Database Management Systems

Lecture 10

Evaluating Relational Operators

Query Optimization (IV)

- running example schema
 - Students (SID: integer, SName: string, Age: integer, RoundedGPA: integer)
 - Courses (CID: integer, CName: string, Description: string)
 - Exams (SID: integer, CID: integer, EDate: date, Grade: integer, FacultyMember: string)
 - Students
 - every record has 50 bytes
 - there are 80 records / page
 - 500 pages
 - Courses
 - every record has 40 bytes
 - there are 100 records / page
 - 1 page

- Exams
 - every record has 40 bytes
 - there are 100 records / page
 - 1000 pages

IBM's System R Optimizer

- tremendous influence on subsequent relational optimizers
- design choices
 - use statistics to estimate the costs of query evaluation plans
 - consider only plans with binary joins in which the inner relation is a base relation
 - focus optimization on SQL queries without nesting
 - don't eliminate duplicates when performing projections (unless DISTINCT is used)

- * E M pages * * 1000 pages *
- * S N pages * * 500 pages *

SELECT S.SName
FROM Exams E, Students S
WHERE E.SID = S.SID AND E.CID = 7
AND S.Age > 20

- σ , π on-the-fly
- cost of plan very high:
 - 1000 + 1000 * 500 = 501,000 I/Os
- less efficient plan
 - join: cross-product followed by a selection

- * optimizations
- reduce sizes of the relations to be joined
 - push selections, projections ahead of the join
- alternative plans
 - push selections ahead of joins
- selection
 - file scan
 - write the result to a temporary relation on disk
- join the temporary relations using Sort-Merge Join

- 5 available buffer pages
- cost
 - $\sigma_{\text{CID=7}}$
 - scan Exams: 1000 I/Os
 - write T1
 - assume exams are (file scan) Exams (file scan) (file uniformly distributed across all courses, i.e., T1 has 10 pages
 - \bullet $\sigma_{\text{Age}>20}$
 - scan Students: 500 I/Os
 - write T2
 - assume ages are uniformly distributed over the range 19 to 22,
 i.e., T2 has 250 pages

- 5 available buffer pages
- cost
 - Sort-Merge Join
 - T1 10 pages
 - sort T1: 2 * 2 * 10 = 40 I/Os
 - T2 250 pages
 - sort T2: 2 * 4 * 250 = 2000 I/Os
 - merge sorted T1 and T2
 - 10 + 250 = 260 I/Os
 - π on the fly

=> **total cost**:
$$1000 + 10 + 500 + 250 + 40 + 2000 + 260 = 4060 I/Os selection join$$

(scan:

(file scan)

write to

temp T1)

- 5 available buffer pages
- cost
 - **Block Nested Loops Join**
 - T1 10 pages, T2 250 pages
 - T1 outer relation
 - => scan T1: 10 I/Os
 - [10/3] = 4 T1 blocks
 - => T2 scanned 4 times: 4 * 250 = 1000 I/Os
 - BNLJ cost: 10 + 1000 = 1010 I/Os
 - π on the fly

=> total cost:
$$1000 + 10 + 500 + 250 + 10 + 1000 = 2770 I/Os$$
 selection join

(scan:

(file scan)

- push projections ahead of joins
 - drop unwanted columns while scanning Exams and Students to perform the selections (scan:
 - => T1[SID], T2[SID, SName]
- T1 fits within 3 buffer pages
 - => T2 scanned only once
 - => cost of BNLJ drops to under 250 I/Os
 - => total cost: \approx 2000 I/Os

write to

(file scan)

- * optimizations
- investigate the use of indexes
- clustered static hash index on Exams(CID)
- hash index on Students(SID)

• cost

don't write result to temp)

- $\sigma_{\text{CID=7}}$
 - assume exams are uniformly distributed across all courses => 100,000 exams / 100 courses => 1,000 exams / course
 - clustered index on CID => 1,000 tuples for course with CID=7 appear consecutively within the same bucket => cost: 10 I/Os
 - the result of the selection is not materialized, the join is pipelined

- cost
 - Index Nested Loops
 - find matching Students tuple for each selected exam
 - use hash index on SID
 - assume the index uses a1 => cost of 1.2 I/Os (on avg.)
 - σ , π performed on-the-fly on each tuple in the result of the join

=> total cost = <u>10</u> +

1000

*

<u>1.2</u>

(use hash index; $\sigma_{\text{CID=7}}$

(hash index on CID) Exams

don't write result

to temp)

(on-the-fly)

(on-the-fly)

 π_{SName}

SID=SID

 $\sigma_{\text{Age>20}}$

(Index Nested Loops, with pipelining)

Students (hash index on SID)

2 = **1210** I/Os

 σ on Exams num. of Exams tuples find matching Students tuple (on avg.)

- * obs.
- the selection Age>20 is not pushed ahead of the join in this case
- there is a hash index on SID in Students
- but there aren't any indexes on the result of the selection Age>20

Estimating the Cost of a Plan

- * estimating the cost of an evaluation plan for a query block
- for each node N in the tree:
 - estimate the cost of the corresponding operation
 - pipelining versus temporary relations
 - estimate the size of N's result and whether it is sorted
 - N's result is the input of N's parent node
 - these estimates affect the estimation of cost, size, and sort order for N's parent

Estimating the Cost of a Plan

- estimating costs
 - use data about the input relations (such statistics are stored in the DBMS's system catalogs)
 - number of pages, existing indexes, etc.
- obtained estimates are at best approximations to actual sizes and costs
- => one shouldn't expect the optimizer to find the best possible plan
- optimizer goals:
 - avoid the worst plans
 - find a good plan

Statistics Maintained by the DBMS

- updated periodically, not every time the data is changed
 - relation R
 - cardinality NTuples(R)
 - the number of tuples in R
 - size NPages(R)
 - the number of pages in R
 - index I
 - cardinality NKeys(I)
 - the number of distinct key values for I
 - size INPages(I)
 - the number of pages for I
 - B+ tree index
 - number of leaf pages

Statistics Maintained by the DBMS

- index I
 - height IHeight(I)
 - maintained for tree indexes
 - the number of nonleaf levels in I
 - range ILow(I), IHigh(I)
 - the minimum / maximum key value in I

query Q

```
SELECT attribute list FROM relation list WHERE term _1 \Lambda ... \Lambda term _k
```

- the maximum number of tuples in Q's result:
 - $\prod |R_i|, R_i \in \text{relation list}$
- every *term*; in the WHERE clause eliminates some candidate tuples
 - associate a reduction factor RF_j with each term $term_j$
 - RF_j models the impact $term_j$ has on the result size
- estimate the actual size of the result:
 - $\prod |R_i| * \prod RF_j$
 - the maximum result size times the product of the reduction factors for the terms in the WHERE clause
- assumption: the conditions tested by the terms in the WHERE clause are statistically independent

- compute reduction factors for terms in the WHERE clause
- assumptions:
 - uniform distribution of values
 - independent distribution of values in different columns

```
SELECT attribute list FROM relation list WHERE term_1 AND ... AND term_k
```

- column = value
 - index I on column=> RF approximated by 1/NKeys(I)
 - no index on column

```
=> RF: 1/10
```

 maintain statistics on column (e.g., number of distinct values in column) to obtain a better value

- *column1 = column2*
 - indexes I1 on column1, I2 on column2=> RF: 1/MAX(NKeys(I1), NKeys(I2))
 - only one index I (on one of the 2 columns)=> RF: 1/NKeys(I)
 - no indexes=> RF: 1/10
- column > value
 - index I on column
 - => RF: (IHigh(I) value) / (IHigh(I) ILow(I))
 - no index on *column* or *column* not of an arithmetic type
 => a value less than 0.5 is arbitrarily chosen
 - similar formulas can be obtained for other range selections

- column IN (list of values)
 - => RF: (RF for *column = value*) * number of items in list (but at most 0.5)
- NOT condition
 - => RF: 1 RF for condition
- obtain better estimates
 - use more detailed statistics (e.g., histograms of the values in a column)

- central role in generating alternative plans
- different join orders can be considered
- selections, projections can be pushed ahead of joins
- cross-products can be converted to joins
- selections
 - cascading selections
 - $\sigma_{c1 \wedge ... \wedge cn}(R) \equiv \sigma_{c1}(...(\sigma_{cn}(R)))$
 - commutativity
 - $\sigma_{c1}(\sigma_{c2}(R)) \equiv \sigma_{c2}(\sigma_{c1}(R))$

- projections
 - cascading projections
 - $\pi_{a1}(R) \equiv \pi_{a1}(...(\pi_{an}(R)))$
 - a_i set of attributes in R
 - $a_i \subseteq a_{i+1}$, for i = 1..n-1

- joins and cross-products
 - assumption
 - fields are identified by their name, not by their position
 - associativity
 - $R \times (S \times T) \equiv (R \times S) \times T$
 - $R * (S * T) \equiv (R * S) * T$
 - commutativity
 - $R \times S \equiv S \times R$
 - $R * S \equiv S * R$
 - can choose the inner / outer relation in a join

- joins and cross-products
- e.g., check that $R * (S * T) \equiv (T * R) * S$
 - commutativity
 - $R * (S * T) \equiv R * (T * S)$
 - associativity
 - $R * (T * S) \equiv (R * T) * S$
 - commutativity
 - $(R * T) * S \equiv (T * R) * S$

- can commute σ with π if σ uses only attributes retained by π
 - $\pi_{a}(\sigma_{c}(R)) \equiv \sigma_{c}(\pi_{a}(R))$
- can combine σ with \times to form a join
 - $R \otimes_{c} S \equiv \sigma_{c}(R \times S)$
- can commute σ with \times or a join when the selection condition includes only fields of one of the arguments (to the cross-product or join)
 - for instance:
 - $\sigma_{c}(R * S) \equiv \sigma_{c}(R) * S$
 - $\sigma_c(R \times S) \equiv \sigma_c(R) \times S$
 - condition c must include only fields from R
- in general: $\sigma_c(R \times S) \equiv \sigma_{c1}(\sigma_{c2}(R) \times \sigma_{c3}(S))$
 - c1 attributes of both R and S
 - c2 only attributes of R
 - c3 only attributes of S

- can commute π with \times
 - $\pi_a(R \times S) \equiv \pi_{a1}(R) \times \pi_{a2}(S)$
 - a1 attributes in a that appear in R
 - a2 attributes in α that appear in S
- can commute π with join
 - $\pi_{a}(R \otimes_{c} S) \equiv \pi_{a1}(R) \otimes_{c} \pi_{a2}(S)$
 - every attribute in c must appear in a
 - a1 attributes in a that appear in R
 - a2 attributes in a that appear in S
 - a doesn't contain all the attributes in c generalization
 - eliminate unwanted fields, compute join, eliminate fields not in a
 - $\pi_{a}(R \otimes_{c} S) \equiv \pi_{a}(\pi_{a1}(R) \otimes_{c} \pi_{a2}(S))$
 - a1 attributes of R that appear in either a or c
 - a2 attributes of S that appear in either a or c

- query Q
 - consider a certain set of plans
 - choose the plan with the least estimated cost
 - algebraic equivalences
 - implementations techniques for Q's operators
- not all algebraically equivalent plans are enumerated (optimization costs would be too high)
- two main cases
 - queries with one relation in the FROM clause
 - queries with two or more relations in the FROM clause

- queries with one relation in the FROM clause
 - no joins; only σ , π , grouping, aggregate operations
 - one σ or π or aggregate operation => consider implementation techniques and cost estimates discussed in previous lectures
 - combination of several σ , π , aggregate operations
 - plans with / without indexes
 - example query:

```
SELECT S.RoundedGPA, COUNT(*)
FROM Students S
WHERE S.RoundedGPA > 5 AND S.Age = 20
GROUP BY S.RoundedGPA
HAVING COUNT(DISTINCT S.SName) > 5
```

```
\pi_{S.RoundedGPA, COUNT(*)}(
HAVING_{COUNT DISTINCT (S.SName) > 5}(
GROUP BY_{S.RoundedGPA}(
\pi_{S.RoundedGPA, S.SName}(
\sigma_{S.RoundedGPA > 5 \land S.Age = 20}(
Students)))))
```

- * plans without indexes
- apply σ , π while scanning Students
 - file scan
 - => NPages(Students): 500 I/Os
 - write out tuples to a temporary relation T
 - NPages(Students) * RF(RoundedGPA > 5) * RF(Age = 20) *
 (size of a pair < RoundedGPA, SName > / size of a Students tuple)
 - RF for RoundedGPA > 5
 - 0.5
 - RF for *Age = 20*
 - 0.1
 - size of <RoundedGPA, SName>
 - ≈ 0.8 * size of a Students tuple
 - => 500 * 0.5 * 0.1 * 0.8 = 20 I/Os (temporary relation T)

- * plans without indexes
- GROUP BY
 - sort T in 2 passes
 - 4 * 20 = 80 I/Os
- HAVING, aggregations
 - no additional I/O
- total cost: 500 + 20 + 80 = 600 I/Os

- * plans that use an index
- available indexes on Students a2
 - hash index on <Age>
 - B+ tree index on <RoundedGPA>
 - B+ tree index on <RoundedGPA, SName, Age>
- single-index access path
 - choose the index that provides the most selective access path
 - apply π , nonprimary selection terms
 - compute grouping and aggregation operations
- example
 - use the hash index on Age to retrieve Students with Age = 20
 - cost: retrieve index entries and corresponding Students tuples

- * plans that use an index
- single-index access path
 - apply condition RoundedGPA > 5 to each retrieved tuple
 - retain RoundedGPA and SName
 - write out tuples to a temporary relation
 - sort the temporary relation by RoundedGPA to identify groups
 - apply the HAVING condition (to eliminate some groups)

- * plans that use an index
- multiple-index access path
 - several indexes using a2 / a3 match the selection condition, e.g., I1, I2
 - retrieve Rids₁₁, Rids₁₂ using I1, I2
 - get tuples with rids in $Rids_{11} \cap Rids_{12}$ (tuples satisfying the primary selection terms of I1 and I2)
 - apply π , nonprimary selection terms
 - compute grouping and aggregation operations
- example
 - use the index on Age => rids of tuples with Age = 20 (R1)
 - index on RoundedGPA => rids of tuples with RoundedGPA > 5 (R2)
 - retrieve tuples with rids in R1 ∩ R2
 - keep only RoundedGPA and SName

- * plans that use an index
- multiple-index access path
 - write out tuples to a temporary relation
 - sort the temporary relation by RoundedGPA to identify groups
 - apply the HAVING condition (to eliminate some groups)

- * plans that use an index
- sorted index access path
 - works well when the index is clustered
 - B+ tree index I with search key K
 - GROUP BY attributes prefix of K
 - use the index to retrieve tuples in the order required by the GROUP BY clause
 - apply σ , π
 - compute aggregation operations
- example
 - use the B+ tree index on RoundedGPA to retrieve Students tuples with RoundedGPA > 5, ordered by RoundedGPA
 - aggregations in HAVING, SELECT computed on-the-fly

- * plans that use an index
- index-only access path
 - dense index I with search key K
 - all the attributes in the query are included in K
 - => index-only scan, don't need to retrieve tuples from the relation
 - data entries
 - apply σ
 - perform π
 - sort the result (to identify groups)
 - compute aggregate operations
- * obs.
 - index I doesn't need to match the selections in the WHERE clause

- * plans that use an index
- index-only access path
- * obs. I tree index, GROUP BY attributes prefix of K => can avoid sorting
- example
 - use the B+ tree index on <RoundedGPA, SName, Age> to retrieve entries with RoundedGPA > 5, ordered by RoundedGPA
 - select entries with Age = 20
 - aggregation operations in the HAVING and SELECT clauses computed on-the-fly

- queries with several relations in the FROM clause
 - joins, cross-products => queries can be quite expensive
 - different join orders => intermediate relations of widely varying sizes => plans with very different costs
- class of plans considered by the optimizer
- plan enumeration

queries with several relations in the FROM clause

- linear trees
 - at least one child of a join node is a base relation
- left-deep trees
 - the right child of each join node is a base relation
- bushy tree not linear

- queries with several relations in the FROM clause
- fundamental decision in System R
 - only left-deep trees are considered

- motivation
 - number of joins increases => number of alternative plans increases quickly => must prune the search space
 - left-deep trees
 - generate all <u>fully pipelined plans</u> (all joins are evaluated using pipelining)

- * obs.
- not all plans based on left-deep trees are fully pipelined
- e.g., sort-merge join
 - outer tuples may have to be retrieved in a particular order, so the outer relation should be materialized

References

- [Ra00] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (2nd Edition), McGraw-Hill, 2000
- [Da03] DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003
- [Ga08] GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book, Prentice Hall Press, 2008
- [Ra07] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems, McGraw-Hill,
 http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.
 html
- [Si10] SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts, McGraw-Hill, 2010, http://codex.cs.yale.edu/avi/db-book/
- [UI11] ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html