<u>Dashboard</u> / My courses / <u>Graph Theory-HK3-0405</u> / <u>Tuần 9 - Cây</u> / <u>Bài 5.1. Tìm cây khung bằng giải thuật Kruskal</u>

Started on	Friday, 4 July 2025, 2:30 PM
State	Finished
Completed on	Wednesday, 9 July 2025, 11:35 PM
Time taken	5 days 9 hours
Marks	0.90/1.00
Grade	9.00 out of 10.00 (90 %)

Question **1**Correct
Mark 0.90 out of 1.00

Viết chương trình đọc đồ thị vô hướng liên thông và tìm cây khung có trọng số nhỏ nhất bằng thuật toán Kruskal.

Đầu vào

Dữ liệu đầu vào được nhập từ bàn phím với định dạng:

- Dòng đầu tiên chứa 2 số nguyên n và m, tương ứng là số đỉnh và số cung.
- m dòng tiếp theo mỗi dòng chứa 3 số nguyên u, v, w mô tả cung (u, v) có trọng số w.

Đầu ra

- In ra màn hình trọng số của cây khung tìm được và danh sách các cung theo thứ tự tăng dần của trọng số.
- Các cung được in theo định dạng:

u v w

với (u < v), mỗi cung trên 1 dòng. Nếu hai cung có trọng số bằng nhau thì cung nào có u nhỏ hơn sẽ được in trước. Nếu có trọng số bằng nhau và u giống nhau thì cung nào có v nhỏ hơn sẽ in trước.

Xem thêm ví dụ trong phần For example.

For example:

Input			Result		
4	4		16	9	
1	2	3	3	4	1
2	3	6	1	2	3
4	3	1	2	3	6
1	4	9			

Answer: (penalty regime: 10, 20, ... %)

```
#include <stdio.h>
 2
    #include <stdlib.h>
 3
 4
    #define MAX_N 100
 5
    // danh sách cung
 6
 7
    typedef struct
 8 ▼ {
 9
        int u, v;
10
        int w;
    } Edge;
12
    typedef struct
13 ▼ {
14
        int n, m;
15
        Edge edges[MAX_N];
16
    } Graph;
17
18
    void init_graph(Graph *pG, int n)
19 ▼ {
20
        pG->n = n;
21
        pG->m = 0;
22
```

	Input	Expected	Got	
~	4 4	10	10	~
	1 2 3	3 4 1	3 4 1	
	2 3 6	1 2 3	1 2 3	
	4 3 1	2 3 6	2 3 6	
	1 4 9			

	Input	Expected	Got	
~	4 4	12	12	~
	1 2 9	1 4 3	1 4 3	
	3 1 5	2 3 4	2 3 4	
	1 4 3	1 3 5	1 3 5	
	2 3 4			
~	4 4	14	14	~
	1 2 3	1 2 3	1 2 3	
	3 2 5	2 3 5	2 3 5	
	4 2 6	2 4 6	2 4 6	
	3 4 9			
1	1	I .	I	l .

Passed all tests! ✓

Question author's solution (C):

```
#include <stdio.h>
 2
   #include <stdlib.h>
 3
   #define MAXM 500
 5
   #define MAXN 100
   //Cấu trúc dữ liệu của 1 cung
 7
 8 v typedef struct {
 9
        int u, v;
10
        int w;
11
   } Edge;
12
13 v typedef struct {
14
        int n, m;
15
        Edge edges[MAXM];
16
   } Graph;
17
18 void init_graph(Graph *pG, int n) {
19
        pG->n = n;
20
        pG->m = 0;
21 }
22
```

Correct

Marks for this submission: 1.00/1.00. Accounting for previous tries, this gives **0.90/1.00**.

→ Thuật toán Prim

Jump to...

Bài 5.2. tìm cây khung có trọng lượng nhỏ nhất bằng giải thuật Prim ►