Lemma 4. Let X be a pseudocompact space and f a continuous one-to-one function from $X \times T(|\beta X|^+)$ onto Z. We are given two sets: $C_1 = \{x \in \beta X \setminus X : |\bar{f}[\{x\} \times T(|\beta X|^+)] \cap Z| = |\beta X|^+\}.$ $C_2 = \{x \in \beta X \setminus X : |\bar{f}[\{x\} \times T(|\beta X|^+)] \cap Z| < |\beta X|^+ \text{ and for any } \alpha \in T(|\beta X|^+), \text{ there exists } \alpha_1 \in T(|\beta X|^+) \text{ such that } \alpha_1 > \alpha \text{ and } \bar{f}(x, \alpha_1) \in Z\}.$ Then, $C_1 \cap \overline{C_2}^{\beta X} = \emptyset$ and $X \cap \overline{C_2}^{\beta X} = \emptyset$.

Proof. We'll first prove that $C_1 \cap \overline{C_2}^{\beta X} = \emptyset$. Suppose the contrary. Let $x \in C_1 \cap \overline{C_2}^{\beta X}$.

For each $y \in C_2$, let $Z_y = \bar{f} [\{y\} \times T(|\beta X|^+)] \cap Z$. Since $\{y\} \times T(|\beta X|^+) = \bigcup \{\{y\} \times T(|\beta X|^+) \cap \bar{f}^{-1}(z) : z \in Z_y\}$, we have: $|\beta X|^+ = |\{y\} \times T(|\beta X|^+)| = |\bigcup \{\{y\} \times T(|\beta X|^+) \cap \bar{f}^{-1}(z) : z \in Z_y\}|$

Since $|Z_y| < |\beta X|^+ = cf(|\beta X|^+)$, at least one of the terms in the union must have cardinality equal to $|\beta X|^+$. So there exists $z \in Z_y$ such that

 $|\{y\} \times T(|\beta X|^+) \cap \bar{f}^{-1}(z)| = |\beta X|^+.$

Define $A_y = \pi_2 \left[\{y\} \times T(|\beta X|^+) \cap \bar{f}^{-1}(z) \right]$, where $\pi_2 : \beta X \times T(|\beta X|^+) \to T(|\beta X|^+)$ is the projection map. Thus, we defined $A_y \subseteq T(|\beta X|^+)$ such that $|A_y| = |\beta X|^+$ and $\bar{f}[\{y\} \times A_y] = z = f(x_y, \alpha_y)$ for some $(x_y, \alpha_y) \in X \times T(|\beta X|^+)$. By the continuity of \bar{f} , we have that $\bar{f}\left[\{y\} \times \overline{A_y}^{T(|\beta X|^+)}\right] = f(x_y, \alpha_y)$ holds for all $y \in C_2$.

Let $T = \bigcap \left\{ \overline{A_y}^{T(|\beta X|^+)} : y \in C_2 \right\} \cap T_x$, where T_x was defined in Lemma 3. Now, by **FACT 3**, $|T| = |\beta X|^+$ and T is closed in $T(|\beta X|^+)$.

We have $|\bar{f}[\{x\} \times T] \cap Z| = |\beta X|^+$ holds. This is because: $x \in C_1$ and by the way we defined T, we must have $\bar{f}[\{x\} \times T] = f[y_x, T] \subseteq Z$. Since f is one-to-one, $|f[y_x, T]| = |T| = |\beta X|^+$.

On the other hand, we have $\left| \bar{f} \left[\{x\} \times T \right] \cap Z \right| < \left| \beta X \right|^+$ holds. Because: $\bar{f} \left[\{x\} \times T \right] \cap Z \subseteq \bar{f} \left[\overline{C_2}^{\beta X} \times T \right] \cap Z \subseteq \bar{f} \left[\overline{C_2 \times T}^{\beta X \times T (\left| \beta X \right|^+ + 1)} \right] \cap Z$ $= \bar{f} \left[\overline{C_2 \times T}^{\beta \left(X \times T (\left| \beta X \right|^+) \right)} \right] \cap Z \subseteq \overline{\bar{f} \left[C_2 \times T \right]}^{\beta Z} \cap Z = \overline{\left\{ f(x_y, \alpha_y) : y \in C_2 \right\}}^{\beta Z},$

where the last equality holds because $\bar{f}[\{y\} \times T] = f(x_y, \alpha_y)$ holds for all $y \in C_2$. Now, let $\alpha = \sup\{\alpha_y : y \in C_2\}$, which exists because $|C_2| \leq |\beta X| < |\beta X|^+ = cf(|\beta X|^+)$.

Since $\{f(x_y, \alpha_y): y \in C_2\} \subseteq \bar{f} [\beta X \times T(\alpha+1)] = \overline{\bar{f} [\beta X \times T(\alpha+1)]}^{\beta Z}$, we must have $\overline{\{f(x_y, \alpha_y): y \in C_2\}}^{\beta Z} \subseteq \bar{f} [\beta X \times T(\alpha+1)]$. Since

$$\begin{split} &\bar{f}\left[\{x\}\times T\right]\cap Z\subseteq \bar{f}\left[\beta X\times T(\alpha+1)\right] \text{ and we have } \left|\bar{f}\left[\beta X\times T(\alpha+1)\right]\right|<\\ &|\beta X|^+, \text{ we conclude that } \left|\bar{f}\left[\{x\}\times T\right]\cap Z\right|<\left|\beta X\right|^+. \text{ This contradiction to our previous argument that } \left|\bar{f}\left[\{x\}\times T\right]\cap Z\right|=\left|\beta X\right|^+. \text{ Therefore, } C_1\cap \overline{C_2}^{\beta X}=\emptyset. \end{split}$$

We show that $X \cap \overline{C_2}^{\beta X} = \emptyset$. Suppose the contrary. Let $x \in X \cap \overline{C_2}^{\beta X}$. Since $x \in \overline{C_2}^{\beta X}$, by the same reasoning as in above, we must have $\left| \bar{f} \left[\{x\} \times T \right] \cap Z \right| < \left| \beta X \right|^+$.

However, since $x \in X$, $|\bar{f}[X \times T] \cap Z| = |f[X \times T]| = |\beta X|^+$, where the last equality holds because f is one-to-one and $|T| = |\beta X|^+$. Again, we reached contradiction. Thus, $X \cap \overline{C_2}^{\beta X} = \emptyset$ holds. Lemma 4 is proved.