UNIVERSITE DE LORRAINE

POLYTECH NANCY

Deuxième année (1^{er} semestre)

THERMODYNAMIQUE 1

Travaux dirigés

2020/2021

Séance TD n°3 : le premier principe, transformations quasistatiques (I)

TD n°3: le premier principe, transformations quasistatiques (I)

3.1)

- et à γ?
- b) On donne $c_V = 21~\mathrm{J~K^{-1}~mol^{-1}}$. Quelle valeur doit-on attribuer à c_p et γ ?

3.2)Remplissage d'un récipient initialement vide (à faire en autonomie).

Un récipient de 100 litres a été initialement vidé à l'aide d'une pompe à vide. Un robinet permet de faire rentrer progressivement de l'air atmosphérique (température 300K, pression 1 bar, $\gamma = c_p/c_v = 1,4$). Les parois du récipient sont adiabatiques. Quelle sera la température de l'air du récipient lorsque l'équilibre de pression avec l'atmosphère sera établi?

3.3) Transformations équivalentes (à faire en autonomie).

Une mole d'oxygène ($c_V = 21 \text{ J.K}^{-1}.\text{mol}^{-1}$), occupant initialement un volume de 10 litres à 25°C, est détendue jusqu'à un état final caractérisé par un volume de 50 litres et une température de 100°C de deux manières différentes a) et b) :

- Le gaz est chauffé à volume constant jusqu'à 100°C puis détendu de manière isotherme et quasi statique jusqu'au volume final de 50 litres. Calculer la chaleur reçue, le travail reçu et la variation d'énergie interne du gaz.
- Le gaz est détendu d'une manière isotherme et quasi statique jusqu'au volume de 50 litres, puis chauffé à volume constant jusqu'à 100°C. Calculer la chaleur reçue, le travail reçu et la variation d'énergie interne du gaz.

3.4) Remplissage complémentaire d'un récipient (vu en présentiel).

Une bouteille thermiquement isolée, d'un volume de V_b = 200 litres, est remplie d'air à la pression de 0,5 bar et à la température de l'atmosphère, soit 300 K. L'air peut être considéré comme un gaz parfait de rapport $\gamma = c_p/c_v = 1,4$ et de $c_V = 21$ J.K⁻¹.mol⁻¹. On ouvre un robinet de communication de la bouteille avec l'extérieur, et on laisse rentrer l'air jusqu'à l'équilibre de la pression avec l'extérieur (p_a = 1 bar, T_a = 300 K). On veut déterminer la température de l'air contenu dans la bouteille à la fin du remplissage :

- Représenter l'état initial et l'état final à l'aide d'un dessin en indiquant les nombres de moles, la pression, le volume et la température. $n_f = n_1 + n_2$ est le nombre de moles dans la bouteille à l'état final, n₁ le nombre de moles aspirée de l'extérieur dans la bouteille, n₂ le nombre de moles dans la bouteille à l'état initial et T_b la température de l'air dans la bouteille à l'état final.
- b) Etablir l'équation du premier principe de la thermodynamique en y faisant apparaître les 3 inconnues n_1 , n_2 , et T_b .
- c) Montrer alors en utilisant la loi des gaz parfaits que la température T_b peut s'écrire $T_b = \frac{\gamma T_a}{1 + \frac{p_b}{p_a}(\gamma - 1)}$
- d) Vous pouvez aussi calculer les valeurs numériques de n₁ et n₂ en utilisant la loi des gaz parfait pour en déduire ensuite la valeur de T_b ...et vérifier qu'elle correspond bien à celle donnée par l'équation ci-dessus.

Séance TD n°4 : le premier principe, transformations quasistatiques (4)

TD n°4 : le premier principe, transformations quasistatiques (II)

4.1) Chauffage de la vapeur d'eau (vu en présentiel).

Un kilogramme de vapeur d'eau (considéré comme un gaz parfait) est à 6 bar et 200°C.

a) Déterminer son volume V.

Il est ensuite chauffé de 200° C à 600° C ($c_p = 2100 \text{ J/(kg K)}$ de trois manières différentes :

- b) Isochore.
- c) Isobare.
- d) Adiabatique quasistatique.

Déterminer dans les trois cas la pression finale, le volume final ainsi que le travail à l'aide des pressions et volumes. Pour la transformation d) utiliser également les températures.

4.2) <u>Transformation cyclique</u> (vu en présentiel).

Deux moles de gaz parfait ($c_V = 21 \text{ J K}^{-1} \text{ mol}^{-1}$) subissent les transformations suivantes :

- état initial (et final) : $V_1 = 100$ litres, $T_1 = 300$ K,
- compression isotherme quasistatique jusqu'à $V_2 = 10$ litres,
- chauffage à pression constante par fourniture d'une quantité de chaleur Q,
- transformation quasistatique adiabatique permettant de revenir à l'état initial V_1 et T_1 .
 - a) Dessiner qualitativement le cycle dans un diagramme P/V.
 - b) Déterminer la pression avant et après la compression.
 - c) Déterminer la température avant la transformation quasistatique adiabatique
 - d) Déterminer la quantité de chaleur Q nécessaire pour le chauffage à pression constante
 - e) Donner une expression littérale de Q en fonction de T_1 , V_1 et V_2 .
 - f) Déterminer le travail échangé par l'air au cours de la détente quasistatique adiabatique.