Bio-Inspired Artificial Intelligence

Lecture 13: Revision

http://www.informatik.uni-hamburg.de/WTM/

Cellular Systems

- Basic unit of all organisms: a simple cell
- Differentiation of cell types for specific functionality
- Cells communicate with each other locally
 - Interaction leads to specific behaviour of an organism
- Cellular automaton: grid cells with states (e.g. on/off)
- Evolution of grid cells follow specific (transition) rules
 - Rely on topology of grid and are applied to neighbourhood
 - accordingly
 - Wolfram rules
 - Conways 'Game of Life'

Spiking Neural Networks

- Inspired by electro-chemical neural processing in the brain
- Stimuli arriving at dendrites are transferred via axon to synapses → activity measured as spikes or pulses
- Integrate-and-Fire models, Spike-Response Model,...
 - Spikes represented as Dirac-Impulses (time-dependency)
 - Negative feedback models refraction period

Bio-inspired Language Processing

- Cognitive ability unique to humans
- Processing in various brain regions:
 - Wernicke & auditory areas: Comprehension
 - Broca & motor areas: Production
- Recent assumptions: Language is embodied and distributed over several areas of the brain
 - Example: understanding the verb 'kick' also stimulates according leg-region in the motor cortex (frontal)
- Grounding experiments help to understand language acquisition
 - Sensor to actuator mapping
 - Semantic association

Leg-related word

Bio-inspired Vision

Complex pathway of visual stimulus from retina to brain

areas in visual cortex (V1-V5)

- Two pathways in object recognition
 - Ventral 'what' and dorsal 'where'
 - Ventral codes for object properties, dorsal for spatial position
- Computational models reflect visual processing in feedforward fashion
 - Distinction between simple and complex cells
 - Inspiration for convolutional networks (LeCun) or Neocognitron (Fukushima)
- Feedback connections important in perception-to-action tasks e.g. reaching for an object → location update

Evolutionary Computing

- Evolutionary mechanisms like mutation, recombination and survival-of-the-fittest applied to problems e.g. optimization
- Genotype determines phenotype
- Fitness function measures quality of genotype
- Three main concepts:
 - Population of genes
 - Recombination of selected parents
 - Mutation of created offspring

 Tool to explore and exploit problem space without (much) prior knowledge

Behaviour Based Robotics

- Architecture for autonomous robotics
- Braitenberg vehicle (1984)
 - Simple agent with sensors and actuators
 - Motion guided by light sensors, stops when dark
 - But does not model cognitive process
- Important terms:
 - Situatedness: robot operates directly with and in the world
 - Embodiment: physical interaction through body
- More biologically motivated: motor schemas
 - Produce output vectors that can be visualized as potential field
- Application: Obstacle-avoidance, Trajectory planning

Dimensionality Reduction and Coordinated Movement Control

- Invited talk by Naveen Kuppuswamy
 - Post-Doc at University of Zürich, Pfeifer Lab
- Dimensionality in movement control is hard
 - Real-time control and optimisation in robotic
 - Development of motor skills in humans
- Nature offers reduced dimensionality principles
 - Ex.: Bell-shaped velocity profiles in reaching
 - Muscle synergies
- Use principles to reduce dimensionality
 - Mathematically: Orthogonal decomposition
 - Design and control of embodied systems:
 Motor primitives with model order reduction

Evolutionary Robotics

- Neural Networks applied to robotics provide learning strategies for autonomous behaviour
 - But: for net training (backprop) topology needs to be fixed
 - Solution: Evolving Neural Networks
 - Mutation of node connections in NN in terms of addition and removal
- Combination of evolutionary and neural learning algorithms
 - Learning can improve individuals' fitness
- Evolution of body parts
- Application: Navigation, Bipedal walking

Swarm Intelligence & Swarm Robotics

- Swarm systems have desirable properties
 - Robustness, Scalability, Flexibility
- Self-Organisation through local interactions
 - Stigmergy, positive/negative reinforcement, flocking
- Algorithms that exploit mechanisms for optimisation:
 - Ant Colony Optimisation,
 - Particle Swarm Optimisation
- Definition of individual behaviour to "construct" global behaviour far from trivial
- Swarm robotics still hot topic in research
- Many areas: Collective construction, mapping, exploration, sensor fields, collection, especially with small robots

Bio-Inspired Sound Localisation

Communication-based Cooperation

- Investigate how communication emerges and evolves in *Embodied*, *Situated* and *Adaptive* systems
 - communication can alter the behaviour of another individual
 - involves effort for transmitting and receiving,
 - offers means to cooperate or to defect
- Open Research: Whether and how communication can emerge in light of
 - Conflict of interests
 - The need for co-evolution of behaviour
- Experiments:
 - Evolved communicating foraging agents with neural controller
 - Evolved communication modalities and forms
 - Evolution and Formation of Language

Gesture- & Action Recognition

- Gestures: visual form of communication
- Different forms
 - Hand-, arm,-head-,whole-body actions
 - Different sensors: static vs. dynamic

- Visual cortex for shape, temporal lobe for motion
- Neural architectures compute features and implement processing stages based on these findings
 - Deep Learning, EGM, SOM
- Systems extendable for action recognition
 - Fall detection in a domestic environment

Examinations

- Examination dates: Thu 13.02.2014 & Thu 27.03.2014
 - Double-check with the Studienbüro for your time slot
- Examination place: F-230 (Prof. Wermter)
- Final pieces of advice
 - Grasp the *idea* and the biological foundation of the discussed methods – books and papers are in the CommSy
 - Repeat the formalisations of models and methods to a reasonable depth
 - Take care for transferring the idea of a method from one problem to another

Upcoming courses

- L+S Knowledge Processing with Neural Networks
 - Discover neural computing: architectures, learning, hybrid systems & models for cognitive capabilities
 - ... and learned to apply these capabilities to artificial intelligent systems
- Next Winter: Project Human-Robot Interaction
 - Challenge: Robotic device capable of interacting with people as naturally as we interact with each other
 - Approach: solve a simple task in a complex environment, e.g. "Serve coffee!"
 - Inspiration: RoboCup@home tasks
 - Chance: Follow up on ideas & progress of recent groups
- Additional: Oberseminar Knowledge Technology
 http://www.informatik.uni-hamburg.de/WTM/teaching/

