Distributions: T, F, and Normal Approximation

The purpose of both of these distributions is to allow for inferences about μ and σ in an unknown distribution. Both are quotients of known distributions.

Preliminaries

Sample Mean: Let Y_1, \ldots, Y_n be a random, independent sample from a distribution with mean μ and variance σ^2 . Then,

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 Sample Mean

is a distribution with mean $\overline{\mu}=\mu$ and variance $\overline{\sigma}^2=\frac{\sigma^2}{n}$. If the underlying distribution is a normal distribution, then $\frac{\overline{Y}-\mu}{\sigma/\sqrt{n}}$ is a *standard* normal distribution.

Sample Variance: The sample variance is defined as

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}.$$
 Sample Variance

It is important to note that the sample variance is found for samples drawn from a distribution; for population standard deviation/variance, we use n instead of n-1 in the denominator.

When Y_i is a normal distribution, then $\frac{(n-1)S^2}{\sigma^2}$ is a χ^2 distribution with n-1 df — S^2 and \overline{Y} are independent.

Definition of T **Distribution**

Let Z be a standard normal distribution, W be χ^2 with ν df, and Z and W be independent. Then,

$$T = \frac{Z}{\sqrt{W/\nu}}$$

has a T distribution with ν df.

Creating a T **Distribution:** Let Y_i be sampled from a normal distribution with mean μ and standard deviation σ .

Then, $Z=rac{\overline{Y}-\mu}{\sigma/\sqrt{n}}$ is a standard normal distribution, and $W=rac{(n-1)S^2}{\sigma^2}$ is χ^2 with n-1 df.

So,

$$T = \frac{Z}{\sqrt{W/(n-1)}}$$

$$= \frac{(\overline{Y} - \mu)\sqrt{n}}{\sigma} \sqrt{\frac{(n-1)\sigma^2}{S^2}}$$

$$= \frac{(\overline{Y} - \mu)\sqrt{n}}{S}$$

has a T distribution with n-1 df.

T Distribution: Let Y_1, \ldots, Y_6 be samples from a normal distribution with unknown μ , σ . Estimate $P(|\overline{Y} - \mu| < (2S/\sqrt{n}))$.

Thus, we have

$$P\left(|\overline{Y} - \mu| \le \frac{2S}{\sqrt{n}}\right) = P\left(-2 \le \frac{\sqrt{n}(\overline{Y} - \mu)}{S} \le 2\right)$$
$$= P(-2 \le T \le 2)$$

Thus, for n=6, we have that our random variable T has 5 df. By looking at a T distribution table, we can find that $P\approx 0.9$. We can also use R.

Definition of F Distribution

Let W_1 and W_2 be independent χ^2 distributions with ν_1 and ν_2 df respectively. Then, the F distribution with ν_1 numerator df and ν_2 denominator df is found as follows:

$$F = \frac{W_1/\nu_1}{W_2/\nu_2}$$

Simplifying an F **Distribution:** Let n_1 samples be drawn from normal distribution with mean μ_1 and variance σ_1^2 , and n_2 samples be drawn from normal distribution with mean μ_2 and variance σ_2^2 . Both distributions are independent.

From each of these samples, we find the sample variance, and create χ^2 distributions with their respective df.

$$W_1 = \frac{(n_1 - 1)S_1^2}{\sigma_1^2}$$
$$W_2 = \frac{(n_2 - 2)S_2^2}{\sigma_2^2}$$

Therefore, we have

$$F = \frac{W_1/(n_1 - 1)}{W_2/(n_2 - 1)}$$

$$= \frac{(n_1 - 1)S_1^2}{\sigma_1^2(n_1 - 1)} \frac{\sigma_2^2(n_2 - 1)}{(n_2 - 1)S_2^2}$$

$$= \frac{\sigma_2^2}{\sigma_1^2} \frac{S_1^2}{S_2^2}$$

as an F distribution with $n_1 - 1$ numerator df and $n_2 - 1$ denominator df.

Applying the F **Distribution:** Let $n_1=6$ and $n_2=10$ be two samples from independent normal distributions with the same σ^2 . Find b such that $P\left(\frac{S_1^2}{S_2^2} \le b\right) = 0.95$.

$$\frac{S_1^2}{S_2^2} = \frac{S_1^2/\sigma^2}{S_2^2/\sigma^2}$$

The given F distribution has 5 numerator df and 9 denominator df. Therefore, we want to find $0.95 = P(F_{5,9} < b)$, or find the 0.95 quantile; in R, we find this with the qt function.

Normal Approximation of Binomial

Recall that a binomial distribution Y with n trials and p probability of success has probabilities found below:

$$P(Y \le \ell) = \sum_{k=0}^{\ell} \binom{n}{k} p^k (1-p)^{n-k}.$$

For very large n, this sum is hard to calculate. We could approximate with the Poisson distribution, but this still requires a lot of calculations and large factorial values. Instead, we will try the following:

$$X_{i} = \begin{cases} 1 & i \text{ trial success} \\ 0 & i \text{ trial failure} \end{cases}$$

$$E(X_{i}) = p$$

$$E(X_{i}^{2}) = p$$

$$V(X_{i}) = p(1 - p)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \frac{Y}{n}$$

$$E(\overline{X}) = p$$

$$V(\overline{X}) = \frac{p(1 - p)}{n}$$

By the Central Limit Theorem, we approximate \overline{X} as a normal distribution with mean p and standard deviation $\sqrt{\frac{p(1-p)}{n}}$.

Alternatively, we can create, for large fixed n, $Y = n\overline{X}$ with mean np and standard deviation $\sqrt{np(1-p)}$.

For example, consider p=0.5, n=100, Y= number of successes. To find $P\left(\frac{Y}{n}>0.55\right)$. By the Central Limit Theorem, this is approximately a normal distribution with mean 0.5 and standard deviation 0.05.

Applying Central Limit Theorem: Let Y be a binomial distribution with n=25 and p=0.4. Then, $\mu=np=10$, and standard deviation $\sigma=\sqrt{\frac{p(1-p)}{n}}=5\sqrt{0.24}$.

To find $P(Y \le 8)$, we can potentially approximate with $P(X \le 8.5)$ — the reason we use 8.5 instead of 8 is due to the fact that n may not be large enough, a process known as the continuity correction.

Using standardization (or R), we find that this probability is approximately 0.269.

The actual probability $P(Y \le 8)$ is found as below:

$$P(Y \le 8) = \sum_{k=0}^{8} {25 \choose k} (0.4)^{k} (0.6)^{1-k}$$
$$= 0.274$$

The normal approximation for the binomial is adequate when $p \pm 3\sqrt{\frac{p(1-p)}{n}} \in (0,1)$. Essentially, the binomial trial needs to have an adequate sample size such that the "spread" is small. This is equivalent to $n \ge 9\frac{\max(p,1-p)}{\min(p,1-p)}$.

Estimators

Let Y be a random variable with an *unknown* distribution.

Parameter: Feature of Y's distribution that are not computable from samples.

Examples of Parameters: μ , σ , m'_k , interval $(a, b) \ni P(y \in I) = 0.95$.

Statistic: Random variable that is computable from samples.

Examples of Statistics: sample mean, \overline{Y} , sample variance, S^2 , $Y_{(i)}$.

Estimator: a statistic intended to approximate a parameter. A point estimator estimates a single value.

Examples of Estimators: \overline{Y} as an estimator for μ , and S^2 as an estimator of σ^2 .

Bias and Mean Square Error of Estimators

We want to find θ , a constant parameter of the underlying distribution — $\hat{\theta}$ is a random variable.

If $E(\hat{\theta})$ is close to θ , we can say that $\hat{\theta}$ is a good estimator — more precisely, we define the bias $B(\hat{\theta}) = E(\hat{\theta}) - \theta$, and if $B(\hat{\theta}) = 0$, then $\hat{\theta}$ is an unbiased estimator.

In addition to minimizing bias, to see whether or not an estimator is good requires minimizing the variance of the estimator — the mean squared estimator $\mathsf{MSE}(\hat{\theta}) = V(\hat{\theta}) + B(\hat{\theta})^2$. Notice that for an *unbiased* estimator, $\mathsf{MSE}(\hat{\theta}) = V(\hat{\theta})$.

Exercise 8.12: Let θ be the true voltage of some electronic device. The voltage test has results uniformly distributed over $[\theta, \theta + 1]$. There are n tests, Y_1, \ldots, Y_n . Evaluate \overline{Y} as an estimator for θ .

Solution: Since the voltage is uniformly distributed over $[\theta, \theta + 1]$, we have that Y_i is uniform on $[\theta, \theta + 1]$. Therefore, $E(Y_i) = \theta + 0.5$, and $V(Y_i) = \frac{1}{12}$.

Therefore, $E(\overline{Y}) = \theta + 0.5$, and $V(\overline{Y}) = \frac{1}{12n}$, meaning $MSE(\hat{\theta}) = \frac{1}{12n} + \frac{1}{4}$.

If we want an unbiased estimator for θ , we take $\hat{\theta} = \overline{Y} - \frac{1}{2}$. Then, $E(\hat{\theta}) = E(\overline{Y}) - E(1/2) - \theta = 0$. By shifting this estimator, our new MSE is $\frac{1}{12n}$.

Example 8.1: We will compare the two estimators of σ^2 : sample variance and population variance.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$

$$S'^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Solution: Recall $V(X) = E(X^2) - (E(X))^2$. Therefore, $E(X^2) = V(X) + (E(X))^2$.

$$E(Y_i^2) = V(Y_i) + (E(Y_i))^2$$

$$= \sigma^2 + u^2$$

$$= \sigma^2 + \mu^2$$

$$E(\overline{Y}^2) = V(\overline{Y}) + (E(\overline{Y}))^2$$

$$\sigma^2$$

$$=\frac{\sigma^2}{n}+\mu^2$$

Notice that

$$\sum (Y_i - \overline{Y})^2 = \sum (Y_i^2 - 2Y_i \overline{Y} + \overline{Y}^2)$$

$$= \sum Y_i^2 - 2\overline{Y} \sum Y_i + \sum \overline{Y}^2$$

$$= \sum Y_i^2 - 2n\overline{Y}^2 + n\overline{Y}^2$$

$$= \sum_{Y_i} - n\overline{Y}^2$$

$$E\left(\sum (Y_i - \overline{Y})^2\right) = E(\sum Y_i^2) - nE(\overline{Y}^2)$$

$$= n(\sigma^2 + \mu^2) - n\left(\frac{\sigma^2}{n} + \mu^2\right)$$

$$= (n - 1)\sigma^2$$

$$B(S'^2) = \frac{1}{n}(n - 1)\sigma^2 - \sigma^2$$

$$= -\frac{1}{n}\sigma^2 \neq 0$$

$$B(S^2) = \frac{1}{n - 1}(n - 1)\sigma^2 - \sigma^2$$

$$= 0$$

 $S^{\prime 2}$ is known as the *biased sample variance*, while S^2 is the unbiased sample variance.

The standard error $\sigma_{\hat{\theta}} = \sqrt{V(\hat{\theta})}$. If $\hat{\theta}$ is unbiased, then $\sigma_{\hat{\theta}} = \sqrt{\mathsf{MSE}(\hat{\theta})}$