Homework for Math 103 Assignment One – Due September 30

1. Show that the countable union of sets of measure zero in \mathbf{R} has measure zero.

ANS: Suppose that E_n has measure zero for $n=1,2,\ldots,$ and let $E=\bigcup E_n$. Let $\epsilon>0$. By assumption, there are intervals $I_{n,m}$ such that $E_n\subset\bigcup_{m=1}^\infty I_{n,m}$ and $\sum_{m=1}^\infty \ell(I_{n,m})<\frac{\epsilon}{2^{-n}}$. Then $E\subset\bigcup_{n,m=1}^\infty I_{n,m}$ and $\sum_{n,m=1}^\infty \ell(I_{n,m})<\sum_{n=1}^\infty \frac{\epsilon}{2^{-n}}=\epsilon$. This suffices.

2. Suppose $f:[a,b]\to \mathbf{R}$ is bounded, and let \mathcal{P} and \mathcal{Q} be partitions of [a,b]. Prove that $L(f,\mathcal{P})\leq U(f,\mathcal{Q})$, where $L(f,\mathcal{P})$ and $U(f,\mathcal{Q})$ are the lower and upper Riemann sums, respectively, for f on [a,b]. (Hint: the result is trivial if $\mathcal{P}=\mathcal{Q}$; now let $\mathcal{R}=\mathcal{P}\cup\mathcal{Q}$.)

ANS: The following are relatively easy to prove for any partition \mathcal{P} and any prtition \mathcal{R} such that $\mathcal{P} \subset \mathcal{R}$: $L(f, \mathcal{P}) \leq U(f, \mathcal{P})$, $L(f, \mathcal{P}) \leq L(f, \mathcal{R})$, and $U(f, \mathcal{R}) \leq U(f, \mathcal{P})$. Thus if \mathcal{P} , \mathcal{Q} , and \mathcal{R} are as in the problem, then

$$L(f, \mathcal{P}) \le L(f, \mathcal{R})$$
$$\le U(f, \mathcal{R})$$
$$\le U(f, \mathcal{Q}).$$

However, the challenge is the write up your solutions elegantly. Here are two suggestions for proving that $L(f, \mathcal{R}) \ge L(f, \mathcal{P})$.

Method I—Brute Force: Let $\mathcal{P} = \{a = t_0 < \dots < t_n = b\}$ and $\mathcal{R} = \{a = s_0 < \dots < s_m\}$. Since $\mathcal{P} \subset \mathcal{R}$, for any k, there is a unique i such that $[s_{k-1}, s_k] \subset [t_{i-1}, t_i]$. Furthermore,

$$t_i - t_{i-1} = \sum_{[s_{k-1}, s_k] \subset [t_{i-1}, t_i]} s_k - s_{k-1}. \tag{\dagger}$$

Thus if

$$m_i := \inf_{t \in [t_{i-1},t_i]} f(t) \quad \text{and} \quad n_k = \inf_{t \in [s_{k-1},s_k]} f(t),$$

then we have $m_i \leq n_k$ whenever $[s_{k-1}, s_k] \subset [t_{i-1}, t_i]$. Thus

$$\begin{split} L(f,\mathcal{R}) &= \sum_{k=1}^{m} n_k (s_k - s_{k-1}) \\ &= \sum_{i=1}^{n} \Big(\sum_{[s_{k-1},s_k] \subset [t_{i-1},t_i]} n_k (s_k - s_{k-1}) \Big) \\ &\geq \sum_{i=1}^{n} m_i \Big(\sum_{[s_{k-1},s_k] \subset [t_{i-1},t_i]} s_k - s_{k-1} \Big) \end{split}$$

which, by (\dagger) , is

$$= \sum_{i=1}^{n} m_i (t_i - t_{i-1})$$
$$= L(f, \mathcal{P}).$$

Method II—Simple: Suppose that \mathcal{R} refines $\mathcal{P} = \{a = t_0 < \cdots < t_n = b\}$ by adding a single point s where $t_{j-1} < s < t_j$. Define m_i as in "Method I" and let

$$n_{j1} = \inf_{t \in [t_{j-1}, s]} f(t)$$
 and $n_{j2} = \inf_{t \in [s, t_j]} f(t)$,

and note that $m_j \leq n_{1j} + n_{2j}$. Then

$$L(f, \mathcal{R}) = \sum_{i=1}^{j-1} m_i (t_i - t_{i-1}) + n_{j1} (s - t_{i-1}) + n_{2j} (t_i - s) + \sum_{i=j+1}^n m_i (t_i - t_{i-1})$$

$$\leq \sum_{i=1}^n m_i (t_i - t_{i-1})$$

$$= L(f, \mathcal{P}).$$

Now the general result follows from a simple induction.

3. Prove that a bounded function $f:[a,b]\to \mathbf{R}$ is Riemann integrable on [a,b] if and only if for all $\epsilon>0$ there is a partition \mathcal{P} of [a,b] such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon.$$

ANS: Note that for any partition \mathcal{P} , $L(f,\mathcal{P}) \leq \mathcal{R} \underline{\int}_a^b f$ and $U(f,\mathcal{P}) \geq \mathcal{R} \overline{\int}_a^b$ Suppose that f is Riemann integrable. Then given $\epsilon > 0$ there are partitions \mathcal{P} and \mathcal{Q} such that

$$\mathcal{R} \underbrace{\int_{a}^{b} f - L(f, \mathcal{P})}_{a} < \frac{\epsilon}{2}, \text{ and}$$

$$U(f, \mathcal{Q}) - \mathcal{R} \underbrace{\int_{a}^{b} f < \frac{\epsilon}{2}}_{a}.$$

Now let $\mathcal{R} = \mathcal{P} \cup \mathcal{Q}$. Then using the previous problem, we see that the two inequalities above hold with \mathcal{P} and \mathcal{Q} replaced by \mathcal{R} . In particular, since f is integrable, $\mathcal{R} \underline{\int}_a^b f = \mathcal{R} \overline{\int}_a^b f$ and

$$U(f,\mathcal{R}) - L(f,\mathcal{R}) < \frac{\epsilon}{2} + \mathcal{R} \int^b f - \mathcal{R} \int^b f + \frac{\epsilon}{2} = \epsilon.$$

Now assume that for all $\epsilon > 0$ a partition \mathcal{P} exists as stated in the problem. The previous problem implies that

$$\mathcal{R}\int_{a}^{b}f\leq\mathcal{R}\overline{\int}_{a}^{b}f.$$

Let $\epsilon > 0$ be given, and choose $\mathcal P$ such that $U(f,\mathcal P) - L(f,\mathcal P) < \epsilon$. Thus

$$\mathcal{R} \underbrace{\int}_{a}^{b} f \geq L(f, \mathcal{P}) > U(f, \mathcal{P}) - \epsilon \geq \mathcal{R} \underbrace{\int}_{a}^{b} f - \epsilon.$$

Thus,

$$0 \le \mathcal{R} \overline{\int}_a^b f - \mathcal{R} \int_a^b f < \epsilon.$$

Since ϵ is arbitrary, it follows that $\mathcal{R}_{0}^{\overline{\int}} {}^{b}_{a} f = \mathcal{R}_{0}^{\underline{\int}} {}^{b}_{a} f$, and f is Riemann integrable on [a,b] as required.

4. (Rudin: page 31 #1) Suppose that (X, \mathcal{M}) is a measurable space. Show that if \mathcal{M} is countable, then \mathcal{M} is finite. (Hint: since \mathcal{M} is countable, you can show that $\omega_x = \bigcap \{E : E \in \mathcal{M} \text{ and } x \in E\}$ belongs to \mathcal{M} . The sets $\{\omega_x\}_{x\in X}$ partition X.)

ANS: Notice that if $E \in \mathcal{M}$ and if $x \in E$, then $\omega_x \subset E$. On the other hand, if $F \in \mathcal{M}$ and if $x \notin F$, then $x \in \omega_s \setminus F$, and $\omega_x \subset \omega_x \setminus F$ so $\omega_x \cap F = \emptyset$. Thus if $\omega_x \cap \omega_y \neq \emptyset$, then $x \in \omega_y$ and $\omega_x \subset \omega_y$. By symmetry, $\omega_y \subset \omega_x$ and $\omega_x = \omega_y$. This shows that $\{\omega_x\}_{x \in X}$ partitions X. If $x \in F \in \mathcal{M}$, then $\omega_x \subset F$ and $F = \bigcup_{x \in F} \omega_x$. Thus the elements of \mathcal{M} are in one-to-one correspondence with the (distinct) subsets of $\{\omega_x\}_{x \in X}$. If this set is finite, then so is \mathcal{M} . If it is infinite, then it has at least as many subsets as does \mathbf{Z} — and there are uncountably many of these.

5. Let X be an uncountable set and let \mathcal{M} be the collection of subsets E of X such that either E or E^c is countable. Prove that \mathcal{M} is a σ -algebra.

ANS: Since \mathcal{M} certainly contains X and is closed under taking complements, the only issue is to show that \mathcal{M} is closed under countable unions. Suppose that $\{E_n\}_{n=1}^{\infty} \subset \mathcal{M}$. If all the E_n are countable, then the countable union $E = \bigcup_n E_n$ of countable sets is countable and $E \in \mathcal{M}$. If E_k^c is countable, then note that $E^c \subset E_k^c$ must also be countable. Thus in all cases, $E \in \mathcal{M}$ and \mathcal{M} is a σ -algebra.

- 6. Recall from calculus that if $\{a_n\}$ is a sequence of nonnegative real numbers, then $\sum_{n=1}^{\infty} a_n = \sup_n s_n$, where $s_n = a_1 + \cdots + a_n$. (Note the value ∞ is allowed.)
 - (a) Show that $\sum_{n=1}^{\infty} a_n = \sup\{\sum_{k \in F} a_k : F \text{ is a finite subset of } \mathbf{Z}^+ = 1, 2, 3, \dots\}$. (The point of this problem is that if I is a (not necessarily countable) set, and if $a_i \geq 0$ for all $i \in I$, then we can define $\sum_{i \in I} a_i = \sup\{\sum_{k \in F} a_k : F \text{ is a finite subset of } I\}$, and our new definition coincides with the usual one when both make sense.)

ANS: Let $I = \sup\{\sum_{k \in F} a_k : F \text{ is a finite subset of } \mathbf{Z}^+ = 1, 2, 3, \dots\}$. Since $F = \{1, \dots, n\}$ is finite,

$$I := \sup \{ \sum_{k \in F} a_k : F = \{ 1, \dots, n \} \}$$

$$\geq \sup s_n = \sum_{n=1}^{\infty} a_n.$$

Let $\epsilon > 0$. Choose a finite set $F \subset \mathbf{Z}^+$ such that $\sum_{k \in F} a_k > I - \epsilon$. Let $m = \max_{k \in F} k$. Then $s_m \ge \sum_{k \in F} a_k > I - \epsilon$. Thus

$$\sum_{n=1}^{\infty} a_n = \sup s_n \ge s_m > I - \epsilon.$$

Since ϵ was arbitary, $\sum_{n=1}^{\infty} a_n \geq I$. Thus $\sum_{n=1}^{\infty} a_n = I$ as claimed.

(b) Now let X be a set and $f: X \to [0, \infty)$ a function. For each $E \subset X$, define

$$\nu(E) := \sum_{x \in E} f(x).$$

Show that ν is a measure on $(X, \mathcal{P}(X))$. (In lecture, we considered the special cases of counting measure, where f(x) = 1 for all $x \in X$, and the delta measure at x_0 , where $f(x_0) = 1$ for some $x_0 \in X$ and f(x) = 0 otherwise. Another important example is the case where $\sum_{x \in X} f(x) = 1$. Then f is a (discrete) probability distribution on X and $\nu(E)$ is the probability of the event E for this distribution.)

ANS: Let $\{E_n\}$ be disjoint sets and $E=\bigcup_n E_n$. Suppose that $\nu(E)=\infty$. Fix M>0. Choose a finite set $F\subset E$ such that $M<\sum_{x\in E} f(x)$. Let $F_n=\{x\in F:x\in E_n\}$. Since all but finitely may F_n are empty,

$$M < \sum_{x \in E} f(x) = \sum_{n} \sum_{x \in F_n} f(x) \le \sum_{n=1}^{\infty} \nu(E_n).$$

Since M is arbitray, $\sum_{n=1}^{\infty} \nu(E_n) = \infty = \nu(E)$. So we can assume from here on that $\nu(E) < \infty$. Let $\epsilon > 0$. Choose a finite set $F \subset E$ such that $\nu(E) - \epsilon < \sum_{x \in E} f(x)$. Let $F_n = \{x \in F : x \in E_n\}$. Since all but finitely may F_n are empty,

$$\nu(E) - \epsilon < \sum_{x \in E} f(x) = \sum_{n} \sum_{x \in F_n} f(x) \le \sum_{n=1}^{\infty} \nu(E_n).$$

Since ϵ is arbitrary, $\nu(E) \leq \sum_{n=1}^{\infty} \nu(E_n)$.

Notice that if $\nu(E) < \infty$, the $\nu(E_k) < \infty$ for all k. Let $\epsilon > 0$. Since $\sum_n \nu(E_n) = \sup_n \sum_{k=1}^n \nu(E_k)$ it will suffice to show that for any n

$$\nu(E) + \epsilon > \sum_{k=1}^{n} \nu(E_k).$$

Choose finite sets $F_k \subset E_k$ such that

$$\nu(E_k) - \frac{\epsilon}{n} < \sum_{x \in F_k} f(x).$$

Put $F = \bigcup_{k=1}^{n} F_k$. Note that F is finite, and since the F_k are disjoint,

$$\nu(E) \ge \sum_{x \in F} f(x) = \sum_{k=1}^{n} \sum_{x \in F_k} f(x) > -\epsilon + \sum_{k=1}^{n} \nu(E_k).$$

That's it.

- (c) Let X, f, and ν be as in part (b). Show that if $\nu(E) < \infty$, then $\{x \in E : f(x) > 0\}$ is countable. Hint: if $\{x \in E : f(x) > 0\}$ is uncountable, then for some $m \in \mathbf{Z}^+$, the set $\{x \in E : f(x) > \frac{1}{m}\}$ is infinite. (Note that this last result says that discrete probability distributions "live on" countable sample spaces.)
- 7. (Rudin: page 31 #3) Prove that if f is a real-valued function on a measurable space (X, \mathcal{M}) such that $\{x: f(x) \geq r\}$ is measurable for all rational r, then f is measurable.
- 8. (Rudin: page 31 #5) Suppose that $f, g: (X, \mathcal{M}) \to [-\infty, \infty]$ are measurable functions. Prove that the sets

$$\{x : f(x) < g(x)\}$$
 and $\{x : f(x) = g(x)\}$

are measurable. (Remark: if h = f - g were defined, then this problem would be much easier (why?). The problem is that $\infty - \infty$ and $-\infty + \infty$ make no sense, so h may not be everywhere defined.)

ANS: Since $\{x: f(x) = g(x)\}$ is the complement of $\{x: f(x) < g(x)\} \cup \{x: g(x) < f(x)\}$ it suffice to see that $\{x: f(x) < g(x)\}$ is measurable. But

$$\{\, x : f(x) < g(x) \,\} = \bigcup_{r \in \mathbf{Q}} \,\{\, x : f(x) < r < g(x) \,\},$$

and each $\{x: f(x) < r < g(x)\} = g^{-1}((r, \infty]) \cap f^{-1}([-\infty, r))$ is measurable.