# Adaptive FEC for Cloud Gaming

Abdulmueez Eniola, Ozioma Okonicha, Pavel Tishkin

#### Introduction

Cloud gaming is an emerging technology that allows users to play high-quality video games without the need for powerful gaming hardware.



#### Introduction

Cloud gaming is a rapidly growing industry, with more and more people turning to streaming services to play games.



However, one of the biggest challenges is ensuring a smooth and seamless experience for gamers, regardless of their internet connection quality.



More specifically, one of which is the issue of network latency and packet loss. These issues can lead to a poor gaming experience, including visual artifacts, input lag, and dropped frames.



One solution to these problems is the use of Forward Error Correction (FEC), which adds redundant data to the packets to allow for error correction.



Forward Error Correction (FEC) is a technique commonly used in data transmission to ensure data integrity by adding redundant information to the data packets. This technique can also be applied to cloud gaming to reduce the negative impact of packet loss on the player's experience.



For our task, we will leverage neural networks to predict the loss rate in some steps in the future, hence we can send additional data corresponding to the amount of lost packets.





Below is the core ML part of our initial solution

Data Collection



Collecting raw data, dropping outliers, duplicated data, and splitting into subsequences Clustering



Using kmeans to group the subsequences into clusters

Classification



Categorizing the subsequences into different classes.

Regression



Predicting the loss rate based on the relationship between the other features in the data

Below is the core ML part of our initial solution

Data Collection



Collecting raw data, dropping outliers, duplicated data, and splitting into **subsequences**  Clustering



Using a DCAE model with kmeans to group the subsequences into clusters and the classification is the cluster label

Classification



Categorizing the subsequences into different classes.

Regression



Using **Istm** to predict the loss rate based on the relationship between the other features in the data

## **Architecture- Autoencoder**



#### **Architecture- DCAE**



## **Architecture-LossRatePredictor**



## **Architecture- LSTM**



#### **Architecture- Full view**



## **Backend Architecture**



# **Challenges and Changes**



So, we ended up **removing the classification section** as our clustering model automatically does that



Also, our dataset was quite erroneous so we will need to **collect more adequate** data



While we aimed to achieve no loss but we couldn't, this can be solved by **increasing model size** and getting more accurate data



We eventually made use of **PyTorch Lightning** in both clustering and regression parts due to resources limitation

# **Challenges and Changes**



Since our technique involved **past**, **present and future**, we tried various combinations of subsequences and gaps to find the optimal



Our **loss function was modified** in order to ensure that the predicted loss rate is never lesser than the actual loss rate.



We needed to fine tune several deep learning models and then wire it all together



In general, there is **not much research done in the field** compared to other ml fields like llm

Below is a table to show our scores and time taken

|                      | Clustering         | Regressor 1 | Regressor 2 | Regressor 3 |  |  |  |  |  |
|----------------------|--------------------|-------------|-------------|-------------|--|--|--|--|--|
| Training loss        | 0.9764             |             |             |             |  |  |  |  |  |
| Training inertia     | 0.0013             |             |             |             |  |  |  |  |  |
| Training mse loss    |                    | 11.84       | 10.029      | 0.071       |  |  |  |  |  |
| Custom training loss |                    | 0.071       | 0.070       | 0.071       |  |  |  |  |  |
| Duration             | 0.25 (without gpu) |             |             |             |  |  |  |  |  |

Below are the specifics for clustering training





Below are the specifics for clustering training

#### Clusters



Below are the specifics for regression training

| Regressor ' | 1 |  |
|-------------|---|--|
|-------------|---|--|

#### Regressor 2

#### Regressor 3

| 1  | Training loss      | Penalty loss        | epoch | step | Training loss     | Penalty loss        | epoch | step | Training loss       | Penalty loss       | epoch | step |
|----|--------------------|---------------------|-------|------|-------------------|---------------------|-------|------|---------------------|--------------------|-------|------|
| 2  | 28.79806137084961  | 0.07111626118421555 | 0     | 208  | 65.08642578125    | 0.06843326985836029 | 0     | 141  | 2422.181396484375   | 0.0                | 0     | 0    |
| 3  | 11.836403846740723 | 0.07170604169368744 | 1     | 417  | 10.02912712097168 | 0.07014656066894531 | 1     | 283  | 1988.323486328125   | 0.0                | 1     | 1    |
| 4  | 11.836403846740723 | 0.07170604169368744 | 2     | 626  | 10.02912712097168 | 0.07014656066894531 | 2     | 425  | 480.4396057128906   | 0.0357142873108387 | 2     | 2    |
| 5  | 11.836403846740723 | 0.07170604169368744 | 3     | 835  | 10.02912712097168 | 0.07014656066894531 | 3     | 567  | 0.07079140841960907 | 0.0714285746216774 | 3     | 3    |
| 6  | 11.836403846740723 | 0.07170604169368744 | 4     | 1044 | 10.02912712097168 | 0.07014656066894531 | 4     | 709  | 0.0714285746216774  | 0.0714285746216774 | 4     | 4    |
| 7  | 11.836403846740723 | 0.07170604169368744 | 5     | 1253 | 10.02912712097168 | 0.07014656066894531 | 5     | 851  | 0.0714285746216774  | 0.0714285746216774 | 5     | 5    |
| 8  | 11.836403846740723 | 0.07170604169368744 | 6     | 1462 | 10.02912712097168 | 0.07014656066894531 | 6     | 993  | 0.0714285746216774  | 0.0714285746216774 | 6     | 6    |
| 9  | 11.836403846740723 | 0.07170604169368744 | 7     | 1671 | 10.02912712097168 | 0.07014656066894531 | 7     | 1135 | 0.0714285746216774  | 0.0714285746216774 | 7     | 7    |
| 10 | 11.836403846740723 | 0.07170604169368744 | 8     | 1880 | 10.02912712097168 | 0.07014656066894531 | 8     | 1277 | 0.0714285746216774  | 0.0714285746216774 | 8     | 8    |
| 11 | 11.836403846740723 | 0.07170604169368744 | 9     | 2089 | 10.02912712097168 | 0.07014656066894531 | 9     | 1419 | 0.0714285746216774  | 0.0714285746216774 | 9     | 9    |
| 12 | 11.836403846740723 | 0.07170604169368744 | 10    | 2298 | 10.02912712097168 | 0.07014656066894531 | 10    | 1561 | 0.0714285746216774  | 0.0714285746216774 | 10    | 10   |
| 13 | 11.836403846740723 | 0.07170604169368744 | 11    | 2507 | 10.02912712097168 | 0.07014656066894531 | 11    | 1703 | 0.0714285746216774  | 0.0714285746216774 | 11    | 11   |
| 14 | 11.836403846740723 | 0.07170604169368744 | 12    | 2716 | 10.02912712097168 | 0.07014656066894531 | 12    | 1845 | 0.0714285746216774  | 0.0714285746216774 | 12    | 12   |
| 15 | 11.836403846740723 | 0.07170604169368744 | 13    | 2925 | 10.02912712097168 | 0.07014656066894531 | 13    | 1987 | 0.0714285746216774  | 0.0714285746216774 | 13    | 13   |
| 16 | 11.836403846740723 | 0.07170604169368744 | 14    | 3134 | 10.02912712097168 | 0.07014656066894531 | 14    | 2129 | 0.0714285746216774  | 0.0714285746216774 | 14    | 14   |
| 17 | 11.836403846740723 | 0.07170604169368744 | 15    | 3343 | 10.02912712097168 | 0.07014656066894531 | 15    | 2271 | 0.0714285746216774  | 0.0714285746216774 | 15    | 15   |
| 18 | 11.836403846740723 | 0.07170604169368744 | 16    | 3552 | 10.02912712097168 | 0.07014656066894531 | 16    | 2413 | 0.0714285746216774  | 0.0714285746216774 | 16    | 16   |
| 19 | 11.836403846740723 | 0.07170604169368744 | 17    | 3761 | 10.02912712097168 | 0.07014656066894531 | 17    | 2555 | 0.0714285746216774  | 0.0714285746216774 | 17    | 17   |
| 20 | 11.836403846740723 | 0.07170604169368744 | 18    | 3970 | 10.02912712097168 | 0.07014656066894531 | 18    | 2697 | 0.0714285746216774  | 0.0714285746216774 | 18    | 18   |
| 21 | 11.836403846740723 | 0.07170604169368744 | 19    | 4179 | 10.02912712097168 | 0.07014656066894531 | 19    | 2839 | 0.0714285746216774  | 0.0714285746216774 | 19    | 19   |

# **Future Improvements**



We need to improve on the clustering algorithm as ideal clusters for our task couldn't be found



Fine tune the models better, and try out other architectures to see how the performance differs



Oversee the data collection process in order to get more accurate clusters. Data collection should focus on getting bad network.

# **Deploying**

We made use of streamlit and FastAPI to prepare an interface that interacts with our models and is able to train and predict.

- Streamlit allows the end user to easily upload new datasets to finetune our preliminary model.
- While the fast api allows the end user to easily make predictions for new subsequences.





## **Demo**