Scalable Underapproximative Verification of Stochastic LTI Systems using Convexity and Compactness

Abraham Vinod and Meeko Oishi

Electrical and Computer Engineering, University of New Mexico

April 11, 2018

HSCC 2018 — Porto, Portugal

Motivation

- Real world problems stochastic and high-dimensional
 - Motion planning in stochastic environments transportation
 - Human-automation collaboration systems biomedical systems
- Need for probabilistic guarantees of safety and performance

Motivation

Stochastic reach-avoid problem — viability and reachability

maximize $\mathbb{P}\{stay \text{ safe and } reach \text{ target at the time horizon}\}$ subject to dynamics, initial state, policy constraints

Introduction

- Stochastic reach-avoid problem viability and reachability
 - $\mathbb{P}\{stay \text{ safe and } reach \text{ target at the time horizon}\}$ maximize subject to dynamics, initial state, policy constraints
- ightharpoonup Stochastic reach-avoid set acceptable initial states $\mathbb{P} \geq \theta$
- High computation costs and lacks scalability

Introduction

Motivation

Stochastic reach-avoid problem — viability and reachability $\mathbb{P}\{stay \text{ safe and } reach \text{ target at the time horizon}\}$ maximize

subject to dynamics, initial state, policy constraints

- ightharpoonup Stochastic reach-avoid set acceptable initial states $\mathbb{P} \geq \theta$
- High computation costs and lacks scalability

Objective: Compute a polytopic underapproximation of $\mathbb{P} \geq \theta$

Introduction

Main contributions

- Polytopic underapproximation of stochastic reach-avoid set
 - Open-loop underapproximation
 - Convex compact sets
- Sufficient conditions for closed, compact, and convex
 - Stochastic reach-avoid set
 - Open-loop underapproximation
- ► Admittance of optimal bang-bang Markov policies

Related work

Backward stochastic reachability

Abate, Amin, Prandini, Lygeros, & Sastry (2007); Abate, Prandini, Lygeros, & Sastry (2008); Summers, & Lygeros (2010)

Approximation techniques

Lesser, Oishi, & Erwin (2013); Manganini, Pirotta, Restelli, Piroddi, & Prandini (2015); Kariotoglou, Kamgarpour, Summers, & Lygeros (2017); Gleason, Vinod, & Oishi (2017); Vinod & Oishi (2017)

Forward stochastic reachability

Lasota & Mackey (1985); Althoff, Stursberg, & Buss (2009); Vinod, HomChaudhuri, & Oishi (2017); HomChaudhuri, Vinod, & Oishi (2017)

Uncertain system reachability (discrete time)

Bertsekas and Rhodes (1971); Girard (2005); Kurzhanskiy & Varaiya (2006); Kvasnica, Takács, Holaza, & Ingole (2015); Althoff (2015); Bak & Duggirala (2017)

Uncertain system reachability (continuous time)

Tomlin, Mitchell, Bayen, & Oishi (2003); Bokanowski, Forcadel, & Zidani (2010); Huang, Ding, Zhang, & Tomlin (2015); Chen, Herbert, & Tomlin (2017)

System formulation

Discrete-time LTI system (time horizon N and initial state $\overline{x}_0 \in \mathcal{X}$)

$$\mathbf{x}_{k+1} = A\mathbf{x}_k + B\overline{u}_k + \mathbf{w}_k$$
 $\mathbf{x}_k \in \mathcal{X} = \mathbb{R}^n, \overline{u}_k \in \mathcal{U} \subseteq \mathbb{R}^m$
 $\mathbf{w}_k \in \mathcal{W} \subseteq \mathbb{R}^p, \mathbf{w}_k \sim \psi_{\mathbf{w}}$

► (≡) Continuous state Markov decision process (when IID noise)

$$Q(d\overline{y}|\overline{x},\overline{u}) = \psi_{\mathbf{w}}(\overline{y} - A\overline{x} - B\overline{u})d\overline{y}$$

- $m{X} = [m{x}_1^{ op} \ \dots \ m{x}_N^{ op}]^{ op} \in \mathcal{X}^N$ random vector with probability measure
 - $\blacktriangleright \ \mathbb{P}_{\mathbf{x}}^{\pi,\overline{x}_0} \leftarrow \mathsf{Markov} \ (\mathsf{closed\text{-}loop}) \ \mathsf{policy} \ \pi: \mathbb{N}_{[0,\mathsf{N}-1]} \times \mathcal{X} \to \mathcal{U}, \ \pi \in \mathcal{M}$
 - $ightharpoons \mathbb{P}^{
 ho,\overline{x}_0}_{m{v}} \leftarrow ext{Open-loop policy }
 ho: \mathcal{X}
 ightarrow \mathcal{U}^N, \
 ho(\overline{x}_0)
 ot\in \mathcal{M}$

- Borel $\mathcal{S}, \mathcal{T} \subseteq \mathcal{X}$
- Terminal stochastic reach-avoid problem

$$V_0^*(\overline{x}_0) = \max_{\pi}. \ \mathbb{P}_{\boldsymbol{X}}^{\pi, \overline{x}_0} \left\{ \boldsymbol{X} \in \left(\mathcal{S}^{N-1} \times \mathcal{T} \right)
ight\}$$

Solution via dynamic programming

$$egin{aligned} V_{N}^{*}(\overline{x}) &= 1_{\mathcal{T}}(\overline{x}) \ V_{k}^{*}(\overline{x}) &= \sup_{\overline{u} \in \mathcal{U}} 1_{\mathcal{S}}(\overline{x}) \int_{\mathcal{X}} V_{k+1}^{*}(\overline{y}) Q(d\overline{y}|\overline{x}, \overline{u}) \end{aligned}$$

- Discretization approach
 - For compact $\mathcal{U}, \mathcal{S}, \mathcal{T}$ and Lipschitz Q
 - ▶ Curse of dimensionality $n \le 3$

$\overline{x}_0 \in \mathcal{S}$
$\pmb{x}_1 \in \mathcal{S}$
$\mathbf{x}_2 \in \mathcal{S}$
:
$\mathbf{x}_{N-1} \in \mathcal{S}$
$x_N \in \mathcal{T}$
$m{X} \in \mathcal{S}^{N-1} imes \mathcal{T}$

Abate, Amin, Prandini, Lygeros, and Sastry, HSCC 2007 Summers and Lygeros, Automatica 2010

Stochastic reach-avoid problem and its solution

- ▶ Borel $S, T \subseteq X$
- Terminal stochastic reach-avoid problem

$$V_0^*(\overline{x}_0) = \max_{\pi}. \ \mathbb{E}_{x_0}^{\pi} \left[\left(\prod_{k=0}^{N-1} 1_{\mathcal{S}}(\boldsymbol{x}_k) \right) 1_{\mathcal{T}}(\boldsymbol{x}_N) \right]$$

Solution via dynamic programming

$$egin{aligned} V_{\mathcal{N}}^*(\overline{x}) &= 1_{\mathcal{T}}(\overline{x}) \ V_k^*(\overline{x}) &= \sup_{\overline{u} \in \mathcal{U}} 1_{\mathcal{S}}(\overline{x}) \int_{\mathcal{X}} V_{k+1}^*(\overline{y}) Q(d\overline{y}|\overline{x}, \overline{u}) \end{aligned}$$

- Discretization approach
 - For compact $\mathcal{U}, \mathcal{S}, \mathcal{T}$ and Lipschitz Q
 - ▶ Curse of dimensionality $n \le 3$

$\overline{x}_0 \in \mathcal{S}$
$\pmb{x}_1 \in \mathcal{S}$
$\mathbf{x}_2 \in \mathcal{S}$
:
$\mathbf{x}_{N-1} \in \mathcal{S}$
$\mathbf{x}_{N}\in\mathcal{T}$
$m{X} \in \mathcal{S}^{N-1} imes \mathcal{T}$

Abate, Amin, Prandini, Lygeros, and Sastry, HSCC 2007 Summers and Lygeros, Automatica 2010

Stochastic reach-avoid problem and its solution

- Borel $\mathcal{S}, \mathcal{T} \subseteq \mathcal{X}$
- Terminal stochastic reach-avoid problem

$$V_0^*(\overline{x}_0) = \max_{\pi} \quad \mathbb{E}_{x_0}^{\pi} \left[\left(\prod_{k=0}^{N-1} 1_{\mathcal{S}}(\boldsymbol{x}_k) \right) 1_{\mathcal{T}}(\boldsymbol{x}_N) \right]$$
s. t. $\pi \in \mathcal{M}$

Solution via dynamic programming

$$egin{aligned} V_{\mathcal{N}}^*(\overline{x}) &= 1_{\mathcal{T}}(\overline{x}) \ V_k^*(\overline{x}) &= \sup_{\overline{u} \in \mathcal{U}} 1_{\mathcal{S}}(\overline{x}) \int_{\mathcal{X}} V_{k+1}^*(\overline{y}) Q(d\overline{y}|\overline{x}, \overline{u}) \end{aligned}$$

- Discretization approach
 - For compact $\mathcal{U}, \mathcal{S}, \mathcal{T}$ and Lipschitz Q
 - Curse of dimensionality $n \le 3$

Abate, Amin, Prandini, Lygeros, and Sastry, HSCC 2007 Summers and Lygeros, Automatica 2010

Stochastic reach-avoid problem	Underapproximation
	$\begin{array}{ccc} max. & \mathbb{P}^{\rho,\overline{x}_0}_{\boldsymbol{X}} \left\{ \boldsymbol{X} \in (\mathcal{S}^{N-1} \times \mathcal{T}) \right\} \\ s.t. & \rho(\overline{x}_0) \in \mathcal{U}^{N} \end{array}$
Optimal value function $V_0^*(\overline{x}_0)$	Optimal value function $W_0^*(\overline{x}_0)$
Search over Markov policies	Search over open-loop policies

Stochastic reach-avoid problem	Underapproximation
	$\begin{array}{ccc} \max & \int_{\mathcal{S}^{N-1}\times\mathcal{T}} \psi_{\boldsymbol{X}}(\overline{X};\rho,\overline{x}_0) d\overline{X} \\ & \text{s.t.} & \rho(\overline{x}_0) \in \mathcal{U}^N \end{array}$
Optimal value function $V_0^*(\overline{x}_0)$	Optimal value function $W_0^*(\overline{x}_0)$
Search over Markov policies	Search over open-loop policies

Underapproximation of the stochastic reach-avoid problem

Stochastic reach-avoid problem	Underapproximation
	$\begin{array}{ccc} \text{max.} & \int_{\mathcal{S}^{N-1}\times\mathcal{T}} \psi_{\pmb{X}}(\overline{X};\rho,\overline{x}_0) d\overline{X} \\ \text{s.t.} & \rho(\overline{x}_0) \in \mathcal{U}^N \end{array}$
Optimal value function $V_0^*(\overline{x}_0)$	Optimal value function $W_0^*(\overline{x}_0)$
Search over Markov policies	Search over open-loop policies

Stochastic reach-avoid set and its underapproximation, $\theta \in [0, 1]$

$$\begin{split} \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : V_0^*(\overline{x}_0) \geq \theta \} \\ \mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : W_0^*(\overline{x}_0) \geq \theta \} \subseteq \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) \end{split}$$

Stochastic reach-avoid set and its underapproximation, $\theta \in [0, 1]$

$$\begin{split} \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : V_0^*(\overline{x}_0) \geq \theta \} \\ \mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : W_0^*(\overline{x}_0) \geq \theta \} \subseteq \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) \end{split}$$

Stochastic reach-avoid set and its underapproximation, $\theta \in [0, 1]$

$$\begin{split} \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : V_0^*(\overline{x}_0) \geq \theta \} \\ \mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : W_0^*(\overline{x}_0) \geq \theta \} \subseteq \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) \end{split}$$

Stochastic reach-avoid set and its underapproximation, $\theta \in [0, 1]$

$$\begin{split} \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : V_0^*(\overline{x}_0) \geq \theta \} \\ \mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : W_0^*(\overline{x}_0) \geq \theta \} \subseteq \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) \end{split}$$

lacktriangle Stochastic reach-avoid set and its underapproximation, $heta \in [0,1]$

$$\begin{split} \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : V_0^*(\overline{x}_0) \geq \theta \} \\ \mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : W_0^*(\overline{x}_0) \geq \theta \} \subseteq \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) \end{split}$$

Stochastic reach-avoid set and its underapproximation, $\theta \in [0, 1]$

$$\begin{split} \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : V_0^*(\overline{x}_0) \geq \theta \} \\ \mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : W_0^*(\overline{x}_0) \geq \theta \} \subseteq \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) \end{split}$$

Stochastic reach-avoid set and its underapproximation, $\theta \in [0, 1]$

$$\mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) = \{ \overline{x}_0 \in \mathcal{X} : V_0^*(\overline{x}_0) \ge \theta \}$$

$$\mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T}) = \{ \overline{x}_0 \in \mathcal{X} : W_0^*(\overline{x}_0) \ge \theta \} \subseteq \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T})$$

Stochastic reach-avoid set and its underapproximation, $\theta \in [0, 1]$

$$\begin{split} \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : V_0^*(\overline{x}_0) \geq \theta \} \\ \mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T}) &= \{ \overline{x}_0 \in \mathcal{X} : W_0^*(\overline{x}_0) \geq \theta \} \subseteq \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) \end{split}$$

Stochastic reach-avoid set and its underapproximation, $\theta \in [0, 1]$

$$\mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T}) = \{ \overline{x}_0 \in \mathcal{X} : V_0^*(\overline{x}_0) \ge \theta \}$$

$$\mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T}) = \{ \overline{x}_0 \in \mathcal{X} : W_0^*(\overline{x}_0) \ge \theta \} \subseteq \mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T})$$

Problem statements

- Q1 Compute a tight polytopic underapproximation of $\mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T})$ in a grid-free manner
- Q2 When are $\mathcal{L}^{\pi^*}(\theta, \mathcal{S}, \mathcal{T})$ and $\mathcal{K}^{\rho^*}(\theta, \mathcal{S}, \mathcal{T})$ convex and compact?
 - ▶ Log-concavity and upper semicontinuity of $V_0^*(\overline{x}_0)$ and $W_0^*(\overline{x}_0)$
 - Admittance of bang-bang optimal Markov policies

Property		c	π	$Q(\cdot \overline{x},\overline{u})$	и
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	/	Q(' x, u)	и
Log-concave	Convex	Borel	Borel	Continuous	Compact
		Convex	Convex	Log-concave	Convex
upper semi-continuity	Closed	Closed	Closed	Cambinana	Compact
_	Compact $\theta \in (0,1]$	Compact	Closed	Continuous	Compact

Property		S	σ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	/	$Q(\cdot x,u)$	И
Log-concave (Convex	Borel	Borel	Continuous	Compact
		Convex	Convex	Log-concave	Convex
upper semi-continuity	Closed	Closed	Closed	Continuous	Compact
_	Compact $\theta \in (0,1]$	Compact	Closed	Continuous	Compact

Property		c	τ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	S	/	$Q(\cdot x,u)$	И
Log-concave	Convex	Borel	Borel	Continuous	Compact
		Convex	Convex	Log-concave	Convex
upper semi-continuity	Closed	Closed	Closed	Cambina	Compact
_	Compact $\theta \in (0,1]$	Compact	Ciosea	Continuous	Compact

Property		c	τ	$Q(\cdot \overline{x},\overline{u})$	1,1
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	S	/	$Q(\cdot x,u)$	И
Log-concave	Convex	Borel	Borel	Continuous	Compact
		Convex	Convex	Log-concave	Convex
upper semi-continuity	Closed	Closed	Closed	Cti	Compact
_	Compact $\theta \in (0,1]$	Compact	Closed	Continuous	Compact

Property		S	σ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	/	$Q(\cdot x,u)$	И
Log-concave (Convex	Borel	Borel	Continuous	Compact
		Convex	Convex	Log-concave	Convex
upper semi-continuity	Closed	Closed	Closed	Continuous	Compact
_	Compact $\theta \in (0,1]$	Compact	Closed	Continuous	Compact

Property		c	τ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	S	/	$Q(\cdot x,u)$	И
Log-concave	Convex	Borel	Borel	Continuous	Compact
		Convex	Convex	Log-concave	Convex
upper semi-continuity	Closed	Closed	Closed	Cambina	Compact
_	Compact $\theta \in (0,1]$	Compact	Ciosea	Continuous	Compact

Property		S	τ	$Q(\cdot \overline{x},\overline{u})$	1,1
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	/	$Q(\cdot x,u)$	И
Log-concave Con	Convex	Borel	Borel	Continuous	Compact
		Convex	Convex	Log-concave	Convex
upper semi-continuity	Closed	Closed	Closed	Continuous	Compact
_	Compact $\theta \in (0,1]$	Compact	Closed	Continuous	Compact

Property		c		$Q(\cdot \overline{x},\overline{u})$	1/
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	S	/	$Q(\cdot x,u)$	U
Log-concave	C	Borel	Borel	Continuous	Compact
	Convex	Convex	Convex	Log-concave	Convex
upper semi-continuity	er semi-continuity Closed		Closed	C+i	Commont
_	Compact $\theta \in (0,1]$	Compact	Ciosea	Continuous	Compact

Grid-free, parallelizable, tight polytopic underapproximation!

Property		c	σ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	,	$Q(\cdot x,u)$	и
Log-concave	Camusay	Borel Borel	Borel	Continuous	Compact
Log-concave	Convex	Convex	Convex	Log-concave	Convex

- Avoid T at N:
 - ightharpoonup Reach $\mathcal{X} \setminus \mathcal{T}$ at N,
 - \triangleright $\mathcal{S} \leftarrow \mathcal{X}$, and
 - $\triangleright \mathcal{U} = \text{convexHull}(\mathcal{U}_{\text{vertices}})$

Property		c	τ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	/	$Q(\cdot x,u)$	И
Log-concave	Convex	Borel Convex	Borel Convex	Continuous Log-concave	Compact Convex

► Avoid T at N:

- ightharpoonup Reach $\mathcal{X} \setminus \mathcal{T}$ at N,
- \triangleright $\mathcal{S} \leftarrow \mathcal{X}$, and
- $ightharpoonup \mathcal{U} = \operatorname{convexHull}(\mathcal{U}_{\operatorname{vertices}})$

$$\begin{split} V_0^*(\overline{x}_0) &= \sup_{\pi \in \mathcal{M}} \mathbb{P}_{\boldsymbol{X}}^{\pi,\overline{x}_0} \{ \boldsymbol{x}_N \in \mathcal{X} \setminus \mathcal{T} \} \\ &= 1 - \inf_{\pi \in \mathcal{M}} \mathbb{P}_{\boldsymbol{X}}^{\pi,\overline{x}_0} \{ \boldsymbol{x}_N \in \mathcal{T} \} \\ &\triangleq 1 - V_{0,\mathrm{bang}}^*(\overline{x}) \end{split}$$

Property		c	τ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	,	$Q(\cdot x,u)$	И
Log-concave	Convex	Borel	Borel	Continuous	Compact
Log-concave	Convex	Convex	Convex	Log-concave	Convex

Avoid \mathcal{T} at N:

- ightharpoonup Reach $\mathcal{X} \setminus \mathcal{T}$ at N,
- \triangleright $\mathcal{S} \leftarrow \mathcal{X}$, and
- $\mathcal{U} = \text{convexHull}(\mathcal{U}_{\text{vertices}})$

$$egin{aligned} V_0^*(\overline{x}_0) &= \sup_{\pi \in \mathcal{M}} \mathbb{P}_{oldsymbol{X}}^{\pi,\overline{x}_0} \{oldsymbol{x}_{\mathcal{N}} \in \mathcal{X} \setminus \mathcal{T} \} \ &= 1 - \inf_{\pi \in \mathcal{M}} \mathbb{P}_{oldsymbol{X}}^{\pi,\overline{x}_0} \{oldsymbol{x}_{\mathcal{N}} \in \mathcal{T} \} \ &\triangleq 1 - V_{0, ext{bang}}^*(\overline{x}) \ V_{\mathcal{N}, ext{bang}}^*(\overline{x}) &= 1_{\mathcal{T}}(\overline{x}) \ V_{k, ext{bang}}^*(\overline{x}) &= \inf_{\overline{u} \in \mathcal{U}} \int_{\mathcal{X}} V_{k+1}^*(\overline{y}) Q(d\overline{y}|\overline{x},\overline{u}) \end{aligned}$$

Property		c	τ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	/	$Q(\cdot x,u)$	U
Log concavo	C	Borel Borel Continu	Continuous	Compact	
Log-concave	Convex	Convex	Convex	Log-concave	Convex

Avoid \mathcal{T} at N:

- ightharpoonup Reach $\mathcal{X} \setminus \mathcal{T}$ at N,
- \triangleright $\mathcal{S} \leftarrow \mathcal{X}$, and
- $\mathcal{U} = \text{convexHull}(\mathcal{U}_{\text{vertices}})$

$$\begin{split} V_0^*(\overline{x}_0) &= \sup_{\pi \in \mathcal{M}} \mathbb{P}_{\boldsymbol{X}}^{\pi,\overline{x}_0} \{\boldsymbol{x}_N \in \mathcal{X} \setminus \mathcal{T}\} \\ &= 1 - \inf_{\pi \in \mathcal{M}} \mathbb{P}_{\boldsymbol{X}}^{\pi,\overline{x}_0} \{\boldsymbol{x}_N \in \mathcal{T}\} \\ &\triangleq 1 - V_{0,\mathrm{bang}}^*(\overline{x}) \\ V_{N,\mathrm{bang}}^*(\overline{x}) &= 1_{\mathcal{T}}(\overline{x}) \\ V_{k,\mathrm{bang}}^*(\overline{x}) &= \inf_{\overline{u} \in \mathcal{U}_{\mathrm{vertices}}} \int_{\mathcal{X}} V_{k+1}^*(\overline{y}) Q(d\overline{y}|\overline{x},\overline{u}) \end{split}$$

$$\exp\left(\frac{-\|x-5\|_2^2}{4}\right)$$

Property		c	τ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	/	$Q(\cdot x,u)$	И
Log-concave	Convex	Borel	Borel	Continuous	Compact
Log compare	Convex	Convex	Convex	Log-concave	Convex

Avoid T at N:

- ightharpoonup Reach $\mathcal{X} \setminus \mathcal{T}$ at N,
- \triangleright $\mathcal{S} \leftarrow \mathcal{X}$, and
- $\triangleright \mathcal{U} = \text{convexHull}(\mathcal{U}_{\text{vertices}})$

$$egin{aligned} V_0^*(\overline{x}_0) &= \sup_{\pi \in \mathcal{M}} \mathbb{P}_{oldsymbol{X}}^{\pi,\overline{x}_0} \{oldsymbol{x}_{\mathcal{N}} \in \mathcal{X} \setminus \mathcal{T} \} \ &= 1 - \inf_{\pi \in \mathcal{M}} \mathbb{P}_{oldsymbol{X}}^{\pi,\overline{x}_0} \{oldsymbol{x}_{\mathcal{N}} \in \mathcal{T} \} \ &\triangleq 1 - V_{0, ext{bang}}^*(\overline{x}) \ V_{\mathcal{N}, ext{bang}}^*(\overline{x}) &= 1_{\mathcal{T}}(\overline{x}) \ V_{k, ext{bang}}^*(\overline{x}) &= \inf_{\overline{u} \in \mathcal{U}_{ ext{vertices}}} \int_{\mathcal{X}} V_{k+1}^*(\overline{y}) Q(d\overline{y}|\overline{x},\overline{u}) \end{aligned}$$

$$\log\left(\exp\left(\frac{-\|x-5\|_2^2}{4}\right)\right)$$

Property		c	σ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	/	$Q(\cdot x,u)$	И
Log-concave	Convex	Borel Convex	Borel Convex	Continuous Log-concave	Compact Convex

► Avoid T at N:

- ightharpoonup Reach $\mathcal{X} \setminus \mathcal{T}$ at N,
- \triangleright $\mathcal{S} \leftarrow \mathcal{X}$, and
- $\triangleright \mathcal{U} = \text{convexHull}(\mathcal{U}_{\text{vertices}})$

$$egin{aligned} V_0^*(\overline{x}_0) &= \sup_{\pi \in \mathcal{M}} \mathbb{P}_{oldsymbol{X}}^{\pi,\overline{x}_0} \{oldsymbol{x}_N \in \mathcal{X} \setminus \mathcal{T}\} \ &= 1 - \inf_{\pi \in \mathcal{M}} \mathbb{P}_{oldsymbol{X}}^{\pi,\overline{x}_0} \{oldsymbol{x}_N \in \mathcal{T}\} \ &\triangleq 1 - V_{0, ext{bang}}^*(\overline{x}) \ V_{N, ext{bang}}^*(\overline{x}) &= 1_{\mathcal{T}}(\overline{x}) \ V_{k, ext{bang}}^*(\overline{x}) &= \inf_{\overline{u} \in \mathcal{U}_{ ext{vertices}}} \int_{\mathcal{X}} V_{k+1}^*(\overline{y}) Q(d\overline{y}|\overline{x},\overline{u}) \end{aligned}$$

$$\log \left(\exp \left(\frac{-\|x-5\|_2^2}{4} \right) \right)$$

minimize $\exp \left(\frac{-\|x-5\|_2^2}{4} \right)$
s.t $x \in [2.5, 6]$

Property		c	τ	$Q(\cdot \overline{x},\overline{u})$	11
$V_0^*(\overline{x})$ and $W_0^*(\overline{x})$	$\mathcal{L}^{\pi^*}(heta)$ and $\mathcal{K}^{ ho^*}(heta)$	3	/	$Q(\cdot x,u)$	u
Log-concave	Convex	Borel Convex	Borel Convex	Continuous Log-concave	Compact Convex

Avoid \mathcal{T} at N:

- ightharpoonup Reach $\mathcal{X} \setminus \mathcal{T}$ at N,
- \triangleright $\mathcal{S} \leftarrow \mathcal{X}$, and
- $\mathcal{U} = \text{convexHull}(\mathcal{U}_{\text{vertices}})$

$$egin{aligned} V_0^*(\overline{x}_0) &= \sup_{\pi \in \mathcal{M}} \mathbb{P}_{oldsymbol{X}}^{\pi,\overline{x}_0} \{oldsymbol{x}_N \in \mathcal{X} \setminus \mathcal{T}\} \ &= 1 - \inf_{\pi \in \mathcal{M}} \mathbb{P}_{oldsymbol{X}}^{\pi,\overline{x}_0} \{oldsymbol{x}_N \in \mathcal{T}\} \ &\triangleq 1 - V_{0, ext{bang}}^*(\overline{x}) \ V_{N, ext{bang}}^*(\overline{x}) &= 1_{\mathcal{T}}(\overline{x}) \ V_{k, ext{bang}}^*(\overline{x}) &= \inf_{\overline{u} \in \mathcal{U}_{ ext{vertices}}} \int_{\mathcal{X}} V_{k+1}^*(\overline{y}) Q(d\overline{y}|\overline{x},\overline{u}) \end{aligned}$$

$$\log \left(\exp \left(\frac{-\|x-5\|_2^2}{4} \right) \right)$$

minimize $\exp \left(\frac{-\|x-5\|_2^2}{4} \right)$
s.t $x \in [2.5, 6]$

Chain of integrators

Examples

Clohessy-Wiltshire-Hill dynamics

$$\begin{vmatrix} \ddot{x} - 3\omega x - 2\omega \dot{y} = u_1 \\ \ddot{y} + 2\omega \dot{x} = u_2 \end{vmatrix} \Rightarrow \begin{cases} \mathbf{x}_{t+1} = A\mathbf{x}_t + B\overline{u}_t + \mathbf{w}_t \\ \mathbf{x}_t = [x_t \ y_t \ \dot{x}_t \ \dot{y}_t]^\top \\ \mathbf{w}_t \sim \mathcal{N}(\overline{0}, \Sigma_{\mathbf{w}}) \end{cases}$$

Stay within line-of-sight cone and reach target

	Proposed method	const. (CDC '13)	Lagrangian (CDC '17)	prog. (HSCC '07)	Value of v $(\dot{x}_0 = \dot{y}_0 = v)$
Compute	6.52	106.53	0.24	-	0
time (min.)	9.88	13.12	-	-	0.1

Conclusion

Summary

- Polytopic underapproximation for the stochastic reach-avoid set
 - Scalable, grid-free, parallelizable
- Sufficient conditions for
 - Closed, compact, convex sets
- Optimal bang-bang policies

- Mitigate noisy optimization
- Feedback-based underapproximation

Acknowledgement

This work was supported by the following grants:

- NSF CMMI-1254990 (CAREER, Oishi)
- ► CNS-1329878

Conclusion

Summary

- Polytopic underapproximation for the stochastic reach-avoid set
 - Scalable, grid-free, parallelizable
- Sufficient conditions for
 - ► Closed, compact, convex sets
- ► Optimal bang-bang policies

- Mitigate noisy optimization
- ► Feedback-based underapproximation

Conclusion