12 Least Squares Data Fitting

Unit 1: Vectors, Book ILA Ch. 1-5

Unit 2: Matrices, Book ILA Ch. 6-11 + Book IMC Ch. 2

Unit 3: Least Squares, Book ILA Ch. 12-14

- 11 Least Squares
- 12 Least Squares Data Fitting: Regression and Classification

Outline: 12 Least Squares Data Fitting

- Least Square Model Fitting
- Application to Regression and Classification

True relationship: f

Definition: When we believe that a scalar y and an n-vector x are related by model:

$$y \approx f(x)$$
,

we use the following vocabulary:

- x is called the independent variable
- y is called the outcome or response variable
- $f:\mathbb{R}^n o \mathbb{R}$ represents the "true" relationship between x and y.

Generally, we do not know f, we just assume it exists. Our goal is to learn f, or a reasonable approximation of it, using data.

Model: \hat{f}

Definition: Choosing a set of basis functions: $f_j: \mathbb{R}^n \to \mathbb{R}$, for j=1...p, we model a guess or approximation of f as:

$$\hat{f}(x) = \theta_1 f_1(x) + \ldots + \theta_p f_p(x),$$

where:

- $heta_j$ are parameters that we learn from data: $x^{(1)},\dots,x^{(N)},\dots,y^{(1)},\dots y^{(N)}$,
- $oldsymbol{\hat{y}}^{(i)} = \hat{f}\left(x^{(i)}
 ight)$ is (the model's) prediction of $y^{(i)}$, for $i=1,\dots,N$.

Remark: If our model is good, then $\hat{y}^{(i)} pprox y^{(i)}$.

Least Square Data Fitting

Definition: We define the prediction error, or residual for each $i=1,\ldots,N$:

$$r_i=y^{(i)}-\hat{y}^{(i)}.$$

Definition: The Least Square Data Fitting problem is the problem of choosing model's parameters $\theta_1, \ldots, \theta_n$ that minimize the RMS prediction error on the dataset:

$$\left(rac{r_1^2{+}\ldots{+}r_N^2}{N}
ight)^{1/2}.$$

Proposition: Define the $N \times p$ matrix A with elements $A_{ij} = f_j(x^{(i)})$, such that $\hat{y} = A\theta$, where $y = (y^{(1)}, \dots, y^{(N)})$ is vector of outcomes. The least square data fitting problem amounts to choose θ that minimizes:

$$\left|\left|A\theta-y\right|\right|^2,$$

which shows that it can be written as a Least Square Problem. Assuming that the columns of ${\cal A}$ are independent, the solution is:

$$\hat{\theta} = (A^T A)^{-1} A^T y.$$

Outline: 12 Least Squares Data Fitting

- Least Square Model Fitting
- Application to Regression and Classification

Classification and Regression

Artificial Intelligence (AI): Techniques that enable machines to mimic human intelligence.

Machine Learning (ML): Techniques that enable machines to learn from data.

Supervised Learning: Task of learning a function that maps an input to an output based on example input-output pairs.

Examples:

- **Regression:** maps an input to a quantitative value.
- Classification: maps an input to a categorical value.

Unsupervised Learning: Task of discovering any naturally occurring patterns in a data set. Examples:

- Clustering: discover groups (clusters) within the data: today.
- Dimension reduction: later in this class.

Regression of House Prices

- x: house's area in 1000 sq feet,
- y: house's price in in k\$ (we do not consider the number of beds for simplicity).

Consider the model: $\hat{f}(x)= heta_1f_1(x)+ heta_2f_2(x)$ with $f_1(x)=1$ and $f_2(x)=x$, i.e.:

$$\hat{f}\left(x
ight) = heta _{1}+ heta _{2}x.$$

Example: What are A, y? Explain how you can find $\hat{\theta}_1$ and $\hat{\theta}_2$ with Python. At home: compute $\hat{\theta}_1$ and $\hat{\theta}_2$ manually (hard).

From Regression to (Binary) Classification

- Model \hat{f} outputs a number.
- Binary classification wants a category: +1 or -1 only.
- ightarrow use $sign(\hat{f}\,)$ in place of $\hat{f}\,$ to classify.

Classification of MNIST

- x image of size 28×28 from the MNIST dataset,
- y: whether the image shows a 0 digit or another digit.

Consider the model: $\hat{f}(x)=sign(\theta_0f_0(x)+\theta_1f_1(x)+\ldots+\theta_{784}f_{784}(x))$ with $f_0(x)=1$, and $f_p(x)=x_p$ for $p=1,\ldots,784$, i.e.:

$$\hat{f}\left(x
ight)=sign(heta_{0}+ heta_{1}x_{1}+\ldots+ heta_{784}x_{784}).$$

Example: What are x, y, A? Explain how you can find the $\hat{\theta}$ s with Python.

Unit 1: Vectors, Book ILA Ch. 1-5

Unit 2: Matrices, Book ILA Ch. 6-11 + Book IMC Ch. 2

Unit 3: Least Squares, Book ILA Ch. 12-14

- 11 Least Squares
- 12 Least Squares Data Fitting: Regression and Classification

Resources: Book ILA Ch. 13-14.