ESAME DI ANALISI MATEMATICA T-2

CORSO DI LAUREA IN ARCHITETTURA – INGEGNERIA ALMA MATER – UNIVERSITÀ DI BOLOGNA

2 Luglio 2024

ISTRUZIONI. Il tempo a disposizione per la risoluzione è di 120 minuti. Il punteggio minimo per accedere alla prova orale è 15/30.

Esercizio A

Sia data la seguente matrice $A \in \mathbb{M}_3(\mathbb{C})$ dipendente da un parametro $\kappa \in \mathbb{C}$:

$$m{A} = egin{pmatrix} 1 & 0 & 1 \ 2 & \kappa & \kappa \ 0 & \kappa & 2 \end{pmatrix}.$$

A1 Si individuino i valori di $\kappa \in \mathbb{C}$ per cui $\operatorname{tr}(A) = \det(A)$.

A2 Si studi l'insieme delle soluzioni dell'equazione Ax = 0, con $x \in \mathbb{C}^3$, al variare di κ .

Esercizio B

Sia data la curva in \mathbb{R}^3 , data in figura e parametrizzata come

$$\gamma(t) = \begin{pmatrix} t\cos t \\ t\sin t \\ t \end{pmatrix} \quad t \in [0, 3\pi].$$

B1 Si dica se la curva è regolare, giustificando la risposta.

B2 Si calcoli

$$\int\limits_{\gamma} \omega, \quad \text{dove} \quad \omega = y \, \mathrm{d} \, x - x \, \mathrm{d} \, y.$$

Esercizio A.

A1 Utilizzando la regola di Sarrus si trova che $\det(A) = 4\kappa - \kappa^2$, mentre $\operatorname{tr}(A) = 3 + \kappa$, per cui

$$4\kappa - \kappa^2 = 3 + \kappa \Rightarrow \kappa = \frac{3 \pm i\sqrt{3}}{2}.$$

A2 Usiamo il metodo di Gauss sulla matrice orlata (in questo caso, la notazione sarà ridondante essendo il termine noto uguale al vettore nullo):

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 2 & \kappa & \kappa & 0 \\ 0 & \kappa & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & \kappa & \kappa - 2 & 0 \\ 0 & \kappa & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & \kappa & \kappa - 2 & 0 \\ 0 & 0 & 4 - \kappa & 0 \end{pmatrix}.$$

Se $\kappa=0$ la seconda colonna non ha pivot e quindi il rango della matrice orlata (uguale a quello di A) è 2: esiste uno spazio unidimensionale di soluzioni che si ottengono ponendo $\kappa=0$ e quindi (usando i coefficienti dell'ultimo passaggio) risolvendo il sistema

$$\begin{cases} x_1 + x_3 = 0 \\ -2x_3 = 0 \\ 4x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_3 = 0 \end{cases}$$

mentre x_2 rimane indeterminato. Le soluzioni sono quindi nella forma $x=t(0,1,0)^\intercal$ per $t\in\mathbb{R}$. In maniera simile, per $\kappa=4$ la terza colonna non ha pivot, per cui il rango è 2 e la matrice corrisponde al sistema

$$\begin{cases} x_1 + x_3 = 0 \\ 4x_2 + 2x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -x_3 \\ x_2 = -\frac{1}{2}x_3 \end{cases}$$

Le soluzioni sono quindi nella forma $x = t(-1, -1/2, 1)^{\mathsf{T}}$ per $t \in \mathbb{R}$. Infine per $\kappa \notin \{0, 4\}$ il rango della matrice è massimo ed esiste un'unica soluzione, ovvero quella triviale $x = \mathbf{0}$.

Esercizio B.

B1 Per ogni $t \in [0, 3\pi]$

$$\|\dot{\gamma}\|^2 = \dot{\gamma}_1^2 + \dot{\gamma}_2^2 + 1 \ge 1 > 0$$

(in particolare, qualora si volessero eseguire tutti i calcoli, si troverebbe $\|\dot{\gamma}\|^2 = 2 + t^2$) che è la condizione che definisce la regolarità della curva.

B2 Calcoliamo la quantità desiderata direttamente, introducendo il campo vettoriale a associato alla forma ω , $\omega = \langle a(x), dx \rangle$,

$$a(x) = \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix} \Rightarrow a(\gamma(t)) = \begin{pmatrix} t \sin t \\ -t \cos t \\ 0 \end{pmatrix}$$

per cui, essendo

$$\dot{\gamma}(t) = \begin{pmatrix} \cos t - t \sin t \\ \sin t + t \cos t \\ 1 \end{pmatrix}$$

si ha

$$\langle a(\gamma(t)), \dot{\gamma}(t) \rangle = -t^2 \sin^2 t + t \sin t \cos t - t \sin t \cos t - t^2 \cos^2 t = -t^2$$

e dunque

$$\int \omega = \int_{0}^{4\pi} \langle a(\gamma(t)), \dot{\gamma} \rangle dt = -\int_{0}^{4\pi} t^{2} dt = -9\pi^{3}.$$