- 2. 设 $\{\sigma_1, \cdots, \sigma_m\}$ 是 m 维向量空间 V 的基, $\varphi = \sigma_1 \wedge \cdots \wedge \sigma_p (0 . 试证: 若 <math>\omega \in V$ 满足 $\omega \wedge \varphi = 0$, 则 ω 是 $\sigma_1, \cdots, \sigma_p$ 的线性组合.
 - 3. 设 $\omega = \sum_{1 \leqslant \alpha < \beta \leqslant m} a_{\alpha\beta} \, \mathrm{d} \, u^{\alpha} \wedge \, \mathrm{d} \, u^{\beta}, a_{\alpha\beta} + a_{\beta\alpha} = 0.$ 求证:

$$\mathrm{d}\,\omega = \sum_{1 \leqslant \alpha < \beta < \gamma \leqslant m} \left(\frac{\partial a_{\alpha\beta}}{\partial u^{\gamma}} + \frac{\partial a_{\beta\gamma}}{\partial u^{\alpha}} + \frac{\partial a_{\gamma\alpha}}{\partial u^{\beta}} \right) \mathrm{d}\,u^{\alpha} \wedge \mathrm{d}\,u^{\beta} \wedge \mathrm{d}\,u^{\gamma}.$$

- 4. 设 $\varphi = yz \, dx + dz$, $\psi = xz \, dy + \cos y \, dx$, $\eta = xy \, dz \sin z \, dy$, 计算: (1) $\varphi \wedge \psi$, $\psi \wedge \eta$, $\eta \wedge \varphi$; (2) $d\varphi$, $d\psi$, $d\eta$.
 - 5. 设 x = x(u, v), y = y(u, v), 证明:

$$\mathrm{d}\,x\wedge\,\mathrm{d}\,y=rac{\partial(x,y)}{\partial(u,v)}\,\mathrm{d}\,u\wedge\,\mathrm{d}\,v.$$

- 6. 求证: 1 形式 $\omega = yz\,\mathrm{d}\,x + zx\,\mathrm{d}\,y + xy\,\mathrm{d}\,z$ 是闭形式, 并且找出函数 f 使得 $\mathrm{d}\,f = \omega$.
- 7. 设 E(u,v), F(u,v), G(u,v) 是曲面的第一基本量. 作参数变换 $\widetilde{u}=\widetilde{u}(u,v), \widetilde{v}=\widetilde{v}(u,v),$ 并记 $\widetilde{E}, \widetilde{F}, \widetilde{G}$ 是新参数下的第一基本量. 求证:

$$\sqrt{\widetilde{E}\widetilde{G}-\widetilde{F}^2}\operatorname{d}\widetilde{u}\wedge\operatorname{d}\widetilde{v}=\sqrt{EG-F^2}\operatorname{d}u\wedge\operatorname{d}v.$$