Index

- IPv6
- ICMPv6
- Other Layers
- Transition and Interoperation Mechanisms

IPV6

Why IPv6?

- Address Exhaustion: IPv4 addresses are running out; NAT is a temporary solution
- Improve router performance: simplifies IP header, aligns to 64 bits, address hierarchy with more levels, and simplifies routing tables
- Improve Mobile IP support

Headers

- **Ver** protocol version (=6)
- Class similar to IPv4's ToS / DSCP
- Flow Label flow identification;
 - Unique for each flow with the same (src,dst) pair
 - Zero means "no flow label"
- Payload length data field size
 - Limited to 2¹⁶-1 bytes, but there there's an option for Jumbograms up to 2³²-1 bytes
 - No need for total length since the header size is fixed
- Next Header type of next header
- Hop Limit IPv4's TTL (but done properly)
- No checksum, with error checking performed by lower layers

Addresses

- 128 bits represented in hexadecimal
- Leading zeroes may be omitted
- A sequence of zeroes may be abbreviated by ::
 - Only one :: in an address to avoid ambiguity
- Mask (prefix length) similar to IPv4 CIDR
- IPv4 can be embedded in IPv6 addresses

Unicast

Loopback ::1 (/128)

+ bytes)	Ver(4)	IHL(4)	DSCP (8)	Total Length (16)		ngth (16)
	Identification (16)			Flags(4)	Frag Offset (12)	
	TTL (8)		Protocol (8)	Header Checksum (16)		ecksum (16)
20	Source Address (32)					
V4 (Destination Address (32)					
			Options			Padding

- Link-local:
 - Only used on the local link (not routed)
 - FE80::/64 (last 64 bits are device identifier)
- Site-local (deprecated):
 - o Used within the same site, and therefore only valid therein
 - FEC0:0000:0000:<Subnet(16)>:<Interface(64)>
- Global address:
 - Internet routable address
 - **2000::/3**
 - But there can be routable IPv6 addresses outside this range

Multicast

- Multicast:
 - With different scopes

• 4-bit multicast scope field used to limit the scope of the multicast group

o Reserved 6 (unassigned) C (unassigned)
1 Interface-Local scope 7 (unassigned) D (unassigned)
2 Link-Local scope 8 Organization-Local scope E Global scope
3 Realm-local scope 9 (unassigned) F Reserved
4 Admin-Local scope A (unassigned)
5 Site-Local scope B (unassigned)

Other

- Anycast address
 - Defined on more than one interface, but delivered only to one
- Unspecified address
 - Denoted by :: and used only during configuration

Required addresses

- Node:
 - Loopback
 - Link-local for each interface
 - Configured unicast (or anycast)
 - All-nodes multicast
 - Solicited-node multicast address for each of its unicast and anycast addresses
 - Multicast groups that the node belongs to
- Router: all the above plus
 - Subnet-Router Anycast (equal to the subnet prefix)
 - All-Routers multicast

ICMPv6 (Internet control message protocol for IPv6)

- **Type** defines the type, **code** a subtype (similar to ICMP (v4))
- Example:
 - Type = 1 (Error code for destination unreachable)
 - Code = 0 (no route to destination)
- Errors have type with high-order bit = 0 (0-126)
 - o Informational are 128-254

Neighbour Discovery

- Replaces IPv4 ARP
- Adds auto-configuration helper functions
- Extensible: messages may have options for added information
- IP Hop limit: set to 255

Neighbour solicitation

- Sent by hosts or routers, for address resolution, neighbour unreachability detection (NUD), and duplicate address detection (DAD)
- Type = 135, code = 0
- Target address
 - o IP address of the solicitation target
- IP destination address
 - solicited-node multicast address corresponding to the target address, or the target address itself
- IP source address
 - o address of the interface where the packet is sent, or unspecified address for DAD

Neighbour advertisement

- Sent by hosts or routers, in response to solicitations or unsolicited
- Type = 136, code = 0
- Target address
 - o For solicited: same as in solicitation
 - For unsolicited: IP address that changed link-layer address
- Option: source link-layer address of sender

Solicited-Node MC Address

- Multicast address formed using ff02:0:0:0:0:1:ff00::/104 prefix and low-order 24 bits of an address (unicast or anycast)
 - Example:
 - Unicast address: 4037::01:800:200e:8c6c
 - Solicited Address: ff02:0:0:0:0:1:ff0e:8c6c
- Most probably, no two nodes in the same network map to the same multicast address → much more
 efficient than the local broadcast used by ARP!

Router Discovery

• For discovering routers on the link and, possibly, address information

- Router solicitations (Type = 133, code = 0)
 - Sent by hosts to the link-local all-routers multicast address
- Router advertisements (Type = 134, code = 0)
 - Sent by routers
 - o In response to solicitations to unicast address of requester
 - Unsolicited to all-nodes multicast address with link-local scope
 - o Advertise: net prefix, default router(s), MTU

Auto Configuration - SLAAC

- StateLess Address AutoConfiguration
 - 1. Generating link-local address
 - 2. Generating global address(es)
 - 3. Performing duplicate address detection (DAD)
- Based on Router Advertisements
- Uses advertised prefix and MAC address of interface
- Valid only for /64 networks

What about DNS servers?

- IPv6 Router Advertisement Options for DNS Configuration
- Type: 25
- Length: indicates the length of the option
 - Implicitly the number of advertised DNS servers

Duplicate Address Detection

- Used after address auto-configuration to check uniqueness of address
 - Not performed for anycast addresses (configured)
- Node sends neighbour solicitation with:
 - Src address: unspecified
 - o Dst address: solicited-node multicast address of the tentative address
 - Target address: the tentative address
- Receiving Neighbour Solicitation
 - Target address is the tentative address
 - If src address is unicast (not DAD): ignore packet
 - If src address is unspecified: other node wants to use same address (DAD)
 - No node will use the target address (as extra precaution)
- · Receiving Neighbour Advertisement
 - Target address is the tentative address
 - Address is not unique (cannot be used)

Path MTU Discovery

- IPv6 does not support fragmentation in routers
- Senders need to transmit packets ≤ smallest MTU along the path (i.e., Path MTU)
- Procedure for discovering the Path MTU
 - Source node assumes path MTU = 1st hop link MTU

- o If this is too large for a link
 - router drops the packet
 - returns an ICMPv6 Packet Too Big (type = 2, code = 0)
- Source reduces MTU to the indicated size
- When the MTU used by the source ≤ Path MTU, packets reach the destination

Other Layers

DHCPv6

- Stateful configuration
- Uses UDP (like DHCPv4)
- DHCP clients use the link-local address
- Uses two multicast groups
- Requires DAD to ensure address uniqueness
- · Possible to obtain partial information via Information-Request message
- DHCP Unique Identifier (DUID) for client-server identification
 - Not all messages require this ID
- Optional authentication and encryption
- Information carried in options

Messages

DHCPv6 Message Type	DHCPv4 Message Type		
Solicit (1)	DHCPDISCOVER		
Advertise (2)	DHCPOFFER		
Request (3), Renew (5), Rebind (6)	DHCPREQUEST		
Reply (7)	DHCPACK / DHCPNAK		
Release (8)	DHCPRELEASE		
Information-Request (11)	DHCPINFORM		
Decline (9)	DHCPDECLINE		
Confirm (4)	none		
Reconfigure (10)	DHCPFORCERENEW		
Relay-Forw (12), Relay-Reply (13)	none		

Recursive DNS server configuration

- Approaches for DNS configuration in clients
 - Router Advertisements, DHCPv6, or well-known anycast address

DNS - changes for IPv6

- AAAA new record type
 - IPv6 address
- AAAA queries returns all IPv6 addresses associated with domain name

- IP6.ARPA domain for reverse (PTR) queries (similar to IPv4's in-addr.arpa)
- Existing query types
 - NS, SRV, MX: re-defined to also return AAAA entries

DNS in IPv4 and IPv6

- Maintain IPv4 and IPv6 accessible DNS recursive server
 - IPv4 only or dual stack
 - At least one IPv4 reachable server per DNS zone

Transition and Interoperation Mechanisms

IPv6 in an IPv4 world

Problem

• Incompatibility arises due to differences in header formats, Sockets API, and applications

Solutions

Dual stack nodes

- Support both IPv4 and IPv6
- Routers must maintain both routing tables, protocols, etc.

Configured Tunneling (Aka 6in4)

- Tunnel endpoints encapsulate the original IPv6 in an IPv4 packet
- Tunnel endpoints (routes) are manually configured
- Does not scale well
 - Requires a different tunnel for each pair of routers \rightarrow O(n²)

6to4

- 6to4 Tunnel (without explicit setup)
- Use of 2002:V4ADDR::/48 networks
- Sites use 6to4 relay to communicate through the tunnels
 - These relay routers can have an IPv4 anycast address of 192.88.99.1
 - Sites may also have connection to IPv6-only networks
- Components:

- Connects to the IPv6 backbone
- Has a native IPv6 address (not 2002::/16)
- Does not handle IPv4
- Connects to the IPv4 backbone
- Does not relay packets to the IPv6 backbone
- 6to4 IPv6 address and a native IPv4 address
- Connects to the IPv4 and IPv6 backbone
- Has a 6to4 and a native (not 2002::/16) IPv6 address
- Has a native IPv4 address
- **Issues:** 6to4 causes asymmetric routing and relays may receive traffic from anywhere. 6rd is a slight modification that solves this issue

6rd

- IPv6 Rapid Deployment on IPv4 Infrastructures
- Similar to 6to4 but using ISP-specific prefix instead of 2002::/16
 - o Allows use of private IPv4 addresses
 - ISP-specific prefix length not fixed
- The ISP
 - Operates one or more gateways at the IPv4/IPv6 border
 - Deploys relays with specific anycast addresses (only for its customers)
 - Has more control over traffic flowing through its network

Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)

- Connects dual-stack nodes over IPv4 networks
- Uses entire IPv4 network as a link layer (NBMA)
- Defines locators (mappings) on interfaces for routing packets
- Requires a Potential Router List (PRL) (obtained by doing a DNS lookup for

isatap. < domain >) for communication with the public IPv6 Internet

- ISATAP IPv6 addresses:
 - o cprefix>:0000:5efe:<IPv4 addr>

Teredo

- Allows automatic IPv6 tunneling between hosts that are located across one or more IPv4 NATs
- Encapsulates IPv6 packets in UDP
 - More overhead than other techniques → use only when they are infeasible
- Use of 2001:0000::/32 for Teredo clients
 - 2001:0000:<teredo server IP address>:<flags (16)>:<obscured UDP port>:<obscured public IPv4 address>
- Discovers and maintains NAT mappings to the client
- Components:
 - Client: has IPv4 connectivity, wants IPv6
 - Server: to discover external address and type of NAT
 - o Relay: forwards traffic using the Teredo encapsulation on IPv4 and to the IPv6

IPv4 in an IPv6 world

- Increasing deployment of IPv6 → need for
 - Nodes in IPv6-only networks to reach IPv4-only services on the Internet
 - Traversal of IPv6-only operator networks to reach IPv4-only services on the Internet
- Larger IPv6 addresses make it easier to use translation/NAT instead of tunneling
 - o IPv6 addresses can embed IPv4 addresses

NAT64/DNS64

- NAT64 facilitates access to IPv4-only services from IPv6-only networks by translating IPv6 to IPv4 addresses.
- DNS64 synthesizes AAAA records for services offering only A records, using the chosen prefix.
- Example:

 Limitations include IPv4-only software, IPv4 literals (no DNS lookup is performed), and IPv4 networks behind IPv6-only ISP networks

Stateless IP/ICMP Translation (SIIT)

- Translates headers of IP packets and IP packet fragments inside ICMP messages (for transparency)
- Comes in two flavors:
 - "Traditional" SIIT (entire IPv4 address embedded in an IPv6 address with given prefix)
 - SIIT with Explicit Address Mappings (EAM) (uses configured host-specific or block mappings)
- Advantages of stateless translation:
 - No need to maintain per-flow state
 - Easier load distribution translator for outgoing and incoming packets needs not be the same
- Disadvantage: the 1:1 mapping between IPv4 and IPv6 addresses wastes scarce IPv4 addresses
- Example ("traditional" SIIT):

464XLAT

- 464XLAT is an architecture combining Stateful NAT64 with an additional, stateless translator (SIIT)
 - CLAT: Client-side transLATor (SIIT)
 - PLAT: Provider-side transLATor (Stateful NAT64)
- Addresses the use cases not covered by NAT64/DNS64

