LECI Optimization for Data Modelling

Optimization Model -> ML model \ CA

Optimization Algorithm -> more related to "optimization" \ SGD

ADMM

1. Motivating examples -> formulate real-life problems into mathematics forms

2. Graphical Solution $D f(x) = x \sqrt{24-x}$ Necessary Cond.

Sufficient Cond. (Convex & Differentiable function)

 \widehat{X} is maximizer $\Leftrightarrow f'(\widehat{X}) = 0$

high-dineusion

1) & 2) are low-dinension example

good for intuition

-> Q: What about General Non-Linear Programming?

 \rightarrow A: We want some Optimality Condition to characterize the optimal $50|^2$,

General Setting for Non-linear Programming

(1)

(min f(x)x

s.t $x \in S$ $S = \{x: g_1(x) = 0, h_1(x) \le 0\} \rightarrow feasible region$

3. Basic Calculus & Linear Algebra

O interior point x
(Boundary point)

① Gradient
$$\nabla f(x) := [\partial_x f, \dots, \partial_{x_n} f]^T$$

$$-\nabla f(x) \longrightarrow \text{the direction decreases most rapidly}$$

3) Hessian Matrix
$$H_f(x) := \nabla^2 f(x) := \nabla [\nabla f(x)]$$

$$= \left[\frac{\partial^2}{\partial x_i \partial x_j} f \right]_{i,j}$$

Rigenvalue (A) >0

Positive Petinite (PD)
$$\rightarrow$$
 A is PD \Leftrightarrow $\forall x *_0, x^T A \times >_0$

Positive Semi-Definite (PSO) \rightarrow A is PSD \Leftrightarrow $\forall x, x^T A \times >_0$

elgenvalue (A) \Rightarrow 0

(5) eigenvalue calculation (Power Method)

Strictly convex $\longrightarrow \forall x, y \in S$, f(x)(1-x)y) $< \lambda f(x) + (1-x)f(y)$

Q: What is the Benefits for Convexity?

A: Local minimizer = Global minimizer

(if f is Strictly convex, then have unique minimizer)

PCA Recap

1. [Eigenvalue Pecomposition] for symmetry matrix $A = Q \wedge Q^{T}$

$$\begin{cases} Q = [0.1, ..., Q.n] \longrightarrow eigenvector (orthogonal) \\ \Lambda = diag(\lambda_1, ..., \lambda_n) \longrightarrow eigenvalue \end{cases}$$

2. Linear Transformation A

