Tutorial 7 - Options Intro

Please complete this tutorial to get an overview of options and an implementation of SMDP Q-Learning and Intra-Option Q-Learning.

References:

In [1]: !pip install gym==0.15.3

Recent Advances in Hierarchical Reinforcement Learning is a strong recommendation for topics in HRL that was covered in class. Watch Prof. Ravi's lectures on moodle or nptel for further understanding the core concepts. Contact the TAs for further resources if needed.

```
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheel
        s/public/simple/
        Requirement already satisfied: gym==0.15.3 in /usr/local/lib/python3.9/dist-packag
        es (0.15.3)
        Requirement already satisfied: cloudpickle~=1.2.0 in /usr/local/lib/python3.9/dist
        -packages (from gym==0.15.3) (1.2.2)
        Requirement already satisfied: pyglet<=1.3.2,>=1.2.0 in /usr/local/lib/python3.9/d
        ist-packages (from gym==0.15.3) (1.3.2)
        Requirement already satisfied: scipy in /usr/local/lib/python3.9/dist-packages (fr
        om gym == 0.15.3) (1.10.1)
        Requirement already satisfied: six in /usr/local/lib/python3.9/dist-packages (from
        gym == 0.15.3) (1.16.0)
        Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.9/dist-pack
        ages (from gym==0.15.3) (1.22.4)
        Requirement already satisfied: future in /usr/local/lib/python3.9/dist-packages (f
        rom pyglet<=1.3.2,>=1.2.0->gym==0.15.3) (0.18.3)
        1.1.1
In [2]:
        A bunch of imports, you don't have to worry about these
        import numpy as np
        import random
        import gym
        from gym.wrappers import Monitor
        import glob
        import io
        import matplotlib.pyplot as plt
        from IPython.display import HTML
In [3]:
        The environment used here is extremely similar to the openai gym ones.
        At first glance it might look slightly different.
        The usual commands we use for our experiments are added to this cell to aid you
        work using this environment.
        #Setting up the environment
        from gym.envs.toy text.cliffwalking import CliffWalkingEnv
        env = CliffWalkingEnv()
        env.reset()
        #Current State
```

```
print(env.s)
# 4x12 grid = 48 states
print ("Number of states:", env.nS)
# Primitive Actions
action = ["up", "right", "down", "left"]
#correspond to [0,1,2,3] that's actually passed to the environment
# either go left, up, down or right
print ("Number of actions that an agent can take:", env.nA)
# Example Transitions
rnd action = random.randint(0, 3)
print ("Action taken:", action[rnd_action])
next_state, reward, is_terminal, t_prob = env.step(rnd_action)
print ("Transition probability:", t_prob)
print ("Next state:", next_state)
print ("Reward recieved:", reward)
print ("Terminal state:", is_terminal)
env.render()
36
Number of states: 48
Number of actions that an agent can take: 4
Action taken: left
Transition probability: {'prob': 1.0}
Next state: 36
Reward recieved: -1
Terminal state: False
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
\mathsf{x} C C C C C C C C C T
```

Options

We custom define very simple options here. They might not be the logical options for this settings deliberately chosen to visualise the Q Table better.

```
In [4]: # We are defining two more options here
# Option 1 ["Away"] - > Away from Cliff (ie keep going up)
# Option 2 ["Close"] - > Close to Cliff (ie keep going down)

def Away(env,state):
    optdone = False
    optact = 0

    if (int(state/12) == 0):
        optdone = True

    return [optact,optdone]

def Close(env,state):
    optdone = False
    optact = 2

    if (int(state/12) == 2 or int(state/12)==3):
        optdone = True
```

```
return [optact,optdone]

...

Now the new action space will contain
Primitive Actions: ["up", "right", "down", "left"]

Options: ["Away", "Close"]

Total Actions: ["up", "right", "down", "left", "Away", "Close"]

Corresponding to [0,1,2,3,4,5]
...
```

Out[4]: '\nNow the new action space will contain\nPrimitive Actions: ["up", "right", "down", "left"]\nOptions: ["Away", "Close"]\nTotal Actions: ["up", "right", "down", "left", "Away", "Close"]\nCorresponding to [0,1,2,3,4,5]\n'

Task 1

Complete the code cell below

```
In [5]:
        #Q-Table: (States x Actions) === (env.ns(48) x total actions(6))
        q_values_SMDP = np.zeros((48,6))
        #Update_Frequency Data structure? Check TODO 4
        update_freq_SMDP = np.zeros((48,6))
        actions=[0,1,2,3,4,5]
        seed = 36
        rg = np.random.RandomState(seed)
        # TODO: epsilon-greedy action selection function
        def egreedy_policy(q_values,state,epsilon):
            if rg.rand() < epsilon:</pre>
               return rg.choice(actions)
            else:
              #max = np.max(q values[state])
              #return rg.choice(np.where(q_values[state] == max)[0])
              return np.argmax(q_values[state])
```

Task 2

Below is an incomplete code cell with the flow of SMDP Q-Learning. Complete the cell and train the agent using SMDP Q-Learning algorithm. Keep the **final Q-table** and **Update Frequency** table handy (You'll need it in TODO 4)

```
In [6]: #### SMDP Q-Learning

# Add parameters you might need here
gamma = 0.9
alpha = 0.4
epsilon = 0.1

Rewards = []

# Iterate over 1000 episodes
for _ in range(1000):
    state = env.reset()
    done = False
```

```
episode_reward = 0
# While episode is not over
while not done:
   # Choose action
   action = egreedy_policy(q_values_SMDP, state, epsilon=0.1)
   # Checking if primitive action
    if action < 4:</pre>
        # Perform regular Q-Learning update for state-action pair
       next_state, reward, done,_ = env.step(action)
       q_values_SMDP[state, action] += alpha*(reward + gamma*np.max([q_values_
        update_freq_SMDP[state,action] += 1
        state = next_state
        episode_reward += reward
   # Checking if action chosen is an option
    reward_bar = 0
    if action == 4: # action => Away option
        optdone = False
       while (optdone == False):
            # Think about what this function might do?
            optact,optdone = Away(env,state)
            next_state, reward, done,_ = env.step(optact)
            # Is this formulation right? What is this term?
            reward_bar = gamma*reward_bar + reward
            # Complete SMDP Q-Learning Update
            # Remember SMDP Updates. When & What do you update?
            q_values_SMDP[state, action] += alpha*(reward_bar + (gamma)*np.max
            update freq SMDP[state,action] += 1
            state = next_state
            episode_reward += reward
    if action == 5: # action => Close option
        optdone = False
        while (optdone == False):
            # Think about what this function might do?
            optact,optdone = Close(env,state)
            next_state, reward, done,_ = env.step(optact)
            # Is this formulation right? What is this term?
            reward bar = gamma*reward bar + reward
            #if next state in [36, 37, 38, 39, 40, 41, 42, 43]: # check if next
            # done = True
            # Complete SMDP Q-Learning Update
            # Remember SMDP Updates. When & What do you update?
            q_values_SMDP[state, action] += alpha*(reward_bar + (gamma)*np.max
            update_freq_SMDP[state,action] += 1
```

		IL	itoriai_/_Options_intro	_ee210411_submiss	ion
	al Q-values:				
[[-7.77614476	-7.70678309	-7.70780839	-7.82166587	-10.24870589
[-7.70874639] -7.62037387	-7.45531804	-7.4551474	-7.80709603	-8.99224897
[-7.45509322] -7.22877075	-7.17324595	-7.17388968	-7.5164836	-9.16401083
[-7.17417032] -7.103383	-6.8600376	-6.86026604	-7.23582774	-7.90868958
ſ	-6.85992101] -6.63432707	-6.51200704	-6.51208921	-6.61930584	-8.47807394
ſ	-6.51233529] -6.35208262	-6.12491838	-6.12476738	-6.38604833	-8.1644201
ſ	-6.12516369] -6.09185206	-5.69474254	-5.69464982	-5.96407984	-7.83043477
_	-5.69485716]				
[-5.47113751 -5.21664811]	-5.21668471	-5.21668022	-5.56468018	-7.36143929
l -	-4.76420788 -4.68541088]	-4.68539353	-4.68544557	-4.77980503	-6.92606388
[-4.34446481 -4.09496022]	-4.09499413	-4.09498992	-4.16812741	-6.39484181
[-3.61760669 -3.43895604]	-3.43896387	-3.43896537	-4.35919221	-5.60971132
[-3.19571843 -2.70999747]	-3.17263276	-2.70999794	-2.77317449	-4.94501746
[-7.70814366 -8.28037392]	-7.45798856	-7.4580404	-7.50252547	-9.50584756
[-7.49392836 -8.01533758]	-7.17567344	-7.17566064	-7.49037666	-8.57940679
[-7.35641942 -7.68409239]	-6.86188935	-6.86188735	-7.35205901	-8.354092
[-6.87925822 -7.41299227]	-6.51321445	-6.5132144	-6.96544423	-7.94120776
[-6.46316702	-6.1257947	-6.12579476	-6.57602763	-7.75375514
[-7.02569742] -6.06852065	-5.69532773	-5.69532778	-6.20905879	-7.40479834
[-6.54785183] -5.82431677	-5.21703094	-5.21703093	-5.8145905	-7.0213428
[-5.97039277] -5.10575392	-4.68558998	-4.68558998	-5.26537835	-6.54684175
[-5.47980415] -4.82268041	-4.09509999	-4.09509999	-4.65430969	-6.11659107
[-4.98927131] -4.5400528	-3.439	-3.439	-4.31111064	-5.58515682
[-4.31096354] -3.3015951	-2.71	-2.71	-3.000982	-4.90699599
[-3.60649252] -2.92203025	-2.0501162	-1.9	-3.22724488	-4.11241888
[-2.79989784] -7.71195054	-7.17570464	-7.71228651	-7.4581334	-8.45811951
-	-8.1561706] -7.45735918	-6.86189404	-106.71229246	-7.45812328	-7.45766588
	107.07000876] -7.17567415	-6.5132156	-106.71230866	-7.17570332	-7.17563526
[107.4738146] -6.86182383	-6.12579511	-106.71212836	-6.86187185	-6.86163028
	106.74598485] -6.51320396	-5.6953279	-106.70832053	-6.51316506	-6.51318971
	107.43363011] -6.12569609	-5.217031	-106.71220588	-6.1257945	-6.12571861
	107.983442] -5.69526104	-4.68559	-106.71143025	-5.69531021	-5.69454519
	107.48253028] -5.21700239	-4.0951	-106.70829856	-5.21670773	-5.21684323
-					

```
-107.7629538 ]
                   -3.439
                                -106.69298697
                                                  -4.68558891
[ -4.68390049
                                                                   -4.68557888
 -107.71349121]
  -4.07514974
                                -106.47648482
                                                  -4.09508914
                                                                  -4.0950968
                   -2.71
 -107.29255611]
                                -106.57059272
                                                   -3.43897069
                                                                   -3.43881401
  -3.43898401
                   -1.9
 -107.02804135]
   -2.70999626
                   -1.8996486
                                  -1.
                                                   -2.70998763
                                                                   -2.70866674
   -1.8540403 ]
   -7.45813417 -106.71228386
                                  -7.71232075
                                                   -7.71232075
                                                                   -7.45813417
   -7.71232074]
                    0.
                                    0.
                                                   0.
                                                                   0.
    0.
    0.
               ]
    0.
                    0.
                                    0.
                                                    0.
                                                                   0.
    0.
                                    0.
                                                    0.
                                                                   0.
    0.
                    0.
    0.
               ]
    0.
                    0.
                                    0.
                                                    0.
                                                                   0.
    0.
               ]
0.
                    0.
                                    0.
                                                    0.
                                                                   0.
    0.
               ]
    0.
                    0.
                                    0.
                                                    0.
                                                                   0.
    0.
               ]
                                                                   0.
    0.
                    0.
                                    0.
                                                    0.
    0.
               ]
    0.
                    0.
                                    0.
                                                                   0.
    0.
               ]
    0.
                    0.
                                    0.
                                                    0.
                                                                   0.
    0.
               ]
                                    0.
                                                                   0.
    0.
                    0.
                                                    0.
0.
               ]
                                    0.
0.
                    0.
                                                    0.
                                                                   0.
    0.
               ]]
```

Update Frequency:

```
38. 265.
                         39.
                               388.
                                       83.]
[]
                  86.
                  58.
    37.
          226.
                         25.
                                63.
                                       57.]
    32.
          200.
                  50.
                         22.
                                53.
                                       49.]
    32.
          176.
                  43.
                         20.
                                47.
                                       42.]
    27.
          160.
                  40.
                         17.
                                48.
                                       40.]
                                44.
    26.
          142.
                  38.
                         16.
                                        38.]
          119.
                         14.
                                38.
    26.
                  36.
                                       35.]
    20.
           97.
                  34.
                         13.
                                36.
                                       33.]
[
           78.
    16.
                  33.
                         10.
                                36.
                                       32.]
                                37.
    14.
           69.
                  30.
                          9.
                                       29.]
    11.
           41.
                  29.
                         10.
                                30.
                                       29.]
10.
           10.
                  32.
                          6.
                                22.
                                       31.]
                         34.
                               383.
    26.
          110.
                  41.
                                       85.]
    27.
          127.
                  44.
                         22.
                                52.
                                       64.]
    28.
          141.
                  50.
                         21.
                                47.
                                       53.]
                                39.
    25.
          143.
                  53.
                         18.
                                       44.]
    23.
          142.
                         16.
                                42.
                  53.
                                       42.]
          131.
                         15.
                                39.
    21.
                  53.
                                       43.]
    18.
          117.
                  51.
                         14.
                                31.
                                       41.]
    15.
          108.
                  51.
                         11.
                                33.
                                       36.]
    14.
           92.
                  51.
                                33.
                         10.
                                       36.]
    14.
           66.
                  49.
                          9.
                                35.
                                        32.]
           54.
                  53.
                           6.
                                26.
                                       34.1
     8.
                  93.
                                21.
     7.
            6.
                          8.
                                       32.]
    75. 1564.
                  37.
                         57.
                               379.
                                      127.]
                                45.
    45. 1469.
                  30.
                         38.
                                       86.]
    51. 1360.
                  32.
                         41.
                                45.
                                       77.]
    44. 1273.
                  26.
                         34.
                                36.
                                       75.]
    42. 1204.
                  20.
                         31.
                                38.
                                       72.]
```

```
35. 1137. 27. 39.
                           35.
                                 58.1
  32. 1076. 23. 31. 27. 64.]
  32. 1046. 20. 24.
                           28. 47.1
  22. 997. 17. 34. 32. 59.]
  15. 968. 12. 28. 33. 47.]
  27. 944. 13. 25. 22. 49.]
  28. 18. 954. 25. 16. 46.]
[1673. 30. 74. 74. 345. 68.]
    0. 0. 0. 0.
                           0.
                                 0.]
                    0.
              0.
    0.
        0.
                           0.
                                 0.]
         0.
                          0.
               0.
                     0.
                                0.]
   0. 0. 0. 0. 0. 0.]
   0. 0. 0. 0. 0. 0.]
   0. 0.
              0. 0. 0. 0.]

      0.
      0.
      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.
      0.
      0.

      0.
      0.
      0.
      0.
      0.
      0.
      0.

   0. 0. 0. 0. 0.]
    0. 0. 0. 0. 0. 0.]]
```

Task 3

Using the same options and the SMDP code, implement Intra Option Q-Learning (In the code cell below). You *might not* always have to search through options to find the options with similar policies, think about it. Keep the **final Q-table** and **Update Frequency** table handy (You'll need it in TODO 4)

```
#Q-Table: (States x Actions) === (env.ns(48) x total actions(6))
In [7]:
        q_values_IOQL = np.zeros((48,6))
        #Update_Frequency Data structure? Check TODO 4
        update_freq_IOQL = np.zeros((48,6))
In [8]: #### Intra-Option Q-Learning
        # Add parameters you might need here
        gamma = 0.9
        alpha = 0.4
        epsilon = 0.1
        Rewards = []
        # Iterate over 1000 episodes
        for _ in range(1000):
            state = env.reset()
            done = False
            episode reward = 0
            # While episode is not over
            while not done:
                # Choose action
                action = egreedy_policy(q_values_IOQL, state, epsilon=0.1)
                # Checking if primitive action
                if action < 4:</pre>
                     # Perform regular Q-Learning update for state-action pair
                     next_state, reward, done,_ = env.step(action)
```

```
q_values_IOQL[state, action] += alpha*(reward + gamma*np.max([q_values]
         update_freq_IOQL[state,action] += 1
         episode reward += reward
         state = next_state
# Checking if action chosen is an option
reward bar = 0
if action == 4: # action => Away option
         optdone = False
        while (optdone == False):
                 # Think about what this function might do?
                 optact,optdone = Away(env,state)
                 next_state, reward, done,_ = env.step(optact)
                 # Is this formulation right? What is this term?
                 reward_bar = gamma*reward_bar + reward
                 # Complete SMDP Q-Learning Update
                 # Remember SMDP Updates. When & What do you update?
                 q_values_IOQL[state, action] += alpha*(reward_bar + (gamma)*np.max
                 update_freq_IOQL[state,action] += 1
                 state = next_state
                 episode_reward += reward
                 q values IOQL[state, optact] += alpha*(reward + gamma*np.max([q values in the content of th
                 update_freq_IOQL[state,optact] += 1
                 if not optdone:
                          q_values_IOQL[state, action] += alpha*(reward + gamma*q_values]
                          update_freq_IOQL[state,action] += 1
                  else:
                          q_values_IOQL[state, action] += alpha*(reward + gamma*np.max([6]))
                           update_freq_IOQL[state,action] += 1
                  state = next state
if action == 5: # action => Close option
         optdone = False
         while (optdone == False):
                 # Think about what this function might do?
                 optact,optdone = Close(env,state)
                 next_state, reward, done,_ = env.step(optact)
                 # Is this formulation right? What is this term?
                 reward bar = gamma*reward bar + reward
                 #if next_state in [36, 37, 38, 39, 40, 41, 42, 43]: # check if next
                           done = True
                 #else:
                 # Complete SMDP Q-Learning Update
                 # Remember SMDP Updates. When & What do you update?
                 q values IOQL[state, action] += alpha*(reward bar + (gamma)*np.max
                 update_freq_IOQL[state,action] += 1
                 state = next state
```

		11	itoriai_/_Options_intro	_ee210411_submissi	on
Fin	al Q-values:				
[[-7.93750497	-7.70895505	-7.70886581	-7.86059746	-8.61844635
[-7.71000423] -7.70923135	-7.45554987	-7.45586182	-7.64044017	-8.38676692
[-7.45654681] -7.45499373	-7.17353366	-7.17352195	-7.51525673	-8.13761588
	-7.17397042]				
[-7.1724547 -6.86048795]	-6.86019907	-6.86070716	-7.13731749	-7.86183326
[-6.85957558 -6.51189224]	-6.51210687	-6.51200553	-6.82478969	-7.47034476
[-6.51242032 -6.12530889]	-6.12517757	-6.12515172	-6.4416638	-7.2153511
[-6.12528676 -5.69490511]	-5.69495008	-5.69496896	-5.80688155	-6.83768187
[-5.69490314 -5.21683287	-5.21672731	-5.21683879	-5.2381969	-6.41015416
[-5.21659269 -4.68545122]	-4.68535952	-4.68539195	-5.29603985	-5.9480378
[-4.68545481 -4.09500903]	-4.09500155	-4.09498879	-5.03298659	-5.4285836
[-4.09495383 -3.43895817]	-3.43895414	-3.43894612	-3.59189437	-4.85198626
[-3.43899678 -2.70999845]	-3.01982191	-2.70999804	-3.12371557	-4.21017894
[-7.71207053 -8.40735053]	-7.45786897	-7.45794926	-7.46985224	-9.001496
[-7.45862798 -8.17612957]	-7.17569248	-7.17569095	-7.54207657	-8.68693386
[-7.22504504 -7.88823185]	-6.86189245	-6.86189208	-7.17322218	-8.44514142
[-6.9867101 -7.5437138]	-6.51321531	-6.51321531	-6.68690513	-8.18102099
[-6.51285177 -7.18581547]	-6.12579497	-6.12579498	-6.51155449	-7.64691211
[-6.12670538 -6.73885239]	-5.69532783	-5.69532781	-6.33431473	-7.53212725
[-5.69710954 -6.23380022]	-5.21703097	-5.21703098	-5.75692314	-7.19348594
[-5.25827245 -5.83543274]	-4.68558999	-4.68558999	-5.59519257	-6.77806541
[-4.68486543 -5.27831559]	-4.0951	-4.0951	-4.66790814	-6.30603908
[-4.18029059 -4.65827443]	-3.439	-3.439	-3.44203124	-5.8060765
[-3.44333591	-2.71	-2.71	-3.42243411	-5.27156817
[-3.9709963] -2.74784564	-2.37327493	-1.9	-2.90856726	-4.64155729
[-3.20731558] -7.4870487	-7.17570464	-7.71232067	-7.45813415	-7.85756884
-	-8.1508221] -7.4580167	-6.86189404	-106.71220319	-7.45813326	-7.45806441
[106.41110137] -7.17569817	-6.5132156	-106.71229472	-7.17570459	-7.17495302
[105.91968905] -6.86187066 106.26251278]	-6.12579511	-106.71076385	-6.86188863	-6.86187776
[-6.51321019 105.01887424]	-5.6953279	-106.71144191	-6.51321494	-6.51278522
[-6.12528422 106.22781299]	-5.217031	-106.71220746	-6.12578801	-6.12578188
[-5.69524074 104.95458855]	-4.68559	-106.71198789	-5.69524294	-5.69531316
	-5.21685953	-4.0951	-106.68077648	-5.21689833	-5.21702117

```
-104.55757924]
                   -3.439
                                -106.71225416
                                                  -4.68557636
[ -4.68558043
                                                                  -4.68286111
 -105.87895005]
                                -106.71084035
                                                  -4.09509646
                                                                  -4.09509696
  -4.09455948
                   -2.71
 -105.41962861]
                                -106.71089958
                                                  -3.43887422
  -3.43867424
                  -1.9
                                                                  -3.43781627
 -103.74335911]
  -2.70479407
                   -1.89999924
                                  -1.
                                                  -2.70871549
                                                                  -2.70993485
   -2.15101457]
   -7.45813417 -106.71231087
                                  -7.7123205
                                                  -7.71232003
                                                                  -7.45813417
 -106.64074834]
    0.
                    0.
                                   0.
                                                   0.
                                                                   0.
    0.
               ]
    0.
                    0.
                                   0.
                                                   0.
                                                                   0.
0.
                                   0.
                                                   0.
                                                                   0.
    0.
                    0.
    0.
               ]
    0.
                    0.
                                   0.
                                                   0.
                                                                   0.
    0.
               ]
0.
                    0.
                                   0.
                                                   0.
                                                                   0.
    0.
               ]
0.
                    0.
                                   0.
                                                   0.
                                                                   0.
    0.
               ]
    0.
                    0.
                                   0.
                                                   0.
                                                                   0.
    0.
               ]
    0.
                                   0.
                                                                   0.
                    0.
    0.
               ]
    0.
                    0.
                                   0.
                                                   0.
                                                                   0.
    0.
               ]
                                   0.
    0.
                    0.
                                                   0.
                                                                   0.
0.
               ]
                                   0.
    0.
                    0.
                                                   0.
                                                                   0.
]]
   -1.
```

Update Frequency:

```
[[ 682. 222.
                         40. 1019.
                                      69.]
                  72.
  140.
          203.
                  45.
                         23.
                             206.
                                      45.]
                  39.
                         21.
                              148.
[ 102.
          180.
                                      39.]
   106.
          168.
                  37.
                         19.
                              155.
                                      36.]
    86.
          148.
                  35.
                         17.
                              129.
                                       33.]
                              129.
    91.
          132.
                  33.
                         16.
                                      32.]
                              111.
                         13.
    81.
          118.
                  32.
                                      31.]
                  31.
                         12.
                              127.
    88.
          105.
                                      30.]
 81.
                  29.
                         12.
                               88.
                                      29.]
    61.
                               114.
    82.
           64.
                  28.
                         13.
                                       28.]
    49.
           38.
                  27.
                          8.
                               70.
                                      27.]
 77.
    54.
            9.
                  31.
                          7.
                                      31.]
           80.
                         34.
   337.
                  36.
                               671.
                                     140.]
    65.
                  45.
                         25.
                              128.
          116.
                                      94.]
    52.
          137.
                  52.
                         20.
                               83.
                                      79.]
    57.
          136.
                  56.
                         17.
                               92.
                                      76.]
          137.
                         16.
                               72.
    43.
                  56.
                                      71.]
                               79.
    49.
          125.
                  54.
                         16.
                                      69.]
    49.
          115.
                  55.
                         13.
                               69.
                                      66.]
    42.
          100.
                  53.
                         15.
                               72.
                                      61.]
27.
                  52.
                               46.
           91.
                         10.
                                      60.]
           75.
    40.
                  52.
                          7.
                               68.
                                      58.]
    25.
           54.
                  53.
                          7.
                               40.
                                      58.1
                               47.
    28.
            7.
                  83.
                          6.
                                      63.]
   328. 1603.
                  49.
                         65.
                               635.
                                     179.]
    58. 1477.
                  27.
                         42.
                               60.
                                     130.]
    56. 1366.
                  30.
                         48.
                               39.
                                     107.]
    43. 1293.
                  22.
                         37.
                               43.
                                     104.]
    43. 1230.
                  23.
                         40.
                               33.
                                      90.]
```

```
31. 1153.
               27.
                     34.
                           38.
                                103.]
                           34.
   31. 1102.
               25.
                     28.
                                 84.]
  28. 1063.
               16.
                     26.
                           33.
                                 80.]
  32. 1016.
               28.
                     29.
                           20.
                                 82.]
                           32.
        966.
               22.
                     30.
                                 78.]
  22.
  21.
       937.
               22.
                     22.
                           18.
                                 77.]
  14.
         30. 949.
                     16.
                           22.
                                 83.]
[1671.
         32.
               61.
                     63.
                          301.
                                735.]
   0.
          0.
                0.
                      0.
                            0.
                                  0.]
   0.
          0.
                0.
                      0.
                            0.
                                  0.]
   0.
          0.
                0.
                      0.
                            0.
                                  0.]
   0.
          0.
                0.
                      0.
                            0.
                                  0.]
   0.
         0.
                0.
                      0.
                            0.
                                  0.]
   0.
          0.
                0.
                      0.
                            0.
                                  0.]
   0.
          0.
                0.
                      0.
                            0.
                                  0.]
   0.
         0.
                0.
                      0.
                            0.
                                  0.]
   0.
          0.
                0.
                      0.
                            0.
                                  0.]
   0.
         0.
                0.
                      0.
                            0.
                                  0.]
          0.
                0.
                      0.
                            0.
   0.
                                  51.]]
```

Task 4

Compare the two Q-Tables and Update Frequencies and provide comments.

```
In [9]: # Use this cell for Task 4 Code
In [10]: np.set_printoptions(threshold=np.inf, suppress=True, linewidth=np.inf)
    print("Q-Table SMDP:")
    print(q_values_SMDP)
```

	10	atonai_r_options_intre	cc21d+11_3db11ll33	non	
Q-Table SMDP: [[-7.77614476	-7.70678309	-7.70780839	-7.82166587	-10.24870589	-7.70874
639] [-7.62037387	-7.45531804	-7.4551474	-7.80709603	-8.99224897	-7.45509
322] [-7.22877075	-7.17324595	-7.17388968	-7.5164836	-9.16401083	-7.17417
032] [-7.103383	-6.8600376	-6.86026604	-7.23582774	-7.90868958	-6.85992
101] [-6.63432707	-6.51200704	-6.51208921	-6.61930584	-8.47807394	-6.51233
529] [-6.35208262 369]	-6.12491838	-6.12476738	-6.38604833	-8.1644201	-6.12516
[-6.09185206	-5.69474254	-5.69464982	-5.96407984	-7.83043477	-5.69485
716] [-5.47113751 811]	-5.21668471	-5.21668022	-5.56468018	-7.36143929	-5.21664
[-4.76420788	-4.68539353	-4.68544557	-4.77980503	-6.92606388	-4.68541
088] [-4.34446481 022]	-4.09499413	-4.09498992	-4.16812741	-6.39484181	-4.09496
[-3.61760669 604]	-3.43896387	-3.43896537	-4.35919221	-5.60971132	-3.43895
[-3.19571843 747]	-3.17263276	-2.70999794	-2.77317449	-4.94501746	-2.70999
[-7.70814366 392]	-7.45798856	-7.4580404	-7.50252547	-9.50584756	-8.28037
[-7.49392836 758]	-7.17567344	-7.17566064	-7.49037666	-8.57940679	-8.01533
[-7.35641942 239]	-6.86188935	-6.86188735	-7.35205901	-8.354092	-7.68409
[-6.87925822 227]	-6.51321445	-6.5132144	-6.96544423	-7.94120776	-7.41299
[-6.46316702 742]	-6.1257947	-6.12579476	-6.57602763	-7.75375514	-7.02569
[-6.06852065 183]	-5.69532773	-5.69532778	-6.20905879	-7.40479834	-6.54785
[-5.82431677 277]	-5.21703094	-5.21703093	-5.8145905	-7.0213428	-5.97039
[-5.10575392 415]	-4.68558998	-4.68558998	-5.26537835	-6.54684175	-5.47980
[-4.82268041 131]	-4.09509999	-4.09509999	-4.65430969	-6.11659107	-4.98927
[-4.5400528 354]	-3.439	-3.439	-4.31111064	-5.58515682	-4.31096
[-3.3015951 252]	-2.71	-2.71	-3.000982	-4.90699599	-3.60649
[-2.92203025 784]	-2.0501162	-1.9	-3.22724488	-4.11241888	-2.79989
[-7.71195054 06]	-7.17570464	-7.71228651	-7.4581334	-8.45811951	-8.15617
[-7.45735918 876]	-6.86189404	-106.71229246	-7.45812328	-7.45766588	-107.07000
[-7.17567415 46]	-6.5132156	-106.71230866	-7.17570332	-7.17563526	-107.47381
[-6.86182383 485]	-6.12579511	-106.71212836	-6.86187185	-6.86163028	-106.74598
[-6.51320396 011]	-5.6953279	-106.70832053	-6.51316506	-6.51318971	-107.43363
[-6.12569609 2]	-5.217031	-106.71220588	-6.1257945	-6.12571861	-107.98344
[-5.69526104 028]	-4.68559	-106.71143025	-5.69531021	-5.69454519	-107.48253
[-5.21700239	-4.0951	-106.70829856	-5.21670773	-5.21684323	-107.76295

```
38 ]
 [ -4.68390049
                                                                -4.68557888 -107.71349
                                -106.69298697
                   -3.439
                                                 -4.68558891
121]
[ -4.07514974
                   -2.71
                                -106.47648482
                                                 -4.09508914
                                                                -4.0950968 -107.29255
611]
[ -3.43898401
                   -1.9
                                -106.57059272
                                                 -3.43897069
                                                                -3.43881401 -107.02804
135]
                   -1.8996486
[ -2.70999626
                                  -1.
                                                 -2.70998763
                                                                -2.70866674
                                                                               -1.85404
03 ]
   -7.45813417 -106.71228386
                                  -7.71232075
                                                 -7.71232075
                                                                -7.45813417
                                                                               -7.71232
 [
074]
 [
     0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
]
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
 0.
]
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
     0.
 [
]
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
     0.
 [
]
 0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
]
                    0.
                                                  0.
                                                                                0.
     0.
                                   0.
                                                                 0.
 ]
     0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
 [
]
 0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
]
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
 [
     0.
]
     0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
 ]
     0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
 [
]]
```

```
In [11]: import seaborn as sns
```

```
In [12]: plt.figure(figsize=(10, 8))
    sns.heatmap(q_values_SMDP, cmap='hot', annot=True, fmt='.1f')
    plt.show()
```



```
In [13]: np.set_printoptions(threshold=np.inf, suppress=True, linewidth=np.inf)
    print("Q-Table IOQL:")
    print(q_values_IOQL)
```

		10		_00214411_3451111331	OH	
]]	able IOQL: -7.93750497	-7.70895505	-7.70886581	-7.86059746	-8.61844635	-7.71000
_	-7.70923135	-7.45554987	-7.45586182	-7.64044017	-8.38676692	-7.45654
_	-7.45499373	-7.17353366	-7.17352195	-7.51525673	-8.13761588	-7.17397
_	-7.1724547	-6.86019907	-6.86070716	-7.13731749	-7.86183326	-6.86048
_	-6.85957558	-6.51210687	-6.51200553	-6.82478969	-7.47034476	-6.51189
	-6.51242032	-6.12517757	-6.12515172	-6.4416638	-7.2153511	-6.12530
_	-6.12528676	-5.69495008	-5.69496896	-5.80688155	-6.83768187	-5.69490
	-5.69490314	-5.21672731	-5.21683879	-5.2381969	-6.41015416	-5.21683
_	-5.21659269	-4.68535952	-4.68539195	-5.29603985	-5.9480378	-4.68545
_	-4.68545481	-4.09500155	-4.09498879	-5.03298659	-5.4285836	-4.09500
_	-4.09495383	-3.43895414	-3.43894612	-3.59189437	-4.85198626	-3.43895
	-3.43899678	-3.01982191	-2.70999804	-3.12371557	-4.21017894	-2.70999
_	-7.71207053	-7.45786897	-7.45794926	-7.46985224	-9.001496	-8.40735
053 [957	-7.45862798	-7.17569248	-7.17569095	-7.54207657	-8.68693386	-8.17612
[-7.22504504	-6.86189245	-6.86189208	-7.17322218	-8.44514142	-7.88823
185 [38	-6.9867101	-6.51321531	-6.51321531	-6.68690513	-8.18102099	-7.54371
[-6.51285177	-6.12579497	-6.12579498	-6.51155449	-7.64691211	-7.18581
_	-6.12670538	-5.69532783	-5.69532781	-6.33431473	-7.53212725	-6.73885
_	-5.69710954	-5.21703097	-5.21703098	-5.75692314	-7.19348594	-6.23380
022 [274	-5.25827245	-4.68558999	-4.68558999	-5.59519257	-6.77806541	-5.83543
[-4.68486543	-4.0951	-4.0951	-4.66790814	-6.30603908	-5.27831
559 [443	-4.18029059	-3.439	-3.439	-3.44203124	-5.8060765	-4.65827
	-3.44333591	-2.71	-2.71	-3.42243411	-5.27156817	-3.97099
	-2.74784564	-2.37327493	-1.9	-2.90856726	-4.64155729	-3.20731
	-7.4870487	-7.17570464	-7.71232067	-7.45813415	-7.85756884	-8.15082
	-7.4580167	-6.86189404	-106.71220319	-7.45813326	-7.45806441	-106.41110
	-7.17569817	-6.5132156	-106.71229472	-7.17570459	-7.17495302	-105.91968
	-6.86187066	-6.12579511	-106.71076385	-6.86188863	-6.86187776	-106.26251
[-6.51321019	-5.6953279	-106.71144191	-6.51321494	-6.51278522	-105.01887
424 [299	-6.12528422	-5.217031	-106.71220746	-6.12578801	-6.12578188	-106.22781
[-5.69524074	-4.68559	-106.71198789	-5.69524294	-5.69531316	-104.95458
855 [-5.21685953	-4.0951	-106.68077648	-5.21689833	-5.21702117	-104.55757

```
924]
 [ -4.68558043
                   -3.439
                                -106.71225416
                                                                -4.68286111 -105.87895
                                                 -4.68557636
005]
[ -4.09455948
                   -2.71
                                -106.71084035
                                                 -4.09509646
                                                                -4.09509696 -105.41962
861]
[ -3.43867424
                   -1.9
                                -106.71089958
                                                 -3.43887422
                                                                -3.43781627 -103.74335
911]
                   -1.89999924
                                                 -2.70871549
                                                                -2.70993485
[ -2.70479407
                                  -1.
                                                                               -2.15101
457]
[ -7.45813417 -106.71231087
                                  -7.7123205
                                                 -7.71232003
                                                                -7.45813417 -106.64074
834]
 [
     0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
]
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
 0.
]
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
     0.
 [
]
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
     0.
 [
]
 0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
]
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
     0.
 ]
     0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
 ]
 0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
]
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                                0.
 [
     0.
]
                                   0.
     0.
                    0.
                                                  0.
                                                                 0.
                                                                                0.
 ]
     0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                                                               -1.
 [
]]
```

```
In [14]: plt.figure(figsize=(10, 8))
    sns.heatmap(q_values_IOQL, cmap='hot', annot=True, fmt='.1f')
    plt.show()
```


In [15]: np.set_printoptions(threshold=np.inf, suppress=True, linewidth=np.inf)
 print("Update Frequency:")
 print(update_freq_SMDP)

```
Update Frequency:
          265.
                        39.
                             388.
                                     83.]
[[
    38.
                 86.
                 58.
    37.
          226.
                        25.
                               63.
                                     57.]
    32.
          200.
                 50.
                        22.
                               53.
                                     49.]
          176.
                        20.
                               47.
    32.
                 43.
                                     42.]
    27.
          160.
                 40.
                        17.
                               48.
                                     40.1
    26.
          142.
                 38.
                        16.
                               44.
                                     38.]
    26.
          119.
                 36.
                        14.
                               38.
                                     35.]
    20.
           97.
                 34.
                        13.
                               36.
                                     33.]
           78.
                 33.
                        10.
                               36.
    16.
                                     32.]
    14.
           69.
                 30.
                         9.
                               37.
                                     29.]
    11.
           41.
                 29.
                        10.
                               30.
                                     29.]
           10.
                 32.
                               22.
    10.
                        6.
                                     31.]
    26.
          110.
                 41.
                        34. 383.
                                     85.]
    27.
          127.
                 44.
                        22.
                               52.
                                     64.]
                               47.
    28.
          141.
                 50.
                        21.
                                     53.]
    25.
          143.
                 53.
                        18.
                               39.
                                     44.]
    23.
          142.
                 53.
                        16.
                               42.
                                     42.]
          131.
                 53.
                        15.
                               39.
                                     43.]
    21.
    18.
          117.
                 51.
                        14.
                               31.
                                     41.]
    15.
          108.
                 51.
                               33.
                                     36.]
                        11.
                               33.
    14.
           92.
                 51.
                        10.
                                     36.]
    14.
           66.
                 49.
                         9.
                               35.
                                     32.1
           54.
                 53.
                               26.
     8.
                         6.
                                     34.]
     7.
            6.
                 93.
                         8.
                               21.
                                     32.]
    75. 1564.
                 37.
                        57.
                             379.
                                   127.]
    45. 1469.
                 30.
                        38.
                               45.
                                     86.]
    51. 1360.
                        41.
                               45.
                 32.
                                     77.]
    44. 1273.
                 26.
                        34.
                               36.
                                     75.]
    42. 1204.
                 20.
                        31.
                               38.
                                     72.]
    35. 1137.
                 27.
                        39.
                               35.
                                     58.]
    32. 1076.
                 23.
                        31.
                               27.
                                     64.1
                                     47.]
                 20.
                        24.
                               28.
    32. 1046.
         997.
                 17.
                        34.
                               32.
    22.
                                     59.]
    15.
          968.
                 12.
                        28.
                               33.
                                     47.]
    27.
                        25.
         944.
                 13.
                               22.
                                     49.]
                954.
                        25.
    28.
           18.
                               16.
                                     46.]
 [1673.
           30.
                 74.
                        74. 345.
                                     68.]
     0.
            0.
                  0.
                         0.
                                0.
                                      0.]
     0.
            0.
                  0.
                         0.
                                0.
                                      0.]
            0.
     0.
                  0.
                         0.
                                0.
                                      0.]
     0.
            0.
                  0.
                         0.
                                0.
                                      0.]
     0.
            0.
                  0.
                         0.
                                0.
                                      0.1
     0.
            0.
                  0.
                         0.
                                0.
                                      0.]
     0.
            0.
                  0.
                         0.
                                0.
                                      0.]
     0.
            0.
                  0.
                         0.
                                0.
 0.]
     0.
            0.
                  0.
                         0.
                                0.
                                      0.]
     0.
            0.
                  0.
                         0.
                                0.
                                      0.]
     0.
            0.
                                0.
                                      0.]]
plt.figure(figsize=(10, 8))
sns.heatmap(update_freq_SMDP, cmap='hot', annot=True, fmt='.1f')
plt.show()
```

In [16]:

In [17]: np.set_printoptions(threshold=np.inf, suppress=True, linewidth=np.inf)
 print("Update Frequency:")
 print(update_freq_IOQL)

```
Update Frequency:
          222.
                        40. 1019.
                                      69.]
[[ 682.
                  72.
          203.
                  45.
 [ 140.
                        23.
                              206.
                                      45.1
   102.
          180.
                  39.
                        21.
                              148.
                                      39.]
                              155.
   106.
          168.
                  37.
                        19.
                                      36.]
          148.
                  35.
                        17.
                              129.
    86.
                                      33.]
    91.
          132.
                  33.
                        16.
                              129.
                                      32.]
    81.
          118.
                  32.
                        13.
                              111.
                                      31.]
    88.
          105.
                  31.
                        12.
                              127.
                                      30.]
                  29.
    61.
           81.
                        12.
                               88.
                                      29.]
    82.
           64.
                  28.
                        13.
                              114.
                                      28.]
    49.
           38.
                  27.
                         8.
                               70.
                                      27.]
    54.
            9.
                  31.
                         7.
                               77.
                                      31.]
   337.
           80.
                  36.
                        34.
                              671.
                                     140.]
    65.
          116.
                  45.
                        25.
                              128.
                                      94.]
    52.
          137.
                  52.
                        20.
                               83.
                                      79.]
    57.
          136.
                  56.
                        17.
                               92.
                                      76.]
    43.
          137.
                  56.
                        16.
                               72.
                                      71.]
    49.
          125.
                  54.
                        16.
                               79.
                                      69.]
    49.
          115.
                  55.
                        13.
                               69.
                                      66.]
    42.
          100.
                  53.
                        15.
                               72.
                                      61.]
    27.
           91.
                  52.
                        10.
                               46.
                                      60.]
    40.
           75.
                  52.
                         7.
                               68.
                                      58.1
    25.
           54.
                  53.
                         7.
                               40.
                                      58.]
    28.
            7.
                  83.
                         6.
                               47.
                                      63.]
   328. 1603.
                  49.
                        65.
                              635.
                                     179.]
    58. 1477.
                  27.
                        42.
                               60.
                                     130.]
    56. 1366.
                        48.
                               39.
                  30.
                                     107.]
    43. 1293.
                  22.
                        37.
                               43.
                                     104.]
    43. 1230.
                  23.
                        40.
                               33.
                                      90.]
    31. 1153.
                  27.
                        34.
                               38.
                                     103.]
    31. 1102.
                  25.
                        28.
                               34.
                                      84.1
    28. 1063.
                               33.
                  16.
                        26.
                                      80.]
    32. 1016.
                        29.
                               20.
                  28.
                                      82.]
    22.
         966.
                  22.
                        30.
                               32.
                                      78.]
    21.
         937.
                  22.
                        22.
                               18.
                                      77.]
                949.
                               22.
    14.
           30.
                        16.
                                      83.]
 [1671.
           32.
                  61.
                        63. 301.
                                     735.]
     0.
            0.
                   0.
                         0.
                                0.
                                       0.1
     0.
            0.
                   0.
                         0.
                                0.
                                       0.]
     0.
            0.
                   0.
                         0.
                                0.
                                       0.]
     0.
            0.
                   0.
                         0.
                                0.
                                       0.]
     0.
            0.
                   0.
                         0.
                                0.
                                       0.1
     0.
            0.
                   0.
                         0.
                                0.
                                       0.]
     0.
            0.
                   0.
                         0.
                                0.
                                       0.]
     0.
            0.
                   0.
                         0.
                                0.
 0.]
     0.
            0.
                   0.
                         0.
                                0.
                                       0.]
     0.
            0.
                   0.
                         0.
                                0.
                                       0.]
     0.
            0.
                                0.
                         0.
                                      51.]]
plt.figure(figsize=(10, 8))
sns.heatmap(update_freq_IOQL, cmap='hot', annot=True, fmt='.1f')
plt.show()
```

In [18]:

Use this text cell for your comments - Task 4

Update frequency of primitive actions is almost similar for both the algorithms but Intra-Option Q-learning has a higher update frequency for both the Option actions.

Q-values for both the algorithms are pretty similar for most of the state action pairs. But in Intra-Option Q-learning algorithm there is more exploration and the agent moves closer to the cliff and takes a more negative reward.

In [21]: pip install nbconvert