Ch10: 参数估计

Parameter Estimation

December 13, 2023

引言

假设我们已知南京大学男性学生的身高服从正态分布 $\mathcal{N}(\mu, \sigma^2)$, 但不知道参数 μ 和 σ 具体的取值, 这时候我们可以利用抽样得到样本均值来推断总体的均值 μ .

这类已知总体分布形式,但不知其具体参数,用样本统计量来估计总体的参数的问题称为参数估计问题.参数估计是统计推断的核心问题之一,方法大体上有两类:点估计与区间估计.

点估计

定义 0.84 设 $X_1, X_2, ..., X_n$ 是来自总体的一个样本, 用于估计未知参数 θ 的统计量 $\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n)$ 称为 θ 的估计量, 或称为 θ 的 点估计.

Remarks: 点估计的本质就是用样本统计量直接作为总体参数的估计值

- •这里的参数是总体的属性,而统计量是针对样本的计算.
- 在这里如何构造 $\hat{\theta}$ 没有明确的规定, 1900 年 K. 皮尔逊提出了一个替换原理, 给出了构造 $\hat{\theta}$ 的一种方法, 后来人们称此法为 矩估计法.
- 而 1922 年费希尔提出的最大似然法给出了另外一种构造 $\hat{\theta}$ 的方法, 称为 极大似然估计.

矩估计法

替换原理具体为:

- •用样本矩去替换总体矩(这里的矩可以是原点矩也可以是中心距).
 - •使用原点矩
 - 总体 X 的 k 阶原点矩: $a_k = \mathbb{E}[X^k]$
 - •样本的 k 阶原点矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$
 - •使用中心矩
 - •总体 X 的 k 阶中心矩: $b_k = \mathbb{E}[(X \mathbb{E}(X))^k]$
 - •样本的 k 阶中心矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^k$
- •用样本矩的函数去替换相应的总体矩的函数.

矩估计法 -- 适用场景

根据这个替换原理, 在总体分布形式未知的情况下也可以对参数做出估计, 譬如:

- •用样本均值 \bar{X} 估计总体均值 $\mathbb{E}(X)$
- •用样本方差 S^2 估计总体方差 VAR(X)
 - •注意: 若没有特殊说明, 样本方差采用无偏方差
- •用事件 A 出现的频率估计事件 A 发生的概率.

矩估计法 -- 计算步骤

总体 X 的分布函数 F 包含 m 个未知参数 $\theta_1, \theta_2, \ldots, \theta_m$

- 计算总体 X 的 k 阶矩: $a_k = a_k(\theta_1, \theta_2, \dots, \theta_m) = \mathbb{E}[X^k], k \in [m]$ • a_k 一般为 $\theta_1, \theta_2, \dots, \theta_m$ 的函数
- 计算样本的 k 阶矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$
- 令样本矩等于总体矩:

$$A_k = a_k = a_k(\theta_1, \theta_2, \dots, \theta_m), \quad k = [m]$$

得到 m 个关于 $\theta_1, \theta_2, \ldots, \theta_m$ 的方程组

•求解方程组得到估计量 $\hat{\theta_1}, \hat{\theta_2}, \ldots, \hat{\theta_m}$

矩估计: 例 0.130

例 0.130 设总体 X 的概率密度函数为

$$f(X) = \begin{cases} (\alpha + 1)X^{\alpha}, & X \in (0, 1) \\ 0, & \cancel{\cancel{x}} : \overrightarrow{\cancel{x}} \end{cases}$$

设 X_1, X_2, \ldots, X_n 是来自总体的样本, 求参数 α 的矩估计.

题目: 设总体 X 的概率密度函数为

$$f(X) = \begin{cases} (\alpha + 1)X^{\alpha}, & X \in (0, 1) \\ 0, & \text{ #} \dot{\Xi} \end{cases}$$

设 X_1, X_2, \ldots, X_n 是来自总体的样本, 求参数 α 的矩估计.

解答:

● 首先计算总体 X 的 1 阶矩:

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} X f(X) dX = \int_{0}^{1} X(\alpha + 1) X^{\alpha} dX = \frac{\alpha + 1}{\alpha + 2}.$$

以及样本的 1 阶矩: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$.

• 根据矩估计方法有

$$\mathbb{E}[X] = \frac{\alpha + 1}{\alpha + 2} = \bar{X}$$

求解可得 $\alpha = (2\bar{X} - 1)/(1 - \bar{X})$.

矩估计: 例 0.131

例 0.131 设 X_1, X_2, \ldots, X_n 是来自总体的样本, 且总体 X 的概率密度函数为

$$f(X) = \begin{cases} \frac{1}{\theta} e^{-\frac{X-\mu}{\theta}}, & X \ge \mu \\ 0, & \sharp \dot{\Xi} \end{cases}$$

其中 $\theta > 0$, 求参数 μ 和 θ 的矩估计.

题目: 如上所述.

解答:

• 设随机变量 $Y = X - \mu$, 则 Y 服从参数为 $1/\theta$ 的指数分布, 有

$$\mathbb{E}[Y] = 0 \quad \text{fil} \quad \sigma(Y) = \theta^2.$$

由此可得 $\mathbb{E}[X] = \mu + \theta$ 和 $\sigma(X) = \theta^2$.

• 计算对应的样本矩

$$A_1 = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

求解方程组

$$\mu + \theta = A_1 \quad \text{fil} \quad \theta^2 = B_2.$$

可得
$$\mu = \bar{X} - \sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2/n}$$
 和 $\theta = \sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2/n}$.

极大似然估计法 -- 例子

为了叙述极大似然估计的直观想法, 先看下面这个例子:

例 0.132 设有两个外形相同的箱子中各有 100 只球, 其中甲箱中有 99 个白球、1个黑球, 乙箱中有 1个白球、99 个黑球. 今随机抽取一箱并 从中抽取一球, 结果取得白球, 问这个白球是从哪个箱子中取出?

极大似然估计法 -- 例子

为了叙述极大似然估计的直观想法, 先看下面这个例子:

例 0.133 设有两个外形相同的箱子中各有 100 尺球, 其中甲箱中有 99 个白球、1个黑球, 乙箱中有 1 个白球、99 个黑球. 今随机抽取一箱并 从中抽取一球, 结果取得白球, 问这个白球是从哪个箱子中取出?

<u>解答</u>: A 表示事件"从甲箱中取出白球", B 表示事件"从乙箱中取出白球", 又

$$P(A) = 0.99 > P(B) = 0.01$$

因此,按照可以推断白球"最可能"是从甲箱中取出的.

这个推断符合人们的经验事实,这里的"最可能"就是"极大似然"之意,这种想法常称为"极大似然原理".即,已经得到了样本,然后通过样本倒推,找到能够使的该样本出现的最大概率的条件.

极大似然估计法

定义 0.85 设总体的概率函数为 $p(X;\theta)$, $\theta \in \Theta$, 其中 θ 是一个未知参数 或几个未知参数组成的参数向量, Θ 是参数空间. X_1, X_2, \ldots, X_n 是来自 总体的样本, 将样本的联合概率函数看成 θ 的函数, 用 $L(\theta, X_1, X_2, \ldots, X_n)$ 表示, 简记 $L(\theta)$,

$$L(\theta) = L(\theta, X_1, X_2, \dots, X_n) = p(X_1; \theta) p(X_2; \theta) \dots p(X_n; \theta) ,$$

 $L(\theta)$ 称为样本的似然函数. 若某个统计量 $\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n)$ 满足,

$$L(\hat{\theta}) = \max_{\theta \in \Theta} L(\theta) ,$$

则称 $\hat{\theta}$ 是 θ 的 极大似然估计, 简记为 MLE (MaXimum Likelihood Estimation).

极大似然估计法 -- 计算步骤

求 $L(\theta) = p(X_1; \theta)p(X_2; \theta) \dots p(X_n; \theta)$ 的最大值可以通过下列步骤:

- $\mathfrak{H} \perp L(\theta) = p(X_1; \theta) p(X_2; \theta) \dots p(X_n; \theta)$
- •对等式两边取对数,求关于 θ 求一阶偏导令其为零
- •求解方程组得到极大似然估计 $\hat{\theta}$.

极大似然估计法 -- 计算步骤

求 $L(\theta) = p(X_1; \theta)p(X_2; \theta) \dots p(X_n; \theta)$ 的最大值可以通过下列步骤:

- $\mathfrak{H} \perp L(\theta) = p(X_1; \theta) p(X_2; \theta) \dots p(X_n; \theta)$
- •对等式两边取对数,求关于 θ 求一阶偏导令其为零
- •求解方程组得到极大似然估计 $\hat{\theta}$.

如何构造似然函数?

•核心:条件概率公式

极大似然估计:例 0.134

例 0.134 设 $X_1, X_2, ..., X_n$ 是取自总体 $X \sim B(1, p)$ 的样本, 求参数 p 的极大似然估计.

题目: 设 $X_1, X_2, ..., X_n$ 是取自总体 $X \sim B(1, p)$ 的样本, 求参数 p 的极大似然估计. 解答:

• 首先计算似然函数

$$L(p) = \prod_{i=1}^{n} p^{X_i} (1-p)^{1-X_i} = p^{\sum_{i=1}^{n} X_i} (1-p)^{n-\sum_{i=1}^{n} X_i},$$

由而可得对数似然函数

$$\ln L(p) = \sum_{i=1}^{n} X_i \ln p + \left(n - \sum_{i=1}^{n} X_i\right) \ln(1-p) ,$$

求一阶偏导并令其为零,可得

$$\frac{\partial \ln L(p)}{\partial p} = \frac{1}{p} \sum_{i=1}^{n} X_i - \frac{1}{1-p} \left(n - \sum_{i=1}^{n} X_i \right) = 0.$$

由此求解 $p = \sum_{i=1}^{n} X_i / n = \bar{X}$.

极大似然估计: 例 0.135

例 0.135 设 $X_1, X_2, ..., X_n$ 是取自总体 $X \sim U(0, \theta)$ 的样本, 求参数 θ 的极大似然估计.

题目: 设 X_1, X_2, \ldots, X_n 是取自总体 $X \sim U(0, \theta)$ 的样本, 求参数 θ 的极大似然估计. 解答:

• 首先计算似然函数

$$L(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n \mathbb{I}_{\{0 < X_i \le \theta\}} = \frac{1}{\theta^n} \mathbb{I}_{\{0 < X_i \le \theta\}},$$

要使 $L(\theta)$ 最大, 首先是示性函数取值应该为 1, 其次是 $1/\theta^n$ 尽可能大, 由于 $1/\theta^n$ 是 θ 的单调递减函数, 所以 θ 的取值应尽可能小, 但示性函数为 1 决定了 θ 不能小于 $X_{(n)}$, 由此给出 θ 的极大似然估计为 $X_{(n)}$.

●这个例子说明虽然求导函数是求极大似然估计最常用的方法,但并不是所有场合求导都是有效的.

极大似然估计 -- 不可变性

极大似然估计有一个简单而有效的性质:

定理 0.73 如果 $\hat{\theta}$ 是参数 θ 的极大似然估计, 那么对于任一的函数 $g(\cdot)$, $g(\hat{\theta})$ 也是 $g(\theta)$ 的极大似然估计.

该性质称为极大似然估计的不变性,从而使得一些复杂结构的参数的极大似然估计的计算变得容易了.

极大似然估计: 例 0.136

例 0.136 设 X_1, X_2, \ldots, X_n 是取自总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本, 求参数 μ 和 $\sigma > 0$ 的极大似然估计.

解答:

•根据正态分布的密度函数,可知似然函数

$$L(\mu, \sigma) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left(-\sum_{i=1}^n \frac{(X_i - \mu)^2}{2\sigma^2}\right).$$

其对数似然函数为 $\ln L(\mu, \sigma) = -n \ln(2\pi)^{1/2} - n \ln \sigma - \sum_{i=1}^{n} (X_i - \mu)^2 / 2\sigma^2$.

对参数 μ 求导计算可得

$$\frac{\partial \ln L(\mu, \sigma)}{\partial \mu} = \sum_{i=1}^{n} (X_i - \mu) = 0 \Rightarrow \mu = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X},$$

对参数 σ 求导计算, 可得

$$\frac{\partial \ln L(\mu, \sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (X_i - \mu)^2 = 0 \Rightarrow \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2}} = \sqrt{\frac{1}{n$$

根据极大似然估计的不变性, 可知方差 σ^2 的极大似然估计为

$$\sigma^2 = \sum_{i=1}^n (X_i - \bar{X})^2 / n$$
.

极大似然估计: 例 0.137

例 0.137 设 X_1, X_2, \ldots, X_n 是来自总体的样本, 且总体 X 的概率密度函数为

$$f(X) = \begin{cases} \theta e^{-(X-\mu)\theta}, & X \ge \mu \\ 0, & \sharp \dot{\mathfrak{T}} \end{cases}$$

求参数 μ 和 θ 的极大似然估计.

题目: 设 X_1, X_2, \ldots, X_n 是来自总体的样本, 且总体 X 的概率密度函数为

$$f(X) = \begin{cases} \theta e^{-(X-\mu)\theta}, & X \ge \mu \\ 0, & \sharp \dot{\Xi} \end{cases}$$

求参数 μ 和 θ 的极大似然估计.

解答:

• 列出似然函数

$$L(\theta, \mu) = \begin{cases} \theta^n e^{-\theta \sum_{i=1}^n (X_i - \mu)}, & X_i \ge \mu \\ 0, & \sharp \stackrel{\sim}{\Sigma} \end{cases}$$

其对数似然函数为

$$\ln L(\theta, \mu) = n \ln \theta - \theta \sum_{i=1}^{n} (X_i - \mu).$$

• 对参数 θ 求导计算可得

$$\frac{\partial \ln L(\theta, \mu)}{\partial \theta} = \frac{n}{\theta} - \sum_{i=1}^{n} (X_i - \mu) = 0 \Rightarrow \theta = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)},$$

对参数 μ 求导计算可得

$$\frac{\partial \ln L(\theta, \mu)}{\partial \mu} = n\theta = 0 \Rightarrow \theta = 0.$$

此时无法求解 μ 和 θ 的极大似然估计.

• 回顾似然函数

$$L(\theta, \mu) = \begin{cases} \theta^n e^{-\theta \sum_{i=1}^n (X_i - \mu)}, & X_i \ge \mu \\ 0, & \sharp \Xi \end{cases}$$

可以发现 μ 越大似然函数 $L(\theta,\mu)$ 越大, 但须满足 $X_i \geq \mu(i \in [n])$. 由此可得极大似然估计为

$$\hat{\mu} = X_{(1)}, \qquad \hat{\theta} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} (X_i - X_{(1)})}.$$

极大似然估计: 例 0.138

例 0.138 设总体 X 的概率密度函数为

$$f(X) = \begin{cases} (\alpha + 1)X^{\alpha}, & X \in (0, 1) \\ 0, & \text{#} \hat{\mathbf{c}} \end{cases}$$

设 X_1, X_2, \ldots, X_n 是来自总体的样本, 求参数 α 的矩估计.

题目: 如上所述.

解答:

• 列出似然函数

$$L(\alpha) = (\alpha + 1)^n \prod_{i=1}^n X_i^{\alpha} = (\alpha + 1)^n (X_1 X_2 \dots X_n)^{\alpha},$$

以及其对数似然函数为 $\ln L(\alpha) = n \ln(\alpha + 1) + \alpha \ln(X_1 X_2 \dots X_n)$. 求导并令导数为零有

$$\frac{\partial \ln L(\alpha)}{\partial \alpha} = \frac{n}{\alpha + 1} + \ln(X_1 X_2 \dots X_n) = 0,$$

求解可得

$$\alpha = \frac{-n}{\sum_{i=1}^{n} \ln(X_i)} - 1$$

对比例 0.130, 可以看到同一密度函数的矩估计和极大似然估计结果可能不同.

估计量的评价标准

不同的估计方法可能得到不同的估计值.

自然地,我们希望知道采用哪一种估计量更好,或更好的标准是什么呢? 统计学上,给出了无偏性、有效性、一致性等评价标准.

- 无偏性: $\hat{\theta}$ 与参数真值 θ 之间的偏差的平均值为 0
- 有效性: $\hat{\theta}$ 围绕参数真值 θ 的方差越小越好
- •一致性: 随着样本量的不断增大, $\hat{\theta}$ 能够有效逼近参数真值 θ

无偏性

定义 **0.86** 设 $\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n)$ 是 θ 的一个估计, θ 的参数空间为 Θ , 若对任意的 $\theta \in \Theta$, 有

$$\mathbb{E}_{\theta}(\hat{\theta}) = \theta,$$

则称 $\hat{\theta}$ 是 θ 的无偏估计,否则称为有偏估计.

Remarks:

- •(原点矩) 样本 k 阶原点矩为总体 k 阶原点矩的无偏估计
- (中心矩) 设 X_1, X_2, \ldots, X_n 来自总体 X 的样本, 期望 μ , 方差 σ^2 , 则:
 - $S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ 是 σ^2 的有偏估计
 - $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$ 是 σ^2 的无偏估计
- 若 $\hat{\theta}$ 是 θ 的一个无偏估计, $g(\hat{\theta})$ 不一定也是 $g(\theta)$ 的无偏估计.

无偏估计: 例 0.139

例 0.139 设 X_1, X_2, \ldots, X_n 来自总体 X 的样本, 且总体 X 的概率密度 函数为

$$f(X) = \begin{cases} \frac{1}{\theta} e^{-\frac{X}{\theta}}, & X \ge 0\\ 0, & X < 0 \end{cases}$$

证明: 统计量

$$\bar{X} = \sum_{i=1}^{n} X_i/n$$
 for $n \cdot \min\{X_1, X_2, \dots, X_n\}$

均是 θ 的无偏估计.

题目: 如上所述.

解答:

•根据期望和指数分布的性质,有

$$\mathbb{E}[\bar{X}] = \mathbb{E}[X] = \theta,$$

由此可知, \bar{X} 是 θ 的无偏估计 (原点矩).

• 设随机变量 $Z = \min\{X_1, X_2, ..., X_n\}$, 则有

$$F_Z(z) = P(Z \le z) = 1 - P(Z > z)$$

$$= 1 - P(X_1 > z)P(X_X > z) \dots P(X_n > z)$$

$$= 1 - \prod_{i=1}^n (1 - P(X_i \le z)) = \begin{cases} 0, & z < 0\\ 1 - e^{-nz/\theta}, & z \ge 0 \end{cases}$$

于是当 $z \ge 0$ 时,有

$$P(Z > z) = 1 - F_Z(z) = e^{-nz/\theta}$$
.

根据期望的性质,有

$$\mathbb{E}[Z] = \int_0^{+\infty} e^{-nz/\theta} dz = \frac{\theta}{n},$$

于是有 $\theta = \mathbb{E}[nZ]$.

有效性

例子 0.139 说明: 参数可能存在多个无偏估计.

- 若 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 都是 θ 的无偏估计,如何在多个无偏估计中进行选择?
- 直观的想法是, $\hat{\theta}$ 围绕参数真值 θ 的方差越小越好, 即有效性.

定义 0.87 设 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 分别是 θ 的两个无偏估计, 如果对任意的 $\theta \in \Theta$ 都有

$$VAR(\hat{\theta_1}) \leq VAR(\hat{\theta_2})$$
,

且至少有一个 $\theta \in \Theta$ 使得上述不等式严格成立,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效.

Remarks: 有效性是针对无偏估计而言的, 因此判断有效性之前必须先确认估计量的无偏性.

有效性:例 0.140

例 0.140 设 X_1, X_2, \ldots, X_n 来自总体 X 的样本, 且总体 X 的概率密度 函数为

$$f(X) = \begin{cases} \frac{1}{\theta} e^{-\frac{X}{\theta}}, & X \ge 0\\ 0, & X < 0 \end{cases}$$

令 $Z = \min\{X_1, X_2, \dots, X_n\}$. 证明: 当 n > 1 时, $\bar{X} = \sum_{i=1}^n X_i/n$ 比 nZ 更有效.

题目: 如上所述.

解答:

• 根据样本的独立性有

$$\sigma(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^n \sigma(X_i) = \frac{\theta^2}{n}.$$

又根据例0.139可知随机变量 Z 的密度函数为

$$f(z) = \begin{cases} 0, & z < 0 \\ \frac{n}{\theta} e^{-\frac{nz}{\theta}}, & z \ge 0 \end{cases}$$

从而得到

$$\sigma(nZ) = n^2 \sigma(Z) = n^2 \frac{\theta^2}{n^2} = \theta^2,$$

因此当 $n \ge 1$ 时有 $\sigma(\bar{X}) \le \sigma(nZ)$ 成立, 故估计量 \bar{X} 比 nZ 更有效.

有效性: 例 0.141

例 0.141 设 $X_1, X_2, ..., X_n$ 是来自总体 X 的样本, 且 $\mathbb{E}(X) = \mu$ 及 $\mathbb{VAR}(X) = \sigma^2$. 设常数 $c_1, c_2, ..., c_n \geq 0$, 满足 $\sum_{i=1}^n c_i = 1, c_i \neq \frac{1}{n}$. 求证: \bar{X} 比 $\sum_{i=1}^n c_i X_i$ 有效.

题目: 设 $X_1, X_2, ..., X_n$ 是来自总体 X 的样本, 且 $\mathbb{E}(X) = \mu$ 及 $\mathbb{VAR}(X) = \sigma^2$. 设常数 $c_1, c_2, ..., c_n \geq 0$, 满足 $\sum_{i=1}^n c_i = 1, c_i \neq \frac{1}{n}$. 求证: \bar{X} 比 $\sum_{i=1}^n c_i X_i$ 有效.

解答:

•根据样本的独立同分布的性质,有

$$\mathbb{E}(\bar{X}) = \mu \quad \text{All} \quad \mathbb{VAR}(\bar{X}) = \frac{\sigma^2}{n}.$$

根据期望的性质, 有 $\mathbb{E}\left[\sum_{i=1}^{n} c_i X_i\right] = \mu$, 进一步有

$$\mathbb{VAR}\left(\sum_{i=1}^n c_i X_i\right) = \sum_{i=1}^n c_i^2 \mathbb{VAR}(X_i) = \sigma^2 \sum_{i=1}^n c_i^2 \ge \frac{\sigma^2}{n}.$$

这里利用不等式 $\sum_{i=1}^n c_i^2/n \ge (\sum_{i=1}^n c_i/n)^2$, 所以有 $\mathbb{VAR}(\sum_{i=1}^n c_i X_i) \ge \mathbb{VAR}(\bar{X})$.

Rao-Crammer 不等式

有效性希望 $\hat{\theta}$ 围绕参数真值 θ 的方差越小越好, 那么这个方差能小到什么程度? 有无下界? 若有的话, 如何去求? Rao-Crammer 不等式回答了这些问题.

定理 0.74 随机变量 X 的概率密度为 $f(X;\theta)$ 或分布函数为 $F(X;\theta)$, 令

$$\mathbb{VAR}_{0}(\theta) = \frac{1}{n\mathbb{E}\left[\left(\frac{\partial \ln f(X;\theta)}{\partial \theta}\right)^{2}\right]} \quad \mathbb{A} \quad \mathbb{VAR}_{0}(\theta) = \frac{1}{n\mathbb{E}\left[\left(\frac{\partial \ln F(X;\theta)}{\partial \theta}\right)^{2}\right]}$$

对任意的无偏估计量 $\hat{\theta}$,有

$$VAR(\hat{\theta}) \geq VAR_0(\theta) ,$$

称 $VAR_0(\theta)$ 为估计量 $\hat{\theta}$ 方差的下界. 当 $VAR(\hat{\theta}) = VAR_0(\theta)$ 时, 称 $\hat{\theta}$ 为 达到方差下界的无偏估计量, 此时 $\hat{\theta}$ 为最有效估计量, 简称 有效估计量.

有效性: 例 0.142

例 0.142 设 X_1, X_2, \ldots, X_n 是来自总体 X 的样本, 且总体 X 的概率密 度函数为

$$f(X) = \begin{cases} \frac{1}{\theta} e^{-\frac{X}{\theta}}, & X > 0\\ 0, & X \le 0 \end{cases}$$

证明: θ 的极大似然估计为有效估计量.

题目: 如上所述.

解答:

• 根据定理 0.74, 首先计算 $\sigma_0(\theta)$. 又

$$\ln f(X;\theta) = -\ln \theta - \frac{X}{\theta}, \qquad \frac{\partial \ln f(X;\theta)}{\partial \theta} = -\frac{1}{\theta} + \frac{X}{\theta^2}$$

所以

$$\mathbb{VAR}_{0}(\theta) = \frac{1}{n\mathbb{E}\left[\left(\frac{\partial \ln f(X;\theta)}{\partial \theta}\right)^{2}\right]} = \frac{1}{n\mathbb{E}\left[\left(-\frac{1}{\theta} + \frac{X}{\theta^{2}}\right)^{2}\right]} = \frac{1}{\frac{n}{\theta^{4}}\mathbb{E}[(X - \mathbb{E}[X])^{2}]} = \frac{\theta^{2}}{n}$$

• 计算对数似然函数, 有

$$\ln L(\theta) = -n \ln \theta - \frac{1}{\theta} \sum_{i=1}^{n} X_i \Rightarrow \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

进一步得到极大似然估计 $\hat{\theta}$ 的方差 $\mathbb{VAR}(\hat{\theta}) = \frac{\theta^2}{n}$, 因此 θ 的极大似然估计为有效估计量.

一致性

定义 0.88 设 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 是 θ 一个估计量. 当 $n \to \infty$ 时, 有 $\hat{\theta} \xrightarrow{P} \theta$ 成立, 即对任意 $\epsilon > 0$, 有

$$\lim_{n \to 0} P\left[|\hat{\theta} - \theta| > \epsilon\right] = 0 ,$$

则称 $\hat{\theta}$ 为 θ 的一致估计量.

Remarks: 一致性被认为是对估计的一个最基本要求.

- •如果一个估计量, 在样本不断增多时都不能有效的靠近被估参数的 真实值, 那么这个估计是很值得怀疑的.
- 通常, 不满足一致性的估计都不予考虑.

一致性

在判断或计算参数的一致估计量时,下述两个定理是很有用的.

定理 0.75 (一致性的充分条件) 设 $\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n)$ 是 θ 的一个估计量, 若满足以下两个条件:

$$\lim_{n \to \infty} \mathbb{E}[\hat{\theta_n}] = \theta , \qquad \lim_{n \to \infty} \mathbb{VAR} \left[\hat{\theta_n} \right] = 0$$

则 $\hat{\theta}$ 为 θ 的一致估计量.

定理 0.76 (一致性的函数不变性) 设 $\hat{\theta}_{n1}, \hat{\theta}_{n2}, \dots, \hat{\theta}_{nk}$ 分别是 $\theta_1, \theta_2, \dots, \theta_k$ 的一致性估计, $G = g(\theta_1, \theta_2, \dots, \theta_k)$ 是 $\theta_1, \theta_2, \dots, \theta_k$ 的连续函数, 则

$$\hat{G} = g\left(\hat{\theta}_{n1}, \hat{\theta}_{n2}, \dots, \hat{\theta}_{nk}\right)$$

是G的一致性估计.

一致性: 例 0.143

例 0.143 设 X_1, X_2, \ldots, X_n 是来自总体 X 的样本, 且总体 X 的概率密 度函数为

$$f(X) = \begin{cases} \frac{1}{\theta} e^{-\frac{X}{\theta}}, & X > 0\\ 0, & X \le 0 \end{cases}$$

证明: 样本均值 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 是 θ 的一致估计量.

题目: 设 X_1, X_2, \ldots, X_n 是来自总体X 的样本, 且总体X 的概率密度函数为

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

证明: 样本均值 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 是 θ 的一致估计量.

解答:

•根据定理 0.75, 有

$$\lim_{n \to \infty} \mathbb{E}[\hat{\theta}] = \theta, \qquad \lim_{n \to \infty} \mathbb{VAR}[\hat{\theta}] = \lim_{n \to \infty} \frac{\theta^2}{n} = 0.$$

证毕.

一致性: 例 0.144

例 0.144 设 X_1, X_2, \ldots, X_n 是取自总体 $X \sim U(0, \theta)$ 的样本. 证明: 参数 θ 的极大似然估计是一致估计量.

• 根据前面的例题, 可知 θ 的极大似然估计是 $\hat{\theta} = x_{(n)}$. 设随机变量 $Z = x_{(n)}$, 则 Z 的分布函数为

$$F_Z(z) = P(Z \le z) = P(x_{(n)} \le z) = \prod_{i=1}^n P(x_i \le z) = \begin{cases} 1, & z > \theta \\ (\frac{z}{\theta})^n, & z \in [0, \theta] \\ 0, & z < 0 \end{cases}$$

由此可得当 $z \in [0, \theta]$ 时随机变量 Z 的密度函数为 $f_Z(z) = nz^{n-1}/\theta^n$.

• 进一步有

$$\mathbb{E}[\hat{\theta}] = \int_0^\theta \frac{nz^n}{\theta^n} dz = \frac{n}{n+1}\theta \Rightarrow \lim_{n \to \infty} \mathbb{E}[\hat{\theta}] = \theta$$

又 $\mathbb{E}[Z^2] = \int_0^\theta \frac{nz^{n+1}}{\theta^n} dz = \frac{n}{n+2} \theta^2$,因此有

$$\mathbb{VAR}[\hat{\theta}] = \mathbb{E}[Z^2] - (\mathbb{E}[Z])^2 = \frac{n}{n+2}\theta^2 - (\frac{n\theta}{n+1})^2 = \frac{n}{(n+1)^2(n+2)}\theta^2 \Rightarrow \lim_{n \to \infty} \mathbb{VAR}[\hat{\theta}] = 0$$

由此, $\hat{\theta}$ 是 θ 的有偏、但一致估计量.