Tactical Analysis

September 15, 2021

1 Import Libraries and Prepare Returns Data

```
tactical_index = tactical_index.iloc[:,[0,1]].replace('*', np.nan) #Replace_
→values null values with nan
tactica_index_index = tactical_index.index
#read in SP500 and FF3 factors data
sp = yf.download('^SP500TR')
sp.columns = [f"SP500 {x}" for x in sp.columns]
ff = pd.read csv('F-F Research Data Factors.csv',index col = 'Date',
                 skiprows = 3, parse_dates = True, skipfooter = 99)
ff = (ff / 100) #Divide by 100 to convert from % to decimal
ff_index = ff.index
#read in tactical data (RORO & TCUS)
atacx = yf.download('ATACX')
atacx.columns = [f"ATACX {x}" for x in atacx.columns]
first_atacx = atacx.index[0]
#load and format TCUS Returns
tcus = pd.read_excel('TCUS Returns.xlsx', index_col = 'Month')
tcus.columns = ['TCUS']
tcus_index = tcus.index
#Join DataFrames together on selected data
df = pd.concat([tactical_index,ff, sp, atacx, tcus], axis = 1).fillna(method = __
→'ffill') #.fillna() to smooth end of month
```

```
df = df.loc[ff_index,['All','Filtered','ATACX Close',__
     →'TCUS', 'Mkt-RF', 'SMB', 'HML', 'RF', 'SP500 Close']] # ff_index is the longest
     → index of end of month returns
    df['ATACX Returns'] = df['ATACX Close'].pct_change()
    df['SP500 Returns'] = df['SP500 Close'].pct change()
    df = df.drop(['ATACX Close', 'SP500 Close'], axis = 1)
    df = df.iloc[1:,:]
    df.tail(10)
    [******** 100%*********** 1 of 1 completed
    [******** 100%*********** 1 of 1 completed
[2]:
                     All Filtered
                                       TCUS Mkt-RF
                                                        SMB
                                                                HML
                                                                        RF \
    Date
    2020-08-31 0.045176 0.038666 0.057602 0.0763 -0.0025 -0.0294 0.0001
    2020-09-30 -0.025827 -0.021815 -0.029419 -0.0363 0.0006 -0.0251 0.0001
    2020-10-31 -0.025827 -0.021815 -0.036605 -0.0210 0.0444 0.0403 0.0001
    2020-11-30 -0.025827 -0.021815 0.178086 0.1247 0.0548 0.0211 0.0001
    2020-12-31 -0.025827 -0.021815 0.097485 0.0463 0.0481 -0.0136 0.0001
    2021-01-31 -0.025827 -0.021815 0.041290 -0.0003 0.0719
                                                            0.0285 0.0000
    2021-02-28 -0.025827 -0.021815 0.083357 0.0278 0.0211
                                                             0.0708 0.0000
    2021-03-31 -0.025827 -0.021815 0.033834 0.0308 -0.0248
                                                            0.0740 0.0000
    2021-04-30 -0.025827 -0.021815 0.039474 0.0493 -0.0309 -0.0074 0.0000
    2021-05-31 -0.025827 -0.021815 0.007127 0.0029 -0.0022 0.0705 0.0000
                ATACX Returns SP500 Returns
    Date
    2020-08-31
                    -0.002515
                                   0.071880
    2020-09-30
                    -0.059664
                                  -0.037997
    2020-10-31
                    -0.004915
                                  -0.026593
                     0.048271
    2020-11-30
                                   0.109464
    2020-12-31
                    -0.017134
                                   0.038449
    2021-01-31
                     0.046197
                                  -0.010096
    2021-02-28
                    -0.020412
                                    0.027575
    2021-03-31
                    -0.041676
                                    0.043796
    2021-04-30
                     0.018416
                                    0.053369
    2021-05-31
                    -0.009368
                                    0.006984
    Create dummy variables for timing analysis – take value of returns when
[3]: df['SP500 Gamma * Dummy'] = np.where(df['SP500 Returns'] > 0,df['SP500_
     →Returns'],0)
    df['Mkt-RF Gamma * Dummy'] = np.where(df['Mkt-RF'] > 0,df['Mkt-RF'],0)
```

2 Regression Order and Intuition

Funds under consideration: * Total tactical index ('All') - an index compiled by Good Harbor Financial of the returns of all funds that are considered 'tactical' by Morningstar. * Filtered tactical index ('Filtered') - The aforementioned index, filtered by β to the market. * ATACX - A mutual fund that rotates around small-caps, large-caps, or emerging markets (risk-on), and Treasuries (risk-off) based on Utilities and Treasuries as risk triggers. (ATAC Funds Website) * TCUS - seeks to "outperform the S&P 500 Index by aligning capital with the US equity market during sustained rallies and positioning defensively in weak equity market conditions." (TCUS Fund Overview)

Order is as follows:

- 1. Y: Total tactical index X: SP500 Index and SP500 Timing Var
- 2. Y: Total tactical index X: Mkt-RF Index and Mkt-RF Timing Var
- 3. Y: Total tactical index X: Mkt-RF Index and Mkt-RF Timing Var, FF3 SMB, HML
- 4. Y: Filtered tactical index X: SP500 Index and SP500 Timing Var
- 5. Y: Filtered tactical index X: Mkt-RF Index and Mkt-RF Timing Var
- 6. Y: Filtered tactical index X: Mkt-RF Index and Mkt-RF Timing Var, FF3 SMB, HML
- 7. Y: ATACX X: SP500 Index and SP500 Timing Var
- 8. Y: ATACX X: Mkt-RF Index and Mkt-RF Timing Var
- 9. Y: ATACX X: Mkt-RF Index and Mkt-RF Timing Var, FF3 SMB, HML
- 10. Y: TCUS X: SP500 Index and SP500 Timing Var
- 11. Y: TCUS X: Mkt-RF Index and Mkt-RF Timing Var
- 12. Y: TCUS X: Mkt-RF Index and Mkt-RF Timing Var, FF3 SMB, HML

Using the methodology proposed by Henriksson and Merton (1981), the regressions below are of the format:

$$R_{fund} = \alpha + \beta(r_{mkt} - rf) + \gamma((r_{mkt} - rf) * D(r_{mkt} > 0))$$

Where: D = 1, $r_{mkt} > 0$ D = 0, $r_{mkt} < 0$

With this multiple regression analysis: α suggests stock-picking ability β refers to market exposure (too high makes you a closet indexer) γ suggests market timing ability

3 Regression Results and Discussion

[4]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:		All	R-sai	uared:		0.757
Model:		OLS	-	R-squared:		0.755
Method:	Least Sq		•	atistic:		382.8
Date:	Wed, 15 Sep	•			ic):	2.97e-76
Time:	-			Likelihood:		663.18
No. Observations:		249	AIC:			-1320.
Df Residuals:		246	BIC:			-1310.
Df Model:		2				
Covariance Type:	nonr	obust				
======	========	======	=====		=======	========
	coef	std 6	err	t	P> t	[0.025
0.975]						
const	0.0032	0.0	002	1.865	0.063	-0.000
0.007						
SP500 Returns	0.7035	0.0	044	15.966	0.000	0.617
0.790						
SP500 Gamma * Dummy	-0.0382	0.0	077	-0.496	0.620	-0.190
0.114						
Omnibus:	 26	2.508	Durbi	in-Watson:		2.276
Prob(Omnibus):		0.000	Jarqı	ıe-Bera (JB):	15923.454
Skew:		4.042	Prob	(JB):		0.00
Kurtosis:	4	1.333	Cond.	. No.		79.9

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

```
11 11 11
[5]: #2
   Y = tactical index data['All']
   X = tactical_index_data.loc[:,['Mkt-RF','Mkt-RF Gamma * Dummy']]
   X = sm.add constant(X)
   model = sm.OLS(Y,X)
   results = model.fit()
   results.summary()
[5]: <class 'statsmodels.iolib.summary.Summary'>
                         OLS Regression Results
   ______
   Dep. Variable:
                              All R-squared:
                                                            0.818
   Model:
                              OLS Adj. R-squared:
                                                            0.817
   Method:
                      Least Squares F-statistic:
                                                            553.2
   Date:
                   Wed, 15 Sep 2021 Prob (F-statistic):
                                                        9.06e-92
                          20:41:07 Log-Likelihood:
   Time:
                                                           699.34
   No. Observations:
                              249 AIC:
                                                           -1393.
   Df Residuals:
                              246 BIC:
                                                           -1382.
   Df Model:
   Covariance Type:
                        nonrobust
                        coef std err t P>|t| [0.025]
   0.975]
                       0.0027 0.001 1.814 0.071 -0.000
   const
   0.006
                       0.6730 0.036 18.529 0.000
   Mkt-RF
                                                         0.601
   0.744
   Mkt-RF Gamma * Dummy 0.0266 0.065 0.406
                                                 0.685
                                                         -0.102
   _____
   Omnibus:
                           242.710 Durbin-Watson:
                                                            2.122
```

Kurtosis:

Skew:

Prob(Omnibus):

specified.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

3.675 Prob(JB):

34.001 Cond. No.

0.000 Jarque-Bera (JB): 10531.422

0.00

77.9

11 11 11

```
[6]: #3
    Y = tactical_index_data['All']
    X = tactical_index_data.loc[:,['Mkt-RF','Mkt-RF Gamma * Dummy','SMB','HML']]
    X = sm.add_constant(X)
    model = sm.OLS(Y,X, missing = 'drop')
    results = model.fit()
    results.summary()
[6]: <class 'statsmodels.iolib.summary.Summary'>
                          OLS Regression Results
    ______
   Dep. Variable:
                               All
                                    R-squared:
                                                              0.863
                               OLS Adj. R-squared:
   Model:
                                                              0.861
                      Least Squares F-statistic:
   Method:
                                                              384.1
   Date:
                    Wed, 15 Sep 2021 Prob (F-statistic):
                                                       5.29e-104
   Time:
                           20:41:08 Log-Likelihood:
                                                             734.59
   No. Observations:
                               249 AIC:
                                                             -1459.
   Df Residuals:
                               244 BIC:
                                                             -1442.
                                4
   Df Model:
    Covariance Type:
                          nonrobust
                         coef std err t
                                                 P>|t|
                                                           Γ0.025
    0.975]
                        0.0020 0.001
                                         1.520
                                                 0.130
                                                           -0.001
    const
    0.005
                       0.6154 0.032 19.050
   Mkt-RF
                                               0.000
                                                            0.552
    0.679
                       0.0521
                                 0.057
                                         0.913
                                                   0.362
                                                            -0.060
   Mkt-RF Gamma * Dummy
    0.165
    SMB
                        0.2359
                                 0.027 8.770 0.000
                                                           0.183
    0.289
   HML
                        0.0890
                                 0.025
                                          3.494
                                                   0.001
                                                             0.039
    0.139
    ______
    Omnibus:
                           133.356 Durbin-Watson:
                                                              2.160
   Prob(Omnibus):
                             0.000 Jarque-Bera (JB):
                                                            2076.225
   Skew:
                             1.719 Prob(JB):
                                                               0.00
   Kurtosis:
                            16.722 Cond. No.
                                                               78.3
```

 $\cite{black} \cite{black} 1]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

3.1 Tactical Index Discussion

Regression analysis of the entire tactical index highlights some key points:

- * The index as a whole exhibits high beta to both the S&P500 and the total market (.6-.7). This indicates that a large portion of the index's returns are attributable to market β /closet indexing by individual managers.
- * These coefficients are statistically significant for each regression analysis.
- * When using both the S&P 500 and the total market index, the analysis does not suggest any significant market timing ability. None of the three γ coefficients are significant at any significance level.
- * This suggests that market timing by managers in the total tactical index does not improve their returns.
- * Much of the tactical index returns appear to be explained by exposure to size and value factors, rather than market timing.

```
[7]: #4
    Y = tactical_index_data['Filtered']
    X = tactical_index_data.loc[:,['SP500 Returns','SP500 Gamma * Dummy']]
    X = sm.add_constant(X)

model = sm.OLS(Y,X)
    results = model.fit()
    results.summary()
```

[7]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================			========
Dep. Variable:	Filtered	R-squared:	0.552
Model:	OLS	Adj. R-squared:	0.548
Method:	Least Squares	F-statistic:	151.5
Date:	Wed, 15 Sep 2021	Prob (F-statistic):	1.31e-43
Time:	20:41:08	Log-Likelihood:	614.65
No. Observations:	249	AIC:	-1223.
Df Residuals:	246	BIC:	-1213.
Df Model:	2		
Covariance Type:	nonrobust		
======			
	coef std e	err t P> t	[0.025
0.975]			

const	0.0037	0.002	2 1.791	(0.074	-0.000
0.008	3.300.	3.002		`		3.000
SP500 Returns	0.5348	0.054	9.989	(0.000	0.429
0.640						
SP500 Gamma * Dummy	-0.0228	0.094	1 -0.243	(808.0	-0.207
0.162						
Omnibus:	<u>-</u> 291	L.465 I	Durbin-Watso	 n:	=	2.1
<pre>Prob(Omnibus):</pre>	(0.000	Jarque-Bera	(JB):		25503.5
Skew:	4	1.687 I	Prob(JB):			0.
Kurtosis:	51	1.686 (Cond. No.			79
#5		117				
Y = tactical_index_da			IMIz+_DE Com	5 4 D	nmar 7 7	
<pre>X = tactical_index_da X = sm.add_constant()</pre>	ata.loc[:,[']		'Mkt-RF Gamm	a * Dur	mmy']]	
X = tactical_index_da	ata.loc[:,['N		'Mkt-RF Gamm	a * Dur	nmy']]	
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class 'statsmodels.ii<="" pre=""></class></pre>	ata.loc[:,['N	ſkt-RF',		a * Dur	nmy']]	
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class 'statsmodels.i'<="" pre=""></class></pre>	ata.loc[:,['] K) iolib.summary OLS F	//kt-RF',	y'> on Results			
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class 'statsmodels.ii<="" pre=""></class></pre>	ata.loc[:,['] K) iolib.summary OLS F	Nkt-RF', 7.Summary Regression	y'> on Results		nmy']]	
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class """<="" 'statsmodels.i="" pre=""></class></pre>	ata.loc[:,['] K) iolib.summary OLS F	Akt-RF', Asummary Regression Cered F	y'> on Results			0.6
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class 'statsmodels.i"""="================================</td"><td>ata.loc[:,['] K) iolib.summary OLS F</td><td>7.Summary Regression Ered F OLS A</td><td>y'> on Results ====================================</td><td>====== ed:</td><td></td><td>0.6</td></class></pre>	ata.loc[:,['] K) iolib.summary OLS F	7.Summary Regression Ered F OLS A	y'> on Results ====================================	====== ed:		0.6
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class """="" 'statsmodels.i="" date:<="" dep.="" method:="" model:="" pre="" variable:=""></class></pre>	ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep	Acgressicered Follows Regression of the second seco	y'> on Results ======== R-squared: Adj. R-squar	====== ed:		0.6 0.6 209 6.86e-
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class 'statsmodels.i"""="================================</td"><td>ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep</td><td>Akt-RF', Regression Cered H OLS H nares H 2021 H 11:08 I</td><td>on Results Results Resquared: Adj. Resquar Festatistic: Prob (Festat</td><td>====== ed: istic):</td><td></td><td>0.6 0.6 209 6.86e- 638.</td></class></pre>	ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep	Akt-RF', Regression Cered H OLS H nares H 2021 H 11:08 I	on Results Results Resquared: Adj. Resquar Festatistic: Prob (Festat	====== ed: istic):		0.6 0.6 209 6.86e- 638.
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class """="===============================</td" 'statsmodels.i=""><td>ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep</td><td>7.Summary Regression Cered H OLS H Hares H 2021 H 11:08 I</td><td>on Results Results Resquared: Adj. Resquar Festatistic: Prob (Festat</td><td>====== ed: istic):</td><td></td><td>0.6 0.6 209 6.86e- 638. -127</td></class></pre>	ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep	7.Summary Regression Cered H OLS H Hares H 2021 H 11:08 I	on Results Results Resquared: Adj. Resquar Festatistic: Prob (Festat	====== ed: istic):		0.6 0.6 209 6.86e- 638. -127
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class """="===============================</td" 'statsmodels.i=""><td>ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep</td><td>7.Summary Regression Cered H OLS H Hares H 2021 H 11:08 I</td><td>on Results Results Resquared: Adj. Resquar Festatistic: Prob (Festat</td><td>====== ed: istic):</td><td></td><td>0.6 0.6 209 6.86e- 638. -127</td></class></pre>	ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep	7.Summary Regression Cered H OLS H Hares H 2021 H 11:08 I	on Results Results Resquared: Adj. Resquar Festatistic: Prob (Festat	====== ed: istic):		0.6 0.6 209 6.86e- 638. -127
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class """="===============================</td" 'statsmodels.i=""><td>ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep</td><td>7.Summary Regression Cered H OLS H Hares H 2021 H 11:08 I</td><td>on Results Results Resquared: Adj. Resquar Festatistic: Prob (Festat</td><td>====== ed: istic):</td><td></td><td>0.6 0.6 209 6.86e- 638. -127</td></class></pre>	ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep	7.Summary Regression Cered H OLS H Hares H 2021 H 11:08 I	on Results Results Resquared: Adj. Resquar Festatistic: Prob (Festat	====== ed: istic):		0.6 0.6 209 6.86e- 638. -127
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class """="===============================</td" 'statsmodels.i=""><td>ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep</td><td>7.Summary Regression Cered H OLS H 12021 H 11:08 H 249 H 246 H</td><td>on Results Results Resquared: Adj. Resquar Festatistic: Prob (Festat</td><td>====== ed: istic):</td><td></td><td>0.6 0.6 209 6.86e- 638. -127</td></class></pre>	ata.loc[:,['] K) iolib.summary OLS F Filt Least Squ Wed, 15 Sep	7.Summary Regression Cered H OLS H 12021 H 11:08 H 249 H 246 H	on Results Results Resquared: Adj. Resquar Festatistic: Prob (Festat	====== ed: istic):		0.6 0.6 209 6.86e- 638. -127
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class """="" 'statsmodels.i="" covariance="" date:="" dep.="" df="" method:="" model:="" no.="" observations:="" residuals:="" time:="" type:="===================================</td" variable:=""><td>ata.loc[:,['] iolib.summary OLS F Filt Least Squ Wed, 15 Sep 20:4</td><td>Akt-RF', 7.Summary Regression Eered H OLS H 11:08 H 249 H 246 H 2</td><td>on Results ====================================</td><td>====== ed: istic): od:</td><td></td><td>0.6 0.6 209 6.86e- 638. -127 -126</td></class></pre>	ata.loc[:,['] iolib.summary OLS F Filt Least Squ Wed, 15 Sep 20:4	Akt-RF', 7.Summary Regression Eered H OLS H 11:08 H 249 H 246 H 2	on Results ====================================	====== ed: istic): od:		0.6 0.6 209 6.86e- 638. -127 -126
<pre>X = tactical_index_da X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary() <class """="===============================</td" 'statsmodels.i=""><td>ata.loc[:,['] iolib.summary OLS F Filt Least Squ Wed, 15 Sep 20:4</td><td>Akt-RF', 7.Summary Regression Eered H OLS H 11:08 H 249 H 246 H 2</td><td>on Results R-squared: Adj. R-squar F-statistic: Prob (F-stat Log-Likeliho AIC: BIC:</td><td>====== ed: istic): od:</td><td></td><td>0.6 0.6 209 6.86e- 638. -127 -126</td></class></pre>	ata.loc[:,['] iolib.summary OLS F Filt Least Squ Wed, 15 Sep 20:4	Akt-RF', 7.Summary Regression Eered H OLS H 11:08 H 249 H 246 H 2	on Results R-squared: Adj. R-squar F-statistic: Prob (F-stat Log-Likeliho AIC: BIC:	====== ed: istic): od:		0.6 0.6 209 6.86e- 638. -127 -126

const	0.0032	0.002	1.680	0.094	-0.001
0.007					
Mkt-RF	0.5243	0.046	11.312	0.000	0.433
0.616					
Mkt-RF Gamma * Dummy	0.0307	0.083	0.367	0.714	-0.134
0.195					
				=======	========
Omnibus:	285.		oin-Watson:		2.100
Prob(Omnibus):			que-Bera (JB)	:	22096.669
Skew:		559 Prob	o(JB): 1. No.		0.00
Kurtosis:	48. 	240 Cond	1. NO. 		77.9
Warnings: [1] Standard Errors specified. """	assume that th	e covarian	nce matrix of	the errors	s is correctly
<pre>#6 Y = tactical_index_c X = tactical_index_c X = sm.add_constant() model = sm.OLS(Y,X) results = model.fit() results.summary()</pre>	lata.loc[:,[' <mark>Mk</mark> (X)		t-RF Gamma *	Dummy','SM	B','HML']]
<pre><class """<="" 'statsmodels.="" pre=""></class></pre>	iolib.summary.	Summary'>			
	OLS Re	gression H	Results		
Dep. Variable:	Filte	===== red R-s	======================================		0.713
Model:			R-squared:		0.709
Method:	Least Squa	_	catistic:		151.8
Date:	Wed, 15 Sep 2		(F-statisti	c):	5.47e-65
Time:	20:41		-Likelihood:		670.27
No. Observations:		249 AIC	:		-1331.
Df Residuals:		244 BIC	:		-1313.
Df Model:		4			
Covariance Type:	nonrob	ust			
=======		======		=======	
0.975]	coef	std err	t	P> t	[0.025

[9]:

[9]:

const	0.0025	0.002	1.465	0.144	-0.001
0.006 Mkt-RF	0.4563	0.042	10.909	0.000	0.374
0.539 Mkt-RF Gamma * Dummy	0.0551	0.074	0.746	0.456	-0.090
0.201 SMB	0.2916	0.035	8.371	0.000	0.223
0.360 HML	0.0326	0.033	0.989	0.324	-0.032
0.098	.=======	========	.=======	.=======	=======
Omnibus: Prob(Omnibus): Skew: Kurtosis:	168.89 0.00 2.27 21.46	0 Jarque 1 Prob(J			2.113 3752.009 0.00 78.3
				.=======	========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

.....

3.2 Filtered Tactical Index Discussion

Regression analysis again provides similar findings when filtering tactical managers based on their market β .

- * Analysis of the filtered index yields similar results to the entire index. Analysis shows lower market β to the market. This to be expected as managers are specifically selected based on low market β
- * Despite this lower market β , our analysis does not suggest any significant market timing abilities by these managers.
- * Instead this subset of managers appears to be adding much of their value from exposure to the FF3 size factor.

```
[12]: #CAPM Model - for reference
Y = df.loc[first_atacx:,'ATACX Returns']
X = df.loc[first_atacx:,['SP500 Returns']]
pd.concat([Y, X], axis = 1)
X = sm.add_constant(X)
model = sm.OLS(Y,X, missing = 'drop')
results = model.fit()

results.summary()
```

```
[12]: <class 'statsmodels.iolib.summary.Summary'>
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	AT Le Wed,	ast Squares 15 Sep 2021 20:46:36 104 102 1 nonrobust	R-squared Adj. R-sq F-statist Prob (F-s Log-Likel AIC: BIC:	uared: ic: tatistic): ihood:	9	0.140 0.131 16.57 0.28e-05 178.34 -352.7 -347.4
0.975]	coef	std err	t	P> t	[0.025	
- const 0.010	0.0011	0.005	0.238	0.812		
SP500 Returns 0.683	0.4595	0.113	4.070	0.000	0.236	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		1.229 0.541 0.252 2.817	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	ra (JB):		2.023 1.246 0.536 26.2
Warnings: [1] Standard Erro specified. """	rs assume	that the cov	variance ma	trix of the	errors is	correct
Y = df.loc[first_ X = df.loc[first_ pd.concat([Y, X], X = sm.add_consta model = sm.OLS(Y, results = model.f results.summary()	atacx:,[' axis = 1 nt(X) X, missin	SP500 Return:)		Gamma * Dum	my']]	
<pre><class """<="" 'statsmode="" pre=""></class></pre>	ls.iolib.	summary.Summa	ary'>			
		OLS Regress				
======== Dep. Variable:		======== ACX Returns	R-squared	 ·	======	0.186

[13]

[13]

Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Sq Wed, 15 Sep 20:	2021 46:37 104 101 2	F-st Prob	Likelihood:	ic):	0.169 11.51 3.14e-05 181.19 -356.4 -348.4
0.975]	coef	std 6	err	t	P> t	[0.025
const 0.003 SP500 Returns 0.446 SP500 Gamma * Dummy 1.446	-0.0105 0.0196 0.7896	0.0	215	-1.597 0.091 2.385	0.113 0.928 0.019	-0.024 -0.407 0.133
Omnibus: Prob(Omnibus): Skew: Kurtosis:	-1	0.146 0.930 0.081 2.817	Jarq Prob	in-Watson: ue-Bera (JB) (JB): . No.): 	2.159 0.260 0.878 90.9

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

```
[14]: #8
    Y = df.loc[first_atacx:, 'ATACX Returns']
    X = df.loc[first_atacx:,['Mkt-RF','Mkt-RF Gamma * Dummy']]
    X = sm.add_constant(X)
    model = sm.OLS(Y,X, missing = 'drop')
    results = model.fit()
    results.summary()
```

[14]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	ATACX Returns	R-squared:	0.196
Model:	OLS	Adj. R-squared:	0.180
Method:	Least Squares	F-statistic:	12.33

	Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	20:	46:38 104 101 2	Log-L AIC: BIC:	(F-statistic ikelihood:		1.62e-05 181.87 -357.7 -349.8
	======						
	0.975]	coef			t		[0.025
	const	-0.0095	0.	006	-1.494	0.138	-0.022
	0.003 Mkt-RF	0.0654	0	199	0.328	0.743	-0.330
	0.461	0.0034	0.	199	0.320	0.745	-0.330
	Mkt-RF Gamma * Dummy	0.7065	0.	305	2.315	0.023	0.101
	1.312						
	Omnibus:				======= n-Watson:		2.181
	<pre>Prob(Omnibus):</pre>		0.925	Jarqu	e-Bera (JB):		0.317
	Skew:	-	0.062	Prob(JB):		0.854
	Kurtosis:		2.759	Cond.	No. 		84.3
	Warnings: [1] Standard Errors specified. """	assume that	the cov	arianc	e matrix of	the errors	s is correctly
[15]:	<pre>#9 Y = df.loc[first_ata X = df.loc[first_ata X = sm.add_constant(</pre>	cx:,['Mkt-RF			ma * Dummy',	'SMB','HM	ĭĽ']]
	<pre>model = sm.OLS(Y,X, results = model.fit(</pre>	•	lrop')				

[15]: <class 'statsmodels.iolib.summary.Summary'>

results.summary()

OLS Regression Results

Dep. Variable:	ATACX Returns	R-squared:	0.228
Model:	OLS	Adj. R-squared:	0.196
Method:	Least Squares	F-statistic:	7.295
Date:	Wed, 15 Sep 2021	<pre>Prob (F-statistic):</pre>	3.43e-05

	Time: No. Observations: Df Residuals: Df Model: Covariance Type:	20:4	104 A 99 B 4 bust	og-Likelihood: CC: CC:		183.95 -357.9 -344.7
0.004 Mkt-RF 0.1122 0.210 0.533 0.595 -0.305 0.529 Mkt-RF Gamma * Dummy 0.5960 0.312 1.909 0.059 -0.024 1.216 SMB 0.2311 0.174 1.328 0.187 -0.114 0.576 HML -0.2357 0.143 -1.651 0.102 -0.519 0.047	======			t	P> t	[0.025
0.529 Mkt-RF Gamma * Dummy 0.5960 0.312 1.909 0.059 -0.024 1.216 SMB 0.2311 0.174 1.328 0.187 -0.114 0.576 HML -0.2357 0.143 -1.651 0.102 -0.519 0.047	0.004					-0.021
Mkt-RF Gamma * Dummy 0.5960 0.312 1.909 0.059 -0.024 1.216 SMB 0.2311 0.174 1.328 0.187 -0.114 0.576 HML -0.2357 0.143 -1.651 0.102 -0.519 0.047		0.1122	0.210	0.533	0.595	-0.305
0.576 HML	Mkt-RF Gamma * Dummy	0.5960	0.312	1.909	0.059	-0.024
HML -0.2357 0.143 -1.651 0.102 -0.519 0.047		0.2311	0.174	1.328	0.187	-0.114
Prob(Omnibus): 0.663 Jarque-Bera (JB): 0.846 Skew: -0.021 Prob(JB): 0.655 Kurtosis: 2.560 Cond. No. 88.5	HML	-0.2357	0.143	3 -1.651	0.102	-0.519
Skew: -0.021 Prob(JB): 0.655 Kurtosis: 2.560 Cond. No. 88.5	Omnibus:	0	 .821 Dເ	rbin-Watson:		2.229
Kurtosis: 2.560 Cond. No. 88.5	Prob(Omnibus):	0	.663 Ja	arque-Bera (JB)	:	0.846
	Skew:	-0	.021 Pı	rob(JB):		0.655

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

3.3 ATACX Strategy Discussion

Results from the ATACX analysis are a bit perplexing. A simple CAPM model shows an SP500 β of .46. This model has a much lower R^2 (.14) value than any of the tactical index models shown prior. Adding the market timing factor provides little improvement to the overall model fit. Alternatively, it suggests that there is market-timing ability in the strategy and this coefficient is significant. At the same time, β_{mkt} drops by roughly .3 and the coefficient loses significance when using both the S&P 500 and the FF3 total market as the index. Results from this model should be taken with a high dose of skepticism beause of the relatively poor fit.

```
[]: # CAPM Model
Y = df['TCUS']
X = df.loc[:,['SP500 Returns']]
X = sm.add_constant(X)
```

```
model = sm.OLS(Y,X, missing = 'drop')
results = model.fit()
results.summary()
```

```
[]: #10
    Y = df['TCUS']
    X = df.loc[:,['SP500 Returns','SP500 Gamma * Dummy']]
    X = sm.add_constant(X)

model = sm.OLS(Y,X, missing = 'drop')
    results = model.fit()
    results.summary()
```

```
[]: #11
Y = df['TCUS']
X = df.loc[:,['Mkt-RF','Mkt-RF Gamma * Dummy']]
X = sm.add_constant(X)

model = sm.OLS(Y,X, missing = 'drop')
results = model.fit()
results.summary()
```

```
[]: #12
Y = df['TCUS']
X = df.loc[:,['Mkt-RF','Mkt-RF Gamma * Dummy', 'SMB', 'HML']]
X = sm.add_constant(X)

model = sm.OLS(Y,X, missing = 'drop')
results = model.fit()
results.summary()
```

3.4 TCUS Discussion

Regression analysis of Tactical Core US provides some interesting findings.

- * When using the S&P 500 as the benchmark, this analysis suggests positive significant market timing ability coupled with low β_{mkt} .
- * All three regressions yield significant coefficients to the market timing factor which suggests that the strategy holds market-timing capability.
- * These results suggest that TCUS exhibits some positive market timing ability. Additionally, it's returns can be attributed to exposure to the FF3 size and value factors as well.

4 Conclusion

In conclusion, our analysis yields a few interesting results:

1. "Tactical" managers as an asset-class can best be classified as low-beta closet indexers. This can be seen by the high R^2 value, but $\beta < 1$.

- 2. As an asset-class, tactical managers do not provide investors with any significant market-timing capabilities.
- 3. ATACX shows low β_{mkt} , but high market-timing capabilities.
- 4. TCUS shows both β_{mkt} and high market-timing capabilities as well
- 5. These findings may act as evidence that both TCUS and ATACX can attribute their returns to upside market capture.

Further research could focus on how this relationship has changed since quantitative easing has led to a relative decline in market volatility.

г т.	