

Why CNNs Work So Well For Images

We explore design choices in CNNs and how it relates to their performance in the real world

Standard Neural Networks A thought experiment...

- Standard Neural Networks don't have Convolution Filter Inputs
- For Images every pixel will be it's own input
- Therefore, a small image that's 28 x 28 would have 784 input nodes for our first layer

Input Layer $\in \mathbb{R}^{32}$ Hidden Layer $\in \mathbb{R}^{9}$ Hidden Layer $\in \mathbb{R}^{9}$ Output Layer $\in \mathbb{R}^{9}$

Standard Neural Networks A thought experiment...

- Our second layer, if we breakdown our previous CNN model would be:
 - 32 Filters for 26 x 26 Feature Maps
 - 13,312
- If they were fully connected, our weight matrix would be:
 - $784 \times 13,312 = 10,436,608$
- For just one hidden layer!

Input Layer $\in \mathbb{R}^{N}$ Hidden Layer ∈ ℝ™ Hidden Layer $\in \mathbb{R}^s$ Output Layer $\in \mathbb{R}^n$

Standard Neural Networks Not Feasible for Image Classification!

- Not scalable to large data inputs
- Overfitting

Advantages of Convolution Neural Networks

- Parameter sharing where a single filter can be used all parts of an image
- Sparsity of connections As we saw, fully connected layers in a typical Neural Network result in a weight matrix with large number of parameters.
- Invariance Remember our Max Pool Example

Feature Map

1	0	1	0	1				
1	0	0	1	1		0	1	(
0	1	1	0	0	*	1	0	-
1	0	0	1	0		0	1	C
0	0	1	1	0				

Convolution Neural Networks Assumptions

- Low-level features are local
- Features are translational invariant
- High-level features are made up of low-level features

Next...

How to Train a CNN

