Advanced Programming Languages (COP 4930/CIS 6930) [Spring 2015] Assignment VI

Due Date: Monday 4/6/15 at 5pm (in hardcopy)

Assignment Description

Do the following by yourself.

Consider the following types.

$$\tau := \bot \mid \top \mid \tau_1 -> \tau_2 \mid \mu t.\tau \mid t$$

Assume that all types under consideration start out with no free variables and have only "uniquified" type variables, and that alpha-conversion for types has already been defined.

Using the final set of rules we discussed in class for defining joins and meets:

- a) Choose two nontrivial types, τ_1 and τ_2 , whose join, τ_3 , is also nontrivial. Here nontrivial means that recursion is involved, but not just simple recursive types like $\mu t.t$, $\mu t.T$, or $\mu t.\bot$. Please also don't choose the example types used in class, or simple extensions thereof, such as $\mu t.(\mu t'.(t'->\bot))$ (recall that in class we used $\mu t'.(t'->\bot)$). The idea is to try out the join rules on your own, using some new types that will really test the rules.
- b) Show the derivation proving that τ_3 is the join of τ_1 and τ_2 .
- c) Show the derivations that τ_1 and τ_2 are subtypes of τ_3 .
- d) Show the derivation calculating that some type τ_4 is the meet of τ_1 and τ_2 .
- e) Show the derivations that τ_1 and τ_2 are supertypes of τ_4 .

Your derivations can take the same shortcuts we used when writing derivations in class. Please explain any problems you run into.

Note: Even with this seemingly simple type system, the subtyping relation is *not* antisymmetric, meaning that it's just a preorder (satisfying reflexivity and transitivity), not a partial order (satisfying reflexivity, transitivity, and anti-symmetry). There exist non-identical types τ_1 and τ_2 that are subtypes of each other. In such cases we say that τ_1 and τ_2 are *equivalent*. For example, $\tau_1=\mu t.(t->\bot)$ and $\tau_2=\mu t'.((\mu t''.(t'->\bot))->\bot)$ are equivalent, so it's OK that joining τ_1 with itself produces τ_2 .

For +20% extra credit, you could prove or disprove that the join and meet rules are correct, i.e., they really do return joins and meets for types.