BIA-674 SUPPLY CHAIN ANALYTICS

Procurement Analysis

Capacity Analysis

1. Problem Statement

Due to the sudden increase of medical supplies, we need to identify if there is any capacity constraint in Fabricadas new facilities in Chicago. The plant controller senses that the current capacity is not adequate to meet his forecasted demand. In contrast the VP of Operations of Medicrystals believes that they have adequate supply to meet demand. Our team needs to analyze the presence of capacity constraint and recommend how to maximize the utilization to meet demand at current capacity and to meet the increase in demand for these products. And to understand the perspective of plant manager and VP Operations in terms of capacity. Glass vials, one of the products used for vaccines is manufactured in these facilities are time consuming. And Medicrystal wants to meet the demand of other diseases including COVID vaccines.

2. Methodology

We are going to investigate the following areas in this analysis:

- Available Capacity
- Production Plan Forecast
- Production Capacity Results

2.1. Available Capacity

As seen in the Figure 1, demand is increasing in every quarter for all three products including Ampoules, Vials and Syringes. These products are essential for vaccine production.

Figure 1

In figure 2, we have units and the products processed in each unit. Total available time for each process namely Tubing, Forming, Washing and Packing. We could observe Ampoules are processed in limited units compared to vials and Syringes.

Process					
Product					
Unit	Ampoules	Vials	Syringes	Total ShutDown Days	Total Available Hour
Tubing #1	0	0	1	140	5400
Tubing #2	1	1	0	145	5280
Forming #1	1	0	0	140	5400
Forming #2	0	1	1	150	5160
Washing #1	0	0	1	140	5400
Washing #2	1	1	0	145	5280
Washing #3	0	0	1	145	5280
Washing #4	1	1	0	140	5400
Packing #1	0	1	0	145	5280
Packing #2	0	1	1	145	5280
Packing #3	0	0	1	150	5160
Packing #4	0	0	1	140	5400
Packing #5	1	0	0	145	5280
Packing #6	1	1	0	145	5280
Time Calculation	Total Available Time				
Tubing	10680				
Forming	10560				
Washing	21360				
Packing	31680				

Figure 2

2.2 Production Plan Forecast

After computing the capacity of each unit for the entire year, we could find feasible solution such that it meets demand, and the utilization hours are within the limit.

		Cycle Time				Process							ignment l	Lots		Used Hours		Capacity Hours			
	Ampoules	Vials	Syringes	Am	poules	Vials	Syringes		ampoules	vials	syringes	Ampoules	Vials	Syringes							
Unit																					
Tubing #1	6	9	6		0	0	1		0		0 0	0	0	186		1116	<=	5400	0.206666667		
Tubing #2	6	9	6		- 1	1	0		0		0 0	384.2857	150	0		3655.714286	<=	5280	0.69237013		
orming #1	12	9	9		- 1	0	0		0		0 0	0	0	0		0	<=	5400	0		
orming #2	12	9	9		0	- 1	1		0		0 0	0	0	0		0	<=	5160	0		
ashing #1	18	21	18		0	0	1		0		0 0	0	0	186		3348	<=	5400	0.62		
ashing #2	18	21	18		- 1	1	0		0		0 0	247	39.71429	0		5280	<=	5280	1		
ashing #3	18	21	18		0	0	1		0		0 0	0	0	0		0	<=	5280	0		
ashing #4	18	21	18		1	1	0		0		0 0	137.2857	110.2857	0		4787.142857	<=	5400	0.886507937		
acking #1	24	24	24		0	1	0					0	39.71429	0		953.1428571	<=	5280	0.180519481		
acking #2	24	24	24		0	1	1					0	0	0		0	<=	5280	0		
acking #3	24	24	24		0	0	1					0	0	0		0	<=	5160	0		
cking #4	24	24			0	0	1					0	Ó	186		4464	<=	5400	0.826666667		
cking #5	24	24			- 1	n	0					137.2857	, i	0		3294.857143	<=	5280	0.624025974		
acking #6	24	24			1	1	0					109.7143	110.2857	i i		5280	<=	5280	1		
												247		186		32178.85714		74280	· ·		
												247	150						Extra Capacity H	42101.14	
												384,2857	150	48							
oduction																					
		Lots P	roduced						Defective I	ot in quart	91				Avai	lable Lots			Final Product Lot	5	Total dema
							Contam														
	Tubing	Hot- forming	Vashing	Packing		tubing	ination rejects					Air bubbles		Tubing	Hot- forming	Washing	Packing				
npoules	384.2857	0	384.2857	247		nejects 1	5.7	3.5				2.8		383.2857	-5.7	380.7857143	244.2		-5.7		15
Vials	150	0	150	150		2.8	6	3.2				3		147.2	-6	146.8	147		-6		5
yringes	186	0	186	186		3.4	5.2	2.8				2.6		182.6	-5.2	183.2	183.4		-5.2		10
ctive																					
	583																				

But what happens when we compute on a quarterly basis? We have tried to compute the capacity of all units for every quarter, and we could not find a feasible solution for the quarters where demand is very high.

2.3. Product Capacity Results

In the earlier section, we noticed that we could not meet demand on a quarterly basis, while we could achieve it for the full year. And the same can be seen in the figure 4. As the demand increases, we fail to get a feasible solution.

Option 1: P	roduction Pl	an for all quarters	combined
Product Line	Demand	Production Supply	Status
Ampoules	195	427.20	Meet Demand
Vials	90	107.45	Meet Demand
Syringes	130	421.08	Meet Demand
Option 4: P		an : Individual Qua	arters Wise
	Q	3-2020	
Product Line	Demand	Production Supply	Status
Ampoules	15	384.29	Meet Demand
Vials	5	150.00	Meet Demand
Syringes	10	186.00	Meet Demand
	_		
		4-2020	
Product Line	Demand	Production Supply	
Ampoules	55	No feasible solution	Meet Demand
Vials	20	No feasible solution	Meet Demand
Syringes	35	No feasible solution	Meet Demand
		11 2021	
		01-2021	
Product Line	Demand	Production Supply	
Ampoules	60	No feasible solution	Meet Demand
Vials	30 40	No feasible solution No feasible solution	Meet Demand
Syringes	40	INO reasible solution	Meet Demand
		02-2021	
Product Line	Demand	Production Supply	Status
Ampoules	65	No feasible solution	Meet Demand
Vials	35	No feasible solution	Meet Demand
Syringes	45	No feasible solution	Meet Demand

Figure 4

The only quarter where we get feasible solution is in Quarter 1 where demand is very less.

	Demand Projections P	lus Net Lot Rejected in a	Quarter	Solver Results, Feasible Solution?
	Ampoules	Vials	Syringes	
Q3				
2020	28	20	24	Yes, demand can be met
Q4				
2020	68	35	49	No, no feasible solution
Q1				
2021	73	45	54	No, no feasible solution
Q2				
2021	78	50	59	No, no feasible solution
Total	247	150	186	Yes, demand can be met

Figure 5

So, to overcome this problem, we can increase productivity in Q1 such that we can keep up with demand in the following quarters. For the given problem, if we produce the same amount throughout all quarters, we can meet the demands of upcoming quarters. In the below Figure 6, I have increased the lots of Q1, and I could get feasible solution of 146. If I maintain the same for every quarter, it solves the shortage of supply.

		Dycle Time				Process							Assi	gnment l	ots		Used Hours		Capacity Hours				
	Ampoules	Vials	Syringes		Ampoules	Vials	Syringes		ampoules	vials	syringes		Ampoules	Vials	Syringes								
Unit																							
Tubing #1	6	9			0	0	1		0	i	0 (l e	0	0	45		270	<=	1350	0.2			
Tubing #2	6	9			1	1	0		0	1	0 (ı	96.42857	40	0		938.5714286	<=	1320	0.711038961			
Forming #1	12	9		1	1	0	0		0	i	0 (1	0	0	0		0	<=	1350	0			
Forming #2	12	9			0	1	1		0		0 (ı	0	0	0		0	<=	1290	0			
Washing #1	18	21	18		0	0	1		0		0 (0	0	45		810	<=	1350	0.6			
Washing #2	18	21	18		1	1	0		0		0 (ı	61	10.57143	0		1320	<=	1320	1			
Washing #3	18	21	18		0	0	1		0		0 (ı	0	0	0		0	<:	1320	0			
Washing #4	18	21	18		1	1	0		0		0 (l e	35.42857	29.42857	0		1255.714286	<:	1350	0.93015873			
Packing #1	24	24	24		0	1	0						0	10.57143	0		253,7142857	<=	1320	0.192207792			
Packing #2	24	24	24		0	1	1						0	0	0		0	<:	1320	0			
Packing #3	24	24	24		0	0	1						0	0	0		0	<=	1290	0			
Packing #4	24	24	24		0	0	1						0	0	45		1080	<:	1350	0.8			
Packing #5	24	24			1	Ó	0						35,42857	Ó	0		850,2857143	<=	1320	0.644155844			
acking #6	24	24	24		1	1	0						25.57143	29.42857	0		1320	<:	1320	1			
													61	40			8098,285714		18570				
													61	40	45	146				Extra Capacity H	10471.71		
													96,42857		40								H
													36.42807	40	48								+
Production																							
		Lots Pi	oduced						Defective I	lot in quar	ter					Avail	able Lots			Final Product Lo	ts	Total dem	an.
	Tubing	Hot- forming	Vashing	Packing		tubing	ination	Glass breakag es					Air bubbles		Tubing	Hot- forming	₩ashing	Packing					Ī
Ampoules	96.42857	0	96,42857	61		1	5.7	3.5					2.8		95.42857	-5.7	92.92857143	58.2		-5.7		15	ŝ
Vials	40	0	40			2.8		3.2					3		37.2	-6	36.8			-6		5	5
Syringes	45	0	45	45		3.4	5.2	2.8					2.6		41.6	-5.2	42.2	42.4		-5.2		10)
																							t
ective																							
n	146																						

Figure 6

The current capacity of the plant is sufficient to satisfy demand. But we can consider other factors to keep the utilization minimum. The capacity of the plant is enough to satisfy demand. We can say there are no capacity constraints necessary. In order to do that utilization should be kept to a minimum,

- Identifying the root cause behind unplanned shutdowns could results in a decrease in the number of unplanned shutdowns.
- Maximum utilization of machinery.

3. Conclusion

MediCrystals needs to maximize its utilization to meet demand by balancing the operation hours, distributing high volume products to least used units such that it reduces operation hours and by reducing the rejection rate of products. And it does not need to increase the current capacity to math demand.