Lab 11: Comparing Classifiers

Stat 154, Spring 2018

Introduction

In this lab we will compare the classification algorithms we have studied so far (logistic regression, LDA, QDA, k-NN) based on six different synthetic datasets.

We will follow closely Chapter 4.5 in *ISL*. The objective is to compare the predictive power for various classification algorithms we have studied so far under various hypothetical scenarios. See *ISL* for a more detailed discussion.

You may need to use the following packages:

```
library(MASS)
library(mvtnorm)
library(ggplot2)
library(caret)
library(e1071)
library(class)
```

Data Simulation

Simulate six datasets (each has p = 2 predictors):

Scenario 1: Simulate 100 observations, half are from $N\begin{pmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}$, half from $N\begin{pmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}$. Treat the first half as class 1 and the rest as class 2.

Scenario 2: Simulate 100 observations, half are from $N\left(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}1&-0.5\\-0.5&1\end{bmatrix}\right)$, half from $N\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1&-0.5\\-0.5&1\end{bmatrix}\right)$. Treat the first half as class 1 and the rest as class 2.

Scenario 3: Simulate 100 observations, half are from $t_4 \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$, half from $t_4 \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$. Treat the first half as class 1 and the rest as class 2.

Scenario 4: Simulate 100 observations, half are from $N\left(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}1&0.5\\0.5&1\end{bmatrix}\right)$, half from $N\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1&-0.5\\-0.5&1\end{bmatrix}\right)$. Treat the first half as class 1 and the rest as class 2.

Scenario 5: Simulate two independent sequences of N(0,1) random variables $(X_{1,1}, X_{2,1}, ... X_{100,1})$ and $(X_{1,2}, X_{2,2}, ... X_{100,2})$. Let $Y_i \sim \text{Ber}(p_i)$ for i = 1, ..., 100, where

$$logit(p_i) = \beta_0 + \beta_1 X_{i,1}^2 + \beta_2 X_{i,2}^2 + \beta_3 X_{i,1} X_{i,2},$$

with $(\beta_0, \beta_1, \beta_2, \beta_3) = (0, 2, -1, 2)$.

Scenario 6: Simulate two independent sequences of N(0,1) random variables $(X_{1,1}, X_{2,1}, ... X_{n,1})$ and $(X_{1,2}, X_{2,2}, ... X_{n,2})$. Let

$$Y_i = \begin{cases} 1 & \text{if } X_{i,1}^2 + X_{i,2}^2 > \chi_2^2(0.5) \approx 1.386 \\ 0 & \text{otherwise.} \end{cases},$$

where $\chi_2^2(0.5)$ is the median of a χ^2 distribution with 2 degrees of freedom.

Remark: You can use the following function <code>gen_datasets</code> to simulate the six datasets. The code for drawing from a non-central multivariate t-distribution is from https://stats.stackexchange.com/questions/68476/drawing-from-the-multivariate-students-t-distribution.

```
x first <- t(t(mvrnorm(n, rep(0, length(mu)), sigma)</pre>
                   * sqrt(nu / rchisq(n, nu))) + mu)
  mu \leftarrow c(1, 1); sigma \leftarrow matrix(c(1, 1/2, 1/2, 1), 2); nu \leftarrow 4
  n <- 50 # Number of draws
  x second <- t(t(mvrnorm(n, rep(0, length(mu)), sigma)</pre>
                    * sqrt(nu / rchisq(n, nu))) + mu)
  df3 <- data.frame(y=factor(rep(c(0, 1), each=50)),</pre>
                      rbind(x_first, x_second))
  covmat2 \leftarrow matrix(c(1, 0.5, 0.5, 1), nrow=2)
  df4 <- data.frame(y=factor(rep(c(0, 1), each=50)),</pre>
                      rbind(rmvnorm(50, mean=c(0, 0), sigma = covmat2),
                             rmvnorm(50, mean=c(1, 1), sigma = covmat)))
  x <- matrix(rnorm(200), ncol=2)
  df5_{temp} \leftarrow data.frame(x ^ 2, x[, 1] * x[, 2])
  beta \leftarrow c(0, 2, -1, -2)
  y <- apply(df5 temp, 1, function(row) {
    p <- expit(sum(c(1, row) * beta))</pre>
    sample(x=c(0, 1), size=1, prob=c(1-p, p))
  })
  df5 <- data.frame(y=factor(y), x)</pre>
  x <- matrix(rnorm(200), ncol=2)
  y \leftarrow 1 * (x[, 1]^2 + x[, 2]^2 > qchisq(p=0.5, df=2))
  df6 <- data.frame(y=factor(y), x)</pre>
  list(df1, df2, df3, df4, df5, df6)
}
```

Repeat the following 100 times:

- Simulate 6 datasets via gen datasets().
- For each dataset, use 80% of the data as the training set and the remaining 20% as the test set.
- Fit logistic regression, LDA, QDA, k-NN with 1 neighbor, and k-NN-CV using the training set.

```
logistic regression: glm() from "stats"LDA: lda() from "MASS"
```

- QDA: qda() from "MASS" $\,$

- k-NN: knn() from "class"

- For each model, compute the test error rate and generate predictions on the test set.
- Store the 5×6 matrix of error rates.
- You should now have a $5 \times 6 \times 100$ array of test error rates.
- For each of the six scenario, make a boxplot of test error rates. See Figure 4.10 and Figure 4.11 in ISL (screenshots below).

FIGURE 4.10. Boxplots of the test error rates for each of the linear scenarios described in the main text.

FIGURE 4.11. Boxplots of the test error rates for each of the non-linear scenarios described in the main text.