Случайные процессы. Прикладной поток.

Теоретическое задание 4.

Процессы с независимыми приращениями. Пуассоновские процессы.

При решении можно пользоваться следующим утверждением.

Пусть $\xi_1, ..., \xi_n$ — независимые экспоненциальные случайные величины с параметром $\lambda, S_n = \xi_1 + ... + \xi_n$. Тогда вектор (S_{n-1}, S_n) имеет плотность

$$f(x,y) = p_{S_{n-1}}(x)p_{\xi_n}(y-x).$$

- 1. Пусть $(X_t, t \ge 0)$ процесс восстановления, построенный по $\{\xi_n, n \in \mathbb{N}\}$. Верно ли, что процесс X_t всегда имеет независимые приращения?
- 2. Пусть $N^1 = (N_t^1, t \ge 0), \dots, N^k = (N_t^k, t \ge 0)$ независимые пуассоновские процессы, причем N^i имеет интенсивность λ_i . Докажите, что процесс $N_t = \sum_{i=1}^k N_t^i$ также является пуассоновским, и найдите его интенсивность.
- 3. Пусть $(\xi_n, n \in \mathbb{N})$ независимые экспоненциальные случайные величины с параметром λ , $S_n = \xi_1 + \ldots + \xi_n$, а $N = (N_t, t \geqslant 0)$ процесс восстановления, построенный по ним (пуассоновский процесс интенсивности λ). Для каждого t > 0 обозначим $V_t = S_{N_t+1} t$ ("перескок") и $U_t = t S_{N_t}$ ("недоскок").
 - а) Вычислите вероятность $P(V_t > v, U_t > u)$.
 - б) Докажите, что V_t и U_t независимы и что $V_t \sim Exp(\lambda)$.
 - в) Вычислите функцию распределения U_t и $\mathsf{E} U_t$.
- 4. Пусть $(N_t, t \geqslant 0)$ пуассоновский процесс интенсивности λ . Найдите предел п.н. N_t/t при $t \to \infty$.