EEE101 – Circuits and Signals - Interim Test 2008

Answer All Questions by writing the answer clearly in the appropriate box provided – you do not need to show working on this sheet

1	Which <u>one</u> of the following statements is correct?	C
	 A – Energy is <i>dissipated</i> in an ideal inductor through the magnetic field B – Energy is <i>stored</i> in an ideal capacitor through the magnetic field C – Energy is <i>dissipated</i> in a resistor due to the current flow D – Energy is <i>stored</i> in a resistor due to the applied voltage 	C
2	From the definition of voltage, what is the <i>energy gained</i> in Joules by 1 electron when moving between two points with a potential difference of 10 volts? (charge on an electron = 1.6×10^{-19} C)	Energy gained = volt drop x charge = $10 \times 1.6 \times 10^{-19}$ = 1.6×10^{-18} J
3	A 12 V source is applied to a 6 Ω resistor. What is the <i>total charge</i> flow in a 0.5 second period?	$I = 12/6 = 2A$, charge = $2 \times 0.5 = 1C$
4	The voltage across a capacitor is observed to increase linearly with time. Under these conditions, the charging current is: A – linearly increasing with time B – linearly decreasing with time C – constant with time D – zero Which <u>one</u> of these is correct?	C
5	Two capacitors of value 5 μ F and 10 μ F are connected in parallel to a DC supply. Which <u>one</u> of the following statements is correct? A – the charge on each capacitor is the same B – the 10 μ F capacitor holds twice the charge of the 5 μ F capacitor C – the voltage on the 10 μ F capacitor is twice that on the 5 μ F capacitor D – the voltage and charge are the same for each capacitor	В
6	Calculate the <i>induced voltage</i> across a 1 H inductor if the current passing through it is linearly reduced at a rate of 10 A in 1 ms.	$V = Ldi/dt = 1 \text{ x } (10/10^{-3})$ = 10^4 V
7	A particular circuit draws a current of $i=10\sin(314t-60^\circ)$ when driven by a voltage of $v=50\sin(314t-\pi/4)$. What is the phase angle between the current and voltage?	$\alpha = 60-45 = 15^{\circ}$
8	What is the <i>magnitude of the impedance</i> of the circuit of Q7?	$ Z = V/I = 50/10 = 5 \Omega$
9	What is the <i>power dissipated</i> in the circuit of Q7?	P= $V_{rms} x I_{rms} \cos \alpha$ = [(50 x 10)/2] cos15° = 241 W

Student Number:

EEE101

An AC voltage source is applied to L, C, and R components connected in series. The impedances at the source frequency are $12~\Omega$, $10~\Omega$ and $5~\Omega$ respectively. Decide on which <u>one</u> of the following is a true statement (hint use a phasor diagram):

A

- A The applied voltage leads the current
- **B** The applied voltage lags the current
- **D** The current and voltage are in phase
- 11 Find the *equivalent resistance* between A and B of the circuit given below.

 $R_{AB} = 10 + 30 + (50/20)$

=40+(20x50)/(20+50)

=40 + 14.3

= 54.3 Ω

12 Calculate the peak current flowing in the capacitor of the circuit illustrated below.

 $X_C = 1/\omega C$

 $= 1/(100 \times 0.2 \times 10^{-6})$

 $=5x10^4 \Omega$

 $I = V/X_C$

 $= 10/5 \times 10^4$

 $=2x10^{-4} A$

Examiner Use Only: