UNM ECE 517 ASSIGNMENT 6.1

Primal Formulation of a Nonlinear Classifier With MMSE

Keith H. Bova

Abstract—This paper examines the effectiveness of a nonlinear classifier that separates a binary dataset by applying a Volterra expansion—projecting it into \mathbb{R}^{10} . This classifier creates a boundary that can classify almost all points.

Index Terms-Volterra Expansion, Non-Linear Classifier

I. Introduction

THE Volterra series of a non-linear function is a transformation that maps two functional spaces. Similar to the Taylor series, the Volterra series is expressed as an infinite sum; however, unlike the Taylor series, it is based on convolutional integrals.

A. The Volterra Expansion

A volterra series can be expressed as:

$$\hat{y} = \sum_{k=0}^{K} a_k x^k \tag{1}$$

If we consider a space of \mathbb{R}^2 , and we want to pass from this space into \mathbb{R}^p such that:

$$p = \binom{2+3}{3} = 10 \tag{2}$$

We first formulate the expansion:

$$\langle 1, x_1, x_2, x_1^2, x_2^2, x_1 x_2, x_1^2 x_2, x_1 x_2^2, x_1^3, x_2^3 \rangle$$
 (3)

Which becomes:

$$\underline{\mathbf{x}} = \begin{bmatrix}
1 \\
x[n] \\
x[n-1] \\
x^{2}[n] \\
x^{2}[n-1] \\
x^{3}[n] \\
x^{3}[n] \\
x^{3}[n-1] \\
x^{2}[n]x[n-1] \\
x[n]x^{2}[n-1]
\end{bmatrix}$$
(4)

II. EXPERIMENTS

A. Data Generation

For this experiment, we generate data using a Gaussian distribution and a parameter α that causes convolutional spread. The lower the value of α , the closer classes are to each other.

B. Classifying Low Values of α

For this experiment, we first begin by plotting our data in \mathbb{R}^2 . We generate N data samples with a convolutional spread constant α , such that:

$$\alpha = 0.2, N = 100$$
 (5)

The two classes are shown below.

Fig. 1. Data clusters in \mathbb{R}^2 using $\alpha = 0.2, N = 100$

We can visually see that the two classes are linearly separable, and a support vector machine, support vector classifier would work well in this case; nonetheless, we apply the non-linear classifier and can see that the non-linear approach works in this case also.

UNM ECE 517 ASSIGNMENT 6.1

Fig. 2. Example in ${\rm I\!R}^2$ classifying linearly separable data with a non-linear classifier

Fig. 4. Applying the non-linear classifier to our data $\alpha=1.5, N=100$

C. Classifying With High Values of α

For this experiment, we plot our data in \mathbb{R}^2 using a new convolutional spread constant α :

$$\alpha = 1.5, N = 100$$
 (6)

We can see in the figure below that our data is no longer linearly separable.

Fig. 3. Data clusters in ${\rm I\!R}^2$ using $\alpha=1.5, N=100$

We now pass our data through the non-linear classifier, and draw the contour.

III. CONCLUSION

We see from the following experiments that the non-linear classifier works separating data were the linear classifier does not; however, it is important to note that underfitting does occur in this case.

IV. SOURCE CODE

https://github.com/keithhbova/support_vector_machines/