

TIMBER ENGINEERING - VSM196

LECTURE 2

SPRING 2020

Topic

- Solid cross-sections of timber & glulam
- Design of purlins
- Literature DoTS:
 - Ch 1, Ch 2 (2.1-2.5) and Ch 3 (3.1 and 3.2)

Content

- Modern timber products
 - Production and dimensions of solid timber
 - Production and properties of glulam
- Design of linear members
 - Purlins and design of sloping members (roof joist)

Intended Learning Outcomes of this lecture

- You understand the limitations of solid timber.
- You can describe the production process of glulam.
- You can define important influences on the quality of glulam.
- You can describe the benefits of a Gerber system.

Production of solid timber

Production of solid timber

The sawmill process from forest to sawn wood product

Source: Swedish Wood

Dimensions of solid timber

- Length up to 6m
- Finger jointed timber even longer

Table 31 Cross-sectional dimensions of sawn timber

Thickness (mm)	Width (mm)										
	25	38	50	75	100	125	150	175	200	225	250
12											
16											
19											
22											
25											
32											
38											
44											
47											
50											
63											
75											
100											

Historic structures from solid timber

Modern structures from solid timber

Source: ETH Zurich

Challenge: Efficient connection of solid timber

Historic glued laminated structure

Hall – King Edward College (Southampton) 1860

"Invention" of glued laminated timber

- Otto Hetzer (1846-1911)
- 1906 "Deutsche Reichspatent Nr. 197773 für gebogene, verleimte Brettschichtträger aus zwei oder mehr Lamellen" (Patent for curved, glued lamniated beams made of two or more lamellae)

Source: www.brettschichtholz.de

Glulam in Sweden: Station Malmö and Stockholm

Overview and standards for structural timber products

Production of glulam

Predifined cutting

Optimized cutting

CHALMERS UNIVERSITY OF TECHNOLOGY

Kiln drying

Grading

Grading techniques

Machine grading by means of

Mechanical techniques: Stress grading, proof loading

Dynamic methods: Eigenfrequency, Ultrasonic speed

Radiographic: X-ray, Microwave

Optical techniques: Surface scanning, Laser scanning, etc.

- Examples
 - Dynalyse
 - Precigrade: measurement of dynamic MOE

https://youtu.be/zbpFLABn7cE

www.dynalyse.com

- Microtec
 - Goldeneye: X-ray, dynamic MOE, and more

Grading classes of boards

Table 1 — Characteristic strength and stiffness properties for T-classes in N/mm 2 and densities in kg/m 3 for boards or planks for glued laminated timber

T - class of boards ^a	$f_{t,0,l,k}$	$E_{t,0,l,mean}$	$ ho_{l,k}$
T8 (C14)	8	7 000	290
Т9	9	7 500	300
T10 (C16)	10	8 000	310
T11 (C18)	11	9 000	320
T12 (C20)	12	9.500	330
T13 (C22)	13	10 000	340
T14 (C24)	14	11 000	350
T14,5	14,5	11 000	350
T15	15	11 500	360
T16 (C27)	16	11 500	370
T18 (C30)	18	12 000	380
T21 (C35)	21	13 000	390
T22	22	13 000	390
T24 (C40)	24	13 500	400
T26	26	14 000	410
T27 (C45)	27	15 000	410
T28	28	15 000	420
T30 (C50)	30	15 500	430
^a The C-Classes according to EN 33	8:2009 meet at least the r	required values of the	e respective T-classes.

Glulam lay-up

- Homogeneous lay-up: GL XXh
 - laminations are a single strength class

FPL Wood Handbook (2010)

Table 3 — Beam lay-up of homogeneous glued laminated timber and minimum values for bending strength of finger joints in laminations in N/mm²

Strength class glued laminated timber	Strength class laminations	∫m.j.k
GL 20h	T10	25
GL 20h	T11	22
GL 22h	T13	25
GL 24h	T14	30
GL 26h	T16	33
GL 28h	T18	36
GL 30h	T21	38
GL 30h	T22	37
GL 32h	T24	41
GL 32h	T26	38

Glulam lay-up

- Combined lay-up: GL XXc
 - inner and outer laminations of different strength classes

Table 2 — Beam lay-up of combined glued laminated timber and minimum values for bending strength of finger joints in laminations in N/mm²

or imger joints in tallillations in tallill										
Glued laminated timber	laminated				Intermediate zones of Iaminations			Inner zone of laminations		
Strength class	Strength class	Propor- tion	∫ _{m,j,k} [N/mm²]	Strength class	Propor- tion [%]	f _{m,j,k}	Strength class ^a	Propor- tion	f _{m,j,k} [N/mm ²]	
GL 20c	T13	2x33	21	_	-	-	T8	34	18	
GL 22c	T13	2x33	26	_	_	_	T8	34	18	
GL 24c	T14	2x33	31	-	_	-	T9	34	19	
GL 26c	T16	2x33	34	-	-	-	T11	34	22	
GL 28c	T18	2x25	37	-	-	-	T14	50	28	
GL 28c	T21	2x17	36	-	-	-	T14	66	26	
GL 28c	T21	2x17	38	-	-	-	T13	66	25	
GL 28c	T21	2x25	35	-	-	-	T11	50	22	
GL 28c	T21	2x20	35	T14	2x20	28	T11	20	22	
GL 28c	T22	2x20	35	-	-	-	T13	60	25	
GL 30c	T22	2x17	40	-	-	-	T15	66	27	
GL 30c	T22	2x17	41	-	-	-	T14	66	28	
GL 30c	T22	2x20	40	T14	2x20	30	T11	20	22	
GL 30c	T22	2x17	42	T14	2x23	31	T11	20	22	
GL 32c	T24	2x17	44	-	-	-	T18	66	31	
GL 32c	T26	2x17	45	-	-	-	T14	66	26	
GL 32c	T26	2x10	48	T18	2x20	32	T11	40	22	

CHALMERS UNIVERSITY OF TECHNOLOGY

Cutting process

Source: Gerhard Fink

Finger jointing

Source: Gerhard Fink

Finger jointing

Finger joint geometry in EN 14080

 The geometry of the fingers shall permit the joint to be self-interlocking after pressing.

- The finger length l_j , the pitch p, the tip width b_t , the reduction factor $v = b_t/p$ and the finger angle α shall fulfil:
 - $l_j \geq 4p(1-2v)$
 - $\alpha \le 7,1^{\circ}$

Finger-jointed lamellae

Application of adhesive for surface gluing

Source: Gerhard Fink

Assembly

Source: Gerhard Fink

Pressing

Variety in geometry

Curved beam after pressing

Planing and processing

Processing by CNC

Dimensions

Standard dimensions

Bredd b (mm)	42	56	66	78	90	115	140	160	165	190	215
Hōjd h (mm)											
90	GL28hs	GL28hs	GL28hs	GL28hs	GL30h	GL30h	GL30h		GL30h	GL30h	GL30h
115						GL30h	GL30h		GL30h	GL30h	GL30h
135	GL28hs	GL28hs	GL28hs	GL28hs	GL30h	GL30h	GL30h		GL30h	GL30h	GL30h
140							GL30h				
160								GL30h			
165									GL30h		
180	GL28cs	GL28cs	GL28cs	GL28cs	GL30c						
225	GL28cs	GL28cs	GL28cs	GL28cs	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
270	GL28cs	GL28cs	GL28cs	GL28cs	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
315	GL28cs	GL28cs	GL28cs	GL28cs	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
360	GL28cs*	GL28cs	GL28cs	GL28cs	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
405	GL28cs*	GL28cs	GL28cs	GL28cs	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
450		GL28cs	GL28cs	GL28cs	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
495		GL28cs*	GL28cs	GL28cs	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
540		GL28cs*	GL28cs*	GL28cs	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
585			GL28cs*	GL28cs	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
630			GL28cs*	GL28cs*	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
675				GL28cs*	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
720				GL28cs*	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
765				GL28cs*	GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
810					GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
855					GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
900					GL30c	GL30c	GL30c		GL30c	GL30c	GL30c
945						GL30c	GL30c		GL30c	GL30c	GL30c
990						GL30c	GL30c		GL30c	GL30c	GL30c
1 035						GL30c	GL30c		GL30c	GL30c	GL30c
1 080						GL30c	GL30c		GL30c	GL30c	GL30c
1 125						GL30c	GL30c		GL30c	GL30c	GL30c
1 170							GL30c		GL30c	GL30c	GL30c
1 215							GL30c		GL30c	GL30c	GL30c
1 260							GL30c		GL30c	GL30c	GL30c

GL30c

Tabell 4 Tillverkningssortiment för limträpelare och limträbalkar tillverkade i Sverige, i aktuella hållfasthetsklasser

1 305

1 350

1395

1 440

1 485

1530

1575

1620

GL30c

GL30c

GL30c

GL30c

GL30c

GL30c

GL30c

GL30c

Dimensions

• Taylor made beams available in (almost) all dimensions

Transportation

Transportation length

- < 12,1 m common truck
- > 12,1 m lorry
- > 20,5 m only during daytime
- > 24,5 m or width larger than 2,6 m following car with blinking lights
- > 30 m or width larger than 4,5m in width police escort

http//www.schneider-holz.com

Standard for Glued laminated timber EN 14080

 Production requirements, provisions for evaluation and attestation of conformity and marking of glued laminated products

Glued-laminated timber

- Modern glulam according to EN 14080
 - Wood moisture content
 - 12% ±2% at delivery
 - Gluing
 - Waterproofed adhesives for interior and exterior applications, tested in accordance with EN 301/302
 - Wood species
 - Softwood species: Spruce, Pine, Fir, Larch, Poplar, Cedar
 - Tolerances
 - Standard measurements according to EN 390 "Glulam dimensions" at average moisture content of 15%

Dimension	Tolerance
Width	± 2 mm
Height < 400 mm	+4 / -2 mm
Height > 400 mm	+1% / -0,5%
Length < 2,0 m	± 2 mm
Length 2,0 - 20 m	± 0,1%
Length > 20 m	± 20 mm

Layup of Glulam

- Adhesives in glulam production
 - Phenol-Resorcinol-Formaldehyde resin (PRF)
 - Polycondensation adhesive with very good moisture resistance (also outdoor weathering, since largely resistant to hydrolysis).
 - Recognizable by dark glue line.
 - Glulam, boat building plywood
 - Melamine-urea formaldehyde resin (MUF)
 - Polycondensation adhesive with improved moisture resistance (but not for outdoor weathering, as not completely hydrolysis resistant)
 - Wood-based materials, plywood, load-bearing timber construction
 - Polyurethane (PUR)
 - Polyaddition adhesive with higher ductility. Since the 1990s has it been used extensively for timber construction.
 - No emission of VOCs or formaldehyde
 - Structural timber (surface gluing and finger-jointing)

Non-weather proof adhesives

Adhesives

MUF adhesive for inside application

PRF adhesive for outside application

Polyurethane

Strength classes

Table 4 — Characteristic strength and stiffness properties in N/mm² and densities in kg/m³ for combined glulam

		Glulam strength class								
Property ^a	Symbol	GL 20c	GL 22c	GL 24c	GL 26c	GL 28c	GL 30c	GL 32c		
Bending strength	$f_{m,g,k}$	20	22	24	26	28	30	32		
Tensile strength	$f_{t,0,g,k}$	15	16	17	19	19,5	19,5	19,5		
	$f_{t,90,g,k}$				0,5					
Compression strength	$f_{\mathrm{c,0,g,k}}$	18,5	20	21,5	23,5	24	24,5	24,5		
	$f_{c,90,g,k}$	2,5								
Shear strength (shear and torsion)	$f_{v,g,k}$	3,5								
Rolling shear strength	$f_{r,g,k}$	1,2								
Modulus of elasticity	$E_{0,g,mean}$	10 400	10 400	11 000	12 000	12 500	13 000	13 500		
	$E_{0,g,05}$	8 600	8 600	9 100	10 000	10 400	10 800	11 200		
	E _{90,g,mean}	300								
	E _{90,g,05}				250					
Shear-modulus	$G_{ m g,mean}$	650								
	$G_{g,05}$				540					
Rolling shear modulus	$G_{r,g,mean}$	65								
	$G_{\rm f,g,05}$ 54						·			
Density ^b	$ ho_{g,k}$	355	355	365	385	390	390	400		
	$ ho_{ m g,mean}$	390	390	400	420	420	430	440		

^a Properties given in this table have been calculated according to 5.1.5 on the basis of the layups given in Table 2. If different layups for a certain strength class lead to different characteristic values the lowest values are given here.

^b Calculated as the weighted mean of the densities of the different lamination zones, see 5.1.5.3, 5th paragraph.

Strength classes

Table 5 — Characteristic strength and stiffness properties an N/mm² and densities in kg/m³ for homogeneous glulam

		Glulam strength class								
Property	Symbol	GL 20h	GL 22h	GL 24h	GL 26h	GL 28h	GL 30h	GL 32h		
Bending strength	$f_{m,g,k}$	20	22	24	26	28	30	32		
Tensile strength	$f_{t,0,g,k}$	16	17,6	19,2	20,8	22,3	24	25,6		
	<i>f</i> t,90,g,k				0,5		•			
Compression strength	$f_{c,0,g,k}$	20	22	24	26	28	30	32		
	$f_{c,90,g,k}$	2,5								
Shear strength (shear and torsion)	$f_{v,g,k}$	3,5								
Rolling shear strength	$f_{r,g,k}$	1,2								
Modulus of elasticity	$E_{0,g,mean}$	8 400	10 500	11 500	12 100	12 600	13 600	14 200		
	$E_{0,g,05}$	7 000	8 800	9 600	10 100	10 500	11 300	11 800		
	$E_{90,g,mean}$	300								
	$E_{90,g,05}$				250					
Shear modulus	$G_{ m g,mean}$	650								
	$G_{g,05}$				540					
Rolling shear modulus	$G_{r,g,mean}$	65								
	G _{r,g,05} 54									
Density	$ ho_{g,k}$	340	370	385	405	425	430	440		
	$ ho_{ extsf{g,mean}}$	370	410	420	445	460	480	490		

Purlin and gerber systems

CHALMERS UNIVERSITY OF TECHNOLOGY

Purlins

Bi-axial bending

Interaction of stresses

$$\frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$k_m \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

- k_m is a modification factor that allows for redistribution of stress in the element
 - For solid timber, glulam and LVL:
 - for rectangular sections $k_m = 0.7$
 - for other cross-sections $k_m = 1.0$

Continuous purlin system with overlaps

Source: Swedish Wood

Gerber system

- "The Gerber system" is designed so that moment in the field (bay) and moment over the support are equal.
- To reduce the risk of progressive collapse if one bay should collapse, the system should be designed so that every second bay is free from hinges.

Source: Swedish Wood

Gerber systems

Gerber system – joint layout

- Alternative 1: Joint in end bay
 - · even number of bays
 - odd number of bays

• Max. deflection (in first bay) $w = 0.72ql^4/100EI$

- Alternative 2: End bays without joints
 - even number of bays
 - odd number of bays

• Max. deflection (in first bay) $w = 0.77ql^4/100EI$

Example: B1

Joist design

Example: B6

Check the design of purlin on a sloping roof joist – simply-supported Rectangular cross-section

Homework: B7

Check the design of purlin on a sloping roof joist – Gerber system Rectangular cross-section

CHALMERS

UNIVERSITY OF TECHNOLOGY