Analiza Tunowalności Hiperparametrów w Algorytmach Uczenia Maszynowego

Maciej Kordyaczny Bartosz Jadczak

21 listopada 2023

Wstęp

W ramach analizy tunowalności hiperparametrów trzech wybranych algorytmów uczenia maszynowego – Random Forest, Gradient Boosting oraz k-Nearest Neighbors (k-NN), podjęliśmy się zadania optymalizacji ich parametrów na czterech niewielkich zbiorach danych, każdy składający się z około 1000 elementów. Celem naszego eksperymentu jest dogłębne zrozumienie, jak różne techniki losowania punktów wpływają na proces tunowania hiperparametrów, a także jakie są efektywności i charakterystyki optymalizacyjne poszczególnych algorytmów.

Wybór Algorytmów i Zbiorów Danych

1. Algorytmy:

- Random Forest: Wybór tego algorytmu wynika z jego zdolności do obsługi złożonych zbiorów danych i radzenia sobie z problemem overfittingu.
- Gradient Boosting: Jako jeden z najskuteczniejszych algorytmów, gradient boosting stanowi istotną alternatywę, zwłaszcza w kontekście silnych, skomplikowanych modeli.
- k-Nearest Neighbors (k-NN): Algorytm k-NN został uwzględniony z uwagi na jego prostotę i skuteczność w problemach klasyfikacji.

2. Zbiory Danych:

- Wybór czterech niewielkich zbiorów danych o około 1000 elementach pozwoli nam skoncentrować się na efektywnym tunowaniu hiperparametrów bez nadmiernego obciążenia obliczeniowego.
- Wybraliśmy tak 4 zbiory danych, aby ograniczyć kolumny z wartościami nie numerycznymi w celu ułatwienia procesu przygotowania danych do tunowania hiperparametrów.

Cel Eksperymentu

Nasz eksperyment ma na celu nie tylko zoptymalizowanie hiperparametrów poszczególnych algorytmów, ale również porównanie różnych metod ich tunowania. Wykorzystamy techniki losowania punktów, takie jak Uniform Grid Search, Random Search, oraz Bayes Optimization, aby uzyskać głębsze zrozumienie wpływu tych strategii na proces optymalizacji. Analiza wyników pozwoli nam ocenić, które hiperparametry są kluczowe dla efektywności modeli w kontekście różnych algorytmów i zbiorów danych. Ostatecznie, nasze badania będą miały na celu dostarczenie praktycznych wskazówek dotyczących tunowalności hiperparametrów w kontekście małych zbiorów danych.

1 Metody Samplingu

W tej sekcji przedstawimy dwie wybrane metody samplingu, które zostaną użyte do tunowania hiperparametrów naszych algorytmów: Random Search oraz Bayes Optimization z wykorzystaniem BayesSearchCV.

1.1 Random Search

Random Search to technika, w której losowo wybierane są różne kombinacje hiperparametrów zdefiniowanych przedziałów. Jest to podejście efektywne, zwłaszcza w przypadku dużych przestrzeni hiperparametrów, gdyż pozwala na znalezienie rozwiązania nawet przy ograniczonych zasobach obliczeniowych.

1.2 Bayes Optimization z BayesSearchCV

Bayes Optimization to podejście wykorzystujące proces bayesowski do modelowania funkcji celu, co pozwala na skoncentrowanie się na najbardziej obiecujących obszarach przestrzeni hiperparametrów. BayesSearchCV jest narzędziem implementującym tę metodę w pakiecie scikit-optimize, umożliwiającym skuteczne dostosowanie hiperparametrów do danego problemu.

W naszym eksperymencie skorzystamy z BayesSearchCV, aby zoptymalizować hiperparametry naszych algorytmów, mając nadzieję na uzyskanie bardziej efektywnych wyników w porównaniu do Random Search.

3. Siatka Hiperparametrów

W celu przeprowadzenia optymalizacji hiperparametrów, zdefiniowaliśmy konkretne siatki parametrów dla każdego z wybranych algorytmów. Poniżej przedstawiamy szczegóły tych siatek:

Random Forest

max_depth (1, 20) - Maksymalna głębokość drzewa. Kontroluje, jak głębokie drzewa moga rosnać.

- max_features (1, 10) Maksymalna liczba cech branych pod uwagę przy podziale węzłów.
- min_samples_split (2, 10) Minimalna liczba próbek wymagana do podziału węzła wewnętrznego.

min_samples_leaf (1, 20) - Minimalna liczba próbek wymagana do utworzenia liścia.

bootstrap [True, False] - Określa, czy próbki są zastępowane przy tworzeniu drzewa.

criterion ["gini", "entropy"] - Kryterium pomiaru jakości podziału.

Gradient Boosting

loss ["deviance"] - Funkcja straty do minimalizacji podczas budowy modelu.

- learning_rate [0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2] Współczynnik uczenia kontrolujący wpływ każdego drzewa.
- min_samples_split np.linspace(0.1, 0.5, 12) Minimalna liczba próbek wymagana do podziału węzła wewnętrznego.
- $min_samples_leaf$ np.linspace(0.1, 0.5, 12) Minimalna liczba próbek wymagana do utworzenia liścia.
- max_depth [3,5,8] Maksymalna głębokość drzewa.
- max_features ["log2","sqrt"] Maksymalna liczba cech branych pod uwagę przy podziale węzłów.
- criterion ["friedman_mse", "squared_error"] Kryterium pomiaru jakości podziału.
- subsample [0.5, 0.618, 0.8, 0.85, 0.9, 0.95, 1.0] Frakcja próbek używanych do dopasowania każdego drzewa.
- **n_estimators** [10] Liczba drzew w modelu.

k-Nearest Neighbors (k-NN)

- \mathbf{n} neighbors $[3,\,5,\,7,\,10]$ Liczba sąsiadów branych pod uwagę podczas predykcji.
- weights ["uniform", "distance"] Wagi używane do prognozy. "Uniform" oznacza równe wagi, "distance" oznacza odwrotność odległości.
- **p** [1, 2] Wybór metryki odległości. 1 dla odległości Manhattan, 2 dla odległości euklidesowej.
- algorithm ["auto", "ball_tree", "kd_tree", "brute"] Algorytm używany do obliczeń najbliższych sąsiadów.

4. Przebieg Eksperymentu

Optymalizacja Hiperparametrów

Eksperyment obejmował optymalizację hiperparametrów trzech algorytmów: Random Forest, Gradient Boosting i k-Nearest Neighbors (k-NN).

Przygotowanie Danych

Staranna analiza czterech niewielkich zbiorów danych (około 1000 elementów), z odpowiednim przetworzeniem i normalizacją.

Podział na Zbiory

Zbiory treningowe i testowe zachowujące odpowiednie proporcje.

Tunowanie Hiperparametrów

Użycie Random Search i Bayes Optimization z BayesSearchCV, utrzymując stałą siatkę hiperparametrów.

Ocena Wyników

Skuteczność modeli oceniana na zbiorze testowym, zbierając miary takie jak dokładność, precyzja, czułość itp.

Analiza Wyników

Szczegółowa analiza wyników dla obu metod samplingu i algorytmów, z uwzględnieniem różnic w tunowalności.

Porównanie Technik

Porównanie Random Search i Bayes Optimization, badanie wpływu technik losowania na wyniki tunowania hiperparametrów.

Wyniki

Wyniki przedstawiliśmy w tabelach, gdzie każdy z wyników dla danej konfiguracji paramsetu, algorytmu oraz datasetu, reprezentowany jest przez parametr *Accuracy*, który został umieszczony w poszczególnych komórkach. Przedstawiliśmy również miarę tunowalności jako różnicę największego średniego *Accuracy* dla danego algorytmu oraz *Accuracy* w danej komórce.

Bayes Optimization

	Params Set	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Mean
	1	0.76	0.7686	0.9643	0.7078	0.800175
	2	0.78	0.7934	0.9732	0.7468	0.82335
KNN	3	0.76	0.7851	0.9554	0.7468	0.811825
IXININ	4	0.7467	0.7851	0.9286	0.7468	0.8018
	5	0.7467	0.7851	0.9464	0.7403	0.804625
	6	0.7467	0.7851	0.9554	0.7338	0.80525
	1	0.7597	0.7597	0.7532	0.7857	0.764575
	2	0.7597	0.7597	0.7338	0.7532	0.7516
RF	3	0.7792	0.7143	0.7662	0.7403	0.75
1(1)	4	0.7667	0.9504	1	0.7597	0.8692
	5	0.7867	0.9256	1	0.7662	0.869625
	6	0.7867	0.8264	1	0.7792	0.848075
	1	0.7533	1	1	0.7532	0.876625
	2	0.7933	1	1	0.7208	0.878525
GB	3	0.72	1	1	0.7403	0.865075
	4	0.7533	0.6281	0.6964	0.7857	0.715875
	5	0.7733	1	1	0.7662	0.884875
	6	0.7667	1	1	0.7468	0.878375

Tabela 1: Bayes Optimization - ACC

	Params Set	Dataset 1	Dataset 2	Dataset 3	Dataset 4
	1	-0.06335	-0.05475	0.14095	-0.11555
	2	-0.04335	-0.02995	0.14985	-0.07655
KNN	3	-0.06335	-0.03825	0.13205	-0.07655
IXININ	4	-0.07665	-0.03825	0.10525	-0.07655
	5	-0.07665	-0.03825	0.12305	-0.08305
	6	-0.07665	-0.03825	0.13205	-0.08955
	1	-0.109925	-0.109925	-0.116425	-0.083925
	2	-0.109925	-0.109925	-0.135825	-0.116425
RF	3	-0.090425	-0.155325	-0.103425	-0.129325
101	4	-0.102925	0.080775	0.130375	-0.109925
	5	-0.082925	0.055975	0.130375	-0.103425
	6	-0.082925	-0.043225	0.130375	-0.090425
	1	-0.131575	0.115125	0.115125	-0.131675
	2	-0.091575	0.115125	0.115125	-0.164075
GB	3	-0.164875	0.115125	0.115125	-0.144575
GD	4	-0.131575	-0.256775	-0.188475	-0.099175
	5	-0.111575	0.115125	0.115125	-0.118675
	6	-0.118175	0.115125	0.115125	-0.138075

Tabela 2: Bayes Optimization - miara tunowalności

Random Search

	L.P.	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Mean
	1	0.7533	0.6281	0.6964	0.7403	0.704525
	2	0.7733	0.6281	0.7768	0.7468	0.73125
	3	0.7533	0.6281	0.6964	0.6429	0.680175
	4	0.64	0.9587	0.9732	0.7403	0.82805
	5	0.7533	0.6281	0.6964	0.7532	0.70775
	6	0.7533	0.6281	0.6964	0.7403	0.704525
	7	0.7533	0.6281	0.6964	0.6429	0.680175
	8	0.7	0.9817	1	0.7403	0.8555
	9	0.76	0.843	0.9554	0.7273	0.821425
RF	10	0.7133	0.9256	0.8661	0.7532	0.81455
101	11	0.7267	0.9091	1	0.7208	0.83915
	12	0.7667	0.7521	0.9554	0.7338	0.802
	13	0.7333	0.9001	1	0.7403	0.843425
	14	0.7467	0.9008	1	0.7403	0.84695
	15	0.7533	0.6281	0.6964	0.6429	0.680175
	16	0.7533	0.6281	0.6964	0.6429	0.680175
	17	0.7533	0.6281	0.6964	0.6494	0.6818
	18	0.7533	0.6281	0.6964	0.6429	0.680175
	19	0.7533	0.6281	0.6964	0.6429	0.680175
	20	0.7333	0.8595	1	0.7532	0.8365
	21	0.7533	0.6281	0.6518	0.6429	0.669025
	22	0.7533	0.6281	0.4464	0.6429	0.617675
	23	0.7533	0.6281	0.6964	0.7662	0.711
	24	0.7533	0.6281	0.6518	0.6429	0.669025
	25	0.7533	0.6281	0.5714	0.6429	0.648925
	26	0.7533	0.6281	0.6518	0.7078	0.68525
	27	0.7533	0.6281	0.4464	0.6429	0.617675
	28	0.7533	0.6281	0.4464	0.6429	0.617675
	29	0.7533	0.6281	0.4464	0.6429	0.617675
GB	30	0.7533	0.6281	0.4464	0.6429	0.617675
L G B	31	0.7533	0.6281	0.4464	0.6429	0.617675
-	32	0.7533	0.6281	0.4464	0.6429	0.617675
	33	0.7533	0.6281	0.6518	0.6429	0.669025
	34	0.7533	0.6281	0.4464	0.6429	0.617675
	35	0.7533	0.6281	0.6964	0.6429	0.680175
	36	0.7533	0.6281	0.6518	0.6429	0.669025
	37	0.7533	0.6281	0.4464	0.6429	0.617675
	38	0.7533	0.6281	0.6518	0.7208	0.6885
	39	0.7533	0.6281	0.6964	0.6429	0.680175
	40	0.7533	0.6281	0.4464	0.6429	0.617675

Tabela 3: Random Search - ACC

	L.P.	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Mean
	41	0.7133	0.7025	0.9375	0.6688	0.755525
	42	0.7733	0.6942	0.9643	0.6883	0.780025
	43	0.7733	0.6281	0.8214	0.6883	0.727775
	44	0.78	0.6446	0.9643	0.7403	0.7823
	45	0.7	0.719	0.9554	0.6753	0.762425
	46	0.7067	0.595	0.9464	0.6688	0.729225
	47	0.7733	0.6777	0.8482	0.6883	0.746875
	48	0.78	0.6446	0.9643	0.7403	0.7823
	49	0.7	0.7438	0.9732	0.6883	0.776325
KNN	50	0.76	0.7603	0.9554	0.7078	0.795875
IXIVIV	51	0.7533	0.6942	0.9554	0.6883	0.7728
	52	0.7	0.719	0.9643	0.6883	0.7679
	53	0.6867	0.5702	0.9643	0.6883	0.727375
	54	0.76	0.7686	0.9732	0.7078	0.8024
	55	0.76	0.6281	0.8214	0.6494	0.714725
	56	0.7	0.7025	0.8393	0.6494	0.7228
	57	0.7133	0.7355	0.875	0.6623	0.746525
	58	0.7333	0.7686	0.8839	0.6948	0.77015
	59	0.6733	0.7769	0.8839	0.6948	0.757225
	60	0.6867	0.5702	0.9643	0.6883	0.727375

Tabela 4: Random Search - ACC

	L.P.	Dataset 1	Dataset 2	Dataset 3	Dataset 4
	1	-0.1022	-0.2274	-0.1591	-0.1152
	2	-0.0822	-0.2274	-0.0787	-0.1087
	3	-0.1022	-0.2274	-0.1591	-0.2126
	4	-0.2155	0.1032	0.1177	-0.1152
	5	-0.1022	-0.2274	-0.1591	-0.1023
	6	-0.1022	-0.2274	-0.1591	-0.1152
	7	-0.1022	-0.2274	-0.1591	-0.2126
	8	-0.1555	0.1262	0.1445	-0.1152
	9	-0.0955	-0.0125	0.0999	-0.1282
KNN	10	-0.1422	0.0701	0.0106	-0.1023
IXININ	11	-0.1288	0.0536	0.1445	-0.1347
	12	-0.0888	-0.1034	0.0999	-0.1217
	13	-0.1222	0.0446	0.1445	-0.1152
	14	-0.1088	0.0453	0.1445	-0.1152
	15	-0.1022	-0.2274	-0.1591	-0.2126
	16	-0.1022	-0.2274	-0.1591	-0.2126
	17	-0.1022	-0.2274	-0.1591	-0.2061
	18	-0.1022	-0.2274	-0.1591	-0.2126
	19	-0.1022	-0.2274	-0.1591	-0.2126
	20	-0.1222	0.004	0.1445	-0.1023
	21	0.0423	-0.0829	-0.0592	-0.0681
	22	0.0423	-0.0829	-0.2646	-0.0681
	23	0.0423	-0.0829	-0.0146	0.0552
	24	0.0423	-0.0829	-0.0592	-0.0681
	25	0.0423	-0.0829	-0.1396	-0.0681
	26	0.0423	-0.0829	-0.0592	-0.0032
	27	0.0423	-0.0829	-0.2646	-0.0681
	28	0.0423	-0.0829	-0.2646	-0.0681
	29	0.0423	-0.0829	-0.2646	-0.0681
RF	30	0.0423	-0.0829	-0.2646	-0.0681
111	31	0.0423	-0.0829	-0.2646	-0.0681
	32	0.0423	-0.0829	-0.2646	-0.0681
	33	0.0423	-0.0829	-0.0592	-0.0681
	34	0.0423	-0.0829	-0.2646	-0.0681
	35	0.0423	-0.0829	-0.0146	-0.0681
	36	0.0423	-0.0829	-0.0592	-0.0681
	37	0.0423	-0.0829	-0.2646	-0.0681
	38	0.0423	-0.0829	-0.0592	0.0098
	39	0.0423	-0.0829	-0.0146	-0.0681
	40	0.0423	-0.0829	-0.2646	-0.0681

Tabela 5: Random Search - miara tunowalności

	L.P.	Dataset 1	Dataset 2	Dataset 3	Dataset 4
	41	-0.0891	-0.0999	0.1351	-0.1336
	42	-0.0291	-0.1082	0.1619	-0.1141
	43	-0.0291	-0.1743	0.019	-0.1141
	44	-0.0224	-0.1578	0.1619	-0.0621
	45	-0.1024	-0.0834	0.153	-0.1271
	46	-0.0957	-0.2074	0.144	-0.1336
	47	-0.0291	-0.1247	0.0458	-0.1141
	48	-0.0224	-0.1578	0.1619	-0.0621
	49	-0.1024	-0.0586	0.1708	-0.1141
$_{\mathrm{GB}}$	50	-0.0424	-0.0421	0.153	-0.0946
GD	51	-0.0491	-0.1082	0.153	-0.1141
	52	-0.1024	-0.0834	0.1619	-0.1141
	53	-0.1157	-0.2322	0.1619	-0.1141
	54	-0.0424	-0.0338	0.1708	-0.0946
	55	-0.0424	-0.1743	0.019	-0.153
	56	-0.1024	-0.0999	0.0369	-0.153
	57	-0.0891	-0.0669	0.0726	-0.1401
	58	-0.0691	-0.0338	0.0815	-0.1076
	59	-0.1291	-0.0255	0.0815	-0.1076
	60	-0.1157	-0.2322	0.1619	-0.1141

Tabela 6: Random Search - miara tunowalności

4. Wnioski

Porównanie Metod Tunowania

- Bayes Optimization osiągnął wyższą średnią skuteczność niż Random Search dla wszystkich algorytmów.
- Random Forest miał stabilne wyniki, natomiast Gradient Boosting i k-Nearest Neighbors reagowały różnie na metody tunowania, z korzyścią dla Bayes Optimization.

Analiza Tunowalności Algorytmów

• Random Forest wykazał stabilność wyników, Gradient Boosting osiągnął najlepsze rezultaty z Bayes Optimization, a k-Nearest Neighbors był bardziej wrażliwy na różnice w metodach tunowania.

Wpływ Techniki Losowania

- Różnice między Random Search a Bayes Optimization sugerują istotny wpływ techniki losowania.
- Bayes Optimization, opierając się na modelu probabilistycznym, wydaje się bardziej efektywne w przeszukiwaniu przestrzeni hiperparametrów.

Potencjalne Rozwinięcia

- Użycie testów statystycznych i narzędzi wizualizacyjnych dla pełniejszej analizy różnic między metodami tunowania.
- Dalsze badania nad nowymi technikami tunowania hiperparametrów dostosowanymi do charakterystyki algorytmów.

Podsumowując, eksperyment ujawnił istotne różnice między Random Search a Bayes Optimization, z cennymi wnioskami dla praktycznych zastosowań uczenia maszynowego.

8. Podsumowanie

Eksperyment skupił się na tunowalności hiperparametrów trzech algorytmów. Wnioski obejmują wyższą skuteczność Bayes Optimization, różnice w tunowalności algorytmów, wpływ techniki losowania, oraz potencjalne obszary dalszych badań.