Information Processing Technology of Internet of Things

Chapter 2
Data Mining

Wu Lju

Beijing Key Lab of Intelligent Telecomm. Software and Multimedia Beijing University of Posts and Telecommunications

2.1 Frequent Pattern Mining

Outline

Basic Concepts

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern EvaluationMethods

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression
 - Broad applications

Basic Concepts: Frequent Patterns

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- itemset: A set of one or more items
- **k-itemset** $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
 - (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* (minimum support) threshold

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Find all the rules $X \rightarrow Y$ with minimum support and confidence

• support, s, probability that a transaction contains $X \cup Y$:

$$support(X \rightarrow Y) = P(X \cup Y)$$

confidence, c, conditional probability that a transaction having X also contains Y: confidence($X \rightarrow Y$)=P(Y| X)

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3,

{Beer, Diaper}:3

Association rules: (many more!)

- Beer \rightarrow Diaper (60%, 100%)
- Diaper → Beer (60%, 75%)

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{1} + \binom{100}{2} + ... + \binom{100}{100} = 2^{100} 1 = 1.27*10^{30}$ sub-patterns!
- Solution: *Mine closed patterns and max-patterns instead*
- An itemset X is closed if X is *frequent* and there exists *no* super-pattern Y ⊃ X, with the same support as X
- An itemset X is a max-pattern if X is *frequent* and there exists no frequent super-pattern Y ⊃ X
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Closed Patterns and Max-Patterns

- Exercise: Suppose a DB contains only two transactions
 - $\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle$
 - Let $min_sup = 1$
- What is the set of closed itemset?
 - {a₁, ..., a₁₀₀}: 1 (support count)
 - $\{a_1, ..., a_{50}\}: 2$
- What is the set of max-pattern?
 - $\{a_1, ..., a_{100}\}$: 1
- What is the set of all patterns?
 - $\{a_1\}: 2, ..., \{a_1, a_2\}: 2, ..., \{a_1, a_{51}\}: 1, ..., \{a_1, a_2, ..., a_{100}\}: 1$

Outline

- Basic Concepts
- Frequent Itemset Mining Methods

Which Patterns Are Interesting?—Pattern EvaluationMethods

Scalable Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test Approach

- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Closed Frequent Patterns and Max patterns

The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori
 - Freq. pattern growth (FPgrowth)
 - Vertical data format approach

Apriori: A Candidate Generation & Test Approach

- Apriori property: All nonempty subsets of a frequent itemset must also be frequent.
- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - $L_3 = \{abc, abd, acd, ace, bcd\}$
 - Self-joining: $L_3 \bowtie L_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L_3
 - $C_4 = \{abcd\}$

- In the first iteration of the algorithm, each item is a member of the set of candidate 1-itemsets, C₁. The algorithm simply scans all of the transactions to count the number of occurrences of each item.
- **2.** Suppose that the minimum support count required is 2, that is, $min_sup = 2$. (Here, we are referring to *absolute* support because we are using a support count. The corresponding relative support is 2/9 = 22%.) The set of frequent 1-itemsets, L_1 , can then be determined. It consists of the candidate 1-itemsets satisfying minimum support. In our example, all of the candidates in C_1 satisfy minimum support.

Transactional Data for an *AllElectronics* Branch

T900

I1, I2, I3

TID	List of item_I	Ds					
T100	I1, I2, I5	_	C			7	1
T200	I2, I4		c_1		1 Commons condidate	L_1	
T300	I2, I3	Scan D for	Itemset	Sup. count	Compare candidate		Sup. count
T400	I1, I2, I4	count of each	{I1}	6	support count with minimum support	{I1}	6
T500	I1, I3	candidate	{I2} {I3}	6	count	{I2} {I3}	6
T600	I2, I3		{I4}	2		{I4}	2
T700	I1, I3		{I5}	2		{ I 5}	2
T800	I1, I2, I3, I5						

Figure 6.2

- **3.** To discover the set of frequent 2-itemsets, L_2 , the algorithm uses the join $L_1 \bowtie L_1$ to generate a candidate set of 2-itemsets, C_2 .⁷ C_2 consists of $\binom{|L_1|}{2}$ 2-itemsets. Note that no candidates are removed from C_2 during the prune step because each subset of the candidates is also frequent.
- **4.** Next, the transactions in *D* are scanned and the support count of each candidate itemset in *C*₂ is accumulated, as shown in the middle table of the second row in Figure 6.2.
- **5.** The set of frequent 2-itemsets, L_2 , is then determined, consisting of those candidate 2-itemsets in C_2 having minimum support.

Scan D for count of each candidate

c_1	
Itemset	Sup. count
{I1}	6
{I2}	7
{I3}	6
{I4}	2
{I5}	2

Compare candidate support count with minimum support count

L_1	
Itemset	Sup. count
{I1}	6
{I2}	7
{I3}	6
{I4}	2
{I5}	2

Generate C_2 candidates from L_1

Scan D for count of each candidate

Itemset	Sup. count
{I1, I2}	4
{I1, I3}	4
{I1, I4}	1
{I1, I5}	2
{I2, I3}	4
{I2, I4}	2
{I2, I5}	2
{I3, I4}	0
{I3, I5}	1
{I4, I5}	0

 C_2

Compare candidate support count with minimum support count

- **6.** The generation of the set of the candidate 3-itemsets, C_3 , is detailed in Figure 6.3. From the join step, we first get $C_3 = L_2 \bowtie L_2 = \{\{I1, I2, I3\}, \{I1, I2, I5\}, \{I1, I3, I5\}, \{I2, I3, I4\}, \{I2, I3, I5\}, \{I2, I4, I5\}\}$. Based on the Apriori property that all subsets of a frequent itemset must also be frequent, we can determine that the four latter candidates cannot possibly be frequent. We therefore remove them from C_3 , thereby saving the effort of unnecessarily obtaining their counts during the subsequent scan of D to determine L_3 . Note that when given a candidate k-itemset, we only need to check if its (k-1)-subsets are frequent since the Apriori algorithm uses a level-wise search strategy. The resulting pruned version of C_3 is shown in the first table of the bottom row of Figure 6.2.
- **7.** The transactions in D are scanned to determine L_3 , consisting of those candidate 3-itemsets in C_3 having minimum support (Figure 6.2).
- **8.** The algorithm uses $L_3 \bowtie L_3$ to generate a candidate set of 4-itemsets, C_4 . Although the join results in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because its subset {I2, I3, I5} is not frequent. Thus, $C_4 = \phi$, and the algorithm terminates, having found all of the frequent itemsets.

Compare candidate support count with minimum support count

L_1	
Itemset	Sup. count
{I1}	6
{I2}	7
{I3}	6
{I4}	2
{I5}	2

Figure 6.2

Generation and pruning of candidate 3-itemsets

- (a) Join: $C_3 = L_2 \bowtie L_2 = \{\{I1, I2\}, \{I1, I3\}, \{I1, I5\}, \{I2, I3\}, \{I2, I4\}, \{I2, I5\}\}\}$ $\bowtie \{\{I1, I2\}, \{I1, I3\}, \{I1, I5\}, \{I2, I3\}, \{I2, I4\}, \{I2, I5\}\}\}$ $= \{\{I1, I2, I3\}, \{I1, I2, I5\}, \{I1, I3, I5\}, \{I2, I3, I4\}, \{I2, I3, I5\}, \{I2, I4, I5\}\}.$
- (b) Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be frequent. Do any of the candidates have a subset that is not frequent?
 - The 2-item subsets of $\{I1, I2, I3\}$ are $\{I1, I2\}$, $\{I1, I3\}$, and $\{I2, I3\}$. All 2-item subsets of $\{I1, I2, I3\}$ are members of L_2 . Therefore, keep $\{I1, I2, I3\}$ in C_3 .
 - The 2-item subsets of $\{I1, I2, I5\}$ are $\{I1, I2\}$, $\{I1, I5\}$, and $\{I2, I5\}$. All 2-item subsets of $\{I1, I2, I5\}$ are members of L_2 . Therefore, keep $\{I1, I2, I5\}$ in C_3 .
 - The 2-item subsets of $\{I1, I3, I5\}$ are $\{I1, I3\}$, $\{I1, I5\}$, and $\{I3, I5\}$. $\{I3, I5\}$ is not a member of L_2 , and so it is not frequent. Therefore, remove $\{I1, I3, I5\}$ from C_3 .
 - The 2-item subsets of $\{I2, I3, I4\}$ are $\{I2, I3\}$, $\{I2, I4\}$, and $\{I3, I4\}$. $\{I3, I4\}$ is not a member of L_2 , and so it is not frequent. Therefore, remove $\{I2, I3, I4\}$ from C_3 .
 - The 2-item subsets of $\{I2, I3, I5\}$ are $\{I2, I3\}$, $\{I2, I5\}$, and $\{I3, I5\}$. $\{I3, I5\}$ is not a member of L_2 , and so it is not frequent. Therefore, remove $\{I2, I3, I5\}$ from C_3 .
 - The 2-item subsets of $\{I2, I4, I5\}$ are $\{I2, I4\}$, $\{I2, I5\}$, and $\{I4, I5\}$. $\{I4, I5\}$ is not a member of L_2 , and so it is not frequent. Therefore, remove $\{I2, I4, I5\}$ from C_3 .
- (c) Therefore, $C_3 = \{\{I1, I2, I3\}, \{I1, I2, I5\}\}$ after pruning.

The Apriori Algorithm (Pseudo-Code) -1

Input:

- D, a database of transactions;
- min_sup, the minimum support count threshold.

Output: *L*, frequent itemsets in *D*.

Method:

```
L_1 = find\_frequent\_1-itemsets(D);
(1)
        for (k = 2; L_{k-1} \neq \phi; k++) {
(2)
            C_k = \operatorname{apriori\_gen}(L_{k-1});
(3)
            for each transaction t \in D { // scan D for counts
(4)
                 C_t = \text{subset}(C_k, t); // get the subsets of t that are candidates
(5)
(6)
                 for each candidate c \in C_t
(7)
                      c.count++;
(8)
            L_k = \{c \in C_k | c.count \ge min\_sup\}
(9)
(10)
(11)
        return L = \bigcup_k L_k;
```


The Apriori Algorithm (Pseudo-Code) -2

```
procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets)
        for each itemset l_1 \in L_{k-1}
(1)
           for each itemset l_2 \in L_{k-1}
(2)
                if (l_1[1] = l_2[1]) \wedge (l_1[2] = l_2[2])
(3)
                    \wedge ... \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1]) then {
                     c = l_1 \bowtie l_2; // join step: generate candidates
(4)
                    if has_infrequent_subset(c, L_{k-1}) then
(5)
(6)
                         delete c; // prune step: remove unfruitful candidate
                    else add c to C_k;
(7)
(8)
(9)
        return C_k;
procedure has_infrequent_subset(c: candidate k-itemset;
           L_{k-1}: frequent (k-1)-itemsets); // use prior knowledge
        for each (k-1)-subset s of c
(1)
(2)
           if s \notin L_{k-1} then
                return TRUE;
(3)
        return FALSE;
(4)
```


The Apriori Algorithm— Example (2)

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

Sup _{min} = 2	Itemset	sup
	{A}	2
C_{I}	{B}	3
4.24	{C}	3
1 st scan	{D}	1
	{E}	3

	Itemset	sup
L_{I}	{A}	2
	{B}	3
	{C}	3
	{E}	3

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2	Itemset
	{A, B}
	{A, C}
	{A, E}
	{B, C}
	{B, E}
	{C, E}

 C_3 **Itemset** $\{B, C, E\}$

3 rd scan	L_3
	→

 C_2

Itemset	sup
{B, C, E}	2

 2^{nd} scan

Further Improvement of the Apriori Method

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Scalable Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test Approach

• FPGrowth: A Frequent Pattern-Growth Approach

- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Close Frequent Patterns and Maxpatterns

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
 - Breadth-first (i.e., level-wise) search
 - Candidate generation and test
 - Often generates a huge number of candidates
- The FPGrowth Approach
 - Depth-first search
 - Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
 - "abc" is a frequent pattern
 - Get all transactions having "abc", i.e., project DB on abc: DB|abc
 - "d" is a local frequent item in DB|abc \rightarrow abcd is a frequent pattern

The Frequent Pattern Growth Mining Method

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional patternbase, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FPtree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Construct FP-tree from a Transaction Database

TID	Items bought (o
100	${f, a, c, d, g, i, m, p}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o, w\}$
400	$\{b, c, k, s, p\}$
500	$\{a, f, c, e, \overline{l}, p, m, n\}$

- Scan DB once, find frequent
 1-itemset (single item pattern)
- Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list = f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - ...
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

Conditional pattern bases

<u>item</u>	cond. pattern base
\boldsymbol{c}	<i>f</i> :3
a	fc:3
\boldsymbol{b}	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Recursion: Mining Each Conditional FP-tree

am-conditional FP-tree

Cond. pattern base of "cm": (f:3)
$$\begin{cases} \\ \\ \\ f:3 \end{cases}$$

cm-conditional FP-tree

cam-conditional FP-tree

Mining frequent patterns by creating conditional (sub)pattern-bases.

Item	Conditional pattern-base	Conditional FP-tree
p	$\{(fcam:2), (cb:1)\}$	$\{(c:3)\} p$
m	$\{(fca:2), (fcab:1)\}$	$\{(f:3,c:3,a:3)\} m$
b	$\{(fca:1), (f:1), (c:1)\}$	Ø
а	$\{(fc:3)\}$	$\{(f:3,c:3)\} a$
c	$\{(f:3)\}$	$\{(f:3)\} c$
f	Ø	Ø

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- {} • Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts

Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count nodelinks and the *count* field)

Advantages of the Pattern Growth Approach

- Divide-and-conquer:
 - Decompose both the mining task and DB according to the frequent patterns obtained so far
 - Lead to focused search of smaller databases
- Other factors
 - No candidate generation, no candidate test
 - Compressed database: FP-tree structure
 - No repeated scan of entire database
 - Basic ops: counting local freq items and building sub FP-tree, no pattern search and matching

The FP-Growth Algorithm (Pseudo-Code) -1

Algorithm: **FP_growth.** Mine frequent itemsets using an FP-tree by pattern fragment growth.

Input:

- \square D, a transaction database;
- min_sup, the minimum support count threshold.

Output: The complete set of frequent patterns.

Method:

- 1. The FP-tree is constructed in the following steps:
 - (a) Scan the transaction database *D* once. Collect *F*, the set of frequent items, and their support counts. Sort *F* in support count descending order as *L*, the *list* of frequent items.
 - (b) Create the root of an FP-tree, and label it as "null." For each transaction *Trans* in *D* do the following.
 - Select and sort the frequent items in *Trans* according to the order of *L*. Let the sorted frequent item list in *Trans* be [p|P], where *p* is the first element and *P* is the remaining list. Call insert_tree([p|P], T), which is performed as follows. If T has a child N such that N.item-name = p.item-name, then increment N's count by 1; else create a new node N, and let its count be 1, its parent link be linked to T, and its node-link to the nodes with the same item-name via the node-link structure. If P is nonempty, call insert_tree(P, N) recursively.

The FP-Growth Algorithm (Pseudo-Code) - `2

2. The FP-tree is mined by calling FP_growth(FP_tree, null), which is implemented as follows. procedure FP_growth($Tree, \alpha$) if Tree contains a single path P then (1)**for each** combination (denoted as β) of the nodes in the path P (2)generate pattern $\beta \cup \alpha$ with support_count = minimum support count of nodes in β ; (3)(4)**else for each** *a_i* in the header of *Tree* { (5)generate pattern $\beta = a_i \cup \alpha$ with support_count = a_i .support_count; construct β 's conditional pattern base and then β 's conditional FP_tree $Tree_{\beta}$; (6)(7)if $Tree_{\beta} \neq \emptyset$ then call $\mathsf{FP_growth}(\mathit{Tree}_{\beta}, \beta); \}$ (8)

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format

Mining Closed Frequent Patterns and Max patterns

ECLAT: Mining by Exploring Vertical Data Format

- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Mining can be performed on this data set by intersecting the TID sets of every pair of frequent single items.
- Deriving frequent patterns based on vertical intersections
 - t(X) = t(Y): X and Y always happen together
 - $t(X) \subset t(Y)$: transaction having X always has Y
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset $(XY, X) = \{T_2\}$

An example

Transactional Data for an *AllElectronics* Branch

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

The Vertical Data Format of the Transaction Data Set D of Table 6.1

itemset	TID_set
Ī1	{T100, T400, T500, T700, T800, T900}
12	{T100, T200, T300, T400, T600, T800, T900}
I3	{T300, T500, T600, T700, T800, T900}
I4	{T200, T400}
I5	{T100, T800}

2-Itemsets in Vertical Data Format

itemset	TID_set
{I1, I2}	{T100, T400, T800, T900}
{I1, I3}	{T500, T700, T800, T900}
{I1, I4}	{T400}
{I1, I5}	{T100, T800}
{I2, I3}	{T300, T600, T800, T900}
{I2, I4}	{T200, T400}
{I2, I5}	{T100, T800}
{I3, I5}	{T800}

3-Itemsets in Vertical Data Format

itemset	TID_set
{I1, I2, I3}	{T800, T900}
{11, 12, 15}	{T100, T800}

minimum support count is 2

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Closed Frequent Patterns and Max patterns

Mining Closed Itemsets by Pattern-Growth

- Itemset merging: if Y appears in every occurrence of X, then Y is merged with X
- Sub-itemset pruning: if Y \supset X, and sup(X) = sup(Y), X and all of X's descendants in the set enumeration tree can be pruned
- Item skipping: if a local frequent item has the same support in several header tables at different levels, one can prune it from the header table at higher levels
- Efficient subset checking: checks whether the newly found itemset is a subset of an already found closed itemset with the same support.
- Because maximal frequent itemsets share many similarities with closed frequent itemsets, many of the optimization techniques developed here can be extended to mining maximal frequent itemsets.

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexity vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: ~10⁻⁴⁰
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions?

Outline

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern Evaluation

Methods

Interestingness Measure: Correlations (Lift)

- $play\ basketball \Rightarrow eat\ cereal\ [40\%, 66.7\%]$ is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift $lift = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B \mid A)}{P(B)}$

• If the resulting lift value is less than 1, then the occurrence of A is negatively correlated with the occurrence of B, meaning that the occurrence of one likely leads to the absence of the other one. If the resulting value is greater than 1, then A and B are positively correlated, meaning that the occurrence of one implies the occurrence of the other. If the resulting value is equal to 1, then A and B are independent and there is no correlation between them.

Correlation computing (Lift): A example

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

$$lift(B,C) = \frac{2000 / 5000}{3000 / 5000 * 3750 / 5000} = 0.89$$

$$lift(B, \neg C) = \frac{1000 / 5000}{3000 / 5000 * 1250 / 5000} = 1.33$$

Is lift Good Measures of Correlation?

- "Buy walnuts ⇒ buy milk [1%, 80%]" is misleading if 85% of customers buy milk
- Support and confidence are not good to indicate correlations
- Over 20 interestingness measures have been proposed
- Which are good ones?

symbol	measure	range	formula
ϕ	ϕ -coefficient	-11	$\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1 - P(A))(1 - P(B))}}$
Q	Yule's Q	-11	$ \frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)} \\ \frac{P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)} $
Y	Yule's Y	-11	$\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}$
k	Cohen's	-11	$\frac{\dot{P}(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$
PS	Piatetsky-Shapiro's	-0.250.25	P(A,B) - P(A)P(B)
F	Certainty factor	-11	$\max(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)})$
AV	added value	$-0.5 \dots 1$	$\max(P(B A) - P(B), P(A B) - P(A))$
K	Klosgen's Q	-0.330.38	$\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$
g	Goodman-kruskal's	$0 \dots 1$	$\frac{\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))}{\sum_{j} \max_{k} P(A_{j},B_{k}) + \sum_{k} \max_{j} P(A_{j},B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
			$\frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})'}{P(A_{i})P(B_{J})}}{\min(-\sum_{i}P(A_{i})\log P(A_{i})\log P(A_{i}),-\sum_{i}P(B_{i})\log P(B_{i})\log P(B_{i}))}$
M	Mutual Information	$0 \dots 1$	$\overline{\min(-\Sigma_i P(A_i) \log P(A_i) \log P(A_i), -\Sigma_i P(B_i) \log P(B_i) \log P(B_i))}$
J	J-Measure	$0 \dots 1$	$\max(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}))$
			$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$
G	Gini index	$0 \dots 1$	$\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$
		0 1	$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B}[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}] - P(A)^{2} - P(\overline{A})^{2})$
s	support	$0 \dots 1$	P(A,B)
c	confidence	$0 \dots 1$	max(P(B A), P(A B))
L	Laplace	$0 \dots 1$	$\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$
IS	Cosine	$0 \dots 1$	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
γ	coherence(Jaccard)	$0 \dots 1$	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
α	all_confidence	01	$\frac{P(A,B)}{\max(P(A),P(B))}$
0	odds ratio	$0 \dots \infty$	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$
V	Conviction	$0.5 \ldots \infty$	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
λ	lift	$0\dots\infty$	P(A,B)
S	Collective strength	$0\ldots\infty$	$\frac{P(A)P(B)}{P(A,B)+P(\overline{AB})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})} \times \frac{1-P(A)P(B)-P(\overline{AB})}{1-P(A,B)-P(\overline{AB})}$
χ^2	χ^2	$0\ldots\infty$	$\sum_{i} \frac{(P(A_{i}) - E_{i})^{2}}{E_{i}}$

