NÁHODNÁ ČÍSLA V NUMERICKÝCH VÝPOČTECH

Náhodná čísla

- Co jsou náhodná čísla:
 - postrádají jakýkoliv vzor (sekvenci, předvídatelnost)
- Proč potřebujeme náhodná čísla?
- Pro vytvoření náhodného stavu nebo náhodné události
 - x kryptografie (generování klíčů)
 - × simulace fyzikálních procesů
 - náhodné souřadnice molekul
 - Brownův pohyb, chaos
 - radioaktivní rozpad, šum, ...
 - x modelování lidského chování
 - pohyb lidí, rozhodovací procesy, ...
 - × videohry
 - nepředvídatelnost
 - události, pohyb nepřátel, směr výstřelu, ...
- Nejčastější aplikace
 - × počítačové simulace
 - videohry
 - × ...

Možnosti získání náhodných čísel

Generování náhodných čísel

- × základem vždy pozorování reálného jevu
- × co použít při simulacích?

Dvě možnosti

Přímé měření reálného jevu

- × skutečná náhodnost
 - házení mincí, kostkou, měření přírodních jevů, ...)
- x malý počet náhodných hodnot
- × náročný proces

Odhad pravděpodobnostního rozdělení pozorovaného jevu

- odhad rozdělení a jeho parametrů (na základě sběru dat)
- x generování hodnot z tohoto rozdělení
- × dostatečný počet "náhodných" hodnot
- x pseudonáhodná čísla
 - John von Neumann, 1946 prvotní metoda pro rychlé získání náhodných číslic

Generátory náhodných čísel

- Generátory náhodných čísel
 - × fyzikální generátory
 - x tabulky náhodných čísel
 - × vypočtená pseudonáhodná čísla
 - lineární kongruentní generátory
- Nevýhody pseudonáhodných čísel
 - × nemají zcela náhodné rozdělení
 - problém (šifrovací aplikace, hry, ...)
 - × zkoumáním minulé sekvence lze často určit následné číslo
 - např. neuronovou sítí
 - × stále lepší metody , ale i rozvoj oblasti hlubokého učení
 - schopné rozpoznat následnou sekvenci čísel
- Základní generátory
 - × Randu, ZXSPECTRUM, Marsaglia XorShift, Mersene Twister, Park&Miller,...

Skutečná náhodná čísla

- Generátory skutečně náhodných čísel
 - x poskytují skutečně náhodná čísla
 - využívají nějaký fyzický nebo fyzikální jev
 - může být zpřístupněno webovými službami
- Generátory založené na fyzických jevech
 - x např. generování čísla ze sekvence pohybu myší
 - nebo úhozů do klávesnice (prodlevy)
 - x problémy
 - člověk může využívat podobný vzor pohybů a úhozů
 - komunikace s OS pomocí bufferů, které mohou náhodnost vyrušit

x lepší, ale finančně náročnější

Fyzikální generátory

- Nejčastěji využívané jevy
 - radioaktivní rozpad nuklidů
 - Geiger-Müllerův počítač
 - x atmosférický šum
 - elektromagnetické vlnění v daném prostoru a čase
 - lze získat citlivou anténou
 - akustický tlak v místnosti (šum z hluku)
 - slabší generátory
 - problém s prediktivními jevy jako hluk z otáček větráku

pokud $T_1 > T_2 -$ zapíšeme 0 pokud $T_1 < T_2 -$ zapíšeme 1

- Využití externích webových služeb přes jejich rozhraní REST
 - × levné, spolehlivé
 - × např. random.org
 - data pro vygenerování náhodných číslic z atmosférického šumu
 - potřebujete získat API klíč
 - uvádíte v požadavku ve formátu JSON pomocí metody POST z HTTP protokolu
 - klíč můžete vygenerovat po registraci na stránce: https://accounts.random.org/create
 - při volbě developer licence je registrace zdarma, ale denní limit vygenerovaných čísel 1000

Tabulky náhodných čísel

- Opravdu náhodná čísla
 - z fyzikálních generátorů
 - disk, CD nosič, páska
 - x rozsáhlé soubory dat (tabulky)
 - 1927 Tipper 40 tis náhodných čísel
 - 1955 RandCorp 1 mil. náhodných čísel

Využití náhodných čísel

- Např. náhodný posun částice v kapalině
 - imes generování náhodného čísla ξ v intervalu (0,1)
 - imes transformace ξ podle odhadnutého rozdělení
 - které lépe popisuje chování částice (např. normální rozdělení)
 - x realizace náhodného jevu (sledovaná veličina)
 - posunutí o náhodný vektor

- imes máme dané maximální posunutí $oldsymbol{r}_{max}$
- × generujeme náhodný směr

$$\xi = (\xi_{x\prime}, \xi_{y\prime}, \xi_{z\prime})$$

× částici posuneme na nové (náhodné) místo

$$\boldsymbol{r}_i^n = \boldsymbol{r}_i + \boldsymbol{\xi} \cdot \boldsymbol{r}_{max}$$

Transformace náhodných čísel

- Transformace na jiné rozdělení/interval
 - × náhodné číslo ξ je v intervalu (0,1), $\langle 0,1 \rangle$, ...
 - × nejčastější lineární transformace
 - $\times \zeta^T = \xi(b-a) + a, \qquad a, b \in \mathbb{R}$

- Lze náhodný posun částice generovat i jiným způsobem?
- Monte Carlo simulace
 - × opakované generování náhodných posunů
 - a vyhodnocování jejich dopadu na chování
 - × získáme distribuci možných poloh částice
 - a odhadneme pravděpodobnostní rozdělení
- deterministické algoritmy s náhodnými začátečními podmínkami
 - × sledování vzájemných interakcí částic
 - stochastický charakter není zásadní

VYPOČÍTANÁ NÁHODNÁ ČÍSLA

Vypočítaná náhodná čísla

- Pseudonáhodná (kvazináhodná)
 - × Algoritmus (posloupnost čísel), perioda P
 - × náhodné číslo $\xi_{i+1} = f(\xi_i, \xi_{i-1}, \xi_{i-2}, \dots \xi_{i-n})$
- Von Neumannovy generátory
- Lineární kongruentní generátory
- Generátory s posuvnými registry

- Požadavky
 - × co nejdelší perioda P
 - co největší náhodnost v rámci periody a rovnoměrné pokrytí
 - $^ imes$ co největší rychlost generování čísla ξ_{i+1}

Vypočítaná náhodná čísla

- Von Neumannovy generátory (1946)
- "Každý, kdo se zabývá aritmetickými metodami vytváření náhodných čísel, se nepochybně dopouští hříchu"
- První známý generátor pseudonáhodných čísel
 - × krátká perioda opakování náhodných čísel
 - řešil problém pomalého čtení náhodných čísel z děrných štítků pro počítač ENIAC
- Metoda prostředku čtverce (Middle-square)
 - (prostředních řádů druhé mocniny)
 - \times Zvolím počáteční číslo x_0 o 2k číslicích
 - × Číslo se umocní
 - × Z druhé mocniny se vybere prostředních 2k číslic
 - × Získané číslo je dalším prvkem posloupnosti

Vypočítaná náhodná čísla

Von Neumannovy generátory (1946)

x_0	x_0^2
1236	01527696

x_1	x_1^2
5276	27836176

x_2	x_2^2
8361	69906321

x_3	x_{3}^{2}
9063	81237969

- Krátká perioda P
- Malá náhodnost v rámci periody
- Pomalý proces generování

Lineární kongruentní generátory

- Historicky jeden z nejdůležitějších generátorů pseudonáhodných čísel
 - používán v mnoha implementacích novějších generátorů
 - např.: Park-Miller z C++11 standardní knihovny

Princip:

- \times 1. zvolíme parametr M (modulus)
 - prvočíslo nebo jeho mocninu
- \times 2. zvolíme parametr C (inkrement)
 - pro C = 0 se nazývá generátor Lehmerův
- \times 3. zvolíme parametr a (násobek)
- imes 4. algoritmus vyžaduje semínko seed, které představuje první ξ_i
- × 5. další náhodné číslo ze vzorce: $\xi_{i+1} = (\boldsymbol{a} * \xi_i + \boldsymbol{C}) \mod \boldsymbol{M}$

Lineární kongruentní generátory

D. H. Lehmer (1948)

$$\xi_{i+1} = (a_0 \xi_i + a_1 \xi_{i-1} + \dots + a_n \xi_{i-k} + b) \pmod{M}$$

- Konstanty: a_j , b, M
 - × vhodnou volbou konstant určujeme vlastnosti generátoru
 - \times $k > 0, \xi_i < M$
- Semínko (násada)
 - $\times \ \xi_0, ..., \xi_{-k} \ (i = 0)$
 - $\xi_1 = (a_0 \xi_0 + a_1 \xi_{-1} + \dots + a_n \xi_{-k} + b) \pmod{M}$
- Stejná násada = stejná posloupnost čísel

$$\xi_i = 0, 1, 2, ..., M-1,$$
 $\xi_i = \frac{\xi_i}{M} \rightarrow \xi_i \in (0,1)$

- Dělení
 - × Multiplikativní generátory
 - × Aditivní generátory
 - × Smíšené generátory

Multiplikativní LCG

- Multiplikativní generátory
 - × velmi rychlé generování

D. H. Lehmer

$$\xi_{i+1} = a_0 \xi_i \pmod{M}$$

- □ IBM 360: $\xi_{i+1} = 7^5 \xi_i \pmod{2^{31} 1}$
- Fortran: $\xi_{i+1} = 13^{13} \xi_i \pmod{2^{59}}$
- \square ZX SPECTRUM: $\xi_{i+1} = 75\xi_i$ (mod 65537)
- RANDU: $\xi_{i+1} = a_0 \xi_i \pmod{2^{31}}, \ a_0 = 1$
- jazyk BASIC (nevhodná volba konstant)

Aditivní LCG

- Fibonacciho generátor
 - × využívá Fibonacciho posloupnost
 - předposlední a poslední hodnotu
 - $\times \xi_{i+1} = (\xi_i + \xi_{i-1}) \pmod{M}$
- Opožděný Fibonacciho generátor (Mitchell, Moore, 1958)
 - × využívá obecné hodnoty opožděnosti
 - nepoužívá se, ale jednoduchý
 - $\times \quad \xi_{i+1} = (\xi_{i-j} + \xi_{i-k}) \pmod{M}$
 - × místo "+" může být jiná operace
 - + * / ap.
- Millerův-Prenticův generátor
 - $\xi_{i+1} = (\xi_{i-1} + \xi_{i-2n}) \pmod{3137}$ $(P = 9.8 \cdot 10^6)$
- Další aditivní generátory
 - $\times \xi_{i+1} = (\xi_{i-5} + \xi_{i-17}) \pmod{M}$

Volba M ovlivňuje periodu generátoru

$$M = 2^6 \quad \rightarrow \quad P = 1.6 \cdot 10^7$$

$$M = 2^{16} \rightarrow P = 4.3 \cdot 10^9$$

$$M = 2^{32} \rightarrow P = 2.8 \cdot 10^{14}$$

Smíšené LCG

- Smíšené generátory
 - × kombinují vlastnosti multiplikativního a aditivního
 - tak, aby došlo ke zlepšení vlastností
 - $\times \xi_{i+1} = (a\xi_i + b) \pmod{M}$
- Příklady
 - $\xi_{i+1} = (69069\xi_i + 1) \pmod{2^{32}}$
 - · dlouhá perioda
 - simulace, kryptografické funkce

Minimal Standard

- Lewsi, Goodman, Miller (1969)
 - $\xi_{i+1} = a_0 \xi_i \pmod{M}, \qquad a_0 = 16\,807, \quad M = 2^{31} 1 = 2\,147\,483\,647$
 - generátor má plnou periodu (rovnoměrné pokrytí)
 - vybraná subsekvence čísel je nerozeznatelná od celé, generované sekvence
 - × generátor projde testy spolehlivosti
 - × lze jej **efektivně** implementovat pomocí 32-bitové architektury
 - dnes zastaralý, ale stále se používá pro jednoduchost
 - snadná implementace do vysokoúrovňových jazyků
 - × seed generátor: $\xi_0 \in (1, 2^{31} 1)$, jsou rovnocenné

Generátory pseudonáhodných bitů

- Posuvné registry
 - struktury k ukládání a posouvání jednotlivých bitů
 - o jeden nebo více míst
 - vpravo nebo vlevo (shift right, shift left)
 - realizace pomocí kombinační logiky nebo speciálních posuvných instrukcí procesoru
 - × jeden nebo více registrů
 - každý uchovává určitý počet bitů
- pro výpočet následujícího čísla se používá kombinace bitů z několika registrů
 - × některé bity se mohou použít jako zpětná vazba do registru
- počáteční stav registrů = semínko
 - × ovlivňuje celou posloupnost čísel
 - x pokud se použije stejné, bude posloupnost stejná
- Vlastnosti
 - × konečná perioda
 - x jednoduchost
 - × malá paměťová náročnost
 - x rychlost

Pravidlo 30

- Stephen Wolfram (1983)
 - × název podle decimální reprezentace schémata binárních operací
- Pravidlo 30
 - × jedno z nejzajímavějších výpočetních schémat základních automatů
 - pro aktualizaci stavu buněk v 1D buněčném automatu
 - × vytváří automat, obsahující pseudonáhodné sekvence
 - aperiodické chaotické sekvence bitů
- Vlastnosti
 - y jednoduchá definice
 - × přesto velmi komplexní a chaotické vzorce
 - použijeme jako náhodnou posloupnost
- Princip
 - × výpočet stavu každé buňky v novém řádku
 - na základě stavů 3 sousedících buněk v předchozí řadě
 - podle pravidla $a \operatorname{xor}(b \operatorname{or} c)$

Pravidlo 30

- Stav každé buňky v novém řádku
 - x na základě stavů tří sousedících buněk v předchozí řadě
 - podle pravidla $a \operatorname{xor}(b \operatorname{or} c)$

Postup

- × 1. Nastav prvotní řádek na binární 0, prostřední bit na 1
- × 2. Proveď vývoj automatu do zvolené generace pomocí pravidla 30
- × 3. Vyber prostřední sloupec, přeskoč N bitů (semínko) a získej 8 binárních číslic
- × 4. Vytvoř z M binárních číslic pseudonáhodné číslo

Generátory s posuvnými registry

- S posuvnými registry s lineární zpětnou vazbou
 - × posuvný registr délky L
 - L = $\{R_0, R_1, \dots, R_{L-1}\}$ vnitřních registrů
 - časový signál
 - charakteristický mnohočlen C(x)
- Princip
 - × v každém časovém okamžiku se:
 - obsah R_i přesune do R_{i-1} , R_0 se předá na výstup
 - do registru R_{L-1} se uloží (výpočtem) nový obsah
 - imes R_i uchovává jednu jednotku informace
 - Jeden bit (0,1), 2^n bitů (velikost slova / jednotka času)
 - × vnitřní stav generátoru $S = \{S_0, ..., S_{L-1}\}$
 - × charakteristický mnohočlen

$$C(x) = 1 + c_1 x + c_2 x^2 + \dots + c_L x^L$$

- × koeficienty: zbytek po dělení modulo
 - 1 − liché, 0 − sudé

Iniciace generátoru

Pozor na zakázané stavy logické funkce Zacyklení generátoru

Iniciace pomocí LCG (Lehmer,...)

Marsaglia XORshift

- George Marsaglia (2003)
 - americký matematik (statistik)
 - × na základě von Neumannova generátoru
- Užití operace XOR a bitového posunu
 - × XOR (exkluzivní disjunkce)
 - logická operace, výstupem pravda, pokud vstupy unikátní
 - $A = (0,1,0,1), B = (0,0,1,1), A \oplus B = (0,1,1,0)$
 - × logické shift (bitový posun)
 - levý posun: $0010101111 \rightarrow 0101011110$
 - pravý posun: $001010111 \rightarrow 000101011$
- Postup
 - × bitové posuny (různé podle implementace)
 - např. Xorshift128
 o 23, 17, 26 a 11 míst vlevo
 - × posunuté bity se použijí pro XOR s jinými bity v registru
 - aby se vytvořil nový stav generátoru
 - aplikujeme XOR na vektor eta (binární) s posunutou verzí sebe sama
 - $\beta >> a bitový posuv doprava o a pozic$
 - a je parametr generátoru
 - $\beta \oplus (\beta >> a)$ XORshift vektoru β o a pozic doprava

Marsaglia XORshift

Marsaglia XORshift produkuje sekvenci:

- $2^{32} 1$ x celých čísel
- $2^{64} 1$ x, y dvojic
- $2^{96} 1$ x, y, z trojic

Nevýhody

- x "Random numbers fall mainly in the planes."
 - náhodná čísla padají častěji do nadrovin multidimenzionálního prostoru

Další Marsagliovy algoritmy: Ziggurat, ...

- ke generování náhodných čísel s normálním rozdělením
- multiplikativní generátory: "Crystalline" nature

Mersenne Twister

- Makoto Mastumoto, Takuji Nishimura, 1998
 - Mersenneho prvočíslo
 - prvočíslo o jedničku menší než mocnina 2, $M=2^n-1$
 - $2^3 1 = 7$ (je prvočíslo), $M = 2^4 1 = 15$ (není prvočíslo)
 - x www.mersenne.org
 - největší ověřené Mersenneho prvočíslo (r. 2021) 57 885 161 (48. Mersenneho prvočíslo)
 - r. 2006 32 582 657 (44.)
- Použití
 - × dnes jeden z nejpoužívanějších
 - různé verze MT
 - nejvyužívanější verze (nastavení parametrů) MT19937
 - × používá Python v modulu Random
 - × dále R, Ruby, Free Pascal, PHP, Maple, MATLAB, GAUSS, Julia, Microsoft Visual C++,...
 - numpy jiný (PCG64 z roku 2014)

Mersenne Twister

- Založen na generátoru s posuvnými registry
 - \times polynom C(x) s řádem P, stavový vektor x o velikosti w bitů
- Generuje stavový vektor x

$$x_{k+n} = x_{k+m} \oplus (x_k^u \mid x_{k+1}^l) A$$

- \times x_n je stavový vektor v kroku n
- $imes x_k^u$ je subvektor složený z w-r levých bitů vektoru ${f x}$
- \mathbf{x}_{k+1}^l je subvektor složený z w-r pravých bitů vektoru \mathbf{x}
- × | představuje operaci zřetězení
 - "Hello" | "world" → "hello world"
- × A je transformační matice
- × (H) XOR
- Vlastnosti
 - × velice dlouhá perioda
 - $až P = 2^{19937} 1$
 - × TinyMT (2012)
 - $P = 2^{512}$, ale méně zatěžuje procesor

<u>Špatný Seed:</u>

trvá dlouho, než začne generovat náhodnou sekvenci

- lacktriangle Mějme uspořádanou k-tici náhodných celých čísel n(k)
- Testy náhodnosti
 - Statistické testy (chí kvadrát test)
 - Transformace (Hadamard, Marsaglia)
 - × Komplexita (složitost)
 - Kolmogorovova komplexita: měří složitost k-tice podle počtu znaků, délky programu, který takovou k-tici vyprodukuje
- DIEHARD testy
 - George Marsaglia 1995, Stanfordova univerzita
 - x sada statistických testů a algoritmů
 - prověřují různé aspekty náhodnosti generovaných číselných posloupností
 - statistická podobnost skutečným náhodným posloupnostem
 - požadované vlastnosti náhodnosti (rovnoměrné rozložení, minimální korelace mezi čísly)
- TESTU01
 - × softwarový balík
 - vylepšená verze DIEHARD

- DIEHARD testy
- 1. Testy na rovnoměrné rozložení
 - × zda je rozložení čísel rovnoměrné v daném intervalu
- 2. Testy na korelaci
 - × mezi jednotlivými čísly v posloupnosti
- 3. Testy na různorodost
 - × různorodost hodnot v posloupnosti
 - × další vlastnosti, např. počet unikátních hodnot
- 4. Testy na sériovou korelaci
 - × detekce opakujících se vzorů
- Testy na permutace
 - x kontrola vlastností permutací čísel

DIEHARD testy

- × Birthday spacings
 - Vyberte náhodně 2 body na generovaném intervalu, vzdálenost mezi nimi podléhá Poissonovu rozdělení
- × Minimum distance test
 - Náhodně umístěte n bodů, změřte vzdálenosti d mezi všemi $\frac{n(n-1)}{2}$ páry. Hledáme minimální vzdálenost.
 - veličina d^2 bude podléhat exponenciálnímu rozdělení se střední hodnotou 0.995
- × Runs test
 - Generujte náhodná čísla na intervalu (0,1) a počítejte, kdy dojde k růstu a kdy k poklesu
 - tyto počty splňují určité rozdělení
- × Parking lot test
 - Náhodně umístěte jednotkovou kružnici do čtverce o hraně 100 bodů; pokud se kružnice překrývají, zkuste to znovu; po 12,000 pokusech by počet úspěšně umístěných kružnic měl splňovat normální rozdělení
- × Count-the-1's test on a stream of bytes
 - Uvažuje řetězec bajtů. Každý bajt může obsahovat 0 až 8 jedniček
 - s pravděpodobností 1/256, 8/256, 28/256, 56/256, 70/256, 56/256, 28/256, 8/256, 1/256.
 - Nyní nechme vytvořit řetězec překrývajících se 5-písmenných slov.
 - Každé písmeno nabývá hodnot A, B, C, D, a E. Písmena jsou určována počtem jedniček v bajtu:
 - 0, 1 nebo 2 znamená A, 3 B, 4 C, 5 D a 6, 7 nebo 8 E.
 - Existuje 55 možných 5-písmenných slov, jejich výskyty se spočítají z řetězce 256 000 5-písmenných slov.

Minimum distance test

- TestU01 (L'Ecuyer, Simard, Université de Montréal 2007)
 - × vylepšená verze DIEHARD testů
 - rovnoměrnost, nezávislost, uniformita, rozptyl, ...
 - knihovna v ANSI C
 - x několik modulů
 - implementace generátorů (předprogramované)
 - implementace statistických testů
 - implementace známých sad testů
 - aplikace testů na generátor
 - SmallCrush, Crush, BigCrush: sady testů
 - × Implementované generátory:
 - http://simul.iro.umontreal.ca/indexe.html

GENEROVÁNÍ JINÝCH ROZDĚLENÍ

Rozehrání náhodné veličiny

- Generování a transformace náhodné veličiny (rozehrání NV)
- Co umíme
 - × generace náhodných čísel z rovnoměrného rozdělení
- Co potřebujeme
 - \times náhodnou veličinu X s jiným typem rozdělení
 - × se zadanou hustotou pravděpodobnosti $f_X(x)$ či distribuční funkcí $F_X(x)$
- Metody
 - × pro diskrétní NV
 - × pro spojité NV
 - metoda inverzní funkce
 - metoda výběru
 - metoda superpozice

Rozehrání diskrétní náhodné veličiny

lacksquare Náhodná veličina (NV) X

$$X = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ p_1 & p_2 & \dots & p_n \end{pmatrix} \qquad p_i = P(X = x_i)$$

Vytvoření vektoru (o n složkách)

- \square Vygenerujeme číslo y z rovnoměrného rozdělení R(0,1)
- $lue{}$ Určíme, do kterého intervalu padne interval a jemu odpovídající NV X
 - \mathbf{x} podle podmínky $y < \sum_{i=1}^{j} p_i$
 - imes První interval j, pro který bude tato podmínka splněna, určí příslušnou hodnotu $X \, = \, x_j$

Metoda inverzní funkce

- Rozehrání spojité náhodné veličiny
 - × hledáme NV X, hustota pravděpodobnosti p(x), distr. funkce F(x)
 - × máme NV Y s rovnoměrným rozdělením R(0,1)
 - vygenerujeme náhodné číslo $y \in \langle 0,1 \rangle$
 - × potom náhodná veličina $X = F^{-1}(Y)$ má rozdělení s distribuční funkcí F(x)

$$y = F(x) \implies x = F^{-1}(y)$$

$$F(x) = P(X \le x) = \int_{-\infty}^{x} p(x)dx = y$$

řešíme tuto rovnici, analytické řešení nemusí existovat výsledkem transformační vztah x = g(y)

Metoda inverzní funkce – příklady

lacktriangle Mějme spojitou náhodnou veličinu X s kumulativní distribuční funkcí

$$F(x) = 1 - \exp(-\sqrt{x})$$
 pro $x \ge 0$ (a rovno 0 jinak)

× najdeme inverzní funkci F(x) vyjádřením x z rovnice F(x) = y

$$x = (\log(1 - y))^2$$

- × vygenerujeme náhodné číslo $y \in \langle 0, 1 \rangle$
- × transformujeme ho pomocí inverzní funkce
- × dostaneme náhodné číslo z rozdělení X
- Další příklady

$$\times$$
 $F(x) = \frac{x-a}{b-a}$ $\Longrightarrow x = y(b-a) + a$

$$\times$$
 $F(x) = 1 - e^{-\lambda x}$ \Rightarrow $x = -\frac{1}{\lambda} \ln y$

Metoda výběru (von Neumannova)

- Metoda výběru (von Neumannova)
 - vhodná, když nelze analyticky vyjádřit inverzní funkci
 - imes p(x) veličiny X je omezená na intervalu $\langle a,b
 angle$
 - × volíme $M \ge \sup(p(x))$
 - imes generujeme dvě náhodná čísla veličiny $Y\colon \ y_1$, $\ y_2$ (rovnoměrné rozdělení 0 až 1)
 - $z_1 = a + y_1(b a)$

(x, mezi a a b)

 $z_2 = My_2$

(y, pod M)

× pokud bod (z_1, z_2) leží pod křivkou p(x), volíme $x = z_1$, jinak opakujeme

Metoda superpozice (kompoziční)

- Metoda superpozice (kompoziční)
 - NV X s distrib. funkcí F(x) je lineární kombinací jiných spojitých náhodných veličin
 - rozložíme její distribuční funkci F(x) do tvaru

$$F(x) = \sum_{k=1}^{m} p_k F_k(x)$$

- $F_k(x)$ jsou distribuční funkce, p_k pravděpodobnosti
- $p_k > 0$, $p_1 + \cdots + p_m = 1$
- Zavedeme diskrétní NV Z s rozdělením

$$Z = \begin{pmatrix} 1 & 2 & \dots & m \\ p_1 & p_2 & \dots & p_m \end{pmatrix}$$

$$Z(z=k)=p_k \quad k=1,\ldots,m$$

- generujeme 2 nezávislé hodnoty y_1 a y_2 veličiny Y
- rozehrajeme číslem y_1 hodnotu $Z = k_i$ k = 1, ..., m
 - rozehrání diskrétní NV
- z rovnice $F_k(x) = y_2$ určíme x
 - distribuční funkce veličiny X je rovna F(x)

(rovnom. rozdělení 0 až 1)

(číslo intervalu)

Metoda superpozice – příklad

Distribuční funkce F(x) má tvar

$$F(x) = \sum_{k=1}^{m} p_k F_k(x)$$

× řešíme rovnice

$$p_k > 0, \quad p_1 + \dots + p_m = 1$$

$$Z = \begin{pmatrix} 1 & 2 & \dots & m \\ p_1 & p_2 & \dots & p_m \end{pmatrix}$$

Máme distribuční funkci odpovídající hustotě

$$p(x) = \frac{5}{12}(1 + (x - 1)^4) \qquad x \in \langle 0, 2 \rangle$$

rozložíme ji do tvaru

$$p(x) = \frac{5}{6} \cdot \left(\frac{1}{2}\right) + \frac{1}{6} \cdot \left(\frac{5}{2}(x-1)^4\right)$$

$$p_1(x) = \frac{1}{2} \qquad p_2(x) = \frac{5}{2}(x-1)^4$$

$$F_1(x) = \frac{x}{2} \qquad F_2(x) = \frac{1}{2}(x-1)^5$$

$$Z = \begin{pmatrix} \frac{1}{5} & \frac{2}{6} \\ \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

$$x = \begin{cases} 2y_1 & \text{pro } y_2 < \frac{5}{6} \\ 1 + \sqrt[5]{2y_1 - 1} & \text{pro } y_2 \ge \frac{5}{6} \end{cases}$$

Využití centrální limitní věty

- Necht' $X_1, ..., X_n$ isou náhodné veličiny z R(0, 1)
- potom pro střední hodnotu a rozptyl jejich součtu platí

$$E\left(\sum_{i=1}^{n} X_i\right) = \frac{1}{2}n$$

$$D\left(\sum_{i=1}^{n} X_i\right) = \frac{1}{12}n$$

ullet k rozdělení N(0,1) se pro $n o\infty$ blíží veličina

$$X_n = \sqrt{\frac{12}{n}} \left(\sum_{i=1}^n X_i - \frac{1}{2} n \right)$$

 $lue{}$ prakticky použitelný je vztah pro n=12

$$X_{12} = \sum_{i=1}^{12} X_i - \frac{1}{2}n$$

Pozn.: platí pro jakékoliv nezávislé a stejně rozložené náhodné veličiny X_i