Dark sectors and enhanced $h \to \tau \mu$ transitions

Iftah Galon

University of California, Irvine

April 2, 2017

based on arXiv:1701:08767 [hep-ph] w. J. Zupan seeded by arXiv:1610.08060 [hep-ph] w. P. Tanedo and A. Kwa

Motivation - Flavor in the Leptonic Sector

In the SM:

$$y_{ij}^\ell \bar{L}_i \tilde{H} E_j + \frac{c_{ij}^\nu}{\Lambda^2} L_i H L_j H \quad \overset{\text{\tiny EWSB}}{\Longrightarrow} \quad \textit{m}_i^\ell \delta_{ij} \left(1 + \frac{\textit{h}}{\textit{v}} \right) \bar{\ell}_i \ell_j + \textit{m}_{ij}^\nu \nu_i \nu_j$$

Higgs Physics drives flavor structure

• Flavor puzzle:

$$(y_e,\ y_\mu,\ y_ au) pprox 10^{(-6,-4,-2)}, \quad m_v - {
m tiny}, \quad {\it U}_{PMNS} - {\it O}(1) \ {
m mix}$$

ullet LHC - sensitive to underlying flavor theory \implies

New Physics

Leptonic Flavor Anomalies

Several Hints of (Flavor) New Physics:

- ullet Higgs LFV decays: $h o au \mu$
- $(g-2)_{\mu}$ \Longrightarrow
- Proton radius
- B leptonic decay ratios

$\left BR(h o au^{\pm} \mu^{\mp}) \right _{\sqrt{s}=8 \text{ TeV}} \text{ in } \%$					
CMS	0.89 ± 0.39				
ATLAS	$\begin{cases} \tau_h \ 0.53 \pm 0.51 \\ \tau_e \ 0.77 \pm 0.62 \end{cases}$				

CMS result $\sim 2.4\sigma$

LFV Higgs Couplings

Simplest SM-extensions will give rise to

$$\mathcal{L}\supset Y_{ij}^{\ell}ar{L}_{i}\mathsf{H}\mathsf{E}_{j}+rac{\lambda_{ij}}{\Lambda^{2}}ar{L}_{i}\mathsf{H}\mathsf{E}_{j}\left(\mathsf{H}^{\dagger}\mathsf{H}
ight)$$

Kopp, Harnik & Zupan

implies

$$m = \frac{v}{\sqrt{2}} V_L \left(Y + \frac{v^2}{2\Lambda^2} \lambda \right) V_R^{\dagger}, \qquad y = \frac{1}{\sqrt{2}} V_L \left(Y + 3 \frac{v^2}{2\Lambda^2} \lambda \right) V_R^{\dagger}$$

Then in the mass basis

$$y_{ij} = \frac{m_i}{v} \delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2} V_L \lambda V_R^{\dagger}$$

au Physics

The dominant τ decay modes

Leptonic:

$$au o \ell
u_{ au} \bar{
u}_{\ell} \qquad \sim 35\%$$

Hadronic:

$$au o
u_{ au} \pi$$
 $au o
u_{ au} \pi \pi$
 $au o
u_{ au} \pi \pi \pi$

inherent Missing-Energy signature

au's @ The LHC

Trigger:

- leptonic, $\tau_e \Longrightarrow$ lepton triggers: $\sim p_T > 20 \text{ GeV}$
- hadronic, $\tau_h \Longrightarrow 1$ -prong, 3-prong: "hadron + strips"

fully reconstructs τ_{vis}

but

partially reconstructs τ_{inv} (1 ν , or 2 ν)

au-LHC searches are au-inclusive

τ 's @ The I HC

τ Reconstruction:

The collinear approximation

Ellis, Hinchliffe, Soldate, & van der Bij (1988)

boosted
$$\tau: \quad \tau_{\text{vis}} \mid\mid \tau_{\text{inv}} \implies \begin{cases} \rho_{\tau_{inv}}^2 = 0 \\ \vec{\rho}_{\tau_{inv}} = \hat{\rho}_{\tau_{vis}} \left(\vec{\rho}_{\tau_{vis}} \cdot \vec{E_{T}} \right) \end{cases}$$

 $\bullet \ \ \textbf{The Missing Mass Calculator} \ (\mathsf{MMC}) \ / \ \ \textbf{SVFIT}_{\mathsf{Elagin,\ Murat,\ Pranko,\ \&\ Safonov} }$

Bianchini, Conway, Friis, & Veelken

CMS $h o au \mu$

In $h \to \tau \mu$ CMS uses

$$m^{
m Coll} = \sqrt{\left(p_{\mu} + p_{ au_{
m vis}} + p_{
u's}
ight)^2}$$

SR: $100 \text{ GeV} < m^{\text{Coll}} < 150 \text{ GeV}$, with cuts

Variable	$ ext{H} ightarrow \mu au_{ ext{e}}$			$H o \mu au_h$		
[GeV]	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
$p_{\mathrm{T}}^{\mu} >$	50	45	25	45	35	30
$p_{\mathrm{T}}^{ ilde{\mathbf{e}}}> \ p_{\mathrm{T}}^{ ilde{\mathbf{t}}_{\mathrm{h}}}>$	10	10	10	_		_
$p_{\mathrm{T}}^{ au_{\mathrm{h}}} >$	_	_	_	35	40	40
$M_{ m T}^{ m e} <$	65	65	25	_		_
$M_{ m T}^{ ilde{\mu}}>$	50	40	15	l —	_	_
$M_{ m T}^{\hat au_{ m h}} <$	_	_	_	50	35	35
[radians]						
$\Delta\phi_{ec p_{ m T}^\mu-ec p_{ m T}^{ au_{ m h}}}>$	_	_	_	2.7	_	_
$\Delta\phi_{ec p_{ m T}^{ m e}-ec E_{ m T}^{ m miss}}<$	0.5	0.5	0.3	—	_	_
$\Delta\phi_{ec p_{ m T}^{ m e}-ec p_{ m T}^{\mu}}^{}>$	2.7	1.0	_	_	_	

CMS $h \rightarrow \tau \mu$

event yields (minor differences between CDS and arXiv versions)

Sample	$H o \mu au_{had}$			$H ightarrow \mu au_e$		
	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
Fakes	1858.1 ± 558.8	362.9 ± 110.0	0.5 ± 0.5	41.5 ± 17.3	16.1 ± 6.8	1.1 ± 0.7
Z o au au	198.8 ± 11.0	50.5 ± 3.5	0.4 ± 0.2	65.0 ± 3.0	38.6 ± 2.0	1.3 ± 0.2
ZZ,WW	47.0 ± 8.0	14.6 ± 2.6	0.3 ± 0.2	40.8 ± 6.6	21.2 ± 3.5	0.7 ± 0.2
$W\gamma$	_	_	_	2.0 ± 2.1	1.9 ± 1.9	_
$Z \rightarrow ee \text{ or } \mu\mu$	94.5 ± 25.2	17.6 ± 6.7	0.1 ± 0.1	1.6 ± 0.8	1.8 ± 0.8	-
tī	2.5 ± 0.6	24.3 ± 3.2	0.7 ± 0.3	4.8 ± 0.7	30.0 ± 3.4	1.8 ± 0.3
t, \overline{t}	2.7 ± 1.2	19.9 ± 3.9	0.4 ± 0.5	1.9 ± 0.2	6.8 ± 0.8	0.2 ± 0.1
SM Higgs background	7.0 ± 1.3	4.9 ± 0.7	1.9 ± 0.7	1.9 ± 0.3	1.6 ± 0.2	0.6 ± 0.1
Sum of backgrounds	2210.4 ± 559.6	494.7 ± 110.4	4.3 ± 1.1	159.4 ± 18.9	118.1 ± 8.9	5.6 ± 0.9
LFV Higgs signal	69.7 ± 17.0	29.7 ± 6.7	3.0 ± 1.0	24.2 ± 5.7	13.6 ± 3.1	1.2 ± 0.4
data	2255.0 ± 47.5	506.0 ± 22.5	8.0 ± 2.8	180.0 ± 13.4	128.0 ± 11.3	6.0 ± 2.4

where
$$BR(h \rightarrow \tau \mu) = 0.89\%$$

CMS $h \rightarrow \tau \mu$

$\tau_h + 0j$

$\overline{\mathsf{CMS}} \ h \to \tau \overline{\mu}$

$\tau_h + 1j$

from CMS-HIG-14-005

April 2, 2017

CMS $h \rightarrow \tau \mu$

$\tau_h + 2j$

Additional \mathcal{L}_T source:

new light complex scalar φ

$$\frac{1}{\Lambda} \frac{h}{\sqrt{2}} \bar{\tau}_L \mu_R \varphi, \quad \text{or} \quad \frac{1}{\Lambda} \frac{h}{\sqrt{2}} \bar{\mu}_L \tau_R \varphi^*$$

BR's of 2-body and to 3-body are comparable

$$\frac{\textit{Br}(\textit{h} \rightarrow \tau^{\pm} \mu^{\mp} \varphi \ / \varphi^{*})}{\textit{Br}(\textit{h} \rightarrow \tau^{+} \tau^{-})} \simeq \frac{1}{6} \left(\frac{\textit{m}_{\textit{h}}}{4\pi \Lambda \textit{y}_{\tau}}\right)^{2} = 0.66 \times \left(\frac{500 \text{GeV}}{\Lambda}\right)^{2} \left(\frac{0.01}{\textit{y}_{\tau}}\right)^{2},$$

Can $h \to \mu \tau \phi$ mimic $h \to \mu \tau$:

softer decay products

angularly denser

search acceptance reduced

Can $h \to \mu \tau \phi$ mimic $h \to \mu \tau$:

ullet Broadening and shifting of $m_{ au\mu}^{
m Coll}$, worry about $Z o au\mu$

Can $h \to \mu \tau \phi$ mimic $h \to \mu \tau$:

ullet Broadening and shifting of $m_{ au\mu}^{
m Coll}$, worry about $Z o au\mu$

Can $h \to \mu \tau \phi$ mimic $h \to \mu \tau$:

ullet Broadening and shifting of $m_{ au\mu}^{
m Coll}$, worry about $Z o au\mu$

Recast Results

For $\Lambda = 1 \text{ TeV}$:

Decay	m_{arphi} [GeV]	Br	Coupling
$h \to \tau \mu$	_	3.6×10^{-3}	$Y_{23} = 2.4 \times 10^{-3}$
$h o au\muarphi$	5	$1.9 imes 10^{-2}$	$c_{23} = 1.4$
$ extbf{h} ightarrow au \mu arphi$	10	2.6×10^{-2}	$c_{23} = 1.7$
$h o au\muarphi$	15	$3.4 imes 10^{-2}$	$c_{23} = 2.1$
$h \to \tau \mu \varphi$	20	4.8×10^{-2}	$c_{23} = 2.7$

Reasonable agreement with CMS: $Y_{\tau\mu} = (3.7 \pm 0.8) \cdot 10^{-3}$

Model Building

The model: $\varphi = \text{mediator to flavorful Dark-Sector}$

$$\mathcal{L}_{\mathrm{vis.}} \supset -y_{ij}^\ell \bar{L}_i H E_j + \mathrm{h.c.},$$

$$\mathcal{L}_{\mathrm{vis-med.}} \supset \frac{c_{ij}}{\Lambda} \bar{L}_i H E_j \varphi + \frac{c'_{ij}}{\Lambda} \bar{L}_i H E_j \varphi^* + \mathrm{h.c.}.$$

$$\mathcal{L}_{\rm dark} \supset g_{ab}^L \varphi \, \bar{\chi}_a P_L \chi_b + g_{ab}^R \varphi \, \bar{\chi}_a P_R \chi_b + {\rm h.c.}, \qquad a,b = 1,2.$$

A flavor theory at $\Lambda=1~{
m TeV}$ determines all couplings

Model Building - Feasibility

Account for both Y, c, c', and g^L , g^R ?

$$\mathcal{L}_{\mathrm{vis-med.}}^{\textit{EWSB}} \supset \frac{v}{\sqrt{2}\Lambda} \left[\bar{\ell}_i \left(c_{ij} P_R + c_{ji}^{\prime*} P_L \right) \ell_j \varphi + \bar{\ell}_i \left(c_{ij}^{\prime} P_R + c_{ji}^{*} P_L \right) \ell_j \varphi^* \right].$$

induces dipoles

Constraints

Flavor Violating constraints:

- $\ell_j \to \ell_k \gamma$
- ℓ_j Nuc $\to \ell_k$ Nuc
- $\ell_j \to \ell_i \ell_m \bar{\ell}_k$
- $\ell_j \to \ell_i \ell_m \bar{\ell}_k \nu \bar{\nu}$

Flavor Conserving constraints:

- ullet Δa_{ℓ_j}
- $Z \to \ell_i \bar{\ell}_i$ Universality
- FB-asymmetry

Other constraints:

- $Z \to \ell_j \bar{\ell}_m \varphi$
- $Z \rightarrow inv$
- $\ell_j \to \ell_i \chi \bar{\chi}$
- $\ell \to 3\ell\varphi/\varphi^*$

Symmetry Arguments

SM lepton flavor symmetry

$$U(1)_e\otimes U(1)_\mu\otimes U(1)_\mu$$

Naively broken by c, c' couplings Unless,

Turn on a single Off-Diagonal coupling, $c_{\mu\tau}$

Then break to residual subgroup

$$U(1)_e\otimes U(1)_{\mu- au}$$

Symmetry Arguments

Now φ has charge 2:

- Suppressed CLFV transitions
- Still contribute to flavor diagonal observables.

Can we build a Froggatt-Nielsen realization?

Non-trivial, need y, $c_{\mu\tau}$ + Symmetry Structure

Froggatt-Nielsen 101

 $\mathit{U}(1)$ flavor symmetry \Longrightarrow higher-dim op's \Longrightarrow Flavorful couplings

$$\mathcal{L}_{\text{vis.}} \supset -\alpha_{ij} \bar{L}_i H E_j \left(\frac{S \text{ or } S^*}{M} \right)^{|n_{ij}^Y|}.$$

- $\alpha_{ij} \sim \mathcal{O}(1)$
- ullet S complex is a scalar SM-signlet, $[S]_Q=-1$

•
$$n_{ij}^{Y} = [\bar{L}_{i}]_{Q} + [E_{j}]_{Q} + [H]_{Q}, \quad \begin{cases} n_{ij}^{Y} > 0 \Rightarrow S \\ n_{ij}^{Y} < 0 \Rightarrow S^{*} \end{cases}$$

• $\lambda = \frac{\langle S \rangle}{M} \simeq 0.2$ (Cabibo angle)

Then

$$Y_{ij}^{\ell} = \alpha_{ij} \lambda^{|\mathbf{n}_{ij}^{Y}|}$$

Froggatt-Nielsen 101 + New Scalar

If φ is light we can also expect

$$\mathcal{L}_{\mathrm{med.}} \supset \beta_{ij} \bar{L}_i H E_j \left(\frac{S \text{ or } S^*}{M} \right)^{|n^c_{ij}|} \frac{\varphi}{\Lambda} + \beta'_{ij} \bar{L}_i H E_j \left(\frac{S \text{ or } S^*}{M} \right)^{|n^{c'}_{ij}|} \frac{\varphi^*}{\Lambda}$$

leading to

$$\mathcal{L}_{ ext{vis-med.}} \supset \frac{c_{ij}}{\Lambda} \bar{L}_i H E_j \varphi + \frac{c'_{ij}}{\Lambda} \bar{L}_i H E_j \varphi^*$$

with

$$c_{ij} \sim \lambda^{|n^c_{ij}|}, \qquad c'_{ij} \sim \lambda^{|n^{c'}_{ij}|}.$$

Similarly, $\chi-\varphi$ interactions can be generated and chosen to be dominant.

The Model

$$\begin{array}{llll} [\bar{L}_1]_Q & = & (7,1), & & [E_1]_Q & = & (-7,7), \\ [\bar{L}_2]_Q & = & (-6,-2), & & [E_2]_Q & = & (6,-3), \\ [\bar{L}_3]_Q & = & (-2,-4), & & [E_3]_Q & = & (1,6), \\ [H]_Q & = & (0,0), & & [\varphi]_Q & = & (5,-4). \end{array}$$

These are consistent with the lepton mass eigenvalues

$$\{\textit{m}_{e}, \; \textit{m}_{\mu}, \; \textit{m}_{\tau}\} \sim \frac{\textit{v}}{\sqrt{2}}\{\lambda^{8}, \lambda^{5}, \lambda^{3}\}, \label{eq:memu}$$

$$c \sim \begin{pmatrix} \lambda^9 & \lambda^{18} & \lambda^{10} \\ \lambda^9 & \lambda^8 & 1 \\ \lambda^5 & \lambda^{14} & \lambda^6 \end{pmatrix}, \quad c' \sim \begin{pmatrix} \lambda^{17} & \lambda^{10} & \lambda^{14} \\ \lambda^{19} & \lambda^6 & \lambda^{14} \\ \lambda^{17} & \lambda^4 & \lambda^{12} \end{pmatrix}.$$

Flavor Checklist

LFV Process	Present Bound	Our Model
Radiative Decays		
$\overline{{\rm Br}(\mu^+ o { m e}^+ \gamma)}$	5.7×10^{-13} [?]	$3.1 imes 10^{-17}$
$Br(\tau^{\pm} \to e^{\pm}\gamma)$	3.3×10^{-8} [?]	$1.1 imes 10^{-16}$
$\mathrm{Br}(au^{\pm} o \mu^{\pm} \gamma)$	4.4×10^{-8} [?]	$1.8 imes 10^{-11}$
$\mu ightarrow e$ Conversion in Nuclei		
$\overline{\Gamma(\mu o e)_{ m Au}/\Gamma_{ m captureAu}}$	$7 imes 10^{-13}$ at 90% CL [?]	$1.2 imes 10^{-19}$
3-Body Decays		
$\overline{\mathrm{Br}(\mu^+ o \mathrm{e^+ e^+ e^-})}$	1.0×10^{-12} [?]	$D~1.9 \times 10^{-19}$
$\mathrm{Br}(au^- o \mu^- \mu^+ \mu^-)$	2.1×10^{-8} [?]	$T 1.4 imes 10^{-9}$
$\mathrm{Br}(\tau^- \to \mathrm{e}^- \mathrm{e}^+ \mathrm{e}^-)$	2.7×10^{-8} [?]	$D~1.1 imes 10^{-18}$
$\mathrm{Br}(au^- o \mathrm{e}^- \mu^+ \mu^-)$	2.7×10^{-8} [?]	$T 1.9 \times 10^{-13}$
D (+ -)	4.0 4.0 -8[2]	$\int D 1.8 \times 10^{-13}$
$\mathrm{Br}(\tau^- o \mu^- \mathrm{e}^+ \mathrm{e}^-)$	1.8×10^{-8} [?]	$T 1.9 \times 10^{-13}$
$\mathrm{Br}(au^- o \mathrm{e}^+ \mu^- \mu^-)$	1.7×10^{-8} [?]	$T 4.9 \times 10^{-26}$
$\mathrm{Br}(\tau^- \to \mu^+ \mathrm{e}^- \mathrm{e}^-)$	1.5×10^{-8} [?]	T $2.1 imes 10^{-27}$
Muon $g-2$		
Δa_{μ}	$288(80) \times 10^{-11}$ [?]	4.3×10^{-9}

$(g-2)_{\mu}$

The anomalous magnetic moment we express as

$$a_{\mu} = rac{m_{j}}{16\pi^{2}} \int_{0}^{1} dx (1-x)^{2} rac{x m_{\mu} |c_{23}|^{2} + m_{ au} 2 Re\{c_{23}c_{32}^{*}\}}{x m_{\varphi}^{2} + (1-x)m_{j}^{2} - x(1-x)m_{j}^{2}},$$

Conclusions

- If indeed NP accounts for the excess in $h \to \tau \mu$ it may teach us about the origins of the SM flavor structure.
- Alternatively, the excess could be explained by systematics associated with missing-energy (or statistical as the 13 TeV may show)
- Interestingly, an $\mathcal{O}(10~{\rm GeV})$ scalar with $\tau\mu$ couplings can account for the $(g-2)_{\mu}$ anomaly.
- ullet Future Directions: au and searches for missing energy

Backup Slides

$$(g-2)_{\mu}$$

The anomalous magnetic moment we express as

$$a_{\ell_j} = rac{m_j}{16\pi^2} \sum_i \int_0^1 dx (1-x)^2 rac{x m_j S_i^{(j)} + m_i P_i^{(j)}}{x m_{\varphi}^2 + (1-x) m_i^2 - x (1-x) m_j^2},$$

where

$$S_{i}^{(j)} = \frac{v^{2}}{2\Lambda^{2}} \left(c_{ij}^{*} c_{ij} + c_{ij}^{'*} c_{ij}^{'} + c_{ji}^{*} c_{ji} + c_{ji}^{'*} c_{ji}^{'} \right),$$

$$P_{i}^{(j)} = \frac{v^{2}}{2\Lambda^{2}} \left(c_{ji}^{'*} c_{ij} + c_{ij}^{*} c_{ji}^{'} + c_{ij}^{'*} c_{ji} + c_{ji}^{*} c_{ij}^{'} \right).$$

The Model - Flavor Basis

The flavor dependent couplings in the flavor-basis are

$$\boldsymbol{Y}^{\ell} \sim \begin{pmatrix} \lambda^8 & \lambda^{15} & \lambda^{15} \\ \lambda^{18} & \lambda^5 & \lambda^9 \\ \lambda^{12} & \lambda^{11} & \lambda^3 \end{pmatrix},$$

$$c \sim \begin{pmatrix} \lambda^9 & \lambda^{24} & \lambda^{16} \\ \lambda^9 & \lambda^{14} & 1 \\ \lambda^5 & \lambda^{20} & \lambda^6 \end{pmatrix}, \quad c' \sim \begin{pmatrix} \lambda^{17} & \lambda^{10} & \lambda^{14} \\ \lambda^{27} & \lambda^6 & \lambda^{18} \\ \lambda^{21} & \lambda^4 & \lambda^{12} \end{pmatrix}.$$

generate the rotation matrices

$$V_{L_L} \sim egin{pmatrix} 1 & \lambda^{10} & \lambda^{12} \\ \lambda^{10} & 1 & \lambda^6 \\ \lambda^{12} & \lambda^6 & 1 \end{pmatrix}, \qquad V_{E_R} \sim egin{pmatrix} 1 & \lambda^{13} & \lambda^9 \\ \lambda^{13} & 1 & \lambda^8 \\ \lambda^9 & \lambda^8 & 1 \end{pmatrix}$$