

CRN_IS9: Performance Analysis of Hybrid Cognitive Radio Systems with Imperfect Channel Knowledge

ICC 2016, Kuala Lumpur, Malaysia

A. Kaushik¹, S.K. Sharma², S. Chatzinotas², B. Ottersten², F. K. Jondral¹ | 11 June 2016

¹CEL, Karlsruhe Institute of Technology (KIT), Germany and ²SnT, University of Luxembourg, Luxembourg

Contents

- Hybrid Scenario
- Signal Model
- **Problem Description**
- Proposed Approach
- Numerical Analysis

CRN_IS9: Performance Analysis of Hybrid Cognitive Radio Systems with Imperfect Channel Knowledge

A. Kaushik, S.K. Sharma, S. Chatzinotas, B. Ottersten, F. K. Jondral

Summary

Hybrid Scenario

Hybrid System:

11 June 2016

- A spectrum sensing and a power control mechanism is employed at the ST
- To accomplish this \Rightarrow Knowledge of the channels $h_{p,1}$, $h_{p,3}$ is required at ST
- Further, to characterize the throughput at SR \Rightarrow Knowledge of the channels $h_{0.2}$, h_{8} is required at ST

In a realistic scenario:

- Channel knowledge is not available at the ST, Solution needs to be estimated
- Without any knowledge of the primary system, direct estimation of channel is not possible

Hybrid Scenario

Contributions:

- We propose an analytical framework that facilitates a successful incorporation of the estimation of the involved channels
- We examine the impact of channel knowledge in terms of interference encountered
- We depict a estimation-sensing-throughput tradeoff that allow us to optimize the performance of the hybrid system

Signal Model

Received signal at the ST

$$y_{\text{ST}}[n] = \begin{cases} h_{\text{p,1}} \cdot x_{\text{PT}}[n] + w[n] & : \mathcal{H}_1 \\ w[n] & : \mathcal{H}_0 \end{cases}$$

Received signal at the PR

$$y_{PR}[n] = \begin{cases} h_{p,3} \cdot x_{ST,cont}[n] + w[n] & : P_d \\ h_{p,3} \cdot x_{ST,full}[n] + w[n] & : 1 - P_d \end{cases}$$

Received signal at the SR

$$y_{\text{SR}}[n] = \begin{cases} h_{\text{S}} \cdot x_{\text{ST,full}}[n] + h_{\text{p,2}} \cdot x_{\text{PT}}[n] + w[n] & : 1 - P_{\text{d}} \\ h_{\text{S}} \cdot x_{\text{ST,full}}[n] + w[n] & : 1 - P_{\text{fa}} \\ h_{\text{S}} \cdot x_{\text{ST,cont}}[n] + h_{\text{p,2}} \cdot x_{\text{PT}}[n] + w[n] & : P_{\text{d}} \\ h_{\text{S}} \cdot x_{\text{ST,cont}}[n] + w[n] & : P_{\text{fa}} \end{cases}$$

Problem Description

Existing models (Ideal Model)

$$\text{Interference constraint} \begin{cases} \mathbb{P}(\mathcal{H}_1) \cdot P_d \cdot |\textit{h}_{p,3}|^2 \textit{P}_{\text{Tx,ST,cont}} \leq \theta_l \\ \text{and} \ \mathbb{P}(\mathcal{H}_1) \cdot (1 - P_d) \cdot |\textit{h}_{p,3}|^2 \textit{P}_{\text{Tx,ST,full}} \leq \theta_l \end{cases}$$

$$\text{Throughput at SR} \begin{cases} R_0(\tau_{\text{sen}}) = & \frac{T - \tau_{\text{sen}}}{T} \cdot \log_2\left(1 + |h_{\text{s}}|^2 \frac{P_{\text{Tx,ST,full}}}{\sigma_w^2}\right) (1 - P_{\text{fa}}) \cdot \mathbb{P}(\mathcal{H}_0), \\ R_1(\tau_{\text{sen}}) = & \frac{T - \tau_{\text{sen}}}{T} \log_2\left(1 + \frac{|h_{\text{s}}|^2 P_{\text{Tx,ST,full}}}{|h_{\text{p,2}}|^2 \sigma_{\text{s}}^2 + \sigma_w^2}\right) (1 - P_{\text{d}}) \cdot \mathbb{P}(\mathcal{H}_1), \\ R_2(\tau_{\text{sen}}) = & \frac{T - \tau_{\text{sen}}}{T} \cdot \log_2\left(1 + |h_{\text{s}}|^2 \frac{P_{\text{Tx,ST,cont}}}{\sigma_w^2}\right) P_{\text{fa}} \cdot \mathbb{P}(\mathcal{H}_0), \\ R_3(\tau_{\text{sen}}) = & \frac{T - \tau_{\text{sen}}}{T} \cdot \log_2\left(1 + \frac{|h_{\text{s}}|^2 P_{\text{Tx,ST,cont}}}{|h_{\text{p,2}}|^2 \sigma_{\text{s}}^2 + \sigma_w^2}\right) P_{\text{d}} \cdot \mathbb{P}(\mathcal{H}_1). \end{cases}$$

- Without the knowledge of received power (sensing channel, $h_{0,1}$), the characterization of P_d at the ST is not possible
- Without the knowledge of the interference channel towards the PR $(h_{0.3})$, the power control mechanism cannot be employed at the ST
- The knowledge of the access (h_s) and the interference channel $(h_{0,2})$ to the SR, from the PT, is required at the ST for characterizing the SU throughput.

Proposed Approach

Proposed frame structure for the secondary system

- We consider the estimation of involved channels. In order to facilitate deployment received power estimation is proposed for the sensing and interference channel.
- Next, we characterize the variations due to channel estimation in the estimation parameters in terms of their pdfs.
- We further characterize the aforementioned variations, which include the interference received at PR and expected throughput at SR in terms of their cdf.
- We utilize these cdfs to obtain the expression estimation-sensing-throughput tradeoff.

Performance Characterization

Channel Estimation

Sensing channel

$$F_{\hat{P}_{\mathsf{Rx},\mathsf{ST},h_{\mathsf{p},1}}}(x) = 1 - \Gamma\left(\frac{\tau_{\mathsf{est},\,h_{\mathsf{p},1}}\,f_{\mathsf{s}}}{2}, \frac{\tau_{\mathsf{est},\,h_{\mathsf{p},1}}\,f_{\mathsf{s}}x}{2P_{\mathsf{Rx},\mathsf{ST},h_{\mathsf{p},1}}}\right)$$

Access channel

$$F_{|\hat{h}_{\rm S}|^2}(x) \approx 1 - \Gamma\left(a, \frac{x}{b}\right)$$

Interference channel

$$F_{\hat{P}_{\mathsf{Rx},\mathsf{ST},h_{\mathsf{p},3}}}(x) = 1 - \Gamma\left(\frac{\tau_{\mathsf{est},\,h_{\mathsf{p},3}}f_{\mathsf{s}}}{2}, \frac{\tau_{\mathsf{est},\,h_{\mathsf{p},3}}f_{\mathsf{s}}x}{2P_{\mathsf{Rx},\mathsf{ST},h_{\mathsf{p},3}}}\right)$$

Detection probability constraint

$$\mathbb{P}(\mathsf{P}_\mathsf{d}(\hat{P}_{\mathsf{Rx},\mathsf{ST},h_{\mathsf{p},1}}) \leq \bar{\mathsf{P}}_\mathsf{d}) \leq \rho_\mathsf{d}$$

Interference constraint

$$\mathbb{P}(\textit{P}_{\mathsf{Rx},\mathsf{PR}}(\mathsf{P}_{\mathsf{d}}(\hat{\textit{P}}_{\mathsf{Rx},\mathsf{ST},\textit{h}_{\mathsf{p},1}}),\hat{\textit{P}}_{\mathsf{Rx},\mathsf{ST},\textit{h}_{\mathsf{p},3}}) \geq \theta_{\mathsf{I}}) \leq \rho_{\mathsf{cont}}$$

Expected secondary throughput

$$F_{\hat{P}_{\mathsf{Rx},\mathsf{SR},h_{\mathsf{p},2}}}(x) = 1 - \Gamma\left(\frac{\tau_{\mathsf{est},\,h_{\mathsf{p},2}}f_{\mathsf{s}}}{2}, \frac{\tau_{\mathsf{est},\,h_{\mathsf{p},2}}f_{\mathsf{s}}x}{2P_{\mathsf{Rx},\mathsf{SR},h_{\mathsf{p},2}}}\right) \quad \mathbb{E}_{\Omega}\left[R_{\mathsf{s}}(\tau_{\mathsf{sen}})\right] = \frac{T - \tau_{\mathsf{est},\,h_{\mathsf{p},3}} - \tau_{\mathsf{sen}}}{T}.$$

$$\begin{split} & \left[(1 - P_{fa}) \cdot \mathbb{P}(\mathcal{H}_0) \cdot \mathbb{E}_{C_0} \left[C_0 \right] + \right. \\ & \left. (1 - \mathbb{E}_{P_d} \left[P_d \right] \right) \cdot \mathbb{P}(\mathcal{H}_1) \cdot \mathbb{E}_{C_1} \left[C_1 \right] + \\ & \left. P_{fa} \cdot \mathbb{P}(\mathcal{H}_0) \cdot \mathbb{E}_{C_2} \left[C_2 \right] + \right. \end{split}$$

$$\mathbb{E}_{\mathsf{P}_{\mathsf{d}}}\left[\mathsf{P}_{\mathsf{d}}\right]\cdot\mathbb{P}(\mathcal{H}_1)\cdot\mathbb{E}_{\mathsf{C}_3}\left[\mathsf{C}_3\right]$$
 .

7

Performance Characterization

 Theorem: The expected achievable SU throughput subject to an outage constraint on detection probability at the ST and an outage constraint on interference power at the PR given by

$$\begin{split} \textit{R}_{s}(\tilde{\tau}_{\text{sen}}) &= \max_{\tau_{\text{sen}}, \textit{P}_{\text{Tx,ST,cont}}} \mathbb{E}_{\Omega}\left[\textit{R}_{s}(\tau_{\text{sen}})\right] \\ \text{s.t.} \ \mathbb{P}(\textit{P}_{d} \leq \bar{\textit{P}}_{d}) \leq \rho_{d} \\ \text{s.t.} \ \mathbb{P}(\textit{P}_{\textit{Rx,PR}} \geq \theta_{l}) \leq \rho_{\text{cont}} \end{split}$$

Parameter	Definition	Value
f _S	Sampling Frequency	1 MHz
Τ	Frame Duration	100 ms
$ au_{ ext{est},\ h_{ ext{p,1}}}$	Estimation time for the channel $h_{p,1}$	1 ms
$ au_{ ext{est},\ h_{ ext{p,2}}}$	Estimation time for the channel $h_{p,2}$	1 ms
$ au_{est,\;h_{p,3}}$	Estimation time for the channel $h_{p,3}$	1 ms
$ h_{p,1} ^2$	Power gain for channel $h_{p,1}$	−120 dB
$ h_{p,2} ^2$	Power gain for channel $h_{p,2}$	−120 dB
$ h_{p,3} ^2$	Power gain for channel $h_{p,3}$	−100 dB
$ h_{s} ^{2}$	Power gain for channel hs	−80 dB
θ_{I}	Interference threshold	-110 dBm
$ ho_{cont}$	Outage constraint on interference power at PR	0.1
$ ho_{\sf d}$	Outage constraint on detection probability	0.1
$\sigma_{ m s}^2$	Transmit power at PT and PR	10 dBm
$ ho_{ extsf{d}} \ \sigma_{ extsf{s}}^2 \ \sigma_{ extsf{w}}^2 \ ar{ extsf{P}}_{ extsf{d}}$	Noise power at ST, SR and PR	-100 dBm
\bar{P}_d	Detection probability threshold	0.9
$\mathbb{P}(\mathcal{H}_0)$	Occurrence Probability for hypothesis \mathcal{H}_0	0.2
$P_{Tx,ST,full}$	Transmit power at ST	0 dBm
N _s	Number of pilot symbols	10

Sensing-throughput tradeoff for $au_{
m est, \ h_{
m 0.1}} = au_{
m est, \ h_{
m 0.2}} = au_{
m est, \ h_{
m 0.3}} = 1~{
m ms}$

- As indicated by the margin between the IM and the EM, a certain performance degradation is witnessed due to the incorporation of channel estimation
- The sensing-throughput tradeoff yields a suitable sensing time $\tilde{\tau}_{\text{sen}}$ that achieves the maximum performance in terms of SU throughput $R_{\text{S}}(\tilde{\tau}_{\text{sen}})$

11 June 201€

- In Regime I, no benefits are attained from the US (power control) while operating in this
 regime, hence, the HS operates as an IS.
- In Regime III, which illustrates favorable channel conditions for the US, since the ST is limited by the transmit power, P_{Tx,ST,cont} = P_{Tx,ST,full}, the HS procure no further performance gains.

11 June 201€

- The estimation-sensing-throughput tradeoff corresponding to the EM.
- The performance degradation is sensitive to the outage constraint on the detection probability.

Summary

- The performance of cognitive radio as hybrid systems is investigated from a deployment perspective.
- It is argued that channel knowledge is absolutely mandatory for the performance characterization.
- In view of this, an analytical framework that incorporates channel estimation and subsequently captures the effect of imperfect channel knowledge is established.
- More importantly, a fundamental tradeoff between the estimation, the sensing time and secondary throughput is determined.
- In future, it will be interesting to include the effect of channel fading on the performance of the hybrid systems.

Thank you for attention!

