Zero-Inflation Meta-analysis

Multiple regression

ANOVA Repeated measure model

> Animal model Mixed model

Zero-Inflation

ANCOVA Split-Plot Phylogenetic mixed model

Random Regression Ridge Regression MANCOVA

Censoring

Threshold model GLM Nested ANOVA

Over-dispersion Logistic Regression

Generalised Linear Mixed Models GLMM

Generalised Linear Mixed Models GLMM

MCMCglmm: an R package for fitting Bayesian GLMM using Markov chain Monte Carlo

A Toy Example

```
y = rnorm(5, mean = 0, sd = sqrt(1))
```

0.256 -1.995 -0.362 0.685 0.118

A Toy Example

```
y = rnorm(5, mean = 0, sd = sqrt(1))
```

0.256 -1.995 -0.362 0.685 0.118

What is the mean and variance of the distribution these numbers were drawn from?

	Pr(y mean, variance)	0.256
μ	Probability of the data <i>given</i> the parameters	-1.995
0		-0.362
σ^2		0.685
		0.118

	Pr(y mean, variance)	0.256
μ	Probability of the data given the parameters	-1.995
		-0.362
σ^2	Bayesian	0.00
	Pr(mean, variance y)	0.685
	Probability of the parameters given the data	0.118

Maximum Likelihood

Maximum Likelihood

$$ML(\mu) = -0.2596 ML(\sigma^2) = 0.8649$$

```
summary(glm(y~1))
```

Coefficients:

```
Estimate Std. Error t value Pr(>ltl) (Intercept) -0.2596 0.4650 -0.558 0.606
```

(Dispersion parameter for gaussian 1.081121)

Restricted Maximum Likelihood

Bayesian

Pr(mean, variance | y) 0.256

Posterior distribution

-1.995

-0.362

0.685

Bayesian

	Pr(mean, variance y)	0.256
μ	Posterior distribution	-1.995
P U	=	
2	Pr(y mean, variance)	-0.362
σ ^z	Likelihood	0.685
	*	
	Pr(mean, variance)	0.118
	Prior	

Pr(mean, variance)

Pr(mean) ~ Normal(B\$mu, B\$V)

Pr(variance) ~ Inv-Wishart(R\$V, R\$nu)

Pr(variance) ~ Inv-Wishart(R\$V, R\$nu)

Posterior = Likelihood*Prior

 $Pr(variance) \sim IW(R$V = 1, R$nu = 0.002)$

0.256

 $Pr(mean) \sim N(B\$mu = 0, B\$V = 10^8)$

Posterior = Likelihood*Prior

 $Pr(variance) \sim IW(R$V = 1, R$nu = 0.002)$

0.256

 $Pr(mean) \sim N(B\$mu = 0, B\$V = 10^8)$

MCMC

```
prior=list(
B=list(mu=0, V=10^8)
R=list(V=1, nu=0.002)
)

model1<-MCMCgImm(y~1, prior=prior)
points(model1$Sol, model1$VCV)</pre>
```

Posterior = Likelihood*Prior

$Pr(-2 < \mu < 2 \& \sigma^2 < 5 y)$	0.256
table(-2 > model1\$Sol < 2 & model1\$VCV < 5)	-1.995
FALSE TRUE 0.0729 0.9271	-0.362
	0.685

$Pr(-2 < \mu < 2 \& \sigma^2 < 5 y)$	0.256
table(-2 > model1\$Sol < 2 & model1\$VCV < 5)	-1.995
FALSE TRUE 0.0729 0.9271	-0.362
$Pr(\sigma^2 < 5 \mid y)$ table(model1\$VCV < 5)	0.685
FALSE TRUE 0.0693 0.9307	0.118

0.256

$$Pr(\sigma^2 \mid y) = \int Pr(\mu, \sigma^2 \mid y) d\mu$$

-1.995

Probability of the variance given the data, by averaging over the uncertainty in the mean

-0.362

0.685

Improper Prior

A probability distribution must sum to one because a variable must have some value!

If we assume an equal probability for all values of the mean:

 $Pr(mean) \sim N(B\$mu = 0, B\$V = \infty)$

then this is not true, and the distribution is improper.

Improper priors can be useful but be very careful!

Flat Improper Prior

Flat Improper Prior

 $Pr(variance) \sim IW(R$V = 0, R$nu = 0)$

Non-Informative Improper Prior

 $Pr(variance) \sim IW(R$V = 0, R$nu = -2)$

Non-Informative Improper Prior

 $Pr(variance) \sim IW(R$V = 0, R$nu = -2)$

plot(log(model1\$VCV))

autocorr(model1\$VCV)

, units Lag 0 1.0000 Lag 1 0.2047 Lag 5 0.0011 Lag 10 0.007 Lag 50 0.013

plot(model1\$Sol)

autocorr(model1\$Sol)

, (Intercpet) Lag 0 1.00000 Lag 1 0.01251 Lag 5 0.00736 Lag 10 0.0077 Lag 50 0.0060

Trace of (Intercept)

Density of (Intercept)

N = 10000 Bandwidth = 0.08615