

Course Outcomes

- CO1: develop skills and understanding in the database design and make use of database management systems for applications
- CO2 :: develop understanding about relational algebra, relational model and SQL for implementing and maintaining databases
- CO3 :: develop understanding about the different issues involved in the design and implementation of a database system
- CO4 :: develop skills and understanding about the real time transaction management systems and the concurrency control techniques
- CO5 :: compose programming constructs such as functions, stored procedures and triggers that can be shared by multiple forms, reports and data management applications

Book References

Text Books:

1. DATABASE SYSTEM CONCEPTS by HENRY F. KORTH, ABRAHAM SILBERSCHATZ, S. SUDARSHAN, MCGRAW HILL EDUCATION

References:

- 1. DATABASE SYSTEMS: MODELS, LANGUAGES, DESIGN AND APPLICATION PROGRAMMING by RAMEZ ELMASRI, SHAMKANT B. NAVATHE, PEARSON
- 2. AN INTRODUCTION TO DATABASE SYSTEMS by C. J. DATE, S. SWAMYNATHAN, A. KANNAN, PEARSON
- 3. SQL, PL/SQL: THE PROGRAMMING LANGUAGE OF ORACLE by IVAN BAYROSS, BPB PUBLICATIONS
- 4. SIMPLIFIED APPROACH TO DBMS by PRATEEK BHATIA AND GURVINDER SINGH, KALYANI PUBLISHERS

Know about the Multiple Databases ??

DBMS - Some Commonly Used DBMS

Which are the popular DBMS ??

DB-Engines Ranking Score (Dec, 2020)

The three BURNING questions in mind...

- 1. Why are we learning databases, Is Excel not enough?
- 2. What operations we can perform and purpose it would solve?

3. What will be the course outcome?

Let's start off

Data vs. Information **Aren't they Same ???**

DATA

INFORMATION

Un-organized

Organized

Processing Of DATA

Output (Information)

Data	Information
Data is unorganised and unrefined facts	Information comprises processed, organised data presented in a meaningful context
Data is an individual unit that contains raw materials which do not carry any specific meaning.	Information is a group of data that collectively carries a logical meaning.
Data doesn't depend on information.	Information depends on data.
It is measured in bits and bytes.	Information is measured in meaningful units like time, quantity, etc.
Raw data alone is insufficient for decision making	Information is sufficient for decision making
An example of data is a student's test score	The average score of a class is the information derived from the given data.

Dataset vs. Database ??

- A DATASET is a structured collection of data generally associated with a unique body of work.
- A DATABASE is an organized collection of **data** stored as multiple datasets.

DATA

Data means facts related to any object in consideration.

DATABASE

Database is a systematic collection of data. Databases support storage and manipulation of data. Databases make data management easy.

For example

Facebook uses database to store, manipulate and present data related to members, their friends, member activities, messages, advertisements and lot more.

Is excel a Database ??

Definitely Not!!!

- A spreadsheet is an application for tabulating data while a database is where data is stored so that it can be retrieved by users
- The amount of data that is usually stored in a database is way more than what is contained in a spreadsheet
- A spreadsheet is edited directly by people while a database is accessed by applications that enter and modify data
- A spreadsheet is usually used for presentations and paperwork while databases are commonly used in cases where a lot of data needs to stored

Introduction to DBMS

World is full of information!!

What needs to be done about the information?

Data growth

How do we manage data?

What data can be stored or recorded ??

Who all uses Databases ??

What is DBMS??

- Database Management Systems is not a new concept.
- A database management system (DBMS) is system software for creating and managing databases. DBMS is a collection of programs which enables its users to access database, manipulate data, reporting / representation of data.
- The DBMS provides users with a systematic way to create, retrieve, update and manage data.

Why DBMS??

- Data independence and efficient access.
- Reduced application development time.
- Data integrity and security.
- Uniform data administration.
- Concurrent access, recovery from crashes.

Database Depiction

Introduction to DBMS

We know, DBMS stands for Database Management System

Database + Management + System

where, the database is managed by the system.

Database Management System

Database + Management System

collection of data a set of program to store & retrieve data.

Database Management Systems

Applications of DBMS

- Banking For customer information, account activities, payments, deposits, loans, etc.
- Airlines For reservations and schedule information.
- Universities For student information, course registrations, colleges and grades.
- Telecommunications It helps to keep call records, monthly bills, maintaining balances, etc.
- Sales Use for storing customer, product & sales information.
- HR Management For information about employees, salaries, payroll, deduction, generation of paychecks, etc.

Manufacturing - It is used for the management of supply chain and for tracking production of items.

Finance - For storing information about stock, sales, and purchases of financial instruments like stocks and bonds.

Syllabus of INT306

Unit 1: Introduction to Databases

- purpose of database systems
- components of dbms
- applications of dbms
- three tier dbms architecture
- data independence
- Database Schema, instance
- data modeling
- entity relationship model
- relational model

Relational Databases

UserID	First Name	Last Name	Email	Phone #	Fields
7500848	Stephen	Barrett	sbarrett@mail.com	555-222-3987)
7500843	Derek	Clapton	derek@dominos.com	555-735-2406	
7500843	John	Didsbury	jdisbury@mail.com	555-769-3987	Each row is a separate record
7500847	Georgia	Grace	gg@mail.com	555-859-9876	Separate record
7500841	Carly	Rose	crose@mail.com	555-403-1018	

Structure of Relational Databases

Bob's Address Book

His friend Megan's Details

Database Design: It's how they are stored!!!

Can we perform various operations ??

Lets Look for Megan

Search can be more accurate!!!

That's what we get!!!

Unit 2: Relational Query Languages

Unit 3: Relational Database Design

First Name	Last Name	Address	City	Age
Mickey	Mouse	123 Fantasy Way	Anaheim	73
Bat	Man	321 Cavern Ave	Gotham	54 39
Wonder	Woman	987 Truth Way	Paradise	
Donald	Duck	555 Quack Street	Mallard	65
Bugs	Bunny	567 Carrot Street	Rascal	58 61
Wiley	Coyote		Canyon	
Cat	Woman		Hairball	32
Tweety	Bird	543	Itotltaw	28

- Normalization
- Normal forms

Unit 4: Database Transaction Processing

This occurs immediately when the change is made, and must complete before the query 'returns' to the user. 2. change is recorded 1. runs a query to modify in transaction log a row in a table transaction log database user 3. query returns 4. change is recorded in data file data file

This happens during a checkpoint, and can be much later from when the change was originally made.

Unit 5: Programming Constructs in Databases

- Cursors
- Triggers
- exception handling
- functions

Unit 6: File Organization and Trends in Databases

