(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 September 2000 (14.09.2000)

PCT

(10) International Publication Number WO 00/53774 A3

- (51) International Patent Classification⁷: C12N 15/57, 15/63, 9/64, A61K 38/48, C07K 16/40, C12Q 1/37
 (21) International Application Number: PCT/US00/06237
 (22) International Filing Date: 8 March 2000 (08.03.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/264,585

8 March 1999 (08.03.1999) US

- (71) Applicant (for all designated States except US): NEURO-CRINE BIOSCIENCES, INC. [US/US]; 10555 Science Center Drive, San Diego, CA 92121 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KELNER, Gregory, S. [US/US]; 725 Muirlands Vista Way, La Jolla, CA 92037 (US). CLARK, Melody [US/US]; 7075 Charmant Drive #20, San Diego, CA 92122 (US). MAKI, Richard, A. [US/US]; 4175-174 Porte de Palmas, San Diego, CA 92122 (US).

- (74) Agents: CHRISTIANSEN, William, T. et al.; Seed Intellectual Property Law Group PLLC, Suite 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- (88) Date of publication of the international search report: 18 January 200

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METALLOPROTEINASES AND METHODS OF USE THEREFOR

				AD	AM-TS	Family	
		pro	metallo	dis	TSP1	spacer	TSP submofifs
ADAMTS	1/METH1		VIIIIIIIII		1	XXXXX	
ADAMTS	2/pNPI		VIIIIIIIII		I K	*****	8
ADAMTS	3/KIAA0366		XIIIIIIIII		1.	****	
ADAMTS	4/agg-1		VIIIIIIII		3 . K	*****	℧
ADAMTS	5/agg-2		VIIIIIIIII		1. K	*****	
ADAMTS	6		VIIIIIIIII		1	*****	
ADAMTS	7			添	3	*****	
ADAMTS	8/METH2		VIIIIIIII		J B	*****	
ADAMTS	9		VIIIIIIIII		1	******	XIII
GON-1			XIIIIIIII	//	3 k	*****	

(57) Abstract: Members of the ADAMTS family of metalloproteinases are provided, along with variants thereof and agents that modulate an activity of such metalloproteinases. The polypeptides and modulating agents may be used, for example, in the prevention and treatment of a variety of conditions associated with undesirable levels of metalloproteinase activity.

INTERNATIONAL SEARCH REPORT International Application No I ./US 00/06237 A CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/57 C12N15/63 C12N9/64 A61K38/48 C07K16/40 C12Q1/37 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N A61K C07K C120 C12N A61K C07K C12Q Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Х WO 98 55643 A (KUREHA CHEMICAL INDUSTRY 1,3-11, CO., LTD.) 10 December 1998 (1998-12-10) 17-21, 28,29, 31,32 & EP 1 004 674 A (KUREHA CHEMICAL INDUSTRY CO.,LTD.) 31 May 2000 (2000-05-31)

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
Special categories of cited documents :	
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another	cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled
P document published prior to the international filing date but later than the priority date claimed	in the art. *&* document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
29 June 2000	1 3. 10. 00
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized officer
Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	MONTERO LOPEZ B.

Form PCT/ISA/210 (second sheet) (July 1992)

International Application No F ./US 00/06237

C(Corting	DOCUMENTS CONSIDERED TO DE RELEVANT	F/US 00/06237
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	KOUJI KUNO ET AL.: "Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, no. 1, 3 January 1997 (1997-01-03), pages 556-562, XP002076038 MD US cited in the application	1,3-11, 17,20, 21,28, 29,31,32
	abstract page 558, left-hand column, paragraph 2 -page 559, left-hand column, paragraph 2; figure 2 page 559, left-hand column, paragraph 4 page 561, right-hand column, last paragraph -page 562, left-hand column, paragraph 1	
X	KOUJI KUNO ET AL.: "The exon/intron organization and chromosomal mapping of the mouse ADAMTS-1 gene encoding an ADAM family protein with TPS motifs" GENOMICS, vol. 46, no. 3,	1,3-11
	15 December 1997 (1997-12-15), pages 466-471, XP000922766 cited in the application page 466, right-hand column, paragraph 2 page 468, left-hand column, paragraph 5 -page 470, right-hand column, paragraph 2; figure 3	
x	BOR LUEN TANG ET AL.: "ADAMTS: A novel family of proteases with an ADAM protease domain and thrombospondin 1 repeats" FEBS LETTERS, [Online] vol. 445, 26 February 1999 (1999-02-26), pages 223-225, XP002141413 AMSTERDAM NL	1,3-11
	Retrieved from the Internet: <url:http: adamts2="" gdb-bin="" gdbwww.gdb.org="" gene?!action="query&displayName=" genera="" hgd=""> [retrieved on 2000-06-22] page 223, left-hand column, paragraph 2 -page 225, right-hand column, paragraph 2; figure 2</url:http:>	
	EMBL Database Entry AI378857 Accession number AI378857; 28 January 1999 ROBERT STRAUSBERG: "tc67h11.x1 Soares_NhHMPu_S1 Homo sapiens cDNA clone" XP002141415 the whole document	1,5-7
	-/	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International Application No
P /IIS 00/06237

C.(Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	P ./US 0	U/U623/
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Polyant to alsie 14-
	passages	•	Relevant to claim No.
P,X	FRANCISCA VÂZQUEZ ET AL.: "METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 274, no. 33, 13 August 1999 (1999-08-13), pages 23349-23357, XP002141414		1,3-6, 8-11
	MD US abstract page 23349, right-hand column, paragraph 2 -page 23350, left-hand column, paragraph 1 page 23351, left-hand column, paragraph 1 -page 23352, right-hand column, paragraph 2; figure 1 page 23353, left-hand column, paragraph 4 -page 23357, left-hand column, paragraph 2		
	paragraph 2		
I			
	•	Ì	
*			· · · · · ·
	*		
{			
. 1		i i	

Int...ational application No. PCT/US 00/06237

Boxi	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	mational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X	Claims Nos.: 22-27, 30, 33-35 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: See FURTHER INFORMATION sheet PCT/ISA/210
з. 🔲	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Claims 1-12, 17-35 (partially)
Remar	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 22-27, 30, 33-35

Present claims 22-27, 30 and 33-35 relate to an agent defined by reference to a desirable characteristic or property, namely decreasing or modulating expression or activity of an ADAMTS protein. The claims cover all agents having this characteristic or property, whereas the application does not provide support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for any specific example of such agents. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the agent by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, no search has been carried out for claims 22-27, 30 and 33-35.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: Partially 1-12, 17-35

Polynucleotide of SEQ ID NO:1 or 23 encoding ADAMTS-2; vector and host cell comprising the same; complementary antisense molecule; use of the polynucleotide for preparing an ADAMTS-2 polypeptide; ADAMTS-2 polypeptide of SEQ ID NO:2 or 24 and variants thereof; pharmaceutical composition and vaccine comprising the same; antibody binding to the polypeptide; use of the ADAMTS-2 polynucleotide and polypeptide in screening methods and agents modulating the activity of the ADAMTS-2 protein

2. Claims: 36 and partially 1-12, 17-35

Polynucleotide of SEQ ID NO:3, 15 or 17 encoding ADAMTS-4; vector and host cell comprising the same; complementary antisense molecule; use of the polynucleotide for preparing an ADAMTS-4 polypeptide; ADAMTS-4 polypeptide of SEQ ID NO:4, 16 or 18 and variants thereof; pharmaceutical composition and vaccine comprising the same; antibody binding to the polypeptide; use of the ADAMTS-4 polynucleotide and polypeptide in screening methods and agents modulating the activity of the ADAMTS-4 protein

3. Claims: Partially 1-12, 17-35

Polynucleotide of SEQ ID NO:9 or 25 encoding ADAMTS-3; vector and host cell comprising the same; complementary antisense molecule; use of the polynucleotide for preparing an ADAMTS-3 polypeptide; ADAMTS-3 polypeptide of SEQ ID NO:10 or 26 and variants thereof; pharmaceutical composition and vaccine comprising the same; antibody binding to the polypeptide; use of the ADAMTS-3 polynucleotide and polypeptide in screening methods and agents modulating the activity of the ADAMTS-3 protein

4. Claims: Partially 1-12, 17-35

Polynucleotide of SEQ ID NO:13 or 21 encoding ADAMTS-5; vector and host cell comprising the same; complementary antisense molecule; use of the polynucleotide for preparing an ADAMTS-5 polypeptide; ADAMTS-5 polypeptide of SEQ ID NO:13 or 21 and variants thereof; pharmaceutical composition and vaccine comprising the same; antibody binding to the polypeptide; use of the ADAMTS-5 polynucleotide and polypeptide in screening methods and agents modulating the activity of the ADAMTS-5 protein

5. Claims: Partially, 1, 3-12, 17-35

Polynucleotide encoding an ADAMTS-9 protein of SEQ ID NO:27;

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

vector and host cell comprising the same; complementary antisense molecule; use of the polynucleotide for preparing an ADAMTS-9 polypeptide; ADAMTS-9 polypeptide of SEQ ID NO:27 and variants thereof; pharmaceutical composition and vaccine comprising the same; antibody binding to the polypeptide; use of the ADAMTS-9 polynucleotide and polypeptide in screening methods and agents modulating the activity of the ADAMTS-9 protein

6. Claims: Partially 8, 13-35

Method of preparing an ADAMTS polypeptide by culturing a transfected cell comprising a polynucleotide encoding a polypeptide of SEQ ID NO:6 or a variant thereof; ADAMTS polypeptide of SEQ ID NO:6 and variants thereof; pharmaceutical composition and vaccine comprising the same; antibody binding to the polypeptide; use of the ADAMTS polynucleotide and polypeptide in screening methods and agents modulating the activity of the ADAMTS protein

7. Claims: Partially 8, 13-35

Method of preparing an ADAMTS polypeptide by culturing a transfected cell comprising a polynucleotide encoding a polypeptide of SEQ ID NO:8 or a variant thereof; ADAMTS polypeptide of SEQ ID NO:8 and variants thereof; pharmaceutical composition and vaccine comprising the same; antibody binding to the polypeptide; use of the ADAMTS polynucleotide and polypeptide in screening methods and agents modulating the activity of the ADAMTS protein

8. Claims: Partially 8, 13-35

Method of preparing an ADAMTS polypeptide by culturing a transfected cell comprising a polynucleotide encoding a polypeptide of SEQ ID NO:12 or 20 or variants thereof; ADAMTS polypeptide of SEQ ID NO:12 or 20 and variants thereof; pharmaceutical composition and vaccine comprising the same; antibody binding to the polypeptide; use of the ADAMTS polynucleotide and polypeptide in screening methods and agents modulating the activity of the ADAMTS protein

'nformation on patent family members

International Application No

F ./US 00/06237

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9855643 A	10-12-1998	EP 1004674 A JP 11046781 A	31-05-2000 23-02-1999

Form PCT/ISA/210 (patent family annex) (July 1992)

			• 0			
			• 0			4.
					+	
e 1.				+		
<i>f</i>					÷	
			•			
	9					(8)
(*)						s.
					÷.	

atcgccaccc	tggagcgcct	gcagagcttc	cggcccttgc	cagagcctct	gacagtgcag	1740
		ggtcttcccc				1800
		gcagagcagc.				1860
		ggtgctgggg				1920
		tgtagagtgc				1980
tgcaacaagg	ctctgaaacc	cgaggatgcc	aagccctgcg	aaagccagct	gtgccccctg	2040
tgattcaggg	gggcaggggc	cagtcttgtg	ctcctggaca	tgcggtactg	aggtgcagac	2100
aagggtctcc	actgtggtga	ctgggtccct	tggccatatc	aaggcagcac	ggcccaccca	2160
ggcctcccat	tgccgcaacc	cctccagtac	tgcacaaatt	cctaaggggg	aagaggagag	2220
ggtatggggc	ggcagaccct	atcatcaact	gtccagtgga	ctggaccttg	ctcgggttca	2280
agtagagggc	ataggttaaa	aggtaaaagt	gcacttattg	taccagacag	gacgcccgcg	2340
aattcg						2346

<211> 680

<212> PRT

<213> Homo sapien

<400> 2

Arg 1	Thr	Lys	Arg	Phe 5	Val	Ser	Glu	Ala	Arg 10	Phe	Val	Glu	Thr	Leu 15	Leu
Val	Ala	Asp	Ala 20	Ser	Met	Ala	Ala	Phe 25	Tyr	Gly	Ala	Asp	Leu 30	Gln	Asn
		35					Val 40					45			
Ser	Ile 50	Lys	Asn	Ser	Ile	Asn 55	Leu	Met	Val	Val	Lys 60	Val	Leu	Ile	Val
65					70		Glu			75					80
				85			Gln		90					95	
			100					105					110		Asn
		115					Cys 120					125			
	130					135	Lys				140				
145					150		Leu			155					160
Ser	Met	Pro	His	Asp 165	Asp	Ser	Lys	Pro	Cys 170	Thr	Arg	Leu	Phe	Gly 175	Pro
Met	Gly	Lys	His 180	His	Val	Met	Ala	Pro 185	Leu	Phe	Val	His	Leu 190	Asn	Gln
Thr	Leu	Pro 195	Trp	Ser	Pro	Cys	Ser 200	Ala	Met	Tyr	Leu	Thr 205	Glu	Leu	Leu
Asp	Gly 210	Gly	His	Gly	Asp	Cys 215	Leu	Leu	Asp	Ala	Pro 220	Ala	Ala	Ala	Leu
Pro 225	Leu	Pro	Thr	Gly	Leu 230	Pro	Gly	Arg	Met	Ala 235	Leu	Tyr	Gln	Leu	Asp 240
Gln	Gln	Cys	Arg	Gln 245	Ile	Phe	Gly	Pro	Asp 250	Phe	Arg	His	Cys	Pro 255	Asn
Thr	Ser	Ala	Gln 260	Asp	Val	Cys	Ala	Gln 265	Leu	Trp	Cys	His	Thr 270	Asp	Gly
Ala	Glu	Pro 275	Leu	Cys	His	Thr	Lys 280	Asn	Gly	Ser	Leu	Pro 285	Trp	Ala	Asp

```
Gly Thr Pro Cys Gly Pro Gly His Leu Cys Ser Glu Gly Ser Cys Leu
                        295
Pro Glu Glu Glu Val Glu Arg Pro Lys Pro Val Val Asp Gly Gly Trp
                     310
                                         315 -
Ala Pro Trp Gly Pro Trp Gly Glu Cys Ser Arg Thr Cys Gly Gly Gly
                 325
                                     330
Val Gln Phe Ser His Arg Glu Cys Lys Asp Pro Glu Pro Gln Asn Gly
                                 345
Gly Arg Tyr Cys Leu Gly Arg Arg Ala Lys Tyr Gln Ser Cys His Thr
                            360
                                                 365
Glu Glu Cys Pro Pro Asp Gly Lys Ser Phe Arg Glu Gln Gln Cys Glu
                        375
                                             380
Lys Tyr Asn Ala Tyr Asn Tyr Thr Asp Met Asp Gly Asn Leu Leu Gln
                    390
                                         395
Trp Val Pro Lys Tyr Ala Gly Val Ser Pro Arg Asp Arg Cys Lys Leu
                                     410
Phe Cys Arg Ala Arg Gly Arg Ser Glu Phe Lys Val Phe Glu Ala Lys
Val Ile Asp Gly Thr Leu Cys Gly Pro Glu Thr Leu Ala Ile Cys Val
        435
                            440
Arg Gly Gln Cys Val Lys Ala Gly Cys Asp His Val Val Asp Ser Phe
                                             460
Trp Lys Leu Asp Lys Cys Gly Val Cys Gly Gly Lys Gly Asn Ser Cys
                    470
                                         475
Arg Lys Gly Ser Gly Ser Leu Thr Pro Thr Asn Tyr Gly Tyr Asn Asp
                485
                                    490
Ile Val Thr Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Lys Gln Arg
            500
                                505
Ser His Pro Gly Val Gln Asn Asp Gly Asn Tyr Leu Ala Leu Lys Thr
                            520
Ala Asp Gly Gln Tyr Leu Leu Asn Gly Asn Leu Ala Ile Ser Ala Ile
Glu Gln Asp Ile Leu Val Lys Gly Thr Ile Leu Lys Tyr Ser Gly Ser
                    550
                                        555
Ile Ala Thr Leu Glu Arg Leu Gln Ser Phe Arg Pro Leu Pro Glu Pro
                565
                                    570
Leu Thr Val Gln Leu Leu Ala Val Pro Gly Glu Val Phe Pro Pro Lys
            580
                                585
Val Lys Tyr Thr Phe Phe Val Pro Asn Asp Val Asp Phe Ser Met Gln
                            600
                                                605
Ser Ser Lys Glu Arg Ala Thr Thr Asn Ile Thr Gln Pro Leu Leu His
                        615
                                            620
Ala Gln Trp Val Leu Gly Asp Trp Ser Glu Cys Ser Ser Thr Cys Gly
                    630
                                        635
Ala Gly Trp Gln Arg Arg Thr Val Glu Cys Arg Asp Pro Ser Gly Gln
                645
                                    650
Ala Ser Ala Thr Cys Asn Lys Ala Leu Lys Pro Glu Asp Ala Lys Pro
                                665
Cys Glu Ser Gln Leu Cys Pro Leu
        675
```

<211> 2751

<212> DNA

<213> Rattus norvegicus

<400> 3 cccccctcg aggtcgacgg tatcgataag cttgatatcg aattccgggc cccccacccc 60 cgcccctgaa acttctatag caaatagcaa acatccagct agactcagtc gcgcagcccc 120 teceggeggg cagegeacta tgeggetega gtgggegtee ttgetgetge taetgetget 180 240 gctgtgcgcg tcctgcctgg ccctggccgc tgacaaccct gccgcggcac ctgcccagga 300 taaaaccagg cagcctcggg ctgctgcagc ggctgcccag cccgaccagc ggcagtggga 360 ggaaacacag gageggggec atctgcaacc cttggccagg cagegcagga gcageggget 420 ggtgcagaat atagaccaac tctactctgg cggtggcaaa gtgggctacc ttgtctacgc 480 gggcggccgg aggttcctgc tggacctgga gagggatgac acagtgggtg ctgctggtgg categitact geaggagge tgagegeate etetggeeae aggggteaet gettetaeag 540 600 aggeactgtg gacggcagec etegateeet agetgtettt gacetetgtg ggggtetega 660 tggcttcttc gcagtcaagc atgcgcgcta cactctgagg ccgctcttgc gtgggtcctg ggcagagtcc gaacgagttt acggggatgg gtcttcacgc atcctgcatg tctacacccg 720 780 cgagggcttc agcttcgagg ccctgccgcc acgcaccagt tgcgagactc cagcgtcccc gtctggggcc caagagagcc cctcggtgca cagtagttct aggcgacgca cagaactggc 840 900 accgcagctg ctggaccatt cagctttctc gccagctggg aacgcgggac ctcagacctg gtggaggcgg aggcgccgtt ccatctccag ggcccgccag gtggagctcc tcttggtggc 960 1020 tgactcttcc atggccaaga tgtatgggcg gggcctgcag cattacctgc tgaccctggc 1080 ctctattgcc aaccggctgt acagtcatgc aagcatcgag aaccacatcc gcctggccgt agtgaaagtg gtggtgctga ccgacaagag tctggaggtg agcaagaacg cggccacgac 1140 1200 cctcaagaac ttttgcaaat ggcagcacca acacaaccag ctaggtgatg accatgagga 1260 gcactacgat gcagccatcc tgttcaccag agaggattta tgtgggcatc attcatgtga 1320 caccetggga atggcagacg ttgggaccat atgttetecg gagegeaget gegetgtgat 1380 tgaagatgat ggcctccatg cagctttcac tgtggctcac gaaattggac atctacttgg 1440 cctctctcac gacqattcca aattctgtga agagaacttt ggttctacag aagacaagcg 1500 tttaatgtct tcaatcctta ccagcattga tgcatccaag ccctggtcca aatgcacttc 1560 . agccacgatc acagaatttc tggatgacgg tcatggtaac tgtttactag atgtaccacg 1620 gaagcagatt ctgggccccg aggaactccc aggacagacc tatgatgcca cccagcagtg caacttgaca tttgggcctg aatactctgt gtgccctggc atggatgtct gtgcacggct 1680 1740 gtggtgtgct gtggtgcgcc aaggccaaat ggtgtgtctg accaagaagt tgcctgccgt ggagggcact ccctgtggga aaggaagaat ctgcctgcaa ggcaaatgtg tggacaaaac 1800 1860 taagaaaaaa tattactcga catcaagcca tggaaattgg gggtcctggg gcccctgggg 1920 tragtgttot cgctottgcg ggggaggagt acagtttgcc taccgccatt gcaataaccc cgcacctcga aacagtggcc gctactgcac agggaagagg gccatatacc gttcctgcag 1980 2040 tgtcataccc tgcccaccta acggcaaatc tttccgccac gagcagtgtg aagccaaaaa 2100 tggctatcag tccgatgcaa aaggagtcaa aacatttgta gaatgggttc ccaaatacgc 2160 aggtgtcctg ccggcagacg tgtgcaagct tacgtgcaga gctaagggca ctggctatta cgtggtcttt tctccaaagg ttacagatgg gacagaatgt agaccctaca gcaactccgt 2220 2280 gtgtgtccga gggaggtgcg tgagaacggg gtgtgacggc atcatcggct caaagctaca gtatgacaag tgtggagtgt gtggagggga taactccagt tgtacaaaga ttatcggaac 2340 2400 . cttcaataaa aaaagcaagg gttatactga cgttgtgagg atccctgaag gagcaaccca cataaaagtc cgacagttca aagccmaaga ccagactaga ttcactgctt acttagccct 2460 aaagaagaaa actggcgagt accttatcaa cggcaagtac atgatctcca cttcagagac 2520 2580 catcatcgac atcaatggta ccgtcatgaa ctacagtggg tggagtcaca gagatgattt 2640 tttacatggg atgggctatt cagccacaaa ggaaattctg attgtgcaga tccttgcaac agacccaact aaagcattag acgtccgtta cagctttttt gttcccaaga agaccactca 2700 aaaagtgaat teetgeagee egggggatee actagtteta gageggeegg b 2751

<210> 4

<211> 870

<212> PRT

<213> Rattus norvegicus

<220>

<221> VARIANT <222> (1)...(870) <223> Xaa = Any Amino Acid

<400> 4 Met Arg Leu Glu Trp Ala Ser Leu Leu Leu Leu Leu Leu Leu Cys Ala Ser Cys Leu Ala Leu Ala Ala Asp Asn Pro Ala Ala Ala Pro Ala 25 Gln Asp Lys Thr Arg Gln Pro Arg Ala Ala Ala Ala Ala Gln Pro 40 Asp Gln Arg Gln Trp Glu Glu Thr Gln Glu Arg Gly His Leu Gln Pro 60 Leu Ala Arg Gln Arg Arg Ser Ser Gly Leu Val Gln Asn Ile Asp Gln 75 Leu Tyr Ser Gly Gly Gly Lys Val Gly Tyr Leu Val Tyr Ala Gly Gly Arg Arg Phe Leu Leu Asp Leu Glu Arg Asp Asp Thr Val Gly Ala Ala 105 Gly Gly Ile Val Thr Ala Gly Gly Leu Ser Ala Ser Ser Gly His Arg 120 Gly His Cys Phe Tyr Arg Gly Thr Val Asp Gly Ser Pro Arg Ser Leu 135 140 Ala Val Phe Asp Leu Cys Gly Gly Leu Asp Gly Phe Phe Ala Val Lys 155 150 His Ala Arg Tyr Thr Leu Arg Pro Leu Leu Arg Gly Ser Trp Ala Glu 170 165 Ser Glu Arg Val Tyr Gly Asp Gly Ser Ser Arg Ile Leu His Val Tyr 185 Thr Arg Glu Gly Phe Ser Phe Glu Ala Leu Pro Pro Arg Thr Ser Cys 195 Glu Thr Pro Ala Ser Pro Ser Gly Ala Gln Glu Ser Pro Ser Val His 220 215 Ser Ser Ser Arg Arg Arg Thr Glu Leu Ala Pro Gln Leu Leu Asp His 235 230 Ser Ala Phe Ser Pro Ala Gly Asn Ala Gly Pro Gln Thr Trp Trp Arg 250 245 Arg Arg Arg Ser Ile Ser Arg Ala Arg Gln Val Glu Leu Leu 265 260 Val Ala Asp Ser Ser Met Ala Lys Met Tyr Gly Arg Gly Leu Gln His 285 280 Tyr Leu Leu Thr Leu Ala Ser Ile Ala Asn Arg Leu Tyr Ser His Ala 295 Ser Ile Glu Asn His Ile Arg Leu Ala Val Val Lys Val Val Leu 315 310 Thr Asp Lys Ser Leu Glu Val Ser Lys Asn Ala Ala Thr Thr Leu Lys 325 330 Asn Phe Cys Lys Trp Gln His Gln His Asn Gln Leu Gly Asp Asp His 345 Glu Glu His Tyr Asp Ala Ala Ile Leu Phe Thr Arg Glu Asp Leu Cys 360 Gly His His Ser Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Ile 375 Cys Ser Pro Glu Arg Ser Cys Ala Val Ile Glu Asp Asp Gly Leu His 390 395

				405			Glu		410					415	
His	Asp	Asp	Ser 420	Lys	Phe	Cys	Glu	Glu 425	Asn	Phe	Gly	Ser	Thr 430	Glu	Asp
_	_	435					Leu 440					445			
Trp	Ser 450	Lys	Cys	Thr	Ser	Ala 455	Thr	Ile	Thr	Glu	Phe 460	Leu	Asp	Asp	Gly
His 465	Gly	Asn	Cys	Leu	Leu 470	Asp	Val	Pro	Arg	Lys 475	Gln	Ile	Leu	Gly	Pro 480
Glu				485			Tyr		490					495	
		_	500				Val	505					510		
_		515					Arg 520					525			
-	530					535	Gly				540				
545					550		Asp			555					560
				565			Gly		570					575	
			580				Val	585					590		
		595					Gly 600					605			
	610					615	Ile				620				
625	_				630		Ala			635					640
				645			Glu -		650					655	
			660				Leu	665					670		
_	_	675					Lys 680					685			
	690					695	Val				700				
705					710		Lys			715					720
				725			Cys		730					735	
			740				Asp	745					750		
		755					Phe 760					765			
	770					775					780				
785					790		Ser			795					800
				805			Trp		810					815	
			820				Lys	825					830		
Ala	Thr	Asp	Pro	Thr	Lys	Ala	Leu	Asp	Val	Arg	Tyr	Ser	Phe	Phe	val

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

1620

1680

1740

1800

1860

1920

1980

2040

2100

2160

2220

2280

2340

2400

2460

2520

2580

```
835
                            840
                                                845
Pro Lys Lys Thr Thr Gln Lys Val Asn Ser Cys Ser Pro Gly Asp Pro
    850
                                            860
Leu Val Leu Glu Arg Pro
865
                    870
      <210> 5
      <211> 4067
      <212> DNA
      <213> Homo sapien
      <400> 5
cactggcgga gaaaatcccc ttctttttt tctctcttt tttttctttt tqaqacqqaa
tctcactctt tcacccagac tggagggcag cggcgagatc tcggctcact gcaacctcca
cctcccaggt tcaagcaatt ctcctgcctc agcettccga gtagetggga ttacaggtgc
ccgccaccac gcccagctaa tttttgtatt tttagtagag acaggatttt accatgttgg
ccatgctggt ctcaaactcc tgacctcgtg tgatccccct gcttcagcct ctcaaactgc
tgggattata ggcatgagcc actgcgcctg gccaacaatc cccttctaaa ggcaggtggt
gtetecagea ceagggeeat aeggetgeaa caccectaca agtgeegggt etgeeagaca
accacgacca actagtecca gataacettg aggeetggge actggetggg eccegaggge
tcttcccaaa gcgtaccctg gtcatctgga agaggatcgg agctggcctg gtggtgacag
tggccttgct tcctaggatg gatggcagat ggcaatgttc ctgctgggcc tggttcctgc
tggttctggc agttgtagct ggggacacag tgtcaaccgg gtccacggac aacagcccaa
catccaatag cctggagggg ggcaccgacg ccacggcctt ctggtggggg gagtggacca
agtggacggc gttttcccgc agttgcgggg gtggggtgac atcccaggag cggcactgcc
tgcagcagag gaggaagtcc gtcccgggcc ccgggaacag gacctgcacg ggcacgtcca
agcggtacca gctctgcaga gtgcaggagt gtccgccgga cgggaggagc ttccgcgagg
agcagtgcgt ctccttcaac tcccacgtgt acaacgggcg gacgcaccag tggaagcctc
tgtacccgga tgactatgtc cacatctcca gcaaaccgtg tgacctgcac tgtaccaccg
```

tggacggcca gcggcagctc atggtccccg cccgcgacgg cacatcctgc aagctcactg

acctgcgagg ggtttgcgtg tctggaaaat gtgagcccat cggctgtgac ggggtgcttt

tetecaceca cacactggae aagtgtggea tetgecaggg ggaeggtage agetgeacee

acgtgacggg caactatcgc aaggggaatg cccaccttgg ttactctctg gtgacccaca

teceggetgg tgcccgagae atccagattg tagagaggaa gaagteeget gaegtgetag

ctcttgcaga tgaagctggc tactacttct tcaacggcaa ctacaaggtg gacagccca

agaacttcaa catcgctggc acggtggtca agtaccggcg gcccatggat gtctatgaga

ccggaatcga gtacatcgtg gcacaggggc ccaccaacca gggcctgaat gtcatggtgt

ggaaccagaa eggcaaaagc ecetecatea cettegagta caegetgetg cageegecae

acgagageeg eecceageee atetaetatg getteteega gagegetgag ageeagggee

tggacggggc cgggctgatg ggcttcatcc cgcacaacgg ctccctctac ggccaggcct

cctcagagcg gctgggcctg gacaaccggc tgttcggcca cccgggcctg gacatggagc

tgggccccag ccagggccag gagaccaacg aggtgtgcga gcaggccggc ggcggggcct

gcgaggggcc ccccaggggc aagggcttcc gagaccgcaa cgtcacgggg actcctctca

CC999gacaa ggatgacgaa gaggttgaca cccacttcgc ctcccaggag ttcttctcgg

ctaacgccat ctctgaccag ctgctgggcg caggctctga cttgaaggac ttcaccctca

atgagactgt gaacagcatc tttgcacagg gcgccccaag gagctccctg gccgagagct

tcttcgtgga ttatgaggag aacgaggggg ctggccctta cctgctcaac gggtcctacc

tggagetgag cagegaeagg gttgeeaaca geteeteega ggeeecatte eecaaegtta

gcaccagcct gctcacctcg gccgggaaca ggactcacaa ggccaggacc aggcccaagg

cgcgcaagca aggcgtgagt cccgcggaca tgtaccggtg gaagctctcg tcccacgagc

cctgcagtgc cacctgcacc acaggggtca tgtctgcgta cgccatgtgt gtccgctatg

atggcgtcga ggtggatgac agctactgtg acgccctgac ccgtcccgag cctgtccacg

agttctgcgc tgggagggag tgccagccca ggtgggagac gagcagctgq agcgagtgtt

cgcgcacctg cggagagggc taccagttcc gcgtcgtgcg ctgctggaag atgctctcgc

ccggcttcga cagctccgtg tacagcgacc tgtgcgaggc agccgaggcc gtgcggcccg

PCT/US00/06237

2640 aggaacgcaa gacctgccgg aaccccgcct gcgggcccca gtgggagatg tcggagtggt 2700 ccgagtgcac tgccaagtgt ggggagcgca gtgtggtgac cagggacatc cgctgctcgg aggatgagaa gctgtgtgac cccaacacca ggcctgtagg ggagaagaac tgcacgggcc 2760 cgccctgtga ccggcagtgg accgtctccg actggggacc gtgcagtgga agctgcgggc 2820 2880 aaqqccqcac catcaggcac gtgtactgca agaccagcga cggacgggta gtacctgagt cccagtgcca gatggagacc aagcctctgg ccatccaccc ctgtggggac aaaaactgtc 2940 3000 ccgcccactg gctggcccag gactgggagc ggtgcaacac cacctgcggg cgcggggtca 3060 agaagegget ggtgetetge atggagetgg ceaaegggaa geegeagaeg egeagtggee 3120 ccgagtgcgg gctcgccaag aagcctcccg aggagagcac gtgtttcgag aggccctgct 3180 tcaagtggta caccageeee tggteagagt geaceaagae etgeggggtg ggegtgagga 3240 tgcgagacgt caagtgctac caggggaccg acatcgtccg tggttgcgat ccgttggtga agcccgttgg cagacaggcc tgtgatctgc agccctgccc cacggagccc ccagatgaca 3300 3360 gctgccagga ccagccaggc accaactgtg ccctggccat caaagtgaac ctctgcgggc 3420 actggtacta cagcaaggcg tgctgccgct cctgcaggcc cccccactcc taggcccggc agetgeagee cetteeagat gaagaceaag egeceeteet ggggetgetg cagettetgg 3480 3540 ggcctccaca gaccccctc ctgcggggca cgctggccta agagacgtgg cactgagcct cggctgtcga gaggggactt cccacggccc gtggaccttt gtgctcctgg ggcagagcct 3600 3660 coqqcaccca qtqqcctccc ccagacagag ccacccctgc cgtgggaacc tgtccgtgtt cctgcgtgga tcctgtgttt gtggctccca ctccccagcc ccccagcagc ccccagccga 3720 ggggcccagg gcccacagcc agcggtggag gtgtcttgct ccgggcccgt agcccacgcc 3780 3840 ctctctgggt ggcagggcct tctgaaggaa acttgcaggc gagcccaacg tggtgggggg 3900 cettectece teagaggeea tggggtgaga ggggeteagg cageeaagga ggeeeaggeg 3960 tgctccctct tatggagccc ctcccatgga gctctcttcc cgccgcactt tctaccccgg 4020 gcagaggcgc ttgcccacgg gacgtttggg gatggacctc ggcccccgcc cctgcagtca 4067 gcgtcagtgc tcatctacgt taataaagtg gtcctattta tggcggc

<210> 6

<211> 951

<212> PRT

<213> Homo sapien

<400> 6

Met Asp Gly Arg Trp Gln Cys Ser Cys Trp Ala Trp Phe Leu Leu Val 1 Leu Ala Val Val Ala Gly Asp Thr Val Ser Thr Gly Ser Thr Asp Asn Ser Pro Thr Ser Asn Ser Leu Glu Gly Gly Thr Asp Ala Thr Ala Phe 40 Trp Trp Gly Glu Trp Thr Lys Trp Thr Ala Phe Ser Arg Ser Cys Gly Gly Gly Val Thr Ser Gln Glu Arg His Cys Leu Gln Gln Arg Arg Lys 75 Ser Val Pro Gly Pro Gly Asn Arg Thr Cys Thr Gly Thr Ser Lys Arg 90 Tyr Gln Leu Cys Arg Val Gln Glu Cys Pro Pro Asp Gly Arg Ser Phe 105 Arg Glu Glu Gln Cys Val Ser Phe Asn Ser His Val Tyr Asn Gly Arg 120 Thr His Gln Trp Lys Pro Leu Tyr Pro Asp Asp Tyr Val His Ile Ser 135 140 Ser Lys Pro Cys Asp Leu His Cys Thr Thr Val Asp Gly Gln Arg Gln 155 150 Leu Met Val Pro Ala Arg Asp Gly Thr Ser Cys Lys Leu Thr Asp Leu 170 165 Arg Gly Val Cys Val Ser Gly Lys Cys Glu Pro Ile Gly Cys Asp Gly

			180					185					190		
		195	Ser				200					205			
Asp	Gly 210	Ser	Ser	Cys	Thr	His 215	Val	Thr	Gly	Asn	Tyr 220	Arg	Lys	Gly	Asn
Ala 225	His	Leu	Gly	Tyr	Ser 230	Leu	Val	Thr	His	Ile 235	Pro	Ala	Gly	Ala	Arg 240
Asp	Ile	Gln	Ile	Val 245	Glu	Arg	Lys	Lys	Ser 250	Ala	Asp	Val	Leu	Ala 255	Leu
Ala	Asp	Glu	Ala 260	Gly	Tyr	Tyr	Phe	Phe 265	Asn	Gly	Asn	Tyr	Lys 270	Val	Asp
Ser	Pro	Lys 275	Asn	Phe	Asn	Ile	Ala 280	Gly	Thr	Val	Val	Lys 285	Tyr	Arg	Arg
Pro	Met 290	Asp	Val	Tyr	Glu	Thr 295	Gly	Ile	Glu	Tyr	Ile 300	Val	Ala	Gln	Gly
Pro 305	Thr	Asn	Gln	Gly	Leu 310	Asn	Val	Met	Val	Trp 315	Asn	Gln	Asn	Gly	Lys 320
			Ile	325					330					335	
			Gln 340					345					350		
		355	Asp				360					365			
	370	_	Gly			375					380				
385		_	His		390					395					400
			Asn	405					410					415	
			Arg 420					425					430		
		435	Gly				440					445			
	450		Phe			455					460				
465			Asp		470					475					480
			Gln	485					490					495	
			Glu 500					505					510		
		515	Glu				520					525			
	530		Pro			535					540				
545			Lys		550					555					560
			Asp	565					570					575	
			Cys 580					585					590		
		595	Gly				600			•		605			
Arg	Pro 610	Glu	Pro	Val	His	Glu 615	Phe	Cys	Ala	Gly	Arg 620	Glu	Cys	Gln	Pro

Arg Trp Glu Thr Ser Ser Trp Ser Glu Cys Ser Arg Thr Cys Gly Glu 635 630 625 Gly Tyr Gln Phe Arg Val Val Arg Cys Trp Lys Met Leu Ser Pro Gly 650 645 Phe Asp Ser Ser Val Tyr Ser Asp Leu Cys Glu Ala Ala Glu Ala Val 665 Arg Pro Glu Glu Arg Lys Thr Cys Arg Asn Pro Ala Cys Gly Pro Gln 680 Trp Glu Met Ser Glu Trp Ser Glu Cys Thr Ala Lys Cys Gly Glu Arg 700 695 Ser Val Val Thr Arg Asp Ile Arg Cys Ser Glu Asp Glu Lys Leu Cys 715 710 Asp Pro Asn Thr Arg Pro Val Gly Glu Lys Asn Cys Thr Gly Pro Pro 730 725 Cys Asp Arg Gln Trp Thr Val Ser Asp Trp Gly Pro Cys Ser Gly Ser 750 745 Cys Gly Gln Gly Arg Thr Ile Arg His Val Tyr Cys Lys Thr Ser Asp 760 Gly Arg Val Val Pro Glu Ser Gln Cys Gln Met Glu Thr Lys Pro Leu 780 775 Ala Ile His Pro Cys Gly Asp Lys Asn Cys Pro Ala His Trp Leu Ala 795 790 Gln Asp Trp Glu Arg Cys Asn Thr Thr Cys Gly Arg Gly Val Lys 805 810 Arg Leu Val Leu Cys Met Glu Leu Ala Asn Gly Lys Pro Gln Thr Arg 825 Ser Gly Pro Glu Cys Gly Leu Ala Lys Lys Pro Pro Glu Glu Ser Thr 845 Cys Phe Glu Arg Pro Cys Phe Lys Trp Tyr Thr Ser Pro Trp Ser Glu 855 Cys Thr Lys Thr Cys Gly Val Gly Val Arg Met Arg Asp Val Lys Cys 870 875 Tyr Gln Gly Thr Asp Ile Val Arg Gly Cys Asp Pro Leu Val Lys Pro 890 Val Gly Arg Gln Ala Cys Asp Leu Gln Pro Cys Pro Thr Glu Pro Pro 905 900 Asp Asp Ser Cys Gln Asp Gln Pro Gly Thr Asn Cys Ala Leu Ala Ile 920 925 Lys Val Asn Leu Cys Gly His Trp Tyr Tyr Ser Lys Ala Cys Cys Arg 940 935 Ser Cys Arg Pro Pro His Ser 950 945

<210> 7

<211> 5774

<212> DNA

<213> Homo sapien

<400> 7

gtcactttgg ttgatagcag ccgctctggt agaggttagg acttcagctg atggacaagc 60 tggtaatgaa gaaatggtgc aaatagattt accaataaag agatatagag agtatgagct 120 ggtgactcca gtcagcacaa atctagaagg acgctatctc tcccatactc tttctgcgag tcacaaaaag aggtcagcga gggacgtgtc ttccaaccct gagcagttgt tctttaacat 240 cacggcattt gggaaaagatt ttcatctgcg actaaagccc aacactcaac tagtagctcc tgggggctgtt gtggagtggc atgagacatc tctggtgcct gggaatataa ccgatcccat 360

taacaaccat	caaccaggaa	gtgctacgta	tagaatccgg	aaaacagagc	ctttgcagac	420
taactgtgct	tatgttggtg	acatcgtgga	cattccagga	acctctgttg	ccatcagcaa	480
ctgtgatggt	ctggctggaa	tgataaaaag	tgataatgaa	gagtatttca	ttgaaccctt	540
ggaaagaggt	aaacagatgg	aggaagaaaa	aggaaggatt	catgttgtct	acaagagatc	600
	caggctccca					660
	gatgatctag					720
aatgagacgc	cgcagacacg	cgggagaaaa	cgattacaat	atcgaggtac	tgctgggagt	780
ggatgactct	gtggtccgtt	tccatggcaa	agagcacgtc	caaaactacc	tcctgaccct	840
	gtgaatgaaa					900
cctggtgcgc	atgataatgc	tgggatatgc	aaagtccatc	agcctcatag	aaaggggaaa	960
	agcttggaga					1020
	gaacaccatg					1080
	ggatatgctc					1140
	gatggttttt					1200
	catgatggac					1260
	ttggtacaag					1320
agaactgaaa	agatatatcc	attcctatga	ctgtctcctt	gatgaccctt	ttgatcatga	1380
ttggcctaaa	ctcccagaac	ttcctggaat	caattattct	atggatgagc	aatgtcgttt	1440
	gttggctata					1500
	agccatcctg					1560
	gaatgtgctg					1620
tgctaatcag	caaaaacaag	atggcaattg	ggggtcatgg	actaaatttg	gctcctgttc	1680
	ggaactggtg					1740
	caggattgtc					1800
	cactttgagg					1860
	aataccaaac					1920
atgccacctt	tactgtcagt	ccaaggagac	tggagatgtt	gcttacatga	aacaactggt	1980
	acgcactgtt					2040
	ggctgtgata					2100
	gataattccc					2160
gaagcttggg	taccttaaga	tgtttgatat	accccctggg	gctagacatg	tgttaatcca	2220
agaagacgag	gcttctcctc	atattcttgc	tattaagaac	caggctacag	gccattatat	2280
	aaaggggagg					2340
ggattataac	attgaagatg	acattgaaag	tcttcacacc	gatggacctt	tacatgatcc	2400
tgttattgtt	ttgattatac	ctcaagaaaa	tgatacccgc	tctagcctga	catataagta	2460
	gaagactctg					2520
agatactttt	gagtgggctt	tgaagagctg	gtctcaggtt	tccaaaccct	gtggtggagg	2580
tttccagtac	actaaatatg	gatgccgtag	gaaaagtgat	aataaaatgg	tccatcgcag	2640
	gccaacaaaa					2700
	ctctgggtag					2760
	cttcgcactg					2820
	aaatactgca					2880
	gcacagtgga					2940
	gtgaggcagg					3000
tgagtcggtc	agagcctgtc	aactgcctcc	ttgtaatgat	gaaccatgtt	tgggagacaa	3060
gtccatattc	tgtcaaatgg	aagtgttggc	acgatactgc	tccataccag	gttataacaa	3120
gttatgttgt	gagtcctgca	gcaagcgcag	tagcaccctg	ccaccaccat	accttctaga	3180
	actcatgatg					3240
	tctttggttc					3300
	tcagtgggag					3360
	aatttacgcc					3420
ggtcaccgta	ccatcctccc	cacccaccaa	gagggtccac	ctcagttcag	cttcacaaat	3480
ggctgctgct	tccttctttg	cagccagtga	ttcaataggt	gcttcttctc	aggcaagaac	3540
ctcaaagaaa	gatggaaaga	tcattgacaa	cagacgtccg	acaagatcat	ccaccttaga	3600
					aacctctctc	3660

```
ttcccatggt gcatatgctt gtttaaagtg gaaatctcta tagatcgtca gctcatttta
                                                                      3720
totgtaattg gaagaacaga aagtgotggo toactttota gttgotttoa tootcotttt
                                                                      3780
gttctgcatt gactcattta ccagaattca ttggaagaaa tcaccaaaga ttattacaaa
                                                                      3840
agaaaaatat gttgctaaga ttgtgttggt cgctctctga agcagaaaag ggactggaac
                                                                      3900
caattgtgca tatcagctga ctttttqttt qttttaqaaa aqttacagta aaaattaaaa
                                                                      3960
agagatacca atggtttaca ctttaacaag aaattttgga tatggaacaa agaattctta
                                                                      4020
gacttgtatt cctatttatc tatattagaa atattgtatg agcaaatttg cagctgttgt
                                                                      4.080
gtaaatactg tatattgcaa aaatcagtat tattttaaga gatgtgttct caaatgattg
                                                                      4140
tttactatat tacatttctg gatgttctag gtgcctgtcg ttgagtattg ccttgtttga
                                                                      4200
cattctatag gttaattttc aaagcagagt attacaaaag agaagttaga attacagcta
                                                                      4260
ctgacaatat aaagggtttt gttgaatcaa caatgtgata cgtaaattat aqaaaaaqaa
                                                                      4320
aagaaacaca aaagctatag atatacagat atcagcttac ctattgcctt ctatacttat
                                                                      4380
aatttaaagg attggtgtct tagtacactt gtggtcacag ggatcaacga atagtaaata
                                                                      4440
atgaactcgt gcaagacaaa actgaaaccc tctttccagg acctcagtag gcaccgttga
                                                                      4500
ggtgtccttt gtttttgtgt gtgtgtgttc ttttttaatt ttcgcattgt tgacagatac
                                                                      4560
aaacagttat actcaatgta ctgtaataat cgcaaaggaa aaagttttgg gataacttat
                                                                      4620
ttgtatgttg gtagctgaga aaaatatcat cagtctagaa ttgatatttq aqtataqtaq
                                                                      4680
agctttgggg ctttgaaggc aggttcaaga aagcatatgt cgatqgttga qatatttatt
                                                                      4740
ttccatatgg ttcatgttca aatgttcaca accacaatgc atctgactgc aataatgtgc
                                                                      4800
taataattta tgtcagtagt caccttgctc acaqcaaagc cagaaatqct ctctccaqqq
                                                                      4860
agtagatgta aagtacttgt acatagaatt cagaactgaa gatatttatt aaaagttgat
                                                                      4920
ttttttttct tgatagtatt tttatgtact aaatatttac actaatatca attacatatt
                                                                      4980
ttggtaaact agagagacat aattagagat gcatgctttg ttctgtgcat agagaccttt
                                                                      5040
aagcaaacta ctacagccaa ctcaaaagct aaaactgaac aaatttgatg ttatgcaaac
                                                                      5100
atcttgcatt tttagtagtt gatattaagt tgatgacttg tttcccttca aggaaacatt
                                                                      5160
aaattgtatg gactcagcta gctgttcaat gaaattgtga attagaaaca tttttaaaag
                                                                      5220
tttttgaaag agataagtgc atcatgaatt acatgtacat gagaggagat agtgatatca
                                                                      5280
gcataatgat tttgaggtca gtacctgagc tgtctaaaaa tatattatac aaactaaaat
                                                                      5340
gtagatgaat taacctctca aagcacagaa tgtgcaagaa cttttgcatt ttaatcgttg
                                                                      5400
taaactaaca gottaaacta ttgactotat acototaaag aattgotgot actttgtgoa
                                                                      5460
agaactttga aggtcaaatt aggcaaattc cagatagtaa aacaatccct aagccttaag
                                                                      5520
tettettet teectaaaaa teeccataga ataaaattet etetagetta etegegegeg
                                                                      5580
catacatete atecacaggg gaagataaag atggteacae aaacagttte cataaagatg
                                                                      5640
tacatattca ttatacttct gacctttggg ctttcttttc tactaagcta aaaattcctt
                                                                     5700
tttatcaaag tgtacactac tgatgctgtt tgttgtactg agagcacgta ccaataaaaa
                                                                      5760
tgttaacaaa atat
                                                                      5774
```

<210> 8 <211> 1201 <212> PRT

<213> Homo sapien

<400> 8

 Ser
 Leu
 Trp
 Leu
 Ile
 Ala
 Ala
 Ale
 Leu
 Val
 Glu
 Val
 Arg
 Thr
 Ser
 Ala

 Asp
 Gly
 Gln
 Ala
 Gly
 Asp
 Glu
 Glu
 Met
 Val
 Gln
 Ile
 Asp
 Leu
 Pro
 Ile

 Asp
 Tyr
 Arg
 Glu
 Tyr
 Glu
 Leu
 Val
 Thr
 Pro
 Val
 Ser
 Thr
 Asp
 Leu

 Glu
 Gly
 Arg
 Tyr
 Leu
 Ser
 His
 Thr
 Leu
 Ser
 Ala
 Ser
 His
 Lys
 Arg

 Glu
 Gly
 Arg
 Arg
 Val
 Ser
 Arg
 Pro
 Glu
 Gln
 Leu
 Phe
 Phe
 Arg
 Ile

 Ser
 Ala
 Arg
 Arg
 Arg
 Arg
 Re
 Phe
 Arg
 Ile
 Ar

Leu	Val	Ala	Pro 100	Gly	Ala	Val	Val	Glu 105	Trp	His	Glu	Thr	Ser 110	Leu	Val
Pro	Gly	Asn 115	Ile	Thr	Asp	Pro	Ile 120	Asn	Asn	His	Gln	Pro 125	Gly	Ser	Ala
Thr	Tyr 130	Arg	Ile	Arg	Lys	Thr 135	Glu	Pro	Leu	Gln	Thr 140	Asn	Cys	Ala	Tyr
Val 145	Gly	Asp	Ile	Val	Asp 150	Ile	Pro	Gly	Thr	Ser 155	Val	Ala	Ile	Ser	Asn 160
		03					-1.	.				a 3	01	6 0	
	Asp			165					170					175	
Ile	Glu	Pro	Leu 180	Glu	Arg	Gly	Lys	Gln 185	Met	Glu	Glu	Glu	Lys 190	Gly	Arg
Ile	His	Val 195	Val	Tyr	Lys	Arg	Ser 200	Ala	Val	Glu	Gln	Ala 205	Pro	Ile	Asp
Met	Ser		Asp	Phe	His	_		Glu	Ser	Asp			Gly	Leu	Asp
	210					215		1			220				
	Leu	Gly	Thr	Val		Gly	Asn	Ile	His		Gln	Leu	Asn	Glu	Thr
225					230					235					240
Met	Arg	Arg	Arg	Arg 245	His	Ala	Gly	Glu	Asn 250	Asp	Tyr	Asn	Ile	Glu 255	Val
Leu	Leu	Gly	Val	Asp	Asp	Ser	Val	Val	Arg	Phe	His	Gly	Lys	Glu	His
			260	_				265	_			_	270		
Val	Gln	Asn	Tyr	Leu	Leu	Thr	Leu	Met	Asn	Ile	Val	Asn	Glu	Ile	Tyr
		275					280					285			
His	Asp 290	Glu	Ser	Leu	Gly	Val 295	His	Ile	Asn	Val	Val- 300	Leu	Val	Arg	Met
Ile	Met	Leu	Gly	Tyr	Ala	Lys	Ser	Ile	Ser	Leu	Ile	Glu	Arg	Gly	Asn
305					310					315					320
Pro	Ser	Arg	Ser	Leu 325	Glu	Asn	Val	Cys	Arg 330	Trp	Ala	Ser	Gln	Gln 335	Gln
Arg	Ser	Asp	Leu 340	Asn	His	Ser	Glu	His	His	Asp	His	Ala	Ile 350	Phe	Leu
Thr	Arg	Gln		Phe	Glv	Pro	Ala		Met	Gln	Glv	Tvr		Pro	Val
		355	_				360				_	365			
Thr	Gly	met	Cys	His	Pro		Arg	Ser	Cys	Inr		Asn	HIS	GIU	Asp
~ 3	370	_	_		_,	375				~3	380	~ 3			•
	Phe	Ser	Ser	Ala		vai	vaı	Ala	His		Thr	GIY	HIS	vai	
385				_	390			_	_	395		_			400
Gly	Met	Glu	His	Asp 405	Gly	Gln	Gly	Asn	Arg 410	Cys	Gly	Asp	Glu	Thr 415	Ala
Met	Gly	Ser	Val 420	Met	Ala	Pro	Leu	Val 425	Gln	Ala	Ala	Phe	His 430	Arg	Tyr
His	Trp	Ser 435	Arg	Cys	Ser	Gly	Gln 440	Glu	Leu	Lys	Arg	Tyr 445	Ile	His	Ser
Tyr	Asp		Leu	Leu	Asp			Phe	Asp	His	_		Pro	Lys	Leu
D	450	-	D	~ 7	- 3 -	455	.	0	24-4	•	460	63 .	0		Dl
Pro 465	Glu	Leu	PLO	GIY	11e 470	Asn	ıyr	ser	Met	Asp 475	Glu	GIn	Cys	Arg	Phe 480
	Dha	Cl. -	37-3	G 3		T	Man	~	™		Dh.a	3	(T) b ==	D	
Asp	Phe	GIÀ	val	485	ıyı	пÀг	met	Cys	490	AIG	Pne	arg	TIII.	495	нар
Pro	Cys	Lys	Gln 500	Leu	Trp	Cys	Ser	His 505	Pro	Asp	Asn	Pro	Tyr 510	Phe	Cys
Lare	Thr	Tare		G311	Dro	Dro	Len		Glaz	Thr	G) v	Caro		בומ	Clar
		515		_			520					525			
Lys	Trp	Cys	Tyr	Lys	Gly	His	Cys	Met	Trp	Lys	Asn	Ala	Asn	Gln	Gln

	530					535					540				
Lys 545		Asp	Gly	Asn	Trp 550	Gly	Ser	Trp	Thr	Lys 555	Phe	Gly	Ser	Cys	Ser 560
Arg	Thr	Cys	Gly	Thr 565	Gly	Val	Arg	Phe	Arg 570	Thr	Arg	Gln	Cys	Asn 575	Asn
Pro	Met	Pro	Ile 580	Asn	Gly	Gly	Gln	Asp 585	Cys	Pro	Gly	Val	Asn 590	Phe	Glu
		595					Glu 600					605			
	610					615	Arg				620				
625					630		Tyr			635					640
			_	645			Lys		650	_				655	
			660				Thr	665					670		
		675					Cys 680					685			
	690	-		_		695	Asp			_	700				
705			_	_	710		Lys			715					720
				725			Phe		730					735	
			740				Ala	745					750		
		755				_	11e 760					765			
-	770	_				775	Leu	_			780				
785	_				790		His			795					8.00
				805			Gln		810					815	
	_	•	820				Glu	825					830		
		835					Leu 840					845			
	850					855	Pro				860				
865					870		Ser			875					880
	_			885		_	Pro		890					895	
			900				Leu	905					910		
		915					Ser 920					925			
Cys	Leu 930	Gln	Pro	Leu	Leu	Asp 935	Gly	Thr	Asn	Arg	Ser 940	Val	His	Ser	Lys
945					950		Glu			955					960
Pro	Cys	Pro	Ala	Gln 965	Trp	Lys	Thr	Gly	Pro 970	Trp	Ser	Glu	Cys	Ser 975	Val

Thr Cys Gly Glu)		985		990	
Asp His Cys Asp 995	Gly Glu	Lys Pro		Val Arg	Ala Cys 1005	Gln Leu
Pro Pro Cys Ass	Asp Glu	Pro Cys 1015	Leu Gly	Asp Lys		Phe Cys
Gln Met Glu Val		Arg Tyr	Cys Ser	Ile Pro 1035		Asn Lys 1040
Leu Cys Cys Glu	Ser Cys	Ser Lys	Arg Ser		Leu Pro	Pro Pro 1055
Tyr Leu Leu Glu		Glu Thr	His Asp 1065		Ile Ser 1070	
Ser Asp Leu Pro	Arg Ser	Leu Val		Thr Ser	Leu Val	Pro Tyr
His Ser Glu Th	Pro Ala	Lys Lys 1095		Leu Ser		Ser Ser
Val Gly Gly Pro	Asn Ala		Ala Phe	Arg Pro	Asn Ser	Lys Pro 1120
Asp Gly Ala Ası	Leu Arg	_			Ala Gly	Ser Lys 1135
Thr Val Arg Let	Val Thr	Val Pro	Ser Ser 1145		Thr Lys	Arg Val
His Leu Ser Ser	Ala Ser	Gln Met	Ala Ala	Ala Ser	Phe Phe	Ala Ala
Ser Asp Ser Ile		Ser Ser 1175	Gln Ala	Arg Thr		Lys Asp
Gly Lys Ile Ile 1185 Arg	e Asp Asn 1190	Arg Arg	Pro Thr	Arg Ser 1195	Ser Thr	Leu Glu 1200

<211> 2868

<212> DNA

<213> Homo sapien

<400> 9

ggaattcgcg	gccgcgtcga	cgtcaatacc	aactccgagc	acacggccgt	catcagcctc	60
		attccggtct				120
		agatgaagag				180
		gccctcaaca				240
		caagaagaaa				300
		agcattaaac				360
		cacaagagaa				420
		agaagtcttg				480
		ctatatttta				540
		attaaaaaac				600
		tactgctgtt				660
		aggcctggct				720
		tagtggattg				780
		tcatgatgac				840
		tccaacactg				900
		cactgagttt				960
		ctaccctttg				1020
		gatttttgga				1080

cagtgcagac ggctctggtg caataacgtc aatggagtac acaaaggctg ccggactcag 1140 cacacaccct gggccgatgg gacggagtgc gagcctggaa agcactgcaa gtatggattt 1200 tqtqttccca aaqaaatgga tgtccccgtg acagatggat cctggggaag ttggagtccc 1260 1320 tttggaacct gctccagaac atgtggaggg ggcatcaaaa cagccattcg agagtgcaac 1380 aqaccagaac caaaaaatgg tggaaaatac tgtgtaggac gtagaatgaa atttaagtcc 1440 tqcaacacqq agccatgtct caagcagaag cgagacttcc gagatgaaca gtgtgctcac tttgacggga agcattttaa catcaacggt ctgcttccca atgtgcgctg ggtccctaaa 1500 tacagtggaa ttctgatgaa ggaccggtgc aagttgttct gcagagtggc agggaacaca 1560 1620 gcctactatc agcttcgaga cagagtgata gatggaactc cttgtggcca ggacacaaat 1680 gatatctgtg tccagggcct ttgccggcaa gctggatgcg atcatgtttt aaactcaaaa 1740 qcccqqaqaq ataaatgtgg ggtttgtggt ggcgataatt cttcatgcaa aacagtggca 1800 qqaacattta atacaqtaca ttatggttac aatactgtgg tccgaattcc agctggtgct 1860 accaatattg atgtgcggca gcacagtttc tcaggggaaa cagacgatga caactactta 1920 qctttatcaa gcagtaaagg tgaattcttg ctaaatggaa actttgttgt cacaatggcc 1980 aaaaggqaaa ttcgcattgg gaatgctgtg gtagagtaca gtgggtccga gactgccgta gaaagaatta actcaacaga tcgcattgag caagaacttt tgcttcaggt tttgtcggtg 2040 ggaaagttgt acaaccccga tgtacgctat tctttcaata ttccaattga agataaacct 2100 cagcagtttt actggaacag tcatgggcca tggcaagcat gcagtaaacc ctgccaaggg 2160 gaacggaaac gaaaacttgt ttgcaccagg gaatctgatc agcttactgt ttctgatcaa 2220 agatgcgatc ggctgcccca gcctggacac attactgaac cctgtggtac agactgtgac 2280 ctgaggtggc atgttgccag caggagtgaa tgtagtgccc agtgtggctt gggttaccgc 2340 acattggaca tctactgtgc caaatatagc aggctggatg ggaagactga gaaggttgat 2400 2460 gatggttttt gcagcagcca tcccaaacca agcaaccgtg aaaaatgctc aggggaatgt 2520 aacacgggtg gctggcgcta ttctgcctgg actgaatgtt caaaaagctg tgacggtggg acccagagga gaagggctat ttgtgtcaat acccgaaatg atgtactgga tgacagcaaa 2580 2640 tgcacacatc aagagaaagt taccattcag aggtgcagtg agttcccttg tccacagtgg 2700 aaatctggag actggtcaga gtgcttggtc acctgtggaa aagggcataa gcaccgccag 2760 gtctggtgtc agtttggtga agatcgatta aatgatagaa tgtgtgaccc agaggtcgac 2820 geggeegega atteegeega taetgaeggg eteeaggagt egtegeeace aateeceata 2868 tggaaaccgt cgatattcag ccatgtgcct tcaagccgaa ttccaggb

<210> 10

<211> 958

<212> PRT

<213> Homo sapien

<400> 10

Gly Ile Arg Gly Arg Val Asp Val Asn Thr Asn Ser Glu His Thr Ala 10 Val Ile Ser Leu Cys Ser Gly Met Leu Gly Thr Phe Arg Ser His Asp 20 Gly Asp Tyr Phe Ile Glu Pro Leu Gln Ser Met Asp Glu Gln Glu Asp Glu Glu Glu Gln Asn Lys Pro His Ile Ile Tyr Arg Arg Ser Ala Pro 55 Gln Arg Glu Pro Ser Thr Gly Arg His Ala Cys Asp Thr Ser Glu His 70 75 Lys Asn Arg His Ser Lys Asp Lys Lys Thr Arg Ala Arg Lys Trp 90 Gly Glu Arg Ile Asn Leu Ala Gly Asp Val Ala Ala Leu Asn Ser Gly 105 Leu Ala Thr Glu Ala Phe Ser Ala Tyr Gly Asn Lys Thr Asp Asn Thr 125 120 Arg Glu Lys Arg Thr His Arg Arg Thr Lys Arg Phe Leu Ser Tyr Pro 140

135

130

Ar g 145		Val	Glu	Val	Leu 150		Val	Ala	Asp	Asn 155		Met	Val	Ser	Tyr 160
His	Gly	Glu	Asn	Leu 165	Gln	His	Tyr	Ile	Leu 170	Thr		Met	Ser	Ile 175	Asp
Gly	Pro	Ser	Ile 180		Phe	Asn	Ala	Gln 185		Thr	Leu	Lys	Asn 190	Leu	
Gln	Trp	Gln 195		Ser	Lys	Asn	Ser 200		Gly	Gly	Ile	His 205		Asp	Thr
Ala	Val 210	Leu	Leu	Thr	Arg	Gln 215		Ile	Cys	Arg	Ala 220	His	Asp	Lys	Cys
Asp 225	Thr	Leu	Gly	Leu	Ala 230	Glu	Leu	Gly	Thr	Ile 235	Cys	Asp	Pro	Tyr	Arg 240
Ser	Cys	Ser	Ile	Ser 245	Glu	Asp	Ser	Gly	Leu 250		Thr	Ala	Phe	Thr 255	Ile
			260		His			265				_	270		
		275			Gly		280					285			
	290				Thr	295					300				_
305					Phe 310					315			_		320
				325	Arg				330					335	_
			340		Asn			345					350		_
		355			Tyr		360				_	365	=	_	
	370				His	375					380				-
385					Cys 390					395	_	_	_	_	400
				405	Met				410					415	
			420		Gly			425				_	430	_	
		435			Glu		440.					445			_
	450				Arg	455		-		_	460	-			
465			•		Lys 470					475					480
				485	Phe				490					495	_
			500		Ser			505			-		510		
		515			Gly		520					525		_	_
	530				Pro	535					540				
545					Gln 550					555					560
				565	Cys				570					575	
Lys	Thr	Val	Ala	Gly	Thr	Phe	Asn	Thr	Val	His	Tyr	Gly	Tyr		Thr ·

```
580
                                585
                                                     590
Val Val Arg Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Arg Gln His
                            600
Ser Phe Ser Gly Glu Thr Asp Asp Asp Asn Tyr Leu Ala Leu Ser Ser
                        615
                                            620
Ser Lys Gly Glu Phe Leu Leu Asn Gly Asn Phe Val Val Thr Met Ala
                    630
                                        635
Lys Arg Glu Ile Arg Ile Gly Asn Ala Val Val Glu Tyr Ser Gly Ser
                645
                                    650
Glu Thr Ala Val Glu Arg Ile Asn Ser Thr Asp Arg Ile Glu Gln Glu
                                665
Leu Leu Gln Val Leu Ser Val Gly Lys Leu Tyr Asn Pro Asp Val
                            680
Arg Tyr Ser Phe Asn Ile Pro Ile Glu Asp Lys Pro Gln Gln Phe Tyr
                        695
                                            700
Trp Asn Ser His Gly Pro Trp Gln Ala Cys Ser Lys Pro Cys Gln Gly
                    710
                                        715
Glu Arg Lys Arg Lys Leu Val Cys Thr Arg Glu Ser Asp Gln Leu Thr
                725
                                    730
Val Ser Asp Gln Arg Cys Asp Arg Leu Pro Gln Pro Gly His Ile Thr
            740
                                745
Glu Pro Cys Gly Thr Asp Cys Asp Leu Arg Trp His Val Ala Ser Arg
                            760
Ser Glu Cys Ser Ala Gln Cys Gly Leu Gly Tyr Arg Thr Leu Asp Ile
                        775
Tyr Cys Ala Lys Tyr Ser Arg Leu Asp Gly Lys Thr Glu Lys Val Asp
                    790
                                        795
Asp Gly Phe Cys Ser Ser His Pro Lys Pro Ser Asn Arg Glu Lys Cys
                805
                                    810
Ser Gly Glu Cys Asn Thr Gly Gly Trp Arg Tyr Ser Ala Trp Thr Glu
                                825
Cys Ser Lys Ser Cys Asp Gly Gly Thr Gln Arg Arg Ala Ile Cys
                            840
Val Asn Thr Arg Asn Asp Val Leu Asp Asp Ser Lys Cys Thr His Gln
                        855
                                            860
Glu Lys Val Thr Ile Gln Arg Cys Ser Glu Phe Pro Cys Pro Gln Trp
                    870
                                        875
Lys Ser Gly Asp Trp Ser Glu Cys Leu Val Thr Cys Gly Lys Gly His
                                    890
Lys His Arg Gln Val Trp Cys Gln Phe Gly Glu Asp Arg Leu Asn Asp
                                905
Arg Met Cys Asp Pro Glu Val Asp Ala Ala Asn Ser Ala Asp Thr
                           920
Asp Gly Leu Gln Glu Ser Ser Pro Pro Ile Pro Ile Trp Lys Pro Ser
                        935
Ile Phe Ser His Val Pro Ser Ser Arg Ile Pro Phe Ile Gly
945
                    950
                                        955
```

<211> 4303

<212> DNA

<213> Homo sapien

<400> 11

cacatatgca cgagagagac agaggaggaa agagacagag acaaaggcac agcggaagaa

ggcagagaca	gggcaggcac	agaagcggcc	cagacagagt	cctacagagg	gagaggccag	120
agaagctgca	gaagacacag	gcagggagag	acaaagatcc	aggaaaggag	ggctcaggag	180
gagagtttgg	agaagccaga	cccctgggca	cctctcccaa	gcccaaggac	taagttttct	240
ccatttcctt	taacggtcct	cagcccttct	gaaaactttg	cctctgacct	tggcaggagt	300
ccaagccccc	aggctacaga	gaggagcttt	ccaaagctag	ggtgtggagg	acttggtgcc	360
ctagacggcc	tcagtccctc	ccagctgcag	taccagtgcc	atgtcccaga	caggctcgca	420
tcccgggagg	ggcttggcag	ggcgctggct	gtggggagcc	caaccctgcc	tcctgctccc	480
cattgtgccg	ctctcctggc	tggtgtggct	gcttctgcta	ctgctggcct	ctctcctgcc	540
ctcagcccgg	ctggccagcc	ccctccccg	ggaggaggag	atcgtgtttc	cagagaagct	600
caacggcagc	gtcctgcctg	gctcgggcac	ccctgccagg	ctgttgtgcc	gcttgcaggc	660
ctttggggag	acgctgctac	tagagctgga	gcaggactcc	ggtgtgcagg	tcgaggggct	720
gacagtgcag	tacctgggcc	aggcgcctga	gctgctgggt	ggagcagagc	ctggcaccta	780
	accatcaatg					840
	ggcgtgttac					900
	aactctgctg					960
	ggtcccatgt					1020
	aagcgctttg					1080
	gccgcattcc					1140
	aaggccttca					1200
	atcctggggt					1260
	agcttctgtg					1320
	gacacagcca					1380
	ggtatggctg					1440
	gatgggctcc					1500
	catgacaact					1560
	atggcccctg					1620
	ttcatcactg					1680
	ccattgcatc					1740
	ctgaccttcg					1800
	tggtgctctg					1860
	gatggcacac					1920
	cagctccagg					1980
	gactgctctc					2040
	gtccccgga					2100
	actgaggact					2160
	aaccaccgca					2220
	acaggcgtgg					2280
	tactatgtgc					2340
	gtctgtgtcc					2400
	aagtttgaca					2460
	tccttcagga					2520
	cacattcttg					2580
	ctgccagatg					2640
	gtggtactgc					2700
	ctgtcaggcc					2760
	ccccaggaca					2820
	cgcccactc					2880
	cgcccctggg					2940
	cctcggactt					3000
	ggggagggc					3060
	ctgccctggt					3120
	acagecetee					3180
	agggagggcc					3240
	gggaagggga					3300
acagecetea	ccctggggct	aggaaatcca	gggtggtggt	gataggtata	agtggtgtgt	3360

```
gtatgcgtgt gtgtgtgtgt gtgaaaatgt gtgtgtgctt atgtatgagg tacaacctgt
                                                                 3420
tetgetttee tetteetgaa ttttatttt tgggaaaaga aaagteaagg gtagggtggg
                                                                 3480
3540
tgagacagaa tetegetetg tegeceagge tggagtgcaa tggeacaate teggeteact
                                                                  3600
geatectecg cetecegggt teaagtgatt eteatgeete ageeteetga gtagetggga
                                                                  3660
ttacaggete etgecaceae geccagetaa tttttgtttt gttttgtttg gagacagagt
                                                                  3720
ctcgctattg tcaccagggc tggaatgatt tcagctcact gcaaccttcg ccacctgggt
                                                                  3780
tccagcaatt ctcctgcctc agcctcccga gtagctgaga ttataggcac ctaccaccac
                                                                  3840
gcccggctaa tttttgtatt tttagtagag acggggtttc accatgttgg ccaggctggt
                                                                  3900
ctcgaactcc tgaccttagg tgatccactc gccttcatct cccaaagtgc tgggattaca
                                                                  3960
ggcgtgagcc accgtgcctg gccacgccca actaattttt gtatttttag tagagacagg
                                                                  4020
gtttcaccat gttggccagg ctgctcttga actcctgacc tcaggtaatc gacctgcctc
                                                                  4080
ggcctcccaa agtgctggga ttacaggtgt gagccaccac gcccggtaca tatttttaa
                                                                  4140
attgaattct actatttatg tgatcctttt ggagtcagac agatgtggtt gcatcctaac
                                                                  4200
tccatgtctc tgagcattag atttctcatt tgccaataat aatacctccc ttagaagttt
                                                                  4260
                                                                  4303
gttgtgagga ttaaataatg taaataaaga actagcataa cgb
```

<211> 840

<212> PRT

<213> Homo sapien

<400> 12 Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp 10 Leu Trp Gly Ala Gln Pro Cys Leu Leu Pro Ile Val Pro Leu Ser 25 Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser 40 Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro 55 Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Thr Pro Ala Arg 75 Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu 90 Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu 105 Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu 125 120 115

Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu 125

Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp
130

Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu
145

His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro
165

Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro

180 185 190

Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg

195 200 205

Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val 210 215 220

 Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg

 225
 230
 235
 240

 Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro
 250
 255

Ser	Ile	Arg	Asn 260	Pro	Val	Ser	Leu	Val 265		Thr	Arg	Leu	Val 270	Ile	Leu
Gly	Ser	Gly 275		Glu	Gly	Pro	Gln 280			Pro	Ser	Ala 285		Gln	Thr
Leu	Arg 290		Phe	Cys	Ala	Trp 295	Gln	Arg	Gly	Leu	Asn 300		Pro	Glu	Asp
Ser 305		Pro	Asp	His	Phe		Thr	Ala	Ile	Leu 315		Thr	Arg	Gln	Asp 320
	Cys	Gly	Val	Ser 325		Cys	Asp	Thr	Leu 330		Met	Ala	Asp	Val 335	
Thr	Val	Cys	Asp		Ala	Arg	Ser	Cys 345		Ile	Val	Glu	Asp 350		Gly
Leu	Gln	Ser 355		Phe	Thr	Ala	Ala 360		Glu	Leu	Gly	His 365		Phe	Asn
Met	Leu 370		Asp	Asn	Ser	Lys 375	Pro	Cys	Ile	Ser	Leu 380		Gly	Pro	Leu
Ser 385	-	Ser	Arg	His	Val 390	_	Ala	Pro	Val	Met 395		His	Val	Asp	Pro
	Glu	Pro	Trp	Ser		Cys	Ser	Ala	Arg 410		Ile	Thr	Asp	Phe	
Asp	Asn	Gly	Tyr 420		His	Cys	Leu	Leu 425		Lys	Pro	Glu	Ala 430		Leu
His	Leu	Pro		Thr	Phe	Pro	Gly 440		Asp	Tyr		Ala		Arg	Gln
Cys	Gln 450		Thr	Phe	Gly	Pro	Asp	Ser	Arg	His			Gln	Leu	Pro
Pro 465		Cys	Ala	Ala	Leu 470		Cys	Ser	Gly	His		Asn	Gly	His	Ala 480
	Cys	Gln	Thr	Lys 485		Ser	Pro	Trp	Ala 490		Gly	Thr	Pro	Cys 495	
Pro	Ala	Gln	Ala 500		Met	Gly	Gly	Arg 505		Leu	His	Met	Asp 510		Leu
Gln	Asp	Phe 515		Ile	Pro	Gln	Ala 520		Gly	Trp	Gly	Pro 525		Gly	Pro
Trp	Gly 530	Asp	Cys	Ser	Arg	Thr 535	Cys	Gly	Gly	Gly	Val 540		Phe	Ser	Ser
Arg 545	Asp	Cys	Thr	Arg	Pro 550		Pro	Arg	Asn	Gly 555		Lys	Tyr	Cys	Glu 560
Gly	Arg	Arg	Thr	Arg 565	Phe	Arg	Ser	Cys	Asn 570		Glu	Asp	Cys	Pro 575	
Gly	Ser	Ala	Leu 580	Thr	Phe	Arg	Glu	Glu 585	Gln	Cys	Ala	Ala	Tyr 590	Asn	His
Arg	Thr	Asp 595	Leu	Phe	Lys	Ser	Phe 600	Pro	Gly	Pro	Met	Asp 605	Trp	Val	Pro
Arg	Tyr 610	Thr	Gly	Val	Ala	Pro 615	Gln	Asp	Gln	Cys	Lys 620	Leu	Thr	Cys	Gln
Ala 625	Arg	Ala	Leu	Gly	Tyr 630	Tyr	Tyr	Val	Leu	Glu 635	Pro	Arg	Val	Val	Asp 640
Gly	Thr	Pro	Cys	Ser 645	Pro	Asp	Ser	Ser	Ser 650	Val	Cys	Val	Gln	Gly 655	Arg
Cys	Ile	His	Ala 660		Cys	Asp	Arg	Ile 665		Gly	Ser	Lys	Lys 670		Phe
Asp	Lys	Cys 675		Val	Cys	Gly	Gly 680		Gly	Ser	Gly	Cys 685	Ser	Lys	Gln
Ser	Gly	Ser	Phe	Arg	Lys	Phe	Arg	Tyr	Gly	Tyr	Asn			Val	Thr

690 695 700 Ile Pro Ala Gly Ala Thr His Ile Leu Val Arg Gln Gln Gly Asn Pro 710 715 Gly His Arg Ser Ile Tyr Leu Ala Leu Lys Leu Pro Asp Gly Ser Tyr 725 730 Ala Leu Asn Gly Glu Tyr Thr Leu Met Pro Ser Pro Thr Asp Val Val 740 745 Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser Gly Ala Thr Ala Ala Ser 760 Glu Thr Leu Ser Gly His Gly Pro Leu Ala Gln Pro Leu Thr Leu Gln 775 780 Val Leu Val Ala Gly Asn Pro Gln Asp Thr Arg Leu Arg Tyr Ser Phe 790 795 Phe Val Pro Arg Pro Thr Pro Ser Thr Pro Arg Pro Thr Pro Gln Asp 810 805 Trp Leu His Arg Arg Ala Gln Ile Leu Glu Ile Leu Arg Arg Pro 820 825 830 Trp Ala Gly Arg Lys Phe Ile Gly 840

<210> 13 <211> 1518 <212> DNA <213> Rattus norvegicus

<400> 13

actcactata gggctcgagc ggccgcccgg gcaggtcaga ggctcactgg cagctctcta 60 gacctgcgac gctgcttcta ttccgggtat gtgaacgcgg agccagactc ctttgctgct 120 gtaagcctat gegggggtet eegeggagee tttggetace aaggtgegga gtatgteatt 180 240 agccctctgc ccaacaccag cgcgcctgag gcgcagcgtc atagccaggg cgcacacctt ctccagcgcc ggggtgctcc cgtagggcct tccggagacc ctacctctcg ctgcggggtg 300 gcctcgggct ggaaccccgc catcctgagg gccttggacc cttataaacc acggcggacg 360 ggcgtgggcg aaagccacaa ccggcgcagg tctgggcgcg ccaagcgctt cgtgtctata 420 ccacggtacg tggagacact ggtggtggcg gacgagtcaa tggtcaagtt tcacggcgcg 480 gatttggaac attatctgct gacgctgctg gccacggcgg cgcgactcta ccgccacccc 540 agcatcctca accctatcaa catcgttgtg gtcaaggtgt tactcttagg agatcgtgac 600 actgggccca aggtcacagg caacgcggcc ctgactctgc gcaacttctg tgcctggcag 660 aaaaagttga acaaagtgag cgacaagcac cccgagtact gggacacagc catcctcttc 720 accagacagg acctatgegg ggetaceace tgtgacacet tgggcatgge tgatgtggge 780 accatgtgtg atcccaagag aagctgctct gtcatcgagg acgatgggct tccgtcggcc 840 ttcaccactg cccatgagct gggccatgtg ttcaacatgc cccatgacaa cgtgaaggtg 900 tgtgaggagg tgtttgggaa gctcagagcc aaccacatga tgtctccgac actcatccag 960 1020 ategacegtg ceaacecetg gteageetge agtgetgeea ttateacega etteetggae 1080 agegggeacg gtgactgeet cetggaceag cecageaage ceateaceet geetgaggae ctgccaggca caagctacag tttgagccaa cagtgcgagc tggcctttgg ggtgggctct 1140 aagccctgcc catatatgca gtactgtaca aagctgtggt gcaccggcaa ggccaagggg 1200 cagatggtgt gccagactcg ccacttcccc tgggcagatg gcaccagctg tggtgagggc 1260 aagttetgee teaagggage etgegtggag agacacaace caaacaagta eegggtggae 1320 ggcccttggg ccaagtggga gccttatggt ccctgctcgc gcacctgcgg tgggggcgc 1380 cagctggccc ggaggcaagt gcaagcaacc ctacccctgc caacgggcgg gaagtactgc 1440 gagggagtga gagtgaaata ccgatcttgc aacttggagc cctgccccag ctcagcctct 1500 ggcaagagct tccgggaa 1518

<210> 14

<211> 505 <212> PRT

<213> Rattus norvegicus

<400> 14

Thr His Tyr Arg Ala Arg Ala Ala Ala Arg Ala Gly Gln Arg Leu Thr 10 Gly Ser Ser Leu Asp Leu Arg Arg Cys Phe Tyr Ser Gly Tyr Val Asn 25 Ala Glu Pro Asp Ser Phe Ala Ala Val Ser Leu Cys Gly Gly Leu Arg Gly Ala Phe Gly Tyr Gln Gly Ala Glu Tyr Val Ile Ser Pro Leu Pro 55 Asn Thr Ser Ala Pro Glu Ala Gln Arg His Ser Gln Gly Ala His Leu 75 Leu Gln Arg Arg Gly Ala Pro Val Gly Pro Ser Gly Asp Pro Thr Ser 90 Arg Cys Gly Val Ala Ser Gly Trp Asn Pro Ala Ile Leu Arg Ala Leu 105 Asp Pro Tyr Lys Pro Arg Arg Thr Gly Val Gly Glu Ser His Asn Arg Arg Arg Ser Gly Arg Ala Lys Arg Phe Val Ser Ile Pro Arg Tyr Val 135 Glu Thr Leu Val Val Ala Asp Glu Ser Met Val Lys Phe His Gly Ala 150 155 Asp Leu Glu His Tyr Leu Leu Thr Leu Leu Ala Thr Ala Ala Arg Leu 165 170 Tyr Arg His Pro Ser Ile Leu Asn Pro Ile Asn Ile Val Val Lys 185 Val Leu Leu Gly Asp Arg Asp Thr Gly Pro Lys Val Thr Gly Asn 200 Ala Ala Leu Thr Leu Arg Asn Phe Cys Ala Trp Gln Lys Lys Leu Asn 215 220 Lys Val Ser Asp Lys His Pro Glu Tyr Trp Asp Thr Ala Ile Leu Phe 230 235 Thr Arg Gln Asp Leu Cys Gly Ala Thr Thr Cys Asp Thr Leu Gly Met 250 Ala Asp Val Gly Thr Met Cys Asp Pro Lys Arg Ser Cys Ser Val Ile 270 265 Glu Asp Asp Gly Leu Pro Ser Ala Phe Thr Thr Ala His Glu Leu Gly 280 His Val Phe Asn Met Pro His Asp Asn Val Lys Val Cys Glu Glu Val 295 300 Phe Gly Lys Leu Arg Ala Asn His Met Met Ser Pro Thr Leu Ile Gln 310 315 Ile Asp Arg Ala Asn Pro Trp Ser Ala Cys Ser Ala Ala Ile Ile Thr 330 Asp Phe Leu Asp Ser Gly His Gly Asp Cys Leu Leu Asp Gln Pro Ser 345 Lys Pro Ile Thr Leu Pro Glu Asp Leu Pro Gly Thr Ser Tyr Ser Leu 360 Ser Gln Gln Cys Glu Leu Ala Phe Gly Val Gly Ser Lys Pro Cys Pro 375 380 Tyr Met Gln Tyr Cys Thr Lys Leu Trp Cys Thr Gly Lys Ala Lys Gly 390 395

```
Gln Met Val Cys Gln Thr Arg His Phe Pro Trp Ala Asp Gly Thr Ser
                                     410
Cys Gly Glu Gly Lys Phe Cys Leu Lys Gly Ala Cys Val Glu Arg His
                                                     430
            420
                                425
Asn Pro Asn Lys Tyr Arg Val Asp Gly Pro Trp Ala Lys Trp Glu Pro
                            440
                                                 445
Tyr Gly Pro Cys Ser Arg Thr Cys Gly Gly Gly Ala Gln Leu Ala Arg
                        455
Arg Gln Val Gln Ala Thr Leu Pro Leu Pro Thr Gly Gly Lys Tyr Cys
465
                    470
                                         475
Glu Gly Val Arg Val Lys Tyr Arg Ser Cys Asn Leu Glu Pro Cys Pro
                485
                                    490
Ser Ser Ala Ser Gly Lys Ser Phe Arg
```

<210> 15
<211> 1455
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(1455)
<223> n = A,T,C or G

<400> 15

gatgcatcta agccctggtc caaatgcact tcagccacca tcacagaatt cctggatgat 60 ggccatggta actgtttgct ggacctacca cgaaagcaga tcctgggccc cgaagaactc 120 ccaggacaga cctacgatgc cacccagcag tgcaacctta cattcgggcc tgagtactcc 180 gtgtgtcccg gcatggatgt ctgtgctccc ctgtggtgtg ctgtggtacg ccagggccag 240 atggtctgtc tgaccaagaa gcttcctgcg gtggaaggga cgccttgtgg aaaggggaga 300 atctgcctgc agggcaaatg tgtggacaaa accaagaaaa aatattattc aacgtcaagc 360 catggcaact ggggatcttg gggatcctgg ggccagtgtt ctcgctcatg tggaggagga 420 480 gtgcagtttg cctatcgtcg ctgtaataac cctgctccca gaaacaacgg acgctactgc 540 acagggaaga gggccatcta ccgctcctgc agtctcatgc cctgcccacc caatggtaaa tcatttcgtc atgaacagtg tgaggccaaa aatggctatc agtctgatgc aaaaggagtc 600 660 aaaacttttg tggaatgggt tcccaaatat gcaagtgtcc tgcccagcga tgtgtgcaag ctgacctgca gagccaaagg gactggctac tatgtggtat tttctccaaa ggtgaccgat 720 ggcactgaat gtaggccgta cagtaattcc gtctgcgtcc gggggaagtg tgtgagaact 780 ggctgtgacg gcatcattgg ctcaaagctg cagtatgaca agtgcggagt atgtggagga 840 900 gacaactcca gctgtacaaa gattgttgga acctttaata agaaaagtaa gggttcanct gacgtggtga ggattcctga aggggcaacc cacataaaag ttcgacagtt caaagccaaa 960 gaccagacta gattcactgc ctatttagcc ctgaaaaaga aaaacggtga gtaccttatc 1020 aatggaaagt acatgatete cactteagag actateattg acateaatgg aacagteatg 1080 aactatageg gttggageca cagggatgac tteetgeatg geatgggeta etetgeeaeg 1140 aaggaaattc taatagtgca gattcttgca acagacccca ctaaaccatt agatgtccgt 1200 tatagctttt ttgttcccaa gaagtccact ccaaaagtaa actctgtcac tagtcatggc 1260 agcaataaag tqqqatcaca cacttcqcag ccqcagtggg tcacqqqccc atgqctcqcc 1320 tgctctagga cctgtgacac aggttggcac accagaacgg tgcagtgcca ggatggaaac 1380 eggaagttag caaaaggatg teetetetee caaaggeett etgegtttaa geaatgettg 1440 ttgaagaaat gttag 1455

<210> 16 <211> 484

<212> PRT

<213> Homo sapien

<220>

<221> VARIANT

<222> (1) ... (484)

<223> Xaa = Any Amino Acid

<400> 16

Asp Ala Ser Lys Pro Trp Ser Lys Cys Thr Ser Ala Thr Ile Thr Glu 10 Phe Leu Asp Asp Gly His Gly Asn Cys Leu Leu Asp Leu Pro Arg Lys Gln Ile Leu Gly Pro Glu Glu Leu Pro Gly Gln Thr Tyr Asp Ala Thr Gln Gln Cys Asn Leu Thr Phe Gly Pro Glu Tyr Ser Val Cys Pro Gly 55 Met Asp Val Cys Ala Pro Leu Trp Cys Ala Val Val Arg Gln Gly Gln 70 75 Met Val Cys Leu Thr Lys Lys Leu Pro Ala Val Glu Gly Thr Pro Cys 85 90 Gly Lys Gly Arg Ile Cys Leu Gln Gly Lys Cys Val Asp Lys Thr Lys 100 105 Lys Lys Tyr Tyr Ser Thr Ser Ser His Gly Asn Trp Gly Ser Trp Gly 120 Ser Trp Gly Gln Cys Ser Arg Ser Cys Gly Gly Gly Val Gln Phe Ala 135 140 Tyr Arg Arg Cys Asn Asn Pro Ala Pro Arg Asn Asn Gly Arg Tyr Cys 155 Thr Gly Lys Arg Ala Ile Tyr Arg Ser Cys Ser Leu Met Pro Cys Pro 165 170 Pro Asn Gly Lys Ser Phe Arg His Glu Gln Cys Glu Ala Lys Asn Gly 185 Tyr Gln Ser Asp Ala Lys Gly Val Lys Thr Phe Val Glu Trp Val Pro 200 Lys Tyr Ala Ser Val Leu Pro Ser Asp Val Cys Lys Leu Thr Cys Arg 215 220 Ala Lys Gly Thr Gly Tyr Tyr Val Val Phe Ser Pro Lys Val Thr Asp 230 235 Gly Thr Glu Cys Arg Pro Tyr Ser Asn Ser Val Cys Val Arg Gly Lys 245 250 Cys Val Arg Thr Gly Cys Asp Gly Ile Ile Gly Ser Lys Leu Gln Tyr 265 Asp Lys Cys Gly Val Cys Gly Gly Asp Asn Ser Ser Cys Thr Lys Ile 280 285 Val Gly Thr Phe Asn Lys Lys Ser Lys Gly Ser Xaa Asp Val Val Arg 295 300 Ile Pro Glu Gly Ala Thr His Ile Lys Val Arg Gln Phe Lys Ala Lys 310 315 Asp Gln Thr Arg Phe Thr Ala Tyr Leu Ala Leu Lys Lys Lys Asn Gly 325 330 Glu Tyr Leu Ile Asn Gly Lys Tyr Met Ile Ser Thr Ser Glu Thr Ile 345 Ile Asp Ile Asn Gly Thr Val Met Asn Tyr Ser Gly Trp Ser His Arg 360

```
Asp Asp Phe Leu His Gly Met Gly Tyr Ser Ala Thr Lys Glu Ile Leu
                                            380
                        375
Ile Val Gln Ile Leu Ala Thr Asp Pro Thr Lys Pro Leu Asp Val Arg
                                        395
                    390
Tyr Ser Phe Phe Val Pro Lys Lys Ser Thr Pro Lys Val Asn Ser Val
                                    410
                405
Thr Ser His Gly Ser Asn Lys Val Gly Ser His Thr Ser Gln Pro Gln
                                425
Trp Val Thr Gly Pro Trp Leu Ala Cys Ser Arg Thr Cys Asp Thr Gly
                            440
                                                445
Trp His Thr Arg Thr Val Gln Cys Gln Asp Gly Asn Arg Lys Leu Ala
                       455
Lys Gly Cys Pro Leu Ser Gln Arg Pro Ser Ala Phe Lys Gln Cys Leu
                                        475
                    470
Leu Lys Lys Cys
```

<211> 423

<212> DNA

<213> Bos taurus

<400> 17

tttagggagg	agcagtgtga	ggccaaaaat	ggatatcagt	ctgatgcaaa	aggagtcaaa	60
		caaatatgct				120
		tggctactac				180
		caattccgtg				240
		gaagctgcag				300
		ggtcggaacc				360
		ggcgactcac				420
caq						423

<210> 18

<211> 141

<212> PRT

<213> Bos taurus

<400> 18

 Phe
 Arg
 Glu
 Glu
 Glu
 Ala
 Lys
 Asn
 Gly
 Tyr
 Gln
 Ser
 Asp
 Ala

 1
 5
 61y
 Val
 Lys
 Thr
 Phe
 Val
 Glu
 Trp
 Val
 Pro
 Lys
 Tyr
 Ala
 Gly
 Val
 Gly
 Val

 Leu
 Pro
 Gly
 Asp
 Val
 Cys
 Lys
 Leu
 Thr
 Cys
 Arg
 Ala
 Lys
 Gly
 Thr
 Gly

 Tyr
 Tyr
 Val
 Val
 Phe
 Ser
 Pro
 Lys
 Val
 Thr
 Asp
 Gly
 Thr
 Gly
 Arg
 Arg
 Gly
 Thr
 Gly
 Arg
 Arg
 Gly
 Thr
 Gly
 Arg
 Arg
 Gly
 Lys
 Val
 Arg
 Gly
 Lys
 Val
 Arg
 Thr
 Gly
 Lys
 Lys
 Lys
 Val
 Arg
 Thr
 Gly
 Lys
 Lys</

```
130
                        135
                                            140
      <210> 19
      <211> 637
      <212> DNA
      <213> Bos taurus
      <400> 19
ggaaaccctg gccatttgga gcaactacct ggccctgaag ctccccgatg gctcctatgc
                                                                      60
cctcaacggt gaatacacgc tgatcccgtc ccccacagac gtggtactgc ccggggccgt
                                                                     120
cagcetgege tacagegggg ccaetgeage eteggagaca etgteaggae aegggeeeet
                                                                     180
ggctgagccc ttaacgctgc aggtcctagt ggctggcaac ccgcagaacg cccgcctcag
                                                                     240
300
ggactggctg cgccgcaagt cacagattct ggagatcctc cggcggcgct cctgggccgg
                                                                     360
caggaaataa cctcaccatc ccggctgccc tttctgggca ccggggcctc ggacttagct
                                                                     420
gggtgaacga gagacctctg cagcggcctc accccgagac atcgtggggg aggggcttag
                                                                     480
tgagccccgc ctctcctccc cgcgctaccg agcaggctgg ccctgccggg gtttcctgcc
                                                                     540
ctggatggct ggtggatgga aggggctggg agattgtccc ctatctaaac tgcccctct
                                                                     600
gccctgctgg tcacaggagg gagggggaag gcaggga
                                                                     637
      <210> 20
      <211> 122
      <212> PRT
      <213> Bos taurus
      <400> 20
Glu Thr Leu Ala Ile Trp Ser Asn Tyr Leu Ala Leu Lys Leu Pro Asp
                                    10
Gly Ser Tyr Ala Leu Asn Gly Glu Tyr Thr Leu Ile Pro Ser Pro Thr
Asp Val Val Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser Gly Ala Thr
Ala Ala Ser Glu Thr Leu Ser Gly His Gly Pro Leu Ala Glu Pro Leu
                       55
Thr Leu Gln Val Leu Val Ala Gly Asn Pro Gln Asn Ala Arg Leu Arg
                                       75
Tyr Ser Phe Phe Val Pro Arg Pro Arg Pro Val Pro Ser Thr Pro Arg
                85
                                    90
Pro Thr Pro Gln Asp Trp Leu Arg Arg Lys Ser Gln Ile Leu Glu Ile
                               105
Leu Arg Arg Ser Trp Ala Gly Arg Lys
        115
      <210> 21
      <211> 1143
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(1143)
      \langle 223 \rangle n = A,T,C or G
      <400> 21
acticactata gggctcgtgc ggccgcccgg gcaggtatct ttaagcatcc cagcatcctc
                                                                     60
```

```
aaccccatca acatcgttgt ggtcaaggtg ctgcttctta gagatcgtga ctccgggccc
                                                                       120
                                                                       180
aaggtcaccg gcaatgcggc cctgacgctg cgcaacttct gtgcctggca gaagaagctg
aacaaagtga gtgacaagca ccccgagtac tgggacactg ccatcctctt caccaggcag
                                                                       240
gacctgtgtg gagccaccac ctgtgacacc ctgggcatgg ctgatgtggg taccatgtgt
                                                                       300
                                                                       360
gaccccaaga gaagetgete tgteattgag gacgatggge ttecateage etteaceact
gcccacgagc tgggccacgt gttcaacatg ccccatgaca atgtgaaagt ctgtgaggag
                                                                       420
gtgtttggga agctccgagc caaccacatg atgtccccga ccctcatcca gatcgaccgt
                                                                       480
                                                                       540
gccaacccct ggtcagcctg cagtgctgcc atcatcaccg actttctgga cagcgggcac
                                                                      600
ggtgactgcc tcctggacca acccagcaag cccatcttcc tgccgagnga tctgccgggc
gecagetaca ceetgageca geartgegag etggettttg gegtgggett caageeetgt
                                                                       660
                                                                       720
ccttacatgc agtactgcac caagctgtgg tgcaccggga aggccaaggg acagatggtg
tgccaaaccc gccacttccc ctgggccgat ggcaccagtt gtggcgaggg caagttctgc
                                                                       780
ctcaaagggg cctgcgtgga aaracacaac ctcaacaagc acagggtgga tggttcctgg
                                                                       840
                                                                       900
gccaaatggg atccctatgg ccctgctcg cgcacatgtg gtgggggggt gcagctggcc
aggaggcagn tgcaccaacc ccancccctg ccaacngggg gcaagtactg cgagggagtg
                                                                       960
agggtgaaat accgatectg caacctggag ceetgeeeca geteageete eggaaagage
                                                                      1020
ttccqqqaqq aqcaqtqtqa qqctttcaac qqctacaacc acaqcaccaa ccqqctcact
                                                                      1080
ctcgccgtgg catgggtgcc caagtactcc ggcgtgtctc cccgtgacaa gtgtaagctc
                                                                      1140
                                                                      1143
atc
```

<210> 22

<211> 381

<212> PRT

<213> Homo sapien

<220>

<221> VARIANT

<222> (1) ... (381)

<223> Xaa = Any Amino Acid

<400> 22

Thr His Tyr Arg Ala Arg Ala Ala Arg Ala Gly Ile Phe Lys His 10 Pro Ser Ile Leu Asn Pro Ile Asn Ile Val Val Lys Val Leu Leu Leu Arg Asp Arg Asp Ser Gly Pro Lys Val Thr Gly Asn Ala Ala Leu 40 Thr Leu Arg Asn Phe Cys Ala Trp Gln Lys Lys Leu Asn Lys Val Ser 55 Asp Lys His Pro Glu Tyr Trp Asp Thr Ala Ile Leu Phe Thr Arg Gln 70 75 Asp Leu Cys Gly Ala Thr Thr Cys Asp Thr Leu Gly Met Ala Asp Val 90 Gly Thr Met Cys Asp Pro Lys Arg Ser Cys Ser Val Ile Glu Asp Asp 105 100 Gly Leu Pro Ser Ala Phe Thr Thr Ala His Glu Leu Gly His Val Phe 120 Asn Met Pro His Asp Asn Val Lys Val Cys Glu Glu Val Phe Gly Lys Leu Arg Ala Asn His Met Met Ser Pro Thr Leu Ile Gln Ile Asp Arg 160 155 150 Ala Asn Pro Trp Ser Ala Cys Ser Ala Ala Ile Ile Thr Asp Phe Leu 165 170 Asp Ser Gly His Gly Asp Cys Leu Leu Asp Gln Pro Ser Lys Pro Ile 180 185 190

```
Phe Leu Pro Xaa Asp Leu Pro Gly Ala Ser Tyr Thr Leu Ser Gln Gln
        195
                             200
Cys Glu Leu Ala Phe Gly Val Gly Phe Lys Pro Cys Pro Tyr Met Gln
                         215
                                             220
Tyr Cys Thr Lys Leu Trp Cys Thr Gly Lys Ala Lys Gly Gln Met Val
                                         235
Cys Gln Thr Arg His Phe Pro Trp Ala Asp Gly Thr Ser Cys Gly Glu
                245
                                     250
Gly Lys Phe Cys Leu Lys Gly Ala Cys Val Glu Xaa His Asn Leu Asn
                                 265
Lys His Arg Val Asp Gly Ser Trp Ala Lys Trp Asp Pro Tyr Gly Pro
                             280
Cys Ser Arg Thr Cys Gly Gly Gly Val Gln Leu Ala Arg Arg Gln Xaa
                        295
His Gln Pro Xaa Pro Leu Pro Thr Gly Gly Lys Tyr Cys Glu Gly Val
                    310
                                         315
                                                             320
Arg Val Lys Tyr Arg Ser Cys Asn Leu Glu Pro Cys Pro Ser Ser Ala
                                     330
Ser Gly Lys Ser Phe Arg Glu Glu Gln Cys Glu Ala Phe Asn Gly Tyr
            340
                                 345
Asn His Ser Thr Asn Arg Leu Thr Leu Ala Val Ala Trp Val Pro Lys
                            360
Tyr Ser Gly Val Ser Pro Arg Asp Lys Cys Lys Leu Ile
                        375
```

<210> 23

<211> 297

<212> DNA

<213> Rattus norvegicus

<400> 23

tccgcccttc cgggaggaac agtgtgaaaa atataatgcc tacaaccaca cggacctgga 60
tgggaatttc cttcagtggg tccccaaata ctcaggagtg tcccccgag accgatgcaa 120
actgttttgc agagcccgtg ggaggagtga gttcaaagtg tttgaaacta aggtgatcga 180
tggcactctg tgcggaccgg atactctggc catctgtgtg cggggacagt gcgttaaggc 240
tggctgtgac catgtggtga actcacctaa gaagctggac aagtgcggta tctgtgg 297

<210> 24

<211> 98

<212> PRT

<213> Rattus norvegicus

<400> 24

 Pro
 Pro
 Phe
 Arg
 Glu
 Glu
 Glu
 Cys
 Glu
 Lys
 Tyr
 Asn
 Ala
 Tyr
 Asn
 His

 1
 5
 6
 10
 10
 15
 15
 15

 Thr
 Asp
 Leu
 Asp
 Pro
 Lys
 Asp
 Ser
 Gly
 Asp
 Pro
 Leu
 Asp
 Arg
 Pro
 Arg
 A

```
Ile Cys
```

<210> 25 <211> 823 <212> DNA <213> Rattus norvegicus <400> 25 cccctggatg tggtcaaagt gcagtcggaa gtacatcacc gagttcttag acactgggta 60 tggagagtgc ttgttaaatg aacctcaatc caggacctat cctttgcctt cccaactgcc 120 cggccttctc tacaacgtga ataaacaatg tgaactgatt tttggaccag gctctcaagt 180 240 gtgcccatat atgatgcagt gcagacggct ctggtgcaat aacgtggatg gagcacacaa aggetgeagg acteageaca egecetggge agatggaace gagtgtgage etggaaagea 300 ctgcaagttt ggattctgtg ttcccaaaga aatggagggc cctgcaattg atggatcctg 360 420 gggaagttgg agtcactttg gggcctgctc aagaacatgt ggaggaggca tcagaacagc catcagagag tgcaacagac cagagccaaa aaatggtggg aggtactgtg tagggaggag 480 aatraagttc aaatcctgca acaccgagcc ctgcccgaag cacaagcgag acttccgtga 540 600 ggagcagtgt gcttactttg acggcaagca tttcaacatc aatggtctgc tgcccagtgt acgctgggtc cctaagtaca gtggaatttt gatgaaggac cgatgcaagt tgttctgcag 660 agtggcagga aacacagcct actaccagct tcgagacaga gtgattgacg gaaccccctg 720 tggccaggac acaaatgaca tctgtgtcca aggcctttgc cggcaagctg gatgtgatca 780 823 tactttaaac tcaaaggccc ggaaagataa atgtgggatt tgt <210> 26 <211> 274 <212> PRT <213> Rattus norvegicus <220> <221> VARIANT <222> (1)...(274) <223> Xaa = Any Amino Acid <400> 26 Pro Trp Met Trp Ser Lys Cys Ser Arg Lys Tyr Ile Thr Glu Phe Leu 10 Asp Thr Gly Tyr Gly Glu Cys Leu Leu Asn Glu Pro Gln Ser Arg Thr 25 30 Tyr Pro Leu Pro Ser Gln Leu Pro Gly Leu Leu Tyr Asn Val Asn Lys Gln Cys Glu Leu Ile Phe Gly Pro Gly Ser Gln Val Cys Pro Tyr Met 55 Met Gln Cys Arg Arg Leu Trp Cys Asn Asn Val Asp Gly Ala His Lys 70 75 Gly Cys Arg Thr Gln His Thr Pro Trp Ala Asp Gly Thr Glu Cys Glu Pro Gly Lys His Cys Lys Phe Gly Phe Cys Val Pro Lys Glu Met Glu Gly Pro Ala Ile Asp Gly Ser Trp Gly Ser Trp Ser His Phe Gly Ala 120 Cys Ser Arg Thr Cys Gly Gly Gly Ile Arg Thr Ala Ile Arg Glu Cys 135 140 Asn Arg Pro Glu Pro Lys Asn Gly Gly Arg Tyr Cys Val Gly Arg Arg 150 155

Xaa Lys Phe Lys Ser Cys Asn Thr Glu Pro Cys Pro Lys His Lys Arg Asp Phe Arg Glu Glu Gln Cys Ala Tyr Phe Asp Gly Lys His Phe Asn 185 Ile Asn Gly Leu Leu Pro Ser Val Arg Trp Val Pro Lys Tyr Ser Gly 195 200 205 Ile Leu Met Lys Asp Arg Cys Lys Leu Phe Cys Arg Val Ala Gly Asn 215 220 Thr Ala Tyr Tyr Gln Leu Arg Asp Arg Val Ile Asp Gly Thr Pro Cys 230 235 Gly Gln Asp Thr Asn Asp Ile Cys Val Gln Gly Leu Cys Arg Gln Ala 245 250 Gly Cys Asp His Thr Leu Asn Ser Lys Ala Arg Lys Asp Lys Cys Gly 265 Ile Cys

<210> 27 <211> 1073

<212> PRT

<213> Homo sapien

<400> 27

Met Gln Phe Val Ser Trp Ala Thr Leu Leu Thr Leu Leu Val Arg Asp 10 Leu Ala Glu Met Gly Ser Pro Asp Ala Ala Ala Ala Val Arg Lys Asp 25 Arg Leu His Pro Arg Gln Val Lys Leu Leu Glu Thr Leu Gly Glu Tyr 40 Glu Ile Val Ser Pro Ile Arg Val Asn Ala Leu Gly Glu Pro Phe Pro Thr Asn Val His Phe Lys Arg Thr Arg Arg Ser Ile Asn Ser Ala Thr 70 75 Asp Pro Trp Pro Ala Phe Ala Ser Ser Ser Ser Ser Ser Thr Ser Ser 90 Gln Ala His Tyr Arg Leu Ser Ala Phe Gly Gln Gln Phe Leu Phe Asn 105 Leu Thr Ala Asn Ala Gly Phe Ile Ala Pro Leu Phe Thr Val Thr Leu 120 125 Leu Gly Thr Pro Gly Val Asn Gln Thr Lys Phe Tyr Ser Glu Glu Glu 135 Ala Glu Leu Lys His Cys Phe Tyr Lys Gly Tyr Val Asn Thr Asn Ser 150 155 Glu His Thr Ala Val Ile Ser Leu Cys Ser Gly Met Leu Gly Thr Phe 165 170 Arg Ser His Asp Gly Asp Tyr Phe Ile Glu Pro Leu Gln Ser Met Asp 185 Glu Gln Glu Asp Glu Glu Gln Asn Lys Pro His Ile Ile Tyr Arg 200 Arg Ser Ala Pro Gln Arg Glu Pro Ser Thr Gly Arg His Ala Cys Asp 215 220 Thr Ser Glu His Lys Asn Arg His Ser Lys Asp Lys Lys Thr Arg 230 235 Ala Arg Lys Trp Gly Glu Arg Ile Asn Leu Ala Gly Asp Val Ala Ala Leu Asn Ser Gly Leu Ala Thr Glu Ala Phe Ser Ala Tyr Gly Asn Lys

			260					265					270		
Thr	Asp	Asn 275		Arg	Glu	Lys	Arg 280			Arg	Arg	Thr 285	Lys	Arg	Phe
Leu	Ser 290	Tyr	Pro	Arg	Phe	Val 295	Glu	Val	Leu	Val	Val 300	Ala	Asp	Asn	Arg
Met 305	Val	Ser	Tyr	His	Gly 310	Glu	Asn	Leu	Gln	His 315	Tyr	Ile	Leu	Thr	Leu 320
Met	Ser	Ile	Val	Ala 325	Ser	Ile	Tyr	Lys	Asp 330	Pro	Ser	Ile	Gly	Asn 335	Leu
			340					345					Glu 350		_
-		355					360					365	Asn		
	370					375					380		His		
385					390					395			Asp		400
				405					410				Pro	415	
	_		420					425					Phe 430		
		435		_			440					445	Asp		
_	450	_			_	455	_				460		Met		
465					470					475			Cys		480
	_			485			_		490	_	_		Cys	495	
			500					505					Leu 510		
		515					520					525	Gly		
	530				_	535				_	540		Trp		
545					550					555			Thr		560
				565					570				Tyr	575	
			580					585					Ser 590 Gly		
		595					600					605			
	610					615					620		Asn		
625					630					635			Asn		640
				645					650				Cys	655	
	Ī	_	660					665	_				Asn 670		
		675					680					685	Cys		
Phe	Cys 690	Arg	Val	Ala	Gly	Asn 695	Thr	Ala	Tyr	Tyr	Gln 700	Leu	Arg	Asp	Arg

```
Val Ile Asp Gly Thr Pro Cys Gly Gln Asp Thr Asn Asp Ile Cys Val
                                        715
                    710
Gln Gly Leu Cys Arg Gln Ala Gly Cys Asp His Val Leu Asn Ser Lys
                725
                                    730
Ala Arg Arg Asp Lys Cys Gly Val Cys Gly Gly Asp Asn Ser Ser Cys
                                745
Lys Thr Val Ala Gly Thr Phe Asn Thr Val His Tyr Gly Tyr Asn Thr
                            760
Val Val Arg Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Arg Gln His
                        775
                                            780
Ser Phe Ser Gly Glu Thr Asp Asp Asp Asn Tyr Leu Ala Leu Ser Ser
                    790
                                        795
Ser Lys Gly Glu Phe Leu Leu Asn Gly Asn Phe Val Val Thr Met Ala
                805
                                    810
Lys Arg Glu Ile Arg Ile Gly Asn Ala Val Val Glu Tyr Ser Gly Ser
                                825
Glu Thr Ala Val Glu Arg Ile Asn Ser Thr Asp Arg Ile Glu Gln Glu
                            840
Leu Leu Gln Val Leu Ser Val Gly Lys Leu Tyr Asn Pro Asp Val
                        855
Arg Tyr Ser Phe Asn Ile Pro Ile Glu Asp Lys Pro Gln Gln Phe Tyr
                    870
                                        875
Trp Asn Ser His Gly Pro Trp Gln Ala Cys Ser Lys Pro Cys Gln Gly
                                    890
Glu Arg Lys Arg Lys Leu Val Cys Thr Arg Glu Ser Asp Gln Leu Thr
                              . 905
                                                    910
Val Ser Asp Gln Arg Cys Asp Arg Leu Pro Gln Pro Gly His Ile Thr
                            920
Glu Pro Cys Gly Thr Asp Cys Asp Leu Arg Trp His Val Ala Ser Arg
                        935
                                            940
Ser Glu Cys Ser Ala Gln Cys Gly Leu Gly Tyr Arg Thr Leu Asp Ile
                                        955
Tyr Cys Ala Lys Tyr Ser Arg Leu Asp Gly Lys Thr Glu Lys Val Asp
                                    970
Asp Gly Phe Cys Ser Ser His Pro Lys Pro Ser Asn Arg Glu Lys Cys
                                985
Ser Gly Glu Cys Asn Thr Gly Gly Trp Arg Tyr Ser Ala Trp Thr Glu
                            1000
Cys Lys Ser Lys Ser Cys Asp Gly Gly Thr Gln Arg Arg Ala Ile
                        1015
                                            1020
Cys Val Asn Thr Arg Asn Asp Val Leu Asp Asp Ser Lys Cys Thr His
                   1030
                                        1035
Gln Glu Lys Val Thr Ile Gln Arg Cys Ser Glu Phe Pro Cys Pro Gln
                                    1050
Trp Lys Ser Gly Asp Trp Ser Glu Val Arg Trp Glu Gly Cys Tyr Phe
            1060
                                1065
Pro
```

<210> 28

<211> 951

<212> PRT

<213> Mus musculus

<400> 28

Met Gly Asp Val Gln Arg Ala Ala Arg Ser Arg Gly Ser Leu Ser Ala

1				5					10					15	
	Met	Leu	Leu 20	_	Leu	Leu	Ala	Ser 25		Thr	Meț	Leu	Leu 30	Cys	Ala
_	_	35		_			40					45		Val	
	50		•			55					60			Arg	
65					70					75				Pro	80
				85					90					Arg 95	
			100					105					110	Ala	
_		115					120					125		Ala	
	130		_			135					140			Gly	
145					150					155				Leu	160
				165					170					His 175	
			180					185					190	Val Gln	
		195					200	•				205		Ala	
	210					215					220			Ser	
225			Δ.		230					235				Ala	240
	_			245					250					255 Ser	
			260					265					270	Ser	
		275		_			280					285		Pro	
	290		_			295					300			Trp	
305					310					315				Asp	320
				325					330					335 Cys	
			340					345					350	Arg	
		355					360					365		Thr	
	370					375					380			Lys	
385					390					395				Ala	400
_				405					410					415 Ser	
			420					425					430		
ıyr	met	435	ınr	ser	гле	ren	440	ASI	GIA	RIS	ary	445	Cys	Leu	1-1C C

Asp	Lys 450	Pro	Gln	Asn	Pro	Ile 455	Lys	Leu	Pro	Ser	Asp	Leu	Pro	Gly	Thr
Leu 465	Tyr	Asp	Ala	Asn	Arg	Gln	Cys	Gln	Phe	Thr 475	Phe	Gly	Glu	Glu	Ser 480
Lys	His	Cys	Pro	Asp 485	Ala	Ala	Ser	Thr	Cys 490	_	Thr	Leu	Trp	Cys 495	
Gly	Thr	Ser	Gly 500		Leu	Leu	Val	Cys 505		Thr	Lys	His	Phe 510		Trp
Ala	Asp	Gly 515		Ser	Cys	Gly	Glu 520		Lys	Trp	Cys	Val 525		Gly	Lys
Cys	Val 530		Lys	Thr	Asp	Met 535		His	Phe	Ala			Val	His	Gly
Ser 545		Gly	Pro	Trp	Gly 550		Trp	Gly	Asp	Cys 555	540 Ser	Arg	Thr	Cys	_
	Gly	Val	Gln	Tyr 565	Thr	Met	Arg	Glu	Cys 570		Asn	Pro	Val	Pro 575	560 Lys
Asn	Gly	Gly	Lys 580		Cys	Glu	Gly	Lys 585		Val	Arg	Tyr	Arg 590		Cys
Asn	Ile	Glu 595		Cys	Pro	Asp	Asn 600		Gly	Lys	Thr	Phe 605		Glu	Glu
Gln	Cys 610		Ala	His	Asn	Glu 615		Ser	Lys	Ala	Ser 620		Gly	Asn	Glu
Pro 625		Val	Glu	Trp	Thr 630		Lys	Tyr	Ala	Gly 635		Ser	Pro	Lys	Asp 640
Arg	Cys	Lys	Leu	Thr 645	Cys	Glu	Ala	Lys	Gly 650		Gly	Tyr	Phe	Phe 655	
Leu	Gln	Pro	Lys 660		Val	Asp	Gly	Thr 665		Cys	Ser	Pro	Asp 670		Thr
Ser	Val	Cys 675	Val	Gln	Gly	Gln	Cys 680	Val	Lys	Ala	Gly	Cys 685		Arg	Ile
Ile	Asp 690	Ser	Lys	Lys	Lys	Phe 695	Asp	Lys	Cys	Gly	Val 700	Cys	Gly	Gly	Asn
Gly 705	Ser	Thr	Cys	Lys	Lys 710	Met	Ser	Gly	Ile	Val 715	Thr	Ser	Thr	Arg	Pro 720
Gly	Tyr	His	Asp	Ile 725	Val	Thr	Ile	Pro	Ala 730	Gly	Ala	Thr	Asn	Ile 735	Glu
Val	Lys	His	Arg 740	Asn	Gln	Arg	Gly	Ser 745	Arg	Asn	Asn	Gly	Ser 750	Phe	Leu
		755			Asp		760					765			
	770				Gln	775					780				_
785					Ala 790					795	_				800
				805	Thr				810					815	
			820		Phe			825					830		
		835			Thr		840					845			
Glu	Cys 850	Ser	Lys	Thr	Cys	Gly 855	Ser	Gly	Trp	Gln	Arg 860	Arg	Val	Val	Gln
Cys 865	Arg	Asp	Ile	Asn	Gly 870	His	Pro	Ala	Ser	Glu 875	Cys	Ala	Lys	Glu	Val 880
Lys	Pro	Ala	Ser	Thr	Arg	Pro	Суѕ	Ala	Asp	Leu	Pro	Cys	Pro	His	Trp

```
<210> 32
     <211> 6
      <212> PRT
      <213> Unknown
      <220>
      <223> Semiconserved sequence of ADAMTS protein domain
            that binds to the extracellular matrix
      <400> 32
Phe Arg Glu Glu Gln Cys
                 5
1
      <210> 33
      <211> 18
      <212> DNA
      <213> Artificial Sequence
      <223> Oligonucleotide derived from analysis of the
            sequences from ADAMTS-1 (mouse) and ADAMTS-3 (rat)
     <221> misc_feature
      <222> (1)...(18)
      <223> n = A,T,C or G
      <400> 33
                                                                        18
ttymgngarg arcartgy
      <210> 34
      <211> 18
     <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide derived from analysis of the
            sequences from ADAMTS-1 (mouse) and ADAMTS-3 (rat)
      <221> misc_feature
      <222> (1)...(18)
      <223> n = A,T,C or G
      <400> 34
                                                                        18
rcanaynccr cayttrtc
      <210> 35
      <211> 4
      <212> PRT
     <213> Homos sapien
      <223> Consensus catalytic sequence site based on ADAM
            and snake venom metalloproteases
```

```
<221> VARIANT
      <222> (3) ...(3)
      <223> Xaa = Lysine or Arginine
      <221> VARIANT
      <222> (1) ...(4)
      <223> Xaa = Any Amino Acid
      <400> 35
Arg Xaa Xaa Arg
1
      <210> 36
      <211> 7
      <212> PRT
      <213> Unknown
      <220>
      <223> Conserved heparin binding segment of internal TSP1
            motif of ADAM-TS family members
      <221> VARIANT
      <222> (2) ...(2)
      <223> Xaa = Serine of Glycine
      <221> VARIANT
      <222> (1) ...(7)
      <223> Xaa = Any Amino Acid
      <400> 36
Trp Xaa Xaa Trp Ser Xaa Trp
      <210> 37
      <211> 6
      <212> PRT
      <213> Unknown
      <220>
      <223> Conserved heparin binding segment of internal TSP1
            motif of ADAM-TS family members
      <400> 37
Cys Ser Val Thr Cys Gly
                 5
      <210> 38
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer
      <400> 38
```

```
24
caggggaaac agacgatgac aact
      <210> 39
      <211> 21
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer
      <400> 39
                                                                         21
tgcggtaacc caagccacac t
      <210> 40
      <211> 21
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer
      <400> 40
                                                                         21 .
gtgcgctggg tccctaaata c
      <210> 41
      <211> 21
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer
      <400> 41
                                                                         21
aaaatcacag gttggcagcg g
      <210> 42
      <211> 12
      <212> PRT
      <213> Unknown
      <220>
      <223> Zn binding site
      <400> 42
His Glu Leu Gly His Asn Leu Gly Ile Arg His Asp
      <210> 43
      <211> 12
      <212> PRT
      <213> Unknown
      <220>
      <223> Zn binding site
```

```
<400> 43
His Glu Leu Gly His Asn Phe Gly Ala Glu His Asp
                5
      <210> 44
      <211> 12
      <212> PRT
      <213> Unknown
      <220>
      <223> Zn binding site
      <400> 44
His Glu Ile Gly His Asn Phe Gly Ser Pro His Asp
      <210> 45
      <211> 12
      <212> PRT
      <213> Homo sapien
      <400> 45
His Glu Leu Gly His Val Phe Asn Met Pro His Asp
1
                 5
      <210> 46
      <211> 12
      <212> PRT
      <213> Homo sapien
      <400> 46
His Glu Thr Gly His Val Leu Gly Met Glu His Asp
      <210> 47
      <211> 12
      <212> PRT
      <213> Homo sapien
      <400> 47
His Glu Leu Gly His Val Phe Asn Met Leu His Asp
                 5
      <210> 48
      <211> 12
      <212> PRT
      <213> Homo sapien
      <400> 48
His Glu Ile Gly His Leu Leu Gly Leu Ser His Asp
                 5
      <210> 49
      <211> 12
      <212> PRT
```

```
<213> Homo sapien
      <400> 49
His Glu Leu Gly His Val Phe Asn Met Pro His Asp
      <210> 50
      <211> 12
      <212> PRT
      <213> C. elegans
      <400> 50
His Glu Leu Gly His Val Phe Ser Ile Pro His Asp
 1
                 5
      <210> 51
      <211> 12
      <212> PRT
      <213> Unknown
      <220>
      <223> Consensus catalytic sequence site based on ADAM
            and snake venom metalloproteases
     <221> VARIANT
      <222> (1)...(12)
      <223> Xaa = Any Amino Acid
     <400> 51
His Glu Xaa Gly His Xaa Xaa Gly Xaa Xaa His Asp
```

•

÷

•