SC223 - Linear Algebra

Aditya Tatu

Lecture 24

September 29, 2023

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, dim(U + W) =

Theorem 3: (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.

• **Proposition 18:** Let U, W be subspaces of FDVS V. Then,

 $dim(U+W) = dim(U) + dim(W) - dim(U \cap W).$ Proof: lince I n W is a FDVS, it has a bans. Let B= {P1, -1PK} be a bans of UNW {P, -, Pk} in U is LI. in Wis LI.

Let Pu = 2P1, --, Pk, U1, --, Un 3 be a bound of U Let Pu = 2P1, --, Pk, W1, --, Wm3 11 of W

$$dim(U+W) = \left| \mathcal{F}_{0} U \mathcal{F}_{W} \right| = M+K+M$$

$$dim(U) = M+K$$

$$dim(W) = M+K$$

$$dim(UNW) = K$$

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, $dim(U + W) = dim(U) + dim(W) dim(U \cap W)$.
- Theorem 4: Let $A \in \mathbb{R}^{m \times n}$. $N(A) + C(A^T) =$

Theorem 3: (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.

● Proposition 18: Let U, W be subspaces of FDVS V. Then, $dim(U + W) = dim(U) + dim(W) - dim(U \cap W)$.

• Theorem 4: Let $A \in \mathbb{R}^{m \times n}$. $N(A) + C(A^T) = N(A) \oplus C(A^T) =$

$$Span(\phi) = \{0\}.$$

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, $dim(U + W) = dim(U) + dim(W) dim(U \cap W)$.
- Theorem 4: Let $A \in \mathbb{R}^{m \times n}$. $N(A) + C(A^T) = N(A) \oplus C(A^T) = \mathbb{R}^n$.

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, $dim(U + W) = dim(U) + dim(W) dim(U \cap W)$.
- **Theorem 4:** Let $A \in \mathbb{R}^{m \times n}$. $N(A) + C(A^T) = N(A) \oplus C(A^T) = \mathbb{R}^n$. Similarly, $N(A^T) \oplus C(A) = \mathbb{R}^m$.

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, $dim(U + W) = dim(U) + dim(W) dim(U \cap W)$.
- **Theorem 4:** Let $A \in \mathbb{R}^{m \times n}$. $N(A) + C(A^T) = N(A) \oplus C(A^T) = \mathbb{R}^n$. Similarly, $N(A^T) \oplus C(A) = \mathbb{R}^m$.

Linear Transformations

Linear transformations

• Let U and V be vector spaces over the same field \mathbb{F} . A function $f:U\to V$ is said to be **Linear transformation** from U to V if

Linear transformations

• Let U and V be vector spaces over the same field \mathbb{F} . A function $f:U\to V$ is said to be **Linear transformation** from U to V if

Additive:
$$\forall x, y \in U, f(x + y) = f(x) + f(y)$$

Homogeneous: $\forall a \in \mathbb{F}, \forall x \in U, f(a \cdot x) = a \cdot f(x)$.

• If domain and co-domain vector spaces are same, we usually call Linear transformations, **Linear Operators**.

Linear transformations

ullet Let U and V be vector spaces over the same field \mathbb{F} . A function $f:U\to V$ is said to be **Linear transformation** from U to V if

Additive:
$$\forall x, y \in U, f(x + y) = f(x) + f(y)$$

Homogeneous: $\forall a \in \mathbb{F}, \forall x \in U, f(a \cdot x) = a \cdot f(x)$.

- If domain and co-domain vector spaces are same, we usually call Linear transformations, **Linear Operators**.
- Examples:

$$OU$$
 I: $U \rightarrow U$ } Identity mapping $\forall x \in U, I(x) = x$

2)
$$U = \mathcal{L}_2(\mathbb{R})$$
 Let $h \in \mathcal{L}_2(\mathbb{R})$ $h(x) = 0$
 $|x| \ge 0$
 $y(t) = \int_{-\infty}^{\infty} h(z)x(t-z) dz$

$$O \in [0, 2\pi)$$
 $R_0 : \mathbb{R}^2 \to \mathbb{R}^2$
 $R_0 : \mathbb{R}^2 \to \mathbb{R}^2$

AERMEN, A:x -> A·x.

3) U= RM, V= RM.

1)=V=R-

ullet We say that two vector spaces over \mathbb{F} , U and V are **homomorphic** if there exists an linear transformation between them.

- lacktriangle We say that two vector spaces over \mathbb{F} , U and V are **homomorphic** if there exists an linear transformation between them.
- We say that two vector spaces over \mathbb{F} , U and V are **isomorphic** if there exists an **invertible** linear transformation between them.

- ullet We say that two vector spaces over \mathbb{F} , U and V are **homomorphic** if there exists an linear transformation between them.
- We say that two vector spaces over \mathbb{F} , U and V are **isomorphic** if there exists an **invertible** linear transformation between them.
- ullet If T is an invertible linear transformation between U and V, then we say that T is an **isomorphism** between U and V.

- lacktriangle We say that two vector spaces over \mathbb{F} , U and V are **homomorphic** if there exists an linear transformation between them.
- ullet We say that two vector spaces over \mathbb{F} , U and V are **isomorphic** if there exists an **invertible** linear transformation between them.
- ullet If T is an invertible linear transformation between U and V, then we say that T is an **isomorphism** between U and V.
- ullet Proposition 19: Show that two vector spaces U and V over $\mathbb F$ are isomorphic iff they have the same dimensions.

• Let $T: U \to V$ be a LT, and let $\beta_U := \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ denote the basis of U and V respectively.

- Let $T: U \to V$ be a LT, and let $\beta_U := \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ denote the basis of U and V respectively.
- For an $x \in U, x = \sum_{i=1}^{n} a_i u_i$,

- ullet Let $T:U \to V$ be a LT, and let $\beta_U := \{u_1,\ldots,u_n\}$ and $\beta_V = \{v_1,\ldots,v_m\}$ denote the basis of U and V respectively.
- For an $x \in U, x = \sum_{i=1}^{n} a_i u_i,$ $y = Tx = T(\sum_{i=1}^{n} a_i u_i) = \sum_{i=1}^{n} a_i T(u_i).$

- Let $T: U \to V$ be a LT, and let $\beta_U := \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ denote the basis of U and V respectively.
- For an $x \in U$, $x = \sum_{i=1}^{n} a_i u_i$,
- $y = Tx = T(\sum_{i=1}^{n} a_i u_i) = \sum_{i=1}^{n} a_i T(u_i).$
- Thus, $T(u_i)$, i = 1, ..., n is enough to allow us to compute T(x), $\forall x \in U$.

- Let $T: U \to V$ be a LT, and let $\beta_U := \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ denote the basis of U and V respectively.
- For an $x \in U, x = \sum_{i=1}^{n} a_i u_i$,

 $y = Tx = T(\sum_{i=1}^{n} a_i u_i) = \sum_{i=1}^{n} a_i T(u_i).$

- Thus, $T(u_i)$, i = 1, ..., n is enough to allow us to compute T(x), $\forall x \in U$.
- ullet Now, $T(u_i) \in V$, thus $T(u_i) = \sum_{j=1}^m c_{ji} v_j$.

- Let $T: U \to V$ be a LT, and let $\beta_U := \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ denote the basis of U and V respectively.
- For an $x \in U$, $x = \sum_{i=1}^{n} a_i u_i$, $y = Tx = T(\sum_{i=1}^{n} a_i u_i) = \sum_{i=1}^{n} a_i T(u_i)$.
- Thus, $T(u_i)$, i = 1, ..., n is enough to allow us to compute T(x), $\forall x \in U$.
- Now, $T(u_i) \in V$, thus $T(u_i) = \sum_{j=1}^m c_{ji} v_j$.
- Then, $y = \sum_{i=1}^{n} a_i (\sum_{j=1}^{m} c_{ji} v_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i c_{ji} v_j$.

- Let $T: U \to V$ be a LT, and let $\beta_U := \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ denote the basis of U and V respectively.
- For an $x \in U$, $x = \sum_{i=1}^{n} a_i u_i$, $y = Tx = T(\sum_{i=1}^{n} a_i u_i) = \sum_{i=1}^{n} a_i T(u_i)$.
- Thus, $T(u_i)$, i = 1, ..., n is enough to allow us to compute T(x), $\forall x \in U$.
- $lackbox{Now}$, $T(u_i) \in V$, thus $T(u_i) = \sum_{j=1}^m c_{ji} v_j$.
- Then, $y = \sum_{i=1}^{n} a_i (\sum_{j=1}^{m} c_{ji} v_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i c_{ji} v_j$.
- Also, since $y \in V$, $y = \sum_{j=1}^{m} b_j v_j$.

- Let $T: U \to V$ be a LT, and let $\beta_U := \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ denote the basis of U and V respectively.
- For an $x \in U$, $x = \sum_{i=1}^{n} a_i u_i$, $y = Tx = T(\sum_{i=1}^{n} a_i u_i) = \sum_{i=1}^{n} a_i T(u_i)$.
- Thus, $T(u_i)$, $i=1,\ldots,n$ is enough to allow us to compute $T(x), \forall x \in U$.
- Now, $T(u_i) \in V$, thus $T(u_i) = \sum_{j=1}^m c_{ji} v_j$.
- Then, $y = \sum_{i=1}^{n} a_i (\sum_{j=1}^{m} c_{ji} v_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i c_{ji} v_j$.
- Also, since $y \in V, y = \sum_{j=1}^{m} b_j v_j$.
- Thus, $\sum_{j=1}^{m} b_j v_j = \sum_{j=1}^{m} \sum_{i=1}^{n} c_{ji} a_i v_j$.

- Let $T: U \to V$ be a LT, and let $\beta_U := \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ denote the basis of U and V respectively.
- For an $x \in U$, $x = \sum_{i=1}^{n} a_i u_i$, $y = Tx = T(\sum_{i=1}^{n} a_i u_i) = \sum_{i=1}^{n} a_i T(u_i)$.
- Thus, $T(u_i)$, $i=1,\ldots,n$ is enough to allow us to compute $T(x), \forall x \in U$.
- Now, $T(u_i) \in V$, thus $T(u_i) = \sum_{j=1}^m c_{ji} v_j$.
- Then, $y = \sum_{i=1}^{n} a_i (\sum_{j=1}^{m} c_{ji} v_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i c_{ji} v_j$.
- Also, since $y \in V, y = \sum_{j=1}^{m} b_j v_j$.
- Thus, $\sum_{j=1}^{m} b_j v_j = \sum_{j=1}^{m} \sum_{i=1}^{n} c_{ji} a_i v_j$.

ullet For $k \in \{1, \ldots, m\}, b_k = \sum_{i=1}^n c_{ki} a_i$,

ullet For $k \in \{1, \ldots, m\}, b_k = \sum_{i=1}^n c_{ki} a_i$, or,

$$\underbrace{\begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}}_{[y]_{\beta_V}} = \underbrace{\begin{bmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \vdots & \vdots \\ c_{m1} & \dots & c_{mn} \end{bmatrix}}_{[T]_{\beta_U}^{\beta_V}} \underbrace{\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}}_{[x]_{\beta_U}}$$

• The matrix $[T]_{\beta_U}^{\beta_V}$ is called the matrix representation of the linear transformation T with respect to the basis β_U and β_V .

Examples

 $\bullet \ \ \tfrac{d}{dx} : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R}).$

Examples

- $\bullet \ \frac{d}{dx} : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R}).$ $\bullet \ R_\theta : \mathbb{R}^2 \to \mathbb{R}^2.$

Examples

- $\bullet \ \ \frac{d}{dx}: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R}).$
- \bullet $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$.
- Let $p \in \mathcal{P}_3(\mathbb{R})$ be such that $p(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3$. Define $T_p : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_6(\mathbb{R})$ by $T_p(q) = p \cdot q, \forall q \in \mathcal{P}_3(\mathbb{R})$, where \cdot represents multiplication between polynomials.