14.1 Functions of Several Variables

New Definitions

Level Curves f(x,y) = k where k is a constant.

Level Surfaces f(x, y, z) = k

14.2 Limits and Continuity

Definition of Limits

Let f be a function of two variables whose domain D includes points arbitrarily close to (a,b).

$$\lim_{(x,y)\to(a,b)} f(x,y) = L \tag{1}$$

if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that

if
$$(x,y) \in D$$
 and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x,y) - L| < \varepsilon$ (2)

When the Limit Does Not Exist

If we can find two different paths of approach along which the function f(x,y) has different limits, then it follows that $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

Limit Laws Approaching along axes and a constant

$$\lim_{(x,y)\to(a,b)}x=a \qquad \lim_{(x,y)\to(a,b)}y=b \qquad \lim_{(x,y)\to(a,b)}c=c \qquad \qquad (3)$$

The **Squeeze Theorem** also holds.

Continuity

The direct substitution property: A function f is called **continuous at** (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$
 (4)

We say f is **continuous on** D if f is continuous at every point (a, b) in D.

14.3 Partial Derivatives

Partial Derivatives

$$f_x(a,b) = g'(a)$$
 where $gx = f(x,b)$ (1)

Definition of Derivatives

The partial derivatives are defined by

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$
(2)

Notation

If z = f(x, y)

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

$$f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y} = f_2 = D_2 f = D_y f$$

Finding Partial Derivatives

To find f_x , treat y as a constant and differentiate f(x, y) with respect to x. To find f_y , treat x as a constant and differentiate f(x, y) with respect to y.

Interpretations

The partial derivatives $f_x(a, b)$ and $f_y(a, b)$ can be interpreted geometrically as the slopes of the tangent lines at P(a, b, c) to the traces C_1 and C_2 of S in the planes y = b and x = a.

Partial derivatives can also be interpreted as rates of change. If z = f(x, y), then $\partial z/\partial x$ represents the rate of change of z with respect to x when y is fixed. Similarly, $\partial z/\partial y$ represents the rate of change of z with respect to y when x is fixed.

More Than Two Variables

Treated similarly to two variable functions. If w = f(x, y, z), then $f_x = \partial w / \partial x$ with respect to x when y and z are held constant. Similar notation follows.

Higher Derivatives

Second Partial Derivatives The partial derivatives of the partial derivatives, $(f_x)_x$, $(f_y)_y$, $(f_y)_x$, $(f_y)_y$. The notation is similar to the notation of higher derivatives of functions of one variable.

Clairaut's Theorem Suppose f is defined on a disk D that contains the point (a,b). If the functions f_{xy} and f_{yx} are both continuous on D, then

$$f_{xy}(a,b) = f_{yx}(a,b) \tag{3}$$

14.4 Tangent Planes and Linear Approximations

Tangent Planes

Suppose a surface S had equation z = f(x, y) with continuous first derivatives. Let C_1 and C_2 be the curves obtained by intersecting the vertical planes $y = y_0$ and $x = x_0$ with the surface S. Let T_1 and T_2 be the tangent lines to the curves C_1 and C_2 at P.

Tangent Plane The plane to S at P that contains tangent lines T_1 and T_2 .

At $P(x_0, y_0, z_0)$

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
(1)

Linear Approximations

At point (a, b, f(a, b)), the **linearlization** is

$$z = L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
 (2)

The approximation of f(x,y) is called the **linear approximation**.

Differentiable Functions

Theorem for differentiability If the partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Even if *directional derivatives* exist at a point in every direction, the function still may not be differentiable at that point. But if a function is differentiable at a point, then *all* directional derivatives will exist at that point.

Three or More Variables

Defined similarly.

14.5 The Chain Rule

Chain Rule for Functions of Two Variables

Chain Rule Case 1 Suppose $z=f(x,y),\ x=g(t),\ y=h(t),$ and all are differentiable. Then

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} \tag{1}$$

Chain Rule Case 2 Suppose $z = f(x, y), \ x = g(s, t), \ y = h(s, t)$, and all are differentiable. Then

$$\frac{dz}{ds} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s} \qquad \frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$
(2)

A tree diagram can help remember the Chain Rule (supposedly).

Implicit Differentiation

Writing F(x, y) = 0 which defines y implicitly in terms of x, that is y = f(x) so F(x, f(x)) = 0, then

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y} \tag{3}$$

For z given implicitly as z = f(x, y) by F(x, y, z) = 0, that is F(x, y, f(x, y)) = 0, we get similar formulas:

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \tag{4}$$

Note in both cases the fraction appears inverted, but that is a consequence of solving for the implicit derivative(s).

14.6 Directional Derivatives and the Gradient Vector

Directional Derivatives

For differentiable f, f has a directional derivative in the direction of the unit vector $\vec{u} = \langle a, b \rangle$ and

$$D_{\vec{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b \tag{1}$$

If \vec{u} makes angle θ with the positive x-axis, we can write $\vec{u} = \langle \cos \theta, \sin \theta \rangle$.

The Gradient Vector Since $D_u f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle \cdot \langle a,b \rangle$, we give the first vector a special name, grad f or ∇f ("del" or "nabla").

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle \tag{2}$$

$$D_u f(x, y) = \nabla f(x, y) \cdot \vec{u} \tag{3}$$

Functions of Three Variables

Defined similarly.

$$\nabla f = \langle f_x, f_y, f_z \rangle \tag{4}$$

$$D_u f(x, y, z) = \nabla f(x, y, z) \cdot \vec{u} \tag{5}$$

Maximizing the Directional Derivatives

Suppose f is differentiable.

$$\max(D_u f(\vec{x})) = |\nabla f(\vec{x})| \tag{6}$$

This occurs when \vec{u} has the same direction as $\nabla f(\vec{x})$, or in my own notation

$$\vec{u} = k\nabla f(\vec{x}) \tag{7}$$

Normalize $\nabla f(\vec{x})$ to get \vec{u} .

Tangent Planes to Level Surfaces

If $\nabla F(x_0, y_0, z_0) \neq 0$, define the **tangent plane to the level surface** F(x, y, z) = k at $P(x_0, y_0, z_0)$ as the plane that passes through P and has normal vector $\nabla F(x_0, y_0, z_0)$.

Using the standard equation of a plane, we can write

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$
 (8)

The **normal line** is perpendicular to the tangent plane and given by $\nabla F(x_0, y_0, z_0)$. It has symmetric equations

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$
(9)

14.7 Maximum and Minimum Values

Local maximum and minimum

If f has a local maximum or minimum at (a,b) and the partial derivatives exist, then

$$f_x(a,b) = 0$$
 and $f_y(a,b) = 0$ (1)

Critical Point More generally, a point (a, b) is called a critical point if $f_x(a, b) = 0$ and $f_y(a, b) = 0$, or if one of these partial derivatives does not exist.

2nd Derivative Test

If $f_x(a,b) = 0$ and $f_y(a,b) = 0$, let

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^{2}$$
(2)

- (a) If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- (b) If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- (c) If D < 0, then f(a, b) is a saddle point of f.

Absolute Maximum and Minimum Values

A **closed set** is one that contains all its boundary points.

Extreme Value Theorem There exists an absolute maximum and absolute minimum on a closed, bounded set D.

Closed Interval Method To find the absolute maximum and minimum values of f on D:

- 1. Find the values of f at the critical points of f in D.
- 2. Find the extreme values of f on the boundary of D.
- 3. The largest of the values from steps 1 and 2 is the absolute maximum, the smallest is the absolute minimum.

14.8 Lagrange Multipliers

Geometrically, the maximum or minimum of f(x,y) subject to g(x,y)=k is when the two curves touch, that is when they have a common tangent line.

$$\nabla f(x_0, y_0, z_0) = \lambda \ \nabla g(x_0, y_0, z_0) \tag{1}$$

Lambda is called a Lagrange multiplier.

In component form,

$$f_x = \lambda g_x$$
 $f_y = \lambda g_y$ $f_z = \lambda g_z$ $g(x, y, z) = k$ (2)

This is a system of four equations and four unknowns. For functions of two variables, a similar equation holds.

Two Constraints

For f(x, y, z) subject to two constraints g(x, y, z) = k and h(x, y, z) = c,

$$\nabla f(x_0, y_0, z_0) = \lambda \ \nabla g(x_0, y_0, z_0) + \mu \ \nabla h(x_0, y_0, z_0)$$
 (3)

In component form,

$$f_x = \lambda g_x + \mu h_x$$

$$f_y = \lambda g_y + \mu h_y$$

$$f_z = \lambda g_z + \mu h_z$$

$$g(x, y, z) = k$$

$$h(x, y, z) = c$$

$$(4)$$