Cyclotomic Units

Dimitar P. Jetchev

May 6, 2024

Chapter 1

Introduction

This is my first experimental mini-project to formalize the theory of cyclotomic units in Lean.

Chapter 2

Regulators of Number Fields

This chapter presents basic definitions and results on regulators of number fields. Let L be a number field with r_1 real and r_2 complex embeddings and let $r = r_1 + r_2 - 1$.

2.1 Definition of the regulator

Let $\epsilon_1,\dots,\epsilon_r$ be a set of independent units of L. Let $\sigma_1,\dots,\sigma_{r_1}$ be the set of real embeddings and let $(\sigma_{r_1+1},\overline{\sigma}_{r_1+1}),\dots,(\sigma_r,\overline{\sigma}_r)$ be the pairs of conjugate complex embeddings.

Definition 2.1.1. We define the regulator of the units $\epsilon_1, \dots, \epsilon_r$ of L as

$$R_L(\epsilon_1, \dots, \epsilon_r) := \sqrt{\det(\delta_i \log |\sigma_i(\epsilon_j)|)_{i,j}},$$

where

$$\delta_i = \begin{cases} 1 & \text{if } \sigma_i \text{ is real,} \\ 2 & \text{if } \sigma_i \text{ is complex.} \end{cases}$$

Chapter 3

The Index of Cyclotomic Units

3.1 Maximal real subfield

Definition 3.1.1. Let $K = \mathbb{Q}(\zeta_n)$ where ζ_n is a primitive *n*-th root of unit. Define the subfield $K^+ := \mathbb{Q}(\zeta_n + \zeta_n^{-1})$ of K.

Lemma 3.1.2. The subfield K^+ is the maximal real subfield of K.

Proof.

3.2 Cyclotomic units

Definition 3.2.1. Define the cyclotomic units of a cyclotomic field $K = \mathbb{Q}(\zeta_n)$ with ring of integers $O_K = \mathbb{Z}[\zeta_n]$ as the group

$$C_K:=O_K^\times\cap \langle \zeta_n^a, 1-\zeta_n^b\colon a,b\in \mathbb{Z}/n\mathbb{Z}\rangle.$$

3.3 Index theorem

Theorem 3.3.1. Let $n:=p^m\in\mathbb{N}$ for a prime p and a positive integer m, and let $K=\mathbb{Q}(\zeta_n)$ where ζ_n is a primitive n-th root of unit. Let O_K be the ring of integers of K. Let C_K be the group of cyclotomic units in K according to Definition 3.2.1. Then

$$[O_{K^+}^\times:C_{K^+}]=h_{K^+},$$

where h_{K^+} is the class number of the maximal real subfield K^+ of K.

Proof.

• Show that the regulator of the units $\zeta(a)$ is non-zero, where

$$\zeta(a) := \zeta_{p^m}^{(1-a)/2} \frac{1 - \zeta_{p^m}^a}{1 - \zeta_{p^m}}, \qquad 1 < a < p^m/2, \ (a,p) = 1.$$

• We then compute the regulator $R(\{\zeta(a)\})$.

3.3.1 Computing the regulator for K^+

Lemma 3.3.2. We have

$$R(\{\zeta(a)\}) = h^+ R^+,$$

where R^+ is the regulator of K^+ .

Proof.

3.3.2 The index of cyclotomic units and the regulator

Lemma 3.3.3. Let $\epsilon_1, \ldots, \epsilon_r$ be independent units of a number field K that generate a subgroup A of the units of K modulo roots of unity and let η_1, \ldots, η_r generate a subgroup B. If $A \subseteq B$ is of finite index then

$$[B:A] = \frac{R_K(\epsilon_1, \dots, \epsilon_r)}{R_K(\eta_1, \dots, \eta_r)}.$$

 \square