What is claimed is:

1. A compound of the formula I:

$$R_N$$
 OH R_{20} R_{20} R_{20} R_{20} R_{20} R_{3}

5

or a pharmaceutically acceptable salt or ester thereof, wherein R_{20} is H, C_{1-6} alkyl or alkenyl, C_{1-6} haloalkyl or C_{4-7} cycloalkyl;

 R_1 is $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$, or

halogen, or

10 C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -C≡N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino, -N(R)C(O)R'-, -OC(=O)-amino and -OC(=O)-mono- or dialkylamino, or

15

 C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, amino, and mono- or dialkylamino, or

20

aryl, heteroaryl, heterocyclyl, -C₁-C₆ alkyl-aryl, -C₁-C₆ alkyl-heteroaryl, or -C₁-C₆ alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, -C≡N, -NR₁₀₅R'₁₀₅, -CO₂R, -N(R)COR', or -N(R)SO₂R', -C(=O)-(C₁-C₄) alkyl, -SO₂-amino, -SO₂-mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, -SO₂-(C₁-C₄) alkyl, or C₁-C₆ alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from

25

- 96 -

C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, amino, -C₁-C₆ alkyl and mono- or dialkylamino, or 5 C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, - $-C \equiv N$, $-CF_3$, $-C_1-C_3$ alkoxy, mono- or dialkylamino and -C₁-C₃ alkyl, or C_2-C_{10} alkenyl or C_2-C_{10} alkynyl each of which is 10 optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1-C_3 alkoxy, amino, C_1-C_6 alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with 15 oxo; independently are hydrogen, C_1-C_{10} alkyl, C_1-C_{10} alkylaryl or C₁-C₁₀ alkylheteroaryl; R_{C} is hydrogen, $-(CR_{245}R_{250})_{0-4}$ -aryl, $-(CR_{245}R_{250})_{0-4}$ -heteroaryl, - $(CR_{245}R_{250})_{0-4}$ -heterocyclyl, $-(CR_{245}R_{250})_{0-4}$ -aryl-heteroaryl, -20 $(CR_{245}R_{250})_{0-4}$ -aryl-heterocyclyl, $-(CR_{245}R_{250})_{0-4}$ -aryl-aryl, $-(CR_{245}R_{250})_{0-4}$ -heteroaryl-aryl, $-(CR_{245}R_{250})_{0-4}$ -heteroarylheterocyclyl, -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl, (CR₂₄₅R₂₅₀)₀₋₄-heterocyclyl-heteroaryl, $-(CR_{245}R_{250})_{0-4}$ heterocyclyl-heterocyclyl, - $(CR_{245}R_{250})_{0-4}$ -heterocyclyl-25 aryl, $-[C(R_{255})(R_{260})]_{1-3}-CO-N-(R_{255})_{2}$ $-CH(aryl)_2$ -CH(heteroaryl)₂, -CH(heterocyclyl)2, -CH(aryl) (heteroaryl), - (CH₂)₀₋₁-CH((CH₂)₀₋₆-OH) - (CH₂)₀₋₁aryl, $-(CH_2)_{0-1}$ -CH $((CH_2)_{0-6}$ -OH $-(CH_2)_{0-1}$ -heteroaryl, -CH(-aryl)or -heteroaryl)-CO-O(C_1 - C_4 alkyl), -CH(- CH_2 -OH)-CH(OH)-30 phenyl-NO₂, $(C_1-C_6 \text{ alkyl})-O-(C_1-C_6 \text{ alkyl})-OH; -CH_2-NH-CH_2 CH(-O-CH_2-CH_3)_2$, $-(CH_2)_{0-6}-C(=NR_{235})(NR_{235}R_{240})$, or C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of $-OC = ONR_{235}R_{240}$, R_{205} , $-S(=0)_{0-2}(C_1-C_6)$ alkyl), 35 -NR₂₃₅C=ONR₂₃₅R₂₄₀, -C=ONR₂₃₅R₂₄₀, and -S(=O) $_2$ NR₂₃₅R₂₄₀, or

5

10

15

35

-(CH₂) $_{0-3}$ -(C₃-C₈) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -CO₂H, and -CO₂-(C₁-C₄ alkyl), or

- cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocyclyl wherein one, two or three carbons of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with a heteroatom independently selected from NH, NR_{215} , O, or $S(=0)_{0-2}$, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with one or two groups that are independently R_{205} , =O, $-CO-NR_{235}R_{240}$, or $-SO_2-(C_1-C_4 \text{ alkyl})$, or
- C_2 - C_{10} alkenyl or C_2 - C_{10} alkynyl, each of which is optionally substituted with 1, 2, or 3 R_{205} groups, wherein
- each aryl and heteroaryl is optionally substituted with 1, 2, or 3 R_{200} , and wherein each heterocyclyl is optionally substituted with 1, 2, 3, or 4 R_{210} ;
- 20 at each occurrence is independently selected from -OH, $-NO_2$, halogen, $-CO_2H$, $C\equiv N$, $-(CH_2)_{0-4}-CO-NR_{220}R_{225}$, $-(CH_2)_{0-4}-CO-NR_{220}R_{225}$ $CO-(C_1-C_{12} \text{ alkyl}), -(CH_2)_{0-4}-CO-(C_2-C_{12} \text{ alkenyl}), -(CH_2)_{0-4} CO-(C_2-C_{12} \quad alkynyl)$, $-(CH_2)_{0-4}-CO-(C_3-C_7 \quad cycloalkyl)$, $(CH_2)_{0-4}$ -CO-aryl, $-(CH_2)_{0-4}$ -CO-heteroaryl, $-(CH_2)_{0-4}-CO-$ 25 heterocyclyl, $-(CH_2)_{0-4}-CO-O-R_{215}$, $-(CH_2)_{0-4}-SO_2-NR_{220}R_{225}$, - $(CH_2)_{0-4}-SO-(C_1-C_8 \ alkyl), -(CH_2)_{0-4}-SO_2-(C_1-C_{12} \ alkyl), R_{215}$, $-(CH_2)_{0-4}-N(H \text{ or } R_{215})-CO-N(R_{215})_2$, $-(CH_2)_{0-4}-N-CS N(R_{215})_2$, $-(CH_2)_{0-4}-N(-H \text{ or } R_{215})-CO-R_{220}$, $-(CH_2)_{0-4}-NR_{220}R_{225}$, 30 $-(CH_2)_{0-4}-O-CO-(C_1-C_6 alkyl)$, $-(CH_2)_{0-4}-O-P(O)-(OR_{240})_2$ $-(CH_2)_{0-4}-O-CO-N(R_{215})_2$, $-(CH_2)_{0-4}-O-CS-N(R_{215})_2$, $-(CH_2)_{0-4}-O-CS-N(R_{215})_2$ (R_{215}) , $-(CH_2)_{0-4}$ -O- (R_{215}) -COOH, $-(CH_2)_{0-4}$ -S- (R_{215}) , $-(CH_2)_{0-4}$ -O-(C_1 - C_6 alkyl optionally substituted with 1, 2, 3, or 5 -F), C_3-C_7 cycloalkyl, $-(CH_2)_{0-4}-N(H \text{ or } R_{215})-SO_2-R_{220}$, $-(CH_2)_{0-4}-N(H \text{ or } R_{215})-SO_2-R_{220}$

4- C3-C7 cycloalkyl, or

 $\text{C}_{\text{1-}\text{C}_{\text{10}}}$ alkyl optionally substituted with 1, 2, or 3 R_{205} groups, or

 $\text{C}_2\text{-C}_{10}$ alkenyl or $\text{C}_2\text{-C}_{10}$ alkynyl, each of which is optionally substituted with 1 or 2 R_{205} groups, wherein

5

10

- the aryl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 groups that are independently $R_{205},\ R_{210},\ or$
 - C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} , and wherein
- the heterocyclyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently $R_{210};$
- R₂₀₅ at each occurrence is independently selected from C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl) or N-(C_1 - C_6 alkyl);
 - - C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_7 cycloalkyl, each of which is optionally substituted with 1, 2, or 3 R_{205} groups;
- 15 R_{215} at each occurrence is independently selected from C_1 - C_6 alkyl, $-(CH_2)_{0-2}$ -(aryl), C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_7 cycloalkyl, and $-(CH_2)_{0-2}$ -(heteroaryl), $-(CH_2)_{0-2}$ -(heterocyclyl), wherein
- the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} , and wherein
 - the heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 R_{210} ;
- R_{220} and R_{225} at each occurrence are independently selected from -H, -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -

 $(C_1-C_6 \ alkyl)-O-(C_1-C_3 \ alkyl)$, $-C_2-C_6 \ alkenyl$, $-C_2-C_6 \ alkynyl$, $-C_1-C_6 \ alkyl$ chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocyclyl, or $-C_1-C_{10} \ alkyl$ optionally substituted with -OH, $-NH_2$ or halogen, wherein

- the aryl, heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 $R_{\rm 270}$ groups
- R_{235} and R_{240} at each occurrence are independently H, or $C_1\text{-}C_6$ alkyl;

5

.5

0

- R_{245} and R_{250} at each occurrence are independently selected from -H, C_1 - C_4 alkyl, C_1 - C_4 alkylaryl, C_1 - C_4 alkylheteroaryl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, -(C_1 - C_4)0-4- C_3 - C_7 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, and phenyl; or
- R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, where one carbon atom is optionally replaced by a heteroatom selected from -O-, -S-, -SO₂-, and -NR₂₂₀-;
- R₂₅₅ and R₂₆₀ at each occurrence are independently selected from -H, $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6)$ alkyl), $-(C_1-C_4)$ alkyl)-aryl, $-(C_1-C_4)$ alkyl)-heteroaryl, $-(C_1-C_4)$ alkyl)-heterocyclyl, $-(C_1-C_4)$ alkyl)-heterocyclyl, $-(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}-R_{265}-(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}$
 - C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl or $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl, each of which is optionally substituted with 1, 2, or 3 R_{205} groups, wherein
 - each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently $R_{205},\ R_{210},$ or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or $R_{210},$ and wherein
 - each heterocyclyl is optionally substituted with 1, 2, 3, or 4 $R_{210};$

 R_{265} at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-;

- R_{270} at each occurrence is independently $R_{205},$ halogen C_1-C_6 alkoxy, C_1-C_6 haloalkoxy, $NR_{235}R_{240},$ -OH, -C=N, -CO-(C_1-C_4 alkyl), $_-SO_2-NR_{235}R_{240},$ -CO-NR $_{235}R_{240},$ -SO $_2$ -(C_1-C_4 alkyl), =O, or
 - C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl, each of which is optionally substituted with 1, 2, or 3 R_{205} groups;
- 10 R_N is R'_{100} , $-C(=O) NR_{100} R'_{100}$, $-C(=O) O R'_{100}$, $-SO_2R'_{100}$, $-(CRR')_{1-6}R'_{100}$, $-C(=O) (CRR')_{1-6}O R'_{100}$, $-C(=O) (CRR')_{1-6}O R'_{100}$, $-C(=O) (CRR')_{1-6}C(=O) R_{100}$, $-C(=O) (CRR')_{1-6}C(=O) R_{100}$, $-C(=O) (CRR')_{1-6}C(=O) R_{100}$, or $-C(=O) (CRR')_{1-6}C(O) R_{100}C(O) R_{1$

wherein

5

- 15 R₄ is selected from the group consisting of H; NH₂; -NH-(CH₂)_{n6}-R₄₋₁; -NHR₈; -NR₅₀C(O)R₅; C₁-C₄ alkyl-NHC(O)R₅; -(CH₂)₀₋₄R₈; -O-C₁-C₄ alkanoyl; OH; C₆-C₁₀ aryloxy optionally substituted with 1, 2, or 3 groups that are independently halogen, C₁-C₄ alkyl, -CO₂H, -C(O)-C₁-C₄ alkoxy, or C₁-C₄ alkoxy; C₁-C₆ alkoxy; aryl C₁-C₄ alkoxy; -NR₅₀CO₂R₅₁; -C₁-C₄ alkyl-NR₅₀CO₂R₅₁; -C \equiv N; -CF₃; -CF₂-CF₃; -C \equiv CH; -CH₂-CH=CH₂; -(CH₂)₁₋₄-R₄₋₁; -O-(CH₂)_{n6}-R₄₋₁; -S-(CH₂)_{n6}-R₄₋₁; -(CH₂)₀₋₄-NHC(O)-(CH₂)₀₋₆-R₅₂; -(CH₂)₀₋₄-R₅₃-(CH₂)₀₋₄-R₅₄; wherein
- 25 n_6 is 0, 1, 2, or 3; n_7 is 0, 1, 2, or 3;
 - R_{4-1} is selected from the group consisting of $-SO_2-(C_1-C_8$ alkyl), $-SO-(C_1-C_8$ alkyl), $-S-(C_1-C_8$ alkyl), $-S-(C_1-C_8)$ alkyl), $-SO_2-NR_{4-2}R_{4-3}$; $-CO-C_1-C_2$ alkyl; $-CO-NR_{4-3}R_{4-4}$;
 - R_{4-2} and R_{4-3} are independently H, C_1-C_3 alkyl, or C_3-C_6 cycloalkyl;
 - R_{4-4} is alkyl, arylalkyl, alkanoyl, or arylalkanoyl;

 R_{4-6} is-H or C_1-C_6 alkyl;

5

10

15

20

25

30

35

 R_5 is selected from the group consisting of C_3-C_7 cycloalkyl; C₁-C₆ alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, - NR_6R_7 , C_1-C_4 alkoxy, C_5-C_6 heterocycloalkyl, C_5-C_6 heteroaryl, C₆-C₁₀ aryl, C₃-C₇ cycloalkyl C₁-C₄ alkyl, $-S-C_1-C_4$ alkyl, $-SO_2-C_1-C_4$ alkyl, $-CO_2H$, $-CONR_6R_7$, -CO₂-C₁-C₄ alkyl, C₆-C₁₀ aryloxy; heteroaryl optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, C_1 -C4 haloalkyl, or OH; heterocycloalkyl optionally substituted with 1, 2, or 3 groups that are independently C_1-C_4 alkyl, C_1-C_4 alkoxy, halogen, or C₂-C₄ alkanoyl; aryl optionally substituted with 1, 2, 3, or 4 groups that are independently halogen, OH, C_1-C_4 alkyl, C_1-C_4 alkoxy, or C_1-C_4 haloalkyl; and -NR₆R₇; wherein

 R_6 and R_7 are independently selected from the group consisting of H, C_1 - C_6 alkyl, C_2 - C_6 alkanoyl, phenyl, $-SO_2$ - C_1 - C_4 alkyl, phenyl C_1 - C_4 alkyl;

 R_8 is selected from the group consisting of $-SO_2$ -heteroaryl, $-SO_2$ -aryl, $-SO_2$ -heterocycloalkyl, $-SO_2$ - C_1 - C_{10} alkyl, $-C(0)\,NHR_9$, heterocycloalkyl, $-S-C_1-C_6$ alkyl, $-S-C_2-C_4$ alkanoyl, wherein

 $$R_{9}$$ is aryl $C_{1}\text{-}C_{4}$ alkyl, $C_{1}\text{-}C_{6}$ alkyl, or H; $$R_{50}$$ is H or $C_{1}\text{-}C_{6}$ alkyl;

 R_{51} is selected from the group consisting of aryl C_1 - C_4 alkyl; C1-C6 alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, cyano, heteroaryl, $-NR_6R_7$, $-C(0)NR_6R_7$, C_3-C_7 cycloalkyl, or -C₁-C₄ alkoxy; heterocycloalkyl substituted with 1 or2 groups that independently C_1-C_4 alkyl, C_1-C_4 alkoxy, halogen, C_2 -C₄ alkanoyl, aryl C₁-C₄ alkyl, and -SO₂ C₁-C₄ alkyl; alkenyl; alkynyl; heteroaryl optionally substituted with 1, 2, or 3 groups that are independently OH, C_1 -

 C_4 alkyl, C_1-C_4 alkoxy, halogen, NH_2 , $NH(C_1-C_6$ alkyl) $N(C_1-C_6 \quad alkyl)(C_1-C_6 \quad alkyl); \quad heteroarylalkyl$ optionally substituted with 1, 2, or 3 groups that are independently C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, NH_2 , $NH(C_1-C_6 \text{ alkyl})$ or $N(C_1-C_6 \text{ alkyl})(C_1-C_6 \text{ alkyl})$; 5 heterocycloalkyl; C₃-C₈ cycloalkyl; cycloalkylalkyl; wherein the aryl; heterocycloalkyl, C₃-C₈ cycloalkyl, and cycloalkylalkyl groups optionally substituted with 1, 2, 3, 4 or 5 groups that are independently halogen, CN, NO_2 , C_1 - C_6 alkyl, 10 C_1-C_6 alkoxy, C_2-C_6 alkanoyl, C_1-C_6 haloalkyl, C_1-C_6 haloalkoxy, hydroxy, C_1 - C_6 hydroxyalkyl, C_1 - C_6 alkoxy C_1-C_6 alkyl, C_1-C_6 thioalkoxy, C_1-C_6 thioalkoxy C_1-C_6 alkyl, or C₁-C₆ alkoxy C₁-C₆ alkoxy; R_{52} is heterocycloalkyl, heteroaryl, aryl, cycloalkyl, -15 $S(O)_{0-2}-C_1-C_6$ alkyl, CO_2H , $-C(O)NH_2$, -C(O)NH(alkyl), -C(0)N(alkyl)(alkyl), $-CO_2-alkyl$, $-NHS(0)_{0-2}-C_1-C_6$. $-N(alkyl)S(O)_{0-2}-C_1-C_6$ alkyl, alkyl, $-S(0)_{0-2}$ heteroaryl, $-S(0)_{0-2}-aryl$, -NH(arylalkyl), 20 -N(alkyl)(arylalkyl), thioalkoxy, or alkoxy, each of which is optionally substituted with 1, 2, 3, 4, or groups that are independently alkyl, alkoxy, thioalkoxy, halogen, haloalkyl, haloalkoxy, alkanoyl, NO2, CN, alkoxycarbonyl, or aminocarbonyl; 25 R_{53} is absent, -O-, -C(0)-, -NH-, -N(alkyl)-, -NH-S(0)₀₋₂-, $-N(alkyl)-S(O)_{0-2}-$, $-S(O)_{0-2}-NH-$, $-S(O)_{0-2}-N(alkyl)-$, -NH-C(S)-, or -N(alkyl)-C(S)-; is heteroaryl, aryl, arylalkyl, heterocycloalkyl, R_{54} CO₂H, -CO₂-alkyl, -C(O)NH(alkyl), -C(0)N(alkyl)30 (alkyl), $-C(O)NH_2$, C_1-C_8 alkyl, OH, aryloxy, alkoxy, arylalkoxy, $\mathrm{NH_2}$, $\mathrm{NH}(\mathrm{alkyl})$, $\mathrm{N}(\mathrm{alkyl})$ (alkyl), or $-\mathrm{C_1}$ - C_6 alkyl- CO_2 - C_1 - C_6 alkyl, each of which is optionally substituted with 1, 2, 3, 4, or 5 groups that are independently alkyl, alkoxy, CO₂H, $-CO_2$ -alkyl, 35 thioalkoxy, halogen, haloalkyl, haloalkoxy,

hydroxyalkyl, alkanoyl, NO₂, CN, alkoxycarbonyl, or aminocarbonyl;

X' is selected from the group consisting of $-C_1-C_6$ alkylidenyl optionally optionally substituted with 1, 2, or 3 methyl groups; and $-NR_{4-6}-$; or

 R_4 and R_{4-6} combine to form $-(CH_2)_{n10}-$, wherein n_{10} is 1, 2, 3, or 4;

5

25

- Z is selected from the group consisting of a bond; SO_2 ; SO_3 ; and C(O);
- 10 Y is selected from the group consisting of H; C1-C4 haloalkyl; C_5-C_6 heterocycloalkyl; C_6-C_{10} aryl; OH; -N(Y₁)(Y₂); C_1-C_{10} alkyl optionally substituted with 1 thru 3 substituents which can be the same or different and are selected from group consisting of halogen, hydroxy, 15 thioalkoxy, and haloalkoxy; C3-C8 cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from C₁-C₃ alkyl, and halogen; alkoxy; aryl optionally substituted with halogen, alkyl, alkoxy, CN or NO2; arylalkyl optionally substituted with halogen, alkyl, 20 alkoxy, CN or NO2; wherein
 - Y_1 and Y_2 are the same or different and are H; C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 substituents selected from the group consisting of halogen, C_1 - C_4 alkoxy, C_3 - C_8 cycloalkyl, and OH; C_2 - C_6 alkenyl; C_2 - C_6 alkanoyl; phenyl; $-SO_2$ - C_1 - C_4 alkyl; phenyl C_1 - C_4 alkyl; or C_3 - C_8 cycloalkyl C_1 - C_4 alkyl; or
 - Y_1 , Y_2 and the nitrogen to which they are attached form a selected from the group consisting of piperazinyl, piperidinyl, morpholinyl, and pyrolidinyl, wherein each ring is optionally substituted with 1, 2, 3, or 4 groups that are independently C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy C₁-C₆ alkyl, or halogen;
- R₁₀₀ and R'₁₀₀ independently represent aryl, heteroaryl, -aryl-W-aryl, -aryl-W-heteroaryl, -aryl-W-heterocyclyl, -heteroaryl-W-aryl, -heteroaryl-W-heteroaryl,

-heteroaryl-W- heterocyclyl, -heterocyclyl-W-aryl, -heterocyclyl-W-heterocyclyl, -heterocyclyl, -CH[(CH₂)₀₋₂-O-R₁₅₀]-(CH₂)₀₋₂-aryl, -CH[(CH₂)₀₋₂-O-R₁₅₀]-(CH₂)₀₋₂ $_2$ -heterocyclyl or -CH[(CH $_2$) $_{0-2}$ -O-R $_{150}$]-(CH $_2$) $_{0-2}$ -heteroaryl, the ring portions of each 5 are substituted with 1, 2, or 3 groups independently selected from -OR, $-NO_2$, halogen, $-C \equiv N$, $-OCF_3$, $-CF_3$, $-(CH_2)_{0-4}-O-$ P(=O) (OR) (OR'), $-(CH_2)_{0-4}-CO-NR_{105}R'_{105}$, $-(CH_2)_{0-4}-O-$ 10 $(CH_2)_{0-4}$ - $CONR_{102}R_{102}$ ', - $(CH_2)_{0-4}$ -CO- $(C_1$ - C_{12} alkyl), - $(CH_2)_{0-4}$ $_{4}$ -CO-(C_{2} - C_{12} alkenyl), -(CH_{2}) $_{0-4}$ -CO-(C_{2} - C_{12} alkynyl), $-(CH_2)_{0-4}-CO-(CH_2)_{0-4}(C_3-C_7 \text{ cycloalkyl}), -(CH_2)_{0-4}-R_{110},$ $-(CH_2)_{0-4}-R_{120}$, $-(CH_2)_{0-4}-R_{130}$, $-(CH_2)_{0-4}-CO-R_{110}$, $-(CH_2)_{0-4} \text{CO-R}_{120}, \quad - \text{(CH}_2)_{0-4} - \text{CO-R}_{130}, \quad - \text{(CH}_2)_{0-4} - \text{CO-R}_{140}, \quad - \text{(CH}_2)_{0-4} - \\$ 15 $-(CH_2)_{0-4}-SO_2-NR_{105}R'_{105}$, $-(CH_2)_{0-4}-SO-(C_1-C_8)$ $CO-O-R_{150}$, alkyl), $-(CH_2)_{0-4}-SO_{2-}(C_1-C_{12} \text{ alkyl})$, $-(CH_2)_{0-4}-SO_{2-}$ $(CH_2)_{0-4}$ - $(C_3$ - C_7 cycloalkyl), - $(CH_2)_{0-4}$ - $N(R_{150})$ - CO - O - R_{150} , $-(CH_2)_{0-4}-N(R_{150})-CO-N(R_{150})_2$ $-(CH_2)_{0-4}-N(R_{150})-CS N(R_{150})_2$, $-(CH_2)_{0-4}-N(R_{150})-CO-R_{105}$, $-(CH_2)_{0-4}-NR_{105}R'_{105}$, 20 $-(CH_2)_{0-4}-R_{140}$, $-(CH_2)_{0-4}-O-CO-(C_1-C_6 alkyl)$, $-(CH_2)_{0-4}-O-CO-(C_1-C_6 alkyl)$ $P(O) - (O-R_{110})_2$, $-(CH_2)_{0-4}-O-CO-N(R_{150})_2$, $-(CH_2)_{0-4}-O-CS N(R_{150})_2$, $-(CH_2)_{0-4}$ -O- (R_{150}) , $-(CH_2)_{0-4}$ -O- R_{150} '-COOH, - $(CH_2)_{0-4}-S-(R_{150})$, $-(CH_2)_{0-4}-N(R_{150})-SO_2-R_{105}$, - (CH₂)₀₋₄- C_3-C_7 cycloalkyl, (C_2-C_{10}) alkenyl, or (C_2-C_{10}) alkynyl, 25 or R_{100} is C_1-C_{10} alkyl optionally substituted with 1, 2, or 3 R_{115} groups, or R_{100} is $-(C_1-C_6 \text{ alkyl})-O-C_1-C_6 \text{ alkyl})$ or $-(C_1-C_6 \text{ alkyl})-S-(C_1-C_6)$ alkyl), each of which is optionally substituted with 1, 30 2, or 3 R_{115} groups, or

 R_{100} is $C_3\text{-}C_8$ cycloalkyl optionally substituted with 1, 2, or 3 $$R_{115}$$ groups;

W is $-(CH_2)_{0-4}$, -O, $-S(O)_{0-2}$, $-N(R_{135})$, -CR(OH) or -C(O), R_{102} and R_{102} independently are hydrogen, or

 C_1-C_{10} alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, aryl or $-R_{110}$;

 R_{105} and $R^\prime{}_{105}$ independently represent -H, -R_{110}, -R_{120}, C_3-C_7 cycloalkyl, -(C_1-C_2 alkyl)-(C_3-C_7 cycloalkyl), -(C_1-C_6 alkyl)-O-(C_1-C_3 alkyl), C_2-C_6 alkenyl, C_2-C_6 alkynyl, or C_1-C_6 alkyl chain with one double bond and one triple bond, or

5

10

15

20

 C_1 - C_6 alkyl optionally substituted with -OH or -NH $_2$; or, C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, or

- R_{105} and R'_{105} together with the atom to which they are attached form a 3 to 7 membered carbocylic ring, where one member is optionally a heteratom selected from -O-, -S(O) $_{0-2}$ -, $N(R_{135})$ -, the ring being optionally substituted with 1, 2 or three R_{140} groups;
- R_{135} is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_7 cycloalkyl, -(CH₂)₀₋₂-(aryl), -(CH₂)₀₋₂-(heteroaryl), or -(CH₂)₀₋₂-(heterocyclyl);
- R₁₄₀ is heterocyclyl optionally substituted with 1, 2, 3, or 4 groups independently selected from C₁-C₆ alkyl, C₁-C₆ alkoxy, halogen, hydroxy, cyano, nitro, amino, mono(C₁-C₆) alkylamino, di(C₁-C₆) alkylamino, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, amino(C₁-C₆) alkyl, mono(C₁-C₆) alkylamino(C₁-C₆) alkylamino(C₁-C₆) alkylamino(C₁-C₆) alkylamino(C₁-C₆) alkyl, and =O;
- R_{150} is hydrogen, C_3 - C_7 cycloalkyl, $-(C_1$ - C_2 alkyl)- $(C_3$ - C_7 cycloalkyl), C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkyl with one double bond and one triple bond, $-R_{110}$, $-R_{120}$, or

 C_1-C_6 alkyl optionally substituted with 1, 2, 3, or 4 groups independently selected from -OH, -NH₂, C_1-C_3 alkoxy, R_{110} , and halogen;

- R_{150} ' is C_3 - C_7 cycloalkyl, -(C_1 - C_3 alkyl)-(C_3 - C_7 cycloalkyl), C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkyl with one double bond and one triple bond, - R_{110} , - R_{120} , or
 - C_1 - C_6 alkyl optionally substituted with 1, 2, 3, or 4 groups independently selected from -OH, -NH₂, C_1 - C_3 alkoxy, R_{110} , and halogen;
- 10 R₁₈₀ selected is from morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl pyrrolidinyl, each of which is optionally substituted with 1, 2, 3, or 4 groups independently selected from C_1 -15 C_6 alkyl, C_1 - C_6 alkoxy, halogen, hydroxy, cyano, nitro, amino, mono (C_1-C_6) alkylamino, di (C_1-C_6) alkylamino, C_2-C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, $amino(C_1-C_6)alkyl$, $mono(C_1-C_6)alkylamino(C_1-C_6)alkyl$, $di(C_1-C_6)alkyl$ 20 C_6) alkylamino (C_1-C_6) alkyl, and =0;
 - R_{110} is aryl optionally substituted with 1 or 2 R_{125} groups;
 - R_{125} at each occurrence is independently halogen, amino, monoor dialkylamino, -OH, -C \equiv N, -SO₂-NH₂, -SO₂-NH-C₁-C₆ alkyl, -SO₂-N(C₁-C₆ alkyl)₂, -SO₂-(C₁-C₄ alkyl), -CO-NH₂, -CO-NH-
- 25 C_1 - C_6 alkyl, or -CO- $N(C_1$ - C_6 alkyl)₂, or

5

- C₁-C₆ alkyl, C₂-C₆ alkenyl or C₂-C₆ alkynyl, each of which
 is optionally substituted with 1, 2, or 3 groups
 that are independently selected from C₁-C₃ alkyl,
 halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino,
 and mono- and dialkylamino, or
- C₁-C₆ alkoxy optionally substituted with one, two or three of halogen;
- R_{120} is heteroaryl, which is optionally substituted with 1 or 2 R_{125} groups; and

 $\ensuremath{R_{\text{130}}}$ is heterocyclyl optionally substituted with 1 or 2 $\ensuremath{R_{\text{125}}}$ groups; and

 R_2 is selected from the group consisting of H; C_1 - C_6 alkyl, optionally substituted with 1, 2, or 3 substituents that are independently selected from the group consisting of C_1 - C_3 alkyl, halogen, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$; wherein

R₃ is selected from the group consisting of H; C₁-C₆ alkyl, optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of c₁-c₃ alkyl, halogen, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b}; -(CH₂)₀₋₄-aryl; -(CH₂)₀₋₄-heteroaryl; C₂-C₆ alkenyl; C₂-C₆ alkynyl; -CO-NR_{n-2}R_{n-3}; -SO₂-NR_{n-2}R_{n-3}; -CO₂H; and -CO-O-(C₁-C₄ alkyl);

wherein

5

10

15

20

35

10

 R_{N-2} and R_{N-3} at each occurrence are independently selected from the group consisting of $-C_1-C_8$ alkyl optionally substituted with 1, 2, or 3 independently selected from the consisting of -OH, -NH $_2$, phenyl and halogen; -C $_3$ -C $_8$ cycloalkyl; $-(C_1-C_2 \text{ alkyl})-(C_3-C_8 \text{ cycloalkyl}); -(C_1-C_6$ $alkyl) - 0 - (C_1 - C_3)$ alkyl); $-C_2-C_6$ alkenyl; alkynyl; $-C_1-C_6$ alkyl chain with one double bond and one triple bond; aryl; heteroaryl; heterocycloalkyl; or

 R_{N-2} , R_{N-3} and the nitrogen to which they are attached form a 5, 6, or 7 membered heterocycloalkyl or heteroaryl group, wherein said heterocycloalkyl or heteroaryl group is optionally fused to a benzene, pyridine, or pyrimidine ring, and said

- 108 -

groups are unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that at each occurrence are independently C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogen, halo C_1 - C_6 alkyl, halo C_1 - C_6 alkoxy, -CN, -NO₂, -NH₂, NH(C_1 - C_6 alkyl), N(C_1 - C_6 alkyl)(C_1 - C_6 alkyl), -OH, -C(O)NH₂, -C(O)NH(C_1 - C_6 alkyl), -C(O)N(C_1 - C_6 alkyl)(C_1 - C_6 alkyl), C_1 - C_6 alkoxy C_1 - C_6 alkyl, C_1 - C_6 thioalkoxy, and C_1 - C_6 thioalkoxy C_1 - C_6 alkyl;

or wherein,

- R_2 , R_3 and the carbon to which they are attached form a carbocycle of three thru seven carbon atoms, wherein one carbon atom is optionally replaced by a group selected from-O-, -S-, -SO₂-, or -NR_{N-2}-.
- 15 2. A compound according to claim 1 wherein RN is R_N is R'_{100} , $-C(=O) NR_{100} R'_{100}$, $-C(=O) O R'_{100}$, $-SO_2R'_{100}$, $-(CRR')_{1-6}R'_{100}$, $-C(=O) (CRR')_{0-6}R_{100}$, $-C(=O) (CRR')_{1-6} O R'_{100}$, $-C(=O) (CRR')_{1-6} S R'_{100}$, $-C(=O) (CRR')_{1-6} C(=O) (CRR')_{1-6} SO_2 R_{100}$, or $-C(=O) (CRR')_{1-6} NR_{100} R'_{100}$.

20

5

3. A compound according to claim 1, wherein R_{N} is

wherein

25 X' is C_1-C_4 alkylidenyl optionally substituted with 1, 2, or 3 methyl groups; or -NR₄₋₆-, where R₄₋₆ is-H or C_1-C_6 alkyl; or

 R_4 and R_{4-6} combine to form $-(CH_2)_{\,\rm n10}-$, wherein n_{10} is 1, 2, 3, or 4;

30 Z is selected from a bond; SO₂; SO; S; and C(O);

Y is selected from H; C_1 - C_4 haloalkyl; C_5 - C_6 heterocycloalkyl containing at least one N, O, or S; phenyl; OH; $-N(Y_1)(Y_2)$; C_1 - C_{10} alkyl optionally substituted with 1 thru 3 substituents which can be the same or different and are

selected from halogen, hydroxy, alkoxy, thioalkoxy, and haloalkoxy; C_3 - C_8 cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from C_1 - C_3 alkyl, and halogen; alkoxy; phenyl optionally substituted with halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, CN or NO_2 ; phenyl C_1 - C_4 alkyl optionally substituted with halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, CN or NO_2 ; wherein

10

5

 Y_1 and Y_2 are the same or different and are H; C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 substituents selected from the group consisting of halogen, C_1 - C_4 alkoxy, C_3 - C_8 cycloalkyl, and OH; C_2 - C_6 alkenyl; C_2 - C_6 alkanoyl; phenyl; $-SO_2$ - C_1 - C_4 alkyl; phenyl C_1 - C_4 alkyl; and C_3 - C_8 cycloalkyl C_1 - C_4 alkyl; or

15

 $-N(Y_1)(Y_2)$ forms a ring selected from piperazinyl, piperidinyl, morpholinyl, and pyrolidinyl, wherein each ring is optionally substituted with 1, 2, 3, or 4 groups that are independently C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, or halogen.

20

25

4. A compound according to claim 1, wherein R_1 is aryl, heteroaryl, heterocyclyl, $-C_1$ - C_6 alkyl-aryl, $-C_1$ - C_6 alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, $-C \equiv N$, $-NO_2$, $-NR_{105}R'_{105}$, $-CO_2R$, -N(R)COR', or $-N(R)SO_2R'$ (where R_{105} , R'_{105} , R and R' are as defined above), -C(=O)- $(C_1$ - C_4) alkyl, $-SO_2$ -amino, $-SO_2$ -mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, $-SO_2$ - $(C_1$ - C_4) alkyl, or

30

 $C_1\text{-}C_6$ alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen, or

 C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen,

5

10

25

-OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, amino, -C₁-C₆ alkyl and mono- or dialkylamino, or

- C_1-C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, OH, -SH, -C \equiv N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino and -C₁-C₃ alkyl, or
- C_2-C_{10} alkenyl or C_2-C_{10} alkynyl each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C=N, -CF₃, C_1 - C_3 alkoxy, amino, C_1 - C_6 alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.
- 5. A compound according to claim 4, wherein R₁ is $-C_1-C_6 \text{ alkyl-aryl}, -C_1-C_6 \text{ alkyl-heteroaryl}, \text{ or } -C_1-C_6 \text{ alkyl-heteroaryl}, \text{ where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, -C=N, -NO₂, -NR₁₀₅R'₁₀₅, -CO₂R, N(R)COR', or -N(R)SO₂R' (where R₁₀₅, R'₁₀₅, R and R' are as defined above), -C(=O)-(C₁-C₄) alkyl, -SO₂-amino, -SO₂-mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, -SO₂-(C₁-C₄) alkyl, or$

 C_1 - C_6 alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen, or

 C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, amino, - C_1 - C_6 alkyl and mono- or dialkylamino, or

 C_1-C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF $_3$, - C_1-C_3 alkoxy, amino, mono- or dialkylamino and - C_1-C_3 alkyl, or

 $C_2\text{-}C_{10}$ alkenyl or $C_2\text{-}C_{10}$ alkynyl each of which is optionally substituted with 1, 2, or 3 groups independently selected from

halogen, -OH, -SH, -C \equiv N, -CF $_3$, C $_1$ -C $_3$ alkoxy, amino, C $_1$ -C $_6$ alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.

5 6. A compound according to claim 1 wherein: R_N is $-C(=0)-R_{100}$; and

 R_{100} represents aryl, or heteroaryl, where the ring portions of each are optionally substituted with 1, 2, or 3 groups independently selected from

- 10 -OR, -NO₂, C₁-C₆ alkyl, halogen, -C \equiv N, -OCF₃, -CF₃, -(CH₂)₀- $_{4}$ -O-P(=O)(OR)(OR'), -(CH₂) $_{0-4}$ -CO-NR₁₀₅R'₁₀₅, -(CH₂) $_{0-4}$ -O- $(CH_2)_{0-4}-CONR_{102}R_{102}'$, $-(CH_2)_{0-4}-CO-(C_1-C_{12} \text{ alkyl})$, $-(CH_2)_{0-4}$ $_{4}$ -CO-(C_{2} - C_{12} alkenyl), -(CH_{2}) $_{0-4}$ -CO-(C_{2} - C_{12} alkynyl), $-(CH_2)_{0-4}-CO-(CH_2)_{0-4}(C_3-C_7 \text{ cycloalkyl}), -(CH_2)_{0-4}-R_{110},$ 15 $-(CH_2)_{0-4}-R_{120}$, $-(CH_2)_{0-4}-R_{130}$, $-(CH_2)_{0-4}-CO-R_{110}$, $-(CH_2)_{0-4}-CO-R_{110}$ $CO-R_{120}$, $-(CH_2)_{0-4}-CO-R_{130}$, $-(CH_2)_{0-4}-CO-R_{140}$, $-(CH_2)_{0-4} CO-O-R_{150}$, -(CH₂)₀₋₄-SO₂-NR₁₀₅R'₁₀₅, -(CH₂)₀₋₄-SO-(C₁-C₈ $-(CH_2)_{0-4}-SO_{2-}(C_1-C_{12})$ alkyl), alkyl), $-(CH_2)_{0-4}-SO_2 (\text{CH}_2)_{\,0\text{--}4}\text{--} (\text{C}_3\text{--}\text{C}_7 \quad \text{cycloalkyl}) \;, \quad \text{--} (\text{CH}_2)_{\,0\text{--}4}\text{--}\text{N} \left(\text{R}_{150}\right)\text{--}\text{CO}\text{--}\text{O}\text{--}\text{R}_{150} ,$ 20 -(CH₂)₀₋₄-N(R₁₅₀)-CO-N(R₁₅₀)₂, $-(CH_2)_{0-4}-N(R_{150})-CS N(R_{150})_2$, $-(CH_2)_{0-4}-N(R_{150})-CO-R_{105}$, $-(CH_2)_{0-4}-NR_{105}R'_{105}$, $-(CH_2)_{0-4}-R_{140}$, $-(CH_2)_{0-4}-O-CO-(C_1-C_6 \ alkyl)$, $-(CH_2)_{0-4}-O-CO-(C_1-C_6 \ alkyl)$ $P(O) - (O-R_{110})_2$, $-(CH_2)_{0-4} - O-CO-N(R_{150})_2$, $-(CH_2)_{0-4} - O-CS N(R_{150})_2$, $-(CH_2)_{0-4}$ -O- (R_{150}) , $-(CH_2)_{0-4}$ -O- R_{150} '-COOH, -25 $(CH_2)_{0-4}-S-(R_{150})$, $-(CH_2)_{0-4}-N(R_{150})-SO_2-R_{105}$, $-(CH_2)_{0-4} C_3-C_7$ cycloalkyl, (C_2-C_{10}) alkenyl, or (C_2-C_{10}) alkynyl.
 - 7. A compound according to claim 1 wherein:
- R_C is hydrogen, $-(CR_{245}R_{250})_{0-4}$ -aryl, $-(CR_{245}R_{250})_{0-4}$ -heteroaryl, ($CR_{245}R_{250})_{0-4}$ -heterocyclyl,
 - $C_2\text{-}C_{10}$ alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of $R_{205},\ R_{110},\ R_{120},\ R_{130},\ -\text{OC=ONR}_{235}R_{240},\ -\text{S(=O)}_{0\text{-}2}(C_1\text{-}C_6\text{ alkyl}),\ -\text{SH},\ \text{and}\ -\text{S(=O)}_2\text{NR}_{235}R_{240},$

 $-(CH_2)_{0-3}-(C_3-C_8)$ cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , $-CO_2H$, and $-CO_2-(C_1-C_4 \text{ alkyl})$, or

- C_2-C_{10} alkenyl or C_2-C_{10} alkynyl, each of which is optionally substituted with 1, 2, or 3 independently selected R_{205} groups, wherein
- each aryl and heteroaryl is optionally substituted with 1, 2, or 3 R_{200} , and wherein each heterocyclyl is optionally substituted with 1, 2, 3, or 4 independently selected R_{210} groups.
- 8. A compound according to claim 1 wherein R_2 , R_3 , and R_{20} are each hydrogen.
- 9. A compound according to claim 1 selected from the group consisting of:
- N-(3,5-difluorobenzyl)-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-5-methyl-N',N'-dipropylisophthalamide;

5

10

- $N-[2-(3,5-difluorophenyl)ethyl]-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-5-methyl-N',N'-dipropylisophthalamide;$
- 3-[([2-(3,5-difluorophenyl)ethyl]{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}amino)sulfonyl]-N,N-dipropylbenzamide;
- N-(3,5-difluorobenzyl)-N-((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-5-methyl-N',N'-dipropylisophthalamide;
- $N-[2-(3,5-difluorophenyl)]-N-((2R)-3-\{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-5-methyl-N',N'-dipropylisophthalamide;$
 - $3-\{[[2-(3,5-difluorophenyl)ethyl]((2R)-3-\{[(4R)-3-(3R)-3$

```
6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)amino]sulfonyl}-N,N-dipropylbenzamide;
```

- $N-(3,5-\text{difluorobenzyl})-N-\{(2R)-2-\text{hydroxy}-3-[(3-\text{iodobenzyl})\,\text{amino}]\,\text{propyl}\}-N',N',5-$ trimethylisophthalamide;
- N-[2-(3,5-difluorophenyl)ethyl]-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-N',N',5-trimethylisophthalamide;
- $3-[([2-(3,5-difluorophenyl)ethyl]{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}amino)sulfonyl]-N,N-dimethylbenzamide;$
- N-(3,5-difluorobenzyl)-N-((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-N', N',5-trimethylisophthalamide;
- N-[2-(3,5-difluorophenyl)ethyl]-N-((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-N',N',5-trimethylisophthalamide;
- 3-{[[2-(3,5-difluorophenyl)ethyl]((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)amino]sulfonyl}-N,N-dimethylbenzamide;
- N-(3-chloro-5-fluorobenzyl)-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-5-methyl-N',N'-dipropylisophthalamide;
- N-[2-(3-chloro-5-fluorophenyl)ethyl]-N-{(2R)-2-hydroxy-3-[(3-iodobenzyl)amino]propyl}-5-methyl-N', N'-dipropylisophthalamide;
- 3-[([2-(3-chloro-5-fluorophenyl)ethyl]{(2R)-2hydroxy-3-[(3-iodobenzyl)amino]propyl}amino)sulfonyl]N, N-dipropylbenzamide;
- N-(3-chloro-5-fluorobenzyl)-N-((2R)-3-{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-5-methyl-N', N'-

```
dipropylisophthalamide;
     N-[2-(3-chloro-5-fluorophenyl)ethyl]-N-((2R)-3-
\{[(4R)-6-\text{ethyl}-2,2-\text{dioxido}-3,4-\text{dihydro}-1H-
isothiochromen-4-yl]amino}-2-hydroxypropyl)-5-methyl-
N', N'-dipropylisophthalamide;
     3-\{[2-(3-chloro-5-fluorophenyl)ethyl]((2R)-3-
\{[(4R) - 6 - \text{ethyl} - 2, 2 - \text{dioxido} - 3, 4 - \text{dihydro} - 1H - 1]\}
isothiochromen-4-yl]amino}-2-
hydroxypropyl) amino] sulfonyl}-N, N-dipropylbenzamide;
     N-[(2R)-3-(benzylamino)-2-hydroxypropyl]-N-(3,5-
difluorobenzyl) -5-methyl-N', N'-dipropylisophthalamide;
     N-[(2R)-3-(benzylamino)-2-hydroxypropyl]-N-[2-
(3, 5-difluorophenyl) ethyl] -5-methyl-N', N'-
dipropylisophthalamide; and
     3-(\{[(2R)-3-(benzylamino)-2-hydroxypropyl][2-
(3,5-difluorophenyl)ethyl]amino}sulfonyl)-N, N-
dipropylbenzamide.
```

- 10. A pharmaceutical composition comprising a compound according to any one of claims 1-9, in combination with a physiologically acceptable carrier or excipient.
- 11. The use of a compound or salt according to claim 1 for the manufacture of a medicament.

5

The use of a compound or salt according to claim 1 12. 10 for the manufacture of a medicament for use in the treatment prevention of Alzheimer's disease, mild cognitive impairment Down's syndrome, Hereditary Cerebral Hemorrhage Amyloidosis of the Dutch-Type, cerebral angiopathy, other degenerative dementias, dementias of mixed 15 vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal

degeneration, or diffuse Lewy body type of Alzheimer's disease.

5

10

15

- A method for treating a patient who has, or preventing a patient from getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment (MCI) preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, or diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment, comprising administering to such patient a therapeutically effective amount of a compound of claim 1.
- 14. A method for the treatment or prevention 25 Alzheimer's disease, mild cognitive impairment syndrome, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, cerebral amyloid angiopathy, degenerative dementias, dementias of mixed vascular origin, dementia associated with Parkinson's 30 disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease comprising administration of a therapeutically effective amount of a compound or salt according to Claim 1, to a patient in need 35 thereof.

15. A method for making a compound of claim 1.