Изучение призмы с помощью гониометра

Шмаков Владимир — ФФКЭ Б04-105 МФТИ — март 2023

Цель работы

- Знакомство с работой и настройкой гониометра
- Определение зависимости показателя преломления стекла призмы от длины волны
- Определение марки стекла по полученным данным

Теоретические сведения

Зависимость показателя преломления от длины волны

Как мы знаем, показатель преломления любого материала зависит от длины волны падающего на материал света. В общем случае, данная зависимость имеет вид:

$$n^2=\epsilon=1+rac{w_p^2}{w_0^2-w^2},$$
где w_0- собственная частота колебаний электрона

Если круговая частота падающей волны оказывается левее w_0 , то n - действительное число. Такая область называется областью нормальной дисперсии. В противном случае n оказывается мнимым числом — мы попадаем в область аномальной дисперсии.

Зависимость квадрата показателя преломления от длины волны

Это замечательное свойство материалов активно используется в спектроскопии. Комбинируя различные виды стекла, и их форму можно создавать призмы для решения разных физических задач. И именно этот эффект позволяет описать явление дисперсии, благодаря которому на нашем небе возникает красочная картина радуги.

Характеристики спектральных приборов

• Разрешающая способность - $R=\lambda/\delta\lambda$ - возможность различать две близкие спектральные линии с длинами волн λ и $\lambda+\delta\lambda$

- Угловая дисперсия $D = d\phi/d\lambda$ позволяет определять угловое расстояние между двумя близкими спектральными линиями
- Дисперсионная область предельная ширина спектрального интервала прибора
- *Число Аббе* мера дисперсии света в прозрачных средах. Величина числа Аббе обратно пропорциональна величине *хроматической аберрации*.

Методика

Оборудование

- Гониометр
- Ртутная лампа
- Призма

Экспериментальная установка

Схема экспериментальной установки изображена на рисунке выше. Гониометр служит для определения углов, под которыми наблюдается различные спектральные компоненты.

В эксперименте используется призма, изготовленная из тяжелого флинта. Показатель преломления удобно определять по углу наименьшего отклонения $\delta(\lambda)$. Формула (1) позволяет связать показатель преломления, угол наименьшего отклонения и угол при вершине призмы.

$$n(\lambda) = \frac{\sin(\alpha + \delta(\lambda)/2)}{\sin(\alpha/2)} \tag{1}$$

Коэффициент дисперсии и средняя дисперсия — важные характеристики оптических материалов. По определению, они равны:

$$D = n_F - n_C \tag{2}$$

$$\nu = \frac{n_D - 1}{n_F - n_C} \tag{3}$$

Значения n_D, n_F, n_C определяются по графику. Они соответствуют длинам волн:

- n_D для среднего значения длин волн желтого дуплета натрия $\lambda_D=589.3$
- ullet n_F для голубой линии водорода $\lambda_F=486.1$
- ullet n_C для красной линии водорода $\lambda_C=656.3$

Еще одной важной характеристикой призмы, как спектрального прибора, является разрешающая способность. Её позволяет определить наклон наилучшей прямой:

$$R = b \frac{dn}{d\lambda}$$
, где $b - д$ лина основания призмы (4)

Обработка результатов эксперимента

Зависимость показателя преломления от длины волны

В результате эксперимента получили следующие данные:

N	$\lambda \ [$ н $_{}$ І	угол°	минуты'	секунды"	n
0	690.72	51	40	808	1.657
1	576.96	52	10	746	1.662
2	579.07	52	10	700	1.662
3	546.07	52	40	219	1.665
4	491.6	53	30	21	1.673
5	453.83	54	50	37	1.685
6	404.66	55	50	901	1.697

Показатель преломления n рассчитан по формуле (1). Построим дисперсионную кривую. Найденная функция wave2rgb позволяет перевести длину волны в восьмибитный rgb цвет. Цвета на графике ниже соответствуют цветам, которые наблюдались в эксперименте.

Зависимость показателя преломления от длины волны

Определение материала призмы

Построим линии между ближайшими экспериментальными точками. Полученная интерполяция позволяет оценить коэффициенты преломления $n_D,\ n_F,n_C$:

	D	F	C
λ $[$ нм $]$	589.3	486.1	656.3
n	1.661 ± 0.001	1.674 ± 0.001	1.658 ± 0.001

Теперь, по формуле (2) рассчитаем среднюю дисперсию стекла, из которого изготовлена призма:

$$D=n_F-n_C=0.016\pm0.002$$

По формуле (3) оценим коэффициент дисперсии:

$$u=rac{n_D-1}{n_F-n_C}=41\pm 5$$

Полученные данные позволяют определить материал стекла, из которого изготовлена призма. На найденную в википедии диаграмму Аббе нанесём ранее рассчитанные значения:

Диаграмма Аббе

Построим интервалы вычисленных значений на диаграмме. Оранжевый прямоугольник лежит в области BaF и BaSf - Бариевый флинт и Бариевый тяжелый флинт.

Оценка разрешающей способности

При помощи линейки измерим размер основания призмы. Он оказался равен $b=7.2\pm0.1$ c_{M} .

Методом наименьших квадратов линеаризуем кривую в области $550 - 700 \, н$ м. Наклон полученной прямой позволяет вычислить значение максимальной разрешающей способности призмы:

$$R_{max} = b \cdot \alpha = 3000 \pm 250$$

Во время эксперимента, была проведена оценка разрешающей способности с помощью ширины полос желтого дуплета. Тогда получили значение $R_{\text{HC}}=\lambda/\delta\lambda=200$.

Значения не взаимоисключают друг-друга. Максимальная разрешающая способность оказалась много больше оценки $R_{\scriptscriptstyle 36}$.

Вывод

В результате эксперимента удалось оценить параметры используемой призмы.

Результат эксперимента по выявлению материала призмы сошелся с данными, описанными в лабораторном практикуме. Призма действительно изготовлена из тяжелого флинта.

По ходу эксперимента удалось оценить важные характеристики призмы, как спектрального прибора. Удалось построить зависимость показателя преломления от длины волны в области видимого света.