

Lab program 1: Routing

Navigation Systems

WS 2023/24

Lab 1: Routing Aim

- Generate optimal routes
- Dijkstra algorithm
- Start node: place where you live
- End nodes:
 - Basilika Mariatrost
 - Schloss Eggenberg
 - **Shopping-Center Murpark**

Lab 1: Routing Given data

- nodepl.txt
 - Coordinates of nodes (φ and λ in degrees)
- nodelist.txt
 - Adjacency list of nodes
- arclist.txt
 - Adjacency list of arcs
 - Columns: time, distance, speed limit, clazz, flags

Adjacency list of nodes

Adjacency list of arcs

Lab 1: Routing Tasks

- Cost functions
 - Time
 - Distance

- Additionally, choose between:
- 2.1 Self-developed cost-function for Dijkstra's algorithm
- 2.2 Heuristic A* algorithm

Lab 1: Routing Deliverables

- Source code
- Presentation
 - Visualization of optimal routes (time & distance)
 - Evaluation of routes
 - Self-made cost function or A*-algorithm
 - 5 minutes video with audio commentary
- Peer-review of presentations

Dijkstra algorithm

- Shortest path from one node to all other nodes
- Assign temporary or permanent labels during search process
- Predecessor list

Dijkstra algorithm

- Check with small amount of data
 - Example from lecture

Results and visualization

- prelist.txt
 - Store your predecessors
 - Necessary to visualize route
- Visualization
 - Be aware of aspect ratio
 - Label your graph
 - Use appropriate line width

Evaluation

- Lab due: 15th December, 08:00 a.m.
- Source code of developed software
- Short presentation
 - Presentation: Video with audio commentary (.mp4)
 - 5 minutes
 - Peer-evaluation by 20th December

Peer-evaluation of presentations

- Watch and evaluate 3 presentations of your peers
- Assessment criteria
 - Presentation style
 - Completeness
 - Visualization of results and interpretation
 - Own cost function or comparison to A*

Best presentation award

3 best presentations will be rewarded with a small prize and will be put on TUBE

