Vehicle Price Prediction (vehicle.ipynb)

- Problem Statement: The project aims to predict the price of a vehicle based on its features. This is a regression problem.
- Dataset Used
 - The dataset was loaded from CAR DETAILS FROM CAR DEKHO.csv.
 - The target variable is 'selling_price'.
 - Features include 'name', 'year', 'km_driven', 'fuel', 'seller_type', 'transmission', 'owner'.
- Methodology and Approach
 - Data Preprocessing
 - The 'name' column (car model) was dropped as it has too many unique values for simple encoding.
 - Categorical features ('fuel', 'seller_type', 'transmission', 'owner') were converted into numerical representations using pd.get_dummies() (one-hot encoding).
 - No explicit feature scaling was performed on the numerical features ('year', 'km_driven') before training the final models, though this can be important for some regression algorithms.
 - Model Training
 - The data was split into training (70%) and testing (30%) sets.
 - Several regression models were trained and evaluated:
 - Linear Regression (LinearRegression)
 - Lasso Regression (Lasso)
 - Decision Tree Regressor (DecisionTreeRegressor)
 - Random Forest Regressor (RandomForestRegressor)
 - Model Evaluation

:

• Models were evaluated using the R-squared (R2) score and Mean Squared Error (MSE).

• Results and Conclusion

:

- Linear Regression: R2 score of 0.44.
- Lasso Regression: R2 score of 0.44.
- Decision Tree Regressor: R2 score of 0.53.
- Random Forest Regressor: R2 score of 0.60.
- The Random Forest Regressor provided the highest R2 score, indicating it explained the most variance in the selling price among the models tested.
- The Random Forest Regressor model was saved to vehicle_price_model.pkl.