Stochastic Methods for Finance

Exam July 19, 2018

Consider a Black&Scholes market where a risky asset evolves according to

$$\frac{dS_t}{S_t} = \mu dt + \sigma dB_t$$
$$S_0 = s,$$

and a riskless asset is associated to the risk free rate r.

Exercice 1 (5 points) We want to approximatively hedge a digital option with maturity T with vanillas. Consider the following static strategy for any h > 0: 1/h * (Call(S, K) - Call(S, K + h)).

- i) Show that the price of this contract tends to the price of the digital contract with payoff $1_{S_T>K}$ for $h\to 0$.
- ii) Find the relation between the Delta of the digital option and the Delta of this static strategy for any h > 0 and in the limit for $h \to 0$.

Exercice 2 (5 points)

Consider a contract giving the following payoff at the maturity T

$$a \qquad if \ S_T < K_1; \\ a + nS_T \qquad if \ K_1 < S_T < K_2; \\ a - nS_T + n \qquad if \ K_2 < S_T < K_3; \\ a \qquad if \ S_T > K_3,$$

where $n \in \mathbb{N}$, a > 0 and $K_3 > K_2 > K_1$.

- i) Compute the price of the contract at any time $t \in [0, +\infty)$;
- ii) Compute the Delta and the Gamma of the contract;
- iii) Illustrate graphically the change of price and Delta for a upward shift of the volatility.

Exercice 3 (8 points)

In a Black-Scholes model, find the price at time $t \leq T$ of a DOWN-AND-OUT contract where the owner receives the exchange option payoff

$$(S_1(T) - S_2(T))^+$$

provided that the first asset has been always above the 50% of the second one, that is $S_1(t) > 0, 5 * S_2(t)$ for all $t \leq T$. Find the Delta of this contract.

Exercice 4 (8 points)

Solve the following PDE for $t \leq T$:

$$\frac{\partial F}{\partial t} + \frac{1}{2}x^2 \frac{\partial^2 F}{\partial x^2} + \frac{1}{2} \frac{\partial^2 F}{\partial y^2} + xe^y = 0$$
$$F(T, x, y) = xy.$$

Exercice 5 (4 points)

Questions on the theory.

- i) Show that under a suitable parameter assumption the binomial model converges to the Black-Scholes asset price dynamics.
- ii) State and prove the Second Fundamental theorem of asset pricing for a 2-periods finite-dimensional market model