

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 893 419 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

27.01.1999 Bulletin 1999/04

(51) Int. Cl.⁶: **C04B 35/468**, H01G 4/12,

H01B 3/12

(21) Application number: 98113795.3

(22) Date of filing: 23.07.1998

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 12.05.1998 JP 128623/98

23.07.1997 JP 197170/97 12.05.1998 JP 128626/98 23.07.1997 JP 197172/97 12.05.1998 JP 128624/98 23.07.1997 JP 197171/97

(71) Applicant:

Murata Manufacturing Co., Ltd. Nagaokakyo-shi Kyoto-fu 617-8555 (JP) (72) Inventors:

 Mizuno, Shinobu Nagaokakyo-shi, Kyoto-fu, 617-8555 (JP)

 Sakamoto, Norihiko Nagaokakyo-shi, Kyoto-fu, 617-8555 (JP)

 Wada, Nobuyuku Nagaokakyo-shi, Kyoto-fu, 617-8555 (JP)

(74) Representative:

Laufhütte, Dieter, Dr.-Ing. et al Lorenz-Seidler-Gossel Widenmayerstrasse 23 80538 München (DE)

(54) Dielectric ceramic composition and monolithic ceramic capacitor using same

(57) The present invention provides a dielectric ceramic composition containing 100 parts by weight of essential component represented by $(BaO)_m TiO_2 + M_2O_3 + R_2O_3 + BaZrO_3 + MgO + MnO$ (wherein M_2O_3 represents Sc_2O_3 and/or at least one of Eu_2O_3 , Gd_2O_3 , Tb_2O_3 and Dy_2O_3) and 0.2 to 3.0 parts by weight of the side components represented by Li_2O - $(Si, Ti)O_2$ -MO (wherein MO represents Al_2O_3 and or ZrO_2) or SiO_2 - TiO_2 -XO (wherein XO represents at least one of BaO, CaO, SrO, MgO, ZnO and MnO), and a ceramic capacitor using the same.

EP 0 893 419 A

Description

10

20

25

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a dielectric ceramic composition and monolithic ceramic capacitor using the same.

2. Description of the Related Art

The conventional ceramic capacitor is usually produced by the following process.

First, a sheet of a dielectric material coated with an electrode material to serve as inner electrodes on its surface is prepared. A material essentially composed of BaTiO₃ is used for the dielectric material. Then, the sheet of the dielectric material coated with this electrode material is laminated with heat-pressing to a monolithic body followed by firing at 1250 to 1350 °C in an atmospheric environment to obtain a ceramic monolithic body having inner electrodes. A monolithic ceramic capacitor is obtained by glazing outer electrodes electrically connected to inner electrodes.

Noble metals such as platinum, gold, palladium or silver have been conventionally used for the material of the inner electrode of this monolithic ceramic capacitor. However, these electrode materials are expensive while having excellent characteristics, rendering the production cost to be increased. Therefore, a monolithic capacitor using base metals such as Ni in the inner electrode is currently proposed to reduce the production cost, its application in the market being steadily increasing.

SUMMARY OF THE INVENTION

In the trend to make electronic appliances compact, high performance and low price, the monolithic capacitor is strongly required to be low price, to be improved in insulation durability, insulating property and reliability, and to have a large capacitance. Although it is advantageous for reducing the price of the electronic appliances to use an inexpensive monolithic ceramic capacitor in which nickel is used for the inner electrode, a problem that the insulation resistance, insulation durability and reliability are extremely deteriorated when the electronic appliances are used under a high electric field strength because conventional dielectric ceramic materials are designed on the premise that they are used under a low electric field strength. In other words, there has been no monolithic ceramic capacitor being able to use under a high electric field strength along with using nickel for the inner electrode.

For example, while the dielectric materials disclosed in Japanese Examined Patent Publication No. 57-42588 and Japanese Unexamined Patent Publication No. 61-101459 can display a large dielectric constant, the grain size of the dielectric ceramic is large, thereby exhibiting deficiencies such that the insulation durability of the monolithic ceramic capacitor becomes low when it is used under a high electric field strength or the mean life span under the high temperature load test becomes short.

In the dielectric material disclosed in Japanese Examined Patent Publication No. 61-14611, there was a deficiency that the dielectric constant, or the electrostatic capacitance, is extremely lowered when the capacitor is used under a high electric field strength, although its dielectric constant obtained under a low electric field strength is as high as 2000 to 2800. It was also a deficiency that the insulation resistance is low.

The object of the present invention is to provide a dielectric ceramic composition capable of forming, for example, dielectric ceramic layers of a monolithic ceramic capacitor, wherein the insulation resistance represented by a product with the electrostatic capacitance (a product CR) is as high as 4900 to 5000 Ω • F or more and 200 Ω • F or more at room temperature and 150 °C, respectively, when the capacitor is used under a high electric field strength of, for example, as high as about 10 kV/mm, along with having a small voltage dependence of the insulation resistance, being excellent in stability of the electrostatic capacitance against DC vias voltage, being high in the insulation durability besides the temperature characteristics of the electrostatic capacitance satisfying both of B-level characteristic standard stipulated in the JIS Standard and X7R-level characteristic standard stipulated in the EIA standard and being excellent in weather resistance performance shown by a high temperature load test and high humidity load test. Another object of the present invention is to provide a monolithic ceramic capacitor whose inner electrode is constructed of Ni or Ni alloys along with using such dielectric ceramic composition as a dielectric ceramic layer.

In a first aspect, the present invention provides a dielectric ceramic composition comprising barium titanate containing 0.02% by weight or less of alkali metal oxides, at least one of either scandium oxide or yttrium oxide, at least one kind of compound selected from europium oxide, gadolinium oxide, terbium oxide and dysprosium oxide, and barium zirconate and manganese oxide, and containing an essential component represented by the following composition formula;

 $(BaO)_mTiO_2 + \alpha M_2O_3 + \beta R_2O_3 + \gamma BaZrO_3 + gMnO_3$

(wherein M_2O_3 represents at least one of either Sc_2O_3 or Y_2O_3 and R_2O_3 represents at least one of the compound selected from Eu_2O_3 , Gd_2O_3 , Tb_2O_3 and Dy_2O_3 , α , β , γ and β representing mole ratio in the range of $0.001 \le \alpha \le 0.05$, $0.001 \le \beta \le 0.05$, $0.005 \le \gamma \le 0.06$, $0.001 < \beta \le 0.13$ and $\alpha + \beta \le 0.06$ with $1.000 < m \le 1.035$),

along with containing 0.2 to 3.0 parts by weight of either the first or second side component relative to 100 parts by weight of the essential component, wherein the first side component is an oxide represented by Li_2O - (Si, Ti)O₂ - MO (wherein MO is at least one of Al_2O_3 or ZrO_2) and the second side component is an oxide represented by SiO_2 - TiO_2 - XO (wherein XO is at least one of the compound selected from BaO, CaO, SrO, MgO, ZnO and MnO).

In the dielectric ceramic composition described above, the essential component may further contain h mole ratio of magnesium oxide, where $0.001 < g \le 0.12$, $0.001 < h \le 0.12$ and $g + h \le 0.13$

In the dielectric ceramic composition according to another aspect of the present invention, the essential component may be represented by the following composition formula;

$$(BaO)_m TiO_2 + \alpha M_2 O_3 + \beta BaZrO_3 + \gamma MnO$$

(wherein M_2O_3 represents at least one of either Sc_2O_3 or Y_2O_3 , where α , β and γ representing mole ratio in the range of $0.001 \le \alpha \le 0.06$, $0.005 \le \beta \le 0.06$ and $0.001 < \gamma \le 0.13$ with $1.000 < m \le 1.035$).

The essential component may further contain g mole ratio of magnesium oxide, where 0.001 < $\gamma \le$ 0.12, 0.001 < g \le 0.12 and $\gamma + g \le$ 0.13

According to a different aspect of the present invention, the essential component may be represented by the following composition formula;

$$(BaO)_m TiO_2 + \alpha R_2 O_3 + \beta BaZrO_3 + \gamma MnO$$

(wherein R_2O_3 represents at least one kind of compound selected from Eu_2O_3 , Gd_2O_3 , Tb_2O_3 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 and Yb_2O_3 , where α , β and γ representing mole ratio in the range of $0.001 \le \alpha \le 0.06$, $0.005 \le \beta \le 0.06$ and $0.001 < \gamma \le 0.13$ with $1.000 < m \le 1.025$).

The essential component may further contain g mole ratio of magnesium oxide, where $0.001 \le \beta \le 0.06,\ 0.001 < \gamma \le 0.12,\ 0.001 < g \le 0.12$ and $\gamma + g \le 0.13$.

In the dielectric ceramic composition described above, it is preferable that the first side component, when its composition is represented by $xLi_2O-y(Si_wTi_{1-w})O_2-zMO$ (wherein x, y and z represent mol% and w is in the range of 0.30 $\le w \le 1.00$), falls within or on the boundary lines of the area surrounded by straight lines connecting each point indicated by A (x = 20, y = 80, z = 0), B (x = 10, y = 80, z = 10), C (x = 10, y = 70, z = 20), D (x = 35, y = 45, z = 20), E (x = 45, y = 45, z = 10) and F (x = 45, y = 55, z = 0)

(when the composition falls on the straight line of A - F, w is within the area of $0.3 \le w < 1.0$) in the three component diagram defined by the apexes corresponding to each component.

In the dielectric ceramic composition described above, it is preferable that the second side component, when its composition is represented by $xSiO2-yTiO_2-zXO$ (wherein x, y and z represent mol%), falls within or on the boundary lines of the area surrounded by straight lines connecting each point indicated by A (x = 85, y = 1, z = 14), B (x = 35, y = 51, z = 14), C (x = 30, y = 20, z = 50) and D (x = 39, y = 1, z = 60) in the three component diagram defined by the apexes corresponding to each component.

The second side component contains in total of 15 parts by weight of at least one of Al_2O_3 and ZrO_2 (the content of ZrO_2 is 5 parts by weight or less) relative to 100 parts by weight of the oxide represented by SiO_2 - TiO_2 -XO.

The present invention according to a different aspect provides a monolithic ceramic capacitor provided with a plurality of dielectric ceramic layers, inner electrodes formed between the ceramic layers and outer electrodes being electrically connected to the inner electrodes, wherein the dielectric ceramic layers are constructed by the dielectric ceramic composition described above and the inner electrodes are composed of nickel or a nickel alloy.

The outer electrode may be provided with a sintered layer of an electroconductive metal powder or an electroconductive metal powder supplemented with glass frits.

BRIEF DESCRIPTION OF THE DRAWINGS

15

25

45

55

FIG. 1 is a cross sectional view showing the monolithic ceramic capacitor according to one embodiment of the present invention.

FIG. 2 is a plane view showing the dielectric ceramic layer portion having inner electrodes of the monolithic ceramic capacitor shown in FIG. 1.

FIG. 3 is a disassembled perspective view showing the ceramic monolithic portion of the monolithic ceramic capac-

itor shown in FIG. 1.

20

FIG. 4 is a three component phase diagram of Li₂O-(Si_w, Ti_{1-w})O₂-MO oxides.

FIG. 5 is a three component phase diagram of SiO₂-TiO₂-XO oxides.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The basic construction of the monolithic ceramic capacitor according to the first embodiment of the present invention will be described hereinafter referring to the drawings. FIG. 1 is a cross section showing one example of the monolithic ceramic capacitor, FIG. 2 is a plane view showing the dielectric ceramic portion having inner electrodes of the monolithic ceramic capacitor in FIG. 1, and FIG. 3 is a disassembled perspective view showing the dielectric ceramic portion having inner electrodes of the monolithic ceramic capacitor in FIG. 1.

As shown in FIG. 1, the monolithic ceramic capacitor 1 according to the present embodiment is provided with a rectangular shaped monolithic ceramic body 3 obtained by laminating a plurality of dielectric ceramic layers 2a and 2b via the inner electrodes 4. An outer electrode 5 is formed on the both side faces of the monolithic ceramic body 3 so that the outer electrodes are electrically connected to each of the specified inner electrodes 4, on which a first plating layer 6 comprising nickel or copper is plated, a second plating layer 7 comprising a solder or tin being further formed on the first plating layer.

The method for producing the monolithic ceramic capacitor 1 will be next described in the order of production steps. At first, a raw material powder of barium titanate prepared by weighing and mixing in a given composition ratio is prepared as an essential component of the dielectric ceramic layers 2a and 2b.

Then, a slurry is prepared by adding an organic binder in this raw material powder and, after forming this slurry into a sheet, a green sheet for use in the dielectric ceramic layers 2a and 2b is obtained.

Next, an inner electrode 4 comprising nickel or a nickel alloy is formed on one principal face of the green sheet to serve as the dielectric ceramic layers 2b. Nickel or nickel alloys as base metals may be used for the material of the inner electrode 4 when the dielectric ceramic layers 2a and 2b are formed using the dielectric ceramic composition as described above. The inner electrode 4 may be formed by a screen printing method, a deposition method or a plating method.

After laminating a required number of the green sheets for use in the dielectric ceramic layers **2b** having the inner electrodes **4**, the green sheets are inserted between the green sheets for use in the dielectric ceramic layer **2a** having no inner electrode, thus obtaining a raw monolithic body by press-adhering these green sheets.

Then, this raw monolithic body is fired at a given temperature to obtain a ceramic monolithic body 3.

The outer electrodes 5 are formed at the both side faces of the ceramic monolithic body 3 so as to be electrically connected to the inner electrodes 4. The same material as used in the inner electrodes 4 can be used for the outer electrodes 5. While silver, palladium, a silver-palladium alloy, copper and a copper alloy is available besides a composition prepared by adding a glass frit such as a B₂O₃-SiO₂-BaO glass or Li₂O-SiO₂-BaO glass into these metal powders, an appropriate material should be selected by taking the application object and application site of the monolithic capacitor into consideration. While the outer electrodes 5 is formed by coating the ceramic monolithic body 3 obtained by firing with a metal powder paste as a raw material followed by heat-adhering, it may be formed by heat-adhering the metal powder paste simultaneously with the ceramic monolithic body 3.

The first plating layer 6 is then formed by applying a plating with nickel or copper on the outer electrode 5. Finally, the second plating layer 7 comprising a solder or tin is formed on the first plating layer 6, thereby completing the monolithic capacitor 1. Such process for further forming a conductive layer on the outer electrode 5 may be omitted depending on the application field of the monolithic ceramic capacitor.

By using the dielectric ceramic composition as described previously for constructing the dielectric ceramic layers 2a and 2b, the characteristic of the dielectric ceramic layers is not deteriorated even when it is fired in a reducing atmosphere. In other words, such characteristics are obtained in which the product between the insulation resistance and the electrostatic capacitance (a product CR) is as high as 4900 to $5000~\Omega \cdot F$ or more and $200~\Omega \cdot F$ or more at room temperature and 150 °C, respectively, when the capacitor is used under an electric field strength as high as about 10 kV/mm, along with having a small voltage dependence of the insulation resistance, the absolute value of the capacitance decreasing ratio at an impressed DC voltage of 5 kV/mm being as small as 40% to 45%, the insulation durability being as high as 12 kV/mm or more under an AC voltage and 14 kV/mm under a DC voltage, besides its temperature characteristics of the electrostatic capacitance satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C and being excellent in weather resistance performance shown by a high temperature load test at 150 °C and at DC 25 kV/mm and high humidity load test.

It has been confirmed that, among alkali earth metal oxides such as SrO and CaO existing in barium titanate as impurities, alkali metal oxides such as Na_2O and K_2O and other oxides such as Al_2O_3 and SiO_2 , especially the content of the alkali metal oxides largely influences on the electric characteristics. While the specific dielectric constant is

decreased when the amounts of addition of rare earth element oxides such as Eu_2O_3 , Gd_2O_3 , Tb_2O_3 , Dy_2O_3 ,

Adding an oxide represented by Li₂O-(Si, Ti)O₂-MO (wherein MO is at least one of Al₂O₃ and ZrO₂) in the dielectric ceramic composition allows the composition to be sintered at a relatively low temperature of 1300 °C or less, further improving the high temperature load characteristic.

Adding an oxide represented by Si₂O-TiO₂-XO (wherein XO is at least one kind of compound selected from BaO, CaO, SrO, MgO, ZnO and MnO) in the dielectric ceramic composition allows the composition to be improved in sintering property as well as in high temperature load characteristic and humidity resistance load characteristic. A higher insulation resistance can be obtained by adding Al₂O₃ and/or ZrO₂ in the oxide represented by Si₂O-TiO₂-XO.

(Examples)

15

25

35

40

45

50

55

The present invention will now be described in more detail by way of examples. However, the embodiment within the scope of the present invention is not limited to these examples.

(Example 1)

After preparing and weighing TiCl₄ and Ba(NO₃)₂ having a variety of purity as starting materials, the compounds were precipitated as titanyl barium oxalate (BaTiO(C₂O₄) • 4H₂O) by adding oxalic acid. This precipitate was decomposed by heating at a temperature of 1000 °C or more to synthesize four kinds of barium titanate listed in TABLE 1.

	Mean partic size (µm)		9.0	0.56	0.72	0.58
		Al ₂ O ₃	0.005	0.008	0.071	0.004
	eight)	SiO ₂	0.01	0.019	0.155	0.019
l able 1	Content of impurities (% by weight)	CaO	0.001	0.003	0.018	0.001
	Content of	SrO	0.012	0.01	0.179	0.014
		Alkali metal oxide	0.003	0.05	0.012	0.062
	Kind of BaTiO ₃	,	A	В	O	Q

Oxides, carbonates or hydroxides as each component of the first side component were weighed so as to be a composition ratio (mole ratio) of $0.25 \text{Li}_2\text{O}-0.65 (0.30 \text{TiO}_2 \cdot 0.70 \text{SiO}_2)-0.10 \text{Al}_2\text{O}_3$ to obtain a powder by crushing and mixing. Likewise, oxides, carbonates or hydroxides as each component of the second side component were weighed so as

to be a composition ratio (mole ratio) of $0.66SiO_2$ - $0.17TiO_2$ -0.15BaO-0.02MnO to obtain a powder by crushing and mixing.

Oxide powders of the first and second side components were placed in separate platinum crucibles, respectively, and heated at 1500 °C. After quenching and crushing the mixture, each oxide powder with a mean particle size of 1 μ m or less was obtained.

In the next step, BaCO $_3$ for adjusting the mole ratio Ba/Ti (m) in barium titanate, Sc $_2$ O $_3$, Y $_2$ O $_3$, Eu $_2$ O $_3$, Gd $_2$ O $_3$, Tb $_2$ O $_3$ and Dy $_2$ O $_3$, and BaZrO $_3$, MgO and MnO, each having a purity of 99% or more, were prepared. These raw material powders and the oxides described above to be either one of the side components were weighted so as to form compositions shown in TABLE 2 and TABLE 3. The amounts of addition of the first and second side components are indicated by parts by weight relative to 100 parts by weight of the essential component (BaO) $_m$ TiO $_2$ + $_2$ M $_2$ O $_3$ + $_3$ R $_2$ O $_3$ + $_3$ R $_2$ O $_3$ + $_3$ R $_3$ PO $_3$ + $_3$ PM $_3$ PO $_3$ PM $_3$ PM $_3$ PO $_3$ PM $_3$ P

Table 2 ** indicates "out of the scope of the present invention"

Amount of	addition of	the second	ponent		0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	Ψ-	0	0	0	4	0	0	0
Amount	of addi-	tion of	side	compo- nent	1	-	-	-	_	1.5	1.5	-	-	-	-	-	1	-	-	0	0	გ	0	0	2	-	-
	ε				1.005	1.005	1 005	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	0.99	1.00	1.038	1.05	1.01	1.01	1.01	1.01	1.01	1.015	1.02
	q + 6				0.12	0.12	0.05	0.13	0.13	0.13	0.07	0.07	0.13	0.08	0.13	0.14	0.055	0.07	0.05	0.05	0.02	0.07	90.0	0.05	0.09	0.05	0.05
	ء				0.07	0.08	0.03	0.1	0.01	90.0	0.04	0.069	0.005	0.001	0.13	0.08	0.025	0.03	0.03	0.02	0.04	0.03	0.04	0.02	0.05	0.01	0.02
	6				0.05	0.04	0.02	0.03	0.12	0.07	0.03	0.001	0.125	0.079	0.005	0.05	0.03	0.04	0.02	0.03	0.03	0.04	0.02	0.03	0.04	0.04	0.03
	٨				0.02	0.03	0.03	0.03	0.03	0	0.08	0.02	0.02	0.02	0.02	0.03	0.03	0.04	0.04	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.03
	α+β				0.0508	0.061	0.0208	0.071	0.07	90.0	0.03	0.05	0.02	0.04	0.03	0.07	0.03	0.04	0.02	0.03	0.03	0.04	0.03	0.03	0.04	0.03	0.03
	Total of	<u>a</u>			0.05	0.001	0.0008	0.07	0.04	0.04	0.02	0.02	0.01	0.02	0.02	0.04	0.02	0.03	0.01	0.02	0.02	0.03	0.02	0.01	0.03	0.029	0.01
		Dy ₂ O ₃			0	0	0	0.02	0.02	0	0.02	0.01	0	0	0.01	0.02	0	0.01	0	0.01	0.01	0.01	0	0	0	0	0
	9	Tb ₂ O ₃			0	0.001	0.0008	0.02	0	0.02	0	0.01	0	0	0	0	0.01	0.005	0.01	0	0.01	0.01	0	0.01	0.05	0.009	0
O+ hMnO		64,0,		-	0.05	0	0	0.03	0	0.02	0	0	0	0.01	0.01	0	0.01	0.005	0	0	0	0.01	0.01	0	0.01	0	0.01
O ₃ + gMg		Eu ₂ O ₃			0	0	0	0	0.02	0	0	0	0.01	0.01	0	0.02	0	0.01	0	0.01	0	0	0.01	0	0	0.05	0
O ₃ + y BaZrO ₃ + gMgO + hMnO	Total of	ಶ			0.0008	90.0	0.02	0.001	0.03	0.02	0.01	0.03	0.01	0.02	0.01	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.001	0.02
0, + B R,C		Y,0,			0.0008	0.03	0.01	0.001	0.02	0.01	0.01	0.02	0	0.01	0	0.05	0.005	0	0.005	0	0.01	0.01	0.01	0.01	0.01	0.001	0.01
(BaO), TiO, + αM,O, + β R ₂ (B	Sc2O3	. •		0	0.03	0.01	0	0.01	0.01	0	0.01	0.01	0.01	0.01	0.01	0.005	0.01	0.005	0.01	0	0	0	0.01	0	0	0.01
(BaO),,	Kind of	BaTiO			4	4	4	4	A	4	V	4	4	4	4	4	4	4	4	4	4	A	∢	4	۵	٨	8
Sam-	<u>e</u>	o Z			:	•2	۴,	4.	\$	9	<u>/*</u>	φ	6.	10	1.	*12	*13	*14	*15	•16	*17	*18	*19	*20	+21	22	23

										able 3							
Sam	(BaO) _m	$(BaO)_m \cdot TiO_2 + \alpha M_2O_3 + \beta R_2O_3$	203 + BR2		+ yBaZrO ₃ + gMgO + hMnO	IgO + hMr	Į P									Amount of	Amount of
ş.	Kind of	В				B			Total of B	α+β	γ	6	٠	d + b	٤	addition of	addition of
ž	BaTiO	Sc2O3	Y2O3	ρ	Eu ₂ O ₃	Gd ₂ O ₃	Tb2O3	Dy ₂ O ₃								side com-	side compo-
																ponent	nent
24	ပ	0.01	0.02	0.03	0	0	0	0.01	0.01	0.04	0.03	0.12	0.002	0.122	1.03	-	0
25	4	0.01	0.03	0.04	0	0	0.01	0	0.01	0.05	0.03	0.07	90.0	0.13	1.02	-	0
56	A	0.01	0.04	0.05	0	0.01	0	0	0.01	90'0	0.03	0.002	0.12	0.122	1.01	0	-
27	4	0.005	0.005	0.01	0	0	0	0.001	0.001	0.011	0.02	0.01	0.02	0.03	1.0	-	0
28	4	0	0.01	0.01	0.01	0.01	0	0	0.02	0.03	0.02	0.03	0.02	0.05	1.01	-	0
29	4	0	0.01	0.01	0.02	0	0.01	0	0.03	0.04	0.02	0.05	0.03	0.08	1.015	0	-
30	4	0	0.01	0.01	0	0.04	0	0	0.04	0.05	0.02	90.0	0.03	0.09	1.01	0	1
31	4	0	0.01	0.01	0	0.03	0	0.02	0.05	90.0	0.02	0.05	90.0	0.11	1.01	-	0
32	4	0.01	0.02	0.03	0	0	0.02	0	0.02	0.05	0.02	0.05	0.04	0.09	1.01	-	0
33	⋖	0.01	0.02	0.03	0	0	0	0.03	0.03	90.0	0.03	90'0	0.04	0.1	1.01	-	0
34	4	0	0.01	0.01	0	0.02	0	0	0.02	0.03	0.01	0.03	0.02	0.05	1.01	-	0
35	4	0.01	0.01	0.05	0.02	0	0	0	0.02	0.04	0.04	0.05	0.03	0.08	1.01	-	0
36	A	0.01	0.01	0.05	0	0.01	0.01	0	0.02	0.04	90.0	90'0	0.05	0.07	1.01	-	0
37	4	0.01	0.01	0.05	0	0	0.01	0.01	0.02	0.04	0.03	0.04	0.03	0.07	1.01	2	0
38	A	0.01	0.01	0.02	0.01	0	0	0	0.01	0.03	0.03	0.04	0.015	0.055	1.01	2	0
39	A	0.01	0.01	0.05	0	0.01	0	0	0.01	0.03	0.02	0.03	0.04	0.07	1.01	2	0
40	A	0	0.02	0.02	0	0	0.01	0	0.01	0.03	0.02	0.03	0.02	0.05	1.01	2	0
4	A	0	0.02	0.02	0	0	0	0.01	0.01	0.03	0.02	0.03	0.03	0.06	1.001	2	0
45	A	0.02	0	0.05	0.01	0.01	0	0	0.05	0.04	0.03	0.04	0.03	0.07	1.01	0	2
43	¥	0.01	0.01	0.05	0	0	0.01	0.01	0.02	0.04	0.03	0.03	0.05	0.08	1.035	2	0
44	A	0.01	0.01	0.02	0	0.02	0	0	0.02	0.04	0.03	0.04	0.03	0.07	1.015	0.2	0
45	A	0.01	0.01	0.05	0	0	0	0.01	0.01	0.03	0.03	0.03	0.02	0.05	1.01	3	0
46	A	0	0.05	0.02	0	0	0	0.01	0.01	0.03	0.03	0.02	0.04	90.0	1.01	0	0.2
47	A	0	0.02	0.05	0.01	0	0.01	0	0.02	0.04	0.03	0.05	0.02	0.07	1.01	0	3

Organic solvents such as polyvinyl butyral binder and ethanol were added to the weighed compounds and the mixture was mixed in a ball mill in an wet state to prepare a ceramic slurry. This ceramic slurry was formed into a sheet by a doctor blade method to obtain a rectangular shaped green sheet with a thickness of 35 µm, followed by printing an

electroconductive paste mainly composed of Ni on the ceramic green sheet to form an electroconductive paste layer for forming inner electrodes.

Then, a plurality of the ceramic green sheets on which the electroconductive layer is formed were laminated so that the sides where the electroconductive paste is projected out are alternately placed with each other, thus obtaining a monolithic body. This monolithic body was heated at 350 °C in a N_2 atmosphere and, after allowing the binder to decompose, the monolithic body was fired at the temperatures shown in TABLE 4 and TABLE 5 in a reducing atmosphere comprising H_2 - N_2 - H_2 O gases under an oxygen partial pressure of 10^{-9} to 10^{-12} MPa, thereby obtaining a ceramic sintered body.

The both side faces of the ceramic sintered body were coated with a silver paste containing B_2O_3 -Li₂O-SiO₂-BaO glass frits and fired at a temperature of 600 °C in a N_2 atmosphere, thereby obtaining outer electrodes electrically connected to the inner electrodes.

The overall dimensions of the monolithic ceramic capacitor thus obtained were 5.0 mm in width, 5.7 mm in length and 2.4 mm in thickness while the thickness of the dielectric ceramic layer was 30 μ m. Total number of the effective dielectric ceramic layers were 57, the area of the confronting electrode per one layer being 8.2 \times 10⁻⁶m².

Electric characteristics of these monolithic ceramic capacitors were measured. The electrostatic capacitance (C) and dielectric loss ($\tan \delta$) were measured using an automatic bridge type measuring instrument at 1 kHz, 1 Vrms and 25 °C and the dielectric constant (ϵ) was calculated from the electrostatic capacitance. Next, the insulation resistance was measured using an insulation resistance tester at 25 °C and 150 °C by impressing direct current voltages of 315 V (or 10 kV/mm) and 945 V (or 30 kV/mm) for 2 minutes, obtaining a product of the electrostatic capacitance and insulation resistance, or a product CR.

The rate of change of the electrostatic capacitance against temperature changes was also measured. The rate of change at -25 °C and 85 °C by taking the electrostatic capacitance at 20 °C as a standard (Δ C/C20), the rate of change at - 55 °C and 125 °C by taking the electrostatic capacitance at 25 °C as a standard (Δ C/C25) and the maximum value of the rate of change (Δ C) max) as an absolute value were measured as the electrostatic capacitances against temperature changes.

The DC vias characteristic was also evaluated. First, the electrostatic capacitance when an AC voltage of 1 kHz and 1 Vrms was impressed was measured. Then, the electrostatic capacitance when a DC voltage of 150 V and an AC voltage of 1 kHz and 1 Vrms were simultaneously impressed was measured, thereby the rate of reduction of the electrostatic capacitance (Δ C/C) due to loading the DC voltage was calculated.

In the high temperature load test, a direct current voltage of 750 V (or 25 kV/mm) was impressed at 150 °C on 36 pieces of each sample to measure the time dependent changes of the insulation resistance. The time when the insulation resistance of each sample was reduced below $10^6\Omega$ was defined to be a life span time and mean life span time was evaluated.

In the humidity resistance test, the number of the test pieces having an insulation resistance of $10^6\Omega$ or less among the 72 test pieces were counted after impressing a DC voltage of 315 V under an atmospheric pressure of 2 atm (relative humidity 100%) at 120 °C for 250 hours.

Insulation breakdown voltages under AC and DC voltages were measured by impressing AC and DC voltages at a voltage increase rate of 100 V/sec.

The results described above are listed in TABLE 4 and TABLE 5.

15

30

40

45

50

Table 4

* indicates "out of the scope of the present invention"

Mean life	span (h)						096	910	930	120	180	870	160	950	120		150	100		130				150		110	860	920	940
Himidity	resistance	load test;	Numper of	rejects			0/72	0/72	0/72	0/72 ·	10/72	0/72	0/72	0/72	53/72		0/72	9/72		0/72				0/72		0/72	0/72	0/72	0/72
Incidation	breakdown	voltage	mm)	ပ္ပ			14	14	14	14	14	14	14	14	14		14	4		11				12		12	14	15	4
head	break	Yo.	(kV/mm)	¥C			12	12	13	12	12	12	12	13	12		12	12		10				11	11	12	12	12	12
		945 V Im	pressed	Voltage		ပ္	210	190	110	240	250	100	230	120	220		140	230		150				160		170	270	260	240
0 0	(1.74)	315 V Im 945 V I		Voltage		150°C	220	200	120	250	260	140	240	130	230	nation	150	240	nation	160	ring	ring	ring	170	ring	180	280	270	250
Broduct Co (O E)	ביינים ביינים	315V lm- 945V lm-	pressed	Voltage		၁	4860	8090	2870	4810	4820	2180	4900	2940	4860	actor form	2990	4800	semiconductor formation	3040	ent sinte	ent sinte	ent sinte	3090	ent sinte	3140	4920	4840	4770
3		315V Im-		Voltage		25°C	5110	8520	3020	2060	5070	3120	5160	3090	5110	micondu	3150	2060	micondr	3200	insufficie	insufficie	insufficie	3250	insuffici	3300	51180	5090	5020
indicates out of the scope of the process investigation	Charac-	teristic	(%)	D/QV	5kV/mm		-21	-16	42	-14	-14	-16	-36	-26	-43	Jnmeasurable due to semiconductor formation	-38	-14	due to se	-30	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	-25	Unmeasurable due to insufficient sintering	4	-26	-39	-39
	io de celo	Maxi-	mum.	value			21	8.7	8.5	25.3	8.5	8.9	36.2	21.3	8.5	rable (23.6	8.7	rable (9.3	asurab	asurab	asurab	9.5	asurab	9.3	9.5	8.7	8.8
ובים סחו	Katio of temperature dependent capacitor	ΔC/C,,		125°C			-17.5	6.9	8.9	-19	-7.1	-7.5	-31.5	-16.3	-7.5	Jumeas	-17.9	-8.5	Unmeasurable due to	æ	Unme	Unme	Unme	-8.2	Unme	ထု	-8.3	-7	-7.2
וומוכם	change (%)	V V		ე <u>.</u> 99-			6.4	4.7	က	7.5	4.2	က	4.5	4.6	2	ر ا	5.1	4.5		5.3				5.1		4	7	6.5	7
	Temperar	AC/C ₂	:	85°C			-12	-7.8	-7.9	-12.9	ထု	-8.2	-14.3	-12.5	-7.7		-8.5	-8.2		-8.4				-8.3		-8.7	6.8-	-7.2	-7.6
	Katio o	γ)	-25°C			9.6	2.3	3	9	2.1	1.9	2.2	2.2	2.3		က	2.3		3.4				3.3		1.9	2.2	5.2	1.6
	Dielec-	tan δ	8				0.7	0.7	0.7	0.7	2	0.7	0.7	0.8	2.6		2.0	2.1		0.7				2.6		5.6	9.0	0.7	0.7
	_						1210	096	1550	920	096	1070	1440	1280	1530		1460	940		1360				1320		1470	1140	1480	1460
	Baking Dielec-	ture	်				1300	1300	1300	1300	1280	1280	1300	1280	1360		1280	1280		1300				1300		1300	1300	1280	1280
(Sam-	ž Ž	<u> </u>				1	\$	£.	4.	Ť.	စ္	1.	œ	ф	•10	11	*12	*13	*14	•15	*16	*17	*18	•19	•20	*21	22	23

Table 5 indicates "out of the scope of the present invention"

		•	⊆	_			Ţ	0	<u> </u>	ا	_	0	ا	0	0		0	٥	0	0	اه	٥	0	0	اه	0	٥	ွှ	٥	اي	_ 0
	Mean	≣e E	span	€			-	066	830	950	820	820	8	870	920	920	870	820	820	850	890	8	870	910	8	920	06	880	850	860	920
	Humidity	resistance	load test;	Number of	reject			0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72
	tion	lown	ge	(E)	ပ္ထ			15	4	15	14	14	14	14	14	14	14	14	12	14	14	14	14	14	14	14	14	14	14	14	14
	Insulation	breakdown	voltage	(kV/mm	Ş			12	12	12	12	12	13	12	12	12	12	12	12	12	12	13	13	12	12	15	12	12	12	12	12
			.945 V Im-	bessed	Voltage		ر	280	260	210	220	270	280	240	200	190	250	270	220	210	240	220	230	200	250	220	240	220	280	260	250
ntion	Product CR (Q · F)		315 V Im	pressed	Voltage		2001	290	270	220	230	280	290	250	210	200	260	280	230	220	250	230	240	210	260	230	250	230	290	270	260
ent inve	Product (945V Im-	pressed	Voltage		اد	5020	4870	4940	4950	5030	4940	2000	4980	4760	4970	4810	2000	4850	4820	4840	4850	4950	4960	4900	2090	4920	4930	4970	5000
* indicates "out of the scope of the present invention"			315V Im-		Voltage		25.C	5280	5130	5200	5210	5290	5200	5260	5240	5010	5230	2060	5260	5100	5070	2030	5100	5210	5220	5160	5360	5180	5190	5230	5260
scope of	DC vias	charac-	teristic	%	. ∆C/C	5kV/mm		-31	-23	-17	45	-36	-33	-22	-15	-21	-16	-36	-30	-32	-32	-39	-39	40	-40	-30	-30	-25	-38	-38	38
of the	paci-		Maxi-	mnm	value			8.9	9.5	9.5	8.7	8.8	8.8	9.5	9.2	8.7	8.5	8.9	8.6	∞	8.5	8.6	8.7	9.5	8.6	8.7	8.5	8.9	80.	8.8	α
tes "out	Ratio of temperature dependent capaci-	<u>(%</u>	Γ		125°C			-7.8	-8.2	-8.3	-7.5	-7.3	-7.8	-7.9	-8.2	-7.5	-7.8	-7.9	æ	-7.6	7.7-	ထု	-7.9	-8.2	ထု	-8.2	ထု	7.7-	-7.8	-7.9	-7.5
indical	ure dep	tance change (%)	AC/C ₂₅		-55°C			5.9	5.1	5.5	6.1	6.7	9	5.8	2	4.8	4.9	5.3	5.7	9	6.1	5.8	5.9	9	6.7	9	5.8	5.9	7.2	8.9	S.
*	tempera	tance	8		85°C			8 5	-8.7	-8.8	-7.5	-7.9	-8.2	-8.5	6.8	-7.9	ထု	-8.2	-7.8	-7.9	ထု	81	-8.1	-8.5	-7.8	-7.9	-81	-8.2	83	ထု	7.0
	Ratio of		AC/C ₂₀		-25°C			1.7	2	2.1	2.1	3	3.1	2.1	2	1.9	2	2	2	2.5	2	2	2.6	2.5	2	2.7	2	2.5	2.3	2.3	22
	Dielec-	tric loss	tan 8	(%)	,			9.0	9.0	0.7	9.0	0.7	9.0	9.0	9.0	9.0	9.0	9.0	9.0	0.7	9.0	9.0	0.7	0.7	9.0	9.0	9.0	9.0	0.7	0.7	90
	Dielec-	tric con-	stant			-		1350	1260	1080	1650	1410	1370	1230	1030	1260	1060	1420	1360	1370	1350	1470	1440	1480	1460	1380	1350	1320	1450	1430	1440
	Baking	tempera-	tre	ဉ်				1280	1300	1300	1300	1300	1280	1280	1300	1300	1300	1280	1280	1300	1300	1300	1280	1280	1280	1300	1300	1300	1300	1280	1200
	Sam.	e e	2					24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	17

It is evident from Table 1 to TABLE 5 that the monolithic ceramic capacitor according to the present invention has a capacitance decreasing ratio of as small as within -45% at an impressed voltage of 5 kV/mm and a dielectric loss of less than 1.0 %, wherein the rate of change of the electrostatic capacitance against temperature changes satisfies both

the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of - 55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 5000 Ω • F or more and 200 Ω • F or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

The reason why the composition was limited in the present invention will be described hereinafter.

In the composition of $(BaO)_m TiO_2 + \alpha M_2 O_3 + \beta R_2 O_3 + \gamma BaZrO_3 + gMgO + hMnO$ (wherein $M_2 O_3$ represents at least one of either $Sc_2 O_3$ or $Y_2 O_3$ and $R_2 O_3$ represents at least one of the compound selected from $Eu_2 O_3$, $Gd_2 O_3$, $Tb_2 O_3$ and $Dy_2 O_3$, α , β , γ , g and h representing mole ratio, respectively), the $M_2 O_3$ content α of less than 0.001 as shown in the sample No. 1 is not preferable because the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic. On the other hand, the $M_2 O_3$ content a of more than 0.05 as shown in the sample No. 2 is also not preferable because the specific dielectric constant is reduced to less than 1000. Accordingly, the preferable range of the $Mn_2 O_3$ content α is 0.001 $\leq \alpha \leq$ 0.05.

It is not preferable that the R_2O_3 content β is less than 0.001 as in the sample No. 3 since the insulation resistance is so low that the product CR becomes small. It is also not preferable that the R_2O_3 content β is more than 0.05 as in the sample No. 4 because the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic, reducing the reliability. Accordingly, the preferable range of the R_2O_3 content β is 0.001 $\leq \beta \leq$ 0.05.

When the combined amount of M_2O_3 and R_2O_3 ($\alpha+\beta$) is more than 0.06, the dielectric loss is increased up to 2.0% while the mean life span is shortened, being not preferable since the number of rejects in the humidity resistance load test is increased. Accordingly, the combined amount of M_2O_3 and R_2O_3 ($\alpha+\beta$) is preferably in the range of $\alpha+\beta\leq 0.06$.

It is not preferable that, as seen in the sample No. 6, the BaZrO₃ content γ is zero since the insulation resistance becomes low while having a larger voltage dependency of the insulation resistance than in the system containing BaZrO₃. On the other hand, when the BaZrO₃ content γ exceeds 0.06 as in the sample No. 7, the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic, being not preferable since the mean life span is shortened. Accordingly, the preferable range of the BaZrO₃ content γ is 0.005 $\leq \gamma \leq$ 0.06.

It is not preferable that, as seen in the sample No. 8, the MgO content g is 0.001 since the insulation resistance becomes low besides the temperature characteristics noes not satisfy the B-level characteristic / X7R characteristic. On the other hand, when the MGO content g exceeds 0.12 as seen in the sample No. 9, the sintering temperature becomes high and the dielectric loss exceeds 2.0%, which is not preferable because rejections in the humidity resistance test are extremely increased while shortening the mean life span. Accordingly, the preferable range of the MgO content g is $0.001 \le g \le 0.12$.

It is not preferable that the MnO content h is 0.001 as seen in the sample No. 10 since the sample becomes not measurable due to semiconductor formation. It is not preferable that the MnO content h exceeds 0.12, on the other hand, because the temperature characteristic X7R is not satisfied along with the insulation resistance becomes low and the mean life span becomes short. Accordingly, the preferable MnO content h is in the range of 0.001 $< h \le 0.12$.

It is not preferable that, as seen in the sample No. 12, the combined content of MgO and MnO (g + h) exceeds 0.13 because the dielectric loss is increased to 2.0%, the mean life span is shortened and the number of rejects in the humidity resistance load test is increased. Accordingly, the combined content of MgO and MnO (g + h) is preferably in the range of $g + h \le 0.13$.

It is not preferable that the BaO/TiO₂ ratio m is less than 1.000 as in the sample No. 13 because measurements are impossible due to formation of semiconductors. It is also not preferable that, as seen in the sample No. 14, that the BaO/TiO₂ ratio m is 1.000 since the insulation resistance as well as the AC and DC breakdown voltage becomes low along with shortening the mean life span. It is not preferable, on the other hand, that the BaO/TiO₂ ratio m is over 1.035 since measurements becomes impossible due to insufficient sintering. Accordingly, the BaO/TiO₂ ratio m in the range of 1.000 < m \leq 1.035 is preferable.

It is not preferable that the amount of addition of the first or second side component is zero as in the samples No. 17 and 19 because measurements are impossible due to insufficient sintering. When the amount of addition of the first or second side component exceeds 3.0 parts by weight as seen in the samples No. 18 and 20, the dielectric loss exceeds 1.0% and the insulation resistance and insulation breakdown voltage are lowered along with shortening the mean life span, which are not preferable. Accordingly, the preferable content of either the first or the second components is 0.2 to 3.0 parts by weight.

The contents of the alkali metal oxides contained in barium titanate as impurities are suppressed below 0.02% by weight because, when the contents of the alkali earth metal oxides exceeds 0.02% by weight, the dielectric constant is decreased.

(Example 2)

A starting material $BaO_{1.010} \cdot TiO_2 + 0.010Y_2O_3 + 0.02Gd_2O_3 + 0.01BaZrO_3 + 0.05MgO + 0.01$ MnO (mole ratio) was prepared using barium titanate "A" in TABLE 1 as a dielectric powder, in which Li_2O -(Si, Ti) O_2 -MO oxide with a mean particle size of 1 μ m or less shown in TABLE 6 prepared by heating at 1200 to 1500 °C was added as a first side component. A monolithic ceramic capacitor was prepared by the same method as in Example 1, except that the starting material as described above was used. The overall dimensions of the monolithic ceramic capacitor produced are the same as in Example 1.

Table 6

Sample No.		The	first side compo			
	Amount of addition		Composition	``		
	(parts by weight)	Li₂O	(SiwTi _{1-w})O ₂	w	Al ₂ O ₃	ZrO ₂
101	1	20	80	0.3	0	0
102	1	10	80	0.6	5	5
103	0.8	10	70	0.5	20	0
104	0.8	35	45	1	10	10
105	1.5	45	45	0:5	10	0
106	1.5	45	55	0.3	0	0
107	1	20	70	0.6	5	5
108	1	20	70	0.4	10	0
109	1.2	30	60	0.7	5	5
110	. 1.2	30	60	0.8	10	0
111	2	40	50	0.6	5	5
112	2	40	50	0.9	0	10
113	1.5	10	85	0.4	5	0
114	2	5	75	0.6	10	10
115	1.2	20	55	0.5	25	0
116	1	45	40	0.8	0	15
117	0.8	50	45	0.7	5	0
118	1.2	25	75	0.9	0	0
119	1.5	25	75	1	0	0
120	1	35	65	0.9	0	0
121	1.5	35	65	1	0	0
122	1.2	20	70	0.2	0	10
·		1		1	1	

Then, the electric characteristics were measured by the same method as described in example 1. The results are shown in TABLE 7.

Tahla 7

Sam- ole	Baking temp.	Dielec- tric con-	Dielec- tric loss	Ratio of	tempers tance	nperature depend tance change (%)	Ratio of temperature dependent capaci- tance change (%)	apaci-	DC vias charac-		Product CR ($\Omega \cdot F$)	:R (D · F)		Insulation breakdown	tion	Humidity resistance	Mean life
Š	(ĵ.	stant	tan 8	AC/Czo	020	\overline{\chi_C}	∆C/C₂s	Maxi- mum	teristic (%)	315V Impressed	945V Im- pressed	315 V Impressed	945 V Impressed	voltage (kV/mm)	e (E	load test; Number of	span (h)
				-25°C	85°C	-55°C	125°C	value	AC/C 5kV/mm	Voltage	Voltage	Voltage	Voltage	AC	ည	reject	
						-				25	25°C	150°C	္န				
101	1280	1480	9.0	2.1	-8.5	5.2	æ	8.3	-39	2090	4840	230	220	12	15	0/72	880
102	1280	1490	9.0	2.3	ထု	9.6	-8.5	8.9	40	5080	4830	240	230	12	14	0/72	850
103	1280	1420	9.0	3	-8.1	4.9	-8.9	9.5	-38	2070	4820	250	240	12	14	0/72	900
104	1300	1400	9.0	2.4	-8.3	2	-9.2	9.5	-36	5100	4850	230	220	12	15	0/72	910
105	1300	1460	9.0	2.6	ထု	5.2	-9.5	9.7	-37	5120	4860	220	210	13	14	0/72	820
106	1280	1440	0.7	2.1	6.8-	4.8	-8.2	8.8	-37	5100	4850	230	520	12	14	0/72	820
107	1280	1500	9.0	2	-7.9	4.9	-9.1	9.5	9	5230	4970	250	240	13	14	0/72	910
108	1280	1480	9.0	3.1	-7.8	5.2	-9.4	9.6	9	5130	4870	240	230	12	14	0/72	930
109	1280	1480	9.0	2.8	-8.2	5.4	ဝှ	9.5	4	2090	4840	230	220	12	14	0/72	880
110	1300	1490	9.0	2.5	-8.2	5.5	-9.5	8.6	40	2080	4830	220	220	12	14	0/72	860
111	1300	1460	9.0	2	-8.5	5.7	-61	9.5	-39	2070	4820	220	210	. 12	14	0/72	880
112	1280	1470	9.0	2.8	ထု	2	6-	9.5	-39	5130	4870	220	210	12	44	0/72	870
113	1350						ΩN	measu	Unmeasurable due to insufficient sintering	e to insu	flicient s	intering					
114	1350						ร	measu	Unmeasurable due to insufficient sintering	e to insu	flicient s	intering					
115	1350	1450	1.4	2.2	-8.9	4.8	-8.7	6	-39	5160	4900	250	240	-	13	20/72	120
116	1350						n	measu	Unmeasurable due to insufficient sintering	e to insu	fficient s	intering					
117	1350						5	measu	Unmeasurable due to insufficient sintering	e to insu	fficient s	intering					
118	1300	1450	9.0	2.3	-8.8	5.3	-8.9	9.5	-39	2200	4940	240	230	12	14	0/72	820
119	1350	1490	1.3	1.9	-8.5	4.5	-8.6	8.9	40	5190	4930	260	250	11	13	11/72	190
120	1300	1440	9.0	2.4	-9.2	5	-9.2	9.3	-37	5180	4920	250	240	12	14	0/72	980
121	1350	1460	1.3	2.1	-8.8	4.2	-8.7	6	-37	5170	4910	240	230	1	13	22/72	120
122	1350	1450	1.2	2.2	-8.7	4.5	-8.8	9.5	-37	5200	4940	230	220	7	13	19/72	170

As is evident from TABLE 6 and TABLE 7, preferable results are obtained in the samples No. 101 to 112, 118 and 120, in which oxides with compositions within or on the boundary lines of the area surrounded by the straight lines con-

necting each spot indicated by A (X = 20, y = 80, z = 0), B (X = 10, y = 80, z = 10), C (X = 10, y = 70, z = 20), D (X = 35, y = 45, z = 20), E (X = 45, y = 45, z = 10) and F (X = 45, y = 55, z = 0) in the three component phase diagram of the oxides represented by $\text{Li}_2\text{O-}(\text{Si}_w, \text{Ti}_{1-w})\text{O}_2\text{-MO}$ shown in FIG. 4 are added, wherein the samples have a capacitance decreasing ratio of as small as within -45% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

The insulation resistance represented by the product CR at 25 °C and 150 °C shows as high values as 5000 $\Omega \cdot F$ or more and 200 $\Omega \cdot F$ or more, respectively, when the capacitor used under a electric field strength of 10 kV/mm. The insulation breakdown voltages are as high as 12 kV/mm or more under AC voltage and 14 kV/mm or more under a DC voltage. The mean life span is as long as 800 hours or more in the acceleration test at 150 °C and DC 25 kV/mm while enabling a relatively low firing temperature of 1300 °C or less.

On the contrary, when the $\text{Li}_2\text{O}\text{-}(\text{Si}_w, \text{Ti}_{1-w})\text{O}_2\text{-}M\text{O}$ oxides is outside of the composition range described above, the sintering becomes insufficient or many samples are rejected in the humidity resistance load test even after sintering in the samples No. 113 to 117 and 119. The samples with the composition falling on the line A-F and w = 1.0 as in the samples No. 119 and 121, the sintering temperature becomes high along with causing many rejects in the humidity resistance load test When the value of w is less than 0.30 as shown in the sample No. 122, the sintering temperature becomes high along with causing many rejects in the humidity resistance load test.

(Example 3)

30

35

40

45

50

55

A starting material $BaO_{1.010} \cdot TiO_2 + 0.010Y_2O_3 + 0.01Eu_2O_3 + 0.01Gd_2O_3 + 0.01BaZrO_3 + 0.05MgO + 0.01MnO$ (mole ratio) was prepared using barium titanate in TABLE 1A as a dielectric powder, in which oxides represented by SiO_2 - TiO_2 -XO with a mean particle size of 1 μ m or less shown in TABLE 8 prepared by heating at 1200 to 1500 °C was added as a second side component. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that the starting material as described above was used. The amounts of addition of Al_2O_3 and Al_2O_3 and Al_2O_3 are correspond to the amounts of addition relative to 100 parts by weight of the second side component (xSiO₂-yTiO₂-zXO). The overall dimensions of the monolithic capacitor produced is the same as in Example 1.

α)
a)
3	3
ূ	3

Sample					-	The second side combones and	מווחלוווחי שר	1115				
	Amount of addi-	#			Essential	Essential component (mole %)	(wole %)				Added component (parts by weight)	mponent weight)
	tion	SiO,	TiO,				e S				Al ₂ O ₃	ZrO ₂
	(parts by weight)	•	•	ВаО	CaO	SrO	MgO	ZuO	MnO	Total		
[-	85	-	-	0	0	0	4	တ	4	0	0
	-	35	51	0	10	0	0	0	4	14	0	0
_	-	30	20	0	30	0	15	4	-	20	0	o
1	-	39	1	20	20	2	0	13	5	09	0	0
	-	70	10	5	5	0	0	10	0	20	0	0
	1	45	10	0	0	0	0	15	30	45	0	0
	-	90	20	10	10	3	7	0	0	30	0	0
	-	90	30	0	16	0	0	0	4	20	0	0
	-	35	30	25	10	0	0	0	0	35	0	0
	1	40	40	10	0	0	0	5	5	20	0	0
	-	45	22	3	30	0	0	0	0	33	15	0
	1	45	22	3	30	0	0	0	0	33	10	2
1	-	65	25	5	5	0	0	0	0	10	0	0
	-	25	40	15	0	10	0	သ	5	35	0	0
	-	30	10	30	25	0	0	5	0	09	0	0
1	-	20	0	35	15	0	0	0	0	90	0	0
	-	45	22	30	0	0	က	0	0	33	25	0
1	-	45.	22	30	0	3	0	0	0	33	0	15
	-	30	60	10	0	c	c	_	0	10	c	c

Then, the electric characteristics were measured as in Example 1. The results are shown in TABLE 9.

Table 9

ing Dielec-	1	Dielec-	Ratio (of temper	rature de	Ratio of temperature dependent capaci-	capaci-	DC vias		Product CR (Ω F)	R (0 - F)		Insulation	ation	Humidity	Mean
np. tric con- tric loss				tauc	tance change (%)	(%) et		charac-					breakdown	Jown	resistance	
			ΔC/C ₂₀	ညီ	οV	ΔC/C ₂₅	Maxi- mum	teristic (%)	315V lm- pressed	315V lm- 945V lm- pressed pressed		315 V Im 945 V Im pressed pressed	· voltage (kV/mm)	ag (E	load test; Number of	Span (h)
<u> </u>	<u> </u>	-25	-25°C	85°C	-55°C	125°C	value	∆C/C 5kV/mm	Voltage		Voltage	Voitage	S S	2	reject	
									25	25°C	150	150°C				
1300 1460 0.6 3.	\vdash	က	7	-8.2	6.8	-7.9	8.5	-39	5080	4830	220	210	12	14	0/72	840
1280 1490 0.6 3.5	├	က	2	-8.4	7	-8.1	8.6	8	5080	4830	230	220	12	14	0/72	800
1280 1470 0.6	-		4	-8.6	7.2	-8.3	8.7	-39	5120	4860	220	210	12	· 14	0/72	920
1300 1450 0.6 3.	3	က	ω	-8.5	6.9	-8.2	9.8	-39	5150	4890	240	230	12	14	0/72	098
1300 1460 0.6 3.	3	က	6	-8.5	7.1	-8.2	8.8	-39	5070	4820	220	210	12	14	0/72	820
1280 1430 0.6 3.7	-	က	_	-8.5	8.9	-8.3	8.7	-38	5080	4830	220	210	13	15	0/72	006
1280 1450 0.6 3.5	\vdash	က	10	-8.4	7	-8.1	8.7	-39	5030	4780	230	220	12	14	0/72	068
1300 1470 0.6 3.1	ļ	က	_	æρ	6.7	-7.9	8.3	-39	5040	4790	200	190	12	14	0/72	930
1300 1460 0.6 3.9	(1)	e,	2	-8.4	6.9	هٻ	8.7	-39	5080	4830	220	210	12	14	0/72	830
1300 1450 0.6 3.9	_	က	0	-8.6	7.2	-8.2	8.8	6F-	5100	4850	210	200	12	14	0/72	860
1280 1430 0.6 4	_	4		-8.7	7.3	-8.5	8.9	<u>چ</u>	5410	5140	300	290	12	14	0/72	870
1300 1440 0.6 3.8	L	က်	8	-8.4	6.9	ထု	8.7	-39	5420	5150	310	300	12	14	0/72	880
1350 1420 1.2 3.1		က	_	-8.1	9.9	9.7-	8.3	.38 -38	5120	4860	230	220	11	13	38/72	150
1350						ວັ	nmeasu	Unmeasurable due to insufficient sintering	to insuff	rcient sin	itering					
1350						Ď	neasn	Unmeasurable due to insufficient sintering	to insuff	icient sin	itering			ļ		
1350 1420 1.3 3.3		က	3	-8.2	8.9	-7.8	8.5	-38	5030	4780	220	210	11	13	70/72	120
1350					,	٦ ا	neasn	Unmeasurable due to insufficient sintering	to insuff	icient sir	itering					
1350						Ď	ımeasu	Unmeasurable due to insufficient sintering	to insuff	icient sin	tering					
1350			ľ			Ď	measu	Unmeasurable due to insufficient sintering	to insuff	icient sin	itering					

As is evident from TABLE 8 and TABLE 9, preferable results are obtained in the samples No. 201 to 212, in which oxides with compositions within or on the boundary lines of the area surrounded by the straight lines connecting each spot indicated by A (X = 85, y = 1, z = 14), B (X = 35, y = 51, z = 14), C (X = 30, Y = 20, Z = 50) and D (X = 39, Y = 1, Z = 14), B (X = 35, Y = 51, Z = 14), C (X = 35, Y = 20, Z = 50) and D (X = 39, Y = 1, Z = 14), B (X = 35, Y = 51, Z = 14), B (X = 35, Y = 51, Z = 14), B (X = 35, Y = 51, Z = 14), B (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (X = 35, Y = 51, Z = 50) and D (Z =

= 60), wherein x, y and z represent mole %, in the three component phase diagram of the SiO₂-TiO₂-XO oxides shown in FIG. 5 are added, wherein the samples have a capacitance decreasing ratio of as small as within -45% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of - 55 °C to +125 °C.

When the capacitor is used under a high electric field strength of 10 kV/mm, the insulation resistance represented by the product CR at 25 °C and 150 °C show a high value of 5000 Ω • F or more and 200 Ω • F or more, respectively. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. The mean life span in the acceleration test at 150 °C and DC 25 kV/mm is as long as 800 hours along with being free from rejects in the humidity resistance load test and being possible to sinter at a relatively low sintering temperature of 1300 °C.

In the SiO₂-TiO₂-XO oxide, on the other hand, sintering becomes insufficient as in samples No. 213 to 219 or rejects occur in the humidity resistance load test even after sintering.

Although a monolithic capacitor having 5400 $\Omega \cdot F$ or more and 300 $\Omega \cdot F$ or more of the insulation resistances at 25 °C and 150 °C, respectively, under the electric field strength of 10 kV/mm, the sintering property is extremely deteriorated when the amounts of addition of Al₂O₃ and ZrO₂ exceed 15 parts by weight and 5 parts by weight, respectively.

(Example 4)

15

20

35

40

45

50

55

Four kinds of barium titanate (BaTiO₃) in TABLE 1, an oxide powder as a first side component and an oxide powder as a second side component were obtained by the same method as in Example 1.

Next, BaCO₃ for adjusting the Ba/Ti mole ratio m of barium titanate, and Sc₂O₃, Y₂O₃, Eu₂O₃, Gd₂O₃, Tb₂O₃ and Dy₂O₃, and BaZrO₃ and MnO, each having a purity of 99% or more, were prepared. These raw material powders and the foregoing oxide powder as one of the side component of either the first or the second component were weighed to be the compositions shown in TABLE 10 and TABLE 11. The amounts of addition of the first and second side components correspond to the amount of addition relative to 100 parts by weight of the essential component (BaO)_mTiO₂ + α M₂O₃ + β R₂O₃ + γ BaZrO₃ + gMnO). A monolithic ceramic capacitor was produced using this weighed materials by the same method as in Example 1. Overall dimensions of the monolithic ceramic capacitor produced is the same as in Example 1.

Table 10

* indicates "out of the scope of the present invention"

																			٠.,					
addition of the	second side	by weight)	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	4	0	0	0	0	0
addition of the	first side com-	by weight)	1.5	1.2	-	-	-	1.5	1.5	1	1	1.2	-	1	0	0	5	0	0	2.5	-	-	-	-
ε			0.01	1.005	1.015	1.005	1.005	1.01	1.01	1.005	1.01	0.99	1.00	1.038	1.05	1.005	1.01	1.01	1.015	1.01	1.015	1.01	1.01	1.005
6			0.09	0.14	0.04	0.14	0.16	80.0	90.0	0.001	0.14	90.0	0.1	0.08	0.08	0.09	0.08	0.06	0.08	0.08	0.06	90.0	0.11	0.1
٨			0.03	0.02	0.03	0.04	0.03	0	0.08	0.01	0.02	0.03	0.03	0.04	0.03	0.03	0.05	0.05	0.03	0.03	0.05	0.05	0.03	0.02
α+β			0.0407	0.072	0.0208	0.071	0.08	0.04	0.03	0.04	0.02	0.03	0.05	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.031	0.03	0.05	0.05
Total of B			0.04	0.002	0.0008	0.07	0.04	0.03	0.02	0.02	0.01	0.02	0.03	0.03	0.03	0.02	0.03	0.02	0.02	0.03	0.03	0.01	0.03	0.01
	Dy ₂ O ₃	-	0	0	0.0008	0	Ö	0.02	0	0	0	0.02	0.01	0	0.03	0	0.02	0.01	0	0.03	0	0.01	0	0.01
ß	Tb2O3		0	0.001	0	0.03	0.02	0	0.02	0	0	0	0.01	0	0	0	0	0.01	0	0	0.01	0	0.02	0
	Gd ₂ O ₃		0	0.001	0	0	0.02	0	0	0.02	0	0	0.01	0.03	0	0.01	0	0	0	0	0.01	0	0	0
	Eu ₂ O ₃		0.04	0	0	0.04	0	0.01	0	0	0.01	0	0	0	0	0.01	0.01	0	0.02	0	0.01	0	0.01	0
Total of	ø		0.0007	0.07	0.02	0.001	0.04	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.001	0.02	0.02	0.04
	Y ₂ O ₃	_	0.0007	0.02	0	0.001	0.04	0	0.01	0.01	0.01	0	0.02	0.005	0.01	0	0.01	0	0	0	0.001	0.02	0.01	0.03
_	Sc ₂ O ₃		0	0.05	0.02	0	0	0.01	0	0.01	0	0.01	0	0.005	0	0.02	0	0.01	0.02	0.01	0	0	0.01	0.01
Kind of	BaTiO		4	K	4	A	4	A	A	4	A	V.	A	A	4	4	4	A	4	۵	A	В	ပ	A
ble .	Š		•301	*302	•303	*304	•305	•306	*307	*308	*309	*310	*311	*312	*313	*314	*315	*316	*317	*318	319	320	321	322
	Kind of α Total of β $\alpha+\beta$ γ g m addition of the a	Kind of α Total of β $\alpha+\beta$ γ β m addition of the BaTiO, S_2O_3 Y_2O_3 α Eu ₂ O ₃ G_2O_3 G_3 G	Kind of α Total of β $\alpha+\beta$ γ g m addition of the first side comfirst side comparation, $S_{C_2}O_3$ Y_2O_3 α $E_{U_2}O_3$ $G_{C_2}O_3$	Kind of BaTiO ₂ α Total of Sc ₂ O ₃ γ + β γ + β γ = β m addition of the first side composition of the first side component (parts side compon	Kind of BaTiO ₂ α Total of Sc ₂ O ₃ γ (γ	Kind of BaTiO ₃ α Total of BaTiO ₃ α total of Sc ₂ O ₃ γ (γ) γ (γ)	Kind of BaTiO ₂ α Total of BaTiO ₃ α + β γ q π facility of point of the factors of the point (parts side component side component (parts side component	Kind of BaTiO ₂ α Total of Sc ₂ O ₃ α total of Sc ₂ O ₃	Kind of Sc ₂ O ₃ α Total of Sc ₂ O ₃ α total of Sc ₂ O ₃ O ₃ α total of Sc ₂ O ₃ α total of Sc ₂ O ₃	Kind of Sc ₂ O ₃ α Total of Sc ₂ O ₃ α control of the state composition of the state compositi	Kind of BaTiO ₂ according to the BaTiO ₃ Total of Sc ₂ O ₃ According to the BaTiO ₃ Total of Sc ₂ O ₃ O ₃ Total of Sc ₂ O ₃	Kind of Sc ₂ O ₃ x Total of Sc ₂ O ₃ x Total of Sc ₂ O ₃ x + p r q m addition of the factor of the state component of t	Kind of BaTiO, ScOs X CoO X CoO Total of BaTiO, ScOs Total of ScOs Total of BaTiO, ScOs Total of BaTiO, ScOs Total of BaTiO, ScOs X CoO Total of BaTiO, ScOs X CoO Total of BaTiO, ScOs X CoO X	Kind of BaTiO ₂ a Total of BaTiO ₂ A Folial of BaTiO ₂ A Total of BaTiO ₂ Total of BaTiO ₂ Total of BaTiO ₂ A Total of BaTiO ₂ Total of BaT	Kind of BaTiO, Sc ₂ O ₃ α Total of Data of Data of BaTiO, Sc ₂ O ₃ α Total of Data of Data of Data of BaTiO, Sc ₂ O ₃ α Total of Data o	Kind of Author of Line of Author of Line of BaTiO ₂ α to a control of Line of Author of Line of Author of Line of Author of Line of Author of Line of Line of Author of Line of Line of Line of Author of Line o	Kind of Amound of Mind of Amound Mind Mind of Mi	Kind of Action of Actio	Kind of Action Signature Action of Action Signature Bartio, Sc.O. V.2O. Total of Action Signature Bartio, Sc.O. V.2O. Total of Action Signature Physical Dysolution Total of Bartio, Soc.O. Total of Action Signature Physical Dysolution Total of Bartio, Soc.O. V.2O. Continue Signature V.2O. V.2O. </td <td>Kind of Name of Seziola a control of Seziola Total of Accordance (Single Company) Total of Accordance (Single Company) Total of BaT(o) Total of Accordance (Single Company) Total of BaT(o) Total of Accordance (Single Company) Total of Accordance (Single Company)</td> <td>Kind of Name of Sea Days A color of Care Days A color of Care Days A color of Days</td> <td>Kind of Sez-Os Sez-Os Y-Os Gran (part) Total of part (part) First side connection (part) Total of part (part) Total of part) Total of part (part) Total of part) Total of part (part) Total of part (part) Total of part (part) Total of part) Total of part (part) Total of part) To</td> <td>Kind of SezOs Gazon of Control of SezOs Total of SezOs A control of C</td> <td>Kind of Sectors a Total of Sectors A 9 m first solid on the fact solid or the solid or t</td>	Kind of Name of Seziola a control of Seziola Total of Accordance (Single Company) Total of Accordance (Single Company) Total of BaT(o) Total of Accordance (Single Company) Total of BaT(o) Total of Accordance (Single Company) Total of Accordance (Single Company)	Kind of Name of Sea Days A color of Care Days A color of Care Days A color of Days	Kind of Sez-Os Sez-Os Y-Os Gran (part) Total of part (part) First side connection (part) Total of part (part) Total of part) Total of part (part) Total of part) Total of part (part) Total of part (part) Total of part (part) Total of part) Total of part (part) Total of part) To	Kind of SezOs Gazon of Control of SezOs Total of SezOs A control of C	Kind of Sectors a Total of Sectors A 9 m first solid on the fact solid or the solid or t

Sam-	(BaO), T	(BaO) _m · TiO ₂ + α M ₂ O ₃ + β R ₂	J3 + B R2O3	O ₃ + y BaZrO ₃ + gMnO	+ gMnO									The amount of	The amount of
	Kind of	L	p	Total of					Total of B	α+β	λ	5	ε	addition of the	addition of the
Š	BaTiO ₃	Sc ₂ O ₃	Y ₂ O ₃	ಶ	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃						first component (parts by	nent (parts by
203	٥	c	0.05	0.05	0 01	c	c	0	0.01	90.0	0.03	0.13	1.01	0	1
324	A	0.02	0.01	0.03	0	0.001	0	0	0.001	0.031	0.02	90.0	1.005	1	0
325	A	0.02	0	0.02	0	0	0	0.02	0.02	0.04	0.03	0.08	1.01	1.1	0
326	A	0	0.01	0.01	0.01	0	0.02	0	0.03	0.04	0.02	0.08	1.01	0	1
327	V	0.01	0	0.01	0	0	0.01	0.02	0.03	0.04	0.03	0.08	1.01	0	2
328	A	0.01	0	0.01	0.03	0.02	0	0	0.05	90.0	0.02	0.12	1.01	1	0
329	A	0.01	0.01	0.02	0.02	0	0	0	0.05	0.04	0.02	80.0	1.005	1	0
330	A	0.01	0.02	0.03	0	0.01	0.01		0.02	0.05	0.02	0.1	1.01	1	0
331	A	0.01	0	0.01	0	.0.01	0	0.02	0.03	0.04	0.005	0.08	1.01	- 1	0
332	A	0.01	0.01	0.02	0	0.02	0.01		0.03	0.05	0.03	0.1	1.01	1	0
333	A	0.02	0	0.02	0.01	0	0	0.01	0.02	0.04	0.06	0.08	1.01	1	0
334	A	0	0.02	0.02	0.02	0	0	0	0.02	0.04	0.03	0.08	1.005	2	0
335	4	0.01	0.02	0.03		0	0.01	0	0.01	0.04	0.03	60.0	1.01	2	0
336	∢	0.01	0.01	0.02	0.01	0	0	0.01	0.02	0.04	0.03	0.08	1.01	2	0
337	A	0.01	0.01	0.02	0.02	0.01	0	0	0.03	0.05	0.02	0.1	1.005	2	0
338	4	0.005	0	0.005	0	0	0.005	0	0.005	0.01	0.05	0.02	1.001	2	0
339	4	0.01	0.01	0.02	0	0	0.01	0.01	0.02	0.04	0.03	0.08	1.01	0	1.5
340	4	0.03	0	0.03	0	0.02	0	0	0.02	0.05	0.02	0.1	1.035	2	0
341	4	0	0.02	0.02	0	0	0.01	0.01	0.02	0.04	0.03	0.08	1.01	0.2	0
342	4	0.01	0.01	0.02	0	0.01	0	0	0.01	0.03	0.03	90.0	1.01	3	0
343	4	0.01	0.01	0.02	0.02	0	0.01	0	0.03	0.05	0.03	0.1	1.01	0	0.2
344	4	0.05	0.01	0.03	0	0.03	0	0	0.03	90.0	0.05	0.13	1.005	0	3

The electric characteristics were measured by the same method as in Example 1. The results are shown in TABLE 12 and TABLE 13.

Table 12

	Mean	<u>≡</u>	span	Ē			980	950	006	100	150	006	130		110		100				130		9	880	960	940	970	900
	Humidity	resis-	tance	load test:	Number of reject		0/72	0/72	0/72	0/72	15/72	0/72	0/72		0/72		0/72				0/72		0/72	0/72	0/72	0/72	0/72	0/72
	ijon	lown	ge Ge	<u>بر</u>	2		14	14	4	14	4	4	4		4		7				12		12	4	15	14	15	4
	Insulation	breakdown	voltage	(kV/mm)	٩ V		13	12	13	12	12	12	12		12		5				10		7	13	12	12	12	12
	•		- 945 V Im	pressed	Voltage	150°C	200	210	120	220	230	8	240		150		160				150		160	230	230	220	240	220
	R (D F)		315 V Im	pressed	Voltage	15(210	220	130	230	240	110	250	Ē	160	Ē	170				160		170	240	240	230	250	230
nvention	Product CR (Ω F)		945V Im-	pressed	Voltage	ပ	4750	4860	2760	4670	4780	2000	4860	formatio	2790	formatio	2930	intering	intering	intering	2950	intering	2960	4800	4750	4740	4910	4840
resent i			315V Im-	pressed	Voltage	25°C	2000	5110	2900	4920	5030	2850	5110	semiconductor formation	2940	anductor	3080	fficient s	fficient s	fficient s	3100	fficient s	3110	5050	5000	4990	5170	2030
* indicates "out of the scope of the present invention"	DC vias	charac-	teristic	(%)	∆C/C 5kV/mm		-18	-5	-38	-7	မှ	-22	-32	to semico	-37	Unmeasurable due to semiconductor formation	-20	Jnmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	-22	Unmeasurable due to insufficient sintering	-22	-21	-35	-35	-18	-18
the scop	itance		Maxi-	mum.	value		17.5	9.7	æ	19.5	7.5	8.6	31.5	ble due	18.5	ble due	8.3	rable du	rable du	rable du	8.3	rable du	8.8	8.8	8.1	8.2	8.6	8.7
ont of	Ratio of temperature dependent capacitance		AC/C ₂ s		125°C		-17.5	-7.5	9.7-	-19.5	-7.3	-8.4	-31.5	Unmeasurable due	-18.5	neasura	8-	Inmeasu	Inmeasu	Inmeasu	7.7-	Inmeasu	-8.5	-8.2	-7.1	æ	-8.5	-8.5
ndicates	re depen	change (%)	/SC		-55°C		6.5	5	5.2	9.7	5	4	5	Š	5.5	Į.	5.6			ر	5.8		5	7.2	7	7.5	4	4.5
•	temperati		AC/C ₂₀	:	85°C		-12.5	-7.2	-7.1	-13.5	-6.5	-7.5	-13.5		-7.5		9.7-				-7.4		-8.3	-8.1	-6.6	-7.3	-8.1	-8.3
	Ratio of		/SC		-25°C		5.3	2.5	3.2	6.4	3	2.2	2.5		3.3		4				4		2.3	2.5	5.5	1.7	2	2.2
	Dielec-	tric loss	tan 8	%			9.0	0.7	9.0	0.7	2.2	9.0	0.7		0.7		0.7				2.7		2.8	0.7	0.7	9.0	9.0	9.0
	Dielec	tric con-	stant				1220	820	1450	800	710	1220	1340		1460		1160				1240		1260	1250	1380	1360	1130	1130
	Bakino	temo	်				1300	1300	1300	1300	1280	1280	1300		1280		1300				1300		1300	1300	1280	1280	1280	1300
	Sam		2				.301	*302	*303	*304	*305	•306	£307	*308	•309	*310	*311	*312	*313	*314	*315	*316	*317	*318	319	320	321	322

Table 13

				_					,	,				_,												-	
Mean	₽	span (h)				930	850	870	890	900	096	066	006	880	820	870	900	920	880	960	006	950	940	900	920	006	960
Humidity	resis-	tance load test	Number	of reject		0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	2//0	0/72	0/72
Insulation	down	age	S	3		15	14	14	14	15	14	14	14	15	14	14	14	14	14	14	14	14	14	14	14	14	14
Insul	breakdown	· voltage	AC	?		12	12	12	13	12	13	15	12	12	12	12	12	13	13	12	12	12	12	12	12	12	12
		.945 V Im	Voltage	·	150°C	200	240	240	240	240	240	210	210	210	240	210	190	190	240	240	240	190	240	240	240	240	230
R (O · F)		315 V lm	Voltage	200	150	210	250	250	250	250	250	220	220	220	250	220	200	200	520	250	250	200	250	250	250	250	240
Product CR (Ω · F)		945V lm-	Voltage	268	ပ	4750	4860	4910	4830	4860	4850	4760	4750	4730	4840	4670	4750	4760	4860	4850	4830	4740	4860	4850	4880	4930	4850
		315V Im-	Voltage	afigure 4	25°C	2000	5120	5170	5080	5120	5100	5010	2000	4980	2090	4920	2000	5010	5110	5100	2080	4990	5120	5100	5140	5190	5100
DC vias	charac-	teristic	رور	5kV/mm		-11	-32	-23	-24	-19	-11	-22	-17	-21	-21	-23	-21	-22	-22	-18	-40	-23	-17	-25	-33	-18	-11
itance		Maxi-		A		8.8	8.2	8.4	8.5	8.7	8.8	8.5	7.9	8.1	œ	8.1	8.1	8.5	8.2	8.8	8.2	8.3	8.1	8.5	8.5	8.5	8.8
Ratio of temperature dependent capacitance		225	176.0	2		-8.5	ထု	-8.4	-8.3	-8.2	-8.5	-7.9	φ	-8.2	-8.1	æ	-8.5	-8.3	-7.9	-8.5	-8.1	-7.5	-7.9	-8.5	-8.4	-8.3	-8.5
rre depend	change (%)	ΔC/C ₂₅	0.33) [;		5	5.5	9	5.5	5.1	9	5.2	ည	5.1	5	6.2	9	5.4	5.8	6.2	6.1	6.2	9	5.8	7	6.4	9
temperatu		ΔC/C ₂₀	0.50	 ပ		-8.2	-7.5	-7.5	-7.8	-8.1	-8.3	-7.5	-7.7	ထု	-7.4	-7.5	-7.7-	-7.6	-7.8	-8.3	-7.5	-7.4	9.7-	-7.9	-7.8	7.7-	-8.1
Ratio of		VC/	J.50C) E7-		2.3	2.1	3.3	3	2.5	2.5	2.3	3	2	2.4	က	2.1	1.9	2.6	2.3	2	2.4	2	2.6	2.4	2.2	2
Dielec-	tric loss	tan 8	<u>?</u>			0.7	9.0	9.0	9.0	0.7	9.0	9.0	0.7	9.0	9.0	0.7	0.7	9.0	0.7	9.0	9.0	9.0	0.7	9.0	0.7	0.7	0.7
Dielec-		stant				940	1320	1230	1280	1240	930	1250	1110	1260	1160	1220	1240	1250	1260	1150	1520	1260	1110	1270	1350	1130	980
-		(၁)				1300	1300	1300	1280	1280	1300	1300	1300	1280	1280	1300	1300	1300	1280	1280	1280	1300	1300	1300	1300	1280	1300
Sam-	e e	o N				323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344

As is evident from TABLE 10 to TABLE 13, the monolithic capacitor according to the present invention has a capacitance decreasing ratio of as small as within -45% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level

characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of - 55 °C to +125 °C.

Moreover, when the capacitor is used under a high electric field strength of 10 kV/mm, the insulation resistance represented by the product CR at 25°C and 150°C shows a high value of 4900 Ω • F or more and 200 Ω • F or more, respectively. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm under the DC voltage. The mean life span in the acceleration test at 150°C and DC 25 kV/mm is as long as 800 hours along with being possible to sinter at a relatively low sintering temperature of 1300°C.

The reason why the composition was limited in the present invention will be described hereinafter.

In the composition of $(BaO)_m TiO_2 + \alpha M_2 O_3 + \beta R_2 O_3 + \gamma BaZrO_3 + gMnO$ (wherein $M_2 O_3$ represents at least one of either $Sc_2 O_3$ or $Y_2 O_3$ and $R_2 O_3$ represents at least one of the compound selected from $Eu_2 O_3$, $Gd_2 O_3$, $Tb_2 O_3$ and $Dy_2 O_3$, α , β , γ and G representing mole ratio, respectively), the $M_2 O_3$ content α of less than 0.001 as shown in the sample No. 301 is not preferable because the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic. On the other hand, the $M_2 O_3$ content α of more than 0.05 as shown in the sample No. 302 is also not preferable because the specific dielectric constant is reduced to less than 900. Accordingly, the preferable range of the $M_2 O_3$ content a is 0.001 $\leq \alpha \leq$ 0.05.

It is not preferable that the R_2O_3 content β of less than 0.001 as in the sample No. 303 since the insulation resistance is so low that the product CR becomes small. It is also not preferable that the R_2O_3 content β is more than 0.05 as in the sample No. 304 because the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic, reducing the reliability. Accordingly, the preferable range of the R_2O_3 content β is 0.001 $\leq \beta \leq$ 0.05.

When the combined amount of M_2O_3 and R_2O_3 ($\alpha+\beta$) is more than 0.06 as in the sample No. 305, the dielectric loss is increased up to 2.0% while the mean life span is shortened, being not preferable since the number of rejects in the humidity resistance load test is increased. Accordingly, the combined amount of M_2O_3 and R_2O_3 ($\alpha+\beta$) is preferably in the range of $\alpha+\beta \le 0.06$.

It is not preferable that, as seen in the sample No. 306, the BaZrO $_3$ content γ is zero since the insulation resistance becomes low while having a larger voltage dependency of the insulation resistance than in the system containing BaZrO $_3$. On the other hand, when the BaZrO $_3$ content γ exceeds 0.06 as in the sample No. 307, the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic, being not preferable since the mean life span is shortened. Accordingly, the preferable range of the BaZrO $_3$ content y is 0.005 $\leq \gamma \leq$ 0.06.

It is not preferable that, as seen in the sample No. 308, the MnO content g is 0.001 since measurements are impossible due to semiconductor formation. On the other hand, it is not preferable that the MnO content g exceeds 0.13 as seen in the sample No. 309 because the temperature characteristic X7R is not satisfied besides the insulating resistance is low and the mean life span becomes short. Accordingly, the preferable range of the MnO content g is 0.001 < g \le 0.13.

It is not preferable that the BaO/TiO_2 ratio m is less than 1.000 as in the sample No. 310 because measurements are impossible due to formation of semiconductors. It is also not preferable that, as seen in the sample No. 311, the BaO/TiO_2 ratio m is 1.000 since the insulation resistance as well as the AC and DC breakdown voltage becomes low along with shortening the mean life span. It is not preferable, on the other hand, that the BaO/TiO_2 ratio m is over 1.035 as in the samples No. 312 and 313 since measurements becomes impossible due to insufficient sintering. Accordingly, the BaO/TiO_2 ratio m in the range of 1.000 < m \leq 1.035 is preferable.

It is not preferable that the amount of addition of the first or second side component is zero as in the samples No. 314 and 316 because measurements are impossible due to insufficient sintering. It is not preferable that the amount of addition of the first or second side component exceeds 3.0 parts by weight as seen in the samples No. 315 and 317, the dielectric loss exceeds 1.0% and the insulation resistance and insulation breakdown voltage are lowered along with shortening the mean life span. Accordingly, the preferable content of either the first or the second components is 0.2 to 3.0 parts by weight.

The contents of the alkali earth metal oxides contained in barium titanate as impurities are suppressed below 0.02% by weight because, when the contents of the alkali earth metal oxides exceeds 0.02% by weight as in the sample No. 318, the dielectric constant is decreased.

(Example 5)

20

40

A starting material of the composition of $BaO_{1.010} \cdot TiO_2 + 0.01Y_2O_3 + 0.02Dy_2O_3 + 0.01BaZrO_3 + 0.06MnO$ (mole ration) was prepared using barium titanate in TABLE 1A as a dielectric powder, in which oxides represented by Ll_2O_1 (Si, Ti) O_2 -MO with a mean particle size of 1 μ m or less shown in TABLE 6 prepared by heating at 1200 to 1500 °C was added as a first side component. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that the starting material as described above was used. The overall dimensions of the monolithic capacitor is the same as in Example 1. The electric characteristics were measured by the same method as in Example 1. The results are shown in TABLE 14. The samples No. 401 to 422 in TABLE 14 correspond to the samples No. 101 to 122 in TABLE

6, respectively, wherein, for example, the side component in the sample No. 101 in TABLE 6 is added to the sample No. 401 in TABLE 14.

Table 14

								_							_		<u> </u>	1				7					\neg
Mean	ב ב	span (F)	•			920	940	930	900	870	920	930	940	900	970	920	80			110			880	140	920	=	22
Humidity	Caraldina	load test: Number of	rejection			0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72			32/72			0/72	25/72	0/72	33/72	28/72
Insulation	i A	age E	SC)		15	14	15	14	14	14	14	14	14	14	14	14			13			14	13	14	13	13
Insul	K :	voltage (kV/mm)	AC.	?		13	12	13	12	12	12	12	12	12	12	12	12			1			12	7	12	7	=
		945 V Imporessed	Voltage	26.	္	210	230	220	240	220	230	240	240	230	230	220	200			230			220	240	250	240	240
R (Ω · F)		315 V Imporessed			150°C	220	240	230	250	230	240	250	250	240	240	230	210	ring	ring	240	ring	ring	230	250	260	250	250
Product CR (Q · F)		945V Im-			ပ	4700	4720	4710	4740	4790	4760	4880	4780	4730	4750	4740	4800	ent sinte	ent sinte	4790	ent sinte	ent sinte	4830	4850	4710	4820	4820
		315V lm-	Voltage	of and	25°C	4950	4970	4960	4990	5040	5010	5140	5030	4980	2000	4990	5050	insuffici	insuffici	5040	insuffici	insuffici	2080	5100	4960	2070	5070
DC vias	cnarac-	teristic (%)	رزر	5kV/mm		-33	-36	-33	-31	-36	-36	-35	-36	-36	-33	-32	-33	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	-33	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	-33	-35	-33	-33	-32
itance		Maxi-	91765	4 4 10 4		8.4	8.3	8.1	8.3	8.6	8.7	8.8	8.5	8.3	8.7	8.5	8.3	easurat	easurat	9.8	easurat	easurat	8.5	8.5	8.7	8.5	8.5
fent capac		225	125°C	2 2 2		-8.2	-8.1	-7.8	-7.9	-8.4	-8.5	-8.5	-8.2	-8.4	-8.5	-8.3	-8.2	Unm	Unm	8.5	Unm	Unn	-8.3	-8.2	-8.5	-8.3	-8.2
re depend	change (%)	AC/C ₂₅	55.0	ر ا		4.8	4.9	5	5.1	4.7	4.7	5	2	4.9	5.1	5.4	5.1			5			5.1	4.9	4.7	4.3	4.9
Ratio of temperature dependent capacitance		∆C/C₂₀	2,50	ာ ၁		-8.4	æ	-7.9	-7.7	-7.9	-7.7	-7.5	87	-7.4	-7.6	-7.5	-7.5			7.7-			-7.5	-7.3	-7.8	8-	-8.1
Ratio of		/DV	7.30	2 67-		2.2	2.1	2.7	2.1	2.3	2	2	2.8	3	2.4	2.3	2.7			2.4			2.5	2	2.4	2.5	2.3
Dielec-	tric loss	tan 8	(e)			0.7	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	0.7	9.0			1.4			9.0	1.3	0.7	1.3	1.2
Dielec-	tric con-	stant		-	-	1350	1380	1360	1310	1380	1380	1370	1380	1380	1350	1320	1360			1350			1350	1370	1350	1360	1330
Baking	temp	<u>(</u>)				1280	1280	1280	1300	1300	1280	1280	1280	1280	1300	1300	1280	1350	1350	1350	1350	1350	1300	1350	1300	1350	1350
Sam-	음	Š				401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422

As is evident from TABLE 14, preferable results are obtained in the samples No. 401 to 412, 418 and 420, in which

oxides in the samples No. 101 to 112, 118 and 120 in TABLE 6 with compositions within or on the boundary line of the area surrounded by the straight lines connecting each spot indicated by A (X = 20, y = 80, z = 0), B (X = 10, y = 80, z = 10), C (X = 10, y = 70, z = 20), D (X = 35, y = 45, z = 20), E (X = 45, y = 45, z = 10) and F (X = 45, y = 55, z = 0), wherein x, y and z represent mole % and w is mole ratio, in the three component phase diagram of the Li_2O -(Si_w , Ti_{1-w})O₂-MO oxides shown in FIG. 4 are added, wherein the samples have a capacitance decreasing ratio of as small as within -40% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

When the capacitor is used under a high electric field strength of 10 kV/mm, the insulation resistance represented by the product CR at 25 °C and 150 °C show a high value of 4900 Ω • F or more and 200 Ω • F or more, respectively. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm under the DC voltage. The mean life span in the acceleration test at 150 °C and DC 25 kV/mm is as long as 800 hours along with being possible to sinter at a relatively low sintering temperature of 1300 °C.

On the contrary, when the oxides represented by $\text{Li}_2\text{O}\text{-}(\text{Si}_{\text{w}}, \text{Ti}_{1-\text{w}})\text{O}_2\text{-}\text{MO}$ is outside of the composition range described above as in the samples No. 113 to 117 and 119 in TABLE 6, the sintering becomes insufficient or many samples are rejected in the humidity resistance load test even after sintering as seen in the samples No. 413 to 417 and 419. The samples with the composition falling on the line A-F and W = 1.0 have high sintering temperature along with causing many rejects in the humidity resistance load test as seen in the samples No. 119 and 121 in TABLE 14. When the value of w is less than 0.30 as shown in the sample No. 122 in TABLE 6, the sintering temperature becomes high along with causing many rejects in the humidity resistance load test as seen in the sample NO. 433 in TABLE 14.

(Example 6)

25

35

40

45

55

A starting material with a composition of $BaO_{1.010} \cdot TiO_2 + 0.01Y_2O_3 + 0.01Eu_2O_3 + 0.01Tb_2O_3 + 0.015BaZrO_3 + 0.06MnO$ (mole ration) was prepared using barium titanate in TABLE 1A as a dielectric powder, in which the oxide represented by SiO_2 - TiO_2 -XO with a mean particle size of 1 μ m or less as shown in TABLE 8 prepared by heating at 1200 to 1500 °C was added as a second side component. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that the starting material as described above was used. The overall dimensions of the monolithic capacitor produced is the same as in Example 1. The electric characteristics were measured by the same method as in Example 1. The results are shown in TABLE 15. The samples No. 501 to 519 in TABLE 15 correspond to the samples No. 201 to 219 in TABLE 8, respectively, wherein, for example, the sample No. 501 in TABLE 15 was obtained by adding the side component in the sample No. 201 in TABLE 8.

Fahle 15

												<u>.</u>							,				
Mean	span	Ξ			006	890	930	870	850	900	880	910	880	870	006	006	120			130			
Humidity resis-	tance	load test:	Number of reject		0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	<i>0</i> 72	0/72	0/72	42/72			71/72			
Insulation breakdown	voltage	(kV/mm)	ဋ		14	14	14	15	14	15	14	14	14	14	14	15	13			13			
Insul	yo,	3	မှ		12	12	12	13	12	13	.12	12	12	12	12	13	11			Ξ			
	945V Im-	pressed	Voltage	ပ္	200	210	210	220	220	200	220	190	220	210	300	300	210			220			
R (Ω · F)	315V lm-		Voltage	150°C	210	220	220	230	230	210	230	200	230	220	310	320	220	ing	ing	230	ing	ing	ing
Product CR (Ω · F)	945V Im-		Voltage	O	4720	4730	4780	4770	4740	4730	4700	4700	4730	4750	5050	2060	4850	nt sinter	nt sinter	4700	nt sinter	nt sinter	nt sinter
	315V lm- 945V lm- 315V lm- 945V lm		Voltage	25°C	4970	4980	2030	5020	4990	4980	4950	4950	4980	2000	5320	5330	5100	nsufficie	nsufficie	4950	nsufficie	nsufficie	nsufficie
DC vias charac-	ن.		∆C/C 5kV/mm	<u> </u>	-34	-36	-34	-33	-34	-33	-34	-34	-36	-34	-33	÷34	-33	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	-33	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering
	Maxi-	mnm	value		7.8	6.7	8.2	8.2	8.1	8	7.7	80	7.8	7.7	7.8	8.2	8.3	asurable	asurable	7.7	asurable	asurable	asurable
Ratio of temperature dependent capacitance change (%)	25		125°C		-7.5	7.7-	ထု	-8.1	-7.9	7.7-	-7.5	-7.8	7.7-	-7.5	-7.6	-7.8	- 6.7-	Unme	Unme	-7.5	Unme	Unme	Unme
ture depend	AC/C ₂₅		၁.99-		6.2	6.5	6.7	6.5	8.9	6.3	6.4	8.9	6.5	8.9	7	8.9	8.9			6.5			
emperatu ch			3.58 2.58		φ	-8.1	-8.2	8	-8.1	-7.9	-8.1	7.7-	-8.1	-7.9	ထု	-7.8	-7.8			ထု			
Ratio of	AC/C20		-25°C		3.3	3.2	3.4	4	3.5	3.4	3.5	3.3	3.7	3.5	3.8	3.4	3.3			3.5			
Dielec- tric loss	tanδ	8			9.0	9.0	0.7	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	1.3			1.2			
Dielec-					1350	1370	1360	1330	1350	1320	1350	1360	1370	1360	1340	1330	1310			1300			
_	်				1300	1280	1280	1300	1300	1280	1280	1300	1300	1300	1280	1300	1350	1350	1350	1350	1350	1350	1350
 	2				501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519

As is evident from the samples No. 501 to 512 in TABLE 15, preferable results are obtained in the samples in which the oxides of the samples No. 201 to 212 in TABLE 8 with compositions within or on the boundary lines of the area sur-

rounded by the straight lines connecting each spot indicated by A (X = 85, y = 1, z = 14), B (X = 35, y = 51, z = 14), C (X = 30, y = 20, z = 50) and D (X = 39, y = 1, z = 60), wherein x, y and z represent mole %, in the three component phase diagram of the oxides represented by SiO_2 - TiO_2 -XO shown in FIG. 5 are added, wherein the samples have a capacitance decreasing ratio of as small as within -40% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

When the capacitor is used under a high electric field strength of 10 kV/mm, the insulation resistance represented by the product CR at 25 °C and 150 °C show a high value of 4900 Ω • F or more and 200 Ω • F or more, respectively. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm under the DC voltage. The mean life span in the acceleration test at 150 °C and DC 25 kV/mm is as long as 800 hours along with being free from rejections in the humidity resistance load test and being possible to sinter at a relatively low sintering temperature of 1300 °C.

On the contrary, when the SiO_2 - TiO_2 -XO oxides is outside of the composition range described above as in the samples No. 213 to 219 in TABLE 8, the sintering becomes insufficient or many samples are rejected in the humidity resistance load test even after sintering as seen in the samples No. 513 to 519 in TABLE 15.

When Al_2O_3 and/or ZrO2 is allowed to contain in the oxides represented by SiO_2 - TiO_2 -XO as in the samples No. 211 and 212 in TABLE 8, a monolithic capacitor having the insulation resistances of 5300 Ω • F or more and 300 Ω • F or more at 25 °C and 150 °C, respectively, under an electric field strength of 10 kV/mm as the samples No. 511 and 512 in TABLE 15 can be obtained. However, when the amounts of addition of Al_2O_3 and Al_2O_3 are exceed 15 parts by weight and 5 parts by weight, respectively, as in the samples No. 217 and 218 in TABLE 8, the sintering property is extremely deteriorated as in the samples No. 217 and 218 in TABLE 8.

(Example 7)

25

45

50

55

After preparing and weighing $TiCl_4$ and $Ba(NO_3)_2$ having a variety of purity as starting materials, the compounds were precipitated as titanyl barium oxalate ($BaTiO(C_2O_4) \cdot 4H_2O$) by adding oxalic acid. This precipitate was decomposed by heating at a temperature of 1000 °C or more to synthesize four kinds of barium titanate listed in TABLE 1.

Oxides, carbonates or hydroxides as each component of the first side component were weighed so as to be a composition ratio (mole ratio) of $0.25 \text{Li}_2\text{O}-0.65(0.30 \text{TiO}_2 \cdot 0.70 \text{SiO}_2)-0.10 \text{Al}_2\text{O}_3$ to obtain a powder by crushing and mixing.

Likewise, oxides, carbonates or hydroxides as each component of the second side component were weighed so as to be a composition ratio (mole ratio) of 0.66SiO₂-0.17TiO₂-0.15BaO-0.02MnO to obtain a powder by crushing and mixing.

Oxide powders of the first and second side components were placed in separate platinum crucibles, respectively, and heated at 1500 °C. After quenching and crushing the mixture, each oxide powder with a mean particle size of 1 μ m or less was obtained.

In the next step, BaCO $_3$ for adjusting the mole ratio Ba/Ti (m) in barium titanate, Sc $_2$ O $_3$, Y $_2$ O $_3$, BaZrO $_3$, MgO and MnO, each having a purity of 99% or more, were prepared. These raw material powders and the oxides described above to be either the first or second side component were weighted so as to form the compositions shown in TABLE 1002 and TABLE 1003. The amounts of addition of the first and second side components are indicated by parts by weight relative to 100 parts by weight of the essential component represented by ((BaO) $_m$ TiO $_2$ + α M $_2$ O $_3$ + β BaZrO $_3$ + γ MgO + gMnO).

5			
10			
15			
20			
25			
30			
35			
40	,		
45			

													_	,						- 1						$\overline{}$
ion"	Amount of addition of	nent (narts hy weight)		0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	4	0	0	0	0	0	-
* indicates "out of the scope of the present invention"	Amount of addition of	the tirst side compo-		1	1	1.5	1.5	•	1	-	1	1	-	1	1	0	0	\$	0	0	2	-	, 1	1	_	0
ut of the sc		٤		1.005	1.005	1.01	1.01	1.01	1.01	1.01	1.01	1.01	66.0	1.00	1.038	1.05	1.01	1.01	1.01	1.01	1.01	1.015	1.02	1.03	1.02	1.01
dicates "or		γ+g		0.004	0.12	0.05	90.0	0.035	0.13	0.08	0.13	0.14	0.05	0.05	0.03	0.04	0.03	0.05	0.04	0.05	90.0	0.003	0.03	0.122	0.07	0.13
. <u>≅</u> *		6		0.002	0.05	0.02	0.04	0.034	0.005	0.001	0.125	90.0	0.03	0.02	0.01	0.01	0.02	0.02	0.03	0.02	0.03	0.0015	0.01	0.002	0.04	0.12
		λ		0.002	0.07	0.03	0.02	0.001	0.125	0.079	0.005	0.08	0.02	0.03	0.02	0.03	0.01	0.03	0.01	0.03	0.03	0.002	0.05	0.12	0.03	0.01
	gMnO	d		0.02	0.03	0	0.08	0.02	0.02	0.02	0.02	0.03	0.03	0.04	0.04	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.03	0.03	0.03
	+ yMgO +	Total	ofα	0.0008	0.07	0.03	0.03	0.02	0.03	0.04	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.03	0.001	0.05	0.055	0.04	90.0
	$(BaO)_m TiO_2 + \alpha M_2 O_3 + \beta BaZrO_3 + \gamma MgO + gMnO$	α	Y ₂ O ₃	0.0008	90.0	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.01	0.01	0	0.01	0.01	0.01	0.01	0.025	0.02	0.001	0	0.05	0.04	90.0
	$0^2 + \alpha M_2O$		Sc ₂ O ₃	0	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.01	0.005	0.01	0	0.02	0.005	0	0
	L	Kind of	BaTiO ₃	14	14	4	14	1A	44	14	1A	41	14	14	14	4	14	14	14	1A	9	14	18	10	1A	14
Table 1002	Sample	Ö		1001	-1002	*1003	1004	*1005	1006	1007	*1008	•1009	*1010	*1011	*1012	*1013	*1014	*1015	*1016	*1017	*1018	1019	1020	1021	1022	1023

Amount of addition of	the second side com-	ponent	0	0	0	0	0	2	0	0	0	0.2	3
Amount of addition of	the first side component		-	_	1	2	2	0	2	0.2	က	0	0
	٤		1.01	1.01	1.01	1.01	1.001	1.01	1.035	1.015	1.01	1.01	1.01
	δ+λ		0.03	0.04	0.05	0.11	0.011	0.07	0.05	0.04	0.05	0.035	0.04
	6		0.02	0.03	0.02	0.05	900.0	0.02	0.03	0.01	0.03	0.015	0.01
	٠		0.01	0.01	0.03	90.0	0.005	0.05	0.02	0.03	0.02	0.02	0.03
QuV	б		0.005	0.04	90.0	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.03
γMgO + gN	Total of α		0.01	0.02	0.03	0.05	0.005	0.04	0.05	0.02	0.02	0.02	0.02
αM ₂ O ₃ + βBaZrO ₃ + γMgO + gMnO	×	Y ₂ O ₃	0.01	0.02	0.03	0.04	0.005	0.04	0.02	0.02	0.02	0.02	0.02
+ αM ₂ O ₃ +	- -	Sc ₂ O ₃	0	0	0	0.01	0	0	0	0	0	0	0
(BaO) _m TiO ₂ +	Kind of BaTiO ₃		1A	1A	1A	1A	1A	1A	1A	1A	4F	1A	1A
Sample No.	i		1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034
			-										

Table 1003

Organic solvents such as polyvinyl butyral binder and ethanol were added to the weighed compounds and the mixture was mixed in a ball mill in an wet state to prepare a ceramic slurry This ceramic slurry was formed into a sheet by a doctor blade method to obtain a rectangular shaped green sheet with a thickness of 35 μ m, followed by printing an

electroconductive paste mainly composed of Ni on the ceramic green sheet to form an electroconductive paste layer for forming inner electrodes.

Then, a plurality of the ceramic green sheets on which the electroconductive layer is formed were laminated so that the sides where the electroconductive paste is projected out are alternately placed with each other, thus obtaining a monolithic body. This monolithic body was heated at 350 °C in a N_2 atmosphere and, after allowing the binder to decompose, the monolithic body was fired at the temperatures shown in TABLE 1004 and TABLE 1005 in a reducing atmosphere comprising H_2 - N_2 - H_2 O gases under an oxygen partial pressure of 10^{-9} to 10^{-12} MPa for two hours, thereby obtaining a ceramic sintered body.

The both side faces of the ceramic sintered body were coated with a silver paste containing B_2O_3 -Li₂O-SiO₂-BaO glass frits and fired at a temperature of 600 °C in a N_2 atmosphere, thereby obtaining outer electrodes electrically connected to the inner electrodes.

The overall dimensions of the monolithic ceramic capacitor thus obtained were 5.0 mm in width, 5.7 mm in length and 2.4 mm in thickness while the thickness of the dielectric ceramic layer was 30 μ m. Total number of the effective dielectric ceramic layers were 57, the area of the confronting electrode per one layer being 8.2 \times 10⁻⁶m².

Electric characteristics of these monolithic ceramic capacitors were measured. The electrostatic capacitance (C) and dielectric loss ($\tan \delta$) were measured using an automatic bridge type measuring instrument at 1 kHz, 1 Vrms and 25 °C and the dielectric constant (ϵ) was calculated from the electrostatic capacitance. Next, the insulation resistance was measured using an insulation resistance tester at 25 °C and 150 °C by impressing direct current voltages of 315 V (or 10 kV/mm) and 945 V (or 30 kV/mm) for 2 minutes, obtaining a product of the electrostatic capacitance and insulation resistance, or a product CR.

The rate of change of the electrostatic capacitance against temperature changes was also measured. The rate of change at -25 °C and 85 °C by taking the electrostatic capacitance at 20 °C as a standard ($\Delta C/C20$), the rate of change at - 55 °C and 125 °C by taking the electrostatic capacitance at 20 °C as a standard ($\Delta C/C25$) and the maximum value of the rate of change ($|\Delta C|$ max) as an absolute value were measured as the electrostatic capacitances against temperature changes.

The DC vias characteristic was also evaluated. First, the electrostatic capacitance when an AC voltage of 1 kHz and 1 Vrms was impressed was measured. Then, the electrostatic capacitance when a DC voltage of 150 V and an AC voltage of 1 kHz and 1 Vrms were simultaneously impressed was measured, thereby the rate of reduction of the electrostatic capacitance (Δ C/C) due to loading the DC voltage was calculated.

In the high temperature load test, a direct current voltage of 750 V (or 25 kV/mm) was impressed at 150 °C on 36 pieces of each sample to measure the time dependent changes of the insulation resistance. The time when the insulation resistance of each sample was reduced below $10^6 \Omega$ was defined to be a life span time and mean life span time was evaluated.

In the humidity resistance test, the number of the test pieces having an insulation resistance of $10^6\Omega$ or less among the 72 test pieces were counted after impressing a DC voltage of 315 V under an atmospheric pressure of 2 atm (relative humidity 100%) at 120 °C for 250 hours.

Insulation breakdown voltages under AC and DC voltages were measured by impressing AC and DC voltages at a voltage increase rate of 100 V/sec.

The results described above are listed in TABLE 1004 and TABLE 1005.

40

45

50

Mean life span	Ē			890	850	840	150	830	180		190	130		110				150		170	870	950	960	820	830	840
Humidi- ty resis-	tance load test: Num-	per of	reject	0/72	0/72	0/72	0/72	0/72	61/72		0/72	15/72		0/72				0/72		0/72	0/72	0/72	0/72	0/12	0/72	0/72
		\neg	ပ္	4	14:	4	41	4	14		14	14		12				11		Ξ	14	15	14	15	14	15
Insula- tion break-	down voltage (kV/mm)		AC AC	12	12	12	12	13	12		12	12		10				1	ļ	2	12	12	12	12	12	13
	945V Im- pressed	Voltage	၁	200	180	110	220	120	210		130	230		150				150		170	250	250	230	270	240	210
İ	_]	150°C	210	190	150	230	130	220		140	240		160				160		180	260	260	240	280	250	220
		Voltage	0	4870	8070	2200	4910	2920	4880		2980	4760		3140				3150		2990	4860	4820	4800	2030	4900	4970
<u>م</u>	315V lm- 9 pressed p	Voltage	25.(5130	8490	3140	5170	3070	5140		3140	5010		3300				3310		3150	5120	5070	2050	5290	5160	5230
DC vias	charac-		Δ C/C 5kV/mm	-17	-12	-15	-26	-21	-35		-28	-12		-25				-25		-23	-15	45	-45	-15	-26	-15
	Maxi-		L~ */	70	æ	9.1	35.4	23	6		25.1	6.6	1	10.2				10.9		8.4	9.2	8.8	8.6	6	8.8	8.9
ent		125°C vz		-17.2	-6.5	-8.2	-29.5	-17.9	-8.6		-18.6	-9.1		-9.3	}			-9.4		9.7-	-9.4	-8.5	8,	-8.2	-8.6	-8.4
Ratio of temperature dependent capacitance change (%)	25	-55°C 1		4.6	4.4	4.2	5.1	4.1	4.3		4.8	3.8		4.7				4.2		3.1	5.6	3.8	4	4.1	3.8	4.2
emperatur ce chang	∇	82.C		-12.5	-7.2	æρ	-14.7	-14.2	-8.3	mation	-8.9	-9.2	mation	ا ف	- Bui	Bui	gui	6.8	gu	-8.4	-7.9	-7.2	<u></u>	φ	-8.3	₽. 1
Ratio of te	C/C20	2.5		5.5	2.1	2	2.4	3.2	2.5	ductor fo	3.5	3.5	nductor formation	3.9	ent sintering	ent sinter	ent sinter	4	ent sintering	2.8	2.5	2.5	2.6	က	2.5	2.4
ó	, «	(%)		0.8	0.7	9.0	0.7	0.7	2.7	Unmeasurable due to semiconductor formation	8.0	2.6	Unmeasurable due to semicon	0.7	Unmeasurable due to insufficie	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	2.3	Unmeasurable due to insufficie	2.5	0.7	0.7	9.0	9.0	9.0	0.7
Dielec- I	. =			1140	850	1020	1360	1220	1400	rable due	1340	880	rable due	1280	rrable due	urable due	urable due	1280	rable due	1260	1030	1580	1520	1080	1320	1050
<u> </u>	temp.	 S		1300	1300	1280	1300	1280	1360	Unmeasu	1280	1280	Unmeasu	1300	Unmeasu	Unmeasu	Unmeasu	1300	Unmeast	1300	1300	1280	1280	1280	1300	1300
۲	ટ			1001.	1005	•1003	1004	1005	1006	1007	•1008	1000	1010	11011	1012	•1013	1014	1015	1016	1017	*1018	1019	1020	1021	1022	1023

Mean	life span	Ē.				890	900	830	840	860	026	006	870	068	098	840
Humidi-	ty resis-	tance load	per of	rejects		0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72
		oltage		2		14	15	7	14	14	14	14	15	14	14	14
Insula-	tion break-	down voltage (kV/mm)		AC		12	12	13	12	12	12	13	12	12	12	12
		945V lm-	Voltage	150°C		220	260	270	210	190	200	230	260	200	200	220
		315V lm-	Voltage	150		230	270	280	220	200	210	240	270	210	210	230
(D.F.)		945V Im-	Voltage	25°C		4920	5040	4980	2000	5020	4790	4970	4830	4930	4880	4830
Product CR (Ω·F)		315V Im-	Voltage	25		5180	2300	5240	5260	5280	5040	5230	2080	5190	5140	5080
22	vias	charac-	(%)	∆ C/C	5kV/mm	-45	9	-35	-22	45	-26	42	42	-42	-42	-43
		Maxi-	value			8.8	8.5	တ	8.6	8.4	8.6	8.8	8.9	8.7	9.1	9.5
dent			125°C			-8.2	-7.9	-8.3	-8.1	-7.9	-8.2	-8.1	-8.5	-8.2	-8.5	-8.4
re deper	de (%)	∆ C/C ₂₅	-55℃			4.1	4.3	3.8	3.9	4.2	4.3	4.5	4.1	3.9	3.9	4.2
emperati	ce chan		3.58			6.7-	-7.1	<u>م</u>	-7.5	-7.6	-7.2	-7.9	æρ	-8.1	-7.8	9.7-
Ratio of temperature dependent	capacitance change (%)	Δ C/C ₂₀	-25°C			2.9	3.1	3.2	2.4	2.8	2.7	2.6	2.5	2	2.4	2.5
Dielec-	ţic	loss	o (%)	2		9.0	0.7	9.0	0.7	9.0	9.0	9.0	9.0	9.0	0.7	9.0
Dielec-			ii n			1570	1480	1420	1230	1590	1330	1540	1560	1550	1540	1520
Bak-	.00	temp.	3			1300	1300	1280	1280	1300	1300	1300	1280	1280	1300	1300
1		ટું				1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034

Table 1005

It is evident from Table 1002 to TABLE 1005 that the monolithic ceramic capacitor according to the present invention has a capacitance decreasing ratio of as small as within -45% at an impressed voltage of 5 kV/mm and a dielectric loss of less than 1.0 %, wherein the rate of change against temperature changes satisfies both the B-level characteristic

standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 5000 Ω • F or more and 200 Ω • F or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

The reason why the composition was limited in the present invention will be described hereinafter.

In the composition of $(BaO)_m TiO_2 + \alpha M_2 O_3 + \beta BaZrO_3 + \gamma MgO + gMnO$ (wherein $M_2 O_3$ represents at least one of either Sc_2O_3 or Y_2O_3 , α , β , γ , and g representing mole ratio, respectively), the M_2O_3 content α of less than 0.001 as shown in the sample No. 1001 is not preferable because the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic. On the other hand, the M_2O_3 content α of more than 0.06 as shown in the sample No. 1002 is also not preferable because the specific dielectric constant is reduced to less than 1000. Accordingly, the preferable range of the M_2O_3 content α is $0.001 \le \alpha \le 0.06$.

It is not preferable that the $BaZrO_3$ content β of zero as in the sample No. 1003 is not preferable since the insulation resistance is low and the voltage dependency of the insulating resistance is larger than that of the composition system containing $BaZrO_3$. It is also not preferable that the $BaZrO_3$ content β is more than 0.06 as in the sample No. 1004 because the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic, along with shortening

It is not preferable that the amount of addition of the first or second side component is zero as in the samples No. 1014 and 1016 because measurements are impossible due to insufficient sintering. It is not preferable that the amount of addition of the first or second side component exceeds 3.0 parts by weight as seen in the samples No. 1015 and 1017, because the dielectric loss exceeds 1.0% and the insulation resistance and insulation breakdown voltage are lowered along with shortening the mean life span. Accordingly, the preferable content of either the first or the second components is 0.2 to 3.0 parts by weight.

The contents of the alkali earth metal oxides contained in barium titanate as impurities are suppressed below 0.02% by weight because, when the contents of the alkali earth metal oxides exceeds 0.02% by weight as in the sample No. 1018, the dielectric constant is decreased.

(Example 8)

20

40

45

50

55

A material with a composition of $BaO_{1.010} \cdot TiO_2 + 0.03Y_2O_3 + 0.02BaZrO_3 + 0.05MgO + 0.01$ MnO (mole ratio) was prepared using barium titanate in TABLE 1A as a dielectric powder. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that an oxide represented by Li_2O -(Si, Ti) O_2 -MO shown in Table 1006, having a mean particle size of 1 μ m or less produced by heating the material described above at 1200 to 1500 °C, was added as the first side component. The overall dimensions of the monolithic ceramic capacitor produced is the same as in Example 1.

Table 1006

	Sample			The first si	de component		
5	No.	Amount of		Compo	sition (mol %,	except w)	
		addition (parts by weight)	Li₂O	(Si _w Ti _{1-w})O ₂	w	Al ₂ O ₃	ZrO₂
	1101	1	20	80	0.3	0	0
10	1102	1	10	80	0.6	5	5
	1103	0.8	10	70	0.5	20	0
	1104	0.8	35	45	1	10	10
	1105	1.5	45	45	0.5	10	0
15	1106	1.5	45	55	0.3	0	0
75	1107	1	20	70	0.6	5	5
	1108	1	20	70	0.4	10	0
	1109	1.2	30	60	0.7	5	5
	1110	1.2	30	60	0.8	10	0
20	1111.	2	40	50	0.6	5	5
	1112	2	40	50	0.9	0	10
	1113	1.5	10	85	0.4	5	0
	1114	2	5	75	0.6	10	10
	1115	1.2	20	55	0.5	25	0
25	1116	1	45	40	0.8	0	15
	1117	0.8	50	45	0.7	5	0
	1118	1.2	25	75	0.9	0	0
	1119	1.5	25	75	11	0	0
	1120	1	35	65	0.9	0	0
<i>30</i>	1121	1.5	35	65	1	0	0
	1122	1.2	20	70	0.2	0	10

The electric characteristics were then measured by the same method as in Example 1. The results are shown in TABLE 1007.

35 -

Mean life span	ε			840	890	850	830	006	.028	830	890	910	870	820	840			180			860		840	140	190
Humidi- tv resis-	tant load	test: Num- ber of	reject	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	21/0	0/72	0/72	0/72			32/72			0/72	16/72	0/72	36/72	25/72
, x	oltage	<u>-</u>	OC	14	14	14	15	14	14	14	14	14	14	14	14			13			4	13	14	2	13
Insula- tion break-	down voltage	(kV/mm)	AC	13	13	12	12	13	12	13	12	12	13	12	12			11			12	11	12	Ξ	Ξ
	945V Im-	pressed Voltage	150°C	210	220	210	200	220	200	210	210	200	220	190	200			180			200	180	200	180	180
		pressed Voltage] <u>&</u>	220	230	220	210	230	210	220	220	210	230	200	210		:	190			210	96	210	190	198
(O·F)	\vdash			4860	4830	4900	4940	4920	4840	4820	4780	4960	4830	4850	4920			4580			4900	4650	4870	4700	4630
Product CR (Ω·F)			25	5120	5080	5160	5200	5180	2090	9205	5030	5220	5080	5100	5180			4820			5160	4890	5130	4950	4870
ည		teristic (%)	S E	-36	-37	-39	-39	-36	-37	-36	-36	-39	-39	-36	-35			-37			-36	-36	-37	-38	38
	Maxi-	mum	.4	9.4	9.5	6.6	8.9	9.4	9.5	9.3	6.8	8.8	8.8	6	9.1			8.9		į	9.1	9.5	9.4	9.1	9.1
ent		125°C		-8.4	-8.6	-8.2	6	-8.3	-8.6	6.8-	-8.7	-8.2	-83	1.8	-8.6			-8.2			-8.3	-8.4	-8.2	-8.6	-8.7
re depend	ge (%) Δ C/C ₂₅	. -		3.3	3.8	4.2	4.6	3.5	3.7	3.8	4.1	4.2	3.8	3.9	3.9	ring	guin	4.2	ring	ring	4.8	4.2	4	3.8	3.8
mperatu	cuang	ე. 88°C		-8.2	-8.4	-7.9	-7.8	-7.8	-8.2	-8.6	-8.4	-7.6	-7.4	80	-8.4	insufficient sintering	insufficient sintering	-7.8	insufficient sintering	insufficient sintering	-7.9	-8.2	æ	-8.1	83
Ratio of temperature dependent	Capacitance cnange (76) Δ C/C ₂₀ Δ C/C ₂₀	-25°C		2.5	2.3	2.4	2.1	2	2.6	2.8	2.9	2.4	2.6	2.4	2.2			2.8			2.9	2.7	2.5	2.2	2.3
		tan 8		9.0	9.0	9.0	0.7	9.0	0.7	9.0	9.0	0.7	9.0	9.0	9.0	Unmeasurable due to	Unmeasurable due to	1.5	Unmeasurable due to	Unmeasurable due to	0.8	1.4	0.7	1.4	1.3
	2 ÷			1430	1450	1490	1470	1430	1450	1430	1440	1480	1470	1420	1410	Unmeasu	Unmeasu	1460	Unmeasu	Unmeasu	1420	1430	1450	1460	1450
<u>ن</u> ا	temp.			1280	1280	1280	1300	1300	1280	1280	1280	1280	1300	1300	1280	1350	1350	1350	1350	1350	1300	1350	1300	1350	1350
	e 2			1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122

As is evident from TABLE 1006 and TABLE 1007, preferable results are obtained in the samples No. 1101 to 1112, 1118 and 1120, in which oxides with compositions within or on the boundary lines of the area surrounded by the straight lines connecting each spot indicated by A (X = 20, y = 80, z = 0), B (X = 10, Y = 80, Z = 10), C (X = 10, Y = 70, Z = 20),

D (X = 35, y = 45, z = 20), E (X = 45, y = 45, z = 10) and F (x = 45, y = 55, z = 0), (wherein x, y and z represent mole % and w represents mole ratio, which is in the range of $0.3 \le w < 1.0$ in the composition on the line A - F) of the three component phase diagram of the oxides represented by Li_2O -(Si_w , Ti_{1-w})O₂-MO shown in FIG. 4 are added, wherein the samples have a capacitance decreasing ratio of as small as within -45% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 5000 Ω • F or more and 200 Ω • F or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

On the contrary, when the $\text{Li}_2\text{O-}(\text{Si}_w, \text{Ti}_{1-w})\text{O}_2$ -MO oxides is outside of the composition range described above as shown in the samples No. 1113 to 1117, and 1119, the sintering becomes insufficient or many samples are rejected in the humidity resistance load test even after sintering. The samples with the composition falling on the line A-F and W = 1.0 as in the samples No. 1119 and 1121 have high sintering temperature along with causing many rejects in the humidity resistance load test. When the value of w is less than 0.30 as shown in the sample No. 1122, the sintering temperature becomes high along with causing many rejects in the humidity resistance load test.

(Example 9)

20

30

35

45

50

55

A material with a composition of $BaO_{1.010} \cdot TiO_2 + 0.03Sc_2O_3 + 0.015BaZrO_3 + 0.05MgO + 0.01 MnO$ (mole ratio) was prepared using barium titanate in TABLE 1A as a dielectric powder. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that an oxide Li_2O - TiO_2 -XO shown in Table 1008, having a mean particle size of 1 μ m or less produced by heating the material described above at 1200 to 1500 °C, was added as the second side component. The amounts of addition of Al_2O_3 and ZrO_2 correspond to parts by wight relative to 100 parts by weight of ($xSiO_2 - yTiO_2 - zXO$). The overall dimensions of the monolithic ceramic capacitor produced is the same as in Example 1.

				1	9000	Side opin	+00000				
				=	e second	The second side component	ponent		•		
				Essential component (mol %)	omponer	t (mol %)				Added o	Added component (parts by weight)
107	SiO ₂	TiO2				0X	;			Al ₂ O ₃	ZrO ₂
			BaO	CaO	SrO	MgO	ZuO	MnO	Total		
1	85	-	-	0	0	0	4	6	14	0	0
	35	51	0	10	0	0	0	4	14	0	0
1	30	20	0	99	0	15	4	1	20	0	0
	39	-	20	20	2	0	13	2	09	0	0
	20	10	2	5	0	0	10	0	20	0	0
	45	10	0	0	0	0	15	30	45	0	0
	20	20	10	10	က	7	0	0	30	0	0
	20	30	0	16	0	0	0	4	20	0	0
	35	30	25	10	0	0	0	0	35	0	0
	40	40	10	0	0	0	2	2	20	0	0
	45	22	3	30	0	0	0	0	33	15	0
	45	22	3	30	0	0	0	0	33	10	5
	65	25	5	5	0	0	0	0	10	0	0
ı	25	40	15	0	10	0	သ	2	35	0	0
	30	10	30	25	0	0	5	0	09	0	0
	20	0	35	15	0	0	0	0	20	0	0
	45	22	30	0	0	က	0	0	33	25	0
	45	22	30	0	က	0	0	0	33	0	15
	30	09	9	0	0	0	0	0	10	0	0

The electric characteristics were then measured by the same method as in Example 1. The results are shown in TABLE 1009.

	load (h)			0/72 820	0/72 810		0772 860	0/72 830	0/72 890	0/72 870	0/72 850	0/72 820	0/72 810	0/72 860	0/72 840	52/72 160			72/72 180			
Humidi- ty resis-		ber of	reject	٥	6	0	٥ 	6	ò	<i>/</i> 0	ò	6	0	6	0	52			72			
eak-	down voltage (kV/mm)		o Da	4	4	14	15	4	15	4	4	4	14	4	4	13			5		i	
Insula- tion break-	down vol	-	AC	12	12	13	12	12	13	12	12	13	12	12	12	Ξ			=			
	945V lm-	Voltage	150°C	190	200	190	190	190	190	200	190	190	190	300	290	190			190			
	315V Im-	Voltage	15	200	210	200	200	200	200	210	200	200	200	320	300	200	Đ.	<u>و</u>	200	Đ.	θι	
(Q.F)	945V Im-	Voltage	25°C	4760	4750	4770	4760	4780	4760	4750	4760	4770	4780	5150	5140	4590	cient sinterir	cient sinterii	4550	cient sinterii	cient sinterii	
Product CR (Ω·F)	315V lm-	Voltage	25	5010	2000	5020	5010	5030	5010	2000	5010	5020	5030	5420	5410	4830	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	4790	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	
DC	charac-	(%)	A C/C	4	-41	-42	4	4	14	-42	4	14	14	4	4	-42	easurable o	easurable o	42	easurable o	easurable o	
	Maxi-	value		8.1	8.2	8	8.3	8.1	8.1	8.2	8.2	83	8.1	∞	8.1	8.2	S	S	8.2	ร็	Cun	
dent		125°C		-7.5	7.8	-7.9	-7.8	-7.6	-7.8	-7.9	ھ	-7.8	6.7-	-7.8	-7.6	97-			-7.8			
atio of temperature dependent	∆ C/C ₂₅	-55°C		2.5	2.4	2.3	2.4	2.2	2	2.1	2.3	2.4	2.4	2.5	2.2	2.3			2.4			
emperatu	3	85°C		-7.2	-7.5	-7.8	-7.7	-7.5	-7.4	-7.6	-7.5	-7.1	-7.5	-7.2	-7.1	1:			-7.2			
Ratio of temperature depe	∆ C/C ₂₀	-25°C		2.4	2.3	22	2.3	2.4	2.2	2.3	2.4	2.2	2.3	2.5	2.1	2			2.3			
Dielec-	loss tan 8	(%)		1.3	1.4	1.3	1.3	1.3	1.3	1.3	13	1.3	4.1	1.3	13	1.5			1.6			
	CON			1520	1530	1550	1540	1520	1530	1560	1520	1530	1510	1530	1540	1550			1560			
	temp.			1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1350	1350	1350	1350	1350	1350	
Sam- Bak-				1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	•

As is evident from TABLE 1008 and TABLE 1009, preferable results are obtained in the samples No. 1201 to 1212 in which oxides with compositions within or on the boundary lines of the area surrounded by the straight lines connecting each spot indicated by A (X = 85, y = 1, z = 14), B (X = 35, y = 51, z = 14), C (X = 30, Y = 20, Z = 50) and D (X = 39,

y = 1, z = 60), (wherein x, y and z represent mole %) of the three component phase diagram of the oxides represented by SiO_2 - TiO_2 -XO shown in FIG. 5 are added, wherein the samples have a capacitance decreasing ratio of as small as -45% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 5000 Ω • F or more and 200 Ω • F or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

When the composition of the oxide represented by SiO₂-TiO₂-XO is out of the composition range described above, on the other hands, sintering becomes insufficient as seen in the samples No. 1213 to 1219 or many rejects occur in the humidity resistance load test even after the sintering.

When Al_2O_3 and/or ZrO2 is allowed to contain in the oxides represented by SiO_2 -TiO₂-XO as in the samples No. 1211 and 1212, a monolithic capacitor having the insulation resistances of 5400 Ω • F or more and 300 Ω • F or more at 25 °C and 150 °C, respectively, under an electric field strength of 10 kV/mm can be obtained. However, when the amounts of addition of Al_2O_3 and ZrO_2 exceed 15 parts by weight and 5 parts by weight, respectively, the sintering property is extremely deteriorated as in the samples No. 1217 and 1218.

(Example 10)

20

25

35

40

45

50

55

Four kinds of barium titanate (BaTiO₃) in TABLE 1, an oxide powder as a first side component and an oxide powder as a second side component were obtained by the same method as in Example 1.

Then, BaCO $_3$ for adjusting the Ba/Ti mole ratio m in barium titanate, and Sc $_2$ O $_3$, Y $_2$ O $_3$, BaZrO $_3$ and MnO with purity of 99% or more were prepared. These raw material powder and oxide powder to be either the first or second side component were weighed so as to be the composition shown in TABLE 1010 and TABLE 1011. The amount of addition of the first or second side component corresponds to the amount relative to 100 parts of the essential component of $((BaO)_mTiO_2 + \alpha M_2O_3 + \beta BaZrO_3 + \gamma MnO)$. A monolithic ceramic capacitor was produced using this weighed compounds by the same method as in Example 1. The overall dimensions of the monolithic ceramic capacitor produced are the same as in Example 1.

Table 1010

							*indicates	"indicates "out of the scope of the present invention"	present invention"
Sample	(BaO) _m Ti	O2 + aM2O3	$(BaO)_mTiO_2 + \alpha M_2O_3 + \beta BaZrO_3 + \gamma MnO$	γMnO	-				
o N	Kind of		p	Total	g	٨	٤	Amount of addition of	Amount of addition of
	BaTiO ₃	Sc ₂ O ₃	Y ₂ O ₃	ofα.				nent (parts by weight)	the second side com- ponent (parts by weight)
1301	14 4	0	0.0008	0.0008	0.01	0.0015	1.005		0
*1302	14	0.03	0.045	0.075	0.02	0.15	1.01	1	0
*1303	1A	0.01	0.01	0.02	0	0.042	1.01	1.5	0
*1304	14	0.02	0.01	0.03	0.07	90.0	1.01	1.5	0
*1305	4	0	0.02	0.02	0.02	0.001	1.01	1	0
•1306	1A	0.02	0	0.02	0.03	0.14	1.01	-	0
*1307	4	0	0.03	0.03	0.03	90.0	0.99	-	0
*1308	1 A	0.005	0.015	0.02	0.04	0.041	-	_	0
•1309	14	0	0.02	0.02	0.03	0.04	1.038	-	0
*1310	14	0	0.03	0.03	0.02	90.0	1.045	0	•
*1311	14	0	0.02	0.02	0.02	0.04	1.01	0	0
*1312	1 A	0.01	0.02	0.03	0.02	90.0	1.01	သ	0
*1313	4 F	0.05	0.01	0.03	0.02	0.063	1.02	0	0
*1314	14	0	0.02	0.02	0.03	0.04	1.01	0	4
*1315	4	0	0.03	0.03	0.03	90.0	1.02	1.5	0

Sample	(BaO) _m Ti(O ₂ + αM ₂ O ₃ +	$(BaO)_mTiO_2 + \alpha M_2O_3 + \beta BaZrO_3 + \gamma MnO$	MnO				30 00 19:17 19:00	
No.	Kind of		ρ	Total	e,	٨	٤	the first side compo-	Amount of addition of
	BaTiO ₃	Sc ₂ O ₃	Y ₂ O ₃	οία				nent (parts by weight)	the second side com- ponent (parts by weight)
1316	4	0	0.001	0.001	0.02	0.002	1.01	_	0
1317	В	0	0.02	0.02	0.03	0.04	1.02	1	0
1318	ပ	0.01	0	0.01	0.03	0.13	1.03	Į	0
1319	4	0.01	0.04	0.05	0.04	0.1	1.02	1	0
1320	A	0.02	0.04	90.0	0.03	0.12	1.01	0	
1321	A	0	0.01	0.01	0.005	0.02	1.01	-	0
1322	A	0.01	0.01	0.02	0.04	0.04	1.01	2	0
1323	A	0	0.03	0.03	90.0	90.0	1.01	1	0
1324	٧	0.02	0.02	0.04	0.03	0.078	1.01	2	0
1325	A	0	0.01	0.01	0.02	0.02	1.001	2	0
1326	A	0	0.005	0.005	0.04	0.01	1.02	0	2
1327	A	0.01	0.01	0.02	0.03	0.04	1.035	2	0
1328	A	0.02	0	0.02	0.03	0.04	1.025	0.2	0
1329	A	0.01	0.01	0.02	0.03	0.04	1.01	င	0
1330	A	0	0.02	0.02	0.03	0.041	1.01	0	0.2
1331	¥	0	0.02	0.02	0.03	0.04	1.01	0	က

Table 1011

The electric characteristics were measured by the same method as in Example 1. The results are shown in TABLE 1012 and TABLE 1013.

Table 1012

	au	-			T														0	
Mean	life span	Ē				8	910	890	120		140		100				5 5		160	920
Humidi-	ty resis-	tance load	ber of	reject		0/72	21/0	0/72	0/72		0/72		0/72				0/72		0/72	0/72
	*	oltage	_	2		14	14	14	14		14	,	12				11		=	14
Insula-	tion break-	down voltage	(KV/IIIIII)	A _C		12	12	12	12		12		10				11		9	12
O.F.) Insula-		945V Im-	pressed Voltage	150°C		190	170	70	190		130		120				130		150	220
200		315V lm-	pressed	15(200	180	100	200		140		130				140		160	230
R (D.F)	,	945V lm-	pressed	25°C		4850	5230	2110	4850		2960		2950				3160		2990	4810
Product CR (Q.F)		315V lm-	pressed Voltage	25		5100	2500	3020	5100		3120		3100				3330		3150	909
20	vias	charac-	teristic (%)	∆ C/C	5kV/mm	-42	ō,	-36	-27		-36		-35				-27		-36	-25
		Maxi-	mum value			16.7	6.7	8.2	28		18		9.1				9.5		7.9	9.5
ndent			125°C			-16.7	Ģ	7.7-	-28		-18.1		-8.8				-8.9		-7.1	6.8
re deper	ge (%)	∆ C/C ₂₅	-55°C			4.2	4	4	5.3		4.5		4.3				4.1		3.2	5.5
amperatu	ce chang		35°C			-12	-6.7	-7.5	-14.2	ormation	4.8	ormation	-8.5	ring	ring	ring	-8.4	ring	-7.9	-7.4
Ratio of temperature dependent	capacitance change (%)	∆ C/C ₂₀	-25°C			s	2.2	2.1	2.3	conductor formation	3.5	conductor formation	3.5	ficient sintering	ficient sintering	ficient sintering	3.6	icient sintering	2.7	2.6
Dielec-	tic	loss	tan 8 (%)	?		0.7	0.7	0.7	0.7		0.8	to semic	0.7		to insuff.		2.3		2.5	0.7
Dielec.		-coo				1570	820	1450	1350	Unmeasurable due to semi	1420	Unmeasurable due to semic	1410	Unmeasurable due to insuf	Unmeasurable due to insuf	Unmeasurable due to insuf	1330	Unmeasurable due to insuf	1450	1310
Rak.		temp.				1300	1300	1300	1300	Unmeas	1280	Unmeas	1300	Unmeas	Unmeas	Unmeas	1300	Unmeas	1300	1300
Sam.	S e	Š				1301	*1302	.1303	1304	1305	1306	1307	1308	1309	1310	11311	1312	*1313	*1314	*1315

							_									τ			
Mean	span (h)			970	096	850	840	906	890	910	870	860	890	950	930	006	890	910	880
Humidi- ty resis-	tance load test: Num-	ber of	reject	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72
*	oltage)		റ്റ	4	15	4	4	14	14	15	15	4	14	14	15	14	14	15	14
insula- tion break-	down voltage (kV/mm)		AC.	12	13	12	12	12	12	13	13	12	12	12	13	12	12	13	12
	945V lm- pressed	Voltage	150°C	220	210	240	200	180	190	240	240	200	180	180	220	240	180	190	190
	315V Im- pressed	Voltage	15(230	220	250	210	190	200	250	250	210	190	190	230	250	190	200	200
ζ (Ω·F)	945V Im- pressed	Voltage	25°C	4660	4710	4750	4850	4860	4820	4940	4970	2000	4850	4770	4860	4730	4830	4810	4740
Product CR (Ω·F)	315V Im- pressed	Voltage	25	4900	4960	2000	5100	5120	5070	5200	5230	5260	5100	5020	5110	4980	2080	2060	4990
DC vias	charac- teristic	(%)	∆ C/C	5kV/mm -40	-36	-39	-15	-12	9	-37	-26	-22	40	9	-36	-36	-36	-36	-26
	Maxi- mum	value		8.4	œ	8.2	8.8	8.1	8	7.9	8.2	7.9	7.7	7.8	7.8	8	80	1.8	8.2
dent		125°C		89	5.7-	7.7-	-8.5	-7.8	-7.6	-7.4	-7.8	9.7-	-7.3	-7.5	-7.5	-7.8	7.7-	-7.8	-7.9
ıre deper 3e (%)	Δ C/C ₂₅	-55°C		3	3.8	3.5	3.7	1-4	4	4.2	4	3.7	4	4.1	4.2	4.1	4	3.8	4
emperatu ice chang		85°C		6.7	-6.5	-7.5	-7.8	-7.6	-7.4	9.9-	-7.6	-7-	-7.1	-6.7	7.4	-7.5	9.7.	-7.3	-7.1
Ratio of temperature dependent capacitance change (%)	Δ C/C ₂₀	-25°C		2.5	2.7	3	2.6	2.5	2.7	3	3.1	2.5	2.7	2.6	2.5	2.5	2.3	2.7	2.6
	loss	٠	<u> </u>	0.7	9.0	0.7	9.0	9.0	9.0	0.7	9.0	0.7	9.0	9.0	0.7	9.0	9.0	0.7	9.0
Dielec- tric	con-			1590	1450	1570	1110	940	1530	1460	1340	1230	1560	1580	1430	1430	1440	1430	1340
Bak-				1280	1280	1280	1300	1300	1300	1300	1300	1280	1300	1300	1300	1280	1280	1300	1300
Sam- ple				1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331
		_																	

. 15

As evident from TABLE 1012 and TABLE 1013, the ceramic capacitor according to the present invention has a capacitance decreasing ratio of as small as within -40% at an impressed DC voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying

the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of - 55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 4900 $\Omega \cdot F$ or more and 190 $\Omega \cdot F$ or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

The reason why the composition was limited in the present invention will be described hereinafter.

In the composition of $(BaO)_m TiO_2 + \alpha M_2 O_3 + \beta BaZrO_3 + \gamma MnO$ (wherein $M_2 O_3$ represents at least one of either Sc_2O_3 and Y_2O_3 , α , β , and γ representing mole ratio, respectively), the M_2O_3 content α of less than 0.001 as shown in the sample No. 1301 is not preferable because the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic. On the other hand, the M_2O_3 content α of more than 0.06 as shown in the sample No. 1302 is also not preferable because the specific dielectric constant is reduced to less than 900. Accordingly, the preferable range of the M_2O_3 content α is 0.001 $\leq \alpha \leq$ 0.06.

It is not preferable that the BaZrO $_3$ content β of zero as in the sample No. 1303 is not preferable since the insulation resistance is low and the voltage dependency of the insulating resistance is larger than that of the composition system containing BaZrO $_3$. It is also not preferable that the BaZrO $_3$ content β is more than 0.06 as in the sample No. 1304 because the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic, along with shortening the mean life span. Accordingly, the preferable range of the BaZrO $_3$ content β is 0.005 $\leq \beta \leq$ 0.06.

It is not preferable that, as seen in the sample No. 1305, the MgO content γ is 0.001 since measurements becomes impossible due to semiconductor formation. It is not preferable that the MgO content γ exceeds 0.13 as in the sample No. 1306, because the temperature characteristic does not satisfy the X7R characteristic besides the insulation resistance is low and mean life span is shortened. Accordingly, the preferable range of the MgO content γ is in the range of 0.001 < $\gamma \le 0.13$.

It is not preferable that the BaO/TiO_2 ratio m is less than 1.000 as in the sample No. 1307 because measurements are impossible due to formation of semiconductors. It is also not preferable that, as seen in the sample No. 1308, the BaO/TiO_2 ratio m is 1.000 since the insulation resistance as well as the AC and DC breakdown voltage becomes low along with shortening the mean life span. It is not preferable, on the other hand, that the BaO/TiO_2 ratio m is over 1.035 as in the samples No. 1309 and 1310 since measurements becomes impossible due to insufficient sintering. Accordingly, the BaO/TiO_2 ratio m in the range of 1.000 < m \le 1.035 is preferable.

It is not preferable that the amount of addition of the first or second side component is zero as in the samples No. 1311 and 1313 because measurements are impossible due to insufficient sintering. It is not preferable that the amount of addition of the first or second side component exceeds 3.0 parts by weight as seen in the samples No. 1312 and 1314, on the other hand, because the dielectric loss exceeds 1.0% and the insulation resistance and insulation breakdown voltage are lowered along with shortening the mean life span. Accordingly, the preferable content of either the first or the second components is in the range of 0.2 to 3.0 parts by weight.

The contents of the alkali earth metal oxides contained in barium titanate as impurities are suppressed below 0.02% by weight because, as in the sample No. 1315, when the contents of the alkali earth metal oxides exceeds 0.02% by weight, the dielectric constant is decreased.

(Example 11)

A material with a composition of $BaO_{1.010} \cdot TiO_2 + 0.02Y_2O_3 + 0.01BaZrO_3 + 0.04$ MnO (mole ratio) was prepared using barium titanate in TABLE 1A as a dielectric powder. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that an oxide represented by Li_2O -(Si,Ti) O_2 -MO as shown in Table 1006, having a mean particle size of 1 μ m or less produced by heating the material described above at 1200 to 1500 °C, was added as the first side component. The overall dimensions of the monolithic ceramic capacitor produced is the same as in Example 1. The electric characteristics were then measured by the same method as in Example 1. The results are shown in TABLE 1014. The sample No. 1401 to 1422 in TABLE 1014 correspond to the samples NO. 1101 to 1122 in TABLE 1006, respectively. For example, the sample No. 1401 in TABLE 1014 was obtained by adding the side component of the sample No. 1101 in TABLE 1006.

40

Mean	span (h)			006	910	860	870	980	910	930	970	006	880	890	930			140			006	130	880	150	160
Humidi- ty resis-	tance load test: Num-	per of	reject	0/72	0/72	0/72	0.772	0772	0772	0/72	0/72	0/72	0/72	0/72	0/72			45/72			0/72	23/72	0/72	39/72	36/72
ak-	oltage)		മ	14	15	4	15	14	15	4	14	4.	14	15	14			13			14	13	13	13	13
Insula- tion break-	down voltage (kV/mm)		AC	12	13	12	12	13	13	13	12	12	13	13	12			=			11	11	12	=	=
	945V Im- pressed	Voltage	150°C	200	210	190	220	210	190	200	200	190	210	200	190			170			190	180	190	180	180
CR (Ω·F)	315V lm- pressed	Voltage	150	210	220	200	230	220	200	210	210	200	220	210	200			180			200	190	200	190	190
Product CR (Ω·F)		Voltage		4700	4730	4850	4750	4830	4820	4860	4900	4750	4880	4850	4860			4660			4780	4730	4750	4720	4740
		Voltage	122	4950	4980	5100	2000	5080	9205	5120	5160	2000	5140	5100	5120			4900			5030	4980	2000	4970	4990
DC vias	characteristic	(%)	A C/C	-35	-37	-36	-37	-36	-36	-35	-37	-36	-37	-35	-35			-37			-35	-36	-37	-37	-37
	Maxi-	value		8.5	8.7	8.3	8.2	8.4	8.8	8.8	8.8	8.4	8.5	8.3	8.5			8.4			8.6	8.5	8.5	8.7	8.7
Jent		125°C		-8.3	-8.5	ه	80	-8.2	-8.5	-8.5	-8.5	<u>ه</u>	-8.3	-8.2	-8.4			æρ			-8.2	-8.3	æ	-8.2	-8.5
Ratio of temperature dependent capacitance change (%)	∆ C/C ₂₅	-55°C		3.2	3.7	4	4.1	3.7	3.6	3.7	4	1.4	3.7	3.8	3.7	ring	ering	4	ering	ering	4.2	4	3.9	3.7	3.7
emperatu ce chang		85°C		- 6	-8.3	-7.8	-7.9	-7.8	8 0	-8.5	-8.4	-7.9	-7.6	-7.5	ထုံ	ient sinte	ent sinte	-7.9	ient sinte	ient sinte	89	-81	-8.3	-8.2	-83
Ratio of temperature der capacitance change (%)	∆ C/C ₂₀	-25°C		2.4	2.2	2.4	2.1	2.1	2.6	2.7	2.9	2.5	2.6	2.5	2.3	to insufficient sintering	to insufficient sintering	2.7	to insufficient sintering	to insufficient sintering	2.8	2.6	2.6	2.4	2.4
Dielec- tric				0.7	9.0	9.0	0.7	0.7	0.7	8.0	9.0	0.7	9.0	7.0	9.0	Unmeasurable due	Unmeasurable due	1.5	Unmeasurable due	Unmeasurable due	0.8	1.5	0.7	1.5	1.3
Dielec- tric				1420	1430	1460	1480	1440	1440	1430	1450	1470	1480	1430	1420	Unmeast	Unmeasu	1450	Unmeasu	Unmeasu	1430	1440	1460	1450	1460
Bak- ing				1280	1300	1280	1300	1300	1300	1300	1280	1280	1280	1300	1280	1350	1350	1350	1350	1350	1300	1350	1300	1350	1350
Sam- ple	9			1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422

`25

As is evident from the samples NO. 1401 to 1412, 1418 and 1420 in TABLE 1014, preferable results are obtained in the samples in which oxides of the samples No. 1101 to 1112, 1118 and 1120 in TABLE 1006 with compositions

within or on the boundary lines of the area surrounded by the straight lines connecting each spot indicated by A (X = 20, y = 80, z = 0), B (X = 10, y = 80, z = 10), C (X = 10, y = 70, z = 20), D (X = 35, y = 45, z = 20), E (x = 45, y = 45, z = 10) and F (x = 45, y = 55, z = 0) (wherein x, y and z represent mole %, w represent mole ratio and w is in the range of $0.3 \le w < 1.0$ in the composition on the line A - F) inside of the three component phase diagram of the oxides represented by Li_2O -(Si_w , Ti_{1-w})O₂-MO shown in FIG. 4 are added as side components, wherein the samples have a capacitance decreasing ratio of as small as within -40% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 4900 Ω • F or more and 200 Ω • F or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

On the contrary, when the oxides represented by $\text{Li}_2\text{O}\text{-}(\text{Si}_w, \text{Ti}_{1\text{-w}})\text{O}_2\text{-MO}$ is outside of the composition range described above as shown in the samples No. 1113 to 1117, and 1119 in TABLE 1006, the sintering becomes insufficient or many samples are rejected in the humidity resistance load test even after sintering as seen in the samples NO. 1413 to 1417 and 1419 in TABLE 1014. The samples with the composition falling on the line A-F and W = 1.0 as in the samples No. 1119 and 1121 in TABLE 1006 have high sintering temperature along with causing many rejects in the humidity resistance load test as seen in the samples No. 1419 and 1421 in TABLE 1014. When the value of w is less than 0.30 as shown in the samples No. 1122 in TABLE 1006, the sintering temperature becomes high along with causing many rejects in the humidity resistance load test as seen in the sample No. 1422 in TABLE 1014.

(Example 12)

A material with a composition of $BaO_{1.010} \cdot TiO_2 + 0.02Sc_2O_3 + 0.01BaZrO_3 + 0.04$ MnO (mole ratio) was prepared using barium titanate in TABLE 1A as a dielectric powder. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that an oxide represented by SiO_2 - TiO_2 -XO shown in Table 1008, having a mean particle size of 1 μ m or less produced by heating the material described above at 1200 to 1500 °C, was added as the second side component. The overall dimensions of the monolithic ceramic capacitor produced is the same as in Example 1. The electric characteristics were then measured by the same method as in Example 1. The results are shown in TABLE 1015. In TABLE 1015, the samples NO. 1501 to 1519 corresponds to the samples NO. 1201 to 1219 in TABLE 1008. For example, the sample No. 1501 in TABLE 1015 was obtained by adding the side component of the sample No. 1201 in TABLE 1008.

Γ						L	Γ_					_											
Mean	span	Ê			920	830	920	096	880	940	920	870	890	06	096	950	150			130			
Humidi-	ty resis- tance load	test: Num-	5	rejects	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	46/72			72/72			
7	ak- oltage	,		ဗ	15	14	15	15	14	15	14	14	14	14	15	4	13			13			
Insula-	tion break- down voltage	(kV/mm)		ک ک	13	12	13	13	12	12	12	12	12	12	13	12	Ξ			=			
	945V Im-	d pressed	Voltage	ပ္	180	190	180	220	190	190	190	220	200	190	300	300	200			200			
CR (n.F)	315V lm-	pressed	Voltage	150	190	200	190	230	200	200	200	230	210	200	310	320	210	ō	6	210	5	6	ō
Product CR (Ω·F)	945V lm-	pressed	Voltage	25°C	4700	4720	4750	4770	4710	4850	4770	4810	4800	4770	5030	5040	4580	cient sinterin	cient sinterin	4550	cient sinterin	cient sinterin	cient sinterin
	315V Im-	pressed	Voltage	72	4950	4970	2000	5020	4960	5100	5020	2060	2050	5020	5290	5300	4820	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	4790	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering
20	vias charac-	teristic	(%)	A C/C	-35	-35	-36	\$	-37	-36	ģ	-35	-35	-37	-36	-35	-34	easurable d	easurable d	.34	easurable d	easurable d	easurable d
citance	Mayi	mum.	value		80	8.2	8.1	8.2	8.1	8.2	8.2	8.2	8.2	8.1	8.3	1.8	8.1	Ş	S	1.8	E S	ş	E S
dent capa		0.50	200		-7.6	-7.8	-7.7	-7.8	-7.6	-7.9	-7.9	-8.1	-7.8	ထု	-7.8	-7.6	-7.7-			7.7-			
re depen	7,0,0		ر ا ا		2.3	2.2	2.1	2.3	2.2	2.1	2.3	2.4	2.3	2.4	2.4	2.3	2			2.5			
mperatu		٥	၁ ၁		-7.3	-7.2	-7.7	9.7-	-7.4	-7.2	-7.3	-7.5	-7.2	-7.3	-7.1	-7.3	-7.2			-7.3			
Ratio of temperature dependent capacitance	change (%)	8000	2-67-		2.3	2.2	2.1	2.1	2.3	2.2	2.3	2.3	2.1	2.2	2.3	2.4	2.3			2.2			
1		tan 8			-	-	1.2	1-1	-	1.2	1.2	1.2	1.1	1.2	1.1	1.2	1.1			1.2			
	tric Co				1440	1430	1460	1420	1470	1450	1420	1430	1440	1480	1460	1440	1420			1430			
	ing		-		1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1350	1350	1350	1350	1350	1350	1350
Sam-	pe S	<u> </u>			1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

Table 1015

As is evident from Samples NO. 1501 to 1512 in TABLE 1015, preferable results are obtained in the samples, in which oxides of the samples NO. 1201 to 1212 in TABLE 1008 with compositions within or on the boundary lines of the

area surrounded by the straight lines connecting each spot indicated by A (X = 85, y = 1, z = 14), B (X = 35, y = 51, z = 14), C (X = 30, y = 20, z = 50) and D (X = 39, y = 1, z = 60), (wherein x, y and z represent mole %), of the three component phase diagram of the oxides represented by SiO_2 - TiO_2 -XO shown in FIG. 5 are added as a side component, wherein the samples have a capacitance decreasing ratio of as small as within -40% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 4900 Ω • F or more and 190 Ω • F or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more and no rejections were found in the humidity resistance load test besides enabling a relatively low firing temperature of 1300 °C or less.

When the oxide SiO_2 - TiO_2 -XO has a composition outside of the composition described above as in the samples No. 1213 to 1219 in TABLE 1008, on the contrary, sintering becomes insufficient or many rejection appear in the humidity resistance load test even after sintering as seen in the samples No. 1513 to 1519 in TABLE 1015.

While a monolithic capacitor having an insulation resistance of 5290 Ω • F or more and 310 Ω • F or more at 25 °C and 150 °C, respectively, under a strong electric field of 10 kV/mm can be obtained as shown in the samples No. 1511 and 1512 in TABLE 1015 by allowing Al₂O₃ and/or ZrO₂ to contain in the SiO₂-TiO₂-XO oxides as in the sample No. 1211 and 1212 in Table 1008, sintering property is extremely decreased when Al₂O₃ and ZrO₂ are added in an amounts of 15 parts by weight or more and 5 parts by weight or more, respectively, as in the samples No. 1217 and 1218 in TABLE 1008.

(Example 13)

After preparing and weighing $TiCl_4$ and $Ba(NO_3)_2$ having a variety of purity as starting materials, the compounds were precipitated as titanyl barium oxalate ($BaTiO(C_2O_4) \cdot 4H_2O$) by adding oxalic acid. This precipitate was decomposed by heating at a temperature of 1000 °C or more to synthesize four kinds of barium titanate listed in TABLE 1.

Oxides, carbonates or hydroxides as each component of the first side component were weighed so as to be a composition ratio (mole ratio) of $0.25 \text{Li}_2\text{O}-0.65(0.30 \text{TiO}_2 \cdot 0.70 \text{SiO}_2)-0.10 \text{Al}_2\text{O}_3$ to obtain a powder by crushing and mixing.

Likewise, oxides, carbonates or hydroxides as each component of the second side component were weighed so as to be a composition ratio (mole ratio) of 0.66SiO₂-0.17TiO₂-0.15BaO-0.02MnO (mole ratio) to obtain a powder by crushing and mixing.

Oxide powders of the first and second side components were placed in separate platinum crucibles and heated at 1500 °C. After quenching and crushing the mixture, each oxide powder with a mean particle size of 1 μ m or less was obtained.

In the next step, $BaCO_3$ for adjusting the mole ratio Ba/Ti (m) in barium titanate, Eu_2O_3 , Gd_2O_3 , Tb_2O_3 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 and Yb_2O_3 , and $BaZrO_3$, MgO and MnO, each having a purity of 99% or more, were prepared. These raw material powders and the oxides described above to be either one of the first or second side component were weighted so as to form compositions shown in TABLE 2002 and TABLE 2003. The amounts of addition of the first and second side components are indicated by parts by weight relative to 100 parts by weight of the essential component $(BaO)_mTiO_2 + \alpha R_2O_3 + \beta BaZrO_3 + \gamma MgO + gMnO$.

5**5**

45

5

Table 2002

Amount of addi-	cond side com-	ponent (parts by weight)	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	4	0	0	0	0	0	-
Amount of	first compo-	nent (parts by weight)	-	_	1.5	1.5	1	1.5	-	_	-	-	-	-	0	0	5	0	0	2	-	-	1.5	-	0
	E`		1.005	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	66.0	1.00	1.038	1.05	1.01	101	1.01	1.01	1.01	1.015	1.02	1.03	1.02	10.1
	7+9		0.003	0.13	0.078	0.05	0.04	0.13	0.04	0.13	0.14	0.05	0.05	0.02	0.05	0.03	0.05	0.04	0.02	0.05	0.12	0.03	0.122	0.13	0.122
	6		0.0015	60.0	0.038	0.02	0.039	0.005	0.001	0.125	0.1	0.03	0.02	0.005	0.03	0.01	0.03	0.01	0.005	0.02	0.07	0.01	0.002	0.07	0.12
	٨		0.0015	40.0	0.04	0.03	0.001	0.125	0.039	0.005	0.04	0.02	0.03	0.015	0.02	0.02	0.02	0.03	0.015	0.03	0.05	0.02	0.12	90.0	0.002
	<u>a</u>		0.02	0.03	0	80.0	0.02	0.02	0.03	0.02	0.03	0.03	0.04	0.04	0.02	0.02	0.03	0.02	0.02	0.03	0.02	0.03	0.03	0.03	0.03
	Total	و د د	0.0008	0.07	0.04	0.03	0.02	90.0	0.02	90.0	90.0	0.02	0.03	0.01	0.02	0.02	0.03	0.02	0.01	0.03	0.05	0.02	90.0	90.0	90.0
		Yb ₂ O ₃	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.01	0
		Tm ₂ O ₃	0	0	0	0	0	0	0.01	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
		Er ₂ O ₃	0	0	0	0	0	0	0	0.02	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ē		Ho ₂ O ₃	0	0.03	0	0	0	0	0.01	0	0	0.02	0	0	0	0	0	0	0	0	0	0	0	0	0
ZrO ₃ + yMgO + gMnO	B	Dy ₂ O ₃	0	0.04	0	0.03	0	0	0	0.04	0.01	0	0	0	0	0	0.02	0.02	0	0.03	0.02	0.02	0	0	0.04
ZrO ₃ + yA		Tb ₂ O ₃	0	0	0.02	0	0	0.03	0	0	0.01	0	0	0	0	0.02	0.01	0	0	0	0	0	0.02	0	0
O3 + 3Ba		64203	0.0008	0	0.02	0	0	0.02	0	0	0.04	0	0	0	0.02	0	0	0	0.01	0	0.01	0	0	0	0.01
(BaO),m · TiO ₂ + αR ₂ O ₃ + βBa		Eu ₂ O ₃	0	0	0	0	0.02	0	0	0	0	0	0.03	0.01	0	0	0	0	0	0	0.02	0	0	0.05	0.01
(BaO) _m	Kind of	BaTiO ₃ }	Z4	8	%	Z\$	ZA	ZA	42	ZA	Z	\$	8	\$	\$	2A	ZA	2A	Z\$	20	ZA	28	2C	82	2A
<u>_</u>	S S		-2001	2002	-2003	-2004	-2005	-2006	.2007	.2008	-2009	2010	2011	-2012	.2013	-2014	2015	-2016	-2017	2018	2019	2020	2021	2022	2023

The amount of addition of the	second com-	ponent (parts by weight)	0	0	1	-	0	0	0	0	0	0	. 0	0.2	င
The amount of addition of the	first compo-	nent (parts by weight)	1	1	0	0	-	1	-	1	2	0.2	3	0	0
,	ε		1.01	1.01	1.015	1.01	101	1.01	1.01	1.01	1.035	1.015	1.01	1.01	1.01
	γ + g		0.003	0.05	0.05	90.0	0.11	0.122	0.05	0.04	90:0	0.05	0.022	0.02	0.05
	6		0.0015	0.03	0.02	0.05	90.0	0.062	0.03	0.02	0.04	0.03	0.012	0.005	0.03
	γ		0.0015	0.02	0.03	0.03	0.05	90.0	0.02	0.02	0.02	0.02	0.01	0.015	0.02
	a		0.02	0.02	0.02	0.02	0.02	0.02	0.005	90.0	0.03	0.03	0.02	0.03	0.03
	Total	5 -	0.001	0.02	0.03	0.04	0.05	90.0	0.02	0.02	0.03	0.02	0.01	0.01	0.05
		Yb ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
		Tm ₂ O ₃	0	0	0.01	0	0	0	0	0.01	0	0	0	0	0
	-	Er ₂ O ₃	0	0.01	0	0	0	0	0.01	0	0.01	٥	0	0	0
		Ho ₂ O ₃	0	0	0	0.02	0	0	0	0	0	0	0	0	0
Mg + OgN	¤	Dy ₂ O ₃	0.001	0	0.02	0	0	0.04	0.01	0.01	0	0.01	0	0.01	0.01
ZrO ₃ + yl	,	Tb ₂ O ₃	0	0.01	0	0	0	0	0	0	0	0	0.01	0	0
O ₃ + βBa.		Gd ₂ O ₃	0	0	0	0	0.05	0.02	0	0	0.02	0.01	0	0	0
riO ₂ + αR.		Eu ₂ O ₃	0	0	0	0.02	0	0	0	0	0	0	0	0	0.01
$(BaO)_m$ TiO ₂ + αR_2O_3 + $\beta BaZrO_3$ + γMgO + $gMnO$	Kind of	ga C	ZA	ZA	2A	2A	2A	2A	2A.	2A	2A	2A	2A	ZA	ZA
Ė	N S		2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036

ble 2003

Organic solvents such as polyvinyl butyral binder and ethanol were added to the weighed compounds, which were mixed in a ball mill in an wet state to prepare a ceramic slurry. This ceramic slurry was formed into a sheet by a doctor blade method to obtain a rectangular shaped green sheet with a thickness of 35 µm, followed by printing an electrocon-

ductive paste mainly composed of Ni on the ceramic green sheet to form an electroconductive paste layer for forming inner electrodes.

Then, a plurality of the ceramic green sheets on which the electroconductive layer is formed were laminated so that the sides where the electroconductive paste is projected out are alternately placed with each other, thus obtaining a monolithic body. This monolithic body was heated at 350 °C in a N_2 atmosphere and, after allowing the binder to decompose, the monolithic body was fired at the temperatures shown in TABLE 2004 and TABLE 2005 in a reducing atmosphere comprising H_2 - N_2 - H_2 O gases under an oxygen partial pressure of 10^{-9} to 10^{-12} MPa for two hours, thereby obtaining a ceramic sintered body.

The both side faces of the ceramic sintered body were coated with a silver paste containing B_2O_3 -Li₂O-SiO₂-BaO glass frits and fired at a temperature of 600 °C in a N_2 atmosphere, thereby obtaining outer electrodes electrically connected to the inner electrodes.

The overall dimensions of the monolithic ceramic capacitor thus obtained were 5.0 mm in width, 5.7 mm in length and 2.4 mm in thickness while the thickness of the dielectric ceramic layer was 30 μ m. Total number of the effective dielectric ceramic layers were 57, the area of the confronting electrode per one layer being 8.2 \times 10⁻⁶m².

Electric characteristics of these monolithic ceramic capacitors were measured. The electrostatic capacitance (C) and dielectric loss ($\tan \delta$) were measured using an automatic bridge type measuring instrument at 1 kHz, 1 Vrms and 25 °C and the dielectric constant (ϵ) was calculated from the electrostatic capacitance. Next, the insulation resistance was measured using an insulation resistance tester at 25 °C and 150 °C by impressing direct current voltages of 315 V (or 10 kV/mm) and 945 V (or 30 kV/mm) for 2 minutes, obtaining a product of the electrostatic capacitance and insulation resistance, or a product CR.

The rate of change of the electrostatic capacitance against temperature changes was also measured. The rate of change at -25 °C and 85 °C by taking the electrostatic capacitance at 20 °C as a standard (Δ C/C20), the rate of change at - 55 °C and 125 °C by taking the electrostatic capacitance at 20 °C as a standard (Δ C/C25) and the maximum value of the rate of change ($|\Delta$ C| max) as an absolute value in the temperature range of -55 °C to 125 °C were measured as the electrostatic capacitances against temperature changes.

The DC vias characteristic was also evaluated. First, the electrostatic capacitance when an AC voltage of 1 kHz and 1 Vrms was impressed was measured. Then, the electrostatic capacitance when a DC voltage of 150 V and an AC voltage of 1 kHz and 1 Vrms were simultaneously impressed was measured, thereby the rate of reduction of the electrostatic capacitance (Δ C/C) due to loading the DC voltage was calculated.

In the high temperature load test, a direct current voltage of 750 V (or 25 kV/mm) was impressed at 150 °C on 36 pieces of each sample to measure the time dependent changes of the insulation resistance. The time when the insulation resistance of each sample was reduced below $10^6\Omega$ was defined to be a life span time and mean life span time was evaluated.

In the humidity resistance test, the number of the test pieces having an insulation resistance of $10^6\Omega$ or less among the 72 test pieces were counted after impressing a DC voltage of 315 V under an atmospheric pressure of 2 atm (relative humidity 100%) at 120 °C for 250 hours.

Insulation breakdown voltages under AC and DC voltages were measured by impressing AC and DC voltages at a voltage increase rate of 100 V/sec.

The results described above are listed in TABLE 2004 and TABLE 2005.

40

45

50

į	Mean	ije a	span (h)		850	170	800	120	880	180		110	100		190				150		120	850	890	920	890	820	006
	indicates out of the scope of the present invention	ty resis-	tance load test: Num-	per or injects	0/72	0/72	0772	0/72	0/72	49/72		0/72	15/72		0/72				0/72		0/72	0/72	0/72	0/72	0/72	0/72	0/72
4	o lue	ak-	oltage ()	20	14	4	14	14	14	14		41	14		=				12		11	15	15	14	15	14	15
	e scope	tion break-	down voltage (kV/mm)	AC	13	13	12	12	13	12		12	12		10				10		11	13	15	12	12	15	13
44 44 41 41	es out of th		945V lm- pressed	Voltage 150°C	110	230	80	200	110	210		130	220		160				170		160	240	250	260	270	250	240
	Indicat	J. (12.F.)	315V lm- pressed	Voltage 150	110	240	120	210	120	220		140	230		170				180		170	250	560	270	280	260	250
	Droduct	Product	945V lm- pressed	Voltage 25°C	2890	4820	2110	4860	2890	4830		2910	4830		3020				3000		3090	4880	4830	4810	4940	4900	4960
			315V Im- pressed		3040	9205	3020	5120	3040	5080		3060	5080		3180				3160		3250	5140	2080	2060	5200	5160	5220
	0	vias	charac- teristic	(%) Δ C/C 5kV/mm	-56	-14	-30	-36	4	-16		-16	-15		-38				-39		-55	-15	-22	-42	-16	-16	-16
	,	=	Maxi- mum	value	13.4	23.4	13.4	28.6	17.2	12.8		18.3	13.5		13.4				12.9		12.7	13.5	12.8	13.6	13.5	13.7	13.8
	0000	Katio of temperature dependent capacitance change (%)		7.651	-12.5	-23.4	-13.4	-28.6	-17.2	-12.8		-18.3	-13.5		-13.4				-12.9		-12.7	-13.5	-12.8	-13.6	-13.5	-13.7	-13.8
		o of temperature depend capacitance change (%)	Δ C/C ₂₅	ည ည	4.3	6.5	3.3	4	4	4.5		4.5	4.1		3.8				4		3.8	4.2	3.8	3.8	3.7	3.9	4
	1	itio of ter capacit		ည နွ	-8.6	-14.9	-8.5	-13.2	-13.2	1.6.	ormation	-9.2	ę,	uctor formation	-9.4	gui	ring	ring	-9.3	ring	-91	-8.7	-8.9	6.	-9.2	-9.4	6.
	C	ž	∆ C/C ₂₀		2.4	3.5	3.6	3.5	3.6	2.9	onductor f	4.2	3.1	onductor f	3.4	ient sinte	cient sinte	cient sintering	3.5	cient sintering	3.2	3	2.8	2.7	2.9	3	3.2
		<u> </u>			9.0	-	6.0	-	6.0	2.5	to semica	0.8	2.5	to semice	6.0	to insuffi	to insuffi	to insuffic	2.7	to insuffik	2.6	0.8	0.7	8.0	0.7	8.0	0.7
	-		con- stant		2030	860	1350	1420	1550	1080	Unmeasurable due to semiconductor formation	1060	1040	Unmeasurable due to semicond	1460	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficier	1470	Unmeasurable due to insufficier	1920	1050	1230	1560	1080	1060	1070
	Ī	.,	temp (C)		1300	1300	1280	1300	1280	1360	Unmeası	1280	1280	-	1300	Unmeas	Unmeas	-	1300	-	1300	1300	1280	1280	1280	1300	1300
ible 2004		Sam- ple	9		2001	2002	*2003	-2004	*2005	.2006	-2007	*2008	*2009	*2010	.2011	2012	*2013	2014	-2015	•2016	2017	*2018	2019	2020	2021	2022	2023

Mean life	span (h)			830	840	890	820	870	006	830	810	860	810	870	820	880
Humidi- ty resis-	tance load test: Num-	per of	rejects	0/72	0/72	0/72	0/72	0.772	0/72	0/72	0/72	0/72	0/72	0.772	0/72	0/72
¥	oltage (,	2	14	4	4	4	14	14	14	15	4	14	14	14	14
Insula- tion break-	down voltage (kV/mm)		AC	12	12	13	12	13	12	12	12	12	12	12	13	13
	945V Im- pressed	Voltage	150°C	240	270	230	250	220	200	250	240	240	220	250	240	270
CR (Ω.F)	315V Im- pressed		150	250	280	240	260	230	210	260	250	250	230	260	250	280
Product CR (Ω.F)	945V Im- pressed	Voltage	25°C	2000	5020	4850	4900	5030	4810	4860	4920	5020	4900	4840	4850	4900
	315V lm- pressed	Voltage	25	5260	5280	5100	5160	5290	2060	5120	5180	5280	5160	0609	5100	5160
DC vias	charac- teristic	(%)	∆ C/C 5kV/mm	-56	45	-38	-32	-22	-15	4	4	-37	14	-45	45	-43
citance	Maxi-	value		4	13	13	13	13	4	14	13	13	14	14	4	13
Ratio of temperature dependent capacitance change (%)		125°C		-13.6	-12.9	.13	-12.8	-13.2	-13.8	-13.5	-12.8	-13	-13.7	-13.5	-13.9	-12.9
re depen	∆ C/C ₂₅	-55°C		4	4.1	3.9	3.8	3.5	3.8	3.8	4	4.1	3.9	3.9	3.5	3.6
emperatu %)		85°C		6.8-	-8.7	-8.8	6.8-	-9.2	-9.3	1.6	6-	6.8	8.8	-8.7	6.	6.8-
Ratio of ten	∆ C/C ₂₀	-25°C		3.4	3.4	3	2.9	3.5	3.3	3.2	3	3.5	4	4.1	3.2	3.5
Dielec- tric	loss tan δ	(%)		6.0	0.8	8.0	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Dielec-	con-			2010	1530	1470	1360	1220	1050	1550	1570	1430	1580	1600	1600	1540
Bak-	temp.	```		1300	1300	1280	1280	1300	1300	1300	1280	1280	1300	1300	1300	1280
Sam-	<u>2</u>			2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036

able 2005

It is evident from Table 2002 to TABLE 2005 that the monolithic ceramic capacitor according to the present invention has a capacitance decreasing ratio of as small as within -45% at an impressed voltage of 5 kV/mm and a dielectric loss of less than 1.0 %, wherein the rate of change against temperature changes satisfies both the B-level characteristic

standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 5000 Ω • F or more and 200 Ω • F or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

The reason why the composition was limited in the present invention will be described hereinafter.

In the composition of $(BaO)_m TiO_2 + \alpha R_2 O_3 + \beta BaZrO_3 + \gamma MgO + gMnO$ (wherein $R_2 O_3$ represents at least one compound selected from $Eu_2 O_3$, $Gd_2 O_3$, $Tb_2 O_3$, $Dy_2 O_3$, $Tb_2

The BaZrO $_3$ content β of zero as in the sample No. 2003 is not preferable since the insulation resistance is low and the voltage dependency of the insulating resistance is larger than that of the composition system containing BaZrO $_3$. It is also not preferable that the BaZrO $_3$ content β is more than 0.06 as in the sample No. 2004 because the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic, along with shortening the mean life span. Accordingly, the preferable range of the BaZrO $_3$ content β is 0.005 $\leq \beta \leq$ 0.06.

It is not preferable that, as seen in the sample No. 2005, the MgO content γ is 0.001 since the insulation resistance becomes low and the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic. On the other hand, it is not preferable that the MgO content γ exceeds 0.12 as in the sample No. 2006, because the sintering temperature becomes high, the dielectric loss exceeds 2.0%, the number of rejections in the humidity resistance load test is extremely increased along with the mean life span being short. Accordingly, the preferable range of the MgO content γ is in the range of 0.001 < $\gamma \le 0.12$.

It is not preferable that, as seen in the sample No. 2007, the MnO content g is 0.001 since measurement becomes impossible due to formation of semiconductors. It is not preferable, on the other hand, that the MnO content g exceeds 0.12 as seen in the sample No. 2008 because the temperature characteristic X7R is not satisfied and the insulation resistance is lowered besides the mean life span becomes short. Accordingly, the preferable range of the MnO content g is in the range of 0.001 $< g \le 0.12$.

It is not preferable that, as in the sample No. 2009, the combined amount of γ + g of the MgO content and MnO content exceeds 0.13 because the dielectric loss is increased to 2.0% and the mean life span is shortened besides the rejection number in the humidity resistance load test increases. Accordingly, the combined amount of γ + g of the MgO content and MnO content is preferably in the range of γ + g \leq 0.13

It is not preferable that the BaO/TiO_2 ratio m is less than 1.000 as in the sample No. 2010 because measurements are impossible due to formation of semiconductors. It is also not preferable that, as seen in the sample No. 2011, the BaO/TiO_2 ratio m is 1.000 since the insulation resistance as well as the AC and DC breakdown voltage becomes low along with shortening the mean life span. It is not preferable, on the other hand, that the BaO/TiO_2 ratio m is over 1.035 as in the samples No. 2012 and 2013 since measurements becomes impossible due to insufficient sintering. Accordingly, the BaO/TiO_2 ratio m in the range of 1.000 < m \leq 1.035 is preferable.

It is not preferable that the amount of addition of the first or second side component is zero as in the samples No. 2014 and 2016 because measurements are impossible due to insufficient sintering. It is not preferable that the amount of addition of the first or second side component exceeds 3.0 parts by weight as seen in the samples No. 2015 and 2017, on the other hand, because the dielectric loss exceeds 1.0% and the insulation resistance and insulation breakdown voltage are lowered along with shortening the mean life span. Accordingly, the preferable content of either the first or the second components is 0.2 to 3.0 parts by weight.

The contents of the alkali earth metal oxides contained in barium titanate as impurities are suppressed below 0.02% by weight because, when the contents of the alkali earth metal oxides exceeds 0.02% by weight as in the sample No. 2018, the dielectric constant is decreased.

(Example 14)

A material with a composition of $BaO_{1.010} \cdot TiO_2 + 0.03Gd_2O_3 + 0.025BaZrO_3 + 0.05MgO + 0.01$ MnO (mole ratio) was prepared using barium titanate in TABLE 1A as a dielectric powder. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that an oxide represented by Li_2O -(Si, Ti)O₂-MO shown in Table 2006, having a mean particle size of 1 μ m or less produced by heating the material described above at 1200 to 1500 °C, was added as the first side component. The overall dimensions of the monolithic ceramic capacitor produced is the same as

in Example 1.

Table 2006

1	0	

Sample				e component		
No.	Amount of addition (parts		Com	position (mol ⁹	%, except w)	
	by weight)	Li ₂ O	(Si _w Ti _{1-w})O ₂	W	Al ₂ O ₃	ZrO ₂
2101	1	20	80	. 0.3	0	0
2102	1	10	80	0.6	5	5
2103	0.8	10	70	0.5	20	0
2104	0.8	35	45	1	10	10
2105	1.5	. 45	45	0.5	10	0
2106	1.5	45	55	0.3	0	0
2107	1	20	70	0.6	5	5
2108	1	20	70	0.4	10	0
2109	1.2	30	60	0.7	5	5
2110	1.2	30	60	0.8	10	0
2111	2	40	50	0.6	5	5
2112	2	40	50	0.9	0	10
2113	1.5	10	85	0.4	5	0
2114	2	5	75	0.6	10	10
2115	1.2	20	55	0.5	25	0
2116	1	45	40	0.8	0	15
2117	0.8	50	45	0.7	5	0
2118	1.2	25	75	0.9	0	0
2119	1.5	25	75	1	0	0
2120	1	35	65	0.9	0	0
2121	1.5	35	65	1	0	0
2122	1.2	20	70	0.2	0	10

The electric characteristics were then measured by the same method as in Example 1. The results are shown in TABLE 2007.

Mean life span (h) ad m- m-							72 830	_	72 850	72 890	}			72 890	72 900			72 150			_				29/72 180
Humidi- ty resis- tance load test: Num- ber of				0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72			26/72			0/72	20/72	0/72	34/72	79/
eak- oltage 1)			ည္	4	14	14	14	4	4	4	15	4	4	72	14			12			14	12	14	12	12
Insula- tion break- down voltage (kV/mm)			AC	12	12	12	27	13	12	13	12	12	12	13	12			=			12	11	12	Ξ	ţ
	945V Im-	Voltage	150°C	230	210	210	220	210	200	500	200	200	200	210	210	,		140			210	110	220	120	5
	315V Im-	Voltage		240	220	220	230	220	210	210	210	210	210	220	220	-		150			220	120	230	130	00,
₹ (Ω·F)	945V Im-	Voltage	25°C	4980	4870	4910	4840	4830	4850	4900	4980	4970	4940	4920	5010			3610			4900	3670	4970	3620	0000
Product CR (Ω.F)	315V Im-	Voltage	2	5240	5130	5170	2090	5080	5100	5160	5240	5230	5200	5180	5270			3800			5160	3860	5230	3810	
DC vias charac- teristic (%)			∆ C/C 5kV/mm	-37	-37	9	-35	-36	-35	-38	-38	-36	-38	-35	-35			-22			-37	-20	-38	-21	
	Maxi-	value		13	4	14	14	14	4	4	13	13	13	14	4			4			4	5	14	4	
dent		125°C	•	-13.4	-13.5	-13.6	-14	-13.8	-13.7	-13.9	-12.8	-12.5	-13	-13.8	-13.6			-13.8			-13.5	-12.9	-13.7	-13.6	
o of temperature dependent scitance change (%)	A C/C25	2,59-		4.2	3.8	3.9	4	4.2	3.7	3.5	3.9	4.2	3.5	4.2	4.3	ering	ering	4	ering	ering	4.6	3.8	3.8	3.5	
nce chan		85°C		o;	-8.7	6. 6.	ę.	-9.2	-9.4	8.8	-9.5	9.6-	-9.7	-9.5	9.6-	cient sint	cient sint	-9.1	cient sint	cient sint	9.3	-8.8	-8.9	-8.9	
Ratio of temperature der capacitance change (%)	Δ C/C ₂₀	-25°C		3.6	3.8	1-4	4	3.2	3.6	3.5	4	3.8	3.5	3.9	4	to insuff	to insuff	3.5	to insuff	to insuff	3.8	3.2	3	3.8	
Dielec- tric loss tan 8 (%)			-	0.8	0.8	8.0	9.0	6.0	8.0	9.0	8.0	6.0	9.0	0.8	0.8	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	1.8	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	6.0	1.6	6.0	1.4	
Dielec- tric con- stant				1430	1460	1490	1420	1430	1400	1460	1460	1420	1470	1430	1420	Unmeası	Unmeast	1230	Unmeası	Unmeasu	1480	1200	1450	1210	
9.				1280	1280	1280	1300	1300	1280	1280	1280	1280	1300	1300	1280	1350	1350	1350	1350	1350	1300	1350	1300	1350	
Sam-Bak ple ing No. tem				2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	

As is evident from TABLE 2006 and TABLE 2007, preferable results are obtained in the samples No. 2101 to 2112, 2118 and 2120 in which the oxides with compositions within or on the boundary lines of the area surrounded by the

straight lines connecting each spot indicated by A (X = 20, y = 80, z = 0), B (X = 10, y = 80, z = 10), C (X = 10, y = 70, z = 20), D (X = 35, y = 45, z = 20), E (x = 45, y = 45, z = 10) and F (x = 45, y = 55, z = 0) (wherein x, y and z represent mole % and w represents mole ratio, w being in the range of $0.3 \le w < 1.0$ when it falls on the line A - F) of the three component phase diagram of the oxides represented by $\text{Li}_2\text{O}\text{-}(\text{Si}_w, \text{Ti}_{1-w})\text{O}_2\text{-MO}$ shown in FIG. 4 are added, wherein the samples have a capacitance decreasing ratio of as small as within -45% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 5000 $\Omega \cdot F$ or more and 200 $\Omega \cdot F$ or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

When the oxide represented by $\text{Li}_2\text{O}\text{-}(\text{Si}_w\text{Ti}_{1-w})\text{O}_2\text{-MO}$ has a composition outside of the composition described above as in the samples No. 2113 to 2117 and 2119, on the other hand, sintering becomes insufficient or many rejection appear in the humidity resistance load test even after sintering. When the composition falls on the line A - F and w = 1.0, the sintering temperature becomes high, giving a lot of rejections in the humidity resistance load test as shown in the samples No. 2119 and 2121. When the value of w is less than 3.0, the sintering temperature becomes so high that many rejections appear in the humidity resistance test as shown in Sample No. 2122.

(Example 15)

10

15

20

35

40

45

50

55

A material with a composition of BaO_{1.010} • TiO₂ + 0.03Dy₂O₃ + 0.02BaZrO₃ + 0.05 MgO + 0.01 MnO (mole ratio) was prepared using barium titanate in TABLE 1A as a dielectric powder. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that an oxide represented by SiO₂-TiO₂-XO shown in Table 2008, having a mean particle size of 1 μm or less produced by heating the material described above at 1200 to 1500 °C, was added as the second side component. The amounts of addition of Al₂O₃ and ZrO₃ are indicated by parts by weight relative to 100 parts by weight of the second side component (xSiO₂-yTiO₂-zXO). The overall dimensions of the monolithic ceramic capacitor produced is the same as in Example 1.

jode la	Essentia TiO ₂ BaO CaO 1 1 1 0 51 0 10 20 0 30 10 5 5 10 0 0 20 10 10 20 10 0 20 10 0 40 10 0 22 3 30 22 3 30 25 5 5 5 40 15 0 40 15 0 20 35 15 20 35 15	The second side component	nent (mol %) Added component (parts by weight)	A	\vdash	4 9 14 0	0 0 4 14 0 0	15 4 1 50 0 0	0 13 5 60 0 0	0 10 0 20 0 0	0 15 30 45 0 0	0	0 4	0 0 0 32 0 0	0 5 5 20 0 0	0 0 0 33 15 0	0 0 0 33 10 5	0 0 10 0 0		2	0 0 20	0 0 33 25	33 0 15
	Amount of addition (parts by weight) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Essen	TiO2	-	-	0	0	20	5	0	10	0	25	10	3	3	9	15	30	35	30	30
BaO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0				SiO ₂		85	35	30	39	70	45	90	20	35	40	45	45	65	25	30	20	45	45
TiO ₂ BaO 1 1 1 51 0 20 0 10 5 10 5 10 0 30 0 30 25 40 10 22 3 22 3 25 5 40 10 30 25 40 10 30 25 40 10 30 25 40 10 30 30 30 25 40 10 30 30 30 30 30 30 30 30 30 30 30 30 3			Amount of addition	(parts by	weight)	-	-		-		-	-	1	1		-	1	1	_	-	1	1	1

The electric characteristics were then measured by the same method as in Example 1. The results are shown in TABLE 2009.

																Mann Life
Bak- Dielec- ing tric temp. con-		Dielec- tric loss	Ratio of temperature der capacitance change (%)	lemperat nce chan	of temperature dependent sitance change (%)	dent		DC vias charac-	Product CR (D.F)	۲ (۵۰۴)	•		insula- tion break- down voltage	ak- oltage	ty resistance load	span (h)
		(%)	,					(%)							ber of rejects	
			∆ C/C ₂₀		∆ C/C ₂₅		Maxi-		315V Im-	945V Im-	315V Im-	945V Im-				
							En E		pressed	pressed	pressed	pressed				
			-25°C	35°C	J.55-	125°C	value			Voltage	- 1	Voltage		ć		
								A C/C	- 5	25°C	<u></u>	150°C	Ş	2		<u>-</u>
1300 1040	6	0.7	3.4	-9.5	3.6	-13.9	14	-16	5070	4820	210	200	13	15	0/72	880
1280 1060	0	0.7	3.5	-8.9	4	-14.2	14	-17	2090	4840	210	200	12	14	0/72	820
1280 1100	o	0.7	3.8	-9.1	3.9	-13.8	14	-18	5100	4850	220	210	12	15	0/72	800
1300 1070	0	0.7	4	6,	4.2	-13.5	14	-11	5120	4860	210	200	12	14	0/72	006
1300 1020	0	0.7	4.2	-9.2	4.3	-13.6	14	-15	5130	4870	210	200	13	14	0/72	920
1280 1080	2	0.7	3.9	8.89 8.00	4.5	-13.7	14	11.	2080	4830	230	220	13	15	0/72	840
1280 1100	0	0.7	3.4	-8.7	4.5	-14	14	-18	2080	4830	210	200	12	14	0/72	980
1300 1060	0	0.7	3.6	6.8-	4.2	-13.5	4	-17	5120	4860	220	210	12	14	0/72	920
1300 1090	8	0.7	4.1	8.8	4	-13.6	14	-18	5160	4900	220	210	12	14	0/72	006
1300 1050	8	0.7	3.8	6-	4.3	-13.7	14	-11	5150	4890	210	200	12	14	0/72	880
1280 1070	2	0.7	3.9	-9.2	4.2	-13.3	5	-17	5430	5160	310	300	12	15	0/72	870
1300 1080	8	0.7	4	-9.4	4	-13.5	14	-18	5450	5180	320	300	12	14	0/72	006
1350 860	6	1.4	3.5	-8.7	3.9	-13.6	14	-14	3790	3600	150	. 140	11	13	45/72	160
1350 Unm	eas	Unmeasurable due to insufficient sintering	to insuffic	cient sint	ering											
1350 Unm	eas	Unmeasurable due to ins	to insuffic	ufficient sintering	ering											
1350 830	0	1.3	3.6	8.8	3.9	-13.7	14	-14	3860	3670	130	120	-	12	68/72	180
1350 Unm	eas	Unmeasurable due to insufficient sintering	to insuffic	cient sint	ering										-	
1350 Unm	eas	Unmeasurable due to insufficient sintering	to insuffic	cient sint	ering											
1350 Unm	as	Unmeasurable due to insufficient sintering	to insuffic	cient sint	ering											
-	-															

As is evident from TABLE 2008 and TABLE 2009, preferable results are obtained in the samples No. 2201 to 2212, in which oxides with compositions within or on the boundary lines of the area surrounded by the straight lines connecting each spot indicated by A (x = 85, y = 1, z = 14), B (x = 35, y = 51, z = 14), C (x = 30, y = 20, z = 50) and D (x = 30).

y = 1, z = 60), (wherein x, y and z represent mole %), of the three component phase diagram of the oxides represented by SiO_2 - TiO_2 -XO shown in FIG. 5 are added, wherein the samples have a capacitance decreasing ratio of as small as within -45% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as $5000~\Omega \cdot F$ or more and $200~\Omega \cdot F$ or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more and no rejections were found in the humidity resistance load test besides enabling a relatively low firing temperature of 1300 °C or less.

When the oxide represented by SiO₂-TiO₂-XO has a composition outside of the composition described above as in the samples No. 2213 to 2219, on the contrary, sintering becomes insufficient or many rejection appear in the humidity resistance load test even after sintering.

While a monolithic capacitor having an insulation resistance of 5400 $\Omega \cdot F$ or more and 300 $\Omega \cdot F$ or more at 25 °C and 150 °C, respectively, under a strong electric field of 10 kV/mm can be obtained by allowing Al₂O₃ and/or ZrO₂ to contain in the SiO₂-TiO₂-XO oxides as in the sample No. 2211 and 2212, sintering property is extremely decreased when Al₂O₃ and ZrO₂ are added in an amounts of 15 parts by weight or more and 5 parts by weight or more, respectively, as in the samples No. 2217 and 2218.

(Example 16)

35

40

45

50

55

Four kinds of barium titanate (BaTiO₃), an oxide powder as a first side component and an oxide powder as a second side component were obtained by the same method as in Example 1.

Then, BaCO $_3$ for adjusting the mole ratio Ba/Ti in barium titanate, Eu $_2$ O $_3$, Gd $_2$ O $_3$, Tb $_2$ O $_3$, Dy $_2$ O $_3$, Ho $_2$ O $_3$, Er $_2$ O $_3$, Tm $_2$ O $_3$ and Yb $_2$ O $_3$, and MnO, each having a purity of 99% or more, were prepared. These raw material powders and the oxides described above to be either the first or the second component were weighed so as to be the composition in TABLE 2010 and TABLE 2011. The amounts of addition of the first and second side components are defined by the amount of addition relative to 100 parts by weight of (BaO) $_m$ TiO $_2$ + α R $_2$ O $_3$ + β BaZrO $_3$ + γ MnO. A monolithic ceramic capacitor was produced by the same method as in Example 1 using these weighed materials. The overall dimensions of the monolithic ceramic capacitor are the same as in Example 1.

*indicates "out of the scope of the present invention"

Table 2010

No. Kind of BaTiO ₃)(?)()	•										
				σ			·		Total of α	2	~	Ε	Amount of addition of the first component (parts by weight)	Amount of addition of the second component (parts by weight)
	Eu ₂ O ₃	Eu ₂ O ₃ Gd ₂ O ₃	Tb ₂ O ₃	Tb ₂ O ₃ Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃ Tm ₂ O ₃		Yb_2O_3						
*2301 A	0	0.0007	0	0	0	0	0	0	0.0007	0.03	0.0014	1.005	-	0
*2302 A	0	0	0.02	0	0.055	0	0	0	0.075	0.02	0.128	1.01	-	0
*2303 A	0.01	0	0	0.025	0	0	0	0	0.035	0	0.07	1.015	2	0
*2304 A	0	0.01	0	0	0.01	0	0.01	0	0.03	0.07	90.0	1.01	2.5	0
*2305 A	0.04	0	0	0	0	0	0	0	0.04	0.025	0.001	1.01	-	0
*2306 A	0	0	0	0.02	0	0.03	0	0	0.05	0.03	0.145	1.01	-	0
*2307 A	0	0	0.02	0	0	0	0	0.01	0.03	0.03	90.0	0.99	0	1
*2308 A	0	0.01	0	0.01	0	0	0	0	0.02	0.03	0.04	-	2	0
*2309 A	0	0	0	0	0	0	0.01	0	0.01	0.03	0.02	1.037	1	0
-2310 A	0.01	0.01	0	0	0	0	0	0	0.02	0.03	0.04	1.045	0	2
*2311 A	0	0	0	0	0.01	0	0	0	0.01	0.02	0.02	1.01	0	0
-2312 A	0	0.02	0	0	0	0.02	0	0	0.04	0.03	80.0	1.01	4	0
*2313 A	0	0	10.0	0.01	0	0	0	0	0.02	0.04	0.04	1.015	0	0
-2314 A	0.01	0	0	0	0	0	0	0.01	0.02	0.02	0.04	1.01	0	5
*2315 D	0	0	0	0	0.02	0	0	0	0.02	0.04	0.04	1.0.1	2	0
2316 A	0	0.02	0.02	0	0	0	0	0	0.04	0.02	80.0	1.01	0	-
2317 B	0	0	0.01	0	0	0.01	0	0	0.02	0.03	0.04	1.02	_	0

Table 2011

				,					,	·	γ				r	r		
Amount of addition of	the second side compo-	nent (parts by weight)	0	0	2	0	0	-	-	0	0	0	0	0	0	0	0.2	င
Amount of addition of	the first side compo-	nent (parts by weight)	2	-	0	-		0	0	-	2			2	0.2	ဇ	0	0
	E		1.03	1.015	1.02	1.01	1.01	1.025	1.01	1.01	1.02	1.01	1.01	1.035	1.01	1.01	1.01	1.01
	>		0.13	90.0	0.08	0.002	90.0	0.04	0.08	0.08	0.12	90.0	0.04	0.04	90.0	0.04	0.04	0.04
	9		0.02	0.02	0.03	0.02	0.03	0.02	0.02	0.03	0.03	0.005	90.0	0.02	0.03	0.02	0.04	0.03
잍	Total of	ø	0.03	0.03	0.04	0.001	0.03	0.02	0.04	0.0	90.0	0.03	0.02	0.02	0.03	0.02	0.02	0.02
ro, + yk		Yb2O3	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0	0.01	0
, + βBaZ		Tm ₂ O ₃	0	0.02	0	0	0	0	0	0.02	0	0.02	0	0	0.03	0	0	0.
(BaO) _m · TiO ₂ + αR ₂ O ₃ + βBaZrO ₃ + γMnO		Er ₂ O ₃	0	0	0	0	0	0.02	0	0	0.03	0	0	0.01	0	0	0	0.02
O)m · TiC		Ho ₂ O ₃	0	0	0	0	0	0	0.03	0	0	0	0.01	0	0	0	0	0
(Ba	5	Dy ₂ O ₃	0	0.01	0	0	0.01	0	0	0.02	0	0	0.01	0	0	0	0.01	0
		Tb ₂ O ₃	0	0	0	0	0.01	0	0	0	0	0.01	0	0.01	0	0.01	0	0
		Gd ₂ O ₃	0	0	0.04	0.001	0	0	0.01	0	0.03	0	0	0	0	0	0	0
		Eu ₂ O ₃	0.03	0	0	0	0	0	0	0	0	0	0	0	0	0.01	0	0
	Kind of	BaTiO ₃	ပ	4	A	⋖	A	A	∢	A	4	A	A	A	A	⋖	∢	4
Sam-	bje	ģ	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333

The electric characteristics were measured by the same method as in Example 1. The results are shown in TABLE 2012 and TABLE 2013.

Table 2012

	Mean life	Span	Ξ			880	920	860	130		120	01	110				140		170	006	820	890
}	Humidity resis-	tance	load test:	Number of rejects		. 0/72	12/72	0/72	0/72		0/72		0/72				0/72		0/72	0/72	0/72	0/72
	tion fown	9	<u>ال</u>	2		4	4	14	4		14		12				11		=	4	14	15
	Insulation breakdown	voltage	(kV/mm)	Ş		12	12	12	12		12		10				11		10	12	12	13
vention"		0451/ Im.	pessed	Voltage	150°C	220	190	09	210		120		110			-	120		140	200	240	220
present in	R (Ω · F)	3151/1m 0451/1m 3151/1m 9451/1m	pressed		150	230	200	8	220	ے	130	ڃ	120				130] 	150	210	250	230
ope of the	Product CR ($\Omega \cdot F$)	0451/100	pressed	Voltage	ပ	4940	5160	2100	4970	formatic	2930	formatic	3040	intering	intering	intering	3150	intering	3040	4980	4870	4900
t of the so		2451/100	pressed	Voltage	25°C	5200	5430	3000	5230	nductor	3080	nductor	3200	fficient s	fficient s	fficient s	3310	fficient s	3200	5240	5130	5160
· indicates "out of the scope of the present invention"	DC vias	Chaine	(%)	AC/C 5kV/mm		-39	-10	-22	-22	Unmeasurable due to semiconductor formation	-13	Unmeasurable due to semiconductor formation	-37	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	-22	Unmeasurable due to insufficient sintering	-36	-14	-21	-37
Ë			Maxi-	value		18	7	80	27	ole due	19	ple due	6	rable du	rable du	rable du	9.2	rable di	80	9.1	11	12.1
	lent capac		25	125°C		-18	1-	æρ	-27	neasura	-19	neasura	6-	nmeasu	nmeasu	nmeasu	-9.2	Inmeasu	89	-9.1	-11	-12.1
	Ratio of temperature dependent capacitance	Cindinge (A)	ΔC/C ₂₈	-55°C		2	4	5	8.	Š	4.6	Š	4.1				4.3		3.6	5	4.5	4.6
	temperatu	1	s S	85°C		-13	-7	-7.8	-14.2		-8.3		-8.2				-8.7		9.7-	-7.2	-8.4	-8.6
	Ratio of		AC/C ₂₀	-25°C		4	2.4	2.2	2.4		3.4		3.2				3.3		2.7	2.4	2.4	2.6
	Dielec-	ILIC IOSS	tan 8	<u>. </u>		0.8	0.7	0.8	0.7		0.8		0.7			!	2.2		2.4	0.7	0.7	0.7
	Dielec-	tric con-	stant			1560	810	1330	1330		1120		1440				1280		1420	1120	1220	1450
	\vdash		<u>်</u>			1300	1300	1300	1300		1280		1300				1300		1300	1300	1280	1280
	Sample	Š				*2301	*2302	*2303	*2304	*2305	•2306	*2307	*2308	*2309	*2310	*2311	*2312	*2313	*2314	*2315	2316	2317

Table 2013

Mean	Span	 E		930	870	830	950	880	006	960	830	810	870	910	950	880	930	910	860
				6	80	<u>α</u>	õ	80	<u></u> 5	₩ —	80	∞	80	6	ō	ω̈	6	6	8
Humidity resistance	load test:	rejection		0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72
Insulation breakdown	voltage	2		14	14	14	14	14	14	15	14	15	14	14	14	14	14	14	14
Insul break	voltage	AC K		12	12	12	12	12	12	13	12	13	12	12	12	12	12	12	12
		Voltage	150°C	210	230	220	220	200	240	220	210	190	200	210	220	210	200	220	210
Product CR (Ω · F)		pressed Voltage	187	220	240	230	230	210	250	230	220	200	210	220	230	220	210	230	220
Product C		Voltage	760	4940	4830	4880	5040	4960	5030	5070	2060	4830	4950	4980	2000	4960	4980	5020	5040
	315V lm-	pressed Voltage	30	5200	5080	5140	5300	5220	5290	5340	5330	2080	5210	5240	5260	5220	5240	5280	5300
DC vias charac-	teristic	0/2\ VC/C	5kV/mm	-28	-30	-22	-39	-29	-38	-23	-23	-12	-30	-38	-39	-28	-36	-36	-39
citance	Maxi-	value		10.4	9.7	9.5	13.4	10.3	11.2	11	12	12.5	12.1	11.5	13.6	11.8	11.9	11	10.7
Ratio of temperature dependent capacitance change (%)	∆C/C ₂₅	125°C		-10.4	-9.7	-9.5	-13.4	-10.3	-11.2	-11	-12	-12.5	-12.1	-11.5	-13.6	-11.8	-11.9	-11	-10.7
iture depend change (%)	/VC/	-55°C		4.7	4.5	5	4.8	4.6	4.9	4.6	4.3	5.1	5.3	4	4.6	4.2	4.8	4.7	4.3
temperat C	∆C/C ₂₀	85°C		6-	-9.1	-8.7	-8.5	6-	-9.2	-8.8	-8.7	-9.2	-9.3	-8.5	-8.2	-8.8	6-	-8.6	-9.1
Ratio o	γC/	-25°C	1	က	3.4	2.8	2.6	2	m	3.2	3.3	2.9	2.8	2.1	2.6	3	2.7	2.8	3
	tan 8	(%)		8.0	0.7	0.7	0.7	0.7	0.7	9.0	0.7	0.7	0.7	0.7	0.8	0.7	0.8	0.7	0.7
Dielec- tric con-	stant			1360	1370	1240	1510	1360	1460	1250	1240	096	1340	1440	1470	1360	1420	1430	1460
Baking temp.	<u>(</u>)			1280	1300	1300	1300	1300	1300	1280	1300	1300	1300	1280	1300	1300	1280	1300	1300
Sam- ple	8 2			2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333

It is evident from Table 2010 to TABLE 2013 that the monolithic ceramic capacitor according to the present invention has a capacitance decreasing ratio of as small as within -40% or less at an impressed voltage of 5 kV/mm and a

dielectric loss of less than 1.0 %, wherein the rate of change against temperature changes satisfies both the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 5000 Ω • F or more and 200 Ω • F or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

The reason why the composition was limited in the present invention will be described hereinafter.

In the composition of $(BaO)_m TiO_2 + \alpha R_2 O_3 + \beta BaZrO_3 + \gamma MgO$ (wherein $R_2 O_3$ represents at least one compound selected from $Eu_2 O_3$, $Gd_2 O_3$, $Tb_2 O_3$, $Dy_2 O_3$, $Ho_2 O_3$, $Er_2 O_3$, $Tm_2 O_3$ and $Yb_2 O_3$, α , β and γ representing mole ratio, respectively), the $Mn_2 O_3$ content a of less than 0.001 as shown in the sample No. 2301 is not preferable because the temperature characteristics does not satisfy the B-level characteristics / X7R characteristics. On the other hand, the $Mn_2 O_3$ content α of more than 0.06 as shown in the sample No. 2302 is also not preferable because the specific dielectric constant becomes as small as less than 900. Accordingly, the preferable range of the $Mn_2 O_3$ content α is 0.001 α α α α α α α

The BaZrO $_3$ content β of zero as in the sample No. 2303 is not preferable since the insulation resistance is low and the voltage dependency of the insulating resistance is larger than that of the composition system containing BaZrO $_3$. It is also not preferable that the BaZrO $_3$ content β is more than 0.06 as in the sample No. 2304 because the temperature characteristic does not satisfy the B-level characteristic / X7R characteristic, along with shortening the mean life span. Accordingly, the preferable range of the BaZrO $_3$ content β is 0.005 $\leq \beta \leq$ 0.06.

It is not preferable that, as seen in the sample No. 2305, the MgO content γ is 0.001 since measuring is impossible due to formation of semiconductors. On the other hand, it is not preferable that the MgO content γ exceeds 0.13 as in the sample No. 2306, because the temperature characteristic X7R is not satisfied and the insulation capacitance is low along with the mean life span being short. Accordingly, the Mn content γ is preferably in the range of 0.001 $\leq \gamma < 0.13$.

It is not preferable that the BaO/TiO_2 ratio m is less than 1.000 as in the sample No. 2307 because measurements are impossible due to formation of semiconductors. It is also not preferable that, as seen in the sample No. 2308, the BaO/TiO_2 ratio m is 1.000 since the insulation resistance as well as the AC and DC breakdown voltage becomes low along with shortening the mean life span. It is not preferable, on the other hand, that the BaO/TiO_2 ratio m is over 1.035 as in the samples No. 2309 and 2310 since measurements becomes impossible due to insufficient sintering. Accordingly, the BaO/TiO_2 ratio m in the range of 1.000 < m \le 1.035 is preferable.

It is not preferable that the amount of addition of the first or second side component is zero as in the samples No. 2311 and 2313 because measurements are impossible due to insufficient sintering. It is not preferable that the amount of addition of the first or second side component exceeds 3.0 parts by weight as seen in the samples No. 2312 and 2314, on the other hand, because the dielectric loss exceeds 1.0% and the insulation resistance and insulation breakdown voltage are lowered along with shortening the mean life span. Accordingly, the preferable content of either the first or the second components is 0.2 to 3.0 parts by weight.

The contents of the alkali earth metal oxides contained in barium titanate as impurities are suppressed below 0.02% by weight because, when the contents of the alkali earth metal oxides exceeds 0.02% by weight as in the sample No. 2315, the dielectric constant is decreased.

(Example 17)

A material with a composition of BaO_{1.010} • TiO₂ + 0.015Ho₂O₃ + 0.01BaZrO₃ + 0.03 MnO (mole ratio) was prepared using barium titanate in TABLE 1A as a dielectric powder. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that an oxide represented by Li₂O-(Si, Ti)O₂-MO shown in Table 2006, having a mean particle size of 1 μm or less produced by heating the material described above at 1200 to 1500 °C, was added as the first side component. The overall dimensions of the monolithic ceramic capacitor produced is the same as in Example 1. The electric characteristics were measured by the same method as in Example 1. The results are shown in TABLE 2014. In Table 2014, the samples No. 2401 to 2422 correspond to the samples No. 2101 to 2122 in TABLE 2006. For example, the sample No. 2401 in TABLE 2014 was obtained by adding the side component of the sample No. 2101 in TABLE 2006.

Table 2014

ڃ		<u> </u>				0	0	0	0	0	0	0	0	0	0	0	0			0			0		0		0
Mean	<u>e</u>	span	<u>.</u>			880	006	870	820	820	920	830	800	880	850	810	920			120			860	110	870	130	140
Humidity	resistance	load test:	rejection			0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72	0/72			55/72			0/72	33/72	0/72	52/72	49/72
Insulation	down	voltage (kV/mm)	2	,		14	14	14	14	15	14	15	14	14	14	14	14			12			13	13	13	13	13
Insul	breakdown	voltage (kV/mm)	Y V			12	12	12	12	13	12	13	12	12	12	12	12			11			11	11	12	11	-
			Voltage	h	150°C	210	200	190	220	220	200	210	210	190	210	210	190			180			200	210	180	180	190
R (0 · F)			Voltage		150	220	210	200	230	230	210	220	220	200	220	220	200	ring	ring	190	ring	ring	210	220	190	190	200
Product CR (Ω · F)		945V lm-			ပ	4850	4860	4970	4850	4900	4970	4880	4890	4860	4870	4880	5000	ent sinte	ent sinte	4960	ent sinte	ent sinte	4910	5020	4850	4900	4940
		315V lm-	Voltage	n i	25°C	5100	5120	5230	5100	5160	5230	5140	2120	5120	-2130	5140	5260	insuffici	insuffici	5220	insuffici	insuffici	5170	5280	2100	5160	5200
DC vias	charac-	teristic (%)	VC/C	5kV/mm		-36	-36	-36	-38	-36	-36	-36	-37	-37	-38	-36	-36	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	-38	Unmeasurable due to insufficient sintering	Unmeasurable due to insufficient sintering	-37	-36	-37	-37	-36
itance		Maxi-	value			10.1	10.5	10.6	=	11.3	11.5	10.5	=	12.1	11.7	11.6	11.5	easurab	easurab	11	easurab	easurab	10.7	10.8	11.5	10	107
Ratio of temperature dependent capacitance		C ₂ s	125°C			-10.1	-10.5	-10.6	-11	-11.3	-11.5	-10.5	-11	-12.1	-11.7	-11.6	-11.5	Unm	Unm	-11	Unm	Unm	-10.7	-10.8	-11.5	-10	-107
re depend	change (%)	AC/C ₂₅	-55°C)		3.6	3.4	4.1	4.2	4	4.2	3.9	4.1	4.2	4.1	3.9	3.8			3.8			4.1	4.2	4	3.9	3.7
temperatu			85°C	·	-	-8.4	-8.4	ထု	-8.1	-7.9	œρ	-8.2	-8.3	ထု	-8. 1.	-8.2	-8.3			- ھ			-8.2	-8.3	-8.4	-8.3	-8.2
Ratio of		AC/C ₂₀	-25°C	·		2.6	2.3	2.5	2.2	2.2	2.7	5.6	2.8	2.4	2.3	2.4	2.2			2.8			2.7	2.5	2.5	2.7	25
Dielec-	tric loss	tan ô	<u> </u>			0.7	9.0	0.7	0.7	0.7	0.7	0.7	9.0	0.7	0.7	0.7	9.0			1.8			8.0	1.6	0.7	1.8	16
Dielec-	tric con-	stant				1430	1430	1440	1470	1430	1430	1430	1460	1460	1480	1440	1420			1440			1460	1430	1440	1460	1420
Baking						1300	1300	1280	1300	1300	1280	1300	1280	1280	1280	1300	1280	1350	1350	1350	1350	1350	1300	1350	1300	1350	1350
Sample	Š					2401	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419	2420	2421	2422

As is evident from the samples No. 2401 to 2412, 2418 and 2420, preferable results are obtained in the samples in which oxides of the samples No. 2101 to 2112, 2118 and 2120 in TABLE 2006 with compositions within or on the bound-

ary lines of the area surrounded by the straight lines connecting each spot indicated by A (x = 20, y = 80, z = 0), B (X = 10, y = 80, z = 10), C (X = 10, y = 70, z = 20), D (X = 35, y = 45, z = 20), E (x = 45, y = 45, z = 10) and F (x = 45, y = 55, z = 0) (wherein x, y and z represent mole %, w represents mole ratio, w being within the range of $0.3 \le w < 1.0$ when it falls on the line A - F) in the three component phase diagram of the oxides represented by Li_2O -(Si_w , Ti_{1-w})O₂-MO in FIG. 4 are added, wherein the samples have a capacitance decreasing ratio of as small as within -40% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 5000 Ω • F or more and 190 Ω • F or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

When the oxide represented by $\text{Li}_2\text{O-}(\text{Si}_w, \text{Ti}_{1-w})\text{O}_2\text{-MO}$ has a composition outside of the composition described above as in the samples No. 2113 to 2117 and 2119, on the other hand, sintering becomes insufficient or many rejection appear in the humidity resistance load test even after sintering as seen in the samples No. 2413 to 2417 and 2419 in TABLE 2014. When the composition falls on the line A - F and w = 1.0 as in the samples No. 2119 and 2121 in TABLE 2006, the sintering temperature becomes high and many rejects appear in the humidity resistance load test. When the value of w is less than 0.30 as in the sample No. 2122 in TABLE 2006, he sintering temperature becomes high and many rejects appear in the humidity resistance load test as seen in the sample No. 2422 in TABLE 2014.

(Example 18)

10

15

25

35

40

45

50

55

A material with a composition of BaO_{1.010} • TiO₂ + 0.025Eu₂O₃ + 0.01BaZrO₃ + 0.05 MnO (mole ratio) was prepared using barium titanate "A" in TABLE 1 as a dielectric powder. A monolithic ceramic capacitor was produced by the same method as in Example 1, except that an oxide Si₂O-TiO₂-XO shown in Table 2008, having a mean particle size of 1 μm or less produced by heating the material described above at 1200 to 1500 °C, was added as the second side component. The overall dimensions of the monolithic ceramic capacitor produced is the same as in Example 1. The electric characteristics were measured by the same method as in Example 1. The results are shown in TABLE 2015. In Table 2015, the samples No. 2501 to 2519 in TABLE 2015 correspond to the samples No. 2201 to 2219 in TABLE 2008. For example, the sample No. 2501 in TABLE 2015 was obtained by adding the side component of the sample No. 2201 in TABLE 2008.

Table 2015

- 55

Dielec- tric loss	Dielec- tric loss			lo l	pera	ture depend change (%)	dent capac	itance	DC vias charac-		Product CR (Ω · F)	R (Ω · F)	1,7370	Insulation breakdown	Jown	Humidity resis-	Mean
stant tan δ $\Delta C/C_{20}$	tan δ ΔC/C ₂₀ (%)	ΔC/C ₂₀	ΔC/C ₂₀		$\Delta C/C_{25}$	ပိ		Maxi- mum	teristic (%)	315V lm- pressed	945V lm- pressed	315V lm- pressed	945V Impressed	voltage (kV/mm)	ige nm)	tance load test:	span (h)
25°C 85°C -55°C	25°C 85°C -55°C	25°C 85°C -55°C	85°C -55°C	၁ <u>.</u> 25-		12	125°C	value	ΔC/C 5kV/mm	Voltage	Voltage	Voltage	Voltage	AC	2	Number of reject	
					\dashv	Ì				25	25°C	150	O1				
1300 1350 0.9 2.2 -8.3 3.6	0.9 2.2 -8.3 3.6	2.2 -8.3 3.6	2 -8.3 3.6	3.6			-10.2	10.2	-32	5120	4860	230	220	12	4	0/72	870
1300 1350 0.8 2.3 -8.6 4.1	0.8 2.3 -8.6	2.3 -8.6	-8.6	9	4.1		-10.4	10.4	-32	5210	4950	240	230	12	14	0/72	920
1300 1360 0.9 2.4 -8.7 4	0.9 2.4 -8.7	2.4 -8.7	-8.7	-	4		+	1	-32	5130	4870	220	210	12	4	0/72	860
1300 1320 0.8 2.3 -9 3.8	0.8 2.3 -9 3.	2.3 -9 3.	6-	(r)	3.8	1	-11.6	11.6	-31	5140	4880	230	220	13	15	0/72	840
1300 1360 0.9 2.2 -8.2 3.9	0.9 2.2 -8.2 3.	2.28.2 3.	2 -8.2 3.	2 3.	3.9	1	-10.8	10.8	-32	5160	4900	220	210	12	14	0/72	920
1300 1340 0.8 2.3 -8.6 4	0.8 2.3 -8.6	2.3 -8.6	-8.6	-	4		-10.7	10.7	-32	5120	4860	210	200	12	14	0/72	910
1300 1310 0.9 2.6 -8.4 4.2	0.9 2.6 -8.4	2.6 -8.4	-8.4	┢	4.2	T	-11	11	e	5240	4980	230	220	13	15	0/72	880
1300 1340 0.9 2.5 -8.2 4	0.9 2.5 -8.2	2.5 -8.2	5 -8.2	2	4	1	-11.5	11.5	-32	5230	4970	220	210	12	14	0/72	006
1300 1330 0.9 2.3 -8.3 3.7	0.9 2.3 -8.3	2.3 -8.3	-8.3	╁	3.7		-11.6	11.6	-31	5200	4940	220	210	12	14	0/72	920
1300 1370 0.9 2.1 -8.4 3.5	0.9 2.1 -8.4 3.	2.1 -8.4 3.	-8.4	3.	3.5		-11.3	11.3	-33	5030	4780	210	200	12	14	0/72	930
1300 1360 0.8 2.2 -8.6 3.8	0.8 2.2 -8.6 3.	2.2 -8.6 3.	2 -8.6 3.	3.	3.8		-10.9	10.9	-32	5430	5160	340	320	12	14	0/72	820
1300 1350 0.9 2.6 -8.3 3.6	0.9 2.6 -8.3	2.6 -8.3	-8.3	3	3.6		-10.7	10.7	-32	5410	5140	330	310	12	4	0/72	006
1350 1330 0.9 2.4 -8.4 4	0.9 2.4 -8.4	2.4 -8.4	-8.4	-	4		-11	11	-31	5120	4860	220	210	-	13	55/72	120
1350						1	Onm	easurab	Unmeasurable due to insufficient sintering	insufficie	ent sinter	ing					
1350						í	Unme	easurab	Unmeasurable due to insufficient sintering	insufficie	ent sinter	ing					
1350 1320 1 2.3 -8.5 3.8	1 2.3 -8.5	-8.5	-8.5	5	3.8		-11.5	11.5	-30	5160	4900	230	220	1	13	64/72	110
1350						1	Unm	easurab	Unmeasurable due to insufficient sintering	insufficie	ent sinter	ing					}
1350						,	Unm	easurab	Unmeasurable due to insufficient sintering	insufficie	ent sinter	ing					
1350						1	Unm	easurab	Unmeasurable due to insufficient sintering	insufficie	ent sinter	ing					
						1											

As is evident from the samples No. 2501 to 2512 in TABLE 2015, preferable results are obtained in the samples in which oxides of the samples No. 2201 to 2212 in TABLE 2008 with compositions within or on the boundary lines of the area surrounded by the straight lines connecting each spot indicated by A (x = 85, y = 1, z = 14), B (X = 35, y = 51, z = 14)

14), C (X = 30, y = 20, z = 50) and D (X = 39, y = 1, z = 60) (wherein x, y and z represent mole %) in the three component phase diagram of the SiO_2 - TiO_2 -XO oxides shown in FIG. 5 are added, wherein the samples have a capacitance decreasing ratio of as small as within -40% at an impressed voltage of 5 kV/mm and a dielectric loss of 1.0% or less, along with the rate of change of the electrostatic capacitance against temperature changes satisfying the B-level characteristic standard stipulated in the JIS Standard in the temperature range of -25 °C to +85 °C and X7R-level characteristic standard stipulated in the EIA standard in the temperature range of -55 °C to +125 °C.

Moreover, the insulation resistances at 25 °C and 150 °C as expressed by the product CR show as high values as 5000 Ω • F or more and 200 Ω • F or more, respectively, when the ceramic capacitor is used under a high electric field strength of 10 kV/mm. The insulation breakdown voltage also shows high values of 12 kV/mm or more under the AC voltage and 14 kV/mm or more under the DC voltage. In addition, an acceleration test at 150 °C and DC 25 kV/mm gave a mean life span as long as 800 hours or more besides enabling a relatively low firing temperature of 1300 °C or less.

When the oxide SiO₂-TiO₂-XO has a composition outside of the composition described above as in the samples No. 2213 to 2119 in TABLE 2008, on the other hand, sintering becomes insufficient or many rejection appear in the humidity resistance load test even after sintering as seen in the samples No. 2513 to 2519 in TABLE 2015.

While a monolithic capacitor having an insulation resistance of 5400 Ω • F or more and 330 Ω • F or more at 25 °C and 150 °C, respectively, under a strong electric field of 10 kV/mm can be obtained by allowing Al₂O₃ and/or ZrO₂ to contain in the SiO₂-TiO₂-XO oxides as in the sample No. 2211 and 2212 in TABLE 2008, sintering property is extremely decreased as shown in the samples NO. 2517 and 2518 in TABLE 2015 when Al₂O₃ and ZrO₂ are added in an amounts of 15 parts by weight or more and 5 parts by weight or more, respectively, as in the samples No. 2517 and 2518 in TABLE 2015.

Although powders prepared by the oxalic acid method are used in the foregoing examples, the methods are not limited thereto but a powder of barium titanate prepared by an alkoxide method or hydrothermal synthesis method may be used. It may happen that the characteristics of the monolithic ceramic capacitor are more improved than those shown in the foregoing examples by using these powders.

The oxide powders as starting materials are not limited to those hitherto described, but the resulting characteristics are not affected in any sense by using a solution of an alkoxide or organometallic compound, provided that the starting materials are formulated so as to construct the dielectric ceramic layers within the scope of the present invention.

It can be made clear from the foregoing descriptions that the dielectric ceramic composition according to the present invention is not reduced by firing in the reducing atmosphere along with not being formed into semiconductors, besides sintering is possible at a relatively low temperature of 1300 °C or less.

Accordingly, when a monolithic ceramic capacitor is constructed by using this dielectric ceramic composition as dielectric ceramic layers, the production cost of the monolithic ceramic capacitor can be reduced since base metals such as nickel or nickel alloys may be used for the electrode materials.

When the monolithic ceramic capacitor using this dielectric ceramic composition is used under a high electric field of 10 kV/mm where reliability can not be ensured due to low insulation resistance in the monolithic ceramic capacitor using nickel or nickel alloys for the conventional inner electrodes, a monolithic ceramic capacitor being excellent in weather resistance properties such as high temperature load at an impressed voltage of DC 25 kV/mm at 150 °C and humidity resistance load can be obtained, wherein the insulation resistances at room temperature and at 150 °C represented by a product of the insulation resistance and electrostatic capacitance (a CR product) becomes as high as 4900 to 5000 Ω • F and 190 to 200 Ω • F, respectively, the voltage dependency of the insulation resistance is low, the capacitance decrease ratio at an impressed voltage of 5 kV/mm is as small as 40 to 45% and the insulation durability is high, besides the temperature characteristics of the electrostatic capacitance satisfies the B-level characteristic standard stipulated in the EIA standard.

45 Claims

50

55

5

 A dielectric ceramic composition comprising barium titanate containing 0.02% by weight or less of alkali metal oxides, at least one of either scandium oxide or yttrium oxide, at least one kind of compound selected from europium oxide, gadolinium oxide, terbium oxide and dysprosium oxide, barium zirconate and manganese oxide, containing an essential component represented by the following composition formula;

$$(BaO)_m TiO_2 + \alpha M_2O_3 + \beta R_2O_3 + \gamma BaZrO_3 + gMnO$$

(wherein M_2O_3 represents at least one of either Sc_2O_3 or Y_2O_3 and R_2O_3 represents at least one of the compound selected from Eu_2O_3 , Gd_2O_3 , Tb_2O_3 and Dy_2O_3 , α , β , γ and g representing mole ratio in the range of $0.001 \le \alpha \le 0.05$, $0.001 \le \beta \le 0.05$, $0.005 \le \gamma \le 0.06$, $0.001 < g \le 0.13$ and $\alpha + \beta \le 0.06$ with $1.000 < m \le 1.035$),

characterized by containing 0.2 to 3.0 parts by weight of either the first or second side component relative to 100 parts by weight of said essential component, wherein said first side component is an oxide represented by

 Li_2O - (Si, Ti)O₂ - MO (wherein MO is at least one of Al₂O₃ or ZrO₂) and said second side component is an oxide represented by SiO_2 - TiO₂ - XO (wherein XO is at least one of the compound selected from BaO, CaO, SrO, MgO, ZnO and MnO).

- 2. A dielectric ceramic composition according to Claim 1, wherein said essential component further contains h mole ratio of magnesium oxide, where $0.001 < g \le 0.12$, $0.001 < h \le 0.12$ and $g + h \le 0.13$
 - 3. A dielectric ceramic composition comprising barium titanate containing 0.02% by weight or less of alkali metal oxides, at least one of either scandium oxide or yttrium oxide, barium zirconate and manganese oxide, containing an essential component represented by the following composition formula;

$$(BaO)_m TiO_2 + \alpha M_2 O_3 + \beta BaZrO_3 + \gamma MnO$$

(wherein M_2O_3 represents at least one of either Sc_2O_3 or Y_2O_3 , α , β and γ representing mole ratio in the range of $0.001 \le \alpha \le 0.06$, $0.005 \le \beta \le 0.06$ and $0.001 < \gamma \le 0.13$ with $1.000 < m \le 1.035$),

characterized by containing 0.2 to 3.0 parts by weight of either the first or second side component relative to 100 parts by weight of said essential component, wherein said first side component is an oxide represented by $\text{Li}_2\text{O-}(\text{Si},\text{Ti})\text{O}_2\text{-MO}$ (wherein MO is at least one of Al_2O_3 or ZrO_2) and said second side component is an oxide represented by $\text{SiO}_2\text{-TiO}_2\text{-XO}$ (wherein XO is at least one of the compound selected from BaO, CaO, SrO, MgO, ZnO and MnO).

- 4. A dielectric ceramic composition according to Claim 3, wherein said essential component further contains g mole ratio of magnesium oxide, where $0.001 < \gamma \le 0.12$, $0.001 < g \le 0.12$ and $\gamma + g \le 0.13$
- 25 5. A dielectric ceramic composition comprising:

10

15

20

30

35

40

45

50

barium titanate containing 0.02% by weight or less of alkali metal oxides, at least one kind of the compound selected from europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide and ytterbium oxide, barium zirconate and manganese oxide, containing an essential component represented by the following composition formula;

$$(BaO)_m TiO_2 + \alpha R_2 O_3 + \beta BaZrO_3 + \gamma MnO$$

(wherein R_2O_3 represents at least one kind of compound selected from Eu_2O_3 , Gd_2O_3 , Tb_2O_3 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 and Tm_2O_3 and Tm_2O_3 , Tm_2O_3

- 6. A dielectric ceramic composition according to Claim 5, wherein said essential component further contains g mole ratio of magnesium oxide, where $0.001 \le \beta \le 0.06$, $0.001 < \gamma \le 0.12$, $0.001 < g \le 0.12$ and $\gamma + g \le 0.13$.
- 7. A dielectric ceramic composition according to Claim 1 to Claim 6, wherein said first side component, when its composition is represented by xLi₂O-y(Si_wTi_{1-w})O₂-zMO (wherein x, y and z represent mol% and w is in the range of 0.30 ≤ w ≤ 1.00), falls within or on the boundary lines of the area surrounded by the straight lines connecting each point indicated by A (x = 20, y = 80, z = 0), B (x = 10, y = 80, z = 10), C (x = 10, y = 70, z = 20), D (x = 35, y = 45, z = 20), E (x = 45, y = 45, z = 10) and F (x = 45, y = 55, z = 0) (when the composition falls on the straight line of A F, w is within the area of 0.3 ≤ w < 1.0) in the three component phase diagram defined by the apexes corresponding to each component.</p>
- 8. A dielectric ceramic composition according to Claim 1 to Claim 6, wherein said second side component, when its composition is represented by xSiO2-yTiO₂-zXO (wherein x, y and z represent mol%), falls within or on the boundary lines of the area surrounded by straight lines connecting each point indicated by A (x = 85, y = 1, z = 14), B (x = 35, y = 51, z = 14), C (x = 30, y = 20, z = 50) and D (x = 39, y = 1, z = 60) in the three component phase diagram defines by the apexes corresponding to each component.

- 9. A dielectric ceramic composition according to Claim 8, wherein the second side component contains in total of 15 parts by weight or less of at least one of Al₂O₃ and ZrO₂ (the content of ZrO₂ is 5 parts by weight or less) relative to 100 parts by weight of the oxide represented by SiO₂-TiO₂-XO.
- 10. A monolithic ceramic capacitor provided with a plurality of dielectric ceramic layers, inner electrodes formed between said ceramic layers and outer electrodes being electrically connected to said inner electrodes, wherein said dielectric ceramic layers are constructed by the dielectric ceramic composition according to any one of Claim 1 to Claim 6 and said inner electrodes are constructed by nickel or a nickel alloy.
- 10 11. A monolithic ceramic capacitor according to Claim 10, wherein the outer electrode is provided with a sintered layer of an electroconductive metal powder or an electroconductive metal powder supplemented with glass frits.

15

20

25

30

35

45

50

- 12. A monolithic ceramic capacitor according to Claim 10, wherein the outer electrode is provided with a first layer comprising a sintered layer of the electroconductive metal powder or the electroconductive metal powder supplemented with glass frits and a second layer comprising a plating layer thereon.
- 13. A monolithic ceramic capacitor according to Claim 11, wherein the outer electrode is provided with a first layer comprising a sintered layer of the electroconductive metal powder or the electroconductive metal powder supplemented with glass frits and a second layer comprising a plating layer thereon.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

EUROPEAN SEARCH REPORT

Application Number

EP 98 11 3795

· · · · · · · · · · · · · · · · · · ·		RED TO BE RELEVANT	Dolouset	OLACCICICATION OF THE
Category	Citation of document with in- of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	LTD.) 16 Octóber 199 * page 2. line 58 -		5-7, 10-13	C04B35/468 H01G4/12 H01B3/12
A	EP 0 605 904 A (MUR/ LTD.) 13 July 1994 * page 3, line 2 - example 1; table 1		1-13	
		•		
			*	
			•	
~				
				TECHNICAL FIELDS
		•		SEARCHED (Int.CI.6)
				C04B H01G H01B
		-		
	The present search report has	been drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	27 October 1998	3 Lu	ethe, H
	CATEGORY OF CITED DOCUMENTS	E : earlier patent	ciple underlying th document, but pul	
Y : pa do	irticularly relevant if taken alone irticularly relevant if combined with ano cument of the same category	L : document cité	ed in the application and for other reason	
O : no	chnological background on-written disclosure termediate document			nily, corresponding