What is claimed is:

1. A polymer represented by formula (I):

5

10

15

30

wherein R^o is $-CH_2O-[CO-(CH_2)_n-O]_m-X$, $-CH_2O-[CH_2O]_{3m}-X$, $-CH_2O-[CH_2O]_m-X$ or $-CH_2O-[CONH-(CH_2)_n]_m-X$;

X is $SiR_{k}^{3}(OR_{3-k}^{4})_{3-k}$;

R¹ is C₁₋₅ alkyl or R^o;

 R^2 is C_{1-4} alkylene or arylene;

 R^3 and R^4 are each independently C_{1-5} alkyl; and

n is an integer in the range of 2 to 5, m is an integer in the range of 2 to 20 and k is an integer in the range of 0 to 2.

- 20 2. The polymer of claim 1, wherein R² is CH₂.
 - 3. The polymer of claim 2, wherein R° is $-CH_2O-[CO-(CH_2)_5-O]_m-X$.
- 4. The polymer according to claim 1, wherein the weight averaged molecular weight (Mw) of the polymer is in the range of 500 to 20,000.
 - 5. A method of preparing the polymer represented by formula (I) of claim 1, comprising conducting a ring open polymerization of a cyclic monomer selected from the compounds of formula (III) to (VI) and a polyhydric alcohol of formula (III), and reacting the resulting polymer with a silane compound represented by

 $SiR^{3}_{k}(OR^{4})_{3-k}$:

$$(HO-H2C)2---C--R2--O--R2--C--(CH2-OH)2$$
5
$$Ra$$
R
(II)

$$(CH_2)_n$$
 (III)

$$(CH_2)_n$$
 (V)

$$(CH_2)_n$$
 NH (VI)

wherein R^a is C_{1-5} alkyl or CH_2OH ; R^2 is C_{1-4} alkylene or arylene; and

30

5

25

30

n is an integer in the range of 2 to 5.

- 6. The method according to claim 5, wherein the polyhydric alcohol is di(trimethylolpropane), di(pentaerythritol) or a derivative thereof.
- 7. The method according to claim 5, wherein the cyclic monomer is a compound of formula (III).
- 8. The method according to claim 5, wherein the silane compound is selected from the group consisting of 3-isocyanatopropyl triethoxy silane, 3-glycidoxypropyl dimethylethoxy silane, 3-glycidoxypropyl methyldiethoxy silane and 3-glycidoxypropyl methyldimethoxy silane, and a mixture thereof.
- 9. A method of preparing a polymer composite film of a low dielectric constant containing nano pores, which comprises conducting a sol-gel reaction between a polymer of claim 1 and a silicate polymer, followed by thermal decomposition of the resulting polymer.
- 10. The method according to claim 9, wherein the silicate polymer is methylsilsesquioxane, ethylsilsesquioxane or hydrogensilsesquioxane.
 - 11. The method according to claim 10, wherein the silicate polymer is obtained by conducting a sol-gel reaction between one or more monomers selected from the group consisting of trichloroethane, methyltrimethoxysilane, methyltriethoxysilane, methyldimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, ethyldiethoxysilane, ethyldimethoxysilane, bistrimethoxysilylethane, bistriethoxysilylethane, bistriethoxysilylmethane, bistriethoxysilyloctane and bistrimethoxysilylhexane.
 - 12. The method according to claim 9, wherein the mixing ratio by weight of the

5

polymer of claim 1 and the silicate polymer ranges from 1:99 to 50:50.

13. The method according to claim 9, wherein the thermal decomposition is carried out at a temperature ranging from 200 to 500°C under an inert gas atmosphere or vacuum.