Lecture 21 : The Sample Total and Mean and The Central Limit Theorem

1. Statistics and Sampling Distributions

Suppose we have a random sample from some population with mean μ_X and variance σ_X^z

$$\begin{bmatrix} X \\ Y_X, \sigma_X^2 \end{bmatrix} - - - - - \times X_1, X_2, \dots, X_n$$

and a function $w = h(x_1, x_2, ..., x_n)$ of n variables. Then (as we know) the combined random variable

$$W = h(X_1, X_2, \ldots, X_n)$$

is called a statistic.

If the population random variable X is discrete then X_1, X_2, \ldots, X_n will all be discrete and since W is a combination of discrete random variables it too will be discrete.

The \$64,000 question

How is W distributed?

More precisely, what is the *pmf* $P_W(x)$ of W.

The distribution $P_W(x)$ of W is called a "sampling distribution".

Similarly if the population random variable X is continuous we want to compute the $pdf f_W(x)$ of W (now it is continuous)

We will jump to \$5.5.

The most common $h(x_1, ..., x_n)$ is a linear function

$$h(x_1,x_2,\ldots,x_n)=a_1x_1+\cdots+a_nx_n$$

where

$$W = a_1 X_1 + a_2 X_2 + \cdots + a_n X_n$$

Proposition L (page 219)

Suppose $W = a_1 X_1 + \cdots + a_n X_n$.

Then

(i)
$$E(W) = E(a_1X + \cdots + a_nX_n)$$

= $a_1E(X_1) + \cdots + a_nE(X_n)$

(ii) If $X_1, X_2, ..., X_n$ are independent then

$$V(a_1X_1 + \cdots + a_nX_n) = a_1^2V(X_1) + \cdots + a_n^2V(X_n)$$

$$(so V(cX) = c^2V(X))$$

Proposition L (Cont.)

Now suppose $X_1, X_2, ..., X_n$ are a random sample from a population of mean μ and variance σ^2 so

$$E(X_i) = E(X) = \mu, \quad 1 \le i \le n$$

 $V(X_i) = V(X) = \sigma^2, \quad 1 \le i \le n$

and $X_1, X_2, ..., X_n$ are independent.

We recall

$$\overline{X}$$
 = the sample total = $X_1 + \cdots + X_n$
 \overline{X} = the sample mean = $\frac{X_1 + \cdots + X_n}{n}$

As an immediate consequence of the previous proposition we have

Proposition M

Suppose $X_1, X_2, ..., X_n$ is a random sample from a population of mean μ_X and variance σ_X^2 . Then

(i)
$$E(T_0) = n\mu_{X_2}$$

(ii)
$$V(T_0) = n\sigma_X^2$$

(iii)
$$E(\overline{X}) = \mu_X$$

(iv)
$$V(\overline{X}) = \frac{\sigma_X^2}{n}$$

Proof (this is important)

(i)
$$E(T_0) = E(X_1 + \dots + X_n)$$

by the Prop.
 $= E(X_1) + \dots + E(X_n)$
why
 $= \underbrace{\mu_X + \dots + \mu_X}_{n \text{ copies}}$
 $= n\mu_X$
(ii) $V(T_0) = V(X_1 + \dots + X_n)$
by the Prop
 $= V(X_1) + \dots + V(X_n)$
 $= \sigma_X^2 + \dots + \sigma_X^2$
 $= n\sigma_X^2$

Proof (Cont.)

(iii)
$$E(\overline{X}) = E\left(\frac{1}{n}(X_1 + \dots + X_n)\right)$$

$$= \frac{1}{n}E(X_1 + \dots + X_n)$$

$$= \text{by (i)}$$

$$= \frac{1}{n}(n\mu_X)$$

$$= \mu_X$$
(iv)
$$V(\overline{X}) = V\left(\frac{1}{n}(X_1 + \dots + X_n)\right)$$
by the Prop.
$$= \frac{1}{n^2}V(X_1 + \dots + X_n)$$
by (ii)
$$= \frac{1}{n^2}(n\sigma_X^2)$$

$$= \frac{\sigma_X^2}{n^2}$$

Remark

It is important to understand the symbols $-\mu_X$ and σ_X^2 are the mean and variance of the underlying population.

In fact they are called the population mean and the population variance. Given a statistic $W=h(X_1,\ldots,X_n)$ we would like to compute $E(W)=\mu_W$ and $V(W)=\sigma_W^2$ in terms of the population mean μ_X and

Remark (Cont.)

population variance σ_X^2 .

So we solved this problem for $W = \overline{X}$ namely

$$\mu_{\overline{X}} = \mu_X$$

and

$$\sigma_{\overline{X}}^2 = \frac{1}{n}\sigma_X^2$$

Never confuse population quantities with sample quantities.

Corollary

$$\sigma_{\overline{X}}$$
 = the standard deviation of \overline{X}

$$= \frac{\sigma_X}{\sqrt{n}} = \frac{\text{population standard deviation}}{\sqrt{n}}$$

Proof.

$$\sigma_{\overline{X}} = \sqrt{V(\overline{X})}$$

$$= \sqrt{\frac{\sigma_X^2}{n}}$$

$$= \frac{\sqrt{\sigma_X^2}}{\sqrt{n}} = \frac{\sigma_X}{\sqrt{n}}$$

Sampling from a Normal Distribution

Theorem LCN (Linear combination of normal is normal)

Suppose $X_1, X_2, ..., X_n$ are independent and

$$X_1 \sim N(\mu, \sigma_1^2), \ldots, X_n \sim N(\mu_n, \sigma_n^2).$$

Let $W = a_1X_1 + \cdots + a_nX_n$. Then

$$W \sim N(a_1\mu_1 + \cdots + a_n\mu_n, a_1^2\sigma_1^2 + \cdots + a_n^2\sigma_n^2)$$

Proof

At this stage we can't prove W is normal (we could if we have moment

Proof (Cont.)

generating functions available).

But we can compute the mean and variance of W using Proposition L.

$$E(W) = E(a_1X_1 + \dots + a_nX_n)$$

$$= a_1E(X_1) + \dots + a_nE(X_n)$$

$$= a_1\mu_1 + \dots + a_n\mu_n$$

and

$$V(W) = V(a_1X_1 + \dots + a_nX_n)$$

$$= a_1^2V(X_1) + \dots + a_n^2V(X_n)$$

$$= a_1^2\sigma_1^2 + \dots + a_n^2\sigma_n^2$$

Now We can state the theorem we need.

Theorem N

Suppose $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$

$$X \sim N(\mu, \sigma^2)$$
 $---- > X_1, X_2, \dots, X_n$

Then

$$T_0 \sim N(n\mu, n\sigma^2)$$

and

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Proof

The hard part is that T_0 and \overline{X} are normal (this is Theorem LCN)

Proof (Cont.)

You show the mean of \overline{X} is μ using either Proposition M or Theorem 11 and the same for showing the variance of \overline{X} is $\frac{\sigma^2}{n}$.

Remark

It is very important for statistics that the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

satisfies

$$S^2 \sim \chi^2(n-1).$$

This is one reason that the chi-squared distribution is so important.

3. The Central Limit Theorem (§5.4)

In Theorem N we saw that if we sampled n times from a normal distribution with mean μ and variance σ^2 then

- (i) $T_0 \sim N(n\mu, n\sigma^2)$
- (ii) $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

So both T_0 and \overline{X} are still normal

The Central Limit Theorem says that if we sample n times with n large enough from any distribution with mean μ and variance σ^2 then T_0 has approximately $N(n\mu, n\sigma^2)$ distribution and \overline{X} has approximately $N(\mu, \sigma^2)$ distribution.

We now state the CLT.

The Central Limit Theorem

$$X, \mu, \sigma^2$$
 $---- \times X_1, X_2, \dots, X_n$

 $\overline{X} \approx N(\mu, \sigma^2)$ provided n > 30.

Remark

This result would not be satisfactory to professional mathematicians because there is no estimate of the error involved in the approximation. However an error estimate is known - you have to take a more advanced course. The n > 30 is a "rule of thumb". In this case the error will be neglible up to a large number of decimal places (but I don't know how many). So the Central Limit Theorem says that for the purposes of sampling if n > 30 then the sample mean behaves as if the sample were drawn from a NORMAL population with the same mean and variation of the actual population.

Example 5.27

A certain consumer organization reports the number of major defects for each new automobile that it tests. Suppose that the number of such defects for a certain model is a random variable with mean 3.2 and standard deviation 2.4. Among 100 randomly selected cars of this model what is the probability that the average number of defects exceeds 4.

Solution

Let $X_i = \sharp$ of defects for the i-th car

$$X \mu = 3.2, 6 = 24$$

n = 100 > 30 so we can use the CLT

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_{100}}{100}$$

So

 \overline{X} = average number of defects

So we want

$$P(\overline{X} > 4)$$

Solution (Cont.)

Now

$$E(\overline{X}) = \mu = 3.2$$

$$V(\overline{X}) = \frac{\sigma^2}{n} = \frac{(2.4)^2}{100}$$

Let

$$Y \sim N\left(3.2, \frac{(2.4)^2}{100}\right)$$

$$\sigma_y = \frac{2.4}{10}$$

$$= .24$$

By the CLT $\overline{X} \approx Y$ so

$$P(\overline{X} \ge 4) \approx P(Y \ge 4)$$

$$= P\left(\frac{\overline{Y} - 3.2}{2.24} \ge \frac{4 - 3.2}{.24}\right)$$

$$= P\left(Z \ge \frac{.8}{.24}\right) 3.33$$

$$= I - \Phi(3.33) = 1 - .9996$$

$$= .0004$$

How the Central Limit Theorem Gets Used More Often

The CLT is much more useful than one would expect. That is because many well-known distributions can be realized as sample totals of a sample drawn from another distribution. I will state this as

General Principle

Suppose a random variable W can be realized as a sample total $W = T_0 = X_1 + \cdots + X_n$ from some X and n > 30. Then W is approximately normal.

Examples (This isn't ?????)

- 1 $W \sim Bin(n, p)$ with n large.
- **2** W ~ Gamma(α , β) with α large.
- **3** W ~ Poisson(λ) with λ large.

We will do the example of $W \sim \operatorname{Bin}(n,p)$ and recover (more or less) the normal approximation to the binomial so

 $CLT \Rightarrow normal approx to binomial.$

The point is

Theorem (sum of binomials is binomial)

Suppose X and Y are independent, $X \sim \text{Bin}(m, p)$ and $Y \sim \text{Bin}(n, p)$. Then

$$W = X + Y \sim Bin(m + n, p)$$

Proof

For simplicity we will assume $p = \frac{1}{2}$.

Suppose Fred tosses a fair coin m times and Jack tosses a fair coin n times.

Proof (Cont.)

Let

 $X = \sharp$ of head Fred observes

 $Y = \sharp$ of heads Jack observes

So

$$X \sim \operatorname{Bin}\left(m, \frac{1}{2}\right)$$
 and $Y \sim \operatorname{Bin}\left(n, \frac{1}{2}\right)$

What is X + Y?

Forget who was doing the tossing, X + Y is just the total number of heads in m + n tosses of a fair coin so

$$X + Y \sim Bin\left(m + n, \frac{1}{2}\right).$$

Ш

Now suppose we have

$$X \sim \text{Bin}(1, p)$$
 $---- > X_1, \dots, X_n$

Then $X_i \sim \text{Bin}(1, p)$, $1 \le i \le n$,

$$T_0 = X_1 + X_2 + \cdots + X_n \sim \operatorname{Bin}(n, p)$$

Now if n > 30 we know T_0 is approximately normal so if $W \sim \text{Bin}(n, p)$ and n > 30 the $W \approx \text{normal}$

$$E(W) = np$$
 and $V(W) = npq$ AND

$$W \sim N(np, npq)$$

So we get the normal approximation to the binomial (with n > 30 replacing $np \ge 10$ and $nq \ge 10$)

Remark

If $p = \frac{1}{2}$ then the second conditions gives n > 20.

- so better then CLT but if $p = \frac{1}{5}$ then the second conditions gives n > 50.
- so worse than the CLT.