Example ii.
Normal mode and normal prior

Turning tl Bayesian crank

Posterior and Prior predictiv distributions

predictive distribution Sequential Bayes theorem: A rule

for updating probabilities

Example iii. Simple linear regression

Stochastic volatility

Example v. Multiple linea regression

Bayesian Ingredients

Hedibert Freitas Lopes

The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@ChicagoBooth.edu

Outline

- Example *i*. Sequential learning
- Example ii.
 Normal mode and normal prior
- Turning the Bayesian crank
- Posterior and Prior predictive distributions Posterior
- distribution
 Sequential Bayes
 theorem: A rule
 for updating
 probabilities
- Example iii. Simple linear regression
- Example is Stochastic volatility model
- Example v. Multiple lines

- 1 Example i. Sequential learning
- 2 Example ii. Normal model and normal prior
- **3** Turning the Bayesian crank

Posterior and Prior predictive distributions Posterior predictive distribution

Sequential Bayes theorem: A rule for updating probabilities

- 4 Example iii. Simple linear regression
- **5** Example iv. Stochastic volatility model
- 6 Example v. Multiple linear regression

Posterior and Prior predictive distributions

Posterior predictive distribution

Sequential Bayes theorem: A rule for updating probabilities

Example iii. Simple linear regression

Example is Stochastic volatility model

Example v. Multiple linea regression

Example i. Sequential learning

- John claims some discomfort and goes to the doctor.
- The doctor believes John may have the disease A.
- $\theta = 1$: John has disease A; $\theta = 0$: he does not.
- The doctor claims, based on his expertise (H), that

$$P(\theta = 1|H) = 0.70$$

• Examination X is related to θ as follows

$$\begin{cases} P(X=1|\theta=0)=0.40, & \text{positive test given no disease} \\ P(X=1|\theta=1)=0.95, & \text{positive test given disease} \end{cases}$$

Observe X = 1

Example *i*. Sequential learning

Normal mode and normal prior

Turning th Bayesian crank

Posterior and Prior predictive distributions

Posterior predictive distribution

Sequential Bayes theorem: A rule for updating probabilities

Example iii. Simple linear regression

Example iv Stochastic volatility model

Example v. Multiple linea regression Exam's result: X = 1

$$P(\theta = 1|X = 1) \propto P(X = 1|\theta = 1)P(\theta = 1)$$

 $\propto (0.95)(0.70) = 0.665$
 $P(\theta = 0|X = 1) \propto P(X = 1|\theta = 0)P(\theta = 0)$
 $\propto (0.40)(0.30) = 0.120$

Consequently

$$P(\theta = 0|X = 1) = 0.120/0.785 = 0.1528662$$
 and $P(\theta = 1|X = 1) = 0.665/0.785 = 0.8471338$

The information X=1 increases, for the doctor, the probability that John has the disease A from 70% to 84.71%.

Example ii.

Normal mode and normal prior

Turning th Bayesian crank

Posterior and Prior predictive distributions

Posterior predictive distribution Sequential Baye

theorem: A rule for updating probabilities

Example iii. Simple linear regression

Example iv Stochastic volatility model

Example v. Multiple linea regression

Posterior predictive

John undertakes the test Y, which relates to θ as follows¹

$$P(Y = 1 | \theta = 1) = 0.99$$
 and $P(Y = 1 | \theta = 0) = 0.04$

Then, the predictive of Y = 0 given X = 1 is given by

$$P(Y = 0|X = 1) = P(Y = 0|X = 1, \theta = 0)P(\theta = 0|X = 1)$$

$$+ P(Y = 0|X = 1, \theta = 1)P(\theta = 1|X = 1)$$

$$= P(Y = 0|\theta = 0)P(\theta = 0|X = 1)$$

$$+ P(Y = 0|\theta = 1)P(\theta = 1|X = 1)$$

$$= (0.96)(0.1528662) + (0.01)(0.8471338)$$

$$= 15.52\%$$

Key condition: X and Y are conditionally independent given

¹Recall that $P(X = 1 | \theta = 1) = 0.95$ and $P(X = 1 | \theta = 0) = 0.40$.

Example ii.
Normal mod
and normal
prior

Bayesian crank

Posterior and Prior predictive distributions

predictive distribution Sequential Bayes theorem: A rule for updating

Example iii. Simple linear regression

Example in Stochastic volatility model

Example v. Multiple line regression

Model criticism

Suppose the observed result was Y=0. This is a reasonably unexpected result as the doctor only gave it roughly 15% chance.

He should at least consider rethinking the model based on this result. In particular, he might want to ask himself

- **1** Did 0.7 adequately reflect his $P(\theta = 1|H)$?
- 2 Is test X really so unreliable?
- 3 Is the sample distribution of *X* correct?
- $oldsymbol{4}$ Is the test Y so powerful?
- **5** Have the tests been carried out properly?

Normal mod and normal prior

Turning the Bayesian crank

Posterior and Prior predictive distributions

Posterior predictive

Sequential Bayes theorem: A rule for updating probabilities

Example iii. Simple linear regression

Example in Stochastic volatility model

Example v. Multiple linea regression

Observe Y = 0

Let $H_2 = \{X = 1, Y = 0\}$. Then, Bayes theorem leads to

$$P(\theta = 1|H_2) \propto P(Y = 0|\theta = 1)P(\theta = 1|X = 1)$$

 $\propto (0.01)(0.8471338) = 0.008471338$
 $P(\theta = 0|H_2) \propto P(Y = 0|\theta = 0)P(\theta = 0|X = 1)$
 $\propto (0.96)(0.1528662) = 0.1467516$

Therefore,

$$P(\theta = 1|X = 1, Y = 0) = \frac{P(Y = 0, \theta = 1|X = 1)}{P(Y = 0|X = 1)} = 0.0545753$$

$$P(\theta=1|H_i) = \begin{cases} 0.7000 & , \textit{H}_0\text{: before X and Y} \\ 0.8446 & , \textit{H}_1\text{: after X=1 and before Y} \\ 0.0546 & , \textit{H}_2\text{: after X=1 and Y=0} \end{cases}$$

Example ii. Normal model and normal prior

Turning th Bayesian crank

Posterior and Prior predictive distributions

distribution
Sequential Bayes
theorem: A rule

Example iii. Simple linear

Example iv Stochastic volatility model

Example v. Multiple linea regression

Example *ii*. Normal model and normal prior

Let us now consider a simple measurement error model with normal prior for the unobserved measurement.

$$X|\theta \sim N(\theta, \sigma^2)$$

 $\theta \sim N(\theta_0, \tau_0^2)$

with σ^2 , θ_0 and τ_0^2 known for now. It is easy to show that the posterior of θ given X = x is also normal.

More precisely, $(\theta|X=x) \sim N(\theta_1, \tau_1^2)$ where

$$\theta_1 = w\theta_0 + (1 - w)x$$

$$\tau_1^{-2} = \tau_0^{-2} + \sigma^{-2}$$

$$w = \tau_0^{-2} / (\tau_0^{-2} + \sigma^{-2})$$

w measures the relative information contained in the prior distribution with respect to the total information (prior plus likelihood).

Posterior predictive distribution Sequential Bayes theorem: A rule

for updating probabilities Example iii. Simple linear

Example iv Stochastic volatility

Example v. Multiple linea regression

Example from Box & Tiao (1973)

Prior A: Physicist A (large experience): $\theta \sim N(900, (20)^2)$

Prior B: Physicist B (not so experienced): $\theta \sim N(800, (80)^2)$.

Model: $(X|\theta) \sim N(\theta, (40)^2)$.

Observation: X = 850

$$(\theta|X = 850, H_A) \sim N(890, (17.9)^2)$$

 $(\theta|X = 850, H_B) \sim N(840, (35.7)^2)$

Information (precision)

Physicist A: from 0.002500 to 0.003120 (an increase of 25%)

Physicist B: from 0.000156 to 0.000781 (an increase of 400%)

Example *ii*. Normal model and normal prior

Turning th Bayesian

Prior predicti distributions Posterior predictive

distribution
Sequential Bayes
theorem: A rule
for updating
probabilities

Example iii. Simple linea regression

Example in Stochastic volatility

Example v. Multiple linea regression

Example v. Multiple linea regression

Two additional examples

Observations \mathbf{x} , parameters $\boldsymbol{\theta}$ and history H.

Likelihood functions/models - $p(\mathbf{x}|\boldsymbol{\theta}, H)$

Example iii : $x_i | \theta, H \sim N(\theta z_i; \sigma^2)$ i = 1, ..., n

Example iv : $x_t | \theta, H \sim N(0; e^{\theta_t})$ t = 1, ..., T

Prior distributions - $p(\theta|H)$

Example iii : $\theta | H \sim N(\theta_0, \tau_0^2)$

Example iv : $\theta_t | H \sim N(\alpha + \beta \theta_{t-1}, \sigma^2)$ t = 1, ..., T

Assume, for now, that $(z_1, \ldots, z_n, \sigma^2, \nu_0, \theta_0, \tau_0^2)$ and $(\alpha, \beta, \sigma^2, \theta_0)$ are known and belong to H.

Example iii. Simple linear regression

Example in Stochastic volatility model

Example v. Multiple linearegression

Turning the Bayesian crank

Posterior (Bayes' Theorem):

$$p(\theta|\mathbf{x}, H) = \frac{p(\theta, \mathbf{x}|H)}{p(\mathbf{x}|H)}$$

$$= \frac{p(\mathbf{x}|\theta, H)p(\theta|H)}{p(\mathbf{x}|H)}$$

$$\propto p(\mathbf{x}|\theta, H)p(\theta|H)$$

Prior predictive distribution:

$$p(\mathbf{x}|H) = \int_{\Theta} p(\mathbf{x}|\theta, H) p(\theta|H) d\theta = E_{\theta}[p(\mathbf{x}|\theta, H)]$$

Posterior and Prior predictive

Posterior predictive distribution

Sequential Bayes theorem: A rule for updating

Example iii. Simple linear regression

Example in Stochastic volatility model

Example v. Multiple line regression

Posterior predictive distribution

Let \mathbf{y} be a new set of observations conditionally independent of \mathbf{x} given $\boldsymbol{\theta}$. Then,

$$p(\mathbf{y}|\mathbf{x}, H) = \int_{\Theta} p(\mathbf{y}, \boldsymbol{\theta}|\mathbf{x}, H) d\boldsymbol{\theta} = \int_{\Theta} p(\mathbf{y}|\boldsymbol{\theta}, \mathbf{x}, H) p(\boldsymbol{\theta}|\mathbf{x}, H) d\boldsymbol{\theta}$$
$$= \int_{\Theta} p(\mathbf{y}|\boldsymbol{\theta}, H) p(\boldsymbol{\theta}|\mathbf{x}, H) d\boldsymbol{\theta} = E_{\boldsymbol{\theta}|\mathbf{x}} [p(\mathbf{y}|\boldsymbol{\theta}, H)]$$

Note 1: In general, but not always (time series, for example) \mathbf{x} and \mathbf{y} are independent given $\boldsymbol{\theta}$.

Note 2: It might be more useful to concentrate on prediction rather than on estimation since the former is *verifiable*. In other words, \mathbf{x} and \mathbf{y} can be <u>observed</u>; not $\boldsymbol{\theta}$.

Sequential Bayes theorem: A rule for updating probabilities

Experimental result: $\mathbf{x}_1 \sim p_1(\mathbf{x}_1 \mid \boldsymbol{\theta})$

$$p(\theta \mid \mathbf{x}_1) \propto l_1(\theta; x_1) p(\theta)$$

Experimental result: $\mathbf{x}_2 \sim p_2(\mathbf{x}_2 \mid \boldsymbol{\theta})$

$$\rho(\theta \mid \mathbf{x}_2, \mathbf{x}_1) \propto l_2(\theta; \mathbf{x}_2) \rho(\theta \mid \mathbf{x}_1) \\
\propto l_2(\theta; \mathbf{x}_2) l_1(\theta; \mathbf{x}_1) \rho(\theta)$$

Experimental results: $\mathbf{x}_i \sim p_i(\mathbf{x}_i \mid \boldsymbol{\theta})$, for $i = 3, \dots, n$

$$\begin{array}{ccc}
\rho(\theta \mid \mathbf{x}_n, \cdots, \mathbf{x}_1) & \propto & l_n(\theta; \mathbf{x}_n) \rho(\theta \mid \mathbf{x}_{n-1}, \cdots, \mathbf{x}_1) \\
& \propto & \left[\prod_{i=1}^n l_i(\theta; \mathbf{x}_i) \right] \rho(\theta)
\end{array}$$

Example v. Multiple linea regression

Example iii. Simple linear regression

Model, prior and posterior:

$$x_i | \theta, H \sim N(\theta z_i; \sigma^2)$$
 $i = 1, ..., n$
 $\theta | H \sim N(\theta_0, \tau_0^2)$
 $\theta | \mathbf{x}, H \sim N(\theta_1, \tau_1^2)$

where

$$\tau_1^{-2} = \tau_0^{-2} + \mathbf{z}'\mathbf{z}/\sigma^2 \quad \text{and} \quad \theta_1 = \tau_1^2 \left(\theta_0 \tau_0^{-2} + \mathbf{z}'\mathbf{x}/\sigma^2\right)$$

Note 1: As *n* increases, $\tau_1 \to \sigma^2(\mathbf{z}'\mathbf{z})^{-1}$ and $\theta_1 \to (\mathbf{z}'\mathbf{z})^{-1}\mathbf{z}'\mathbf{x}$.

Note 2: The same applies when $\tau_0^{-2} \to 0$, i.e. with 'little' prior knowledge about θ .

Example ii.
Normal mod
and normal
prior

Turning the Bayesian crank

Posterior and Prior predictive distributions

Posterior predictive

Sequential Bayes theorem: A rule for updating

Example iii. Simple linear regression

Example iv. Stochastic volatility model

Example v. Multiple linea regression

Example iv. SV model

Model, prior and posterior:

$$x_{t}|\theta_{t}, H \sim N(0; e^{\theta_{t}}) \quad t = 1, \dots, T$$

$$\theta_{t}|H \sim N(\alpha + \beta\theta_{t-1}, \sigma^{2}) \quad t = 1, \dots, T$$

$$p(\theta|\mathbf{x}, H) \propto \prod_{t=1}^{T} e^{-\theta_{t}/2} \exp\left\{-\frac{1}{2}x_{t}e^{-\theta_{t}}\right\}$$

$$\times \prod_{t=1}^{T} \exp\left\{-\frac{1}{2\sigma^{2}}(\theta_{t} - \alpha - \beta\theta_{t-1})^{2}\right\}$$

Unfortunately, closed form solutions are rare.

- How to compute $E(\theta_{43}|\mathbf{x}, H)$ or $V(\theta_{11}|\mathbf{x}, H)$?
- How to obtain a 95% credible region for $(\theta_{35}, \theta_{36} | \mathbf{x}, H)$?
- How to sample from $p(\theta|\mathbf{x}, H)$?
- How to compute $p(\mathbf{x}|H)$ or $p(x_{T+1},...,x_{T+k}|\mathbf{x},H)$?

Example v. Multiple linear regression

Example v. Multiple linear regression

The standard Bayesian approach to multiple linear regression is

$$(y|X,\beta,\sigma^2) \sim N(X\beta,\sigma^2I_n)$$

where $y = (y_1, \dots, y_n)$, $X = (x_1, \dots, x_n)'$ is the $(n \times q)$, design matrix and q = p + 1.

The prior distribution of (β, σ^2) is $NIG(b_0, B_0, n_0, S_0)$, i.e.

$$\beta | \sigma^2 \sim N(b_0, \sigma^2 B_0)$$

 $\sigma^2 \sim IG(n_0/2, n_0 S_0/2)$

for known hyperparameters b_0 , B_0 , n_0 and S_0 .

Example *ii*.

Normal mode and normal prior

Turning the Bayesian crank

Posterior and Prior predictive distributions

predictive distribution Sequential Baye

theorem: A rule for updating probabilities

Simple linear regression

Example iv Stochastic volatility model

Example v. Multiple linear regression

Example v. Conditionals and marginals

It is easy to show that (β, σ^2) is $NIG(b_1, B_1, n_1, S_1)$, i.e.

$$(\beta|\sigma^2, y, X) \sim N(b_1, \sigma^2 B_1)$$

 $(\sigma^2|y, X) \sim IG(n_1/2, n_1 S_1/2)$

where

$$B_1^{-1} = B_0^{-1} + X'X$$

$$B_1^{-1}b_1 = B_0^{-1}b_0 + X'y$$

$$n_1 = n_0 + n$$

$$n_1S_1 = n_0S_0 + (y - Xb_1)'y + (b_0 - b_1)'B_0^{-1}b_0.$$

It is also easy to derive the full conditional distributions, i.e.

$$(\beta|y,X) \sim t_{n_1}(b_1,S_1B_1)$$

 $(\sigma^2|\beta,y,X) \sim IG(n_1/2,n_1S_{11}/2)$

where

$$n_1S_{11} = n_0S_0 + (y - X\beta)'(y - X\beta)$$

Posterior predictive

Sequential Bayes theorem: A rule for updating probabilities

Example iii. Simple linear regression

Example in Stochastic volatility model

Example v. Multiple linear regression

Example v. Ordinary least squares

It is well known that

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$\hat{\sigma}^2 = \frac{S_e}{n-q} = \frac{(y-X\hat{\beta})'(y-X\hat{\beta})}{n-q}$$

are the OLS estimates of β and σ^2 , respectively.

The conditional and unconditional sampling distributions of $\hat{\beta}$ are

$$(\hat{\beta}|\sigma^2, y, X) \sim N(\beta, \sigma^2(X'X)^{-1})$$

 $(\hat{\beta}|y, X) \sim t_{n-q}(\beta, S_e)$

respectively, with

$$(\hat{\sigma}^2|\sigma^2) \sim IG((n-q)/2,((n-q)\sigma^2/2).$$

Example ii.

Normal mode and normal prior

Turning the Bayesian crank

Posterior and Prior predictive distributions

predictive distribution Sequential Bayes theorem: A rule

Example iii. Simple linear

Example in Stochastic volatility

Example v. Multiple linear regression

Example v. Sufficient statistics

Recall $(y_t|x_t, \beta, \sigma^2) \sim N(x_t'\beta, \sigma^2)$ for t = 1, ..., n, with prior $\beta|\sigma^2 \sim N(b_0, \sigma^2 B_0)$ and $\sigma^2 \sim IG(n_0/2, n_0 S_0/2)$.

Then, for $y^t = (y_1, \dots, y_t)$ and $X^t = (x_1, \dots, x_t)'$, it follows:

$$(\beta|\sigma^2, y^t, X^t) \sim N(b_t, \sigma^2 B_t)$$

$$(\sigma^2|y^t, X^t) \sim IG(n_t/2, n_t S_t/2)$$

where
$$n_t = n_{t-1} + 1$$
, $B_t^{-1} = B_{t-1}^{-1} + x_t x_t'$, $B_t^{-1} b_t = B_{t-1}^{-1} b_{t-1} + y_t x_t$
and $n_t S_t = n_{t-1} S_{t-1} + (y_t - b_t' x_t) y_t + (b_{t-1} - b_t)' B_{t-1}^{-1} b_{t-1}$.

The only ingredients needed are: $x_t x_t'$, $y_t x_t$ and y_t^2 .

These recursions will play an important role later on when deriving **sequential Monte Carlo** methods for conditionally Gaussian dynamic linear models, like many stochastic volatility models.

Example iii. Simple linear regression

Example iv Stochastic volatility model

Example v. Multiple linear regression

Example v. Predictive

The predictive density can be seen as the *marginal likelihood*, i.e.

$$p(y|X) = \int p(y|X, \beta, \sigma^2) p(\beta|\sigma^2) p(\sigma^2) d\beta d\sigma^2$$

or, by Bayes' theorem, as the normalizing constant, i.e.

$$p(y|X) = \frac{p(y|X, \beta, \sigma^2)p(\beta|\sigma^2)p(\sigma^2)}{p(\beta|\sigma^2, y, X)p(\sigma^2|y, X)}$$

which is valid for all (β, σ^2) .

Closed form solution is available for the multiple normal linear regression:

$$(y|X) \sim t_{n_0}(Xb_0, S_0(I_n + XB_0X')).$$