Results

Table 1: Relative Average Bias of correctly specified Regression Parameters (Study 2)

	gSAM			ISAM-ML			ISAM-ULS			SEM				
us MP	0.07	-0.15 -0.55 -0.53 -0.16 -0.05	-0.16 -0.54 -0.52 0.17 -0.04	-0.11 -0.58 -0.55 0.06 -0.08	-0.13 -0.55 -0.55 0.15 -0.03	-0.13 -0.54 -0.55 0.17 -0.02	-0.13 -0.54 -0.52 0.10 -0.09	-0.17 -0.54 -0.52 0.16 -0.04	-0.18 -0.54 -0.51 0.17 -0.04	0.21 -0.46 -0.03 0.65 -0.05	0.16 -0.58 -0.49 0.21 -0.18	0.14 -0.58 -0.52 0.16 -0.20	f5~f4 f5~f3 f5~f2 f4~f2 f4~f1	
- & exogenous	0.36	0.07 -0.36 -0.38 0.14 -0.03	0.07 -0.37 -0.38 0.14 -0.03	0.10 -0.37 -0.40 0.10 -0.04	0.09 -0.36 -0.40 0.13 -0.02	0.09 -0.36 -0.39 0.14 -0.02	0.06 -0.35 -0.36 0.12 -0.05	0.05 -0.36 -0.36 0.14 -0.04	0.04 -0.37 -0.35 0.15 -0.04	0.56 -0.45 -0.40 0.22 -0.16	0.54 -0.44 -0.47 0.14 -0.19	0.53 -0.44 -0.50 0.12 -0.20	f5~f4 f5~f3 f5~f2 f4~f2 f4~f1	
endo-	0.15 -0.24 -0.26 0.08 -0.03	0.15 -0.23 -0.26 0.10 -0.02	0.15 -0.23 -0.25 0.10 -0.02	0.16 -0.24 -0.27 0.08 -0.02	0.16 -0.23 -0.26 0.10 -0.02	0.16 -0.23 -0.26 0.10 -0.01	0.13 -0.23 -0.24 0.10 -0.03	0.12 -0.23 -0.23 0.11 -0.03	0.12 -0.23 -0.23 0.11 -0.03	0.57 -0.32 -0.40 0.13 -0.11	0.69 -0.33 -0.46 0.09 -0.16	0.67 -0.32 -0.47 0.10 -0.16	f5~f4 f5~f3 f5~f2 f4~f2 f4~f1	
MP	-0.13 -0.51 -0.59 0.08 -0.09	-0.15 -0.48 -0.58 0.14 -0.05	-0.15 -0.48 -0.58 0.14 -0.04	-0.11 -0.51 -0.60 0.07 -0.08	-0.12 -0.48 -0.60 0.13 -0.03	-0.13 -0.48 -0.60 0.13 -0.02	-0.15 -0.48 -0.55 0.10 -0.08	-0.16 -0.48 -0.57 0.14 -0.05	-0.17 -0.48 -0.56 0.14 -0.04	0.25 -0.42 -0.55 0.21 -0.06	0.18 -0.48 -0.62 0.06 -0.18	0.15 -0.49 -0.63 0.03 -0.20	- f5~f4 - f5~f3 - f5~f2 - f4~f2 - f4~f1	
endogenous M	0.10	0.08 -0.30 -0.42 0.12 -0.04	0.08 -0.30 -0.42 0.12 -0.03	0.10 -0.31 -0.44 0.09 -0.04	0.10 -0.30 -0.43 0.12 -0.03	0.09 -0.30 -0.43 0.12 -0.02	0.06 -0.30 -0.40 0.11 -0.05	0.05 -0.30 -0.39 0.13 -0.04	0.05 -0.29 -0.39 0.13 -0.04	0.57 -0.35 -0.54 0.06 -0.16	0.55 -0.36 -0.55 0.05 -0.20	0.54 -0.36 -0.56 0.05 -0.20	f5~f4 f5~f3 f5~f2 f4~f2 f4~f1	Bias 1.5
en	-0.28	0.16 -0.17 -0.28 0.09 -0.02	0.15 -0.17 -0.28 0.09 -0.02	0.16 -0.18 -0.29 0.08 -0.02	0.16 -0.17 -0.28 0.09 -0.02	0.16 -0.17 -0.28 0.09 -0.01	0.13 -0.17 -0.25 0.09 -0.03	0.13 -0.16 -0.25 0.10 -0.03	0.13 -0.16 -0.25 0.10 -0.03	0.58 -0.26 -0.44 0.08 -0.11	0.70 -0.28 -0.49 0.06 -0.16	0.66 -0.27 -0.50 0.08 -0.15	f5~f4 f5~f3 f5~f2 f4~f2 f4~f1	1.0 0.5
P		-0.02 -0.16 0.10 -0.00 -0.01	-0.03 -0.15 0.11 0.01 0.00	-0.02 -0.24 0.06 -0.07 -0.06	-0.02 -0.16 0.10 0.00 -0.01	-0.04 -0.15 0.12 0.01 -0.00	0.01 -0.10 0.09 -0.02 -0.04	-0.02 -0.13 0.10 0.00 -0.00	-0.03 -0.15 0.11 0.01 0.00	-0.08 -0.30 1.00 0.36 0.20	-0.04 -0.23 0.31 0.15 0.02	-0.05 -0.23 0.24 0.10 0.00	- f5~f4 - f5~f3 - f5~f2 - f4~f2 - f4~f1	0.0 -0.5
exogenous MP	-0.02 -0.14 0.05 -0.00 -0.02	-0.02 -0.12 0.07 0.01 -0.00	-0.02 -0.12 0.07 0.01 0.00	-0.02 -0.14 0.05 -0.00 -0.02	-0.02 -0.12 0.07 0.01 -0.00	-0.02 -0.12 0.07 0.01 0.00	-0.01 -0.09 0.05 0.01 -0.00	-0.01 -0.12 0.07 0.01 0.00	-0.02 -0.12 0.07 0.01 0.00	-0.02 -0.20 0.25 0.16 0.03	-0.03 -0.18 0.17 0.09 0.01	-0.03 -0.17 0.13 0.06 0.00	f5~f4 f5~f3 f5~f2 f4~f2 f4~f1	-1.0 -1.5
e e	0.02	-0.01 -0.09 0.03 0.01 -0.00	-0.01 -0.09 0.03 0.01 0.00	-0.01 -0.10 0.02 0.00 -0.01	-0.01 -0.09 0.03 0.01 -0.00	-0.01 -0.09 0.03 0.01 0.00	-0.01 -0.09 0.02 0.01 0.00	-0.01 -0.09 0.03 0.01 0.00	-0.01 -0.09 0.03 0.01 0.00	-0.01 -0.12 0.07 0.05 0.01	-0.01 -0.11 0.05 0.03 0.00	-0.01 -0.11 0.05 0.02 0.00	f5~f4 f5~f3 f5~f2 f4~f2 f4~f1	
t MP		0.00 -0.00 -0.00 -0.01 -0.01	0.00 -0.00 -0.00 -0.00 0.00	-0.01 -0.05 -0.03 -0.05 -0.06	0.00 -0.00 -0.00 -0.01 -0.01	0.00 -0.00 -0.00 -0.00 0.00	-0.00 0.02 0.01 -0.00 -0.05	0.00 0.00 0.00 -0.00 -0.00	0.00 -0.00 -0.00 -0.00 -0.00	0.03 0.18 0.19 0.16 0.16	0.01 0.02 0.02 0.02 0.02	0.00 0.00 -0.00 0.00 0.00	- f5~f4 - f5~f3 - f5~f2 - f4~f2 - f4~f1	
measurement	-0.00 -0.01 -0.00 -0.01 -0.01	0.00 -0.00 0.00 0.00 -0.00	0.00 -0.00 -0.00 -0.00 -0.00	-0.00 -0.01 -0.00 -0.01 -0.01	0.00 -0.00 0.00 0.00 -0.00	0.00 -0.00 -0.00 -0.00 -0.00	-0.00 0.00 0.01 -0.00 -0.00	0.00 0.00 0.00 0.00 0.00	-0.00 -0.00 -0.00 -0.00 -0.00	0.01 0.03 0.03 0.03 0.03	0.00 0.01 0.01 0.01 0.01	0.00 0.00 -0.00 0.00 0.00	- f5~f4 - f5~f3 - f5~f2 - f4~f2 - f4~f1	
no m	-0.00 -0.01 -0.00 -0.00 -0.01 100	0.00 0.00 0.00 0.00 -0.00 400	-0.00 -0.00 -0.00 0.00 0.00 0.00 6400	-0.00 -0.01 -0.00 -0.00 -0.01 100	0.00 0.00 0.00 0.00 0.00 -0.00 400	-0.00 -0.00 -0.00 0.00 0.00 6400	-0.00 0.00 0.00 0.00 0.00 0.00 100	0.00 0.00 0.00 0.00 0.00 0.00 400	-0.00 -0.00 -0.00 0.00 0.00 0.00 6400	0.00 0.01 0.01 0.01 0.01 0.01	0.00 0.00 0.00 0.00 0.00 0.00 1	0.00 -0.00 -0.00 0.00 0.00 0.00 6400	- f5~f4 - f5~f3 - f5~f2 - f4~f2 - f4~f1	

Note. This figure shows the

Table 2: Absolute Average Bias of Regression Parameters not Present in the Population Model (Study 2)

		gSAM		ISAM-ML			ISAM-ULS			SEM				
₀	-0.00	-0.01	-0.02	-0.00	-0.01	-0.02	-0.00	-0.00	-0.01	-0.06	-0.02	-0.01	- f4~f3	
MP r = 0.3	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.21	0.13	0.11	- f3~f2	
) = J	0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00	- f3~f1	
exogenous	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.00	-0.00	-0.00	-0.01	0.01	0.02	- f4~f3	
xoger = 0.5	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.18	0.14	0.12	- f3~f2	
⊗	0.00	-0.00	-0.00	0.00	0.00	0.00	-0.01	-0.01	-0.01	0.00	-0.00	-0.00	- f3~f1	
endo-	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.00	0.00	0.00	0.01	0.04	0.04	- f4~f3	
= er	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.11	0.10	0.10	- f3~f2	
۔ ا	-0.00	-0.00	-0.00	0.00	0.00	-0.00	-0.01	-0.01	-0.01	-0.00	-0.00	-0.00	- f3~f1	
0.3	0.07	0.07	0.08	0.07	0.07	0.07	0.07	0.08	0.08	0.11	0.10	0.10	- f4~f3	
0 =	0.00	-0.00	-0.00	0.00	0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	- f3~f2	
MP	-0.00	-0.01	-0.01	0.00	0.00	-0.00	-0.00	-0.01	-0.01	-0.01	-0.01	-0.01	- f3~f1	
N sno	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.10	0.10	0.10	- f4~f3	
enous = 0.5	0.00	0.00	-0.00	0.00	0.00	-0.00	-0.00	-0.00	-0.00	0.00	0.00	-0.00	- f3~f2	Bias
endogenous r = 0.5	-0.00	-0.00	-0.00	0.00	-0.00	-0.00	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	- f3~f1	
en 7.	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.08	0.09	0.10	- f4~f3	0.2
7.0=	0.00	0.00	-0.00	0.00	0.00	-0.00	-0.00	-0.00	-0.00	-0.00	0.00	-0.00	- f3~f2	0.1
= =	-0.00	-0.00	-0.00	0.00	0.00	-0.00	-0.01	-0.01	-0.01	-0.00	-0.00	-0.00	- f3~f1	0.1
m	-0.06	-0.08	-0.08	-0.06	-0.08	-0.08	-0.09	-0.08	-0.08	-0.13	-0.11	-0.10	- f4~f3	0.0
= 0.3	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.20	0.13	0.11	- f3~f2	
_	-0.00	0.00	0.00	-0.00	0.00	0.00	0.00	0.00	0.00	-0.00	0.00	-0.00	- f3~f1	-0.1
Is M	-0.06	-0.07	-0.07	-0.06	-0.07	-0.07	-0.07	-0.07	-0.07	-0.10	-0.09	-0.08	- f4~f3	-0.2
enous = 0.5	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.18	0.14	0.12	- f3~f2	
exogenous MP	-0.00	0.00	0.00	-0.00	0.00	0.00	0.00	0.00	0.00	-0.00	0.00	0.00	- f3~f1	
	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.06	-0.06	-0.06	- f4~f3	
= 0.7	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.11	0.10	0.10	- f3~f2	
ت ا	-0.00	0.00	0.00	-0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	- f3~f1	
б	0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.01	-0.00	-0.00	- f4~f3	
= 0.3	-0.00	0.00	0.00	-0.00	0.00	0.00	-0.00	0.00	0.00	0.00	0.00	0.00	- f3~f2	
M	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	- f3~f1	
measurement MP	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	- f4~f3	
= 0.5	0.00	0.00	-0.00	0.00	0.00	-0.00	-0.00	0.00	-0.00	0.00	0.00	-0.00	- f3~f2	
least	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	- f3~f1	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	- f4~f3	
no = 0.7	0.00	0.00	-0.00	0.00	0.00	-0.00	-0.00	0.00	-0.00	0.00	0.00	-0.00	- f3~f2	
ت	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	-0.00	- f3~f1	
	100	400	6400	100	400	6400	100	400	6400	100	400	6400	_	

Note. This figure shows the