LC 25 : Déplacement de l'équilibre chimique

Élément imposé : Déterminer l'évolution de la valeur d'une constante thermodynamique d'équilibre en fonction de la température

Vendredi 22 Novembre 2024

Introduction Pédagogique

Notions et contenus	Capacités exigibles
7.2. Deuxième principe de la thermodynamique	appliqué aux transformations physico-chimiques
Enthalpie de réaction, entropie de réaction, enthalpie libre de réaction et grandeurs standard associées. Relation entre enthalpie libre de réaction et quotient de réaction ; équilibre physico-chimique ; évolution d'un système chimique.	Justifier qualitativement ou prévoir le signe de l'entropie standard de réaction. Relier création d'entropie et enthalpie libre de réaction lors d'une transformation d'un système physico-chimique à pression et température fixées. Prévoir le sens d'évolution à pression et température fixées d'un système physico-chimique dans un état donné à l'aide de l'enthalpie libre de réaction. Déterminer les grandeurs standard de réaction à partir des tables de données thermodynamiques et de la loi de Hess.
Constante thermodynamique d'équilibre ; relation de Van 't Hoff.	Citer et exploiter la relation de Van 't Hoff. Déterminer la valeur de la constante thermodynamique d'équilibre à une température quelconque. Déterminer l'évolution de la valeur d'une constante thermodynamique d'équilibre en fonction de la température.
Optimisation thermodynamique d'un procédé chimique :	Identifier les paramètres d'influence et leur contrôle pour optimiser une synthèse ou minimiser la formation d'un produit secondaire indésirable.

Introduction Pédagogique

Prérequis

- Cours complet de thermodynamique de première année (1^{er} et 2^{nd} principe, capacité calorifique)
- Loi de Beer-Lambert
- Loi d'action des masses

Introduction Pédagogique

Prérequis

- Cours complet de thermodynamique de première année (1^{er} et 2^{nd} principe, capacité calorifique)
- Loi de Beer-Lambert
- Loi d'action des masses

Difficultés envisagées

- Les notations des différentes grandeurs
- Savoir quand utiliser quelle formule
- Notion de déplacement d'équilibre

Loi d'action des Masses

$$\Delta_r G = RT \ln \left(\frac{Q}{K^o} \right)$$

- si $Q < K^{\circ}$, on a $\Delta_r G < 0 \Rightarrow d\xi > 0$: le système évolue dans le sens direct
- si $Q > K^{\circ}$, $\Delta_r G > 0 \Rightarrow d\xi < 0$: le système évolue dans le sens indirect
- si $Q = K^{\circ}$ le système est à l'équilibre ce qui correspond bien à la définition de K°

Solution de Co(${ m H_2O}$) $_6^{2+}$									
	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9
$VS_{m\`ere}$ (mL)	1	2	3	4	5	6	7	8	9
$C \text{ (mol } \cdot L^{-1})$	0,020	0,040	0,060	0,080	0,10	0,12	0,14	0,16	0,18

- \/			
7			1)
	-	_	

Solution de CoCl ₄ ²⁻								
	S_1'	S_2'	S_3'	S_4'	S_5'			
$VS'_{m\`ere}$ (mL)	1	2	3	4	5			
$C \pmod{\cdot L^{-1}}$	$2,0\cdot 10^{-4}$	$4,0\cdot 10^{-4}$	$6,0\cdot 10^{-4}$	$8,0\cdot 10^{-4}$	$1,0\cdot 10^{-3}$			
	S_6'	S_7'	S_8'	S_9'				
$VS'_{m\dot{e}re}$ (mL)	6	7	8	9				
$C \text{ (mol } \cdot L^{-1})$	$1,2\cdot 10^{-3}$	$1,4\cdot 10^{-3}$	$1,6\cdot 10^{-3}$	$1,8\cdot 10^{-3}$				

Tableau 2

Cette constante d'équilibre de la réaction s'exprime par⁽¹¹⁾ :

$$K^{o}(T) = \frac{\left[\text{Co}(\text{Cl})_{4}^{2-}\right]_{\ell_{q}}}{\left[\text{Co}\left(\text{H}_{2}\text{O}\right)_{6}^{2+}\right]_{\ell_{q}}\left[\text{Cl}^{-}\right]_{\ell_{q}}^{4}}.$$

Le tableau d'avancement de cette réaction s'écrit :

[i] en mol·L ⁻¹	$Co(H_2O)_6^{2+}$	+	4 Cl	⇆	Co(Cl) ₄ ²⁻	+	$6H_2O$
État initial	0,1		0,2		0		-
État d'équilibre	$0, 1 - x_{\ell q}$		$0, 2 - 4 x_{\acute{e}q}$		$x_{\acute{e}q}$		-

Tableau 2

Conclusion

⚠ Bien qu'on parle de déplacement d'équilibre, K° reste bien la valeur à l'équilibre, et le système évolue toujours vers cette valeur!

Conclusion

⚠ Bien qu'on parle de déplacement d'équilibre, K° reste bien la valeur à l'équilibre, et le système évolue toujours vers cette valeur! ⚠ On n'a pas du tout exploré l'aspect cinétique d'une transformation dans notre introduction à l'optimisation! \Rightarrow prochain chapitre!