

数学物理方法

Mathematical Methods in Physics

武汉大学

物理科学与技术学院

第一篇 复变函数论

Theory of Complex Variable Functions

第一章 解析函数论

Theory of Analytic Functions

武汉大学

物理科学与技术学院

§ 1.2 复变函数

一、复变函数的概念

1、定义:

设E为一点集,若按一定的规律,使 $z \in E \longrightarrow w = u(x, y) + iv(x, y)$, 其中,u、v为实函数,则称: w = f(z) 为复变函数,E为定义域,W为值域

一、复变函数的概念

复变函数
$$\begin{cases} & \text{单怕} : \quad z \leftrightarrow w \quad (w = az + b) \\ z \to w \quad (w = az + b) \\ (w = az + b) \quad \text{SH} : \quad z_1 \\ z_2 \\ \vdots \end{cases} \rightarrow w \quad (w = z^2)$$

$$\vdots$$

$$\text{S值} \begin{cases} w_1 \\ w_1 \\ \vdots \end{cases}$$

$$z \to \begin{cases} w_1 \\ w_1 \\ \vdots \end{cases}$$

复变函数的概念

2、几何意义:

答:

3、有类似于实变函数数中的复合函数和反函数

1、邻域: $\forall z \in |z-z_0| < \varepsilon$ 的点集称为 z_0 的 ε 邻域。

问: $0 < |z-z_0| < \epsilon$ 表示什么?

答: 表示无心邻域

2、内点:

 1° 求 $|z+1| = \frac{1}{2}$ 的内点。

2° 末 | z + 1 | ≤ 1 的内点。

3、区域: 若点集 σ

 $\begin{cases} 1^{0}$.全由内点组成; 2^{0} .设 $\mathbf{Z}_{1} \in \sigma$, $\mathbf{Z}_{2} \in \sigma$,且 \mathbf{Z}_{1} 和 \mathbf{Z}_{2} 可用全 $\in \sigma$ 的线连接;

问题: 判断下列表示和绿色部分是否为区域

$$a: |z| \leq 1$$

NO!

例1:

例2: |z| < 1的外点?

5、界点

若 Z_0 不属于区域 σ ,且没有一个邻域不含有

 σ 的点,则称z为 σ 的界点.

边界:全体界点构成区域边界

边界正向:沿着边界走,区域总在左方,

则此走向称为边界的正方向。

闭区域: $\overline{\sigma} = \sigma + l$, 其中l为边界。

6、单连通区域:

若在区域内作任何简单的闭曲线,区域内的点 都是属于此区域的,则称该区域为单连通区域。

7、复连通区域

一个区域,如果不是单连通区域,就是复连通区域。

问:

$$1 < |z-1-i| < 3$$
 表示什么图形?

三、极限、连续性:

1、定义:

$$w = f(z)$$
: $\forall \varepsilon > 0$, $\exists \delta > 0$, $\ni \dot{=} 0 < |z - z_0| < \delta$ 时有 $|f(z) - w_0| < \varepsilon$ 则 $\lim_{z \to z_0} f(z) = w_0$ 为极限 若 $\lim_{z \to z_0} f(z) = f(z_0)$, 则 $f(z)$ 在 z_0 点 连 续

注意:

- (1) 实函数与复变函数定义的差异
- (2) 性质 具有与实函数相应的性质

内容小结

- § 1.1 复数及其运算
 - 一、复数概念:
 - 1. 定义 ; 2. 性质
- 二、复数的表示:
 - 1、几何表示:
 - a. 点; b. 向量; c. 极坐标; d. 复球表示。
 - 2、代数表示:
 - a.代数式; b.三角式; c.指数式

内容小结

- § 1.2 复变函数
- 一、复变函数的概念
 - 1、定义:
 - 2、几何意义:
 - 3、有类似于实数中的复合函数和反函数
 - 二、有关区域:
 - 1、邻域; 2、内点; 3、区域; 4、外点;
 - 5、界点; 6、单连通区域; 7、复通区域;
 - 三、极限、连续性:

习题1.2:

1(1); 2(1);

习题1.5:

3(3)

Good-by!

