1/5	Aditya Srikanth
	a ks 9136
-	
	PROBLEM O.I
a)	Anom . Anom = R nxm
	: (FALSE)
p)	max (multiplicity of 2) = n
	(TRUE)
c)	
	FALSE
d)	(FALSE)
e)	TRUE
	PROBLEM 0.2
۵)	$\chi_{i} \in S$, $\chi_{i} \in S$ $\rightarrow \chi_{i} + \chi_{i} \in S$; $\chi_{i} \in S$
	$V_{1} = \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix}, V_{2} = \begin{bmatrix} \chi_{2} \\ \chi_{1} \end{bmatrix}$ $V_{1} + V_{2} = \begin{bmatrix} \chi_{1} + \chi_{2} \\ \chi_{2} \end{bmatrix}$ $V_{1} + \chi_{2}$
0	(x1+x2) - (x1+x2) = O Addition Enclosed /
	$V_1 = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$ $AV_1 = \begin{bmatrix} AX_1 \\ AX_2 \end{bmatrix}$
	(axi) - (axi) = 0 Scalar Multiplication Enclosed
	YES
b)	AIES, AZES -> AI+AZES; «AIES
	A1 + A2 = A3 st for each pair of symmetric elements in A. and Az,
	the pair is incremented by an Aij and Aji
	Addition / St Ai = Ai: . Since the pairs were equal
1	Enclosed to begin with, the remain equal. A3 = A3 T
	A1: by the same logic, all elements are scaled equally.
	Therefore pairwise symmetric elements remain equal.
	AAI= AZES -> Scalar Mult. V
	(IES)
	Counterexample: let x=-1, x=-1
	2 7 = (-1)(-1) = 1
	1 50 is a contradiction
	(NO)