Package 'radiant'

May 10, 2015

```
Title Business Analytics using R and Shiny
Version 0.2.11
Date 2015-5-9
Description A platform-independent browser-
      based interface for business analytics in R, based on the Shiny package.
Depends R (>= 3.1.0),
      magrittr (>= 1.5),
      ggplot2 (>= 1.0.0),
      tidyr (>= 0.2.0),
      dplyr (>= 0.4.1)
Imports car (>= 2.0.22),
      MASS (>= 7.3),
      gridExtra (>= 0.9.1),
      AlgDesign (>= 1.1.7.3),
      GPArotation (>= 2014.11.1),
      psych (>= 1.4.8.11),
      wordcloud (>= 2.5),
      markdown (>= 0.7.4),
      knitr (>= 1.8),
      ggdendro (>= 0.1.15),
      broom (>= 0.3.6),
      pryr (>= 0.1),
      yam1 (>= 2.1.13),
      htmlwidgets (>= 0.3.3),
      rpivotTable (>= 0.1.3.4),
      shiny (>= 0.11.1.9004),
      shinyAce (>= 0.2.1),
      lubridate (>= 1.3.3),
      DT (>= 0.0.41)
Suggests rmarkdown (>= 0.4.2),
      ggvis (>= 0.4),
      devtools (>= 1.7.0),
      testthat (>= 0.9.1),
      covr (>= 0.2.0.9002)
URL https://github.com/vnijs/radiant, http://vnijs.github.io/radiant/
BugReports https://github.com/vnijs/radiant/issues
License AGPL-3 | file LICENSE
```

LazyData true

R topics documented:

avengers	4
ca_the_table	4
changedata	5
city	6
clean_loadings	6
combinedata	7
compare_means	8
compare_props	9
computer	10
conjoint	10
conjoint_profiles	11
copy_all	12
copy_from	12
correlation	13
	13
cross_tabs	
ev	14
diamonds	15
explore	15
ff_design	16
full_factor	17
getclass	18
getdata	18
getsummary	19
glm_reg	19
hier_clus	20
is_empty	21
is_string	22
kmeans_clus	22
kurtosi	23
launcher	24
lin_launcher	24
mac_launcher	25
 max_rm	26
mds	26
mean_rm	27
median_rm	28
min_rm	28
mp3	29
newspaper	29
nmissing	30
p25	30
	31
plot.compare_means	31
plot.compare_props	32
plot.conjoint	33
plot.correlation	33
plot.cross_tabs	34
plot.explore	35

plot.full_factor
plot.glm_predict
plot.glm_reg
plot.hier_clus
plot.kmeans_clus
plot.mds
plot.pmap
plot.pre_factor
plot.regression
plot.reg_predict
plot.single_mean
plot.single_prop
pmap
predict.glm_reg
predict.regression
pre_factor
print.arrange
publishers
radiant
regression
rndnames
sample_size
sampling
save_factors
save_glm_resid
save_membership
save_reg_resid
sd_rm
serr
set_class
shopping
£=
<i>c</i> =
single_prop
skew
sshh
sshhr
state_init
state_multiple
state_single
summary.compare_means
summary.compare_props
summary.conjoint
summary.conjoint_profiles
summary.correlation
summary.cross_tabs
summary.explore
summary.full_factor
summary.glm_reg
summary.hier_clus
summary.kmeans_clus
summary.mds

ca_the_table

13
4
15
6
6
7
8
8
19
19
80
80
31
31
32
34

avengers

Index

Avengers

Description

Avengers

Usage

data(avengers)

Format

A data frame with 7 rows and 4 variables

Details

List of avengers. The dataset is used to illustrate data merging / joining. Description provided in attr(avengers, "description")

ca_the_table

Function to calculate the PW and IW table for conjoint

Description

Function to calculate the PW and IW table for conjoint

```
ca_the_table(model, dat, ca_indep_var)
```

changedata 5

Arguments

model Tidied model results (broom) output from conjoint passed on by summary.conjoint

dat Conjoint data

ca_indep_var Independent variables used in the conjoint regression

Details

```
See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant
```

See Also

```
conjoint to generate results
summary.conjoint to summarize results
plot.conjoint to plot results
```

Examples

```
result <- conjoint(dataset = "mp3", ca_dep_var = "Rating", ca_indep_var = "Memory:Shape")
ca_the_table(result$model, result$dat, result$ca_indep_var)</pre>
```

changedata

Change data

Description

Change data

Usage

```
changedata(dataset, vars = c(), var_names = names(vars))
```

Arguments

dataset Name of the dataframe to change vars New variables to add to the data.frame

var_names Names for the new variables to add to the data.frame

Value

None

```
r_data <<- list()
r_data$dat <<- data.frame(a = 1:20)
changedata("dat",20:1, "b")
head(r_data$dat)
rm(r_data, envir = .GlobalEnv)</pre>
```

6 clean_loadings

city

City distances

Description

City distances

Usage

```
data(city)
```

Format

A data frame with 45 rows and 3 variables

Details

Distance in miles between nine cities in the USA. The dataset is used to illustrate multi-dimensional scaling (MDS). Description provided in attr(city, "description")

clean_loadings

Sort and clean loadings

Description

Sort and clean loadings

Usage

```
clean_loadings(ff_loadings, ff_cutoff = 0, ff_sort = FALSE, ff_round = 8)
```

Arguments

ff_loadings Data.frame with loadings

ff_cutoff Show only loadings with (absolute) values above ff_cutoff (default = 0)

ff_sort Sort factor loadings
ff_round Number of digits to show

Details

```
See \label{lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html:lem:html
```

```
result <- full_factor("diamonds",c("price","carat","table","x","y"))
clean_loadings(result$ff_loadings, TRUE, .5, 2)</pre>
```

combinedata 7

combinedata	Combine datasets using dplyr's bind and join functions	

Description

Combine datasets using dplyr's bind and join functions

Usage

```
combinedata(dataset, dataset2, cmb_vars = "", cmb_type = "bind_rows",
   cmb_name = "cmb_data")
```

Arguments

dataset	Dataset name (string).	This can be a dataframe in	the global environment or an

element in an r_data list from Radiant

dataset2 Dataset name (string) to combine with 'dataset'. This can be a dataframe in the

global environment or an element in an r_data list from Radiant

cmb_vars Variables used to combine 'dataset' and 'dataset2'

cmb_type The main bind and join types from the dplyr package are provided. 'inner_join'

returns all rows from x with matching values in y, and all columns from x and y. If there are multiple matches between x and y, all match combinations are returned. 'left_join' returns all rows from x, and all columns from x and y. If there are multiple matches between x and y, all match combinations are returned. 'right_join' is equivalent to a 'left_join' for datasets y and x. 'full_join' combines two datasets, keeping rows and columns that appear in either. 'semi_join' returns all rows from x with matching values in y, keeping just columns from x. A semi join differs from an inner join because an inner join will return one row of x for each matching row of y, whereas a semi join will never duplicate rows of x. 'anti_join' returns all rows from x without matching values in y, keeping

only columns from x.

cmb_name Name for the combined dataset

Details

See http://vnijs.github.io/radiant/base/combine.html for an example in Radiant

Value

If list 'r_data' exists the combined dataset is added as 'cmb_name'. Else the combined dataset will be returned as 'cmb_name'

```
combinedata("titanic", "titanic_pred", c("pclass", "sex", "age")) %>% head
titanic %>% combinedata("titanic_pred", c("pclass", "sex", "age")) %>% head
titanic %>% combinedata(titanic_pred, c("pclass", "sex", "age")) %>% head
avengers %>% combinedata(superheroes, cmb_type = "bind_cols")
combinedata("avengers", "superheroes", cmb_type = "bind_cols")
avengers %>% combinedata(superheroes, cmb_type = "bind_rows")
```

8 compare_means

compare_me	ans

Compare means for two or more variables

Description

Compare means for two or more variables

Usage

```
compare_means(dataset, cm_var1, cm_var2, data_filter = "",
   cm_paired = "independent", cm_alternative = "two.sided",
   cm_sig_level = 0.95, cm_adjust = "none")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_{data} list from Radiant
cm_var1	A numeric variable or factor selected for comparison
cm_var2	One or more numeric variables for comparison. If cm_var1 is a factor only one variable can be selected and the mean of this variable is compared across (factor) levels of cm_var1
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
cm_paired	Are samples indepent ("independent") or not ("paired")
cm_alternative	The alternative hypothesis ("two.sided", "greater" or "less")
cm_sig_level	Span of the confidence interval
cm_adjust	Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)

Details

See http://vnijs.github.io/radiant/quant/compare_means.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class compare_means

See Also

```
summary.compare_means to summarize results
plot.compare_means to plot results
```

```
result <- compare_means("diamonds","cut","price")
result <- diamonds %>% compare_means("cut","price")
```

compare_props 9

|--|

Description

Compare proportions across groups

Usage

```
compare_props(dataset, cp_var1, cp_var2, data_filter = "", cp_levels = "",
    cp_alternative = "two.sided", cp_sig_level = 0.95, cp_adjust = "none")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_{data} list from Radiant
cp_var1	A grouping variable to split the data for comparisons
cp_var2	The variable to calculate proportions for
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
cp_levels	The factor level selected for the proportion comparison
cp_alternative	The alternative hypothesis ("two.sided", "greater" or "less")
cp_sig_level	Span of the confidence interval
cp_adjust	Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)

Details

```
See \ http://vnijs.github.io/radiant/quant/compare\_props.html \ for \ an \ example \ in \ Radiant
```

Value

A list of all variables defined in the function as an object of class compare_props

See Also

```
summary.compare_props to summarize results
plot.compare_props to plot results
```

```
result <- compare_props("titanic", "pclass", "survived")
result <- titanic %>% compare_props("pclass", "survived")
```

10 conjoint

com	рu	te	r
COIII	РЧ	·	

Perceptions of computer (re)sellers

Description

Perceptions of computer (re)sellers

Usage

```
data(computer)
```

Format

A data frame with 5 rows and 8 variables

Details

Perceptions of computer (re)sellers. The dataset is used to illustrate perceptual maps. Description provided in attr(computer, "description")

COD	ъ.	\sim	٦.	n	+
con		u	1		ι

Conjoint analysis

Description

Conjoint analysis

Usage

```
conjoint(dataset, ca_dep_var, ca_indep_var, data_filter = "",
    ca_rev = FALSE)
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
ca_dep_var	The dependent variable (e.g., profile ratings)
ca_indep_var	Independent variables in the regression
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
ca_rev	Reverse the values of the dependent variable ('ca_dep_var')

Details

See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class conjoint

conjoint_profiles 11

See Also

```
summary.conjoint to summarize results
plot.conjoint to plot results
```

Examples

```
result <- conjoint("mp3", ca_dep_var = "Rating", ca_indep_var = "Memory:Shape")
result <- mp3 %>% conjoint(ca_dep_var = "Rating", ca_indep_var = "Memory:Shape")
```

conjoint_profiles

Create fractional factorial design for conjoint analysis

Description

Create fractional factorial design for conjoint analysis

Usage

```
conjoint_profiles(dataset)
```

Arguments

dataset

Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant

Details

See http://vnijs.github.io/radiant/marketing/conjoint_profiles.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class conjoint_profiles

See Also

```
summary.conjoint_profiles to summarize results
```

12 copy_from

copy_all

Source all package functions

Description

Source all package functions

Usage

```
copy_all(.from)
```

Arguments

.from

The package to pull the function from

Details

Equivalent of source with local=TRUE for all package functions. Adapted from functions by smbache, author of the import package. See https://github.com/smbache/import/issues/4 for a discussion. This function will be depracated when (if) it is included in https://github.com/smbache/import

Examples

```
copy_all(radiant)
```

copy_from

Source for package functions

Description

Source for package functions

Usage

```
copy_from(.from, ...)
```

Arguments

```
. from The package to pull the function from. . . Functions to pull
```

Details

Equivalent of source with local=TRUE for package functions. Written by smbache, author of the import package. See https://github.com/smbache/import/issues/4 for a discussion. This function will be depracated when (if) it is included in https://github.com/smbache/import

```
copy_from(radiant, state_init)
```

correlation 13

correlation Calculate correlations for two or more variables
--

Description

Calculate correlations for two or more variables

Usage

```
correlation(dataset, cor_var, data_filter = "", cor_type = "pearson")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
cor_var	Variables to include in the analysis
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
cor_type	Type of correlations to calculate. Options are "pearson", "spearman", and "kendall". "pearson" is the default

Details

See http://vnijs.github.io/radiant/quant/correlation.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class compare_means

See Also

```
summary.correlation to summarize results
plot.correlation to plot results
```

```
result <- correlation("diamonds",c("price","carat","clarity"))
result <- correlation("diamonds",c("price:table"))</pre>
```

14 cv

cross	tabs

Evaluate associations between categorical variables

Description

Evaluate associations between categorical variables

Usage

```
cross_tabs(dataset, ct_var1, ct_var2, data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
ct_var1	A categorical variable
ct_var2	Another categorical variable
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/quant/cross_tabs.html for an example in Radiant

Value

A list of all variables used in cross_tabs as an object of class cross_tabs

See Also

```
summary.cross_tabs to summarize results
plot.cross_tabs to plot results
```

Examples

```
result <- cross_tabs("newspaper", "Income", "Newspaper")</pre>
```

C۷

Coefficient of variation

Description

Coefficient of variation

```
cv(x, na.rm = TRUE)
```

diamonds 15

Arguments

x Input variable

na.rm If TRUE missing values are removed before calculation

Value

Coefficient of variation

Examples

```
cv(runif (100))
```

diamonds

Diamond prices

Description

Diamond prices

Usage

data(diamonds)

Format

A data frame with 3000 rows and 10 variables

Details

A sample of 3,000 from the diamonds dataset bundeled with ggplot2. Description provided in attr(diamonds,"description")

explore

Explore data

Description

Explore data

```
explore(dataset, expl_vars = "", data_filter = "", expl_byvar = "",
    expl_fun = c("length", "mean_rm"))
```

16 ff_design

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
expl_vars	(Numerical) variables to summaries
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
expl_byvar	Variable(s) to group data by before summarizing
expl_fun	Functions to use for summarizing

Details

See http://vnijs.github.io/radiant/base/explore.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class explore

See Also

```
summary.explore to show summaries plot.explore to plot summaries
```

Examples

```
result <- explore("diamonds", "price:x")
summary(result)
result <- explore("diamonds", "price", expl_byvar = "cut", expl_fun = c("length", "skew"))
summary(result)</pre>
```

ff_design

Function to generate a fractional factorial design

Description

Function to generate a fractional factorial design

Usage

```
ff_design(attr, trial = 0, rseed = 172110)
```

Arguments

attr	Attributes used to generate profiles
trial	Number of trials that have already been run

rseed Random seed to use

Details

See http://vnijs.github.io/radiant/marketing/conjoint_profiles.html for an example in Radiant

full_factor 17

See Also

```
conjoint_profiles to calculate results
summary.conjoint_profiles to summarize results
```

full_factor

Factor analysis (PCA)

Description

Factor analysis (PCA)

Usage

```
full_factor(dataset, ff_var, data_filter = "", ff_meth = "PCA",
    ff_number = 2, ff_rotation = "varimax")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
ff_var	Variables to include in the analysis
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
ff_meth	Factor extraction method to use
ff_number	Number of factors to extract
ff_rotation	Apply varimax rotation or no rotation ("varimax" or "none")

Details

See $http://vnijs.github.io/radiant/marketing/full_factor.html \ for \ an \ example \ in \ Radiant$

Value

A list with all variables defined in the function as an object of class full_factor

See Also

```
summary.full_factor to summarize results
plot.full_factor to plot results
```

```
result <- full_factor("diamonds",c("price","carat","table","x","y"))
result <- full_factor("diamonds",c("price","carat","table","x","y"), ff_meth = "maxlik")
summary(result)</pre>
```

18 getdata

getclass

Get variable class

Description

Get variable class

Usage

```
getclass(dat)
```

Arguments

dat

Dataset to evaluate

Details

Get variable class information for each column in a data.frame

Value

Vector with class information for each variable

Examples

```
getclass(mtcars)
```

getdata

Get data for analysis functions

Description

Get data for analysis functions

Usage

```
getdata(dataset, vars = "", na.rm = TRUE, filt = "", slice = "")
```

Arguments

dataset	Name of the dataframe
vars	Variables to extract from the dataframe
na.rm	Remove rows with missing values (default is TRUE)
filt	Filter to apply to the specified dataset. For example "price > 10000 " if dataset is "diamonds" (default is "")
slice	Select a slice of the specified dataset. For example "1:10" for the first 10 rows or "n()-10:n()" for the last 10 rows (default is ""). Not in Radiant GUI

getsummary 19

Value

Data.frame with specified columns and rows

Examples

```
r_data <<- list()
r_data$dat <<- mtcars
getdata("dat","mpg:vs", filt = "mpg > 20", slice = "1:5")
rm(r_data, envir = .GlobalEnv)
```

getsummary

Create data.frame summary

Description

Create data.frame summary

Usage

```
getsummary(dat, dc = getclass(dat))
```

Arguments

dat Data.frame

dc Class for each variable

Details

Used by Explore and Transform

glm_reg

Generalized linear models (GLM)

Description

Generalized linear models (GLM)

```
glm_reg(dataset, glm_dep_var, glm_indep_var, data_filter = "",
   glm_levels = "", glm_link = "logit", glm_int_var = "", glm_check = "")
```

20 hier_clus

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
glm_dep_var	The dependent variable in the logit (probit) model
glm_indep_var	Independent variables in the model
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
glm_levels	The level in the dependent variable defined as _success_
glm_link	Link function for _glm_ ('logit' or 'probit'). 'logit' is the default
glm_int_var	Interaction term to include in the model (not implement)
glm_check	Optional output or estimation parameters. "vif" to show the multicollinearity diagnostics. "confint" to show coefficient confidence interval estimates. "odds" to show odds ratios and confidence interval estimates. "standardize" to output standardized coefficient estimates. "stepwise" to apply step-wise selection of variables

Details

See http://vnijs.github.io/radiant/quant/glm_reg.html for an example in Radiant

Value

A list with all variables defined in glm_reg as an object of class glm_reg

See Also

```
summary.glm_reg to summarize the results
plot.glm_reg to plot the results
predict.glm_reg to generate predictions
plot.glm_predict to plot prediction output
```

Examples

```
result <- glm_reg("titanic", "survived", c("pclass","sex"), glm_levels = "Yes")
result <- glm_reg("titanic", "survived", c("pclass","sex"))</pre>
```

hier_clus

Hierarchical cluster analysis

Description

Hierarchical cluster analysis

```
hier_clus(dataset, hc_vars, data_filter = "", hc_dist = "sq.euclidian",
   hc_meth = "ward.D")
```

is_empty 21

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

hc_vars Vector of variables to include in the analysis

expression should be a string (e.g., "price > 10000")

hc_dist Distance hc_meth Method

Details

See http://vnijs.github.io/radiant/marketing/hier_clus.html for an example in Radiant

Value

A list of all variables used in hier_clus as an object of class hier_clus

See Also

```
summary.hier_clus to summarize results
plot.hier_clus to plot results
```

Examples

```
result <- hier_clus("shopping", hc_vars = c("v1:v6"))</pre>
```

is_empty

Is a character variable defined

Description

Is a character variable defined

Usage

```
is\_empty(x, empty = "")
```

Arguments

x Character value to evaluate

empty Indicate what 'empty' means. Default is empty string (i.e., "")

Details

Is a variable NULL or an empty string

Value

TRUE if empty, else FALSE

22 kmeans_clus

Examples

```
is_empty("")
is_empty(NULL)
```

is_string

Is input a string?

Description

Is input a string?

Usage

```
is_string(x)
```

Arguments

Х

Input

Details

Is input a string

Value

TRUE if string, else FALSE

Examples

```
is_string("")
is_string("data")
is_string(c("data","data"))
is_string(NULL)
```

kmeans_clus

K-means cluster analysis

Description

K-means cluster analysis

```
kmeans_clus(dataset, km_vars, data_filter = "", km_hc_init = TRUE,
   km_dist = "sq.euclidian", km_meth = "ward.D", km_seed = 1234,
   km_nr_clus = 2)
```

kurtosi 23

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
km_vars	Vector of variables to include in the analysis
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
km_hc_init	Use centers from hier_clus as the starting point
km_dist	Distance for hier_clus
km_meth	Method for hier_clus
km_seed	Random see to use for kmeans if km_hc_init is FALSE
km_nr_clus	Number of clusters to extract

Details

See http://vnijs.github.io/radiant/marketing/kmeans_clus.html for an example in Radiant

Value

A list of all variables used in kmeans_clus as an object of class kmeans_clus

See Also

```
summary.kmeans_clus to summarize results
plot.kmeans_clus to plot results
save_membership to add cluster membership to the selected dataset
```

Examples

```
result <- kmeans_clus("shopping", c("v1:v6"))</pre>
```

kurtosi Exporting the kurtosi function from the psych package

Description

Exporting the kurtosi function from the psych package

24 lin_launcher

launcher	Create a launcher on the desktop for Windows (.bat), Mac (.com-
	mand), or Linux (.sh)

Description

Create a launcher on the desktop for Windows (.bat), Mac (.command), or Linux (.sh)

Usage

```
launcher(app = c("marketing", "quant", "base"))
```

Arguments

арр

App to run when the desktop icon is double-clicked ("marketing", "quant", or "base"). Default is "marketing"

Details

On Windows/Mac/Linux a file named radiant.bat/radiant.command/radiant.sh will be put on the desktop. Double-click the file to launch the specified Radiant app

See Also

```
win_launcher to create a shortcut on Windows
mac_launcher to create a shortcut on Mac
lin_launcher to create a shortcut on Linux
```

lin_launcher

Create a launcher for Linux (.sh)

Description

Create a launcher for Linux (.sh)

Usage

```
lin_launcher(app = c("marketing", "quant", "base"))
```

Arguments

app

App to run when the desktop icon is double-clicked ("marketing", "quant", or "base"). Default is "marketing"

Details

On Linux a file named 'radiant.sh' will be put on the desktop. Double-click the file to launch the specified Radiant app

mac_launcher 25

Examples

```
if (interactive()) {
   if (Sys.info()["sysname"] == "Linux") {
      lin_launcher()
      fn <- paste0("/home/",Sys.getenv("USER"),"/Desktop/radiant.sh")
      if (!file.exists(fn))
        stop("Linux launcher not created")
      else
        unlink(fn)
   }
}</pre>
```

mac_launcher

Create a launcher for Mac (.command)

Description

Create a launcher for Mac (.command)

Usage

```
mac_launcher(app = c("marketing", "quant", "base"))
```

Arguments

арр

App to run when the desktop icon is double-clicked ("marketing", "quant", or "base"). Default is "marketing"

Details

On Mac a file named 'radiant.command' will be put on the desktop. Double-click the file to launch the specified Radiant app

```
if (interactive()) {
   if (Sys.info()["sysname"] == "Darwin") {
        mac_launcher()
        fn <- paste0("/Users/",Sys.getenv("USER"),"/Desktop/radiant.command")
        if (!file.exists(fn))
            stop("Mac launcher not created")
        else
            unlink(fn)
      }
}</pre>
```

26 mds

 ${\tt max_rm}$

 $Max \ with \ na.rm = TRUE$

Description

Max with na.rm = TRUE

Usage

```
max_rm(x)
```

Arguments

х

Input variable

Value

Maximum value

Examples

```
max_rm(runif (100))
```

 mds

(Dis)similarity based brand maps (MDS)

Description

(Dis)similarity based brand maps (MDS)

Usage

```
mds(dataset, mds_id1, mds_id2, mds_dis, data_filter = "",
    mds_method = "metric", mds_dim_number = 2)
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
mds_id1	A character variable or factor with unique entries
mds_id2	A character variable or factor with unique entries
mds_dis	A numeric measure of brand dissimilarity
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
${\sf mds_method}$	Apply metric or non-metric MDS
${\tt mds_dim_number}$	Number of dimensions

mean_rm 27

Details

See http://vnijs.github.io/radiant/marketing/mds.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class mds

See Also

```
summary.mds to summarize results
plot.mds to plot results
```

Examples

```
result <- mds("city","from","to","distance")
summary(result)
result <- mds("diamonds","clarity","cut","price")
summary(result)</pre>
```

mean_rm

 $Mean\ with\ na.rm = TRUE$

Description

Mean with na.rm = TRUE

Usage

```
mean_rm(x)
```

Arguments

Χ

Input variable

Value

Mean value

```
mean_rm(runif (100))
```

28 min_rm

median_rm

 $Median\ with\ na.rm = TRUE$

Description

Median with na.rm = TRUE

Usage

```
median_rm(x)
```

Arguments

Х

Input variable

Value

Median value

Examples

```
median_rm(runif (100))
```

min_rm

 $Min\ with\ na.rm = TRUE$

Description

Min with na.rm = TRUE

Usage

```
min\_rm(x)
```

Arguments

Х

Input variable

Value

Minimum value

```
min_rm(runif (100))
```

mp3

mp3

Conjoint data for MP3 players

Description

Conjoint data for MP3 players

Usage

data(mp3)

Format

A data frame with 18 rows and 6 variables

Details

Conjoint data for MP3 players. Description provided in attr(mp3,"description")

newspaper

Newspaper readership

Description

Newspaper readership

Usage

data(newspaper)

Format

A data frame with 580 rows and 2 variables

Details

Newspaper readership data for 580 consumers. Description provided in attr(newspaper,"description")

30 p25

nmissing

Number of missing values

Description

Number of missing values

Usage

```
nmissing(x)
```

Arguments

Χ

Input variable

Value

number of missing values

Examples

```
nmissing(c("a","b",NA))
```

p25

25th percentile

Description

25th percentile

Usage

```
p25(x, na.rm = TRUE)
```

Arguments

Х

Input variable

na.rm

If TRUE missing values are removed before calculation

Value

25th percentile

```
p25(rnorm(100))
```

p75

p75 75th percentile

Description

75th percentile

Usage

```
p75(x, na.rm = TRUE)
```

Arguments

x Input variable

na.rm If TRUE missing values are removed before calculation

Value

75th percentile

Examples

```
p75(rnorm(100))
```

plot.compare_means

Plot method for the compare_means function

Description

Plot method for the compare_means function

Usage

```
## S3 method for class 'compare_means'
plot(x, cm_plots = "bar", shiny = FALSE, ...)
```

Arguments

x Return value from compare_means

cm_plots One or more plots ("bar", "box", or "density")
shiny Did the function call originate inside a shiny app
further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/compare_means.html for an example in Radiant

32 plot.compare_props

See Also

```
compare_means to calculate results
summary.compare_means to summarize results
```

Examples

```
result <- compare_means("diamonds","cut","price")
plot(result, cm_plots = c("bar","density"))</pre>
```

plot.compare_props

Plot method for the compare_props function

Description

Plot method for the compare_props function

Usage

```
## S3 method for class 'compare_props'
plot(x, cp_plots = "props", shiny = FALSE, ...)
```

Arguments

X	Return value from compare_props
cp_plots	One or more plots of proportions or counts ("props" or "counts")
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

 $See \ http://vnijs.github.io/radiant/quant/compare_props.html \ for \ an \ example \ in \ Radiant$

See Also

```
compare_props to calculate results
summary.compare_props to summarize results
```

```
result <- compare_props("titanic", "pclass", "survived")
plot(result, cp_plots = c("props","counts"))</pre>
```

plot.conjoint 33

plot.conjoint	Plot method for the conjoint function
p=00.00J0=0	The time the conjunction

Description

Plot method for the conjoint function

Usage

```
## S3 method for class 'conjoint'
plot(x, ca_plots = "pw", ca_scale_plot = FALSE,
    shiny = FALSE, ...)
```

Arguments

```
x Return value from conjoint

ca_plots Show either the part-worth ("pw") or importance-weights ("iw") plot

ca_scale_plot Scale the axes of the part-worth plots to the same range

shiny Did the function call originate inside a shiny app

... further arguments passed to or from other methods
```

Details

See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant

See Also

```
conjoint to generate results
summary.conjoint to summarize results
```

Examples

```
result <- conjoint(dataset = "mp3", ca_dep_var = "Rating", ca_indep_var = "Memory:Shape")
plot(result, ca_scale_plot = TRUE)
plot(result, ca_plots = "iw")</pre>
```

plot.correlation

Plot method for the correlation function

Description

Plot method for the correlation function

```
## S3 method for class 'correlation' plot(x, ...)
```

34 plot.cross_tabs

Arguments

x Return value from correlation

... further arguments passed to or from other methods.

Details

See http://vnijs.github.io/radiant/quant/correlation.html for an example in Radiant

See Also

```
correlation to calculate results summary.correlation to summarize results
```

Examples

```
result <- correlation("diamonds",c("price","carat","clarity"))
plot(result)
diamonds %>% correlation("price:clarity") %>% plot
```

plot.cross_tabs

Plot method for the cross_tabs function

Description

Plot method for the cross_tabs function

Usage

```
## S3 method for class 'cross_tabs'
plot(x, ct_check = "", shiny = FALSE, ...)
```

Arguments

x Return value from cross_tabs

ct_check Show plots for variables ct_var1 and ct_var2. "observed" for the observed fre-

quencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., $(o - e)^2 / e$), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the

observed and expected frequencies (i.e., (o - e) / e)

shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/cross_tabs.html for an example in Radiant

plot.explore 35

See Also

```
cross_tabs to calculate results
summary.cross_tabs to summarize results
```

Examples

```
result <- cross_tabs("newspaper", "Income", "Newspaper")
plot(result, ct_check = c("observed","expected","chi_sq"))
newspaper %>% cross_tabs("Income", "Newspaper") %>% plot(c("observed","expected"))
```

plot.explore

Plot method for the explore function

Description

Plot method for the explore function

Usage

```
## S3 method for class 'explore'
plot(x, shiny = FALSE, ...)
```

Arguments

```
x Return value from explore
shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods
```

Details

See http://vnijs.github.io/radiant/base/explore.html for an example in Radiant. A plot will only be generated when a 'by' variable has been specified

See Also

```
explore to generate summaries summary. explore to show summaries
```

```
result <- explore("diamonds", "price", expl_byvar = "cut", expl_fun = c("length", "skew"))
plot(result)</pre>
```

36 plot.glm_predict

plot.full_factor

Plot method for the full_factor function

Description

Plot method for the full_factor function

Usage

```
## S3 method for class 'full_factor'
plot(x, shiny = FALSE, ...)
```

Arguments

```
x Return value from full_factor
shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods
```

Details

```
See http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant
```

See Also

```
full_factor to calculate results
plot.full_factor to plot results
```

Examples

```
result <- full_factor("diamonds",c("price","carat","table"))
plot(result)
result <- full_factor("computer","HighEnd:Business")
summary(result)</pre>
```

plot.glm_predict

Plot method for the predict.glm_reg function

Description

Plot method for the predict.glm_reg function

```
## S3 method for class 'glm_predict'
plot(x, glm_xvar = "", glm_facet_row = ".",
   glm_facet_col = ".", glm_color = "none", glm_conf_level = 0.95, ...)
```

plot.glm_reg 37

Arguments

X	Return value from predict.glm_reg.
glm_xvar	Variable to display along the X-axis of the plot
glm_facet_row	Create vertically arranged subplots for each level of the selected factor variable
•	Create horizontally arranged subplots for each level of the selected factor variable
•	Adds color to a scatter plot to generate a heat map. For a line plot one line is created for each group and each is assigned a different colour
•	Confidence level to use for prediction intervals (.95 is the default). Note that the error bars for predictions are approximations at this point.
•••	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/glm_reg.html for an example in Radiant

See Also

```
glm_reg to generate the result
summary.glm_reg to summarize results
plot.glm_reg to plot results
predict.glm_reg to generate predictions
```

Examples

```
result <- glm_reg("titanic", "survived", c("pclass", "sex", "age"), glm_levels = "Yes")
pred <- predict(result, glm_predict_cmd = "pclass = levels(pclass)")
plot(pred, glm_xvar = "pclass")
pred <- predict(result, glm_predict_cmd = "age = 0:100")
plot(pred, glm_xvar = "age")
pred <- predict(result, glm_predict_cmd = "pclass = levels(pclass), sex = levels(sex)")
plot(pred, glm_xvar = "pclass", glm_color = "sex")
pred <- predict(result, glm_predict_cmd = "pclass = levels(pclass), age = seq(0,100,20)")
plot(pred, glm_xvar = "pclass", glm_color = "age")
plot(pred, glm_xvar = "age", glm_color = "pclass")
pred <- predict(result, glm_predict_cmd="pclass=levels(pclass), sex=levels(sex), age=seq(0,100,20)")
plot(pred, glm_xvar = "age", glm_color = "sex", glm_facet_col = "pclass")
plot(pred, glm_xvar = "age", glm_color = "pclass", glm_facet_col = "sex")
pred <- predict(result, glm_predict_cmd="pclass=levels(pclass), sex=levels(sex), age=seq(0,100,5)")
plot(pred, glm_xvar = "age", glm_color = "sex", glm_facet_col = "pclass")
plot(pred, glm_xvar = "age", glm_color = "sex", glm_facet_col = "pclass")
plot(pred, glm_xvar = "age", glm_color = "sex", glm_facet_col = "pclass")
plot(pred, glm_xvar = "age", glm_color = "sex", glm_facet_col = "sex")</pre>
```

plot.glm_reg

Plot method for the glm_reg function

Description

Plot method for the glm_reg function

38 plot.hier_clus

Usage

```
## S3 method for class 'glm_reg'
plot(x, glm_plots = "", glm_conf_level = 0.95,
 glm_coef_int = FALSE, shiny = FALSE, ...)
```

Arguments

Return value from glm_reg glm_plots Plots to produce for the specified GLM model. Use "" to avoid showing any plots (default). "hist" shows histograms of all variables in the model. "scatter" shows scatter plots (or box plots for factors) for the dependent variable with each independent variable. "dashboard" is a series of four plots used to visually evaluate model. "coef" provides a coefficient plot glm_conf_level Confidence level to use for coefficient and odds confidence intervals (.95 is the default) glm_coef_int Include the intercept in the coefficient plot (TRUE or FALSE). FALSE is the default Did the function call originate inside a shiny app shiny further arguments passed to or from other methods

Details

. . .

See http://vnijs.github.io/radiant/quant/glm_reg.html for an example in Radiant

See Also

```
glm_reg to generate results
plot.glm_reg to plot results
predict.glm_reg to generate predictions
plot.glm_predict to plot prediction output
```

Examples

```
result <- glm_reg("titanic", "survived", c("pclass", "sex"), glm_levels = "Yes")
plot(result, glm_plots = "coef")
```

plot.hier_clus

Plot method for the hier_clus function

Description

Plot method for the hier_clus function

Usage

```
## S3 method for class 'hier_clus'
plot(x, hc_plots = c("scree", "diff"), hc_cutoff = 0.02,
  shiny = TRUE, ...)
```

plot.kmeans_clus 39

Arguments

Χ	Return value from hier_clus
hc_plots	Plots to return. "diff" shows the percentage change in within-cluster heterogeneity as respondents are group into different number of clusters, "dendro" shows the dendrogram, "scree" shows a scree plot of within-cluster heterogeneity
hc_cutoff	For large datasets plots can take time to render and become hard to interpret. By selection a cutoff point (e.g., 0.05 percent) the initial steps in hierarchical cluster analysis are removed from the plot
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/hier_clus.html for an example in Radiant

See Also

```
summary.hier_clus to summarize results
plot.hier_clus to plot results
```

Examples

```
result <- hier_clus("shopping", hc_vars = c("v1:v6"))
plot(result, hc_plots = c("diff", "scree"), hc_cutoff = .05)
plot(result, hc_plots = "dendro", hc_cutoff = 0)
shopping %>% hier_clus(hc_vars = c("v1:v6")) %>% plot
```

plot.kmeans_clus

Plot method for kmeans_clus

Description

Plot method for kmeans_clus

Usage

```
## S3 method for class 'kmeans_clus'
plot(x, shiny = FALSE, ...)
```

Arguments

Х	Return value from kmeans_clus
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/kmeans_clus.html for an example in Radiant

40 plot.mds

See Also

```
kmeans_clus to generate results
summary.kmeans_clus to summarize results
save_membership to add cluster membership to the selected dataset
```

Examples

```
result <- kmeans_clus("shopping", km_vars = c("v1:v6"))
plot(result)</pre>
```

plot.mds

Plot method for the mds function

Description

Plot method for the mds function

Usage

```
## S3 method for class 'mds'
plot(x, mds_rev_dim = "", mds_fontsz = 1.3, ...)
```

Arguments

```
    x Return value from mds
    mds_rev_dim Flip the axes in plots
    mds_fontsz Font size to use in plots
    further arguments passed to or from other methods
```

Details

See http://vnijs.github.io/radiant/marketing/mds.html for an example in Radiant

See Also

```
mds to calculate results summary.mds to plot results
```

```
result <- mds("city","from","to","distance")
plot(result)
plot(result, mds_rev_dim = 1:2)
plot(result, mds_rev_dim = 1:2, mds_fontsz = 2)</pre>
```

plot.pmap 41

plot.pmap

Plot method for the pmap function

Description

Plot method for the pmap function

Usage

```
## $3 method for class 'pmap'
plot(x, pmap_plot = "", pmap_scaling = 2.1,
    pmap_fontsz = 1.3, ...)
```

Arguments

X	Return value from pmap	
pmap_plot	Components to include in the plot ("brand", "attr"). If data on preferences is available use "pref" to add preference arrows to the plot	
pmap_scaling	Arrow scaling in the brand map	
pmap_fontsz	Font size to use in plots	
	further arguments passed to or from other methods	

Details

See http://vnijs.github.io/radiant/marketing/pmap.html for an example in Radiant

See Also

```
pmap to calculate results
summary.pmap to plot results
```

42 plot.regression

plot.pre_factor

Plot method for the pre_factor function

Description

Plot method for the pre_factor function

Usage

```
## S3 method for class 'pre_factor'
plot(x, ...)
```

Arguments

x Return value from pre_factor

... further arguments passed to or from other methods

Details

See $\verb|http://vnijs.github.io/radiant/marketing/pre_factor.html| for an example in Radiant$

See Also

```
pre_factor to calculate results
summary.pre_factor to summarize results
```

Examples

```
result <- pre_factor("diamonds",c("price","carat","table"))
plot(result)</pre>
```

plot.regression

Plot method for the regression function

Description

Plot method for the regression function

Usage

```
## S3 method for class 'regression'
plot(x, reg_plots = "", reg_lines = "",
    reg_conf_level = 0.95, reg_coef_int = FALSE, shiny = FALSE, ...)
```

plot.regression 43

Arguments

Х

reg_plots	Regression plots to produce for the specified regression model. Enter "" to avoid showing any plots (default). "hist" to show histograms of all variables in the model. "correlations" for a visual representation of the correlation matrix selected variables. "scatter" to show scatter plots (or box plots for factors) for the dependent variables with each independent variable. "dashboard" for a series of six plots that can be used to evaluate model fit visually. "resid_pred" to plot the independent variables against the model residuals. "coef" for a coefficient plot with adjustable confidence intervals. "leverage" to show leverage plots for each independent variable
reg_lines	Optional lines to include in the select plot. "line" to include a line through a scatter plot. "loess" to include a polynomial regression fit line. To include both use c("line", "loess")

reg_conf_level Confidence level used to estimate confidence intervals (.95 is the default)

fault

shiny Did the function call originate inside a shiny app

Return value from regression

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

See Also

```
regression to generate the results
summary.regression to summarize results
predict.regression to generate predictions
```

```
result <- regression("diamonds", "price", c("carat", "clarity"))
plot(result, reg_plots = "dashboard")
plot(result, reg_plots = "dashboard", reg_lines = c("line", "loess"))
plot(result, reg_plots = "coef", reg_coef_int = TRUE)
plot(result, reg_plots = "coef", reg_conf_level = .99, reg_coef_int = TRUE)
plot(result, reg_plots = "hist")
plot(result, reg_plots = "scatter", reg_lines = c("line", "loess"))
plot(result, reg_plots = "correlations")
plot(result, reg_plots = "leverage")
plot(result, reg_plots = "resid_pred", reg_lines = "line")</pre>
```

44 plot.reg_predict

plot.reg_predict

Plot method for the predict.regression function

Description

Plot method for the predict.regression function

Usage

```
## S3 method for class 'reg_predict'
plot(x, reg_xvar = "", reg_facet_row = ".",
    reg_facet_col = ".", reg_color = "none", reg_conf_level = 0.95, ...)
```

Arguments

X	Return value from predict.regression.
reg_xvar	Variable to display along the X-axis of the plot
reg_facet_row	Create vertically arranged subplots for each level of the selected factor variable
reg_facet_col	Create horizontally arranged subplots for each level of the selected factor variable
reg_color	Adds color to a scatter plot to generate a heat map. For a line plot one line is created for each group and each is assigned a different colour
reg_conf_level	Confidence level to use for prediction intervals (.95 is the default). Note that the error bars for predictions are approximations at this point.
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

See Also

```
regression to generate the result
summary.regression to summarize results
plot.regression to plot results
predict.regression to generate predictions
```

```
result <- regression("diamonds", "price", c("carat","clarity"))
pred <- predict(result, reg_predict_cmd = "carat = 1:10")
plot(pred, reg_xvar = "carat")
result <- regression("diamonds", "price", c("carat","clarity"), reg_int_var = "carat:clarity")
dpred <<- getdata("diamonds") %>% slice(1:100)
pred <- predict(result, reg_predict_data = "dpred")
plot(pred, reg_xvar = "carat", reg_color = "clarity")
rm(dpred, envir = .GlobalEnv)</pre>
```

plot.single_mean 45

$n l \cap t$	sing	\Box	mean

Plot method for the single_mean function

Description

Plot method for the single_mean function

Usage

```
## S3 method for class 'single_mean'
plot(x, sm_plots = "hist", shiny = FALSE, ...)
```

Arguments

X	Return value from single_mean
sm_plots	Plots to generate. "hist" shows a histogram of the data along with vertical lines that indicate the sample mean and the confidence interval. "simulate" shows the location of the sample mean and the comparison value (sm_comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_mean.html for an example in Radiant

See Also

```
single_mean to generate the result
summary.single_mean to summarize results
```

Examples

```
result <- single_mean("diamonds","price", sm_comp_value = 3500)
plot(result, sm_plots = c("hist", "simulate"))</pre>
```

```
plot.single_prop
```

Plot method for the single_prop function

Description

Plot method for the single_prop function

Usage

```
## S3 method for class 'single_prop'
plot(x, sp_plots = "hist", shiny = FALSE, ...)
```

46 pmap

Arguments

x Return value from single_prop

sp_plots Plots to generate. "hist" shows a histogram of the data along with vertical lines that indicate the sample proportion and the confidence interval. "simulate" shows the location of the sample proportion and the comparison value (sp_comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis

shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_prop.html for an example in Radiant

See Also

```
single_prop to generate the result
summary.single_prop to summarize the results
```

Examples

```
result <- single_prop("diamonds","clarity", sp_levels = "IF", sp_comp_value = 0.05)
plot(result, sp_plots = c("hist", "simulate"))
result <- single_prop("titanic","pclass", sp_levels = "1st")
plot(result, sp_plots = c("hist", "simulate"))</pre>
```

ртар

Attribute based brand maps

Description

Attribute based brand maps

Usage

```
pmap(dataset, pmap_brand, pmap_attr, data_filter = "", pmap_pref = "",
    pmap_dim_number = 2)
```

Arguments

Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant

pmap_brand A character variable with brand names

pmap_attr Names of numeric variables

data_filter Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

pmap_pref Names of numeric brand preference measures

pmap_dim_number

Number of dimensions

predict.glm_reg 47

Details

See http://vnijs.github.io/radiant/marketing/pmap.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class pmap

See Also

```
summary.pmap to summarize results plot.pmap to plot results
```

Examples

```
result <- pmap("computer", "Brand", "HighEnd:Business")</pre>
```

predict.glm_reg

Predict method for the glm_reg function

Description

Predict method for the glm_reg function

Usage

```
## $3 method for class 'glm_reg'
predict(object, glm_predict_cmd = "",
    glm_predict_data = "", ...)
```

Arguments

```
object Return value from glm_reg glm_predict_cmd
```

Generate predictions using a command. For example, 'pclass = levels(pclass)' would produce predictions for the different levels of factor 'pclass'. To add another variable use a ',' (e.g., 'pclass = levels(pclass), age = seq(0,100,20)')

glm_predict_data

Provide the name of a dataframe to generate predictions (e.g., "titanic"). The dataset must contain all columns used in the estimation

further arguments passed to or from other methods

Details

```
See \verb|http://vnijs.github.io/radiant/quant/glm_reg.html| for an example in Radiant| \\
```

See Also

```
glm_reg to generate the result
summary.glm_reg to summarize results
plot.glm_reg to plot results
plot.glm_predict to plot prediction output
```

48 predict.regression

Examples

```
result <- glm_reg("titanic", "survived", c("pclass", "sex"), glm_levels = "Yes")
predict(result, glm_predict_cmd = "pclass = levels(pclass)")
glm_reg("titanic", "survived", c("pclass", "sex"), glm_levels = "Yes") %>%
    predict(glm_predict_cmd = "sex = c('male', 'female')")
```

predict.regression

Predict method for the regression function

Description

Predict method for the regression function

Usage

```
## S3 method for class 'regression'
predict(object, reg_predict_cmd = "",
    reg_predict_data = "", reg_conf_level = 0.95, ...)
```

Arguments

```
object Return value from regression

reg_predict_cmd

Command used to generate data for prediction

reg_predict_data

Name of the dataset to use for prediction

reg_conf_level Confidence level used to estimate confidence intervals (.95 is the default)

... further arguments passed to or from other methods
```

Details

 $See \ http://vnijs.github.io/radiant/quant/regression.html \ for \ an \ example \ in \ Radiant/regression.$

See Also

```
regression to generate the result
summary.regression to summarize results
plot.regression to plot results
```

```
result <- regression("diamonds", "price", c("carat","clarity"))
predict(result, reg_predict_cmd = "carat = 1:10")
predict(result, reg_predict_cmd = "clarity = levels(clarity)")
result <- regression("diamonds", "price", c("carat","clarity"), reg_int_var = c("carat:clarity"))
dpred <<- getdata("diamonds") %>% slice(1:10)
predict(result, reg_predict_data = "dpred")
rm(dpred, envir = .GlobalEnv)
```

pre_factor 49

pre_factor	Evaluate if data are d	appropriate for PCA / Factor analysis

Description

Evaluate if data are appropriate for PCA / Factor analysis

Usage

```
pre_factor(dataset, pf_var, data_filter = "")
```

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

pf_var Variables to include in the analysis

expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/marketing/pre_factor.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class pre_factor

See Also

```
summary.pre_factor to summarize results
plot.pre_factor to plot results
```

Examples

```
result <- pre_factor("diamonds",c("price","carat","table"))</pre>
```

print.arrange

Exporting the print.arrange method from the gridExtra package

Description

Exporting the print.arrange method from the gridExtra package

Details

Used to print plots generated using arrangeGrob

50 radiant

publishers

Comic publishers

Description

Comic publishers

Usage

```
data(publishers)
```

Format

A data frame with 3 rows and 2 variables

Details

List of comic publishers from http://stat545-ubc.github.io/bit001_dplyr-cheatsheet.

httml. The dataset is used to illustrate data merging / joining. Description provided in attr(publishers, "description")

radiant

radiant

Description

radiant

Launch Radiant in the default browser

Usage

```
radiant(app = c("marketing", "quant", "base"))
```

Arguments

арр

Choose the app to run. Either "base", "quant", or "marketing". "marketing" is the default

Details

See http://vnijs.github.io/radiant for documentation and tutorials

```
if (interactive()) {
  radiant("base")
  radiant("quant")
  radiant("marketing")
}
```

regression 51

|--|

Description

Linear regression using OLS

Usage

```
regression(dataset, reg_dep_var, reg_indep_var, data_filter = "",
  reg_int_var = "", reg_check = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
reg_dep_var	The dependent variable in the regression
reg_indep_var	Independent variables in the regression
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
reg_int_var	Interaction terms to include in the model
reg_check	"standardize" to see standardized coefficient estimates. "stepwise" to apply stepwise selection of variables in estimation

Details

```
See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant
```

Value

A list of all variables used in regression as an object of class regression

See Also

```
summary.regression to summarize results
plot.regression to plot results
predict.regression to generate predictions
```

```
result <- regression("diamonds", "price", c("carat","clarity"))
result <- regression("diamonds", "price", c("carat","clarity"), reg_check = "standardize")</pre>
```

52 sample_size

rndnames	100 random names
----------	------------------

Description

100 random names

Usage

```
data(rndnames)
```

Format

A data frame with 100 rows and 2 variables

Details

A list of 100 random names generated by **listofrandomnames.com**. Description provided in attr(rndnames,"description")

sample_size

Sample size calculation

Description

Sample size calculation

Usage

```
sample_size(ss_type = "mean", ss_mean_err = 2, ss_mean_s = 10,
    ss_prop_err = 0.1, ss_prop_p = 0.5, ss_z = 1.96, ss_incidence = 1,
    ss_response = 1, ss_pop_correction = "no", ss_pop_size = 1000000)
```

Arguments

ss_type	Choose "mean" or "proportion"	
ss_mean_err	Acceptable Error for Mean	
ss_mean_s	Standard deviation for Mean	
ss_prop_err	Acceptable Error for Proportion	
ss_prop_p	Initial proportion estimate for Proportion	
SS_Z	Z-value	
ss_incidence	Incidence rate (i.e., fraction of valid respondents)	
ss_response	Response rate	
ss_pop_correction		
	Apply correction for population size ("yes", "no")	
ss_pop_size	Population size	

sampling 53

Details

 $See \ http://vnijs.github.io/radiant/quant/sample_size.html \ for \ an \ example \ in \ Radiant \ and \ radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ in \ Radiant \ for \ an \ example \ for \ example \ example \ for \ example \ example \ for \ example \ for \ example \ for \ example \ example \ for \ example \ for \ example \ for \ example \ for \ example \ exa$

Value

A list of variables defined in sample_size as an object of class sample_size

See Also

```
summary.sample_size to summarize results
```

Examples

```
result <- sample_size(ss_type = "mean", ss_mean_err = 2, ss_mean_s = 10)</pre>
```

sampling

Simple random sampling

Description

Simple random sampling

Usage

```
sampling(dataset, smp_var, smp_sample_size, data_filter = "",
    smp_print_full = TRUE)
```

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

smp_var The variable to sample from

 ${\tt smp_sample_size}$

Number of units to select

expression should be a string (e.g., "price > 10000")

smp_print_full Print full sampling frame. Default is TRUE

Details

See http://vnijs.github.io/radiant/quant/sampling.html for an example in Radiant

Value

A list of variables defined in sampling as an object of class sampling

See Also

```
summary. sampling to summarize results
```

```
result <- sampling("rndnames","Names",10)</pre>
```

54 save_glm_resid

save_factors

Save factor scores to active dataset

Description

Save factor scores to active dataset

Usage

```
save_factors(object)
```

Arguments

object

Return value from full_factor

Details

See $http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant$

Examples

```
result <- full_factor("diamonds",c("price","carat","table"))
save_factors(result)
head(diamonds)</pre>
```

save_glm_resid

Save residuals generated in the glm_reg function

Description

Save residuals generated in the glm_reg function

Usage

```
save_glm_resid(object)
```

Arguments

object

Return value from glm_reg

Details

See $\verb|http://vnijs.github.io/radiant/quant/glm_reg.html| for an example in Radiant| \\$

save_membership 55

Examples

```
result <- glm_reg("titanic", "survived", "pclass", glm_levels = "Yes")
save_glm_resid(result)
head(titanic)</pre>
```

save_membership

Add a cluster membership variable to the active dataset

Description

Add a cluster membership variable to the active dataset

Usage

```
save_membership(object)
```

Arguments

object

Return value from kmeans_clus

Details

See $http://vnijs.github.io/radiant/marketing/kmeans_clus.html \ for \ an \ example \ in \ Radiant$

See Also

```
kmeans_clus to generate results
summary.kmeans_clus to summarize results
plot.kmeans_clus to plot results
```

```
result <- kmeans_clus("shopping", km_vars = c("v1:v6"))
save_membership(result)
head(shopping)</pre>
```

56 sd_rm

save_reg_resid

Save regression residuals

Description

Save regression residuals

Usage

```
save_reg_resid(object)
```

Arguments

object

Return value from regression

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

Examples

```
result <- regression("diamonds", "price", c("carat","clarity"))
save_reg_resid(result)
head(diamonds)</pre>
```

 sd_rm

 $Standard\ deviation\ with\ na.rm = TRUE$

Description

Standard deviation with na.rm = TRUE

Usage

```
sd_rm(x)
```

Arguments

Х

Input variable

Value

Standard deviation

```
sd_rm(rnorm(100))
```

serr 57

serr

Standard error

Description

Standard error

Usage

```
serr(x, na.rm = TRUE)
```

Arguments

x Input variable

na.rm

If TRUE missing values are removed before calculation

Value

Standard error

Examples

```
serr(rnorm(100))
```

set_class

Alias used to set the class for analysis function return

Description

Alias used to set the class for analysis function return

Usage

```
set_class()
```

```
foo <- function(x) x^2 %>% set_class(c("foo", class(.)))
```

sig_stars

shopping

Shopping attitudes

Description

Shopping attitudes

Usage

data(shopping)

Format

A data frame with 20 rows and 7 variables

Details

Attitudinal data on shopping for 20 consumers. Description provided in attr(shopping, "description")

sig_stars

Add stars '***' to a data.frame (from broom's 'tidy' function) based on p.values

Description

Add stars '***' to a data.frame (from broom's 'tidy' function) based on p.values

Usage

```
sig_stars(pval)
```

Arguments

pval

Vector of p-values

Details

Add stars to output from broom's 'tidy' function

Value

A vector of stars

```
sig_stars(c(.0009, .049, .009, .4, .09))
```

single_mean 59

	single_mean Compare a sample mean to a population mean	
--	--	--

Description

Compare a sample mean to a population mean

Usage

```
single_mean(dataset, sm_var, data_filter = "", sm_comp_value = 0,
    sm_alternative = "two.sided", sm_sig_level = 0.95)
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_{data} list from Radiant
sm_var	The variable selected for the mean comparison
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
sm_comp_value	Population value to compare to the sample mean
sm_alternative	The alternative hypothesis ("two.sided", "greater", or "less")
sm_sig_level	Span for the confidence interval

Details

```
See http://vnijs.github.io/radiant/quant/single_mean.html for an example in Radiant
```

Value

A list of variables defined in single_mean as an object of class single_mean

See Also

```
summary.single_mean to summarize results
plot.single_mean to plot results
```

```
single_mean("diamonds","price")
```

60 skew

single_prop	Compare a sample proportion to a population proportion	

Description

Compare a sample proportion to a population proportion

Usage

```
single_prop(dataset, sp_var, data_filter = "", sp_levels = "",
    sp_comp_value = 0.5, sp_alternative = "two.sided", sp_sig_level = 0.95)
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_{data} list from Radiant
sp_var	The variable selected for the proportion comparison
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
sp_levels	The factor level selected for the proportion comparison
sp_comp_value	Population value to compare to the sample proportion
sp_alternative	The alternative hypothesis ("two.sided", "greater", or "less")
sp_sig_level	Span of the confidence interval

Details

See http://vnijs.github.io/radiant/quant/single_prop.html for an example in Radiant

Value

A list of variables used in single_prop as an object of class single_prop

See Also

```
summary.single_prop to summarize the results
plot.single_prop to plot the results
```

Examples

```
result <- single_prop("diamonds","cut")
result <- single_prop("diamonds","clarity", sp_levels = "IF", sp_comp_value = 0.05)</pre>
```

skew

Exporting the skew function from the psych package

Description

Exporting the skew function from the psych package

sshh 61

sshh

Hide warnings and messages and return invisible

Description

Hide warnings and messages and return invisible

Usage

```
sshh(...)
```

Arguments

... Inputs to keep quite

Details

Adapted from http://www.onthelambda.com/2014/09/17/fun-with-rprofile-and-customizing-r-startup/

Examples

```
sshh( library(dplyr) )
```

sshhr

Hide warnings and messages and return result

Description

Hide warnings and messages and return result

Usage

```
sshhr(...)
```

Arguments

... Inputs to keep quite

Details

Adapted from http://www.onthelambda.com/2014/09/17/fun-with-rprofile-and-customizing-r-startup/

```
sshhr( library(dplyr) )
```

62 state_init

state_init

Set initial value for shiny input

Description

Set initial value for shiny input

Usage

```
state_init(inputvar, init = "")
```

Arguments

inputvar Name shiny input

init Initial value to use if state value for input not set

Details

Useful for radio button or checkbox

Value

value for inputvar

See Also

```
state_single
state_multiple
copy_from
```

```
r_state <<- list()
state_init("test")
state_init("test",0)
r_state$test <- c("a","b")
state_init("test",0)
shiny::radioButtons("rb", label = "Button:", c("a","b"), selected = state_init("rb", "a"))
r_state$rb <- "b"
shiny::radioButtons("rb", label = "Button:", c("a","b"), selected = state_init("rb", "a"))
rm(r_state)</pre>
```

state_multiple 63

 $state_multiple$

Set initial values for shiny input from a list of values

Description

Set initial values for shiny input from a list of values

Usage

```
state_multiple(inputvar, vals, init = character(0))
```

Arguments

inputvar Name shiny input

vals Possible values for inputvar

init Initial value to use if state value for input not set

Details

Useful for select input with multiple = TRUE and when you want to use inputs selected for another tool (e.g., pre_factor and full_factor or hier_clus and kmeans_clus in Radiant)

Value

value for inputvar

See Also

```
state_init
state_single
copy_from
```

```
r_state <- list()
state_multiple("test",1:10,1:3)
r_state$test <- 8:10
state_multiple("test",1:10,1:3)
shiny::selectInput("sim", label = "Select:", c("a","b"),
    selected = state_multiple("sim", c("a","b")), multiple = TRUE)
r_state$sim <- c("a","b")
shiny::selectInput("sim", label = "Select:", c("a","b"),
    selected = state_single("sim", c("a","b")), multiple = TRUE)</pre>
```

64 state_single

state_single

Set initial value for shiny input from a list of values

Description

Set initial value for shiny input from a list of values

Usage

```
state_single(inputvar, vals, init = character(0))
```

Arguments

inputvar Name shiny input

vals Possible values for inputvar

init Initial value to use if state value for input not set

Details

Useful for select input with multiple = FALSE

Value

value for inputvar

See Also

```
state_init
state_multiple
copy_from
```

```
r_state <- list()
state_single("test",1:10,1)
r_state$test <- 8
state_single("test",1:10,1)
shiny::selectInput("si", label = "Select:", c("a","b"), selected = state_single("si"))
r_state$si <- "b"
shiny::selectInput("si", label = "Select:", c("a","b"), selected = state_single("si", "b"))</pre>
```

summary.compare_means Summary method for the compare_means function

Description

Summary method for the compare_means function

Usage

```
## S3 method for class 'compare_means'
summary(object, ...)
```

Arguments

object Return value from compare_means
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/compare_means.html for an example in Radiant

See Also

```
compare_means to calculate results
plot.compare_means to plot results
```

Examples

```
result <- compare_means("diamonds","cut","price")
summary(result)
result <- diamonds %>% tbl_df %>% compare_means("x","y")
summary(result)
result <- diamonds %>% tbl_df %>% group_by(cut) %>% compare_means("x",c("x","y"))
summary(result)
```

summary.compare_props Summary method for the compare_props function

Description

Summary method for the compare_props function

Usage

```
## S3 method for class 'compare_props'
summary(object, ...)
```

Arguments

object Return value from compare_props
... further arguments passed to or from other methods

66 summary.conjoint

Details

See http://vnijs.github.io/radiant/quant/compare_props.html for an example in Radiant

See Also

```
compare_props to calculate results
plot.compare_props to plot results
```

Examples

```
result <- compare_props("titanic", "pclass", "survived")
summary(result)
titanic %>% compare_props("pclass", "survived") %>% summary
```

summary.conjoint

Summary method for the conjoint function

Description

Summary method for the conjoint function

Usage

```
## S3 method for class 'conjoint'
summary(object, ca_vif = FALSE, ...)
```

Arguments

```
object Return value from conjoint
ca_vif Shows multicollinearity diagnostics.
... further arguments passed to or from other methods
```

Details

See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant

See Also

```
conjoint to generate results plot.conjoint to plot results
```

```
result <- conjoint("mp3", ca_dep_var = "Rating", ca_indep_var = "Memory:Shape")
summary(result, ca_vif = TRUE)
mp3 %>% conjoint(ca_dep_var = "Rating", ca_indep_var = "Memory:Shape") %>% summary(., ca_vif = TRUE)
```

```
summary.conjoint_profiles
```

Summary method for the conjoint_profiles function

Description

Summary method for the conjoint_profiles function

Usage

```
## S3 method for class 'conjoint_profiles'
summary(object, ...)
```

Arguments

object Return value from conjoint_profiles
... further arguments passed to or from other methods.

Details

See http://vnijs.github.io/radiant/marketing/conjoint_profiles.html for an example in Radiant

See Also

conjoint_profiles to calculate results

Examples

```
ca_prof <<- readLines(system.file("examples/profiles-movie.txt", package='radiant'))
result <- conjoint_profiles("ca_prof")
summary(result)
rm(ca_prof, envir = .GlobalEnv)
readLines(system.file("examples/profiles-movie.txt", package='radiant')) %>%
    conjoint_profiles %>% summary
```

summary.correlation

Summary method for the correlation function

Description

Summary method for the correlation function

Usage

```
## S3 method for class 'correlation'
summary(object, cor_cutoff = 0, ...)
```

68 summary.cross_tabs

Arguments

object Return value from correlation

cor_cutoff Show only corrlations larger than the cutoff in absolute value. Default is a cutoff

of 0

... further arguments passed to or from other methods.

Details

See http://vnijs.github.io/radiant/quant/correlation.html for an example in Radiant

See Also

```
correlation to calculate results plot.correlation to plot results
```

Examples

```
result <- correlation("diamonds",c("price","carat","clarity"))
summary(result, cor_cutoff = .3)
diamonds %>% correlation("price:clarity") %>% summary
```

summary.cross_tabs

Summary method for the cross_tabs function

Description

Summary method for the cross_tabs function

Usage

```
## S3 method for class 'cross_tabs'
summary(object, ct_check = "", ...)
```

Arguments

object Return value from cross_tabs

ct_check Show table(s) for variables ct_var1 and ct_var2. "observed" for the observed fre-

quencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the

observed and expected frequencies (i.e., (o - e) / e)

... further arguments passed to or from other methods.

Details

See http://vnijs.github.io/radiant/quant/cross_tabs.html for an example in Radiant

summary.explore 69

See Also

```
cross_tabs to calculate results
plot.cross_tabs to plot results
```

Examples

```
result <- cross_tabs("newspaper", "Income", "Newspaper")
summary(result, ct_check = c("observed","expected","chi_sq"))
newspaper %>% cross_tabs("Income", "Newspaper") %>% summary("observed")
```

summary.explore

Summary method for the explore function

Description

Summary method for the explore function

Usage

```
## S3 method for class 'explore'
summary(object, ...)
```

Arguments

object Return value from explore
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/base/explore.html for an example in Radiant

See Also

```
explore to generate summaries plot.explore to plot summaries
```

```
result <- explore("diamonds", "price:x")
summary(result)
result <- explore("diamonds", "price", expl_byvar = "cut", expl_fun = c("length", "skew"))
summary(result)
diamonds %>% explore("price:x") %>% summary
diamonds %>% explore("price", expl_byvar = "cut", expl_fun = c("length", "skew")) %>% summary
```

70 summary.glm_reg

```
summary.full_factor Summary method for the full_factor function
```

Description

Summary method for the full_factor function

Usage

```
## S3 method for class 'full_factor'
summary(object, ff_cutoff = 0, ff_sort = FALSE, ...)
```

Arguments

```
object Return value from full_factor

ff_cutoff Show only loadings with (absolute) values above ff_cutoff (default = 0)

ff_sort Sort factor loadings

... further arguments passed to or from other methods
```

Details

```
See http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant
```

See Also

```
full_factor to calculate results
plot.full_factor to plot results
```

Examples

```
result <- full_factor("diamonds",c("price","carat","depth","table","x"))
summary(result)
summary(result, ff_cutoff = 0, ff_sort = FALSE)
summary(result, ff_cutoff = 0, ff_sort = TRUE)
summary(result, ff_cutoff = .5, ff_sort = TRUE)
diamonds %>% full_factor(c("price","carat","depth","table","x")) %>% summary
diamonds %>% full_factor(c("price","carat","depth","table","x")) %>% summary(ff_cutoff = .5)
```

summary.glm_reg

Summary method for the glm_reg function

Description

Summary method for the glm_reg function

summary.hier_clus 71

Usage

```
## S3 method for class 'glm_reg'
summary(object, glm_sum_check = "", glm_conf_level = 0.95,
   glm_test_var = "", ...)
```

Arguments

object Return value from glm_reg
glm_sum_check Optional output or estimation parameters. "rsme" to show the root mean squared error. "sumsquares" to show the sum of squares table. "vif" to show multi-collinearity diagnostics. "confint" to show coefficient confidence interval estimates.
glm_conf_level Confidence level to use for coefficient and odds confidence intervals (.95 is the default)
glm_test_var Variables to evaluate in model comparison (i.e., a competing models Chi-squared test)
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/glm_reg.html for an example in Radiant

See Also

```
glm_reg to generate the results
plot.glm_reg to plot the results
predict.glm_reg to generate predictions
plot.glm_predict to plot prediction output
```

Examples

```
result <- glm_reg("titanic", "survived", "pclass", glm_levels = "Yes")
summary(result, glm_test_var = "pclass")
res <- glm_reg("titanic", "survived", c("pclass", "sex"), glm_int_var="pclass:sex", glm_levels="Yes")
summary(res, glm_sum_check = c("vif", "confint", "odds"))
titanic %>% glm_reg("survived", c("pclass", "sex", "age"), glm_levels = "Yes") %>% summary("vif")
```

summary.hier_clus

Summary method for the hier_clus function

Description

Summary method for the hier_clus function

Usage

```
## S3 method for class 'hier_clus'
summary(object, ...)
```

Arguments

```
object Return value from hier_clus
```

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/hier_clus.html for an example in Radiant

See Also

```
summary.hier_clus to summarize results
plot.hier_clus to plot results
```

Examples

```
result <- hier_clus("shopping", hc_vars = c("v1:v6"))
summary(result)</pre>
```

summary.kmeans_clus

Summary method for kmeans_clus

Description

Summary method for kmeans_clus

Usage

```
## S3 method for class 'kmeans_clus'
summary(object, ...)
```

Arguments

object Return value from kmeans_clus

... further arguments passed to or from other methods

Details

See Also

```
kmeans_clus to generate results
plot.kmeans_clus to plot results
save_membership to add cluster membership to the selected dataset
```

```
result <- kmeans_clus("shopping", km_vars = c("v1:v6"))
summary(result)
shopping %>% kmeans_clus(km_vars = c("v1:v6"), km_nr_clus = 3) %>% summary
```

summary.mds 73

summary.mds

Summary method for the mds function

Description

Summary method for the mds function

Usage

```
## S3 method for class 'mds'
summary(object, mds_round = 1, ...)
```

Arguments

object Return value from mds

mds_round Rounding to use for output (default = 0). +1 used for coordinates. +2 used for

stress measure. Not currently accessible in Radiant

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/mds.html for an example in Radiant

See Also

```
mds to calculate results plot.mds to plot results
```

Examples

```
result <- mds("city","from","to","distance")
summary(result)
summary(result, mds_round = 2)
city %>% mds("from", "to","distance") %>% summary
```

summary.pmap

Summary method for the pmap function

Description

Summary method for the pmap function

Usage

```
## S3 method for class 'pmap'
summary(object, pmap_cutoff = 0, ...)
```

74 summary.pre_factor

Arguments

object Return value from pmap

pmap_cutoff Show only loadings with (absolute) values above pmap_cutoff (default = 0)

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/pmap.html for an example in Radiant

See Also

```
pmap to calculate results
plot.pmap to plot results
```

Examples

```
result <- pmap("computer","Brand","HighEnd:Business")
summary(result, pmap_cutoff = .3)
result <- pmap("computer","Brand","HighEnd:Dated", pmap_pref = c("Innovative","Business"))
summary(result)
computer %>% pmap("Brand","HighEnd:Dated", pmap_pref = c("Innovative","Business")) %>%
summary
```

summary.pre_factor

Summary method for the pre_factor function

Description

Summary method for the pre_factor function

Usage

```
## S3 method for class 'pre_factor'
summary(object, ...)
```

Arguments

object Return value from pre_factor

... further arguments passed to or from other methods

Details

```
See http://vnijs.github.io/radiant/marketing/pre_factor.html for an example in Radiant
```

See Also

```
pre_factor to calculate results
plot.pre_factor to plot results
```

summary.regression 75

Examples

```
result <- pre_factor("diamonds",c("price","carat","table"))
summary(result)
diamonds %>% pre_factor(c("price","carat","table")) %>% summary
result <- pre_factor("computer","HighEnd:Business")
summary(result)</pre>
```

summary.regression

Summary method for the regression function

Description

Summary method for the regression function

Usage

```
## S3 method for class 'regression'
summary(object, reg_sum_check = "",
    reg_conf_level = 0.95, reg_test_var = "", ...)
```

Arguments

object Return value from regression

reg_sum_check Optional output or estimation parameters. "rsme" to show the root mean squared

error. "sumsquares" to show the sum of squares table. "vif" to show multi-collinearity diagnostics. "confint" to show coefficient confidence interval esti-

mates.

reg_conf_level Confidence level used to estimate confidence intervals (.95 is the default)
reg_test_var Variables to evaluate in model comparison (i.e., a competing models F-test)

further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

See Also

```
regression to generate the results
plot.regression to plot results
predict.regression to generate predictions
```

Examples

```
result <- regression("diamonds", "price", c("carat","clarity"))
summary(result, reg_sum_check = c("rmse","sumsquares","vif","confint"), reg_test_var = "clarity")
result <- regression("shopping", "v1", c("v2","v3"))
summary(result, reg_test_var = "v2")
shopping %>% regression("v1", "v2:v6") %>% summary
```

76 summary.sampling

summary.sample_size Summa

Summary method for the sample_size function

Description

Summary method for the sample_size function

Usage

```
## S3 method for class 'sample_size'
summary(object, ...)
```

Arguments

object Return value from sample_size
... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/sample_size for an example in Radiant

See Also

sample_size to generate the results

Examples

```
result <- sample_size(ss_type = "mean", ss_mean_err = 2, ss_mean_s = 10)
summary(result)</pre>
```

summary.sampling

Summary method for the sampling function

Description

Summary method for the sampling function

Usage

```
## S3 method for class 'sampling'
summary(object, ...)
```

Arguments

object Return value from sampling

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/sampling for an example in Radiant

summary.single_mean 77

See Also

```
sampling to generate the results
```

Examples

```
result <- sampling("rndnames","Names",10)
summary(result)
rndnames %>% sampling("Names",10) %>% summary
```

summary.single_mean

Summary method for the single_mean function

Description

Summary method for the single_mean function

Usage

```
## S3 method for class 'single_mean'
summary(object, ...)
```

Arguments

object Return value from single_mean

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_mean.html for an example in Radiant

See Also

```
single_mean to generate the results
plot.single_mean to plot results
```

Examples

```
result <- single_mean("diamonds","price")
summary(result)
diamonds %>% single_mean("price") %>% summary
```

78 superheroes

summary.single_prop

Summary method for the single_prop function

Description

Summary method for the single_prop function

Usage

```
## S3 method for class 'single_prop'
summary(object, ...)
```

Arguments

object Return value from single_prop

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/quant/single_prop.html for an example in Radiant

See Also

```
single_prop to generate the results
plot.single_prop to plot the results
```

Examples

```
result <- single_prop("diamonds","clarity", sp_levels = "IF", sp_comp_value = 0.05)
summary(result)
diamonds %>% single_prop("clarity", sp_levels = "IF", sp_comp_value = 0.05) %>% summary
```

superheroes

Super heroes

Description

Super heroes

Usage

```
data(superheroes)
```

Format

A data frame with 7 rows and 4 variables

Details

```
List of super heroes from <a href="http://stat545-ubc.github.io/bit001_dplyr-cheatsheet.html">http://stat545-ubc.github.io/bit001_dplyr-cheatsheet.html</a>. The dataset is used to illustrate data merging / joining. Description provided in attr(superheroes, "description")
```

test_specs 79

test_specs

Add interaction terms to list of test variables if needed

Description

Add interaction terms to list of test variables if needed

Usage

```
test_specs(test_var, int_var)
```

Arguments

test_var List of variables to use for testing for _regression_ or _glm_

int_var Interaction terms specified

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

Value

'test_var' is a vector of variables to test

Examples

```
test_specs("a", c("a:b","b:c"))
```

titanic

Survival data for the Titanic

Description

Survival data for the Titanic

Usage

```
data(titanic)
```

Format

A data frame with 1309 rows and 11 variables

Details

Survival data for the Titanic. Description provided in attr(titanic, "description")

80 toothpaste

titanic_pred

Predict survival

Description

Predict survival

Usage

```
data(titanic_pred)
```

Format

A data frame with 6 rows and 3 variables

Details

Prediction data.frame for glm_reg based on the Titanic dataset

toothpaste

Toothpaste attitudes

Description

Toothpaste attitudes

Usage

data(toothpaste)

Format

A data frame with 60 rows and 10 variables

Details

Attitudinal data on toothpaste for 60 consumers. Description provided in attr(toothpaste, "description")

var_check 81

var_check Check if main effects for all interaction effects are included in the model If ':' is used to select a range _indep_var_ is updated

Description

Check if main effects for all interaction effects are included in the model If ':' is used to select a range _indep_var_ is updated

Usage

```
var_check(indep_var, cn, int_var = "")
```

Arguments

indep_var List of independent variables provided to _regression_ or _glm_

cn Column names for all independent variables in _dat_

int_var Interaction terms specified

Details

See http://vnijs.github.io/radiant/quant/regression.html for an example in Radiant

Value

'vars' is a vector of right-hand side variables, possibly with interactions, 'indep_var' is the list of indepdent variables, and int_var are interaction terms

Examples

```
var_check("a:d", c("a","b","c","d"))
var_check(c("a","b"), c("a","b"), "a:c")
```

visualize

Visualize data using ggplot2 http://docs.ggplot2.org/current/

Description

Visualize data using ggplot2 http://docs.ggplot2.org/current/

Usage

```
visualize(dataset, viz_xvar, viz_yvar = "none", data_filter = "",
    viz_type = "hist", viz_facet_row = ".", viz_facet_col = ".",
    viz_color = "none", viz_bins = 10, viz_smooth = 1, viz_check = "",
    viz_axes = "", shiny = FALSE)
```

82 win_launcher

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
viz_xvar	One or more variables to display along the X-axis of the plot
viz_yvar	Variable to display along the Y-axis of the plot (default = "none")
data_filter	Expression used to filter the dataset. This should be a string (e.g., "price > 10000 ")
viz_type	Type of plot to create. One of Histogram ('hist'), Density ('density'), Scatter ('scatter'), Line ('line'), Bar ('bar'), or Box-plot ('box')
viz_facet_row	Create vertically arranged subplots for each level of the selected factor variable
viz_facet_col	Create horizontally arranged subplots for each level of the selected factor variable
viz_color	Adds color to a scatter plot to generate a heat map. For a line plot one line is created for each group and each is assigned a different colour
viz_bins	Number of bins used for a histogram (not accessible in Radiant)
viz_smooth	Adjust the flexibility of the loess line for scatter plots (not accessible in Radiant)
viz_check	Add a regression line ("line"), a loess line ("loess"), or jitter ("jitter") to a scatter plot
viz_axes	Flip the axes in a plot ("flip") or apply a log transformation (base e) to the y-axis ("log_y") or the x-axis ("log_x")
shiny	Did the function call originate inside a shiny app

Details

See http://vnijs.github.io/radiant/base/visualize.html for an example in Radiant

Value

Generated plots

Examples

```
visualize("diamonds", "carat", "price", viz_type = "scatter", viz_check = "loess")
visualize("diamonds", "price:x", viz_type = "hist")
visualize("diamonds", "carat:x", viz_yvar = "price", viz_type = "scatter")
diamonds %>% visualize(c("price", "carat", "depth"), viz_type = "density")
```

win_launcher

Create a launcher for Windows (.bat)

Description

Create a launcher for Windows (.bat)

Usage

```
win_launcher(app = c("marketing", "quant", "base"))
```

win_launcher 83

Arguments

арр

App to run when the desktop icon is double-clicked ("marketing", "quant", or "base"). Default is "marketing"

Details

On Windows a file named 'radiant.bat' will be put on the desktop. Double-click the file to launch the specified Radiant app

Examples

```
if (interactive()) {
   if (Sys.info()["sysname"] == "Windows") {
      win_launcher()
      fn <- paste0(Sys.getenv("USERPROFILE") ,"/Desktop/radiant.bat")
      if (!file.exists(fn))
           stop("Windows launcher not created")
      else
           unlink(fn)
   }
}</pre>
```

Index

*Topic datasets	hier_clus, 20, 39, 72
avengers, 4	
city, 6	is_empty, 21
computer, 10	is_string, 22
diamonds, 15	Impana alua 22 20 40 55 72
mp3, 29	kmeans_clus, 22, 39, 40, 55, 72
newspaper, 29	kurtosi, 23
publishers, 50	launcher, 24
rndnames, 52	lin_launcher, 24, 24
shopping, 58	1111_1udireffer, 27, 21
superheroes, 78	mac_launcher, 24, 25
titanic, 79	max_rm, 26
titanic_pred, 80	mds, 26, 40, 73
toothpaste, 80	mean_rm, 27
	median_rm, 28
avengers, 4	min_rm, 28
	mp3, 29
ca_the_table, 4	,
changedata, 5	newspaper, 29
city, 6	nmissing, 30
clean_loadings, 6	
combinedata, 7	p25, 30
compare_means, 8, <i>31</i> , <i>32</i> , <i>65</i>	p75, 31
compare_props, 9, 32, 65, 66	plot.compare_means, $8, 31, 65$
computer, 10	plot.compare_props, 9, 32, 66
conjoint, <i>5</i> , 10, <i>33</i> , <i>66</i>	plot.conjoint, 5, 11, 33, 66
conjoint_profiles, 11, 17, 67	plot.correlation, 13, 33, 68
copy_all, 12	plot.cross_tabs, 14, 34, 69
copy_from, 12, 62-64	plot.explore, 16, 35, 69
correlation, 13, <i>34</i> , <i>68</i>	plot.full_factor, <i>17</i> , <i>36</i> , <i>36</i> , <i>70</i>
cross_tabs, 14, 34, 35, 68, 69	plot.glm_predict, 20, 36, 38, 47, 71
cv, 14	plot.glm_reg, 20, 37, 37, 38, 47, 71
	plot.hier_clus, 21, 38, 39, 72
diamonds, 15	plot.kmeans_clus, 23, 39, 55, 72
	plot.mds, 27, 40, 73
explore, 15, 35, 69	plot.pmap, 41, <i>47</i> , <i>74</i>
	plot.pre_factor, 42, 49, 74
ff_design, 16	plot.reg_predict,44
full_factor, 17, 36, 54, 70	plot.regression, 42, 44, 48, 51, 75
	plot.single_mean, 45, 59, 77
getclass, 18	plot.single_prop, 45, 60, 78
getdata, 18	pmap, 41, 46, 74
getsummary, 19	pre_factor, <i>42</i> , 49, <i>74</i>
glm_reg, 19, 37, 38, 47, 54, 71	predict.glm_reg, 20, 37, 38, 47, 71

INDEX 85

```
predict.regression, 43, 44, 48, 51, 75
                                                   var_check, 81
print.arrange, 49
                                                   visualize, 81
publishers, 50
                                                   win_launcher, 24, 82
radiant, 50
radiant-package (radiant), 50
regression, 43, 44, 48, 51, 56, 75
rndnames, 52
sample_size, 52, 76
sampling, 53, 76, 77
save_factors, 54
save_glm_resid, 54
save_membership, 23, 40, 55, 72
save_reg_resid, 56
sd_rm, 56
serr, 57
set\_class, 57
shopping, 58
sig\_stars, 58
single_mean, 45, 59, 77
single_prop, 46, 60, 78
skew, 60
sshh, 61
sshhr, 61
state_init, 62, 63, 64
state_multiple, 62, 63, 64
state_single, 62, 63, 64
summary.compare_means, 8, 32, 65
summary.compare_props, 9, 32, 65
summary.conjoint, 5, 11, 33, 66
summary.conjoint_profiles, 11, 17, 67
summary.correlation, 13, 34, 67
summary.cross_tabs, 14, 35, 68
summary.explore, 16, 35, 69
summary.full_factor, 17,70
summary.glm_reg, 20, 37, 47, 70
summary.hier_clus, 21, 39, 71, 72
summary.kmeans_clus, 23, 40, 55, 72
summary.mds, 27, 40, 73
summary.pmap, 41, 47, 73
summary.pre_factor, 42, 49, 74
summary.regression, 43, 44, 48, 51, 75
summary.sample_size, 53, 76
summary.sampling, 53, 76
\verb|summary.single_mean|, 45, 59, 77|
summary.single_prop, 46, 60, 78
superheroes, 78
test_specs, 79
titanic, 79
titanic_pred, 80
```

toothpaste, 80