MATEMÁTICA DISCRETA

Introducción a la Lógica Matemática (Parte IV)

Introducción a la Lógica Matemática (Parte IV)

• Teoremas, argumentos y reglas de inferencia.

Introducción a la Lógica Matemática (Parte IV)

- Teoremas, argumentos y reglas de inferencia.
- Métodos para demostrar teoremas.

- Teorema: Proposición que se ha verificado que es verdadera.
 - Lema: teorema que no suele ser muy interesante por sí mismo, pero que resulta útil para probar otro teorema.
 - Corolario: es un teorema que se deriva con facilidad de otro teorema.
- Demostrar que un teorema es verdadero puede ser difícil.
 - Una demostración es un argumento válido que establece la verdad de un teorema.
 - Una demostración usa hipótesis, axiomas y definiciones para llegar a una conclusión.
 - Para que la demostración sea válida, cada paso debe dar como resultado una conclusión intermedia válida.
 - Las reglas de inferencia se utilizan para extraer conclusiones a partir de otras afirmaciones, uniendo los pasos de una demostración.

Definición

Un argumento es una secuencia de proposiciones escritas de la forma:

 p_1 \vdots p_n

El símbolo \therefore se lee "por lo tanto". Las proposiciones p_1, \ldots, p_n se conocen como *hipótesis o premisas*, y la proposición q recibe el nombre de *conclusión*. Un argumento es *válido* siempre y cuando, si p_1, \ldots y p_n son todas verdaderas, entonces q también es verdadera; de otra manera, el argumento es *inválido* (o una *falacia*).

Definición

Una regla de inferencia es un argumento válido breve que se utiliza dentro de argumentos más largos como son las demostraciones.

Reglas de Inferencia

Modus Ponens	p o q p	Eliminación	a. $p \lor q$ $\sim q$	b. $p \lor q$ $\sim p$
	∴ q		∴ p	∴.q
Modus Tollens	$\begin{array}{c} p \to q \\ \sim q \\ \therefore \sim p \end{array}$	Transitividad	$p \to q$ $q \to r$ $\therefore p \to r$	
Generalización	a. p b. q $\therefore p \lor q$ $\therefore p \lor$	Demostración por división en casos	$\begin{array}{c} p \lor q \\ p \to r \end{array}$	
Especialización	a. $p \wedge q$ b. $p \wedge q$ $\therefore p \qquad \therefore q$	$\setminus q$	$\begin{array}{c} q \rightarrow r \\ \therefore r \end{array}$	
Conjunción	<i>p q</i> ∴ <i>p</i> ∧ <i>q</i>	Regla de contradicción	$\sim p \to c$ $\therefore p$	

 Es bastante usual que los teoremas sean enunciados de la forma siguiente:

"
$$\forall x \in D$$
, si $P(x)$ entonces $Q(x)$ ". (1)

- El método de demostración directa, usado fundamentalmente para demostrar teoremas enunciados como en (1), se construye de la siguiente forma:
 - Iniciar la demostración suponiendo que $x \in D$ es un elemento arbitrario, el cual satisface la hipótesis de que P(x) es verdadera.
 - Luego, haciendo uso de las definiciones previamente establecidas y las reglas de inferencia, demostrar que la conclusión Q(x) es verdadera.

Demuestra, mediante el método de demostración directa, que si x es un número entero impar, entonces x^2 es impar.

Solución: Sea x un número impar. Entonces x=2k+1 para algún $k \in \mathbb{Z}$. Observa que $x^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$. Por tanto, x^2 es impar, como se desea.

Ejercicio

Demuestra, mediante el método de demostración directa, que la suma de dos números pares da como resultado un número par.

Solución: Sean m y n números pares. Por definición, m=2r y n=2s para algunos $r,s\in\mathbb{Z}$. Entonces, m+n=2r+2s=2(r+s). Por tanto, m+n es par, como se desea.

- A veces, para demostrar que la implicación $p \to q$ es verdadera, es conveniente reescribir p como la disyunción $p_1 \lor \ldots \lor p_n$. Eso implica que se debería demostrar que $(p_1 \lor \ldots \lor p_n) \to q$ es verdadera.
- Observa que

$$[(p_1 \vee \ldots \vee p_n) \to q] \equiv [(p_1 \to q) \wedge \ldots \wedge (p_n \to q)]$$

• La equivalencia anterior muestra que la implicación $p \to q$ se puede demostrar demostrando individualmente cada una de las n implicaciones $p_i \to q$, donde $i \in \{1, \ldots, n\}$. A este método se le llama **método de demostración por división de casos**.

Demuestra, usando el método de demostración por división de casos, que el cuadrado de cualquier número entero impar es de la forma 8k+1 para algún entero k.

Solución: Sea n un número impar. Entonces n=4q+1 o n=4q+3 para algún entero q. A continuación, analicemos cada uno de los dos casos anteriores.

Caso 1: n = 4q + 1. Observa que $n^2 = (4q + 1)^2 = 16q^2 + 8q + 1 = 8(2q^2 + q) + 1$. Haciendo $k = 2q^2 + q$, se obtiene que $n^2 = 8k + 1$, como se desea.

Caso 2: n = 4q+3. Observa que $n^2 = (4q+3)^2 = 16q^2+24q+9 = 8(2q^2+3q+1)+1$. Haciendo $k = 2q^2+3q+1$, se obtiene que $n^2 = 8k+1$, como se desea.

Como consecuencia de los dos casos anteriores, la demostración está conseguida. \Box

- Una demostración directa comienza con la(s) hipótesis de un enunciado y hace una deducción tras otra (usando definiciones y reglas de inferencia) hasta llegar a la conclusión. El método de demostración indirecta no sigue un camino definido.
- En particular, analizaremos los siguientes métodos de demostración indirecta:
 - Método de demostración usando el contrarrecíproco.
 - Método de demostración por reducción al absurdo.

Método de demostración usando el contrarrecíproco

Dado el enunciado a demostrar en la forma:

"
$$\forall x \in D$$
, si $P(x)$ entonces $Q(x)$ ",

reescribirlo en la siguiente forma (usando el contrarrecíproco):

"
$$\forall x \in D$$
, si $Q(x)$ es falso entonces $P(x)$ es falso". (2)

- Demostrar el enunciado dado en (2) usando el método de demostración directa, es decir,
 - Iniciar la demostración suponiendo que $x \in D$ es un elemento arbitrario, el cual satisface la hipótesis de que Q(x) es falso.
 - Luego, haciendo uso de las definiciones previamente establecidas y las reglas de inferencia, demostrar que la conclusión P(x) es falso.

Demuestra, usando el contrarrecíproco, que si x^2 es un número entero impar, entonces x es impar.

Solución: Procederemos demostrando el contrarrecíproco. Supongamos que x es un número entero par. Entonces x=2k para algún entero k. Observa que $x^2=(2k)^2=4k^2=2(2k^2)$. Por tanto, x^2 es par, como se desea.

Método de demostración por reducción al absurdo

- Este método se basa en el hecho de que un enunciado es verdadero o falso, pero no ambos.
- El punto de partida para una demostración por reducción al absurdo es la suposición de que el enunciado a demostrar es falso. El objetivo es razonar a una contradicción. Por tanto, este método sigue el siguiente esquema:
 - Suponer que el enunciado a demostrar es falso. Es decir, suponer que la negación del enunciado es verdadera.
 - 2 Demostrar que la suposición conduce lógicamente a una contradicción.
 - 3 Concluir que el enunciado a demostrar es verdadero.

Demuestra, usando el método por reducción al absurdo, que $\sqrt{2}$ es irracional.

Solución: Supongamos que $\sqrt{2}$ es racional. Entonces existen números $a,b\in\mathbb{Z}$ con mcd(a,b)=1 tal que $\sqrt{2}=a/b$, lo cual implica que

$$a^2 = 2b^2 \tag{3}$$

De la igualdad anterior se deduce que a^2 es par, por lo que a también es par. Por tanto, a=2c para algún entero c. Sustituyendo esta última igualdad en (3) se obtiene que $b^2=2c^2$. Entonces b^2 es par, por lo que b también es par, es decir, b=2d para algún entero d. Como consecuencia, se deduce que mcd(a,b)=mcd(2c,2d)>1, lo cual es una contradicción. Por tanto, $\sqrt{2}$ es irracional, como se desea.