

Транзакции в РСУБД

Определение

• **Транзакция** — это последовательность операторов манипулирования данными, выполняющаяся как единое целое (все или ничего) и переводящая базу данных из одного целостного состояния в другое целостное состояние

Демаркация транзакций

- Транзакция обычно начинается автоматически с момента присоединения пользователя к СУБД
- Транзакция завершается при следующих событиях:
 - > Подана команда зафиксировать транзакцию
 - > Подана команда откатить транзакцию
 - > Произошло отсоединение пользователя от СУБД
 - > Автоматическая фиксация транзакции
 - > Произошел сбой системы
 - При последующем запуске СУБД выполняется накат или откат тех транзакций, результаты которых не были сохранены в БД

Управление транзакциями в SQL

- Операторы начала и завершения транзакции могут отличаться в разных СУБД
- Режим AUTO COMMIT каждый запрос выполняется в отдельной транзакции, автоматически завершающейся подтверждением
- СУБД MySQL, механизм InnoDB:
 - > START TRANSACTION ЯВНОЕ НАЧАЛО ТРАНЗАКЦИИ
 - сомміт подтверждение транзакции
 - > ROLLBACK ОТКАТ ТРАНЗАКЦИИ
 - > SET TRANSACTION ISOLATION LEVEL УСТАНОВКА УРОВНЯ ИЗОЛЯЦИИ ТРАНЗАКЦИИ
 - > SET AUTOCOMMIT = 0 ОТКЛЮЧЕНИЕ РЕЖИМА

Транзакции и параллелизм

Работа транзакций в смеси

- Транзакция рассматривается как последовательность элементарных атомарных операций
- Набор из нескольких транзакций, элементарные операции которых чередуются друг с другом, называется смесью транзакций
- Последовательность, в которой выполняются элементарные операции заданного набора транзакций, называется графиком запуска набора транзакций

Работа транзакций в смеси - пример

• Смесь транзакций:

$$T = \{T_{1}, T_{2}, T_{3}, \dots, T_{n}\}$$

$$Q = \{Q_{1}, Q_{2}, Q_{3}, \dots, Q_{m}\}$$

$$S = \{S_{1}, S_{2}, S_{3}, \dots, S_{k}\}$$

• Графики запуска:

$$\{T_1, Q_1, T_2, S_1, T_3, S_2, S_3, Q_2, \ldots\}$$

$$\{S_1, Q_1, T_1, T_2, T_3, S_2, Q_2, S_3, ...\}$$

> Какой из графиков «правильнее» (и оптимальнее)?

Проблемы параллельной работы транзакций

- Потеря результатов обновления
- Незафиксированная зависимость (чтение "грязных" данных, неаккуратное считывание)
- Неповторяемое считывание
- Фиктивные элементы (фантомы)
- Несовместимый анализ

Потеря результатов обновления

Транзакция А	Время	Транзакция В
Чтение $P = P_0$	t_1	
	t_2	Чтение $P = P_0$
Запись $P_1 \rightarrow P$	<i>t</i> ₃	
	t ₄	Запись $P_2 \rightarrow P$
Фиксация транзакции	t_{5}	
	t_6	Фиксация транзакции
Потеря результата обновления		

 Транзакция А потеряла результаты своей работы

«Грязное чтение»

Транзакция А	Время	Транзакция В
	t_1	Чтение $P = P_0$
	t_2	Запись $P_1 \rightarrow P$
Чтение $P = P_1$	t ₃	
Работа с прочитанными данными P_1	t ₄	
	t_5	Откат транзакции $P_0 \rightarrow P$
Фиксация транзакции	t_6	
Работа с "грязными" данными		

• Результаты работы транзакции А некорректны

Неповторяемое считывание

Транзакция А	Время	Транзакция В
Чтение $P = P_0$	t_1	
	t_2	Чтение $P = P_0$
	<i>t</i> ₃	Запись $P_1 \rightarrow P$
	t ₄	Фиксация транзакции
Повторное чтение $P = P_1$	t_{s}	
Фиксация транзакции	t_6	
Неповторяемое считывание		

• Транзакция А работает с данными, которые, с точки зрения транзакции А, самопроизвольно изменяются

Фантом

Транзакция А	Время	Транзакция В
Выборка строк, удовлетворяющих условию	t_1	
	t_2	Вставка новой строки, удовлетворяющей условию
	t ₃	Фиксация транзакции
Выборка строк, удовлетворяющих условию ^а . (Отобрано n+1 строк)	£4	
Фиксация транзакции	t_5	
Появились строки, которых раньше не было		

• Транзакция А в двух одинаковых выборках строк получила разные результаты

Несовместимый анализ

Транзакция А	Время	Транзакция В
Чтение счета $P_1 = 100$ и суммирование. $SUM = 100$	t_1	
	t_2	Снятие денег со счета P_3 . $P_3: 100 \rightarrow 50$
	t ₃	Помещение денег на счет P_1 . $P_1: 100 \rightarrow 150$
	t4	Фиксация транзакции
Чтение счета $P_2 = 100$ и суммирование. $SUM = 200$	t_{5}	
Чтение счета $P_3 = 50$ и суммирование. $SUM = 250$	t_6	
Фиксация транзакции	t_7	
Сумма \$250 по всем счетам неправильная - должно быть \$300		

Конфликты доступа к данным

 Транзакции называются конкурирующими, если они пересекаются по времени и обращаются к одним и тем же данным

А\Б	Чтение	Запись		
Чтение	* OK *	Неповторяемое считывание		
Запись	«Грязное» чтение	Потеря обновления		

Сериализация транзакций

- График запуска называется последовательным, если элементарные операции транзакций не чередуются друг с другом
- График запуска называется верным (сериализуемым), если он эквивалентен какому-либо последовательному графику
 - При их выполнении будет получен один и тот же результат, независимо от начального состояния базы данных
- Задача обеспечения изолированной работы пользователей — поиск оптимального сериализуемого графика запуска транзакций
 - Например, суммарное время выполнения всех транзакций в наборе

Способы разрешения конкуренции между транзакциями

- Транзакции не мешают друг другу, если они обращаются к разным данным или выполняются в разное время
- 1. "Притормаживать" некоторые из поступающих транзакций настолько, насколько это необходимо для обеспечения правильности смеси транзакций в каждый момент времени
 - > блокировки различных видов, метод временных меток
- 2. Предоставить конкурирующим транзакциям "разные" экземпляры данных
 - многоверсионная БД, использование данных из журнала транзакций

Блокировки

- Если для выполнения транзакции необходимо, чтобы некоторый объект не изменялся без ведома этой транзакции, то этот объект должен быть заблокирован
- Базовая модель два типа блокировок:
 - > Монопольные блокировки (X-блокировки) блокировки без взаимного доступа (блокировка записи)
 - Разделяемые блокировки (S-блокировки) блокировки с взаимным доступом (блокировка чтения)
- Преднамеренные блокировки (IS-, IX-, SIXблокировки)

Матрица совместимости блокировок

	Транзакция В пытается наложить блокировку:		
Транзакция А наложила блокировку:	S-блокировку	Х-блокировку	
S-блокировку	Да	НЕТ (Конфликт R-W)	
Х-блокировку	HET (Конфликт W-R)	НЕТ (Конфликт W-W)	

Протокол доступа к данным с блокировками

- 1. Прежде чем прочитать объект, транзакция должна наложить на этот объект S-блокировку.
- 2. Прежде чем обновить объект, транзакция должна наложить на этот объект X-блокировку. Если транзакция уже заблокировала объект S-блокировкой (для чтения), то перед обновлением объекта S-блокировка должна быть заменена X-блокировкой.
- 3. Если блокировка объекта транзакцией В отвергается оттого, что объект уже заблокирован транзакцией А, то транзакция В переходит в состояние ожидания. Транзакция В будет находиться в состоянии ожидания до тех пор, пока транзакция А не снимет блокировку объекта.
- 4. Х-блокировки, наложенные транзакцией А, сохраняются до конца транзакции А.

Потеря результатов обновления

Транзакция А	Время	Транзакция В
S-блокировка <i>P</i> - успешна	t_1	
Чтение $P = P_0$	t_2	
	t_3	S-блокировка P - успешна
	t ₄	Чтение $P = P_0$
X-блокировка P - отвергается	t_{5}	
Ожидание	t_6	X-блокировка P - отвергается
Ожидание	t_7	Ожидание

Тупик

 Решение - откат одной из транзакций (транзакциижертвы) так, чтобы другие транзакции продолжили свою работу

Выделение версий данных

 Для генерации разных версий данных используется журнал транзакций

 Журнал транзакций предназначен для выполнения операции отката при неуспешном выполнении транзакции или для восстановления данных после сбоя

системы

Выделение версий данных

- Для каждой транзакции (или запроса) запоминается текущий системный номер (SCN System Current Number).
- При записи страниц данных на диск фиксируется SCN транзакции, производящей эту запись.
- Транзакции, только читающие данные, не блокируют ничего в базе данных.
- Если транзакция А читает страницу данных, то SCN транзакции А сравнивается с SCN читаемой страницы данных.
- Если SCN страницы данных меньше или равен SCN транзакции A, то транзакция A читает эту страницу.
- Если SCN страницы данных больше SCN транзакции A, то значит некоторая транзакция B, начавшаяся позже транзакции A, успела изменить данные страницы. В этом случае транзакция A просматривает журнал транзакций назад в поиске первой записи об изменении нужной страницы данных с SCN меньшим, чем SCN транзакции A. Найдя такую запись, транзакция A использует старый вариант данных страницы.

22

Несовместимый анализ

Транзакция А	Время	Транзакция В
Проверка SCN счета P_1 - SCN транзакции больше SCN счета.		
Чтение счета $P_1 = 100$ без наложения блокировки и суммирование. $SUM = 100$		
DCM2 = 100		
	t_2	X-блокировка счета P_3 - успешна
	<i>t</i> ₃	Снятие денег со счета P_3 . $P_3:100 \rightarrow 50$
	t ₄	X-блокировка счета P_1 - успешна
	t ₅	Помещение денег на счет $\frac{P_1}{r}$.
		$P_1:100 \rightarrow 150$
	t ₆	Фиксация транзакции (Снятие блокировок)

Несовместимый анализ (продолж.)

	t ₆	Фиксация транзакции (Снятие блокировок)
Проверка SCN счета P_2 - SCN транзакции больше SCN счета. Чтение счета P_2 = 100 без наложения блокировка и суммирование. $SUM = 200$	t ₇	
Проверка SCN счета P_3 - SCN транзакции МЕНЬШЕ SCN счета. Чтение старого варианта счета $P_3 = 100$ и суммирование. $SUM = 300$	t ₈	
Фиксация транзакции	t_9	
Сумма на счетах посчитана правильно.		

Сравнение блокировок и выделения версий

- Блокировки
 - В базовой модели решают не все проблемы параллельной работы транзакций
 - > Возможны тупики
- Механизм выделения версий
 - > Реализован в СУБД Oracle, MySQL («движок» Falcon)
 - > Дополняет механизм блокировок
 - > Позволяет избежать тупиков

Реализация изолированности транзакций средствами SQL

- Уровень изоляции транзакции
 - > B SQL нет понятия «блокировок»
 - Определяет требования к изолированности транзакций
 - Производитель СУБД может реализовать эти требования любыми способами
- READ UNCOMMITTED уровень незавершенного считывания
- READ COMMITTED уровень завершенного считывания
- REPEATABLE READ уровень повторяемого считывания.
- SERIALIZABLE уровень способности к упорядочению

Нарушения способности к упорядочению

Уровень изоляции	Неаккуратное считывание	Неповторяемое считывание	Фантомы
READ UNCOMMITTED	Да	Да	Да
READ COMMITTED	Нет	Да	Да
REPEATABLE READ	Нет	Нет	Да
SERIALIZABLE	Нет	Нет	Нет

• Потеря результатов обновления стандартом SQL не допускается

Установка уровня изоляции

- SET TRANSACTION { ISOLATION LEVEL
 {READ UNCOMMITTED | READ COMMITTED
 | REPEATABLE READ | SERIALIZABLE }
 | {READ ONLY | READ WRITE } }
- Уровень изоляции транзакции одновременно влияет на скорость выполнения и на целостность данных
- Не все проблемы параллелизма актуальны для конкретного приложения => необходимо управлять уровнем изоляции транзакции
- Большинству транзакций не требуется делать выборки одних и тех же данных более 1 раза => уровень изоляции READ COMMITTED (принят по умолчанию во многих СУБД)