Redox: approche empirique

Pile (électrochimique)

Réaction d'oxydoréduction

Potentiel d'électrode, potentiel d'oxydoréduction *E(Ox/Red)*

Relation de Nernst vu en PCSI

Prévision du sens d'évolution d'une réaction redox. Calcul de la constante d'équilibre

Influence du pH

Définition empirique de *E(Ox/Red)* ?

On construit la pile suivante : $Pt|H_{2(g)}$ (p=1 bar) | H+ (pH=0) | Ox, Red |Pt

Par définition : E(Ox/Red) = V(Pt,droite) - V(Pt, gauche)

E(Ox/Red) est une grandeur algébrique

Une électrode standard à hydrogène (encadré) utilisée pour la mesure du potentiel standard d'oxydo-réduction de la demi-réaction Ag⁺ + e⁻ Ag(s).

Qu'a-t-on mesuré?

Différence de potentiel interfaciale : c'est la différence de potentiel électrique qui apparait à l'interface de deux phases conductrices de nature différente.

De quels paramètres dépend E(Ox/Red)?

Peut-on prévoir par calcul la valeur d'un potentiel redox ?

Relation de Nernst à 25°C:

$$\langle a Ox \rangle + ne = \langle b Red \rangle$$

« E= E° +
$$\frac{0.06}{n}$$
 log $(\frac{a(Ox)^a}{a(Red))^b}$) » à 25°C

Il faut Ox **et** Red en présence

Expression des ai?

Donner l'expression de la loi de Nernst pour les couples redox suivants : a) $O_{2(g)}/H_2O_{(l)}$; b) $H_2O_{(l)}/H_2(g)$; c) Fe^{3+}/Fe^{2+} ; d) $Ag^+/Ag_{(s)}$; e) $AgCl_{(s)}/Ag_{(s)}$; f) $Cr_2O_7^{2-}/Cr^{3+}$

E et E° sont des grandeurs intensives

$$E^{\circ}(H+/H_2(g) = 0 \text{ V à toute T}$$

Comment déterminer E°?

Espèces*	Demi-réaction de réduction	F°, ∨
LA FORME OXYDÉE EST UN	N OXYDANT FORT	
F_/F-	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2,87
Au ⁺ /Au	$Au^+(aq) + e^- \longrightarrow Au(s)$	+1,69
Ce4+/Ce3+	$Ce^{4+}(aq) + e^{-} \longrightarrow Ce^{3+}(aq)$	+1,61
MnO ₄ , H ⁺ /Mn ²⁺	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	+1,51
Cl ₂ /Cl ⁻	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1,36
Cr2O2-, H+/Cr3+	$Cr_2O_2^{2-} + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(1)$	+1,33
O ₂ , H ⁺ /H ₂ O	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	+1,23
N.************************************		+0.81 à pH = 7
Br ₂ /Br ⁻	$Br_2(1) + 2e^- \longrightarrow 2Br^-(aq)$	+1,09
NO ₃ , H ⁺ /NO	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	+0,96
Ag ⁺ /Ag	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0,80
Fe3+/Fe2+	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0,77
I ₂ /I ⁻	$l_2(s) + 2e^- \longrightarrow 2l^-(aq)$	+0,54
O ₂ /OH ⁻	$O_2(g) + 2 H_2O + 4 e^- \longrightarrow 4 OH^-(aq)$	+0,40
		+0.81 à pH = 7
Cu ²⁺ /Cu	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0,34
AgCl/Ag, Cl-	$AgCl(s) + e^- \longrightarrow Ag(s) + Cl^-(aq)$	+0,22
H ⁺ /H ₂	$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0, par définition
Fe ³⁺ /Fe	$Fe^{3+}(aq) + 3e^{-} \longrightarrow Fe(s)$	-0.04
O ₂ /HO ₂ , OH	$O_2(g) + H_2O(l) + 2e^- \longrightarrow HO_2(aq) + OH^-(aq)$	-0,08
Pb2+/Pb	$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.13
Sn ²⁺ /Sn	$Sn^{2+}(aq) + 2e^{-} \longrightarrow Sn(s)$	-0,14
Fe ²⁺ /Fe	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44
Zn ²⁺ /Zn	$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0,76
H ₂ O/H ₂ , OH ⁻	$2 H_2O(1) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	-0,83
	8.70	-0.42 à pH = 7
Al3+/Al	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1,66
Mg ²⁺ /Mg	$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2,36
Na ⁺ /Na	$Na^{+}(aq) + e^{-} \longrightarrow Na(s)$	-2,71
K+/K	$K^+(aq) + e^- \longrightarrow K(s)$	-2,93
Li ⁺ /Li	M2 SPC prépaggreg physique (s) I.Hallery	-3,05

LA FORME RÉDUITE EST UN RÉDUCTEUR FORT

Les électrodes de références secondaires

Tableau 1 : Potentiels redox de quelques électrodes de référence à 25℃

Électrode de référence	E(V)	
Hg _(f) Hg ₂ Cl _{2(s)} KCl _{sat} (ECS)	0,24	
Ag(s) AgCl(s) KClsat	0,20	
Hg _(I) Hg ₂ SO _{4(s)} K ₂ SO _{4sat}	0,64	
Hg _(I) HgO _(s) NaOH 0,1M	0,93	

Entretien ?
En bon état ?

Figure 2 : Electrode au calomel saturé
[1]

Figure 3 : électrode de référence Ag/AgCl avec double jonction

Demi-équation électronique?⁶

Capteur électrochimique

Capteur électrochimique : potentiométrique, conductimétrique ou ampérométrique

Capteur potentiométrique (à courant nul) : le potentiel du capteur est mesuré par rapport à une référence (adapter l'impédance d'entrée de l'appareil de mesure)

Il peut s'agir:

- d'une électrode rédox
- d'une électrode à membrane

Redox: approche empirique

Pour les capteurs suivants, indiquer la grandeur mesurée par l'intermédiaire du potentiel d'électrode :

- a) $Ag_{(s)}/Ag^+$, NO_3^-
- $b) Ag(s) /AgCl_{(s)}/Na^+,Cl^-$
- c) électrode de verre
- d) $Pt_{(s)}/Fe^{2+}$, Fe^{3+} , Cl^{-}
- $e) Hg_{(l)} / HgY^{2-}, Y^{4-}, Na^{+}$

Un capteur peut être utilisé lors de dosage par étalonnage ou lors de dosages par titrage

Comment procède-t-on dans la pratique?

Redox: approche empirique

Pile (électrochimique)

Réaction d'oxydoréduction

Potentiel d'électrode, potentiel d'oxydoréduction *E(Ox/Red)*

Prévision du sens d'évolution d'une réaction redox. Calcul de la constante d'équilibre

Influence du pH

Prévision du sens d'évolution, composition à l'équilibre : principe

Prévision du sens d'évolution

Le signe de E_1 – E_2 nous renseigne sur le sens d'évolution de la réaction rédox

Calcul de la constante d'équilibre

La valeur de ∆E° nous renseigne sur l'ordre de grandeur de K°

De façon schématique

Ambiguité de la règle du gamma

Si plusieurs Ox ou Red dans l'EI : RP = oxydant de E° le plus grand sur réducteur de E° le plus petit

Pourquoi la limite à 0,24 V?

Stabilité des oxydants et réducteurs dans l'eau

F ₂ /F ⁻	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2,87	
Au ⁺ /Au	$Au^+(aq) + e^- \longrightarrow Au(s)$	+1,69	
Ce4+/Ce3+	$Ce^{4+}(aq) + e^{-} \longrightarrow Ce^{3+}(aq)$	+1,61	
MnO ₄ , H ⁺ /Mn ²⁺	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	+1,51	
Cl ₂ /Cl ⁻	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1,36	
Cr2O7-, H+/Cr3+	$Cr_2O_7^{2-} + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(1)$	+1,33	
O2, H+/H2O	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	+1,23	
		+0.81 à pH = 7	
Br ₂ /Br ⁻	$Br_2(1) + 2e^- \longrightarrow 2Br^-(aq)$	+1,09	
NO ₃ , H ⁺ /NO	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	+0,96	
Ag+/Ag	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0,80	
Fe3+/Fe2+	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0,77	
I ₂ /I ⁻	$l_2(s) + 2e^- \longrightarrow 2l^-(aq)$	+0,54	
O ₂ /OH ⁻	$O_2(g) + 2 H_2O + 4 e^- \longrightarrow 4 OH^-(aq)$	+0,40	
		+0.81 à pH = 7	
Cu ²⁺ /Cu	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0,34	
AgCl/Ag, Cl ⁻	$AgCl(s) + e^- \longrightarrow Ag(s) + Cl^-(aq)$	+0,22	
H ⁺ /H ₂	$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0, par définition	
Fe ³⁺ /Fe	$Fe^{3+}(aq) + 3e^{-} \longrightarrow Fe(s)$	-0.04	
O ₂ /HO ₂ , OH	$O_2(g) + H_2O(l) + 2e^- \longrightarrow HO_2(aq) + OH^-(aq)$	-0,08	
Pb ²⁺ /Pb	$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0,13	
Sn ²⁺ /Sn	$Sn^{2+}(aq) + 2e^{-} \longrightarrow Sn(s)$	-0,14	
Fe ²⁺ /Fe	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44	
Zn ²⁺ /Zn	$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0,76	
H ₂ O/H ₂ , OH ⁻	$2 H_2O(1) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	-0,83	
		-0.42 à pH = 7	
Al3+/Al	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1,66	
Mg ²⁺ /Mg	$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2,36	
Na ⁺ /Na	$Na^{+}(aq) + e^{-} \longrightarrow Na(s)$	-2,71	
K+/K	$K^+(aq) + e^- \longrightarrow K(s)$	-2,93	
Li ⁺ /Li	M2 SPC prégaggegphysique(s) I.Hallery	-3,05	

LA FORME RÉDUITE EST UN RÉDUCTEUR FORT

Détermination d'un potentiel standard inconnu

Calculer
$$E^{\circ}(Fe(OH)_{2(s)}/Fe_{(s)})$$
 à $pH=0$
Données à $25^{\circ}C: E^{\circ}(Fe^{2+/}Fe_{(s)})=-0,44V$; $pKs(Fe(OH)_2))=15$

Réaction redox couplée à des réactions de précipitation ou de complexation

Il faut raisonner à partir de la RP !!!!!

Sera revu dans le thème 4

- Calculer la valeur de K°_{RP}

Ou

- Comparer les E° des couples sous la forme sous laquelle ils interviennent dans la RP
- a) Donner l'équation de la réaction prépondérante à considérer quand on met Cu²⁺ en présence d'un excès de I⁻. Quels sont les couples redox mis en jeu ?
- b) Calculer $E^{\circ}(Cu^{2+}/CuI_{(s)})$.
- c) Calculer la constante de la réaction qui se produit..

$$E^{\circ}(Cu^{2+}/Cu^{+}) = 0.17 \text{ V}, \quad pKs(CuI) = 12, E^{\circ}(I_{2}/I) = 0.62 \text{ V}$$