Quiz-3 CS618

Duration: 45 Minutes Max Marks: 50

- Write your name and roll number on the question paper and the answer book.
- No explanations will be provided. In case of a doubt, make suitable assumptions and justify.
- There are 2 questions on 2 pages.
- 1. (15 Marks) Perform Flow insensitive Subset-based and Flow insensitive Equality-based points-to analysis for each of the programs. Show only the *final* points-to information as points-to graphs.
 - (a) if(...)
 p = &x;
 else
 p = &y;

 x = &a;
 y = &b;
 *p = &c;
 *y = &a;
 - (b) if(...)
 y = &b;
 else
 *y = &a;

 p = &x;
 p = &y;
 x = &a;
 *p = &c;

2. (35 Marks) In this problem, you have to perform the steps given below for *Inter-procedural Available Expressions* analysis for the expression a * b for the following program. Assume m() is the main function.

```
m() {
           u() {
                                              v() {
                         a * b
    call v()
                                                  if(...) then {
                         if(...) then
    call u()
                                                       b = 6
                                                       a * b
}
                             call v()
                                                  }
                         else
                                              }
                              call u()
                     }
```

Show the following steps to arrive at the answer:

- (a) Draw the inter-procedural flow graph (any one of the two representations discussed in class). Clearly label the nodes, and distinguish the E^0 (inter-procedural) and E^1 (inter-procedural) edges.
- (b) For each procedure p, show the constraints for $\phi(r_p, n_p)$ for each node n_p in the CFG of the procedure. Recall that r_p is the entry node for procedure p. Assume the existence of flow functions f_0, f_1, id etc for the underlying data flow framework.
- (c) Give the fixed-point solution for $\phi(r_p, n_p)$.
- (d) List the program points where the expression a * b is available for the program.

[Marks Distribution: 5+15+10+5]