

Tutorial 02

I Sengupta & P P Das

Weekly Feedback

 $\begin{array}{c} \mathsf{Infix} \to \\ \mathsf{Postfix} \end{array}$

Gramma

Gramma

Recursive Descent

Left-Recursion

Ambiguous Gramm

Parsers

Practice Problems

Tutorial 02: CS31003: Compilers:

[M-03] Syntax Analysis or Parsing

Indranil Sengupta
Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

isg@iitkgp.ac.in ppd@cse.iitkgp.ac.in

September 19, 2020

Doubts from the Week

Tutorial 02

P P Das

Weekly Feedback

Infix -:
Postfix

Gramma

Recursive Descent

Left-Recursion

Ambiguous Gramn

Shift-Reduce Parsers

Problem: Infix \rightarrow Postfix

Tutorial 02

I Sengupta & P P Das

Weekly Feedback

 $\begin{array}{c} \mathsf{Infix} \to \\ \mathsf{Postfix} \end{array}$

Gramma

Recursiv Descent

Left-Recursion

Ambiguous Gramn

Shift-Reduce Parsers

Practice Problems

Convert

$$10 + 3 * 5/(16 - 4)$$

to postfix and evaluate

Solution: $Infix \rightarrow Postfix$

Tutorial 02

Given: 10 + 3 * 5/(16 - 4)

I Sengupta & P P Das

Weekly Feedbac

 $\begin{array}{c} \mathsf{Infix} \to \\ \mathsf{Postfix} \end{array}$

Gramma

Descent
Parsers
Left-Recursion
Ambiguous Gramm

Shift-Reduce Parsers

Current Symbol	Operator Stack	Postfix String		
10		10		
+	+	10		
3	+	10 3		
*	+ *	10 3		
5	+ *	10 3 5		
/	+/	10 3 5 *		
(+/(10 3 5 *		
16	+/(10 3 5 * 16		
-	+/(-	10 3 5 * 16		
4	+/(-	10 3 5 * 16 4		
)	+/	10 3 5 * 16 4 -		
		10 3 5 * 16 4 - / +		

Solution: Postfix Evaluation

Tutorial 02

Given: 1035*164-/+

 $Infix \rightarrow$ Postfix

Current Symbol	Stack content	Operation		
10	10			
3	10 3			
5	10 3 5			
*	10 15	3 * 5 = 15		
16	10 15 16			
4	10 15 16 4			
-	10 15 12	16 - 4 = 12		
/	10 1.25	15 / 12 = 1.25		
+	11.25	10 + 1.25 = 11.25		
	11.25			

Problem: Grammar and Derivation

Tutorial 02

I Sengupta & P P Das

Weekly Feedbac

Infix — Postfix

Grammar

Recursive Descent

Left-Recursion
Ambiguous Gramm

Shift-Reduce Parsers

Practice Problems Given $G = \{id, +, *, (,)\}, \{E, T, F\}, E, P > where P is:$

- 1: $E \rightarrow E + T$
- 2: $E \rightarrow T$
- 3: $T \rightarrow T * F$
- 4: $T \rightarrow F$
- 5: $F \rightarrow (E)$
- 6: $F \rightarrow id$

Write the Left-most and Right-most derivations for the sentence

$$(id + id) * id$$

Solution: Grammar and Derivation

Tutorial 02

I Sengupta & P P Das

Weekly Feedbac

Infix → Postfix

Grammar

Descent
Parsers
Left-Recursion
Ambiguous Gramm.

Parsers

Practice Problems Left-most derivation for: (id + id) * id

$$E\$ \Rightarrow \underline{T}\$ \Rightarrow \underline{T}*F\$$$

$$\Rightarrow \underline{F}*F\$ \Rightarrow \underline{(E)}*F\$$$

$$\Rightarrow (\underline{E}+T)*F\$ \Rightarrow (\underline{I}+T)*F\$$$

$$\Rightarrow (\underline{I}+T)*F\$ \Rightarrow (\underline{I}+T)*F\$$$

Right-most derivation for: (id + id) * id

$$E \$ \Rightarrow \underline{T} \$ \qquad \Rightarrow T * \underline{F} \$$$

$$\Rightarrow \underline{T} * id \$ \qquad \Rightarrow \underline{F} * id \$$$

$$\Rightarrow (\underline{E}) * id \$ \qquad \Rightarrow (\underline{E} + \underline{T}) * id \$$$

$$\Rightarrow (\underline{E} + \underline{F}) * id \$ \qquad \Rightarrow (\underline{E} + id) * id \$$$

$$\Rightarrow (\underline{T} + id) * id \$ \Rightarrow (\underline{F} + id) * id \$$$

$$\Rightarrow (id + id) * id \$$$

Problem: Recursive Descent Parser

Tutorial 02

I Sengupta &

Weekly Feedbac

Infix — Postfix

Gramma

Recursive Descent Parsers

Left-Recursion

Ambiguous Grami

Parsers

Practice Problems Write recursive descent parsers for the following grammar:

$$A \rightarrow id$$

$$A \rightarrow (B)$$

$$B \rightarrow int$$

$$B \rightarrow A$$

Solution: Recursive Descent Parser

Tutorial 02

I Sengupta & P P Das

Weekly Feedbac

Infix — Postfix

Gramma

Recursive Descent Parsers

Ambiguous Gramn

Shift-Reduce

Parsers

```
int main() {
   1 = getchar(): // 1 is lookahead
   A(); // A is a start symbol
   // If 1 = $, it represents the end of the string
   if (1 == '$') printf("Parsing Successful"):
    else printf("Error");
A() { // Definition of A, as per the given production
    if ( 1 == 'i' ){
       match('i'); match('d'); // A -> id
    else if ( l == '(' ){
       match('('); B(); match(')'); // A-> ( B )
}
B() { // Definition of B as per the given production
   if ( 1 == 'i' ){
       match('i'):
       if ( l == 'd' ){ // This follows B \rightarrow A \rightarrow id production
           match('d');
       } else if ( l == 'n' ){ // This is for normal B -> int
           match('n'); match('t');
    } else A():
                               // R -> A
}
match(char t) { // Match function
    if (1 == t) 1 = getchar():
    else printf("Error");
}
```


Problem: Removing Left Recursion

Tutorial 02

I Sengupta & P P Das

Weekly Feedbac

 $\begin{array}{c} \mathsf{Infix} \to \\ \mathsf{Postfix} \end{array}$

Gramma

Recursive Descent Parsers

Left-Recursion

Ambiguous Gramm

Parsers

Practice Problems Remove left-recursion in the following grammar and compare the parse trees for strings caaba and dbbaa before and after recursion removal:

$$S \rightarrow S \ a \mid S \ b \mid c \mid d$$

② Remove left-recursion in the following grammar and compare the parse trees for string *abdabed* before and after recursion removal:

$$A \rightarrow A \ B \ d \mid A \ a \mid a$$

$$B \rightarrow B e \mid b$$

Solution: Removing Left Recursion

Tutorial 02

I Sengupta & P P Das

Weekly Feedback

Infix — Postfix

Gramma

Recursiv Descent

Parsers Left-Recursion

Ambiguous Gramm

Shift-Reduce Parsers

Solution: Removing Left Recursion

Tutorial 02

I Sengupta & P P Das

Weekly Feedback

Infix -:
Postfix

Gramma

Recursiv Descent

Parsers Left-Recursion

Ambiguous Gramm

Parsers

Practice Problems

A -> abdabed

A -> abdabed

Problem: Removing Ambiguity

Tutorial 02

I Sengupta & P P Das

Weekly Feedbac

 $\begin{array}{c} \mathsf{Infix} \to \\ \mathsf{Postfix} \end{array}$

Gramma

Recursive Descent Parsers

Ambiguous Grammar

Shift-Reduce Parsers

Practice Problems Consider the ambiguous grammar G for regular expressions:

$$R \rightarrow R + R \mid R . R \mid R * \mid a \mid b$$

where \ast is Kleen closure, . is concatenation, and + is union operators. The priority order is:

$$(a,b) > * > . > +$$

where operators . and + are both left associative. Rewrite G as an equivalent unambiguous grammar.

Solution: Removing Ambiguity

Tutorial 02

I Sengupta & P P Das

Weekly Feedbac

 $\begin{array}{c} \mathsf{Infix} \to \\ \mathsf{Postfix} \end{array}$

Gramma

Recursiv Descent

Descent Parsers

Ambiguous Grammar

Shift-Reduce Parsers

Practice Problems

Removing Ambiguity:

- 1: $E \rightarrow E + C \mid C$
- 2: $C \rightarrow C \cdot K \mid K$
- 3: $K \rightarrow K * F \mid F$
- 4: $F \rightarrow a \mid b$

Removing left-recursion:

- 1: $E \rightarrow CE'$
- 2: $E' \rightarrow +CE' \mid \epsilon$
- 3: $C \rightarrow KC'$
- 4: $C' \rightarrow .KC' \mid \epsilon$
- 5: $K \rightarrow FK'$
- 6: K' → *FK' | ϵ
- 7: $F \rightarrow a \mid b$

Problem: Shift-Reduce Parsing

Tutorial 02

I Sengupta & P P Das

Weekly Feedbac

Postfix

Gramma

Recursive Descent Parsers

Ambiguous Gramm

Shift-Reduce Parsers

Practice Problems

For grammar G_1 :

1: $E \rightarrow E + T$

2: $E \rightarrow T$

3: $T \rightarrow T * F$

4: $T \rightarrow F$

5: $F \rightarrow (E)$

6: $F \rightarrow id$

Parse the following strings using the SR Parsing Table:

id + id * id

id + * id

Solution: Shift-Reduce Parsing: Parse Table

Tutorial 02

I Sengupta & P P Das

Weekly Feedbacl

 $\begin{array}{l} \mathsf{Infix} \to \\ \mathsf{Postfix} \end{array}$

Gramma

Recursive Descent Parsers Left-Recursion

Shift-Reduce Parsers

State	Action				G	0 T	0		
	id	+	*	()	\$	Ε	Т	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Solution: Shift-Reduce Parsing

Tutorial 02

I Sengupta & P P Das

Weekly Feedbac

Infix → Postfix

Gramma

Recursive Descent Parsers Left-Recursion

Shift-Reduce Parsers

Practice Problems

step	stack	symbols	Input	Act.
1	0		id + id * id \$	s5
2	0 5	id	+ id * id \$	r6
3	0 3	F	+ id * id \$	r4
4	0 2	Т	+ id * id \$	r2
5	0 1	Е	+ id * id \$	s6
6	0 1 6	E +	id * id \$	s5
7	0 1 6 5	E + id	* id \$	r6
8	0 1 6 3	E + F	* id \$	r4
9	0 1 6 9	E+T	* id \$	s7
10	0 1 6 9 7	E + T *	id \$	s5
11	016975	E + T * id	\$	r6
12	0 1 6 9 7 10	E + T * F	\$	r3
13	0 1 6 9	E+T	\$	r1
14	0 1	Е	\$	acc

17

Solution: Shift-Reduce Parsing

Tutorial 02

I Sengupta & P P Das

Weekly Feedbac

Postfix

Gramma

Recursiv Descent

Parsers

Ambiguous Gramp

Shift-Reduce Parsers

step	stack	symbols	Input	Act.
1	0		id + * id \$	s5
2	0 5	id	+ * id \$	r6
3	0 3	F	+ * id \$	r4
4	0 2	Т	+ * id \$	r2
5	0 1	Е	+ * id \$	s6
6	0 1 6	E +	* id \$	err

Practice Problems

Tutorial 02

Practice Problems Update the Operator Precedence Table to include the exponentiation operator ** where ** has higher precedence over * and /, and is right-associative, then convert 5*3**(4-2) to postfix and evaluate it.

write the Left-most and Right-most derivations for id * (id + id)

Write recursive descent parsers for the following grammar:

$$\begin{array}{ccc} L & \rightarrow & E \ R \\ E & \rightarrow & id \\ R & \rightarrow & ; \ L \ | \ \epsilon \end{array}$$

Remove left-recursion in the following grammar and compare the parse trees for string (a, (a, a)) before and after recursion removal:

$$egin{array}{cccc} S &
ightarrow & (L) \mid a \ L &
ightarrow & L, S \mid S \end{array}$$

parse the following strings using the SR Parsing Table: