УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 87

> Студент XXX XXX XXX P31XX

Преподаватель Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $x_3x_5 + x_1x_2x_4 = 1, 5, 8, 10$ и неопределенное значение при $x_1x_2x_4 = 1$.

Таблица истинности

No॒	x_1	x_2	x_3	x_4	x_5	$x_{3}x_{5}$	$x_1 x_2 x_4$	$x_1x_2x_4$	f
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	0	0	1
2	0	0	0	1	0	0	1	1	d
3	0	0	0	1	1	1	1	1	d
4	0	0	1	0	0	2	0	0	0
5	0	0	1	0	1	3	0	0	0
6	0	0	1	1	0	2	1	1	d
7	0	0	1	1	1	3	1	1	d
8	0	1	0	0	0	0	2	2	0
9	0	1	0	0	1	1	2	2	0
10	0	1	0	1	0	0	3	3	0
11	0	1	0	1	1	1	3	3	0
12	0	1	1	0	0	2	2	2	0
13	0	1	1	0	1	3	2	2	1
14	0	1	1	1	0	2	3	3	1
15	0	1	1	1	1	3	3	3	0
16	1	0	0	0	0	0	4	4	0
17	1	0	0	0	1	1	4	4	1
18	1	0	0	1	0	0	5	5	1
19	1	0	0	1	1	1	5	5	0
20	1	0	1	0	0	2	4	4	0
21	1	0	1	0	1	3	4	4	0
22	1	0	1	1	0	2	5	5	0
23	1	0	1	1	1	3	5	5	1
24	1	1	0	0	0	0	6	6	0
25	1	1	0	0	1	1	6	6	0
26	1	1	0	1	0	0	7	7	0
27	1	1	0	1	1	1	7	7	1
28	1	1	1	0	0	2	6	6	1
29	1	1	1	0	1	3	6	6	0
30	1	1	1	1	0	2	7	7	0
31	1	1	1	1	1	3	7	7	1

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x$

Каноническая КНФ:

$$f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$$

$$(x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)$$

$$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5)$$

$$(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$$

$$(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5)$$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$^{-1}(f)$		$K^2(f)$)	Z(f)
m_1	00001	√	m_2 - m_3	0001X	✓	m_2 - m_3 - m_6 - m_7	00X1X	01101
m_2	00010	✓	m_1 - m_3	000X1				11100
m_{17}	10001	√	m_2 - m_6	00X10	\checkmark			000X1
m_{18}	10010	✓	m_1 - m_{17}	X0001				X0001
m_3	00011	✓	m_2 - m_{18}	X0010				X0010
m_6	00110	✓	m_6 - m_7	0011X	\checkmark			0X110
m_{13}	01101		m_3 - m_7	00X11	\checkmark			X0111
m_{14}	01110	✓	m_6 - m_{14}	0X110				11X11
m_{28}	11100		m_7 - m_{23}	X0111				1X111
m_7	00111	✓	m_{27} - m_{31}	11X11				00X1X
m_{23}	10111	√	m_{23} - m_{31}	1X111				
m_{27}	11011	✓						
m_{31}	11111	√						

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы										
		0	0)	1	1	1	1	1	1	
			1	1	- 1	0		0	1	1	1	
Прост	Простые импликанты		1	1		0		1		1	1 1	
			•	1 1		0	1	1	1 1		1	
		1	1)	1		1	1	0	1	
		1	13	1	4	17	18	23	27	28	31	
	01101		X									
	11100									Х		
	000X1	Х										
	X0001	Х				Х						
	X0010						Х					
	0X110			1								
A	X0111							X				
	11X11				_				Х		X	
В	1X111							X			X	
	00X1X											

Ядро покрытия:

$$T = \begin{cases} X0001 \\ X0010 \\ 0X110 \\ 01101 \\ 11X11 \\ 11100 \end{cases}$$

Получим следующую упрощенную импликантную таблицу:

Пр	остые импликанты	0-кубы 1 0 1 1 1 23
A	X0111	X
В	1X111	X

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = A \vee B$$

Приведем выражение в ДНФ:

$$Y = A \vee B$$

Возможны следующие покрытия:

$$C_{1} = \begin{Bmatrix} T \\ A \end{Bmatrix} = \begin{Bmatrix} X0001 \\ X0010 \\ 0X110 \\ 01101 \\ 11X11 \\ 11100 \\ X0111 \end{Bmatrix} \qquad C_{2} = \begin{Bmatrix} T \\ B \end{Bmatrix} = \begin{Bmatrix} X0001 \\ X0010 \\ 0X110 \\ 01101 \\ 11X11 \\ 11100 \\ 1X111 \end{Bmatrix}$$

$$S_{1}^{a} = 30 \qquad S_{2}^{a} = 30$$

$$S_{1}^{b} = 37 \qquad S_{2}^{b} = 37$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} X0001 \\ X0010 \\ 0X110 \\ 01101 \\ 11X11 \\ 11100 \\ X0111 \end{cases}$$

$$S^{a} = 30$$

$$S^{b} = 37$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_2}\,\overline{x_3}\,\overline{x_4}\,x_5 \vee \overline{x_2}\,\overline{x_3}\,x_4\,\overline{x_5} \vee \overline{x_1}\,x_3\,x_4\,\overline{x_5} \vee \overline{x_1}\,x_2\,x_3\,\overline{x_4}\,x_5 \vee x_1\,x_2\,x_4\,x_5 \vee x_1\,x_2\,x_3\,\overline{x_4}\,\overline{x_5} \vee \overline{x_2}\,x_3\,x_4\,x_5$$

Минимизация булевой функции на картах Карно

Определение МДНФ

 $f = \overline{x_2}\,\overline{x_3}\,\overline{x_4}\,x_5 \vee \overline{x_2}\,\overline{x_3}\,x_4\,\overline{x_5} \vee \overline{x_1}\,x_3\,x_4\,\overline{x_5} \vee \overline{x_1}\,x_2\,x_3\,\overline{x_4}\,x_5 \vee x_1\,x_2\,x_4\,x_5 \vee x_1\,x_2\,x_3\,\overline{x_4}\,\overline{x_5} \vee \overline{x_2}\,x_3\,x_4\,x_5$

Определение МКНФ

$$f = (x_1 \lor x_4 \lor x_5) (x_1 \lor \overline{x_4} \lor \overline{x_5}) (x_3 \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3) (x_2 \lor \overline{x_3} \lor x_4) (x_2 \lor \overline{x_3} \lor x_5) (x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4} \lor x_5)$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=\overline{x_2}\,\overline{x_3}\,\overline{x_4}\,x_5\vee\overline{x_2}\,\overline{x_3}\,x_4\,\overline{x_5}\vee\overline{x_1}\,x_3\,x_4\,\overline{x_5}\vee\overline{x_1}\,x_2\,x_3\,\overline{x_4}\,x_5\vee x_1\,x_2\,x_4\,x_5\vee x_1\,x_2\,x_3\,\overline{x_4}\,\overline{x_5}\vee\overline{x_2}\,x_3\,x_4\,x_5\qquad S_Q=37\quad \tau=2$$
 Декомпозиция невозможна
$$f=x_4\;(\overline{x_2}\,\overline{x_3}\,\overline{x_5}\vee\overline{x_1}\,x_3\,\overline{x_5}\vee x_1\,x_2\,x_5\vee\overline{x_2}\,x_3\,x_5)\vee x_2\,x_3\,\overline{x_4}\;(\overline{x_1}\,x_5\vee x_1\,\overline{x_5})\vee\overline{x_2}\,\overline{x_3}\,\overline{x_4}\,x_5\qquad S_Q=35\quad \tau=4$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \lor x_4 \lor x_5) \ (x_1 \lor \overline{x_4} \lor \overline{x_5}) \ (x_3 \lor x_4 \lor x_5) \ (x_1 \lor \overline{x_2} \lor x_3) \ (x_2 \lor \overline{x_3} \lor x_4) \ (x_2 \lor \overline{x_3} \lor x_5)$$

$$(x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_2} \lor x_4 \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4} \lor x_5)$$

$$f = (x_2 \lor \overline{x_3} \lor x_4 x_5) \ (x_4 \lor x_5 \lor x_1 x_3) \ (\overline{x_1} \lor \overline{x_2} \lor (x_4 \lor \overline{x_5}) \ (\overline{x_4} \lor x_5))$$

$$(\overline{x_4} \lor \overline{x_5} \lor x_1 \ (x_2 \lor x_3)) \ (x_1 \lor \overline{x_2} \lor x_3)$$

$$S_Q = 34 \quad \tau = 4$$

$$\varphi = x_4 x_5$$

$$\varphi = \overline{x_4} \lor \overline{x_5}$$

$$f = (x_2 \lor \overline{x_3} \lor \varphi) \ (x_4 \lor x_5 \lor x_1 x_3) \ (\overline{x_1} \lor \overline{x_2} \lor (x_4 \lor \overline{x_5}) \ (\overline{x_4} \lor x_5)) \ (\overline{\varphi} \lor x_1 \ (x_2 \lor x_3)) \ (x_1 \lor \overline{x_2} \lor x_3)$$

$$S_Q = 34 \quad \tau = 4$$

$$\varphi = x_4 x_5$$

$$\varphi = \overline{x_4} \lor \overline{x_5}$$

$$f = (x_2 \lor \overline{x_3} \lor \varphi) \ (x_4 \lor x_5 \lor x_1 x_3) \ (\overline{x_1} \lor \overline{x_2} \lor (x_4 \lor \overline{x_5}) \ (\overline{x_4} \lor x_5))$$

$$(\overline{\varphi} \lor x_1 \ (x_2 \lor x_3)) \ (x_1 \lor \overline{x_2} \lor x_3)$$

$$S_Q = 34 \quad \tau = 4$$

$$\varphi = x_4 x_5$$

$$\varphi = x_4 x$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$$

$$f([x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0, x_5 = 1]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_4 \ (\overline{x_2} \, \overline{x_3} \, \overline{x_5} \vee \overline{x_1} \, x_3 \, \overline{x_5} \vee x_1 \, x_2 \, x_5 \vee \overline{x_2} \, x_3 \, x_5) \vee x_2 \, x_3 \, \overline{x_4} \ (\overline{x_1} \, x_5 \vee x_1 \, \overline{x_5}) \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \quad (S_Q = 35, \tau = 4)$$

Схема по упрощенной МКНФ:

$$f = (x_2 \vee \overline{x_3} \vee x_4 x_5) (x_4 \vee x_5 \vee x_1 x_3) (\overline{x_1} \vee \overline{x_2} \vee (x_4 \vee \overline{x_5}) (\overline{x_4} \vee x_5))$$

$$(\overline{x_4} \vee \overline{x_5} \vee x_1 (x_2 \vee x_3)) (x_1 \vee \overline{x_2} \vee x_3)$$

$$(S_Q = 34, \tau = 4)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДН Φ в базисе И, НЕ:

$$f = \overline{\overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5} \, \overline{\overline{x_2} \, \overline{x_3} \, x_4} \, \overline{x_5} \, \overline{\overline{x_1} \, x_3} \, x_4 \, \overline{x_5} \, \overline{\overline{x_1} \, x_2} \, x_3 \, \overline{x_4} \, x_5} \, \overline{\overline{x_1} \, x_2} \, \overline{x_4} \, \overline{x_5} \, \overline{\overline{x_1} \, x_2} \, \overline{x_4} \, \overline{x_5} \, \overline{\overline{x_2} \, x_3} \, \overline{x_4} \, \overline{x_5}} \quad (S_Q = 45, \tau = 4)$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_2} x_3 \overline{\varphi} \overline{x_4} \overline{x_5} \overline{x_1} \overline{x_3} \overline{\varphi} \overline{x_1} \overline{x_1} \overline{x_2} \overline{x_3} \overline{\varphi} \overline{x_2} \overline{x_3} \overline{x_1} x_2 \overline{x_4} \overline{x_5} \overline{x_1} x_2 x_4 \overline{x_5} \quad (S_Q = 42, \tau = 5)$$

$$\varphi = x_4 x_5$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{x_4} \overline{\overline{x_5}} \overline{\overline{x_1} \overline{x_2}} \overline{\overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_5}} \overline{\overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_1}} \overline{\overline{x_3}} \overline{\overline{x_1}} \overline{\overline{x_3}} \overline{\overline{x_1}} \overline{x_5} \overline{\overline{x_1}} \overline{x_5} \overline{x_1} \overline{\overline{x_5}} \overline{\overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_5}}$$
 $(S_Q = 44, \tau = 8)$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

