Mechanisms

 $S_N 1, S_N 2, E_1, E_2$

$$\begin{array}{c} \text{Slow} \\ -Br \\ \text{Rate} = k[RX] \end{array}$$

$$\begin{array}{c} \text{Nu} \\ -Br \\ \text{Rate} = k[RX] \end{array}$$

$$\begin{array}{c} \text{Nu} \\ -Br \\ \text{Rate} = k[RX] \end{array}$$

$$\begin{array}{c} \text{Nu} \\ -Br \\ \text{Rate} = k[RX] \end{array}$$

$$\begin{array}{c} \text{Nu} \\ -Br \\ \text{Rate} = k[RX] \end{array}$$

$$\begin{array}{c} \text{Nu} \\ -Br \\ \text{Rate} = k[RX] \end{array}$$

$$\begin{array}{c} \text{Nu} \\ -Br \\ \text{Rate} = k[RX] \end{array}$$

$$\begin{array}{c} \text{Nu} \\ -Br \\ -Br \\ \end{array}$$

$$\begin{array}{c} \text{Inversion} \end{array}$$

Affecting Factors:

This builds on the factors presented in Chapter 4.

Steric hindrance greatly slows S $_N$ 2 by shielding $^{\delta+}\text{C}$ from nucleophilic attack. E $_2$ may also be slowed if bulky bases are used.

Carbocation stability increases rate of E_1 and S_N 1 by decreasing E_a leading to the carbocation intermediate. Carbocations can be stabilized by inductive donation of s-orbital e^- by adjacent R-groups, or by resonance delocalization to spread the positive charge on more atoms.

Nucleophilicity chooses $S_N 2$ over $S_N 1$, while basicity is important in E_2 . The greater the charge

density (-ve), the stronger the nucleophile, but in polar protic solvents, nucleophilicity decreases in the order HS $^->HO^-$ and I $^->Br^->CI^->F^-$. as the smaller anions are more strongly solvated (not the case in polar aprotic solvents). Nucleophilicity parallels basicity, except where a bulky base is too bulky to be a good Nu $^-$. Note that nucleophilicity measures how good a lone pair is in adding to an electrophilic centre (like carbon), while basicity is how good that species is in donating a lone pair to H+ and hence deprotonating another species.

The stability of the **leaving group** increases the rate of $S_N 2$, and favours $S_N 1$ over E_1 . The greater the ability to stabilize the negative charge, i.e. the larger the size (more impt.) or the more electronegative the group, the better it is as a leaving group. Good leaving groups: X^- , H_2O . Poor leaving groups: OH^- , F^- , NH_2^- , ...

Polar protic solvents can solvate both cations and anions, including via hydrogen bonds. Polar aprotic ones lack $^{S+}$ H to solvate anions, not forming solvent cages around Nu $^-$, hence increasing the charge density and reactivity of the Nu $^-$, increasing rate of S $_N$ 2 reactions. Generally, polar solvents (stabilizes cations) are sufficient for S $_N$ 1/E $_1$.

Temperature, if increased, favours, E_1 and E_2 as entropy increases the elimination reactions (more molecules produced).

Neighbouring groups may participate in and accelerate S_N2 , the rule being that intramolecular reactions are faster than intermolecular reactions. This "double S_N2 " leads to retention of configuration instead of inversion of configuration as with a single S_N2 .

Multiple products may be possible for E_2 , favouring the more substituted products. It is first necessary to consider the possibility of E_2 , which depends on whether the H and leaving group are anti-periplanar/trans-diaxial. It is a stereochemical requirement of E_2 reactions for the H eliminated and the leaving group to be anti-periplanar (i.e. on opposite sides). The anti-periplanar elimination occurs even if the product does not follow Sayzeff's Law. The full explanation for the anti-periplanar requirement requires an understanding of MO theory which we should not concern ourselves with at this stage (for the curious: the reason is electron donation into the anti-bonding orbital of the C-leaving group).

Choosing the right reaction conditions often allows selection of the desired products.

Conditions favouring	S _N 1	E ₁	S _N 2	E_2
Primary	×	×	Strong Nu⁻.Polar aprotics.	Strong base.
Secondary	 Steric Stable C⁺. Moderate Nu⁻. Weak base. Polar protics. Good LG. 	 Steric. Stable C⁺. Poor Nu⁻. Moderate base. Polar protics. Good LG. 	 No steric. No stable C⁺. Good Nu⁻. Weak base. Polar aprotics. Moderate LG. 	Strong base.Moderate LG.
Tertiary	 Better Nu⁻. No base. 	 Poor Nu⁻. Base present. E₁ and E₂ favoured by temperature. 	 Anti- periplanar configuration required. 	 Strong base. Favoured by anti periplanar configuration. E₁ and E₂ favoured by temperature.