Međuispit iz Kvantnih računala (30. studenog 2017.)

Ime, prezime i JMBAG:

Uputa: Odgovore označite (zaokružite) *na ovom papiru*, a u praznom prostoru pored ponuđenih odgovora ili na dodatnim praznim papirima, za svaki zadatak napišite *kratko obrazloženje ili računski postupak*. Točno riješeni zadaci donose tri boda (nema "negativnih bodova").

Notacija i terminologija: Vektori $|0\rangle=\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right)$ i $|1\rangle=\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)$ čine ortonormiranu bazu u $\mathcal{H}^{(2)}$. Pri realizaciji qubita stanjima polarizacije fotona, vektori $|0\rangle=|x\rangle$ i $|1\rangle=|y\rangle$ odgovaraju stanjima linearne polarizacije u x-smjeru i u y-smjeru, bazu $\{|x\rangle\,,|y\rangle\}$ obilježavamo simbolom \bigoplus , a bazu $\{\frac{1}{\sqrt{2}}(|x\rangle\pm|y\rangle)\}$ obilježavamo simbolom \bigotimes . Pri realizaciji qubita projekcijom spina čestice spinskog kvantnog broja s=1/2 na z-os uzimamo da $|0\rangle$ i $|1\rangle$ odgovarju projekcijama $\hbar/2$ i $-\hbar/2$. Računalnu bazu u prostoru stanja dvaju qubitova obilježavamo s $\{|ij\rangle=|i\rangle\otimes|j\rangle\,; i,j=0,1\}$. Pojam entanglement prevodimo sa entanglement prevodimo s

Zadaci:

1 Koji od navedenih vektora su jedinični vektori?

(a)
$$\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$
 točno

(b)
$$\frac{\sqrt{3}}{2} (|0\rangle + \frac{1}{2}i|1\rangle)$$

(c)
$$\frac{1}{3} |0\rangle - \frac{2\sqrt{2}}{3} |1\rangle$$
 točno

(d)
$$\frac{1}{\sqrt{5}}(2|0\rangle + |1\rangle)$$
 točno

(e)
$$\frac{\sqrt{3}}{2} (|0\rangle - \frac{1}{2}i|1\rangle)$$

2 Koja dva od pet navedenih vektora čine ortonormiranu bazu u $\mathcal{H}^{(2)}$?

(a)
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

(b)
$$\frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$$

(c)
$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{2}(1+i)|1\rangle$$
 točno

(d)
$$\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{2} (1-i) |1\rangle$$

(e)
$$\frac{1}{\sqrt{2}}\ket{0} - \frac{1}{2}(1+i)\ket{1}$$
 točno

3 Neka se qubit nalazi u stanju $|\Phi\rangle=\frac{1}{5}(3\,|0\rangle+4\mathrm{i}\,|1\rangle)$. U kojem od pet navedenih stanja je vjerojatnost nalaženja tog qubita najmanja?

(a)
$$\frac{1}{13}(12i|0\rangle + 5|1\rangle)$$

(b)
$$\frac{1}{\sqrt{5}}(2|0\rangle - i|1\rangle)$$

(c)
$$\frac{1}{\sqrt{3}}(|0\rangle - \sqrt{2}|1\rangle)$$

(d)
$$\frac{1}{\sqrt{7}}(\sqrt{3}|0\rangle + 2i|1\rangle)$$

(e)
$$\frac{1}{3}(\sqrt{5}|0\rangle - 2i|1\rangle)$$
 točno

4 Vektor

$$\cos\frac{\vartheta}{2}|0\rangle + e^{i\varphi}\sin\frac{\vartheta}{2}|1\rangle$$

opisuje stanje qubita. Stanje koje je ortogonalno tom stanju dobivamo zamjenom

- (a) $\varphi \to \varphi + 2\pi$, $\vartheta \to 2\pi \vartheta$
- (b) $\varphi \to \varphi + \pi$, $\vartheta \to \pi \vartheta$ točno
- (c) $\varphi \to \varphi + \pi$, $\vartheta \to \vartheta + \pi$
- (d) $\varphi \to \varphi + 2\pi$, $\vartheta \to \vartheta + \pi$
- (e) $\varphi \to \varphi + 2\pi$, $\vartheta \to \vartheta + 2\pi$
- 5 Koja dva od pet navedenih operatora su hermitski operatori?
 - (a) $i |1\rangle \langle 1|$
 - (b) $|0\rangle\langle 1|$
 - (c) $|1\rangle\langle 1|$ točno
 - (d) $i(|0\rangle \langle 0| + |1\rangle \langle 1|)$
 - (e) $|1\rangle\langle 1| |0\rangle\langle 0|$ točno
- 6 Koja od pet navedenih jednakosti ne vrijedi?
 - (a) $[\sigma_1, \sigma_2] = 2i\sigma_3$
 - (b) $[\sigma_2, \sigma_1] = -2i\sigma_3$
 - (c) $[\sigma_2, \sigma_3] = 2i\sigma_1$
 - (d) $[\sigma_3, \sigma_2] = -2i\sigma_1$
 - (e) $[\sigma_3, \sigma_1] = -2i\sigma_2$ točno
- 7 Koji od navedenih vektora su svojstveni vektori operatora prikazanog Paulijevom matricom σ_2 ?
 - (a) $|0\rangle + |1\rangle$
 - (b) $|0\rangle |1\rangle$
 - (c) $|0\rangle + i |1\rangle$ točno
 - (d) $i |0\rangle + |1\rangle$ točno
 - (e) $|0\rangle$

- 8 Alice i Bob uspostavljaju tajni ključ protokolom BB84, a Eve prisluškuje komunikaciju. Ako Alice za neki bit ključa odabere vrijednost 0 i bazu ⊕ te Bob također odabere bazu ⊕, kolika je vjerojatnost da će Bob za vrijednost tog bita dobiti vrijednost 1?
 - (a) 0
 - (b) 1/4 točno
 - (c) 1/2
 - (d) 3/4
 - (e) 1
- 9 Hamiltonijan nekog qubita dan je s $H=\hbar\omega\left|0\right>\langle0|$, gdje je $\omega>0$ konstanta. Ako je početno stanje sustava

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle),$$

on će se nakon vremena π/ω naći u stanju

- (a) $|0\rangle$
- (b) $\frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle)$
- (c) $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$ točno
- (d) $\frac{1}{\sqrt{2}}(|0\rangle i|1\rangle)$
- (e) $|1\rangle$
- 10 Sustav dvaju qubitova je realiziran projekcijama spinova dviju čestica (s=1/2) na z-os, a nalazi se u stanju

$$\frac{1}{\sqrt{2}}(|00\rangle+|01\rangle).$$

Očekivana vrijednost projekcije spina prve čestice na z-os iznosi

- (a) $-\hbar$
- (b) $-\hbar/2$
- (c) 0
- (d) $+\hbar/2$ točno
- (e) $+\hbar$
- 11 Operator kojim u sustavu dvaju qubitova realiziranih orijentacijama spinova čestica (s=1/2) na z-os opisujemo zbroj projekcija spinova na z-os je ($\sigma_0=I$)
 - (a) $\frac{\hbar}{2}(\sigma_3 + \sigma_3)$
 - (b) $\frac{\hbar^2}{4}\sigma_3\otimes\sigma_3$
 - (c) $\frac{\hbar}{2}(\sigma_3\otimes\sigma_0+\sigma_0\otimes\sigma_3)$ točno
 - (d) $\frac{\hbar}{2}(\sigma_3\otimes\sigma_0-\sigma_0\otimes\sigma_3)$
 - (e) $\frac{\hbar^2}{4} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}$

12 Operator koji opisuje stanje nekog qubita glasi (matrica gustoće)

$$\frac{1}{4} \begin{pmatrix} 1 & -i\sqrt{3} \\ i\sqrt{3} & 3 \end{pmatrix}.$$

Stanje tog qubita također možemo opisati s

- (a) $\frac{1}{2}(|0\rangle + \sqrt{3}|1\rangle)$.
- (b) $\frac{1}{2}(|0\rangle + i\sqrt{3}|1\rangle)$. **točno**
- (c) $\frac{1}{2}(|0\rangle i\sqrt{3}|1\rangle)$.
- (d) Stanje tog qubita nije moguće opisati vektorom stanja.
- (e) Ništa od gore navedenog nije istinito.

13 Koji od navedenih operatora stanja (matrica gustoće) opisuju qubit koji se nalazi u miješanom stanju?

- (a) $\frac{1}{2}\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$
- (b) $\frac{1}{3}\begin{pmatrix} 2 & i \\ -i & 1 \end{pmatrix}$ točno
- (c) $\frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ točno
- (d) $\frac{1}{5} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
- (e) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

14 Matrični prikaz operatora ${\cal M}$ je

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix},$$

4

gdje ϕ realan broj. Koje od navedenih tvrdnji su istinite?

- (a) M je hermitski operator.
- (b) M je unitaran operator. **točno**
- (c) ${\cal M}$ je mogući operator stanja qubita koji opisuje čisto stanje.
- (d) ${\cal M}$ je mogući operator stanja qubita koji opisuje miješano stanje.
- (e) Ništa od gore navedenog nije istinito.