4. cvičení - řešení příkladů:

- 1) Hledáme podgrupy:
 - a) (**Z**, +): triviální podgrupy {0}, **Z**
 - hledáme další podgrupy: předpokládáme, že existuje nějaké číslo k ∈
 Z, k ≠ 1 (jinak by generovalo Z), k ≠ 0 (jinak by generovalo {0}), {k}
 generuje podgrupu H, přitom H ≠ {0}, H ≠ Z
 - tedy **H** je obecně vždy **podgrupa násobků nějakého čísla k** \in **Z**, např. pro k = 2 máme {2, 4, 6, 8, -2, -4, -6, ...}
 - pokud k = 0, pak jeho násobky generují $\{0\}$
 - pokud k = 1, pak jeho násobky generují **Z**
 - důkaz si můžete prohlédnout zde:
- Zřejmě $\{0\}$ a \mathbb{Z} jsou podgrupy grupy $(\mathbb{Z},+)$. Nechť $\{0\} \neq H \neq \mathbb{Z}$ je podgrupa grupy $(\mathbb{Z},+)$. Pak $1 \notin H$ (jinak by $H = \mathbb{Z}$), a protože $H \neq \{0\}$, existuje $h \in H$ takové, že $1 \neq h > 0$. Zvolme za k nejmenší přirozené číslo různé od 1, které patří do H. Ukážeme, že H je generovaná množinou $\{k\}$. Jestliže $m \in H$, pak $m = q \cdot k + r$ kde $q, r \in \mathbb{Z}$ a platí $0 \leq r < k$. Jelikož $m \in H$, $k \in H$, pak také $q \cdot k = k + k + \ldots + k$ (q k rát) patří do H, a tedy také $r = m q \cdot k \in H$. Avšak r < k. Jelikož k je nejmenší přirozené číslo z H, je tedy r = 0. Neboli $m = q \cdot k$, t.j. $m = k + \ldots + k$ (q k rát). Tedy každé $m \in H$ lze vygenerovat pomocí k, t.j. $\{k\}$ generuje H. Tedy každá podgrupa grupy ($\mathbb{Z}, +$) je množinou všech násobků některého čísla $k \in \mathbb{Z}$ (pro $\{0\}$ je k = 0, pro \mathbb{Z} je k = 1).
 - b) $(\mathbf{Z}_6, +)$: triviální podgrupy $\{0\}, \mathbf{Z}_6$
 - další podgrupy vygenerujeme pomocí dělitelů čísla 6:
 - 2 generuje podgrupu {0, 2, 4}
 - 3 generuje podgrupu {0, 3}
 - c) (\mathbb{Z}_7 , +) má pouze triviální podgrupy {0} a \mathbb{Z}_7 , jedná se totiž o grupu prvočíselného řádu.
 - 2) Minule jsme nalezli těchto šest podgrup:
 - {id}, {id, o₁}, {id, o₂}, {id, o₃}, {id, r₁, r₂}, {id, o₁, o₂, o₃, r₁, r₂}
 - pro všechny prvky a z G chceme ověřit, že a \circ H = H \circ a:

{id}:

jelikož id je jednotkou grupy, pro každý prvek $a \in G$ platí $a \circ id = id \circ a = a$. Tedy nutně $H_1 = \{id, o_1, o_2, o_3, r_1, r_2\} = H_p$, tzn. $\{id\}$ je normální podgrupa.

$\{id, o_1\}:$

$$o_2 \circ \{id, o_1\} = \{o_2, r_2\} = H_1$$

 $\{id, o_1\} \circ o_2 = \{o_2, r_1\} = H_p$

 \Rightarrow H₁ \neq H_p, tedy {o₁, id} není normální podgrupa.

$\{id, o_2\}$:

$$o_1 \circ \{id, o_2\} = \{o_1, r_1\} = H_1$$

 $\{id, o_2\} \circ o_1 = \{o_1, r_2\} = H_p$

 \Rightarrow H₁ \neq H_p, tedy {id, o₂} není normální podgrupa

{id, o₃}:

$$o_1 \circ \{id, o_3\} = \{o_1, r_2\} = H_1$$

 $\{id, o_3\} \circ o_1 = \{o_1, r_1\} = H_D$

 \Rightarrow H₁ \neq H_p, tedy {id, o₃} není normální podgrupa

$\{id, o_1, o_2, o_3, r_1, r_2\}$:

jelikož skládáním jakéhokoliv prvku s množinou $\{id, o_1, o_2, o_3, r_1, r_2\}$ získáme opět tuto množinu (nutná podmínka grupy – pamatujeme si, že v Cayleyho tabulce se musí každý prvek vyskytnout v každém sloupci či řádku právě jednou), musí pro všechny prvky platit $H_l = H_p$ a tedy se jedná o normální podgrupu.

$\{id, r_1, r_2\}$:

$$\begin{array}{ll} id \circ \{id, r_1, r_2\} = \{id, r_1, r_2\} & \{id, r_1, r_2\} \circ id = \{id, r_1, r_2\} \\ o_1 \circ \{id, r_1, r_2\} = \{o_1, o_2, o_3\} & \{id, r_1, r_2\} \circ o_1 = \{o_1, o_2, o_3\} \\ o_2 \circ \{id, r_1, r_2\} = \{o_1, o_2, o_3\} & \{id, r_1, r_2\} \circ o_2 = \{o_1, o_2, o_3\} \\ o_3 \circ \{id, r_1, r_2\} = \{o_1, o_2, o_3\} & \{id, r_1, r_2\} \circ o_3 = \{o_1, o_2, o_3\} \\ r_1 \circ \{id, r_1, r_2\} = \{r_1, r_2, id\} & \{id, r_1, r_2\} \circ r_1 = \{r_1, r_2, id\} \\ r_2 \circ \{id, r_1, r_2\} = \{r_1, r_2, id\} & \{id, r_1, r_2\} \circ r_1 = \{r_1, r_2, id\} \\ \end{array}$$

 \Rightarrow pro všechny prvky platí $H_l = H_p$, tedy se jedná o normální podgrupu

3) Více než jeden generátor má např. grupa (**Z**₄, ⊕) s generátory 1 a 3:

$$1 \oplus 1 = 2$$
, $(1 \oplus 1) \oplus 1 = 3$, $(1 \oplus 1) \oplus (1 \oplus 1) = 0$, $1 = 1 => 1$ je generátor

$$3 \oplus 3 = 2$$
, $(3 \oplus 3) \oplus 3 = 1$, $(3 \oplus 3) \oplus (3 \oplus 3) = 0$, $3 = 3 = > 3$ je generátor

Dalším příkladem je např. grupa (\mathbb{Z}_5 , \oplus) s generátory 1, 2, 3, 4 (ověřte).

4) (**Z**, +) – v případě, že nemáme dodefinovanou operaci – (odečítání, chápáno jako inverzní operace k operaci +), neexistuje jednoprvkový generátor.

V případě, že operaci – dodefinovanou máme, existují právě dva jednoprvkové generátory: 1 a -1.

- 5) a₁: řád 1, generuje podgrupu {a₁}
 - a₂: řád 2, generuje podgrupu {a₁, a₂}
 - a₃: řád 2, generuje podgrupu {a₁, a₃}
 - a₄: řád 2, generuje podgrupu {a₁, a₄}
 - a₅: řád 3, generuje podgrupu {a₁, a₅, a₆}
 - a₆: řád 3, generuje podgrupu {a₁, a₅, a₆}

	a ₁	a_2	a ₃	a ₄	a ₅	a ₆
a 1	a 1	a ₂	a ₃	a ₄	a_5	a_6
a ₁ a ₂ a ₃ a ₄ a ₅ a ₆	a ₂ a ₃	a	a_5	a ₆	a ₃	a ₄ a ₂ a ₃
a ₃	a ₃	a ₆ a ₅	$a_{_1}$	a ₅	a ₄	a ₂
a ₄	a ₄	a ₅	a ₆	a_{1}	a_2	a ₃
a ₅	a ₅	a ₄	a_2	a ₃	a ₆	a
a_6	a ₆	a_3	a ₄	a ₂	a ₁	a ₅

- 6) Výčtem několika prvních prvků zapíšeme podgrupy H₁ a H₂:
 - $H_1 = \langle 4 \rangle = \{4, 8, 12, 16, 20, 24, 28, ...\}$

$$H_2 = \langle 6 \rangle = \{6, 12, 18, 24, 30, 36, ...\}$$

Vidíme, že průnik H_1 a H_2 je generovaný nejmenším společným násobkem generátorů, tzn. $H_1 \cap H_2 = \langle 12 \rangle = \{12, 24, 36, 48, ...\}.$

7) a) Tušíme, že levé a pravé třídy rozkladu se rovnají pro všechny prvky, jelikož operace + je komutativní na **Z**.

Máme podgrupu $H = \{5, -5, 10, -10, 15, -15, ...\}$.

- $a + H = \{1, 6, -4, 11, -9, 16, -14, ...\}$ pro a = 1, 6, 11, 16, -4, -9, ...
- $a + H = \{2, 7, -3, 12, -8, 17, -13, ...\}$ pro a = 2, 7, -3, 12, -8, -13, ...
- $a + H = \{0, 5, -5, 10, -10, 15, -15, ...\}$ pro a = 0, 5, 10, 15, -5, -10, ...

Celkem takto vznikne 5 tříd rozkladu daných výsledkem operace a modulo 5 (vyzkoušejte).

b) Máme čtyři zákrytové pohyby:

id – identita, o1, o2 – otočení kolem os souměrnosti, s – otočení kolem středu o 180°

- je dána podgrupa $H = \{id, o_1\}$

Jsou dány čtyři třídy rozkladu:

$$id \circ \{id, o_1\} = \{id, o_1\} = \{id, o_1\} \circ id$$

$$s \circ \{id, o_1\} = \{s, o_2\} = \{id, o_1\} \circ s$$

$$o_1 \circ \{id, o_1\} = \{o_1, id\} = \{id, o_1\} \circ o_1$$

$$o_2 \circ \{id, o_1\} = \{id, s\} = \{id, o_1\} \circ o_2$$

Vidíme, že levé a pravé třídy rozkladu se rovnají, zřejmě je tedy operace skládání zobrazení obdélníka komutativní (na rozdíl např. od skládání zobrazení rovnostranného trojúhelníka).

8) Při důkazu vycházíme z definic:

Pro cyklickou grupu (G, \cdot) platí, že je generována nějakým svým prvkem (můžeme jej označit a), tedy všechny prvky G lze vyjádřit jako a^n pro nějaké $n \in \mathbf{N}$.

Pro všechny prvky x, y \in G abelovské grupy musí platit rovnost x \cdot y = y \cdot x. Jelikož x = a^m a y = a^n pro nějaké m, n \in **N**, pak x \cdot y = $a^m \cdot a^n = a^{(m+n)}$. Zároveň pak y \cdot x = $a^n \cdot a^m = a^{(n+m)} = a^{(m+n)}$. Tímto jsme dokázali, že x \cdot y = y \cdot x pro všechna x, y \in G a každá cyklická grupa musí být nutně abelovská.

9) Řádem k ∈ N prvku a rozumíme nejmenší mocninu takovou, že a^k = e. Řádem n grupy (G, ·) rozumíme počet jejích prvků, tedy |G|. Cyklická grupa je grupa generovaná jedním svým prvkem, označme jej a. Provedeme důkaz pomocí dvou směrů implikace:

<=

Víme, že prvek a řádu n generuje n-prvkovou podgrupu grupy (G, \cdot) . Jelikož ale |G| = n, prvek a musí nutně generovat celou grupu a (G, \cdot) je tedy cyklická.

=>

Jestliže (G, \cdot) je cyklická a má řád n, znamená to, že musí být celá generovaná nějakým prvkem (označíme jej a). Aby prvek a generoval celou grupu, musí být také řádu n. Důkaz je hotový.

- Zobrazení f z (G, \circ) do (H, *) je homomorfismem právě tehdy, když pro všechny prvky a, b \in G platí, že f(a) * f(b) = f(a \circ b):
 - a) je homomorfismus, jelikož 3a + 3b = 3(a+b)
 - b) není homomorfismus, jelikož $5(a+1) + 5(b+1) = 5(a+b+2) \neq 5(a+b+1)$
 - c) není homomorfismus, jelikož rovnice $a^2 + b^2 = (a+b)^2$ obecně neplatí
 - d) není homomorfismus, jelikož $f(a) + f(b) = 1 + 1 \neq 1 = f(a+b)$
 - e) je homomorfismus, jelikož f(a) + f(b) = 0 + 0 = 0 = f(a+b)