ЛАБОРАТОРНА РОБОТА № 4

ОПТИМІЗАЦІЯ ЦІЛЬОВОЇ ФУНКЦІЇ СИСТЕМИ МЕТОДОМ ПОКООРДИНАТНОГО СПУСКУ

Мета заняття: ознайомитися з методом Гауса для знаходження екстремуму цільової функції, який заснований на використанні ідеї покоординатного переміщення робочої точки; дослідити процес рішення оптимізаційної задачі для цільової функції двох змінних $Q(x_1, x_2)$; при рішенні задачі одержати залежність обчислювальних витрат на пошук рішення від параметрів алгоритму пошуку; оцінити ефективність методу Гауса шляхом порівняння обчислювальних витрат на пошук рішення при використанні даного методу і методів з попередніх лабораторних робіт.

Хід роботи

Завдання №1

Знайдемо ектстремум цільової функції за заданими данними, а також зобразимо траєкторію його пошуку (перших 8 кроків):

№ варі анту	A_0	\mathbf{A}_1	A_2	A ₃	A ₄		Вид екстр емуму	mın	X ₁ max	X ₂ min	X ₂ max
5	0,5	1,0	2,2	0,5	0,3	1,3	min	1	2	0	1

Рисунок 1 – Аргументи цільової функції згідно варіанту

```
Lab 4 menu:

1. Task 1
2. Task 2
0. Exit

Enter task number: 1
Calculated extremum -1.1313363733909387 -0.6296930960239746 -0.7609952380113276
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
```

Рисунок 2 – Координати екстремуму (мінімуму) цільової функції

Змн.	Арк.	№ докум.	Підпис	Дата	Державний університет «Житомирська по техніка».21.125.05.000 — Лр4				
Розр		Гончаров М.В.		, ,		Літ.	Арк.	Аркушів	
Перевір.		Подчашинський Ю.О			-		1	3	
Керівник					Звіт з				
Н. контр.					лабораторної роботи №4 <i>ФІКТ Гр. І</i>		Т Гр. I	КБ-2(1)	
Зав. каф.									

Рисунок 3 — Екстремум (мінімум) цільової функції та траєкторія його пошуку (перші 8 кроків)

Завдання №2

Побудуємо залежність обчислювальних витрат (час та кількість обчислювань) від значення N ($N=2,6;\ 2,7;\ 2,8;\ 3,0;\ 4,0$) та знайдемо оптимальне значення цієї константи:

```
1. Task 1
2. Task 2
0. Exit

Enter task number: 2
N : 2.6
Calculated Extremum -1.1313363733909387 -0.6296930960239746 -0.7609952380113276
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
Calculation time : 0.0
Number of calculations : 72
N : 2.7
Calculated Extremum -1.131270085599513 -0.6297087444489883 -0.760995762430057
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
Calculation time : 0.0
Number of calculations : 75
N : 2.8
Calculated Extremum -1.1312094397349777 -0.6297230609954099 -0.7609962493395719
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
Calculation time : 0.0
Number of calculations : 78
N : 3.0
Calculated Extremum -1.1284160797168847 -0.6303824838455782 -0.7609672659895977
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
Calculation time : 0.0
Number of calculations : 81
N : 4.0
Calculated Extremum -1.1287781634446723 -0.6302970074722192 -0.7609802260018412
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
Calculation time : 0.00099945068359375
Number of calculations : 111
```

Рисунок 4 — Екстремуми цільової функції, час та кілкість обчислювань при різних значеннях N

		Гончаров О.О			
		Подчашинський Ю.О			-
Змн.	Арк.	№ докум.	Підпис	Дата	

Державний університет «Житомирська політехніка».21.125.05.000 — Лр4

Рисунок 5 – Залежність затрат на пошук від значення N

3 рис. 4-5 можемо зробити висновок, що оптимальним значенням коєфінієнта N, тобто тим, яке вимагає найменших затрат при обчисленні є значення 2,6. Протилежним ньому є значення 4,0. Також на рис.4 можливо спостерігати збільшення розходження у обрахованому та аналітичному значеннях екстремуму при збільшенні значення N.

Висновки: в ході виконання лабораторної роботи ми ознайомилися з методом Гауса для знаходження екстремуму цільової функції, який заснований на використанні ідеї покоординатного переміщення робочої точки; дослідили процес рішення оптимізаційної задачі для цільової функції двох змінних $Q(x_1, x_2)$; одержали залежність обчислювальних витрат на пошук екстремуму від параметрів алгоритму пошуку; оцінили ефективність методу Гауса шляхом порівняння обчислювальних витрат на пошук рішення при використанні даного методу і методів з попередніх лабораторних робіт.

		Гончаров О.О		
		Подчашинський Ю.О		
Змн.	Арк.	№ докум.	Підпис	Дата