Jump Diffusion models

In this chapter, we enrich the Black-Scholes model by adding jumps to the model, so the stock price sample path is no longer continuous.

• To begin with, we let

$$X_t = W_t + N_t$$

where W_t is standard Brownian motion, and N_t is an independent Poisson process with parameter $\lambda > 0$, which means that

$$\mathbb{P}(N_t = n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

i.e. N_t is a Poisson random variable with parameter λt (rather than the usual λ).

- Recall that a Poisson process has the property that the times between jumps are i.i.d. exponential $\text{Exp}(\lambda)$ random variables and the probability of a jump in a small time interval Δt tends to $\lambda \Delta t$ as $\Delta t \to 0$.
- We now wish to compute $\mathbb{P}(X_t > x)$. We first note that we can re-write the event $\{X_t > x\}$ as follows:

$$\{X_t > x\} = \bigcup_{n=0}^{\infty} \{X_t > x\} \cap \{N_t = n\}.$$

But the (infinite) union on the right hand side is a union of *disjoint* events. Thus the probability of the union is equal to the sum of the individual probabilities:

$$\mathbb{P}(X_t > x) = \sum_{n=0}^{\infty} \mathbb{P}(X_t > x, N_t = n)$$
$$= \sum_{n=0}^{\infty} \mathbb{P}(X_t > x \mid N_t = n) \, \mathbb{P}(N_t = n)$$

where we have used the usual rule of conditional probability that $\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B)\mathbb{P}(B)$ in the last line.

• We can now compute the distribution function of X_t by conditioning on the independent N_t process first:

$$\mathbb{P}(X_t > x) = \sum_{n=0}^{\infty} \mathbb{P}(X_t > x \mid N_t = n) \, \mathbb{P}(N_t = n)$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(W_t + n > x \mid N_t = n) \, \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(W_t + n > x) \, \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(\frac{W_t}{\sqrt{t}} > \frac{x - n}{\sqrt{t}}) \, \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

$$= \sum_{n=0}^{\infty} \Phi^c(\frac{x - n}{\sqrt{t}}) \, \frac{(\lambda t)^n e^{-\lambda t}}{n!} \, .$$

• X_t has a Brownian motion component, and a jump component, and is a simple example of a **Lévy process**.

6.1 The Merton jump diffusion model

• Now let $S_t = e^{X_t}$ denote the stock price process, where

$$X_t = \mu t + \sigma W_t + \sum_{i=1}^{N_t} \xi_i$$

where W_t is standard Brownian motion, the ξ_i 's are independent $N(\alpha, \delta^2)$ random variables i.e. the jumps are now of **random** size, and N_t is a Poisson process with parameter $\lambda > 0$. We assume that N_t, W_t and all the ξ_i 's are independent of one another.

- The sum $\sum_{i=1}^{N_t} \xi_i$ is known as a compound Poisson process. Note that if $\xi_i \equiv 1$, then $\sum_{i=1}^{N_t} \xi_i = N_t$ and we are back to the simple model discussed in the previous section.
- As before, we compute the distribution function of X_t by conditioning on the independent N_t process first:

$$\mathbb{P}(X_t > x) = \sum_{n=0}^{\infty} \mathbb{P}(X_t > x \mid N_t = n) \, \mathbb{P}(N_t = n)$$
$$= \sum_{n=0}^{\infty} \mathbb{P}(\mu t + \sigma W_t + \sum_{i=1}^{n} \xi_i > x) \, \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

• But $\mu t + \sigma W_t + \sum_{i=1}^n \xi_i$ is just a constant (i.e. μt) plus a sum of n+1 independent Normal random variables. But a sum of independent Normal random variables is still a Normal random variable, with mean and variance given by the sum of the individual means and variances. So in this case

$$\mu t + \sigma W_t + \sum_{i=1}^n \xi_i \sim N(\mu t + n\alpha, \sigma^2 t + n\delta^2). \tag{1}$$

• Thus we have

$$\mathbb{P}(X_t > x) = e^{-\lambda t} \sum_{n=0}^{\infty} \Phi^c(\frac{x - \mu t - n\alpha}{\sqrt{\sigma^2 t + n\delta^2}}) \frac{(\lambda t)^n}{n!}$$

This series converges rapidly and be easily computed in VBA (see the Excel sheet JumpDiffusionModel.xls).

• Differentiating this expression with respect to x, and multiplying by -1, we obtain the density of X_t (we omit the details for the same of brevity).

6.2 A general jump diffusion model

Now consider a more general jump diffusion model where $X_t = \mu t + \sigma W_t + Y_t$, where $Y_t = \sum_{i=1}^{N_t} \xi_i$ and the ξ_i 's are independent and identically distributed (i.i.d) random variables with density $\mu(x)$ and N_t is a Poisson process with parameter $\lambda > 0$, and W, N and the ξ_i are all independent of each other. Using independence we have

$$\mathbb{E}(e^{iuX_t}) = \mathbb{E}(e^{iu(\mu t + \sigma W_t)}) \mathbb{E}(e^{iuY_t}) = \exp\left[i\mu ut - \frac{1}{2}\sigma^2 u^2 t\right] \mathbb{E}(e^{iuY_t})$$
 (2)

where $i = \sqrt{-1}$. Here we have used that $\mathbb{E}(e^{pZ}) = e^{\mu_1 p + \frac{1}{2}\sigma_1^2 p^2}$ if $Z \sim N(\mu_1, \sigma_1^2)$; here $Z = \mu t + \sigma W_t$ so $\mu_1 = \mu t$, $\sigma_1^2 = \sigma^2 t$ and p = iu.

$$\mathbb{E}(e^{iuY_t}) = \sum_{n=0}^{\infty} \mathbb{E}(e^{iuY_t} | N_t = n) \, \mathbb{P}(N_t = n) = \sum_{n=0}^{\infty} \mathbb{E}(e^{iu(\xi_1 + \dots \xi_n)}) \, \mathbb{P}(N_t = n)$$

$$= \sum_{n=0}^{\infty} \mathbb{E}(e^{iu\xi_1}) \mathbb{E}(e^{iu\xi_2}) \dots \mathbb{E}(e^{iu\xi_n}) \, \mathbb{P}(N_t = n)$$

$$= \sum_{n=0}^{\infty} \mathbb{E}(e^{iu\xi_1})^n \, \mathbb{P}(N_t = n)$$

where we have used that ξ_1, ξ_2, \dots are i.i.d. Now let $\phi(u) = \mathbb{E}(e^{iu\xi_1})$. Then we have

$$\mathbb{E}(e^{iuY_t}) = \sum_{n=0}^{\infty} \phi(u)^n \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

$$= \exp(-\lambda t + \phi(u)\lambda t)$$

$$= \exp(-\lambda t + \lambda t \int e^{iux} \mu(x) dx)$$

$$= \exp[\lambda t \int_{-\infty}^{\infty} (e^{iux} - 1)\mu(x) dx]$$

using that $\int \mu(x)dx = 1$ because $\mu(x)$ is a density. In general, if we know the characteristic function $\phi(k)$ of a random variable, if its density exists, we can compute its density using an **inverse Fourier transform**:

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ikx} \phi(k) dk.$$

7. Lévy models

7.1 Definition of a Lévy process

A Lévy process is a generalization of the jump diffusion process $X_t = \mu t + \sigma W_t + \sum_{i=1}^{N_t} \xi_i$ discussed in the previous lecture. X is said to be a Lévy process if:

- $X_0 = 0$;
- X has independent increments;
- $X_t X_s$ has the same distribution as X_{t-s} for any 0 < s < t;
- X can only jump at random times.

Remark 0.1 Examples of Lévy processes: standard Brownian motion W_t , the Poisson process N_t , the sum $X_t = W_t + N_t$, the general jump diffusion $X_t = \mu t + \sigma W_t + \sum_{i=1}^{N_t} \xi_i$ from the previous lecture with general jump size distribution $\mu(dx)$ and $(H_b)_{b\geq 0}$ (the first hitting time process for standard Brownian motion) where now b is the time variable.

7.2 A Lévy process

7.2 A Poisson random measure

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $E = \mathbb{R} \times [0, t]$ and let $\mathcal{E} = \mathcal{B}(\mathbb{E})$ denote the Borel σ -algebra on E. Then N is said to be a **Poisson random measure** on E with intensity $\mu(dx, dt) = \nu(dx) \times dt$ if

- For any $A \in \mathcal{E}$, i.e. any Borel subset of $\mathbb{R} \times [0,t]$, N(A) is a Poisson random variable with parameter $\mu(A)$.
- For any disjoint sets $A_1, ..., A_n, N(A_1), ..., N(A_n)$ are independent (in fact they will be n independent Poisson random variables with parameters $\mu(A_1), ..., \mu(A_n)$.

Remark 0.2 Such a measure can be constructed (see e.g. Tankov's notes). $N(\omega, .)$ is a *measure* on $\mathbb{R} \times [0, t]$, and N(., A) = N(A) is a random variable.

Remark 0.3 All we really care about is a set A of the form $A = B \times [0, t]$ where $B \in \mathcal{B}(\mathbb{R})$. Then the number of points that fall inside B is just a Poisson random variable with parameter $t\nu(A)$.

How does this tie in with a Lévy process? Well for a Lévy process X, we can define the **jump measure** J_X as

$$J_X(A) = \sharp \{t : \Delta X_t \neq 0 \text{ and } (t, \Delta X_t) \in A\}$$

where \sharp means "the number of", so $J_X(A)$ is the number of times t that X undergoes a jump and $(t, \Delta X_t) \in A$, and we define the **Lévy measure** on \mathbb{R} by

$$\nu(A) = \mathbb{E}(\sharp \{t \in [0,1] : \Delta X_t \neq 0 \text{ and } \Delta X_t \in A\}.$$

 ν is a measure but it need not be a probability measure unless X is a jump diffusion of the form $X_t = \gamma t + \sigma W_t + \sum_{i=1}^{N_t} \xi_i$, in which case $\nu(dx)$ is just the jump size distribution.

Theorem 0.1 (The Lévy-Itô decomposition).

- J_X defined above is a Poisson random measure on $(\mathbb{R} \times [0,t], \mathcal{B}(\mathbb{R} \times [0,t]))$.
- If the Lévy measure ν satisfies $\int_{-\infty}^{\infty} (x^2 \wedge 1) \nu(dx) < \infty$, we can decompose X as

$$X_t = \gamma t + \sigma W_t + \int_0^t \int_{|x|>1} x J_X(dx, ds) + \int_0^t \int_{|x|<1} x (J_X(dx, ds) - \nu(dx) ds).$$

This formula shows how all the jump at different sizes are added together to give the whole process X. The triple (γ, σ, ν) is known as the **characteristic triple** of X.

The arrival rate (i.e. the expected number of jumps) whose size falls in $[x, x + \Delta x]$ is $\nu[x, x + \Delta x]$, and the number of jumps of size $[x, x + \Delta x]$ over [0, t] is a Poisson r.v. with parameter $t\nu[x, x + \Delta x]$. For any two distinct x values x, x_1 , the number of jumps over [0, t] whose jump size falls in $[x, x + \Delta x]$ and the number of jumps which fall in $[x_1, x_1 + \Delta x]$ are independent if Δx is sufficiently small so $[x, x + \Delta x]$ and $[x_1, x_1 + \Delta x]$ don't overlap.

A Lévy process has an associated **Lévy measure** $\nu(dx)$ which is such that for any n disjoint sets $A_1, A_1, ..., A_n$ in $\mathcal{B}(\mathbb{R})$, the number of jumps which fall in $A_1, ..., A_n$ over [0,t] is a vector of n independent **Poisson random variables** with parameters $\nu(A_1)t, ..., \nu(A_n)t$. A jump diffusion process X_t (which we saw in the last lecture) is a special simple type of Levy process for which $\nu(dx) = \lambda \mu(x)$, where $\mu(x)$ is the jump size distribution and λ is the arrival rate for the Poisson process. For some models e.g. the well known CGMY model discussed below, $\nu(0,x] = \infty$ for any x > 0; this means there is an *infinite* number of positive jumps almost surely, and this is known as an **infinite-activity** Lévy process.

Theorem 0.2 Lévy-Khintchine representation). Let X be a infinite activity Lévy process with characteristic triple (μ, σ, ν) . Then

$$\mathbb{E}(e^{iuX_t}) = \exp\left[t(i\mu u - \frac{1}{2}\sigma^2 u^2 + \int_{-\infty}^{\infty} (e^{iux} - 1 - iux1_{|x| \le 1})\nu(dx)\right]$$
(3)

Notice that there is one additional term in the integral which is not there when X is a jump diffusion. We will not prove this here, but note that if $\nu(\mathbb{R}) = +\infty$, this term is needed to ensure that the integral here is finite.

7.3 Examples of Lévy processes

• The double exponential **Kou model** (as previously discussed) is a jump diffusion model for which the Lévy measure is just a multiple λ times a probability measure, given by a two-sided exponential distribution, so

$$\nu(x) = \lambda [p\lambda_{+}e^{-\lambda_{+}x}1_{x>0} + (1-p)\lambda_{-}e^{\lambda_{-}x}1_{x<0}].$$

This is a finite-activity model, because $\nu(x)$ is just a multiple of a probability density, so $\nu(\mathbb{R}) < \infty$.

• As we have seen, the **Merton jump diffusion model** for which the Lévy measure is just a multiple λ times a normal density with parameters $N(\alpha, \delta^2)$, given by a two-sided exponential distribution, so in this case

$$\nu(x) = \lambda \cdot \frac{1}{\delta \sqrt{2\pi}} e^{-(z-\alpha)^2/2\delta^2}.$$

This is also a finite-activity model, because $\nu(x)$ is just a multiple of a probability density, so $\nu(\mathbb{R}) < \infty$.

• Let $\tau_b = \inf\{s : W_s = b\}$ denote the first hitting time (or **inverse maximum process**) for a Brownian W with $b \geq 0$. Then it turns out that $(\tau_b)_{b\geq 0}$ (with b the time variable) is a non-decreasing Lévy process. From the optional stopping theorem, recall that we proved that

$$\mathbb{E}(e^{-\lambda \tau_b}) = e^{-b\sqrt{2\lambda}}.$$

Setting $-\lambda = iu$ for $u \in \mathbb{R}$, we see that

$$\mathbb{E}(e^{iu\tau_b}) = e^{-b\sqrt{-2iu}}$$

and it turns out that we can re-write the right-hand side as

$$\mathbb{E}(e^{iu\tau_b}) = \exp[b \int_0^\infty (e^{iuz} - 1)\nu(z)dz] = \exp[*** + b \int_0^\infty (e^{iuz} - 1 - |z|1_{|z| \le 1})\nu(z)dz]$$

where $\nu(z) = \frac{1}{\sqrt{2\pi z^3}}$, which we recognize as being one-half the rate of excursions which exceed time z. Thus τ_b is a Levy process (note that τ_b has no negative jumps, and the jump sizes correspond to the duration of the excursions of W away from its maximum process).

• The CGMY (Carr-Geman-Madan-Yor) model has a Lévy density of the form

$$\nu(x) = \frac{Ce^{-Mx}}{x^{1+Y}} \mathbf{1}_{\{x>0\}} + \frac{Ce^{Gx}}{|x|^{1+Y}} \mathbf{1}_{\{x<0\}}$$

for C, G, M > 0 and $Y \in (0, 2)$, so we the see the jump rate tends to infinity as the jump size tends to zero. This is what we call an **infinite-activity** model, because $\nu(x)$ is not a multiple of a pdf.

• The characteristic function for the CGMY model is given by

$$\phi_t(u) = \mathbb{E}(e^{iuX_t}) = \exp\left[t \, C\Gamma(-Y) \left\{ (M - iu)^Y + (G + iu)^Y - M^Y - G^Y \right\} + ibut \right],$$

for $Y \neq 1$ (proof not required) and some constant b which controls the drift, and from this we can compute the critical moments p_+, p_- (see homework/past exam questions).

• To compute the density of $p_t(x)$ of X_t , we use the inverse Fourier transform as before:

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iux} \phi_t(u) du.$$