Adventures in Communicating the Value of Campus Cl Investment

Preston Smith

Metrics 2023

Denver, CO

November 11, 2023

Problem: finding investment for your Campus CI?

The federal government has several programs to consider. NSF CC* is excellent for campus resources.

Also MRI, instrumentation programs from NIH (S10), DOD (DURIP), etc.

"The proposal is expected to document long term commitment to operations and maintenance (O&M) past the lifetime of the award - or describe the strategy for sustaining availability of the resource."

PROGRAM ANNOUNCEMENT/SOLICITATION NO/DUE DATE		Special Exc	Special Exception to Deadline Date Policy		FO	R NSF USE ONLY	
NSF 16-509						NSF PR	OPOSAL NUMBER
1.00 to 500 to 500	BY NSF ORGANIZATION UN		most specific unit kno	en, i.e. program, division, e	ts)		
ATE RECEIVED	NUMBER OF COPIE	S DIVISION	ASSIGNED	FUND CODE	DUNS# (Data U	niversal Numbering System)	FILE LOCATION
					07481180	34567	
EMPLOYER IDENTIFIC TAXPAYER IDENTIFIC 530206152	ATION NUMBER (EIN) OR ATION NUMBER (TIN)	A RENEWAL	OUS AWARD NO. L PLISHMENT-BAS			POSAL BEING SUBMITTE YES□ NO Ø IF YES	ED TO ANOTHER FEDERAL I, LIST ACRONYM(S)
NAME OF ORGANIZATION TO WHICH AWARD SHOULD BE MADE National Science Foundation AWARDEE ORGANIZATION CODE (IF KNOWN)		Nati 420	ADDRESS OF AWARDEE ORGANIZATION, INCLUDING 9 DIGIT ZIP CODE National Science Foundation 4201 Wilson Boulevard Arlingtons, VA. 222301000				
4102852000				•			
ProdValid	ACE OF PERF			dValid	ACE OF PERF, INC	CLUDING 9 DIGIT ZIP CC	300E
IS AWARDEE ORGANI (See GPG II.C For Defin	ZATION (Check All That Apply		BUSINESS OFIT ORGANIZA	MINORITY		IF THIS IS A PRELIM	MINARY PROPOSAL
REQUESTED AMOUNTS 4.444	100000000000000000000000000000000000000	d Jenkins To		REQUESTED STAI		SHOW RELATED PR	ELIMINARY PROPOSAL NO
THIS PROPOSAL INCL BEGINNING INVEST DISCLOSURE OF LC PROPRIETARY & PI HISTORIC PLACES VERTEBRATE ANIN PHS Agimal Welfare	UDES ANY OF THE ITEMS LI FIGATOR (GPG I.G.2) OBBYING ACTIVITIES (GPG I RIVILEGED INFORMATION (G	STED BELOW I.C.1.e) IPG I.D, II.C.1.d) Date		HUMAN SUBJE	CTS (GPG II.D.7) ction or II III. ACTIVITIES: CO	Human Subjects Assuran RB App. Date UNTRYXCOUNTRIES IN	

Campus Cyberinfrastucture

A Coordinated Investment by Many Stakeholders

NSF and other agencies

Campuses

CIOs

VPRs

Faculty

My talk will focus mostly on the local stakeholders!

Communicating Value

Hot Take: Our Community is Immature at Communicating Value

Questions we received at Purdue from finance leaders:

"What do they keep spending all that money on for supercomputers?"

"Who even uses these things? Are they just vanity toys for a couple of people?"

"Why is that recharge center not covering its costs?"

Which I understand.. Even if you do recover all the costs, the **VALUE** is returned somewhere else than your center's books.

Motivation

Value of HPC investments

Computing systems are critical pieces of research infrastructure

Administrators have to manage competing priorities of infrastructures in which to invest:

Supercomputers

Wind tunnels

Electron Microscopes

Enterprise IT vs research IT

Etc

How to demonstrate that computational research is a good investment?

Step 1: Know your Stakeholders

Which specific stakeholders are you communicating value to?

What is important at the institution at this point in time?

Faculty: getting next grant, publishing, graduating students

Provost: Students, educational outcomes, happy faculty

VP for Research: Competitiveness for funding, winning major grants and contracts, growing R&D expenditures, tech transfer, IP, happy faculty

CIO: Contributing to the mission

Personas

Stakeholder Interests

Deans, Heads, Chairs: Students, educational outcomes, Faculty recruitment and retention, Having appropriate infrastructure for their units to succeed, happy faculty

CFO: \$\$\$ - ROI, efficiency, reduction of expense, increase of revenue

Step 2: Have Quantitative Center Metrics

Telling your story

.. based on the interests of the specific stakeholder, given the institution's priorities in the current context

If you don't track your usage, and map it to who your Pls are and where they sit in your institution, start doing so now! (Install XDMOD!)

Purdue, circa 2001

Office of the VP for IT formed, first CIO

- Jim Bottum hired from NCSA as first CIO
- Administrative IT and computing center merged, forming "IT at Purdue" (ITaP)
- Prior to hiring of CIO, computing and storage capacity was behind where it should be, newest compute resource was an 8-year old IBM SP
- Getting research computing in order was a top priority
- Got into the "Beowulf" world, and started our "Community Cluster" condo program ~2004 or so

To All Stakeholders:

We are addressing the ~2001 lack of capacity and driving costs down

To Faculty, Academic Leaders:

Who is Using the Cyberinfrastructure?

Are You Cost-Effective?

Variations of these questions include:

- Why don't you use the cloud?
- Didn't you just buy an HPC system?
- How is this different than the other thing you just got?
 - ... or that INSERT PEER HERE just got?

https://www.flickr.com/photos/85567416@N03/14224208945

To CFO and Faculty:

Our model is more cost effective than commercial cloud (2019)

To CFO, and Faculty:

Each iteration gets us more capability per dollar

To All, but mostly CIO and CFO:

We understand our sales data well enough to plan our lifecycle needs

To CIO and CFO:

We understand our sales and usage patterns well enough to plan our lifecycle needs

Are You a Partner?

From Purdue's 2002 IT Strategic Plan

- Project has to be part of University's strategic direction
 - Work out priorities with the VPR
- Extra points for interdisciplinary projects
 - Consistent with Purdue strategic directions
- Funding potential
 - Two approaches to proposals
- Both sides have something to gain (in each other's critical path)
 - In addition to monetary
- Project should be innovative
- Write it down (project management)
- Resources (have done loss leaders but...)
 - Loss leaders early to establish credibility

To Faculty and Academic Leaders

Our partners cite our center as necessary to their proposals

To Faculty, Academic Leaders, CFO

An increasingly large proportion of the research dollars go to users of HPC

To the CFO

Users of our center pay most of the university's F&A

To all:

Institutional investment in research scientists and RSEs has a positive ROI

FY	Scientist and RSE General Fund Salaries (\$K)	Research Expenditures (\$K)	F&A Paid (\$K)	ROI to General Fund
2020	\$226.00	\$2,900.00	\$926.00	4.10
2021	\$215.40	\$2,710.00	\$747.30	3.47
2022	\$108.10	\$13,500.00	\$730.00	6.75
2023	\$73.60	\$3,400.00	\$986.00	13.40

Are your Metrics Tied to a Product?

Sage Advice

■ Last CIO: "Raw count metrics are meaningless to the administration unless related to the business of Purdue. You need to talk about the value in those terms"

That Administration's Priorities:

- Control Costs (tuition freeze)
- Impact Students
- Recruit and retain faculty

To Faculty and Academic Leaders

To train students, CI resources are critical tools to have available

Year	Earned Doctorates	HPC-Using Doctorates	% Using HPC
2010	639	9	1%
2011	672	5	1%
2012	656	15	2%
2013	687	20	3%
2014	735	44	6%
2015	709	64	9%
2016	727	99	14%
2017	740	127	17%
2018	758	140	18%
2019	738	175	24%
2020	808	182	23%
2021	802	204	25%
2022	835	205	25%
2023	851	234	27%

To Faculty and Academic Leaders

To train students, HPC resources are critical tools to have available

 During the 2022-23 AY, 167 courses used HPC for instructional purposes, impacting a total of over 3000 students.

To the CFO

The general fund costs for campus CI enable research expenditures have a high ROI

2023 Metric	Amount (\$M)
Net Cost to Purdue	\$7.55
Awards to RCAC-using Faculty	\$395.00
Direct Expenditures Enabled	\$362.70
F&A Expenditures Enabled	\$77.50
Retur	n on Investment
Awards Return	52.32
Direct Expenditure Return	48.04
F&A Expenditure Return	10.26

Step 3: Get Testimonials

Don't underestimate the power of qualitative data

Before: (~2006)

"I'd rather remove my appendix with a spork than let you people run my research computers."

Testimonials

Recruitment:

"Knowing there was a good group of experienced professionals I could rely on for support and establishing the computational infrastructure that I needed was very comforting when I was considering coming to Purdue. It frees up my time and the time of my graduate students and post-docs. We can focus on the scientific problems, which are our primary interest."

Jeffrey Greeley

Charles and Nancy Davidson
Professor of Chemical Engineering

Enable Top Faculty:

"I wouldn't have been elected to the National Academy of Sciences without these clusters. Having the clusters, we were able to set a very high standard that led a lot of people around the world to use our work as a benchmark, which is the kind of thing that gets the attention of the national academy."

Joseph Francisco

William E. Moore Professor of Physical Chemistry, member of the National Academy of Sciences and past president of the American Chemical Society

Production Function Model

Some guy did some research on the value proposition...

THE VALUE PROPOSITION OF CAMPUS HIGH PERFORMANCE COMPUTING FACILITIES TO INSTITUTIONAL PRODUCTIVITY - A PRODUCTION FUNCTION MODEL

by

Preston Smith

A Dissertation

Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Purdue Polytechnic Institute West Lafayette, Indiana August 2022

Motivator: Metrics at Purdue

- Cl-using awards, degrees, proposals all take huge jumps in 2012-2014
- What happened there?
- Carter (our first big cluster) came online in late 2011.
- Conte (#28 on Top 500) in early 2013

This prompted questions to me – did these investments contribute to increase in outputs?

Understanding these relationships is critical to modeling the impact of the investment!

Research Questions

- Does institutional investment in campus CI facilities lead to a measurable impact on institutional output?
- If so, what are the key factors for investment that lead to returns on institutional outputs?
- What is a model for quantifying the impact of campus cyberinfrastructure investments?

Background

Work by Amy Apon

(2010): Presence of a Top 500 supercomputer on a campus (an input) positively impacts research output at the institutional level.

(2015):

Departments in Chemistry, Civil and Environmental Engineering, and Physics are more productive in universities with local cyberinfrastructure.

- **Downsides:** Top 500 is no longer a viable proxy for investment.
- How to add a labor dimension in model? No cross-institutional data available as to investment.

Production Function Model

In the 1920s, theories of production described the amount produced depended upon the level of technological knowledge and the quantities of the factors of production.

Cobb and Douglas (1927) described a least squares regression equation that predicts production (Y) based on inputs of capital (K) and labor (L),

$$Y = f(L^k K^{1-k})$$

"We found the values of k and 1-k by the method of least squares to be .75 and .25..."

Paul Douglas, Autobiography (1971)

Inputs and Outputs

What to use for Labor, Capital, and Outputs?

Table 3: Selected Purdue Input and Output Metrics

Input	Output
Annual net cost of the center	Purdue direct sponsor expenditures
Annual salary costs	Purdue F&A expenditures
Total TF operated	HERD reported R&D Expenditures
# of cluster faculty PIs	Purdue sponsored research awards
Center capital costs	Earned doctorates reported to NSF
	Purdue Publications
	High Impact Pubs
	US News ranking

Correlation Analysis

For Single Inputs TF and Salary

Output	Kendall Tau (TF)	Kendall Tau (Salary)
HERD Exp	0.92	0.88
Awards	0.83	0.75
Earned Doctorates	0.90	0.77
Purdue Pubs	0.90	0.32
Hi Impact Pubs	0.85	0.87

Regression Models

With Multiple Inputs Predicting an Output

$$Y = f(K, L) = K_{\text{flops}} L_{\text{staff}}$$

With the proxies
for labor and
capital identified,
use the
production
function form
(labor + capital) to
model the various
outputs.

For example,
TeraFLOPS + staff
salaries to predict
outputs

.. And another series of regressions to model the capability of the labor variable, using research expenditures by center staff as a metric.

Output - HERD Expenditures

Input	HERD Exp (\$M)	% Variance Explained
100 TeraFLOPS	2.59	25%
\$100k Salaries	9.04	43%
\$100k RCAC Grants	2.34	28%

Output - Earned Doctorates

	Earned	% Variance
Input	Doctorates	Explained
100 TeraFLOPS	2.55	31%
\$100k Salaries	7.36	42%
\$100k RCAC Grants	1.27	22%

Implications for Policymakers

Results, Summarized

Investments in both systems and people lead to measurable returns to the institution

Labor accounts for the largest amount of the variation in all models

When optimizing for publication-based outputs, salary investment yields strong returns

Allowing (or encouraging) HPC center staff to be PIs on their own grants or with faculty yields dividends to the institution

Broader Applications

How can this framework be applied to other Cls?

- Work ongoing to apply model to other campus' data.
 - Some friendly institutions have shared
 - Can I talk to you about your data?
- Improve the model use timeseries statistics
- Apply model to NSF XSEDE infrastructure
 - Using all NSF expenditures, US Earned Doctorates, NSF-funded pubs in Scopus, etc.

Institution 1

term <chr></chr>	TF <dbl></dbl>
Pubmed Pubs	0.9736463
HERD Expenditures	0.9615496
Publications	0.9448686
Salaries	0.9117805
Hi Impact Pubs	0.8969057
Earned Doctorates	0.6570913

6 rows

	HERD Exp (\$M)	Pubs	Hi Impact Pubs	PhDs
100 TeraFLOPS	10.11	10.11	0.88	0.65
\$100k Salaries	11.19	109.90	5.75	4.68

Institution 2

term <chr></chr>	Salaries <dbl></dbl>
Earned Doctorates	0.6610407
TF	0.6522726
Publications	0.6329621
Hi Impact Pubs	0.6329621
HERD Expenditures	0.4810512

5 rows

	HERD Exp (\$M)	Pubs	Hi Impact Pubs	PhDs
100 TeraFLOPS	25.50	25.50	5.17	-0.29
\$100k Salaries	15.61	86.04	13.36	3.89

Thank You

psmith@purdue.edu

