

Part II

COMPUTING AND COMMUNICATIONS

Available Time [2.5 Hours]

SCC.312 Languages and Compilation

Candidates are asked to answer **THREE** questions from **FOUR**; each question is worth a total of 25 marks. Use a separate answer book for each question.

1.a List all of the possible types of grammar in the Chomsky hierarchy and for each one
describe the general form of the production rules and any restrictions on them.

[6 marks]

1.b Consider the following grammar:

 $S \rightarrow bA \mid aB$ $A \rightarrow a \mid aS \mid bAA$

 $B \rightarrow b \mid bS \mid aBB$

Classify this grammar according to the Chomsky hierarchy. Illustrate by example and with reference to your answer for part (a) why this grammar is of a certain type and why it is not of the other types.

[3 marks]

1.c Show that the grammar in part (b) is ambiguous. Illustrate your answer by providing two possible parse trees for the sentence: bbaaba

[4 marks]

1.d Describe in words the format of sentences that are generated or recognised by the grammar in part (b).

[2 marks]

1.e Generate a non-deterministic push-down automata directly from this grammar.

[6 marks]

1.f Define the halting problem and briefly explain (maximum one paragraph) the implications of the halting problem for a Universal Turing Machine simulating a Turing Machine.

[4 marks]

[Total 25 marks]

a) Define a Universal Turing Machine (UTM) in terms of its relationship to an ordinary Turing Machine (TM). Your definition should include a description of what the input and output of a UTM is. In addition, for the process of coding a UTM, describe what is contained in each quintuple.

[6 marks]

b) The unary number system can be defined as follows: 1 is 1, 2 is 11, 3 is 111, 4 is 1111 and so on. This format can be used to keep a tally or count. Design a Turing machine that adds two unary numbers together. A possible input tape for a TM such as this, denoting that 3 and 5 should be added, is:

Your Turing machine should be able to process this and subsequently end up with a tape containing a string of eight 1s:

You can assume that neither number will be zero and the input tape will only consist of 1s and a single plus sign, so no error checking is required. The read/write head will start directly over the leftmost non-blank symbol. Your answer should include:

a step-by-step description of the algorithm that you have used

[7 marks]

• a diagram of the Turing Machine itself

[12 marks]

[Total 25 marks]

3.a Most programming languages are "whitespace agnostic" – state what this means, and
describe how a lexical analyser for such a language handle whitespace?

[2 marks]

3.b Provide an example of a non-whitespace agnostic language. Suggest a way that the lexical analyser could handle this language.

[2 marks]

3.c.i Many modern compilers have a modular design, which separates each stage of the compiler from one another. Explain why this design can be advantageous.

[2 marks]

3.c.ii How might having an independent lexical analysis phase be problematic? You must include examples in your answer.

[4 marks]

3.d.i Using the supplied grammar, show each step of a bottom-up (LR) parser processing the supplied input string. Show each rule you use at each step, and you should complete your transforms with the only remaining non-terminal as 'E'.

<u>Grammar</u>	<u>Input</u>
E> E * B	"1+0*1"
E> E + B	
E> B	
B> 0	
B> 1	

[4 marks]

3.d.ii Assume that the non-terminal 'B' is expanded to include any integer number. Why is this particular combination of parser and bottom-up strategy likely to result in incorrect calculations? You should include an example.

[3 marks]

3.d.iii Using the following grammar and input string (the same as 3.d.i), show each transform for a top-down (LL) parse. Start with 'E'.

<u>Grammar</u>	<u>Input</u>
E> E * B	"1+0*1"
E> E + B	
E> B	
B> 0	
B> 1	

[4 marks]

3.e State and provide an example for each form of type coercion

[4 marks]

[Total 25 marks]

4.a.i Assuming a language where single letters and arithmetic operators are the terminals, draw the two possible parse trees for the following expression:				
a + b × c				
		[4 Marks]		
4.a.ii	Why is the situation in question 4.a.i problematic for the compiler?	[2 Marks]		
4.b	State what the 3 types of dynamic or static type checks are.	[3 Marks]		
4.c disting	Here is a grammar G, with terminals $\{b, y, e\}$, non-terminal $\{Y\}$ when uished symbol.	re Y is the		
Y -> b Y -> y	Y e			
Build tl	ne Action and Goto tables for this grammar. Marks will be awarded	as follows.		
Step 1	: build the item sets.	[6 marks]		
Step 2	2: generate the state transition table	[4 marks]		
Step 3	3: produce the Action and Goto Tables.	[6 marks]		
		[Total 25 marks]		

--- End of Paper ---