B38EM - Introduction to Electricity and Magnetism Tutorial 6

Questions

$$\epsilon_0 = 8.85 x 10^{-12} \, Fm^{-1}$$
, $e = 1.6 x 10^{-19} \, C$, $\mu_0 = 4 \pi \, 10^{-7} \, N/A^2$

A horizontal wire with a mass per unit length of 0.2 kg/m carries a current of 4 A in the +x-direction. If the wire is placed in a uniform magnetic flux density B, what should the direction and minimum magnitude of B be in order to magnetically lift the wire vertically upward?

(Hint: The acceleration due to gravity is $\mathbf{g} = -\hat{\mathbf{z}}9.8 \text{ m/s}^2$.)

Answer:
$$\mathbf{B} = \hat{\mathbf{y}}0.49 \text{ T}$$

- 2. A rectangular conducting rod of mass m and length L is placed on top of two conducting rails inclined at an angle of α from the horizontal, as in the Figure. If the resistance of the conducting rails changes according to $R=R_0$ x^2 and there is a magnetic field $B=B_0x$ directed upwards in the system. The rod slides down the rails due to the force of gravity with an increasing velocity v.
 - a) Estimate the retarding force
 - b) If the rod was at rest, estimate the time that it will take it to reach a velocity v_0

Hint:
$$\int c/(ax+b) dx = c/a \ln(ax+b) + C$$

Consider:
$$B_0=1$$
 Tm⁻¹, m=2Kg, L=30cm, α =30°, R_0 =3 Ω m⁻², v_0 =10 ms⁻¹.

Answers: a)
$$F_m = (B_0L)^2 \cos^3 \alpha \ v/R_0$$

b) $t = 2.0586 \text{ s}$ (for the given values)

3. Consider an infinitely large sheet of thickness b lying in the xy plane with a uniform current density $\mathbf{J} = J_0 \hat{\mathbf{x}}$. Find the magnetic field everywhere.

$$\begin{array}{ll} \text{Answer: } \mathbf{B} = -\,\hat{\mathbf{y}}J_0b\mu_0\,/\,2 & z > b/2 \\ \mathbf{B} = \,\,\hat{\mathbf{y}}J_0b\mu_0 & -b/2 < z < +b/2 \\ \mathbf{B} = +\,\hat{\mathbf{y}}J_0b\mu_0\,/\,2 & z < -\,b/2 \end{array}$$