Equations Différentielles I

STEP, MINES ParisTech

12 février 2021 (#7d082cf)

Question 1 Les solutions	s maximales de $\dot{x} = f(x)$ avec $f: \mathbb{R}^n \to \mathbb{R}^n$ continue
\square existent pour toute condition initiale $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$. \square sont définies sur \mathbb{R} .	
□ sont soit définies sur	\mathbb{R} , soit divergent en temps fini.
Question 2 L'équation d $\mathbb{R} \times \mathbb{R}$	ifférentielle $\dot{x}=tx^2+t$ de condition initiale $(t_0,x_0)\in$
_	plution. plution maximale définie sur \mathbb{R} . lution maximale définie sur un intervalle ouvert borné
	$\to \mathbb{R}^n$ continue. Dire que les solutions de $\dot{x} = f(x)$ apport à leur condition initiale sur leur intervalle de
□ vrai. $□$ vrai si f est continû $□$ aucun des deux.	ment différentiable par rapport à x .
Question 4 Le comporte parce que	ement d'un système chaotique est difficile à prédire
☐ ses solutions ne varie ☐ il est impossible d'a	plutions pour certaines conditions initiales. ent pas continûment par rapport à la condition initiale. assurer une précision suffisante sur la condition ini- une erreur raisonnable au delà d'un certain temps
Question 5 On peut dire	e que le système $\dot{x} = -ax + bx^2$ avec $a, b > 0$,
□ admet un point d'éq	quilibre instable.

□ admet un point d'équilibre globalement asymptotiquement stable.
Question 6
Le système
$\dot{x}_1 = x_1 - x_2$
$\dot{x}_2 = 4x_1 - 3x_2$
\square admet plusieurs points d'équilibre.
\Box admet 0 comme point d'équilibre localement asymptotiquement stable.
\square admet 0 comme point d'équilibre globalement asymptotiquement stable
\square a ses solutions de la forme $x(t) = (e^{-t}c_1, e^{-t}c_2)$, avec c_1, c_2 constantes.