

计算机视觉

邬向前

计算学部

多模态智能及应用研究中心

电子邮箱: xqwu@hit.edu.cn

Lecture 7 – Optical Flow

Overview

- Segmentation in Video
- Optical flow

Video

- A video is a sequence of frames captured over time
- Now our image data is a function of space (x, y) and time (t)

- Background subtraction
 - A static camera is observing a scene
 - Goal: separate the static background from the moving foreground

- Background subtraction
 - Form an initial background estimate

Calculate background: Average a series of preceding images.

$$rac{1}{N}\sum_{i=1}^N V(x,y,t-i)$$

Background image at time t:

$$B(x,y,t) = rac{1}{N} \sum_{i=1}^N V(x,y,t-i)$$

- Background subtraction
 - Form an initial background estimate

$$B(x,y,t) = rac{1}{N} \sum_{i=1}^N V(x,y,t-i)$$

Subtract the background estimate from the frame

$$V(x,y,t) - B(x,y,t)$$

 Label as foreground each pixel where the magnitude of the difference >Th

$$|V(x,y,t) - B(x,y,t)| > \text{Th}$$

- Form an initial background estimate
- For each frame:
 - Update estimate using a moving average
 - Subtract the background estimate from the frame
 - Label as foreground each pixel where the magnitude of the difference is greater than some threshold
 - Use median filtering to "clean up" the results

- Pros:
 - Simple;
 - To some extent, overcomes the influence of environmental light;
- Cons:
 - Can not be used for moving Cameras;
 - Difficult to update the background image in real time

- Background subtraction
- Shot boundary detection
 - Commercial video is usually composed of shots or sequences showing the same objects or scene
 - Goal: segment video into shots for summarization and browsing (each shot can be represented by a single keyframe in a user interface)
 - Difference from background subtraction: the camera is not necessarily stationary

- Background subtraction
- Shot boundary detection

a sudden transition from one shot to another

$$Z_{n} = \Psi (f_{n})$$

$$d(f_{n}, f_{n+1}) = \left(\sum_{k=1}^{n} |Z_{n}(k) - Z_{n+1}(k)|^{p}\right)^{1/p}$$

fn: video frame, Ψ: feature extraction function

Zn: extracted features of video frame fn

- Background subtraction
- Shot boundary detection
 - For each frame
 - Compute the distance between the current frame and the previous one
 - » Mean absolute differences (MAD)

Similarity between two consecutive frames pixels

from (i, j) search

m * n

M * N

T(x,y)

Measure of similarity:

$$D(i,j) = \frac{1}{M \times N} \sum_{s=1}^{M} \sum_{t=1}^{N} |S(i+s-1,j+t-1) - T(s,t)|$$

$$1 \le i \le m - M + 1 \qquad 1 \le j \le n - N + 1$$

- Background subtraction
- Shot boundary detection
 - For each frame
 - Compute the distance between the current frame and the previous one
 - » Histogram differences (HD)

Similarity between the histograms of two consecutive frames

$$d(H_1, H_2) = \frac{\sum_{I} (H_1(I) - \overline{H}_1)(H_2(I) - \overline{H}_2)}{\sqrt{\sum_{I} (H_1(I) - \overline{H}_1)^2 \sum_{I} (H_2(I) - \overline{H}_2)^2}}$$

$$\overline{H}_k = \frac{1}{N} \sum_{I} H_k(J)$$

Correlation:
$$r(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var[X]Var[Y]}}$$
 ix in

 $d(H_1, H_2) \rightarrow 1$, strong Correlation.

- Background subtraction
- Shot boundary detection
 - For each frame
 - Compute the distance between the current frame and the previous one
 - » Mean absolute differences (MAD)
 - » Histogram differences (HD)
 - If the distance is greater than some threshold, classify the frame as a shot boundary

- Background subtraction
- Shot boundary detection
- Motion Segmentation

Overview

- Segmentation in Video
- Optical flow
 - > Lucas-kanade
 - > Horn-schunck
 - > Optical flow pyramid

Motion estimation: Optical flow

Will start by estimating motion of each pixel separately Then will consider motion of entire image

Why estimate motion?

Lots of uses

- Track object behavior
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction
- Special effects

Problem definition: optical flow

How to estimate pixel motion from image H to image I?

- Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

- color constancy: a point in H looks the same in I
 - For grayscale images, this is brightness constancy
- small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

Let's look at these constraints more closely

- brightness constancy: Q: what's the equation?
 H(x,y)=I(x+u, y+v)
- small motion: (u and v are less than 1 pixel)
 - suppose we take the Taylor series expansion of I:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

$$\approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

Optical flow equation

Combining these two equations

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \, \frac{\partial y}{\partial t} \right]$$

Lucas-kanade

Optical flow equation

$$0 = I_t + \nabla I \cdot [u \ v]$$

Q: how many unknowns and equations per pixel?

2 unknowns, one equation

Intuitively, what does this constraint mean?

- The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm http://www.liv.ac.uk/~marcob/Trieste/barberpole.html

Solving the aperture problem

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25 equations per pixel!

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

$$A \qquad d \qquad b$$

$$25 \times 2 \qquad 2 \times 1 \qquad 25 \times 1$$

RGB version

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25*3 equations per pixel!

$$0 = I_{t}(\mathbf{p_{i}})[0, 1, 2] + \nabla I(\mathbf{p_{i}})[0, 1, 2] \cdot [u \ v]$$

$$\begin{bmatrix} I_{x}(\mathbf{p_{1}})[0] & I_{y}(\mathbf{p_{1}})[0] \\ I_{x}(\mathbf{p_{1}})[1] & I_{y}(\mathbf{p_{1}})[1] \\ I_{x}(\mathbf{p_{1}})[2] & I_{y}(\mathbf{p_{1}})[2] \\ \vdots & \vdots & \vdots \\ I_{x}(\mathbf{p_{25}})[0] & I_{y}(\mathbf{p_{25}})[0] \\ I_{x}(\mathbf{p_{25}})[1] & I_{y}(\mathbf{p_{25}})[1] \\ I_{x}(\mathbf{p_{25}})[2] & I_{y}(\mathbf{p_{25}})[2] \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t}(\mathbf{p_{1}})[0] \\ I_{t}(\mathbf{p_{1}})[1] \\ I_{t}(\mathbf{p_{1}})[2] \\ \vdots \\ I_{t}(\mathbf{p_{25}})[0] \\ I_{t}(\mathbf{p_{25}})[1] \\ I_{t}(\mathbf{p_{25}})[2] \end{bmatrix}$$

$$A \qquad d \qquad b \\ 75 \times 2 \qquad 2 \times 1 \qquad 75 \times 1$$

Note that RGB is not enough to disambiguate because R, G & B are correlated

Lukas-Kanade flow

Prob: we have more equations than unknowns

Solution: solve least squares problem

minimum least squares solution given by solution (in d) of:

$$(A^T A) \underset{2 \times 2}{d} = A^T b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad \text{To solve d=[u,v]}$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lukas & Kanade (1981)

3 different moving stripes.

Observed from the hole, is same.

Thus direction of optical flow: multiple direction

unable to estimate direction of optical flow

Conditions for solvability

Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A$$

$$A^T b$$

When is This Solvable? → No aperture problem

- A^TA should be invertible
- A^TA should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of A^TA should not be too small
- A^TA should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

A^TA is solvable when there is no aperture problem

Local Patch Analysis

Eigenvectors of A^TA

$$A^{T}A = \begin{bmatrix} \sum_{I_{x}I_{x}}^{I_{x}I_{x}} & \sum_{I_{y}I_{y}}^{I_{x}I_{y}} \\ \sum_{I_{x}I_{y}}^{I_{x}I_{y}} & \sum_{I_{y}I_{y}}^{I_{y}I_{y}} \end{bmatrix} = \sum_{I_{x}I_{y}}^{I_{x}I_{y}} [I_{x} I_{y}] = \sum_{I_{x}I_{y}I_{y}}^{I_{x}I_{y}I_{y}} [I_{x} I_{y}] = \sum_{I_{x}I_{y}I_{y}I_{y}}^{I_{x}I_{y}I_{y}I_{y}}$$

- Recall the Harris corner detector: $M = A^T A$ is the second moment matrix
- The eigenvectors and eigenvalues of M relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
 - The other eigenvector is orthogonal to it

Interpreting the eigenvalues

Classification of image points using eigenvalues of the second moment matrix:

Edge

- large λ_1 , small λ_2

Low texture region

- small λ_1 , small λ_2

High textured region/Corner

- large λ_1 , large λ_2

Optical flow equation

Combining these two equations

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \, \frac{\partial y}{\partial t} \right]$$

Horn-Schunck algorithm: global method
global constraint of smoothness
solve the aperture problem

LK constraint:
$$\min_{u,v} \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2$$

Smooth constraint:

Global energy function:

$$E = \iint \left[(I_x u + I_y v + I_t)^2 + lpha^2 (\|
abla u\|^2 + \|
abla v\|^2)
ight] \mathrm{d}x \mathrm{d}y$$

Discrete global energy function:

$$\begin{split} E &= \sum_{i,j} E_s(i,j) + \lambda \sum_{i,j} E_d(i,j) \\ E_s(i,j) &= \frac{1}{4} \left[(u_{i,j} - u_{i+1,j})^2 + (u_{i,j} - u_{i,j+1})^2 + (v_{i,j} - v_{i+1,j})^2 + (v_{i,j} - v_{i,j+1})^2 \right] \\ E_d(i,j) &= \|I_x u_{ij} + I_y v_{ij} + I_t\|^2 \end{split}$$

 I_x , I_y , I_t : derivatives of image intensity values along x, y, t

 $ec{V} = [u(x,y),v(x,y)]^ op$: optical flow vector (to be solved)

Minimize discrete global energy function:

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

$$(u_{ij}^2 - 2u_{ij} u_{i+1,j} + u_{i+1,j}^2) \qquad (u_{ij}^2 - 2u_{ij} u_{i,j+1} + u_{i,j+1}^2)$$

$$(\text{variable will appear four times in sum})$$

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$
$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

short hand for local average
$$ar{u}_{ij}=rac{1}{4}igg\{u_{i+1,j}+u_{i-1,j}+u_{i,j+1}+u_{i,j-1}igg\}$$
 dispersible glocal needs

Minimize discrete global energy function:

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

$$\frac{\partial E}{\partial u_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

 $\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$

(set derivatives to zero and solve for unknowns u and v)

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$

$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2) v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

this is a linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

how do you solve this?

Minimize discrete global energy function:

Matrix form:

$$\begin{bmatrix} 1 + \lambda I_{x}^{2} & \lambda I_{x} I_{y} \\ \lambda I_{x} I_{y} & 1 + \lambda I_{y}^{2} \end{bmatrix} \begin{bmatrix} u_{kl} \\ v_{kl} \end{bmatrix} = \begin{bmatrix} \bar{u}_{kl} - \lambda I_{x} I_{t} \\ \bar{v}_{kl} - \lambda I_{y} I_{t} \end{bmatrix}$$

$$\downarrow$$

$$\{ 1 + \lambda \left(I_{x}^{2} + I_{y}^{2} \right) \} u_{kl} = \left(1 + \lambda I_{y}^{2} \right) \bar{u}_{kl} - \lambda I_{x} I_{y} \bar{v}_{kl} - \lambda I_{x} I_{t}$$

$$\{ 1 + \lambda \left(I_{x}^{2} + I_{y}^{2} \right) \} v_{kl} = \left(1 + \lambda I_{x}^{2} \right) \bar{v}_{kl} - \lambda I_{x} I_{y} \bar{u}_{kl} - \lambda I_{y} I_{t}$$

$$\downarrow$$

$$u_{kl} = \bar{u}_{kl} - \frac{I_{x} \bar{u}_{kl} + I_{y} \bar{v}_{kl} + I_{t}}{\lambda^{-1} + I_{x}^{2} + I_{y}^{2}} I_{x}, \qquad v_{kl} = \bar{v}_{kl} - \frac{I_{x} \bar{u}_{kl} + I_{y} \bar{v}_{kl} + I_{t}}{\lambda^{-1} + I_{x}^{2} + I_{y}^{2}} I_{y}$$

Algorithm flow:

- Initialize the optical flow, u = 0, v = 0
- Iteration:
 - Calculate the image gradient I_x , I_y
 - Calculate the difference between the two frames I_t
 - Solve the below two equations iteratively until convergence.

$$egin{aligned} u_{kl} &= ar{u}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_x, & v_{kl} &= ar{v}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_y \ & ar{u}_{ij} &= rac{1}{4} igg\{ u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} igg\}_{lim} \end{aligned}$$

Both the LK and Horn-schunck algorithms have the assumption of small motion.

However, this assumption cannot be guaranteed under actual scenarios.

Coarse-to-fine optical flow estimation

Optical flow pyramid algorithm to improve the drawbacks associated with the small motion assumption.

Coarse-to-fine optical flow estimation

Generate layer image:

- Image1, image2 are scaled by a certain ratio
- Bottom layer is the original size image
- The algorithm calculates the optical flow from the top layer
- Result of the previous layer as next layer input

Therefore this process is also called coarse-to-fine.

Generate layer image:

$$\begin{split} I^L(x,y) &= \frac{1}{4}I^{L-1}(2x,2y) + \\ &= \frac{1}{8}\left(I^{L-1}(2x-1,2y) + I^{L-1}(2x+1,2y) + I^{L-1}(2x,2y-1) + I^{L-1}(2x,2y+1)\right) + \\ &= \frac{1}{16}\left(I^{L-1}(2x-1,2y-1) + I^{L-1}(2x+1,2y+1) + I^{L-1}(2x-1,2y+1) + I^{L-1}(2x+1,2y+1)\right). \end{split}$$

 I_0 : Layer 0 of image I, the original image with the highest resolution

 I^{L-1} : L define number of layers. I^{L-1} denotes the image of layer L-1

$$\mathbf{g}^{L-1} = 2\left(\mathbf{g}^{\mathbf{L}} + \mathbf{d}^{L}\right).$$

 I^{L-1} : g^{L-1} denotes the initial optical flow of layer L-1. d^L denotes the estimated optical flow of the L layer.

Generate layer image:

greater resolution

greater pixel displacement

more layers needed

Initial optical flow layer, as the initial input for the next layer.

Using LK or HS iterative optical flow for each layer.

Techniques for estimate motion

Feature-based methods (e.g. SIFT+Ransac+regression)

- Extract visual features (corners, textured areas) and track them over multiple frames
- Sparse motion fields, but possibly robust tracking
- Suitable especially when image motion is large (10-s of pixels)

Direct-methods (e.g. optical flow)

- Directly recover image motion from spatio-temporal image brightness variations
- Global motion parameters directly recovered without an intermediate feature motion calculation
- Dense motion fields, but more sensitive to appearance variations
- Suitable for video and when image motion is small (< 10 pixels)