Mathematik für die Informatik B -Hausaufgabenserie 3

Florian Schlösser, Henri Heyden, Ali Galip Altun stu240349, stu240825, stu242631

Aufgabe 1

Behauptung: $(x_n)_{n\geq 1}$ divergiert unbestimmt.

Voraussetzung: $odd := \{2n+1 \mid n \in \mathbb{N}\}, even := \{2n \mid n \in \mathbb{N}\}$

Beweis: Nehme an, $(x_n)_{n\geq 1}$ konvergiere oder divergiere bestimmt. Demnach müsse gelten, dass $(x_n)_{n\geq 1}$ einen Limes habe, den wir p nennen werden.

Definiere hierzu die Teilfolgen $(a_n)_{n\geq 1}:=(x_{2n+1})_{n\geq 1}$ und $(b_n)_{n\geq 1}:=(x_{2n})_{n\geq 1}$ von x (es ist leicht zu sehen, dass 2n+1 und 2n strenge monotone Abbildungen von n sind für $n\in\mathbb{N}$).

Beobachte, dass nach den Definitionen von odd und even, $a_n = \frac{1}{n}$ und $b_n = n$ gelten. Nach Satz 2.42 müssten die Limetes von den Folgen a und b gleich dem Limes von x gleichen.

Beobachte aber, dass $\lim_n a_n = 0 \neq \lim_n b_n = +\infty$ nach Skript gilt, was uns zu einem Widerspruch der Annahme $(x_n)_{n\geq 1}$ konvergiere oder divergiere bestimmt.

Demnach gilt das Gegenteil, also divergiert $(x_n)_{n\geq 1}$ unbestimmt.

Aufgabe 2

Behauptung: $\lim_{n} \sqrt[n]{c} = 1$.

Voraussetzung: c > 0.

Beweis: Wir werden den Sandwichsatz (S.2.20) nutzen, um die Aussage zu zeigen. Demnach definieren wir zwei Folgen: $(a_n)_{n\geq 1}:=(\frac{1}{n}^{\frac{1}{n}})_{n\geq 1}, (b_n)_n:=(\sqrt[n]{n})_n$ und geben der Folge, wessen Limes gesucht ist den Namen $(x_n)_n$. Um den Sandwichsatz anwenden zu können werden wir Zeigen, dass für **fast** (S.2.12) alle $n\in\mathbb{N}$ gilt, dass $a_n\leq x_n\leq b_n$ und dass $\lim_n a_n=\lim_n b_n$ wahre Aussagen sind.

Für die zweite Aussage wissen wir nach S.2.28: $\lim_n \sqrt[n]{n} = 1.$

Wir werden zeigen, dass $\lim_{n} \frac{1}{n}^{\frac{1}{n}} = 1$ gilt, betrachte folgende Umformung:

$$\lim_{n} \frac{1}{n}$$
 | Vereinbarung Schreibweise
$$= \lim_{n} n^{-1\frac{1}{n}}$$
 | Potenzgesetze
$$= \lim_{n} n^{-\frac{1}{n}}$$
 | Potenzgesetze
$$= \lim_{n} n^{\frac{1}{n}-1}$$
 | Schreibweise bzw. Potenzgesetze
$$= \lim_{n} \sqrt[n]{n}$$
 | Potenzgesetze
$$= \lim_{n} \sqrt[n]{n}$$
 | Potenzgesetze
$$= \lim_{n} \frac{1}{\sqrt[n]{n}}$$
 | Präsenzaufgabe 3 und Satz 2.28
$$= 1$$

Damit gilt nur noch zu zeigen, dass für fast alle $n \in \mathbb{N}$, $a_n \leq x_n \leq b_n$ gilt. Beobachte, dass wenn n = c, $\sqrt[n]{n} = \sqrt[n]{c}$ gilt.

Demnach, wenn $n \geq c \wedge n \geq 1$ gilt, gilt $\sqrt[n]{n} \geq \sqrt[n]{c}$, da n steigt und c konstant

ist, — im Beweis von S.2.28 im Skript wird angesprochen, dass $\sqrt[n]{\cdot}$ streng monoton steigend ist für $n \ge 1$ (wir nennen diese Aussage **A**).

Somit müssen wir nur noch zeigen, dass $a_n \leq x_n$ in den gegebenen Bedingungen (also, $n \in \mathbb{N}, n \geq c \land n \geq 1$) für fast alle n gilt.

Betrachte, dass wenn $n \ge c$ gilt auch $\frac{1}{n} \le c$ gilt. Aus **A** folgt $\sqrt[n]{\frac{1}{n}} \le \sqrt[n]{c}$. Damit beobachten wir für $n \ge c \land n \ge 1$, dass $a_n \le x_n \le b_n$ gilt, was nach

S.2.12 uns genügt, um den Sandwichsatz vollständig anzuwenden.

Da wir $\lim_n a_n = \lim_n b_n = 1$ schon gezeigt haben wissen wir, dass $\lim_n a_n = \lim_n b_n = 1 = \lim_n a_n = \lim_n x_n$ gilt.

Also gilt
$$\lim_{n} \sqrt[n]{c} = 1$$
.