DATA MINING & MACHINE LEARNING (I)

Thiago Marzagão

lacktriangle Requer que nós mesmos decidamos k.

- ightharpoonup Requer que nós mesmos decidamos k.
- ► Força toda amostra a pertencer a um cluster.

- Requer que nós mesmos decidamos k.
- ► Força *toda* amostra a pertencer a um cluster.
- ▶ Não funciona bem com clusters de tamanhos muito diferentes

- Requer que nós mesmos decidamos k.
- ► Força *toda* amostra a pertencer a um cluster.
- Não funciona bem com clusters de tamanhos muito diferentes
- Não funciona bem com determinados tipos de clusters (alongados, irregulares, variância desigual).

outros algoritmos de clusterização

A comparison of the clustering algorithms in scikit-learn

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters	Large n samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters, linkage type, distance	Large n samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance between points

http://scikit-learn.org/stable/modules/clustering.html

outros algoritmos de clusterização

A comparison of the clustering algorithms in scikit-learn

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters	Large n samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters, linkage type, distance	Large n samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance between points

http://scikit-learn.org/stable/modules/clustering.html

▶ DBSCAN tenta encontrar regiões de alta densidade.

- ▶ DBSCAN tenta encontrar regiões de alta densidade.
- ► Alta densidade = muitas amostras, próximas umas das outras.

- ▶ DBSCAN tenta encontrar regiões de alta densidade.
- ► Alta densidade = muitas amostras, próximas umas das outras.
- ightharpoonup Encontra o k p/ nós: não precisamos saber o k a priori.

- ▶ DBSCAN tenta encontrar regiões de alta densidade.
- Alta densidade = muitas amostras, próximas umas das outras.
- Encontra o k p/ nós: não precisamos saber o k a priori.
- Permite que amostras não pertençam a nenhum cluster (vai ser útil na próxima aula - detecção de anomalias).

- ▶ DBSCAN tenta encontrar regiões de alta densidade.
- Alta densidade = muitas amostras, próximas umas das outras.
- Encontra o k p/ nós: não precisamos saber o k a priori.
- Permite que amostras não pertençam a nenhum cluster (vai ser útil na próxima aula - detecção de anomalias).
- Não parte das mesmas premissas que o k-means (é mais flexível - permite clusters de tamanhos muito diferentes, por exemplo).

- ▶ 2 parâmetros:
- **▶** €
- ightharpoonup MinPts

▶ 3 tipos de amostras:

- ▶ 3 tipos de amostras:
- ► core

- ▶ 3 tipos de amostras:
- ► core
 - ightharpoonup Tem ao menos MinPts amostras num raio de arepsilon ao redor de si.

- ▶ 3 tipos de amostras:
- \triangleright core
 - ▶ Tem ao menos MinPts amostras num raio de ε ao redor de si.
- ▶ border

- 3 tipos de amostras:
- \triangleright core
 - ightharpoonup Tem ao menos MinPts amostras num raio de ε ao redor de si.
- ▶ border
 - ▶ Não tem ao menos MinPts amostras num raio de ε ao redor de si, mas tem uma amostra core num raio de ε ao redor de si.

- 3 tipos de amostras:
- \triangleright core
 - ightharpoonup Tem ao menos MinPts amostras num raio de ε ao redor de si.
- ▶ border
 - ▶ Não tem ao menos MinPts amostras num raio de ε ao redor de si, mas tem uma amostra core num raio de ε ao redor de si.
- ► noise

- 3 tipos de amostras:
- \triangleright core
 - ightharpoonup Tem ao menos MinPts amostras num raio de ε ao redor de si.
- ▶ border
 - ▶ Não tem ao menos MinPts amostras num raio de ε ao redor de si, mas tem uma amostra core num raio de ε ao redor de si.
- noise
 - Todas as demais amostras.

https://www.naftaliharris.com/blog/visualizing-dbscanclustering/

▶ Quanto maior o ε (p/ um dado MinPts), maiores os círculos e portanto mais amostras tendem a ser core.

- ▶ Quanto maior o ε (p/ um dado MinPts), maiores os círculos e portanto mais amostras tendem a ser core.
- ▶ Quanto menor o MinPts (p/ um dado ε), mais amostras tendem a cumprir o requisito de ter ao menos MinPts num raio de ε ao seu redor e portanto mais amostras tendem a ser core.