TD 6

Exercice 1

Une suite réelle sera notée $u: \mathbb{N} \to \mathbb{R}$, son n-ième terme sera noté u(n). Soit $l^{\infty}(\mathbb{N})$ l'espace vectoriel des suites réelles bornées, muni de la norme

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u(n)|.$$

On note par $l_0^{\infty}(\mathbb{N})$ le sous ensemble de $l^{\infty}(\mathbb{N})$ formé des suites nulles à partir d'un certain rang et par $l_c^{\infty}(\mathbb{N})$ le sous ensemble des suites u telles que $\lim_{n\to\infty} u(n) = 0$.

1) Déterminer si les ensembles $l_c^{\infty}(\mathbb{N})$ et $l_c^{\infty}(\mathbb{N})$ sont ouverts, resp. fermés. 2) Montrer que $l_0^{\infty}(\mathbb{N})$ est dense dans $l_c^{\infty}(\mathbb{N})$ pour la norme $||\cdot||_{\infty}$. 3) Soit $A \subset l^{\infty}(\mathbb{N})$ l'ensemble des suites croissantes bornées. Montrer que A est fermé pour la norme $||\cdot||_{\infty}$. 4) Soit $u_1, u_2 \in l^{\infty}(\mathbb{N})$ deux suites convergentes, c'est à dire telles que $\lim_{n\to\infty} u_i(n) = l_i \in \mathbb{R}$ existe pour i=1,2. Montrer que

$$|l_1 - l_2| \le ||u_1 - u_2||_{\infty}.$$

Soit C l'ensemble des suites convergentes. Montrer que $C \subset l^{\infty}(\mathbb{N})$ et que C est un fermé de $l^{\infty}(\mathbb{N})$. 5) Construire une suite $(u_p)_{p \in \mathbb{N}}$ d'éléments de $l^{\infty}_0(\mathbb{N})$ telle que pour tout $n \in \mathbb{N}$ la suite réelle $(u_p(n))_{p \in \mathbb{N}}$ est convergente dans \mathbb{R} mais la suite $(u_p)_{p \in \mathbb{N}}$ ne converge pas dans $l^{\infty}(\mathbb{N})$.

Solution. 1) $l_0^\infty(\mathbb{N})$ n'est pas fermé. C'est en effet ce qu'on a montré dans l'ex 12 du TD5, sur cette même page (?) $l_0^\infty(\mathbb{N})$ est-il ouvert ? Soit $u \in l_0^\infty(\mathbb{N})$ tq u = 0. Soit $\epsilon > 0$. On définit $v \in l^\infty(\mathbb{N})$ par $\forall n \in \mathbb{N}, v(n) = \frac{\epsilon}{2}$. Alors $||u - v||_{\infty} = \frac{\epsilon}{2} < \epsilon$. Donc $v \in B(u, \epsilon)$. Mais $v(n) = \frac{\epsilon}{2} > 0$ donc $v \notin l_0^\infty(\mathbb{N})$. Ainsi, $\forall \epsilon > 0, B(u, \epsilon) \not\subset l_0^\infty(\mathbb{N})$. Donc $l_0^\infty(\mathbb{N})$ n'est pas ouvert.

On peut procéder de la même façon pour montrer que $l_c^{\infty}(\mathbb{N})$ n'est pas ouvert.

 $l_c^{\infty}(\mathbb{N})$ n'est pas fermé. En effet, en considérant la suite $(u_k)_{k\in\mathbb{N}}$ définie par $\forall k\in\mathbb{N}, u_k=e_k$ (suite nulle sauf au k-ième terme qui vaut 1). Alors $\forall k\in\mathbb{N}, u_k\in l_0^{\infty}(\mathbb{N})\subset l_c^{\infty}(\mathbb{N})$. $||u_k-u_j||_{\infty}=\sup_{n\in\mathbb{N}}|\delta_{k,n}-\delta_{j,n}|=1$ si $k\neq j$. Donc (u_k) n'est pas de Cauchy, donc ne converge pas. (Autre argument) Si on considère la suite (v_k) tq $v_k(n)=\frac{1}{n+1}$ si $n\leq k$ et 0 sinon. Alors $\forall k\in\mathbb{N}, v_k\in l_0^{\infty}(\mathbb{N})\subset l_c^{\infty}(\mathbb{N})$. $\lim_{k\to\infty}v_k=v$ avec $v(n)=\frac{1}{n+1}$. $\lim_{n\to\infty}v(n)=0$. Donc $v\in l_c^{\infty}(\mathbb{N})$. On a une suite d'éléments de $l_0^{\infty}(\mathbb{N})$ convergeante dans $(l^{\infty}(\mathbb{N}),||\cdot||_{\infty})$ vers $v\in l_c^{\infty}(\mathbb{N})$. Est-ce que $l_c^{\infty}(\mathbb{N})$ est fermé? Soit $(u^{(k)})_{k\in\mathbb{N}}$ une suite d'éléments de $l_c^{\infty}(\mathbb{N})$ qui converge vers

Est-ce que $l_c^{\infty}(\mathbb{N})$ est fermé? Soit $(u^{(k)})_{k\in\mathbb{N}}$ une suite d'éléments de $l_c^{\infty}(\mathbb{N})$ qui converge vers $u\in l^{\infty}(\mathbb{N})$. Montrons que $u\in l_c^{\infty}(\mathbb{N})$. $\forall k\in\mathbb{N}$, $\lim_{n\to\infty}u^{(k)}(n)=0$. On a $u^{(k)}\to u$ dans $(l^{\infty}(\mathbb{N}),||\cdot||_{\infty})$, i.e. $||u^{(k)}-u||_{\infty}\xrightarrow{k\to\infty}0$. Soit $\epsilon>0$. $\exists K\in\mathbb{N}$ tel que $\forall k\geq K$, $||u^{(k)}-u||_{\infty}\leq \epsilon/2$. Donc $\forall n\in\mathbb{N}$, $|u^{(k)}(n)-u(n)|\leq \epsilon/2$. On fixe k=K. $u^{(K)}\in l_c^{\infty}(\mathbb{N})$, donc $\lim_{n\to\infty}u^{(K)}(n)=0$. Donc $\exists N\in\mathbb{N}$ tel que $\forall n\geq N$, $|u^{(K)}(n)|\leq \epsilon/2$. Alors $\forall n\geq N$, $|u(n)|\leq |u(n)-u^{(K)}(n)|+|u^{(K)}(n)|\leq \epsilon/2+\epsilon/2=\epsilon$. Donc $\lim_{n\to\infty}u(n)=0$. Donc $u\in l_c^{\infty}(\mathbb{N})$. Ainsi, $l_c^{\infty}(\mathbb{N})$ est fermé.

- 2) Il faut montrer que $\operatorname{Adh}(l_0^\infty(\mathbb{N}))\supset l_c^\infty(\mathbb{N})$. Soit $u\in l_c^\infty(\mathbb{N})$. Montrons qu'il existe une suite $(u_k)_{k\in\mathbb{N}}$ d'éléments de $l_0^\infty(\mathbb{N})$ telle que $||u_k-u||_\infty\to 0$. Soit $u\in l_c^\infty(\mathbb{N})$. On a $\lim_{n\to\infty}u(n)=0$. Soit $\epsilon>0$. $\exists N\in\mathbb{N}$ tel que $\forall n\geq N, |u(n)|\leq \epsilon$. On considère la suite $(u_k)_{k\in\mathbb{N}}$ définie par $\forall k\in\mathbb{N}, u_k(n)=u(n)$ si $n\leq k$ et 0 sinon. $\forall k\in\mathbb{N}, u_k\in l_0^\infty(\mathbb{N})$. Montrons que $u_k\to u$ dans $(l^\infty(\mathbb{N}),||\cdot||_\infty)$. $||u_k-u||_\infty=\sup_{n\in\mathbb{N}}|u_k(n)-u(n)|=\sup_{n>k}|u(n)|$. Comme $\lim_{n\to\infty}u(n)=0$, on a $\lim_{k\to\infty}\sup_{n>k}|u(n)|=0$. (Soit $\epsilon>0$. $\exists N$ tel que $\forall n\geq N, |u(n)|\leq \epsilon$. Alors pour $k\geq N, \sup_{n>k}|u(n)|\leq \sup_{n\geq N}|u(n)|\leq \epsilon$). Donc $||u_k-u||_\infty\xrightarrow{k\to\infty}0$. Donc $l_0^\infty(\mathbb{N})$ est dense dans $l_c^\infty(\mathbb{N})$.
- 4) Soit $u_1, u_2 \in C$. $\lim_{n \to \infty} u_1(n) = l_1$, $\lim_{n \to \infty} u_2(n) = l_2$. Montrons que $|l_1 l_2| \le ||u_1 u_2||_{\infty}$. Soit $\epsilon > 0$. $\exists N_1$ tel que $\forall n \ge N_1$, $|u_1(n) l_1| \le \epsilon/2$. $\exists N_2$ tel que $\forall n \ge N_2$, $|u_2(n) l_2| \le \epsilon/2$. Soit $N = \max(N_1, N_2)$. Pour n = N: $|l_1 l_2| \le |l_1 u_1(N)| + |u_1(N) u_2(N)| + |u_2(N) l_2|$ $|l_1 l_2| \le \epsilon/2 + |u_1(N) u_2(N)| + \epsilon/2 |l_1 l_2| \le \epsilon + \sup_{n \in \mathbb{N}} |u_1(n) u_2(n)| |l_1 l_2| \le \epsilon + ||u_1 u_2||_{\infty}$. Ceci étant vrai pour tout $\epsilon > 0$, on a $|l_1 l_2| \le ||u_1 u_2||_{\infty}$.

Montrons que $C \subset l^{\infty}(\mathbb{N})$ et C est fermé. Soit $u \in C$. $\lim_{n \to \infty} u(n) = l$. Toute suite convergente est bornée. Donc $u \in l^{\infty}(\mathbb{N})$. Donc $C \subset l^{\infty}(\mathbb{N})$. Montrons que C est fermé. Soit $(u_p)_{p \in \mathbb{N}}$ une suite

d'éléments de C, qui converge vers $u \in l^{\infty}(\mathbb{N})$. Il faut montrer que $u \in C$. $\forall p \in \mathbb{N}, u_p \in C$, donc $\lim_{n \to \infty} u_p(n) = l_p$. $u_p \to u$ dans $(l^{\infty}(\mathbb{N}), ||\cdot||_{\infty})$, i.e. $||u_p - u||_{\infty} \xrightarrow{p \to \infty} 0$. La suite (u_p) converge dans $l^{\infty}(\mathbb{N})$, donc elle est de Cauchy. $||u_p - u_q||_{\infty} \xrightarrow{p,q \to \infty} 0$. D'après ce qui précède, $|l_p - l_q| \le ||u_p - u_q||_{\infty}$. Donc $(l_p)_{p \in \mathbb{N}}$ est une suite de Cauchy dans \mathbb{R} qui est complet, donc (l_p) converge. Soit l sa limite. Il reste à montrer que $u_n \to l$. Pour cela, on peut utiliser l'inégalité triangulaire : $|u(n) - l| \le |u(n) - u_p(n)| + |u_p(n) - l_p| + |l_p - l|$. $|u(n) - l| \le ||u - u_p||_{\infty} + |u_p(n) - l_p| + |l_p - l|$. Soit $\epsilon > 0$. $||u - u_p||_{\infty} \xrightarrow{p \to \infty} 0 \Longrightarrow \exists P_1$ tel que $\forall p \ge P_1, ||u - u_p||_{\infty} \le \epsilon/3$. $l_p \to l \Longrightarrow \exists P_2$ tel que $\forall p \ge P_2, |l_p - l| \le \epsilon/3$. Soit $p = \max(P_1, P_2)$. On a $u_p \in C$, donc $\lim_{n \to \infty} u_p(n) = l_p$. $\exists N_p$ tel que $\forall n \ge N_p, |u_p(n) - l_p| \le \epsilon/3$. Alors $\forall n \ge N_p, |u(n) - l| \le \epsilon/3 + \epsilon/3 = \epsilon$. Donc $\lim_{n \to \infty} u(n) = l$. Donc $u \in C$. Ainsi, C est fermé.

5) On cherche une suite $(u_p)_{p\in\mathbb{N}}$ d'éléments de $l_0^{\infty}(\mathbb{N})$ 'simplement convergente' mais pas convergente dans $l^{\infty}(\mathbb{N})$. On peut considérer la suite (u_p) définie par $u_p=e_p$ (la suite qui vaut 1 en p et 0 sinon). $\forall p\in\mathbb{N}, u_p\in l_0^{\infty}(\mathbb{N})$. Pour n fixé, la suite $(u_p(n))_{p\in\mathbb{N}}=(\delta_{p,n})_{p\in\mathbb{N}}$. $\lim_{p\to\infty}u_p(n)=0$. La suite (u_p) converge simplement vers la suite nulle. Mais $||u_p-0||_{\infty}=||e_p||_{\infty}=1$. Donc u_p ne converge pas vers 0 dans $l^{\infty}(\mathbb{N})$. $||u_p-u_q||_{\infty}=||e_p-e_q||_{\infty}=1$ si $p\neq q$. La suite (u_p) n'est pas de Cauchy, donc ne converge pas dans $l^{\infty}(\mathbb{N})$.

Autre exemple (celui des notes): Soit $u_p(n) = \frac{n}{n+p}$ si $n \leq p$ et $\frac{p}{n}$ si n > p. (Attention, cette suite n'est pas dans $l_0^{\infty}(\mathbb{N})$). Considérons $u_p(n) = 1 - \frac{n}{p}$ si $n \leq p$ et 0 si n > p. Alors $\forall p, u_p \in l_0^{\infty}(\mathbb{N})$. Pour n fixé, $\lim_{p \to \infty} u_p(n) = 1$. La suite (u_p) converge simplement vers la suite constante u(n) = 1. La suite u = (1, 1, 1, ...) n'est pas dans $l_c^{\infty}(\mathbb{N})$ et n'est pas la limite de (u_p) dans l^{∞} . $||u_p - u||_{\infty} = \sup_{n \in \mathbb{N}} |u_p(n) - 1| = \sup_{n \leq p} |1 - n/p - 1| = \sup_{n \leq p} |n/p| = p/p = 1$. Donc (u_p) ne converge pas vers u dans l^{∞} . Elle ne converge pas du tout dans l^{∞} .

Prenons la suite $(u_p)_{p\in\mathbb{N}}$ où $u_p(n)=\frac{1}{n}$ si $p\leq n\leq 2p$ et 0 sinon. $\forall p\in\mathbb{N}, u_p\in l_0^\infty(\mathbb{N})$. Pour n fixé, $u_p(n)=0$ pour p>n. Donc $\lim_{p\to\infty}u_p(n)=0$. La suite (u_p) converge simplement vers 0. $||u_p-0||_{\infty}=\sup_{n\in\mathbb{N}}|u_p(n)|=\sup_{p\leq n\leq 2p}\frac{1}{n}=\frac{1}{p}$. Donc $||u_p||_{\infty}\to 0$. Donc (u_p) converge vers 0 dans $l^\infty(\mathbb{N})$.

Essayons $u_p(n) = \frac{n}{p^2}$ si $n \leq p$, 0 si n > p. $u_p \in l_0^\infty(\mathbb{N})$. $\lim_{p \to \infty} u_p(n) = 0$ pour tout n. Convergence simple vers 0. $||u_p||_{\infty} = \sup_{n \leq p} \frac{n}{p^2} = \frac{p}{p^2} = \frac{1}{p}$. Converge vers 0 dans l^∞ . Il faut une suite (u_p) de $l_0^\infty(\mathbb{N})$ telle que $\forall n, (u_p(n))_p$ converge mais $(u_p)_p$ ne converge pas dans l^∞ .

Il faut une suite (u_p) de $l_0^{\infty}(\mathbb{N})$ telle que $\forall n, (u_p(n))_p$ converge mais $(u_p)_p$ ne converge pas dans l^{∞} . On a vu que $u_p = e_p$ fonctionne. $\forall p, u_p \in l_0^{\infty}(\mathbb{N})$. $\forall n, \lim_{p \to \infty} u_p(n) = 0$. (u_p) ne converge pas dans $l^{\infty}(\mathbb{N})$ car $||u_p||_{\infty} = 1$.

Exercice 2

Soit $(E, ||\cdot||)$ un espace vectoriel normé et $A \subset E$ une partie de E. On note par Vect(A) l'espace vectoriel engendré par A, c'est à dire l'ensemble des combinaisons linéaires (finies) d'éléments de A. Montrer que

$$Vect(Adh(A)) \subset Adh(Vect(A)).$$

Solution. Soit $x \in \text{Vect}(\text{Adh}(A))$. Par définition, x peut s'écrire comme une combinaison linéaire finie d'éléments de Adh(A). $x = \sum_{i=1}^n \alpha_i a_i$, où $n \in \mathbb{N}^*$, $\alpha_i \in \mathbb{K}$ (corps de base, \mathbb{R} ou \mathbb{C}) et $a_i \in \text{Adh}(A)$ pour i = 1, ..., n. Comme $a_i \in \text{Adh}(A)$, pour tout $i \in \{1, ..., n\}$, il existe une suite $(a_i^{(k)})_{k \in \mathbb{N}}$ d'éléments de A telle que $\lim_{k \to \infty} a_i^{(k)} = a_i$.

Considérons la suite $(x^{(k)})_{k\in\mathbb{N}}$ définie par $x^{(k)}=\sum_{i=1}^n\alpha_ia_i^{(k)}$. Pour tout $k\in\mathbb{N},\ x^{(k)}$ est une

combinaison linéaire d'éléments de A, donc $x^{(k)} \in \text{Vect}(A)$. Montrons que $x^{(k)}$ converge vers x.

$$||x^{(k)} - x|| = \left\| \sum_{i=1}^{n} \alpha_i a_i^{(k)} - \sum_{i=1}^{n} \alpha_i a_i \right\|$$
$$= \left\| \sum_{i=1}^{n} \alpha_i (a_i^{(k)} - a_i) \right\|$$
$$\leq \sum_{i=1}^{n} |\alpha_i| ||a_i^{(k)} - a_i||$$

Comme $\lim_{k\to\infty} a_i^{(k)} = a_i$, on a $\lim_{k\to\infty} ||a_i^{(k)} - a_i|| = 0$ pour tout i. Donc, $\lim_{k\to\infty} \sum_{i=1}^n |\alpha_i|||a_i^{(k)} - a_i|| = 0$. Par le théorème des gendarmes, $\lim_{k\to\infty} ||x^{(k)} - x|| = 0$. Donc $x^{(k)} \to x$.

On a construit une suite $(x^{(k)})_{k\in\mathbb{N}}$ d'éléments de $\operatorname{Vect}(A)$ qui converge vers x. Par définition de l'adhérence, cela signifie que $x\in\operatorname{Adh}(\operatorname{Vect}(A))$. Ainsi, $\operatorname{Vect}(\operatorname{Adh}(A))\subset\operatorname{Adh}(\operatorname{Vect}(A))$.

Exercice 3

Soit $A, B, C \subset E$ des parties d'un espace vectoriel normé E. 1) Montrer que si $C \subset B$ alors $d(A, B) \leq d(A, C)$. 2) On note par \bar{A} l'adhérence d'un ensemble A. Montrer que $d(\bar{A}, \bar{B}) = d(A, B)$ pour tous $A, B \subset E$.

Solution. 1) $d(A, C) = \inf\{||a - c||; a \in A, c \in C\}$. $d(A, B) = \inf\{||a - b||; a \in A, b \in B\}$. L'ensemble $\{||a - b||; a \in A, b \in B\}$ contient l'ensemble $\{||a - c||; a \in A, c \in C\}$ car $C \subset B$. Donc $\inf\{||a - b||; a \in A, b \in B\} \le \inf\{||a - c||; a \in A, c \in C\}$. C'est-à-dire $d(A, B) \le d(A, C)$.

2) Montrons $d(\bar{A}, \bar{B}) \leq d(A, B)$. On a $A \subset \bar{A}$ et $B \subset \bar{B}$. D'après 1), comme $B \subset \bar{B}$, on a $d(A, \bar{B}) \leq d(A, B)$. D'après 1), comme $A \subset \bar{A}$, on a $d(\bar{A}, \bar{B}) \leq d(A, \bar{B})$. (On applique 1) avec $A' = \bar{B}$, B' = E, C' = A. On a $d(A', A) \leq d(A', \bar{A})$? Non. La distance est symétrique: d(X, Y) = d(Y, X). $d(\bar{A}, \bar{B}) = \inf\{||\bar{a} - \bar{b}||; \bar{a} \in \bar{A}, \bar{b} \in \bar{B}\}$. $d(\bar{A}, \bar{B}) = \inf\{||\bar{a} - \bar{b}||; \bar{a} \in \bar{A}, \bar{b} \in \bar{B}\}$. Comme $A \subset \bar{A}$, l'ensemble $\{||\bar{a} - \bar{b}||; \bar{a} \in \bar{A}, \bar{b} \in \bar{B}\}$ contient $\{||a - \bar{b}||; \bar{a} \in \bar{A}, \bar{b} \in \bar{B}\}$. Donc $d(\bar{A}, \bar{B}) \leq d(\bar{A}, \bar{B})$. Combinant les deux, $d(\bar{A}, \bar{B}) \leq d(\bar{A}, \bar{B})$.

Montrons $d(A, B) \leq d(\bar{A}, \bar{B})$. Soit $\epsilon > 0$. Par définition de l'infimum, il existe $\bar{a} \in \bar{A}$ et $\bar{b} \in \bar{B}$ tels que $||\bar{a}-\bar{b}|| < d(\bar{A},\bar{B}) + \epsilon/2$. Comme $\bar{a} \in \bar{A}$, il existe $a \in A$ tel que $||\bar{a}-a|| < \epsilon/4$. Comme $\bar{b} \in \bar{B}$, il existe $b \in B$ tel que $||\bar{b}-b|| < \epsilon/4$. Alors $||a-b|| \leq ||a-\bar{a}|| + ||\bar{a}-\bar{b}|| + ||\bar{b}-b|| ||a-b|| < \epsilon/4 + d(\bar{A},\bar{B}) + \epsilon/2 + \epsilon/4$ $||a-b|| < d(\bar{A},\bar{B}) + \epsilon$. On a trouvé $a \in A, b \in B$ tels que $||a-b|| < d(\bar{A},\bar{B}) + \epsilon$. Ceci implique que $d(A,B) = \inf\{||a-b||; a \in A, b \in B\} \leq d(\bar{A},\bar{B}) + \epsilon$. Ceci étant vrai pour tout $\epsilon > 0$, on conclut que $d(A,B) \leq d(\bar{A},\bar{B})$.

Ayant montré les deux inégalités, on a $d(A, B) = d(\bar{A}, \bar{B})$.

Exercice 4

Soit E un espace vectoriel normé et F un sous espace vectoriel de E. 1) Montrer que Adh(F) est un sous espace vectoriel de E. 2) Montrer que si $Int(F) \neq \emptyset$ alors F = E.

Solution. 1) Soient $x, y \in Adh(F)$ et $\lambda \in \mathbb{K}$ (corps de base). Montrons que $x + y \in Adh(F)$ et $\lambda x \in Adh(F)$. Comme $x \in Adh(F)$, il existe une suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de F telle que $x_n \to x$. Comme $y \in Adh(F)$, il existe une suite $(y_n)_{n \in \mathbb{N}}$ d'éléments de F telle que $y_n \to y$. Considérons la suite $(x_n + y_n)_{n \in \mathbb{N}}$. Comme F est un SEV, $x_n + y_n \in F$ pour tout n. De plus, $x_n + y_n \to x + y$ car l'addition est continue. Donc $x + y \in Adh(F)$. Considérons la suite $(\lambda x_n)_{n \in \mathbb{N}}$. Comme F est un SEV, $\lambda x_n \in F$ pour tout n. De plus, $\lambda x_n \to \lambda x$ car la multiplication par un scalaire est continue. Donc $\lambda x \in Adh(F)$. Enfin, $0_F \in F \subset Adh(F)$, donc Adh(F) est non vide. Ainsi, Adh(F) est un sous-espace vectoriel de E.

2) On suppose que $\operatorname{Int}(F) \neq \emptyset$. Cela signifie qu'il existe $y_0 \in \operatorname{Int}(F)$. Par définition de l'intérieur, il existe $\delta > 0$ tel que $B(y_0, \delta) \subset F$. Soit $x \in E$. On veut montrer que $x \in F$. Si $x = 0_E$, alors $x \in F$ car F est un SEV. Supposons $x \neq 0_E$. Considérons $z = y_0 + \frac{\delta}{2||x||}x$. $||z - y_0|| = ||\frac{\delta}{2||x||}x|| = \frac{\delta}{2||x||}||x||| = \frac{\delta}{2} < \delta$. Donc $z \in B(y_0, \delta)$. Comme $B(y_0, \delta) \subset F$, on a $z \in F$. Puisque $z = y_0 + \frac{\delta}{2||x||}x$ et $y_0 \in F$, et que F est un SEV, on a: $\frac{\delta}{2||x||}x = z - y_0 \in F$. Comme $\frac{\delta}{2||x||}$ est un scalaire non nul, et que F est un SEV, on peut multiplier par l'inverse du scalaire: $x = \frac{2||x||}{\delta}(\frac{\delta}{2||x||}x) \in F$. Donc, pour tout $x \in E$, on a $x \in F$. Ceci montre que $E \subset F$. Comme $F \subset E$ par définition, on conclut que F = E.

Exercice 5

On note par $E = \mathbb{R}[X]$ l'espace des polynômes à coefficients réels $P(x) = \sum_{n=0}^{d} a_n x^n$. 1) Montrer que

$$N_1(P) = \sup_{x \in [0,1]} |P(x)|$$
 et $N_2(P) = \sup_{x \in [1,2]} |P(x)|$

sont des normes sur E. 2) On considère l'application linéaire : $\varphi : E \to \mathbb{R}$, $P \mapsto P(0)$. Montrer que φ est continue pour la norme N_1 . 3) On rappelle que pour tout $y \in \mathbb{R}$ et $N \in \mathbb{N}$ on a

$$|e^y - \sum_{n=0}^N \frac{y^n}{n!}| \le \frac{|y|^{N+1}}{(N+1)!} e^{|y|}$$

En déduire que pour tout $C \ge 1$ et $1 \le x \le 2$ on a

$$|e^{-Cx} - \sum_{n=0}^{N} \frac{(-Cx)^n}{n!}| \le \frac{|Cx|^{N+1}}{(N+1)!} e^{|Cx|} \le \frac{(2C)^{N+1}}{(N+1)!} e^{2C}$$

4a) Soit $\epsilon > 0$ fixé. Montrer qu' il existe C > 0 assez grand tel que $\sup_{x \in [1,2]} e^{-Cx} \le \epsilon/2$. 4b) On fixe la constante C obtenue au point 4a). Montrer, en utilisant le point 3) et l' inégalité triangulaire pour la valeur absolue, qu' il existe $N \in \mathbb{N}$ assez grand tel que

$$\sup_{x \in [1,2]} |\sum_{n=0}^N \frac{(-Cx)^n}{n!}| \leq \epsilon. \quad \text{(Erreur dans l'énoncé scanné, il faut utiliser l'inégalité du 3))}$$

Indication : On admettra que pour tout $C \geq 1$ on a $\lim_{N \to \infty} \frac{C^{N+1}}{(N+1)!} = 0$. En déduire que pour tout $\epsilon > 0$ il existe un polynôme P(x) (dépendant de ϵ) tel que $P(0) = 1, N_2(P) \leq \epsilon$. 5) Montrer que l'application linéaire φ définie au point 2) n' est pas continue pour la norme N_2 .

 $\begin{array}{l} \textbf{Solution.} \ 1) \ \text{V\'erifions les propri\'e\'e\'s de norme pour $N_1.$ - $N_1(P) = \sup_{x \in [0,1]} |P(x)| \geq 0 \ \text{car } |P(x)| \geq 0. \\ \text{-} \ N_1(P) = 0 \implies \sup_{x \in [0,1]} |P(x)| = 0 \implies P(x) = 0 \ \text{pour tout } x \in [0,1]. \ \text{Un polyn\^ome non nul a un nombre fini de racines.} \ Si P est nul sur $[0,1]$ (qui est infini), alors P doit être le polyn\^ome nul. \\ \text{Donc $P = 0.$ - $N_1(\lambda P) = \sup_{x \in [0,1]} |\lambda P(x)| = \sup_{x \in [0,1]} |\lambda| |P(x)| = |\lambda| \sup_{x \in [0,1]} |P(x)| = |\lambda| N_1(P). \\ \text{-} \ N_1(P+Q) = \sup_{x \in [0,1]} |P(x)+Q(x)|. \ \text{On sait que } |P(x)+Q(x)| \leq |P(x)|+|Q(x)|. \ |P(x)| \leq \sup_{t \in [0,1]} |P(t)| = N_1(P). \ |Q(x)| \leq \sup_{t \in [0,1]} |Q(t)| = N_1(Q). \ \text{Donc } |P(x)+Q(x)| \leq N_1(P)+N_1(Q). \\ \text{pour tout $x \in [0,1]$. En prenant le supremum sur $x \in [0,1]$, on obtient $N_1(P+Q) \leq N_1(P)+N_1(Q)$. \\ \text{Donc N_1 est une norme sur E. La preuve est identique pour N_2 en remplaçant $[0,1]$ par $[1,2]$. Un polyn\^ome nul sur $[1,2]$ est le polyn\^ome nul. \\ \end{array}$

- 2) $\varphi: P \mapsto P(0)$. On veut montrer que φ est continue pour N_1 . Il suffit de montrer que φ est continue en 0. On cherche $C \geq 0$ tel que $|\varphi(P)| \leq CN_1(P)$ pour tout $P \in E$. $|\varphi(P)| = |P(0)|$. $N_1(P) = \sup_{x \in [0,1]} |P(x)|$. On a P(0) est une des valeurs de |P(x)| pour $x \in [0,1]$ (en x = 0). Donc $|P(0)| \leq \sup_{x \in [0,1]} |P(x)| = N_1(P)$. On peut prendre C = 1. $|\varphi(P)| \leq 1 \cdot N_1(P)$. Donc φ est continue pour la norme N_1 .
- 3) L'inégalité $|e^y \sum_{n=0}^N \frac{y^n}{n!}| \le \frac{|y|^{N+1}}{(N+1)!} e^{|y|}$ est rappelée (c'est l'inégalité de Taylor-Lagrange ou Taylor avec reste intégral). On l'applique avec y = -Cx. Comme $x \in [1,2]$ et $C \ge 1$, on a $Cx \ge 1$. |y| = |-Cx| = Cx. $e^{|y|} = e^{Cx}$. Comme $x \in [1,2]$, $Cx \le 2C$. Donc $e^{Cx} \le e^{2C}$. $|y|^{N+1} = (Cx)^{N+1} = (Cx)^{N+1}$

 $\begin{array}{l} C^{N+1}x^{N+1}. \ \ \text{Comme} \ x \leq 2, \ x^{N+1} \leq 2^{N+1}. \ \ \text{Donc} \ |y|^{N+1} \leq C^{N+1}2^{N+1} = (2C)^{N+1}. \ \ \text{On obtient} : \\ |e^{-Cx} - \sum_{n=0}^{N} \frac{(-Cx)^n}{n!}| \leq \frac{(Cx)^{N+1}}{(N+1)!} e^{Cx} \leq \frac{(2C)^{N+1}}{(N+1)!} e^{2C}. \\ \text{4a) Soit } \epsilon > 0. \ \ \text{On cherche} \ C > 0 \ \text{tel que sup}_{x \in [1,2]} e^{-Cx} \leq \epsilon/2. \ \ \text{La fonction} \ x \mapsto e^{-Cx} \ \text{est} \end{array}$

- 4a) Soit $\epsilon > 0$. On cherche C > 0 tel que $\sup_{x \in [1,2]} e^{-Cx} \le \epsilon/2$. La fonction $x \mapsto e^{-Cx}$ est décroissante pour C > 0. Le supremum est atteint en x = 1. $\sup_{x \in [1,2]} e^{-Cx} = e^{-C}$. On veut $e^{-C} \le \epsilon/2$. $-\ln(e^{-C}) \ge -\ln(\epsilon/2)$ $C \ge -\ln(\epsilon/2) = \ln(2/\epsilon)$. Il suffit de choisir C assez grand, par exemple $C = \max(1, \ln(2/\epsilon))$.
- 4b) Fixons $C = \max(1, \ln(2/\epsilon))$. On a $\sup_{x \in [1,2]} e^{-Cx} \le \epsilon/2$. Soit $P_N(x) = \sum_{n=0}^N \frac{(-Cx)^n}{n!}$. C'est un polynôme. On veut montrer qu'il existe N tel que $\sup_{x \in [1,2]} |P_N(x)| \le \epsilon$. (Ceci semble être l'objectif modifié, pas celui de l'énoncé scanné). Utilisons l'inégalité triangulaire: $|P_N(x)| \le |P_N(x)| \le |P_N(x)| e^{-Cx}| + |e^{-Cx}|$. $|P_N(x)| \le |e^{-Cx} \sum_{n=0}^N \frac{(-Cx)^n}{n!}| + |e^{-Cx}|$. $|P_N(x)| \le \frac{(2C)^{N+1}}{(N+1)!} e^{2C} + e^{-Cx}$. On sait que $\sup_{x \in [1,2]} e^{-Cx} \le \epsilon/2$. On sait que $\lim_{N \to \infty} \frac{(2C)^{N+1}}{(N+1)!} = 0$. Donc, il existe $N_0 \in \mathbb{N}$ tel que pour $N \ge N_0$, $\frac{(2C)^{N+1}}{(N+1)!} e^{2C} \le \epsilon/2$. Alors, pour $N \ge N_0$, et pour tout $x \in [1,2]$: $|P_N(x)| \le \epsilon/2 + \epsilon/2 = \epsilon$. Donc $N_2(P_N) = \sup_{x \in [1,2]} |P_N(x)| \le \epsilon$.

Déduction : On veut P(x) tel que P(0) = 1 et $N_2(P) \le \epsilon$. Le polynôme $P_N(x) = \sum_{n=0}^N \frac{(-Cx)^n}{n!}$ vérifie $P_N(0) = \frac{(-C \cdot 0)^0}{0!} = 1$. On a trouvé P_N pour N assez grand tel que $P_N(0) = 1$ et $N_2(P_N) \le \epsilon$. 5) Montrer que $\varphi : P \mapsto P(0)$ n'est pas continue pour N_2 . Il faut montrer qu'il n'existe pas de

5) Montrer que $\varphi: P \mapsto P(0)$ n'est pas continue pour N_2 . Il faut montrer qu'il n'existe pas de constante C telle que $|\varphi(P)| \leq CN_2(P)$ pour tout $P \in E$. $|\varphi(P)| = |P(0)|$. $N_2(P) = \sup_{x \in [1,2]} |P(x)|$. On cherche une suite de polynômes $(P_k)_{k \in \mathbb{N}}$ telle que $\frac{|\varphi(P_k)|}{N_2(P_k)} \to \infty$. C'est-à-dire $P_k(0)$ est "grand" tandis que $\sup_{x \in [1,2]} |P_k(x)|$ est "petit". D'après 4b), pour tout $\epsilon > 0$, il existe un polynôme P_ϵ tel que $P_\epsilon(0) = 1$ et $N_2(P_\epsilon) \leq \epsilon$. Prenons $\epsilon_k = 1/k$. Il existe P_k tel que $P_k(0) = 1$ et $N_2(P_k) \leq 1/k$. Alors $|\varphi(P_k)| = |P_k(0)| = 1$. $\frac{|\varphi(P_k)|}{N_2(P_k)} \geq \frac{1}{1/k} = k$. Comme $k \to \infty$, le rapport $\frac{|\varphi(P_k)|}{N_2(P_k)}$ n'est pas borné. Donc φ n'est pas continue pour la norme N_2 .

Exercice 6

On considère l'espace vectoriel normé C([-1,1]) des fonctions continues à valeurs réelles muni de la norme $||f||_{\infty} = \sup_{x \in [-1,1]} |f(x)|$. 1) Pour $n \in \mathbb{N}$ avec $n \ge 1$ on définit la fonction $f_n : [-1,1] \to \mathbb{R}$ par

$$f_n(x) = \begin{cases} 1+x & \text{pour } -1 \le x < -1/n \\ 1 - \frac{1}{2n} - \frac{n}{2}x^2 & \text{pour } -1/n \le x < 1/n \\ 1-x & \text{pour } 1/n \le x \le 1 \end{cases}$$

1a) Montrer que f_n est de classe C^1 sur [-1,1]. 1b) Déterminer la fonction $f = \lim_{n\to\infty} f_n$ dans C([-1,1]). Indication : commencer par dessiner les graphes de quelques fonctions f_n . 1c) L' ensemble $C^1([-1,1])$ est-il fermé dans C([-1,1]) ?

Solution. 1a) f_n est définie par morceaux par des polynômes, qui sont C^{∞} sur les intervalles ouverts. Il faut vérifier la continuité et la dérivabilité aux points de jonction x=-1/n et x=1/n. Continuité : En x=-1/n: $\lim_{x\to(-1/n)^-}f_n(x)=1+(-1/n)=1-1/n$. $f_n(-1/n)=1-\frac{1}{2n}-\frac{n}{2}(-1/n)^2=1-\frac{1}{2n}-\frac{n}{2}\frac{1}{n^2}=1-\frac{1}{2n}-\frac{1}{2n}=1-1/n$. C'est continu en -1/n. En x=1/n: $f_n(1/n)=1-\frac{1}{2n}-\frac{n}{2}(1/n)^2=1-\frac{1}{2n}-\frac{1}{2n}=1-1/n$. $\lim_{x\to(1/n)^+}f_n(x)=1-(1/n)=1-1/n$. C'est continu en 1/n. f_n est continue sur [-1,1].

Dérivabilité : Calculons la dérivée par morceaux : $f'_n(x) = 1$ pour -1 < x < -1/n. $f'_n(x) = -\frac{n}{2}(2x) = -nx$ pour -1/n < x < 1/n. $f'_n(x) = -1$ pour 1/n < x < 1. Dérivée en x = -1/n: $\lim_{x \to (-1/n)^-} f'_n(x) = 1$. $\lim_{x \to (-1/n)^+} f'_n(x) = -n(-1/n) = 1$. La dérivée est continue en -1/n, $f'_n(-1/n) = 1$. Dérivée en x = 1/n: $\lim_{x \to (1/n)^-} f'_n(x) = -n(1/n) = -1$. $\lim_{x \to (1/n)^+} f'_n(x) = -1$. La dérivée est continue en 1/n, $f'_n(1/n) = -1$. Donc f'_n est continue sur [-1, 1]. f_n est de classe C^1 sur [-1, 1].

1b) Dessin: f_n est linéaire croissante de (-1,0) à (-1/n,1-1/n), puis une parabole concave

1c) On a une since $(f_n)_{n\in\mathbb{N}}$ de fonctions dans C ([-1,1]) qui converge dans C ([-1,1]) vers f(x) = 1 - |x|. La fonction f(x) = 1 - |x| n'est pas dérivable en x = 0. Donc $f \notin C^1([-1,1])$. L'ensemble $C^1([-1,1])$ n'est pas fermé dans C([-1,1]) muni de la norme $||\cdot||_{\infty}$.

Exercice 7

Soit E l'ensemble $E = \{u \in C^1([0,1];\mathbb{R}) : u(0) = 0\}$. 1) Montrer que E est un espace vectoriel sur \mathbb{R} . 2) On pose

$$N_1(u) = \sup_{x \in [0,1]} |u'(x)|, \quad N_2(u) = \sup_{x \in [0,1]} |u'(x) + u(x)|.$$

Montrer que N_1 et N_2 sont des normes sur E. 3a) Montrer que $|u(x)| \leq N_1(u), \forall u \in E$. 3b) En déduire que $N_2(u) \leq 2N_1(u), \forall u \in E$. 4a) Montrer que si $u \in E$ alors $u(x) = e^{-x} \int_0^x (u(t) + u'(t))e^t dt$. Indication : calculer la dérivée du membre de droite et utiliser que $u \in E$. 4b) Montrer que $|u(t) + u'(t)|e^t| \leq eN_2(u), \forall t \in [0,1]$. 4c) En déduire que $|u(x)| \leq eN_2(u), \forall x \in [0,1]$. 4d) Montrer qu' il existe une constante $C \geq 0$ telle que $N_1(u) \leq CN_2(u), \forall u \in E$.

Solution. 1) $E = \{u \in C^1([0,1]; \mathbb{R}) : u(0) = 0\}$. E est un sous-ensemble de l'espace vectoriel $C^1([0,1]; \mathbb{R})$. - La fonction nulle u(x) = 0 est C^1 et u(0) = 0, donc $0 \in E$. E est non vide. - Soient $u, v \in E$ et $\lambda \in \mathbb{R}$. Alors u, v sont C^1 et u(0) = 0, v(0) = 0. u + v est C^1 . (u+v)(0) = u(0) + v(0) = 0 + 0 = 0. Donc $u+v \in E$. λu est C^1 . $(\lambda u)(0) = \lambda u(0) = \lambda \cdot 0 = 0$. Donc $\lambda u \in E$. E est un sous-espace vectoriel de $C^1([0,1]; \mathbb{R})$, donc c'est un espace vectoriel sur \mathbb{R} .

2) Montrons que N_1 est une norme sur E. - $N_1(u) = \sup_{x \in [0,1]} |u'(x)| \ge 0$. - $N_1(u) = 0 \Longrightarrow \sup_{x \in [0,1]} |u'(x)| = 0 \Longrightarrow u'(x) = 0$ pour tout $x \in [0,1]$. Ceci implique que u(x) est une fonction constante sur [0,1]. u(x) = k. Comme $u \in E$, on a u(0) = 0. Donc k = 0. u(x) = 0 pour tout $x \in [0,1]$. u = 0. - $u(x) = \sup_{x \in [0,1]} |u'(x)| = \sup_{x \in [0,1]} |u'(x)| = |u'(x)|$

Montrons que N_2 est une norme sur E. - $N_2(u) = \sup_{x \in [0,1]} |u'(x) + u(x)| \ge 0$. - $N_2(u) = 0 \implies \sup_{x \in [0,1]} |u'(x) + u(x)| = 0 \implies u'(x) + u(x) = 0$ pour tout $x \in [0,1]$. C'est une équation différentielle linéaire du premier ordre : y' + y = 0. La solution générale est $u(x) = Ke^{-x}$. Comme $u \in E$, u(0) = 0. $Ke^{-0} = 0 \implies K = 0$. Donc u(x) = 0 pour tout $x \in [0,1]$. u = 0. - $N_2(\lambda u) = \sup_{x \in [0,1]} |(\lambda u)'(x) + (\lambda u)(x)| = \sup_{x \in [0,1]} |\lambda u'(x) + \lambda u(x)| = |\lambda| \sup_{x \in [0,1]} |u'(x) + u(x)| = |\lambda| N_2(u)$. - $N_2(u+v) = \sup_{x \in [0,1]} |(u+v)'(x) + (u+v)(x)| = \sup_{x \in [0,1]} |(u'(x) + u(x)) + (v'(x) + v(x))|$. $|(u'(x) + u(x)) + (v'(x) + v(x))| \le |u'(x) + u(x)| + |v'(x) + v(x)| \le N_2(u) + N_2(v)$. Donc $N_2(u+v) \le N_2(u) + N_2(v)$. N_2 est une norme sur E.

3a) Pour $u \in E$, on a u(0) = 0. Par le théorème fondamental de l'analyse, u(x) = u(x) - u(0) = 0

- $\int_0^x u'(t)dt. \ |u(x)| = |\int_0^x u'(t)dt| \le \int_0^x |u'(t)|dt. \ \text{Comme} \ |u'(t)| \le \sup_{s \in [0,1]} |u'(s)| = N_1(u), \text{ on a: } |u(x)| \le \int_0^x N_1(u)dt = N_1(u) \int_0^x dt = N_1(u) \cdot x. \ \text{Comme} \ x \in [0,1], \ x \le 1. \ \text{Donc} \ |u(x)| \le N_1(u) \cdot x \le N_1(u).$
- 3b) $N_2(u) = \sup_{x \in [0,1]} |u'(x) + u(x)|. |u'(x) + u(x)| \le |u'(x)| + |u(x)|.$ D'après 3a), $|u(x)| \le N_1(u).$ $|u'(x)| \le \sup_{t \in [0,1]} |u'(t)| = N_1(u).$ Donc $|u'(x) + u(x)| \le N_1(u) + N_1(u) = 2N_1(u).$ Ceci est vrai pour tout $x \in [0,1].$ En prenant le supremum : $N_2(u) = \sup_{x \in [0,1]} |u'(x) + u(x)| \le 2N_1(u).$
- 4a) Soit $g(x) = e^{-x} \int_0^x (u(t) + u'(t))e^t dt$. Calculons g'(x). Posons $h(x) = \int_0^x (u(t) + u'(t))e^t dt$. $h'(x) = (u(x) + u'(x))e^x$. $g'(x) = (e^{-x})'h(x) + e^{-x}h'(x)$ $g'(x) = -e^{-x}h(x) + e^{-x}(u(x) + u'(x))e^x$ $g'(x) = -e^{-x} \int_0^x (u(t) + u'(t))e^t dt + u(x) + u'(x)$ g'(x) = -g(x) + u(x) + u'(x). Ce n'est pas u'(x). Revoyons l'indication. Calculer la dérivée de $f(x) = e^x u(x)$. $f'(x) = e^x u(x) + e^x u'(x) = e^x (u(x) + u'(x))$. Intégrons de 0 à x: $\int_0^x f'(t) dt = \int_0^x e^t (u(t) + u'(t)) dt$. $f(x) f(0) = \int_0^x e^t (u(t) + u'(t)) dt$. En multipliant par e^{-x} : $u(x) = e^{-x} \int_0^x e^t (u(t) + u'(t)) dt$.
- 4b) On veut montrer $|(u(t) + u'(t))e^t| \le eN_2(u)$ pour $t \in [0,1]$. $N_2(u) = \sup_{x \in [0,1]} |u(x) + u'(x)|$. Donc pour tout $t \in [0,1]$, $|u(t) + u'(t)| \le N_2(u)$. Comme $t \in [0,1]$, $e^t \le e^1 = e$. $|(u(t) + u'(t))e^t| = |u(t) + u'(t)|e^t \le N_2(u)e^t \le N_2(u)e = eN_2(u)$.
- 4c) De 4a), $u(x) = e^{-x} \int_0^x (u(t) + u'(t))e^t dt$. $|u(x)| = |e^{-x} \int_0^x (u(t) + u'(t))e^t dt| = e^{-x} |\int_0^x (u(t) + u'(t))e^t dt|$ $= e^{-x} \int_0^x (u(t) + u'(t))e^t dt$. En utilisant 4b): $|u(x)| \le e^{-x} \int_0^x eN_2(u) dt = e^{-x} eN_2(u) \int_0^x dt = e^{-x} eN_2(u)x$. $|u(x)| \le xe^{1-x} N_2(u)$. La fonction $f(x) = xe^{1-x}$ sur [0,1]. $f'(x) = 1 \cdot e^{1-x} + x(-e^{1-x}) = (1-x)e^{1-x}$. $f'(x) \ge 0$ sur [0,1]. f est croissante. Le maximum est en x = 1. $f(1) = 1 \cdot e^0 = 1$. Donc $|u(x)| \le N_2(u)$ pour tout $x \in [0,1]$. (L'énoncé demandait $|u(x)| \le eN_2(u)$, ce qui est aussi vrai car $N_2(u) \le eN_2(u)$).
- 4d) On veut $N_1(u) \leq CN_2(u)$. $N_1(u) = \sup_{x \in [0,1]} |u'(x)|$. On sait u'(x) + u(x) = v(x) où $|v(x)| \leq N_2(u)$. u'(x) = v(x) u(x). $|u'(x)| = |v(x) u(x)| \leq |v(x)| + |u(x)|$. $|v(x)| \leq N_2(u)$. D'après 4c) (la version améliorée), $|u(x)| \leq N_2(u)$. Donc $|u'(x)| \leq N_2(u) + N_2(u) = 2N_2(u)$. Ceci est vrai pour tout $x \in [0,1]$. En prenant le supremum: $N_1(u) = \sup_{x \in [0,1]} |u'(x)| \leq 2N_2(u)$. Il existe une constante C = 2 telle que $N_1(u) \leq CN_2(u)$. (Les normes N_1 et N_2 sont donc équivalentes sur E).