液晶显示模块

QC12864B

使用说明书

目 录

一、功能特点	3
二、读写操作时序	3
三、指令说明	6
四、坐标关系	11
五、显示 RAM	13
六、应用举例	14
七、注意事项	18

一、功能特点:

QC12864B 汉字图形点阵液晶显示模块,可显示汉字及图形,内置 8192 个中文汉字(16X16 点阵)、128 个字符(8X16 点阵)及64X256 点阵显示 RAM(GDRAM)。

主要技术参数和显示特性:

电源: VDD 3.3V~+5V(内置升压电路,无需负压);

显示内容: 128 列× 64行 显示颜色: 黄绿屏, 蓝屏 显示角度: 6: 00 钟直视

LCD 类型: STN

与 MCU 接口: 8 位并口或串行

配置 LED 背光

多种软件功能: 光标显示、画面移位、自定义字符、睡眠模式等

二、读写操作时序:

模块有并行和串行两种连接方法(时序如下):

8位并行连接时序图

MPU 写资料到模块

MPU 从模块读出资料

2、串行连接时序图

串行数据传送共分三个字节完成:

第一字节: 串口控制—格式 11111ABC

A 为数据传送方向控制: H 表示数据从 LCD 到 MCU, L 表示数据从 MCU 到 LCD

B 为数据类型选择: H 表示数据是显示数据, L 表示数据是控制指令

C 固定为 0

第二字节: (并行)8 位数据的高 4 位—格式 DDDD0000

第三字节: (并行)8 位数据的低 4 位—格式 0000DDDD

串行接口时序参数: (测试条件: T=25℃ VDD=5.0V)

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
		Internal Clock Operation	n	•		<u>'</u>
f_{OSC}	OSC Frequency	$R = 33K\Omega$	470	530	590	KHz
		External Clock Operation	on		_	
$f_{\rm EX}$	External Frequency	-	470	530	590	KHz
	Duty Cycle	-	45	50	55	%
T_R,T_F	Rise/Fall Time	-	-	-	0.2	μs
TSCYC	Serial clock cycle	Pin E	400	-	-	ns
Tshw	SCLK high pulse width	Pin E	200	-	-	ns
Tslw	SCLK low pulse width	Pin E	200	-	-	ns
TSDS	SID data setup time	Pins RW	40	-	-	ns
TSDH	SID data hold time	Pins RW	40	-	-	ns
Tcss	CS setup time	Pins RS	60	-	-	ns
TCSH	CS hold time	Pins RS	60	-	-	ns

三、指令说明:

1、指令表 1: (RE=0: 基本指令集)

	指令码											执 行
指令	R S	R W	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0	说明	时间 (54 0KH Z)
清除显示	0	0	0	0	0	0	0	0	0	1	将 DDRAM 填满 "20H", 并且设定 DDRAM 的地址计数器 (AC) 到 "00H"	1.6m s
地址归位	0	0	0	0	0	0	0	0	1	X	设定 DDRAM 的地址计数器(AC) 到"00H",并且将游标移到开头 原点位置;这个指令并不改变 DDRAM 的内容	72us
进入点设定	0	0	0	0	0	0	0	1	I/D	S	指定在资料的读取与写入时,设定游标移动方向及指定显示的移位 I/D=1:游标向右移,DDRAM 地址计数器 (AC)加1 I/D=0:游标向左移,DDRAM 地址计数器 (AC)减1 S:显示画面整体位移	72us
显示状 态 开/关	0	0	0	0	0	0	1	D	С	В	D=1:整体显示 ON C=1:游标 ON B=1:游标位置 ON	72us
游标或 显示移 位控制	0	0	0	0	0	1	S/ C	R/ L	X	X	设定游标的移动与显示的移位控制位元;这个指令并不改变DDRAM的内容S/C=0,R/L=0:游标向左移动S/C=0,R/L=1:游标向右移动	72us
功能设定	0	0	0	0	1	DL	X	0 RE	X	X	DL=1 (必须设为 1) RE=1: 扩充指令集动作 RE=0: 基本指令集动作	72us
设定 CGRA M地址	0	0	0	1	AC 5	AC 4	AC 3	AC 2	AC 1	AC 0	设定 CGRAM 地址到地址计数器(AC)	72us
设定	0	0	1	AC	设定 DDRAM 地址到地址计数器	72us						

DDRA				6	5	4	3	2	1	0	(AC)	
M												
地址												
读取忙											法取尽得标士 (PC) 可以换过点	
碌标志		1	DE	AC	读取忙碌标志(BF)可以确认内							
(BF)	0	1	BF	6	5	4	3	2	1	0	部动作是否完成,同时可以读出	Ous
和地址											地址计数器(AC)的值	
写资料											写入资料到内部的 RAM	
到	1	0	D7	D6	D5	D4	D3	D2	D1	D0	(DDRAM/CGRAM/IRAM/GDR	72us
RAM											AM)	
读出											从内部 RAM 读取资料	
RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	(DDRAM/CGRAM/IRAM/GDR	72us
的值											AM)	

指令表—2: (RE=1: 扩充指令集)

					指令	9码						执 行
指令	RS	R W	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0	说明	时间 (540 KHZ)
待 命 模式	0	0	0	0	0	0	0	0	0	1	将 DDRAM 填满 "20H", 并且设定 DDRAM 的地址 计数器 (AC) 到 "00H"	72us
卷 动 地 址 或 IRAM 地 址选择	0	0	0	0	0	0	0	0	1	SR	SR=1: 允许输入垂直卷动地 址 SR=0: 允许输入 IRAM 地址	72us
反 白 选 择	0	0	0	0	0	0	0	1	R1	R0	选择4行中的任一行作反白 显示,并可决定反白与否	72us
睡 眠 模式	0	0	0	0	0	0	1	SL	X	X	SL=1: 脱离睡眠模式 SL=0: 进入睡眠模式	72us
扩 充 功能设定	0	0	0	0	1	1	X	1 RE	G	0	RE=1: 扩充指令集动作 RE=0: 基本指令集动作 G=1: 绘图显示 ON G=0: 绘图显示 OFF	72us
设 定 IRAM 地 址 或 卷 动地址	0	0	0	1	AC 5	AC 4	AC 3	AC 2	AC 1	AC 0	SR=1: AC5—AC0 为垂直卷 动地址 SR=0: AC3—AC0 为 ICON IRAM 地址	72us
设 定 绘 图 RAM 地址	0	0	1	AC 6	AC 5	AC 4	AC 3	AC 2	AC 1	AC 0	设定 CGRAM 地址到地址 计数器(AC)	72us

备注:

- 1、当模块在接受指令前,微处理顺必须先确认模块内部处于非忙碌状态,即读取 BF 标志时 BF 需为 0,方可接受新的指令;如果在送出一个指令前并不检查 BF 标志,那么在前一个指令和这个指令中间必须延迟一段较长的时间,即是等待前一个指令确实执行完成,指令执行的时间请参考指令表中的个别指令说明。
- 2、"RE"为基本指令集与扩充指令集的选择控制位元,当变更"RE"位元后,往后的指令集将维持在最后的状态,除非再次变更"RE"位元,否则使用相同指令集时,不需每次重设"RE"位元。

具体指令介绍:

1、清除显示

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 L L L L L L Η

功能:清除显示屏幕,把 DDRAM 位址计数器调整为"00H"

2、位址归位

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

L L L L L L L L L X

功能:把 DDRAM 位址计数器调整为"00H",游标回原点,该功能不影响显示 DDRAM

3、位址归位

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 L L L L Η I/D S L

功能:把 DDRAM 位址计数器调整为"00H",游标回原点,该功能不影响显示 DDRAM 功能:执行该命令后,所设置的行将显示在屏幕的第一行。显示起始行是由 Z 地址计数器控制的,该命令自动将 A0-A5 位地址送入 Z 地址计数器,起始地址可以是 0-63 范围内任意一行。Z 地址计数器具有循环计数功能,用于显示行扫描同步,当扫描完一行后自动加一。

4、显示状态 开/关

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 L L L L L Η C В C=1;游标 ON B=1;游标位置 ON 功能: D=1; 整体显示 ON

5、游标或显示移位控制

CODE: RS **RW** DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 L L L L Η S/C R/L X L

功能:设定游标的移动与显示的移位控制位:这个指令并不改变 DDRAM 的内容

6、功能设定

CODE: RS RW DB7 DB5 DB4 DB3 DB2 DB0 DB6 DB1 L L Н X 0 RE X L DL

功能: DL=1(必须设为1) RE=1; 扩充指令集动作 RE=0: 基本指令集动作

7、设定 CGRAM 位址

CODE:	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
	I.	I.	L	Н	AC5	AC4	AC3	AC2	AC1	AC0	

功能:设定 CGRAM 位址到位址计数器 (AC)

8、设定 DDRAM 位址

CODE:	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	Н	AC6	AC5	AC4	AC3	AC2	AC1	AC0

功能:设定 DDRAM 位址到位址计数器 (AC)

9、读取忙碌状态(BF)和位址

CODE:	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
	L	Н	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	1

功能:读取忙碌状态(BF)可以确认内部动作是否完成,同时可以读出位址计数器(AC)的值

10、写资料到 RAM

CODE:	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Н	L	D7	D6	D5	D4	D3	D2	D1	D0

功能:写入资料到内部的 RAM (DDRAM/CGRAM/TRAM/GDRAM)

11、读出 RAM 的值

CODE:	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Н	Н	D7	D6	D5	D4	D3	D2	D1	D0

功能: 从内部 RAM 读取资料(DDRAM/CGRAM/TRAM/GDRAM)

12、待命模式(12H)

CODE:	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	L	L	L	Н

功能: 进入待命模式, 执行其他命令都可终止待命模式

13、卷动位址或 IRAM 位址选择(13H)

CODE:	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	L	L	Н	SR

功能: SR=1; 允许输入卷动位址 SR=0; 允许输入 IRAM 位址

14、反白选择(14H)

CODE:	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	L	Н	R1	R0

功能: 选择 4 行中的任一行作反自显示, 并可决定反白的与否

15、睡眠模式(015H)

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

L L L L L L H SL X X

功能: SL=1; 脱离睡眠模式 SL=0; 进入睡眠模式

16、扩充功能设定(016H)

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

L L L L H H X 1 RE G L

功能: RE=1; 扩充指令集动作 RE=0; 基本指令集动作 G=1; 绘图显示 ON G=0; 绘图显示 OFF

17、设定 IRAM 位址或卷动位址(017H)

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

L L L H AC5 AC4 AC3 AC2 AC1 AC0

功能: SR=1; AC5~AC0 为垂直卷动位址 SR=0; AC3~AC0 写 ICONRAM 位址

18、设定绘图 RAM 位址(018H)

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

L L H AC6 AC5 AC4 AC3 AC2 AC1 AC0

功能:设定 GDRAM 位址到位址计数器 (AC)

四、坐标关系:

1、图形显示坐标

水平方向 X—以字节单位 垂直方向 Y—以位为单位

3、汉字显示坐标

		X 坐标									
Line1	80H	81H	82H	83H	84H	85H	86H	87H			
Line2	90H	91H	92H	93H	94H	95H	96H	97H			
Line3	88H	89H	8AH	8BH	8CH	8DH	8EH	8FH			
Line4	98H	99H	9AH	9BH	9CH	9DH	9EH	9FH			

3、字符表

代码 (02H---7FH)

五、显示 RAM:

1、文本显示 RAM(DDRAM)

文本显示RAM提供10个×2行的汉字空间,当写入文本显示RAM时,可以分别显示CGROM、HCGROM

与 CGRAM 的字型; RT16032 可以显示三种字型 ,分别是半宽的 HCGROM 字型、CGRAM 字型及中文 CGROM 字型。三种字型的选择,由在 DDRAM 中写入的编码选择,各种字型详细编码如下:显示半宽字型 :将一位字节写入 DDRAM 中,范围为 02H-7FH 的编码。

显示 CGRAM 字型: 将两字节编码写入 DDRAM 中,总共有 0000H,0002H,0004H,0006H 四种编码显示中文字形: 将两字节编码写入 DDRAMK ,范围为 A1A0H-F7FFH(GB 码)或 A140H-D75FH(BIG5 码)的编码。

绘图 RAM (GDRAM)

绘图显示 RAM 提供 160×32 个位元的记忆空间,在更改绘图 RAM 时,先连续写入水平与垂直的坐标值,再写入两个字节的数据到绘图 RAM, 而地址计数器(AC)会自动加一;在写入绘图 RAM 的期间,绘图显示必须关闭,整个写入绘图 RAM 的步骤如下:

- 1、关闭绘图显示功能。
- 2、先将水平的位元组坐标(X)写入绘图 RAM 地址;

再将垂直的坐标(Y)写入绘图 RAM 地址;

将 D15——D8 写入到 RAM 中;

将 D7——D0 写入到 RAM 中;

打开绘图显示功能。

绘图显示的缓冲区对应分布请参考"显示坐标"

游标/闪烁控制

ST7920 提供硬件游标及闪烁控制电路,由地址计数器(address counter)的值来指定 DDRAM 中的游标或闪烁位置。

六、应用举例:

```
以下例程为并口工作方式
接口接线方式
连接线图:
```

[注: AT89S52 使用 12M 晶振]

==============*/

```
#include<reg51.h>
```

```
#define uchar unsigned char
#define LCMdata P0
#define Busy 0x80

sbit RS=P1^1;
sbit RW=P3^6;
sbit E=P3^7;
sbit REST=P2^7;

void Display_String(uchar line, uchar *string);
void Wr_Data(uchar wrdata); //写数据

void Wr_Command(uchar wrcommand, busyc); //写指令
void RDbf(void); //读忙状态
```

void Lcm_Init (void); //液晶初始化

```
void Delay5Ms (void); //延时 5ms
uchar code string_1[] = {"勤创电子有限公司"};
uchar code string_2[] = {"勤创电子欢迎您!"};
uchar code string_3[] = \{"0755-29188712
                                            "};
void main (void)
    Lcm_Init();
    Display_String(1, string_1);
    Display_String (2, string_3);
    Display_String (3, string_2);
    Display_String (4, string_3);
    while (1);
}
void Display_String (uchar line, uchar *string) //显示字符串
{
    uchar addr, i;
    if (1ine==1)
      addr=0x80;
    else if (1ine==2)
      addr=0x90;
    else if (1ine==3)
      addr=0x88;
    else if (1ine==4)
      addr=0x98;
    Wr_Command (addr, 1);
    for (i=0; i<16; i++)
    {
```

```
Wr_Data(*string++);
}
void Wr_Data (uchar wrdata) //写数据
{
    RDbf();
    RS=1;
    RW=0;
    E=1;
    LCMdata=wrdata;
    E=0;
}
void Wr_Command (uchar wrcommand, busyc) //写指令
    if (busyc)
      RDbf();
    RS=0;
    RW=0;
    E=1;
    LCMdata=wrcommand;
    E=0;
}
void RDbf (void) //读忙状态
{
     while (1)
      RS=0;
    RW=1;
```

```
E=0;
      LCMdata=0xFF;
      E=1;
      if ((LCMdata\&Busy) == 0)
      break;
void Lcm_Init (void)
    Delay5Ms();
    REST=1;
    REST=0;
    REST=1;
    Wr_-Command(0x30, 0);
    Delay5Ms();
    Wr_Command (0x30, 0); //2 次显示模式设置, 不用判忙
    Delay5Ms();
    Wr_Command (0x0C, 1); //开显示及光标设置
    Delay5Ms();
    Wr_Command (0x01,1); //显示清屏
    Delay5Ms();
    Delay5Ms();
    Wr_Command (0x06, 1); //显示光标移动设置
    Delay5Ms();
}
void Delay5Ms (void) //延时 5ms
{
    unsigned int TempCyc=5552;
    while (TempCyc--);
}
```

七、注意事项:

1. 处理

- (1) 要避免在处理机械振动和对模块施加外力,都可能使屏不显示或损坏。
- (2) 不能用手或坚硬工具或物体接触、按压、磨擦显示屏,否则屏上的偏光片被物体划坏。
- (3) 如果屏破裂液晶材料外漏,液晶可以通过空气被吸入,而且要避免液晶与皮肤接触,如果接触应立即用酒精冲洗,然后再用水彻底冲洗。
- (4) 不能使用可溶有机体来清洗显示屏。因为这些可溶的溶剂对偏光片不利,清洗显示屏时,可用棉花蘸少量石油苯轻轻擦拭或用透明胶带粘起脏物。
- (5) 要防止高压静电产生的放电,将损坏模块中的 CMOS 电路。
- (6) 不能把模块放在温度高的地方,尤其不能长时间放在湿度大的地方,最好把模块放在温度为0℃-35℃,湿度低于 70%的环境中。
- (7) 模块不能贮存在太阳直射的地方。

2. 操作

- (1) 当电源接通时,不能组装或拆卸模块。
- (2) 在电源电压的偏差、输入电压的偏差及环境温度等最坏条件下,也不能超过最大的额定值, 否则将损坏 LCD 模块。