MISC. CATEGORIES AND INTRODUCTION TO UNIVERSALS

Lecture 3

1 Introduction

Recall the definition of a natural transformation.

Definition 1.1: Natural Transformation

Let **B**, **C** be categories, and let $\mathcal{F}, \mathcal{G}: \mathbf{C} \to \mathbf{D}$. Let η be called a *natural transformation* if

- i) For all $c \in \mathbb{C}$, η assigns a morphism $\eta_c : \mathcal{F}_o(c) \to \mathcal{G}_o(c)$ (known as the *component* of η at c), such that
- ii) $\forall f: c \to c', \, \eta_{c'} \circ \mathcal{F}_a(f) = \mathcal{G}_a(f) \circ \eta_{c'}$

when we first introduced natural transformations, we hinted that natural transformations can be thought of as morphisms on a category with functors as the objects. We return to this topic now, seeking a more formal understanding.

Definition 1.2: Bullet composition

Let \mathbf{C}, \mathbf{B} be categories, and let $\mathcal{R}, \mathcal{S}, \mathcal{T}, \ldots : \mathbf{C} \to \mathbf{B}$. Then let $\sigma : \mathcal{R} \xrightarrow{\bullet} \mathcal{S}$ and $\tau : \mathcal{S} \xrightarrow{\bullet} \mathcal{T}$ be natural transformations. Then define $\tau \cdot \sigma : \mathcal{R} \xrightarrow{\bullet} \mathcal{T}$ such that $\forall c \in \mathbf{C}$, we have

$$(\tau \cdot \sigma)_c = \tau_c \circ \sigma_c.$$

Then the composite $\tau \cdot \sigma$ is natural.

• is associative, and for each \mathcal{T} , has an identity transformation, namely $1_{\mathcal{T}}: \mathcal{T} \to \mathcal{T}$, with $c \mapsto 1_{\mathcal{T}c}$. Thus, the functors themselves carry the structure of a category.

Definition 1.3: Functor Category

Let \mathbf{B}, \mathbf{C} be categories. Then we construct a functor category $\mathbf{B}^{\mathbf{C}} = \mathrm{Funct}(\mathbf{C}, \mathbf{B})$ with objects

$$ob(\mathbf{B}^{\mathbf{C}}) = \{T : \mathbf{C} \to \mathbf{B}\}\$$

and morphisms

$$\hom(\mathbf{B}^{\mathbf{C}}) = \{ \tau \mid \tau : \mathcal{S} \xrightarrow{\bullet} \mathcal{T}, \ \tau \text{ is natural} \}.$$

with composition defined by •. We'll consider a few examples:

(a) Let X a finite set, and **B** a category. Then \mathbf{B}^X is the set of all functions from X to **B**.

One might wonder whether we can find another definition of composition that

2 Comma Categories

Comma categories will play a large role in studying Adjoint functors in the future, so we'll take some time here to discuss them in detail. Essentially, Comma categories serve as a way of connecting two functors that share the same codomain category, by constructing the category of morphisms between their images.

Definition 2.1: Comma Category

Let \mathbf{C}, D, E be categories, and let \mathcal{F}, G be functors with $\mathcal{F}: D \to C$, and $\mathcal{G}: E \to C$. Then the *comma category*, denoted by

$$(\mathcal{F} \downarrow \mathcal{G})$$
 or $(\mathcal{F}, \mathcal{G})$

is defined as follows:

$$ob((\mathcal{F} \downarrow \mathcal{G})) = \{ \langle d, e, f \rangle \mid d \in ob(\mathbf{D}), e \in ob(\mathbf{E}), f : \mathcal{F}_o(d) \to \mathcal{G}_o(e) \},$$

which can be expressed diagramatically by

Figure 1: Objects of $(\mathcal{F} \downarrow \mathcal{G})$

and

$$hom((\mathcal{F} \downarrow \mathcal{G})) = \{ \langle g, h \rangle \mid g : d \to d', h : e \to e' \}$$

such that

$$\mathcal{F}_{o}(d) \xrightarrow{\mathcal{F}_{a}(g)} \mathcal{F}_{o}(d')$$

$$\downarrow f \qquad \qquad \downarrow f'$$

$$\mathcal{G}_{o}(e) \xrightarrow{\mathcal{G}_{a}(h)} \mathcal{G}_{o}(e')$$

Figure 2: Morphisms of $(\mathcal{F} \downarrow \mathcal{G})$

commutes.

Essentially, we're