Лабораторная работа №5

Числовые характеристики случайной величины

Цель работы: изучение основных числовых характеристик случайной величины

1. Порядок выполнения работы

- Составить ряд распределения дискретной случайной величины согласно индивидуальному заданию лабораторной работы №4.
- Написать подпрограмму, позволяющую вычислять значения математического ожидания, дисперсии, средне-квадратичного отклонения случайной величины, а также, если это возможно коэффициентов вариации, асимметрии и эксцесса.
- Построить ряд распределения и график функции распределения дискретной случайной величины
- Согласно индивидуальному заданию, формализовать выражение для плотности вероятности непрерывной случайной величины и построить ее график.
- Получить вышеперечисленные числовые характеристики для непрерывной случайной величины. Для этого необходимо воспользоваться простейшими квадратурными формулами приближенного вычисления определенного интеграла соответствующей функции (метод прямоугольников, метод трапеций и метод Симпсона).
- Сравнить результаты работы представленных методов при вычислении числовых характеристик непрерывной случайной величины путем сравнения полученных значений с действительными значениями этих характеристик.

2. Индивидуальные задания

No	
	f(x)
2.	
	-4 -3 -2 -1 0 1 2 3 4
	f(x)
3.	
	8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
	8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 f(x)
4.	
	8 -7 -6 -5 -4 -5 -2 -1 0 1 2 3 4 5 6 7 8
	f(x)
5.	
	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
	f(x)
6.	
	-8 -7 -6 -5 + -3 -2 -1 0 1 2 3 + 5 6 7 8
	f(x)
7.	
	8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
	f(x)
8.	
	8 -7 -6 -5 + -3 -2 -1 0 1 2 3 + 5 6 7 8
	F(x)
9.	· ·
	-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

№	
10.	$f(x) = \begin{cases} 0, x \notin (-0, \pi), \\ a \sin(x), x \in (-0, \pi) \end{cases}$
10.	$a\sin(x), x \in (-0, \pi)$
11.	F(x) ax²+bx+c
12.	$f(x) = \begin{cases} 0, x \notin (-a, a), \\ x^2 + a^2, x \in (-a, a) \end{cases}$
13.	f(x)
14.	F(X) Ax²+bx+c
15.	$f(x) = \begin{cases} 0, x \notin (-\frac{\pi}{2}, \frac{\pi}{2}), \\ a\cos(x), x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \end{cases}$
16.	f(x)
17.	$f(x) = \begin{cases} 0, x \notin (-a, a), \\ \sqrt{a^2 - x^2}, x \in (-a, a) \end{cases}$ $f(x) = \begin{cases} 0, x \notin (0, 4), \\ ax^3, x \in (0, 4) \end{cases}$
18.	$f(x) = \begin{cases} 0, x \notin (0,4), \\ ax^3, x \in (0,4) \end{cases}$
19.	f(x)
20.	$f(x) = \begin{cases} 0, x \notin (0,6), \\ ax^4, x \in (0,6) \end{cases}$

3. Основные расчетные формулы.

Числовые характеристики дискретной случайной величины.

Математическое ожидание

$$m_x = \sum_{i=1}^n x_i * p_i$$

Дисперсия

$$D_{x} = \sum_{i=1}^{n} (x_{i} - m_{x})^{2} * p_{i}$$

Средне-квадратичное отклонение

$$\sigma_{x} = \sqrt{D_{x}}$$

Коэффициент вариации

$$v_{x} = \frac{\sigma_{x}}{m_{x}}$$

Коэффициент асимметрии

$$S_{k} = \frac{\sum_{i=1}^{n} (x_{i} - m_{x})^{3} * p_{i}}{\sigma_{x}^{3}}$$

Эксцесс

$$\varepsilon_{x} = \frac{\sum_{i=1}^{n} (x_{i} - m_{x})^{4} * p_{i}}{\sigma_{x}^{4}} - 3$$

Числовые характеристики непрерывной случайной величины.

Математическое ожидание

$$m_x = \int_a^b \left(x * f(x)\right) dx$$

Дисперсия

$$D_x = \int_a^b \left(\left(x - m_x \right)^2 * f(x) \right) dx$$

Средне-квадратичное отклонение

$$\sigma_{x} = \sqrt{D_{x}}$$

Коэффициент вариации

$$v_x = \frac{\sigma_x}{m_x}$$

Коэффициент асимметрии

$$S_k = \frac{\int_a^b ((x - m_x)^3 * f(x)) dx}{\sigma_x^3}$$

Эксцесс

$$\varepsilon_{x} = \frac{\int_{a}^{b} ((x - m_{x})^{4} * f(x)) dx}{\sigma_{x}^{4}} - 3$$

<u>Простейшие квадратурные формулы приближенного вычисления</u> определенного интеграла

Формула прямоугольников

$$\int_{a}^{b} y(x) \, dx = \sum_{\substack{i=a \\ i=i+h}}^{b-h} y(i) * h$$

Формула трапеций

$$\int_{a}^{b} y(x) dx = \sum_{\substack{i=a\\i=i+h}}^{b-h} \frac{y(i) + y(i+h)}{2} * h$$

Формула Симпсона

$$\int_{a}^{b} y(x) dx = \sum_{\substack{i=a+h\\i=i+h}}^{b-h} \frac{y(i-h) + 4y(i) + y(i+h)}{3} * h$$