Bayesian statistics

Tùy chỉnh MCMC & Prior Ví dụ với mô hình log-binomial

Khương Quỳnh Long Hà Nội, 08/2019 https://gitlab.com/LongKhuong/adhere-bayesian-statistics

Nội dung

1

Tùy chỉnh thông số MCMC

2

Các loại Prior và vai trò

3

Cách xác định Prior

Chuỗi MCMC

- Chuỗi MCMC chứa đựng toàn bộ thông tin của mô hình (bao gồm cả data (likelihood) và prior)
- ▶ Mỗi chuỗi MCMC thực chất là một dãy số (dạng time series)
- Cỡ mẫu của chuỗi MCMC phải đủ lớn để "ổn định" và đại diện ("hội tụ") cho tham số quan tâm (pp hậu nghiệm)
- ▶ Cỡ mẫu của MCMC khác cỡ mẫu của dữ liệu

Chuỗi MCMC

bayes, mcmcsize(#) burnin(#) thinning(#): [model]

- mcmcsize: số lượng mẫu MCMC cần lấy
- burnin: số lượng mẫu MCMC bỏ đi trong giai đoạn đầu
- thinning: giảm autocorrelation, thinning = 5: cứ 5 mẫu MCMC thì giữ lại 1 mẫu.
- ▶ Số iteration cần chạy = mcmcsize*thinning + burnin
- ▶ Mỗi phần mềm có quy ước tùy chỉnh khác nhau

Cỡ mẫu MCMC bao nhiêu là đủ?

- ▶ Không có con số cố định
- ▶ Thiếu thì mô hình không ổn định, quá dư thì tốn thời gian và công suất máy tính
- ▶ Tùy vào thuật toán mà số mẫu MCMC sẽ khác nhau
- ▶ Nên dựa vào Effect sample size (ESS) để xác định
- ▶ Tác giả John K. Kuschke đề nghị ESS > 10,000⁽¹⁾
- ► Tác giả Andrew Gelman và Stan developer team đề nghị ít hơn (ESS > 2000 – 3000)⁽²⁾
- Cần chẩn đoán MCMC trước khi khai thác thông tin (đã đề cập ở bài trước)
- 1. John Kruschke (2014). Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan 2nd Edition. Elsevier Inc
- 2. Gelman A, Carlin JB, Stern HS, Rubin DB (2013). Bayesian Data Analysis. 3rd edition. Chapman & Hall/CRC

PRIOR

Prior

$$P(\theta|\text{data}) = \frac{P(data|\theta) * P(\theta)}{P(data)} = \frac{likelihood * Prior}{P(data)}$$

- Trong Bayesian, phân phối hậu định θ phụ thuộc vào Data và Prior
- Prior thể hiện ý kiến "chủ quan" về phân phối hậu định của θ quan tâm trước khi quan sát số liệu
- ▶ Có 2 kịch bản:
- Không có thông tin gì về pp hậu định của θ trước đó
- Có thông tin liên quan tới pp hậu định của θ trước đó

- Xảy ra khi:
- Không có bất kì thông tin gì về θ trước khi có số liệu
- Không muốn xây dựng Prior
- ▶ Có 2 dạng:
- "Non-informative prior": uniform distribution hoặc flat
- "Weakly-informative prior": phân phối với thông số phân tán (scale) rất rộng → không mang hoặc mang rất ít thông tin
- Mục đích là không để Prior có ảnh hưởng tới posterior
 → "let the data speak for themselves"

- Còn được gọi là "objective Bayesian statistics" vì dựa hoàn toàn vào dữ liệu
- Vẫn có được những ưu điểm của Bayesian trong diễn giải kết quả
- Cách tiếp cận này mất một phần thông tin quan trọng trong thống kê Bayes
- Đang được "lạm dụng"

- Xảy ra khi có những thông tin trước đó về θ
- Ý kiến chuyên gia, kinh nghiệm cá nhân...
- Từ y văn (thường từ những systematic review)
- Được gọi là "informative prior" vì chứa đựng nhiều thông tin ảnh hưởng tới posterior
- ▶ Có 2 trường hợp:
- "tương tự" với dữ liệu → mức độ chắc chắn được củng cố (95%Cl nhỏ)
- "Không tương tự" với dữ liệu → các ước lượng sẽ khác so với dữ liệu và prior

- ▶ Tận dụng được toàn bộ ưu điểm của Bayesian
- ▶ Đặc biệt quan trọng khi cỡ mẫu nhỏ
- Buộc nhà nghiên cứu phải "suy nghĩ" kỹ hơn về mỗi phép phân tích
- Informative prior là tâm điểm của sự tranh luận giữa Frequentist và Bayesian
- Dang được nhiều tác giả khuyến khích sử dụng, thay vì non-informative prior

Ví dụ về các loại Prior và ảnh hưởng của Prior lên Posterior

Ví dụ về đánh giá điểm số kỹ năng đọc của trẻ mẫu giáo⁽¹⁾

- Đánh giá 2 chỉ số: trung bình và phương sai của điểm số kỹ năng đọc
- Prior phản ánh mức độ hiểu biết về điểm số kỹ năng đọc trước khi quan sát dữ liệu
- 6 Prior khác nhau (ở 6 mức độ thông tin) được sử dụng để mô tả ảnh hưởng của Prior lên Posterior của điểm số kỹ năng đọc

^{1.} Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J. and Aken, M. A. (2014), A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research. Child Dev, 85: 842-860

Data

▶ Số liệu thu thập trên 20 trẻ mẫu giáo, điểm số trung bình của kỹ năng đọc là 102

Posterior

Mặc dù cùng 1 dữ liệu nhưng đạt được 6 Posterior tương ứng với 6 Prior

Một số lưu ý

- ▶ Mỗi tham số trong mô hình đều phải có Prior cụ thể
- ▶ Trong thực hành, thường sử dụng Informative prior cho tham số Location. Prior cho scale, hay shape thường là weakly informative
- Mức độ "informative" không cố định cho bất cứ mô hình nào. Một Prior có thể là non-informative trong mô hình này nhưng có thể là informative trong mô hình khác
- Không được lấy kết quả của dữ liệu mới thu thập làm Prior cho chính nó

Ví dụ: Prior mặc định trong stata có thể là Informative prior

- Prior mặc định của stata:
- Tham số beta (coefficients) ~ N(0, 10000)
- Tham số scale ~ IG(0.01, 0.01)
- Đối với mô hình bodyfat ~ weight. Những Prior này là weakly informative

sum bodyfat					
Variable	0bs	Mean	Std. Dev.	Min	Max
bodyfat	251	18.88765	7.724121	0	45.1

Ví dụ: Prior mặc định trong stata có thể là Informative prior (tt)

Sử dụng data "birthweight.dta"

```
. des
Contains data from C:\Users\QUYNH LONG\Desktop\Bayesian_HaNoi\data\birthweight.dta
                 641
 obs:
                                               3 Oct 2018 13:04
vars:
size:
              20,512
                        display
              storage
                                   value
variable name
                        format
                                   label
                                               variable label
                type
                float
                        %9.0g
maso
                                               ma so
tuoime
                float
                        %9.0g
                                              tuoi me (nam)
tang ha
                float
                        %9.0g
                                               tang huyet ap thai ki - 1=tang ha, 0=khong tang ha
tuoithai
                                               tuoi thai (tuan)
                float
                        %9.0g
gioi
                float
                        %9.0g
                                               gioi tinh tre - 1=trai, 0=gai
tlsosinh
                                               trong luong so sinh (gram)
                float
                        %9.0g
                                               nghe nghiep me - 1=tu do, 2=cong nhan, 3=vien chuc
nghenghiep
                float
                        %9.0g
nhecan
                        %9.0g
                                               1 = co, 0 = khong
                float
```

Sorted by: maso

. reg tlsosinh tuoithai

Priors: {tlsosinh:tuoithai _cons} ~ normal(0,10000)] .	Source	SS	df	MS	Number of obs F(1, 639)	= 641 = 762.25
{sigma2} ~ igamma(.01,.01)		Model Residual	148354317 124365805		148354317 194625.673		= 0.0000 = 0.5440
(1) Parameters are elements of the linear form x Bayesian linear regression Random-walk Metropolis-Hastings sampling	MCMC ite Burn-in	Total	272720122	640	426125.19	Adj R-squared Root MSE	= 0.5433 = 441.16
	MCMC sam Number o	tlsosinh	Coef.	Std. Err.	t	P> t [95% Con	f. Interval]
	Acceptan Efficien	cuorchar	206.6412 -4865.245	7.484572 290.0814		0.000 191.9439 0.000 -5434.873	
Log marginal likelihood = -4933.3058	•	max =	.1853				
Mean Std. Dev. MCSE	Median	Equal-tai [95% Cred. In					

Thận trọng khi để Prior mặc định trong Stata !!!

Caution

```
Priors:
{tlsosinh:tuoithai _cons} ~ 1 (flat)
{sigma2} ~ 1 (flat)

(1)
```

(1) Parameters are elements of the linear form xb_tlsosinh.

Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	641
	Acceptance rate =	.3112
	Efficiency: min =	.08968
	avg =	.137
Log marginal likelihood = -4794.8644	max =	.2308

	Mean	Std. Dev.	MCSE	Median		tailed Interval]
tlsosinh tuoithai _cons	206.7728 -4869.27	7.712887 298.9885	.256456 9.98411	206.7262 -4873.096	191.7608 -5456.104	221.7494 -4289.579
sigma2	195986	11181.12	232.735	195531	174750.9	218986.1

Sử dụng Informative Prior

Cấu trúc câu lệnh Prior trong Stata

Bayes, prior({tham số}, phân phối tương ứng) : [model]

Dữ liệu birthweight

Mục tiêu nghiên cứu: Xác định nguy cơ nhẹ cân của trẻ với tình trạng tăng huyết áp thai kì của mẹ

- ▶ Confounders:
- · Giới tính trẻ
- Tuổi thai
- Tuổi mẹ
- Nghề nghiệp mẹ

Quy trình

▶ Sử dụng glm với phân phối Binomial và link log (hồi quy log_binomial)

Prior

- ▶ 2 kịch bản:
- 1. Weakly -informative prior: Sử dụng mặc định N(0,10000) (hàm ý upper 95%RR = e^{100}) cho tất cả các tham số
- 2. Informative prior: tham khảo y văn
- ✓ Nhiều nghiên cứu cho thấy tăng huyết áp thai kì là nguy cơ sinh con nhẹ cân
- ✓ Với RR trung bình khoảng ~ 2 và ngưỡng trên KTC 95% của nguy cơ nhẹ cân không vượt quá 5
- → Kế hoạch:
- ✓ RR nhẹ cân do tăng huyết áp có th là 2 và KTC 95% ~(0.4 5).
- ✓ Các tham số còn lại sử dụng weakly informative

Xây dựng informative prior

- Đối với tăng huyết áp thai kì
- ► RR = 2 (95%CI = 0.4 5) → log(RR) = 0.693 (95% CI = -0.9162908 1.6094379)
- Chọn phân phối có location = 0.693 và bách phân vị 97.5th = 1.6094379.
- ▶ [nhắc lại]: giá trị tại bách phân vị 97.5th của pp chuẩn bằng 1.96*SD + mean, pp Cauchy là 12.706*scale + location, pp t₍₇₎ là 2.365*scale + location
- Có thể lựa chọn 1 trong các phân phối:
- o N(0.693, 0.468²)
- \circ Cauchy(0.693, scale = 0.072)
- $o t_{(7)}(0.693, 0.387^2)$

Shiny apps

▶ Chuyển đổi ước lượng OR/RR/PR sang 3 loại phân phối hay dùng.

https://khuongquynhlong.shinyapps.io/prior

Chuỗi MCMC

- Mô hình log_binomial thường khó hội tụ → không sử dụng MLE dẫn đường (nomleinitial)
- ▶ Sử dụng chuỗi MCMC gồm:
- Sample size: mcmcsize(50000)
- Burnin 5000: burnin(5000)
- Thinning 5: thinning(5)
- → cần 255000 iterations

Mô hình Weakly-informative Prior

set seed 1234

bayes, dots nomleinitial mcmcsize(50000) burnin(5000) thinning(5): glm
nhecan tuoime tang_ha tuoithai gioi i.nghenghiep, link(log)
family(binomial)

```
note: discarding every 4 sample observations; using observations 1,6,11,...
Burn-in ...
Simulation ...
Model summary
Likelihood:
  nhecan ~ glm(xb nhecan)
Prior:
 {nhecan:tuoime tang_ha tuoithai gioi i.nghenghiep _cons} ~ normal(0,10000) (1)
(1) Parameters are elements of the linear form xb nhecan.
Bayesian generalized linear models
                                                 MCMC iterations =
                                                                        254,996
Random-walk Metropolis-Hastings sampling
                                                                         5,000
                                                 Burn-in
                                                 MCMC sample size =
                                                                         50,000
Family : Bernoulli
                                                 Number of obs
                                                                           641
Link : log
                                                 Scale parameter =
                                                 Acceptance rate =
                                                                          .1958
                                                 Efficiency: min =
                                                                         .06478
                                                                          .1217
Log marginal likelihood = -172.44566
                                                                          .1938
                                                              max =
```

. bayesstats	255		
Efficiency sum	nmaries MCN	MC sample size	= 50,000
nhecan	ESS	Corr. time	Efficiency
tuoime	3239.13	15.44	0.0648
tang_ha	4796.62	10.42	0.0959
tuoithai	6940.33	7.20	0.1388
gioi	9692.42	5.16	0.1938
nghenghiep			
2	5679.95	8.80	0.1136
3	4693.01	10.65	0.0939
_cons	7545.39	6.63	0.1509

nhecan:tang_ha

					Equal-tailed		
nhecan	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]	
tuoime	.0026086	.0275646	.000484	.0023706	0508516	.0575412	
tang_ha	.8853569	. 2565585	.003704	.8910112	.3580765	1.370628	
tuoithai	5852022	.0532398	.000639	5836671	6931575	484523	
gioi	2027442	.2142593	.002176	1968674	634766	.2026755	
nghenghiep							
2	9680056	.3559847	.004723	9684439	-1.659925	2761828	
3	917679	.3503081	.005114	9257425	-1.58538	2266529	
_cons	20.28033	2.206054	.025397	20.2208	16.08815	24.70865	

Note: Default priors are used for model parameters.

- ▶ Tăng huyết áp thai kì làm tăng nguy cơ sinh con nhẹ cân
- Median PP hậu định của RR = exp(0.8853569) = 2.44; 95% Credible interval = 1.43 − 3.94

Mô hình informative Prior

set seed 12345
bayes, dots nomleinitial mcmcsize(50000) burnin(5000) thinning(5)
prior({nhecan: tang_ha}, normal(0.693, 0.219)): glm nhecan tuoime
tang_ha tuoithai gioi i.nghenghiep, link(log) family(binomial)

```
Model summary
Likelihood:
  nhecan ~ glm(xb nhecan)
Priors:
                                  {nhecan:tang ha} ~ normal(0.693,0.468)
  {nhecan:tuoime tuoithai gioi i.nghenghiep _cons} ~ normal(0,10000)
                                                                            (1)
(1) Parameters are elements of the linear form xb nhecan.
Bayesian generalized linear models
                                                 MCMC iterations =
                                                                       254,996
Random-walk Metropolis-Hastings sampling
                                                 Burn-in
                                                                         5,000
                                                 MCMC sample size =
                                                                        50,000
Family : Bernoulli
                                                 Number of obs
                                                                           641
                                                 Scale parameter =
Link : log
                                                 Acceptance rate =
                                                                         .3052
                                                 Efficiency: min =
                                                                        .02016
                                                                         .07852
                                                              avg =
Log marginal likelihood = -284.44385
                                                                         .1088
                                                              max =
```

Efficiency sum	nmaries MCI	MC sample size	= 50,000
nhecan	ESS	Corr. time	Efficiency
tuoime	3635.34	13.75	0.0727
tang_ha	4235.13	11.81	0.0847
tuoithai	4045.25	12.36	0.0809
gioi	4209.89	11.88	0.0842
nghenghiep			
2	4908.46	10.19	0.0982
3	5440.64	9.19	0.1088
cons	1007.94	49.61	0.0202

bavesstats ess

nhecan:tang_ha

bayesstats summary

Posterior summary statistics

MCMC sample size = 50,000

					Equal-	tailed
nhecan	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
tuoime	.156622	.0234482	.000389	.1567065	.1107574	. 2022838
tang_ha	.9390539	.1993365	.003063	.9387452	.5507798	1.334615
tuoithai	0396384	.0213052	.000335	0391665	0825844	.0012426
gioi	5873098	.1855717	.00286	5851006	9631203	2243718
nghenghiep						
2	.3287302	.3401111	.004855	.3119734	2871539	1.050072
3	2877614	.364021	.004935	3041512	9544088	.4700508
_cons	-6.258227	.2373814	.007477	-6.252775	-6.745089	-5.810195

- ▶ Tăng huyết áp thai kì làm tăng nguy cơ sinh con nhẹ cân
- Median PP hậu định của RR = exp(0.9387452) = 2.56; 95% Credible interval = 1.73 − 3.79

Nhận xét

- ▶ Sử dụng Informative prior làm cho 95%CI hẹp hơn → mức độ uncertainty giảm
- ▶ Cỡ mẫu càng lớn, ảnh hưởng của Prior càng ít lại → Prior phát huy hết tác dụng khi cỡ mẫu nhỏ
- ▶ Mô hình log_binomial có thể sử dụng trong Bayesian khi phương pháp MLE không thể hội tụ

Kiểm định giả thuyết

- CompVal
- ▶ ROPE
- Bayes Factor

Thank you!