Counting the number of different scaling exponents in multivariate scale-free dynamics: Clustering by bootstrap in the wavelet domain

C.-G. Lucas¹, P. Abry¹, H. Wendt², G. Didier³

ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France, firstname.lastname@ens-lyon.fr ² IRIT, Univ. Toulouse, CNRS, Toulouse, France, herwig.wendt@irit.fr ³ Math. Dept., Tulane University, New Orleans, USA, gdidier@tulane.edu

Goals

- Multivariate self-similarity: model for multivarate data with scale-free dynamics
- Eigen-wavelet estimation for the vector of self-similarity exponents: $H=(H_1,\ldots,H_M)$
- Count the number of H_m actually different
- Count the number of components of \underline{H} with same H_m

Methods

- Pairwise tests $H_m = H_{m+1}$
- Half-normal test statistics under the null hypothesis
- Multivariate wavelet block-bootstrap for test statistics estimation
- Multiple hypothesis corrections and clustering

Conclusions and perspectives

- Bootstrap reproduces the null Hypothesis
- Decent clustering performance
- Non ranked pairwise tests $H_m = H_{m'}$?
- Large dimension?

Multivariate self-similarity

Model [Didier et al., 2011]

Multivariate self-similarity exponent: $\underline{H} = (H_1, \dots, H_M)$,

 $0 < H_1 \le \ldots \le H_M < 1$

Estimation [Lucas et al., 2021]

1. Multivariate wavelet transform:

- Univariate wavelets $D_m(2^j, k) = \langle 2^{-j/2} \psi_{j,k}(t) | Y_m(t) \rangle$
- Multivariate wavelets $D(2^j, k) = (D_1(2^j, k), \dots, D_M(2^j, k))$
- 2. Wavelet spectra computed from n_{i_2} wavelet coefficients:

$$S^{(w)}(2^{j}) \triangleq \frac{1}{n_{j_2}} \sum_{k=1+(w-1)n_{j_2}}^{wn_{j_2}} D(2^{j}, k)D(2^{j}, k)^*, \ w = 1, \dots, 2^{j-j_2}$$

- 3. Eigenvalues of $S^{(w)}(2^j)$: $\{\lambda_1^{(w)}(2^j), \dots, \lambda_M^{(w)}(2^j)\}$
 - \rightarrow similar repulsion between eigenvalues at all scales $j \in \{j_1, \ldots, j_2\}$
 - \rightarrow asymptotical power law: $\lambda_m^{(w)}(2^j) \propto 2^{j(2H_m+1)}$
- 4. Averaged log-eigenvalues: $\bar{\lambda}_m(2^j) \triangleq 2^{j_2-j} \sum_{m=1}^{2^{j-j_2}} \log_2(\lambda_m^{(w)}(2^j))$
- 5. Linear regression: $\hat{H}_m = \frac{1}{2} \sum_{j=1}^{j_2} \omega_j \bar{\lambda}_m(2^j) + \frac{1}{2}$

CLUSTERING STRATEGY

Test procedure from a single observation

- 1. M-1 null hypotheses: $H_m = H_{m+1}, \ m = 1, \ldots, M-1$
- 2. Sorted estimates: $\underline{\hat{H}}_{\tau(\cdot)} = \operatorname{sort}(\underline{\hat{H}})$
- 3. Test statistics: $\tilde{\delta}_m = \hat{H}_{\tau(m+1)} \hat{H}_{\tau(m)}$
- 4. Under null hypothesis, $\tilde{\delta}_m \simeq \text{half-normal } (\sigma_m)$
- 5. Test decisions: rejects $H_m = H_{m+1}$ if $\frac{\tilde{\delta}_m}{\delta_m} > \gamma_m(\sigma_m)$
- σ_m unknown \Rightarrow bootstrap estimation

Bootstrap resampling

 \Rightarrow Scale parameter estimate: $\hat{\sigma}_m^{*2} = \text{Var}^*(\tilde{\delta}_m^*)/(1-\frac{2}{\pi})$

Multiple hypothesis corrections

- 1. Bootstrap test p-values: $p_m^* \triangleq 1 F\left(\frac{\tilde{\delta}_m}{\hat{\sigma}_m^*}\right)$
- F: standardized half-normal cumulative distribution function
- 2. False discovery rate α
- 3. Sorted p-values $p_{\pi(m)}^*$
- 4. Benjamini-Hochberg corrections: $d_{\alpha}^{(m)} = 1 : p_{\pi(m)}^* < \frac{\alpha}{M-1}m$ Clustering procedure

Rule: $d_{\alpha}^{(m)} = 1 \Leftrightarrow H_m$ and H_{m+1} in different clusters

PERFORMANCE EVALUATION

Monte Carlo simulations

 $N_{MC} = 1000$ realizations, M = 6 components, sample size $N = 2^{16}$

Scenario 1 (1 cluster): $\underline{H} = (0.8, 0.8, 0.8, 0.8, 0.8, 0.8)$

Scenario 2 (2 clusters): $\underline{H} = (0.6, 0.6, 0.6, 0.8, 0.8, 0.8)$ Scenario 3 (3 clusters): $\underline{H} = (0.4, 0.4, 0.6, 0.6, 0.8, 0.8)$

Scenario 4 (3 clusters): $\underline{H} = (0.4, 0.6, 0.6, 0.6, 0.8, 0.8)$

Reproduction of the statistic

Q-Q plot of δ_m vs. half-normal distribution under Scenario1

Q-Q plot of δ_m^* vs. half-normal distribution under Scenario2

Clustering performance

Histograms of the estimated numbers of clusters.

[Didier et al., 2011] G. Didier and V. Pipiras, "Integral representations and proper- ties of operator fractional Brownian motions," Bernoulli, vol. 17, no. 1, pp. 1–33, 2011.

[Lucas et al., 2021] C.-G. Lucas, P. Abry, H. Wendt, and G. Didier, "Bootstrap for testing the equality of selfsimilarity exponents across multivariate time series," in Proc. European Signal Processing Conference (EUSIPCO), Dublin, Ireland, August 2021.