

SAED 32/28nm Spice Model Documentation

SAED_EDK32/28_TK_SM

Document #: SAED_EDK32/28_TK_SM

Revision: 1.5

Technology: SAED32/28nm

Process : SAED32/28nm 1P9M 1.05v / 1.8v/ 2.5v

TABLE OF CONTENTS

1. Introduction	5
1.1. The Structure of Spice Model library	
1.2. Transistors	
1.2.1. 1.05V Thin Oxide MOSFETs	6
1.2.2. 1.8V Medium and 2.5V Thick Oxide MOSFETs	
1.3. Resistor Model	12
1.4. Diode Model	13
1.5. BJT Model	
2. Model Usage	15
3. References	16
4. Revision History	17

LIST OF TABLES

Table 1.1.The list of devices of spice model library	5
Table 1.2. Cutoff currents for standard and low Vth devices for TT, FF and SS corners.	
L/W=0.03u/0.3u	9
Table 2.1. SAED32/28nm model names	
Table 4.1. Revision History	17

LIST OF FIGURES

Figure 1.1. TT, FF and SS corners of 1.05V Thin oxide Standard Vth NMOS	6
Figure 1.2. TT, FF and SS corners of 1.05V Thin oxide Standard Vth PMOS	6
Figure 1.3. TT, FF and SS corners of 1.05V Thin oxide High Vth NMOS	7
Figure 1.4. TT, FF and SS corners of 1.05V Thin oxide High Vth PMOS	7
Figure 1.5. TT, FF and SS corners of 1.05V Thin oxide Low Vth NMOS	8
Figure 1.6. TT, FF and SS corners of 1.05V Thin oxide Low Vth PMOS	8
Figure 1.7. Bunch of transfer curves for PMOS models	9
Figure 1.8. Bunch of transfer curves for NMOS models	10
Figure 1.9. TT, FF and SS corners of 1.8V medium oxide NMOS	10
Figure 1.10. TT, FF and SS corners of 1.8V medium oxide PMOS	
Figure 1.11. TT, FF and SS corners of 2.5V thick oxide NMOS	. 11
Figure 1.12. TT, FF and SS corners of 2.5V thick oxide PMOS	. 12
Figure 1.13. Resistance temperature dependence	13
Figure 1.14. I/V characteristic is shown with different areas of diode	13
Figure 1.15. TT, FF and SS corners of 1.05V HNPN	14
Figure 1.16. TT, FF and SS corners of 1.05V VPNP	

1. Introduction

SPICE model library is the part of SAED_EDK32/28 Educational Design Kit and this document is the part of SAED_EDK32/28 Educational Design Kit documentation. It describes the methodology of SPICE model creation and gives the main directions how to use provided files to achieve correct simulation results. Also it is shown the main characteristics of transistors in different operating conditions. These models are obtained from open sources and don't include any confidential or proprietary information of other companies or foundries. However it has characteristics are similar to those of real foundries (TSMC28 or IBM32) for further portability of the projects design by this kit.

1.1. The Structure of Spice Model library

The Spice model library contains following devices, which are also listed in the table below. Addition of additional devices are anticipated.

- 1. Transistors
 - a) 2.5V devices: Thick oxide mosfets
 - b) 1.8V devices: Medium oxide mosfets
 - c) Three type of 1.05V devices: Thin oxide mosfets
 - standard threshold voltage
 - high threshold voltage
 - low threshold voltage

For each of these devices it is generated five corner models:

- TT both mosfets typical,
- FF both mosfets fast.
- SS both mosfets slow.
- SF slow_nmos/fast_pmos,
- FS slow pmos/fast nmos.
- 2. Diode
- 3. Unsalicided N+ Poly Resistor
- 4. Bipolar junction transistor (BJT)

Table 1.1. The list of devices of spice model library

Device name	Model name
PMOS 1.05V standard VTH device	p105
NMOS 1.05V standard VTH device	n105
PMOS 1.05V high VTH device	p105_hvt
NMOS 1.05V high VTH device	n105_hvt
PMOS 1.05V low VTH device	p105_lvt
NMOS 1.05V low VTH device	n105_lvt
PMOS 2.5V device	p25
NMOS 2.5V device	n25
PMOS 1.8V device	p18
NMOS 1.8V device	n18
N+/Psub diode	nd/pd
Usalicided N+ poly resistor	rnpoly_wos
Usalicided P+ poly resistor	rppoly_wos
Salicided N+ poly resistor	rnpoly
Salicided P+ poly resistor	rppoly
HNPN 1.05V device	npn
VPNP 1.05V device	pnp

1.2. Transistors

1.2.1. 1.05V Thin Oxide MOSFETs

As this kit proposed to be used in the low power design and it is aimed to implement the advanced low power design techniques (e. g. multivoltage/multithreshold design digital libraries), the design kit also includes low voltage multi-threshold devices. The 1.05V standard threshold voltage devices are created using the Predictive Technology Model developed by Nanoscale Integration and Modeling (NIMO) Group (http://ptm.asu.edu/). It is taken the typical corner of 32nm process from Latest Models, suggested by NIMO. The high and low threshold devices are obtained by changing the threshold voltage of original (svt) devices by 20%. FF, SS, SF and FS corners are formed by changing the threshold voltage (vth0) and oxide thickness (tox) in the range of +/-5%.

Below it is presented the transfer curves of 1.05V NMOS and PMOS devices.

Figure 1.1. TT, FF and SS corners of 1.05V Thin oxide Standard Vth NMOS

Figure 1.2. TT, FF and SS corners of 1.05V Thin oxide Standard Vth PMOS

Figure 1.3. TT, FF and SS corners of 1.05V Thin oxide High Vth NMOS

Figure 1.4. TT, FF and SS corners of 1.05V Thin oxide High Vth PMOS

Figure 1.5. TT, FF and SS corners of 1.05V Thin oxide Low Vth NMOS

Figure 1.6. TT, FF and SS corners of 1.05V Thin oxide Low Vth PMOS

As the purpose of these 1.05V devices are mainly to reduce the power consumption of the design by using different vth transistors for particular applications. Table below represents cutoff currents for all types of 1.05V devices.

4011000 101 11;11 4114 CC 00111010. L/11-0.004/0.04			
	FF, -40 (nA)	TT, 25 (nA)	SS, 125 (nA)
n105_hvt	0.07	0.12	0.61
p105_hvt	0.16	0.18	1.12
n105	0.34	0.49	2.69
p105	0.73	1.04	3.54
n105_lvt	1.19	2.3	11.23
p105_lvt	3.01	3.56	25.3

Table 1.2. Cutoff currents for standard and low Vth devices for TT, FF and SS corners. L/W=0.03u/0.3u

1.2.2. 1.8V Medium and 2.5V Thick Oxide MOSFETs

The 1.8V and 2.5V devices were created using the data obtained from Wafer Electrical Test Data and SPICE Model Parameters of SAED_EDK90nm which were scaled for SAED_EDK32/28nm.

Simulations were done for model parameters obtained from all lots given in MOSIS for SAED_EDK90nm and have been modified to match with the characteristics of 32/28nm devices known from open sources [1, 2, 3]. The bunch of DC transfer curves was obtained and the middle curve from the bunch was chosen as a typical corner for 1.8V devices, thereby being assured that it will be closer to the real process for further chip implementation.

Figure 1.7. Bunch of transfer curves for PMOS models

Figure 1.8. Bunch of transfer curves for NMOS models

FF, SS, SF and FS corners are formed by changing the threshold voltage (vth0) and oxide thickness (tox) in the range of +/-5%. Below it is presented the transfer curves of 1.8V PMOS and NMOS devices.

Figure 1.9. TT, FF and SS corners of 1.8V medium oxide NMOS

Figure 1.10. TT, FF and SS corners of 1.8V medium oxide PMOS

FF, SS, SF and FS corners are formed by changing the threshold voltage (vth0) and oxide thickness (tox) in the range of +/-5%. Below it is presented the transfer curves of 2.5V PMOS and NMOS devices.

Figure 1.11. TT, FF and SS corners of 2.5V thick oxide NMOS

Figure 1.12. TT, FF and SS corners of 2.5V thick oxide PMOS

1.3. Resistor Model

It is created an unsalicided poly resistor model with a typical 620 Ohm sheet resistance. The salicided part of border resistances till the contacts are also considered in the model.

Resistor model corners are created by varying sheet resistance by 15%, temperature and voltage dependence parameters (TCR1, TCR2, VCR1 and VCR2). The values of all mentioned parameters are taken from [4].

Below the resistance dependence from temperature and applied voltage is presented. As it can be seen the simulated value of resistance is different from desired. This is due to the additional resistances on device endings, and its contribution to total resistance is inversely proportional to resistance width.

Figure 1.13. Resistance temperature dependence

1.4. Diode Model

The N+/Psub diode model is obtained from the HSPICE documentation. The I/V characteristics for diode different areas are shown in figure 1.14.

Figure 1.14. I/V characteristic is shown with different areas of diode

1.5. BJT Model

The BJT model is obtained from the HSPICE documentation. Below it is presented the transfer curves of 1.05V HNPN and VPNP devices.

Figure 1.15. TT, FF and SS corners of 1.05V HNPN

Figure 1.16. TT, FF and SS corners of 1.05V VPNP

1.6. Metal-on-Metal (MOM) Capacitor Model

The ccap MOM capacitor model is obtained from the HSPICE documentation and is available as model name "ccap" and device "Ccap".

Model Usage

To do simulations using the suggested models, it is needed to: call the model library using following template

Table 1.3. SAED32/28nm model names

Device type	Device	Model name	Available corner names
Thin Oxide (1.05V)	NMOS	n105	TT, SS , FF. SF, FS
standard vth	PMOS	p105	11, 66, 11. 61, 16
Thin Oxide (1.05V)	NMOS	n105_lvt	TT_LVT, SS_LVT, FF_LVT,
low vth	PMOS	p105_lvt	SF_LVT, FS_LVT
Thin Oxide (1.05V)	NMOS	n105_hvt	TT_HVT, SS_HVT, FF_HVT,
high vth	PMOS	p105_hvt	SF_HVT, FS_HVT
Modium Ovido (1.9\/)	NMOS	n18	TT_18, SS_18 , FF_18, SF_18,
Medium Oxide (1.8V)	PMOS	p18	FS_18
Thick Oxide	NMOS	n25	TT_25, SS_25 , FF_25, SF_25,
(2.5V)	PMOS	p25	FS_25
BJT	HNPN	npn	TT_BIP, SS_BIP , FF_BIP
(1.05 V)	VPNP	pnp	11_011,00_011,11_011
		rnpoly_wos	
N+ poly	-	rppoly_wos	res_t, res_l, res_h
unsalicided/salicided		rnpoly	
		rppoly	
diode is N+/Psub	-	nd/pd	ND ,PD
MOM Capacitor	CCap	Ссар	TT, SS, FF. SF, FS

^{*}Spice netlist

[.]lib "../path_to_spice_model/SAED32nm.lib" CORNER_NAME

2. References

- P. Packan et al., "High Performance 32nm Logic Technology Featuring 2nd Generation High-k + Metal Gate Transistors", IEEE International Technical Digest Electron Devices Meeting (IEDM), pp659-662, 2009
- 2 C. H. Diaz et al., "32 nm gate-first high-k/metal-gate technology for high performance low power applications", in Proc. IEEE IEDM Tech. Dig., San Francisco, USA, 2008, pp. 629–632.
- F. Arnaud et al., "32nm General Purpose Bulk CMOS Technology for High Performance Applications at Low Voltage," IEDM Tech. Dig., pp. 633-636, 2008.
- 4 R.J. Baker, Hary W.Li, David E. Boyce. "CMOS: Circuit Design, Layout, and Simulation.", 2010

3. Revision History

Table 3.1. Revision History

Revision	Date	Change
A.1 A.1.5	28/12/2010	Initial release
A.1.5	27/04/2016	Added MOM Capacitor