BykovDS 26122024-170247

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.406 мм и с волновым сопротивлением 30 Ом;
- 2 толщиной 0.203 мм и с волновым сопротивлением 9 Ом;
- 3 толщиной 0.508 мм и с волновым сопротивлением 25 Ом;
- 4 толщиной 0.305 мм и с волновым сопротивлением 19 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.6	0.457	-151.6	18.003	90.5	0.028	56.5	0.324	-70.8

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который *не может* обеспечить согласование со стороны плеча 1 на частоте 1.6 $\Gamma\Gamma$ ц при наложении следующих ограничений:

- 1 W_T больше 29 Ом;
- 2 θ_Π меньше $\frac{\pi}{2}$.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой R=198 Ом.

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=4.1~\Gamma\Gamma$ ц и $f_{\rm B}=11.7~\Gamma\Gamma$ ц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен 0.26 + j0;
- 3 использован наикратчайший отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\text{\tiny H}}, f_{\text{\tiny B}}]$?

Варианты ОТВЕТА:

- 1) 0.6 дБ
- 2) 1.1 дБ
- 3) 2.3 дБ
- 4) 2.7 дБ

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь . Была выполнена калибровка на частоте 5.3 ГГц с помощью калибровочной меры с названием "холостой ход". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения: 0.59 - 0.8i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 4.3 cm
- 2) 69.1 cm
- 3) 9.1 cm
- 4) 22.4 cm

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 3 ситуаций соответствует эта частотная характеристика? Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 3 — Различные реализаци и Γ -образной цепи согласования

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\scriptscriptstyle \rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\rm H}=0.59f_{\rm B}$:

```
s_{11} = 0.429-0.111i. (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 91 O_M
- 2) 82 O_M
- 3) 137 Om
- 4) 30 Om