Block-NeRF: Scalable Large Scene Neural View Synthesis

Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben P. Mildenhall, Pratul Srinivasan, Jonathan T. Barron, Henrik Kretzschmar

What is Block-NeRF

- Represented large-scale environments
- Individually trained NeRFs
- Aligned the predictions

Why Block-NeRF

NeRF and other methods
typically lead to significant
artifacts when applying to
large environments.

NeRF

Modification

Appearance Embeddings

- allowed the NeRF to explain away several appearance-changing conditions, such as varying weather and lighting
- interpolated between different conditions, such as cloudy versus clear skies, or day and night

Modification

Learned Pose Refinement

- Pose offsets are learned per driving segment.
- Each offset has a translation and rotation component.
- Regularized pose offsets firstly learn a rough structure prior to modifying the poses.

Other Considerations

Exposure Input

Exposure information can compensate for the visual differences.

Transient Object

Moving and transient objects are ignored for the assumption of consistency.

Visibility Prediction

When merging Block-NeRFs, visibility is important.

Merging

- Splitted each Block-NeRFs within radius
- Discarded the Block-NeRF with the lowest visibility
- Combined the remaining color renders

Appearance Matching

- Same appearance latent code typically leads to different appearances.
- Select a high-visibility matching position between two adjacent Block-NeRFs
- Freeze the network weights and optimize the appearance code of the target

Base Block-NeRF

Adjacent Block-NeRF

After Appearance Matching

Comparison

Result

San Francisco Alamo Square Dataset

Limitations

- Missing transient objects
- Inability to handle dynamic objects
- Distant objects are blur
- Computationally expensive

Potential Solutions

- Missing transient objects
 - learning transient objects
- Inability to handle dynamic objects
 - directly modeling dynamic objects
- Distant objects are blur
 - o different sampling method
- Computationally expensive
 - NeRF caching techniques or sparse voxel grids and multiple orders of magnitude

Conclusion

Block-NeRF enables large-scale scene reconstruction by representing the environment using multiple NeRFs.

Novelties:

- Separately trained NeRFs on the large scale environment
- Considered appearance embedding and exposure into the model
- Predicted Visibility for merging images

Future Improvements:

- Model capacities to consider more components(dynamic objects etc.)
- Less computational expense

Questions

Quiz

Does color relate to the prediction of visibility of Block-NeRF?

No. Visibility is predicted by an independent network which takes position and viewing direction as inputs.

Quiz

Should we train the following images for Block-NeRF?

No. Temporal inconsistencies break the assumption of consistency.