Introduction to Base R

Johann S. Schuur

09.09.2020

Some poll results:)

Previous R experience

Experience with other languages

R Bootcamp expectations

Outlook

- 9:00 10:00 (warming up)
 - Introduction
 - R in your study program
 - other languages
 - installing R
 - the Integrated Development Environment (IDE)
- 10:00 10:15 (Virtual coffee break)
- 10:15 11:10 (Base R Part 1)
 - variables and R as calculator
 - data structures (vectors, matrix, lists, indexing)
 - packages and libraries
 - base plotting
- 11:10 11:25 (Virtual coffee break)
- 11:25 12:10 (Base R Part 2)
 - writing scripts (best practices)
 - data handling
 - if-else statements
- 12:10 12:30 (Virtual coffee break)
 - Time to exercise

The use of R

- Master in Comparative and International Studies (MACIS)
- Master in Science, Technology, and Policy (STP)

The use of R

- R is considered best for
 - graphing and visualizations,
 - data analysis and statistical computing

- Python goes beyond data analysis
 - developing and programming
 - web-scraping (STP course: Big data for Public Policy)
- both borrow from eachother however:)

https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis#gs.k=J5=oY

Installing R

If you haven't done already, go to: https://courses.edx.org/courses/UTAustinX/UT.7.01x/3T2014/56c5437b88fa43cf828bff537

- you need both!
 - R is the language
 - Rstudio is your IDE ("user interface")

The Integrated Development Environment (IDE)

Virtual coffee break (10:00 - 10:15)

Recap

- R in your study program
- other languages
- installing R
- the Integrated Development Environment (IDE)

Questions in break-out sessions

Variables and R as calculator

```
# assigning variables
a <- 5
b <- 10

# performing a computation and calling the result
a + b # (Windows: ctrl + enter, Mac: cmd + enter)</pre>
```

[1] 15

for more keyboard shortcuts, see: https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts

vector

```
# creating vectors
x <- c(1:9) # c(...), combines arguments into vector or list</pre>
```

- matrix
- array
- lists
- data frames

- vector
- matrix

```
# creating matrices
A <- matrix(x, nrow = 3, ncol = 3)

# assigning row, column and matrix names
rownames(A) <- c("penguin1", "penguin2", "penguin3")
colnames(A) <- c("species", "sex", "year")
matrix_names <- c("set1", "set2")</pre>
```

- array
- lists
- data frames

- vector
- matrix
- array

- lists
- data frames

- vector
- matrix
- array
- lists

```
l1 <- list(x, A, "hello", TRUE, FALSE) # elements of different types</pre>
```

• data frames

- vector
- matrix
- array
- lists
- data frames
 - have column names
 - unique rownames
 - o handle numeric, factor, or character data
 - each column contains same number of entries

^	species [‡]	island [‡]	bill_length_mm ÷	$bill_depth_mm \ ^{\hat{\phi}}$	flipper_length_mm ÷	body_mass_g [‡]	sex 🗦	year [‡]
1	Adelie	Torgersen	39.1	18.7	181	3750	male	2007
2	Adelie	Torgersen	39.5	17.4	186	3800	female	2007
3	Adelie	Torgersen	40.3	18.0	195	3250	female	2007
4	Adelie	Torgersen	NA	NA	NA	NA	NA	2007
5	Adelie	Torgersen	36.7	19.3	193	3450	female	2007
6	Adelie	Torgersen	39.3	20.6	190	3650	male	2007

Indexing

```
x[5] # accessing fifth element of vector
## [1] 5
A[2,3] # accessing second row, third column of matrix
## [1] 8
A[c(1,2), c(2,3)] # ... 1st and 2nd row of 2nd and 3th column
##
  sex year
## penguin1 4 7
## penguin2 5 8
array1[1,,1] # ... 1st row, all columns, 1st matrix
## species sex year
## 1 4 7
```

for more indexing, see: https://data-flair.training/blogs/data-structures-in-r/

Packages and libraries

Packages

- R is open source, we benefit from packages made (and updated) by the R community
- they organize work and typically contain:
 - code
 - specific functions
 - documentation ("README's")
 - data-sets
- to work with them they need to be installed (you do this once)

Packages and libraries

Library

 using a package for a new project, we need to load it (you do this every time)

library(palmerpenguins)

"Artwork by @allison_horst"

you cannot input a number of libraries at the same time

- for a quick and simple visualization of your data (today)
- we will mainly use ggplot (tomorrow)

```
y <- c(1,5,2,7,9,8,10,4,1)
plot(x, y) # plotting y vs x
```


• For more base R plotting, see: https://bookdown.org/rdpeng/exdata/the-base-plotting-system-1.html

Virtual coffee break (11:10 - 11:25)

Recap

- variables and R as calculator
- data structures (vectors, matrix, lists, indexing)
- packages and libraries
- base plotting

Questions in break-out sessions

Writing scripts

• Set up find and set your working directory

```
getwd() # tells you in which working directory you currently operate
setwd() # lets you set your desired working directory
```

Example:

```
setwd("~/Desktop/Student representation ISTP/rbootcamp/part1/")
```

- Make a separate folder for each project, that contains
 - data
 - figures
 - 0 ...

Why?

- keep things tidy
- share your work
- have people replicate your work

Writing scripts (best practices)

- Best practices: Create a "New project"
 - this does all the above for you
 - allows you to work on mutiple projects simultaneously
 - DOESN'T CLUTTER YOUR WORKSPACE :)

for more, see: https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects

Writing scripts

- Indenting and commenting
 - comment where necessary, don't go overboard
 - use spaces after each input
 - object names: all lowercase, short, and yet informative
 - o use indents to show that something is a part of something
 - 0 ...
- Tips and tricks
 - Alt/Option + for assignment operator
 - type "?nameoffunction" to access help center
 - use "tab" for autocompletion
 - use arrow-keys to navigate previous commands
 - Cmd/Ctrl + Shift + C to command out (several) lines
 - 0 ...

If-else statements

- Let R perform an action based on if a condition is met or not
- Syntax:
 - if (this is true) {do this}
 - else if (an alternative is true) {then do this}
 - else (when none of the above is true) {then do this}

If-else statements

Simplest example

```
Х
## [1] 1 2 3 4 5 6 7 8 9
# creating multiple condition statement
if(10 %in% x) {
  print("x is equal to 10")
} else if(20 %in% 10) {
    print("x is equal to 20")
} else if( x < 10 \& x >= 0) {
    print("x is a number equal or greater than 0 and smaller than 10")
} else {
    print("the conditions are not med for x")
}
```

[1] "x is a number equal or greater than 0 and smaller than 10"

NOTE: "if" only takes ONE logical value

If-else statements

• using "ifelse", we access the entire vector, element-by-element:

```
## [1] 1 2 3 4 5 6 7 8 9

ifelse(x >= 6, "TRUE", "FALSE")

## [1] "FALSE" "FALSE" "FALSE" "TRUE" "TRUE" "TRUE" "TRUE"
```

Yet, another coffee break? (12:15-12:30)

Recap

- writing scripts
- data handling
- if-else statements

Questions in break-out sessions

Exercises

- set up a project (and check your working directory through the console)
- write name of author and date of latest access
- comment where necessary
- assign a variable (vector and matrix)
- access an index from the vector amd matrix
- plot a histogram from your vector
- plot a boxplot and histogram from the penguin data
 - choose interesting variables to analyse
 - include title and axis-lables
 - say something about what you see
- send the code to your peers for replication

That's all folks!

Any burning questions?