EAIiIB	Piotr Morawiecki, Tymoteusz Paszun		Rok II	Grupa 3a	Zespół 6
Temat:	Fale podłużne w c	iałach stałych	Numer ćwiczenia: 29		
Data wykonania: 8.11.2017r.	Data oddania: 15.11.2017r.	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	Ocena:

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie modułu Younga dla różnych materiałów na bazie pomiarów prędkości rozchodzenia się fal dźwiękowych (podłóżnych) w prętach.

2 Wstęp teoretyczny

$$\lambda_i = \frac{2l}{i}$$

$$v_i = \lambda_i f$$

$$E = \rho v^2$$

3 Wykonanie ćwiczenia

- Pomiary wymiarów próbek badanych materiałów.
- Pomiary masy próbek badanych materiałów.
- Pomiary częstotliwości dźwieku wydawanego przez pręty po uderzeniu.

4 Wyniki pomiarów

4.1 Wymiary oraz masa próbek

4.2 Pręt miedziany

Zmierzona długość pręta miedzianego: $l=1802\,\mathrm{mm}.$

Tablica 1: Pomiary częstotliwości dla pręta miedzianego

Harmoniczna	$\operatorname{Częstotliwość} [\operatorname{Hz}]$	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Prędkość fali $\left[\frac{m}{s}\right]$
f_0	$\frac{1027,1+1031,8}{2} = 1029,45$	4,81	3604,00	3710,14
f_1	$\frac{2059,7+2062,1}{2} = 2060,90$	$2,\!35$	1802,00	3713,74
f_2	$\frac{3090,9+3094,4}{2} = 3092,65$	$3,\!53$	$1201,\!33$	3715,30
f_3	$\frac{4121,7+4125,2}{2} = 4123,45$	$3,\!53$	901,00	$3715,\!23$
f_4	$\frac{5154,0+5157,6}{2} = 5155,80$	3,53	720,80	3716,30
			Średnia:	3714,14

4.3 Pręt stalowy

Zmierzona długość pręta stalowego: $l=1802\,\mathrm{mm}.$

Tablica 2: Pomiary częstotliwości dla pręta stalowego

Harmoniczna	Częstotliwość [Hz]	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Prędkość fali $\left[\frac{m}{s}\right]$
f_0	$\frac{1401,80+1407,70}{2} = 1404,75$	5,88	3604,00	5062,72
f_1	$\frac{2903,80+2907,40}{2} = 2905,60$	$3,\!53$	1802,00	5235,89
f_2	$\frac{4309,90+4314,60}{2} = 4312,25$	4,71	1201,33	5180,45
f_3	$\frac{5715,40+5719,00}{2} = 5717,20$	$3,\!53$	901,00	$5151,\!20$
f_4	$\frac{7123,30+7217,40}{2} = 7170,35$	$94,\!12$	720,80	5168,38
			Średnia:	5159,73

4.4 Pręt z mosiądzu

Zmierzona długość pręta wykonanego z mosiądzu: $l=998\,\mathrm{mm}.$

Tablica 3: Pomiary częstotliwości dla pręta z mosiądzu

Harmoniczna	Częstotliwość [Hz]	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Prędkość fali $\left[\frac{m}{s}\right]$
f_0	$\frac{1679,80+1685,70}{2} = 1682,75$	5,88	1996,00	3358,77
f_1	$\frac{3463,20+3472,10}{2} = 3467,65$	8,82	998,00	3460,71
f_2	$\frac{5149,20+5161,00}{2} = 5155,10$	11,76	$665,\!33$	3429,86
f_3	$\frac{6837,50+6940,40}{2} = 6888,95$	$102,\!94$	499,00	3437,59
f_4	$\frac{8615,10+8629,80}{2} = 8622,45$	14,71	399,20	3442,08
			Średnia:	3425,80

4.5 Pręt aluminiowy

- 5 Wykresy
- 6 Opracowanie wyników
- 6.1 Analiza błędów
- 6.2 Niepewności pomiarów
- 6.3 Ocena zgodności uzyskanych wyników
- 7 Wnioski