On the Spectrum of Random Features Maps of High Dimensional Data ICML 2018, Stockholm, Sweden

Zhenyu Liao, Romain Couillet

L2S, CentraleSupélec, Université Paris-Saclay, France GSTATS IDEX DataScience Chair, GIPSA-lab, Université Grenoble-Alpes, France.

Outline

Problem Statement

Main Results

Summary

Outline

Problem Statement

Main Results

Summary

Random projection/random feature maps for feature extraction:

data vectors

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$

Random projection/random feature maps for feature extraction:

Random projection/random feature maps for feature extraction:

Random projection/random feature maps for feature extraction:

Random projection/random feature maps for feature extraction:

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$
 feature vectors
$$\mathbf{Y} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$

$$\mathbf{Y} = \mathbf{Y} = \mathbf$$

Figure: Illustration of random feature maps

Objective

Gram matrix of random features $\mathbf{G} \equiv \frac{1}{n} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$ (sample covariance matrix in feature space):

Random projection/random feature maps for feature extraction:

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$
 feature vectors
$$\mathbf{Y} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$

$$\mathbf{Y} = \mathbf{Y} = \mathbf$$

Figure: Illustration of random feature maps

Objective

Gram matrix of random features $\mathbf{G} \equiv \frac{1}{n} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$ (sample covariance matrix in feature space):

• what kind of data information are extracted?

Random projection/random feature maps for feature extraction:

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$
 feature vectors
$$\mathbf{Y} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$

$$\mathbf{Y} = \mathbf{Y} = \mathbf$$

Figure: Illustration of random feature maps

Objective

Gram matrix of random features $\mathbf{G} \equiv \frac{1}{n} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$ (sample covariance matrix in feature space):

- what kind of data information are extracted?
- what is the impact of different nonlinearities?

Random projection/random feature maps for feature extraction:

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$
 feature vectors
$$\mathbf{Y} = \mathbf{Y} = \mathbf{Y} = \mathbf{Y}$$

Figure: Illustration of random feature maps

Objective

Gram matrix of random features $\mathbf{G} \equiv \frac{1}{n} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$ (sample covariance matrix in feature space):

- what kind of data information are extracted?
- what is the impact of different nonlinearities?
- how to perform clustering with G, what do its eigenvectors "look like"?

Random projection/random feature maps for feature extraction:

Figure: Illustration of random feature maps

Objective

Gram matrix of random features $\mathbf{G} \equiv \frac{1}{n} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$ (sample covariance matrix in feature space):

- what kind of data information are extracted?
- what is the impact of different nonlinearities?
- how to perform clustering with G, what do its eigenvectors "look like"?

With RMT: for large n, p, T, eigenspectrum of G is determined only by¹

¹Louart Cosme, **Zhenyu Liao**, and Romain Couillet. "A Random Matrix Approach to Neural Networks." The Annals of Applied Probability 28, no. 2 (2018): 1190-1248.

Random projection/random feature maps for feature extraction:

$$\begin{array}{c} \text{data} & \underbrace{\text{random } \mathbf{W} \in \mathbb{R}^{n \times p}}_{\text{defores of } \mathbf{G}(\cdot) \text{ entry-wise}} & \text{feature} \\ \mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T} & \mathbf{\Sigma} = \sigma(\mathbf{W}\mathbf{X}) \in \mathbb{R}^{n \times T} \end{array}$$

Figure: Illustration of random feature maps

Objective

Gram matrix of random features $\mathbf{G} \equiv \frac{1}{n} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$ (sample covariance matrix in feature space):

- what kind of data information are extracted?
- what is the impact of different nonlinearities?
- how to perform clustering with G, what do its eigenvectors "look like"?

With RMT: for large n, p, T, eigenspectrum of G is determined only by¹

• the average kernel matrix $\Phi_{i,j} \equiv \mathbb{E}_{\mathbf{w}} \mathbf{G}_{i,j} = \mathbb{E}_{\mathbf{w}} \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j)$ (function of \mathbf{X})

¹Louart Cosme, **Zhenyu Liao**, and Romain Couillet. "A Random Matrix Approach to Neural Networks." The Annals of Applied Probability 28, no. 2 (2018): 1190-1248.

Random projection/random feature maps for feature extraction:

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$
 feature vectors
$$\mathbf{Y} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$
 feature vectors
$$\mathbf{Y} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$$

Figure: Illustration of random feature maps

Objective

Gram matrix of random features $\mathbf{G} \equiv \frac{1}{n} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$ (sample covariance matrix in feature space):

- what kind of data information are extracted?
- what is the impact of different nonlinearities?
- how to perform clustering with G, what do its eigenvectors "look like"?

With RMT: for large n, p, T, eigenspectrum of G is determined only by 1

- the average kernel matrix $\Phi_{i,j} \equiv \mathbb{E}_{\mathbf{w}} \mathbf{G}_{i,j} = \mathbb{E}_{\mathbf{w}} \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j)$ (function of X)
- the ratios between n, p, T.

¹Louart Cosme, **Zhenyu Liao**, and Romain Couillet. "A Random Matrix Approach to Neural Networks." The Annals of Applied Probability 28, no. 2 (2018): 1190-1248.

Some Known Facts

Objective: spectral characterization of Φ , with $\Phi_{i,j} = \mathbb{E}_{\mathbf{w}} \, \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j)$:

For standard Gaussian $\mathbf{W} \Rightarrow$ integral calculus on \mathbb{R}^p .

Some Known Facts

Objective: spectral characterization of Φ , with $\Phi_{i,j} = \mathbb{E}_{\mathbf{w}} \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j)$:

For standard Gaussian $\mathbf{W}\Rightarrow$ integral calculus on $\mathbb{R}^p.$

Table: $\Phi_{i,j}$ for commonly used $\sigma(\cdot)$, $\angle \equiv \frac{\mathbf{x}_i^\mathsf{T} \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}$.

$\sigma(t)$	$\mathbf{\Phi}_{i,j}$
t	$\mathbf{x}_i^T\mathbf{x}_j$
$\max(t,0)$	$\frac{1}{2\pi} \ \mathbf{x}_i\ \ \mathbf{x}_j\ \left(\angle \arccos\left(-\angle\right) + \sqrt{1-\angle^2} \right)$
t	$\frac{2}{\pi} \ \mathbf{x}_i\ \ \mathbf{x}_j\ \left(\angle \arcsin\left(\angle \right) + \sqrt{1 - \angle^2} \right)$
$ \varsigma_{+} \max(t,0) + $ $ \varsigma_{-} \max(-t,0) $	$\frac{1}{2}(\varsigma_{+}^{2} + \varsigma_{-}^{2})\mathbf{x}_{i}^{T}\mathbf{x}_{j} + \frac{\ \mathbf{x}_{i}\ \ \mathbf{x}_{j}^{*}\ }{2\pi}(\varsigma_{+} + \varsigma_{-})^{2}\left(\sqrt{1 - \angle^{2}} - \angle \cdot \arccos(\angle)\right)$
$1_{t>0}$ sign(t)	$\frac{1}{2} - \frac{1}{2\pi}\arccos\left(\angle\right)$ $\frac{2}{\pi}\arcsin\left(\angle\right)$
$ \varsigma_2 t^2 + \varsigma_1 t + \varsigma_0 $	$\left \varsigma_{2}^{2} \left(2 \left(\mathbf{x}_{i}^{T} \mathbf{x}_{j} \right)^{2} + \ \mathbf{x}_{i} \ ^{2} \ \mathbf{x}_{j} \ ^{2} \right) + \varsigma_{1}^{2} \mathbf{x}_{i}^{T} \mathbf{x}_{j} + \varsigma_{2} \varsigma_{0} \left(\ \mathbf{x}_{i} \ ^{2} + \ \mathbf{x}_{j} \ ^{2} \right) + \varsigma_{0}^{2} \right $
$\cos(t)$	$\exp\left(-\frac{1}{2}\left(\ \mathbf{x}_i\ ^2 + \ \mathbf{x}_j\ ^2\right)\right) \cosh(\mathbf{x}_i^T \mathbf{x}_j)$ $\exp\left(-\frac{1}{2}\left(\ \mathbf{x}_i\ ^2 + \ \mathbf{x}_j\ ^2\right)\right) \sinh(\mathbf{x}_i^T \mathbf{x}_j)$
$\sin(t)$	$\exp\left(-\frac{1}{2}\left(\ \mathbf{x}_i\ ^2 + \ \mathbf{x}_j\ ^2\right)\right)\sinh(\mathbf{x}_i^T\mathbf{x}_j)$
$\operatorname{erf}(t)$	$\frac{2}{\pi}\arcsin\left(\frac{2\mathbf{x}_1^{T}\mathbf{x}_j}{\sqrt{(1+2\ \mathbf{x}_i\ ^2)(1+2\ \mathbf{x}_j\ ^2)}}\right)$
$\exp(-\frac{t^2}{2})$	$\frac{1}{\sqrt{(1+\ \mathbf{x}_i\ ^2)(1+\ \mathbf{x}_j\ ^2)-(\mathbf{x}_i^T\mathbf{x}_j)^2}}$

Some Known Facts

Objective: spectral characterization of Φ , with $\Phi_{i,j} = \mathbb{E}_{\mathbf{w}} \, \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j)$:

For standard Gaussian $\mathbf{W} \Rightarrow$ integral calculus on \mathbb{R}^p .

Table:
$$\Phi_{i,j}$$
 for commonly used $\sigma(\cdot)$, $\angle \equiv \frac{\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}$.

$\sigma(t)$	$\Phi_{i,j}$
t	$\mathbf{x}_i^T\mathbf{x}_j$
$\max(t,0)$	$\frac{1}{2\pi} \ \mathbf{x}_i\ \ \mathbf{x}_j\ \left(\angle \arccos\left(-\angle\right) + \sqrt{1-\angle^2}\right)$
t	$\frac{2}{\pi} \ \mathbf{x}_i\ \ \mathbf{x}_j\ \left(\angle \arcsin(\angle) + \sqrt{1 - \angle^2} \right)$
$\begin{array}{l} \varsigma_+ \max(t,0) + \\ \varsigma \max(-t,0) \end{array}$	$\frac{1}{2}(\varsigma_{+}^{2} + \varsigma_{-}^{2})\mathbf{x}_{i}^{T}\mathbf{x}_{j} + \frac{\ \mathbf{x}_{i}\ \ \mathbf{x}_{j}\ }{2\pi}(\varsigma_{+} + \varsigma_{-})^{2}\left(\sqrt{1 - \angle^{2}} - \angle \cdot \arccos(\angle)\right)$
$1_{t>0}$ sign(t)	$\frac{1}{2} - \frac{1}{2\pi}\arccos\left(\angle\right)$ $\frac{2}{\pi}\arcsin\left(\angle\right)$
$ \varsigma_2 t^2 + \varsigma_1 t + \varsigma_0 $	$\left \varsigma_{2}^{2} \left(2 \left(\mathbf{x}_{i}^{T} \mathbf{x}_{j} \right)^{2} + \ \mathbf{x}_{i}\ ^{2} \ \mathbf{x}_{j}\ ^{2} \right)^{\pi} + \varsigma_{1}^{2} \mathbf{x}_{i}^{T} \mathbf{x}_{j} + \varsigma_{2} \varsigma_{0} \left(\ \mathbf{x}_{i}\ ^{2} + \ \mathbf{x}_{j}\ ^{2} \right) + \varsigma_{0}^{2} \right $
$\cos(t)$	
$\sin(t)$	$\exp\left(-\frac{1}{2}\left(\ \mathbf{x}_i\ ^2 + \ \mathbf{x}_j\ ^2\right)\right) \cosh(\mathbf{x}_i^T\mathbf{x}_j)$ $\exp\left(-\frac{1}{2}\left(\ \mathbf{x}_i\ ^2 + \ \mathbf{x}_j\ ^2\right)\right) \sinh(\mathbf{x}_i^T\mathbf{x}_j)$
$\operatorname{erf}(t)$	$\frac{2}{\pi}\arcsin\left(\frac{2\mathbf{x}_{i}^{T}\mathbf{x}_{j}^{T}}{\sqrt{(1+2\ \mathbf{x}_{i}\ ^{2})(1+2\ \mathbf{x}_{j}\ ^{2})}}\right)$
$\exp(-\tfrac{t^2}{2})$	$\frac{1}{\sqrt{(1+\ \mathbf{x}_i\ ^2)(1+\ \mathbf{x}_j\ ^2)-(\mathbf{x}_i^{T}\mathbf{x}_j)^2}}$

 \Rightarrow (still) highly nonlinear functions of the data x!

Outline

Problem Statement

Main Results

Summary

Data Model

Consider data from a K-class Gaussian mixture model: $\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \mu_a/\sqrt{p} + \omega_i$, with $\omega_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a/p)$, $a=1,\ldots,K$ of statistical mean μ_a and covariance \mathbf{C}_a .

Data Model

Consider data from a K-class Gaussian mixture model: $\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \mu_a/\sqrt{p} + \omega_i$, with $\omega_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a/p)$, $a=1,\ldots,K$ of statistical mean μ_a and covariance \mathbf{C}_a .

Non-trivial Classification [Neyman-Pearson Minimal]

For p large, we have $\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\| = O(1)$, $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a - \mathbf{C}_b)/\sqrt{p} = O(1)$.

Data Model

Consider data from a K-class Gaussian mixture model: $\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \mu_a/\sqrt{p} + \omega_i$, with $\omega_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a/p)$, $a=1,\ldots,K$ of statistical mean μ_a and covariance \mathbf{C}_a .

Non-trivial Classification [Neyman-Pearson Minimal]

For p large, we have $\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\| = O(1)$, $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a - \mathbf{C}_b)/\sqrt{p} = O(1)$.

As a consequence,

$$\|\mathbf{x}_i\|^2 = \underbrace{\|\boldsymbol{\omega}_i\|^2}_{O(1)} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

Data Model

Consider data from a K-class Gaussian mixture model: $\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \mu_a/\sqrt{p} + \omega_i$, with $\omega_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a/p)$, $a=1,\ldots,K$ of statistical mean μ_a and covariance \mathbf{C}_a .

Non-trivial Classification [Neyman-Pearson Minimal]

For p large, we have $\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\| = O(1)$, $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a - \mathbf{C}_b)/\sqrt{p} = O(1)$.

As a consequence,

$$\|\mathbf{x}_i\|^2 = \underbrace{\|\boldsymbol{\omega}_i\|^2}_{O(1)} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})} = \underbrace{\operatorname{tr} \mathbf{C}_a/p}_{O(1)} + \underbrace{\|\boldsymbol{\omega}_i\|^2 - \operatorname{tr} \mathbf{C}_a/p}_{O(p^{-1/2})} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

Data Model

Consider data from a K-class Gaussian mixture model: $\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \mu_a/\sqrt{p} + \omega_i$, with $\omega_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a/p)$, $a=1,\ldots,K$ of statistical mean μ_a and covariance \mathbf{C}_a .

Non-trivial Classification [Neyman-Pearson Minimal]

For p large, we have $\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\| = O(1)$, $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a - \mathbf{C}_b)/\sqrt{p} = O(1)$.

As a consequence,

$$\|\mathbf{x}_i\|^2 = \underbrace{\|\boldsymbol{\omega}_i\|^2}_{O(1)} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})} = \underbrace{\operatorname{tr} \mathbf{C}_a/p}_{O(1)} + \underbrace{\|\boldsymbol{\omega}_i\|^2 - \operatorname{tr} \mathbf{C}_a/p}_{O(p^{-1/2})} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

• if relaxed, classification too easy: it suffices to compare the norm $\|\mathbf{x}_i\|^2$ and $\|\mathbf{x}_i\|^2$!

Data Model

Consider data from a K-class Gaussian mixture model: $\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \mu_a/\sqrt{p} + \omega_i$, with $\omega_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a/p)$, $a=1,\ldots,K$ of statistical mean μ_a and covariance \mathbf{C}_a .

Non-trivial Classification [Neyman-Pearson Minimal]

For p large, we have $\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\| = O(1)$, $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a - \mathbf{C}_b)/\sqrt{p} = O(1)$.

As a consequence,

$$\|\mathbf{x}_i\|^2 = \underbrace{\|\boldsymbol{\omega}_i\|^2}_{O(1)} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})} = \underbrace{\operatorname{tr} \mathbf{C}_a/p}_{O(1)} + \underbrace{\|\boldsymbol{\omega}_i\|^2 - \operatorname{tr} \mathbf{C}_a/p}_{O(p^{-1/2})} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

- if relaxed, classification too easy: it suffices to compare the norm $\|\mathbf{x}_i\|^2$ and $\|\mathbf{x}_i\|^2$!
- in fact reveals a more intrinsic property of high dimensional data:

Data Model

Consider data from a K-class Gaussian mixture model: $\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \mu_a/\sqrt{p} + \omega_i$, with $\omega_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a/p)$, $a=1,\ldots,K$ of statistical mean μ_a and covariance \mathbf{C}_a .

Non-trivial Classification [Neyman-Pearson Minimal]

For p large, we have $\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\| = O(1)$, $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a - \mathbf{C}_b)/\sqrt{p} = O(1)$.

As a consequence,

$$\|\mathbf{x}_i\|^2 = \underbrace{\|\boldsymbol{\omega}_i\|^2}_{O(1)} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})} = \underbrace{\operatorname{tr} \mathbf{C}_a/p}_{O(1)} + \underbrace{\|\boldsymbol{\omega}_i\|^2 - \operatorname{tr} \mathbf{C}_a/p}_{O(p^{-1/2})} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

- if relaxed, classification too easy: it suffices to compare the norm $\|\mathbf{x}_i\|^2$ and $\|\mathbf{x}_j\|^2$!
- in fact reveals a more intrinsic property of high dimensional data:

Data Model

Consider data from a K-class Gaussian mixture model: $\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \mu_a/\sqrt{p} + \omega_i$, with $\omega_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a/p)$, $a=1,\ldots,K$ of statistical mean μ_a and covariance \mathbf{C}_a .

Non-trivial Classification [Neyman-Pearson Minimal]

For p large, we have $\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\| = O(1)$, $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a - \mathbf{C}_b)/\sqrt{p} = O(1)$.

As a consequence,

$$\|\mathbf{x}_i\|^2 = \underbrace{\|\boldsymbol{\omega}_i\|^2}_{O(1)} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})} = \underbrace{\operatorname{tr} \mathbf{C}_a/p}_{O(1)} + \underbrace{\|\boldsymbol{\omega}_i\|^2 - \operatorname{tr} \mathbf{C}_a/p}_{O(p^{-1/2})} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

- if relaxed, classification too easy: it suffices to compare the norm $\|\mathbf{x}_i\|^2$ and $\|\mathbf{x}_i\|^2$!
- in fact reveals a more intrinsic property of high dimensional data:

Denote
$$\mathbf{C}^{\circ} = \sum_{i=1}^{K} \frac{T_i}{T} \mathbf{C}_a$$
 and $\mathbf{C}_a = \mathbf{C}_a^{\circ} + \mathbf{C}^{\circ}$ for $a=1,\ldots,K$. Then $\|\mathbf{x}_i\|^2 = \tau + O(p^{-1/2})$ with $\tau \equiv \mathrm{tr}(\mathbf{C}^{\circ})/p$,

Data Model

Consider data from a K-class Gaussian mixture model: $\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \mu_a/\sqrt{p} + \omega_i$, with $\omega_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a/p)$, $a=1,\ldots,K$ of statistical mean μ_a and covariance \mathbf{C}_a .

Non-trivial Classification [Neyman-Pearson Minimal]

For p large, we have $\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\| = O(1)$, $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a - \mathbf{C}_b)/\sqrt{p} = O(1)$.

As a consequence,

$$\|\mathbf{x}_i\|^2 = \underbrace{\|\boldsymbol{\omega}_i\|^2}_{O(1)} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})} = \underbrace{\operatorname{tr} \mathbf{C}_a/p}_{O(1)} + \underbrace{\|\boldsymbol{\omega}_i\|^2 - \operatorname{tr} \mathbf{C}_a/p}_{O(p^{-1/2})} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

- if relaxed, classification too easy: it suffices to compare the norm $\|\mathbf{x}_i\|^2$ and $\|\mathbf{x}_i\|^2$!
- in fact reveals a more intrinsic property of high dimensional data:

Denote
$$\mathbf{C}^{\circ} = \sum_{i=1}^{K} \frac{T_i}{T} \mathbf{C}_a$$
 and $\mathbf{C}_a = \mathbf{C}_a^{\circ} + \mathbf{C}^{\circ}$ for $a = 1, \dots, K$.
Then $\|\mathbf{x}_i\|^2 = \tau + O(p^{-1/2})$ with $\tau \equiv \operatorname{tr}(\mathbf{C}^{\circ})/p$, $\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \|\mathbf{x}_i\|^2 + \|\mathbf{x}_j\|^2 - \mathbf{x}_i^{\mathsf{T}}\mathbf{x}_j \approx 2\tau$:

Data Model

Consider data from a K-class Gaussian mixture model: $\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \mu_a/\sqrt{p} + \omega_i$, with $\omega_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_a/p), \ a=1,\ldots,K$ of statistical mean μ_a and covariance \mathbf{C}_a .

Non-trivial Classification [Neyman-Pearson Minimal]

For p large, we have $\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\| = O(1)$, $\|\mathbf{C}_a\| = O(1)$ and $\operatorname{tr}(\mathbf{C}_a - \mathbf{C}_b)/\sqrt{p} = O(1)$.

As a consequence,

$$\|\mathbf{x}_i\|^2 = \underbrace{\|\boldsymbol{\omega}_i\|^2}_{O(1)} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})} = \underbrace{\operatorname{tr} \mathbf{C}_a/p}_{O(1)} + \underbrace{\|\boldsymbol{\omega}_i\|^2 - \operatorname{tr} \mathbf{C}_a/p}_{O(p^{-1/2})} + \underbrace{\|\boldsymbol{\mu}_a\|^2/p + 2\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

- if relaxed, classification too easy: it suffices to compare the norm $\|\mathbf{x}_i\|^2$ and $\|\mathbf{x}_i\|^2$!
- in fact reveals a more intrinsic property of high dimensional data:

Denote
$$\mathbf{C}^{\circ} = \sum_{i=1}^{K} \frac{T_i}{T} \mathbf{C}_a$$
 and $\mathbf{C}_a = \mathbf{C}_a^{\circ} + \mathbf{C}^{\circ}$ for $a=1,\ldots,K$.
Then $\|\mathbf{x}_i\|^2 = \tau + O(p^{-1/2})$ with $\tau \equiv \operatorname{tr}(\mathbf{C}^{\circ})/p$, $\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \|\mathbf{x}_i\|^2 + \|\mathbf{x}_j\|^2 - \mathbf{x}_i^{\mathsf{T}}\mathbf{x}_j \approx 2\tau$:

 \Rightarrow Almost constant distance no matter from the same or different classes!

Why things are still working? \Rightarrow statistical information are hidden in smaller order terms!

$$\Rightarrow \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \|\mathbf{x}_i\|^2 + \|\mathbf{x}_j\|^2 - \mathbf{x}_i^\mathsf{T} \mathbf{x}_j \approx 2\tau + \underbrace{\boldsymbol{\omega}_i^\mathsf{T} \boldsymbol{\omega}_j}_{O(p^{-1/2})} + \underbrace{\boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\mu}_b/p + \boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\omega}_j/\sqrt{p} + \boldsymbol{\mu}_b^\mathsf{T} \boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

Why things are still working? \Rightarrow statistical information are hidden in smaller order terms!

$$\Rightarrow \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \|\mathbf{x}_i\|^2 + \|\mathbf{x}_j\|^2 - \mathbf{x}_i^\mathsf{T} \mathbf{x}_j \approx 2\tau + \underbrace{\boldsymbol{\omega}_i^\mathsf{T} \boldsymbol{\omega}_j}_{O(p^{-1/2})} + \underbrace{\boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\mu}_b/p + \boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\omega}_j/\sqrt{p} + \boldsymbol{\mu}_b^\mathsf{T} \boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

Small entry-wise \neq small in matrix form (in operator norm): repeated in $p \times p$ large matrix \Rightarrow spectral clustering works!

Why things are still working? \Rightarrow statistical information are hidden in smaller order terms!

$$\Rightarrow \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \|\mathbf{x}_i\|^2 + \|\mathbf{x}_j\|^2 - \mathbf{x}_i^\mathsf{T}\mathbf{x}_j \approx 2\tau + \underbrace{\boldsymbol{\omega}_i^\mathsf{T}\boldsymbol{\omega}_j}_{O(p^{-1/2})} + \underbrace{\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\mu}_b/p + \boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_j/\sqrt{p} + \boldsymbol{\mu}_b^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

Small entry-wise \neq small in matrix form (in operator norm): repeated in $p \times p$ large matrix \Rightarrow spectral clustering works!

Moreover, "concentration" brings simplifications: for $\Phi_{i,j} = \mathbb{E}_{\mathbf{w}} \, \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j)$ and ReLU ,

$$\mathbf{\Phi}_{i,j} = \frac{1}{2\pi} \|\mathbf{x}_i\| \|\mathbf{x}_j\| \left(\angle \arccos\left(-\angle\right) + \sqrt{1 - \angle^2} \right)$$

with $\angle \equiv \frac{\mathbf{x}_i^\mathsf{T} \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}$.

Why things are still working? \Rightarrow statistical information are hidden in smaller order terms!

$$\Rightarrow \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \|\mathbf{x}_i\|^2 + \|\mathbf{x}_j\|^2 - \mathbf{x}_i^\mathsf{T} \mathbf{x}_j \approx 2\tau + \underbrace{\boldsymbol{\omega}_i^\mathsf{T} \boldsymbol{\omega}_j}_{O(p^{-1/2})} + \underbrace{\boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\mu}_b/p + \boldsymbol{\mu}_a^\mathsf{T} \boldsymbol{\omega}_j/\sqrt{p} + \boldsymbol{\mu}_b^\mathsf{T} \boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

Small entry-wise \neq small in matrix form (in operator norm): repeated in $p \times p$ large matrix \Rightarrow spectral clustering works!

Moreover, "concentration" brings simplifications: for $\Phi_{i,j} = \mathbb{E}_{\mathbf{w}} \, \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j)$ and ReLU ,

$$\mathbf{\Phi}_{i,j} = \frac{1}{2\pi} \|\mathbf{x}_i\| \|\mathbf{x}_j\| \left(\angle \arccos\left(-\angle\right) + \sqrt{1 - \angle^2} \right)$$

with $\angle\equiv rac{\mathbf{x}_i^\mathsf{T}\mathbf{x}_j}{\|\mathbf{x}_i\|\|\mathbf{x}_j\|}$. "Concentration": $\angle=rac{0}{ au^2}+$ information terms $(\mu_a,\mathbf{C}_a)!$

Why things are still working? ⇒ statistical information are hidden in smaller order terms!

$$\Rightarrow \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \|\mathbf{x}_i\|^2 + \|\mathbf{x}_j\|^2 - \mathbf{x}_i^\mathsf{T}\mathbf{x}_j \approx 2\tau + \underbrace{\boldsymbol{\omega}_i^\mathsf{T}\boldsymbol{\omega}_j}_{O(p^{-1/2})} + \underbrace{\boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\mu}_b/p + \boldsymbol{\mu}_a^\mathsf{T}\boldsymbol{\omega}_j/\sqrt{p} + \boldsymbol{\mu}_b^\mathsf{T}\boldsymbol{\omega}_i/\sqrt{p}}_{O(p^{-1})}$$

Small entry-wise \neq small in matrix form (in operator norm): repeated in $p \times p$ large matrix \Rightarrow spectral clustering works!

Moreover, "concentration" brings simplifications: for $\Phi_{i,j} = \mathbb{E}_{\mathbf{w}} \, \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j)$ and ReLU ,

$$\mathbf{\Phi}_{i,j} = \frac{1}{2\pi} \|\mathbf{x}_i\| \|\mathbf{x}_j\| \left(\angle \arccos\left(-\angle\right) + \sqrt{1 - \angle^2} \right)$$

with $\angle \equiv \frac{\mathbf{x}_i^\mathsf{T} \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_i\|}$. "Concentration": $\angle = \frac{0}{\tau^2} + \text{information terms } (\mu_a, \mathbf{C}_a)!$

"Blessing" of Dimensionality

High dimensional "concentration" \Rightarrow Taylor expansion to linearize Φ !

Main Results

Asymptotic Equivalent of Φ

For all $\sigma(\cdot)$ listed in the table above, we have, as $n\sim p\sim T\to \infty$,

$$\|\mathbf{\Phi} - \tilde{\mathbf{\Phi}}\| \to 0$$

almost surely, with

$$\tilde{\mathbf{\Phi}} \equiv d_1 \left(\mathbf{\Omega} + \mathbf{M} \frac{\mathbf{J}^\mathsf{T}}{\sqrt{p}} \right)^\mathsf{T} \left(\mathbf{\Omega} + \mathbf{M} \frac{\mathbf{J}^\mathsf{T}}{\sqrt{p}} \right) + d_2 \mathbf{U} \mathbf{B} \mathbf{U}^\mathsf{T} + d_0 \mathbf{I}_T$$

$$\text{ and } \mathbf{U} \equiv \begin{bmatrix} \frac{\mathbf{J}}{\sqrt{p}}, \phi \end{bmatrix}, \quad \mathbf{B} \equiv \begin{bmatrix} \mathbf{t}\mathbf{t}^\mathsf{T} + 2\mathbf{S} & \mathbf{t} \\ \mathbf{t}^\mathsf{T} & 1 \end{bmatrix}.$$

Main Results

Asymptotic Equivalent of Φ

For all $\sigma(\cdot)$ listed in the table above, we have, as $n\sim p\sim T\rightarrow \infty$,

$$\|\mathbf{\Phi} - \tilde{\mathbf{\Phi}}\| \to 0$$

almost surely, with

$$ilde{\mathbf{\Phi}} \equiv d_1 \left(\mathbf{\Omega} + \mathbf{M} \frac{\mathbf{J}^\mathsf{T}}{\sqrt{p}} \right)^\mathsf{T} \left(\mathbf{\Omega} + \mathbf{M} \frac{\mathbf{J}^\mathsf{T}}{\sqrt{p}} \right) \\ + d_2 \mathbf{U} \mathbf{B} \mathbf{U}^\mathsf{T} + d_0 \mathbf{I}_T$$

$$\text{ and } \mathbf{U} \equiv \begin{bmatrix} \frac{\mathbf{J}}{\sqrt{p}}, \phi \end{bmatrix}, \quad \mathbf{B} \equiv \begin{bmatrix} \mathbf{t}\mathbf{t}^\mathsf{T} + 2\mathbf{S} & \mathbf{t} \\ \mathbf{t}^\mathsf{T} & 1 \end{bmatrix}.$$

With $\mathbf{J} \equiv [\mathbf{j}_1, \dots, \mathbf{j}_K]$, \mathbf{j}_a canonical vector of \mathcal{C}_a : $(\mathbf{j}_a)_i = \delta_{\mathbf{x}_i \in \mathcal{C}_a}$ (for clustering), weighted by

Main Results

Asymptotic Equivalent of Φ

For all $\sigma(\cdot)$ listed in the table above, we have, as $n\sim p\sim T\rightarrow \infty$,

$$\|\mathbf{\Phi} - \tilde{\mathbf{\Phi}}\| \to 0$$

almost surely, with

$$ilde{\mathbf{\Phi}} \equiv d_1 \left(\mathbf{\Omega} + \mathbf{M} \frac{\mathbf{J}^\mathsf{T}}{\sqrt{p}} \right)^\mathsf{T} \left(\mathbf{\Omega} + \mathbf{M} \frac{\mathbf{J}^\mathsf{T}}{\sqrt{p}} \right) \\ + d_2 \mathbf{U} \mathbf{B} \mathbf{U}^\mathsf{T} + d_0 \mathbf{I}_T$$

$$\text{ and } \mathbf{U} \equiv \begin{bmatrix} \frac{\mathbf{J}}{\sqrt{p}}, \phi \end{bmatrix}, \quad \mathbf{B} \equiv \begin{bmatrix} \mathbf{t}\mathbf{t}^\mathsf{T} + 2\mathbf{S} & \mathbf{t} \\ \mathbf{t}^\mathsf{T} & 1 \end{bmatrix}.$$

With $\mathbf{J} \equiv [\mathbf{j}_1, \dots, \mathbf{j}_K]$, \mathbf{j}_a canonical vector of \mathcal{C}_a : $(\mathbf{j}_a)_i = \delta_{\mathbf{x}_i \in \mathcal{C}_a}$ (for clustering), weighted by $\bullet \ \Omega$, ϕ random fluctuations of data.

Main Results

Asymptotic Equivalent of Φ

For all $\sigma(\cdot)$ listed in the table above, we have, as $n \sim p \sim T \to \infty$,

$$\|\mathbf{\Phi} - \tilde{\mathbf{\Phi}}\| \to 0$$

almost surely, with

$$egin{aligned} ilde{m{\Phi}} &\equiv d_1 \left(m{\Omega} + \mathbf{M} rac{\mathbf{J}^\mathsf{T}}{\sqrt{p}}
ight)^\mathsf{T} \left(m{\Omega} + \mathbf{M} rac{\mathbf{J}^\mathsf{T}}{\sqrt{p}}
ight) \ &+ d_2 \mathbf{U} \mathbf{B} \mathbf{U}^\mathsf{T} + d_0 \mathbf{I}_T \end{aligned}$$

and
$$\mathbf{U} \equiv \begin{bmatrix} \frac{\mathbf{J}}{\sqrt{p}}, \phi \end{bmatrix}, \quad \mathbf{B} \equiv \begin{bmatrix} \mathbf{t}\mathbf{t}^\mathsf{T} + 2\mathbf{S} & \mathbf{t} \\ \mathbf{t}^\mathsf{T} & 1 \end{bmatrix}.$$

With $\mathbf{J} \equiv [\mathbf{j}_1, \dots, \mathbf{j}_K]$, \mathbf{j}_a canonical vector of \mathcal{C}_a : $(\mathbf{j}_a)_i = \delta_{\mathbf{x}_i \in \mathcal{C}_a}$ (for clustering), weighted by

- Ω . ϕ random fluctuations of data. • $\mathbf{M} \equiv [\mu_1, \dots, \mu_K]$, $\mathbf{t} \equiv \left\{ \operatorname{tr} \mathbf{C}_a^{\circ} / \sqrt{p} \right\}_{a,b=1}^K$, $\mathbf{S} \equiv \left\{ \operatorname{tr} (\mathbf{C}_a \mathbf{C}_b) / p \right\}_{a,b=1}^K$ statistical information

ICML 2018, Stockholm, SWEDEN

from data distribution.

Main Results

Asymptotic Equivalent of Φ

For all $\sigma(\cdot)$ listed in the table above, we have, as $n \sim p \sim T \to \infty$,

$$\|\mathbf{\Phi} - \tilde{\mathbf{\Phi}}\| \to 0$$

almost surely, with

$$ilde{\mathbf{\Phi}} \equiv d_1 \left(\mathbf{\Omega} + \mathbf{M} \frac{\mathbf{J}^\mathsf{T}}{\sqrt{p}} \right)^\mathsf{T} \left(\mathbf{\Omega} + \mathbf{M} \frac{\mathbf{J}^\mathsf{T}}{\sqrt{p}} \right) + d_2 \mathbf{U} \mathbf{B} \mathbf{U}^\mathsf{T} + d_0 \mathbf{I}_T$$

and
$$\mathbf{U} \equiv \begin{bmatrix} \mathbf{J} \\ \sqrt{p} \end{bmatrix}, \quad \mathbf{B} \equiv \begin{bmatrix} \mathbf{t}\mathbf{t}^\mathsf{T} + 2\mathbf{S} & \mathbf{t} \\ \mathbf{t}^\mathsf{T} & 1 \end{bmatrix}.$$

Table: Coefficients d_i in $\tilde{\Phi}$ for different $\sigma(\cdot)$.

$\sigma(t)$	d_1	d_2
t	1	0
$\max(t,0)$	$\frac{1}{4}$	$\frac{1}{8\pi\tau}$
t	0	$\frac{1}{2\pi\tau}$
$\varsigma_+ \max(t,0) + $ $\varsigma \max(-t,0)$	$\frac{1}{4}(\varsigma_+ - \varsigma)^2$	$\frac{1}{8\tau\pi}(\varsigma_+ + \varsigma)^2$
$1_{t>0}$	$\frac{1}{2\pi\tau}$	0
$\operatorname{sign}(t)$	$\frac{2}{\pi \tau}$	0
$ \varsigma_2 t^2 + \varsigma_1 t + \varsigma_0 $	ς_1^2	$\frac{\varsigma_2^2}{\frac{e^{-\tau}}{4}}$
$\cos(t)$	0	$\frac{e^{-\tau}}{4}$
$\sin(t)$	$e^{-\tau}$	0
$\operatorname{erf}(t)$	$\frac{4}{\pi} \frac{1}{2\tau+1}$	0
$\exp(-\frac{t^2}{2})$	0	$\frac{1}{4(\tau+1)^3}$

With $J \equiv [\mathbf{j}_1, \dots, \mathbf{j}_K]$, \mathbf{j}_a canonical vector of \mathcal{C}_a : $(\mathbf{j}_a)_i = \delta_{\mathbf{x}_i \in \mathcal{C}_a}$ (for clustering), weighted by • Ω . ϕ random fluctuations of data.

- $\mathbf{M} \equiv [\mu_1, \dots, \mu_K]$, $\mathbf{t} \equiv \left\{ \operatorname{tr} \mathbf{C}_a^{\circ} / \sqrt{p} \right\}_{a,b=1}^K$, $\mathbf{S} \equiv \left\{ \operatorname{tr} (\mathbf{C}_a \mathbf{C}_b) / p \right\}_{a,b=1}^K$ statistical information

ICML 2018, Stockholm, SWEDEN

Table: Coefficients d_i in $\tilde{\Phi}$ for different $\sigma(\cdot)$.

$\sigma(t)$	d_1	d_2
t	1	0
$\max(t,0)$	$\frac{1}{4}$	$\frac{1}{8\pi\tau}$
t	0	$\frac{1}{2\pi\tau}$
$ \varsigma_{+} \max(t,0) + $ $ \varsigma_{-} \max(-t,0) $	$\frac{1}{4}(\varsigma_+ - \varsigma)^2$	$\frac{1}{8\tau\pi}(\varsigma_+ + \varsigma)^2$
$1_{t>0}$	$\frac{1}{2\pi\tau}$	0
$\operatorname{sign}(t)$	$\frac{2}{\pi \tau}$	0
$ \varsigma_2 t^2 + \varsigma_1 t + \varsigma_0 $	ς_1^2	ς_2^2
$\cos(t)$	0	$\frac{e^{-\tau}}{4}$
$\sin(t)$	$e^{-\tau}$	0
$\operatorname{erf}(t)$	$\frac{4}{\pi} \frac{1}{2\tau+1}$	0
$\exp(-\frac{t^2}{2})$	0	$\frac{1}{4(\tau+1)^3}$

Table: Coefficients d_i in $\tilde{\Phi}$ for different $\sigma(\cdot)$.

$\sigma(t)$	d_1	d_2
t	1	0
$\max(t,0)$	$\frac{1}{4}$	$\frac{1}{8\pi\tau}$
t	0	$\frac{1}{2\pi\tau}$
$\varsigma_+ \max(t,0) + $ $\varsigma \max(-t,0)$	$\frac{1}{4}(\varsigma_+ - \varsigma)^2$	$\frac{1}{8\tau\pi}(\varsigma_+ + \varsigma)^2$
$1_{t>0}$	$\frac{1}{2\pi\tau}$	0
$\operatorname{sign}(t)$	$\frac{2}{\pi \tau}$	0
$ \varsigma_2 t^2 + \varsigma_1 t + \varsigma_0 $	ς_1^2	ς_2^2
$\cos(t)$	0	$\frac{e^{-\tau}}{4}$
$\sin(t)$	$e^{-\tau}$	0
$\operatorname{erf}(t)$	$\frac{4}{\pi} \frac{1}{2\tau+1}$	0
$\exp(-\frac{t^2}{2})$	0	$\frac{1}{4(\tau+1)^3}$

A natural classification of $\sigma(\cdot)$:

• mean-oriented, $d_1 \neq 0$, $d_2 = 0$: t, $1_{t>0}$, $\operatorname{sign}(t)$, $\operatorname{sin}(t)$ and $\operatorname{erf}(t)$ \Rightarrow separate with difference in means M;

Table: Coefficients d_i in $\tilde{\Phi}$ for different $\sigma(\cdot)$.

$\sigma(t)$	d_1	d_2
t	1	0
$\max(t,0)$	$\frac{1}{4}$	$\frac{1}{8\pi\tau}$
t	0	$\frac{1}{2\pi\tau}$
$ \varsigma_{+} \max(t,0) + $ $ \varsigma_{-} \max(-t,0) $	$\frac{1}{4}(\varsigma_+ - \varsigma)^2$	$\frac{1}{8\tau\pi}(\varsigma_+ + \varsigma)^2$
$1_{t>0}$	$\frac{1}{2\pi\tau}$	0
$\operatorname{sign}(t)$	$\frac{2}{\pi \tau}$	0
$ \varsigma_2 t^2 + \varsigma_1 t + \varsigma_0 $	ς_1^2	ς_2^2
$\cos(t)$	0	$\frac{e^{-\tau}}{4}$
$\sin(t)$	$e^{-\tau}$	0
$\operatorname{erf}(t)$	$\frac{4}{\pi} \frac{1}{2\tau+1}$	0
$\exp(-\frac{t^2}{2})$	0	$\frac{1}{4(\tau+1)^3}$

A natural classification of $\sigma(\cdot)$:

- $\begin{array}{l} \bullet \ \ \, \textit{mean-oriented}, \ d_1 \neq 0, \ d_2 = 0; \\ t, \ 1_{t>0}, \ \mathrm{sign}(t), \ \mathrm{sin}(t) \ \mathsf{and} \ \mathrm{erf}(t) \\ \Rightarrow \ \ \, \mathsf{separate} \ \mathsf{with} \ \mathsf{difference} \ \mathsf{in} \ \mathsf{means} \ \mathsf{M}; \\ \end{array}$
- covariance-oriented, $d_1 = 0$, $d_2 \neq 0$: |t|, $\cos(t)$ and $\exp(-t^2/2)$ \Rightarrow track differences in covariances t, S;

Table: Coefficients d_i in $\tilde{\Phi}$ for different $\sigma(\cdot)$.

$\sigma(t)$	d_1	d_2
t	1	0
$\max(t,0)$	$\frac{1}{4}$	$\frac{1}{8\pi\tau}$
t	0	$\frac{1}{2\pi\tau}$
$\varsigma_+ \max(t,0) + $ $\varsigma \max(-t,0)$	$\frac{1}{4}(\varsigma_+ - \varsigma)^2$	$\frac{1}{8\tau\pi}(\varsigma_+ + \varsigma)^2$
$1_{t>0}$	$\frac{1}{2\pi\tau}$	0
$\mathrm{sign}(t)$	$\frac{2}{\pi \tau}$	0
$ \varsigma_2 t^2 + \varsigma_1 t + \varsigma_0 $	ς_1^2	ς_2^2
$\cos(t)$	0	$\frac{e^{-\tau}}{4}$
$\sin(t)$	$e^{-\tau}$	0
$\operatorname{erf}(t)$	$\frac{4}{\pi} \frac{1}{2\tau+1}$	0
$\exp(-\frac{t^2}{2})$	0	$\frac{1}{4(\tau+1)^3}$

A natural classification of $\sigma(\cdot)$:

- mean-oriented, $d_1 \neq 0$, $d_2 = 0$: t, $1_{t>0}$, $\operatorname{sign}(t)$, $\operatorname{sin}(t)$ and $\operatorname{erf}(t)$ \Rightarrow separate with difference in means \mathbf{M} ;
- covariance-oriented, $d_1 = 0$, $d_2 \neq 0$: |t|, $\cos(t)$ and $\exp(-t^2/2)$ \Rightarrow track differences in covariances t, S;
- "balanced", both $d_1, d_2 \neq 0$:
 - ► ReLU function max(t, 0),
 - Leaky ReLU function $\varsigma_+ \max(t, 0) + \varsigma_- \max(-t, 0)$,
 - quadratic function $\varsigma_2 t^2 + \varsigma_1 t + \varsigma_0$.

Table: Coefficients d_i in $\tilde{\Phi}$ for different $\sigma(\cdot)$.

$\sigma(t)$	d_1	d_2
t	1	0
$\max(t,0)$	$\frac{1}{4}$	$\frac{1}{8\pi\tau}$
t	0	$\frac{1}{2\pi\tau}$
$\varsigma_+ \max(t,0) + $ $\varsigma \max(-t,0)$	$\frac{1}{4}(\varsigma_+ - \varsigma)^2$	$\frac{1}{8\tau\pi}(\varsigma_+ + \varsigma)^2$
$1_{t>0}$	$\frac{1}{2\pi\tau}$	0
$\operatorname{sign}(t)$	$\frac{2}{\pi \tau}$	0
$ \varsigma_2 t^2 + \varsigma_1 t + \varsigma_0 $	ς_1^2	ς_2^2
$\cos(t)$	0	$\frac{e^{-\tau}}{4}$
$\sin(t)$	$e^{-\tau}$	0
$\operatorname{erf}(t)$	$\frac{4}{\pi} \frac{1}{2\tau+1}$	0
$\exp(-\frac{t^2}{2})$	0	$\frac{1}{4(\tau+1)^3}$

A natural classification of $\sigma(\cdot)$:

- mean-oriented, $d_1 \neq 0$, $d_2 = 0$: t, $1_{t>0}$, $\operatorname{sign}(t)$, $\operatorname{sin}(t)$ and $\operatorname{erf}(t)$ \Rightarrow separate with difference in means \mathbf{M} ;
- covariance-oriented, $d_1 = 0$, $d_2 \neq 0$: |t|, $\cos(t)$ and $\exp(-t^2/2)$ \Rightarrow track differences in covariances t, S;
- "balanced", both $d_1, d_2 \neq 0$:
 - ► ReLU function max(t, 0),
 - ► Leaky ReLU function
 - $\varsigma_{+} \max(t,0) + \varsigma_{-} \max_{2} (-t,0),$
 - quadratic function $\varsigma_2 t^2 + \varsigma_1 t + \varsigma_0$.
 - ⇒ make use of both statistics!

Example: Gaussian mixture data of four classes: $\mathcal{N}(\mu_1, \mathbf{C}_1)$, $\mathcal{N}(\mu_1, \mathbf{C}_2)$, $\mathcal{N}(\mu_2, \mathbf{C}_1)$ and $\mathcal{N}(\mu_2, \mathbf{C}_2)$ with Leaky ReLU function $\varsigma_+ \max(t,0) + \varsigma_- \max(-t,0)$.

Example: Gaussian mixture data of four classes: $\mathcal{N}(\mu_1, \mathbf{C}_1)$, $\mathcal{N}(\mu_1, \mathbf{C}_2)$, $\mathcal{N}(\mu_2, \mathbf{C}_1)$ and $\mathcal{N}(\mu_2, \mathbf{C}_2)$ with Leaky ReLU function $\varsigma_+ \max(t,0) + \varsigma_- \max(-t,0)$.

Case 1: $\varsigma_{+} = \varsigma_{-} = 1$ (equivalent to linear map $\sigma(t) = t$)

Eigenvector 1

Eigenvector 2

Example: Gaussian mixture data of four classes: $\mathcal{N}(\mu_1, \mathbf{C}_1)$, $\mathcal{N}(\mu_1, \mathbf{C}_2)$, $\mathcal{N}(\mu_2, \mathbf{C}_1)$ and $\mathcal{N}(\boldsymbol{\mu}_2, \mathbf{C}_2)$ with Leaky ReLU function $\varsigma_+ \max(t, 0) + \varsigma_- \max(-t, 0)$.

Case 1: $\varsigma_+ = \varsigma_- = 1$ (equivalent to linear map $\sigma(t) = t$)

Eigenvector 1

Eigenvector 2

Case 2:
$$\varsigma_+ = -\varsigma_- = 1$$
 (equivalent to $\sigma(t) = |t|$)

Eigenvector 1

Eigenvector 2

Case 3: $\varsigma_+ = 1$, $\varsigma_- = 0$ (the ReLU function)

 $\begin{array}{c} C_1 \\ C_2 \\ C_3 \end{array}$

Eigenvector 2

Case 3: $\varsigma_+=1$, $\varsigma_-=0$ (the ReLU function)

Figure: The MNIST image database.

Figure: The epileptic EEG datasets.²

Reproducibility: codes available at https://github.com/Zhenyu-LIAO/RMT4RFM.

 $^{^2 {\}tt http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html.}$

Table: Empirical estimation of differences in means and covariances of the MNIST and epileptic EEG datasets.

	$\ \mathbf{M}^T\mathbf{M}\ $	$\ \mathbf{t}\mathbf{t}^T + 2\mathbf{S}\ $
MNIST data EEG data	172.4 1.2	86.0 182.7
		102.1

Table: Empirical estimation of differences in means and covariances of the MNIST and epileptic EEG datasets.

	$\ \mathbf{M}^T\mathbf{M}\ $	$\ \mathbf{t}\mathbf{t}^{T} + 2\mathbf{S}\ $
MNIST data	172.4	86.0
EEG data	1.2	182.7

Table: Clustering accuracies on MNIST dataset.

	$\sigma(t)$	T = 64	T = 128
mean- oriented	t $1_{t>0}$ $sign(t)$ $sin(t)$ $erf(t)$	88.94% 82.94% 83.34% 87.81% 87.28%	87.30% 85.56% 85.22% 87.50 % 86.59%
cov- oriented	$ t \cos(t) \\ \exp(-\frac{t^2}{2})$	60.41% $59.56%$ $60.44%$	57.81% 57.72% 58.67%
balanced	ReLU(t)	85.72%	82.27%

Table: Clustering accuracies on EEG dataset.

		$\sigma(t)$	T = 64	T = 128
	an- nted	$t \\ 1_{t>0} \\ \operatorname{sign}(t) \\ \operatorname{sin}(t) \\ \operatorname{erf}(t)$	70.31% 65.87% 64.63% 70.34% 70.59%	69.58% $63.47%$ $63.03%$ $68.22%$ $67.70%$
	ov- nted	$\begin{vmatrix} t \\ \cos(t) \\ \exp(-\frac{t^2}{2}) \end{vmatrix}$	99.69% 99.38% 99.81 %	99.50% 99.36% 99.77 %
bala	nced	ReLU(t)	87.91%	90.97%

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same statistics) with a width of ± 1 standard deviations.

Outline

Problem Statement

Main Results

Summary

Take-away message:

• "concentration" of high dimensional data to handle the nonlinearity

Take-away message:

- "concentration" of high dimensional data to handle the nonlinearity
- different nonlinearities into three attributes: mean-, covariance-oriented and "balanced"

Take-away message:

- "concentration" of high dimensional data to handle the nonlinearity
- different nonlinearities into three attributes: mean-, covariance-oriented and "balanced"
- optimize the choice of nonlinearity as a function of data (quadratic and LReLU)

Take-away message:

- "concentration" of high dimensional data to handle the nonlinearity
- different nonlinearities into three attributes: mean-, covariance-oriented and "balanced"
- optimize the choice of nonlinearity as a function of data (quadratic and LReLU)
- novel insight into understanding of neural networks for high dimensional data

Take-away message:

- "concentration" of high dimensional data to handle the nonlinearity
- different nonlinearities into three attributes: mean-, covariance-oriented and "balanced"
- optimize the choice of nonlinearity as a function of data (quadratic and LReLU)
- novel insight into understanding of neural networks for high dimensional data

Future work:

Take-away message:

- "concentration" of high dimensional data to handle the nonlinearity
- different nonlinearities into three attributes: mean-, covariance-oriented and "balanced"
- optimize the choice of nonlinearity as a function of data (quadratic and LReLU)
- novel insight into understanding of neural networks for high dimensional data

Future work:

• study of the eigenvalue distribution \Rightarrow the (asymptotic) behavior of leading eigenvectors

Take-away message:

- "concentration" of high dimensional data to handle the nonlinearity
- different nonlinearities into three attributes: mean-, covariance-oriented and "balanced"
- optimize the choice of nonlinearity as a function of data (quadratic and LReLU)
- novel insight into understanding of neural networks for high dimensional data

Future work:

- study of the eigenvalue distribution \Rightarrow the (asymptotic) behavior of leading eigenvectors
- ullet combination of different type of nonlinearities, e.g., $\sin + \cos \Rightarrow$ Gaussian kernel

Take-away message:

- "concentration" of high dimensional data to handle the nonlinearity
- different nonlinearities into three attributes: mean-, covariance-oriented and "balanced"
- optimize the choice of nonlinearity as a function of data (quadratic and LReLU)
- novel insight into understanding of neural networks for high dimensional data

Future work:

- ullet study of the eigenvalue distribution \Rightarrow the (asymptotic) behavior of leading eigenvectors
- ullet combination of different type of nonlinearities, e.g., $\sin + \cos \Rightarrow$ Gaussian kernel
- directly linking $\sigma(\cdot)$ and the coefficients d_0 , d_1 and d_2

Thank you

Thank you!

Poster # 62