Fatgraphs of $M_{0,4}$

Automatically generated by FatGHoL 5.4 (See: http://fatghol.googlecode.com/)

2012-02-09

There are a total of 21 undecorated fatgraphs in the Kontsevich graph complex of $M_{0,4}$, originating 327 marked ones.

Contents

Notation	2
Fatgraphs with 3 edges / 1 vertex	3
Fatgraphs with 4 edges / 2 vertices	4
Fatgraphs with 5 edges / 3 vertices	9
Fatgraphs with 6 edges / 4 vertices	16
Markings of fatgraphs with trivial automorphisms	23

Notation

We denote $G_{m,j}$ the j-th graph in the set of undecorated fatgraphs with m edges; the symbol $G_{m,j}^{(k)}$ denotes the k-th inequivalent marking of $G_{m,j}$.

Fatgraph vertices are marked with lowercase latin letters "a", "b", "c", etc.; edges are marked with an arabic numeral starting from "1"; boundary cycles are denoted by lowercase greek letters " α ", " β ", etc.

Automorphisms are specified by their action on the set of vertices, edges, and boundary cycles: for each automorphism A_k , a table line lists how it permutes vertices, edges and boundary cycles relative to the identity morphism A_0 . The automorphism table is printed only if the automorphism group is non-trivial.

Automorphisms that reverse the orientation of the unmarked fatgraph are indicated with a "†" symbol in the automorphism table; those that reverse the orientation of the marked fatgraphs are distinguished with a "‡" sign.

If a fatgraph is orientable, a "Markings" section lists all the inequivalent ways of assigning distinct numbers $\{0, \ldots, n-1\}$ to the boundary cycles; this is of course a set of representatives for the orbits of \mathfrak{S}_n under the action of $\mathrm{Aut}(G)$.

A separate section lists the differential of marked fatgraphs; graphs with null differential are omitted. If no marked fatgraph has a non-zero differential, the entire section is dropped.

Boundary cycles are specified using a "sequence of corners" notation: each corner is represented as $^pL^q$ where L is a latin letter indicating a vertex, and $p,\ q$ are the attachment indices of the incoming and outgoing edges, respectively. Attachment indices match the Python representation of the vertex: e.g., if a=Vertex([0,0,1]), the two legs of edge 0 have attachment indices 0 and 1, and the boundary cycle enclosed by them is represented by the (single) corner $^0a^1$.

Fatgraphs with 3 edges / 1 vertex

There are 2 unmarked fatgraphs in this section, originating 40 marked fatgraphs (20 orientable, and 20 nonorientable).

The Fatgraph $G_{3,0}$ (8 orientable markings)

Boundary cycles

$$lpha = ({}^0a^1) \ eta = ({}^1a^2 o {}^3a^4 o {}^5a^0) \ \gamma = ({}^2a^3) \ \delta = ({}^4a^5)$$

Automorphisms

	$G_{3,0}^{(0)}$	$G_{3,0}^{(1)}$	$G_{3,0}^{(2)}$	$G_{3,0}^{(3)}$	$G_{3,0}^{(4)}$	$G_{3,0}^{(5)}$	$G_{3,0}^{(6)}$	$G_{3,0}^{(7)}$
α	0	0	0	0	0	0	1	1
β	1	1	2	2	3	3	0	0
γ	2	3	1	3	1	2	2	3
δ	3	2	3	1	2	1	3	2

The Fatgraph $G_{3,1}$ (non-orientable, 12 orientable markings)

Boundary cycles

$$egin{aligned} &lpha=(^2a^3
ightarrow\ ^0a^1)\ η=(^1a^2)\ &\gamma=(^3a^4
ightarrow\ ^5a^0)\ &\delta=(^4a^5) \end{aligned}$$

Automorphisms

Markings

	$G_{3,1}^{(0)}$	$G_{3,1}^{(1)}$	$G_{3,1}^{(2)}$	$G_{3,1}^{(3)}$	$G_{3,1}^{(4)}$	$G_{3,1}^{(5)}$	$G_{3,1}^{(6)}$	$G_{3,1}^{(7)}$
α	0	0	0	0	0	0	1	1
β	1	1	2	2	3	3	0	0
γ	2	3	1	3	1	2	2	3
δ	3	2	3	1	2	1	3	2
	$G_{3,1}^{(8)}$	$G_{3,1}^{(9)}$	$G_{3,1}^{(10)}$	$G_{3,1}^{(11)}$		'	'	
α	1	1	2	2				
β	2	3	0	1				
γ	3	2	3	3				
δ	0	0	1	0				

Fatgraphs with 4 edges / 2 vertices

There are 6 unmarked fatgraphs in this section, originating 198 marked fatgraphs (99 orientable, and 99 nonorientable).

The Fatgraph $G_{4,0}$ (24 orientable markings)


```
Fatgraph([
   Vertex([0, 0, 1, 1, 2]),# a
   Vertex([3, 3, 2]), # b
])
```

Boundary cycles

$$lpha = ({}^0a^1)$$
 $eta = ({}^1a^2 o {}^2b^0 o {}^4a^0 o {}^3a^4 o {}^1b^2)$
 $\gamma = ({}^2a^3)$
 $\delta = ({}^0b^1)$

Markings

Fatgraph $G_{4,0}$ only has the identity automorphism, so the marked fatgraphs $G_{4,0}^{(0)}$ to $G_{4,0}^{(24)}$ are formed by decorating boundary cycles of $G_{4,0}$ with all permutations of (0,1,2,3) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{4,1}$ (12 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}a^{0}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{0}b^{1})$
 $\delta = ({}^{2}b^{3})$

Automorphisms

A_0										
A_1^{\ddagger}	b	a	2	3	0	1	δ	β	γ	α

Markings

	$G_{4,1}^{(0)}$	$G_{4,1}^{(1)}$	$G_{4,1}^{(2)}$	$G_{4,1}^{(3)}$	$G_{4,1}^{(4)}$	$G_{4,1}^{(5)}$	$G_{4,1}^{(6)}$	$G_{4,1}^{(7)}$
α	0	0	0	0	0	0	1	1
β	1	1	2	2	3	3	0	0
γ	2	3	1	3	1	2	2	3
δ	3	2	3	1	2	1	3	2
	(0)	(0)	(10)	(44)				
	$G_{4,1}^{(8)}$	$G_{4,1}^{(9)}$	$G_{4,1}^{(10)}$	$G_{4,1}^{(11)}$				
α	$G_{4,1}^{(8)}$ 1	$G_{4,1}^{(9)}$ 1	$G_{4,1}^{(10)}$ 2	$G_{4,1}^{(11)}$ 2				
α β	$G_{4,1}^{(8)}$ 1 2	$G_{4,1}^{(9)}$ 1 3	$G_{4,1}$	$G_{4,1}$				
	1	1	2	2				

The Fatgraph $G_{4,2}$ (24 orientable markings)

Boundary cycles

$$egin{aligned} &lpha = (^0a^1) \ η = (^1a^2 o {}^4a^0) \ &\gamma = (^2a^3 o {}^2b^0 o {}^3a^4 o {}^1b^2) \ &\delta = (^0b^1) \end{aligned}$$

Markings

Fatgraph $G_{4,2}$ only has the identity automorphism, so the marked fatgraphs $G_{4,2}^{(0)}$ to $G_{4,2}^{(24)}$ are formed by decorating boundary cycles of $G_{4,2}$ with all permutations of (0,1,2,3) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{4,3}$ (non-orientable, 12 orientable markings)

Boundary cycles

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{1}a^{2}
ightarrow {}^{3}a^{0}
ightarrow {}^{0}b^{1})$
 $\gamma = ({}^{2}a^{3}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}b^{2})$
 $\delta = ({}^{2}b^{3})$

Automorphisms

A_0										
$A_1^{\dagger \ddagger}$	b	a	0	3	2	1	δ	γ	β	α

	$G_{4,3}^{(0)}$	$G_{4,3}^{(1)}$	$G_{4,3}^{(2)}$	$G_{4,3}^{(3)}$	$G_{4,3}^{(4)}$	$G_{4,3}^{(5)}$	$G_{4,3}^{(6)}$	$G_{4,3}^{(7)}$
α	0	0	0	0	0	0	1	1
β	1	1	2	2	3	3	0	0
γ	2	3	1	3	1	2	2	3
δ	3	2	3	1	2	1	3	2
	$G_{4,3}^{(8)}$	$G_{4,3}^{(9)}$	$G_{4,3}^{(10)}$	$G_{4,3}^{(11)}$		•		
α	1	1	2	2				
β	2	3	0	1				
γ	0	0	1	0				
δ	3	2	3	3				

The Fatgraph $G_{4,4}$ (24 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= ({}^2b^0
ightarrow {}^0a^1) \ eta &= ({}^1a^2
ightarrow {}^1b^2) \ \gamma &= ({}^2a^3
ightarrow {}^0b^1
ightarrow {}^4a^0) \ \delta &= ({}^3a^4) \end{aligned}$$

Markings

Fatgraph $G_{4,4}$ only has the identity automorphism, so the marked fatgraphs $G_{4,4}^{(0)}$ to $G_{4,4}^{(24)}$ are formed by decorating boundary cycles of $G_{4,4}$ with all permutations of (0,1,2,3) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{4,5}$ (non-orientable, 3 orientable markings)

Boundary cycles

$$lpha = ({}^0a^1
ightarrow {}^2b^3)$$
 $eta = ({}^1a^2
ightarrow {}^1b^2)$
 $\gamma = ({}^2a^3
ightarrow {}^0b^1)$
 $\delta = ({}^3a^0
ightarrow {}^3b^0)$

Automorphisms

			1	3	0	2	β	γ	δ	α
$A_2{}^{\ddagger}$	a	b	3	2	1	0	γ	δ	α	β
$A_3^{\dagger \ddagger}$	a	b	2	0	3	1	δ	α	β	γ
${A_4}^{\ddagger}$	b	a	1	0	3	2	γ	β	α	δ
$A_5^{\dagger \ddagger}$	b	a	0	2	1	3	β	α	δ	γ
${A_6}^{\ddagger}$	b	a	2	3	0	1	α	δ	γ	β
$A_7^{\dagger \ddagger}$	b	a	3	1	2	0	δ	γ	β	α

Markings

	$G_{4,5}^{(0)}$	$G_{4,5}^{(1)}$	$G_{4,5}^{(2)}$
α	0	0	0
β	1	1	2
γ	2	3	1
δ	3	2	3

Fatgraphs with 5 edges / 3 vertices

There are 7 unmarked fatgraphs in this section, originating 288 marked fatgraphs (144 orientable, and 144 nonorientable).

The Fatgraph $G_{5,0}$ (24 orientable markings)


```
Fatgraph([
   Vertex([0, 1, 0]), # a
   Vertex([1, 2, 2, 3]),# b
   Vertex([4, 4, 3]), # c
])
```

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{2}b^{3}
ightarrow {}^{3}b^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{0}b^{1})$$
 $eta = ({}^{2}a^{0})$
 $eta = ({}^{1}b^{2})$
 $\delta = ({}^{0}c^{1})$

Markings

Fatgraph $G_{5,0}$ only has the identity automorphism, so the marked fatgraphs $G_{5,0}^{(0)}$ to $G_{5,0}^{(24)}$ are formed by decorating boundary cycles of $G_{5,0}$ with all permutations of (0,1,2,3) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$D(G_{5,0}^{(0)}) = +G_{4,0}^{(0)}$	$D(G_{5,0}^{(11)}) = +G_{4,0}^{(4)}$
$D(G_{5,0}^{(1)}) = +G_{4,0}^{(1)}$	$D(G_{5,0}^{(14)}) = +G_{4,0}^{(1)}$
$D(G_{5,0}^{(2)}) = +G_{4,0}^{(2)}$	$D(G_{5,0}^{(15)}) = +G_{4,0}^{(0)}$
$D(G_{5,0}^{(3)}) = +G_{4,0}^{(3)}$	$D(G_{5,0}^{(16)}) = +G_{4,0}^{(4)}$
$D(G_{5,0}^{(4)}) = +G_{4,0}^{(4)}$	$D(G_{5,0}^{(17)}) = +G_{4,0}^{(5)}$
$D(G_{5,0}^{(5)}) = +G_{4,0}^{(5)}$	$D(G_{5,0}^{(20)}) = +G_{4,0}^{(0)}$
$D(G_{5,0}^{(8)}) = +G_{4,0}^{(3)}$	$D(G_{5,0}^{(21)}) = +G_{4,0}^{(1)}$
$D(G_{5,0}^{(9)}) = +G_{4,0}^{(2)}$	$D(G_{5,0}^{(22)}) = +G_{4,0}^{(2)}$
$D(G_{5,0}^{(10)}) = +G_{4,0}^{(5)}$	$D(G_{5,0}^{(23)}) = +G_{4,0}^{(3)}$

The Fatgraph $G_{5,1}$ (24 orientable markings)

$$lpha = ({}^{0}a^{1})$$
 $eta = ({}^{1}a^{2} o {}^{2}c^{0} o {}^{3}a^{0} o {}^{1}c^{2} o {}^{2}b^{0} o {}^{1}b^{2})$
 $\gamma = ({}^{2}a^{3} o {}^{0}b^{1})$
 $\delta = ({}^{0}c^{1})$

Markings

Fatgraph $G_{5,1}$ only has the identity automorphism, so the marked fatgraphs $G_{5,1}^{(0)}$ to $G_{5,1}^{(24)}$ are formed by decorating boundary cycles of $G_{5,1}$ with all permutations of (0,1,2,3) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$D(G_{5,1}^{(0)}) = +G_{4,0}^{(0)} + G_{4,0}^{(1)} \qquad D(G_{5,1}^{(5)}) = +G_{4,0}^{(4)} + G_{4,0}^{(5)}$$

$$D(G_{5,1}^{(1)}) = +G_{4,0}^{(0)} + G_{4,0}^{(1)} \qquad D(G_{5,1}^{(8)}) = +G_{4,0}^{(2)} + G_{4,0}^{(3)}$$

$$D(G_{5,1}^{(2)}) = +G_{4,0}^{(2)} + G_{4,0}^{(3)} \qquad D(G_{5,1}^{(0)}) = +G_{4,0}^{(4)} + G_{4,0}^{(5)}$$

$$D(G_{5,1}^{(4)}) = +G_{4,0}^{(4)} + G_{4,0}^{(5)} \qquad D(G_{5,1}^{(11)}) = +G_{4,0}^{(0)} + G_{4,0}^{(1)}$$

The Fatgraph $G_{5,2}$ (12 orientable markings)

$$lpha = ({}^{1}a^{2}
ightarrow {}^{3}b^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}) \ eta = ({}^{2}a^{0}) \ \gamma = ({}^{2}b^{3}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2}) \ \delta = ({}^{0}c^{1})$$

Automorphisms

A_0												
A_1^{\ddagger}	С	b	a	4	3	2	1	0	γ	δ	α	β

	$G_{5,2}^{(0)}$	$G_{5,2}^{(1)}$	$G_{5,2}^{(2)}$	$G_{5,2}^{(3)}$	$G_{5,2}^{(4)}$	$G_{5,2}^{(5)}$	$G_{5,2}^{(6)}$	$G_{5,2}^{(7)}$
α	0	0	0	0	0	0	1	1
β	1	1	2	2	3	3	0	0
γ	2	3	1	3	1	2	2	3
δ	3	2	3	1	2	1	3	2
	$G_{5,2}^{(8)}$	$G_{5,2}^{(9)}$	$G_{5,2}^{(10)}$	$G_{5,2}^{(11)}$		'	'	
α	1	1	2	2				
β	2	3	0	1				
γ	3	2	3	3				
δ	0	0	1	0				

The Fatgraph $G_{5,3}$ (24 orientable markings)

Boundary cycles

$$egin{aligned} lpha &= (^0a^1) \ eta &= (^1a^2 o {}^3a^0 o {}^0b^1) \ \gamma &= (^2a^3 o {}^2b^0 o {}^2c^0 o {}^1c^2 o {}^1b^2) \ \delta &= (^0c^1) \end{aligned}$$

Markings

Fatgraph $G_{5,3}$ only has the identity automorphism, so the marked fatgraphs $G_{5,3}^{(0)}$ to $G_{5,3}^{(24)}$ are formed by decorating boundary cycles of $G_{5,3}$ with all permutations of (0,1,2,3) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$\begin{array}{ll} D(G_{5,3}^{(12)}) = +G_{4,0}^{(2)} & D(G_{5,3}^{(17)}) = +G_{4,0}^{(3)} \\ D(G_{5,3}^{(13)}) = +G_{4,0}^{(4)} & D(G_{5,3}^{(18)}) = +G_{4,0}^{(3)} \\ D(G_{5,3}^{(14)}) = +G_{4,0}^{(0)} & D(G_{5,3}^{(19)}) = +G_{4,0}^{(5)} \\ D(G_{5,3}^{(15)}) = +G_{4,0}^{(5)} & D(G_{5,3}^{(21)}) = +G_{4,0}^{(4)} \\ D(G_{5,3}^{(16)}) = +G_{4,0}^{(1)} & D(G_{5,3}^{(23)}) = +G_{4,0}^{(2)} \end{array}$$

The Fatgraph $G_{5,4}$ (24 orientable markings)

Boundary cycles

$$lpha = ({}^2b^0 o {}^0a^1) \ eta = ({}^1a^2 o {}^1b^2) \ \gamma = ({}^2a^3 o {}^3a^0 o {}^0b^1 o {}^1c^2 o {}^2c^0) \ \delta = ({}^0c^1)$$

Markings

Fatgraph $G_{5,4}$ only has the identity automorphism, so the marked fatgraphs $G_{5,4}^{(0)}$ to $G_{5,4}^{(24)}$ are formed by decorating boundary cycles of $G_{5,4}$ with all permutations of (0,1,2,3) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$D(G_{5,4}^{(0)}) = +G_{4,0}^{(1)} \qquad D(G_{5,4}^{(6)}) = +G_{4,0}^{(0)}$$

$$D(G_{5,4}^{(1)}) = +G_{4,0}^{(4)} \qquad D(G_{5,4}^{(7)}) = +G_{4,0}^{(2)}$$

$$D(G_{5,4}^{(3)}) = +G_{4,0}^{(5)} \qquad D(G_{5,4}^{(5)}) = +G_{4,0}^{(3)}$$

$$D(G_{5,4}^{(5)}) = +G_{4,0}^{(0)} \qquad D(G_{5,4}^{(11)}) = +G_{4,0}^{(1)}$$

The Fatgraph $G_{5,5}$ (24 orientable markings)


```
Fatgraph([
   Vertex([1, 0, 2]), # a
   Vertex([2, 3, 1]), # b
   Vertex([0, 3, 4, 4]),# c
])
```

Boundary cycles

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{1}a^{2}
ightarrow {}^{3}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}) \ \delta = ({}^{2}c^{3})$$

Markings

Fatgraph $G_{5,5}$ only has the identity automorphism, so the marked fatgraphs $G_{5,5}^{(0)}$ to $G_{5,5}^{(24)}$ are formed by decorating boundary cycles of $G_{5,5}$ with all permutations of (0,1,2,3) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,6}$ (12 orientable markings)


```
Fatgraph([
   Vertex([1, 4, 3, 0]),# a
   Vertex([0, 3, 2]), # b
   Vertex([4, 1, 2]), # c
])
```

$$egin{aligned} & lpha = ({}^0a^1
ightarrow {}^0c^1) \ & eta = ({}^1a^2
ightarrow {}^2c^0
ightarrow {}^1b^2) \ & \gamma = ({}^2a^3
ightarrow {}^0b^1) \ & \delta = ({}^3a^0
ightarrow {}^2b^0
ightarrow {}^1c^2) \end{aligned}$$

Automorphisms

A_0	a	b	С	0	1	2	3	4	α	β	γ	δ
A_1^{\ddagger}	a	С	b	4	3	2	1	0	γ	δ	α	β

Markings

	$G_{5,6}^{(0)}$	$G_{5,6}^{(1)}$	$G_{5,6}^{(2)}$	$G_{5,6}^{(3)}$	$G_{5,6}^{(4)}$	$G_{5,6}^{(5)}$	$G_{5,6}^{(6)}$	$G_{5,6}^{(7)}$
α	0	0	0	0	0	0	1	1
β	1	1	2	2	3	3	0	0
γ	2	3	1	3	1	2	2	3
δ	3	2	3	1	2	1	3	2
	$G_{5,6}^{(8)}$	$G_{5,6}^{(9)}$	$G_{5,6}^{(10)}$	$G_{5,6}^{(11)}$		'		
α	1	1	2	2				
β	2	3	0	1				
γ	3	2	3	3				
δ	0	0		0	I			

Fatgraphs with 6 edges / 4 vertices

There are 6 unmarked fatgraphs in this section, originating 128 marked fatgraphs (64 orientable, and 64 nonorientable).

The Fatgraph $G_{6,0}$ (non-orientable, 12 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^1a^2 o {}^0a^1 o {}^2c^0 o {}^1c^2 o {}^2b^0 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^0c^1 o {}^1b^2)$
 $\delta = ({}^0d^1)$

Automorphisms

A_0														
$A_1^{\dagger\ddagger}$	d	С	b	a	3	5	4	0	2	1	α	δ	γ	β

	$G_{6,0}^{(0)}$	$G_{6,0}^{(1)}$	$G_{6,0}^{(2)}$	$G_{6,0}^{(3)}$	$G_{6,0}^{(4)}$	$G_{6,0}^{(5)}$	$G_{6,0}^{(6)}$	$G_{6,0}^{(7)}$
α	0	0	0	1	1	1	2	2
β	1	1	2	0	0	2	0	0
γ	2	3	1	2	3	0	1	3
δ	3	2	3	3	2	3	3	1
	$G_{6,0}^{(8)}$	$G_{6,0}^{(9)}$	$G_{6,0}^{(10)}$	$G_{6,0}^{(11)}$		'		
α	2	3	3	3				
β	1	0	0	1				
γ	0	1	2	0				
δ	3	2	1	2				

Differentials

$$D(G_{6,0}^{(0)}) = -G_{5,0}^{(6)} \qquad D(G_{6,0}^{(7)}) = -G_{5,0}^{(1)}$$

$$D(G_{6,0}^{(4)}) = +G_{5,0}^{(6)} \qquad D(G_{6,0}^{(8)}) = +G_{5,0}^{(1)}$$

$$D(G_{6,0}^{(6)}) = -G_{5,0}^{(0)} \qquad D(G_{6,0}^{(6)}) = +G_{5,0}^{(0)}$$

The Fatgraph $G_{6,1}$ (12 orientable markings)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{2}b^{0}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{0}b^{1}) \ eta = ({}^{2}a^{0}) \ \gamma = ({}^{2}d^{0}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}d^{2}
ightarrow {}^{1}c^{2}
ightarrow {}^{1}b^{2}) \ \delta = ({}^{0}d^{1})$$

Automorphisms

A_0														
A_1^{\ddagger}	d	С	b	a	0	5	4	3	2	1	γ	δ	α	β

	$G_{6,1}^{(0)}$	$G_{6,1}^{(1)}$	$G_{6,1}^{(2)}$	$G_{6,1}^{(3)}$	$G_{6,1}^{(4)}$	$G_{6,1}^{(5)}$	$G_{6,1}^{(6)}$	$G_{6,1}^{(7)}$
α	0	0	0	0	0	0	1	1
β	1	1	2	2	3	3	0	0

	(conti	nued.)						
γ	2	3	1	3	1	2	2	3
δ	3	2	3	1	2	1	3	2
	$G_{6,1}^{(8)}$	$G_{6,1}^{(9)}$	$G_{6,1}^{(10)}$	$G_{6,1}^{(11)}$		'	'	
α	1	1	2	2				
β	2	3	0	1				
γ	3	2	3	3				
δ	0	0	1	0				

Differentials

$$D(G_{6,1}^{(0)}) = -G_{5,0}^{(2)} \qquad D(G_{6,1}^{(6)}) = -G_{5,0}^{(4)}$$

$$D(G_{6,1}^{(1)}) = -G_{5,0}^{(3)} \qquad D(G_{6,1}^{(7)}) = -G_{5,0}^{(5)}$$

$$D(G_{6,1}^{(2)}) = +G_{5,0}^{(3)} \qquad D(G_{6,1}^{(8)}) = +G_{5,0}^{(5)}$$

$$D(G_{6,1}^{(4)}) = +G_{5,0}^{(2)} \qquad D(G_{6,1}^{(6)}) = +G_{5,0}^{(5)}$$

The Fatgraph $G_{6,2}$ (8 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^0c^1 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^1c^2 o {}^2b^0 o {}^2c^0 o {}^1d^2)$$
 $eta = ({}^2a^0)$
 $\gamma = ({}^1b^2)$
 $\delta = ({}^0d^1)$

Automorphisms

A_0	a	b	С	d	0	1	2	3	4	5	α	β	γ	δ
A_1^{\ddagger}	b	d	С	a	5	0	3	4	2	1	α	γ	δ	β
$A_2{}^{\ddagger}$	d	a	С	b	1	5	4	2	3	0	α	δ	β	γ

Markings

	$G_{6,2}^{(0)}$	$G_{6,2}^{(1)}$	$G_{6,2}^{(2)}$	$G_{6,2}^{(3)}$	$G_{6,2}^{(4)}$	$G_{6,2}^{(5)}$	$G_{6,2}^{(6)}$	$G_{6,2}^{(7)}$
α	0	0	1	1	2	2	3	3
β	1	1	0	0	0	0	0	0
γ	2	3	2	3	1	3	1	2
δ	3	2	3	2	3	1	2	1

Differentials

$$\begin{split} D(G_{6,2}^{(0)}) &= + G_{5,0}^{(0)} & D(G_{6,2}^{(4)}) = + G_{5,0}^{(4)} \\ D(G_{6,2}^{(1)}) &= + G_{5,0}^{(1)} & D(G_{6,2}^{(5)}) = + G_{5,0}^{(5)} \\ D(G_{6,2}^{(2)}) &= + G_{5,0}^{(3)} & D(G_{6,2}^{(6)}) = + G_{5,0}^{(6)} \\ \end{split}$$

The Fatgraph $G_{6,3}$ (24 orientable markings)

$$lpha = ({}^{0}a^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{1}b^{2}) \ eta = ({}^{2}d^{0}
ightarrow {}^{1}a^{2}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}b^{1}
ightarrow {}^{1}d^{2}) \ \gamma = ({}^{2}a^{0}
ightarrow {}^{2}b^{0}) \ \delta = ({}^{0}d^{1})$$

Markings

Fatgraph $G_{6,3}$ only has the identity automorphism, so the marked fatgraphs $G_{6,3}^{(0)}$ to $G_{6,3}^{(24)}$ are formed by decorating boundary cycles of $G_{6,3}$ with all permutations of (0,1,2,3) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$D(G_{6,3}^{(0)}) = +G_{5,0}^{(2)} \qquad D(G_{6,3}^{(8)}) = +G_{5,0}^{(5)}$$

$$D(G_{6,3}^{(2)}) = +G_{5,0}^{(4)} \qquad D(G_{6,3}^{(12)}) = +G_{5,0}^{(1)}$$

$$D(G_{6,3}^{(6)}) = +G_{5,0}^{(0)} \qquad D(G_{6,3}^{(14)}) = +G_{5,0}^{(3)}$$

The Fatgraph $G_{6,4}$ (non-orientable, 6 orientable markings)

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1c^2
ightarrow {}^0b^1) \ eta = ({}^1a^2
ightarrow {}^2b^0
ightarrow {}^1d^2
ightarrow {}^2c^0) \ \gamma = ({}^2a^0
ightarrow {}^0d^1) \ \delta = ({}^0c^1
ightarrow {}^1b^2)$$

Automorphisms

A_0	a	b	С	d	0	1	2	3	4	5	α	β	γ	δ
A_1^{\ddagger}	b	a	d	С	5	4	2	3	1	0	β	α	δ	γ
$A_2^{\dagger \ddagger}$	С	d	a	b	1	0	3	2	5	4	α	β	δ	γ
$A_3^{\dagger \ddagger}$	d	С	b	a	4	5	3	2	0	1	β	α	γ	δ

Markings

	$G_{6,4}^{(0)}$	$G_{6,4}^{(1)}$	$G_{6,4}^{(2)}$	$G_{6,4}^{(3)}$	$G_{6,4}^{(4)}$	$G_{6,4}^{(5)}$
α	0	0	0	1	1	2
β	1	2	3	2	3	3
γ	2	1	1	0	0	0
δ	3	3	2	3	2	1

The Fatgraph $G_{6,5}$ (2 orientable markings)

$$lpha = ({}^2d^0
ightarrow {}^0a^1
ightarrow {}^1c^2) \ eta = ({}^1a^2
ightarrow {}^0c^1
ightarrow {}^0b^1) \ \gamma = ({}^2a^0
ightarrow {}^2b^0
ightarrow {}^0d^1) \ \delta = ({}^2c^0
ightarrow {}^1d^2
ightarrow {}^1b^2)$$

Automorphisms

A_0	a	b	С	d	0	1	2	3	4	5	α	β	γ	δ
A_1 [‡]	a	d	b	С	2	0	1	4	5	3	β	γ	α	δ
A_2^{\ddagger}	a	С	d	b	1	2	0	5	3	4	γ	α	β	δ
A_3 [‡]	b	d	С	a	4	2	5	0	3	1	β	δ	γ	α
$A_4{}^{\ddagger}$	b	a	d	С	5	4	2	3	1	0	δ	γ	β	α
A_5^{\ddagger}	b	С	a	d	2	5	4	1	0	3	γ	β	δ	α
A_6^{\ddagger}	С	d	a	b	0	4	3	2	1	5	β	α	δ	γ
A_7^{\ddagger}	С	b	d	a	3	0	4	1	5	2	α	δ	β	γ
A_8^{\ddagger}	С	a	b	d	4	3	0	5	2	1	δ	β	α	γ
A_9^{\ddagger}	d	С	b	a	5	1	3	2	4	0	γ	δ	α	β
A_{10}^{\ddagger}	d	a	С	b	3	5	1	4	0	2	δ	α	γ	β
$A_{11}{}^{\ddagger}$	d	b	a	С	1	3	5	0	2	4	α	γ	δ	β

Markings

	$G_{6,5}^{(0)}$	$G_{6,5}^{(1)}$		
α	0	0		
β	1	1		
γ	2	3		
δ	3	2		

Markings of fatgraphs with trivial automorphisms

This appendix shows the numbering of marked fatgraphs when the base unmarked fatgraph G has only the trivial automorphism.

	$G^{(0)}$	$G^{(1)}$	$G^{(2)}$	$G^{(3)}$	$G^{(4)}$	$G^{(5)}$	$G^{(6)}$	$G^{(7)}$
α	0	0	0	0	0	0	1	1
β	1	1	2	2	3	3	0	0
γ	2	3	1	3	1	2	2	3
δ	3	2	3	1	2	1	3	2
	$G^{(8)}$	$G^{(9)}$	$G^{(10)}$	$G^{(11)}$	$G^{(12)}$	$G^{(13)}$	$G^{(14)}$	$G^{(15)}$
α	1	1	1	1	2	2	2	2
β	2	2	3	3	0	0	1	1
γ	0	3	0	2	1	3	0	3
δ	3	0	2	0	3	1	3	0
	$G^{(16)}$	$G^{(17)}$	$G^{(18)}$	$G^{(19)}$	$G^{(20)}$	$G^{(21)}$	$G^{(22)}$	$G^{(23)}$
α	2	2	3	3	3	3	3	3
β	3	3	0	0	1	1	2	2
γ	0	1	1	2	0	2	0	1
δ	1	0	2	1	2	0	1	0