In and Around The Sensitivity Conjecture

Karthik C. S.

September 4, 2015

Joint work with Sébastien Tavenas.

AVAILABLE INGREDIENTS

THE OPTIONS

,

ALICE AND BOB

3

ALICE'S OPINION

ALICE'S OPINION

ALICE'S OPINION

Bob's Opinion

Bob's Opinion

5

Bob's Opinion

SENSITIVITY

Sensitivity of a combination:

- 1. Fix a combination X. Set s(X) = 0.
- 2. For every ingredient *i*:
 - 2.1. If $i \in X$, let Y = X i. Else, let Y = X + i.
 - 2.2. If Opinion of X is different from Y, increment s(X) by 1.

Sensitivity:

$$s = \max_{X} s(X).$$

5

SENSITIVITY: ALICE'S OPINION

SENSITIVITY: ALICE'S OPINION

SENSITIVITY: ALICE'S OPINION

A+G+O

7

BLOCK SENSITIVITY

Block Sensitivity of a combination:

- 1. Fix a combination X.
- 2. For every partition P of Ingredients into blocks B_1, \ldots, B_k .
 - 2.1 Set $bs^{P}(X) = 0$.
 - 2.2 For every block B_i :
 - 2.2.1. Let Y = X.
 - 2.2.2. For every ingredient j in B_i : If $j \in X$, let Y = Y - j. Else, let Y = Y + j.
 - 2.2.3. If Opinion of X is different from Y, increment $bs^{P}(X)$ by 1.
- 3. Set $bs(X) = \max_{X} bs^{P}(X)$.

Block Sensitivity:

$$bs = \max_{X} bs(X).$$

8

BLOCK SENSITIVITY: ALICE'S OPINION

BLOCK SENSITIVITY: ALICE'S OPINION

BLOCK SENSITIVITY: ALICE'S OPINION

A+G+O

BOOLEAN FUNCTION

Ingredients: J_1, J_2, \ldots, J_n .

BOOLEAN FUNCTION

Ingredients: J_1, J_2, \ldots, J_n .

BOOLEAN FUNCTION

$$f: \mathcal{P}\left(\{J_1,\ldots,J_n\}\right) \to \{\text{Yes, No}\}$$

SENSITIVITY AND BLOCK SENSITIVITY

- Combination $X = J_1 + \ldots + J_r$.
- Sensitivity: # of times opinion changes when either:
 - $\star J \in \{J_{r+1}, \ldots, J_n\}$ is added to X.
 - $\star J \in \{J_1, \dots, J_r\}$ is removed from X.
- Block Sensitivity: # of times opinion changes for best partition P when for every block B_i:
 - ★ All $J \in B_i$ is either added to/removed from X.
- For every combination X we have:

$$0 \le \mathsf{s}(\mathsf{X}) \le \mathsf{bs}(\mathsf{X}) \le n.$$

SENSITIVITY CONJECTURE

Conjecture (Nisan and Szegedy, 1992)

There exist constants c and δ such that for all boolean functions we have:

$$bs \leq c \cdot s^{\delta}$$
.

Some Known Results

Theorem (Nisan, 1991)

For all monotone boolean functions we have:

$$bs = s$$
.

Theorem (Ambainis and Sun, 2011)

There exists a boolean function for which we have:

$$bs = \frac{2}{3}s^2 - \frac{1}{3}s.$$

DISJUNCTIVE NORMAL FORM

EMPTY

A+G+O

DISJUNCTIVE NORMAL FORM

DISJUNCTIVE NORMAL FORM

BLOCK PROPERTY

Definition

Every Juice ingredient appears **positively** in at most **one** clause.

Theorem

Any boolean function admitting the block property¹ has:

$$bs \leq 4s^2$$
.

 $^{^{1}}$ Conditions apply.

Lemma

Any boolean function admitting the block property has:

$$bs = \#$$
 of clauses.

.

Lemma

Any boolean function admitting the block property has:

$$bs = \#$$
 of clauses.

Lemma

Any boolean function admitting the block property has:

$$s \geq \frac{1}{2} \cdot \frac{\text{\# of clauses}}{\text{Size of largest clause}}.$$

Lemma

Any boolean function admitting the block property has:

$$bs = \#$$
 of clauses.

Lemma

Any boolean function admitting the block property has:

$$s \geq \frac{1}{2} \cdot \frac{\text{\# of clauses}}{\text{Size of largest clause}}.$$

Lemma

Any boolean function admitting the block property has:

$$s \ge \frac{1}{2}$$
. Size of largest clause.

END OF THE TALK

Thank you!