The derivatives fx and fy give rate of change in x and y directions. What if we wanted to measure rate of change in another vector \vec{v} ? That is, what if both x and y are changing at differentiates?

Let $f(x_{iy})$ be a futn and $P=(q_{ib})$ a pt. Then the gradient of f at P is

$$\nabla f_{p} = \langle f_{x}(a,b), f_{y}(a,b) \rangle$$
.

Sometimes $\nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle$.

We can think of the gradient of f as a function, for each pt in the domain of f, we obtain a vector.

 E_{x} ! Let $f(x,y)=x^2+y^2$. Then $f_{x}=dx$, $f_{y}=dy$ and $\nabla f_{z}=(dx,dy)$

$$P_{1}=(1,1) \longrightarrow \nabla f_{p_{1}}=(2,3)$$
 $P_{2}=(3,4) \longrightarrow \nabla f_{p_{2}}=(6,8)$
 $P_{3}=(-2,1) \longrightarrow \nabla f_{p_{3}}=(-4,2)$
 $\nabla f_{p_{4}}=(-2,1) \longrightarrow \nabla f_{p_{5}}=(-4,2)$

$$f(x_1y)=x^2$$
 $g(x_1y)=y^2$
 $\nabla f=(2x_0)$ $\nabla g=(0,2y)$

$$\Delta(t(t(x',x',s))) = t_{(t(x',x',s))} \cdot \Delta t$$

Exà Compute gradient of
$$g(x,y,\overline{z})=(x^2+y^2+z^2)^8$$

Let $F(+)=+^8$ and $f(x,y,\overline{z})=x^2+y^2+\overline{z}^2$.

Chain Rule for paths

f(r(t)) = (x(t), y(t)) and that at the at time t.

As t changes, we a

and a function $f:\mathbb{R}^2 \to \mathbb{R}$ that measures a temperature at the pt (x,y).

As t changes, we move along the path $\underline{\hspace{0.5cm}}$ and so the temperature $f(\vec{r}(t))$ also $\underline{\hspace{0.5cm}}$ changes.

We may talk the derivative of f(r(t)). This measures the rate of change of the temperature $f(\vec{r}(t))$ as t changes.

$$\frac{\partial +}{\partial r} \left(L(L_{s,r}(+)) \right) = \Delta L_{s,r}(+)$$

What is RoC of the temperature at t= 37 ?

$$O \frac{\text{Set up gradient and } r^{3(t)}}{\nabla f} = \left\langle -6 \times e^{-.3(\chi^2 + \gamma^2)} \right\rangle - 6 \gamma e^{-.3(\chi^2 + \gamma^2)}$$

The sin (+), 2005(+)?

The pt.

$$\frac{7}{7}\left(\frac{3n}{4}\right) = \left(\frac{1}{2},\frac{5}{2}\right) = \left(-252,52\right)$$

$$\frac{7}{7}\left(\frac{3n}{4}\right) = \left(\frac{3n}{4}\right)$$

$$\frac{7}{7}\left(\frac{3n}{4}\right) = \left(\frac{3n}{4}\right)$$

$$\frac{7}{7}\left(\frac{3n}{4}\right)$$

$$\frac{7}{7}\left(\frac{3n}{4}\right)$$

$$\frac{7}{7}\left(\frac{3n}{4}\right)$$

$$\frac{7}{7}\left(\frac{3n}{4}\right)$$

$$\nabla f_{r'(\frac{3\pi}{4})} \cdot f'(\frac{3\pi}{4}) = \nabla f_{(-2\sqrt{2}, \sqrt{2})} \cdot f'(\frac{3\pi}{4})$$

$$= \left\langle -6(-212)e^{-3((-212)^2+(12)^2)}, -6(12)e^{-3((-212)^2+(12)^2)} \right\rangle \cdot \left\langle -212, -212 \right\rangle$$

$$\approx -1.19$$
 celcisus per second.

Directional Derivative

Suppose f is differentiable at p=(a1b)

The directional derivative of f with respect to \$\vec{u}\$ at \$P\$ is defined as

$$O_{u}f(a,b)=\frac{d}{dt}f(\vec{r}(t))\Big|_{t=0}= \lim_{t\to 0}\frac{f(a+th,b+tk)-f(a,b)}{t}$$

Note that if $\vec{u} = \hat{i}$, we obtain $f_{x}(a,b)$ and if $\vec{u} = \hat{j}$, then $f_{y}(a,b)$.

Ouf(P) is Roc per unit change in the II direction at P.

Ouf(P) is slope of tengent line at (a, b, f(b)) to true curve

obtained when intersected with vertical plane through P in the direction

To compute the directional derivative, we use the dot product.

$$\boxed{0_{\vec{u}} f(q) = \nabla f_{p} \cdot \vec{u}}$$

Ex 4. Find RoC of pressure at Q=(112.1) in the direction of $\vec{r} = \{0,1.17\}$, where pressure is given by

millibars XYZin kilomaters.

(1) gradient at the pt

$$\nabla f = .001 \langle 2xz-y^2, z^2-2xy, 3yz+x^2 \rangle$$
 $\nabla f q = .001 \langle -2, -3, 5 \rangle =$

(1) unit vector $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|^2} = \frac{\langle 0, 1, 1 \rangle}{\sqrt{2}} = \frac{\langle 0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle}{\sqrt{2}}$

$$\nabla f_{Q} \cdot \vec{U} = .001 \ \langle -3, -3, 5 \rangle \cdot \langle 0, \frac{12}{2}, \frac{12}{2} \rangle$$
= .001 $\left(-\frac{3J_{2}}{2} + \frac{5J_{2}}{2} \right)$
 $\approx .014 \text{ millibars/l2m}$

@ Interpretation?

As one moves in direction of i from Q, you expect pressure to

increuse by . 014 millibars/km.

$$\frac{E \times 5}{f(x,y)} \cdot Altitude$$
 of a mountain is given by
$$f(x,y) = 2500 + 100(x + y^2)e^{-.3y^2}$$

Xiy are in units of 100m.

a) Find $Q_{\vec{u}}$ f((-1,-1)) in direction \vec{u} of making an angle of $\theta = \frac{2}{4}$.

•
$$f_{x}(x_{1}y) = 100e^{-.3}y^{2}$$
 $f_{x}(-1,-1) = 100e^{-.3} \approx 74$

•
$$f_{\gamma}(x_{,\gamma}) = 200 \gamma e^{-.03 \gamma^{2}} + 100(-.6) \gamma (x+\gamma^{2}) e^{-.3 \gamma^{2}}$$

= $100 \gamma e^{-.03 \gamma^{2}} (2 + (-.6)(x+\gamma^{2})) f_{\gamma}(-1,-1) = -200 e^{-.3}$
 ≈ -148

b) Interpretation?

Moving in the direction of \vec{u} , altitude will increase at a rate of 116.7m per 100m.

Recall that
$$\vec{u} \cdot \vec{V} = ||\vec{u}|| \cdot ||\vec{v}|| \cos \theta$$
, dot product tells us abtangles for non-zero vectors.

$$0 = f(\rho) = \nabla f_{\rho} \cdot \vec{u} = ||\nabla f_{\rho}|| \cdot ||\vec{u}|| \cdot \cos \theta = ||\nabla f_{\rho}|| \cdot \cos \theta$$

where θ is the angle between ∇f_{ρ} and \vec{u} .

As of varies, so does the rate of change in a given direction. Since

$$-1 \le \cos \theta \le 1$$

 $-\|\nabla f_{p}\| \le \|\nabla f_{p}\| \cdot \cos \theta \le \|\nabla f_{p}\|$
 $-\|\nabla f_{p}\| \le O_{u}f(p) \le \|\nabla f_{p}\|$

Fact Let 7fp #0 and \vec{u} a unit vector with 0 the angle between them. Then

- 1) $Q_{\vec{u}} f(p) = || \nabla f_p || \cdot \cos \theta$
- 2) Vfp points in direction of maximal increase and this rate of increase is $\|\nabla fp\|$.
- 3) VFp points in direction of maximal decrease and this rate of decrease is 11 V fp 11.

Ex. In a field, the amt of light at a pt 15 given by $f(xy) = 40 + 2x^2 + 18y - 12xy$

Q1. An ant is at the pt (1,-2) and heads toward to the (-3,1).

Does it get brighter?

$$Q_{\vec{u}} f((1,-2))$$
 where $\vec{u} = \frac{(-4.37)}{5}$

$$\frac{1}{5}$$
 $\angle 4,35.$ $\angle 28,65 = \frac{-94}{5}$ $\angle 0$

Qd: A plant is at (3,12) but turns to direction for which light is brightest. What direction is this?

VF(3,2)= 2-12.-18).

Gradient and normality

fact for f(x,y), (or f(x,y,2)), the gradient at P, Dfp, is normal to the level curve (or surface respectively) at P.

$$E_{x}$$
 $f(x,y)=xy^{3}-x^{2}$ at $P=(a,-1)$.

The pt P lies on the level curve f(x,y)=12.

1)
$$\nabla f = \langle \gamma^3 - 2x, 3x\gamma^2 \rangle$$

 $\nabla f(2,-1) = \langle -5, 6 \rangle$

We calculate angle of of w level curve f(x,y)=-6 using tangent vector at P.

Parameterize conve to get tangent direction. $xy^3 - x^2 = -6 = y^3 = -6x^{-1} + x$

Could also use 26,57%.

3) Verify that
$$\nabla f_{\rho} \cdot \Gamma'(\rho) = 0$$

 $\langle -5,6 \rangle \cdot \langle 6,5 \rangle = 0$ "

Recall we struggled up finding tangent plane to $f(x,y) = \int_{H-x^2-y^2}^{H-x^2-y^2} at (2.0)$, since f is not diffable at the pt.

 E_{X} . Let $f(x,y,z) = x^{2}+y^{2}+z^{2}$ and P=(a,0,0).

Consider the level surface f(x,y,z)= H at P.

Vf (2,0,0)= {4,0,0} is normal to surface f(x,y,z)=4.