Introduction to Data Science CS61 June 12 - July 12, 2018

Dr. Ash Pahwa

Lesson 4: Statistics

Lesson 4.2: Normal Distribution

Outline

- Distributions
- Probability Distribution Function
- Distributions: Uniform, Normal
- Properties of Normal Distribution
- Standard Normal Distribution
- Testing Normality

Distribution

- Histogram of sample space
- X-axis
 - All possible values in a sample space
- Y-axis
 - Frequency of the sample value

Distribution

- Toss die 10,000 times
- X-axis
 - Sample space
 - **1,2,3,4,5,6**
- Y-axis
 - Frequency of each number

Example: Discrete Data

- Number of arrivals at a restaurant within 15 minutes period
- Total 40 observations

7	6	6	6	4	6	2	6
5	6	6	11	4	5	7	6
2	7	1	2	4	8	2	6
6	5	5	3	7	5	4	6
2	2	9	7	5	9	8	5

	Number of customers came in this period
7:00 AM – 7:15 AM	7
7:15 AM – 7:30 AM	6

sort(arrival)

Histogram: Discrete Data

Raw Data

7	6	6	6	4	6	2	6
5	6	6	11	4	5	7	6
2	7	1	2	4	8	2	6
6	5	5	3	7	5	4	6
2	2	9	7	5	9	8	5

sort(arrival)

Y-axis = Frequency

9

 ∞

9

 α

Bin size = 1

Y-axis = Relative frequency | Bin size = 1

Relative Frequency = $\frac{Frequency}{Sum \ of \ all \ frequencies}$

- The relative frequency histogram is also called
 - Probability Distribution Function (PDF)
- The area of a PDF is always 1

Uniform Distribution Function

- When the probability of all possible events in the sample space is same
 - Uniform Distribution Function

Histogram

Probability Distribution Function (PDF)

Distributions

Continuous distributions

- Uniform
- Normal
- Chi Square
- Fisher's F
- Student's t
- Gamma
- Exponential
- Beta
- Cauchy
- Lognormal
- Logistics
- Weibull

Discrete distributions

- Binomial
- Poisson
- Hypergeometric
- Negative binomial
- Wilcox

The Empirical Rule Normal Distribution

Data: Student IQ Test Population

- Student IQ Test
- Normally Distributed
- Mean = 100
- Standard Deviation = 15
- 68% of the data will be within
 - -100 15 = 85
 - 100 + 15 = 115

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

Properties of Normal

Distribution

- Mean = Median = Mode
 - Single peak at $x = \mu$
- Inflection point at $\mu \sigma$ and $\mu + \sigma$
- Area under the curve = 1
- Area of left $(mean \mu) =$
 - Area of right = $\frac{1}{2}$
- Follows the Empirical Rule

Standard Normal Distribution

Standard Normal Curve

$$\mu = 0$$
, $\sigma = 1$

- Symmetric about its mean $\mu = 0, \sigma = 1$
- Mean = Median = Mode
 - Single peak at z = 0
- Inflection point at -1 and +1
- Area under the curve = 1
- Area of left ($mean \mu = 0$) =
 - Area of right = $\frac{1}{2}$
- Follows the Empirical Rule

Standard Normal Table

 Tables will help you find the area under the Standard Normal Curve to the LEFT of a z-score

 $z = \frac{\text{Data Value - Mean}}{\text{Standard Deviation}} = \frac{y - \mu}{\sigma}$

Compute : z value

	Clipboard 🖫	_	ont	Ę.		Al
	B6 ▼ 🝵	fs	=STANDARDIZE(B5,B2,B3)		2,B3)	
	Α	В	С	D	E	
1						
2	Mean	100				
3	Standard Deviation	15				
4						
5	Score	110				
6	z-value	0.666667				
7						

Population

- Student IQ Test
- Normally Distributed
- Mean = 100
- Standard Deviation = 15

Standard Normal Table Excel: P(z) x < z

- Given : z value = 0.21
- Compute 'Left' Area (Probability) under the Standard Normal Curve

	B5 ▼ (<i>f</i> _{xc}	=NORMSDIST(B4)
	Α	В
1		
2		
3	Shaded to the left	
4	Z	0.21
5	P(z) Probability z < 0.21	0.5832
6		

Standard Normal Table Excel: P(z) x > z

- Given : z value = 0.21
- Compute 'Right' Area (Probability) under the Standard Normal Curve

	B9 ▼ =1-NORMSDIST(B8)				
	А	В	С		
1					
2					
3	Shaded to the left				
4	Z	0.21			
5	P(z) Probability z < 0.21	0.5832			
6					
7	Shaded to the right				
8	Z	0.21			
9	P(z) Probability z > 0.21	0.4168			
10					

Standard Normal Table Excel: $P(z) x_1 < z < x_2$

- Given: z values (z1 and z2)
- Compute 'In Between' Area (Probability) under the Standard Normal Curve

	Clipboard 12	TOTIC	12	Alignmen		
	B14 ▼ (* f _x	B14 ▼ (= MORMSDIST(B12)-NORMSDIST(B13)				
4	Α	В	С	D		
1						
2						
3	Shaded to the left					
4	Z	0.21				
5	P(z) Probability z < 0.21	0.5832				
6						
7	Shaded to the right					
8	Z	0.21				
9	P(z) Probability z > 0.21	0.4168				
10						
11	Shaded in between					
12	z1	0.31				
13	z2	-0.31				
14	P(z) Probability -0.31 < z <0.31	0.2434				
15						

Standard Normal Table Excel: *Inverse Function*

- Given 'Left' Area (Probability) under the Standard Normal Curve = 0.58
- Compute : z value

		-			
	B5 ▼ (**	fsc	f_{sc} =NORMSINV(B4)		
	А		В	С	D
1					
2					
3	Shaded to the left				
4	Area		0.58		
5	z-Value	C	.2019		
6					
_					

4

Excel Functions

R Functions for Standard Normal Distributions

Distribution	Normal
Density	dnorm()
Cumulative density Function (cdf)	pnorm()
Quantiles	qnorm()
Random Numbers	rnorm()

```
> m = 100
> s = 15
> d = 110
> (zValue <- (d - m)/s)
[1] 0.6666667
> z = 0.21
> (pnorm(z))
[1] 0.5831662
> (1-pnorm(z))
[1] 0.4168338
> ##################################
> z1 = -0.31
> z2 = 0.31
> (pnorm(z2) - pnorm(z1))
[1] 0.243439
> ##################################
> a = 0.58
> (gnorm(a))
[1] 0.2018935
```

R Functions

Python Functions Package: scipy.stats


```
cdf: Cumulative Distribution Function
ppf: Percentage Point Function
```

Testing Normality

Why Test Normality?

- Many statistical inference procedures assume that we are sampling from a normally distributed population
- We should develop a test to check if data is normally distributed
- Example:
 - The residuals of a regression should be normally distributed
 - The residuals should be tested for normality

Testing Normality: Histogram

- How to check if data is normally distributed
- Graphical technique
 - Plot the histogram of the data
 - You should see a normal distribution
- Problem with this technique
 - Histograms shape change with different bin sizes

Testing Normality: QQ Plot: Theory

- How to check if data is normally distributed
- Analytical/Graphical technique
 - Data is plotted against a theoretical normal distribution
 - If you see a straight line
 - Data is normally distributed
 - This technique is called QQ plot Quantile-Quantile plot

	Data
1	3.89
2	4.75
3	6.33
4	4.75
5	7.21
6	5.78
7	5.80
8	5.20
9	6.64

- Question
 - Is this data normally distributed?
- Testing Procedure
- First Sort the data
- Plot against appropriate quantiles from the standard normal distribution

	Sorted Data
1	3.89
2	4.75
3	4.75
4	5.20
5	5.78
6	5.80
7	6.33
8	7.21
9	7.90
	-

QQ Plot: z-values

- Divide the normal distribution curve into (n+1=10) parts
- Each part represents 10% of the area
- Compute the corresponding z-values
- QQ plot is
 - X axis: z-values taken from the standard normal distribution curve
 - Y-axis: Sorted Data values

QQ Plot: z Values

	Data		Sorted Data
1	3.89	1	3.89
2	4.75	2	4.75
3	6.33	3	4.75
4	4.75	4	5.20
5	7.21	5	5.78
6	5.78	6	5.80
7	5.80	7	6.33
8	5.20	8	7.21
9	6.64	9	7.90

Plot i^{th} ordered value against $\frac{i}{n+1}$ quantile of Standard Normal Distribution

	D3 • (=			f₃ =NORMSINV(C3)	
	А	В	С	D	Е
1					
2	Sorted Data	i	i/(n+1)	z value	
3	3.89	1	0.1	-1.28	
4	4.75	2	0.2	-0.84	
5	4.75	3	0.3	-0.52	
6	5.2	4	0.4	-0.25	
7	5.78	5	0.5	0.00	
8	5.8	6	0.6	0.25	
9	6.33	7	0.7	0.52	
10	7.21	8	0.8	0.84	
11	7.9	9	0.9	1.28	
12					
13		n	9		
14					
4.5					

QQ Plot: qqnorm, qqline

```
(x <- c(3.89,4.75,6.33,4.75,7.21,5.78,5.80,5.20,6.64))
qqnorm(x)
qqline(x)
```

- QQ plot is
 - X axis: z-values taken from the standard normal distribution curve
 - Y-axis: Sorted Data values
- If the line is straight
 - Data is normal

QQPlot: Known Normal Distribution: N=10

```
x1 <- rnorm(n=10, mean=5, sd=2)
hist(x1)
qqnorm(x1)
qqline(x1)</pre>
```


QQPlot: Known Normal Distribution: N=1000

```
x3 <- rnorm(1000, mean=5, sd=2)
hist(x3)
qqnorm(x3)
qqline(x3)</pre>
```


QQPlot: Known Uniform Distribution: N=1000

x2 <- runif(n=1000)
hist(x2)
qqnorm(x2)
qqline(x2)</pre>

Python: QQPlot

```
import numpy as np
```

import statsmodels.api as sm
C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\compat\pandas.py:56:
FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.

from pandas.core import datetools

import matplotlib.pyplot as plt

```
test = np.random.normal(0,1,10000)
plt.plot(test)
plt.hist(test)
```


Python: QQPlot


```
sm.qqplot(test)
sm.qqplot(test,line='45')
```


Summary

- Distributions
- Probability Distribution Function
- Distributions: Uniform, Normal
- Properties of Normal Distribution
- Standard Normal Distribution
- Testing Normality