Package 'tensorMAM'

March 18, 2020

Type Package

Title tensorMAM	
Version 0.1.0	
Author Xu Liu [aut,cre], Jian Huang [aut], Heng Lian [aut], Xiangyong Tan [ctb]	
Maintainer Xu Liu <liu.xu@sufe.edu.cn></liu.xu@sufe.edu.cn>	
Description A tensor Estimation approach to multivariate additive models. The B-splines are used to approximate unknown function. The number of predictors can be diverged as sample size increases, in which the penalty LASSO, MCP or SCAD can be used.	
License GPL (>= 2)	
Imports splines, Rcpp (>= 0.11.15), RcppEigen (>= 0.3.2.3.0)	
LinkingTo Rcpp, RcppEigen	
RoxygenNote 6.0.1	
NeedsCompilation yes	
Repository github	
URL https://github.com/xliusufe/tensorMAM Encoding UTF-8 R topics documented:	
it topics documented.	
mvrblockwise	2 2 3 5 6 8 10 13 15 18
Index	20

2 breastData

tensorMAM-package

A tensor estimation approach to multivariate additive models

Description

For a high-dimensional multivariate additive model (MAM) using B-splines, with or without aparsity assumptions, treating the coefficients as a third-order tensor and borrowing Tucker decomposition to reduce the number of parameters. The multivariate sparse group lasso (mcp or scad) and the coordinate descent algorithm are used to estimate functions for sparsity situation.

Details

This section should provide a more detailed overview of how to use the package, including the most important functions.

Author(s)

Xu Liu

Maintainer: Xu Liu <liu.xu@sufe.edu.cn>

References

A tensor estimation approach to multivariate additive models.

breastData

Breast cancer gene expression and DNA copy number dataset

Description

The breast cancer dataset includes gene expressions and comparative genomic hybridization measurements for 89 subjects, which is from Chin et al. (2006). This dataset has been considered by Witten et al. (2009) and Chen et al. (2013). In our paper, we selected chromosome 21, including q=44 variables for copy-number variations and p=227 variables for gene expression. As in Chen et al. (2013), we consider copy-number variations as the responses and gene expressions as the predictors.

Usage

data(breastData)

Details

The "breastData" is formated as a list with elements:

dna: the CGH spots, a matrix with size 2149×89 and the smaple size 89

rna: genes, a matrix with size 19672×89 and the smaple size 89 chrom: chromosomal location of each CGH spot, a 2149-vector nuc: nucleotide position of each CGH spot, a 2149-vector gene: an accession number for each gene, a 19672-vector

genenames: gene name, a 19672-vector

generateData 3

genechr: chromosomal location of each gene, a 19672-vector

genedesc: description of each gene, a 19672-vector

genepos: nucleotide position of each gene, a 19672-vector

References

Chin, K., DeVries, S., Fridlyand, J., Spellman, P., Roydasgupta, R., Kuo, W.-L., Lapuk, A., Neve, R., Qian, Z., Ryder, T., Chen, F., Feiler, H., Tokuyasu, T., Kingsley, C., Dairkee, S., Meng, Z., Chew, K., Pinkel, D., Jain, A., Ljung, B., Esserman, L., Albertson, D., Waldman, F. & Gray, J. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer cell **10** (6), 429-541.

Witten, D. M., Tibshirani, R. and Hastie, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics **10** (3), 515-534.

Chen, K., Dong, H., and Chan, K. S. (2013). Reduced rank regression via adaptive nuclear norm penalization. Biometrika, **100** (**4**), 901-920.

Examples

```
data(breastData)
attach(breastData)
Y = t(dna[chrom==21,])
Xt = t(rna[which(genechr==21),])
n = nrow(Y)

minX = apply(Xt,2,min)
maxX = apply(Xt,2,max)
X = (Xt - matrix(rep(minX,each = n),n))/matrix(rep(maxX-minX,each = n),n)
Y = scale(Y)
fit <- mam_sparse_dr(Y[,1:5], X[,1:10])
D3hat <- fit$Dnew
opt <- fit$rk_opt
detach(breastData)</pre>
```

generateData

Generate data from MAM model.

Description

Generate data for a high-dimensional multivariate additive model, with or without aparsity assumptions.

Usage

```
generateData(n, q, p, s, D2, sigma2=NULL, indexF=NULL, seed_id=NULL)
```

4 generateData

Arguments

n	Sample size.
q	The number of responses, $q \ge 1$.
р	The number of covariates, $p \ge 1$.
S	The true covariates associating to response, $s \ge 1$.
D2	The mode of unfolding $D_{(2)}$.
sigma2	err variance. Default is 0.1.
indexF	A $q \times s$ matrix. The index of significant predictors corresponding to response y_l . Default is the matrix with each row being $(1, 2, \dots, s)$.
seed_id	A positive integer, the seed for generating the random numbers.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC, AIC, EBIC, CV, or GCV.

Value

Υ	Response, a $n \times q$ -matrix.
Χ	Design matrix, a $n \times p$ -matrix
fO	True functions

References

A tensor estimation approach to multivariate additive models.

See Also

```
mam_sparse
```

```
# Example 1
D2 <- matrix(runif(30, 0.7, 1), 2, 15)
mydata <- generateData(200, 3, 5, 5, D2)</pre>
Y <- mydata$Y
X \leftarrow mydata$X
# Example 2
n <- 500
p <- 10
q <- 10
s <- 10
K <- 6
s0 <- s
r10=r20=r30=2
S3 \leftarrow matrix(runif(r10*r20*r30,3,7),nrow = r30)
T1 <- matrix(rnorm(s0*r10), nrow = s0)
U1 <- qr.Q(qr(T1))
```

mam 5

```
T1 <- matrix(rnorm(K*r20),nrow = K)
U2 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(q*r30),nrow = q)
U3 <- qr.Q(qr(T1))
D3 <- U3%*%S3%*%t(kronecker(U2,U1))
D2 <- TransferModalUnfoldings(D3,3,2,s0,K,q)
mydata <- generateData(n,q,p,s0,D2)
```

mam

Fit MAM without sparsity assumption and with fixed ranks.

Description

Fit a low-dimensional multivariate additive model using B-splines, without aparsity assumptions, and given ranks r_1, r_2, r_3 .

Usage

```
mam(Y, X, r1 = NULL, r2 = NULL, r3 = NULL, SABC = NULL,

intercept = TRUE, K = 6, degr = 3, eps = 1e-4, max\_step = 20)
```

Arguments

Υ	A $n \times q$ numeric matrix of responses.
Χ	A $n \times p$ numeric design matrix for the model.
r1	The first dimension of single value matrix of the tensor. Default is 2.
r2	The second dimension of single value matrix of the tensor. Default is 2.
r3	The third dimension of single value matrix of the tensor. Default is 2.
SABC	A user-specified list of initial coefficient matrix of S , A , B , C . By default, initial matrices are provided by random.
intercept	Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)?
K	The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6.
degr	the number of knots of B-spline base function. Default is 3.
eps	Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-4.
<pre>max_step</pre>	Maximum number of iterations. Default is 20.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

Dnew

	(3).
mu	Estimator of intercept μ .
rss	Residual sum of squares (RSS).
Υ	Response Y .
Χ	Design matrix X .
Z	Design matrix of Bspline approximation.

Estimator of $D_{(3)}$.

6 mam_dr

References

A tensor estimation approach to multivariate additive models.

See Also

mam_sparse

Examples

```
\begin{array}{l} p <-5 \\ q <-5 \\ D2 <-\text{ matrix}(\text{runif}(2*p*q, 0.7, 1), 2, p*q) \text{ $\#$ tensor with size } 5*2*5 \\ \text{mydata} <-\text{ generateData}(200, q, p, p, D2) \\ \\ \text{fit} <-\text{ mam}(\text{mydata}Y, \text{ mydata}X) \\ \text{K} <-\text{ fit}K \\ D3\text{hat} <-\text{ fit}D\text{new } \text{ $\#$ A q*(Kp) matrix with } (p,K,q)=(5,6,5) \\ D2\text{hat} <-\text{ TransferModalUnfoldings}(D3\text{hat},3,2,p,K,q) \\ \end{array}
```

mam_dr

Fit MAM without sparsity assumption, and with ranks selected by BIC, AIC, EBIC, CV, $or\ GCV$.

Description

Fit a low-dimensional multivariate additive model using B-splines, without aparsity assumptions, and with ranks r_1, r_2, r_3 selected by BIC, AIC, EBIC, CV, or GCV.

Usage

Arguments

Υ	A $n \times q$ numeric matrix of responses.
Χ	A $n \times p$ numeric design matrix for the model.
criteria	The criteria to be applied to select parameters. Either BIC (the default), AIC, EBIC, ${\sf CV}$, or ${\sf GCV}$.
ncv	The number of cross-validation folds. Default is 10. If criteria is not "CV", ncv is useless.
r1_index	A user-specified sequence of r_1 values, where r_1 is the first dimension of single value matrix of the tensor. Default is $r1_index = 1, \cdots, \min(\log(n)\rceil, p)$.
r2_index	A user-specified sequence of r_2 values, where r_2 is the second dimension of single value matrix of the tensor. Default is $r2_index = 1, \cdots, max\{K_index\}$.
r3_index	A user-specified sequence of r_3 values, where r_3 is the third dimension of single value matrix of the tensor. Default is $r3_index = 1, \cdots, \min(\log(n)\rceil, q)$.
SABC	A user-specified list of initial coefficient matrix of S , A , B , C , which is a list with values S , A , B , C . By default, initial matrices are provided by random.

mam_dr 7

intercept	Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)?
K	The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6.
degr	the number of knots of B-spline base function. Default is 3.
eps	Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-4.
max_step	Maximum number of iterations. Default is 20.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

Dnew	Estimator of $D_{(3)}$.
mu	Estimator of intercept μ .
rss	Residual sum of squares (RSS).
rk_opt	The optimal parametres that slected by BIC, AIC, EBIC, CV, or GCV. It is a vector with length 4, which are selected r_1,r_2,r_3 , and K .
selected	Which λ is selection.
Υ	Response Y .
X	Design matrix X .
Z	Design matrix of Bspline approximation.

References

A tensor estimation approach to multivariate additive models.

See Also

```
mam, mam_sparse_dr
```

```
p <- 5
q <- 5
D2 <- matrix(runif(2*p*q, 0.7, 1), 2, p*q) # tensor with size 5*2*5
mydata <- generateData(200, q, p, p, D2)

fit <- mam_dr(mydata$Y, mydata$X)
K <- fit$K
D3hat <- fit$Dnew # A q*(Kp) matrix with (p,K,q)=(5,6,5)
D2hat <- TransferModalUnfoldings(D3hat,3,2,p,K,q)
opt <- fit$rk_opt</pre>
```

8 mam_sparse

mam_sparse

Fit MAM with sparsity assumption and fixed ranks.

Description

Fit a high-dimensional multivariate additive model using B-splines, with or without aparsity assumptions, and given ranks r_1, r_2, r_3 . The multivariate sparse group LASSO, MCP or SCAD) and the coordinate descent algorithm are used to estimate functions for sparsity situation.

Usage

Arguments

8	
Υ	A $n \times q$ numeric matrix of responses.
X	A $n \times p$ numeric design matrix for the model.
criteria	The criteria to be applied to select parameters. Either BIC (the default), AIC, EBIC, CV, or GCV.
ncv	The number of cross-validation folds. Default is 10. If criteria is not CV, ncv is useless.
penalty	The penalty to be applied to the model. Either LASSO (the default), MCP or SCAD.
isPenColumn	A logical value indicating whether the coefficients associating with X_j that affects whole response y is penalized. Default is TRUE. If isPenColumn is TRUE, the coefficients associating with X_j that affects simultaneously whole response y is penalized for each $j \in \{1, \cdots, p\}$. If isPenColumn is FALSE, the coefficients associating with X_j that affects single response y_l is penalized for each $j \in \{1, \cdots, p\}$, where $l \in \{1, \cdots, q\}$.
lambda	A user-specified sequence of lambda values. By default, a sequence of values of length nlam is computed, equally spaced on the log scale.
SABC	A user-specified list of initial coefficient matrix of S, A, B, C . By default, initial matrices are provided by random.

intercept Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)?

initMethod One can estimate the initial tensor $D_{(3)}$ as a metrix by choosing a penalty to

penalize group-column wise. initcriteria can be LASSO, MCP or SCAD. The

default is NULL, which means no sparse initial to be provided.

K The number of B-spline base function, that is the plus of both degrees of base

functioin and the number of knots. Default is 6.

degr The number of knots of B-spline base function. Default is 3.

r1 The first dimension of single value matrix of the tensor. Default is 2.

r2 The second dimension of single value matrix of the tensor. Default is 2.

r3 The third dimension of single value matrix of the tensor. Default is 2.

mam_sparse 9

nlam The number of lambda values. Default is 20.

lam_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-3.

eps1 Convergence threshhold. The algorithm iterates until the relative change in any

coefficient is less than eps1. Default is 1e-4.

maxstep1 Maximum number of iterations. Default is 20.

eps2 Convergence threshhold. The Coordinate descent method algorithm iterates un-

til the relative change in any coefficient is less than eps2. Default is 1e-4.

maxstep2 The maximum iterates number of coordinate descent method. Default is 20.

gamma The tuning parameter of the MCP/SCAD penalty (see details).

dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound.

However, for large data sets, computational burden may be heavy for models

with a large number of nonzero coefficients.

alpha Tuning parameter for the Mnet estimator which controls the relative contri-

butions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha

may be arbitrarily small, but not exactly 0.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. r_1 , r_2 and r_3 are fixed.

Value

betapath Solution path of β .

rss Residual sum of squares (RSS).

df Degrees of freedom.

lambda The sequence of regularization parameter values in the path.

lambda_opt The value of lambda with the minimum BIC value. selectedID The index of lambda corresponding to lambda_opt. activeX The active set of X. It is a p dimensional vector. activeF The active set of functions. It is a $q \times p$ matrix.

mu Estimator of intercept μ .

Y Response Y.

X Design matrix X.

Z Design matrix of Bspline approximation λ .

References

A tensor estimation approach to multivariate additive models.

See Also

mam, mam_sparse_dr

10 mam_sparse_dr

Examples

```
p <- 10
q <- 5
s <- 5
D2 <- matrix(runif(2*s*q, 0.7, 1), 2, s*q) # tensor with size 5*2*5
mydata <- generateData(200, q, p, s, D2)

fit <- mam_sparse(mydata$Y, mydata$X)
K <- fit$K
D3hat <- fit$Dnew # A q*(Kp) matrix with (p,K,q)=(10,6,5)
D2hat <- TransferModalUnfoldings(D3hat,3,2,p,K,q)
D1hat <- TransferModalUnfoldings(D3hat,3,1,p,K,q)
which(rowSums(D1hat^2)>0)
fit$activeX
```

mam_sparse_dr

Fit MAM with sparsity assumption and ranks selected by BIC, AIC, EBIC, CV, or GCV.

Description

Fit a high-dimensional multivariate additive model using B-splines, with or with aparsity assumptions and ranks selected by BIC, AIC, EBIC, CV, or GCV. The multivariate sparse group LASSO, MCP or SCAD) and the coordinate descent algorithm are used to estimate functions for sparsity situation. The tuning parameter is selected by BIC, AIC, EBIC, CV, or GCV, which matchs the method of rank selection.

Usage

Arguments

Y A $n \times q$ numeric matrix of responses.

X A $n \times p$ numeric design matrix for the model.

criteria The criteria to be applied to select parameters. Either BIC (the default), AIC,

EBIC, CV, or GCV.

ncv The number of cross-validation folds. Default is 10. If criteria is not CV, ncv

is useless.

penalty The penalty to be applied to the model. Either LASSO (the default), MCP or SCAD.

isPenColumn A logical value indicating whether the coefficients associating with X_j that af-

fects whole response y is penalized. Default is TRUE. If isPenColumn is TRUE, the coefficients associating with X_j that affects simultaneously whole response y is penalized for each $j \in \{1, \cdots, p\}$. If isPenColumn is FALSE, the coefficients associating with X_j that affects single response y_l is penalized for each

 $j \in \{1, \dots, p\}$, where $l \in \{1, \dots, q\}$.

mam_sparse_dr 11

r1_index A user-specified sequence of r_1 values, where r_1 is the first dimension of single value matrix of the tensor. Default is $r1_index=1,\cdots,\min(\lceil\log(n)\rceil,p)$. r2_index A user-specified sequence of r_2 values, where r_2 is the second dimension of single value matrix of the tensor. Default is $r2_index=1,\cdots,\max(K_index)$. r3_index A user-specified sequence of r_3 values, where r_3 is the third dimension of single value matrix of the tensor. Default is $r3_index=1,\cdots,\min(\lceil\log(n)\rceil,q)$. lambda A user-specified sequence of lambda values. By default, a sequence of values of length n1am is computed, equally spaced on the log scale. SABC A user-specified list of initial coefficient matrix of S , A , B , C . By default, initial matrices are provided by random. intercept Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)? initMethod One can estimate the initial tensor $D_{(3)}$ as a metrix by choosing a penalty to penalize group-column wise. initMethod can be LASSO, MCP or SCAD. The default is NULL, which means no sparse initial to be provided. r1am The number of lambda values. Default is 50. K The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6. degr The number of knots of B-spline base function. Default is degr = 3. lam_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-2. eps1 Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 1e-4. maxstep1 Maximum number of iterations. Default is 20. eps2 Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep2 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). Upper bound for the number of nonzero coefficients. Default is no uppe		
single value matrix of the tensor. Default is $r2_index=1, \cdots, max\{K_index\}$. $r3_index$ A user-specified sequence of r_3 values, where r_3 is the third dimension of single value matrix of the tensor. Default is $r3_index=1, \cdots, \min(\lceil \log(n) \rceil, q)$. 1ambda A user-specified sequence of lambda values. By default, a sequence of values of length nlam is computed, equally spaced on the log scale. SABC A user-specified list of initial coefficient matrix of S , A , B , C . By default, initial matrices are provided by random. intercept Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)? initMethod One can estimate the initial tensor $D(3)$ as a metrix by choosing a penalty to penalize group-column wise. initMethod can be LASSO, MCP or SCAD. The default is NULL, which means no sparse initial to be provided. The number of lambda values. Default is 50. K The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6. degr The number of knots of B-spline base function. Default is degr = 3. 1am_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-2. Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 1e-4. maxstep1 Maximum number of iterations. Default is 20. convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. Puning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha	r1_index	
value matrix of the tensor. Default is r3_index= 1,···, min([log(n)], q). 1 ambda	r2_index	•
length nlam is computed, equally spaced on the log scale. A user-specified list of initial coefficient matrix of S, A, B, C. By default, initial matrices are provided by random. intercept Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)? One can estimate the initial tensor D(3) as a metrix by choosing a penalty to penalize group-column wise. initMethod can be LASSO, MCP or SCAD. The default is NULL, which means no sparse initial to be provided. The number of lambda values. Default is 50. K The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6. degr The number of knots of B-spline base function. Default is degr = 3. 1am_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-2. eps1 Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 20. eps2 Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep1 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to ridge regression. However, alpha=0 is not supported; alpha	r3_index	
matrices are provided by random. intercept Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)? initMethod One can estimate the initial tensor D(3) as a metrix by choosing a penalty to penalize group-column wise. initMethod can be LASSO, MCP or SCAD. The default is NULL, which means no sparse initial to be provided. nlam The number of lambda values. Default is 50. K The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6. degr The number of knots of B-spline base function. Default is degr = 3. lam_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-2. eps1 Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 20. eps2 Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep1 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	lambda	
initMethodOne can estimate the initial tensor $D_{(3)}$ as a metrix by choosing a penalty to penalize group-column wise. initMethod can be LASSO, MCP or SCAD. The default is NULL, which means no sparse initial to be provided.nlamThe number of lambda values. Default is 50.KThe number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6.degrThe number of knots of B-spline base function. Default is degr = 3.lam_minThe smallest value for lambda, as a fraction of lambda.max. Default is 1e-2.eps1Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is $1e-4$.maxstep1Maximum number of iterations. Default is 20.eps2Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is $1e-4$.maxstep2The maximum iterates number of coordinate descent method. Default is 20 .gammaThe tuning parameter of the MCP/SCAD penalty (see details).dfmaxUpper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients.alphaTuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	SABC	•
nalize group-column wise. initMethod can be LASSO, MCP or SCAD. The default is NULL, which means no sparse initial to be provided. The number of lambda values. Default is 50. K The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6. degr The number of knots of B-spline base function. Default is degr = 3. lam_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-2. eps1 Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 1e-4. maxstep1 Maximum number of iterations. Default is 20. eps2 Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep2 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. alpha Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	intercept	Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)?
The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6. degr The number of knots of B-spline base function. Default is degr = 3. lam_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-2. eps1 Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 1e-4. maxstep1 Maximum number of iterations. Default is 20. eps2 Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep2 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. alpha Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	initMethod	nalize group-column wise. initMethod can be LASSO, MCP or SCAD. The default
function and the number of knots. Default is 6. degr The number of knots of B-spline base function. Default is degr = 3. lam_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-2. eps1 Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 1e-4. maxstep1 Maximum number of iterations. Default is 20. eps2 Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep2 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. alpha Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	nlam	The number of lambda values. Default is 50.
The smallest value for lambda, as a fraction of lambda.max. Default is 1e-2. eps1 Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 1e-4. maxstep1 Maximum number of iterations. Default is 20. eps2 Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep2 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. alpha Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	K	
Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 1e-4. Maximum number of iterations. Default is 20. eps2 Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep2 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. alpha Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	degr	The number of knots of B-spline base function. Default is degr = 3.
maxstep1 Maximum number of iterations. Default is 20. eps2 Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep2 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. alpha Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	lam_min	The smallest value for lambda, as a fraction of lambda.max. Default is 1e-2.
Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep2 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. alpha Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	eps1	·
til the relative change in any coefficient is less than eps2. Default is 1e-4. maxstep2 The maximum iterates number of coordinate descent method. Default is 20. gamma The tuning parameter of the MCP/SCAD penalty (see details). Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	maxstep1	Maximum number of iterations. Default is 20.
The tuning parameter of the MCP/SCAD penalty (see details). Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	eps2	e
dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	maxstep2	The maximum iterates number of coordinate descent method. Default is 20.
However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients. alpha Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	gamma	The tuning parameter of the MCP/SCAD penalty (see details).
butions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha	dfmax	However, for large data sets, computational burden may be heavy for models
	alpha	butions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

Dnew	Estimator of $D_{(3)}$.
mu	Estimator of intercept μ .
rss	Residual sum of squares (RSS).
df	Degrees of freedom.

mam_sparse_dr

The active set of X. It is a p dimensional vector. activeX The active set of functions. It is a $q \times p$ matrix. activeF lambda The sequence of regularization parameter values in the path. selectedID The index of lambda corresponding to lambda_opt. The value of lambda with the minimum BIC, AIC, EBIC, CV, or GCV value. lambda_opt The values of BIC or CV, which is a vector. **RSS** rk_opt The optimal parametres that slected by BIC, AIC, EBIC, CV, or GCV. It is a vector with length 4, which are selected r_1 , r_2 , r_3 , and K. Υ Response Y. Χ Design matrix X. Ζ Design matrix of Bspline approximation.

References

A tensor estimation approach to multivariate additive models.

See Also

```
mam_dr, mam_sparse
```

```
#Example 1
p <- 10
q <- 5
s <- 5
D2 <- matrix(runif(2*s*q, 0.7, 1), 2, s*q) # tensor with size 5*2*5
mydata <- generateData(200, q, p, s, D2)</pre>
fit <- mam_sparse_dr(mydata$Y, mydata$X)</pre>
K <- fit$K
D3hat <- fit$Dnew # A q*(Kp) matrix with (p,K,q)=(5,6,5)
D2hat <- TransferModalUnfoldings(D3hat,3,2,p,K,q)
D1hat <- TransferModalUnfoldings(D3hat,3,1,p,K,q)
opt <- fit$rk_opt
which(rowSums(D1hat^2)>0)
fit$activeX
#Example 2
data(breastData)
attach(breastData)
Y = t(dna[chrom==21,])
Xt = t(rna[which(genechr==21),])
n = nrow(Y)
minX = apply(Xt,2,min)
maxX = apply(Xt, 2, max)
X = (Xt - matrix(rep(minX, each = n), n))/matrix(rep(maxX-minX, each = n), n)
Y = scale(Y)
fit <- mam_sparse_dr(Y[,1:5], X[,1:10])</pre>
K <- fit$K
```

myrblockwise 13

```
D3hat <- fit$Dnew # A q*(Kp) matrix with (p,K,q)=(10,6,5)
D1hat <- TransferModalUnfoldings(D3hat,3,1,10,K,5)
opt <- fit$rk_opt
which(rowSums(D1hat^2)>0)
fit$activeX
detach(breastData)
```

mvrblockwise

Estimate coefficients of high-dimensional multivariate regression for the grouped-column-wise

Description

This function provides the coefficient matrix estimator of high-dimensional multivariate regression (MVR) with penalty LASSO, MCP or SCAD). The tuning parameter is selected by BIC (the default), AIC, EBIC, CV, or GCV.

Usage

Arguments

intercept

The response, a vector of size n or a matrix of size $n \times q$.
The covariates to be penalized, a matrix with dimension $n \times p$.
The covariates without penalization, a matrix with dimension $n\times d.$ The default is NULL.
The criteria to be applied to select parameters. Either BIC (the default), AIC, EBIC, CV, or GCV.
The number of cross-validation folds. Default is 10. If criteria is not CV, ncv is useless.
The penalty to be applied to the model. Either LASSO (the default), MCP or SCAD.
A logical value indicating whether the coefficients associating with X_j that affects whole response Y is penalized. Default is TRUE. If isPenColumn is TRUE, the coefficients associating with X_j that affects simultaneously whole response y is penalized for each $j \in \{1, \cdots, p\}$. If isPenColumn is FALSE, the coefficients associating with X_j that affects single response Y_l is penalized for each $j \in \{1, \cdots, p\}$, where $l \in \{1, \cdots, q\}$.
A integer vector describing the grouping of the coefficients. For example, we can preset group = $rep(1:G, each=K)$. If no grouping, group = $rep(1:ncol(X))$. The default is group = $rep(1:ncol(X))$.
A user-specified sequence of lambda values. By default, a sequence of values of length nlam is computed, equally spaced on the log scale.
The number of lambda values. Default is 50.

Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)?

14 mvrblockwise

lam_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-3.

eps Convergence threshhold. The algorithm iterates until the relative change in any

coefficient is less than eps1. Default is 1e-4.

max_step Maximum number of iterations. Default is 50.

gamma_pen The tuning parameter of the MCP/SCAD penalty (see details).

dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound.

However, for large data sets, computational burden may be heavy for models

with a large number of nonzero coefficients.

alpha Tuning parameter for the Mnet estimator which controls the relative contri-

butions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha

may be arbitrarily small, but not exactly 0.

Value

Bhat Estimator of coefficients of X.

rss Residual sum of squares (RSS).

activeX The active set of X. It is a p dimensional vector.

lambda The sequence of regularization parameter values in the path.

selectedID The index of lambda corresponding to lambda_opt.

lambda_opt The value of lambda with the minimum BIC value.

bic BIC value used to select variables.

muhat Estimator of intercept μ . It is NULL if intercept is FALSE. Chat Estimator of coefficients of Z. Chat is NULL if Z is NULL.

 $\begin{array}{lll} \text{group} & \text{The input group.} \\ \text{Y} & \text{Response } Y. \\ \text{X} & \text{Design matrix } X. \end{array}$

References

A tensor estimation approach to multivariate additive models. Manuscript.

```
library(tensorMam)
```

```
#example 1
n <- 200
q <- 5
s <- 3
p <- 100
B <- matrix(runif(q*s, 2,3), s)
X <- matrix(rnorm(n*p),n,p)
Y <- X[,1:s]%*%B + matrix(rnorm(n*q),n)
fit <- mvrblockwise(Y,X)
fit$activeX
fit$Bhat
which(rowSums(fit$Bhat^2)>0)
```

mvrcolwise 15

```
fit$muhat
#example 2
K = 5
n <- 200
q <- 5
s <- 4
p <- 100
B1 <- matrix(runif(q*K, 2,3), K)
B2 <- matrix(0,2*K,q)
B3 <- matrix(runif(q*(s-1)*K, 2,3), (s-1)*K)
B <- rbind(B1,B2,B3)
X <- matrix(rnorm(n*p*K),n)</pre>
Y \leftarrow X[,1:((s+2)*K)]%*B + matrix(rnorm(n*q),n)
group <- rep(1:p,each=K)</pre>
fit <- mvrblockwise(Y,X,group=group,isPenColumn=TRUE)</pre>
which(fit$activeX==1)
fit$Bhat
which(rowSums(fit$Bhat^2)>0)
fit$muhat
#example 3
K = 5
n <- 200
q <- 5
s <- 4
d <- 3
p <- 100
B1 <- matrix(runif(q*K, 2,3), K)
B2 \leftarrow matrix(0,2*K,q)
B3 <- matrix(runif(q*(s-1)*K, 2,3), (s-1)*K)
B <- rbind(B1,B2,B3)
C <- matrix(runif(q*d, 1,2), d)</pre>
X <- matrix(rnorm(n*p*K),n)</pre>
Z <- matrix(rnorm(n*d),n)</pre>
Y \leftarrow X[,1:((s+2)*K)]%*B + Z%*C + matrix(rnorm(n*q),n)
group <- rep(1:p,each=K)</pre>
fit <- mvrblockwise(Y,X,Z,group=group,isPenColumn=TRUE)</pre>
which(fit$activeX==1)
fit$Bhat
which(rowSums(fit$Bhat^2)>0)
fit$Chat
fit$muhat
```

mvrcolwise

Estimate coefficients of high-dimensional multivariate regression for the column-wise

Description

This function provides the coefficient matrix estimator of high-dimensional multivariate regression (MVR) with penalty LASSO, MCP or SCAD). The tuning parameter is selected by BIC (the default), AIC, EBIC, CV, or GCV.

16 mvrcolwise

Usage

Arguments

Y The response, a vector of size n or a matrix of size $n \times q$. X The covariates to be penalized, a matrix with dimension $n \times p$.

Z The covariates without penalization, a matrix with dimension $n \times d$. The default

is NULL.

criteria The criteria to be applied to select parameters. Either BIC (the default), AIC,

EBIC, CV, or GCV.

ncv The number of cross-validation folds. Default is 10. If criteria is not CV, ncv

is useless.

penalty The penalty to be applied to the model. Either LASSO (the default), MCP or SCAD.

isPenColumn A logical value indicating whether the coefficients associating with X_i that af-

fects whole response Y is penalized. Default is TRUE. If isPenColumn is TRUE, the coefficients associating with X_j that affects simultaneously whole response y is penalized for each $j \in \{1, \cdots, p\}$. If isPenColumn is FALSE, the coefficients associating with X_j that affects single response Y_l is penalized for each

 $j \in \{1, \dots, p\}$, where $l \in \{1, \dots, q\}$.

lambda A user-specified sequence of lambda values. By default, a sequence of values of

length nlam is computed, equally spaced on the log scale.

nlam The number of lambda values. Default is 50.

intercept Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)?

lam_min The smallest value for lambda, as a fraction of lambda.max. Default is 1e-3.

eps Convergence threshhold. The algorithm iterates until the relative change in any

coefficient is less than eps1. Default is 1e-4.

max_step Maximum number of iterations. Default is 50.

gamma_pen The tuning parameter of the MCP/SCAD penalty (see details).

dfmax Upper bound for the number of nonzero coefficients. Default is no upper bound.

However, for large data sets, computational burden may be heavy for models

with a large number of nonzero coefficients.

alpha Tuning parameter for the Mnet estimator which controls the relative contri-

butions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would be equivalent to ridge regression. However, alpha=0 is not supported; alpha

may be arbitrarily small, but not exactly 0.

Value

Bhat Estimator of coefficients of X.

rss Residual sum of squares (RSS).

active X The active set of X. It is a p dimensional vector.

lambda The sequence of regularization parameter values in the path.

mvrcolwise 17

References

A tensor estimation approach to multivariate additive models. Manuscript.

```
library(tensorMam)
#example 1
n <- 200
q <- 5
s <- 3
p <- 100
B <- matrix(runif(q*s, 2,3), s)</pre>
X <- matrix(rnorm(n*p),n,p)</pre>
Y \leftarrow X[,1:s]%*%B + matrix(rnorm(n*q),n)
fit <- mvrcolwise(Y,X)</pre>
fit$activeX
fit$Bhat
which(rowSums(fit$Bhat^2)>0)
fit$muhat
#example 2
n <- 200
q <- 5
s <- 3
d <- 3
p < -100
B <- matrix(runif(q*s, 2,3), s)</pre>
C <- matrix(runif(q*d, 1,2), d)</pre>
X <- matrix(rnorm(n*p),n,p)</pre>
Z <- matrix(rnorm(n*d),n)</pre>
Y \leftarrow X[,1:s]%*%B + Z%*%C + matrix(rnorm(n*q),n)
fit <- mvrcolwise(Y,X,Z)</pre>
fit$activeX
fit$Bhat
which(rowSums(fit$Bhat^2)>0)
fit$Chat
fit$muhat
```

18 plotfuns

plotfuns	Plot the estimated curves from tensorMam.

Description

Plot the curves fitted by mam, mam_dr, mam_sparse, and mam_sparse_dr

Usage

```
plotfuns(fit,funTrueID,true.curve=FALSE)
```

Arguments

fit Object outputting from mam, mam_dr, mam_sparse or mam_sparse_dr. funTrueID Which function to be plotted. It is a 2-vector. In MAM models, there are $s_0 \times q$ true functions. Thus, the first argument must be smaller than s_0 , and the second argument must be smaller than q. true.curve A Logical flag. Plot both true and estimated curves if true.curve=TRUE. Plot

estimated curve only if true.curve=FALSE. Default is FALSE.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

References

A tensor estimation approach to multivariate additive models.

See Also

```
mam, mam_dr, mam_sparse, mam_sparse_dr
```

```
n <- 200
p <- 10
q <- 10
s <- 10
K <- 6
s0 <- s
r10=r20=r30=2
S3 \leftarrow matrix(runif(r10*r20*r30,3,7),nrow = r30)
T1 <- matrix(rnorm(s0*r10), nrow = s0)
U1 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(K*r20),nrow = K)
U2 \leftarrow qr.Q(qr(T1))
T1 <- matrix(rnorm(q*r30), nrow = q)
U3 <- qr.Q(qr(T1))
D3 <- U3%*%S3%*%t(kronecker(U2,U1))
D2 <- TransferModalUnfoldings(D3,3,2,s0,K,q)
mydata <- generateData(n, q, p, s0, D2)</pre>
fit <- mam(mydata$Y, mydata$X)</pre>
```

```
fit$D2 <- D2
fit$s0 <- s0
fit$X0 <- matrix(runif(100*p),100,p)
plotfuns(fit, c(1,1))</pre>
```

TransferModalUnfoldings

Transfer a tensor's modal unfoldings to another.

Description

Transfer a tensor's modal unfoldings to another.

Usage

```
TransferModalUnfoldings(S, d1, d2 , r1, r2, r3)
```

Arguments

S	A mode-d1-unfolding of a tensor with size $r_1 \times r_2 \times r_3$, input unfolding
d1	An integer, the mode of unfolding $S_{(d_1)}$
d2	An integer, the mode of output unfolding $S_{\left(d_2\right)}$
r1	The fist dimension of tensor
r2	The second dimension of tensor
r3	The third dimension of tensor

Details

This function transfers an input mode-d1-unfolding $S_{(d_1)}$ to mode-d2-unfolding $S_{(d_2)}$

Value

D the output mode-d2-unfolding, $S_{(d_2)}$

References

A tensor estimation approach to multivariate additive models.

```
D1 <- matrix(1:24,nrow = 4) # A tensor unfolding with size 4*6
D2 <- TransferModalUnfoldings(D1,1,2,4,3,2)
```

Index

```
*Topic High-dimensional, Sparse
        models; Tensor estimation;
        Tucker decomposition.
    tensorMAM-package, 2
    TransferModalUnfoldings, 19
*Topic High-dimensional; Sparse
        models; Tensor estimation;
        Tucker decomposition.
    generateData, 3
    mam, 5
    mam_sparse, 8
*Topic Multivariate regression
    mvrblockwise, 13
    mvrcolwise, 15
*Topic Variable selection
    mvrblockwise, 13
    mvrcolwise, 15
*Topic datasets
    breastData, 2
breastData, 2
generateData, 3
mam, 5
mam-function (mam), 5
mam_dr, 6
mam_dr-function (mam_dr), 6
mam_sparse, 8
mam_sparse-function(mam_sparse), 8
mam_sparse_dr, 10
mam_sparse_dr-function (mam_sparse_dr),
        10
mvrblockwise, 13
mvrblockwise-function (mvrblockwise), 13
mvrcolwise, 15
mvrcolwise-function (mvrcolwise), 15
plotfuns, 18
tensorMAM (tensorMAM-package), 2
tensorMAM-package, 2
TransferModalUnfoldings, 19
TransferModalUnfoldings-function
        (TransferModalUnfoldings), 19
```