Programmation Orientée Objet en Python

#5 UML (class diagram)

par David Albert

Table des matières

01 Cycles de développement

Cycle en V et méthodes AGILE.

02 Introduction à UML

Motivations. Diagrammes. Chaîne de conception.

03 Diagramme de cas d'utilisation

Quelques exemples.

04 Diagramme de classes

Typing. Documentation. Gestion des erreurs. Tests unitaires.

01Cycles de développement

Cycle en V

Vers une méthodologie AGILE

(!)

Le **cycle en V** a un **inconvénient majeur**. La vérification de la conformité aux besoins client attend la fin du développement du produit. S'il y a un soucis, on s'en rend compte **très tardivement**.

Méthologie AGILE

Pour pallier à cela, les entreprises privilégient de plus en plus des **cycles courts** et successifs. On répétera successivement les étapes de *spécifications*, *conception*, *développement*, *test et validation*.

02Introduction à UML

Unified Modeling Language

Motivations

- Besoin de conception pour réaliser une architecture complexe.
- Besoin de se comprendre

UML c'est quoi?

- un langage de modélisation de systèmes informatiques
- modèle graphique (à base de pictogrammes)
- indépendant du langage de programmation
- intervient dans la phase de conception (générale et détaillée)

Quelques diagrammes

Diagrammes structurels

Diagramme de classes

Définit l'ensemble des classes et de leurs relations

Diagramme de composants

Liste les composants logiciels

Diagramme de déploiement

Définit la répartition des composants sur une architecture matérielle

Diagrammes de comportement

Diagramme des cas d'utilisation

Définit les scénarios d'interaction entre les utilisateurs et le système

Diagramme d'activité

Représente les états du système et leurs transitions par événements

Diagramme de séquence

Représente les scénarios d'interactions entre entités du système

Référence: <u>Laurent Vercouter</u>, <u>Cours UML</u>, <u>Insa Rouen</u>

Chaîne de conception

Différents diagrammes arrivent à différents moments dans la chaîne de conception.

Référence:

Laurent Audibert

03 Diagramme de cas d'utilisation

Diagramme de cas d'utilisation

Résumé

Objectifs

- Premier diagramme réalisé pour définir les scénarios d'usage
- A réaliser avec le client
- À utiliser tout au long du développement

Exemple

Diagramme de cas d'utilisation

Syntaxe

Exemple (énoncé)

Un restaurant

04Maquettes

Réaliser les premières maquettes

Rien de tel que quelques maquettes pour mettre tout le monde d'accord sur l'interface homme-machine et ses interactions.

Outils: drawio et Figma

05Diagrammes de classes

Diagramme de classes

Syntaxe 1

Diagramme de classes

Syntaxe 2

Modèle du domaine

Phase

Début de conception générale. Intervient juste après les premières maquettes et cas d'utilisation.

Objectifs

- Premier diagramme de classes à réaliser
- Indépendant des fonctionnels de l'application
- Représente le domaine métier

Diagramme de classes participantes

Phase

Fin de conception générale. Intervient dans la dernière phase de la conception générale en même temps que les diagrammes de séquence et d'activité.

Objectifs

- Enrichissement du modèle de domaine
- Modélisation guidée par les besoins

06Diagramme d'activité

07Diagrammes de séquence