Finding Diverse Strings and Longest Common Subsequences in a Graph

Luca Lombardo

Seminar for the course of Bioinformatics

Structure of the Presentation

- Introduction to the problems
 - Diverse Strings Problems
 - Σ-DAG for LCSs
- Exact Algorithms for Bounded Number of Diverse Strings
 - Max-Min Diverse String Set problem
 - Max-Sum Diverse String Set problem
- 3 Approximation Algorithms for Unbounded Number of Diverse Strings
 - Approximation Algorithm for MAX-MIN DIVERSE STRING SET problem
 - Max-Sum Farthest r-String problem
- 4 FPT Algorithms for Bounded Number and Length of Diverse Strings
- 6 Hardness Results
 - Hardness of Diverse String Set for Unbounded K
 - Hardness of Diverse String LCSs for Unbounded K

Longest Common Subsequence (LCS)

Definition

Given a set of m strings $S = \{S_1, S_2, \ldots, S_m\}$, a **common subsequence** (CS) is a sequence that appears in all m strings. A **longest common subsequence** LCS is a common subsequence of maximum length. We denote the set of all LCSs of S as LCS(S).

The goal is to find a diverse set of solutions to the LCS problem under the Hamming distance.

Definition

Given two strings $X, Y \in \Sigma^r$, the **Hamming distance** between X and Y, denoted with $d_H(X, Y)$, is the number of positions at which the corresponding symbols differ.

A simple example

Add here the example of the paper

Efficient methods for finding a diverse set of solutions

More formally, let's consider the following two diversity measures for a multiset $\mathcal{X} = \{X_1, X_2, \dots, X_K\} \subseteq \Sigma^r$ of solutions, allowing repetitions:

$$D_{d_H}^{\text{sum}}(\mathcal{X}) = \sum_{1 \le i < i \le K} d_H(X_i, X_j)$$
 Max-Sum Diversity (1)

$$D_{d_H}^{\min}(\mathcal{X}) = \min_{i < j} d_H(X_i, X_j) \qquad \text{Max-Min Diversity} \qquad (2)$$

Notation

A subset $\mathcal{X} \subseteq \Sigma^r$ is Δ -diverse w.r.t. $D_{d_H}^{\tau}$ if $D_{d_H}^{\tau}(\mathcal{X}) \geq \Delta$ for some $\Delta \geq 0$.

Where for $\tau \in \{sum, min\}$, $D_{d_H}^{\tau}$ denotes one of the two diversity measures.

Two problems

Problem 1: DIVERSE LCSs WITH DIVERSITY MEASURE $D_{d_H}^{ au}$

Input: A set $S = \{S_1, S_2, \dots, S_m\}$ of $m \ge 2$ strings over Σ , an integer $K \ge 1$ and $\Delta \ge 0$.

Question: Is there some set $\mathcal{X} \subseteq LCS(S)$ such that $\mathcal{X} = K$ and

 $D_{d_H}^{\tau}(\mathcal{X}) \geq \Delta$?

Problem 2: DIVERSE STRING SET

Input: $K, r, \Delta \in \mathbb{Z}$ and a Σ -DAG G for a set $L(G) \subseteq \Sigma^r$ of strings.

Question: Decide if there exists some subset $\mathcal{X} \subseteq L(G)$ such that $|\mathcal{X}| = K$ and $D_{du}^{\tau}(\mathcal{X}) \geq \Delta$.

Seminar for the course of Bioinformatics

6/18

Σ -Labeled Directed Acyclic Graphs (Σ -DAGs)

Definitions

- Alphabet (Σ) : Set of symbols.
- String Set (Language): $L = \{X_1, X_2, \dots, X_n\} \subseteq \Sigma^*$, with:
 - ▶ Total Length: $||L|| = \sum_{X \in L} |X|$
 - Max Length: $\max_{L \in \mathcal{L}} |X| = \max_{X \in \mathcal{L}} |X|$
- **r-String**: Any string X where |X| = r

Σ-DAG Structure

A graph G = (V, E, s, t) with:

- V: vertices, E: labeled edges (v, c, w) with $c \in \Sigma$
- Source s and Sink t such that paths exist from s to all vertices
- **Size**: size(*G*), the number of its labeled edges

Σ -Labeled Directed Acyclic Graphs (Σ -DAGs)

Any path $P = (e_1, e_2, ..., e_n)$ of outgoing edges spells out a string str(P) $= c_1 c_2 ... c_n \in \Sigma^n$ where c_i is the label of edge e_i .

Language Representation

A Σ -DAG represents $L(G) \subset \Sigma^*$: all strings spelled from paths $s \to t$. Equivalent to an NFA over Σ with initial s, final t, and no ϵ -edges.

Remarks

- For any set L of strings, a Σ -DAG G exists s.t. L(G) = L and size $(G) \leq ||L||$. Construction time: $O(||L|| \log |\Sigma|)$.
- If G represents a set L of r-strings ($L \subseteq \Sigma^r, r \ge 0$), all paths $s \to v$ have the same length $d \le r$.

FPT Algorithms for Bounded Number and Length of Diverse Strings

FPT Algorithms for Bounded Number and Length of Diverse Strings

