Proportions

Louis, Sachi, and Toby

Pie Charts

- Work especially well when attempting to see how large of a percentage a variable is with respect to the whole.
- Helps with getting a quick first impression
- Can be hard to compare if there are too many variables
- Not as accurate as other forms

Side-by-Side Bars

- Side-by-Side bars work best when trying to determine how proportions change with respect to some variable.
- More detailed analysis compared to pie charts

Stacked Bars

Should generally only be used when there are only two bars in each stack.

Stacked Densities

Allows us to visualize how densities change in response to a **continuous** variable.

It may be better to visualize as partial densities if there are more drastic changes in the data.

Proportions of Diamonds of each cut

Opening: We know the different types of cuts and how much of the data they each represent

Challenge: The title as well as the y axis shows that we are looking at the proportions

Action: Proportionality between the different cuts

Resolution: Ideal quality seems to be the greatest proportion while a fair quality is the smallest

Proportions of Diamonds of each cut by Clarity

Opening: we know the clarity of each type of diamonds and their cut

Challenge: The title as well as the y axis shows that we are looking at the proportions

Action: Proportionality between the different cuts based on the diamond's type

Resolution: Fair cuts are mostly in l1 while IF has the greatest percentage of ideal cuts

