ÜBUNGEN ZU "PARTIELLE DIFFERENTIALGLEICHUNGEN" WS 2020 BLATT 11 (10. 12. 2020)

EDUARD NIGSCH, CLAUDIA RAITHEL

1. Seien T > 0 und $\Omega \subseteq \mathbb{R}^n$ ein beschränktes Gebiet mit glattem Rand $\partial\Omega$, wobei $G := \Omega \times (0,T]$ und $\Gamma := (\Omega \times \{0\}) \cup (\partial\Omega \times [0,T])$. Betrachten Sie die Differentialoperatoren

$$L_1 u = -\sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(x,t) \frac{\partial u}{\partial x_i}$$

und $L_2u=L_1u+c(x,t)u$, für eine symmetrische und gleichmäßig elliptische Matrix $A=(a_{ij}(x,t))\in\mathbb{R}^{n\times n}$ mit $a_{ij}\in C(\overline{G})$, einen Vektor $b=(b_i(x,t))\in\mathbb{R}^n$ und $c\in C(\overline{G})$. Zeigen Sie:

- (i) Für $u \in C_1^2(G) \cap C(\overline{G})$ mit $u_t + L_2 u \leq 0$ in G und $u \leq 0$ auf Γ , dass $u \leq 0$ in G. **Hinweis:** Beachten Sie, dass c negative Werte annehmen darf. Welche Differentialungleichung erfüllt $v = e^{\lambda t} u$?
- (ii) Für $u, v \in C_1^2(G) \cap C(\overline{G})$ und eine stetig differenzierbare Funktion f = f(x, t, u) mit $u_t + L_1 u + f(x, t, u) \le v_t + L_1 v + f(x, t, v)$ in G und $u \le v$ auf Γ

gilt $u \leq v$ in G.

(iii) Für eine stetig differenzierbare Funktion f = f(x, t, u) gilt, dass das Anfangsrandwertproblem für die Differentialgleichung

$$\begin{cases} u_t + L_1 u + f(x, t, u) = 0 & \text{in } G, \\ u(\cdot, 0) = u_0 & \text{in } \Omega, \\ u = g & \text{auf } \partial\Omega \times (0, T), \end{cases}$$

höchstens eine klassische Lösung haben kann.

2. Betrachten Sie die skalare Reaktions-Diffusionsgleichung

$$u_t = \Delta u + \lambda u - u^3$$
 für $(x, t) \in \Omega \times (0, \infty)$,

für $u(x,t) \in \mathbb{R}$ auf einem beschränkten Gebiet $\Omega \subset \mathbb{R}^n$ mit glattem Rand $\partial \Omega$ und einem negativen Parameter λ .

- (i) Bestimmen Sie die räumlich homogenen Lösungen u=u(t) und untersuchen Sie deren asymptotisches Verhalten für $t\to\infty$.
 - Hinweis: Die räumlich homogenen Lösungen erfüllen eine gewöhnliche DGl. Bestimmen Sie die Stationärzustände dieser DGl und deren Stabilität.
- (ii) Betrachten Sie das ARWP mit der Randbedingung

$$u(x,t) = 0$$
 für $(x,t) \in \partial\Omega \times (0,\infty)$,

und beschränkten Anfangsdaten

$$m \le u(x,0) \le M$$
 für alle $x \in \Omega$.

Zeigen Sie, dass klassische Lösungen u(x,t) des ARWP und die räumlich homogenen Lösungen $\underline{u}(t)$ bzw. $\overline{u}(t)$ von dem ARWP mit Anfangsbedingungen $\underline{u}(0) = \min\{0, m\}$ bzw. $\overline{u}(0) = \max\{0, M\}$ die Ungleichungen

$$\underline{u}(t) \le u(x,t) \le \overline{u}(t)$$
 für $x \in \Omega, t \ge 0$,

erfülllen.

- (iii) Was können Sie aus diesen Ungleichungen für das zeitlich asymptotische Verhalten von klassischen Lösungen u(x,t) des ARWP schließen?
- 3. Sei u eine klassische Lösung der Telegraphengleichung

$$\begin{cases} u_{tt} + du_t - \Delta u = 0 & \text{in } \Omega, t > 0, \\ u = 0 & \text{auf } \partial \Omega, t > 0, \\ u(\cdot, 0) = u_0 & \text{in } \Omega, \\ u_t(\cdot, 0) = u_1 & \text{in } \Omega, \end{cases}$$

wobei d > 0 konstant, $u_0 \in H_0^1(\Omega)$, $u_1 \in L^2(\Omega)$ und $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit glattem Rand ist.

- (i) Zeigen Sie durch eine formale Rechnung, dass die Energie $\int_{\Omega} (u_t^2 + |\nabla u|^2) dx$ uniform beschränkt in $t \in (0, \infty)$ ist.
- (ii) Bestimmen Sie formal eine Lösung bzgl. eines geeigneten ONS.
- (iii) Zeigen Sie, dass $||u_t||_{L^2(\Omega)}$ exponentiell schnell für $t \to \infty$ gegen 0 konvergiert, falls $u_1 = 0$. Gilt diese Aussage auch für d = 0?
- **4.** Betrachten Sie die lineare Wellengleichung in $\mathbb{R}^3 \times [0, \infty)$

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{für } (x,t) \in \mathbb{R}^3 \times [0,\infty), \\ u(x,0) = u_0(x) & \text{für } x \in \mathbb{R}^3, \\ u_t(x,0) = u_1(x) & \text{für } x \in \mathbb{R}^3. \end{cases}$$

Leiten Sie die Kirchhoffsche Formel

$$u(x,t) = \frac{1}{4\pi t} \int_{\partial B(x,t)} u_1(y) ds(y) + \frac{\partial}{\partial t} \left(\frac{1}{4\pi t} \int_{\partial B(x,t)} u_0(y) ds(y) \right)$$

für die Lösung der Wellengleichung her, wobei B(x,t) die Kugel mit Mittelpunkt x und Radius t ist.

Hinweis: Betrachten Sie für eine Lösung $u \in C^2(\mathbb{R}^3 \times [0, \infty))$ die Mittelwerte

$$\begin{split} U(x,r,t) := & \frac{1}{4\pi r^2} \int_{\partial B(x,r)} u(y,t) ds(y), \\ G(x,r) := & \frac{1}{4\pi r^2} \int_{\partial B(x,r)} u_0(y) ds(y), \\ H(x,r) := & \frac{1}{4\pi r^2} \int_{\partial B(x,r)} u_1(y) ds(y). \end{split}$$

Zeigen Sie, dass für $x\in\mathbb{R}^3$ der Mittelwert $U\in C^2([0,\infty)\times[0,\infty))$ die Euler-Poisson-Darboux-Gleichung

$$\begin{cases} U_{tt} - U_{rr} - \frac{2}{r}U_r = 0 & \text{für } (r,t) \in (0,\infty) \times (0,\infty), \\ U(r,0) = G & \text{für } r \in (0,\infty), \\ U_t(r,0) = H & \text{für } r \in (0,\infty), \end{cases}$$

erfüllt und $\tilde{U}:=rU$ die Differentialgleichung

$$\begin{cases} \tilde{U}_{tt} - \tilde{U}_{rr} = 0 & \text{für } (r,t) \in (0,\infty) \times (0,\infty) \,, \\ \tilde{U}(r,0) = rG & \text{für } r \in (0,\infty) \,, \\ \tilde{U}_t(r,0) = rH & \text{für } r \in (0,\infty) \,, \\ \tilde{U}(0,t) = 0 & \text{für } t \in (0,\infty) \,. \end{cases}$$