Introdução a Cloud Computing

- A ideia é que serviços básicos e essenciais são todos entregues de uma forma transparente
- Paradigmas:
 - Ideia antiga: Software como um Serviço (SaaS);
 - Entrega de aplicações através da Internet.
 - Recentemente: "[Hardware, Infraestrutura, Plataforma]
 - como um serviço"
 - "X como um serviço"

Computação em Nuvem: Por que agora?

- Experiência com DataCenters muito grande:
 - Economia de escala sem precedentes.
- Fatores de tecnologia:
 - Internet de banda larga difundida;
 - Maturidade de tecnologias de virtualização.
- Fatores de negócios:
 - Custo inicial mínimo;
 - Modelo de pagamento baseado no uso:
 - Pay-as-you-go.

Virtualização.

- Alto investimento inicial
- Alto custo de manutenção
- Quant. fixa de recursos
- Dificuldade de escalabilidade

- Pagamento pelo uso
- Menor custo de manutenção
- Escalabilidade linear
- Tolerância a falhas
- Sob demanda

- Nuvem [Buyya et al. 2009]
 - É uma metáfora para a Internet ou infraestrutura de comunicação entre os componentes arquiteturais, baseada em uma abstração que oculta a complexidade de infraestrutura.

- Evolução dos serviços e produtos de TI sob demanda:
 - Utility Computing.
- Objetivo da Utility Computing:
 - Fornecer os componentes básicos como:
 - Armazenamento, CPUs e largura de banda de uma rede como uma mercadoria através de provedores especializados com um baixo custo unitário (sob demanda).

Utility Computing

- Os usuários não precisam se preocupar:
 - Escalabilidade:
 - A capacidade fornecida é praticamente infinita.
 - Disponibilidade:
 - Acesso a qualquer momento.
 - Desempenho:
 - Tempos de resposta s\u00e3o quase constantes;
 - Backups:
 - Responsabilidade do provedor.

- O NIST (National Institute of Standards and Technology)
 define computação em nuvem como um paradigma em
 evolução:
 - Definições, casos de uso, tecnologias, problemas, riscos e benefícios sobre nuvem serão redefinidos e evoluirão com o tempo
- Modelo de nuvem do NIST é composto:
 - Cinco características essenciais;
 - Três modelos de serviço;
 - Quatro modelos de implantação.

- Definição [NIST 2009]
 - Computação em nuvem é um modelo que possibilita acesso, de modo conveniente e sob demanda, a um conjunto de recursos computacionais configuráveis que podem ser rapidamente adquiridos e liberados com mínimo esforço gerencial ou interação com o provedor de serviços.

Nível de Controle

Modelos de Serviços

PaaS

Platform as a Service

MapReduce

laaS

Infrastructure as a Service

Data Center Infrastructure

Servers, Networking Hardware

Nível de Abstração

SaaS

- Software com propósito específico que está disponível por meio da Internet;
- Acesso:
 - Interface thin client: navegador web, interface de programa (menos comum);
- Foco na inovação;
- SaaS reduz os custos;
- Exemplos de SaaS:
 - CRM (Customer Relationship Management) on-line do Salesforce;
 - Google Drive.

PaaS

- Infraestrutura de alto nível para implementar e testar aplicações na nuvem;
- PaaS fornece:
 - SO, ambientes de desenvolvimento, suporte à bibliotecas e linguagens de programação, rede, etc.;
- PaaS disponibiliza ambientes escaláveis:
 - Impõe limitações na concepção das aplicações;
- Exemplos de PaaS:
 - Google App Engine;
 - Microsoft Azure.

laaS

- Objetivo:
 - Tornar mais fácil e acessível a disponibilização de recursos:
 - Servidores, rede, armazenamento.
- Virtualização
 - Uso eficiente de recursos;
- Exemplos de laaS:
 - O Amazon EC2 (Elastic Cloud Computing);
 - Eucalyptus;
 - OpenNebula.

Modelos de Implantação

Papéis na Nuvem

Características Essenciais

- Self-service sob demanda;
- Amplo acesso;
- Pooling de recursos;
- Elasticidade rápida;
- Serviço medido.

Self-service sob Demanda

- O usuário pode adquirir unilateralmente recursos computacionais:
 - Sem precisar de interação humana com os provedores de cada serviço;
 - Servidores mais potentes, maior banda na rede, mais armazenamento, etc.
- Hardware e o software na nuvem:
 - Podem ser automaticamente reconfigurados e manipulados;
- Modificações são apresentadas de forma transparente para os usuários com perfis diferentes.

Amplo Acesso

- Recursos são disponibilizados por meio da rede e acessados através de mecanismos padronizados possibilitam o uso por plataformas Thin ou Thin Client:
 - Celulares, Laptops e PDAs;
- A interface de acesso a nuvem não obriga os usuários a mudar suas condições e ambientes de trabalho.

Pooling de recursos

- Recursos computacionais do provedor são organizados em um pool para servir múltiplos usuários:
 - Modelo multi-tenant
 - Diferentes recursos virtuais e físicos atribuídos e reatribuídos dinamicamente de acordo com a demanda do usuário;
 - Exemplos de recursos: armazenamento, processamento, memória, e banda de rede;
- Transparente para o usuário:
 - Podendo somente especificar a localização em um nível mais alto de abstração:
 - País, estado ou DataCenter.

Elasticidade Rápida

- Recursos podem ser adquiridos de forma rápida e elástica
 - Em alguns casos automaticamente;
 - Escalável com o aumento da demanda
 - Liberados na retração dessa demanda
- Recursos disponíveis para uso
 - Parecem ser ilimitados
 - Podem ser adquiridos em qualquer quantidade e a qualquer momento
- Virtualização

Utilização dos Recursos

Elasticidade na Nuvem

Serviço medido

- Monitoramento e controle:
 - Cobrança;
 - Qualidade.
- Para garantir o QoS (Quality of Service)
 - Acordos de nível de serviço
 - SLA (Services Level Agreement)
- O SLA tem informações sobre os níveis
 - Disponibilidade, desempenho, penalidades