Forensics, Malware and Penetration Testing

Network forensics

David Oswald and Andreea Radu

University of Birmingham

a.i.radu@bham.ac.uk

Outline

- 1. Disk forensics* ✓
- 2. Log file forensics ✓
- 3. Network forensics -
- 4. Memory forensics
- 5. Mobile devices (Android)

^{*} May need RAM forensics, e.g., in case of full-disk encryption

Why network forensics are important

- Attacks might not leave any traces on the disk (RAM-only malware)
- Attacker might wipe the disk of their target
- Some devices have mostly read-only storage (routers and other embedded devices)
- When the system is powered off, RAM forensics is usually not possible too
- One can see intermediate steps in an attack, not just the final result (on disk/RAM)

The TCP/IP model

Application Layer Transport Layer Internet Layer Physical Link Layer

Where to capture?

- Physical signals
 - Special hardware needed network cards usually do not expose the physical layer
- Link Layer (e.g. Ethernet)
 - Access usually possible with standard equipment
 - May lose some information for fingerprinting or attack detection

http://blog.opensecurityresearch.com/2013/03/snif fing-traffic-on-wire-with-hardware.html

Where to capture?

- Internet Layer (e.g. IP)
 - Often sufficient for secure routed networks
 - Still a lot of data to process
- Transport Layer (e.g. TCP / UDP)
 - Less information than IP layer
- Application Layer
 - Many different applications
 - o e.g. HTTP(S), SMTP, SSH, FTP, Telnet, ...

What to capture?

Everything we can

From £26.50 x 12 months with 10.9% APR Use Instalments at checkout to spread the cost. Sub Representative example: Credit limit £1200, Annual interest rate 1 Learn more about Instalments by Barclays

Price: £299.99 \rightarrow prime Same-Day & FREE Re or 5 monthly payments with Amazon of 4

WD 16 TB Elements Desktop E

Visit the Western Digital Store **★★★★** ∨ 4,971 ratings

Amazon's Choice for "16tb drive"

RRP: £406.99 Details Y

You Save: £107.00 (26%)

- May be available at a lower price from other sellers, Promotion Message 50% off gift wrap with code GIFT
- Note: This item is eligible for FREE Click and Collect
- Large quantity of information (but storage cheap)
- Remove the Data Link Layer part Often sufficient for routed networks
- Just the prefix of packets (64 bytes for example) or first few packets of a connection - (Part of) payload missing
- Application Layer filtering, e.g. only HTTP

Which tool to capture?

- Tcpdump
 - Available almost everywhere
 - Supports filtering
 - Does not do state reconstruction
- Dumpcap
 - Supports pcap-ng file format
- Filters are given as strings
 - Compiled to bytecode
 - Transferred to the kernel -> fast

Tcpdump and dumpcap filtering

Examples:

- host 8.8.8.8
- src 8.8.8.8
- dst 8.8.8.8
- net 8.0.0.0/8
- icmp
- port 53
- udp port 53
- tcp port 53
- src 8.8.8.8 and not udp src port 53

Analyzing capture files

Wireshark is often the tool of choice

- Supports many file formats
- Supports amazingly many protocols
- Open source, can easily be extended
- Runs on all major platforms

Protocol overview

✓ Wireshark · Protocol Hierarchy Statistics · toy

Protocol	Percent Packets	Packets	Percent Bytes	Bytes	Bits/s	End Packets	End Bytes	End Bits/s
✓ Frame	100.0	6674	100.0	6074162	1432 k	0	0	0
✓ Ethernet	100.0	6674	1.5	93436	22 k	0	0	0
✓ Internet Protocol Version 4	100.0	6674	2.2	133480	31 k	0	0	0
✓ User Datagram Protocol	6.6	440	0.1	3520	830	0	0	0
Domain Name System	6.6	440	0.6	39374	9288	440	39374	9288
▼ Transmission Control Protocol	93.4	6234	95.5	5799416	1368 k	5204	4127961	973 k
✓ Secure Sockets Layer	8.3	557	45.8	2783395	656 k	465	2604655	614 k
Malformed Packet	0.0	3	0.0	0	0	3	0	0
 Hypertext Transfer Protocol 	8.4	562	48.7	2960145	698 k	285	192991	45 k
Portable Network Graphics	0.9	58	4.3	261844	61 k	58	267451	63 k
Online Certificate Status Protocol	0.2	12	0.1	7305	1723	12	8014	1890
Media Type	0.1	9	11.5	696352	164 k	9	232177	54 k
Line-based text data	0.8	52	38.2	2322223	547 k	52	781384	184 k
JPEG File Interchange Format	1.2	82	19.5	1183704	279 k	82	1209557	285 k
JavaScript Object Notation	0.0	2	0.0	4	0	2	4	0
eXtensible Markup Language	0.0	2	0.1	5322	1255	2	5322	1255
Compuserve GIF	0.9	60	3.8	227836	53 k	60	229627	54 k

Endpoints

Wireshark · Endpoints · toy

Ethernet · 2	IPv4 · 55	IPv6	TCP · 236	UDP · 120				
Address	Packets	Bytes	Packets A → B	Bytes $A \rightarrow B$	$Packets\:B\toA$	Bytes B → A	Latitude	Longitude
8.26.222.254	23	13 k	11	11 k	12	1613	_	<u> </u>
10.0.2.15	6,674	6074 k	3,347	381 k	3,327	5692 k	_	_
23.43.63.160	39	7283	18	4294	21	2989	_	_
23.43.75.27	62	12 k	29	9033	33	3621	_	_
23.57.10.43	55	61 k	27	59 k	28	1833	_	_
23.235.43.249	23	14 k	11	12 k	12	1424	_	_
37.157.6.251	27	7696	14	5726	13	1970	_	_
46.228.47.115	8	532	4	240	4	292	_	_
50.31.185.39	20	3629	10	1262	10	2367	_	_
50.31.185.42	40	4372	20	2166	20	2206	_	_
54.228.196.192	26	7851	12	5880	14	1971	_	_
54.228.214.19	29	3499	13	1104	16	2395	_	_
54.231.130.116	63	45 k	31	42 k	32	2887	_	_
54.235.121.3	34	5097	16	1576	18	3521	_	_
54.239.25.192	10	570	5	300	5	270	_	_
54.240.166.143	18	2856	8	1758	10	1098	_	_
62.138.116.15	143	103 k	69	97 k	74	5837	_	_
62.138.116.25	507	537 k	257	492 k	250	45 k	_	_
62.138.116.39	47	9496	23	4576	24	4920	_	_
64.233.166.95	13	1671	6	910	7	761	_	_
78.46.38.211	30	10 k	15	8182	15	1951	_	_
82.199.80.141	22	6038	11	4075	11	1963	_	_
85.114.159.76	210	129 k	105	116 k	105	12 k	_	_

Powerful filters are available in Wireshark

- Wireshark supports different filters
 - Capture filters are tcpdump filters
 - Display filters are more powerful and internally used in wireshark to process a capture
- Display filters:

https://wiki.wireshark.org/DisplayFilters

- http.request
- tcp or dns
- o tcp.flags.syn == 1

Sometimes Wireshark is too slow

- Pre-filtering of a pcap can be useful
- Tcpdump filters are much faster than
 Wireshark display filters
- Example: Filter with tcpdump on the capture, then use it in Wireshark:

```
/usr/sbin/tcpdump -r all.pcap -w traffic-
for-host.pcap "ether host
b8:27:eb:de:20:57 or ether multicast"
```

... or use tshark (Wireshark on cmdline)

Automated processing with tshark

Manpage:

```
https://www.wireshark.org/docs/man-
pages/tshark.html
```

- Tshark can be used to display specific frames only (as Wireshark display filters)
- Examples:

```
tshark -i wlan0 -Y dns (display filter, slow)
tshark -i wlan0 -f "port 53"
(capture filter, fast)
```

What about encrypted traffic?

Encrypted traffic

 Encrypted (or obfuscated) traffic is in general hard to analyse

But when you know the key, it can be in some cases decrypted

Encrypted traffic

- TLS: Not using Perfect Forward Secrecy (PFS) ciphersuites allows decryption with the server key (supported by Wireshark)
- IPSEC: In general same as TLS for no-PFS suites
- WPA: Requires capture of handshake + passphrase

Metadata of encrypted traffic

Encrypted communication still leaks metadata, for example:

- Which host was accessed from where?
 (e.g. which webserver user connected to)
- Time, date, duration
- Amount of exchanged data (approx.)
- Protocol parameters (e.g. supported cipher suites, versions, ...) that may allow to fingerprint a client / server

An alternative

- Use a TLS proxy
 - Accepts the incoming connection
 - Handles the SSL/TLS layer
 - Dispatches the unencrypted connection to an internal server
 - Might act as load balancer and static cache too
 - Logging can be enabled on that host
- For small scaled setups
 - mitmproxy is the tool of your choice
 - o stunnel or socat as an alternative

Next part: Memory Forensics