

要求:

- 1、完成视频"21221-060002-W1301. 第06模块 指针基础-引用及不同类型的指针的互相转换. mp4"的学习
- 2、用于看懂float/double内部存储格式的例子如下

```
#include <iostream>
using namespace std;
int main()
{
    float f = 123.456f;
    char* p = (char*)&f;
    cout << hex << (int) (*p) << endl;
    cout << hex << (int) (*(p+1)) << endl;
    cout << hex << (int) (*(p+2)) << endl;
    cout << hex << (int) (*(p+3)) << endl;
    return 0;
}
//注: x86系列CPU的多字节数据存储,是低位在前
```

- 3、完成后续page的内容
- 4、转换为pdf后在"文档作业"中提交(12.9前)

格式要求:	多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")
	0.0411512 <mark>(此处假设学号是1234567,各人换成自己的学号,按1234567做的0分!!!)</mark> I正、指数为正
(1) 得到的	J32bit的机内表示是: <mark>0</mark> 1001010 00000011 01001011 10010000
(2) 其中:	符号位是0
	指数是10010100(填32bit中的原始形式) 指数转换为十进制形式是148(32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是21(32bit中的原始形式按IEEE754的规则转换)
形式转换)	尾数是0000011 01001011 10010000(填32bit中的原始形式) 尾数转换为十进制整数形式是0.0257434844970703(32bit中的原始形式按二进制原码
101441	尾数表示的十进制小数形式是1.0257434844970703(保留小数点后)

格式要求:	多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")				
B2151140. 0411512 (此处假设学号是1234567,各人换成自己的学号,按1234567做的0分!!!) 注:尾数为负、指数为正					
(1) 得到的	J32bit的机内表示是:11001010 0 <mark>0000011 01001011 10010000</mark>				
(2) 其中:	符号位是1				
	指数是10010100(填32bit中的原始形式) 指数转换为十进制形式是148(32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是21(32bit中的原始形式按IEEE754的规则转换)				
形式转换)	尾数是0000011 01001011 10010000(填32bit中的原始形式) 尾数转换为十进制整数形式是0.0257434844970703(32bit中的原始形式按二进制原码				
10-14414	尾数表示的十进制小数形式是1.0257434844970703(保留小数点后)				

格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")
C. 0.002151140 <mark>(此处假设学号是1234567,各人换成自己的学号,按1234567做的0分!!!)</mark> 注:尾数为正、指数为负
(1) 得到的32bit的机内表示是:00111011 00001100 11111010 00100100
(2) 其中: 符号位是0
指数是01110110(填32bit中的原始形式) 指数转换为十进制形式是118(32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是9(32bit中的原始形式按IEEE754的规则转换)
尾数是0001100 11111010 00100100(填32bit中的原始形式) 尾数转换为十进制整数形式是0.10138368606567383(32bit中的原始形式按二进制原 码形式转换)
尾数表示的十进制小数形式是1. 10138368606567383(保留小数点后)

格式要求:	多字节时,	每8bit中间加一	个空格或-(例:	"11010100 00	0110001″ ፤	或 "11010100-00	0110001")
	51140 <mark>(此</mark> ɪ负、指数为		34567,各人换)	成自己的学号,	,按123456	67做的0分!!!)	
(1) 得到的	J32bit的机内	内表示是: <mark>1</mark> 01	11011 00001100	0 11111010 00	0100100		
(2) 其中:	符号位是	1					
	指数转换为)1110110 十进制形式是 十进制形式是	118	(32bit中的原		注制原码形式转 54的规则转换)	换)
码形式转换	尾数转换为	_ <mark>0001100 111110</mark> 十进制整数形式					形式按二进制原
		十进制小数形式	是1. 101383	368606567383_		(保留小数点后)	

格式要求:多字节时,每8bit中间加一个空格或-(例:"11010100 00110001"或"11010100-00110001")
A. 2151140.0411512 <mark>(此处假设学号是1234567,各人换成自己的学号,按1234567做的0分!!!)</mark> 注:尾数为正、指数为正
(1) 得到的64bit的机内表示是: <u>01000001_01000000_01101001_01110010_00000101_01000100_01110001_010010</u>
(2) 其中: 符号位是0
指数是1000001_0100(填64bit中的原始形式) 指数转换为十进制形式是1044(64bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是21(64bit中的原始形式按IEEE754的规则转换)
尾数是0000_01101001_01110010_00000101_01000100_01110001_010010

格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")
B2151140. 0411512
(1) 得到的64bit的机内表示是: <u>11000001 01000000 01101001 01110010 00000101 01000100 01110001 010010</u>
(2) 其中: 符号位是1
指数是

格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")
C. 0.002151140 (此处假设学号是1234567,各人换成自己的学号,按1234567做的0分!!!) 注:尾数为正、指数为负
(1) 得到的64bit的机内表示是: 0011111 01100001 10011111 01000100 0111111
(2) 其中: 符号位是0
指数是0111110 1100(填64bit中的原始形式) 指数转换为十进制形式是1004(64bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是19(64bit中的原始形式按IEEE754的规则转换)
尾数是0001 10011111 01000100 01111110 01011111 00101011 10001010(填64bit中的原始形式) 尾数转换为十进制整数形式是0.10138368000000009(64bit中的原始形式按二进制原码形式转换) 尾数表示的十进制小数形式是1.10138368000000009(保留小数点后)

格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")
D0. 002151140 (此处假设学号是1234567,各人换成自己的学号,按1234567做的0分!!!) 注:尾数为负、指数为负
(1) 得到的64bit的机内表示是: 1011111 01100001 10011111 01000100 0111111
(2) 其中: 符号位是1
指数是0111110 1100(填64bit中的原始形式) 指数转换为十进制形式是1004(64bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是19(64bit中的原始形式按IEEE754的规则转换)
尾数是0001 10011111 01000100 01111110 01011111 00101011 10001010(填64bit中的原始形式) 尾数转换为十进制整数形式是0.10138368000000009(64bit中的原始形式按二进制原码形式转换) 尾数表示的十进制小数形式是1.10138368000000009(保留小数点后)

§ 6. 指针基础 - 浮点数机内存储格式(IEEE 7

4、总结

(1) float型数据的32bit是如何分段来表示一个单精度的浮点数的?给出bit位的分段解释 尾数的正负如何表示?尾数如何表示?指数的正负如何表示?指数如何表示?

1个bit位(31)用0或1表示正负S(数符),

8个bit位(30-23)表示与2的指数次方有关的E(阶码),

23个bit位(22-0)表示小数部分M(尾数);

真值 $x = (-1)^S * (1.M) * 2^{E-127}$ (指数e=E-127)

(2) 为什么float型数据只有7位十进制有效数字? 为什么最大只能是3.4x10³⁸ ? 有些资料上说有效位数是6[~]7位,能找出6位/7位不同的例子吗?

23个bit位最小的分辨率为2⁻²³ =0.0000001192······,故只能保证最多7位有效数字;

8个bit位最大表示的阶码E为255,指数e最大为255-127=128,

2128 = 3.4028 · · · * 1038 , 故最大只能到这个数量级;

出现6、7位不同的原因是,虽然最小分辨位数可以达到7位,

但是第7位并不是都完全准确覆盖,大部分情况仍然是近似等于,可能会出现误差。

	S(数符)	E(阶码)	M(尾数)	总长
float	1	8	23	32
double	1	11	52	64

(3) double型数据的64bit是如何分段来表示一个双精度的浮点数的?给出bit位的分段解释 尾数的正负如何表示?尾数如何表示?指数的正负如何表示?指数如何表示?

1个bit位(63)用0或1表示正负S(数符), 11个bit位(62-52)表示与2的指数次方有关的E(阶码), 52个bit位(51-0)表示小数部分M(尾数); 真值 x = (-1)^S * (1. M) * 2^{E-1023} (指数e=E-1023)

(4) 为什么double型数据只有15位十进制有效数字? 为什么最大只能是1.7x10³⁰⁸ ? 有些资料上说有效位数是15[~]16位,能找出15位/16位不同的例子吗?

52个bit位最小的分辨率为 2^{-52} =2. $22*10^{-16}$,故只能保证最多16位有效数字;11个bit位最大表示的阶码E为2047,指数e最大为2047-1023=1024, 2^{1024} =1. $797693\cdots*10^{308}$,故最大只能到这个数量级;

出现15、16位不同的原因是,虽然最小分辨位数可以达到16位,

但是第16位并不是都完全准确覆盖,大部分情况仍然是近似等于,可能会出现误差。

注:

- 文档用自己的语言组织
- 篇幅不够允许加页
- 如果用到某些小测试程序进行说明,可以贴上小测试程序的源码及运行结果
- 为了使文档更清晰,允许将网上的部分图示资料截图后贴入
- 不允许在答案处直接贴某网址,再附上"见**"(或类似行为),否则文档作业部分直接总分-50

	S(数符)	E(阶码)	M(尾数)	总长
float	1	8	23	32
double	1	11	52	64

