

Bike Rentals Prediction

Data-Driven Insights

Prepared by Mina Roohnavazfar September 2023

Table of Content

- Problem Statement
- Data-Driven Solution
- Dataset Overview
- EDA Findings
- Models Evaluation
- Next Steps

Problem Statement

How might we leverage data to enhance the performance of bike sharing rental system?

Key Challenges

Bikes Availability

Balancing Peaks and Valleys

Resource Allocation

Data-Driven Solution

Utilizing Data Science Approches

Accurately Predicting Hourly Bike Rentals

Enhanced Planning and User Experience

Benefits of Bridging Data and Decisions

Optimized Resource Allocation

Enhanced User Experience

Reduced Operational Costs

Economic Benefits

Traffic and Environment Impact

Better Marketing and Promotion

Dataset Overview

Bike Sharing Rental System in Washington, D.C.

https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset

Features

- Date
- Year
- Season
- Month
- Day

- Hour
- Holiday
- Weekday
- Working Day

- Weather Situation
- Temperature
- Feeling Temperature
- Humidity
- Wind Speed

Target Variables

- Casual User Bike Rental
- Registered User Bike Rental
- Total Count

EDA Insight

- Rental Patterns
- Yearly Analysis
- Monthly Analysis
- Seasonality
- Overall Trend

DATA MODELING APPROACHES

Linear and Non Linear Regression

Neural Network

Decision Tree

Ensemble Methods

PCA Integrated Models

Models Comparison on PMAE

Models Comparison on Accuracy

	LR	NLR	NN	DT	Bag	GB	PCA-GB	PCA-LR
Total Rentals	0.82	0.88	0.95	0.93	0.96	0.98	0.98	0.73
Casual Rentals	0.82	0.88	0.91	0.88	0.94	0.96	0.96	0.76
Registered Rentals	0.81	0.90	0.95	0.93	0.96	0.98	0.98	0.71

Apply Gradient Boosting Model

Daily Average Total Rentals vs. Predictions

Total Rentals vs. Casual + Registered

Models Comparison on PMAE

Next Steps

- Collect more recent data
- Apply Time Series
- Conduct in-depth analysis for casual rentals prediction
- develop a more advanced prediction application

