西安交通大学 软件学院

操作系统原理

Operating System Principle

田丽华

3-3 进程控制块

Diagram of Process State

进程状态图

Process Control Block (PCB)

进程控制块

- ➤ PCB (Process Control Block):一个专门的数据结构,系统用它来记录进程的外部特征,描述进程的运动变化过程
- ➤ PCB是进程管理和控制的最重要的数据结构,在创建进程时,建立PCB,并伴随 进程运行的全过程,直到进程撤消而撤消。
- ➤ PCB是系统感知进程存在的唯一标志,进程与PCB是——对应的
- ▶ PCB经常被系统访问,如,调度程序、资源分配程序、中断处理程序等,所以 PCB应常驻内存。

Process Control Block (PCB)

进程控制块

Information associated with each process. 同进程有关的信息

2 Program counter 程序计数器

3 CPU registers CPU寄存器

4 CPU scheduling information CPU调度信息

5 Memory-management information 内存管理信息

6 Accounting information 计账信息

7 I/O status information I/O状态信息

pointer	process state
process number	
program counter	
registers	
memory limits	
list of open files	
•	
	•

进程控制块

进程标识符 name

- ◆ 每个进程都必须有一个唯一的标识符, 可以是字符串,也可以是一个数字。
- ◆ UNIX系统中就是一个整型数。 在进程创建时由系统赋予。

进程当前状态 status

◆ 说明进程当前所处的状态。

进程控制块

- ◆程序计数器: 指向执行程序的下个指令的地址
- ◆CPU现场保护区 cpu status
 - ◆ 当进程因某种原因不能继续占用CPU时(如:等待打印机),释放CPU,这时就要将CPU的各种状态信息保护起来,为将来再次得到处理机恢复CPU的各种状态,继续运行。
- ◆CPU调度信息:包括CPU优先级,调度队列指针等

进程控制块

包括CPU时间,实际使用时间,作业或进程数量等

是指某个进程在运行的 过程中要与其它进程进 行通信,该区记录有关 进程通信方面的信息。

Process Control Block 进程控制块

PCB的组织方式

- ▶ PCB表:系统把PCB组织在一起,并放在内存的固定区域,就构成了PCB表;
- ➤ PCB表的个数决定了系统中最多可同时存在的进程个数, 称为系统的并发度.
- ➤ PCB表的组织方式
 - 〉 链接方式

> 索引方式

进程控制块

Solaris: Process Execution Environment

