

Università degli Studi di Cagliari

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA MAGISTRALE IN MATEMATICA

SPAZI TOPOLOGICI METRIZZABILI

Relatore Prof. Andrea Loi Tesi di Laurea di Silvia Schirra

Anno Accademico 2010/2011

Introduzione

In questa tesi affronteremo il problema della metrizzabilità di uno spazio topologico, cioè analizzeremo sotto quali condizioni uno spazio topologico è metrizzabile. Ricordiamo che uno spazio topologico (X, \mathcal{T}) è metrizzabile quando è possibile trovare una metrica d che induce su X la topologia \mathcal{T} .

Il fatto che uno spazio sia metrizzabile è un'importante punto d'arrivo: poter definire una metrica rende possibile la dimostrazione di importanti teoremi e proprietà relativi allo spazio dato. Quindi è di fondamentale importanza in topologia trovare delle condizioni che ci garantiscano che uno spazio sia metrizzabile, dato che in generale non è semplice stabilirlo. Un primo importante risultato è stato ottenuto negli anni '20 da Urysohn, ma il problema è stato interamente risolto negli anni '50 da Nagata e Smirnov in modo indipendente.

Il Teorema di Urysohn afferma che uno spazio regolare che possiede una base numerabile è metrizzabile. Tuttavia questo teorema ci fornisce delle condizioni che sono sufficienti ma non necessarie. Infatti, esistono degli spazi metrizzabili che sono regolari ma non possiedono una base numerabile: uno di questi è \mathbb{R} con la topologia discreta. Ricordiamo che richiedere che lo spazio abbia una base numerabile significa dire che esiste una base

$$\mathscr{B} = \bigcup_{n \in \mathbb{Z}_+} \mathscr{B}_n,$$

dove ogni \mathscr{B}_n è finita.

Il Teorema di Nagata-Smirnov, che è il risultato più importante, asserisce che uno spazio X è metrizzabile se e solo se è regolare e possiede una base numerabile localmente finita, ovvero se esiste una base

$$\mathscr{B} = \bigcup_{n \in \mathbb{Z}_+} \mathscr{B}_n,$$

dove ogni \mathscr{B}_n è localmente finita. ¹

La tesi è suddivisa in 2 capitoli.

Nel primo vengono ripresi i concetti di spazio topologico, spazio metrico, assiomi di numerabilità, assiomi di separazione e applicazioni tra spazi topologici.

Il secondo capitolo è il cuore della tesi, nel quale vengono dimostrati il Teorema di Urysohn e di Nagata-Smirnov.

L' idea della dimostrazione del Teorema di Nagata-Smirnov è la seguente. Dopo aver dimostrato che uno spazio regolare con una base numerabile localmente finita è normale, costruiamo una famiglia di funzioni a variabili reali $\{f_{n,B}(x)\}_{(n,B)\in J}$ su X che separa punti da insiemi chiusi. Utilizziamo queste funzioni per definire la funzione $F: X \to [0,1]^J$ come segue

$$F(x) = (f_{n,B}(x))_{(n,B)\in J}.$$

Infine, dimostriamo che se queste funzioni sono scelte in modo opportuno, F è effettivamente un imbedding da X allo spazio metrico $(\mathbb{R}^J, \bar{\rho})$.

 $^{^1}$ Ricordiamo che una famiglia $\mathscr A$ di sottoinsiemi di X è detta localmente finita in X se ogni punto di X ha un intorno che interseca solo un numero finito di elementi di $\mathscr A$.

Indice

Introduzione			2
1	Richiami		5
	1.1	Spazi topologici	5
	1.2	Spazi metrici	7
	1.3	Assiomi di Separazione e Numerabilità	10
		1.3.1 Assiomi di Numerabilità	10
		1.3.2 Assiomi di Separazione	10
	1.4	Applicazioni tra Spazi Topologici	11
2	Spazi topologici metrizzabili		13
	2.1	Spazi metrizzabili	13
	2.2	Finitezza locale	14
	2.3	Teorema di Urysohn	16
	2.4	Teorema di Nagata-Smirnov	21
Bi	Bibliografia		

Capitolo 1

Richiami

1.1 Spazi topologici

Sia X un insieme non vuoto. Una **topologia** su X è una classe non vuota \mathscr{T} di sottoinsiemi di X, soddisfacenti le seguenti proprietà:

- 1. $\emptyset, X \in \mathscr{T}$;
- 2. l'unione di un numero qualsiasi di insiemi di \mathcal{T} appartiene a \mathcal{T} ;
- 3. l'intersezione finita di insiemi qualsiasi di \mathcal{T} appartiene a \mathcal{T} .

Gli elementi di \mathscr{T} si chiamano **insiemi aperti** o **aperti** della topologia \mathscr{T} . Uno **spazio topologico** è un insieme X dotato di una topologia \mathscr{T} , ed è denotato con (X,\mathscr{T}) . Gli elementi di X sono chiamati **punti** e l'insieme X **supporto** dello spazio topologico (X,\mathscr{T}) .

Definizione 1.1.1. Siano \mathscr{T} e \mathscr{T}' due topologie su un insieme non vuoto X. Diremo che \mathscr{T} è più fine di \mathscr{T}' se ogni aperto di \mathscr{T}' è anche aperto di \mathscr{T} .

Esempio 1.1.2. La topologia $\mathcal{T}_{ban} = \{\emptyset, X\}$ è chiamata la **topologia banale** e lo spazio (X, \mathcal{T}_{ban}) è chiamato spazio topologico banale.

Esempio 1.1.3. La topologia $\mathcal{T}_{dis} = P(X)$ è detta la topologia discreta e (X, \mathcal{T}_{dis}) è uno spazio topologico discreto. In uno spazio topologico discreto tutti gli insiemi sono aperti.

Osservazione 1.1.4. Osserviamo che la topologia banale è la meno fine tra tutte le topologie su un insieme non vuoto X, mentre la topologia discreta è la più fine.

Definizione 1.1.5. Sia (X, \mathcal{T}) uno spazio topologico. Un insieme $C \subset X$ è detto chiuso se il suo complementare $X \setminus C$ è aperto, cioè se $X \setminus C \in \mathcal{T}$.

Definizione 1.1.6. Sia X un insieme. Una base per una topologia su X è una collezione \mathscr{B} di sottoinsiemi di X, chiamati elementi di base, tale che

- 1. $per \ ogni \in X$, esiste almeno un elemento di base B che contiene x;
- 2. se x appartiene all'intersezione di due elementi di base B_1 e B_2 , allora esiste un elemento di base B_3 contenente x tale che $B_3 \subset B_1 \cap B_2$.

Se $\mathcal B$ soddisfa queste due condizioni, possiamo definire la topologia $\mathcal T$ generata da $\mathcal B$ come segue: Un sottoinsieme U di X è un aperto in X se per ogni $x \in U$, esiste un elemento di base $B \in \mathcal B$ tale che $x \in B$ e $B \subset U$.

Osservazione 1.1.7. Ogni elemento di base è un elemento di \mathcal{I} .

Esempio 1.1.8. Sia X un insieme qualsiasi e sia \mathscr{B} la collezione di tutti i sottoinsiemi di X costituiti da un solo punto; \mathscr{B} è una base per la topologia discreta su X. Infatti, prendiamo un qualsiasi aperto U non vuoto e prendiamo $x_0 \in U$; $\{x_0\}$ è un elemento di base che contiene x_0 e che è contenuto in U. Dunque \mathscr{B} è una base per la topologia discreta.

Lemma 1.1.9. Siano \mathscr{B} e \mathscr{B}' le basi per le topologie \mathscr{T} e \mathscr{T}' , rispettivamente, su X. Allora le sequenti affermazioni sono equivalenti:

- 1. \mathcal{T}' è più fine di \mathcal{T} ;
- 2. per ogni $x \in X$ e ogni elemento di base $B \in \mathcal{B}$ contenente x, esiste un elemento di base $B' \in \mathcal{B}'$ tale che $x \in B' \subset B$.

Dimostrazione. 2. \Longrightarrow 1. Dato un elemetro U di \mathscr{T} , vogliamo mostrare che $U \in \mathscr{T}'$. Sia $x \in U$. Poichè \mathscr{B} genera \mathscr{T} , esiste per definizione di base, un elemento $B \in \mathscr{B}$ tale che $x \in B \subset U$. Per la condizione 2 esiste $B' \in \mathscr{B}'$ tale che $x \in B' \subset B$. Allora, $x \in B' \subset U$, so $U \in \mathscr{T}'$, per definizione.

 $1. \Longrightarrow 2$. Sia $x \in X$ e $B \in \mathcal{B}$, con $x \in B$. B appartiene a \mathcal{T} per definizione e, per la condizione 1., $\mathcal{T} \subset \mathcal{T}'$; segue che $B \in \mathcal{T}'$. Poichè \mathcal{T}' è generato da \mathcal{B}' , allora esiste un elemento $B' \in \mathcal{B}'$ tale che $x \in \mathcal{B}' \subset B$.

1.2 Spazi metrici

Uno **spazio metrico** è una coppia (X,d) costituita da un insieme non vuoto X sul quale è definita una distanza o metrica d, cioè un'applicazione

$$d: X \times X \longrightarrow \mathbb{R}$$

tale che:

$$\forall v, w, z \in X$$

- 1. $d(v, w) \ge 0$
- 2. $d(v, w) = 0 \Rightarrow v = w$
- 3. d(v, w) = d(w, v)
- 4. $d(v, w) + d(w, z) \ge d(v, z)$ (disuguaglianza triangolare)

Dato $\epsilon > 0$, l'insieme

$$B_d(x,\epsilon) = \{y | d(x,y) < \epsilon\}$$

di tutti i punti y la cui distanza da x è inferiore a ϵ , è detto **bolla di centro** \mathbf{x} e raggio ϵ .

Definizione 1.2.1. Data una metrica d su un insieme X, la famiglia di tutte le bolle $B_d(x,\epsilon)$, per $x \in X$ e $\epsilon > 0$, è una base per una topologia su X, chiamata topologia della metrica indotta da d.

Un insieme U è aperto nella topologia della metrica indotta da d se e solo se per ogni $y \in U$, esiste $\delta > 0$ tale che $B_d(y, \delta) \subset U$.

Definizione 1.2.2. Sia (X,d) uno spazio metrico. Un sottoinsieme A di X è limitato se esiste un numero M tale che

$$d(a_1, a_2) \le M$$

per ogni coppia di punti a_1, a_2 di A. Se A è limitato e non vuoto, il diametro di A è dato da

$$diam A = sup\{d(a_1, a_2)|a_1, a_2 \in A\}.$$

La limitatezza non è una proprietà topologica, ma dipende dalla metrica che si utilizza. Tuttavia, se X è uno spazio topologico con una metrica d, è sempre possibile trovare una metrica \bar{d} , equivalente a d, rispetto alla quale ogni sottoinsieme di X è limitato, come mostra il seguente teorema.

Teorema 1.2.3. Sia X uno spazio metrico nel quale è definita una metrica d. Definiamo $\bar{d}: X \times X \to \mathbb{R}$ come

$$\bar{d}(x,y) = \min\{d(x,y), 1\}$$

Allora la metrica \bar{d} induce la stessa topologia di ded è chiamata **metrica standard** limitata.

Dimostrazione. Per prima cosa mostriamo che \bar{d} soddisfa le proprietà della metrica:

- 1. $\bar{d}(x,y) \ge 0$ e $\bar{d}(x,y) = 0$ sse x = y.
 - Se $d(x,y) \ge 1$, allora $\bar{d}(x,y) = 1 > 0$.

Se d(x,y) < 1, allora $\bar{d}(x,y) = d(x,y)$, che è ≥ 0 per definizione e vale l'uguale se e solo se x = y.

- 2. $\bar{d}(x,y) = \bar{d}(y,x)$.
 - Se d(x,y) < 1, allora $\bar{d}(x,y) = d(x,y) = d(y,x) = \bar{d}(y,x)$.

Se $d(x,y) \ge 1$, allora $d(y,x) \ge 1$ e quindi $\bar{d}(x,y) = 1 = \bar{d}(y,x)$.

3. $\bar{d}(x,z) \le \bar{d}(x,y) + \bar{d}(y,z)$.

Se $d(x,y) \ge 1$ o $d(y,z) \ge 1$, allora $\bar{d}(x,y) + \bar{d}(y,z) \ge 1$ e dato che $\bar{d}(x,z) \le 1$ per definizione, la disuguaglianza è verificata.

Se invece sia d(x,y) che d(y,z) sono minori di 1 abbiamo $d(x,z) \leq d(x,y) + d(y,z) = \bar{d}(x,y) + \bar{d}(y,z)$. Poichè $\bar{d}(x,z) \leq d(x,z)$ per definizione, la disuguaglianza risulta verificata.

Dobbiamo, ora verificare che le due metriche inducono la stessa topologia. Osserviamo che in un qualsiasi spazio metrico la collezione delle bolle di raggio $\epsilon < 1$ forma una base per la topologia metrica, ogni elemento di base contenente x contiene una tale bolla di raggio ϵ e centro x. Ne segue che d e \bar{d} inducono la stessa topologia su X, poichè le collezioni di bolle di raggio $\epsilon < 1$, rispetto alle 2 metriche, sono la stessa collezione.

Lemma 1.2.4. Siano d e d' due metriche su un insieme X; siano \mathscr{T} e \mathscr{T}' le topologie da loro indotte, rispettivamente. Allora \mathscr{T}' è più fine di \mathscr{T} se e solo se per ogni $x \in X$ e ogni $\epsilon > 0$ esiste un $\delta > 0$ tale che

$$B_{d'}(x,\delta) \subset B_d(x,\epsilon)$$
.

Dimostrazione. Supponiamo che \mathscr{T}' sia più fine di \mathscr{T} . Dato l'elemento di base $B_d(x,\epsilon)$ per \mathscr{T} , esiste per il Lemma 1.1.9 un elemento di base B' per la topologia \mathscr{T}' tale che $x \in B' \subset B_d(x,\epsilon)$. All'interno di B' possiamo trovare una bolla $B_{d'}(x,\delta)$ centrata in x.

Viceversa, supponiamo che esistano le due bolle di raggio ϵ e δ . Dato un elemento di base B per $\mathscr T$ contenente x, possiamo trovare all'interno di B una bolla $B_d(x,\epsilon)$ centrata in x. Allora esiste un δ tale che $B_{d'}(x,\delta) \subset B_d(x,\epsilon)$. Allora per il Lemma 1.1.9 $\mathscr T'$ è più fine di $\mathscr T$.

Definizione 1.2.5. Dato un insieme di indici J e dati i punti $\mathbf{x} = (x_{\alpha})_{\alpha \in J}$ e $\mathbf{y} = (y_{\alpha})_{\alpha \in J}$ di \mathbb{R}^{J} , definiamo la metrica $\bar{\rho}$ su \mathbb{R}^{J} come segue

$$\bar{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{\bar{d}(x_{\alpha}, y_{\alpha}) | \alpha \in J\},\$$

dove \bar{d} è la metrica limitata standard su \mathbb{R} ; $\bar{\rho}$ è chiamata **metrica uniforme** di \mathbb{R}^J e la topologia che induce è chiamata **topologia uniforme**.

Definizione 1.2.6. Siano X e Y due spazi topologici. La **topologia prodotto** su $X \times Y$ è la topologia avente come base la collezione \mathscr{B} di tutti gli insiemi della forma $U \times V$, dove U è un sottoinsieme aperto di X e V è un sottoinsieme aperto di Y.

Lemma 1.2.7. La topologia uniforme su \mathbb{R}^J è più fine della topologia prodotto.

Dimostrazione. Supponiamo che siano dati un punto $\mathbf{x} = (x_{\alpha})_{\alpha \in J}$ e un elemento di base per la topologia prodotto $\prod U_{\alpha}$ su \mathbf{x} . Siano $\alpha_1, ..., \alpha_n$ gli indici per i quali $U_{\alpha} \neq \mathbb{R}$. Allora per ogni i, scegliamo $\epsilon_i > 0$ tale che la bolla di raggio ϵ_i centrata in x_{α_i} rispetto alla metrica \bar{d} sia contenuto in U_{α_i} ; segue dal fatto che U_{α_i} è aperto in \mathbb{R} . Sia $\epsilon = min\{\epsilon_1, ..., \epsilon_n\}$; allora la bolla di raggio ϵ centrata in \mathbf{x} nella metrica $\bar{\rho}$ è contenuta in $\prod U_{\alpha}$. Se \mathbf{z} è un punto di \mathbb{R}^J tale che $\bar{\rho}(\mathbf{x}, \mathbf{z}) < \epsilon$, allora $\bar{d}(x_{\alpha}, z_{\alpha}) < \epsilon$

per ogni α , dunque $\mathbf{z} \in \prod U_{\alpha}$. Segue che la topologia uniforme è più fine della topologia prodotto.

1.3 Assiomi di Separazione e Numerabilità

1.3.1 Assiomi di Numerabilità

Definizione 1.3.1. Diciamo che uno spazio X possiede una **base locale** in x numerabile se esiste una collezione numerabile \mathcal{B} di intorni di x, tale che ogni intorno di x contenga almeno un elemento di \mathcal{B} . Se questo vale per ogni punto di X si dice che X è $\mathbf{N_1}$ o che soddisfa il primo assioma di numerabilità.

Definizione 1.3.2. Se uno spazio topologico (X, \mathcal{T}) possiede una base numerabile per la topologia \mathcal{T} , diciamo che X è $\mathbf{N_2}$ o che soddisfa il secondo assioma di numerabilità.

Definizione 1.3.3. Uno spazio topologico è detto uno spazio N_3 , o che soddisfa il terzo assioma di numerabiltà, se esiste un sottoinsieme numerabile $S \subset X$ tale che $\bar{S} = X$.

1.3.2 Assiomi di Separazione

Definizione 1.3.4. Uno spazio topologico X è uno spazio di Hausdorff (o spazio T_2) se dati due punti x e y in X con $x \neq y$ esistono due aperti U e V di X contenenti rispettivamente x e y, tali che $U \cap V = \emptyset$.

Proposizione 1.3.5. In uno spazio di Hausdorff X costituito da almeno due punti, ogni punto è un sottoinsieme chiuso.

Dimostrazione. Siano x e y due punti di X con $x \neq y$. Esistono allora due aperti U_x e V_y disgiunti di X, tali che $x \in U_x$ e $y \in V_y$. In particolare $y \in V_y \subset X \setminus \{x\}$. Segue che $X \setminus \{x\}$ è unione degli aperti V_y e quindi è aperto. Dunque x è chiuso. \square

Definizione 1.3.6. Uno spazio topologico X dove ogni punto è un chiuso è detto T_1 .

Definizione 1.3.7. Sia X uno spazio T_1 . Diciamo che X è **regolare** o T_3 , se per ogni coppia costituita da un punto x e da un insieme chiuso B disgiunto da x, esistono insiemi aperti e disgiunti contenenti x e B rispettivamente.

Definizione 1.3.8. Sia X uno spazio T_1 . Lo spazio X è detto **normale** o T_4 se per ognil coppia A, B di sottoinsiemi chiusi disgiunti di X esistono insiemi aperti disgiunti che contengono A e B rispettivamente.

Osservazione 1.3.9. Normale \Longrightarrow Regolare \Longrightarrow Hausdorff.

1.4 Applicazioni tra Spazi Topologici

Definizione 1.4.1. Siano X e Y due spazi topologici. Diciamo che un'applicazione $f: X \to Y$ è **continua** nel punto $x \in X$ se, per ogni aperto V di Y contenente f(x), esiste un aperto U di X contenente x, tale che $f(U) \subset V$.

Definizione 1.4.2. Siano X e Y due spazi topologici. Diaciamo che un'applicazione $f: X \to Y$ è un **omeomorfismo** se f è continua, biunivoca e l'inversa $f^{-1}: Y \to X$ è continua.

Definizione 1.4.3. Un'applicazione $f: X \to Y$ è detta imbedding topologico se l'applicazione $X \to f(X)$ indotta da f su f(X) è un omeomorfismo. In particolare un omeomorfismo $f: X \to Y$ è un imbedding topologico.

Capitolo 2

Spazi topologici metrizzabili

2.1 Spazi metrizzabili

Definizione 2.1.1. Uno spazio topologico X è **metrizzabile** se esiste una metrica d sull'insieme X che induce la topologia di X. Uno spazio metrico è uno spazio metrizzabile X insieme ad una metrica d che induce la topologia di X.

Non tutti gli spazi son metrizzabili.

Esempio 2.1.2. Prendiamo uno spazio metrico (X,d) contenente almeno due elementi. Per ogni coppia di elementi x, y con $x \neq y$ esistono sempre 2 apert disgiunti che contengono rispettivamente x e y. Infatti, se $d(x,y) = \epsilon$ basterà prendere come aperti le bolle centrate rispettivamente in x e y di raggio $\epsilon/2$. Prendiamo $X = \{a,b\}$ con la topologia $\mathcal{T} = \{X,\emptyset\}$. Non esistono 2 aperti disgiunti che contengano rispettivamente a e b. Quindi non esiste una metrica che induca \mathcal{T} e quindi (X,\mathcal{T}) non è metrizzabile.

Osservazione 2.1.3. Uno spazio discreto (X, \mathcal{T}_{dis}) è sempre metrizzabile. Infatti, basta prendere la metrica così definita: d(x,y)=0 se x=y e d(x,y)=1 se $x\neq y$. d è chiamata metrica discreta e induce, appunto, la topologia discreta. Mostriamo prima di tutto che ogni singoletto è un disco aperto di (X,d). Sia $x_0 \in X$ ed r=1. Allora si ha che $B(x_0,r)=\{y\in X:d(x_0,y)< r\}=\{y\in X:y=x_0\}=\{x_0\}$.

Poiché un disco aperto è un aperto di (X, d) allora vuol dire che ogni singoletto di X è un aperto. Da tale fatto segue che ogni sottoinsieme di $A \subset X$ è un aperto in (X, d) in quanto unione di singoletti. Concludendo d induce la topologia \mathcal{T}_{dis} .

Osservazione 2.1.4. Ogni spazio metrizzabile è di Hausdorff. Scegliamo una distanza d e sia $x \neq y$. Allora d(x,y) > 0. Se $0 < r < \frac{d(x,y)}{2}$, allora le bolle B(x,r) e B(y,r) sono disgiunte: infatti se esistesse $z \in B(x,r) \cap B(y,r)$, dalla disuguaglianza triangolare seguirebbe la contraddizione $d(x,y) \leq d(x,z) + (z,y) < 2r < d(x,y)$.

2.2 Finitezza locale

Definizione 2.2.1. Sia X uno spazio topologico. Una famiglia $\mathscr A$ di sottoinsiemi di X è detta **localmente finita** in X se ogni punto di X ha un intorno che interseca solo un numero finito di elementi di $\mathscr A$.

Lemma 2.2.2. Sia A una collezione localmente finita di sottoinsiemi di X. Allora

$$\overline{\bigcup_{A \in \mathscr{A}} A} = \bigcup_{A \in \mathscr{A}} \bar{A}.$$

Dimostrazione. Sia Y l'unione di tutti gli elementi di \mathscr{A} :

$$\bigcup_{A \in \mathscr{A}} A = Y.$$

In generale $\bigcup \bar{A} \subset \bar{Y}$. Verifichiamo che vale anche l'inclusione inversa $\bar{Y} \subset \bigcup \bar{A}$, sfruttando il fatto che \mathscr{A} è localmente finita. Sia $x \in \bar{Y}$; sia U un intorno di x che interseca solo un numero finito di elementi di \mathscr{A} , chiamiamoli $A_1, ..., A_k$. Allora x appartiene a uno degli insiemi $\bar{A}_1, ..., \bar{A}_k$ e quindi appartiene a $\bigcup \bar{A}$. Infatti, se così non fosse, l'insieme $U - \bar{A}_1 - ... - \bar{A}_k$ poterbbe essere un intorno di x che non interseca nessun elemento di \mathscr{A} e quindi non interseca Y, contraddicendo il fatto che $x \in \bar{Y}$.

Definizione 2.2.3. Una famiglia \mathscr{B} di sottoinsiemi di X è detta numerabile localmente finita se \mathscr{B} può essere espresso come unione numerabile di famiglie \mathscr{B}_n , ognuna delle quali è localmente finita.

Definizione 2.2.4. Sia $\mathscr A$ una collezione di sottoinsiemi dello spazio X. Una collezione $\mathscr B$ di sottoinsiemi di X è detta **raffinamento** di $\mathscr A$ se per ogni elemento

2.2 Finitezza locale

15

 $B \in \mathcal{B}$, esiste un elemento A di \mathscr{A} che contiene B. Se gli elementi di \mathscr{B} sono aperti \mathscr{B} è un raffinamento aperto di \mathscr{A} , se sono chiusi è un raffinamento chiuso di \mathscr{A} .

Lemma 2.2.5. Sia X uno spazio metrizzabile. Se $\mathscr A$ è un ricoprimento aperto di X, allora esiste un ricoprimento aperto ϵ di X che raffina $\mathscr A$ che è numerabile localmente finito.

Dimostrazione. Scegliamo un buon ordinamento < per la collezione \mathscr{A} . denotiamo con le lettere U, V, W, ... gli elementi di \mathscr{A} . Mettiamo una metrica su X. Sia n un intero positivo fissato. Dato un elemento U di \mathscr{A} , sia $S_n(U)$ il sottoinsieme di U ottenuto contraendo U, più precisamente

$$S_n(U) = \{x | B(x, 1/n) \subset U\}.$$

Utilizziamo il buon ordinamento < su $\mathscr A$ per passare ad un insieme ancora più piccolo. Per ogni U in $\mathscr A$ definiamo

$$T_n(U) = S_n(U) - \bigcup_{V < U} V.$$

Gli insiemi che otteniamo sono disgiunti. Infatti, sono separati da una distanza di almeno 1/n, cioè se V e W sono elementi distinti di \mathscr{A} , segue che, per ogni $x \in T_n(V)$ e per ogni $y \in T_n(W)$, $d(x,y) \geqslant 1/n$. Per provarlo, supponiamo che V < W. Poichè x sta in $T_n(V)$, allora x appartiene a $S_n(V)$, e quindi gli intorni di x di raggio 1/n stanno in V. D'altra parte, essendo V < W e $y \in T_n(W)$, la definizione dell'ultimo insieme ci dice che y non può stare in V. Segue che y non appartiene all'intorno di x di raggio 1/n. Gli insiemi $T_n(U)$ non sono ancora gli insiemi che cerchiamo, perchè non sappiamo se sono aperti. Quindi estendiamo ognuno di questi leggermente per ottenere un insieme aperto $E_n(U)$. Più precisamente, sia $E_n(U)$ l'intorno di raggio 1/3n di $T_n(U)$, cioè l'unione di tutte le bolle aperte diB(x,1/3n), per $x \in T_n(U)$. Gli insiemi ottenuti sono disgiunti. Infatti, se V e W sono elementi distinti di \mathscr{A} , facciamo vedere che $d(x,y) \geqslant 1/3n$ per $x \in E_n(V)$ e $y \in E_n(W)$; segue dalla disuguaglianza triangolare. Osserviamo che per ogni $V \in \mathscr{A}$, l'insieme $E_n(V)$ è contenuto in V. Definiamo

$$\xi_n = \{ E_n(U) | U \in \mathscr{A} \}.$$

 ξ_n è una collezione localmente finita di aperti che raffina \mathscr{A} . Infatti, ξ_n raffina \mathscr{A} , dato che $E_n(V) \subset V$ per ogni $V \in \mathscr{A}$. Inoltre, ξ_n è localmente finita, dato che, per ogni $x \in X$, l'intorno di raggio 1/6n di x può intersecare al più un elemento di ξ_n . Tuttavia, ξ_n non ricopre X, ma la collezione

$$\xi = \bigcup_{n \in \mathbb{Z}_+} \xi_n$$

si. Sia x un punto di X e sia \mathscr{A} la collezione con cui abbiamo ricoperto X; scegliamo U in modo che sia il primo elemento di \mathscr{A} (nel buon ordinamento <) che contiene x. Essendo U aperto, possiamo scegliere n in modo tale che $B(x,1/n)\subset U$. Allora, per definizione, $x\in S_n(U)$. Poichè U è il primo elemento di \mathscr{A} che contiene x, il punto x appartiene a $T_n(U)$. Allora anche x appartiene all'elemento $E_n(U)$ di ξ_n , come volevasi dimostrare.

2.3 Teorema di Urysohn

In questo paragrafo vedremo il teorema di Urysohn, il quale ci da delle condizioni sufficienti affinchè uno spazio topologico sia metrizzabile.

Definizione 2.3.1. Se A e B sono due sottoinsiemi di uno spazio topologico X e se esiste una funzione continua $f: X \to [0,1]$, tale che f(A) = 0 e f(B) = 1, diciamo che A e B possono essere separati da una funzione continua.

Lemma 2.3.2. (Lemma di Urysohn) Sia X uno spazio normale; siano A e B sottoinsiemi di X chiusi e disgiunti. Sia [a, b] un intervallo chiuso della retta reale. Allora esiste una mappa continua

$$f: X \to [a, b]$$

tale che f(x) = a per ogni x in A, e f(x) = b per ogni x in B.

Dimostrazione. Consideriamo solo il caso in cui l'intervallo sia [0,1]; il caso generale è una conseguenza. Sfruttando il fatto che X è normale, possiamo costruire una famiglia di aperti U_p di X, indicizzata dai numeri razionali. Utilizziamo questi insiemi per definire la funzione continua f.

Sia P l'insieme di tutti i numeri razionali nell'intervallo [0,1]. Definiamo, per ogni $p \in P$, un aperto U_p di X in modo che per p < q abbiamo $\bar{U}_p \subset U_q$. Quindi, gli insiemi U_p sono ordinati con l'inclusione nello stesso modo in cui i loro pedici sono ordinati nella retta reale. Essendo P numerabile, possiamo utilizzare l'induzione per definire gli insiemi U_p . Disponiamo gli elementi di P in una sequenza infinita, supponendo per comodità che 0 e 1 siano i primi due numeri di tale sequenza. Definiamo gli insiemi U_p come segue: sia $U_1 = X - B$. Essendo A un insieme chiuso contenuto in un insieme aperto, per la normalità di X, possiamo scegliere un aperto U_0 tale che $A \subset U_0$ e $\bar{U}_0 \subset U_1$. In generale, sia P_n l'insieme dei primi n numeri naturali sulla sequenza. Supponiamo che U_p sia definito per tutti i numeri razionali $p \in P_n$, tali che

$$p < q \Longrightarrow \bar{U}_p \subset U_q.$$
 (2.1)

Sia r il numero successivo alla sequenza; defianiamo U_r . Consideriamo l'insieme $P_{n+1}=P_n\cup\{r\}$. E' un sottoinsieme finito dell'intervallo [0,1], e come tale ha l'ordine indotto dalla relazione d'ordine usuale della retta reale. In un insieme finito semplicemente ordinato ogni elemento ha un elemento che lo precede immediatamente e uno che lo segue immediatamente. Lo zero e 1 sono, rispettivamente, il più piccolo e il più grande elemento dell'insieme semplicemente ordinato P_{n+1} e r non è nè 0 ne 1. Quindi, r ha, in P_{n+1} , un numero p che lo precede immediatamente e un numero q che lo segue immediatamente. Gli insiemi U_p e U_q sono già stati definiti e $\bar{U}_p \subset U_q$ per l'ipotesi induttiva. Utilizzando la normalità di X, possiamo trovare un aperto U_r di X tale che $\bar{U}_p \subset U_r$ e $\bar{U}_r \subset U_q$. Adesso dimostriamo che la (2.1) vale per ogni coppia di elementi di P_{n+1} . Se entrambi gli elementi stanno in P_n la (2.1) vale per l'ipotesi induttiva. Se uno di questi è r e l'altro è un punto s di P_n , allora o $s \leq p$, e in questo caso

$$\bar{U}_s \subset \bar{U}_p \subset U_r$$
,

oppure $s \geqslant q$, in questo caso

$$\bar{U}_r \subset U_q \subset U_s$$
.

Quindi la relazione (2.1) vale per ogni coppia di elementi di P_{n+1} . Per induzione, abbiamp definito U_p per ogni $p \in P$.

Estendiamo questa definizione a tutti i numeri razionali $p \in \mathbb{R}$ definendo:

$$U_p = \emptyset \text{ se } p < 0$$

$$U_p = X \text{ se } p > 1.$$

E' ancora verificata la (2.1), per ogni coppia di numeri razionali p e q . Dato x in X, sia $\mathbb{Q}(x)$ l'insieme di tutti i razionali p tali che il corrispondente aperto U_p contenga x:

$$\mathbb{Q}(x) = \{ p \mid x \in U_p \}.$$

Quest'insieme contiene i numeri che non sono inferiori a zero, poichè x non sta in U_p per p < 0. Inoltre, contiene tutti i numeri più grandi di 1, poichè x è in U_p per p > 1. Quindi Q(x) è limitato inferiormente e l'estremo inferiore è un punto dell'intervallo [0,1].Definiamo

$$f(x) = \inf \mathbb{Q}(x) = \inf \{ p | x \in U_p \}.$$

Mostriamo che f è la funzione cercata. Se $x \in A$, allora $x \in U_p$ per ogni $p \ge 0$, quindi $\mathbb{Q}(x)$ equivale all'insieme di tutti razionali non negativi, e $f(x) = \inf \mathbb{Q}(x) = 0$. Similmente, se $x \in B$, allora $x \in U_p$, per p > 1, quindi $\mathbb{Q}(x)$ è costituito da tutti i razionali maggiori di 1, e f(x) = 1. Per dimostrare che f è continua dimostriamo prima i seguenti fatti:

1.
$$x \in \bar{U}_r \Longrightarrow f(x) \leqslant r$$
.

2.
$$x \notin \bar{U}_r \Longrightarrow f(x) \geqslant r$$
.

Per dimostrare la 1. osserviamo che se $x \in \bar{U}_r$, allora $x \in U_s$, per ogni s > r. Quindi $\mathbb{Q}(x)$ contiene tutti i razionali maggiori di r, quindi segue che

$$f(x) = \inf \mathbb{Q}(x) \leqslant r.$$

Per provare la 2. osserviamo che se $x \notin U_r$, allora x non appartiene a U_s , per ogni s < r. Quindi, $\mathbb{Q}(x)$ non contiene alcun numero razionale inferiore a r, tale che

$$f(x) = inf \mathbb{Q}(x) \geqslant r$$
.

Adesso possiamo provare la continuità di f. Dato un punto x_0 in X e un intervallo aperto (c,d) in \mathbb{R} contenente il punto $f(x_0)$, vorremo trovare un intorno U di x_0 tale che $f(U) \subset (c,d)$. Scegliamo due numeri razionali p e q tali che:

$$c .$$

Dimostriamo che $U=U_q-\bar{U}_p$ è l'intorno di x_0 cercato. Osserviamo che $x_0\in U$. Il fatto che $f(x_0)< q$ implica con la condizione 2. che $x_0\in U_q$, mentre il fatto che $f(x_0)> p$ implica con la condizione 1. che $x_0\notin \bar{U}_p$. Inoltre, vediamo che $f(U)\subset (c,d)$. Sia $x\in U$. Allora $x\in U_p\subset \bar{U}_q$, affinchè $f(x)\leqslant q$, per la 1. E $x\notin \bar{U}_p$ e $f(x)\geqslant p$, per la 2. Quindi, $f(x)\in [p,q]\subset (c,d)$, come desiderato.

Teorema 2.3.3. (Teorema di Urysohn) Ogni spazio regolare X con una base numerabile è metrizzabile.

Dimostrazione. Per provare che X è metrizzabile si utilizziamo l'imbedding di X in uno spazio metrizzabile Y, cioè si dimostra che X è omeomorfo a un sottospazio di Y. Come spazio Y prendiamo \mathbb{R}^n con la topologia prodotto.

Innanzitutto proviamo il seguente fatto: Esiste una famiglia numerabile di funzioni continue $f_n: X \to [0,1]$ tali che, dato un qualsiasi punto x_0 di X e un qualsiasi intorno U di x_0 , esiste un indice n tale che f_n sia positiva se calcolata in x_0 e nulla fuori da U.

Data una coppia (x_0, U) tale funzione esiste per il Lemma di Urysohn. Tuttavia se scegliamo una tale funzione per ogni coppia (x_0, U) , non è detto che la famiglia di funzioni continue che si ottiene sia numerabile. Si procede come segue: Sia B_n una base numerabile di X. Per ogni coppia di indici n, m per la quale vale $\bar{B}_n \subset B_m$ applichiamo il Lemma di Urysohn: esiste una funzione continua $g_{n,m}: X \to [0,1]$ tale che $g_{n,m}(\bar{B}_n) = \{1\}$ e $g_{n,m}(X - B_m) = \{0\}$. $\{g_{n,m}\}$ ha le proprietà richieste. Dati x_0 e U si può scegliere un elemento di base B_m che contiene x_0 e contenuto in U; utilizzando il fatto che X è regolare è possibile scegliere B_n tale che $x_0 \in B_n$ e $\bar{B}_n \subset B_m$. Quindi (n,m) è una coppia di indici per la quale la funzione $g_{n,m}$ è definita; inoltre, risulta essere positiva in x_0 e nulla fuori da U. La famiglia $\{g_{n,m}\}$ è numerabile, in quanto indicizzata da un sottoinsieme di $\mathbb{Z}_+ \times \mathbb{Z}_+$. Si può reindicizzarla con interi positivi ottenendo la famiglia cercata $\{f_n\}$.

Ora prendiamo \mathbb{R}^n con la topologia prodotto e definiamo una mappa $F:X\to\mathbb{R}^n$ come segue

$$F(x) = (f_1(x), f_2(x), ...).$$

Vogliamo dimostrare che F è un imbedding. F è continua perchè \mathbb{R}^n ha la topologia prodotto e ogni f_n è continua. F è iniettiva poichè dati $x \neq y$, sappiamo che esiste

un indice n tale che $f_n(x) > 0$ e $f_n(y) \neq 0$ e quindi $F(x) \neq F(y)$. Infine, proviamo che F è un omeomorfismo da X alla sua immagine Z = F(X). Sappiamo che F definisce una bigezione continua da X a Z. Ci resta da dimostrare che F^{-1} è continua e cioè che se prendiamo un aperto U in X l'insieme F(U) in Z è un aperto. Dobbiamo dimostrare quindi che esiste un aperto W di Z tale che $z_0 \in W \subset F(U)$. Sia x_0 la controimmagine di z_0 . Scegliamo l'indice N per il quale $f_N(x_0) > 0$ e $f_N(X - U) = \{0\}$. Prendiamo l'intervallo aperto $(0, +\infty)$ di \mathbb{R} , e sia V l'insieme aperto di \mathbb{R}^n

$$V = \pi_N^{-1}((0, +\infty))$$

dove $\pi_N : \mathbb{R}^n \longrightarrow (0, +\infty)$ è la proiezione, definita come segue:

$$\pi_N(f_1(x), f_2(x), ...) = f_N(x).$$

Sia $W=V\cap Z;$ allora W è aperto in Z per la definizione di sottospazio topologico. $z_0\in W$ perchè

$$\pi_N(z_0) = \pi_N(F(x_0)) = f_N(x_0) > 0.$$

Inoltre, $W \subset F(U)$. Infatti, se $z \in W$, allora z = F(x) per qualche $x \in X$, e $\pi_N(z) \in (0, +\infty)$. Poichè $\pi_N(z) = \pi_N(F(x)) = f_N(x)$, e f_N è zero fuori da U, il punto x deve stare in U. Allora z = F(x) appartiene a F(U) come richiesto. Quindi F è un imbedding da X in \mathbb{R}^n .

Osservazione 2.3.4. Tuttavia, il fatto che uno spazio sia regolare e possieda una base numerabile è una condizione sufficiente, ma non necessaria. Infatti, esistono spazi che sono metrizzabili e ciò nonostante non possiedono una base numerabile.

Esempio 2.3.5. Uno di questi è \mathbb{R} con la topologia discreta. Essendo uno spazio discreto, $(\mathbb{R}, \mathcal{T}_{dis})$ è metrizzabile (Osservazione 2.1.3).

Tuttavia, \mathbb{R} non possiede una base numerabile. Supponiamo per assurdo che \mathscr{B} sia una base numerabile per $(\mathbb{R}, \mathscr{T}_{dis})$. Allora per ogni $x \in \mathbb{R}$, \mathscr{B} dovrebbe contenere l'insieme $\{x\}$. Ma la famiglia $\mathscr{F} = \{\{x\}, x \in \mathbb{R}\}$ costituita da tutti gli insiemi con un solo elemento, ha la stessa cardinalità di \mathbb{R} , il quale non è numerabile. Segue che \mathscr{B} non è numerabile.

2.4 Teorema di Nagata-Smirnov

Lemma 2.4.1. (Lemma di imbedding) Sia X uno spazio nel quale ogni insieme costituito da un solo punto è chiuso. Supponiamo che $\{f_{\alpha}\}_{{\alpha}\in J}$ sia una famiglia indicizzata di funzioni continue $f_{\alpha}: X \to \mathbb{R}$ tali che per ogni $x_0 \in X$ e ogni intorno U di x_0 , esiste un indice α tale che f_{α} sia positiva in x_0 e nulla fuori da U. Allora la mappa $F: X \to R^J$ definita da $F(x) = (f_{\alpha}(x))_{{\alpha}\in J}$ è un imbedding di X in \mathbb{R}^J . Se $f_{\alpha}: X \to [0,1]$ per ogni α , allora F è un imbedding di X in $[0,1]^J$.

Dimostrazione. Vogliamo dimostrare che F è un imbedding, cioè che F è un omeomorfismo da X alla sua immagine Z = F(X). F è continua perchè \mathbb{R}^J ha la topologia prodotto e ogni f_{α} è continua. F è iniettiva poichè dati $x \neq y$, sappiamo che esiste un indice n tale che $f_{\alpha}(x) > 0$ e $f_{\alpha}(y) \neq 0$ e quindi $F(x) \neq F(y)$. Ci resta da dimostrare che F^{-1} è continua e cioè che se prendiamo un aperto U in X l'insieme F(U) in Z è un aperto. Dobbiamo dimostrare, quindi, che esiste un aperto W di Z tale che $z_0 \in W \subset F(U)$. Sia x_0 la controimmagine di z_0 . Scegliamo l'indice N per il quale $f_N(x_0) > 0$ e $f_N(X - U) = \{0\}$. Prendiamo l'intervallo aperto $(0, +\infty)$ di \mathbb{R} , e sia V l'insieme aperto di \mathbb{R}^J

$$V = \pi_N^{-1}((0, +\infty))$$

dove $\pi_N \colon \mathbb{R}^J \longrightarrow (0, +\infty)$ è la proiezione, definita come segue:

$$\pi_N(f_1(x), f_2(x), ...) = f_N(x).$$

Sia $W=V\cap Z;$ allora W è aperto in Z per la definizione di sottospazio topologico. $z_0\in W$ perchè

$$\pi_N(z_0) = \pi_N(F(x_0)) = f_N(x_0) > 0.$$

Inoltre, $W \subset F(U)$. Infatti, se $z \in W$, allora z = F(x) per qualche $x \in X$, e $\pi_N(z) \in (0, +\infty)$. Poichè $\pi_N(z) = \pi_N(F(x)) = f_N(x)$, e f_N è zero fuori da U, il punto x deve stare in U. Allora z = F(x) appartiene a F(U) come richiesto. Quindi F è un imbedding da X in \mathbb{R}^J .

Definizione 2.4.2. Un sottoinsieme A di uno spazio X è detto insieme G_{δ} se è intersezione di una collezione numerabile di aperti di X.

Lemma 2.4.3. Sia X uno spazio regolare con una base \mathcal{B} numerabile localmente finita. Allora X è normale ed ogni chiuso di X è un insieme G_{δ} .

Dimostrazione. Sia W un aperto di X. Facciamo vedere che esiste una collezione numerabile $\{U_n\}$ di insiemi aperti di X tale che

$$W = \bigcup U_n = \bigcup \bar{U}_n.$$

Poichè la base \mathcal{B} di x è localmente finita, può essere scritta come $\mathcal{B} = \cup \mathcal{B}_n$, dove ogni \mathcal{B}_n è localmente finita. Sia \mathcal{C}_n la collezione di quegli elementi di base B tali che $B \in \mathcal{B}_n$ e $\bar{B} \subset W$. Allora anche \mathcal{C}_n è localmente finita, essendo una sottocollezione di \mathcal{B}_n . Definiamo

$$U_n = \bigcup_{B \in \mathscr{C}_n} B.$$

Allora U_n è un insieme aperto, e per il lemma 2.2.2

$$\bar{U}_n = \bigcup_{B \in \mathscr{C}_n} \bar{B}.$$

Quindi, $\bar{U}_n \subset W$, in modo tale che

$$\bigcup U_n \subset \bigcup \bar{U}_n \subset W.$$

Segue che $W \subset \bigcup U_n$,

Adesso dimostriamo che ogni insieme chiuso C in X è un insieme G_{δ} in X. Dato C, sia W = X - C. Esistono degli insiemi U_n in X tali che $W = \cup \bar{U}_n$. Allora

$$C = \bigcap (X - \bar{U}_n),$$

e quindi C può essere espresso come intersezione numerabile di insiemi aperti di X.

Resta da dimostrare che X è normale. Siano C e D due chiusi disgiunti in X. Consideriamo X-D e costruiamo una famiglia numerabile $\{U_n\}$ di aperti, tale che $\bigcup U_n = \bigcup \bar{U}_n = X-D$. Allora $\{U_n\}$ ricopre C e ogni insieme \bar{U}_n è disgiunto da D. Possiamo ripetere lo stesso ragionamento a X-C e dunque esisterà una famiglia numerabile di aperti $\{V_n\}$ che ricopre D e ogni insieme \bar{V}_n sarà disgiunto da C. Adesso definiamo

$$U'_{n} = U_{n} - \bigcup_{i=1}^{n} \bar{V}_{i}$$
 e $V'_{n} = V_{n} - \bigcup_{i=1}^{n} \bar{U}_{i}$.

Allora gli insiemi

$$U' = \bigcup_{n \in \mathbb{Z}_+} U'_n \qquad e \qquad V' = \bigcup_{n \in \mathbb{Z}_+} V'_n$$

sono insiemi aperti disgiunti contenenti C e D, rispettivamente.

Lemma 2.4.4. Sia X uno spazio normale e sia A un chiuso G_{δ} in X. Allora esiste una funzione continua $f: X \to [0,1]$ tale che f(x) = 0 se $x \in A$ e f(x) > 0 se $x \notin A$.

Dimostrazione. Essendo A un insieme G_{δ} , può essere scritto come intersezione di insiemi aperti $U_n, n \in \mathbb{Z}_+$. Per ogni n possiamo scegliere, per il lemma di Urysohn, una funzione $f_n: X \to [0,1]$ tale che $f_n(x) = 0$ per $x \in A$ e $f_n(x) = 1$ per $x \in X - U_n$. Definiamo $f(x) = \sum \frac{f_n(x)}{2^n}$. Applicando il teorema del confronto possiamo maggiorarla con la serie geometrica $\sum \frac{1}{2^n}$, la quale converge uniformemente e dunque anche la serie $\sum \frac{f_n(x)}{2^n}$ converge uniformemente. Segue che f è continua e quindi è nulla in A e positiva in X - A.

Teorema 2.4.5. (Teorema di Nagata-Smirnov) Uno spazio X è metrizzabile se e solo se X è regolare e ha una base numerabile localmente finita.

Dimostrazione. Primo passo: X è regolare e ha una base numerabile localmente finita \Longrightarrow X è metrizzabile.

Supponiamo che X sia regolare con una base numerabile localmente finita \mathscr{B} . Allora, per il Lemma 2.4.3, X è normale e ogni chiuso di X è un G_{δ} insieme in X. Mostriamo che X è metrizzabile attraverso l'imbedding di X nello spazio metrico $(\mathbb{R}^J, \bar{\rho})$ per qualche J. Sia $\mathscr{B} = \cup \mathscr{B}_n$, dove ogni \mathscr{B}_n è localmente finito. Per ogni intero positivo n e ogni elemento di base $B \in \mathscr{B}_n$, scegliamo una funzione continua $f_{n,B}: X \to [0,1/n]$ tale che $f_{n,B}(x) > 0$ per $x \in B$ e $f_{n,B} = 0$ per $x \notin B$. La famiglia $\{f_{n,B}\}$ separa punti da chiusi in X: dato un punto x_0 e un intorno U di x_0 , c'è un elemento di base B tale che $x_0 \in B \subset U$. Allora, $B \in \mathscr{B}_n$ per qualche n, tale che $f_{n,B}(x_0) > 0$ e $f_{n,B} = 0$ fuori da U. Sia J il sottoinsieme di $\mathbb{Z}_+ \times B$ costituito da tutte le coppie (n, B) tali che $B \in \mathscr{B}_n$. Definiamo $F: X \to [0, 1]^J$ come segue

$$F(x) = (f_{n,B}(x))_{(n,B)\in J}.$$

Per il Lemma 2.4.1, relativamente alla topologia prodotto su $[0,1]^J$, la mappa F è un imbedding.

Dotiamo $[0,1]^J$ della topologia indotta dalla metrica uniforme $\bar{\rho}$ e facciamo vedere che F è un imbedding relativamente a questa topologia. Utilizziamo il fatto che $f_{n,B}(x) < 1/n$. La topologia uniforme è più fine della topologia prodotto. Quindi rispetto alla metrica uniforme, la mappa F è iniettiva e porta aperti in aperti. Proviamo che F è continua: Nel sottospazio $[0,1]^J$ di \mathbb{R}^J la metrica uniforme coincide con la metrica:

$$\rho((x_{\alpha}), (y_{\alpha})) = \sup\{|x_{\alpha} - y_{\alpha}|\}.$$

Per provare che F è continua prendiamo un punto x_0 di X e un numero $\epsilon > 0$ e cerchiamo un intorno W di x_0 tale che $x \in W \Longrightarrow \rho(F(x), F(x_0)) < \epsilon$. Supponiamo che n sia fissato. Scegliamo un intorno U_n di x_0 , il quale interseca solo un numero finito di elementi di \mathcal{B}_n . Questo significa che tutte le funzioni $f_{n,B}$, tranne un numero finito, sono identicamente nulle su U_n . Poichè ogni funzione $f_{n,B}$ è continua, possiamo scegliere un intorno V_n di x_0 contenuto in U_n sul quale ognuna delle rimanenti funzioni $f_{n,B}$ per $B \in \mathcal{B}_n$, varia al massimo fino a $\epsilon/2$. Scegliamo tale intorno V_n di x_0 per ogni $n \in \mathbb{Z}_+$. Allora scegliamo N tale che $1/N \leqslant \epsilon/2$ e definiamo $W = V_1 \cap V_2 \cap ... \cap V_N$. Mostriamo che M è l'intorno di x_0 cercato. Sia $x \in W$. Se $n \leqslant N$, allora

$$|f_{n,B}(x) - f_{n,B}(x_0)| \leq \epsilon/2$$

poichè la funzione $f_{n,B}$ o è identicamente nulla oppure vale al massimo $\epsilon/2$ su W. Se n>N allora

$$|f_{n,B}(x) - f_{n,B}(x_0)| \le 1/n < \epsilon/2,$$

poichè $f_{n,B}$ va da X a [0, 1/n]. Quindi $\rho(F(x), F(x_0)) \leq \epsilon/2 < \epsilon$, come desiderato. Secondo passo: X è regolare e ha una base numerabile localmente \Longrightarrow finita X è metrizzabile. Supponiamo che X sia metrizzabile. Sappiamo che è regolare; facciamo vedere che X ha una base numerabile localmente finita. Scegliamo una metrica per X. Dato m sia \mathscr{A}_m il ricoprimento di X costituito da tutte le bolle aperte di raggio 1/m. Per il lemma 1.2.4. esiste un ricoprimento aperto \mathscr{B}_m di X che raffina \mathscr{A}_m tale che \mathscr{B}_m sia numerabile localmente finito. Ogni elemento di \mathscr{B}_m ha diametro al massimo pari a 2/m. Sia \mathscr{B} l'unione di tutte le collezioni \mathscr{B}_m , con $m \in \mathbb{Z}_+$. Poichè ogni collezione \mathscr{B}_m è numerabile localmente finita, lo è anche \mathscr{B} . Rimane da dimostrare che \mathscr{B} è una base per X. Dato $x \in X$ e dato

 $\epsilon > 0$, mostriamo che esiste un elemento $B \in \mathscr{B}$ contenente x che è contenuto in $B(x,\epsilon)$. Scegliamo m tale che $1/m < \epsilon/2$. Allora, poichè \mathscr{B}_m ricopre X, possiamo scegliere un elemento B di \mathscr{B}_m che contiene x. Poichè B contiene x e ha diametro al massimo pari a $2/m < \epsilon$, è contenuto in $B(x,\epsilon)$ come volevasi dimostrare.

Osservazione 2.4.6. La condizione richiesta dal Teorema di Nagata- Smirnov di possedere una base numerabile localmente finita è molto più debole di quella richiesta dal Teorema di Urysohn, e ha risolto il problema della metrizzabilità di uno spazio topologico, risultando essere, insieme alla regolarità, condizione sia necessaria che sufficiente.

Bibliografia

- [1] James.R.Munkres Topology
- [2] Andrea Loi Appunti di Topologia Generale, A.A. 2009-10
- [3] Kosniowski C. Introduzione alla topologia algebrica, Zanichelli 1989