Lecture 7: Probabilistic Graphical Models

Vlad Niculae & André Martins

Deep Structured Learning Course, Fall 2019

Graphical Models

In this unit, we will formalize & extend these graphical representations encountered in previous lectures.

Graphical Models

In this unit, we will formalize & extend these graphical representations encountered in previous lectures.

Outline

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov random fields

Factor graphs

Outline

Directed Models

Bayes networks

Conditional independence and D-separatior Causal graphs & the *do* operator

Undirected Models

Markov random fields

Factor graphs

- Common task: Characterize how some related events co-occur.
 Specifically, in terms of probabilities!
- A car alarm is going off. Was there a break-in?

- Common task: Characterize how some related events co-occur.
 Specifically, in terms of probabilities!
- A car alarm is going off. Was there a break-in?

	P(B)	B=yes	B=no
		.05	.95
_	P(A B)	A=on	A=off
	B=yes	.99	.01
	B=no	.10	.90

• P(B | A) = ?

- Common task: Characterize how some related events co-occur.
 Specifically, in terms of probabilities!
- A car alarm is going off. Was there a break-in?

ICan				
	P(B)	B=yes	B=n	0
		.05	.95	
ı	P(A B, V	N)	A=on	A=off
В=у	es	W=lo	.99	.01
В=у	es W	=med	.99	.01
В=у	es	W=hi	.999	.001
B=r	10	W=lo	.01	.99
B=r	no W	=med	.05	.95
B=r	10	W=hi	.25	.75

- P(B | A) = ?
- Can we observe wind? $P(B \mid A, W) = ?$

- Common task: Characterize how some related events co-occur.
 Specifically, in terms of probabilities!
- A car alarm is going off. Was there a break-in?

P(B) B=yes B=no .05 .95 P(A B, W) A=on A=off B=yes W=lo .99 .01 B=yes W=med .99 .01 B=yes W=hi .999 .001 B=no W=lo .01 .99 B=no W=med .05 .95 B=no W=hi .25 .75	٠,	cuni						
P(A B, W) A=on A=off B=yes W=lo .99 .01 B=yes W=med .99 .01 B=yes W=hi .999 .001 B=no W=lo .01 .99 B=no W=med .05 .95			P(B)	В=у	es	B=n	0	
B=yes W=lo .99 .01 B=yes W=med .99 .01 B=yes W=hi .999 .001 B=no W=lo .01 .99 B=no W=med .05 .95				.05		.95		i
B=yes W=med .99 .01 B=yes W=hi .999 .001 B=no W=lo .01 .99 B=no W=med .05 .95		F	P(A B	, W)	,	4=on	Þ	\=off
B=yes W=hi .999 .001 B=no W=lo .01 .99 B=no W=med .05 .95		В=у	es	W=lo		99		01
B=no W=lo .01 .99 B=no W=med .05 .95		В=у	es \	N=med		99		01
B=no W=med .05 .95		В=у	es	W=hi		999		001
		B=r	10	W=lo	٠.	01		99
B=no W=hi .25 .75		B=r	ıo ۱	N=med		05		95
		B=r	10	W=hi		25	•	75

- $P(B \mid A) = ?$
- Can we observe wind? $P(B \mid A, W) = ?$ Maybe we're in the basement, but have a barometer.

Bayes networks

Toolkit for encoding knowledge about interaction structures between random variables.

Directed acyclic graph (DAG). Nodes = variables. Arrows = statistical dependencies.

In general:
$$P(X_1, ..., X_n) = \prod_i P(X_i \mid parents(X_i))$$

For example: P(Break-in, Wind, Alarm, Barometer)

= P(Break-in) P(Wind) P(Alarm | Break-in, Wind) P(Barometer | Wind)

Without any structure, P(Break-in, Wind, Alarm, Barometer) would have to be stored & estimated like

Brk.	Wind	Alarm	Bar.	Р	,	Brk.	Wind	Alarm	Bar.	Р
yes	lo	on	lo	0.0243		no	lo	on	lo	0.0047
yes	lo	on	med	0.0002		no	lo	on	med	4.75e-05
yes	lo	on	hi	0.0002		no	lo	on	hi	4.75e-05
yes	lo	off	lo	0.0002		no	lo	off	lo	0.4608
yes	lo	off	med	2.50e-06		no	lo	off	med	0.0047
yes	lo	off	hi	2.50e-06		no	lo	off	hi	0.0047
yes	med	on	lo	0.0001		no	med	on	lo	0.0001
yes	med	on	med	0.0146		no	med	on	med	0.0140
yes	med	on	hi	0.0001		no	med	on	hi	0.0001
yes	med	off	lo	1.50e-06		no	med	off	lo	0.0027
yes	med	off	med	0.0001		no	med	off	med	0.2653
yes	med	off	hi	1.50e-06		no	med	off	hi	0.0027
yes	hi	on	lo	9.99e-05		no	hi	on	lo	0.0005
yes	hi	on	med	9.99e-05		no	hi	on	med	0.0005
yes	hi	on	hi	0.0098		no	hi	on	hi	0.0466
yes	hi	off	lo	1.00e-07		no	hi	off	lo	0.0014
yes	hi	off	med	1.00e-07		no	hi	off	med	0.0014
yes	hi	off	hi	9.80e-06		no	hi	off	hi	0.1397

Without any structure, P(Break-in, Wind, Alarm, Barometer) would have to be stored & estimated like

Brk.	Wind	Alarm	Bar.	Р	Brk.	Wind	Alarm	Bar.	Р
yes	lo	on	lo	0.0243	no	lo	on	lo	0.0047
yes	lo	on	med	0.0002	no	lo	on	med	4.75e-05
yes	lo	on	hi	0.0002	no	lo	on	hi	4.75e-05
yes	lo	off	lo	0.0002	no	lo	off	lo	0.4608
yes	lo	off	med	2.50e-06	no	lo	off	med	0.0047
yes	lo	off	hi	2.50e-06	no	lo	off	hi	0.0047
yes	med	on	lo	0.0001	no	med	on	lo	0.0001
yes	med	on	med	0.0146	no	med	on	med	0.0140
yes	med	on	hi	0.0001	no	med	on	hi	0.0001
yes	med	off	lo	1.50e-06	no	med	off	lo	0.0027
yes	med	off	med	0.0001	no	med	off	med	0.2653
yes	med	off	hi	1.50e-06	no	med	off	hi	0.0027
yes	hi	on	lo	9.99e-05	no	hi	on	lo	0.0005
yes	hi	on	med	9.99e-05	no	hi	on	med	0.0005
yes	hi	on	hi	0.0098	no	hi	on	hi	0.0466
yes	hi	off	lo	1.00e-07	no	hi	off	lo	0.0014
yes	hi	off	med	1.00e-07	no	hi	off	med	0.0014
yes	hi	off	hi	9.80e-06	no	hi	off	hi	0.1397

P(Break-in=yes, Alarm=on) = 0.0496

Without any structure, P(Break-in, Wind, Alarm, Barometer) would have to be stored & estimated like

Brk.	Wind	Alarm	Bar.	Р		Brk.	Wind	Alarm	Bar.	Р
yes	lo	on	lo	0.0243	_	no	lo	on	lo	0.0047
yes	lo	on	med	0.0002		no	lo	on	med	4.75e-05
yes	lo	on	hi	0.0002		no	lo	on	hi	4.75e-05
yes	lo	off	lo	0.0002		no	lo	off	lo	0.4608
yes	lo	off	med	2.50e-06		no	lo	off	med	0.0047
yes	lo	off	hi	2.50e-06		no	lo	off	hi	0.0047
yes	med	on	lo	0.0001		no	med	on	lo	0.0001
yes	med	on	med	0.0146		no	med	on	med	0.0140
yes	med	on	hi	0.0001		no	med	on	hi	0.0001
yes	med	off	lo	1.50e-06		no	med	off	lo	0.0027
yes	med	off	med	0.0001		no	med	off	med	0.2653
yes	med	off	hi	1.50e-06		no	med	off	hi	0.0027
yes	hi	on	lo	9.99e-05		no	hi	on	lo	0.0005
yes	hi	on	med	9.99e-05		no	hi	on	med	0.0005
yes	hi	on	hi	0.0098		no	hi	on	hi	0.0466
yes	hi	off	lo	1.00e-07		no	hi	off	lo	0.0014
yes	hi	off	med	1.00e-07		no	hi	off	med	0.0014
yes	hi	off	hi	9.80e-06		no	hi	off	hi	0.1397
					-					

P(Break-in=yes, Alarm=on) = 0.0496

P(Break-in=no, Alarm=on) = 0.0665

Without any structure, P(Break-in, Wind, Alarm, Barometer) would have to be stored & estimated like

Brk.	Wind	Alarm	Bar.	Р	Brk.	Wind	Alarm	Bar.	Р
yes	lo	on	lo	0.0243	no	lo	on	lo	0.0047
yes	lo	on	med	0.0002	no	lo	on	med	4.75e-05
yes	lo	on	hi	0.0002	no	lo	on	hi	4.75e-05
yes	lo	off	lo	0.0002	no	lo	off	lo	0.4608
yes	lo	off	med	2.50e-06	no	lo	off	med	0.0047
yes	lo	off	hi	2.50e-06	no	lo	off	hi	0.0047
yes	med	on	lo	0.0001	no	med	on	lo	0.0001
yes	med	on	med	0.0146	no	med	on	med	0.0140
yes	med	on	hi	0.0001	no	med	on	hi	0.0001
yes	med	off	lo	1.50e-06	no	med	off	lo	0.0027
yes	med	off	med	0.0001	no	med	off	med	0.2653
yes	med	off	hi	1.50e-06	no	med	off	hi	0.0027
yes	hi	on	lo	9.99e-05	no	hi	on	lo	0.0005
yes	hi	on	med	9.99e-05	no	hi	on	med	0.0005
yes	hi	on	hi	0.0098	no	hi	on	hi	0.0466
yes	hi	off	lo	1.00e-07	no	hi	off	lo	0.0014
yes	hi	off	med	1.00e-07	no	hi	off	med	0.0014
yes	hi	off	hi	9.80e-06	no	hi	off	hi	0.1397

P(Break-in=yes, Alarm=on) = 0.0496P(Break-in=no, Alarm=on) = 0.0665 $P(Break-in=yes \mid Alarm=on) = \frac{P(Break-in=yes, Alarm=on)}{\sum_{b} P(Break-in=b, Alarm=on)}$

Knowing the model structure (statistical dependencies), complicated models become manageable.

$$\begin{split} &P(Br,W,A,Ba)\\ &=P(Br)\,P(W)\,P(A\mid Br,W)\,P(Ba\mid W) \end{split}$$

P(Br)	yes	no
	.05	.95

P(W)	lo	mid	hi
	.5	.3	.2

P(A	Br, W)	on	off
Br=yes	W=lo	.99	.01
Br=yes	W=med	.99	.01
Br=yes	W=hi	.999	.001
Br=no	W=lo	.01	.99
Br=no	W=med	.05	.95
Br=no	W=hi	.25	.75

P(Ba W)	lo	mid	hi
W=lo	.98	.01	.01
W=mid	.01	.98	.01
W=hi	.01	.01	.98

Knowing the model structure (statistical dependencies), complicated models become manageable.

P(Br, W, A, Ba) $= P(Br) P(W) P(A \mid Br, W) P(Ba \mid W)$

 Can estimate parts in isolation e.g. P(Wind) from weather history.

P(Br)	yes	no
	.05	.95

P(W)	lo	mid	hi
	.5	.3	.2

P(A	P(A Br, W)		off
Br=yes	W=lo	.99	.01
Br=yes	W=med	.99	.01
Br=yes	W=hi	.999	.001
Br=no	W=lo	.01	.99
Br=no	W=med	.05	.95
Br=no	W=hi	.25	.75

P(Ba W)	lo	mid	hi
W=lo	.98	.01	.01
W=mid	.01	.98	.01
W=hi	.01	.01	.98

Knowing the model structure (statistical dependencies), complicated models become manageable.

P(Br, W, A, Ba) = P(Br) P(W) P(A | Br, W) P(Ba | W)

- Can estimate parts in isolation e.g. P(Wind) from weather history.
- Can sample by following the graph from roots to leaves.

P(Br)	yes	no
	.05	.95

P(W)	lo	mid	hi
	.5	.3	.2

P(A Br, W)		on	off
Br=yes	W=lo	.99	.01
Br=yes	W=med	.99	.01
Br=yes	W=hi	.999	.001
Br=no	W=lo	.01	.99
Br=no	W=med	.05	.95
Br=no	W=hi	.25	.75

P(Ba W)	lo	mid	hi
W=lo	.98	.01	.01
W=mid	.01	.98	.01
W=hi	.01	.01	.98

Bayes Nets:

reduce number of parameters & aid estimation let us reason about **independencies** in a model are a building-block for modeling **causality**

Bayes Nets:

are not neural network diagrams
encode structure, not parametrization
are non-unique for a distribution
encode independence **requirements**, not necessarily all

BN are not neural net diagrams

Recall the RNN language model:

• In statistical terms, what are we modeling?

BN are not neural net diagrams

Recall the RNN language model:

• In statistical terms, what are we modeling?

$$P(X_1,...,X_n) = P(X_1) P(X_2 | X_1) P(X_3 | X_1,X_2)...$$

BN are not neural net diagrams

Recall the RNN language model:

• In statistical terms, what are we modeling?

$$P(X_1,...,X_n) = P(X_1) P(X_2 | X_1) P(X_3 | X_1,X_2)...$$

- Bayes Net:
- X_1 X_2 X_3 X_4 ...
- Not useful! Everything conditionally-depends on everything. (more later)

Neural net diagrams (and computation graphs) show **how to compute something**

Bayes networks show **how a distribution factorizes** (what is assumed independent)

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

$$P(Y)$$
: uniform: $P(Y = sports) = P(Y = music) = \frac{1}{|Y|}$,

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

P(Y): uniform: $P(Y = sports) = P(Y = music) = \frac{1}{|Y|}$, or estimated from data.

 $P(X \mid Y)$ (remember: values of X are sentences)

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

$$P(X \mid Y)$$
 (remember: values of X are sentences)

$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

$$P(X \mid Y)$$
 (remember: values of X are sentences)

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$
 Per-class Markov language model
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid X_{j-1}, Y)$$

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

$$P(X \mid Y)$$
 (remember: values of X are sentences)

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$

Per-class Markov language model
$$P(X \mid Y) = \prod_{i=1}^{L} P(X_i \mid X_{i-1}, Y)$$

Per-class recurrent NN language model
$$P(X \mid Y) = L STM(x_1, \dots, x_L; w_y)$$

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example:
$$X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

$$P(Y)$$
: uniform: $P(Y = sports) = P(Y = music) = \frac{1}{|Y|}$, or estimated from data.

$$P(X \mid Y)$$
 (remember: values of X are sentences)

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$

Per-class Markov language model
$$P(X \mid Y) = \prod_{j=1}^{J-1} P(X_j \mid X_{j-1}, Y)$$

Per-class recurrent NN language model
$$P(X \mid Y) = LSTM(x_1, ..., x_L; w_y)$$

 $P(X \mid Y)$ need not be parametrized as a table.

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example:
$$X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

$$P(Y)$$
: uniform: $P(Y = sports) = P(Y = music) = \frac{1}{|Y|}$, or estimated from data.

$$P(X \mid Y)$$
 (remember: values of X are sentences)

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$

Per-class Markov language model
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid X_{j-1}, Y)$$

Per-class recurrent NN language model
$$P(X \mid Y) = LSTM(x_1, ..., x_L; w_y)$$

 $P(X \mid Y)$ need not be parametrized as a table.

Variables need not be discrete! mixture of Gaussians: $P(X \mid Y = y) \sim \mathcal{N}(\mu_{Y}, \Sigma_{Y})$.

There are many possible factorizations! P(X, Y) =

There are many possible factorizations! P(X, Y) =

 $P(X) P(Y \mid X)$

There are many possible factorizations! P(X, Y) =

 $P(X) P(Y \mid X)$

 $P(Y) P(X \mid Y)$

There are many possible factorizations! P(X, Y) =

 $P(X) P(Y \mid X)$

 $P(Y) P(X \mid Y)$

P(X) P(Y)

Equivalent factorizations

There are many possible factorizations! P(X, Y) =

P(X) P(Y)

The first two are valid Bayes nets for **any** P(X, Y)!

Equivalent factorizations

There are many possible factorizations! P(X, Y) =

The first two are valid Bayes nets for **any** P(X, Y)!

In fact, recall generative vs discriminative classifiers!

- Generative (e.g. naïve Bayes):

 To classify, we would compute P(Y | X) via Bayes' rule.
- Discriminative (e.g. logistic regression) $X \longrightarrow Y$ in LR, we don't model P(X), we assume X is always observed (gray).

Equivalent factorizations

There are many possible factorizations! P(X, Y) =

The first two are valid Bayes nets for **any** P(X, Y)!

In fact, recall generative vs discriminative classifiers!

- Generative (e.g. naïve Bayes):
 To classify, we would compute P(Y | X) via Bayes' rule.
- Discriminative (e.g. logistic regression)
 in LR, we don't model P(X), we assume X is always observed (gray).

Some arrow direction choices are harder to estimate.

Some make more sense (why?): Barmtr. Wind vs. Barmtr. Wind

Recall, we say $X \perp \!\!\! \perp Y$ iff. P(X,Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1): (x)

Recall, we say $X \perp Y$ iff. P(X, Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1):

Example parametrization:

P(X)	A+	Α	В	
	.01	.02	.04	
P(Y)	Jan	Feb	Mar	
	.10	.12	.09	

Recall, we say $X \perp Y$ iff. P(X, Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1):

Example parametrization:

P(X)	A+	Α	В	
	.01	.02	.04	
P(Y)	Jan	Feb	Mar	

BN (1) imposes $X \perp \!\!\! \perp Y$ in **any parametrization**.

Recall, we say $X \perp Y$ iff. P(X, Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1):

Bayes net (2):

Example parametrization:

Example parametrization:						
P(X)	A+	Α	В			
	.01	.02	.04			
P(Y)	Jan	Feb	Mar			
	.10	.12	.09			

BN (1) imposes $X \perp \!\!\! \perp Y$ in **any parametrization**.

Does it mean we must have $X \perp \!\!\! \perp Y$?

Recall, we say $X \perp Y$ iff. P(X, Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1):

Bayes net (2):

Example parametrization:

P(X)	A+	Α	В	
	.01	.02	.04	
P(Y) Jan		Feb	Mar	
	.10	.12	.09	

BN (1) imposes $X \perp \!\!\! \perp Y$ in **any parametrization**.

Does it mean we must have $X \not\perp \!\!\! \perp Y$? **NO!**

P(Y)	P(Y) Ja		Feb	Mar	
	.1	0	.12	.09	
$P(X \mid X)$	/)	A+	Α	В	
Y=Ja	ın	.01	.02	.04	
Y=Fe	b	.01	.02	.04	
Y=Ma	ar	.01	.02	.04	
	•••				

Recall, we say $X \perp Y$ iff. P(X, Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1):

Bayes net (2):

Example parametrization:

P(X)	A+	Α	В	
	.01	.02	.04	
P(Y)	Jan	Feb	Mar	

BN (1) imposes $X \perp \!\!\! \perp Y$ in **any parametrization**.

Does it mean we must have $X \not\perp \!\!\! \perp Y$? **NO!**

P(Y)	Ja	n	Feb	Mar	
	.10		.12	.09	
$P(X \mid Y)$	′)	A+	Α	В	
Y=Ja	n	.01	.02	.04	
Y=Fe	b	.01	.02	.04	
Y=Ma	ar	.01	.02	.04	

A BN constraints what independences **must be** in the model **as a minimum**.

Outline

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov random fields

Factor graphs

Conditional independence in Bayes nets

Identifying independences in a distribution is generally hard.

Bayes nets let us reason about it via graph algorithms!

Definition (conditional independence)

A is independent of B given a set of variables $C = \{C_1, \dots, C_n\}$, denoted as

$$A \perp \!\!\!\perp B \mid C$$
,

if and only if

$$P(A,B \mid C_1,\ldots,C_n) = P(A \mid C_1,\ldots,C_n) P(B \mid C_1,\ldots,C_n).$$

Note. Equivalently, $P(A \mid B, C_1, \dots, C_n) = P(A \mid C_1, \dots, C_n)$. Intuitively: if we observe C, does observing B too bring us more info about A?

The Fork

The Chain

The Collider

The Fork

$A \perp \!\!\!\perp B \mid C$

Given C, A and B are independent. Example: Alarm \leftarrow Wind \rightarrow Barometer

The Chain

The Collider

The Fork

The Chain

The Collider

$A \perp \!\!\!\perp B \mid C$

Given C, A and B are independent. Example: Alarm \leftarrow Wind \rightarrow Barometer

$A \perp \!\!\!\perp B \mid C$

After observing C,

further observing A would not tell us about B.

Example: Burglary \rightarrow Alarm \rightarrow Vlad distracted

The Fork

The Chain

The Collider

$A \perp \!\!\!\perp B \mid C$

Given C, A and B are independent. Example: Alarm \leftarrow Wind \rightarrow Barometer

$A \perp \!\!\!\perp B \mid C$

After observing C,

further observing A would not tell us about B. Example: Burglary \rightarrow Alarm \rightarrow Vlad distracted

Surprisingly, $A \perp \!\!\! \perp B$ but **not** $A \perp \!\!\! \perp B \mid C$!

Example: Burglary → Alarm ← Wind Burglaries occur regardless how windy it is. If alarm rings, hearing wind makes burglary **less likely!** Burglary is "explained away" by wind.

Algorithm for deciding if A and B are **d-separated** given set C, implying:

$$A \perp \!\!\! \perp B \mid C$$
.

For all paths P from A to B in the **skeleton**¹ of the BN, at least one holds:

¹skeleton = the graph with undirected edges replacing the directed arcs

Algorithm for deciding if *A* and *B* are **d-separated** given set *C*, implying:

$$A \perp \!\!\! \perp B \mid C$$
.

For all paths P from A to B in the **skeleton**¹ of the BN, at least one holds:

1. *P* includes a fork with observed parent:

$$X \leftarrow C \rightarrow Y$$
 (with $C \in C$)

¹skeleton = the graph with undirected edges replacing the directed arcs

Algorithm for deciding if A and B are **d-separated** given set C, implying:

$$A \perp \!\!\!\perp B \mid C$$
.

For all paths *P* from *A* to *B* in the **skeleton**¹ of the BN, at least one holds:

1. *P* includes a fork with observed parent:

$$X \leftarrow C \rightarrow Y$$
 (with $C \in C$)

2. *P* includes a chain with observed middle:

$$X \to C \to Y$$
 or $X \leftarrow C \leftarrow Y$ (with $C \in C$)

¹skeleton = the graph with undirected edges replacing the directed arcs

Algorithm for deciding if A and B are **d-separated** given set C, implying:

$$A \perp \!\!\!\perp B \mid C$$
.

For all paths P from A to B in the **skeleton**¹ of the BN, at least one holds:

1. P includes a fork with observed parent:

$$X \leftarrow C \rightarrow Y$$
 (with $C \in C$)

2. *P* includes a chain with observed middle:

$$X \to C \to Y$$
 or $X \leftarrow C \leftarrow Y$ (with $C \in C$)

3. P includes a collider

$$X \to U \leftarrow Y$$
 (with $U \not\in C$)

¹skeleton = the graph with undirected edges replacing the directed arcs

Wind ⊥ Barometer?

Wind ⊥ Barometer? No

Wind ⊥ Barometer? **No**Break-in ⊥ Wind?

Wind ⊥ Barometer? **No**Break-in ⊥ Wind? **Yes**

Wind ⊥ Barometer? No Break-in ⊥ Wind? Yes Break-in ⊥ Barometer?

Wind ⊥ Barometer? No Break-in ⊥ Wind? Yes Break-in ⊥ Barometer? Yes

Wind ⊥ Barometer? No Break-in ⊥ Wind? Yes Break-in ⊥ Barometer? Yes Break-in ⊥ Barometer | Alarm?

Wind ⊥ Barometer? No Break-in ⊥ Wind? Yes Break-in ⊥ Barometer? Yes Break-in ⊥ Barometer | Alarm? No

$$Y_{i+1} \perp \!\!\!\perp Y_{i-1}$$
?

$$Y_{i+1} \perp \!\!\!\perp Y_{i-1}$$
? No

$$Y_{i+1} \perp Y_{i-1}$$
 ... $Y_{i+1} \perp Y_{i-1}$? No $Y_{i+1} \perp Y_{i-1} \mid Y_i$?

$$Y_{i+1} \perp Y_{i-1}$$
? No $Y_{i+1} \perp Y_{i-1} \mid Y_i$? Yes

$$Y_{i+1} \perp \perp Y_{i-1}$$
? No $Y_{i+1} \perp \perp Y_{i-1} \mid Y_i$? Yes $Y_{i+1} \perp \perp X_i$?

$$Y_{i+1} \perp \!\!\! \perp Y_{i-1} ?$$
 No $Y_{i+1} \perp \!\!\! \perp Y_{i-1} \mid Y_i ?$ Yes $Y_{i+1} \perp \!\!\! \perp X_i ?$ No

Examples

Wind ⊥ Barometer? No Break-in ⊥ Wind? Yes Break-in ⊥ Barometer? Yes Break-in ⊥ Barometer | Alarm? No Break-in ⊥ Barometer | Alarm, Wind? Yes

$$\cdots \qquad \bigvee_{X_{i-1}} \bigvee_{X_i} \bigvee_{X_{i+1}} \bigvee_{X_{i+1}} \cdots$$

$$Y_{i+1} \perp \!\!\! \perp Y_{i-1}$$
? No $Y_{i+1} \perp \!\!\! \perp Y_{i-1} \mid Y_i$? Yes $Y_{i+1} \perp \!\!\! \perp X_i$? No $Y_{i+1} \perp \!\!\! \perp X_i \mid Y_i$?

Examples

Wind ⊥ Barometer? No Break-in ⊥ Wind? Yes Break-in ⊥ Barometer? Yes Break-in ⊥ Barometer | Alarm? No Break-in ⊥ Barometer | Alarm, Wind? Yes

$$\cdots \qquad \bigvee_{X_{i-1}} \bigvee_{X_i} \bigvee_{X_{i+1}} \bigvee_{X_{i+1}} \cdots$$

$$Y_{i+1} \perp \!\!\! \perp Y_{i-1}$$
? No $Y_{i+1} \perp \!\!\! \perp Y_{i-1} \mid Y_i$? Yes $Y_{i+1} \perp \!\!\! \perp X_i$? No $Y_{i+1} \perp \!\!\! \perp X_i \mid Y_i$? Yes

Generative stories and plate notation

In papers, you'll see statistical models defined through *generative stories*:

$$\mu \sim \mathsf{Uniform}([-1,1])$$
 $\sigma \sim \mathsf{Uniform}([1,2])$ $\mathit{X} \mid \mu, \sigma \sim \mathsf{Normal}(\mu, \sigma)$

Plate notation is a way to denote repetition of templates:

$$\mu \sim \mathsf{Uniform}([-1,1])$$
 $\sigma \sim \mathsf{Uniform}([1,2])$ $X_n \mid \mu, \sigma \sim \mathsf{Normal}(\mu, \sigma) \quad i=1,\dots,N$

Outline

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov random fields

Factor graphs

Correlation does not imply causation; but then, what does?

Bayes nets only model independence assumptions.

The correlation between the a barometer reading *B* and wind strength *W* can be represented either way:

Bayes nets only model independence assumptions.

The correlation between the a barometer reading *B* and wind strength *W* can be represented either way:

Seeing that the barometer reading is high, we can forecast wind.

P(W B)	lo	mid	hi
B = lo	.98	.01	.01
B = mid	.01	.98	.01
B = hi	.01	.01	.98

Bayes nets only model independence assumptions.

The correlation between the a barometer reading *B* and wind strength *W* can be represented either way:

Seeing that the barometer reading is high, we can forecast wind.

P(W B)	lo	mid	hi
B = lo	.98	.01	.01
B = mid	.01	.98	.01
B = hi	.01	.01	.98

But setting the barometer needle to high manually won't cause wind!

We write: $P(W \mid do(B = hi)) = ?$

Setting the barometer needle to high manually won't cause wind!

Setting the barometer needle to high manually won't cause wind!

Two reasons why doing \neq seeing:

- we got the direction wrong
- we missed some confounding factor

If we created wind with a ceiling fan, does it alter the barometer?

Setting the barometer needle to high manually won't cause wind!

Two reasons why doing \neq seeing:

- we got the direction wrong
- we missed some confounding factor

If we created wind with a ceiling fan, does it alter the barometer?

No! **Pressure** is a confounding factor.

Causal models

Definition (Pearl 2000)

A causal model is a DAG \mathcal{G} with vertices X_1, \dots, X_N representing events. Almost like a BN. However, paths are **causal**.

- A causes B only if A is an ancestor of B in 9.
- $A \rightarrow B$ means A is a direct cause of B.

A good model is essential. Wrong causal assumptions \rightarrow wrong conclusions.

(We won't cover how to assess if the model is right. This is a bit *chicken-and-egg*, but domain knowledge helps, and we are allowed to reason about *unobserved* causes.)

Seeing (observational): $P(W \mid B = hi)$

Seeing (observational): $P(W \mid B = hi)$

Measure the world for a while (or call IPMA)

Date	Pressure	Wind	Barometer
1977-01-01	hi	hi	hi
1977-01-02	hi	mid	hi
1977-01-02	mid	mid	mid

2019-11-03 hi hi hi

gives: $\frac{P(W \mid B) \quad \text{lo} \quad \text{mid} \quad \text{hi}}{B = \text{hi} \quad .01 \quad .01 \quad .98}$

Seeing (observational): $P(W \mid B = hi)$

Measure the world for a while (or call IPMA)

Date	Pressure	Wind	Barometer
1977-01-01	hi	hi	hi
1977-01-02	hi	mid	hi
1977-01-02	mid	mid	mid
•••			

2019-11-03	hi	hi	hi
• • •			

gives:	$P(W \mid B)$	lo	mid	hi	_
gives.	B = hi	.01	.01	.98	

Doing (interventional): $P(W \mid do(B = hi))$

Set the needle to high breaking inbound arrows; re-generate **new** data in this **new** DAG (or estimate what that would give.)

Seeing (observational): $P(W \mid B = hi)$

Measure the world for a while (or call IPMA)

Date	Pressure	Wind	Barometer
1977-01-01	hi	hi	hi
1977-01-02	hi	mid	hi
1977-01-02	mid	mid	mid

2019-11-03	hi	hi	hi
• • • •			

gives:

P(W B)	lo	mid	hi ——
B = hi	.01	.01	.98

Set the needle to high breaking inbound arrows; re-generate **new** data in this **new** DAG (or estimate what that would give.)

Seeing (observational): $P(W \mid B = hi)$

Measure the world for a while (or call IPMA)

Date	Pressure	Wind	Barometer
1977-01-01	hi	hi	hi
1977-01-02	hi	mid	hi
1977-01-02	mid	mid	mid

2019-11-03 hi hi hi

gives: $\frac{P(W \mid B) \quad \text{lo} \quad \text{mid} \quad \text{hi}}{B = \text{hi} \quad .01 \quad .01 \quad .98}$

Doing (interventional): $P(W \mid do(B = hi))$

Set the needle to high breaking inbound arrows; re-generate **new** data in this **new** DAG (or estimate what that would give.)

$$P(W \mid do(B = hi)) = P(W)$$

Randomized controlled trials

Try to actually implement the *do* operator in real life.

Patient	Treatment	Genetics	Disease
#42	real	?	cured
#68	placebo	?	not cured

No need to be able to measure genetics as long as we can sample A LOT OF test subjects with no/little bias.

Randomized controlled trials

Try to actually implement the *do* operator in real life.

Patient	Treatment	Genetics	Disease
#42	real	?	cured
#68	placebo	?	not cured

No need to be able to measure genetics as long as we can sample A LOT OF test subjects with no/little bias.

do calculus

RCTs are powerful, but often unethical, always expensive.

do calculus: use the causal DAG assumptions to draw causal conclusions from observational data.

- Apply transformations to $P(X \mid do(Y))$ until do goes away. (Not always possible!)
- Quantities without do can be estimated observationally.
- Transformation: 3 rules.

Pearl's 3 rules

X, Y, Z, W disjoint sets of events (sets of nodes); may be empty $\mathcal{G}_{\bar{X}}$ the graph with all edges **into** X removed.

Notation: $\mathcal{G}_{\bar{X}}$ the graph with all edges **out of** X removed. Z(X) subset of nodes in Z which are not ancestors of X. Y; do(X) shorthand for Y = Y; respectively do(X = X).

1. Ignoring observations:

$$P(y \mid do(x), z, w) = P(y \mid do(x), w)$$
 if $(Y \perp \!\!\! \perp Z \mid X, W)_{g_{\bar{X}}}$

2. Action/observation exchange: the back-door criterion

$$P(y \mid do(x), do(z), w) = P(y \mid do(x), z, w) \quad \text{if} \quad (Y \perp\!\!\!\perp Z \mid X, W)_{\mathcal{G}_{\bar{X}, Z(W)}}$$

Ignoring actions

$$P(y \mid do(x), do(z), w) = P(y \mid do(x), w)$$
 if $(Y \perp \!\!\! \perp Z \mid X, W)_{\mathcal{G}_{\bar{X}, Z(\bar{W})}}$

Examples 1,2: Pressure and barometer

Rule 3:
$$P(P = hi \mid do(B = hi)) = P(P = hi)$$
 since $(P \perp \!\!\!\perp B)_{g_{\bar{B}}}$

Examples 1,2: Pressure and barometer

Rule 3:
$$P(P = hi \mid do(B = hi)) = P(P = hi)$$
 since $(P \perp \!\!\!\perp B)_{g_{\bar{B}}}$

Rule 2:
$$P(B = hi \mid do(P = lo)) = P(B = hi \mid P = lo)$$
 since $(B \perp \!\!\!\perp P)_{\mathcal{G}_{P}}$

Examples 1,2: Pressure and barometer

Rule 3:
$$P(P = hi \mid do(B = hi)) = P(P = hi)$$
 since $(P \perp \!\!\!\perp B)_{g_{\bar{B}}}$

Rule 2:
$$P(B = hi \mid do(P = lo)) = P(B = hi \mid P = lo)$$
 since $(B \perp \!\!\!\perp P)_{g_{\underline{P}}}$

Good check: we get the intuitively correct results.

Example 3: Measurable confounder

T: treatment, D: disease. The confounder is W: wealth.

Condition on wealth (which thus needs to be measurable)

$$\begin{split} \mathsf{P}(D = \mathsf{cured} \mid \mathsf{do}(T = \mathsf{y})) &= \mathsf{P}(D = \mathsf{cured} \mid \mathsf{do}(T = \mathsf{y}), W = \mathsf{y}) \, \mathsf{P}(W = \mathsf{y} \mid \mathsf{do}(T = \mathsf{y})) \\ &+ \mathsf{P}(D = \mathsf{cured} \mid \mathsf{do}(T = \mathsf{y}), W = \mathsf{n}) \, \mathsf{P}(W = \mathsf{n} \mid \mathsf{do}(T = \mathsf{y})) \\ &= \mathsf{P}(D = \mathsf{cured} \mid \mathsf{do}(T = \mathsf{y}), W = \mathsf{y}) \, \mathsf{P}(W = \mathsf{y}) \\ &+ \mathsf{P}(D = \mathsf{cured} \mid \mathsf{do}(T = \mathsf{y}), W = \mathsf{n}) \, \mathsf{P}(W = \mathsf{n}) \\ &= \mathsf{P}(D = \mathsf{cured} \mid T = \mathsf{y}, W = \mathsf{y}) \, \mathsf{P}(W = \mathsf{y}) \\ &+ \mathsf{P}(D = \mathsf{cured} \mid T = \mathsf{y}, W = \mathsf{n}) \, \mathsf{P}(W = \mathsf{n}) \end{split} \tag{R2}$$

Example 3: an impossible one

T: treatment, *D*: disease.

The confounder is G: genetics (impractical to measure and estimate)

Without more info or more assumptions, we're stuck!

Example 4: a surprisingly possible one

T: treatment, D: disease, B: blood cell count.

The confounder is G: genetics (still hidden)

"The front-door criterion:" conditioning on *B* lets us remove dos! (I won't show you how, derivation is a bit longer. Try it at home.)

$$\mathsf{P}(\mathit{D} = \mathsf{cured} \mid \mathsf{do}(\mathit{T} = \mathsf{y}) = \sum_{t,b} \mathsf{P}(\mathit{D} = \mathsf{cured} \mid \mathit{T} = t, \mathit{B} = \mathit{b}) \, \mathsf{P}(\mathit{B} = \mathit{b} \mid \mathit{T} = \mathit{t}) \, \mathsf{P}(\mathit{T} = \mathit{t})$$

Directed models: summary

- Bayes nets: specify & estimate fine-grained distributions over interdependent events.
- Under a specified model, algorithm to decide conditional independence: d-separation
- Bestowing a DAG with causal assumptions lets us reason about interventions.

Further reading: (Pearl, 1988; Koller and Friedman, 2009; Pearl, 2000, 2012; Dawid, 2010)

Slides on causal inference and learning causal structure (links):

- Sanna Tyrväinen, Introduction to Causal Calculus
- Ricardo Silva, Causality
- Dominik Janzing & Bernhard Schölkopf, Causality

Graphical Models

In this unit, we will formalize & extend these graphical representations encountered in previous lectures.

Outline

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov random fields

Factor graphs

Outline

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov random fields

Factor graphs

- Four students: An, Bo, Chris, Dee are voting on a Yes/No ballot.
- Friendship pairs: An–Bo, Bo–Chris, Chris–Dee, Dee–An.
- Friends are 100x more likely to vote the same way.

- Four students: An, Bo, Chris, Dee are voting on a Yes/No ballot.
- Friendship pairs: An–Bo, Bo–Chris, Chris–Dee, Dee–An.
- Friends are 100x more likely to vote the same way.

• An's vote is a random variable A with values $a \in \{Y, N\}$, and so on.

$$P(a,b,c,d) \propto f(a,b) \cdot f(b,c) \cdot f(c,d) \cdot f(d,a)$$

For any $X, Y \in \{A, B, C, D\}$, f is the compatibility function

00
00
1
1
00

- Four students: An, Bo, Chris, Dee are voting on a Yes/No ballot.
- Friendship pairs: An-Bo, Bo-Chris, Chris-Dee, Dee-An.
- Friends are 100x more likely to vote the same way.

• An's vote is a random variable A with values $a \in \{Y, N\}$, and so on.

$$P(a,b,c,d) \propto f(a,b) \cdot f(b,c) \cdot f(c,d) \cdot f(d,a)$$

For any $X, Y \in \{A, B, C, D\}$, f is the compatibility function

Х	Υ	f(x,y)
Υ	Υ	100
Υ	Ν	1
Ν	Υ	1
N	N	100

Can we represent this exact factorization in a Bayes net?

- Four students: An, Bo, Chris, Dee are voting on a Yes/No ballot.
- Friendship pairs: An–Bo, Bo–Chris, Chris–Dee, Dee–An.
- Friends are 100x more likely to vote the same way.

• An's vote is a random variable A with values $a \in \{Y, N\}$, and so on.

$$P(a,b,c,d) \propto f(a,b) \cdot f(b,c) \cdot f(c,d) \cdot f(d,a)$$

For any $X, Y \in \{A, B, C, D\}$, f is the compatibility function

Χ	Υ	f(x,y)
Υ	Υ	100
Υ	Ν	1
N	Υ	1
N	N	100

Can we represent this exact factorization in a Bayes net? no!

Markov random fields

Definition

Let \mathcal{G} be an *undirected* graph with nodes corresponding to random variables X_1, \ldots, X_N . Let $C(\mathcal{G})$ denote the set of *cliques* (fully connected subgraphs) of \mathcal{G} . A MRF is a distribution of the form

$$P(x_1,\ldots,x_n)=\frac{1}{Z}\prod_{c\in C}f_c(\boldsymbol{x}_c)$$

where for each clique c, f_c is a non-negative compatibility function.

Α	В	$P(a \mid b)$		
Υ	Υ	.9	В	P(b)
Ν	Υ	.1	Υ	.75
Υ	N	.1	N	.25
N	N	.9		

Α	В	f(a,b)
Υ	Υ	.9 · .75
Ν	Υ	.1 · .75
Υ	Ν	.1 · .25
N	N	.9 · .75

- **1.** First, add edge A C for any collider structure $A \rightarrow B \leftarrow C$;
- **2.** Convert all arcs $A \rightarrow B$ into undirected edges A B.

Loose conversion

Similarly, we can convert a MRF to a BN (we won't cover it.)

However, **independences may be lost** in either direction.

From

To

Bayes vs Markov

Bayes network

- Factors are conditionals (normalized)
- Easy to sample
- Can be made causal
- Can easily find $P(x_1, \ldots, x_n)$.

$$P(a, b, c, d) = P(a) P(b \mid a) P(c \mid b) P(d \mid a, c)$$

Markov networks

- Factors are cliques (unnormalized)
- No directional ambiguity
- Often more compact
- More symmetric notation

$$P(a, b, c, d) = 1/z f_1(a, b) f_2(b, c) f_3(c, d) f_4(d, a)$$

Single clique: $\{A, B, C\}$, so $P(a, b, c) = \frac{1}{Z}f(a, b, c)$.

Single clique: $\{A, B, C\}$, so $P(a, b, c) = \frac{1}{Z}f(a, b, c)$.

No way to represent $P(a, b, c) = 1/z f_1(a, b) f_2(b, c) f_3(c, a)$.

Single clique: $\{A, B, C\}$, so $P(a, b, c) = \frac{1}{7}f(a, b, c)$.

No way to represent $P(a, b, c) = 1/z f_1(a, b) f_2(b, c) f_3(c, a)$.

Pairwise MRF: Like a MRF, but factors are edges rather than cliques.

Single clique: $\{A, B, C\}$, so $P(a, b, c) = \frac{1}{7}f(a, b, c)$.

No way to represent $P(a, b, c) = 1/z f_1(a, b) f_2(b, c) f_3(c, a)$.

Pairwise MRF: Like a MRF, but factors are edges rather than cliques.

But what if we want to mix them?

$$P(a,b,c,d,e) = 1/z f_1(a,b) f_2(b,c) f_3(c,a) f_4(b,d,e)$$

Outline

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov random fields

Factor graphs

Factor graphs

Explicitly represent factors in the graph to remove ambiguity.

$$P(a,b,c,d,e) = 1/z f_1(a,b) f_2(b,c) f_3(c,a) f_4(b,d,e)$$

Definition (Factor graph)

A FG is a bipartite graph \mathcal{G} with vertices in $\mathcal{V} \cup \mathcal{F}$, where $X_1, \ldots, X_n \in \mathcal{V}$ are random variables and $\alpha \in \mathcal{F}$ are factors, inducing a distribution

$$P(x_1,\ldots,x_n)=\frac{1}{Z}\prod_{\alpha\in\mathcal{F}}f_{\alpha}(\boldsymbol{x}_{\alpha})$$

where $f_{\alpha} \geq 0$, and \mathbf{X}_{α} is the set of variables with an edge to factor α .

Factor graphs

- Any MRF can be mapped exactly to a FG (clique \rightarrow factor).
- Any Pairwise MRF can be mapped exactly to a FG (edge \rightarrow factor).
- FGs are more general / more fine-grained.

Algorithms

- Inference: Given a FG with fixed compatibility tables, answer queries
 - Maximization: Find most likely assignment x_1, \ldots, x_N (possibly given evidence $x_i : i \in \mathcal{E}$).

$$\underset{x_1,\ldots,x_M}{\operatorname{arg max}} P(x_1,\ldots,x_N \mid \boldsymbol{x}_{\mathcal{E}})$$

• Marginalization: Find the marginal probability of some partial assignment over $x_i : j \in \mathcal{M}$ (possibly given evidence $x_i : i \in \mathcal{E}$)

$$P(\boldsymbol{x}_{\mathcal{M}} \mid \boldsymbol{x}_{\mathcal{E}})$$

- NP-hard / #P-hard in general!
- **Learning:** Given a dataset, estimate the compatibility tables (or, in general a model that produces them.)
- Since BN \rightarrow MRF \rightarrow FG, it suffices to study inference algorithms for FG.²

²But not learning, since we cannot map back to BN losslessly!

Multiplying factors

A core operation: combining factors by multipliying them.

Α	В	$f_1(a,b)$
0	0	3
0	1	1
1	0	2
1	1	8

В	С	$f_2(a,b)$
0	0	5
0	1	4
1	0	1
1	1	1

Α	В	С	g(a,b,c)
0	0	0	$3 \cdot 5 = 15$
0	0	1	$3 \cdot 4 = 12$
0	1	0	$1 \cdot 1 = 1$
0	1	1	$1 \cdot 1 = 1$
1	0	0	$2 \cdot 5 = 10$
1	0	1	$2 \cdot 4 = 8$
1	1	0	$8 \cdot 1 = 8$
1	1	1	$8 \cdot 1 = 8$

Distribution is preserved:

$$f_1(a,b)\cdot f_2(b,c)\cdot f_3(\ldots)\cdot \ldots = g(a,b,c)\cdot f_3(\ldots)\cdot \ldots$$

Maximizing over a variable

$$\max_{a} f(a,b,c) \cdot \underbrace{f_4(\ldots) \cdot \ldots}_{A-\text{free}} = g(b,c) \cdot f_4(\ldots) \cdot \ldots$$

Marginalizing over a variable

$$\sum_{a} f(a,b,c) \cdot \underbrace{f_4(\ldots) \cdot \ldots}_{A-\text{free}} = g(b,c) \cdot f_4(\ldots) \cdot \ldots$$

Query: $\max_{a,b,c,d} P(a,b,c,d) = ?$

АВ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9
ВС	$f_{BC}(b,c)$
0 0	1
0 1	3
1 0	1
1 1	2
C D	$f_{CD}(c,d)$
0 0	4
0 1	2
1 0	1
1 1	3

Query: $\max_{a,b,c,d} P(a,b,c,d) = ?$

AB	$T_{AB}(a, b)$
0 0	10
0 1	2
1 0	3
1 1	9
ВС	$f_{BC}(b,c)$
0 0	1
0 1	3
1 0	1
1 1	2
C D	$f_{CD}(c,d)$
0 0	4
0 1	2
1 0	1
1 1	3

 $f_{nn}(a,b)$

ΛR

1. Pick order: D, C, B, A

Query:
$$\max_{a,b,c,d} P(a,b,c,d) = ?$$

AΒ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
11	9

	f ()
1 1	2
1 0	1
0 1	3
0 0	1
ВС	$f_{BC}(b,c)$

CD	$ICD(\mathbf{c},\mathbf{u})$
0 0	4
0 1	2
1 0	1
1 1	2

- 1. Pick order: D, C, B, A
- **2.** Maximize over $D(f_{CD} \rightarrow g_C)$

Query: $\max_{a,b,c,d} P(a,b,c,d) = ?$

ΑB	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
11	9

ВC	$f_{BC}(b,c)$
0 0	1
0 1	3
1 0	1
1 1	2
CD	$f_{CD}(c,d)$

С	$g_{C}(c)$
0	4 ^{D=0}
1	3 ^{D=1}

- 1. Pick order: D, C, B, A
- **2.** Maximize over D ($f_{CD} \rightarrow g_C$)

Query: $\max_{a,b,c,d} P(a,b,c,d) = ?$

АВ	$f_{AB}(a,$	b)
0 0 0 1 1 0 1 1		10 2 3 9
		_

- C D $f_{CD}(c,d)$ 0 0 4
 0 1 2
 1 0 1
 1 1 3
- $\begin{array}{ccc} C & g_C(c) \\ 0 & 4^{D=0} \\ 1 & 3^{D=1} \end{array}$

- 1. Pick order: D, C, B, A
- **2.** Maximize over $D(f_{CD} \rightarrow g_C)$
- 3. Multiply f_{BC} with g_C giving h_{BC}

Query: $\max_{a,b,c,d} P(a,b,c,d) = ?$

ΑB	$f_{AB}(a,b)$
00	10
10	2
1 1	9

ВС	$f_{BC}(b,c)$
0 0	1
0 1	3
1 0	1
11	2
C D	$f_{CD}(c,d)$

CD	ICD(C, U)	
0 0	4	
0 1	2	
1 0	1	
1.1	3	

С	$g_{\mathcal{C}}(c)$
0	4 ^{D=0}
1	3 ^{D=1}

1.	Pick	order:	D.	C.	В.	Α
		oraci.	٠,	٠,	υ,	

2. Maximize over
$$D(f_{CD} \rightarrow g_C)$$

3. Multiply
$$f_{BC}$$
 with g_C giving h_{BC}

ВС	$h_{BC}(b,c)$
0 0	$1 \cdot 4 = 4^{D=0}$ $3 \cdot 3 = 9^{D=1}$
0 1 1 0	$3 \cdot 3 = 9^{-1}$ $1 \cdot 4 = 4^{D=0}$
1 1	$2 \cdot 3 = 6^{D=1}$

Query: $\max_{a,b,c,d} P(a,b,c,d) = ?$

ΑB	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

ВС

 $f_{BC}(b,c)$

С	$g_{\mathcal{C}}(c)$
0	4D=0
1	3 ^{D=1}

1.	Pick	order:	D,	C,	B, A
----	------	--------	----	----	------

2. Maximize over
$$D(f_{CD} \rightarrow g_C)$$

3. Multiply
$$f_{BC}$$
 with g_C giving h_{BC}

4. Maximize over
$$C(h_{BC} \rightarrow g_B)$$

ВС	$h_{BC}(b,c)$
0 0	$1\cdot 4=4^{D=0}$
0 1	$3 \cdot 3 = 9^{D=1}$
1 0	$1 \cdot 4 = 4^{D=0}$
1 1	$2 \cdot 3 = 6^{D=1}$

Query: $\max_{a,b,c,d} P(a,b,c,d) = ?$

ΑB	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
11	9

B ($t_{BC}(b,c)$		
	IBC (D, C)	В	$g_B(b)$
0 0	1		
0 1	3	0	9 ^{C=1}
1 0	1	1	6 ^{C=1}
1 1	2		

CD	ICD(C, U)		
0 0 0 1	4	С	g _C (c
1 0	1	0	4 ^{D=0}
1 1	3	1	3 ^{D=}

ВС	$h_{BC}(b,c)$
0 0	$1 \cdot 4 = 4^{D=0}$
0 1	$3 \cdot 3 = 9^{D=1}$
1 0	$1 \cdot 4 = 4^{D=0}$
1 1	$2 \cdot 3 = 6^{D=1}$

2. Maximize over
$$D(f_{CD} \rightarrow g_C)$$

3. Multiply
$$f_{BC}$$
 with g_C giving h_{BC}

4. Maximize over
$$C(h_{BC} \rightarrow g_B)$$

Query: $\max_{a,b,c,d} P(a,b,c,d) = ?$

АВ	$f_{AB}(a,b)$
0 0 0 1	10 2
10	3 9

ВС	$f_{BC}(b,c)$		
0.0	1	В	$g_B(b)$
0 1	3	0	9 ^{C=1}
1 0	1	1	6 ^{C=1}
1 1			
CD	f (c d)		

CD	$f_{CD}(c,d)$		
0 0	4	С	g _C (c
1 0	1	0	4 ^{D=}
1.1	3	1	3 ^{D:}

ВС	$h_{BC}(b,c)$
0 0 0 1 1 0 1 1	$1 \cdot 4 = 4^{D=0}$ $3 \cdot 3 = 9^{D=1}$ $1 \cdot 4 = 4^{D=0}$ $2 \cdot 3 = 6^{D=1}$

- 1. Pick order: D, C, B, A
- **2.** Maximize over D ($f_{CD} \rightarrow g_C$)
- **3.** Multiply f_{BC} with g_C giving h_{BC}
- **4.** Maximize over $C(h_{BC} \rightarrow q_B)$
- 5. Multiply f_{AB} with g_B giving h_{AB}

Query: $\max_{a,b,c,d} P(a,b,c,d) = ?$

ΑВ

 $h_{AB}(a,b)$

ΑВ	$f_{AB}(a,b)$
0 0	10
0.1	2
1 0	3
1 1	9

ВС	$f_{BC}(b,c)$		
	-BC(0,0)	В	$g_B(I)$
0 0	1		30(
0.1	3	0	90
1 0	1	1	60
1 1	2		

CD	$f_{CD}(c,d)$		
0 0 0 1	4	С	$g_{\mathcal{C}}(c)$
1 0	1	0	4 ^{D=0}
1.1	3	1	3 ^{D=1}

0 0 0 1 1 0 1 1	$10 \cdot 9 = 90^{C=1}$ $2 \cdot 6 = 12^{C=1}$ $3 \cdot 9 = 27^{C=1}$ $9 \cdot 6 = 54^{C=1}$
ВС	$h_{BC}(b,c)$
0 0	$1 \cdot 4 = 4^{D=0}$

- 1. Pick order: D, C, B, A
- **2.** Maximize over D ($f_{CD} \rightarrow g_C$)
- **3.** Multiply f_{BC} with g_C giving h_{BC}
- **4.** Maximize over $C(h_{BC} \rightarrow q_B)$
- **5.** Multiply f_{AB} with g_B giving h_{AB}

 $2 \cdot 3 = 6^{D=1}$

Query: $\max_{a,b,c,d} P(a,b,c,d) = ?$

ΑВ

0.0

 $h_{AB}(a,b)$

 $10 \cdot 9 = 90^{C=1}$

	$f_{AB}(a,b)$	АВ
	10 2 3 9	0 0 0 1 1 0 1 1
	$f_{BC}(b,c)$	ВС
0 1	1 3 1 2	0 0 0 1 1 0 1 1
	$f_{CD}(c,d)$	
C.	4	0 0

1	6 ^{C=1}
С	$g_{\mathcal{C}}(c)$
0	4 ^{D=0} 3 ^{D=1}

 $g_B(b)$

01 10 11	$ 2 \cdot 6 = 12^{C=1} 3 \cdot 9 = 27^{C=1} 9 \cdot 6 = 54^{C=1} $
ВС	$h_{BC}(b,c)$
0 0	$1 \cdot 4 = 4^{D=0}$
0.1	$3 \cdot 3 = 9^{D=1}$
1 0	4 4 AD=0

- 1. Pick order: D, C, B, A
- **2.** Maximize over $D(f_{CD} \rightarrow g_C)$
- **3.** Multiply f_{BC} with g_C giving h_{BC}
- **4.** Maximize over $C(h_{BC} \rightarrow q_B)$
- **5.** Multiply f_{AB} with g_B giving h_{AB}
- **6.** Maximize over $B(h_{AB} \rightarrow q_A)$

 $2 \cdot 3 = 6^{D=1}$

Query:
$$\max_{a,b,c,d} P(a,b,c,d) = ?$$

АВ	$f_{AB}(a,b)$	Α	$g_A(a)$
0 0 0 1 1 0	10 2 3	0	90 ^{B=0} 54 ^{B=1}
11	9		
ВС	$f_{BC}(b,c)$		- (1-)
0 0	1	В	$g_B(b)$
0 1	3	0	9 ^{C=1}
1 0	1	1	6 ^{C=1}
1 1	2		
C D	$f_{CD}(c,d)$		
0 0 0 1	4 2	С	$g_{\mathcal{C}}(c)$
1 0	1	0	4D=0
1.1	3	1	3 ^{D=1}

. ,	· u,b,c,u · (-, -, -,
ΑВ	$h_{AB}(a,b)$
0 0 0 1 1 0 1 1	$10 \cdot 9 = 90^{C=1}$ $2 \cdot 6 = 12^{C=1}$ $3 \cdot 9 = 27^{C=1}$ $9 \cdot 6 = 54^{C=1}$
ВС	$h_{BC}(b,c)$

- 1. Pick order: D, C, B, A
- **2.** Maximize over $D(f_{CD} \rightarrow g_C)$
- **3.** Multiply f_{BC} with g_C giving h_{BC}
- **4.** Maximize over $C(h_{BC} \rightarrow q_B)$
- **5.** Multiply f_{AB} with g_B giving h_{AB}
- **6.** Maximize over $B(h_{AB} \rightarrow g_A)$

Query:
$$\max_{a,b,c,d} P(a,b,c,d) = ?$$

АВ	$f_{AB}(a,b)$	Α	$g_A(a)$
0 0 0 1	10 2	0	90 ^{B=0} 54 ^{B=1}
1 0	3		54
1 1	9		
ВС	$f_{BC}(b,c)$		
0.0	1	В	$g_B(b)$
0 1	3	0	9 ^{C=1} 6 ^{C=1}
1 0	1	1	6 ^{C=1}
11	2		
C D	$f_{CD}(c,d)$		
0 0 0 1	4 2	С	$g_{\mathcal{C}}(c)$
1 0	1	0	4 ^{D=0}
1.1	3	1	3 ^{D=1}

АВ	$h_{AB}(a,b)$
0 0 0 1 1 0 1 1	$10 \cdot 9 = 90^{C=1}$ $2 \cdot 6 = 12^{C=1}$ $3 \cdot 9 = 27^{C=1}$ $9 \cdot 6 = 54^{C=1}$
ВС	$h_{BC}(b,c)$
0 0	$1 \cdot 4 = 4^{D=0}$

2. Maximize over
$$D(f_{CD} \rightarrow g_C)$$

3. Multiply
$$f_{BC}$$
 with g_C giving h_{BC}

4. Maximize over
$$C(h_{BC} \rightarrow g_B)$$

5. Multiply
$$f_{AB}$$
 with g_B giving h_{AB}

6. Maximize over
$$B$$
 ($h_{AB} \rightarrow g_A$)

7. Maximize over
$$A(g_A \rightarrow \emptyset)$$

 $2 \cdot 3 = 6^{D=1}$

Query:
$$\max_{a,b,c,d} P(a,b,c,d) = ?$$

ΑВ	$f_{AB}(a,b)$	Α	$g_A(a)$
0 0 0 1 1 0 1 1	10 2 3 9	0	90 ^{B=0} 54 ^{B=1}
ВС	$f_{BC}(b,c)$		- (1-)
0.0	1	B	$g_B(b)$
0 1	3	0	9 ^{C=1}
1 0	1	1	6 ^{C=1}
1 1	2		
CD	$f_{CD}(c,d)$		
0 0 0 1	4	С	$g_{\mathcal{C}}(c)$
1 0	1		⊿D=0

ΑВ	$h_{AB}(a,b)$
0 0 0 1 1 0 1 1	$10 \cdot 9 = 90^{C=1}$ $2 \cdot 6 = 12^{C=1}$ $3 \cdot 9 = 27^{C=1}$ $9 \cdot 6 = 54^{C=1}$
ВС	$h_{BC}(b,c)$
0 0 0 1 1 0 1 1	$ 1 \cdot 4 = 4^{D=0} 3 \cdot 3 = 9^{D=1} 1 \cdot 4 = 4^{D=0} 2 \cdot 3 = 6^{D=1} $

- 1. Pick order: D, C, B, A
- **2.** Maximize over $D(f_{CD} \rightarrow g_C)$
- **3.** Multiply f_{BC} with g_C giving h_{BC}
- **4.** Maximize over $C(h_{BC} \rightarrow g_B)$
- **5.** Multiply f_{AB} with g_B giving h_{AB}
- **6.** Maximize over $B(h_{AB} \rightarrow g_A)$
- **7.** Maximize over $A(g_A \rightarrow \emptyset)$
- 8. Just like Viterbi! The max is 90/z.

Backtrace to get arg max : (0, 0, 1, 1).

3D=1

Variable elimination: sum

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

ΑB	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
11	9

ВС	$f_{BC}(b,c)$
0 0	1
0 1	3
1 0	1
1 1	2

C D	$f_{CD}(c,d)$
0 0 0 1	4 2
1 0	1
1 1	3

Variable elimination: sum

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

	(, ,
0 0	10
0 1	2
1 0	3
1 1	9
ВС	$f_{BC}(b,c)$
0 0	1
0 1	3
1 0	1
1 1	2
C D	$f_{CD}(c,d)$
0 0	4
0 1	2
1 0	1

 $f_{AB}(a,b)$

ΑВ

1. Pick order: D, C, B, A

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

AΒ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

ВС	$f_{BC}(b,c)$
0 0	1
0 1 1 0	3
11	2
C D	$f_{CD}(c,d)$

CD	ICD(C, U)
0 0	4
0 1	2
1 0	1
1 1	3

- 1. Pick order: D, C, B, A
- **2. Sum** over D ($f_{CD} \rightarrow g_C$)

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

AΒ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

- - $\begin{array}{cccc} C D & f_{CD}(c,d) \\ \hline 0 & 0 & 4 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 3 \end{array} =$

С	$g_{\mathcal{C}}(c)$
0	6
1	4

- 1. Pick order: D, C, B, A
- **2. Sum** over D ($f_{CD} \rightarrow g_C$)

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

ΑВ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
11	9

- $\begin{array}{c|cccc} C & D & f_{CD}(c,d) \\ \hline 0 & 0 & 4 & \\ 0 & 1 & 2 & \\ 1 & 0 & 1 & \\ 1 & 1 & 3 & \\ \end{array}$

С	$g_{\mathcal{C}}(c)$
0	6
1	4

- 1. Pick order: D, C, B, A
- **2.** Sum over $D(f_{CD} \rightarrow g_C)$
- 3. Multiply f_{BC} with g_C giving h_{BC}

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

АВ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

ВС	$f_{BC}(b,c)$
0 0	1
0 1	3
1 0	1
1 1	2

CD	$f_{CD}(c,d)$	
0 0	4	
0 1	2	
1 0	1	
1.1	3	

С	$g_{\mathcal{C}}(c)$
0	6
1	4

- 1. Pick order: D, C, B, A
- **2.** Sum over $D(f_{CD} \rightarrow g_C)$
- 3. Multiply f_{BC} with g_C giving h_{BC}

ВС	$h_{BC}(b,c)$
0 0	$1 \cdot 6 = 6$
0 1	$3 \cdot 4 = 12$
1 0	$1 \cdot 6 = 6$
1 1	$2 \cdot 4 = 8$

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

AΒ	$f_{AB}(a,b)$
0 0 0 1 1 0	10 2 3
11	9

ВС	$f_{BC}(b,c)$
0 0	1
0.1	3
1 0	1
1.1	2

CD	$f_{CD}(c,d)$	
0 0	4	
0 1	2	
1 0	1	
1 1	3	

С	$g_{\mathcal{C}}(c)$
0	6
1	4

- 1. Pick order: D, C, B, A
 - **2.** Sum over D ($f_{CD} \rightarrow g_C$)
 - 3. Multiply f_{BC} with g_C giving h_{BC}
 - **4. Sum** over C ($h_{BC} \rightarrow g_B$)

BC

$$h_{BC}(b,c)$$

 0 0
 $1 \cdot 6 = 6$

 0 1
 $3 \cdot 4 = 12$

 1 0
 $1 \cdot 6 = 6$

 1 1
 $2 \cdot 4 = 8$

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

АВ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

D.C	f (h a)		
ВС	$f_{BC}(b,c)$	В	$g_B(b)$
0.0	1		30(~)
0 0	I	^	10
0.1	3	0	18
1 0	1	1	14
	_		

CD	$f_{CD}(c,d)$		
0 0	4	С	$g_{\mathcal{C}}(c)$
0 1	2	0	6
1 1	3	1	4

BC
$$h_{BC}(b,c)$$

00 $1 \cdot 6 = 6$
01 $3 \cdot 4 = 12$
10 $1 \cdot 6 = 6$
11 $2 \cdot 4 = 8$

2. Sum over
$$D(f_{CD} \rightarrow g_C)$$

3. Multiply
$$f_{BC}$$
 with g_C giving h_{BC}

4. Sum over
$$C(h_{BC} \rightarrow g_B)$$

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

AΒ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

ВС	f (b c)		
ьс	$f_{BC}(b,c)$	В	$g_B(b)$
0.0	1		95(~)
0 0	I	^	10
0.1	3	0	18
1 0	1	1	14
1.1	2		

ВС	$h_{BC}(b,c)$
0 0	$1 \cdot 6 = 6$
0.1	$3 \cdot 4 = 12$
1 0	$1 \cdot 6 = 6$
1.1	$2 \cdot 4 = 8$

2. Sum over
$$D(f_{CD} \rightarrow g_C)$$

3. Multiply
$$f_{BC}$$
 with g_C giving h_{BC}

4. Sum over
$$C$$
 ($h_{BC} \rightarrow g_B$)

5. Multiply
$$f_{AB}$$
 with q_B giving h_{AB}

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

ΑВ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

ВС	$f_{BC}(b,c)$	В	$g_B(b)$
0.0	1		98(0)
0 0	1	Ω	18
0 1	3	1	14
1 0	1	- 1	14
1.1	2		

00 4 C $g_c(c)$	CD	$f_{CD}(c,d)$		
	0 0	4	С	$g_{\mathcal{C}}(c)$
01 2 0 6	0 1	2	0	6
1 1 3 1 4	1 1	3	1	4

ΑВ	$h_{AB}(a,b)$
0 0 0 1 1 0 1 1	$10 \cdot 18 = 180$ $2 \cdot 14 = 28$ $3 \cdot 18 = 54$ $9 \cdot 14 = 126$

B C
$$h_{BC}(b,c)$$

0 0 1 · 6 = 6
0 1 3 · 4 = 12
1 0 1 · 6 = 6
1 1 2 · 4 = 8

- 1. Pick order: D, C, B, A
- **2.** Sum over $D(f_{CD} \rightarrow g_C)$
- **3.** Multiply f_{BC} with g_C giving h_{BC}
- **4. Sum** over $C(h_{BC} \rightarrow q_B)$
- 5. Multiply f_{AB} with g_B giving h_{AB}

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

ΑВ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

ВС	$f_{BC}(b,c)$	В	$g_B(b)$
0.0	1		98(0)
0 0	1	Ω	18
0 1	3	1	14
1 0	1	- 1	14
1.1	2		

00 4 C $g_c(c)$	CD	$f_{CD}(c,d)$		
	0 0	4	С	$g_{\mathcal{C}}(c)$
01 2 0 6	0 1	2	0	6
1 1 3 1 4	1 1	3	1	4

ΑВ	$h_{AB}(a,b)$
0 0 0 1 1 0 1 1	$10 \cdot 18 = 180$ $2 \cdot 14 = 28$ $3 \cdot 18 = 54$ $9 \cdot 14 = 126$

B C
$$h_{BC}(b,c)$$

0 0 1 · 6 = 6
0 1 3 · 4 = 12
1 0 1 · 6 = 6
1 1 2 · 4 = 8

- 1. Pick order: D, C, B, A
- **2.** Sum over $D(f_{CD} \rightarrow g_C)$
- **3.** Multiply f_{BC} with g_C giving h_{BC}
- **4.** Sum over $C(h_{BC} \rightarrow q_B)$
- 5. Multiply f_{AB} with g_B giving h_{AB}
- **6.** Sum over $B(h_{AB} \rightarrow q_A)$

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

10 2 3 9

1	208 180	_
		_

 $g_A(a)$

Α

BC $f_{BC}(b,c)$	B	$a_n(h)$
0 0 1 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	g _B (b) 18 14

A B
$$h_{AB}(a,b)$$

0 0 10 · 18 = 180
0 1 2 · 14 = 28
1 0 3 · 18 = 54
1 1 9 · 14 = 126

B C

$$h_{BC}(b,c)$$

 0 0
 $1 \cdot 6 = 6$

 0 1
 $3 \cdot 4 = 12$

 1 0
 $1 \cdot 6 = 6$

 1 1
 $2 \cdot 4 = 8$

- 1. Pick order: D, C, B, A
- **2.** Sum over $D(f_{CD} \rightarrow g_C)$
- 3. Multiply f_{BC} with g_C giving h_{BC}
- **4.** Sum over $C(h_{BC} \rightarrow q_B)$
- 5. Multiply f_{AB} with g_B giving h_{AB}
- **6.** Sum over $B(h_{AB} \rightarrow g_A)$

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

ΑВ	$f_{AB}(a,b)$
0 0 0 1 1 0 1 1	10 2 3 9

Α	$g_A(a)$
0	208
1	180

0.0	10 · 18 = 180
0 1	$2 \cdot 14 = 28$
1 0	$3 \cdot 18 = 54$
1 1	$9 \cdot 14 = 126$
ВС	$h_{BC}(b,c)$

ВС	$h_{BC}(b,c)$
0 0	$1 \cdot 6 = 6$
0 1	$3 \cdot 4 = 12$
1 0	$1 \cdot 6 = 6$
1 1	$2 \cdot 4 = 8$

- 1. Pick order: D, C, B, A
- **2.** Sum over $D(f_{CD} \rightarrow g_C)$
- 3. Multiply f_{BC} with g_C giving h_{BC}
- **4.** Sum over $C(h_{BC} \rightarrow g_B)$
- 5. Multiply f_{AB} with g_B giving h_{AB}
- **6. Sum** over B ($h_{AB} \rightarrow g_A$)
- **7. Sum** over $A(g_A \rightarrow \emptyset)$

Query:
$$Z = \sum_{a,b,c,d} f(a,b,c,d) = ?$$

ΑВ	$f_{AB}(a,b)$	Α	$g_A(a)$
0 0 0 1	10 2	0	208 180
1 0 1 1	3 9		
ВС	$f_{BC}(b,c)$	В	$g_B(b)$
0 0 0 1 1 0	1 3 1	0	18
1 1 C D	$f_{CD}(c,d)$		
0 0	4	С	$g_{\mathcal{C}}(c)$
0 1 1 0	2 1	0	6

0 0 0 1 1 0 1 1	$10 \cdot 18 = 180$ $2 \cdot 14 = 28$ $3 \cdot 18 = 54$ $9 \cdot 14 = 126$
ВС	$h_{BC}(b,c)$
0 0 0 1 1 0 1 1	$1 \cdot 6 = 6$ $3 \cdot 4 = 12$ $1 \cdot 6 = 6$ $2 \cdot 4 = 8$

ΑВ

- $h_{AB}(a,b)$ 1. Pick order: D, C, B, A
 - **2.** Sum over $D(f_{CD} \rightarrow g_C)$
 - **3.** Multiply f_{BC} with g_C giving h_{BC}
 - **4.** Sum over $C(h_{BC} \rightarrow g_B)$
 - **5.** Multiply f_{AB} with g_B giving h_{AB}
 - **6.** Sum over $B(h_{AB} \rightarrow g_A)$
 - **7.** Sum over $A(g_A \rightarrow \emptyset)$
 - 8. Just like the Forward algorithm! Z=388. so $P(0,0,1,1)=\frac{90}{z}\approx .23$

Note: we obtained for free
$$P(A = 0) = \frac{208}{388} \approx .54$$
.

Query:
$$P(a, c | D = 1) = ?$$

ΑВ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9
ВС	$f_{BC}(b,c)$
0 0	1
0 1	3
1 0	1
1 1	2
C D	$f_{CD}(c,d)$
0 0	4
0 1	2
1 0	1
1 1	3

Query:
$$P(a, c | D = 1) = ?$$

0 0 0 1 1 0 1 1	10 2 3 9
ВС	$f_{BC}(b,c)$
0 0	1
0 1	3
1 0	1
1 1	2
C D	$f_{CD}(c,d)$
0 0	4

 $f_{AB}(a,b)$

ΑВ

D	$v_D(d)$
0	0
1	1

1. Introduce evidence!

Query:
$$P(a, c | D = 1) = ?$$

	(
0 0		10
01		2
1 0		2

ΑВ

 $f_{AB}(a,b)$

B C

$$f_{BC}(b,c)$$

 0 0
 1

 0 1
 3

 1 0
 1

 1 1
 2

$$\begin{array}{ccc} \mathsf{C} \, \mathsf{D} & f_{CD}(c,d) \\ \hline 0 \, 0 & 4 \\ 0 \, 1 & 2 \\ 1 \, 0 & 1 \\ 1 \, 1 & 3 \\ \end{array}$$

$$\begin{array}{c|cccc}
\hline
D & v_D(d) \\
\hline
0 & 0 \\
1 & 1
\end{array}$$

- Introduce evidence!
- 2. Pick order: D, C, B, A

Query:
$$P(a, c | D = 1) = ?$$

ΑВ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

- B C
 $f_{BC}(b,c)$

 0 0
 1

 0 1
 3

 1 0
 1

 1 1
 2
- $\begin{array}{ccc} \text{C D} & f_{CD}(c,d) \\ \hline 0 \ 0 & 4 \\ 0 \ 1 & 2 \\ 1 \ 0 & 1 \\ 1 \ 1 & 3 \\ \end{array}$
- $\begin{array}{c|cccc}
 & D & v_D(d) \\
 \hline
 & 0 & 0 \\
 & 1 & 1
 \end{array}$

- 1. Introduce evidence!
- 2. Pick order: D, C, B, A
- 3. Multiply all D factors

Query:
$$P(a, c | D = 1) = ?$$

ΑВ	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

- $\begin{array}{cccc} \text{C D} & f_{CD}(c,d) \\ \hline 0 \ 0 & 4 \\ 0 \ 1 & 2 \\ 1 \ 0 & 1 \\ 1 \ 1 & 3 \\ \end{array}$

D	$v_D(d)$
0	0
1	1

- 1. Introduce evidence!
- 2. Pick order: D, C, B, A
- 3. Multiply all D factors

C D	$h_{CD}(c,d)$
0 0	0
0 1	2
1 0	0
1 1	3

Query:
$$P(a, c | D = 1) = ?$$

ΑB	$f_{AB}(a,b)$
0 0 0 1 1 0	10 2 3
1 1	9

- - $\begin{array}{cccc} C D & f_{CD}(c,d) \\ \hline 0 0 & 4 \\ 0 1 & 2 \\ 1 0 & 1 \\ 1 1 & 3 \\ \end{array}$

- 1. Introduce evidence!
- 2. Pick order: D, C, B, A
- 3. Multiply all D factors
- **4.** Sum over $D(h_{CD} \rightarrow g_C)$

C D	$h_{CD}(c,d)$
0 0	0
0 1	2
1 0	0
1 1	3

Query: P(a, c | D = 1) = ?

ΑB	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

ьс	$I_{BC}(D,C)$	
0 0 0 1	1 3	С
1 0	1 2	0

f (h -)

$$\begin{array}{c|cccc} C & D & f_{CD}(c,d) \\ \hline 0 & 0 & 4 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 3 \\ \hline \end{array}$$

D	$v_D(d)$
0	0
1	1

 $g_{\mathcal{C}}(c)$

- 1. Introduce evidence!
- 2. Pick order: D, C, B, A
- 3. Multiply all D factors
- **4.** Sum over $D(h_{CD} \rightarrow g_C)$

CD	$h_{CD}(c,d)$
0 0	0
0 1	2
1 0	0
1 1	3

Query: P(a, c | D = 1) = ?

ΑB	$f_{AB}(a,b)$
0 0 0 1 1 0 1 1	10 2 3 9
ВC	$f_{BC}(b,c)$

	50(, ,		
0 0 0 1	1 3	С	g _C (c
1 0	1 2	0	

CD	$f_{CD}(c,d)$		
0 0 0 1	4	D	$V_D(d)$
1 0	1	0	C
1.1	3	1	1

- 1. Introduce evidence!
- 2. Pick order: D, C, B, A
- 3. Multiply all D factors
- **4.** Sum over $D(h_{CD} \rightarrow g_C)$
- 5. Multiply all C factors

CD	$h_{CD}(c,d)$
0 0	0
0 1	2
1 0	0
1 1	3

Query: P(a, c | D = 1) = ?

ΑB	$f_{AB}(a,b)$
0 0	10
0 1	2
1 0	3
1 1	9

 $f_{BC}(b,c)$

ВС

$$\begin{array}{ccc} C & g_{C}(c) \\ \hline 0 & 2 \\ 1 & 3 \end{array}$$

CD	$f_{CD}(c,d)$
0 0	4
0 1	2
1 0	1
1 1	3

D	$v_D(d)$
0	0
1	1

ВС	$h_{BC}(b,c)$
0 0	2
0 1	9
1 0	2
1.1	6

1.	Introduce	evidence!

4. Sum over
$$D(h_{CD} \rightarrow g_C)$$

CD	$h_{CD}(c,d)$
0 0	0
0.1	2
1 0	0
1 1	3

Query: P(a, c | D = 1) = ?

		$f_{AB}(a,b)$	AΒ
		10 2 3 9	0 0 0 1 1 0 1 1
		$f_{BC}(b,c)$	ВС
$g_{\mathcal{C}}(c)$	С	1 3	0 0 0 1
2	0	1 2	1 0
		$f_{CD}(c,d)$	C D

C D	$f_{CD}(c,d)$		
0 0	4 2	D	$v_D(d)$
1 0	1	0	0
1 1	3	1	1

ВС	$h_{BC}(b,c)$
0 0	2
0 1	9
1 0	2
1.1	6

1.	Introduce	ovidoncol
١.	mtroduce	evidence:

4. Sum over
$$D(h_{CD} \rightarrow g_C)$$

CD	$h_{CD}(c,d)$
0 0 0 1	0
1 0	0

Query: P(a, c | D = 1) = ?

ΑВ	$f_{AB}(a,b)$	
0 0 0 1 1 0 1 1	10 2 3 9	
ВС	$f_{BC}(b,c)$	
	DC (-) -)	
0 0 0 1	1 3	$C g_c(c)$

ABC	$h_{ABC}(a,b,c)$
000	20
0 0 1	90
010	4
011	12
100	6
101	18
110	18
111	54

- 1. Introduce evidence!
- 2. Pick order: D, C, B, A
- 3. Multiply all D factors
- **4.** Sum over D ($h_{CD} \rightarrow g_C$)
- 5. Multiply all C factors
- 6. Multiply all B factors

C D	$h_{CD}(c,d)$
0 0	0
0 1	2
1 0	0
1 1	3

 $v_D(d)$

 $f_{CD}(c,d)$

CD

Query: P(a, c | D = 1) = ?

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ΑВ	$f_{AB}(a,b)$		
0 0 1 C gc(c) 0 1 3 C 2	01	2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ВС	$f_{BC}(b,c)$		
1 0 2	0 0	1	С	$g_{\mathcal{C}}(c)$
	1 0	1 2	0	_

_		
	D	$V_D(d)$
	0	0
	1	1

АВС	$h_{ABC}(a,b,c)$
000	20
001	90
010	4
011	12
100	6
101	18
110	18
111	54

BC h_{BC}(b, c)

0 0 2
0 1 9
1 0 2

- . Introduce evidence!
- 2. Pick order: D, C, B, A
- 3. Multiply all D factors
- **4.** Sum over D ($h_{CD} \rightarrow q_C$)
- 5. Multiply all C factors
- 6. Multiply all B factors
- **7.** Sum over *B*.

CD	$h_{CD}(c,d)$
0 0	0
0 1	2
1 0	0
1 1	3

 $f_{CD}(c,d)$

CD

Query: P(a, c | D = 1) = ?

ΑВ	$f_{AB}(a,b)$	$A C g_A$	c(a,c)
0 0 0 1 1 0 1 1	10 2 3 9	0 0 0 1 1 0 1 1	24 102 24 72
ВС	$f_{BC}(b,c)$		

_		
	С	$g_{\mathcal{C}}(c)$
	0	2
	1	3

CD	$f_{CD}(c,d)$		
0 0 0 1	4 2	D	$V_D(d)$
1 0	1	0	0
1.1	3	1	1

0 0 0 20 0 0 1 90 0 1 0 4 0 1 1 12 1 0 0 6 1 0 1 18		
0 0 1 90 0 1 0 4 0 1 1 12 1 0 0 6 1 0 1 18	АВС	$h_{ABC}(a,b,c)$
	0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0	20 90 4 12 6 18
111 54	111	54

ВС	$h_{BC}(b,c)$
0 0	2
0.1	9
1 0	2
1.1	6

- Introduce evidence!
- 2. Pick order: D, C, B, A
- 3. Multiply all D factors
- **4.** Sum over $D(h_{CD} \rightarrow g_C)$
- 5. Multiply all C factors
- 6. Multiply all B factors
- 7. Sum over B.

CD	$h_{CD}(c,d)$
0 0	0
0.1	2
1 0	0
1.1	3

Variable elimination

- Answer any query involving max, marginalization, evidence!
- Complexity depends on **elimination order**: $O(nk^M)$
 - where *n*=n. variables, *k*=dimension, *M*=size of largest intermediate factor.
 - Example: In chain, intuitive order has M = 2. eliminating from middle of chain gives M = 3.
 - Extreme example is a star graph. Best case M = 2, worst M = N!

- In chains and trees: optimal order is easy. Not in general.
- When given a new query, need to restart algorithm from scratch!

• Optimal order: A, D, C (or D, C, A)

- Optimal order: A, D, C (or D, C, A)
- At each step, we eliminate a variable Y by multiplying (at most³) two factors and summing over Y:

$$g_{Y\to X}(x) = \sum_{y} f_{XY}(x,y)g_{Y}(y)$$

56 / 63

- Optimal order: A, D, C (or D, C, A)
- At each step, we eliminate a variable Y by multiplying (at most³) two factors and summing over Y:

$$g_{Y\to X}(x) = \sum_{y} f_{XY}(x,y)g_{Y}(y)$$

• These intermediate operations ("messages") are shared for all queries,

³because it's a tree

- Optimal order: A, D, C (or D, C, A)
- At each step, we eliminate a variable Y by multiplying (at most³) two factors and summing over Y:

$$g_{Y\to X}(x) = \sum_{y} f_{XY}(x,y)g_{Y}(y)$$

 These intermediate operations ("messages") are shared for all queries, so let's compute all messages up front!

³because it's a tree

Message passing in a tree FG

• Messages from variable X to factor α : aggregate variable beliefs from any other factors. (For leaves, this message is 1).

$$\nu_{X\to\alpha}(x)=\prod_{\beta\in\mathcal{N}(X)-\alpha}\mu_{\beta\to X}(x)$$

• Messages from factor α to variable X: marginalizes over all assignments y_1, \ldots, y_k for Y_1, \ldots, Y_k neighboring α

$$\mu_{\alpha \to X}(x) = \sum_{\substack{y_1, \dots, y_k \\ \{Y_1, \dots, Y_k\} = \mathbb{N}(\alpha) - X}} f_{\alpha}(x, y_1, \dots, y_k) \prod_{\substack{Y_i \in \mathbb{N}(\alpha) - X}} \nu_{Y_i \to \alpha}(y_i)$$

- A message is sent once all messages it depends on have been received.
- For chain: forward-backward! For tree: leaves-to-root and back.
- If new evidence is added, many messages don't change.
- Replace sum with max for maximization.

From messages to beliefs

- Once we collected all the messages, we can compute local beliefs.
- Variable beliefs:

$$p_X(x) \propto \prod_{\alpha \in \mathcal{N}(X)} \mu_{\alpha \to X}(x)$$

Factor beliefs:

$$p_{\alpha}(x_1,\ldots x_k) \propto f_{\alpha}(x_1,\ldots,x_k) \prod_{X_i \in \mathcal{N}(\alpha)} \nu_{X_i \to \alpha}(x_i)$$

• If no cycles, once all messages are passed, beliefs are true marginals:

$$p_X(x) = P(x),$$
 $p_{\alpha}(x_1, \ldots, x_k) = P(x_1, \ldots, x_k).$

• What to do if there are cycles?

Inference in loopy graphs

- Exact solution: Junction Tree algorithm:
 - convert the graph into a tree, by merging cliques!

- Complexity: like variable elimination. Finding the best tree is NP-hard. (corresponds to finding an ordering for variable elimination.)
- Better than VE because we get all marginals at once.

Inference in loopy graphs

- Exact solution: Junction Tree algorithm:
 - convert the graph into a tree, by merging cliques!

- Complexity: like variable elimination. Finding the best tree is NP-hard. (corresponds to finding an ordering for variable elimination.)
- Better than VE because we get all marginals at once.
- Approximate solution: Loopy Belief Propagation:
 - initialize all messages;
 - pass messages in some order until convergence.
 - (may not terminate, result not guaranteed correct, but works ok.)

Inference in loopy graphs

- Exact solution: Junction Tree algorithm:
 - convert the graph into a tree, by merging cliques!

- Complexity: like variable elimination. Finding the best tree is NP-hard. (corresponds to finding an ordering for variable elimination.)
- Better than VE because we get all marginals at once.
- Approximate solution: Loopy Belief Propagation:
 - initialize all messages;
 - pass messages in some order until convergence.
 - (may not terminate, result not guaranteed correct, but works ok.)
 - Many recent algorithms (early 2010s).

Example: classifying opinion in a forum

	У	$f_A(y)$	$f_B(y)$	/) I	$f_{\mathcal{C}}(y)$	$f_D(y)$
	-	1	0	1	1	10
	+		1	1	1	1
•	у	Z	f(y, z	<u>z</u>)		
	_	-		 5		
	-	+		1		
	+	-		1		
	+	+		2		

A: I didn't like the movie.

B: Hmm, strange, why not?

C: It was slow.

D: It was the worst movie this year.

- Unary factors: *soft evidence*. *B*, *C* locally ambiguous.
- Pairwise factors, all equal: $f_{AB} = f_{BC} = f_{BD} = f$.

•	У	$f_A(y)$	$f_B(y)$	$f_C(y)$	$f_D(y)$
	_	10	1	1	10
	+	1	1	1	1
	٧	Z	f(y, z)	-	

,		(),	,
_	-		5
-	+		1
+	-		1
+	+		2

у	$f_A(y)$	$y) f_B$	(y)	$f_C(y)$	$f_D(y)$
-		10	1	1	10
+		1	1	1	1
у	z	f(y	, z)	-	
_	_		5	_	
-	+		1		
+	-		1		
+	+	2			

1. Unary to var: $\mu_{f_Y \to Y} = f_Y$. example: $\mu_{f_D \to D} = \begin{cases} 1 \\ 1 \end{cases}$	1.	Jnary to var: $\mu_{f_{\mathcal{Y}} o \mathcal{Y}}=f_{\mathcal{Y}}.$ example: $\mu_{f_{\mathcal{D}} o \mathcal{D}}=\left\{egin{smallmatrix}1\\1\end{smallmatrix} ight.$	0
---	----	---	---

У	$f_A($	$y) f_B$	(y)	$f_C(y)$	$f_D(y)$
-		10	1	1	10
+		1	1	1	1
у	Z	f(y	, z)	_	
-	-		5		
-	+		1		
+	-		1		
			2		

- **1.** Unary to var: $\mu_{f_Y \to Y} = f_Y$. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$
- **2.** Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{RD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{RC}} = f_C$, $\nu_{A \to f_{AR}} = f_A$

У	$f_A(y)$	$t_B(y)$	$f_{\mathcal{C}}(y)$	$f_D(y)$
-	10	1	1	10
+	1	1	1	1
у	Z 1	f(y, z)	_	
-	-	5		
-	+	1		
+	-	1		
+	+	2		

- **1.** Unary to var: $\mu_{f_Y \to Y} = f_Y$. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$
- **2.** Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$
- **3.** Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD} o B}(b) = \sum\limits_{d} f(b,d)
u_{D o f_{BD}}(d) =$$

- **1.** Unary to var: $\mu_{f_Y \to Y} = f_Y$. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$
- **2.** Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$
- **3.** Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD}\to B}(b) = \sum_{d} f(b,d) \nu_{D\to f_{BD}}(d) = \begin{cases} 50 + 1 = 51 \end{cases}$$

- **1.** Unary to var: $\mu_{f_Y \to Y} = f_Y$. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$
- **2.** Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$
- **3.** Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD}\to B}(b) = \sum_{d} f(b,d) \nu_{D\to f_{BD}}(d) = \begin{cases} 50+1=51\\ 10+2=12 \end{cases}$$

- **1.** Unary to var: $\mu_{f_Y \to Y} = f_Y$. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$
- **2.** Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$
- **3.** Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD}\to B}(b) = \sum_{d} f(b,d)\nu_{D\to f_{BD}}(d) = \begin{cases} 50 + 1 = 51\\ 10 + 2 = 12 \end{cases}$$

$$\mu_{f_{BC}\to B}(b) = \sum_{c} f(b,c)\nu_{C\to f_{BC}}(c) = \begin{cases} 6\\3 \end{cases}$$

- **1.** Unary to var: $\mu_{f_y \to Y} = f_Y$. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$
- **2.** Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$
- **3.** Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD}\to B}(b) = \sum_{d} f(b,d) \nu_{D\to f_{BD}}(d) = \begin{cases} 50 + 1 = 51 \\ 10 + 2 = 12 \end{cases}$$

$$\mu_{f_{BC}\to B}(b) = \sum_{c} f(b,c) \nu_{C\to f_{BC}}(c) = \begin{cases} 6 \\ 3 \end{cases} \quad \mu_{f_{AB}\to B} = \begin{cases} 51 \\ 12 \end{cases}$$

 $f_A(y)$ $f_B(y)$ $f_C(y)$ $f_D(y)$

- **1.** Unary to var: $\mu_{f_Y \to Y} = f_Y$. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$
- **2.** Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$
- **3.** Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD}\to B}(b) = \sum_{d} f(b,d) \nu_{D\to f_{BD}}(d) = \begin{cases} 50 + 1 = 51 \\ 10 + 2 = 12 \end{cases}$$

$$\mu_{f_{BC}\to B}(b) = \sum_{c} f(b,c) \nu_{C\to f_{BC}}(c) = \begin{cases} 6 \\ 3 \end{cases} \quad \mu_{f_{AB}\to B} = \begin{cases} 51 \\ 12 \end{cases}$$

4. Back:
$$\nu_{B \to f_{AB}} = \mu_{f_{BC} \to B} \cdot \mu_{f_{BD} \to B} \cdot \mu_{f_B \to B} = \begin{cases} 6 \cdot 51 \cdot 1 = 306 \\ 3 \cdot 12 \cdot 1 = 36 \end{cases}$$

1. Unary to var:
$$\mu_{f_Y \to Y} = f_Y$$
. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$

2. Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$

3. Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD}\to B}(b) = \sum_{d} f(b,d)\nu_{D\to f_{BD}}(d) = \begin{cases} 50 + 1 = 51\\ 10 + 2 = 12 \end{cases}$$

$$\mu_{f_{BC}\to B}(b) = \sum_{c} f(b,c)\nu_{C\to f_{BC}}(c) = \begin{cases} 6\\ 3 \end{cases} \quad \mu_{f_{AB}\to B} = \begin{cases} 51\\ 12 \end{cases}$$

4. Back:
$$\nu_{B \to f_{AB}} = \mu_{f_{BC} \to B} \cdot \mu_{f_{BD} \to B} \cdot \mu_{f_B \to B} = \begin{cases} 6 \cdot 51 \cdot 1 = 306 \\ 3 \cdot 12 \cdot 1 = 36 \end{cases}$$

Similarly, $\nu_{B \to f_{BC}} = \begin{cases} 51 \cdot 51 \cdot 1 \\ 12 \cdot 12 \cdot 1 \end{cases}$ and $\nu_{B \to f_{BD}} = \begin{cases} 51 \cdot 6 \\ 12 \cdot 3 \end{cases}$

1. Unary to var:
$$\mu_{f_Y \to Y} = f_Y$$
. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$

2. Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$

3. Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD}\to B}(b) = \sum_{d} f(b,d)\nu_{D\to f_{BD}}(d) = \begin{cases} 50+1=51\\ 10+2=12 \end{cases}$$

$$\mu_{f_{BC}\to B}(b) = \sum_{c} f(b,c)\nu_{C\to f_{BC}}(c) = \begin{cases} 6\\ 3 \end{cases} \quad \mu_{f_{AB}\to B} = \begin{cases} 51\\ 12 \end{cases}$$

4. Back:
$$\nu_{B \to f_{AB}} = \mu_{f_{BC} \to B} \cdot \mu_{f_{BD} \to B} \cdot \mu_{f_B \to B} = \begin{cases} 6 \cdot 51 \cdot 1 = 306 \\ 3 \cdot 12 \cdot 1 = 36 \end{cases}$$

Similarly, $\nu_{B \to f_{BC}} = \begin{cases} 51 \cdot 51 \cdot 1 \\ 12 \cdot 12 \cdot 1 \end{cases}$ and $\nu_{B \to f_{BD}} = \begin{cases} 51 \cdot 6 \\ 12 \cdot 3 \end{cases}$

5. Finally
$$\mu_{f_{AB}\to A}(a) = \sum_b f(a,b) \nu_{B\to f_{AB}}(b) = \begin{cases} 1566 \\ 378 \end{cases}$$
 etc.

1. Unary to var:
$$\mu_{f_Y \to Y} = f_Y$$
. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$

2. Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$

3. Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD}\to B}(b) = \sum_{d} f(b,d)\nu_{D\to f_{BD}}(d) = \begin{cases} 50 + 1 = 51\\ 10 + 2 = 12 \end{cases}$$

$$\mu_{f_{BC}\to B}(b) = \sum_{c} f(b,c)\nu_{C\to f_{BC}}(c) = \begin{cases} 6\\ 3 \end{cases} \quad \mu_{f_{AB}\to B} = \begin{cases} 51\\ 12 \end{cases}$$

4. Back:
$$\nu_{B \to f_{AB}} = \mu_{f_{BC} \to B} \cdot \mu_{f_{BD} \to B} \cdot \mu_{f_B \to B} = \begin{cases} 6 \cdot 51 \cdot 1 = 306 \\ 3 \cdot 12 \cdot 1 = 36 \end{cases}$$

Similarly, $\nu_{B \to f_{BC}} = \begin{cases} 51 \cdot 51 \cdot 1 \\ 12 \cdot 12 \cdot 1 \end{cases}$ and $\nu_{B \to f_{BD}} = \begin{cases} 51 \cdot 6 \\ 12 \cdot 3 \end{cases}$

5. Finally $\mu_{f_{AB}\to A}(a) = \sum_b f(a,b) \nu_{B\to f_{AB}}(b) = \begin{cases} 1566 \\ 378 \end{cases}$ etc.

1. Unary to var:
$$\mu_{f_{\gamma} \to \gamma} = f_{\gamma}$$
. example: $\mu_{f_{D} \to D} = \begin{cases} 10 \\ 1 \end{cases}$

2. Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$

3. Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD}\to B}(b) = \sum_{d} f(b,d)\nu_{D\to f_{BC}}(d) = \begin{cases} 50 + 1 = 51\\ 10 + 2 = 12 \end{cases}$$

$$\mu_{f_{BC}\to B}(b) = \sum_{c} f(b,c)\nu_{C\to f_{BC}}(c) = \begin{cases} 6\\ 3 \end{cases} \quad \mu_{f_{AB}\to B} = \begin{cases} 51\\ 12 \end{cases}$$

4. Back:
$$\nu_{B \to f_{AB}} = \mu_{f_{BC} \to B} \cdot \mu_{f_{BD} \to B} \cdot \mu_{f_B \to B} = \begin{cases} 6 \cdot 51 \cdot 1 = 306 \\ 3 \cdot 12 \cdot 1 = 36 \end{cases}$$

Similarly, $\nu_{B \to f_{BC}} = \begin{cases} 51 \cdot 51 \cdot 1 \\ 12 \cdot 12 \cdot 1 \end{cases}$ and $\nu_{B \to f_{BD}} = \begin{cases} 51 \cdot 6 \\ 12 \cdot 3 \end{cases}$

5. Finally
$$\mu_{f_{AB} \to A}(a) = \sum_b f(a,b) \nu_{B \to f_{AB}}(b) = \begin{cases} 1566 \\ 378 \end{cases}$$
 etc

6.
$$p_B \propto \prod_{\alpha} \mu_{\alpha \to B} \propto \begin{cases} 51 \cdot 51 \cdot 6 \cdot 1 \\ 12 \cdot 12 \cdot 3 \cdot 1 \end{cases} = \begin{cases} .97 \\ .03 \end{cases}$$

1. Unary to var:
$$\mu_{f_Y \to Y} = f_Y$$
. example: $\mu_{f_D \to D} = \begin{cases} 10 \\ 1 \end{cases}$

2. Pass from leaves to their neighboring pw. factors: $\nu_{D \to f_{BD}} = \mu_{f_D \to D} = f_D$. Similarly, $\nu_{C \to f_{BC}} = f_C$, $\nu_{A \to f_{AB}} = f_A$

3. Pass factor messages to *B* (sum-product!):

$$\mu_{f_{BD}\to B}(b) = \sum_{d} f(b,d)\nu_{D\to f_{BD}}(d) = \begin{cases} 50 + 1 = 51\\ 10 + 2 = 12 \end{cases}$$

$$\mu_{f_{BC}\to B}(b) = \sum_{c} f(b,c)\nu_{C\to f_{BC}}(c) = \begin{cases} 6\\ 3 \end{cases} \quad \mu_{f_{AB}\to B} = \begin{cases} 51\\ 12 \end{cases}$$

4. Back:
$$\nu_{B \to f_{AB}} = \mu_{f_{BC} \to B} \cdot \mu_{f_{BD} \to B} \cdot \mu_{f_B \to B} = \begin{cases} 6 \cdot 51 \cdot 1 = 306 \\ 3 \cdot 12 \cdot 1 = 36 \end{cases}$$

Similarly, $\nu_{B \to f_{BC}} = \begin{cases} 51 \cdot 51 \cdot 1 \\ 12 \cdot 12 \cdot 1 \end{cases}$ and $\nu_{B \to f_{BD}} = \begin{cases} 51 \cdot 6 \\ 12 \cdot 3 \end{cases}$

5. Finally
$$\mu_{f_{AB} \to A}(a) = \sum_b f(a,b) \nu_{B \to f_{AB}}(b) = \begin{cases} 1566 \\ 378 \end{cases}$$
 etc

6.
$$p_B \propto \prod_{\alpha} \mu_{\alpha \to B} \propto \begin{cases} 51 \cdot 51 \cdot 6 \cdot 1 \\ 12 \cdot 12 \cdot 3 \cdot 1 \end{cases} = \begin{cases} .97 \\ .03 \end{cases} p_A \propto \begin{cases} 15660 \\ 378 \end{cases} = \begin{cases} .98 \\ .02 \end{cases}$$

Above, we took the factor scores for granted. We can learn to model them:

Above, we took the factor scores for granted. We can learn to model them: Use some model (neural or feature-based) to produce **unary scores**:

$$f_A(y) = \exp s_{A,y} = \text{ (for example) } \exp w \cdot \phi((x,A),y)$$

and pairwise scores:

$$f_{AB}(y, y') = \exp s_{AB,y,y'} = \text{ (for example) } \exp w \cdot \phi((x, A, B), (y, y'))$$

Above, we took the factor scores for granted. We can learn to model them: Use some model (neural or feature-based) to produce **unary scores**:

$$f_A(y) = \exp s_{A,y} = \text{ (for example) } \exp w \cdot \phi((x,A),y)$$

and pairwise scores:

$$f_{AB}(y,y') = \exp s_{AB,y,y'} = (\text{for example}) \exp w \cdot \phi((x,A,B),(y,y'))$$

(In general, factor scores $f_{\alpha}(y_{\alpha}) = \exp s_{\alpha,y_{\alpha}}$)

Above, we took the factor scores for granted. We can learn to model them:

Use some model (neural or feature-based) to produce unary scores:

$$f_A(y) = \exp s_{A,y} = \text{ (for example) } \exp w \cdot \phi((x,A),y)$$

and pairwise scores:

$$f_{AB}(y, y') = \exp s_{AB,y,y'} = (\text{for example}) \exp w \cdot \phi((x, A, B), (y, y'))$$

(In general, **factor scores** $f_{\alpha}(y_{\alpha}) = \exp s_{\alpha,y_{\alpha}}$)

The probability of an entire labeling $oldsymbol{y}$ is then

$$P(y \mid x) = \frac{\prod_{\alpha} f_{\alpha}(y_{\alpha})}{Z}$$
 meaning $\log P(y \mid x) = \sum_{\alpha} s_{\alpha,y_{\alpha}} - \log Z$

Above, we took the factor scores for granted. We can learn to model them:

Use some model (neural or feature-based) to produce unary scores:

$$f_A(y) = \exp s_{A,y} = \text{ (for example) } \exp w \cdot \phi((x,A),y)$$

and pairwise scores:

$$f_{AB}(y,y') = \exp s_{AB,y,y'} = \text{ (for example) } \exp w \cdot \phi((x,A,B),(y,y'))$$

(In general, **factor scores** $f_{\alpha}(y_{\alpha}) = \exp s_{\alpha,y_{\alpha}}$)

The probability of an entire labeling y is then

$$P(y \mid x) = \frac{\prod_{\alpha} f_{\alpha}(y_{\alpha})}{Z}$$
 meaning $\log P(y \mid x) = \sum_{\alpha} s_{\alpha,y_{\alpha}} - \log Z$

Gradient updates wrt a factor's scores:

$$rac{\partial \log \mathsf{P}(y \mid x)}{\partial \mathsf{s}_{lpha \mid y_lpha}} = [[y_lpha = y_lpha^\mathsf{true}]] - \mathsf{P}(y_lpha \mid x)$$

Above, we took the factor scores for granted. We can learn to model them:

Use some model (neural or feature-based) to produce unary scores:

$$f_A(y) = \exp s_{A,y} = \text{ (for example) } \exp w \cdot \phi((x,A),y)$$

and pairwise scores:

$$f_{AB}(y, y') = \exp s_{AB,y,y'} = (\text{for example}) \exp w \cdot \phi((x, A, B), (y, y'))$$

(In general, **factor scores** $f_{\alpha}(y_{\alpha}) = \exp s_{\alpha,y_{\alpha}}$)

The probability of an entire labeling y is then

$$P(y \mid x) = \frac{\prod_{\alpha} f_{\alpha}(y_{\alpha})}{Z}$$
 meaning $\log P(y \mid x) = \sum_{\alpha} s_{\alpha,y_{\alpha}} - \log Z$

Gradient updates wrt a factor's scores:

$$rac{\partial \log \mathsf{P}(oldsymbol{y} \mid oldsymbol{x})}{\partial \mathsf{s}_{lpha,oldsymbol{y}_{lpha}}} = \left[\left[oldsymbol{y}_{lpha} = oldsymbol{y}_{lpha}^{\mathsf{true}}
ight]
ight] - \mathsf{P}(oldsymbol{y}_{lpha} \mid oldsymbol{x})$$

The updates use the factor beliefs $P(y_{\alpha} \mid x) = p_{\alpha}(y_{\alpha})$ for each factor!

Undirected models: summary

- MRFs and pairwise MRFs, both special cases of FGs.
- Powerful, expressive, widely used for discriminative modelling.
- Exact inference when not loopy.
 - We've seen some ideas of what to do when loopy
 - We did not cover more advanced approaches, relating message passing and dual decomposition: (Martins et al., 2015; Kolmogorov, 2006; Komodakis et al., 2007; Globerson and Jaakkola, 2007)
- For learning: a generalization of linear-chain CRFs

References I

- Dawid, A. P. (2010). Beware of the DAG! In Causality: objectives and assessment, pages 59-86.
- Globerson, A. and Jaakkola, T. (2007). Fixing Max-Product: Convergent message passing algorithms for MAP LP-relaxations. In Proc. of NeurIPS.
- Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. The MIT Press.
- Kolmogorov, V. (2006). Convergent Tree-Reweighted Message Passing for energy minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568–1583.
- Komodakis, N., Paragios, N., and Tziritas, G. (2007). MRF optimization via dual decomposition: Message-Passing revisited. In Proc. of ICCV.
- Martins, A. F., Figueiredo, M. A., Aguiar, P. M., Smith, N. A., and Xing, E. P. (2015). AD3: Alternating directions dual decomposition for MAP inference in graphical models. JMLR, 16(1):495–545.
- Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
- Pearl, J. (2000). Causality: models, reasoning and inference, volume 29. Springer.
- Pearl, J. (2012). The do-calculus revisited. arXiv preprint arXiv:1210.4852.