Class Field Theory

David Wiedemann

Table des matières

1	Mo	tivation	3
2	Inte	erlude : Inverse Limits	5
3	Gal	ois Theory and profinite groups	5
4	Loc	al Fields	8
\mathbf{L}	ist	of Theorems	
	1	Definition	3
	2	Corollary	3
	4	Lemma	4
	5	Theorem (Artin Reciprocity)	4
	6	Theorem (Abelian polynomial theorem)	4
	7	Theorem	5
	2	Definition (Inverse System)	5
	10	Lemma	6
	3	Definition (Profinite space)	6
	11	Lemma	6
	4	Definition (Profinite group)	7
	5	Definition (Krull Topology)	7
	13	Proposition	7
	14	Corollary	7
	15	Theorem (Fundamental Theorem of Galois Theory (Cool version))	7
	6	Definition (Local Field)	8
	7	Definition	8
	8	Definition (Equivalent metrics)	9
	19	Proposition	9
	20	Theorem (Approximation Theorem)	10
	22	Proposition	10
	9	Definition (Complete Field)	11

24	Theorem (Ostrowski)	11
10	Definition	12
11	Definition	12
12	Definition (Non-archimedean local field)	
13	Definition	
25	Proposition	12
26	Lemma (Hensel)	
28	Theorem (Classification of non-archimedean local fields)	14
29	Theorem	14
30	Theorem	15
31	Theorem	15
32	Lemma	15
33	Corollary	16

Lecture 1: Intro

Mon 10 Oct

1 Motivation

Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial and a p a prime. Look at $f_p(x) \in \mathbb{F}_p[x]$, in general, f_p is not irreducible so we can study it's factorizations.

Definition 1

We say f splits completely mod p if f_p factors into distinct linear factors. We write $Spl(f) = \{p | f_p = \prod (x - \alpha_i)\alpha_i \neq \alpha_j \forall i \neq j\}$

Problem

Given f, describe the factorisations behaviour of f_p as a function of p. Or at least give a rule determining Spl(f).

An answer to this illposed problem is a Reciprocity Law.

Example

Let $f(x) = x^2 - q \ q > 2$ prime.

Observe that

- 1. $f_p(x) = (x \alpha_p)^2$, but this happens iff p = 2, q
- 2. $f_p(x) = (x \alpha_p)(x + \alpha_p)$ iff $p \in Spl(f)$ iff $(\frac{q}{p}) = 1$
- 3. $f_p(x)$ is irreducible iff $(\frac{q}{p}) = -1$

To get a rule, we need to compute $\binom{q}{p}$, to do so, we use quadratic reciprocity. For us, quadratic reciprocity translates to

Corollary 2

$$(\frac{q}{p}) = \begin{cases} (\frac{p}{q}) & \text{if } p \equiv 1 \mod 4 \\ -(\frac{p}{q}) & \text{if } p \equiv 3 \mod 4 \end{cases}$$

So $Spl(X^2 - q)$ is determined by congruence conditions modula 4q.

Example

Let Φ_n be the nth cyclotomic polynomial, then

$$Spl(\Phi_n) = \{p | p \equiv 1 \mod n\}$$

What about general polynomials?

Over \mathbb{C} , we can always factor polynomials and so we write $K_f = \mathbb{Q}(\alpha_1, \dots, \alpha_n)$

for the splitting field of K_f over \mathbb{Q} .

 $K_f \supset \mathbb{Q}$ is a Galois extension and $\mathcal{O} = \mathcal{O}_{K_f}$ is it's ring of integers.

As \mathcal{O} is a dedekind domain, we have

$$p\mathcal{O}=\prod_{i=1}^n\beta_i^e, \mathcal{O}_{/\beta_i}\supset \mathbb{Z}/(p)$$
 a finite extension of \mathbb{Z}/p

We understand finite extensions of \mathbb{F}_p , there Galois group is generated by the Frobenius automorphism.

If p does not ramify ($e_p = 1 \iff p \not| D_{K_f}$) then we define the Artin-Symbol $\sigma_{\beta_i} \in Galf(K_f|\mathbb{Q})$ by

$$\sigma_{\beta_i}(\alpha) \equiv \alpha^p \mod \beta_i \forall a \in \mathcal{O}$$

Fact:

If $\beta_i \neq \beta_j$, then there is $\zeta \in Gal(K_f|\mathbb{Q})$ such that $\zeta(\beta_i) = \beta_j$, then $\sigma_{\beta_j} = \zeta \sigma_{\beta_i} \zeta^{-1}$.

The Artin symbol of p is $\sigma_p = C_{\text{Gal}}(\sigma_{\beta_i})$.

For now we suppose $Gal(K_f|\mathbb{Q})$ is an abelian group, in this case, we can turn the Artin Symbols into a map

$$\mathbb{Q}^* \supset \Gamma_{D_{K_f}} = \langle p \not| D_{K_f} \rangle \to \operatorname{Gal}(K_f | \mathbb{Q})$$

by sending $p \to \sigma_p$

Lemma 4

If $Gal(K_f|\mathbb{Q})$ is abelian, then, up to finitely many extensions,

$$p \in Spl(f) \iff \sigma_p = 1$$

Theorem 5 (Artin Reciprocity)

For K_f/\mathbb{Q} abelian, the Artin map $\sigma: \Gamma_{D_{K_f}} \to \operatorname{Gal}(K_f|\mathbb{Q})$ is surjective and it's kernel contains the "ray class group".

Here the ray class group is

$$\Gamma_a^{(ray)} = \left\{ r \in \mathbb{Q}^* | r = \frac{c}{d}(ca, d) = 1, c \equiv d \mod a \right\}$$

For a suitable a tant consists of ramified primes.

Define $\tilde{Spl}(f) = Spl(f) \setminus \{p|a\} \cup \{p \equiv 1 \mod a\}$.

Theorem 6 (Abelian polynomial theorem)

If f is abelian, then $\tilde{Spl}(f)$ can be described by congruence conditions wrt a modulus depending only on f.

Conversely, if $\tilde{Spl}(f)$ is described by congruence conditions, then $\operatorname{Gal}(K_f|\mathbb{Q})$ is abelian.

Theorem 7

Let f, g be polynomials (monic irreducible), then

$$K_f \subset K_g \iff Spl(g) \subset^* Spl(f)$$

This enters in the proof of the converse part of the abelian polynomail theorem.

2 Interlude: Inverse Limits

Let I be a directed ordered set $(i, j \in I \implies \exists k \text{ such that } i \leq k, j \leq k)$

Definition 2 (Inverse System)

A inverse system consists of data

$$\{X_i, f_{i,j} | i, j \in I, i \le j\}$$

 X_i are objects (topological spaces, groups, etc) and the $f_{i,j}: X_j \to X_i$ such that $f_{i,i} = \operatorname{Id}$ and $f_{j,k} \circ f_{k,i} = f_{j,i}$

Example

Take $X_i = \mathbb{Z}_{p^j\mathbb{Z}} \to \mathbb{Z}_{p^i\mathbb{Z}}, i \leq j$. Then, the inverse limit is defined by

$$X = \varprojlim_{i \in I} X_i = \left\{ (x_i) \in \prod_{i \in I} X_i | f_{ij}(x_j) = x_i \forall i \le j \right\} \subset \prod_{i \in I} X_i$$

Lecture 2: Infinite galois theory

Thu 13 Oct

3 Galois Theory and profinite groups

Example

$$\mathbb{F}_p \subset \mathbb{F}_{p^n} \subset \overline{\mathbb{F}_p}$$
.

Though the extension is infinite, we can look at $Gal(\overline{\mathbb{F}_p}|\mathbb{F}_p)$ and it still contains the frobenius $\phi(x) = x^p$.

Let
$$H = \{\phi^n | n \in \mathbb{Z}\} = \langle \phi_n \rangle \subset \operatorname{Gal}(\overline{\mathbb{F}_p} | \mathbb{F}_p)$$
.
Note that $\overline{\mathbb{F}_p}^H = \mathbb{F}_p \ BUT \ H \subsetneq \operatorname{Gal}(\overline{\mathbb{F}_p} | \mathbb{F}_p)$

Lemma 10

Let T be a Hausdorff topological space.

The following are equivalent

- T is an inverse limit of finite discrete spaces
- T is compact and every point in T has a basis of neighborhoods of subsets that are clopen
- T is compact and totally disconnected

Proof (Sketch)

 $1 \implies 2$ follows from construction (exercise)

 $2 \implies 3$ Take $x \in T$ and let C_x be the connected component of x.

Then

$$C_x = \bigcap_{x \in U, \ clopen} \ U = \{x\}$$

because X is Hausdorff.

 $3 \implies 1 \text{ Let } I = \left\{ \begin{array}{l} \overset{\frown}{\text{equivalence relation }} R \subset T \times T | T/R \text{ is finite discrete} \end{array} \right\}$

Then, consider $\phi: T \to \varprojlim^T /_R$, one then checks this is a homeomorphism. (exercise again)

Definition 3 (Profinite space)

A profinite space is a totally disconnected, compact and Hausdorff space.

Lemma 11

Let G be a Hausdorff topological group.

Then the following are equivalent

- G is the inverse limit of discrete finite groups
- G is compact and the identity in G has a basis of neighborhoods consisting of normal clopen subgroups.
- G is compact and totally disconnected.

Proof

 $1 \implies 3$ see course notes

 $2 \implies 1$ We want to show that $\phi: G \to \varprojlim^G /_U$ where the limit is taken over all normal clopen subgroups.

 $3 \implies 2$ We take a basis for e as in the lemma above.

We take a basis of clopen neighborhoods U and then define

$$V = \{v \in U | Uv \subset U\} \text{ and } H = \{h \in V | h^{-1} \in V\}$$

and one can show that H is a normal finite subgroup of finite index.

Definition 4 (Profinite group)

A totally disconnected compact Hausdorff topological group is called a profinite group.

Example

$$-\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n\mathbb{Z}$$

$$-\hat{\mathbb{Z}} = \lim_{n \in \mathbb{N}} \mathbb{Z}/N\mathbb{Z}$$
 where the inverse system is given by divisibility

Now we try to fix the fundamental theorem of Galois theory.

Let F be a field with algebraic closur \overline{F} .

Write $G_E = \operatorname{Gal}(\overline{F}|E)$ for a field extension $F \subset E \subset \overline{F}$.

In particular, G_F is just the absolute Galois group of F

Definition 5 (Krull Topology)

For some element $\sigma \in G_F$, define a absis of (open) neighborhoods to be

$$\{\sigma G_E|F\subset E \text{ finite normal }\}$$

Proposition 13

 G_F equipped with the Krull topology is a profinite group. We have

$$G_F = \varprojlim \operatorname{Gal}(E/F)$$

where E runs over finite Galois extensions of E

Corollary 14

$$G_{\mathbb{F}_p} \simeq \varprojlim_n \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \simeq \hat{\mathbb{Z}}$$

Theorem 15 (Fundamental Theorem of Galois Theory (Cool version))

The assignment

$$K \to \operatorname{Gal}(\overline{F}|K)$$

is a one-to-one correspondence between extensions $F \subset K \subset \overline{F}$ and closed subgroups of G_F .

The open subgroups of G_F correspond to finite extensions of F.

Proof

- 1. First, notice that an open subgroup of G_F is closed.
- 2. Finite extensions correspond to open subgroup (essentially by definition, one needs to take the normal closure)

3. Now, for an arbitrary field extensionf

$$\operatorname{Gal}(\overline{F}|K) = \bigcap_{i} \operatorname{Gal}(\overline{F}|K_{i})$$

as K_i varies over all finite subextensions of K

- 4. This assignment is injective as K is the fixed field of $Gal(\overline{F}|K)$
- 5. This assignment is surjective :

Take $H \subset G_F$ a closed subgroup and let $K = \overline{F}^H$, so that $H \subset \operatorname{Gal}(\overline{F}|K)$.

To see that this is in fact an equality, we take $\sigma \in \operatorname{Gal}(\overline{F}|K)$ and we show that $\sigma \in \overline{H} = H$.

Take some finite extension $K \subset L \subset \overline{F}$ so that $\sigma \operatorname{Gal}(\overline{F}|L)$ is a neighborhood of σ .

We need to show that

$$H \cap \sigma \operatorname{Gal}(\overline{F}|L) \neq \emptyset$$

To do this, we have to show $\tau \in H$ such that $\tau|_L = \sigma|_L$.

$$p: G_K \to \operatorname{Gal}(L/K)$$

is surjective and $p(H) \subset \operatorname{Gal}(L/K)$.

Since K is the fixed field of H, $L^{p(H)} = K$, we have $p|_H : H \to Gal(L/K)$ is surjective.

4 Local Fields

Example

 \mathbb{R} and \mathbb{C} are local fields for us

Definition 6 (Local Field)

A local field is a topological field which is locally compact but not discrete.

Definition 7

Let F be a field. An absolute value on F is a map $|\cdot|: F \to \mathbb{R}$ such that

- 1. $|x| \ge 0$ and |x| = 0 and $|x| = 0 \iff x = 0$
- 2. |xy| = |x||y|
- 3. $|x+y| \le |x| + |y|$

Example

- \mathbb{R} and \mathbb{C} with euclidean norm

— If O is a DVR, $F = \frac{1}{O}$, then $|x| = c^{-\nu(x)}$ with c > 1 defines an absolute value.

Lecture 3: Local Fields

Mon 17 Oct

Remark

- 1. On a local field, we get a metric d(x,y) = |x-y| which induces a topology on our field F
- 2. We could define the discrete metric which induces the discrete topology, but we always exclude it

Definition 8 (Equivalent metrics)

- 1. We call $|\cdot|_1$ and $|\cdot|_2$ equivalent if they induce the same topology.
- 2. If $|x+y| \leq \max(|x|,|y|) \leq |x|+|y|$ holds, then we call $|\cdot|$ nonarchimedean.

Observe that, if $|\cdot|_1$ and $|\cdot|_2$ are equivalent absolute values, then

$$|x|_1 < 1 \implies x^n \to 0 \text{ in } |\cdot|_1 \implies x^n \to 0 \text{ in } |\cdot|_2 \implies |x|_2 < 1.$$

Proposition 19

Two absolute values $|\cdot|_1, |\cdot|_2$ are equivalent iff there is s>0 such that

$$|\cdot|_1 = |\cdot|_2^s$$

The implication from right to left is easy. Fix $y \in F^{\times}$ with $|y|_1 > 1$. For any $x \in F^{\times}$ there is $\alpha \in \mathbb{R}$ such that

$$|x|_1 = |y|_1^{\alpha}$$

Take a rational approximation from above $\frac{m_i}{n_i} \to \alpha$, we get $|\frac{x^{n_1}}{y^{m_1}}|_1 < 1 \implies |\frac{x^{n_1}}{y^{m_1}}|_2 < 1$

Thus $|x|_2 \le |y|_2^{\frac{m_i}{n_i}} \Longrightarrow |x|_2 \le |y|_2^{\alpha}$.

Doing the same with an approximation of α from below we get $|x|_2 = |y|_2^{\alpha}$.

$$0 < s = \frac{\log|y|_1}{\log|y|_2} = \frac{\log|x|_1}{\log|x|_2}$$

Theorem 20 (Approximation Theorem)

Let $|\cdot|_1, \ldots, |\cdot|_n$ be pairwise inequivalent absolute values.

For all $a_1, \ldots, a_n \in F$ and every $\epsilon > 0$, there is $x \in F$ such that

$$|x - a_i|_i < \epsilon$$

Remark

Taking $F = \mathbb{Q}$ and p, q primes.

There are valuations v_p, v_q which induce absolute values $|\cdot|_p = p^{-v_p(\cdot)}$ which are non-archimedean and inequivalent.

A special case of the theorem above says that for each $a_1, a_2 \in \mathbb{Z}$ and all $\epsilon > 0$ there is $x \in \mathbb{Q}$ such that $|a_1 - x|_p < \epsilon$ and $|a_2 - x|_q < \epsilon$

Proof

We claim: There is $z \in F$ such that $|z|_1 > 1$ and $|z|_j < 1$ for $j = 2, \ldots, n$. First, take $\alpha, \beta \in F$ such that

$$|\alpha|_1 < 1 \le |\alpha|_n \text{ and } |\beta|_1 \ge 1 > |\beta|_n$$

Put $y = \frac{\beta}{\alpha}$.

The case n = 2 follows from this (with z = y).

By induction, for n > 2 we argue by induction. Say z' satisfies the claim for

If $|z'|_n \leq 1$, take $z = (z')^m y$ for m large enough.

$$t_m = \frac{(z')^m}{1 + z'^m}$$

 t_m will converge to 1 for j = 1, n and 0 if not.

Take $z = t_m y$ for m large enough.

By the same argument we find $z_i \in F$ such that $|z_i|_i > 1$ and $|z_i|_j < 1$ for

Put $x=a_1z_1^{m_1}+\ldots+a_nz_n^{m_n}$ for $m_1,\ldots,m_n\in\mathbb{N}$ large enough. Look at

$$|x - a_1|_1 \le |a_1|_1$$

Proposition 22

An absolute value $|\cdot|$ on a field F is non-archimedean iff $(|n|)_{n\in\mathbb{N}}$ is bounded.

Proof

" ⇒ "
$$|n| = |1 + ... + 1| \le \max(|1|, ...) = 1$$

" ⇐ " $Say |n| \le N$, $look \ at \ |x + y|^l \le \sum_{v=0}^l |\binom{l}{v}| \underbrace{|x|^v |y|^{l-v}}_{\le \max(|x|,|y|)^l}$

Taking l -th roots, we get $|x + y| \le N^{\frac{1}{l}} (1 + l)^{\frac{N}{l}} \max(|x|,|y|)$

Definition 9 (Complete Field)

We call $(F, |\cdot|)$ complete if every Cauchy sequence has a limit in F.

Any valued field has a completion $(\hat{F}, |\cdot|)$.

Example

$$(\mathbb{Q}, |\cdot|) \xrightarrow{completion} (\mathbb{R}, |\cdot|_{\infty}).$$

We can do the same for the p-adic absolute values $(\mathbb{Q}, |\cdot|_p) \xrightarrow{completion} (\mathbb{Q}_p, |\cdot|_p)$.

Theorem 24 (Ostrowski)

Let F be a complete valued field such that $|\cdot|$ is archimedean.

Then there is an isomorphism $\sigma: F \to \mathbb{R}$ or \mathbb{C} such that $|x| = |\sigma(x)|_{\infty}^{s} \forall x \in F$

Proof

As $|\cdot|$ is archimedean, the sequence (n) is unbounded and hence char(F) = 0. Hence $\mathbb{Q} \to \hat{\mathbb{Q}} \to F$ and thus $\mathbb{R} \subset F$.

Take $a \in F$, we want to find a quadratic polynomial in $\mathbb{R}[x]$ that a satisfies.

Define $f(z) = |a^2 - Tr_{\mathbb{C}|\mathbb{R}}(z)a + Nr_{\mathbb{C}|\mathbb{R}}(z)$ for $z \in \mathbb{C}$.

Note that $f: \mathbb{C} \to [0, \infty)$ and $f(z) \to \infty$ as $|z| \to \infty$.

So $m = \min_{z \in \mathbb{C}} f(z)$ is attained in $S = \{z \in \mathbb{C} | f(z) = m\}$.

We claim m = 0.

Take $z_0 \in S$ and suppose $m = f(z_0) > 0$, consider

$$g(x) = x^2 - Tr_{\mathbb{C}|\mathbb{R}}(z_0)x + Nr_{\mathbb{C}|\mathbb{R}}(z_0) + \epsilon \in \mathbb{R}[x]$$

Let z_1, z'_1 be complex roots of g, we must have

$$z_1 z_1' = N r_{\mathbb{C}|\mathbb{R}}(z_0) + \epsilon$$

and in particular $|z_1| > |z_0|$.

Consider $G(x) = [g(x) - \epsilon]^n - (-\epsilon)^n = \prod_{i=1}^n (x - \alpha_i)$ and assume $\alpha_1 = z_1$

$$|G(a)|^2 = \prod_{i=1}^{2n} f(\alpha_i) \ge f(z_1)|m|^{2n-1}$$

and

$$|G(a)| \le f(z_0)^n + \epsilon^n = m^n + \epsilon^n$$

Rearranging

$$\frac{f(z_1)}{m} \le (1 + (\frac{\epsilon}{m})^n)^2 \to 1$$

as $n \to \infty$.

Rearranging $f(z_1) \le m = f(z_0)$

Definition 10

The fields \mathbb{R} and \mathbb{C} are called archimedean local fields.

Let $|\cdot|$ be non-archimedean

Definition 11

Let $\mathcal{O} = \{x \in F | |x| \le 1\}$ be the "valuation ring".

$$p = \{x \in F | |x| < 1\}$$

is the unique maximal ideal of p.

Then $\mathcal{O}^{\times} = \{x \in F | |x| = 1\}$ are the units and $k = \mathcal{O}_p$ is the residue field.

Definition 12 (Non-archimedean local field)

A non-archimedean local field is a complete valued field such that $|\cdot|$ is non-archimedean and k is finite.

Definition 13

The valuation v defined by $v(x) = -\log(|x|)$ is called discrete if there is a > 0 such that $v(F^{\times}) \subset s\mathbb{Z}$.

We say v is normalized if $v(F^{\times}) = \mathbb{Z}$

Proposition 25

Let $(F, |\cdot|)$ be a non-archimedean valued field with completion $(\hat{F}, |\cdot|)$, then

$$\hat{\mathcal{O}}_{/\hat{p}} \simeq \mathcal{O}_{/p}$$

Further, if $|\cdot|$ has discrete valuation then

$$\hat{\mathcal{O}}_{p^n} \simeq \mathcal{O}_{p^n}$$
 and $\hat{\mathcal{O}} = \lim \mathcal{O}_{p^n}$

Similarly

$$\hat{\mathcal{O}}^{\times = \lim^{\mathcal{O}^{\times}} / U^n}$$

for $U^n = 1 + p^n$

Lecture 4: Local fields

Thu 20 Oct

Lemma 26 (Hensel)

Let $(F, |\cdot|)$ be a non-archimedean complete valued field.

Let $f \in \mathcal{O}[x]$ and assume $f = \overline{g}\overline{h} \mod p$ with \overline{g} and \overline{h} coprime over $\mathcal{O}_p[x]$, then this factorization lifts to \mathcal{O} and $\exists g,h \in \mathcal{O}[x]$ such that $g \mod p = \overline{g}$, $h \mod p = \overline{h} \deg g = \deg \overline{g}$

Proof

Let $d = \deg f, m = \deg \overline{g}$.

Define g_0 to be a lift of \overline{g} to $\mathcal{O}[x]$ and h_0 a lift of h with same degree.

Look at $f - g_0 h_0$, take $a, b \in \mathcal{O}[x]$ such that $ag - +bh_0 \equiv 1 \mod p\mathcal{O}[x]$ and look at $ag_0 + bh_0 - 1$.

Define ω to be any element of p that divides $f - g_0h_0$, $ag_0 + bh_0 - 1$.

We will construct (g_n, h_n) such that $\deg g_n = m$, $\omega^n | g_n - g_{n-1}$ and $\omega^n | h_n - h_{n-1}$ such that $\omega^{n+1} | f - g_n h_n$.

Suppose we've constructed g_{n-1}, h_{n-1} we want to find $g_n = g_{n-1} + \omega^n p_m$ and $h_n = h_{n-1} + \omega^n q_m$. We'll be able to take $\deg p_m < m$.

Write

$$f - g_n h_n \equiv (f - g_{n-1} h_{n-1}) - \omega^n (p_n h_{n-1} + q_n g_{n-1}) \mod \omega^{n+1}$$
$$\equiv \omega^n (\frac{f - g_{n-1} h_{n-1}}{\omega^n} - p_n h_{n-1} - q_n g_{n-1})$$

We work with ω now, so we want

$$p_n h_0 + q_m g_0 \equiv \underbrace{\frac{f - g_{n-1} h_{n-1}}{\omega^n}}_{=f_n} \mod \omega$$

We have $bh_0 + ag_0 \equiv 1 \mod \omega$ and thus

$$(bf_n)h_0 + (af_n)g_0 \equiv f_n \mod \omega$$

Write $bf_n = qg_0 + p_n$ with $\deg p_n < m$.

Letting $q_n := af_n + ph_0$, all the conditions hold and we get our g_n, h_n .

The factors of the respective sequences converge in $\mathcal{O}[x]$ because the coefficients are Cauchy and \mathcal{O} is complete.

Example

- 1. If $f \in \mathcal{O}[x]$ and $\overline{a} \in \mathcal{O}_p$ such that $f(a) \equiv 0 \mod p$, $f'(a) \in \mathcal{O}^{\times}$ then $\exists a \in 0, a \equiv \overline{a} \mod p$ such that f(a) = 0
- 2. $f \in K[x]$ such that f is irreducible $f(0) \in \mathcal{O}$ then $f \in \mathcal{O}[x]$

Theorem 28 (Classification of non-archimedean local fields)

The non-archimedean local fields are the finite extensions of \mathbb{Q}_p and $\mathbb{F}_p((t))$

Theorem 29

Let $(F, |\cdot|)$ be complete valued, then $|\cdot|$ has a unique extension to \overline{F} . If $E/F < \infty$, then $|\cdot|$ is given by

$$|\alpha|_E = |N_{E/F}(\alpha)|_F^{\frac{1}{[E:F]}}$$

and E is again complete for $|\cdot|$.

Proof

We can assume that F is non-archimedean.

It suffices to show $\exists!$ extension to E (a finite extension).

1. Does $|N_{E/F}|^{\frac{1}{[E:F]}}$ define an absolute value?

Multiplicativity and $\alpha = 0 \iff |\alpha| = 0$ is clear.

We want to show that $|\alpha| \leq 1 \implies |\alpha + 1| \leq 1$.

Fix such an α and look at the minimal polynomial of α , say f.

Then $(f(0))^{\frac{1}{|E:F|}} = N_{E|F}(\alpha)$, thus $|f(0)|_F \le 1$, $f(0) \in \mathcal{O}_F \implies f \in \mathcal{O}_F[x]$ thus $f \in \mathcal{O}_F[x]$.

Hence $f(x-1) \in \mathcal{O}_F[x]$ which is just the minimal polynomial of $\alpha+1$, thus $N(\alpha+1) \in \mathcal{O}_F \implies |\alpha+1|_E \le 1$

2. We show uniqueness.

Suppose $|\cdot|'$ is another absolute value on E extending F.

We'll show that $\mathcal{O}_E := \{ \alpha \in E : N_{E|F}(\alpha) \in \mathcal{O}_p \} \subset \mathcal{O}_E'$.

Suppose not, take $\alpha \in \mathcal{O}_E \setminus \mathcal{O}_E'$, thus $\alpha^{-1} \in p_E'$.

Let f be the minimal polynomial of α , $f = x^d + a_{d-1}x^{d-1} + \dots$,

 $f(\alpha) = 0 \implies 1 + a_{d-1}\alpha^{-1} + \dots + a_0\alpha^{-d} = 0 \in 1 + \mathcal{O}_F p_E' = 1 + p_E' \not\ni 0.$ Thus $\mathcal{O}_E \subset \mathcal{O}_E'$.

Thus $|\alpha|_E \leq 1 \implies |\alpha|_E' \leq 1$.

Hence, if both norms were inequivalent, there would exist $\alpha \in E$ with $|\alpha| \leq \frac{1}{100}, |\alpha|' \geq 100$, which is impossible.

It now suffices to show that E is a complete valued field.

Fact: If F is a complete valued field, V is a finite dimensional vector space over F, then any two norms on V are equivalent.

We use this with $|\cdot|_E$ and a norm coming from a linear isomorphism with $F^{[E:F]}$

We now prove the classification of local fields

Proof

Fact: On \mathbb{Q} , the non-archimedean absolute values are $|\cdot|_p$ (up to equivalence) Take F a non-archimedean local field and suppose $\mathbb{Q} \subset F$.

We know $|\cdot|_{\mathbb{Q}} = |\cdot|_p$ for some p and thus $\mathbb{Q}_p \subset F$.

Local compactness implies that $F/\mathbb{Q}_p < \infty$.

Assume charF = p > 0, thus $\mathbb{F}_p \subset F$, take $t \in F$ with |t| < 1.

We claim that t is transcendental, if not $\exists N \text{ such that } t^N = 1 \implies |t| = 1$.

Thus
$$\mathbb{F}_p((t)) \subset F \implies F/\mathbb{F}_p((t)) < \infty$$
.

Theorem 30

Let F be a non-archimedean local field and $\omega \in F^{\times}$ a uniformizer for \mathcal{O} . Then $\mathcal{O}^{\times} \times \omega^{\mathbb{Z}} \to F^{\times}$ is an isomorphism.

Consider $1 \to \mathcal{O}^{\times} \to F^{\times} \to \mathbb{Z} \to 0$, this ses splits with $s : \mathbb{Z} \to F^{\times}$ sending n to ω^n .

Theorem 31

Let F be a non-archimedean local field, then $\mathcal{O}^{\times} \subset F^{\times}$ is compact open and F^{\times} is locally compact.

Proof

 $Look\ at\ F^\times \to \{(a,b): ab=1\} \subset F^2\ sending\ a \to (a,\tfrac{1}{a}).$

We get everything just by topological considerations.

Recall $U^n = 0$ if n = 0 and $1 + p^n$ if $n \ge 1$.

Then $\mathcal{O}^{\times} = \bigcup_{a \mod p \neq 0} a + p$.

All these p are open compact and thus \mathcal{O}^{\times} is too.

Take $\alpha \in F^{\times}$, then $\alpha \mathcal{O}^{\times}$ is a compact open neighborhood of α .

Lemma 32

Let F be a non-archimedean local field.

The maps $x \to x^m$ with m an integers sends $U^m \to U^{n+v(m)}$ and induces an isomorphism for m large enough (depending on m)

Proof

Take $a \in U^n$, $a = 1 + \omega^n b$, then $a^m = 1 + m\omega^n b + \omega^{2n} c$ for some $c \in \mathcal{O}$.

$$= 1 + \omega^{v(m)}\omega^n b + \omega^{2n} c \in 1 + \omega^{v(m)+m} \mathcal{O}$$

for $n \geq v(M)$.

We show injectivity.

There exist finitely many n-th roots of unity in F.

For n >> 1, $U^n \ni an m$ -th root of unity $\neq 1$

To show surjectivity, take $a \in \mathcal{O}^{\times}$, we want to find $x \in \mathcal{O}$ such that

$$(1+x\omega^n)^m = 1 + a\omega^{n+v(m)}$$

Thus $1 + b\omega^{v(m)}x\omega^n + \omega^{2n}f(x) = 1 + a\omega^{n+v(m)}$ where $m = b\omega^{v(m)}$. $x + \omega^{n-v(m)}f(x) = a$ when n > v(m).

Modulo ω , this becomes x = a.

By Hensel, this lifts to a solution $x \in \mathcal{O}$ because $(x-a)' = 1 \neq 0$.

Corollary 33

Let F be non-archimedean local, then $(F^{\times})^m \subset F^{\times}$ is an open subgroup.

$$\bigcap_m (F^\times)^m = \{1\}$$

Proof

It suffices to show $1 \in (F^{\times})^m$ has an open neighborhood, indeed, take U^m a large enough n.

For the second part, take $a \in \bigcap_m (F^{\times})^m$, $v(a) \in m\mathbb{Z} \forall m \implies v(a) = 0$ and we know that $a \in U^n$ for all n.

Thus
$$a-1 \in \bigcap_i p^i = 0$$