Ciência de Dados Aplicada

Aula 8: Introdução ao Aprendizado de Máquina

Estudo de algoritmos que podem aprender pelo exemplo...

Estudo de algoritmos que podem aprender pelo exemplo...

... e em seguida generalizar com base nas experiências previamente observadas sobre uma determinada tarefa

Estudo de algoritmos que podem aprender pelo exemplo...

... e em seguida generalizar com base nas experiências previamente observadas sobre uma determinada tarefa

Principais exemplos:

Reconhecimento de fala

Carros autônomos

Detecção de Fraudes

Reconhecimento de imagens (Medicina)

Sistemas de Recomendação e pesquisa

Aprendizado de Máquina engloba estatística, ciência da computação e outras disciplinas

Métodos estatísticos

- Inferir conclusões sobre dados
- Estimar a confiabilidade das previsões

Computação

- Arquiteturas de computação em larga escala
- Algoritmos para captura, manipulação, indexação, combinação, recuperação e previsões sobre dados
- Pipelines de software que gerenciam a complexidade de várias subtarefas

Economia, biologia, psicologia

- Como um indivíduo ou sistema pode melhorar eficientemente seu desempenho em um determinado meio Ambiente?
- O que é aprendizado e como ele pode ser otimizado?

O que é Aprendiado de Máquina Aplicado?

Compreender os fundamentos e conceitos básicos, assim como o fluxo de trabalho (metodologia) do *Machine Learning*

Como aplicar corretamente o ML, isto é, como usar seus componentes e recursos

Aprendizado de máquina em Python usando o pacote scikit-learn

Python Tools

scikit-learn Homepage http://scikit-learn.org/

http://pandas.pydata.org/

http://www.scipy.org/

http://www.numpy.org/

http://matplotlib.org/

Tipos de problemas em Machine Learning

1. Aprendizado de máquina supervisionado

São apresentados ao computador exemplos de entradas e saídas desejadas

O objetivo é aprender uma regra geral que mapeia previsões futuras

Classificação (os valores-alvo são classes discretas)

Regressão (os valores-alvo são valores contínuos)

Aprendizado Supervisionado Classificação

Tipos de problemas em Machine Learning

2. Aprendizado de máquina não supervisionado

Encontrar estrutura ou conhecimento útil nos dados quando não há ensinamento prévio ou rótulos disponíveis

Grupos de instâncias semelhantes nos dados – cluster

Localizando padrões incomuns (detecção de outlier)

Acessos ao Servidor

Tempo

Metodologia Básica para Aprendizado de Máquina

Representação das características

Tipo de classificador

Qual critério nos permite distinguir classificadores bons vs. ruins ?

% de previsões corretas

Como definir quais os parâmetros que melhoram o classificador?

Representação de características

Base de dados - Frutas

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79
5	2	mandarin	mandarin	80	5.8	4.3	0.77
6	2	mandarin	mandarin	80	5.9	4.3	0.81
7	2	mandarin	mandarin	76	5.8	4.0	0.81
8	1	apple	braeburn	178	7.1	7.8	0.92
9	1	apple	braeburn	172	7.4	7.0	0.89
10	1	apple	braeburn	166	6.9	7.3	0.93
11	1	apple	braeburn	172	7.1	7.6	0.92
12	1	apple	braeburn	154	7.0	7.1	0.88
13	1	apple	golden_delicious	164	7.3	7.7	0.70
14	1	apple	golden_delicious	152	7.6	7.3	0.69
15	1	apple	golden_delicious	156	7.7	7.1	0.69
16	1	apple	golden delicious	156	7.6	7.5	0.67

fruit_data_with_colors.txt

Representação da Característica Cor

Conjunto de Treinamento vs. Conjunto de Testes

O algoritmo K-NN (vizinho mais próximo) precisa de quatro coisas especificadas

- Uma métrica de distância Euclidiana
- Quantos vizinhos 'mais próximos' para olhar?
- Função de ponderação opcional nos pontos vizinhos
- Como agregar as classes de pontos vizinhos
 Voto por maioria simples
 (Classe com mais representantes entre os vizinhos mais próximos)