Лекция 4. Кинематика твёрдого тела.

Движение механической системы

Пространством обозначим аффинное евклидово пространство E^n . Механическая система в момент t^0 или положение системы в момент t_0 - семейство $M = \{M_\tau\}_{\tau \in T}$ точек в E^n . Движение этой системы - семейство $DM = \{D_\tau : J \to E_n \}_{\tau \in T}$ дважды непрерывно дифференцируемых функций от времени t причём ($\forall \tau \in T$) (D_τ (t_0) = M_τ). Перемещение механической системы за время от t_1 до t_2 - семейство векторов $\left\{\overline{D_\tau(t_1), D_\tau(t_2)}\right\}_{\tau \in T}$.

Твердое тело

Различные множества движений DM - класс движений. Неизменяемая на классе движений система - механическую система, причём ($\forall t \in J$) ($\forall \tau_1, \tau_2 \in T$) ($\rho((D_{\tau_1}(t), D_{\tau_2}(t)) = \rho(M_{\tau_1}, M_{\tau_2})$ для любого движения этого класса. Механическая система - сплошная связная среда на классе движений, если каждое ее положение есть область или замкнутая область в E^n . Твердое тело или абсолютно твердое тело на классе движений - сплошная связная неизменяемая механическая система на этом классе движений.

Число степеней свободы

Движение DM = $\{D_{\tau}\}_{\tau \in T}$ может быть выражено через систему скалярных функций $q_i: J \to R, i = 1,...,m$, если: $(\forall \tau \in T) \ (\exists (q_1, \ldots, q_m) \to f_{\tau} \ (q_1, \ldots, q_m))$ и $(\forall t \in J) \ (D_{\tau} \ (t) = f_{\tau} \ (q_1(t), \ldots, q_m(t)))$.

Механическая система имеет s степеней свободы положения на классе движений, если всякое движение этого класса может быть выражено через некоторую систему скалярных функций $q_i: J \rightarrow R$, i=1,...,s и если хотя бы одно движение этого класса не может быть выражено ни через какую систему из меньшего числа скалярных функций.

Упражнение 1.1: Движение в E^2 системы, состоящей из N точек равноудалённых от некоторого центра на радиус r (фактически, точки образуют окружность). Тогда голономная связь выглядит следующим образом: $f = \left(x_i - x_j\right)^2 - \left(y_i - y_j\right)^2 - r^2 = 0$, где (x_i, y_i) , (x_j, y_j) $i, j = 1 \dots N$ — координаты двух точек системы в E^2 . Число степеней свободы системы равно: $S = 2 \cdot N - 1$

Группа движений твердого тела

Всякое движение твердого тела может быть задано через шесть скалярных функций a_1 , a_2 , a_3 , ϕ , ψ , θ (ϕ , ψ , θ - углы Эйлера) по формулам

$$x_j^{\tau}(t) = a_j(t) + \sum_{k=1}^{3} p_{k,j}(t) y_k^{\tau}, \ j = 1, 2, 3,$$

следовательно, значит всякому перемещению соответствует преобразование D: $E^3 \to E^3$. Задавая всевозможные движения и фиксируя всевозможные моменты $t \in J$, мы будем получать те или иные перемещения твердого тела и соответствующие ему биекции D: $E^3 \to E^3$. Семейство D^3 всех таких биекций называют группой движений в E^3 .

Подгруппы движений

В механике изучают различные подгруппы группы D^3 . Рассмотрим четыре из них (поступательное, вращение вокруг неподвижной оси, плоско-параллельное движение, вращение вокруг неподвижной точки) подробнее.

Поступательное движение твердого тела

Движение твердого тела - *поступательное*, если направленный отрезок, соединяющий любые две несовпадающие точки этого тела, перемещается параллельно самому себе во все время движения. Есть иное (но эквивалентное данному) определение: движение твердого тела называют *поступательным*, если у подвижного репера, связанного с этим телом, с течением

времени может изменяться только начало репера.

Теорема: Поступательное движение твердого тела обладает свойствами:

- α) положение тела определяется положением любой его точки
- β) перемещения всех точек тела за время от t_0 до t_1 равны между собой
- у) скорости всех точек тела равны между собой
- δ) ускорения всех точек тела равны между собой
- ε) твердое тело на классе поступательных движений имеет три степени свободы.

Вращение твердого тела вокруг неподвижной оси

Вращение вокруг неподвижной оси - движение твердого тела, для которого в пространстве, связанном с этим телом, существует прямая, все точки которой имеют постоянные координаты в неподвижном репере. Если точка М тела имеет координаты y_1 , y_2 , y_3 и $x_1(t)$, $x_2(t)$, $x_3(t)$ в подвижном и неподвижном реперах соответственно, то из этих формул можно получить равенство $x_2^2(t) + x_3^2(t) = y_2^2 + y_3^2$. Таким образом, траектория любой точки твердого тела при его вращении вокруг неподвижной оси - окружность с центром на оси вращения.

Допустим А — точка пересечения оси вращения с плоскостью, перпендикулярной этой оси вращения и проходящей через точку М тела, а $\vec{\rho} = \overrightarrow{AM}$, $\vec{h} = \overrightarrow{OA}$, $\vec{r} = \overrightarrow{OM}$, $\Delta \phi = \phi(t + \Delta t) - \phi(t)$, $\Delta \vec{r} = \vec{r}(t + \Delta t) - \vec{r}(t)$ и введем в рассмотрение векторы: скорости $\vec{v} = \vec{r}$ точки М , угла поворота $\overrightarrow{\Delta \phi} = (\Delta \phi)_{11}$ и угловой скорости $\overrightarrow{\omega} = \dot{\phi}_{11} = \lim_{\Delta t \to 0} (\overrightarrow{\Delta \phi}/\Delta t)$.

Теорема: В принятых обозначениях истинны формулы:

$$\Delta \vec{r} = \overrightarrow{\Delta \phi} \times \vec{r} + \vec{o}(\Delta t)$$
 при $\Delta t \to 0$, $\vec{v} = \vec{\omega} \times \vec{r}$ (формула Эйлера).

Угловая скорость $\vec{\omega}$ не зависит от выбора точки твердого тела. Она называется *угловой скоростью твердого тела* в момент t при его вращении вокруг неподвижной оси.

Плоское движение твердого тела

Плоским или плоско-параллельным называют такое движение твердого тела, при котором в неподвижном пространстве существует плоскость α (плоскость параллелизма) такая, что сечение, состоящее из точек твердого тела, лежащих в α в момент $t_0 \in J$, принадлежит α при всех $t \in J$.

Связь между координатами точки М в подвижном и неподвижном репере: $(\xi(t), \eta(t), \zeta(t) - в$ подвижном репере; x,y,z-в неподвижном базисе)

$$\begin{pmatrix} \xi(t) \\ \eta(t) \\ \zeta(t) \end{pmatrix} = \begin{pmatrix} a_1(t) \\ a_2(t) \\ 0 \end{pmatrix} + \begin{pmatrix} p_{1,1} & p_{1,2} & 0 \\ p_{2,1} & p_{2,2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

 ζ остается постоянной во времени, а преобразование координат ξ , η происходит по формулам: ξ = a_1 + $p_{1,1}x$ + $p_{1,2}y$, η = a_2 + $p_{2,1}x$ + $p_{2,2}y$. При изучении плоского движения твердого тела можно ограничиться рассмотрением движения плоской фигуры Q на плоскости Q, то есть твердого тела в E^2 . Для того, чтобы найти a_i , $p_{i,j}$, получим связь между ξ , η и χ , γ непосредственно для плоского движения.

Полагая $\vec{\rho} = \overline{M_0 M}$, $\vec{r} = \overline{O M}$, $\overrightarrow{r_0} = \overline{O M_0}$, получаем $\vec{r} = \overrightarrow{r_0} + \vec{\rho}$. Проектируя это равенство на неподвижные оси приходим к искомым соотношениям: $\xi = \xi_0 + x\cos\phi - y\sin\phi$, $\eta = \eta 0 + x\sin\phi + y\cos\phi$, где $(\xi_0, \eta_0) \sim M_0$, а ϕ — угол между $\overrightarrow{e_\xi}$ и $\vec{\iota}$.

Теорема: Пусть П — некоторое перемещение твердого тела в E^2 и С — произвольная точка этого тела в E^2 , а C_1 , C_2 — ее начальное и конечное положения в перемещении П. Тогда:

- 1) Перемещение П представимо в виде композиции П = $\Pi_{\text{пост}}(C) \circ \Pi_{\text{вращ}}(C_1) = \Pi_{\text{вращ}}(C_2) \circ \Pi_{\text{пост}}(C)$, где $\Pi_{\text{пост}}(C)$ поступательное перемещение тела вместе с точкой С , а $\Pi_{\text{вращ}}(C_i)$ вращательное перемещение тела вокруг точки C_i ;
- 2) Углы поворота перемещений $\Pi_{\text{вращ}}(C_1)$, $\Pi_{\text{вращ}}(C_2)$ равны и их общее значение не зависит от выбора полюса С.

Теорема: Любое непоступательное перемещение твердого тела в E^2 - вращательное перемещение вокруг некоторого полюса (центра вращения).

Формула Эйлера и ее следствие

Пусть $\vec{r}=\vec{r}$ (t) — радиус-вектор произвольной точки плоского сечения твердого тела в неподвижной системе координат. Рассмотрим значение перемещения этой точки $\Delta \vec{r}=\vec{r}(t+\Delta t)-\vec{r}(t)$. По теореме Шаля, эта величина складывается из $\Delta \vec{r}_{\rm A}=\vec{r}_{\rm A}(t+\Delta t)-\vec{r}_{\rm A}(t)$ — величины поступательного перемещения вместе с полюсом A, и $\Delta \vec{r}_{\rm вращ}$ — величины перемещения вращения вокруг оси, проходящей через полюс A и перпендикулярной плоскости параллелизма. Получаем: $\Delta \vec{r}_{\rm вращ} = \overrightarrow{\Delta \phi} \times (\vec{r} - \vec{r}_{\rm A}) + \vec{o}(\Delta t)$, откуда: $\Delta \vec{r} = \Delta \vec{r}_{\rm A} + \overrightarrow{\Delta \phi} \times (\vec{r} - \Delta \vec{r}_{\rm A}) + \vec{o}(\Delta t)$.

Вектор $\overrightarrow{\Delta \phi}$ и вектор $\overrightarrow{\omega} = \lim_{\Delta t \to 0} (\overrightarrow{\Delta \phi}/\Delta t) = d\overrightarrow{\phi}$ (t)/dt не зависят от выбора полюса A и точки M. Здесь $\overrightarrow{\phi}$ (t) - полярный угол $\uparrow \uparrow \overrightarrow{\Delta \phi}$. Вектор $\overrightarrow{\omega}$ (ω (t) = d ϕ (t)/dt, $\uparrow \uparrow \overrightarrow{\Delta \phi}$) - угловая скорость твердого тела при его плоском движении. Разделив полученное ранее равенство на Δt и перейдя к пределу при $\Delta t \to 0$, получим формулу Эйлера: $\overrightarrow{v} = \overrightarrow{v}_A + \overrightarrow{\omega} \times (\overrightarrow{r} - \overrightarrow{r}_A)$.

Следствие: При плоском движении твердого тела, проекции скоростей концов отрезка, расположенного в плоскости параллелизма, на направление этого отрезка равны между собой.

Центр скоростей. Центроиды. Теорема Пуансо

Теорема: Если движение твердого тела является плоскопараллельным, и плоскость Q жестко связана с этим телом, двигаясь в плоскости параллелизма α, то, если в данный момент времени угловая скорость тела не равна нулю, существует единственная точка С плоскости Q, скорость которой равна нулю в этот момент. Точка С - *мгновенным центром скоростей* в плоском движении твердого тела. По формуле Эйлера, можно сказать, что С – *центр вращения*.

Геометрическое место мгновенных центров скоростей в неподвижной плоскости α (в подвижной плоскости Q) называют *неподвижной центроидой* (соответственно *подвижной центроидой*). Обе центроиды — некоторые кривые.

Теорема Пуансо: При плоском непоступательном движении твердого тела подвижная центроида катится без скольжения по неподвижной.

Ускорение точек твердого тела в плоском движении

Продифференцировав формулу Эйлера по t, получим: $\vec{w} = \vec{w}_A + \vec{w}_1 + \vec{w}_2$, где $\vec{w}_1 = \vec{\varepsilon} \times (\vec{r} - \vec{r}_A)$, $\vec{\varepsilon} = \dot{\vec{\omega}}$, $\vec{w}_2 = \vec{\omega} \times (\vec{v} - \vec{v}_A)$. В силу $\vec{\omega} \perp (\vec{r} - \vec{r}_A)$ получаем: $\vec{w}_2 = -\omega^2 (\vec{r} - \vec{r}_A)$. Векторы $\vec{\varepsilon}$, \vec{w}_1 , \vec{w}_2 - угловое ускорение, вращательное ускорение и осестремительное ускорение твердого тела в плоском движении.

Спроектируем продифференцированную по t формулу Эйлера на неподвижные орты $\vec{\varepsilon}_\xi$, $\vec{\varepsilon}_\eta$ и на подвижные орты $\vec{\iota}, \vec{\jmath}$: $w_\xi = \ddot{\xi}_A - \ddot{\varphi}(\eta - \eta_A) - \dot{\varphi}^2(\xi - \xi_A)$, $w_\eta = \ddot{\eta}_A + \ddot{\varphi}(\xi - \xi_A) - \dot{\varphi}^2(\eta - \eta_A)$, $w_x = w_{A,x} - \ddot{\varphi}y - \dot{\varphi}^2x$, $w_y = w_{A,y} + \ddot{\varphi}x - \dot{\varphi}^2y$. Так как проекции $w_{A,\xi}$, $w_{A,\eta}$ вектора $\overrightarrow{w_A}$ на неподвижные орты равны $\ddot{\xi}_A$, $\ddot{\eta}_A$, то его проекции $w_{A,x}$, $w_{A,y}$ на подвижные орты, повернутые относительно неподвижных ортов на угол φ , равны: $w_{A,x} = \ddot{\xi}_A \cos \varphi + \ddot{\eta}_A \sin \varphi$, $w_{A,y} = -\ddot{\xi}_A \sin \varphi + \ddot{\eta}_A \cos \varphi$. Запишем вышенаписанные формулы в комплексной форме: $W = W_A + (i\ddot{\varphi} - \dot{\varphi}^2)z$, $W = w_x + iw_y$, z = x + iy.

Мгновенный центр ускорений в плоском движении твердого тела - точка D(t) плоскости Q ускорение которой в данный момент t равно нулю.

Теорема: Если движение твердого тела является плоскопараллельным, плоскость Q жестко связана с этим телом и движется в плоскости параллелизма α , ϕ — угол между подвижными и неподвижными ортами, и, вспомнив формулы $W=W_A+(i\ddot{\phi}-\dot{\phi}^2)z$, $W=w_x+iw_y$, z=x+iy, получаем, что при $\ddot{\phi}^2+\dot{\phi}^4\neq 0$, существует единственный мгновенный центр ускорений с координатами $z=z_D$, и имеют место формулы: $z_D=W_A\cdot(\ddot{\phi}^2+\dot{\phi}^4)^{-1}\cdot(\dot{\phi}^2+i\ddot{\phi}), |\overrightarrow{AD}|=w_A(\epsilon^2+\omega^4)^{-1/2}$, $tg\psi=\epsilon\omega^{-2}$, где $\psi\in[-\pi/2,\pi/2]$ — угол между векторами \overrightarrow{AD} и $\overrightarrow{w_A}$.