Kombinatorika

	bez opakování	s opakováním
variace	$V(n,k) = \frac{n!}{(n-k!)}$ factorial(n)/factorial(n-k)	$V'(n,k) = n^k$ n.^k
kombinace	$C(n,k) = {n \choose k} = \frac{n!}{(n-k)! k!}$ nchoosek (n,k)	$C'(n,k) = {n+k-1 \choose k} = \frac{(n+k-1)!}{(n-1)! k!}$ nchoosek (n+k-1,k)
permutace	P(n) = V(n, n) = n! factorial(n)	$P'(n_1, \dots n_k) = \frac{n!}{n_1! * \dots * n_k!}$

- kombinatorické pravidlo součinu
 - o na vzájemně nezávislých členech ze 2 a více skupin
 - $\circ \quad n_1 * n_2 * \dots * n_k$
- 1. variace
 - o **záleží** na pořadí
- 2. kombinace
 - o **nezáleží** na pořadí
- 3. permutace
 - o variace na **všech prvcích**

Teorie pravděpodobnosti

- teorie pravděpodobnosti
 - o mat. disciplína
 - o výsledky úloh jsou stejné
- matematická statistika
 - o studium dat vykazujících náhodná kolísání
 - o data se mohou lišit

náhodný pokus

- o děj, jehož výsledek není předem určen podmínkami, za kterých probíhá
- o množina výsledků $\{\omega\}$ pokusů, základní prostor Ω
 - např. rub/líc, strany kostky
- jevy
 - o náhodný jev
 - každá podmnožina základního prostoru Ω
 - např. že na kostce padne sudé číslo
 - o elementární jev
 - **jednoprvkové** podmnožiny základního prostoru Ω
 - už nelze rozdělit
 - např. že na kostce padne číslo 3
 - složený jev
 - víceprvkové podmnožiny základního prostoru Ω
 - např. že na kostce padne sudé číslo nebo že životnost je mezi 2 a 3 roky
 - jistý jev
 - jev, který nastane vždy
 - o nemožný jev
 - jev, který nemůže nikdy nastat
 - podjev
 - nastal-li A, nastane vždy B: $A \subset B$
 - $P(A) \le P(B)$
 - např. A: H < 160 cm, B: H < 170 cm
 - o rovnost jevů
 - disjunktní jevy
 - dva jevy, které nemohou nastat současně
 - o doplněk jevu Ā
 - jev Ā nastane vždy, když nenastane jev A
 - $P(\bar{\mathbf{A}}) = 1 P(A)$
 - o průnik $A \cap B$
 - nastane, jestliže A a B nastanou současně
 - o sjednocení $A \cup B$
 - nastane, jestliže výsledkem bude A nebo B
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$

• pravděpodobnost (dále již jen P)

- o míra očekávatelnosti náhodného jevu
- o obecně v intervalu [0,1]
- o klasická $\frac{m}{n}$
- o statistická
 - odhad: $P(A) = \frac{n(A)}{n}$, kde n(A) je počet příznivých realizací náh. pokusu
 - Monte Carlo
 - mnohonásobné opakování náhodného pokusu
 - blížíme se limitně
- geometrická
 - založená na porovnávání velikostí: $P(A) = \frac{|A|}{|\Omega|}$
- o podmíněná
 - P, že nastane A za podmínky, že nastal jev B
 - $P(A|B) = \frac{P(A \cap B)}{P(B)}$, u nezávislých jevů P(A|B) = P(A)
- nezávislost pokusů
 - o pokud každý další pokus nezávisí na předešlých
 - o P je při všech pokusech stejná

Náhodná veličina

- náhodná veličina
 - o libovolný výsledek náhodného pokusu, který lze opakovaně měřit v čase
- rozdělení pravděpodobnosti
 - o distribuční funkce F(x)
 - graf popisující P, že náhodná veličina X bude menší nebo rovna x
 - postupně se hodnota zvyšuje

- o pravděpodobnostní funkce p(x)
 - pro diskrétní náhodnou veličinu
 - graf popisující P, že náhodná veličina X bude **nabývat přímo hodnoty x**

10

- hustota pravděpodobnosti f(x)
 - pro spojitou náhodnou veličinu
 - graf derivace distribuční funkce
- rozdělení chceme popsat pomocí několika málo čísel:
 - o střední hodnota E(X)
 - 1. obecný moment
 - průměr všech realizací náhodné veličiny
 - o rozptyl D(X)
 - 2. centrální moment
 - vyjadřuje rozptýlenost realizací od střední hodnoty
 - jednotkou je kvadrát, např. m², kg², ...
 - o směrodatná odchylka $\sigma(X)$
 - odmocnina z rozptylu: $\sigma = \sqrt{\sigma^2}$
 - používá se z důvodu nevhodných jednotek rozptylu
 - kvantily x_p
 - představují hodnotu, že P, že náhodná veličina bude nabývat hodnoty menší než x_p, je 100*p %
 - 50% kvantil: medián median(x) / nanmedian(x)
 - 25%, 75% kvantil: dolní/horní kvartil
 - 1% kvantil: percentil

- \circ modus \hat{x}
 - nejčetnější hodnota
 - mode(x)
- \circ aritmetický průměr $ar{x}$
 - mean(x) / nanmean(x)
- o výběrový rozptyl

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - x)^2}{n - 1}$$

- výběrová směrodatná odchylka: $s=\sqrt{s^2}$
 - řeší to samé co směrodatná odchylka a rozptyl, tedy nevhodné jednotky

Diskrétní rozdělení pravděpodobnosti

- hypergeometrické (hyge)
 - počítání P určitého počtu úspěchů v n závislých pokusech
 - M prvků obsahuje K prvků s určitou vlastností
 - o náhodně se vybere N, žádný se nevrací zpět; P, že x prvků má danou vlastnost:

$$P(X = x) = \frac{\binom{K}{x} \binom{M-K}{N-x}}{\binom{M}{N}}$$

- o distribuční funkce: $P(X \le x) = \sum_{i=0}^{x} \frac{\binom{K}{i} \binom{M-K}{N-i}}{\binom{M}{N}}$ F=hygecdf(x,M,K,N)
- o pravděpodobnostní funkce: P=hygepdf (x,M,K,N)
- o střední hodnota: $E(X) = N \frac{K}{M}$ [MN, var]=hygestat(M,K,N)

binomické (bino)

- počítání P určitého počtu úspěchů v n nezávislých pokusech
- pravděpodobnost pokusu p, které se opakují n-krát, počítáme právě k-krát úspěšnost:

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- o distribuční funkce: $P(X \le k) = \sum_{i=0}^{k} {n \choose i} p^i (1-p)^{n-i}$ F=binocdf(k,n,p)
- o pravděpodobnostní funkce: P=binopdf(k,n,p)
- o střední hodnota: E(X) = np [MN, var] = binostat(n,p)

Poissonovo (poiss)

- o počet náhodných událostí v pevném "časovém" intervalu intenzita náhodného jevu
- o intenzita náhodného jevu λ
 - počet jevů za jednotku (času, vzdálenosti): λt
 - např. P vady = 1 % $\rightarrow \lambda = 0.01$
- předpoklady:
 - P, že nastane více jevů v limitně krátkém čase je nulová
 - P výskytu jevu závisí na délce intervalu, ne na okamžiku jeho začátku
- o pravděpodobnostní funkce: $P(X = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$ P=poisspdf (X,lambda) o distribuční funkce: $P(X \le k) = \sum_{i=0}^k \frac{(\lambda t)^i e^{-\lambda t}}{i!}$ F=poisscdf (X,lambda)
- o střední hodnota E(X) = rozptyl $D(X) = \lambda t [MN, var] = poisstat (lambda)$

aproximace

- hypergeometrické binomickým
 - je-li $\frac{N}{M}$ < 0.05 $\rightarrow n_{bin} = N_{hyp}, p_{bin} = \frac{K_{hyp}}{M_{hyn}}$
- binomické Poissonovým
 - je-li n > 30, $p < 0.05 \rightarrow \lambda t_{poiss} = n_{bin} p_{bin}$

Spojitá rozdělení pravděpodobnosti

- rovnoměrné rozdělení (uni)
 - o **konstantní hustota pravděpodobnosti** na intervalu: $\frac{1}{b-a}$ unipdf (x,a,b)
 - o distribuční funkce $F(x) = \frac{x-a}{b-a}$ unicdf (x,a,b)
 - o střední hodnota $E(X) = \frac{a+b}{2} [m,v] = unifstat(a,b)$
 - $\circ \quad \operatorname{rozptyl} D(X) = \frac{(a-b)^2}{12}$
- exponenciální rozdělení (exp)
 - o pro **popis doby do první události** Poissonova procesu s intenzitou náh. jevu λ nebo střední hodnotou $\lambda^{-1}=\mu$
 - o Poissonovo rozdělení: pravděpodobnost počtu za čas t
 - o exponenciální rozdělení: pravděpodobnost první události do doby t
 - o např. doba do poruchy nedegradujících výrobků
 - zkouška ukončena poruchou nebo časem
 - o hustota pravděpodobnosti $f(t) = \frac{\exp\left(-\frac{t}{\mu}\right)}{\mu} \exp \left(x, \min\right)$
 - o distribuční funkce $F(t) = 1 \exp\left(-\frac{t}{\mu}\right)$, $t \ge 0$ expcdf (x,mi)
 - o střední hodnota $E(X) = \mu [m, v] = \exp stat(mi)$
 - o rozptyl $D(X) = \mu^2$

Weibullovo rozdělení (wbl)

- o podobné využití jako exponenciální, ale obecnější, protože popisuje i degrad. komp.
- 2 parametry: a parametr měřítka, b parametr tvaru
 - b = 1 → exponenciální
- o hustota pravděpodobnosti $f(t) = \frac{bt^{b-1}}{a^b} \exp\left(-\left(\frac{t}{a}\right)^b\right)$ wblpdf(t,a,b)
- o distribuční funkce $F(t) = 1 \exp\left(-\left(\frac{t}{a}\right)^b\right)$ wblcdf (t,a,b)
- o [m,v]=wblstat(a,b)

normální rozdělení (Gaussovo) (norm)

- o nejpoužívanější, za určitých podmínek s ním lze mnoho rozdělení aproximovat
- ο 2 parametry: μ střední hodnota, σ^2 rozptyl (v Matlabu směr. odchylka $\sqrt{\sigma^2}$
- o hustota pravděpodobnosti $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$ normpdf (x, mi, sigma)
- o distribuční funkce normcdf (x,mi,sigma)
- o změna střední hodnoty posune hustotu rozdělení bez změny tvaru
- o změna směrodatné odchylky změní hustotu rozdělení bez změny střední hodnoty
- o [mi,sigma]=normstat(mi,sigma)

- normované normální rozdělení
 - o spec. případ norm. rozdělení ($\mu = 0$, $\sigma^2 = 1$)
 - o pro jednoduchý převod z normálních rozdělení
 - o náhodná veličina $X \to N(\mu, \sigma^2)$ lze přetransformovat na náh. veličinu $Z \to N(0,1)$: $Z = \frac{X \mu}{\sigma}$ (Z-skóre)

Výběrové charakteristiky

- pravděpodobnost: pravděpodobnost každého jevu je předem dána a neměnná
- statistika: pravděpodobnost se snažíme zjistit za pomoci naměřených dat

pravděpodobnost	statistika	
střední hodnota $E(X)$, μ	výběrový průměr $\overline{\pmb{X}}$	
rozptyl $D(X)$, σ^2	výběrový rozptyl s^2	
směrodatná odchylka σ	výběrová směrodatná odchylka s	
pravděpodobnost jevu π	relativní četnost $oldsymbol{p}$	
medián $x_{0.5}$	výběrový medián $\overline{X_{0.5}}$	

- operace na stř. hodnotách a rozptylu nez. náh. veličin
 - o výsledná střední hodnota je dána součtem středních hodnot náh. veličin: $E(\sum_i X_i) = \sum_i E(X_i)$
 - o výsledný rozptyl je dán součtem rozptylů náh. veličin: $D(\sum_i X_i) = \sum_i D(X_i)$
 - o u stř. hodnoty se vynásobení náh. veličiny konstantou rovná vynásobení stř. hodnoty konstantou: E(aX) = aE(X)
 - o u rozptylu se vynásobení náh. veličiny konstantou rovná vynásobení rozptylu kvadrátem konstanty: $D(aX) = a^2D(X)$
- při náhodném výběru $X_1, ... X_n$ z náhodné veličiny X označíme stř. hodnotu μ_X a směr. od. σ_X výběrový průměr je poté $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ s $E(\overline{X}) = \mu_X$ a $D(\overline{X}) = \frac{\sigma_X^2}{n}$
- zákon velkých čísel (ZVČ)
 - pochází-li výběr z normálního rozdělení, s rostoucím rozsahem výběru se výb. průměr soustřeďuje kolem střední hodnoty

• centrální limitní věta (CLV)

- CLV rozšiřuje ZVČ o tvrzení, že za určitých podmínek lze součet náh. veličin nebo výb. průměr popsat pomocí normálního rozdělení
- o při X_i nez. náh. veličinách ze stejného rozdělení má součet n náh. veličin při dostatečně velkém počtu pozorování poté přibližně normální rozdělení: $\sum_{i=1}^n X_i \sim N(n\mu_X, n\sigma_X^2)$
 - při konečnou stř. hodnotou a rozptylem lze definovat pomocí Ljapunovovy věty: $\sum_{i=1}^n X_i \sim N\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$
- o při X_i nez. náh. veličinách ze stejného rozdělení má výběrový průměr při dostatečně velkém počtu pozorování normální rozdělení: $X \sim N\left(\mu_x, \frac{\sigma_X^2}{n}\right)$
- součet náh. veličin i výběrový průměr lze transformovat na normované norm. rozdělení

χ² "chí kvadrát" (Pearsonovo) rozdělení (chi2)

- o nesymetrické, pouze s nezápornými hodnotami
- parametr n stupeň volnosti, který vychází z počtu naměřených dat n (často stupeň volnosti n-1)
- o používá se ve statistice při testování veličin
- používá se při:
 - odhadu rozptylu zákl. souboru
 - testování rozptylu zákl. souboru
 - testování nezávislosti proměnných

• Studentovo rozdělení (t)

- o se zvyšujícím se st. volnosti se blíží normovanému norm. rozdělení
- o používá se za předp., že jsou data z norm. rozdělení, při:
 - odhadu střední hodnoty, pokud je rozptyl neznámý
 - testování hypotéz o stř. hodnotě výběru
 - regresní analýze
- Fisher-Snedecorovo rozdělení (f)
 - o používá se u dat z norm. rozdělení při:
 - testování shody rozptylů dvou zákl. souborů
 - testování shody stř. hodnot více než dvou zákl. souborů
 - regresní analýze

Teorie odhadu

- odhad parametru 0, což může být stř. hodnota, rozptyl, četnost, medián, ...
- intervalové odhady
 - o interval spolehlivosti pro Θ je taková dvojice statistik (T_d,T_h) , pro kterou s pravděpodobností $1-\alpha$ platí: $P(T_d \leq \Theta \leq T_h) = 1-\alpha$ ("spolehlivost $1-\alpha$ ")
 - o spolehlivost odhadu požadujeme blízkou 1 (obvykle 0.05)
 - o se snižujícím se α se rozšiřuje šířka intervalu (pro 2× zúžení intervalu je potřeba mít 4× více dat)
 - o typy (tail):
 - oboustranný (,both')
 - v Matlabu přednastavený
 - hledáme inteval $< T_d, T_h >$, ve kterém leží daný parametr se spolehl. 1α
 - ,left': udává se pouze T_h : $P(\Theta \le T_h) = 1 \alpha \in (-\infty, T_h)$
 - , right': udává se pouze T_d : $P(\Theta \ge T_d) = 1 \alpha \in (T_d, \infty)$
 - o odhad střední hodnoty norm. rozdělení
 - rozlišuje se, jestli známe nebo neznáme směrod. odchylku
 - využívá kvantil Studentova rozdělení s n-1 stupni volnosti
 - [h,p,ci,stats]=ttest(x,mi,alpha,tail)
 - 'm' střední hodnota, 'alpha' hladina významnosti
 'h' výsledek hypotézy, 'p' p-value, 'ci' konfidenční interval
 'stats' výsledek statistiky
 - o odhad rozptylu norm. rozdělení
 - využívá kvantil χ^2 rozdělení s n-1 stupni volnosti
 - [h,p,ci,stat] = vartest(x,v,alpha,tail)
 - 'v' rozptyl, kterým je výběrový rozptyl porovnáván
 - podobné odhadu směrodatné odchylky norm. rozdělení
 - o odhad relativní četnosti, rozsahu výběrů, mediánu, param. nenorm. a spoj. rozdělení, ...
 - o odhad distribuční funkce [f,x,flo,fup]=ecdf(x,'alpha','censoring','freq')
 - o odhad poměru rozptylů dvou výběrů s norm. rozdělením
 - [h,p,ci]=vartest2(x,y,alpha,tail)
 - o odhad rozdílu středních hodnot dvou výběrů s norm. rozdělením
 - využívá kvantil Studentova rozdělení
 - neznáme rozptyly obou populací a předpokládáme, že **jsou** stejné
 - neznáme rozptyly obou populací a předpokládáme, že nejsou stejné
 - [h,p,ci]=ttest2(x,y,alpha,tail,vartype)
 - 'vartype'='equal'|'unequal'
 - odhad rozdílu relativních četností dvou populací
 - není implementován v Matlabu
 - Ci=[(p1-p2)-sqrt(p*(1-p)*(1/n1+1/n2))*norminv((1-alfa/2),0,1),
 (p1-p2)+sqrt(p*(1-p)*(1/n1+1/n2))*norminv((1-alfa/2),0,1)]

Testy hypotéz

- **(ne)přijímáme hypotézu** týkající se základního souboru na základě informací získaných z náhodných výběrů
- lze udělat 'both', 'left' i 'right' hypotézy
- nulová hypotéza H₀
 - o představuje tvrzení, že sledovaný efekt je nulový
 - \circ bývá vyjádřena rovností mezi testovaným parametrem θ a očekávanou hodnotou θ_0
 - o musí vždy obsahovat rovnost
 - o považujeme ji za pravdivou do okamžiku, kdy nás výsledky přesvědčí o opaku:
 - buď zamítáme hypotézu H_0 ve prospěch hypotézy H_A ,
 - nebo nezamítáme H₀

alternativní hypotéza H_A

- o popírá tvrzení dané nulovou hypotézou
- postup:
 - o formulace nulové a alternativní hypotézy (a hladiny významnosti α)
 - o volba druhu testové statistiky
 - o výpočet testové statistiky
 - o výpočet p-value
 - o rozhodnutí na základě p-value
 - čím nižší vyjde, tím více jsme přesvědčení, že je H_0 nesprávná a je třeba ji zamítnout
 - $p < \alpha \rightarrow H_0$ zamítáme
 - $p > \alpha \rightarrow H_0$ nezamítáme
 - v Matlabu výsledek 'p', např. [h,p,ci,stat]=ttest(x,m,alpha,tail)
 - o formulace závěru

Jednovýběrové

- test rozptylu normálního rozdělení
 - o na základě výběru $X_1, ... X_n$ chceme s neznámou střední hodnotou μ a rozptylem σ^2 ověřit předpoklad, **že rozptyl populace** σ^2 **se rovná výběrovému rozptylu z naměřených dat** s^2
 - o stejně jako odhad rozptylu norm. rozdělení používá χ^2 rozdělení
 - o 'both': H_0 : $s^2 = \sigma^2$ H_A : $s^2 \neq \sigma^2$
 - o 'left': $H_0: s^2 \ge \sigma^2$ $H_A: s^2 < \sigma^2$
 - o 'right': H_0 : $s^2 \le \sigma^2$ H_A : $s^2 > \sigma^2$
- test střední hodnoty normálního rozdělení
 - o na základě výběru $X_1, ... X_n$ chceme s neznámou střední hodnotou μ ověřit předpoklad, **že střední hodnota populace** μ **se rovná výběrovému průměru z naměřených dat** \overline{X}
 - o stejně jako odhad stř. hodnoty norm. rozdělení používá Studentovo rozdělení
 - o hypotézy analogicky jako test rozptylu norm. rozdělení (výše), ale s μ
- párový test
 - o na základě výběru $X_1, ... X_n$ chceme s neznámou střední hodnotou μ_1 uskutečněnou před a střední hodnotou μ_2 uskutečněnou po nějaké operaci ověřit předpoklad, **že střední hodnota populací** μ_1, μ_2 **je shodná**
 - o rozdílem výsledků před a po dané operaci obdržíme změnu, testujeme pak vliv této změny
 - o realizace pomocí ttest, kde vstupem jsou rozdíly po a před měřením
 - o 'both': H_0 : $\mu_2 \mu_1 = 0$ H_A : $\mu_2 \mu_1 \neq 0$
 - o např. zvýšení o alespoň 20: $H_0: \mu_2 \mu_1 \le 20 \ H_A: \mu_2 \mu_1 > 20$

- znaménkovýtest[p,h]=signtest(x,median,alpha,tail)
 - o na základě výběru X_1, X_n chceme ověřit předpoklad, **že medián náh. výběru** $x_{0.5}$ **se rovná testované hodnotě (výběrovému mediánu)** $x_{test0.5}$
- Wilcoxonův test [p,h,stats]=signrank(x,median,alpha,method,tail)
 - podobné jako znaménkový, ale na spojitém rozdělení s hustotou f(x) symetrickou kolem mediánu
 - o 'method'='exact'|'approximate'-sloužíkvýpočtu p-value
 - může být i párový, když kombinuje Wilcoxonův a párový test
 [p,h]=signrank(x,y,alpha,tail)
- test o parametru π relativní četnosti
 - o v sérii n nezávislých pokusů se náhodný jev A vyskytl k-krát, chceme ověřit, **že teoretická** pravděpodobnost π se rovná pravděpodobnosti náhodného jevu $p=\frac{k}{\pi}$

Dvouvýběrové

- test o shodě dvou rozptylů výběrů z norm. rozdělení [h,p]=vartest2(x,y,alpha,tail)
 - o na základě dvou nezávislých výběrů $X_1, ... X_n$ a $Y_1, ... Y_n$ které pocházejí z populací majících normální rozdělení N chceme bez znalosti parametrů μ_X, σ_X^2 a μ_X, σ_X^2 otestovat $\sigma_X^2 = \sigma_Y^2$
 - o testovací kritérium má Fisher-Snedecerovo rozdělení a rovná se $T(X,Y) = \frac{s_X^2}{s_V^2}$
- test o shodě dvou stř. hodnot výběrů z norm. rozdělení [h,p]=ttest2(x,y,alpha,tail,vartype)
 - o na základě dvou nezávislých výběrů $X_1, ... X_n$ a $Y_1, ... Y_n$ které pocházejí z populací majících normální rozdělení N chceme otestovat $\mu_X = \mu_Y$
 - o neznáme rozptyly obou populací a předpokládáme, že jsou stejné
 - o neznáme rozptyly obou populací a předpokládáme, že nejsou stejné
- Mann-Whitneyův test mediánů [p,h,stats]=ranksum(x,y,alpha,method,tail)
 - o na základě dvou nezávislých výběrů $X_1, ... X_n$ a $Y_1, ... Y_n$ které pocházejí z populací majících stejný rozptyl a tvar rozdělení **chceme otestovat** $x_{0.5} = y_{0.5}$
- test relativních četností π
 - o v sérii n_1 nezávislých pokusů se náhodný jev A vyskytl x-krát, obdobně v sérii n_2 vyskytl náhodný jev A y-krát

Vícevýběrové

- test shody rozptylů [p, stats]=vartestn(X, group, display, testtype)
 - o na k > 2 nezávislých výběrech z normálního rozdělení testujeme

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2$ H_A : alespoň jedna dvojice se liší

- o Bartlettův test (Bartlett) nebo Leveneův test (LeveneQuadratic)
 - 'testtype'='Bartlett'|'LeveneQuadratic'
- o 'group' sloupcový vektor s označením skupiny
- 'display' pro tvorbu krabicového grafu 'display'='on'|'off'
- jednofaktorová ANOVA [p, anovatab, stats]=anova1(X, group, display)
 - o ANOVA: analýza rozptylu
 - o při k>2 nezávislých výběrech z normálního rozdělení se shodným rozptylem testujeme $\mathbf{H_0}$: $\mathbf{\mu_1}=\mathbf{\mu_2}=\cdots=\mathbf{\mu_k}$ $\mathbf{H_A}$: alespoň jedna dvojice se liší
 - o předpoklady:
 - nezávislost výběrů
 - normalita rozdělení všech výběrů
 - shodné rozptyly všech výběrů
 - při nesplění se používá Kruskal-Wallisův test
 - o tabulka ANOVY
 - zajímá nás jen p.value

součet čtverců	počet st. volnosti	rozptyl	F poměr	p-value
SS_B	$df_B = k - 1$	$MS - \frac{SS_B}{}$	$_{E}$ $_{-}$ $^{M}S_{B}$	1 - F
		$MS_B = \frac{SS_B}{k-1}$	$r - \overline{MS_E}$	
SS_E	$df_E = n - k$	$MS_E = \frac{SS_E}{I}$		
		$MS_E - \frac{1}{n-k}$		
SS_T	$df_T = n - 1$			

- Kruskal-Wallisův test [p, anovatab, stats]=kruskalwallis(X, group, display)
 - $\circ \quad H_0$: $x_{0.5_1}=x_{0.5_2}=\cdots=x_{0.5_k} \quad H_A$: alespoň jedna dvojice se liší
 - o neparametrická obdoba ANOVA1 (Mann-Whitney pro více než 2)

			data nejsou z normálního	
		data z normálního rozdělení	rozdělení	
rozptyl		8.3.1 - vartest		
			8.3.4 - znaménkový test -	
			signtest,	
	střední hodnota/		8.3.6 - Wilcoxonův test (nutná	
	medián	8.3.2 a 8.3.3 - ttest	symetrie) – signrank	
1 výběr	relativní četnost	8.3.7 - výpočet vzorcem		
	rozptyl	8.4.1 - vartest2		
	střední hodnota/		8.4.3 - Mann-Whitneyův test -	
	medián	8.4.2 - ttest2	ranksum	
2 výběry	relativní četnost	8.4.4 - výpočet vzorcem		
	rozptyl	8.5.1 - Bartlettův test - vartestn	8.5.1 - Leveneův test - vartestn	
			8.5.3 - Kruskal Wallisův test –	
		8.5.2 - ANOVA - anova1	kruskalwallis	
	střední hodnota/		8.5.7 – Friedmanův test -	
více výběrů	medián	8.5.5 – více faktorů – anovan	friedman	

Testy dobré shody

- využíváme k testování určitého rozdělení
- H_0 : teoretické a empirické rozdělení se shoduje (pochází z daného rozdělení) H_A : rozdělení se neshodují
- χ^2 -test dobré shody [h,p,stats] = chi2gof(x,'param1',value1,...)
 - o populaci roztřídíme podle nějakého znaku do k skupin a chceme ověřit, že se rovnají rel. četnosti π
 - o musíme v stats.df kontrolovat, jestli nejsou stupně volnosti příliš malé jinak → Kolmogorov-Smirnovův test
 - o parametry:
 - 'cdf'={@normcdf|@wblcdf|@expcdf|mean(x),std(x),...}
 - 'edges' hraniční body
 - 'expected' očekávaný počet prvků v intervalech
 - 'frequency'-četnost
 - 'alpha'
- Kolmogorov-Smirnovův jednovýb. test rozdělení [h,p,ksstat,cv]=kstest(x,cdf,alpha,type)
 - o chceme ověřit, že výběr pochází z rozdělení se spojitou distrib. funkcí $F_0(x)$
 - o 'cdf' matice o 2 sloupcích(1: naměřené hodnoty, 2: hodnota porovnávané distrib. funkce)
 - o 'type'='unequal'|'larger'|'smaller'-typ porovnávání (jsou si rovny, větší, menší)
 - o pro norm. a exp. rozdělení můžeme použít lillietest

```
[h,p,kstat,critval]=lillietest(x,alpha,distr)
```

- 'distr'='norm'|'exp'-typ distribuční funkce
- 'critval' kritická hodnota testu
- Kolmogorov-Smirnovův dvouvýb. test rozdělení [h,p,kstest]=kstest2(x,y,alpha,type)
 - o chceme ověřit, zda dva výběry pochází z rozdělení se shodnou distrib. funkcí
 - $\circ \quad H_0: F(x) = F(y) \quad H_A: F(x) \neq F(y)$

Analýza závislostí

- ke stanovení, zda naměřené hodnoty dvou výběrů jsou vzájemně nezávislé
- kontingenční tabulka [tbl,chi2,p]=crosstab (x1,x2)
 - funguje na podobném principu jako test dobré shody porovnávání empirických četností s teoretickými
- kovariance cov (x,y)
 - o míra lineární závislosti dvou náhodných veličin
 - o "smíšený" rozptyl sad dat
 - \circ cov(X,X) = D(X)
 - o $cov(X,Y) \cong 0 \rightarrow veličiny$ se neovlivňují, naznačuje lineární nezávislost
- Pearsonův korelační koeficient [r,p,rlo,rup]=corrcoef(x,y,alpha)

- o používá se, když vstupní data mohou nabývat spojitých hodnot a jsou normálně rozdělená
- o výsledky:
 - 'r'- korelační matice
 - 'rlo' dolní interval. odhad korelace
 - rup '- horní interval. odhad korelace
- o hodnoty se pohybují v rozmezí (−1,1)
 - při hodnotě 1 absolutní korelace
- Spearmanův korelační koeficient [rho,p]=corr(x,y,'type','Spearman')
 - o používá se, když vstupní data mohou nabývat spojitých hodnot a není splněn předpoklad o normálním rozdělení

Regresní analýza

- naměřené hodnoty jsou zatíženy chybou
- snažíme se proložit určitou funkcí, která by minimalizovala kvadráty chyby (metoda nejm. čtverců)

$$0 \quad \phi = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

- lineární regrese
 - $\hat{Y} = ax + b$, kde x je nezávislá proměnná (regresor) a y je závislá proměnná (regresand)
 - o ve statistice $y_i = ax_i + b + \epsilon_i$, kde ϵ_i je náh. složka *i*-tého měření
- může být i nelineární, např. polynomická, exponenciální, ...

NLM=fitnlm(x,y,modelfun,beta0,...)

o 'modelfun' - např. @(b,x)b(1)+b(2)*x.^b(3)

- model verifikujeme pomocí:
 - o F testu
 - H_0 : $\forall p = 0 \ H_A$: $\exists p \neq 0$
 - obvykle hypotézu H_0 zamítáme, protože p=0 by znamenalo dokonalé proložení
 - o intervalového odhadu regresních koeficientů
 - o testů hypotéz o koeficientech regresní funkce
 - o koeficientem determinance
- může nastat přetrénování
 - o snížíme max. řád polynomiální regrese