

Parameter Study

- 1. Set up the model.
- 2. Validate the case study.
- 3. Gather parameter study data.
- 4. Share results and analysis.

Systems of Equations: Physics

Position:
$$r(t)$$
 for $r(t) = x_0$

Velocity:
$$\frac{dr}{dt} = v(t)$$
 for $v(t) = v_0$

Acceleration:
$$\frac{d^2r}{dt^2} = \frac{dv}{dt} = a(t)$$

General Euler Equation:
$$y_{i+1} = y_i + F(x_i, y_i)h$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Position Euler Equation: $r_1 = r_0 + v(t) \times h$

Case Study: Lunar Lander

Diagram:

r=1,793,000 m : Altitude v=-410.28 m/s : Velocity

T=0 m/s²: Rocket Deceleration

t_o=0 s : Initial Time

 r_0 =1,781,870 m: Initial Altitude v_0 =-450 m/s : Initial Velocity T=4 m/s² : Rocket Deceleration

R=1,740,000 m: Lunar Surface

r=0 m: To Lunar Core

The Differential Equation:

$$F = ma = \frac{GMm}{r^2} \qquad a = \frac{GM}{r^2}$$

$$a(t) = T - \frac{GM}{r^2}$$

Note:

- 1. The lander's altitude [r] is measured from the center of the moon.
- 2. To calculate initial conditions
 - 1. Use a chain rule substitution.
 - 2. Integrate using separation of variables.
 - 3. Evaluate at T=0 and T=4.
 - 4. Set the equations equal and solve.

System of Equations: Lunar Lander

Altitude:
$$r = x(t)$$
 for $x(0) = 1,781,870 m$

Velocity:
$$\frac{dr_1}{dt} = v(t) \text{ for } v(0) = -450 \text{ m/s}$$

Acceleration:
$$\frac{dr_2}{dt} = T - \frac{GM}{x^2}$$

General Euler Equation:
$$y_{i+1} = y_i + F(x_i, y_i)h$$

Position Euler Equation: $y_{i+1} = y_i + F(x_i, y_i)h$

 $\dot{r}_1 = 1,781,870 + (-450)h$ Position Euler Equation:

Case Study Values

- Constants
 - Deceleration from thrust: $T = 4 \text{ m/s}^2$
 - Gravitational constant : $G = 6.6726 \times 10^{-11} \, \text{N*m}^2/\text{kg}^2$
 - Lunar mass: $M = 7.35 \times 10^{22} \text{ kg}$
 - Lunar radius: R = 1,740,000 m
- □ Inputs
 - Initial time value: $x_0 = 0$ s
 - Initial altitude value: $y_0[0] = 1,781,870 \text{ m}$
 - Initial velocity value: $y_0[1] = -450 \text{ m/s}$
 - \blacksquare Upper limit of integration: $x_n = 200 \text{ s}$
 - Number of steps: n = 200
- Calculations
 - Step size: h = 1 s

Case Study Results

Step		Time	Case Study Altitude	Simulation Altitude	Case Study Velocity	Simulation Velocity
	180	180	1740059	1740059	-16.83	-16.83
	181	181	1740044	1740043	-14.45	-14.45
	182	182	1740030	1740030	-12.07	-12.07
	183	183	1740019	1740019	-9.69	-9.69
	184	184	1740011	1740011	-7.31	<i>-7.</i> 31
	185	185	1740005	1740005	-4.93	-4.93
	186	186	1740001	1740001	-2.55	-2.55
	187	187	1740000	1740000	-0.17	-0.17
	188	188	1740001	1740001	2.21	2.21
	189	189	1740004	1740004	4.59	4.59
	190	190	1740010	1740010	6.97	6.97

Altitude Vs. Time

180 181 182 183 184 185 186 187 188 189 190 191 Time, t, s

Velocity Vs. Time

Parameter Study

- □ Fixed retro-rocket ignition altitude
- □ Independent variable:
 - Acceleration from Thrust
 - Domain 3.5≤T≤4.5
 - Steps size: 0.05
- □ Dependent variables:
 - Landing Time
 - Starting velocity at fixed ignition point
 - Tolerances: $r = \pm 5m$ and $v = \pm 1m/s$

Landing Solutions

Thrust (T)	Time (t)	Start Velocity (v ₀)
3.5	210	-400.8
3.55	208	-406
3.6	205	-411.12
3.65	202	-416.18
3.7	200	-421.18
3.75	198	-426.1
3.8	195	-431
3.85	193	-435.8
3.9	191	-440.6
3.95	189	-445.3
4	187	-450
4.05	185	-454.6
4.1	183	-459.2
4.15	181	-463.72
4.2	180	-468.26
4.25	178	-472.66
4.3	176	-477.1
4.35	175	-481.44
4.4	173	-485.8
4.45	172	-490.1
4.5	170	-494.31

Initial Velocity Vs. Decel. from Thrust

Landing Time Vs. Decel. from Thrust

Interpolation

Thrust	Estimated Time	Estimated Velocity	Numerical Time	Numerical Velocity	% Diff. Time	% Diff. Velocity
3.57	206.478168	-408.0588507	207	-408.05	0.25%	0.00%
3.77	196.777928	-428.0031815	197	-428.08	0.11%	0.02%
3.97	188.143288	-447.1745603	188	-447.22	0.08%	0.01%
4.03	185.760688	-452.7752483	186	-452.76	0.13%	0.00%
4.23	178.511328	-470.9417895	179	-470.89	0.27%	0.01%
4.43	172.327568	-488.3353787	172	-488.35	0.19%	0.00%

Landing Time Vs. Decel. from Thrust Interpolation

Initial Velocity Vs. Decel. from Thrust Interpolation

Extrapolation

Thrust	Estimated Time	Estimated Velocity	Numerical Time	Numerical Velocity	% Difference Time	% Difference Velocity
5.5	157.35	-568.26	147	-572.78	7.04%	0.79%
5.25	158.12	-551.57	152	-554.2	4.03%	0.47%
5	160.55	-533.67	1 <i>57</i>	-535.98	2.26%	0.43%
4.75	164.65	-514.56	163	-515.05	1.01%	0.10%
3.25	224.22	-374.54	226	-373.78	0.79%	0.20%
3	239.97	-346.98	245	-344.63	2.05%	0.68%
2.75	257.39	-318.21	270	-312.78	4.67%	1.74%
2.5	276.48	-288.23	306	-277.3	9.65%	3.94%

Landing Time Vs. Deceleration from Thrust Extrapolation

Initial Velocity Vs. Deceleration from Thrust Extrapolation

Summary

- □ The quadratic curve is reliable for interpolation and close extrapolations.
- Changes to best-fit curve
 - Interpolation shows no change.
 - A cubic best-fit curve increases accuracy for extrapolation within short increments of the data set.
 - Higher order polynomials decrease the reliability of extrapolations.
 - Power curve fit improves extrapolations for Landing Time vs. Deceleration from Thrust.
 - $t = 600.14x^{-0.84}$
 - Logarithmic curve fit improves extrapolations for Initial Velocity vs. Deceleration from Thrust.
 - $v = -372 \ln(x) + 75.565$