AMVA 顯示原理 Additional Multi Vertical Alignment

Agenda

- 爲何要導入 AMVA 顯示技術
- The Distortion of Gamma Curve
 - (Gamma Curve of Different Viewing Angle)
- Improve The Color Shift
 - (Reduce the Variation of Transmittance)
- AMVA 顯示原理介紹(8 Domain; Full Cone)
- 廣視角顯示原理(8 Domain)
- AMVA 顯示原理
- AMVA 與 AQSV 比較

爲何要導入 AMVA 顯示技術

- 1. The Distortion of Gamma Curve
 - 2. Improve The Color Shift

.....

Gamma Curve of Different Viewing Angle

Reduce the Variation of Transmittance

Conventional 4 domain

New 8 domain VA Pixel

由不同的角度觀察,可見 4 Domain 的 Normal MVA Design 與 8 Domain MVA Design Color Shift 明顯小了許多。

AMVA 顯示原理介紹

- (8 Domain; Full Cone)
 - 1. 廣視角顯示原理 (**8 Domain**)
 - 2. AMVA 顯示原理
 - 3. AMVA 與 AQSV 比較

.....

廣視角顯示原理(1)

Twist Nematic 顯示原理

廣視角顯示原理(2)

廣視角顯示原理(3)

4 Domain Vertical Alignment

8 Domain Vertical Alignment

AUO Proprietary & Confidential

8 Domain

(畫素驅動顯示狀況)

8 Domain T315XW Pixel

pixel layout

MVA 與 8 Domain 顯示比較

60°

How to Create 8 Domain VA Pixel

Capacitance Coupling Technology CC Type

利用 Capacitance coupling 原理,可以用單一的 TFT 與 Pixel 創造出兩種不同的電壓,並藉由微調 Cx 電容的值,來改善 color shift 的現象

C.C Type Example

Normal

Area

 $Vcc = \frac{Cx}{Cx + Clc}V$

仔細觀察 C.C. Pixel的結構,C.C. 區域的 ITO 是完全沒有任何地方與 TFT 相連接,Metal 2 只是用來 Coupling 電壓用,實際上TFT充的電荷是經由 Cst 那邊的 Metal 2 與 Through hole 將電荷傳到 normal 區域的 ITO。

C.C. 區域的電位則是靠著coupling 讓電中性的 C.C 區 ITO 電荷重新 排列而產生 coupling的電場與電位。

Co-work With FDTC

C.C. Type 缺點 Serious Image Sticking of C.C Pixel

Possible Root Cause of Image sticking

RC Non-balance induced ion trapping and results in image sticking of C.C. pixel

Data signal

已知畫素電極與 Common 電壓壓差 不對稱時易產生離子堆積而造成殘像。 而 Normal Area 與 Coupling Area 與 Vcom 的電壓差於 C.C. type 狀況下永 遠不可能同時達成平衡。

- 1. Make RC balance
- 2. Induce opposite charge
- 3. Release induced charge

$$V_{sh} - V_{com} = V_{com} - V_{sl}$$

$$V_{nsk} - V_{com} = V_{com} - V_{nsl}$$

$$V_{cch} - V_{com} = \left(\frac{V_{cx}}{V_{cx} + V_{clc}} \bullet V_{nsh}\right) - V_{com}$$

$$V_{com} - V_{ccl} = V_{com} - \left(\frac{V_{cx}}{V_{cx} + V_{clc}} \bullet V_{nsl}\right)$$

$$V_{cch} - V_{com} - V_{com} + V_{ccl} = V_{cch} + V_{ccl} - (V_{nsh} + V_{nsl})$$

$$= \left(\frac{V_{cx}}{V_{cx} + V_{clc}}\right) \bullet (V_{nsh} + V_{nsl}) - (V_{nsh} + V_{nsl})$$

$$= \left(\frac{V_{cx}}{V_{cx} + V_{clc}} - 1\right) \bullet (V_{nsh} + V_{nsl}) \neq 0$$

Additional Refresh TFT Design

AMVA 與 ASQV 差異

AQSV
Advance QDI Super View Angle

AUO Proprietary & Confide **Va32E**

AMVA
Additional Multi Vertical Alignment

AQSV and **AMVA**

	AQSV 37	AQSV 32X3	AMVA 32 (DBEF_13.8us)	AMVA 42 (DREF 10 2us)	
D(0-255) (SDI ψ 0 θ 60 G1)	49.90%	37.59%	47.87%	45.53%	
Р	2.29	1.93	2.27	2.08	

Comment:

1. 由於無相近尺寸及相同材料進行特性比較結果,故此數據僅供參考。

2.U面板時性給東連興不大。

	AQSV 37	AQSV 32X3	AMVA 32	AMVA42	
Resolution	1366*768	1366*768	1366*768	1366*768	
△nd	300	300	340	340	
Cell Gap	3.2	3.2	3.8	3.8	
LC	MJ021866	MJ021866	MJ012008	MJ012008	
Polarizer	Sumika X-plate	Sumika X-plate	Nitto X-plate	Nitto X-plate	
CF	Toppan	Toppan	in House	in House	
Array	5 mask	5 mask	5 mask	5 mask	
Slit Width	10	10	8.8	8.8	
Protrusion Width	9	9	10.5	10.5 (w/ node)	
Protrusion Height	1.45		1.2	1.2	
S-P Space	23	23	25	25~30	
Aperture Ratio	47.96%	51.60%	55.90%	58.70%	
Transmittance	4.36%	4.75%	4.2% (13.8us)	4.2%(10.2us) 4.7%(17.8us)	
Contrast Ratio	1200	1000	1400(BEF3)	1200	
Viewing Angle	85/85/85/85	85/85/85/85	88/88/88/88	88/88/88/88	
Cst/Clcmin			Main-3.41 Sub-0.71	Main-2.88 Sub-0.57	
Response Time (on+off 133ms)	18	18	18	18	
Response Time (gray to gray G16)	6.7	6.7	8	8	
MPRT (8 ppf G32)	19	19	13	13	
NTSC	72%	72%	72%	72%	

AQSV with AUO Design Rule

	AQSV L96		AMVA L96		AQSV L255		AMVA L255	
	normal	sub	normal	CC	normal	sub	normal	CC
Vph	8.64	8.06	9.32	8.56	13.98	10.32	14.59	11.47
Vpl	2.88	3.78	3.45	4.19	-0.98	0.25	-0.56	0.91
Vcom	5.84	5.84	6.38	6.38	5.89	5.89	6.60	6.60
Vrms	2.88	2.14	2.93	2.18	7.50	5.07	7.59	5.29
area	1.00	1.17	1.00	1.17	1.00	1.17	1.00	1.17
Vrms ratio	0.742		0.745		0.676		0.698	
T (sum)					97.9%		100.0%	

- * AQSV and AMVA has almost the same A.R.
- * AQSV sub-TFT: W/L = 10.25 / 12.5
- * AMVA sub-TFT: W/L = 4/12.5

Comment:

1. Gamma 特性結果差異不大。

Lower Brightness and CR of C.C. Pixel (缺點)

由 C.C 與 Normal Pixel 的 V-T Curve 可以看出 C.C Pixel 的組合亮度 是較低的。

因此 Brightness and Contrast Ratio 都會較一般 VA Pixel 來的差。

爲了要提高 C.C 的亮度與對比,必需要在 Backlight、Polarizer、CF等材料下更多功夫。

