

The limits of OLS, prediction as evaluation, and cross validation Advanced Quantitative Methods 2019

David Randahl

Department of Peace & Conflict Research Uppsala University

April 2, 2019 International Studies Association Annual Convention 2019

Null-Hypothesis Significance Testing (again)

▶ Null-Hypothesis Testing helps us to statistically assess relationships between variables

Null-Hypothesis Significance Testing (again)

- ▶ Null-Hypothesis Testing helps us to statistically assess relationships between variables
- lacktriangle Gives a measure of how likely it is that the results we observe are due to random chance ightarrow

Null-Hypothesis Significance Testing (again)

- ▶ Null-Hypothesis Testing helps us to statistically assess relationships between variables
- lacktriangle Gives a measure of how likely it is that the results we observe are due to random chance ightarrow
- ▶ Allows us to draw inference about the population from a sample with some certainty

► Regression analysis depends on a large number of assumptions (more or less plausible)

- ► Regression analysis depends on a large number of assumptions (more or less plausible)
- p-values are essentially arbitrary

- ► Regression analysis depends on a large number of assumptions (more or less plausible)
- p-values are essentially arbitrary
- ▶ Testing many relationships will inevitably result in significant results

- ► Regression analysis depends on a large number of assumptions (more or less plausible)
- p-values are essentially arbitrary
- ► Testing many relationships will inevitably result in significant results
- ▶ NHST in itself does not tell us anything about the substantive effects of the relationships

- ► Regression analysis depends on a large number of assumptions (more or less plausible)
- p-values are essentially arbitrary
- ► Testing many relationships will inevitably result in significant results
- ▶ NHST in itself does not tell us anything about the substantive effects of the relationships
- ▶ Relationships may be seen due to overfitting or influential observations

P-hacking

▶ Practice of tweaking models and variables to find significance

P-hacking

- ▶ Practice of tweaking models and variables to find significance
- ▶ Difficult to avoid

P-hacking

- ▶ Practice of tweaking models and variables to find significance
- Difficult to avoid
- ► Often associated with overfitting

Enter: Predictive Methods

► Explanatory modeling uses theory to explain causation

- Explanatory modeling uses theory to explain causation
- ▶ Predictive modeling may be atheoretical or use theory to identify good predictors

- ► Explanatory modeling uses theory to explain causation
- Predictive modeling may be atheoretical or use theory to identify good predictors
- ► Explanatory modeling require careful attention to assumptions

- Explanatory modeling uses theory to explain causation
- Predictive modeling may be atheoretical or use theory to identify good predictors
- Explanatory modeling require careful attention to assumptions
- ▶ Predictive modeling cares less about assumptions

- Explanatory modeling uses theory to explain causation
- Predictive modeling may be atheoretical or use theory to identify good predictors
- ► Explanatory modeling require careful attention to assumptions
- ▶ Predictive modeling cares less about assumptions
- ► Explanatory modeling is retrospective

- Explanatory modeling uses theory to explain causation
- Predictive modeling may be atheoretical or use theory to identify good predictors
- ► Explanatory modeling require careful attention to assumptions
- ▶ Predictive modeling cares less about assumptions
- ► Explanatory modeling is retrospective
- ▶ Predictive modeling is prospective

► Explanatory modeling is specifically interested in how certain variables correlate

- ► Explanatory modeling is specifically interested in how certain variables correlate
- ► Predictive modeling is specifically interested in maximizing some predictive evaluation criteria

- ► Explanatory modeling is specifically interested in how certain variables correlate
- ► Predictive modeling is specifically interested in maximizing some predictive evaluation criteria
 - ► Mean Absolute Predictive Error (MAPE)

- Explanatory modeling is specifically interested in how certain variables correlate
- ► Predictive modeling is specifically interested in maximizing some predictive evaluation criteria
 - ► Mean Absolute Predictive Error (MAPE)
 - ► Mean Square Error (MSE) or Root Mean Square Error (RMSE)

- Explanatory modeling is specifically interested in how certain variables correlate
- ► Predictive modeling is specifically interested in maximizing some predictive evaluation criteria
 - ► Mean Absolute Predictive Error (MAPE)
 - ▶ Mean Square Error (MSE) or Root Mean Square Error (RMSE)
 - Classification Error

- Explanatory modeling is specifically interested in how certain variables correlate
- Predictive modeling is specifically interested in maximizing some predictive evaluation criteria
 - ► Mean Absolute Predictive Error (MAPE)
 - Mean Square Error (MSE) or Root Mean Square Error (RMSE)
 - Classification Error
 - ► Area Under Precision-Recall (AUPR) and Reciever Operator Characteristic (AUROC) Curves

- Explanatory modeling is specifically interested in how certain variables correlate
- Predictive modeling is specifically interested in maximizing some predictive evaluation criteria
 - ► Mean Absolute Predictive Error (MAPE)
 - Mean Square Error (MSE) or Root Mean Square Error (RMSE)
 - ► Classification Error
 - ► Area Under Precision-Recall (AUPR) and Reciever Operator Characteristic (AUROC) Curves
 - etc etc

Is predictive modeling not sensitive to overfitting?

▶ Predictive modeling is (generally) VERY sensitive to overfitting in the data it is estimated on

- ▶ Predictive modeling is (generally) VERY sensitive to overfitting in the data it is estimated on
- ► Solution: Divide the data into

- ▶ Predictive modeling is (generally) VERY sensitive to overfitting in the data it is estimated on
- Solution: Divide the data into
 - ▶ 'Training data', which the model is estimated on

- ▶ Predictive modeling is (generally) VERY sensitive to overfitting in the data it is estimated on
- Solution: Divide the data into
 - ▶ 'Training data', which the model is estimated on
 - ► 'Test data', which the model is tested on 'out-of-sample'

- ▶ Predictive modeling is (generally) VERY sensitive to overfitting in the data it is estimated on
- Solution: Divide the data into
 - ▶ 'Training data', which the model is estimated on
 - ► 'Test data', which the model is tested on 'out-of-sample'
- ► The best model is the model which has the highest score on the selected prediction metric in the TEST data

- ▶ Predictive modeling is (generally) VERY sensitive to overfitting in the data it is estimated on
- Solution: Divide the data into
 - ▶ 'Training data', which the model is estimated on
 - ► 'Test data', which the model is tested on 'out-of-sample'
- ► The best model is the model which has the highest score on the selected prediction metric in the TEST data
- ▶ Removes the problem of overfitting as long as the division of the data is done properly

- ▶ Predictive modeling is (generally) VERY sensitive to overfitting in the data it is estimated on
- Solution: Divide the data into
 - ▶ 'Training data', which the model is estimated on
 - ► 'Test data', which the model is tested on 'out-of-sample'
- ► The best model is the model which has the highest score on the selected prediction metric in the TEST data
- ▶ Removes the problem of overfitting as long as the division of the data is done properly
- ► The best 'test' data is data completely set aside by the researcher

► Setting aside data is 'expensive'

David Randahl Cross-Validation 19/41

- ► Setting aside data is 'expensive'
- ► Manually choosing a cutoff-point is arbitrary

David Randahl Cross-Validation 19/41

- ► Setting aside data is 'expensive'
- Manually choosing a cutoff-point is arbitrary
- ▶ If all data is available to the researcher, unethical choices for cutoffs are possible

David Randahl Cross-Validation 19/41

- Setting aside data is 'expensive'
- ► Manually choosing a cutoff-point is arbitrary
- ▶ If all data is available to the researcher, unethical choices for cutoffs are possible
- Solution: Cross-Validation

► Cross Validation allows for 'out-of-sample' prediction without setting aside 'test' data

- ► Cross Validation allows for 'out-of-sample' prediction without setting aside 'test' data
 - 1. Scramble the data to have a random order

- ► Cross Validation allows for 'out-of-sample' prediction without setting aside 'test' data
 - 1. Scramble the data to have a random order
 - 2. Divide the data into k-'folds'

- ► Cross Validation allows for 'out-of-sample' prediction without setting aside 'test' data
 - 1. Scramble the data to have a random order
 - 2. Divide the data into k-'folds'
 - 3. Set aside the first 'fold' as test data

David Randahl Cross-Validation 20/41

- ► Cross Validation allows for 'out-of-sample' prediction without setting aside 'test' data
 - 1. Scramble the data to have a random order
 - 2. Divide the data into k-'folds'
 - 3. Set aside the first 'fold' as test data
 - 4. Estimate the prediction model on the remaining k-1 folds

- ► Cross Validation allows for 'out-of-sample' prediction without setting aside 'test' data
 - 1. Scramble the data to have a random order
 - 2. Divide the data into k-'folds'
 - 3. Set aside the first 'fold' as test data
 - 4. Estimate the prediction model on the remaining k-1 folds
 - 5. Make predictions, out of sample, from the model for the fold held as 'test' data

David Randahl Cross-Validation 20/41

- ► Cross Validation allows for 'out-of-sample' prediction without setting aside 'test' data
 - 1. Scramble the data to have a random order
 - 2. Divide the data into k-'folds'
 - 3. Set aside the first 'fold' as test data
 - 4. Estimate the prediction model on the remaining k-1 folds
 - 5. Make predictions, out of sample, from the model for the fold held as 'test' data
 - 6. Repeat 3-5 for all remaining folds

- ► Cross Validation allows for 'out-of-sample' prediction without setting aside 'test' data
 - 1. Scramble the data to have a random order
 - 2. Divide the data into k-'folds'
 - 3. Set aside the first 'fold' as test data
 - 4. Estimate the prediction model on the remaining k-1 folds
 - 5. Make predictions, out of sample, from the model for the fold held as 'test' data
 - 6. Repeat 3-5 for all remaining folds
 - 7. Calculate the evaluation metrics for the full data, where each observation has received one out of sample prediction

David Randahl Cross-Validation 20/41

- Cross Validation allows for 'out-of-sample' prediction without setting aside 'test' data
 - 1. Scramble the data to have a random order
 - 2. Divide the data into k-'folds'
 - 3. Set aside the first 'fold' as test data
 - 4. Estimate the prediction model on the remaining k-1 folds
 - 5. Make predictions, out of sample, from the model for the fold held as 'test' data
 - 6. Repeat 3-5 for all remaining folds
 - 7. Calculate the evaluation metrics for the full data, where each observation has received one out of sample prediction
 - 8. Repeat 1-7 an appropriate number of times

- Cross Validation allows for 'out-of-sample' prediction without setting aside 'test' data
 - 1. Scramble the data to have a random order
 - 2. Divide the data into k-'folds'
 - 3. Set aside the first 'fold' as test data
 - 4. Estimate the prediction model on the remaining k-1 folds
 - 5. Make predictions, out of sample, from the model for the fold held as 'test' data
 - 6. Repeat 3-5 for all remaining folds
 - 7. Calculate the evaluation metrics for the full data, where each observation has received one out of sample prediction
 - 8. Repeat 1-7 an appropriate number of times
 - 9. Calculate the mean (or some other quantity of interest) for the evaluation criteria across all simulations

David Randahl Cross-Validation 20/41

David Randahl Cross-Validation 21/41

David Randahl Cross-Validation 22/41

David Randahl Cross-Validation 23/41

David Randahl Cross-Validation 24/41

David Randahl Cross-Validation 25/41

David Randahl Cross-Validation 26/41

David Randahl Cross-Validation 27/41

David Randahl Cross-Validation 28/41

David Randahl Cross-Validation 29/41

David Randahl Cross-Validation 30/41

David Randahl Cross-Validation 31/41

► Correct fit CV MAPE≈ 1.5

David Randahl Cross-Validation 32/41

- ► Correct fit CV MAPE≈ 1.5
- ► Correct fit CV RMSE≈ 1.8

David Randahl Cross-Validation 32/41

- ► Correct fit CV MAPE≈ 1.5
- ► Correct fit CV RMSE≈ 1.8
- ► Overfit CV MAPE≈ 12.1

Cross-Validation in practice

- ► Correct fit CV MAPE≈ 1.5
- ► Correct fit CV RMSE≈ 1.8
- ► Overfit CV MAPE≈ 12.1
- ► Overfit CV RMSE≈ 16.6

David Randahl Cross-Validation 32/41

Cross-Validation in practice

- ▶ Correct fit CV MAPE without extremes ≈ 1.4
- Correct fit CV RMSE without extremes ≈ 1.7
- ► Overfit CV MAPE without extremes ≈ 4.2
- ▶ Overfit CV RMSE without extremes ≈ 4.4

David Randahl Cross-Validation 33/4

► Allows us to use all available data

David Randahl Cross-Validation 34/41

- ► Allows us to use all available data
- ► Easily integrated with existing explanatory models

David Randahl Cross-Validation 34/41

- Allows us to use all available data
- Easily integrated with existing explanatory models
- ▶ Allows for more nuanced analysis of variables than NHST

Cross-Validation 34/41

- Allows us to use all available data
- Easily integrated with existing explanatory models
- ▶ Allows for more nuanced analysis of variables than NHST
- ► Can easily be combined with NHST studies

Cross-Validation 34/41

▶ Uses predictive methodology to evaluate Fearon & Laitin 2003 and Collier & Hoeffler 2004

- ▶ Uses predictive methodology to evaluate Fearon & Laitin 2003 and Collier & Hoeffler 2004
- ► Shows the dangers of not thinking about prediction

Threshold	Fearon & Laitin model	
	Correctly predicted	False positives
0.5	0/107	0
0.3	1/107	3
0.1	15/107	66

David Randahl Application: Ward et al 2010 38/41

Fearon & Laitin model: In-sample

Fearon & Laitin model: Out-of-Sample

► NHST research is not perfect

David Randahl Conclusion 41/41

- ► NHST research is not perfect
- ► Statistical significance is not always a useful tool

- ► NHST research is not perfect
- Statistical significance is not always a useful tool
- Prediction methods are an alternative to NHST

- ► NHST research is not perfect
- Statistical significance is not always a useful tool
- Prediction methods are an alternative to NHST
- ► Prediction has its own challenges

- ► NHST research is not perfect
- Statistical significance is not always a useful tool
- Prediction methods are an alternative to NHST
- ► Prediction has its own challenges
- ► Theory can be evaluated using a combination of prediction methods and NHST methods

David Randahl Conclusion 41/41

- ► NHST research is not perfect
- Statistical significance is not always a useful tool
- Prediction methods are an alternative to NHST
- Prediction has its own challenges
- ► Theory can be evaluated using a combination of prediction methods and NHST methods
- (k-fold) Cross Validation is a useful tool for implementing out of sample forecasts in a study