Does $\sum_{n=1}^{\infty} \frac{1}{3n-1}$ diverge, converge absolutely, or converge conditionally?

Solution 1

 $\sum_{n=1}^{\infty} \frac{1}{n}$ is a p-series which diverges by the p-series test. If we use $a_n = \frac{1}{3n-1}$ and $b_n = \frac{1}{n}$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{3n-1} \cdot \frac{n}{1}$$

$$= \lim_{n \to \infty} \frac{n}{3n-1}$$

$$= \lim_{n \to \infty} \frac{1}{3} \text{ using L'hopital}$$

$$= \frac{1}{3}$$

So by the Limit Comparison Test, the series $\sum_{n=1}^{\infty} \frac{1}{3n-1}$ diverges.

Solution 2

The Direct Comparison Test will also work, but will involve finding first finding a fixed value of K > 0 such that

$$K \cdot \frac{1}{3n-1} \ge \frac{1}{n}.$$

Multiply both sides by n(3n-1).

$$Kn \ge 3n - 1$$

This inequality will be true for all n if we choose K = 3. So we are done with the scratch work and instead begin our work:

Note that

$$3n \ge 3n - 1$$

Dividing both sides by 3n(3n-1), we get

$$\frac{1}{3n-1} \ge \frac{1}{3n}$$

The series $\sum_{n=1}^{\infty} \frac{1}{3n} = \frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n}$ is a *p*-series which diverges by the *p*-series test. So the series $\sum_{n=1}^{\infty} \frac{1}{3n-1}$ diverges by the Direct Comparison Test.