1. (b)

I) 0-1 distribution: Number of zeroes: 152 difference Number of ones: 16 Jat most 1

II) Run distribution:	Length	0-run	1-run
		25-11)-2 = 4	25-11)-2 = 4
	2	$2^{5-(2)-2}=2$	$2^{5-(2)-2}=2$
m	-2=3	(1
α	7-1=4	\	0
_	m = 5	0)
	Total	2 ⁵⁻² = 8	2 ⁵⁻² = 8

$$III)$$
 Autocorrelation: $C(\tau=0)=31=N$
 $C(\tau\neq0)=K\neq N$

IV) Initial States: First n bits of m-sequence
in reverse order
=> x4 x3 x2 x1 x0
1 0 0 0

V) LFSR Sketch:

(c) An m-bit LFSR should be able to produce at most 2^m-1 m-bit pseudorandom numbers. Given m=5, this LFSR is capable of producing at most 31 5-bit pseudorandom numbers.