Цель работы:

- Изучение функциональных характеристик типовых комбинационных устройств.
- Освоение построения логических схем с использованием типовых КУ.

Задание №1.

Спроектировать и проанализировать четырехразрядный шифратор.

- 1. Постройте таблицу истинности для четырехразрядного шифратора.
- 2. Составьте логические уравнения для каждого из выходов.
- 3. Разработайте схему шифратора.
- 4. Проанализируйте схему. Возможна ли ее оптимизация с целью уменьшения количества используемых логических элементов?

Таблица истинности для четырехразрядного шифратора:

Входы	Выходы
D_0	$Y_3 = 0; Y_2 = 0; Y_1 = 0; Y_0 = 0;$
D ₁	$Y_3 = 0; Y_2 = 0; Y_1 = 0; Y_0 = 1;$
D_2	$Y_3 = 0; Y_2 = 0; Y_1 = 1; Y_0 = 0;$
D ₃	$Y_3 = 0; Y_2 = 0; Y_1 = 1; Y_0 = 1;$
D ₄	$Y_3 = 0; Y_2 = 1; Y_1 = 0; Y_0 = 0;$
D ₅	$Y_3 = 0; Y_2 = 1; Y_1 = 0; Y_0 = 1;$
D ₆	$Y_3 = 0; Y_2 = 1; Y_1 = 1; Y_0 = 0;$
D ₇	$Y_3 = 0; Y_2 = 1; Y_1 = 1; Y_0 = 1;$
D ₈	$Y_3 = 1; Y_2 = 0; Y_1 = 0; Y_0 = 0;$
D9	$Y_3 = 1; Y_2 = 0; Y_1 = 0; Y_0 = 1;$
D ₁₀	$Y_3 = 1; Y_2 = 0; Y_1 = 1; Y_0 = 0;$
D ₁₁	$Y_3 = 1; Y_2 = 0; Y_1 = 1; Y_0 = 1;$
D ₁₂	$Y_3 = 1; Y_2 = 1; Y_1 = 0; Y_0 = 0;$
D ₁₃	$Y_3 = 1; Y_2 = 1; Y_1 = 0; Y_0 = 1;$
D ₁₄	$Y_3 = 1; Y_2 = 1; Y_1 = 1; Y_0 = 0;$
D ₁₅	$Y_3 = 1; Y_2 = 1; Y_1 = 1; Y_0 = 1;$

Логические уравнения для четырехразрядного шифратора:

$$Y_3 = D_{15} + D_{14} + D_{13} + D_{12} + D_{11} + D_{10} + D_9 + D_8$$

$$Y_2 = D_{15} + D_{14} + D_{13} + D_{12} + D_7 + D_6 + D_5 + D_4$$

$$Y_1 = D_{15} + D_{14} + D_{11} + D_{10} + D_7 + D_6 + D_3 + D_2 \\$$

$$Y_0 = D_{15} + D_{13} + D_{11} + D_9 + D_7 + D_5 + D_3 + D_1$$

Задание №2.

Спроектировать и проанализировать трехразрядный шифратор с приоритетом.

- 1. Постройте таблицу истинности для трехразрядного шифратора с приоритетом.
- 2. Составьте логические уравнения для каждого из выходов.
- 3. Разработайте схему шифратора.
- 4. Проанализируйте схему. Возможна ли ее оптимизация с целью уменьшения количества используемых логических элементов?

Таблица истинности для трехразрядного шифратора с приоритетом:

$\mathbf{D_2}$	\mathbf{D}_1	\mathbf{D}_0	\mathbf{Y}_{1}	Y_0
1	X	X	1	0
0	1	X	0	1
0	0	1	0	0
0	0	0	-	-

Логические уравнения для трехразрядного шифратора с приоритетом:

$$Y_1 = D_2$$

$$Y_0 = (D_1 \cdot \overline{D_2})$$

Логическая схема трехразрядного шифратора с приоритетом:

Задание №3.

- 1. Восстановите таблицу истинности по функциям, выданным согласно варианту.
- 2. Разработайте схему преобразователя кодов, в том числе используя созданный шифратор.
- 3. Подключите ко входным и выходным комбинациям схемы семисегментные дисплеи.

Исходные функции: $F1 = 7CDC_{16}$; $F2 = F31B_{16}$; $F3 = BCDA_{16}$; $F4 = 7759_{16}$

 $F1 = 7CDC_{16} = 1111\ 100\ 1101\ 1100_2$

 $F2 = F31B_{16} = 1111\ 0011\ 0001\ 1011_2$

 $F3 = BCDA_{16} = 1011 \ 1100 \ 1101 \ 1010_2$

 $F4 = 7759_{16} = 0111\ 0111\ 0101\ 1001_2$

Восстановленная таблица истинности:

а	b	С	d	F1	F2	F3	F4
0	0	0	0	1	1	1	0
0	0	0	1	1	1	0	1
0	0	1	0	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	0	1	0	1	0
0	1	0	1	1	0	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	1
1	0	0	0	1	0	1	0
1	0	0	1	1	0	1	1
1	0	1	0	0	0	0	0
1	0	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	1	0	1	1	0	0	0
1	1	1	0	0	1	1	0
1	1	1	1	0	1	0	1

Логическая схема преобразователя кодов с использованием созданного ранее шифратора.

Вывод: в результате работы были изучены различные типовые комбинационные устройства.