Mis-Classified, Binary, Endogenous Regressors: Identification and Inference

Francis J. DiTraglia Camilo García-Jimeno

University of Pennsylvania

September 14th, 2017

Additively Separable Model

$$y = h(T^*, \mathbf{x}) + \varepsilon$$

- ▶ y − Outcome of interest
- ► *h* − Known or unknown function
- ▶ T* Unobserved, endogenous binary regressor
- ightharpoonup T Observed, mis-measured binary surrogate for T^*
- x Exogenous covariates
- \triangleright ε Mean-zero error term

What is the Effect of T^* ?

Re-write the Model

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon$$
$$\beta(\mathbf{x}) = h(1, \mathbf{x}) - h(0, \mathbf{x})$$
$$c(\mathbf{x}) = h(0, \mathbf{x})$$

This Paper:

- ▶ Does a discrete instrument z (typically binary) identify $\beta(\mathbf{x})$?
- ▶ What assumptions are required for z and the surrogate T?
- ▶ How to carry out inference for a mis-classified regressor?

Example: Job Training Partnership Act (JTPA)

Heckman et al. (2000, QJE)

Randomized offer of job training, but about 30% of those *not* offered also obtain training and about 40% of those offered training don't attend. Estimate causal effect of *training* rather than *offer* of training.

- y − Log wage
- ▶ T* True training attendence
- ➤ T Self-reported training attendance
- x Individual characteristics
- \triangleright z Offer of job training

Related Literature

Continuous Regressor

Lewbel (1997, 2012), Schennach (2004, 2007), Chen et al. (2005), Hu & Schennach (2008), Song (2015), Hu et al. (2015). . .

Binary, Exogenous Regressor

Aigner (1973), Bollinger (1996), Kane et al. (1999), Black et al. (2000), Frazis & Loewenstein (2003), Mahajan (2006), Lewbel (2007), Hu (2008)

Binary, Endogenous Regressor

Mahajan (2006), Shiu (2015), Ura (2015), Denteh et al. (2016)

"Baseline" Assumptions I – Model & Instrument

Additively Separable Model

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon, \quad \mathbb{E}[\varepsilon] = 0$$

Valid & Relevant Instrument: $z \in \{0, 1\}$

- $ightharpoonup \mathbb{P}(T^* = 1 | \mathbf{x}, z = 1) \neq \mathbb{P}(T^* = 1 | \mathbf{x}, z = 0)$
- $\qquad \mathbb{E}[\varepsilon|\mathbf{x},z] = 0$
- ▶ $0 < \mathbb{P}(z = 1 | \mathbf{x}) < 1$

If T^* were observed, these conditions would identify β .

"Baseline" Assumptions II – Measurement Error

Notation: Mis-classification Rates

"\tau"
$$\alpha_0(\mathbf{x}, z) \equiv \mathbb{P}(T = 1 | T^* = 0, \mathbf{x}, z)$$

"
$$\downarrow$$
" $\alpha_1(\mathbf{x}, z) \equiv \mathbb{P}(T = 0 | T^* = 1, \mathbf{x}, z)$

Mis-classification unaffected by z

$$\alpha_0(\mathbf{x}, z) = \alpha_0(\mathbf{x}), \quad \alpha_1(\mathbf{x}, z) = \alpha_1(\mathbf{x})$$

Extent of Mis-classification

$$\alpha_0(\mathbf{x}) + \alpha_1(\mathbf{x}) < 1$$
 (T is positively correlated with T^*)

Non-differential Mis-classification

$$\mathbb{E}[\varepsilon|\mathbf{x}, z, T^*, T] = \mathbb{E}[\varepsilon|\mathbf{x}, z, T^*]$$

Identification Results from the Literature

Mahajan (2006) Theorem 1, Frazis & Loewenstein (2003) $\mathbb{E}[\varepsilon|\mathbf{x},z,T^*]=0, \text{ plus "Baseline"} \implies \beta(\mathbf{x}) \text{ identified}$ Requires (T^*,z) jointly exogenous.

Mahajan (2006) A.2

 $\mathbb{E}[\varepsilon|\mathbf{x},z,T^*,T] = \mathbb{E}[\varepsilon|\mathbf{x},T^*]$, plus "Baseline" $\Longrightarrow \beta(\mathbf{x})$ identified Allows T^* endogenous, but we prove this claim is false.

Open Question

Do the baseline assumptions identify $\beta(\mathbf{x})$ when T^* is endogenous?

First-stage Probabilities & Mis-classification Bounds

Unobserved Observed
$$ho_k^*(\mathbf{x}) \equiv \mathbb{P}(T^*=1|\mathbf{x},z=k)$$
 $p_k(\mathbf{x}) \equiv \mathbb{P}(T=1|\mathbf{x},z=k)$

Relationship

$$p_k^*(\mathbf{x}) = \frac{p_k(\mathbf{x}) - \alpha_0(\mathbf{x})}{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})}, \quad k = 0, 1$$

z does not affect (α_0, α_1) ; denominator $\neq 0$

Bounds for Mis-classification

$$\alpha_0(\mathbf{x}) \le p_k(\mathbf{x}) \le 1 - \alpha_1(\mathbf{x}), \quad k = 0, 1$$

$$\alpha_0(\mathbf{x}) + \alpha_1(\mathbf{x}) < 1$$

 $\alpha_0 \leq \min_k \{p_k\}, \quad \alpha_1 \leq \min_k \{1 - p_k\}$

Instrumental Variable Estimands

Unobserved

$$\beta(\mathbf{x}) = \frac{\mathbb{E}[y|\mathbf{x}, z=1] - \mathbb{E}[y|\mathbf{x}, z=0]}{\rho_1^*(\mathbf{x}) - \rho_0^*(\mathbf{x})}$$

Wald (Observed)

$$\frac{\mathbb{E}[y|\mathbf{x},z=1] - \mathbb{E}[y|\mathbf{x},z=0]}{p_1(\mathbf{x}) - p_0(\mathbf{x})} = \beta(\mathbf{x}) \left[\frac{p_1^*(\mathbf{x}) - p_0^*(\mathbf{x})}{p_1(\mathbf{x}) - p_0(\mathbf{x})} \right] = \frac{\beta(\mathbf{x})}{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})}$$

$$| p_1^*(\mathbf{x}) - p_0^*(\mathbf{x}) = \frac{p_1(\mathbf{x}) - \alpha_0(\mathbf{x})}{1 - \alpha_0 - \alpha_1(\mathbf{x})} - \frac{p_0(\mathbf{x}) - \alpha_0(\mathbf{x})}{1 - \alpha_0 - \alpha_1(\mathbf{x})} = \frac{p_1(\mathbf{x}) - p_0(\mathbf{x})}{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})}$$

Partial Identification Bounds for $\beta(\mathbf{x})$

$$\beta(\mathbf{x}) = [1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})] \left[\frac{\mathbb{E}\left[y|\mathbf{x}, z = 1\right] - \mathbb{E}\left[y|\mathbf{x}, z = 0\right]}{\rho_1(\mathbf{x}) - \rho_0(\mathbf{x})} \right]$$
$$0 \le \alpha_0 \le \min_{k} \{\rho_k(\mathbf{x})\}, \quad 0 \le \alpha_1 \le \min_{k} \{1 - \rho_k(\mathbf{x})\}$$

No Mis-classification

$$\alpha_0(\mathbf{x}) = \alpha_1(\mathbf{x}) = 0 \implies \beta(\mathbf{x}) = \mathsf{Wald}$$

Maximum Mis-classification

$$\alpha_0(\mathbf{x}) = p_{\min}(\mathbf{x}), \ \alpha_1(\mathbf{x}) = 1 - p_{\max}(\mathbf{x})$$

$$\implies 1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x}) = p_{\text{max}}(\mathbf{x}) - p_{\text{min}}(\mathbf{x}) = |p_1(\mathbf{x}) - p_0(\mathbf{x})|$$
$$\implies \beta(\mathbf{x}) = \text{sign} \{p_1(\mathbf{x}) - p_0(\mathbf{x})\} \times (\text{Reduced Form})$$

Partial Identification Bounds for $\beta(\mathbf{x})$

No Mis-classification

$$\beta(\mathbf{x}) = \mathsf{Wald}$$

Maximum Mis-classification

$$\beta(\mathbf{x}) = \text{sign} \{p_1(\mathbf{x}) - p_0(\mathbf{x})\} \times (\text{Reduced Form})$$

$$= \text{sign} \{\text{Wald}\} \times |\text{Reduced Form}|$$

Wald
$$> 0 \iff \text{sign} \{p_1(\mathbf{x}) - p_0(\mathbf{x})\} = \text{sign} \{\text{Reduced Form}\}\$$

Wald $< 0 \iff \text{sign} \{p_1(\mathbf{x}) - p_0(\mathbf{x})\} \neq \text{sign} \{\text{Reduced Form}\}\$

 $\beta(\mathbf{x})$ has the same sign as the Wald and its magnitude is between that of Wald and Reduced Form.

Sharp Bounds?

- ▶ Bounds from the preceding slide are known in the literature.
- We prove that they are not sharp under the baseline assumptions from above.
- ▶ $\mathbb{E}[\varepsilon|\mathbf{x}, T^*, T, z] = \mathbb{E}[\varepsilon|\mathbf{x}, T^*, z]$ restricts (α_0, α_1) hence β .
- Description of the sharp set is somewhat complicated...
- ▶ Corollary: β is not point identified regardless of how many (discrete) values z takes on.

Point identification from slightly stronger assumptions?

Point Identification: 1st Ingredient

Reparameterization

$$\begin{aligned} \theta_1(\mathbf{x}) &= \beta(\mathbf{x}) / \left[1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x}) \right] \\ \theta_2(\mathbf{x}) &= \left[\theta_1(\mathbf{x}) \right]^2 \left[1 + \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x}) \right] \\ \theta_3(\mathbf{x}) &= \left[\theta_1(\mathbf{x}) \right]^3 \left[\left\{ 1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x}) \right\}^2 + 6\alpha_0(\mathbf{x}) \left\{ 1 - \alpha_1(\mathbf{x}) \right\} \right] \\ & \boxed{\beta(\mathbf{x}) = 0 \iff \theta_1(\mathbf{x}) = \theta_2(\mathbf{x}) = \theta_3(\mathbf{x}) = 0} \end{aligned}$$

Lemma

Baseline Assumptions $\implies Cov(y, z|\mathbf{x}) = \theta_1(\mathbf{x})Cov(z, T|\mathbf{x}).$

Point Identification: 2nd Ingredient

Assumption ()

$$\mathbb{E}[\varepsilon^2|\mathbf{x},z] = \mathbb{E}[\varepsilon^2|\mathbf{x}]$$

Lemma

(Baseline) + (
$$\spadesuit$$
) \Longrightarrow $Cov(y^2, z|\mathbf{x}) = 2Cov(yT, z|\mathbf{x})\theta_1(\mathbf{x}) - Cov(T, z|\mathbf{x})\theta_2(\mathbf{x})$

Corollary

(Baseline) + (
$$\spadesuit$$
) + [$\beta(\mathbf{x}) \neq 0$] \Longrightarrow [$\alpha_1(\mathbf{x}) - \alpha_0(\mathbf{x})$] is identified.

Hence, $\beta(\mathbf{x})$ is identified if mis-classification is one-sided.

Point Identification: 1st Ingredient

Assumption (♣)

- (i) $\mathbb{E}[\varepsilon^2|\mathbf{x}, z, T^*, T] = \mathbb{E}[\varepsilon^2|\mathbf{x}, z, T^*]$
- (ii) $\mathbb{E}[\varepsilon^3|\mathbf{x},z] = \mathbb{E}[\varepsilon^3|\mathbf{x}]$

Lemma

$$(\mathsf{Baseline}) + (\spadesuit) + (\clubsuit) \implies$$

$$Cov(y^3, z|\mathbf{x}) = 3Cov(y^2T, z|\mathbf{x})\theta_1(\mathbf{x}) - 3Cov(yT, z|\mathbf{x})\theta_2(\mathbf{x}) + Cov(T, z|\mathbf{x})\theta_3(\mathbf{x})$$

Point Identification Result

Theorem

(Baseline) + (\spadesuit) + (\clubsuit) $\Longrightarrow \beta(\mathbf{x})$ is point identified. If $\beta(\mathbf{x}) \neq 0$, then $\alpha_0(\mathbf{x})$ and $\alpha_1(\mathbf{x})$ are likewise point identified.

Proof Sketch

- 1. $\beta(\mathbf{x}) = 0 \iff \theta_1(\mathbf{x}) = 0$ so suppose this is not the case.
- 2. Lemmas: full-rank linear system in $\theta_1(\mathbf{x}), \theta_2(\mathbf{x}), \theta_3(\mathbf{x})$ & observables.
- 3. Non-linear eqs. relating $\theta_1(\mathbf{x}), \theta_2(\mathbf{x}), \theta_3(\mathbf{x})$ to $\beta(\mathbf{x})$ and $\alpha_0(\mathbf{x}), \alpha_1(\mathbf{x})$. Show that solution exists and is unique.

Sufficient Conditions for (♠) and (♣)

- (i) T is conditionally independent of (ε, z) given (T^*, \mathbf{x})
- (ii) z is conditionally independent of ε given x

Just-Identified GMM Estimator: Part I

Suppress dependence on x to simplify the notation from here on. . .

Collect Lemmas from Above:

$$\begin{aligned} \mathsf{Cov}(y,z) - \mathsf{Cov}(T,z)\theta_1 &= 0 \\ \mathsf{Cov}(y^2,z) - 2\mathsf{Cov}(yT,z)\theta_1 + \mathsf{Cov}(T,z)\theta_2 &= 0 \\ \mathsf{Cov}(y^3,z) - 3\mathsf{Cov}(y^2T,z)\theta_1 + 3\mathsf{Cov}(yT,z)\theta_2 - \mathsf{Cov}(T,z)\theta_3 &= 0 \end{aligned}$$

Notation: Observed Data Vector

$$\mathbf{w}'_{i} = (T_{i}, y_{i}, y_{i}T_{i}, y_{i}^{2}, y_{i}^{2}T_{i}, y_{i}^{3})$$

Just-Identified GMM Estimator: Part II

$$oxed{\mathbb{E}\left[\left(oldsymbol{\Psi}'(oldsymbol{ heta})oldsymbol{\mathsf{w}}_i-oldsymbol{\kappa}
ight)\otimes\left(egin{array}{c}1\z_i\end{array}
ight)
ight]=oldsymbol{0}}$$

Weak Identification Problem

Moment conditions are uninformative about (α_0, α_1) when β is small.

Moreover, (α_0, α_1) could be on the boundary of the parameter space.

Weak Identification Problem

- β small \Rightarrow moment equalities uninformative about α_1
- Same problem for other estimators from the literature but hasn't been pointed out.
- ▶ Identification robust inference: GMM Anderson-Rubin statistic
- But we can do better...
- ▶ Bounds for (α_0, α_1) immune to weak identification problem: remain informative if β is small or zero.
- Inference using Generalized Moment Selection (Andrews & Soares, 2010)

Inference With Moment Equalities and Inequalities

Moment Conditions

$$\mathbb{E}\left[m_j(\mathbf{w}_i, \vartheta_0)\right] \ge 0, \quad j = 1, \cdots, p$$

$$\mathbb{E}\left[m_j(\mathbf{w}_i, \vartheta_0)\right] = 0, \quad j = p + 1, \cdots, p + v$$

Test Statistic

$$T_{n}(\vartheta) = \sum_{j=1}^{p} \left[\frac{\sqrt{n} \ \overline{m}_{n,j}(\vartheta)}{\widehat{\sigma}_{n,j}(\vartheta)} \right]_{-}^{2} + \sum_{j=p+1}^{p+\nu} \left[\frac{\sqrt{n} \ \overline{m}_{n,j}(\vartheta)}{\widehat{\sigma}_{n,j}(\vartheta)} \right]^{2}$$

$$[x]_{-} = \min \{x, 0\}$$

$$\bar{m}_{n,j}(\vartheta) = n^{-1} \sum_{i=1}^{n} m_{j}(\mathbf{w}_{i}, \vartheta)$$

$$\widehat{\sigma}_{n,i}^{2}(\vartheta) = \text{consistent est. of AVAR} \left[\sqrt{n} \ \bar{m}_{n,j}(\vartheta) \right]$$

Inference via Generalized Moment Selection

Andrews & Soares (2010)

Moment Selection Step

If
$$\frac{\sqrt{n}\,\bar{m}_{n,j}(\vartheta_0)}{\widehat{\sigma}_{n,j}(\vartheta_0)}>\sqrt{\log n}$$
 then drop inequality j

Critical Value

- $\sqrt{n}\, \bar{m}_n(\vartheta_0) \to_d$ normal limit with covariance matrix $\Sigma(\vartheta_0)$
- ▶ Use this to bootstrap the limit distribution of the test statistic.

Theoretical Guarantees

Uniformly valid test of H_0 : $\vartheta = \vartheta_0$ regardless of whether ϑ_0 is identified. Not asymptotically conservative.

What we do

- Explain our multi-step procedure
- Key ingredient is the preliminary estimation of strongly identified parameters
- ▶ Details of the steps involved along with the inequalities we use and why it's ok to eliminate some parameters but not others (α_0, α_1)
- Then explain about Bonferroni and projection etc
- ▶ Projection to get inference for β , but can be conservative

Simulation DGP: $y = \beta T^* + \varepsilon$

Errors

 $(\varepsilon, \eta) \sim$ jointly normal, mean 0, variance 1, correlation 0.5.

First-Stage

- ▶ Half of individuals have z = 1, the rest have z = 0.
- ► $T^* = \mathbf{1} \{ \gamma_0 + \gamma_1 z + \eta > 0 \}$

Mis-classification

- $ightharpoonup T | T^* = 0 \sim \mathsf{Bernoulli}(\alpha_0)$
- $ightharpoonup T | T^* = 1 \sim \mathsf{Bernoulli}(1 \alpha_1)$

Simulation results!

Conclusion

- ► Endogenous, mis-measured binary treatment.
- Important in applied work but no solution in the literature.
- lacktriangle Usual (1st moment) IV assumption fails to identify eta
- ▶ Higher moment / independence restrictions identify β
- Identification-Robust Inference incorportating additional inequality moment conditions.