Learning Pathway: One Month Internship Study

OUTLINE

- MRI: Inverse problem
- Wavelet Transform
 - Continuous Wavelet Transform
 - Discrete Wavelet Transform
 - Localization properties
 - Sparity
 - Denoising
- Compressed sensing
 - A new theory of sampling
 - Solving Underdetermined Systems
 - Incoherent sampling
 - Optimization Scheme
 - Demo

MRI: Inverse problem

 CWT: The integral sum of the signal multiplied by the Dilations and translations of the wavelet functions:

$$C(scale, position) = \int_{-\infty}^{\infty} f(t) \Psi(scale, position, t) dt$$

$$\psi_{\tau,s}(t) = \frac{1}{\sqrt{|s|}} \psi(\frac{t-\tau}{s})$$

• For a given wavelet function with fixed τ and s,

$$C = \langle f(t), \psi_{\tau,s}(t) \rangle$$

 For a set of wavelet functions with fixed s,

$$C(\tau) = f(t) * \psi_{-\tau,s}(-t)$$

- A Wavelet is a waveform of effectively limited duration that has an average value of zero.
- Admissibility condition:

$$C_{\psi} = \int_{\mathbb{R}} \frac{|\Psi(\omega)|^2}{|\omega|} d\omega < \infty$$

Zero mean:

$$\int_{-\infty}^{\infty} \Psi(t) \, \mathrm{d} \, t = 0$$

Finite energy:

$$\int_{-\infty}^{\infty} |\Psi(t)|^2 \mathrm{d}\,t \le \infty$$

Think wavelet in different perspectives:

 Cross correlation (inner product): A measure of the similarity between the signal and the scaled and shifted wavelet.

 Band-pass filtering (convolution): For a fixed scale, the wavelet transform is the convolution of the signal and the time reversed wavelet.

Shannon Wavelet Mexican hat Haar Morelet

Wavelet transform: Discrete Wavelet Transform

 DWT: Calculating the wavelets coefficients at only a subset of scales and shifted positions by splitting the signal to sub-bands:

Scale Discretization:

Wavelet transform: Discrete Wavelet Transform

Shifted position Discretization:

• According to Nyquist-Shannon sampling theorem: $f_s>2B$. Half of the samples can be discarded!

Wavelet transform: Discrete Wavelet Transform

2D-DWT: Do 1D-DWT horizontally and vertically.

Approxi	Horizont
mation	al details
Vertical	Diagonal
details	details

Wavelet Transform: Localization properties

At the Time-frequency plane, the Heisenberg Uncertainty Principle told us:

$$\Delta t \cdot \Delta f \ge \frac{1}{4\pi}$$

Wavelet Transform: Sparity

Sparse: few large coeffs, many small coeffs

Wavelet Transform: Sparity

Guerquin-Kern EPFL,PhD thiesis

Wavelet Transform: Denoising

• Frequency domain: Denoising with low pass filtering:

Wavelet Transform: Denoising

Wavelet denoising: denoising with soft thresholding:

Compressed Sensing: A new theory of sampling

First compress, then reconstruct. Instead of first collect, then compress.

Standard approach

Compressed sensing

Compressed Sensing: Solving Underdetermined Systems

Solve Ax = b when M<<N

- Sparsity and Incoherency
 - X is a K-sparse signal (K<m<<n): At most K of the coefficients of x can be non-zero.
 - The sensing matrix A is incoherent: $A^* \cdot A \approx I$

Compressed Sensing: Incoherent sampling

Applying inverse Fourier transform for reconstruction:

Compressed Sensing: Optimization Scheme

• Minimizes $l_p(x)$, s.t. $\overline{Ax = b}$

	Definition	Description
l_0	$x^{\#} = argmin_{X:Ax=b} x _{l^{0}}$ $ x _{l^{0}} = \sum_{i=1}^{N} x_{i} ^{0} = \#(1 \le i \le n, x_{i} \ne 0)$	NP-hard Problem
l_1	$x^{\#} = argmin_{X:Ax=b} \ x\ _{l^{1}}$ Solving non-linear convex optimization	Convex optimization Problem
l_2	$x^{\#} = argmin_{X:Ax=b} x _{l^{2}}$ $ x _{l^{2}} = A^{*}(AA^{*})^{-1}b$	Least Squares Solution

Geometry Interpretation

Compressed Sensing: Optimization Scheme

Reconstruction as an optimization problem

$$x^{\#} = argmin||y - Ax||_{2}^{2} + \lambda ||x||_{p}^{p}$$
Data consistency Regularization

 l_2 regularization

 l_1 regularization

Compressed Sensing: Demo

Thank you for your attention!

