

High dimensional time series analysis

5. Forecast reconciliation

robjhyndman.com/hdtsa

Outline

- 1 Hierarchical and grouped time series
- 2 Forecast reconciliation

Outline

- 1 Hierarchical and grouped time series
- 2 Forecast reconciliation

Australian Pharmaceutical Benefits Scheme

PBS sales

PBS

```
## # A tsibble: 65.219 x 9 [1M]
## # Kev:
               Concession, Type, ATC1, ATC2 [336]
##
          Month Concession Type ATC1 ATC1 desc ATC2
##
          <mth> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
##
       1991 Jul Concessio~ Co-p~ A Alimenta~ A01
##
       1991 Aug Concessio~ Co-p~ A Alimenta~ A01
##
       1991 Sep Concessio~ Co-p~ A Alimenta~ A01
       1991 Oct Concessio~ Co-p~ A Alimenta~ A01
##
##
       1991 Nov Concessio~ Co-p~ A Alimenta~ A01
   5
##
       1991 Dec Concessio~ Co-p~ A Alimenta~ A01
##
       1992 Jan Concessio~ Co-p~ A Alimenta~ A01
##
       1992 Feb Concessio~ Co-p~ A Alimenta~ A01
   8
       1992 Mar Concessio~ Co-p~ A Alimenta~ A01
##
## 10
       1992 Apr Concessio~ Co-p~ A Alimenta~ A01
## # ... with 65,209 more rows, and 3 more variables:
## #
      ATC2 desc <chr>, Scripts <dbl>, Cost <dbl>
```

ATC drug classification

- A Alimentary tract and metabolism
- B Blood and blood forming organs
- C Cardiovascular system
- D Dermatologicals
- G Genito-urinary system and sex hormones
- H Systemic hormonal preparations, excluding sex hormones and insulins
- J Anti-infectives for systemic use
- L Antineoplastic and immunomodulating agents
- M Musculo-skeletal system
- N Nervous system
- P Antiparasitic products, insecticides and repellents
- R Respiratory system
- S Sensory organs
- V Various

ATC drug classification

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Examples

- PBS sales by ATC groups
- Tourism demand by states, zones, regions

tourism

```
# A tsibble: 24,320 x 5 [10]
   # Key: Region, State, Purpose [304]
##
##
     Quarter Region State
                                       Purpose
                                               Trips
##
        <qtr> <chr> <chr>
                                      <chr>
                                                <dbl>
    1 1998 Q1 Adelaide South Australia Business
                                                135.
##
##
    2 1998 Q2 Adelaide South Australia Business
                                                110.
##
    3 1998 Q3 Adelaide South Australia Business
                                                166.
    4 1998 Q4 Adelaide South Australia Business
                                                127.
##
##
    5 1999 Q1 Adelaide South Australia Business
                                                137.
##
    6 1999 Q2 Adelaide South Australia Business
                                                200.
    7 1999 03 Adelaide South Australia Business
                                                169.
##
##
    8 1999 O4 Adelaide South Australia Business
                                                134.
    9 2000 01 Adelaide South Australia Business
                                                154.
##
   10 2000 O2 Adelaide South Australia Business
                                                169.
```

- Quarterly data on visitor night from 1998:Q1 2013:Q4
- From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+, collected by Tourism Research Australia.
- Split by 7 states, 27 zones and 76 regions (a geographical hierarchy)
- Also split by purpose of travel
 - Holiday
 - Visiting friends and relatives (VFR)
 - Business
 - Other
- 304 bottom-level series

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Examples

- Tourism by state and purpose of travel
- Retail sales by product groups/sub groups, and by countries/regions

Creating aggregates

```
PBS %>%
aggregate_key(ATC1/ATC2, Scripts = sum(Scripts)) %>%
filter(Month == yearmonth("1991 Jul")) %>% print(n=18)
```

```
## # A tsibble: 98 x 4 [?]
## # Key:
                ATC1, ATC2 [98]
##
     ATC1
                   ATC2
                                   Month Scripts
   <chr>
                   <chr>>
                                   <mth>
                                           <fdh>>
##
   1 <aggregated> <aggregated> 1991 Jul 8090395
##
   2 A
                   <aggregated> 1991 Jul 799025
   3 B
##
                   <aggregated> 1991 Jul 109227
   4 C
                   <aggregated> 1991 Jul 1794995
##
##
   5 D
                   <aggregated> 1991 Jul 299779
##
   6 G
                   <aggregated> 1991 Jul 300931
   7 H
                   <aggregated> 1991 Jul 112114
##
##
   8 J
                   <aggregated> 1991 Jul 1151681
##
   9 L
                   <aggregated> 1991 Jul
                                           24580
                   <aggregated> 1991 Jul
                                          562956
## 10 M
## 11 N
                   <aggregated> 1991 Jul 1546023
## 12 P
                   <aggregated> 1991 Jul
                                           47661
## 13 R
                   <aggregated> 1991 Jul 859273
## 14 S
                   <aggregated> 1991 Jul 391639
## 15 V
                   <aggregated> 1991 Jul 38705
                   <aggregated> 1991 Jul 51806
## 16 Z
                                1991 Jul
## 17 A
                   A 0 1
                                         22615
## 18 A
                   A02
                             1991 Jul 299251
## # ... with 80 more rows
```

Creating aggregates

```
tourism %>%
  aggregate_key(Purpose * (State / Region), Trips = sum(Trips)) %>%
  filter(Quarter == yearquarter("1998 Q1")) %>% print(n=15)
```

```
## # A tsibble: 425 x 5 [?]
## # Key: Purpose, State, Region [425]
##
     Purpose
                 State
                                Region
                                            Ouarter Trips
                                             <qtr> <dbl>
##
   <chr> <chr>
                               <chr>
##
   1 <aggregated> <aggregated> <aggregated> 1998 Q1 23182.
   2 Business <aggregated>
                              <aggregated> 1998 Q1 3599.
##
   3 Holiday <aggregated>
##
                              <aggregated> 1998 Q1 11806.
##
   4 Other <aggregated> <aggregated> 1998 Q1 680.
   5 Visiting <aggregated> <aggregated> 1998 Q1 7098.
##
                              ~ <aggregated>
                                            1998 01 551.
##
   6 <aggregated> ACT
   7 <aggregated> New South Wale~ <aggregated> 1998 Q1 8040.
##
## 8 <aggregated> Northern Terri~ <aggregated>
                                            1998 01 181.
##
  9 <aggregated> Queensland ~ <aggregated> 1998 Q1 4041.
## 10 <aggregated> South Australi~ <aggregated>
                                            1998 Q1
                                                    1735.
## 11 <aggregated> Tasmania ~ <aggregated> 1998 Q1 982.
## 12 <aggregated> Victoria ~ <aggregated> 1998 01 6010.
## 13 <aggregated> Western Austra~ <aggregated> 1998 Q1
                                                    1641.
## 14 <aggregated> ACT
                              ~ Canberra
                                        ~ 1998 01
                                                    551.
## 15 <aggregated> New South Wale~ Blue Mounta~ 1998 Q1 196.
## # ... with 410 more rows
```

Creating aggregates

- Similar to summarise() but using the key structure
- A grouped structure is specified using grp1 * grp2
- A nested structure is specified via parent / child.
- Groups and nesting can be mixed:

```
(country/region/city) * (brand/product)
```

- All possible aggregates are produced.
- These are useful when forecasting at different levels of aggregation.

Outline

- 1 Hierarchical and grouped time series
- 2 Forecast reconciliation

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- 2 Can we exploit relationships between the series to improve the forecasts?

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm.

 (e.g., ETS, ARIMA, ...)
- Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
 - This is available using reconcile().

Forecast reconciliation

```
tourism %>%
  aggregate_key(Purpose*(State/Region), Trips=sum(Trips)) %>%
  model(ets = ETS(Trips)) %>%
  reconcile(ets_adjusted = min_trace(ets)) %>%
  forecast(h = 2)
```

```
## # A fable: 1,700 x 7 [1Q]
##
  # Key:
            Purpose, State, Region, .model [850]
##
     Purpose
               State
                         Region
                                   .model
                                            Quarter Trips
     <chr>
               <chr>
                         <chr> <chr>
                                              <qtr> <dbl>
##
##
   1 Business ACT ~ Canberra ~ ets
                                             2018 01 144.
##
   2 Business ACT ~ Canberra ~ ets
                                             2018 Q2 203.
   3 Business
              ACT
##
                       ~ <aggregat~ ets
                                             2018 Q1 144.
   4 Business
               ACT
                       ~ <aggregat~ ets
                                            2018 Q2 203.
##
   5 Business
               New South~ Blue Moun~ ets
##
                                             2018 Q1 19.7
##
   6 Business
               New South~ Blue Moun~ ets
                                             2018 02 19.7
   7 Business
               New South~ Capital C~ ets
                                             2018 01 36.1 18
##
               Now Southa Canital Ca atc
  Q Rucinace
                                             2018 02 36 1
```

Hierarchical and grouped time series

Every collection of time series with aggregation constraints can be written as

$$y_t = Sb_t$$

where

- \mathbf{y}_t is a vector of all series at time t
- **b**_t is a vector of the most disaggregated series at time t
- **S** is a "summing matrix" containing the aggregation constraints.

y_t: observed aggregate of all series at time t.

y_{X,t}: observation on series X at timet.

b_t: vector of all series at bottom level in time *t*.

y_t: observed aggregate of all series at time t.

y_{X,t}: observation on series X at timet.

b_t: vector of all series at bottom level in time *t*.

$$\mathbf{y}_{t} = \begin{pmatrix} \mathbf{y}_{t} \\ \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{Y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}$$

y_t: observed aggregate of all series at time t.

y_{X,t}: observation on series X at timet.

b_t: vector of all series at bottom level in time *t*.

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

 $y_t = Sb_t$

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t .

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SG}\hat{\mathbf{y}}_n(h)$$

for some matrix **G**.

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SG}\hat{\mathbf{y}}_{n}(h)$$

for some matrix G.

- **G** extracts and combines base forecasts $\hat{\mathbf{y}}_n(h)$ to get bottom-level forecasts.
- **S** adds them up

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{G} = (\mathbf{S}'\Sigma_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{-1}$, where Σ_h is the h-step base forecast error covariance matrix.

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{G} = (\mathbf{S}' \Sigma_h^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_h^{-1}$, where Σ_h is the h-step base forecast error covariance matrix.

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}' \boldsymbol{\Sigma}_{h}^{-1} \mathbf{S})^{-1} \mathbf{S}' \boldsymbol{\Sigma}_{h}^{-1} \hat{\mathbf{y}}_{n}(h)$$

Problem: Σ_h hard to estimate, especially for h > 1.

Solutions:

- Ignore Σ_h (OLS) [min_trace(method='ols')]
- Assume $\Sigma_h = k_h \Sigma_1$ is diagonal (WLS) [min trace(method='wls')]
- Assume $\Sigma_h = k_h \Sigma_1$ and estimate it (GLS) [min_trace(method='shrink') (the default)]

Features

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- Conceptually easy to implement: regression of base forecasts on structure matrix.

Domestic visitor nights

Quarterly data: 1998 - 2006.

From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+,

collected by Tourism Research Australia.

Australian tourism

Reconciled forecasts

Reconciled forecasts

Reconciled forecasts

- Select models using all observations;
- Re-estimate models using first 12 observations and generate 1- to 8-step-ahead forecasts;
- Increase sample size one observation at a time, re-estimate models, generate forecasts until the end of the sample;
- In total 24 1-step-ahead, 23 2-steps-ahead, up to 17 8-steps-ahead for forecast evaluation.

Training sets Test sets h = 1

Training sets Test sets h = 1 times to the set in the set in

Hierarchy: states, zones, regions

RMSE	h = 1	h = 2	Forecast h = 3	horizon h = 4	h = 5	h = 6	Ave
Australia							
Base	1762.04	1770.29	1766.02	1818.82	1705.35	1721.17	1757.28
Bottom	1736.92	1742.69	1722.79	1752.74	1666.73	1687.43	1718.22
WLS	1705.21	1715.87	1703.75	1729.56	1627.79	1661.24	1690.57
GLS	1704.64	1715.60	1705.31	1729.04	1626.36	1661.64	1690.43
			Sta	ates			
Base	399.77	404.16	401.92	407.26	395.38	401.17	401.61
Bottom	404.29	406.95	404.96	409.02	399.80	401.55	404.43
WLS	398.84	402.12	400.71	405.03	394.76	398.23	399.95
GLS	398.84	402.16	400.86	405.03	394.59	398.22	399.95
			Reg	ions			
Base	93.15	93.38	93.45	93.79	93.50	93.56	93.47
Bottom	93.15	93.38	93.45	93.79	93.50	93.56	93.47
WLS	93.02	93.32	93.38	93.72	93.39	93.53	93.39
GLS	92.98	93.27	93.34	93.66	93.34	93.46	93.34