Mechanics In Design and Manufacturing

+ Casting and Heat Treatment

Solidification Process Categories

Solidification

Pure metals

Phase diagram (binary alloy)

Casting and microstructure

Dendrite formation

Sand Casting Process (expendable mold)

https://www.youtube.com/watch?v=BjQCrL8moqw

Lost-wax titanium hammer

Mold Filling and Solidification

• Bernoulli

Mass Continuity

Turbulence

• Tapered sprue design – Find diameter at gate so no aspiration

(Given: Q=0.01 m³/min, h=200mm, D_1 =20mm, η =0.004 N-s/m² ρ_{al} =2700kg/m³)

Solidification

 Cooling is a function of the ratio of size and shape of the casting. (Chvorinov's rule)

Determine if riser cools faster than the casting

Shrinkage

Reduction in height due to solidification shrinkage	Solid thermal contraction
	Shrinkage cavity Molten metal Solid metal
(2)	(3)

Groover 6th ed.

	,
Metal	Shrinkage
Aluminum alloys	1.3%
Brass, yellow	1.5%
Bronze	1.6%
Cast iron, grey	1.0%
Cast iron, white	2.1%
Magnesium alloy	1.3%
Steel, carbon	1.8%
Tin	2.0%
Zinc	1.3%

Design/Mitigation

Groover 6th ed.

Furnaces

Permanent Mold Casting Processes

Expendable Mold Processes

Pattern

Cluster Parts

Other Casting Process

Casting Defects

Heat Treating

Iron-Carbon Phases/Microconstituents

Phases

- Ferrite –
- Austenite -
- Cementite –

Microconstituents

- Pearlite -
- Martensite -
- Bainite -

Iron-Carbon Phase Diagram

TTT Diagram

Consider microstructure resulting from

- 1. Rapid cool to 350°C hold for 10⁴s, then quench
- 2. Rapid cool to 250°C, hold for 100s, then quench
- 3. Rapidly cool to 650 °C, hold for 20s, rapidly cool to 400 °C, hold for 10³s, then quench

Adapted from Callister 8e.

TU3

CCT Diagram

Atlas of Time Temperature Diagrams for Irons and Steels, Vander Voort

Modern Physical Metallurgy, Smallman and Ngan, 8th ed., 2014

Quenching

- Various quenching media are used to affect cooling rate
 - •
 - •
 - •
 - •

Die quenching

Annealing - Steels

Full Annealing

Process Annealing

Spheroidizing

Normalizing

Tempering

Zaereth

https://commons.wikimedia.org/w/index.php?curid=18561876

Austempering

Martempering

108

Heat Treating Non-Ferrous Materials

Solution Treatment

Precipitate/Age Hardening

Design Considerations

and provide uniform cross section.

Deep cavities should be on one side of the casting where possible.

Design Considerations 2

Ribs and/or fillets improve bosses.

111

Design Considerations 3

Geometry

Allowances

Draft

Dimensional Tolerance

Economic Considerations

Heat Treating Equipment

Design for heat treating

- Avoid cracking warping, non-uniform properties (unless desired)
- Cooling rate must be uniform
- Guidelines, uniform thickness (or transition between sections of different thicknesses should be gradual)
- Avoid internal or external sharp corners
- Be aware that holes, grooves, keyways, splines etc. may be difficult to heat treat/crack during quenching
- Large surfaces with thin cross sections may warp

Color Chart

