- 13. Use $y = \sqrt[3]{x}$; $dy = 1/(3\sqrt[3]{x^2}) \cdot dx$ with x = 8 and dx = 0.5. Thus $dy = 1/24 \approx 1/25 = 0.04$; knowing $\sqrt[3]{8} = 2$, we have $\sqrt[3]{8.5} \approx 2.04$.
- 15. Use $y=\cos x$; $dy=-\sin x\cdot dx$ with $x=\pi/2\approx 1.57$ and $dx\approx -0.07$. Thus dy=0.07; knowing $\cos \pi/2=0$, we have $\cos 1.5\approx 0.07$.
- 17. dy = (2x + 3)dx
- 19. $dy = \frac{-2}{4x^3} dx$
- 21. $dy = (2xe^{3x} + 3x^2e^{3x})dx$
- 23. $dy = \frac{2(\tan x + 1) 2x \sec^2 x}{(\tan x + 1)^2} dx$
- 25. $dy = (e^x \sin x + e^x \cos x) dx$
- 27. $dy = \frac{1}{(x+2)^2} dx$
- 29. $dy = (\ln x) dx$
- 31. (a) \pm 12.8 feet
 - (b) \pm 32 feet
- 33. $\pm 48in^2$. or $1/3ft^2$
- 35. (a) 298.8 feet
 - (b) $\pm 17.3 \text{ ft}$
 - (c) $\pm 5.8\%$
- 37. The isosceles triangle setup works the best with the smallest percent error.

Section 4.5

- 1. F
- 3. $x_0 = 1.5, x_1 = 1.5709148, x_2 = 1.5707963, x_3 = 1.5707963, x_4 = 1.5707963, x_5 = 1.5707963$
- 5. $x_0 = 0$, $x_1 = 2$, $x_2 = 1.2$, $x_3 = 1.0117647$, $x_4 = 1.0000458$, $x_5 = 1$
- 7. $x_0 = 2, x_1 = 0.6137056389, x_2 = 0.9133412072,$ $x_3 = 0.9961317034, x_4 = 0.9999925085, x_5 = 1$
- 9. roots are: x = -3.714, x = -0.857, x = 1 and x = 1.571
- 11. roots are: x = -2.165, x = 0, x = 0.525 and x = 1.813
- 13. x = -0.637, x = 1.410
- 15. $x = \pm 4.493, x = 0$
- 17. The approximations alternate between x = 1, x = 2 and x = 3.

Chapter 5

Section 5.1

- 1. Answers will vary.
- 3. Answers will vary.
- 5. Answers will vary.
- 7. velocity
- 9. $1/9x^9 + C$
- 11. t + C
- 13. -1/(3t) + C
- 15. $2\sqrt{x} + C$
- 17. $-\cos\theta + C$
- 19. $5e^{\theta} + C$
- 21. $\frac{5^t}{2 \ln 5} + C$

- 23. $t^6/6 + t^4/4 3t^2 + C$
- 25. $e^{\pi}x + C$
- 27. $\frac{x^2}{2} + 3x + \ln|x| + C$
- 29. (a) x > 0
 - (b) 1/x
 - (c) x < 0
 - (d) 1/x
 - (e) $\ln |x| + C$. Explanations will vary.
- 31. $-\cos x + 3$
- 33. $x^4 x^3 + 7$
- 35. $\tan x + 4$
- 37. $4 \tan^{-1} x + \pi + 12$
- 39. $\frac{7x^3}{6} \frac{9x}{2} + \frac{40}{3}$
- 41. $\theta \sin(\theta) \pi + 4$
- 43. 3x 2
- 45. $dy = (2xe^x \cos x + x^2e^x \cos x x^2e^x \sin x)dx$

Section 5.2

- 1. Answers will vary.
- 3. 0
- 5. (a) 3
 - (b) 4
 - (c) 3
 - (d) 0
 - (e) -4
 - (f) 9
- 7. (a) 4
 - (b) 2
 - (c) 4
 - (d) 2
 - (e) 1
 - (f) 2
- 9. (a) π
 - (b) π
 - (c) 2π
 - (d) 10π
- 11. (a) $4/\pi$
 - (u) 4/1
 - (b) $-4/\pi$
 - (c) 0
 - (d) $2/\pi$
- 13. (a) 40/3
 - (b) 26/3
 - (c) 8/3
 - (d) 38/3
- 15. (a) 3ft/s
 - (b) 9.5ft
 - (c) 9.5ft
 - (6) 3.310
- 17. (a) 96ft/s
 - (b) 6 seconds
 - (c) 6 seconds

(d) Never; the maximum height is 208ft.

- 19. 5
- 21. Answers can vary; one solution is a = -2, b = 7
- 23. -7
- 25. Answers can vary; one solution is a = -11, b = 18
- 27. $-\cos x \sin x + \tan x + C$
- 29. $\ln |x| + \csc x + C$

Section 5.3

- 1. limits
- 3. Rectangles.
- 5. $2^2 + 3^2 + 4^2 = 29$
- 7. 0-1+0+1+0=0
- 9. -1+2-3+4-5+6=3
- 11. 1+1+1+1+1=6
- 13. Answers may vary; $\sum_{i=0}^{8} (i^2 1)$
- 15. Answers may vary; $\sum_{i=0}^{4} (-1)^i e^i$
- 17. 1045
- 19. -8525
- 21. 5050
- 23. 155
- 25. 24
- 27. 19
- 29. $\pi/3 + \pi/(2\sqrt{3}) \approx 1.954$
- 31. 0.388584
- 33. (a) Exact expressions will vary; $\frac{(1+n)^2}{4n^2}$.
 - (b) 121/400, 10201/40000, 1002001/4000000
 - (c) 1/4
- 35. (a) 8.
 - (b) 8, 8, 8
 - (c) 8
- 37. (a) Exact expressions will vary; 100 200/n.
 - (b) 80, 98, 499/5
 - (c) 100
- 39. $F(x) = 5 \tan x + 4$
- 41. $G(t) = 4/6t^6 5/4t^4 + 8t + 9$
- 43. $G(t) = \sin t \cos t 78$

Section 5.4

- 1. Answers will vary.
- 3. T
- 5. 20
- 7. 0
- 9. 1
- 11. $(5-1/5)/\ln 5$
- **13**. −4
- 15. 16/3
- 17. 45/4
- 19. 1/2

- 21. 1/2
- 23. 1/4
- 25. 8
- 27. 0
- 29. Explanations will vary. A sketch will help.
- 31. $c = \pm 2/\sqrt{3}$
- 33. $c = 64/9 \approx 7.1$
- 35. 2/pi
- 37. 16/3
- 39. $\pi/4$
- 41. -300ft
- 43. $1.5/\ln(2) \approx 2.164$ miles
- 45. 128/5ft
- 47. 50ft/s
- 49. Oft/s
- 51. 21
- 53. 343/6
- 55. $F'(x) = 3x^{11}$
- 57. $F'(x) = e^x \sin(e^x) \frac{1}{x} \sin(\ln x)$
- 59. $F'(x) = \ln(1 e^x) + \frac{\ln x}{1 x}$

Section 5.5

- 1. Chain Rule.
- 3. $\frac{1}{8}(x^3-5)^8+C$
- 5. $\frac{1}{18}(x^2+1)^9+C$
- 7. $\frac{1}{2} \ln |2x + 7| + C$
- 9. $\frac{2}{3}(x+3)^{3/2} 6(x+3)^{1/2} + C = \frac{2}{3}(x-6)\sqrt{x+3} + C$
- 11. $2e^{\sqrt{x}} + C$
- 13. $-\frac{1}{2x^2} \frac{1}{x} + C$
- 15. $\frac{1}{3}(2x+1)^{3/2} \sqrt{2x+1} + C$
- 17. $-\frac{1}{6}\sin(3-6x)+C$
- 19. $\frac{1}{2} \ln |\sec(2x) + \tan(2x)| + C$
- 21. $\frac{\sin(x^2)}{2} + C$
- 23. The key is to multiply $\csc x$ by 1 in the form $(\csc x + \cot x)/(\csc x + \cot x)$.
- 25. $\sin(e^x) + C$
- 27. $\frac{1}{3}e^{3x-1} + C$
- 29. $\frac{1}{2}e^{(x-1)^2}+C$
- 31. $\frac{e^{-3x}}{3} e^{-x} + C$
- 33. $\frac{16^x}{\ln(16)} + C$
- $35. \ \frac{\left(\ln x\right)^3}{3} + C$
- 37. $\frac{1}{2} \ln (\ln (x^2)) + C$
- 39. $\frac{1}{2}(x^2 + 10x + 20 \ln|x 3|) + C$
- 41. $\frac{1}{3} \ln |x^2 + 3x + 3| + \frac{\ln |x|}{3} + C$
- 43. $3 \sin^{-1} \left(\frac{x}{3} \right) + C$

- 45. $\frac{2}{3} \sec^{-1}(|x|/3) + C$
- 47. $\frac{1}{2} \sin^{-1}(x^2) + C$
- 49. $2\sin^{-1}\left(\frac{x-3}{4}\right) + C$
- 51. $\frac{1}{2} \tan^{-1} (x^2) + C$
- 53. $-\frac{1}{3(x^3+3)}+C$
- 55. $-\sqrt{1-x^2}+C$
- 57. $-\frac{2}{3}\cos^{\frac{3}{2}}(x) + C$
- 59. $\frac{7}{3} \ln |3x + 2| + C$
- 61. $\ln |x^2 + 7x + 3| + C$
- 63. $-\frac{x^2}{2} + 2 \ln |x^2 7x + 1| + 7x + C$
- 65. $tan^{-1}(2x) + C$
- 67. $\frac{1}{3} \sin^{-1} \left(\frac{3x}{4} \right) + C$
- 69. $\frac{3}{2} \ln |x^2 2x + 10| + \frac{1}{3} \tan^{-1} \left(\frac{x-1}{3}\right) + C$
- 71. $\frac{15}{2} \ln \left| x^2 10x + 32 \right| + x + \frac{41 \tan^{-1} \left(\frac{x-5}{\sqrt{7}} \right)}{\sqrt{7}} + C$
- 73. $\frac{x^2}{2} + 3 \ln |x^2 + 4x + 9| 4x + \frac{24 \tan^{-1}(\frac{x+2}{\sqrt{5}})}{\sqrt{5}} + C$
- 75. $tan^{-1}(sin(x)) + C$
- 77. $3\sqrt{x^2-2x-6}+C$
- 79. In 2
- 81. 2/3
- 83. (1-e)/2
- 85. $\pi/2$
- 87. $e^{\pi/3} 1$
- 89. 1
- 91. 2
- 93. $-\frac{1}{2}\cos(2x+\pi)+\frac{91}{2}$
- 95. $-\ln|\cos x| + 3x + 5$

Section 5.6

- 1. F
- 3. They are superseded by the Trapezoidal Rule; it takes an equal amount of work and is generally more accurate.
- 5. (a) 250
 - (b) 250
 - (c) 250
- 7. (a) $2 + \sqrt{2} + \sqrt{3} \approx 5.15$
 - (b) $2/3(3+\sqrt{2}+2\sqrt{3})\approx 5.25$
 - (c) $16/3 \approx 5.33$
- 9. (a) 0.2207
 - (b) 0.2005
 - (c) 1/5
- 11. (a) $9/2(1+\sqrt{3}) \approx 12.294$
 - (b) $3 + 6\sqrt{3} \approx 13.392$
 - (c) $9\pi/2 \approx 14.137$
- 13. Trapezoidal Rule: 3.0241 Simpson's Rule: 2.9315

- 15. Trapezoidal Rule: 3.0695 Simpson's Rule: 3.14295
- 17. Trapezoidal Rule: 2.52971 Simpson's Rule: 2.5447
- 19. Trapezoidal Rule: 3.5472 Simpson's Rule: 3.6133
- 21. (a) n = 150 (using max (f''(x)) = 1)
 - (b) n = 18 (using max $(f^{(4)}(x)) = 7$)
 - (a) n = 5591 (using max (f''(x)) = 300)
 - (b) n = 46 (using max $(f^{(4)}(x)) = 24$)
- 25. (a) Area is 25.0667 cm²
 - (b) Area is 250,667 yd²

Chapter 6

Section 6.1

- 1. T
- 3. Determining which functions in the integrand to set equal to "u" and which to set equal to "dv".
- 5. $-e^{-x} xe^{-x} + C$
- 7. $-x^3 \cos x + 3x^2 \sin x + 6x \cos x 6 \sin x + C$
- 9. $x^3e^x 3x^2e^x + 6xe^x 6e^x + C$
- 11. $-\frac{1}{2}xe^{-2x} \frac{e^{-2x}}{4} + C$
- 13. $\frac{1}{5}e^{2x}(\sin x + 2\cos x) + C$
- 15. $\frac{1}{13}e^{2x}(2\sin(3x)-3\cos(3x))+C$
- 17. $-\frac{1}{2}\cos^2 x + C$
- 19. $x \tan^{-1}(2x) \frac{1}{4} \ln(4x^2 + 1) + C$
- 21. $x \cos^{-1} x \sqrt{1 x^2} + C$
- 23. $-\frac{x^2}{4} + \frac{1}{2}x^2 \ln x + 2x 2x \ln x + C$
- 25. $\frac{1}{2}x^2 \ln(x^2) \frac{x^2}{2} + C$
- 27. $2\sqrt{x} \ln x 4\sqrt{x} + C$
- 29. $2x + (x+1)(\ln(x+1))^2 (2x+2)\ln(x+1) + C$
- 31. $\ln|\sin(x)| x\cot(x) + C$
- 33. $\frac{1}{3}(x^2-2)^{3/2}+C$
- 35. $x \sec x \ln|\sec x + \tan x| + C$
- 37. $\frac{x^{n+1} \ln x}{n+1} \frac{x^{n+1}}{(n+1)^2} + C$
- 39. $2 \sin (\sqrt{x}) 2\sqrt{x} \cos (\sqrt{x}) + C$
- 41. $2\sqrt{x}e^{\sqrt{x}} 2e^{\sqrt{x}} + C$
- 43. π
- 45. 0
- 47. 1/2
- 49. $\frac{98}{\ln 7} \frac{48}{(\ln 7)^2}$
- 51. $\frac{1}{2} + \frac{e^{\pi}}{2}$
- 53. $xe^{x} \ln x e^{x} + C$
- 55. $\sin x x \cos x + 9$
- 57. $\frac{1}{2}x^3 \ln x \frac{x^3}{9} + \frac{7e^3}{9}$

Section 6.2