2. Präsenzübung – Logik

WS 2014/2015

Stand: 22.10.2014

Aufgabe 1

Sei $f:\{0,1\}^n \to \{0,1\}$ eine Funktion. Zeigen Sie, dass es eine aussagenlogische Formel $\varphi(X_1,\ldots,X_n)$ gibt mit

$$\llbracket \varphi \rrbracket^{\beta} = f(\beta(X_1), \dots, \beta(X_n))$$

für alle passenden Belegungen β .

Aufgabe 2

Sei $n \in \mathbb{N}$. Zeigen Sie, dass es bis auf Äquivalenz genau 2^{2^n} verschiedene aussagenlogische Formeln mit den Variablen X_1, \ldots, X_n gibt.

Aufgabe 3

(i) Konstruieren Sie eine Formel $\varphi(X_1, X_2, X_3)$, so dass für alle passenden Belegungen β, β' für φ gilt: wenn es ein $1 \le i \le 3$ gibt, so dass $\beta(X_i) \ne \beta'(X_i)$ aber $\beta(X_j) = \beta'(X_j)$ für alle $j \ne i$, dann gilt $\|\varphi\|^{\beta} \ne \|\varphi\|^{\beta'}$.

Das heißt, ändert man den Wahrheitswert genau einer Variablen in φ , so ändert sich der Wahrheitswert von φ .

(ii) Verallgemeinern Sie dies auf Formeln mit n Variablen X_1, \ldots, X_n . D. h., geben Sie für jedes n eine Formel φ_n mit $\text{var}(\varphi_n) := \{X_1, \ldots, X_n\}$ an, so dass das Ändern des Wahrheitswertes genau einer Variablen X_i , mit $1 \le i \le n$, den Wahrheitswert von φ_n ändert.

Aufgabe 4

Sei
$$\varphi := ((X \leftrightarrow \neg Y) \leftrightarrow Z) \to (((X \leftrightarrow \neg Y) \land Z) \leftrightarrow Y).$$

- (i) Sei \mathcal{S} die wie folgt definierte Substitution: $\mathcal{S}(X) := (Z \wedge U \leftrightarrow \neg Y)$ und $\mathcal{S}(Y) := (Z \to Y)$. Berechnen Sie $\varphi \mathcal{S}$.
- (ii) Sei β die wie folgt definierte Belegung: $\beta(U) := 1$, $\beta(Y) := 0$ und $\beta(Z) := 1$. Berechnen Sie βS , wie im Beweis des Substitutionslemmas definiert, und verifizieren Sie, dass
 - βS für φ und β für φS passend ist, sowie dass
 - $\beta S \models \varphi$ genau dann, wenn $\beta \models \varphi S$.