Congratulations! You passed!

Grade received 100% **To pass** 80% or higher

Sequence models & Attention mechanism

Latest Submission Grade 100%

1. Consider using this encoder-decoder model for machine translation.

1/1 point

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- True
- False
- **⊘** Correct

2. In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

1 / 1 point

- Beam search will run more slowly.
 - **⊘** Correct
- Beam search will use up more memory.
- **⊘** Correct
- Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x)$)
- **⊘** Correct
- Beam search will converge after fewer steps.

3. In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

1 / 1 point

- True
- O False
- **⊘** Correct

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

1 / 1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript \hat{y} = "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript y^* = "I'm building an AI system in Silicon Valley."

According to your model,

 $P(\hat{y} \mid x) = 1.09 * 10^{-7}$

 $P(y^* \mid x) = 7.21 * 10^-8$

Would you expect increasing the beam width B to help correct this example?

- No, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- No, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
 - **⊘** Correct

5.

1 / 1 point

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* + x) > P(\hat{y} + x)$. This suggest you should focus your attention on improving the search algorithm.

True.

False.

⊘ Correct

6. Consider the attention model for machine translation.

1 / 1 point

Further, here is the formula for $lpha^{<\mathit{t,t'}>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_{\chi}} \exp(e^{< t, t'>})}$$

Which of the following statements about $lpha^{<\!t,t'>}$ are true? Check all that apply.

We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

⊘ Correct

We expect $\alpha^{<t,t'>}$ to be generally larger for values of $\alpha^{<t>}$ that are highly relevant to the value the network should output for $y^{<t'>}$. (Note the indices in the superscripts.)

 $\sum_{t} \alpha^{< t, t'>} = 1 \text{ (Note the summation is over } t.)$

 $\sum_{t'} \alpha^{< t, t'>} = 1$ (Note the summation is over t'.)

⊘ Correct

7. The network learns where to "pay attention" by learning the values $e^{\langle t,t'\rangle}$, which are computed using a small neural network:

1 / 1 point

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

True

False

⊘ Correct

8. Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

1 / 1 point

igcup The input sequence length $T_{\scriptscriptstyle X}$ is small.

⊘ Correct

9. Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

1 / 1 point

__c_oo_o_kk___b_ooooo__oo__kkk

Cokbok

cookbook

cook book

coookkbooooookkk

9/14/21, 11:35 AM

⊘ Correct

10. In trigger word detection, $x^{< t>}$	10.	In trigger w	ord detection,	$x^{< t>}$	is:
--	-----	--------------	----------------	------------	-----

1 / 1 point

- lacktriangle Features of the audio (such as spectrogram features) at time t.
- The *t*-th input word, represented as either a one-hot vector or a word embedding.
- \bigcirc Whether the trigger word is being said at time t.
- \bigcirc Whether someone has just finished saying the trigger word at time t.
 - **⊘** Correct