Unveiling negativity, offensive language and hate speech

An analysis of the effects of content creators' socio structure and platform characteristics using a representative sample of YouTube channels from German-speaking countries

Claudia Buder, Nina-Sophie Fritsch, Chiara Osorio Krauter, Aaron Philipp, Roland Verwiebe, Sarah Weißmann

30th International Conference of Europeanists Radical Europe: Violence, Emancipation & Reaction July 3 - 5, 2024 | Lyon

State of the art

- Relevance: Negativity and hate speech in comments influence the well-being and mental health of CCs (Krämer et al., 2021; Lutz & Schneider, 2021), whose working conditions are already quite stress- and harmful (we tend to accept this but wouldn't for many other occupations).
- There is a <u>smaller number of studies</u> analysing **risk factors** for the occurrence of **negativity** and **hate speech** in **comments** (especially missing in a quantitative, comprehensive view).

State of the art: At-risk factors

Mainly qualitative research shows, affected are:

- Female CC (especially in science, politics or gaming) (Kim, 2023)
- **BIPoC** CC (Sue et al., 2007, Tynes et al. 2018)
- Disabled CC (Heung et al. 2024)
- Young CC (Obermaier & Schmuck 2022)
- A visible religious affiliation CC (Keipi et a. 2017)
- Large audience (Thelwall et al., 2012), fluid communities or viral videos (Mathew et al. 2019; Uyheng, J., & Carley, K. M.2021)
- CC producing polarizing content or draw hate bubbles (Goel et al., 2023; Xin, 2023)
- CC producing content in topics gaming or science (Döring & Mohseni, 2019)

Research question

To what extent are **negativity** and **hate speech** in YT comments influenced by the content creators' **socio structure** (e.g. age, gender, religion, race) and **specific platform characteristics of YouTube** (e.g. channel topic, number of subscribers,

Universität Potsdam 05.07.2024

channel age, community strength)?

Hypotheses

- **H1**: The incidence of negativity and hate speech in comments is determined by content creatos' **socio structure** that "provoke" people to criticize or hate certain content.
 - The current state of the art indicates that women, BIPoCs, religious CCs and young CCs are at risk (effects of education are open for debate).
- **H2**: The incidence of negativity and hate speech in comments is determined by **platform characteristics** that create a more toxic environment for CCs.
 - The current state of the art indicates that larger/more popular channels and certain topics are at risk.

Data, design of the study

115.976

• full coverage of channels in Germany, Austria & Switzerland (Dec. 2022; min. 10 videos)

5000

Random Sample and classification of the channels

4352

• Exclusion of media and promotional channels

3746

- Filter channels which produce content for the German-Speaking Community
- 36 million YT-Comments

05.07.2024

Data, design of the study

- Jul-Dec 2023: Web scraping (with the YouTube Data API v3)
 - all comments under each video of our classified channels
 - platform variables: number of subscribers, views, videos, channel foundation
- We used a hand-coded classification survey to categorize
 - Content Creators' socio-structure: sex, age, race, education, migration background, religious visibility
 - platform related variables of the channel: channel topic, visibility of the CC etc.

Unique combination of socio-structural and platform variables → Research gap

Sample composition

Variables	N
Sex	
Female	565
Male	2597
Mixed	76
Missing	508
Race	
BIPoC	351
White	1834
Mixed	13
Missing	1548
Migration Background	
Yes	398
No	1235
Mixed	7
Missing	2106
Education	
Low	198
High	345
Mixed	0
Missing	3203

Variables	N
Age	
$\leq 20 \text{ years}$	557
21-30 years	817
31-40 years	584
40+ years	661
Mixed	33
Missing	1094
Religion	
Yes	26
No	529
Mixed	0
Missing	3191
Subscriber	
Mean	24,345
Median	498
Channel Age [in years]	
Mean	9.13
Median	8.67

Variables	N
Community Strength	
Mean	0.519
Median	0.545
Channel Topic	
Arts & Culture	486
Beauty & Lifestyle	122
Business & Finances	39
Conspiracy Theory & Spirituality	94
DIY	302
Education & Knowledge	97
Entertainment	822
Food & Culinary	71
Gaming	1300
Health	78
Politics & Society	24
Sport	120
Travel	176
Other	15

Universität Potsdam 05.07.2024

Observations

Methods: Sentiment analysis and hate speech detection

- <u>Sentiment Analysis</u>: Determination of the <u>emotional</u> message in either positive, neutral or negative → <u>Mean sentiment on channel level</u>
- Hate speech Detection: Classify acts of violence or expressions of hatred directed towards a specific/protected group of people or an individual belonging to such a group. (e.g., race, religion, sexual orientation, gender, disability, age)
 proportion of hate comments on channel level
- Offensive Language: Comments that don't constitute hate but are characterized by hostility, insults, or toxicity → proportion of offensive comments (including hate speech) on channel level

Proportions of hate: no hate 97,3% | offensive 1,9 % | hate 0,8%

Performance of our models

- We predicted the sentiment and occurrence of hate speech in our 36 mio. YT comments using NLP techniques (ML & DL)
- Training data: 7500 german & english hand-coded YouTube comments

Channel sentiment (multiple predictors)

Note: Unknown category omitted from plot

H1 Socio-Structural Variables:

- Women
- White CCs
- Higher Age
- No Religious Visibility

Positive Sentiment

H2 Platform Variables:

- Community Strength
- DIY
- Food
- Travel
- Conspiracy

Negative Sentimen

Hate speech and offensive comments (multiple predictors)

Note: Unknown category omitted from plot

Conclusion

- <u>Sentiment, offensive comments</u> and <u>hate speech</u> are structured by both socio-structural and platform variables in distinct ways
 - -Gender, race, age, and channel topic are at-risk factors of receiving negative communication
 - —However: Counterintuitive gender effect! (systematic differences in audiences?)
- <u>Hate</u> seems to be particularly structured around **channel topics** that generate controversial content (e.g., politics & conspiracy)
 - -Content moderation as a considerable factor in hate speech detection

Our Contribution

- 1. CCs form a new occupational group on algorithmbased platforms. Negativity and hate speech is part of their work environment.
- 2. This has not been studied with a comprehensive approach before (focus on Germany): Combining digital trace data (which reflect the logic of platform architecture) with socio-structural data (which allows for inequality analyses).

Our Contribution

- 3. Specific results for <u>negativity</u>, <u>hate speech</u> and <u>offensive</u> <u>language</u> indicating that they are **different phenomena** (but partially similar socio-platform stratification logic)
- 4. A 'low' prevalence of hate on YouTube (0.8% of all comments)!? the platform seems less polarized and toxic than X for example, reflecting different business philosophies, diverging cultures and specific audiences in the various arenas of the digital world.

Potential limitations

 Moderation of comments (deleting, reporting etc.) cannot be captured but might differ between different communities and CCs → topic of a survey we'll send out to CCs in 08/2024

• The algorithmic structure of the platform is unknown (difficult to measure effects of spam filters, recommender algorithms etc. on the commenting behavior).

Thank you for your attention!

Website: https://www.uni-potsdam.de/de/sozialstrukturanalyse/index/forschung/tubework

E-Mail: roland.verwiebe@uni-potsdam.de, claudia.buder@uni-potsdam.de, aaron.philipp@uni-potsdam.de, sarah.weissmann@uni-potsdam.de

GitHub web scraping: https://github.com/AaronPhilipp/youtube_data_api

References

- Amarasekara, I., & Grant, W. J. (2019). Exploring the YouTube science communication gender gap: A sentiment analysis. Public Understanding of Science, 28(1), 68–84. https://doi.org/10.1177/0963662518786654
- DeBerta: (He, P., Gao, J., & Chen, W. (2021). DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing. arXiv preprint, arXiv:2111.09543.
- DeTox Dataset: Demus, C., Pitz, P., Schütz, M., Probol, N., Siegel, M., and Labudde, L. 2022. DeTox: A Comprehensive Dataset for German Offensive Language and Conversation Analysis. In Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH), pages 143–153, Seattle, Washington (Hybrid). Association for Computational Linguistics.
- Keum, B. T., & Miller, M. J. (2017). Racism in digital era: Development and initial validation of the Perceived Online Racism Scale (PORS v1.0). *Journal of Counseling Psychology, 64*(3), 310–324.
- Md Saroar Jahan, Mourad Oussalah (2023), A systematic review of hate speech automatic detection using natural language processing, Neurocomputing, Volume 546,
- Nicola Döring & M. Rohangis Mohseni (2019) Fail videos and related video comments on YouTube: a case of sexualization of women and gendered hate speech?, Communication Research Reports, 36:3, 254-264, DOI: 10.1080/08824096.2019.1634533.

References

- Thomas, Kurt; Kelley, Patrick Gage; Consolvo, Sunny; Samermit, Patrawat; Bursztein, Elie (2022): "It's common and a part of being a content creator": Understanding How Creators Experience and Cope with Hate and Harassment Online. In: Simone Barbosa (Hg.): CHI Conference on Human Factors in Computing ACM Special Interest Group on Computer-Human Interaction; ACM SIGs. New York, NY, United States, S. 1-15.
- Sue, D. W., Capodilupo, C. M., Torino, G. C., Bucceri, J. M., Holder, A., Nadal, K. L., & Esquilin, M. (2007). Racial microaggressions in everyday life: implications for clinical practice. American Psychologist, 62(4), 271–286.
- Tynes, B. M., Lozada, F. T., Smith, N. A., & Stewart, A. (2018). From racial microaggressions to hate crimes: A model of online racism based on the lived experiences of adolescents of color. In C. Capodilupo, K. Nadal, D. Rivera, D. W. Sue, & G. Torino (Eds.), Microaggression theory: Influence and implications. Hoboken, NJ: Wiley.
- Veletsianos, G., Kimmons, R., Larsen, R., Dousay, T. A., & Lowenthal, P. R. (2018). Public comment sentiment on educational videos:
 Understanding the effects of presenter gender, video format, threading, and moderation on YouTube TED talk comments. PLOS ONE, 13(6), e0197331. https://doi.org/10.1371/journal.pone.0197331
- YouTube 2024: https://transparencyreport.google.com/youtubepolicy/removals?hl=en&comments_removal_reason=period:2023Q3&lu=videos_by_country&videos_by_country=period:2023Q3