自动微分以及它在物理模拟中的应用*

刘金国 1) 许开来 2)

- 1) (哈佛大学物理系, 坎布里奇 02138)
 - 2) (斯坦佛大学, 斯坦佛 94305)

自动微分是利用计算机自动化求导的技术,最近几十年因为它在机器学习研究中的应用而被很多人了解。如今越来越多的科学工作者意识到高效的,自动化的求导可以对很多科学问题的求解提供了新的思路。其中自动微分在物理模拟问题中的应用尤为重要且具有挑战性,这些物理模拟涵盖了很多混沌,电磁学,地震学,海洋学等领域的重要问题,但又因为其对模拟时间和空间的苛刻要求而对自动微分算法提出了挑战。本文介绍如何将自动微分技术运用到物理模拟的求导中,并横向对比它们在物理模拟中的优势和劣势。这些自动微分技术包括共轭态法,前向自动微分,后向自动微分以及可逆计算自动微分等基本方法,

关键词: 自动微分, 科学计算, 可逆计算, Treeverse, 物理模拟

PACS: 02.60.Pn, 02.30.Jr, 91.30.-f

1 引 言

自动微分是指自动获取一段计算机程序导数的技术,很多人对它的了解源自它在机器学习中的成功应用,人们可以用它优化带有千亿计参数的神经元网络[Rosset(2019)]。与很多人印象不同的是,自动微分其实是个很古老的技术。Nolan 早在他 1953 年的博士论文中就提出过计算机自动化求导的构想[Nolan(1953)],后来针对这一构想又出现了两种不同的实践,分别是 1964 年由 Wengert 实现的前向自动微分 [Wengert(1964)]

[†] 通信作者. E-mail: jinguoliu@g.harvard.edu

和 1970 年 Linnainmaa 实现的后向自动微分 [Linnainmaa(1976)]。而最近十几年,由于后向自动微分在机器学习中的广泛应用,相关技术在科学计算中的应用也越来越广泛。科学家们利用方便的,自动化的计算机辅助求导解决了很多重要的物理问题,其中包括变分蒙特卡洛求解多体物理波函数 [Gutzwiller(1963), Carleo and Troyer(2017), Deng et al.(2017)Deng, Li, and Das Sarma, Cai and Liu(2018)],变分量子算法的模拟 [Luo et al.(2019)Luo, Liu, Zhang, and Wang],变分张量网络算法 [Liao et al.(2019)Liao, Liu, Wang, and Xiang] 以及自旋玻璃基态构型求解 [Liu et al.(2020)Liu, Wang, and Zhang] 等。

本文回顾并探讨自动微分重要应用之一,对物理模拟过程的自动微分。更具体的说是对电磁学,海洋学 [Heimbach et al.(2005)Heimbach, Hill, and Giering] 和地震学 [Symes(2007), Zhu et al.(2020)Zhu, Xu, Darve, and B等问题中最核心的微分方程求解过程的自动微分。这些微分方程的常见的求解方法是将问题的空间部分网格化,从而转换为对时间的常微分方程。这对包括 Jax [Bradbury et al.(2018)Bradbury, Frostig, Hawkins, Johnson, Lea PyTorch 在内的面向机器学习的自动微分框架造成了挑战。这些框架需要存储程序每一步计算的中间结果以便在后向传播过程中取出用于回传梯度。这对本身内存空间消耗巨大,且计算步骤数很多的物理模拟过程的积分来说并不实际。之所以说空间开销巨大,是因为要模拟的足够精细,空间网格必须要非常稠密,而步骤数多是为了让对时间的常微分更加准确而要求积分步长足够小。一种传统的解决常微分方程求导的方案叫做共轭态法 [Plessix(2006), Chen et al.(2018)Chen, Rubanova, Bettencourt, and Duvenaud],它假设了在较短时间内积分器可逆,并通过逆向积分来帮助自动微分回溯状态。事实上,除了 Leap frog 等少数积分器在时间反演不变的哈密顿量问题中可以做到时间反演对称,大多数的积分器并不能保证严格可逆,所以共轭态法往往存在由积分步长带来的系统性误差。后来,有人把机器学习中的最优检查点算法带入到了物理模拟的状态回溯中 [Symes(2007)],仅在对数的额外时间和空间开销下避免了系统误差。但是 Treeverse 算法也有无法微分 GPU 设备函数的缺点,而基于可逆计算的自动微分可以补足步者缺点。

本文将会介绍共轭态方法,前向自动微分以及基于最优检查点算法和可逆计算的后向自动微分等自动 微分方法在处理物理模拟问题中的应用,对比不同方法的优劣以及适用的场景。章节 2 介绍了几种自动微分方法的基本理论,尤其是关于如何在反向自动微分中权衡程序的运行时间和空间。章节 3 介绍了不同自动微分技术在波的传播模拟中的应用。

2 自动微分方法

物理模拟过程的常见求解方案是将偏微分方程的空间部分离散并作差分处理 [Grote and Sim(2010)], 将其转换为对时间的常微分方程

$$\frac{\mathrm{d}s}{\mathrm{d}t} = f(s, t, \theta)$$

其中 s 为状态, t 为时间, θ 为控制参数。假设我们已经拥有一个常微分方程方程求解器来得到末态这个常 微分方程求解器在求解过程中会把时间离散化,作 n 步叠代,每步仅做从时刻 t_i 到时刻 $t_i + \Delta t$ 的演化。

$$s_n = \text{ODESolve}(f, s_0, \theta, t_0, t_n)$$

$$= (s_{i+1} = \text{ODEStep}(f, s_i, \theta, t_i, \Delta t) \text{ for } i = 0, 2, \dots, n-1)$$
(1)

其中 s_i 为完成第 i 步积分后的状态,下文我们有时候会将单步运算简记为 ODEStep (s_i) 。最后我们还会 定义一个损失函数 $\mathcal{L} = loss(s_n)$ 。自动微分的目标则是求解损失量对参数的导数 $\frac{\partial \mathcal{L}}{\partial s_0}$ 和 $\frac{\partial \mathcal{L}}{\partial \theta}$ 。

2.1 共轭态方法

共轭态方法 [Plessix(2006), Chen et al.(2018)Chen, Rubanova, Bettencourt, and Duvenaud] 是专门针 对积分过程反向传播的传统方法。在研究中,人们发现积分过程的导数的反向传播同样是一个积分过程,只 不过方向相反。于是人们通过构造一个可以同时更新原函数和导数的拓展函数,以对拓展函数的逆向积分 的形式完成导数的计算,如算法 1所示。

算法 1: 共轭态法

输入: 动力学参数 θ , 开始时间 t_0 , 结束时间 t_n , 末态 s_n , 以及需要回传的导数 $\frac{\partial \mathcal{L}}{\partial s}$

输出: $\frac{\partial \mathcal{L}}{\partial s_0}$, $\frac{\partial \mathcal{L}}{\partial \theta}$ 1 $\frac{\partial \mathcal{L}}{\partial t_n} = \frac{\partial \mathcal{L}}{\partial s_n}^T f(s_n, t_n, \theta)$

计算损失函数对终了时间的导数

2 function aug_dynamics($(s, a, -), t, \theta$)

定义拓展动力学函数

$$\mathbf{3} \quad q = f(s, t, \theta)$$

return $(q, -a^T \frac{\partial q}{\partial s}, -a^T \frac{\partial q}{\partial \theta})$

5 end

6 $S_0 = (s_n, \frac{\partial \mathcal{L}}{\partial s_n}, 0)$

计算拓展动力学函数的初始状态

7 $(s_0, \frac{\partial \mathcal{L}}{\partial s_0}, \frac{\partial \mathcal{L}}{\partial \theta}) = \text{ODESolve}(\text{aug_dynamics}, S_0, t_n, t_0, \theta)$

对拓展动力学反向积分

该算法的描述来自文献 [Chen et al. (2018) Chen, Rubanova, Bettencourt, and Duvenaud], 其中可以找 到详细的推导过程,这里对原算法中的符号做了替换以方便读者理解。该方案在积分器严格可逆的时候梯 度也严格,而当积分器反向积分误差不可忽略时,则需要额外的处理保证精度,这一点我们会在随后的例

图 1: (a) 前向自动微分和 (b) 后向自动微分再常微分方程中的应用,其中圆圈为缓存的变量,线条上的箭头代表运算的方向。 子中涉及。

2.2 前向自动微分

顾名思义,前向自动微分是指向前(指与程序运行方向相同)传播导数,它和数学分析中的无穷小量有关。数学中,在对一个输入变量 p 求导时,会让它携带一个无穷小量 $\mathrm{d}p$,并通过对这个无穷小量的运算完成对程序的求导。比如当作用函数 f 时,会有如下链式法则

$$f(\vec{x} + \frac{\mathrm{d}\vec{x}}{\mathrm{d}p}\mathrm{d}p) = f(\vec{x}) + \left(\frac{\mathrm{d}f(\vec{x})}{\mathrm{d}\vec{x}}\frac{\mathrm{d}\vec{x}}{\mathrm{d}p}\right)\mathrm{d}p \tag{2}$$

其中 \vec{x} 为输入函数 f 的参数的集合,可以包括 p 本身。 $\frac{\mathrm{d}f(\vec{x})}{\mathrm{d}\vec{x}}$ 为局域雅可比矩阵,前向传播中我们将它与梯度矢量相乘得到新的梯度矢量。实际程序实现中,这个局域雅可比矩阵并不需要构造出来,考虑到任何程序都具有可拆分为基础指令的特点,人们把程序拆解为基础标量指令,并在这些基础指令上通过代码变换或者是算符重载的方式实现梯度矢量的变换。以标量的乘法为例,变量会同时记录它的数值和一阶小量的系数 (v,\dot{v}) ,其中 $\dot{v}=\frac{\mathrm{d}v}{\mathrm{d}v}$,人们重新定义它的基本运算规则如下

$$\boldsymbol{*}:((a,\dot{a}),(b,\dot{b}))\mapsto(a*b,a\dot{b}+b\dot{a})$$

使得其在计算同时更新一阶小量的系数。简单的运算规则的替换对于人类来说尚可手动,但真实的程序可能会包含数以亿计的这样的基础操作,虽然结果依然是解析的,但是人们很难再通过人力得到具体的导数表达式,而计算机恰恰很擅长这样繁琐但是规则简单的任务。如图 1 (a) 所示,在求解常微分方程中,单步前向自动微分可以形式化的表达为

$$ODEStep^{F}: \left(s_{i}, \frac{ds_{i}}{ds_{0}}, \frac{ds_{i}}{d\theta}\right) \mapsto \left(ODEStep\left(s_{i}\right), \frac{\partial s_{i+1}}{\partial s_{i}} \frac{ds_{i}}{ds_{0}}, \frac{\partial s_{i+1}}{\partial s_{i}} \frac{ds_{i}}{d\theta} + \frac{\partial s_{i+1}}{\partial \theta}\right)$$

这里为了简洁略去了积分函数和时间等常数参量。由于状态 s_i, s_{i+1} 和控制参数 θ 均可包含多个变量,上述偏微分均解释为雅可比行列式。一般前向自动微分只对一个或者若干个变量求导,如果要一次对多个变量求导,计算空间也随着求导变量数目线性增加。无论是一次求导多少个变量,前向自动微分求导的时间都会随着需求导的变量的数目线性增长,这是限制前向自动微分应用场景的最主要因素。

2.3 后向自动微分

后向自动微分与前向自动微分梯度传播方向相反,它解决了前向自动微分中计算开销随着需要求导的变量数目线性增长的问题。后向自动微分包括正向计算和梯度后向传播两个过程。正向计算过程中,程序进行普通的计算并获取所需的运行时信息,最后计算得到一个标量为损失 \mathcal{L} 。梯度回传的过程是计算导数的过程,可表示为更新一个变量的对偶量的过程 $\overline{v} = \frac{\partial \mathcal{L}}{\partial v}$ 。从 $\overline{\mathcal{L}} = 1$ 出发,梯度回传即应用如下链式法则

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}x} = \sum_{y} \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial x}$$

为了实现该链式法则,人们对于一类原子函数 $y = f_p(x)$ 定义了对偶量的局域运算规则

$$\overline{f}_p:(\overline{x},\overline{y})\mapsto(\overline{x}+\overline{y}\frac{\partial y}{\partial x},\overline{y})$$

其中, $\frac{\partial g}{\partial x}$ 为局域雅可比矩阵,它的数值不需要具体计算出来,而是以函数的形式,连同所需的中间变量一起存放在栈中,并在后向传播中按照后进先出的顺序调用。所有由这一类原子函数 f_p 构成的代码便可以利用上述导数回传规则更新对偶量。具体到求解常微分方程的自动微分过程中,其反向传播过程如图 1 (b) 所示,可以形式化的表达为

$$\overline{\text{ODEStep}}^{\text{B}}: (\overline{s}_{i+1}, \overline{\theta}, s_i) \mapsto \left(\overline{s_{i+1}} \frac{\partial s_{i+1}}{\partial s_i}, \overline{\theta} + \overline{s_{i+1}} \frac{\partial s_{i+1}}{\partial \theta}\right)$$

这里也同样略去了积分函数和时间等参量。考虑到该后向传播过程需要知道函数的输入,我们需要用一种方式反向遍历状态,最直接的方式是将所有中间状态缓存。正向计算过程中除了运算本身,还会将部分运算的中间结果缓存至一个全局存储中。这些被缓存的值在后向梯度传播过程中被取出并利用后向传播规则更新 \bar{s}_i 和 $\bar{\theta}$ 。虽然导数回传的计算复杂度与需要求导的变量数目无关,但后向自动微分向堆栈中存储数据带来了正比于计算步骤数 (i.e. $\mathcal{O}(T)$) 的额外空间开销。

如何设计算法在保证对计算状态逆序的访问的前提下,减少计算中使用的堆栈 Σ 的大小,是反向传播 复杂性的来源,也被叫做"时间与空间的权衡"问题。实际应用中,我们并不需要把每一步的状态都缓存,

图 2: (a) 检查点方案和 (b) 可逆计算方案中避免缓存的方式。图中黑箭头为正常计算过程, 红箭头为梯度 回传过程, 蓝箭头为梯度回传和反计算的复合过程, 箭头上的数字代表了执行顺序。黑色和白色的圆点为被缓存和未被缓存 (或被反计算消除) 的状态。

方法	时间	空间
共轭态法 共轭态法	$\mathcal{O}(T)$	$\mathcal{O}(TS)^*$
前向自动微分	$\mathcal{O}(NT)$	$\mathcal{O}(S)$
基于检查点的后向自动微分	$\mathcal{O}(T\log T)$	$\mathcal{O}(S \log T)$
基于可逆计算的后向自动微分	$\mathcal{O}(T^{1+\epsilon})$	$\mathcal{O}(S \log T)$

表 1: 不同方案的时间与空间复杂度。前向自动微分中的 N 代表了需要求导的参数个数。可逆计算中的时间复杂度为多项式,且 $\epsilon > 0$ 。我们可以用检查点 [Griewank(1992)] 或者可逆计算 [Liu and Zhao(2020)] 来避免缓存中间结果。如图 2 (a) 所示的检查点方案中,正向计算中程序可以选择性的不缓存部分状态(空心圆点)。在下图的反向传播过程中,当需要的数据没有被缓存,则从最近的检查点(黑色圆点)出发重新计算该数据。在图 (b) 所示的可逆计算方案中,我们假设积分过程本身不可逆,此时可逆计算的可逆性要求每步输入状态都被缓存以保证严格可逆。可逆计算可以通过反向计算(步骤 5)来消除已经分配的内存,即用更多的计算时间交换内存。在反向过程中,执行顺序和前向相反,同时每个指令变成原指令的逆,因此可以自然的获得运行时的状态信息。不论是检查点方案还是可逆计算方案,为了节省内存都需要消耗更多的时间,那么如何权衡是加与空间才是最好呢?我们在附录中引入一个简单的理论模型叫做鹅卵石游戏并详细讨论了如何在检查点方案中实现仅需对数的额外时间和空间逆向遍历状态,以及如何在可逆计算中实现对数的空间消耗和多项式的时间消耗实现逆向遍历状态,这里仅把基本结论列于表 1中。

3 自动微分在物理模拟中的应用

本章节有两个案例,其一是用前向自动微分和共轭态法求解参数较少的洛伦茨函数的导数,其二是用最基于最优检查点算法和 Bennett 算法的后向微分对参数较多且内存消耗巨大的地震学模拟的求导。

图 3: Lorenz 系统的初始位置和控制参数的导数的大小与系统出现稳定吸引子的关系。(a) 为固定 $\beta=8/3$,梯度大小与 ρ 和 σ 的关系。图中颜色代表了平均梯度大小,黑线是理论上会不会存在稳定吸引子分界线。(b) 中的蓝色和黄色的线分别对应 (a) 图标识的蓝点参数 ($\sigma=10, \rho=27$) 和黄点参数 ($\sigma=10, \rho=15$) 处的动力学模拟。

3.1 洛伦茨方程求解

洛伦茨系统 [Lorenz(1963)] 是人们研究混沌的经典模型,它描述了一个定义在三维空间中的动力学

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \sigma(y - x),$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = x(\rho - z) - y,$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = xy - \beta z.$$

其中, σ , ρ 和 β 为三个控制参数。该系统的含时演化的曲线如图 3所示,它在 $\rho > 1$ 时会有两个吸引子 [Hirsch et al.(2012)Hirsch,Smale,and Devaney]。仅当 $\rho > \sigma \frac{\sigma + \beta + 3}{\sigma - \beta - 1}$ 时才会出现粒子稳定的围绕其中一个吸引子运动的情况(图中橘色曲线),这时候系统较为稳定并表现处对初值较为不敏感的特点。末了位置坐标对控制参数和初始坐标的导数反映了末态对控制参数和初始位置的敏感度,它一定程度的反映了浑沌现象。在数值模拟中,我们用 4 阶 Runge-Kutta 方法对时间部分积分并得到末了位置,我们固定初始位置 $(x_0, y_0, z_0) = (1, 0, 0)$ 以及控制参数 $\beta = 8/3$,积分时间区间为 [0, T = 30],积分步长为 3×10^{-3} 。由于该过程所含参数仅有 6 个,包括初始位置的三个坐标(x_0, y_0, z_0)和三个控制参数(σ , ρ , β),因此用前向自动微分工具 ForwardDiff [Revels et al.(2016)Revels,Lubin,and Papamarkou] 求导比起后向自动微分有很大优势。我们把导数的绝对值的平均与初始 ρ , σ 的关系画在图 3中。可以看出的确只有在理论预言的黑线下方才会有稳定的吸引子,它对应了较小的导数或初值依赖性。

表 2对比了不同方法的时间和空间的消耗,可以看到前向自动微分所用的时间仅为原代码的不到 2 倍。

方法	Julia	ForwardDiff	NiLang	Neural ODE + NiLang
时间	$1.90 \mathrm{ms}$	$2.88 \mathrm{ms}$	$6.70 \mathrm{ms}$	34.3ms
空间(估计)	1	6	10^{4}	50

表 2: 对 Lorenz 系统的自动微分时间和空间对比,其中空间部分以状态数目为单位。其中 NeuralODE 中单步计算的微分利用了可逆计算自动微分,每隔 200 步设置检查点。

图 4: 利用共轭态方法求导时, 1² 误差与积分步长的关系。其中一个点代表了在该步长下,对 100 个随机初始点计算得到的中位数。缺失的数据代表该处出现数值溢出的情况。这里的高效来自 ForwardDiff 中允许一次对多个变量求导,代价是用了正比于参数数目倍数的空间。虽然没有改变随着求导变量数目增加,计算复杂度线性增加的本质,但是减少了线性部分的系数,对处理实际问题很有帮助。基于可逆计算的反向自动微分库 NiLang [Liu and Zhao(2020)] 需的计算时间为原计算的约 3.5 倍,其中包含了前向计算和反向传播过程,因此这个速度并不算差。但是由于 4 阶 Runge-Kutta方法不可逆,在不利用额外的计算时间交换空间的情况下,需要缓存每一步的计算以保证可逆性,因此要求有 10⁴ 倍于状态大小的缓存空间。好在该问题的单个状态空间仅有三个维度,不作任何缓存求导仍然可能。共轭态法求导理论上也可以做到无额外内存消耗,但是它会引入由于积分器不可逆带来的系统误差,它对于研究混沌问题非常致命,使得实际求导中经常出现梯度为 NaN (非良好定义的数字)的情况,因此我们不得不引入检查点来避免积分误差累积。我们以前向自动微分的导数是严格的导数作为基准,把共轭态法求得的导数的 1² 相对误差与积分步长的关系绘制于图 4 (a) 中,相对误差随着积分步长指数增加。因此,我们需要每隔一段积分,就设置一个检查点重新加载正确的坐标。图 (b) 显示检查点越密,误差越小,消耗的额外空间也越多。最终的模拟中,我们选择了检查点步长为 200,对应检查点数目为 50。

3.2 波的传播方程的微分

考虑由如下方程决定的波函数 $u(x_1, x_2, t)$ 在非均匀二维介质中的传播过程

$$\begin{cases} u_{tt} - \nabla \cdot (c^2 \nabla u) = f & t > 0, \\ u = u_0 & t = 0, \\ u_t = v_0 & t = 0. \end{cases}$$

$$(3)$$

其中c为波在介质中的传播速度。理想匹配层 (PML) [Berenger(1994), Roden and Gedney(2000), Martin et al.(2008)M 是模拟波在介质中运动的一种准确可靠的方案,为了在有限尺寸进行模拟该动力学,PML 方法引入了吸收 层防止边界的影响。引入辅助场并对空间和时间进行离散化后,上述方程可变形为如下数值计算过程

$$\begin{cases} u_{i,j}^{n+1} \approx \frac{\Delta t^2}{1 + (\zeta_{1i} + \zeta_{2j})\Delta t/2} \left((2 - \zeta_{1i}\zeta_{2j}) u_{i,j}^n - \frac{1 - (\zeta_{1i} + \zeta_{2j})\Delta t/2}{\Delta t^2} u_{i,j}^{n-1} \right. \\ + c_{i,j}^2 \frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{\Delta x^2} + c_{i,j}^2 \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{\Delta y^2} \\ + \frac{(\phi_x)_{i+1,j} - (\phi_x)_{i-1,j}}{2\Delta x} + \frac{(\phi_y)_{i,j+1} - (\phi_y)_{i,j-1}}{2\Delta y} \right) \\ (\phi_x)_{i,j}^{n+1} = (1 - \Delta t\zeta_{1i})(\phi_x)_{i,j}^n + \Delta t c_{i,j}^2 (\zeta_{1i} - \zeta_{2j}) \frac{u_{i+1,j} - u_{i-1,j}}{2\Delta x} \\ (\phi_y)_{i,j}^{n+1} = (1 - \Delta t\zeta_{2j})(\phi_y)_{i,j}^n + \Delta t c_{i,j}^2 (\zeta_{2j} - \zeta_{1i}) \frac{u_{i,j+1} - u_{i,j-1}}{2\Delta y} \end{cases}$$

这里的第一项为近似,因为它忽略了原式中介质传播速度 c 的梯度项的贡献。 ζ_1 和 ζ_2 分别是 x 和 y 方向的衰减系数, ϕ_x 和 ϕ_y 分别为引入的辅助场的 x 和 y 方向的分量。该方程的详细推导可参考文献 [Grote and Sim(2010)]。自动微分应用于 PML 求解在地震学中有着重要的应用 [Zhu et al.(2020)Zhu, Xu, Darve, and Beroza],而且人们很早就认识到检查点方案可以用于地震波模拟中 [Symes(2007)] 来让回溯中间状态的内存需求大大减少。

在数值模拟中,我们用双精度浮点数模拟了 1000×1000 的二维格点上的 PML 方程求解,每个状态 要存储 4 个矩阵 $s_n = \{u^{n-1}, u^n, \phi_x^n, \phi_y^n\}$,占用存储空间为 32MB。虽然前向自动微分可以仅用常数倍空间开销微分该程序,但是对 10^6 以上个参数(比如传播速度 c)的微分带来的时间复杂度的增加是不可接受的。同时,若不作任何的内存优化对该程序后向自动微分,积分 10^4 步需要存储空间至少为 320G,远超出了普通 GPU 的存储能力。此时,我们需要用附录 1 中描述的 Bennett 算法和 Treeverse 算法来节省后向自动微分的缓存。图 5中展示了这两种时间空间交换方案下,实际程序在 GPU 上运行的时间与空间

图 5: 对比纯可逆计算的 Bennett 算法的时间和空间开销和 Treeverse 算法结合可逆计算的性能, 其中图中标记的数字为函数的前向运行次数, 在 Bennett 算法中, 后向运行次数和前向运行次数一样, 而 Treeverse 算法中, 后向传播的次数固定为 10^4 。横轴的空间的数值的实际含义为检查点的数目或可逆计算中的最高状态数。

的关系,计算设备为 Nvidia Tesla V100。其中 Treeverse+NiLang 的方案是指用可逆计算处理单步运算的 微分,同时用 Treeverse 算法处理步骤间的微分。Treeverse+NiLang 方案中随着检查点数目的减少,计算时间的减少并不明显。这是因为增加的计算时间是前向计算,而这里单步后向计算梯度的时间是前向时间的二十多倍,因此即使仅用 5 个检查点,额外的增加的时间也不到一倍。这里单步计算梯度的之所比前向计算慢这么多是因为采用了指令级别的可逆计算自动微分,而指令级别的自动微分在并行计算中不允许变量的共享读取以避免程序在后向计算中同时更新它的梯度,因此我们把单步更新分为若干个过程更新。在单线程版本的 CPU 上,前向和后向的单步运算时间差距在四倍以内,此时前向计算时间对于 Treeverse 算法也很重要。而纯可逆计算的 Bennett 算法中,计算梯度的部分随着前向计算的步骤数的增加而增加,因此时间的额外开销和理论模型几乎一致。Bennett 算法可以用纯可逆计算来实现,它在可逆计算的意义下是最优的时空交换策略,但显然对普通硬件并不是最优的。此外,虽然 Treeverse 算法在可以做到高效的时间和空间的交换,但是却无法直接用于微分 GPU 的 kernel 函数,而可逆计算则非常适合这种非线性且具有一定可逆性的程序,避免了手动求导 GPU 设备函数的麻烦。

名词表

对偶量 adjoint

设备函数 device function

可逆计算 reversible computing

可逆编程 reversible programming

鹅卵石游戏 pebble game

共轭态法 adjoint state method

前向自动微分 forward mode automatic differentiation

后向自动微分 reverse mode automatic differentiation

地震学 seismic

原子函数 primitive function

检查点 checkpoint

4 附录 1: 时间与空间的交换, 鹅卵石游戏

一个定义在一维格子上的单人游戏。鹅卵石游戏最初被提出描述可逆计算中的时间与空间的交换关系。游戏开始时,玩家拥有一堆鹅卵石以及一个一维排布的 n 个格子,标记为 $0,1,2\ldots n$,并且在 0 号格子上有一个预先布置的鹅卵石。其规则为

鹅卵石游戏-可逆计算版本

放置规则: 如果第i个格子上有鹅卵石,则可以从自己堆中取一个鹅卵石放置于第i+1个格子中,

回收规则:仅当第i个格子上有鹅卵石,才可以把第i+1个格子上的鹅卵石取下放入自己的堆中,

结束条件: 第 n 个格子上有鹅卵石。

游戏目标:是在固定可使用鹅卵石数目为 S (不包括初始鹅卵石)的前提下,使用尽可能少的步骤数触发游戏结束。

这里一个鹅卵石代表了一个单位的内存,而放置和取回鹅卵石的过程分别代表了计算和反计算,因此均需要一个步骤数,对应计算中的一个单位的运算时间。这里对应回收规则中要求前一个格点中存在鹅卵

石,对应可逆计算在释放内存时,要求其前置状态存在以保证反计算的可行。当鹅卵石数目充足 $(S \ge n)$,我们用 n 个鹅卵石依次铺至终点格子,此时时间复杂度和空间复杂度均为 $\mathcal{O}(n)$ 。最少的鹅卵石数目的玩法则需要用到可逆计算框架下时间和空间最优交换方案 Bennett 算法。

算法 2: Bennett 算法

```
输入: 初始状态集合 S = \{0: s_0\}, 子分块数目 k, 分块起点 i = 0, 分块长度 L = n
   输出: 末态 S[n]
 1 function bennett(S, k, i, L)
       if L=1 then
           S[i+1] \leftarrow 0
 3
           S[i+1] += f_i(S[i])
 4
       else
 5
           l = \left\lceil \frac{L}{k} \right\rceil
 6
           k' = \lceil \frac{L}{l} \rceil
 7
           for j = 1, 2, ..., k' do
 8
               bennett(S, k, i + (j-1)l, min(\frac{L}{k}, L - (j-1)l))
                                                                                     # 向前执行 k' 个分块
 9
10
           end
           for j = k' - 1, k' - 2, ..., 1 do
11
              \simbennett(S, k, i + \frac{j-1}{k}L, \frac{L}{k})
                                                                                  # 向后执行 k'-1 个分块
12
           end
13
       end
14
15 end
```

如算法 2(图 6 (b))所示,Bennett 算法将格子均匀的分割为 $k \geq 2$ 等份,先是像前执行 k 个区块得到计算结果,然后从最后第 k-1 个区块开始依次收回中间 k-1 个鹅卵石到自由堆中。每个区块又递归的均匀分割为 k 个子分块做同样的放置鹅卵石-保留最后的鹅卵石-取回鹅卵石的操作,直到程序无法再分割。假设次过程的递归次数为 l,我们可以得到步骤数和鹅卵石数为

$$T = (2k-1)^{l}, S = l(k-1) + 1.$$
(5)

其中,k 与 l 满足 $n=k^l$ 。可以看出可逆计算的时间复杂度和原时间为多项式关系。同时可以看出 k 越小,使用的总鹅卵石数目越小,因此最省空间的鹅卵石游戏解法对应 k=2。作为例子,图 7 (b) 展示了 $n=16,\ k=2$ (l=4) 时候的游戏解法,对应步骤数为 (T+1)/2=41,这里的实际操作数少了大约一半是因为最外层的 Bennett 过程不需要取回鹅卵石。

我们稍微修改可以得到非可逆计算的检查点版本的规则。游戏为用户增加了一支画笔用于涂鸦格点,改变后的规则描述为

图 6: (a) 自动微分中常见的 Treeverse 算法 [Griewank(1992)],其中 $\eta(\tau,\delta)\equiv {\tau+\delta\choose \delta}=\frac{(\tau+\delta)!}{\tau!\delta!}$ 。(b) 可逆计算时空交换的 Bennett 算法。 [Bennett(1973), Levine and Sherman(1990)] 其中,P 和 Q 分别代表了计算和反计算。

鹅卵石游戏-检查点版本

放置规则:如果第i个格子上有鹅卵石,则可以从自己堆中取一个鹅卵石放置于第i+1个格子中,回收规则:可以随意把格子上的鹅卵石取下放入自己的堆中,收回鹅卵石不计步骤数,

涂鸦规则: 当第 i 个格子有鹅卵石,且第 i+1 个格子被涂鸦或 i=n,可以涂鸦第 i 个格子,涂鸦不记入步骤数,

结束条件:涂鸦完所有的格点。

游戏目标:是在固定可使用鹅卵石数目为 S (不包括初始鹅卵石)的前提下,使用尽可能少的步骤数触发游戏结束。

检查点版本的鹅卵石游戏中,鹅卵石可以被随时取下,代表了传统计算中内存的释放。涂鸦过程则代表了梯度反向传播的过程,它要求按照逆序访问计算状态。在鹅卵石充足的情况下,最节省步骤数的解法和可逆计算版本一样,即计算过程中不取下任何鹅卵石。而用最少鹅卵石的解法则仅需要两枚鹅卵石。每当我们需要涂鸦一个格子i,我们总是从初始鹅卵石 s_0 开始扫描(依次放置一个鹅卵石并取下前一个鹅卵石)i 步至格子i,步骤数为 $\frac{n(n-1)}{2}$ 。鹅卵石数目为 $2 < \delta < n$ 的情况最难,需要用到如算法 3(图 6 (a))所示的 Treeverse 算法。完成第一遍从 s_0 到 s_n 的扫描后会在棋盘上留下 $\delta = S - 1$ 个鹅卵石(不包括初始鹅卵石),把格点分割成 δ 个区块。我们把这些没有被取下的鹅卵石称为检查点,我们总可以从任意一个检查点出发通过放置一个鹅卵石并取回上个鹅卵石的操作扫描后方的格子。区块的大小有最优的取值为二项分布函数 $\eta(\tau-1,\delta),\dots,\eta(\tau-1,2),\eta(\tau-1,1)$,其中 τ 的取值满足 $\eta(\tau,\delta) = n$ 。拥有状态 s_n 后, s_n 号格子直接满足涂鸦规则,因此我们可以在第一遍扫描时给它涂上颜色。为了继续涂鸦 s_n 一 1 号格点,我们从离 s_n 一 1 号格点最近的检查点出发扫描至该点,依次类推直至达到最后一个检查点处。由于最后一个区块尺寸最小,仅为 s_n 一 1,我们并不担心这样的扫描会使得步骤数增加太多。当我们完成了最后一个区块尺寸最小,仅为 s_n — 1,我们并不担心这样的扫描会使得步骤数增加太多。当我们完成了最后一个区块

图 7: (a) Treeverse 算法 $(\tau=3,\delta=3)$ 和 (b) Bennett 算法 (k=2,n=4) 对应的时间空间交换策略下的鹅卵石游戏,横向是一维棋盘的格子,纵向是步骤。其中"o"为在这一步中收回的鹅卵石,"•"为在这一步中放上的鹅卵石,而颜色稍淡的"•"则对应遗留在棋盘上未收回的鹅卵石。红色格子代表已被涂鸦,带旗帜的格点代表终点。

算法 3: Treeverse 算法

```
输入: 状态缓存集合 S=\{0:s_0\},需回传的梯度 \overline{s_n}\equiv\frac{\partial \mathcal{L}}{\partial s_n},允许缓存的状态数 \delta,扫描次数 \tau,分
              块起点 \beta=0,分开终点 \phi=n,以及把分块分割为两部分的分割点 \sigma=0
    输出: 回传的梯度 \overline{s_0} \equiv \frac{\partial \mathcal{L}}{\partial s_0}
 1 function treeverse(S, \overline{s_{\phi}}, \delta, \tau, \beta, \sigma, \phi)
          if \sigma > \beta then
 2
               \delta = \delta - 1
 3
               s = S[\beta]
                                                                                                                       # 加载初始状态 s_{\beta}
 4
              for j = \beta, \beta + 1, ..., \sigma - 1 do
 5
               s_{j+1} = f_j(s_j)
                                                                                                                                    # 计算 s<sub>σ</sub>
 6
               end
 7
               S[\sigma] = s_{\sigma}
         \mathbf{end}
 9
         # 以\kappa为最优分割点(二项分布), 递归调用 Treeverse 算法
10
         while \tau > 0 and \kappa = \text{mid}(\delta, \tau, \sigma, \phi) < \phi do
11
              \overline{s_{\kappa}} = \text{treeverse}(S, \overline{s_{\phi}}, \delta, \tau, \sigma, \kappa, \phi)
12
              \tau = \tau - 1
13
               \phi = \kappa
14
         end
15
                                                                                                # 利用已有的 s_{\sigma} 和 \overline{s_{\phi}} 回传导数
         \overline{s_{\sigma}} = \overline{f_{\sigma}}(\overline{s_{\sigma+1}}, s_{\sigma})
16
         if \sigma > \beta then
17
               remove(S[\beta])
                                                                                                     # 从缓存的状态集合中移除 s_{\beta}
18
         end
19
         return \overline{s_{\sigma}}
20
21 end
                                                                                                           # 选取二项分布分割点
22 function mid(\delta, \tau, \sigma, \phi)
         \kappa = \lceil (\delta \sigma + \tau \phi) / (\tau + \delta) \rceil
         if \kappa \ge \phi and \delta > 0 then
24

\kappa = \max(\sigma + 1, \phi - 1)

25
26
         end
27 end
```

的涂鸦,我们便可把格子上用于标记最后一个区块起点的鹅卵石取下以便重复利用。为了涂鸦倒数第二个区块,我们先是扫描整个区间,并把这个区间用回收的鹅卵石分割为大小分别是 $\eta(\tau-2,2)$ 和 $\eta(\tau-2,1)$ 的两个子区间。用同样的方式计算最后一个区间并递归的分割前一个子区间直至区块大小为 1 而无法继续分割。整个算法的步骤数和鹅卵石数目的关系是

$$T \approx \tau n, S = (\delta + 1), \tag{6}$$

由二项分布的性质可得, τ 和 δ 的大小可以都是 $\propto \log(n)$ 。图 7 (a) 展示了如何使用 Treeverse 算法仅用 4 个鹅卵石,步骤数 46 涂鸦完所有 20 个格子。 †

图 8: 为了回溯中间状态,时间和空间在两种最优时间-空间交换策略下的关系。(a) 固定横轴为状态回溯的计算时间与原函数计算时间的比值,对比再允许固定时间开销下,内存的额外开销。其中 Bennett 算法代表了可逆计算下的最优策略,而 Treeverse 则是传统计算允许的最优策略,黄色点状横线对应 S'/S=50。(b) 对比 Bennett 算法与 Treeverse 算法空间开销的比值。

鹅卵石游戏是对程序的时间和空间的交换关系非常理想化的模型,它恰巧非常合适用于描述常微分方程求解这样不可逆的线性程序。图 8 展示了在固定额外时间开销下,程序应用 Bennett 算法和 Treeverse 算法得到的最优的空间开销。可以看出,可逆计算整体上需要更多的空间开销。尤其是当步骤数更多,或是允许的时间的额外开销更大的时候,该差别更加明显。当程序具有一定结构,可逆计算也有不错的优点,较为直接的优点是可以利用可逆性节省内存。另外由于没有全局堆栈以及对程序自动设置检查点的问题,程序内存管理也更加可控。尤其对于写运行在 GPU 设备上的可微分函数,避免全局堆栈操作是必要的。

[†]这里的 46 步并不是严格的最优解,因为图中扫描过程的最后一步并不需要立即释放内存从而可以减少步骤数。

- [Rosset(2019)] C. Rosset, Microsoft Blog (2019).
- [Nolan(1953)] J. F. Nolan, Analytical differentiation on a digital computer, Ph.D. thesis, Massachusetts Institute of Technology (1953).
- [Wengert (1964)] R. E. Wengert, Communications of the ACM 7, 463 (1964).
- [Linnainmaa(1976)] S. Linnainmaa, BIT Numerical Mathematics 16, 146 (1976).
- [Gutzwiller(1963)] M. C. Gutzwiller, \bibfield journal \bibinfo journal Phys. Rev. Lett.\\textbf\\bibinfo volume 10,\\\bibinfo pages 159 (\bibinfo year 1963).
- [Carleo and Troyer(2017)] G. Carleo and M. Troyer, \bibfield journal \bibinfo journal Science\\textbf \bibinfo volume 355,\\bibinfo pages 602—606 (\bibinfo year 2017).
- [Deng et al.(2017)Deng, Li, and Das Sarma] D.-L. Deng, X. Li, and S. Das Sarma, \bibfield journal \bib-info journal Physical Review X\ \textbf \bibinfo volume 7 (\bibinfo year 2017),\ 10.1103/phys-revx.7.021021.
- [Cai and Liu(2018)] Z. Cai and J. Liu, \bibfield journal \bibinfo journal Phys. Rev. B\\textbf\bibinfo volume 97,\\bibinfo pages 035116 (\bibinfo year 2018).
- [Luo et al.(2019)Luo, Liu, Zhang, and Wang] X.-Z. Luo, J.-G. Liu, P. Zhang, and L. Wang, "Yao.jl: Extensible, efficient framework for quantum algorithm design," (2019), arXiv:1912.10877 [quant-ph]
- [Liao et al.(2019)Liao, Liu, Wang, and Xiang] H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, \bib-field journal \bibinfo journal Physical Review X\ \textbf \bibinfo volume 9 (\bibinfo year 2019),\ 10.1103/physrevx.9.031041.
- [Liu et al.(2020)Liu, Wang, and Zhang] J.-G. Liu, L. Wang, and P. Zhang, "Tropical tensor network for ground states of spin glasses," (2020), arXiv:2008.06888 [cond-mat.stat-mech].

- [Heimbach et al.(2005)Heimbach, Hill, and Giering] P. Heimbach, C. Hill, and R. Giering, Future Generation Computer Systems 21, 1356 (2005).
- [Symes(2007)] W. W. Symes, \bibfield journal \bibinfo journal Geophysics\\textbf\bibinfo volume 72,\\bibinfo pages SM213 (\bibinfo year 2007).
- [Zhu et al.(2020)Zhu, Xu, Darve, and Beroza] W. Zhu, K. Xu, E. Darve, and G. C. Beroza, "A general approach to seismic inversion with automatic differentiation," (2020), arXiv:2003.06027 [physics.comp-ph].
- [Bradbury et al.(2018)Bradbury, Frostig, Hawkins, Johnson, Leary, Maclaurin, Necula, Paszke, VanderPlas, Wanderm J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, \enquote \bibinfo title JAX: composable transformations of Python+NumPy programs,\ (2018).
- $[Plessix(2006)] \ R.-E. \ Plessix, \ bibfield journal \ bibinfo journal Geophysical Journal International \ \ textbf \ bibinfo volume 167, \ bibinfo pages 495 (\ bibinfo year 2006), https://academic.oup.com/gji/article-pdf/167/2/495/1492368/167-2-495.pdf .$
- [Chen et al.(2018)Chen, Rubanova, Bettencourt, and Duvenaud] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, in \emph \bibinfo booktitle Advances in Neural Information Processing Systems, Vol. 31, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran Associates, Inc., 2018).
- [Grote and Sim(2010)] M. J. Grote and I. Sim, "Efficient pml for the wave equation," (2010), arXiv:1001.0319 [math.NA] .
- [Griewank(1992)] A. Griewank, \bibfield journal \bibinfo journal Optimization Methods and software\\
 \textbf \bibinfo volume 1,\\bibinfo pages 35 (\bibinfo year 1992).
- [Liu and Zhao(2020)] J.-G. Liu and T. Zhao, "Differentiate everything with a reversible programming language," (2020), arXiv:2003.04617 [cs.PL] .

- [Lorenz(1963)] E. N. Lorenz, \biblinfo journal \biblinfo journal of atmospheric sciences\\textbf\\biblinfo volume 20,\\biblinfo pages 130 (\biblinfo year 1963).
- [Hirsch et al.(2012)Hirsch, Smale, and Devaney] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential equations, dynamical systems, and an introduction to chaos (Academic press, 2012).
- [Revels et al.(2016)Revels, Lubin, and Papamarkou] J. Revels, M. Lubin, and T. Papamarkou, "Forward-mode automatic differentiation in julia," (2016), arXiv:1607.07892 [cs.MS] .
- [Berenger(1994)] J.-P. Berenger, Journal of computational physics 114, 185 (1994).
- [Roden and Gedney(2000)] J. A. Roden and S. D. Gedney, \bibfield journal \bibinfo journal Microwave and Optical Technology Letters\\textbf\bibinfo volume 27,\\bibinfo pages 334 (\bibinfo year 2000).
- [Martin et al.(2008)Martin, Komatitsch, and Ezziani] R. Martin, D. Komatitsch, and A. Ezziani, \bib-field journal \bibinfo journal Geophysics\\textbf\bibinfo volume 73,\\bibinfo pages T51 (\bibinfo year 2008).
- [Bennett (1973)] C. H. Bennett (1973).
- [Levine and Sherman(1990)] R. Y. Levine and A. T. Sherman, \bibfield journal \bibinfo journal SIAM Journal on Computing\\textbf\bibinfo volume 19,\\bibinfo pages 673 (\bibinfo year 1990).

Automatic differention in physics simulation *

Jin-Guo Liu¹⁾ Kai-Lai Xu²⁾

- 1) (Harvard University, Cambridge 02138)
- 2) (Stanford University, Stanford 94305)
- 1) (Massachusetts Hall, Cambridge, MA 02138)
 - 2) (450 Serra Mall, Stanford, CA 94305)

${f Abstract}$

To determine the probe made of amino acids arranged in a linear chain and joined together by peptide bonds between the carboxyl and amino groups of adjacent amino acid residues. The sequence of amino acids in a protein is defined by a gene and encoded in the genetic code. This can happen either before the protein is used in the cell, or as part of control mechanisms.

Keywords:automatic differentiation, scientific computing, reversible programming, Treeverse, physics sim-

PACS: 02.60.27n, 02.30.Jr, 91.30.—f

and the National High Technology Research and Development Program of China (Grant No. 2011AA06Z000).

^{*} Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB00000), the National Natural Science Foundation of China (Grant Nos. 123456, 567890),

 $^{^{\}dagger}$ Corresponding author. E-mail: jinguoliu@g.harvard.edu