Relationship between orf and \$ (x)

erflix
$$\int_{0}^{2} \int_{0}^{x} e^{-t^{2}} dt$$

$$(1)$$

$$\oint (x) = \int \frac{x}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt \qquad (2)$$

更(Y) 这

If x >0, we can brook the distribution into two halves

Because the post is symmetrica & of the probability moss is below zero and one half is above.

We tot

$$\overline{\Phi}(x) = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}z} dt$$
Looks nore like $e^{-t^{2}}(x)$:

CSCI Lecture 9 Notes

23

for x70

let
$$M=M_{\overline{2}}$$
, $dx=u=\int_{\overline{2}}^{t}$, $t=\sqrt{2}u$

$$du=\frac{dt}{\sqrt{2}}$$
, $dt=\sqrt{2}du$

For
$$x \ge 0$$
, $f(x) = \frac{1}{2}t \sin \int e^{-u^2} \int z du$

for
$$0$$
, $\sqrt{f}(x) = \frac{1}{2} + \frac{1}{\sqrt{2\pi}}$ $\int e^{-u^2} \sqrt{2} \, du$ $\int z^2 u = 0$

For
$$\frac{1}{\sqrt{2}}$$
, $\frac{1}{\sqrt{2}}$ (x) = $\frac{1}{2} + \frac{1}{\sqrt{27}}$ $\int_{u=0}^{u=\sqrt{2}} e^{-u^2} du$

$$\underbrace{erf\left(\overset{\times}{\mathcal{L}}\right)}_{2}=\int_{\mathbb{R}^{2}}\int_{0}^{\frac{1}{2}}e^{-u^{2}}du$$

For
$$x \ge 0$$
, $\Phi(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}(\frac{x}{12})$

To evaluate P[X sx] whex XN(u, s)

For
$$X = 0$$

 $F(3) = P[X < x] = \Phi(\frac{x-u}{6}) = \frac{1}{2} \left(1 + erf(\frac{x^2}{\sqrt{2}})\right)$

CSCI Lecture 9 notes

But what about for x < 0?

$$erf(y) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$$

 $erf(-x) = \frac{2}{\pi} \int_{t=0}^{t=-x} e^{-t^2} dt = -erf(x)$

F(x)=
$$\frac{1}{2}(1+erf(\frac{x-\mu}{\sqrt{2}}))$$
applies for all x and not just $x>0$.