UNIVERSITY OF RWANDA

COLLEGE OF SCIENCE AND TECHNOLOGY

PHYSICS FOR ENGINEERS I (PHY1163)

STUDY GROUP: EPE & CEGE, Level 1

TUTORIAL Nº1: Unit 1- Introduction to Physics & Measurements

Question No 1:

- What are the *size* and *speed* of objects studied by the classical mechanics? i)
- What is the meaning of "to measure" for any exact science like Physics? ii)
- Give the *fundamental quantities* which are subjected to measurement in Mechanics. iii)
- Express the following quantities using the prefixes: iv)
 - a) $3 \times 10^{-4} m$
 - b) $5 \times 10^{-5} s$
 - c) $72 \times 10^2 g$
- What do these prefixes stand for: Giga, micro and femto? v)
- vi) What do you mean by "dimension" of a physical quantity?
- What is the important use of the **dimensional consistency** of a physical law? vii)

Question No 2:

The **Newton's law of universal gravitation** states that any two bodies in the universe attract each other with a *force* that is *directly proportional* to the product of their masses and *inversely* **proportional** to the square of the distance between them: $F = G \frac{m_1 m_2}{r^2}$. Determine the dimension and give the SI unit of the constant G.

Question No 3:

Verify that the following equations are dimensionally consistent knowing that v is the speed expressed in $m \cdot s^{-1}$, a the acceleration in $m \cdot s^{-2}$, x the position in m, and t the time in s:

a)
$$x = \frac{v^2}{2a}$$

$$b) \quad x = \frac{1}{2}at$$

a)
$$x = \frac{v^2}{2a}$$
 b) $x = \frac{1}{2}at$ c) $t = \sqrt{\frac{2x}{a}}$

Question No4:

With help of dimension analysis, find a formula for the rate of flow (Q) of a fluid through a pipe in terms of the liquid viscosity η , the pressure gradient in the pipe per unit length $\left(\frac{\Delta P}{I}\right)$ and the

radius (r) of the pipe. (Hints: $Q = k\eta^x r^y \left(\frac{\Delta P}{l}\right)^z$). The viscosity of the liquid η , the force F, the

surface area *A* and the velocity gradient $\frac{\Delta v}{\Delta x}$ are related by $F = \eta A \frac{\Delta v}{\Delta x}$

Question No 5:

The speed of a particle changes with time according to the formula $v = At - Bt^3$. What are the dimensions and the SI units of the constants A and B?

Question No 6:

Suppose that two quantities A and B have different dimensions. Determine which of the following arithmetic operations could be physically meaningful:

- a) A+B
- b) B-A
- c) AB

d) A/B

Question No7:

Round this measurement 0.00350681kg to:

- a) 1 significant figure
- b) 3 significant figures
- c) 5 significant figures

Question No8:

A particular reading in an experiment shows $L = 5.2 \pm 0.1$ m when $t = 0.32 \pm 0.05$ s.

- a) What are the maximum and minimum values for L and t?
- b) Show this range in a sketch of L versus t.

Question No9:

For the following set of measurements: 5.8 cm, 5.6 cm, 5.7 cm, 5.4 cm, 5.4 cm, 5.6 cm, Determine:

- a) the absolute uncertainty
- b) the relative uncertainty
- c) the percentage uncertainty

Question No10:

A student measures the width of an object several times and records the following data: 2.3 cm, 2.4 cm, 2.2 cm, 2.3 cm, 2.2 cm, and 2.8 cm. He decides to represent his data the following way:

- \triangleright 2.3 + 2.4 + 2.2 + 2.3 + 2.3 + 2.2 + 2.8 = 16.5
- \triangleright 16.5 ÷ 7 = 2.357 cm
- $(2.8-2.2) \div 2 = 0.3 \text{ cm}$

Therefore, the average value is 2.4 ± 0.3 cm. A teacher tells the student that his report should read 2.3 ± 0.1 cm.

How did the teacher get this result and what type of error did the student commit?

Question No11:

Write down, just in SI units, the order of magnitude of the following (you may need to do some research).

- a) the length of a human foot
- b) the mass of human brain
- c) the charge on a proton
- d) your age
- e) the speed of electromagnetic waves in a vacuum

Question No12:

The volume V of a cylinder of height h and radius r is given by the expression $V = \pi r^2 h$. In a particular experiment, r is to be determined from measurements of V and h. The percentage uncertainty in V is $\pm 5\%$ and that in h is $\pm 2\%$. Calculate the percentage uncertainty in r.