= МАТЕМАТИКА ===

УДК 517.983 : 517.986

О ПРЕДСТАВЛЕНИИ ЛИНЕЙНЫХ ОПЕРАТОРОВ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ В ВИДЕ КОНЕЧНЫХ СУММ ПРОИЗВЕДЕНИЙ ПРОЕКТОРОВ

© 2003 г. А. М. Бикчентаев

Представлено академиком С.М. Никольским 23.06.2003 г.

Поступило 23.06.2003 г.

Пусть H — гильбертово пространство над телом λ (=**R**, **C** или **H**). Через B(H) обозначим *-алгебру всех линейных ограниченных операторов в H. Оператор $x \in B(H)$ называется идемпотентом, если $x = x^2$; проектором, если $x = x^2 = x^*$.

В работе решены следующие задачи:

- (I) представить каждый элемент B(H) в виде конечной суммы произведений проекторов;
- (II) найти наименьшую верхнюю границу для числа сомножителей в слагаемых таких представлений.

Ранее [1–7] рассматривались лишь представления в более слабой форме: допускались коэффициенты из Λ в слагаемых, задача II не исследовалась. В разделе 3 для $\Lambda = \mathbb{C}$ доказывается неулучшаемое (по числу сомножителей) утверждение: каждый оператор $x \in B(H)$ представляется в виде конечной суммы $x = \sum x_k$, где каждое x_k есть произведение не более чем двух проекторов при $\dim H = \infty$ и не более чем трех проекторов при $2 \leq \dim H < \infty$.

1. ОБОЗНАЧЕНИЯ И ОПРЕДЕЛЕНИЯ

Пусть $\Lambda = \mathbb{C}$ и e — тождественный оператор в H. Для C^* -подалгебры $A \subset B(H)$ через $A^{\mathrm{sa}}, A^+, A^{\mathrm{id}}$ и A^{pr} будем обозначать ее подмножества эрмитовых операторов, положительных операторов, идемпотентов и проекторов соответственно. Через $M_n(A)$ будем обозначать алгебру $(n \times n)$ -матриц с элементами из A.

Конечным следом на C^* -алгебре A называется такое отображение τ $A^+ \to [0, +\infty)$, что $\tau(x+y) = \tau(x) + \tau(y)$, $\tau(\lambda x) = \lambda \tau(x)$ для всех $x, y \in A^+$, $\lambda \ge 0$, $\tau(z^*z) = \tau(zz^*)$ для всех $z \in A$.

Научно-исследовательский институт математики и механики им. Н.Г. Чеботарева Казанского государственного университета им. В.И. Ульянова-Ленина

Унитальная C^* -алгебра A называется UHF-алгеброй, если существует неубывающая последовательность $\{A_n\}_{n=1}^{\infty}$ конечномерных простых C^* -подалгебр, содержащих единицу A, такая, что $\bigcup_{n=1}^{\infty} A_n$ плотно в A. Через $C(\Omega)$ будем обозначать C^* -алгебру всех комплекснозначных непрерывных функций на компактном хаусдорфовом пространстве Ω .

Для алгебры фон Неймана M операторов в H обозначим ее центр через Z(M). Пусть $p^{\perp} = e - p$ для $p \in M^{\mathrm{pr}}$. Все знаки Σ в сообщении означают суммирования по некоторым конечным множествам индексов. Пусть $f(t) = \sqrt{t(1-t)}$ для $0 \le t \le 1$.

2. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

В [1, предложение 7] доказано, что каждый фактор фон Неймана в сепарабельном H алгебраически порождается своими проекторами. В [2, следствие 1] аналогичный результат установлен для всех бесконечных факторов фон Неймана M, т.е.

$$M = \operatorname{Lin}_{\mathbb{C}} \{ p_1 p_2 p_3 p_4 : p_1, p_2, ..., p_4 \in M^{\operatorname{pr}} \}.$$

В [3, с. 334] доказано, что алгебра фон Неймана алгебраически порождается своими проекторами тогда и только тогда, если она не имеет прямых бесконечномерных абелевых слагаемых. Там же показано, что

$$B(H) = \operatorname{Lin}_{\mathbf{C}} \{ p_1 p_2 : p_1, p_2 \in B(H)^{\operatorname{pr}} \}.$$

В [4] доказано, что каждый оператор в сепарабельном пространстве является линейной комбинацией 257 проекторов. В [5] показано, что каждый эрмитов оператор является вещественной линейной комбинацией восьми проекторов. В сепарабельном случае в [6] это число уменьшено до пяти и показано, что каждый эрмитов оператор является целочисленной комбинацией шести проекторов.

Когда H сепарабельно и бесконечномерно, в [7] единым методом для $\Lambda = \mathbf{R}$, \mathbf{C} или \mathbf{H} показано, что

$$B(H) =$$

= $\operatorname{Lin}_{R} \{ p_{1}p_{2}p_{3}p_{4}p_{5}p_{6}: p_{1}, p_{2}, ..., p_{6} \in B(H)^{\operatorname{pr}} \}.$

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ (СЛУЧАЙ $\Lambda = \mathbf{C}$)

 Π е м м а 1. Пусть на C^* -алгебре A существует нетривиальный конечный след.

Tогда $\operatorname{Lin}_R\{p_1p_2: p_1, p_2 \in A^{\operatorname{pr}}\}$ неплотно в A. Eсли A унитальна, то $\operatorname{Lin}_RA^{\operatorname{id}}$ неплотно в A.

Лемма 2. Пусть число $0 < \lambda < 1$, $\dim H \ge 2$ и $p \in B(H)^{pr}$. Оператор λp представляется в виде конечной суммы попарных произведений элементов $B(H)^{pr}$.

Здесь при $\dim H < \infty$ можем считать, что p одномерен и имеет матрицу $\mathrm{diag}(1,0,...,0)$. Для $\delta \in \mathbf{C}$ с $|\delta|=1$ и $0 \le t \le 1$ определим проектор $r^{(\delta,t)}$ матрицей

$$r_{ij}^{(\delta,\,t)} = egin{cases} t, & ext{если } i = j = 1, \ 1-t, & ext{если } i = j = 2, \ \delta f(t), & ext{если } i = 1, & j = 2, \ ar{\delta}f(t), & ext{если } i = 2, & j = 1, \ 0 & ext{в остальных случаях.} \end{cases}$$

Теорема. Каждый оператор $x \in B(H)$ представляется в виде конечной суммы $x = \sum x_k$, где каждое x_k есть произведение не более чем двух проекторов при $\dim H = \infty$ и не более чем трех проекторов при $2 \le \dim H < \infty$.

С х е м а д о к а з а т е л ь с т в а. Пусть $\dim H = \infty$. Приведем необходимые известные факты теории операторов.

Лемма 3 [5, теорема 1]. Каждый оператор

 $x \in B(H)$ представляется в виде суммы $x = \sum_{k=1}^{5} q_k$

пяти идемпотентов.

Лемма 4 [8, теорема 1]. Каждый идемпотент $q \in B(H)$ представляется в виде произведения q = py, где $p \in B(H)^{pr}$, а оператор $y \in B(H)^+$ обратим.

Лемма 5 [9, следствие на с. 152]. Каждый обратимый оператор $y \in B(H)^+$ представляется в виде линейной комбинации проекторов с положительными коэффициентами.

Лемма 6 [10, теорема 2.3.3]. Пусть алгебра фон Неймана M имеет тип I_n (n – кардинальное число). Тогда M *-изоморфна тензорному произ-

ведению $Z(M) \otimes B(K)$, где K – гильбертово пространство $c \dim K = n$.

К фиксированному оператору $x \in B(H)$ применим лемму 3, в полученном представлении к каждому идемпотенту применим лемму 4, затем к полученному новому представлению применим лемму 5. Имеем

$$x = \sum \lambda_k p_k r_k, \quad \lambda_k > 0, \quad p_k, r_k \in B(H)^{\text{pr}}.$$
 (2)

Преобразуем слагаемые с $\lambda_k \notin \mathbf{N}$. Считаем $0 < < \lambda_k \leq \frac{1}{2}$. Если в слагаемом из (2) один из проекто-

ров равен e, то к слагаемому применяем лемму 2. Свяжем с p, $r \in B(H)^{\rm pr}$ порожденную ими алгебру фон Неймана M. По [11, гл. 5, раздел (ii) теорема 1.41] существует единственный проектор $z \in Z(M)$, такой, что алгебра Mz имеет тип I_2 и Mz^{\perp} – абеле-

ва. Пусть
$$0 < \lambda \le \frac{1}{2}$$
 и $\lambda pr = \lambda prz + \lambda prz^{\perp}$. Поскольку

 $prz^{\perp} \in B(H)^{\mathrm{pr}}$, к оператору λprz^{\perp} применима лемма 2. Из теоремы Гельфанда о представлении абелевой унитальной С*-алгебры следует, что алгебра Z(Mz) *-изоморфна C^* -алгебре $C(\Omega)$ всех комплекснозначных непрерывных функций на компактном хаусдорфовом пространстве Ω всех характеров алгебры Z(Mz). По лемме 6 алгебра Mz *-изоморфна матричной алгебре $M_2(C(\Omega))$. Для $\tilde{q} \in M_2(C(\Omega))^{\mathrm{pr}}$ положим

$$\begin{split} \Omega_i(\tilde{q}) &= \big\{ \omega \in \Omega; \, \tilde{q}_{11}(\omega) + \tilde{q}_{22}(\omega) = i \big\}, \\ &\quad i \in \big\{ 0, 1, 2 \big\}. \end{split}$$

Множества $\Omega_i(\tilde{q})$ замкнуты и образуют дизъюнктное покрытие пространства Ω . Справедлива

Лемма 7. Для каждого $\tilde{q} \in M_2(C(\Omega))^{\operatorname{pr}}$ существует такая симметрия $s \in M_2(C(\Omega_1(\tilde{q})))$, что $s(\omega)\tilde{q}(\omega)s(\omega) = \operatorname{diag}(1,0)$ для всех $\omega \in \Omega_1(\tilde{q})$.

Проекторы pz и rz отождествляются с \tilde{p} , $\tilde{r} \in M_2(C(\Omega))^{\operatorname{pr}}$ соответственно. Тогда оператор λprz отождествляется с λ $\tilde{p}\tilde{r}$. Пусть

$$\Omega_{ii} = \Omega_i(\tilde{p}) \cap \Omega_i(\tilde{r}), \quad i, j \in \{0, 1, 2\}.$$

Функция φ : $\Omega \to \mathbb{C}$ непрерывна тогда и только тогда, когда все ее ограничения $\phi | \Omega_{ij} \ (i,j \in \{0,1,2\})$ непрерывны. Докажем существование представления

$$\lambda \tilde{p}\tilde{r} = \tilde{c}_1 \tilde{d}_1 + \tilde{c}_2 \tilde{d}_2, \quad \tilde{c}_1, \tilde{c}_2, \tilde{d}_1, \tilde{d}_2 \in M_2(C(\Omega))^{\operatorname{pr}}. (3)$$

Если $\omega \in \Omega_{00} \cup \Omega_{01} \cup \Omega_{10} \cup \Omega_{02} \cup \Omega_{20}$, то $\lambda \tilde{p}(\omega)$ $\tilde{r}(\omega) = 0$ и можно положить $\tilde{c}_1(\omega) = \tilde{c}_2(\omega) = \tilde{d}_1(\omega) = \tilde{d}_2(\omega) = 0$.

Пусть $\omega \in \Omega_{12}$ и $s(\omega)$ из леммы 7 со свойством $s(\omega)\tilde{p}(\omega)s(\omega) = \mathrm{diag}(1,0)$. Можно положить $\tilde{c}_1(\omega) = \tilde{c}_2(\omega) = \tilde{p}(\omega)$, $\tilde{d}_1(\omega) = s(\omega)r^{(1,\lambda/2)}s(\omega)$, $\tilde{d}_2(\omega) = s(\omega)r^{(-1,\lambda/2)}s(\omega)$.

Пусть $\omega \in \Omega_{12}$ и $s(\omega)$ из леммы 7 со свойством $s(\omega)\tilde{r}(\omega)s(\omega) = \mathrm{diag}(1,0)$. Можно положить $\tilde{c}_1(\omega) = \tilde{c}_2(\omega) = \tilde{r}(\omega)$, $\tilde{d}_1(\omega) = s(\omega)r^{(1,\lambda/2)}s(\omega)$, $\tilde{d}_2(\omega) = s(\omega)r^{(-1,\lambda/2)}s(\omega)$.

Если $ω \in \Omega_{22}$, имеем

$$\lambda \tilde{p}(\omega) \tilde{r}(\omega) = \mathrm{diag}(1,0) r^{(1,\lambda)} + r^{(-1,1-\lambda)} \mathrm{diag}(0,1);$$
 можно положить $\tilde{c}_1(\omega) = \mathrm{diag}(1,0), \; \tilde{c}_2(\omega) = r^{(-1,1-\lambda)},$ $\tilde{d}_1(\omega) = r^{(1,\lambda)}, \; \tilde{d}_2(\omega) = \mathrm{diag}(0,1).$

Если $\omega \in \Omega_{11}$, то пусть $s(\omega)$ как для $\omega \in \Omega_{12}$. Тогда

$$\lambda \tilde{p}(\omega) \tilde{r}(\omega) = s(\omega) (\lambda \operatorname{diag}(1,0)) s(\omega) \tilde{r}(\omega).$$

Матрица проектора $s(\omega)\tilde{r}(\omega)s(\omega) = r^{(\delta, t)}$ с некоторыми $\delta \in \mathbb{C}$ с $|\delta| = 1$ и $0 \le t \le 1$ (см. формулу (1)). Составим уравнение

$$\lambda \mathrm{diag}(1,0) r^{(\delta,\,t)} = \mathrm{diag}(1,0) \cdot (\tilde{a}(\omega) + \tilde{b}(\omega)),$$
 где $\tilde{a}(\omega) = r^{(\delta,\,\alpha)}, \; \tilde{b}(\omega) = r^{(-\delta,\,\beta)}.$ Система $\alpha + \beta = \lambda t, \quad f(\alpha) - f(\beta) = \lambda f(t)$

имеет единственное решение $(\alpha, \beta) \in (0, \lambda t) \times (0, \lambda t)$, непрерывным образом зависящее от параметра $t = (s(\omega)\tilde{r}(\omega)s(\omega))_{11}$. Итак, для $\omega \in \Omega_{11}$ можно положить $\tilde{c}_1(\omega) = \tilde{c}_2(\omega) = \tilde{p}(\omega)$, $\tilde{d}_1(\omega) = s(\omega)\tilde{a}(\omega)s(\omega)$, $\tilde{d}_2(\omega) = s(\omega)\tilde{b}(\omega)s(\omega)$.

С учетом (3) каждое слагаемое вида λpr из (2) представляется в виде конечной суммы попарных произведений проекторов. Тем самым $x = \sum p_m a_m$, где $p_m a_m \in B(H)^{\rm pr}$.

Пусть теперь $2 \le \dim H < \infty$. Леммы 4–7 в силе. Лемма 3 теряет силу (см. лемму 1 с $\tau = tr$). Справедлива

Лемма 8. Каждый оператор $x \in B(H)$ представляется в виде конечной суммы попарных произведений идемпотентов, причем в каждом слагаемом один из сомножителей (левый или правый) можно выбрать проектором.

Доказательство леммы 8. Пусть сперва $\dim H = n$, n четно. Построим по матрице $\{x_{ts}\}_{t, s=1}^{n}$ оператора $x \in B(H)$ (относительно некоторого ортонормированного базиса) прямую сумму $\operatorname{diag}(\hat{x}_{1}, ..., \hat{x}_{n/2})$, образованную блоками

$$\hat{x}_{j} = \begin{pmatrix} x_{2j-1, 2j-1} & x_{2j-1, 2j-1} \\ 1 - x_{2j, 2j} & x_{2j, 2j} \end{pmatrix}, \quad 1 \le j \le \frac{n}{2}, \quad (4)$$

и сопоставим ее оператору $u \in B(H)$. Матрица $\{v_{ts}\}_{t, s=1}^n$ оператора v = x - u имеет нулевую диагональ. Введем операторы $v^{(l, 1)}$ и $v^{(l, 2)}$, полагая

$$\mathbf{v}_{ts}^{(l,1)} = egin{cases} \mathbf{v}_{ts}, & \text{если } t = l \text{ и } s = l, ..., n, \\ 0 & \text{в остальных случаях,} \end{cases}$$

$$v_{ts}^{(l,2)} = egin{cases} v_{ts}, & \text{если } s = l \text{ и } t = l, ..., n, \\ 0 & \text{в остальных случаях,} \end{cases}$$

где
$$l=1,\,2,\,...,\,n-1.$$
 Имеем $v=\sum_{l=1}^{n-1}(v^{(l,\,1)}+v^{(l,\,2)}).$ Положим $p_l=\mathrm{diag}(\underbrace{1,\,...1}_{l_{\mathrm{pas}}},0,\,...0)$ и $q^{(l,\,1)}=p_l+v^{(l,\,1)},$ $q^{(l,\,2)}=p_l+v^{(l,\,2)};$ тогда $q^{(l,\,1)}$, $q^{(l,\,1)}\in B(H)^{\mathrm{id}}$ и $v^{(l,\,1)}=p_l^\perp q^{(l,\,2)}$ для $l=1,\,2,\,...,\,n-1.$ Итак, v есть сумма не более чем $2n-2$ попарных произведений идемпотентов и проекторов. Пусть

$$q_j = \begin{pmatrix} 0 & 2x_{2j-1,2j-1} \\ 0 & 1 \end{pmatrix}, \quad h_j = \begin{pmatrix} 0 & 0 \\ 2 - 2x_{2j,2j} & 1 \end{pmatrix};$$

тогда $q_j,\ h_j\in M_2({\bf C})^{\rm id}$ и $\hat x_j=q_jr^{(1,\,1/2)}+h_jr^{(-1,\,1/2)}$ для всех $1\le j\le \frac{n}{2}$. Прямые суммы

$$q = \operatorname{diag}(q_1, ..., q_{n/2}), \quad h = \operatorname{diag}(h_1, ..., h_{n/2}),$$

$$p = \operatorname{diag}(\underbrace{r^{(1, 1/2)}, ..., r^{(1, 1/2)}}_{\frac{n}{2} \operatorname{pa3}}),$$

$$\operatorname{diag}(\underbrace{r^{(-1, 1/2)}, ..., r^{(-1, 1/2)}}_{\frac{n}{2} \operatorname{pa3}}) = p^{\perp},$$

дают $u = qp + hp^{\perp}$, где $q, h \in B(H)^{id}$ и $p \in B(H)^{pr}$.

Итак, оператор x есть сумма не более чем 2n попарных произведений идемпотентов и проекторов.

Если $\dim H = n, n$ нечетно, то повторяем предыдущие рассуждения, рассматривая вместо оператора u сумму двух операторов $u^{(1)}$ и $u^{(2)}$, где матрица оператора $u^{(1)}$ есть $\operatorname{diag}(\hat{x}_1, ..., \hat{x}_{(n-1)/2}, 0)$, а

$$u_{ts}^{(2)} = egin{cases} x_{nn}, & ext{если} & t = s = n, \ 1 - x_{nn}, & ext{если} & t = n & ext{и} & s = n-1, \ 0 & ext{в остальных случаях}, \end{cases}$$

т.е. оператору $u^{(2)}$ соответствует матрица $\mathrm{diag}(0,...,0,\,\hat{x}_{(n+1)/2})$ с единственным блоком $\hat{x}_{(n+1)/2}$ вида (4). Итак, оператор x представляется в виде суммы не более чем 2n+2, попарных произведений идемпотентов и проекторов. Лемма 8 показана.

Представим оператор $x \in B(H)$ по лемме 8, в полученной сумме каждый идемпотент представим по лемме 4 и в новом представлении применим лемму 5. Имеем

$$x = \sum \lambda_k p_k r_k s_k, \quad \lambda_k > 0, \quad p_k, \, r_k, \, s_k \in \left. B(H)^{\mathrm{pr}} \right..$$

Повторяя рассуждения для $\dim H = \infty$ с помощью лемм 6, 7, каждое слагаемое вида λpr представим в виде конечной суммы попарных произведений проекторов. Тем самым $x = \sum p_m a_m b_m$, где p_m , a_m , $b_m \in B(H)^{\rm pr}$. Из леммы 1 следует, что наименьшая верхняя граница числа сомножителей равна 3.

Следствие 1. *Если* $\dim H = \infty$, то на алгебре B(H) нет нетривиальных конечных следов.

Йорданово произведение $x \circ y = \frac{1}{2}(xy + yx)$ на $B(H)^{\text{sa}}$ коммутативно и билинейно, но не ассоциативно. Йорданово тройное произведение $\{xyz\} = \frac{1}{2}(xyz + yx)$ на $B(H)^{\text{sa}}$ выражается через йорданово про-

Следствие 2. Каждый оператор $x \in B(H)^{\mathrm{sa}}$ представляется в виде конечной суммы $x = +\sum x_k$, где каждое x_k есть йорданово произведение не более чем двух проекторов при $\dim H = \infty$ и йорданово тройное произведение не более, чем трех проекторов при $2 \leq \dim H < \infty$.

изведение, см. [12, формула (2.20)].

Следствие 3. *Если* $\dim H \ge 2$, то множества B(H) и $B(H)^{pr}$ равномощны.

Следствие 4. Если конечномерная С*-алгебра А не содержит прямых абелевых слагаемых, то

$$A = \{ \sum p_k r_k q_k : p_k, r_k, q_k \in A^{\mathrm{pr}} \},$$

наименьшая верхняя граница числа сомножителей равна 3.

Следствие 5. *Если А* — UHF-алгебра $u \dim_{\mathbb{C}} A > 1$, то множество

$$\{\sum p_k r_k q_k:\, p_k,\, r_k q_k \in A^{\operatorname{pr}}\}$$

плотно в А. При этом наименьшая верхняя граница числа сомножителей равна 3.

З а м е ч а н и е. Лемма 8 обобщается на широкий класс *-колец $(n \times n)$ -матриц над *-кольцами.

Автор благодарен А.Н. Шерстневу за постановку задачи и постоянное внимание к работе.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 01–01–00129) и научной программы "Университеты России — фундаментальные исследования" (грант УР.04.01.061).

СПИСОК ЛИТЕРАТУРЫ

- 1. Dixmier J. // Rev. Sci. 1948. V. 86. P. 387-399.
- Broise M. // J. math. pures et appl. 1967. V. 46. P. 299–312.
- 3. Fillmore P.A., Topping D.M. // Duke Math. J. 1967. V. 34. 2. P. 333–336.
- Fillmore P.A. // Acta. sci. math. 1967. V. 28. P. 285– 288.
- Pearcy C., Topping D.M. // Mich. Math. J. 1967. V. 14. P. 453–465.
- 6. Matsumoto K. // Math. Jpn. 1984. V. 29. 2. P. 291–294.
- 7. *Holland S.S., Jr.* // Proc. Amer. Math. Soc. 1995. V. 123. 11. P. 3361–3362.
- 8. FujiiJ. I., Furuta T. // Math. Jpn. 1980. V. 25. 1. P. 143–145.
- Fillmore P.A. // J. Funct. Anal. 1969. V. 4. 1. P. 146– 152.
- 10. *Sakai S.* C*-algebras and W*-Algebras. N.Y.; Heidelberg; B.: Springer, 1971. 256 p.
- 11. *Takesaki M.* Theory of Operator Algebras. N. Y.; Heidelberg; B.: Springer, 1979.V. 1. 415 p.
- 12. *Hance-Olsen H., Stormer E.* Jordan Operator Algebras. Boston; L.; Melbourne: Pitman, 1984. 183 p.