SQL Project

-- Exploratory Data Analysis (EDA)--

This project utilizes SQL to analyze data on employee layoffs within a company. Here we are going to explore the data and find trends or patterns or anything interesting like outliers.

One will gain experience in:

- Identifying trends and patterns in workforce data.
- Communicating data-driven insights and recommendations.

-- This query retrieves the data of a table.

Select *

from layoffs_staging2;

company	location	industry	total_laid_off	percentage_laid_off	date	stage	country	funds_raised_millions
ncluded Health	SF Bay Area	Healthcare	NULL	0.06	2022-07-25	Series E	United States	272
Open	Dublin	Marketing	9	0.09	2022-11-17	Series A	Ireland	35
Paid:	Toronto	Marketing	19	0.17	2023-01-27	Series B	Canada	21
00 Thieves	Los Angeles	Consumer	12	NULL	2022-07-13	Series C	United States	120
0X Genomics	SF Bay Area	Healthcare	100	0.08	2022-08-04	Post-IPO	United States	242
stdibs	New York City	Retail	70	0.17	2020-04-02	Series D	United States	253
TM	Sao Paulo	Crypto	90	0.12	2022-06-01	Unknown	Brazil	250
TM	Sao Paulo	Crypto	100	0.15	2022-09-01	Unknown	Brazil	250
U	Washington D.C.	Education	NULL	0.2	2022-07-28	Post-IPO	United States	426
4gene	Washington D.C.	Healthcare	95	0.3	2022-08-29	Series B	United States	44
B Solar	Sydney	Energy	NULL	0.25	2022-06-03	Series A	Australia	12
sense	SF Bay Area	Sales	150	0.1	2022-10-12	Series E	United States	426
0 Acres Farms	Cincinnati	Food	NULL	0.1	2023-01-18	Unknown	United States	275
x8	SF Bay Area	Support	155	0.07	2023-01-18	Post-IPO	United States	253
x8	SF Bay Area	Support	200	0.09	2022-10-04	Post-IPO	United States	253
8point6	Seattle	Healthcare	NULL	0.1	2022-07-21	Series E	United States	247
9	Sao Paulo	Transport	75	0.02	2022-09-20	Acquired	Brazil	244
bra	SF Bay Area	Crypto	12	0.05	2022-06-30	Series C	United States	106
bsci	Vancouver	Healthcare	40	HULL	2022-08-09	Post-IPO	United States	237
cact s_staging2 2 🗙	Stockholm	Madia	70	N 15	2022-00-15	Doct-TDO	Swaden	126

·/*This query provides you to find the peak instance of employee layoffs within the timeframe covered by the data. This can indicate the most severe period of workforce reduction.*/ Select MAX(total_laid_off) from layoffs_staging2; Export: Wrap Cell Content: IA MAX(total_laid_off) 12000 /*This query provides you to find the highest number of employees laid off within a dataset when the percentage of employee layoffs is 100%*/ Select MAX(total_laid_off) from layoffs_staging2 where percentage_laid_off =1; Export: 📳 | Wrap Cell Content: 🔼 MAX(total_laid_off) 2434 -- Looking at Percentage to see how big these layoffs were SELECT MAX(percentage_laid_off), MIN(percentage_laid_off) FROM layoffs staging2 WHERE percentage_laid_off IS NOT NULL; Export: 🔛 | Wrap Cell Content: 🏗 MAX(percentage_laid_off) | MIN(percentage_laid_off) | 1 0

```
/*This query provides you to find the specific layoffs where 1 (representing 100%) of employees were laid off from a company where the entire workforce was laid off.*/
```

Select *

```
from layoffs_staging2
where percentage_laid_off =1
order by total_laid_off desc;
```


-- This query provides you to find the date range of employee layoffs in the given data.

Select min(`date`), max(`date`)
from layoffs_staging2;

/*This query provides you to find the total number of employees laid off at each company and shows which companies experienced the most overall layoffs.*/

```
Select Company, sum(total_laid_off)
from layoffs_staging2
group by company
order by 2 desc;
```


/*This query provides you to find the total number of employees laid off within each industry sector and shows which industries experienced the most overall layoffs.*/

```
Select industry, sum(total_laid_off)
from layoffs_staging2
group by industry
order by 2 desc;
```


/*This query provides you to find the total number of employees laid off within each country and shows which countries experienced the most overall layoffs.*/

```
Select country, sum(total_laid_off)
from layoffs_staging2
group by country
order by 2 desc;
```

order by 1 desc;


```
/*This query groups layoffs by the year they occurred and
calculates the total number of employees laid off for each year.*/
select year(`date`), sum(total_laid_off)
from layoffs_staging2
group by year(`date`)
```


-- The given SQL query provides insights into layoff trends monthly within your dataset.

```
select substring(`date`, 1, 7) as `month`, sum(total_laid_off)
from layoffs_staging2
where substring(`date`, 1, 7) is not null
group by `month`
order by 2 desc;
```


-- This query shows which companies had the most layoffs in a particular year.

Select Company, year(`date`), sum(total_laid_off)
from layoffs_staging2

Re	sult Grid 🎚	🙌 Filter Rov	vs:
	Company	year(`date`)	sum(total_laid_off)
•	Google	2023	12000
	Meta	2022	11000
	Amazon	2022	10150
	Microsoft	2023	10000
	Ericsson	2023	8500
	Amazon	2023	8000
	Salesforce	2023	8000
	Uber	2020	7525
	Dell	2023	6650
	Philips	2023	6000
	Booking.c	2020	4375

```
/*This query shows the accumulation of layoffs over time.
Rolling Total of Layoffs Per Month with CTE*/
with Rolling_Total as
(
    select substring(`date`, 1, 7) as `month`, sum(total_laid_off) as total_off
from layoffs_staging2
where substring(`date`, 1, 7) is not null
group by `month`
order by 1 asc
)
select `month`, total_off, sum(total_off) over(order by `month`) as rolling_total
from Rolling_Total;
```

Re	esult Grid	Filter Ro	
	month	total_off	rolling_total
•	2020-03	9628	9628
	2020-04	26710	36338
	2020-05	25804	62142
	2020-06	7627	69769
	2020-07	7112	76881
	2020-08	1969	78850
	2020-09	609	79459
	2020-10	450	79909
	2020-11	237	80146
	2020-12	852	80998
	2021-01	6813	87811
	2021-02	868	88679
	2021-03	47	88726
	2021-04	261	88987
	2021-06	2434	91421
	2021-07	80	91501
	2021-08	1867	93368
	2021-09	161	93529
	2021-10	22	93551
	2021-11	2070	95621
	2021-12	1200	96821
	2022-01	510	97331
	2022-02	3685	101016
	2022-03	5714	106730
	2022-04	4128	110858
	2022-05	12885	123743
	2022-06	17394	141137
	2022-07	16223	157360
	2022-08	13055	170415
	2022-09	5881	176296
	2022-10	17406	193702
	2022-11	53451	247153
	2022-12	10329	257482
	2023-01	84714	342196
	2023-02	36493	378689
	2023-03	4470	383159

```
-- This query identifies the companies with the top 5 highest layoff totals within each year.
```

```
with company_year(company, years, total_laid_off) as
(
Select Company, year(`date`), sum(total_laid_off)
from layoffs_staging2
group by company, year(`date`)
), Company_Year_Rank as
(select *, dense_rank() over(partition by years order by total_laid_off desc) as ranking
from company_year
where years is not null
)
select *
from Company_Year_Rank
where ranking <= 5;</pre>
```

R	esult Grid	Filter Ro	ws:	Ex	port:	Wrap Cell Content:	<u>‡A</u>
	company	years	total_laid_off	ranking	_		
•	Uber	2020	7525	1			
	Booking.com	2020	4375	2			
	Groupon	2020	2800	3			
	Swiggy	2020	2250	4			
	Airbnb	2020	1900	5			
	Bytedance	2021	3600	1			
	Katerra	2021	2434	2			
	Zillow	2021	2000	3			
	Instacart	2021	1877	4			
	WhiteHat Jr	2021	1800	5			
	Meta	2022	11000	1			
	Amazon	2022	10150	2			
	Cisco	2022	4100	3			
	Peloton	2022	4084	4			
	Carvana	2022	4000	5			
	Philips	2022	4000	5			
	Google	2023	12000	1			
	Microsoft	2023	10000	2			
	Ericsson	2023	8500	3			
	Amazon	2023	8000	4			
	Salesforce	2023	8000	4			
	Dell	2023	6650	5			

Layoff Trends and patterns:

Key insights:

Note: Kindly note down that It's possible that there were layoffs before or after the date range (from 2020/03/11 to 2023/03/06) given but we consider the data in the layoffs_staging2 table that we have.

- There are both types of companies with 100% layoff (This indicates the most severe layoff event in terms of workforce reduction proportion.) and 0% layoff (This indicates the no layoff event in terms of workforce reduction proportion.)
- Identified the company name "Katerra" (location: SF Bay Area) with the highest number of layoffs where the entire workforce was laid off.
- The most overall (total number of employees) layoffs are experienced in the following each sector:

Company: Amazon

Industry: Consumer

Country: United States

- According to the data given,2022 is the year when the maximum layoffs are seen but there is 2023 year which could
 experience the most at the end of the year as we have only three-month data of 2023 year.
- There are specific months (Jan, Nov, Feb) with higher layoff activity. This can indicate seasonality in layoffs, where certain times of the year are more likely to see workforce reductions.
- There is a significant jump in respondents between December 2022 and January 2023.
- There are spikes in the number of laid-off in May 2022, June 2022, and November 2022. It is possible that these months correspond to periods of increased promotion of the survey.
- 'Google' laid-off the most employees in 2023 with a total of 12,000.
- 'Meta' laid-off the second-most employees in 2022 with a total of 11,000.
- '2022' appears to be the year with the most layoffs.