ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ KATEDRA DOZIMETRIE A APLIKACE IONIZUJÍCÍHO ZÁŘENÍ

BAKALÁŘSKÁ PRÁCE

Prostorová distribuce dávky uvnitř Mezinárodní kosmické stanice

Autor: Michal Šesták

Vedoucí práce: Ing. Iva Ambrožová, Ph.D.

Praha, 2017

Poděkování Děkuji Ing. Ivě Ambrožové, Ph.D. za vedení mé bakalářské práce, za cenné rady a připomínky, které tuto práci obohatily.

Název práce: Prostorová distribuce dávky uvnitř Mezinárodní kosmické

stanice

Autor: Michal Šesták

Obor: Dozimetrie a aplikace ionizujícího záření

Druh práce: Bakalářská práce

Vedoucí práce: Ing. Iva Ambrožová, Ph.D.

Oddělení dozimetrie záření, Ústav jaderné fyziky AV ČR, v.v.i.,

Akademie věd České republiky

Abstrakt: Kosmické záření představuje veliký zdravotní risk při pobytu ve

vesmíru. K jeho monitorování se používají i pasivní detektory, ob-

zvláště pak termoluminiscenční detektory a detektory stop v pevné

fázi. Experiment DOSIS, který probíhal v rozmezí let 2009–2011,

měl za úkol stanovit prostorovou distribuci dávky uvnitř modulu Co-

lumbus, který je součástí Mezinárodní kosmické stanice. Se stejným

cílem byl v roce 2012 spuštěn experiment DOSIS3D, jenž probíhá

doposud. Z naměřených dat lze také do určité míry vyvodit závislost

dávkového příkonu na řadě parametrů, např. sluneční aktivitě a

nadmořské výšce. Tato práce pojednává o složení kosmického záření

v blízkém okolí Země, o výše zmíněných pasivních detektorech, o

projektech DOSIS a DOSIS3D a nakonec je uvedena názorná ukázka

vyhodnocení tří detektorů stop, které byly umístěny v modulu Co-

lumbus.

Klíčová slova: kosmické záření v blízkém okolí Země, detektory stop v pevné fázi,

ISS, modul Columbus, DOSIS, DOSIS3D

Title: Dose distribution inside the International Space Station

Author: Michal Šesták

Abstract: Cosmic rays resent a huge health risk. Passive detectors are widely

used for their measurement, especially thermoluminescent detectors

and solid state nuclear track detectors. Experiment DOSIS was running

between years 2009-2011 and its purpose was the determination of ra-

diation environment within the International Space Station's Columbus

module. Experiment DOSIS3D, which tred in 2012, has the same aim.

The measured data can also provide informations about influence of

several parameters (for instance solar activity, altitude) to the dose rate.

This includes informations about characteristics of the cosmic rays

about experiments DOSIS and DOSIS3D. Pally, Pre is involved the

evaluation of three track etched detectors at the end of the work.

Key words: cosmic rays low Earth orbit, solid state nuclear track detectors, ISS,

Columbus module, DOSIS, DOSIS3D

Obsah

Ú	$ m \acute{U}vod$					
1	Kosmické záření v blízkém okolí Země					
	1.1	Zdroje kosmického záření v blízkém okolí Země				
		1.1.1	Galaktické kosmické záření	10		
		1.1.2	Zemské radiační pásy	11		
		1.1.3	Sluneční události s emisí částic	12		
		1.1.4	Sekundární částice	13		
	1.2 Faktory ovlivňující kosmické záření v blízkém okolí Země		ry ovlivňující kosmické záření v blízkém okolí Země	13		
		1.2.1	Fáze slunečního cyklu	13		
		1.2.2	Sklon oběžné dráhy	14		
		1.2.3	Nadmořská výška	14		
		1.2.4	Východní/západní anizotropie zachycených protonů	14		
		1.2.5	Stínění	15		
2	Pasivní detektory používané k monitorování kosmického záření					
	2.1	2.1 Termoluminiscenční detektory				
	2.2	2 Detektory stop v pevné fázi				
		2.2.1	Vyhodnocování	20		
3	Mezinárodní kosmická stanice					
	3.1	Modu	l Columbus	23		
4	Experimenty DOSIS a DOSIS 3D					
	4.1 Rozmístění pasivních detektorů					
	4.2		ch experimentů	26 26		
			Vývoj nadmořské výšky a slunečního cyklu	28		

4.3	Použí	vané detektory	29			
	4.3.1	Termoluminiscenční detektory	30			
	4.3.2	Opticky stimulované luminiscenční detektory	31			
	4.3.3	Detektory stop v pevné fázi	31			
	4.3.4	Aktivní detektory DOSTEL	31			
	4.3.5	Detektory používané NPI	32			
4.4	Výsled	dky	33			
	4.4.1	Srovnání dat pasivních detektorů v rámci jedné sady	34			
	4.4.2	Srovnání dat z osmi sad pro jeden druh pasivního detektoru	36			
	4.4.3	Srovnání dat pasivních a aktivních detektorů	37			
5 Vyl	nodnoc	cení tří detektorů stop v pevné fázi	39			
Závěr	Z ávěr					

$\mathbf{\acute{U}vod}$

 $alskdfjlkasjdflakdsf\ asdfkldf$

Seznam literatury

1. BENTON, E.R; BENTON, E.V.

Space radiation dosimetry in low-Earth orbit and beyond.

Nuclear Instruments and Methods in Physics Research Section B: Beam

Interactions with Materials and Atoms. 2001, roč. 184, č. 1–2, s. 255–294.

ISSN 0168-583X. Dostupné také z:

http://www.sciencedirect.com/science/article/pii/S0168583X01007480.

Advanced Topics in Solid State Dosimetry.

- 2. BERGER, T. et al. DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS).
 - J. Space Weather Space Clim. 2016, roč. 6, s. 39.

Dostupné také z: http://dx.doi.org/10.1051/swsc/2016034.

3. WIKIPEDIA, The Free Encyclopedia.

Scale height used in a simple atmospheric pressure model [online].

2017 [cit. 2017-05-10]. Dostupné z: https://en.wikipedia.org/wiki/Scale_

height#Scale_height_used_in_a_simple_atmospheric_pressure_model.

4. REITZ, Guenther.

Characteristic of the radiation field in low earth orbit and in deep space.

Zeitschrift für Medizinische Physik. 2008, roč. 18, č. 4, s. 233–243. ISSN 0939-3889.

Dostupné z DOI: https://doi.org/10.1016/j.zemedi.2008.06.015.

- 5. AMBROŽOVÁ, I.; BRABCOVÁ, K.; SPURNÝ, F.; SHURSHAKOV, V. A.;
 - KARTSEV, I. S.; TOLOCHEK, R. V.

Monitoring on board spacecraft by means of passive detectors.

Radiation Protection Dosimetry. 2011, roč. 144, č. 1-4, s. 605–610. ISSN 0144-8420.

6. SPURNÝ, F.; JADRNÍČKOVÁ, I. Dependence of thermoluminescent detectors relative response on the linear energy transfer; some examples of use.

Radiation Measurements. 2008, roč. 43, č. 2–6, s. 944–947. ISSN 1350-4487. Dostupné z DOI: https://doi.org/10.1016/j.radmeas.2007.11.041. Proceedings of the 15th Solid State Dosimetry (SSD15).

- 7. YOUNG, D. A. Etching of Radiation Damage in Lithium Fluoride. *Nature*. 1958, roč. 182, s. 375–377. Dostupné z DOI: 10.1038/182375a0.
- 8. PACHNEROVÁ BRABCOVÁ, K.; AMBROŽOVÁ, I.; DAVÍDKOVÁ, M.; NAGASAKI, Y.; ČERVENKOVÁ, A.; BERGER, T. Spektra lineárního přenosu energie kosmického záření získaná detektory stop v pevné fázi metodou per partes. Bezpečnosť jadrovej energie. 2017, roč. 25, č. 3/4, s. 110–113. ISSN 1210-7085.
- FLEISCHER, R. L.; PRICE, P. B.; WALKER, R. M.
 Ion Explosion Spike Mechanism for Formation of Charged Particle Tracks in Solids.
 Journal of Applied Physics. 1965, roč. 36, č. 11, s. 3645–3652.
 Dostupné z DOI: 10.1063/1.1703059.
- 10. PACHNEROVÁ BRABCOVÁ, K. Study and development of track etch detectors for dosimetric purposes: dissertation thesis. 2010. Disertační práce. České vysoké učení technické v Praze, FJFI, Katedra jaderné chemie.
- 11. YAMAUCHI, Tomoya. Studies on the nuclear tracks in CR-39 plastics.
 Radiation Measurements. 2003, roč. 36(1-6), s. 73–81.
 Dostupné z DOI: 10.1016/S1350-4487(03)00099-4.
- 12. WIKIPEDIA, The Free Encyclopedia. *CR-39* [online]. 2017 [cit. 2017-05-25]. Dostupné z: https://en.wikipedia.org/wiki/CR-39.
- 13. PÁLFALVI, J.K. Fluence and dose of mixed space radiation by SSNTDs achievements and constraints. Radiation Measurements. 2009, roč. 44, č. 9–10, s. 724–728. ISSN 1350-4487.
 Dostupné z DOI: https://doi.org/10.1016/j.radmeas.2009.10.045.
 - Proceedings of the 24th International Conferenceon Nuclear Tracks in Solids.
- 14. WIKIPEDIE, Otevřená encyklopedie. *Mezinárodní vesmírná stanice* [online].
 2017 [cit. 2017-04-18]. Dostupné z: https://cs.wikipedia.org/wiki/Mezin%C3% Alrodn%C3%AD_vesm%C3%ADrn%C3%A1_stanice.

- 15. ESA. Where is the International Space Station? [online]. 2017 [cit. 2017-04-21].

 Dostupné z: http://www.esa.int/Our_Activities/Human_Spaceflight/
 International_Space_Station/Where_is_the_International_Space_Station.
- 16. GARCIA, Mark. Station Facts and Figures [online]. 2016 [cit. 2017-04-17].

 Dostupné z: https://www.nasa.gov/feature/facts-and-figures.
- 17. FICK, Hayley; JORDAN, Gary; SUMNER, Megan.

 16 Years of Station Told in 16 Gifs [online]. 2016 [cit. 2017-04-21]. Dostupné z: https://www.nasa.gov/feature/16-years-of-station-told-in-16-gifs.
- 18. ESA. About the International Space Station [online]. 2013 [cit. 2017-04-21].

 Dostupné z: http://www.esa.int/Our_Activities/Human_Spaceflight/
 International_Space_Station/About_the_International_Space_Station.
- 19. MALIK, Tariq. International Space Station Gets Life Extension Through 2024 [online].
 2014 [cit. 2017-04-21]. Dostupné z: http://www.space.com/24208international-space-station-extension-2024.html.
- 20. ESA. How much does it cost? [online]. 2013 [cit. 2017-04-22].

 Dostupné z: http://www.esa.int/Our_Activities/Human_Spaceflight/
 International_Space_Station/How_much_does_it_cost.
- 21. WRIGHT, Jerry. Station Facts and Figures [online]. 2015 [cit. 2017-04-22].

 Dostupné z: https://www.nasa.gov/mission_pages/station/structure/elements/columbus.html.
- 22. ESA. ESA astronaut Hans Schlegel works on Columbus exterior during the second spacewalk of the STS-122 mission [online]. 2008 [cit. 2017-04-21].

 Dostupné z: http://www.esa.int/spaceinimages/Images/2008/02/ESA_astronaut_Hans_Schlegel_works_on_Columbus_exterior_during_the_second_spacewalk_of_the_STS-122_mission2.
- 23. BERGER, THOMAS et al.
 - DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016.
 - J. Space Weather Space Clim. 2017, roč. 7, s. A8.
 - Dostupné z DOI: 10.1051/swsc/2017005.

- 24. USOSKIN, Ilya. Cosmic Ray Station of the University of Oulu [online]. [Cit. 2017-05-01]. Dostupné z: http://cosmicrays.oulu.fi.
- 25. NARICI, Livio; BERGER, Thomas; MATTHIÄ, Daniel; REITZ, Günther.

 Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration. *Frontiers in Oncology*. 2015, roč. 5, s. 273. ISSN 2234-943X.

 Dostupné z DOI: 10.3389/fonc.2015.00273.
- 26. AVČR, ODZ ÚJF. *Mikroskop HSP-1000* [online]. [Cit. 2017-05-13]. Dostupné z: http://cesky.odz.ujf.cas.cz/home/vybaveni/mikroskop-hsp-1000.