测验, 10 个问题

1 point	t.
person	erification requires comparing a new picture against one 's face, whereas face recognition requires comparing a cture against K person's faces.
	True False
1 point	
-	o we learn a function $d(img1,img2)$ for face ation? (Select all that apply.)
	Given how few images we have per person, we need to apply transfer learning.
\checkmark	This allows us to learn to recognize a new person given just a single image of that person.
\checkmark	We need to solve a one-shot learning problem.
	This allows us to learn to predict a person's identity using a softmax output unit, where the number of classes equals the number of persons in the database plus 1 (for the final "not in database" class).
1 point	t

3。

In order to train the parameters of a face recognition system, Special applications: Face recognitions system, set Neural style transfer

测验, 10 个问题 100,000 pictures of 100,000 different persons.

() True

False

1 point

4.

Which of the following is a correct definition of the triplet loss? Consider that $\alpha>0$. (We encourage you to figure out the answer from first principles, rather than just refer to the lecture.)

$$\bigcap max(||f(A) - f(P)||^2 - ||f(A) - f(N)||^2 - \alpha, 0)$$

$$\bigcap \ \ max(||f(A)-f(N)||^2-||f(A)-f(P)||^2+lpha,0)$$

$$\bigcap \ \ max(||f(A)-f(N)||^2-||f(A)-f(P)||^2-lpha,0)$$

1 point

5。

Consider the following Siamese network architecture:

The upper and lower neural networks have different input images, but have exactly the same parameters.

测验, 10 个问题

1 point

6。

You train a ConvNet on a dataset with 100 different classes. You wonder if you can find a hidden unit which responds strongly to pictures of cats. (I.e., a neuron so that, of all the input/training images that strongly activate that neuron, the majority are cat pictures.) You are more likely to find this unit in layer 4 of the network than in layer 1.

True

False

1 point

7。

Neural style transfer is trained as a supervised learning task in which the goal is to input two images (x), and train a network to output a new, synthesized image (y).

True

False

1 point

8。

In the deeper layers of a ConvNet, each channel corresponds to a different feature detector. The style matrix $G^{[l]}$ measures the degree to which the activations of different feature detectors in layer l vary (or correlate) together with each other.

True

测验, 10 个问题

ileations. Lace recognition & wearar style		
1 point	t	
	ral style transfer, what is updated in each iteration of timization algorithm?	
	The neural network parameters	
	The regularization parameters	
	The pixel values of the content image ${\cal C}$	
	The pixel values of the generated image ${\cal G}$	
1 point	t	
10°. You are working with 3D data. You are building a network layer whose input volume has size 32x32x32x16 (this volume has 16 channels), and applies convolutions with 32 filters of dimension 3x3x3 (no padding, stride 1). What is the resulting output volume?		
\bigcirc	30x30x30x16	
	30x30x30x32	
	Undefined: This convolution step is impossible and cannot be performed because the dimensions specified don't match up.	
<u> </u>	我(伟臣 沈)了解提交不是我自己完成的作业 将永远不会通过此课程或导致我的 Coursera 帐号被关闭。 了解荣誉准则的更多信息	

Submit Quiz

测验, 10 个问题