Описание изображений изображе

Описание

Дескрипторы

Простые дескрипторы

- Длина
- Диаметр

$$Diam(B) = \max_{i,j} [D(p_i, p_j)]$$

- Эксцентриситет
- Кривизна

Нумерация фигур

Номер фигуры - минимальное числовое представление разности кода границы Порядок п номера фигуры - число цифр в его записи

Пример

n = 18

Фурье-дескрипторы

$$s(k) = [x(k), y(k)]$$

$$s(k) = x(k) + iy(k)$$

$$a(u) = \sum_{k=0}^{K-1} s(k)e^{-i2\pi ku/K}$$

Действительная ось

$$s(k) = \frac{1}{K} \sum_{u=0}^{K-1} a(u)e^{i2\pi ku/K}$$

$$\hat{s}(k) = \frac{1}{K} \sum_{0}^{P/2-1} a(u)e^{i2\pi ku/K} + a(u)e^{i2\pi k(u + \frac{K}{2})/K}$$

Таблица 11.1. Основные свойства дескрипторов Фурье

Преобразование	Граница	Фурье-дескрипторы
Тождественное	s(k)	a(u)
Поворот	$s_r(k) = s(k)e^{i\theta}$	$a_r(u) = a(u)e^{i\theta}$
Параллельный перенос	$s_t(k) = s(k) + \Delta_{xy}$	$a_{t}(u) = a(u) + \Delta_{xy}\delta(u)$
Изменение масштаба	$s_s(k) = c s(k)$	$a_s(u) = \alpha a(u)$
Смена начальной точки	$s_p(k) = s(k - k_0)$	$a_p(u) = a(u)e^{-i2\pi k_0 u/K}$

Статистические характеристики

$$\mu_n(\nu) = \sum_{i=0}^{\infty} (\nu_i - m)^n p(\nu_i)$$

$$A-1$$

A-1

 $\mu_n(r) = \sum_{i=0}^{\infty} (r_i - m)^n g(r_i)$ K-1

K-1

 $m = \sum_{i=0}^{\infty}
u_i p(
u_i)$ μ_2 - дисперсия u_i

 $m = \sum_{i} r_i g(r_i)$ μ_2 - разброс от-но ср. значения *r* μ_3 - симмет-ть кривой от-но ср.значения r

Анализ

- Простота
- "Физическая" интерпретация формы границы
- Инвариантность к повороту
- Легкость масштабирования

Дескрипторы областей

Простые дескрипторы

- Площадь
- Периметр
- Компактность области
- Коэффициент округлости
- Яркостные характеристики

Площадь, периметр

Компактность области

$$\frac{P^2}{S}$$

Коэффициент округлости

$$\frac{S}{S_c}$$

Sc - площадь круга с периметром P

$$R_c = \frac{4\pi S}{P^2}$$

Топологические дескрипторы

Топология изучает свойства фигур, на которые не влияют любые их непрерывные деформации

Топологические свойства

- Число связных областей С
- Число дырок *H*
- Число Эйлера E = C H

Формула Эйлера

$$V - Q + F =$$

$$= C - H$$

Текстурные дескрипторы

Описание структуры

- Статистический подход
- Структурный подход
- Спектральный подход

Спектральный подход

Полезные свойства:

- 1. Угловая координата выступающего пика спектра (в полярном представлении) указывает направление соответствующей текстурной составляющей
- 2. Местоположение пиков на частотной плоскости даёт основной пространственный период структуры
- 3. После устранения периодических составляющих остаются только непериодические компоненты.

Спектральный подход

$$S(r) = \sum_{\theta=0}^{\pi} S_{\theta}(r)$$

$$S(\theta) = \sum_{r=0}^{R_0} S_r(\theta)$$

Инварианты моментов двумерных функций

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x, y)$$

$$\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x - \bar{x})^p (y - \bar{y})^q f(x, y)$$

$$\begin{split} \varphi_1 &= \eta_{20} + \eta_{02} \\ \varphi_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ \varphi_3 &= (\eta_{30} - 3\eta_{12})^2 + (\eta_{03} - 3\eta_{21})^2 \\ \varphi_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ \varphi_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12}) \Big[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2 \Big] + \\ &+ (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03}) \Big[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \Big] \\ \varphi_6 &= (\eta_{20} - \eta_{02}) \Big[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \Big] + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\ \varphi_7 &= (3\eta_{21} - \eta_{03})(\eta_{12} + \eta_{30}) \Big[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2 \Big] + \\ &+ (3\eta_{12} - \eta_{30})(\eta_{21} + \eta_{03}) \Big[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \Big] \end{split}$$

Пример

Инвари- ант	Исходное изображение	Сдвиг	Половинный размер	Зеркальное отражение	Поворот на 45°	Поворот на 90°
φ ₁	2,8662	2,8662	2,8664	2,8662	2,8661	2,8662
ϕ_2	7,1265	7,1265	7,1257	7,1265	7,1266	7,1265
ϕ_3	10,4109	10,4109	10,4047	10,4109	10,4115	10,4109
ϕ_4	10,3742	10,3742	10,3719	10,3742	10,3742	10,3742
ϕ_5	21,3674	21,3674	21,3924	21,3674	21,3663	21,3674
ϕ_6	13,9417	13,9417	13,9383	13,9417	13,9417	13,9417
ϕ_7	-20,7809	-20,7809	-20,7724	20,7809	-20,7813	-20,7809

Использование главных компонент

Вектор математического ожидания для генеральной совокупности

$$\mathbf{m}_{\mathbf{x}} = E\{\mathbf{x}\}$$

Ковариационная матрица

$$\mathbf{C}_{\mathbf{x}} = E\{(\mathbf{x} - \mathbf{m}_{\mathbf{x}})(\mathbf{x} - \mathbf{m}_{\mathbf{x}})^{\mathbf{T}}\}$$

Использование главных компонент

Приближенная оценка вектора математического ожидания ${}_{\rm 1}$ K

$$\mathbf{m}_{\mathbf{x}} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{x}_{k}$$

Ковариационная матрица

$$\mathbf{C}_{\mathbf{x}} = rac{1}{K} \sum_{k=1}^{K} \mathbf{x}_k \mathbf{x}_k^T - \mathbf{m}_k \mathbf{m}_k^T$$

Пример

$$\mathbf{x}_1 = (0, 0, 0)^T$$

$$\mathbf{x}_2 = (1, 0, 0)^T$$

$$\mathbf{x}_3 = (1, 1, 0)^T$$

$$\mathbf{x}_4 = (1, 0, 1)^T$$

Пример

$$\mathbf{m}_{\mathbf{x}} = \frac{1}{4} \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{C_x} = \frac{1}{16} \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

Преобразование Карунена-Лоэва

$$\mathbf{y} = \mathbf{A}(\mathbf{x} - \mathbf{m}_{\mathbf{x}})$$
$$\mathbf{m}_{\mathbf{y}} = 0$$
$$\mathbf{C}_{\mathbf{y}} = \mathbf{A}\mathbf{C}_{\mathbf{x}}\mathbf{A}^{T}$$

Преобразование Карунена-Лоэва

$$\mathbf{x} = \mathbf{A}^{T}\mathbf{y} + \mathbf{m}_{\mathbf{x}}$$

$$\hat{\mathbf{x}} = \mathbf{A}_{k}^{T}\mathbf{y} + \mathbf{m}_{\mathbf{x}}$$

$$e_{ms} = \sum_{j=1}^{n} \lambda_{j} - \sum_{j=1}^{k} \lambda_{j} = \sum_{j=k+1}^{n} \lambda_{j}$$

а б в г д е

Рис. 11.38. Компоненты мультиспектрального изображения в (a) видимом синем, (δ) видимом зеленом, (δ) видимом красном, (ϵ) ближнем инфракрасном, (δ) среднем инфракрасном и (ϵ) тепловом инфракрасном диапазонах. (Изображения предоставлены агентством NASA)

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
10344	2966	1401	203	94	31

Реляционные дескрипторы

Цель: зафиксировать в форме правил подстановки элементарные конфигурации, которые повторяются на границе или внутри области

Простая ступенчатая структура. Структура в закодированном виде

Примеры порождения для системы правил $S \to aA$, $A \to bS$ и $A \to b$

Отслеживание контура объекта

С кодированием результата отрезками заданного направления и/или длины

Направленные отрезки

Деревья

