm V}$

Figure 35. IR21814s vs. Frequency (IRFBC40), $\rm R_{oate} = 15\Omega,\, \rm V_{CC} = 15V$

Figure 36. IR21814s vs. Frequency (IRFPE50), $\rm R_{gate} {=} 10 \Omega, \, \rm V_{CC} {=} 15 V$

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

8-Lead PDIP IR2184 order IR2184 8-Lead SOIC IR2184S order IR2184S 14-Lead PDIP IR21844 order IR21844 14-Lead SOIC IR21844 order IR21844S

Leadfree Part

8-Lead PDIP IR2184 order IR2184PbF 8-Lead SOIC IR2184S order IR2184SPbF 14-Lead PDIP IR21844 order IR21844PbF 14-Lead SOIC IR21844 order IR21844SPbF

International TOR Rectifier

Thisproduct has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web Site http://www.irf.com

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

4/4/2006