JMAG Version 11

JCF / PLOT File Format

JSOL Corporation

Issue date of First Edition: Janualy 2012

■ COPYRIGHTS

Copyright ©2012 JSOL Corporation All Rights Reserved.

- · Information in this document is subject to change without notice.
- No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
 or any means electronic or mechanical, including photocopying and recording for any purpose other
 than the purchaser's personal use without the written permission of JSOL Corporation.

JMAG Group Engineering Technology Division JSOL Corporation

Tokyo/ 2-5-24, Harumi, Chuo-ku, Tokyo, 104-0053 Japan

TEL: +81(3) 5859-6020 TEL(Support): +81(3) 5859-6023 FAX: +81(3) 5859-6035

Osaka/ 2-2-4 Tosabori, Nishi-ku, Osaka, 550-0001 Japan

TEL: +81(6) 4803-5820 FAX: +81(6) 6225-3517

E-mail: jmag-support@sci.jsol.co.jp URL: http://jmag-international.com/

■ TRADEMARKS

- · All other product and company names are trademarks, registered trademarks, or service marks of their respective companies, organizations, or holders.
- · This document does not include the letters \mathbb{R} and \mathbb{T} .

CONTENTS

Chapter 15	S.Editing a JCF File (Simple FHI)1	or a Study Included in
15.1 O	Overview 1	the Project 41 16.3.5 Obtaining Values set in
	nvironment Required for diting JCF Files 3	Each Parameter of a Project42
	Programs	A. JCF File Format (Mesh) 43
	unctions of JCF File Access ibrary (SimpleFHI) 6	A.1 Overview
	Ising the JCF File Access ibrary (SimpleFHI) 27	A.2 Basic Information of Analysis (control_parameters) 45
	Using C Language 27	A.3 Setting Conditions (condition_data) 49
	Using Excel VBA	B. JCF File Format (Magnetic Field Analysis) 55
	(JMAG-Designer)35	B.1 Overview
16.1 Fo	unction	B.2 Block List
	mportant Notes Regarding he Use of this Function 36	B.3 Basic Information of Analysis (control_parameters) 59
		B.4 Setting Conditions (condition_data) 61
	unning Procedures Windows/Linux) 36	B.5 Setting Materials (material_data) 104
16.3.1	Important Notes Regarding the Descriptions of Commands	C. PLOT File Format (Magnetic Field Analysis)119
16.3.2	Extracting Result Data 37	C.1 Analysis Control
16.3.3	Obtaining List of Output Items 41	C.2 Controlling PLOT File 120
	ICIIIS 41	C.3 Output Conversion of Model 120
		C.4 Parameter Conversion of Circuit 121

C .5	Coordi	nate Data	121	C.7.23 Surface Force Density (Element
C .6	Elemer	nt Data	122	Data)
C.7	Analys	is Results	124	Data)
	C.7.1	Control Data (ST, TR, DP)	124	C.7.25 Analysis Error (Element Data)136
		Control Data (FQ)		C.7.26 Principal Stress (Element Data) 136
		Displacement (Node Data)		C.7.27 Joule Loss (Step Data) 137
		Vector Potential (Node Data)		C.7.28 Hysteresis Loss (Step Data)137
		(DP)	124	C.7.29 Electromagnetic Force and
	C.7.5	Vector Potential (Node Data)	405	Torque (Step Data)
	C 7 C	(DP)	125	C.7.31 Magnetic Flux (Step Data) (ST,
	C.7.6	Magnetic Flux Density (Element Data) (ST, TR, DP)	126	TR, DP)
	C.7.7	Magnetic Flux Density (Element		C.7.32 Magnetic Flux (Step Data) (FQ) .139
		Data) (FQ)	126	C.7.33 Electric Potential (Step Data)
	C.7.8	Magnetization (Element Data)	107	(DP, TR)
	C 7 0	(ST, TR, DP)		C.7.34 Electric Potential (Step Data) (FQ)140
	C.7.9	(Element Data) (ST, TR, DP)		C.7.35 Current (Step Data) (TR, DP) 140
	C.7.10	Magnetization (Element Data)		C.7.36 Current (Step Data) (FQ) 141
		(FQ)	128	C.7.37 Stored Energy (Step Data)142
		Magnetic Field (Element Data) (ST, TR, DP)	128	C.7.38 ON/OFF Information of Circuit Component (Step Data)
		Magnetic Field (Element Data) (FQ)	129	C.7.39 Magnetic Flux in Current Condition (Step Data)
		Electric Field (Element Data) (FQ)	130	C.7.40 Magnetic Flux of FEM Coil (Step Data)
	C.7.14	Current Density (Element Data) (ST, TR, DP)	130	C.7.41 Current Value in Current Condition (Step Data)
	C.7.15	Current Density (Element Data) (FQ)	131	C.7.42 Current Value of FEM Coil (Step
	C.7.16	Surface Current Density (Shell	101	Data)
	0.7.10	Element Data) (FQ)	132	C.7.43 Total Distance (Step Data) 144
	C.7.17	Line Current (Beam Element Date (ST, TR, DP)	•	C.7.44 Contact Angle of Brush and Commutator (Step Data)144
	C.7.18	Line Current (Beam Element		C.7.45 Heat Source (Step Data) 145
		Data) (FQ)	133	C.7.46 End of Step (Step Data) 145
	C.7.19	Hysteresis Loss (Element Data)	133	D ICE File Format (Thormal
	C.7.20	Joule Loss Density and Joule Loss (Element Data)	134	D. JCF File Format (Thermal Analysis)147
	C.7.21	Surface Joule Loss Density (Element Data)	134	D.1 Overview
	C.7.22	Nodal Force (Node Data)	135	D.2 Block List

D.3	Basic Information of Analysis (control_parameters) 150	F.3 Basic Information of Analysis (control_parameters) 175
D.4	Setting Conditions (condition_data) 151	F.4 Setting Conditions (condition_data) 176
D.5	Setting Materials (material_data) 161	F.5 Specifying Materials (material_data) . 182
	PLOT File Format (Thermal Analysis)163	G. Solver Data File Format (Electric Field Analysis)
E.1	Analysis Control 163	G.1 Analysis Control
E.2	Control Output Items	G.2 Control Output Items 184
E.3	Control Variables for Mesh Generator	G.3 Control Variables for Mesh Generator
E.4	Step Interval Control 166	G.4 Step Control
E.5	Control Output Interval 166	G.5 Control Output Interval 186
E.6	Coordinate Data	G.6 Coordinate Data
E.7	Element Data	G.7 Element Data
E.8	Analysis Results 168	G.8 Material Property Data
	E.8.1 Control Data	G.9 Electric Potential Specification (EL-ST, EL-FQ, EL-CUR)
	E.8.3 Temperature Distribution (Node	G.10Electric Potential Boundary (CH) 190
	Data)	G.11Electric Field/Current Density Boundary
	E.8.5 Heat Flow (Step Data) 169	G.12Periodic Boundary (EL-ST, EL-FQ,
	E.8.6 Heat Source Density 170	EL-CUR, CH)
	E.8.7 Amount of Heat Source 170	G.13Conductor (EL-ST, EL-FQ, EL-CUR, CH)
	E.8.8 Average Temperature (Step Data)170	G.14Force Calculation (EL-ST, EL-FQ,
	E.8.9 Terminal Temperature (Step Data)171	EL-CUR, CH)
	E.8.10 Total Displacement (Step Data)171	G.15Calculation of Surface Charge Distribution (EL-ST, EL-FQ, EL-CUR, CH)
	JCF File Format (Electric Field	G.16Surface Charge (EL-ST, EL-FQ, CH)
	Analysis)173	G.17Volume Charge (EL-ST, EL-FQ, CH)
F.1	Overview	G.18Control Data of Charge Distribution
F.2	Block List	Analysis (CH) 194

G.19Transient Coefficient Matrix (CH) 194	H.11.13Internal Line Charge (Element Data)
G.20Diffusion Coefficient (CH) 194	H.11.14Internal Surface Charge
G.21Initial Particle Density (CH) 195	(Element Data) 211
G.22Electric Discharge Current Calculation	H.11.15Internal Polarization (Element Data)
G.23Time Step Data	H.11.16 Power Consumption Density (Element Data)
II. Diet File Fermet /Fleetrie Field	H.11.17Thermal Electromotive Force Loss Density (Element Data) 213
H. Plot File Format (Electric Field Analysis)197	H.11.18Total Losses Density (Element Data) 213
H.1 Analysis Control	H.11.19 Power Consumption (Step Data)
H.2 Control Output Items	H.11.20Thermal Electromotive Force Loss (Step Data)
H.3 Control Variables for Mesh Generator	H.11.21Total Loss (Step Data)214
H.4 Step Control	L. Cohyan Data File Format
H.5 Control Output Interval 200	I. Solver Data File Format (Electromagnetic Wave
H.6 Controlling PLOT File 200	Frequency Response
H.7 Output Conversion of Model 201	Analysis) 215
H.8 Parameter Conversion of Circuit 202	I.1 Analysis Control
H.9 Coordinate Data	I.2 Output Item Control
H.10Element Data	I.3 Control Variables for Mesh
H.11Analysis Results	Generator
H.11.1 Control Data	I.4 Step Control
H.11.2 Displacement (Node Data) 204	I.5 Output Interval Control 218
H.11.3 Electric Potential (Node Data) . 204	I.6 Coordinate Data
H.11.4 Electric Field (Element Data) 205	I.7 Element Data
H.11.5 Particle Density (Node Data) 206	I.8 Material Property Data 220
H.11.6 Current (Element Data) 206	, ,
H.11.7 Surface Charge (Element	I.9 Scalar Potential Boundary 222
Data) 207 H.11.8 Surface Charge (Step Data) 207	I.10 Perfect Electric Boundary (PEC) 222
H.11.9 Nodal Force (Node Data) 208	I.11 Perfect Magnetic Boundary (Natural
H.11.10Force (Step Data) 208	Boundary)
H.11.11Total Currents (Step Data) 209	I.12 Periodic Boundary
H.11.12Internal Nodal Charge (Node Data)	I.13 Transparent Boundary (Absorbing Boundary)
=,, =	

I.14 PML Boundary	J.8.5 Joule Loss Density 247
I.15 Surface Impedance Boundary 227	J.8.6 SAR
I.16 In/Out Port	J.8.7 Hysteresis Loss Density 248
I.17 Lumped Constant Component 232	J.8.8 Joule Loss
	J.8.9 Hysteresis Loss
I.18 External Field (Line)	J.8.11 Transmitted Power
I.19 Voltage/Current Excitation 234	J.8.12 Transmitted Current
I.20 Laser Beam	J.8.13 Voltage
I.21 Plasma Calculation	J.8.14 Magnetic Flux Density 252
I.22 External Field	J.8.15 Analysis Error
I.23 Equivalent Current Calculation	J.8.16 Surface Current Density 253
Surface 238	J.8.17 Plasma Density 253
I.24 Transmitted Power Calculation 239	J.8.18 Quality Factor
I.25 Transmitted Current Calculation 239	
I.26 Voltage Calculation 240	K. JCF File Format (Structural Analysis) for JMAG-Designer 255
I.27 Step Data 240	Analysis) for swing-besigner233
1.27 Step Data	K.1 Overview 255
J. PLOT File Format	K.2 Block List
(Electromagnetic Wave	K.3 Basic Information of Analysis
Frequency Response	(control_parameters) 258
Analysis)241	K.4 Setting Conditions (condition_data) 259
J.1 Analysis Control	K.5 Setting Materials (material_data) 267
J.2 Control Output Items 243	
J.3 Control Variables for Mesh	L. JCF File Format (Structural
Generator 243	Analysis) for JMAG-Studio 271
J.4 Step Control 244	L.1 Overview
J.5 Control Output Interval 244	L.2 Block List
J.6 Coordinate Data 244	L.3 Basic Information of Analysis
J.7 Element Data 245	(control_parameters) 274
J.8 Analysis Results	L.4 Setting Conditions (condition_data) 275
J.8.1 Control Data	L.5 Setting Materials (material_data) 287
J.8.2 Magnetic Field	. – ,
J.8.3 Electric Field	M. Solver Data File Format
J.8.4 Current Density 247	(Structural Analysis) 291

JMAG Version 11 User's Manual Solver JMAG-Designer Version 11 / JMAG-Studio Version 10.0

M.1 Input Data Creation	291	N.8.11Stress (Lower Plane) (Element Data) (DS-FQ)326
M.2 Executive Control Card	293	N.8.12Electric Potential (Node Data)
M.2.1 Input Specification	293	(DS-ST)327
M.3 Case Control Card	294	N.8.13 Electric Potential (Node Data) (DS-FQ)328
M.3.1 Input Specification .		N.8.14Charge Density (Node Data) (DS-ST)
M.4 Bulk Card		N.8.15 Charge Density (Node Data) (DS-FQ)
N. DI OT File Ferment (Other		N.8.16 Sound Pressure Level (Node Data) (DS-FQ)
N. PLOT File Format (Stru Analysis)		N.8.17 Sound Pressure (Node Data) (DS-FQ)329
N.1 Analysis Control	317	N.8.18 Nodal Force (Node Data) (DS-ST)
N.2 Control Output Items	318	N.8.19 Nodal Force (Node Data) (DS-FQ)
N.3 Control Variables for Mesh Generator		N.8.20Pressure (Element Data) 331 N.8.21Strain (Element Data) (DS-ST) . 331
N.4 Step Control	319	N.8.22Strain (Element Data) (DS-FQ) .332
N.5 Control Output Interval	319	110122 oli alli (210110 ili 2010) (201 q) 1002
N.6 Coordinate Data	320	
N.7 Element Data	321	
N.8 Analysis Results	322	
N.8.1 Control Data (DS-ST	Γ) 322	
N.8.2 Control Data (DS-EI	G) 322	
N.8.3 Control Data (DS-Fe	Q) 322	
N.8.4 Displacement (Node (DS-ST and DS-EIG	,	
N.8.5 Displacement (Node (DS-FQ)	•	
N.8.6 Velocity (Node Data (DS-FQ)		
N.8.7 Acceleration (Node I (DS-FQ)		
N.8.8 Stress (Element Dat (DS-ST)		
N.8.9 Stress (Lower Plane Data) (DS-ST)) (Element	
N.8.10Stress (Element Dat (DS-FQ)	a)	

Chapter 15. Editing a JCF File (Simple FHI)

This chapter describes how to edit a JCF file.

▶▶ Reference

For information about each parameter in a JCF file, see the PDF file in the JMAG install folder/documents.

15-1. Overview

Unlike solver files (text format), JCF files are stored in binary format. A file access library, SimpleFHI, is required to access to a JCF file.

An external program can confirm and edit the values specified for parameters using SimpleFHI, and save the changes in a new file.

- Editing a JCF file
- 1. Write program codes appropreate for changing parameters.
- 2. Link the program to the file access library, SimpleFHI.
- 3. Build the program, and then execute it.

Editing a JCF file

■ Access to a JCF file

A JCF file can be accessed as follows.

Access to a JCF file

The library of SimpleFHI loads some JCF file handlers as sub-libraries.

15-2. Environment Required for Editing JCF Files

15-2-1. Programs

Either one of the following programs is required.

- Excel (Windows only)
- C, C++ programs (Windows/Linux)

15-2-2. Files

The following files are required to access a JCF file.

	Windows	Linux
JCF file access library	SimpleFHI.dll (INS_DIR)	N/A (The static library is used.)
Files required to build the C and C++ programs	• SimpleFHI.h • SimpleFHI.lib (INS_DIR\Tools\SimpleFHI)	 libSimpleFHI.a (INS_DIR/solver/mod/tools/ SimpleFHI/lib) SimpleFHI.h (INS_DIR/solver/mod/tools/ SimpleFHI/include)
JCF file handler files (required to build and exe- cute a program)	 filehandler.dll icudt20.dll icuuc20.dll xerces-c_1_6_0.dll (INS_DIR) 	 libFileHandler.a libicudtata.so libicuuc.so libxerces-c1_6_0.so For 32bit (INS_DIR/solver/mod/lib/linux32) For 64bit (INS_DIR/solver/mod/lib/linux64)

Important INS_DIR indicates the JMAG installation directory.

e.g. JMAG-Studio: C:\Program Files\JMAG-Studio10.0

e.g. Linux: /usr/works

The following files are provided as samples.

■ Sample code (C, C++ programs)

■ Location (Windows):

\(JMAG installation directory)\Tools\SimpleFHI\samples\C

• main.c

This file contains sample source codes.

• sample.dsp

This file is a project file containing sample source codes.

• sample.dsw

This file is a workspace file containing sample.dsp.

• sample.jcf

This is a sample JCF file.

■ Location (Linux):

(installation directory)/solver/mod/tools/SimpleFHI/
samples/C/Sample

• main.c

This file contains sample source codes.

• sample.jcf

This is a sample JCF file.

• Makefile

This file is needed for a build.

• SimpleFHI

This is a program name created after a build.

■ Sample code (Excel VBA)

■ Location (Windows only):

\(JMAG installation directory)\Tools\SimpleFHI\samples\ExcelVBA

check_data.jcf
 This is a sample JCF file.

• declaration.txt

This file contains declarations to reference functions provided by SimpleFHI.dll. This file needs to be copied to a macro.

• sample.xls

This file contains a sample Excel spread sheet and VBA source codes.

15-3. Functions of JCF File Access Library (SimpleFHI)

The JCF file access library, SimpleFHI, contains the following functions.

The terms [in] and [out] used in the following description indicate "input" and "output," respectively.

■ Functions for initialization

```
long loadJcfFile
(const char* path, JcfDataPtr* result);
```

Description Opens a JCF file, and initializes the data for management.

path[in]: path to an input JCF file

result[out]: pointer-indicating data for management

Return value 1: success, 0: failure

■ Functions for handling files

Parameters

```
long saveAsJcfFile
(JcfDataPtr data, const char* path);
```

Description Attaches a name to a JCF file and stores the resulting file.

data[in]: pointer-indicating data for management

path[out]: path to a location where the JCF file is stored.

Return value 1: success, 0: failure

```
void closeJcfFile
(JcfDataPtr data);
```

Description Closes the JCF file linked to the data indicated by the data pointer

"data".

Parameters data[in]: pointer indicating data for management

Return value none

■ Functions for control parameters

long readControlParameterInteger
(JcfDataPtr data, const char* moduleName, const char*
paramName, long* result);

Description Reads control parameters.

data[in]: pointer indicating data for management

 $module Name [in]: name\ of\ module$

Parameters paramName[in] : name of parameter

result[out] : obtained value (integer)

Return value 1: success, 0: failure

long readControlParameterDouble
(JcfDataPtr data, const char* moduleName, const char*
paramName, double* result);

Description Reads control parameters.

data[in]: pointer indicating data for management

moduleName[in] : name of module

Parameters paramName[in] : name of parameter

result[out]: obtained value (floating point number)

Return value 1: success, 0: failure

long readControlParameterComplex
(JcfDataPtr data, const char* moduleName, const char*
paramName, double* real, double* img);

Description Reads control parameters.

data[in]pointer indicating data for management

 $module Name [in]: name\ of\ module$

Parameters paramName[in]: name of parameter

real[out] : obtained value (real part of a complex number) img[out] : obtained value (imaginary part of a complex

long readControlParameterString(JcfDataPtr data, const char*
moduleName, const char* paramName, char* buff, int n);

Description Reads control parameters.

data[in]: pointer indicating data for management

moduleName[in] : name of module

Parameters paramName[in]: name of parameter

buff[out]: buffer for storing a string obtained

n[in]: size of buffer for the string

Return value 1: success, 0: failure

long writeControlParameterInteger
(JcfDataPtr data, const char* moduleName, const char*
paramName, long value);

Description Writes control parameters.

data[in]: pointer indicating data for management

moduleName[in] : name of module

paramName[in] : name of parameter value[in] : written value (integer)

Return value 1: success, 0: failure

long writeControlParameterDouble
(JcfDataPtr data, const char* moduleName, const char*
paramName, double value);

Description Writes control parameters.

data[in]: pointer indicating data for management

moduleName[in] : name of module

paramName[in] : name of parameter

value[in] : written value (floating point number)

Return value 1: success, 0: failure

Parameters

long writeControlParameterComplex
(JcfDataPtr data, const char* moduleName, const char*
paramName, double real, double img);

Description Writes control parameters.

data[in]: pointer indicating data for management

moduleName[in]: name of module

Parameters paramName[in] : name of parameter

real[in]: written value (real part of a complex number)

img[in]: written value (imaginary part of a complex number)

Return value 1: success, 0: failure

long writeControlParameterString
(JcfDataPtr data, const char* moduleName, const char*
paramName, const char* str);

Description Writes control parameters.

data[in]: pointer indicating data for management

Parameters moduleName[in]: name of module

paramName[in] : name of parameter

str[in]: written string

Return value 1: success, 0: failure

■ Functions for setting conditions

long createCondition
(JcfDataPtr data, const char* condName);

Description Creates conditions.

Parameters data[in]: pointer indicating data for management

moduleName[in] : name of condition

Return value 1: success, 0: failure

void removeCondition

(JcfDataPtr data, const char* condName, int id);

Description Deletes a condition by nominating the ID of the condition.

data[in]: pointer indicating data for management

Parameters condName[in]: name of condition

id[in] : ID of condition

long countConditions
(JcfDataPtr data, const char* condName);

Description Acquires the required number of conditions.

data[in]: pointer indicating data for management

Parameters condName[in] : name of condition

Return value Number of conditions

long getIndexByConditionId
(JcfDataPtr data, const char* condName, int id);

Description Acquires the ordinal number of a condition whose ID is specified.

data[in]: pointer indicating data for management

Parameters condName[in]: name of condition

id[in]: ID of condition

Return value Ordinal number

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

numbers are always consecutive.

long readConditionParameterInteger
(JcfDataPtr data, const char* condName, int id, const char*
paramName, long* result);

Description Reads condition parameters.

data[in]: pointer indicating data for management

condName[in]: name of condition

Parameters id[in]: ID of condition

paramName[in] : name of parameter
result[out] : obtained value (integer)

Return value 1: success, 0: failure

For conditions without a conditional number ("id" is not included

Remarks in the parameter names) such as the step condition, the conditional

long readConditionParameterDouble
(JcfDataPtr data, const char* condName, int id, const char*
paramName, double* result);

Description Reads condition parameters.

data[in]: pointer indicating data for management

condName[in]: name of condition

Parameters id[in]: ID of condition

paramName[in] : name of parameter

result[out] : obtained value (floating point number)

Return value 1: success, 0: failure

For conditions without a conditional number ("id" is not included

Remarks in the parameter names) such as the step condition, the conditional

number is set to zero (0).

long readConditionParameterComplex
(JcfDataPtr data, const char* condName, int id, const char*
paramName, double* real, double* img);

Description Reads condition parameters.

data[in]: pointer indicating data for management

condName[in]: name of condition

id[in]: ID of condition

Parameters paramName[in] : name of parameter

real[out]: obtained value (real part of a complex number)

img[out] : obtained value (imaginary part of a complex number)

Return value 1: success, 0: failure

For conditions without a conditional number ("id" is not included

Remarks in the parameter names) such as the step condition, the conditional

long readConditionParameterString
(JcfDataPtr data, const char* condName, int id, const char*
paramName, char* buff, int n);

Description Reads condition parameters.

data[in]: pointer indicating data for management

condName[in]: name of condition

id[in]: ID of condition

Parameters paramName[in] : name of parameter

buff[out]: buffer for storing a string obtained

n[in]: size of buffer for the string

Return value 1: success, 0: failure

For conditions without a conditional number ("id" is not included

Remarks in the parameter names) such as the step condition, the conditional

number is set to zero (0).

long readConditionParameterPoint
(JcfDataPtr data, const char* condName, int id, const char*
paramName, double* x, double* y, double* z);

Description Reads condition parameters.

data[in]: pointer indicating data for management

condName[in]: name of condition

id[in]: ID of condition

Parameters paramName[in] : name of parameter

x[out] : obtained value (x-component)y[out] : obtained value (y-component)z[out] : obtained value (z-component)

Return value 1: success, 0: failure

For conditions without a conditional number ("id" is not included

Remarks in the parameter names) such as the step condition, the conditional

long writeConditionParameterInteger
(JcfDataPtr data, const char* condName, int id, const char*
paramName, long value);

Description Writes condition parameters.

data[in]: pointer indicating data for management

condName[in]: name of condition

Parameters id[in]: ID of condition

paramName[in] : name of parameter value[in] : written value (integer)

Return value 1: success, 0: failure

For conditions without a conditional number ("id" is not included

Remarks in the parameter names) such as the step condition, the conditional

number is set to zero (0).

long writeConditionParameterDouble
(JcfDataPtr data, const char* condName, int id, const char*
paramName, double value);

Description Writes condition parameters.

data[in]: pointer indicating data for management

condName[in]: name of condition

Parameters id[in]: ID of condition

paramName[in]: name of parameter

value[in] : written value (floating point number)

Return value 1: success, 0: failure

For conditions without a conditional number ("id" is not included

Remarks in the parameter names) such as the step condition, the conditional

long writeConditionParameterComplex
(JcfDataPtr data, const char* condName, int id, const char*
paramName, double real, double img);

Description Writes condition parameters.

data[in]: pointer indicating data for management

condName[in]: name of condition

id[in]: ID of condition

Parameters paramName[in] : name of parameter

real[in]: written value (real part of a complex number)

img[in]: written value (imaginary part of a complex number)

Return value 1: success, 0: failure

For conditions without a conditional number ("id" is not included

Remarks in the parameter names) such as the step condition, the conditional

number is set to zero (0).

long writeConditionParameterString
(JcfDataPtr data, const char* condName, int id, const char*
paramName, const char* str);

Description Writes condition parameters.

data[in]pointer indicating data for management

condName[in]: name of condition

Parameters id[in]: ID of condition

paramName[in] : name of parameter

str[in]: written string

Return value 1: success, 0: failure

For conditions without a conditional number ("id" is not included

Remarks in the parameter names) such as the step condition, the conditional

long writeConditionParameterPoint
(JcfDataPtr data, const char* condName, int id, const char*
paramName, double x, double y, double z);

Description Writes condition parameters.

data[in]: pointer indicating data for management

condName[in]: name of condition

id[in]:ID of condition

Parameters paramName[in]: name of parameter

x[in]: written value (x-component)y[in]: written value (y-component)z[in]: written value (z-component)

Return value 1: success, 0: failure

For conditions without a conditional number ("id" is not included

Remarks in the parameter names) such as the step condition, the conditional

number is set to zero (0).

long countConditionGroups

(JcfDataPtr data, const char* condName, int id);

Description Obtains the number of groups included in the specified condition.

data[in]: pointer indicating data for management

Parameters condName[in]: name of condition

id[in]: ID of condition

Return value Number of groups

long countConditionGroupElments
(JcfDataPtr data, const char* condName, int id, int
groupIndex);

Description Obtains the number of elements in the group included in the speci-

fied condition.

data[in]: pointer indicating data for management

condName[in]: name of condition

id[in]: ID of condition

groupIndex[in]: Group ordinal number

Return value Number of elements

Parameters

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

long readConditionGroupType
(JcfDataPtr data, const char* condName, int id, int
groupIndex);

Obtains the group type of the specified group by condition ID and group ordinal number. The following group types can be specified.

 $0 \Rightarrow Node$

1 => Element

Description

2 => Element face 3 => Element edge

4 => Region

5 => Region edge

6 => Solid 7 => Solid face

data[in]: pointer indicating data for management

condName[in]: name of condition

Parameters

id[in]: ID of condition

groupIndex[in]: Group ordinal number

Return value Group type

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks

consecutive missing some numbers in the middle, whereas ordinal

numbers are always consecutive.

long readConditionGroup
(JcfDataPtr data, const char* condName, int id, int
groupIndex, int elementIndex, long* firstId, long*
secondId);

Obtains the ID of the elements, nodes, and element faces in the

Description

specified group. A group can be specified by the condition ID or

group ordinal number.

data[in]: pointer indicating data for management

condName[in]: name of condition

id[in]: ID of condition

Parameters

groupIndex[in]: Group ordinal number

elementIndex[in]: Group element ordinal number

firstId[out]: ID of an element or node secondId[out]: ID of an element face

Return value

1: success, 0: failure

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks

consecutive missing some numbers in the middle, whereas ordinal

void removeConditionByIndex (JcfDataPtr data, const char* condName, int index);

Deletes the condition specified by a ordinal number. Description

data[in]: pointer indicating data for management

Parameters condName[in]: name of condition

index[in]: Condition ordinal number

1: success, 0: failure Return value

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

numbers are always consecutive.

long readConditionParameterIntegerByIndex (JcfDataPtr data, const char* condName, int index, const char* paramName, long* result);

Description Reads the parameters set for a condition.

data[in]: pointer indicating data for management

condName[in]: name of condition

Parameters index[in]: Condition ordinal number

> paramName[in]: Parameter name result[out]: Obtained value (integer)

Return value 1: success, 0: failure

• For the conditions that do not have a condition ID (parameter

name does not contain "id") such as the Step condition, set

Condition ID to zero (0).

Remarks • Ordinal numbers (index) and IDs are different. IDs may not be

consecutive missing some numbers in the middle, whereas ordi-

long readConditionParameterDoubleByIndex
(JcfDataPtr data, const char* condName, int index, const
char* paramName, double* result);

Description Reads the parameters set for a condition.

data[in]: pointer indicating data for management

condName[in]: name of condition

Parameters index[in]: Condition ordinal number

paramName[in]: Parameter name result[out]: Obtained value (float)

Return value 1: success, 0: failure

• For the conditions that do not have a condition ID (parameter name does not contain "id") such as the Step condition, set

Condition ID to zero (0).

Remarks Condition ID to zero (0).

 Ordinal numbers (index) and IDs are different. IDs may not be consecutive missing some numbers in the middle, whereas ordi-

nal numbers are always consecutive.

long readConditionParameterStringByIndex
(JcfDataPtr data, const char* condName, int index, const
char* paramName, char* buff, int n);

Description Reads the parameters set for a condition.

data[in]: pointer indicating data for management

 $cond Name [in]: name\ of\ condition$

index[in]: Condition ordinal number
paramName[in]: Parameter name

buff[out]: Buffer for storing the obtained string

n[in]: Buffer size

Return value 1: success, 0: failure

• For the conditions that do not have a condition ID (parameter name does not contain "id") such as the Step condition, set

Condition ID to zero (0).

 Ordinal numbers (index) and IDs are different. IDs may not be consecutive missing some numbers in the middle, whereas ordi-

nal numbers are always consecutive.

Remarks

Parameters

long writeConditionParameterIntegerByIndex
(JcfDataPtr data, const char* condName, int index, const
char* paramName, long value);

Description Sets the parameters for a condition.

data[in]: pointer indicating data for management

condName[in]: name of condition

Parameters index[in]: Condition ordinal number

paramName[in] : Parameter name
value[in] : Output value (integer)

Return value 1: success, 0: failure

• For the conditions that do not have a condition ID (parameter name does not contain "id") such as the Step condition, set

Condition ID to zero (0).

Remarks

• Ordinal numbers (index) and IDs are different. IDs may not be

consecutive missing some numbers in the middle, whereas ordi-

nal numbers are always consecutive.

long writeConditionParameterDoubleByIndex
(JcfDataPtr data, const char* condName, int index, const
char* paramName, double value);

Description Sets the parameters for a condition.

data[in]: pointer indicating data for management

condName[in] : name of condition

Parameters index[in]: Condition ordinal number

paramName[in]: Parameter name
value[in]: Output value (float)

Return value 1: success, 0: failure

• For the conditions that do not have a condition ID (parameter name does not contain "id") such as the Step condition, set

Condition ID to zero (0).

Remarks
• Ordinal numbers (index) and IDs are different. IDs may not be

consecutive missing some numbers in the middle, whereas ordi-

long writeConditionParameterStringByIndex
(JcfDataPtr data, const char* condName, int index, const
char* paramName, const char* str);

Description Sets the parameters for a condition.

data[in]: pointer indicating data for management

condName[in]: name of condition

Parameters index[in]: Condition ordinal number

paramName[in]: Parameter name

str[in]: String to be output

Return value 1: success, 0: failure

• For the conditions that do not have a condition ID (parameter name does not contain "id") such as the Step condition, set

Condition ID to zero (0).

Remarks

• Ordinal numbers (index) and IDs are different. IDs may not be

consecutive missing some numbers in the middle, whereas ordi-

nal numbers are always consecutive.

■ Functions for setting materials

long countMaterials
(JcfDataPtr data);

Description Acquires the number of materials whose name is specified.

Parameters data[in]: pointer indicating data for management

Return value Number of materials

long readMaterialParameterInteger
(JcfDataPtr data, int id, const char* paramName, long*
result);

Description Reads the parameters set for a material.

data[in]: pointer indicating data for management

id[in]: ID of material

Parameters paramName[in] : name of parameter

result[out] : obtained value (integer)

long readMaterialParameterDouble
(JcfDataPtr data, int id, const char* paramName, double*
result);

Description Reads the parameters set for a material.

data[in]: pointer indicating data for management

id[in]: ID of material

Parameters paramName[in] : name of parameter

result[out] : obtained value (integer)

Return value 1: success, 0: failure

long readMaterialParameterComplex
(JcfDataPtr data, int id, const char* paramName, double*
real, double* img);

Description Reads the parameters set for a material.

data[in]: pointer indicating data for management

id[in]: ID of material

Parameters paramName[in]: name of parameter

real[out]: obtained value (real part of a complex number)

img[out] : obtained value (imaginary part of a complex number)

Return value 1: success, 0: failure

long readMaterialParameterString
(JcfDataPtr data, int id, const char* paramName, char* buff,
int n);

Description Reads the parameters set for a material.

data[in]: pointer indicating data for management

id[in] : ID of material

Parameters paramName[in] : name of parameter

buff[out] : buffer for storing a string obtained

n[in]: size of buffer for the string

long writeMaterialParameterInteger
(JcfDataPtr data, int id, const char* paramName, long
value);

Description Writes the parameters set for a material.

data[in]: pointer indicating data for management

id[in] : ID of material

Parameters paramName[in] : name of parameter

value[in] : written value (integer)

Return value 1: success, 0: failure

long writeMaterialParameterDouble
(JcfDataPtr data, int id, const char* paramName, double
value);

Description Writes the parameters set for a material.

data[in]: pointer indicating data for management

id[in]: ID of material

Parameters paramName[in] : name of parameter

value[in] : written value (floating point number)

Return value 1: success, 0: failure

long writeMaterialParameterComplex
(JcfDataPtr data, int id, const char* paramName, double
real, double img);

Description Writes the parameters set for a material.

data[in]: pointer indicating data for management

id[in]: ID of material

Parameters paramName[in] : name of parameter

real[in]: written value (real part of a complex number)

img[in]: written value (imaginary part of a complex number)

long writeMaterialParameterString
(JcfDataPtr data, int id, const char* paramName, const char*
str);

Description Writes the parameters set for a material.

data[in]: pointer indicating data for management

id[in] : ID of material

Parameters paramName[in] : name of parameter

str[in]: written string

Return value 1: success, 0: failure

long readMaterialParameterIntegerByIndex
(JcfDataPtr data, int index, const char* paramName, long*
result);

Description Reads the parameters set for a material.

data[in]: pointer indicating data for management

id[in] : ID of material

Parameters paramName[in] : name of parameter

result[out] : Obtained value (integer)

Return value 1: success, 0: failure

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

numbers are always consecutive.

long readMaterialParameterDoubleByIndex
(JcfDataPtr data, int index, const char* paramName, double*
result);

Description Reads the parameters set for a material.

data[in]: pointer indicating data for management

id[in]: ID of material

Parameters paramName[in]: Parameter name

result[out]: Obtained value (float)

Return value 1: success, 0: failure

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

long readMaterialParameterComplexByIndex
(JcfDataPtr data, int index, const char* paramName, double*
real, double* img);

Description Reads the parameters set for a material.

data[in]: pointer indicating data for management

index[in]: Material ordinal number

Parameters paramName[in]: Parameter name

real[out]: Obtained value (real complex value) img[out]: Obtained value (imaginary complex value))

Return value 1: success, 0: failure

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

numbers are always consecutive.

long readMaterialParameterStringByIndex
(JcfDataPtr data, int index, const char* paramName, char*
buff, int n);

Description Reads the parameters set for a material.

data[in]: pointer indicating data for management

index[in]: Material ordinal number

Parameters paramName[in]: Parameter name

buff[out]: Buffer for storing the obtained string

n[in]: Buffer size

Return value 1: success, 0: failure

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

long writeMaterialParameterIntegerByIndex
(JcfDataPtr data, int index, const char* paramName, long
value);

Description Sets the parameters for a material.

data[in]: pointer indicating data for management

index[in]: Material ordinal number

Parameters paramName[in]: Parameter name

value[in]: Output value (integer)

Return value 1: success, 0: failure

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

numbers are always consecutive.

long writeMaterialParameterDoubleByIndex
(JcfDataPtr data, int index, const char* paramName, double
value);

Description Sets the parameters for a material.

data[in]: pointer indicating data for management

index[in]: Material ordinal number

Parameters paramName[in]: Parameter name

value[in]: Output value (float)

Return value 1: success, 0: failure

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

numbers are always consecutive.

long writeMaterialParameterComplexByIndex
(JcfDataPtr data, int index, const char* paramName, double
real, double img);

Description Sets the parameters for a material.

data[in]: pointer indicating data for management

index[in]: Material ordinal number

Parameters paramName[in]: Parameter name

real[in] : Output value (real complex value)
img[in] : Output value (imaginary complex value)

Return value 1: success, 0: failure

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

long writeMaterialParameterStringByIndex
(JcfDataPtr data, int index, const char* paramName, const
char* str);

Description Sets the parameters for a material.

data[in]: pointer indicating data for management

index[in]: Material ordinal number

Parameters paramName[in]: Parameter name

str[in] : String to be output

Return value 1: success, 0: failure

Ordinal numbers (index) and IDs are different. IDs may not be

Remarks consecutive missing some numbers in the middle, whereas ordinal

15-4. Using the JCF File Access Library (SimpleFHI)

15-4-1. Using C Language

15-4-1-1. Building/Executing a Sample Using VisualC++

Description will be given below on the assumption that the computer has Microsoft VisualC++ version 6.0 installed on Microsoft Windows 2000/XP.

- 1. Set Path for the environment parameter of Windows.
 - i. Select [Control Panel] from the Windows [start] menu (in the case of Windows XP).
 - ii. Select the "System" button in Control Panel by double-clicking it.

The [System Properties] dialog box will appear.

iii.Click the [Advanced] tab, and then click [Environment Variables].

The [Environment Variables] dialog box will appear.

iv. Select "Path" parameter in the list, and then click [Edit].

The [User Edition Parameters] dialog box will appear.

- v. Into the [Parameters Value] text box, enter the installation directory of JMAG.
- 2. Start VisualC++, version 6.0 (VC hereinafter).
- 3. Set an included path of VC.
 - i. Select [Tools] > [Options] from the VC menu bar.

The [Options] dialog box will appear.

- ii. Click the [Directories] tab, and then select "Include files" from the [Show Directories for] combo box.
- iii.Add \(JMAG installation directory)\Tools\SimpleFHI to the [Directories] list box.

4. Set library path.

i. Select [Tools] > [Options] from the VC menu bar.

The [Options] dialog box will appear.

- ii. Click the [Directories] tab, and then select "Library files" from the [Show Directories for] combo box.
- iii.Add \(JMAG installation directory)\Tools\SimpleFHI to the [Directories] list box.
- 5. Read the sample project file.

The location for storing the project file is as follows.

```
(JMAG Installation directory)\Tools\SimpleFHI\samples\C\Sample.dsp
```

To prepare a new project, it is necessary to perform the following settings (the settings have been implemented in the case of Sample.dsp described above).

i. Select [Project] > [Settings] from the VC menu bar.

The [Project Settings] dialog box will appear.

- ii. Click the [C/C++] tab.
- iii.Select [Generation of Code] from the [Category] combo box, and [Multi-Thread (DLL)] from the [Use run-time library] combo box.
- iv. Click the [Link] tab.
- v. Select "General" in the [Category] combo box, and then enter "Simple-FHI.lib" into the [Object/library modules] text box.
- 6. Build the file.
 - i. Select [Build (B)] > [Build (B)] from the menu bar.

Sample.exe is prepared.

7. Execute Sample.exe.

```
Open the command prompt, and then execute the following command. sample input_jcf_file_name output_jcf_file_name
```

15-4-1-2. Building/Executing a Sample Using Visual Studio.Net

- 1. Set Path for the environment parameter of Windows.
 - Select [Control Panel] from the Windows Start menu (in the case of Windows XP).
 - ii. Select the "System" button in Control Panel by double-clicking it.

The [System Properties] dialog box will appear.

iii.Click the [Advanced] tab, and then click [Environment Variables].

The [Environment Variables] dialog box will appear.

iv. Select "Path" parameter in the list, and then click [Edit].

The [User Edition Parameters] dialog box will appear.

- v. Into the [Parameters Value] text box, enter the installation directory of JMAG.
- 2. Start Visual Studio.Net 2003 (VS hereinafter).
- 3. Set an included path of VS.
 - i. Select [Tools] > [Options] from the VS menu bar.

The [Options] dialog box will appear.

- ii. Click the [Directories] tab, and then select "Include files" from the [Show Directories] combo box.
- iii.Add \(JMAG installation directory)\Tools\SimpleFHI to the [Directories] list box.
- 4. Set library path.
 - i. Select [Tools] > [Options] from the VS menu bar.

The [Options] dialog box will appear.

- ii. Select [Project] > [VC++ Directories] via the tree.
- iii. Select "Library files" from the [Show Directories for] combo box.
- iv. Add \(JMAG installation directory)\Tools\SimpleFHI to the list box.

5. Read the sample project file.

The location for storing the project file is as follows.

```
(JMAG installation directory)\Tools\SimpleFHI\samples\C\Sample.vcproj
```

To prepare a new project, it is necessary to perform the following settings (the settings have been implemented in the case of the Sample.vcproj described above).

- i. Select (Project Name) using the solution explorer.
- ii. Select [Project] > [Properties] from the VS menu bar.

The [(name of project) Property Page] dialog box will appear.

- iii.Select [Configuration Properties] > [Linker] > [Input] via the tree.
- iv. Add SimpleFHI.lib to the [Additional Dependencies] cell.
- v. Select [Configuration Properties] > [C/C++] > [Precompiled Headers] via tree.
- vi. Select [Not Using Precompiled Headers] in the [Create/Use Precompiled Header] cell.
- 6. Build file.
 - i. Select [Build] > [Build Sample] from the menu bar.
 - ii. Sample.exe is prepared.
- 7. Execute Sample.exe.

```
Open the command prompt, and then execute the following command. sample input_jcf_file_name output_jcf_file_name
```

15-4-1-3. Building/Executing a Sample Code Using Linux

1. Move to the directory where the sample code is located.

(JMAG Installation directory) /solver/mod/tools/SimpleFHI/ samples/C/Sample

2. Run the make command.

SimleFHI is generated.

3. Specify the directory containing the JCF file handler-related files for the environmental variable LD_LIBRARY_PATH.

```
(Example of a command using bash: 32bit)

LD_LIBRARY_PATH=(installation directory)/solver/mod/lib/
linux32

export LD_LIBRARY_PATH
```

4. Run SimleFHI.

Run the next command. (Make sure to leave a space between the command and file name.)

SimleFHI input_JCF_file_name output_JCF_file_name

15-4-2. Using Excel VBA

15-4-2-1. Using a Sample Macro

Description will be given below on the assumption that the computer has Microsoft Excel installed on Microsoft Windows 2000/XP.

- 1. Set path for the environment parameters of Windows.
 - Select [Control Panel] from the Windows [start] menu (in the case of Windows XP).
 - ii. Select the "System" button in Control Panel by double-clicking it.

The [System Properties] dialog box will appear.

iii.Click the [Advanced] tab, and then click [Environment Variables].

The [Environment Variables] dialog box will appear.

iv. Select "Path" parameter in the list, and then click [Edit].

The [User Edition Parameters] dialog box will appear.

- v. Into the [Parameters Value] text box, enter the installation directory of JMAG.
- 2. Start Microsoft Excel (Excel hereinafter).
- 3. Change the macro security level.
 - i. Select [Tools] > [Options] from the Excel menu bar.

The [Options] dialog box will appear.

ii. Click the [Security] tab, and then click [Macro Security].

The [Security] dialog box will appear.

iii.Click the [Security Level] tab, and then select the [Intermediate] radio button.

Important Changing the macro security level may increase the risk of making your machine susceptible to the attack of external rogue programs. This operation should be performed with utmost care in accordance with the security policy adopted by the company or group to which you belong.

- 4. Read the sample file.
 - i. Open the sample at \(JMAG installation directory\)\ Tools\SimpleFHI\samples\ExcelVBA\sample.xls.
 - ii. A message dialog will appear that reads "...\sample.xls' contains macro." Click the [Activate Macro] button.
- 5. Execute the sample file.
 - i. Select the [JCF Editing Sample] sheet.
 - ii. Click the [Read...] button.

The [Open File] dialog box will appear.

iii.Select a desired JCF file, and then click [Open]. In the [Name of File to be Opened] cell, there appears the name of the selected file.

The values used for the setting of the file are read into the cell.

- iv. Change the values in the cell as appropriate.
- v. Click the [Write...] button.

The [Name File for Storage] dialog box will be displayed.

- vi.Enter a name of the file, and then click [Storage].
- 6. Verify the source codes of ExcelVBA.
 - i. Select [Tools] > [Macro] > [Macro] from the Excel menu bar.

The [Macro] dialog box will appear.

ii. Click the [Edit] button.

To use the API of SimpleFHI in ExcelVBA, it is necessary to copy declare.txt and paste its contents to the file (sample.xls has necessary contents pasted in advance). The part in question in sample.xls is as seen below.

```
' Reference to the parameters provided by SimpleFHI.dll is
declared.
' (begin)-----
' Loading JCF file
Public Declare Function loadJcfFile Lib "SimpleFHI" (ByVal
path As String, ByRef ptr As Long) As Long
   :
   (omitted)
```

Public Declare Function writeMaterialParameterString Lib "SimpleFHI" $_$

(ByVal ptr As Long, ByVal index As Long, ByVal paramName As String, ByVal str As String) As Long

' (end)-----

▶▶ Reference

For the details of Excel VBA, see reference books commercially available.

Chapter 16. Extracting Data from a Result File (JMAG-Designer)

This chapter describes extracting data from a JMAG-Designer project file (*.jproj) or a result file (*.jplot) using the data extraction tool without running JMAG-Designer.

16-1. Function

Project files (*.jproj) or result files (*.jplot) for JMAG-Designer are described in binary format.

Therefore, this function is used when extracting result data from binary files. This tool has the following characteristics.

- This tool is a console application.
- This tool can be used in either Windows or Linux environment.
- Specifies a result file (*.jplot) or a calculated project file (*.jproj) when extracting a result data.
- Specifies a project file (*.jproj) when extracting parameters for settings.
- Data for results or parameters for settings that are extracted are exported as standard output text files.

16-2. Important Notes Regarding the Use of this Function

- The following types of data for results can be exported.
 - Items that are exported as values for each step
- The following types of data for results cannot be extracted.
 - Items that have an amount of distribution
 - Items that require processing in JMAG-Designer such the probe setting
- A JCF file (*.jcf) and a result file (*.jplot) need to be exported to the Case folder under the jfiles folder when extracting result data or setting parameters from a project file (*.jproj).

MEMO A jfiles folder is automatically created when a project file (*.jproj) is saved. For example, a folder is created in the following hierarchy structure when a JMAG-Designer project is saved in the D drive of the machine (project name: AAA, model name: BBB, study name: CCC)

D:\AAA.jfiles\BBB~0\CCC~1\Case1

The [AAA.jfiles] is for [jfiles].

MEMO A JCF file (*.jcf) and a result file (*.jplot) is exported to a Case folder when running a calculation for a study.

16-3. Running Procedures (Windows/Linux)

The following are explanations on the operations for this tool.

- Extracting result data
- Obtains list of output items
- Obtains a list for a model or a study included in the project
- Obtains value for each parameter set in a project

16-3-1. Important Notes Regarding the Descriptions of Commands

The following should be noted when using this function.

- File paths and query needs to be enclosed in double quotation marks (").
- Command lines and arguments needs to be defined in one line.
 A conjunction [^] symbol needs to be placed after a line break when dividing a command line into two lines in a Windows environment. A backslash [\] symbol needs to be placed after a line break when dividing a command line into two lines in a Linux environment.

16-3-2. Extracting Result Data

A result data is extracted by specifying a result file (*.jplot) or a project file (*.jproj).

1. Specify the following command.

■ Extracting result files (*.jplot)

```
"(JMAG installation directory)\jquery.exe" -file="JPLOT file" -query="select (component) from /(output item)"
```

Example: Extracting the X, Y, and Z component of an electromagnetic force from jmag.jplot.

```
"C:\Program Files\JMAG-Designer11.0\jquery.exe" -
file="D:\work\jmag.jplot" -query="select X Y z from /Force"
```

■ Extracting from a project file (*.jproj)

```
"(JMAG installation directory)\jquery.exe" -file="JPLOJ
file" -query="select (component) from /(Model name/Study
name/Case name/Output items)"
```

Example: Extracting the X, Y, and Z component of a model AAA/study BBB/Case1 from jmag.jploj.

```
"C:\Program Files\JMAG-Designer11.0\jquery.exe" -
file="D:\work\jmag.jproj" -query="select X Y z from
modelAAA/studyBBB/case1/Force"
```

- The result data is exported as standard output in default settings. Use the options that are described below when exporting a file.
- Specify the model name, study name, and Case name when extracting result data from a project file (*.jproj).
- For more information about names for output items and components, see the following table.

■ Options

The following items can be specified as an option. The following default values in the table are used if an option is not specified.

Property name	Setting	Default	Description
-out	String		Specify the path for file export. Specify absolute path.
-format	"plain" "csv"	plain	Specify the format for file export. Plain text format CSV format

■ Output Items and component list

The output items that can be extracted are as follows.

Output items	Component	Description	Related analysis type
JouleLoss	Loss	Joule loss	Magnetic field analysis
HysteresisLoss	Loss	Hysteresis loss	Magnetic field analysis
Force	• X • Y • Z • Torque	Electromagnetic force (X, Y, Z) , Torque	Magnetic field analysis, electric field analysis
LorentzForce	• X • Y • Z	Lorentz force (X, Y, Z)	Magnetic field analysis
Flux	Flux	Magnetic flux	Magnetic field analysis (static analysis, transient response analysis)
FluxReal	Flux	Magnetic flux (real)	Magnetic field analysis (frequency response analysis)
FluxImaginary	Flux	Magnetic flux (imaginary)	Magnetic field analysis (frequency response analysis)
TerminalVoltage	Voltage	Circuit Voltage (real)	Magnetic field analysis (transient response analysis, frequency response analysis)

Output items	Component	Description	Related analysis type
TerminalVoltageI- maginary	Voltage	Circuit Voltage (imaginary)	Magnetic field analysis (frequency response analysis)
LineCurrent	Current	Current (real)	Magnetic field analysis (transient response analysis, frequency response analysis), electric field analysis
LineCurrentImagi- nary	Current	Current (imaginary)	Magnetic field analysis (frequency response analysis)
StoredEnergy	Energy	Stored energy	Magnetic field analysis
Inductance	Inductance	Winding inductance	Transformer analysis
DcResistance	Resistance	Winding DC resistance	Transformer analysis
CoilFlux	Flux	Flux linkage in coil	Transformer analysis
LineOnOff	Switch	ON/OFF information for circuit switch component	Magnetic field analysis
CurrentFlux	Real Imaginary	Magnetic flux for current condition (real, imaginary)	Magnetic field analysis
CoilFlux	Real Imaginary	Magnetic flux for FEM coil condition (real, imaginary)	Magnetic field analysis
CurrentCurrent	Real Imaginary	Current for current condition (real, imaginary)	Magnetic field analysis
CoilCurrent	• Real • Imaginary	Current for FEM coil condition (real, imaginary)	Magnetic field analysis
Displacement	• X • Y • Z • Angle	Total displacement (X,Y,Z, rotation angle)	Magnetic field analysis, thermal analysis
BrushAngle	Angle	Contact angle for Brush motor and Com- mutator components	Magnetic field analysis

Output items	Component	Description	Related analysis typ
SurfaceCharge	Charge	Surface charge	Electric field analysis (static analysis, cur- rent distribution anal sis)
SurfaceChargeReal	Charge	Surface charge (real)	Electric field analysis (frequency response analysis)
SurfaceChargeImag- inary	Charge	Surface charge (imaginary)	Electric field analysis (frequency response analysis)
IronIronloss	• X • Y • Z	Iron loss (each component)	Iron loss analysis
IronHysteresisLoss	• X • Y • Z	Hysteresis loss (each component)	Iron loss analysis
IronJouleLoss	• X • Y • Z	Joule loss (each component)	Iron loss analysis
HeatFlow	Heat	Heat flow	Thermal analysis
HeatGeneration	Heat	Heat source	Magnetic field analysis, thermal analysis
AverageTemperature	Temperature	Average temperature	Thermal analysis
TerminalTempera- ture	Temperature	Terminal temperature	Thermal analysis

16-3-3. Obtaining List of Output Items

A list of output items included in a result file (*.jplot) or a project file (*.jproj) is obtained by specifying the file.

1. Specify the following command.

■ Obtaining from result files (*.jplot)

```
"(JMAG installation directory)\jquery.exe" -file="JPLOT file" -query="describe"
```

■ Obtaining from project files (*.jproj) by specification

```
"(JMAG installation directory)\jquery.exe" -file="JPROJ file" -query="describe /(Model name/Study name/Case name)"
```

16-3-4. Obtaining a List for a Model or a Study Included in the Project

A list of models or studies that is included in a project file (*.jproj) can be obtained by specifying the file.

1. Specify the following command.

Obtaining a list of models

```
"(JMAG installation directory)\jquery.exe" -file="JPLOJ file" -query="select name from /"
```

Obtaining a list of studies

```
"(JMAG installation directory)\jquery.exe" -file="JPLOJ
file" -query="select name from /(model name)"
```

MEMO Some of the data in the list for models or studies may be different depending on the version of JMAG-Designer the project file is saved in.

16-3-5. Obtaining Values set in Each Parameter of a Project

The values set in each parameter of an analysis model can be obtained by specifying a project file (*.jproj).

1. Specify the following command.

```
"(JMAG installation directory)\jquery.exe" -file="JPROJ
file" -query="select (parameter name and number) from /
(Model name/Study name/Case name)"
```

Example: Obtaining values for stack length and step divisions from model AAA/study BBB/Case1 of jmag.jproj.

```
"C:\Program Files\JMAG-Designer11.0\jquery.exe" -
file="D:\work\jmag.jproj" -query="select Control-1/
model_thickness Step-1/step_division from modelAAA/studyBBB/
case1"
```

MEMO Always specify a model name or study name.

MEMO The values for entire cases that are included in a study can be obtained by omitting the [Case name] from the command.

Example: Obtaining the value of stack length from model AAA/study BBB/entire cases of jmag.jproj.

```
"C:\Program Files\JMAG-Designer11.0\jquery.exe" -
file="D:\work\jmag.jproj" -query="select Control-1/
model_thickness from modelAAA/studyBBB"
```

MEMO Specify the block name and property name that is described in a JCF file as a parameter name.

▶▶ Reference

For more information about block names and property names for JCF files, see "JCF/PLOT File Format."

Appendix A. JCF File Format (Mesh)

This chapter describes various parameters that can be edited using a JCF file.

A-1. Overview

A JCF file can be modified without starting JMAG by using a file access library.

▶▶ Reference

For more information about the editing tools, see P.1 "Chapter 15. Editing a JCF File (Simple FHI)".

Each parameter has a type when gaining access to a JCF file through a file access library. There are the following types.

- string means character line type
- int means integer type
- double means real number type
- *var* means variable type
- complex means complex number type
- *point* meams 3 component type configured from (x, y, z).

In gaining access to a JCF file, specify a parameter name in the function of a file access library and read or set the value.

The parameters of a JCF file are described on the next and later pages.

MEMO The items that cannot be edited in a JCF file are as follows:

- -Target (Element ID, etc.)
- -Type of item to be applied (Element face or nodal point, etc.)
- -Contents of point sequence data used under conditions or material characteristics

A-2. Block List

This chapter describes the following blocks.

Block name		Description
control_parameter	Mesh	Controls parameters related to the mesh generation function (mesh properties)(P. 45).
	SkinDepth	Controls parameters for skin depth(P. 49).
	LayerMesh	Controls parameters for layered mesh(P. 49).
	ThinShell	Controls parameters for thin shell mesh(P. 50).
	PartRelation	Controls parameters for part relation(P. 50).
	CopyMeshManual	Controls parameters for rotation periodic mesh (details)(P. 50).
	CopyMeshAuto	Controls rotation periodic mesh (automatic)(P. 52).
condition_data	DefeatureHole	Controls parameters for defeaturing (hole)(P. 53).
	DefeatureBlend	Controls parameters for defeaturing (fillet)(P. 53).
	DefeatureChamfer	Controls parameters for defeaturing (chamfer)(P. 53).
	MeshMorphingLinear	Controls parameters for morphing (linear)(P. 54).
	MeshMorphingRadial	Controls parameters for morphing (radial)(P. 54).
	ExtrusionDirection	Controls parameters for extrusion direction(P. 54)

A-3. Basic Information of Analysis (control_parameters)

• Mesh

In the mesh module, the items related to mesh creation are set.

MEMO In projects, where setting the auto-generation flag of air region "flg_air_region_generation" is not possible, the thickness of thin board, skin depth, inclusive flag of block, etc. cannot be used.

flag of block, etc. cannot be used.			
Item name	Parameter name	Туре	Description
			=0: A mesh generator is not used.
Mesh generation	fla ma avacuta	int	=1: Patch mesh for generating a mesh
executable flag	flg_mg_execute	IIIt	every time.
			=2: Rotary patch mesh
			=0: Automatic generation
Mesh type	flg_silde_type	int	=1: Cylindrical slide mesh
			=2: Translational slide mesh
	flg_mg_model_ type	int	=0: none
			=1: 2D element
Type of input data			=2: 2D region
			=3: 3D element
			=4: 3D Solid
2D F1	flg_mg_2d_ele	•	=0: Triangle
2D Element type	m_type	int	=1: Quadrangle
Parameters for slide 1	nesh		
Number of radial		:	
divisions 1	radial_division1	int	
Number of circum-	circumferential_	int	Specification for silds time 2
ferential divisions	division	int	Specify when flg_silde_type=2
Number of divisions in the direc-	meshsize_of_m	double	Specify when flg_silde_type=1

rvaniber of radiar	radial_division1	int	
divisions 1	radiai_divisioni	1110	
Number of circum-	circumferential_	int	Specify when flg_silde_type=2
ferential divisions	division	1111	Specify when fig_shde_type=2
Number of divi-	mashaira of m		
sions in the direc-	meshsize_of_m	double	Specify when flg_silde_type=1
tion of motion	otion_direction		
Multiple slide flags	flg_multi_slide	int	=0: Multiple slides are not used.
			=1: Multiple slides are used.
			=0: Do not set automatically
Set flag automati- cally	flg_silde_auto_s etting	int	=1: Set the step condition automati-
			cally from the motion condition and
			the number of divisions around the
			circumference
C	_	int	=1: Set the step condition automatically from the motion condition and the number of divisions around the

Item name	Parameter name	Туре	Description			
Coordinate system ID	coordinate_syst em_for_slide_pl ane	int	Coordinate system ID to specify the normal direction on the slide plane			
Parameters for the m	Parameters for the mesh generation method					
Mesh generation method flag for 2D model	mg2d_type	int	=0: Automatic =1: Method in JMAG-Studio 9.0 =1: Method 1 (method for version 10.2 and earlier) (JMAG-Designer only) =2: Method 2 (method for version 10.3 and earlier) (JMAG-Designer			
Mesh generation method flag for 3D model	mg3d_type	int	only) =0: Auto mesh =1: Method in JMAG-Studio 9.0 =2: Semi auto mesh =3: Extruded mesh			
	flg_prioritise_ex trusion	int	=0: =1:			
Flag for automatic subdivide for the boundary face of a model	flg_node_inserti on_on_surface	int	Use if mg3d_type=2 = 0: Do not use the automatic subdivide function for the boundary face of a model = 1: Use the automatic subdivide function for the boundary face of a model			
Parameters for air reg	gion					
Auto-generation flag of air region	flg_air_region_g eneration	int	=0: Do not create =1: Create			
Flag for setting ele- ment size of air region automati- cally	flg_auto_set_air _mesh_size	int	=0: OFF =1: ON			
Air element size[m]	air_meshsize	double				
Length ratio of air region	air_region_scale	double				
Height of air region	height_of_air_r egion	double				

Item name	Parameter name	Туре	Description
Maintaining an existing sketch	flg_mg_target	int	JMAG-Designer only =0: Regenerate all mesh =1: Maintain existing mesh in the parts area and regenerate mesh in the air region
Fill Skew Gap	flg_mg_skewga p_filling	int	JMAG-Designer only =0: Do not fill skew gap =1: Fills skew gap
Post output flag in air region	flg_io_air_regio n	int	
Element size (Extrusion Flag for setting mesh size automatically (Extruded direction)	flg_meshsize_of _extrusion_dire ction	int	=1 : Not automatic =0: Automatic
Element size for extrusion direction	meshsize_of_ext rusion_directio n	double	
Set extruded air region mesh auto- matically	flg_air_meshsize _of_extrusion_ direction	int	=1 : Not automatic =0: Automatic
Element size for extrusion direction (Air region	air_meshsize_of _extrusion_dire ction	double	
Parameters for adapt	ive mesh		
Adaptive flag	flg_adaptive	int	=0: OFF =1: ON
Permissible error range	permissible_err or	double	Used for a mesh generator.
Limit of stage numbers	adaptive_max_i teration	int	
Limit of number of mesh per stage	adaptive_simple _calc_max_itera tion	int	
Flag for calculating nodal force accu- rately	flg_nodel_avera ge	int	=0: OFF =1: ON

Item name	Parameter name	Туре	Description		
Flag for leaving the	flg_io_adaptive		=0: OFF		
result in each stage	_temporary_file	int	=1: ON		
Parameters for modifying soled (JMAG-Designer)					
Number of Healing	healing_number	int	Select from 0 to 5 times		
Iterations	meaning_nameer	me	ociect from 6 to 5 times		
Method to deter-	fla contact rec	int	=0: Automatic		
minate connection	flg_contact_rec ognition_type		=1: General method		
with part			=2: Easy method		

A-4. Setting Conditions (condition_data)

• SkinDepth

In the SkinDepth, the items related to Skin depth are set (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition name	condition_titl	string	
Number of lay- ers in the skin depth	num_division	int	
Skin Depth (m)	skin_depth	double	

• LayerMesh

In the LayerMesh, the items related to Layered mesh are set (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition name	condition_titl e	string	
Thickness (m)	thickness	double	
Layers	number_of_di vision	int	
Lamination Factor	lamination_fa ctor	double	
Material ID for magnetic steel sheet region	steel_sheet_m aterial	int	
Material ID for insulation area	insulation_ma terial	int	

• ThinShell

In the ThinShell, the items related to the Thin Shell Mesh are set (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition name	condition_titl e	string	
Thickness (m)	depth	double	
Number of lay- ers in a thin shell	num_division	int	

• PartRelation

In the PartRelation, the items related to PartRelation are set (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition name	condition_titl e	int	
Сору Туре	relation_type	int	=0: Translation =1: Rotation
Point on the rotation axis	origin	point	Specify point
Axis direction	axis	point	Specify component.

• CopyMeshManual

In the CopyMeshManual block, a mesh can be created for the geometry symmetry. Specify the details for creating the mesh or the symmetry of the geometry. (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition name	condition_titl e	string	
Gap type	gap_type	int	=0: Radial gap =1: Axial gap
Inner circle: Point on axis	inner_origin	point	
Inner circle: Axis direction	inner_axis	point	

Item name	Parameter name	Туре	Description
Inner circle:	inner_directio	:	
Reference	n	point	
Inner circle:	inner nettern		
Pattern angle	inner_pattern _angle	double	
[deg]	_angle		
Inner circle:	inner_start_a		
Start position	ngle	double	
[deg]	rigic		
Inner circle:	inner_mirror_	int	=0: No mirror symmetry
Mirror symmetry	сору	1111	=1: Mirror symmetry
Inner circle:			
Target area for	inner_inside_	double	
radius of inner	radius	double	
diameter			
Inner circle:			
Target area for	inner_outside	double	
radius of outer	_radius	double	
diameter			
Inner circle:			
Target area for	inner_lower_	double	
height of lower	bound		
limit			
Inner circle:			
Target area for	inner_upper_	double	
height of upper	bound	double	
limit			
Inner circle:	inner_element	double	
Element size	_size		
Inner circle:			=0: Do not expand
Expand target	inner_air_regi	int	
region to air	on_copy		=1: Expand
region			
Outer circle:		_	
Point on the rota-	outer_origin	point	
tion axis			
Outer circle:			
Rotation axis	outer_axis	point	
direction			
Outer circle:	outer_directio	point	
Reference	n	Point	

Item name	Parameter name	Туре	Description
Outer circle: Pattern angle [deg]	outer_pattern _angle	double	
Outer circle: Start position [deg]	outer_start_a ngle	double	
Outer circle: Mirror symmetry	outer_mirror_ copy	int	=0: No mirror symmetry =1: Mirror symmetry
Outer circle: Target area for the outer diame- ter of the radius	outer_inside_ radius	double	
Outer circle: Target area for the diameter of the outer radius	outer_outside _radius	double	
Outer circle: Target area for height of lower limit	outer_lower_ bound	double	
Outer circle: Target area for height of upper limit	outer_upper_ bound	double	
Outer circle: Element size	outer_element _size	double	
Outer circle: Expand target region to air region	outer_air_regi on_copy	int	=0: Do not expand =1: Mirror symmetry

CopyMeshAuto

In the CopyMeshAuto block, a mesh can be created for the geometry symmetry. JMAG automatically determines the geometry of the symmetry (JMAG-Designer only)

Item: None

• DefeatureHole

Specifies the defeature (hole) in the DefeatureHole block (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition name	condition_titl e	string	
Maximum radius (mm)	max_diameter	double	
Spherical surface			Available when a 3D model is selected
is included in the	spherical_hole	int	=0: Not included
defeature			=1: Included

• DefeatureBlend

Specifies the defeature (fillet) in the DefeatureBlend block (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition name	condition_titl e	string	
Maximum radius (mm)	max_radius	double	
Maximum angle (deg)	max_angle	double	
Number of samples	num_curvatur e_samples	double	Available when a 3D model is selected

• DefeatureChamfer

Specifies the deafeature (chamfer) in the DefeatureChamfer block (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition name	condition_titl e	string	
Maximum cham- fer width (mm)	max_width	double	
Maximum angle (deg)	max_angle	double	

• MeshMorphingLinear

Specifies morphing (linear displacement) in the MeshMorphingLinear block (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition name	condition_titl e	string	
Displacement	displacement	double	
Moving direction	direction	point	Specify component

• MeshMorphingRadial

Specifies morphing (radial direction) in the MeshMorphingRadial block (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition name	condition_titl e	string	
Displacement	displacement	double	
Fixed center axis	flg_fix_axis	int	=0: Not fixed =1: Fixed
Center axis is specified	flg_use_axis	int	=0: Not fixed =1: Fixed
Point on center axis	origin	point	Specify when flg_use_axis=1
Axis direction	axis	point	Specify when flg_use_axis=1 and 3D
Moving direction	direction	point	Specify component.

• ExtrusionDirection

Specifies extrusion direction in the ExtrusionDirection block (JMAG-Designer only). This parameter can only be used for 3D analysis.

Item name	Parameter name	Туре	Description
Condition name	condition_title	string	
Extrusion direc-	extrusion_direct		
tion	ion	point	

Appendix B. JCF File Format (Magnetic Field Analysis)

This chapter describes various parameters that can be edited using a JCF file.

B-1. Overview

A JCF file can be modified without starting JMAG by using a file access library.

▶▶ Reference

For more information about the editing tools, see P.1 "Chapter 15. Editing a JCF File (Simple FHI)".

Each parameter has a type when gaining access to a JCF file through a file access library. There are the following types.

- string means character line type
- *int* means integer type
- double means real number type
- *var* means variable type
- complex means complex number type
- *point* meams 3 component type configured from (x, y, z).

In gaining access to a JCF file, specify a parameter name in the function of a file access library and read or set the value.

The parameters of a JCF file are described on the next and later pages.

MEMO The items that cannot be edited in a JCF file are as follows:

- -Target (Element ID, etc.)
- -Type of item to be applied (Element face or nodal point, etc.)
- -Contents of point sequence data used under conditions or material characteristics

B-2. Block List

This chapter describes the following blocks.

Block	name	Description
control_paramete		Controls parameters related to the entire analy-
rs	common	sis.(P. 59)
	Control	Controls parameters for analysis control (study
	Control	properties).(P. 61)
	Step	Controls parameters for step control or fre-
	Зсер	quency control.(P. 68)
	CyclicBoundary	Controls parameters for periodic boundary con-
	Cyclicboulidary	dition.(P. 69)
	SymmetryBound	Controls parameters for symmetry boundary
	ary2D	condition (2D).(P. 69)
	SymmetryBound	Controls parameters for symmetry boundary
	ary3D	condition (3D).(P. 69)
	FixA3D	Controls parameters for gap flux boundary con-
		dition.(P. 70)
	CurrentCtrl	Controls parameters for current condition.(P.
		70)
	CurrentDensity	Controls parameters for current density condi-
		tion.(P. 72)
condition_data	FEMCoil	Controls parameters for FEM coil condition.(P.
	1 22/1 0011	73)
	Coil_in_FEMCo	Controls parameters for each coil region for a
	il	FEM coil condition.(P. 73)
	FEMCoilGroup	Controls parameters for group (FEM) func-
		tion.(P. 73)
	FEMConductor3	Controls parameters for FEM conductor condi-
	D	tion.(P. 74)
	Coil_in_FEMCo	Controls parameters for each conductor region
	nductor3D	of a FEM conductor condition.(P. 74)
	FEMConductor-	Controls parameters for group (FEM conduc-
	Group	tor) function (P. 74)/
	Force	Controls parameters for electromagnetic force
		condition/torque condition (P. 75).
	Flux	Controls parameters for flux condition (P. 75).
	Motion	Controls parameters for motion condition(P.
		76).

Block name		Description		
	Damper in Motion Spring in Motion	Controls parameters related to attenuation constant when using the equation of motion in motion condition.(P. 80) Controls parameters related to spring constant when using the equation of motion in motion condition.(P. 80)		
	Slide	Controls parameters for slide condition.(P. 80)		
	ExternalField	Controls parameters for external field condition. (P. 81)		
	StressDistribu- tion	Controls parameters for stress distribution condition.(P. 81)		
	TemperatureDis- tribution	Controls parameters for temperature distribution condition.(P. 82)		
	Displacement	Controls parameters for displacement condition.(P. 82)		
	PermanentMag- net	Controls parameters for magnetization direction of permanent magnet. (P. 82)		
	Anisotropy	Controls parameters to define anisotropy for steel sheet material.(P. 84)		
	LineElement- Type	Controls parameters for circuit component.(P. 86)		
	VoltageFunction	Controls X-axis type for electric potential source (1 terminal) component and voltage source (2 terminals).(P. 90)		
	VoltageFunction- Derive	Controls parameters for electric potential source (1 terminal) component and voltage source (2 terminals).(P. 91)		
	CurrentFunction	Controls X-axis type of current source component.(P. 92)		
	CurrentFunc- tionDerive	Controls parameters for current source component.(P. 92)		
	Magnetization	Manages parameters for magnetization function for permanent magnet.(P. 94)		
	Magnetization- Derive	Manages parameters for magnetization function for permanent magnet.(P. 94)		
	CoilInductance	Manages parameters for coil inductance calculation tool.(P. 95)		
	SpeedDef	Manages parameters for SPEED Link.(P. 96)		
	Part_in_PartialIn ductance	Manages parameters for partial inductance condition.(P. 96)		

Block name		Description
	BusbarInductan-	Manages parameters for busbar inductance cal-
	ceParametric	culation tool.(P. 96)
	Ironloss	Controls parameters for iron loss analysis.(P. 97)
	Insulation	Controls parameters for insulation condition.(P. 98)
	GapElement	Controls parameters for gap condition.(P. 98)
	Element_in_Sub	Controls parameters for relation between components and each condition in subcycling condition. (P. 99)
	Parameters_in_S ubcycling	Controls parameters for components in subcycling condition and each condition that are related.(P. 99)
	ExternalCircuit-	Controls parameters for external circuit link
	Couple	condition.(P. 100)
	Psim_in_Externa lCircuitCouple	Controls parameters for external circuit link condition.(P. 100)
	ThermalSource- Calculation	Controls parameters for heat source condition. (P. 101)
	FrozenPermeabil- ity	Controls parameters for frozen permeability condition.(P. 101)
	PartialModel	Controls parameters for partial model condition.(P. 102)
	CutPlaneAnalysis	Controls parameters for section analysis.(P. 103)
	MATERIAL	Controls parameters for material.(P. 105)
material_data	IronlossMaterial	Controls parameters for materials in iron loss analysis.(P. 113)

B-3. Basic Information of Analysis (control_parameters)

• common

In a common module, the item common to all analyses that are executed in JMAG is specified.

Item name	Parameter name	Туре	Description
Analysis name	title	string	
Version No. of JMAG	version	int	
Solver ID	Solver_id	int	=0: 3D static magnetic field analysis (ST (3D)) =1: 3D frequency response magnetic field analysis (FQ (3D)) =2: 3D transient response magnetic field analysis (TR (3D)) =3: 2D magnetic field transient analysis (DP (2D)) =4: 2D axis symmetric magnetic field analysis (DP (AX)) =11: 2D frequency response magnetic field analysis (FQ (2D)) =12: 2D axis symmetric frequency response magnetic field analysis (FQ (AX)) =13: 2D static magnetic field analysis (ST (2D)) =14: 2D axis symmetric static magnetic field analysis (ST (AX)) =16: Iron loss analysis * Added from version 8.3: Iron loss calculation is executed independently.
Unit label	unit_label	string	
Shape unit of data	unit_input	double	
Confirmation unit of result	unit_output	double	
Restart flag	restart	int	=0: Normal run =1: Restart

Item name	Parameter name	Туре	Description
			=0: Do not use parallel computing
Parallel computing			=1: Parallel computing with shared mem-
usage flag	flg_multi_cpu	int	ory multiprocessor (SMP)
usage mag			=2: Parallel computing with distributed
			memory multiprocessor (DMP)
	multi_cpu		Degree of parallelism
		int	* The number of licenses is determined by
Degree of parallelism			the degree of parallelism.
			*The degree of parallelism needs to be spec-
			ified if flg_multi_cpu=1 or 2.
Parallel computing	flg_multi_iccg	int	Al 1
solver type	_localized		Always 1
Split size of result file	max_plot_size	int	
[MByte]			
PLOT file output	plot_mode	int	=0: ASCII PLOT file
mode			=1: Binary PLOT file

B-4. Setting Conditions (condition_data)

• Control

In Control, the items of analytic control conditions are specified.

Item name	Parameter name	Туре	Description	
Parameters for the calculation method				
Selection flag of	linear_solver_ty	int	=0: Direct method (FEM + BEM)	
matrix solver	pe	IIIL	=2: Iterative method (FEM)	

Parameters for the full model conversion

Model thickness [m]	model_thicknes	double	* Valid only for 2D analysis.
Height-specified flag of FEM coil	flg_fem_coil_h eight	int	=0: The height of an FEM coil is the same as model thickness. =1: The height of an FEM coil differs from model thickness.
Height of FEM coil [m]	fem_coil_heigh t	double	* Valid only for 2D analysis.
Full model conversion flag	flg_full_model _conversion	int	=0: Not converted. =1: Converted. * The conversion factor is automatically discriminated based on periodic boundary conditions.
Conversion factor (except cyclic boundary conditions)	divide_multipli er	double	* For a 1/n model, the output value is n times.

Parameters for the solver control

Item name	Parameter name	Туре	Description
Restart type	restart_type	int	 =0: Normal run =1: Execution using restart file. =2: Restart from frequency response analysis. =3: Restart during static analysis (or frequency response analysis) and use of a patch mesh. =4: Restart during transient response analysis and use of a patch mesh. =5: Steady-State Approximate Transient Analysis
Model type flag of Steady-state approximate tran- sient analysis	flg_use_slip_fre quency	int	* Transient response analysis only =0: Stationary Device =1: Induction Motor
Slip [%]	pseudo_steady_ slip	double	Use when flg_use_slip_frequency=1
Snapshot calculation usage flag	flg_snap_shot	int	=0: Snapshot calculation is not executed. =1: Snapshot calculation is executed.
Number of retry times	retry	int	Specify what time to retry when calculation failed during snapshot calculation.
Calculation mode of retry	calc_mode	int	=0: Only calculation which went wrong is re-performed. =1: All calculations are redone.
Number of step divisions of snap- shot calculation	num_div_step_ for_snap_shot	int	
Using GPU flag	flg_use_gpu	int	=0: Do not use GPU =1: Use GPU
Time periodic explicit error cor- rection flag	flg_tpeec	int	=0: Do not correct =1: Correct
Periodicity of time periodic explicit error correction	tpeec_periodic _type	int	=1: Antiperiodic =2: Periodic
Flag to reverse correction type for the rotor	flg_reverse_peri odic_type_roto r	int	=0: Do not reverse correction type for the rotor =1: Use reverse correction type for the rotor

Item name	Parameter name	Туре	Description
Use relaxation fac-	tpeec_use_nonl	int	=0: Do not use relaxation factor
tor	in_reduction	1111	=1: Use relaxation factor
Specify method for			=0: Frequency
time periodic	tpeec_setting_t	int	
explicit error cor-	ype	ınt	=1: Interval
rection timing			
Correction fre-	tpeec_frequenc	double	
quency	у	double	
Correction interval	tpeec_step_div	int	
Max. Corrections	tpeec_max_nu	int	
iviax. Corrections	m_correction	1111	

Parameters for the circuit conversion

Circuit conversion	flg_circuit_con		=0: Do not convert
_	C	int	=1: Convert (periodic boundary)
flag	version		=2: Convert (series/parallel)
Conversion factor			
of circuit (except	circuit_divide_	double	* For a 1/n model, the parameter is n times
cyclic boundary	multiplier	double	or 1/n.
conditions)			
	circuit_connect		=0: Serius
Circuit connction	_information		=1: Parallel
			=2: Parallel and Anti-Periodic
Number of series	series_number	double	Use when flg_circuit_conversion=2
connections			Ose when ng_chedit_conversion=2
Number of parallel	parallel_numbe	double	Use when flg_circuit_conversion=2
connections	r	double	Ose when ng_eneun_conversion=2

Item name	Parameter name	Туре	Description			
Parameters for the I	Parameters for the ICCG					
ICCG default	iccg_default_gu	:	=0: A default value is not used.			
value usage flag	i	ınt	=1: A default value is used.			
Automatic determination flag of	G 1	•	=0: Specified.			
ICCG accelera-	flg_auto_accel	int	=1: Determined automatically.			
ICCG accelera-	iccg_accel	double				
ICCG conver-	. 1		=1: Automatic setting at each step based on the set reference value (default)			
gence tolerance flag during nonlin-	iccg_tolerance_ type	int	=2: A constant value is used throughout (uses the iccg_tolerance value)			
ear calculation			=3: Manual setting of value at each step (previously known, step control)			
Maximum number of ICCG convergence tolerance during nonlinear calculation	iccg_init_tolera	double	Set when iccg_tolerance_type=1			
Minimum number of ICCG convergence tolerance during nonlinear calculation	iccg_min_toler	double	Set when iccg_tolerance_type=1			
ICCG convergence tolerance	iccg_tolerance	double				
ICCG calculation tolerance	iccg_max_toler ance	double				
Maximum number of ICCG iterations	iccg_max_iterat ion	double				
Optimum value usage flag during non-convergence	flg_iccg_optim um_value	int	=0: Not used =1: Used			
ICCG restart flag	flg_iccg_restart	int	=0: Not used =1: Used			

Item name	Parameter	Typo	Description			
item name	name	Туре	Description			
			=0: Use A-phi method			
Calculation	flg_a_phi_met		=1: Use A-phi method 1 (versions before			
method (A-phi	hod	int	JMAG-Studio version 9.1 and JMAG-			
method) flag	nou		Designer version 5.0.)			
			=2: Use A-phi method 2			
Parameters for the r	nonlinear calculati	ion				
Maximum number	nonlinear_max					
of nonlinear calcu-	iteration	double				
lation iterations						
Iterative tolerance	nonlinear_conv					
of nonlinear calcu-	ergence_toleran	double				
lation	ce					
Iterative method	nonlinear met		=0: Newton-Raphson method			
flag of nonlinear calculation	hod_type	int	=1: Successive iteration method			
			=0: Not used.			
Relaxation factor	ring use of ralaxation_fact	int	=1: Relaxation factor 1 (Two-division			
flag during use of			search type)			
Newton-Raphson	or_type		=2: Relaxation factor 1 (Residual minimum			
method			search type)			
Convergence			=0: Normal			
determination	g					
change flag of	flg_iccg_strict_	int	1. Indeed and objects			
nonlinear calcula-	convergence		=1: Judged strictly			
tion						
Flag for using	As poplinger o		=0: Do not use speed-up analysis scheme			
speed-up analysis	flg_nonlinear_s	int	1. He aread up analysis schome			
scheme	peeding_up		=1: Use speed-up analysis scheme			
Flag for the correc-			=0: Do not correct			
tion of BH curve	flg_fq_bh_corr	int				
for frequency	ect	1110	=1: Correct			
response analysis						
Parameters for outp	Parameters for output settings					
Output flag of			=0: Not output			
stored energy	flg_io_energy	int	=1: Output			
Output flag of			=0: Not output			
magnetic flux den-	flg_io_magneti	int	=1: Output			
sity	c_flux_density	1111	* Output for each element.			
SILY			Output for each element.			

Item name	Parameter name	Туре	Description
Output flag of	flg_io_magneti		=0: Not output
magnetization /	zation	int	=1: Output
magnetic field	Zation		* Output for each element.
Current density	flg_io_current_		=0: Not output
output flag	density	int	=1: Output
output mag	density		* Output for each element.
C (1)	g :		=0: Not output
Current (beam)	flg_io_current_	int	=1: Output
output flag	o n_beam		* Output for each external field beam ele-
			ment
Output flag of	fla in loss den		=0: Not output
Joule loss density	flg_io_loss_den	int	=1: Output
Joule loss delisity	sity		* Output for each element.
			=0: Not output
Output flag of sur-	flg_io_surface_	int	=1: Output
face force density	force_density	int	* Output for each element surface or ele-
			ment edge.
Output flag of	On to lower	int	=0: Not output
Lorentz force den-	flg_io_lorentz_ force_density		=1: Output
sity			* Output for each element.
Output flag of	fla in algerria	int	=0: Not output
Output flag of electric field	flg_io_electric_ field		=1: Output
electric field			* Output for each element.
Output flag of	flg_io_permean	int	=0: Not output
permeance_factor	ce_factor	int	=1: Output
Output flag of dia	fla is model d		=0: Not output
Output flag of displacement	isplacement	int	=1: Output
piacement	isplacement		* Output for each node.
Output flag of year	fla in waster p		=0: Not output
Output flag of vector potential	otential	int	=1: Output
tor potential	Otential		* Output for each node.
Output flag of	fla in model f		=0: Not output
Output flag of	flg_io_nodal_f	int	=1: Output
nodal force	orce		* Output for each node.
Output flag of per-	flg_io_permeab	1	=0: Not output
meability	ility	int	=1: Output
Output flag of dif-	flg_io_different		=0: Not output
ferential permea-	ial_permeabilit	int	-1. Output
bility	у		=1: Output

Item name	Parameter name	Туре	Description
Output flag of	fla is stress	int	=0: Not output
stress	flg_io_stress	int	=1: Output
Save file output	fla in sava fila	int	=0: Not output
flag	flg_io_save_file	int	=1: Output
Convergence sta-			=0: Not output
tus output flag of iterative linear solver	flg_io_converge nce	int	=1: Output
Output intorval	autout timina		=0: Output all steps
Output interval	output_timing _mode	int	=1: Output from specified step to last step
type	_mode		=2: Use output interval table
First output step	output_timing _start_step	int	For output_timing_mode = 1
Parameters for coup	oled analysis		
	coupled_heat		=0: Normal run
			=1: Two way coupled analysis
Two way coupled			=2: Two way coupled analysis
analysis flag		int	Multiple magnetic field steps are executed
			by TR.
			Averaged by loss. Can be used from version
			8.3 or later.
	coupled_remes	int	=0:
	h_type		=1:
Parameters for user	subroutine		
User subroutine Dll	usrsub_name	string	User subroutine dll name (With no extension)
Usage flag of sub-	On house1	:	=0: Disables the hsusr1.f option
routine "hsusrl.f"	flg_hsusr1	int	=1: Enables the hsusr1.f option
Usage flag of sub-	fla havara	int	=0: Disables the hsusr2.f option
routine "hsusr2.f"	flg_hsusr2	int	=1: Enables the hsusr2.f option
Usage flag of sub-	fla hayar2	int	=0: Disables the hsusr3.f option
routine "hsusr3.f"	flg_hsusr3	int	=1: Enables the hsusr3.f option
Usage flag of sub-	flg_hsusr4	int	=0: Disables the hsusr4.f option
routine "hsusr4.f"	11g_11sus14	int	=1: Enables the hsusr4.f option
Usage flag of sub-	flg_usrfle	int	=0: Disables the usrfle.f option
routine "usrfle.f"	ing_usine	1111	=1: Enables the usrfle.f option

Item name	Parameter name	Туре	Description
Usage flag of sub-	flg_usrstp	int	=0: Disables the usrstp.f option
routine "usrstp.f"	iig_usistp	IIIt	=1: Enables the usrstp.f option
Usage flag of sub-	flg_usrlos	int	=0: Disables the usrlos.f option
routine "usrlos.f"	iig_usiios	1111	=1: Enables the usrlos.f option
Usage flag of sub-	flg_usrhys	int	=0: Disables the usrhys.f option
routine "usrhys.f"			=1: Enables the usrhys.f option
Usage flag of sub-	n c 2	int	=0: Disables the usrfm2.f option
routine "usrfm2.f"	flg_usrfm2		=1: Enables the usrfm2.f option
Subroutine "husr-	flamatu	int	=0: Not use
str.f" flag	flg_usrstr		=1: Use
Selection flag of	fla maanatigati		=0: Not performed
magnetizing pro-	flg_magnetizati on_process	int	=1: Performed
cess calculation			=1. I CHOIMEU
User array size	usub_array_size	int	

• Step

In Step, the items of step conditions are specified.

Item name	Parameter name	Туре	Description
Number of analysis steps	num_analysis_s tep	int	
Analysis start step	analysis_start_s tep	int	Analysis start step for snapshot calculation * Do not modify this setting from "1".
Step type	step_type	int	=1: Time specification or regular interval division =2: Time specification of separate section at regular interval =3: Constant value time (for DLL) =4: Displacement specification (Can be used when the motion equation of displacement specification is used under motion conditions.)
Number of divisions	step_division	int	* Can be used only for step_type = 1.
Time point sequence table number	step_table_gui	int	
Time table name	step_table_nam e_gui	string	

Item name	Parameter name	Туре	Description
Displacement per step	movement_qua ntity	double	* Can be used only for step_type = 4.
Maximum elapsed time [sec]	elapse_maximu m_time	double	* Can be used only for step_type = 4.

• CyclicBoundary

In CyclicBoundary, the items of periodic boundary conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
			=+1: Rotation periodicity
			=+2: Translational periodicity
Down down trops	avalia tuma	int	=+3: Axial reverse rotational periodicity
Boundary type	cyclic_type	Ш	<0: Anti-periodic boundary
			=-1: Rotation periodicity
			=-2: Translational periodicity
A point on rotation axis	origin	point	* Specified for each component.
Direction of rotation	axis_vector	point	* Specified for each component.
axis			specified for each component.
			Periodic angle for rotational periodicity
Periodic angle or dis-	angle	double	[deg]
tance		double	Periodic distance for translational periodic-
			ity [m]

• SymmetryBoundary2D

In SymmetryBoundary2D, the item of symmetry boundary 2D conditions is specified.

Item name: None

• SymmetryBoundary3D

In SymmetryBoundary3D, the item of symmetry boundary 3D conditions is specified.

Item name: None

• FixA3D

The gap flux boundary condition is specified for FixA3D block (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Result file for magnetic field analysis that is referred	file_referred_pl ot_file_ml	string	* Specify absolute path
Start step (for FFT)	start_step	int	
End step (for FFT)	end_step	int	
Frequency degree (for FFT)	order_of_frequ ency	int	
Flag for perme- ability using 2D analysis result	flg_myu_mapp	int	=0: Result not used =1: Result used

• CurrentCtrl

In CurrentCtrl, the items of current conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
inflow face/vector-	flowin_type	int	=0: Element face is specified.
specified flag			=1: Vector is specified.
Vector start point flowin_origin	flowin origin	point	Specified for each component.
	liowiii_origiii		Can be used only for flowin_type = 1.
Current flowing	flowin_vector	point	Specified for each component.
direction of vector			Can be used only for flowin_type = 1.

Item name	Parameter name	Туре	Description
X-axis type	x_type	int	=1: Time [sec] (Static analysis and transient response analysis) =1: Frequency [Hz] (Frequency response analysis) =2: Rotation angle =3: X-axis direction =4: Y-axis direction
			=5: Z-axis direction =6: Step number =7: Time [sec] (Frequency response analysis) =8: Displacement in motion direction
Function type	function_type	int	=0: Point sequence =1: Sinusoidal function =2: Exponential function =3: Constant value
Eddy current flag	flag_eddy	int	=0: An eddy current is not generated. =2: An eddy current is generated.
Constant value [A]	constant_curr ent	double	
Current point sequence table number	current_table _gui	int	
Current point sequence table name	current_table _name_gui	string	
Cyclic flag of point sequence	flag_cyclic	int	=0: Periodic =1: Not periodic
Amplitude [A]	amplitude	double	
Frequency [Hz]	frequency	double	
Phase [deg]	phase	double	
Asymptotic value [A]	initial_value	double	
Time constant [sec]	time_constant	double	
Number of turns	turn	double	
Eddy current flag	flag_eddy	int	=0: An eddy current is not generated.=2: An eddy current is generated.

• CurrentDensity

In CurrentDensity, the items of current density conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
			=1: Time
			=2: Rotation angle
			=3: X-axis direction
X-axis type	x_type	int	=4: Y-axis direction
			=5: Z-axis direction
			=6: Step number
			=8: Displacement in motion direction
			=0: Point sequence
Function type	function type	int	=1: Sinusoidal function
runction type	function_type	IIIt	=2: Exponential function
			=3: Constant value
Constant value [A/	constant_dens	double	For density_type = 1, the unit is [A].
m2]	ity	double	Tor density_type = 1, the diff is [1].
Current density	density_table_	int	
point sequence table	gui		
number	8		
Current density	density_table_	string	
point sequence table	name_gui		
Cyclic floor of point			=0: Periodic
Cyclic flag of point	flag_cyclic	int	
sequence	11. 1	1 11	=1: Not periodic
Amplitude [A/m ²]	amplitude	double	For density_type = 1, the unit is [A].
Frequency [Hz]	frequency	double	
Phase [deg]	phase	double	
Asymptotic value	initial_value	double	For density_type = 1, the unit is [A].
$[A/m^2]$	miciai_varac	double	
Time constant [sec]	time_constant	double	
			=0: An eddy current is not generated.
Eddy current flag	density_type	int	=1: External current (Only 3D)
			=2: An eddy current is generated.

• FEMCoil

In FEMCoil, the items of FEM coil conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Reference ID table	coil_id_table	int	
Z-direction length	coil_zlength	double	Can be used only for 2D analysis. Must be the same value as for analytic control.
FEM coil group name	fem_coil_nam e_gui	string	

• Coil_in_FEMCoil

In Coil_in_FEMCoil block, the items for each coil region in FEM coil conditions can be specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Name of FEM coil region	coil_name	string	
Current flowing direction-specified flag	flowin_type	int	=0: inflow face specification * 3D =0: Inflow direction down * 2D =1: Vector specification * 3D =1: Inflow direction up * 2D
Start point	flowin_origin	double	Specified for each component. Can be used only for flowin_type = 1.
Current flowing direction	flowin_vector	double	Specified for each component. Can be used only for flowin_type = 1.

• FEMCoilGroup

In FEMCoilGroup block, the group (FEM coil) conditions are specified.

Item name	Parameter name	Type	Description
Condition ID	id	int	
Condition name	name	int	

• FEMConductor3D

In FEMConductor3D, the items of FEM conductor conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Name of FEM conductor region	fem_cond_na me_gui	string	
Series number	series_number	double	
Parallel number	parallel_numb er	double	

• Coil_in_FEMConductor3D

In Coil_in_FEMConductor3D block, the items for each conductor region in FEM conductor conditions can be specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Name of FEM con-	cond_name	string	
ductor region	cond_name	string	
			=-1: Not used * 3D
Current flowing			=0: Up *2D
direction-specified	direction	int	=0: +Theta *Axialsymmetry
flag			=1: Down *2D
			=1: -Theta *Axialsymmetry

• FEMConductorGroup

In FEMConductorGroup block, the group (FEM conductor) conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Condition name	name	int	

• Force

In Force, the items of calculation conditions for electromagnetic force and torque are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Flag for calculating			=0: Not calculated.
c c	flg_io_torque	int	=1: Calculated.
torque			* A torque axis must be set.
A point on torque	origin	point	Specified for each component.
actioned axis	origin	ponit	Specified for each component.
Torque axis vector	axis_vector	point	Specified for each component.
			=1: Surface force method (Maxwell stress
Calculation method	force_calc_typ	int	method)
flag	e	Ш	=2: Nodal force method
			=3: Lorenz force
Communication floor			=0: Not cooperate with an external circuit
Cooperation flag	fla arreamal	int	simulator.
with external simula-	iig_external	int	=1: Cooperates with an external circuit
tor			simulator.

• Flux

In Flux, the item of calculation conditions for magnetic flux is specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Direction	fla direction	int	=1: The outflow direction is positive
Direction	flg_direction	int	=-1: The inflow direction is positive

• Motion

In Motion, the items of motion conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Definition/parameter/ specification method	motion_type	int	 =0: Displacement specification x Velocity x Point sequence =1: Displacement specification x Step distance x Point sequence =2: Displacement specification x Cumulative Distance x Point sequence =3: Specifies the equation of motion x time and calculates the distance. =4: Displacement specification x Velocity x Constant value =5: Displacement specification x Step distance x Constant value =6: Specifies the equation of motion x distance and calculates the time. =7: Displacement specification x Velocity x Constant value =8: Displacement specification x Cumulative distance x Constant value = Negative integer: A user subroutine is
Type of movement range	flg_array_rang e_type	int	used. Can be used except when motion_type is 3 and 6. =1: Rotation =2: Translation
Movement direction	flg_motion_di	int	Can be used when motion_type is 3 and 6. =0: Translation =1: Rotation
A point on rotation axis	origin	point	Specified for each component.
Direction of rotation axis/Direction of motion	axis_vector	point	Specified for each component. Direction of rotation axis (when flg_array_range_type=1, or flg_motion_direction=1). Direction of motion (when flg_array_range_type=2).

Item name	Parameter name	Туре	Description
Direction of motion	motion_direct	point	Direction of motion
Direction of motion	ion	point	(when flg_motion_direction=0).
Initial position of moving part ([m] or [deg])	initial_displac ement	point	For rotation, uses the first component to output the angle [deg]. For translation, outputs the displacement [m] of XYZ.
Cooperation flag			=0: Cooperates.
with external simula- tor	flg_external	int	=1: Not cooperate.
Displacement flog of			=0: Accompanied by mesh displacement.
Displacement flag of mesh	flag_vxb	int	=1: Not accompanied by mesh displacement.
Point sequence name	motion_table _name_gui	string	
Point sequence num-	motion_table	int	
ber	_id_gui	1111	
Point sequence or constant value	motion_table	double	Velocity point sequence for motion_type =0 Distance point sequence for motion_type per step=1 Cumulative distance point sequence for from initial position for motion_type=2 Constant distance value for motion_type =5 Constant velocity value for motion_type =7 Constant cumulative distance value for motion_type =8
Cyclic flag of point sequence	flag_cyclic	int	=0: Periodic =1: Not periodic
			·
Number of "electro-			Can be used for motion_type = 3 or 6.
magnetic force and torque calculation" condition to be ref- erenced	fma_force_id	int	=0: When electromagnetic force and torque are not referenced.
	multiplier	double	

ltam nama	Parameter	T. 112.0	Decoriation
Item name	name	Type	Description
			=0: Constant load
			=1: Constant load versus time table
			=2: Constant load versus angle table (Rota-
Load type (equation	load_type	int	tion motion)
of motion)			=3: Constant load versus time table (Trans-
			lation motion)
			=4: Constant load versus displacement
C 1 1 1			table
Constant load such	load_force	double	Used for flg_motion_direction = 0.
as gravity [N] Cyclic flag of load			=0: Periodic
table (equation of	flg_load_cycli	int	=0. Teriodic
motion)	С	IIIC	=1: Not periodic
			<u> </u>
Mass [kg]	mass	double	
	flg_mass_fact	int	
	or	int	
	mass_factor	double	
	flg_mass_offse	int	
-	t		
	mass_offset	double	
Initial position ([m]	initial masitia		
Initial position ([m]	initial_positio	double	
or [deg]) Initial velocity ([m/	n initial_velocit		
sec] or [deg/sec])	y	double	
seej of [deg/see]))		
Initial position +			
Positive upper limit	max_position	double	
of displacement	1		
Initial position +			
Negative upper limit	min nosition	والمدياء	
of displacement ([m]	min_position	double	
or [deg])			

Item name	Parameter name	Туре	Description
Static friction coeffi-			
cient (equation of	static_friction	double	
motion)			
Dynamic friction	1: .: .: .:		
coefficient (equa-	kinetic_frictio	double	
tion of motion)	n		
Constant value of			
normal force (equa-	normal_reacti	double	
tion of motion)	on		
Radius from the nor-			
mal force acting	friction_radiu	double	* Rotation motion
point (equation of	s	double	
motion)			
Flag for allow elec-	flg_friction_fo		=0: Do not allow
tromagnetic force	rce	int	=1: Allow
(equation of motion)	ice		=1. Miow
Normal direction	direction_type	int	=0: Specify by Y-Axis or Coordinate
specified flag	direction_type	IIIt	=1: Specify by Vector
Coordinate Id (equa-	reaction_coor	int	
tion of motion)	dinate_id		
Normal direction	reaction_vecto		
with respect to the	r	double	
friction			
	flg_offcenter_		=0: Do not apply eccentricity
Eccentricity flag	analysis	int	=1: Apply eccentricity
Center of tilt of	model_slope_		Trippy coccionately
motion region [m]	origin	double	
Tilt axis of motion	model_slope_		
region	vector	double	
Tilt angle of motion			
region [deg]	model_slope	double	
Offset of motion	model_offcent	1 11	
region	er	double	Set when flag_offcenter_analysis=1
Tilt axis of rotation	axis_slope_vec	1 11	
axis	tor	double	Set when flag_offcenter_analysis=1
Tilt angle of rotation	. 1	1 11	
axis [deg]	axis_slope	double	Set when flag_offcenter_analysis=1

Item name	Parameter name	Туре	Description
Offset of rotation axis	axis_offcenter	double	

• Damper_in_Motion

In Damper in Motion, the items related to the damper of motion conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Relaxation factor	flg_function_t	int	=0: Constant
type	ype		=1: Point sequence
Attenuation con-	constant	double	When the expansion direction type is cir-
stant [N/(m/sec)]	constant		cumferential.

• Spring_in_Motion

In Spring in Motion, the items related to the spring of motion conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Spring constant type	flg_function_t	int	=0: Constant
	ype		=1: Point sequence
Spring constant [N/	constant	double	When the expansion direction type is cir-
m]	Constant	double	cumferential.

• Slide

In Slide, the item related to slide conditions is specified.

Item: None

• Spring in Motion

In Spring in Motion, the item related to the spring of motion conditions is specified.

Item: None

• ExternalField

In ExternalField, the items of external field conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
External field direction	axis_vector	double	* Specified for each component.
Magnetic flow den			=0: Point sequence
Magnetic flux density function type	function_type	int	=1: Sinusoidal function
			=2: Exponential function
Amplitude [T]	amplitude	double	Used for function_type = 1 or 2.
Frequency [Hz]	frequency	double	Used for function_type = 1.
Phase [deg]	phase	double	Used for function_type = 1.
Asymptotic value [T]	initial_value	double	Used for function_type = 2.
Time constant [sec]	time_constant	double	Used for function_type = 2.

• StressDistribution

In StressDistribution, the items related to stress distribution conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Setting method	type	int	=0: A structural analysis PLOT file is used.
Setting method	type	IIIt	=1: Specified for each material.
Method	coupling type	int	=0: One-way coupled analysis
Method	coupling_type	int	=1: Two-Way Coupled Analysis
File name of DS			
result to be refer-	ds_post_file	string	
enced			
Step ID for Abaqus			
result file for refer-	abaqus_step	string	
ence			
Unit of displacement			
for Abaqus result file	abaqus_unit	string	
for reference			

• TemperatureDistribution

Specify the item for the temperature distribution condition in the Temperature-Distribution block.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Coupling type	coupling_type	int	=0: One-way coupled analysis =1: Two-way coupled analysis
Result file name of thermal anal- ysis for referenc- ing	reference_post_f ile	string	

• Displacement

Specify the item for the displacement condition in the Displacement block.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Coupling type	coupling_type	int	=0: One-way coupled analysis
	coupinig_type	1110	=1: Two-way coupled analysis
Result file name			
of structural	reference_post_f	string	
analysis for ref-	ile	String	
erence			
Step ID for			
Abaqus result	abaqus_step	string	
file for reference			
Unit of dis-			
placement for	abaqus_unit	etring	
Abaqus result	abaqus_umt	string	
file for reference			

• PermanentMagnet

In PermanentMagnet, the magnetization direction of a permanent magnet is specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	

Item name	Parameter name	Туре	Description
			=0: Specified for each element.
			=1: Parallel or circular direction anisotropy
			=2: Radial anisotropy
			=3: Spherical anisotropy
			=4: Parallel pattern (circular direction)
Magnetization direc-		:	=5: Radial pattern (circular direction)
tion type	pattern_type	int	=6: Polar anisotropy pattern (circular direc-
			tion)
			=7: Axis direction pattern (circular direc-
			tion)
			=8: Parallel pattern (rectilinear)
			=9: Polar anisotropy pattern (rectilinear)
Counterturn of			=+1: Not reversed.
magnetizing prop-	magnetization	int	1 D 1
erty			=-1: Reversed.
Number of poles	num_pole	double	* Specified by 360 degrees.
Starting position	start position	daubla	
theta 0 [deg]	start_position	double	
Contar point [m]	shift_center_i	double	* Specified for each coordinate
Center point [m]	n_local	double	* Specified for each coordinate.
Angle from X-axis	angle_from_x	double	
[deg]	_axis	double	
Angle from Z-axis	angle_from_z	double	
[deg]	_axis	double	
Pitch [m]	pitch	double	
Starting position R	start_position	double	
[m]	start_position	double	
Angle from X-axis in	angle_from_lo		
direction of row of	cal_x_axis	double	
magnet [deg]	cai_x_axis		
Coordinate system	local_coordin	int	* Set to 0 when a coordinate system is not
ID	ate_id	1111	used.
A point on rotation	axis1	point	
criteria axis [m]	anisi	point	
Another point on	avis?	point	
rotation criteria axis	axis2	point	

Item name	Parameter name	Туре	Description
Third-component			
direction rotation	system_angle	double	
angle in whole coor-	system_angle	double	
dinate system [deg]			
Distance to center of			
cylindrical coordi-	distance_of_s	double	
nate system in each	ub_cylinder	double	
pole [m]			
Rising angle [deg]	range_start	double	
Decaying angle [deg]	range_end	double	
Skew flag	flg_use_skew	int	=0: Do not set skew
okew mag	ng_use_skew	IIIt	=1: Set skew
Magnet thickness	magnet_thick	double	
[m]	ness	double	
Skew amount [m] or	skew_value	double	
[deg]	skew_value	double	
Step skew flag	flg_use_stepsk	int	=0: Do not set step skew
	ew	1111	=1: Set step skew
Number of steps	step_number	double	

Anisotropy

In Anisotropy, the anisotropy of steel sheet materials is specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	

Item name	Parameter name	Туре	Description
Coordinate system-specified type	coordinate_ty pe	int	=1: Rectangular coordinate system (X direction: Rolling direction, Z direction: Lamination direction) =2: Cylindrical coordinate system (Theta-direction: Rolling direction, R direction: Lamination direction) =3: Angle from X-axis * Used for 2D analysis or axis symmetric analysis. =4: A user subroutine is used. =5: Cylindrical coordinate system (Z direction: Rolling direction, R direction: Lamination direction) =6: Cylindrical coordinate system (Theta-direction: Rolling direction, Z direction: Lamination direction) =7: Cylindrical coordinate system (R direction: Rolling direction, Z direction: Lamination direction) =8: Cylindrical coordinate system (R direction: Rolling direction, Theta-direction: Lamination direction) =9: Cylindrical coordinate system (Z direction: Rolling direction, Theta-direction: Lamination direction) Lamination direction, Theta-direction: Lamination direction, Theta-direction: Lamination direction, Theta-direction: Lamination direction)
Local coordinate system number	local_coordin ate_id	int	Positive number: Can be used for coordinate_type = 1 or 2. Negative number: Can be used for coordinate_type = 4. (Defined using a user subroutine.)
ID for user subroutine (Negative integer)	usub_number	int	Negative integer
Center point of cylindrical coordinate system [m]	shift_center_i n_local	double	
Angle from X-axis [deg]	angle_from_x _axis	double	* Can be used for 2D analysis or axis symmetric analysis.

• LineElementType

In LineElementType, the detailed data on a circuit component is specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
			=1: FEM coil
			=2: FEM conductor
			=3: User subroutine
			=11: Reference FEM conductor
			=12: Reference FEM coil
			=-1: Resistance (Constant value)
			=-2: Capacitor
			=-3: Coil
			=-4: Switch (Time, rotation, displacement,
			and step dependency)
	type		=-5: Diode
Circuit element type		int	=-6: Supply voltage
			=-7: Supply current
			=-8: Brush element
			=-9: Three-phase voltage source
			=-10: Three-phase current source
			=-11: Resistance (Voltage dependency)
			=-12: Resistance (Current dependency)
			=-13: Resistance (Time, rotation, displace-
			ment, and step dependency)
			=-14: Supply voltage (2 terminals)
			=-41: Switch (Voltage dependency)
			=-42: Switch (Current dependency)
FEM coil number	group_id	int	Can be used only for type = 1.
Resistance [ohm]	coil_resistance	double	Can be used only for type = 1.
Number of turns [Turn]	coil_turn	double	Can be used only for type = 1.
FEM conductor	L: a.c.m	:	Can be used only for z=== 2
number	group_id	int	Can be used only for type = 2.
User parameter	user_id	int	Can be used only for type = 3.

Item name	Parameter name	Туре	Description
Resistor or switch type	x_type	int	Available only when the component type is switch, voltage-dependent resistance, current-dependent resistance, voltage-dependent switch or current-dependent switch, 3-phase current source, or 3-phase voltage source. In the case of 3-phase current source, or 3-phase voltage source, can be used only for type = 1, 2, 3, 4, 5, 8. =1: Time =2: Rotation angle =3: Displacement of X-axis direction =4: Displacement of Y-axis direction =5: Displacement of Z-axis direction =6: Step number =8: Displacement in motion direction
Resistance value [ohm]	resistance	double	Can be used only for type = -1.
Initial resistance [ohm]	initial_resistan ce	double	Can be used only for type = -11 and -12.
Reference terminal 1	reference_ter minal_1	int	Can be used only for type = -11.
Reference terminal 2	reference_ter minal_2	int	Can be used only for type = -11.
Reference circuit component number	reference_line _element	int	Can be used only for type = -12 and -42.
Cyclic flag of point sequence	flag_cyclic	int	Can be used only for type = -4, -11, -12, -41, or -42 and for switch_function_type = 1. =0: Periodic =1: Not periodic
Capacitance [F]	capacitance	double	Can be used only for type = -2.
Inductance [H]	inductance	double	Can be used only for type = -3.
Initial open/close status	initial_onoff	int	Can be used only for type = -41 and -42.
Function type	switch_functi on_type	int	Can be used only for type = -4, -41, and - 42. =1: Point sequence =2: Parameter specification

Item name	Parameter name	Туре	Description
			Can be used only for type = -4, -41, or -42
Initial state	initial_switch	int	and for switch_function_type = 2.
Illitiai state	_onoff	IIIt	=0: OFF
,			=1: ON
1-cycle length ([sec] and [deg])	cycle_length	double	Can be used only for type = -4, -41, or -42 and for switch_function_type = 2.
First switch ([sec]	first sharps	double	Can be used only for type = -4, -41, or -42
and [deg])	first_change	double	and for switch_function_type = 2.
Second switch ([sec]	second_chang	double	Can be used only for type = -4 , -41 , or -42
and [deg])	e	double	and for switch_function_type = 2.
			Can be used only for type = -5.
Function type	diode_functio	int	=0: Point sequence
runction type	n_type	IIIt	=1: Logarithmic function, $V(t) = K \ln((Is +$
			I(t))/Is)
Coefficient K	k_value	double	Can be used only for type = -5 and
	K_varue	double	diode_function_type = 1.
Saturation current Is	saturation_cur	double	Can be used only for type = -5 and
[A]	rent	double	diode_function_type = 1.
Referenced initial			Can be used only for type = -5.
voltage [V]	initial_voltage	double	Used only in the first nonlinear iterative
			calculation of the first step.
Upper limit of	max_resistanc	double	Can be used only for type = -5.
impedance [ohm]	е		7 m y m y p
Lower limit of	min_resistanc	double	Can be used only for type = -5.
impedance [ohm]	е		, , , ,
Number of brush	num_poles	int	Can be used only for type = -8.
poles [deg]	1		* Even number of more than 2
Slit width of com-	commutator_s	double	Can be used only for type = -8.
mutator [deg]	lit_width	1 11	
Brush width [deg]	brush_width	double	Can be used only for type = -8.
Initial position [deg]	brush_positio n	double	Can be used only for type = -8.
Contact resistance of	brush_resistan		
brush and commuta-	ce	double	Can be used only for type = -8.
tor [ohm]			
Arc voltage usage	flg_arc_voltag	int	=0: Not used.
flag	е		=1: Used.
Arc voltage [V]	arc_voltage	double	

Item name	Parameter name	Туре	Description
Spark starting voltage [V]	arc_start_volt age	double	
Type of three-phase AC	phase_type	int	Can be used only for type = -9 or -10. =0: UVW is 0, 120, and 240 degrees. =1: UVW is 0, -120, and +120 degrees.
Amplitude	amplitude	double	For type = -9, the unit is [V]. For type = -10, the unit is [A].
Frequency [Hz]	frequency	double	Can be used only for type = -9 or -10.
Phase of U-phase [deg]	phase_u	double	Can be used only for type = -9 or -10.
ID of supply voltage	voltage_functi on_id	double	Can be used only for type = -14
Referenced FEM coil component or FEM conductor component	id_reference	int	Uses LineElementType Id of referenced FEM conductor for type = 11. Uses Line ElementTypeId of referenced FEM coil for type = 12
Periodicity	periodic	int	=1: Periodic =-1: Anti-periodic
Periodic angle [deg]	periodic_angl e	double	
Periodic distance [m]	stroke	double	
Resistance type	flg_resistance_ type	int	Used only when type = 1, -1, -11, -12, -13 =0: Constant =1: Temperature dependent resistance point sequence
Temperature type	flg_temperatu re_type	int	Used only when type = 1, -1, -11, -12, -13 =0: Constant =1: Time dependent temperature point sequence
Constant temperature [Celsius]	temperature	double	Constant Used only when type = 1, -1, -11, -12, -13
Thermal analysis average temperature calculation condi- tion ID to be refer- enced	average_temp erature_id	int	Used only when type = 1, -1, -11, -12, -13

Item name	Parameter name	Туре	Description
Thermal analysis JCF file for coupled analysis	reference_jcf_ file	string	Used only when type = 1, -1, -11, -12, -13
User-defined brush properties table (all brushes)	flg_use_brush _table	int	=0: Not use user-defined brush properties table=1: Use user-defined brush properties table
Settings for each brush	brush_setting _type	int	=0: Not use user-defined brush properties table=1: Use user-defined brush properties table
Brush width [deg] (each brush)	brush_width_ number	double	Enter the brush ID for "number".
Brush position [deg] (each brush)	brush_positio n_number	double	Enter the brush ID for "number".
Contact resistance between brush and commutator bar [ohm] (each brush)	brush_resistan ce_number	double	Enter the brush ID for "number".
Constant or point sequence (each brush)	flg_use_brush _table_numbe r	int	Enter the brush ID for "number". =0: Not use user-defined brush properties table =1: Use user-defined brush properties table
Number of brush divisions	brush_divide_ multiplier	int	

• VoltageFunction

In VoltageFunction, the supply voltage component of a circuit is specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Reference ID table	func_id_table	table	
X-axis type	x_type	int	=1: Time [sec]
			=2: Rotation angle [deg]
			=3: X-axis direction [m]
			=4: Y-axis direction [m]
			=5: Z-axis direction [m]
			=6: Step number
			=8: Displacement in motion direction

• VoltageFunctionDerive

In VoltageFunction, the detailed data on the supply voltage component of a circuit is specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
			=0: Point sequence
			=1: Sinusoidal function
			=2: Exponential function
			=3: Constant value
Function type	function_type	int	=4: Pulse
			=5: Rectangle wave function
			=6: Ground (0 V)
			=7: Cooperates with an external simulator.
			(Same in a function as function_type = 3.)
			=0: The start point of an effective range is
Start point flag	flg_effective_r	int	not specified.
Start point flag	ange_start	int	=1: The start point of an effective range is
			specified.
Start point (Unit	effective_rang	double	
example, [sec])	e_end	double	
	flg_effective_r ange_end	int	=0: The end point of an effective range is
End point flag			not specified.
End point mag			=1: The end point of an effective range is
			specified.
End point (Unit	effective_rang	double	
example, [sec])	e_start	uoubie	
Constant value [V]	constant_volt	double	Can be used only for function_type = 0 or
	age	doddie	6.
Amplitude [V]	amplitude	double	Can be used only for function_type = 1, 2,
	штртици	404010	4, or 5.
Frequency [Hz]	frequency	double	Can be used only for function_type = 1, 4,
	1		or 5.
Phase [deg]	phase	double	Can be used only for function_type = 1.
Delay [sec]	delay_length	double	Can be used only for function_type = 4.
Pulse width [sec]	palse_width	double	Can be used only for function_type = 4.
Rising phase [sec]	start_length	double	Can be used only for function_type = 4.
Decaying phase [sec]	end_length	double	Can be used only for function_type = 4.
Initial value [V]	initial_value	double	Can be used only for function_type = 2.
Time constant [sec]	time_constant	double	Can be used only for function_type = 2.

Item name	Parameter name	Туре	Description
Offset (Unit example, [sec])	offset_x	double	
Offset [V]	offset_voltage	double	
Point sequence peri-	flag_cyclic	int	=0: Periodic
odicity	mag_cyclic	1111	=1: Not periodic

• CurrentFunction

In CurrentFunction, the supply current component of a circuit is specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
X-axis type	x_type	int	=1: Time [sec]
			=2: Rotation angle [deg]
			=3: X-axis direction [m]
			=4: Y-axis direction [m]
			=5: Z-axis direction [m]
			=6: Step number
			=8: Displacement in motion direction

• CurrentFunctionDerive

In CurrentFunctionDerive, the detailed data on the supply current component of a circuit is specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
	function_type	int	=0: Point sequence
Function type			=1: Sinusoidal function
			=2: Exponential function
			=3: Constant value
			=4: Pulse
			=5: Rectangle wave function
			=6: Ground (0V)
			=7: Cooperates with an external simulator.
			(Same in a function as the constant value.)

Chapter B. JCF File Format (Magnetic Field Analysis)

Item name	Parameter name	Туре	Description
Start point flag	flg_effective_r ange_start	int	=0: The start point of an effective range is not specified.=1: The start point of an effective range is specified.
Start point (Unit example, [sec])	effective_rang e_end	double	
End point flag	flg_effective_r ange_end	int	=0: The end point of an effective range is not specified. =1: The end point of an effective range is specified.
End point (Unit example, [sec])	effective_rang e_start	double	
Constant value [A]	constant_volt age	double	Can be used only for function_type = 0 or 6.
Amplitude [A]	amplitude	double	Can be used only for function_type = 1, 2, 4, or 5.
Frequency [Hz]	frequency	double	Can be used only for function_type = 1, 4, or 5.
Phase [deg]	phase	double	Can be used only for function_type = 1.
Delay [sec]	delay_length	double	Can be used only for function_type = 4.
Pulse width [sec]	palse_width	double	Can be used only for function_type = 4.
Rising phase [sec]	start_length	double	Can be used only for function_type = 4.
Decaying phase [sec]	end_length	double	Can be used only for function_type = 4.
Initial value [A]	initial_value	double	Can be used only for function_type = 2.
Time constant [sec]	time_constant	double	Can be used only for function_type = 2.
Offset (Unit example, [sec])	offset_x	double	
Offset [A]	offset_voltage	double	
Cyclic flag of point	flag_cyclic	int	=0: Periodic
sequence	mag_cyclic	1111	=1: Not periodic

• Magnetization

In the Magnetization block, the settings for the magnetizing tool are specified.

Item name	Parameter name	Туре	Description
			=0: Do not magnetize =1: Magnetize
Magnetization flag	execute_with _magnetizati	int	=2: Run magnetization analysis (Designer 4.0)
Wagnetization hag	on	IIIt	=3: Use magnetized magnet (Designer 4.0)
			=4: Run magnetic field analysis with magnetized magnet (Designer 4.0)
Input file before magnetizing	input_file	string	
Input file after magnetizing	output_file	string	
Magnetization dur-	flg_analysis_		=0: Do not magnetize during calculation
ing calculation	with_magnet aization_gui	int	=1: Magnetize during calculation
Magnetization for	flg_exexute_		=0: Do not magnetize in the existing file
the existing file	existing_file _gui	int	=1: Magnetize in the existing file
Background	flg_backgrou	int	=0: Do not run in background
	nd_gui	1111	=1: Run in background
Status display	flg_show_sta	int	=0: Do not display the status
	tus_gui	1111	=1: Display the status

• MagnetizationDerive

In the MagnetizationDerive block, the parameters for the magnetizing tool are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
PLOT file to be referenced	reference_pl ot_file_path	string	* absolute path
Data type	data_type	int	=1: Flux density =2: Magnetization =6: Magnetic field

Item name	Parameter name	Туре	Description
Value to be used	flg_use_valu	int	=0: Step specified =1: Maximum value within the specified range
Specified step/Start step	start_step	int	Specified step when flg_use_value= 0 Start step when flg_use_value= 1
End step	end_step	int	
Magnetization type	data_type	int	=1: Complete magnetization =3: Incomplete magnetization (isotropic) =4: Incomplete magnetization (anisotropic) pic) =5: User definition
Point sequence type	flg_magnetiz ation_table	int	=0: Magnetizing ratio =1: Magnetizing ratio and recoil relative permeability
User definition	user_id	int	Negative integer
Transformation table	flg_move_fil e	int	=1: Do not use =3: Use
Maximum coersive force [A/m]	max_coerciv e_force	double	

• CoilInductance

In CoilInductance, a coil inductance tool is specified.

Item name	Parameter name	Type	Description
Condition ID	id	int	
Current function ID	current_func_ id	int	
Current value	current_value	double	
Saturation flag	flg_saturation	int	
Current value flag	flg_current	int	=0: Constant value
			=1: Offset value
Time enecified flag	flg_time	int	=0: Not specified.
Time-specified flag			=1: Specified.
Start time	start_time	double	
End time	end_time	double	

• SpeedDef

In SpeedDef, the item when executing the cooperation with a speed is specified. Item: None

• Part_in_PartialInductance

In Part_in_PartialInductance, the use of a magnetization program in a permanent magnet is specified.

Item name	Parameter name	Туре	Description
Conductor ID	id	int	
Name	tag	type	
Material ID	material_id	int	

• BusbarInductanceParametric

In BusbarInductanceParametric, the use of a brush component is specified.

Item name	Parameter name	Туре	Description
Name	tag	type	details
Minimum value of frequency	freq_min	double	
Maximum value of frequency	freq_max	double	
Number of frequency divisions	freq_division	int	
Frequency division method	freq_division_ type	int	=0: Equal division =1: Logarithmic division
Upper-limit usage flag of part distance	flg_part_dista nce	int	=0: Not used. =1: Used.
Upper limit of part distance [m]	part_distance _max	int	
Lower-limit usage flag of current value	flg_current	int	=0: Not used. =1: Used.
Lower limit of current value [%]	current_min	int	

• Ironloss

In Ironloss, the calculation of an iron loss is specified.

Item name	Parameter name	Туре	Description
Stress reference type	reference_stres s_type	int	=0: Stress not referenced. =1: Referenced PLOT file of structural analysis =2: Set for each material.
PLOT file of referenced structural analysis	reference_stres s_plot_file_pa th	string	
Absolute path of output PLOT file	output_file_p ath	string	
Absolute path of input PLOT file	reference_plot _file_path	string	
Setting of basic frequency	flg_basic_freq uency_setting _type	int	=1: Sets basic frequency based on the number of poles and rotations. =2: Sets basic frequency to the specified value.
Number of Poles	poles	int	
Revolution speed [rpm]	revolution_sp eed	double	
Basic frequency [Hz]	basic_frequen cy	double	
Type of hysteresis loss calculation	hysteresis_loss _calc_type	int	
Type of eddy current loss calculation	joule_loss_cal c_type	int	
Reference start step	start_reference _step	int	
Reference end step	end_reference _step	int	
Output flag of out- frequency ratio	flg_multiple_f requency	int	=0: Outputs results of both basic frequency and frequency ratio together (default setting). =1: Outputs only the result of basic frequency.
Output flag of the sum of loss in each step	flg_addition_s teps	int	=0: Not calculate the sum of loss for multiple steps specified in ST and FQ. =1: Calculates the sum of loss for multiple steps specified in ST and FQ.

Item name	Parameter name	Туре	Description
Result expanded by one cycle	cyclicity	int	
Motion	flg_motion	int	=0: Not allowed =1: Allowed
Absolute path of input PLOT file	solver_file_pat h	string	
Result conversion	flg_use_conve	int	=0: Do not convert to full model =1: Follow the result conversion flag for analysis control
User subroutine iron_str.cpp	flg_iron_str	int	=0: Do not use =1: Use
Name of user sub- routine dll	usrsub_name	string	

• Insulation

In Insulation, the items related to insulation conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	

• GapElement

In the GapElement block, the gap element conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Title	title	string	
Gap thickness [m]	thickness	double	

• Element_in_Subcycling

In Element in subcycling, the relationships between the component in the subcycling condition and each condition are set.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Component name	name	string	
	element_type	int	=1: R_FEM (resistance)
Component type			=2: L_FEM (inductance)
			=3: V_FEM (induced voltage)
			=4: SHAFT
Condition type	keyid	int	=1: FEM coil condition
			=2: Motion condition
			=3: Electromagnetic force and torque con-
			dition

• Parameters_in_Subcycling

In Parameters in Subcycling, the relationships between the magnetic field analysis component in the subcycling condition and each condition are set.

Item name	Parameter name	Туре	Description
Time unit of magnetic field analysis [sec]	dt	double	Flag to skip magnetic field analysis if the change is minimal
Flag for skipping magnetic field analy- sis if the charge is minimal	inductance_sk	int	=0: Not skip magnetic field analysis if the change is minimal =1: Skips magnetic field analysis if the change is minimal
Rated current [A]	rated_current	double	
Current threshold [%]	current_thres hold	double	
Motion type	motion_type	int	=1: Rotational motion =2: Translational motion
Displacement threshold	disp_threshol d	double	When motion_type=1, unit is [deg]. When motion_type=2, unit is [m]

• ExternalCircuitCouple

In ExternalCircuitCouple, the item of cooperation conditions with an external circuit simulator is specified.

Item name	Parameter name	Туре	Description
Element name	external_nam e	string	
Flag for using subcycling condition	flg_extermal	int	=0: Not use subcycling condition =1: Uses subcycling condition

• Psim_in_ExternalCircuitCouple

In Psim_in_ExternalCircuitCouple, the detailed data on the cooperation conditions with an external circuit simulator is specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Input/output flag	inout	int	=1: In
input/output nag	lilout	1111	=2: Out
			=10005: Motion conditions
			=10007: Calculation conditions of electro-
			magnetic force and torque
Conditional key ID	keyid	int	=12: Supply voltage components
			=13: Supply current components
			=19: Potential probe components
			=20: Current probe components
Terminal name	name	string	
Order number	order	int	
		int	=0: Circuit
			=1: x
Component	type		=2: y
			=3: z
			=4: theta
			=5: torque

• ThermalSourceCalculation

In the ThermalSourceCalculation block, the heat source is specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Condition name	condition_tit le	string	
Method	object_type	int	=0: Resistance component
- Trictifod	object_type		=1: FEM coil condition
Resistance compo-	resistor id	int	
nent ID	resistor_id	1111	
FEM coil condi-	form soil id	int	
tion ID	fem_coil_id	int	

• FrozenPermeability

Specifies an item for a frozen permeability condition in the FrozenPermeability block (JMAG-Designer only).

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Condition name	title	string	
Plot file for magnetic analy- sis result for ref- erence	plot_file	string	* Specify absolute path
Setting type for FP method	flg_setting_type _fp	int	 =1: Use permeability (μ) =2: Use B and Material curve =3: Use differential μ
Use average permeability flg_use_average _permeability	flg_use_average _permeability	int	Can be selected when the magnetic field analysis plot file that is referred is a transient response analysis =0: Do not use the average value =1: Use the average value
Average start step	start_step	int	Use when flg_use_average_permeability=1
Average end step	end_step	int	Use when flg_use_average_permeability=1

• PartialModel

In the PartialModel block, the partial model conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Condition name	title	string	
Rotational period-	flg_cyclic_m	int	=0: Do not use
icity	ap	IIIL	=1: Use
Mirror symmetry	flg_mirror_	int	=0: Do not use
williof symmetry	map	IIIL	=1: Use
Translational peri-	flg_translatio	int	=0: Do not use
odicity	n_map	IIIL	=1: Use
Rotational period angle	angle	double	Use when flg_cycle_map=1
Distance [m]	distance	double	Use when flg_translation_map=1
Number of copies	copy_numbe r	double	Use when flg_translation_map=1
A point on rotation axis	origin	double	
Direction vector	direction_ve	double	Use when flg_translation_map=1
Direction vector	ctor	double	* specified for each component
Rotational peri-	flg_rotation_		=0: Do not use
odic boundary	periodic_bo undary	int	=1: Use
Translational peri-	flg_translatio		=0: Do not use
odic boundary	n_periodic_ boundary	int	=1: Use

• CutPlaneAnalysis

In CutPlaneAnalysis, the detailed data on the cooperation conditions with an external circuit simulator is specified.

Item name	Parameter name	Туре	Description
Туре	type	int	=0: Treats a cut plane as 2D (axisymmetric model not included). =1: Treats a cut plane as axisymmetric.
Origin [m]	origin	point	type=0: A given point on the cut plane. type=1: A given point on the axis.
Normal vector on cut plane	normal_vector	point	Normal vector on the cut plane
Axis vector	axis_vector	point	type=0: No vector type=1: Axis vector

B-5. Setting Materials (material_data)

The items on the materials of magnetic field analysis are specified.

In the description below, there is an item in which a "number" is described in [Parameter name] as given in an example. The meaning of this number varies depending on the type of materials as described below.

- For isotropic magnetic material or isotropic electromagnetic steel sheet: Always 1
- For anisotropic electromagnetic steel sheet: 1 = Easy-axis direction, 2 = Hard-axis direction

Example:

Item name	Parameter name	Type	Description
Relative permeabil-	permeability_	com-	Can be used for flg_magnetic_property1 =
ity	Number	plex	1.

• Material

Item name	Parameter name	Туре	Description
Material ID	material_id	int	* A positive number and sequence number
	materiai_id	1111	are not necessarily required.
			=1: Air
			=2: Coil
			=3: Non-magnetic material
Material type	material_categ	int	=4: Isotropic magnetic material
wateriar type	ory	1110	=5: Magnet
			=6: Isotropic electromagnetic steel sheet
			=7: Anisotropic electromagnetic steel sheet
			=8: Anisotropic magnetic material
Gap element-speci-	flg_gap_eleme	int	=0: Not gap element
fied flag	nt	IIIt	=1: Gap element
Thickness of gap ele-	gap_size	double	(Valid only for element type ETYP = 7.)
ment [m]	gap_size	double	(valid only for element type LTTT = 7.)
Material result out-	flg_io_materia	int	=0: Not output.
put flag	1	IIIC	=1: Output.
			=1: Linear materials (Magnetizing proper-
			ties)
			=2: Nonlinear materials (H-B table)
			=3: Nonlinear materials (B-M table)
			=4: Nonlinear materials (B-r table)
			=5: Nonlinear materials (T-r table)
Magnetizing proper-			=7: Material database
ties to be referenced	flg_magnetic_		=10: Non-magnetic material (Relative per-
(Magnetizing prop-	property1	int	meability = 1.0)
erties of first-axis	property		=16: User subroutine (stress dependent)
direction)			=22: Nonlinear materials (temperature-
			dependent H-B table)
			= Negative integer: A user subroutine
			(magusr.f) is used.
			* The anisotropy below is valid only for
			IFLGM = 1, 2, and 7 (UserSteel only).
			Always 0 for except described

Item name	Parameter name	Туре	Description
Magnetizing properties of second-axis direction	flg_magnetic_ property2	int	 =0: Not used. (Same as isotropy and magnetizing properties to be referenced.) =1: Linear materials (Magnetizing properties) =2: Nonlinear materials (H-B table) =7: Material database (User Steel)
Magnetizing properties of third-axis direction	flg_magnetic_ property3	int	=0: Not used. (Same as isotropy and magnetizing properties to be referenced.) =1: Linear materials (Magnetizing properties) =2: Nonlinear materials (H-B table) =7: Material database (User Steel)
2D magnetizing property type	flg_2dimensio nal_magnetiza tion	int	=0: 2D magnetizing properties (Interpolated type) =1: 2D magnetizing properties (Simplified type)
Lamination type	flg_use_lamin ation_factor	int	=0: Not use a lamination factor. =1: Uses the lamination factor of a laminated steel sheet. (The second axis is the lamination direction.) =2: Uses the lamination factor of a laminated steel sheet. (The third axis is the lamination direction.)
First-axis electrical properties	flg_electric_pr operty1	int	=0: Electrical conductivity is constant. =2: Electrical conductivity is a temperature function. =3: Electrical properties are a super-conductor (bean model). =4: Electrical properties are a super-conductor (I-V model). =5: Electrical properties are a super-conductor (user-defined type in which usrsc.f is used). =10: Isolator (Electrical conductivity = 0.0) = Negative integer: A user subroutine (conusr.f) is used.

Chapter B. JCF File Format (Magnetic Field Analysis)

Item name	Parameter name	Туре	Description
Second-axis electrical properties	flg_electric_pr operty2	int	=0: Electrical conductivity is constant.=2: Electrical conductivity is a temperature function.
Third-axis electrical properties	flg_electric_ property3	int	=0: Electrical conductivity is constant.=2: Electrical conductivity is a temperature function.
Relative permeability (real part)	permeability_ number	double	Can be used for flg_magnetic_property1 = 1.
Relative permeability (imaginary part)	permeability_i maginary_nu mber	double	Can be used for flg_magnetic_property1 = 1.
Point sequence table number of magnetizing properties	mag_table_nu mber_gui	int	JMAG-Studio 8.12101 is added. (Exclusively used for Studio.)
Point sequence table name of magnetizing properties	mag_table_nu mber_name_g ui	string	JMAG-Studio 8.12101 is added. (Exclusively used for Studio.)

Item name	Parameter name	Туре	Description
Manufacturer flag	flg_material_s upplier_numb er	int	=1: Hitachi (former SSMC) =2: User steel sheet =3: User magnet =4: Shin-Etsu Chemical =5: Hitachi Metals =6: Nippon Steel =7: TDK =8: JMAG data (Linear magnetizing properties) =9: JMAG data (Ferrite system) =10: JMAG data (Permalloy system) =11: Hoganas AB =13: Daido Electronics =14: JFE Steel =15: Hitachi (both 1 and 5) =16: Daido Steel =17: Sumitomo Metal =18: MITSUBISHI STEEL =19: MITSUBISHI STEEL (Permendur) =20: Hitachi (Ferrite) =21: TDK (Ferrite) =22: China Steel =23: Tokyo Ferrite =24: Hitachi Metals (magnet) =25: JSOL (steel sheet) =26: JSOL (magnet) =27: JFE Ferrite
Material type	flg_supplier_ material_type _number	int	=28: VAC =1: Electromagnetic steel sheet (hb and hba files) =2: Magnet (hb and hbt files) =3: Magnet <any temperature=""> (hbp file) =4: Magnet <anti-magnetic demagnetization="" field="" only=""> (hbp file) =5: Magnet <anti-magnetic and="" demagnetization="" field="" thermal=""> (hbp file)</anti-magnetic></anti-magnetic></any>

Chapter B. JCF File Format (Magnetic Field Analysis)

Item name	Parameter name	Туре	Description
BH curve file name	bh_curve_file _name_numb er	string	(Relative path below database directory) (Extension.hbt when temperature dependency is provided.) (Extension.hba when anisotropy is provided.) (Extension.hbp when a demagnetization curve parameter is provided.) (Up to 80 characters)
Electrical conductivity [1/ohm*m]	conductivity_ number	double	Can be used for flg_electric_property_gui = 0.
Temperature dependent database-specified temperature	temperature_g ui_number	double	The temperature specified using temperature dependent database is output.
Relative permittivity	permittivity_n umber	double	Can be used for flg_electric_property_gui = 0. Default is 1. A value of more than 1 is limited.
Point sequence table number of tempera- ture dependent elec- trical conductivity	elec_table_nu mber_gui	int	
Point sequence table name of tempera- ture dependent elec- trical conductivity	elec_table_nu mber_name_g ui	string	
Initial electrical conductivity [1/ohm*m]	initial_conduc tivity	double	Can be used for flg_electric_property_gui = 3, 4, and 5.
Electrical conductivity [1/ohm*m]	conductivity_ max	double	Can be used for flg_electric_property_gui = 3, 4, and 5.
n value of I-V model	n_value	double	Can be used for flg_electric_property_gui = 4.
Critical current density [A/m ²]	critical_curren t_density	double	Can be used for flg_electric_property_gui = 3 and 4.

Item name	Parameter name	Туре	Description
Magnetic flux density dependent flag of critical current density	flag_jcb	int	Can be used for flg_electric_property_gui = 3 and 4. =0: Critical current density is linear. =1: Critical current density depends on the magnetic flux density (specify direction) =2: Critical current density depends on the magnetic flux density (absolute value).
Anisotropic flag of Superconductor properties	flag_aniso_co nductivity	int	=0: Electrical conductivity is isotropic. = Negative integer: A user subroutine (conusr) is used.
Point sequence table number of magnetic flux density depen- dent critical current density	jcb_table_gui	int	JMAG-Studio 8.12101 is added. (Exclusively used for Studio.)
Point sequence table name of magnetic flux density dependent critical current density	jcb_table_na me_gui	string	JMAG-Studio 8.12101 is added. (Exclusively used for Studio.)
Unit flag of electrical properties	flg_conductivi ty_unit	int	=0: Electrical conductivity [1/(ohm·m)] =1: Electric resistivity [ohm·m] Only electrical conductivity in JMAG-Studio 8.2 or former
Flag in consideration of eddy current	flg_use_cond uctivity	int	=0: Not generated. =1: Generated.
Flag to use material database value in electrical conductivity	flg_use_db_co nductivity	int	=0: Not use =1: Use
Insulation flag	Insulation	int	=0: Not insulate in the material surface =1: Insulate in the material surface
Temperature type	flg_temperatu re_function_t ype	int	=0: Point sequence =3: Constant value (Always set to IFLGT = 3 when a hbt file is used.)
Temperature (constant value)	temperature	double	

Item name	Parameter name	Туре	Description
Temperature point sequence table number	temperature_t able_gui	int	JMAG-Studio 8.12101 is added. (Exclusively used for Studio.)
Temperature point sequence table name	temperature_t able_name_gu i	string	JMAG-Studio 8.12101 is added. (Exclusively used for Studio.)
Magnet-related flag	flg_exist_mag net	int	=0: No magnet conditions >0: ID of magnet conditions (Memo) Compatible with the skipped number. (Memo) Compatible with the skipped number.
Magnetization program usage flag	flg_use_magn etization	int	=0: Not use. =1: Use.
Isotropy/Anisotropy of a magnet flag	flg_use_anisot ropic_magnet	int	=0: Isotropy =1: Anisotropy
Coercive force [A/m]	coercive_force	double	* Valid when the H-B curve is not a demagnetization curve (the second quadrant is not contained). Also valid when an H-B curve is not used. This is handled as coercive force during magnetization of 100% when a magnetization program is used.
Anisotropic conditional number	flg_anisotropy	int	=0: The anisotropy of a steel sheet is not considered or a global coordinate system is used. >0: Anisotropic ID of steel sheet
SIBC usage flag	flg_sibc	int	=0: SIBC conditions are not used. =1: SIBC conditions are used. Can be used only in frequency response analysis. Can be used only when electrical conductivity is isotropic and constant.
Lamination factor	lamination_fa	double	0.0 or more and 1.0 or less. Default is 1.0.
Saturation magnetization correction coefficient (%)	correct_magn etization_fact or	double	0.0 or more, default value 100.0
Residual magnetic flux density correc- tion coefficient (%)	correct_br_fac	double	0.0 or more, default value 100.0

Item name	Parameter name	Туре	Description
Coercive force correction coefficient (%)	correct_coerci veforce_factor	double	0.0 or more, default value 100.0
Local coordinate system number	local_coordin ate_id	int	
Flag to use database of mass density	flg_use_db_de nsity_gui	int	=0: Not use =1: Use
Initial stress for each material [MPa]	stress	double	
Material coordinate system number	ds_local_coor dinate_id	int	
Mass density [kg/m3]	mass_density	double	
Stress dependent user subroutine	usrstr_propert y_id	int	Material ID for using usrstr

■ Iron loss calculation material data

• IronlossMaterial

In IronlossMaterial, the materials used in the calculation of an iron loss are specified.

Item name	Parameter name	Туре	Description
Calculation target	flg_use_ironlo	int	=0: Not calculated
	ss	1110	=1: Calculated
			=1: A coefficient and multiplier are specified.
Loss-specified type	loss_type	int	=2: Database
			=3: Hysteresis loss and eddy current loss
			files
Calculation type	calc_type	int	=1: Calculated according to the size.
	care_type		=2: Calculated for each component.
Coordinate system ID	coordinate_id	int	
Tong of acondinate	d:		=0: Not used.
Type of coordinate	coordinate_ty	int	=1: Rectangular coordinate system
system	pe		=2: Cylindrical coordinate system
x-direction usage	use_x_compo	int	=0: Not used.
flag	nent	int	=1: Used.
y-direction usage	use_y_compo	int	=0: Not used.
flag	nent	IIIt	=1: Used.
z-direction usage flag	use_z_compo	int	=0: Not used.
z-direction usage mag	nent	IIIC	=1: Used.
x-direction coeffi- cient and multiplier- specified condi- tional number	coefficients_x	int	For loss_type = 1
y-direction coeffi- cient and multiplier- specified condi- tional number	coefficients_y	int	For loss_type = 1
z-direction coeffi- cient and multiplier- specified condi- tional number	coefficients_z	int	For loss_type = 1
x-direction material database	database_x	string	For loss_type = 2

Item name	Parameter name	Туре	Description
y-direction material database	database_y	string	For loss_type = 2
z-direction material database	database_z	string	For loss_type = 2
hysteresis loss file (each component)	hysteresis_loss _path_numbe r	string	For loss_type = 3 The numbers to be entered for "number" are 1= X component 2= Y component 3= Z component
eddy current loss file (each component)	joule_loss_pat h_number	string	For loss_type = 3 The numbers to be entered for "number" are 1= X component 2= Y component 3= Z component
Principal stress (III)[MPa]	principal_stres s_3	double	For loss_type = 3
α type	flg_alpha	int	=0: constant =1: specified using coefficient/multiplier file
α (when specifying the value)	alpha_value	double	
α (when using a loss file)	alpha_path_n umber	string	
β type	flg_beta	int	=0: constant =1: specified using coefficient/multiplier file
β (when specifying the value)	beta_value	double	
β (when using a loss file)	beta_path_nu mber	string	
γ type	flg_gamma	int	=0: constant =1: specified using coefficient/multiplier file
γ (when specifying the value)	gamma_value	double	
γ (when using a loss file)	gamma_path_ number	string	

Item name	Parameter name	Туре	Description
δ type	flg_delta	int	=0: constant =1: specified using coefficient/multiplier file
δ (when specifying the value)	delta_value	double	
δ (when using a loss file)	delta_path_nu mber	string	
Ke type	flg_Ke	int	=0: constant =1: specified using coefficient/multiplier file
Ke (when specifying the value)	Ke_value	double	
Ke (when using a loss file)	Ke_path_num ber	string	
Kh type	flg_Kh	int	=0: constant =1: specified using coefficient/multiplier file
Kh (when specifying the value)	Kh_value	double	
Kh (when using a loss file)	Kh_path_nu mber	string	
User subroutine iron_str.cpp (X direction)	flg_iron_str_x	int	=0: Do not use =1: Use
User subroutine material ID (X direction)	user_defined_ property_id_x	int	=0: Do not use =1: Use
User subroutine iron_str.cpp (Y direction)	flg_iron_str_y	int	=0: Do not use =1: Use
User subroutine material ID (Y direction)	user_defined_ property_id_y	int	=0: Do not use =1: Use
User subroutine iron_str.cpp (Z direction)	flg_iron_str_z	int	=0: Do not use =1: Use
User subroutine material ID (Z direc- tion)	user_defined_ property_id_z	int	=0: Do not use =1: Use

■ Magnetization analysis material data

	name	Type	Description
Reference magne- tizing properties	flg_demagne tization_pro perty1	int	=1: Linear material (magnetizing properties) =2: Nonlinear material (BH table) =7: Material database
ity used for magne- i	demagnetizat ion_permeab ility_number	com- plex	Used for linear magnetizing properties The numbers to be entered for "number" are: 1=X component 2=Y component 3=Z component
Manufacturer flag	flg_demagne tization_sup plier_numbe r	int	=1: Hitachi (former SSMC) =2: User steel sheet =3: User magnet =4: Shin-Etsu Chemical =5: Hitachi Metals =6: Nippon Steel =7: TDK =8: JMAG data (Linear magnetizing properties) =9: JMAG data (Permalloy system) =10: JMAG data (Permalloy system) =11: Hoganas AB =13: Daido Electronics =14: JFE Steel =15: Hitachi (both 1 and 5) =16: Daido Steel =17: Sumitomo Metal =18: MITSUBISHI STEEL =19: MITSUBISHI STEEL (Permendur) =20: Hitachi (Ferrite) =21: TDK (Ferrite) =22: China Steel =23: Tokyo Ferrite =24: Hitachi Metals (magnet) =25: JSOL (steel sheet) =26: JSOL (magnet) =27: JFE Ferrite =28: VAC

Item name	Parameter name	Туре	Description
Material type	flg_supplier_ demagnetizat ion_type_nu mber	int	The numbers to be entered for "number " are: 1=X component 2=Y component 3=Z component =1: Electromagnetic steel sheet (hb and hba files) =2: Magnet (hb and hbt files) =3: Magnet <any temperature=""> (hbp file) =4: Magnet <anti-magnetic demagnetization="" field="" only=""> (hbp file) =5: Magnet <anti-magnetic and="" demagnetization="" field="" thermal=""> (hbp file)</anti-magnetic></anti-magnetic></any>
Magnetization type	magnetizatio n_type	int	=1: Complete magnetization =3: Incomplete magnetization (isotropic) =4: Incomplete magnetization (anisotropic) =5: User definition
Data type to be referenced	reference_da ta_type	int	=1: Flux density =2: Magnetization =6: Magnetic field
Value to be used	flg_use_valu	int	=0: Specified step =1: Maximum value within the specified range
Specified step/Start step	start_step	int	Specified step when flg_use_value=0 Start step when flg_use_value=1
End step PLOT file to be referenced	end_step reference_pl ot_file_path	int	Used when flg_use_value=1 Path of referenced file
Data type to be referenced (magnetization)	reference_ori entation_typ e	int	=1: Flux density =2: Magnetization =6: Magnetic field
Value to be used (magnetization)	flg_use_valu e_orientatio n	int	=0: Specified step =1: Maximum value within the specified range
Specified step/Start step (magnetiza- tion)	start_step_or ientation	int	Specified step when flg_use_value_orientation=0 Start step when flg_use_value_orientation=1

Item name	Parameter name	Туре	Description
End step (magnetization)	end_step_ori entation	int	Used when flg_use_value_orientation=1
Point sequence type	flg_magnetiz ation_table	int	=0: Magnetizing ratio =1: Magnetizing ratio and recoil relative permeability
User definition	user_id	int	Negative integer
JCF file of magne- tized magnet to be referenced	reference_jcf _file_path	string	

Appendix C. PLOT File Format (Magnetic Field Analysis)

C-1. Analysis Control

Card 3

1-20

UNITOT

ilysis Cont	rol	
Card 1		
1-80	HED	Title
Card 2		
71-75	ID_SLV	Solver ID
		=0: 3D static analysis (ST (3D))
		=1: 3D frequency response analysis (FQ (3D))
		=2: 3D transient response analysis (TR (3D))
		=3: 2D transient response analysis (DP)
		=4: Axis symmetric transient response analysis (DP (AX))
		=5: Electric field analysis (EL)
		=6: Current distribution analysis (EL)
		=7: Charge distribution analysis (CH)
		=8: Thermal analysis (HT)
		=9: Electromagnetic wave frequency response analysis (WV)
		=10: Electromagnetic wave transient response analysis (TD)
		=11: 2D frequency response analysis (FQ (2D))
		=12: 2D axis symmetric frequency response analysis (FQ (AX))
		=13: 2D static analysis (ST (2D))
		=14: 2D axis symmetric static analysis (ST (AX))
76-80	IVER	Version number (81)

Unit for the result display

21-40 UNITIN Unit for the geometry data

41-80 UNITNM Unit label

C-2. Controlling PLOT File

Card 1

1-10 MAXPLT Division size of plot file (MByte)

C-3. Output Conversion of Model

Card 1

1-10 IMODEL Output flag for full model conversion

=0: Not convert

=1: Convert

11-20 ICOIL Flag for specifying height of FEM coil

=0: Height of FEM coil is the same as the

thickness of model

=1: Height of FEM coil differs from the

thickness of model

Card 2

1-20 DTHICK Thickness of model [m]

Note: Available only for 2D analysis.

Note: Not available for 3D analysis and axi-

ally-symmetric analysis.

21-40 VLNG Height of FEM coil [m]

Note: Available only for 2D analysis.

41-60 DIVMD Division multiplier

(Information on division created by dividers other than rotational periodic boundary.)

Example: For one-to-nth division model, the

output value is multiplied by n.

61-80 DDIVCY Status information on division created by

rotational periodic boundary

C-4. Parameter Conversion of Circuit

Ca	rd	1

1-10 NCMDL Conversion flag

=0: Partial model (Not convert to calculate)

=1: Full model

(Convert by using periodic boundary condition and division multiplier to calculate)

11-20 NN2 Connection status at the time of conversion

=0: Series

(Multiplier is applied to all calculation results

of voltage.)

=1: Parallel

Number of nodes

(Multiplier is applied to all calculation results of current passing through external circuit.)

Card 2

1-10

NUMNP

1-20 DIVCI Division multiplier

(Information on division created by dividers other than rotational periodic boundary.)

C-5. Coordinate Data

1-10	ID	Order ID
11-20	ID	Node ID
21-40	X	X-coordinate
41-60	Y	Y-coordinate
61-80	Z	Z-coordinate

C-6. Element Data

Ca	ard 1		
	1-8	NUMEL	Total elements
	9-20	MAXMAT	Number of material properties
Ca	ard 2		
	1-8	M	Element ID
	9-11	IEL(M)	Number of nodes
	12-14	MTYP(M)	Material ID
	15-16	ETYP(M)	Element type
			=1: Solid hexahedron element (first coordinate)
			=2: Solid hexahedron element (second coordinate)
			=3: Solid tetrahedron element (first coordinate)
			=4: Solid tetrahedron element (second coordinate)
			=5: Solid pentahedron element (first coordinate)
			=6: Solid pentahedron element (second coordinate)
			=7: Shell quadrilateral element (first coordinate)
			=8: Shell quadrilateral element (second coordinate)
			=9: Beam element (first coordinate)
			=10: Beam element (second coordinate)
			=11: Shell triangle element (first coordinate)
			=12: Shell triangle element (second coordinate)
			=13: Pyramid element (first coordinate)
			=14: Pyramid element (second coordinate)
	17-24	NOD(1,IEL)	Node ID (1)
	25-32	NOD(2,IEL)	Node ID (2)
	33-40	NOD(3,IEL)	Node ID (3)

Chapter C. PLOT File Format (Magnetic Field Analysis)

41-48	NOD(4,IEL)	Node ID (4)
49-56	NOD(5,IEL)	Node ID (5)
57-64	NOD(6,IEL)	Node ID (6)
65-72	NOD(7,IEL)	Node ID (7)
73-80	NOD(8,IEL)	Node ID (8)

C-7. Analysis Results

C-7-1. Control Data (ST, TR, DP)

1-80 CONTROL_DATA Header (2)

1-10 ISTEP Analysis step number

11-30 TIME Time

C-7-2. Control Data (FQ)

1-80 CONTROL_DATA Header (3)

1-10 ISTEP Analysis step number

11-30 FREQ Frequency

C-7-3. Displacement (Node Data)

1-80	DISPLACEMENT	Header ((10001)

1-10 MAXING Number of nodes with displacement

11-20 FLAG 0

21-40 CONV 0.0

1-10 I Order ID

11-20 ING(I) Node ID

21-40 DSPX(I) X-component of displacement

41-60 DSPY(I) Y-component of displacement

61-80 DSPY(I) Z-component of displacement

C-7-4. Vector Potential (Node Data) (DP)

1-80 VECTOR_POTENTIAL Header (11005)

1-10 MAXING Total nodes

11-20 FLAG 0

21-40 CONV 0.0

^{*} Repeat the following sequence up to the number of MAXING

 * Repeat the following sequence up to the number of MAXING

1-10	I	Order ID
11-20	ING(I)	Node ID
21-40	A(I)	X-component of vector potential
41-60	A(I)	Y-component of vector potential
61-80	A(I)	Z-component of vector potential

C-7-5. Vector Potential (Node Data) (DP)

1-80 VECTOR_POTENTIAL Header (14504)

1-10	MAXING	Total nodes
11-20	FLAG	0
21-40	CONV	0.0

* Repeat the following sequence up to the number of MAXING

1-10	I	Order ID
11-20	ING(I)	Node ID
21-40	A(I)	X-component of vector potential (real part)
41-60	A(I)	Y-component of vector potential (real part)
61-80	A(I)	Z-component of vector potential (real part)
81-100	A(I)	X-component of vector potential (imaginary part)
101-120) A(I)	Y-component of vector potential (imaginary part)
121-140) A(I)	Z-component of vector potential (imaginary part)

C-7-6. Magnetic Flux Density (Element Data) (ST, TR, DP)

1-80 MAGNETIC_FLUX_DENSITYHeader (16001)

1-10	NUM	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	BX(N)	X-component of magnetic flux density
41-60	BY(N)	Y-component of magnetic flux density
61-80	BZ(N)	Z-component of magnetic flux density

C-7-7. Magnetic Flux Density (Element Data) (FQ)

1-80 MAGNETIC_FLUX_DENSITYHeader (19501)

1-10	NUM	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	BX(N)	X-component of magnetic flux density (real part)
41-60	BY(N)	Y-component of magnetic flux density (real part)
61-80	BZ(N)	Z-component of magnetic flux density (real part)
81-100	BX_I(N)	X-component of magnetic flux density (imaginary part)
101-120	BY_I(N)	Y-component of magnetic flux density (imaginary part)
121-140	BZ_I(N)	Z-component of magnetic flux density (imaginary part)

C-7-8. Magnetization (Element Data) (ST, TR, DP)

1-80 MAGNETIZATION_VECTORHeader (16505)

1-10	NMAGV	Total number of evaluation elements

11-20 FLAG 0

21-40 CONV 0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	VMAGX(N)	X-component of magnetization
41-60	VMAGY(N)	Y-component of magnetization
61-80	VMAGZ(N)	Z-component of magnetization

C-7-9. Remanent Magnetic Flux Density (Element Data) (ST, TR, DP)

1-80 RESIDUAL_MAGNETIC_FLUX_DENSITYHeader (16514)

1-10	NUMBR2	Total	num	ber	of	eva	luation	ele	ements	

11-20 FLAG 0 21-40 CONV 0.0

1-10 I Order ID 11-20 N Element ID

21-40 BRVEC(N) Remanent magnetic flux density

^{*} Repeat the following sequence up to the total number of evaluation elements.

C-7-10. Magnetization (Element Data) (FQ)

1-80 MAGNETIZATION_VECTORHeader (19504)

1-10	NMAGV	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	VMAGX(N)	X-component of magnetization (real part)
41-60	VMAGY(N)	Y-component of magnetization (real part)
61-80	VMAGZ(N)	Z-component of magnetization (real part)
81-100	VMAGX_I(N)	X-component of magnetization (imaginary part)
101-120) VMAGY_I(N)	Y-component of magnetization (imaginary part)
121-140) VMAGZ_I(N)	Z-component of magnetization (imaginary part)

C-7-11. Magnetic Field (Element Data) (ST, TR, DP)

1-80 MAGNETIC_FIELD_VECTORHeader (16509)

1-10	NMAGV	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	HX(N)	X-component of magnetic field
41-60	HY(N)	Y-component of magnetic field
61-80	HZ(N)	Z-component of magnetic field

C-7-12. Magnetic Field (Element Data) (FQ)

1-80 MAGNETIC_FIELD _VECTOR Header (19508)

1-10	NMAGV	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	HX(N)	X-component of magnetic field (real part)
41-60	HY(N)	Y-component of magnetic field (real part)
61-80	HZ(N)	Z-component of magnetic field (real part)
81-100	HX_I(N)	X-component of magnetic field (imaginary part)
101-120) HY_I(N)	Y-component of magnetic field (imaginary part)
121-140) HZ_I(N)	Z-component of magnetic field (imaginary part)

C-7-13. Electric Field (Element Data) (FQ)

1-80	ELECTRIC_FIELD	Header (19505)
1-10	NUMEL2	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	EVEC(N)	X-component of electric field (real part)
41-60	EVEC(N)	Y-component of electric field (real part)
61-80	EVEC(N)	Z-component of electric field (real part)
81-100	EVEC(N)	X-component of electric field (imaginary part)
101-120	EVEC(N)	Y-component of electric field (imaginary part)
121-140	EVEC(N)	Z-component of electric field (imaginary part)

C-7-14. Current Density (Element Data) (ST, TR, DP)

1-80 EDDY_CURRENT_DENSITYHeader (16503)

1-10	NUMED	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	1	Order ID
11-20	N	Element ID
21-40	EDX(N)	X-component of current density
41-60	EDY(N)	Y-component of current density
61-80	EDZ(N)	Z-component of current density

C-7-15. Current Density (Element Data) (FQ)

1-80 EDDY_CURRENT_DENSITYHeader (19502)

1-10	NUMED	Number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

* Repeat the following sequence up to the number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	EDX(N)	X-component of current density (real part)
41-60	EDY(N)	Y-component of current density (real part)
61-80	EDZ(N)	Z-component of current density (real part)
81-100	EDX_I(N)	X-component of current density (imaginary part)
101-120	EDY_I(N)	Y-component of current density (imaginary part)
121-140	EDZ_I(N)	Z-component of current density (imaginary part)

C-7-16. Surface Current Density (Shell Element Data) (FQ)

1-80	EDDY	CURRENT	DENSITY	SHELLHeader	(19510)

1-10	NUMED3	Number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	EDDYF(N)	X-component of surface current density (real part)
41-60	EDDYF(N)	Y-component of surface current density (real part)
61-80	EDDYF(N)	Z-component of surface current density (real part)
81-100	EDDYF(N)	X-component of surface current density (imaginary part)
101-120	EDDYF(N)	Y-component of surface current density (imaginary part)
121-140	EDDYF(N)	Z-component of surface current density (imaginary part)

C-7-17. Line Current (Beam Element Data) (ST, TR, DP)

1-80	CURRENT	Header (16507)
1-10	NBEAMC	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	CURB(1,N)	X-component of line current
41-60	CURB(2,N)	Y-component of line current
61-80	CURB(3,N)	Z-component of line current

C-7-18. Line Current (Beam Element Data) (FQ)

1-80	CURRENT	Header (19507)
1-10	NBEAMC	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	CURB(1,N)	X-component of line current (real part)
41-60	CURB(2,N)	Y-component of line current (real part)
61-80	CURB(3,N)	Z-component of line current (real part)
81-100	CURB(1,N)	X-component of line current (imaginary part)
101-120	CURB(2,N)	Y-component of line current (imaginary part)
121-140	CURB(3,N)	Z-component of line current (imaginary part)

C-7-19. Hysteresis Loss (Element Data)

1-80	HYSS_LOSS	Header (6505)
1-10	NUMED	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	1	Order ID
11-20	N	Element ID
21-40	LOD(N)	Hysteresis loss density

C-7-20. Joule Loss Density and Joule Loss (Element Data)

1-80	CURRENT_LOSS	Header (7501)
1-10	NUMED	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order number
11-20	N	Element ID
21-40	LOD(N)	Joule loss density
41-60	LO(N)	Joule loss

C-7-21. Surface Joule Loss Density (Element Data)

1-80 CURRENT_LOSS_SHELLHeader (16515)

1-10	NUMLS3	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order number
11-20	N	Element ID

21-40 ELOSSF(N) Surface joule loss density

C-7-22. Nodal Force (Node Data)

1-80	NODAL_FORCE	Header (11501)
1-10	NUMF	Total number of electromagnetic force nodes
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of electromagnetic force nodes.

1-10	I	Order number
11-20	ISUF	Node ID
21-40	SXD(ISUF)	X-component of nodal force
41-60	SYD(ISUF)	Y-component of nodal force
61-80	SZD(ISUF)	Z-component of nodal force

C-7-23. Surface Force Density (Element Data)

1-80	SURFACE_FORCE	Header (16504)
1-10	NUMSUF	Total number of surface force elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the total number of elements.

1-10	I	Order number
11-20	ISUF	Surface force element ID
21-40	LXD(ISUF)	X-component of surface force density
41-60	LYD(ISUF)	Y-component of surface force density
61-80	LZD(ISUF)	Z-component of surface force density

C-7-24. Lorentz Force Density (Element Data)

1-80	LORENTZ_FORCE	Header (16502)
1-10	NUMSUF	Total number of Lorentz force elements
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the number of elements.

1-10	I	Order number
11-20	ISUF	Lorentz force element ID
21-40	LXD(ISUF)	X-component of Lorentz force density
41-60	LYD(ISUF)	Y-component of Lorentz force density
61-80	LZD(ISUF)	Z-component of Lorentz force density

C-7-25. Analysis Error (Element Data)

1-80	ERROR	Header (6503)
1-10	NUMERR	Total number of analysis error output ele-
		ments
11-20	FLAG	0
21-40	CONV	0.0

^{*} Repeat the following sequence up to the number of elements.

1-10	I	Order ID
11-20	IERR	Element ID
21-40	ERRH(IERR)	Error

C-7-26. Principal Stress (Element Data)

1-80	PRINCIPAL_STRESS	Header(16513)
1-10	NUMED	Total number of evaluation elements
11-20	FLAG	0
21-40	CONV	0.0

* Repeat the following sequence up to the total number of evaluation elements.

1-10	I	Order ID
11-20	N	Element ID
21-40	STRES (N)	Principal Stress(1)[Mpa]
41-60	STRES (N)	Principal Stress(2)[Mpa]
61-80	STRES (N)	Principal Stress(3)[Mpa]

C-7-27. Joule Loss (Step Data)

1-80 JOULE_LOSS_PER_GROUPHeader (501)

1-10	NUMAT	Number of material properties
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)

* Repeat the following sequence up to the number of material properties.

1-10	MATID	Material ID
11-30	TLOSS(IGL)	Loss
01.50	T.T. 1	

31-50 Unused

C-7-28. Hysteresis Loss (Step Data)

1-80	HYSTERESIS_LOSS	Header (551)
1-10	NUMHL	Total number of number of hysteresis loss calculation groups (Number of material properties + 1)
11-20	FLAG	Convert (1) Not Convert (0)
21-40	CONV	Conversion multiplier (double)

^{*} Repeat the following sequence up to the number of groups

1-10 MATID Material ID11-30 HLOSS(IGL) Hysteresis loss

(The content of the item at the NUMHL is the sum of hysteresis losses listed above.)

C-7-29. Electromagnetic Force and Torque (Step Data)

1-80	FORCE&TORQU	IE PER	GROUPHeader	(601)
1 00			GIO CI I Icadei	0011

1-10	NUMGT	Total number of electromagnetic force calcu-
		lation groups
11 20	ELAC	Convert (1) Not Convert (0)

11-20 FLAG Convert (1) Not Convert (0)
21-40 CONV Conversion multiplier (double)

^{*} Repeat the following sequence up to the number of groups

1-10	IGT	Group ID
11-30	FX(IGT)	X-component of electromagnetic force
31-50	FY(IGT)	Y-component of electromagnetic force
51-70	FZ(IGT)	Z-component of electromagnetic force
71-90	T (IGT)	Torque

C-7-30. Lorentz Force (Step Data)

1-80 LORENTZ_FORCE_PER_GROUPHeader (701)

1-10	NUMAT	Number of material properties
11-20	FLAG	Convert (1) Not Convert (0)
21-40	CONV	Conversion multiplier (double)

^{*} Repeat the following sequence up to the number of material properties.

1-10	MATID	Material ID
11-30	FLTZM(1)	X-component of lorentz force
31-50	FLTZM(2)	Y-component of lorentz force
51-70	FLTZM(3)	Z-component of lorentz force

C-7-31. Magnetic Flux (Step Data) (ST, TR, DP)

1-80	FLUX_GROUP	Header (901)
1-10	NGRPX	Total number of magnetic flux calculation groups
11-20	FLAG	Convert (1) Not Convert (0)
21-40	CONV	Conversion multiplier (double)

* Repeat the following sequence up to the number of groups

1-10 IGT Group ID

11-30 FLUX(IGT) Magnetic flux [Wb]

C-7-32. Magnetic Flux (Step Data) (FQ)

1-80	FLUX_GROUP_R	Header (18701)
1-10	NGRPX	Total number of magnetic flux calculation groups
11-20	FLAG	Convert (1) Not Convert (0)
21-40	CONV	Conversion multiplier (double)

* Repeat the following sequence up to the number of groups.

1-10	IGT	Group ID
11-30	FLUX(IGT)	Magnetic flux (real part) [Wb]
1-80	FLUX_GROUP_I	Header (18801)
1-10	NGRPX	Total number of magnetic flux calculation
		groups
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)

^{*} Repeat the following sequence up to the number of groups.

1-10 IGT Group ID

11-30 FLUX_I(IGT) Magnetic flux (imaginary part) [Wb]

C-7-33. Electric Potential (Step Data) (DP, TR)

1-80	TERMINAL	VOLTAGE	Header ((18001))

1-10	NUMVP	Total number of terminals
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)

^{*} Repeat the following sequence up to the number of terminals.

1-10 NP Terminal number11-30 AVEC(NP) Electric potential [V]

C-7-34. Electric Potential (Step Data) (FQ)

1-80 TERMINAL_VOLTAGE_RHeader (18001)

1-10	NUMVP	Total number of terminals
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)

^{*} Repeat the following sequence up to the number of terminals.

1-10	NP	Terminal number
11-30	AVEC(NP)	Electric potential (real part) [V]
1-80	TERMINAL_VOLTAGE	_IHeader (18051)
1-10	NUMVP	Total number of terminals
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)

^{*} Repeat the following sequence up to the number of terminals.

1-10 NP Terminal number

11-30A VEC_I(NP) Electric potential (imaginary part) [V]

C-7-35. Current (Step Data) (TR, DP)

1-80	LINE_CURRENT	Header (18101)

1-10 NUMVL Total number of line elements
 11-20 FLAG Convert(1)Not Convert(0)

21-40 CONV

Conversion multiplier (double)

* Repeat the following sequence up to the number of line elements.

1-10	IGT	Line element ID
11-30	CRTV(IGT)	Current [A]

C-7-36. Current (Step Data) (FQ)

1-80	LINE_CURRENT_R	Header (18101)
1-10	NUMVL	Total number of line elements
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)

* Repeat the following sequence up to the number of line elements.

1-10	IGT	Line element ID
11-30	CRTV(IGT)	Current (real part) [A]
1-80	LINE_CURRENT_I	Header (18151)
1-10	NUMVL	Total number of line elements
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)

^{*} Repeat the following sequence up to the number of line elements.

1-10 IGT Line element ID

11-30 CRTV_I(IGT) Current (imaginary part) [A]

C-7-37. Stored Energy (Step Data)

1-80	STORED_ENERGY	Header (801)
1-10	NUMAT+1	Number of material properties + 1
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)
* Repeat	the following sequence up t	to the number of material properties + 1.
1-10	MATID	Material ID
11-30	ENRGY	Energy

(The content of the item at the (NUMAT + 1) is the sum of energies listed above [J].)

C-7-38. ON/OFF Information of Circuit Component (Step Data)

1-80	LINE_ONOFF	Header (20001)
1-10	NUMVL	Total number of line elements
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)
* Repeat	the following sequence up	to the number of line elements.
1-10	IGT	Line element ID
11-20	ISWCH(IGT)	Open/close status of circuit
		=1: ON
		=0: OFF
		=-1: Always ON

C-7-39. Magnetic Flux in Current Condition (Step Data)

1-80

1-10	NGRPS	Total number of current conditions
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)

FLUX_of_Current_ControlHeader (60001)

* Repeat the following sequence up to the number of current conditions.

1-10	NP	Current condition number
11-30	FLUXC(NP)	Magnetic flux (real part) [Wb]

31-50 FLUXC(NP) Magnetic flux (imaginary part) [Wb]

Header (70001)

C-7-40. Magnetic Flux of FEM Coil (Step Data)

1-80

1-10	NGRPV	Total number of FEM coils
11-20	FLAG	Convert(1)Not Convert(0)

21-40 CONV Conversion multiplier (double)

1-10 NP FEM coil number

FLUX_of_FEM_Coil

11-30 FLUXV(NP) Magnetic flux (real part) [Wb]

31-50 FLUXV(NP) Magnetic flux (imaginary part) [Wb]

C-7-41. Current Value in Current Condition (Step Data)

1-80 CURRENT_of_Current_ControlHeader (80001)

1-10 NGRPS Total	l number of current conditions
------------------	--------------------------------

11-20 FLAG Convert(1)Not Convert(0)

21-40 CONV Conversion multiplier (double)

1-10 NP Current condition number

11-30 CURRC(NP) Current (real part) [A]

31-50 CURRC(NP) Current (imaginary part) [A]

^{*} Repeat the following sequence up to the number of FEM coils.

^{*} Repeat the following sequence up to the number of current conditions.

C-7-42. Current Value of FEM Coil (Step Data)

1-80 CURRENT_of_FEM_CoilHeader (90001)

1-10	NGRPV	Total number of FEM coils
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)

^{*} Repeat the following sequence up to the number of FEM coils.

1-10	NP	FEM coil number
11-30	CURRV(NP)	Current (real part) [A]
31-50	CURRC(NP)	Current (imaginary part) [A]

C-7-43. Total Distance (Step Data)

1-80	DISP_of_Motion	Header (110001)
1-10	MGRP	Number of motion conditions
11-20	FLAG	Convert(1)Not Convert(0)
21-40	CONV	Conversion multiplier (double)

^{*} Repeat the following sequence up to the number of motion conditions.

1-10	IGT	Group ID
11-30	FX(IGT)	X-axis direction transfer [m]
31-50	FY(IGT)	Y-axis direction transfer [m]
51-70	FZ(IGT)	Z-axis direction transfer [m]
71-90	T (IGT)	Rotation angle [deg]

C-7-44. Contact Angle of Brush and Commutator (Step Data)

1-80	Brush_Contact_Angle	Header (20002)
1-10	NUM	Combination of brush component and commutator component
11-20	FLAG	0
21-40	CONV	0.0

* Repeat the following sequence up to the number of combination of brush component and commutator component

1-10 ITERM1 Terminal ID of brush component

11-20 ITERM2 Terminal ID of commutator component

21-40 ZANG(ITERM1,ITERM2)Contact angle

THERMAL_SOURCE

C-7-45. Heat Source (Step Data)

1-80

1-10 NUM Total number of Heat Source conditions

Header (150013)

11-20 FLAG Convert(1) Not Convert(0)

21-40 CONV Conversion multiplier (double)

* Repeat the following sequence up to the number of Heat Source conditions.

0.0

1-10 NG Heat Source condition ID

11-30 CLSLC(NG) Heat source [W]

C-7-46. End of Step (Step Data)

21-40

1-80	End_of_Step	Header (999999)

1-10 N Always 1

11-20 FLAG 0

CONV

1-10 ISTEP Step number

Appendix D. JCF File Format (Thermal Analysis)

This chapter describes various parameters that can be edited using a JCF file.

D-1. Overview

A JCF file can be modified without starting JMAG by using a file access library.

▶▶ Reference

For more information about the editing tools, see P.1 "Chapter 15. Editing a JCF File (Simple FHI)".

Each parameter has a type when gaining access to a JCF file through a file access library. There are the following types.

- string means character line type
- int means integer type
- double means real number type
- *var* means variable type
- complex means complex number type
- *point* meams 3 component type configured from (x, y, z).

In gaining access to a JCF file, specify a parameter name in the function of a file access library and read or set the value.

The parameters of a JCF file are described on the next and later pages.

MEMO The items that cannot be edited in a JCF file are as follows:

- -Target (Element ID, etc.)
- -Type of item to be applied (Element face or nodal point, etc.)
- -Contents of point sequence data used under conditions or material characteristics

D-2. Block List

This chapter describes the following blocks.

Block name		Description
control_parameter	common	Controls parameters related to the entire
S	common	analysis.(P. 150)
	Control	Controls parameters for analysis control
	Control	(study properties).(P. 151)
	Step	Controls parameters for step control.(P. 152)
	/T D 1	Controls parameters for equivalent tem-
	TemperatureBoundary	perature boundary condition.(P. 153)
	HeatFlux	Controls parameters for heat flux
	Пеации	boundary condition.(P. 153)
	HeatTransfer	Controls parameters for heat transfer
	Ticat transier	boundary condition.(P. 153)
	HeatRadiation	Control parameters for radiation heat
	1 Icativadiation	transfer boundary condition.(P. 154)
	PeriodicBoundary	Controls parameters for periodic bound-
		ary condition.(P. 154)
	InitialTemperature	Controls parameters for initial tempera-
		ture condition.(P. 154)
condition_data	HeatGeneration	Controls parameters for heat source
	HeatMotion	condition.(P. 155)
		Controls parameters for motion condition.(P. 156)
	II F1 C1 1:	Controls parameters for heat flow con-
	HeatFlowCalculation	dition.(P. 157)
	ContactResistance	Controls parameters for thermal contact
	Contactivesistance	resistance.(P. 157)
	HeatCircuitTerminal	Controls parameters for terminal of
	Treat Gircuit Terminar	thermal circuit.(P. 157)
	 HeatCircuitElement	Controls parameters for component of
		thermal circuit.(P. 158)
	HeatCircuitElement-	Controls component type for thermal
	Type	circuit.(P. 158)
	AverageTemperature-	Controls parameter for average tempera-
	Calc	ture calculation condition.(P. 159)
	PartialModel	Controls parameters for partial model
-		condition.(P. 160)

Chapter D. JCF File Format (Thermal Analysis)

Block name		Description
material_data	MATERIAL	Controls parameters for material.(P. 161)

D-3. Basic Information of Analysis (control_parameters)

• common

In a common module, the item common to all analyses that are executed in JMAG is specified.

Item name	Parameter name	Туре	Description
Analysis name	title	string	
Version No. of JMAG	version	int	
Solver ID	Solver_id	int	=8: Thermal analysis (HT)
Unit label	unit_label	string	
Shape unit of data	unit_input	double	
Confirmation unit of result	unit_output	double	
Restart flag	restart	int	=0: Normal run
			=1: Restart
Split size of result file [Mbyte]	max_plot_size	int	
PLOT file output	Plot_mode	int	=0: ASCII PLOT file
mode	1 lot_mode	1111	=1: Binary PLOT file

D-4. Setting Conditions (condition_data)

• Control

In Control, the items of analytic control conditions are specified.

Item name	Parameter name	Туре	Description		
Analysis type	analysis_type	int	=0: Steady state analysis		
	unary 515_type	IIIt	=1: Transient state analysis		
Parameters for ICCG					
ICCG acceleration coefficient	iccg_accel	double			
ICCG convergence tolerance	iccg_tolerance	double			
Maximum number of ICCG iterations	iccg_max_itera tion	int			
Parameters for nonlinear	ar calculation				
Iterative tolerance of nonlinear calculation	max_tolerance	double			
Maximum number of nonlinear calculation iterations	max_iteration	int			
Parameters for coupled	analysis				
			=0: Usual		
Coupled analysis	coupling_type	int	=1: Two-way coupled analysis (with Magnetic field analysis/electromagnetic frequency response analysis)		
			=2: Two-way coupled analysis (Current distribution analysis)		
Parameters for restart					
Restart type	restart_type	int	=0: Normal run		
Testuri type	resurr_type	ınt	=1: Execution using restart file		
Parameters for output of	Parameters for output control				
Output flag of temper-	flg_io_tempera	int	=0: Output for each node.		
ature	ture	1111	=1: Not output.		
Output flag of heat	flg_io_heat_flu	int	=0: Output for each element.		
flux	X	IIIt	=1: Not output.		

Item name	Parameter name	Туре	Description	
Output flag of heat	flg_io_heat_ge		=0: Output for each element.	
source density	neration_densi ty	int	=1: Not output.	
Parameters for user su	broutine			
User subroutine Dll	usrsub_name	string		
Usage flag of subrou-	flg_usrstp	int	=0: Disables the usrstp.f option.	
tine "usrstp"			=1: Enables the usrstp.f option	
Usage flag of subrou-	flg_flgph	int	=0: Disables the flgph.f option.	
tine "flgph"	ng_ngpn	1111	=1: Enables the flgph.f option	
Usage flag of subrou-	flg_phase1	int	=0: Disables the phase1.f option.	
tine "phase1"	ng_pnase1	1111	=1: Enables the phase1.f option	
Usage flag of subrou-	flg_phase2	int	=0: Disables the phase2.f option.	
tine "phase2"	ng_pnasez	1111	=1: Enables the phase2.f option	
Usage flag of subrou-	flg_quser	int	=0: Disables the quser.f option.	
tine "quser"	ng_quoci	1111	=1: Enables the quser.f option	

int

int

=0: Output all steps

=2: Use output interval table

For output_timing_mode = 1

=1: Output from specified step to last step

• Step

Output interval type

First output step

In Step, the items for step conditions are specified.

output_timing_

output_timing_

start_step

mode

Item name	Parameter name	Туре	Description
Type	step_type	int	=1: Regular interval
Type	step_type	IIIt	=2: Point sequence
Initial value [sec]	start_time	double	* Can be used only for step_type = 1.
End point value [sec]	end_time	double	* Can be used only for step_type = 1.
Number of divisions	num_divisions	int	* Can be used only for step_type = 1.
Number of analysis steps	num_analysis_ step	int	

• TemperatureBoundary

In TemperatureBoundary, the items for temperature boundary are specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	
Temperature[Celsius]	temperature	double	
Туре	temperature_t ype	int	=0:Set fixed temperature
			=1:Set constant temperature
			=2:Use in the circuit

• HeatFlux

In HeatFlux, the items for heat flux boundary are specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	
Heat flux [W/m ²]	heat_flux_valu e	double	

• HeatTransfer

In HeatTransfer, the items for heat transfer boundary are specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	
Туре	heat_transfer_t ype	int	=0: Heat transfer coefficient is specified by point sequence
			=1: Heat transfer coefficient is constant
			=1:Uses user subroutine
Flag for using in the	flg_use_equiva	int	=0: Do not use in the circuit
circuit	lent_circut		=1: Use in the circuit
Heat transfer coefficient [W/m ² *Celsius]	heat_transfer_ coefficient	double	* Can be used only for heat_transfer_type=1.
Reference temperature [Celsius]	reference_tem perature	double	

• HeatRadiation

In HeatRadiation, the items for heat radiation boundary are specified.

Item name	Parameter name	Туре	Description
GroupID	id	int	
Туре	heat_radiation _type	int	=0: Heat radiation transfer coefficient is specified by point sequence
			=1: Heat radiation transfer coefficient is constant
			=-1:Uses user subroutine
Reference temperature [Celsius]	reference_tem perature	double	
Radiant parameter	heat_radiation _coefficient	double	* Can be used only for heat_radiation_type=1.

• PeriodicBoundary

In PeriodicBoundary, the items for periodic boundary are specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	
			=+1: Rotation periodicity
			=+2: Translational periodicity
Type	periodic_type	int	<0: Anti-periodic boundary
			=1: Rotation periodicity
			=-2: Translational periodicity
A point on rotation axis	origin	double	* Specified for each component.
Direction of rotation axis	axis_vector	double	* Specified for each component.
Periodic angle or distance	angle	double	Periodic angle for rotational periodicity [deg]
			Periodic distance for translational periodicity [m]

• InitialTemperature

In InitialTemperature, the items for initial temperature are specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	

Item name	Parameter name	Туре	Description
Initial temperature [Celsius]	initial_tempera ture	double	
Setting method	initial_tempera	int	=0: Initial temperature is constant
Setting method	ture_type	int	=1: htemp file loading

• HeatGeneration

In HeatGeneration, the items for heat source are specified.

Item name	Parameter name	Туре	Description
GroupID	id	int	
			=0: Heat source density is specified by point sequence
Туре	heat_generatio	int	=1: Total heat source is specified by point sequence
Турс	n_type	1110	=2: Heat source density (coupled analysis)
			=3: Heat source density is constant
			=4: Total heat source is constant
Coupling type	generation_co	int	=0: One-way
Coupling type	upling_type	1111	=1: Two-way
Heat source	thermal_sourc e_type	int	=0: Distribution
Ticat source		liit	=1: Total loss
Heat source condition ID	themal_source _calculation_id	int	
Referenced loss file	reference_loss _file	string	
Referenced JCF file	reference_jcf_f ile	string	
Mapping flag	flg_use_mappi	int	=0: Enables mapping
Mapping nag	ng		=1: Disables mapping
Flag for averaging	flg_use_avloss	int	=0: Averages Joule loss
Joule loss	ng_use_avioss	1111	=1: Not average Joule loss
Method for averaging	avloss_value_t	int	=0: Specifies step
Joule loss		1111	=1: Specifies time
Start step for averaging Joule loss	avloss_start_st ep	int	
End step for averaging Joule loss	avloss_end_ste p	int	

Item name	Parameter name	Туре	Description
Starting time specified for averaging Joule loss	avloss_start_ti me	double	
Termination time specified for averaging Joule loss	avloss_end_ti me	double	
Rotation average flag	flg_rotation_av erage	int	=0: Not average the rotation
Rotation average mag			=1:Averages the rotation
z min. value [m]	map_zmin	double	
z max. value [m]	map_zmax	double	
Cut plane position [m]	map_section_p osition	double	* For 2D model
Cut plane position [deg]	map_section_a ngle	double	* For axisymmetric model
Heat source density [W/m³] Total heat source [W]	heat_generatio n	double	* Heat source density when heat_generation_type=3 * Total heat source when heat_generation_type=4

• HeatMotion

The HeatMotion block specifies each setting for the motion condition.

Item name	Parameter name	Туре	Description
Group ID	id	int	
A point on rotation axis	origin	double	* Specified for each component.
Direction of rotation axis	axis_vector	double	* Specified for each component.
Automatic time step	time_step_type	int	=0: Automatic
Motion flag	flg_motion_typ	int	=0: Rotation motion
Motion hag			=1: Translation motion
Displacement flag	flg_displaceme	int	=0: Without node displaced
Displacement mag	nt_type	1111	=1: With node displaced
Method for specifying	flg_velocity_ty	int	=0: Constant
Method for specifying	pe		=1: Point sequence
Flag of rotation speed	flg_rotational_	int	=0: rps
unit	velocity_unit	1111	=1: rpm

• HeatFlowCalculation

In HeatFlowCalculation, ID of the heat flux calculation is specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	
Direction	flg_direction	int	=1: The outflow direction is positive.
	ng_direction	int	=1: The inflow direction is positive.

• ContactResistance

In ContactResistance, the items for contact thermal resistance are specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	
Туре	contact_therm al_resistance_t ype	int	=0: Constant =1: Temperature table =2: Time table
Thermal resistance[Celsius/w]	contact_therm al_resistance	double	Available when contact_thermal_resistance_type=0

• HeatCircuit

In HeatCircuit, the IDs of components and terminals used on the equivalent circuit are specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	

• HeatCircuitTerminal

In HeatCircuitTerminal, the items for the terminal on the heat equivalent circuit are specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	
Initial temperature [Celsius]	initial_tempera ture	double	

• HeatCircuitElement

In HeatCircuitElement, the items for the component on the heat equivalent circuit are specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	
Referenced component type ID	type_id	double	Referenced element-type id

• HeatCircuitElementType

In HeatCircuitElementType, items for the component type on the heat equivalent circuit are specified.

Item name	Parameter name	Туре	Description
Group ID	id	int	
			=1: Thermal resistance
			=2: Heat capacitor
			=3: Heat source
Component type	type	int	=4: Heat transfer
			=5: Fixed temperature
			=6: FEM fixed temperature condition reference
			=7: FEM heat transfer condition reference
			When type=1
Thermal resistance	thermal_resist ance_type	int	=0: Constant
type			=1: Temperature dependency
			=2: Time dependency
Thermal resistance [Celsius/W]	thermal_resist ance	double	When thermal_resistance_type=1
			When type=2
Heat capacity type	heat_capacity_		=0: Constant
freat capacity type	type	int	=1: Temperature dependency
			=2: Time dependency
Heat capacity [J/Celsius]	heat_capacity	double	When heat_capacity_type=1
ш			When type=3
	heat_generatio n_type	int	=0: Constant
Heat source type			=1: Temperature dependency
			=2: Time dependency

Item name	Parameter name	Туре	Description
Heat source [W]	heat_generatio n	double	When heat_generation_type=1
			When type=4
Heat transfer coeffi-	heat_transfer_ coefficient_typ	int	=0: Constant
cient type	e e	1111	=1: Temperature dependency
			=2: Time dependency
Heat transfer coefficient [W/Celsius]	heat_transfer_ coefficient	double	When heat_transfer_coefficient=1
	reference_tem perature_type		When type=4
Reference tempera-		double	=0: Constant
ture type			=1: Temperature dependency
			=2: Time dependency
Reference temperature [Celsius]	reference_tem perature	double	When reference_temperature=1
		int	When type=5
Fixed temperature	temperature_t		=0: Constant
type	ype		=1: Temperature dependency
			=2: Time dependency
Temperature (fixed) [Celsius]	temperature	double	When temperature_type=1/ when type=4
Reference condition ID	reference_con dition_id	int	When reference condition ID type=6 or 7

• AverageTemperatureCalc

In AverageTemperatureCalc block, the average temperature calculation conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Condition name	condition_title	string	

• PartialModel

In PartialModel block, the partial model conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Condition name	title	string	
Rotational periodic- ity flag	flg_cyclic_ma p	int	=0: Not use =1: Use
Mirror symmetry flag	flg_mirror_m ap	int	=0: Not use =1: Use
Translational periodicity flag	flg_translation _map	int	=0: Not use =1: Use
Rotational period angle	angle	double	Use when flg_cycle_map=1
Distance [m]	distance	double	Use when flg_translation_map=1
Number of copies	copy_number	double	Use when flg_translation_map=1
A point on rotation axis	origin	double	
Direction vector	direction_vect or	double	Use when flg_translation_map=1 *specifies for each component
Use rotational peri-	flg_rotation_p	_	=0: Not use
odic boundary	eriodic_bound ary	int	=1: Use
Use translational	flg_translation		=0: Not use
periodic boundary	_periodic_bou int ndary	=1: Use	

D-5. Setting Materials (material_data)

• MATERIAL

The materials for the thermal analysis are specified.

Item name	Parameter name	Туре	Description
Material ID	material_id	int	* Positive number
	thermal_condu		=1: Linear
Thermal conductivity type	ctivity_propert	int	=2: Nonlinear
	y_type		=-1: User subroutine ucond
	i-G - 1t		=1: Linear
Specific heat type	specific_heat_p roperty_type	int	=2: Nonlinear
			=-1:User subroutine uspeci
Material result output	flg_io_material	int	=0: Not output.
flag	ng_io_material	IIIt	=1: Output.
Gap element-speci-	flg_gap_eleme	int	=0: Not gap element
fied flag	nt	IIIt	=1: Gap element
Endotherm flag	flg_endotherm	int	=0: Ignores parameters of endotherm
	ic	1111	=1: Includes endotherm
Exclude the material	flg_exclusive	int	=0: Use the material in analysis
from analysis			=1: Not use the material in analysis
Density [kg/m ³]	density	double	
	_		=1: Constant
Density type	density_proper ty_type	int	=2: Table
	9, <u>_</u> 9,p		=1: User subroutine udnsty
Thermal conductivity [W/m•Celsius]	thermal_condu ctivity	double	
Specificheat [J/kg•Celsius]	specific_heat	double	
Endotherm coefficient [W/m ³ •-Celsius]	endothermic_c oefficient	double	
Equilibrium body temperature [Celsius]	equilibrium_te mperature	double	_

Appendix E. PLOT File Format (Thermal Analysis)

E-1. Analysis Control

Card 1		
1-80	HED	Title
Card 2		
1-5	Unused	
6-10	Unused	
11-1	5 Unused	
16-2	0 ITYPE	Coupled with thermal analysis
21-2	5 Unused	
26-3	0 Unused	
31-3	5 Unused	
36-4	0 Unused	
41-4	5 Unused	
46-5	0 Unused	
51-5	5 Unused	
56-6	0 Unused	
61-6	5 Unused	
66-7	0 Unused	
71-7	5 ID_SLV	Solver ID
		=0: 3D static analysis (ST (3D))
		=1: 3D frequency response analysis (FQ (3D))
		=2: 3D transient response analysis (TR (3D))
		=3: 2D magnetic field analysis (DP (2D))
		=4: Axis symmetric analysis (DP (AX))
		=5: Electric field analysis (EL)
		=6: Current distribution analysis (EL)
		=7: Charge distribution analysis (CH)
		=8: Thermal analysis (HT)

		=9: Electromagnetic wave Frequency response analysis (WV)		
		=10: Electromagnetic wave transient response analysis (TD)		
75-80	IVER	Version number (= 81)		
Card 3				
1-5	ITRAN	Analysis type		
6-10	NSTEP	Number of analysis steps		
11-15	Unused			
16-20	NEWTON	Nonlinear iteration number		
21-30	EPSITE	Nonlinear iterative convergence tolerance		
31-35	Unused			
36-40	Unused			
41-45	Unused			
46-50	Unused			
51-55	Unused			
56-65	ТНЕТА	Time increment parameter for transient analysis		
66-75	Unused			
76-80	Unused			
Card 4				
1-20	UNITOT	Unit of result verification		
21-40	UNITIN	Unit of shape data		
41-80	UNITNM	Unit label		

E-2. Control Output Items

Card 1

1-10 N_CNT2 Number of lines included in the control card

2

Card 2

1-10 ACCEL Accel parameter for ICCG

11-20 EPSPCG Tolerance for ICCG

21-30 MAXPCG Max iteration for ICCG

Card 3

1-20 PCGMAX Unused 21-30 MICGRS Unused

Card 4

Set the flag to 1 for output, and to 0 for disabling output

1-5 IO_T Temperature (node data) output flag
6-10 IO_FLX Heat flux (element data) output flag

11-15 IO_HGN Heat source density (element data) output

flag

E-3. Control Variables for Mesh Generator

Card 1

1-10 NLINE Number of lines

Card 2

1-10 MG_ON Mesh generation execution flag

11-20 IBC_XY Boundary condition flag for XY-plane
 21-30 IBC_YZ Boundary condition flag for YZ-plane

31-40 IBC_ZX Boundary condition flag for ZX-plane

E-4. Step Interval Control

Card 1

1-10 NSTPTP Unused11-20 NSTPFG Unused

Card 2

1-10 NSTBL Unused 11-20 TBLID Unused

E-5. Control Output Interval

Card 1

1-10 N_OUT Number of output interval control data of

analysis results

Card 2

1-10 N Order number

11-20 N_END(N) Output interval control end step
21-30 N_STP(N) Output interval up to time N

E-6. Coordinate Data

1-10 NUMNP Number of nodes

1-10 ID Order number

11-20 ID Node ID

21-40 X X-coordinate 41-60 Y Y-coordinate

41-00 1 1-coordinate

61-80 Z Z-coordinate

E-7. Element Data

Card 1		
1-8	NUMEL	Total elements
9-10	MAXNOD	Maximum number of nodes within element
11-15	NINT	Integral point
Card 2		
1-8	M	Element ID
9-11	IEL(M)	Total nodes
12-14	MTYP(M)	Material ID
15-16	ETYP(M)	Element type
		=1: Solid hexahedron element (first coordi-
		nate)
		=2: Solid hexahedron element (second coordinate)
		=3: Solid tetrahedron element (first coordinate)
		=4: Solid tetrahedron element (second coor-
		dinate)
		=5: Solid pentahedron element (first coordinate)
		=6: Solid pentahedron element (second coordinate)
		=7: Shell element (first coordinate)
		=8: Shell element (second coordinate)
		=9: Beam element (first coordinate)
		=10: Beam element (second coordinate)
17-24	NOD(1,IEL)	Node ID (1)
25-32	NOD (2,IEL)	Node ID (2)
33-40	NOD(3,IEL)	Node ID (3)
41-48	NOD(4,IEL)	Node ID (4)
49-56	NOD(5,IEL)	Node ID (5)
57-64	NOD(6,IEL)	Node ID (6)
65-72	NOD(7,IEL)	Node ID (7)
73-80	NOD (8,IEL)	Node ID (8)

E-8. Analysis Results

E-8-1. Control Data

Card 1

1-80 CONTROL_DATA Header(2)

Card 2

1-10 ISTEP Analysis step number

11-30 TIME Time

E-8-2. Displacement (Node Data)

(If there is translation)

Card 1

1-80 DISPLACEMENT Header (10001)

Card 2

1-10 NUMD Number of nodes with displacement

Card 3 (Repeat NUMD times hereinafter)

1-10 I Order ID

11-20 NP(I) Node ID

21-40 DSPX(I) X-component of displacement

41-60 DSPY(I) Y-component of displacement

61-80 DSPY(I) Z-component of displacement

E-8-3. Temperature Distribution (Node Data)

Output, if ID_SLV = 8 and IO_T =1

Card 1

1-80 NODAL_TEMP Header(2501)

Card 2

1-10 NO_NP Number of nodes which temperature distri-

bution is to be output

Card 3 (* Repeat the NO NP)

1-10 I Order number

11-20 N Node ID

21-40 T (N) Temperature of the Nth node

E-8-4. Heat Flux Vector (Element Data)

Output, if ID_SLV = 4 and IO_FLX =1

Card 1

1-80 HEAT_FLUX Header (16506)

Card 2

1-10 NO EL Number of elements which heat flux vector is

to be output

Card 3 (* Repeat the NO_EL)

1-10 I Order number

11-20 N Element ID

21-40 E(1,N) X-component of heat-flux vector in the Nth

element

41-60 E(2,N) Y-component of heat-flux vector in the Nth

element

61-80 E(3,N) Z-component of heat-flux vector in the Nth

element

E-8-5. Heat Flow (Step Data)

Card 1

1-80 HEAT_FLOW Header (150001)

Card 2

1-10 NGFLW Number of groups which heat flow is to be

output

Card 3 (* Repeat the NO_EL)

1-10 I Order number

1-30 F(I) Heat flow of the Ith group

E-8-6. Heat Source Density

Output, if ID_SLV = 8 and IO_HGN =1

Card 1

1-80 HEAT_GENERATION_DENSITYHeader (150002)

Card 2

1-10 NEHGN Number of elements which heat source den-

sity to be output

Card 3 (* Repeat the NEHGN)

1-10 I Order ID 11-20 N Element ID

21-40 HGN(N) Heat source density in the Nth element

E-8-7. Amount of Heat Source

Card 1

1-80 TOTAL_HEAT_GENERATIONHeader (150003)

Card 2

1-10 NGHGN Number of groups which amount of heat

source is to be output

Card 3 (* Repeat the NEHGN)

1-10 I Order ID

11-30 TTHGN(I) Amount of heat source in the Ith element

E-8-8. Average Temperature (Step Data)

Card 1

1-80 AVERAGE_TEMPERATUREHeader (150004)

Card 2

1-10 NGTMP Number of groups which average tempera-

ture is to be output

Card 3 (* Repeat the NGTMP)

1-10 I Order ID

11-30 AVTMP(I) Average temperature of the Ith group

E-8-9. Terminal Temperature (Step Data)

Card 1

1-80 TERMINAL_TEMPERATUREHeader (150005)

Card 2

1-10 NTTMP Number of terminals which terminal temper-

ature is to be output

Card 3 (* Repeat the NTTMP)

1-10 I Order ID

11-30 TRTMP(I) Temperature of the Ith terminal

E-8-10. Total Displacement (Step Data)

1-80 *DISP_of_Motion Header(110001)

1-10 NGRPM Number of motion condition

* The following repeats the number of motion conditions

1-10 IGT Group ID

11-30 FX(IGT) Displacement of X direction [m]
 31-50 FY(IGT) Displacement of Y direction [m]
 51-70 FZ(IGT) Displacement of Z direction [m]

71-90 T(IGT) Rotation angle [deg]

Appendix F. JCF File Format (Electric Field Analysis)

This chapter describes various parameters that can be edited using a JCF file.

F-1. Overview

A JCF file can be modified without starting JMAG by using a file access library.

▶▶ Reference

For more information about the editing tools, see P.1 "Chapter 15. Editing a JCF File (Simple FHI)".

Each parameter has a type when gaining access to a JCF file through a file access library. There are the following types.

- string means character line type
- int means integer type
- double means real number type
- *var* means variable type
- complex means complex number type
- *point* meams 3 component type configured from (x, y, z).

In gaining access to a JCF file, specify a parameter name in the function of a file access library and read or set the value.

The parameters of a JCF file are described on the next and later pages.

MEMO The items that cannot be edited in a JCF file are as follows:

- -Target (Element ID, etc.)
- -Type of item to be applied (Element face or nodal point, etc.)
- -Contents of point sequence data used under conditions or material characteristics

F-2. Block List

This chapter describes the following blocks.

Blo	ock name	Description
control_parameter	common	Controls parameters related to the entire
S	common	analysis.(P. 175)
	Control	Controls parameters for analysis control
	Control	(study properties).(P. 176)
	Step	Controls parameters for step control or
	экер	frequency control.(P. 177)
	ElectricPotential	Controls parameters for electric poten-
	Electrici otentiai	tial boundary condition.(P. 178)
	ElectricField	Controls parameters for electric field
	Electriciteid	boundary condition.(P. 178)
	CumantDansitu	Controls parameters for current density
	CurrentDensity	boundary condition.(P. 178)
	Cyclic Poundomy	Controls parameters for periodic bound-
	CyclicBoundary	ary condition.(P. 179)
	ForceCalculation	Controls parameters for force condi-
	ForceCalculation	tion.(P. 179)
	ElectricChargeCalcula-	Controls parameters for surface charge
condition_data	tion	distribution condition.(P. 179)
condition_data	CurrentCalculation	Controls parameters for current condi-
	CurrentCalculation	tion.(P. 180)
	El. ani Chama E.	Controls parameters for face charge con-
	ElectricChargeFace	dition.(P. 180)
	ElectricChargeVolume	Controls parameters for volume charge
	ElectricCharge volume	condition.(P. 180)
	TemperatureDistribu-	Controls parameters for temperature
	tion	distribution condition.
	Conductor	Controls parameters for conductor con-
	Conductor	dition.(P. 181)
	Insulation	Controls parameters for insulation con-
	Illsulation	dition.(P. 181)
	InitialParticle	Controls parameters for initial particle
	IIIIIIIII AI LICIC	density condition.(P. 181)
	TransitionMatrix	Controls parameters for transition coef-
	Transmonivianix	ficient matrix condition.(P. 181)
material_data	MATERIAL	Controls parameters for material.

F-3. Basic Information of Analysis (control_parameters)

• common

The settings that are related to all the analysis types in JMAG are specified.

Item name	Parameter name	Туре	Description
Analysis name	title	string	
JMAG version	version	int	
number	Version	1110	
			=5: Electric field analysis (Static analysis) (EL) =6: Electric field analysis (Static analysis)
Solver ID	solver_id	int	(EL)
			=51: Electric field analysis (Frequency response analysis) (EL)
Unit label	unit_label	string	
Shape unit of data	unit_input	double	
Confirmation unit of result	unit_output	double	
Dastant flag		:	=0: Restart normally
Restart flag	restart	int	=1: Restart
ID of ilnked CAD data	cad_data_gu id	string	
Bus for linked CAD data	cad_linkage_ path	string	Full path
			=SolidWorks
Type of linked	cad_name	string	=CATIA V5 (JMAG-Designer only)
CAD software	cad_name	string	=Pro/E (JMAG-Designer only)
			=NX (JMAG-Designer only)
Healing during	flg_healing_f	int	=0: Healing does not occur during linkage
linkage	or_cadlink	IIIt	=1: Healing occurs during linkage
Partition size for PLOT file [MByte]	max_plot_si ze	int	
Export mode for PLOT file	plot_mode	int	=0: Ascii PLOT file =1: Binary PLOT file
Update for Study	study_checks um	string	(JMAG-Designer only)
Study Title	study_title	string	(JMAG-Designer only)
UUID for Study	study_uuid	string	(JMAG-Designer only)

F-4. Setting Conditions (condition_data)

• Control

The settings in the analysis control condition are set in the Control block.

Item name	Parameter name	Туре	Description
Coupled analysis flag	coupling_ty pe	int	=0: Usual =1: Two-way coupled analysis (with Thermal analysis) * Can be used when analysis type is analysis_type = 3
Restart flag	restart_type	int	=0: Restart normally =1: Run when restart file is used
Analysis Type	analysis_type	int	=0: Static analysis =1: Current Distribution Analysis =2: Charge distribution analysis *Available when JMAG-Studio is used =3: Frequency response analysis
Acceleration coefficient using the iterative linear solver	iccg_accel	double	
Convergence toler- ance using the iter- ative linear solver	iccg_toleranc	double	
Maximum number of iterations using the iterative linear solver	iccg_max_ite	int	
Nonlinear Iterative Convergence Toler- ance	max_toleran ce	double	
Nonlinear Iterations	max_iteratio n	int	
Output flag in electric potential	flg_io_electri c_potential	int	=0: Output =1: Does not output
Output flag in charge volume	flg_io_electri c_field	int	=0: Output =1: Does not output
Output flag for particle density	flg_io_partic le_number_ density	int	=0: Output =1: Does not output

Item name	Parameter name	Туре	Description
Output flag for	flg_io_charg	int	=0: Output
Nodal Charge	e_node	IIIt	=1: Does not output
Output flag in cur-	flg_io_curre	int	=0: Output
rent	nt	IIIL	=1: Does not output
Output flag in sur-	flg_io_charg	int	=0: Output
face charge	e_face	IIIt	=1: Does not output
Output flag in	flg_io_nodal	int	=0: Output
nodal force	_force	int	=1: Does not output
Output flag in	flg_io_charg	int	=0: Output
charge volume	e_volume	IIIt	=1: Does not output
Output flag for	flg_io_julelo	int	=0: Output
Joule loss	ss	IIIt	=1: Does not output
Output flag for	flg_io_therm		=0: Output
thermal electromo-	oloss	int	=1: Does not output
tive force loss	01033		=1. Does not output
Out put flag for	flg_io_loss	int	=0: Output
total loss	118_10_1033	1111	=1: Does not output

• Step

Specifies the step condition in the Step block.

Item name	Parameter name	Туре	Description
			=0: Constant Interval
Type	step_type	int	=1: Regular intervals
			=2: Point sequence
Number of steps	num_analysi	int	
	s_step		
Width interval	increment	double	
Initial value	start_value	double	
End point [sec]	end_value	double	
Divisions	step_division	int	

• ElectricPotential

Specifies the electric potential boundary condition in the ElectricPotential block.

Item name	Parameter name	Туре	Description
Conditional num-	id	int	
ber	Id	IIIt	
Electric potential [amplitude	double	
V]	ampirtude	double	
Phase [deg]	phase	double	Available when the frequency response
I mase [deg]	phase	double	analysis is used

• ElectricField

Specifies the electric field condition in ElectricField block.

Item name	Parameter name	Туре	Description
Conditional number	id	int	
Electric field [V/m]	amplitude	double	
Phase [deg]	phase	double	Available when the frequency response analysis is used
Specify direction	flg_direction	int	=1: Outflow direction as the correct value =-1: Inflow direction as the correct value

CurrentDensity

Specifies the current density boundary condition in CurrentDensity block.

Item name	Parameter name	Туре	Description
Conditional number	id	int	
Current density [A/m2]	amplitude	double	
Phase [deg]	phase	double	Available when the frequency response analysis is used
Specify direction	flg_direction	int	=1: Outflow direction as the correct value =-1: Inflow direction as the correct value

• CyclicBoundary

Specifies the periodic boundary condition in CyclicBoundary block.

Item name	Parameter name	Туре	Description
Conditional number	id	int	
Periodicity type	cyclic_type	int	=+1: Periodic boundary x Rotational =+2: Periodic boundary x Translational periodicity =+3: Axial reverse =-1: Antiperiodic boundary x Rotational =-2: Antiperiodic boundary x Translational periodicity
Point on axis	origin	point	Specify point.
Direction of rotation axis/translation direction	axis_vector	point	Specify component. Direction of rotation axis direction when cyclic_type=+1 or -1. Translation direction when cyclic_type=+2 or -2
Periodic angle or Periodic distance	angle	double	Periodic angle [deg] for rotational periodicity. Periodic distance [m] for translational periodicity

• ForceCalculation

Specifies the electromagnetic force condition in the ForceCalculation block.

Item name	Parameter name	Туре	Description
Conditional number	id	int	

• ElectricChargeCalculation

Specifies the surface charge condition in the ElectricChargeCalculation block.

Item name	Parameter name	Туре	Description
Conditional number	id	int	

• CurrentCalculation

Specifies the current condition in the CurrentCalculation block.

Item name	Parameter name	Туре	Description
Conditional number	id	int	

• ElectricChargeFace

Specifies the surface charge condition in the ElectricChargeFace block.

Item name	Parameter name	Туре	Description
Conditional number	id	int	
Charge density [C/m2]	amplitude	double	

• ElectricChargeVolume

Specifies the volume charge condition in the ElectricChargeVolume block.

Item name	Parameter name	Туре	Description
Conditional number	id	int	
Charge density [C/m3]	amplitude	double	

• TemperatureDistribution

Specify the item for the temperature distribution condition in the Temperature-Distribution block.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Coupling type	coupling type	int	=0: One-way coupled analysis
Coupling type	type coupling_type int	1111	=1: Two-way coupled analysis
Result file name of thermal analysis for referenc-	reference_post_f	string	
ing	ne		

• Conductor

Specifies the conductor condition in the Conductor block.

Item name	Parameter name	Type	Description
Conditional number	id	int	

• Insulation

Specifies the insulation condition in the Insulation block.

Item name	Parameter name	Type	Description
Conditional number	id	int	

• InitialParticle

Specifies the initial particle density conditions in InitialParticle block.

Item name	Parameter name	Туре	Description
Conditional number	id	int	
Diffusion constant [m2/sec]	diffusion_co nstant	double	
Initial particle number density [1/ m3]	initial_numb er	int	

• TransitionMatrix

Specifies the transition coefficient matrix condition in the TransitionMatrix block.

Item name	Parameter name	Туре	Description
Conditional number	id	int	
Transition coefficient matrix	matrix	int	

F-5. Specifying Materials (material_data)

• MATERIAL

Specifies materials for the Electric Field Analysis.

Item name	Parameter name	Туре	Description
Material ID	material_id	int	The value does not need to be positive or sequential
Electric properties of the first axis	flg_electric_ property1	int	=0: Electric conductivity is constant =2: Temperature of the electric conductivity is a function =11: Electric conductivity in the electric field is a function =12: Electric conductivity in the frequency is a function = negative integer: user subroutine Unit flag for electric properties of (cndusr.f)
Unit flag for elec-	flg_conducti	int	=0: Electric conductivity [1/(ohm·m)]
tric properties Electric conductivity [1/(ohm·m)]	vity_unit conductivity _number	double	=1: Electric Resistivity [ohm·m] Can be used when flg_electric_property_gui=0
Relative permittiv- ity type flag	flg_permittiv ity_property	int	 =0: Relative Permittivity is constant =1: Relative permittivity in the electric field is a function =2: Relative permittivity in the frequency is a function
Relative permittiv- ity	permittivity_ number	com- plex	Frequency response analysis Can be used when flg_electric_property_gui=0 The default is 1 and at least 1 for limited value
Result output flag	flg_io_mater	int	=0: Does not output
for each material	ial		=1: Output
Particle flight region	flg_movable _particle	int	=0: Does not output =1: Output

Appendix G. Solver Data File Format (Electric Field Analysis)

G-1. Analysis Control

HED	Title
ITYPE	=0: Normal run
	=2: Coupled with Thermal Analysis
ID_SLV	Solver ID
	=0: 3D Static Analysis (ST (3D))
	=1: 3D Frequency Response Analysis (FQ (3D))
	=2: 3D Transient Response Analysis (TR (3D))
	=3: 2D Magnetic Field Analysis (DP (2D))
	=4: Axis Symmetric Analysis (DP (AX))
	=5: Electric Field Analysis (EL)
	=6: Current Distribution Analysis (EL)
	=7: Charge Distribution Analysis (CH)
	=51: Electric Field Analysis (frequency response) (EL)
	=8: Thermal Analysis (HT)
	=9: Electromagnetic Wave Frequency Response Analysis (WV)
	=10: Electromagnetic Wave Transient
	Response Analysis (TD)
IVER	Version number (= 84)
ISELECT	Analysis type
	=0: Electric field analysis
	=1: Current distribution analysis
	=2: Charge distribution analysis
	HED ITYPE ID_SLV IVER

		=3: Electric field analysis (frequency response)
6-10	NSTEP	Number of analysis steps
16-20	NEWTON	Nonlinear iteration number
21-30	EPSITE	Nonlinear iterative convergence tolerance

G-2. Control Output Items

Card 1		
1-10	N_CNT2	Number of lines in the control card 2
Card 2		
1-10	ACCEL	Accel parameter for ICCG
11-20	EPSPCG	Tolerance for ICCG
21-30	MAXPCG	Max iteration for ICCG
Card 3		
1-20	PCGMAX	Unused
21-30	MICGRS	Unused

Card 4

Set the flag to 1 for output, and to 0 for disabling output

1-5	IO_V	Electric potential (node data) output flag
6-10	IO_E	Electric field (element data) output flag
11-15	IO_P	Particle density (node data) output flag
16-20	IO_Q	Nodal density (node data) output flag
21-25	IO_J	Current (element data) output flag
26-30	IO_SFQ	Surface charge density (element data) output flag
31-35	IO_NF	Nodal force (node data) output flag
36-40	IO_INQ	Internal Charge (element data) output flag
41-45	IO_JL	Power consumptuon (element data) output flag
46-50	IO_TL	Thermal electromotive force loss (element data) output flag
51-55	IO_TTL	Total loss (element data) output flag

G-3. Control Variables for Mesh Generator

Card 1		
1-10	NLINE	Number of lines
Card 2		
1-10	MG_ON	Mesh generation execution flag
		(= 0: OFF, = 1: ON)
11-20	IBC_XY	Boundary condition flag for XY-plane
		(= 1: Natural, = 0: No condition, = 1: Symmetric)
21-30	IBC_YZ	Boundary condition flag for YZ-plane
		(= 1: Natural, = 0: No condition, = 1: Symmetric)
31-40	IBC_ZX	Boundary condition flag for ZX-plane
		(= 1: Natural, = 0: No condition, = 1: Symmetric)
Card 3		
1-10	I_ADP	Adaptive flag (= 0: OFF, = 1: ON)
11-20	ITR	Max iteration for adaptive calculation
Card 4		
1-20	ERR_B	Acceptable error range
21-40	(ERR_J)	Unused (0.0)
Control		
Card 1		

G-4. Step Control

1-10	NSTPTP	Unused
11-20	NSTPFG	Unused
Card 2		
1-10	NSTBL	Unused
11-20	TBLID	Unused

G-5. Control Output Interval

Card	1
------	---

1-10 N_OUT Number of output interval control data for

analysis result

Card 2

1-10 N Order number

11-20 N_END (N) Output interval control end step

21-30 N_STP (N) Output interval up to the N_END (N) step

Z-coordinate [m]

Example: If $N_{STP}(N) = 2$, it is controlled

to output once every two times.

Note: If $N_{STP}(N) = 0$, output is disabled.

G-6. Coordinate Data

Card 1

1-10 NUMNP Total nodes

Card 2

61-80

Z (N)

1-10 I Order ID 11-20 N Node ID

21-40 X (N) X-coordinate [m] 41-60 Y (N) Y-coordinate [m]

G-7. Element Data

Card	1 1		
1	-8	NUMEL	Total elements
9) -10	MAXNOD	Maximum number of nodes within element
1	1-15	NINT	Integral points
Card	12		
1	-8	M	Element ID
9) -11	IEL	Total nodes
1	2-14	MTYP	Material ID
1	5-16	ЕТҮР	Element type
			=1: Solid hexahedron element (first coordi-
			nate)
			=2: Solid hexahedron element (second coordinate)
			=3: Solid tetrahedron element (first coordinate)
			=4: Solid tetrahedron element (second coordinate)
			=5: Solid pentahedron element (first coordinate)
			=6: Solid pentahedron element (second coordinate)
			=7: Shell element (first coordinate)
			=8: Shell element (second coordinate)
			=9: Beam element (first coordinate)
			=10: Beam element (second coordinate)
1	7-24	NOD (1)	Node ID
2	25-32	NOD (2)	Node ID
3	33-40	NOD (3)	Node ID
4	1-48	NOD (4)	Node ID
4	í9-56	NOD (5)	Node ID
5	57-64	NOD (6)	Node ID
6	55-72	NOD (7)	Node ID
7	73-80	NOD (8)	Node ID

G-8. Material Property Data

Ca	rd 1		
	1-10	NUMAT	Number of material property types
	11-20	MAXTP	Maximum number of thermal conductivity tables
Ca	rd 2		
	1-10	M	Material ID
	11-20	IFLAG (M)	=1: Linear material
			=2: Nonlinear material (E-epsilon Table (electric field))
			=3: Nonlinear material
			(E-sigma Table (current distribution))
			=5:Nonlinear material
			(T- sigma Table (current distribution))
			=Negative integer:Use the user subroutine cndusr
			=-1:Use user subroutine
	21-30	IAREA (M)	Flag for particle flight region discrimination
	31-40	MTOUT (M)	=0: Not output
			=1: Output
	41-50	IFLAGGP (M)	=0: Not gap element
			=1: Gap element
Ca	rd 3 (If IF	FLAG = 1)	
	1-20	EPERM_R (M)	Permeability (real part)
	21-40	EPERM_I (M)	Permeability (imaginary part)
Ca	rd 3 (If IF	FLAG ≠ 1)	
	1-10	NTAB (M)	Number of tables
Ca	rd 4 (If IF	FLAG = 2)	
	1-20	TABL1	Electric field intensity
	21-40	TABL2	Permittivity (real part)
	41-60	TABL3	Permittivity (imaginary part)
Ca	rd 4 (If IF	FLAG = 3)	
	1-20	TABL1	Electric field intensity

21-40 TABL2 Electrical conductivity

Card 4(IFLAG=4)

1-20 TABL1 Temperature

21-40 TABL2 Electrical conductivity

Card 5

1-20 DUMMY Unused

Card 6

1-20 DELEM (M) Thickness of gap layers [m]

G-9. Electric Potential Specification (EL-ST, EL-FQ, EL-CUR)

Card 1

1-10 NUMFAI Number of nodes for which electric potential

is to be specified

Card 2

1-10 N Order number 11-20 NPBCF (N) Element ID

21-40 BCFAI (N) Electric potential [V]

G-10. Electric Potential Boundary (CH)

Card 1		
1-10	NGRPV	Number of groups for which electric potential boundary
		conditions are to be set
11-20	MXNPV	Maximum number of nodes
21-30	MXTBLV	Maximum number of tables
Card 2		
1-10	NN	Group ID
11-20	NTBLV (NN)	Maximum number of tables in group
21-30	NUMPV2	Total nodes
Card 3		
1-20	TBLV (1,N)	Time [sec]
21-40	TBLV (2,N)	Electric potential [V]
Card 4		
1-10	NUMPV	Number of nodes in group
Card 5		
1-10	NPV (1,NN)	Node ID
11-20	NPV (1,NN)	Node ID

G-11. Electric Field/Current Density Boundary

Card 1		
1-10	NUMFLX	Number of elements for which electric potential boundary conditions are to be set
Card 2		
1-10	N	Order ID
11-20	NBCFX (1,N)	Element ID
21-30	NCFLX (2,N)	Face ID
31-50	BCFLX (N)	Electric field value

G-12. Periodic Boundary (EL-ST, EL-FQ, EL-CUR, CH)

Card 1		
1-10	NPERI	Number of node pairs on which periodic boundary
		conditions are to be imposed
11-20	ISYM2	=1: Periodic boundary condition
		=-1: Anti-periodic boundary condition
Card 2		
1-20	PX	X-coordinate of a point on rotation axis
21-40	PY	Y-coordinate of a point on rotation axis
41-60	PZ	Z-coordinate of a point on rotation axis
1-20	AVX	X-component of rotation-axis vector (Note
		1)
21-40	AVY	Y-component of rotation-axis vector (Note 1)
41-60	AVZ	Z-component of rotation-axis vector (Note
		1)
61-80	ANGL	If ISUM2 = 1, rotation angle [deg]
Card 3		
1-10	N	Order number
11-20	NCYC1 (N)	Node on the first periodic boundary (Note 2)

Note 1: For translational symmetry, this data is neglected.

Note 2: Corresponding node must be found on the second periodic boundary.

G-13. Conductor (EL-ST, EL-FQ, EL-CUR, CH)

Card 1

1-10 NGRPC Number of groups

11-20 MXGRPC Maximum number of elements in group

Card 2

1-10 N Group ID

11-20 NUMGC (N) Number of elements in group

Card 3

1-10 NEC (1,N) Element ID 11-20 NEC (2,N) Element ID

71-80 NEC (NUMGC(N),N) Element ID

G-14. Force Calculation (EL-ST, EL-FQ, EL-CUR, CH)

Card 1

1-10 NGRPF Number of groups

11-20 MXGRPF Maximum number of elements in group

Card 2

1-10 N Group ID

11-20 NUMGF (N) Number of elements in group

Card 3

1-10 NEF (1,N) Element ID 11-20 NEF (2,N) Element ID

71-80 NEF (NUMGF(N),N) Element ID

G-15. Calculation of Surface Charge Distribution (EL-ST, EL-FQ, EL-CUR, CH)

Card 1

1-10 NGRPS Number of groups on which surface charge is

to be calculated

11-20 MXGRPS Maximum number of elements in group

Card 2

1-10 NG Group ID

11-20 NUMGS (NG) Number of element in group

Card 3

1-10 I Order ID
11-20 NEF (I,NG) Element ID
21-30 NEF (I,NG) Face ID

G-16. Surface Charge (EL-ST, EL-FQ, CH)

Card 1

1-10 NUMQS Number of elements to which surface charge

is to be given

Card 2

1-10 I Order ID

11-20 NEQS (1,I) Element ID

21-30 NEQS (2,I) Face ID

31-50 QS (I) Surface charge value [C/m²]

G-17. Volume Charge (EL-ST, EL-FQ, CH)

Card 1

1-10 NUMQV Number of elements to which (volume)

charge is to be given

Card 2

1-10 I Order ID

11-20 NEQV (I) Element ID

21-40 QV (I) Surface charge value [C/m²]

G-18. Control Data of Charge Distribution Analysis (CH)

Card 1

1-10 NPART Number of particle types

G-19. Transient Coefficient Matrix (CH)

Card 1

1-10 I Row number of transient coefficient
 11-20 J Column number of transient coefficient

21-40 CMAT (I, J) Component (i, j) of transient coefficient

G-20. Diffusion Coefficient (CH)

Card 1

1-10 NPART Number of particle types

Card 2

1-20 DCOEF (1) Diffusion coefficient of particle 1

G-21. Initial Particle Density (CH)

Card 1

1-10 NDNSO Total number of nodes for which initial parti-

cle density is to be input

Card 2

1-10 NN Order ID 11-20 NDONP Node ID

21-30 NPTYP Particle type number

31-50 DOVAL Initial particle density [number/m³]

G-22. Electric Discharge Current Calculation

Card 1

1-10 NGCRT Electric discharge current calculation group
 11-20 MAXFCE Maximum number of elements in group

Card 2

1-10 NN Group ID

11-20 MAXF Number of elements in the NN group

Card 3

1-10 LCRTLM (1,1) Element ID 11-20 LCRTLM (1,1) Face ID 21-30 LCRTLM (2,1) Element ID

G-23. Time Step Data

Card 1

1-10 NDATA Number of time-step data

Card 2

1-20 TIME Time [sec]

21-30 ITIME Number of times electric field analysis is per-

formed

31-40 ITMPLT Analysis result output frequency

Appendix H. Plot File Format (Electric Field Analysis)

H-1. Analysis Control

С	ard 1		
	1-80	HED	Title
С	ard 2		
	71-75	ID_SLV	Solver ID
			=1: Frequency response electric field analysis (EL)
			=5: Static electric field analysis (EL)
			=6: Current distribution analysis (EL)
			=7: Charge distribution analysis (CH)
			=8: Thermal analysis (HT)
			Response analysis (TD)
	76-80	IVER	Version number (= 81)
С	ard 3		
	1-5	ISELECT	Analysis type
			=0: Static electric field analysis
			=1: Current distribution analysis
			=2: Charge distribution analysis
			=3: Electric field analysis (Frequency
			response)
	6-10	NSTEP	Number of analysis steps
	16-20	NEWTON	Number of nonlinear iterations
	21-30	EPSITE	Nonlinear iterative convergence tolerance

IO_TTL

51-55

H-2. Control Output Items

Correl 4		
Card 1	N. CNITO	N 1 () 1 10
1-10	N_CNT2	Number of lines in control card 2
Card 2		
1-10	ACCEL	Accel parameter for ICCG
11-20	EPSPCG	Tolerance for ICCG
21-30	MAXPCG	Max iterations for ICCG
Card 3		
1-20	PCGMAX	Unused
21-30	MICGRS	Unused
Card 4		
Set the	flag to 1 for output, and to () to disable output
1-5	IO_V	Electric potential (node data) output flag
6-10	IO_E	Electric field (element data) output flag
11-15	IO_P	Particle density (node data) output flag
16-20	IO_Q	Nodal density (node data) output flag
21-25	IO_J	Current (element data) output flag
26-30	IO_SFQ	Surface charge density (element data) output
		flag
31-35	IO_F	Nodal force (node data) output flag
36-40	IO_INQ	Internal charge (element data) output flag
41-45	IO_JL	Power consumption (element data) output
		flag
46-50	IO_TL	Thermal electromotive force loss (element

data) output flag

Total loss (element data) output flag

H-3. Control Variables for Mesh Generator

Card 1		
1-10	NLINE	Number of lines
Card 2		
1-10	MG_ON	Mesh generation execution flag
11-20	IBC_XY	Boundary condition flag for XY-plane
21-30	IBC_YZ	Boundary condition flag for YZ-plane
31-40	IBC_ZX	Boundary condition flag for ZX-plane

H-4. Step Control

Card 1		
1-10	NSTPTP	Unused
11-20	NSTPFG	Unused
Card 2		
1-10	NSTBL	Unused
11-20	TBLID	Unused

H-5. Control Output Interval

Ca	rd	1
Vα	ıu	

1-10 N_OUT Number of control output interval data of

analysis results

Card 2

1-10 N Order number

11-20 N_END(N) Output interval control end step
21-30 N_STP(N) Output interval up to the time N

Hereafter, it will be output in the case of frequency response electric field analysis. Although the parameters are the same as those of the magnetic field analysis, the contents will be output only in values shown in ().

Card 3

1-20	UNITOT	Unit of result verification
21-40	UNITIN	Unit of shape data
41-80	UNITNM	Unit label

H-6. Controlling PLOT File

Card 1

1-10 MAXPLT Division size of plot file (MByte)

H-7. Output Conversion of Model

Card 1		
1-10	IMODEL	Output flag for full model conversion
		=0: Not convert
		=1: Convert
11-20	ICOIL	Flag for specifying height of FEM coil
		=0: Height of FEM coil is the same as the
		thickness of model
		=1: Height of FEM coil differs from the
		thickness of model
Card 2		
1-20	DTHICK	Thickness of model [m]
		Note: Available only for 2D analysis.
		Note: Not available for 3D analysis and axi-
		ally-symmetric analysis.
21-40	VLNG	Height of FEM coil [m]
		Note: Available only for 2D analysis.
41-60	DIVMD	Division multiplier
		(Information on division created by dividers
		other than rotational periodic boundary.)
		Example: For one-to-nth division model, the
		output value is multiplied by n.
61-80	DDIVCY	Status information on division created by
		rotational periodic boundary

H-8. Parameter Conversion of Circuit

Card	1
------	---

1-10 NCMDL Conversion flag

=0: Partial model (Not convert to calculate)

=1: Full model

(Convert by using periodic boundary condition and division multiplier to calculate)

11-20 NN2 Connection status at the time of conversion

=0: Series

(Multiplier is applied to all calculation results

of voltage.)

=1: Parallel

(Multiplier is applied to all calculation results of current passing through external circuit.)

Card 2

1-20 DIVCI Division multiplier

(Information on division created by dividers other than rotational periodic boundary.)

H-9. Coordinate Data

1-10	NUMNP	Total nodes
1-10	ICOUNT	Order number
11-20	ID	Node ID
21-40	X	X-coordinate
41-60	Y	Y-coordinate
61-80	Z	Z-coordinate

H-10. Element Data

Card 1		
1-8	NUMEL	Total elements
9-10	MAXNOD	Maximum number of nodes within element
11-15	NINT	Integral points
Card 2		
1-8	M	Element ID
9-11	IEL(M)	Total nodes
12-14	MTYP(M)	Material ID
15-16	ETYP(M)	Element type
		=1: Solid hexahedron element (first coordinate)
		=2: Solid hexahedron element (second coordinate)
		=3: Solid tetrahedron element (first coordinate)
		=4: Solid tetrahedron element (second coordinate)
		=5: Solid pentahedron element (first coordinate)
		=6: Solid pentahedron element (second coordinate)
		=7: Shell element (first coordinate)
		=8: Shell element (second coordinate)
		=9: Beam element (first coordinate)
		=10: Beam element (second coordinate)
17-24	NOD(1,M)	Node ID (1)
25-32	NOD(2,M)	Node ID (2)
33-40	NOD(3,M)	Node ID (3)
41-48	NOD(4,M)	Node ID (4)
49-56	NOD(5,M)	Node ID (5)
57-64	NOD(6,M)	Node ID (6)
65-72	NOD(7,M)	Node ID (7)
73-80	NOD(8,M)	Node ID (8)

H-11. Analysis Results

H-11-1. Control Data

1-80	CONTROL_DATA	Header (3: Frequency response analysis, 2: Other analysis)
1-10	ISTEP	Analysis step number
11-30	TIME	Time

H-11-2. Displacement (Node Data)

(If there is translation)

(In the case of 1D equivalent model of electric charge distribution analysis)

1-80	DISPLACEMENT	Header (10001)
1-10	NUMD	Number of nodes with a value assigned to displacement
1-10	I	Order ID
11-20	NP	Node ID
21-40	DP (NP)	Displacement

H-11-3. Electric Potential (Node Data)

■ In the case of frequency response electric field analysis

1-80	NODAL_VOLTAGE	Header(4501)
1-10	NUMV	Number of nodes assigned with electric potential
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order ID
11-20	NP	Node ID
21-40	VP (NP)	Electric potential (real part)
41-60	VP (NP)	Electric potential (imaginary part)

■ In the case of other analysis

1-80	NODAL_VOLTAGE	Header(2010)
1-10	NUMV	Number of nodes assigned with electric
		potential
1-10	I	Order ID

11-20 NP Node ID

21-40 VP (NP) Electric potential

H-11-4. Electric Field (Element Data)

(Output, if IO_E=1)

■ In the case of frequency response electric field analysis

1-80	ELECTRIC_FIELD	Header (19505)
1-10	NUMEF	Number of elements assigned with electric field
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order ID
11-20	NE	Element ID
31-50	EFX(1, NE)	X-component of electric-field vector (real part)
51-70	EFX(2, NE)	Y-component of electric-field vector (real part)
71-90	EFX(3, NE)	Z-component of electric-field vector (real part)
91-110	EFX(1, NE)	X-component of electric-field vector (imaginary part)
111-130) EFX(2, NE)	Y-component of electric-field vector (imaginary part)
131-150) EFX(3, NE)	Z-component of electric-field vector (imaginary part)

■ In the case of other analysis

1-80	ELECTRIC_FIELD	Header (17016)
1-10	NUMEF	Number of elements assigned with electric field
1-10	I	Order ID
11-20	NE	Element ID
21-40	EFX (1,I)	X-component of electric-field vector
41-60	EFX (2,I)	Y-component of electric-field vector
61-80	EFX (3,I)	Z-component of electric-field vector

H-11-5. Particle Density (Node Data)

(Output, if $ID_SLV = 7$ and $IO_P = 1$)

1-80	PARTICLE_DENSITY	Header (2500)
1-10	NPART	Number of particle types
1-10	ICOUNT	Number of nodes assigned to output particle specified by NTYP
1-10	I	Order ID
11-20	NP	Node ID
21-40	DNS(NP,NTYP)	Particle density of particle specified by NTYP

^{*}In the output of the initial state, the number of types of headers and particles will always be output.

H-11-6. Current (Element Data)

(Output, if ID_SLV = 6 or 1 and IO_J = 1) CURRENT_DENSITY Header (16503) 1-80 1-10 NUMJ Number of elements with a value assigned to current 1-10 Ι Order ID 11-20 NE Element ID 21-40 CJ (1,NE) X-component of current vector CJ (2,NE) 41-60 Y-component of current vector 61-80 CJ (3,NE) Z-component of current vector

■ In the case of frequency response electric field analysis

1-80	CURRENT_DENSITY	Header (19502)
1-10	NUMJ	Number of elements with a value assigned to
		current
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order ID
11-20	NE	Element ID
31-50	CJ(1, NE)	X-component of current vector (real part)
51-70	CJ(2, NE)	Y-component of current vector (real part)
71-90	CJ(3, NE)	Z-component of current vector (real part)

Chapter H. Plot File Format (Electric Field Analysis)

91-110 CJ(1, NE)	X-component of current vector (imaginary part)
111-130 CJ(2, NE)	Y-component of current vector (imaginary part)
131-150 CJ(3, NE)	Z-component of current vector (imaginary part)

H-11-7. Surface Charge (Element Data)

(If ID_SLV = 1 or 5 or 7, and in addition, IO_SFQ = 1, it will be output)

1-80	SURFACE_CHARGE	Header (7503)
1-10	NUMFQ	Number of elements assigned with surface
		charge
1-10	I	Order ID
11-20	NE	Element ID
21-40	QFACE(NE)	Surface charge

H-11-8. Surface Charge (Step Data)

■ In the case of frequency response electric field analysis

1-80	SURFACE_CHARGE_P	ER_GROUP_R
		Header (18202)
1-10	NUM_SQ	Number of surface-charge calculation groups
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order ID
11-30	$Q_S_R(I)$	Surface charge (real part)
1-80	SURFACE_CHARGE_PER_GROUP_I	
		Header (18203)
1-10	NUM_SQ	Number of surface-charge calculation groups
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order ID
11-30	$Q_S_I(I)$	Surface charge (imaginary part)

■ In the case of other analysis

1-80	SURFACE_CHARGE_PER_GROUP	
		Header (18201)
1-10	NUM_SQ	Number of surface-charge calculation groups
1-10	I	Order ID
11-30	Q_S (I)	Surface charge

H-11-9. Nodal Force (Node Data)

(Output, if $IO_F = 1$ and the number of output nodes > 0)

1-80	NODAL_FORCE	Header (11501)
1-10	NUMPF	Number of nodes assigned with nodal force
1-10	I	Order ID
11-20	NP	Node ID
21-40	PF (1,NP)	X-component of nodal force
41-60	PF (2,NP)	Y-component of nodal force
61-80	PF (3,NP)	Z-component of nodal force

^{*} In the case of frequency response electric field analysis, the effective value will be output.

H-11-10.Force (Step Data)

(Output, if $IO_F = 1$ and the number of output nodes > 0)

1-80	FORCE&TORQUE_PE	R_GROUPHeader (601)
1-10	NGRPF	Number of force calculation groups
1-10	I	Order ID
11-20	NG	Group ID
21-40	PF (1,NG)	X-component of force
41-60	PF (2,NG)	Y-component of force
61-80	PF (3,NG)	Z-component of force

^{*} In the case of frequency response electric field analysis, the effective value will be output.

H-11-11. Total Currents (Step Data)

■ In the case of frequency response electric field analysis

1-80	TOTAL_CURRENT_R	Header (18101)
1-10	NUM_TJ	Number of current calculation groups
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order number
11-30	$TC_J_R(I)$	Current (real part)
1-80	TOTAL_CURRENT_I	Header (18151)
1-10	NUM_TJ	Number of current calculation groups
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order number
11-30	TC_J_I(I)	Current (imaginary part)

■ In the case of other analysis

1-80	TOTAL_CURRENT_	Header (18101)
1-10	NUM_TJ	Number of current calculation groups
1-10	I	Order number
11-30	TC_J (I)	Current

H-11-12.Internal Nodal Charge (Node Data)

(Output, if IO_INQ = 1 and the number of internal nodal charges > 0)

■ In the case of frequency response electric field analysis

1-80	POINT_CHARGE_	Header (4502)
1-10	NUM_Q	Number of internal nodal charges
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order ID
11-20	LSHPT(I)	Node ID
21-40	QCHPT(I)	Internal nodal charge (real part)
41-60	QCHPT(I)	Internal nodal charge (imaginary part)

■ In the case of other analysis

1-80	POINT_CHARGE_	Header
		(In JMAG-Studio 8.0 it was 7504, in version
		8.1 or later, it is 2503)
1-10	NUM_Q	Number of internal nodal charges
1-10	I	Order ID
11-20	LSHPT (I)	Node ID
21-40	QCHPT (I)	Internal nodal charge

H-11-13.Internal Line Charge (Element Data)

(Output, if IO_INQ = 1 and the number of internal line charges > 0)

■ In the case of frequency response electric field analysis

1-80	BEAM_CHARGE_	Header (6506)
1-10	NUM_BQ	Number of internal line charges
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order ID
11-20	LSHLN(I)	Beam element ID
21-40	QCHLN(I)	Internal line charge (real part)
41-60	QCHLN(I)	Internal line charge (imaginary part)

■ In the case of other analysis

1-80	BEAM_CHARGE_	Header (In JMAG-Studio 8.0 it was 7505, in version 8.1 or later, it is 6501)
1-10	NUM_BQ	Number of internal line charges
1-10	I	Order ID
11-20) LSHLN(I)	Beam element ID
21-40	O QCHLN(I)	Internal line charge

H-11-14.Internal Surface Charge (Element Data)

(Output, if IO_INQ = 1 and the number of internal surface charges > 0)

■ In the case of frequency response electric field analysis

1-80	SHELL_CHARGE_	Header (7560)
1-10	NUM_SQ	Number of internal surface charges
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order ID
11-20	LSHSF(I)	Shell element ID
21-40	QCHSF(I)	Internal surface charge (real part)
41-60	QCHSF(I)	Internal surface charge (imaginary part)

■ In the case of other analysis

1-80	SHELL_CHARGE_	Header (In JMAG-Studio 8.0 it was 7506, in version 8.1 or later, it is 6502)
1-10	NUM_SQ	Number of internal surface charges
1-10	I	Order ID
11-20	LSHSF(I)	Shell element ID
21-40	QCHSF(I)	Internal surface charge

H-11-15.Internal Polarization (Element Data)

(Output, if IO_INQ = 1 and the number of internal polarization charges > 0)

■ In the case of frequency response electric field analysis

1-80	SOLID_DIPOLE_	Header (19515)
1-10	NUM_DQ	Number of internal polarization charges
11-20	FLAG	0
21-40	CONV	0.0
1-10	I	Order ID
11-20	LSHDP(I)	Solid element ID
21-40	QCHDP(1,I)	X-component of internal polarization (real part)
41-60	QCHDP(2,I)	Y-component of internal polarization (real part)
61-80	QCHDP(3,I)	Z-component of internal polarization (real part)
81-100	QCHDP(1,I)	X-component of internal polarization (imaginary part)
101-120	QCHDP(2,I)	Y-component of internal polarization (imaginary part)
121-140	QCHDP(3,I)	Z-component of internal polarization (imaginary part)
		nary part)

■ In the case of other analysis

1-80	SOLID_DIPOLE_	Header (In JMAG-Studio 8.0 it was 7507, in version
		8.1 or later, it is 16508)
1-10	NUM_DQ	Number of internal polarization charges
1-10	I	Order ID
11-20	LSHDP(I)	Solid element ID
21-40	QCHDP(1,I)	X-component of internal polarization
41-60	QCHDP(2,I)	Y-component of internal polarization
61-80	QCHDP(3,I)	Z-component of internal polarization

H-11-16. Power Consumption Density (Element Data)

(Output, if ID_SLV=6 and IO_JL=1)

1 .	_	
1-80	JOULE_LOSS	Header (7600)
1-10	NUMJL	Number of elements assigned with power
		consumption
1-10	I	Order ID
11-20	NE	Element ID
21-40	JOULOS(NE)	Power consumption

^{*} It can be output as current distribution analysis using Seebeck coefficient.

H-11-17. Thermal Electromotive Force Loss Density (Element Data)

(Output, if ID_SLV=6 and IO_TL=1)

1-80 THERMAL_EMF_LOSS Header (7610)

1-10 NUMTL Number of elements assigned with thermal

electromotive force loss

1-10 I Order ID 11-20 NE Element ID

21-40 THRLOS(NE) Thermal electromotive force loss

H-11-18. Total Losses Density (Element Data)

(Output, if ID_SLV=6 and IO_TTL=1)

-		
1-80	TOTAL_LOSS	Header (7620)
1-10	NUMTL	Number of elements assigned with total loss
1-10	I	Order ID
11-20	NE	Element ID
21-40	TOTLOS(NE)	Total loss

^{*} It can be output as current distribution analysis using Seebeck coefficient.

^{*} It can be output as current distribution analysis using Seebeck coefficient.

H-11-19. Power Consumption (Step Data)

(Output, if ID_SLV=6 and IO_JL=1) 1-80 JOULE_LOSS_PER_GROUPHeader (7630) 1-10 Number of elements assigned with power NUMJL consumption Order ID 1-10 Ι 11-20 MT Material ID TJLOSM(MT) 21-40 Power consumption

H-11-20. Thermal Electromotive Force Loss (Step Data)

(Output, if ID_SLV=6 and IO_TL=1)

1-80 THERMAL_EMF_LOSS_PER_GROUPHeader (7640)

1-10 NUMTL Number of elements assigned with thermal electromotive force loss

1-10 I Order ID

11-20 MT Material ID

H-11-21.Total Loss (Step Data)

(Output, if ID_SLV=6 and IO_TTL=1)

1-80 TOTAL_LOSS_PER_GROUPHeader (7650)

1-10 NUMTL Number of elements assigned with total loss

1-10 I Order ID
11-20 MT Material ID
21-40 TTLOSM(MT) Total loss

^{*} It can be output as current distribution analysis using Seebeck coefficient.

²¹⁻⁴⁰ THLOSM(MT) Thermal electromotive force loss

^{*} It can be output as current distribution analysis using Seebeck coefficient.

^{*} It can be output as current distribution analysis using Seebeck coefficient.

Appendix I. Solver Data File Format (Electromagnetic Wave Frequency Response Analysis)

I-1. Analysis Control

Card 1			
	1-80	HED	Title
Ca	ard 2		
	71-75	ID_SLV	Solver ID
			=9: Electromagnetic Wave Frequency
			Response Analysis (WV)
	76-80	IVER	Version number (= 70)
Ca	ard 3		
	1-5	IDYN	=0 (Unused)
	6-10	NSTEP	Number of analysis steps
	16-20	NEWTON	=0 (Unused)
	21-30	EPSITE	=0 (Unused)
	31-35	IXYZ	=1 (Unused)
Ca	ard 4		
	1-10	N_CNT2	=5
Ca	ard 5		
	1-10	MATRIX_SOLVER	Matrix solver type
			=0: Direct method
			=1: Iteration method
			=2: GCR method
	11-20	ITERATOVE_TYPE	Linear solver type
			=0: Conjugate gradient (CG) method
			=1: GCR method
			=2: GMRES method
	21-30	PRECONDITIONER	Matrix preconditioner
			=0: No preconditioner
			=1: SSOR method

31-40	IN/OUT_CORE	In core/Out of core =0: In core =1: Out of core
Card 6		
1-20	ACCEL	Accel parameter for ICCG
21-40	EPSPCG	Tolerance for ICCG
41-60	PCGMAX	Calculation aborting tolerance for ICCG
61-70	MAXPCG	Max iteration for ICCG
71-80	RESTART	Restart parameter when using the GCR and GMRES methods
Card 7		
1-10	MICCG	=0: Unused
11-20	MICGRS	=0: Unused
21-30	MPHAI	=0: Unused
31-40	MMTRIX	=0: Unused
Card 8		
1-10	MULTIGRID_LEVEL	Usage level used in the Multigrid method
11-20	MULTIGRID_SMOOTI	H Smoothing parameter used in the Multigrid method
21-30	MULTIGRID_TYPE	Cycle type used in the Multigrid method
		(When used with the GMG or Hybrid methods)
		•
		ods)
31-40	TYPE_FLAG	ods) =0: V cycle
31-40	TYPE_FLAG	ods) =0: V cycle =1: W cycle
31-40	TYPE_FLAG	ods) =0: V cycle =1: W cycle Types of the Multigrid method =0: GMG (the geometrical Multigrid
31-40	TYPE_FLAG	ods) =0: V cycle =1: W cycle Types of the Multigrid method =0: GMG (the geometrical Multigrid method)
31-40 41-50	TYPE_FLAG COARSEST_MESH	ods) =0: V cycle =1: W cycle Types of the Multigrid method =0: GMG (the geometrical Multigrid method) =1: AMG (the algebraic Multigrid method)
		ods) =0: V cycle =1: W cycle Types of the Multigrid method =0: GMG (the geometrical Multigrid method) =1: AMG (the algebraic Multigrid method) =2: Hybrid (GMG + AMG)
41-50		ods) =0: V cycle =1: W cycle Types of the Multigrid method =0: GMG (the geometrical Multigrid method) =1: AMG (the algebraic Multigrid method) =2: Hybrid (GMG + AMG)

31-50 ADAPTIVE_THRESHOLDAdaptive division sensitivity

I-2. Output Item Control

Card 1

Set the flag to 1 for output, and to 0 for disabling output.

1-5	IO_EL	Electric field (element data) output flag
6-10	IO_MG	Magnetic field (element data) output flag
11-15	IO_CR	Current density (element data) output flag
16-20	IO_JL	Joule loss density (element data) output flag
21-25	IO_EN	Stored energy (element data) output flag (Unused)
26-30	ISCAT	Only scattering field output flag
		(under external field conditions)
31-35	IO_FLUX	Magnetic flux density (element data) output flag
36-40	IO_ERROR	Analysis error (element data) output flag

I-3. Control Variables for Mesh Generator

Card 1		
1-10	NLINE	=1
Card 2		
1-10	MG_ON	=0: Unused
11-20	IBC_XY	=0: Unused
21-30	IBC_YZ	=0: Unused
31-40	IBC_ZX	=0: Unused

I-4. Step Control

Card 1

1-10 NSTPTP =0: Unused 11-20 NSTPFG =0: Unused

Card 2

1-10 NICGG =0: Unused 11-20 MXICGP =0: Unused

I-5. Output Interval Control

Card 1

1-10 N_OUT =0: Unused

I-6. Coordinate Data

Card 1

1-10 NUMNP Total nodes

Card 2 (Repeat up to the number of NUMNP.)

1-10 I Order ID 11-20 N Node ID

 $\begin{array}{cccc} 21\text{-}40 & X \ (N) & X\text{-coordinate } [m] \\ 41\text{-}60 & Y \ (N) & Y\text{-coordinate } [m] \\ 61\text{-}80 & Z \ (N) & Z\text{-coordinate } [m] \end{array}$

I-7. Element Data

Card 1

1-8	NUMEL	Total elements
9-10	MAXNOD	=0: Unused
11-15	NINT	=0: Unused

Card 2 (Repeat up to the number of NUMEL)

-	:	•
1-8	M	Element ID
9-11	IEL	Total nodes
12-14	MTYP	Material ID
15-16	ETYP	Element type
		=1: Solid hexahedron element (first coordinate)
		=2: Solid hexahedron element (second coordinate)
		=3: Solid tetrahedron element (first coordi-

=3: Solid tetrahedron element (first coordinate)

=4: Solid tetrahedron element (second coordinate)

=5: Solid pentahedron element (first coordinate)

=6: Solid pentahedron element (second coordinate)

=7: Shell element (first coordinate)

=8: Shell element (second coordinate)

=9: Beam element (first coordinate)

=10: Beam element (second coordinate)

17-24	NOD (1)	Node ID
25-32	NOD (2)	Node ID
33-40	NOD (3)	Node ID
31-48	NOD (4)	Node ID
49-56	NOD (5)	Node ID
57-64	NOD (6)	Node ID
65-72	NOD (7)	Node ID
73-80	NOD (8)	Node ID

Material Property Data I-8.

Card 1

1-10	NUMAT	Number of material property types
11-20	MAXTP	=0: Unused
21-30	MAXTPC	=0: Unused

^{*} Repeat the following input sequence up to the number of NUMAT.

Card 2

1-10	MATID	Material ID
11-20	0	Unused
21-30	0	Unused
31-40	0	Unused

11-20	0	Unused
21-30	0 0	Unused
31-40	0 0	Unused
Card 3		
1-10	IFLAG (M)	Type of specifying permeability
		=1: Linear material (constant-complex permeability)
		=13: Nonlinear material (frequency-complex permeability)
		=14: Nonlinear material (temperature-complex permeability)
11-20) IFLAGC (M)	Type of specifying permittivity
		=0: Linear material (constant-complex permittivity)
		=1: Linear material (constant-complex permittivity and electrical conductivity)
		=13: Nonlinear material (frequency-complex permittivity)
		=14: Nonlinear material (temperature-complex permittivity)
31-40	MTOUT (M)	Output flag
		=0: Output
		=1: Not output
41-50	MTGAP (M)	=0: Unused
51-80	NAME (M)	Material property name

Chapter I. Solver Data File Format (Electromagnetic Wave Frequency Response Analysis)

Card 4 (If IFLAG = 1)			
•	·		
1-20	= ()	Permeability (real part)	
21-40	CMU_I (M)	Permeability (imaginary part)	
Card 4 (If	FLAG = 13 or 14)		
1-10	NTAB (M)	Number of points in magnetization table (If IFLAG = 13)	
		Number of points in temperature table (If IFLAG = 14)	
Card 5 (If	IFLAG = 13 or 14, repeat up	to the number of NTAB (M))	
1-10	IP	Order number	
11-30	FREQ (IP, M) / TEMP (I	IP, M)Frequency (Hz) (If IFLAG = 13)	
		Temperature [Celsius] (If IFLAG = 14)	
31-50	CMU_R (IP, M)	Permeability (real part)	
51-70	CMU_I (IP, M)	Permeability (imaginary part)	
0 15 7/4		7.151.40 40 44)	
•	IFLAGC = 0: Skip to Card 6	·	
1-20	EPS_R (M)	Permittivity (real part)	
21-40	EPS_I (M)	Permittivity (imaginary part)	
Card 5 (If	FLAGC = 1: Skip to Card 6	if IFLAG = 13 or 14)	
1-20	EPS (M)	Permittivity (real part)	
21-40	SIGMA (M)	Electrical conductivity [1/(ohm·m)]	
Card 5 (If	FLAGC = 13 or 14: Skip to	Card 6 if IFLAG = 13 or 14)	
1-10	NTABC (M)	Number of magnetization tables (If IFLAG = 13)	
		Number of temperature tables (If IFLAG = 14)	
Card 6 (If IFLAGC = 13 or 14: Skip to Card 7 if IFLAG = 13 or 14. Repeat up to the number of NTABC (M).)			
1-10	IP	Order number	
11-30	FREQ (IP, M) / TEMP (I	IP, M)	
		Frequency [Hz] (If IFLAGC = 13)	
		Temperature [Celsius] (If IFLAGC = 14)	
31-50	EPS_R (IP, M)	Permittivity (real part)	
51-70	EPS_I (IP, M)	Permittivity (imaginary part)	

I-9. Scalar Potential Boundary

Card 1

1-10 NSCPOT =0: Unused

I-10. Perfect Electric Boundary (PEC)

Card 1

1-10 PECGRP Number of element face groups which per-

fect electric boundary conditions are to be set

* When PECGRP > 0, input data, and repeat the following input sequence up to the number of PECGRP.

Card 2

1-10 PECID Group ID

11-20 NUMPEC Number of element faces in group which per-

fect electric boundary conditions are to be set

Card 3 (Repeat up to the number of NUMPEC)

1-10 I Order ID

11-20 NEDBC (I) Element ID

21-30 NFDBC (I) Element face ID

I-11. Perfect Magnetic Boundary (Natural Boundary)

Card 1

1-10 PMCGRP Number of element face groups which mag-

netic wall conditions are to be set

* When PECGRP > 0, input data, and repeat the following input sequence up to the number of PECGRP.

Card 2

1-10 PMCID Group ID

Card 3

1-10 NUMPMC Number of element faces in group which

magnetic wall

conditions are to be set

Card 4 (Repeat up to the number of NUMPMC)

1-10 I Order ID 11-20 NEDBM (I) Element ID

21-30 NFDBM (I) Element face ID

I-12. Periodic Boundary

1-10 NPERIGRP Number of periodic boundary condition groups

* When NPERIGRP > 0, input data, and repeat the following input sequence up to the number of NPERIGRP.

Card	2
Card	_

1-10	NPERI	Number of node pairs on which periodic boundary
		conditions are to be imposed
11-20	ISYM2	>0: Periodic boundary
		=+1: Rotational symmetry
		=+2: Translational symmetry
		<0: Anti-periodic boundary
		=-1: Rotational symmetry
		=-2: Translational symmetry

Card 3

Card 3		
1-20	PX	X-coordinate of a point on rotation axis (See Note 1)
21-40	PY	Y-coordinate of a point on rotation axis (See Note 1)
41-60	PZ	Z-coordinate of a point on rotation axis (See Note 1)

Card 4

ard 4			
(If ISYN	$M2 \mid = 1$)		
1-20	AVX	X-component of rotation-axis vector	
21-40	AVY	Y-component of rotation-axis vector	
41-60	AVZ	Z-component of rotation-axis vector	
61-80	ANGL	Rotation angle [deg]	
(If ISYM2 = 2)			
1-20	AVX	X-component of translation-direction vector	
21-40	AVY	Y-component of translation-direction vector	
41-60	AVZ	Z-component of translation-direction vector	
61-80	ANGL	Translation distance [m]	

Chapter I. Solver Data File Format (Electromagnetic Wave Frequency Response Analysis)

Card 5

1-20	DUMY	=0: Unused
21-40	DUMY	=0: Unused
41-60	DUMY	=0: Unused
61-80	DUMY	=0: Unused

Card 6 (Repeat up to the number of NPERI)

1-20 N Order number

21-40 NCYC1 (N) Node on the first periodic boundary (See

Note 2)

Note 1: For translational symmetry, this data is neglected.

Note 2: Corresponding node should be found on the second periodic boundary.

I-13. Transparent Boundary (Absorbing Boundary)

Card 1

1-10	NGRPAT	Number of groups
11-20	MXNGAT	=0: Unused
21-30	MXTPA	=0: Unused
31-41		=0: Unused

^{*} When NGRPAT > 0, input data, and repeat the following input sequence up to the number of NGRPAT.

Card 2

1-10	N	Group ID
		1

11-30 PRCNT (N) Propagation constant

Card 3

1-10 NGAT (N) Number of element faces in group

Card 4 (Repeat up to the number of NGAT (I))

1-10	I	Order ID
11-20	NEAT (I)	Element ID
21-30	NFAT (I)	Element face ID

I-14. PML Boundary

Card 1

1-10 PMLGRP Number of groups

* When PMLGRP > 0, input data, and repeat the following input sequence up to the number of PMLGRP.

Card 2

1-10	PMLID	Group ID
11-20	PMLX	Flag for absorbing in X-axis direction
		=0: Not absorbed
		=1: Absorbed
21-30	PMLY	Flag for absorbing in Y-axis direction
		=0: Not absorbed
		=1: Absorbed
31-40	PMLZ	Flag for absorbing in Z-axis direction
		=0: Not absorbed
		=1: Absorbed

Card 3

1-20	ALPHA	Absorption parameter α at PML boundary
21-40	BETA	Absorption parameter β at PML boundary
41-50	MTOUT	PML region output flag
		=0: Not output
		=1: Output

Card 4

1-10 NUMPML Number of element face groups which symmetry boundary conditions are to be set

Card 5 (Repeat up to the number of NUMPML.)

1-10	I	Order ID
11-20	NEPML (I)	Element ID
21-30	NFPML (I)	Element face ID

I-15. Surface Impedance Boundary

Card 1

1-10 NSIBC Number of groups

* When NSIBC > 0, input data, and repeat the following input sequence up to the number of NSIBC.

Card 2

1-10 ISIBC Group ID

11-20 SIBCTYPE (ISIBC) Type of specifying surface impedance

=0: Specify by relative permeability and electrical conductivity

=1: Specify by surface impedance

(If specification type = 0)

21-40 MU (ISIBC) Relative permeability

41-60 SIGMA (ISIBC) Electrical conductivity [1/(ohm·m)]

(If specification type = 1)

21-40 SIMP_R (ISIBC) Surface impedance (real part)

41-60 SIMP_I (ISIBC) Surface impedance (imaginary part)

Card 3

1-10 SFACE (ISBC) Number of element faces in group

Card 4 (Repeat up to the number of SPACE (SIBC).)

1-10 I Order ID
11-20 SFACE_E (I, ISIBC) Element ID
21-30 SFACE_F (I, ISIBC) Face ID

I-16. In/Out Port

Card 1

1-10 NGRPIN Number of groups 11-20 MXNGIN =0: Unused

Card 2

	1-10	N	Group ID
	11-20	INCTYPE	Incidence mode flag
			=0: Plane wave
			=1: User subroutine
			=2: Modal port
	21-30	MODIN (N)	Mode number
(If	incidence	e mode flag = 0)	
			=-1: Wave polarized in X-axis direction
			=-2: Wave polarized in Y-axis direction
			=-3: Wave polarized in Z-axis direction
(If	(If incidence mode flag = 1)		
			(Use as the number of user subroutine func-
			tion.)
(If	incidence	mode flag = 2)	
			=-1: Rectangular waveguide
			=-2: Cylindrical coaxial guide
			=-3: Microstrip line
	31-50	BETA (N)	Propagation constant
	51-70	AMPIN (N)	Intensity [W]
	71-80	EXCT	Input port flag
			=0: Not use for input port
			=1: Use for input port

^{*} When NGRPIN > 0, input data, and repeat the following input sequence up to the number of NGRPIN.

Chapter I. Solver Data File Format (Electromagnetic Wave Frequency Response Analysis)

(Input only when incidence mode flag = 2.)

Card 2-1

(If mode nu	ımber = -1)	
1-20	PX1	Origin of rectangular waveguide (lower left)
		(X-coordinate)
21-40	PY1	Origin of rectangular waveguide (lower left)
		(Y-coordinate)
41-60	PZ1	Origin of rectangular waveguide (lower left)
		(Z-coordinate)
(If mode nu	ımber = -2)	
1-20	PX1	Center of cylindrical coaxial cable (X-coordinate)
21-40	PY1	Center of cylindrical coaxial cable (Y-coordinate)
41-60	PZ1	Center of cylindrical coaxial cable (Z-coordinate)
(If mode nu	ımber = -3)	
1-20	PX1	A point on microstrip line (X-coordinate)
21-40	PY1	A point on microstrip line (Y-coordinate)
41-60	PZ1	A point on microstrip line (Z-coordinate)
(Input only	when incidence mode flag =	= 2.)
Card 2-2		
(If mode nu	ımber = -1)	
1-20	PX2	A point (1) of rectangular waveguide (width direction) (X-coordinate)
21-40	PY2	A point (1) of rectangular waveguide (width direction) (Y-coordinate)
41-60	PZ2	A point (1) of rectangular waveguide (width direction) (Z-coordinate)
(If mode nu	ımber = -2)	
1-20	PX2	A point on the inner circle of cylindrical coaxial cable (X-coordinate)

21-40	PY2	A point on the inner circle of cylindrical coaxial cable (Y-coordinate)
41-60	PZ2	A point on the inner circle of cylindrical coaxial cable (Z-coordinate)
(If mode nu	ımber = -3)	
1-20	PX2	Another point (2) on microstrip line (X-coordinate)
21-40	PY2	Another point (2) on microstrip line (Y-coordinate)
41-60	PZ2	Another point (2) on microstrip line (Z-coordinate)
(Input only	when incidence mode flag =	= 2.)
Card 2-3		
(If mode nu	ımber = -1)	
1-20	PX3	Another point (2) of rectangular waveguide
		(height direction) (X-coordinate)
21-40	PY3	Another point (2) of rectangular waveguide
		(height direction) (Y-coordinate)
41-60	PZ3	A point (1) of rectangular waveguide
		(height direction) (Z-coordinate)
(If mode n	umber = -2)	
1-20	PX3	A point on the outer circle of cylindrical coaxial cable (X-coordinate)
21-40	PY3	A point on the outer circle of cylindrical coaxial cable (Y-coordinate)
41-60	PZ3	A point on the outer circle of cylindrical coaxial cable (Z-coordinate)
(If mode nu	ımber = -3)	
1-20	PX3	A point on ground plane (X-coordinate)
21-40	PY3	A point on ground plane (Y-coordinate)
41-60	PZ3	A point on ground plane (Z-coordinate)

Chapter I. Solver Data File Format (Electromagnetic Wave Frequency Response Analysis)

(Input only when incidence mode flag = 2.)

Card 2-4

(If mode number = -1, -2)

1-10 TEM Mode number of TEM mode

(Use only when mode number = -2)

11-20 TE Mode number of TE mode

21-30 TM Mode number of TM mode

(If mode number = -3)

1-10 MATID Dielectric layer material ID

11-20 MATNAME Dielectric layer material name

Card 3

1-10 IELEM Number of element faces in group

Card 4 (Repeat up to the number of IELEM.)

1-10 I Order number

11-20 NGIN (I) Element ID

21-30 NFIN (I) Element face ID

I-17. Lumped Constant Component

Card 1		
1-10	NG	Number of groups
11-20	DUMY	=0: Unused
Card 2		
1-10	SID	Order number
11-20	CTYPE (SID)	Component type
		=0: Impedance [ohm]
		=1: Resistance [ohm]
		=2: Coil [H]
		=3: Condenser [F]
21-40	ZR (SID)	Lumped constant component (real part)
41- 1	ZI (SID)	Lumped constant component (imaginary
		part)
Card 3		
1-10	NE (SID)	Number of elements composing a lumped
		constant component
Card 4		
1-10	I (SID)	Order ID
11-20	E (SID, I)	Element ID

I-18. External Field (Line)

*See Note 1

Card 1

1-10	DUMY	=0: Unused
11-20	DUMY	=0: Unused

Card 2

1-10	NGRPD	Number of groups
11-20	MXNGED	=0: Unused
21-30	MXTBLD	=0: Unused

^{*} When NGRPD > 0, input data, and repeat the following input sequence up to the number of NGRPD.

Card 3

1-10	IGRP	Group ID
11-20	NUMGD (IGRP)	Number of elements in group
21-30	NTBLD (IGRP)	Number of current density tables in group
31-40	ICHCD (IGRP)	=1: Unused
41-50	INDEX (IGRP)	=1: Unused
51-60	ISDFG (IGRP)	=0: Unused
61-70	NCYTM (IGRP)	=1: Unused

Card 4 (Repeat up to the number of NTBLD (IGRP))

1-20	TBLD (I, IGRP)	Frequency [Hz]
21-40	TBLD (I+1,IGRP)	Current (real part) [A]
41-60	TBLD (I+2,IGRP)	Current (imaginary part) [A]

Card 5 (Repeat up to the number of NUMGD (IGRP))

1-10	I	Order ID
11-20	NE (I,IGRP)	Element ID
21-40	DVX	=0: Unused
41-60	DVY	=0: Unused
61-80	DVZ	=0: Unused

Note 1: These items of data can be set only for beam element.

I-19. Voltage/Current Excitation

*See Note 1

Card 1

1-10	NGRP	Number of groups
11-20	MXNGE	=0: Unused
21-30	MXTBL	=0: Unused

^{*} When NGRP > 0, input data, and repeat the following input sequence up to the number of NGRP.

Card 2

1-10	IGRP	Group ID
11-20	IDUMMY	=0: Unused

21-30 ITECT (IGRP) Voltage/Current identification flag

=0: Voltage =1: Current

Card 3

1-10 NTBLD (IGRP) Number of current tables in group

Card 4 (Repeat up to the number of NTBLD (IGRP))

1-10	I	Order ID
11-30	EXCTF (I, N)	Frequency [Hz]
31-50	EXCTR (I, N)	Electric filed (real part) [V/m]
51-70	EXCTI (I, N)	Electric filed (imaginary part) [V/m]

Card 5

1-10 NUMGE (IGRP) Number of elements in group

Card 6 (Repeat up to the number of NTBLD (IGRP))

1-10	I	Order ID
11-20	NE (I, IGRP)	Element ID

Note 1: These items of data can be set only for beam element.

I-20. Laser Beam

Card 1				
1-10	NLBC	Number of laser beam condition settings (= 0, 1)		
11-20	DUMMY			
Card 2				
1-10	ВТҮР	Beam type		
		= 0: Specifying beam according to scalar field theory		
		= 1: Specifying beam according to vector field theory		
		= 2: Use data file		
Card 3				
1-20	POX	X-component of polarized wave vector		
21-40	POY	Y-component of polarized wave vector		
41-60	POZ	Z-component of polarized wave vector		
Card 4				
1-20	DIRX	X-component of propagation vector		
21-40	DIRY	Y-component of propagation vector		
41-60	DIRZ	Z-component of propagation vector		
Card 5				
1-20	OX	X-coordinate of focal point		
21-40	OY	Y-coordinate of focal point		
41-60	OZ	Z-coordinate of focal point		
Card 6				
1-10	STYP	Spot size selection flag		
		= 0: Specify spot size		
		= 1: Specify numerical aperture		
11-30	SSZ	Spot size or open area ratio		
Card 7				
1-10	ITYP	Intensity type		
		= 0: Specify by output power		

41-60 DUMMY

			= 1: Specify by electric field intensity
	11-30	IVL	Intensity value
C	Card 8		
	1-80	FILENAME	External file name
C	Card 9		
	1-20	DUMMY	
	21-40	DUMMY	
	41-60	DUMMY	
C	Card 10		
	1-20	DUMMY	
	21-40	DUMMY	
	41-60	DUMMY	
C	Card 11		
	1-20	DUMMY	
	21-40	DUMMY	

I-21. Plasma Calculation

Card 1			
	1-10 NPLS Plasma Condition (=1)		Plasma Condition (=1)
*F	Repeat NI	PLS for the following	
Cá	ard 2		
	1-10	MAXITR	Plasma calculation maximum iteration
	11-30	PLSEPS	Plasma calculation conversion tolerance
	31-40	IPLOT	Initial plasma density plot file flag
Ca	ard 3		
	1-10	NPLSM	Plasma calculation region elements
Ca	ard 4		
	1-10	N	Order ID
	11-20	IPLSM(N)	Element ID
Card 5			
	1-10	NPLSG	Plasma generation region elements
Ca	ard 6		
	1-10	N	Order ID
	11-20	IPLSG(N)	Element ID
Card 7			
	1-10	NPLSN	Ungenerated plasma region elements
Card 8			
	1-10	N	Order ID
	11-20	IPLSN(N)	Element ID

I-22. External Field

Card 1

1-10 BEXT External field use flag

=0: Not use

=1: Use

11-20 LUEXT User subroutine extusr use flag

=0: Not use

=1: Use

Card 2

1-20	PX	X-component of polarized wave vector [V/m]
21-40	PY	Y-component of polarized wave vector [V/m]
41-60	PZ	Z-component of polarized wave vector [V/m]

Card 3

1-20	DIRX	X-component of direction vector
21-40	DIRY	Y-component of direction vector
41-60	DIRZ	Z-component of direction vector

I-23. Equivalent Current Calculation Surface

Card 1

1-10 NOBSER Number of element faces to which calculation surface is to be set

Card 2

1-10	N	Order ID
11-20	NEDOB (N)	Element ID
21-30	NFDOB (N)	Face ID

^{*} When BEXT = 1, input the items of the following cards.

^{*} When NOBSER > 0, input data, and repeat the following input sequence to the number of NOBSER.

I-24. Transmitted Power Calculation

Card 1

1-10 NGRPF Number of groups of which transmitted

power is to be calculated

11-20 MAXNGF =0: Unused

* When NGROUP > 0, input data, and repeat the following input sequence up to the number of NGRPF.

Card 2

1-10 IGRP Group ID

11-20 NUMGE (IGRP) Number of element faces in group

Card 3 (Repeat up to the number of NUMGE (IGRP).)

 1-10
 I
 Order ID

 11-20
 NGE (I, NG)
 Element ID

 21-30
 NGF (I, NG)
 Face ID

I-25. Transmitted Current Calculation

Card 1

1-10 NGRPCUR Number of beam element groups for which

transmitted current is calculated

Card 2

1-10 IGRP Group ID

11-20 NUME (IGRP) Number of elements in group

Card 3 (Repeat up to the number of NUME (IGRP))

1-10 I Order ID
11-20 NE(I) Element ID

^{*} When NGRPCUR > 0, input data, and repeat the following input sequence up to the number of NGRPCUR.

I-26. Voltage Calculation

Card 1

1-10 NGRPVOL Number of beam element groups for which

voltage is to be calculated

* When NGRPVOL > 0, input data, and repeat the following input sequence up to the number of NGRPVOL.

Card 2

1-10 IGRP Group ID

11-20 NUME (IGRP) Number of elements in group

Card 3 (Repeat up to the number of NUME (IGRP))

1-10 I Order ID

11-20 NE (I) Element ID

I-27. Step Data

Card 1

1-10 IDUMMY =0: Unused 11-20 IDUMMY =0: Unused

Card 2

1-10 NDATA Number of step data11-20 NDIV Number of divisions

21-30 ST Sweep type

=0: Automatic

=1: Manual

Card 3 (Repeat up to the number of NDATA)

1-20 FREQ Frequency [Hz] 21-30 ITEMA =0: Unused

Card 4

1-10 MH Maximum number of hops
 11-20 ME Maximum expansion number
 21-30 S Expansion data save flag

=0: Not save

=1: Save

Appendix J. PLOT File Format (Electromagnetic Wave Frequency Response Analysis)

J-1. Analysis Control

Card 1			
1-80	HED	Title	
Card 2			
71-75	ID_SLV	Solver ID	
		=9: Electromagnetic Wave Frequency Response Analysis (WV)	
76-80	IVER	Version number (= 60)	
Card 3			
1-5	IDYN	=0: Unused	
6-10	NSTEP	Number of analysis steps	
16-20	NEWTON	=0: Unused	
21-30	EPSITE	=0: Unused	
31-35	IXYZ	=1: Unused	
Card 4			
1-10	N_CNT2	=5	
Card 5			
1-10	MATRIX_SOLVER	Matrix solver type	
		=0: Direct method	
		=1: Iterative Method	
		=2: GCR	
11-20	ITERATOVE_TYPE	Linear solver type	
		=0: Conjugate gradient method	
		=1: GCR	
		=2: GMRES	
21-30	PRECONDITIONER	Matrix preconditioner	
		=0: No preconditioner	
		=1: SSOR	

Card 6				
1-20)	ACCEL	Accel parameter for ICCG	
21-4	í0	EPSPCG	Tolerance for ICCG	
41-6	60	PCGMAX	Calculation aborting tolerance for ICCG	
61-7	70	MAXPCG	Max iteration for ICCG	
71-8	30	RESTART	Restart parameter when using the GCR and GMRES methods	
Card 7				
1-10)	MICCG	=0: Unused	
11-2	20	MICGRS	=0: Unused	
21-3	30	MPHAI	=0: Unused	
31-4	í0	MMTRIX	=0: Unused	
Card 8				
1-10)	MULTIGRID_LEVEL	Usage level used in the Multigrid method	
11-2	20	MULTIGRID_SMOOTI	HSmoothing parameter used in the Multigrid method	
21-3	30	MULTIGRID_TYPE	Cycle type used in the Multigrid method	
			=0: V cycle	
			=1: W cycle	
Card 9				
1-10)	ADAPTIVE_LEVEL	Adaptive maximum division level	
11-3	30	ADAPTIVE_ERROR	Adaptive acceptable error range	

J-2. Control Output Items

Card 1

Set the flag to 1 for output, and to 0 for disabling output 1-5 IO_EL Electric field (element data) output flag 6-10 IO_MG Magnetic field (element data) output flag 11-15 IO_CR Current density (element data) output flag 16-20 IO_JL Joule loss density (element data) output flag IO_EN Stored energy (element data) output flag 21-25 (Unused) 26-30 **ISCAT** Only scattering field output flag (under external field conditions)

flag
36-40 IO_ERROR Analysis error (element data) output flag

Magnetic flux density (element data) output

J-3. Control Variables for Mesh Generator

IO_FLUX

31-35

Card 1		
1-10	NLINE	=1
Card 2		
1-10	MG_ON	=0: Unused
11-20	IBC_XY	=0: Unused
21-30	IBC_YZ	=0: Unused
31-40	IBC_ZX	=0: Unused

J-4. Step Control

Card 1

1-10 NSTPTP =0: Unused 11-20 NSTPFG =0: Unused

Card 2

1-10 NICGG =0: Unused 11-20 MXICGP =0: Unused

J-5. Control Output Interval

Card 1

1-10 N_OUT =0: Unused

J-6. Coordinate Data

Card 1

1-10 NUMNP Total nodes

Card 2 (Repeat up to the number of NUMNP.)

1-10 I Order ID 11-20 N Node ID

 $\begin{array}{cccc} 21\text{-}40 & X \ (N) & X\text{-coordinate } [m] \\ 41\text{-}60 & Y \ (N) & Y\text{-coordinate } [m] \\ 61\text{-}80 & Z \ (N) & Z\text{-coordinate } [m] \end{array}$

J-7. Element Data

Card 1

1-8	NUMEL	Total elements
9-10	MAXNOD	=0: Unused
11-15	NINT	=0: Unused

Card 2 (Repeat up to the number of NUMEL)

0	and 2 (Nepeat up to the number of Notwice)		
	1-8	M	Element ID
	9-11	IEL	Total nodes
	12-14	MTYP	Material ID
	15-16	ETYP	Element type
			=1: Solid hexahedron element (first coordinate)
			=2: Solid hexahedron element (second coordinate)
			=3: Solid tetrahedron element (first coordinate)

=4: Solid tetrahedron element (second coordinate)

=5: Solid pentahedron element (first coordinate)

=6: Solid pentahedron element (second coordinate)

=7: Shell element (first coordinate)

=8: Shell element (second coordinate)

=9: Beam element (first coordinate)

=10: Beam element (second coordinate)

17-24	NOD (1)	Node number
25-32	NOD (2)	Node number
33-40	NOD (3)	Node number
31-48	NOD (4)	Node number
49-56	NOD (5)	Node number
57-64	NOD (6)	Node number
65-72	NOD (7)	Node number
73-80	NOD (8)	Node number

J-8. Analysis Results

J-8-1. Control Data

1-80	HEADER	Header CONTRO_DATA Item number 3
1-10	ISTEP	Analysis step number
11-30	FREQ	Frequency

J-8-2. Magnetic Field

(Element Data, Complex Numbers, and Vector Values)

1-80	HEADER	Header MAGNETIC_FIELD Item number
		19508
1-10	NUM	Number of evaluation elements

^{*} Repeat the following input sequence up to the number of evaluation elements.

1-10	I	Order ID
11-20	NP (I)	Element ID
21-40	HX (I)	X-component of magnetic field (real part)
41-60	HY (I)	Y-component of magnetic field (real part)
61-80	HZ (I)	Z-component of magnetic field (real part)
81-100	HX (I)	X-component of magnetic field (imaginary part)
101-120	HY (I)	Y-component of magnetic field (imaginary part)
121-140	HZ (I)	Z-component of magnetic field (imaginary part)

J-8-3. Electric Field

(Element Data, Complex Numbers, and Vector Values)

1-80	HEADER	Header ELECTRIC_FIELD Item number
		19505
1-10	NUM	Number of evaluation elements

^{*} Repeat the following input sequence up to the number of evaluation elements.

1-10	I	Element ID
21-40	EX (I)	X-component of electric field (real part)
41-60	EY (I)	Y-component of electric field (real part)
61-80	EZ (I)	Z-component of electric field (real part)

Chapter J. PLOT File Format (Electromagnetic Wave Frequency Response Analysis)

81-100 EX (I)	X-component of electric field (imaginary
	part)
101-120 EY (I)	Y-component of electric field (imaginary
	part)
121-140 EZ (I)	Z-component of electric field (imaginary
	part)

J-8-4. Current Density

(Element Data, Complex Numbers, and Vector Values)

1-80	HEADER	Header EDDY_CURRENT_DENSITY
		Item number 19502
1-10	NUM	Number of evaluation elements

* Repeat the following input sequence up to the number of evaluation elements.

1-10	I	Order ID
11-20	NP (I)	Element ID
21-40	JX (I)	X-component of current density (real part)
41-60	JY (I)	Y-component of current density (real part)
61-80	JZ (I)	Z-component of current density (real part)
81-100	JX (I)	X-component of current density (imaginary part)
101-120	0 JY (I)	Y-component of current density (imaginary part)
121-140	0 JZ (I)	Z-component of current density (imaginary part)

J-8-5. Joule Loss Density

(Element Data, Real Numbers, and Scalar Values)

1-80	HEADER	Header CURRENT_LOSS
		Item number 7501
1-10	NUM	Number of evaluation elements

^{*} Repeat the following input sequence up to the number of evaluation elements.

1-10	I	Order ID
11-20	NE	Element ID
21-40	LOD (1, NE)	Joule loss density

J-8-6. SAR

(Element Data, Real Numbers, and Scalar Values)

1-80 HEADER Header SAR

Item number 7603

1-10 NUM Number of evaluation elements

* Repeat the following input sequence up to the number of evaluation elements.

1-10 I Order ID

11-20 NE Element ID

21-40 LOD (1, NE) SAR

J-8-7. Hysteresis Loss Density

(Element Data, Real Numbers, and Scalar Values)

1-80 HEADER Header HYSTERESIS_LOSS

Item number 7602

1-10 NUM Number of evaluation elements

* Repeat the following input sequence up to the number of evaluation elements.

1-10 I Order ID

11-20 NE Element ID

21-40 LOH (1, NE) Hysteresis loss density

J-8-8. Joule Loss

(Step Data, Real Numbers, and Scalar Values)

1-80 HEADER Header JOULE_LOSS_PER_GROUP

Item number 501

1-10 NLOSS Total number of Joule loss calculation groups

* Repeat the following input sequence up to the number of groups.

1-10 IGL Group ID 11-30 TLOSS (IGL) Joule loss

31-50 Unused

J-8-9. Hysteresis Loss

(Step Data, Real Numbers, and Scalar Values)

1-80 HEADER Header

HYSTERESIS_LOSS_PER_GROUP

Item number 551

1-10 NLOSS Total number of Hysteresis loss calculation

groups

1-10 IGL Group ID
11-30 TLOSS_H (IGL) Hysteresis loss
31-50 Unused

J-8-10. Stored Energy

(Step Data, Real Numbers, and Scalar Values)

1-80 HEADER Header STORED_ENERGY Item number

801

1-10 NUMGT Total number of energy calculation groups

(Number of material properties + 1)

1-10 IGT Group ID 11-30 ENE (IGT) Energy

(The content of the NUMGT item is the

sum of energies listed above.)

^{*} Repeat the following input sequence up to the number of groups.

^{*} Repeat the following input sequence up to the number of groups.

J-8-11. Transmitted Power

(Step Data, Complex Numbers, and Scalar Values)

1 00 11L/1D L10 11cude 1 L011_G100 01_10 11cm 11dm 10cm	1-80	HEADER	Header FLUX_GROUP_R Item number
---	------	--------	---------------------------------

30002

1-10 NUGRP Number of transmitted power groups

* Repeat the following input sequence up to the number of groups.

1-10	IGT	Group ID
1-10	101	Group ID

11-30 FLUX_R (IGT) Transmitted power (real part)

1-80 HEADER Header FLUX_GROUP_I

Item number 30003

1-10 NUGRP Total number of transmitted power groups

* Repeat the following input sequence up to the number of groups.

1-10 IGT Group ID

11-30 FLUX_I (IGT) Transmitted power (imaginary part)

J-8-12. Transmitted Current

(Step Data, Complex Numbers, and Scalar Values)

1 00 TIEMBER TREASER CORRECT CONTENT	1-80	HEADER	Header CURRENT_	_GROUP_R
--------------------------------------	------	--------	-----------------	----------

Item number 30004

1-10 NUGRP Total number of transmitted current groups

* Repeat the following input sequence up to the number of groups.

1-10	IGT	Group ID
11-30	CURRENT_R (IGT)	Transmitted current (real part)
1-80	HEADER	Header CURRENT_GROUP_I
		Item number 30005

rem namet 50005

1-10 NUGRP Number of transmitted current groups

* Repeat the following input sequence up to the number of groups.

1-10 IGT Group ID

11-30 CURRENT_I (IGT) Transmitted current (imaginary part)

J-8-13. Voltage

(Step Data, Complex Numbers, and Scalar Values)

1-80 HEADER Header VOLTEGE_GROUP_R

Item number 30006

1-10 NUGRP Total number of voltage groups

* Repeat the following input sequence up to the number of groups.

1-10	IGT	Group ID
11-30	VOLTAGE_R (IGT)	Voltage (real part)
1-80	HEADER	Header VOLTAGE_GROUP_I
		Item number 30007
1-10	NUGRP	Number of voltage groups

^{*} Repeat the following input sequence up to the number of groups.

1-10 IGT Group ID

11-30 VOLTAGE_I (IGT) Voltage (imaginary part)

J-8-14. Magnetic Flux Density

(Element Data, Complex Numbers, and Scalar Values)

1-80	HEADER	Header MAGNETIC_FLUX_DENSITY
		Item number 19501
1-10	NUMED	Number of elements which magnetic flux
		density is to be output

* Repeat the following input sequence up to the number of evaluation elements

1-10	I	Order ID
11-20	NE	Element ID
21-40	JX (I)	X-component of magnetic flux density (real part)
41-60	JY (I)	Y-component of magnetic flux density (real part)
61-80	JZ (I)	Z-component of magnetic flux density (real part)
81-100	JX (I)	X-component of magnetic flux density (imaginary part)
101-120) JY (I)	Y-component of magnetic flux density (imaginary part)
121-140	JZ (I)	Z-component of magnetic flux density (imaginary part)

J-8-15. Analysis Error

(Element Data, Real Values, and Scalar Values)

1-80	HEADER	ERROR_INDICATOR Item number 6503
1-10	NUMED	Number of elements which analysis error is
		to be output

* Repeat the following input sequence up to the number of evaluation elements.

1-10	I	Order ID
11-20	NE	Element ID
21-40	SE (1, NE)	Analysis error

J-8-16. Surface Current Density

(Element Data, Complex Numbers, and Vector Values)

1-80 HEADER Header SURFACE_CURRENTS

Item number 19510

1-10 NUM Total number of evaluation elements

* Repeat the following input sequence up to the number of evaluation elements.

1-10 I	Order ID
11-20 NP (I)	Element ID
21-40 JX (I)	X-component of current density (real part)
41-60 JY (I)	Y-component of current density (real part)
61-80 JZ (I)	Z-component of current density (real part)
81-100 JX (I)	X-component of current density (imaginary part)
101-120 JY (I)	Y-component of current density (imaginary part)
121-140 JZ (I)	Z-component of current density (imaginary part)

J-8-17. Plasma Density

(Element Data, Real Values, and Scalar Values)

1-80	HEADER	Header PLASMA_DENSITY
		Item number 7601
1-10	NUM	Total number of evaluation elements

^{*} Repeat the following input sequence up to the number of evaluation elements.

1-10	Ι	Order ID
11-20	NE	Element ID
21-40	PD(NE)	Plasma density

J-8-18. Quality Factor

(Step Data, Real Values, and Scalar Values)

1-80 HEADER Header QUALITY_FACTOR

Item number 30020

1-10 NPGRP Total number of plasma calculation Region

* Repeat the following input sequence up to the number of groups.

1-10 IGL Group ID

11-30 QF(IGL) Quality factor

Appendix K. JCF File Format (Structural Analysis) for JMAG-Designer

This chapter describes various parameters that can be edited using a JCF file.

K-1. Overview

A JCF file can be modified without starting JMAG by using a file access library.

▶▶ Reference

For more information about the editing tools, see P.1 "Chapter 15. Editing a JCF File (Simple FHI)".

Each parameter has a type when gaining access to a JCF file through a file access library. There are the following types.

- string means character line type
- int means integer type
- double means real number type
- *var* means variable type
- complex means complex number type
- *point* meams 3 component type configured from (x, y, z).

In gaining access to a JCF file, specify a parameter name in the function of a file access library and read or set the value.

The parameters of a JCF file are described on the next and later pages.

MEMO The items that cannot be edited in a JCF file are as follows:

- Target (Element ID, etc.)
- Type of item to be applied (Element face or nodal point, etc.)
- Contents of point sequence data used under conditions or material characteristics

K-2. Block List

This chapter describes the following blocks.

Block name		Description
control_paramete	common	Controls parameters related to the entire analy-
rs	common	sis.(P. 258)
	Control	Controls parameters for analysis control (study
	Control	properties).(P. 259)
	Step	Controls parameters for frequency control.(P.
	эсер	260)
	StructuralDamp-	Controls parameters for modal damping for a
	ing	study property.(P. 260)
	PressureLoad	Controls parameters for pressure load condi-
	TressureLoad	tion.(P. 261)
	VolumeLoad	Controls parameters for volume load condi-
	VolumeLoad	tion.(P. 261)
	AccelerationLoad	Controls parameters for acceleration load condi-
	7 icceleration Dodd	tion.(P. 261)
	CentrifugalForce	Controls parameters for centrifugal force condi-
	Centinugan orec	tion.(P. 262)
	Electromagnetic-	Controls parameters for electromagnetic force
	Force	condition.(P. 262)
condition_data	Temperature-	Manages parameters for temperature load condi-
condition_data	Load	tion.(P. 262)
	PRESS	Controls parameters for press fit condition.(P.
		263)
	Displacement-	Controls parameters for displacement condi-
	Constraint	tion.(P. 263)
	RigidBody	Controls parameters for rigid body condition.(P.
		263)
	LockingCon-	Controls parameters for constraint condition.(P.
	straint	264)
	CyclicBoundary	Controls parameters for periodic boundary con-
	,	dition.(P. 264)
	Adhesion	Controls parameters for adhesion condition.(P.
	1 1411001011	264)
	Spring	Controls parameters for spring condition.(P.
	1 0	264)
	CONM2	Controls parameters for concentrated mass con-
		dition.(P. 265)

Chapter K. JCF File Format (Structural Analysis) for JMAG-Designer

Block	name	Description
	ACOUST	Controls parameters for sound pressure condi-
	ACOUST	tion.(P. 265)
D .D .		Controls parameter for materials of each part.(P.
	PartProperty	266)
material_data	MATERIAL	Controls parameters for material.(P. 267)

K-3. Basic Information of Analysis (control_parameters)

• common

The module 'common' is used to specify common items in all types of analysis in JMAG-Designer.

Item name	Parameter name	Туре	Description
Analysis name	title	string	
JMAG version number	version	int	
Solver ID	solver_id	int	=31: 3D Static Analysis (DS) =32: 2D Static Analysis (DS) =34: 3D frequency analysis (DS) =35: 2D frequency analysis (DS) =41: 3D real eigen mode analysis (DS) =42: 2D real eigen mode analysis (DS)
Unit label	unit_label	string	

K-4. Setting Conditions (condition_data)

• Control

The Control block specifies each item for the study properties.

Item name	Parameter name	Туре	Description
			=0: Linear static analysis (101)
Analysis type	analysis_type	int	=1: Real eigen mode analysis (103)
	, , , , ,		=2: Frequency analysis (111)
Dimension of analy-	a 1: :		=0: 3D
sis model	flg_dimension	int	=1: 2D
Number of eigen	number_of_ei	int	
values	gen	int	
Flag for using second	flg_order	int	=1: Second element
elements	ng_order	IIIt	=0: First element
Convergence toler-	subspace_toler	double	
ance	ance	dodbie	
Maximum number	subspace_max	int	
of iterations	_iteration	1111	
Refers to eigenmode			=0: Do not refer to eigenmode analysis
analysis result	flg_restart	int	result
			=1: Refer to eigenmode analysis
JPLOT file of eigen-			
mode analysis that is	eigen_file	string	
referred	1.6.6		
Shift frequency	shift_frequenc	double	
	У		0.01
Calculation type	matrix_type	int	=0: Plane stress
	,,		=1: Plane strain
Flag for output item:	flg_io_stress	int	=0: Do not export
stress			=1: Export
Flag for output item:	flg_io_strain	int	=0: Do not export
strain			=1: Export
Flag for output item:	flg_io_force	int	=0: Do not export
load	<u> </u>		=1: Export
Flag for output item:	flg_io_velocit	int	=0: Do not export
velocity	y 1		=1: Export
Flag for output item:	flg_io_acceler	int	=0: Do not export
acceleration	ation		=1: Export
Flag for output item:	flg_io_eigenve	int	=0: Do not export
eigen vector	ntor		=1: Export

• Step

The Step block specifies each item of step control.

Item name	Parameter name	Туре	Description
			=0: Interval
Step type	step_type	int	=1: Regular intervals
			=2: Point sequence
Number of steps	num_analysis	int	
	_step	IIIt	
Interval	increment	double	Specify if step_type=0.
Initial value	start_value	double	Specify if step_type=1.
End value	end_value	double	Specify if step_type=1.
Number of divisions	step_division	int	Specify if step_type=1.

• StructuralDamping

Item name	Parameter name	Туре	Description
	type	int	=0:
	type	1111	=1:
	constant_dampi	double	
	ng		

• ConcentratedLoad

In ConcentratedLoad, the items of concentrated load conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Type	type	int	=0: Constant
Турс	type	1111	=1: Table
Load (amplitude) (N)	amplitude	double	Specify if type=0
Phase (deg)	phase	double	Specify if type=0
Load direction	direction vector	double	

• PressureLoad

PressureLoad block specifies each item for the pressure load condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Load (amplitude) [Pa]	amplitude	double	
Phase [deg]	phase	double	The phase can be set for a frequency analysis.
Load direction	flg_direction	int	= 1: Positive direction = -1: Negative direction

VolumeLoad

The VolumeLoad block specifies each setting for the volume load condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Load [N]	amplitude	double	
Phase [deg]	phase	double	The phase can be set for a frequency analysis.
Load direction	direction_vect or	double	

• AccelerationLoad

The AccelerationLoad block specifies each setting for the acceleration load condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Acceleration speed (m/sec2)	amplitude	double	
Load direction	direction_vect or	double	

• CentrifugalForce

The CentrifugalForce block specifies each item for the centrifugal force condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Angular velocity	rps	double	
Axis direction	direction_vect or	double	
Origin	origin	double	

• ElectromagneticForce

In ElectromagneticForce, the electromagnetic force conditions are specified.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Step type	step_type	int	=0: step =1: frequency
Magnetic field analysis model: Input file	solver_file	string	JCF file or solver data file *Absolute path
Magnetic field analysis model: PLOT file	plot_file	string	*Absolute path
Reference interval: starting step	start_step	int	If step_type=0
Reference interval: ending step	end_step	int	If step_type=0
Frequency	frequency	int	If step_type=1
FFT resolution	fft_resolution	int	
Coordinate ID	coordinate_id	int	

• TemperatureLoad

The TemperatureLoad block specifies each setting for the thermal load condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
			=0: Constant
Туре	type	int	=1: Temperature distribution
			=2: Temperature difference distribution

Item name	Parameter name	Туре	Description
Thermal Analysis	plot_file	string	* Specify the absolute path
Result File	piot_file	string	Specify the absolute path
Temperature (Cel-	amplitude	double	If type=0
sius) or (Fahrenheit)	ampirtude	double	in type=0
Step	step	int	If type=0 or 1
Start Step	start_step	int	If type=2

PRESS

The PRESS block specifies each item for the press fit condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Clearance	clearance	double	

• DisplacementConstraint

The DisplacementConstraint block specifies each setting for the displacement condition.

Item name	Parameter name	Туре	Description	
Condition ID	id	int		
Constraint direction	direction type	int	=0: Normal direction	
type	direction_type	1111	=1: Specified direction	
Displacement	amplitude	double	Exported for static analysis and frequency	
Displacement	ampiitude	double	analysis	
Phase [deg]	phase	double	Exported for frequency analysis	
Displacement direc-	direction_vect	double	If direction_type=1	
tion	or	double	ii direction_type=1	

• RigidBody

The RigidBody block specifies each setting for the rigid body condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	

• LockingConstraint

The LockingConstraint block specifies each setting for the constraint condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Type of constraint direction	direction_type	int	=0: All
			=1: Normal direction
			=2: Tangent direction

• CyclicBoundary

In CyclicBoundary, the items of periodic boundary conditions are specified.

Item name	Parameter name	Туре	Description
Conditional number	id	int	
Boundary type	cyclic_type	int	=+1: Rotation periodicity
A point on rotation axis	origin	double	* Specified for each component.
Direction of rotation axis	axis_vector	double	* Specified for each component.
Periodic angle or distance	angle	double	Periodic angle for rotational periodicity [deg]

• Adhesion

The Adhesion block specifies each setting for the adhesion condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Spring constant	spring_stiffnes s	double	

• Spring

The Spring block specifies each setting for the spring condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Spring constant	stiffness	double	

• CONM2

The CONM2 block specifies each setting for the concentrated mass condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Mass (kg)	mass	double	

ACOUST

The ACOUST block specifies each setting for the sound pressure condition.

Item name	Parameter name	Туре	Description
Condition ID	id	int	
Dimension	dim	int	
Evaluation plane type	type	int	=0: Circle (2D analysis) =1: Sphere (available in 3D analysis) =2: Cylinder (available in 3D analysis)
Radius of the evaluation plane (m)	r	double	Specify the radius regardless of the type
Number of divisions in the circumferential direction	division_theta	int	
Number of divisions in the axial or latitudinal direction	division_phi	int	
Flag for symmetry boundary	planeflg_sym	int	=0: None =1: Symmetry model

• PartProperty

The PartProperty block specifies each item for the part properties.

Item name	Parameter name	Туре	Description
Material ID	material_id	int	
			=0: Solid
Type	type	int	=1: Shell
			=2: Beam
			If type=2
Cross-section type	cross_section_	int	=0: Circle
Closs-section type	type	1110	=1: Square
			=2: Rectangular
Radius	radius	double	if cross_section_type=0
Length of a square or	edge_length1	double	If cross_section_type=1 or 2
a rectangular	cage_ienguii	double	in cross_section_type=1 of 2
Width	edge_length2	double	if cross_section_type=2
Thickness	thick	double	If type=1
Bending stiffness	second_mome	double	If type=1
parameter	nt	double	ii type-1
Ratio of transverse	transverse_she		
shear thickness to	ar_thickness	double	If type=1
membrane	ur_uranicos		
Distance from the			
neutral plane (top	fiber_zl	double	If type=1
face)			
Distance from the			
neutral plane (bot-	fiber_z2	double	If type=1
tom face)			

K-5. Setting Materials (material_data)

The items on the materials of magnetic field analysis are specified.

• MATERIAL

■ Isotropic material

Item name	Parameter name	Туре	Description
Material ID	material_id	int	* A positive number and sequence number are not necessarily required.
Type of material	mat_type	int	=1: Isotropic materials
Young's modulus [Pa]	young_modul us1	double	
Shear modulus [Pa]	shear_modulu s1	double	
Poisson ratio	poissons_ratio 1	double	
Mass density [kg/ m ³]	mass_density	double	
Thermal Expansion coefficient [1/Celsius]	expansion_coe f	double	
Reference Temperature [Celsius]	temperature	double	

■ Anisotropic material

- Amsocropic material			
Item name	Parameter name	Туре	Description
Material ID	material_id	int	* A positive number and sequence number are not necessarily required.
Type of material	mat_type	int	=2: 2Dimension anisotropic material =3: 2Dimension anisotropic material
Input type	set_input_typ	int	=0: Input physical property (Young's modulus, Poisson's ratio) =1: Matrix input
Mass density [kg/ m ³]	modulus_mas s_density	double	
Specify the following	for physical pro	perty inpu	ıt
Young's modulus (X-direction) [Pa]	modulus_you ng_x_directio n	double	* Can be specified only for set_input_type = 0.
Young's modulus (Y-direction) [Pa]	modulus_you ng_y_directio n	double	* Can be specified only for set_input_type = 0.
Young's modulus (Z-direction) [Pa]	modulus_you ng_z_directio n	double	* Can be specified only for set_input_type = 0.
Shear modulus (XY-direction) [Pa]	modulus_shea d_elastic_xy_ direction	double	* Can be specified only for set_input_type = 0.
Shear modulus (YZ-direction) [Pa]	modulus_shea d_elastic_yz_ direction	double	* Can be specified only for set_input_type = 0.
Shear modulus (ZX-direction) [Pa]	modulus_shea d_elastic_zx_ direction	double	* Can be specified only for set_input_type = 0.
Poisson ratio (XY-direction)	modulus_pois son_xy_direct ion	double	* Can be specified only for set_input_type = 0.
Poisson ratio (YZ-direction)	modulus_pois son_yz_directi on	double	* Can be specified only for set_input_type = 0.
Poisson ratio (ZX-direction)	modulus_pois son_zx_directi on	double	* Can be specified only for set_input_type = 0.

Item name	Parameter name	Туре	Description
Specify the following	for physical pro	perty inpu	ıt or matrix input
Thermal Expansion coefficient (X-direction) [1/Celsius]	heat_x_directi on_temp	double	
Thermal Expansion coefficient (Y-direction) [1/Celsius]	heat_y_directi on_temp	double	
Thermal Expansion coefficient (Z-direction)[1/Celsius]	heat_z_directi on_temp	double	
Thermal Expansion coefficient (XY-direction) [1/Celsius]	heat_xy_direc tion_temp	double	
Thermal Expansion coefficient (YZ-direction) [1/Celsius]	heat_yz_direct ion_temp	double	
Thermal Expansion coefficient (ZX-direction) [1/Celsius]	heat_zx_direct ion_temp	double	
Reference Temperature [Celsius]	temperature	double	
Coordinate ID	set_cond_coo rdinate_id	int	

Appendix L. JCF File Format (Structural Analysis) for JMAG-Studio

This chapter describes various parameters that can be edited using a JCF file.

L-1. Overview

A JCF file can be modified without starting JMAG by using a file access library.

▶▶ Reference

For more information about the editing tools, see P.1 "Chapter 15. Editing a JCF File (Simple FHI)".

Each parameter has a type when gaining access to a JCF file through a file access library. There are the following types.

- string means character line type
- int means integer type
- double means real number type
- *var* means variable type
- complex means complex number type
- *point* meams 3 component type configured from (x, y, z).

In gaining access to a JCF file, specify a parameter name in the function of a file access library and read or set the value.

The parameters of a JCF file are described on the next and later pages.

MEMO The items that cannot be edited in a JCF file are as follows:

- -Target (Element ID, etc.)
- -Type of item to be applied (Element face or nodal point, etc.)
- -Contents of point sequence data used under conditions or material characteristics

L-2. Block List

This chapter describes the following blocks.

Block name		Description
control_parameter	20 00 00 00	Controls parameters related to the entire analy-
S	common	sis.(P. 274)
	EXEC	Controls parameters for executive control condi-
	EXEC	tion.(P. 275)
	Case	Controls parameters for case control condi-
	Case	tion.(P. 276)
	SPC	Controls parameters for single point constraint
	01 0	condition.(P. 276)
	PSOLID	Controls parameters for solid element property
	TOOLID	condition.(P. 277)
	PSHELL	Controls parameter shell element property con-
	TOTILLE	dition.(P. 277)
	EIGRL	Controls parameters for eigenvalue condition.(P.
	LIGIC	277)
	FREQ1	Controls parameters for frequency list condi-
		tion.(P. 278)
	TABDMP1	Controls parameters for modal damping table
condition_data		condition.(P. 278)
condition_data	TABLED1	Controls parameters for dynamic load table con-
	11102201	dition.(P. 278)
	JLOAD	Controls parameters for electromagnetic force
		condition.(P. 278)
	FORCE	Controls parameters for force condition.(P. 280)
	NEWCORD	Controls parameters for coordinate system con-
	1,2,, 0016	dition.(P. 280)
	DLOAD	Controls parameters for dynamic load condi-
	22012	tion.(P. 281)
	PBAR	Controls parameters for beam element property
	12111	condition.(P. 281)
	TEMP	Controls parameters for nodal temperature con-
	1 22111	dition.(P. 282)
	RFORCE	Controls parameters for centrifugal force condi-
		tion.(P. 282)
	GSPRING	Controls parameters for spring element condi-
		tion.(P. 282)

Chapter L. JCF File Format (Structural Analysis) for JMAG-Studio

Block r	name	Description
	ASPRING	Controls parameters for adhesion condition.(P. 282)
	CONM2	Controls parameters for concentrated mass condition.(P. 283)
	MPC	Controls parameters for multipoint constraint condition.(P. 283)
	RBE2	Controls parameters for rigid body element condition.(P. 284)
	ACOUST	Controls parameters for acoustic analysis condition.(P. 284)
	ELCRD	Controls parameters for electrode condition.(P. 284)
	PLOAD	Controls parameters for pressure load condition.(P. 285)
	DISPCORD	Controls parameters for displacement coordinate system condition.(P. 285)
	PRESS	Controls parameter for press fit condition.(P. 285)
	GRAV	Controls parameters for acceleration force condition.(P. 286)
	VOLUME_FO	Controls parameters for volume force condi-
	RCE	tion.(P. 286)
	LINE_FORCE	Controls parameters for edge force condition.(P. 286)
material_data	MATERIAL	Controls parameters for material.(P. 287)

L-3. Basic Information of Analysis (control_parameters)

• common

In a common module, the item common to all analyses that are executed in JMAG is specified.

Item name	Parameter name	Туре	Description
Analysis name	title	string	
Version No. of JMAG	version	int	
Solver ID	Solver_id	int	=15: Structural analysis
Unit label	unit_label	string	

L-4. Setting Conditions (condition_data)

• EXEC

In Exec, the items of executive control condition is specified.

Item name	Parameter name	Туре	Description
Comment	id	string	
Solver type	sol	int	=101: Linear static analysis =103: Eigen value analysis =111: Frequency response analysis
Selection flag of			=1: Analysis without constraint
analysis without constraint	flg_free	int	=0: Analysis with constraint
Second order ele-	flg_order	int	=1: Second order element
ment usage flag	lig_order	int	=0: First order element
Convergence tolerance	subtol	double	
Maximum number of iteration	subite	int	
Output flag of veloc-	flg_velocity	int	=0: Not output.
ity	lig_velocity	IIIL	=1: Output.
Output flag of accel-	flg_acceleratio	int	=0: Not output.
eration	n	int	=1: Output.
Output flag of stress	flg_stress	int	=0: Not output.
	11g_5t1C55	1111	=1: Output.
Output flag of load	flg_force	int	=0: Not output.
	ing_rorec	1111	=1: Output.

• Case

In Case, the items of case control condition is specified.

Item name	Parameter name	Туре	Description
Force set ID	load	int	
Dynamic load set ID	dload	int	
Frequency set ID	frequency	int	
Structural damping set ID	sdamping	int	
Single point constraint set ID	method	int	
Eigen value set ID	spc	int	
Temperature set ID	temperature	int	
Multiple constraint set ID	mpc	int	

• SPC

In SPC, the items of single point constraint conditions are specified.

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	
			Combinations of the following numbers
			= 1: X component
			= 2: Y component
Component ID	coef	int	= 3: Z component
			= 4: X component (rotation)
			= 5: Y component (rotation)
			= 6: Z component (rotation)
Displacement [m]	disp	double	
Phase [deg]	disp_phase	double	
Setting method of			=0: By coordinate system
the displacement	type	int	-1. By yester
direction			=1: By vector
Direction of dis-			=0: All
placement	direction	int	=1: Normal line
piacement			=2: In-plane

• PSOLID

In PSOLID, the items of solid element property conditions are specified

Item name	Parameter name	Туре	Description
Property ID	id	int	
Material ID	mid	int	

• PSHELL

In PSHELL, the items of shell element property conditions are specified

Item name	Parameter name	Туре	Description
Property ID	id	int	
Material ID	mid1	int	
Thickness [m]	thick	double	
Material ID 2	mid2	int	Bending behavior (same as mid1)
Ratio of section secondary moment to bending	bending	double	
Material ID 3	mid3	int	Transverse shear behavior (same as mid1)
Ratio of transverse shear thickness	trans_shear	double	
Stress Computation (lower plane) [m]	fiber_z1	double	
Stress Computation (upper plane) [m]	fiber_z2	double	

• EIGRL

In EIGRL, the items of eigen value conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	
Number of eigen	number_of_ei	int	
value	gen	1111	

• FREQ1

In FREQ1, the items of frequency list conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	
First frequency [Hz]	first_frequenc y	double	
Increase of frequency [Hz]	frequency_inc rement	double	
Number of frequency increase	number_of_fr equency_incre ment	int	

• TABDMP1

In TABDMP1, the items of modal damping table conditions are specified.

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	

• TABLED1

In TABLED1, the items of dynamic load table conditions are specified

Item name	Parameter name	Туре	Description
Table ID	id	int	
Interpolation type	xaxis_type	int	=0: Linear
(X-axis)			=1: Logarithm
Interpolation type	yaxis_type	int	=0: Linear
(Y-axis)			=1: Logarithm

• JLOAD

In JLOAD, the electromagnetic force conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Magnetic field anal-	solver_file	otrina	JCF file or solver data file
ysis model: Input file	solvei_iiie	string	*Absolute path

Chapter L. JCF File Format (Structural Analysis) for JMAG-Studio

Item name	Parameter name	Туре	Description
Magnetic field analysis model: PLOT file	plot_file	string	*Absolute path
Reference interval: starting step	start_step	int	
Reference interval: ending step	end_step	int	
Full model extension	flg_full	int	=0: Not used =1: Used
FFT resolution	fft_resolution	int	
Scaling factor	scale	double	
Flag for use differ-			=0: Not used
ent mesh between magnetic field and structure	flg_map	int	=1: Used
Extension flag for			=0: Not used
2D (magnetic field analysis) to 3D (structure analysis)	flg_extend	int	=1: Used
Extend distance	extend_distan		
[mm]	ce	double	
Electromagnetic force table	group_type	group	group type: node ex.) Node1 freq1, fx(Re), fy(Re), fz(Re), fx(Im), fy(Im), fz(Im) ex.) Node1 freq2, fx(Re), fy(Re), fz(Re), fx(Im), fy(Im), fz(Im) ex.) Node1 freq2, fx(Re), fy(Re), fz(Re), fx(Im), fy(Im), fz(Im) ex.) Node2 freq1, fx(Re), fy(Re), fz(Re), fx(Im), fy(Im), fz(Im) ex.) Node2 freq2, fx(Re), fy(Re), fz(Re), fx(Im), fy(Im), fz(Im) ex.) Node2 freq2, fx(Re), fy(Re), fz(Re), fx(Im), fy(Im), fz(Im) * In the case of static analysis, the frequency is always zero.

• FORCE

In FORCE, the items of force conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	
1st component[N]	n1	double	
2nd component [N]	n2	double	
3rd component [N]	n3	double	
Scaling factor	scaling_factor	double	
Cylindrical coordi-			
nate system: coordi-	cid	int	
nate system ID			

• NEWCORD

In CORD, the items of coordinate system conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Coordinate type	cord	int	= 0: Rectangular coordinate system
Coordinate type	cord		= 1: Cylindrical coordinate system
Origin: X-coordinate	x0	double	
Origin: Y-coordinate	y0	double	
Origin: Z-coordi-	z0	double	
nate	20	double	
A point on X axis:	x1	double	
X-coordinate			
A point on X axis: Y-	y1	double	
coordinate	<i>y</i> 1	dodbie	
A point on X axis: Z-	z1	double	
coordinate		dodbie	
A point on XZ	x2	double	
plane: X-coordinate			
A point on XZ	y2	double	
plane: Y-coordinate			
A point on XZ	z2	double	
plane: Z-coordinate	LL	double	

• DLOAD

In DLOAD, the items of dynamic load conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	
Amplitude	amplitude	double	
Phase delay	delay	double	
Phase	phase	double	
Real table ID	tc	int	
Imaginary table ID	td	int	
			= 1: X-component
		int	= 2: Y-component
E			= 3: Z-component
Factor	С		= 4: X-component (Rotation)
			= 5: Y-component (Rotation)
			= 6: Z-component (Rotation)

• PBAR

In PBAR, the items of beam element property conditions are specified

Item name	Parameter name	Туре	Description
Property ID	id	int	
Material ID	mid	int	
Section area [m ²]	area	double	
Section secondary moment 1 [m ⁴]	i1	double	
Section secondary moment 2 [m ⁴]	i2	double	
Torsional constant [m ⁴]	j	double	

• TEMP

In TEMP, the items of nodal temperature conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	
Temperature [Celsius]	temperature	double	

• RFORCE

In RFORCE, the items of centrifugal force conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	
Rotation speed [rps]	rps	double	

• **GSPRING**

In GSPRING, the items of spring element conditions are specified

Item name	Parameter name	Туре	Description
Property ID	id	int	
Set ID	sid	int	
Spring constant [N/m]	stiffness	double	
Determination distance [m]	tolerance	double	
Flag to run pressure analysis	check_press	int	=0: Not used. =1: Used.

• ASPRING

In ASPRING, the items of adhesion conditions are specified

Item name	Parameter name	Туре	Description
Property ID	id	int	
Spring constant [N/m]	stiffness	double	
Material ID (master)	master_mid	int	

Item name	Parameter name	Туре	Description
Flag to include con-	check_contact	int	=0: Not used.
tact	check_contact	IIIt	=1: Used.

• CONM2

In CONM2, the items of concentrated mass conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Mass [kg]	mass	double	

• MPC

In MPC, the items of multipoint constraint conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	
Dependent node ID	g1	int	
Component of dependent node	c1	int	= 1: X component = 2: Y component = 3: Z component = 4: X component (rotation) = 5: Y component (rotation) = 6: Z component (rotation)
Coefficient of dependent node	al	double	
Independent node ID	g2	int	
Components of independent node	c2	int	= 1: X component = 2: Y component = 3: Z component = 4: X component (rotation) = 5: Y component (rotation) = 6: Z component (rotation)
Coefficient of independent node	a2	double	

283

• RBE2

In RBE2, the items of rigid body element conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
x component	tx	int	
y component	ty	int	
z component	tz	int	
x component (rotation)	rx	int	
y component (rotation)	ry	int	
z component (rotation)	rz	int	

ACOUST

In ACOUST, the items of acoustic analysis conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Sound pressure evaluation point radius [m]	r	double	
Dimension	dim	int	
Symmetry model flag	flg_sym	int	=0: Not symmetry model =1: Symmetry model
Center point (X,Y,Z) [m]	origin	double	
Axis (X-direction, Y-direction, Z-direction)	axis_vector	double	

• ELCRD

In ELCRD, the items of electrode conditions are specified

Item name	Parameter name	Type	Description
ID	id	int	
Flag for setting elec-	flg_volt	int	=0: Do not set electric potential
tric potential	lig_voit	1111	=1: Set electric potential

Item name	Parameter name	Туре	Description
Electric potential [V]	volt_amplitud e	double	
Phase [deg]	volt_phase	double	

• PLOAD

In PLOAD, the items of pressure load conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	
Pressure [Pa]	p	double	

• DISPCORD

In DISPCORD, the items of displacement coordinate system conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Coordinate system ID	cord	int	

PRESS

In PRESS, the items of press fit conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Clearance flag	flg_clearance	int	=0: Do not set clearance
Clearance flag	lig_clearance	IIIt	=1: Set clearance
Clearance [m]	clearance	double	

• GRAV

In GRAV, the items of acceleration force conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Set ID	sid	int	
Scaling factor	scale	double	
Acceleration vector (1st component)	n1	double	
Acceleration vector (2nd component)	n2	double	
Acceleration vector (3rd component)	n3	double	

• VOLUME_FORCE

In VOLUME _FORCE, the items of volume force conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Volume force (1st component)	f1	double	
Volume force (2nd component)	f2	double	
Volume force (3rd component)	f3	double	

• LINE_FORCE

In LINE_FORCE, the items of edge force conditions are specified

Item name	Parameter name	Туре	Description
ID	id	int	
Pressure [N/m]	pressure	double	

L-5. Setting Materials (material_data)

The items on the materials of magnetic field analysis are specified.

• MATERIAL

■ Isotropic materials

Item name	Parameter name	Туре	Description
Material ID	material_id	int	* A positive number and sequence number are not necessarily required.
Type of material	mat_type	int	=1: Isotropic materials
Young's modulus [Pa]	young_modul us1	double	
Shear modulus [Pa]	shear_modulu s1	double	
Poisson ratio	poissons_ratio	double	
Mass density [kg/ m ³]	mass_density	double	
Thermal Expansion coefficient [1/Celsius]	expansion_coe f	double	
Reference Temperature [Celsius]	temperature	double	

■ 2D anisotropy materials

Item name	Parameter name	Туре	Description
Material ID	material_id	int	* A positive number and sequence number are not necessarily required.
Type of material	mat_type	int	=2: 2D anisotropy materials
Specifying method of material properties	set_input_typ	int	=0: Young's modulus, poisson ratio =1: Matrix input
Young's modulus (X-direction) [Pa]	modulus_you ng_x_directio n	double	* Can be specified only for set_input_type = 0.

Item name	Parameter name	Туре	Description
Young's modulus (Y-direction) [Pa]	modulus_you ng_y_directio n	double	* Can be specified only for set_input_type = 0.
Poisson ratio (XY-direction)	modulus_pois son_xy_direct ion	double	* Can be specified only for set_input_type = 0.
Mass density [kg/m ³]	modulus_mas s_density	double	
Thermal Expansion coefficient (X-direction) [1/Celsius]	heat_x_directi on_temp	double	
Thermal Expansion coefficient (Y-direction) [1/Celsius]	heat_y_directi on_temp	double	
Thermal Expansion coefficient (XY-direction) [1/Celsius]	heat_xy_direc tion_temp	double	
Reference Temperature [Celsius]	temperature	double	
Coordinate ID	set_cond_coo rdinate_id	int	
Angle from X-axis [deg]	set_angle_fro m_x_axis	double	

■ 3D anisotropy materials

Item name	Parameter name	Туре	Description
Material ID	material_id	int	* A positive number and sequence number are not necessarily required.
Type of material	mat_type	int	=3: 3D anisotropy materials
Specifying method of material properties	set_input_typ	int	=0: Young's modulus, poisson ratio =1: Matrix input
Young's modulus (X-direction) [Pa]	modulus_you ng_x_directio n	double	* Can be specified only for set_input_type = 0.

Item name	Parameter name	Туре	Description
Young's modulus (Y-direction) [Pa]	modulus_you ng_y_directio n	double	* Can be specified only for set_input_type = 0.
Young's modulus (Z-direction) [Pa]	modulus_you ng_z_directio n	double	* Can be specified only for set_input_type = 0.
Shear modulus (XY-direction) [Pa]	modulus_shea d_elastic_xy_ direction	double	* Can be specified only for set_input_type = 0.
Shear modulus (YZ-direction) [Pa]	modulus_shea d_elastic_yz_ direction	double	* Can be specified only for set_input_type = 0.
Shear modulus (ZX-direction) [Pa]	modulus_shea d_elastic_zx_ direction	double	* Can be specified only for set_input_type = 0.
Poisson ratio (XY-direction)	modulus_pois son_xy_direct ion	double	* Can be specified only for set_input_type = 0.
Poisson ratio (YZ-direction)	modulus_pois son_yz_directi on	double	* Can be specified only for set_input_type = 0.
Poisson ratio (ZX-direction)	modulus_pois son_zx_directi on	double	* Can be specified only for set_input_type = 0.
Mass density [kg/ m ³]	modulus_mas s_density	double	
Thermal Expansion coefficient (X-direction) [1/Celsius]	heat_x_directi on_temp	double	
Thermal Expansion coefficient (Y-direction) [1/Celsius]	heat_y_directi on_temp	double	
Thermal Expansion coefficient (Z-direction)[1/Celsius]	heat_z_directi on_temp	double	
Thermal Expansion coefficient (XY-direction) [1/Celsius]	heat_xy_direc tion_temp	double	

Item name	Parameter name	Туре	Description
Thermal Expansion coefficient (YZ-direction) [1/Celsius]	heat_yz_direct ion_temp	double	
Thermal Expansion coefficient (ZX-direction) [1/Celsius]	heat_zx_direct ion_temp	double	
Reference Temperature [Celsius]	temperature	double	
Coordinate ID	set_cond_coo rdinate_id	int	

Appendix M.Solver Data File Format (Structural Analysis)

M-1. Input Data Creation

Input data practically complies with the format defined by MSC/NASTRAN. They are divided into the following three blocks.

■ Executive control card

These card data are used to select the analysis type. The card named CEND indicates the end of this block.

■ Case control card

These card data are used to select data for performing the analysis from among those defined in the "(3) Bulk card", such as forces and restriction conditions.

Bulk card

These card data are used to define the geometrical information, forces, and boundary conditions.

This block starts with the BEGIN BULK card and ends with the ENDDATA card.

Input data can be generated using JVISION, and it is not necessary to identify whether the data belongs to the case control card or the bulk card.

Moreover, since the following data are not supported at present, they must be input manually.

■ Case control card

FREQUENCY=n SDAMPING=n METHOD=n

■ Bulk card

TABDMP1

EIGRL

FREQ

The following are input specifications for each block.

M-2. Executive Control Card

These card data are used to determine analysis type. Input in free format.

M-2-1. Input Specification

■ SOL n

*mandatory

Purpose: Select the solver type

	101	Static analysis
n:	103	Modal response analysis
	111	Modal frequency response analysis

■ \$subite

Purpose: Specify maximum iterations for eigen value analysis.

■ \$subtol

Purpose: Specify convergence tolerance for eigen value analysis.

■ \$iver

The version information

■ \$eigmeth

Purpose: Specify the eigen value analysis without constraint

0: Do not run eigen value analysis without constraint

1: Run eigen value analysis without constraint

■ \$order

Purpose: Specify the use of second order element

0: Do not use second order element

1: Use second order element

M-3. Case Control Card

The data of this card block are used to select data for performing analysis from among those defined in the "(3) Bulk card", such as forces and restriction conditions. Unless data are selected in this card, the data defined in the bulk card cannot be used for analysis.

Input all the data in free format.

M-3-1. Input Specification

■ LOAD=n *mandatory for linear static analysis

Purpose: Selects force.

n: ID of force specified by the FORCE or RFORCE bulk card

■ DLOAD=n

Purpose: Selects dynamic load.

n: ID of load specified by the DLOAD bulk card

■ FREQUENCY=n *mandatory for modal frequency response analysis

Purpose: Selects the frequency calculation tables.

n: ID of frequency table specified by the FREQ bulk card

■ SDAMPING=n *mandatory for modal frequency response analysis

Purpose: Selects modal damping.

n: ID of modal damping table specified by the TABDMP1 bulk card

■ METHOD=n *mandatory for modal frequency response analysis

Purpose: Selects the number of eigen values required for analysis.

n: ID specified by the EIGRL bulk card

■ SPC=n *mandatory when using single point constraint conditions

Purpose: Selects single point constraint.

n: ID of single point constraint specified by the SPC bulk card

■ MPC=n *mandatory when using multipoint constraint conditions

Purpose: Selects multipoint constraint

n: ID of multipoint constraint specified by the MPC bulk card

■ velo=all or none

Purpose: Controls output for velocity.

all: Outputs velocity, none = Not outputs velocity

■ acce=all or none

Purpose: Controls output for acceleration.

all: Outputs acceleration, none = Not outputs acceleration

■ stre=all or none

Purpose: Controls output for stress.

all: Outputs stress, none = Not outputs stress

■ force=all or none

Purpose: Controls output for input load.

all: Outputs input load, none = Not outputs input load

M-4. Bulk Card

There is a bulk card for which a small field format or large field format is used.

■ Small field format

For a small field format, one card comprises ten fields with one field consisting of eight columns.

Small field format Sample

The first field is used to identify data. For example, data becomes CHEXA for a hexahedron solid element.

The second to ninth fields are used for input data.

The tenth field is used to identify a continuation card. For the tenth field in the first line or later and the first field in the second line or later, enter "+" in the first column and enter an arbitrary character string in the second to eighth columns when you require a continuation line.

The card in which the first column in the first field begins with "\$" is considered a comment line.

■ Large field format

For a large field format, one card comprises two fields with one field consisting of eight columns and four fields with one field consisting of 16 columns.

Large field format Sample

The first field is used to identify data. For example, data becomes GRID for a nodal point.

The second to fifth fields are used for input data.

The sixth field is used to identify a continuation card. For the sixth field in the first line or later and the first field in the second line or later, enter "*" in the first col-

umn and enter an arbitrary character string in the second to eighth columns when you require a continuation line.

The card in which the first column in the first field begins with "\$" is considered a comment line.

The type of the format corresponding to the first field-data identification item is described below.

Data identification item	Description	Format
ASPRING	Defines the bonding conditions.	S
CBAR	Defines the beam elements	S
CHEXA	Defines the hexahedron solid elements	S
CONM2	Specifies the concentrated mass.	S
CORD2C	Defines the cylindrical coordinate system.	S
CORD2R	Defines the rectangular coordinate system.	S
CPENTA	Defines the pentahedron solid elements	S
CQUAD4	Defines the quadrilateral shell elements	S
CTETRA	Defines the tetrahedron solids elements	S
CTRIA3	Defines the triangular shell elements	S
DAREA	Defines the degree of freedom and scale factor of the dynamic load	S / L
DLOAD	Select the dynamic load.	S
EIGRL	Defines the number of eigen values required for analysis	S
ELCRD	Defines the electrode	S
FORCE	Defines nodal lumped static force	S/L
FREQ1	Defines the frequency calculation	S
GRAV	Defines the acceleration force	S/L
GRID	Defines the node	S/L
GSPRING	Defines the spring elements.	S
JMAT2	Defines 2D anisotropic material properties (Young's modulus, Poisson ratio format)	S
JMAT9	Defines 3D anisotropic material properties (Young's modulus, Poisson ratio format)	S
MAT1	Defines the isotropic material properties.	S/L
MAT2	Defines 2D anisotropic material properties (Matrix format)	S

Data identification item	Description	Format
MAT9	Defines 3D anisotropic material properties (Matrix format)	S
MATE	Defines the relative permittivity	S
МАТР	Defines the piezoelectric constant	S
MPC	Specifies the multipoint constraint	S
PBAR	Defines shape properties of the beam element	S
PLOAD	Defines the pressure load	S
PSHELL	Defines shape properties of the shell element	S
PSOLID	Defines shape properties of the solid element	S
RBE2	Defines the rigid body elements	S
RFORCE	Defines the centrifugal force	S
RLOAD1	Defines the dynamic load (Type 1)	S/L
RLOAD2	Defines the dynamic load (Type 2).	S/L
SPC	Defines the single point constraint	S
TABDMP1	Defines the modal damping in table form	S
TABLED1	Defines the function in table form.	S/L
TEMP	Defines the nodal temperature.	S/L

In the following, the specification for each input data is described. The number shown in the round brackets () indicates the field number.

M-4-1. Input Specification

■ ASPRING

Purpose: Defines the bonding conditions.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
ASPRIN	SID	NUM	K	ICON-	MATI				+
G				TACT	D				-
+	N1	N2	N3	•••					

SID Property ID
NUM Number of nodes
K Spring constant

ICONTACT Simple contact analysis flag MATID Master side material ID

N1, N2 Node ID

■ CBAR

Purpose: Defines the beam element.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
CBAR	EID	PID	G1	G2	X1	X2	Х3		

EID Element ID (integer > 0)

PID Shape property ID (integer > 0; PBAR card reference number)

G1, G2 Node ID consist of an element (integer > 0)

X1, X2, X3 Coordinates of the vector to define the Y-axis of the element coordinate

system (real number)

- Set element ID in such a way as to avoid duplicating.
- Prevent the vector directed from G1 to G2 and the vector (X1, X2, X3) from being parallel to each other.

■ CHEXA

Purpose: Defines the hexahedron solid elements.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
CHEXA	EID	PID	G1	G2	G3	G4	G5	G6	+CHEXA01
+CHEXA01	G7	G8							

EID Element ID (integer > 0)

PID Shape property ID (integer > 0, the PSOLID card reference number)

G1-G8 Node ID consist of an element (integer > 0)

- Set element ID in such a way as to avoid duplicating.
- Setting continued cards is mandatory.

■ CONM2

Purpose: Specifies the concentrated mass.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
CONM2	EID	G		M					

EID Element ID
G Node ID
M Mass

■ CORD2C

Purpose: Defines the cylindrical coordinate system.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
CORD2C	CID	0	A1	A2	A3	B1	B2	В3	+
+	C1	C2	C3						

CID Coordinate system ID A1 Origin: X-coordinate A2 Origin: Y-coordinate Origin: Z-coordinate A3 B1 A point on Z-axis: X-coordinate B2 A point on Z-axis: Y-coordinate **B3** A point on Z-axis: Z-coordinate C1 A point on an XZ-plane: X-coordinate C2 A point on an XZ-plane: Y-coordinate C3 A point on an XZ-plane: Z-coordinate

■ CORD2R

Purpose: Defines the rectangular coordinate system.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
CORD2R	CID	0	A1	A2	A3	B1	B2	В3	+
+	C1	C2	C3						

CID Coordinate system ID A1 Origin: X-coordinate Origin: Y-coordinate A2 A3 Origin: Z-coordinate B1 A point on Z-axis: X-coordinate B2 A point on Z-axis: Y-coordinate B3 A point on Z-axis: Z-coordinate C1 A point on an XZ-plane: X-coordinate C2A point on an XZ-plane: Y-coordinate C3 A point on an XZ-plane: Z-coordinate

■ CPENTA

Purpose: Defines the pentahedron solid elements.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
CPENTA	EID	PID	G1	G2	G3	G4	G5	G6	

EID Element ID (integer > 0)

PID Shape property ID (integer > 0, the PSOLID card reference number)

G1-G6 Node ID consist of an element (integer > 0)

• Set element ID in such a way as to avoid duplicating.

■ CQUAD4

Purpose: Defines the quadrilateral shell elements.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
CQUAD 4	EID	PID	G1	G2	G3	G4			

EID Element ID (integer > 0)

PID Shape property ID (integer > 0, PSHELL card reference)

G1, G2, G3, G4 Node ID assigned within an element (integer > 0)

- Set element ID in such a way as to avoid duplicating.
- Make all interior angles less than 180 degrees.

■ CTETRA

Purpose: Defines the tetrahedron solid elements.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
CTETRA	EID	PID	G1	G2	G3	G4			

EID Element ID (integer > 0)

PID Shape property ID (integer > 0; PSOLID card reference number)

G1, G2, G3, G4 Node ID consist of an element (integer > 0)

• Set element ID in such a way as to avoid duplicating.

■ CTRIA3

Purpose: Defines the triangular elements.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
CTRIA3	EID	PID	G1	G2	G3				

EID Element ID (integer > 0)

PID Shape property ID (integer > 0; PSHELL card reference number)

G1, G2, G3 Node ID consist of an element (integer > 0)

• Set element ID in such a way as to avoid duplicating.

■ DAREA

*mandatory for modal frequency response analysis

Purpose: Defines the degree of freedom and scale factor of the dynamic load.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
DARI	EA SID	P1	C1	A1	P2	C2	A2		

SID Order ID (integer > 0; referred from the RLOAD1 and RLOAD2 bulk

card)

Pi Node ID (integer > 0)

Ci Degree of freedom number (either one of number 1 to 6)

Scale factor of the dynamic load (real number)

Ai i=1,2

- The degree of freedom number can be defined up to two per one card.
- Input the number of the degree of freedom to the global coordinates system.

■ DLOAD

Purpose: Select dynamic load.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
DLOAD	SID	S	Si	Li	•••				

SID Dynamic load ID
S Scale factor
Si Scale factor

Li Dynamic load ID of RLOAD1

The item below is repeated as many times as the number of RLOAD1.

- DLOAD is repeated proportionally to the number of RLOAD1s.
- "DLOAD" is output to conform to the Nastran format. In JMAG-Studio, "DLOAD" is not read. Therefore, S and Si are forcibly set to "1.0".

■ EIGRL

*mandatory for modal frequency response analysis

Purpose: Defines the number of eigen values required for analysis.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
EIGRL	SID			ND					

SID Order ID (integer > 0; referred from the METHOD case control card)
ND Number of eigen values required for analysis (integer > 0)

- Unless SID is referred from the METHOD = SID case control card, this data cannot be used.
- If this card is not included, the number of eigen values is set to 1.

■ ELCRD

Purpose: Defines the electrode.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
ELCR D	SID	numOf- nodes	IVOL T	Vamp	Vphas e				+
+	N1	N2	N3	•••					

SID Order ID

numOfnodes Number of nodes

IVOLT Flag of electric potential

Vamp Amplitude [V]
Vphase Phase [deg]
Nj Node number

■ FORCE

*used for static analysis

Purpose: Defines nodal lumped static force.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
FORC E	SID	G		F	N1	N2	N3		

SID Order ID (integer > 0; referred from the LOAD case control card.)

G Node number (integer > 0)

F Scale factor for force (real number)

N1, N2, N3 Force vector component

- Force vector for node G is given by F * (N1, N2, N3).
- Input the values of force vector components expressed in the global coordinate system.
- Unless SID is referred from the LOAD = SID case control card, this data cannot be used.

■ FREQ1

*mandatory for modal frequency response analysis

Purpose: Defines the frequency calculation.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
FREQ 1	SID	F1	DF	NDF					

SID ID of frequency table (integer > 0; referred from of the FREQUENCY

case control card)

F1 Initial value (real number 0.0)
DF Increment value (real number > 0.0)
NDF Number of increments (integer > 0)

With the above input data, frequency calculation can be expressed by the following equation.

$$fi = F1 + DF * (i-1)$$

(I = 1, 2...., NDF+1)

- Unit of F1 and DF is Hz.
- Unless SID is referred from the FREQ = SID case control card, this data cannot be used.

■ GRAV

Purpose: Defines the acceleration force.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
GRAV	SID	0	SCAL E	N1	N2	N3			

SID ID of acceleration force (integer > 0; referred from of the Load case

control card)

SCALE Scale factor (real number)

N1 X component of acceleration vector
 N2 Y component of acceleration vector
 N3 Z component of acceleration vector

- Acceleration vector is given by SCALE * (N1, N2, N3).
- Unit of N1, N2, N3 is m/s².
- Unless SID is referred from the LOAD = SID case control card, this data cannot be used.

■ GRID

*mandatory

Purpose: Defines the node.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
GRID	ID		X1	X2	Х3		PS		

ID Node number (integer > 0)

X1, X2, X3 Coordinates (real number)

Node restriction conditions (Leave blank or set a number from 1 to 6.)

X-direction restriction
 Y-direction restriction
 Z-direction restriction

4: X-axis rotation restriction

5: Y-axis rotation restriction 6: Z-axis rotation restriction

- Defines node coordinates in the global system.
- Node restrictions are conducted.

■ GSPRING

PS

Purpose: Defines the spring elements.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
GSPRIN G	SID	NUM	K	TOL	IPRES S				+
+	N1	N2	N3	•••					

SID Property number NUM Number of nodes K Spring constant

TOL Determination distance IPRESS Pressure fit analysis flag

N1, N2 Node number

■ JMAT2

(Young's modulus, Poisson ratio format)

Purpose: Defines 2D anisotropic material properties.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
JMAT 2	MID	EX	EY	GXY	NUXY	RHO	A1	A2	+
+	А3	TREF	MCSI D						

MID Material property ID

EX Young's modulus (X-direction) EY Young's modulus (Y-direction)

GXY Shear elastic coefficient (XY-direction)

NUXY Poisson's ratio (XY-direction)

RHO Mass density

A1 Heat expansion coefficient (X-direction)
A2 Heat expansion coefficient (Y-direction)
A3 Heat expansion coefficient (XY-direction)

TREF Reference temperature MCSID Coordinate system number

■ JMAT9

(Young's modulus, Poisson ratio format)

Purpose: Defines 3D anisotropic material properties.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
JMAT 9	MID	EX	EY	EZ	GXY	GYZ	GZX	NUXY	+
+	NUYZ	NUZX	RHO	A1	A2	A3	A4	A5	+
+	A6	TREF							

MID	Material property ID
EX	Young's modulus (X-direction)
EY	Young's modulus (Y-direction)
EZ	Young's modulus (Z-direction)
GXY	Shear elastic coefficient (XY-direction)
GYZ	Shear elastic coefficient (XZ-direction)
GZX	Shear elastic coefficient (ZX-direction)
NUXY	Poisson's ratio (XY-direction)
NUYZ	Poisson's ratio (XY-direction)
NUZX	Poisson's ratio (XY-direction)
RHO	Mass density
A1	Heat expansion coefficient (X-direction)
A2	Heat expansion coefficient (Y-direction)
A3	Heat expansion coefficient (Z-direction)
A4	Heat expansion coefficient (XY-direction)
A5	Heat expansion coefficient (YZ-direction)
A6	Heat expansion coefficient (ZX-direction)
TREF	Reference temperature

■ MAT1

*mandatory

Purpose: Defines the material properties.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
MAT1	MID	Е	G	NU	RHO	A	TREF		

MID Material property ID (integer > 0; referred from the PBAR, PSHELL

and PSOLID card.)

E Young's modulus (real number > 0.0)
G Shear modulus (real number > 0.0)
NU Poisson ratio (real number > 0.0)

RHO Mass density (real number > 0.0, mandatory for modal frequency

response analysis)

A Thermal expansion coefficient

TREF Reference temperature

• Set material property ID in such a way as to avoid duplicating.

• Element mass is automatically calculated from mass density and element volume.

• If either E, G, or NU is blank, the value of the blank column is calculated from the equation, E = 2(1 + NU) G.

■ MAT2

(Matrix format)

Purpose: Defines 2D anisotropic material properties.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
MAT2	MID	G11	G12	G13	G22	G23	G33	RHO	+
+	A1	A2	A3	TREF					+
	MCSI								
+	D								

MID Material property ID
Gij Material properties matrix

RHO Mass density

A1 Heat expansion coefficient (X-direction)
A2 Heat expansion coefficient (Y-direction)
A3 Heat expansion coefficient (XY-direction)

TREF Reference temperature MCSID Coordinate system number

■ MAT9

(Matrix format)

Purpose: Defines 3D anisotropic material properties.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
MAT9	MID	G11	G12	G13	G14	G15	G16	G22	+
+	G23	G24	G25	G26	G33	G34	G35	G36	+
+	G44	G45	G46	G55	G56	G66	RHO	A1	+
+	A2	A3	A4	A5	A6	TREF			

MID Material property ID
Gij Material properties matrix
RHO Mass density

A1 Heat expansion coefficient (X-direction)
A2 Heat expansion coefficient (Y-direction)
A3 Heat expansion coefficient (Z-direction)
A4 Heat expansion coefficient (XY-direction)
A5 Heat expansion coefficient (YZ-direction)
A6 Heat expansion coefficient (ZX-direction)

TREF Reference temperature

■ MATE

Purpose: Defines the dielectric constant.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
MATE	MID	E11	E22	E33					

MID Material property ID

Eij Relative dielectric matrix component

■ MATP

Purpose: Defines the piezoelectric stress.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
MATP	MID	E11	E12	E13	E21	E22	E23	E31	+
+	E32	E33	E41	E42	E43	E51	E52	E53	+
+	E61	E62	E63						

MID Material property ID

Eij Piezoelectric matrix component

■ MPC

Purpose: Specifies the multipoint constraint.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
MPC	SID	G1	C1	A1	G2	C2	A2		+
+		G3	C3	A3	•••				+
+									

SID Property ID
Gj Node number

Cj Component number

Aj Coefficient

■ PBAR

*mandatory when using beam element

Purpose: Defines the beam element properties.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
P	BAR	PID	MID	A	I1	I2	J			

PID Shape property ID (integer > 0; referred from the CBAR card)

MID Material property ID (integer > 0; MAT1 card reference number)

A Section area (real number > 0.0)

Inertia moment about the Z-axis in the element coordinate system (real number > 0.0)

Inertia moment about the Y-axis in the element coordinate system (real number > 0.0)

J Torsional constant (real number)

• Set the PBAR property number in such a way as to avoid duplicating.

■ PLOAD

Purpose: Defines the pressure load.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
PLOA D	SID	Р							

SID ID

numOfnodes Pressure load [Pa]

■ PSHELL

*mandatory when using shell element

Purpose: Defines shape property of the shell element.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
PSHELL	PID	MID	Т		12I/T**3		TS/T		
	Z1	Z2							

Shape property ID (integer > 0; referred from the CTRIA3 and PID CQUAD4 card) **MID** Material property ID (integer > 0; MAT1 card reference number) Board thickness (real number > 0.0) Τ Ratio of sectional second moment to bending stiffness parameter (real number > 0.0) TS/T Ratio of transverse shear thickness to membrane (real number > 0.0) Z1, Z2 Stress computation

• Set the PSHELL property number in such a way as to avoid duplicating.

■ PSOLID

*mandatory when using solid element

Purpose: Defines shape property of the solid element.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
PSOLID	PID	MID							

Shape property ID (integer > 0; referred from the CTETRA, CPENTA, PID

and CHEXA card)

MID Material property ID (integer > 0; MAT1 card reference number)

Set the PSOLID property number in such a way as to avoid duplicating.

■ RBE2

Purpose: Defines the rigid body elements.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
RBE2	EID	GN	CM	GM1	GM2	GM3	GM4	GM5	+
+	GM6	•••							

EID Element ID

GN Independent node ID

CM Dependent degree of freedom

GM1, GM2 Dependent node ID

■ RFORCE

*used for static analysis

Purpose: Defines the centrifugal force.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
RFORCE	SID	G	CID	A	R1	R2	R3		

SID Identifier (integer > 0; referred from the LOAD case control card.)

G Node number (integer > 0)

CID Coordinate system to define rotation vector components (integer 0)

Scale factor for angular velocity due to the effect of the number of rota-

A tions per unit of time

R1, R2, R3 Components of rotation vector

- Components of rotation vector (R1, R2 and R3) is the Z-axis (0.0, 0.0, 1.0).
- Unless SID is referred from the LDAD = SID case control card, this data cannot be used.

■ RLOAD1

*mandatory for modal frequency response analysis

Purpose: Defines the dynamic load (Type 1).

P(f)=A[C(f)+jD(f)]

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
RLOAD1	SID	DAREA			TC	TD			

SID ID (integer > 0; referred from the DLOAD case control card)

DAREA ID of DAREA (integer > 0; used for referring the DAREA card A-defi-

nition)

Real part function number (integer ≥ 0 ; used for referring the

TABLED1 card)

TD Imaginary part function number (integer ≥ 0 ; used for referring the

TABLED1 card)

- Unless SID is referred from the DLOAD = SID case control card, this data cannot be used.
- Set the RLOAD1 and RLOAD2 property numbers in such a way as to avoid duplicating.

■ RLOAD2

*mandatory for modal frequency response analysis

Purpose: Defines the dynamic load (Type 2).

 $P(f)=AB(f) \exp \{j \phi(f)\}$

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
RLOAD2	SID	DAREA			ТВ	TP			

SID Identifier (integer > 0; referred from the DLOAD case control card)

DAREA Identifier (integer > 0; used for referring the DAREA card A-definition)

Function number to determine B (f) (integer >=0; used for referring the TABLED1 card)

Function number to determine ϕ (f) (integer >=0; used for referring the TABLED1 card)

- Unless SID is referred from the DLOAD = SID case control card, this data cannot be used.
- Set the RLOAD1 and RLOAD2 property numbers in such a way as to avoid duplicating.

■ SPC

Purpose: Defines the single point constraint.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
SPC	SID	G1	C1	D1					

SID Identifier (integer > 0; referred from the SPC case control card)

Gi Node number (integer > 0)

Component ID (either one of the following 1 to 6)

X-axis direction translation
 Y-axis direction translation

Ci 3: Z-axis direction translation

4: X-axis rotation5: Y-axis rotation6: Z-axis rotation

Di Single point constraint value (real number)

- Unless SID is referred from the SPC = SID case control card, this data cannot be used.
- It can be specified in combination with the PS in the GRID.

■ TABDMP1

*mandatory for modal frequency response analysis

Purpose: Defines the modal damping table in table form.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
TABDMP1	TID								+TABD001
+TABD001	F1	G1	F2	G2	F3	G3	F4	G4	+TABD002
+TABD002	F5	G5	END T						

TID Function number (integer > 0; referred from the SDAMPING bulk

card

Fi Frequency (real number)
Gi Damping value (real number)

- Unless TID is referred from the SDAMPING = TID case control card, this data cannot be used.
- Set a series of Fis, in either ascending or descending order, in such a way that all Fis are different from each other.
- Display the end of data by inputting 'ENDT' into the next field of the last data.
- If a frequency value input is inside the interval of data set in the table, which consists of N points such as (F1, F2,..., FN), the damping value is calculated by interpolating two values of the nearest points of the data set in the table. Conversely, if the value input is outside of the interval, it is calculated by extrapolating two values of F1 and F2, or those of FN-1 and FN

■ TABLED1

*mandatory for modal frequency response analysis

Purpose: Defines the function in table form.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
TABLED1	TID								+TABL001
+TABL001	X1	Y1	X2	Y2	Х3	Y3	X4	Y4	+TABL002
+TABL002	X5	Y5	END T						

TID Function number (integer > 0; referred from the RLOAD1 bulk card) Xi,Yi Function values of transverse axis and longitudinal axis (real number)

- The unit of Xi is Hz.
- Set a series of Xis, in either ascending or descending order, in such a way that all Xis are different from each other.
- Display the end of data by inputting `ENDT' into the next field of the last data.
- If a frequency value input is inside the interval of data set in the table, which consists of N points such as (X1, X2,..., XN), the damping value is calculated by interpolating two values of the nearest points of the data set in the table. Conversely, if the value input is outside of the interval, it is calculated by extrapolating two values of X1 and X2, or those of XN-1 and XN.

■ TEMP

Purpose: Defines the nodal temperature.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
TEMP	SID	G1	T1						

SID Property number T1 Temperature

Appendix N. PLOT File Format (Structural Analysis)

N-1. Analysis Control

Ca	ard 1		
	1-80	HED	Title
Ca	ard 2		
	1-5	Unused	
	6-10	Unused	
	11-15	Unused	
	16-20	Unused	
	21-25	Unused	
	26-30	Unused	
	31-35	Unused	
	36-40	Unused	
	41-45	Unused	
	46-50	Unused	
	51-55	Unused	
	56-60	Unused	
	61-65	Unused	
	66-70	Unused	
	71-75	ID_SLV	Solver ID
			=31: 3D static analysis (JMAG-Designer)
			=32: 2D static analysis (JMAG-Designer)
			=34: 3D frequency response analysis (JMAG-Designer)
			=35: 2D frequency response analysis (JMAG-Designer)
			=41: 3D eigenmode analysis (JMAG- Designer)
			=42: 3D eigenmode analysis (JMAG- Designer)
			=101: Static analysis (JMAG-Studio)

			=103: Eigen value analysis (JMAG-Studio
			=111: Frequency response analysis (JMAG Studio)
	75-80	IVER	Version number (= 50)
	Card 3		
	1-20	UNITOT	Unit for the result display
	21-40	UNITIN	Unit for the geometry data
	41-80	UNITNM	Unit label
	Card 4		
	1-5	ITRAN	Analysis type
	6-10	NSTEP	Number of analysis steps
	11-15	Unused	
	16-20	Unused	
	21-30	Unused	
	31-35	Unused	
	36-40	Unused	
	41-45	Unused	
	46-50	Unused	
	51-55	Unused	
	56-65	Unused	
	66-75	Unused	
	76-80	Unused	
N-2.	Control Outpu	ıt Items	
	Card 1		
	1-10	N_CNT2	Number of lines in the control card 2
	Card 2		
	1-10	Unused	
	11-20	Unused	
	21-30	Unused	
	Card 3		
	1-20	Unused	
	21-30	Unused	

Card 4

1-5 Unused

6-10 Unused

N-3. Control Variables for Mesh Generator

Card 1

1-10 NLINE Number of lines

Card 2

1-10 Unused

11-20 Unused

21-30 Unused

31-40 Unused

N-4. Step Control

Card 1

1-10 Unused

11-20 Unused

Card 2

1-10 Unused

11-20 Unused

N-5. Control Output Interval

Card 1

1-10 N_OUT Number of output interval control data of

analysis results

Card 2

1-10 N Order number

11-20 N_END (N) Output interval control end step

21-30 N_STP (N) Output interval up to the time N

N-6. Coordinate Data

Card 1		
1-10	NUMNP	Total nodes
11-20	Unused	
21-31	Unused	
32-80	Unused	
Card 2		
1-10	ID	Order number
11-20	ID	Node ID
21-40	X	X-coordinate
41-60	Y	Y-coordinate
61-80	Z	Z-coordinate

N-7. Element Data

Card 1			
]	1-8	NUMEL	Total elements
Ç	9-10	Unused	
]	11-15	Unused	
]	16-80	Unused	
Car	d 2		
]	1-8	M	Element ID
Ç	9-11	IEL (M)	Total nodes
]	12-14	MTYP (M)	Material ID
]	15-16	ETYP (M)	Element type
			=1: Solid hexahedron element (first coordi-
			nate)
			=3: Solid tetrahedron element (first coordi-
			nate)
			=5: Solid pentahedron element (first coordinate)
			=7: Shell element (first coordinate)
			=9: Beam element (first coordinate)
			=11: Shell triangle element (first coordinate)
]	17-24	NOD (1,IEL)	Node ID (1)
2	25-32	NOD (2,IEL)	Node ID (2)
3	33-40	NOD (3,IEL)	Node ID (3)
4	41-48	NOD (4,IEL)	Node ID (4)
4	49-56	NOD (5,IEL)	Node ID (5)
4	57-64	NOD (6,IEL)	Node ID (6)
(65-72	NOD (7,IEL)	Node ID (7)
7	73-80	NOD (8,IEL)	Node ID (8)

N-8. Analysis Results

N-8-1. Control Data (DS-ST)

1-80 CONTROL_DATA Header

1-10 ISTEP Analysis step number

11-30 TIME Time

N-8-2. Control Data (DS-EIG)

1-80 CONTROL_DATA Header

1-10 ISTEP Analysis step number

11-30 EIGEN Eigen frequency

N-8-3. Control Data (DS-FQ)

1-80 CONTROL_DATA Header

1-10 ISTEP Analysis step number

11-30 FREQ Frequency

N-8-4. Displacement (Node Data) (DS-ST and DS-EIG)

1-80 DISPLACEMENT Header

1-10 MAXING Number of nodes with a value assigned to

displacement

^{*} Repeat the following input sequence up to the number of MAXING.

1-10	I	Order number
11-20	NNO (I)	Node number
21-40	DSPX (I)	X-component of displacement
41-60	DSPY (I)	Y-component of displacement
61-80	DSPZ (I)	Z-component of displacement

N-8-5. Displacement (Node Data) (DS-FQ)

1-80 DISPLACEMENT_COMPLEXHeader

1-10 MAXING Number of nodes with a value assigned to

displacement

* Repeat the following inpu	sequence up to the	number of MAXING.
-----------------------------	--------------------	-------------------

-		-
1-10	I	Order number
11-20	NNO (I)	Node number
21-40	DSPX (I)	X-component of displacement (amplitude)
41-60	DSPY (I)	Y-component of displacement (amplitude)
61-80	DSPZ (I)	Z-component of displacement (amplitude)
1-10	I	Order number
11-20	NNO (I)	Node number
21-40	DSPX (I)	X-component of displacement (phase)
41-60	DSPY (I)	Y-component of displacement (phase)
61-80	DSPZ (I)	Z-component of displacement (phase)

N-8-6. Velocity (Node Data) (DS-FQ)

1-80 VELOCITY_COMPLEX Header

1-10 MAXING Number of nodes with a value assigned to velocity

^{*} Repeat the following input sequence up to the number of MAXING.

1-10	I	Order number
11-20	NNO (I)	Node number
21-40	VELX (I)	X-component of velocity (amplitude)
41-60	VELY (I)	Y-component of velocity (amplitude)
61-80	VELZ (I)	Z-component of velocity (amplitude)
1-10	I	Order number
1-10 11-20	I NNO (I)	Order number Node number
-	•	
11-20	NNO (I)	Node number

N-8-7. Acceleration (Node Data) (DS-FQ)

1-80 ACCELERATION_C	COMPLEXHeader
---------------------	---------------

1-10 MAXING Number of nodes with a value assigned to

velocity

* Repeat the following input sequence up to the number of MAXING.

•	0 1	1
1-10	I	Order number
11-20	NNO (I)	Node number
21-40	ACCX (I)	X-component of velocity (amplitude)
41-60	ACCY (I)	Y-component of velocity (amplitude)
61-80	ACCZ (I)	Z-component of velocity (amplitude)
1-10	I	Order number
11-20	NNO (I)	Node number
21-40	ACCX_I (I)	X-component of velocity (phase)
41-60	ACCY_I (I)	Y-component of velocity (phase)
61-80	ACCZ_I (I)	Z-component of velocity (phase)

N-8-8. Stress (Element Data) (DS-ST)

1-80	STRESS	Header (20001)

1-10 MAXING Number of elements with a value assigned to

stress

^{*} Repeat the following input sequence up to the number of MAXING.

1-10	I	Order number
11-20	ENO (I)	Node number
21-40	SX (I)	X-component of stress
41-60	SY (I)	Y-component of stress
61-80	SZ (I)	Z-component of stress
81-100	TXY (I)	XY-component of shear stress
101-120	TYZ (I)	YZ-component of shear stress
121-140	TZX (I)	ZX-component of shear stress

N-8-9. Stress (Lower Plane) (Element Data) (DS-ST)

1-80	STRESS_LOWER	Header (20008)
1-10	MAXING	Number of elements with a value assigned to
		stress

^{*} Repeat the following input sequence up to the number of MAXING.

1-10	I	Order number
11-20	ENO (I)	Node number
21-40	SX (I)	X-component of stress
41-60	SY (I)	Y-component of stress
61-80	SZ (I)	Z-component of stress
81-100	TXY (I)	XY-component of shear stress
101-120	TYZ (I)	YZ-component of shear stress
121-140	TZX (I)	ZX-component of shear stress

N-8-10.Stress (Element Data) (DS-FQ)

1-80	STRESS_COMPLEX	Header (20004)
1-10	MAXING	Number of elements with a value assigned to
		stress

* Repeat the following input sequence up to the number of MAXING.

repeat in	e ionowing input sequence	up to the number of whative.
1-10	I	Order number
11-20	ENO (I)	Node number
21-40	SX (I)	X-component of stress (amplitude)
41-60	SY (I)	Y-component of stress (amplitude)
61-80	SZ (I)	Z-component of stress (amplitude)
81-100	TXY (I)	XY-component of shear stress (amplitude)
101-120	TYZ (I)	YZ-component of shear stress (amplitude)
121-140	TZX (I)	ZX-component of shear stress (amplitude)
1-10	I	Order number
11-20	ENO (I)	Node number
21-40	SX_I (I)	X-component of stress (phase)
41-60	SY_I (I)	Y-component of stress (phase)
61-80	SZ_I (I)	Z-component of stress (phase)
81-100	TXY_I (I)	XY-component of shear stress (phase)
101-120	TYZ_I (I)	YZ-component of shear stress (phase)

N-8-11. Stress (Lower Plane) (Element Data) (DS-FQ)

121-140 TZX_I (I)

1-80 STRESS_COMPLEX_LOWERHeader (20009)

1-10	MAXING	Number of elements with a value assigned to
		stress

ZX-component of shear stress (phase)

* Repeat the following input sequence up to the number of MAXING.

1-10	I	Order ID
11-20	ENO (I)	Element ID
21-40	SX (I)	X-component of stress (amplitude)
41-60	SY (I)	Y-component of stress (amplitude)

Chapter N. PLOT File Format (Structural Analysis)

61-80	SZ (I)	Z-component of stress (amplitude)
81-100	TXY (I)	XY-component of shear stress (amplitude)
101-120	TYZ (I)	YZ-component of shear stress (amplitude)
121-140	TZX (I)	ZX-component of shear stress (amplitude)
1-10	I	Order ID
11-20	ENO (I)	Element ID
21-40	SX_I (I)	X-component of stress (phase)
41-60	SY_I (I)	Y-component of stress (phase)
61-80	SZ_I (I)	Z-component of stress (phase)
81-100	TXY_I (I)	XY-component of shear stress (phase)
101-120	TYZ_I (I)	YZ-component of shear stress (phase)
121-140	TZX_I (I)	ZX-component of shear stress (phase)

N-8-12. Electric Potential (Node Data) (DS-ST)

1-80	VOLTAGE	Header
1-10	MAXING	Number of nodes with a value assigned to electric potential

^{*} Repeat the following input sequence up to the number of MAXING.

1-10	I	Order ID
11-20	NNO(I)	Node ID
21-40	VLT(I)	Electric potential

N-8-13. Electric Potential (Node Data) (DS-FQ)

1-80 VOLTAGE_COMPLEX Header

1-10 MAXING Number of nodes with a value assigned to

electric potential

* Repeat the following input sequence up to the number of MAXING.

1-10	I	Order ID
11-20	NNO(I)	Node ID
21-40	VLT(I)	Electric potential (amplitude)
41-60	VLT_I(I)	Electric potential (phase)

N-8-14. Charge Density (Node Data) (DS-ST)

1-10 MAXING Number of nodes with a value assigned to

charge density

* Repeat the following input sequence up to the number of MAXING.

1-10	I	Order ID
11-20	NNO(I)	Node ID
21-40	CHG(I)	Charge density

N-8-15. Charge Density (Node Data) (DS-FQ)

1-80 CHARGE_COMPLEX Header

1-10 MAXING Number of nodes with a value assigned to

charge density

* Repeat the following input sequence up to the number of MAXING.

1-10	I	Order ID
11-20	NNO(I)	Node ID
21-40	CHG(I)	Charge density (amplitude)
41-60	CHG_I(I)	Charge density (phase)

N-8-16. Sound Pressure Level (Node Data) (DS-FQ)

1-80 SOUND_PRESSURE_LEVEL_COMPLEX

Header

1-10 MAXING Number of nodes with a value assigned to

sound pressure level

* Repeat the following input sequence up to the number of MAXING.

1-10	I	Order ID
11-20	NNO(I)	Node ID

21-40 SPL(I) Sound pressure level [dB]

1-10 I Order ID 11-20 NNO(I) Node ID

21-40 SP_PHASE(I) Phase of sound pressure [deg]

N-8-17. Sound Pressure (Node Data) (DS-FQ)

1-80 SOUND_PRESSURE_COMPLEXHeader

1-10 MAXING Number of nodes with a value assigned to

sound pressure

* Repeat the following input sequence up to the number of MAXING.

1-10 I Order ID 11-20 NNO(I) Node ID

21-40 SP(I) Amplitude of sound pressure

41-60 SP_PHASE(I) Phase of sound pressure

N-8-18. Nodal Force (Node Data) (DS-ST)

1-80	NODAL_FORCE	Header (10008)
------	-------------	----------------

1-10 MAXING Number of nodes with a value assigned to

load

* Repeat the following input sequence up to the number of MAXING.

1-10	Sid	Sequential ID
11-20	Nid	Node ID
21-40	Fx	Load of X component [N]
41-60	Fy	Load of Y component [N]
61-80	Fz	Load of Z component [N]

N-8-19. Nodal Force (Node Data) (DS-FQ)

61-80

FzPha

1-80 NODAL_FORCE_COMPLEXHeader (10009)

1-10 MAXING Number of nodes with a value assigned to

load

* Repeat the following input sequence up to the number of MAXING.

1-10	Sid	Sequential ID
11-20	Nid	Node ID
21-40	FxAmp	Load of X component [N]
41-60	FyAmp	Load of Y component [N]
61-80	FzAmp	Load of Z component [N]
1-10	Sid	Sequential ID
11-20	Nid	Node ID
21-40	FxPha	Phase of the load of X component [deg]
41-60	FyPha	Phase of the load of Y component [deg]

Phase of the load of Z component [deg]

N-8-20. Pressure (Element Data)

1-80 PRESSURE Header (20005)

1-10 MAXING Number of elements under pressure

* Repeat the following input sequence up to the number of MAXING.

1-10	Seq.id	Order ID
11-20	Elem.id	Element ID
21-40	P	Pressure

N-8-21. Strain (Element Data) (DS-ST)

1-80 STRAIN Header (10016)

1-10 MAXING Number of elements with strain

* Repeat the following input sequence up to the number of MAXING.

1-10	I	Order number
11-20	ENO(I)	Element number
21-40	SX(I)	X-component of strain
41-60	SY(I)	Y-component of strain
61-80	SZ(I)	Z-component of strain
81-100	TXY(I)	XY-component of strain
101-12	20 TYZ(I)	YZ-component of strain
121-14	60 TZX(I)	ZX-component of strain

N-8-22.Strain (Element Data) (DS-FQ)

1-80 STRAIN_COMPLEX Header (10017)

1-10 MAXING Number of elements with strain

^{*} Repeat the following input sequence up to the number of MAXING.

1-10	I	Order number
11-20	ENO(I)	Element number
21-40	SX(I)	X-component of strain (amplitude)
41-60	SY(I)	Y-component of strain (amplitude)
61-80	SZ(I)	Z-component of strain (amplitude)
81-100	TXY(I)	XY-component of shear strain (amplitude)
101-120) TYZ(I)	YZ-component of shear strain (amplitude)
121-140	TZX(I)	ZX-component of shear strain (amplitude)
1-10	Ι	Order number
11-20	ENO(I)	Element number
21-40	SX_I(I)	X-component of strain (phase)
41-60	SY_I(I)	Y-component of strain (phase)
61-80	$SZ_I(I)$	Z-component of strain (phase)
	~ _ -(-)	— (F)
81-100		XY-component of shear strain (phase)