Universidad Nacional Autónoma de México

Facultad de Ingeniería

Bases de Datos Grupo 1

Tarea 6

De los Cobos García Carlos Alberto

21 de septiembre de 2022

PostgreSQL tiene muchos tipos de datos, aquí mencionaremos algunos de los más importantes.

Numéricos.

El tipo de dato numérico consiste en enteros de 2, 4 y 8 bytes, números de tipo flotante de 4 y 8 bytes y números con precisión decimal.

Table 8.2. Numeric Types

Name	Storage Size	Description	Range
smallint	2 bytes	small-range integer	-32768 to +32767
integer	4 bytes	typical choice for integer	-2147483648 to +2147483647
bigint	8 bytes	large-range integer	-9223372036854775808 to +9223372036854775807
decimal	variable	user-specified precision, exact	up to 131072 digits before the decimal point; up to 16383 digits after the decimal point
numeric	variable	user-specified precision, exact	up to 131072 digits before the decimal point; up to 16383 digits after the decimal point
real	4 bytes	variable-precision, inexact	6 decimal digits precision
double precision	8 bytes	variable-precision, inexact	15 decimal digits precision
smallserial	2 bytes	small autoincrementing integer	1 to 32767
serial	4 bytes	autoincrementing integer	1 to 2147483647
bigserial	8 bytes	large autoincrementing integer	1 to 9223372036854775807

Fecha y hora.

Las fechas en PostgresSQL están basadas en el calendario gregoriano, incluso en años anteriores al que se introdujo el calendario.

Table 8.9. Date/Time Types

Name	Storage Size	Description	Low Value	High Value	Resolution
timestamp [(p)] [without time zone]	8 bytes	both date and time (no time zone)	4713 BC	294276 AD	1 microsecond
timestamp [(p)] with time zone	8 bytes	both date and time, with time zone	4713 BC	294276 AD	1 microsecond
date	4 bytes	date (no time of day)	4713 BC	5874897 AD	1 day
time [(p)] [without time zone]	8 bytes	time of day (no date)	00:00:00	24:00:00	1 microsecond
time $[\ (ho)\]$ with time zone	12 bytes	time of day (no date), with time zone	00:00:00+1559	24:00:00-1559	1 microsecond
interval [$fields$] [(ho)]	16 bytes	time interval	-178000000 years	178000000 years	1 microsecond

A continuación algunos ejemplos de entradas de fecha.

Table 8.10. Date Input

Example	Description
1999-01-08	ISO 8601; January 8 in any mode (recommended format)
January 8, 1999	unambiguous in any datestyle input mode
1/8/1999	January 8 in MDY mode; August 1 in DMY mode
1/18/1999	January 18 in MDY mode; rejected in other modes
01/02/03	January 2, 2003 in MDY mode; February 1, 2003 in DMY mode; February 3, 2001 in YMD mode
1999-Jan-08	January 8 in any mode
Jan-08-1999	January 8 in any mode
08-Jan-1999	January 8 in any mode
99-Jan-08	January 8 in YMD mode, else error
08-Jan-99	January 8, except error in YMD mode
Jan-08-99	January 8, except error in YMD mode
19990108	ISO 8601; January 8, 1999 in any mode
990108	ISO 8601; January 8, 1999 in any mode
1999.008	year and day of year
J2451187	Julian date
January 8, 99 BC	year 99 BC

• Cadenas.

o varchar(x): Define una cadena de caracteres de longitud variable en la cual determinamos el máximo de caracteres con el argumento "x" que va entre paréntesis. Su rango va de 1 a 10,485,760 caracteres.

- o char(x): Define una cadena de longitud fija determinada por el argumento "x". Su rango es de 1 a 10,485,760 caracteres. Si la longitud es invariable, es conveniente utilizar el tipo char; en un caso contrario, utilizar el tipo varchar.
- o text: Define una cadena de longitud variable, podemos almacenar una cadena de hasta 1GB (podemos utilizar las palabras claves character varying en lugar de text).

Nombre	Descripcióп
character varying(n), varchar(n)	De longitud variable, con límite
character(n), char(n)	De longitud fija
text	De longitud variable, ilimitado

Binarios.

El tipo de datos bytea permite el almacenamiento de cadenas binarias como en la tabla siguiente.

Nombre	Tamaño de almacenamiento	Descripción
bytea	1 o 4 bytes más la cadena binaria real	cadena binaria de longitud variable

Referencias

- o (sin fecha). Chapter 8. Data Types. PostgreSQL. https://www.postgresql.org/docs/current/datatype.html
- Fernández O. (3 de julio de 2020). Postgresql tipo de datos. Código Electrónica.
 http://codigoelectronica.com/blog/postgresql-tipo-de-datos#tipos-datos-binarios
- (sin fecha). 15 Tipo de dato texto. TutorialesProgramacionYa.
 https://www.tutorialesprogramacionya.com/postgresqlya/temarios/descripcion.php?cod=173&punto=15
 &inicio=