SBML Model Report

Model name: "Larsen2004_CalciumSpiking"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Vijayalakshmi Chelliah 1 at May fifth 2011 at 12:59 a.m. and last time modified at May 28th 2014 at 2:48 a.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	3
species types	0	species	5
events	0	constraints	0
reactions	0	function definitions	0
global parameters	21	unit definitions	0
rules	5	initial assignments	0

Model Notes

This model is from the article:

On the encoding and decoding of calcium signals in hepatocytes

Ann Zahle Larsen, Lars Folke Olsen and Ursula Kummera <u>Biophysical Chemistry</u> Volume 107, Issue 1, 1 January 2004, Pages 83-99 14871603,

Abstract:

Many different agonists use calcium as a second messenger. Despite intensive research in intracellular calcium signalling it is an unsolved riddle how the different types of information

¹EMBL-EBI, viji@ebi.ac.uk

represented by the different agonists, is encoded using the universal carrier calcium. It is also still not clear how the information encoded is decoded again into the intracellular specific information at the site of enzymes and genes. After the discovery of calcium oscillations, one likely mechanism is that information is encoded in the frequency, amplitude and waveform of the oscillations. This hypothesis has received some experimental support. However, the mechanism of decoding of oscillatory signals is still not known. Here, we study a mechanistic model of calcium oscillations, which is able to reproduce both spiking and bursting calcium oscillations. We use the model to study the decoding of calcium signals on the basis of co-operativity of calcium binding to various proteins. We show that this co-operativity offers a simple way to decode different calcium dynamics into different enzyme activities.

Note:

This model corresponds to the 5 variable receptor-operated model, as described by Larsen et al., 2004. This model is a modified version of the model described in Kummer 2000 (PMID:10968983)

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains three compartments.

Table 2: Properties of all compartments.

			1				
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cytoplasm	cytoplasm	0000290	3	1	litre	Z	
ER	ER	0000290	3	1	litre	$ \overline{\mathbf{Z}} $	
mit	mitochondria	0000290	3	1	litre	$ \overline{\mathbf{Z}} $	

3.1 Compartment cytoplasm

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

SBO:0000290 physical compartment

3.2 Compartment ER

This is a three dimensional compartment with a constant size of one litre.

Name ER

SBO:0000290 physical compartment

3.3 Compartment mit

This is a three dimensional compartment with a constant size of one litre.

Name mitochondria

SBO:0000290 physical compartment

4 Species

This model contains five species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
${ t G_alpha}$	G-alpha	${\tt cytoplasm}$	$\text{mol} \cdot l^{-1}$	\Box	
PLC	PLC	${ t cytoplasm}$	$\operatorname{mol} \cdot 1^{-1}$		\Box
$\mathtt{Ca_cyt}$	Calcium-Cyt	${ t cytoplasm}$	$\text{mol} \cdot 1^{-1}$		
Ca_ER	Calcium-ER	ER	$\text{mol} \cdot 1^{-1}$		
Ca_mit	Calcium-mit	mit	$\text{mol} \cdot l^{-1}$		

5 Parameters

This model contains 21 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000009	0.350		\overline{Z}
k2	k2	0000009	0.000		$ \overline{\checkmark} $
k3	k3	0000009	10^{-4}		
K4	K4	0000009	0.783		
k5	k5	0000009	1.240		
К6	K6	0000009	0.700		\square
k7	k7	0000009	5.820		
k8	k8	0000009	32.240		\square
К9	K9	0000009	29.090		\square
k10	k10	0000009	0.930		
K11	K11	0000009	2.667		
k12	k12	0000009	0.760		
k13	k13	0000009	0.000		
k14	k14	0000009	149.000		
K15	K15	0000009	0.160		
k16	k16	0000009	20.900		
K17	K17	0000009	0.050		
k18	k18	0000009	79.000		\square
K19	K19	0000009	2.000		\square
k20	k20	0000009	1.500		\square
K21	K21	0000009	1.500		$\overline{\checkmark}$

6 Rules

This is an overview of five rules.

6.1 Rule G_alpha

Rule G_{alpha} is a rate rule for species G_{alpha} :

$$\frac{d}{dt}G_alpha = k1 + k2 \cdot [G_alpha] - \frac{k3 \cdot [G_alpha] \cdot [PLC]}{[G_alpha] + K4} - \frac{k5 \cdot [G_alpha] \cdot [Ca_cyt]}{[G_alpha] + K6}$$
(1)

6.2 Rule PLC

Rule PLC is a rate rule for species PLC:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PLC} = \mathrm{k7} \cdot [\mathrm{G_alpha}] - \frac{\mathrm{k8} \cdot [\mathrm{PLC}]}{[\mathrm{PLC}] + \mathrm{K9}}$$
 (2)

6.3 Rule Ca_cyt

Rule Ca_cyt is a rate rule for species Ca_cyt:

$$\frac{d}{dt}Ca_cyt = \frac{([Ca_ER] - [Ca_cyt]) \cdot k10 \cdot [Ca_cyt] \cdot [PLC]^4}{[PLC]^4 + K11^4} + k12 \cdot [PLC]
+ k13 \cdot [G_alpha] - \frac{k14 \cdot [Ca_cyt]}{[Ca_cyt] + K15} - \frac{k16 \cdot [Ca_cyt]}{[Ca_cyt] + K17}
- \frac{k18 \cdot [Ca_cyt]^8}{K19^8 + [Ca_cyt]^8} + \frac{([Ca_mit] - [Ca_cyt]) \cdot k20 \cdot [Ca_cyt]}{[Ca_cyt] + K21}$$
(3)

6.4 Rule Ca_ER

Rule Ca_ER is a rate rule for species Ca_ER:

$$\frac{d}{dt}Ca_ER = \frac{([Ca_ER] - [Ca_cyt]) \cdot k10 \cdot [Ca_cyt] \cdot [PLC]^4}{[PLC]^4 + K11^4} + \frac{k16 \cdot [Ca_cyt]}{[Ca_cyt] + K17}$$
(4)

6.5 Rule Ca_mit

Rule Ca_mit is a rate rule for species Ca_mit:

$$\frac{d}{dt}Ca_mit = \frac{k18 \cdot [Ca_cyt]^8}{K19^8 + [Ca_cyt]^8} - \frac{([Ca_mit] - [Ca_cyt]) \cdot k20 \cdot [Ca_cyt]}{[Ca_cyt] + K21}$$
(5)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species G_alpha

Name G-alpha

SBO:0000252 polypeptide chain

Initial concentration $0.01 \text{ mol} \cdot 1^{-1}$

Involved in rule G_alpha

One rule which determines this species' quantity.

7.2 Species PLC

Name PLC

SBO:0000014 enzyme

Initial amount 0.01 mol

Involved in rule PLC

One rule which determines this species' quantity.

7.3 Species Ca_cyt

Name Calcium-Cyt

SBO:0000247 simple chemical

Initial amount 0.01 mol

Involved in rule Ca_cyt

One rule which determines this species' quantity.

7.4 Species Ca_ER

Name Calcium-ER

SBO:0000247 simple chemical

Initial amount 10 mol

Involved in rule Ca_ER

One rule which determines this species' quantity.

7.5 Species Ca_mit

Name Calcium-mit

SBO:0000247 simple chemical

Initial concentration $0.0010 \text{ mol} \cdot l^{-1}$

Involved in rule Ca_mit

One rule which determines this species' quantity.

A Glossary of Systems Biology Ontology Terms

- **SBO:000009 kinetic constant:** Numerical parameter that quantifies the velocity of a chemical reaction
- **SBO:0000014 enzyme:** A protein that catalyzes a chemical reaction. The word comes from en "a" or "i") and simo "leave" or "yeas")
- SBO:0000247 simple chemical: Simple, non-repetitive chemical entity
- **SBO:0000252 polypeptide chain:** Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654
- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

 $[^]c$ European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany