

200 mA, 40 V NPN Plastic Encapsulated Transistor

RoHS Compliant Product
A suffix of "-C" specifies halogen and lead free

FEATURES

- ♦ Collector current capability I_C=200mA
- ♦ Collector-emitter voltage V_{CEO}=40V.

APPLICATION

• General switching and amplification.

PACKAGING DIMENSION

SOT-23

REF.	Millimeter		REF.	Millimeter	
	Min.	Max.	KEF.	Min.	Max.
Α	2.80	3.00	G	0.10 REF.	
В	2.25	2.55	Н	0.55 REF.	
С	1.20	1.40	J	0.08	0.15
D	0.90	1.15	K	0.5 REF.	
E	1.80	2.00	L	0.95 TYP.	
F	0.30	0.50			

MARKING

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector - Emitter Voltage	$V_{\sf CEO}$	40	Vdc
Collector - Base Voltage	V_{CBO}	60	Vdc
Emitter - Base Voltage	V_{EBO}	6.0	Vdc
Collector Current - Continuous	Ic	200	mAdc
Total Device Dissipation FR-5 Board ⁽¹⁾ , T _A =25°C	P _D	225	mW
Total Device Dissipation FR-5 Board, Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate ⁽²⁾ , T _A =25°C	Б	300	mW
Total Device Dissipation Alumina Substrate, Derate above 25°C	P _D	2.4	mW/°C
Thermal Resistance, Junction to Ambien	$R_{\theta JA}$	417	°C/W
Junction, Storage Temperature	T_J, T_{STG}	-55 ~ + 150	°C

http://www.SeCoSGmbH.com/

Any changes of specification will not be informed individually.

30-Aug-2010 Rev. C Page 1 of 6

200 mA, 40 V NPN Plastic Encapsulated Transistor

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)(Continued)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	TEST CONDITIONS					
OFF CHARACTERISTICS										
Collector-Emitter Breakdown Voltage ⁽³⁾	$V_{(BR)CEO}$	40	-	Vdc	I _C = 1mAdc, I _B =0					
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	60	-	Vdc	$I_C = 10\mu Adc, I_E = 0$					
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	6.0	-	Vdc	$I_E = 10\mu Adc, I_C = 0$					
Base Cut-Off Current	I _{BL}	-	50	nAdc	V _{CE} = 30Vdc, V _{EB} = 3.0Vdc					
Collector Cut-Off Current	I _{CEX}	-	50	nAdc	V _{CE} = 30Vdc, V _{EB} = 3.0Vdc					
ON CHARACTERISTICS ⁽³⁾										
	h _{FE(1)}	40	-		I _C = 0.1mAdc, V _{CE} = 1Vdc					
	h _{FE(2)}	70	-		I _C = 1.0mAdc, V _{CE} = 1Vdc					
DC Current Gain	h _{FE(3)}	100	300		I _C = 10mAdc, V _{CE} = 1Vdc					
	$h_{FE(4)}$	60	-		I _C = 50mAdc, V _{CE} = 1Vdc					
	h _{FE(5)}	30	-		I _C = 100mAdc, V _{CE} = 1Vdc					
0-11t Fitt 0-tti \(\) \(\)		-	0.2	Vdc	I _C = 10mAdc, I _B =1mAdc					
Collector-Emitter Saturation Voltage ⁽³⁾	$V_{CE(sat)}$	-	0.3		I _C = 50mAdc, I _B = 5mAdc					
5 5 11 6 1 11 11 13	$V_{BE(sat)}$	0.65	0.85	Vdc	I _C = 10mAdc, I _B =1mAdc					
Base-Emitter Saturation Voltage ⁽³⁾		-	0.95		I _C = 50mAdc, I _B =5mAdc					
SMALL-SIGNAL CHARACTERISTICS										
Current-Gain-Bandwidth Product	f _T	300	-	MHz	I _C = 10mAdc, V _{CE} = 20Vdc, f=100MHz					
Output Capacitance	C _{obo}	-	4.0	pF	V _{CB} =5.0Vdc, I _E =0, f=1.0MHz					
Input Capacitance	C _{ibo}	-	8.0	pF	V _{EB} = 0.5Vdc, I _C =0, f=1.0MHz					
Input Impedance	h _{ie}	1.0	10	kΩ	V _{CE} = 10 Vdc, I _C = 1.0mAdc, f=1.0kHz					
Voltage Feedback Radio	h _{re}	0.5	8.0	x 10 ⁻⁴	V _{CE} = 10 Vdc, I _C = 1.0mAdc, f=1.0kHz					
Small-Signal Current Gain	h _{fe}	100	400		V _{CE} = 10 Vdc, I _C = 1.0mAdc, f=1.0kHz					
Output Admittance	H _{oe}	1.0	40	µmhos	V _{CE} = 10 Vdc, I _C = 1.0mAdc, f=-1.0kHz					
Noise Figure	NF	-	5.0	dB	V_{CE} = 5.0 Vdc, I_{C} = 100 μ Adc, R_{S} =1.0 $K\Omega$, I_{C} =1.0 I_{C} Hz					
SWITCHING CHARACTERISTICS										
Delay Time	td	-	35		V _{CC} =3Vdc,V _{BE} =-0.5Vdc					
Rise Time	tr	-	35		I _c =10mAdc, I _{B1} =1mAdc					
Storage Time	ts	-	200	nS	V _{CC} =3Vdc,					
Fall Time	tf	-	50		$I_C=10$ mAdc, $I_{B1}=I_{B2}=1$ mAdc					

NOTE:

- 1. FR-5=1.0 x 0.75 x 0.062 in.
- 2. Alumina=0.4 x 0.3 x 0.024 in. 99.5% alumina.
- 3. Pulse Test: Pulse Width $\leq 300 \mu S$, Duty Cycle $\leq 2.0\%$

http://www.SeCoSGmbH.com/

Any changes of specification will not be informed individually.

200 mA, 40 V NPN Plastic Encapsulated Transistor

*Total shunt capacitance of test jig and connectors

FIG.1 Delay and Rise Time Equivalent Test Circuit FIG.2 Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

$$--T_{J}=25^{\circ}C$$
 $--T_{J}=125^{\circ}C$

FIG.4 Charge Data

http://www.SeCoSGmbH.com/

Any changes of specification will not be informed individually.

30-Aug-2010 Rev. C Page 3 of 6

200 mA, 40 V NPN Plastic Encapsulated Transistor

TYPICAL TRANSIENT CHARACTERISTIC CURVES

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

(VCE=5.0 Vdc.TA=25 °C, Bandwidth=1.0Hz)

http://www.SeCoSGmbH.com/

Any changes of specification will not be informed individually

30-Aug-2010 Rev. C Page 4 of 6

200 mA, 40 V NPN Plastic Encapsulated Transistor

(NPN)

h PARAMETERS $(V_{CE}=10 \text{ Vdc,m f}=1.0 \text{ kHz, T}_{A}=25 \text{ °C})$

I_C COLLECTOR CURRENT (mA) FIG.12 Output Admittance

FIG.14 Voltage Feedback Radio

http://www.SeCoSGmbH.com/

Any changes of specification will not be informed individually.

30-Aug-2010 Rev. C Page 5 of 6

200 mA, 40 V NPN Plastic Encapsulated Transistor

FIG.16 Collector Saturation Ragion

FIG.18 Temperature Coefficients

http://www.SeCoSGmbH.com/

Any changes of specification will not be informed individually.

30-Aug-2010 Rev. C Page 6 of 6