Announcement

- Grades
 - Project 1, Homework 2 and Homework 3 grades are out on blackboard
 - > It is your responsibility to check them and let us know if you want to regrade
- Project 3 (RL) is out
 - Due on October 31st
 - A long one. So please start early.
- Homework
 - Homework 4 is due on October 25th
- Help to boost your grades
 - Project 5 (5%)
 - HW 0, HW6, and HW7 (6%)
- Update to grades
 - There will a quiz (small exam) on blackboard that will go out next week
 - MDP and RL. You will have a week for it. It worth 5%. It is optional
 - > If you decide to do it, either midterm or final will be out of 20% rather than 25%

Texas Tech University

Tara Salman

CS 3568: Intelligent Systems

Bayes' Nets (Part 2)

Instructor: Tara Salman

Texas Tech University

Computer Science Department

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

Texas Tech University

Tara Salman

Probability Recap

- Conditional probability $P(x|y) = \frac{P(x,y)}{P(y)}$
- Product rule P(x,y) = P(x|y)P(y)

2 ways of writing

- Chain rule $P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$ = $\prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$ n! ways of writing this
- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if: $\forall x,y,z: P(x,y|z) = P(x|z)P(y|z)$ $X \perp\!\!\!\perp Y|Z$

Tara Salman

Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - ➤ Inference: given a fixed BN, what is P(X | e)?
 - > Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- > As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Е	P(E)
+e	0.002
-e	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	ę	+a	0.94
+b	ę	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	ę	+a	0.001
-b	-e	-a	0.999

$$P(+b, -e, +a, -j, +m) =$$

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

B	E
	4)
$\left(J\right)$	(M)

ш	P(E)
+e	0.002
ę	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

\overline{P}	$\overline{(+b,)}$	-e, -	+a.	-i	+m) =
- 1		\smile \P	1 00 9	_ / 7	1	,

$$P(+b)P(-e)P(+a|+b,-e)P(-j|+a)P(+m|+a) =$$

$$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Texas Tech University

Size of a Bayes' Net

How big is a joint distribution over N Boolean variables?

 2^N

☐ How big is an N-node net if nodes have up to k parents?

$$O(N * 2^{k+1})$$

Both give you the power to calculate

$$P(X_1, X_2, \dots X_n)$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Bayes' Nets

Representation

- Conditional Independences
- Probabilistic Inference

Learning Bayes' Nets from Data

Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\! \perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \perp Y|Z$$

- (Conditional) independence is a property of a distribution
- Example:

$$Alarm \bot Fire | Smoke$$

Bayes Nets: Assumptions

Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - > Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Example

□ Conditional independence assumptions directly from simplifications in chain rule:

Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
 - > Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - > If no, can prove with a counter example
 - > Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

D-separation: Outline

Texas Tech University 14 Tara Salman

D-separation: Outline

Study independence properties for triples

Analyze complex cases in terms of member triples

D-separation: a condition / algorithm for answering such queries

Texas Tech University 15 Tara Salman

Causal Chains

This configuration is a "causal chain"

X: Low pressure

Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Causal Chains

This configuration is a "causal chain"

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

• Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

 Evidence along the chain "blocks" the influence

Common Cause

- □ This configuration is a "common cause" Guaranteed X independent of Z? No!

- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
 - Project due causes both forums busy and lab full
 - In numbers:

$$P(+x | +y) = 1, P(-x | -y) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

P(x, y, z) = P(y)P(x|y)P(z|y)

Z: Lab full

Common Cause

This configuration is a "common cause"

• Guaranteed X and Z independent given Y?

P(x, y, z) = P(y)P(x|y)P(z|y)

 $P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$ $= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$ = P(z|y)

Yes!

 Observing the cause blocks influence between effects.

Common Effect

■ Last configuration: two causes of one ■ Are X and Y independent? effect (v-structures)

- - *Yes*: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.