Instituto Federal de Educação Ciência e Tecnologia do estado de São Paulo

Graduação em Engenharia Eletrônica

ATIVIDADE 4 – CIRCUITOS RESISTIVOS

Relatório da disciplina Física
Teórica e Experimental 2
(FIEE2) como exigência
parcial para conclusão do
curso de Física Teórica e
Experimental, com os
professores Astrogildo de
Carvalho Junqueira e Flavio
Henrique Santana Costa.

Gustavo Senzaki Lucente

Luís Otávio Lopes Amorim

SÃO PAULO

2020

1. PROJETOS DE CIRCUITO EM SÉRIE

Um circuito em série é aquele em que não há nós na malha. Um exemplo de circuito em série é mostrado na imagem a seguir.

Figura 1: Circuito em série

Caso se queira media a tensão ou a corrente em determinada parte do circuito é necessário utilizar um multímetro. Este aparelho possui modos para medir cada grandeza física estudada, e deve ser colocado no circuito de forma correta para medir a grandeza correta, assim, para se medir a corrente em uma determinada parte do circuito, o multímetro deve ser colocado em séria com a parte estudada, como na imagem a seguir.

Figura 2: Amperímetro em circuito em série

Assim, o multímetro está medindo corretamente a corrente total do circuito. Por outro lado, para medir corretamente tensão, o multímetro deve ser colocado em paralelo com o

componente cuja tensão deseja-se aferir, dessa forma a próxima imagem é um exemplo de medição da tensão entre os terminais do resistor.

Figura 3: Voltímetro em circuito em série

Assim, como esperado, vimos que cada resistor é responsável por um terço da queda de tensão do circuito.

Essa é a forma correta de colocar os medidores pois, componentes colocados em série em um circuito sempre recebem a mesma corrente, assim a corrente medida pelo amperímetro é a mesma que a corrente que passa pelos componentes associados em série com ele. A justificativa para o voltímetro é similar, levando em consideração que componentes em arranjo em paralelo possuem uma diferença de potencial iguais em seus terminais.

No caso de um circuito com apenas um resistor, para mantermos a corrente com o mesmo valor, a resistência deve aumentar para $2k\Omega$, como mostra a imagem a seguir.

Figura 4: Circuito com um resistor

Um circuito em série possui sempre a mesma corrente elétrica passando por todos os seus componentes. Em questão de tensão, ela é variável para cada componente, porem sempre a soma das tensões de cada componente (fonte, resistores, capacitores, indutores) é igual a 0.

2. PROJETO CIRCUITO EM PARALELO

Neste tipo de circuita há nós entre os componentes, assim, a tensão é a mesma para todos eles, porém a corrente é dividida entre eles.

Figura 5: Circuito em paralelo

A conexão de um amperímetro e de um voltímetro é a mesma, independente do circuito, assim, as próximas figuras mostram essas conexões para um circuito em paralelo.

Figura 6: Voltímetro em circuito em paralelo

Figura 7: Voltímetro em circuito em paralelo

Diferentemente de circuitos em série, em circuitos paralelos o que é igual para todos os componentes é a tensão, sendo a corrente dividida (não igualmente) para todos os componentes.

3. DEPÊNDENCIA ENTRE TENSÃO E CORRENTE ELÉTRICAS

A corrente elétrica é uma grandeza fortemente dependente da tensão elétrica. Nesta etapa do procedimento observaremos esta dependência e tentaremos encontrar como ela ocorre. Para isso utilizaremos um circuito com um resistor e um potenciômetro.

Figura 8: Circuito utilizado para testes

Variando a resistência do potenciômetro, obtivemos os dados e construímos a tabela a seguir.

V(mV)	838	455	161	70,4	52,1	35,5	22,6	19,9
I(mA)	0,838	0,455	0,161	0,074	0,0521	0,0355	0,0226	0,0199

Utilizando esses mesmos dados obtivemos o seguinte gráfico:

Desta forma, podemos perceber que a corrente depende linearmente da tensão, esta relação pode ser expressa pela primeira lei de Ohm, ou seja:

$$V = RI$$

Por esta relação podemos ver que a resistência é o coeficiente angular do gráfico, desta forma, para descobrir o valor da resistência, basta encontrar este coeficiente, seja derivando I em relação a V, seja buscando a tangente do angule entre a reta e Ox.

4. CÓDIGO DE CORES

Os resistores possuem código de cores, para que quem utilize eles possa identificar o valor de sua resistência. Esse valor pode ser identificado utilizando a seguinte tabela.

Color	1st & 2nd Digit	Multiplier	Tolerance	
	1st & 2nd Band	3rd Band	4th Band	
Black	0	1	-	
Brown	1	10	+/- 1%	
Red	2	100	+/- 2%	
Orange	3	1K	-	
Yellow	4	10K	-	
Green	5	100K	+/- 0.5%	
Blue	6	1M	+/- 0.25%	
Violet	7	10M	+/- 0.01%	
Gray	8	100M	-	
White	9	1000M	-	
Gold		0.1	+/- 5%	
Silver		0.01	+/- 10%	
None	-	-		

5. 2ª LEI DE OHM

Além da primeira lei de Ohm já mencionada anteriormente, há segunda lei de ohm, que relaciona as especificações físicas (diâmetro, comprimento) de um fio com a sua resistência. Como um resistor é basicamente um fio enrolado, podemos encontrar o valor de sua resistência a partir de como ele foi feito utilizando a seguinte fórmula.

$$R = \frac{\rho L}{A}$$

Sendo ρ uma constante que depende do material em que o fio é feito, L o tamanho do fio e A a sua área de seção transversal.

6. MEIOS ELETRÔNICOS E DIGITAIS

Para efetuar o relatório o grupo teve de utilizar de meios digitais como o Discord (plataforma de comunicação), WhatsApp (plataforma de comunicação) e o Gmail (plataforma de comunicação). Com esses meios digitais foi possível efetuar as simulações e a síntese deste relatório.