Lab 9: Sockets

CSE/IT 107

NMT Computer Science

1 Introduction

2 Sockets

3 Exercises

Boilerplate

Remember that this lab *must* use the boilerplate syntax introduced in Lab 5.

rps.py Write a program that connects to the server running at 104.131.56.87 port 50001 and plays a game of rock, paper, scissors. The server will send the following messages:

name Next message sent will be your client's display name.

taken The name sent is already in use. Repeat sending a name.

wait Game has not yet been found (waiting for another player). No response required.

opponent <name> A game has been found. The opponent's name will be inserted for "<name>". No response required.

play The next message sent should consist solely of "r", "p", or "s", depending on whether you wish to play rock, paper, or scissors.

tie Your opponent played the same as you, causing a tie. No response required.

win Your play beat your opponent's, so you won. The next message should consist solely of "y" or "n", indicating your desire to play again.

lose Your opponent's play beat yours, so you lost. The next message should consist solely of "y" or "n", indicating your desire to play again.

disconnect Your opponent disconnected at an unexpected time. The next message should consist solely of "y" or "n", indicating your desire to find a new opponent.

again. The next message should consist solely of "y" or "n", indicating your desire to play again. This message will only occur if invalid input is given for "win", "lose", or "disconnect", so if you can be sure that will not occur you do not necessarily need this case.

Every message sent will be terminated with a "\n". Every message you send should be terminated with a "\n". It is possible when you read from a socket that you receive multiple commands at once, or less than a full command. Check for "\n" to know where each command ends. If you receive part of a command, you will have to store that partial command until you get the rest of it.

For each of these server responses, you need to display an appropriate message with a prompt for input if appropriate. For example, a "win" message might output "Congratulations, you beat <otherplayer>! Do you want to play again?"

maze.py Write a program that connects to the server running at 104.131.56.87 port 50002 and automatically navigates a maze generated by the server. The first message you send should be your display name (used for the leaderboard). The server will then randomly generate a 10x10 maze that you must navigate. You will always begin in the top left corner of the maze, facing down. You must navigate to the bottom right corner.

The server will send the following messages:

<left> <forward> <right> Three space-separated numbers. The first is the number of open spaces to your left, the second is the number of open spaces in front of you, and the last is the number of open spaces to your right.

invalid Sent if the last message you sent was not a valid message or the movement you attempted was not possible (such as attempting to move forward into a wall).

win <steps> <time> The word "win" followed by an integer, then a floating point, all spaceseparated. This indicates you have successfully reached the bottom right corner of the maze. After this message is sent, the server will close its end of the socket.

The valid messages you can send (after the initial message indicating your name):

forward Attempt to move one space in the direction you are currently facing. **backward** Attempt to move one space opposite the direction you are currently facing. **left** Turn left 90°.

right Turn right 90°.

Your program's only input should be the desired display name (though you are free to hard-code that if you wish). Otherwise, your program should navigate the maze on its own. You are free to have any output that you wish to help you get a sense of how your program is doing in navigating the maze, though you MUST print out the stats it receives on successful completion of the maze (total steps and time taken).

If you connect to the server on port 50003, it will send you the leaderboard of fastest times measured in steps. A simple way to do this in the cmd line is to run nc 104.131.56.87 50003.

If you connect to the server on port 50004, it will send you the leaderboard of fastest times measured in seconds. A simple way to do this in the cmd line is to run nc 104.131.56.87 50004.

4 Submitting

Files to submit:

- rps.py (Section 3)
- maze.py (Section 3)

You may submit your code as either a tarball (instructions below) or as a .zip file. Either one should contain all files used in the exercises for this lab. The submitted file should be named either cse107_firstname_lastname_lab9.zip or cse107_firstname_lastname_lab9.tar.gz depending on which method you used.

For Windows, use a tool you like to create a .zip file. The TCC computers should have 7z installed. For Linux, look at lab 1 for instructions on how to create a tarball or use the "Archive Manager" graphical tool.

Upload your tarball or .zip file to Canvas.