1999 年计算机数学基础

三、

3. 作最优树如下:

得最佳前缀码:

a-00;

b—01;

c—100;

d—101;

e—110;

f—1110;

g—11110;

h—11111;

每传输 100 个字母,需要传输 $25 \cdot 2 + 20 \cdot 2 + 15 \cdot 3 + 15 \cdot 3 + 10 \cdot 3 + 6 \cdot 4 + 5 \cdot 5 + 4 \cdot 5 = 279$ 个二进制位。所以传输 100^n 个按此概率分布的字母需用 $279 \cdot 100^{n-1}$ 个二进制位。

4.

证明:由于 $\delta^+(D) \geq 1$,所以 D 中有边。在 D 中构造一极大路径 Γ ,不妨记 $\Gamma = v_1 v_2 \cdots v_k$ 。由于 Γ 是极大路径,所以所有邻接于 v_k 的顶点都在 Γ 上。令 $s = \min\{i \mid \langle v_k, v_i \rangle \in E(D)\}$ 。考虑初级回路 $C = v_k v_s v_{s+1} \cdots v_k$,注意到,由于所有邻接于 v_k 的顶点都在 Γ 上,且 v_s 是所有邻接于 v_k 的顶点中编号最小的一个,所以其它邻接于 v_k 的顶点 v_i 都满足 s < i < k,从而都在 C 上。由于 G 中至少有 $\delta^+(D)$ 个顶点邻接于 v_k ,而这些顶点,连同 v_k 本身,都在 C 上,所以 C 中至少有 $\delta^+(D)$ + 1 个顶点。