EXHIBIT F

Infringement of Claim 1 of U.S. Patent Number 8,687,879 by Definiens

/-02326-RGA	Document 1-6	Filed 12	2/21/19	Page 3 of 5	5 PageID #	<i>‡</i> : 129
	comprises:	data via a training mode that utilizes iterative input to an evolving algorithm obtained from at least one	wherein said product algorithm is configured to recognize at least one entity within said first set of image	obtaining a product algorithm for analysis of a first set of image data		
	The Infringing Product generates an algorithm based on user manual annotation of objects of interest thereby training the algorithm.	http://cdn2.hubspot.net/hubfs/342949/Release_2016/RN_R2016a-Developer_C.pdf	 p. 226 ff.) Apply machine learning based techniques, e.g. train a Random Forest Pixel	 Copy selected regions from image layers to a new map (algorithm "Copy Image Layer Region", Reference Book p. 149 f.) Add image layers from the file system to your map, e.g. containing ground truth annotation data (algorithm "Create/Modify project", Reference Book 	 Assemble patches of images to a new training map for classifier training by using the following: Construct a new map with dimensions different from your main map (algorithm "Create temporary map", Reference Book p. 160) 	New and enhanced algorithms improve development of image analysis solutions • Use standard color spaces in your image analysis such as CIELab, HSV, YcbCr and more with the algorithm "Color Conversion" (Reference Book p. 200 f.)

presenting a first set of said at least one entity to said user for feedback as to the accuracy of said first set of identified entities; obtaining said feedback from said user; executing said evolving algorithm using said feedback;

New and enhanced algorithms improve development of image analysis solutions

- Use standard color spaces in your image analysis such as CIELab, HSV, YcbCr and more with the algorithm "Color Conversion" (Reference Book p. 200 f.)
- Assemble patches of images to a new training map for classifier training by using the following:
- Construct a new map with dimensions different from your main map
- (algorithm "Create temporary map", Reference Book p. 160)
 Copy selected regions from image layers to a new map (algorithm "Copy Image Layer Region", Reference Book p. 149 f.)
- Add image layers from the file system to your map, e.g. containing ground truth annotation data (algorithm "Create/Modify project", Reference Book
- Apply machine learning based techniques, e.g. train a Random Forest Pixel or Object Classifiers introduced with earlier releases of Definiens XD

http://cdn2.hubspot.net/hubfs/342949/Release 2016/RN R2016a-Developer C.pdf

The Infringing Product generates and executes the algorithm based on user manual annotation of objects of interest thereby training the algorithm.

presenting a second set of said at least one entity to said user for feedback as to the accuracy of said second set of identified entities; obtaining approval from said user about said second set of entities; storing said evolving algorithm as a product algorithm; and storing said product algorithm for subsequent usage on said image set.

New and enhanced algorithms improve development of image analysis solutions

- Use standard color spaces in your image analysis such as CIELab, HSV, YcbCr and more with the algorithm "Color Conversion" (Reference Book p. 200 f.)
- Assemble patches of images to a new training map for classifier training by using the following:
- Construct a new map with dimensions different from your main map (algorithm "Create temporary map", Reference Book p. 160)
- Copy selected regions from image layers to a new map (algorithm "Copy Image Layer Region", Reference Book p. 149 f.)
- Add image layers from the file system to your map, e.g. containing ground truth annotation data (algorithm "Create/Modify project", Reference Book
- Apply machine learning based techniques, e.g. train a Random Forest Pixel or Object Classifiers introduced with earlier releases of Definiens XD

http://cdn2.hubspot.net/hubfs/342949/Release 2016/RN R2016a-Developer C.pdf

The Infringing product utilizes the deep learning training i.e more than one set of data entity to the user for the feedback and training the algorithm.

- Compute advanced shape features such as object concavity to described identified image objects (Object Feature "Fractional Concavity", Reference Book p. 330 ff.
- Reutilize trained classifiers in other projects by saving and loading classifier Book p. 283 f.) configuration from the file system (algorithm "Export/Import String", Reference

http://cdn2.hubspot.net/hubfs/342949/Release_2016/RN_R2016a-Developer_C.pdf

The Infringing Product stores the evolving algorithm and runs the stored algorithm on all the data to automatically classify additional images