Herramientas de Teledetección Cuantitativa

¿Y de presición como andamos?

Francisco Nemiña

Unidad de Educación y Formación Masiva Comisión Nacional de Actividades Espaciales

14 de junio de 2017

Esquema de presentación

Escenas del capítulo anterior

Filtrado Tecnicas pos-clasificación

Estimación de la presición Matriz de confusión Estimación de áreas Muestreo

Práctica

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- La necesidad de definir categorías de uso y cobertura de forma concisa.
- La diferencia entre el concepto de categorias de uso y cobertura y clases espectrales.
- ▶ La importante del espacio espectral para comprender los métodos de clasificación.
- ▶ El funcionamiento del algoritmo k−means de segmentación.
- ▶ El funcionamiento del algoritmo de máxima verosimilitud.

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- La necesidad de definir categorías de uso y cobertura de forma concisa.
- La diferencia entre el concepto de categorias de uso y cobertura y clases espectrales.
- La importante del espacio espectral para comprender los métodos de clasificación.
- ▶ El funcionamiento del algoritmo k−means de segmentación.
- ▶ El funcionamiento del algoritmo de máxima verosimilitud.

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- La necesidad de definir categorías de uso y cobertura de forma concisa.
- La diferencia entre el concepto de categorias de uso y cobertura y clases espectrales.
- La importante del espacio espectral para comprender los métodos de clasificación.
- ▶ El funcionamiento del algoritmo k—means de segmentación.
- ► El funcionamiento del algoritmo de máxima verosimilitud.

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- La necesidad de definir categorías de uso y cobertura de forma concisa.
- La diferencia entre el concepto de categorias de uso y cobertura y clases espectrales.
- La importante del espacio espectral para comprender los métodos de clasificación.
- ▶ El funcionamiento del algoritmo k−means de segmentación.
- ► El funcionamiento del algoritmo de máxima verosimilitud.

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- La necesidad de definir categorías de uso y cobertura de forma concisa.
- La diferencia entre el concepto de categorias de uso y cobertura y clases espectrales.
- La importante del espacio espectral para comprender los métodos de clasificación.
- ▶ El funcionamiento del algoritmo k−means de segmentación.
- ► El funcionamiento del algoritmo de máxima verosimilitud.

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- La necesidad de definir categorías de uso y cobertura de forma concisa.
- La diferencia entre el concepto de categorias de uso y cobertura y clases espectrales.
- La importante del espacio espectral para comprender los métodos de clasificación.
- ▶ El funcionamiento del algoritmo k−means de segmentación.
- ► El funcionamiento del algoritmo de máxima verosimilitud.

Esquema de presentación

Escenas del capítulo anterior

Filtrado Tecnicas pos-clasificación

Estimación de la presición Matriz de confusión Estimación de áreas Muestreo

Práctica

Filtrado

Nos va a permitir reducir algunos mitigar una limitación común en la clasificación como es la existencia de parches de escasa superficie. Suavizan las clasificaciones.

Filtrado

Nos va a permitir reducir algunos mitigar una limitación común en la clasificación como es la existencia de parches de escasa superficie. Suavizan las clasificaciones.

Ejemplo de filtrado por mayoría.1

Fusión

Nos permite convertir las clases de clasificación generadas por algun algoritmo en clases temáticas.

Imagen con clases fusionadas.

Imagen con clases fusionadas.

Imagen con clases fusionadas.

Esquema de presentación

Escenas del capítulo anterior

Filtrado
Tecnicas pos-clasificación

Estimación de la presición Matriz de confusión Estimación de áreas Muestreo

Práctica

Objetivo de la validación

Lo que esperamos es asignarle a nuestra clasificacón un cierto grado de confianza a partir de datos medidos en el terreno.

Ejemplo de datos de referencia contra un mapa temático.²

 $^{^2}$ Russell G Congalton y Kass Green. Assessing the accuracy of remotely sensed data: principles and practices. CRC press, 2008.

CRC press, 2008.

Comparación de área total.³

Comparación de espacial.⁴

⁴Russell G Congalton y Kass Green. Assessing the accuracy of remotely sensed data: principles and practices. CRC press, 2008.

Definición

Lo que esperamos es asignarle a nuestro mapa temático un cierto grado de presición a partir de datos medidos en el terreno.

Definición

```
\begin{bmatrix} 1 & 2 & \dots & k & n_{i+} \\ 1 & n_{11} & n_{12} & \dots & n_{1k} & n_{1+} \\ 2 & n_{21} & n_{22} & \dots & n_{2k} & n_{2+} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ k & n_{k1} & n_{k2} & \dots & n_{kk} & n_{k+} \\ n_{+j} & n_{+1} & n_{+2} & \dots & n_{+k} & N \end{bmatrix}
```


Definición

Donde

$$n_{i+} = \sum_{j} n_{ij}$$

$$n_{+j} = \sum_{i} n_{ij}$$

y donde n es el número total de muestras.

Ejemplo

Vamos a tomar sólo tres coberturas a modo de ejemplo

$$\begin{bmatrix} & a & s & v \\ a & 50 & 10 & 20 & 80 \\ s & 5 & 100 & 15 & 120 \\ v & 10 & 10 & 80 & 100 \\ & 65 & 120 & 115 & 300 \end{bmatrix}$$

Presición total

$$O=\sum_{i}p_{ii}$$

Presición usuario

$$U_i = \frac{p_{ii}}{p_{i+}}$$

$$P_j = \frac{p_{jj}}{p_{+j}}$$

Presición total

$$O=\sum_{i}p_{ii}$$

Presición usuario

$$U_i = \frac{p_{ii}}{p_{i+}}$$

$$P_j = \frac{p_{jj}}{p_{+j}}$$

Presición total

$$O=\sum_{i}p_{ii}$$

Presición usuario

$$U_i = \frac{p_{ii}}{p_{i+}}$$

$$P_j = \frac{p_{jj}}{p_{+j}}$$

Presición total

$$O=\sum_{i}p_{ii}$$

Presición usuario

$$U_i = \frac{p_{ii}}{p_{i+}}$$

$$P_j = \frac{p_{jj}}{p_{+j}}$$

Fracción de la muestra

$$p_{ij} = \frac{W_i n_i}{n_{i+1}}$$

Probabilidad de j en los datos de campo

$$p_{+j} = \sum_{i} p_{ij}$$

Probabilidad de i en la clasificación

$$p_{i+} = \sum_{j} p_{ij}$$

Fracción de la muestra

$$p_{ij} = \frac{W_i n_{ij}}{n_{i+}}$$

Probabilidad de j en los datos de campo

$$p_{+j} = \sum_{i} p_{ij}$$

Probabilidad de i en la clasificación

$$p_{i+} = \sum_{i} p_{ij}$$

Ejemplo

Si las áreas son $A_v=1000$, $A_a=500$ y $A_s=500$ entonces

$$\begin{bmatrix} a & s & v \\ a & 0.16 & 0.03 & 0.06 & 0.25 \\ s & 0.01 & 0.21 & 0.03 & 0.25 \\ v & 0.05 & 0.05 & 0.40 & 0.50 \\ & 0.23 & 0.29 & 0.49 & 0.77 \end{bmatrix}$$

Ejemplo

Si las áreas son $A_{\nu}=1000$, $A_{a}=500$ y $A_{s}=500$ entonces

$$\begin{bmatrix} a & s & v \\ a & 0.16 & 0.03 & 0.06 & 0.25 \\ s & 0.01 & 0.21 & 0.03 & 0.25 \\ v & 0.05 & 0.05 & 0.40 & 0.50 \\ & 0.23 & 0.29 & 0.49 & 0.77 \end{bmatrix}$$

Matriz de confusión

Cualquier análisis sobre el error de una clasificación parte de la matriz de confusión.

Estimación de la presición-Estimación de áreas

Observación

Las áreas podemos estimarlas tanto a partir de p_{i+} y de p_{+j} .

- \triangleright p_{i+} se conoce con certeza pero puede estar sesgado.
- $ightharpoonup p_{+j}$ presenta un sesgo menor pero debe ser estimado.

Estimación de la presición-Estimación de áreas

Observación

Las áreas podemos estimarlas tanto a partir de p_{i+} y de p_{+j} .

- \triangleright p_{i+} se conoce con certeza pero puede estar sesgado.
- $ightharpoonup p_{+j}$ presenta un sesgo menor pero debe ser estimado.

Estimación de la presición-Estimación de áreas

Podemos estimar la varianza de p_{+j} como

$$S(p_{+j}) = \sqrt{\frac{W_i p_{ij} - p_{ij}^2}{n_{i+} - 1}}$$
 (1)

y por lo tanto

$$A_k = A_{total} \times p_{+j} \pm 1,96 \times A_{total} \times S(p_{+j})$$

Estimación de la presición-Estimación de áreas

Podemos estimar la varianza de p_{+i} como

$$S(p_{+j}) = \sqrt{\frac{W_i p_{ij} - p_{ij}^2}{n_{i+} - 1}}$$
 (1)

y por lo tanto

$$A_k = A_{total} \times p_{+j} \pm 1,96 \times A_{total} \times S(p_{+j})$$

.

Estimación de la presición-Estimación de áreas

Ejemplo

Las áreas con sus errores son

- $A_a = (433 \pm 88) km^2$
- $A_s = (579 \pm 70) km^2$
- $A_{\nu} = (988 \pm 95) km^2$

4 preguntas

- 1. ¿Qué categorías tengo?
- 2. ¿Qué unidad de muestreo usar?
- 3. ¿Cuántas muestras tomar?
- 4. ¿Cómo elegir las muestras?

¿Que categorías tengo?

Las clases tienen que ser

- ► Mutuamente exclusivas
- ▶ Totalmente exhaustivas

Además de tener un tamaño mínimo para ser considerado de esa clase.

¿Que categorías tengo?

Las clases tienen que ser

- Mutuamente exclusivas
- Totalmente exhaustivas

Además de tener un tamaño mínimo para ser considerado de esa clase.

¿Que categorías tengo?

Las clases tienen que ser

- ► Mutuamente exclusivas
- Totalmente exhaustivas

Además de tener un tamaño mínimo para ser considerado de esa clase.

Clases de muestreo definidas en el terreno.⁵

⁵Russell G Congalton y Kass Green. Assessing the accuracy of remotely sensed data: principles and practices. CRC press, 2008.

- ▶ Un solo píxel.
- Un clúster de píxeles
- Un polígono
- Un clúster de polígonos

- ► Un solo píxel.
- Un clúster de píxeles
- Un polígono
- Un clúster de polígonos

- ► Un solo píxel.
- Un clúster de píxeles
- Un polígono
- Un clúster de polígonos

- ► Un solo píxel.
- Un clúster de píxeles
- Un polígono
- Un clúster de polígonos

- ► Al azar.
- Estratificado al azar.
- Sistemático.
- Clusters

- ► Al azar.
- Estratificado al azar.
- Sistemático.
- Clusters

- ► Al azar.
- Estratificado al azar.
- Sistemático.
- ► Clusters

- ► Al azar.
- Estratificado al azar.
- Sistemático.
- Clusters

Logística

Todo lo que vimos va a estar supeditado a mi capacidad de realizar el muestreo.

Esquema de presentación

Escenas del capítulo anterior

Filtrado Tecnicas pos-clasificación

Estimación de la presición Matriz de confusión Estimación de áreas Muestreo

Práctica

Práctica

Actividades prácticas de la sexta clase

- 1. Abrir las imágenes clasificadas y fusionadas por el método de clasificación supervisada y no supervisada.
- 2. Cargar los polígonos de validación correspondientes a cada clase.
- 3. Calcular al matriz de confusión correspondiente a cada clasificación.
- 4. Obtener la presición global, del usuario, productor y el índice kappa.

