# ADS Group 12 - Project 3

Revlevant packages needed for this file

```
list.of.packages <- c("e1071", "ggplot2","gbm","caret","randomForest","EBImage")

new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages))
   {
    install.packages(new.packages)
    source("https://bioconductor.org/biocLite.R")
    biocLite("EBImage")
}

library("gbm")
library("ggplot2")
library("caret")
library("randomForest")
library("EBImage")</pre>
```

#### Step 1: specify directories.

This directory should be set to the lib folder of the cloned repository

```
knitr::opts_knit$set(root.dir = "../lib")
# here replace it with your own path or manually set it in RStudio to where this rmd file is located.
```

Providing directories for images, sift features, and labels. Providing paths for oututted models and predictions.

```
#image_test_dir <- "../data/test_data/raw_images" # This will be modified for different data sets.
#image train dir <- "../data/train data/raw images"</pre>
#img_train_dir <- paste(experiment_dir, "train/", sep="")</pre>
#img_test_dir <- paste(experiment_dir, "test/", sep="")</pre>
image_all.dir <- "../data/training_data/raw_images"</pre>
original_data_train = "../data/sift_ori_train.csv"
original_data_test = "../data/sift_ori_test.csv"
modified data train = "../data/sift simp gray train.csv"
modified_data_test = "../data/sift_simp_gray_test.csv"
labels_train = "../data/labels_train.csv"
labels_test = "../data/labels_test.csv"
gbm_model_original_features = "../output/GBMFullFeature.RData"
rf_model_original_features = "../output/RFFullFeature.RData"
gbm_model_modified_features = "../output/GBMModifiedFeature.RData"
rf_model_modified_features = "../output/RFModifiedFeature.RData"
gbm_model_original_predict = "../output/GBMFullFeaturePredictions.csv"
rf_model_original_predict = "../output/RFFullFeaturePredictions.csv"
gbm_model_modified_predict = "../output/GBMModifiedPredictions.csv"
rf_model_modified_predict = "../output/RFModifiedPredictions.csv"
```

#### Step 2: set up controls for evaluation experiments.

In this chunk, ,we have a set of controls for the evaluation experiments.

- (T/F) cross-validation on the training set for GBM
- (number) K, the number of CV folds
- (T/F) Out of Bag Estimate (similar to cross-validation) on training set for Random Forest
- (T/F) process features for training set
- (T/F) run evaluation on an independent test set

```
run.cv=FALSE # run cross-validation on the training set
K <- 5 # number of CV folds
run.00B=FALSE
run.feature.train=TRUE # process features for all pictures
run.test=TRUE # run evaluation on an independent test set
#run.feature.test=TRUE # process features for test set</pre>
```

Using cross-validation or independent test set evaluation, we compare the performance of different classifiers or classifiers with different specifications. For the GBM model, shrinkage values of .001, .01, and .1 are evaluated, as well as a size limit of 100, 500, and 1000 trees. For the Random Forest model, a size limit of 100, 500, and 1000 trees is evaluated using the Out of Bag (OOB) error estimate, which is similar to cross validation.

### Step 3: construct visual feature for Full images

Features are created by doing two things. First, the number of provided sift features is reduced. Sift feature with standard deviation in the lowest 25th percentile are thrown out. Additionaly for each feature, the mean value for "chicken" images is subtracted from the mean value for "poodle" images. Features, with the absolute value of differences less than the median are discarded. Second, grayscale features are added. For each image, a frequency histogram is created, representing the percentage of pixels falling in each of 256 gray scale bins. As such, each image has 256 grayscale features added.

The data is also split into training and testing data in a 75/25 split.

## Elapsed training time for featurizer is 684.006 seconds

```
#SPlit the data in to train and test sets
dataSplit.cv()
#tm_feature_train <- NA</pre>
```

```
#if(run.feature.train){
 # tm_feature_train <- system.time({</pre>
  # dat_train <- feature(img_dir=image_train_dir)})</pre>
                                      #feature(img_train_dir,
                                       #
                                                           "train",
                                        #
                                                           data_name="zip",
                                                           export=TRUE))
                                         #
#}
#tm_feature_test <- NA</pre>
#if(run.feature.test){
 # tm_feature_test <- system.time(dat_test <- feature(img_test_dir,
   #
                                                         data_name="zip",
    #
                                                         export=TRUE))
#}
#write(dat_all,file="../output/feature_all.csv")
#save(dat_train, file="./output/feature_train.RData")
#save(dat_test, file="./output/feature_test.RData")
```

## Step 4: Model Training and Parameter Selection

Training the GBM model and Random Forest model on the original features and the new features. Outputed models are stored in RData files in the output folder. Cross validation and OOB parameter estimates are done if requested.

```
source("../lib/train.R")
source("../lib/test.R")
```

train\_models(original\_data\_train, labels\_train, full\_feature = TRUE, run\_cv = run.cv, run\_00B = run.00B

## Loading required package: plyr

| ## | Iter | TrainDeviance | ValidDeviance | ${\tt StepSize}$ | Improve |
|----|------|---------------|---------------|------------------|---------|
| ## | 1    | 1.3733        | nan           | 0.1000           | 0.0054  |
| ## | 2    | 1.3618        | nan           | 0.1000           | 0.0043  |
| ## | 3    | 1.3512        | nan           | 0.1000           | 0.0039  |
| ## | 4    | 1.3394        | nan           | 0.1000           | 0.0041  |
| ## | 5    | 1.3294        | nan           | 0.1000           | 0.0037  |
| ## | 6    | 1.3201        | nan           | 0.1000           | 0.0032  |
| ## | 7    | 1.3107        | nan           | 0.1000           | 0.0037  |
| ## | 8    | 1.3021        | nan           | 0.1000           | 0.0026  |
| ## | 9    | 1.2933        | nan           | 0.1000           | 0.0033  |
| ## | 10   | 1.2857        | nan           | 0.1000           | 0.0017  |
| ## | 20   | 1.2131        | nan           | 0.1000           | 0.0017  |
| ## | 40   | 1.1158        | nan           | 0.1000           | 0.0002  |
| ## | 60   | 1.0427        | nan           | 0.1000           | 0.0007  |
| ## | 80   | 0.9841        | nan           | 0.1000           | 0.0002  |
| ## | 100  | 0.9354        | nan           | 0.1000           | -0.0003 |

| ##                               | 120                                                         | 0.8914                                                                                 | nan                                           | 0.1000                                                                       | 0.0001                                                                              |
|----------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| ##                               | 140                                                         | 0.8508                                                                                 | nan                                           | 0.1000                                                                       | -0.0000                                                                             |
| ##                               | 160                                                         | 0.8140                                                                                 | nan                                           | 0.1000                                                                       | -0.0004                                                                             |
| ##                               | 180                                                         | 0.7796                                                                                 | nan                                           | 0.1000                                                                       | 0.0003                                                                              |
| ##                               | 200                                                         | 0.7479                                                                                 | nan                                           | 0.1000                                                                       | -0.0006                                                                             |
| ##                               | 220                                                         | 0.7201                                                                                 | nan                                           | 0.1000                                                                       | -0.0006                                                                             |
| ##                               | 240                                                         | 0.6901                                                                                 | nan                                           | 0.1000                                                                       | -0.0007                                                                             |
| ##                               | 260                                                         | 0.6608                                                                                 | nan                                           | 0.1000                                                                       | -0.0002                                                                             |
| ##                               | 280                                                         | 0.6352                                                                                 | nan                                           | 0.1000                                                                       | -0.0002                                                                             |
| ##                               | 300                                                         | 0.6106                                                                                 | nan                                           | 0.1000                                                                       | -0.0008                                                                             |
| ##                               | 320                                                         | 0.5873                                                                                 | nan                                           | 0.1000                                                                       | -0.0001                                                                             |
| ##                               | 340                                                         | 0.5663                                                                                 | nan                                           | 0.1000                                                                       | -0.0002                                                                             |
| ##                               | 360                                                         | 0.5445                                                                                 | nan                                           | 0.1000                                                                       | -0.0009                                                                             |
| ##                               | 380                                                         | 0.5240                                                                                 | nan                                           | 0.1000                                                                       | -0.0001                                                                             |
| ##                               | 400                                                         | 0.5050                                                                                 | nan                                           | 0.1000                                                                       | -0.0002                                                                             |
| ##                               | 420                                                         | 0.4868                                                                                 | nan                                           | 0.1000                                                                       | -0.0001                                                                             |
| ##                               | 440                                                         | 0.4705                                                                                 | nan                                           | 0.1000                                                                       | 0.0000                                                                              |
| ##                               | 460                                                         | 0.4543                                                                                 | nan                                           | 0.1000                                                                       | -0.0003                                                                             |
| ##                               | 480                                                         | 0.4373                                                                                 | nan                                           | 0.1000                                                                       | -0.0001                                                                             |
| ##                               | 500                                                         | 0.4231                                                                                 | nan                                           | 0.1000                                                                       | -0.0004                                                                             |
| ##                               |                                                             |                                                                                        |                                               |                                                                              |                                                                                     |
| ##                               | Iter                                                        | TrainDeviance                                                                          | ValidDeviance                                 | ${	t StepSize}$                                                              | Improve                                                                             |
| ##                               | 1                                                           | 1.3765                                                                                 | nan                                           | 0.1000                                                                       | 0.0018                                                                              |
| ##                               | 2                                                           | 1.3658                                                                                 | nan                                           | 0.1000                                                                       | 0.0024                                                                              |
| ##                               | 3                                                           | 1.3544                                                                                 | nan                                           | 0.1000                                                                       | 0.0041                                                                              |
| ##                               | 4                                                           | 1.3453                                                                                 | nan                                           | 0.1000                                                                       | 0.0025                                                                              |
| ##                               | 5                                                           | 1.3360                                                                                 | nan                                           | 0.1000                                                                       | 0.0038                                                                              |
| ##                               | 6                                                           | 1.3258                                                                                 | nan                                           | 0.1000                                                                       | 0.0042                                                                              |
| ##                               | 7                                                           | 1.3174                                                                                 | nan                                           | 0.1000                                                                       | 0.0029                                                                              |
| ##                               | 8                                                           | 1.3110                                                                                 | nan                                           | 0.1000                                                                       | 0.0014                                                                              |
| ##                               | 9                                                           | 1.3025                                                                                 | nan                                           | 0.1000                                                                       | 0.0022                                                                              |
| ##                               | 10                                                          | 1.2935                                                                                 | nan                                           | 0.1000                                                                       | 0.0035                                                                              |
| ##                               | 20                                                          | 1.2208                                                                                 | nan                                           | 0.1000                                                                       | 0.0012                                                                              |
| ##                               | 40                                                          | 1.1214                                                                                 | nan                                           | 0.1000                                                                       | 0.0018                                                                              |
| ##                               | 60                                                          | 1.0463                                                                                 | nan                                           | 0.1000                                                                       | 0.0008                                                                              |
| ##                               | 80                                                          | 0.9849                                                                                 | nan                                           | 0.1000                                                                       | 0.0008                                                                              |
| ##                               | 100                                                         | 0.9349                                                                                 | nan                                           | 0.1000                                                                       | -0.0002                                                                             |
| ##                               | 120                                                         | 0.8888                                                                                 | nan                                           | 0.1000                                                                       | -0.0007                                                                             |
| ##                               | 140                                                         | 0.8484                                                                                 | nan                                           | 0.1000                                                                       | 0.0001                                                                              |
| ##                               | 160                                                         | 0.8095                                                                                 | nan                                           | 0.1000                                                                       | 0.0001                                                                              |
| ##                               | 180                                                         | 0.7755                                                                                 | nan                                           | 0.1000                                                                       | 0.0002                                                                              |
| ##                               | 200                                                         | 0.7401                                                                                 | nan                                           | 0.1000                                                                       | -0.0001                                                                             |
| ##                               | 000                                                         |                                                                                        |                                               | 0 4000                                                                       |                                                                                     |
| шш                               | 220                                                         | 0.7104                                                                                 | nan                                           | 0.1000                                                                       | 0.0001                                                                              |
| ##                               | 240                                                         | 0.6792                                                                                 | nan                                           | 0.1000                                                                       | 0.0003                                                                              |
| ##                               | 240<br>260                                                  | 0.6792<br>0.6540                                                                       | nan<br>nan                                    | 0.1000<br>0.1000                                                             | 0.0003<br>-0.0005                                                                   |
| ##<br>##                         | 240<br>260<br>280                                           | 0.6792<br>0.6540<br>0.6293                                                             | nan<br>nan<br>nan                             | 0.1000<br>0.1000<br>0.1000                                                   | 0.0003<br>-0.0005<br>-0.0004                                                        |
| ##<br>##<br>##                   | 240<br>260<br>280<br>300                                    | 0.6792<br>0.6540<br>0.6293<br>0.6061                                                   | nan<br>nan<br>nan<br>nan                      | 0.1000<br>0.1000<br>0.1000<br>0.1000                                         | 0.0003<br>-0.0005<br>-0.0004<br>-0.0003                                             |
| ##<br>##<br>##<br>##             | 240<br>260<br>280<br>300<br>320                             | 0.6792<br>0.6540<br>0.6293<br>0.6061<br>0.5852                                         | nan<br>nan<br>nan<br>nan                      | 0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000                               | 0.0003<br>-0.0005<br>-0.0004<br>-0.0003<br>-0.0001                                  |
| ##<br>##<br>##<br>##             | 240<br>260<br>280<br>300<br>320<br>340                      | 0.6792<br>0.6540<br>0.6293<br>0.6061<br>0.5852<br>0.5624                               | nan<br>nan<br>nan<br>nan<br>nan               | 0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000                               | 0.0003<br>-0.0005<br>-0.0004<br>-0.0003<br>-0.0001<br>-0.0004                       |
| ##<br>##<br>##<br>##<br>##       | 240<br>260<br>280<br>300<br>320<br>340<br>360               | 0.6792<br>0.6540<br>0.6293<br>0.6061<br>0.5852<br>0.5624<br>0.5423                     | nan<br>nan<br>nan<br>nan<br>nan<br>nan        | 0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000                     | 0.0003<br>-0.0005<br>-0.0004<br>-0.0003<br>-0.0001<br>-0.0004<br>-0.0003            |
| ##<br>##<br>##<br>##<br>##       | 240<br>260<br>280<br>300<br>320<br>340<br>360<br>380        | 0.6792<br>0.6540<br>0.6293<br>0.6061<br>0.5852<br>0.5624<br>0.5423                     | nan<br>nan<br>nan<br>nan<br>nan<br>nan<br>nan | 0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000           | 0.0003<br>-0.0005<br>-0.0004<br>-0.0003<br>-0.0001<br>-0.0003<br>-0.0003            |
| ##<br>##<br>##<br>##<br>##<br>## | 240<br>260<br>280<br>300<br>320<br>340<br>360<br>380<br>400 | 0.6792<br>0.6540<br>0.6293<br>0.6061<br>0.5852<br>0.5624<br>0.5423<br>0.5221<br>0.5035 | nan nan nan nan nan nan nan nan               | 0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000 | 0.0003<br>-0.0005<br>-0.0004<br>-0.0003<br>-0.0001<br>-0.0003<br>-0.0001<br>-0.0000 |
| ##<br>##<br>##<br>##<br>##       | 240<br>260<br>280<br>300<br>320<br>340<br>360<br>380        | 0.6792<br>0.6540<br>0.6293<br>0.6061<br>0.5852<br>0.5624<br>0.5423                     | nan<br>nan<br>nan<br>nan<br>nan<br>nan<br>nan | 0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000           | 0.0003<br>-0.0005<br>-0.0004<br>-0.0003<br>-0.0001<br>-0.0003<br>-0.0003            |

| ## | 460  | 0.4515        | nan           | 0.1000           | 0.0000  |
|----|------|---------------|---------------|------------------|---------|
| ## | 480  | 0.4345        | nan           | 0.1000           | -0.0001 |
| ## | 500  | 0.4199        | nan           | 0.1000           | -0.0005 |
| ## |      |               |               |                  |         |
| ## | Iter | TrainDeviance | ValidDeviance | ${\tt StepSize}$ | Improve |
| ## | 1    | 1.3736        | nan           | 0.1000           | 0.0046  |
| ## | 2    | 1.3612        | nan           | 0.1000           | 0.0051  |
| ## | 3    | 1.3509        | nan           | 0.1000           | 0.0046  |
| ## | 4    | 1.3414        | nan           | 0.1000           | 0.0031  |
| ## | 5    | 1.3293        | nan           | 0.1000           | 0.0036  |
| ## | 6    | 1.3211        | nan           | 0.1000           | 0.0031  |
| ## | 7    | 1.3117        | nan           | 0.1000           | 0.0022  |
| ## | 8    | 1.3037        | nan           | 0.1000           | 0.0024  |
| ## | 9    | 1.2957        | nan           | 0.1000           | 0.0026  |
| ## | 10   | 1.2875        | nan           | 0.1000           | 0.0027  |
| ## | 20   | 1.2149        | nan           | 0.1000           | 0.0026  |
| ## | 40   | 1.1148        | nan           | 0.1000           | 0.0008  |
| ## | 60   | 1.0428        | nan           | 0.1000           | 0.0003  |
| ## | 80   | 0.9830        | nan           | 0.1000           | -0.0001 |
| ## | 100  | 0.9303        | nan           | 0.1000           | -0.0002 |
| ## | 120  | 0.8838        | nan           | 0.1000           | 0.0004  |
| ## | 140  | 0.8439        | nan           | 0.1000           | 0.0001  |
| ## | 160  | 0.8053        | nan           | 0.1000           | -0.0001 |
| ## | 180  | 0.7713        | nan           | 0.1000           | -0.0006 |
| ## | 200  | 0.7407        | nan           | 0.1000           | -0.0001 |
| ## | 220  | 0.7102        | nan           | 0.1000           | 0.0003  |
| ## | 240  | 0.6836        | nan           | 0.1000           | -0.0004 |
| ## | 260  | 0.6569        | nan           | 0.1000           | -0.0003 |
| ## | 280  | 0.6295        | nan           | 0.1000           | -0.0002 |
| ## | 300  | 0.6055        | nan           | 0.1000           | -0.0004 |
| ## | 320  | 0.5827        | nan           | 0.1000           | -0.0005 |
| ## | 340  | 0.5626        | nan           | 0.1000           | -0.0004 |
| ## | 360  | 0.5434        | nan           | 0.1000           | -0.0001 |
| ## | 380  | 0.5218        | nan           | 0.1000           | -0.0003 |
| ## | 400  | 0.5034        | nan           | 0.1000           | -0.0005 |
| ## | 420  | 0.4839        | nan           | 0.1000           | -0.0002 |
| ## | 440  | 0.4674        | nan           | 0.1000           | 0.0001  |
| ## | 460  | 0.4498        | nan           | 0.1000           | -0.0002 |
| ## | 480  | 0.4348        | nan           | 0.1000           | -0.0000 |
| ## | 500  | 0.4196        | nan           | 0.1000           | -0.0000 |
| ## |      |               |               |                  |         |
| ## | Iter | TrainDeviance | ValidDeviance | ${\tt StepSize}$ | Improve |
| ## | 1    | 1.3753        | nan           | 0.1000           | 0.0040  |
| ## | 2    | 1.3631        | nan           | 0.1000           | 0.0037  |
| ## | 3    | 1.3511        | nan           | 0.1000           | 0.0052  |
| ## | 4    | 1.3420        | nan           | 0.1000           | 0.0026  |
| ## | 5    | 1.3339        | nan           | 0.1000           | 0.0020  |
| ## | 6    | 1.3246        | nan           | 0.1000           | 0.0034  |
| ## | 7    | 1.3139        | nan           | 0.1000           | 0.0045  |
| ## | 8    | 1.3060        | nan           | 0.1000           | 0.0026  |
| ## | 9    | 1.2977        | nan           | 0.1000           | 0.0014  |
| ## | 10   | 1.2899        | nan           | 0.1000           | 0.0024  |
| ## | 20   | 1.2242        | nan           | 0.1000           | 0.0017  |
| ## | 40   | 1.1288        | nan           | 0.1000           | 0.0019  |

| ## | 60   | 1.0571        | nan           | 0.1000   | 0.0016  |
|----|------|---------------|---------------|----------|---------|
| ## | 80   | 1.0006        | nan           | 0.1000   | 0.0001  |
| ## | 100  | 0.9499        | nan           | 0.1000   | 0.0004  |
| ## | 120  | 0.9025        | nan           | 0.1000   | -0.0003 |
| ## | 140  | 0.8622        | nan           | 0.1000   | -0.0001 |
| ## | 160  | 0.8270        | nan           | 0.1000   | -0.0005 |
| ## | 180  | 0.7939        | nan           | 0.1000   | 0.0003  |
| ## | 200  | 0.7613        | nan           | 0.1000   | -0.0001 |
| ## | 220  | 0.7306        | nan           | 0.1000   | 0.0001  |
| ## | 240  | 0.7013        | nan           | 0.1000   | -0.0004 |
| ## | 260  | 0.6729        | nan           | 0.1000   | -0.0000 |
| ## | 280  | 0.6491        | nan           | 0.1000   | -0.0008 |
| ## | 300  | 0.6258        | nan           | 0.1000   | -0.0005 |
| ## | 320  | 0.6008        | nan           | 0.1000   | -0.0004 |
| ## | 340  | 0.5790        | nan           | 0.1000   | -0.0001 |
| ## | 360  | 0.5572        | nan           | 0.1000   | 0.0002  |
| ## | 380  | 0.5379        | nan           | 0.1000   | -0.0002 |
| ## | 400  | 0.5205        | nan           | 0.1000   | -0.0003 |
| ## | 420  | 0.5043        | nan           | 0.1000   | -0.0001 |
| ## | 440  | 0.4896        | nan           | 0.1000   | -0.0004 |
| ## | 460  | 0.4717        | nan           | 0.1000   | -0.0001 |
| ## | 480  | 0.4558        | nan           | 0.1000   | -0.0003 |
| ## | 500  | 0.4406        | nan           | 0.1000   | -0.0001 |
| ## |      |               |               |          |         |
| ## | Iter | TrainDeviance | ValidDeviance | StepSize | Improve |
| ## | 1    | 1.3747        | nan           | 0.1000   | 0.0046  |
| ## | 2    | 1.3644        | nan           | 0.1000   | 0.0042  |
| ## | 3    | 1.3542        | nan           | 0.1000   | 0.0038  |
| ## | 4    | 1.3441        | nan           | 0.1000   | 0.0033  |
| ## | 5    | 1.3358        | nan           | 0.1000   | 0.0024  |
| ## | 6    | 1.3249        | nan           | 0.1000   | 0.0040  |
| ## | 7    | 1.3155        | nan           | 0.1000   | 0.0029  |
| ## | 8    | 1.3073        | nan           | 0.1000   | 0.0035  |
| ## | 9    | 1.2995        | nan           | 0.1000   | 0.0032  |
| ## | 10   | 1.2911        | nan           | 0.1000   | 0.0016  |
| ## | 20   | 1.2327        | nan           | 0.1000   | -0.0001 |
| ## | 40   | 1.1340        | nan           | 0.1000   | 0.0008  |
| ## | 60   | 1.0651        | nan           | 0.1000   | 0.0006  |
| ## | 80   | 1.0076        | nan           | 0.1000   | -0.0006 |
| ## | 100  | 0.9571        | nan           | 0.1000   | 0.0002  |
| ## | 120  | 0.9145        | nan           | 0.1000   | -0.0006 |
| ## | 140  | 0.8730        | nan           | 0.1000   | 0.0003  |
| ## | 160  | 0.8338        | nan           | 0.1000   | 0.0002  |
| ## | 180  | 0.7979        | nan           | 0.1000   | -0.0000 |
| ## | 200  | 0.7649        | nan           | 0.1000   | -0.0007 |
| ## | 220  | 0.7324        | nan           | 0.1000   | 0.0000  |
| ## | 240  | 0.7009        | nan           | 0.1000   | -0.0000 |
| ## | 260  | 0.6731        | nan           | 0.1000   | -0.0003 |
| ## | 280  | 0.6473        | nan           | 0.1000   | -0.0007 |
| ## | 300  | 0.6219        | nan           | 0.1000   | -0.0001 |
| ## | 320  | 0.5988        | nan           | 0.1000   | -0.0002 |
| ## | 340  | 0.5771        | nan           | 0.1000   | -0.0006 |
| ## | 360  | 0.5577        | nan           | 0.1000   | -0.0003 |
| ## | 380  | 0.5370        | nan           | 0.1000   | 0.0000  |
|    |      |               |               |          |         |

```
##
      420
                                                          -0.0000
                  0.5007
                                                0.1000
                                       nan
##
      440
                  0.4844
                                       nan
                                                0.1000
                                                           0.0003
##
      460
                                                0.1000
                                                          -0.0001
                  0.4690
                                       nan
##
      480
                  0.4529
                                                0.1000
                                                          -0.0001
                                       nan
##
      500
                                                0.1000
                                                          -0.0006
                  0.4383
                                       nan
##
## Iter
           TrainDeviance
                            ValidDeviance
                                              StepSize
                                                          Improve
##
         1
                  1.3738
                                                0.1000
                                                           0.0056
                                       nan
##
         2
                  1.3644
                                       nan
                                                0.1000
                                                           0.0031
##
         3
                  1.3536
                                                0.1000
                                                           0.0038
                                       nan
##
         4
                   1.3438
                                       nan
                                                0.1000
                                                           0.0033
         5
##
                  1.3351
                                                0.1000
                                                           0.0032
                                       nan
##
         6
                  1.3273
                                                0.1000
                                                           0.0027
                                       nan
##
         7
                  1.3178
                                                0.1000
                                                           0.0037
                                       nan
##
        8
                  1.3083
                                                0.1000
                                                           0.0037
                                       nan
##
        9
                                                0.1000
                                                           0.0018
                  1.3017
                                       nan
##
       10
                  1.2917
                                                0.1000
                                                           0.0028
                                       nan
##
       20
                  1.2263
                                                0.1000
                                                           0.0012
                                       nan
##
       40
                  1.1336
                                       nan
                                                0.1000
                                                           0.0011
##
       60
                  1.0683
                                                0.1000
                                                           0.0010
                                       nan
##
       80
                                                0.1000
                                                           0.0005
                  1.0108
                                       nan
##
      100
                  0.9681
                                                0.1000
                                                           0.0000
                                       nan
##
                                                           0.0001
      120
                  0.9269
                                                0.1000
                                       nan
##
      140
                  0.8915
                                       nan
                                                0.1000
                                                          -0.0001
##
      160
                  0.8580
                                       nan
                                                0.1000
                                                          -0.0002
##
      180
                  0.8270
                                                0.1000
                                                          -0.0004
                                       nan
##
      200
                  0.7984
                                                0.1000
                                                          -0.0007
                                       nan
##
      220
                                                           0.0003
                  0.7696
                                                0.1000
                                       nan
##
      240
                  0.7422
                                                0.1000
                                                           0.0000
                                       nan
##
      260
                  0.7161
                                       nan
                                                0.1000
                                                          -0.0004
##
      280
                  0.6923
                                                0.1000
                                                          -0.0001
                                       nan
##
      300
                  0.6686
                                                0.1000
                                                          -0.0000
                                       nan
##
      320
                  0.6467
                                                0.1000
                                                          -0.0003
                                       nan
                                                          -0.0001
##
      340
                  0.6256
                                                0.1000
                                       nan
##
      360
                  0.6076
                                                0.1000
                                                          -0.0003
                                       nan
##
      380
                  0.5914
                                       nan
                                                0.1000
                                                          -0.0002
##
      400
                                                          -0.0003
                  0.5738
                                                0.1000
                                       nan
##
      420
                                                          -0.0000
                  0.5556
                                       nan
                                                0.1000
##
      440
                  0.5391
                                                0.1000
                                                           0.0001
                                       nan
##
      460
                  0.5221
                                       nan
                                                0.1000
                                                          -0.0000
##
      480
                  0.5056
                                                0.1000
                                                          -0.0004
                                       nan
##
      500
                  0.4917
                                       nan
                                                0.1000
                                                          -0.0003
##
## Elapsed training time for GBM with 500 trees and shrinkage 0.1 is 216.149 seconds
## Validation error for GBM is 0.2186543Elapsed time for Training Random Forest with 500 trees is 256.671 s
## Validation Error rate for Random Forest with 500 trees is 0.2786667
## Stochastic Gradient Boosting
##
## 1500 samples
   5000 predictors
      2 classes: '0', '1'
##
```

0.1000

nan

-0.0000

##

400

0.5185

```
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times)
## Summary of sample sizes: 1201, 1199, 1200, 1200, 1200
## Resampling results:
##
##
     Accuracy
                Kappa
##
     0.7813457 0.562677
##
## Tuning parameter 'n.trees' was held constant at a value of 500
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
##
##
## [[2]]
##
## Call:
    randomForest(x = image_features, y = as.factor(image_labels),
                                                                          ntree = 500)
##
                  Type of random forest: classification
                         Number of trees: 500
## No. of variables tried at each split: 70
##
           OOB estimate of error rate: 27.87%
## Confusion matrix:
           1 class.error
## 0 534 217
               0.2889481
## 1 201 548
               0.2683578
train_models(modified_data_train, labels_train, full_feature = FALSE, run_cv = run.cv, run_00B = run.000
## Iter
          TrainDeviance
                           ValidDeviance
                                            StepSize
                                                       Improve
##
        1
                  1.2688
                                              0.1000
                                                        0.0576
##
        2
                                              0.1000
                                                        0.0470
                 1.1715
                                     nan
##
        3
                 1.0876
                                              0.1000
                                                        0.0391
                                     nan
##
        4
                                                        0.0372
                  1.0095
                                              0.1000
                                     nan
        5
##
                 0.9465
                                              0.1000
                                                        0.0300
                                     nan
##
        6
                 0.8866
                                              0.1000
                                                        0.0286
                                     nan
##
        7
                 0.8335
                                              0.1000
                                                        0.0251
                                     nan
##
        8
                 0.7871
                                     nan
                                              0.1000
                                                        0.0221
##
        9
                 0.7461
                                              0.1000
                                                        0.0195
                                     nan
##
       10
                 0.7081
                                              0.1000
                                                        0.0168
                                      nan
##
       20
                 0.4492
                                                        0.0079
                                     nan
                                              0.1000
##
       40
                 0.2333
                                              0.1000
                                                        0.0020
                                     nan
##
       60
                 0.1376
                                     nan
                                              0.1000
                                                        0.0017
##
       80
                 0.0909
                                     nan
                                              0.1000
                                                        0.0007
##
      100
                  0.0645
                                              0.1000
                                                        0.0000
                                     nan
##
      120
                  0.0483
                                     nan
                                              0.1000
                                                        0.0005
##
      140
                 0.0368
                                     nan
                                              0.1000
                                                        0.0002
##
      160
                 0.0288
                                              0.1000
                                                        0.0002
                                     nan
##
      180
                                                        0.0000
                 0.0230
                                              0.1000
                                     nan
##
      200
                 0.0184
                                              0.1000
                                                        0.0001
                                     nan
##
      220
                                              0.1000
                                                        0.0001
                  0.0151
                                     nan
##
      240
                  0.0124
                                     nan
                                              0.1000
                                                        0.0000
```

| ##              | 260  | 0.0101        | nan           | 0.1000           | -0.0000 |
|-----------------|------|---------------|---------------|------------------|---------|
| ##              | 280  | 0.0085        | nan           | 0.1000           | -0.0000 |
| ##              | 300  | 0.0068        | nan           | 0.1000           | 0.0000  |
| ##              | 320  | 0.0057        | nan           | 0.1000           | 0.0000  |
| ##              | 340  | 0.0046        | nan           | 0.1000           | -0.0000 |
| ##              | 360  | 0.0038        | nan           | 0.1000           | -0.0000 |
| ##              | 380  | 0.0032        | nan           | 0.1000           | -0.0000 |
| ##              | 400  | 0.0026        | nan           | 0.1000           | -0.0000 |
| ##              | 420  | 0.0021        | nan           | 0.1000           | 0.0000  |
| ##              | 440  | 0.0018        | nan           | 0.1000           | 0.0000  |
| ##              | 460  | 0.0015        | nan           | 0.1000           | 0.0000  |
| ##              | 480  | 0.0012        | nan           | 0.1000           | 0.0000  |
| ##              | 500  | 0.0010        | nan           | 0.1000           | 0.0000  |
| ##              |      |               |               |                  |         |
| ##              | Iter | TrainDeviance | ValidDeviance | ${\tt StepSize}$ | Improve |
| ##              | 1    | 1.2675        | nan           | 0.1000           | 0.0614  |
| ##              | 2    | 1.1662        | nan           | 0.1000           | 0.0503  |
| ##              | 3    | 1.0828        | nan           | 0.1000           | 0.0393  |
| ##              | 4    | 1.0095        | nan           | 0.1000           | 0.0356  |
| ##              | 5    | 0.9419        | nan           | 0.1000           | 0.0328  |
| ##              | 6    | 0.8850        | nan           | 0.1000           | 0.0267  |
| ##              | 7    | 0.8327        | nan           | 0.1000           | 0.0251  |
| ##              | 8    | 0.7869        | nan           | 0.1000           | 0.0206  |
| ##              | 9    | 0.7411        | nan           | 0.1000           | 0.0231  |
| ##              | 10   | 0.6991        | nan           | 0.1000           | 0.0199  |
| ##              | 20   | 0.4483        | nan           | 0.1000           | 0.0082  |
| ##              | 40   | 0.2358        | nan           | 0.1000           | 0.0036  |
| ##              | 60   | 0.1382        | nan           | 0.1000           | 0.0017  |
| ##              | 80   | 0.0875        | nan           | 0.1000           | 0.0008  |
| ##              | 100  | 0.0637        | nan           | 0.1000           | 0.0004  |
| ##              | 120  | 0.0488        | nan           | 0.1000           | -0.0001 |
| ##              | 140  | 0.0385        | nan           | 0.1000           | -0.0001 |
| ##              | 160  | 0.0307        | nan           | 0.1000           | 0.0001  |
| ##              | 180  | 0.0253        | nan           | 0.1000           | -0.0000 |
| ##              | 200  | 0.0196        | nan           | 0.1000           | 0.0001  |
| ##              | 220  | 0.0162        | nan           | 0.1000           | 0.0001  |
| ##              | 240  | 0.0135        | nan           | 0.1000           | 0.0000  |
| ##              | 260  | 0.0111        | nan           | 0.1000           | 0.0001  |
| ##              | 280  | 0.0088        | nan           | 0.1000           | -0.0000 |
| ##              | 300  | 0.0072        | nan           | 0.1000           | -0.0000 |
| ##              | 320  | 0.0060        | nan           | 0.1000           | -0.0000 |
| ##              | 340  | 0.0050        | nan           | 0.1000           | 0.0000  |
| ##              | 360  | 0.0041        | nan           | 0.1000           | -0.0000 |
| ##              | 380  | 0.0035        | nan           | 0.1000           | -0.0000 |
| ##              | 400  | 0.0030        | nan           | 0.1000           | 0.0000  |
| ##              | 420  | 0.0024        | nan           | 0.1000           | -0.0000 |
| ##              | 440  | 0.0020        | nan           | 0.1000           | -0.0000 |
| ##              | 460  | 0.0020        | nan           | 0.1000           | 0.0000  |
| ##              | 480  | 0.0014        | nan           | 0.1000           | -0.0000 |
| ##              | 500  | 0.0014        | nan           | 0.1000           | 0.0000  |
| ##              | 500  | 0.0011        | nan           | 3.1000           | 0.0000  |
| ##              | Iter | TrainDeviance | ValidDeviance | StepSize         | Improve |
| ##              | 1    | 1.2684        | nan           | 0.1000           | 0.0574  |
| ##              | 2    | 1.1739        | nan           | 0.1000           | 0.0374  |
| ıτ <del>Π</del> | 2    | 1.1103        | nan           | 3.1000           | 0.0-100 |

| ## | 3          | 1.0930           | nan           | 0.1000           | 0.0369            |
|----|------------|------------------|---------------|------------------|-------------------|
| ## | 4          | 1.0085           | nan           | 0.1000           | 0.0388            |
| ## | 5          | 0.9405           | nan           | 0.1000           | 0.0333            |
| ## | 6          | 0.8844           | nan           | 0.1000           | 0.0268            |
| ## | 7          | 0.8311           | nan           | 0.1000           | 0.0263            |
| ## | 8          | 0.7823           | nan           | 0.1000           | 0.0224            |
| ## | 9          | 0.7425           | nan           | 0.1000           | 0.0188            |
| ## | 10         | 0.7052           | nan           | 0.1000           | 0.0167            |
| ## | 20         | 0.4518           | nan           | 0.1000           | 0.0078            |
| ## | 40         | 0.2344           | nan           | 0.1000           | 0.0014            |
| ## | 60         | 0.1380           | nan           | 0.1000           | 0.0018            |
| ## | 80         | 0.0900           | nan           | 0.1000           | 0.0010            |
| ## | 100        | 0.0619           | nan           | 0.1000           | 0.0007            |
| ## | 120        | 0.0466           | nan           | 0.1000           | 0.0000            |
| ## | 140        | 0.0367           | nan           | 0.1000           | 0.0000            |
| ## | 160        | 0.0281           | nan           | 0.1000           | 0.0002            |
| ## | 180        | 0.0232           | nan           | 0.1000           | 0.0002            |
| ## | 200        | 0.0177           | nan           | 0.1000           | 0.0002            |
| ## | 220        | 0.0145           | nan           | 0.1000           | 0.0001            |
| ## | 240        | 0.0118           | nan           | 0.1000           | 0.0000            |
| ## | 260        | 0.0094           | nan           | 0.1000           | 0.0001            |
| ## | 280        | 0.0079           | nan           | 0.1000           | 0.0000            |
| ## | 300        | 0.0062           | nan           | 0.1000           | 0.0000            |
| ## | 320        | 0.0051           | nan           | 0.1000           | -0.0000           |
| ## | 340        | 0.0043           | nan           | 0.1000           | -0.0000           |
| ## | 360        | 0.0035           | nan           | 0.1000           | -0.0000           |
| ## | 380        | 0.0030           | nan           | 0.1000           | 0.0000            |
| ## | 400        | 0.0024           | nan           | 0.1000           | -0.0000           |
| ## | 420        | 0.0020           | nan           | 0.1000           | -0.0000           |
| ## | 440        | 0.0016           | nan           | 0.1000           | -0.0000           |
| ## | 460        | 0.0014           | nan           | 0.1000           | -0.0000           |
| ## | 480        | 0.0011           | nan           | 0.1000           | -0.0000           |
| ## | 500        | 0.0009           | nan           | 0.1000           | -0.0000           |
| ## |            |                  |               |                  | _                 |
| ## | Iter       | TrainDeviance    | ValidDeviance | StepSize         | Improve           |
| ## | 1          | 1.2684           | nan           | 0.1000           | 0.0590            |
| ## | 2          | 1.1733           | nan           | 0.1000           | 0.0478            |
| ## | 3          | 1.0895           | nan           | 0.1000           | 0.0385            |
| ## | 4          | 1.0080           | nan           | 0.1000           | 0.0395            |
| ## | 5          | 0.9444           | nan           | 0.1000           | 0.0311            |
| ## | 6          | 0.8844           | nan           | 0.1000           | 0.0299            |
| ## | 7          | 0.8297           | nan           | 0.1000           | 0.0259            |
| ## | 8          | 0.7859           | nan           | 0.1000           | 0.0209            |
| ## | 9          | 0.7412           | nan           | 0.1000           | 0.0207            |
| ## | 10         | 0.7021           | nan           | 0.1000           | 0.0178            |
| ## | 20         | 0.4441           | nan           | 0.1000           | 0.0092            |
| ## | 40         | 0.2283           | nan           | 0.1000           | 0.0033            |
| ## | 60         | 0.1399           | nan           | 0.1000           | 0.0009            |
| ## | 80         | 0.0909           | nan           | 0.1000           | 0.0011            |
| ## | 100        | 0.0643           | nan           | 0.1000           | 0.0005            |
| ## | 120        | 0.0454           | nan           | 0.1000           | 0.0004<br>-0.0000 |
| ## | 140<br>160 | 0.0355           | nan           | 0.1000           |                   |
| ## | 160<br>180 | 0.0283<br>0.0228 | nan<br>nan    | 0.1000<br>0.1000 | 0.0000<br>0.0001  |
|    |            |                  |               | ( ) ( ) ( ) ( )  |                   |

| ## | 200  | 0.0184        | nan           | 0.1000   | -0.0000 |
|----|------|---------------|---------------|----------|---------|
| ## | 220  | 0.0150        | nan           | 0.1000   | 0.0000  |
| ## | 240  | 0.0119        | nan           | 0.1000   | 0.0000  |
| ## | 260  | 0.0094        | nan           | 0.1000   | 0.0000  |
| ## | 280  | 0.0081        | nan           | 0.1000   | -0.0000 |
| ## | 300  | 0.0065        | nan           | 0.1000   | 0.0000  |
| ## | 320  | 0.0052        | nan           | 0.1000   | 0.0000  |
| ## | 340  | 0.0043        | nan           | 0.1000   | 0.0000  |
| ## | 360  | 0.0036        | nan           | 0.1000   | 0.0000  |
| ## | 380  | 0.0029        | nan           | 0.1000   | -0.0000 |
| ## | 400  | 0.0024        | nan           | 0.1000   | 0.0000  |
| ## | 420  | 0.0019        | nan           | 0.1000   | 0.0000  |
| ## | 440  | 0.0015        | nan           | 0.1000   | 0.0000  |
| ## | 460  | 0.0013        | nan           | 0.1000   | 0.0000  |
| ## | 480  | 0.0011        | nan           | 0.1000   | -0.0000 |
| ## | 500  | 0.0009        | nan           | 0.1000   | 0.0000  |
| ## |      |               |               |          |         |
| ## | Iter | TrainDeviance | ValidDeviance | StepSize | Improve |
| ## | 1    | 1.2742        | nan           | 0.1000   | 0.0562  |
| ## | 2    | 1.1717        | nan           | 0.1000   | 0.0488  |
| ## | 3    | 1.0882        | nan           | 0.1000   | 0.0411  |
| ## | 4    | 1.0151        | nan           | 0.1000   | 0.0370  |
| ## | 5    | 0.9508        | nan           | 0.1000   | 0.0309  |
| ## | 6    | 0.8937        | nan           | 0.1000   | 0.0303  |
| ## | 7    | 0.8399        |               | 0.1000   | 0.0232  |
| ## | 8    | 0.7902        | nan           | 0.1000   | 0.0233  |
| ## | 9    | 0.7486        | nan           | 0.1000   | 0.0232  |
| ## | 10   | 0.7129        | nan           | 0.1000   | 0.0199  |
| ## |      |               | nan           |          |         |
| ## | 20   | 0.4515        | nan           | 0.1000   | 0.0088  |
|    | 40   | 0.2385        | nan           | 0.1000   | 0.0022  |
| ## | 60   | 0.1401        | nan           | 0.1000   | 0.0013  |
| ## | 80   | 0.0908        | nan           | 0.1000   | 0.0009  |
| ## | 100  | 0.0654        | nan           | 0.1000   | 0.0008  |
| ## | 120  | 0.0520        | nan           | 0.1000   | 0.0000  |
| ## | 140  | 0.0399        | nan           | 0.1000   | 0.0000  |
| ## | 160  | 0.0333        | nan           | 0.1000   | -0.0000 |
| ## | 180  | 0.0264        | nan           | 0.1000   | -0.0000 |
| ## | 200  | 0.0218        | nan           | 0.1000   | 0.0000  |
| ## | 220  | 0.0186        | nan           | 0.1000   | -0.0000 |
| ## | 240  | 0.0149        | nan           | 0.1000   | 0.0001  |
| ## | 260  | 0.0122        | nan           | 0.1000   | 0.0001  |
| ## | 280  | 0.0104        | nan           | 0.1000   | -0.0000 |
| ## | 300  | 0.0084        | nan           | 0.1000   | 0.0001  |
| ## | 320  | 0.0069        | nan           | 0.1000   | -0.0000 |
| ## | 340  | 0.0056        | nan           | 0.1000   | 0.0000  |
| ## | 360  | 0.0049        | nan           | 0.1000   | 0.0000  |
| ## | 380  | 0.0040        | nan           | 0.1000   | -0.0000 |
| ## | 400  | 0.0034        | nan           | 0.1000   | -0.0000 |
| ## | 420  | 0.0028        | nan           | 0.1000   | -0.0000 |
| ## | 440  | 0.0025        | nan           | 0.1000   | 0.0000  |
| ## | 460  | 0.0020        | nan           | 0.1000   | -0.0000 |
| ## | 480  | 0.0016        | nan           | 0.1000   | -0.0000 |
| ## | 500  | 0.0013        | nan           | 0.1000   | 0.0000  |
| ## |      |               |               |          |         |
|    |      |               |               |          |         |

```
## Iter
          TrainDeviance
                            ValidDeviance
                                             StepSize
                                                         Improve
##
                                                0.1000
                                                          0.0589
        1
                  1.2677
                                       nan
        2
##
                  1.1716
                                       nan
                                                0.1000
                                                          0.0471
##
        3
                  1.0897
                                                0.1000
                                                          0.0377
                                       nan
##
        4
                  1.0157
                                       nan
                                                0.1000
                                                          0.0370
##
        5
                  0.9494
                                                0.1000
                                                          0.0320
                                       nan
##
        6
                  0.8915
                                       nan
                                                0.1000
                                                          0.0295
##
        7
                  0.8382
                                       nan
                                                0.1000
                                                          0.0238
##
        8
                  0.7911
                                                0.1000
                                                          0.0237
                                       nan
##
        9
                  0.7496
                                       nan
                                                0.1000
                                                          0.0198
##
       10
                  0.7110
                                                0.1000
                                                          0.0175
                                       nan
##
       20
                  0.4538
                                       nan
                                                0.1000
                                                          0.0084
##
       40
                  0.2393
                                                0.1000
                                                          0.0028
                                       nan
##
                  0.1426
                                                          0.0019
       60
                                       nan
                                                0.1000
##
                                                          0.0008
       80
                  0.0923
                                                0.1000
                                       nan
##
      100
                  0.0634
                                                0.1000
                                                          0.0004
                                       nan
##
      120
                  0.0513
                                                0.1000
                                                         -0.0000
                                       nan
##
      140
                  0.0399
                                                0.1000
                                                         -0.0000
                                       nan
##
      160
                  0.0332
                                                0.1000
                                                          0.0000
                                       nan
##
      180
                  0.0259
                                       nan
                                                0.1000
                                                          0.0001
##
      200
                  0.0204
                                       nan
                                                0.1000
                                                          0.0000
##
      220
                                                0.1000
                                                         -0.0000
                  0.0170
                                       nan
##
      240
                                                         -0.0000
                  0.0141
                                                0.1000
                                       nan
##
      260
                  0.0123
                                       nan
                                                0.1000
                                                         -0.0000
##
      280
                  0.0102
                                       nan
                                                0.1000
                                                         -0.0000
##
      300
                  0.0086
                                       nan
                                                0.1000
                                                          0.0000
##
      320
                  0.0071
                                                0.1000
                                                          0.0000
                                       nan
##
      340
                  0.0060
                                                0.1000
                                                         -0.0000
                                       nan
##
      360
                  0.0051
                                       nan
                                                0.1000
                                                          0.0000
##
      380
                  0.0043
                                                0.1000
                                                         -0.0000
                                       nan
##
      400
                  0.0036
                                       nan
                                                0.1000
                                                         -0.0000
##
      420
                  0.0031
                                                0.1000
                                                         -0.0000
                                       nan
##
      440
                  0.0026
                                                0.1000
                                                          0.0000
                                       nan
##
      460
                  0.0022
                                                0.1000
                                                         -0.0000
                                       nan
##
      480
                  0.0019
                                                0.1000
                                                          0.0000
                                       nan
##
      500
                  0.0016
                                                0.1000
                                                         -0.0000
                                       nan
##
## Elapsed training time for GBM with 500 trees and shrinkage 0.1 is 98.49 seconds
## Validation error for GBM is 0.004664452Elapsed time for Training Random Forest with 500 trees is 58.056
## Validation Error rate for Random Forest with 500 trees is 0.005333333
## [[1]]
## Stochastic Gradient Boosting
##
## 1500 samples
##
  2131 predictors
##
      2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times)
## Summary of sample sizes: 1200, 1200, 1200, 1199, 1201
## Resampling results:
##
```

##

Accuracy

Kappa

```
##
     0.9953355 0.9906711
##
## Tuning parameter 'n.trees' was held constant at a value of 500
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
##
##
  [[2]]
##
##
## Call:
   randomForest(x = image_features, y = as.factor(image_labels),
                                                                         ntree = 500)
                  Type of random forest: classification
##
##
                        Number of trees: 500
## No. of variables tried at each split: 46
##
##
           OOB estimate of error rate: 0.53%
##
  Confusion matrix:
##
       0
           1 class.error
           7 0.009320905
## 0 744
       1 748 0.001335113
```

#### **GBM Cross Validation Results**

As can be seen in the above figure, a shrinkage value of 0.1 appears to be the best choice regardless of the number of trees. At a shrinkage value of 0.1, the 500 tree and 1000 tree model have nearly identical errors.

What is the best choice of parameters? Though the 1000 tree model is slightly better than the 500 tree model when shrinkage is 0.1, the 500 tree model is chosen to avoid overfitting. Additionally, the 500 tree model trains quicker, predicts quicker, and is smaller to store, so given the scenario of creating a phone app, these considerations make the 500 tree model more appropriate.

#### Random Forest OOB Results

As expected, the above results show that, as the number of trees increases, the OOB error decreases at a very high rate until it eventually flat lines.

Choose the best number of trees The best number of trees to chose is the least complex model that achieves the best error. The diagram above shows that the error from 500 onwards is fairly flat, and thus we chose to use a 500 tree model for our random forest.

#### Step 5: Make predictions on test data

# For original features

Predictions are made by the GBM model and Random Forest model on the original SIFT feature set. These predictions are on the test set, which contain 25% of the original data (i.e. 500 points).

```
tm_test=NA
if(run.test){

load(gbm_model_original_features)
load(rf_model_original_features)
```

# Accuracy vs. Shrinkage



Figure 1: Figure 1: GBM Cross Validation Results

# Validation Error for Random Forest



Figure 2: Figure 2: Random Forest OOB error results

```
test_models(tune_gbm, image_rf, original_data_test, full_feature = TRUE)
  rf_predict = read.csv(rf_model_original_predict)$x
  gbm_predict = read.csv(gbm_model_original_predict)$x
  test_labels = unlist(read.csv(labels_test))
  rf_error = sum(rf_predict != test_labels)/length(test_labels)
  gbm_error = sum(gbm_predict != test_labels)/length(test_labels)
  cat("GBM error for original features is ", gbm_error, "/n")
  cat("Random Forest error for original features is, ", rf_error, "/n")
  #load(file=paste0("../output/feature_", "zip", "_", "test", ".RData"))
  #load(file="../output/fit_train.RData")
  #tm_test <- system.time(pred_test <- test(fit_train, dat_test))</pre>
  #save(pred_test, file="../output/pred_test.RData")
}
## Elapsed prediction time for GBM with 500 trees is 1.182 seconds
## Elapsed prediction time for Random Forest with 500 trees is 1.435 seconds
## GBM error for original features is 0.264 /nRandom Forest error for original features is, 0.28 /n
```

## For test feature

Predictions are made by the GBM model and Random Forest model on the modified data set, which contains the small subset of SIFT features and additional grayscale features. These predictions are on the test set, which contain 25% of the original data (i.e. 500 points).

```
tm_test=NA
if(run.test){
  load(gbm_model_modified_features)
  load(rf_model_modified_features)
  test_models(tune_gbm, image_rf, modified_data_test, full_feature = FALSE)
  rf_predict = read.csv(rf_model_modified_predict)$x
  gbm_predict = read.csv(gbm_model_modified_predict)$x
  test_labels = unlist(read.csv(labels_test))
  rf error = sum(rf predict != test labels)/length(test labels)
  gbm_error = sum(gbm_predict != test_labels)/length(test_labels)
  cat("GBM error for modified features is ", gbm error, "/n")
  cat("Random Forest error for modified features is, ", rf_error, "/n")
  #load(file=paste0("../output/feature_", "zip", "_", "test", ".RData"))
  #load(file="../output/fit train.RData")
  #tm test <- system.time(pred test <- test(fit train, dat test))</pre>
  #save(pred_test, file="../output/pred_test.RData")
}
## Elapsed prediction time for GBM with 500 trees is 0.734 seconds
## Elapsed prediction time for Random Forest with 500 trees is 0.752 seconds
```

### Summarize Performance of various models

While prediction performance matters, so does the running times for constructing features and testing model, given the scenario limitations of the phone app. We assume training time is not an important factor as training

## GBM error for modified features is 0.004 /nRandom Forest error for modified features is, 0.002 /n

can be done offline on a powerful machine.

|               |       | Full SIFT Train | Full SIFT Test | Small SIFT Train | Small SIFT Test | Small SIFT+Grayscale Train | Small SIFT+Grayscale Test |
|---------------|-------|-----------------|----------------|------------------|-----------------|----------------------------|---------------------------|
|               | Error | 0.2519          | 0.238          | 0.2426           | 0.24            | 0.0033333                  | 0.006                     |
|               | Time  | 282 sec         | 1.22 sec       | 113 sec          | 0.52 sec        | 134 sec                    | 0.86 seconds              |
| GBM           | Size  | 19.09 MB        |                | 15.06MB          |                 | 15.9MB                     |                           |
|               | Error | 0.288           | 0.286          | 0.27             | 0.26            | 0.004666                   | 0.006                     |
|               | Time  | 356 sec         | 2.45 sec       | 165 sec          | 0.93 sec        | 75.87 sec                  | 0.72 sec                  |
| Random Forest | Size  | 2.227MB         |                | 1.663MB          |                 | .17MB                      |                           |
|               | Error | 0.89            | 0.51           | 0.288            | 0.2             | 0.19                       | 0.132                     |
|               | Time  | 134.34sec       | 15.12sec       | 67.17 sec        | 7.56 sec        | 67.94 sec                  | 7.97 sec                  |
| SVM Linear    | Size  |                 |                |                  |                 |                            |                           |

Figure 3: Figure 3: Running Time, Error, and Storage Space of Various Models

The figure above shows the results from training and testing three different feature combinations: 1) The original SIFT data 2) The smaller subset of SIFT data 3) The smaller subset of SIFT Data combined with grayscale data. First focus on the error portion of the gray collumn, which represents training error. One will notice that adding grayscale feature significantly reduced error from ~20% to ~1%. This means, despite removing RGB features, color was still a very important indicator to distinguish between poodles and fried chicken. It is noteable that Linear SVM performs significantly worse than GBM and Random Forest on the third set of features. It is also important to look at the storage size of the blue collumns. This indicates the size required to store the trained model. One will notice than Random Forest takes significantly less space to store than GBM. As such, we chose Random Forest on the third feature set as our model due to its combination of accuracy, small storage size, and quick predicting time.