Практическая работа № 1 ¹
Основные понятия статистического эксперимента
Валерий Сергеевич Верхоту
БСБО-03

Задание 1.

Средствами системы MathCAD реализовать подпрограмму CALC_PI, реализующую вычисление значения числа π в соответствии с описанной моделью. Входными параметрами подпрограммы должны являться координаты центра окружности - x0 и y0 и значение ее радиуса - r0, а также число экспериментов для генератора случайных чисел - ExpNmb. Выходным значением должно являться вычисленное значение числа π . Для генерации случайных значений на интервале от 0 до 1 использовать встроенную функцию MathCAD – rnd.

```
def calc_pi(x_0, y_0, r, exp_nmb):
    m = 0
    x_min = x_0 - r
    x_max = x_0 + r
    y_min = y_0 - r
    y_max = y_0 + r
    for i in range(exp_nmb):
        xp = random.uniform(x_min, x_max)
        yp = random.uniform(y_min, y_max)
        if (xp - x_0) ** 2 + (yp - y_0) ** 2 <= r ** 2:
        m += 1
    pi = 4 * m / exp_nmb
    return pi</pre>
```

Задание 2.

С помощью подпрограммы CALC_PI проводится расчет значения числа для заданной окружности и числа экспериментов $ExpNmb = 10^4$. Затем последовательно проводятся расчеты значения числа для числа экспериментов $ExpNmb = 10^5$, 10^6 , 10^7 , 10^8 и занести полученные результаты в вектор SERIA_1. Провести еще четыре серии расчетов для числа экспериментов $ExpNmb = 10^4$, 10^5 , 10^6 , 10^7 , 10^8 и занести результаты в вектора SERIA_2, SERIA 3, SERIA 4 и SERIA 5.

```
EXP NUMBS = [10 ** 4, 10 ** 5, 10 ** 6, 10 ** 7, 10 ** 8]
SER NAMES = ["SERIA 1", "SERIA 2", "SERIA 3", "SERIA 4",
«SERIA 5»]
def calculation():
    ser = pd.Series(dtype=float64, index=EXP NUMBS)
    for exp nmb in EXP NUMBS:
        pi = calc pi(0, 0, 1, exp nmb)
        ser.at[exp nmb] = pi
    # display(ser)
    return ser
def series of calculation():
    df = pd.DataFrame(index=EXP NUMBS)
    for ser name in SER NAMES:
        ser = calculation()
        df[ser name] = ser
    return df
def save result():
    df = series of calculation()
    display(df)
    df.to csv(RESULT PATH, mode="w+") # overwrite file mode
save result()
```

Задание 3.

Рассчитать погрешность вычислений значений числа для каждой серии экспериментов. Затем получить средний результат по 5-ти сериям для каждого из соответствующего числа экспериментов и рассчитать погрешность вычислений для усредненных значений.

```
def calculate std(path, ser names):
    df = pd.read csv(path)
    stds = pd.Series(dtype=float64)
    for seria name, seria data in df[ser names].iteritems():
        stds.at[seria name] = seria data.std()
    print("Погрешность вычислений значений числа для каждой
серии экспериментов")
    display(stds)
    means = pd.Series(dtype=float64)
    for seria name, seria data in df[ser names].iteritems():
        means.at[seria name] = seria data.mean()
    print("Средний результат для каждой серии:")
    display(means)
    print("Погрешность для усредненных значений:",
means.std())
calculate std(RESULT PATH, SER NAMES)
```

Таблица 1. Погрешность вычислений для каждого результата

	$N = 10^4$	$N = 10^5$	$N = 10^6$	$N = 10^7$	$N = 10^8$
SERIA_1	3.128000	3.139960	3.141256	3.142857	3.141825
SERIA_2	3.149200	3.140400	3.141260	3.141615	3.141498
SERIA_3	3.112800	3.144320	3.141328	3.141892	3.141624
SERIA_4	3.164800	3.141880	3.140844	3.141280	3.141678
SERIA_5	3.141200	3.141040	3.140708	3.141479	3.141687

Таблица 2. Средние значения для каждой серии

	SERIA_1	SERIA_2	SERIA_3	SERIA_4	SERIA_5
С реднее значение S _i	0.006116	0.003612	0.013242	0.010463	0.000381

Таблица 3. Погрешность для средних значений

	SERIA_1	SERIA_2	SERIA_3	SERIA_4	SERIA_5
Погрешность Eps_{S_i}	3.13877	3.14279	3.13639	3.14609	3.14122
$Eps_{S_i} = \left \frac{S_i + \pi}{\pi} \right $	9	5	3	7	3
$Lps_{S_i} - \left \frac{\pi}{\pi} \right $					

Погрешность для усредненных значений: 0.0037210517582362823

Задание 4.

Используя описанную методику расчета решить задачу нахождения значения определенного интеграла функции $f(x) = x^3 + 1$ на интервале от 0 до 2. Провести 3 серии расчетов для числа экспериментов $ExpNmb = 10^4, 10^5, 10^6, 10^7$. Определить погрешность вычислений для усредненных по сериям значений.


```
import matplotlib.pyplot as plt
    import numpy as np
    x = np.linspace(-1,3,12)
    fig = plt.figure()
    ax = fig.add subplot(1, 1, 1)
    ax.spines['left'].set position('zero')
    ax.spines['bottom'].set position('zero')
    ax.spines['right'].set color('none')
    ax.spines['top'].set color('none')
    ax.xaxis.set ticks position('bottom')
    ax.yaxis.set ticks position('left')
    # plot the function
   plt.plot(x, func(x), 'r')
    # show the plot
   plt.show()
task 4 draw function(FUNCTION)
X MIN = 0
X MAX = 2
Y MIN = 0
Y MAX = 9
def task 4 calc function(func, exp nmb):
    m = 0
    s par = abs((Y MAX - Y MIN) * (X MAX - X MIN))
    for i in range(exp nmb):
        xp = random.uniform(X MIN, X MAX)
        yp = random.uniform(Y MIN, Y MAX)
        if func(xp) > yp:
            m += 1
    s = s_par * m / exp_nmb
    return s
def task 4 calculation():
    ser = pd.Series(dtype=float64, index=TASK 4 EXP NUMBS)
```

```
for exp_nmb in TASK_4_EXP_NUMBS:
    s = task_4_calc_function(FUNCTION, exp_nmb)
    ser.at[exp_nmb] = s
    display(ser)
    return ser

def task_4_series_of_calculation():
    df = pd.DataFrame(index=TASK_4_EXP_NUMBS)
    for ser_name in TASK_4_SER_NAMES:
        ser = task_4_calculation()
        df[ser_name] = ser
    return df

def task_4_save_result():
    df = task_4_series_of_calculation()
    df.to_csv(TASK_4_RESULT_PATH, mode="w+")

task_4_save_result()
```

Таблица 1. Погрешность вычислений для каждого результата

	$N = 10^4$	$N = 10^5$	$N = 10^6$	$N = 10^7$
SERIA_1	6.080400	5.995620	5.991966	5.999263
SERIA_2	6.026400	6.006960	5.991228	5.999742
SERIA_3	6.046200	5.983020	6.016320	6.000268
SERIA_4	6.015600	5.949180	5.997402	5.998792

Таблица 2. Средние значения для каждой серии

	SERIA_1	SERIA_2	SERIA_3	SERIA_4
Среднее значение S _i	0.042496	0.014994	0.026861	0.028598

Таблица 3. Погрешность для средних значений

	SERIA_1	SERIA_2	SERIA_3	SERIA_4
Погрешность Eps_{S_i}	6.016812	6.006083	6.011452	5.990243
$F(X) = \int_{0}^{2} x^3 + 1$				
$Eps_{S_i} = \left \frac{S_i + F(x)}{F(x)} \right $				

Вывод

Существует много способов вычисления числа Пи. Самым простым и понятным является численный метод Монте-Карло, суть которого сводится к простейшему перебору точек на площади.