Problems in Elementary Inequality

Nguyễn Quản Bá Hồng*

Ngày 18 tháng 5 năm 2023

Tóm tắt nội dung

A problem set for elementary inequality.

M	luc	luc
	•	•

1	sy Problems	2
Tà	$\hat{\mathbf{e}}_{\mathbf{u}}$	2

1 Easy Problems

Bài toán 1 ([Sơn+21], Bổ đề 1.1, p. 5). Chứng minh: $4ab \le (a+b)^2 \le 2(a^2+b^2)$, hay có thể viết dưới dạng $\frac{a^2+b^2}{2} \ge \left(\frac{a+b}{2}\right)^2$, $ab \le \frac{(a+b)^2}{4}$, $\forall a,b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Hint.
$$(a+b)^2 - 4ab = (a-b)^2 \ge 0$$
, $2(a^2+b^2) - (a+b)^2 = (a-b)^2 \ge 0$, $\forall a,b \in \mathbb{R}$. "=" $\Leftrightarrow a=b$.

Bài toán 2 ([Sơn+21], Bổ đề 1.2, p. 5). Chứng minh: $3(ab+bc+ca) \le (a+b+c)^2 \le 3(a^2+b^2+c^2)$, hay có thể viết dưới dạng $ab+bc+ca \le \frac{1}{3}(a+b+c)^2$, $\forall a,b,c \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

$$\begin{array}{l} \textit{Hint. } (a+b+c)^2-3(ab+bc+ca) = \frac{1}{2} \left[(a-b)^2+(b-c)^2+(c-a)^2 \right] \geq 0, \\ 3(a^2+b^2+c^2)-(a+b+c)^2 = (a-b)^2+(b-c)^2+(c-a)^2 \geq 0, \\ \forall a,b,c \in \mathbb{R}. \ "=" \Leftrightarrow a=b=c. \end{array}$$

Bài toán 3 ([Sơn+21], Bổ đề 1.3, p. 6). Chứng minh: $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$, hay có thể viết dưới dạng $\frac{1}{a+b} \le \frac{1}{4} \left(\frac{1}{a} + \frac{1}{b} \right)$, $\forall a, b > 0$. Dằng thức xảy ra khi nào?

Hint.
$$\frac{1}{a} + \frac{1}{b} - \frac{4}{a+b} = \frac{(a-b)^2}{ab(a+b)} \ge 0, \forall a, b > 0.$$
 "=" $\Leftrightarrow a = b > 0.$

Bài toán 4 ([Sơn+21], Bổ đề 1.4, p. 6). Chứng minh: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{9}{a+b+c}$, hay có thể viết dưới dạng $\frac{1}{a+b+c} \le \frac{1}{9} \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$, $\forall a,b,c>0$. Dằng thức xảy ra khi nào?

Bài toán 5 ([Son+21], Mở rộng Bổ đề 1.3–1.4, p. 6 cho n số). Chứng minh:

$$\frac{1}{a_1} + \ldots + \frac{1}{a_n} \ge \frac{n^2}{a_1 + \cdots + a_n}, \ i.e., \ \frac{1}{a_1 + \cdots + a_n} \le \frac{1}{n^2} \left(\frac{1}{a_1} + \cdots + \frac{1}{a_n} \right), \ \forall a_i > 0, \ \forall i = 1, \ldots, n,$$

hay có thể được viết gọn lại như sau:

$$\sum_{i=1}^{n} \frac{1}{a_i} \ge \frac{n^2}{\sum_{i=1}^{n} a_i}, i.e., \frac{1}{\sum_{i=1}^{n} a_i} \le \frac{1}{n^2} \sum_{i=1}^{n} \frac{1}{a_i}, \forall a_i > 0, \forall i = 1, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 6 ([Sơn+21], Bổ đề 1.5, p. 7). Chứng minh: $\sqrt{a+b} \le \sqrt{a} + \sqrt{b} \le \sqrt{2(a+b)}$, $\forall a,b \ge 0$. Đẳng thức xảy ra khi nào?

Bài toán 7 ([Sơn+21], Mở rộng Bổ đề 1.5, p. 7). Chứng minh: $\sqrt{a+b+c} \le \sqrt{a} + \sqrt{b} + \sqrt{c} \le \sqrt{3(a+b+c)}$, $\forall a,b,c \ge 0$. Đẳng thức xảy ra khi nào?

Bài toán 8 ([Sơn+21], Mở rộng Bổ đề 1.5, p. 7 cho n số). Chứng minh: $\sqrt{a_1 + \cdots + a_n} \le \sqrt{a_1} + \cdots + \sqrt{a_n} \le \sqrt{n(a_1 + \cdots + a_n)}$, $\forall a_i \ge 0, \ \forall i = 1, \dots, n, \ hay có thể được viết gọn lại như sau:$

$$\sqrt{\sum_{i=1}^{n} a_i} \le \sum_{i=1}^{n} \sqrt{a_i} \le \sqrt{n \sum_{i=1}^{n} a_i}, \ \forall a_i \ge 0, \ \forall i = 1, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 9 ([Sơn+21], Bổ đề 1.6, p. 7). Chứng minh: $a^3 + b^3 \ge ab(a+b)$, $\forall a,b \in \mathbb{R}$, $a+b \ge 0$. Đẳng thức xảy ra khi nào?

Hint.
$$a^3 + b^3 - ab(a+b) = (a+b)(a-b)^2 \ge 0, \forall a, b \in \mathbb{R}, a+b \ge 0.$$
 "=" $\Leftrightarrow a = \pm b.$

Bài toán 10 ([Sơn+21], Mở rộng Bổ đề 1.6, p. 7). Chứng minh: $a^4 + b^4 \ge ab(a^2 + b^2)$, $\forall a, b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Bài toán 11 ([Sơn+21], Bổ đề 1.7, p. 7). Chứng minh: $a+b \ge 2\sqrt{ab}$, $\forall a,b \ge 0$. Đẳng thức xảy ra khi nào?

Bài toán 12 ([Sơn+21], Bổ đề 1.8, p. 7). Chứng minh: $a+b+c \geq 3\sqrt[3]{abc}$, $\forall a,b,c \geq 0$. Đẳng thức xảy ra khi nào?

Tài liệu

[Sơn+21] Nguyễn Ngọc Sơn, Chu Đình Nghiệp, Lê Hải Trung, and Võ Quốc Bá Cẩn. *Các Chủ Đề Bất Đẳng Thức Ôn Thi Vào Lớp 10*. Tái bản lần thứ 3. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2021, p. 143.