See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/236229347

Ab Initio Molecular Orbital Study on a Linear Relationship between Activation Energies of Menshutkin Reactions and Proton Affinities of Nitrogen Bases

ARTICLE in THE JOURNAL OF ORGANIC CHEMISTR	Y · JUNE 1998	
Impact Factor: 4.72 · DOI: 10.1021/jo971707f		
CITATIONS	READS	
5	5	

5 AUTHORS, INCLUDING:

Jose-Luis M. Abboud

Spanish National Research Council

266 PUBLICATIONS 8,712 CITATIONS

SEE PROFILE

Ab Initio Molecular Orbital Study on a Linear Relationship between Activation Energies of Menshutkin Reactions and Proton **Affinities of Nitrogen Bases**

Kenzi Hori,*,† J.-L. M. Abboud,‡ C. Lim,§ M. Fujio,§ and Y. Tsuno§

Department of Applied Chemistry and Chemical Engineering, Yamaguchi University, Tokiwadai, Ube, 755 Japan, Instituto de Quimica Fisica "Rocaslano", CSIC, c/Serrano, 119 E-28006 Madrid, Spain, and Institute for Fundamental Research of Organic Chemistry, Kyushu University, Fukuoka, 812-81 Japan

Received September 12, 1997

In a previous paper (J. Am. Chem. Soc. 1991, 113, 4738), we reported that there was a linear relationship between the activation free energies ΔG^{\sharp} of the Menshutkin reaction of CH₃I and the proton affinities for the corresponding nitrogen donor bases (δPA_{obs} , relative to PA_{obs} of ammonia). The ΔG^{\sharp} is dependent on the hybridization of the nitrogen, which means that a plot, δPA_{obs} vs ΔG^{\sharp} for the N(sp²) donors, yielded a straight line that was different from a corresponding line for the N(sp³) donors. Although N,N-dimethylaniline and its 4-substituted derivatives have formally sp³ nitrogen donors, their $\delta PA_{obs} - \Delta G^{\dagger}$ points were observed to be neither on the sp³ nor on the sp² line. In the present study, ab initio molecular orbital (MO) calculations are adopted to explain why there are different linear relationships between the two energies of the three types of bases. Our calculations show that at the MP2/6-31+ G^* //RHF/6-31+ G^* level of theory the calculated δPA_{calc} values have a linear correlation with the δPA_{obs} . Differences of calculated activation energies (δE_a , relative to that of NH₃) also show a good linear relationship with the δPA_{calc} . The C-X distances (X = N or Cl) at the TS structures are also closely correlated with the δE_a , i.e., the Menshutkin reaction with a shorter C-N distance in the TS has to overcome a higher activation energy. The δPA_{calc} values should be reduced when we use the δPAs of the sp^2 bases as indices of nucleophilicity in Menshutkin reactions in the gas phase.

Introduction

The quantitative study of substituent effects, which is one of the most important issues in organic chemistry, has been carried out for many reactions. The complete and detailed surveys were conducted in the reaction of the S_N1-type solvolysis.¹ The basic concepts in physical organic chemistry are best analyzed by using the simple reaction systems. The Menshutkin reaction (MR)² expressed by eq 1 is also one of the systems that have been used for analyzing the substituent effect in detail.

$$CH_3X + Y \rightarrow CH_3Y^+ + X^- \tag{1}$$

Rates of MRs are dependent on nucleophilicity of Y. To test this fact, one of us correlated the observed proton affinities (PA_{obs}) and activation free energies ΔG^{\dagger}_{obs} of MRs with CH₃I and bases in acetonitrile. The δ PA_{obs} and $\delta \Delta G_{\text{obs}}^{\text{t}}$ energies were used for a correlation analysis; both of them are referred to the corresponding values of ammonia. Two linear relationships, which are dependent on hybridization of the donor atoms in nucleophiles, were observed in δPA_{obs} vs $\delta \Delta G^{\dagger}_{obs}$ plots.³ On the other hand, $\delta\Delta G^{\dagger}_{obs}$ of N,N-dimethylaniline and its 4-substituted derivatives, which have formally sp³ nitrogen donors,

locate neither on the sp³ nor on the sp² line. These facts led to the conclusion that the gas-phase PA of nucleophiles has a close relation to their reactivity, i.e., nucleophilicity, in solution. A similar relation was also observed in the charge-transfer association of bases and I2.4

Many theoretical investigations have been performed to study S_N2 mechanism of small systems in detail.⁵ Some of them dealt with substitution or leaving-group effects for the reaction mechanism.⁶ The mechanism of the MR as a typical S_N2 reaction has been investigated by using ab initio molecular orbital (MO) calculations.⁷ Gao et al. investigated the potential energy profile, including solvent effect.8 A new approach for characterizing the TS in the MR was performed by Shaik et al.⁹ However, these theoretical studies analyzed only small systems.

[†] Yamaguchi University.

[§] Kyushu Universitry

⁽¹⁾ For example: Olah, G. A.; Schleyer, P. v. R. *Carbonium Ions*, John Wiley & Sons: New York, 1968; Vol. 1.

⁽²⁾ Abboud, J.-L. M.; Notario, R.; Sola, M.; Bertran, J. *Prog. Phys. Org. Chem.* **1993**, *19*, 1 (3) Abboud, J.-L. M.; Notario, R.; Bertan, J.; Taft, R. W. *J. Am.*

Chem. Soc. 1991, 113, 4738.

⁽⁴⁾ Abboud, J.-L. M.; Notario, R.; Berthelot, M.; Claramunt, R. M.; Cabildo, P.; Elguero, J.; Ghomari, M. J. E.; Bouab, W.; Mokhlisse, R.; Guiéneuf, G. *J. Am. Chem. Soc.* **1991**, *113*, 7489.

⁽⁵⁾ For example: (a) Tachikawa, H., J. Phys. Chem. 1997, 101, 7459. (b) Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys. 1996, 105, (10) Hullibel, S., Slebel, S., Molokullia, K. J. Chem. Phys. **1930**, 103, 1959.
(117, 10726.
(20) Poirier, R. A.; Wang, Y.; Westaway, K. C. J. Am. Chem. Soc. **1994**, 116, 2526.
(21) Wang, H.; Zhu, L.; Hase, W. L. J. Phys. Chem. **1994**, 98, 1608.
(31) Wladkowski, B. D.; Allen, W. D.; Brauman, J. I. J. Phys. Chem. **1994**, 98, 13532.

^{(6) (}a) Streitwieser, A.; Choy, G. S.-C.; Abu-Hasanayn, F. *J. Am. Chem. Soc.* **1997**, *119*, 5013. (b) Glukhovstev, M. N.; Pross, A.; Radom, L. *J. Am. Chem. Soc.* **1996**, *118*, 6273. (c) Deng, L.; Branchadell, V.; Ziegler, T. *J. Am. Chem. Soc.* **1994**, *116*, 10645. (d) Gronert, S., *J. Am.* Chem. Soc. 1993, 115, 652. (e) Shi, Z.; Boyd, R. J. J. Am. Chem. Soc. 1989, 111, 1575.

^{(7) (}a) Viers, J. W.; Schug, J.; Stovall, M. D.; Seeman, J. I. J. Comput. Chem. 1984, 5, 598. (b) Sola, M.; Lledos, A.; Duran, M.; Bertán; Abboud, J.-L. M. J. Am. Chem. Soc. 1991, 113, 2873.

^{(8) (}a) Gao, J. J. Am. Chem. Soc. **1991**, 113, 7796. (b) Gao, J.; Xia, X. J. Am. Chem. Soc. **1993**, 115, 9667.

Table 1. Calculated Energies of Reactants, Transition States and Protonated Forms.

			8	,				
		Nu	TS	Nu^+	NuCH ₃ ⁺	PA	MA	$E_{\rm a}$
NH ₃	RHF	-56.189 50	-555.22598	-56.531 28	-95.574 16	214.5	96.5	36.2
	MP2	$-56.362\ 66$	-555.66024	$-56.700\ 41$	$-95.869\ 17$	211.9	113.5	37.4
	MP4	-56.379~38	-555.71295	-56.71873		212.9		36.4
NH_2CH_3	RHF	-95.21069	$-594.255\ 35$	$-95.574\ 16$	-134.61427	228.1	108.4	31.1
	MP2	$-95.511\ 32$	$-594.821\ 05$	$-95.869\ 15$	-135.03875	224.5	126.7	29.8
	MP4	$-95.544\ 54$	-594.89052	-95.904~09		225.6		28.6
$NH(CH_3)_2$	RHF	-134.24264	$-633.285\ 81$	-134.61427	-173.65161	233.2	111.7	32.0
	MP2	-134.67394	$-633.986\ 17$	-135.03873	$-174.209\ 14$	228.9	131.5	28.2
	MP4	-134.72344	-634.07196	$-135.090\ 07$		230.1		27.0
1	RHF	-327.08275	$-826.130\ 32$	-327.47700	-366.51062	247.4	123.6	29.2
	MP2	-328.16867	$-827.490\ 19$	$-328.551\ 35$	-367.72362	240.1	143.9	22.4
2	RHF	-262.69048	$-761.720\ 16$	$-263.036\ 47$	-302.07653	217.1	97.4	40.5
	MP2	-263.517~08	$-762.814\ 44$	-263.854~88	$-303.029\ 01$	212.0	117.0	37.6
3a	RHF	-246.70349	-745.74084	-247.07367	$-286.110\ 20$	232.3	110.3	35.6
	MP2	$-247.496\ 07$	-746.80054	$-247.855\ 00$	$-287.026\ 37$	225.2	128.5	33.1
3 b	RHF	$-450.174\ 37$	-949.20143	-450.51646	$-489.555\ 10$	214.7	94.0	42.1
	MP2	$-451.509\ 18$	$-950.805\ 35$	$-451.845\ 57$	$-491.018\ 41$	211.1	115.3	38.3
3c	RHF	-360.58999	-859.62998	$-360.972\ 11$	-400.00674	239.8	116.6	34.0
	MP2	$-361.692\ 51$	-860.99896	$-362.061\ 50$	$-401.231\ 07$	231.5	133.7	31.9
3d	RHF	-379.78962	-878.83380	-380.18792	$-419.221\ 30$	249.9	126.0	31.4
	MP2	$-381.016\ 26$	$-880.326\ 56$	$-381.401\ 66$	-420.56985	241.8	143.1	29.4
4a	RHF	$-363.790\ 34$	-862.82390	$-364.167\ 30$	$-403.192\ 47$	236.5	107.5	38.0
	MP2	-364.98681	-864.297~06	-365.35591	-404.521~28	231.6	131.1	29.5
4b	RHF	-455.52773	-954.55545	-455.887~80	-494.91366	225.9	97.3	41.7
	MP2	-456.99894	$-956.306\ 14$	$-457.354\ 47$	$-496.520\ 52$	223.1	123.0	31.4
4c	RHF	$-418.818\ 51$	$-917.855\ 31$	$-419.203\ 21$	$-458.228\ 47$	241.4	112.4	36.0
	MP2	$-420.182\ 37$	$-919.496\ 86$	$-420.560\ 07$	-459.72548	237.0	136.5	26.8
4d	RHF	-477.67075	-976.70707	-478.05270	-517.07809	239.7	102.5	36.3
	MP2	$-479.179\ 10$	$-978.492\ 39$	-479.55295	-518.71839	234.6	134.1	27.6

^a Total energies are given in hartrees and PA, E_a and MA in kcal mol⁻¹. MP2 and MP4 mean energies at the MP2/6-31+G*//RHF/6-31+G* and MP2(SDTQ)/6-31+G*//RHF/6-31g* levels of theory.

From the experimental viewpoint of physical organic chemistry, these studies are important and very attractive. However, substituent effects of the MRs have been well investigated and discussed in much larger systems. In substrates and in nucleophiles, they have one or more aromatic rings to which we can introduce many types of substituents. Therefore, large substituents and nucleophiles are essential to investigation into substituent effect on the MRs in order to compare experimental results with theoretical ones.

In the present study, our attention is focused on the observed $\delta PA_{obs} - \delta \Delta G^{\dagger}_{obs}$ relation depending on hybridization of nitrogen donors and the substituent effect of nucleophiles. Therefore, we used relatively large bases to make the following calculations. Methyl chloride instead of its iodine analogue, i.e., X = Cl in eq 1, was adopted as a model reactant for the simplicity of calculations.

To confirm the origin of the observed linear relationship, we estimated and correlated PAcalc and the activation energies (E_a) of the MRs at the MP2/6-31+G*//RHF/ 6-31+G* level of theory. The relationship between the proton affinity and the activation energies of Y was analyzed in detail by using results of ab initio MO calculations. According to the Leffler-Hammond principle, 10,11 we have to compare $\delta\Delta \textit{G}^{\ddagger}_{obs}$ with the methyl cation affinities (MA) instead of the PA values since the products of the reactions are CH₃Y⁺ in the present study. Therefore, we also estimated the MAs at the MP2/6-31+G*//RHF/6-31+G* level of theory for all the nucleophiles and investigated the $\delta MA - \delta E_a$ relationship.

Method of Calculations

Ab initio MO calculations were performed by using the GAUSSIAN94 program¹² to optimize stable and transitionstate (TS) structures at the RHF/6-31+G* level of theory. Vibrational frequency calculations showed all the TSs to have only one imaginary frequency as listed in Table 2.

PA_{calc}(Y) or MA_{calc}(Y), the energy differences between a base Y and YH⁺ or YCH₃⁺, are defined by eqs 2 and 3

$$PA_{calc}(Y) = E_Y - E_{YH^+}$$
 (2)

$$MA_{calc}(Y) = E_Y - E_{YCH_3^+}$$
 (3)

where E_{Y} , $E_{YH^{+}}$ and $E_{YCH_{3}^{+}}$ are the total energies of Y, YH⁺, and YCH3+. To ascertain what level of theory is required for quantitative discussions about the substituent effect, the PA_{calc}-

⁽⁹⁾ Shaik, S.; Ioffe, A.; Reddy, A. C.; Pross, A. J. Am. Chem. Soc. **1994**. 116. 262.

⁽¹⁰⁾ Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334.

⁽¹¹⁾ Leffler, J. E. Science 1953, 117, 340.(12) GAUSSIAN94: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A. Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1995.

Table 2. C-Cl, C-N Lengths, Mulliken Charges, and Energetic Parameters for the Menshutkin Reactions Depending on Nucleophiles

		C-Cla (Å)	$N-C^a$ (Å)	v^b (cm $^{-1}$)	Cl^c	$\mathrm{CH}_3{}^c$	amine	$\delta E_{\rm a}{}^d$	$\delta \mathrm{PA}_{\mathrm{calc}}{}^{d,e}$	$\delta \mathrm{PA}_{\mathrm{obs}}{}^d$	$\delta { m MA}_{ m calc}{}^{d,e}$
CH ₃ Cl ^f		1.785			-0.062	0.062					
NH_3		2.474	1.900	559.1i	-0.700	0.494	0.206	0.0	0.0	0.0	0.0
NH_2Me		2.422	1.943	595.7i	-0.664	0.435	0.229	7.6	12.6	10.1	13.1
$NHMe_2$		2.394	1.965	584.8i	-0.643	0.409	0.235	9.2	17.0	16.6	18.0
N(CH ₂ CH ₂) ₃ CH	1	2.358	1.998	593.0i	-0.589	0.341	0.248	15.0	28.2	29.0	30.4
NC_4H_4N	2	2.463	1.886	561.1i	-0.671	0.337	0.334	-0.1	0.0(0.0)	4.5	3.4(2.4)
NC_5H_5	3a	2.432	1.927	570.6i	-0.664	0.365	0.299	4.3	13.3(6.8)	16.8	14.9(10.5)
NC_5NO_2	3b	2.469	1.879	562.3i	-0.677	0.352	0.325	-0.9	-0.9(-0.4)	4.2	1.7(1.2)
NC ₅ OCH ₃	3c	2.419	1.942	574.7i	-0.661	0.366	0.296	5.6	19.6(10.1)	23.3	20.1(14.1)
$NC_5H_4NMe_2$	3d	2.402	1.965	578.6i	-0.650	0.363	0.287	8.0	29.9(15.4)	32.4	29.5(20.7)
NMe_2Ph	4a	2.411	1.969	593.1i	-0.632	0.390	0.242	8.0	19.7	19.0	17.5
NMe ₂ PhCN	4b	2.425	1.945	594.2i	-0.626	0.397	0.229	6.0	11.2	9.0	9.5
NMe_2PhNH_2	4c	2.402	1.980	594.9i	-0.630	0.431	0.198	10.6	25.1	23.7	23.0
NMe_2PhOCH_3	4d	2.422	1.961	594.0i	-0.630	0.473	0.157	9.9	22.7	22.3	20.6

 a C-X(X = Cl, N) lengths (Å) in the TS structure. b Imaginary frequencies of TS structures. c Mulliken charges of Cl, CH₃, and amine fragments. d Energies in kcal mol⁻¹. e Values in parentheses are the reduced δ PA_{calc}. f For CH₃Cl, the values are those for the stable structure.

Figure 1. Linear relationships between (a) δPA_{calc} and δPA_{obs} (b) δPA_{calc} and δMA_{calc} . The solid, broken and dotten lines in (a) are the relation for all, sp^2 and sp^3 bases.

(Y) up to the MP4/6-31+ G^* /RHF/6-31+ G^* level of theory were estimated for small bases and compared with the corresponding values observed. Table 1 lists calculated total energies, PAs, and E_a 's of the MRs for the bases shown above.

The $PA_{calc}(NH_3)$ is $211.9(212.9)\ kcal\ mol^{-1}$ at the MP2/6-31+G*//RHF/6-31+G* (MP4/6-31+G*//RHF/6-31+G*) level of theory, while the $PA_{obs}(NH_3)$ is 203.5 kcal $mol^{-1}.^{13}$ The ab initio MO calculation overestimated the $PA_{calc}(NH_3)$ by 8.4 (9.4) kcal mol^{-1} , which corresponds to only 3.9% (4.6%) of the $PA_{obs}.$ It is very difficult to directly reproduce absolute values for the PA of bases by using ab initio MO calculations even at the MP2/6-31+G*//RHF/6-31+G* level of theory. 14 Zhang et al. showed that the MP4/6-31+G**/RHF/6-31+G** level of theory was required in order to obtain the correct PA value for the nitrogen atom of glycine. 15

The δPA was defined as the difference of the proton affinity relative to that of NH_3 (eq 4) estimated by ab initio MO calculations.

$$\delta PA = PA(Y) - PA(NH_3) \tag{4}$$

$$\delta MA = MA(Y) - MA(NH_3) \tag{5}$$

The δMA defined by eq 5 is similarly calculated from MA-(Y) and MA(NH₃). Table 2 summarizes these relative energy parameters. A positive value of $\delta PA(Y)$ means that the proton affinity of Y is larger than that of NH₃. The δPAs_{calc} was compared with δPAs_{obs} , the observed δPA for the small sp³ bases. The δPA_{calc} values for NH₂CH₃ and NH(CH₃)₂ are 12.6-(12.7) and 17.0(17.2) kcal mol $^{-1}$ at the MP2/6-31+G*//RHF/6-31+G* level of theory, and those observed are 10.1 and 16.6 kcal mol $^{-1}$, respectively. 2 The MP4/6-31+G*//RHF/6-31+G* level of theory gave δPA_{calc} similar to those of the lower level of theory. According to the results as well as the size of molecules investigated here, the energies mentioned below were used at the MP2/6-31+G*//RHF/6-31+G* level of theory unless otherwise noted.

Results and Discussion

Comparison of δPA_{obs} and δPA_{calc} . To check the reliability of δPA_{calc} for all the bases calculated in the present study, the $\delta PA_{obs} - \delta PA_{calc}$ relation was first examined. Figure 1a displays calculated vs observed δPA_{s} . The δPA_{calc} correlates well with the δPA_{obs} , and the slope of the line is 0.925 with the correlation coefficient of 0.969 (the solid line). However, we can see individual dependencies of the sp³ and sp² bases. For example, all the δPA_{calc} points of the sp³ bases appear below the solid line. The δPA_{calc} of the sp³ bases is linearly related with those observed, and its slope is

⁽¹³⁾ Lisa, S. G.; Liebman, J. F.; Levin, R. D. *J. Phys. Chem. Ref. Data* **1984**, *13*, 695.

⁽¹⁴⁾ Castano, O.; Notario, R.; Hori, K.; Abboud, J.-L. M. Struct. Chem. 1996, 7, 321.

⁽¹⁵⁾ Zhang, K.; Zimmerman, D. M.; Chung-Phillips, A.; Cassady, C. J. J. Am. Chem. Soc. 1993, 115, 10812.

Figure 2. Plots of (a) δPA_{calc} vs. δE_a and (b) δMA_{calc} vs. δE_a of the bases. Closed circles in both figures show the points of the reduced δPA_{calc} of the sp^2 bases.

almost unity (slope 1.031, intercept -1.375, correlation coefficient 0.993, the broken line). It means that the present level of theory is reliable enough to quantitatively discuss the δPA_{calc} of the sp^3 bases. It is important to point out that δPAs of all the N,N-dimethylaniline derivatives were also included in making the sp³ line. They seem to rank as sp³ bases.

All the δPA_{obs} for sp² bases are over the solid line in Figure 1a. A plot δPA_{obs} vs δPA_{calc} only for the sp² bases is also linear with a correlation coefficient of practically 1.0 (the dotted line). The slope and the intercept of the obtained line are 0.928 and 4.752, respectively. It means that the present level calculations systematically slightly underestimate the δPA_{calc} in comparison with the δPA_{obs} . A more sophisticated level of theory should be adopted to estimate the correct δPA values of the sp^2 bases.

Although one has to keep in mind that the computed δPA_{calc} values of the sp^2 bases are associated with a small systematic error, it is nevertheless possible to investigate the substituent effect quantitatively via correlation of the proton affinity difference δPA_{calc} with the calculated properties such as activation energies, bond lengths, or Mulliken charges at the TS.

Relation between δMA_{calc} and δPA_{calc} . According to the Leffler-Hammond principle, 10,11 free energies of activation ΔG^{\dagger} are expected to have the relation to free energy difference between reactants and products, $\Delta G_{\rm r}$ and ΔG_p , as follows,

$$G^{\dagger} - \Delta G_{\rm r} = \alpha (\Delta G_{\rm p} - \Delta G_{\rm r}) \tag{6}$$

or

$$\delta \Delta G^{\dagger} / \delta \Delta G = \alpha \tag{7}$$

It is possible to relate the calculated δE_a to $\delta \Delta G^{\dagger}$ (= $\Delta G^{\dagger} - \Delta G_{\rm r}$) and the calculated MA to the free energy difference $\delta \Delta G$ (= $\Delta G_{\rm p}$ - $\Delta G_{\rm r}$), although we have to consider entropic effect. The MA rather than the PA should be used for analyzing the selectivity-reactivity relationship in the present study.

As mentioned above, our previous work³ confirmed that δPAs show a clear linear relationship with $\delta \Delta G^{\dagger}$. Therefore, there should be a linear relationship between δPA and δ MA. The MA value of NH₃ was calculated to be 113.5 kcal mol⁻¹, which is smaller by 98.4 kcal mol⁻¹ than that of PA_{calc}(NH₃). The other MAs_{calc} are also smaller by 100–120 kcal mol⁻¹ than the PAs. Despite the large differences among PAs and MAs, the relative values are very similar as listed in Table 2. Figure 1b, which displays the $\delta PA - \delta MA$ plot, has a straight line with the relation

$$\delta MA_{calc} = 0.9872 \delta PA_{calc} \quad (r = 0.981)$$
 (8)

This relation between the two energies makes it possible to use δPA_{calc} instead of δMA_{calc} when we analyze the reactivity-selectivity relation in the present inves-

Relation between \delta PA_{calc} and \delta E_a. It was observed that the $\delta\Delta G^{\dagger}_{obs}$ of the MR is linearly correlated with the δPA_{obs} . Therefore, the TS structures with the nucleophiles shown above were next searched, and their activation energies were estimated. The E_a of the MR in the gas phase was estimated as the energy difference between the total energy of a TS and the sum of total energies of reactants, CH₃Cl and Y

$$E_{\rm a}({\rm Y}) = E_{\rm TS} - (E_{\rm CH_3Cl} + E_{\rm Y})$$
 (9)

The differences of the E_a (δE_a) relative to that of NH₃ was also estimated as follows

$$\delta E_{a}(Y) = E_{a}(NH_3) - E_{a}(Y) \tag{10}$$

A positive $\delta E_a(Y)$ means that a base Y is more reactive than NH₃ in MRs. Figure 2a displays a correlation between δPA_{calc} and $\delta \tilde{E_a}$. In Figure 2, there are two linear relationships, i.e., one for the sp³ bases including the *N*,*N*-dimethylaniline derivatives and the other for the sp² bases. There are no points distinctly deviating from the line consisting of the $\delta PA_{calc} - \delta E_a$ points of the sp³ bases as well as 4a and its derivatives. The slope of the sp³ line is 0.453, which is larger than that (0.287) of the sp² bases. The correlation coefficients of the two lines are 0.984 and 0.993. This trend was seen in the observed $\delta PA - \delta GA^{\dagger}_{obs}$ plot.³ The sp³ slope (0.156) experimentally obtained was also larger than the sp² slope (0.143),

Figure 3. Comparison of TS geometries with the lowest activation energies of the sp^3 , the sp^2 bases and the N,N-dimethylaniline derivatives as nucleophiles.

although the difference between the slopes is not as large as that from the MO calculations.

The $\delta PA_{calc} - \delta E_a$ points of **4a** and its derivatives locate on the sp³ lines in Figures 1 and 2. It is, therefore, concluded that N,N-dimethylaniline derivatives act as the sp³-type bases in the gas phase. The solvent effect may explain the strange behavior of these bases observed in the experiments.³

Figure 2b, showing the $\delta MA - \delta E_a$ plot, is very similar to Figure 2a except for the slopes of straight lines. The slopes for sp³ and sp² bases were estimated to be 0.461 (r = 0.986) and 0.323 (r = 0.994).

Relation of δPA_{calc} and $\delta C-X$ **Distances in TS Structures.** Geometrical parameters, especially the C-N and the C-Cl distances at TSs, are considered to be one of the indices that specify the position of a TS along the reaction coordinate. As the E_a correlates well with the δPA_{calc} , we next analyzed the relation between δPA_{calc} and the two bond parameters in the TS structures listed in Table 2. Figure 3 displays the TS structures with the lowest E_a in the sp³, sp² bases and N,N-dimethylaniline derivatives. It is important to point out that $\mathbf{4c}(TS)$ takes a pyramidal geometry around the N donor atom in the N(CH₃)₂ fragment.

A nucleophile with a larger $\delta PA_{calc},$ i.e., a strong nucleophile, is expected to have a longer C–N distance and a shorter C–Cl length in the TS structure. The calculated results were consistent with the expectation. For example, the δPA_{calc} of 1 is larger by 28.2 kcal mol $^{-1}$ than that of NH $_3$. The C–N and the C–Cl distances of 1 in the TS were calculated to be 1.998 and 2.358 Å, respectively, while those lengths for NH $_3$ are 1.900 and 2.474 Å. If these lengths change parallel to the reaction coordinates, the TS of 1 locates at an earlier position than that of NH $_3$ along the reaction coordinate.

We also calculated the $\delta C-X$ (X=Cl,N) in the TS structure, the difference in the C-X distance relative to the corresponding length for the NH_3 system. Figure 4 displays the $\delta C-X$ distance against the δPA_{calc} . All the correlation coefficients of the four lines in the figure are more than 0.995. The $\delta C-Cl$ of the sp^3 bases (open squares) shows a completely different dependence from that of the sp^2 bases (open circles), while the largest $\delta C-$

Figure 4. Linear Relationship of δPA_{calc} vs. the $\delta C-X$ distance (X=Cl, N) in the TS structures. Squares, circles, and triangles indicate points of sp³, sp² bases and the *N,N*-dimethylaniline derivatives.

Cl is 0.098 Å of 1 for the sp³ bases. The difference of the $\delta C-Cl$ for the sp² bases is 0.067 Å and that for N,N-dimethylaniline derivatives only 0.023 Å. The range of the $\delta C-N$ length of the latter two bases is narrower than that for the sp³ bases.

Relation of δE a and δC -X Distances in TS Struc**tures.** According to the Hammond postulate, ¹⁰ a TS with a low E_a is expected to have a long C-N distance and a short C-Cl distance since a low E_a indicates the position of a TS along IRC to be early. For example, these distances for 3d were estimated to be 1.965 and 2.402 Å and those for ${\bf 2}$ were 1.886 and 2.463 Å. The E_a of ${\bf 3d}$ is smaller by 8.1 kcal mol⁻¹ than that of **2**. Therefore, the present results were consistent with the postulate. All the $\delta C-X$ should correlate well with δE_a since the energy is one of the indices that exactly define the nucleophilicity of bases. This is true as shown in Figure 5a, which displays the relationship between the $\delta C-X$ and the δE_a . This relation is completely different from that between the $\delta C-X$ and δPA_{calc} . Points not only for the sp³ but for the sp² bases make a single line in Figure 5, although there are a few points slightly deviating from the lines.

Figure 5. Linear Relationship of (a) δE_a or (b) reduced δPA_{calc} vs. the $\delta C-X$ distance in the TS structures. Squares, triangles, and circles indicate points of sp³, sp² bases and the N,N-dimethylaniline derivatives.

The slopes of the δ C-Cl and the δ C-N lines are -0.007 and 0.008, and the correlation coefficients are 0.956 and 0.975.

Reduced δ PA as a Scale of Nucleophilicity of the **sp² Bases.** As the activation energy is an exact index of nucleophilicity of a nucleophile, we cannot always obtain the values, and therefore, δPAs could perhaps be appropriate as another index of the nucleophilicity of bases. However, this index is dependent on hybridization of nitrogen donors in the present case. For example, the δPA_{calc} for 1 turned out to be 28.2 kcal mol⁻¹, which differs only by 1.7 kcal mol⁻¹ from that of 3d (29.9 kcal mol^{-1}). It is likely that the nucleophilicity of **1** is almost the same as that of 3d, and the two nucleophiles are expected to have similar E_a 's. However, the E_a of the former was calculated to be 22.4 kcal mol⁻¹, which is smaller by 7.0 kcal mol⁻¹ than that of the latter (29.4 kcal mol⁻¹). These results tell us that the nucleophilicity of **1** is larger than that of **3d** although they have similar PAs. This trend is confirmed about all the sp² bases by the result that the slope for the sp² bases in Figure 2 is smaller than that of the sp³ bases.

To use the δPA as the index of the nucleophilicity of all bases, we have to introduce a scale factor, which should be 0.5446 = 0.287/0.527, the ratio of slopes of the $\delta PA_{calc} - \delta E_a$ plots of the sp² and sp³ bases in Figure 2. The closed circles in Figure 2a are the points of the reduced δPA_{calc} of the sp² bases. The slope, intercept, and correlation coefficient were calculated to be 0.531, -0.147and r = 0.990 for the lines including all the δPA_{calc} of the sp³ bases and *N*,*N*-dimethylaniline derivatives as well as the reduced δPA_{calc} of the sp^2 bases. A similar result was obtained for the δMAs as shown in Figure 2b. In the methyl cation case, the scale factor of the sp² bases is 0.647, which is estimated by the slopes of the δE_a - δ MA plots. The slope, intercept, and correlation coefficient were calculated to be 0.499, -0.543, and r = 0.975for the lines including all the points with the reduced δPA_{calc} .

The reduced $\delta PA_{calc} - \delta CX$ plot in Figure 5b also showed straight lines, although the correlation coefficient for the δC -Cl is a little low. The correlation coefficients of δC -Cl and δC -N were calculated to be 0.899 and 0.963. Therefore, it is considered that the nucleophilicity of the sp² bases in the gas phase is almost half as large

Figure 6. Schematic representations for orbital interactions between the LUMO of CH₃Cl and lone pair orbitals of sp² and sp³ bases.

as that expected from the δPA_{calc} values. This trend originates from the lower energy of the lone pair orbitals of the sp² bases.

Relation of Nucleophilicity and Energy Level of Lone Pair Orbital. It is easy to explain why the nucleophilicity of an sp² base is weaker than that of an sp³ base, even though both have similar PAs. The E_a for the MR closely relates to the energy level of the lone pair orbital in a base. That is, in the beginning of the MR, the LUMO of CH₃Cl interacts with lone pair orbital of a nucleophile as shown in Figure 6. The s-orbital character in lone pair orbitals of **3a** and the other sp² bases are larger than the sp³ bases since the former orbital takes the sp² hybridization and the latter the sp³ hybridization. In general, the larger s-character of the sp² bases lets the lone pair orbitals locate at lower positions than those of the sp³ bases. According to the Frontier orbital theory, 16 the smaller the energy gap between interacting orbitals is, the lower the activation energy is. Therefore, the nucleophilicity of an sp2 base is lower than that of sp³ bases when they have similar δ PAs. Therefore, δPA_{calc} values should be reduced when we use the δPAs of the sp² bases as indices of nucleophilicity.

Relation of δPA_{calc} with Mulliken Charges in the TS Structures. It is quite interesting to see how much

^{(16) (}a) Fukui, K.; Yonezawa, T.; Shingu. H. *J. Chem. Phys.* **1952**, *20*, 722 (b) Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. *J. Chem.* Phys. 1954, 22, 1433.

Figure 7. The plots of relation between the $\delta {\rm CHG}({\rm Cl})$ and the $\delta E_{\rm a}$.

charge in the leaving group, the Cl anion in the present case, is developed at a TS. The largest negative charge of -0.700 was obtained for the TS with the NH₃ fragment (Table 2). As the Mulliken charge of the Cl atom in CH₃-Cl is only -0.062, the halogen atom gets 0.638 from the CH₃ and the NH₃ fragments. The smallest negative charge (-0.589) is obtained in the TS of 1. The difference of the charges between the TS for NH₃ and 1 is as large as 0.111. As a larger E_a indicates the later position of a TS along the reaction coordinate, a larger charge is developed in the Cl at the TS for NH₃ as expected. Figure 7 displays correlations between the δE_a and the δC HG-(Cl), the difference between the Mulliken charge of the Cl atom in a TS(Y) and that in the TS(NH₃). The δC HG-(Cl) of the sp³ bases increases as the δE_a values increases.

We can see different dependences of the δ CHG(Cl) in the system with aromatic fragments in the figure. Although there is a clear linear relationship with the sp² bases, its slope (0.003) is less than half of the corresponding value of the sp³ bases (0.007). The largest change in the Mulliken charges is only 0.027 at the sp² bases. The δ CHG(Cl) shows no clear dependence on the δ Ea with the N,N-dimethylaniline derivatives, i.e., the largest difference of values is 0.0015. The effect of the aromatic

moiety in the nucleophiles is to produce a nearly constant charge in the leaving group at the TS. We could not extract any correlations between the δEa and δCHG in the CH_3 and the amine fragments.

Concluding Remarks

It is quite important to determine nucleophilicity of nucleophiles in a reaction without estimating their activation energies because the molecules employed at experiments are, in general, too large for ab initio MO calculations to estimate the values even at the MP2/6- $31+G^*/RHF/6-31+G^*$ level of theory. The δPA seems suitable for this purpose, and in the case of sp³ bases, all the calculated properties of the TS linearly correlate with the δPA_{calc} values. However, the present calculations suggested that we have to scale the δPA of the sp² bases, which means that the order of nucleophilicity of bases can be treated uniformly in the gas phase by using the scaled δPA_{calc} for the sp^2 bases as shown in Figures 2 and 5. However, there should be many other factors for the MR in solution. Although both the sp² bases and the N,N-dimethylaniline derivatives possess the fragment consisting of a hydrophobic aromatic ring and a substituent, the sp³ bases do not have such a moiety. To explain the observed the δPA_{obs} and ΔG^{\dagger} relation in solution, we have to include solvent effects within theoretical calculations.

Acknowledgment. The authors owe thanks to the Computer Center, Institute for Molecular Science at the Okazaki National Research Institutes for the use of the NEC HSP computer and the Library Program GAUSS-IAN94. This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education of Japan.

Supporting Information Available: *Z*-matrices and energies of all structures (50 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO971707F