Simple & Multiple Correspondence Analyses Contingency, categorical, ordinal, continuous and mixed data

Derek Beaton

Rotman Research Institute

October 28, 2019

Our new best friends

via @allison_horst

via @allison_horst

What do we do with all of these in a PCA like way?

- ▶ What do we do with all of these in a PCA like way?
- ► Some are *very* difficult and effectively ignored

- ▶ What do we do with all of these in a PCA like way?
- ► Some are *very* difficult and effectively ignored
 - ► We won't do that!

► Not everything is a number

- Not everything is a number
- ► Sometimes numbers aren't numbers!

- Not everything is a number
- Sometimes numbers aren't numbers!
- ▶ We need to recognize when this happens

- Not everything is a number
- Sometimes numbers aren't numbers!
- ▶ We need to recognize when this happens
 - And know what to do

Typology

► SS Stevens (not a boat!)

Typology

- ► SS Stevens (not a boat!)
- ► Levels of measurement

Typology

- SS Stevens (not a boat!)
- Levels of measurement
- Excellent examples: https://en.wikipedia.org/wiki/Level_of_measurement

Where to find everything

► Generally: https://github.com/derekbeaton/workshops

Where to find everything

- ► Generally: https://github.com/derekbeaton/workshops
- ► Today:

► Revisit PCA

- ► Revisit PCA
- ► Looking at some data

- Revisit PCA
- ► Looking at some data
- ► Simple correspondence analysis

- Revisit PCA
- ► Looking at some data
- ► Simple correspondence analysis
 - and many of its connections

- Revisit PCA
- ► Looking at some data
- ► Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types

- Revisit PCA
- Looking at some data
- ► Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses
 - Robustness

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses
 - Robustness
 - PLS

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses
 - Robustness
 - PLS
 - Networks

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses
 - Robustness
 - PLS
 - Networks
 - Software

Revisting PCA

▶ When we can compute a covariance or correlation matrix

- ▶ When we can compute a covariance or correlation matrix
- ► Break data into components

- ▶ When we can compute a covariance or correlation matrix
- ► Break data into components
 - Orthogonal

- ▶ When we can compute a covariance or correlation matrix
- Break data into components
 - Orthogonal
 - Rank ordered

- ▶ When we can compute a covariance or correlation matrix
- Break data into components
 - Orthogonal
 - Rank ordered
 - Made of bits & pieces of original measures

Eigen- and singular value decompositions

Eigen- and singular value decompositions

Eigen- and singular value decompositions

Eigen- and singular value decompositions

Eigen- and singular value decompositions

Left (row) singular vectors

Diagnosis and education

	CN	Dementia	MCI
ADV	39	7	54
В	57	17	75
B+	75	19	113
HS	25	13	46
HS+	39	9	77

•	Given a table, and asked for a multivariate analysis
	We do what we know: PCA

What did we analyze?

	CN	Dementia	MCI
CN	1.000	0.730	0.921
Dementia	0.730	1.000	0.652
MCI	0.921	0.652	1.000

What did PCA detect?

	CN	Dementia	MCI	Row sums
ADV	39	7	54	100
В	57	17	75	149
B+	75	19	113	207
HS	25	13	46	84
HS+	39	9	77	125

Let's try something different!

	ADV	В	B+	HS	HS+
CN	39	57	75	25	39
Dementia	7	17	19	13	9
MCI	54	75	113	46	77

Component 1. Explained variance: 97.8%

What did PCA analyze?

	ADV	В	B+	HS	HS+
ADV	1.000	1.000	0.995	0.935	0.963
В	1.000	1.000	0.994	0.932	0.960
B+	0.995	0.994	1.000	0.965	0.984
HS	0.935	0.932	0.965	1.000	0.996
HS+	0.963	0.960	0.984	0.996	1.000

What did PCA detect?

	ADV	В	В+	HS	HS+	Row sums
CN	39	57	75	25	39	235
Dementia	7	17	19	13	9	<i>65</i>
MCI	54	75	113	46	77	365

What is PCA for?

► When we can compute a *meaningful* covariance or correlation matrix

Let's take another look

	CN	Dementia	MCI	Row sums
ADV	39	7	54	100
В	57	17	75	149
B+	75	19	113	207
HS	25	13	46	84
$\mathit{HS}+$	39	9	77	125
Column sums	235	65	365	

► Tell me things about this matrix

Let's take another look

	CN	Dementia	MCI	Row sums
ADV	39	7	54	100
В	57	17	75	149
B+	75	19	113	207
HS	25	13	46	84
$\mathit{HS}+$	39	9	77	125
Column sums	235	65	365	

- ► Tell me things about this matrix
- ▶ What kind of problem does this look like?

Simple correspondence analysis

▶ Initially: visualize contingency tables (a la PCA, factor analyses)

- ▶ Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature

- ▶ Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature
 - From Benzecri (1964) & Escofier (1965)

- Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature
 - From Benzecri (1964) & Escofier (1965)
- ► Fully developed by Escofier (1969)

- Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature
 - From Benzecri (1964) & Escofier (1965)
- ► Fully developed by Escofier (1969)
- Explosion of the technique in France

- Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature
 - From Benzecri (1964) & Escofier (1965)
- ► Fully developed by Escofier (1969)
- Explosion of the technique in France
 - Across virtually every field (except psychology and neuroscience)

- Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature
 - From Benzecri (1964) & Escofier (1965)
- ► Fully developed by Escofier (1969)
- Explosion of the technique in France
 - Across virtually every field (except psychology and neuroscience)
- ▶ The magic of CA relies on the magic of χ^2

- Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature
 - ► From Benzecri (1964) & Escofier (1965)
- ► Fully developed by Escofier (1969)
- Explosion of the technique in France
 - Across virtually every field (except psychology and neuroscience)
- ▶ The magic of CA relies on the magic of χ^2
 - And there's some crazy magic here

► Hotelling (1933) & Thurstone (1933)

- ► Hotelling (1933) & Thurstone (1933)
- ► Hirschfeld (1935) & Horst (1935)

- ► Hotelling (1933) & Thurstone (1933)
- ► Hirschfeld (1935) & Horst (1935)
- ► Guttman (1941)

- ► Hotelling (1933) & Thurstone (1933)
- ► Hirschfeld (1935) & Horst (1935)
- ► Guttman (1941)
- ▶ Burt (1950)

- ► Hotelling (1933) & Thurstone (1933)
- ► Hirschfeld (1935) & Horst (1935)
- ► Guttman (1941)
- ▶ Burt (1950)
- ► And then Benzecri (1964) & Escofier (1965)

- ► Hotelling (1933) & Thurstone (1933)
- Hirschfeld (1935) & Horst (1935)
- ► Guttman (1941)
- ▶ Burt (1950)
- ► And then Benzecri (1964) & Escofier (1965)
- Many more very important characters to re-discover CA

➤ See Lebart's History & Prehistory of CA

► See Lebart's History & Prehistory of CA

http://www.dtmvic.com/doc/About_the_History_of_CA.pdf

- ► See Lebart's History & Prehistory of CA http://www.dtmvic.com/doc/About_the_History_of_CA.pdf
- And Beh & Lombardo's series.

- ► See Lebart's History & Prehistory of CA
 - http://www.dtmvic.com/doc/About_the_History_of_CA.pdf
- ► And Beh & Lombardo's series
- A geneaology of CA:
 https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-842X.2012.00676.x

- See Lebart's History & Prehistory of CA
- http://www.dtmvic.com/doc/About_the_History_of_CA.pdf
- - https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-842X.2012.00676.x
 - A geneaology of CA 2: http://sibaese.unisalento.it/index.php/ejasa/article/view/19785

We're diving in

	CN	Dementia	MCI
ADV	39	7	54
В	57	17	75
B+	75	19	113
HS	25	13	46
HS+	39	9	77

	CN	Dementia	MCI
ADV	39	7	54
В	57	17	75
B+	75	19	113
HS	25	13	46

HS+ 39

CN

What if we perform CA on this?

ADV

В B+

HS

HS+

How did that happen?

Table 1: Data

	CN	Dementia	MCI
ADV	39	7	54
В	57	17	75
B+	75	19	113
HS	25	13	46
HS+	39	9	77

Table 2: Observed probabilites

	CN	Dementia	MCI
ADV	0.059	0.011	0.081
В	0.086	0.026	0.113
B+	0.113	0.029	0.170
HS	0.038	0.020	0.069

0.014

0.116

HS+

0.059

Table 3: Observed probabilites and margins

	CN	Dementia	MCI	Row sums
ADV	0.059	0.011	0.081	0.150
В	0.086	0.026	0.113	0.224
B+	0.113	0.029	0.170	0.311
HS	0.038	0.020	0.069	0.126
$\mathit{HS}+$	0.059	0.014	0.116	0.188
Column sums	0.353	0.098	0.549	

Table 4: Expected probabilites and margins

	CN	Dementia	MCI	Row sums
ADV	0.053	0.015	0.083	0.150
В	0.079	0.022	0.123	0.224
B+	0.110	0.030	0.171	0.311
HS	0.045	0.012	0.069	0.126
$\mathit{HS}+$	0.066	0.018	0.103	0.188
Column sums	0.353	0.098	0.549	

Table 5: Deviations: Observed - Expected

	CN	Dementia	MCI
ADV	0.006	-0.004	-0.001
В	0.007	0.004	-0.010
B+	0.003	-0.002	-0.001

0.007 0.000

-0.005 0.013

HS -0.007

HS+ -0.008

Table 6: Row constraints (inverse row margins)

	ADV	В	В+	HS	HS+
ADV	6 65	0.000	0.000	0.000	0.00

	ADV	В	B+	HS	HS+
ADV	6.65	0.000	0.000	0.000	0.00
В	0.00	4.463	0.000	0.000	0.00

3.213

0.000

0.000

0.000

7.917

0.000

0.00

0.00

5.32

0.000

0.000

0.000

B+

HS

HS+

0.00

0.00

0.00

Table 7: Column constraints (inverse column margins)

	CN	Dementia	MCI
CN	2.83	0.000	0.000
Dementia	0.00	10.231	0.000
MCI	0.00	0.000	1.822

What CA needs

R: Row constraints (inverse row probabilities)

Z: Deviations

C: Column constraints (inverse column probabilities)

► GSVD(**R**, **X**, **C**)

- **▶** GSVD(**R**, **X**, **C**)
- ▶ Required for CA and fancier PCA-like techniques & extensions

- **▶** GSVD(**R**, **X**, **C**)
- ▶ Required for CA and fancier PCA-like techniques & extensions
- Uses but generalizes the SVD

- **▶** GSVD(**R**, **X**, **C**)
- ▶ Required for CA and fancier PCA-like techniques & extensions
- Uses but generalizes the SVD
- Uses row & column weights (constraints)

- **▶** GSVD(**R**, **X**, **C**)
- ▶ Required for CA and fancier PCA-like techniques & extensions
- Uses but generalizes the SVDUses row & column weights (constraints)
- Gives back

- ► GSVD(R, X, C)
- ▶ Required for CA and fancier PCA-like techniques & extensions
- Uses but generalizes the SVDUses row & column weights (constraints)
- Gives back
 - Component (factor) scores

- ▶ GSVD(R, X, C)
- ▶ Required for CA and fancier PCA-like techniques & extensions
- Uses but generalizes the SVDUses row & column weights (constraints)
- Gives back
 - Component (factor) scores
 - Component (factor) scores
 - ► Eigenvalues, singular values, & singular vectors

- ▶ GSVD(R, X, C)
- Required for CA and fancier PCA-like techniques & extensions
 - Uses but generalizes the SVD Uses row & column weights (constraints)
- Gives back
 - Component (factor) scores

 - Eigenvalues, singular values, & singular vectors
 - Generalized singular vectors

What we really decompose

- A rectangle
- · Deviations: Observed Expected
 - Expected from Observed's margins

- Two squares
- Row margins and column margins

$\frac{\left(\textbf{O}-\textbf{E}\right)}{\textbf{E}^{\frac{1}{2}}}$

$$\chi^2 = \sum \frac{(\mathbf{O} - \mathbf{E})^2}{\mathbf{E}}$$

CA's first secrets

▶ Orthogonal slices of χ^2

Maybe here is worth presenting the code and some output?

CA's first secrets

- ▶ Orthogonal slices of χ^2
- Sum of the eigenvalues \times sum of the table $=\chi^2$

Maybe here is worth presenting the code and some output?

The GSVD

Simple quick magic Then visualize it (as 3 matrices, then 1 over 2 which is just the probs not inverse) Then swing back to Chi2 Then swing to CCA Then expand it & transition to MCA

[[[pick up here and drop most of the stuff below]]]

The GSVD

► The generalized SVD

The GSVD

- ► The generalized SVD
 - ► Constraints (weights) for rows & columns of rectangular table

- ► The generalized SVD
 - ► Constraints (weights) for rows & columns of rectangular table
 - ▶ Required for CA and fancier PCA-like techniques & extensions

- ▶ The generalized SVD
 - Constraints (weights) for rows & columns of rectangular table
 - Required for CA and fancier PCA-like techniques & extensions
- ► For some matrix **X** with *I* rows and *J* columns

- The generalized SVD
 - Constraints (weights) for rows & columns of rectangular table
 - ▶ Required for CA and fancier PCA-like techniques & extensions
- For some matrix **X** with *I* rows and *J* columns
- \triangleright SVD(**X**) vs. GSVD(**W**_I,**X**,**W**_J)

- The generalized SVD
 - Constraints (weights) for rows & columns of rectangular table
 - ▶ Required for CA and fancier PCA-like techniques & extensions
- For some matrix **X** with *I* rows and *J* columns
- \triangleright SVD(**X**) vs. GSVD(**W**_I,**X**,**W**_J)
- ► GSVD is

- The generalized SVD
 - Constraints (weights) for rows & columns of rectangular table
 - ▶ Required for CA and fancier PCA-like techniques & extensions
- For some matrix **X** with *I* rows and *J* columns
- \triangleright SVD(**X**) vs. GSVD(**W**_I,**X**,**W**_J)
- ► GSVD is
 - Matrix multiplication (by constraints on data)

- The generalized SVD
 - Constraints (weights) for rows & columns of rectangular table
 - ▶ Required for CA and fancier PCA-like techniques & extensions
- ▶ For some matrix **X** with *I* rows and *J* columns
- \triangleright SVD(**X**) vs. GSVD(**W**_I,**X**,**W**_J)
- ► GSVD is
 - Matrix multiplication (by constraints on data)
 - ► The SVD

- The generalized SVD
 - Constraints (weights) for rows & columns of rectangular table
 - ▶ Required for CA and fancier PCA-like techniques & extensions
- For some matrix **X** with *I* rows and *J* columns
- \triangleright SVD(**X**) vs. GSVD(**W**_I,**X**,**W**_J)
- ► GSVD is
 - Matrix multiplication (by constraints on data)
 - ► The SVD
 - More matrix multiplication (by constraints on vectors)

▶ O, wi & wj, E, Z

- ► O, wi & wj, E, Z
- ▶ Oh look that's Chi2

- ► O, wi & wj, E, Z
- ► Oh look that's Chi2
- ► Sum of eigenvalues * sum of table = Chi2.

- ► O, wi & wj, E, Z
- ► Oh look that's Chi2
- ► Sum of eigenvalues * sum of table = Chi2.
 - Each component is an additive orthogonal slice of Chi2. WOAH.

- ▶ 0, wi & wj, E, Z
- ▶ Oh look that's Chi2
- ► Sum of eigenvalues * sum of table = Chi2.
 - Each component is an additive orthogonal slice of Chi2. WOAH.
 - ► The eigenvalues are *magic*

CA visualized

► Oh look it's CCA-ish

CA visualized

- ► Oh look it's CCA-ish
- ▶ Oh it really really is CCA-ish!

► It's like PCA

- ► It's like PCA
 - ► Variance (singular values, eigen values)

- ► It's like PCA
 - ► Variance (singular values, eigen values)
 - ▶ Directions & inter-relationships

- ► It's like PCA
 - Variance (singular values, eigen values)
 - ► Directions & inter-relationships
 - Components scores

- ► It's like PCA
 - Variance (singular values, eigen values)
 - ► Directions & inter-relationships
 - Components scores
- ► It's unlike PCA

- It's like PCA
 - Variance (singular values, eigen values)
 - Directions & inter-relationships
 - Components scores
- ► It's unlike PCA
 - ► Relative interpretation *between* sets

- ► It's like PCA
 - Variance (singular values, eigen values)
 - Directions & inter-relationships
 - Components scores
- ► It's unlike PCA
 - ► Relative interpretation *between* sets
 - Generalized singular vectors

- ► It's like PCA
 - Variance (singular values, eigen values)
 - Directions & inter-relationships
 - Components scores
- ► It's unlike PCA
 - ▶ Relative interpretation *between* sets
 - Generalized singular vectors
 - Bifactor

- ► It's like PCA
 - Variance (singular values, eigen values)
 - Directions & inter-relationships
 - Components scores
- ► It's unlike PCA
 - ▶ Relative interpretation *between* sets
 - Generalized singular vectors
 - Bifactor
 - Rows & columns treated the same

- ► It's like PCA
 - Variance (singular values, eigen values)
 - Directions & inter-relationships
 - Components scores
- ► It's unlike PCA
 - ▶ Relative interpretation *between* sets
 - Generalized singular vectors
 - Bifactor
 - Rows & columns treated the same
 - ► Together they help make components, as opposed to PCA

Chi-squared

Chi-squared

See here

(Some) References

See the reference sections of these

▶ Beaton, D., Saporta, G., Abdi, H., & Alzheimer's Disease Neuroimaging Initiative. (2019). A generalization of partial least squares regression and correspondence analysis for categorical and mixed data: An application with the ADNI data. bioRxiv, 598888.

See the reference sections of these

- ▶ Beaton, D., Saporta, G., Abdi, H., & Alzheimer's Disease Neuroimaging Initiative. (2019). A generalization of partial least squares regression and correspondence analysis for categorical and mixed data: An application with the ADNI data. bioRxiv, 598888.
- Beaton, D., Sunderland, K. M., Levine, B., Mandzia, J., Masellis, M., Swartz, R. H., ... & Strother, S. C. (2019). Generalization of the minimum covariance determinant algorithm for categorical and mixed data types. bioRxiv, 333005.

And these

Abdi, H., Guillemot, V., Eslami, A., & Beaton, D. (2017). Canonical correlation analysis. Encyclopedia of Social Network Analysis and Mining, 1-16.

And these

- Abdi, H., Guillemot, V., Eslami, A., & Beaton, D. (2017). Canonical correlation analysis. Encyclopedia of Social Network Analysis and Mining, 1-16.
- Beaton, D., Dunlop, J., & Abdi, H. (2016). Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data. Psychological methods, 21(4), 621.

► Greenacre, M. (2017). Correspondence analysis in practice. CRC press.

- Greenacre, M. (2017). Correspondence analysis in practice. CRC press.
- Greenacre, M. J. (1984). Theory and Applications of Correspondence Analysis. Retrieved from http://books.google.com/books?id=LsPaAAAAMAAJ

▶ Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114

- ▶ Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114
- Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. Wiley.

- ▶ Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114
- Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. Wiley.
- Nguyen, L. H., & Holmes, S. (2019). Ten quick tips for effective dimensionality reduction. PLOS Computational Biology, 15(6), e1006907.

Data

► Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.

Data

- Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.
- Escofier, B. (1979). Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Cahiers de l'Analyse Des Données, 4(2), 137–146.

Data

- ► Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.
- Escofier, B. (1979). Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Cahiers de l'Analyse Des Données, 4(2), 137–146.
- Greenacre, M. (2014). Data Doubling and Fuzzy Coding. In J. Blasius & M. Greenacre (Eds.), Visualization and Verbalization of Data (pp. 239–253). Philadelphia, PA, USA: CRC Press.

History

▶ Holmes S, Josse J. Discussion of "50 Years of Data Science". Journal of Computational and Graphical Statistics. 2017, V26(4) 768-769. https://www.tandfonline.com/doi/full/10.10 80/10618600.2017.1385471