

Urban Bike Sharing in Washington, DC: A Spatio-Temporal and Statistical Analysis

"Optimizing bike-sharing through datadriven approaches"

Academic Year: 2024 - 25

Master Degree in COMPUTER ENGINEERING

Data Science and Data Engineering Curriculum

Course:

Statistics for High Dimensional Data and Compstat Lab

Professo

Prof. Francesco Finazzi

Student

Arash Abedi

Introduction

I. Key Question:

Can bike-sharing systems in urban areas be optimized using spatio-temporal models?

II. Main Approach:

Analyze 2023 bike-sharing data from Washington, DC using statistical models.

III. Goal:

Improve resource allocation and operational efficiency.

Dataset Description

Data Sources:

- Capital Bikeshare: 700+ stations, 6,000+ bikes
- Weather Data: Historical weather records (temperature, precipitation, etc.)

Key Variables:

- Bike pickups, trip duration, station locations
- Weather conditions (temperature, humidity, precipitation, etc.)

Map of Washington, DC: Bike Stations Highlighted

Exploratory Data Analysis

Bike Usage Patterns:

- Daily and hourly aggregation of rides
- Weekends/holidays vs. working days

Key Statistics:

Variable	Unit	Min	Max	Mean	Median	Std	Skew	Kurt
Mean pickups	-	1.67	34.23	13.24	12.99	5.85	1.08	2.21
Mean trip duration	min	0.48	837.54	18.10	11.42	33.82	14.73	411.14

Key descriptive statistics for bike-sharing variables.

Hourly Rental Patterns

Observation:

- o Peak hours on working days: Morning and evening (commuting times).
- Peak hours on weekends: Midday and afternoon (recreational use)

Impact of Weather on Bike Usage

Hypothesis:

Weather significantly influences bike rental demand.

Findings:

- Higher temperature → More rentals & longer trips
- O High precipitation → Lower rentals

Impact of Weather on Bike Usage

Impact of Weather on Bike Usage

Research Objectives

o Main Questions:

- Which external factors (weather, events) impact bike-sharing demand?
- Which spatio-temporal models best predict bike rentals and trip duration?

Outcome:

Develop a framework to improve urban bike-sharing efficiency.

Spatio-Temporal Models Used

Models Implemented:

- Dynamic Coregionalization Model (DCM)
- Hidden Dynamic Geostatistical Model (HDGM)

Key Differences:

- DCM: Accounts for multiple latent processes
- HDGM: More flexible and computationally efficient

Mathematical Foundations of DCM

Dynamic Coregionalization Model (DCM)

$$y(s,t) = x_{\beta}(s,t)'\beta + x_{z}(s)'z(t) + \alpha w(s,t) + \varepsilon(s,t)$$

$$z(t) = Gz(t-1) + \eta(t)$$

o Key Terms:

- $x_{\beta}(s,t)$: Time-varying covariates (e.g., weather).
- o z(t): Latent temporal process with Markov dynamics.
- o w(s,t): Spatially correlated random effect.

Mathematical Foundations of HDGM

Univariate Hidden Dynamic Geostatistical Model (HDGM)

$$y(s,t) = x_{\beta}(s,t)'\beta + \alpha z(s,t) + \varepsilon(s,t)$$

$$z(s,t) = gz(s,t-1) + \eta(s,t)$$

Key Terms:

- o z(s,t): Unified spatio-temporal latent process.
- Simpler structure than DCM (single latent component).

Model Selection & Validation

Methodology:

- Covariate selection based on statistical significance
- o Training (70%) & testing (30%) split

Performance Metrics:

- RMSE (Root Mean Squared Error)
- MSE (Mean Squared Error)

Results – DCM Model

Key Findings:

- o Temperature, UV index, and precipitation are the strongest predictors.
- Model struggles slightly with overfitting.

Performance Metrics:

RMSEs for pickups: 0.6045

RMSEs for trip duration: 0.8403

Results – HDGM Model

Key Findings:

- Outperforms DCM in predictive accuracy.
- More stable due to its simplified latent process.

O Performance Metrics:

RMSEs for pickups: 0.3609

RMSEs for trip duration: 0.7024

Model Results Summary

Most Significant Covariates:

- Temperature: Strong positive effect on pickups and trip duration.
- Precipitation: Negative effect on pickups.
- UV Index: Positive effect (likely linked to sunny weather).
- Weekends/Holidays: Increased trip duration (likely due to leisure rides).

Performance Comparison:

- o **HDGM outperformed DCM** in predicting pickups and trip duration, likely due to its simpler structure.
- For trip duration, both models performed similarly, but HDGM was slightly better.

Comparison of Spatio-Temporal Models

Feature	DCM	HDGM		
Model Complexity	Higher	Lower		
Latent Processes	Two	One		
Computational Cost	Higher due to complex structure	Lower, more efficient		
Best for Predicting	Trip duration	Bike pickups		
Key Covariates	Temperature, UV index, precipitation, wind speed, weekends/holidays	Temperature, UV index, precipitation, weekends/holidays		
RMSE (Pickups)	0.6045 (full) / 0.6023 (selected)	0.3673 (full) / 0.3650 (selected)		
Log-Likelihood (Best Model)	-339.12 (lower, worse fit)	-248.72 (higher, better fit)		
Overall Performance	Good, but slightly overfits	More stable, better generalization		

Comparative Performance Analysis

Observation: HDGM outperforms DCM in most cases.

O Why?

- o HDGM's single latent component avoids overfitting.
- Captures spatial dependencies effectively.

Index	Variable	Model	Min.	Max.	Mean	Median	Std
RMSE_t	Pickups	DCM	0.56	54.50	13.20	11.30	10.10
	[pks/day]	HDGM	0.11	38.20	11.80	10.90	6.50
	Duration	DCM	5.50	2300	45	13	180
	[min]	HDGM	5.20	2280	43	12	175
	Pickups	DCM	5.20	49.50	12.80	8.10	11.00
RMSE_s	[pks/day]	HDGM	3.80	32.00	11.00	7.90	7.50
\mathbf{RMSE}_{s}	Duration	DCM	10	630	110	48	155
	[min]	HDGM	6	625	108	47	153

Limitations & Discussion

O Data Limitations:

- Only one year (2023) analyzed → No long-term trends.
- Only Washington, DC → Findings may not generalize to all cities.

Model Limitations:

- Assumes stationarity, may not capture behavioral shifts.
- High computational cost.

Key Takeaways

O Weather Drives Demand:

- Temperature (+), UV Index (+), and Precipitation (-) are the strongest predictors of bike rentals.
- Warmer, sunnier days increase rentals by ~20-30%; rain reduces demand.

Temporal Patterns Matter:

- Peak Hours: Morning/evening (workdays) vs. midday (weekends).
- Weekends/Holidays: Longer trips (leisure use).

HDGM Outperforms DCM:

- Lower RMSE (0.36 vs. 0.60 for pickups) → More accurate predictions.
- Simpler Structure: Single latent process avoids overfitting.

Conclusion

Key Findings:

- Temperature, precipitation, and UV index are the main predictors.
- HDGM is the best-performing model for predictive analysis.

o Impact:

- Helps optimize bike allocation.
- Supports data-driven urban mobility planning.

References

Spatio-Temporal Modeling Framework

Finazzi, F., Wang, Y., & Fassò, A. (2021). D-STEM v2: A software for modeling functional spatiotemporal data. Journal of Statistical Software, 99(10), 1-29. DOI: 10.18637/jss.v099.i10

Data Sources

- Bike-sharing data: Capital Bikeshare System Data (2023).
- Weather data: Visual Crossing Weather API.

Statistical & Modeling Tools

- MATLAB Used for implementing D-STEM and statistical analysis
- D-STEM v2 Toolbox for spatio-temporal data modeling
- Python Used for data preprocessing, exploratory data analysis, and visualization