Linear Regression & Logistic Regression

By NtD

Review

Vector is way of representation of data in numerical format.

["Hello", "world", "!"] » [103, 98, 22]

["Male", 232.0, 12000, "Yes"] » [1, 232.0, 12000, 1]

Linear Regression

Linear function: f(x) = wx + b

w: weight, coefficient

b: bias, intercept

Which function (w?, b?) this data is representing for?

$$w = 2$$
 $b = 7$
 $f(x) = 2x + 7$

Metrics

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

$$RMSE = \sqrt{MSE}$$

MAE: Mean Absolute Error **MSE**: Mean Squared Error

RMSE: Root Mean Squared Error

Usability and Drawbacks

Usability:

- > Used widely in economics and finance
- > Predict or forecast trends in short or mid-term
- > Linear algebra is the foundation for mathematics as well as machine learning/deep-learning

Drawbacks:

> Unfit non-linear or complex datasets

Logistic Regression

For classification problems

Problem of Linear Regression

$$\sigma(x) = rac{1}{1 + e^{-x}} = rac{e^x}{1 + e^x} = 1 - \sigma(-x).$$

Logistic or Sigmoid Function

https://en.wikipedia.org/wiki/Sigmoid_function

Applied Logistic Regression

Metrics: Confusion Matrix

True Negative	False Positive
(TN)	(FP)
False Negative	True Positive
(FN)	(TP)

$$egin{aligned} Accuracy &= rac{TP + TN}{TP + TN + FP + FN} \ Precision &= rac{TP}{TP + FP} \ Recall &= rac{TP}{TP + FN} \ F1 &= 2(rac{Precision * Recall}{Precision + Recall}) \end{aligned}$$

Usability and Drawbacks

Usability:

- > Effective for linear-classification: customer churn, frauds detection, quality control...
- > Simple, fast, yet effective
- > Logistic curve can be used in many use cases and in deep-learning

Drawbacks:

- > Do not work well with imbalanced classification
- > Unfit complex datasets

Libraries and Frameworks

Library	Description
pandas	Data visualization and preprocessing
numpy	Vectorization and processing data
matplotlib, seaborn	Plotting and data visualization
scikit-learn	Data processing and machine learning models
xgboost	machine learning models
jupyter	Jupyter notebook server

Thank you!