Gültig ab 1. Juni 2007, bei Prüfungen alternativ wählbar ab 1. März 2007

Schwingkreis

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} \qquad Q = \frac{f_0}{B} = \frac{R_p}{X_L} = \frac{X_L}{R_c}$$

Transistor

$$B = \frac{I_C}{I_B}$$

$$I_E = I_C + I_B$$

B... Gleichspannungsverstärkung

$$v_I = \beta = \frac{\Delta I_C}{\Delta I_R}$$

$$v_U = \frac{\Delta U_{CE}}{\Delta U_{BE}}$$

$$v_P = v_U \cdot v_I$$

Operationsverstärker

Invertierender Verstärker

Nicht-invertierender Verstärker

Pegel

$$u = 20 \cdot \lg \frac{U}{U_0} \qquad p = 10 \cdot \lg \frac{P}{P_0}$$

$$p = 10 \cdot \lg \frac{P}{P_0}$$

Relativer Pegel: Als Spannungs- oder Leistungspegel bezogen auf beliebige Werte von U_0 oder P_0 (z.B. $1\mu V$, 1V, 1W, 1pW) Absoluter Pegel: 0 dB (dBm, dBu) liegt bei $P_0 = 1$ mW oder der Spannung $U_0 = 775$ mV bei einem System mit $R_I = R_L = 600 \Omega$ vor. Der absolute Leistungspegel ist auch bei Systemen mit anderen Impedanzen gleich.

Dämpfung

$$a = 20 \cdot \lg \frac{U_1}{U_2}$$

$$a = 10 \cdot \lg \frac{P_1}{P_2}$$

 $a = 20 \cdot \lg \frac{U_1}{U_2}$ $a = 10 \cdot \lg \frac{P_1}{P_2}$ $U_1 \dots Eingangsspannung$ $U_2 \dots Ausgangsspannung$ P_1 ... Eingangsleistung

Verstärkung/Gewinn

$$g = 20 \cdot \lg \frac{U_2}{U_1}$$

$$g = 10 \cdot \lg \frac{P_2}{P_1}$$

 P_2 ... Ausgangsleistung

Wirkungsgrad

$$\eta = \frac{P_{ab}}{P_{zu}}$$

$$\eta_{\%} = \frac{P_{ab}}{P_{ab}} \cdot 100\%$$

$$P_{ab} = P_{zu} - P_V$$

Zwischenfrequenz

$$f_{ZF} = f_E \pm f_{OSZ}$$

Spiegelfrequenz

$$f_S = f_E + 2 \cdot f_{ZF}$$
 für $f_{OSZ} > f_E$

$$f \ddot{u} r \quad f_{OSZ} > f_B$$

$$f_S = f_E - 2 \cdot f_{ZF}$$
 für $f_{OSZ} < f_E$

$$f \ddot{u} r f_{osz} < f_{r}$$