Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2022

CE3ES02 / CE3ET02

Advanced Design of RCC Structures

Programme: B.Tech. Branch/Specialisation: CE

Duration: 3 Hrs. Maximum Marks: 60

Note: (a) All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- (b) Assume all suitable data. IS code for relevant design are permitted.
- Q.1 i. What is the degree of static indeterminacy of a pin supported portal 1 frame?
 - (a) 1 (b) 2
- (c) 3
- (d) 4
- Minimum grade of concrete in RCC for mild exposure condition-
 - (a) M20
- (b) M30
- (c) M40
- (d) M45
- Toe projection of cantilever retaining wall-
 - (a) 0.3B
- (b) 0.4B
- (c) 0.5B
 - (d) 0.6B
- Shear Key below the retaining wall is mainly designed to avoid 1
 - (a) Sliding

- (b) Overturning
- (c) Both (a) and (b)
- (d) None of these
- The modular ratio m of a concrete whose permissible compressive 1 stress is C, may be obtained from the equation.
 - (a) 280/3C (b) 300/3C
- (c) 380/3C
- (d) 480/4C

action.

- According to IS: 3370 (Part-2) permissible direct tensile stress in 1 M25 grade of concrete.
 - (a) 1.3

(a) PD/6t

(b) 1.5

(b) PD/4t

- (c) 1.7
- (d) 1.9
- Major load in the silo is resisted by _ (a) Bearing
 - (b) Bearing compression (d) Friction on side walls
- (c) Shearing tension viii. Formula for hoop tension is-
 - (c) PD/2t
- (d) PD/8t

P.T.O.

1

1

1

1

7

7

3

7

- ix. The classification of prestressed concrete is based on the method of 1
 - (a) Bending moments
- (b) Stresses acting

(c) Designing

- (d) Loading
- x. Prestressed concrete is widely used in construction by _____.
 - (a) Bore wells
- (b) Houses
- (c) Nuclear pressure vessels (d) Roofs
- Q.2 i. Draw diagram showing various components of industrial shed.

3

7

7

ii. A portal frame with ends hinged is to be analysed for the following data:

Spacing of frames = 4.5m, height of columns = 4.5m, distance between column centres = 10m, LL on roof = 2.5kN/m², SBC of soil is 150kN/square meter. Find design moments.

OR iii. Solve the frame shown in Fig. 01 by portal method.

Η 4 m 50 kN A coll = $A_{col2} =$ $A_{col3} =$ 10 000 20 000 15 000 4 m mm^2 mm^2 mm^2 5 m 5 m FIG:01

- Q.3 i. Define retaining wall. Give the name of various type of retaining 3 wall.
 - ii. Design a cantilever retaining wall to retain an earth embankment 7 with a horizontal top 3.5 m above ground level, density of earth =18kN/m³ angle of internal friction=30 degree, SBC of soil is 200kN/m². Take coefficient of friction between soil and concrete 0.5. Adopt M20 grade concrete and fe415 steel.

OR	iii.	Design a counterfort retaining wall to retain an earth embankment
		10m high above base slab, density of earth =18kN/m ³ angle of
		internal friction=30 degree, SBC of soil is 200kN/m ² .Take
		coefficient of friction between soil and concrete 0.45. Adopt M30
		grade concrete and fe250 steel. Assume centre to centre spacing
		between counterfort as 5 m.

- Q.4 i. What do you understand by water tank? What are the requirements 3 of water tank?
 - ii. Design a circular water tank with flexible base for capacity of 400kl. The depth of water is to be 5m. Take M20 and Fe250.
- OR iii. Design a wall of circular water tank of 200kl capacity having rigid wall and base connection. Maximum depth of water is limited to 3.2m.
- Q.5 i. Write the difference between bunker and silo.
 - ii. A silo with internal diameter 6m. height of cylindrical portion 15m and central opening with 0.5m is to be built to store wheat. Design the cylindrical wall.
- OR iii. Design a bunker to store 330 kN of coal with the following data:

 Unit weight of coal=8400N/m³

 Angle of repose=30 degree

 Coefficient of friction between coal and concrete=0.45
- Q.6 i. Discuss the advantages of prestressed concrete.
 - ii. A simply supported prestressed concrete beam of rectangular cross section 400*600mm is loaded with a total uniformly distributed load of 256 kN over a span of 6m. Sketch the distribution of stresses at mid span and end section if the prestressing force is 1920kN and the tendon is-
 - (a) Concentric
 - (b) Eccentric located at 200 mm above the bottom fibre
- OR iii. State the various losses in pretensioned member with expression.

Marking Scheme CE3ET02 Advanced Design of RCC Structures

Q.1		What is the degree of indeterminacy of a pin supported portal frame? B) 2	1
	i)	Minimum grade of concrete in RCC for mild exposure condition A) M20	1
	ii)	Toe projection of cantilever retaining wall A)0.3B	1
	iii)	Shear Key below the retaining wall is mainly designed to avoid A)Sliding	1
	iv)	The modular ratio <i>m</i> of a concrete whose permissible compressive stress is <i>C</i> , may be obtained from the equation. A) 280/3c	1
	v)	According to IS: 3370 (Part-2) permissible direct tensile stress in M25 grade of concrete. A)1.3	1
	vi)	Major load in the silo is resisted byaction D)friction on side walls	1
	vii)	Formula for hoop tension is C)PD/2t	1
	viii)	The classification of prestressed concrete is based on the method of B)Stresses acting	1
	ix)	Prestressed concrete is widely used in construction by c) Nuclear pressure vessels	1

Q.2	i.	Draw Diagram Showing various Components of Industrial Shed. 1 mark for each diagram		3
	ii.	General details	1 mark	7
		Load Calculation	2 marks	
		Design moments		
		For Beam	2 marks	
		For column	2 marks	
	iii.	shear force in column	0.5 marks	7
		moment in column	2marks	
		shear force in beam	0.5 marks	
		moment in beam	2 marks	
Q.3	i.	Define Retaining wall?	1 mark	3
		Give the name of various type of retaining wal	1? 2 marks	
	ii.	Design the stem of cantilever		7
		General arrangement details/drawing	1.5 mark	
		Proportioning	1 mark	
		Calculation of earth pressure	2 marks	
		Calculation of Bending moment	1.5 marks	
		Design of stem (steel calculation)	1 mark	
OR	iii.	Design the slab of a counterfort		7
		General arrangement details	1.5 mark	
		Drawing	1 mark	
		Calculation of earth pressure	2 marks	
		Calculation of Bending moment	1.5 marks	
		Design the upright slab (steel calculation)	1 mark	
Q.4	i.	what do you understand by water tank?	1 mark	3
•		what are the requirement of water tank?	2marks	
	ii.	Design a circular tank with flexible base for ca	- •	7
		General arrangement	1 mark	
		Capacity calculation	1.5 marks	

		Hoop tension and steel calculation 2 marks	s
		Vertical steel calculation 1.5 ma	arks
		Sketch 1 mar	·k
OR	iii.	Design a circular tank with rigid base for capacity 200 kL.	7
		General arrangement 1 mark	
		Capacity calculation 1.5 marks	
		Hoop tension and steel calculation 2 marks	
		Vertical steel calculation 1.5 marks	
		Sketch 1 mark	
Q.5	i.	Difference between bunker and silo? 1 mark each differe	ence 3
	ii.	Design the cylindrical wall and apply checks.	7
		Pressure calculation 3 marks	
		Design 2 marks	
		Checks 2 marks	
OR	iii.	Design side walls of a rectangular bunker	7
		Pressure calculation 3 marks	
		Design 3 marks	
		Sketch 1 mark	
Q.6	i.	advantages of prestressed concrete 1 marks each	h 3
Q.0	1.	advantages of prestressed concrete	
	ii.	Find eccentric prestressing force	7
		General arrangement details / sketch 2 ma	ırks
		Formula 1 mark	
		Calculation of e" and equation framing 3 ma	rks
		Calculation of force 1 marks	
OR	iii.	each losses in pretensioned member with expression? 1 m	arks*6 7
		Empirical formula 1 1	mark
