

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use	this identifier to cite or link to this item: http://hdl.handle.net/123456789/3387
Title:	Ring-Opening/Recyclization Cascades of Monoactivated Cyclopropanes
Authors:	Mishra, U.K. (/jspui/browse?type=author&value=Mishra%2C+U.K.)
	Patel, Kaushalendra (/jspui/browse?type=author&value=Patel%2C+Kaushalendra)
	Ramasastry, S.S.V. (/jspui/browse?type=author&value=Ramasastry%2C+S.S.V.)
Keywords:	Hydrocarbons
•	Pharmaceuticals
	Ketones
	Chemical reactions
	Cyclization
Issue Date:	2020
Publisher:	American Chemical Society
Citation:	Organic Letters, 22(10), pp.3815-3819.
Abstract:	A variety of cyclopropyl aryl ketones undergo uncatalyzed cascade ring-opening/recyclization
	reactions to generate indenones and fluorenones. In addition, a new strategy to access 3-
	hydroxyindanones possessing two contiguous stereogenic centers, one of them being an all-
	carbon quaternary center, was also established. During the course of the investigation,
	pronounced solvent, temperature, and substituent effects on the product distribution were discovered.
	discorption.
URI:	https://pubs.acs.org/doi/10.1021/acs.orglett.0c01056
	(https://pubs.acs.org/doi/10.1021/acs.orglett.0c01056)
	http://hdl.handle.net/123456789/3387 (http://hdl.handle.net/123456789/3387)

n:
n

Appears in Collections:

File	Description	Size	Format	
need to add pdfodt (/jspui/bitstream/123456789/3387/1/need%20to%20add%20pdfodt)		8.12 kB	OpenDocument Text	View/Open (/jspui/bitstream/1234

Show full item record (/jspui/handle/123456789/3387?mode=full)

Research Articles (/jspui/handle/123456789/9)

. (/jspui/handle/123456789/3387/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.