Python For Data Analysis

Seoul Bike Sharing System

Dataset

Contains count of public bikes rented at each hour Gives the corresponding informations of

- Weather
- Date
- Holiday

Three Main Steps

Data Analysis

Inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making.

Design **experiments** to select a statistical model from a set of candidate models.

Model Deployment

Integrate the selected model into an existing **production** and stable environment where a **client** request the model

Objectives

Predict the number of bikes rented in Seoul based on:

Temporal	Features
----------	----------

Date

Hour

Seasons

Holiday

Weather Features

Temperature (°C)

Humidity (%)

Wind speed (m/s)

Visibility (10m)

Dew point temperature (°C)

Solar Radiation (MJ/m2)

Rainfall (mm)

Snowfall (cm)

Data Analysis

Inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making.

Target: Count Rented Bike

sart(n bike)

Square root to have
Gaussian-like distribution and
limits the outliers

Temporal Features: Date and Hour

Time serie date and hour changed to categorical variable as the dataset contains only one year and the categorical features gives more sense.

Year Month name Week day name Working day condition Hour

Temporal Features: Seasons and Holiday

Unchanged

Weather Features: Temperature, Dew, Humidity

Unchanged

Weather Features: Wind speed

Log to have **Gaussian-like** distribution

Weather Features: Solar Radiation

Square root to **Separate** zeros to non zeros

Weather Features: Rainfall

Transformed to Dryness of the ground on the two last hours to have a better approximation of biker vision and have a good distribution.

Weather Features: Snowfall

Transformed to **snowing condition** on the 8 last hours to have a better approximation of biker vision.

Weather Features: Visibility

invisb

invisb

Transformed to loosed visibility to have a better approximation of biker vision and put the zero to the perfect condition.

Last step

One hot encode hour season

day

month

week_day

Normalize

humidity solar radiation dryness

Standardize

n_bike temperature wind dew

Model Selection

Design **experiments** to select a statistical model from a set of candidate models.

Model Name: LinearRegression

Description: Ordinary Least Squares algorithm

Prevents Overfitting: no

Handles Outliers: no

Handles several features: no Adaptive Regularization: no

Large Dataset: no

Non linear: no

Interpretability Score: 5 / 5

When to Use: Highly interpretable, no introduced bias

When to Use Expanded:

- Data consists of few outliers
- Little variance between output labels
- All of the input features are not only independent but also are not correlated.

Advantages:

- Easy to interpret results
- Low complexity level

Disadvantages:

- At risk of multicolinearity if input features are correlated
- Small errors/outliers in target values can drastically impact model

Model Name: ElasticNet

Description: Ordinary Least Squares with both an L1 and L2 regularization term. The weights of the L1 vs. L2 regularization terms are controlled by an l1_ratio parameter.

Prevents Overfitting: yes

Handles Outliers: no

Handles several features: yes

Adaptive Regularization: no

Large Dataset: no

Non linear: no

Interpretability Score: 3 / 5

When to Use: Blend Ridge and Lasso

When to Use Expanded:

- Data consists of few outliers
- May be some correlation between input features
- Avoid overfitting
- Feature selection

Advantages:

- Incorporate the feature selection abilities of Lasso with the regularization abilities of Ridge.

Disadvantages:

- In lowering variance, incorporates a degree of bias into the model.
- Can be difficult to tune alpha to attain a desirable balance between OLS and regularization terms
- Higher computational cost than Ridge or Lasso

Model Name: HuberRegressor

Description: A linear model designed to deal with outliers in the data and/or corrupted data. Does not ignore the outliers, but rather gives them a lower weight.

Prevents Overfitting: no

Handles Outliers: yes

Handles several features: no

Adaptive Regularization: no

Large Dataset: no

Non linear: no

Interpretability Score: 4 / 5

When to Use: Outliers and want quickest algorithm

When to Use Expanded:

- Want quick analyses of data ignoring outliers

Advantages: '

- Faster than RANSAC and TheilSen (as long as the number of samples is not too large)
- Does not completely ignore data points it deems as outliers

Disadvantages:

- Break down with large numbers of input features

Model Name: BayesianRidge

Description: Similar to Ridge but the regularization parameter is tuned to fit the data during the training process.

Prevents Overfitting: yes

Handles Outliers: no

Handles several features: no

Adaptive Regularization: yes

Large Dataset: no

Non linear: no

Interpretability Score: 2 / 5

When to Use: Ridge but don't want to set regularization constant

When to Use Expanded:

- Are seeking results similar to Ridge, but willing to sacrifice interpretability for time saved not having to test different regularization weights

Advantages:

- No need to tune alpha value
- Adapts well to data on hand

Disadvantages:

- Less interpretable results

Model Name: ARDRegression

Description: BayesianRidge with sparser weight values. Almost like a version of BayesianLasso.

Prevents Overfitting: yes

Handles Outliers: no

Handles several features: yes

Adaptive Regularization: yes

Large Dataset: no

Non linear: no

Interpretability Score: 2/5

When to Use: Lasso but don't want to set regularization constant

When to Use Expanded:

- Are seeking results similar to Lasso, but willing to sacrifice interpretability for time saved not having to test different regularization term weights

Advantages:

- No need to tune alpha value
- Adapts well to data on hand
- Reduces weight of unimportant features

Disadvantages: '

- Less interpretable results
- Computationally expensive (can't handle very large datasets)

Model Name: KNeighborsRegressor

Description: Creates a model based off of the k nearest neighbors at any given point. Where k is an input argument.

Prevents Overfitting: no

Handles Outliers: no

Handles several features: no

Adaptive Regularization: no

Large Dataset: no

Non linear: yes

Interpretability Score: 5 / 5

When to Use: Nonlinear data, interpretability is important, unimportant features

When to Use Expanded:

- When you are unsure of the structure of your data and want a model that will fit well
- Not concerned with overfitting
- Interpretability is important

Advantages:

- Fits very well to data of various structures
- More interpretable than other nonlinear models

Disadvantages:

- Extremely impacted by outliers and corrupt data
- Need several more samples than features for quality results
- Difficulty dealing with large numbers of features

Model Name: RandomForestRegressor

Description: A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

Prevents Overfitting: yes

Handles Outliers: yes

Handles several features: yes

Adaptive Regularization: no

Large Dataset: yes

Non linear: yes

Interpretability Score: 3 / 5

When to Use: Nonlinear data groups in buckets

When to Use Expanded:

- Data is not linear and is composed more of "buckets"
- Number of samples > number of features
- There are dependent features in the input data. DTR handles these correlations well.

Advantages:

- Can export tree structure to see which features the tree is splitting on
- Handles sparse and correlated data well
- Able to tune the model to help with overfitting problem

Disadvantages:

- Prediction accuracy on complex problems is usually inferior to gradient-boosted trees.
- A forest is less interpretable than a single decision tree.

RandomForestRegressor

Model Deployment

Integrate the selected model into an existing **production** and stable environment where a **client** request the model

Feature	Format
Date	dd/mm/yyyy
Hour	int
Temperature	°C
Humidity	%
Wind speed	m/s
Visibility	10m
Dew point temperature	°C
Solar Radiation	MJ/m2
Rainfal	mm
Snowfall	cm
Seasons	{"Winter", "Autumn", "Spring", "Summer"}
Holiday	{"Holiday", "No Holiday"}

```
import requests
from preprocessing import preprocess

X = None  # Matrix of raw features
url = 'http://localhost:5000/predict'  # API request url

def serialize(df):
    return [[value for value in row] for row in df.values]

# preprocess de feature matrix
X = serialize(preprocess(X))
# request the API
r = requests.post(url, json={'inputs': serialize(X)})

# get the predictions
prediction = r.json()
```

CreateFeature Matrix

Request the API
< 10 lines of code</pre>