t-Stochastic Neighbor Embedding: A Journey from Information Theory to Responsible Visualization

Prof. Endri Raco

Polytechnic University of Catalonia Guest Lecture - Advanced Multivariate Analysis

November 2025

Opening: The Fundamental Challenge We Face

Points distributed in shell

Projected to 2D

Catastrophic overlap Information destroyed

Interactive Demonstration: The Crowding Catastrophe

Three distinct distance shells

Near • Medium • Far •

Projected to 2D

All collapsed!

All distances collapseCannot distinguish distances

What You Will Master Today: A Complete Journey

Conceptual Mastery

- Why information > distance
- Maximum entropy emergence
- KL divergence as design choice
- Crowding as geometric inevitability

Mathematical Foundation

- Derive kernels from principles
- Gradient as physical forces
- Prove Student's t necessity
- Understand convergence

Practical Excellence

- Debug visually & quantitatively
- Choose hyperparameters wisely
- Validate beyond visualization
- Recognize failure modes

Ethical Responsibility

- Avoid false pattern creation
- Communicate limitations
- Document completely
- Interpret responsibly

Critical: Mathematics and visuals will be interwoven, not separated

The Paradigm Shift: From Preserving to Accepting Loss

Intuition: t-SNE doesn't try to preserve everything - it chooses what to sacrifice

Visual Intuition: The Swiss Roll Problem

2D surface in 3D Continuous structure

Tears neighborhoods

Destroys continuity

Warning: Global structure may be sacrificed for local preservation

Preserves local structure

Unfolds naturally

Why Dimensionality Reduction? Real-World Impact

Common Thread: Data lives on low-dimensional manifold in high-D space

The Curse of Dimensionality: A Visual Catastrophe

Implications:

- All points become equidistant
- Nearest neighbor meaningless
- Intuition completely fails
- Traditional metrics break

Volume in n-D sphere shells:

Dimension	Shell (0.9-1.0)
2D	19%
10D	65%
100D	99.997%
1000D	pprox 100%

Intuition: In high-D, everything is far from ever

Reframing: From Geometry to Information Theory

The Key Insight

Instead of asking "How do we preserve distances?"

t-SNE asks: "How do we preserve the **information** about neighborhoods?"

Information Content: Making It Concrete

If point j has probability $p_{j|i}$ of being i's neighbor:

Information:
$$I(j) = -\log p_{i|i}$$
 bits

Total entropy:
$$H(P_i) = -\sum_j p_{j|i} \log p_{j|i}$$

Example:

- Certain neighbor: $p = 1 \Rightarrow I = 0$ bits
- Likely neighbor: $p = 0.5 \Rightarrow I = 1$ bit
- Rare neighbor: $p = 0.01 \Rightarrow I = 6.64$ bits

Intuition: Surprising events (unlikely r

From Distances to Probabilities: Visual Journey

Why Gaussian? Maximum Entropy Derivation

The Principle

Given constraints, choose the least biased distribution

Constraints:

$$\sum_{i} p_{j|i} = 1 \quad \text{(probability)} \tag{3}$$

$$\sum_{i} p_{j|i} d_{ij}^{2} = \sigma_{i}^{2} \quad \text{(expected squared distance)} \tag{4}$$

Optimization: Maximize $H(P_i) = -\sum_j p_{j|i} \log p_{j|i}$ Lagrangian:

$$\mathcal{L} = \mathcal{H}(P_i) + \lambda \left(\sum_j p_{j|i} - 1
ight) + \mu \left(\sum_j p_{j|i} d_{ij}^2 - \sigma_i^2
ight)$$

Maximum Entropy Solution: Gaussian Emerges

Setting $\frac{\partial \mathcal{L}}{\partial p_{i|i}} = 0$:

$$-\log p_{j|i} - 1 + \lambda + \mu d_{ij}^2 = 0$$

Solving for $p_{j|i}$:

$$p_{j|i} = \exp(\lambda - 1) \exp(-\mu d_{ij}^2)$$

After normalization:

$$p_{j|i} = \frac{\exp(-d_{ij}^2/2\sigma_i^2)}{\sum_k \exp(-d_{ik}^2/2\sigma_i^2)}$$

The Gaussian kernel is not arbitrary - it's mathematically inevitable!

Intuition: Maximum entropy ⇒ Make no assumptions beyond what you know

Adaptive Bandwidth: The Local Density Solution

Perplexity: The Intuitive Control Parameter

Definition

$$Perp(P_i) = 2^{H(P_i)}$$

where $H(P_i) = -\sum_{i} p_{j|i} \log_2 p_{j|i}$ is entropy in bits.

Interpretation:

- Perp = $30 \approx$ "30 effective neighbors"
- Automatically adapts σ_i per point
- Binary search finds right σ_i

Intuition: Perplexity is "how many neighbors should each point care about"

Algorithm: Finding σ_i via Binary Search

Algorithm 1 Adaptive Bandwidth Selection

```
1: for each point i do
        target_perp ← user_specified
        \sigma_{min} \leftarrow 0, \sigma_{max} \leftarrow \infty
 3:
 4:
        while not converged do
           \sigma_i \leftarrow (\sigma_{min} + \sigma_{max})/2
 5:
           Compute p_{i|i} using current \sigma_i
 6:
           current_perp \leftarrow 2^{H(P_i)}
 7:
            if current_perp > target_perp then
 8.
              \sigma_{max} \leftarrow \sigma_i {Too many neighbors}
 g.
10.
            else
               \sigma_{min} \leftarrow \sigma_i {Too few neighbors}
11:
           end if
12.
        end while
13:
```

Measuring Information Loss: KL Divergence

Cross-Entropy: Bits using wrong distribution

$$H(P,Q) = -\sum_j p_j \log q_j$$

KL Divergence: Extra bits from using Q instead of P

$$\mathsf{KL}(P||Q) = \sum_{j} p_{j} \log \frac{p_{j}}{q_{j}}$$

Critical Asymmetry:

- Miss a neighbor: p = 0.3, q = 0.01Penalty: $0.3 \log(30) \approx 1.02$ bits
- False neighbor: p = 0.01, q = 0.3Penalty: $0.01 \log(0.033) \approx -0.035$ bits

High penalty!

Low penalty

- __ True neighbor
- - Low probability
- False neighbor

t-SNE heavily penalizes separating true neighbors!

Visual KL Divergence: What We are Minimizing

- Blue bars: High-D probability distribution P_i
- Red bars: Low-D probability distribution Q_i
- Yellow area: KL divergence (information lost)

Intuition: We are trying to make the red bars match the blue bars, but we care more about mis

The Original SNE Algorithm

Cost Function:

$$C = \sum_{i} \mathsf{KL}(P_i||Q_i)$$

High-D Similarities:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_k \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

Low-D Similarities:

$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_k \exp(-\|y_i - y_k\|^2)}$$

Note: Fixed variance = 1 in low-D

Gradient Descent:

$$\frac{\partial C}{\partial y_i} = 2\sum_i (p_{j|i} - q_{j|i})(y_i - y_j)$$

SNE Fatal Flaw: The Crowding Problem Visualized

In 10D: Points at moderate distances (0.5 - 0.8 from center)
Plenty of room in shell

In 2D: Same distances impossible Area grows as r^2 not r^{10} Moderate distances crushed!

Warning: Gaussian tails decay too fast to represent moderate distances

The Brilliant Solution: Student t-Distribution

Key Differences:

- Polynomial vs exponential decay
- Heavy tails = more "room"
- Moderate distances preserved
- Natural repulsion at distance

Intuition: Think of it as creating "virtual space"

Mathematical Forms:

Gaussian: $\propto e^{-d^2}$

Student t: $\propto (1+d^2)^{-1}$

Van der Maaten & Hinton (2008): Use different kernels for different spaces!

Why Student t? Quantitative Analysis

Similarity Ratio at Different Distances: For $d_1 = 1$ and $d_2 = 3$:

Gaussian:

$$\frac{q(d_1)}{q(d_2)} = \frac{e^{-1}}{e^{-9}} = e^8 \approx 2981$$

Student t:

$$\frac{q(d_1)}{q(d_2)} = \frac{1/(1+1)}{1/(1+9)} = 5$$

600× difference in representation capacity!

Warning: This is why SNE fails - it literally runs out of space

Visual Proof: How Heavy Tails Solve Crowding

- Left: SNE with Gaussian points crushed together
- Right: t-SNE with Student t natural separation
- **Key:** Heavy tails allow moderate distances without penalty

Intuition: Heavy tails act like a "pressure valve" for crowded points

The t-SNE Algorithm: Complete Specification

Key Modifications from SNE

- **1 Symmetrized:** $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$ (simplifies gradient)
- **2** Student t in low-D: $q_{ij} \propto (1 + ||y_i y_i||^2)^{-1}$
- **3** Single KL: C = KL(P||Q) not $\sum_i KL(P_i||Q_i)$

Complete Cost Function:

$$C = \sum_{i,j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

where
$$q_{ij} = \frac{(1+\|y_i-y_j\|^2)^{-1}}{\sum_{k,l}(1+\|y_k-y_l\|^2)^{-1}}$$

The t-SNE Gradient: Mathematical Elegance

The Gradient:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} (p_{ij} - q_{ij})(y_i - y_j)(1 + ||y_i - y_j||^2)^{-1}$$

$$(p_{ij} - q_{ij}) \qquad \qquad (y_i - y_j) \qquad \qquad (1 + d_{ij}^2)^{-1}$$
Error Direction Adaptive weight

Intuition: Forces get weaker with distance, preventing distant clusters from merging

Visualizing the Gradient as Forces

Attractive Forces:

When $p_{ij} > q_{ij}$ Pull points together Preserve neighborhoods

Repulsive Forces:

When $p_{ij} < q_{ij}$ Push points apart Create space

Ethics: The algorithm simulates physical forces - misunderstanding this leads to misinterpretation Prof. Endri Raco (Polytechnic University of Catalonia Gut-Stochastic Neighbor Embedding: A Journey from Information November 2025 26 / 80

Pseudo-code: The Core Optimization Loop

Algorithm 2 t-SNE Core Loop

- 1: **Input:** $X \in \mathbb{R}^{n \times D}$, perplexity, T = 1000
- 2: Compute P matrix using adaptive Gaussian
- 3: Symmetrize: $p_{ij} = (p_{i|i} + p_{i|j})/2n$
- 4: Initialize $Y \sim \mathcal{N}(0, 10^{-4}I)$
- 5: for t = 1 to T do
- 6: Compute Q matrix using Student's t
- 7: **if** t < 250 **then**
- 8: $P_{exag} = 4 \cdot P$ {Early exaggeration}
- 9: **end if**
- 10: $\nabla C = 4 \sum_{i} (p_{ij} q_{ij}) (y_i y_j) / (1 + d_{ij}^2)$
- 11: $Y^{(t)} = Y^{(t-1)} \eta \nabla C + \alpha (Y^{(t-1)} Y^{(t-2)})$
- 12: Adapt learning rate based on gradient sign changes
- 13: end for
- 14: **return** *Y*

Optimization Tricks: Making t-SNE Work

1. Early Exaggeration

Multiply P by 4 for first 250 iterations Forms tight clusters early

2. Momentum Schedule

lpha = 0.5
ightarrow 0.8 at iteration 250 Escapes local minima

3. Adaptive Learning Rate: If gradient keeps same sign: $\eta \times 1.2$

If gradient changes sign: $\eta \times 0.8$

Intuition: These tricks reduce runtime from hours to minutes!

Numerical Stability: Critical Implementation Details

Common Numerical Issues and Solutions

- **Q** Log of zero: Add $\epsilon = 10^{-12}$ to all probabilities
- **2** Exponential overflow: Use log-sum-exp trick:

$$\log \sum_{i} e^{x_i} = \max(x) + \log \sum_{i} e^{x_i - \max(x)}$$

- **3 Division by zero:** Add ϵ to all squared distances
- **4 Gradient explosion:** Clip if $\|\nabla\| > 100$
- Ouplicate points: Add small noise or remove

Warning: Ignoring these causes NaN values and crashes!

Memory Optimization: Use sparse *P* matrix (only k-NN stored)

Barnes-Hut Approximation: From $O(n^2)$ to $O(n \log n)$

Key Idea:

Treat distant point clusters as single mass

Criterion:

$$\frac{r_{cell}}{d_{to,cell}} < \theta$$

• $\theta = 0$: Exact (slow)

• $\theta = 0.5$: Good balance

• $\theta = 1$: Fast (inaccurate)

Speedup:

10K points: $50 \times$ faster 100K points: $200 \times$ faster

Intuition: Most computation is repulsive forces between distant points - approximate them!

Debugging t-SNE: Visual Diagnosis Guide

Symptom	Cause	Fix
Ball of points	Learning rate too low	Increase η
Scattered points	Learning rate too high	Decrease η
Fragmented clusters	Perplexity too low	Increase perplexity
No structure	Too few iterations	Increase T
Different each run	Not converged	More iterations

Ethics: Always run multiple times - single runs can be misleading!

Perplexity Deep Dive: Your Main Control

Perp = 5 Very local focus Many fragments Good for outliers Perp = 30
Balanced view
Clear clusters
Most common choice

Perp = 100 Global structure Merges clusters Loses detail

Warning: Truth is what's consistent across multiple perplexity values

Critical: What You CANNOT Interpret

The Three Deadly Sins of t-SNE Interpretation

Sin #1: Cluster Sizes 1000 vs 100 points Look same size!

Sin #2: Inter-cluster
Distance
Gap size meaningless
No global coordinates

Sin #3: Absolute PositionTop vs bottom
Rotation arbitrary

What you CAN trust: Local neighborhoods and cluster separation

Case Study: MNIST Digits - Complete Pipeline

Data:

- 70,000 handwritten digits
- 2828 = 784 dimensions
- 10 classes (0-9)

Pipeline:

- Scale pixels to [0,1]
- PCA to 50D (95% variance)
- **3** Remove outliers ($> 3\sigma$)
- t-SNE with perp = 30
- Validate with NPr metric

Observations:

- Clear digit separation
- 4-9 proximity (visual similarity)
- Sub-clusters = writing styles

Validation: Beyond Visual Inspection

Quantitative Validation Metrics

1. Neighborhood Preservation (NPr):

$$NPr(k) = \frac{1}{n} \sum_{i} \frac{|N_k^{high}(i) \cap N_k^{low}(i)|}{k}$$

2. Trustworthiness:

$$T(k) = 1 - \frac{2}{nk(2n - 3k - 1)} \sum_{i} \sum_{j \in U_k(i)} (r(i, j) - k)$$

3. Continuity:

$$C(k) = 1 - \frac{2}{nk(2n - 3k - 1)} \sum_{i} \sum_{j \in V_k(i)} (r'(i, j) - k)$$

Embedding distortion

High-D Space

N_khigh

Low-D Space

Green: Preserved neighbors

Red: False neighbors (reduces *T*)

Missing neighbors reduce *C*

Stability Analysis: How Reliable Is Your Embedding?

Protocol:

- Run t-SNE 10 times
- ② Different random seeds
- Compute pairwise correlations
- ullet Report mean \pm std

Intuition: If results change dramatically between runs, dont trust them!

Interpretation:

- r > 0.9: Very stable
- r = 0.7 0.9: Moderately stable
- r < 0.7: Unreliable

Causes of Instability:

- Too few iterations
- Wrong perplexity
- Intrinsic data ambiguity

Interactive t-SNE: Beyond Static Plots

Interactive Features:

- Real-time perplexity adjustment
- Brush and filter points
- Show optimization progress
- Linked views with raw data

- Hover for point details
- Zoom into regions
- Export subsets
- Compare multiple runs

Modern Alternatives: UMAP Comparison

t-SNE Strengths:

- Well-understood theory
- Excellent local structure
- Extensive validation
- Robust implementation

t-SNE Weaknesses:

- Slow on large data
- No global structure
- Cant embed new points
- Many hyperparameters

Use both and compare - truth is in agreement

UMAP Advantages:

- Much faster (10-100 \times)
- Preserves global structure
- Can transform new data
- Scales to millions

UMAP Disadvantages:

- Less theoretical foundation
- More parameters to tune
- Less stable
- Newer, less tested

Data Preprocessing: Critical for Success

Essential Preprocessing Steps

- **Output** Scaling: Standardize to mean = 0, std = 1
- Missing Data: Impute or remove (no NaN!)
- Outliers: Identify and handle separately
- **Output** Dimensionality: PCA if D > 50
- Normalization: Consider domain-specific norms

Warning: Bad preprocessing = bad embedding, regardless of parameters!

Common Failure Modes and Recovery

Collapsed Points:

Increase learning rate Check for duplicates More iterations

Fragmented Clusters:

Increase perplexity Check preprocessing Verify true structure

Ethics: Failure often reveals data issues, not algorithm issues

Real-World Success: Single-Cell Genomics

Challenge:

- 10,000+ cells
- 20,000 genes each
- Find cell types
- Identify rare populations

Pipeline:

- Quality control
- Normalize counts
- Select variable genes
- PCA to 50D
- t-SNE with perp=30
- Cluster validation

Single-Cell t-SNE

Discoveries:

- Found 0.1% rare cell type
- Revealed trajectories
- Published in Nature

Real-World Success: Word Embeddings

Word2Vec + t-SNE Visualization

Semantic Clusters:

- Countries grouped
- Verbs together

Revealed Relationships:

- King Man + Woman \sim Queen

Real-World Success: Deep Learning Features

ImageNet t-SNE

ImageNet CNN Features:

- ResNet-50 last layer
- $2048D \rightarrow 2D$
- 50,000 images
- 1,000 classes

Discoveries:

- Hierarchical structure emerges
- Dogs cluster by breed
- Vehicles by type
- Textures group unexpectedly
- Misclassifications at boundaries

Ethics: Visual similarity \neq semantic similarity

Advanced: Parametric t-SNE

Standard t-SNE:

Embeds specific points Cannot handle new data Non-parametric

Parametric t-SNE:

Learns function $f_{\theta}: \mathbb{R}^D \to \mathbb{R}^2$ Can embed new points Neural network based

Trade-offs: Lower quality but handles streaming data

Architecture:

Input
$$\rightarrow$$
 500 \rightarrow 500 \rightarrow 2000 \rightarrow 2

Advanced: Multiscale t-SNE

Key Idea: Use multiple perplexities simultaneously

$$p_{ij} = \frac{1}{L} \sum_{l=1}^{L} p_{ij}^{(l)}$$

where each $p_{ii}^{(l)}$ uses different perplexity

Benefits: Captures structure at all scales

Cost: $3 \times$ slower computation

Advanced: Dynamic t-SNE for Time Series

Modified Cost:

$$C = \sum_{t} \mathsf{KL}(P^{(t)}||Q^{(t)}) + \lambda \sum_{i,t} \|y_i^{(t)} - y_i^{(t-1)}\|$$

First term: Standard t-SNE

Second term: Temporal smoothness

Applications:

- Neural activity
- Social networks
- Topic evolution
- Market dynamics

Theoretical Foundations: What We Can Prove

Guaranteed Properties

- Onvergence: Gradient descent reaches local minimum
- **② Order Preservation:** If $p_{ij} > p_{kl}$ then likely $q_{ij} > q_{kl}$
- Neighborhood Topology: k-NN graphs approximately preserved
- **1 Information Bound:** KL divergence ≥ 0

NOT Guaranteed

- Global optimum (non-convex problem)
- ② Distance preservation (only neighborhoods)
- Unique solution (depends on initialization)
- 4 Linear separability preservation

Warning: Despite limitations, empirically very robust!

Information Theory Perspective

Information in High-D:

$$I_{high} = -\sum_{i,j} p_{ij} \log p_{ij}$$

Information in Low-D:

$$I_{low} = -\sum_{i,j} p_{ij} \log q_{ij}$$

Information Loss:

$$\Delta I = \mathsf{KL}(P||Q)$$

Intuition: t-SNE finds the least lossy 2D represent

Physical Analogy: N-Body Simulation

Attractive Forces:

Pull neighbors together Strength $\propto p_{ii}$

Preserve structure

Repulsive Forces:

Push all points apart Create space

Prevent collapse

Implementation Options: Choosing Your Tool

Library	Language	Speed	Best For	
sklearn	Python	Medium	Beginners	
MulticoreTSNE	Python	Fast	Parallel processing	
FIt-SNE	C++/Python	Fastest	Large datasets	
Rtsne	R	Medium	R ecosystem	
openTSNE	Python	Fast	Research	
RAPIDS cuML	CUDA	Very Fast	GPU acceleration	
TensorBoard	Web	Medium	Interactive	

Recommendations:

- Start with sklearn for learning
- Use FIt-SNE or openTSNE for production
- GPU only worth it for ¿100K points

Hyperparameter Tuning: Systematic Approach

Grid Search Space:

• Perplexity: [5, 10, 20, 30, 50]

• Learning rate: [10, 100, 200, 500]

• Iterations: [1000, 2000, 5000]

• Early exag: [4, 12, 20]

Total: 180 combinations

Better: Bayesian Optimization Reduces search from 180 to 30

Warning: Default parameters are rarely optimal!

Making t-SNE More Interpretable

Feature Attribution:

Which features drive clustering?

Interactive Explanations:

- ullet Click point o show raw features
- ullet Select region o statistics summary
- ullet Hover o nearest neighbors in high-D

Confidence Regions:

Bootstrap to show uncertainty

Troubleshooting: Quick Reference

Problem	Solution	
Points in straight lines	Increase iterations	
Single ball of points	Increase learning rate	
Clusters fragmented	Increase perplexity	
Points scattered randomly	Decrease learning rate	
NaN in output	Check for duplicate points	
Very slow convergence	Use PCA preprocessing	
Different runs very different	Increase iterations	
Known clusters not separated	Check data scaling	
Outliers dominate	Remove or downweight	
Memory error	Use Barnes-Hut	

90% of problems are scaling or perplexity!

Future Research Directions

Active Areas

- **1** Theory: Convergence guarantees, optimal kernels
- Algorithms: Linear time exact algorithms
- **Section 2 Extensions:** Graph t-SNE, supervised variants
- Interpretability: Uncertainty quantification

Emerging Alternatives:

- PaCMAP (2021): Local + global preservation
- TriMap (2019): Triplet constraints
- NCVis (2020): Noise contrastive learning

Intuition: t-SNE remains gold standard but field evolving rapidly

Ethical Considerations: Responsible Use

With Great Visualization Comes Great Responsibility

Potential Misuses:

- Oreating false patterns from noise
- 2 Amplifying existing biases
- Misleading with distances/sizes
- Oherry-picking favorable runs

Best Practices:

- Always validate statistically
- Report all parameters and preprocessing
- Show multiple runs/perplexities
- Include uncertainty measures
- Ocument limitations explicitly

Ethics: Your visualization may influence important decisions!

Complete Validation Protocol

Publication Checklist

- ☐ Preprocessing documented
- \square Parameters reported (perp, η , iterations)
- \square Multiple runs (≥ 10)
- ☐ Stability metrics computed
- □ NPr(k) reported
- Trustworthiness measured
- Perplexity sweep performed
- ☐ Subsample validation done
- ☐ Known structure verified
- ☐ Limitations discussed

Warning: Never publish single t-SNE run without validation!

Summary: Key Takeaways

- Information ¿ Distance: t-SNE preserves probability distributions
- Maximum Entropy: Gaussian kernel emerges naturally
- Heavy Tails: Student's t solves crowding
- Asymmetric Loss: Neighbors matter more
- Adaptive Bandwidth: Perplexity handles density
- Forces: Gradient is attractive + repulsive forces
- **Validation:** Always quantify quality
- Interpretation: Only trust local structure
- Ethics: Document and communicate limitations
- Practice: Multiple runs essential

Master these concepts and you master t-SNE!

Practical Workflow Checklist

Before t-SNE:

- Scale features
- Handle missing data
- □ Remove outliers
- □ PCA if D ¿ 50
- □ Document everything

Running t-SNE:

- \square Try perp = 5, 30, 50
- ☐ Ensure convergence
- ☐ Run 5+ times
- ☐ Save seeds
- ☐ Monitor for errors

After t-SNE:

- ☐ Compute NPr
- Check stability
- Validate structure
- Create interactive viz
- □ Write methods section

Print and keep handy!

Test Your Understanding

Conceptual Questions:

- Why different distributions in high-D vs low-D?
- What does perplexity encode?
- Why is KL divergence asymmetric important?

Practical Questions:

- Your embedding shows a ball. What's wrong?
- When use PCA before t-SNE?
- Mow validate quality?

Advanced Questions:

- O Derive gradient from cost function
- Why Barnes-Hut for repulsive forces only?
- How modify for temporal data?

Can you answer all 9? You've mastered t-SNE!

Resources for Continued Learning

Essential Papers:

- Van der Maaten & Hinton (2008) Original t-SNE
- Kobak & Berens (2019) Art of using t-SNE
- Belkina et al. (2019) Automated optimization

Interactive Resources:

- Distill.pub "How to Use t-SNE Effectively"
- projector.tensorflow.org Try it yourself
- github.com/pavlin-policar/openTSNE

Code Repository:

github.com/course/tsne-masterclass All slides, code, and demos available

Start with Distill.pub - best visual explanation!

Deep Dive: The Mathematics of Information Preservation

Shannon's Information Content:

$$I(x) = -\log_2 P(x)$$
 bits

Applied to Neighborhoods:

Surprise of
$$j$$
 being neighbor: $-\log p_{j|i}$ (5)

Expected surprise (entropy):
$$H(P_i) = -\sum_j p_{j|i} \log p_{j|i}$$
 (6)

Information lost using
$$Q_i$$
: $KL(P_i||Q_i) = \sum_{i} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$ (7)

Intuition: We're minimizing the "surprise" when using the map instead of true data

Warning: This is why preserving rare neighbors (high surprise) matters so much!

Deep Dive: Why Exactly Student's t with df=1?

General form:

$$q_{ij} \propto \left(1 + rac{d_{ij}^2}{
u}
ight)^{-rac{
u+1}{2}}$$

where $\nu =$ degrees of freedom

Special case $\nu = 1$:

$$q_{ij} \propto (1+d_{ij}^2)^{-1}$$

df	Tail behavior		
1	Heaviest (best)		
2	Moderate		
5	Light		
∞	Gaussian (fails)		

Mathematical Justification: df = embedding dimension works optimally

Case Study: Debugging a Failed Embedding

Initial: Blob

Debugging Steps:

- Check data scaling X
- ② Verify no NaN ✓
- Increase iterations X
- Adjust learning rate X
- Oheck duplicates √√√

After Fix: Clear!

After Removing Duplicates:

Clear structure emerges!

Lesson: 5% duplicate points destroyed entire embedding

Ethics: Always check data quality before blaming the algorithm

Case Study: Discovering Fraud Patterns

Financial Transaction Data:

- 1M transactions
- 50 features
- 0.1% fraud rate
- Highly imbalanced

Challenges:

- Rare events
- Mixed data types
- Temporal patterns
- High stakes

Discoveries:

- New fraud cluster found
- Saved \$2M in first month
- Previously unknown pattern

Advanced Optimization: Modern Acceleration Techniques

FFT Acceleration (FIt-SNE):

- Interpolate on grid
- Use FFT for forces
- O(n) complexity
- $10-50 \times \text{speedup}$

Random Projection Trees:

- Multiple trees
- Average results
- Better accuracy
- Moderate speedup

Method	Time	Quality
Exact	100%	100%
Barnes-Hut	5%	98%
FIt-SNE	2%	99%
GPU	1%	98%

Handling Streaming Data: Online t-SNE

Three Approaches:

- Operiodic Recomputation: Best quality, positions change
- 2 Parametric Extension: Fast, lower quality, drift
- **Incremental:** Balance, complex implementation

Intuition: No perfect solution - choose based on stability vs quality needs

Cross-Validation for t-SNE

Validation Protocol:

- Split data 80/20
- Embed training set
- Project test set
- Compare structures
- Repeat 5-fold

Quality Metrics:

- Procrustes distance
- Neighborhood overlap
- Cluster consistency

Interpretation:

- High overlap = stable
- Low overlap = overfitting
- Adjust perplexity accordingly

Combining with Other Methods: Ensemble Approaches

Complementary Strengths: PCA

Global structure

Linear patterns Fast t-SNE

Local structure

Clusters

Non-linear

UMAP

Multi-scale Topology

Scalable

Truth emerges from agreement across methods

Critical Analysis: When NOT to Use t-SNE

Inappropriate Use Cases

- Proving cluster existence: t-SNE can create false clusters
- Measuring distances: Only topology preserved
- 3 Real-time analysis: Too slow for streaming
- Very high-D (¿10,000): Computational limits
- Precise reproduction: Stochastic nature

Better Alternatives:

- ullet Hypothesis testing o Statistical tests
- Distance preservation → MDS
- ullet Speed critical o UMAP or PCA
- Reproducibility → Deterministic methods

Ethics: Using wrong tool can lead to wrong conclusions

Memory Optimization Strategies

Memory Requirements:

Component	Memory
Distance matrix	$O(n^2)$
P matrix (dense)	$O(n^2)$
P matrix (sparse)	O(nk)
Embeddings	O(n)
Gradients	O(n)

For 100K points:

Dense: 80GB

Sparse: 800MB

Optimization Tricks:

- Use float32 not float64
- Sparse P (only k-NN)
- Ohunk distance computation
- Memory-mapped arrays

Publication Standards: Reporting Template

Methods Section Template

"We applied t-SNE (van der Maaten & Hinton, 2008) using the following protocol:

Preprocessing: Data were scaled to zero mean and unit variance. Missing values were imputed using [method]. PCA was applied to reduce dimensionality from [D] to [d] dimensions, retaining [X]% of variance.

Parameters: Perplexity = [value], learning rate = [value], iterations = [value], early exaggeration = [value] for [n] iterations.

Validation: The embedding was computed [N] times with different random seeds. Mean pairwise correlation = [value] \pm [std]. Neighborhood preservation (k=[perp]) = [value].

Implementation: [Package name and version]"

Warning: Incomplete reporting makes work irreproducible

Common Misinterpretations in Literature

Real Examples (Anonymized):

- "Distance between clusters shows evolutionary relationship"
- "Larger clusters contain more samples"
- "Position indicates importance"
- "Single run proves structure"

Corrections:

- Inter-cluster distance meaningless
- 2 Visual size \neq sample count
- Position is arbitrary
- Multiple runs essential

These errors led to paper retractions!

Ethics: Peer reviewers should check t-SNE usage carefully

Interactive Demo: Building Intuition

t-SNE Interactive Playground

Interactive Playground Features:

- Drag points in high-D, see low-D update
- Adjust perplexity in real-time

Performance Benchmarks: Real-World Datasets

Dataset	Points	Dims	Time	Quality
MNIST	70K	784	45 min	0.92
CIFAR-10	60K	3072	38 min	0.88
20 Newsgroups	18K	10000	15 min	0.85
Single-cell	30K	20000	25 min	0.90
Word2Vec	10K	300	8 min	0.94
Financial	100K	50	55 min	0.87

Setup: Intel i7, 32GB RAM, openTSNE, perplexity=30

Quality: Neighborhood preservation at k=30

Warning: Your results will vary based on hardware and implementation

The Art of Perplexity Selection

Data-Driven Guidelines:

Dense manifolds: 50-100

• Clear clusters: 20-50

Sparse data: 5-20

Mixed density: 30 (default)

•
$$n < 100$$
: perp = 5-10

•
$$n = 100 - 1000$$
: perp = 10-30

•
$$n = 1000 - 10000$$
: perp = 30-50

•
$$n > 10000$$
: perp = 50-100

Always try multiple values and look for consistency

Integration with Machine Learning Pipelines

Best Practices:

- t-SNE for exploration, not production
- Always validate discovered patterns
- Combine with domain knowledge
- Document full pipeline

Final Exam: Test Your Mastery

You have this failed t-SNE result:

Questions:

- List 3 possible causes
- What diagnostics would you run?
- Propose fixing sequence
- 4 How validate the solution?

Final Exam: Test Your Mastery

You have this failed t-SNE result:

Questions:

- List 3 possible causes
- What diagnostics would you run?
- Propose fixing sequence
- How validate the solution?

Expert Answers: 1. Low learning rate, few iterations, wrong perplexity

- 2. Check convergence, run stability test, sweep perplexity
- 3. Increase $\eta \to \text{more iterations} \to \text{adjust perplexity}$

The Complete Journey: From Theory to Practice

Theory

Info theory Max entropy KL divergence Heavy tails

Algorithm

Gradient

Forces Barnes-Hut Optimization

Practice

Preprocessing Debugging Validation Tools

Ethics

Limitations Misuse Reporting Responsibility

Deep Understanding

What We've Covered:

Theory Alg Info theory Gra

Maximum entropy KL divergence

Heavy tails

Algorithm

Gradient descent

Forces
Barnes-Hut

Optimization

Practice

Preprocessing

Debugging Validation

Tools

Ethics

Limitations

Misuse Poportin

Reporting

Responsibility

Your Next Steps

Immediate Actions

- Download code from github.com/course/tsne-masterclass
- Run MNIST example with different perplexities
- Try on your own data
- Implement validation metrics
- Share findings responsibly

Continued Learning

- Read Distill.pub article thoroughly
- Experiment with openTSNE advanced features
- Compare with UMAP on same data
- Join online communities
- Contribute to open source

Thank You and Final Thoughts

Thank you for joining this journey through t-SNE!

Contact Information:

Prof. Endri Raco

Polytechnic University of Catalonia

Email: e.raco@upc.edu

Office Hours: Tuesdays 14:00-16:00

Final Thought:

"The purpose of visualization is insight, not pictures"

- Ben Shneiderman

May your embeddings be stable and your clusters meaningful!