Project 4

EECS 281

Agenda

- Graphs and Minimum Spanning Trees
 - Prim's Algorithm
 - Kruskal's Algorithm
- The Travelling Salesman problem
 - Optimal solution algorithm
 - Fast but not optimal algorithm
- Project 4 FAQ

Order of Solution

- Do them in the order given:
 - MST
 - FASTTSP
 - OPTTSP
- Why? OPTTSP can use the first two
 - FASTTSP: best so far
 - MST: used for lower bound

Graphs

- A set of objects where some/all of them are connected by links
 - Use cases?

Graphs

- Different types of graphs
 - Directed/Undirected
 - Weighted/Unweighted
 - Multigraph
 - 0 ..

Graphs

- Different types of graphs
 - Directed/Undirected
 - Weighted/Unweighted
 - Multigraph
 - 0 ..
- Know these terms for the exam!

 Problem: Given a graph of cities, devise a minimum cost method (in terms of length of path constructed) of connecting them all together.

- This is not NP-hard.
 - It is much easier to solve this.

For more see EECS 376

 Given a MST of a graph G and a point A not in the graph. Construct an MST with the graph formed by joining every vertex in G with A.

- Given a MST of a graph G and a point A not in the graph. Construct an MST with the graph formed by joining every vertex in G with A.
- Modify this algorithm to produce an MST of a whole graph.

Prim's Algorithm

- a. Mark all nodes unvisited, distance ∞, no previous
- b. Pick a starting point; change its distance to 0
- c. While there are unvisited nodes:
 - Connect one of the visited nodes to an unvisited node with the shortest distance possible.
 - Mark the new node visited
 - Update distance of any node adjacent to that node

 Problem: Given a graph, find the shortest path to visit all nodes in the graph and come back to the starting position

What is the starting point? Does it matter?

- Problem: Given a graph, find the shortest path to visit all nodes in the graph and come back to the starting position
- This is an NP-hard problem
 - NP-hard problems can be even more difficult than NP-complete problems! (see EECS 376)

- Problem: Given a graph, find the shortest path to visit all nodes in the graph and come back to the starting position
- If the graph is unweighted and complete then how can we solve this problem?

- Problem: Given a graph, find the shortest path to visit all nodes in the graph and come back to the starting position
- Now consider a weighted directed graph.
 How can we solve this problem?
 - One possible solution: Consider all possible routes!
 or in other words, Brute force!

 Guess the password: A user on Facebook can have a 4 letter password comprised of ASCII characters. Guess his password. You have unlimited attempts.

- Guess the password: A user on Facebook can have a 4 letter password comprised of ASCII characters. Guess his password. You have unlimited attempts.
- Guess all possible permutations!
 - How many permutations will you consider?

 Inference: Brute force algorithms are usually the worst possible solution to a problem.

- Inference: Brute force algorithms are usually the worst possible solution to a problem.
 - But we will optimize

- Guess the password: A user on Facebook can have a 4 letter password comprised of ASCII characters. Guess his password. You have unlimited attempts.
- You deduce somehow that the third letter can only be an 'a' or a 'c'.

- Guess the password: A user on Facebook can have a 4 letter password comprised of ASCII characters. Guess his password. You have unlimited attempts.
- You deduce somehow that the third letter can only be an 'a' or a 'c'.
 - How much better is this than the previous solution?

- Guess the password: A user on Facebook can have a 4 letter password comprised of ASCII characters. Guess his password. You have unlimited attempts.
- You deduce somehow that the third letter can only be an 'a'.
 - Now how many cases would you consider?

 This is the essence of the branch and bound optimization. You think smartly and eliminate multiple possibilities to get better runtime.

- How to generate all possible routes from point A to point B in a graph?
 - Randomly connect edges?

 How can we eliminate some unnecessary permutations while brute forcing the TSP problem?

- How can we eliminate some unnecessary permutations while brute forcing the TSP problem?
 - Keep track of previous best. If while generating permutations you exceed previous best. Discard current solution and move on to the next.

What is the optimal path here?

- What is the optimal path here?
 - Around the edges.

Eliminate

- A->B->E.....
- A->B->D.....


```
template <typename T>
void genPerms(vector<T> &path, size_t permLength) {
   if (path.size() == permLength) {
      // Do something with the path
      return;
   } // if
   if (!promising(path, permLength)) // Add custom logic in promising()
      return;
   for (size_t i = permLength; i < path.size(); ++i) {
      swap(path[permLength], path[i]);
      genPerms(path, permLength + 1);
      swap(path[permLength], path[i]);
   } // for
} // genPerms()</pre>
```

TSP & MST

- Can we somehow eliminate a branch of the tree that starts out poorly, and will thus never lead to a solution that's better than our best so far?
 - Estimate cost of the remaining k nodes
 - Estimate must be faster than O(k!)
 - Big hint for p4

Fast-TSP

 It is inefficient even for a supercomputer to solve the TSP problem, so most people estimate a solution

Fast-TSP

- It is inefficient even for a supercomputer to solve the TSP problem, so most people estimate a solution
 - Solve in a greedy manner, i.e. add the closest point to the current point you're on and repeat
 - This is not the only, or even the best way, but it works fairly well

Fast-TSP

Does this look like an efficient tour for our salesman?

Fast-TSP

This looks better

Improving Heuristics

- Suppose you come up with a heuristic for the FASTTSP, and your solution path is too long to get full credit, two options:
 - Change the heuristic
 - Add 2-Opt
- Be willing to try out other heuristics!
 - Greedy + 2-Opt will NOT earn you all the points for FASTTSP, but it will earn most of them

Suppose Starting Path...

Current path:

The (- A) means that a full cycle would include A, but we could just keep track of A - B - E - F - C - D

2-Opt Time

Suppose we're considering optimizing A-B and C-D

A-B length = 1.4; C-D = 1.4

Total = 2.8

Replace with:

A-C = 1; B-D = 1

Total = 2

Good savings = swap

2-Opt Time

Revised path:

Path Changes

Notice that the path has changed from:

To:

The entire middle has reversed order!

Run Through All Possible

- Always check adjacent pairs, compared to all other adjacent pairs
- As soon as you see an improvement, make it
- Pick up where you left off (think in terms of indices into the path)
- \bullet O(V²)

- Given vertices as ordered pairs in the x-y plane, how will you find out which line segment is smaller?
- For example:
 - o v1: {3, 3} v2: {6, 10} v3: {8, 8}
- Which is shorter, v1 to v2, or v1 to v3?
- How do you KNOW, without a calculator?

- The idea from the previous slide works when comparing one line segment to another, NOT when summing up a set of line segments!
- When computing Euclidean distance don't use pow(); multiply or use sqrt() as appropriate

Problem Size / Distance Matrix

- In the MST and FASTTSP portions, the graph might have tens of thousands of vertices
 - Is there enough memory available to store a distance matrix?
 - Consider 50,000 vertices, 8 bytes per double
- In OPTTSP, problem size limited to < 40 nodes
 - Room for distance matrix, and faster if one exists

Functors!

- Each part can use a different functor for calculating distance between two points
- In MST, what is distance between a "normal" cage and one fully in the wild animal area?
- In OPTTSP, there are so few nodes that you can pre-compute all possible distances
 - Functor can store the distance matrix as member

 You will be given graphs in P4 to execute algorithms on. How would you store them in memory?

- Why are we suggesting Prim's algorithm over Kruskal's?
- Is our graph dense in the MST part?