University of Georgia REU - Additive Combinatorics - Summer 2010

Exercise sheet 4

Some Definitions

Definition 1. Let $f: \mathbb{Z}_N \to \mathbb{C}$. We define the Fourier transform of f to be

$$\widehat{f}(\xi) := \frac{1}{N} \sum_{x \in \mathbb{Z}_N} f(x) e(-x\xi/N),$$

where $e(\alpha) := e^{2\pi i \alpha}$.

Definition 2. Let $f, g : \mathbb{Z}_N \to \mathbb{C}$. We define the convolution of f with g to be

$$f * g(x) = \frac{1}{N} \sum_{y \in \mathbb{Z}_N} f(y)g(x - y).$$

Definition 3. Given a set $A \subseteq \mathbb{Z}_N$ we denote its characteristic function

$$A(x) = \begin{cases} 1 & if \quad x \in A \\ 0 & otherwise \end{cases}$$

Definition 4. We say that a set $A \subseteq \mathbb{Z}_N$ is ε -uniform if $|\widehat{A}(\xi)| \leq \varepsilon$ for all $\xi \neq 0$.

Problems and Exercises

1. Prove the orthogonality relation

$$\frac{1}{N} \sum_{\xi \in \mathbb{Z}_N} e(x\xi/N) = \begin{cases} 1 & \text{if } x \equiv 0 \pmod{N} \\ 0 & \text{otherwise} \end{cases}$$

- 2. Let $f, g: \mathbb{Z}_N \to \mathbb{C}$. Verify the following identities/inequalities.
 - (a) (Fourier inversion formula)

$$f(x) = \sum_{\xi \in \mathbb{Z}_N} \widehat{f}(\xi) e(x\xi/N)$$

(b) (Parseval's identity)

$$\frac{1}{N} \sum_{x \in \mathbb{Z}_N} f(x) \overline{g(x)} = \sum_{\xi \in \mathbb{Z}_N} \widehat{f}(\xi) \overline{\widehat{g}(\xi)}$$

(c) (Plancherel's identity)

$$\frac{1}{N} \sum_{x \in \mathbb{Z}_N} |f(x)|^2 = \sum_{\xi \in \mathbb{Z}_N} |\widehat{f}(\xi)|^2$$

(d) (Convolution identity)

$$\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$$

(e) (Uniform boundedness)

$$\max_{\xi \in \mathbb{Z}_N} |\widehat{f}(\xi)| \le \frac{1}{N} \sum_{x \in \mathbb{Z}_N} |f(x)|$$

3. (a) Show that for any $A \subseteq \mathbb{Z}_N$ one always has

$$\max_{\xi \in \mathbb{Z}_N} |\widehat{A}(\xi)| \le \widehat{A}(0) = \frac{|A|}{N}.$$

(b) Show that if $A = \mathbb{Z}_N$, then

$$\widehat{A}(\xi) = \begin{cases} 1 & \text{if } \xi \equiv 0 \pmod{N} \\ 0 & \text{otherwise} \end{cases}$$

(c) Let $P := \{a, a+q, \dots, a+(L-1)q\} \subseteq \mathbb{Z}_N$. Show that if $\xi q \equiv 1 \pmod{N}$, then

$$\widehat{P}(\xi) = \frac{L}{N}e(-a\xi/N) + O\left(\frac{L^2}{N^2}\right).$$

- 4. Fix $\xi \in \mathbb{Z}_N \setminus \{0\}$.
 - (a) Let $1 \leq Q \leq N$.
 - i. Show that there exists $1 \leq q \leq Q$ such that

$$\left\| q \, \frac{\xi}{N} \right\| \le \frac{1}{Q}$$

where $\|\alpha\|$ denotes, for each $\alpha \in \mathbb{R}$, the distance from α to the nearest integer.

ii. Let $1 \le L \le N$. Show that there exists an arithmetic progression P of length L and step size q, with $1 \le q \le Q$, such that

$$|\widehat{P}(\xi)| \ge \frac{L}{N} - \frac{2\pi L^2}{NQ}.$$

(b) Let $1 \le L \le N/4\pi$ and set $\eta = L/N$. Show that there exists $1 \le q \le 4\pi L$ so that the arithmetic progression

$$P_q := \{-q, -2q, \dots, -Lq\} \subseteq \mathbb{Z}_N$$

satisfies

$$|\widehat{P_q}(\xi)| \ge \eta/2.$$

5. (a) Given any 2-coloring of \mathbb{Z}_N , using the colors red and blue (say), we define the function

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is red} \\ -1 & \text{if } x \text{ is blue} \end{cases}.$$

i. Show that the discrepancy function

$$\Delta_q(x) := N|f * P_q(x)|$$

counts the difference (in absolute value) between the number of red and blue elements in the progression

$$\{x+q, x+2q, \dots, x+Lq\} \subseteq \mathbb{Z}_N$$

where $P_q := \{-q, -2q, \dots, -Lq\}.$

ii. Using Question 4b, verify that if $1 \le L \le N/4\pi$, then

$$\frac{1}{N} \sum_{q=1}^{4\pi L} \sum_{x \in \mathbb{Z}_N} |f * P_q(x)|^2 \ge \left(\frac{L}{2N}\right)^2$$

and hence that there exists $1 \leq q_0 \leq 4\pi L$ and $x_0 \in \mathbb{Z}_N$ such that

$$\Delta_{q_0}(x_0) \ge \sqrt{L/16\pi}.$$

(b) Prove Roth's $\frac{1}{4}$ -Theorem: In any 2-coloring of [1, N] there exists an arithmetic progression that contains at least $cN^{1/4}$ more elements in one color than the other.

Hint: Identify [1, N] with \mathbb{Z}_N and set $L = \lfloor \sqrt{N/4\pi} \rfloor$. This will ensure that the progressions $x_0 - P_{q_0}$ obtained above is "non-overlapping". Deduce that there must exist a genuine arithmetic progression in [1, N] with discrepancy at least $\sqrt{L/16\pi}/2$.

For more on Roth's $\frac{1}{4}$ -Theorem, see Chazelle's book "The discrepancy method" [1].

6. Let $A \subseteq \mathbb{Z}_N$ and $d \in \mathbb{Z}_N$. Show that if we set $A_d = A + d$, then

$$\widehat{A}_d(\xi) = \widehat{A}(\xi)e(-d\xi/N).$$

7. (Expressing combinatorial counts using the Fourier transform).

Let $A, B \subseteq \mathbb{Z}_N$.

(a) Show that

$$\frac{|A \cap B|}{N} = \sum_{\xi \in \mathbb{Z}_N} \widehat{A}(\xi) \overline{\widehat{B}(\xi)}$$

noting in particular that

$$\sum_{\xi \in \mathbb{Z}_N} |\widehat{A}(\xi)|^2 = \frac{|A|}{N}.$$

(b) Let

$$r_4(A) := |\{(a, b, c, d \in A^4 : a - c = d - b\}|$$

denote the number of additive quadruples in A. Show that

$$\frac{r_4(A)}{N^3} = \sum_{\xi \in \mathbb{Z}_N} |\widehat{A}(\xi)|^4.$$

(c) Let

$$\mathcal{N}_3(A) := |\{(x, y, z) \in A^3 : x - z = z - y\}|$$

denote the number of 3-term arithmetic progressions in A. Show that

$$\frac{\mathcal{N}_3(A)}{N^2} = \sum_{\xi \in \mathbb{Z}_N} \widehat{A}(\xi)^2 \widehat{A}(-2\xi).$$

- 8. (Illustrations that ε -uniformity can be interpreted as a measure of quasi-randomness). Let $A \subseteq \mathbb{Z}_N$ and set $\delta := |A|/N$.
 - (a) Verify that if A is ε -uniform, then

$$0 \le \frac{r_4(A)}{N^3} - \delta^4 \le \varepsilon^2 \delta$$

(b) Verify that if A is ε -uniform and N is odd, then

$$\left| \frac{\mathcal{N}_3(A)}{N^2} - \delta^3 \right| \le \varepsilon \delta$$

(c) Verify that if A is ε -uniform, then

$$\frac{1}{N} \sum_{d \in \mathbb{Z}_N} \left| \frac{|A \cap (A+d)|}{N} - \delta^2 \right| \le \varepsilon \delta^{1/2} \le \varepsilon$$

and hence that

$$\left| \left\{ d \in \mathbb{Z}_N : \left| \frac{|A \cap (A+d)|}{N} - \delta^2 \right| \ge \varepsilon^{1/2} \right\} \right| \le \varepsilon^{1/2} N$$

(d) Let

$$P := \{a, a+q, \dots, a+(L-1)q\} \subset \mathbb{Z}_N$$

and set $\eta = L/N$.

i. Show that for each $\xi \in \mathbb{Z}_N$ one has

$$|\widehat{P}(\xi)| \le \frac{1}{N} \min \left\{ L, \frac{1}{2\|q\xi/N\|} \right\},\,$$

where $\|\alpha\|$ denotes, for each $\alpha \in \mathbb{R}$, the distance from α to the nearest integer.

ii. Verify that if A is ε -uniform and N is prime, then

$$\left| \frac{|A \cap P|}{N} - \delta \eta \right| \le C \varepsilon^{1/2} (\delta \eta)^{1/4} \le C \varepsilon^{1/2}$$

Hint: Use Hölder's inequality.

9. Explain why each part of Question 8 illustrates that the notion of ε -uniformity of a set $A \subseteq \mathbb{Z}_N$ can interpreted as a measure of quasi-randomness.

In Questions 10-14 we outline the key steps of a (Fourier analytic) proof of Roth's theorem on arithmetic progressions of length three, namely

Roth's Theorem[2]

Let $\delta > 0$. If $N \ge \exp \exp(C\delta^{-1})$, then any subset $A \subseteq [1, N]$ with $|A| \ge \delta N$ will necessarily contain a non-trivial arithmetic progression of length three.

- 10. Let $A \subseteq [1, N]$ and set $\delta := |A|/N$. Let $B := A \cap [N/3, 2N/3]$.
 - (a) Is it true that if A is ε -uniform/not ε -uniform (when considered as a subset of \mathbb{Z}_N), then B is also ε -uniform/not ε -uniform? What about other subsets of A?
 - (b) Show that the number of genuine 3-term arithmetic progressions in A is greater than

$$\widetilde{\mathcal{N}}_3(A) := |\{(x,y,z) \in B \times A \times B : x+y \equiv 2z \pmod{N}\}|$$

(c) Arguing as in Question 8b, verify that if N is odd and A is ε -uniform, then

$$\left|\widetilde{\mathcal{N}}_3(A) - \delta |B|^2\right| \le \varepsilon |B|N.$$

In particular, if A is ε -uniform with $\varepsilon \leq \delta |B|/2N$, then A must contains at least $\delta |B|^2/2$ genuine 3-term arithmetic progressions.

11. Let $A \subseteq \mathbb{Z}_N$ and set $\delta = |A|/N$. We define the balanced function of A to be

$$f_A(x) = A(x) - \delta.$$

(a) i. Show that

$$\sum_{x \in \mathbb{Z}_N} f_A(x) = 0$$

ii. Show that

$$\sum_{x \in \mathbb{Z}_N} f_A * g(x) = 0$$

for any $g: \mathbb{Z}_N \to \mathbb{C}$.

(b) Show that

$$\widehat{f_A}(\xi) = \begin{cases} \widehat{A}(\xi) & \text{if } \xi \neq 0\\ 0 & \text{if } \xi = 0 \end{cases}$$

- 12. Let $A \subseteq \mathbb{Z}_N$ and set $\delta = |A|/N$.
 - (a) Verify that

$$f_A * P_q(x) = \frac{|A \cap (x - P_q)|}{N} - \delta \eta$$

(b) Show that if A is not ε -uniform, then

$$\frac{1}{N} \sum_{x \in \mathbb{Z}_N} |f_A * P_q(x)| \ge \frac{\varepsilon \eta}{2}$$

and hence that there must exist $x \in \mathbb{Z}_N$ such that

$$\left|\frac{|A\cap(x-P_q)|}{N}-\delta\eta\right|\geq\frac{\varepsilon\eta}{2}.$$

** Compare this result with Question 8(d)ii **

(c) Use the fact that $|f_A * P_q(x)| \le \eta$ for all $x \in \mathbb{Z}_N$ (verify this if it is not clear to you) to conclude that if A is <u>not</u> ε -uniform, then in fact

$$\left| \left\{ x \in \mathbb{Z}_N : \left| \frac{|A \cap (x - P_q)|}{N} - \delta \eta \right| \ge \frac{\varepsilon \eta}{4} \right\} \right| \ge \frac{\varepsilon}{4} N.$$

- 13. $(A \text{ not } \varepsilon\text{-uniform} \Longrightarrow A \text{ has } \underline{\text{increased}} \text{ (relative) density on some long arithmetic progression)}$
 - (a) Let $A \subseteq \mathbb{Z}_N$ and P_q be the progression of length L obtained in the previous question. Set $\delta = |A|/N$ and $\eta = |P_0|/N$.
 - i. Verify that for any $g: \mathbb{Z}_N \to \mathbb{R}$ we have

$$g_{+}(x) = \frac{1}{2} (|g(x)| + g(x))$$

where $g_{+}(x) = \max\{g(x), 0\}.$

ii. Show that if A is <u>not</u> ε -uniform, then

$$\frac{1}{N} \sum_{x \in \mathbb{Z}_N} (f_A * P_q)_+(x) \ge \frac{\varepsilon \eta}{4}$$

and hence

$$\left| \left\{ x \in \mathbb{Z}_N : \frac{|A \cap (x - P_q)|}{|P_q|} \ge \frac{|A|}{N} + \frac{\varepsilon}{8} \right\} \right| \ge \frac{\varepsilon}{8} N.$$

(b) Let $A \subseteq [1, N]$. Prove that if A is <u>not</u> ε -uniform (when considered as a subset of \mathbb{Z}_N), then there exists a *genuine* arithmetic progression $P \subseteq [1, N]$ with $L = |P| \ge \sqrt{\varepsilon N/32\pi}$, such that

$$\frac{|A \cap P|}{|P|} \ge \frac{|A|}{N} + \frac{\varepsilon}{8}$$

- 14. Let $A \subseteq [1, N]$ and set $\delta = |A|/N$.
 - (a) If A contains <u>no</u> non-trivial 3-term arithmetic progressions, then either $N \leq 32\delta^{-2}$ or there exists a *genuine* arithmetic progression $P \subseteq [1, N]$ with $L = |P| \geq c\delta\sqrt{N}$, such that

$$\frac{|A \cap P|}{|P|} \ge \frac{|A|}{N} + \frac{\delta^2}{64}.$$

Hint: Use Questions 13b and 10c together with the fact that if $|A \cap [N/3, 2N/3]| < \delta N/4$, then

$$\max\{|A\cap [1,N/3]|,|A\cap [2N/3,N]|\}\geq \frac{9}{8}\delta N/3.$$

- (b) Assume that $N>32\delta^{-2}$ and A contains <u>no</u> non-trivial 3-term arithmetic progressions. Let $A_0:=A, N_0:=N$ and $\delta_0:=\delta$. Apply the above result to obtain (by translating and dilating the set $A_0\cap P$) a new set $A_1\subseteq [1,N_1]$ with $N_1\geq c\delta N^{1/2}$ and size $|A_1|=\delta_1N_1$ where $\delta_1\geq \delta+\delta^2/64$ that also contains <u>no</u> non-trivial 3-term arithmetic progressions.
- (c) Verify, by iterating this argument, that one can establish Roth's Theorem.

References

- [1] Bernard Chazelle. *The discrepancy method*. Cambridge University Press, Cambridge, 2000. Randomness and complexity.
- [2] K. F. Roth. On certain sets of integers. J. London Math. Soc., 28:104–109, 1953.