

Surface modalities

Geometric Computer Vision

GCV v2021.1, Module 7

Alexey Artemov, Spring 2021

Lecture Outline

§1. Mesh data structures [30 min]

- 1.1. What is a mesh?
- 1.2. Level of detail
- 1.3. Editing operators
- 1.4. Mesh data structures
- §2. Meshing: constructing meshes [15 min]
 - 2.1. Marching cubes
- §3. Defining convolutions on meshes [20 min]
 - 3.1. MeshCNN architecture

§1. Mesh data structures

What is a mesh?

What is a mesh?

A surface made of polygonal faces glued at common edges

Origin of Meshes

Skolkovo Institute of Science and Technology

 In nature, meshes arise in a variety of contexts:

- -Cells in organic tissues
- -Crystals
- -Molecules
- -Mostly convex but irregular cells
- -Common concept: complex shapes can be described as collections of simple building blocks

Basic Math of Meshes

• A *n-cell* is a set homeomorphic to a Euclidean disc of dimension *n*:

• 0-cell: vertex
 • 1-cell: edge
 • 2-cell: face

Structure

- A mesh M=(V,E,F) of dimension 2 is made of a collection of k-cells for k=0,1,2:
 - 0-cells of V lie on the boundary of 1-cells of
 - 1-cells of *E* lies on the boundary of 2-cells of *F*
 - (manifoldness) each 1-cell of *E* lies on the boundary of either one or two 2-cells of *F*
 - the intersection of two distinct 1-/2-cells is either empty or it coincides with a collection of 0-/1-cells

Structure

- Properties 1 and 2 guarantee that there are no "dangling" edges and isolated vertices
- Property 3 guarantees that faces abut properly
- Property 2.1 extends property 2. to guarantee that the *carrier* of the mesh (i.e., the union of all its cells) is a manifold (i.e., a surface)

Structure

Forbidden configurations:

- Dangling edges and isolated vertices
- Intersecting faces
- Non-conforming adjacency
- Non-manifold edges

Topological Informations

A mesh can be treated as a purely combinatorial structure

$$M = (V, E, F)$$

- For some applications, geometry of edges and faces it not relevant. Just encode:
 - vertices as singletons (V)
 - how vertices are connected among them (*E*)
 - how cycles of vertices bound faces (F)

Geometrical Information

- Geometric embedding:
 - position in space for each 0-cell (vertex point)
 - geometry for each 1-cell (edge line) and 2-cell (face disk-like surface)
- Polygonal meshes are embedded:
 - –edges are straight-line segments
 - -are faces flat? not always true: vertices of a face might be not coplanar

Triangle Meshes

- A triangle mesh is a polygonal mesh with all triangular faces
 - all faces are flat (there exist a unique plane for three points)
- All cells are simplices, i.e., they are the convex combinations of their vertices

$$P = \lambda_0 V_0 + \lambda_1 V_1 + \lambda_2 V_2$$
 $\lambda_i \in [0,1]$ $\lambda_0 + \lambda_1 + \lambda_2 = 1$

 embedding of vertices + combinatorial structure characterize the embedding of the whole mesh

Euler-Poincaré Formula

 Relates the number of cells in a mesh with the characteristics of the surface it represents:

$$v$$
- e + f = 2 s -2 g - h

- Shells *s* = # connected components
- Genus g = # handles (ex.: sphere: genus 0; torus: genus 1)
- Holes h = # boundary loops (watertight: h = 0)

By Leonid_2 (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

Euler-Poincaré Formula

$$v-e+f = 2s-2g-h$$

- In a (watertight manifold) triangle mesh:
 - each face has three edges, each edge is shared by two faces:

•
$$e = 3f/2$$

$$\bullet e = 3v + 6g - 6 \approx 3v$$

$$f = 2v + 4g - 4 \approx 2v$$

 The formula can be adapted to bordered surfaces to take into account boundary loops and edges

Topological Relations

Skolkovo Institute of Science and Technology

- Boundary relations:
 - for each cell c of dimension n, all cells of dimension <n that belong to its boundary</p>
- Co-boundary relations:
 - for each cell c of dimension n, all cells of dimension >n such that c belongs to their boundary
- Adjacency relations:
 - for each cell c of dimension n=1,2, all cells of dimension =n such that share some of their boundary with c

Vertex-Based Relations

- VE (Vertex-Edge):
 - for each vertex v, the list of edges ($e_1,e_2,...,e_r$) having an endpoint in v (*incident edges*) arranged in counter-clockwise radial order around v
 - list is circular: initial vertex e₁ is arbitrarily chosen

Vertex-Based Relations

- VV (Vertex-Vertex):
 - for each vertex v, the list of vertices $(v_1,v_2,...,v_r)$ connected to v with an edge (adjacent vertices) arranged in counter-clockwise radial order around v
 - consistency rule: vertex v_i in VV(v) is an endpoint of edge e_i in VE(v)

Vertex-Based Relations

- VF (Vertex-Face):
 - for each vertex v, the list of faces $(f_1, f_2, ..., f_r)$ having v on their boundary (*incident faces*) arranged in counter-clockwise radial order around v
 - consistency rule: face f_i in VF(v) is bounded by edges e_i and e_{i+1} in VE(v)

Edge-Based Relations

- EV (Edge-Vertex):
 - for each edge e, the two endpoints (v_1,v_2) of e (incident vertices)
- EF (Edge-Face):
 - for each edge e, the two faces (f_1,f_2) having e on their boundary (incident faces)
- Consistency rule: face f₁ [f₂] is on the left [right] of the oriented line from v₁ to v₂

Edge-Based Relations

- EE (Edge-Edge):
 - for each edge e, two pairs of edges ((e₁,e₂), (e₃,e₄)) that share a vertex and a face with e (adjacent edges)
- Consistency rule:
 - e_1 is incident on v_1 and f_1
 - e₂ is incident on v₁ and f₂
 - e₃ is incident on v₂ and f₁
 - e₄ is incident on v₂ and f₂

Face-Based Relations

- FE (Face-Edge):
 - for each face f, the list (e₁,e₂,...,e_m) of edges of its boundary (*incident edges*), in counter-clockwise order about f
 - list is circular: initial vertex e₁ is arbitrarily chosen

Face-Based Relations

- FV (Face-Vertex):
 - for each face f, the list $(v_1,v_2,...,v_m)$ of vertices of its boundary (*incident vertices*), in counter-clockwise order about f
 - consistency rule: edge ei in FE(f) has endpoints vi and vi+1

Face-Based Relations

- FF (Face-Face):
 - for each face f, the list (f₁,f₂,...,f_m) of faces that share an edge with f (*adjacent faces*), in counter-clockwise order about f
 - consistency rule: face fi in FF(f) shares edge ei in FE(f)

Topological Relations

- Constant relations return a constant number of elements:
 - EV (each edge has two endpoints)
 - EE (each edge has four adjacent edges)
 - EF (each edge has two incident faces)
- Variable relations return a variable number of elements:
 - VV, VE, VF, FV, FE, FF: the number of vertices/edges/faces incident/adjacent to a given vertex/face is not constant and it can be of the same order of the total number of vertices/edges/faces

Stars and Rings

Skolkovo Institute of Science and Technology

- The star of a vertex v is formed by v plus the set of cells incident at v (edges and faces of its co-boundary)
- The star of an edge e is formed by e plus the set of faces incident at e (faces of its co-boundary)
- The 1-ring of a face f is the formed by the union of the stars of its boundary vertices
- The k-ring of a face f, for k>1 is the formed by the union of the 1-rings of faces in its (k-1)-ring

Level of Details

Continuous Methods

Widely used for rendering terrains

Source: http://en.wikipedia.org/wiki/Level_of_detail

Discrete LOD

Editing Operators

Euler Operators

- Change a mesh while fulfilling the Euler formula v e + f = 2s 2g h
- Challenging to implement
- Examples:
 - MVS MakeVertexShell: creates a new connected component composed of a single vertex
 - MEV MakeEdgeVertex: creates a new vertex and a new edge, joining it to an existing vertex
 - MEF MakeEdgeFace: connects two existing vertices with an edge creating a new face this
 can either make and fill a loop, or split an existing face into two
 - KHMF KillHoleMakeFace: fills a hole loop with a face

•

Operators for Triangle Meshes

- Specific operators that specific for triangle meshes
- Refinement operators: produce a mesh with more vertices/edges/faces
- Simplification operators: produce a mesh with less vertices/edges/faces
- Can be implemented on any topological data structure for triangle meshes

- Triangle split:
 - insert a new vertex *v* in a triangle *t* and connect *v* to the vertices of *t* by splitting it into three triangles

- Edge split:
 - insert a new vertex v on an edge e and connect v to the opposite vertices of triangles incident at e by splitting e as well as each such triangle into two

- •Vertex split:
 - •cut open the mesh along two edges e_1 and e_2 incident at a common vertex v, by duplicating such edges as well as v

- •Vertex split:
 - •cut open the mesh along two edges e_1 and e_2 incident at a common vertex v, by duplicating such edges as well as v
 - •fill the quadrangular hole with two new triangles and an edge joining the two copies of *v*

Refinement Operators

- •Vertex split:
 - possible inconsistencies because of triangle flip

•flips can be detected by a local test on the orientation of faces: flips changes orientation from clockwise to counter-clockwise and vice-versa

- Edge collapse (reverse of vertex split):
 - collapse an edge e to a single point
 - e is removed together with its two incident triangles
 - the endpoints of *e* are identified
 - the other edges bounding the deleted triangles are pairwise identified

- Edge collapse:
 - possible inconsistencies because of triangle flip

consistency check analogous to vertex split

Slide Credit: Daniele Panozzo

- Edge merge (reverse of edge split):
 - take an internal vertex v with valence 4
 - delete v together with its incident triangles and edges and fill the hole with two new triangles sharing a new edge e

Slide Credit: Daniele Panozzo

- Edge merge:
 - if the hole is not convex, only one diagonal edge can be inserted

- Delete vertex (reverse of triangle split):
 - remove an internal vertex *v* of valence 3 together with its incident triangles and edges and fille the hole with a new triangle

Neutral Operator

- Edge swap:
 - consider an edge e such that its two incident triangles form a convex quadrilateral
 - replace e with the opposite diagonal of the quadrilateral, rearranging the two incident triangles accordingly

Boundary Cases

• Vertex split / Edge collapse:

Boundary Cases

- Edge merge on a concave boundary may cause self-intersection of the mesh
- It is a global check! intersecting parts may be far on the mesh

 Similar problems with edge collapse on concave boundary and vertex split on convex boundary

Mesh Data Structures

Data Structures

- Storing a mesh:
 - geometry: position of vertices
 - connectivity: edges, faces
 - topology: topological relations
- Compactness vs efficiency trade-off: data structures should be compact, while efficiently supporting time-critical operations
 - storage requirements
 - traversal operations
 - update operations

Data Structures

- Information to store/retrieve:
 - Entities: vertices, edges, faces
 - Relations: VV, VE, VF, EV, EE, EF, FV, FE,
 FF
 - Additional properties attached to any entity (Positions, Normals, Colors)
- The data structure to use is applicationdependent

Polygon Soup

- a.k.a. Face set STL files
- Just store a list of faces
- For each face, store positions of its vertices
 - For general polygonal mesh, the number of vertices of each face must also be stored
 - Number implicit for triangle meshes
- For a triangle mesh: 36 bytes/face ≈ 72 bytes/vertex
- No connectivity! just a collection of polygons
- Streaming structure: no need to store it all in memory to render the mesh

Triangles								
X ₁₁	y 11	z_{11}	X 12	У 12	Z ₁₂	X 13	У 13	Z 13
X ₂₁	Y 21	Z ₂₁	X22	У 22	Z ₂₂	X23	У 23	Z 23
	• • •			• • •			• • •	
\mathbf{x}_{F1}	Y F1	z_{F1}	\mathbf{x}_{F2}	Y F2	\mathbf{z}_{F2}	\mathbf{x}_{F3}	У F3	\mathbf{z}_{F3}

Indexed Structure

- Avoid replication of vertices OBJ, OFF, PLY files
- Maintain a vector of vertices and a vector of faces
 - For each vertex: position
 - For each face: references to positions of its vertices (FV) in the vector
 - in general, the number of vertices of each face must also be stored
 - number implicit for triangle meshes
- For a triangle mesh: 12 bytes/vertex +12 bytes/face ≈ 36 bytes/vertex
- Encodes connectivity through the FV relation
- Main memory structure: need to store in memory at least the whole list of vertices

Vertices					
	x_1	y 1	z_1		
		• • •			
2	ΧV	Уv	$\mathbf{z}_{ extsf{V}}$		

Triangles						
V 11	V ₁₂ V ₁₃					
	• • •					
	• • •					
	• • •					
	• • •					
\mathbf{v}_{F1}	\mathbf{V}_{F2} \mathbf{V}_{F3}					

Indexed Structure with Adjacencies Kovo Institute of Science and Technology

- Just for triangle meshes
- Extends indexed structure with some topological relations:
 - For each vertex:
 - position
 - one reference to an incident triangle (VF* relation)
 - For each face:
 - references to its three vertices (FV)
 - references to its three adjacent triangles (FF)

Indexed Structure with Adjacencies Ikovo Institute of Science and Technology

- No explicit edges!
 - implicitly defined as pairs of vertices (unique)
 - or as pairs (f,i) with f triangle and i index in 0,1,2 (not unique!)
- Attributes for edges require care, especially when modifying the mesh with editing operators

Indexed Structure with Adjacencies Koltechnology

- Evaluation of topological relations:
 - FV, FF: encoded optimal
 - VF = VF* + FF + FV optimal
 - VV analogous to VF
- Relations involving edges are either implicit or they can be evaluated in optimal time by the (f,i) encoding

Winged Edge Data Structure

- Topological structure for general polygonal meshes
 - For each vertex:
 - position
 - one reference to an incident edge (VE*)
 - For each edge:
 - references to its two vertices (EV)
 - references to its two incident faces (EF)
 - references to its four adjacent edges (EE)
 - For each face:
 - one reference to an incident edge (FE*)

Winged Edge Data Structure

- 120 bytes/vertex
- all entities are represented explicitly
- all topological relations can be retrieved in optimal time
- ambiguous orientation of edges:
 - does EV(e) return (v_i,v_j) or (v_j,v_i) ?

Winged Edge Data Structure

- Example: evaluation of VE(v):
 - get first edge e = VE*(v)
 - evaluate $(e_0,e_1,e_2,e_3) = EE(e)$
 - evaluate $(v_0,v_1) = EV(e)$
 - in counter-clockwise order, set next edge at either e_0 or e_3 , depending on whether $v=v_0$ or $v=v_1$
 - cycle until hitting e

- Half-edge: each edge is duplicated by also considering its orientation
- An edge corresponds to a pair of sibling half-edges with opposite orientations
- Each half-edge stores half topological information concerning the edge

- For each vertex:
 - position
 - one reference to an incident half-edge
- For each half-edge:
 - reference to one its two vertices (origin)
 - references to one of its two incident faces (face on its left)
 - references to: next/previous half-edge on the same face, sibling half-edge
- For each face:
 - one reference to an incident half-edge (FE*)

- 96-144 bytes/vertex depending on number of references to adjacent edges
 - reference to sibling half-edge can be avoided by storing siblings at consecutive entries of a vector
 - for triangle meshes, just one reference to either next or previous half-edge is sufficient
- Efficient traversal and update operations
- Attributes for edges must be stored separately

- One-ring traversal (V* relations):
 - 1.start at vertex

- One-ring traversal (V* relations):
 - 1.start at vertex
 - 2.outgoing half-edge

- One-ring traversal (V* relations):
 - 1.start at vertex
 - 2.outgoing half-edge
 - 3.opposite half-edge

- One-ring traversal (V* relations):
 - 1.start at vertex
 - 2.outgoing half-edge
 - 3.opposite half-edge
 - 4.next half-edge

- One-ring traversal (V* relations):
 - 1.start at vertex
 - 2.outgoing half-edge
 - 3.opposite half-edge
 - 4.next half-edge
 - 5.opposite

- One-ring traversal (V* relations):
 - 1.start at vertex
 - 2.outgoing half-edge
 - 3.opposite half-edge
 - 4.next half-edge
 - 5.opposite
 - 6.next.....

C++ libraries

- •Indexed based:
 - •libigl (igl.ethz.ch/projects/libigl/):
 - •light mesh representation compatible with numerical software (e.g., Eigen, Matlab)
 - topological relations are computed on-the-fly and can be stored for later use
 - several geometry processing algorithms algorithms
 - free, MPL2 licence

C++ libraries

- Adjacency based:
 - •VCGlib (vcg.sourceforge.net):
 - •optimized for triangle and tetrahedral meshes
 - extensions with half-edge for more general meshes
 - several geometry processing algorithms and spatial data structures
 - free, LGPL licence

C++ libraries

- Half-edge based:
 - CGAL (www.cgal.org):
 - •rich, complex
 - computational geometry algorithms
 - •free for non-commercial use
 - OpenMesh (www.openmesh.org):
 - mesh processing algorithms
 - free, LGPL licence

Tools

- Meshlab (meshlab.sourceforge.net) free:
 - triangle mesh processing with many features
 - based on the VCGlib
- OpenFlipper (www.openflipper.org) free:
 - polygon mesh modeling and processing
 - based on OpenMesh
- Graphite (alice.loria.fr) free:
 - polygon mesh modeling, processing and rendering
 - based on CGAL

References

Fundamentals of Computer Graphics, Fourth Edition 4th Edition by Steve Marschner, Peter Shirley Chapter 12

§2. Meshing: constructing meshes

Marching cubes

Meshing: Motivation

§2. Meshing: constructing meshes

- Wish to compute a manifold mesh of the level set
- Mesh: a subdivision of a continuous geometric space into discrete geometric and topological cells (often simplicial surface is constructed)
- Meshing: implicit surface → simplicial surface

Meshing: Sample the SDF

Meshing: Sample the SDF

Meshing: Tessellation

- Want to approximate an implicit surface with a mesh
- Can't explicitly compute all the roots
 - Sampling the level set is difficult (root finding)
- Solution: find approximate roots by trapping the implicit surface in a grid (lattice)

- 16 different configurations in 2D
- 4 equivalence classes (up to rotational and reflection symmetry + complement)

Meshing: Tessellation in 2D

§2. Meshing: constructing meshes

4 equivalence classes (up to rotational and reflection symmetry + complement)

§2. Meshing: constructing meshes

• Case 4 is ambiguous:

Always pick consistently to avoid problems with the resulting mesh

Slide Credit: Daniele Panozzo

Meshing: 3D Marching Cubes

- Marching Cubes (Lorensen and Cline 1987)
 - 1. Load 4 layers of the grid into memory
 - 2. Create a cube whose vertices lie on the two middle layers
 - 3. Classify the vertices of the cube according to the implicit function (inside, outside or on the surface)

Meshing: 3D Marching Cubes

§2. Meshing: constructing meshes

Unique cases (by rotation, reflection and complement)

Meshing: 3D Marching Cubes

§2. Meshing: constructing meshes

Implementation

Marching Cubes

§2. Meshing: constructing meshes

• Compute case index. We have 2^8 = 256 cases (0/1 for each of the eight vertices) – can store as 8 bit (1 byte) index.

Marching Cubes

§2. Meshing: constructing meshes

Unique cases (by rotation, reflection and complement)

§2. Meshing: constructing meshes

- Using the case index, retrieve the connectivity in the look-up table
- Example: the entry for index 33 in the look-up table indicates that the cut edges are e_1 ; e_4 ; e_5 ; e_6 ; e_9 and e_{10} ; the output triangles are $(e_1; e_9; e_4)$ and $(e_5; e_{10}; e_6)$.

Marching Cubes

§2. Meshing: constructing meshes

• Compute the position of the cut vertices by linear interpolation:

$$\mathbf{v}_s = t\mathbf{v}_a + (1 - t)\mathbf{v}_b$$

$$t = \frac{F(\mathbf{v}_b)}{F(\mathbf{v}_b) - F(\mathbf{v}_a)}$$

Move to the next cube

§2. Meshing: constructing meshes

Have to make consistent choices for neighboring cubes – otherwise get holes

§2. Meshing: constructing meshes

Resolving ambiguities

Ambiguity

No Ambiguity

§2. Meshing: constructing meshes

- Grid not adaptive
- Many polygons required to represent small features

Images from: "Dual Marching Cubes: Primal Contouring of Dual Grids" by Schaeffer et al.

§2. Meshing: constructing meshes

- Problems with short triangle edges
 - When the surface intersects the cube close to a corner, the resulting tiny triangle doesn't contribute much area to the mesh
 - When the intersection is close to an edge of the cube, we get skinny triangles (bad aspect ratio)
- Triangles with short edges waste resources but don't contribute to the surface mesh representation

Grid Snapping

- Solution: threshold the distances between the created vertices and the cube corners
- When the distance is smaller than d_{snap} we snap the vertex to the cube corner
- If more than one vertex of a triangle is snapped to the same point, we discard that triangle altogether

Grid Snapping

§2. Meshing: constructing meshes

With Grid-Snapping one can obtain significant reduction of space consumption

Parameter	0	0,1	0,2	0,3	0,4	0,46	0,495
Vertices	1446	1398	1254	1182	1074	830	830
Reduction	0	3,3	13,3	18,3	25,7	42,6	42,6

- (Kobbelt et al. 2001):
 - Evaluate the normals (use gradient of F)
 - When they significantly differ, create additional vertex

§3. Defining convolutions on meshes

3.1. MeshCNN: convolutions on edges

§3. Defining convolutions on meshes

References

Skolkovo Institute of Science and Technology

Botsch, M., Kobbelt, L., Pauly, M., Alliez,
 P., & Lévy, B. (2010). *Polygon mesh processing*. CRC press.

