

RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering

Georgia Tech College of Computing

Center for Research into

Novel Computing Hierarchies

ICCAD'22

Chaojian Li, Sixu Li, Yang (Katie) Zhao, Wenbo Zhu, and Yingyan (Celine) Lin

Georgia Institute of Technology

NeRF: A Tool to Generate Novel Views

Inputs: Sparsely sampled views

Outputs: Images of any new view

Real-Time NeRF Is Increasingly Demanded

Virtual Meetings

Autonomous Driving Simulation

SOTA Efficient NeRF's Limitations

Metaverse

- Example 2 Limitation 1: Large memory requirement
- **Example 2: Low throughput**

Contribution 1: Analyze the Efficiency Bottleneck

Contribution 2: Identify Two Key Bottlenecks

- Dominant step: Query the features of points along the rays
- Bottleneck 1 Locate pre-existing points
- Bottleneck 2 Compute points' embeddings

Overview of the Proposed RT-NeRF

Contribution 3: Efficient Rendering Pipeline

Contribution 4: Hybrid Sparse Encoding

- For dense (< 80% sparsity) matrices
- For sparse (≥ 80% sparsity) matrices

Encoding Scheme	Storage Size (↓)	Decoding Throughput (个)	Resource Utilization (个)
Bitmap -based	***		***
Our proposed	***	***	***

Encoding Scheme	Storage Size (↓)	Decoding Throughput (个)	Resource Utilization (个)
Coordinate -based			
Our proposed			***

Contribution 5: Improved Bitmap-Based Encoding Scheme to Boost Throughput

- Cycle 1: Check the bitmap matrix element 1 or 0
- Cycle 2: Sum up 1-bit bitmap vector and then add the row pointer value
- Cycle 3: Fetch the target non-zero element

Contribution 6: Bi-Direction Trees to Boost Utilization

RT-NeRF's Speedup Over Baselines

Our RT-NeRF framework has delivered the first real-time neural rendering solution suited for edge applications