9.

(a) We'll assume $V \ge 0$, as it was told in the forums that this is a valid assumption.

Let x be a value bigger than V, We'll show that $0=p_1$ strictly dominates $p_1=x$.

If $p_2 > x$, then the utility of candidate 1 if $p_1 = 0$ is 0 (because $x > V \ge 0$) and the utility of candidate 1 in the case that $p_1 = x$ is -x, which is negative (due to the assumption that $V \ge 0$).

If $p_2=x$, then the utility of candidate 1 if $p_1=0$ is 0, and the utility of candidate 1 in the case that $p_1=x$ is $\frac{v}{2}-x$ which is less than 0.

If $0 < p_2 < x$, then the utility of candidate 1 in the case that $p_1 = 0$ is 0, and the utility of candidate 1 in the case that $p_1 = x$ is V - x which is negative.

If $p_2=0$, then the utility of candidate 1 in the case that $p_1=0$ is V and the utility of candidate 1 in the case that $p_1=x$ is V-x, which is less than V (due to the assumption that $V\geq 0$).

We've seen that for every p_2 and x > V, the utility of player 1 would be bigger if $p_1 = 0$ than it would be if $p_1 = x$, and therefore there is no action profile where $p_1 > V$ is a best-response for candidate 1.

(b) Let's take a look at the function of x, $u_1(x, p_2)$, we'll shrink our domain to $\{0\} \cup [V]$.

If $p_2 > 0$, out of the values that are less than p_2 , x = 0 maximizes the function $u_1(x, p_2)$, and yields $u_1(x, p_2) = 0$,

If $p_2 < V$, out of the values that are bigger than p_2 , $p_2 + 1 = x$ maximizes the function $u_1(x, p_2)$ and yields $u_1(x, p_2) = V - p_2 - 1$, also:

$$u_1(p_2, p_2) = \frac{V}{2} - p_2 < V - p_2 - 1 = u_1(p_2 + 1, p_2) \Leftrightarrow 2 < V$$

and therefore $p_1=p_2+1$ would be best out of every $p_1\geq p_2$, this will also be the only general best option for p_1 as long as $p_2\leq V-2$ due to the fact that we have seen that for every $p_2>0$ and $x< p_2, 0$ is the maximal value of $u_1(x,p_2)$ (and is achieved only for x=0) and because if $p_2=0$, p_1 can't be smaller than p_2 .

If $p_2 = V - 1$, then $x = p_2 + 1 = V$ and x = 0 maximize the function $u_1(x, p_2)$.

If $p_2 = V$, then,

$$u_1(V, V) = \frac{V}{2} - V = -\frac{V}{2} < 0$$

so because we've seen that for every $p_2>0$ and $x< p_2, 0$ is the maximal value of $u_1(x,p_2)$ (and is achieved only for x=0), if $p_2=V$, x=0

maximizes $u_1(x, p_2)$.

The discussion above shows that:

$$(*) \ BR_1(p_1,p_2) = \begin{cases} \{p_2+1\}, & p_2 < V-1 \\ \{0,p_2+1\}, & p_2 = V-1 \\ \{0\}, & p_2 = V \end{cases}$$

and by symmetry:

$$(**) BR_2(p_1, p_2) = \begin{cases} \{p_1 + 1\}, & p_1 < V - 1 \\ \{0, p_1 + 1\}, & p_1 = V - 1 \\ \{0\}, & p_1 = V \end{cases}$$

so if (p_1, p_2) is a PNE by Claim 1.4, we get that, if $p_2 < V - 1$

then $p_1=p_2+1$ but then due to (**) p_2 must be 0, otherwise p_2 would have to be $p_1+1=p_2+2$, contradiction, but $p_2=0$ also leads to contradiction because then due (**) $p_1=V-1$ or $p_1=V$, while we've also seen that $p_1=p_2+1=1$.

That prove that p_2 can't be smaller than V-1, if (p_1,p_2) is a PNE. We'll go on with the assumption that (p_1,p_2) is a PNE.

If $p_2=V-1$, then p_1 is 0 or V (By (*)) but because we have seen that p_2 can't be smaller than V-1 in a PNE and due to symmetry, $p_1=V$, but then (**) and claim 1.4 give us a contradiction, and that prove that in a PNE, p_2 can't be V-1.

If $p_2=V$, then (*) shows that $p_1=0$, but we've seen that p_2 can't be smaller than V-1 in a PNE, so due to symmetry, neither can p_1 , and that shows that $p_2\neq V$ in a PNE.

We've seen that p_2 can't have a value in $[V] \cup \{0\}$ in a PNE, so due to section (a), there are no PNEs in the game.

(c) If one of the players has won then social welfare will be:

$$V - p_1 - p_2$$

where one of p_1, p_2 is positive, if there's a tie then social welfare will be:

$$V - 2p_1$$

if $p_1=p_2=0$ then the tie social welfare reaches it's maximum, and would be bigger than any social welfare that we can get in a case that one of the players wins.

We would like to reduce the question to mechanism design and say that the policy makers should compute a VCG to make that outcome a PNE, but VCG maximizes social value and not social welfare, thus, we'll suggest another external pressure.

The policy makers can change the amount candidate i pays when he decides an integer price $p_i \ge 0$, s.t., he'll pay $(V+1)p_i$.

Now, the winner of the election will get utility $V-(V+1)p_i$, the loser j get utility $-(V+1)p_j$, and when there's each candidate gets utility

$$\frac{V}{2}-(V+1)p_i.$$

This means that $p_i>0$ is strictly dominated by $p_i=0$, because $p_i>0$ will always make u_i negative and p_i will yield 0 or $\frac{V}{s}$, so both candidates will be motivated to declare a price of 0, which will make (0,0) a PNE. 10.

(a) The graph is exactly the graph depicted by Figure 1 in the assignment:

 $G = \big(\{A, B, \dots, I\}, \big\{ \{A, B\}, \{A, D\}, \{B, E\}, \{B, C\}, \{C, F\}, \{D, E\}, \{D, G\}, \{E, F\}, \{E, H\}, \{F, I\}, \{G, H\}, \{H, I\} \big\} \big)$

The valuation function is the constant function v(e) = 1.

A stable outcome, (M, d), in G corresponds to a stable assignment of schools in this way:

A town, v, will be assigned a school iff $M(v) \neq \bot$, and in that case d(v) will be the distance of v from the assigned school along the road between v and M(d).

- (b) Each school must serve exactly two adjacent towns and each town can only send their students to a single school, so because the number of towns is odd, a valid placement of schools must leave at least one town without school.
- (c) G is bipartite, we can divide its nodes into the two sets $\{A,C,E,G,I\}$ and $\{B,D,F,H\}$ so we can reduce the exchange network instance we got to a matching market instance (and I'm talking about the generalized version of matching market, for any number of buyers and goods, as we have seen in the previous assignment) where $\{B,D,F,H\}$ are the buyers and they have value 1 for every good, the goods are $\{A,C,E,G,I\}$. It's easy to see that a market equilibrium of such matching market would translate to a valid outcome if the prices of items will be their division function.

Also, because a market equilibrium in a matching market maximizes social value, every node in $\{B, D, F, H\}$ must be matched, from here it was easy to see that:

$$(\{\{D,A\},\{B,C\},\{F,I\},\{H,G\},d\})$$

where:

$$d(x) = \begin{cases} 1, & x \in \{B, D, F, H\} \\ 0, & else \end{cases}$$

is stable.

The outcome is stable because the surplus of every edge is zero (the division of its end in $\{B, D, F, H\}$ is 1, and the division of its other end is 0.) 11.

(a)

$$S = \{0,1\}$$

(b) To make the computation easier to follow I draw two graphs, one is (V, E_f) and the other is (V, E_c) .

I marked the nodes that play BOTA with green and the nodes that play Age

of Agents with blue.

We start with:

At this point, the only node that may be infectable is 3 because that's the only node that has neighbors that play BOTA in (V,E_c) , clearly a fraction bigger than $t_c=0.49$ of its neighbors in (V,E_c) play BOTA $(\frac{2}{3}$ of its neighbors) and a fraction bigger than $t_f=0.65$ of its neighbors in (V,E_f) play BOTA (1 of its neighbors), so we can infect it with BOTA:

Now the only that may be infectable is 5 because that's the only non-BOTA-player that has neighbors that play BOTA in (V, E_c) . A fraction bigger than $t_c=0.49$ of its neighbors play BOTA in (V,E_c) ($\frac{1}{2}$ of its neighbors) and

a fraction bigger than $t_f=0.65$ of its neighbors play BOTA in (V,E_f) (1 of its neighbors), so we can infect 5 with BOTA:

The only node that may be infectable is 4, because that's the only non-BOTA-player in (V,E_c) that has neighbors that play BOTA, however only $\frac{1}{2}$ of its neighbors in (V,E_f) play BOTA, that's less than $t_f=0.65$ and therefore the node is uninfectable, which means my choice of S doesn't jointly-cascade w.r.t. (V,E_f,E_c) and the given parameters t_f,t_c . (c) In part (a) we've found a sub-set of V,S s.t.

- S is cascading w.r.t. (V, E_f) with adoption threshold t_f .
- S is cascading w.r.t. (V, E_c) with adoption threshold t_c . So, by theorem 5.1,
 - There does not exist a set of nodes $T \subseteq V \setminus S$ having density $1 t_f$ w.r.t. (V, E_f) with adoption threshold t_f .
 - There does not exist a set of nodes $T\subseteq V\setminus S$ having density $1-t_c$ w.r.t. (V,E_c) with adoption threshold t_c .

respectively.

Therefore, there does not exist $T\subseteq V\setminus S$ s.t. either T has density $1-t_f$ w.r.t. $\left(V,E_f\right)$ or T has density $1-t_c$ w.r.t. $\left(V,E_c\right)$, so if Bitdidle claim held S would jointly-cascade, but we've seen in part (b) that S doesn't jointly-cascade and therefore Bitdidle's claim doesn't hold.