GROUPE EM GABON-UNIVERSITE

PRESIDENCE

DIRECTION DE LA SCOLARITÉ ET DE LA MOBILITÉ

École d'Ingénieurs de Libreville

MATIERE:	OPTIQUE GEOMETRIQUE
NIVEAU:	Licence 1
CLASSE/MAJEURE	L1 Génie Informatique et Maintenance
TYPE D'EXAMEN	Rattrapage semestre 1
DURÉE:	02H
ENSEIGNANT:	ELOMBO RODOLPHE

OPTIQUE GEOMETRIQUE

Exercice 1 (08 points)

Un prisme de verre, d'angle $A = 60^{\circ}$ constitué d'un verre d'indice n = 1,4 se retrouve dans un milieu d'indice 1. Un rayon lumineux le traverse au point I (voire la figure ci-dessous).

- 1) Quelle est la condition d'émergence du rayon incident lorsque A et n sont fixes:
- 2) Calculer les angles r et r'
- 3) Déterminer l'angle du rayon émergent i'.
- 4) Calculer la déviation D du rayon émergent i' par rapport au rayon incident i.
- 5) Compléter la figure ci-dessus

GROUPE EM GABON-UNIVERSITE

PRESIDENCE

DIRECTION DE LA SCOLARITÉ ET DE LA MOBILITÉ

École d'Ingénieurs de Libreville

Exercice 2: (12 points)

Une onde lumineuse parcourt le vide à la vitesse de 3.10^8 m/s et traverse un verre de photocopieuse au point d'incidence I. (On donne : indice du verre n=1,5 ; épaisseur du verre e=10mm).

- 1. Comment appelle-t-on la vitesse de la lumière dans le vide ?
- 2. Quelle est la longueur de cette onde, si sa durée de parcours dans le vide est de 0,003 ns (ns : nanoseconde) ?
- 3. Cette onde est-elle visible? Sinon quel est l'intervalle des ondes visibles?
- 4. Quelle est la vitesse de cette onde lumineuse lorsqu'elle traverse le verre?
- 5. Calculer l'angle de réfraction i' dans le verre, si son angle d'incidence i est de 60°.
- 6. Déterminer l'angle de réfraction r de l'onde émergente sur la deuxième face du verre au point I'
- 7. Y'a-t-il déviation entre l'angle incident i et l'angle de réfraction r sur la deuxième face du verre ? Que constate-t-on ?
- 8. Déterminer l'angle de réfraction limite au point d'incidence I.
- 9. Faire le schéma du passage de l'onde dans la vitre, en y reportant tous les angles (i ; i' ; r ; les points I et I' points d'incidence et les normales respectives NI et N'I'.

Bonne chance!!!