CS 373 Presentation

A proof of a context free language construction

Tim Hung

Binghamton University

April 6, 2016

Overview

Overview

Let A be a regular language and B a context free language. Is $A \cap B$ a context free language?

Solution

Solution

- ▶ Yes, $A \cap B$ is a context free language
- ► How will we prove it?
 - We will construct a PDA that simulates the action of a FA and a PDA

Construction

- ▶ Let M_A be a DFA such that $L(M_A) = A$
 - $M_A = (Q_A, \Sigma, \delta_A, q_{A0}, F_A)$
- ▶ Let M_B be a PDA such that $L(M_B) = B$
 - $M_B = (Q_B, \Sigma, \Gamma, \delta_B, q_{B0}, F_B).$
- ▶ Define PDA $M = (Q_A \times Q_B, \Sigma, \Gamma, \delta, (q_{A0}, q_{B0}), F_A \times F_B)$

$$\delta(q_A, q_B, a, b) = \begin{cases} (\delta_A(q_A, a), \delta_B(q_B, a, b)) & a \neq \varepsilon \\ (q_A, \delta_B(q_B, a, b)) & a = \varepsilon \end{cases}$$

where q_A and q_B are states from Q_A and Q_B , a is from Σ_{ε} and b is from Γ_{ε} .

Proof

- ▶ Let $w \in A \cap B$.
- ▶ Then there are sequences of states from *Q_A* and *Q_B* such that the sequences start in the start states, end in an accept state, and do valid transitions.
- ▶ Thus both M_A and M_B end in accept states, and likewise the sequence in M starts in the start state, end in an accept state, and do valid transitions.
- ▶ Thus w is accepted by M and $A \cap B \subset L(M)$.

Proof cont.

- ▶ Let $w \in L(M)$.
- ▶ Then there is a sequence of states that *M* transitions through while processing *w*, starting in the start state, ending in an accept state, and performing valid transitions.
- ▶ By the definition of M, there are sequences from M_A and M_B that do the same. Thus w is accepted by M_A and M_B .
- ▶ The $w \in A$ and $w \in B$. Thus $L(M) \subset A \cap B$.
- ▶ Thus we have a PDA, M, that accepts $A \cap B$
- ▶ Therefore $A \cap B$ is context free.

Summary

Recap

- ► Given a regular language A and a context free language B
 - ▶ We want to show $A \cap B$ is a context free language
- Construction
 - We constructed M_A a DFA that recognizes regular language A
 - ▶ We constructed M_B a PDA that recognizes regular language B.
- Proof
 - ▶ We show that processing a $w \in A \cap B$ results in valid transitions leading to accept states in both M_A and M_B .
 - ▶ Therefore $A \cap B \subset L(M)$
 - ▶ We show that processing a $w \in L(M)$ results in valid transitions leading to accept states in M.
 - ▶ Therefore $L(M) \subset A \cap B$
- ▶ Therefore, M accepts $A \cap B$ so $A \cap B$ is context free.

Questions

Thank you. Any questions?