A FIRST COURSE IN

ABSTRACT ALGEBRA

A FIRST COURSE

IN

ABSTRACT ALGEBRA

MAT3004 Notebook

Dr. Guang Rao

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	vii
Notati	ions	ix
1	Week1	1
1.1	Monday	1
1.1.1	Introduction to Abstract Algebra	1
112	Group	1

Acknowledgments

This book is from the MAT3004 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 1

Week1

1.1. Monday

1.1.1. Introduction to Abstract Algebra

The basic concepts include groups, rings, fields.

One topic is algebra, i.e., the solvability of polynomials. (From Galois Theory to analysis)

Example:
$$\frac{d\mathbf{y}}{d\mathbf{x}} = g(\mathbf{x}) \implies D\mathbf{y} = g(\mathbf{x})$$

with operatior $D := \frac{d}{dx}$. The operator D forms a ring, i.e.,

$$\{a_n(x)D^n + a_{n-1}(x)D^{n-1} + \dots + a_0(x)\} \mapsto \text{ring}$$

Second topic is number theory

Third topic is geometry, including *algebraic geometry*, *differential geometry*, *topology*, *finite geometry*, *affine geometry*, *algebraic graph theory*, *combinatorics*, with applications to coding theory, physics, crystallography chemestry.

1.1.2. Group

Definition 1.1 [Group] A group \mathcal{G} is a set equipped with a binary operation, i.e.,

$$*: \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$$

such that:

- 1. Associativity: (a * b) * c = a * (b * c) for $\forall a, b, c \in \mathcal{G}$.
- 2. Existence of Identity: \exists an identity $e \in \mathcal{G}$ s.t. e * g = g * e = g for $\forall g \in \mathcal{G}$.
- 3. Existence of Inverse: $\forall g \in \mathcal{G}$, there exists an inverse g^{-1} s.t. $g^{-1} * g = g * g^{-1} = e$.

The size(order) of \mathcal{G} is denoted by $|\mathcal{G}|$.

- If a * b = b * a for $\forall a, b$, then \mathcal{G} is called an **abelian group**.
- If $|\mathcal{G}| = 1$, then \mathcal{G} is said to be **trivial**, otherwise \mathcal{G} is **nontrivial**.
- Similarly, the ternary operation means:

$$*: \mathcal{G} \times \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$$

- The semigroup definition only requires the (1) condition; and the menoid requires the (1) and (2) conditions.
- Is \emptyset a group? By the second condition, it is not a group.

Given a set S with its associated operation *, to check (S,*) is a group, we need to check:

- 1. S is **closed** under the operation *, i.e., $a * b \in S$ for $\forall a, b \in S$
- 2. Associativity.
- 3. Existence of Identity
- 4. Existence of Inverse

Proposition 1.1 $(\mathbb{Q},+)$ is a group.

Proof. 1. For $\forall a, b \in \mathbb{Q}$, it is easy to show $a + b \in \mathbb{Q}$.

- 2. Associativity: (a + b) + c = a + (b + c) for $\forall a, b \in \mathbb{Q}$
- 3. Existence of Identity: Take the identity $0 \in \mathbb{Q}$, we have 0 + a = a + 0 = a for $\forall a \in \mathbb{Q}$.
- 4. Existence of Inverse: For $\forall a \in \mathbb{Q}$, it follows that $(-a) \in \mathbb{Q}$ s.t. (-a) + a = a + (-a) = 0.

Note that (\mathbb{Q}, \cdot) is not a group since inverse does not exist.

R Note that the existence of identity is unique, which will be shown in the future.

Proposition 1.2 (u_m, \cdot) is a group, where

$$u_m = \{1, \xi^m, \dots, \xi_m^{m-1}\}$$

with $\xi^m = 1$ and $\xi \neq 1$.

Proof. 1. Note that for $\forall \xi^j, \xi^k \in u_m$, we have

$$\xi^{j} \cdot \xi^{k} := \xi^{j+k} = \begin{cases} \xi^{j+k}, j+k \leq m-1 \\ \xi^{j+k-m}, j+k \geq m \end{cases}$$

- 2. The associativity is easy to show.
- 3. Take the identity e = 1.
- 4. For $\forall \xi^k \in u_m$, we take the inverse ξ^{m-k} .

Proposition 1.3 The set $\mathcal{G} = \{\text{bijections of } \mathbb{R}\}$ associated with the **conposition** operator is a group.

Definition 1.2 [bijection] The bijection contains **injective**, i.e., f(x) = f(y) implies x = y; and **supjective**, i.e., $\forall y \in \mathcal{B}, \exists x \in \mathcal{A} \text{ s.t. } f(x) = y$.

Proof. 1. $\forall f, g \in \mathcal{G}$,

• Injective: take $x, y \in \mathbb{R}$ s.t. $(f \odot g)(x) = (f \odot g)(y)$, it follows that

$$f(g(x)) = f(g(y)) \implies g(x) = g(y) \implies x = y.$$

- Subjective: take $y \in \mathbb{R}$ s.t. f(z) = y. Hence, $\exists x \in \mathbb{R}$ s.t. g(x) = z, which implies f(g(x)) = y.
- 2. For any functions f, g, $h \in \mathcal{G}$,

$$((f \odot g) \odot h)(x) = (f \odot g)(h(x)) = f(g(h(x))), \forall x \in \mathbb{R}$$

Similarly,

$$(f \odot (g \odot h))(x) = f((g \odot h)(x)) = f(g(h(x))), \forall x \in \mathbb{R}$$

3. Define $e: x \mapsto x$. Then $e \in \mathbb{G}$. It follows that

$$(e * g)(x) = e(g(x)) = g(x)$$

Similarly, (g * e)(x) = g(x). Hence, *e* is the identity.

4. For $\forall f \in \mathcal{G}$, take $f^{-1}: f(x) \mapsto x$. Firstly verify f^{-1} is a bijection. Then we have

$$f^{-1} \odot f = f \odot f^{-1} = e$$
.

Recall a definition from Linear Algebra:

$$GL(n,\mathbb{R}) := \{ \mathbf{A} \in \mathcal{M}_n(\mathbb{R}) \mid \det(\mathbf{A}) \neq 0 \}$$

where $\mathcal{M}_n(\mathbb{R})$ denotes the set of $n \times n$ matrices over \mathbb{R} .

Proposition 1.4 The set $GL(n,\mathbb{R})$ associated with the matrix multiplication operator is the general linear group.

Proof. 1. $\forall A, B \in GL(n, \mathbb{R})$, we have $AB \in GL(n, \mathbb{R})$ since

$$\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B}) \neq 0$$

- 2. Associativity of matrix multiplication is easy to verify
- 3. Take the identity $e := I_n$
- 4. Inverse is A^{-1} .

 \mathbb{R} $\mathrm{SL}(n,\mathbb{R}) := \{ \boldsymbol{A} \in \mathcal{M}_n(\mathbb{R}) \mid \det(\boldsymbol{A}) = 1 \}$ is a special linear group.

Proposition 1.5 Let $n \in \mathbb{Z}^+$, for the set

$$\mathbb{Z}_n := \{0, 1, \dots, n-1\}$$

associated with the operation

$$+_n$$
 such that $a+_nb=\begin{cases} a+b, & \text{if } a+b\leq n-1\\ a+b-n, & \text{if } a+b\geq n \end{cases}$

Proof. 1. Closed under operation

2. Associativity:

$$(a +_n b +_n c) = a + b + c \in \mathbb{Z}_n \text{ or } a + b + c - n \in \mathbb{Z}_n \text{ or } a + b + c - 2n \in \mathbb{Z}_n$$

- 3. Identity?
- 4. Inverse?

In the future we abuse the operator + to denote the $+_n$ for \mathbb{Z}_n .

Theorem 1.1 Given $g_1, ..., g_n \in \mathcal{G}$, the product is independent from adding brackets.

Proof. We show it by induction. Let $\mathcal{P}(n)$ denotes the product is the same whatever different ways pf putting brackets on g_1, \dots, g_n

- 1. Easy to verify $\mathcal{P}(1)$ is true.
- 2. Assume $\mathcal{P}(n)$ is true for $n \leq k$. Consider n = k + 1. For $\forall m \leq n$, we have

$$(g_1g_2...g_m)(g_{m+1}...g_{k+1})$$

$$= (g_1(g_2...g_m))(g_{m+1}...g_{k+1})$$

$$= g_1((g_2...g_m)(g_{m+1}...g_{k+1}))$$

$$= g_1(g_2...g_{k+1})$$

$$= g_1...g_{k+1}$$

Theorem 1.2 Each group \mathcal{G} has the unique identity.

Proof. Let $e, e' \in \mathcal{G}$ be two identites. By definition,

$$e' = e' * e = e$$
.

6