Indian Institute of Information Technology Allahabad Convex Optimization (SMAT430C)

Tentaive Marking Scheme (Mid-semester Exam, 2018)

1.	Prove or	asprove	the following	statements.		

(a) The conjugate function f^* of a function f is convex, whether f is convex or not. [2]

Solution. True.
$$f^*(y) = \sup_{x \in \text{dom} f} (y^T x - f(x))$$
 [1]

 f^* is the pointwise supremum of family of convex functions (affine functions) of y [1]

[2]

[3]

[7]

 $\Rightarrow f^*$ is also a convex function.

(b) If all the sublevel sets of a function f is convex, then f is convex.

Solution. Not true in general.

Consider a non-convex function
$$f$$
 given by $f(x) = \log x$, with **dom** $f = \mathbb{R}_{++}$. [1]

Then
$$S_{\alpha}(f) = \{x : f(x) \le \alpha\} = \{x : \log x \le \alpha\} = \{x : x \le e^{\alpha}\}$$

$$\therefore S_{\alpha}$$
 is an interval for each $\alpha \in \mathbb{R}$, S_{α} is a convex set, $\forall \alpha \in \mathbb{R}$ [1]

(c) Let $h(x) = x^{3/2}$ with **dom** $h = \mathbb{R}_+$. Then \tilde{h} is not increasing (nondecreasing). [2]

Solution. True.

$$\therefore h(x) = x^{3/2} \text{ is a convex function, } \tilde{h} = \begin{cases} h(x) & x \in \operatorname{\mathbf{dom}} h \\ \infty & \text{otherwise} \end{cases}$$
 [1]

$$\tilde{h}(-1) = \infty$$
 and $\tilde{h}(1) = 1$, \tilde{h} is not increasing (nondecreasing). [1]

(d) If f and g are convex functions, then their composition $f \circ g$ is also convex.

Solution. Not true in general.

Consider convex functions,
$$g(x) = x^2$$
, with **dom** $g = \mathbb{R}$, and $f(x) = 0$, with **dom** $f = [1, 2]$. [1+1]

Then $(f \circ g)(x) = 0$, with **dom** $f \circ g = [-\sqrt{2}, -1] \cup [1, \sqrt{2}]$, is not convex, since its domain is not convex. [1]

2. Find the supremum and infimum of the set $\{x + \frac{1}{x} : x > 0\}$

Solution. The set is not bounded above.
$$\inf = 2$$
. [1+1]

3. Find the conjugate function of $f(x) = \begin{cases} x \log x & x > 0 \\ 0 & x = 0 \end{cases}$ [4]

Solution.
$$f(y) = xy - x \log x$$
 is bounded above on \mathbb{R}_+ for all y , hence $\operatorname{dom} f^* = \mathbb{R}$ [1+1]

$$f^*$$
 attains its maximum at $x = e^{y-1}$ and $f^*(y) = e^{y-1}$ [1+1]

4. Suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is convex and bounded above. Show that f is constant (Hint: consider g(t) = f((1-t)x + ty).

Solution. Suppose f is not a constant, then there exist x, y with f(x) < f(y). [1]

Define g(t) = f(x + t(y - x)).

As f is convex and bounded above, g is also convex and bounded above. [1]

Moreover,
$$q(0) < q(1)$$

By convexity of
$$g$$
 (for $x_1 = 0$, $x_2 = t$, $\theta_1 = 1 - \frac{1}{t}$ and $\theta_2 = \frac{1}{t}$)

we have
$$g(1) \le (1 - \frac{1}{t})g(0) + \frac{1}{t}g(t)$$
 [1]

$$\Rightarrow g(t) \ge g(0) + t(g(1) - g(0)) \tag{1}$$

 $g(1) - g(0) > 0, g(t) \to \infty$ as $t \to \infty$, a contradiction as g is bounded above. [1]

5. Show that a function f is convex if and only if its epigraph is a convex set.

Solution.
$$(\Longrightarrow) \operatorname{epi} f = \{(x,t) : f(x) \le t\}.$$
 [1]

Let
$$(x,t), (y,s) \in \text{epi} f$$
. Hence, $f(x) \le t, f(y) \le s$. [1]

As
$$f$$
 is convex, for $0 \le \lambda \le 1$, $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda))f(y) \le \lambda t + (1 - \lambda)s$. [1]

This implies that
$$(\lambda x + (1 - \lambda)y), \lambda t + (1 - \lambda)s) = \lambda(x, t) + (1 - \lambda)(y, s) \in \text{epi} f.$$
 [1]

Hence, epigraph of f is a convex set.

$$(\Leftarrow) (x, f(x)), (y, f(y)) \in \text{epi} f.$$
 [1]

As epif is convex, for $0 \le \lambda \le 1$,

$$\lambda(x, f(x)) + (1 - \lambda)(y, f(y)) = (\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y)) \in \text{epi} f.$$
 [1]

Therefore,
$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
. [1]

Hence,
$$f$$
 is a convex function. [1]