

Pontifícia Universidade Católica de Minas Gerais Bacharelado em Ciência da Computação Projeto e Análise de Algoritmos – 1º Semestre de 2019 Prof^a. Raquel Mini

2ª LISTA DE EXERCÍCIOS

1. Considere os seguintes itens e que a mochila tem capacidade 15, qual é a combinação de itens que devemos levar para maximizar o valor? Mostre todos os passos intermediários do algoritmo da mochila com programação dinâmica, a quantidade de cada item que será levada (completando a tabela abaixo) e o valor total dos itens levados.

Item	A	В	C	D
Tamanho	1	4	5	6
Valor	1	5	6	8

	A	В	C	D
Número de itens				

2. A solução através de programação dinâmica para a multiplicação da cadeia de matrizes A[5][14], B[14][3], C[3][10], D[10][8], E[8][50, F[50][6] é dada abaixo:

Matriz cost							
0	210	360	570	2400	2640		
	0	420	576	3540	2592		
		0	240	1440	2340		
			0	4000	2880		
				0	2400		
					0		

Matriz	Matriz best							
	2	3	3	3	3			
		3	3	3	3			
			4	5	6			
				5	5			
					6			

Considerando a solução apresentada acima, qual é a colocação de parênteses com menor custo para realizar a multiplicação dessa cadeia de matrizes? Justifique sua resposta.

3. Considerando a seguinte árvore binária de pesquisa, responda:

- a) Qual é o custo desta árvore?
- b) Considerando que a solução através de programação dinâmica para a árvore de pesquisa binária ótima é apresentada abaixo, desenhe a árvore binária de pesquisa binária ótima.
- c) Qual é custo da árvore de pesquisa binária ótima?

cost[i]j]							
4	14	18	21	42	63	66	
0	6	10	13	31	51	54	
	0	2	4	16	36	39	
		0	1	11	31	33	
			0	9	28	30	
				0	10	12	
					0	1	

_	best[i][j]							
		2	2	2	2	5	15	
			2	2	15	5	5	
				\circ	15	5	5	
					5	5	6	
						9	6	
							6	

- 4. O que podemos afirmar sobre um problema de decisão A se sabemos que ele é polinomialmente redutível a um problema B pertencente à classe NP-Completo? Justifique.
- 5. O que podemos afirmar sobre um problema de decisão A se encontrarmos uma solução polinomial em máquina determinista para ele? Justifique.
- 6. Diga se a seguinte afirmativa é verdadeira ou falsa e justifique. Se eu tenho um novo problema de decisão A pertencente a NP, para eu provar que A está em NP-Completo basta encontrar uma redução polinomial de A para algum outro problema NP-Completo.
- 7. Seja A um problema pertencente a NP localizado no diagrama abaixo. Se alguém conseguir provar que é possível resolver o problema A em tempo polinomial em uma máquina determinista o que poderemos dizer sobre as classes P, NP e NP-Completo?

8. Seja A um problema pertencente a NP localizado no diagrama abaixo. Se alguém conseguir provar que não é possível resolver o problema A em tempo polinomial em uma máquina determinista o que poderemos dizer das classes P, NP e NP-Completo?

- 9. Explique sucintamente o Teorema de Cook, descrevendo sua importância para a Teoria da Complexidade. O que mudou depois da prova do seu teorema?
- 10. Como alguém poderia provar que P ≠ NP? Descreva todas as formas possíveis de alguém fazer esta prova.