Exercice:

- Le pont ci-dessous se compose d'un portique et d'un treillis supportant un système de traverses et de longerons. Le train de charge sollicitant ce pont est constitué par une seule force **F** = **250kN mobile et inclinée** <u>de 60°</u> par rapport à l'horizontale.

Tracer les lignes d'influence demandées ci-dessous.

<u>Corrigé :</u>

Rappel:

- L'application du théorème des travaux virtuels nous permet d'obtenir l'expression de S_i (effort ou réaction), en fonction de la position x de la charge, à travers la relation :

$$\sum W = 0 \Rightarrow \vec{F} \cdot \overrightarrow{\delta_x} + \overrightarrow{S_i} \cdot \overrightarrow{\Delta_i} = 0$$

– L'expression $\vec{F} \cdot \overrightarrow{\delta_x}$ peut être remplacée soit par $F \cdot \delta_{xF}$ ou par $F_x \cdot \delta_x$ comme l'indique le schéma suivant :

$$\vec{F} \cdot \overrightarrow{\delta_{x}} = F \cdot \delta_{xF} = F_{x} \cdot \delta_{x}$$

$$F_x \cdot \delta_x = F \sin(\alpha) \cdot \delta_x \ et \ F \cdot \delta_{xF} = F \cdot \delta_x \sin(\alpha)$$

Deux approches sont alors possibles pour le cas d'une charge inclinée :

- Soit qu'on considère une charge verticale $F_x = Fsin(\alpha)$ et qu'on étudie la ligne d'influence de cette charge (c'est-à-dire qu'on revient à l'étude de la ligne d'influence d'une charge unitaire verticale et qu'on multiplie le diagramme résultant par $sin(\alpha)$)
- Soit qu'on garde la force inclinée, et qu'on projette les déplacements sur la direction de la force $\delta_{xF} = \delta_x sin(\alpha)$ (c'est-à-dire qu'on multiplie les déplacements par $sin(\alpha)$)

Résolution:

• <u>Li(Mi)</u>:

• Première approche : $(F_x = Fsin(\alpha))$

Deuxième approche : $(\delta_{xF} = \delta_x sin(\alpha))$

Par la suite on utilisera la première approche et on multipliera directement par $\underline{sin}(\alpha)$.

• <u>Li(Ti)</u>:

• <u>Li(Ni)</u>:

Faute à éviter : α n'est pas toujours l'angle d'inclinaison de \vec{F} mais <u>l'angle que fait</u> \vec{F} avec la normale sur δ_x .

(Note: Pour l'effort normal $\Delta_i > 0$ si les barres se rapprochent, dans ce cas on a $\vec{F} \cdot \overrightarrow{\delta_\chi} > 0$ si $\overrightarrow{\delta_\chi}$ est orienté vers la droite, et d'après l'équation des travaux virtuels, pour un $\Delta_i < 0$ on a $S_i > 0$ si $\vec{F} \cdot \overrightarrow{\delta_\chi} > 0$)

• <u>Li(Nab):</u>

• <u>Li(Nac) :</u>

Dans ce cas les déplacements horizontaux ne sont pas évidents, on se remet à la **deuxième approche**, on cherche les déplacements suivant la direction de la force (c'est-à-dire qu'on cherche $\overrightarrow{\delta_{xF}}$)

Il ne reste plus qu'à retracer les diagrammes mais maintenant en reprenant les traverses et les longerons :

Il ne faut pas oublier que le train de charge est une force de **250kN**, il faut donc multiplier ces lignes d'influences par cette valeur.