

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

General Description

The MAX4564 is a low-voltage, dual-supply, single-pole/double-throw (SPDT) analog switch designed to operate from dual $\pm 1.8V$ to $\pm 6V$ or single + 1.8V to + 12V supplies. The low on-resistance (RON = 40Ω at $\pm 5V$) and low power consumption (5 μ W) make this part ideal for audio, video, and battery-powered applications. This switch offers low leakage currents (1nA max) and fast switching speeds (toN = 60ns and toFF = 40ns at $\pm 5V$, max).

The MAX4564 is available in 8-pin SOT23 and μ MAX[®] packages.

Applications

Battery-Operated Systems
Audio and Video Switching

Test Equipment

Communications Circuits

Sample-and-Hold Circuits

Communications Systems

μΜΑΧ is a registered trademark of Maxim Integrated Products, Inc.

Features

- ♦ 60Ω max $(40\Omega$, typ) On-Resistance (R_{ON})
- ♦ 3Ω max (0.75Ω, typ) R_{ON} Matching Between Channels
- ♦ 10Ω (max) Ron Flatness
- **♦ Low Charge Injection: 3pC (typ)**
- ♦ Low ±1nA Leakage Current at +25°C
- ♦ Fast Switching

ton = 60ns (max) toff = 40ns (max)

- ◆ Guaranteed Break-Before-Make Switching
- **♦ TTL/CMOS-Logic Compatible**
- ♦ Low Crosstalk: -72dB (1MHz)
- ♦ High Off-Isolation: -77dB (1MHz)
- ♦ Bandwidth -3dB: >450MHz (typ)
- ♦ Available in an 8-Pin SOT23 Package

Ordering Information

PART	TEMP RANGE	PIN PACKAGE	TOP MARK
MAX4564EKA+	-40°C to +85°C	8 SOT23	AAEI
MAX4564EUA+	-40°C to +85°C	8 µMAX	_

⁺Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

Functional Diagrams/Pin Configurations/Truth Table

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)	
V+	0.3V to +13V
V	13V to +0.3V
V+ to V	0.3V to +13V
EN, IN, COM, NC, NO (Note 1)	(V0.3V) to $(V++0.3V)$
Continuous Current (any terminal)	±20mA
Peak Current, COM, NC, NO	
(pulsed at 1ms, 10% duty cycle)	±30mA
ESD per Method 3015.7	

Continuous Power Dissipation ($T_A = +70$ °C)	
SOT23 (derate 5.6mW/°C above +70°C).	444.4mW
μMAX (derate 4.5mW/°C above +70°C)	362mW
Operating Temperature Range	
MAX4564E_A	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	
Soldering Temperature (reflow)	+260°C

Note 1: Signals on NO, NC, COM, IN, or EN exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—±5V Supply

 $(V+ = +4.5V \text{ to } +6V, V- = -4.5V \text{ to } -6V, V_{IH} = +2.4V, V_{IL} = +0.8V, GND = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			V-		V+	V
On-Resistance	Pov	V+ = +4.5V, V- = -4.5V,	+25°C		40	60	Ω
On-Resistance	Ron	$I_{COM} = 1$ mA; V_{NO} , $V_{NC} = \pm 3.5$ V	Е			100	22
On-Resistance Match Between	ΔR _{ON}	V+ = +4.5V, $V- = -4.5V$,	+25°C		0.75	3	Ω
Channels (Note 4)	ICOM	$I_{COM} = 1mA; V_{NO}, V_{NC} = \pm 3.5V$	Е			4	32
On-Resistance Flatness	D	$V+ = +4.5V$, $V- = -4.5V$, $I_{COM} =$	+25°C		6.5	10	Ω
(Note 5)	R _{FLAT} (ON)	1mA; V_{NO} , $V_{NC} = -3.5V$, 0, +3.5V	Е			13	
NO or NC Off-Leakage Current	I _{NC(OFF)} or	V+ = +5.5V, V- = -5.5V; V _{COM} = +4.5V, -4.5V;	+25°C	-1	0.05	1	nA
NO of NC Oil-Leakage Current	INO(OFF)	NO(OFF) V _{NO} , V _{NC} = -4.5, +4.5V	Е	-5		5	117 (
COM Off Lookaga Current	loomoss)	V+ = +5.5V, V- = -5.5V; V _{COM} = +4.5V, -4.5V;	+25°C	-1	0.05	1	nA
COM Off-Leakage Current	ICOM(OFF)	V_{NO} , $V_{NC} = -4.5$, $+4.5$ V	Е	-5		5	117 (
COM On-Leakage Current	loon won	V+ = +5.5V, V- = -5.5V, V _{COM} = +4.5V, -4.5V; V _{NO} , V _{NC} = +4.5V,	+25°C	-2	0.05	2	nA
	ICOM(ON)	-4.5V, or unconnected	Е	-10		10	117.

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

ELECTRICAL CHARACTERISTICS—±5V Supply (continued)

 $(V+ = +4.5V \text{ to } +6V, V- = -4.5V \text{ to } -6V, V_{IH} = +2.4V, V_{IL} = +0.8V, GND = 0, T_A = T_{MIN} \text{ to } T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 2, 3)$

Turn-Off Time toff VNo, VNC = +3V, -3V, +25°C 28 40 Turn-Off Time toff VNo, VNC = +3V, -3V, +25°C 5 50 70 Transition Time toff VNo, VNC = +3V, VNO = +3V, VNO = +3V, VNO = +3V, VNO = +3V, VNO = +3V, VNO = +3V, VNO = +3V, VNO = +3V, VNO = +3V, VNO = +3V, VNO = +3V, VNO = +3V, VNO +25°C 5 15 Ereak-Before-Make Time (Note 6) UNO, VNC = +3V, -3V, RL = 300Ω, +25°C 5 15 UNO, VNC = +3V, -3V, RL = 300Ω, +25°C 5 15 UNO, VNC = +3V, -3V, RL = 300Ω, +25°C 3 Under the total long of the total l	PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Turn-On Time 10N R _L = 18Δ _L C _L = 35pF E 75 Turn-Off Time toFF V _{NOL} V _{NC} = 43V, -3V, -3V, -8L = 18Δ _L C _L = 35pF +25°C 28 40 Transition Time toFF Itrans V _{NOL} = 43V, -3V, -3V, -3V, -3V, -25°C 50 70 Break-Before-Make Time (Note 6) tbBM V _{NOL} +3V, -3V, -3V, R _L = 300Ω, -25°C 5 15 Charge Injection Q VGEN = 0, RGEN = 0, -21 - 100PF, -100PF, -100	SWITCH DYNAMIC CHARACTE	ERISTICS		L				ı
Turn-Off Time	- 0 -		VNO. VNC = +3V3V.	+25°C		40	60	
Turn-Off Time toFF RL = IkΩ, CL = 35pF E 50 Transition Time trRANS VNC = -3V, VNO = -3V, VNC = +3V, VNC = -3V, VNC = +3V, VNC = -3V, VNC = +3V, VNC = -3V, VNC = -2V, V	Turn-On Time	tON		Е			75	ns
He 1 kΩ, C = 35pF E 50 70	Turn Off Time	+0.55	$V_{NO}, V_{NC} = +3V, -3V,$	+25°C		28	40	200
Transition Time trans V _{NC} = -3V, V _N ○ = +3V, R _L = 1kΩ, C _L = 35pF E 85 Break-Before-Make Time (Note 6) tBBM V _{NO} , V _{NC} = +3V, -3V, R _L = 300Ω, C _L = 25pF ±25°C 5 15 Charge Injection Q V _{GEN} = 0, R _{GEN} = 0, C _L = 10pF, folds = 1MHz ±25°C 3 45°C 3 -3dB Bandwidth f.3dB R _L = 50Ω, C _L = 10pF, folds = 1MHz ±25°C 450 M Off-Isolation (Note 7) V _{ISO} R _L = 50Ω, C _L = 10pF, folds = 1MHz ±25°C -77 —77 Crosstalk (Control Input to Signal Output) R _L = 50Ω, C _L = 10pF, V+ = +4.5V, V- = -4.5V, fin = 1MHz, VEN = ViH ±25°C 68 —77 Crosstalk (Between Switches) VCT R _L = 600kΩ, C _L = 50pF, fin = 1MHz ±25°C -72 —72 Total Harmonic Distortion THD R _L = 600kΩ, C _L = 50pF, fin = 1MHz ±25°C 0.15 —72 Control Input Capacitance C _{COM} (OF) Fin = 1MHz ±25°C 0.15 —72 Control Input Capacitance C _{COM} (OF) Fin = 1MHz ±25°C 3 —72 —72 <td>Turn-Oil Time</td> <td>IOFF</td> <td>$R_L = 1k\Omega$, $C_L = 35pF$</td> <td>Е</td> <td></td> <td></td> <td>50</td> <td>ns</td>	Turn-Oil Time	IOFF	$R_L = 1k\Omega$, $C_L = 35pF$	Е			50	ns
R _L = 1kΩ, C _L = 35pF E 85			$V_{NC} = +3V, V_{NO} = -3V,$	+25°C		50	70	
Charge Injection Q VGEN = 0, RGEN = 0, CL = 100pF, fodB = 1MHz +25°C 450 M	Transition Time	ttrans		Е			85	ns
CL = 100pF		t _{BBM}		+25°C	5	15		ns
Table Floation Table	Charge Injection	Q		+25°C		3		рС
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-3dB Bandwidth	f-3dB	· ·	+25°C		450		MHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Off-Isolation (Note 7)	VISO		+25°C		-77		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+25°C		68		mV
Control Input Capacitance	Crosstalk (Between Switches)	VCT	· · · · · · · · · · · · · · · · · · ·	+25°C		-72		dB
NO or NC Off-Capacitance	Total Harmonic Distortion	THD	· ·	+25°C		0.15		%
COM Off-Capacitance CCOM(OFF) fIN = 1MHz +25°C 8	Control Input Capacitance	C _{IN}				3		рF
COM On-Capacitance CCOM(ON) fIN = 1MHz +25°C 14 LOGIC INPUT Input Voltage Low VIL 0.8 Input Voltage High VIH 2.4 Input Leakage Current IL V+ = +5.5V, V- = -5.5V, V- = -5.5V, V- = -5.5V +25°C -1 0.0001 1 POWER SUPPLY V+ E -10 10 Power-Supply Range V+ V- -2 -6 V- VIN = V = +5.5V, V- = -5.5V, V- =	NO or NC Off-Capacitance	C _{OFF}	$f_{IN} = 1MHz$	+25°C		6		рF
LOGIC INPUT Input Voltage Low VIL 0.8	COM Off-Capacitance	C _C OM(OFF)	f _{IN} = 1MHz	+25°C		8		рF
Input Voltage Low	COM On-Capacitance	C _{COM} (ON)	f _{IN} = 1MHz	+25°C		14		рF
Input Voltage High	LOGIC INPUT							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Voltage Low	V _{IL}					0.8	V
Input Leakage Current	Input Voltage High	VIH			2.4			V
POWER SUPPLY Power-Supply Range V+ V- Positive Supply Current Negative Supply Current Vin = V EN = 0 or +5.5V V+ = +5.5V, V- = -5.5V, V- = -5.5	Input Leakage Current	lı lı	1 · · · · · · · · · · · · · · · · · · ·	+25°C	-1	0.0001	1	μA
V+ 2 6		<u>"</u>	$V_{IN} = V \overline{EN} = 0 \text{ or } +5.5V$	E	-10		10	μ, τ
Power-Supply Range V- Positive Supply Current I+ V+ = +5.5V, V- = -5.5V, VI- =	POWER SUPPLY	1		T				1
Positive Supply Current V	Power-Supply Range							V
Positive Supply Current $V_{IN} = V_{\overline{EN}} = 0 \text{ or } +5.5V$ E -10 10 Negative Supply Current $V_{IN} = V_{\overline{EN}} = 0 \text{ or } +5.5V$, $V_{IN} = V_{\overline{EN}} = 0 $		V-						
VIN = V EN = U Or +5.5V E -10 10 V+ = +5.5V, V- = -5.5V, +25°C -1 0.0001 1	Positive Supply Current	l+				0.0001		μΑ
Negative Supply Current				+		0.0001		
	Negative Supply Current	I-				0.0001		μΑ
			VIIN - V EIN - U UI +0.5V	E	-10		10	

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+ = +4.5V \text{ to } +6V, V- = 0, V_{\text{IH}} = +2.4V, V_{\text{IL}} = +0.8V, \text{GND} = 0, T_{\text{A}} = T_{\text{MIN}} \text{ to } T_{\text{MAX}}, \text{ unless otherwise noted.}$ Typical values are at $T_{\text{A}} = +25^{\circ}\text{C.}$) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							•
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V
On-Resistance	Ron	V+ = +4.5V, V- = 0,	+25°C		72	100	Ω
OTFI TESISTATICE	TION	$I_{COM} = 1$ mA; V_{NO} , $V_{NC} = +3.5$ V	Е			125	32
On-Resistance Match Between	ΔRon	V+ = +4.5V, V- = 0,	+25°C		0.75	5	Ω
Channels (Note 4)	ΔHON	$I_{COM} = 1 \text{mA}$; V_{NO} , $V_{NC} = +3.5 \text{ V}$	Е			7	22
SWITCH DYNAMIC CHARACTE	RISTICS						
Turn-On Time	ton	V_{NO} , $V_{NC} = +3V$,	+25°C		62	90	ns
	iON	$R_L = 1k\Omega$, $C_L = 35pF$	Е			125	115
Turn-Off Time	+0==	V_{NO} , $V_{NC} = +3V$,	+25°C		22	60	ns
Turn-On Time	toff	$R_L = 1k\Omega$, $C_L = 35pF$	Е			75	
Transition Time	t==o	$V_{NC} = +3V, V_{NO} = 0,$ $V_{NC} = 0, V_{NO} = +3V,$	+25°C		68	100	200
Transition time	ttrans	$R_L = 1k\Omega$, $C_L = 35pF$	Е			130	130 ns
Break-Before-Make Time (Note 6)	t _{BBM}	V _{NO} , V _{NC} = +3V, R _L = 300Ω, C _L = 35pF	E	10	35		ns
LOGIC INPUT							
Input Voltage Low	VIL					0.8	V
Input Voltage High	VIH			2.4			V
Innut I calcana Current	I.	V+ = +5.5V, V- = 0,	+25°C	-1	0.0001	1	
Input Leakage Current	I_L $V_{IN} = V_{\overline{EN}} = 0 \text{ or } +5.5V$	Е	-10		10	μΑ	
POWER SUPPLY							
Power-Supply Range	V+			1.8		12	V
Docitive Complete Comment	1.	V+ = +5.5V, V- = 0,	+25°C	-1	0.0001	1	
Positive Supply Current	l+	$V_{IN} = V \overline{EN} = 0 \text{ or } +5.5V$	Е	-10		10	μΑ
Negative Supply Current	 -	V+ = +5.5V, V- = 0,	+25°C	-1	0.0001	1	μΑ
Trogative Supply Surroit	'	$V_{IN} = V \overline{EN} = 0 \text{ or } +5.5V$	Е	-10		10	μ/ (

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+=+2.7V \text{ to } +3.3V, V-=0, V_{IH}=+2.4V, V_{IL}=+0.8V, GND=0, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A=+25^{\circ}C.$) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH	•		•	•			•
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V
On-Resistance	Pou	V+ = +2.7V, V- = 0,	+25°C		160	275	Ω
On-Resistance	Ron	$I_{COM} = 1 \text{mA}$; V_{NO} , $V_{NC} = +1.5 \text{V}$	Е			300	\$2
On-Resistance Match Between	ADou	V+ = +2.7V, V- = 0,	+25°C		1.5	10	
Channels (Note 4)	ΔR _{ON}	$I_{COM} = 1$ mA; V_{NO} , $V_{NC} = +1.5$ V	Е			12	Ω
SWITCH DYNAMIC CHARACTE	RISTICS						
Turn-On Time	ton	$V_{NO}, V_{NC} = +1.5V,$	+25°C		120	250	200
Turr-On Time	ton F	$R_L = 2k\Omega$, $C_L = 35pF$	Е			275	ns
T 0" T		$V_{NO}, V_{NC} = +1.5V,$	+25°C		40	110	
Turn-Off Time	toff	$R_L = 2k\Omega$, $C_L = 35pF$	Е			125	ns
Break-Before-Make Time (Note 6)	tBBM	$V_{NO}, V_{NC} = +1.5V,$ $R_L = 2k\Omega, C_L = 35pF$	Е	10			ns
LOGIC INPUT							
Input Voltage Low	VIL					0.8	V
Input Voltage High	VIH			2.4			V
Innut I calcage Coursest	1.	V+ = +3.3V, V- = 0,	+25°C	-1	0.0001	1	
Input Leakage Current	ΙL	$V_{IN} = V_{\overline{EN}} = 0 \text{ or } +3.3V$	Е	-10		10	μΑ

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

Note 3: SOT-packaged products are 100% tested at +25°C and guaranteed by design at the full-rated temperature.

Note 4: $\Delta R_{ON} = R_{ON}(MAX) - R_{ON}(MIN)$

Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Note 6: Guaranteed by design.

Note 7: Off-Isolation = $20\log_{10} (V_{COM} / V_{NO})$, V_{NO} = input to off switch.

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

TURN-ON/TURN-OFF TIME vs. TEMPERATURE (SINGLE SUPPLY)

ON-RESPONSE, OFF-ISOLATION, CROSSTALK vs. FREQUENCY

TOTAL HARMONIC DISTORTION vs. FREQUENCY

LOGIC-LEVEL THRESHOLD VOLTAGE vs. SUPPLY VOLTAGE

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

Pin Description

μ МАХ	SOT23	NAME	FUNCTION
1	8	COM	Analog Switch Common
2	7	ĒN	Device Enable. Drive $\overline{\text{EN}}$ low for normal SPDT switch operation. If $\overline{\text{EN}}$ is high, both NO and NC are disconnected.
3	6	V-	Negative Supply Voltage
4	5	GND	Ground
5	3	IN	Digital Control Input
6	4	NO	Analog Switch Normally Open
7	1	NC	Analog Switch Normally Closed
8	2	V+	Positive Supply Voltage

Detailed Description

The MAX4564 is a dual-supply SPDT CMOS analog switch. The MAX4564 has break-before-make switching. The CMOS switch construction provides Rail-to-Rail® signal handling while consuming virtually no power. Each of the two switches is independently controlled by a TTL/CMOS-level-compatible digital input.

_Applications Information

Overvoltage Protection

Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always sequence V+ on first, then V-, followed by the logic inputs NO, NC, or COM. If power-supply sequencing is not possible, add two small-signal diodes (D1, D2) in series with supply pins. Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the device's low switch resistance and low leakage characteristics.

Test Circuits/ Timing Diagrams

Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

Test Circuits/Timing Diagrams (continued)

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval

Figure 4. Charge Injection

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

Test Circuits/Timing Diagrams (continued)

Figure 5. On-Loss, Off-Isolation, and Crosstalk

Figure 6. Channel Off/On-Capacitance

_____Chip Information

PROCESS: CMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SOT23	K8SN+1	<u>21-0078</u>	90-0176
8 SO	U8+1	21-0036	90-0092

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
2	10/12	Added lead-free designation to the part numbers in the Ordering Information	1

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.