EXPERIMENT: 7 COMPARATORS

AIM: To realize One & Two Bit Comparator and study of 7485 magnitude comparator.

LEARNING OBJECTIVE:

- To learn about various applications of comparator
- To learn and understand the working of IC 7485 magnitude comparator
- To learn to realize 8-bit comparator using 4-bit comparator

THEORY:

Magnitude Comparator is a logical circuit, which compares two signals A and B and generates three logical outputs, whether A > B, A = B, or A < B. IC 7485 is a high speed 4-bit Magnitude comparator, which compares two 4-bit words. The A = B Input must be held high for proper compare operation.

COMPONENTS REQUIRED:

IC 7400, IC 7410, IC 7420, IC 7432, IC 7486, IC 7402, IC 7408, IC 7404, IC 7485, Patch Cords

1) 1- BIT COMPARATOR

TRUTH TABLE

A>B=AB

A < B = A B

A=B=AB+AB

INPUTS		OUTPUTS			
Α	В	A > B		A < B	
0	0	0	1	0	
0	1	0	0	1	
1	0	1	0	0	
1	1	0	1	0	

2) 2- BIT COMPARATOR

(A>B)= A1 B1 + A0 B1 B 0 + B 0 A1A0

(A=B) = (A0 B0) (A1 B1)

 $(A < B) = B1 A1 + B0 A \overline{1 A 0 + A 0B1B0}$

TRUTH TABLE

INPUTS				OUTPUTS		
A1	A0	B1	Bo	A > B	A = B	A < B
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

3) TO COMPARE THE GIVEN DATA USING 7485 CHIP.

A			В			Result		
А3	A2	A1	Α0	В3	B2	B1	В0	
0	0	0	1	0	0	0	0	A > B
0	0	0	1	0	0	0	1	A = B
0	0	0	0	0	0	0	1	A < B

PROCEDURE:

- 1 Check all the components for their working.
- 2 Insert the appropriate IC into the IC base.
- 3 Make connections as shown in the circuit diagram.
- 4 Verify the Truth Table and observe the outputs.

Postlab Questions

- 1. Design 8 bit comparator using two 7485
- 2. Write applications of Comparator