Задачи с последовательностями

По сути, числовая последовательность — это функция из \mathbb{N} в некоторое числовое множество. Однако, задачи с последовательностями принято выделять в отдельную тему, так как для некоторых из них есть общие методы решения.

- 1. Рассмотрим последовательность, которая определяется по следующему правилу: первые два члена равны 1 и 2, а каждый следующий наименьшее натуральное число, которое ещё не встретилось в последовательности, но имеет общий делитель, больший единицы хотя бы с одним из предыдущих членов этой последовательности. Докажите, что в этой последовательности встретятся все натуральные числа.
- 2. Последовательность (a_n) натуральных чисел строится по правилу $a_{n+1} = a_n + 2d(n)$, где через d(n) количество всех натуральных делителей числа n, а a_1 некоторое заданное натуральное число. Существует ли такое число a_1 , при котором в последовательности найдутся два полных квадрата, идущих подряд?
- 3. Последовательность (x_n) задана равенствами $x_1 = 2$ и $x_{n+1} = 2x_n^2 1$. Докажите, что при всех n числа x_n и n взаимно просты.
- 4. Последовательность $(a_n)_{n\in\mathbb{N}}$ вещественных чисел задана равенством

$$a_{n+1} = \frac{n+2}{n}(a_n - 1), \quad n \geqslant 1.$$

Докажите, что, если число a_1 целое, то все члены последовательности целые.

- 5. Последовательность (x_n) такова, что $x_1 = 1$, а каждый следующий член вычисляется по формуле $x_{n+1} = x_n + x_{\lceil \sqrt{n} \rceil}$. Докажите, что в этой последовательности встретятся 1000 членов подряд, делящихся на 3.
- 6. Дана бесконечная последовательность чисел 0, 1 и 2. Известно, что, если из неё вычеркнуть все вхождения любой цифры, то полученная последовательность будет периодична. Докажите, что исходная последовательность также периодична.
- 7. В последовательности натуральных чисел каждый член, начиная с третьего, равен либо сумме, либо модулю разности двух предыдущих. На доске выписаны первые 2018 членов это последовательности. Докажите, что можно продолжить последовательность по этому правилу так, чтобы в ней снова встретились эти 2018 членов подряд в том же порядке.
- 8. Существует ли такая последовательность (a_n) натуральных чисел, что для любых $m, n \in \mathbb{N}$ верно $a_{mn} = a_m \cdot a_n$ и для всякого n > 1 число a_n делится на n 1.
- 9. Дана бесконечная последовательность натуральных чисел a_n , в которой при всех n выполняется соотношение $a_{n+2} = \text{HOД}(a_n, a_{n+1}) + 1$. Может ли эта последовательность содержать больше 100 различных чисел?
- 10. Докажите, что для любого многочлена p(x) степени больше первой с целыми коэффициентами найдётся непостоянная бесконечная в обе стороны целочисленная арифметическая прогрессия, которая не содержит ни одного члена вида p(k), где $k \in \mathbb{Z}$.
- 11. Докажите, что множество значений многочлена x^2+1 в целых точках не содержит ни одной (непостоянной) геометрической прогрессии.
- 12. Пусть (a_n) арифметическая прогрессия, состоящая из натуральных чисел, а p_n наибольший простой делитель a_n при каждом натуральном n. Докажите, что последовательность $\{\frac{a_n}{p_n}\}$ неограничена.
- 13. Докажите, что последовательность $d_n = \tau(n^2 + 1)$ не является строго возрастающей ни с какого момента $(\tau(n)$ количество делителей числа n).

- 14. Последовательность x_n строится по правилам: $x_1 = 10^{2018} + 1$, а для каждого $n \ge 2$ число x_n получается вычёркиванием первой цифры из числа $11x_{n-1}$. Является ли множество членов этой последовательности ограниченным?
- 15. Рассмотрим все последовательности натуральных чисел (a_n) длины 2018, обладающие следующим свойством: $a_1 = 1$, $a_{n+1} \leq 1 + a_n$. Докажите, что количество таких последовательностей с чётной суммой членов равно количеству последовательностей с нечётной суммой членов.
- 16. С последовательностью чисел a_1, a_2, \ldots, a_n разрешается делать следующее: выбрать произвольный номер $k, 1 \leq k \leq n$, и заменить в последовательности число a_k на $-(a_1 + a_2 + \ldots + a_n) k$. Сколько различных наборов последовательностей можно получить такими преобразованиями из последовательности $0, 0, \ldots, 0$?
- 17. Дана конечная последовательность a_1, a_2, \ldots, a_n вещественных чисел. Разрешается для любого k < n заменить внутри последовательности числа a_1, a_2, \ldots, a_k на числа $a_{k+1} a_k, a_{k+1} a_{k-1}, \ldots, a_{k+1} a_1$ в указанном порядке. Докажите, что при помощи таких операций можно получить единственную последовательность чисел, в которой каждое число, кроме последнего, не меньше полусуммы своих соседей.
- 18. Последовательность $(x)_n$ рациональных чисел строится по правилам: $x_1 = 4/3$ и $x_{n+1} = x_n^2/(x_n^2 x_n + 1)$, $n \ge 1$. Докажите, что числитель несократимой дроби, равной $x_1 + x_2 + \ldots + x_k$, является полным квадратом для всех натуральных k.
- 19. Через S(n) обозначим сумму цифр натурального числа n. Докажите, что последовательность $(S(n))_{n\in\mathbb{N}}$ неограничена, но не является неубывающей ни с какого момента.
- 20. Существует ли возрастающая последовательность b_n натуральных чисел такая, что при всех натуральных n сумма цифр числа b_{n+1}^5 равна числу b_n^5 ?
- 21. Пусть $a_n (n+1)$ -ая справа цифра числа 2^{5^n} . Докажите, что (a_n) непериодична.
- 22. Докажите, что последовательность первых цифр числа $2^n + 3^n$ непериодична.
- 23. Числа 4^n и 5^n начинаются с одинаковой цифры. Докажите, что эта цифра равна 2 или 4.