Definition 1 (Total Variation). $TV[f,T] = \sup_{0 < t_1 < \dots < t_n = T, n \ge 1} \sum_{k=1}^n |f(t_i) - f(t_{i-1})|$

Theorem 1 (TV of of a Brownian Motion). $(X_t)_t BM \Rightarrow TV[X,T] = \infty$ ass

Proof. Eough to show that: $\lim_{n \infty} \sum_{k=1}^{2^n} |X_{Tk2^{-n}} - X_{T(k-1)2^{-n}}| = \infty$

$$\mathbb{P}(\limsup_{n \infty} \sum_{k=1}^{2^{n}} |X_{Tk2^{-n}} - X_{T(k-1)2^{-n}}|) < M) \le \liminf \mathbb{P}(\sum_{k=1}^{2^{n}} \underbrace{|X_{Tk2^{-n}} - X_{T(k-1)2^{-n}}|}_{\mathcal{N}(0,T2^{-n})} < M)$$

$$\le \liminf \mathbb{P}(\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} |\epsilon_{k}| < \frac{M}{\sqrt{T2^{n}}})$$

$$\to 0$$

1 Continuous Time theory

 $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ filtered probability space. (X_t) continuous time process

Definition 2 (Continuous - Adapted). • X is \mathcal{F}_t -adapted (nonanticipating) if X_t is \mathcal{F}_t -measurable $\forall t$

- X is continuous if $t \to X_t(\omega)$ is continuous $\forall \omega$.
- X is measurable if $(t, \omega) \to X_t(\omega)$ is $\mathcal{B}(\mathbb{R}) \times \mathcal{F}$ -measurable.
- X is progressively measurable if $X : [0,T] \times \Omega \to \mathbb{R}; (t,\omega) \to X_t(\omega)$ is $\mathcal{B}([0,T]) \times \mathcal{F}_t$ -measurable.

Beware: measurable and adapted \Rightarrow progressively measurable. But continuous + adapted \Rightarrow progressively measurable

Definition 3 (Usual conditions). $(\mathcal{F}_t)_t$ is set to satisfy the usual conditions if

a)
$$\forall B \subseteq A \in \mathcal{F} \ P(A) = 0 \implies B \in \mathcal{F}_0 \ (completeness)$$

b)
$$\mathcal{F}_t = \bigcup_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon}$$
 (right-continuity)

Why?

• (a) \Longrightarrow : if (X_t) progressively measurable, B borel set in \mathbb{R} , $\tau = \inf\{t : X_t \in B\}$ is a stopping time.

But if (X_t) is continuous adapated, B closed, τ is always a stopping time. (doesn't need a)).

• X BM, \mathcal{F}^0_t the natural filtration. $\{t \to X_t \text{ has a local maximum at } t\} \in \mathcal{F}^0_{t^+}$ and not in \mathcal{F}^0_t . But one can prove $\mathcal{F}^0_t = \mathcal{F}^0_{t^+}$ a.s (for every set $A \in \mathcal{F}^0_{t^+}$, there exist $B \in \mathcal{F}^0_t$ such that $\mathbb{P}(A \setminus B) = 0$).

 $\mathcal{N} = \{B : B \subseteq A \in \mathcal{F}, \mathbb{P}(A) = 0\}, \mathcal{F}_t = \cap_{\varepsilon > 0}(F_t^0 \vee N) \text{ is called the standard Brownian filtration, it satisfies usual conditions.}$

b) is important if processes have jumps.

2 Continuous Time Martingale

Definition 4 (Martingale). (M_t) is a martingale if

- 1. M is adapted
- 2. $\mathbb{E}[|M_t|] < \infty \forall t$
- 3. $\mathbb{E}[M_t|\mathcal{F}_s] = M_s \forall t \geq s$

Definition 5 (Stopping time). A r.v $\tau: \Omega \to [0,\infty]$ is a stopping time if $\{\tau \leq t\} \in \mathcal{F}_t \forall t$.

Definition 6 (Stopped filtration). $\mathcal{F}_{\tau} = \{A \in \mathcal{F}_{\infty} : A \cup \{\tau \leq t\} \in \mathcal{F}_{t} \ \forall t\}$

Theorem 2 (Optional Stopping). M is a continuous martingale. τ is a stopping time. Then $(M_{t \wedge \tau})_t$ is a continuous martingale