

Portofolio Project 1 Face Recognition (21 June 2024)

Kelompok CVA Fei Fei Li

Al Career Bootcamp Batch 5 Computer Vison

Our Team

Rangga Etyawan Al Project Leader

Business & Data Understanding

Model Evaluation

PPT Preparation

Cahyadi Hartanto
IT Espert

Data Cleaning & Analysis

Data Modelling

Review Code

Yosabad Torando Al**§ingine**er

Data Modelling

Model Deployment

Review Code

Ade Rahman
Al Engineer

Business & Data Understanding

Data Cleaning & Analysis

Model Evaluation

Machine Learning Life Cycle

Face Recognition Model

Paper Research Face Recognition

VGG-16

Face Recognition Algorithm Based on VGG Network Model and SVM

Hongling Chen^{1,*} and Chen Haoyu²

¹ College of computer and information science, Southwest University, China

²College of mathematics and Statistics, Southwest University, China

*Email: chenhongling@email.swu.edu.cn

Abstract. The problem that the dimension of facial features is too large does exist with the Deep learning face recognition. This paper proposes a face recognition algorithm based on SVM combined with VGG network model extracting facial features, which can not only accurately extract face features, but also reduce feature dimensions and avoid irrelevant features to participate in the calculation. Firstly, the VGG-16 model is obtained by training the training data set, which is used for feature extraction, on top of this, principal component analysis method (PCA) is used for feature dimensionality reduction, and last, the face recognition is performed by SVM classifier with linear kernel function. In this paper, we conduct a comparative experiment on CelebA dataset and find that the accuracy reaches its peak when the feature dimension is reduced to 400. The experiment is carried out on LFW dataset using 400-dimensional feature data, and comparing with other algorithms, the results show that the algorithm in this paper has reached the level of state-of-art.

ResNet 152v2

Face Recognition Method Based on Residual Convolution Neural Network

Arshi Husain1 and Virendra P. Vishvakarma2

USICT, Guru Gobind Singh Indraprastha University arshihusaincdac@gmail.com, virendravishwa@rediffmail.com, vpv@ipu.ac.in

Abstract. With the advancement of information technology and societal growth, social security has become more important than ever. Face recognition, as compared to other traditional recognition methods like fingerprint recognition, palm recognition, etc, has the benefit that it is contact less, and now it is becoming one among the most prominent technologies in development. Although there are numerous recognition systems that use DNNs in the field of facial expression recognition, their accuracy and practicality are still insufficient for real-world applications. A facial recognition approach based on Resnet 152 v2 has been proposed in this work. In this paper, a residual learning approach is presented to make the training of networks that are far deeper than previously employed networks easier. The proposed method, employs the AT&T face dataset, and supposing that normalization and segmentation are complete, we concentrate on the subtask of person verification and recognition, demonstrating performance using a testing database comprising illumination, pose, expression and occlusion variations. SoftMax is the activation function that has been used, which adjusts the output sum up to one allowing it to be understood as probabilities. Then, the model would generate a judgment depending on which option has a strong likelihood. This system employs Adam as an optimizer to control the learning rate through training and categorical cross entropy as its loss function. The proposed approach has a 97 percent face recognition accuracy on AT&T dataset, showing its efficacy after a significant number of analyses and experimental verification.

Keywords: Deep convolutional neural network, Face recognition, ResNet.

GoogleNet

Research Article

Research on Face Recognition Classification Based on Improved GoogleNet

Zhigang Yu, Yunyun Dong, Jihong Cheng, Miaomiao Sun 6, and Feng Su

Yantai Nanshan University, Yantai 265713, China

Correspondence should be addressed to Miaomiao Sun; yuzhigang@nanshan.edu.cn

Received 19 November 2021; Revised 8 December 2021; Accepted 13 December 2021; Published 5 January 2022

Academic Editor: Jian Su

Copyright © 2022 Zhigang Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Face recognition is a relatively mature technology, which has some applications in many aspects, and now there are many networks studying it, which has indeed brought a lot of convenience to mankind in all aspects. This paper proposes a new face recognition technology. First, a new GoogLeNet-M network is proposed, which improves network performance on the basis of streamlining the network. Secondly, regularization and migration learning methods are added to improve accuracy. The experimental results show that the GoogLeNet-M network with regularization using migration learning technology has the best performance, with a recall rate of 0.97 and an accuracy of 0.98. Finally, it is concluded that the performance of the GoogLeNet-M network is better than other networks on the dataset, and the migration learning method and regularization help to improve the network performance.

Dimension Reduced to 400

Accuracy 97%

Accuracy 98%

Schedule Project

1. Timeline Project

Group Discussion (7 June)

Data & Algoritma
Understanding (8-13
June)

Group Discussion (14 June)

lodel Training & Evaluatio (15-20 June)

Project Presentation (21 June)

2. General Schedule

General Schedule Project 1 Al Career Computer Vision Bootcamp Batch 5 (Face Recognition)

No	Activity	Durnoss					Jun-24				
NO	Activity	Purpose	13-Jun-24	14-Jun-24	15-Jun-24	16-Jun-24	17-Jun-24	18-Jun-24	19-Jun-24	20-Jun-24	21-Jun-24
1	Group Discussion With Mentor	Data & Algoritma									
	(Kak Galang)	Understanding	1								1
		1. Review Feedback From									
		Mentor	i i								
2	Group Discussion CVA Fei Fei Li	2. Confirm Jobdesk Team	1								
		Member									
		Dataset Analysis	i								
		Model VGG Analysis	1								
		1. Review Progress PPT &									
		Code	i i								i i
3	Group Discussion CVA Fei Fei Li	2. Model GoogleNet &	!								
•		INCONCT Allarysis									
		Model Evaluation	i								i
											-
		1. Review Progress PPT									
	Al Project Evaluation	(must finish) & Code 2. Model VGG,GoogleNet &	1								
4	1	ResNet Analysis									
	AI)	3. Model Evaluation	i								
	1 2	4. Compare Optimal Model for	1								
		Face Recognition									
_	Drainet Dranentation	1. Presentation Project 1	i								
5	Project Presentation	(Face Recognition)	!								
	1			1	1		1		1		
			1							_	
			Start Group								Project
			Discussion								Presentation

Flowchart Project

VGG Model

VGG-16 (Environmet:CPU)

```
# Modelling menggunakan VGG-16
vgg16 = VGG16(input_shape=(128, 128, 3),
weights='imagenet', include_top=False)
for layer in vgg16.layers:
 layer.trainable = False
x = vgg16.output
x = Flatten()(x)
x = Dense(1024, activation='relu')(x)
prediction = Dense(1, activation='sigmoid')(x)
model_vgg16 = Model(inputs=vgg16.input,
outputs=prediction)
model_vgg16.summary()
```


VGG-19 (Environmet:CPU)

Epoch	Accuracy	Val.Accuracy	Train Time (s)	Train Speed (ms/step)
1	0,7370	0,8920	378	3
2	0,9029	0,8940	383	3
3	0.9398	0,8970	356	3
4	0,9559	0,8950	359	3
5	0,9732	0,8960	354	3
6	0,9776	0,8920	355	3
7	0,9563	0,8950	361	3
8	0,9454	0,8310	356	3
9	0.9419	0.8940	373	3
10	0,9705	0,8700	405	3
Max	0,9776	0,8970	405	3
Min	0,7370	0,8310	354	3
Averag	e 0,9290	0,8856	368	3

Evaluasi Model VGG

- VGG-16 pada Epoch-10 memiliki Accuracy 0,9975, Validasi Accuracy 0,8960 dengan Train Time 287 s
- VGG-19 pada Epoch-10 memiliki Accuracy 0,9705, Validasi Accuracy 0,8700 dengan Train Time 405 s
- Evaluasi Model VGG-16 memiliki performa lebih baik daripada VGG-19 dengan Average Valiadasi Accuracy 0,9467

ResNet Model

ResNet-50 (Environment: GPU)

```
# Modelling menggunakan ResNet-50
from tensorflow.keras.applications import ResNet50

res = ResNet50(input_shape=(128, 128, 3), weights='imagenet'
include_top=False)
for layer in res.layers:
    layer.trainable = False

x = res.output
x = Flatten()(x)
x = Dense(1024, activation='relu')(x)
prediction = Dense(1, activation='sigmoid')(x)

model_res = Model(inputs=res.input, outputs=prediction)
model_res.summary()
```


ResNet-101 (Environment: CPU)

```
# Modelling menggunakan ResNet-101
res101 = ResNet101(input_shape=(128, 128, 3),
weights='imagenet', include_top=False)
for layer in res101.layers:
    layer.trainable = False

x = res101.output
x = Flatten()(x)
x = Dense(1024, activation='relu')(x)
prediction = Dense(1, activation='sigmoid')(x)

model_res101 = Model(inputs=res101.input, outputs=prediction)
model_res101.summary()
```


	Epoch	Accuracy	Val.Accuracy	Train Time (s)	Train Speed (ms/step)
	1	0,6504	0,7160	304	2
	2	0,7204	0,7240	259	2
	3	0,7691	0,6930	278	2
	4	0,7364	0,7460	246	2
	5	0,7755	0,7270	248	2
	6	0,7740	0,7530	246	2
	7	0,8019	0,7550	247	2
	8	0,7804	0,7540	254	2
_	9	0,8020	0,7520	298	2
	10	0,8036	0,7520	249	2
-	Max	0,8036	0,7550	304	2
	Min	0,6504	0,6930	246	2
	Average	0,7614	0,7372	263	2

Evaluasi Model ResNet

- 1. ResNet-50 pada Epoch-10 memiliki Accuracy 0,7949, Validasi Accuracy 0,7380 dengan Train Time 143 s
- 2. ResNet-101 pada Epoch-10 memiliki Accuracy 0,8306, Validasi Accuracy 0,7520 dengan Train Time 249 s
- 3. Evaluasi Model ResNet-101 memiliki performa lebih baik daripada ResNet-50 dengan Average Valiadasi Accuracy 0,7614

GoogleNet Model

GoogleNet-V3 (Environmet : CPU)

Evaluasi Model GoogleNet

- GoogleNet-V3 pada Epoch-10 memiliki Accuracy 0,9674, Validasi Accuracy 0,8570 dengan Train Time 474 s
- Evaluasi Model GoogleNet-V3 memiliki performa Average Valiadasi Accuracy 0,9139

Sampel Deployment

Parameter	VGG-16	VGG-19	ResNet-50	ResNet-101	GoogleNet-V3
1. Accuracy	0,9975	0,9705	0,7949	0,8306	0,9674
2. Val.Accuracy	0,8960	0,8700	0,7380	0,7520	0,8570

Evaluasi Validasi Tertinggi Model VGG-16

Source Code

```
# Load model yang telah dilatih
model = tf.keras.models.load_model('vgg16_model.h5')
# Path ke folder Test
test_folder_path = 'Test' #gambar-gambar masukin sini
import time
# List untuk menyimpan gambar dan nama file
test_images = []
test_filenames = []
def load_and_preprocess_test_image(file_name, target_size=
(128, 128)):
    image_path = os.path.join(test_folder_path, file_name)
    image = Image.open(image_path)
    image = image.resize(target_size)
    image = np.array(image) / 255.0 # Normalisasi gambar
    return image
# Loop untuk load dan preprocess gambar di folder Test
for filename in os.listdir(test_folder_path):
    image = load_and_preprocess_test_image(filename)
    test_images.append(image)
```

```
# Konversi ke numpy array
test_images = np.array(test_images)

# Prediksi
start_time = time.time()
predictions = model.predict(test_images)
end_time = time.time()

# Menampilkan hasil prediksi
for i in range(len(test_filenames)):
    gender = 'Male' if predictions[i] > 0.5 else 'Female'
    print(f"File: {test_filenames[i]}, Predicted Gender:
{gender}")

print()
print(f"Total prediction time: {end_time - start_time}
seconds")
```

Result Predicted Gender

```
1/1 [===================] - Os 419ms/step
File: cew1.jpeg, Predicted Gender: Female
File: cew2.jpg, Predicted Gender: Female
File: cew3.jpeg, Predicted Gender: Female
File: cew4.jpg, Predicted Gender: Female
File: cew5.jpg, Predicted Gender: Female
File: cow1.jpg, Predicted Gender: Male
File: cow2.jpeg, Predicted Gender: Male
File: cow3.jpeg, Predicted Gender: Male
File: cow4.jpg, Predicted Gender: Male
File: cow5.jpeg, Predicted Gender: Male
File: cow5.jpeg, Predicted Gender: Male
```

Inference Time: 0,04479053020477295 S

Kesimpulan

1. Hasil Evaluasi Model

Epoch-10 Value

Parameter	VGG-16	VGG-19	ResNet-50	ResNet-101	GoogleNet-V3	Max	Min	Average
1. Accuracy	0,9975	0,9705	0,7949	0,8306	0,9674	0,9775	0,7949	0,9082
2. Val.Accuracy	0,8960	0,8700	0,7380	0,7520	0,8570	0,8960	0,7380	0,8226

POV Hasil Evaluasi Model-Epoch-10 Value

- Perbandingan Evaluasi Model pada Epoch-10 Value, VGG-16 menghasilkan
 Hasil Evaluasi Model paling optimal dengan Accuracy 0,9775 & Validasi
 Accuracy 0,8960
- 2. Inference Time

Kesimpulan

2. Hasil Evaluasi Model

Max.Value

Parameter	VGG-16	VGG-19	ResNet-50	ResNet-101	GoogleNet-V3	Max	Min	Average
1. Accuracy	0,9975	0,9776	0,7949	0,8036	0,9674	0,9975	0,7949	0,9082
2. Val.Accuracy	0,9010	0,8970	0,7670	0,7550	0,8590	0,9010	0,7550	0,8358

POV Hasil Evaluasi Model Max.Value

Perbandingan Evaluasi Model pada Max. Value, VGG-16 menghasilkan Hasil
 Evaluasi Model paling optimal dengan Accuracy 0,9975 & Validasi Accuracy
 0,9010

Kesimpulan

3. Hasil Evaluasi Model VGG-16 lebih baik dibanding Model Lain (ResNet-50 & ResNet-101)

Epoch-10 Value

Parameter	VGG-16	VGG-19	ResNet-50	ResNet-101	GoogleNet-V3	Max	Min	Average
1. Accuracy	0,9975	0,9705	0,7949	0,8306	0,9674	0,9775	0,7949	0,9082
2. Val.Accuracy	0,8960	0,8700	0,7380	0,7520	0,8570	0,8960	0,7380	0,8226

VGG-16 Memiliki Hasil Evaluasi Model Lebih Baik dibanding ResNet-50 & ResNet-101

- 1. Pre-Trained Model VGG-16 memiliki kompleksitas layer yang lebih baik untuk diimplementasikan pada kasus klasifikasi wajah dibanding ResNet.
- 2. ResNet yang memiliki layer lebih dalam memerlukan lebih banyak epoch untuk mencapai konvergensi.

Continous Improvement

1. Meningkatkan Akurasi ResNet-50 & ResNet-101 (Model dengan Hasil Evaluasi Accuracy Terendah)

Parameter	VGG-16	VGG-19	ResNet-50	ResNet-101	GoogleNet-V3	Max	Min	Average
1. Accuracy	0,9975	0,9705	0,7949	0,8306	0,9674	0,9775	0,7949	0,9082
2. Val.Accuracy	0,8960	0,8700	0,7380	0,7520	0,8570	0,8960	0,7380	0,8226

1. Melakukan Augmentasi Data Image

Source Code

```
# Fungsi untuk augmentasi
def train_val_generators(TRAINING_DIR, VALIDATION_DIR, size):
   train_datagen = ImageDataGenerator(
     rescale=1./255.,
     rotation_range=20,
     zoom_range=0.2,
     shear_range=0.2,
     horizontal_flip=True,
     fill_mode='nearest'
   train_generator = train_datagen.flow_from_directory(
     directory=TRAINING_DIR,
     batch_size=32,
     target_size=size,
     class_mode='binary
   validation_datagen = ImageDataGenerator(
     rescale=1./255.
   validation_generator =
validation_datagen.flow_from_directory(
     directory=VALIDATION_DIR,
     batch_size=32,
     target_size=size.
     class_mode='binary
   return train_generator, validation_generator
train_generator_res, validation_generator_res =
train_val_generators(train_dir, validation_dir, (224, 224))
```

Result Predicted Gender

```
hasilnya (waktu, steps, akurasi, val_akurasi):

418s 4s/step 0.5337 0.7732
497s 5s/step 0.5648 0.7512
644s 6s/step 0.6666 0.5878
719s 7s/step 0.7181 0.7512
719s 7s/step 0.7382 0.7695
716s 7s/step 0.7479 0.8317
728s 7s/step 0.6341 0.6232
710s 7s/step 0.7325 0.7634
711s 7s/step 0.7688 0.8317
735s 7s/step 0.7790 0.7293
```

Hasil Evaluasi

1. Hasil Augmentasi mengalami penurunan nilai Validasi Akurasi hingga 0,5878 & 0,6232

Continous Improvement

1. Meningkatkan Akurasi ResNet-50 & ResNet-101 (1/2)

Parameter	VGG-16	VGG-19	ResNet-50	ResNet-101	GoogleNet-V3	Max	Min	Average
1. Accuracy	0,9975	0,9705	0,7949	0,8306	0,9674	0,9775	0,7949	0,9082
2. Val.Accuracy	0,8960	0,8700	0,7380	0,7520	0,8570	0,8960	0,7380	0,8226

2. Merubah Environment dari CPU ke GPU

-ResNet-50

import os os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' from tensorflow.keras.applications import ResNet50V2 from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras.optimizers import Adam base_model = ResNet50V2(weights='imagenet', include_top=False, input_shape=(128, 128, 3)) x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) predictions = Dense(1, activation='sigmoid')(x)

Epoch	Accuracy	Val.Accuracy	Train Time (s)	Train Speed (ms/step)
1	0,7673	0,8780	15	32
2	0,9753	0,8960	4	28
3	0,9883	0,8940	3	28
4	0,9983	0,8940	3	28
5	0,9998	0.8960	4	28
6	1,0000	0,9020	4	28
7	1,0000	0,9040	4	28
8	1,0000	0.9030	3	28
9	1,0000	0,9030	4	28
10	1,0000	0,9040	4	28
Max	1,0000	0,9040	15	32
Min	0,7673	0,8780	3	28
Average	0,9729	0,8969	5	28

Hasil Evaluasi

1/1 [===================================
File: cew1.jpeg, Predicted Gender: Female
File: cew2.jpg, Predicted Gender: Female
File: cew3.jpeg, Predicted Gender: Female
File: cew4.jpg, Predicted Gender: Female
File: cew5.jpg, Predicted Gender: Female
File: cow1.jpg, Predicted Gender: Male
File: cow2.jpeg, Predicted Gender: Male
File: cow3.jpeg, Predicted Gender: Male
File: cow4.jpg, Predicted Gender: Male
File: cow5.jpeg, Predicted Gender: Male
Total prediction time: 0.4479053020477295 seconds

Inference Time: 0,04479053020477295 S

Continous Improvement

1. Meningkatkan Akurasi ResNet-50 & ResNet-101 (2/2)

Parameter	VGG-16	VGG-19	ResNet-50	ResNet-101	GoogleNet-V3	Max	Min	Average
1. Accuracy	0,9975	0,9705	0,7949	0,8306	0,9674	0,9775	0,7949	0,9082
2. Val.Accuracy	0,8960	0,8700	0,7380	0,7520	0,8570	0,8960	0,7380	0,8226

2. Merubah Environment dari CPU ke GPU

-ResNet-101

Epoch	Accuracy	Val.Accuracy	Train Time (s)	Train Speed (ms/step)
1	0,7713	0,8880	27	56
2	0,9815	0,8960	6	48
3	0,9990	0,8990	6	49
4	0,9998	0,9040	6	47
5	1,0000	0,9070	6	48
6	1,0000	0,9090	6	47
7	1,0000	0,9090	6	47
8	1,0000	0,9090	6	48
9	1,0000	0,9110	6	48
10	1,0000	0,9130	6	49
Max	1,0000	0,9130	27	56
Min	0,7713	0,8880	6	47
Average	0,9752	0,9045	8	49

Inference Time: 0,09398868083953857 S

- 1. Meningkatkan Akurasi ResNet-50 & ResNetNet-101 dicoba dilakukan 2 Metode yaitu melakukan Augmentasi Data Image dan Merubah Environment dari CPU ke GPU.
- 2. Hasil Akurasi ResNet-50 & ResNet-101 memiliki hasil akurasi lebih baik hingga mencapai 100% dan Validasi Akurasi >90% ketika Merubah Merubah Environment dari CPU ke GPU.

