# **Artificial Intelligence**

3. 谓词逻辑与机器证明

罗晓鹏

xpluo@nju.edu.cn

工管 · 南京大学 · 2022 秋

#### **Outline**

- 1. 量词和谓词
- 2. 一阶语言  $\mathscr L$  和一阶系统  $K_{\mathscr L}$
- $3. K_{\mathscr{L}}$  的性质
- 4. 一阶逻辑的归结推理
- 5. 知识工程与专家系统
- 6. 形式系统的扩充
- 7. 不完备性定理简介
- 8. 讨论 (选)

量词和谓词

# 量词和谓词

- 直言三段论对命题的解析: 拆句成词
- (存在/任意)主词(是/不是)宾词
- 命题语言无法表达"存在"和"任意"的含义
- 拆解的符号化:
  - ▷ 命题: 断言个体具有某种属性 (张三是个 badboy)
  - ▷ 主词: 命题所断言的个体, 用小写字母表示
  - ▷ 谓词: 个体所具有的属性, 用大写字母表示
  - $\triangleright B(x)$ , 其中 x 代表<u>张三</u>, B 代表是 badboy
  - $\triangleright$  李四不是:  $\neg B(y)$
- 全称量词:  $(\forall x)(A(x) \to B(x))$ , All
- 存在量词:  $(\exists x)(P(x) \land Q(x))$ , Exist

# 一阶语言 $\mathscr L$ 和一阶系统 $K_\mathscr L$

# 一阶语言 $\mathscr L$ 的符号

#### 定义3.1 (一阶语言 $\mathcal{L}$ 的符号)

- 常元: a<sub>1</sub>, a<sub>2</sub>, · · ·
- 变元: x<sub>1</sub>, x<sub>2</sub>, · · ·
- 谓词:  $A_1, A_2, \cdots$
- <u>函词</u>:  $f_1, f_2, \cdots$
- 连接符: ¬, →
- 量词: ∀
- 括号: (,),…

划线部分不是必须的.

# 一阶语言 $\mathscr L$ 的项和公式

## 定义3.2 (一阶语言 $\mathscr{L}$ 的项)

 $\mathscr{L}$  中的一个项被定义为:

- (i) 变元和常元是项.
- (ii) 若 f 是函词而  $t_1, \dots, t_n$  是项,则  $f(t_1, \dots, t_n)$  也是项.
- (iii) 有且仅有以上两种项.

## 定义3.3 (一阶语言 $\mathcal{L}$ 的公式)

 $\mathcal{L}$  中的一个公式被定义为:

- (i) 若 A 是谓词而  $t_1, \dots, t_n$  是项,则  $A(t_1, \dots, t_n)$  是公式.
- (ii) 若  $\mathscr{A}$  ,  $\mathscr{B}$  是公式,则  $\neg \mathscr{A}$  ,  $\mathscr{A} \to \mathscr{B}$  和  $(\forall x) \mathscr{A}$  也是公式.
- (iii) 有且仅有以上两种公式.

# 逻辑符号的最小列表

- 逻辑符号: ¬, ∨, ∧, →, ↔, ∀,∃
- 最小列表: ¬, →,∀

$$\triangleright (\exists x) \mathscr{A}$$
 是  $\neg((\forall x)(\neg \mathscr{A}))$  的缩写

$$\triangleright \mathscr{A} \vee \mathscr{B}$$
 是  $\neg \mathscr{A} \rightarrow \mathscr{B}$  的缩写

$$\triangleright$$
  $\mathscr{A} \land \mathscr{B}$  是  $\neg(\mathscr{A} \rightarrow (\neg \mathscr{B}))$  的缩写

# 公理化谓词逻辑系统 $K_{\mathscr{L}}$

## 定义3.4 (一阶系统)

给定一阶语言  $\mathscr{L}$ , 系统  $K_{\mathscr{L}}$  由以下公理和规则构成:

1. 公理:对 $\mathscr{L}$ 中任意的公式 $\mathscr{A},\mathscr{B},\mathscr{C}$ ,

 $K1: \mathscr{A} \to (\mathscr{B} \to \mathscr{A}).$ 

 $K2: (\mathscr{A} \to (\mathscr{B} \to \mathscr{C})) \to ((\mathscr{A} \to \mathscr{B}) \to (\mathscr{A} \to \mathscr{C})).$ 

 $K3: (\neg \mathscr{B} \to \neg \mathscr{A}) \to (\mathscr{A} \to \mathscr{B}).$ 

 $K4: (\forall x) \mathscr{A} \to \mathscr{A}.$ 

 $K5: (\forall x)(\mathscr{A} \to \mathscr{B}(x)) \to (\mathscr{A} \to (\forall x)\mathscr{B}(x)).$ 

 $K6: (\forall x) \mathscr{A}(x) \to \mathscr{A}(t), t 是 \mathscr{L}$  中的一个项.

- 2. 规则:对任意的公式 A, B,
  - (1) 分离规则: 由  $\mathscr{A}$  和  $\mathscr{A} \to \mathscr{B}$  可以推出  $\mathscr{B}$ .
  - (2) 概括规则:由  $\mathscr A$  可以推出  $(\forall x)\mathscr A(x)$ , x是任意变元.

# $K_{\mathscr{L}}$ 的性质

# $K_{\mathscr{L}}$ 的性质

#### 命题3.5

- (a) K 的每个定理都是逻辑有效的.
- (b) 不存在 K 中的公式  $\mathscr{A}$  使得  $\mathscr{A}$  和  $\neg \mathscr{A}$  都是 L 中的定理.
- (c) 如果  $\mathscr{A}$  是  $\mathscr{L}$  中的一个公式且是重言式, 那么  $\vdash_K \mathscr{A}$ .
- (c') 如果  $\mathscr{A}$  是  $\mathscr{L}$  中一个逻辑有效的公式,那么  $\vdash_K \mathscr{A}$ .
- (d) 不存在一种可行的方法判定 K 中的给定公式是否为定理.
- (e) 若给定公式是 K 中的定理,则存在一种可行的判定方法.

#### 注

- 1. 证明略(不做要求).
- 2. (d)和(e)分别称为不可判定性以及半可判定性.

一阶逻辑的归结推理

#### 一阶逻辑的归结概述

- 一阶逻辑是命题逻辑的拓展
- 1930 年的 Herbrand 定理:
  - ▷ 保证了一阶逻辑可转换到命题逻辑
  - ▷ 给出了一阶逻辑的半可判定算法
- 1936 年, Turing 和 Church 证明了一阶逻辑的不可判定性
- 1965 年, Robinson 针对一阶逻辑提出了归结原理, 有效地 提高了机器定理证明的实际效率

#### 归结论证

#### 例3.6

Fido 是条狗。狗都是动物。动物都会死。

求证: Fido 会死

将前提转换为<u>子句</u>形式
dog(Fido)

$$\forall X (\operatorname{dog}(X) \to \operatorname{animal}(X)) \to \neg \operatorname{dog}(X) \vee \operatorname{animal}(X)$$
$$\forall X (\operatorname{animal}(X) \to \operatorname{die}(X)) \to \neg \operatorname{animal}(X) \vee \operatorname{die}(X)$$

● 将目标的否定式子句形式加入前提 ¬die(Fido)

# 知识表示与推理

• 归结论证:



• 归结树

# 基于搜索的归结论证:例子

#### 例3.7

不贫穷而且聪明的人是快乐的。能读书的人是聪明的。 John 能读书且不贫穷。快乐的人过着激动人心的生活。 求证: 有人过着激动人心的生活。

#### • 一阶谓词表述

- $ightharpoonup \forall X(\neg poor(X) \land smart(X) \rightarrow happy(X))$
- $ightharpoonup \forall Y(\operatorname{read}(Y) \to \operatorname{smart}(Y))$
- $ightharpoonup \operatorname{read}(john) \wedge \neg \operatorname{poor}(john)$
- $\triangleright \ \forall Z(\text{happy}(Z) \rightarrow \text{exciting}(Z))$
- $\triangleright \neg \exists W(\text{exciting}(W))$

# 基于搜索的归结论证: 转换为子句形式

- $\bullet \ \forall X(\neg \mathrm{poor}(X) \wedge \mathrm{smart}(X) \to \mathrm{happy}(X)) \\ \leftrightarrow \ \mathrm{poor}(X) \vee \neg \mathrm{smart}(X) \vee \mathrm{happy}(X))$
- $\forall Y (\operatorname{read}(Y) \to \operatorname{smart}(Y))$  $\leftrightarrow \neg \operatorname{read}(Y) \vee \operatorname{smart}(Y))$
- read(john)
- $\neg poor(john)$
- $\forall Z(\text{happy}(Z) \to \text{exciting}(Z))$  $\leftrightarrow \neg \text{happy}(Z) \lor \text{exciting}(Z)$
- $\neg \exists W (\text{exciting}(W))$ 
  - $\leftrightarrow \neg \text{exciting}(W)$

# 基于搜索的归结论证:搜索1

# 基于搜索的归结论证:搜索2



# 基于搜索的归结论证:搜索3



# 知识工程与专家系统

# 知识工程与专家系统

- 专家系统:
  - ▷ 知识表示
  - ▷ 问题求解
- Prolog 与日本第五代计算机:
  - ▷ Prolog: 一阶谓词逻辑、归结、搜索
  - ▷ 日本第五代计算机
- 硬件与系统的局限性:
  - ▷ 硬件的飞速发展与更新
  - ▷ 知识表示存在统一框架?
  - ▷ 日本第五代计算机的失败

# 形式系统的扩充

# 形式系统的扩充

- 演绎系统:
  - ▷ 固定形式语言 ℒ
  - $\triangleright$  在该语言的基础上定义一个形式演绎系统  $K_{\mathscr{L}}$
- 数学系统:
  - $\triangleright$  针对具体背景将  $\mathscr{L}$  扩充为一个特有语言  $\mathscr{L}'$
  - $\triangleright$  对  $K_{\mathscr{L}'}$  添加规则和公理,形成一个扩充系统  $K'_{\mathscr{L}'}$
- 针对某一门学科, 其理论可分为三个方面:
  - ▷ 形式逻辑
  - ▷ 直观背景
  - ▷ 应用



# 哥德尔不完备性定理

- 1898年,希尔伯特的《几何基础》
  - ▷ 相比与《几何原本》
  - ▷ 独立性
  - ▷ 相容性 (一致性、无矛盾性)
- 1922 年,希尔伯特纲领
  - ▷ 完备性: 系统内所有能表达的命题均可判定真假
- 1931 年, 哥德尔不完备性定理
  - ▷ 蕴含皮亚诺算术公理的形式系统,若相容,则不完备
  - ▷ 过度解读 (认知极限、法律体系、测不准原理)
- 集合论公理系统的一致性仍然未知

讨论 (选)

# 讨论 (选)

- 逻辑系统的基础性
- 元语言与元理论
- 逻辑是智能的高等形态, 但为何实现简单?
- 逻辑推理与机器学习的结合

# **END**