

Detection of spatiotemporal changepoints in air quality – a generalised additive model approach

Rebecca Killick Joint work with Mike Hollaway (UK Centre for Ecology & Hydrology) JSM Aug 2025

Overview

- What are changepoints?
- Fitting multiple changepoint models
- Spatiotemporal changes
- Application to Air Quality

What are changepoints? Mathematical Sciences | Lancaster University

For data y_1, \ldots, y_n , if a changepoint exists at τ , then y_1, \ldots, y_{τ} differ from $y_{\tau+1}, \ldots, y_n$ in some way.

There are many different types of change.

Problem

- How many changes?
- Where are the changes? 2^{n-1} possible solutions!

PFIT in a nutshell

- Dynamic programming allows us to only worry about the location of the *last* change.
- Pruning means that as we go through the data we are smart about which locations are potential last change locations.

PELT: Pruning

Let 0 < t < s < T. if

$$F(t) + \mathcal{C}(y_{(t+1):s}) < F(s)$$

then at any future time T > s, t can never be the optimal last changepoint prior to T. We can prove that, under certain regularity conditions, the expected computational complexity will be $\mathcal{O}(n)$.

Air Quality

UK Defra Air Quality Expert group requested scientific evidence around COVID lockdown effects on air quality across the UK.

Data

175 AURN active stations, 1st Feb - 31 Aug 2020 (213 days).

 O_3 - 30 stations, NO_2 - 74 stations, $PM_{2.5}$ - 30 stations.

OpenAir R package.

Model

Generalised Additive Model

$$y_{s,t} = f_1(x_s) + f_2(x_t) + f_3(x_s, x_t) + \epsilon_{s,t}$$

- f₁ is a 2D thin plate spline over space
- f₂ is a cubic regression spline over time
- f₃ is a tensor product for space-time interactions

Use mgcv in R or GLMgam in Python for GAM fit and likelihood.

Time Change Sims

Spatial: Constant, Random, Correlated

GAM-PELT: Dashed, Marginal: Solid

Space Change Sims

Spatial: Constant, Random, Correlated

GAM-PELT: Dashed, Marginal: Solid

Space-Time Change

Random change in all. Left includes No change option.

GAM-PELT: Dashed, Marginal: Solid

AURN analysis

Changepoint at 21st March 2020

AURN analysis

Changepoint at 26th March 2020

AURN analysis

Changepoint at 27th March 2020

Insights

- The GAM model is flexible enough to capture spatio-temporal patterns in air quality
- The addition of the PELT step for changepoint detection provides an easy-to-use extension to the model
- Early change for PM_{2.5} correlates with early work from home in cities
- The decrease in O₃ and increase in NO₂ aligns with expectations from science around pollution dissipation
- Changepoints for phased return for schools in June are also seen.

Summary

- Introduced the PELT algorithm for identifying multiple changepoints optimally in a computationally efficient way
- Developed an approach to identify changepoints in spatiotemporal data with an application in air quality
- These and other extensions are useful for identify changes in a host of climatology applications