

**1** Найти значение выражения:

$$61a - 11b + 50$$
, если  $\frac{2a - 7b + 5}{7a - 2b + 5} = 9$ .

- **2** Две высоты треугольника равны между собой. Докажите, что треугольник равнобедренный.
- **3** Дан четырехугольник, сумма диагоналей которого равна 18. Найдите периметр четырехугольника с вершинами в серединах сторон данного.
- **4** Углы треугольника относятся как 2:3:4 Найдите отношение внешних углов треугольника.
- **5** Основания трапеции равны 3 и 5, одна из диагоналей перпендикулярна боковой стороне, а другая делит пополам угол при большем основании. Найдите высоту трапеции.
- **6** Точки M и N лежат на стороне AC треугольника M, причем  $\angle ABM = \angle ACB$  и  $\angle CBN = \angle BAC$ . Докажите, что треугольник BMN равнобедренный.
- 7 Треугольник ABC равнобедренный (AB = BC). Отрезок AM делит его на два равнобедренных треугольника с основаниями AB и MC. Найдите угол B.
- **8** В прямоугольном треугольнике ABC на гипотенузе AB взяты точки K и M, причем AK = AC и BM = BC. Найдите  $\angle MCK$ .
- **9** Через вершины A и C треугольника ABC проведены прямые, перпендикулярные биссектрисе угла ABC, пересекающие прямые CB и BA в точках K и M соответственно. Найдите AB, если BM=8, KC=1.

# Домашняя работа №1

**1** Упростить выражение:

$$\left(\frac{1}{x+2} + \frac{5}{x^2 - x - 6} + \frac{2x}{x-3}\right) \cdot \frac{x}{2x+1} - \frac{x-9}{2(3-x)}$$

2 Найти значение выражения:

$$\frac{a}{b}, \quad \text{если } \frac{2a+5b}{5a+2b} = 1.$$

**3** Упростить выражение:

$$(2\sqrt{5} - \sqrt{15})(\sqrt{15} + 2\sqrt{5}) - (\sqrt{10} - 5\sqrt{2})^2$$

- **4** Острый угол прямоугольного треугольника равен 30°, а гипотенуза равна 8. Найдите отрезки, на которые делит гипотенузу высота, проведенная из вершины прямого угла.
- **5** Докажите, что высота равнобедренного прямоугольного треугольника, проведенная из вершины прямого угла, вдвое меньше гипотенузы.
- **6** Биссектрисы двух углов треугольника пересекаются под углом 110°. Найдите третий угол треугольника.
- Высоты треугольника ABC, проведенные из вершин B и C, пересекаются в точке M. Известно, что BM = CM. Докажите, что треугольник ABC равнобедренный.

9

#### Занятие №3



Через точку A проведена прямая, пересекающая окружность с диаметром AB в точке K, отличной от A, а окружность с центром B — в точках M и N. Докажите, что MK = KN.

- **1** Угол между радиусами OA и OB окружности равен  $60^\circ$ . Найдите хорду AB, если радиус окружности равен 12.
- **2** Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что  $\angle AOD = 3\angle ACD$ .
- **3** Равные хорды окружности с центром O пересекаются в точке M. Докажите, что MO биссектриса угла между ними.
- 4 Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной 10, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырехугольника.
- **5** Продолжения хорд AB и CD окружности с диаметром AD пересекаются под углом  $25^\circ$ . Найдите острый угол между хордами AC и BD.
- **6** Докажите, что точка пересечения биссектрис треугольника ABC, точки B и C, а также точка пересечения биссектрис внешних углов с вершинами B и C лежат на одной окружности.
- Биссектрисы внутреннего и внешнего угла при вершине A треугольника ABC пересекают прямую BC в точках P и Q. Докажите, что окружность, построенная на отрезке PQ как на диаметре, проходит через точку A.
- **8** Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что AM = AN.

# Домашняя работа №2

1 Упростить выражение:

$$1: \left(\frac{a}{a-b} + \frac{4a^2b - ab^2}{b^3 - a^3} + \frac{b^2}{a^2 + ab + b^2}\right) - \frac{-3ab}{(a-b)^2}$$

2 Упростить и найти значение выражения:

$$\left(\frac{x+1}{x-1} - \frac{x-1}{x+1} + 4x\right) \cdot \left(x - \frac{1}{x}\right)$$
, если  $x = 5\frac{1}{3}$ 

- **3** Через точку на окружности проведены диаметр и хорда, равная радиусу. Найдите угол между ними.
- **4** Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB вдвое меньше OA.
- **5** На катете AC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K. Найдите CK, если AC=2 и  $\angle A=30^\circ$ .
- **6** Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.
- 7 Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P. Докажите, что треугольники APD и BPC равнобедренные.

- **1** Докажите, что касательные к окружности, проведенные через концы диаметра, параллельны.
- **2** Через точку M проведены две касательные MA и MB к окружности (A и B точки касания). Докажите, что MA = MB.
- **3** Расстояние от точки M до центра O окружности равно диаметру. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.
- **4** В прямой угол вписана окружность радиуса 12, касающаяся сторон угла в точках A и B. Через некоторую точку на меньшей дуге AB окружности проведена касательная, отсекающая от данного угла треугольник. Найдите его периметр.
- **5** Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по одну сторону от прямой OA. Докажите, что угол CAD вдвое меньше угла AOD.
- **6** В острый угол, равный  $60^{\circ}$ , вписаны две окружности, касающиеся друг друга внешним образом. Радиус меньшей окружности равен r. Найдите радиус большей окружности.
- **7** Вычислить:

$$\frac{6 \cdot 2^8 - 9 \cdot 2^{10} + 3 \cdot 2^{12}}{4 \cdot 2^{10} + 4 \cdot 2^{12} - 8 \cdot 2^{11}}$$

8 Решить уравнение:

$$\frac{2x-1}{x+1} = \frac{4x+2}{3x-2}$$

- 1 Докажите, что центр окружности, вписанной в угол, расположен на его биссектрисе.
- **2** Точка D лежит на стороне BC треугольника ABC. В треугольник ABD и ACD вписаны окружности с центрами  $O_1$  и  $O_2$ . Докажите, что отрезок  $O_1O_2$  виден из точки D под прямым углом.
- **3** К окружности, вписанной в равносторонний треугольник со стороной, равной 8, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- **4** Прямая, параллельная хорде AB, касается окружности в точке C. Докажите, что треугольник ABC равнобедренный.
- **5** Две прямые, пересекающиеся в точке C, касаются окружности в точках A и B. Известно, что  $\angle ACB = 120^\circ$ . Докажите, что сумма отрезков AC и BC равна отрезку OC.
- **6** Пусть r радиус окружности, вписанной в прямоугольный треугольник с катетами a и b и гипотенузой c. Докажите, что  $r=\frac{1}{2}(a+b-c)$ .
- В треугольник ABC вписана окружность, касающаяся стороны AB в точке M. Пусть AM = x, BC = a, полупериметр треугольника равен p. Докажите, что x = p a.
- **8** В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсечённого треугольника.

## Домашняя работа №3

- Хорда большей из двух концентрических окружностей касается меньшей. Докажите, что точка касания делит эту хорду пополам.

  Точки A и B лежат на окружности. Касательные к окружности, проведенные через эти точки, пересекаются в точке C. Найдите углы треугольника ABC, если AB = AC.
- **3** Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если  $\angle ABO = 40^\circ$ .
- **4** К окружности, вписанной в квадрат со стороной, равной a, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- **5** В треугольник ABC вписана окружность, касающаяся стороны AB в точке M. Пусть AM = x, BC = a, полупериметр треугольника равен p. Докажите, что x = p a.
- **6** Окружность касается двух параллельных прямых и их секущей. Докажите, что отрезок секущей, заключенный между параллельными прямыми, виден из центра окружности под прямым углом.
- **7** CH высота прямоугольного треугольника ABC, проведенная из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH, BCH и ABC, равна CH.