Syntax natürlicher Sprachen 4: CFG-Parsing

A. Wisiorek

Centrum für Informations- und Sprachverarbeitung, Ludwig-Maximilians-Universität München

14.11.2023

Arten von Parsing-Algorithmen

Top-Down

- Recursive Descent
 - https://www.nltk.org/book/ch08.html#recursive-descent-parsing
- LL (Left-to-right Leftmost (derivation))
- LL(k)
- L(*)
- Earley
 - https://www.nltk.org/book/ch08-extras.html#the-earley-algorithm

Bottom-Up

- Recursive Ascent
- GLR (Generalized Left-to-right Rightmost (derivation))
- Shift-Reduce
 - https://www.nltk.org/book/ch08.html#shift-reduce-parsing
- CYK

1. Top-Down-Parsing: Recursive Descent

Top-Down-Parsing: Recursive Descent

2 Bottom-Up-Parsing: Shift Reduce

Chart Parsing: Earley Algorithmus

Recursive Descent Parser

Top-Down-Parsing (dt. Abwärtsparsen)

Parsing-Strategie, bei der man von der höchsten Ebene eines Syntaxbaums (Startsymbol der Grammatik) ausgeht und sich mithilfe der Ersetzungsregeln (Produktionsregeln) einer Grammatik bis zu den Terminalen (Lexemen) vorarbeitet.

Recursive Descent Parsing (dt. rekursiver Abstieg)

- Form von Top-Down-Parsing
- probiert jede anwendbare Regel aus
- benutzt Backtracking im Problemfall
- am intuitivsten "händisch" zu programmieren
- kann je nach Grammatik zu exponentieller Laufzeit führen (oder sogar zu unendlich langer Laufzeit)
- 2 Operationen: PREDICT (EXPAND) + SCAN (MATCH)

Recursive Descent Parser: Beispiel

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- **(5)** DET \rightarrow das
- (6) N \rightarrow Buch
- (8) $V \rightarrow kennt$

Initialisierung mit Startsymbol

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- (4) VP \rightarrow V NP
- (5) DET \rightarrow das
- (6) N \rightarrow Buch
- (8) $V \rightarrow kennt$

Chomsky kennt das Buch

S

PREDICT (Ableitung)

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- **(5)** DET \rightarrow das
- (6) N \rightarrow Buch
- (8) $V \rightarrow kennt$

PREDICT (zunächst jeweils 1. Regel für eine LHS)

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- (4) VP \rightarrow V NP
- **(5)** DET \rightarrow das
- (6) N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) $V \rightarrow kennt$

PREDICT

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- (5) DET \rightarrow das
- \bigcirc N \rightarrow Buch
- (8) V \rightarrow kennt

SCAN (Abgleich mit Satz)

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- (4) VP \rightarrow V NP
- (5) DET \rightarrow das
- (6) N \rightarrow Buch
- (8) $V \rightarrow kennt$

Chomsky kennt das Buch

(kein Match!)

Recursive Descent Parser: Backtracking

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- (6) N \rightarrow Buch
- (8) $V \rightarrow kennt$

PREDICT

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

PREDICT + SCAN

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- **(5)** DET \rightarrow das
- (6) $N \rightarrow Buch$

PREDICT

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky

PREDICT+ SCAN

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch

PREDICT

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- **(5)** DET \rightarrow das
- (6) $N \rightarrow Buch$
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

PREDICT+ SCAN

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- (4) VP \rightarrow V NP
- **(5)** DET \rightarrow das
- (6) N \rightarrow Buch
- \otimes V \rightarrow kennt

PREDICT+ SCAN

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- **(5)** DET \rightarrow das
- (6) N \rightarrow Buch
- (8) V \rightarrow kennt

Recursive Descent Parser: erfolgreicher Parse

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \otimes V \rightarrow kennt

Recursive Descent Parsing: Anmerkungen

Probleme

- Es kann zu jeder Zeit für ein Nichtterminal viele verschiedene Ersetzungsregeln geben.
- Im schlimmsten Fall müssen alle diese Regeln ausprobiert werden (exponentieller Blow-up).
- Viele Teilstrukturen werden erzeugt, obwohl sie nie erfolgreich sein können.
 - → Bsp.: Eingabesatz enthält gar nicht die passenden Wörter.

Gefahr der Endlosschleife

- Links-rekursive Produktionsregeln führen (bei naiver Ausführung) zu unendlicher Laufzeit!
- Beispiel: $NP \rightarrow NP PP$

2. Bottom-Up-Parsing: Shift Reduce

1 Top-Down-Parsing: Recursive Descent

2 Bottom-Up-Parsing: Shift Reduce

Chart Parsing: Earley Algorithmus

Shift Reduce Parsing

Bottom-Up-Parsing (dt. Aufwärtsparsen)

Parsing-Strategie, bei der man von den kleinsten vorgefundenen Einheiten (Token, Lexeme, Terminale) ausgeht und versucht, diese nach und nach zu größeren syntaktischen Strukturen zu verbinden, bis man beim Startsymbol der Grammatik angelangt ist.

Shift Reduce Parsing (dt. Verschieben – Zurückführen)

- Form von Bottom-Up-Parsing (datengeleitetes Parsing)
- gebraucht die Datenstruktur Stack (dt. Stapel)
- verschiebt Token auf den Stapel, um sie auf Grammatikregeln zurückzuführen
- 2 Operationen: SHIFT + REDUCE

Shift Reduce Parser: Beispiel

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

Initialisierung mit leerem Stack

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

SHIFT (Input auf Stack verschieben)

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- (4) VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- (8) V \rightarrow kennt

Chomsky

Chomsky

REDUCE (Ersatz top-Stack-Items mit LHS von Regel, deren RHS diese matchen)

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- (4) VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- (8) V \rightarrow kennt

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

$\overline{\mathsf{SHIFT}}$ (kein REDUCE mehr möglich: keine Regel mit NP als RHS = right-hand-side)

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- (4) VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- (8) V \rightarrow kennt

$\overline{\mathsf{REDUCE}}$ (Ergebnis auf Stack: NP-V; V = letztes Element = top-Stack-Item)

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- (4) VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

SHIFT

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

das

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

SHIFT

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

Grammatik

Stapel

Ableitungsbaum

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

Grammatik

Stapel

Ableitungsbaum

- \bullet S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

S

Shift Reduce Parser: erfolgreicher Parse

Grammatik

Stapel

Ableitungsbaum

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- \bigcirc DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \bigcirc PROPN \rightarrow Chomsky
- (8) V \rightarrow kennt

S

Chomsky kennt das Buch

Shift Reduce Parsing: Anmerkungen

Vorteile

- arbeitet abhängig von der Eingabe
- ist daher effizienter als ein Top-Down-Parser

Probleme

- erzeugt auch Teilstrukturen, die zu keinem Ergebnis führen
- benötigt also im Allgemeinen auch Backtracking
- → potentiell exponentielle Laufzeit

Top-Down vs. Bottom-Up

Top-Down

- startet die Analyse beim Startsymbol
- alterniert zwischen
 Regelanwendung (*Predict*) und
 Abgleich mit der Eingabe (*Scan*)
- geht besser mit POS Ambiguitäten um
- baut Strukturen öfter als benötigt
- verbringt viel Zeit mit unmöglichen Ableitungen

Bottom-Up

- startet die Analyse beim Beginn der Eingabe
- alterniert zwischen Einlesen der Eingabe (Shift) und "Rückwärtsanwendung" der Regeln (Reduce)
- muss alle lexikalische
 Ambiguitäten berücksichtigen
- baut benötigte Strukturen nur einmal
- verbringt viel Zeit mit unnötigen
 Strukturen

3. Chart Parsing: Earley Algorithmus

Top-Down-Parsing: Recursive Descent

2 Bottom-Up-Parsing: Shift Reduce

Chart Parsing: Earley Algorithmus

Earley Parser

Chart Parsing

- Dynamische Programmierung vermeidet doppelte Berechnungen.
- Zwischenergebnisse werden in Datenstruktur (Chart) gespeichert
- S. auch: https://www.nltk.org/book/ch08-extras.html#chart-parsing

Earley Parsing

- Top-Down-Parser (ohne Backtracking)
- Algorithmus kann eigentlich nur Grammatikalität entscheiden.
- → Zur Baumerstellung müssen zusätzliche Verweise gespeichert werden.
 - funktioniert nur mit ε -freien Grammatiken!
 - 3 Operationen: PREDICT + SCAN + COMPLETE

ε -Eliminierung

ε -Regel

- Regel der Form: $A \to \varepsilon$ (Nichtterminal A wird gelöscht; ε = leeres Wort)
- Im nltk-Format: A -> (z. B. für optionale Elemente)

Eliminierungsalgorithmus

- **1** Wähle ein Nichtterminal A mit einer ε -Regel
- **2** Entferne die ε -Regel
- 3 Für jede Regel p mit A auf der rechten Seite: dupliziere die Regel für jede mögliche Kombination mit/ohne A $(2^{m^{Anzahl der Vorkommen von A in p^{\#}})$ neue Regeln)
- 4 Falls es immer noch arepsilon-Regeln gibt, gehe zurück zu Schritt 1.

ε -Eliminierung

Beispiel (Leeres Subjekt bei Imperativ)

ε -Eliminierung

Beispiel (nach Eliminierung)

Earley Algorithmus I

Gegeben

Eingabesequenz $s = s_1, \dots, s_n$; Grammatik G = (T, N, P, S)

Datenstrukturen

- Position := Tokengrenze (z. B. zwischen s_1 und s_2 etc.)
- Zu jeder Pos. Menge Q von Zuständen
- Zustand := $(X \rightarrow \alpha \cdot \beta, i)$ bestehend aus
 - der aktuellen Produktionsregel $X \to \alpha \beta \in P$,
 - der aktuellen Position in dieser Regel (der Punkt ·),
 - der Ursprungsposition i in der Eingabe, an der das Abgleichen dieser Regel begann.

Earley Algorithmus II

Operationen

P **Prediction** (dt. *Voraussage*)

```
falls (A \to \dots, j) \in Q_i mit B \in N, dann für jede Regel B \to \alpha \in P:
setze (B \to \alpha, i) \in Q_i
```

S Scanning (dt. Überprüfung)

```
falls (A \to \dots, j) \in Q_i mit a \in T und a = s_{i+1}, dann setze (A \to \dots, j) \in Q_{i+1}
```

Completion (dt. Vervollständigung)

```
falls (A \to \dots, j) \in Q_i, dann für alle Zustände (B \to \dots A \dots, k) \in Q_j:
setze (B \to \dots A \dots, k) \in Q_i
```

Earley Algorithmus III

PREDICT

wenn . vor Nichtterminal (N)

SCAN

wenn . vor Terminal (T)

COMPLETE

wenn . letzte Position

Earley Algorithmus IV

Algorithmus

- Initialisiere Q_0 mit dem Zustand $(S' \rightarrow \cdot S, 0)$ mit S' frisches nichtterminales Symbol
- Pühre je nach Situation eine der drei Operationen (P, S, C) aus, bis keine weiteren Zustände mehr hinzugefügt werden können.
- Wiederhole Schritt 2 bis keine neuen Zustände mehr hinzugefügt werden können.
- 4 Akzeptiere die Eingabesequenz s genau dann, wenn $(S' o S \cdot, 0) \in Q_{|s|}$

⇒ Beispiel auf der nächsten Folie

Earley Parser: Beispiel (Initialisierung)

Grammatik:

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- 6 N \rightarrow Buch
- (8) $V \rightarrow kennt$

Pos. Zustände

 Q_0

 $(S' \rightarrow \cdot S, 0)$

 Q_1

Q₀: PREDICT

Grammatik:

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- \bigcirc N \rightarrow Buch
- \otimes V \rightarrow kennt

Pos. Zustände

$$Q_0$$
 $(S' \rightarrow \cdot S, 0)$ $(S \rightarrow \cdot NP VP, 0)$

 Q_1

Q_0 : PREDICT

Grammatik:

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- 6 N \rightarrow Buch
- (8) $V \rightarrow kennt$

Pos. Zustände

$$Q_0$$
 $(\mathsf{S}' o \cdot \mathsf{S}, 0)$ $(\mathsf{S} o \cdot \mathsf{NP} \, \mathsf{VP}, 0)$ $(\mathsf{NP} o \cdot \mathsf{DET} \, \mathsf{N}, 0)$

 Q_1

Q₀: PREDICT (jeweils alle Möglichkeiten für eine LHS)

Grammatik:

- \bigcirc S \rightarrow NP VP
- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- $60 N \rightarrow Buch$
- (8) $V \rightarrow kennt$

Pos. Zustände

$$Q_0$$
 $(\mathsf{S}' o \cdot \mathsf{S}, 0)$ $(\mathsf{S} o \cdot \mathsf{NP} \, \mathsf{VP}, 0)$ $(\mathsf{NP} o \cdot \mathsf{DET} \, \mathsf{N}, 0)$ $(\mathsf{NP} o \cdot \mathsf{PROPN}, 0)$

 Q_1

Q₀: PREDICT

Grammatik:

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- $60 N \rightarrow Buch$
- (8) $V \rightarrow kennt$

Pos. Zustände

$$Q_0$$
 $(\mathsf{S}' o\cdot\mathsf{S},0)$ $(\mathsf{S} o\cdot\mathsf{NP}\,\mathsf{VP},0)$ $(\mathsf{NP} o\cdot\mathsf{DET}\,\mathsf{N},0)$ $(\mathsf{NP} o\cdot\mathsf{PROPN},0)$ $(\mathsf{DET} o\cdot\mathsf{das},0)$

 Q_1

Q₀: PREDICT

Grammatik:

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- $60 N \rightarrow Buch$
- (8) $V \rightarrow kennt$

Pos. Zustände

$$Q_0$$
 $(S' o \cdot S, 0)$
 $(S o \cdot NP VP, 0)$
 $(NP o \cdot DET N, 0)$
 $(NP o \cdot PROPN, 0)$
 $(DET o \cdot das, 0)$
 $(PROPN o \cdot Chomsky, 0)$

 Q_1

SCAN

Grammatik:

- \bigcirc NP \rightarrow DET N
- \bigcirc NP \rightarrow PROPN
- \bigcirc VP \rightarrow V NP
- **(5)** DET \rightarrow das
- $60 N \rightarrow Buch$
- (8) $V \rightarrow kennt$

Pos. Zustände

$$Q_0$$
 $(S' o \cdot S, 0)$
 $(S o \cdot NP \ VP, 0)$
 $(NP o \cdot DET \ N, 0)$
 $(NP o \cdot PROPN, 0)$
 $(DET o \cdot das, 0)$
 $(PROPN o \cdot Chomsky, 0)$

$$Q_1$$
 (PROPN \rightarrow Chomsky $\cdot, 0$)

Grammatik:

- (4) $VP \rightarrow VNP$
- (8) $V \rightarrow kennt$

$$Q_0$$
:

$$(S' \rightarrow \cdot S, 0)$$

$$(S \rightarrow \cdot NP VP, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

$$(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$$

Pos. Zustände

 Q_1

 $(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$

 Q_2

Q₁: COMPLETION

Grammatik:

- (4) VP \rightarrow V NP
- (8) $V \rightarrow kennt$

$$(S' \rightarrow \cdot S, 0)$$

$$(S \rightarrow \cdot NP VP, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow \cdot PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

$$(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$$

$$Q_1$$

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

 Q_2

Q₁: COMPLETION

Grammatik:

- (4) VP \rightarrow V NP
- (8) $V \rightarrow kennt$

$$(S' \rightarrow \cdot S, 0)$$

$$(S \rightarrow \cdot NP VP, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

$$(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$$

$$Q_1$$

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

 Q_2

Q₁: PREDICT

Grammatik:

- (4) $VP \rightarrow V NP$
- (8) $V \rightarrow kennt$

$$Q_0$$
:

$$(S' \rightarrow \cdot S, 0)$$

$$(S \rightarrow \cdot NP VP, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow \cdot PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

$$(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$$

$$Q_1$$

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

 Q_2

Q₁: PREDICT

Grammatik:

- (4) VP \rightarrow V NP
- (8) $V \rightarrow kennt$

$$(S' \rightarrow \cdot S, 0)$$

$$(S \rightarrow \cdot NP VP, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow \cdot PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

$$(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$$

$$Q_1$$

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

 Q_2

SCAN

Grammatik:

- (4) $VP \rightarrow VNP$
- (8) $V \rightarrow kennt$

$$(S' \rightarrow \cdot S, 0)$$

$$(S \rightarrow \cdot NP VP, 0)$$

$$(NP \rightarrow \cdot DET N, 0)$$

$$(NP \rightarrow \cdot PROPN, 0)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 0)$$

$$(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 0)$$

$$Q_1$$

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{kennt}, 1)$$

 Q_2

 $(V \rightarrow kennt \cdot, 1)$

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

Pos. Zustände

 Q_2

 $(V \rightarrow \mathsf{kennt} \cdot, 1)$

 Q_3

Q₂: COMPLETION

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

Pos. Zustände

$$egin{aligned} extstyle Q_2 \ & (extstyle V
ightarrow extstyle kennt \cdot, 1) \ & (extstyle VP
ightarrow extstyle V \cdot extstyle NP, 1) \end{aligned}$$

 Q_3

Q₂: PREDICT

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{kennt}, 1)$$

Pos. Zustände

$$egin{aligned} extstyle Q_2 & (extstyle V
ightarrow extstyle kennt \cdot, 1) & (extstyle VP
ightarrow extstyle V \cdot extstyle NP, 1) & (extstyle NP
ightarrow \cdot extstyle DET extstyle N, 2) \end{aligned}$$

 Q_3

Q₂: PREDICT

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

 $(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$

 $(NP \rightarrow PROPN \cdot, 0)$

 $(S \rightarrow NP \cdot VP, 0)$

 $(VP \rightarrow V NP, 1)$

 $(V \rightarrow \cdot \text{ kennt}, 1)$

Pos. Zustände

 Q_2

$$(V \rightarrow kennt \cdot, 1)$$

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{NP} \to \cdot \mathsf{PROPN}, 2)$$

 Q_3

Q_2 : PREDICT

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(\mathsf{NP} \to \mathsf{PROPN} \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

Pos. Zustände

$$Q_2$$

$$(V \rightarrow kennt \cdot, 1)$$

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(NP \rightarrow \cdot PROPN, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

 Q_3

Q₂: PREDICT

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(NP \rightarrow PROPN \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{ kennt}, 1)$$

Pos. Zustände

$$Q_2$$

$$(V \rightarrow kennt \cdot, 1)$$

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(NP \rightarrow \cdot PROPN, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

$$(\mathsf{PROPN} \to \cdot \mathsf{Chomsky}, 2)$$

 Q_3

SCAN

Grammatik:

- (2) $NP \rightarrow DET N$
- (3) $NP \rightarrow PROPN$
- (5) DET \rightarrow das
- (7) PROPN \rightarrow Chomsky

Q_1 :

$$(\mathsf{PROPN} \to \mathsf{Chomsky} \cdot, 0)$$

$$(\mathsf{NP} \to \mathsf{PROPN} \cdot, 0)$$

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(V \rightarrow \cdot \text{kennt}, 1)$$

Pos. Zustände

$$Q_2$$
 $(extstyle extstyle extstyle V o extstyle e$

$$Q_3$$
 (DET o das $\cdot, 2$)

Grammatik:

(6)
$$N \rightarrow Buch$$

$$Q_0$$
:

$$(S' \rightarrow \cdot S, 0)$$

Q_1 :

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

Q_2 :

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$Q_3$$

$$(\mathsf{DET} \to \mathsf{das} \cdot, 2)$$

 Q_4

Grammatik:

(6)
$$N \rightarrow Buch$$

$$\frac{Q_0:}{(S' \to \cdot S, 0)}$$

$$Q_1$$
:

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

Q₂:

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$Q_4$$

Q₃: PREDICT

Grammatik:

(6)
$$N \rightarrow Buch$$

$$\frac{Q_0:}{(S' \to \cdot S, 0)}$$

$$Q_1$$
:

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

Q₂:

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$egin{aligned} Q_3 \ & (\mathsf{DET} o \mathsf{das} \cdot, 2) \ & (\mathsf{NP} o \mathsf{DET} \, \cdot \, \mathsf{N}, 2) \ & (\mathsf{N} o \cdot \mathsf{Buch}, 3) \end{aligned}$$

 Q_4

SCAN

Grammatik:

(6)
$$N \rightarrow Buch$$

$$\frac{Q_0:}{(\mathsf{S'} \to \cdot \mathsf{S}, 0)}$$

$$Q_1$$
:

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

*Q*₂:

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$egin{aligned} Q_3 \ & (\mathsf{DET} o \mathsf{das} \cdot, 2) \ & (\mathsf{NP} o \mathsf{DET} \, \cdot \, \mathsf{N}, 2) \ & (\mathsf{N} o \cdot \mathsf{Buch}, 3) \end{aligned}$$

$$Q_4$$
 (N o Buch $\cdot, 3$)

Grammatik:

(6)
$$N \rightarrow Buch$$

$$\frac{Q_0:}{(\mathsf{S'} \to \cdot \mathsf{S}, 0)}$$

$$Q_1$$
:

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$egin{aligned} Q_3 \ & (\mathsf{DET} o \mathsf{das} \cdot, 2) \ & (\mathsf{NP} o \mathsf{DET} \cdot \mathsf{N}, 2) \ & (\mathsf{N} o \cdot \mathsf{Buch}, 3) \end{aligned}$$

$$egin{aligned} extsf{Q}_4 \ & (extsf{N}
ightarrow extsf{Buch} \cdot, 3) \ & (extsf{NP}
ightarrow extsf{DET} extsf{N} \cdot, 2) \end{aligned}$$

Grammatik:

(6)
$$N \rightarrow Buch$$

$$\frac{Q_0:}{(\mathsf{S'} \to \mathsf{S}, 0)}$$

$$Q_1$$
:

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

Q₂:

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$egin{aligned} Q_3 \ & (\mathsf{DET} o \mathsf{das} \cdot, 2) \ & (\mathsf{NP} o \mathsf{DET} \, \cdot \, \mathsf{N}, 2) \ & (\mathsf{N} o \cdot \mathsf{Buch}, 3) \end{aligned}$$

Grammatik:

(6)
$$N \rightarrow Buch$$

$$\frac{Q_0:}{(\mathsf{S'} \to \mathsf{S}, 0)}$$

$$Q_1$$
:

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

Pos. Zustände

$$egin{aligned} Q_3 \ & (\mathsf{DET} o \mathsf{das} \cdot, 2) \ & (\mathsf{NP} o \mathsf{DET} \, \cdot \, \mathsf{N}, 2) \ & (\mathsf{N} o \cdot \mathsf{Buch}, 3) \end{aligned}$$

$$\begin{array}{c} \textit{Q}_4 \\ (\mathsf{N} \to \mathsf{Buch} \cdot, 3) \\ (\mathsf{NP} \to \mathsf{DET} \, \mathsf{N} \cdot, 2) \\ (\mathsf{VP} \to \mathsf{V} \, \mathsf{NP} \cdot, 1) \\ (\mathsf{S} \to \mathsf{NP} \, \mathsf{VP} \cdot, 0) \end{array}$$

Grammatik:

(6) $N \rightarrow Buch$

 Q_0 :

$$(S' \rightarrow \cdot S, 0)$$

 Q_1 :

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

Q₂:

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

$$egin{aligned} Q_3 \ & (\mathsf{DET} o \mathsf{das} \cdot, 2) \ & (\mathsf{NP} o \mathsf{DET} \, \cdot \, \mathsf{N}, 2) \ & (\mathsf{N} o \cdot \mathsf{Buch}, 3) \end{aligned}$$

$$egin{aligned} Q_4 & & (\mathsf{N} o \mathsf{Buch} \, \cdot, 3) \ & (\mathsf{NP} o \mathsf{DET} \, \mathsf{N} \, \cdot, 2) \ & (\mathsf{VP} o \mathsf{V} \, \mathsf{NP} \, \cdot, 1) \ & (\mathsf{S} o \mathsf{NP} \, \mathsf{VP} \, \cdot, 0) \ & (\mathsf{S}' o \mathsf{S} \, \cdot, 0) \end{aligned}$$

Earley Parser: erfolgreicher Parse

Grammatik:

(6)
$$N \rightarrow Buch$$

$$\frac{Q_0:}{(\mathsf{S'}\to \cdot \mathsf{S},0)}$$

$$Q_1$$
:

$$(S \rightarrow NP \cdot VP, 0)$$

$$(VP \rightarrow V NP, 1)$$

$$(VP \rightarrow V \cdot NP, 1)$$

$$(NP \rightarrow \cdot DET N, 2)$$

$$(\mathsf{DET} \to \cdot \mathsf{das}, 2)$$

$$egin{aligned} Q_3 \ & (\mathsf{DET} o \mathsf{das} \cdot, 2) \ & (\mathsf{NP} o \mathsf{DET} \, \cdot \, \mathsf{N}, 2) \ & (\mathsf{N} o \cdot \mathsf{Buch}, 3) \end{aligned}$$

$$egin{aligned} Q_4 & & (\mathsf{N} o \mathsf{Buch} \cdot, 3) \ & (\mathsf{NP} o \mathsf{DET} \, \mathsf{N} \cdot, 2) \ & (\mathsf{VP} o \mathsf{V} \, \mathsf{NP} \cdot, 1) \ & (\mathsf{S} o \mathsf{NP} \, \mathsf{VP} \cdot, 0) \ & (\mathsf{S}' o \mathsf{S} \cdot, 0) \, \checkmark \end{aligned}$$

Earley Parser: Zusammenfassung

Top-Down-Parsing mit Extras

- ullet Zwischenergebnisse werden in Datenstruktur (Chart) gespeichert (o Chart-Parsing, Dynamische Programmierung)
- Zustände werden mit Positionen in der Eingabesequenz abgeglichen (Elemente des Bottom-Up-Parsings)
- → Komplizierter als Recursive Descent und Shift Reduce
- ightarrow Dafür wesentlich schneller

Komplexität

- Laufzeit in $\mathcal{O}(n^3)$ im schlimmsten Fall
- ullet Für unambige Grammatiken sogar $\mathcal{O}(n^2)$
- Für bestimmte Typen von Grammatiken (LR) sogar $\mathcal{O}(n)$
- Funktioniert am besten mit links-rekursiven Regeln