Medi Pump Technologies Documentação da Instalação de Manufatura

Equipe de Documentação Técnica

21 de janeiro de 2025

Sumário

1	\mathbf{Intr}	odução e Visão Geral
	1.1	Visão Geral da Instalação
		1.1.1 Especificações da Instalação
		1.1.2 Capacidade de Produção
	1.2	Descrição do Produto
		1.2.1 Especificações da Linha de Produtos
	1.3	Fluxo do Processo de Manufatura
2	Car	eacterísticas do Processo
	2.1	Características da Instalação
		2.1.1 Requisitos Físicos
	2.2	Análise do Processo
	2.3	Design do Layout
3	Doc	cumentação do Processo
	3.1	Análise da Rota de Manufatura
		3.1.1 Análise do Tempo de Processo
		3.1.2 Alocação de Recursos
	3.2	Análise de Rede
	3.3	Pontos de Controle do Processo
		3.3.1 Parâmetros de Controle de Qualidade
		3.3.2 Parâmetros Críticos de Controle
	3.4	Controle Detalhado do Processo
		3.4.1 Gráficos de Controle
	3.5	Análise da Capacidade do Processo
		3.5.1 Análise de Estabilidade do Processo
		3.5.2 Capacidade do Processo - Análise Detalhada
		3.5.3 Métricas de Desempenho do Processo
		3.5.4 Análise de Tendências do Processo
		3.5.5 Distribuição de Performance
	3.6	Cronograma de Produção
	3.7	Análise de Controle Estatístico do Processo
		3.7.1 Análise de Estabilidade do Processo
		3.7.2 Métricas de Desempenho do Processo
4	Aná	álise dos dados 18
	4.1	Análise de Controle de Qualidade
		4.1.1 Parâmetros Críticos de Qualidade
		4.1.2 Limites de Controle do Processo

	4.2	Análise de Capacidade do Processo	19
		4.2.1 Índices de Capacidade por Linha de Produto	19
		4.2.2 Análise de Desempenho do Processo	19
	4.3	Análise Estatística	20
		4.3.1 Análise de Correlação	20
	4.4	Recomendações de Melhoria do Processo	20
		4.4.1 Análise de Custo-Benefício	21
5	Mel	lhorias do processo	22
	5.1	Proposta de Automação	22
		5.1.1 Comparação do Processo Atual vs. Proposto	22
		5.1.2 Análise de Investimento em Automação	23
	5.2	Estratégia de Implementação	23
		5.2.1 Cronograma de Implementação	23
		5.2.2 Análise de Riscos	24
	5.3	Benefícios Esperados	24
		5.3.1 Melhorias de Produtividade	24
		5.3.2 Melhorias de Qualidade	25
	5.4	Análise de Custos	25
		5.4.1 Retorno sobre Investimento	25
		5.4.2 Redução de Custos Operacionais	26
6	Con	nclusão e recomendações	27
	6.1	Resumo do Projeto	27
		6.1.1 Principais Conquistas	27
		6.1.2 Impacto Financeiro	28
	6.2	Recomendações Finais	28

Introdução e Visão Geral

1.1 Visão Geral da Instalação

1.1.1 Especificações da Instalação

A instalação de manufatura da Medi Pump Technologies representa uma sala limpa de última geração Classe 100.000 (ISO 8) dedicada à produção de dispositivos médicos de precisão.

Figura 1.1: Distribuição do Espaço da Instalação

1.1.2 Capacidade de Produção

Figura 1.2: Metas de Produção Anual por Modelo

1.2 Descrição do Produto

1.2.1 Especificações da Linha de Produtos

Tabela 1.1: Comparação da Linha de Produtos

Mini
, 10111111
,8 cm

Figura 1.3: Comparação de Recursos dos Produtos

1.3 Fluxo do Processo de Manufatura

Figura 1.4: Fluxo do Processo de Manufatura

Características do Processo

2.1 Características da Instalação

2.1.1 Requisitos Físicos

Tabela 2.1: Requisitos Físicos da Instalação

Requisito	Especificação
Capacidade de Carga do Piso	$1000 \mathrm{kg} \mathrm{m}^{-2}$
Altura do Teto	$4.5\mathrm{m}$
Controle de Temperatura	$20^{\circ}\mathrm{C}\pm0.5^{\circ}\mathrm{C}$
Controle de Umidade	$45\%~\pm 5\%~\mathrm{UR}$

Distribuição de Equipamentos por Tipo

Figura 2.1: Distribuição de Equipamentos

2.2 Análise do Processo

Figura 2.2: Métricas de Eficiência do Processo

2.3 Design do Layout

Figura 2.3: Layout da Instalação (Versão Reduzida)

Figura 2.4: Alocação de Área da Instalação

Documentação do Processo

3.1 Análise da Rota de Manufatura

3.1.1 Análise do Tempo de Processo

Etapas do Processo

Figura 3.1: Duração das Etapas do Processo

3.1.2 Alocação de Recursos

Tabela 3.1: Requisitos de Recursos do Processo

Etapa do Processo	Operadores	Equipamentos	Verificações de Qualidade	Tempo de Seti
Preparação de Material	2	2	2	15
Moldagem por Injeção	1	3	3	30
Montagem de Componentes	3	4	4	20
Integração Eletrônica	2	2	5	25
Testes	2	6	6	15
Esterilização	1	1	2	45
Embalagem	2	2	3	20

3.2 Análise de Rede

Figura 3.2: Diagrama de Rede do Processo com Caminho Crítico

3.3 Pontos de Controle do Processo

3.3.1 Parâmetros de Controle de Qualidade

Figura 3.3: Distribuição do Controle de Qualidade

3.3.2 Parâmetros Críticos de Controle

Tabela 3.2: Parâmetros Críticos do Processo							
Parâmetro	Especificação	Tolerância	Frequência de Medição				
Pressão de Injeção	800 PSI	$\pm 20~\mathrm{PSI}$	Cada ciclo				
Temperatura do Molde	180°C	$\pm 5^{\circ}\mathrm{C}$	Contínua				
Torque de Montagem	2,5 Nm	$\pm 0.1~\mathrm{Nm}$	100% inspeção				
Taxa de Fluxo	$0.1~\mathrm{mL/hr}$	$\pm 0,005~\mathrm{mL/hr}$	Cada unidade				
Desempenho da Bateria	168 hrs	+2/-0 hrs	Cada unidade				

3.4 Controle Detalhado do Processo

3.4.1 Gráficos de Controle

Amplitude Limites de Controle Amplitude (PSI) Número da Amostra

Figura 3.4: Gráficos de Controle para Pressão de Injeção

3.5 Análise da Capacidade do Processo

3.5.1 Análise de Estabilidade do Processo

Figura 3.5: Gráficos de Controle Estatístico do Processo

3.5.2 Capacidade do Processo - Análise Detalhada

Análise de Capacidade do Processo - Taxa de Fluxo

Figura 3.6: Análise de Capacidade do Processo

3.5.3 Métricas de Desempenho do Processo

Tabela 3.3: Resumo do Desempenho do Processo

Parâmetro	Cp	Cpk	Pp	Ppk
Pressão de Injeção	1,67	1,65	1,63	1,60
Torque de Montagem	1,55	$1,\!52$	1,50	1,48
Taxa de Fluxo	1,70	1,68	1,65	1,62
Desempenho da Bateria	1,45	1,42	1,40	1,38

3.5.4 Análise de Tendências do Processo

Figura 3.7: Índices de Capacidade por Produto

3.5.5 Distribuição de Performance

Figura 3.8: Distribuição de Desempenho do Processo

3.6 Cronograma de Produção

Figura 3.9: Gráfico de Gantt do Cronograma de Produção

3.7 Análise de Controle Estatístico do Processo

3.7.1 Análise de Estabilidade do Processo

Figura 3.10: Gráficos de Controle Estatístico do Processo

3.7.2 Métricas de Desempenho do Processo

Tabela 3.4: Resumo do Desempenho do Processo

Parâmetro	Ср	Cpk	Pp	Ppk
Pressão de Injeção	1.67	1.65	1.63	1.60
Torque de Montagem	1.55	1.52	1.50	1.48
Taxa de Fluxo	1.70	1.68	1.65	1.62
Desempenho da Bateria	1.45	1.42	1.40	1.38

Análise dos dados

4.1 Análise de Controle de Qualidade

4.1.1 Parâmetros Críticos de Qualidade

Figura 4.1: Análise de Pareto dos Defeitos de Qualidade

4.1.2 Limites de Controle do Processo

Tabela 4.1: Limites de Controle Estabelecidos por Processo

Parâmetro do Processo	Alvo	LIE	LSE	Crítico para Qualidade
Pressão de Injeção (PSI)	800	780	820	Sim
Torque de Montagem (Nm)	2.5	2.4	2.6	Sim
Taxa de Fluxo (mL/hr)	0.1	0.095	0.105	Sim
Vida da Bateria (hrs)	168	168	170	Sim

4.2 Análise de Capacidade do Processo

4.2.1 Índices de Capacidade por Linha de Produto

Figura 4.2: Índices de Capacidade por Produto

4.2.2 Análise de Desempenho do Processo

Figura 4.3: Distribuição de Desempenho do Processo

4.3 Análise Estatística

4.3.1 Análise de Correlação

Figura 4.4: Análise de Correlação de Parâmetros

4.4 Recomendações de Melhoria do Processo

Tabela 4.2: Oportunidades de Melhoria do Processo

Área do Processo	Ação de Melhoria	Impacto Esperado (%)				
Montagem	Controle automatizado de torque	15				
Moldagem	Otimização de temperatura	12				
Testes	Calibração aprimorada	8				
Embalagem	Inspeção automatizada	5				

4.4.1 Análise de Custo-Benefício

Figura 4.5: Análise de Investimento e Retorno

Melhorias do processo

5.1 Proposta de Automação

5.1.1 Comparação do Processo Atual vs. Proposto

Figura 5.1: Comparação de Tempo do Processo

5.1.2 Análise de Investimento em Automação

Tabela 5.1: Detalhes do Investimento em Automação

Área do Processo	Equipamento	Investimento (k\$)	ROI (%)
Manuseio de Material	Sistema Robótico	250	45
Montagem	Linha Automatizada	450	65
Testes	Sistema de Visão	180	55
Embalagem	Esteira Inteligente	120	40

5.2 Estratégia de Implementação

5.2.1 Cronograma de Implementação

Figura 5.2: Cronograma de Implementação

5.2.2 Análise de Riscos

Figura 5.3: Matriz de Avaliação de Riscos

5.3 Benefícios Esperados

5.3.1 Melhorias de Produtividade

Figura 5.4: Projeção de Produtividade

5.3.2 Melhorias de Qualidade

Tabela 5.2: Melhorias de Qualidade Esperadas

Atual	Esperado
95.5	98.5
2500	500
3.2	1.1
0.5	0.1
	95.5 2500 3.2

5.4 Análise de Custos

5.4.1 Retorno sobre Investimento

Projeção de ROI Cumulativo

Figura 5.5: Projeção de ROI

5.4.2 Redução de Custos Operacionais

Figura 5.6: Redução de Custos Operacionais por Categoria

Conclusão e recomendações

6.1 Resumo do Projeto

6.1.1 Principais Conquistas

Figura 6.1: Alcance dos Objetivos do Projeto

6.1.2 Impacto Financeiro

Tabela 6.1: Resumo do Impacto Financeiro

Meta	Alcançado
150	165
25	28
40	45
3	3.5
	150 25 40

6.2 Recomendações Finais

- 1. Continuar o investimento em automação e transformação digital
- 2. Aprimorar programas de treinamento e desenvolvimento dos funcionários
- 3. Fortalecer relacionamentos com fornecedores e programas de qualidade
- 4. Implementar análise avançada e manutenção preditiva
- 5. Desenvolver sistema abrangente de documentação

Tabela 6.2: Métricas de Sucesso do Projeto

		<u> </u>
Métrica de Sucesso	Meta	Alcançado
Conclusão do Projeto	100%	98%
Aderência ao Orçamento	$\pm 5\%$	+3%
Conformidade com Cronograma	100%	95%
Objetivos de Qualidade	100%	98%