Texture Mapping, Bump Mapping

Outline

- Buffers and Digital Images
- Sampling and Aliasing
- Mapping Methods
 - Texture mapping
 - Environment mapping
 - Bump mapping

Outline

- Buffers and Digital Images
- Sampling and Aliasing
- Mapping Methods
 - Texture mapping
 - Environment mapping
 - Bump mapping

Buffer

- Buffers (make up the FB):
 - Color buffers (front and back)
 - Depth buffer
 - Others
- A (2D) buffer is a block of memory (portion of GPU mem.) with:
 - Spatial resolution (n x m)
 - Depth (k)

WebGL Framebuffer

- Framebuffer is a <u>collection</u> of buffers
- Front: what you see on the screen
- Back: following images those will be on the screen later
- Depth (z-buffer): depth information of objects in 3D space. For non-transparent objects and surfaces, it is not possible to see the parts behind the closer parts (hidden surfaces). They must be removed.
- Stencil: used to mask areas of a scene
- Even in a simple case, total depth goes over 100 bits/pixel
 - Front and back buffers (one at least): (RGBA and 8 bits per component) 32 + 32 = 64 bits
 - A: alpha, transparency
 - Depth buffer (24 or 32 bits)
 - Stencil buffer (24 or 32 bits)

(Digital) Images

- 2D array of pixels (an array of values)
- GIF, JPEG, PNG keep data differently mainly to reduce size
- WebGL doesn't have functions to directly read these formats or to convert, web browsers and HTML have

Outline

- Buffers and Digital Images
- Sampling and Aliasing
- Mapping Methods
 - Texture mapping
 - Environment mapping
 - Bump mapping

Shannon's Theorem

- a discrete-time signal can be obtained by sampling a continuous-time signal at equally spaced time instants
- the fixed time interval between samples is inversely proportional to the sampling rate
- how frequently do we need to sample? the sampling rate must be at least twice the frequency of the signal (twice the frequency of the highest frequency component) otherwise *aliasing* occurs, Nyquist rate (min. sampling rate).

If sampling rate is lower than Nyquist rate, aliasing occurs (original analog signal cannot be reconstructed)

Sampling and Aliasing

- aliasing is an effect that causes different signals to become indistinguishable (or aliases of one another) when sampled
- the distortion or artifact that results when a signal reconstructed from samples is different from the original signal

The wagon-wheel effect: The wheel can appear to rotate more slowly than the true rotation, it can appear stationary, or it can appear to rotate in the opposite direction from the true rotation.

Sampling and Aliasing

The picture on the left shows the sampling grid superimposed on the original scene. The picture on the right is the rendered image.

a jagged profile in the rendered image

Antialiasing

- Two major categories of antialiasing:
 - prefiltering
 - postfiltering

Outline

- Buffers and Digital Images
- Sampling and Aliasing
- Mapping Methods
 - Texture mapping
 - Environment mapping
 - Bump mapping

Mapping Methods

How a realistic object like an orange can be produced by only modeling geometry and coloring primitives?

What about a tree with leaves like this?

A solution is to keep using simple geometric models but add detail.

All mapping methods are based on modifying the shading of a fragment by using a 2D array (a map).

Mapping techniques are not solutions to the same problem, they are doing different things (but how they work is a bit similar).

Mapping Methods

Texture Mapping

Basic one, uses images to fill inside of polygons

Bump mapping

- Emulates altering normal vectors during the rendering process
- Creates the illusion of small variations (bumps, dents) on surface

Environment (Reflection) Mapping

- Uses a picture of the environment for texture maps
- Allows simulation of highly reflective surfaces

Texture Mapping

Texture Mapping

- 2D texture is an image
- not pixels but texels
- where and what are texture coordinates
- A texture map associates a texel with a point on a geometric object surface

Is it simple?

mapping an image to a surface involves 3 or 4 coordinate systems

Coordinate Systems

- Parametric Coordinates
 - May be used to model curves and surfaces
- Texture Coordinates
 - Used to identify points in the image to be mapped
- Object or World Coordinates
 - Where the mapping takes place
- Window Coordinates
 - Where the final image is really produced

Texture Mapping

Mapping Functions

- How to find the maps?
- Mapping from texture coordinates to a point on a surface needs three functions (given a texel

finding the corresponding point on the surface):

$$x = x(s,t)$$

 $y = y(s,t)$
 $z = z(s,t)$

backwards given a point on an object finding the corresponding texel the needed functions:

$$s = s(x,y,z)$$
$$t = t(x,y,z)$$

sometimes complex functions and distortions may occur (e.g. mapping a rectangle to a sphere)

Two-Step Mapping

- * Map the texture to a simple intermediate surface (map to cylinder, sphere, or box)
- * Map this surface to the actual surface

Texture Mapping in WebGL

two parallel pipelines: geometric and pixel processing

The color of fragments are manipulated using techniques such as texture mapping, bump mapping, environmental mapping.

Environment (reflection) Mapping

 Creates the appearance of highly reflective surfaces without global calculations

Bump Mapping

Bump mapping is used to alter the surface normal to change the illumination (to prevent the flat view of texture mapping) and it uses a texture also.