Machine Learning and Data Mining

Bayes Classifiers; Naïve Bayes

Prof. Alexander Ihler Fall 2012

- · Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

 You wake up with a headache – what is the chance that you have the flu?

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2
- P(H & F) = ?
- P(F|H) = ?

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

•
$$P(F|H) = ?$$

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

•
$$P(F|H) = p(H \& F) / p(H)$$

= $(1/80) / (1/10) = 1/8$

Classification and probability

- Suppose we want to model the data
- Prior probability of each class, p(c)
 - E.g., fraction of emails that are spam
- Distribution of features given the class, p(x | c)
 - How likely are we to see "x" in spam?
- Joint distribution p(c|x)p(x) = p(x,c) = p(x|c)p(c)
- Bayes Rule: $\Rightarrow p(c|x) = \frac{p(x|c)p(c)/p(x)}{\sum p(x|c)p(c)}$

Bayes classifiers

- Estimate p(c)=[p(C=0), p(C=1) ...]
- Estimate p(x|C=c) for each class C
- Calculate p(C=c|x) using Bayes rule
- Choose the most likely class c

Bayes rule:

$$p(C=c \mid x) = p(x|C=c) * p(C=c) / p(x)$$

Rule of total probability:

$$p(x) = p(x|C=0)p(C=0) + p(x|C=1)p(C=1) + ...$$

Bayes classifiers

- Learn "class conditional" models
 - Estimate a probability model for each class
- Training data
 - Split by class
 - $D_c = \{ x^{(j)} : y^{(j)} = c \}$
- Estimate p(x | y=c) using D_c
- Can use any density estimate we'd like
 - Histogram
 - Gaussian
 - **–** ...

Gaussian models

Estimate parameters of the Gaussians from the data

$$\alpha = \frac{m_1}{m} = \hat{p}(y = c_1)$$
 $\hat{\mu} = \frac{1}{m} \sum_j x^{(j)}$ $\hat{\sigma}^2 = \frac{1}{m} \sum_j (x^{(j)} - \mu)^2$

Multivariate Gaussian models

Similar to univariate case

$$\mathcal{N}(\underline{x} ; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2} (\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu})\right\}$$

 μ = length-d column vector Σ = d x d matrix

 $|\Sigma| = \text{matrix determinant}$

Maximum likelihood estimate:

$$\hat{\mu} = \frac{1}{m} \sum_{j} \underline{x}^{(j)}$$

$$\hat{\Sigma} = \frac{1}{m} \sum_{j} (\underline{x}^{(j)} - \underline{\hat{\mu}})^{T} (\underline{x}^{(j)} - \underline{\hat{\mu}})$$

Joint distributions

Make a truth table of all combinations of values

Joint distributions

- Make a truth table of all combinations of values
- For each combination of values, determine how probable it is
- Total probability must sum to one
- How many values did we specify?

A , B , C			p(.)
0	0	0	0.50
0	0	1	0.05
0	1	0	0.01
0	1	1	0.10
1	0	0	0.04
1	0	1	0.15
1	1	0	0.05
1	1	1	0 10

Overfitting and density estimation

- Estimate probabilities from the data
 - E.g., how many times (what fraction)did each outcome occur?
- M data << 2^N parameters?

A , B , C			p(.)
0	0	0	4/10
0	0	1	1/10
0	1	0	0/10
0	1	1	0/10
1	0	0	1/10
1	0	1	2/10
1	1	0	1/10
1	1	1	1/10

- What about the zeros?
 - We learn that certain combinations are impossible?
 - What if we see these later in test data?
- Overfitting!

Overfitting and density estimation

- Estimate probabilities from the data
 - E.g., how many times (what fraction)
 did each outcome occur?
- M data << 2^N parameters?

A , B , C			p(.)
0	0	0	4/10
0	0	1	1/10
0	1	0	0/10
0	1	1	0/10
1	0	0	1/10
1	0	1	2/10
1	1	0	1/10
1	1	1	1/10

- What about the zeros?
 - We learn that certain combinations are impossible?
 - What if we see these later in test data?
- One option: regularize $\hat{p}(a,b,c) \propto (N_{abc} + lpha)$
- Normalize to make sure values sum to one...

Overfitting and density estimation

- Another option: reduce the model complexity
 - E.g., assume that features are independent of one another
- Independence:
- p(x,y) = p(x) p(y)
- p(x1, x2, ... xN) = p(x1) p(x2) ... p(xN)
- Only need to estimate each individually

A,	В,	C
0 .4	0.7	0 .1
1 .6	1 .3	1 .9

Conditional independence

- Ex: cavity, toothache, "catch"
 - Toothache and "catch" are not independent
 - But probably independent given cavity=1 or cavity=0

Conditional independence:

$$- p(y,z \mid x) = p(y|x) p(z|x)$$

$$y \perp z \mid x$$

- z only depends (directly) on x, not y
- z and y are coupled through x

Conditional independence

- Fully general distribution:
 - -p(x,y,z) = p(x) p(y|x) p(z|x,y)
 - (mx*my*mz 1) free parameters
- Conditionally independent, $y \perp z \mid x$
 - -p(x,y,z) = p(x) p(y|x) p(z|x)
 - (mx-1) + (my-1)*mx + (mz-1)*mx
 - Much fewer
- Ex: mx=my=mz=10
 - Arbitrary joint dist = 999 free parameters
 - Conditionally independent dist = 189 parameters

Naïve Bayes models

- Suppose we have some variable y to predict
 - Ex: risk of auto accident
- We have *many* co-observed vars $\mathbf{x} = [x_1...x_m]$
 - Age, income, education, zip code, ...
- Want to learn p(y | x₁...x_m), to predict y
- Arbitrary distribution: O(d^{m+1}) values!
- Naïve Bayes:
 - $p(y|\mathbf{x}) = p(\mathbf{x}|y) p(y) / p(\mathbf{x})$; $p(\mathbf{x}|y) = \prod_{i} p(x_i|y)$
 - Covariates are independent given "cause"
- May not be a good model of the data
 - Doesn't capture correlations in x's
 - Can't capture some dependencies
- But in practice it often does quite well!

Naïve Bayes Models for Spam

- $y \in \{spam, not spam\}$
- X = observed words in email
 - Ex: ["the" ... "probabilistic" ... "lottery"...]
 - "1" if word appears; "0" if not
- 1000's of possible words: 2^{1000s} parameters?
- # of atoms in the universe: $\sim 2^{270}...$
- Model words *given* email type as independent
- Some words more likely for spam ("lottery")
- Some more likely for real ("probabilistic")
- Only 1000's of parameters now...

Naïve Bayes Gaussian models

$$p(x_1) = \frac{1}{Z} \exp\left\{-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right\} \qquad p(x_2) = \frac{1}{Z_2} \exp\left\{-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right\}$$

$$p(x_1)p(x_2) = \frac{1}{Z_1 Z_2} \exp\left\{-\frac{1}{2}(\underline{x} - \underline{\mu})^T \Sigma^{-1}(\underline{x} - \underline{\mu})\right\}$$

$$\underline{\mu} = [\mu_1 \ \mu_2]$$

$$\Sigma = \operatorname{diag}(\sigma_1^2 \ , \ \sigma_2^2)$$

You should know...

- Bayes rule; p(c|x)
- Bayes classifiers
 - Learn p(x|c=C), p(c=C)
- Naïve Bayes classifiers
 - Assume $p(x|c=C) = p(x_1|c=C) p(x_2|c=C) ...$
- Maximum likelihood estimators
 - Discrete variables
 - Gaussian variables
 - Overfitting; simplifying assumptions or regularization

Gaussian models

- "Bayes optimal" decision
 - Choose most likely class
- Decision boundary
 - Places where probabilities equal
- What shape is the boundary?

Gaussian models

- Bayes optimal decision boundary
 - p(y=0 | x) = p(y=1 | x)
 - Transition point between p(y=0|x) > < p(y=1|x)
- Assume Gaussian models with equal covariances

$$\mathcal{N}(\underline{x} \; ; \; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2} (\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu})\right\}$$

$$0 \leq \log \frac{p(x|y=0)}{p(x|y=1)} \frac{p(y=0)}{p(y=1)} = \log \frac{p(y=0)}{p(y=1)} + \dots$$

$$-.5(x\Sigma^{-1}x - 2\mu_0^T \Sigma^{-1}x + \mu_0^T \Sigma^{-1}\mu_0)$$

$$+.5(x\Sigma^{-1}x - 2\mu_1^T \Sigma^{-1}x + \mu_1^T \Sigma^{-1}\mu_1)$$

$$= (\mu_0 - \mu_1)^T \Sigma^{-1} x + constants$$

Gaussian example

- Spherical covariance: $\Sigma = \sigma^2 I$
- Decision rule

$$= (\mu_0 - \mu_1)^T \Sigma^{-1} x + constants$$

$$(\mu_0 - \mu_1)^T x \leq C$$

$$(\mu_0 - \mu_1)$$

$$(\mu_0 - \mu_1)$$

$$C = .5(\mu_0^T \Sigma^{-1} \mu_0)$$
$$- \mu_1^T \Sigma^{-1} \mu_1)$$
$$- \log \frac{p(y=0)}{p(y=1)}$$

Non-spherical Gaussian distributions

- Equal covariances => still linear decision rule
 - May be "modulated" by variance direction
 - Scales; rotates (if correlated)

Ex: Variance [3 0] [0 .25]

Class posterior probabilities

- Useful to also know class probabilities
- Some notation
 - p(y=0), p(y=1) class *prior* probabilities
 - How likely is each class in general?
 - p(x | y=c) class conditional probabilities
 - How likely are observations "x" in that class?
 - p(y=c | x) class posterior probability
 - How likely is class c given an observation x?

Class posterior probabilities

- Useful to also know class probabilities
- Some notation
 - p(y=0), p(y=1) class *prior* probabilities
 - How likely is each class in general?
 - p(x | y=c) class conditional probabilities
 - How likely are observations "x" in that class?
 - p(y=c | x) class posterior probability
 - How likely is class c given an observation x?
- We can compute posterior using Bayes' rule
 - p(y=c | x) = p(x|y=c) p(y=c) / p(x)
- Compute p(x) using sum rule / law of total prob.
 - p(x) = p(x|y=0) p(y=0) + p(x|y=1)p(y=1)

Class posterior probabilities

Consider comparing two classes

$$- p(x | y=0) * p(y=0) vs p(x | y=1) * p(y=1)$$

Write probability of each class as

$$- p(y=0 \mid x) = p(y=0, x) / p(x)$$

$$- p(y=0, x) / (p(y=0,x) + p(y=1,x))$$

$$- = 1 / (1 + exp(-a)) (**)$$

- a = log [p(x|y=0) p(y=0) / p(x|y=1) p(y=1)]
- (**) called the logistic function, or logistic sigmoid.

Gaussian models

Return to Gaussian models with equal covariances

$$\mathcal{N}(\underline{x} ; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2} (\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu})\right\}$$

$$0 \leq \log \frac{p(x|y=0)}{p(x|y=1)} \frac{p(y=0)}{p(y=1)} = (\mu_0 - \mu_1)^T \Sigma^{-1} x + constants$$
(**)

Now we also know that the probability of each class is given by: $p(y=0 \mid x) = Logistic(**) = Logistic(a^T x + b)$

We'll see this form again soon...

Summary

- Axioms of probability
 - Help us reason explicitly about uncertainty
- Random variables
- Discrete variables; probability mass functions
 - Positive values, sum to one
 - Bernoulli, Discrete, etc.
- Joint distributions
 - Law of total probability
 - Chain rule of conditional probability
- Continuous variables; probability density functions
 - Gaussian