nstituto de Informática - UFRGS

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

Redes de Computadores

Protocolos de enlace Estudos de caso: HDLC e PPP

Aula 09

Trabalho opcional (Individual)

- □ Substitui uma questão da prova (2 pontos) valendo até 3 pontos
- ☐ Implementação de um protocolo baseado em Go-Back N usando um quadro HDLC-like
- □ Data entrega: 01 de outubro de 2013 (23:59:59 horas)
- □ Especificação e mais detalhes no moodle

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

Redes de Computadores

High-level Data Link Control (HDLC)

- □ Padrão ISO para protocolo de enlace
- □ Suporte a comunicações *half* e *full-duplex* através de enlaces ponto a ponto ou multiponto
 - Hoje é praticamente usado apenas em enlaces ponto a ponto
- ☐ Transmissão síncrona orientado a bit
 - bit stuffing
- □ Define tipos de estações, de enlaces e modos de transferência de dados
 - Fazia mais sentido nos primórdios da comunicação de dados

Tipos de estações

- □ Primária
 - Entidade que tem autonomia para iniciar uma comunicação enviando quadros de comandos
- Secundária
 - Entidade sem autonomia para iniciar uma comunicação
 - Apenas responde a quadros de comando

Redes de Computadores 3 Redes de Computadores

Configurações de enlace e modos de transferência

- □ Normal Reponse Mode (NRM)
 - Ponto a ponto ou multiponto
 - Estações primária e secundária
 - Secundária só transmite com autorização da primária
- □ Asyncronous Response Mode (ARM)
 - · Ponto a ponto
 - Estações primária e secundária
 - Secundária pode transmitir sem autorização da primária
- □ Asynchronous Balanced Mode (ABM)
 - · Ponto a ponto
 - Estações combinadas
 - Modo normalmente empregado

Não balanceada: ponto a ponto (NRM, ARM)

Não balanceada: multiponto (NRM)

Balanceada: ponto a ponto (ABM)

Redes de Computadores

Estrutura do quadro

☐ Formato único de quadro para envio de dados e comandos (controle)

Bits	8	8 ou 16	8 ou 16	variável	16 ou 32	8
	flag	Endereço	Controle	Informação (dados)	FCS	flag

□ Descrição:

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

- Flag é o caractere 7E₁₆ (0111 1110) → delimitação de quadro
 - · Realiza bit stuffing

8 ou 16

Endereço

- Endereço: identifica uma estação secundária origem ou destino do quadro
 - Possui um endereço especial (broadcast)
- Frame Check Sequence (FCS): CRC para detecção de erros (16 ou 32)
- Controle: informações para o controle lógico do enlace
- Informação: presente apenas em quadros do tipo I (a seguir)

Redes de Computadores

variável

Informação (dados)

Tipos de quadro HDLC

- □ Informação (quadro I):
 - Dados, número de següência para controle ARQ e piggybacking
- □ Supervisão (quadro S):
 - Quadros de controle do mecanismo ARQ (RR, REJ, RNR e SREJ)
- Não numerado (quadro U)
 - Comandos adicionais para controle e gerenciamento do enlace

Identificados no campo de controle

Campo de controle

Bits 8

8 ou 16

Controle

N(S): número seqüência emissor (sender) N(R): número de següência destino (receiver) S: supervisão (RR n,RNR n, REJ n, SREJ n) M: códigos para comandos não numerados

16 ou 32

CRC

8

flag

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

- ☐ Um bit, dois significados guando ativo (=1)
 - Poll: quando o campo de endereço fornece o destino do quadro
 - Final: quando o campo de endereço fornece a origem do quadro
- □ Usado para uma estação fazer consultas (*poll*) e obter uma resposta de outra (*final*)

Redes de Computadores 9

Controle de erro

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

- □ Funcionamento default
 - Emprega apenas quadros de confirmação positiva (RR n ou RNR n)
 - Controle de erro é feito por time-out
 - Ao estourar um time-out envia um quadro RR com bit P=1 para questionar qual foi o último quadro recebido com sucesso.
 - Resposta é um RR com F=1 indicando o próximo quadro a ser recebido (n)
- Modo explícito (sem uso de P/F)
 - Emprega quadros de confirmação positiva (RR n ou RNR n) e de confirmação negativa (REJ n ou SREJ n)

Redes de Computadores 10

Operação do HDLC

- □ Quadros de informação(I), supervisão (S) e não numerados (U) entre duas estações
- □ Três fases
 - Inicialização
 - Envio de comando do tipo *set-mode*
 - Especifica um modo de transferência de dados (NRM, ABM, ARM)
 - Nro. de seqüência em 3 ou 7 bits (/ n, RR n, RNR n, SREJ n ou REJ n)
 - Recebe um quadro U tipo UA (unnumbered ACK) ou DM (Disconnect Mode)
 - Transferência de dados
 - · Ambos lados transferem quadros do tipo I
 - Quadros S também são empregados no controle de erro e de fluxo:
 - RR, RNR, REJ e SREJ
 - Encerramento da conexão
 - Qualquer lado pode iniciar o pedido (DISC)
 - Solicitação deve ser aceita por um comando do tipo UA

Exemplo de funcionamento

Redes de Computadores 11 Redes de Computadores 12

Família de protocolos HDLC

□ Conjunto de protocolos que possuem funcionamento similar ao HDLC

Redes de Computadores

Point-to-Point Protocol (PPP)

- □ Protocolo voltado a enlaces ponto-a-ponto
 - Comumente usado nos enlaces cliente-provedor
 - Não orientado a conexão e sem confirmação
- Empregado para
 - Enquadramento de dados
 - · Controlar configurações de enlace
 - · Controlar configurações de rede

IΡ

PPP

Nível físico

14

16

Redes de Computadores

Formato do quadro

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

01111110	11111111	1100000			crc16-32	01111110
flag	endereço	controle	protocolo	área de dados	FCS	flag

- □ Exemplo: encapsulado em quadro do HDLC
 - Marcas de início e fim baseado em flaq
 - Sem necessidade de identificar estações, pois é ponto-a-ponto
 - Controle corresponde a quadros U (sem número de sequência, sem controle de fluxo e sem controle de erro)
- Protocolo indica o que está sendo transportado
- □ Dados de usuário ou outras informações (a seguir...)

Pilha de protocolos PPP

- □ PPP é um protocolo de enlace, mas usa outros para:
 - Estabelecer o enlace: Link Control Protocol (LCP)
 - Autenticar os pares envolvidos: Autentication Protocol (AP)
 - Password Authentication Protocol (PAP)
 - Challenge Handshake Authentication Protocol (CHAP)
 - Extensible Authentication Protocol (EAP)
 - Transportar 3-PDUs: Network Control Protocol (NCP)
 - Depende do protocolo da camada de rede
 - ◆ Internetwork Protocol Control Protocol (IPCP)
- □ Protocolos são identificados no campo "protocolo" do guadro PPP

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

Redes de Computadores 15 Redes de Computadores

Diagrama de transição

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

Link Control Protocol (LCP)

- □ Responsável por estabelecer, manter, configurar e encerrar o enlace
 - Envolve uma negociação de opções entre os dois pares
 - Pares devem estar de acordo para o enlace ser estabelecido
- Quadro LCP

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

Redes de Computadores

19

01111110	11111111	1100000	0xC021		crc16-32	01111110
flag	endereço	controle	protocolo	área de dado	s FCS	flag
		código	id req/res	tamanho	área de d	ados

- Requisições de configuração, término, monitoração e depuração
- Opções negociadas: tamanho máximo do quadro, autenticação (s/n), uso de compressão, etc

18 Redes de Computadores

Protocolos de autenticação

- Uso opcional do PPP
- □ Três protocolos:

Redes de Computadores

Redes de Computadores

- Password Authentication Protocol (PAP)
- ◆ Challenge Handshake Authentication Protocol (CHAP)
- Extensible Authentication Protocol (EAP)

Password Authentication Protocol (PAP)

- Mecanismo simples baseado em dois passos:
 - Usuário envia username e password
 - Destino verifica username e password e aceita ou recusa o estabelecimento do enlace
- ☐ Três tipos de quadros encapsulados no PPP
 - · Authenticate request, authenticate ack e authenticate nack

01111110	11111111	1100000	0xC023		crc16-32	01111110		
flag	endereço	controle	protocolo	área de dados	FCS	flag		
código id req/resp tamanho área de dado						ados		
	Problema: <i>username</i> e <i>password</i> são enviados							
	em "texto claro" pela rede							

Challenge Handshake Authentication Protocol (CHAP)

- □ Mecanismo de 3 vias (*three way handshake*)
 - Maior segurança que o PAP password não é enviada na rede
- □ Três passos:
 - ◆ Sistema envia ao usuário um desafio (*challenge*) → conj. de bytes
 - Usuário calcula f(password, challenge) e envia o resultado+username
 - Sistema executa a mesma função e verifica se o recebido e igual ao calculado

01111110	11111111	1100000	0xC223		crc16-32	01111110
flag	endereço	controle	protocolo	área de dado	s FCS	flag

		código	id req/res	p tamanho	área de d	ados

Quatro tipo de quadros encapsulado em PPP: challenge, resposta, sucesso e falha

Redes de Computadores

Leituras complementares

- □ Stallings, W. <u>Data and Computer Communications</u> (6th edition), Prentice Hall 1999.
 - Capítulo 7, seções 7.3 e 7.4
- □ Tanenbaum, A. *Redes de Computadores* (4ª edição), Campus, 2003.
 - Capítulo 3, seção 3.6

Network Control Protocol (NCP)

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

- □ Protocolo de controle para encapsular dados provenientes da camada de rede em um quadro PPP
- □ PPP possui na verdade duas negociações:
 - · Camada de enlace: estabelecimento do enlace
 - Camada de rede: protocolos específicos (eg. IP, IPX, Appletalk etc)
 - Rede IP: IPCP (Internet Protocol Control Protocol)

- Negociações referentes a uma rede IP,como o endereço IP

Redes de Computadores 22

A Carissimi -9-sept -13

Instituto de Informática - UFRGS A. Carissimi -9-sept.-13

Redes de Computadores

23