1. Unbounded Minimalization

Definition

For $f:N^{k+1} \rightarrow N$:

```
h(\bar{x}) = \mu y.f(\bar{x},y) = \{ least z such that: f(\bar{x},z) = 0 \text{ AND} f(\bar{x},z') \text{ is defined for all } z' < z \tag{undefined} otherwise}
```

Key Properties

- 1. Unlike bounded minimalization:
 - Search has no upper bound
 - May never terminate if:
 - No solution exists
 - f(x̄,y) is undefined for some y
- 2. Equivalent to while loops
- 3. Can produce partial functions even from total functions

Example: Perfect Square Root

```
μy.|x-y²| = {
      √x if x is a perfect square
      ↑ otherwise
}
```

2. Inverse Functions

Computability of Inverses

For f:N→N computable and injective:

```
f-¹(x) = {
    y if f(y)=x
    ↑ if ∄y.f(y)=x
}
```

is computable via:

```
f^{-1}(x) = \mu y. |f(y)-x|
```

Key Properties

- 1. If f is total and injective, f⁻¹ is computable
- 2. Domain of f⁻¹ is image of f
- 3. Computability preserved even if f not total

3. Finite Functions

Definition

A function $\theta: N \rightarrow N$ is finite if $dom(\theta)$ is finite

Computability

All finite functions are computable. For $\theta = \{(x_1, y_1), ..., (x_n, y_n)\}$:

```
\theta(x) = \Sigma_{i=1}^{n} y_{i} \cdot sg(|x-x_{i}|) + \mu z.(\Pi_{i=1}^{n} |x-x_{i}|)
```

4. Partial Recursive Functions (Class R)

Definition

R is the least class containing:

- 1. Basic Functions:
 - Zero: z(x) = 0
 - Successor: s(x) = x+1
 - Projections: $U_k^i(x_1,...,x_k) = x_i$
- 2. Closed under:
 - Composition
 - Primitive recursion

Unbounded minimalization

Fundamental Properties

- 1. Totalness:
 - Composition of total functions → total
 - Primitive recursion of total functions → total
 - Minimalization may produce partial functions
- 2. Relationship with URM:
 - R = C (Class of URM-computable functions)
 - Provides alternative characterization of computability

Proof Structure (R = C)

- 1. R ⊆ C:
 - C is rich (contains basic functions and closed under operations)
 - R is minimal such class
- 2. C ⊆ R:
 - For f∈C, exists program P computing f
 - Show register contents and instruction counter are in R
 - Use encoding of configurations and program steps

5. Applications

Program Properties

- 1. Functions computing:
 - Program inputs
 - Program outputs
 - Computation steps

Common Examples

- 1. Square root function
- 2. Division with remainder
- 3. Fibonacci function (using pair encoding)
- 4. Functions with finite domain

Important Notes

- 1. Unbounded minimalization is essential for:
 - Expressing while loops
 - Computing partial functions
 - Inverse functions
- 2. Key Differences from Bounded Operations:
 - May not terminate
 - Can produce partial functions
 - More expressive power
- 3. Practical Implications:
 - · Not all computations guaranteed to halt
 - Need careful handling of undefined cases
 - Balance between expressiveness and totality