

# Greater New York Programming Contest Adelphi University Garden City, NY

IBW. 🔥

event sponsors

## **E • Route Redundancy**

A city is made up exclusively of one-way streets. Each street in the city has a capacity, the maximum number of cars it can carry per hour. Any route (path) also has a capacity, which is the minimum of the capacities of the streets along that route.

The *redundancy ratio* from point **A** to point **B** is the ratio of the maximum number of cars that can get from **A** to **B** in an hour using all routes simultaneously, to the maximum number of cars that can get from **A** to **B** in an hour using just one route. The minimum redundancy ratio is the number of cars that can get from **A** to **B** in an hour using all possible routes simultaneously, divided by the capacity of the single route with the largest capacity.

#### Input

The first line of input contains a single integer P, (1  $\leq P \leq$  1000), which is the number of data sets that follow. Each data set consists of several lines and represents a directed graph with positive integer weights.

The first line of each data set contains five space separated integers. The first integer,  $\mathbf{D}$  is the data set number. The second integer,  $\mathbf{N}$  (2 <=  $\mathbf{N}$  <= 1000), is the number of nodes in the graph. The third integer,  $\mathbf{E}$ , ( $\mathbf{E}$  >= 1), is the number of edges in the graph. The fourth integer,  $\mathbf{A}$ , (0 <=  $\mathbf{A}$  <  $\mathbf{N}$ ), is the index of point  $\mathbf{A}$ . The fifth integer,  $\mathbf{B}$ , (0 <=  $\mathbf{B}$  <  $\mathbf{N}$ ,  $\mathbf{A}$ !=  $\mathbf{B}$ ), is the index of point  $\mathbf{B}$ .

The remaining  $\boldsymbol{E}$  lines describe each edge. Each line contains three space separated integers. The first integer,  $\boldsymbol{U}$  (0 <=  $\boldsymbol{U}$  < N), is the index of node  $\boldsymbol{U}$ . The second integer,  $\boldsymbol{V}$  (0 <=  $\boldsymbol{V}$  <  $\boldsymbol{N}$ ,  $\boldsymbol{V}$  !=  $\boldsymbol{U}$ ), is the index of node  $\boldsymbol{V}$ . The third integer,  $\boldsymbol{W}$  (1 <=  $\boldsymbol{W}$  < 1000), is the capacity (weight) of the path from  $\boldsymbol{U}$  to  $\boldsymbol{V}$ .

#### Output

For each data set there is one line of output. It contains the data set number (N) followed by a single space, followed by a floating-point value which is the minimum *redundancy ratio* to 3 digits after the decimal point.



### Greater New York Programming Contest

Adelphi University Garden City, NY



| Sample Input | Sample Output |
|--------------|---------------|
| 1            | 1 1.667       |
| 1 7 11 0 6   |               |
| 0 1 3        |               |
| 0 3 3        |               |
| 1 2 4        |               |
| 2 0 3        |               |
| 2 3 1        |               |
| 2 4 2        |               |
| 3 4 2        |               |
| 3 5 6        |               |
| 4 1 1        |               |
| 4 6 1        |               |
| 569          |               |