EXERCISE 6B: BLACK BODY RADIATION FLUX

Objectives:

- Finish deriving the Planck Law of Radiation
- Derive the **Stefan-Boltzmann Law** and the radiant energy flux of a black body
- Understand the relation between absorptivity and emissivity

Useful results from last time:

- Planck distribution for photon number s in a single mode: $\langle s \rangle_{\omega} = \frac{1}{e^{\hbar \omega/\tau} 1}$
- Density of states of radiation: $\mathcal{D}(\omega) = \frac{\omega^2 V}{\pi^2 c^3}$
- 1. Planck Law of Radiation.
 - a. The radiant energy per unit volume U/V can be found by integrating the **spectral density of radiation** u_{ω} over all frequencies:

$$U/V = \int d\omega u_{\omega}. \tag{1}$$

b. Give an expression for u_{ω} in terms of the density of states $\mathcal{D}(\omega)$ and the average number $\langle s \rangle_{\omega}$ of photons in the mode.

c. Plug in your results for $\mathcal{D}(\omega)$ and $\langle s \rangle_{\omega}$ to obtain an explicit expression for the spectral density of radiation at temperature τ . The result is the **Planck radiation law**.

d. Sketch the Planck spectrum u_{ω} . Which portion of this spectrum could have been correctly predicted by classical theory? Which range of parameters requires the quantum mechanical description?

e. Explain physically the behavior of the black-body spectrum in the low- and high-frequency limits.

- f. The peak of the Planck black body spectrum is at $\hbar\omega_{\rm max}\approx 2.82k_BT$. What wavelength does this correspond to...
 - i. ... for the sun?
 - ii. ... for the earth?

What are the implications for the amount of radiation emitted in the *visible* regime of the spectrum?

g. Evaluate the integral in Eq. 1 to obtain the **Stefan-Boltzmann law of radiation** describing the energy density U/V. You will need the definite integral:

$$\int_0^\infty dx \frac{x^3}{e^x - 1} = \frac{\pi^4}{15} \tag{2}$$

h. Give a few physical reasons for why the energy density scales so strongly with temperature.

- 2. The Stefan-Boltzmann Law tells us the radiant energy density inside a black body at temperature τ . How do we determine the **radiant energy flux** J, i.e., the power emitted per unit surface area?
 - a. Consider a small hole in the surface of a black body at temperature τ . Radiation can exit this hole at a variety of different angles θ , ϕ , where θ is measured relative to the surface normal.
 - i. Draw a sketch illustrating the angle θ .
 - ii. What is the relevant range of values θ, ϕ ?

- b. Let du_{ω} denote the infinitesimal spectral density of radiant **energy density** that is directed into an infinitesimal solid angle $d\Omega = \sin\theta d\theta d\phi$ centered about (θ, ϕ) .
 - i. Express du_{ω} in terms of the total spectral density u_{ω} and $d\Omega$.
 - ii. What are the dimensions of du_{ω} , in terms of energy, length, and time?

- c. Let dj_{ω} denote the infinitesimal spectral density of radiant energy **flux** that is directed into the solid angle $d\Omega$ centered about (θ, ϕ) .
 - i. What are the dimensions of dj_{ω} , in terms of energy, length, and time?
 - ii. Express dj_{ω} in terms of du_{ω} , the speed of light c, and the angles θ and/or ϕ .

- d. To calculate the spectral density of radiant energy $\mathbf{flux}\ j_{\omega}$ through the hole, we must integrate over all possible angles at which the radiation can exit the hole.
 - i. Write down an integral expression for j_{ω} in terms of u_{ω} , θ , and ϕ .
 - ii. Do the integral to calculate j_{ω} in terms of u_{ω} .

e. The total flux at the surface, $J = \int u_{\omega} d\omega$, is often expressed as

$$J_U = \sigma_B T^4, \tag{3}$$

where σ_B is called the **Stefan-Boltzmann constant**. What is the value of σ_B ?

- f. In the homework, you will calculate the relationship between the temperature of the sun and the temperature of the earth. For now:
 - i. How much higher is the radiant energy flux emitted from the surface of the sun $(T \sim 6000 \text{ K})$ than from the surface of the earth $(T \sim 300 \text{ K})$?

ii. What other factors affect how bright the sun and earth appear to an observer comparing the two from the same distance?

3. Kirchhoff's law. The container in Fig. 1 is filled with hot water. Its left side is silvered on the outside, whereas its right side is blackened on the outside. Which thermometer reads a higher temperature? Explain.

FIG. 1. Which thermometer reads a higher temperature?