

Ù&@^œ^¦ £ \$Q}&È		G€»Á/ājoÁ, EÐ, ÁÙ^ãr{ ã&ÁÖ^•ãt}
PÔX	Ùœ) 忦åÁÚXTæ¢ÁÜæ&∖ā),*ÁÛ^•c^{	
	Ü^]¦^•^} ææãç^ÁÔæk&` ææãi}•ÁËÄŒÜÔÒÁIËF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	20.62 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.91	
$C_e =$	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and nomino culture.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{\rm s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1091.38</u>	<u>5514.25</u>	k
Compressive Load =	4442.27	4835.31	k
Lateral Load =	<u>12.20</u>	<u>2515.39</u>	k
Moment (Weak Axis) =	0.03	<u>0.01</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 133120.0 in-lbs Resisting Force Required = 2016.97 lbs A minimum 132in long x 29in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3361.62 lbs to resist overturning. Minimum Width = Weight Provided = 5781.88 lbs Sliding 580.09 lbs Force = Use a 132in long x 29in wide x 18in tall Friction = 0.4 Weight Required = 1450.23 lbs ballast foundation to resist sliding. Resisting Weight = 5781.88 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 580.09 lbs Cohesion = 130 psf Use a 132in long x 29in wide x 18in tall 26.58 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2890.94 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft

2500 psi

8 in

f'c = Length =

Bearing Pressure Ballast Width <u>29 in</u> 30 in 31 in 32 in $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.42 \text{ ft}) =$ 5782 lbs 5981 lbs 6181 lbs 6380 lbs

ASD LC		1.0D -	+ 1.0S		1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	29 in	30 in	31 in	32 in	29 in	30 in	31 in	32 in	29 in	30 in	31 in	32 in	29 in	30 in	31 in	32 in
FA	1553 lbs	1553 lbs	1553 lbs	1553 lbs	1501 lbs	1501 lbs	1501 lbs	1501 lbs	2162 lbs	2162 lbs	2162 lbs	2162 lbs	-494 lbs	-494 lbs	-494 lbs	-494 lbs
FB	1584 lbs	1584 lbs	1584 lbs	1584 lbs	1805 lbs	1805 lbs	1805 lbs	1805 lbs	2412 lbs	2412 lbs	2412 lbs	2412 lbs	-2535 lbs	-2535 lbs	-2535 lbs	-2535 lbs
F _V	176 lbs	176 lbs	176 lbs	176 lbs	1040 lbs	1040 lbs	1040 lbs	1040 lbs	899 lbs	899 lbs	899 lbs	899 lbs	-1160 lbs	-1160 lbs	-1160 lbs	-1160 lbs
P _{total}	8919 lbs	9119 lbs	9318 lbs	9517 lbs	9088 lbs	9287 lbs	9487 lbs	9686 lbs	10356 lbs	10555 lbs	10754 lbs	10954 lbs	440 lbs	559 lbs	679 lbs	799 lbs
M	3926 lbs-ft	3926 lbs-ft	3926 lbs-ft	3926 lbs-ft	4432 lbs-ft	4432 lbs-ft	4432 lbs-ft	4432 lbs-ft	5944 lbs-ft	5944 lbs-ft	5944 lbs-ft	5944 lbs-ft	2045 lbs-ft	2045 lbs-ft	2045 lbs-ft	2045 lbs-ft
е	0.44 ft	0.43 ft	0.42 ft	0.41 ft	0.49 ft	0.48 ft	0.47 ft	0.46 ft	0.57 ft	0.56 ft	0.55 ft	0.54 ft	4.65 ft	3.66 ft	3.01 ft	2.56 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	255.0 psf	253.7 psf	252.5 psf	251.4 psf	250.9 psf	249.8 psf	248.8 psf	247.8 psf	267.6 psf	265.9 psf	264.4 psf	262.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	416.1 psf	409.5 psf	403.3 psf	397.5 psf	432.8 psf	425.6 psf	418.9 psf	412.6 psf	511.5 psf	501.7 psf	492.6 psf	484.0 psf	142.6 psf	80.9 psf	70.4 psf	67.9 psf

Shear key is not required.

Maximum Bearing Pressure = 512 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 29in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 1033.9 \text{ ft-lbs}$

Resisting Force Required = 855.67 lbs S.F. = 1.67

Weight Required = 1426.12 lbs Minimum Width = 29 in in Weight Provided = 5781.88 lbs A minimum 132in long x 29in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		29 in			29 in			29 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	241 lbs	641 lbs	241 lbs	868 lbs	2575 lbs	868 lbs	70 lbs	187 lbs	70 lbs		
F _V	1 lbs	0 lbs	1 lbs	5 lbs	0 lbs	5 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	7399 lbs	5782 lbs	7399 lbs	7682 lbs	5782 lbs	7682 lbs	2163 lbs	5782 lbs	2163 lbs		
M	4 lbs-ft	0 lbs-ft	4 lbs-ft	15 lbs-ft	0 lbs-ft	15 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft		
f _{min}	278.0 psf	217.5 psf	278.0 psf	287.6 psf	217.5 psf	287.6 psf	81.3 psf	217.5 psf	81.3 psf		
f _{max}	278.7 psf	217.5 psf	278.7 psf	290.4 psf	217.5 psf	290.4 psf	81.4 psf	217.5 psf	81.4 psf		

Maximum Bearing Pressure = 290 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 29in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 29in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.417 k	Maximum Axial Load = 3.785 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>46%</u>	Utilization = 51%
Diagonal Strut		
Maximum Axial Load =	1.742 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>23%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 40.12 in

Allowable Story Drift for All Other Structures, Δ = {

Max Drift, $\Delta_{MAX} =$ 0.043 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 120 \text{ in}$$

$$J = 0.432$$

$$331.976$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 27.4 \text{ ksi}$$

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 37.0588

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ lx &= & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ y &= & 41.015 \text{ mm} \\ Sx &= & 1.335 \text{ in}^3 \\ M_{max} St &= & 2.788 \text{ k-ft} \end{aligned}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 120 \\ \mathsf{J} &= 0.432 \\ &= 211.117 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2})}] \\ \varphi \mathsf{F_L} &= 28.6 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$V = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_b = 88.9 \text{ in}$ J = 1.08 152.913 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})}]$

$\varphi F_L = 29.4 \text{ ksi}$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14 $L_{b} = 88.9$ J = 1.08 161.829 $S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$ S1 = 0.51461 $S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$ S2 = 1701.56 $\varphi F_{L} = \varphi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$ $\varphi F_{I} = 29.2$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDhr}$$

$$52 = mDbr$$

$$S2 = 73.8$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

 $Sx = 1.375 \text{ in}^3$

$$M_{\text{max}}St = 3.363 \text{ k-ft}$$

3.4.9

$$b/t = 16.2$$

$$S2 = 32.70$$
 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_{L} = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{max} = 58.55 \text{ kips}$$

3.4.16.1

N/A for Weak Direction

3.4.18
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$
 $ly = 923544 \text{ mm}^4$
 2.219 in^4
 $x = 40 \text{ mm}$
 $Sy = 1.409 \text{ in}^3$

3.904 k-ft

 $M_{max}Wk =$

Compression

$$b/t = 7.4$$

$$S2 = 32.70$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$51 = 0.5140$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$Rn - \frac{\theta_y}{\theta_y} F_{CV}$$

$$1 = \frac{1.6Dp}{1.6Dp}$$

$$51 = 12.1$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{pmatrix} 1.6Dt & 1.1 \end{pmatrix}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_1 = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

27.5

 $C_0 =$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

0.621 in³

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$0.672 \text{ in}^4$$

x = 27.5 mm

$$x = 27.5 \text{ mr}$$

 $Sy = 0.621 \text{ in}^3$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \ ksi \\ y = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$J = 0.942$$

87.2529

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used 0.0 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F cy$$

$$\phi F_L = 43.2 \text{ ksi}$$

 $\varphi F_L St =$ 28.2 ksi $lx = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm y = Sx = 0.621 in³ $M_{max}St = 1.460 \text{ k-ft}$

 $\phi F_L = 43.2 \text{ ksi}$

 $\phi F_l Wk =$ 28.2 ksi $ly = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm x =Sy = 0.621 in³ $M_{max}Wk =$ 1.460 k-ft

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.76107 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9

24.5 b/t =S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_1 =$ 28.2 ksi b/t =24.5 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 15.92 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 16.39 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Υ	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-77.697	-77.697	0	0
2	M14	٧	-77.697	-77.697	0	0
3	M15	V	-122.096	-122.096	0	0
4	M16	V	-122.096	-122.096	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	177.594	177.594	0	0
2	M14	V	136.155	136.155	0	0
3	M15	V	73.997	73.997	0	0
4	M16	V	73 997	73 997	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	469.783	2	1102.084	1	.86	1	.004	1	0	1	Ó	1
2		min	-611.492	3	-1295.014	3	.037	15	0	15	0	1	0	1
3	N7	max	.036	9	1209.185	1	355	15	0	15	0	1	0	1
4		min	126	2	-236.19	3	-9.385	1	02	1	0	1	0	1
5	N15	max	.025	9	3417.13	1	0	9	0	9	0	1	0	1
6		min	-1.574	2	-839.521	3	0	3	0	3	0	1	0	1
7	N16	max	1795.589	2	3719.473	1	0	3	0	3	0	1	0	1
8		min	-1934.914	3	-4241.734	3	0	1	0	1	0	1	0	1
9	N23	max	.036	9	1209.185	1	9.385	1	.02	1	0	1	0	1
10		min	126	2	-236.19	3	.355	15	0	15	0	1	0	1
11	N24	max	469.783	2	1102.084	1	037	15	0	15	0	1	0	1
12		min	-611.492	3	-1295.014	3	86	1	004	1	0	1	0	1
13	Totals:	max	2733.329	2	11759.14	1	0	9					·	
14		min	-3158.508	3	-8143.663	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	99.316	1	486.677	1	-5.881	15	0	3	.237	1	0	1
2			min	3.634	15	-647.148	3	-161.474	1	013	2	.009	15	0	3
3		2	max	99.316	1	340.883	1	-4.523	15	0	3	.078	1	.613	3
4			min	3.634	15	-455.416	3	-124.12	1	013	2	.003	15	46	1
5		3	max	99.316	1	195.09	1	-3.165	15	0	3	0	3	1.012	3
6			min	3.634	15	-263.684	3	-86.766	1	013	2	039	1	758	1
7		4	max	99.316	1	49.296	1	-1.807	15	0	3	003	12	1.198	3
8			min	3.634	15	-71.953	3	-49.412	1	013	2	115	1	893	1
9		5	max	99.316	1	119.779	3	45	15	0	3	005	12	1.172	3
10			min	3.634	15	-96.498	1	-12.058	1	013	2	149	1	867	1
11		6	max	99.316	1	311.51	3	25.295	1	0	3	005	15	.932	3
12			min	3.634	15	-242.292	1	.398	12	013	2	142	1	679	1
13		7	max	99.316	1	503.242	3	62.649	1	0	3	003	15	.48	3
14			min	3.634	15	-388.086	1	1.756	12	013	2	093	1	329	1
15		8	max	99.316	1	694.974	3	100.003	1	0	3	0	10	.184	1
16			min	3.634	15	-533.879	1	3.113	12	013	2	003	3	186	3
17		9	max	99.316	1	886.705	3	137.357	1	0	3	.13	1	.858	1
18			min	3.634	15	-679.673	1	4.471	12	013	2	.003	12	-1.065	3
19		10	max	99.316	1	825.467	1	-5.828	12	.013	2	.303	1	1.694	1
20			min	3.634	15	-1078.437	3	-174.711	1	0	3	.008	12	-2.156	3
21		11	max	99.316	1	679.673	1	-4.471	12	.013	2	.13	1	.858	1
22			min	3.634	15	-886.705	3	-137.357	1	0	3	.003	12	-1.065	3
23		12	max	99.316	1	533.879	1	-3.113	12	.013	2	0	10	.184	1
24			min	3.634	15	-694.974	3	-100.003	1	0	3	003	3	186	3
25		13	max	99.316	1	388.086	1	-1.756	12	.013	2	003	15	.48	3
26			min	3.634	15	-503.242	3	-62.649	1	0	3	093	1	329	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]	LC				LC			z-z Mome	
27		14	max	99.316	1	242.292	1	398	12	.013	2	005	15	.932	3
28			min	3.634	15	-311.51	3	-25.295	1	0	3	142	1	679	1
29		15	max	99.316	1	96.498	1	12.058	1	.013	2	005	12	1.172	3
30			min	3.634	15	-119.779	3	.45	15	0	3	149	1	867	1
31		16	max	99.316	1	71.953	3	49.412	1	.013	2	003	12	1.198	3
32			min	3.634	15	-49.296	1	1.807	15	0	3	115	1	893	1
33		17	max	99.316	1	263.684	3	86.766	1	.013	2	0	3	1.012	3
34			min	3.634	15	-195.09	1	3.165	15	0	3	039	1	758	1
35		18	max	99.316	1	455.416	3	124.12	1	.013	2	.078	1	.613	3
36			min	3.634	15	-340.883	1	4.523	15	0	3	.003	15	46	1
37		19	max	99.316	1	647.148	3	161.474	1	.013	2	.237	1	0	1
38		1.0	min	3.634	15	-486.677	1	5.881	15	0	3	.009	15	0	3
39	M14	1	max	46.183	1	515.354	1	-6.063	15	.008	3	.27	1	0	1
40	IVIIT		min	1.693	15	-506.136	3	-166.476	1	011	1	.01	15	0	3
41		2	max	46.183	1	369.56	1	-4.705	15	.008	3	.106	1	.481	3
42			min	1.693	15	-360.448	3	-129.122	1	011	1	.004	15	492	1
43		3		46.183	1	223.766	1	-3.347	15	.008	3	.004		.801	3
44		3	max				3		1		1	017	3	821	
		1	min	1.693	15	-214.759		-91.768		011			1		1
45		4	max	46.183	1	77.972	1	-1.989	15	.008	3	003	12	.959	3
46		-	min	1.693	15	-69.071	3	-54.414	1_	011	1	098	1	989	1
47		5	max	46.183	1	76.617	3	632	15	.008	3	005	12	.954	3
48			min	1.693	15	-67.822	1	-17.061	1_	011	1	138	1_	995	1
49		6	max	46.183	1_	222.306	3	20.293	1	.008	3	005	15	.788	3
50			min	1.693	15	-213.615	1	.222	12	011	1	136	1	838	1
51		7	max	46.183	1	367.994	3	57.647	1	.008	3	003	15	.46	3
52			min	1.693	15	-359.409	1	1.579	12	011	1	093	1	52	1
53		8	max	46.183	1	513.682	3	95.001	1	.008	3	0	10	0	15
54			min	1.693	15	-505.203	1	2.937	12	011	1	008	1	049	2
55		9	max	46.183	1	659.37	3	132.355	1	.008	3	.118	1	.603	1
56			min	1.693	15	-650.997	1	4.295	12	011	1	.002	12	681	3
57		10	max	46.183	1	796.791	1	-5.652	12	.011	1	.286	1	1.407	1
58			min	1.693	15	-805.059	3	-169.709	1	008	3	.008	12	-1.495	3
59		11	max	46.183	1	650.997	1	-4.295	12	.011	1	.118	1	.603	1
60			min	1.693	15	-659.37	3	-132.355		008	3	.002	12	681	3
61		12	max	46.183	1	505.203	1	-2.937	12	.011	1	0	10	0	15
62		T	min	1.693	15	-513.682	3	-95.001	1	008	3	008	1	049	2
63		13	max	46.183	1	359.409	1	-1.579	12	.011	1	003	15	.46	3
64		1.0	min	1.693	15	-367.994	3	-57.647	1	008	3	093	1	52	1
65		14	max	46.183	1	213.615	1	222	12	.011	1	005	15	.788	3
66		17	min	1.693	15	-222.306	3	-20.293	1	008	3	136	1	838	1
67		15	max		1	67.822	1	17.061	1	.011	1	005	12	.954	3
68		10	min	1.693	15	-76.617	3	.632	15	008	3	138	1	995	1
69		16	max	46.183	1	69.071	3	54.414	1	.011	1	003	12	.959	3
70		10	min	1.693	15	-77.972	1	1.989	15	008	3	003	1	989	1
71		17	max	46.183	1	214.759	3	91.768	1	.011	1	.001	3	.801	3
72		17			15			3.347	15		3	017	1	821	1
		4.0	min	1.693		-223.766	1			008					_
73		18	max	46.183	1	360.448	3	129.122	1	.011	1	.106	1_	.481	3
74		40	min	1.693	15	-369.56	1	4.705	15	008	3	.004	15	492	1
75		19	max	46.183	1	506.136	3	166.476	1	.011	1	.27	1	0	1
<u>76</u>			min	1.693	15	-515.354	1	6.063	15	008	3	.01	15	0	3
77	M15	1_	max	<u>-1.781</u>	15	616.952	2	-6.061	15	.011	1	.27	1	0	2
78			min	-48.54	1	-273.267	3	-166.454	1	007	3	.01	15	0	3
79		2	max	-1.781	15	440.716	2	-4.704	15	.011	1	.106	1	.261	3
80			min	-48.54	1	-196.643	3	-129.1	1	007	3	.004	15	588	2
81		3	max	-1.781	15	264.48	2	-3.346	15	.011	1	.001	3	.437	3
82			min	-48.54	1	-120.02	3	-91.746	1	007	3	017	1	979	2
83		4	max	-1.781	15	88.245	2	-1.988	15	.011	1	003	12	.528	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
84			min	-48.54	1	-43.396	3	-54.392	1	007	3	098	1	-1.175	2
85		5	max	-1.781	15	33.228	3	63	15	.011	1	005	12	.533	3
86			min	-48.54	1	-87.991	2	-17.039	1	007	3	138	1	-1.175	2
87		6	max	-1.781	15	109.852	3	20.315	1	.011	1	005	15	.454	3
88			min	-48.54	1	-264.227	2	.261	12	007	3	136	1	98	2
89		7	max	-1.781	15	186.476	3	57.669	1	.011	1	003	15	.289	3
90			min	-48.54	1	-440.463	2	1.619	12	007	3	093	1	588	2
91		8	max	-1.781	15	263.1	3	95.023	1	.011	1	0	10	.04	3
92			min	-48.54	1	-616.698	2	2.976	12	007	3	008	1	015	1
93		9	max	-1.781	15	339.723	3	132.377	1	.011	1	.118	1	.782	2
94			min	-48.54	1	-792.934	2	4.334	12	007	3	.002	12	295	3
95		10	max	-1.781	15	969.17	2	-5.692	12	.007	3	.286	1	1.761	2
96			min	-48.54	1	-416.347	3	-169.731	1	011	1	.008	12	715	3
97		11	max	-1.781	15	792.934	2	-4.334	12	.007	3	.118	1	.782	2
98			min	-48.54	1	-339.723	3	-132.377	1	011	1	.002	12	295	3
99		12	max	-1.781	15	616.698	2	-2.976	12	.007	3	0	10	.04	3
100			min	-48.54	1	-263.1	3	-95.023	1	011	1	008	1	015	1
101		13	max	-1.781	15	440.463	2	-1.619	12	.007	3	003	15	.289	3
102			min	-48.54	1	-186.476	3	-57.669	1	011	1	093	1	588	2
103		14	max	-1.781	15	264.227	2	261	12	.007	3	005	15	.454	3
104			min	-48.54	1	-109.852	3	-20.315	1	011	1	136	1	98	2
105		15	max	-1.781	15	87.991	2	17.039	1	.007	3	005	12	.533	3
106			min	-48.54	1	-33.228	3	.63	15	011	1	138	1	-1.175	2
107		16	max	-1.781	15	43.396	3	54.392	1	.007	3	003	12	.528	3
108			min	-48.54	1	-88.245	2	1.988	15	011	1	098	1	-1.175	2
109		17	max	-1.781	15	120.02	3	91.746	1	.007	3	.001	3	.437	3
110		- ' '	min	-48.54	1	-264.48	2	3.346	15	011	1	017	1	979	2
111		18	max	-1.781	15	196.643	3	129.1	1	.007	3	.106	1	.261	3
112		10	min	-48.54	1	-440.716	2	4.704	15	011	1	.004	15	588	2
113		19	max	-1.781	15	273.267	3	166.454	1	.007	3	.27	1	0	2
114		13	min	-48.54	1	-616.952	2	6.061	15	011	1	.01	15	0	3
115	M16	1	max	-3.864	15	590.409	2	-5.887	15	.012	1	.238	1	0	2
116	IVITO		min	-105.484	1	-254.541	3	-161.694		01	3	.009	15	0	3
117		2	max	-3.864	15	414.173	2	-4.529	15	.012	1	.079	1	.24	3
118			min	-105.484	1	-177.917	3	-124.34	1	01	3	.003	15	558	2
119		3	max	-3.864	15	237.937	2	-3.171	15	.012	1	<u>.003</u>	12	.395	3
120			min	-105.484	1	-101.293	3	-86.986	1	01	3	038	1	92	2
121		4	max	-3.864	15	61.702	2	-1.813	15	.012	1	004	12	.465	3
122			min	-105.484	1	-24.669	3	-49.632	1	01	3	114	1	-1.087	2
123		5	max	-3.864	15	51.954	3	455	15	.012	1	005	12	.45	3
124		J				-114.534		-12.279		01	3	149		-1.057	2
125		6	max		15		3	25.075	1	.012	1	005	15	.35	3
126						-290.77	2	.528	12	01	3	142	1	832	2
127		7	max		15	205.202	3	62.429	1	.012	1	003	15	.164	3
128			min	-105.484	1	-467.005	2	1.886	12	01	3	003	1	411	2
129		8	max		15	281.826	3	99.783	1	.012	1	- <u>093</u> 0	10	.205	2
130		0	min	-105.484	1	-643.241	2	3.244	12	012	3	003	1	106	3
131		9	max		15	358.45	3	137.137	1	.012	1	<u>003</u> .129	1	1.018	2
132		3							12		3	.003	12		3
		10	max	-105.484		-819.477	2	4.601 -5.959	12	<u>01</u> .01	3	.302	1	462 2.027	
133 134		10		-3.864 -105.484	<u>15</u> 1	995.713		-5.959 -174.491	1	012	1	.009	12	903	3
		11					3								
135		11	max		15	819.477	2	-4.601	12	.01	3	.129	1	1.018	3
136		10				-358.45	3	-137.137	12	012	1	.003	12	462	
137		12	max		15	643.241	2	-3.244	12	.01	3	0	10	.205	2
138		12	min	-105.484	1_	-281.826 467.005	3	-99.783	1	012	1	003	1 1 5	106	3
139		13	max		15	467.005	2	-1.886	12	.01	3	003	15	.164	3
140			ITIIN	-105.484	1	-205.202	3	-62.429	1	012	1	093	1	411	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
141			max	-3.864	15	290.77	2	528	12	.01	3	005	15	.35	3
142			min	-105.484	1	-128.578	3	-25.075	1	012	1	142	1	832	2
143		15	max	-3.864	15	114.534	2	12.279	1	.01	3	005	12	.45	3
144			min	-105.484	1	-51.954	3	.455	15	012	1	149	1	-1.057	2
145		16	max	-3.864	15	24.669	3	49.632	1	.01	3	004	12	.465	3
146			min	-105.484	1	-61.702	2	1.813	15	012	1	114	1	-1.087	2
147		17	max	-3.864	15	101.293	3	86.986	1	.01	3	0	12	.395	3
148			min		1	-237.937	2	3.171	15	012	1	038	1	92	2
149		18	max	-3.864	15	177.917	3	124.34	1	.01	3	.079	1	.24	3
150			min	-105.484	1	-414.173	2	4.529	15	012	1	.003	15	558	2
151		19	max	-3.864	15	254.541	3	161.694	1	.01	3	.238	1	0	2
152			min	-105.484	1	-590.409	2	5.887	15	012	1	.009	15	0	3
153	M2	1	_	1077.007	1	2.026	4	.927	1	0	3	0	3	0	1
154	1712		min	-1156.117	3	.477	15	.034	15	0	1	0	1	0	1
155		2			1	1.993	4	.927	1	0	3	0	1	0	15
156			min	-1155.833	3	.47	15	.034	15	0	1	0	15	0	4
157		3		1077.766	1	1.959	4	.927	1	0	3	0	1	0	15
158			min	-1155.548	3	.462	15	.034	15	0	1	0	15	001	4
159		4		1078.145	1	1.926	4	.927	1	0	3	0	1	0	15
160			min	-1155.264	3	.454	15	.034	15	0	1	0	15	002	4
161		5		1078.524	1	1.893	4	.927	1	0	3	0	1	- <u>002</u> 0	15
162		J	min	-1154.979	3	.446	15	.034	15	0	1	0	15	002	4
163		6		1078.904	1	1.859	4	.927	1	0	3	.001	1	<u>002</u> 0	15
164		0	min	-1154.695	3	.438	15	.034	15	0	1	0	15	002	4
165		7		1079.283	1	1.826	4	.927	1		3	.001	1	<u>002</u> 0	15
166			min	-1154.41	3	.43	15	.034	15	<u> </u>	1	.001	15	003	4
		0	_					.034 .927				_		003 0	
167		8		1079.662 -1154.126	1	1.792	4		1	0	3	.002	1		15
168			min		3	.422	15	.034	15	0	1	0	15	003	4
169		9		1080.041	1	1.759	4	.927	1	0	3	.002	1	0	15
170		40	min	-1153.842	3	.415	15	.034	15	0	1	0	15	004	4
171		10		1080.421	1	1.726	4	.927	1	0	3	.002	1	001	15
172		4.4	min	-1153.557	3	.407	15	.034	15	0	1	0	15	004	4
173		11	max		1	1.692	4	.927	1	0	3	.002	1	001	15
174		40	min	-1153.273	3	.399	15	.034	15	0	1	0	15	005	4
175		12		1081.179	1	1.659	4	.927	1	0	3	.003	1	001	15
176		40	min	-1152.988	3	.391	15	.034	15	0	1	0	15	005	4
177		13		1081.558	1	1.626	4	.927	1	0	3	.003	1	001	15
178		4.4	min		3	.383	15	.034	15	0	1	0	15	006	4
179		14		1081.938	1	1.592	4	.927	1	0	3	.003	1	001	15
180		4.5	min	-1152.419	3	.375	15	.034	15	0	1	0	15	006	4
181		15		1082.317	1	1.559	4	.927	1	0	3	.003	1	002	15
182		4.0	min		3	.367	15	.034	15	0	1	0	15	006	4
183		16	1	1082.696		1.525	4	.927	1	0	3	.004	1	002	15
184				-1151.85		.36	15	.034	15	0	1	0	15	007	4
185		17		1083.075		1.492	4	.927	1	0	3	.004	1	002	15
186			min	-1151.566	3	.352	15	.034	15	0	1	0	15	007	4
187		18		1083.455	1	1.459	4	.927	1	0	3	.004	1	002	15
188			min		3	.344	15	.034	15	0	1	0	15	008	4
189		19		1083.834	1	1.425	4	.927	1	0	3	.004	1	002	15
190			min		3	.336	15	.034	15	0	1	0	15	008	4
191	<u>M3</u>	1_		419.796	2	7.982	4	.078	1	0	3	0	1	.008	4
192			min		3	1.877	15	.003	15	0	1	0	15	.002	15
193		2		419.626	2	7.212	4	.078	1	0	3	0	1	.005	2
194			min		3	1.696	15	.003	15	0	1	0	15	0	12
195		3	max	419.456	2	6.442	4	.078	1	0	3	0	1	.002	2
196			min	-553.093	3	1.515	15	.003	15	0	1	0	15	0	3
197		4	max	419.285	2	5.672	4	.078	1	0	3	0	1	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-553.22	3	1.334	15	.003	15	0	1	0	15	002	3
199		5	max	419.115	2	4.902	4	.078	1	0	3	0	1	0	15
200			min	-553.348	3	1.153	15	.003	15	0	1	0	15	003	3
201		6	max	418.945	2	4.132	4	.078	1	0	3	0	1	001	15
202			min	-553.476	3	.972	15	.003	15	0	1	0	15	005	4
203		7	max		2	3.362	4	.078	1	0	3	0	1	001	15
204			min	-553.604	3	.791	15	.003	15	0	1	0	15	006	4
205		8	max	418.604	2	2.592	4	.078	1	0	3	0	1	002	15
206			min	-553.732	3	.61	15	.003	15	0	1	0	15	008	4
207		9	max	418.434	2	1.822	4	.078	1	0	3	0	1	002	15
208			min	-553.859	3	.429	15	.003	15	0	1	0	15	009	4
209		10	max		2	1.052	4	.078	1	0	3	0	1	002	15
210		1.0	min	-553.987	3	.248	15	.003	15	0	1	0	15	009	4
211		11	max		2	.369	2	.078	1	0	3	0	1	002	15
212		1 ' '	min	-554.115	3	039	3	.003	15	0	1	0	15	009	4
213		12	max		2	114	15	.078	1	0	3	0	1	002	15
214		12	min	-554.243	3	489	3	.003	15	0	1	0	15	009	4
215		13	max	417.752	2	295	15	.078	1	0	3	0	1	002	15
216		13	min	-554.37	3	-1.258	4	.003	15	0	1	0	15	002	4
217		14	max	417.582	2	476	15	.078	1	0	3	0	1	009	15
218		14	min	-554.498	3	-2.028	4	.003	15	0	1	0	15	002	4
219		15				- <u>2.028</u> 657	15	.078	1		3	0	1	002	15
		15	max	-554.626	2	-2.798	4	.003	15	0	1	0	15	002	4
220		4.0	min		3								1		_
221		16	max		2	838	15	.078	1	0	3	0		001	15
222		47	min	-554.754	3	-3.568	4	.003	15	0	1	0	15	006	4
223		17	max		2	-1.019	15	.078	1	0	3	0	1_	001	15
224		40	min	-554.881	3	-4.338	4	.003	15	0	1	0	15	004	4
225		18	max	416.901	2	-1.2	15	.078	1	0	3	0	1	0	15
226		1.0	min	-555.009	3	-5.108	4	.003	15	0	1	0	15	002	4
227		19	max	416.73	2	-1.381	15	.078	1	0	3	0	1	0	1
228	B.4.4	-	min	-555.137	3	-5.878	4	.003	15	0	1	0	15	0	1
229	M4	1		1206.119	1	0	1	355	15	0	1	0	1_	0	1
230			min	-238.49	3	0	1	-9.741	1_	0	1	0	15	0	1
231		2		1206.289	1_	0	1	355	15	0	1	0	12	0	1
232			min	-238.362	3	0	1	-9.741	1	0	1	0	1	0	1
233		3	max		_1_	0	1	355	15	0	1	0	15	0	1
234			min	-238.234	3	0	1	-9.741	1	0	1	002	1	0	1
235		4	max	1206.63	_1_	0	1	355	15	0	1	0	15	0	1
236			min	-238.106	3	0	1	-9.741	1	0	1	003	1	0	1
237		5	max	1206.8	_1_	0	1	355	15	0	1	0	15	0	1
238				-237.979	3	0	1	-9.741	1	0	1	004	1	0	1
239		6	max	1206.97	1	0	1	355	15	0	1	0	15	0	1
240			min		3	0	1	-9.741	1	0	1	005	1	0	1
241		7	max	1207.141	1	0	1	355	15	0	1	0	15	0	1
242			min	-237.723	3	0	1	-9.741	1	0	1	006	1	0	1
243		8	max	1207.311	1	0	1	355	15	0	1	0	15	0	1
244			min	-237.595	3	0	1	-9.741	1	0	1	007	1	0	1
245		9	max	1207.481	1	0	1	355	15	0	1	0	15	0	1
246				-237.468	3	0	1	-9.741	1	0	1	008	1	0	1
247		10		1207.652	1	0	1	355	15	0	1	0	15	0	1
248				-237.34	3	0	1	-9.741	1	0	1	01	1	0	1
249		11		1207.822	1	0	1	355	15	0	1	0	15	0	1
250			min		3	0	1	-9.741	1	0	1	011	1	0	1
251		12		1207.992	1	0	1	355	15	0	1	0	15	0	1
252		14	min		3	0	1	-9.741	1	0	1	012	1	0	1
253		13		1208.163		0	1	355	15	0	1	0	15	0	1
254		10		-236.957	3	0	1	-9.741	1	0	1	013	1	0	1
204			1111111	-200.307	J	U		-3.741		U		013		U	

Model Name

Schletter, Inc.HCV

110 V

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
255		14	max	1208.333	1	0	1	355	15	0	1	0	15	0	1
256			min	-236.829	3	0	1	-9.741	1	0	1	014	1	0	1
257		15	max	1208.503	1	0	1	355	15	0	1	0	15	0	1
258			min	-236.701	3	0	1	-9.741	1	0	1	015	1	0	1
259		16	max	1208.674	1	0	1	355	15	0	1	0	15	0	1
260			min	-236.573	3	0	1	-9.741	1	0	1	016	1	0	1
261		17	max	1208.844	1	0	1	355	15	0	1	0	15	0	1
262			min	-236.446	3	0	1	-9.741	1	0	1	017	1	0	1
263		18	max	1209.014	1	0	1	355	15	0	1	0	15	0	1
264			min	-236.318	3	0	1	-9.741	1	0	1	018	1	0	1
265		19		1209.185	1	0	1	355	15	0	1	0	15	0	1
266			min	-236.19	3	0	1	-9.741	1	0	1	02	1	0	1
267	M6	1	max	3465.142	1	2.479	2	0	1	0	1	0	1	0	1
268			min		3	.108	3	0	1	0	1	0	1	0	1
269		2	max	3465.521	1	2.453	2	0	1	0	1	0	1	0	3
270			min	-3784.446	3	.088	3	0	1	0	1	0	1	0	2
271		3	max	3465.9	1	2.427	2	0	1	0	1	0	1	0	3
272			min	-3784.161	3	.069	3	0	1	0	1	0	1	001	2
273		4	+	3466.279	1	2.401	2	0	1	0	1	0	1	0	3
274			min	-3783.877	3	.049	3	0	1	0	1	0	1	002	2
275		5		3466.659	1	2.375	2	0	1	0	1	0	1	0	3
276			min	-3783.593	3	.03	3	0	1	0	1	0	1	002	2
277		6		3467.038	1	2.349	2	0	1	0	1	0	1	0	3
278			min	-3783.308	3	.01	3	0	1	0	1	0	1	003	2
279		7		3467.417	1	2.323	2	0	1	0	1	0	1	0	3
280		'	min	-3783.024	3	009	3	0	1	0	1	0	1	004	2
281		8		3467.796	1	2.297	2	0	1	0	1	0	1	0	3
282		<u> </u>	min	-3782.739	3	029	3	0	1	0	1	0	1	004	2
283		9		3468.176	1	2.271	2	0	1	0	1	0	1	0	3
284		J	min	-3782.455	3	048	3	0	1	0	1	0	1	005	2
285		10		3468.555	1	2.245	2	0	1	0	1	0	1	0	3
286		10	min	-3782.17	3	068	3	0	1	0	1	0	1	005	2
287		11	+	3468.934	1	2.219	2	0	1	0	1	0	1	0	3
288		.	min		3	087	3	0	1	0	1	0	1	006	2
289		12	+	3469.313	1	2.193	2	0	1	0	1	0	1	0	3
290		12	min	-3781.601	3	107	3	0	1	0	1	0	1	007	2
291		13		3469.693	1	2.167	2	0	1	0	1	0	1	0	3
292		13	min	-3781.317	3	126	3	0	1	0	1	0	1	007	2
293		14	+	3470.072	1	2.141	2	0	1	0	1	0	1	0	3
294		14	min	-3781.033	3	146	3	0	1	0	1	0	1	008	2
295		15		3470.451		2.115	2	0	1	0	1	0	1	0	3
296		13	min		3	165	3	0	1	0	1	0	1	008	2
297		16		3470.831		2.089	2	0	1	0	1	0	1	0	3
298		10	min		3	185	3	0	1	0	1	0	1	009	2
299		17		3471.21	<u> </u>	2.063	2	0	1	0	1	0	1	009 0	3
300		17	min	-3780.179	3	204	3	0	1	0	1	0	1	009	2
301		10		3471.589			2	0	1		1	0	1	0	3
302		10			1	2.037	3	_	1	0					2
		40	min		3_	224		0		0	1	0	1	01	_
303		19		3471.968	1	2.011	2	0	1	0	1	0	1	0	3
304	N/7	4	min	-3779.61	3	243	3	0	-	0	1	0	1	01	2
305	<u>M7</u>	1		1646.793	2	8.02	4	0	1	0	1	0	1	.01	2
306			min	-1739.255	3	1.882	15	0	1	0	1	0	1	0	3
307		2		1646.622	2	7.25	4	0	1	0	1	0	1	.008	2
308			min		3	1.701	15	0	1	0	1	0	1	002	3
309		3		1646.452	2	6.48	4	0	1	0	1	0	1	.005	2
310		4	min	-1739.511	3	1.52	15	0	1	0	1	0	1	003	3
311		4	max	1646.282	2	5.71	4	0	1	0	1	0	1	.003	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1739.639	3	1.339	15	0	1	0	1	0	1	005	3
313		5	max	1646.111	2	4.94	4	0	1	0	_1_	0	_1_	0	2
314			min	-1739.766	3	1.158	15	0	1	0	1	0	1	006	3
315		6	max	1645.941	2	4.17	4	0	1	0	_1_	0	1	0	2
316			min	-1739.894	3	.977	15	0	1	0	1	0	1	006	3
317		7	max		2	3.4	4	0	1	0	_1_	0	1	001	15
318			min	-1740.022	3	.796	15	0	1	0	1	0	1	007	3
319		8	max	1645.6	2	2.63	4	0	1	0	1	0	1	002	15
320			min	-1740.15	3	.615	15	0	1	0	1	0	1	007	3
321		9	max	1645.43	2	1.968	2	0	1	0	_1_	0	1	002	15
322			min	-1740.277	3	.317	12	0	1	0	1	0	1	008	4
323		10	max		2	1.368	2	0	1	0	_1_	0	_1_	002	15
324			min	-1740.405	3	041	3	0	1	0	1	0	1	009	4
325		11	max	1645.089	2	.768	2	0	1	0	_1_	0	1	002	15
326			min	-1740.533	3	491	3	0	1	0	1	0	1	009	4
327		12	max	1644.919	2	.168	2	0	1	0	1	0	1	002	15
328			min	-1740.661	3	941	3	0	1	0	1	0	1	009	4
329		13	max	1644.749	2	29	15	0	1	0	1	0	1	002	15
330			min	-1740.788	3	-1.391	3	0	1	0	1	0	1	009	4
331		14	max	1644.578	2	471	15	0	1	0	1	0	1	002	15
332			min	-1740.916	3	-1.99	4	0	1	0	1	0	1	008	4
333		15	max	1644.408	2	652	15	0	1	0	1	0	1	002	15
334			min	-1741.044	3	-2.76	4	0	1	0	1	0	1	007	4
335		16	max	1644.238	2	833	15	0	1	0	1	0	1	001	15
336			min	-1741.172	3	-3.53	4	0	1	0	1	0	1	006	4
337		17	max	1644.067	2	-1.014	15	0	1	0	1	0	1	001	15
338			min	-1741.299	3	-4.3	4	0	1	0	1	0	1	004	4
339		18	max	1643.897	2	-1.195	15	0	1	0	1	0	1	0	15
340			min	-1741.427	3	-5.07	4	0	1	0	1	0	1	002	4
341		19	max	1643.727	2	-1.376	15	0	1	0	1	0	1	0	1
342			min	-1741.555	3	-5.84	4	0	1	0	1	0	1	0	1
343	M8	1	max	3414.064	1	0	1	0	1	0	1	0	1	0	1
344			min	-841.82	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3414.234	1	0	1	0	1	0	1	0	1	0	1
346			min	-841.692	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3414.405	1	0	1	0	1	0	1	0	1	0	1
348			min	-841.565	3	0	1	0	1	0	1	0	1	0	1
349		4	max		1	0	1	0	1	0	1	0	1	0	1
350			min	-841.437	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3414.745	1	0	1	0	1	0	1	0	1	0	1
352				-841.309	3	0	1	0	1	0	1	0	1	0	1
353		6		3414.916	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		3415.086	1	0	1	0	1	0	1	0	1	0	1
356				-841.054	3	0	1	0	1	0	1	0	1	0	1
357		8		3415.256	1	0	1	0	1	0	1	0	1	0	1
358				-840.926	3	0	1	0	1	0	1	0	1	0	1
359		9		3415.427	1	0	1	0	1	0	1	0	1	0	1
360				-840.798	3	0	1	0	1	0	1	0	1	0	1
361		10		3415.597	1	0	1	0	1	0	1	0	1	0	1
362		_ · ·		-840.67	3	0	1	0	1	0	1	0	1	0	1
363		11		3415.767	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3415.938	1	0	1	0	1	0	1	0	1	0	1
366		14		-840.415	3	0	1	0	1	0	1	0	1	0	1
367		13		3416.108	<u> </u>	0	1	0	1	0	1	0	1	0	1
368		'		-840.287	3	0	1	0	1	0	1	0	1	0	1
000			111111	070.201				U				•			

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC	1 -	LC		LC
369		14		3416.278	1	0	1	0	<u>1</u> 1	0	1	0	1	0	1
370 371		15	min	-840.159 3416.449	<u>3</u> 1	0	1	0	1	0	<u>1</u> 1	0	1	0	1
372		13		-840.032	3	0	1	0	1	0	1	0	1	0	1
373		16		3416.619	_ <u></u>	0	1	0	1	0	1	0	1	0	1
374		10		-839.904	3	0	1	0	1	0	1	0	1	0	1
375		17		3416.789	1	0	1	0	1	0	1	0	1	0	1
376			min	-839.776	3	0	1	0	1	0	1	0	1	0	1
377		18	max		1	0	1	0	1	0	1	0	1	0	1
378			min	-839.648	3	0	1	0	1	0	1	0	1	0	1
379		19	max	3417.13	1	0	1	0	1	Ö	1	0	1	0	1
380			min	-839.521	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	1077.007	1	2.026	4	034	15	0	1	0	1	0	1
382			min	-1156.117	3	.477	15	927	1	0	3	0	3	0	1
383		2	max	1077.387	1	1.993	4	034	15	0	1	0	15	0	15
384			min	-1155.833	3	.47	15	927	1	0	3	0	1	0	4
385		3	max	1077.766	1	1.959	4	034	15	0	1	0	15	0	15
386			min	-1155.548	3	.462	15	927	1	0	3	0	1	001	4
387		4	max	1078.145	1_	1.926	4	034	15	0	_1_	0	15	0	15
388			min	-1155.264	3	.454	15	927	1	0	3	0	1	002	4
389		5	max	1078.524	1_	1.893	4	034	15	0	1	0	15	0	15
390			min	-1154.979	3	.446	15	927	1_	0	3	0	1	002	4
391		6		1078.904	_1_	1.859	4	034	15	0	_1_	0	15	0	15
392			min	-1154.695	3	.438	15	927	1_	0	3	001	1	002	4
393		7		1079.283	1_	1.826	4	034	<u>15</u>	0	_1_	0	15	0	15
394				-1154.41	3	.43	15	927	1_	0	3	001	1_	003	4
395		8		1079.662	_1_	1.792	4	034	<u>15</u>	0	1	0	15	0	15
396			min		3	.422	15	927	1_	0	3	002	1_	003	4
397		9		1080.041	1	1.759	4	034	15	0	1_	0	15	0	15
398		40	min	-1153.842	3	.415	15	927	1_	0	3	002	1_	004	4
399		10		1080.421 -1153.557	<u>1</u> 3	1.726	<u>4</u> 15	034	<u>15</u> 1	0	1	002	1 <u>5</u>	001	15
400		11	min	1080.8	<u> </u>	.407 1.692	4	927 034	15	0	<u>3</u>	002	15	004 001	15
402			max min	-1153.273	3	.399	15	927	1	0	3	002	1	005	4
403		12		1081.179	<u> </u>	1.659	4	034	15	0	1	0	15	003	15
404		12	min	-1152.988	3	.391	15	927	1	0	3	003	1	005	4
405		13		1081.558	1	1.626	4	034	15	0	1	0	15	001	15
406		10	min	-1152.704	3	.383	15	927	1	0	3	003	1	006	4
407		14		1081.938	1	1.592	4	034	15	0	1	0	15	001	15
408				-1152.419	3	.375	15	927	1	0	3	003	1	006	4
409		15		1082.317	1	1.559	4	034	15	0	1	0	15	002	15
410			min	-1152.135	3	.367	15	927	1	0	3	003	1	006	4
411		16		1082.696	1	1.525	4	034	15	0	1	0	15	002	15
412				-1151.85	3	.36	15	927	1	0	3	004	1	007	4
413		17		1083.075	1	1.492	4	034	15	0	1	0	15	002	15
414			min	-1151.566	3	.352	15	927	1	0	3	004	1	007	4
415		18		1083.455	1	1.459	4	034	15	0	1	0	15	002	15
416				-1151.282	3	.344	15	927	1	0	3	004	1	008	4
417		19	max	1083.834	1_	1.425	4	034	15	0	1	0	15	002	15
418			min	-1150.997	3	.336	15	927	1	0	3	004	1	008	4
419	M11	1		419.796	2	7.982	4	003	15	0	1	0	15	.008	4
420				-552.837	3	1.877	15	078	1_	0	3	0	1	.002	15
421		2		419.626	2	7.212	4	003	15	0	1	0	15	.005	2
422				-552.965	3	1.696	15	078	1	0	3	0	1	0	12
423		3		419.456	2	6.442	4	003	<u>15</u>	0	1	0	15	.002	2
424				-553.093	3	1.515	15	078	1_	0	3	0	1_	0	3
425		4	max	419.285	2	5.672	4	003	15	0	_1_	0	15	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
426			min	-553.22	3	1.334	15	078	1	0	3	0	1	002	3
427		5	max		2	4.902	4	003	15	0	1	0	15	0	15
428			min	-553.348	3	1.153	15	078	1	0	3	0	1	003	3
429		6	max	418.945	2	4.132	4	003	15	0	1	0	15	001	15
430			min	-553.476	3	.972	15	078	1	0	3	0	1	005	4
431		7	max	418.774	2	3.362	4	003	15	0	1	0	15	001	15
432			min	-553.604	3	.791	15	078	1	0	3	0	1	006	4
433		8	max	418.604	2	2.592	4	003	15	0	1	0	15	002	15
434			min	-553.732	3	.61	15	078	1	0	3	0	1	008	4
435		9	max	418.434	2	1.822	4	003	15	0	1	0	15	002	15
436			min	-553.859	3	.429	15	078	1	0	3	0	1	009	4
437		10	max		2	1.052	4	003	15	0	1	0	15	002	15
438			min	-553.987	3	.248	15	078	1	0	3	0	1	009	4
439		11	max	418.093	2	.369	2	003	15	0	1	0	15	002	15
440			min	-554.115	3	039	3	078	1	0	3	0	1	009	4
441		12	max	417.923	2	114	15	003	15	0	1	0	15	002	15
442			min	-554.243	3	489	3	078	1	0	3	0	1	009	4
443		13	max	417.752	2	295	15	003	15	0	1	0	15	002	15
444			min	-554.37	3	-1.258	4	078	1	0	3	0	1	009	4
445		14	max	417.582	2	476	15	003	15	0	1	0	15	002	15
446			min	-554.498	3	-2.028	4	078	1	0	3	0	1	008	4
447		15	max	417.412	2	657	15	003	15	0	1	0	15	002	15
448			min	-554.626	3	-2.798	4	078	1	0	3	0	1	007	4
449		16	max	417.241	2	838	15	003	15	0	1	0	15	001	15
450			min	-554.754	3	-3.568	4	078	1	0	3	0	1	006	4
451		17	max	417.071	2	-1.019	15	003	15	0	1	0	15	001	15
452			min	-554.881	3	-4.338	4	078	1	0	3	0	1	004	4
453		18	max	416.901	2	-1.2	15	003	15	0	1	0	15	0	15
454			min	-555.009	3	-5.108	4	078	1	0	3	0	1	002	4
455		19	max	416.73	2	-1.381	15	003	15	0	1	0	15	0	1
456			min	-555.137	3	-5.878	4	078	1	0	3	0	1	0	1
457	M12	1	max	1206.119	1	0	1	9.741	1	0	1	0	15	0	1
458			min	-238.49	3	0	1	.355	15	0	1	0	1	0	1
459		2	max	1206.289	1	0	1	9.741	1	0	1	0	1	0	1
460			min	-238.362	3	0	1	.355	15	0	1	0	12	0	1
461		3	max	1206.459	1	0	1	9.741	1	0	1	.002	1	0	1
462			min	-238.234	3	0	1	.355	15	0	1	0	15	0	1
463		4	max	1206.63	1	0	1	9.741	1	0	1	.003	1	0	1
464			min	-238.106	3	0	1	.355	15	0	1	0	15	0	1
465		5	max		1	0	1	9.741	1	0	1	.004	1	0	1
466			min		3	0	1	.355	15	0	1	0	15	0	1
467		6		1206.97	1	0	1	9.741	1	0	1	.005	1	0	1
468			min		3	0	1	.355	15	0	1	0	15	0	1
469		7		1207.141	1	0	1	9.741	1	0	1	.006	1	0	1
470			min	-237.723	3	0	1	.355	15	0	1	0	15	0	1
471		8	max	1207.311	1	0	1	9.741	1	0	1	.007	1	0	1
472			min		3	0	1	.355	15	0	1	0	15	0	1
473		9		1207.481	1	0	1	9.741	1	0	1	.008	1	0	1
474			min	-237.468	3	0	1	.355	15	0	1	0	15	0	1
475		10		1207.652	1	0	1	9.741	1	0	1	.01	1	0	1
476		1	min	-237.34	3	0	1	.355	15	0	1	0	15	0	1
477		11		1207.822	1	0	1	9.741	1	0	1	.011	1	0	1
478				-237.212	3	0	1	.355	15	0	1	0	15	0	1
479		12		1207.992	1	0	1	9.741	1	0	1	.012	1	0	1
480		12	min		3	0	1	.355	15	0	1	0	15	0	1
481		13		1208.163	1	0	1	9.741	1	0	1	.013	1	0	1
482		10		-236.957	3	0	1	.355	15	0	1	0	15	0	1
TUZ			1111111	200.007	J			.000	IU	U			10	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	I	Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14		1208.333	_1_	0	1	9.741	1_	0	_1_	.014	_1_	0	1
484			min	-236.829	3	0	1	.355	15	0	1_	0	15	0	1
485		15	max	1208.503	<u>1</u>	0	1	9.741	1_	0	<u>1</u>	.015	<u>1</u>	0	1_
486			min	-236.701	3	0	1	.355	15	0	1	0	15	0	1
487		16	max	1208.674	1	0	1	9.741	1	0	1	.016	1	0	1
488			min	-236.573	3	0	1	.355	15	0	1	0	15	0	1
489		17	max	1208.844	1	0	1	9.741	1	0	1	.017	1	0	1
490			min	-236.446	3	0	1	.355	15	0	1	0	15	0	1
491		18	max	1209.014	1	0	1	9.741	1	0	1	.018	1	0	1
492			min	-236.318	3	0	1	.355	15	0	1	0	15	0	1
493		19	max	I I	1	0	1	9.741	1	0	1	.02	1	0	1
494			min	-236.19	3	0	1	.355	15	0	1	0	15	0	1
495	M1	1	max	161.478	1	647.127	3	-3.634	15	0	1	.237	1	0	3
496			min	5.881	15	-485.32	1	-99.205	1	0	3	.009	15	013	2
497		2	max	161.968	1	646.118	3	-3.634	15	0	1	.184	1	.243	1
498			min	6.029	15	-486.666	1	-99.205	1	0	3	.007	15	341	3
499		3	max	331.185	3	544.527	1	-3.6	15	0	3	.132	1	.488	1
500			min	-200.742	2	-467.429	3	-98.507	1	0	1	.005	15	668	3
501		4	max	331.552	3	543.181	1	-3.6	15	0	3	.08	1	.201	1
502			min	-200.253	2	-468.439	3	-98.507	1	0	1	.003	15	421	3
503		5	max	331.92	3	541.835	1	-3.6	15	0	3	.028	1	004	15
504		J	min	-199.763	2	-469.448	3	-98.507	1	0	1	.001	15	174	3
505		6	max	332.287	3	540.489	1	-3.6	15	0	3	0	15	.074	3
506		0	min	-199.273	2	-470.458	3	-98.507	1	0	1	024	1	371	1
507		7	max	332.655	3	539.143	1	-3.6	15	0	3	024	15	.323	3
508		-	min	-198.783	2	-471.467	3	-98.507	1	0	1	076	1	656	1
509		8		333.022		537.797	1	-3.6	15		3	005	15	.572	3
510		0	max min	-198.293	<u>3</u> 2	-472.477	3	-98.507	1	0	1	128	1	94	1
511		9	max	343.322	3	42.102	2	-5.293	15	0	9	.075	1	.668	3
512		9	min	-132.489	2	.409	15	-144.72	1	0	3	.003	15	-1.071	1
513		10	max	343.689	3	40.756	2	-5.293	15	0	9	0	15	.65	3
514		10	min	-131.999	2	.003	15	-144.72	1	0	3	0	1	-1.083	1
515		11	max	344.057	3	39.41	2	-5.293	15	0	9	003	15	.633	3
516			min	-131.509	2	-1.655	4	-144.72	1	0	3	077	1	-1.094	1
517		12	max	354.292	3	306.794	3	-3.512	15	0	2	.126	1	.551	3
518		12	min	-78.506	10	-582.275	1	-96.228	1	0	3	.005	15	966	1
519		13	max	354.659	3	305.784	3	-3.512	15	0	2	.076	1	.39	3
520		13	min	-78.097	10	-583.621	1	-96.228	1	0	3	.003	15	659	1
521		14		355.027	3	304.775	3	-3.512	15	0	2	.025	1	.229	3
522		14	max min	-77.689	10	-584.967	1	-96.228	1	0	3	0	15	35	1
		15				303.765	_		-						
523		10		355.394	3		3	-3.512	15	0	2	0	<u>15</u>	.068	3
524 525		16	min max	-77.281 355.761	<u>10</u> 3	-586.313 302.756	1	<u>-96.228</u> -3.512	15	0	2	026 003	<u>1</u> 15	041 .292	2
		10					3	-3.512 -96.228	1		3		1 <u>1</u>		
526		17	min		10	-587.659	1			0		077		092	3
527		17	max		3	301.746	3	-3.512	15	0	2	005	<u>15</u>	.601	3
528		10	min		10	-589.005	1	-96.228	1_	0	3	128	1_	251	
529		18	max	-6.035 -162.18	<u>15</u>	592.215	2	-3.865	1 <u>5</u>	0	3	007 182	<u>15</u>	.302	2
530		40	min		1_	-253.579	3	-105.592		0	2		1_	124 .01	3
531		19	max	-5.887 -161.69	<u>15</u>	590.869	2	-3.865	15	0	3	009	<u>15</u> 1		3
532	NAE	1	min		1	-254.588	3	-105.592		0	2	238	_	012	_
533	<u>M5</u>	1	max		1	2156.806	3	0	1	0	1	0	1_1	.027	2
534		2	min	11.658	<u>12</u>	-1642.986	2	0	1	0	1	0	1	904	3
535		2	max		1	2155.796	3	0	1	0	1	0	<u>1</u> 1	.894	1
536		2	min		12	-1644.332	1	0		0		0		-1.139	3
537 538		3		1064.477 -715.035	<u>3</u> 2	1660.035 -1499.392	3	0	1	0	<u>1</u> 1	0	<u>1</u> 1	1.722 -2.232	3
		1						0		0	1	0	•		-
539		4	шах	1064.845	3_	1658.689	_1_	0	1	0		0	<u>1</u>	.846	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

540	Member	Sec	min	Axial[lb]	LC 2	y Shear[lb]	LC 3	z Shear[lb]	LC 1	Torque[k-ft]	LC 1	y-y Mome	LC 1	z-z Mome	LC 3
541		5		1065.212	3	1657.343	1	0	1	Ö	1	0	1	.011	9
542				-714.055	2	-1501.412	3	0	1	0	1	0	1	649	3
543		6	max		3	1655.997	1	0	1	0	1	0	1	.144	3
544			min	-713.565	2	-1502.421	3	0	1	0	1	0	1	903	1
545		7		1065.947	3	1654.651	1	0	1	Ö	1	0	1	.937	3
546			min	-713.075	2	-1503.431	3	0	1	0	1	0	1	-1.776	1
547		8		1066.314	3	1653.305	1	0	1	0	1	0	1	1.731	3
548				-712.585	2	-1504.44	3	0	1	0	1	0	1	-2.649	1
549		9		1083.473	3	140.264	2	0	1	0	1	0	1	1.993	3
550			min	-576.907	2	.407	15	0	1	0	1	0	1	-2.998	1
551		10	max		3	138.918	2	0	1	0	1	0	1	1.929	3
552		-10	min	-576.417	2	0	15	0	1	0	1	0	1	-3.037	1
553		11	_	1084.208	3	137.572	2	0	1	0	1	0	1	1.866	3
554		- 1 1		-575.927	2	-1.522	4	0	1	0	1	0	1	-3.076	1
555		12		1101.496	3	970.042	3	0	1	0	1	0	1	1.638	3
556		12	min	-440.283	2	-1802.201	1	0	1	0	1	0	1	-2.742	1
557		13		1101.863	3	969.033	3	0	1	0	1	0	1	1.126	3
558		13		-439.793	2	-1803.547	1	0	1	0	1	0	1	-1.791	1
559		14		1102.231	3	968.023	3	0	1	0	1	0	1	.615	3
560		14		-439.303	2	-1804.893	1	0	1	0	1	0	1	838	1
561		15		1102.598	3	967.014	3	0	1	0	1	0	1	.185	2
562		10	min	-438.813	2	-1806.239	1	0	1	0	1	0	1	004	13
563		16		1102.966	3	966.004	3	0	1	0	1	0	1	1.132	
		10				-1807.585	1		1		1	0	1		3
564		17	min	-438.323	2			0	1	0	1		1	405	
565		17		1103.333	3	964.995	3	0	1	0		0		2.08	2
566		40	min	-437.833	2		1	0		0	1_	0	1	915	3
567		18	max		12	1995.379	2	0	1	0	1	0	1	1.073	2
568		40		-349.478	1_	-869.417	3	0	1	0	1_	0	1	478	3
569		19	max	-11.917	12	1994.033	2	0	1	0	1	0	1	.023	1
570	140	4	min	-348.988	1_	-870.426	3	0	1	0	1	0	1_	019	3
571	M9	1	max	161.478	1_	647.127	3	99.205	1	0	3	009	15	0	3
572			min	5.881	<u>15</u>	-485.32	1	3.634	15	0	1_	237	1_	013	2
573		2	max	161.968	1_	646.118	3	99.205	1	0	3	007	15	.243	1
574			min	6.029	<u>15</u>	-486.666	1	3.634	15	0	1_	184	1_	341	3
575		3	max	331.185	3_	544.527	1	98.507	1	0	1	005	15	.488	1
576			min	-200.742	2	-467.429	3	3.6	15	0	3	132	1_	668	3
577		4	max	331.552	3_	543.181	1_	98.507	1	0	1	003	15	.201	1
578		_	min	-200.253	2	-468.439	3	3.6	15	0	3	08	1_	421	3
579		5	max		3_	541.835	1	98.507	1_	0	1	001	15	004	15
580				-199.763	2	-469.448	-	3.6	15	0	3_	028	1	174	3
581		6		332.287	3_	540.489	1_	98.507	1	0	1	.024	1_	.074	3
582		_		-199.273	2	-470.458	3	3.6	15	0	3	0	15	371	1
583		7		332.655	3_	539.143	_1_	98.507	1_	0	1	.076	1	.323	3
584				-198.783	2	-471.467	3	3.6	15	0	3	.003	15	656	1
585		8		333.022	3_	537.797	1_	98.507	1	0	1_	.128	1	.572	3
586				-198.293	2	-472.477	3	3.6	15	0	3	.005	15	94	1
587		9		343.322	3	42.102	2	144.72	1	0	3	003	15	.668	3
588				-132.489	2	.409	15	5.293	15	0	9	075	1	-1.071	1
589		10		343.689	3	40.756	2	144.72	1	0	3	0	1	.65	3
590				-131.999	2	.003	15	5.293	15	0	9	0	15	-1.083	1
591		11		344.057	3	39.41	2	144.72	1	0	3	.077	1	.633	3
592				-131.509	2	-1.655	4	5.293	15	0	9	.003	15	-1.094	1
593		12	max	354.292	3	306.794	3	96.228	1	0	3	005	15	.551	3
594			min	-78.506	10	-582.275	1	3.512	15	0	2	126	1	966	1
595		13	max	354.659	3	305.784	3	96.228	1	0	3	003	15	.39	3
596			min	-78.097	10	-583.621	1_	3.512	15	0	2	076	1	659	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	355.027	3	304.775	3	96.228	1	0	3	0	15	.229	3
598			min	-77.689	10	-584.967	1	3.512	15	0	2	025	1	35	1
599		15	max	355.394	3	303.765	3	96.228	1	0	3	.026	1	.068	3
600			min	-77.281	10	-586.313	1	3.512	15	0	2	0	15	041	1
601		16	max	355.761	3	302.756	3	96.228	1	0	3	.077	1	.292	2
602			min	-76.873	10	-587.659	1	3.512	15	0	2	.003	15	092	3
603		17	max	356.129	3	301.746	3	96.228	1	0	3	.128	1	.601	2
604			min	-76.464	10	-589.005	1	3.512	15	0	2	.005	15	251	3
605		18	max	-6.035	15	592.215	2	105.592	1	0	2	.182	1	.302	2
606			min	-162.18	1	-253.579	3	3.865	15	0	3	.007	15	124	3
607		19	max	-5.887	15	590.869	2	105.592	1	0	2	.238	1	.01	3
608			min	-161.69	1	-254.588	3	3.865	15	0	3	.009	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
1	M13	1	max	0	1	.109	1	.006	3 8.714e-3	_1_	NC	_1_	NC	1
2			min	0	15	017	3	003	2 -1.418e-3	3	NC	1_	NC	1
3		2	max	0	1	.288	3	.038	1 1.001e-2	_1_	NC	5	NC	2
4			min	0	15	<u>1</u>	1	.001	10 -1.457e-3	3	785.028	3	6646.298	
_ 5		3	max	0	1	.536	3	.09	1 1.131e-2	1	NC	5	NC	3
6			min	0	15	265	1	.003	15 -1.497e-3	3	433.86	3	2719.217	1
7		4	max	0	1	.686	3	.135	1 1.261e-2	_1_	NC	5_	NC	3
8			min	0	15	357	1	.005	15 -1.536e-3	3	341.287	3	1799.258	1
9		5	max	0	1	.72	3	.158	1 1.39e-2	1_	NC	5	NC	3
10			min	0	15	363	1	.006	15 -1.575e-3	3	325.384	3	1532.563	1
11		6	max	0	1	.642	3	.153	1 1.52e-2	1_	NC	5	NC	3
12			min	0	15	285	1	.006	15 -1.615e-3	3	364.25	3	1587.57	1
13		7	max	0	1	.473	3	.12	1 1.65e-2	1	NC	5	NC	3
14			min	0	15	142	1	.005	15 -1.654e-3	3	489.21	3	2024.325	1
15		8	max	0	1	.26	3	.07	1 1.779e-2	1	NC	4	NC	2
16			min	0	15	0	15	0	10 -1.694e-3	3	866.322	3	3510.363	1
17		9	max	0	1	.192	2	.02	1 1.909e-2	1	NC	4	NC	1
18			min	0	15	.005	15	005	10 -1.733e-3	3	2811.565	2	NC	1
19		10	max	0	1	.255	1	.019	3 2.039e-2	1	NC	3	NC	1
20			min	0	1	021	3	012	2 -1.772e-3	3	1637.628	1	NC	1
21		11	max	0	15	.192	2	.02	1 1.909e-2	1	NC	4	NC	1
22			min	0	1	.005	15	005	10 -1.733e-3	3	2811.565	2	NC	1
23		12	max	0	15	.26	3	.07	1 1.779e-2	1	NC	4	NC	2
24			min	0	1	0	15	0	10 -1.694e-3	3	866.322	3	3510.363	1
25		13	max	0	15	.473	3	.12	1 1.65e-2	1	NC	5	NC	3
26			min	0	1	142	1	.005	15 -1.654e-3	3	489.21	3	2024.325	1
27		14	max	0	15	.642	3	.153	1 1.52e-2	1	NC	5	NC	3
28			min	0	1	285	1	.006	15 -1.615e-3	3	364.25	3	1587.57	1
29		15	max	0	15	.72	3	.158	1 1.39e-2	1	NC	5	NC	3
30			min	0	1	363	1	.006	15 -1.575e-3	3	325.384	3	1532.563	1
31		16	max	0	15	.686	3	.135	1 1.261e-2	1	NC	5	NC	3
32			min	0	1	357	1	.005	15 -1.536e-3	3	341.287	3	1799.258	1
33		17	max	0	15	.536	3	.09	1 1.131e-2	1	NC	5	NC	3
34			min	0	1	265	1	.003	15 -1.497e-3	3	433.86	3	2719.217	1
35		18	max	0	15	.288	3	.038	1 1.001e-2	1	NC	5	NC	2
36			min	0	1	1	1	.001	10 -1.457e-3	3	785.028	3	6646.298	1
37		19	max	0	15	.109	1	.006	3 8.714e-3	1	NC	1	NC	1
38			min	0	1	017	3	003	2 -1.418e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.198	3	.005	3 5.407e-3	1	NC	1	NC	1
40			min	0	15	352	1	002	2 -3.561e-3	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
41		2	max	0	1	.493	3	.026	1	6.489e-3	_1_	NC	5	NC	2
42			min	0	15	687	1	0	10	-4.337e-3	3	717.145	<u>1</u>	9763.545	
43		3	max	0	1	.743	3	.072	1	7.571e-3	_1_	NC	15	NC	3
44			min	0	15	974	1	.003	15		3	385.554	_1_	3396.647	1
45		4	max	0	1	.916	3	.116	1	8.652e-3	1_	NC 200.754	<u>15</u>	NC	3
46		-	min	0	15	<u>-1.183</u>	1	.004	15	-5.89e-3	3	288.751	1_	2103.914	
47		5	max	0	1	.996	3	.141	1	9.734e-3	1_	NC 054457	<u>15</u>	NC 4700 000	3
48		_	min	0	15	-1.296	1	.005		-6.666e-3	3	254.157	1_	1728.608	
49		6	max	0	1	.983	3	.139	1	1.082e-2	1_	NC 040.057	15	NC 4750,000	3
50		7	min	0	15	-1.313	1	.005	15	-7.442e-3	3	249.657	1_	1750.008	
51		7	max	0	1	.895	3	.111	1	1.19e-2	1_	NC OCT OOF	<u>15</u>	NC 0405 400	3
52			min	0	15	-1.25	1	.004	15	-8.218e-3	3	267.395	1_	2195.128	
53		8	max	0	1	.763	3	.066	1	1.298e-2	1_	NC 000.050	<u>15</u>	NC	2
54			min	0	15	-1.136	1	0		-8.995e-3	3	306.053	1_	3753.738	
55		9	max	0	1	.636	3	.019	1	1.406e-2	1_	NC 250.444	<u>15</u>	NC NC	1
56		40	min	0	15	-1.02	1	005		-9.771e-3	3	359.141	1_	NC NC	1
57		10	max	0	1	.576	3	.017	3	1.514e-2	1_	NC 204.00	5	NC NC	1
58		4.4	min	0	1	<u>965</u>	1	011	2	-1.055e-2	3	391.69	1_	NC NC	1
59		11	max	0	15	.636	3	.019	1	1.406e-2	1_	NC 050.4.44	15	NC NC	1
60		40	min	0	1	-1.02	1	005	10	-9.771e-3	3	359.141	1_	NC NC	1
61		12	max	0	15	.763	3	.066	1	1.298e-2	1	NC 200 052	<u>15</u>	NC	2
62		40	min	0	1	-1.136	1	0	10	-8.995e-3	3	306.053	1_	3753.738	
63		13	max	0	15	.895	3	.111	1	1.19e-2	1_2	NC 207 205	<u>15</u>	NC	3
64		4.4	min	0	1	-1.25	1	.004		-8.218e-3	3	267.395	1_	2195.128	
65		14	max	0	15	.983	3	.139	1	1.082e-2	1	NC 240 CEZ	<u>15</u>	NC	3
66		4.5	min	0	1	-1.313	1	.005		-7.442e-3	3	249.657	1_	1750.008	
67		15	max	0	15	.996	3	.141	1	9.734e-3	1	NC OF 4 4 F 7	<u>15</u>	NC 4700 C00	3
68		4.0	min	0	1	-1.296	1	.005	15		3	254.157	1_	1728.608	
69		16	max	0	15	.916	3	.116	1	8.652e-3	1	NC 200.754	<u>15</u>	NC	3
70		17	min	0	15	<u>-1.183</u> .743	3	.004 .072	1 <u>5</u>	-5.89e-3 7.571e-3	<u>3</u>	288.751 NC	<u>1</u> 15	2103.914 NC	3
72		17	max	0	1	974	1	.003	15	-5.114e-3	3	385.554	1	3396.647	1
		10	min		15		3		1			NC	<u> </u>	NC	2
73		18	max	0	1	.493	1	.026		6.489e-3	1_2		<u> </u>	9763.545	
74		10	min	0		<u>687</u>	3	0	10	-4.337e-3	3	717.145	1		1
75 76		19	max	0	15	.198 352	1	.005 002	2	5.407e-3 -3.561e-3	<u>1</u> 3	NC NC	1	NC NC	1
77	M15	1	min	0	15	.202	3	.002	3	3.01e-3	3	NC	1	NC NC	1
78	IVITO		max	0	1	351	1	002	2	-5.529e-3		NC NC	1	NC NC	1
		2	min	0	15	.389	3	.026	1	3.669e-3	<u>1</u> 3	NC NC	5	NC NC	2
79 80			max min	0	1	725	1	0	10	-6.64e-3	1	634.687	2	9716.744	
81		3	max	0	15	<u>725</u> .55	3	.073		4.329e-3		NC	15		3
82		3	min	0	1	-1.045	1	.003		-7.752e-3	1	342.704	2	3386.825	
83		4	max	0	15	.67	3	.116	1	4.988e-3	3	NC	15	NC	3
84		-	min	0	1	-1.273	1	.004		-8.864e-3	1	258.583	2	2099.05	1
85		5	max	0	15	.738	3	.141	1	5.647e-3	3	NC	15	NC	3
86		1	min	0	1	-1.39	1	.005		-9.976e-3	1	230.235	2	1724.862	
87		6	max	0	15	.755	3	.139	1	6.306e-3	3	NC	15	NC	3
88		0	min	0	1	-1.397	1	.005		-1.109e-2	1	229.522	1	1745.921	1
89		7	max	0	15	.728	3	.111	1	6.965e-3	3	NC	15	NC	3
90		-	min	0	1	-1.312	1	.004	15	-1.22e-2	1	249.956	1	2188.563	
91		8	max	0	15	.674	3	.066	1	7.625e-3	3	NC	15	NC	2
92			min	0	1	-1.171	1	0		-1.331e-2	1	292.94	1	3734.639	
93		9	max	0	15	.616	3	.02	1	8.284e-3	3	NC	15	NC	1
94		3	min	0	1	-1.03	1	004		-1.442e-2	1	353.759	1	NC	1
95		10	max	0	1	.588	3	004 .016	3	8.943e-3	3	NC	5	NC NC	1
96		10	min	0	1	963	1	01	2	-1.553e-2	1	392.398	1	NC NC	1
97		11	max	0	1	.616	3	.02	1	8.284e-3	3	NC	15	NC	1
JI		1 1 1	πιαλ	U	1	.010	J	.∪∠		0.2046-3	J	INC	ΙJ	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
98			min	0	15	-1.03	1	004	10 -1.442e-2	1_	353.759	1_	NC	1
99		12	max	0	1	.674	3	.066	1 7.625e-3	3	NC	15	NC	2
100			min	0	15	<u>-1.171</u>	1	0	10 -1.331e-2	1_	292.94	_1_	3734.639	
101		13	max	0	1	.728	3	111	1 6.965e-3	3	NC	<u>15</u>	NC	3
102		4.4	min	0	15	-1.312	1	.004	15 -1.22e-2	1_	249.956	1_	2188.563	1
103		14	max	0	1	.755	3	.139	1 6.306e-3	3	NC	<u>15</u>	NC 1715 001	3
104		4.5	min	0	15	<u>-1.397</u>	1	.005	15 -1.109e-2	1_	229.522	1_	1745.921	1
105		15	max	0	1	.738	3	.141	1 5.647e-3	3	NC 200 cor	15	NC 4704 000	3
106		40	min	0	15	-1.39	1	.005	15 -9.976e-3	1_	230.235	2	1724.862	1
107		16	max	0	1	.67	3	.116	1 4.988e-3	3_	NC OFFI FOR	<u>15</u>	NC 0000.05	3
108		4-7	min	0	15	-1.273	1	.004	15 -8.864e-3	1_	258.583	2	2099.05	1
109		17	max	0	1	.55	3	.073	1 4.329e-3	3	NC 242 To 4	<u>15</u>	NC	3
110		10	min	0	15	<u>-1.045</u>	1	.003	15 -7.752e-3	1_	342.704	2	3386.825	
111		18	max	0	1	.389	3	.026	1 3.669e-3	3	NC	5	NC	2
112		4.0	min	0	15	725	1	0	10 -6.64e-3	1_	634.687	2	9716.744	1
113		19	max	0	1	.202	3	.005	3 3.01e-3	3	NC	_1_	NC	1
114			min	0	15	351	1	002	2 -5.529e-3	_1_	NC	_1_	NC	1
115	<u>M16</u>	1	max	0	15	.105	1	.004	3 5.31e-3	3	NC	1_	NC	1
116			min	001	1	067	3	002	2 -8.068e-3	1_	NC	<u>1</u>	NC	1
117		2	max	0	15	.037	3	.037	1 6.254e-3	3	NC	_5_	NC	2
118			min	0	1	167	2	.001	15 -9.209e-3	1_	917.69	2	6686.934	
119		3	max	0	15	.119	3	.089	1 7.197e-3	3	NC	5	NC	3
120			min	0	1	375	2	.003	15 -1.035e-2	1_	510.665	2	2726.403	
121		4	max	0	15	.162	3	.135	1 8.141e-3	3	NC	5	NC	3
122			min	0	1	495	2	.005	15 -1.149e-2	1_	406.879	2	1800.443	1
123		5	max	0	15	.161	3	.158	1 9.084e-3	3	NC	5	NC	3
124			min	0	1	51	2	.006	15 -1.263e-2	1_	396.787	2	1530.93	1
125		6	max	0	15	.116	3	.153	1 1.003e-2	3	NC	5	NC	3
126			min	0	1	423	2	.006	15 -1.377e-2	1	463.447	2	1582.507	1
127		7	max	0	15	.037	3	.121	1 1.097e-2	3	NC	5	NC	3
128			min	0	1	256	2	.005	15 -1.491e-2	1_	683.924	2	2010.523	
129		8	max	0	15	.009	9	.071	1 1.191e-2	3	NC	3	NC	2
130			min	0	1	057	3	.002	10 -1.605e-2	1	1652.048	2	3454.306	1
131		9	max	0	15	.163	1	.021	1 1.286e-2	3	NC	4	NC	1
132			min	0	1	14	3	004	10 -1.719e-2	1	3292.486	3	NC	1
133		10	max	0	1	.244	1	.014	3 1.38e-2	3	NC	5	NC	1
134			min	0	1	177	3	01	2 -1.833e-2	1	1727.747	1	NC	1
135		11	max	0	1	.163	1	.021	1 1.286e-2	3	NC	4	NC	1
136			min	0	15	14	3	004	10 -1.719e-2	1	3292.486	3	NC	1
137		12	max	0	1	.009	9	.071	1 1.191e-2	3	NC	3	NC	2
138			min	0	15	057	3	.002	10 -1.605e-2	1	1652.048	2	3454.306	1
139		13	max	0	1	.037	3	.121	1 1.097e-2	3	NC	5	NC	3
140			min	0	15	256	2	.005	15 -1.491e-2	1_	683.924	2	2010.523	1
141		14	max	0	1	.116	3	.153	1 1.003e-2	3	NC	5	NC	3
142			min	0	15	423	2	.006	15 -1.377e-2	1	463.447	2	1582.507	1
143		15	max	0	1	.161	3	.158	1 9.084e-3	3	NC	5	NC	3
144			min	0	15	51	2	.006	15 -1.263e-2	1	396.787	2	1530.93	1
145		16	max	0	1	.162	3	.135	1 8.141e-3	3	NC	5	NC	3
146			min	0	15	495	2	.005	15 -1.149e-2	1	406.879	2	1800.443	
147		17	max	0	1	.119	3	.089	1 7.197e-3	3	NC	5	NC	3
148			min	0	15	375	2	.003	15 -1.035e-2	1	510.665	2	2726.403	
149		18	max	0	1	.037	3	.037	1 6.254e-3	3	NC	5	NC	2
150			min	0	15	167	2	.001	15 -9.209e-3	1	917.69	2	6686.934	
151		19	max	.001	1	.105	1	.004	3 5.31e-3	3	NC	1	NC	1
152			min	0	15	067	3	002	2 -8.068e-3	1	NC	1	NC	1
153	M2	1	max	.006	1	.004	2	.008	1 -7.452e-6		NC	<u> </u>	NC	2
154			min	006	3	008	3	0	15 -2.041e-4	1	NC	1	7229.464	
									.0 2.0 10 +					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
155		2	max	.005	1	.004	2	.007	1	-6.953e-6	<u>15</u>	NC	_1_	NC	2
156			min	006	3	008	3	0	15	-1.904e-4	1_	NC	1_	7886.077	1
157		3	max	.005	1	.003	2	.006	1	-6.454e-6	<u>15</u>	NC	_1_	NC	2
158			min	005	3	007	3	0	15	-1.767e-4	1	NC	1	8668.84	1
159		4	max	.005	1	.002	2	.006	1	-5.954e-6	15	NC	1_	NC	2
160			min	005	3	007	3	0	15	-1.63e-4	1	NC	1	9611.263	1
161		5	max	.004	1	.002	2	.005	1	-5.455e-6	15	NC	1	NC	1
162			min	005	3	007	3	0	15	-1.493e-4	1	NC	1	NC	1
163		6	max	.004	1	.001	2	.005	1	-4.955e-6	15	NC	1	NC	1
164			min	004	3	007	3	0	15	-1.356e-4	1	NC	1	NC	1
165		7	max	.004	1	0	2	.004	1	-4.456e-6	15	NC	1	NC	1
166			min	004	3	006	3	0	15	-1.219e-4	1	NC	1	NC	1
167		8	max	.004	1	0	2	.003	1	-3.956e-6	15	NC	1	NC	1
168			min	004	3	006	3	0	15	-1.083e-4	1	NC	1	NC	1
169		9	max	.003	1	0	2	.003	1	-3.457e-6	15	NC	1	NC	1
170			min	003	3	006	3	0	15	-9.456e-5	1	NC	1	NC	1
171		10	max	.003	1	0	2	.002	1	-2.958e-6	15	NC	1	NC	1
172			min	003	3	005	3	0	15	-8.088e-5	1	NC	1	NC	1
173		11	max	.003	1	0	15	.002	1	-2.458e-6	15	NC	1	NC	1
174			min	003	3	005	3	0	15	-6.719e-5	1	NC	1	NC	1
175		12	max	.002	1	0	15	.002	1	-1.959e-6	15	NC	1	NC	1
176			min	002	3	004	3	0	15	-5.35e-5	1	NC	1	NC	1
177		13	max	.002	1	0	15	.001	1	-1.459e-6	15	NC	1	NC	1
178			min	002	3	004	3	0	15	-3.982e-5	1	NC	1	NC	1
179		14	max	.002	1	0	15	0	1	-9.598e-7	15	NC	1	NC	1
180			min	002	3	003	3	0	15	-2.613e-5	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	-4.604e-7	15	NC	1	NC	1
182			min	001	3	003	3	0	15	-1.244e-5	1	NC	1	NC	1
183		16	max	0	1	0	15	0	1	1.245e-6	1	NC	1	NC	1
184			min	001	3	002	3	0	15	-3.741e-7	3	NC	1	NC	1
185		17	max	0	1	0	15	0	1	1.493e-5	1	NC	1	NC	1
186			min	0	3	001	4	0	15	4.289e-7	12	NC	1	NC	1
187		18	max	0	1	0	15	0	1	2.862e-5	1	NC	1	NC	1
188			min	0	3	0	4	0	15	1.038e-6	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	4.231e-5	1	NC	1	NC	1
190		10	min	0	1	0	1	0	1	1.537e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-4.851e-7	15	NC	1	NC	1
192	IVIO		min	0	1	0	1	0	1	-1.334e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	9.951e-6	1	NC	1	NC	1
194			min	0	2	002	4	0	15	3.636e-7	15	NC	1	NC	1
195		3	max	0	3	<u>002</u> 0	15	0	1	3.324e-5	1	NC	1	NC	1
196			min	0	2	003	4	0	15	1.212e-6	15	NC	1	NC	1
197		4	max	0	3	003 001	15	0	1	5.654e-5	1	NC	1	NC	1
198		-	min	0	2	001 005	4	0	15	2.061e-6	15	NC	1	NC	1
199		5	max	.001	3	005 002	15	0	1	7.983e-5	1 <u>15</u>	NC NC	1	NC NC	1
200		J	min	0	2	002 007	4	0	15	2.91e-6	15	NC NC	1	NC NC	1
201		6		.001	3	007 002	15	.001	1	1.031e-4	1 <u>15</u>	NC NC	1	NC NC	1
202		U	max	001	2	002 009	4	0	15	3.759e-6	15	NC NC	1	NC NC	1
203		7		.002	3	009 002	15	.002	1	1.264e-4	<u>15</u> 1	NC NC	1	NC NC	1
			max						15	4.607e-6					1
204		0	min	001	2	01	15	002			<u>15</u>	8925.85	4	NC NC	_
205		8	max	.002	3	003	15	.002	1	1.497e-4	1_	NC 7006 175	1_4	NC NC	1
206		0	min	001	2	012	4	0	15	5.456e-6	<u>15</u>	7986.175	4_	NC NC	1
207		9	max	.002	3	003	15	.002	1	1.73e-4	1_	NC	2	NC NC	1
208		40	min	002	2	013	4	0	15	6.305e-6		7427.502	4	NC NC	1
209		10	max	.002	3	003	15	.003	1	1.963e-4	1_	NC	2	NC NC	1
210			min	002	2	013	4	0	15	7.154e-6	-	7151.637	4	NC	1
211		11	max	.003	3	003	15	.003	1	2.196e-4	_1_	NC	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	002	2	013	4	0	15	8.002e-6	15	7117.631	4	NC	1
213		12	max	.003	3	003	15	.003	1	2.429e-4	_1_	NC	2	NC	1
214			min	002	2	013	4	0	15	8.851e-6	15	7326.029	4	NC	1
215		13	max	.003	3	003	15	.004	1	2.662e-4	_1_	NC	_1_	NC	1
216			min	002	2	012	4	0	15	9.7e-6	15	7821.058	4_	NC	1
217		14	max	.003	3	003	15	.004	1	2.895e-4	1_	NC	1	NC NC	1
218		45	min	003	2	011	4	0	15	1.055e-5		8713.861	4	NC NC	1
219		15	max	.004	3	002	15	.005	1	3.128e-4	1_	NC NC	1_	NC	1
220		4.0	min	003	2	009	4	0	15	1.14e-5	<u>15</u>	NC NC	1_	NC NC	1
221		16	max	.004 003	3	002 008	15	.005	15	3.361e-4 1.225e-5	1_	NC NC	<u>1</u> 1	NC NC	1
223		17	min		3		15	<u> </u>			<u>15</u>	NC NC	1	NC NC	1
224		17	max	.004 003	2	001 006	1	<u>.006</u>	15	3.593e-4 1.309e-5	<u>1</u> 15	NC NC	1	NC NC	1
225		18	min max	.005	3	<u>006</u> 0	15	.007	1	3.826e-4	1 <u>1</u>	NC NC	1	NC NC	1
226		10	min	003	2	005	1	0	15	1.394e-5	15	NC	1	NC	1
227		19	max	.005	3	<u>005</u> 0	15	.007	1	4.059e-4	1 <u>3</u>	NC	1	NC	1
228		13	min	004	2	003	1	0	15	1.479e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	15	2.065e-5	1	NC	1	NC	3
230	IVIT	'	min	0	3	005	3	007	1	7.626e-7	15	NC	1	3394.419	1
231		2	max	.003	1	.003	2	0	15	2.065e-5	1	NC	1	NC	3
232			min	0	3	005	3	007	1	7.626e-7	15	NC	1	3694.365	
233		3	max	.003	1	.003	2	0	15	2.065e-5	1	NC	1	NC	2
234			min	0	3	004	3	006	1	7.626e-7	15	NC	1	4051.167	1
235		4	max	.002	1	.003	2	0	15	2.065e-5	1	NC	1	NC	2
236			min	0	3	004	3	006	1	7.626e-7	15	NC	1	4479.628	1
237		5	max	.002	1	.002	2	0	15	2.065e-5	1	NC	1	NC	2
238			min	0	3	004	3	005	1	7.626e-7	15	NC	1	4999.862	1
239		6	max	.002	1	.002	2	0	15	2.065e-5	1	NC	1	NC	2
240			min	0	3	004	3	004	1	7.626e-7	15	NC	1	5639.765	1
241		7	max	.002	1	.002	2	0	15	2.065e-5	1_	NC	1_	NC	2
242			min	0	3	003	3	004	1	7.626e-7	15	NC	1	6438.933	1
243		8	max	.002	1	.002	2	0	15	2.065e-5	_1_	NC	_1_	NC	2
244			min	0	3	003	3	003	1	7.626e-7	15	NC	1_	7455.124	1
245		9	max	.002	1	.002	2	0	15	2.065e-5	_1_	NC	_1_	NC	2
246			min	0	3	003	3	003	1	7.626e-7	15	NC	_1_	8775.291	1
247		10	max	.001	1	.002	2	0	15	2.065e-5	_1_	NC	_1_	NC	1
248			min	0	3	002	3	002	1	7.626e-7	<u>15</u>	NC	1_	NC	1
249		11	max	.001	1	.001	2	0	15	2.065e-5	_1_	NC	1_	NC NC	1
250		40	min	0	3	002	3	002	1_	7.626e-7	15	NC	_1_	NC NC	1
251		12	max	.001	1	.001	2	0	15	2.065e-5	1_	NC	1_	NC NC	1
252		40	min		3	002	3	002		7.626e-7			1	NC NC	1
253		13	max	0	3	.001	2	0		2.065e-5	1_	NC NC	1	NC NC	1
254		1.1	min	0	1	002	2	001	1 1 5	7.626e-7	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
255		14	max	0	3	0	3	0	15		15		1	NC NC	1
256 257		15	min max	0	1	001 0	2	<u> </u>	15	7.626e-7 2.065e-5	<u>15</u> 1	NC NC	1	NC NC	1
258		15	min	0	3	001	3	0	1	7.626e-7	15	NC	1	NC	1
259		16		0	1	0	2	0	15	2.065e-5	10	NC	1	NC	1
260		10	max	0	3	0	3	0	1	7.626e-7	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	2.065e-5	1 <u>5</u>	NC NC	1	NC NC	1
262		17	min	0	3	0	3	0	1	7.626e-7	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	2.065e-5	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	7.626e-7	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.065e-5	1	NC	1	NC	1
266		'	min	0	1	0	1	0	1	7.626e-7	15	NC	1	NC	1
267	M6	1	max	.018	1	.018	2	0	1	0	1	NC	3	NC	1
268			min	02	3	025	3	0	1	0	1	3145.971	2	NC	1
			1111111	.,,_	_	.020				•		01101011	_		

Model Name

: Schletter, Inc. : HCV

нси

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

270		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
271	269		2	max	.017			2	0	1	0	1		3	NC	1
272				min					0			1				1
273			3_													1
274												•				1
275			4									_				•
276			-							•		•				
277			5													_
278										-		-				
279			Ь									_		_		
280			7									_				_
281												_				
282			0													
283			0													1
284			0									•		_		1
285			1 3									_				1
286			10							•						
11			10	_												1
288			11							-						
1288												_				1
290			12							1		_				1
291			<u> </u>							1		1				1
1292			13						0	1		1		1		1
293									0	1		1		1		1
294			14						0	1	0	1		1		1
296						3		3	0	1		1		1		1
297	295		15	max	.004	1	0	2	0	1	0	1	NC	1	NC	1
17 18 17 18 18 18 18 18	296			min	004	3	006	3	0	1	0	1	NC	1	NC	1
17	297		16	max	.003		0	2	0	1	0	1	NC	1	NC	1
300				min		3	004		0	1		1		1		1
301			17	max								_				1
302				min												1
303			18													1
304												•		-		1
305 M7			19			-		-				_				•
306		2.47								•						
307		<u> </u>	1		_		-							_		
308					<u> </u>					-						
309 3 max .002 3 0 15 0 1 0 1 NC 1 1 NC 1 310 min002 2004 3 0 1 0 1 NC 1 NC 1 311 4 max .003 3001 15 0 1 0 1 NC 1 NC 1 312 min002 2006 3 0 1 0 1 NC 1 NC 1 313 5 max .003 3002 15 0 1 0 1 NC 1 NC 1 314 min003 2008 3 0 1 0 1 NC 1 NC 1 NC 1 315 6 max .004 3002 15 0 1 0 1 NC 1 NC 1 NC 1 316 min004 201 3 0 1 0 1 NC 1 NC 1 NC 1 317 7 max .005 3002 15 0 1 0 1 NC 1 NC 1 NC 1 318 min005 2011 3 0 1 NC 1 NC 1 NC 1 319 8 max .006 3003 15 0 1 0 1 NC 1 NC 1 NC 1 320 min006 2012 3 0 1 0 1 NC 1 NC 1 NC 1 321			2									_		_		
310 min 002 2 004 3 0 1 0 1 NC 1 NC 1 311 4 max .003 3 001 15 0 1 0 1 NC 1 NC 1 312 min 002 2 006 3 0 1 0 1 NC 1 NC 1 313 5 max .003 3 002 15 0 1 0 1 NC 1 NC 1 314 min 003 2 008 3 0 1 0 1 NC 1 NC 1 315 6 max .004 3 002 15 0 1 0 1 NC 1 NC 1 316 min 004 2 01 3 0 1 0			2					1 <i>E</i>						_		
311 4 max .003 3 001 15 0 1 0 1 NC 1 NC 1 312 min 002 2 006 3 0 1 0 1 NC 1 NC 1 313 5 max .003 3 002 15 0 1 0 1 NC 1 NC 1 314 min 003 2 008 3 0 1 0 1 NC 1 NC 1 315 6 max .004 3 002 15 0 1 0 1 NC 1 NC 1 316 min 004 2 01 3 0 1 0 1 NC 1 NC 1 317 7 max .005 3 002 15 0 1			3													
312 min 002 2 006 3 0 1 0 1 NC 1 NC 1 313 5 max .003 3 002 15 0 1 0 1 NC 1 NC 1 314 min 003 2 008 3 0 1 0 1 NC 1 NC 1 315 6 max .004 3 002 15 0 1 0 1 NC 1 NC 1 316 min 004 2 01 3 0 1 0 1 NC 1 NC 1 317 7 max .005 3 002 15 0 1 0 1 NC 1 NC 1 318 min 005 2 011 3 0 1 0			1													
313 5 max .003 3 002 15 0 1 0 1 NC 1 NC 1 314 min 003 2 008 3 0 1 0 1 NC 1 NC 1 315 6 max .004 3 002 15 0 1 0 1 NC 1 NC 1 316 min 004 2 01 3 0 1 0 1 9807.042 3 NC 1 317 7 max .005 3 002 15 0 1 0 1 9807.042 3 NC 1 318 min 005 2 011 3 0 1 0 1 8709.276 3 NC 1 319 8 max .006 3 003 15 0 1 0 1 NC 1 NC 1 320 min			4													_
314 min 003 2 008 3 0 1 0 1 NC 1 NC 1 315 6 max .004 3 002 15 0 1 0 1 NC 1 NC 1 316 min 004 2 01 3 0 1 0 1 9807.042 3 NC 1 317 7 max .005 3 002 15 0 1 0 1 NC 1 NC 1 318 min 005 2 011 3 0 1 0 1 NC 1 NC 1 319 8 max .006 3 003 15 0 1 0 1 NC 1 NC 1 320 min 006 2 012 3 0 1 0 </td <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td>			5									•		•		
315 6 max .004 3 002 15 0 1 0 1 NC 1 NC 1 316 min 004 2 01 3 0 1 0 1 9807.042 3 NC 1 317 7 max .005 3 002 15 0 1 0 1 NC 1 NC 1 318 min 005 2 011 3 0 1 0 1 8709.276 3 NC 1 319 8 max .006 3 003 15 0 1 0 1 NC 1 NC 1 320 min 006 2 012 3 0 1 0 1 8052.067 3 NC 1 321 9 max .007 3 003 15 0 1 0 1 NC 1 NC 1 322 min			5									_				1
316 min 004 2 01 3 0 1 0 1 9807.042 3 NC 1 317 7 max .005 3 002 15 0 1 0 1 NC 1 NC 1 318 min 005 2 011 3 0 1 0 1 8709.276 3 NC 1 319 8 max .006 3 003 15 0 1 0 1 NC 1 NC 1 320 min 006 2 012 3 0 1 0 1 8052.067 3 NC 1 321 9 max .007 3 003 15 0 1 0 1 NC 1 NC 1 322 min 006 2 013 3 0 1			6									•				
317 7 max .005 3 002 15 0 1 0 1 NC 1 NC 1 318 min 005 2 011 3 0 1 0 1 8709.276 3 NC 1 319 8 max .006 3 003 15 0 1 0 1 NC 1 NC 1 320 min 006 2 012 3 0 1 0 1 8052.067 3 NC 1 321 9 max .007 3 003 15 0 1 0 1 NC 1 NC 1 322 min 006 2 013 3 0 1 0 1 7596.243 4 NC 1 323 10 max .008 3 003 15 0 1 0 1 NC 1 NC 1																_
318 min 005 2 011 3 0 1 0 1 8709.276 3 NC 1 319 8 max .006 3 003 15 0 1 0 1 NC 1 NC 1 320 min 006 2 012 3 0 1 0 1 8052.067 3 NC 1 321 9 max .007 3 003 15 0 1 0 1 NC 1 NC 1 322 min 006 2 013 3 0 1 0 1 7596.243 4 NC 1 323 10 max .008 3 003 15 0 1 0 1 NC 1 NC 1			7													
319 8 max .006 3 003 15 0 1 0 1 NC 1 NC 1 320 min 006 2 012 3 0 1 0 1 8052.067 3 NC 1 321 9 max .007 3 003 15 0 1 0 1 NC 1 NC 1 322 min 006 2 013 3 0 1 0 1 7596.243 4 NC 1 323 10 max .008 3 003 15 0 1 0 1 NC 1 NC 1										-				_		1
320 min 006 2 012 3 0 1 0 1 8052.067 3 NC 1 321 9 max .007 3 003 15 0 1 0 1 NC 1 NC 1 322 min 006 2 013 3 0 1 0 1 7596.243 4 NC 1 323 10 max .008 3 003 15 0 1 0 1 NC 1 NC 1			8									•				1
321 9 max .007 3 003 15 0 1 0 1 NC 1 NC 1 322 min 006 2 013 3 0 1 0 1 7596.243 4 NC 1 323 10 max .008 3 003 15 0 1 0 1 NC 1 NC 1																1
322 min006 2013 3 0 1 0 1 7596.243 4 NC 1 323 10 max .008 3003 15 0 1 0 1 NC 1 NC 1			9													1
323 10 max .008 3003 15 0 1 0 1 NC 1 NC 1			Ť													1
			10							1						1
	324			min	007	2	013	4	0	1	0	1	7304.168	4	NC	1
			11						0	1		1		1		1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

326		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
328	326			min	008	2	013	4	0	1		1	7261.159	4	NC	1
329			12	max					0		0	1		1_		1
330												•				
331			13													
333			4.4									_		•		-
1333			14													
334			45													
336			15													
336			40					-								
338			16													-
338			17									_		_		•
339			17													
3440			10									•		_		-
341			10													•
342			10									_				
343 M8			13													
344		M8	1			_										
345		IVIO	'													1
346			2											1		1
347			_			-										-
348			3							1		1		1		1
349										1		1		1		1
S50			4			1			0	1	0	1		1		1
SS1						3			0	1	0	1		1		1
352			5			1			0	1	0	1	NC	1	NC	1
354	352				002	3	012	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.006	1	.009	2	0	1	0	1	NC	1	NC	1
356	354			min	001	3	011	3	0	1	0	1	NC	1	NC	1
357			7	max	.005	-			0	1		1_		1_		1
358				min								1		1_		•
359			8	max					0	1	0	1		1_		1
360				min					00	•		•		1_		1
361			9													
362											_	_				•
363 11 max .004 1 .006 2 0 1 0 1 NC 1 NC 1 364 min 0 3 007 3 0 1 0 1 NC 1 NC 1 365 12 max .003 1 .005 2 0 1 0 1 NC 1			10													
364						_										
365 12 max .003 1 .005 2 0 1 0 1 NC 1 NC 1 366 min 0 3 006 3 0 1 0 1 NC 1 NC 1 367 13 max .003 1 .004 2 0 1 0 1 NC 1 NC 1 368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 NC 1 NC 1 <td></td> <td></td> <td>11</td> <td></td> <td>1_</td> <td></td> <td>1</td>			11											1_		1
366			40		_									1_		1
367 13 max .003 1 .004 2 0 1 0 1 NC 1 NC 1 368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 <td>365</td> <td></td> <td>12</td> <td>max</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	365		12	max				2								
368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 NC 1 NC 1			40													
369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3004 3 0 1 0 1 NC 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 NC 1 372 min 0 3003 3 0 1 0 1 NC 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 NC 1 374 min 0 3003 3 0 1 0 1 NC 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 NC 1 NC 1 NC 1 378 min 0 3 0 3 0 3 0 1 NC 1 NC 1 NC 1 379 19 max 0 1 0 1 NC 1 NC 1 NC 1 380 min 0 1 0 1 NC 1 NC 1 NC <td></td> <td></td> <td>13</td> <td></td>			13													
370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 NC 1			1.1									•		•		
371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC			14													
372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 N			15									_		_		-
373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC <td></td> <td></td> <td>13</td> <td></td>			13													
374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			16													
375 17 max 0 1 .001 2 0 1 0 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .004 2 0 15 2.041e-4 1 NC 1			10													
376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 381 M10 1 max .006 1 .004 2 0 15 2.041e-4 1 NC 1 NC 2			17							•						•
377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .004 2 0 15 2.041e-4 1 NC 1 NC 2			17			-										_
378 min 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .004 2 0 15 2.041e-4 1 NC 1 NC 2			18		_							_		_		•
379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .004 2 0 15 2.041e-4 1 NC 1 NC 2			1.0	_	_											-
380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .004 2 0 15 2.041e-4 1 NC 1 NC 2			19		<u> </u>							•		_		-
381 M10 1 max .006 1 .004 2 0 15 2.041e-4 1 NC 1 NC 2			1.5			_										_
		M10	1		•	1				15		1		1		
	382			min	006	3	008	3	008		7.452e-6	15	NC	1	7229.464	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.005	1	.004	2	00	15	1.904e-4	_1_	NC	_1_	NC	2
384			min	006	3	008	3	007	1	6.953e-6	15	NC	1_	7886.077	1
385		3	max	.005	1	.003	2	0	15	1.767e-4	_1_	NC	_1_	NC	2
386			min	005	3	007	3	006	1	6.454e-6	15	NC	1_	8668.84	1
387		4	max	.005	1	.002	2	0	15	1.63e-4	_1_	NC	_1_	NC	2
388		_	min	005	3	007	3	006	1	5.954e-6	15	NC	1_	9611.263	
389		5	max	.004	1	.002	2	0	15	1.493e-4	_1_	NC	_1_	NC	1
390			min	005	3	007	3	005	1	5.455e-6	<u>15</u>	NC	1_	NC	1
391		6	max	.004	1	.001	2	0	15	1.356e-4	_1_	NC	_1_	NC	1
392		_	min	004	3	007	3	<u>005</u>	1	4.955e-6	<u>15</u>	NC	1_	NC	1
393		7	max	.004	1	0	2	0	15	1.219e-4	1_	NC	1_	NC	1
394			min	004	3	006	3	004	1	4.456e-6	15	NC	1_	NC	1
395		8	max	.004	1	0	2	0	15	1.083e-4	1_	NC	1_	NC NC	1
396			min	004	3	006	3	003	1	3.956e-6	15	NC	1_	NC	1
397		9	max	.003	1	0	2	0	15	9.456e-5	1_	NC	1_	NC	1
398		10	min	003	3	006	3	003	1_	3.457e-6	15	NC	1_	NC	1
399		10	max	.003	1	0	2	0	15	8.088e-5	1_	NC	1	NC NC	1
400		4.4	min	003	3	005	3	002	1_	2.958e-6	<u>15</u>	NC NC	1_	NC NC	1
401		11	max	.003	1	0	15	0	15	6.719e-5	1_	NC		NC NC	1
402		40	min	003	3	005	3	002	1_45	2.458e-6	<u>15</u>	NC NC	1_	NC NC	1
403		12	max	.002	1	0	15	0	15	5.35e-5	1_	NC NC	1	NC NC	1
404		40	min	002	3	004	3	002	1_45	1.959e-6	15	NC NC	1_	NC NC	1
405		13	max	.002	1	0	15	0	15	3.982e-5	1_	NC NC	1_	NC NC	1
406		4.4	min	002	3	004	3	001	1_1_	1.459e-6	<u>15</u>	NC NC	1_1	NC NC	1
407		14	max	.002	3	003	15	<u> </u>	15	2.613e-5	1_	NC NC	1	NC NC	1
408		15	min	002			3		1 1 5	9.598e-7 1.244e-5	<u>15</u>		_		•
409		15	max	.001	3	0	15	0	15		1_	NC NC	1	NC NC	1
410		16	min	<u>001</u>	1	003	15	0	1 1 5	4.604e-7 3.741e-7	<u>15</u>	NC NC	1	NC NC	1
411		16	max min	0 001	3	0 002	3	<u> </u>	15	-1.245e-6	<u>3</u>	NC NC	1	NC NC	1
413		17	max	<u>001</u> 0	1	<u>002</u> 0	15	0	15	-4.289e-7	12	NC NC	1	NC NC	1
414		17	min	0	3	001	4	0	1	-1.493e-5	1	NC NC	1	NC	1
415		18	max	0	1	0	15	0	15	-1.493e-5	15	NC	1	NC	1
416		10	min	0	3	0	4	0	1	-2.862e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-1.537e-6	15	NC	1	NC	1
418		13	min	0	1	0	1	0	1	-4.231e-5	1	NC NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.334e-5	1	NC		NC	1
420	IVIII		min	0	1	0	1	0	1	4.851e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-3.636e-7	15	NC	1	NC	1
422			min	0	2	002	4	0	1	-9.951e-6	1	NC	1	NC	1
423		3	max	0	3	0	15	0		-1.212e-6			1	NC	1
424			min	0	2	003	4	0	1	-3.324e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0		-2.061e-6		NC	1	NC	1
426			min	0	2	005	4	0	1	-5.654e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	0	15	-2.91e-6	15	NC	1	NC	1
428			min	0	2	007	4	0	1	-7.983e-5	1	NC	1	NC	1
429		6	max	.001	3	002	15	0	15		15	NC	1	NC	1
430			min	001	2	009	4	001	1	-1.031e-4	1	NC	1	NC	1
431		7	max	.002	3	002	15	0	15		15	NC	1	NC	1
432			min	001	2	01	4	002	1	-1.264e-4	1	8925.85	4	NC	1
433		8	max	.002	3	003	15	0	15		15	NC	1	NC	1
434			min	001	2	012	4	002	1	-1.497e-4	1	7986.175	4	NC	1
435		9	max	.002	3	003	15	0	15			NC	2	NC	1
436			min	002	2	013	4	002	1	-1.73e-4	1	7427.502	4	NC	1
437		10	max	.002	3	003	15	0	15	-7.154e-6	15	NC	2	NC	1
438			min	002	2	013	4	003	1	-1.963e-4	1	7151.637	4	NC	1
439		11	max	.003	3	003	15	0	15	-8.002e-6	15	NC	2	NC	1
													_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
440			min	002	2	013	4	003	1	-2.196e-4	1	7117.631	4	NC	1
441		12	max	.003	3	003	15	0	15	-8.851e-6	15	NC	2	NC	1
442			min	002	2	013	4	003	1	-2.429e-4	1	7326.029	4	NC	1
443		13	max	.003	3	003	15	0	15	-9.7e-6	15	NC	1	NC	1
444			min	002	2	012	4	004	1	-2.662e-4	1	7821.058	4	NC	1
445		14	max	.003	3	003	15	0	15	-1.055e-5	15	NC	1	NC	1
446			min	003	2	011	4	004	1	-2.895e-4	1	8713.861	4	NC	1
447		15	max	.004	3	002	15	0	15	-1.14e-5	15	NC	1	NC	1
448			min	003	2	009	4	005	1	-3.128e-4	1	NC	1	NC	1
449		16	max	.004	3	002	15	0	15	-1.225e-5	15	NC	1	NC	1
450			min	003	2	008	1	005	1	-3.361e-4	1	NC	1	NC	1
451		17	max	.004	3	001	15	0	15	-1.309e-5	15	NC	1	NC	1
452			min	003	2	006	1	006	1	-3.593e-4	1	NC	1	NC	1
453		18	max	.005	3	0	15	0	15	-1.394e-5	15	NC	1	NC	1
454			min	003	2	005	1	007	1	-3.826e-4	1	NC	1	NC	1
455		19	max	.005	3	0	15	0	15	-1.479e-5	15	NC	1	NC	1
456			min	004	2	003	1	007	1	-4.059e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.007	1	-7.626e-7	15	NC	1	NC	3
458			min	0	3	005	3	0	15	-2.065e-5	1	NC	1	3394.419	1
459		2	max	.003	1	.003	2	.007	1	-7.626e-7	15	NC	1	NC	3
460			min	0	3	005	3	0	15	-2.065e-5	1	NC	1	3694.365	1
461		3	max	.003	1	.003	2	.006	1	-7.626e-7	15	NC	1	NC	2
462			min	0	3	004	3	0	15	-2.065e-5	1	NC	1	4051.167	1
463		4	max	.002	1	.003	2	.006	1	-7.626e-7	15	NC	1	NC	2
464			min	0	3	004	3	0	15		1	NC	1	4479.628	1
465		5	max	.002	1	.002	2	.005	1	-7.626e-7	15	NC	1	NC	2
466			min	0	3	004	3	0	15	-2.065e-5	1	NC	1	4999.862	1
467		6	max	.002	1	.002	2	.004	1	-7.626e-7	15	NC	1	NC	2
468			min	0	3	004	3	0	15	-2.065e-5	1	NC	1	5639.765	
469		7	max	.002	1	.002	2	.004	1	-7.626e-7	15	NC	1	NC	2
470			min	0	3	003	3	0	15	-2.065e-5	1	NC	1	6438.933	1
471		8	max	.002	1	.002	2	.003	1	-7.626e-7	15	NC	1	NC	2
472			min	0	3	003	3	0	15	-2.065e-5	1	NC	1	7455.124	
473		9	max	.002	1	.002	2	.003	1	-7.626e-7	15	NC	1	NC	2
474			min	0	3	003	3	0	15		1	NC	1	8775.291	1
475		10	max	.001	1	.002	2	.002	1	-7.626e-7	15	NC	1	NC	1
476			min	0	3	002	3	0	15	-2.065e-5	1	NC	1	NC	1
477		11	max	.001	1	.001	2	.002	1	-7.626e-7	15	NC	1	NC	1
478			min	0	3	002	3	0	15	-2.065e-5	1	NC	1	NC	1
479		12	max	.001	1	.001	2	.002	1	-7.626e-7	15	NC	1	NC	1
480			min	0	3	002	3	0		-2.065e-5	1	NC	1	NC	1
481		13	max	0	1	.001	2	.001	1	-7.626e-7		NC	1	NC	1
482			min	0	3	002	3	0		-2.065e-5	1	NC	1	NC	1
483		14	max	0	1	0	2	0	1	-7.626e-7		NC	1	NC	1
484			min	0	3	001	3	0		-2.065e-5	1	NC	1	NC	1
485		15	max	0	1	0	2	0	1	-7.626e-7	15	NC	1	NC	1
486			min	0	3	001	3	0	15		1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-7.626e-7		NC	1	NC	1
488		Ĭ	min	0	3	0	3	0	15		1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-7.626e-7	_	NC	1	NC	1
490			min	0	3	0	3	0	15	-2.065e-5	1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-7.626e-7	•	NC	1	NC	1
492		'	min	0	3	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.626e-7	15	NC	1	NC	1
494		'	min	0	1	0	1	0	1	-2.065e-5	1	NC	1	NC	1
495	M1	1	max	.006	3	.109	1	0	1	1.63e-2	1	NC	1	NC	1
496			min	003	2	017	3	0		-2.379e-2		NC	1	NC	1
											_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
497		2	max	.006	3	.053	1	0	15	7.926e-3	1		4	NC	1
498			min	003	2	008	3	005	1	-1.177e-2	3		1	NC NC	1
499		3	max	.006	3	.009	3	0	15	2.455e-5	<u>10</u>	NC	5	NC	1
500			min	003	2	008	2	008	1	-1.462e-4	1_	987.933	1	NC	1
501		4	max	.006	3	.037	3	0	15	4.656e-3	1_	NC	5	NC_	1
502		-	min	003	2	076	1	007	1	-4.324e-3	3	617.986	1	NC NC	1
503		5	max	.006	3	.075	3	0	15	9.458e-3	1_		15	NC NC	1
504			min	003	2	<u>15</u>	1	005	1	-8.532e-3	3	442.605	1	NC NC	1
505		6	max	.006	3	.115	3	0	15	1.426e-2	1		15	NC NC	1
506		7	min	003	2	221	1	002	1	-1.274e-2	3	0.0.0.0	1_	NC NC	1
507 508		+	max	.006 002	3	.1 <u>55</u> 285	3	<u> </u>	12	1.906e-2 -1.695e-2	<u>1</u>	9962.484 290.119	15 1	NC NC	1
509		8	min	.002	3	<u>265</u> .188	3	0	1	2.386e-2			15	NC NC	1
510		0	max	002	2	337	1	0	15	-2.116e-2	<u>1</u>	256.858	1	NC NC	1
511		9	max	.005	3	.209	3	0	15	2.635e-2	1		15	NC NC	1
512		1 3	min	002	2	369	1	0	1	-2.124e-2	3		1	NC NC	1
513		10	max	.005	3	.217	3	0	1	2.731e-2	1		15	NC	1
514		10	min	002	2	379	1	0	12	-1.859e-2	3	234.422	1	NC	1
515		11	max	.005	3	.211	3	0	1	2.826e-2	1		15	NC	1
516			min	002	2	369	1	0	15	-1.594e-2	3		1	NC	1
517		12	max	.005	3	.194	3	0	15	2.704e-2	2		15	NC	1
518		<u> </u>	min	002	2	336	1	0	1	-1.329e-2	3	257.92	1	NC	1
519		13	max	.005	3	.165	3	0	15	2.169e-2	2		15	NC	1
520			min	002	2	283	1	0	1	-1.064e-2	3	292.738	1	NC	1
521		14	max	.005	3	.128	3	.002	1	1.634e-2	2		15	NC	1
522			min	002	2	218	1	0	15	-7.988e-3	3		1	NC	1
523		15	max	.005	3	.087	3	.005	1	1.101e-2	1	NC	15	NC	1
524			min	002	2	145	1	0	15	-5.336e-3	3	454.242	1	NC	1
525		16	max	.005	3	.044	3	.007	1	5.771e-3	1	NC	5	NC	1
526			min	002	2	072	1	0	15	-2.685e-3	3	642.56	1	NC	1
527		17	max	.004	3	.003	3	.007	1	5.286e-4	1_	NC	5	NC_	1
528			min	002	2	005	2	0	15	-3.337e-5	3	1043.659	1	NC NC	1
529		18	max	.004	3	.053	1	.005	1	1.016e-2	2	NC	4	NC	1
530			min	002	2	033	3	0	15	-4.018e-3	3	2204.953	1	NC	1
531		19	max	.004	3	.105	1	0	15	2.04e-2	2	NC	1	NC_	1
532			min	002	2	067	3	001	1	-8.156e-3	3	NC	1	NC	1
533	<u>M5</u>	1	max	.019	3	.255	1	0	1	0	1		1	NC_	1
534			min	012	2	021	3	0	1	0	1_		1	NC_	1
535		2	max	.019	3	.125	1	0	1	0	1_	NC	5	NC NC	1
536			min	012	2	008	3	0	1	0	1_	875.82	1	NC NC	1
537		3	max	.019	3	.028	3	0	1	0	11		5	NC NC	1
538		1	min	012	2	024	2	0	1	0	1_		1	NC NC	1
539		4	max	.018	3	.105	3	0	1	0	1		15 1	NC NC	1
540		-	min	012	2	205	3		1	0	1	_ :0:00:	-	NC NC	1
541 542		5	max min	.018 012	3	.212 402	1	<u> </u>	1	0	1		1 <u>5</u> 1	NC NC	1
543		6	max	.018	3	.331	3	0	1	0	1		15	NC NC	1
544		-	min	012	2	599	1	0	1	0	1		1	NC NC	1
545		7	max	.017	3	<u>599</u> .448	3	0	1	0	1		15	NC NC	1
546			min	011	2	778	1	0	1	0	1		1	NC NC	1
547		8	max	.017	3	.546	3	0	1	0	1		15	NC	1
548			min	011	2	921	1	0	1	0	1		1	NC NC	1
549		9	max	.017	3	.609	3	0	1	0	1		15	NC	1
550			min	011	2	-1.012	1	0	1	0	1		1	NC	1
551		10	max	.016	3	.631	3	0	1	0	1		15	NC	1
552		· Ŭ	min	011	2	-1.042	1	0	1	0	1		1	NC	1
553		11	max	.016	3	.616	3	0	1	0	1		15	NC	1
			,								_	, , , , , , , , , , , , , , , , , , , ,			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratic	LC_
554			min	011	2	-1.011	1	0	1	0	1	90.469	1	NC	1
555		12	max	.015	3	.562	3	0	1	0	1	3769.72	15	NC	1
556			min	01	2	918	1	0	1	0	1	97.7	1	NC	1
557		13	max	.015	3	.477	3	0	1	0	1	4290.174	15	NC	1
558		1	min	01	2	771	1	0	1	0	1	111.916	1	NC	1
559		14	max	.015	3	.368	3	0	1	0	1	5185.281	15	NC	1
560			min	01	2	588	1	0	1	0	1	136.586	1	NC	1
561		15	max	.014	3	.247	3	0	1	0	1	6735.3	15	NC	1
562		13	min	01	2	388	1	0	1	0	1	179.839	1	NC	1
		16					_		1						
563		16	max	.014	3	.124	3	0	1	0	1_	9625.344	<u>15</u>	NC NC	1
564		47	min	01	2	19	1	0	•	0	1_	261.805	1_	NC NC	1
565		17	max	.014	3	.01	3	0	1	0	1	NC	5	NC NC	1
566			min	01	2	015	2	0	1	0	1_	441.3	1_	NC	1
567		18	max	.014	3	.126	1	0	1	0	1_	NC	5	NC	1
568			min	01	2	088	3	0	1	0	1_	960.55	1_	NC	1
569		19	max	.014	3	.244	1	0	1	0	_1_	NC	1_	NC	1
570			min	01	2	177	3	0	1	0	1_	NC	1_	NC	1
571	M9	1	max	.006	3	.109	1	0	15	2.379e-2	3	NC	1	NC	1
572			min	003	2	017	3	0	1	-1.63e-2	1	NC	1	NC	1
573		2	max	.006	3	.053	1	.005	1	1.177e-2	3	NC	4	NC	1
574			min	003	2	008	3	0	15	-7.926e-3	1	2063.184	1	NC	1
575		3	max	.006	3	.009	3	.008	1	1.462e-4	1	NC	5	NC	1
576			min	003	2	008	2	0	15	-2.455e-5	10	987.933	1	NC	1
577		4	max	.006	3	.037	3	.007	1	4.324e-3	3	NC	5	NC	1
578			min	003	2	076	1	0	15	-4.656e-3	1	617.986	1	NC	1
579		5	max	.006	3	.075	3	.005	1	8.532e-3	3	NC	15	NC	1
580		<u> </u>	min	003	2	15	1	0	15	-9.458e-3	1	442.605	1	NC	1
581		6	max	.006	3	.115	3	.002	1	1.274e-2	3	NC	15	NC	1
582		-	min	003	2	221	1	0	15	-1.426e-2	1	346.548	1	NC NC	1
		7					_				•				
583			max	.006	3	.155	3	0	12	1.695e-2	3	9962.484	<u>15</u>	NC NC	1
584			min	002	2	285	1	0	1_	-1.906e-2	1_	290.119	1_	NC NC	
585		8	max	.005	3	.188	3	0	15	2.116e-2	3	8852.06	15	NC NC	1
586			min	002	2	337	1	0	1	-2.386e-2	1_	256.858	1_	NC	1
587		9	max	.005	3	.209	3	0	1	2.124e-2	3	8273.091	<u>15</u>	NC	1
588			min	002	2	369	1	0	15	-2.635e-2	<u>1</u>	239.586	1_	NC	1
589		10	max	.005	3	.217	3	0	12	1.859e-2	3	8096.751	15	NC	1
590			min	002	2	379	1	0	1	-2.731e-2	1_	234.422	1_	NC	1
591		11	max	.005	3	.211	3	0	15	1.594e-2	3	8272.872	15	NC	1
592			min	002	2	369	1	0	1	-2.826e-2	1	239.927	1	NC	1
593		12	max	.005	3	.194	3	0	1	1.329e-2	3	8851.6	15	NC	1
594			min	002	2	336	1	0	15	-2.704e-2	2	257.92	1	NC	1
595		13	max	.005	3	.165	3	0	1	1.064e-2	3	9961.67	15	NC	1
596			min	002	2	283	1	0	15	-2.169e-2	2	292.738	1	NC	1
597		14	max	.005	3	.128	3	0		7.988e-3	3	NC	15	NC	1
598			min	002	2	218	1	002	1	-1.634e-2	2	352.182	1	NC	1
599		15	max	.005	3	.087	3	0	15	5.336e-3	3	NC	15	NC	1
600		1.0	min	002	2	145	1	005	1	-1.101e-2	1	454.242	1	NC	1
601		16	max	.005	3	.044	3	<u>005</u>		2.685e-3	3	NC	5	NC	1
602		10	min	002	2	072	1	007	1	-5.771e-3	1	642.56	1	NC	1
		17					_			3.337e-5					
603		17	max	.004	3	.003	3	0	15		3	NC 1042 650	5_1	NC NC	1
604		40	min	002	2	005	2	007	1	-5.286e-4	1_	1043.659	1	NC NC	1
605		18	max	.004	3	.053	1	0	15	4.018e-3	3_	NC	4	NC NC	1
606		4 -	min	002	2	033	3	005	1	-1.016e-2	2	2204.953	1_	NC	1
607		19	max	.004	3	.105	1	.001	1	8.156e-3	3	NC	1	NC	1
608			min	002	2	067	3	0	15	-2.04e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.