База

<u>Множество</u> - набор каких то элементов. 2 мн-ва = if содержат одинаковые элементы.

Поле - множество, на котором определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на 0). Простейшим полем является поле рациональных чисел (дробей). Радикал - символ (знак корня) в правой части называется радикалом

Теоре́ма Га́мильтона — Кэ́ли — классическая теорема <u>линейной</u> алгебры, утверждает, что любая квадратная матрица удовлетворяет своему характеристическому уравнению

Аннули́рующий многочле́н для ма́трицы — многочлен, значение которого для данной квадратной

матрицы равно нулевой матрице. По т Гамильтона Келли - существует как минимум 1 аннулирующий полином.

Пусть X и Y — линейные пространства над полем F. Отображение A:X→Y называется линейным оператором, если ∀ x1,x2∈X, ∀λ∈F:

- A(x1+x2)=A(x1)+A(x2)
- $\bullet \quad A(\lambda \cdot x1) = \lambda \cdot A(x1)$

Множество L называется линейным или векторным пространством, если для всех элементов (векторов) этого множества определены операции сложения и умножения на число и справедливо:

- умпожения на число и справедливо. 1. Каждой паре элементов \mathbf{x} и \mathbf{y} из \mathbf{L} отвечает элемент $\mathbf{x} + \mathbf{y}$ из \mathbf{L} , называемый *суммой* \mathbf{x} и \mathbf{y} , причём:
- $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ сложение коммутативно;
- x + (y + z) = (x + y) + z сложение ассоциативно;
- ${\bf x}+{\bf 0}={\bf x}$ существует единственный *нулевой* элемент ${\bf 0}$ (${\bf x}+{\bf 0}={\bf x}$ для любого ${\bf x}$ из ${\bf L}$);
- \mathbf{x} нз \mathbf{L} , $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$ для каждого элемента \mathbf{x} из \mathbf{L} существует единственный
- противоположный элемент $-\mathbf{x}$ (\mathbf{x} + ($-\mathbf{x}$) = $\mathbf{0}$ для любого \mathbf{x} из \mathbf{L}). 2. Каждой паре \mathbf{x} и α , где α — число, а \mathbf{x} элемент из \mathbf{L} , отвечает элемент α · \mathbf{x} ,
- наываемый *произведением* α *u* \mathbf{x} , причём:
 - $\alpha \cdot (\beta \cdot \mathbf{x}) = (\alpha \cdot \beta) \cdot \mathbf{x}$ умножнение на число ассоциативно: ;
 - $1 \cdot \mathbf{x} = \mathbf{x} -$ для любого элемента \mathbf{x} из \boldsymbol{L} .
 - 3. Операции сложения и умножения на число связаны соотношениями:
 - $\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y}$ умножнение на число дистрибутивно относительно сложения элементов;
 - $(\alpha+\beta)\cdot \mathbf{x}=\alpha\cdot \mathbf{x}+\beta\cdot \mathbf{x}$ умножнение на вектор дистрибутивно относительно сложения чисел.

Линейный оператор А:Х→Х называется автоморфизмом (или гомоморфизмом). !!!просто запись такая A(x)=Ax !!!

Ядро и образ линейного оператора

Определение:

Пусть $\mathcal{A}:X o Y$ — линейный оператор. **Ядром** линейного оператора \mathcal{A} называется

множество $Ker\mathcal{A}=\{x\in X\mid \mathcal{A}x=0\}$

Определение:

Пусть $\mathcal{A}:X o Y$ — линейный оператор. **Образом** линейного оператора \mathcal{A} называется множество $Im\mathcal{A}=\{y\in Y\mid y=\mathcal{A}x\}$ *(множество значений)*

Лемма:

Ядро и образ линейного оператора являются подпространствами линейных пространств X и Y соответственно.

Теорема (О ядре и базисе):

 $\dim Ker\mathcal{A} + \dim Im\mathcal{A} = n = \dim X$

Линейная форма (линейный функционал, 1 ая форма, ковектор, ковариантный вектор) - линейное отображение действующее из линейного пространства L над полем К в поле К:

Лине́йная форма, лине́йный функционал (также используются термины 1-форма, ковектор, ковариантный вектор) — линейное отображение, действующее из векторного пространства L над полем K в поле K. Условие линейности заключается в выполнении следующих двух свойств:

$$egin{aligned} \Phi(f+g) &= \Phi(f) + \Phi(g), \ \Phi(lpha f) &= lpha \, \Phi(f) \end{aligned}$$

для любых двух векторов $f,g\in L$ и любого $\alpha\in K$. Таким образом, линейная форма (линейный функционал) является частным случаем понятия линейного оператора, действующего из одного векторного пространства в другое векторное пространство: $L_K\to M_K$, рассматриваемых над одним и тем же полем K. Именно, в случае линейной формы (линейного функционала) векторное пространство $M_K=K$.

функционал - функция, заданная на произвольном множестве и имеющая числовую область значений. В более широком смысле функционалом называют отображение из произвольной области в произвольное (не обязательно числовую) кольцо.

Кольцо — множество R, на котором заданы две бинарные операции: + и imes (называемые сложение и умножение), со следующими свойствами, выполняющимися для любых $a,b,c\in R$:

- 1. a + b = b + a коммутативность сложения;
- 2. a + (b + c) = (a + b) + c ассоциативность сложения;
- 3. $\exists 0 \in R: \ a+0=0+a=a$ существование нейтрального элемента относительно сложения;
- 4. $\forall a \in R \ \exists (-a) \in R: \ a + (-a) = (-a) + a = -$ существование противоположного (обратного) элемента относительно сложения;
- 5. $(a \times b) \times c = a \times (b \times c)$ ассоциативность умножения;

6.
$$\left\{ egin{aligned} a imes(b+c) &= (a imes b) + (a imes c) \ (b+c) imes a &= (b imes a) + (c imes a) \end{aligned}
ight. -$$
 дистрибутивность.

Иными словами, кольцо — универсальная алгебра $(R,+,\times)$, являющаяся абелевой группой относительно сложения +, полугруппой относительно умножения \times и обладающая двусторонней дистрибутивностью \times относительно +.

Группа, кольцо, поле:

1я бинарная операция нейтральный элемент обратный элемент	a & b ∈ G e & a = a a & a' = e	ROJBUDO K A + D ∈ K A + D = B B + D = B + B + B + B + B + B + B + B + B + B	Поме П О мение ва и
операция нейтральный элемент обратный	e & a = a	о сложении a + p ∈ K 0 + a = a	
операция нейтральный элемент обратный	e & a = a	О СЛОЖЕНИЙ О + a = a 0 + b ∈ K	а + b ∈ П В = a + 0
элемент обратный		0 + a = a	0 + a = a
	a & a' = e	2	
SHEMEIN		a + (-a) = 0	ец а + (-a) = 0
ассоциативность (а	a & b) & c = a & (b & c)	02. pg (a + b) + c = a + (b + c)	© (a + b) + c = a + (b + c)
коммутативность	если есть - Абелева группа	A6en a+p=p+a	A6en a+p=p+a
2я бинарная операция	нет	a * b ∈ K	GH a*b∈∏
нейтральный элемент		если есть - кольцо с единицей	¥ OH 1*a=a
обратный элемент		нет	$a * b \in \Pi$ $1 * a = a$ $a * a^{-1} = 1$ $a * b = b * a$ $a * b = b * a$
ассоциативность		(a * b) * c = a * (b * c)	gg (a * b) * c = a * (b * c)
коммутативность		если есть - коммутативное кольцо	Абеле а * р = р * а
дистрибутивность		a * (b + c) = a * b + a * c	a * (b + c) = a * b + a * c

Лине́йное отображе́ние — обобщение **лине**йной числовой функции (точнее,

функции y=kx) с вещественных чисел на евклидовы пространства более высокой размерности, а также на произвольные векторные пространства. Является центральным понятием линейной алгебры.

Линейные отображения из пространства в себя обычно называются *линейными операторами* или *линейными преобразованиям*и

Норма - функционал, определенный в векторном пространстве и обобщающий понятие длины вектора или абсолютного значения числа (расстояние)

Q Войти

Регистрация

$$||x||_p = (\sum_i |x_i|^p)^{1/p}$$

L₁ norm / Расстояние городских <u>кварталов</u>:

$$||x||_1 = \sum_i |x_i|$$

L₂ norm / <u>Евклидова метрика</u>:

$$\|\mathbf{x}\|_{2} = \left(\sum_{i=1}^{N} |x_{i}|^{2}\right)^{1/2} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{N}^{2}}$$

Для регуляризации к формуле ошибки добавляется соответствующая норма при L_1 regularization добавляется L_1 norm и L_2 norm в случае L_2 regularization:

L1 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij}W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$

$$\mathsf{Cost} = \underbrace{\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2}_{\mathsf{Loss function}} + \lambda \underbrace{\sum_{j=0}^{M} W_j^2}_{\mathsf{Term}}$$

Поделиться Улучшить ответ Отслеживать

DOT DOU 12 MOR 2020 D 12:26

2 191 вкустер Первого мая За