Essential GCP Infra: Foundation 2023 Ivan Vlad S.

OCP Overview

- ▼ Cloud Computing Characteristics
 - ▼ Broad network access
 - > access resources over internet from anywhere
 - ▼ Rapid elasticity
 - > resources are elastic/flexible, can scale up or down based on load
 - ▼ Resource pooling
 - > CSP allocates resources from shared pool, economies of scale =
 cheaper service
 - ▼ On-demand self service
 - > provision and terminate resources using UI/CLI, without human interaction
 - ▼ Measured service
 - > pay for what you use, reserve as you go
- ▼ Service Models
 - ▼ SaaS
 - > fully managed
 - > responsible for data
 - ▼ PaaS
 - > bind code to libraries that provide access to the infra the app needs
 - > responsible for runtime, data, and app
 - > pay for what you use
 - ▼ laaS
 - > provides compute, storage, networking
 - > responsible for OS, container, runtime, data, and app
 - > pay for what you allocate
 - ▼ Serverless = managed infra

- > Cloud Functions: manages event-driven code as pay-as-you-go service
- > Cloud Run: deploy containerized microservices based app in a fullymanaged environment
- ▼ GCP Network
 - 5 Geolocations
 - > NA, SA, EU, AS, AU
 - ▼ Divided in to Regions >> Zones
 - Currently 37 regions and 112 zones
 - Can do multi-region hosting
- ▼ Environmental Impact
 - Google data centers were first to achieve ISO 14001 certification
 - carbon neutral, renewable energyby 2030 carbon free
- ▼ Security
 - ▼ Hardware infra layer
 - > custom hardware design and provenance
 - > secure boot stack
 - > physical security
 - ▼ Service deployment layer
 - > encryption of inter-service comms
 - ▼ User identity layer
 - > Google central Identify Service
 - ▼ Storage services layer
 - > encryption at rest
 - ▼ Internet comm layer
 - > Google Front End (GFE)
 - > DoS protection
 - ▼ Ops security layer
 - > intrusion detection
 - > reducing insider risk
 - > employee universal second factor (U2F) use

- > software dev practices
- ▼ Open source ecosystems
 - Google publishes key elements of tech using open source licenses to create
 ecosystems that provide customers with options other than GCP
 - great interoperability with different CSPs
- ▼ Pricing and Billing
 - per-second billing
 - Compute Engine offeres Sustained-use discounts
 - Online Pricing Calculator
 - ▼ GCP Tools
 - Budgets, Alerts, Reports, Quotas

2 Resources & Access

- ▼ Resource hierarchy
 - Order from bottom up:Resources > Project > Folder > Organization
 - directly relates to how policies are managed and applied in GCP
 - > policies can be defined at the project, folder, and org levels
 > some policies can be assigned at the resource level
 - > policies are applied downward
 - ▼ Projects are the basis for enabling GCP services
 - each resource belongs to exactly one project
 - can have different owners and users because they're billed and managed
 separately
 - 3 identifying attributes: ID, name, number
 > ID = globally unique identifier that CANT be changed after creation, immutable
 - Resource Manager Tool manage projects
 - ▼ Folders let you assign policies to resources at a level of granularity you choose
 - Use folders to group projects under an organization in a hierarchy
 - ▼ At org node: can assign 2 special roles:
 - > org policy admin and project creator

- > goog workspace customer = projects will automatically belong to yourorg node
 - > non-goog workspace customer = use Cloud Identity to create an org

▼ IAM

- Admins can apply policies that define WHO can do WHAT on WHICH resources
- ▼ IAM role = collection of permissions
 - 3 types: basic, predefined, custom
 - Basic = broad in scope> owner, editor, viewer, billing admind
 - Predefine = google defined roles
 > some for each service, e.g., Instance Admin Role
 - Custom = user defined
 > need to manage the permissions that define the custom role you create
 > can only be applied to either project or org level, not folder level

▼ Service Accounts

- Accounts for machines/services, NOT humands
 - need to be managed, can have IAM roles attached to it
- > named with an email address
 - > use cryptographic keys instead of password

▼ Cloud Identity

- can define policies and manage users and groups using the Google Admin
 console
 - log in and manage resources using the same creds used in existing AD or
 LDAP systems
 - Goog admin console can be used to disable user accounts and remove them from groups when they leave
 - available in free and premium editions
 - already available to goog workspace customers in goog admin console

▼ Interacting with GCP

- ▼ Cloud console
 - web-based GUI, can connect to resources via SSH in the browser
- ▼ SDK: set of tools to manage resources and apps hosted in GCP

- gcloud main CLI for products and services
- gsutil storage access from CLI
- bq BigQuery CLI
- Cloud shell = access SDK CLI from browser

▼ API

- Google APIs Explorer shows what APIs are available
- Google provides Cloud Client and Google API Client libraries
- ▼ Cloud Mobile App
 - Start, stop, and use SSH to connect into Compute Engine instances, and see logs
 - Stop and start Cloud SQL instances
 - Administer apps deployed on App Engine
 - up-to-date billing info and budget alerts

VPC

- ▼ A secure, individual, private cloud-computing model hosted within a public cloud. A VPC is hosted remotely by public cloud provider
 - Run code, store data, host websites, and anything else that can be done in an
 ordinary private cloud
- VPC networks connect GCP resources to each other and to the internet
 - segmenting networks
 - using firewall rules to restrict access to instances
 - creating static routes to forward traffic to specific destinations
- GCP VPC networks are global and can have subnets in any GCP region
 worldwide
- ▼ VPC objects
 - ▼ Projects
 - associates objects and services with billing
 - contains networks (15 max) that can be shared/peered
 - ▼ Networks: Default, auto mode, custom mode
 - has no IP address range
 - global and spans all available regions

- Default = every project, one subnet per region, default firewalls
- auto mode = default network, one subnet per region, regional IP
 allocation, fixed /20 subnet per region, expandable to /16
- custom = no default subnets created, full control of IP ranges, regional IP
 allocation, expandable to IP ranges you specify
- Subnetworks
- Regions
- Zones
- ▼ IP Addresses: internal, external, range
 - each VM can have 2 IPs assigned: internal + external
 - internal: allocated from subnet range to VMs by DHCP, lease renewed
 every 24hrs, VM name + IP is registered with network-scoped DNS
 - external: assigned from pool (ephemeral), reserved (static), BYOIP, VM
 doesn't know external IP; it is mapped to the internal IP
- VMs
- ▼ Routes
 - Apply traffic egressing a VM, fwd traffic to most specific route, created when subnet is created, enable VMs on same network to communicate, destination is in CIDR, traffic is delivered only if it matches a firewall fule
- ▼ Firewalls
 - VPC network functions as a distributed firewall, firewall rules are applied to the network as a whole, connections are allowed or denied at the instance level, firewall rules are stateful, implied deny all ingress and allow all egress
- ▼ Common Network Designs
 - increased availability with multiple zones
 - globalization with multiple regions
 - Best practice only assign internal IP to VM instances whenever possible
 - ▼ Cloud NAT = GCP managed network address translation services
 - provides internet access to private instances
 - private google access to Google APIs and services

VMs

▼ Compute Engine

- laaS solution, server autoscaling, use case is general workloads
- predefined or custom machines types
- Compute, Storage, Networking
- ▼ common compute engine actions
 - metadata and scripts for boot, run, maintenance, shudown
 - move an instance to a new zone: between regions is manual process,within = automatic
 - Snapshots: backup critical data, migrate data between zones, transfer to
 SSD to improve performance
 - resize persistent disk: you can grow size but never shrink
- ▼ VM access & lifecycle
 - > Linux: SSH , requires firewall rule to allow tcp: 22
 > Win: RDP , requires firewall rule to allow tcp: 3389
 - ▼ Lifecycle: provisioning > staging > running > stopping
 - Availability policy
 - > automatic restart: auto VM restart due to crash or maintenance event
 - > on host maintenance: determines whether host is live-migrated or terminated due to a maintenance event
 - > live migration: during maintenance event, VM is migrated to different hardware without interruption
 - OS patch management:
 - > Patch compliance reporting
 - > Patch deployment
 - Charges for stopped/terminated VMs:
 - > Attached Disks
 - > Reserved IP addresses
 - >>can't change image of stopped VM
- Compute options
 - ▼ Machine type structure: family >> series >> type
 - families:
 - > General-purpose: E2, N2, N2D, N1, Tau T2D
 - Compute-optimized: C2, C2DMemory-optimized: M1, M2
 - > Accelerator-optimized: A2
 - Custom machine types: cost slightly more than predefined

- ▼ Compute pricing
 - per-second billing with 1min minimum
 - resource based pricing
 - discounts: sustained use, committed use, premptible VM instances
 - ▼ Recommendation Engine
 - notifies of underutilized instances
- ▼ Special compute configs
 - ▼ preemptible VMs
 - > lower price for interruptible service
 - > VM might be terminated at any time
 - > no live migrate or auto restart
 - ▼ spot VMas
 - > latest version of preemptible VMs
 - > share same pricing model as preemp
 - > no min or max runtime
 - > Spot VMs are finite Compute Engine resources, so they might not always be available
 - > no live migrate or auto restart
 - sole-tenant nodes physically isolate workloads
 - ▼ Shielded VMs offer verifiable integrity
 - > secure boot
 - > vTPM virtual trusted platform module
 - > integrity monitoring
 - ▼ Confidential VMs allow you to encrypt data in use
 - encrypts data while being processed
- ▼ Images
 - Boot loader, OS, File system structure, Software, Customizations
 - ▼ > public base images
 - > custom images
 - Public: Goog, 3P vendors, community, premium
 - > Linux and Win
 - Custom: create new image from VM, import from on-prem, workstation, or another cloud
 - machine image

- most ideal for disk backups as well as instance cloning replication
- ▼ Disk options
 - every VM comes with a single root persistent disk; image is loaded onto root
 disk during first boot
 - ▼ Persistent disks
 - attached to vm through network interface
 - network storage appearing as block device
 - disk resizing, even running and attached
 - zonal or regional: pd-standard, pd-ssd, pd-balanced, pd-extreme (zonal only)
 - durable storage can survive VM terminate
 - encryption keys: google managed, customer managed, customer supplied
 - ▼ local SSD: physically attached to a VM
 - more IOPS, lower latency, higher throughput than persistent
 - ▼ RAM disk
 - faster than local disk, slower than memory
 - very volatile, erase on start or stop
 - consider using a persistent to back up RAM disk data