Scaling Definitions

1) Consensus (Old)

Define

 T_R = 3000 bytes ; Reference Transaction weight for the current Monero implementation

 $Z_M = 300000$ bytes; Minimum penalty free zone

M_B = Block weight in bytes

 M_L = the median over the last 100000 blocks of max((min $(M_B\,,\,1.4M_L),\,Z_M\,)$; recursive calculation for $M_L\,$ with $M_L\,$ starting at $Z_M\,$; Effective long term median

 $Z_E = Z_M$; Effective penalty free zone

 M_{S} = the median over the last 100 blocks of max(M_{B} , $Z_{\text{E}})$; Effective short term median.

 $M_N = min(M_S, 50M_L)$; Median for penalty calculation.

R_{Base} = Block Reward

 $0 < M_B \le 2M_N$; Requirement for valid block

 $B = M_B / M_N - 1$ where $-1 < B \le 1$

 $P_B = R_{Base}B^2$ for B > 0; Monero applies a penalty P_B , to increase the block weight by B.

 $P_B = 0$ for $B \le 0$

 $dP_B / dB = 2R_{Base}B$

Proposed Scaling Definitions (October 2020)

1) Consensus (New)

Define

 T_R = 2000 bytes; Reference Transaction weight for the upcoming, in October 2020, Monero fork.

 $Z_M = 300000$ bytes ; Minimum penalty free zone

M_B = Block weight in bytes

 M_L = The median over the last 100000 blocks of max((min $(M_B\,,\,2M_L),\,Z_M\,,\,M_L/2)$; recursive calculation for M_L with M_L starting at Z_M ; Effective long term median

 $Z_E = max (Z_M, M_L/4)$; Effective penalty free zone

 M_S = the median over the last 100 blocks of max(min(M_B , 50 M_L), Z_E); Effective short term median

 $M_N = M_S$; Median for penalty calculation.

R_{Base} = Block Reward

 $0 < M_B \le 2M_N$; Requirement for valid block

 $B = M_B / M_N - 1$ where $-1 < B \le 1$

 $P_B = R_{Base}B^2$ for B > 0; Monero applies a penalty P_B , to increase the block weight by B.

 $P_B = 0$ for $B \le 0$

 $dP_B / dB = 2R_{Base}B$

For Subsequent forks after CLSAG (October 2020)

 T_{RC} = Weight in bytes of a 2 input and 2 output transaction rounded up to the nearest 100 bytes. If a future Monero fork does not permit a 2 input and 2 output transaction then the permitted transaction with the lowest number of inputs and outputs greater than or equal to 2 is used instead.

 $T_{RP} = T_{R}$ of previous Monero version

 $Z_{MP} = Z_{M}$ of previous Monero version

For: $T_{RC} > T_{RP}$ Then

 $Z_M \ge Z_{MP} T_{RC}/T_{RP}$, $T_R = T_{RC}$; $Z_M > Z_{MP} T_{RC}/T_{RP}$ may, for example, be chosen in order to keep the total fee T_R the same as T_{RP} .

For $T_{RC} = T_{RP}$ Then $Z_M = Z_{MP}$, $T_R = T_{RC}$

For $T_{RC} < T_{RP}$ Then

 $Z_M = Z_{MP}$, $T_R = T_{RC}$ or for a small change $T_R = T_{RP}$

2) Minimum Fee For Node Relay (Old)

We add a, penalty attracting, transaction T with a size of T_T We add a, penalty attracting, transaction T with a size of T_T to a block of weight M_B

Define

$$B_T = T_T / M_N$$

 $P_{BT} = R_{Base}(B+B_T)^2 = R_{base}(B^2 + 2BB_T + B_T^2)$; The new penalty, where B + $B_T > 0$

 $P_T = P_{BT} - P_B = R_{Base}(2BB_T + B_T^2)$; Increase in penalty from adding transaction T

 $F_T = R_{Base}(2BB_T + B_T^2)$; The additional fee required to overcome the increase in penalty P_T

For the case B = 0 this reduces to $F_T = R_{Base}B_T^2$

To calculate the minimum fee we consider a transaction of weight T_R at the start of the penalty, B = 0 with $M_N = Z_M$. 20% of fee required to pay the penalty incurred is the minimum fee.

 $M_E = min(M_N, M_I)$; Median for minimum fee calculation

 $B_R = T_R / Z_M$

 $F_R = R_{Base}B_R^2$; Fee required to pay the penalty incurred

 $f_R = R_{Base}B_R/M_F$; Fee required to pay the penalty incurred fee per byte for a given M_F

 $f_M = 0.2f_R$; Minimum fee per byte

Examples:

 $T_R = 3000$ bytes, $R_{Base} = 1.5$ XMR

 $M_N = 300000$ bytes, $M_L = 300000$ bytes $Z_E = Z_M = 300000$ bytes $f_M = 0.2*R_{base}B_R/M_F = 10.0 \text{ nXMR} / \text{byte}$

 $M_N = 30000000$ bytes, $M_L = 30000000$ bytes $Z_E = Z_M = 300000 \text{ bytes}$ $f_M = 0.2*R_{base}B_R/M_F = 0.100 \text{ nXMR / byte}$

2) Minimum Fee For Node Relay (New)

to a block of weight M_B

Define

$$B_T = T_T / M_N$$

 $P_{BT} = R_{Base}(B+B_T)^2 = R_{base}(B^2 + 2BB_T + B_T^2)$; The new penalty, where B + $B_T > 0$

 $P_T = P_{BT} - P_B = R_{Base}(2BB_T + B_T^2)$; Increase in penalty from adding transaction T

 $F_T = R_{Base}(2BB_T + B_T^2)$; The additional fee required to overcome the increase in penalty P_{T}

For the case B = 0 this reduces to $F_T = R_{Base}B_T^2$

To calculate the minimum fee we consider a transaction of weight T_R at the start of the penalty, B = 0 with $M_N = Z_M$. The fee required to pay the penalty incurred is the minimum fee.

 $M_E = min(M_N, M_I)$; Median for minimum fee calculation

 $B_R = T_R / Z_M$

 $F_R = R_{Base}B_R^2$; Fee required to pay the penalty incurred

 $f_R = R_{Base}B_R/M_F$; Fee required to pay the penalty incurred per byte for a given M_F

 $f_M = f_R$; Minimum fee per byte

Examples:

 $T_R = 2000$ bytes, $R_{Base} = 1.5$ XMR

 $M_N = 300000$ bytes, $M_L = 300000$ bytes $Z_E = Z_M = 300000$ bytes $f_M = R_{base}B_R/M_F = 33.3 \text{ nXMR} / \text{byte}$

 $M_N = 30000000$ bytes, $M_L = 30000000$ bytes $Z_E = 7500000$ bytes, $Z_M = 300000$ bytes $f_M = R_{base}B_R/M_F = 0.333 \text{ nXMR} / \text{byte}$

 $T_R = 2700$ bytes, $R_{Base} = 1.5$ XMR

 $M_N = 300000$ bytes, $M_L = 300000$ bytes $Z_E = Z_M = 300000$ bytes $f_M = R_{base}B_R/M_F = 45.0 \text{ nXMR} / \text{byte}$

 $M_N = 30000000$ bytes, $M_L = 30000000$ bytes $Z_F = 7500000$ bytes, $Z_M = 300000$ bytes $f_M = R_{base}B_R/M_F = 0.450 \text{ nXMR} / \text{byte}$

3) Wallet Fees (Old)

For the calculation of wallet fees we assume that the next 10 blocks have no transactions other than the coinbase transaction, the empty blocks. We then calculate M_{SW} by following the calculation of M_s at this future point. We use the previous 10000 blocks and the future 10 empty blocks.

3) Wallet Fees (New)

For the calculation of wallet fees we assume that the next 10 blocks have no transactions other than the coinbase transaction, the empty blocks. We then calculate MLW and M_{SW} by following the calculation of M_L and M_S at this future point. We use the previous 100000 blocks and the future 10 empty blocks.

Define

M_{BW} = Block weight in bytes for past and current real and future empty blocks

Define

 M_{BW} = Block weight in bytes for past and current real and future empty blocks

M_{LW} = The median over the "last" 100000 blocks of $max((min\ (M_{BW}\ ,\ 2M_L),\ Z_M\ ,\ M_{LW}/2)\ ;$ recursive calculation for M_{LW} over the "next" 10 blocks with M_{LW} starting at M_L; Effective long term median for wallet fees

 $Z_{EW} = max (Z_M, M_{LW}/4)$; Effective penalty free zone for wallet fees cannot fall below M_{LW}/4, Z_M

 M_{SW} = the median over the "last" 100 blocks of max(M_{BW} , $Z_{\rm M}$);

M_{SW} = the median over the "last" 100 blocks of $max(min(M_{BW}, 50M_{LW}), Z_{EW})$; Effective short term median for wallet fees

 $M_{NW} = min(M_{SW}, 50M_L)$

 $M_{NW} = M_{SW}$

 $M_{EW} = min(M_{NW}, M_L)$; Median for wallet fee calculation

 $M_{EW} = min(M_{NW}, M_{LW})$; Median for wallet fee calculation

 $T_{RW} = 1.1T_{R}$; Reference transaction for lowest (normal) wallet fee calculation; A 10% safety margin is added at this point.

 $B_{RW} = T_{RW} / Z_{M}$

 $F_N = R_{Base} B_R^2$; Normal Transaction fee at minimum fee and $F_N = R_{Base} B_{RW}^2$; Lowest (Normal) Transaction fee at minimum $M_{FW} = Z_M$

minimum fee and minimum $M_{FW} = Z_{M}$

 $f_N = R_{Base}B_R/M_{EW}$; Normal Transaction fee per byte for a given M_{EW}

 $f_N = R_{Base}B_{RW}/M_{FW}$; Lowest (Normal) Transaction fee per byte for a given M_{EW}

 $f_L = 0.2f_N$; Low Transaction fee per byte for a given M_{EW}

 $f_L = 4f_N$; Low Transaction fee per byte for a given M_{EW}

 $f_M = 5f_N$; High Transaction fee per byte for a given M_{EW}

 $f_M = 16f_N$; Medium Transaction fee per byte for a given M_{EW}

 $f_P = 2R_{Base}/M_{NW} = 2f_NM_{FW}/(B_RM_{NW})$; Maximum Penalty (B = 1) $f_P = 2R_{Base}/M_{NW} = 2f_NM_{FW}/(B_{RW}M_{NW})$; Maximum Penalty (B Transaction fee per byte for a given M_{NW}

=1) Transaction fee per byte for a given M_{NW}

 $f_H = f_P$; Highest Transaction fee per byte.

 $f_H = 64f_N max (1, M_{FW}/(32B_{RW}M_{NW}))$; High Transaction fee per byte

Wallet Fee Rounding

Wallet fees, f_N , f_L , f_M , and f_H are rounded up to the desired number of significant digits in the significant

Wallet Fee Rounding Examples

Three significant digits

27810 Rounded to: 27900 37.94 Rounded to: 38.0 Rounded to: 0.556 0.5555 Rounded to: 0.00235 0.002342

Two significant digits

27810 Rounded to: 28000 37.94 Rounded to: 38 0.5555 Rounded to: 0.56 0.002342 Rounded to: 0.0024

Wallet Fee Examples

 T_{RW} = 2200 bytes, R_{Base} = 1.5 XMR

 $M_{NW} = 300000$ bytes, $M_{LW} = 300000$ bytes $f_N = R_{Base}B_{RW}/M_{FW} = 36.7 \text{ nXMR} / \text{byte}$

 $f_L = 4f_N = 147 \text{ nXMR} / \text{byte}$ $f_M = 16f_N = 587 \text{ nXMR} / \text{byte}$

 $f_P = 2R_{Base}/M_{NW} = 2f_N M_{EW}/(B_{RW} M_{NW}) = 10000 \text{ nXMR} / \text{byte}$ $f_H = 64f_N max (1, M_{FW}/(32B_{RW}M_{NW})) = 10000 \text{ nXMR / byte}$

 $M_{NW} = 15000000$ bytes, $M_{LW} = 300000$ bytes

 $f_N = R_{Base}B_{RW}/M_{FW} = 36.7 \text{ nXMR} / \text{byte}$

 $f_L = 4f_N = 147 \text{ nXMR} / \text{byte}$

 $f_{\rm M} = 16f_{\rm N} = 587 \, {\rm nXMR} \, / \, {\rm byte}$

 $f_P = 2R_{Base}/M_{NW} = 2f_NM_{FW}/(B_{RW}M_{NW}) = 200 \text{ nXMR} / \text{byte}$ $f_H = 64f_N max (1, M_{FW}/(32B_{RW}M_{NW})) = 2350 nXMR / byte$

 T_{RW} = 2970 bytes, R_{Base} = 1.5 XMR

 $M_{NW} = 300000$ bytes, $M_{LW} = 300000$ bytes

 $f_N = R_{Base}B_{RW}/M_{FW} = 49.5 \text{ nXMR} / \text{byte}$

 $f_L = 4f_N = 198 \text{ nXMR} / \text{byte}$

 $f_M = 16f_N = 792 \text{ nXMR} / \text{byte}$

 $f_P = 2R_{Base}/M_{NW} = 2f_N M_{FW}/(B_{RW} M_{NW}) = 10000 \text{ nXMR} / \text{byte}$ $f_H = 64 f_N max (1, M_{FW}/(32 B_{RW} M_{NW})) = 10000 \text{ nXMR} / \text{byte}$

 $M_{NW} = 15000000$ bytes, $M_{LW} = 300000$ bytes

 $f_P = 2R_{Base}/M_{NW} = 2f_NM_{FW}/(B_{RW}M_{NW}) = 200 \text{ nXMR} / \text{byte}$ $f_H = 64f_N max (1, M_{FW}/(32B_{RW}M_{NW})) = 3170 \text{ nXMR / byte}$

 $f_N = R_{Base}B_{RW}/M_{FW} = 49.5 \text{ nXMR} / \text{byte}$ $f_L = 4f_N = 198 \text{ nXMR} / \text{byte}$ $f_{\rm M} = 16 f_{\rm N} = 792 \text{ nXMR} / \text{byte}$

Wallet Fee Examples

 $T_R = 3000$ bytes, $R_{Base} = 1.5$ XMR

 $f_L = 0.2f_N = 10.0 \text{ nXMR} / \text{byte}$

 $f_M = 5f_N = 250 \text{ nXMR} / \text{byte}$

 $f_{H} = f_{P} = 10000 \text{ nXMR} / \text{byte}$

 $f_L = 0.2 f_N = 10.0 \text{ nXMR} / \text{byte}$

 $f_M = 5f_N = 250 \text{ nXMR} / \text{byte}$

 $f_H = f_P = 200 \text{ nXMR} / \text{byte}$

 $M_{NW} = 300000$ bytes, $M_{L} = 300000$ bytes

 $M_{NW} = 15000000$ bytes, $M_L = 300000$ bytes $f_N = R_{Base}B_R/M_{FW} = 50.0 \text{ nXMR} / \text{byte}$

 $f_P = 2R_{Base}/M_{NW} = 2f_N M_{FW}/(B_R M_{NW}) = 10000 \text{ nXMR} / \text{byte}$

 $f_P = 2R_{Base}/M_{NW} = 2f_NM_{FW}/(B_RM_{NW}) = 200 \text{ nXMR} / \text{byte}$

 $f_N = R_{Base}B_R/M_{FW} = 50.0 \text{ nXMR} / \text{byte}$