Problems 1 and 2 are *optional*, as they should be familiar from QFT I. However, if you are not comfortable with manipulating Gamma matrices, I *encourage* you to complete them. Completing them will result in *bonus points*.

1. The Dirac matrices $\gamma^{\mu} = (\gamma^0, \gamma^j)$ in the chiral (Weyl) representation are defined as

$$\gamma^0 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \,, \qquad \gamma^j = \begin{pmatrix} 0 & \sigma^j \\ -\sigma^j & 0 \end{pmatrix} \,,$$

where I is the 2×2 identity matrix and σ^{j} are the Pauli matrices.

- (a) With this representation, confirm that $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$.
- (b) Using the result in (a), show that $\gamma_{\mu}\gamma^{\mu} = 4$.
- (c) Prove that $\gamma_{\mu}\gamma^{\nu}\gamma^{\mu} = -2\gamma^{\nu}$ without using an explicit matrix representation.
- (d) Similarly, prove that $\gamma_{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\mu} = 4g^{\nu\rho}$.
- 2. Given $\gamma^5 = \gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$, prove the following trace identities:
 - (a) $\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}) = 4q^{\mu\nu}$,
 - (b) $\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 4(g^{\mu\nu}g^{\rho\sigma} g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho}),$
 - (c) The trace of any odd number of gamma matrices is zero.
 - (d) $\operatorname{tr}(\gamma^5) = \operatorname{tr}(\gamma^5 \gamma^{\mu}) = \operatorname{tr}(\gamma^5 \gamma^{\mu} \gamma^{\nu}) = \operatorname{tr}(\gamma^5 \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}) = 0,$
 - (e) $\operatorname{tr}(\gamma^5 \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}) = 4i \epsilon^{\mu\nu\rho\sigma}$.
- 3. The chiral projectors are defined as

$$P_R = \frac{1}{2}(I + \gamma^5), \qquad P_L = \frac{1}{2}(I - \gamma^5),$$

where I is the 4×4 identity matrix. Prove the following properties:

- (a) $\gamma^5 P_L = -P_L$, and $\gamma^5 P_R = P_R$,
- (b) $(P_{L/R})^2 = P_{L/R}$,
- (c) $P_L P_R = P_R P_L = 0$,
- (d) $P_L + P_R = I$.
- 4. Suppose the charge conjugation operator is defined as $C = i\gamma^2\gamma^0$. Confirm that in the Weyl representation.
 - (a) $C\gamma^{\mu}C^{-1} = -(\gamma^{\mu})^{\top}$,
 - (b) $C\gamma^5C^{-1} = (\gamma^5)^{\top}$,
 - (c) $C^{-1} = C^{\top} = C^{\dagger} = -C$.
- 5. A Dirac spinor ψ is called a Majorana spinor if it satisfies the condition $\psi = C\bar{\psi}^{\top}$, and is called a Weyl spinor if it satisfies either $\psi = P_R \psi$ or $\psi = P_L \psi$. Determine whether or not a spinor can be both Majorana and Weyl.

- 6. Consider a generic $2 \to n$ reaction $ab \to c_1c_2 \dots c_n$ in the *lab frame* or *fixed-target frame*, that is the frame where particle b is at rest and a is the incident beam. Assume $\max(m_a, m_b) < \min(c_1, c_2, \dots, c_n)$.
 - (a) Show that $s = m_a^2 + m_b^2 + 2m_b\sqrt{m_a^2 + P_{\text{lab.}}^2}$ where $P_{\text{lab.}}$ is the beam momentum.
 - (b) Express the beam kinetic energy, $T_a \equiv E_a m_a$, in terms of s.
 - (c) What is the minimum kinetic energy of the beam with which the reaction can occur?
- 7. Consider the following Yukawa theory as a simplified model of an interacting proton p, neutron n, and neutral pion π^0 . We assume that the proton and neutron are distinguishable, but mass degenerate. The Lagrange density is given by

$$\mathcal{L} = \sum_{f} \frac{i}{2} \bar{\psi}_{f} \partial \!\!\!/ \psi_{f} + \text{h.c.} - \sum_{f} M \bar{\psi}_{f} \psi_{f} + \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{1}{2} m^{2} \varphi^{2} - \sum_{f} g \varphi \bar{\psi}_{f} \gamma^{5} \psi_{f},$$

where f is fermion index $f = \{n, p\}$, M is the proton and neutron mass, m is the pion mass, and g is the coupling between proton and pion, as well as the neutron and pion.

(a) Consider the elastic reaction

$$n(p,s) + p(k,r) \to n(p',s') + p(k',r')$$

where the arguments are the momenta and the subscripts are the spin-state. Write down the $np \to np$ scattering amplitude to leading order in the coupling g. Hint: Only one diagram contributes at $\mathcal{O}(g^2)$. Refer to the summary notes on Feynman rules – Yukawa Theory.

(b) The *spin-averaged* squared amplitude is defined as

$$\left\langle |\mathcal{M}|^2 \right\rangle \equiv \frac{1}{2} \sum_s \frac{1}{2} \sum_r \sum_{s'} \sum_{r'} \left| \mathcal{M}(n_s p_r \to n_{s'} p_{r'}) \right|^2.$$

Show that at leading order

$$\langle |\mathcal{M}|^2 \rangle = g^4 \frac{t^2}{(t-m^2)^2} + \mathcal{O}(g^6)$$

where s, t, and u are the Mandelstam invariants. **Note:** You are encouraged to use a computer algebra software such as FeynCalc (https://feyncalc.github.io), which is a Mathematica package for symbolic evaluation of Feynman diagrams and algebraic calculations in quantum field theory and elementary particle physics. A useful tutorial can be found here. Mathematica is free to all students at William & Mary (see https://software.wm.edu).

- (c) Compute the unpolarized differential cross-section $d\sigma/dt$ in terms of the Mandelstam invariants.
- (d) Express $d\sigma/d\Omega$ in terms of s and the center-of-momentum frame scattering angle θ .
- (e) Compute the total cross-section as a function of s.
- (f) Estimate the magnitude of the pion-nucleon coupling g, as well as the quantity $g^2/4\pi$, from the experimentally observed np total cross-section. **Note:** You do not need to fit the data, however feel free to do so. The Review of Particle Physics contains experimental cross-sections for select processes. See the course webpage for the data file.

<u>а</u> а а

FILE_NAME REACTION BEAM_MASS TARGET_MASS THRESHOLD FINAL_STATE_MULTIPLICITY NUMBER_OF_DATA_POINTS

POINT_ FORMA	OINT_NUMBER P FORMAT(I5,1X,	POINT_NUMBER PLAB(GEV/C) FORMAT(I5,1X,4F11.5,2F8	PLAB(GEV/C) PLAB_MIN PLAB_MAX ,4F11.5,2F8.4,1X,2F6.1,A)	3_MAX	SIG(MB) STA_E	STA_ERR+ STA_ERR-		SY_ER+(PCT) SY_ER-(PCT) REFERENCE	REFERENCE FLAG
NP_T	NP_TOTAL.DAT	52							
7 O.0	0.939570 0.	938270	0.	0					
578									
1	0.00385	0.00123	0.00531	20360.	100.00	100.00	0.0 0.0	O MELKONIAN 49	PR 76, 1744
7	0.03043	0.03043	0.03043	6202.0	11.200	11.200	0.0	O ENGELKE 63	PR 129, 324
က	0.03873	0.03873	0.03873	4700.0	40.000	40.000	0.0	0 LAMPI 49	PR 76, 188
4	0.04347	0.04347	0.04347	4228.0	18.000	18.000	0.0 0.0	O FIELDS 54	PR 94, 389
Ŋ	0.04502	0.04502	0.04502	4060.0	30.000	30.000	0.0 0.0	O LAMPI 49	PR 76, 188
9	0.04973	0.04973	0.04973	3675.0	16.000	16.000	0.0 0.0	O STORRS 54	PR 95, 1252
7	0.05000	0.05000	0.05000	3609.5	4.5100	4.5100	2.0 2.0	O CIERJACKS 69	PRL 23, 866
∞	0.05020	0.05020	0.05020	3630.0	40.000	40.000	0.0 0.0	0 LAMPI 49	PR 76, 188
6	0.05100	0.05100	0.05100	3542.9	3.4400	3.4400	2.0 2.0	O CIERJACKS 69	PRL 23, 866
10	0.05200	0.05200	0.05200	3472.1	3.8000	3.8000	2.0 2.	2.0 CIERJACKS 69	PRL 23, 866
11	0.05300	0.05300	0.05300	3398.6	3.7400	3.7400	2.0 2.0	O CIERJACKS 69	PRL 23, 866
12	0.05311	0.05311	0.05311	3447.0	22.000	22.000	0.0 0.0	0 DAVIS 71	PR C3, 1798
13	0.05400	0.05400	0.05400	3326.5	3.6900	3.6900	2.0 2.0	O CIERJACKS 69	PRL 23, 866
14	0.05448	0.05448	0.05448	3330.0	20.000	20.000	0.0 0.0	0 LAMPI 49	PR 76, 188
15	0.05500	0.05500	0.05500	3266.6	4.2100	4.2100	2.0 2.0	O CIERJACKS 69	PRL 23, 866
16	0.05600	0.05600	0.05600	3206.6	3.6000	3.6000	2.0 2.0	O CIERJACKS 69	PRL 23, 866
17	0.05700	0.05700	0.05700	3138.6	4.1000	4.1000	2.0 2.0	O CIERJACKS 69	PRL 23, 866
18	0.05800	0.05800	0.05800	3079.6	3.5100	3.5100	2.0 2.0	O CIERJACKS 69	PRL 23, 866
19	0.05900	0.05900	0.05900	3015.5	3.9900	3.9900	2.0 2.0	O CIERJACKS 69	PRL 23, 866
20	0.05970	0.05970	0.05970	3004.0	24.000	24.000	0.0 0.0	0 DAVIS 71	PR C3, 1798
21	0.06000	0.06000	0.06000	2963.6	3.9500	3.9500	2.0 2.0	O CIERJACKS 69	PRL 23, 866
22	0.06100	0.06100	0.06100	2907.2	3.9000	3.9000	2.0 2.0	O CIERJACKS 69	PRL 23, 866
23	0.06200	0.06200	0.06200	2851.3	3.8600	3.8600	2.0 2.0	O CIERJACKS 69	PRL 23, 866
24	0.06300	0.06300	0.06300	2792.6	3.8000	3.8000	2.0 2.0	O CIERJACKS 69	PRL 23, 866
25	0.06400	0.06400	0.06400	2754.0	4.6200	4.6200	2.0 2.0	O CIERJACKS 69	PRL 23, 866
26	0.06500	0.06500	0.06500	2705.5	3.7400	3.7400	2.0 2.0	O CIERJACKS 69	PRL 23, 866
27	0.06571	0.06571	0.06571	2677.0	22.000	22.000	0.0 0.0	0 DAVIS 71	PR C3, 1798
28	0.06600	0.06600	0.06600	2651.5	3.6900	3.6900	2.0 2.	O CIERJACKS 69	PRL 23, 866
59	0.06700	0.06700	0.06700	2607.4	4.4800	4.4800	2.0 2.	O CIERJACKS 69	PRL 23, 866
30	0.06800	0.06800	0.06800	2558.2	3.6200	3.6200	2.0 2.	O CIERJACKS 69	PRL 23, 866

William & Mary Page 3 of 3 Department of Physics