01204211 Discrete Mathematics Lecture 14: Binomial Coefficients (2)

Jittat Fakcharoenphol

September 23, 2015

The binomial coefficients¹

In this lecture, we shall study the function $\binom{n}{k}$ itself. First, let's see the actual value of the binomial coefficients $\binom{n}{k}$ for various values of n.

- ▶ The function $\binom{n}{\cdot}$ is symmetric around n/2.
- ► Why?

- ▶ The function $\binom{n}{\cdot}$ is symmetric around n/2.
- ▶ Why? This is true because we know that $\binom{n}{k} = \binom{n}{n-k}$.

- ▶ The function $\binom{n}{\cdot}$ is symmetric around n/2.
- ▶ Why? This is true because we know that $\binom{n}{k} = \binom{n}{n-k}$.
- ▶ The maximum is at the middle, i.e., when n is even the maximum is at $\binom{n}{n/2}$ and when n is odd, the maximum is at $\binom{n}{\lfloor n/2 \rfloor}$ and $\binom{n}{\lceil n/2 \rceil}$.
- ► Why?

- ▶ The function $\binom{n}{\cdot}$ is symmetric around n/2.
- ▶ Why? This is true because we know that $\binom{n}{k} = \binom{n}{n-k}$.
- ▶ The maximum is at the middle, i.e., when n is even the maximum is at $\binom{n}{n/2}$ and when n is odd, the maximum is at $\binom{n}{\lfloor n/2 \rfloor}$ and $\binom{n}{\lceil n/2 \rceil}$.
- ▶ Why? Can we prove that?

To understand the behavior of $\binom{n}{k}$ as k changes, let's look at two consecutive values:

$$\binom{n}{k} \ \heartsuit \ \binom{n}{k+1}$$

To understand the behavior of $\binom{n}{k}$ as k changes, let's look at two consecutive values:

$$\binom{n}{k} \circlearrowleft \binom{n}{k+1}$$

Let's write them out:

To understand the behavior of $\binom{n}{k}$ as k changes, let's look at two consecutive values:

$$\binom{n}{k} \ \, \heartsuit \ \, \binom{n}{k+1}$$

Let's write them out:

Removing common terms, we can see that we are comparing these two terms:

$$1 \circlearrowleft \frac{n-k}{k+1} \Leftrightarrow k \circlearrowleft \frac{n-1}{2},$$

that is,

To understand the behavior of $\binom{n}{k}$ as k changes, let's look at two consecutive values:

$$\binom{n}{k} \ \heartsuit \ \binom{n}{k+1}$$

Let's write them out:

$$\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} \heartsuit \frac{n(n-1)(n-2)\cdots(n-k)}{(k+1)k!}.$$

Removing common terms, we can see that we are comparing these two terms:

$$1 \circlearrowleft \frac{n-k}{k+1} \Leftrightarrow k \circlearrowleft \frac{n-1}{2},$$

that is,

- if k < (n-1)/2, $\binom{n}{k} < \binom{n}{k+1}$; and
- if k > (n-1)/2, $\binom{n}{k} > \binom{n}{k+1}$.

How large is the middle $\binom{n}{n/2}$

Here, to simplify the calculation, we shall only consider the case when n is even. Let's try to estimate the value of $\binom{n}{n/2}$ by finding its upper and lower bounds.

How large is the middle $\binom{n}{n/2}$

Here, to simplify the calculation, we shall only consider the case when n is even. Let's try to estimate the value of $\binom{n}{n/2}$ by finding its upper and lower bounds.

A simple upper bound can be obtain using the fact that $\binom{n}{n/2}$ counts subsets of certain size:

$$\binom{n}{n/2} < 2^n.$$

How large is the middle $\binom{n}{n/2}$

Here, to simplify the calculation, we shall only consider the case when n is even. Let's try to estimate the value of $\binom{n}{n/2}$ by finding its upper and lower bounds.

A simple upper bound can be obtain using the fact that $\binom{n}{n/2}$ counts subsets of certain size:

$$\binom{n}{n/2} < 2^n.$$

We can also get a lower bound by noting that the maximum must be at least the average, i.e.,

$$\binom{n}{n/2} \ge \frac{2^n}{n+1}$$

$$\frac{2^n}{n+1} \le \binom{n}{n/2} < 2^n.$$

$$\frac{2^n}{n+1} \le \binom{n}{n/2} < 2^n.$$

Let's plug in n=200, and calculate the number of digits to see how close these bounds.

$$27.80 \approx 200 \cdot \log 2 - \log 201 \le \log \binom{n}{n/2} < 200 \cdot \log 2 \approx 30.10$$

$$\frac{2^n}{n+1} \le \binom{n}{n/2} < 2^n.$$

Let's plug in n = 200, and calculate the number of digits to see how close these bounds.

$$27.80 \approx 200 \cdot \log 2 - \log 201 \le \log \binom{n}{n/2} < 200 \cdot \log 2 \approx 30.10$$

Can we get a better approximation?

$$\frac{2^n}{n+1} \le \binom{n}{n/2} < 2^n.$$

Let's plug in n=200, and calculate the number of digits to see how close these bounds.

$$27.80 \approx 200 \cdot \log 2 - \log 201 \le \log \binom{n}{n/2} < 200 \cdot \log 2 \approx 30.10$$

Can we get a better approximation? Yes, with Stirling's formula. (homework)

Concentration

- We know that the maximum of $\binom{n}{k}$ is obtained when k=n/2. From the graph, you can see that, as you move further from the middle, the value of the function drops rapidly.
- Since we consider even n, we let 2m=n. One way to quantify how fast the values drop is to think about the ratio

$$\binom{2m}{m-t} / \binom{2m}{m}.$$

Concentration

- We know that the maximum of $\binom{n}{k}$ is obtained when k=n/2. From the graph, you can see that, as you move further from the middle, the value of the function drops rapidly.
- ▶ Since we consider even n, we let 2m = n. One way to quantify how fast the values drop is to think about the ratio

$$\binom{2m}{m-t} / \binom{2m}{m}.$$

▶ In fact, it is known that

$$\binom{2m}{m-t} / \binom{2m}{m} \approx e^{-t^2/m}$$

Concentration

- We know that the maximum of $\binom{n}{k}$ is obtained when k=n/2. From the graph, you can see that, as you move further from the middle, the value of the function drops rapidly.
- ▶ Since we consider even n, we let 2m = n. One way to quantify how fast the values drop is to think about the ratio

$$\binom{2m}{m-t} / \binom{2m}{m}.$$

▶ In fact, it is known that

$$\binom{2m}{m-t} / \binom{2m}{m} \approx e^{-t^2/m}$$

We will use our basic tools to obtain weaker bounds.

How close is the approximation?

The estimation $e^{-t^2/m}$ is extremely close as shown in the figure below, where the gray bars are the actual value of $\binom{2m}{m-t}/\binom{2m}{m}$ and the red line is $e^{-t^2/m}$.

The actual values

Because dealing with numbers less than 1 with logarithms is error-prone, we will work on the reciprocal. Let's try to calculate the ratio

$${2m \choose m} / {2m \choose m-t} = \frac{(2m)!}{m!m!} \times \frac{(2m-m+t)!(m-t)!}{(2m)!}$$

$$= \frac{(m+t)(m+t-1)\cdots(m+1)}{m(m-1)(m-2)\cdots(m-t+1)}.$$

The actual values

Because dealing with numbers less than 1 with logarithms is error-prone, we will work on the reciprocal. Let's try to calculate the ratio

$${2m \choose m} / {2m \choose m-t} = \frac{(2m)!}{m!m!} \times \frac{(2m-m+t)!(m-t)!}{(2m)!}$$

$$= \frac{(m+t)(m+t-1)\cdots(m+1)}{m(m-1)(m-2)\cdots(m-t+1)}.$$

We can use the same logarithm trick. We have that the log of the ratio is

$$\ln\left(\frac{m+t}{m}\right) + \ln\left(\frac{m+t-1}{m-1}\right) + \dots + \ln\left(\frac{m+1}{m-t+1}\right).$$

The actual values

Because dealing with numbers less than 1 with logarithms is error-prone, we will work on the reciprocal. Let's try to calculate the ratio

$${2m \choose m} / {2m \choose m-t} = \frac{(2m)!}{m!m!} \times \frac{(2m-m+t)!(m-t)!}{(2m)!}$$

$$= \frac{(m+t)(m+t-1)\cdots(m+1)}{m(m-1)(m-2)\cdots(m-t+1)}.$$

We can use the same logarithm trick. We have that the log of the ratio is

$$\ln\left(\frac{m+t}{m}\right) + \ln\left(\frac{m+t-1}{m-1}\right) + \dots + \ln\left(\frac{m+1}{m-t+1}\right).$$

Then we can apply the bounds we have for $\ln x$:

$$\frac{x-1}{x} \le \ln x \le x - 1$$

The upper bound on the reciprocal

Each term in the sum is in this form $\ln((m-i)/(m+t-i))$. Applying the upper bound, we get

$$\ln\left(\frac{m+t-i}{m-i}\right) \le \frac{m+t-i}{m-i} - 1 = \frac{m+t-i-m+i}{m-i} = \frac{t}{m-i}.$$

The upper bound on the reciprocal

Each term in the sum is in this form $\ln((m-i)/(m+t-i))$. Applying the upper bound, we get

$$\ln\left(\frac{m+t-i}{m-i}\right) \leq \frac{m+t-i}{m-i} - 1 = \frac{m+t-i-m+i}{m-i} = \frac{t}{m-i}.$$

Let's sum them up to get

$$\ln\left(\frac{m+t}{m}\right) + \ln\left(\frac{m+t-1}{m-1}\right) + \dots + \ln\left(\frac{m+1}{m-t+1}\right)$$

$$\leq \frac{t}{m} + \frac{t}{m-1} + \dots + \frac{t}{m-t+1}$$

$$\leq \frac{t}{m-t+1} + \frac{t}{m-t+1} + \dots + \frac{t}{m-t+1}$$

$$= \frac{t^2}{m-t+1}.$$

This implies that

$$\ln\left(\frac{(m+t)(m+t-1)\cdots(m+1)}{m(m-1)(m-2)\cdots(m-t+1)}\right) \le \frac{t^2}{m-t+1},$$

i.e.,

$${2m \choose m} / {2m \choose m-t} = \left(\frac{(m+t)(m+t-1)\cdots(m+1)}{m(m-1)(m-2)\cdots(m-t+1)} \right)$$

$$\leq e^{t^2/(m-t+1)}.$$

This implies that

$$\ln\left(\frac{(m+t)(m+t-1)\cdots(m+1)}{m(m-1)(m-2)\cdots(m-t+1)}\right) \le \frac{t^2}{m-t+1},$$

i.e.,

$${2m \choose m} / {2m \choose m-t} = \left(\frac{(m+t)(m+t-1)\cdots(m+1)}{m(m-1)(m-2)\cdots(m-t+1)} \right)$$

$$\leq e^{t^2/(m-t+1)}.$$

Taking the reciprocal, we get

$$e^{-t^2/(m-t+1)} \le \binom{2m}{m-t} / \binom{2m}{m}.$$

Upper bounds

Using the same approach, we can show that

$$\binom{2m}{m-t} / \binom{2m}{m} \le e^{-t^2/(m+t)}.$$

Upper bounds

Using the same approach, we can show that

$$\binom{2m}{m-t} / \binom{2m}{m} \le e^{-t^2/(m+t)}.$$

Thus, we derived the estimates:

$$e^{-t^2/(m-t+1)} \le {2m \choose m-t} / {2m \choose m} \le e^{-t^2/(m+t)},$$

Upper bounds

Using the same approach, we can show that

$$\binom{2m}{m-t} / \binom{2m}{m} \le e^{-t^2/(m+t)}.$$

Thus, we derived the estimates:

$$e^{-t^2/(m-t+1)} \le {2m \choose m-t} / {2m \choose m} \le e^{-t^2/(m+t)},$$

which is fairly close the the estimate of $e^{-t^2/m}$.

How fast?

▶ Let's return to the question on how fast do the values of the binomial coefficients decrease as you move further from the middle. Let's use the better estimate $\binom{2m}{m-t}/\binom{2m}{m}\approx e^{-t^2/m}$.

How fast?

- ▶ Let's return to the question on how fast do the values of the binomial coefficients decrease as you move further from the middle. Let's use the better estimate $\binom{2m}{m-t}/\binom{2m}{m} \approx e^{-t^2/m}$.
- ▶ Given a constant C, we want to estimate the value of t such that $\binom{2m}{m-t}$ is less than $\binom{2m}{m}/C$. (E.g., we can set C=2 to see when the value drops by 50%.) Therefore, we want to find t such that

$$1/C \ge {2m \choose m-t}/{2m \choose m} \approx e^{-t^2/m}$$

Taking the logs, we get

$$\ln 1/C = -\ln C \ge \ln {2m \choose m-t} / {2m \choose m} \approx -t^2/m.$$

This is true when

$$t > \sqrt{m \ln C}$$
.

What does this means?

As an example, let m=20 and C=2. We know that when t is approximately $\sqrt{20\cdot \ln 2}=3.723$ the value of $\binom{2m}{m-t}$ drops by 50%.

