SEQUENCE LISTING

```
<110> The Curators of the University of Missouri
   <120> PHAGE DISPLAY SELECTION OF ANTI FUNGAL PEPTIDES
   <130> UMO 1521.1
   <150> US 60/195,785
   <151>
          2000-04-10
   <160>
   <170> PatentIn version 3.0
   <210> 1
   <211>
         33
   <212> PRT
   <213> Type 88 filamentous bacteriophage
   <220>
   <221>
         VARIANT
   <222>
         (9)..(23)
<223> x=any amino acid encoded by the codon NNK
   <400> 1
   Leu Val Pro Met Leu Ser Phe Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
                   5
   Xaa Xaa Xaa Xaa Xaa Xaa Pro Ala Glu Gly Asp Asp Pro Ala Lys
Ala
   <210> 2
   <211> 2.0
   <212> DNA
   <213> Artificial
   <220>
          misc_feature
   <221>
   <222>
          (1)..(20)
   <223> Primer
   <400> 2
                                                                        20
   ggagccttta attgtatcgg
   <210> 3
   <211> 19
   <212> DNA
```

<213> Artificial

```
<220>
   <221> misc_feature
   <222> (1)..(19)
   <223> Primer
   <400> 3
   agtagcagaa gcctgaaga
   <210> 4
   <211> 9
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(9)
   <223> Random peptide insert
ij
  <400> 4
ij
🔟 Ala Ala Pro Asp Leu Gln Asp Ala Met
<210> 5
   <211> 9
   <212> PRT
   <213> Artificial
  <220>
  <221> DOMAIN
  <222> (1)..(9)
  <223> Random peptide insert
4
   <400> 5
   Ala Asp Arg Leu Asn Ser Asp Ala Gly
   <210> 6
   <211> 9
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(9)
   <223> Random peptide insert
   <400> 6
   Ala Asp Arg Pro Ser Thr Thr Ser Leu
                  5
```

19

```
<210> 7
   <211>
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222>
         (1)..(9)
   <223> Random peptide insert
   <400> 7
   Ala Asp Pro Pro Arg Thr Val Ser Thr
   <210> 8
   <211> 9
   <212> PRT
  <213> Artificial
囗
  <220>
  <221> DOMAIN
  <222> (1)..(9)
   <223> Random peptide insert
<400> 8
  Ala Asp Arg Pro Ser Met Ser Pro Thr
  <210> 9
   <211> 9
  <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(9)
   <223> Random peptide insert
   <400> 9
   Ala Asp Arg Thr Ser Asn Ala Ser Thr
   <210> 10
   <211> 9
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(9)
```

```
<223> Random peptide insert
   <400> 10
  Ala Asp Lys Ser Tyr Ile Pro Ser Ser
   <210> 11
   <211> 9
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222>
         (1)..(9)
   <223> Random peptide insert
   <400> 11
🗐 Ala Val Arg Asn Pro Ser His His Ser
   <210> 12
   <211> 9
   <212> PRT
   <213> Artificial
   <220>
  <221> DOMAIN
  <222> (1)..(9)
  <223> Random peptide insert
   <400> 12
   Ala Asp Pro Thr Pro Arg Gly His Ser
   <210> 13
   <211> 9
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(9)
   <223> Random peptide insert
   <400> 13
   Ala Asp Pro Thr Arg Gln Pro His Ser
   <210> 14
```

```
<212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(9)
   <223> Random peptide insert
   <400> 14
   Ala Glu His Gln Asn Ser Ala Gly Pro
   <210> 15
   <211> 10
   <212> PRT
   <213> Artificial
= <220>
221> DOMAIN
(222>
         (1)..(10)
< <223> Random peptide insert
:0
<400> 15
   Ala Asp Ala Arg Ser Ala Gly Ala Ile Ser
   <210> 16
  <211> 9
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(9)
   <223> Random peptide insert
   <400> 16
   Ala Asp Ser Lys Asn Ala Gly Pro Met
   <210> 17
   <211> 9
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222>
         (1)..(9)
   <223> Random peptide insert
```

<211> 9

```
<400> 17
   Ala Glu Thr Lys Phe Ser Gly Ser Ala
   <210> 18
   <211> 9
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(9)
   <223> Random peptide insert
   <400> 18
   Ala Asp Pro Lys Gly Ser Gly Val Thr
Q
Œ
   <210> 19
   <211> 9
   <212> PRT
   <213> Artificial
J
<220>
   <221> DOMAIN
   <222>
         (1)..(9)
<223> Random peptide insert
   <400> 19
   Ala Gly Leu Thr Ser Pro Asn Asp Met
   <210> 20
   <211> 9
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222>
         (1)..(9)
   <223> Random peptide insert
   <400> 20
   Ala Asp Ile Thr Asp Pro Met Gly Ala
   <210> 21
   <211> 9
   <212> PRT
```

```
<220>
    <221> DOMAIN
    <222> (1)..(9)
    <223> Random peptide insert
    <400> 21
    Ala Val Gly Thr His Thr Pro Asp Ser
    <210> 22
    <211> 9
    <212> PRT
    <213> Artificial
    <220>
    <221> DOMAIN
    <222> (1)..(9)
Ð
    <223> Random peptide insert
<400> 22
    Ala Val Ser Pro Asn Val His Asp Gly
    <210> 23
    <211> 15
    <212> PRT
    <213> Artificial
    <220>
    <221> DOMAIN
    <222>
           (1)..(15)
    <223> Random peptide insert
    <400> 23
    Val Ala Ala Phe Ser Leu Val Trp Ala Thr His Leu Met Leu Ser
                                        10
    <210> 24
    <211> 15
    <212> PRT
    <213> Artificial
    <220>
    <221> DOMAIN
    <222>
           (1)..(15)
    <223> Random peptide insert
    <400> 24
```

<213> Artificial

```
Leu Thr Arg Cys Leu Val Ser Thr Glu Met Ala Ala Arg Arg Pro
   <210> 25
   <211> 15
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
   <400> 25
   Ser Ala Pro Tyr Leu Pro Tyr Phe Asp Leu Leu His Phe Pro Ile
210> 26
(1) <211> 15
  <212> PRT
   <213> Artificial
IU
ij
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
<220>
  <221> VARIANT
   <222> (14)..(14)
   <223> x=unknown amino acid
<u>_</u>
   <400> 26
   Pro Ser Ser Tyr Glu Ala Ser Arg Arg Pro Glu His Trp Xaa Phe
                   5
   <210> 27
   <211> 15
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
   <400> 27
   Ser Ala Thr Asp Thr Thr Leu Pro Met Met Thr Ala Ile Arg Ser
                   5
                                       10
```

```
<210> 28
    <211>
         15
    <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
   <220>
   <221> VARIANT
   <222> (9)..(9)
   <223> x=unknown amino acid
   <400> 28
   Thr Arg Leu Ser Pro Met Glu Ser Xaa Ala Met Leu Leu Ala Pro
٠D
                                       10
ij
ïU
   <210> 29
   <211> 15
:[]
   <212> PRT
M
   <213> Artificial
F
Ò
   <220>
   <221> DOMAIN
<222>
          (1)..(15)
   <223> Random peptide insert
   <400> 29
   Leu Leu Pro Val Ser Pro Pro Phe Ala Pro Asn Ala Ser Ser Thr
                                       10
   <210> 30
   <211> 15
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
   <400> 30
   Met Ser Asn Phe Pro Thr Ser His Ala Pro Cys Pro Val Glu Ile
   1
                   5
                                       10
                                                           15
   <210> 31
   <211> 15
```

.

```
<213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
   <400> 31
   Glu Phe Arg Lys Asn Tyr Pro Ser Ala Ala Pro Leu Ile Pro Arg
                  5
   <210> 32
   <211> 15
   <212> PRT
   <213> Artificial
   <220>
  <221> DOMAIN
4 <222> (1)..(15)
  <223> Random peptide insert
Ш
ı
   <220>
M
   <221> VARIANT
   <222> (2)..(2)
   <223> x=unknown amino acid
<400> 32
  Pro Xaa Val His Gly Ser Ile Pro Leu Thr Pro Pro Leu Gly Phe
                                      10
<210> 33
   <211> 15
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
   <220>
   <221> VARIANT
   <222> (3)..(3)
   <223> x=unknown amino acid
   <400> 33
   Leu Phe Xaa Cys Tyr Pro Pro Cys Thr Tyr Ser Tyr Cys Leu Ser
                                      10
```

∙,

<212> PRT

```
<210> 34
   <211> 15
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
   <220>
   <221> VARIANT
   <222> (14)..(14)
   <223> x=unknown amino acid
   <400> 34
Met Ser Asn Phe Pro Thr Ser His Ala Pro Cys Pro Val Xaa Ile
                  5
                                      10
Ħ
||| <210> 35
<211> 15
  <212> PRT
   <213> Artificial
ij
   <220>
   <221> DOMAIN
<222> (1)..(15)
   <223> Random peptide insert
   <400> 35
   Pro Glu Trp Lys Ser Ser Trp Ser Pro Cys Thr Pro Arg Cys Pro
   <210> 36
   <211> 15
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
   <220>
   <221> VARIANT
   <222>
         (11)..(11)
   <223> x=unknown amino acid
   <400> 36
```

```
Ala Met Ser Arg Trp Leu Arg Pro Arg Glu Xaa Asn Ala Pro Pro
   <210> 37
   <211> 15
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
   <220>
   <221> VARIANT
   <222> (6)..(6)
   <223> x=unknown amino acid
Ð
  <220>
  <221> VARIANT
M
  <222> (10)..(10)
  <223> x=unknown amino acid
ĮЛ
: j==
   <400> 37
   Thr His Thr Thr Phe Xaa Val Thr Val Xaa Leu His Glu Pro Pro
  <210> 38
  <211> 15
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
   <400> 38
   Met Thr Ser Pro Arg Asn Ser Gln Leu Ile Val Pro Phe Cys Leu
   <210> 39
   <211> 15
   <212> PRT
   <213> Artificial
   <220>
   <221> DOMAIN
   <222> (1)..(15)
   <223> Random peptide insert
```

```
<400> 39
Pro Thr Leu Gly Arg Phe Asn Arg Pro Ser Cys Ser Ile Ile Val
<210> 40
<211> 15
<212> PRT
<213> Artificial
<220>
<221> DOMAIN
<222> (1)..(15)
<223> Random peptide insert
<400> 40
Ala Pro Gln Cys His Pro His Leu Pro Phe Asp Met Ile His Val
                                    10
<210> 41
<211> 15
<212> PRT
<213> Artificial
<220>
<221> DOMAIN
<222>
      (1)..(15)
<223> Random peptide insert
<220>
<221> VARIANT
<222>
      (12)..(12)
<223> x=unknown amino acid
<400> 41
Asn His Asn Ser Leu Pro Ala Gln Tyr Leu Val Xaa Ile Leu Arg
                                    10
<210> 42
<211> 15
<212> PRT
<213> Artificial
<220>
<221> DOMAIN
<222>
      (1)..(15)
<223> Random peptide insert
<400> 42
```

Д

M

CINTAL THOU

```
Asp Gln Pro Cys Thr Pro Ser Pro Asp Val Ser Phe Tyr Arg Ser
    <210> 43
    <211> 15
    <212> PRT
    <213> Artificial
    <220>
    <221> DOMAIN
    <222> (1)..(15)
    <223> Random peptide insert
    <400> 43
    Val Ala Ala Pro Ser His Trp Leu Lys Pro Ser Leu Asp Cys Phe
Ü
    <210> 44
    <211> 15
<212> PRT
    <213> Artificial
<220>
    <221> DOMAIN
    <222> (1)..(15)
    <223> Random peptide insert
    <400> 44
    Asn Pro Leu Tyr Lys Asn Pro Pro Pro Arg Val Ala Met Cys Leu
                                       10
    <210> 45
    <211> 15
    <212> PRT
    <213> Artificial
    <220>
    <221> DOMAIN
    <222>
          (1)..(15)
    <223> Random peptide insert
    <400> 45
    Leu Ile Phe Arg Tyr Ala Pro Pro Pro Leu Phe Leu Arg Pro Pro
                                       10
    <210> 46
    <211> 36
    <212> DNA
    <213> Artificial
```

```
<220>
    <221> misc_feature
    <222>
          (1)..(36)
    <223> + strand of DNA encoding random peptide Pc 87
    <400> 46
    agctagcaga tagaccatca atgtcaccaa catagt
                                                                         36
    <210> 47
    <211> 36
    <212> DNA
    <213> Artificial
    <220>
    <221> misc_feature
    <222> (1)..(36)
    <223> - strand of DNA encoding peptide Pc 87
4
    <400> 47
Ħ
    ctagactatg ttggtgacat tgatggtcta tctgct
                                                                         36
TU
<210> 48
    <211> 611
    <212> PRT
    <213> Artificial
<220>
    <221> SIGNAL
    <222> (1)..(85)
    <223> Mat-alpha secretory sequence
    <220>
    <221> DOMAIN
    <222> (86)..(600)
    <223> Cytokinin oxidase 1
    <220>
    <221> DOMAIN
    <222> (601)..(602)
    <223> Linker
    <220>
    <221> DOMAIN
    <222>
          (603)..(611)
    <223> Random peptide Pc 87
    <400> 48
```

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser

1				5					10					15	
Ala	Leu	Ala	Ala 20	Pro	Val	Asn	Thr	Thr 25	Thr	Glu	Asp	Glu	Thr 30	Ala	Gln
Ile	Pro	Ala 35	Asp	Ala	Val	Ile	Gly 40	Tyr	Ser	Asp	Leu	Glu 45	Gly	Asp	Phe
Asp	Val 50	Ala	Val	Leu	Pro	Phe 55	Ser	Asn	Ser	Thr	Asn 60	Asn	Gly	Leu	Leu
Phe 65	Ile	Asn	Thr	Thr	Ile 70	Ala	Ser	Ile	Ala	Ala 75	Lys	Glu	Glu	Gly	Val 80
Ser	Leu	Glu	Lys	Arg 85	Leu	Ala	Ala	Gly	Thr 90	Pro	Ala	Leu	Gly	Asp 95	Asp
Arg	Gly	Arg	Pro 100	Trp	Pro	Ala	Ser	Leu 105	Ala	Ala	Leu	Ala	Leu 110	Asp	Gly
Lys	Leu	Arg 115	Thr	Asp	Ser	Asn	Ala 120	Thr	Ala	Ala	Ala	Ser 125	Thr	Asp	Phe
Gly	Asn 130	Ile	Thr	Ser	Ala	Leu 135	Pro	Ala	Ala	Val	Leu 140	Tyr	Pro	Ser	Thr
Gly 145	Asp	Leu	Val	Ala	Leu 150	Leu	Ser	Ala	Ala	Asn 155	Ser	Thr	Pro	Gly	Trp 160
Pro	Tyr	Thr	Ile	Ala 165	Phe	Arg	Gly	Arg	Gly 170	His	Ser	Leu	Met	Gly 175	Gln
Ala	Phe	Ala	Pro 180	Gly	Gly	Val	Val	Val 185	Asn	Met	Ala	Ser	Leu 190	Gly	Asp
Ala	Ala	Ala 195	Pro	Pro	Arg	Ile	Asn 200	Val	Ser	Ala	Asp	Gly 205	Arg	Tyr	Val
Asp	Ala 210	Gly	Gly	Glu	Gln	Val 215	Trp	Ile	Asp	Val	Leu 220	Arg	Ala	Ser	Leu
Ala 225	Arg	Gly	Val	Ala	Pro 230	Arg	Ser	Trp	Asn	Asp 235	Tyr	Leu	Tyr	Leu	Thr 240
Val	Gly	Gly	Thr	Leu 245	Ser	Asn	Ala	Gly	Ile 250	Ser	Gly	Gln	Ala	Phe 255	Arg
His	Gly	Pro	Gln 260	Ile	Ser	Asn	Val	Leu 265	Glu	Met	Asp	Val	Ile 270	Thr	Gly
His	Gly	Glu 275	Met	Val	Thr	Cys	Ser 280	Lys	Gln	Leu	Asn	Ala 285	Asp	Leu	Phe
Asp	Ala 290	Val	Leu	Gly	Gly	Leu 295	Gly	Gln	Phe	Gly	Val 300	Ile	Thr	Arg	Ala

Arg Ile Ala Val Glu Pro Ala Pro Ala Arg Ala Arg Trp Val Arg Phe

305 310 315 320 Val Tyr Thr Asp Phe Ala Ala Phe Ser Ala Asp Gln Glu Arg Leu Thr 325 330 Ala Pro Arg Pro Gly Gly Gly Gly Ala Ser Phe Gly Pro Met Ser Tyr Val Glu Gly Ser Val Phe Val Asn Gln Ser Leu Ala Thr Asp Leu Ala Asn Thr Gly Phe Phe Thr Asp Ala Asp Val Ala Arg Ile Val Ala Leu Ala Gly Glu Arg Asn Ala Thr Thr Val Tyr Ser Ile Glu Ala Thr Leu Asn Tyr Asp Asn Ala Thr Ala Ala Ala Ala Ala Val Asp Gln Glu Leu 410 Ala Ser Val Leu Gly Thr Leu Ser Tyr Val Glu Gly Phe Ala Phe Gln 420 Arg Asp Val Ala Tyr Ala Ala Phe Leu Asp Arg Val His Gly Glu Glu 440 Val Ala Leu Asn Lys Leu Gly Leu Trp Arg Val Pro His Pro Trp Leu 450 Asn Met Phe Val Pro Arg Ser Arg Ile Ala Asp Phe Asp Arg Gly Val Phe Lys Gly Ile Leu Gln Gly Thr Asp Ile Val Gly Pro Leu Ile Val Tyr Pro Leu Asn Lys Ser Met Trp Asp Asp Gly Met Ser Ala Ala Thr 500 505 Pro Ser Glu Asp Val Phe Tyr Ala Val Ser Leu Leu Phe Ser Ser Val 520 Ala Pro Asn Asp Leu Ala Arg Leu Gln Glu Gln Asn Arg Arg Ile Leu 530 535 Arg Phe Cys Asp Leu Ala Gly Ile Gln Tyr Lys Thr Tyr Leu Ala Arg His Thr Asp Arg Ser Asp Trp Val Arg His Phe Gly Ala Ala Lys Trp Asn Arg Phe Val Glu Met Lys Asn Lys Tyr Asp Pro Lys Arg Leu Leu 580 585 Ser Pro Gly Gln Asp Ile Phe Asn Lys Leu Ala Asp Arg Pro Ser Met 600 605 595 Ser Pro Thr