Fast Multipole Methods for Continuous Charge Densities

Joint work with

- Libin Lu (Flatiron Institute)
- Manas Rachh (Flatiron Institute)
- Alex Townsend (Cornell)
- Leslie Greengard (NYU)

This work was supported by the Flatiron Institute.

Joint work with

- Libin Lu (Flatiron Institute)
- Manas Rachh (Flatiron Institute)
- Alex Townsend (Cornell)
- Leslie Greengard (NYU)

 ${\tt github.com/flatironinstitute/FMM3D}$

askham@njit.edu

This work was supported by the Flatiron Institute.

■ Example: scattering in variable media

- Example: scattering in variable media
- Box codes for volume integrals

- Example: scattering in variable media
- Box codes for volume integrals
 - Fast multipole method overview

- Example: scattering in variable media
- Box codes for volume integrals
 - Fast multipole method overview
 - On-demand quadrature generation scheme

- Example: scattering in variable media
- Box codes for volume integrals
 - Fast multipole method overview
 - On-demand quadrature generation scheme
- Future work

Scattering in variable media

$$(\Delta + k^2(1 + q(\mathbf{x})))\phi = 0$$

Scattering in variable media

$$(\Delta + k^2(1 + q(\mathbf{x})))\phi = 0$$

Setting
$$\phi = \phi^{\rm inc} + \phi^{\rm scat}$$
,

$$(\Delta + k^2(1+q(\mathbf{x})))\phi^{\text{scat}} = -k^2q(\mathbf{x})\phi^{\text{inc}}$$
.

- $\phi^{\rm inc}$ is an *incident* wave which satisfies the constant coefficient Helmholtz equation (e.g. a plane wave)
- $\ \ \, \phi^{\rm scat}$ is the *scattered* wave which satisfies an outgoing condition at infinity.

■ Let $q(\mathbf{x})$ correspond to an "Eaton" lens, which bends light through an angle

¹Vico, Greengard, and Ferrando 2016; Danner and Leonhardt 2009.

- Let $q(\mathbf{x})$ correspond to an "Eaton" lens, which bends light through an angle
- Let $\phi^{\rm inc}$ be a Gaussian beam

$$\phi^{\text{inc}}(\mathbf{x}) = G_k(\mathbf{x}, \mathbf{z})e^{-k/2},$$

$$\mathbf{z} = (x_0 + i/2, y_0, z_0)$$

¹Vico, Greengard, and Ferrando 2016; Danner and Leonhardt 2009.

- Let $q(\mathbf{x})$ correspond to an "Eaton" lens, which bends light through an angle
- lacksquare Let ϕ^{inc} be a Gaussian beam

$$\phi^{\text{inc}}(\mathbf{x}) = G_k(\mathbf{x}, \mathbf{z})e^{-k/2},$$

$$\mathbf{z} = (x_0 + i/2, y_0, z_0)$$

Solve for scattered field

¹Vico, Greengard, and Ferrando 2016; Danner and Leonhardt 2009.

Let $q(\mathbf{x})$ correspond to an "Eaton" lens, which bends light through an angle

lacksquare Let $\phi^{
m inc}$ be a Gaussian beam

$$\phi^{\text{inc}}(\mathbf{x}) = G_k(\mathbf{x}, \mathbf{z})e^{-k/2} ,$$

$$\mathbf{z} = (x_0 + i/2, y_0, z_0)$$

Solve for scattered field

 $[\]phi^{\rm inc}$

¹Vico, Greengard, and Ferrando 2016; Danner and Leonhardt 2009.

Integral equation formulation

$$(\Delta + k^2(1 + q(\mathbf{x})))\phi^{\text{scat}} = -k^2q(\mathbf{x})\phi^{\text{inc}}$$

Integral equation formulation

$$(\Delta + k^2(1 + q(\mathbf{x})))\phi^{\text{scat}} = -k^2q(\mathbf{x})\phi^{\text{inc}}$$

Represent ϕ^{scat} as a volume integral, i.e.

$$\phi^{\text{scat}}(\mathbf{x}) = V[\sigma](\mathbf{x}) = \int_{\Omega} G_k(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) \, dv \,, \quad G_k(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{e^{ik|\mathbf{x} - \mathbf{y}|}}{4\pi |\mathbf{x} - \mathbf{y}|} \\ \frac{iH_0^{(1)}(k|\mathbf{x} - \mathbf{y}|)}{4} \end{cases}$$

where $\operatorname{supp}(q) \subset \Omega$.

Integral equation formulation

$$(\Delta + k^2(1 + q(\mathbf{x})))\phi^{\text{scat}} = -k^2q(\mathbf{x})\phi^{\text{inc}}$$

Represent ϕ^{scat} as a volume integral, i.e.

$$\phi^{\text{scat}}(\mathbf{x}) = V[\sigma](\mathbf{x}) = \int_{\Omega} G_k(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) \, dv \, , \, G_k(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{e^{ik|\mathbf{x} - \mathbf{y}|}}{4\pi |\mathbf{x} - \mathbf{y}|} \\ \frac{iH_0^{(1)}(k|\mathbf{x} - \mathbf{y}|)}{4} \end{cases}$$

where $supp(q) \subset \Omega$. Then

$$\sigma(\mathbf{x}) + k^2 q(\mathbf{x}) V[\sigma](\mathbf{x}) = -k^2 q(\mathbf{x}) \phi^{\text{inc}},$$

which is a second-kind integral equation on $L^2(\Omega)$.

The need for speed

Solving

$$\sigma(\mathbf{x}) + k^2 q(\mathbf{x}) V[\sigma](\mathbf{x}) = -k^2 q(\mathbf{x}) \phi^{\text{inc}}$$

■ Apply quadrature to discretize the integral $V[\sigma]$. Resolving σ requires at least $O(k^d)$ nodes in \mathbb{R}^d .

The need for speed

Solving

$$\sigma(\mathbf{x}) + k^2 q(\mathbf{x}) V[\sigma](\mathbf{x}) = -k^2 q(\mathbf{x}) \phi^{\text{inc}}$$

- Apply quadrature to discretize the integral $V[\sigma]$. Resolving σ requires at least $O(k^d)$ nodes in \mathbb{R}^d .
- Solve iteratively (e.g. GMRES or BICGstab)

The need for speed

Solving

$$\sigma(\mathbf{x}) + k^2 q(\mathbf{x}) V[\sigma](\mathbf{x}) = -k^2 q(\mathbf{x}) \phi^{\text{inc}}$$

- Apply quadrature to discretize the integral $V[\sigma]$. Resolving σ requires at least $O(k^d)$ nodes in \mathbb{R}^d .
- Solve iteratively (e.g. GMRES or BICGstab)
- Need a fast method for $V[\sigma]$, which is a dense operator.

$$V[\sigma](\mathbf{x}_i) = \int_{\Omega} G_k(\mathbf{x}_i, \mathbf{y}) \sigma(\mathbf{y}) \, dv$$

²Ethridge and Greengard 2001; Cheng, Huang, and Leiterman 2006; Langston, Greengard, and Zorin 2011; Malhotra and Biros 2015.

$$V[\sigma](\mathbf{x}_i) = \int_{\Omega} G_k(\mathbf{x}_i, \mathbf{y}) \sigma(\mathbf{y}) \, dv \approx$$

$$\sum_{j=1}^{N_b} \int_{B_j} G_k(\mathbf{x}_i, \mathbf{y}) p_j(2(\mathbf{y} - \mathbf{y}_j)/L_j) \, dv$$

■ N_b boxes, B_j , are leaves of a (balanced) quadtree/octree, which can be adaptively refined to capture small features

²Ethridge and Greengard 2001; Cheng, Huang, and Leiterman 2006; Langston, Greengard, and Zorin 2011; Malhotra and Biros 2015.

$$V[\sigma](\mathbf{x}_i) = \int_{\Omega} G_k(\mathbf{x}_i, \mathbf{y}) \sigma(\mathbf{y}) \, dv \approx$$

$$\sum_{j=1}^{N_b} \int_{B_j} G_k(\mathbf{x}_i, \mathbf{y}) p_j(2(\mathbf{y} - \mathbf{y}_j) / L_j) \, dv$$

- N_b boxes, B_j , are leaves of a (balanced) quadtree/octree, which can be adaptively refined to capture small features
- $\sigma|_{B_i}(\mathbf{y}) \approx p_i(2(\mathbf{y} \mathbf{y}_i)/L_i)$ with coefficients in

$$\mathcal{L}_{M}^{(d)} = \{ P_{p_1}(y_1) P_{p_2}(y_2) \cdots P_{p_d}(y_d) \text{ s.t. } p_1 + p_2 + \dots + p_d < M \}$$

²Ethridge and Greengard 2001; Cheng, Huang, and Leiterman 2006; Langston, Greengard, and Zorin 2011; Malhotra and Biros 2015.

$$V[\sigma](\mathbf{x}_i) = \int_{\Omega} G_k(\mathbf{x}_i, \mathbf{y}) \sigma(\mathbf{y}) \, dv \approx$$

$$\sum_{j=1}^{N_b} \int_{B_j} G_k(\mathbf{x}_i, \mathbf{y}) p_j(2(\mathbf{y} - \mathbf{y}_j) / L_j) \, dv$$

- N_b boxes, B_j , are leaves of a (balanced) quadtree/octree, which can be adaptively refined to capture small features
- \bullet $\sigma|_{B_i}(\mathbf{y}) \approx p_i(2(\mathbf{y} \mathbf{y}_i)/L_i)$ with coefficients in

$$\mathcal{L}_{M}^{(d)} = \{ P_{p_1}(y_1) P_{p_2}(y_2) \cdots P_{p_d}(y_d) \text{ s.t. } p_1 + p_2 + \dots + p_d < M \}$$

 \mathbf{x}_i are M^d scaled, tensor-product Legendre nodes on each leaf.

²Ethridge and Greengard 2001; Cheng, Huang, and Leiterman 2006; Langston, Greengard, and Zorin 2011; Malhotra and Biros 2015.

$$\sum_{j=1}^{N_b} \int_{B_j} G_k(\mathbf{x}_i, \mathbf{y}) p_j(\mathbf{y}) \, dv$$

Naïve evaluation at all targets \mathbf{x}_i costs $O(N_b^2)$.

$$\sum_{i=1}^{N_b} \int_{B_i} G_k(\mathbf{x}_i, \mathbf{y}) p_j(\mathbf{y}) \, dv$$

Naïve evaluation at all targets \mathbf{x}_i costs $O(N_b^2)$.

Outside of green box — smooth quadrature sufficient

$$\int_B G_k(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) \, dv \approx$$

$$\sum_{l=1}^{N_p} G_k(\mathbf{x}, \mathbf{y}_l(B)) p[\sigma; B](\mathbf{y}_l(B)) w_l(B)$$

"equivalent charges"

$$\sum_{i=1}^{N_b} \int_{B_j} G_k(\mathbf{x}_i, \mathbf{y}) p_j(\mathbf{y}) \, dv$$

Naïve evaluation at all targets \mathbf{x}_i costs $O(N_h^2)$.

Outside of green box — smooth quadrature sufficient

$$\int_{B} G_{k}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) dv \approx \sum_{l=1}^{N_{p}} G_{k}(\mathbf{x}, \mathbf{y}_{l}(B)) p[\sigma; B](\mathbf{y}_{l}(B)) w_{l}(B)$$
"equivalent charges"

The FMM can compute the separated interactions for equivalent charges in $O(N_b \log(1/\epsilon))$.

Multipole expansions for well-separated targets

x	х .	x X	x X	x x	x X
	x ,	x	x ,	×	x '
x		x x	x x	x x	x *
	x		x x	x	×
xx	x	xx x	x x	xx x	xx x
x	x				x x
	x				x ·
x	^				x ^
	x				x
x X	×				x x
x	^				x x
	x				x
x					x ^
	x				, x
x ^X			Transmitted		x x
	. ,				x
x	x				x
x					x ^
	x				_ x
x ^x					x x x
×	,		,	, a	
x	x	x x	x x	x x	x x
			x x	, x	l ^ .
_	x				. x
_x		_x x	x X	x X	x x

Multipole expansions for well-separated targets

Local expansions for well-separated sources

Form multipoles (leaves)

Form multipoles (leaves)

Merge multipoles (upward pass)

Form multipoles (leaves)

Merge multipoles (upward pass)

Multipole to local

Form multipoles (leaves)

Merge multipoles (upward pass)

Multipole to local

Local to local (downward pass)

Form multipoles (leaves)

Merge multipoles (upward pass)

Multipole to local

Local to local (downward pass)

Evaluate local (leaves)

Local work in a box code

$$\int_{B_j} G_k(\mathbf{x}, \mathbf{y}) p_j(2(\mathbf{y} - \mathbf{y}_j)/L_j) \, dv$$

These integrals on self and neighbors are weakly singular/ near singular and require special quadrature.

$$\int_{B_j} G_k(\mathbf{x}, \mathbf{y}) p_j(2(\mathbf{y} - \mathbf{y}_j)/L_j) \, dv$$

These integrals on self and neighbors are weakly singular/ near singular and require special quadrature.

Simplifications

$$\int_{B_j} G_k(\mathbf{x}, \mathbf{y}) p_j(2(\mathbf{y} - \mathbf{y}_j)/L_j) \, dv$$

These integrals on self and neighbors are weakly singular/ near singular and require special quadrature.

Simplifications

■ Linearity: compute for basis and recombine

$$\int_{B_j} G_k(\mathbf{x}, \mathbf{y}) p_j(2(\mathbf{y} - \mathbf{y}_j)/L_j) \, dv$$

These integrals on self and neighbors are weakly singular/ near singular and require special quadrature.

Simplifications

- Linearity: compute for basis and recombine
 - Translation invariance and tree balance: relative target positions come from a small(ish), fixed set.

$$\int_{B_j} G_k(\mathbf{x}, \mathbf{y}) p_j(2(\mathbf{y} - \mathbf{y}_j)/L_j) \, dv$$

These integrals on self and neighbors are weakly singular/ near singular and require special quadrature.

Simplifications

- Linearity: compute for basis and recombine
- Translation invariance and tree balance: relative target positions come from a small(ish), fixed set.
- G_k depends only on $|\mathbf{x} \mathbf{y}|$ and tensor-product grids have many symmetries

$$\int_{B_j} G_k(\mathbf{x}, \mathbf{y}) p_j(2(\mathbf{y} - \mathbf{y}_j)/L_j) \, dv$$

These integrals on self and neighbors are weakly singular/ near singular and require special quadrature.

Simplifications

- Linearity: compute for basis and recombine
 - Translation invariance and tree balance: relative target positions come from a small(ish), fixed set.
 - G_k depends only on $|\mathbf{x} \mathbf{y}|$ and tensor-product grids have many symmetries

Plan: precompute all possible interactions, reducing direct interaction calculations to mat-vecs

In a box code, can precompute and use mat-vecs for work that depends on source/target locations

In a box code, can precompute and use mat-vecs for work that depends on source/target locations

direct interactions

In a box code, can precompute and use mat-vecs for work that depends on source/target locations

- direct interactions
- form multipole

In a box code, can precompute and use mat-vecs for work that depends on source/target locations

- direct interactions
- form multipole
- evaluate local

In a box code, can precompute and use mat-vecs for work that depends on source/target locations

- direct interactions
- form multipole
- evaluate local

These must be done for each configuration of points within a standard FMM.

In a box code, can precompute and use mat-vecs for work that depends on source/target locations

- direct interactions
- form multipole
- evaluate local

These must be done for each configuration of points within a standard FMM.

Less adaptive tree

Highly adaptive tree

Local interaction tables could conceivably be computed offline once and for all (with some interpolation). Why worry about fast table generation?

■ Storage considerations — would need many such tables

- Storage considerations would need many such tables
 - lacktriangleright ranges over the complex numbers

- Storage considerations would need many such tables
 - *k* ranges over the complex numbers
 - there are lots of interactions in 3D

- Storage considerations would need many such tables
 - lacktriangleright ranges over the complex numbers
 - there are lots of interactions in 3D
 - tables of derivatives (2nd derivatives?)

- Storage considerations would need many such tables
 - lacktriangleright ranges over the complex numbers
 - there are lots of interactions in 3D
 - tables of derivatives (2nd derivatives?)
- Flexibility changes to discretization strategy require new tables

- Storage considerations would need many such tables
 - lacktriangleright ranges over the complex numbers
 - there are lots of interactions in 3D
 - tables of derivatives (2nd derivatives?)
- Flexibility changes to discretization strategy require new tables
 - Can easily change collocation points (e.g. 3D analogue of Padua points)

- Storage considerations would need many such tables
 - lacktriangleright ranges over the complex numbers
 - there are lots of interactions in 3D
 - tables of derivatives (2nd derivatives?)
- Flexibility changes to discretization strategy require new tables
 - Can easily change collocation points (e.g. 3D analogue of Padua points)
 - Elements that aren't quite cubes

- Storage considerations would need many such tables
 - *k* ranges over the complex numbers
 - there are lots of interactions in 3D
 - tables of derivatives (2nd derivatives?)
- Flexibility changes to discretization strategy require new tables
 - Can easily change collocation points (e.g. 3D analogue of Padua points)
 - Elements that aren't quite cubes
- Can still store table on a per-problem basis

Quadrature generation

$$\int_{(-1,1)^d} G_{k'}(\mathbf{x}, \mathbf{y}) p_{\mathbf{p}}(\mathbf{y}) dv , \quad p_{\mathbf{p}}(\mathbf{y}) = P_{p_1}(y_1) \cdots P_{p_d}(y_d)$$

³Greengard and Lee 1996.

⁴Greengard, O'Neil, et al. 2020

Quadrature generation

$$\int_{(-1,1)^d} G_{k'}(\mathbf{x}, \mathbf{y}) p_{\mathbf{p}}(\mathbf{y}) \, dv \,, \quad p_{\mathbf{p}}(\mathbf{y}) = P_{p_1}(y_1) \cdots P_{p_d}(y_d)$$

Idea³: Green's identity. If $\psi_{\mathbf{p}}$ is an "anti-Helmholtzian", i.e.

$$(\Delta + k'^2)\psi_{\mathbf{p}} = p_{\mathbf{p}}$$

then

$$\int_{B} G_{k'}(\mathbf{x}, \mathbf{y}) p_{\mathbf{p}}(\mathbf{y}) dv = \chi_{B}(\mathbf{x}) \psi_{\mathbf{p}}(\mathbf{x}) + \underbrace{\int_{\partial B} G_{k'}(\mathbf{x}, \mathbf{y}) \partial_{n} \psi_{\mathbf{p}}(\mathbf{y}) - \partial_{n} G_{k'}(\mathbf{x}, \mathbf{y}) \psi_{\mathbf{p}}(\mathbf{y}) da}_{}.$$

problem reduced to a surface integral⁴

³Greengard and Lee 1996.

⁴Greengard, O'Neil, et al. 2020

Anti-Helmholtzians

Goal: compute $\psi_{\mathbf{p}}$ satisfying

$$\max_{\mathbf{x} \in [-1,1]^d} |(\Delta + k'^2) \psi_{\mathbf{p}}(\mathbf{x}) - p_{\mathbf{p}}(\mathbf{x})| < \epsilon$$

Anti-Helmholtzians

Goal: compute $\psi_{\mathbf{p}}$ satisfying

$$\max_{\mathbf{x} \in [-1,1]^d} |(\Delta + k'^2)\psi_{\mathbf{p}}(\mathbf{x}) - p_{\mathbf{p}}(\mathbf{x})| < \epsilon$$

lacksquare near machine precision

Anti-Helmholtzians

Goal: compute $\psi_{\mathbf{p}}$ satisfying

$$\max_{\mathbf{x} \in [-1,1]^d} |(\Delta + k'^2)\psi_{\mathbf{p}}(\mathbf{x}) - p_{\mathbf{p}}(\mathbf{x})| < \epsilon$$

- lacktriangleright ϵ near machine precision
- \blacksquare Stable and efficient formula for $\psi_{\mathbf{p}}$

Let $\mathcal{P}_{M}^{(d)} = \{ \text{ polynomials in } \mathbb{R}^{d} \text{ with total deg. } < M \}.$

Let $\mathcal{P}_{M}^{(d)} = \{ \text{ polynomials in } \mathbb{R}^{d} \text{ with total deg. } < M \}.$

$$[\mathcal{D}p](t) = \frac{d}{dt}p(t)$$

Let $\mathcal{P}_{M}^{(d)} = \{ \text{ polynomials in } \mathbb{R}^{d} \text{ with total deg. } < M \}.$

$$[\mathcal{D}p](t) = \frac{d}{dt}p(t)$$

- $\mathcal{D}: \mathcal{P}_{M}^{(1)} \to \mathcal{P}_{M-1}^{(1)}$
- $\|\mathcal{D}|_{\mathcal{P}^{(1)}_{M}}\|_{L^{\infty}[-1,1]} \approx M^{2}$
- $\qquad \qquad \|\mathcal{D}^l|_{\mathcal{P}_M^{(1)}}\|_{L^\infty[-1,1]} \approx M^{l+1},$ if $l \ll M$.

Let $\mathcal{P}_{M}^{(d)} = \{ \text{ polynomials in } \mathbb{R}^{d} \text{ with total deg. } < M \}.$

$$[\mathcal{D}p](t) = \frac{d}{dt}p(t)$$

- $\mathcal{D}: \mathcal{P}_{M}^{(1)} \to \mathcal{P}_{M-1}^{(1)}$

Let $\mathcal{P}_{M}^{(d)} = \{ \text{ polynomials in } \mathbb{R}^{d} \text{ with total deg. } < M \}.$

$$[\mathcal{D}p](t) = \frac{d}{dt}p(t) \qquad [\mathcal{I}p](t) = \int_{-1}^{t} p(s) ds.$$

- $\mathcal{D}: \mathcal{P}_{M}^{(1)} \to \mathcal{P}_{M-1}^{(1)}$
- $\|\mathcal{D}|_{\mathcal{P}^{(1)}_{M}}\|_{L^{\infty}[-1,1]} \approx M^{2}$

Let $\mathcal{P}_{M}^{(d)} = \{ \text{ polynomials in } \mathbb{R}^{d} \text{ with total deg. } < M \}.$

$$[\mathcal{D}p](t) = \frac{d}{dt}p(t)$$

- $\blacksquare \ \|\mathcal{D}|_{\mathcal{P}^{(1)}_{\star,\bullet}}\|_{L^{\infty}[-1,1]} \approx M^2$

$$[\mathcal{I}p](t) = \int_{-1}^{t} p(s) ds.$$

- $\blacksquare \ \mathcal{I}: \mathcal{P}_M^{(1)} \to \mathcal{P}_{M+1}^{(1)}$
- $\|\mathcal{I}|_{\mathcal{P}_{M}^{(1)}}\|_{L^{\infty}[-1,1]} \approx 1$
- $\|\mathcal{I}^l|_{\mathcal{P}_M^{(1)}}\|_{L^{\infty}[-1,1]} \approx 1/l!$

Let $\mathcal{P}_{M}^{(d)} = \{ \text{ polynomials in } \mathbb{R}^{d} \text{ with total deg. } < M \}.$

$$[\mathcal{D}p](t) = \frac{d}{dt}p(t)$$

- $\blacksquare \ \|\mathcal{D}|_{\mathcal{P}^{(1)}_{\star,\bullet}}\|_{L^{\infty}[-1,1]} \approx M^2$
- $\qquad \qquad \|\mathcal{D}^l|_{\mathcal{P}_M^{(1)}}\|_{L^\infty[-1,1]} \approx M^{l+1},$ if $l \ll M.$

$$\tau$$
 $\sigma^{(1)}$, $\sigma^{(1)}$

 $[\mathcal{I}p](t) = \int_{-1}^{1} p(s) ds.$

- $\blacksquare \mathcal{I}: \mathcal{P}_M^{(1)} \to \mathcal{P}_{M+1}^{(1)}$

Smooths, but embiggens the set

Let $p(\mathbf{y}) = P_{n_1}(y_1)P_{n_2}(y_2)\cdots P_{n_d}(y_d)$. Let $n_1 \geq n_2, \ldots, n_d$ and $m = n_2 + \cdots + n_d$. Set $\tilde{\Delta} = (\partial^2_{y_2} + \cdots + \partial^2_{y_d})$.

$$\tilde{\Delta}: \mathcal{P}_M^{(d-1)} \to \mathcal{P}_{M-2}^{(d-1)}$$

⁵Greengard and Lee 1996.

Let $p(\mathbf{y}) = P_{n_1}(y_1)P_{n_2}(y_2)\cdots P_{n_d}(y_d)$. Let $n_1 \geq n_2,\ldots,n_d$ and $m = n_2 + \cdots + n_d$. Set $\tilde{\Delta} = (\partial^2_{y_2} + \cdots + \partial^2_{y_d})$.

$$\tilde{\Delta}: \mathcal{P}_M^{(d-1)} \to \mathcal{P}_{M-2}^{(d-1)}$$

$$\psi^{(1)} = [\mathcal{I}^2 P_{n_1}](y_1) P_{n_2}(y_2) \cdots P_{n_d}(y_d)$$
$$\Delta \psi^{(1)} = p + [\mathcal{I}^2 P_{n_1}](y_1) \tilde{\Delta}(P_{n_2}(y_2) \cdots P_{n_d}(y_d))$$

⁵Greengard and Lee 1996.

Let $p(\mathbf{y}) = P_{n_1}(y_1)P_{n_2}(y_2)\cdots P_{n_d}(y_d)$. Let $n_1 \geq n_2, \ldots, n_d$ and $m = n_2 + \cdots + n_d$. Set $\tilde{\Delta} = (\partial^2_{y_2} + \cdots + \partial^2_{y_d})$.

$$\tilde{\Delta}: \mathcal{P}_{M}^{(d-1)} \to \mathcal{P}_{M-2}^{(d-1)}$$

$$\psi^{(1)} = [\mathcal{I}^{2} P_{n_{1}}](y_{1}) P_{n_{2}}(y_{2}) \cdots P_{n_{d}}(y_{d})$$

$$\Delta \psi^{(1)} = p + [\mathcal{I}^{2} P_{n_{1}}](y_{1}) \tilde{\Delta}(P_{n_{2}}(y_{2}) \cdots P_{n_{d}}(y_{d}))$$

$$\psi^{(2)} = [\mathcal{I}^{2} P_{n_{1}}](y_{1}) P_{n_{2}}(y_{2}) \cdots P_{n_{d}}(y_{d}) - [\mathcal{I}^{4} P_{n_{1}}](y_{1}) \tilde{\Delta}(P_{n_{2}}(y_{2}) \cdots P_{n_{d}}(y_{d}))$$

$$\Delta \psi^{(2)} = p - [\mathcal{I}^{4} P_{n_{1}}](y_{1}) \tilde{\Delta}^{2}(P_{n_{2}}(y_{2}) \cdots P_{n_{d}}(y_{d}))$$

⁵Greengard and Lee 1996.

Let $p(\mathbf{y}) = P_{n_1}(y_1)P_{n_2}(y_2)\cdots P_{n_d}(y_d)$. Let $n_1 \geq n_2, \ldots, n_d$ and $m = n_2 + \cdots + n_d$. Set $\tilde{\Delta} = (\partial_{u_2}^2 + \cdots + \partial_{u_d}^2)$.

$$\tilde{\Delta}: \mathcal{P}_{M}^{(d-1)} \to \mathcal{P}_{M-2}^{(d-1)}$$

$$\psi^{(1)} = [\mathcal{I}^{2} P_{n_{1}}](y_{1}) P_{n_{2}}(y_{2}) \cdots P_{n_{d}}(y_{d})$$

$$\Delta \psi^{(1)} = p + [\mathcal{I}^{2} P_{n_{1}}](y_{1}) \tilde{\Delta}(P_{n_{2}}(y_{2}) \cdots P_{n_{d}}(y_{d}))$$

$$\psi^{(2)} = [\mathcal{I}^{2} P_{n_{1}}](y_{1}) P_{n_{2}}(y_{2}) \cdots P_{n_{d}}(y_{d}) - [\mathcal{I}^{4} P_{n_{1}}](y_{1}) \tilde{\Delta}(P_{n_{2}}(y_{2}) \cdots P_{n_{d}}(y_{d}))$$

$$\Delta \psi^{(2)} = p - [\mathcal{I}^{4} P_{n_{1}}](y_{1}) \tilde{\Delta}^{2}(P_{n_{2}}(y_{2}) \cdots P_{n_{d}}(y_{d}))$$

$$\Delta^{-1}p := \sum_{i=1}^{\lfloor m/2 \rfloor} (-1)^j [\mathcal{I}^{2j+2} P_{n_1}](y_1) \tilde{\Delta}^{2j} (P_{n_2}(y_2) \cdots P_{n_d}(y_d)) \in \mathcal{P}_{M+2}^{(d)}$$

⁵Greengard and Lee 1996.

Is $\Delta + k'^2|_{\mathcal{P}_M^{(d)}}$ a perturbation of Δ ? Let $p \in \mathcal{P}_M^{(d)}$.

Is $\Delta + k'^2|_{\mathcal{P}_M^{(d)}}$ a perturbation of Δ ? Let $p \in \mathcal{P}_M^{(d)}$.

$$\begin{split} (\Delta + k'^2)^{-1} p &= \Delta^{-1} (1 + k'^2 \Delta^{-1})^{-1} p \\ &= \Delta^{-1} \sum_{j=0}^{\infty} (-1)^j k'^{2j} \Delta^{-j} p \end{split}$$

Is $\Delta + k'^2|_{\mathcal{P}_M^{(d)}}$ a perturbation of Δ ? Let $p \in \mathcal{P}_M^{(d)}$.

$$\begin{split} (\Delta + k'^2)^{-1} p &= \Delta^{-1} (1 + k'^2 \Delta^{-1})^{-1} p \\ &= \Delta^{-1} \sum_{j=0}^{\infty} (-1)^j k'^{2j} \Delta^{-j} p \end{split}$$

Is $\Delta + k'^2|_{\mathcal{P}_M^{(d)}}$ a perturbation of Δ ? Let $p \in \mathcal{P}_M^{(d)}$.

$$(\Delta + k'^2)^{-1}p = \Delta^{-1}(1 + k'^2\Delta^{-1})^{-1}p$$
$$= \Delta^{-1}\sum_{j=0}^{\infty} (-1)^j k'^{2j} \Delta^{-j}p$$

Sum converges in $L^{\infty}[-1,1]$ for any p. Formula only good when |k'| small.

Is $\Delta + k'^2|_{\mathcal{P}_M^{(d)}}$ a perturbation of k'^2 ? Let $p \in \mathcal{P}_M^{(d)}$.

 $\overline{\text{Is }\Delta+k'^2|_{\mathcal{P}_M^{(d)}}}$ a perturbation of k'^2 ? Let $p\in\mathcal{P}_M^{(d)}$.

$$(\Delta + k'^2)^{-1}p = \frac{1}{k'^2}(\Delta/k'^2 + 1)^{-1}p$$
$$= \frac{1}{k'^2} \sum_{i=0}^{\infty} (-1)^j \frac{\Delta^j p}{k'^{2j}}$$

Is $\Delta + k'^2|_{\mathcal{P}_M^{(d)}}$ a perturbation of k'^2 ? Let $p \in \mathcal{P}_M^{(d)}$.

$$(\Delta + k'^2)^{-1}p = \frac{1}{k'^2} (\Delta/k'^2 + 1)^{-1}p$$

$$= \frac{1}{k'^2} \sum_{j=0}^{\infty} (-1)^j \frac{\Delta^j p}{k'^2 j}$$

$$= \frac{1}{k'^2} \sum_{j=0}^{\lfloor M/2 \rfloor} (-1)^j \frac{\Delta^j p}{k'^2 j}$$

 $\overline{\text{Is }\Delta+k'^2|_{\mathcal{P}_M^{(d)}}}$ a perturbation of k'^2 ? Let $p\in\mathcal{P}_M^{(d)}$.

$$(\Delta + k'^2)^{-1}p = \frac{1}{k'^2} (\Delta/k'^2 + 1)^{-1}p$$

$$= \frac{1}{k'^2} \sum_{j=0}^{\infty} (-1)^j \frac{\Delta^j p}{k'^2 j}$$

$$= \frac{1}{k'^2} \sum_{j=0}^{\lfloor M/2 \rfloor} (-1)^j \frac{\Delta^j p}{k'^2 j}$$

Formula only good when |k'| large.

Have two anti-Helmholtzians:

Are they good enough for all values |k'|?

 $\psi^{(1)} = \frac{1}{k'^2} \sum_{j=0}^{\lfloor M/2 \rfloor} (-1)^j \frac{\Delta^j p}{k'^{2j}} , \quad \psi^{(2)} = \Delta^{-1} \sum_{j=0}^{\infty} (-1)^j k'^{2j} \Delta^{-j} p$

- Test k' with |k'| = 1, 3, 5.5.
- Set cut-off for sum for $\psi^{(2)}$ very high.
- Plot error $\max |(\Delta + k'^2)\psi p|$ (double precision)

- Test k' with |k'| = 1, 3, 5.5.
- \blacksquare Set cut-off for sum for $\psi^{(2)}$ very high.
- Plot error $\max |(\Delta + k'^2)\psi p|$ (double precision)

- Test k' with $|k'| = 1, 1.5, \dots, 5.5$.
- \blacksquare Set cut-off for sum for $\psi^{(2)}$ very high.
- Plot best error $\max |(\Delta + k'^2)\psi p|$ using either $\psi^{(1)}$ or $\psi^{(2)}$ (double precision)

- Test k' with $|k'| = 1, 1.5, \dots, 5.5$.
- Set cut-off for sum for $\psi^{(2)}$ very high.
- Plot best error $\max |(\Delta + k'^2)\psi p|$ using either $\psi^{(1)}$ or $\psi^{(2)}$ (double precision)

Efficiency

- Test k' with $|k'| = 1, 1.5, \dots, 5.5$.
- Set cut-off for sum for $\psi^{(2)}$ at 16 terms.
- lacksquare Plot best error using either $\psi^{(1)}$ or $\psi^{(2)}$ in double precision

Efficiency

- Test k' with $|k'| = 1, 1.5, \dots, 5.5$.
- \blacksquare Set cut-off for sum for $\psi^{(2)}$ at 16 terms.
- \blacksquare Plot best error using either $\psi^{(1)}$ or $\psi^{(2)}$ in double precision

Compare to 3D adaptive integration

What does this do for us?

Future work

■ Iteration count appears to be $O(k^2)$ for solving

$$\sigma + k^2 q V[\sigma] = -k^2 q \phi^{\rm inc}$$

Overall that's $O(k^5)$. Yikes! Experiment with preconditioning/domain decomposition strategies.

Future work

■ Iteration count appears to be $O(k^2)$ for solving

$$\sigma + k^2 q V[\sigma] = -k^2 q \phi^{\rm inc}$$

Overall that's $O(k^5)$. Yikes! Experiment with preconditioning/domain decomposition strategies.

A posteriori adaptive refinement

References

- Hongwei Cheng, Jingfang Huang, and Terry Jo Leiterman. "An adaptive fast solver for the modified Helmholtz equation in two dimensions". In: *Journal of Computational Physics* 211.2 (2006), pp. 616–637.
- Aaron J Danner and Ulf Leonhardt. "Lossless design of an Eaton lens and invisible sphere by transformation optics with no bandwidth limitation". In: *International Quantum Electronics Conference*. Optical Society of America. 2009, JThC4.
- Frank Ethridge and Leslie Greengard. "A new fast-multipole accelerated Poisson solver in two dimensions". In: *SIAM Journal on Scientific Computing* 23.3 (2001), pp. 741–760.
- Leslie Greengard and June-Yub Lee. "A direct adaptive Poisson solver of arbitrary order accuracy". In: *Journal of Computational Physics* 125.2 (1996), pp. 415–424.

Harper Langston, Leslie Greengard, and Denis Zorin. "A free-space adaptive FMM-based PDE solver in three dimensions". In: Communications in Applied Mathematics and Computational Science 6.1 (2011), pp. 79–122.

Dhairya Malhotra and George Biros. "PVFMM: A parallel kernel independent FMM for particle and volume potentials". In: *Communications in Computational Physics* 18.3 (2015), pp. 808–830.

Felipe Vico, Leslie Greengard, and Miguel Ferrando. "Fast convolution with free-space Green's functions". In: *Journal of Computational Physics* 323 (2016), pp. 191–203.