Assignment

Time series forecasting on solar irradiance data

- Background: Solar radiation is an important source for electricity generation. For effective utilization, it is important to precisely know the irradiance amount at different time horizons: minutes, hours, and days. Depending on the horizon, two main classes of methods can be used to forecast the solar radiation: statistical time series forecasting methods for short to midterm horizons and numerical weather prediction methods for medium- to long-term horizons.
- **Objective**: To forecast the next day solar irradiance (measured in W/m2) values using ClimaCell API data (6-hours per day) and real weather station data from a solar plant.
- ClimaCell API Data ('climacell data formodel.csv')
 - O ClimaCell is forecasting tomorrow's irradiance value, ambient_temp and wind_speed from 6am to 12 am with 5 min frequency using their proprietary system.
 - Features in the file labelled as 'climacell data formodel.csv'
 - date time -> IST date and time (format: 2020-08-20 06:05:00+05:30)
 - date -> dates are seperated from datetime stamp
 - time -> times are seperated from datetime stamp
 - irradiation -> irradiance value in 5 min duration/frequency
 - ambient_temp -> ambient temperature in 5 min duration/frequency in the used longitude and latitude
 - wind_speed -> wind speed in 5 min duration/frequency in the used longitude and latitude
- Weather Station Data ('weather data from plant.csv')
 - Features in the file labelled as 'weather_data_from_plant.csv'
 - date time -> IST date and time
 - irradiation -> irradiance value in 1 min duration/frequency
 - ambient_temp -> ambient temperature in 1 min duration/frequency in the used longitude and latitude
 - wind_speed -> wind speed in 1 min duration/frequency in the used longitude and latitude
- **Input**: input to the model are:
 - Time-based features to address seasonality and cyclic nature of irradiation data.
 - Raw data: irradiation, ambient_temp, wind_speed
 - o Lagged features of solar irradiance
 - o Resampling: chose a suitable duration/frequency 5 min, 15 min or 30 min
- Model and Approaches:
 - Classical time-series model -> for example: ARIMA
 - Multilayer Perceptron (MLP)
 - o Long Short-term Memory (LSTM)
 - o Gated Recurrent Units (GRU)
- **Output**: output of the model will be solar irradiance values (W/m2) for the next day. You may choose to forecast it for hourly or 30-min, or 15-min, or 5-min frequency/duration.
- Performance Measurements:
 - o R2
 - o RMSE
 - Normalized RMSE (NRMSE)