INSTITUTO INFNET ESCOLA SUPERIOR DE TECNOLOGIA DA INFORMAÇÃO GRADUAÇÃO EM GESTÃO DE TI

ARQUITETURA DE INFRAESTRUTURA DE APLICAÇÕES DISCIPLINA DE PROJETO

TESTE DE PERFORMANCE DA ETAPA 7

ALUNO: ILTON LACOPO JUNIOR

E-MAIL: Ilton.junior@al.infnet.edu.br

TURMA: GGTI – NOITE

MATRÍCULA: 08272342790

CURSO DE GESTÃO DE TECNOLOGIA DA INFORMAÇÃO

Ilton Lacopo Junior

Projeto de Bloco - Mapeando nossa aplicação em containers Docker Arquitetura de Infraestrutura de Aplicações

> Rio de Janeiro 2018

Ilton Lacopo Junior

Projeto de Bloco - Mapeando nossa aplicação em containers Docker Arquitetura de Infraestrutura de Aplicações

Teste de Performance 7 referente a disciplina Projeto de Bloco Arquitetura de Infraestrutura de Aplicações da graduação em Gestão de Tecnologia da Informação apresentado ao Instituto INFNET como requisito parcial para a obtenção de grau na Atividade proposta.

Projeto de Bloco Arquitetura de Infraestrutura de Aplicações

Rio de Janeiro

Sumário

l Pequena descrição da arquitetura da solução de virtualização que você pretende utilizar	1
1.1 Alguns componentes da aplicação	1
2 Comparações entre a AWS e Openstack	2
3 Um planejamento de como será feita a implantação da aplicação distribuída virtualizada	3
4 Um cronograma estimado com o prazo para execução de cada atividade	3
5 Bibliografia	4

1 - Uma pequena descrição textual teórica sobre a arquitetura da solução de virtualização que você pretende utilizar

O projeto em questão será controlado pelo WordPress, dessa maneira iremos alterar uma unidade instalável. Como a aplicação será em nuvem, seu código fonte é cedido através do GitHub. O código tem o controle de versões gerenciado através do GitHub. A aplicação possui um fórum público onde desenvolvedores e colaboradores podem compartilhar suas propostas de otimização e comentários sobre a aplicação e bugs. O código fonte está no GitHub, então os demais desenvolvedores podem alterar estes códigos acrescentando as reparações e otimizando desta maneira o código.

1.1 - Alguns componentes da Aplicação

- **IAM** Identity and Access Management permite que você gerencie com segurança o acesso aos serviços e recursos da AWS. Usando o IAM, você pode criar e gerenciar usuários e grupos da AWS, além de usar permissões para conceder e negar acesso a recursos da AWS.
- **EC2** O Amazon Elastic Compute Cloud (Amazon EC2) é um web service que disponibiliza capacidade computacional segura e redimensionável na nuvem. Ele foi criado para facilitar para os desenvolvedores a computação em nuvem na escala da web.
- **VPC** A Amazon Virtual Private Cloud (Amazon VPC) permite provisionar uma seção da Nuvem AWS isolada logicamente onde é possível executar recursos da AWS em uma rede virtual que você mesmo define.
- S3 As empresas atuais precisam coletar, armazenar e analisar dados em escalas massivas com simplicidade e segurança. O Amazon S3 é um armazenamento de objetos criado para armazenar e recuperar qualquer quantidade de dados de qualquer local: sites e aplicativos móveis, aplicativos corporativos e dados de sensores ou dispositivos da IoT
- **RDS** O Amazon Relational Database Service (Amazon RDS) facilita configurar, operar e escalar bancos de dados relacionais na nuvem. O serviço oferece capacidade econômica e redimensionável e automatiza tarefas demoradas de administração, como provisionamento de hardware, configuração de bancos de dados, aplicação de patches e backups
- **ROUTE53** O Amazon Route 53 é um web service de nuvem do sistema de nomes de domínio (DNS) altamente disponível e escalável. Ele é projetado para oferecer aos desenvolvedores e empresas uma maneira extremamente confiável e de baixo custo de rotear os usuários finais para aplicações de Internet traduzindo nomes como www.example.com para endereços IP numéricos como 192.0.2.1, usados por computadores para se conectarem entre si.

2 - Comparações entre a forma como você pretende implantar seu ambiente e outras abordagens, usando outras ferramentas

Podemos utilizar a tecnologia OpenStack, pois se trata de uma ferramenta que permite criar e gerenciar nuvens públicas e privadas. A seguir será mostrado uma comparação entre alguns serviços utilizados no OpenStack e pela AWS (Amazon Web Services).

Comparação OpenStack X AWS	OpenStack	AWS
Máquinas virtuais	Sabores : Variedade de tamanhos: micro, pequeno, médio, grande etc	Variedade de tamanhos: micro, pequeno, médio, grande etc
Networking	Nêutron: Cada instância virtual é automaticamente atribuída a um endereço IP privado, geralmente usando DHCP	Networking: A AWS aloca um endereço IP privado para a instância usando o DHCP
Monitoramento	Ceilometer: Coletar medições da utilização dos recursos físicos e virtuais que compreendem nuvens implantadas	Cloudwatch: Serviço de monitoramento para recursos de nuvem da AWS e os aplicativos na AWS
Segurança	Keypairs, grupos de segurança	Keypairs, grupos de segurança
Identidade	Keystone	Gerenciamento de identidade e acesso do IAM
Armazenamento	Cinder: Criação de unidades de disco virtuais (volumes)	EBS – Elastic Block Storage
Banco de Dados	Trove: MySQL, PostgresSQL	RDS: Os usuários obtêm uma instância do MYSQL ou do Oracle 11g.

3 - Um planejamento passo a passo (com descrições de cada etapa) de como será feita a implantação da aplicação distribuída virtualizada

4 - Um cronograma estimado com o prazo para execução de cada atividade

Devido a infraestrutura ser gerenciado em nuvem pela AWS iremos precisar de apenas 3 meses para elaborar toda infraestrutura e rodar a aplicação, pois a criação dos serviços que ficam alocados na AWS não demandam muito tempo.

Desta forma serão precisos 3 meses para criar todos os serviços necessários que serão:

- Criação dos serviços pertinentes a aplicação que terá que funcionar
- ➤ Efetuar as configurações pertinentes aos serviços que serão utilizados
- Testar os serviços antes de entregar ao cliente final
- > Apresentar aplicação funcionando junto ao cliente final
- Prestar a consultoria para os funcionários da clínica em relação ao uso e acesso da aplicação

5 - Bibliografia

Ambiente Virtual de Aprendizado Disponível em:http://lms.infnet.edu.br/moodle/course/view.php?id=1177> Acesso em 15 de abril de 2018

WALKER, Matt. CEH Certified ethical hacker. New York: McGraw-Hill, 2014.

TIPTON, Harold F., HERNANDEZ, Steven. Official (ISC)² guide to the CISSP CBK. Boca Raton: CRC Press, 2013.

PELTIER, Thomas R. Information security policies, procedures, and standards: guideline for effective information security management. Florida: Auerbach Publications, 2002