Contrôle continu 3

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. (Question de cours)

1. Soit $q: \mathbb{R}^n \to \mathbb{R}$ une forme quadratique. Donner la définition et les propriétés élémentaires de la forme polaire B de q.

2. Démontrer la proposition suivante : Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de \mathbb{R}^n et $h = h_1 e_1 + \dots + h_n e_n \in \mathbb{R}^n$. Soit $f : \mathbb{R}^n \to \mathbb{R}^p$ une application différentiable en $a \in \mathbb{R}^n$, alors $d_a f(h) = h_1 \frac{\partial f}{\partial x_1}(a) + \dots + h_n \frac{\partial f}{\partial x_n}(a)$.

Exercice 2. Soit ϕ la forme bilinéaire symétrique sur \mathbb{R}^3 définie par

$$\phi(x,y) = (x_1 - 2x_2)(y_1 - 2y_2) + x_2y_2 + (x_2 + x_3)(y_2 + y_3)$$

pour tout $x = (x_1, x_2, x_3)$ et $y = (y_1, y_2, y_3)$.

1. Vérifier que ϕ est un produit scalaire sur \mathbb{R}^3 .

2. On note $\|\cdot\|_\phi$ la norme associée à $\phi.$ Soit i=(1,0,0), j=(0,1,0) et k=(0,0,1). Calculer les coordonnées de

$$e_1 = \frac{i}{\|i\|_{\phi}}, \quad e_2 = \frac{j - \phi(e_1, j)e_1}{\|j - \phi(e_1, j)e_1\|_{\phi}}, \quad e_3 = \frac{k - \phi(e_1, k)e_1 - \phi(e_2, k)e_2}{\|k - \phi(e_1, k)e_1 - \phi(e_2, k)e_2\|_{\phi}}$$

3. Vérifier que (e_1,e_2,e_3) est une base orthonormale pour ϕ .

4. Déterminer (sans calcul) la matrice de ϕ dans la base (e_1,e_2,e_3) .

Exercice 3. Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \frac{xy^2}{x^2+y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0.

1. Étudier la continuité de f.

2. Soit $v \in \mathbb{R}^2$. Montrer que la dérivée directionnelle $D_v f(x,y)$ existe en tout point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$.

3. Soit $v \in \mathbb{R}^2$. Montrer que la dérivée directionnelle $D_v f(0,0)$ existe. La fonction f est elle différentiable en l'origine?

Exercice 4.

1. Trouver l'équation du plan tangent au graphe de la fonction $(x, y) \mapsto 4x^2 + y^2$, au point $(x_0, y_0) = (1, -1)$.

2. Trouver les points sur le paraboloïde $z=4x^2+y^2$ où le plan tangent est parallèle au plan x+2y+z=6.