SIO 207A: Fundamentals of Digital Signal Processing Class 7

Florian Meyer

Scripps Institution of Oceanography Electrical and Computer Engineering Department University of California San Diego

Recall Fourier Transform

• Fourier transform is z-transform evaluated on the unit circle

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$

$$X(z)\big|_{z=e^{j\omega}}=X(e^{j\omega})$$

1

Recall Fourier Transform

• Analysis:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (1)

• Synthesis:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \qquad (2)$$

2

Discrete Fourier Series

• A. Discrete Fourier Series

Assume $\boldsymbol{x}[n]$ has finite length N,i.e.,

$$x[n] = 0, \quad n < 0 \text{ and } n \ge N$$

Form periodic replication $\,\tilde{x}[n]\, {\rm such}\, {\rm that}\,\, \tilde{x}[n+lN] = x[n]\,$

$$n = 0, \dots, N - 1$$
 and $l \in \mathbb{N}$

 $ilde{x}[n]$ is periodic with period N

Discrete Fourier Series

 $\tilde{x}[n]$ can be represented by a (complex exponential) Fourier series

- harmonically related sequences $e^{j\frac{2\pi}{N}kn}\begin{cases} n \text{ is a sample index} \\ k \text{ is a frequency index} \end{cases}$ frequency: $\omega = \frac{2\pi}{N}k$
- is periodic in k with period N only sequences for $k=0,\dots,N-1$ are required
- ullet interpret k as the number of cycles per period

$$k = 1
 k = 0
 k = N-1$$

$$k = \{0, 1, \dots, N-1\}
 = \{-N/2, \dots, 0, \dots, N/2 - 1\}$$

Δ

Discrete Fourier Series

$$e^{j\frac{2\pi}{N}kn} = \cos\left(\frac{2\pi}{N}kn\right) + j\sin\left(\frac{2\pi}{N}kn\right)$$

Discrete Fourier Series

• Discrete Fourier Series

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) e^{j\frac{2\pi}{N}kn}$$

• Determine $\tilde{X}(k)$

$$\sum_{n=0}^{N-1} \tilde{x}[n] e^{-j\frac{2\pi}{N}kn} = \sum_{k'=0}^{N-1} \tilde{X}(k') \frac{1}{N} \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}n(k'-k)}$$
$$= \tilde{X}(k)$$
$$= \begin{cases} 0 \text{ for } k \neq k' \\ 1 \text{ for } k = k' \end{cases}$$

6

Discrete Fourier Series

• Analysis and Synthesis Pair:

$$\tilde{X}(k) = \sum_{n=0}^{N-1} \tilde{x}[n]e^{-j\frac{2\pi}{N}kn}$$

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) e^{j\frac{2\pi}{N}kn}$$

Discrete Fourier Transform

• Finite Duration Sequence

Fourier transform is z-transform evaluated on unit circles

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n} \qquad \tilde{X}(k) = X(z) \Big|_{z = e^{j\frac{2\pi}{N}k}} \qquad \omega = \frac{2\pi}{N}k$$

$$\omega = \frac{2\pi}{N}k$$

$$= \sum_{n=0}^{N-1} x[n] z^{-n}$$

Note: Samples of the Fourier transform lead to a periodic replication of the underlying finite sequence

Discrete Fourier Transform

· Analysis:

$$X(k) = X(e^{j\omega})\Big|_{\omega = \frac{2\pi}{N}k}$$
$$= \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

• Synthesis:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}$$

sampling \implies periodicity

Zero Padding

• Zero padding does not change the underlying Fourier transform just enables a more dense sampling

 $N_{\rm DFT} = 8$ point DFT $N_{\rm DFT} = 32 \text{ point DFT}$ (zero padding)

DFT / FFT Bins

$$X(k) = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk} \qquad \omega_k = \frac{2\pi}{N}k$$
 integer $k \quad \left\{0,\dots,N-1\right\}$ "bin index" $\left\{-N/2,\dots,0,\dots,N/2-1\right\}$

spacing in frequency domain

each "bin" covers a bandwidth equal to $2\pi/N$ rad/samples (or 1/N cycles/samples)

edges of bins are $\pm \pi/N \, \, \mathrm{rad/samples}$ from each center frequency

DFT / FFT Bins

• With "cookie cutter" viewpoint, there is no leakage of signal energy from one bin region with another, i.e., high level signal in bin region k=3 will not show up in bin k=1 after DFT – not true in practice

12