

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/875,095	06/07/2001	Kristofer Skantze	3782-0134P	7701
2292	7590	12/13/2005	EXAMINER	
BIRCH STEWART KOLASCH & BIRCH PO BOX 747 FALLS CHURCH, VA 22040-0747			KLIMACH, PAULA W	
			ART UNIT	PAPER NUMBER
			2135	

DATE MAILED: 12/13/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/875,095	SKANTZE, KRISTOFER	
	Examiner	Art Unit	
	Paula W. Klimach	2135	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 21 September 2005.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1,5-14, 16 and 18-40 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1,5-14, 16 and 18-40 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| Paper No(s)/Mail Date _____ | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 10/13/05 has been entered.

Response to Request for Personal Interview

In response to the applicant request for a Personal Interview, the Examiner respectfully requests that the Applicant contact the Examiner at (571) 272-3854.

Response to Arguments

Applicant's arguments filed 10/13/05 have been fully considered but they are not persuasive because of following reasons.

Applicant argued the applicant argued that Lapstun fails to teach or suggest the at least one absolute position is associated with an address of the receiving device. This is not found persuasive. Lapstun discloses the absolute position in which the at least one absolute position (stroke; column 16 lines 36-51) is associated with an address of the receiving device (column 17 lines 33-56). In the stated sections the pen captures a series of strokes wherein the stroke consists of pen position (absolute position). The strokes are sent to the printer wherein the page id and stroke information is used to determine the network address of the page server and therefore is associated with an address of the receiving address. The key exchange is disclosed in the advisory (10/07/05).

Art Unit: 2135

Applicants clearly have failed to explicitly identify specific claim limitations, which would define a patentable distinction over prior arts.

The examiner asserts that Lapstun, Dorenbos, and Sekendur do teach or suggest the subject matter broadly recited in independent Claims 1, 14, 27, and 35. Dependent Claims 5-13, 16, 18-26, 28-34, and 36-40 are also rejected at least by virtue of their dependency on independent claims and by other reason set forth in this office action. Accordingly, rejections for claims 1, 5-14, 16, 18-40 are respectfully maintained.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made. *40*

Claims 1, 5-6, 14, 18-19, 22, 27-30, and 32-38 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lapstun et al. (6,789,191) in view of Dorenbos (5,751,813) and further in view of Sekendur (5,852,434).

In reference to claims 1, 14, 27 and 35, Lapstun discloses a protocol for registering an interactive device with a registration server in a network connected to the interactive device and the registration server (column 2 lines 1-5). The system comprises obtaining, in the digital pen, a message in the form of a plurality of absolute position recorded from an absolute position coding pattern on a substrate (column 5 lines 1-3); obtaining, in the digital pen, at least one absolute position recorded from an absolute position coding pattern on a secure note (column 4 lines 46-52); sending said at least one absolute position recorded form the secure note to a database device (column 4 lines 55-60), in which said at least one

absolute position is associated with an address of the receiving device (column 7 lines 49-58); receiving, in the digital pen, said address (column 17 lines 33-51) and an encryption key of said receiving device, from the database device (column 32 lines 54-56); encrypting the message to be transmitted using said encryption key received from the database device (column 16 lines 14-16); obtaining a transmission channel form the digital pen to the receiving device (column 16 lines 14-16); transmitting the encrypted message to the receiving device (column 16 lines 14-16); and presenting the message to a receiver (column 6 lines 1-14).

Although Lapstun discloses encrypting the information at the pen, and it is inherent that for the receiving device to view the information it must be decrypted, Lapstun does not expressly disclose decrypting the received message.

Dorenbos a system and method for secure wireless transmission of information from a sender to a receiver, comprising: a sending device arranged for obtaining a message and a receiver identity (column 4 lines 43-47); encryption means for encrypting the message to be transmitted (Fig. 3 and column 5 lines 18-22); a transmission channel from the sending device (part 317 Fig. 3) to a receiving device for transmitting the encrypted information to the receiving device (column 5 lines 46-60); decryption means for decrypting the information in the receiving device (column 5 lines 47-48); display means for presenting the message to the receiver (part 127 Fig. 1).

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to decrypt the information that has been encrypted as in Dorenbos in the system of Lapstun. One of ordinary skill in the art would have been motivated to do this because the information must be decrypted if it is to be understood by the user.

Although Lapstun suggests a form of displaying the received information (Fig 2), however Lapstun does not disclose the use of a secure note in which a pattern is connected to a receiving device.

Sekendur discloses a system and method of digitizing a position related code for indicating coordinates on a surface (abstract). The secure note disclosed by Sekendur is the data surface (column 5 lines 1-3) and therefore a piece of paper; and the pattern (column 5 lines 22-25) on the secure note is connected to a receiver; the receiver being processor or computer where the signal from the CCD is sent to (column 5 lines 9-14). The stylus is used to enter data in writing such as address information.

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to add a system for digitizing a position related code for indicating coordinates on a surface as in Sekendur for IO in the system of Lapstun. One of ordinary skill in the art would have been motivated to do this because it would enable the user to input hand written data.

In reference to claims 5, 18, 28 and 37, wherein the digital pen is arranged to encrypt the message in the sending device by a symmetric key and that the decryption means is arranged to decrypt the message in the receiving device by the same key (column 32 lines 63-64).

In reference to claims 6, 19, 30 and 38, wherein the symmetric key has been agreed upon in advance and is stored in the digital pen and the receiving device (column 32 lines 36-39).

In reference to claim 22, further comprising a verification means for identification of a user to the digital pen: and/or identification of the receiver to the receiving device, said verification means being arranged to use identification measures, wherein the identification

measures are at least one of a Pin-code, optical, sound, vibration, heat, speed, angle, times pressure, acceleration, absolute coordinate, handwritten signature, voice recognition, fingerprint sensor, or other biometric means (column 6 lines 30-40).

In reference to claims 29, 32, and 36, wherein the step of sending further comprises sending an identity of the pen to the database device (column 32 lines 19-35).

In reference to claim 33, further comprising displaying the address of the receiving device to a user of the digital pen and obtaining one of a confirmation and a rejection of the address from the user (column 32 lines 25-35).

In reference to claim 34, wherein at least one of the sending step, the receiving step and the transmitting step is carried out over the network (Fig. 2 in combination with column 32 lines 6-18).

In reference to claim 40, wherein sending said at least one absolute position recorded from the secure note to a database device occurs via Bluetooth through a mobile telecommunications device. The system of Lapstun discloses transmitting encrypted information wirelessly (column 16 lines 14-17) and therefore uses Bluetooth through a mobile telecommunication device to send at least one absolute position recorded from the secure note.

Claim 16 is rejected under 35 U.S.C. 103(a) as being unpatentable over Lapstun in view of Dorenbos, and further in view of Sekendur as applied to claim 14 above, and further in view of Jalili (6209104 B1).

Dorenbos does not disclose receiving address is obtained by transmitting said one position to a database, in which the absolute position code is associated with said one receiving address and using said receiving address for the transmission.

Although Sekendur discloses determining the position coordinates (abstract), Sekendur does not disclose transmitting said one position to a database, in which the absolute position code is associated with said one receiving address and using said receiving address for the transmission.

Jalili discloses transmitting said one position to a database, in which the absolute position code is associated with said one receiving address and using said receiving address for the transmission (Fig. 8 parts 808 and 810 and column 6 lines 4-20).

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to use the position information associated with an address for transmission for the receiving address. One of ordinary skill in the art would have been motivated to do this because sending coordinates to the server instead of the graphics reduces the amount of data that needs to be transmitted.

Claims 7-13, 20-21, 23-26, 31, and 39 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lapstun in view of Dorenbos and further in view of Sekendur and further in view of Sekendur as applied to claims 5, 14, 18, and 27 above, and further in view of Schneier.

In reference to claims 7, 20, 31, Lapstun discloses, encrypting at least the symmetric key by a public key of an asymmetric key having a private key and public key and belonging to the receiving device, decrypting the symmetric key by the private key of the receiving device; and using the symmetric key for decrypting the message during the key exchange (column 32 lines 1-56).

Schneier discloses the symmetric key is added to the message after encryption with the symmetric key; the encryption means is arranged to encrypt at least the symmetric key by

a public key of an asymmetric key having a private key and a public key and belonging to the receiver; code is connected to at least one the decryption means is arranged to decrypt the symmetric key by the private key of the receiver in the receiving device; and the decryption means is arranged to use the symmetric key for decrypting the message (page 51 paragraph 1-2).

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to use a asymmetric key to encrypt a symmetric key and attach the key to the message as taught by Schneier in the system of Lapstun. One of ordinary skill in the art would have been motivated to do this because it is a common key-exchange protocol.

In reference to claims 8 and 21, wherein the encryption means is arranged to encrypt the already encrypted symmetric key in the sending device by a private key of an asymmetric key having a private key and a public key and belonging to the sender, the receiving device is arranged to obtain the sender public key, such as from the sending device or a separate server; and the decryption means is arranged to decrypt the symmetric key by the public key of the sender in the receiving device and by the private key of the receiver.

Lapstun does not disclose encrypt the already encrypted symmetric key in the sending device by a private key of an asymmetric key having a private key and a public key and belonging to the sender, the receiving device is arranged to obtain the sender public key, such as from the sending device or a separate server; and the decryption means is arranged to decrypt the symmetric key by the public key of the sender in the receiving device and by the private key of the receiver.

Schneier teaches encrypt the symmetric key in the sending device by a private key of an asymmetric key having a private key and a public key and belonging to the sender, the receiving device is arranged to obtain the sender public key, such as from the sending device

or a separate server; and the decryption means is arranged to decrypt the symmetric key by the public key of the sender in the receiving device and by the private key of the receiver (page 49). Schneier further teaches multiple encryption and therefore encrypting the already encrypted session key (page 367).

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to use multiple encryption algorithms on the same message as in Schneier in the system of Lapstun. One of ordinary skill in the art would have been motivated to do this because if one of the receipt of the message or the sender of the message does not trust the algorithm of the other party, with this method both algorithms may be used and the encryption will be as strong as the strongest algorithm.

In reference to claims 10, 23 and 39, further comprising encryption key generation means for obtaining a random seed for generating encryption key by means of the verification means during the identification step.

Although Lapstun disclose encrypting messages using keys, Lapstun does not disclose key generation means for obtaining a random seed for generating encryption key by means of the verification means during the identification step.

Schneier disclose the generation of random number for use as keys, which are used for identification as pass-phrases (page 423 and 173-174).

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to generate random number keys as in Schneier in the system of Lapstun. One of ordinary skill in the art would have been motivated to do this because random bit strings provide good keys.

In reference to claims 11 and 24 further comprising: encryption key generation means for obtaining a random seed for generating an encryption key during the step of obtaining the message.

Lapstun does not disclose key generation means for obtaining a random seed for generating an encryption key during the step of obtaining the message.

Schneier discloses key generation means for obtaining a random seed for generating an encryption key during the step of obtaining the message (page 173).

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to generate random number keys as in Schneier in the system of Lapstun. One of ordinary skill in the art would have been motivated to do this because random bit strings provide good keys.

In reference to claims 9, 12, and 25, wherein the sending device is arranged to generate a sender private key and sender public key pair, and is arranged to use a random seed obtained using a physical parameter of the sender, such as handwritten signature recognition, fingerprint information, or movement of the sending device or of the sending device, such as acceleration speed, time, vibration etc.

Lapstun does not disclose the sending device is arranged to generate a sender private key and sender public key pair, and is arranged to use a random seed obtained using a physical parameter of the sender, such as handwritten signature recognition, fingerprint information, or movement of the sending device or of the sending device, such as acceleration speed, time, vibration etc.

However Schneier discloses a random seed obtained using a physical parameter (page 173).

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to generate random number keys as in Schneier in the system of Lapstun. One of ordinary skill in the art would have been motivated to do this because random bit strings provide good keys.

In reference to claims 13 and 26 wherein the sender public key is added to the message, unencrypted, as sender identification.

Lapstun does not disclose the sender public key is added to the message, unencrypted, as sender identification.

Schneier discloses the key used as identification, pass-phrase, (page 174), further Schneier teaches a key added to the message (page 51).

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to generate random number keys as in Schneier in the system of Lapstun. One of ordinary skill in the art would have been motivated to do this because random bit strings provide good keys.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Paula W. Klimach whose telephone number is (571) 272-3854. The examiner can normally be reached on Mon to Thr 9:30 a.m to 5:30 p.m.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kim Vu can be reached on (571) 272-3859. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

PWK
Thursday, December 08, 2005

KIM VU
US PATENT EXAMINER
COPY CENTER