Міністерство освіти та науки України Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Кафедра обчислювальної математики

Звіт до лабораторної роботи №5 на тему: "Найкраще середньоквадратичне наближення"

> Виконав студент групи ОМ-3 Скибицький Нікіта

1 Постановка задачі

Усі завдання будуть виконані для функції f вигляду:

$$f(x) = \frac{|x-4| + |x+4|}{2}, \quad a = -10 \le x \le 10 = b.$$

Також задамо n = 4, m = 20. У всіх підзадачах необхідно побудувати графіки функцій f(x) та отриманого наближення, обчислити відхилення.

1.1 Найкраще середньоквадратичне наближення

Побудувати поліном найкращого середньоквадратичного наближення $Q_n(x)$ для функції f(x) на проміжку [a,b], вибравши в якості лінійно незалежних функцій систему функцій $\varphi_i(x)$, для $i=\overline{0,n}$. Системи функцій які будуть розглянуті:

- 1. $\varphi_i(x) = T_i(x)$;
- 2. тригонометрична.

1.2 Метод найменших квадратів

Функція y = f(x) задана таблицею значень y_0, y_1, \ldots, y_m у точках x_0, x_1, \ldots, x_m . Використовуючи метод найменших квадратів (МНК), знайти поліном $Q_n(x) = a_0 + a_1 \cdot x + \ldots + a_n \cdot x^n$ найкращого середньоквадратичного наближення оптимального степеня $n = n^*$. За оптимальне значення n^* будемо вважати той степінь поліному, починаючи з якого величина

$$\sigma_n = \sqrt{\frac{1}{m-n} \cdot \sum_{k=0}^{m} (Q_n(x_k)^2 - y_k)^2}$$

стабілізується або починає зростати.

1.3 Кубічні згладжувальні сплайни

Побудувати кубічний згладжувальний сплайн для функції f(x) на проміжку [a,b] за її значеннями у вузлах $x_i = a + i \cdot h$, для $i = \overline{0,m}$, де h = (b-a)/m, а $m \gg n$.

2 Теоретична частина

2.1 Найкраще середньоквадратичне наближення

Наблизимо функцію $f: \mathcal{H} \to \mathbb{R}$ з гільбертового простору \mathcal{H} функціями зі скінченновимірного підпростору M_n простору \mathcal{H} . Скалярний добуток у просторі \mathcal{H} ми будемо позначати як (u, v), відповідну норму – як $||u|| = \sqrt{(u, u)}$.

Нехай $\{\varphi_i\}_{i=0}^{\infty}$ — лінійно-незалежна система функцій $\mathcal{H} \to \mathbb{R}$. Розглянемо її скінченну підсистему $\{\varphi_i\}_{i=0}^n$. Позначимо лінійну оболонку цієї підсистеми за $M_n \subset \mathcal{H}$.

Нагадаємо визначення ЕНН Ф:

$$||f - \Phi|| = \sqrt{(f - \Phi, f - \Phi)} = \inf_{\varphi \in M_n} ||f - \varphi||.$$

Якщо Φ – ЕНН, то $(f - \Phi, \varphi) = 0$ для довільного $\varphi \in M_n$, тому можна записати $f = \Phi + \psi$, де $\Phi \in M_n$, $\psi \in M_n^{\perp}$, тому будемо шукати наближення у вигляді

$$\Phi = \sum_{i=0}^{n} c_i \cdot \varphi_i.$$

Для виконання $(f - \Phi, \varphi) = 0$ достатнью, щоб

$$(f - \Phi, \varphi_j) = 0, \quad j = \overline{0, n},$$

що у свою чергу дає

$$\left(f - \sum_{i=0}^{n} c_i \cdot \varphi_i, \varphi_j\right) = 0, \quad j = \overline{0, n}.$$

Звідси маємо СЛАР на c_i :

$$\sum_{i=0}^{n} c_i \cdot (\varphi_i, \varphi_j) = (f, \varphi_j), \quad j = \overline{0, n}.$$

Матриця цієї СЛАР — $G = \|g_{ij}\|_{i,j=1}^n$, де $g_{ij} = (\varphi_i, \varphi_j)$ — матриця Грамма лінійно-незалежної системи функцій $\{\varphi_i\}_{i=0}^n$, що доводить існування та єдиність ЕНН. Оскільки $G^T = G$, то для розв'язування цієї СЛАР використовують метод квадратних коренів. У багатьох випадках матриця G погано обумовлена, у цих випадках систему функцій ортонормують, тобто досягають того, щоб $(\varphi_i, \varphi_j) = \delta_{ij}$.

Явно запишемо розв'язок СЛАР:

$$\Phi = \sum_{i=0}^{n} (f, \varphi_i) \cdot \varphi_i,$$

звідки у випадку ортонормованої системи функцій маємо наступний вираз відхилення:

$$\Delta^{2}(f) = \|f - \Phi\|^{2} = \|f\| - \|\Phi\|^{2} = \|f\| - \sum_{i=0}^{n} c_{i}^{2}.$$

У випадку ортогональної але не нормалізованої системи відхилення шукається наступним чином:

$$\Delta^{2}(f) = \|f - \Phi\|^{2} = \|f\| - \|\Phi\|^{2} = \|f\| - \sum_{i=0}^{n} c_{i}^{2} \cdot \|\varphi_{i}\|^{2}.$$

2.2 Метод найменших квадратів

Нехай в результаті вимірювань функції f(x) маємо таблицю значень:

$$y_i \approx f(x_i), \quad x_i \in [a, b], \quad i = \overline{0, m}.$$

За даними цієї таблиці треба побудувати аналітичну формулу $\Phi(x; a_1, a_2, \dots, a_n)$ таку, що

$$\varphi(x_i; a_1, a_2, \dots, a_n) \approx y_i, \quad i = \overline{0, m}.$$

Розв'язувати цю задачу інтерполюванням (тобто задавати "=" замість " \approx ") не раціонально, адже $m \gg n$ і отримана система буде перевизначена, її розв'язки як правило не існують.

Параметри a_1, a_2, \ldots, a_n визначають з міркувань

$$I(a_1, a_2, \dots, a_n) = \sum_{i=0}^{m} (y_i - \varphi(x_i; a_1, a_2, \dots, a_n)^2) \to \min,$$

тому метод і називається методом найменших (суми) квадратів (відхилень).

Для досягнення мінімуму достатньо $\partial I/\partial a_i=0$, для $i=\overline{0,n}$. Зокрема, якщо φ лінійно залежить від параметрів a_1,a_2,\ldots,a_n , то отримаємо СЛАР

$$\sum_{j=0}^{n} a_j \cdot \varphi_j(x_i) = y_i, \quad i = \overline{0, m},$$

яку називають системою умовних рівнянь.

МНК рівносильний знаходженню ЕНН у гільбертовому просторі функцій $f: X \to \mathbb{R}$ над дискретною множиною $X = \{x_0, x_1, \dots, x_m\}$, у якому скалярний добуток визначається наступним чином:

$$(u,v) = \sum_{i=0}^{m} u(x_i) \cdot v(x_i).$$

Якщо відомі оцінки похибок $arepsilon_i$ для значень y_i то скалярний добуток задають у вигляді

$$(u,v) = \sum_{i=0}^{m} \frac{u(x_i) \cdot v(x_i)}{\varepsilon_i^2}.$$

2.3 Кубічні згладжувальні сплайни

Розглянемо функціонал:

$$\Phi_1(u) = \Phi(u) + \sum_{i=0}^n \rho \left(\tilde{f}_i - u(x_i) \right)^2,$$

де $\rho_i > 0$ — деякі числа, та

$$\Phi(u) = \int_a^b (u''(x))^2 \, \mathrm{d}x.$$

Згладжуючим сплайном назвемо функцію g, яка є розв'язком задачі:

$$\Phi_1(g) = \inf_{u \in W_2^2(a,b)} \Phi_1(u).$$

Позначимо

$$\mu_i = g(x_i), \quad i = \overline{0, n}, \quad m_i = g''(x_i), \quad i = \overline{1, n - 1}.$$

Позначимо:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \frac{h_1 + h_2}{3} & \frac{h_2}{6} & 0 & \cdots & 0 & 0 \\ 0 & \frac{h_2}{6} & \frac{h_2 + h_3}{3} & \frac{h_3}{6} & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \frac{h_{n-2}}{6} & \frac{h_{n-2} + h_{n-1}}{6} & \frac{h_{n-1}}{6} \\ 0 & 0 & 0 & \cdots & 0 & \frac{h_{n-1}}{6} & \frac{h_{n-1} + h_n}{3} \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

а також

$$H = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \frac{1}{h_1} & -\left(\frac{1}{h_1} + \frac{1}{h_2}\right) & \frac{1}{h_2} & 0 & \cdots & 0 & 0 \\ 0 & \frac{1}{h_2} & -\left(\frac{1}{h_2} + \frac{1}{h_3}\right) & \frac{1}{h_3} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \frac{1}{h_{n-1}} & -\left(\frac{1}{h_{n-1}} + \frac{1}{h_n}\right) & \frac{1}{h_n} \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Якби значення μ_i були б відомі, то для побудови g достатньо було б розв'язати систему

$$A\vec{m} = H\vec{\mu}$$

та записати g(x) за формулою:

$$g(x) = m_i \cdot \frac{(x_{i+1} - x)^3}{6h_i} + m_{i+1} \cdot \frac{(x - x_i)^3}{6h_i} + \left(\mu_i - \frac{m_i \cdot h_i^2}{6}\right) \cdot \frac{x_{i+1} - x}{h_i} + \left(\mu_{i+1} - \frac{m_{i+1} \cdot h_i^2}{6}\right) \cdot \frac{x - x_i}{h_i}, \quad (2.1)$$

де $x \in [x_i, x_{i+1}], h_i = x_{i+1} - x_i, i = \overline{0, n-1}.$

Тому нам треба знайти μ . Позначимо $R=\operatorname{diag} \rho_i$ (діагональна матриця), тоді знаходимо m з матричної рівності:

$$(A + HR^{-1}H^T)\vec{m} = H\vec{f}.$$

Після цього можемо знайти $\vec{\mu}$ за формулою:

$$\vec{\mu} = \vec{f} - R^{-1}H^T\vec{m}.$$

В результаті отримуємо згладжуючий сплайн за формулою (2.1):

$$\begin{split} g(x) &= m_i \cdot \frac{(x_{i+1} - x)^3}{6h_i} + m_{i+1} \cdot \frac{(x - x_i)^3}{6h_i} + \\ &\qquad \qquad + \left(\mu_i - \frac{m_i \cdot h_i^2}{6}\right) \cdot \frac{x_{i+1} - x}{h_i} + \left(\mu_{i+1} - \frac{m_{i+1} \cdot h_i^2}{6}\right) \cdot \frac{x - x_i}{h_i}, \end{split}$$
 де $x \in [x_i, x_{i+1}], \ h_i = x_{i+1} - x_i, \ i = \overline{0, n-1}. \end{split}$

3 Практична частина

3.1 Найкраще середньоквадратичне наближення

3.1.1 Тригонометрична система функцій

Порахуємо відхилення за загальною формолою, тобто за формулою $\|f-\Phi_0\|^2$ та отримуємо: $\Delta^2(f)=0.10740063553045082.$

3.1.2 Поліноми Чебишева

Порахуємо відхилення за загальною формолою, тобто за формулою $\|f-\Phi_0\|^2$ та отримуємо: $\Delta^2(f)= \text{0.135158947199864}.$

3.2 Метод найменших квадратів

Нехай дано точки що ділить відрізок [-10, 10] на 20 рівних частин та значення функції в них:

	i		0	1 2		3		4		5	6	7	8	9
3	x_i		-10	- 9	-8	-7	7 -	-6		5	-4	-3	-2	-1
į	y_i		10	9	8	7	(3	5		4	4	4	4
	i		10	11	12	13	14	1	5	16	17	18	19	20
	x	i	0	1	2	3	4	5	5	6	7	8	9	10
	y	i	4	4	4	4	4	5)	6	7	8	9	10

Знайдемо значення похибки для різних n:

n	σ_n
1	0.2456140350877193000
2	0.0044225627749655240
3	0.0046827135264340840
4	0.0049553959299550940
5	0.0052857556586187580
6	0.0024510823676256385
7	0.0026396271651353076
8	0.0008506324753000230

Поліном найкращого середньоквадратичного наближення оптимального степеня та отримуємоб що $m=m^{\star}=2$, тобто з моменту коли наступна величина стабілізується або почне зростати:

$$\sigma^{2} = \sqrt{\frac{1}{n-m} \sum_{k=0}^{m} (P_{m}(x_{k}) - y_{k})^{2}}.$$

Відповідна "похибка" (у лапках бо взята із ваговим коефіцієнтом):

 $\sigma_2 = 0.004422562774965524.$

3.3 Кубічні згладжувальні сплайни

Будуємо кубічний сплайн для n=15.

