Manipulação de Dados

Nicholas A. C. Marino

nac.marino@gmail.com

github.com/nacmarino/compartilhaR

Elementos da Aula

- 1. A natureza dos dados
- 2. Métodos orientados ao conteúdo das colunas
- 3. Métodos orientados à tabela de dados
- 4. De largo para longo, e de volta outra vez

Um dado pode estar em duas diferentes 'fases de maturidade':

- 1. **Dados brutos** (*raw data*): são os dados em sua forma mais bruta, recém tabelados, com todos os erros de digitação, de unidade, e etc...
- 2. **Dados limpos (***tidy data***):** são os dados em uma forma limpa. Aqui, os dados brutos foram checados e corrigidos, erros de digitação desfeitos, unidades transformadas e etc. Todo e qualquer nova variável que pode ser gerada com os dados brutos está aqui.

Além disso, mesmo os dados limpos podem não estar prontos para o uso ou, ainda, existirem dados derivados que serão o enfoque do seu trabalho.

- 1. Dados para análise: normalmente você não precisa de todos os dados que você limpou e/ou alguns dos dados úteis para a análise podem estar em outras tabelas. Assim, ao invés de começar toda a análise de dados removendo àquelas informações que não são úteis e buscando àquelas outras que são, você também pode criar recortes de dados que serão específicos para certas tarefas.
- 2. **Dados dos resultados das análises:** após rodar uma análise você pode exportar os resultados para fora do R. Ao fazer isso, estes dados retornam para a etapa número 1 você precisa ajeitar os nomes das colunas, casas decimais,...

Outro ponto importante é que algumas análises exigem que os dados sejam apresentados de uma forma específica, o que também leva à duas formas de apresentar um mesmo dado.

		La	rgo		Longo			
					s	ite	especie	abundancia
	site	sp1	sp2	sp3	si	ite1	sp1	20
	site1	20	10	0	si	ite1	sp2	10
Abundância	site2	5	0	10	si	ite2	sp1	5
	site3	0	15	0	si	ite2	sp3	10
					si	ite3	sp2	15
								I
							site	especie
	site	sp1	sp2	sp3			site1	sp1
P/A	site1	1	1	0			site1	sp2
r/A	site2	1	0	1			site2	sp1
	site3	0	1	0			site2	sp3
							site3	sp2
	I				I			

- · Uma parte comum e bastante importante em todas essas fases é a manipulação, limpeza e processamento de dados (*tidying data*).
- É aqui que vamos preparar os dados para o uso em uma análise, para a criação de uma tabela com os resultados que encontramos e, também, para a confecção de figuras.
- · Mas também é onde:
 - Você normalmente faz tudo de forma manual;
 - Você não mantém registro escrito do que está fazendo;
 - Você vai criar múltiplas versões de uma mesma planilha, pois não sabe se as coisas que você está manipulando, mexendo e editando fazem sentido ou estão corretas;
 - Você perde tempo da forma mais repetitiva possível a não ser que você use uma linguagem de programação! =]

Objetivos da manipulação, limpeza e processamento de dados

- 1. Criar e/ou eliminar novas variáveis (normalmente, nas colunas);
- 2. Substituir valores que foram digitados errados;
- 3. Substituir palavras e expressões que estejam má digitadas ou onde hajam nomes melhores;
- 4. Modificar os nomes das variáveis (normalmente, as colunas);
- 5. Modificar os nomes dos níveis das variáveis (normalmente, os valores das linhas de uma determinada coluna);
- 6. Separar a informação de uma coluna em duas ou mais;
- 7. Rearranjar a ordem das colunas;
- 8. Selecionar as colunas que vão compor os dados que serão analisados;
- 9. Passar os dados de um formato longo para um formato largo (e vice-versa);
- 10. Juntar dados que estão separados em planilhas diferentes;
- 11. Remover NAS;
- 12. Selecionar sub-conjuntos dos dados para destinações diferentes (e.g.,

tidyverse

- Existem muitas funções na base do R que podem ser utilizadas para a manipulação, limpeza e processamento de dados.
- No entanto, muitos dos pacotes mais úteis para estas tarefas estão organizados dentro de um pacote 'guarda-chuva', chamado tidyverse.

```
library(tidyverse)
tidyverse packages()
    [1] "broom"
                       "cli"
                                      "crayon"
                                                    "dplyr"
                                                                   "dbplyr"
    [6] "forcats"
                       "ggplot2"
                                      "haven"
                                                     "hms"
                                                                   "httr"
## [11] "jsonlite"
                       "lubridate"
                                      "magrittr"
                                                    "modelr"
                                                                   "purrr"
                       "readxl\n(>=" "reprex"
                                                                   "rstudioapi"
## [16] "readr"
                                                    "rlang"
## [21] "rvest"
                       "stringr"
                                      "tibble"
                                                    "tidyr"
                                                                   "xm12"
## [26] "tidyverse"
```

- Vamos utilizar todas as seis tabelas de dados abaixo nas tarefas e exercícios a seguir.
- 1. Importe para o R as seguintes tabelas:
 - dados dos projetos.csv, e atribua este arquivo ao objeto projetos;
 - publicacoes.xls, e atribua este arquivo ao objeto publicacoes;
 - revistas.xlsx, e atribua este arquivo ao objeto revistas.
- 2. Também, carregue dois conjuntos de dados que estão disponíveis dentro de pacotes:
 - varechem e varespec, disponíveis no pacote vegan;
 - · gapminder disponível no pacote gapminder.

Métodos orientados ao conteúdo das colunas

- É muito comum que cometamos erros de digitação ao preenchermos uma tabela e uma vez que estes erros sejam detectados, normalmente consertamos eles manualmente na tabela de dados brutos.
- No entanto, é bastante preferível que estes consertos sejam realizados através da própria linguagem de programação, a fim de que toda e qualquer alteração e editoração que você tenha feito a um conjunto de dados fique registrado e você não se esqueça no futuro.
- Outra vantagem disso é que qualquer alteração futura que precise ser feita será muito mais fácil, uma vez que apenas será necessário mudar uma única linha de comando - ao invés de repetir manualmente todas as etapas da manipulação, limpeza e processamento de dados.
- · Este processo também é útil quando queremos criar novas variáveis baseado nos valores daquelas que já existem.

Substituição de valores

· Duas funções bastante úteis para modificar valores são sub e gsub.

```
sub(pattern = "é", replacement = "e", x = "América do Norte")

## [1] "America do Norte"

sub(pattern = "E", replacement = "e", x = "América do Norte")

## [1] "America do Norte"

## [1] "America do Norte"
```

Substituição de valores

• Estas funções também podem ser utilizadas para remover espaços e outros caracteres (como •, •, •, e etc).

```
gsub(pattern = " ", replacement = " ", x = "Rio de Janeiro")

## [1] "Rio de Janeiro"

sub(pattern = "/", replacement = " ", x = "PPGE/UFRJ")

## [1] "PPGE UFRJ"

sub(pattern = "-", replacement = " ", x = c("Pé-de-moleque", "PPGE-UFRJ"))

## [1] "Pé de-moleque" "PPGE UFRJ"
```

Substituição de valores

- · Também podemos empregar estas funções em vetores e colunas.
- No exemplo abaixo, utilizamos a função unique para termos uma noção de quais são os valores únicos que aparecem dentro da coluna Chamada do objeto projetos - você consegue encontrar algum erro em algum dos elementos?

```
unique(x = projetos$Chamada)
## [1] "Universal - Faixa A"
                                           "BJT"
## [3] "Universal - Faixa C"
                                           "Incubadoras"
## [5] "PPBio - Rede Mata Atletica"
                                           "Universal - Faixa B"
## [7] "PVE"
                                           "Linha 1 - Faixa - B"
   [9] "PPBio - Rede Amazonia Ocidental" "Linha 1: Universidades"
## [11] "Pesca"
                                           "PELD"
## [13] "PPBio - Rede Cerrado"
                                           "PPBio - Rede Campos Sulinos"
## [15] "Alemanha DFG"
                                           "GEOMA - Rede GEOMA"
## [17] "Ilhas Oceanicas"
                                           "PV"
## [19] "Argentina - CNPq/CONICET"
                                           "Belgica"
## [21] "CsF"
```

- 1. Substitua o erro de digitação que você encontrou pela grafia certa da palavra.
- 2. Avalie se esta substiuição corrigiu esta entrada na coluna **Chamada** do objeto **projetos**.
- 3. Caso não tenha sido corrigida, o que você acha que aconteceu? Como podemos realizar essa correção?

Edição de valores em um vetor

· Valores e nomes de variáveis com espaço, muito longos, com caracteres especiais, em caixa alta e etc, podem causar erros durante a indexação e operação de algumas funções. Portanto, é sempre desejável que simplifiquemos estes nomes e tornemos eles consistentes, para evitar possíveis dores de cabeça. Para isso, quatro funções podem ser bastante úteis: tolower, toupper, make.names e abbreviate.

```
## vamos criar um vetor com as 10 primeiras publicacoes que aparecem na coluna Publicacao do objeto revistas
exemplo

## [1] "Acta Amazonica"

## [2] "Acta Biologica Colombiana"

## [3] "Acta Botanica Brasilica"

## [4] "Acta Limnologica Brasiliensia"

## [6] "Acta Scientiarum - Biological Sciences"

## [7] "Acta Tropica"

## [8] "African Journal of Agricultural Research"
```

Edição de valores em um vetor

```
# tolower faz com que todos os caracteres fiquem em caixa baixa
tolower(exemplo)
# toupper faz com que todos os caracteres fiquem em caixa alta
toupper(exemplo)
# make.names faz com que os nomes das colunas mudem para um formato mais amigável a um computador
make.names(exemplo)
# e, se você achar que os nomes estão muito longos, podemos usar a função abbreviate
abbreviate(exemplo)
```

· Observe que os nomes das colunas do objeto **projetos** não são de todo consistentes. Você conseguiria modificar o nome dessas colunas, fazendo com que todos os caracteres ficassem em caixa baixa? Dica: utilize names(projetos) ou colnames(projetos) para visualizar o nome das colunas desse data.frame.

Combinando vetores

 Você também pode unir informações presentes em dois ou mais vetores (ou colunas) em um único elemento, utilizando as funções paste e paste0. Como exemplo, vamos unir a sigla da Unidade da Federação com o nome da Cidade que estão no objeto projetos.

```
## compare as formas abaixo

paste(projetos$cidade, projetos$uf)

paste(projetos$cidade, projetos$uf, sep = "/")

paste0(projetos$cidade, projetos$uf)

paste0(projetos$cidade, "/", projetos$uf)
```

· De que forma podemos criar o data.frame abaixo? (apenas as primeiras linhas são apresentadas aqui por conta do tamanho)

##		id_coordenador	localidade
##	1	1	Rio Grande/RS
##	2	2	Sao Carlos/SP
##	3	3	Curitiba/PR
##	4	4	Recife/PE
##	5	5	Joao Pessoa/PB
##	6	6	Manaus/AM
##	7	7	Manaus/AM
##	8	8	Goiania/GO
##	9	9	Rio de Janeiro/RJ
##	10	10	Rio de Janeiro/RJ
##	11	11	Salvador/BA
##	12	12	Belo Horizonte/MG

Edição de vetores baseado em lógica

- Finalmente, também podemos editar e alterar os valores de uma coluna baseado em testes e argumentos lógicos.
- · Uma função importante neste sentido é o ifelse.

· Adicione uma coluna ao objeto **revistas** que especifique se a revista em questão é nacional ou internacional.

Edição de vetores baseado em lógica

· Mas o que acontece se tivéssemos três categorias diferentes de sexo?

Edição de vetores baseado em lógica

 Cada elemento de um vetor que não passa no teste do ifelse recebe o valor que determinamos. Portanto, quando temos um vetor com múltiplos valores e queremos substituir apenas um deles devemos fazer essa operação em cadeia.

```
# se o resultado for verdadeiro substitua por 'masculino', caso contrario, substitua pelo valor de sexo naquela posicao
(sexo <- ifelse(test = sexo == "M", yes = "masculino", no = sexo))

# se o resultado for verdadeiro substitua por 'feminino', caso contrario, substitua pelo valor de sexo naquela posicao
(sexo <- ifelse(test = sexo == "F", yes = "feminino", no = sexo))

# se o resultado for verdadeiro substitua por 'feminino', caso contrario, substitua pelo valor de sexo naquela posicao
(sexo <- ifelse(test = sexo == "ND", yes = "não determinado", no = sexo))</pre>
```

 Você consegue realizar a mesma operação que acabamos demonstrar sem criar um objeto a cada etapa?

Editando todo o conteúdo das colunas de uma tabela

 O ifelse também pode ser aplicado à toda a tabela de dados, o que pode nos ajudar a transformar uma matriz de abundância em uma de presenca/ausência.

```
ifelse(test = varespec > 0, yes = 1, no = 0)
```

##		Callvulg	Empenigr	Rhodtome	Vaccmyrt	Vaccviti	Pinusylv	Descflex	Betupube
##	18	1	1	0	0	1	1	0	0
##	15	1	1	0	1	1	1	0	0
##	24	1	1	0	0	1	1	0	0
##	27	0	1	1	1	1	0	1	0
##	23	0	1	0	0	1	1	0	0
##	19	0	1	0	1	1	1	1	0
##	22	1	1	1	1	1	1	1	1
##	16	1	1	0	1	1	1	0	0
##	28	0	1	1	1	1	1	1	0
##	13	1	1	1	1	1	1	0	0

- Uma tarefa muito comum para quem trabalha com ecologia de comunidades é quantificar a abundância total e a riqueza de espécies em uma dada comunidade. Nesse sentido, você poderia criar um data.frame com estas duas quantidades para cada comunidade apresentada no conjunto de dados varespec?
 - Dica: veja o arquivo de ajuda das funções colsums e rowsums.

Métodos orientados à tabela de dados {#anchor3}

- As funções apresentadas anteriormente são úteis para realizar algumas manipulações básicas e mais comuns do conteúdo de um tabela. No entanto, existe muitas outras coisas que precisamos fazer durante a manipulação, limpeza e processamento de dados, onde muitas delas são feitas de forma complexa ou pouco intuitiva através das funções da base do R.
- · Algumas dessas tarefas são:
 - Renomear o nome de uma coluna específica (na base, indexação);
 - Ordenar uma tabela de acordo com uma ou mais colunas (na base, indexação + sort e/ou order);
 - Selecionar algumas colunas específicas ou mudar a ordem delas (na base, indexação ou escrever o nome de cada uma entre aspas);
 - Filtrar uma tabela de dados de acordo com critérios lógicos (na base, indexação por lógica ou subset);
 - Adicionar uma nova coluna a um conjunto de dados (na base, indexação);
 - Realizar uma operação para cada nível de uma categoria que defina as observações (na base, loop ou funções loop (by, apply, lapply,...));
 - Separar as informações de uma coluna em múltiplas colunas (na base, strsplit + unlist + rbind.data.frame);
 - Transformar uma tabela de dados do formato largo para o formato longo e vice-versa.

Métodos orientados à tabela de dados

- Note que todas essas ações podem ser definidas por verbos, que foram implementas através dos pacotes dplyr e tidyr no tidyverse.
 - rename: renomeia as colunas da tabela;
 - arrange: ordena as linhas de uma tabela de acordo com uma condição;
 - select: seleciona uma ou mais colunas de acordo com seu nome ou com um padrão;
 - filter: filtra as linhas de acordo com uma ou mais condições;
 - mutate: adiciona novas variáveis à tabela;
 - group_by: agrupa observações antes de realizar opereações;
 - summarise: sumariza múltiplos valores para um único;
 - separate: separa uma coluna em múltiplas colunas;
 - spread: transforma uma tabela do formato longo para o formato largo;
 - gather: transforma uma tabela do formato largo para o formato longo.

Funcionamento geral do verbos do tidyverse

- · Unidade primária de manipulação é o data.frame e ou tibble, e as colunas presentes neles;
- Todo o verbo é interpretado através de lazy evaluation: a primeira coisa que você fornece para a função é o conjunto de dados; a partir daí, a própria função entende que tudo o que você for fazer é em referência às informações que estão ali - elimina a necessidade de indexação.
- · A idéia geral aqui é encurtar o espaço entre o que você quer fazer e o resultado (ou seja, entre a pergunta e a resposta), sem importar o tamanho do conjunto de dados.
- · Para provar estes pontos, vamos utilizar o conjunto de dados gapminder que carregamos no início da aula.

gapminder

gapminder

```
## # A tibble: 1,704 x 6
##
                  continent year lifeExp
      country
                                               pop gdpPercap
##
                  <fct>
      <fct>
                            <int>
                                    <dbl>
                                             <int>
                                                        <dbl>
    1 Afghanistan Asia
                             1952
                                     28.8
                                           8425333
                                                         779.
    2 Afghanistan Asia
                             1957
                                           9240934
                                                         821.
                                     30.3
    3 Afghanistan Asia
                             1962
                                     32.0 10267083
                                                         853.
                                                         836.
    4 Afghanistan Asia
                             1967
                                     34.0 11537966
    5 Afghanistan Asia
                             1972
                                     36.1 13079460
                                                         740.
    6 Afghanistan Asia
                                                         786.
                             1977
                                     38.4 14880372
    7 Afghanistan Asia
                             1982
                                     39.9 12881816
                                                         978.
    8 Afghanistan Asia
                                     40.8 13867957
                                                         852.
                             1987
    9 Afghanistan Asia
                             1992
                                     41.7 16317921
                                                         649.
## 10 Afghanistan Asia
                                     41.8 22227415
                                                         635.
                             1997
## # ... with 1,694 more rows
```

rename

Utilizada para renomear colunas específicas, contornando a necessidade de indexação.

```
rename(.data = gapminder, pais = country, continente = continent, ano = year)
```

```
## # A tibble: 1,704 x 6
##
      pais
                  continente
                               ano lifeExp
                                                 pop gdpPercap
      <fct>
                                     <dbl>
                                                         <dbl>
                  <fct>
                             <int>
                                               <int>
    1 Afghanistan Asia
                              1952
                                      28.8 8425333
                                                          779.
    2 Afghanistan Asia
                                                          821.
                              1957
                                      30.3 9240934
    3 Afghanistan Asia
                                      32.0 10267083
                                                          853.
                              1962
    4 Afghanistan Asia
                              1967
                                      34.0 11537966
                                                          836.
    5 Afghanistan Asia
                              1972
                                      36.1 13079460
                                                          740.
    6 Afghanistan Asia
                              1977
                                      38.4 14880372
                                                          786.
    7 Afghanistan Asia
                                                          978.
                              1982
                                      39.9 12881816
    8 Afghanistan Asia
                              1987
                                      40.8 13867957
                                                          852.
    9 Afghanistan Asia
                              1992
                                                          649.
                                      41.7 16317921
## 10 Afghanistan Asia
                              1997
                                      41.8 22227415
                                                          635.
## # ... with 1,694 more rows
```

32/67

arrange

Utilizada para ordernar as linhas de uma tabela em ordem crescente ou decrescente.

```
arrange(.data = gapminder, year)
## Warning: package 'bindrcpp' was built under R version 3.4.4
## # A tibble: 1,704 x 6
     country
                 continent year lifeExp
                                               pop gdpPercap
                            <int>
                                                       <dbl>
      <fct>
                  <fct>
                                    <dbl>
                                             <int>
    1 Afghanistan Asia
                             1952
                                     28.8
                                          8425333
                                                        779.
    2 Albania
                             1952
                                     55.2
                 Europe
                                          1282697
                                                       1601.
    3 Algeria
                 Africa
                             1952
                                     43.1 9279525
                                                       2449.
    4 Angola
                  Africa
                             1952
                                     30.0 4232095
                                                       3521.
    5 Argentina
                 Americas
                                     62.5 17876956
                             1952
                                                       5911.
    6 Australia
                 Oceania
                             1952
                                     69.1 8691212
                                                      10040.
    7 Austria
                  Europe
                             1952
                                     66.8 6927772
                                                       6137.
    8 Bahrain
                  Asia
                             1952
                                     50.9
                                            120447
                                                       9867.
    9 Bangladesh Asia
                             1952
                                     37.5 46886859
                                                        684.
```

arrange

Utilizada para ordernar as linhas de uma tabela em ordem crescente ou decrescente.

```
arrange(.data = gapminder, desc(year))
```

## # A tibble: 1,704 x 6								
##		country	continent	year	lifeExp	pop	gdpPercap	
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>	
##	1	Afghanistan	Asia	2007	43.8	31889923	975.	
##	2	Albania	Europe	2007	76.4	3600523	5937.	
##	3	Algeria	Africa	2007	72.3	33333216	6223.	
##	4	Angola	Africa	2007	42.7	12420476	4797.	
##	5	Argentina	Americas	2007	75.3	40301927	12779.	
##	6	Australia	Oceania	2007	81.2	20434176	34435.	
##	7	Austria	Europe	2007	79.8	8199783	36126.	
##	8	Bahrain	Asia	2007	75.6	708573	29796.	
##	9	Bangladesh	Asia	2007	64.1	150448339	1391.	
##	10	Belgium	Europe	2007	79.4	10392226	33693.	
## # with 1,694 more rows								

34/67

arrange

Pode comportar tantas colunas quantas aquelas que você desejar.

```
arrange(.data = gapminder, desc(year), lifeExp)
```

```
## # A tibble: 1,704 x 6
##
                              continent year lifeExp
                                                         pop gdpPercap
     country
     <fct>
                              <fct>
                                         <int>
                                                 <dbl>
                                                          <int>
                                                                    <dbl>
    1 Swaziland
                              Africa
                                          2007
                                                  39.6 1133066
                                                                    4513.
    2 Mozambique
                              Africa
                                          2007
                                                  42.1 19951656
                                                                     824.
    3 Zambia
                              Africa
                                                 42.4 11746035
                                          2007
                                                                    1271.
    4 Sierra Leone
                              Africa
                                          2007
                                                  42.6 6144562
                                                                     863.
    5 Lesotho
                              Africa
                                          2007
                                                  42.6 2012649
                                                                    1569.
                              Africa
                                          2007
                                                  42.7 12420476
    6 Angola
                                                                    4797.
    7 Zimbabwe
                              Africa
                                          2007
                                                  43.5 12311143
                                                                     470.
    8 Afghanistan
                              Asia
                                                  43.8 31889923
                                          2007
                                                                     975.
    9 Central African Republic Africa
                                                  44.7 4369038
                                                                     706.
                                          2007
## 10 Liberia
                              Africa
                                          2007
                                                  45.7 3193942
                                                                     415.
## # ... with 1,694 more rows
```

- 1. Qual foi o projeto que mais gastou recursos dentre aqueles financiados pelo CNPq?
- 2. Qual foi o coordenador que terminou o doutorado há mais tempo?
- 3. Qual o coordenador que tem o maior índice H e não fez pós-doutorado?

select

Utilizada para selecionar uma ou mais colunas de acordo com seu nome.

```
# somente o pais, ano e gdp per capita
select(.data = gapminder, country, year, gdpPercap)
## # A tibble: 1,704 x 3
##
                  year qdpPercap
     country
     <fct>
                 <int>
                            <dbl>
    1 Afghanistan 1952
                            779.
    2 Afghanistan 1957
                            821.
    3 Afghanistan 1962
                            853.
    4 Afghanistan 1967
                            836.
    5 Afghanistan 1972
                            740.
    6 Afghanistan 1977
                            786.
    7 Afghanistan 1982
                            978.
    8 Afghanistan 1987
                            852.
    9 Afghanistan 1992
                            649.
## 10 Afghanistan 1997
                            635.
## # ... with 1,694 more rows
```

select

Utilizada para selecionar uma ou mais colunas de acordo com seu nome.

```
select(.data = gapminder, gdpPercap, country:lifeExp)
## # A tibble: 1,704 x 5
      gdpPercap country
                            continent year lifeExp
##
##
          <dbl> <fct>
                            <fct>
                                       <int>
                                               <dbl>
##
           779. Afghanistan Asia
                                        1952
                                                28.8
   1
           821. Afghanistan Asia
                                        1957
                                                30.3
           853. Afghanistan Asia
    3
                                        1962
                                                32.0
           836. Afghanistan Asia
                                        1967
                                                34.0
##
    5
           740. Afghanistan Asia
                                       1972
                                                36.1
           786. Afghanistan Asia
                                        1977
                                                38.4
           978. Afghanistan Asia
                                        1982
                                                39.9
##
    8
           852. Afghanistan Asia
                                        1987
                                                40.8
##
   9
           649. Afghanistan Asia
                                        1992
                                                41.7
## 10
           635. Afghanistan Asia
                                        1997
                                                41.8
## # ... with 1,694 more rows
```

apenas algumas variáveis e reordenando elas

select

Também pode ser utilizada para selecionar colunas baseado em um padrão específico, utilizando os argumentos auxiliares:

- starts_with(): seleciona colunas que comecem com um certo padrão em seu nome;
- ends_with(): seleciona colunas que terminem com um certo padrão em seu nome;
- · contains(): seleciona colunas que contenham um certo padrão em seu nome.

- Do conjunto de dados do gapminder:
 - Remova apenas a coluna country de gapminder;
 - Selecione as colunas continent, year e pop;
 - Com o resultado da última operação, ordene as linhas de acordo com a ordem decrescente dos anos;
 - Além de ordenar as linhas pela ordem crescente dos continentes, ordene agora também o tamanho da população.
- Do conjunto de dados dos projetos, selecione a coluna com o ID do coordenador do projeto e todas as colunas que representam de recursos gastos em cada projeto.

Utilizada para filtrar uma tabela de acordo com as condições que você determina.

```
# apenas os dados do Brasil
filter(.data = gapminder, country == "Brazil")
## # A tibble: 12 x 6
     country continent year lifeExp
##
                                            pop gdpPercap
                                                    <dbl>
      <fct> <fct>
                        <int>
                                <dbl>
                                          <int>
    1 Brazil Americas
                         1952
                                 50.9
                                      56602560
                                                    2109.
    2 Brazil Americas
                                      65551171
                                                    2487.
                         1957
                                 53.3
    3 Brazil Americas
                                                    3337.
                         1962
                                 55.7
                                       76039390
    4 Brazil Americas
                         1967
                                 57.6 88049823
                                                    3430.
    5 Brazil Americas
                                 59.5 100840058
                                                    4986.
                         1972
    6 Brazil Americas
                         1977
                                 61.5 114313951
                                                    6660.
    7 Brazil Americas
                         1982
                                 63.3 128962939
                                                    7031.
    8 Brazil Americas
                                                    7807.
                         1987
                                 65.2 142938076
    9 Brazil Americas
                         1992
                                 67.1 155975974
                                                    6950.
## 10 Brazil Americas
                                 69.4 168546719
                         1997
                                                    7958.
```

Utilizada para filtrar uma tabela de acordo com as condições que você determina.

```
# dados das Americas, apenas os 20 últimos anos
filter(.data = gapminder, continent == "Americas", year > 1996)
## # A tibble: 75 x 6
##
      country
                continent year lifeExp
                                               pop gdpPercap
      <fct>
                          <int>
                                  <dbl>
##
                <fct>
                                             <int>
                                                       <dbl>
    1 Argentina Americas
                           1997
                                   73.3
                                         36203463
                                                      10967.
    2 Argentina Americas
                                   74.3
                                         38331121
                                                       8798.
                           2002
    3 Argentina Americas
                                   75.3
                                                      12779.
                           2007
                                          40301927
               Americas
    4 Bolivia
                           1997
                                   62.0
                                          7693188
                                                       3326.
    5 Bolivia
               Americas
                                   63.9
                                           8445134
                           2002
                                                       3413.
    6 Bolivia
                Americas
                           2007
                                   65.6
                                           9119152
                                                       3822.
    7 Brazil
                Americas
                           1997
                                   69.4 168546719
                                                       7958.
    8 Brazil
                Americas
                                                       8131.
                           2002
                                   71.0 179914212
                Americas
    9 Brazil
                                   72.4 190010647
                                                       9066.
                           2007
                                   78.6 30305843
                                                      28955.
## 10 Canada
                Americas
                           1997
```

Utilizada para filtrar uma tabela de acordo com as condições que você determina.

```
# dados das Americas e Europa, apenas os 20 últimos anos
filter(.data = gapminder, continent == "Americas" | continent == "Europe", year > 1996)
## # A tibble: 165 x 6
##
      country
                continent year lifeExp
                                             pop gdpPercap
      <fct>
                                  <dbl>
##
                <fct>
                          <int>
                                           <int>
                                                     <dbl>
    1 Albania
               Europe
                           1997
                                   73.0 3428038
                                                     3193.
    2 Albania
                                   75.7 3508512
                                                     4604.
               Europe
                           2002
    3 Albania
                                   76.4 3600523
                                                     5937.
               Europe
                           2007
    4 Argentina Americas
                           1997
                                   73.3 36203463
                                                    10967.
    5 Argentina Americas
                                   74.3 38331121
                                                     8798.
                           2002
    6 Argentina Americas
                                   75.3 40301927
                                                    12779.
                           2007
    7 Austria
               Europe
                                   77.5 8069876
                                                    29096.
                           1997
    8 Austria
                                   79.0 8148312
                                                    32418.
                           2002
                Europe
    9 Austria
                                   79.8 8199783
                                                    36126.
                Europe
                           2007
## 10 Belgium
                                   77.5 10199787
                Europe
                           1997
                                                    27561.
```

Podemos utilizar o argumento lógico %in% para selecionar múltiplos elementos de uma mesma coluna.

```
# dados das Americas Europa e Oceania, apenas os 20 últimos anos
filter(.data = gapminder, continent %in% c("Americas", "Europe", "Oceania"), year > 1996)
## # A tibble: 171 x 6
##
      country
                continent year lifeExp
                                             pop gdpPercap
##
      <fct>
                <fct>
                          <int>
                                  <dbl>
                                           <int>
                                                      <dbl>
    1 Albania
                                   73.0 3428038
                                                      3193.
                Europe
                           1997
    2 Albania
                                   75.7 3508512
                                                      4604.
                Europe
                           2002
    3 Albania
                           2007
                                   76.4 3600523
                                                      5937.
                Europe
    4 Argentina Americas
                                                     10967.
                                   73.3 36203463
                           1997
    5 Argentina Americas
                                   74.3 38331121
                                                     8798.
                           2002
    6 Argentina Americas
                                   75.3 40301927
                           2007
                                                     12779.
    7 Australia Oceania
                           1997
                                   78.8 18565243
                                                     26998.
    8 Australia Oceania
                                   80.4 19546792
                                                     30688.
                           2002
    9 Australia Oceania
                                   81.2 20434176
                           2007
                                                     34435.
  10 Austria
              Europe
                           1997
                                   77.5 8069876
                                                     29096.
```

E podemos criar uma função para fazer o inverso do %in%!

```
## criando a função
`%nin%` <- Negate(f = `%in%`)
## removendo os dados das Americas, Europa e Oceania
filter(.data = gapminder, continent %nin% c("Americas", "Europe", "Oceania"), year > 1996)
## # A tibble: 255 x 6
##
      country
                  continent year lifeExp
                                               pop gdpPercap
##
      <fct>
                  <fct>
                            <int>
                                    <dbl>
                                             <int>
                                                        <dbl>
    1 Afghanistan Asia
                                     41.8 22227415
                                                         635.
                             1997
    2 Afghanistan Asia
                                                         727.
                             2002
                                     42.1 25268405
    3 Afghanistan Asia
                                                         975.
                             2007
                                     43.8 31889923
    4 Algeria
                  Africa
                             1997
                                     69.2 29072015
                                                        4797.
                  Africa
    5 Algeria
                             2002
                                     71.0 31287142
                                                        5288.
    6 Algeria
                  Africa
                                                        6223.
                             2007
                                     72.3 33333216
    7 Angola
                  Africa
                             1997
                                     41.0 9875024
                                                        2277.
    8 Angola
                  Africa
                             2002
                                     41.0 10866106
                                                        2773.
```

- · Quais foram os projetos financiados no estado do Rio de Janeiro?
- · Quais os projetos financiados no estado do Rio de Janeiro foram coordenados por mulheres?
- Onde estão localizados os bolsistas de produtividade 1C ou 1D que mais gastaram recursos?

mutate

... with 1,694 more rows

Cria uma nova coluna na tabela de dados, inclusive usando as próprias colunas que estão sendo criadas dentro da função naquele momento.

```
## # A tibble: 1,704 x 8
##
      country
                  continent year lifeExp
                                                 pop gdpPercap log gdp exp gdp
##
      <fct>
                   <fct>
                             <int>
                                      <dbl>
                                               <int>
                                                          <dbl>
                                                                  <dbl>
                                                                          <dbl>
    1 Afghanistan Asia
                                                                   6.66
                              1952
                                       28.8
                                             8425333
                                                           779.
                                                                           779.
    2 Afghanistan Asia
                              1957
                                       30.3
                                            9240934
                                                           821.
                                                                   6.71
                                                                           821.
    3 Afghanistan Asia
                                      32.0 10267083
                                                                   6.75
                              1962
                                                           853.
                                                                           853.
    4 Afghanistan Asia
                                                                   6.73
                              1967
                                       34.0 11537966
                                                           836.
                                                                           836.
    5 Afghanistan Asia
                              1972
                                       36.1 13079460
                                                                   6.61
                                                                           740.
                                                           740.
    6 Afghanistan Asia
                                      38.4 14880372
                              1977
                                                           786.
                                                                   6.67
                                                                           786.
    7 Afghanistan Asia
                                      39.9 12881816
                                                           978.
                                                                   6.89
                                                                           978.
                              1982
    8 Afghanistan Asia
                                      40.8 13867957
                                                           852.
                                                                   6.75
                                                                           852.
                              1987
    9 Afghanistan Asia
                                                                   6.48
                              1992
                                       41.7 16317921
                                                           649.
                                                                           649.
## 10 Afghanistan Asia
                                      41.8 22227415
                                                                   6.45
                              1997
                                                           635.
                                                                           635.
```

mutate(.data = gapminder, log gdp = log(gdpPercap), exp gdp = exp(log gdp))

47/67

transmute

Similar ao mutate, mas elimina todas as outras colunas ao retornar o resultado

```
transmute(.data = gapminder, log gdp = log(gdpPercap), exp gdp = exp(log gdp))
## # A tibble: 1,704 x 2
##
     log gdp exp gdp
       <dbl>
             <dbl>
## 1
        6.66
               779.
## 2
        6.71
               821.
## 3
        6.75
              853.
        6.73
## 4
               836.
## 5
               740.
        6.61
## 6
        6.67
               786.
## 7
        6.89
               978.
## 8
        6.75
               852.
## 9
        6.48
               649.
## 10
        6.45
               635.
## # ... with 1,694 more rows
```

· Crie uma nova coluna na tabelas **processos** que seja a combinação das colunas cidade e uf.

group_by

Agrupa as observações de acordo com os níveis de uma ou mais variáveis presentes nas colunas. É excelente para ser combinado com outras funções.

```
group by(.data = gapminder, continent)
## # A tibble: 1,704 x 6
## # Groups:
               continent [5]
##
      country
                  continent year lifeExp
                                                pop gdpPercap
##
      <fct>
                  <fct>
                             <int>
                                     <dbl>
                                              <int>
                                                         <dbl>
    1 Afghanistan Asia
                              1952
                                      28.8
                                            8425333
                                                          779.
    2 Afghanistan Asia
                              1957
                                      30.3
                                            9240934
                                                          821.
    3 Afghanistan Asia
                                      32.0 10267083
                              1962
                                                          853.
    4 Afghanistan Asia
                              1967
                                      34.0 11537966
                                                          836.
    5 Afghanistan Asia
                                      36.1 13079460
                              1972
                                                          740.
    6 Afghanistan Asia
                              1977
                                      38.4 14880372
                                                          786.
    7 Afghanistan Asia
                                      39.9 12881816
                                                          978.
                              1982
    8 Afghanistan Asia
                              1987
                                      40.8 13867957
                                                          852.
    9 Afghanistan Asia
                                      41.7 16317921
                                                          649.
                              1992
  10 Afghanistan Asia
                              1997
                                      41.8 22227415
                                                          635.
```

group_by + filter

quais sao os paises em cada continente que tiveram menor expectativa de vida em toda a serie
filter(.data = group by(.data = gapminder, continent), lifeExp == min(lifeExp))

```
## # A tibble: 5 x 6
## # Groups:
              continent [5]
##
    country
                continent year lifeExp
                                            pop gdpPercap
##
    <fct>
                <fct>
                          <int>
                                  <dbl>
                                           <int>
                                                    <dbl>
## 1 Afghanistan Asia
                           1952
                                   28.8 8425333
                                                     779.
## 2 Australia
                           1952
                Oceania
                                   69.1 8691212
                                                   10040.
## 3 Haiti
                Americas
                           1952
                                   37.6 3201488
                                                    1840.
## 4 Rwanda
                           1992
                Africa
                                   23.6 7290203
                                                     737.
## 5 Turkey
                Europe
                           1952
                                   43.6 22235677
                                                    1969.
```

- Quais são os coordenadores estrangeiros e brasileiros que tem indice H menor do que 15 e se terminaram o doutorado antes de 1990?
- Quais são os coordenadores que mais gastaram recursos por classe de bolsa de produtividade?

group_by + summarise

Uma das grandes vantagens do group_by é observada quando combinamos ele com a função summarise, que aplica uma mesma função para cada nível da variável agrupadora e retorna uma tabela com o sumário estatístico.

```
## expectativade vida media por continente
summarise(.data = group by(.data = gapminder, continent), expectativa media = mean(lifeExp))
## # A tibble: 5 x 2
    continent expectativa media
    <fct>
                          <dbl>
## 1 Africa
                           48.9
                           64.7
## 2 Americas
## 3 Asia
                           60.1
## 4 Europe
                           71.9
## 5 Oceania
                           74.3
```

group_by + summarise

- · Podemos agrupar os dados de acordo com várias colunas.
- · Para quebrar o agrupamento basta utilizarmos a função ungroup.

```
## expectativamente de vida media por continente por ano
summarise(.data = group by(.data = gapminder, continent, year), expectativa media = mean(lifeExp))
## # A tibble: 60 x 3
## # Groups:
              continent [?]
     continent year expectativa media
##
##
     <fct>
               <int>
                                 <dbl>
   1 Africa
              1952
                                  39.1
                                  41.3
   2 Africa
               1957
                                  43.3
    3 Africa
               1962
                                  45.3
   4 Africa
                1967
   5 Africa
                1972
                                  47.5
                                  49.6
   6 Africa
               1977
   7 Africa
                1982
                                  51.6
    8 Africa
                1987
                                  53.3
                                  53.6
   9 Africa
                1992
```

- · Utilizando o objeto **revistas**, adicione uma coluna indicando se cada revista é nacional ou estrangeira e calcule o índice SJR médio destas duas categorias.
- Calcule o índice H médio de coordenadores de projetos brasileiros e extrangeiros de acordo com o tipo de bolsa de produtividade recebido, e considerando apenas os coordenadores que terminaram o doutorado após o ano 2000.

- · Em toda língua, todo texto fica difícil de compreender quando emendarmos frases sem adicionar uma pontuação.
- Acabamos de ver isso acontecendo também quando utilizamos a linguagem R, ao utilizarmos resultado de um verbo diretamente no processamento de outro verbo do tidyverse.
- · Isso faz com que todo o código que escrevamos rapidamente fique complexo demais de se ler ou, ainda, exija a criação de diversas etapas intermediárias.

- A fim de descomplicar a escrita do código e fazer com que ele fique mais claro, o operador pipe é implementado no ambiente de trabalho quando você carrega o tidyverse.
- O operador pipe, representado pelo símbolo %>%, é implementado especificamente através do pacote dplyr.
- O atalho do teclado para o pipe é Control + Shift + M (no Windows) ou
 Command + Shift + M (no MAC).
- Um exemplo do uso do pipe no mesmo contexto apresentado no slide anterior:

```
gapminder %>%
  select(country, continent, gdpPercap) %>%
  group_by(continent, country) %>%
  summarise(media_gdp = mean(gdpPercap))
```

- · O pipe funciona potencializando o lazy evaluation nos verbos do tidyverse.
- Ele passa o data.frame/tibble de uma linha de comando ou resultante do processamento de um verbo para o argumento .data do verbo que o segue assim como a pontuação e adjuntos conectam frases no português.

```
gapminder %>%
  select(country, continent, gdpPercap) %>%
  group_by(continent, country) %>%
  summarise(media_gdp = mean(gdpPercap))
```

 Como veremos nas outras aulas, o pipe também pode ser empregado no processamento de outras funções, incluindo a extração e processamento de resultados de análises.

```
gapminder %>%
  group_by(country) %>%
  summarise(expectativa = mean(lifeExp), gdp = mean(gdpPercap)) %>%
  lm(gdp ~ expectativa, data = .) %>%
  summary(.)
```

- Determine o número médio, mínimo e máximo do número de citações recebidas em cada uma das revistas onde os artigos científicos foram publicados (dados presentes no objeto __publicacoes).
- Repita o procedimento acima, mas calcule também o desvio padrão e o número total de artigos publicados em cada revista (utilize a função n() para tal).

drop_na

- · Uma das formas de remover as linhas contendo NA na base do R é através da indexação por lógica, utilizando o is.na.
- Você pode fazer a mesma coisa no tidyverse, utilizando a função drop_na especificando inclusive de qual coluna você quer que os NA sejam removidas.

drop na(data = publicacoes, citacoes)

A tibble: 548 x 6

```
##
                       id titulo
                                                       journal
                                                                     ISSN citacoes
         Processo
             <dbl> <dbl> <chr>
                                                       <chr>
                                                                      <chr>
                                                                                < dbl>
    1 40060020137
                        1 Larval Biology of Anthop... Journal of ... 1536...
                                                                                    4
                        2 Seasonal variation in di... Biotropica
    2 40060020137
                                                                     0106...
                                                                                    0
    3 40060020137
                        3 Biology of the immature ... Revista Bra... 0085...
                                                                                    3
                        4 Immature Stages and Ecol... Journal of ... 0024...
    4 40060020137
                                                                                    0
                        5 Importance of Habitat He... Environment... 0046...
    5 40060020137
                                                                                    2
                        6 Sexual Dimorphism and Al... Journal of ... 1536...
                                                                                    0
    6 40060020137
                        7 Species composition and ... Zoologia (C... 1984...
    7 40060020137
                                                                                    3
                        8 Temporal Dynamics of Fru... Florida Ent... 0015...
    8 40060020137
                                                                                    0
```

separate

Utilizado para separar as informações de uma coluna em várias colunas diferentes.

```
projetos %>%
  separate(col = inicio, into = c("dia", "mes", "ano"), sep = "/")
## # A tibble: 119 x 28
##
       processo chamada
                                id coordenador sexo dia
                                                                          termino
                                                           mes
                                                                   ano
          <dbl> <chr>
##
                                          <int> <chr> <chr> <chr> <chr> <chr>
        4.86e10 Universal - F...
                                              1 M
                                                       06
                                                             11
                                                                   12
                                                                          05/11/...
                                                                          11/09/...
        4.01e10 BJT
                                              2 F
                                                       12
                                                                   12
        4.82e10 Universal - F...
                                                                          30/11/...
                                              3 M
                                                       80
                                                             11
                                                                   13
        4.72e10 Universal - F...
                                                                          31/12/...
                                              4 F
                                                             12
                                                                   12
                                                       14
                                                                          31/10/...
        4.76e10 Universal - F...
                                              5 M
                                                       30
                                                             10
                                                                   13
        4.82e10 Universal - F...
                                                                          05/05/...
                                              6 M
                                                             05
                                                       07
                                                                   13
        4.80e10 Universal - F...
                                                                         18/11/...
                                              7 M
                                                      19
                                                             11
                                                                   12
                                                                          31/12/...
        4.46e10 Incubadoras
                                              8 M
                                                       02
                                                             80
                                                                   16
        4.58e10 PPBio - Rede ...
                                                                         11/12/...
                                              9 M
                                                       12
                                                             12
                                                                   12
        4.72e10 Universal - F...
                                                                          30/11/...
## 10
                                             10 M
                                                       28
                                                             11
                                                                   12
```

rownames to column

Por padrão, um tibble não comporta nomes nas linhas, o que pode ser particularmente problemático quando convertemos um data.frame para àquela classe de objeto. No entanto, podemos usar a função rownames_to_column para adicionar uma coluna que contenha o nome de cada linha.

```
varespec <- varespec %>%
  rownames_to_column(var = "site")
varespec
```

##	site	Callvulg	Empenigr	Rhodtome	Vaccmyrt	Vaccviti	Pinusylv	Descflex
## 1	18	0.55	11.13	0.00	0.00	17.80	0.07	0.00
## 2	15	0.67	0.17	0.00	0.35	12.13	0.12	0.00
## 3	24	0.10	1.55	0.00	0.00	13.47	0.25	0.00
## 4	27	0.00	15.13	2.42	5.92	15.97	0.00	3.70
## 5	23	0.00	12.68	0.00	0.00	23.73	0.03	0.00
## 6	19	0.00	8.92	0.00	2.42	10.28	0.12	0.02
## 7	22	4.73	5.12	1.55	6.05	12.40	0.10	0.78
## 8	16	4.47	7.33	0.00	2.15	4.33	0.10	0.00

De largo para longo, e de volta outra vez

- · Uma tarefa que normalmente precisamos fazer é também converter uma tabela do formato largo para o formato longo e vice-versa.
- Além disso, as vezes é mais fácil converter uma tabela para um desses formatos para realizar rapidamente um processamento ou manipulação de dados (e.g., aplicar uma mesma transformação apenas às colunas que contenham números).
- · Existem duas funções que podem nos ajudar nesse sentido:
 - gather, para juntar as informações de múltiplas colunas em uma única coluna;
 - spread, para espalhar as informações de uma única coluna para múltiplas colunas.

gather

```
formato_longo <- gather(data = varespec, key = "especie", value = "densidade", Callvulg:Cladphyl)
formato longo</pre>
```

```
##
        site especie densidade
## 1
          18 Callvulg
                           0.55
## 2
          15 Callvulg
                           0.67
## 3
          24 Callvulg
                           0.10
## 4
          27 Callvulg
                           0.00
## 5
          23 Callvulg
                           0.00
## 6
          19 Callvulg
                           0.00
## 7
          22 Callvulg
                           4.73
## 8
          16 Callvulg
                           4.47
## 9
          28 Callvulg
                           0.00
## 10
          13 Callvulg
                          24.13
## 11
          14 Callvulg
                           3.75
## 12
          20 Callvulg
                           0.02
## 13
          25 Callvulg
                           0.00
## 14
           7 Callvulg
                           0.00
## 15
           5 Callvulg
                           0.00
```

spread

#

```
formato_largo <- spread(data = formato_longo, key = especie, value = densidade, fill = 0)
formato largo</pre>
```

```
## # A tibble: 24 x 45
##
      site Barbhatc Betupube Callvulg Cetreric Cetrisla Cladamau Cladarbu
##
      <chr>
               <dbl>
                        <dbl>
                                  <dbl>
                                           <dbl>
                                                    <dbl>
                                                             <dbl>
                                                                      <dbl>
##
   1 10
                0
                            0
                                  0.25
                                            0.25
                                                     0.25
                                                              0
                                                                        1.3
    2 11
                                  2.37
                                                     0.25
                                                                        9.67
                0
                            0
                                            0
                                                              0
    3 12
                                  0.25
                                            0
                                                     0.25
                                                                        3.6
                0
                            0
    4 13
                0.07
                                  24.1
                                            0.18
                                                     0.02
                                                              0
                                                                      23.1
    5 14
                                  3.75
                                            0.68
                                                                      17.4
                0
                            0
                                                     0.02
                                                              0
    6 15
                0
                            0
                                  0.67
                                            0.15
                                                     0.03
                                                              0
                                                                      12.0
    7 16
                0
                            0
                                  4.47
                                            0.18
                                                     0.08
                                                              0
                                                                       7.13
    8 18
                0
                            0
                                  0.55
                                            0.02
                                                     0
                                                              0.08
                                                                      21.7
    9 19
                0.02
                                  0
                                                                        7.23
                            0
                                            0
                                                     0
                                                              0
## 10 2
                0
                            0
                                  0.05
                                            0
                                                     0
                                                                        0.48
## # ... with 14 more rows, and 37 more variables: Cladbotr <dbl>,
## #
       Cladcerv <dbl>, Cladchlo <dbl>, Cladcocc <dbl>, Cladcorn <dbl>,
```

Cladcris <dbl>, Claddefo <dbl>, Cladfimb <dbl>, Cladgrac <dbl>,

· A partir do objeto **formato_longo**, calcule a riqueza de espécies e a abundância total de espécies em cada site.