

Réf.: **B5020 V1**

Date de publication : 10 novembre 1987

Résistance des matériaux - Sections usuelles

Cet article est issu de : **Mécanique | Fonctions et composants mécaniques**

par Jean COURBON, Jean-Noël THEILLOUT

Pour toute question : Service Relation clientèle Techniques de l'Ingénieur Immeuble Pleyad 1 39, boulevard Ornano 93288 Saint-Denis Cedex

Par mail: infos.clients@teching.com Par téléphone: 00 33 (0)1 53 35 20 20 Document téléchargé le : **07/02/2020**

Pour le compte : 7200049203 - ecole centrale de lyon // 156.18.19.146

© Techniques de l'Ingénieur | tous droits réservés

Résistance des matériaux

Sections usuelles

par Jean COURBON

Ingénieur Général Honoraire des Ponts et Chaussées Professeur Honoraire à l'École Nationale des Ponts et Chaussées M. COURBON étant décédé avant l'impression, ce formulaire a été mis au point

par Jean-Noël THEILLOUT

Ingénieur au Laboratoire Central des Ponts et Chaussées, Section Fonctionnement des Structures

Tableau 1 — Caractéristiques géométriques des sections	Form. B 5	020-2
Tableau 2 — Contraintes de cisaillement dues à l'effort tranchant (déduites de la théorie de l'élasticité)	_	5
Tableau 3 — Contraintes de cisaillement et déformations dues à l'effort tranchant (formules approchées)	_	6
Tableau 4 — Contraintes de cisaillement et déformations dues à un moment de torsion (torsion gauche libre) (1)	_	8
Tableau 5 — Moments et effort tranchant dans une section en l soumise à une torsion (torsion gauche non libre) et à une flexion	_	10
Tableau 6 — Charge critique de flambement d'une barre à inertie constante, libre de fléchir transversalement entre ses extrémités (1)	_	11
extremites (1)	_	- ''

ans cet article sont énoncées les caractéristiques géométriques puis les caractéristiques mécaniques de résistance des sections usuelles des pièces suivant des hypothèses de base.

Les caractéristiques mécaniques de résistance d'anneaux circulaires ou d'arcs font l'objet d'un deuxième article [Form. B 5 021].

Des articles du traité Structure et gros œuvre sont également consacrés à la résistance des matériaux des structures composées de poutres que l'on rencontre dans presque tous les ouvrages de Génie civil.

Tableau 1 - Caractéristiques géométriques des sections Section Centre de gravité $S = a^2 - a'^2$ Surface S = bh $I_{\rm G} = \frac{bh(b^2 + h^2)}{12}$ Inertie polaire $I_{x_1} = \frac{bh^3}{3}$ Inertie $I_x = \frac{bh^3}{12}$ par rapport $I_d = \frac{b^3 h^3}{6(b^2 + h^2)}$ $\mu_x = \frac{bh^2}{6}$ Module de résistance $\mu_d = \frac{a^4 - a'^4}{a\sqrt{72}} = \frac{a^4 - a'^4}{6a\sqrt{2}}$ minimal $r_x = \sqrt{\frac{a^2 + a'^2}{12}}$ $r_x = \frac{h}{\sqrt{12}}$ Rayon $r_d = \sqrt{\frac{a^2 + a'^2}{12}}$ de giration Noyau central $G\alpha = G\beta = \frac{a^2 + a'^2}{6a}$ $G\alpha = G\beta = \frac{a}{6}$ $G\alpha = G\beta = \frac{h}{6}$ $G\gamma = G\delta = \frac{a}{6}$ $G\gamma = G\delta = \frac{b}{6}$ $G\gamma = G\delta = \frac{a^2 + a'^2}{6a}$

	Tableau 1 – Caractéristiques géométriques des sections (suite)									
Section		x v v v 2R	2R' y V G X V Y V Y 2R							
Centre de gravité	$v = \frac{h}{2}$ $v' = \frac{h}{2}$	v = R v' = R	v = R v' = R							
Surface	S = bh - b'h'	$S = \pi R^2$	$S=\pi(R^2-R'^2)$							
Inertie polaire	$I_{G} = \frac{bh(b^2 + h^2) - b'h'(b'^2 + h'^2)}{12}$	$I_{\rm G} = \frac{1}{2} \pi R^4$	$I_{\rm G} = \frac{1}{2} \pi (R^4 - R'^4)$							
Inertie par rapport à un axe	$I_X = \frac{bh^3 - b'h'^3}{12}$	$I_x = \frac{1}{4} \pi R^4$ $I_y = \frac{1}{4} \pi R^4$	$I_x = \frac{\pi}{4} (R^4 - R'^4)$ $I_y = \frac{\pi}{4} (R^4 - R'^4)$							
Module de résistance minimal	$\mu_x = \frac{bh^3 - b'h'^3}{6h}$	$\mu_x = \frac{1}{4} \pi R^3$ $\mu_y = \frac{1}{4} \pi R^3$	$\mu_{x} = \frac{\pi (R^{4} - R'^{4})}{4R}$ $\mu_{y} = \frac{\pi (R^{4} - R'^{4})}{4R}$							
Rayon de giration	$r_X = \sqrt{\frac{bh^3 - b'h'^3}{12(bh - b'h')}}$	$r_x = \frac{1}{2} R$ $r_y = \frac{1}{2} R$	$r_x = \frac{1}{2} \sqrt{R^2 + R'^2}$ $r_y = \frac{1}{2} \sqrt{R^2 + R'^2}$							
Noyau central	$G\alpha = G\beta = \frac{bh^3 - b'h'^3}{6h(bh - b'h')}$ $G\gamma = G\delta = \frac{hb^3 - h'b'^3}{6b(bh - b'h')}$	Le noyau central est limité par un cercle de centre G et de rayon ρ : $\rho = \frac{1}{4} R$	Le noyau central est limité par un cercle de centre G et de rayon ρ : $\rho = \frac{R^2 + R'^2}{4R}$							

Tableau 1 - Caractéristiques géométriques des sections (suite) Section $v=\frac{3\ell(\ell-e)+e^2}{2(2\ell-e)}$ $v = \frac{h^2 + (b-e)(2h-e)}{2(h+b-e)}$ v = h - v'Centre $v' = \frac{2h^2e + b'e_1^2}{2(2he + b'e_1)}$ de gravité $v' = \frac{h^2 + be - e^2}{2(h + b - e)}$ $S = 2he + b'e_1$ S = e(h + b - e)Surface $I_{G} = I_{f} + I_{d}$ $I_{\mathsf{G}} = I_{\mathsf{X}} + I_{\mathsf{V}}$ $I_{G} = I_{x} + I_{y}$ Inertie polaire $I_{x_1} = \frac{e}{2} (h^3 + be^2 - e^3)$ $I_x = \frac{1}{3} e[\ell^3 + (\ell - e)e^2] - Sv'^2$ $I_{x_1} = \frac{1}{3} \; (2 \, h^3 e + b' e_1^3)$ $I_x = I_{x_1} - Sv^2$ Inertie $I_{x} = I_{x} - Sv^{2}$ $I_f = \frac{1}{12} \left[\ell^4 - (\ell - e)^4 \right]$ par rapport $I_y = \frac{e}{12} [b^3 + (h - e)e^2]$ $I_y = \frac{1}{12} [hb^3 - (h - e_1)b'^3]$ $I_d = I_f - \frac{\ell^2 (\ell - e)^2 e}{2(2\ell - e)}$ $\mu_{x} = \frac{I_{x}}{V}$ $\mu_x = \frac{I_x}{I_x}$ Module $\mu_f = \frac{I_f \sqrt{2}}{\varrho}$ résistance $\mu_y = \frac{2I_y}{b}$ $\mu_{\gamma} = \frac{e[b^3 + (h - e)e^2]}{6b}$ $r_x = \sqrt{\frac{I_x}{S}}$ $r_x = \sqrt{\frac{I_x}{S}}$ Rayon de giration $r_f = \sqrt{\frac{\ell^2 + (\ell - e)^2}{12}}$ et $r_d = \sqrt{\frac{I_d}{S}}$ $r_y = \sqrt{\frac{I_y}{c}}$ $r_y = \sqrt{\frac{I_y}{S}}$ Noyau central $G\alpha = \frac{I_d}{Sv'\sqrt{2}}$ et $G\beta = \frac{I_d}{Sv\sqrt{2}}$ $G\alpha = \frac{I_x}{Sy'}$ et $G\beta = \frac{I_x}{Sy}$ $G\alpha = \frac{I_x}{Sv'}$ et $G\beta = \frac{I_x}{Sv}$ $G\gamma = G\delta = \frac{2I_y}{Sh}$ $G\gamma = G\delta = \frac{2I_y}{Sh}$ $G\gamma = G\delta = \frac{I_f\sqrt{2}}{S\ell}$

Parution: novembre 1987 - Ce document a ete delivre pour le compte de 7200049203 - ecole centrale de Iyon // 156.18.19.146

Tableau 2 - Contraintes de cisaillement dues à l'effort tranchant (déduites de la théorie de l'élasticité)

Les valeurs des contraintes de cisaillement, déduites de la théorie de l'élasticité, sont données dans le tableau ciaprès pour les sections circulaire et rectangulaire. Elles ont été établies à partir des hypothèses suivantes (Gy et Gz étant les axes principaux d'inertie de la section de la pièce).

· La pièce est à section constante.

La piece est à section constante.
 Dans le cas où la pièce est à section variable, il faut faire intervenir la notion d'effort tranchant réduit.
 La résultante T (élément de réduction de l'effort tranchant dans la section) est portée par Gy.
 Dans le cas où la résultante T est inclinée par rapport aux axes Gy et Gz, on décomposera T en 2 composantes Ty et Tz suivant Gy et Gz. On fera le calcul des contraintes séparément sous l'action de Ty et Tz. Les contraintes totales s'obtiendront par application du principe de superposition.

L'axe Gy est l'axe de symétrie de la section.

Dans le cas où Gy n'est pas axe de symétrie, il faut faire intervenir la notion de centre de cisaillement.

Les formules données dans ce tableau permettron en particulier de comparer les formules exactes ci-après avec les formules approchées, données dans le tableau 3.

Section Valeurs générales	Valeurs particulières
$\tau_3 = \frac{3+2v}{8(1+v)} \left(\frac{T}{I}\right) \left[R^2 - v^2 - \frac{1-2v}{3+2v} z^2\right]$ $\tau_2 = -\frac{1+2v}{4(1+v)} \left(\frac{T}{I}\right) vz$ $v \text{ coefficient de Poisson } I \text{ moment d'inertie par rapport à } Gz$	en G: $\tau_3 = \frac{3+2v}{2(1+v)} \left(\frac{T}{S}\right)$ en A et B: $\tau_3 = \frac{1+2v}{1+v} \left(\frac{T}{S}\right)$

Point G
$$\begin{cases} \tau_3 = \frac{3T}{2S} k_1 \\ \tau_2 = 0 \end{cases}$$

Points A et B
$$\begin{cases} \tau_3 = \frac{3T}{2S} k_2 \\ \tau_2 = 0 \end{cases}$$

Les coefficients k_1 et k_2 sont fonction de v et du rapport a/b; les valeurs données dans la table ci-après correspondent à v = 0.25.

a/b	<i>k</i> ₁	k ₂	a/b	<i>k</i> ₁	k ₂
0	0,800	∞	0,6	0,879	1,301
0,1	0,800	3,770	0,7	0,899	1,235
0,2	0,801	2,285	0,8	0,916	1,188
0,3	0,811	1,790	0,9	0,929	1,153
0,4	0,832	1,543	1	0,940	1,126
0,5	0,856	1,396			

b/a	<i>k</i> ₁	k ₂	b/a	<i>k</i> ₁	k ₂
0	1	1	0,6	0,976	1,048
0,1	0,999	1,001	0,7	0,968	1,064
0,2	0,997	1,005	0,8	0,959	1,083
0,3	0,994	1,012	0,9	0,950	1,104
0,4	0,989	1,021	1	0,940	1,126
0,5	0,983	1,033			

Tableau 3 – Contraintes de cisaillement et déformations dues à l'effort tranchant (formules approchées)

Les formules approchées, donnant pour les sections usuelles les valeurs des contraintes de cisaillement et la valeur de la section réduite S_1 (intervenant dans le calcul des déformations), ont été déterminées à partir des hypothèses mentionnées dans le tableau $\bf 2$ et des hypothèses supplémentaires suivantes.

• Cas des sections pleines.

Le long d'une ligne parallèle à l'axe d'inertie ${\sf G}z$ d'ordonnée y, coupant le contour de la section aux deux points a et b:

contour de la section;
— la composante τ_3 suivant Gy des contraintes de cisaillement τ est constante.

• Cas des sections minces (fermées ou ouvertes).

La contrainte de cisaillement est tangente en chaque point à la ligne moyenne du profil.

Section	Contrainte de cisaillement						
Section	Hypothèses Valeur générale		Contrainte maximale	Diagramme	<i>S</i> ₁		
h GG z	τ ₃	$\tau_3 = \frac{3}{2} \frac{T}{S} \left[1 - \frac{4y^2}{h^2} \right]$ $S = bh$	$\tau_3 = \frac{3}{2} \frac{T}{S}$ pour $y = 0$	$rac{\tau_3}{\frac{h}{2}}$	5 S		
a' A' A' A' A' A' A' A' A	T ₃ m m G m m		$\tau_3 = \frac{3}{2} \frac{T}{S} \left(\frac{1 + k + k^2}{1 + k^2} \right)$ pour mm (y = 0)				

Tableau 3 – Contraintes de cisaillement et déformations dues à l'effort tranchant (formules approchées) (suite)							
0 11		Contrainte de cisa		Déformation			
Section Hypothèses		Valeur générale	Contrainte maximale	Diagramme	<i>S</i> ₁		
C Cercle		$\tau_3 = \frac{4}{3} \frac{T}{S} \left(1 - \frac{Y^2}{R^2} \right)$ $\tau \text{ en } A = \frac{4}{3} \frac{T}{S} \sqrt{1 - \frac{Y^2}{R^2}}$ $S = \pi R^2$	$ au_3 = rac{4}{3} rac{T}{S}$ le long de CD	G T ₃	9/10 S		
e y h	T ₃ y	$\tau_{1} = \frac{6Te(h-e)}{bh^{3} - (b-b')h'^{3}}$ $\tau_{2} = \tau_{1} \frac{b}{b'}$ $\tau_{3} = \frac{3}{2} \left(\frac{T}{b'h}\right) \frac{b - (b-b')(h'/h)^{2}}{b - (b-b')(h'/h)^{3}}$	$\tau_{\text{max}} = \tau_3$	G T_1 T_2 T_3			
Section circulaire mince	B G A	$\tau_{M} = \frac{2T}{S}\cos\varphi$ $S = 2\pi Re$	$\tau_{A} = \tau_{B} = \frac{2T}{S}$	G T3	0,5 <i>S</i>		
e' $ \begin{array}{c} $	$I = \frac{h^2}{3} (S + 6S')$	$\tau_{2 \text{ (aile)}} = \frac{T}{I} (b-z)h$ $\tau_{3 \text{ (âme)}} = \frac{T}{I} \left[2be'h + \frac{e}{2} (h^2 - y^2) \right]$	$\tau_{2(A)} = \frac{T}{I}bh$ $\tau_{3(A)} = \tau_{3(B)} = \frac{T}{S} \frac{1}{1 + \frac{\lambda}{6}}$ $\tau_{3(G)} = \frac{T}{S} \frac{1 + \frac{\lambda}{4}}{1 + \frac{\lambda}{6}}$	$\tau_{3(A)}$ $\tau_{3(B)}$	2he		

Tableau 4 - Contraintes de cisaillement et déformations dues à un moment de torsion (torsion gauche libre) (1)

Contraintes de cisaillement Les formules donnant les contraintes de cisaillement dans les pièces de section usuelle soumises à un moment de torsion ${\cal C}$ ont été déterminées dans les hypothèses suivantes :

la pièce est rectiligne et de section constante;
 au cours de la déformation, les sections ne restent pas planes et sont libres de gauchir (torsion gauche libre).

Déformation

Dans les mêmes hypothèses que précédemment, si θ est l'angle de rotation de la section d'abscisse x, on a :

 $\frac{\mathrm{d}\,\theta}{\mathrm{d}\,x} = -\frac{C}{GK} \; (G \, \text{module d'élasticité transversale}).$

La valeur de K, module d'inertie à la torsion de la pièce, est donnée dans le tableau ci-après pour les sections usuelles.

					es sections t	isuelles.		D/f	•	
Section	5 1 .1	Contrainte de cisa					Déformation			
Section	Direction des contraintes				Contrainte maximale			Valeur de <i>K</i>		
a = 1		$C = -Ga^3b \frac{d\theta}{dx} k_1 \text{ et } \tau_{\text{max}} = \frac{C}{k_2a^2b} (a < b)$								
<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	A G B	b/a k ₁	k ₂	b/a	k ₁	k ₂	b/a	k ₁	k ₂	
		1 0,140 6	0,208	2 1,9	0,223 3	0,243	2 4,5	0,286 6	0,287 0	
b ////////		1,1 0,154 0	0,213	9 2	0,228 7	0,245	9 5	0,291 3	0,291 5	
		1,2 0,165 1	0,218	2,2	0,238 0	0,250	9 6	0,298 3	0,298 4	
		1,3 0,177 1	0,223	1 2,4	0,245 9	0,255	4 7	0,303 3	0,303 3	
V (///X////		1,4 0,186 9	0,227	3 2,6	0,252 6	0,259	7 8	0,307 1	0,307 1	
a <b< th=""><th></th><th>1,5 0,195 8</th><th>0,231 (</th><th>2,8</th><th>0,258 3</th><th>0,263</th><th>6 9</th><th>0,310 0</th><th>0,310 0</th></b<>		1,5 0,195 8	0,231 (2,8	0,258 3	0,263	6 9	0,310 0	0,310 0	
		1,6 0,203 7	0,234	3	0,263 3	0,267	2 10	0,312 3	0,312 3	
Rectangle		1,7 0,210 9	0,237		0,273 3	0,275	1 20	0,322 8	0,322 8	
		1,8 0,217 4	0,240	1 4	0,280 8	0,281	7 ∞	1/3	1/3	
Hexagone régulier	C_{c}			$\tau_{\text{max}} = \frac{1}{C}$ $S \text{ aire de}$ $S = \frac{1}{2} d$	$\frac{C}{0,217(Sd)}$ a la section $2\sqrt{3}$		K = 0,13	3 <i>d</i> ²S		
Octogone régulier	G _c				$\frac{C}{0.223 \times S \times 2}$ e la section $\frac{(2-1)}{(2-1)} d^2$	_ d	K = 0,13	0 <i>d</i> ² S		
Circulaire pleine	C C C C C C C C C C C C C C C C C C C	$\tau = \frac{Cr}{K}$ K inertie polaire		$ au_{max} = \frac{1}{2}$	2 <u>C</u> t R ³		$K = \frac{\pi R}{2}$	4		
2R ₁ 2R	C M	$\tau = \frac{Cr}{K}$ K inertie polaire		$ au_{max} = -$	$\frac{2CR}{\tau(R^4 - R_1^4)}$		$K = \frac{\pi(I)}{I}$	$\frac{R^4 - R_1^4)}{2}$		

(1) Dans le cas où les sections de la pièce ne sont plus libres de se gauchir, il faut tenir compte (plus particulièrement pour les sections ouvertes à paroi mince) des phénomènes de torsion-flexion qui ont une influence importante sur la distribution des contraintes dans la pièce. L'exemple donné dans le tableau 5 permettra de se rendre compte de cette influence.

Tableau 4 – Contraintes de	cisaillement et déformations dues à un r	moment de torsion (tor	sion gauche libre) (1) (suite)

 $au_{\rm max} = {3 \, C \over b \, e^2}$ le long des grands côtés

$$K = \frac{1}{3} be^3$$

Rectangle étroit $[(b/e) \rightarrow \infty]$

$$\tau_{\text{max}} = \frac{3C}{(2a-e)e^2}$$

$$\frac{1}{3} (2a - e)e^3$$

$$\tau_{\text{max}} = \frac{3Ce_1}{b_1e_1^3 + 2b_2e}$$
on suppose $e_1 < e_2$

$$\frac{b_1e_1^3 + 2b_2e_2^3}{3}$$

Ailes parallèles Sections en U et I

Ailes chanfreinées Sections en U et I Formules identiques aux ailes parallèles dans lesquelles on remplace :

$$e_2^3 \text{ par } \frac{1}{4} \; (e_2 + e_3) (e_2^2 + e_3^2)$$

e faible et la variation de e dans la section n'est pas brusque. Section tubulaire mince Cc

 Σ surface intérieure limitée par le contour Γ , ligne moyenne de la section.

Q On obtient τ_1 , τ_2 , τ_3 et $\varphi = \frac{d\theta}{dx}$ en résolvant les quatre équations :

$$\begin{split} (\ell+2h)\tau_1 e + \ell \, e(\tau_1 - \tau_2) &= -2\,G\ell\,h\phi \\ 2\,h\tau_2 e + \ell \, e(\tau_2 - \tau_1) &= -2\,G\ell\,h\phi \end{split}$$

$$C = 4\ell he(\tau_1 + \tau_2)$$

$$\tau_3 = \tau_1 - \tau_2$$

Membrane tubulaire à parois intermédiaires

d'épaisseur constante

(1) Dans le cas où les sections de la pièce ne sont plus libres de se gauchir, il faut tenir compte (plus particulièrement pour les sections ouvertes à paroi mince) des phénomènes de torsion-flexion qui ont une influence importante sur la distribution des contraintes dans la pièce. L'exemple donné dans le tableau 5 permettra de se rendre compte de cette influence.

Tableau 5 – Moments et effort tranchant dans une section en I soumise à une torsion (torsion gauche non libre) et à une flexion

Étudions une poutre en I, encastrée à une extrémité et soumise à son extrémité libre à un moment de torsion C.

• Caractéristiques de la pièce

On pose :
$$a^2 = \frac{EJh^2}{2GK}$$

EJ rigidité à la flexion d'une aile : $J = \frac{e_2 b_2^3}{12}$

GK rigidité à la torsion de la poutre : $K = \frac{b_1 e_1^3 + 2b_2 e_2^3}{3}$

• Éléments de réduction dans une section m d'abscisse x Moment de flexion dans chacune des ailes :

$$M_f = \frac{a}{h} C \frac{\sinh\left(\frac{\ell - x}{a}\right)}{\cosh\left(\frac{\ell}{a}\right)}$$

Moment de torsion dans la pièce :

$$C_2 = C \left[1 - \frac{\operatorname{ch}\left(\frac{\ell - x}{a}\right)}{\operatorname{ch}\left(\frac{\ell}{a}\right)} \right]$$

$$V = -\frac{C}{h} \frac{\operatorname{ch}\left(\frac{\ell - x}{a}\right)}{\operatorname{ch}\left(\frac{\ell}{a}\right)}$$

• Exemple : poutre I 300, $\ell = 180 \text{ cm} : C = 1 \text{ t/m}.$

Tableau 6 – Charge o	Tableau 6 – Charge critique de flambement d'une barre à inertie constante, libre de fléchir transversalement entre ses extrémités (1)							
Caractéristiques de la pièce Cas de charges								
B A F _c	B libre A encastré $F_c = \frac{\pi^2 EI}{(2 \ \ell)^2}$	$ ho_{c}^{Q}$ B articulé $ ho_{c}^{Q}=rac{\pi^{2}}{arrho^{2}}$	A encastré $F_c = \frac{\pi^2 EI}{(a\ell)^2}$ avec $a \approx 0.7$	B encastré A encastré $F_c = \frac{\pi^2 EI}{(0,5 \ \ell)^2}$				
B libre A encastré	$(q\ell)_c = \frac{\pi^2 EI}{(1,122\ell)^2} = 7,837 \frac{I}{6}$	<u>EI</u> ç2						
F_c B articulé Q A articulé $Q\ell+F_c$	$F_c pprox rac{\pi^2 EI}{\ell^2} - rac{q\ell}{2}$ (valeur approchée)							
B libre A encastré	$F_c = rac{\pi^2 E I}{(2\ell)^2} - 0.3 q\ell$ (valeur approchée)							

-		, }	P ₁ B articulé
l	ℓ/2 		P ₂
			A articulé $P_1 + P_2$

$$(P_1 + P_2)_c = \frac{4u^2EI}{\ell^2} = \frac{\pi^2EI}{L^2} \text{ et } \frac{L}{\ell} = \frac{\pi}{2u}$$

 $(P_1 + P_2)_c = \frac{4u^2EI}{\ell^2} = \frac{\pi^2EI}{L^2} \text{ et } \frac{L}{\ell} = \frac{\pi}{2u}$ Si l'on pose $\beta = \frac{P_1 + P_2}{P_1}$, u est la plus petite racine positive de l'équation : $u\sqrt{\beta}\cot\left(\frac{u}{\sqrt{\beta}}\right) + u\cot u = \frac{(\beta - 1)^2}{\beta + 1}$

$$u\sqrt{\beta}\cot\left(\frac{u}{\sqrt{\beta}}\right) + u\cot u = \frac{(\beta-1)^2}{\beta+1}$$

$\frac{P_1 + P_2}{P_1}$	1	1,25	1,5	1,75	2	3
L/ℓ	1	0,949	0,914	0,888	0,869	0,823
и	π/2	1,655 1	1,718 6	1,768 1	1,807 8	1,909 6

(1) E module d'élasticité longitudinale,

I moment d'inertie de la section transversale,

 ℓ longueur de la pièce.

Tableau 6 – Charge critique de flambement d'une barre à inertie constante, libre de fléchir transversalement entre ses extrémités (1) (suite)

Caractéristiques de la pièce Cas de charges

Charge critique de flambement F_c

(sans tenir compte des déformations dues à l'effort tranchant)

On a :
$$\sum_{A}^{C} q_x dx = \sum_{B}^{C} q_x dx = q_0 \ell / 4$$

$$\left(\frac{q_0\ell}{4}\right)_c = \frac{\pi^2 EI}{(0.696\ell)^2}$$

$$F_c = \left(\frac{\pi^2 EI}{\ell^2}\right) \left[\frac{1}{1 + \left(\frac{\pi^2 EI}{\ell^2}\right) \frac{1}{GS_1}} \right]$$

- G module d'élasticité au cisaillement
- S_1 aire réduite de la section transversale de la pièce (voir valeurs de S_1 dans le tableau 3)

Poutre encastrée élastiquement à ses extrémités. Les rotations ω_0 et ω_1 des extrémités de la poutre sont proportionnelles aux moments M_0 et M_1 d'encastrement :

$$\omega_0 = \beta_0 \; \frac{M_0 \ell}{EI}$$

$$\omega_1 = -\beta_1 \, \, \frac{M_1 \ell}{EI}$$

 β_0 et β_1 étant des nombres positifs sans dimension ; β = 0 correspond à un encastrement, et β = ∞ correspond à une articulation. L'effort normal critique a pour valeur :

$$F_c = C \frac{EI}{\ell^2}$$

C étant un coefficient dépendant de β_0 et β_1 dont la valeur est donnée par le tableau suivant.

β_1 β_0	0	0,1	0,2	0,5	1	2	5	10	20	50	∞
0	39,478	38,199	37,004	33,981	30,550	26,958	23,452	21,933	21,092	20,559	20,191
0,1	38,199	36,981	35,841	32,950	29,647	26,166	22,745	21,257	20,431	19,907	19,546
0,2	37,004	35,841	34,752	31,984	28,804	25,429	22,092	20,635	19,825	19,311	18,955
0,5	33,981	32,950	31,984	29,517	26,648	23,554	20,495	19,073	18,307	17,819	17,482
1	30,550	29,647	28,804	26,648	24,121	21,353	18,521	17,250	16,545	16,091	15,777
2	26,958	26,166	25,429	23,554	21,353	18,916	16,382	15,236	14,589	14,174	13,886
5	23,452	22,745	22,092	20,495	18,521	16,382	14,134	13,107	12,523	12,148	11,887
10	21,933	21,257	20,635	19,073	17,250	15,236	13,107	12,130	11,574	11,217	10,967
20	21,092	20,431	19,825	18,307	16,545	14,589	12,523	11,574	11,034	10,686	10,443
50	20,559	19,907	19,311	17,819	16,091	14,174	12,148	11,217	10,686	10,344	10,105
∞	20,191	19,546	18,955	17,482	15,777	13,886	11,887	10,967	10,443	10,105	9,870

(1) E module d'élasticité longitudinale,

 $\it I$ moment d'inertie de la section transversale,

 ℓ longueur de la pièce.

GAGNEZ DU TEMPS ET SÉCURISEZ VOS PROJETS EN UTILISANT UNE SOURCE ACTUALISÉE ET FIABLE

Depuis plus de 70 ans, Techniques de l'Ingénieur est la source d'informations de référence des bureaux d'études, de la R&D et de l'innovation.

LES AVANTAGES ET SERVICES compris dans les offres Techniques de l'Ingénieur

Accès illimité aux articles en HTML

Enrichis et mis à jour pendant toute la durée de la souscription

Téléchargement des articles au format PDF

Pour un usage en toute liberté

Consultation sur tous les supports numériques

Des contenus optimisés pour ordinateurs, tablettes et mobiles

Questions aux experts*

Les meilleurs experts techniques et scientifiques vous répondent

Articles Découverte

La possibilité de consulter des articles en dehors de votre offre

Dictionnaire technique multilingue

45 000 termes en français, anglais, espagnol et allemand

Archives

Technologies anciennes et versions antérieures des articles

Impression à la demande

Commandez les éditions papier de vos ressources documentaires

Alertes actualisations

Recevez par email toutes les nouveautés de vos ressources documentaires

ILS NOUS FONT CONFIANCE

^{*}Questions aux experts est un service réservé aux entreprises, non proposé dans les offres écoles, universités ou pour tout autre organisme de formation.