Contents

Ι	Set	t		5
1	Rin ;	_	ism	7 7
II	Se	equen	ces	9
2	Sup	remun	n and infimum	11
3	Inte	erval		13
4	Enh	anced	real line	15
5	Vec	tor spa	ace	17
	5.1	K-mod	dule	17
		5.1.1	Def	17
		5.1.2	Remark	17
		5.1.3	Notation	18
		5.1.4	K-vector space	18
		5.1.5	Association:	18
		5.1.6	Remark:	19
	5.2	sub K-	-module	19
		5.2.1	Def	19
		5.2.2	Example	19
	5.3	morph	ism of K-modules	19
		5.3.1	Def	19
		5.3.2	K-linear mapping	19
		5.3.3	Theorem	19
		5.3.4	Remark:column	20
	5.4	kernel		20
		5.4.1	Prop	20
		5.4.2	Def	20
		5.4.3	Theorem	20
		5 4 4	Proof	20

2 CONTENTS

		5.4.5 Def 21
		5.4.6 Remark
		5.4.7 Theorem
		5.4.8 Proof:
6	Moı	notone mappings 23
	6.1	Def
	6.2	Prop
	6.3	Def
	6.4	Prop
	6.5	Prop
	6.6	Def
	6.7	Prop
	6.8	Proof
		6.8.1 bijection
		6.8.2 uniqueness
7	-	nence and series 27
	7.1	Def
	7.2	Remark
	7.3	Prop
	7.4	proof
	7.5	Prop
	7.6	limit
		7.6.1 Def 28
		7.6.2 Remark
		7.6.3 Prop
		7.6.4 Prop
		7.6.5 Prop
		7.6.6 Theorem
		7.6.7 Def 29
		7.6.8 Prop
		7.6.9 Prop
		7.6.10 Theorem
		7.6.11 Notation
		7.6.12 Corollary
		7.6.13 Notation
		7.6.14 Theorem: Bolzano-Weierstrass
		7.6.15 Proof
8		chy sequence 33
	8.1	Def
	8.2	Prop
	8.3	Theorem: Completeness of real number
		8.3.1 Proof
	8.4	Absolutely converge

CONTENTS	3

Cor	nparison and Technics of Computation	35
9.1	Def	35
9.2	Prop	35
9.3	Theorem	35
0.0	9.3.1 Proof	36
9.4	Prop	36
	9.4.1 Proof	36
9.5	Prop	37
-	9.5.1 Proof	37
9.6	Theorem	37
9.7	Prop	37
•	9.7.1 Proof	37
9.8	Theorem	38
	9.8.1 Proof	38
9.9	Remark	38
9.10	Calculates on $O(),o()$	38
	9.10.1 Plus	38
	9.10.2 Transform	39
	9.10.3 Transition	39
	9.10.4 Times	39
9.11	On the limit	39
	Prop	39
	9.12.1 Proof	39
9.13	Prop	40
	9.13.1 Proof	40
9.14	Prop	40
	9.14.1 Proof	40
9.15	Theorem: d'Alembort ratio test	40
	9.15.1 Proof	41
	9.15.2 Lemma	41
	9.15.3 (2)	41
9.16	Prop	41
	9.16.1 Proof	41
	9.16.2 Corollary	42
	9.16.3 Corollary	42
9.17	Theorem: Cauchy root test	42
	9.17.1 Proof	42
I '	Гороlоду	43
) Ah	solute value and norms	45
		45
10.1	Def	41.1

4		CONTENTS
	0.3 Prop	45
	10.3.1 proof	45

Part I

Set

Ring

1.1 morphism

Def

Let A and B be unitary rings .We call morphism of unitary rings from A to B .only mapping $A \to B$ is a morphism of group from (A,+) to (B,+), and a morphism of monoid from (A,\cdot) to (B,\cdot)

Properties

• Let R be a unitary ting. There is a unique morphism from \mathbb{Z} to R

•

algebra

we call k-algebra any pair(R,f), when R is a unitary ring , and $f:k\to R$ is a morphism of unitary rings such that $\forall (b,x)\in k\times R, f(b)x=xf(b)$

Example: For any unitary ring R, the unique morphism of unitary rings $\mathbb{Z} \to R$ define a structure of $\mathbb{Z} - algebra$ on R (extra: \mathbb{Z} is commutative despite R isn't guaranteed)

Notation: Let k be a commutative unitary ring (A,f) be a k-algebra. If there is no ambiguity on f, for any $(\lambda,a) \in k \times A$, we denote $f(\lambda)a$ as λa

Formal power series

reminder: $n\in\mathbb{N}$ is possible infinite , so $\sum\limits_{n\in\mathbb{N}}$ couldn't be executed directly. Def:

(extended polynomial actually) Let k be a commutative unitary ring. Def : Let T be a formal symbol. We denote $k^{\mathbb{N}}$ as k[T] If $(a_n)_{n\in\mathbb{N}}$ is an element of $k^{\mathbb{N}}$, when we denote $k^{\mathbb{N}}$ as k[T] this element is denote as $\sum_{n\in\mathbb{N}} a_n T^n$ Such

element is called a formal power series over k and a_n is called the Coefficient of T^n of this formal power series Notation:

- omit terms with coefficient O
- write T' as T
- omit Coefficient those are 1;
- omit T^0

Example $1T^0 + 2T^1 + 1T^2 + 0T^3 + ... + 0T^n + ...$ is written as $1 + 2T + T^2$ Def Remind that $k[T] = \{\sum_{n \in \mathbb{N}} a_n T^n \mid (a_n)_{n \in \mathbb{N}} \in k^{\mathbb{N}} \}$, define two composition

$$\forall F(T) = a_0 + a_+ 1T + \dots \quad G(T) = b_0 + \dots$$
 let $F + G = (a_0 + b_0) + \dots$
$$FG = \sum_{n \in \mathbb{N}} \sum_{i+j=n} (a_i b_j) T^n$$

Properties:

- $(k[T], +, \cdot)$ form a commutative unitary ring.
- $k \to k[T]$ $\lambda \mapsto \lambda T$ is a morphism

•
$$(FG)H = \left(\sum_{n \in \mathbb{N}} \sum_{i+j=n} (a_i b_j) T^n\right) \left(\sum_{n \in \mathbb{N}} c_n T^n\right) = \sum_{n \in \mathbb{N}} \left(\sum_{p,q,l=n} a_p b_q c_l\right) T^n$$
 is a trick applied on integral

Derivative:

let
$$F(T) \in k[T]$$

We denote by $F'(T)$ or $\mathcal{D}(F(T))$ the formal power series $\mathcal{D}(F) = \sum_{n \in \mathbb{N}} (n+1)a_{n+1}T^n$
Properties:

- $\mathcal{D}(k[T], +) \to (k[T], +)$ is a morphism of groups
- $\mathcal{D}(FG) = F'G + FG'$

We denote $exp(T) \in k[T]$ as $\sum_{n \in \mathbb{N}} \frac{1}{n!} T^n$, which fulfil the differential equation $\mathcal{D}(exp(T)) = exp(T)$ (interesting)

Cauchy sequence: $(F_i(T))_{i\in\mathbb{N}}$ be a sequence of elements in k[T], and $F(T) \in$ k[T]We say that $(F_i(T))_{i\in\mathbb{N}}$ is a Cauchy sequence if $\forall l\in\mathbb{N}$, there exists $N(l)\in\mathbb{N}$ such that $\forall (i,j) \in \mathbb{N}^2_{\geq N(l)}, ord(F_i(T) - F_j(T)) \geq l$

Part II Sequences

Supremum and infimum

Def:

Let (X,\leq) be a partially ordered set A and Y be subsets of X, such that $A\subseteq Y$

- If the set $\{y \in Y \mid \forall a \in A, a \leq Y\}$ has a least element then we say that A has a Supremum in Y with respect to \leq denoted by $sup_{(y,\leq)}A$ this least element and called it the Supremum of A in Y(this respect to \leq)
- If the set $\{y \in Y \mid \forall a \in A, y \leq a\}$ has a greatest element, we say that A has n infimum in Y with respect to \leq . We denote by $inf_{(y,\leq)}A$ this greatest element and call it the infimum of A in Y
- Observation: $inf_{(Y,<)}A = sup_{(Y,>)}A$

Notation:

Let (X, \leq) be a partially ordered set, I be a set.

- If f is a function from I to X sup f denotes the supremum of f(I) is X.inf ftakes the same
- If $(x_i)_{i \in I}$ is a family of element in X, then $\sup_{i \in I} x_i$ denotes $\sup\{x_i \mid i \in I\}$ (inX)

If moreover $\mathbb{P}(\cdot)$ denotes a statement depending on a parameter in I then $\sup_{i \in I, \mathbb{P}(i)} x_i \text{ denotes } \sup\{x_i \mid i \in I, \mathbb{P}(i) \text{ holds}\}$

Example:

Let $A = x \in R \mid 0 \le x < 1 \subseteq \mathbb{R}$ We equip \mathbb{R} with the usual order relation.

$$\{y \in \mathbb{R} \mid \forall x \in A, x \leq y\} = \{y \in \mathbb{R} \mid y \geq 1\}$$

So $\sup A = 1$

$$\{y \in \mathbb{R} \mid \forall x \in A, y \le x\} = \{y \in \mathbb{R} \mid y \ge 0\}$$

Hence $\inf A = 0$

Example: For $n \in \mathbb{N}$, let $x_n = (-1)^n \in R$

$$\sup_{n \in \mathbb{N}} \inf_{k \in \mathbb{N}, k \ge n} x_k = -1$$

Proposition:

Let (X,\leq) be a partially ordered set, A,Y,Z be subset of X, such that $A\subseteq Z\subseteq Y$

- If max A exists, then is is also equal to $\sup_{(y,<)} A$
- If $\sup_{(y,<)} A$ exists and belongs to Z, then it is equal to $\sup A$

inf takes the same Prop.

Let X,\leq be a partially ordered set ,A,B,Y be subsets of X such that $A\subseteq B\subseteq Y$

- If $\sup_{(y,<)} A$ and $\sup_{(y,<)} B$ exists, then $\sup_{(y,<)} A \leq \sup_{(y,<)} B$
- If $\inf_{(y,\leq)} A$ and $\inf_{(y,\leq)} B$ exists, then $\inf_{(y,\leq)} A \geq \inf_{(y,\leq)} B$

Prop.

Let (X, \leq) be a partially ordered set ,I be a set and $f,g:I\to X$ be mappings such that $\forall t\in I, f(t)\leq g(t)$

- If inf f and inf g exists, then inf $f \leq \inf g$
- If $\sup f$ and $\sup g$ exists, then $\sup f \leq \sup g$

Interval

We fix a totally ordered set (X, \leq)

Notation:

If $(a, b) \in X \times X$ such that $a \le b$, [a,b] denotes $\{x \in X \mid a \le x \le b\}$

Def:

Let $I\subseteq X$. If $\forall (x,y)\in I\times I$ with $x\leq y,$ one has $[x,y]\subseteq I$ then we say that I is a interval in X

Example:

Let $(a,b) \in X \times X$, such that $a \leq b$ Then the following sets are intervals

- $|a,b| := \{x \in X \mid a,x,b\}$
- $[a, b] := \{x \in X \mid a, x, b\}$
- $[a, b] := \{x \in X \mid a, x, b\}$

Prop.

Let Λ be a non-empty set and $(I_{\lambda})_{{\lambda} \in \Lambda}$ be a family of intervals in X.

- $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a interval in X
- If $\bigcap_{\lambda \in \Lambda} I_{\lambda} \neq \varnothing, \bigcup_{\lambda \in \Lambda} I_{\lambda}$ is a interval in X

We check that $[a, b] \subseteq I_{\lambda} \cup I_{|}\mu$

- If $b \le x$ $[a, b] \subseteq [a, x] \subseteq I_{\lambda}$ because $\{a, x\} \subseteq I_{\lambda}$
- If $x \le a$ $[a,b] \subseteq [x,b] \subseteq I_{\mu}$ because $\{b,x\} \subseteq I_{\mu}$
- If a < x < b then $[a,b] = [a,x] \cup [x,b] \subseteq I_{\lambda} \cup I_{\mu}$

Def:

Let (X, \leq) be a totally ordered set .I be a non-empty interval of X. If $\sup I$ exists in X, we call $\sup I$ the right endpoint; inf takes the similar way. Prop.

Let I be an interval in X.

- Suppose that $b = \sup I \text{ exists. } \forall x \in I, [x, b] \subseteq I$
- Suppose that $a = \inf I$ exists. $\forall x \in I, |a, x| \subseteq I$

Prop.

Let I be an interval in X. Suppose that I has supremum b and an infimum a in X.Then I is equal to one of the following sets [a,b] [a,b[]a,b[Def

let (X, \leq) be a totally ordered set . If $\forall (x, z) \in X \times X$, such that $x < z \quad \exists y \in X$ such that x < y < z, than we say that (X, \leq) is thick Prop.

Let (X, \leq) be a thick totally ordered set. $(a,b) \in X \times X, a < b$ If I is one of the following intervals [a,b]; [a,b[;]a,b[;]a,b[Then inf I=a sup I=b (for it's thick empty set is impossible) Proof:

Since X is thick, there exists $x_0 \in]a, b[$ By definition,b is an upper bound of I. If b is not the supremum of I, there exists an upper bound M of I such that M_ib. Since X is thick , there is $M' \in X$ such that $x_0 \leq M, M' < b$ Since $[x, b] \subseteq [a, b] \in I$ Hence M and M' belong to I, which conflicts with the uniqueness of supremum.

Enhanced real line

Def:

Let $+\infty$ and -infty be two symbols that are different and don not belong to \mathbb{R} We extend the usual total order $\leq on \mathbb{R} to \mathbb{R} \cup \{-\infty, +\infty\}$ such that

$$\forall x \in \mathbb{R}, -\infty < x < +\infty$$

Thus $\mathbb{R} \cup \{-\infty, +\infty\}$ become a totally ordered set, and $\mathbb{R} =]-\infty, +\infty[$ Obviously, this is a thick totally ordered set. We define:

- $\forall x \in]-\infty, +\infty[$ $x + (+\infty) := +\infty$ $(+\infty) + x := +\infty$
- $\forall x \in [-\infty, +\infty[\quad x + (-\infty) := -\infty \quad (-\infty) + x = -\infty$
- $\forall x \in]0, +\infty]$ $x(+\infty) = (+\infty)x = +\infty$ $x(-\infty) = (-\infty)x = -\infty$
- $\forall x \in [-\infty, 0]$ $x(+\infty) = (+\infty)x = -\infty$ $x(-\infty) = (-\infty)x = +\infty$
- $-(+\infty) = -\infty$ $-(-\infty) = +\infty$ $(\infty)^{-1} = 0$
- $(+\infty) + (-\infty)$ $(-\infty) + (+\infty)$ $(+\infty)0$ $0(+\infty)$ $(-\infty)0$ $0(-\infty)$ ARE NOT DEFINED

Def

Let (X, \leq) be a partially ordered set. If for any subset A of X,A has a supremum and an infimum in X, then we say the X is order complete Example

Let Ω be a set $(\mathscr{P}(\Omega), \subseteq)$ is order complete If \mathscr{F} is a subset of $\mathscr{P}(\Omega)$, sup $\mathscr{F} = \bigcup_{A \in \mathscr{F}} A$

Interesting tip: $\inf \emptyset = \Omega \quad \sup \emptyset = \emptyset$ \mathcal{AXION} :

 $(\mathbb{R} \cup \{-\infty, +\infty\}, \leq)$ is order complete In $\mathbb{R} \cup \{-\infty, +\infty\}$ sup $\emptyset = -\infty$ inf $\emptyset = +\infty$

Notation:

- For any $A \subseteq \mathbb{R} \cup -\infty, +\infty$ and $c \in \mathbb{R}$ We denote by A+c the set $\{a+c \mid a \in A\}$
- If $\lambda \in \mathbb{R} \setminus \{0\}$, λA denotes $\{\lambda a \mid a \in A\}$
- -A denotes (-1)A

Prop.

For any $A \subseteq \mathbb{R} \cup \{-\infty, +\infty\}$, $\sup(-A) = -\inf A$, $\inf(-A) + -\sup A$ Def We denote by (R, \leq) a field \mathbb{R} equipped with a total order \leq , which satisfies the following condition:

- $\forall (a,b) \in \mathbb{R} \times \mathbb{R}$ such that a < b , one has $\forall c \in \mathbb{R}, a+c < b+c$
- $\forall (a,b) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}, ab > 0$
- $\forall A \subseteq \mathbb{R}$, if A has an upper bound in \mathbb{R} , then it has a supremum in \mathbb{R}

Prop.

Let
$$A \subseteq [-\infty, +\infty]$$

- $\forall c \in \mathbb{R}$ $\sup(A+c) = (\sup A) + c$
- $\forall \lambda \in \mathbb{R}_{>0}$ $\sup(\lambda A) = \lambda \sup(A)$
- $\forall \lambda \in \mathbb{R}_{\leq 0}$ $sup(\lambda A) = \lambda \inf(A)$

inf takes the same

Theorem:

Let I and J be non-empty sets

$$\begin{array}{l} f:I\rightarrow [-\infty,+\infty],g:J\rightarrow [-\infty,+\infty]\\ a=\sup\limits_{x\in I}f(x)\quad b=\sup\limits_{y\in J}g(y)\quad c=\sup\limits_{(x,y)\in I\times J,\{f(x),g(y)\}\neq\{+\infty,-\infty\}}(f(x)+g(y))\\ \text{If }\{a,b\}\neq\{+\infty,-\infty\}\\ \text{then }c=a+b \end{array}$$

inf takes the same if $(-\infty) + (+\infty)$ doesn't happen

Corollary:

Let I be a non-empty set, $f: I \to [-\infty, +\infty], g: J \to [-\infty, +\infty]$ Then $\sup_{x \in I, \{f(x), g(y)\} \neq \{+\infty, -\infty\}} (f(x) + g(x)) \leq (\sup_{x \in I} f(x))(\sup_{x \in I} g(x))$ inf takes the similar $(\leq \to \geq)$ (provided when the sum are defined)

Vector space

In this section:
K denotes a unitary ring.
Let 0 be zero element of K
1 be the unity of K

5.1 K-module

5.1.1 Def

Let (V,+) be a commutative group. We call left/right K-module structure: any mapping $\Phi:K\times V\to V$

- $\forall (a,b) \in K \times K, \forall x \in V \quad \Phi(ab,x) = \Phi(a,\Phi(b,x))/\Phi(b,\Phi(a,x))$
- $\forall (a,b) \in K \times K, \forall x \in V, \Phi(a+b,x) = \Phi(a,x) + \Phi(b,x)$
- $\forall a \in K, \forall (x, y) \in V \times V, \Phi(a, x + y) = \Phi(a, x) + \Phi(a, y)$
- $\forall x \in V, \Phi(1, x) = x$

A commutative group (V,+) equipped with a left/right K-module structure is called a left/right K-module.

5.1.2 Remark

Let K^{op} be the set K equipped with the following composition laws:

- $\bullet \ K \times K \to K$
- $(a,b) \mapsto a+b$
- $\bullet \ K \times K \to K$
- $(a,b) \mapsto ba$

Then K^{op} forms a unitary ring Any left $K^{op} - module$ is a right K-module Any right $K^{op} - module$ is a left K-module $(K^{op})^{op} = K$

5.1.3 Notation

When we talk about a left/right K-module (V,+), we often write its left K-module structure as $K\times V\to V$ $(a,x)\mapsto ax$

The axioms become:

$$\forall (a,b) \in K \times K, \forall x \in V \quad (ab)x = a(bx)/b(ax)$$

$$\forall (a,b) \in K \times K, \forall x \in V \quad (a+b)x = ax+bx$$

$$\forall a \in K, \forall (x,y) \in V \times V \quad a(x+y) = ax+ay$$

$$\forall x \in V \quad 1x = x$$

5.1.4 K-vector space

If K is commutative, then $K^{op}=K$, so left K-module and right K-module structure are the same . We simply call them K-module structure. A commutative group equipped with a K-module structure is called a K-module. If K is a field, a K-module is also called a K-vector space

Let $\Phi: K \times V \to V$ be a left or right K-module structure

$$\forall x \in V, \Phi(\cdot, x) : K \to V \quad (a \in K) \mapsto \Phi(a, x)$$

is a morphism of addition groups. Hence $\Phi(0,x)=0, \Phi(-a,x)=-\Phi(a,x)$ $\forall a\in K, \Phi(a,\cdot):V\to V$ is a morphism of groups. Hence $\Phi(a,0)=0, \Phi(a,-x)=-\Phi(a,x)(\cdot \mbox{ is a } var)$

5.1.5 Association:

 $\forall x \in K$

$$(f(f+g)+h)(x) = (f+g)(x)+h(x) = f(x)+g(x)+h(x)$$
$$(f+(g+h))(x) = f(x)+((g+h)(x)) = f(x)+g(x)+h(x)$$

Let
$$0: I \to K: x \mapsto 0 \quad \forall f \in K^I \quad f + 0 = f$$

Let $-f: f + (-f) = 0$

The mapping $K \times K^I \to K^I : (a, f) \mapsto af \quad (af)(x) = af(x)$ is a left K-module structure

The mapping $K \times K^I \to K^I$: $(a \in I) \mapsto ((x \in I) \mapsto f(x)a)$ (af)(x) = af(x) is a right K-module structure

5.1.6 Remark:

We can also write an element μ of K^I is the form of a family $(\mu_i)_{i\in I}$ of elements in K (μ_i) is the image of $i\in I$ by μ)
Then

$$(\mu_i)_{i \in I} + (\nu_i)_{i \in I} := (\mu_i + \nu_i)_{i \in I}$$

 $a(\mu_i)_{i \in I} := (a\mu_i)_{i \in I}$
 $(\mu_i)_{i \in I} a = (\mu_i a)_{i \in I}$

5.2 sub K-module

5.2.1 Def

Let V be a left/right K-module. If W is a subgroup of V. Such that $\forall a \in K, \forall x \in W \quad ax/xa \in W$, then we say that W is left/right sub-K-module of V.

5.2.2 Example

Let I be a set .Let $K^{\bigoplus I}$ be the subset of K^I composed of mappings $f: I \to K$ such that $I_f = \{x \in I \mid f(x) \neq 0\}$ is finite. It is a left and right sub-K-module of K^I

In fact,
$$\forall (f,g) \in K^{\bigoplus I} \times K^I$$
 $I_{f-g} = x \in I \mid f(x) - g(x) \neq 0 \subseteq I_f \cup I_g$
Hence $f - g \in K^{\bigoplus I}$ So $K^{\bigoplus I}$ is a subgroup of K^I $\forall a \in K, \forall f \in K^{\bigoplus I}$ $I_{af} \subseteq I_f, I_{(x \mapsto f(x)a)} \subseteq I_f$

5.3 morphism of K-modules

5.3.1 Def

Let V and W be left K-module, A morphism of groups $\phi: V \to W$ is called a morphism of left K-modules if $\forall (a,x) \in K \times V, \phi(ax) = a\phi(x)$

5.3.2 K-linear mapping

If K is commutative, a morphism of K-modules is also called a K-linear mapping. We denote by $\hom_{K-Mod}(V,W)$ the set of all morphism of left-K-module from V to W.This is a subgroup of W^V

5.3.3 Theorem

Let V be a left K-module. Let I be a set. The mapping $\hom_{K-Mod}(K^{\bigoplus I}, V) \to V^I: \phi \to (\phi(e_i))_{i \in I}$ is a bijection where $e_i: I \to K: j \mapsto \begin{cases} 1 & j=i \\ 0 & j \neq i \end{cases}$

5.3.4 Remark:column

In the case where I=1,2,3,...,n V^I is denoted as V^n,K^I is denoted as K^n For any $(x_1,...,x_n) \in V^n$, by the theorem, there exists a unique morphism of left K-modules $\phi:K^n \to V$ such that $\forall i \in 1,...,n\phi(e_i)=x_i$

We write this
$$\phi$$
 as a column $\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$ It sends $(a_1, \dots, a_n) \in K^n$ to $a_1x_1 + \dots + a_nx_n$

5.4 kernel

5.4.1 Prop

Let G and H be groups and $f: G \to H$ be a morphism of groups

- $I_m(f) \subseteq H$ is a subgroup of H
- $\bullet \ \ker(f) = \{ x \in G \mid f(x) = e_H \}$
- f is injection iff $ker(f) = \{e_G\}$

5.4.2 Def

ker(f) is called the kernel of f

5.4.3 Theorem

f is injection iff $\ker(f) = \{e_G\}$

5.4.4 Proof

Let e_G and e_H be neutral element of G and H respectively

- (1) Let x and y be element of G $f(x)f(y)^{-1} = f(x)f(y)^{-1} = f(xy^{-1}) \in Im(f)$. So Im(f) is a subgroup of H
- (2) Let x and y be element of $\ker(f)$ One has $f(xy^{-1})=f(x)f(y)^{-1}=e_H$ $e_H^{-1}=e_H$. So $xy^{-1}\in\ker(f)$ So $\ker(f)$ is a subgroup of G
- (3) Suppose that f is injection. Since $f(E_G) = e_H$ one has $\ker(f) = f^{-1}(\{e_H\}) = \{e_G\}$ Suppose that $\ker(f) = \{e_G\}$ If f(x) = f(y)then $f(xy^{-1}) = f(x)f(y)^{-1} = e_H$ Hence $xy^{-1} = e_G \Rightarrow x = y$

5.4. KERNEL 21

5.4.5Def

Let (V,+) be a commutative group, I be a set. We define a composition law + on V^{I} as follows

$$(x_i)_{i \in I} + (y_i)_{i \in I} := (x_i + y_i)_{i \in I}$$

Then V^I forms a commutative group

5.4.6Remark

Let E and F be left K-modules

 $\hom_{K=Mod}(E,F) := \{\text{morphisms of left K-modules from E to F}\} \subseteq F^E \text{ is a}$ subgroup of F^E

In fact f and g are elements of $hom_{K-Mod}(E,F)$, then f-g is also a morphism of left K-module

$$(f-g)(x+y) = f(x+y) - g(x+y) = (f(x) + f(y)) - (g(x) + g(y)) = (f(x) - g(x)) + (f(y) - g(y)) = (f - g)(x) + (f - y)(x)$$

5.4.7Theorem

Let V be a left K-module, I be a set The mapping $\hom_{K-Mod}(K^{\bigoplus I}, V) \to$ $V^I: \phi \mapsto (\phi(e_i))_i \in I$ is an isomorphism of groups, where $e_i: I \to K: j \mapsto I$ $\int 1 \quad j = i$ $\begin{cases} 0 & j \neq i \end{cases}$

5.4.8 **Proof:**

One has $(\phi + \psi)(e_i) = \phi(e_I) + \psi(e_i)$ $\forall (\phi, psi) \in \text{hom}_{K-Mod}(K^{\bigoplus I}, V)^2$ Hence $\Psi(\phi, \psi) = (\phi(e_i) + \psi(e_i))_{i \in I} = \Psi(\phi) + \Psi(\psi)$ So Ψ is a morphism of groups

injectivity Let $\phi \in \text{hom}_{K-Mod}(K^{\bigoplus I}, V)$ Such that $\forall i \in I(\forall \phi \in \text{ker}(\Psi)) \quad \phi(e_i) = 0$ Let $a = (a_i)_{i \in I} \in K^{\bigoplus I}$ One has $a = \sum_{i \in I} a_i e_i$

If fact,
$$\forall j \in I$$
, $a_j = \sum_{i \in I, a_i \neq 0} a_i e_i(j)$
Thus $\phi(a) = \sum_{i \in I, a_i \neq 0} a - I\phi(e_i) = 0$

Hence ϕ is the neutral element.

surjectivity Let $x = (x_i)_{i \in I} \in V^I$ We define $\phi_x : K^{\bigoplus I} \to V$ such that $\forall a = (a_i)_{i \in I} \in K^{\bigoplus I}, \phi_x(a) = \sum_{i \in I, a_i \neq 0} a_i x_i$

This is a morphism of left K-modules

$$foralli \in I, \phi_x(e_i) = 1x_i = x_i \text{ So } \Psi(\phi_x) = x$$

Suppose that K' is a unitary ring, and V is also equipped with a right K'-module structure, Then $\hom_{K-Mod}(K^{\bigoplus I},V)\subseteq V^{K^{\bigoplus I}}$ is a right sub-k'-module , and Ψ in the theorem is a right K'-module isomorphism

Monotone mappings

6.1 Def

Let I and X be partially ordered sets, $f: I \to X$ be a mapping.

- If $\forall (a,b) \in I \times I$ such that a < b. One has $f(a) \leq f(b)/f(a) < f(b)$, then we say that f is increasing/strictly increasing. decreasing takes similar way.
- If f is (strictly) increasing or decreasing, we say that f is (strictly) monotone

6.2 Prop.

Let X,Y,Z be partially ordered sets. $f: X \to Y, g: Y \to Z$ be mappings

- If f and g have the same monotonicity, then $g \circ f$ is increasing
- If f and g have different monotonicities, then $g \circ f$ is decreasing

strict monotonicities takes the same

6.3 Def

Let f be a function from a partially ordered set I to another partially ordered set .If $f \mid_{Dom(f)} \to X$ is (strictly) increasing/decreasing then we say that f is (strictly) increasing/decreasing

6.4 Prop.

Let I and X be partially ordered sets. f be function from I to X.

- If f is increasing/decreasing and f is injection, then f is strictly increasing/decreasing
- ullet Assume that I is totally ordered and f is strictly monotone, then f is injection

6.5 Prop

Let A be totally ordered set, B be a partially ordered set, f be an injective function from A to B

If f is increasing/decreasing ,then so is f^{-1}

6.6 Def

Let X and Y be partially ordered sets. $f: X \to Y$ be a bijection. If both f and f^{-1} are increasing ,then we say that f is an isomorphism of partially ordered sets.

(If X is totally, then a mapping $f: X \to Y$ is an isomorphism of partially ordered sets iff f is a bijection and f is increasing)

6.7 Prop.

Let I be a subset of $\mathbb N$ which is infinite. Then there is a unique increasing bijection $\lambda_I:\mathbb N\to I$

6.8 Proof

6.8.1 bijection

```
We construct f: \mathbb{N} \to I by induction as follows. Let f(0) = \min I Suppose that f(0), ..., f(n) are constructed then we take f(n+1) := \min(I \setminus \{f(0), ..., f(n)\}) Since I \setminus \{f(0), ..., f(n-1)\} \supseteq I \setminus \{f(0), ..., f(n)\}. Therefore f(n) \le f(n+1) Since f(n+1) \notin \{f(0), ..., f(n)\}, we have f(n) < f(n+1) Hence f is strictly increasing and this is injective If f is not surjective, then I \setminus Im(f) has a element \mathbb{N}. Let m = \min\{n \in \mathbb{N} \mid N \le f(n)\}. Since N \notin Im(f), N < f(m). So m \ne 0. Hence f(m-1) < N < f(m) = \min(I \setminus \{f(0), ..., f(m-1)\}) By definition, N \in I \setminus Im(f) \subseteq I \setminus \{f(0), ..., f(m-1)\}, Hence f(m) \le N, causing contradiction.
```

6.8. PROOF 25

6.8.2 uniqueness

exercise: Prove that $Id_{\mathbb{N}}$ is the only isomorphism of partially ordered sets from \mathbb{N} to \mathbb{N}

sequence and series

Let $I \subseteq \mathbb{N}$ be a infinite subset

7.1 Def

Let X be a set.We call sequence in X parametrized by I a mapping from I to X.

7.2 Remark

If K is a unitary ring and E is a left K-module then the set of sequence E^I admits a left-K-module structure. If $x=(x_n)_{n\in I}$ is a sequence in E, we define a sequence $\sum (x):=(\sum_{i\in I,i\leq n}x_i)_{n\in\mathbb{N}}$, called the series associated with the sequence x.

7.3 Prop

 $\sum:E^I\to E^{\mathbb{N}}$ is a morphism of left-K-module

7.4 proof

Let
$$x = (x_i)_{i \in I}$$
 and $y = (y_i)_{i \in I}$ be elements of E^I

$$\sum_{i \in I, i \le n} (x_i + y_i) = (\sum_{i \in I, i \le n} x_i) + (\sum_{i \in I, i \le n} y_i), \lambda \sum_{i \in I, i \le n} x_i = \sum_{i \in I, i \le n} \lambda x_i$$

7.5 Prop

Let I be a totally ordered set . X be a partially ordered set, $f: I \to X$ be a mapping $J \in I$ Assume that J does not have any upper bound in I

- If f is increasing , then f(I) and f(J) have the same upper bounds in X
- If f is decreasing ,then f(I) and f(J) have the same lower bounds in X

7.6 limit

7.6.1 Def

Let $i \subseteq \mathbb{N}$ be a infinite subset. $\forall (x_i)_{n \in I} \in [-\infty, +\infty]^I$ where $[-\infty, +\infty]$ denotes $\mathbb{R} \cup \{-\infty, +\infty\}$, we define:

$$\lim\sup_{n\in I, n\to +\infty} x_n := \inf_{n\in I} (\sup_{i\in I, i\geq n} x_i)$$

$$\lim_{n \in I, n \to +\infty} \inf x_n := \sup_{n \in I} (\inf_{i \in I, i \ge n} x_i)$$

If $\limsup_{n\in I, n\to +\infty} x_n = \liminf_{n\in I, n\to +\infty} x_n = l$, we then say that $(x_n)_{n\in I}$ tends to l and that l is the limit of $(x_n)_{n\in I}$. If in addition $(x_n)_{n\in I} \in \mathbb{R}^I$ and $l \in \mathbb{R}$, we say that $(x_n)_{n\in I}$ converges to l

7.6.2 Remark

If $J \subseteq \mathbb{N}$ is an infinite subset, then:

$$\lim_{n \in I, n \to +\infty} = \inf_{n \in J} (\sup_{i \in I, i \ge n} x_i)$$

$$\liminf_{n \in I, n \to +\infty} x_n = \sup_{n \in J} (\inf_{i \in I, i \ge n} x_i)$$

Therefore if we change the values of finitely many terms in $(x_i)_{i \in I}$ the limit superior and the limit inferior do not change.

In fact, if we take $J = \mathbb{N} \setminus \{0, ..., m\}$, then $\inf_{n \in J} (...)$ and $\sup_{n \in J} (...)$ only depends on the values of $x_i, i \in I, i \geq m$

7.6.3 Prop

$$\forall (x_n)_{n \in I} \in [-\infty, +\infty]^I, \ \underset{n \in I, n \to +\infty}{\lim \inf} x_n \le \underset{n \in I, n \to +\infty}{\lim \sup} x_n$$

7.6. LIMIT 29

7.6.4 Prop

Let
$$(x_n)_{n\in I} \in [-\infty, +\infty]^I$$

$$\forall c \in \mathbb{R}$$

$$\lim\sup_{n\in I, n\to +\infty} (x_n+c) = (\lim\sup_{n\in I, n\to +\infty} x_n) + c$$

$$\lim\inf_{n\in I, n\to +\infty} (x_n+c) = (\lim\inf_{n\in I, n\to +\infty} x_n) + c$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\sup_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\inf_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\sup_{n\in I, n\to +\infty} x_n$$

7.6.5 Prop

Let $(x_n)_{n\in I}$ be elements in $[-\infty, +\infty]^I$. Suppose that there exists $N_0 \in \mathbb{N}$ such that $\forall n \in I, n \geq N_0$, one has $x_n \leq y_n$ Then

$$\limsup_{n \in I, n \to +\infty} (x_n) \le \limsup_{n \in I, n \to +\infty} y_n$$
$$\liminf_{n \in I, n \to +\infty} (x_n) \ge \liminf_{n \in I, n \to +\infty} y_n$$

7.6.6 Theorem

Let $(x_n)_{n\in I}, (y_n)_{n\in I}, (z_n)_{n\in I}$ be elements of $[-\infty, +\infty]^I$ Suppose that

- $\exists N N \in \mathbb{N}, \forall n \in I, n \geq N_0 \text{ one has } x_n \leq y_n \leq z_n$
- $(x_n)_{n\in I}$ and $(z_n)_{n\in I}$ tend to the same limit l

Then $(y_n)_{n\in I}$ tends to l

7.6.7 Def

Let I be an infinite subset of \mathbb{N} , and $(x_n)_{n\in I}$ be a sequence in some set X. We call subsequence of $(x_n)_{n\in I}$ a sequence of the form $(x_n)_{n\in J}$, where J is an infinite subset of I

7.6.8 Prop

Let I and J be infinite subset of \mathbb{N} such that $J \subseteq I$ $\forall (x_n)_{n \in I} \in [-\infty, +\infty]^I$, one has

$$\liminf_{n \in I, n \to +\infty} (x_n) \le \liminf_{n \in I, n \to +\infty} y_n$$

$$\lim_{n \in I, n \to +\infty} \sup_{n \in I, n \to +\infty} y_n$$

In particular, if $(x_n)_{n\in I}$ tends to $l\in [-\infty,+\infty]$, then $(x_n)_{n\in J}$ tends to l

7.6.9 Prop

 $\forall n \in \mathbb{N}, \text{one has}$

$$\liminf_{n \in J, n \to +\infty} (x_n) \ge \liminf_{n \in I, n \to +\infty} y_n$$

$$\limsup_{n \in J, n \to +\infty} (x_n) \le \limsup_{n \in I, n \to +\infty} y_n$$

7.6.10 Theorem

Let $I \subseteq \mathbb{N}$ be an infinite subset and $(x_N)_{n \in I}$ be a sequence in $[-\infty, +\infty]$

- If the mapping $(n \in I) \mapsto x_n$ is increasing, then $(x_N)_{i \in I}$ tends to $\sup_{n \in I} x_n$
- If the mapping $(n \in I) \mapsto x_n$ is decreasing, then $(x_N)_{i \in I}$ tends to $\inf_{n \in I} x_n$

7.6.11 Notation

If a sequence $(x_N)_{n\in I} \in [-\infty, +\infty]$ tends to some $l \in [-\infty, +\infty]$ the expression $\lim_{n\in I, n\to} x_n$ denotes this limit l

7.6.12 Corollary

Let $(x_n)_{n\in I}$ be a sequence in $\mathbb{N}_{\geq 0}$ Then the series $\sum_{n\in I} x_n$ (the sequence $(\sum_{i\in I, i\leq n})_{n\in \mathbb{N}}$) tends to an element in $\mathbb{N}_{\geq 0}\cup\{+\infty\}$ It converges in \mathbb{R} iff it is bounded from above (namely has an upper bound in \mathbb{R})

7.6.13 Notation

If a series $\sum_{n\in I} x_n$ in $[-\infty, +\infty]$ tends to some limit, we use the expression $\sum_{n\in I} x_n$ to denote the limit

7.6.14 Theorem: Bolzano-Weierstrass

Let $(x_n)_{n\in I}$ be a sequence in $[-\infty, +\infty]$ There exists a subsequence of $(x_n)_{n\in I}$ that tends to $\limsup_{n\in I, n\to +\infty} x_n$ There exists a subsequence of $(x_n)_{n\in I}$ that rends to $\liminf_{n\in I, n\to +\infty} x_n$

7.6. LIMIT 31

7.6.15 Proof

```
Let J = \{ n \in I \mid \forall m \in I, \text{ if } m \leq n \text{ then } x_m \leq x_n \}
     If J is infinite, the sequence (x_N)_{n\in J} is decreasing so it tends to \inf_{x_n} x_n
     \forall n \in J \text{ by definition } x_n = \sup_{i \in I, i \geq n} x_i \text{ so } \limsup_{n \in I, n \to +\infty} x_n = \inf_{n \in J} \sup_{i \in I, i \geq n} x_i =
\inf_{n \in J} x_n = \lim_{n \in J, n \to +\infty} x_n
     Assume that J is finite. Let n_0 \in I such that \forall n \in J, n < n_0. Denote by
     n{\in}I, n{\geq}n_0
     Let N \in \mathbb{N} such that N \geq n_0. By definition sup x_i \leq l. If the strict
                                                                            i \in I, i > n_0
inequality \sup_{i \in I, i \geq N} x_i < l holds, then \sup_{i \in I, i \geq N} x_i is NOT an upper bound of
\{x_n \mid n \in I, n_0 \le n < N\}
     So there exists n \in I such that n_0 \leq n < N such that x_n > \sup_{i \in I} x_i We
                                                                                                  i \in I, i \geq N
may also assume that n is largest among elements of I \cap [n_0, N] that satisfies this
inequality. Then \forall m \in I \text{ if } m \geq n \text{ then } x_m \leq x_n \text{ Thus } n \in J \text{ that contradicts}
the maximality of n_0 Therefore l=\sup_{i\in I, i\geq N} x_i, which leads to \limsup_{n\in I, n\to +\infty} x_n=l
     Moreover, if m \in I, m \geq n_0 then m \notin J, so x_m < l(since otherwise x_m = l)
  sup x_i and hence m \in J)Hence, \forall finite subset I' of \{m \in I \mid m \geq n_0\}
     \max_{i \in I} x_i < l and hence \exists n \in I, such that n > \max_i I', and \max_i x_i < x_n
We construct by induction an increasing sequence (n_i)_{i\in\mathbb{N}} in I
     Let n_0 be as above. Let f: \mathbb{N} \to I_{\geq n_0} be a surjective mapping.
     If n_j is chosen, we choose n_{j+1} \in I such that n_{j+1} > n_j, x_{n_{j+1}} > \max\{x_{f(j)}, x_{n_j}\}
If n_j is chosen, we choose n_{j+1} \subset I such that n_{j+1} = 1. Hence the sequence (x_{n_j})_{j \in \mathbb{N}} is increasing, and \sup_{j \in \mathbb{N}} x_{n_j} \leq \sup_{j \in \mathbb{N}} x_{f(j)} = \sup_{n \in I, n \geq n_0} x_n = 1.
     l = \sup
          n \in I, n \ge n_0
     So (x_{n_i})_{i\in\mathbb{N}} tends to l
```

Cauchy sequence

8.1 Def

Let $(x_n)_{n\in I}$ be a sequence in \mathbb{R} If $\inf_{N\in\mathbb{N}}\sup_{(n,m)\in I\times I,\ n,m\geq N}|x_n-x_m|=\lim_{N\to +\infty}\sup_{(n,m)\in I\times I,\ n,m\geq N}|x_n-x_m|=0$ then we say that $(x_n)_{n\in I}$ is a Cauchy sequence

8.2 Prop

- If $(x_n)_{i\in I}\in\mathbb{R}^I$ converges to some $l\in\mathbb{R}$, then it is a Cauchy sequence
- \bullet If $(x_N)_{i\in I}$ is a Cauchy sequence, there exists M>0 such that $\forall n\in I \ |x_n|\leq M$
- If $(x_n)_{n\in I}$ is a Cauchy sequence, then $\forall J\subseteq I$ infinite, $(x_n)_{n\in I}$ is a Cauchy sequence.
- If $(x_n)_{n\in I}$ is a Cauchy sequence, then $\forall J\subseteq I$ infinite and $l\in\mathbb{R}$ such that $(x_n)_{n\in I}$ converges to l, then $(x_n)_{n\in J}$ converges to l too.

8.3 Theorem: Completeness of real number

If $(x_n)_{n\in I}\in\mathbb{R}^I$ is a Cauchy sequence, then it converges in \mathbb{R}

8.3.1 Proof

Since $(x_n)_{n\in I}$ is a Cauchy sequence, $\exists M\in\mathbb{R}_{>0}$ such that $-M\leq x_n\leq M$ $\forall x\in I$ So $\limsup_{n\in I,n\to+\infty}x_n\in\mathbb{R}$. By Bolzano-Weierstrass theorem. $\exists J\subseteq I$ infinite such that $(x_n)_{n\in I}$ converges to $\limsup_{n\in I,n\to+\infty}x_n\in\mathbb{R}$. Therefore $(x_n)_{n\in I}$ converges to the same limit.

8.4 Absolutely converge

We say that a series $\sum\limits_{n\in I}x_n\in\mathbb{R}$ converges absolutely if $\sum\limits_{n\in I}|x_n|<+\infty$

8.4.1 Prop

If a series $\sum\limits_{n\in I}x_n$ converges absolutely, then it converges in $\mathbb R$

Comparison and Technics of Computation

9.1 Def

Let $(x_n)_{n\in I}$ and $(y_n)_{n\in I}$ be sequence in \mathbb{R}

- If there exists $M \in \mathbb{R}_{>0}$ and $N \in \mathbb{N}$ such that $\forall n \in I_{\geq N}, |x_N| \leq M|y_m|$ then we write $x_n = O(y_n), n \in I, n \to +\infty$
- If there exists $(\epsilon_n)_{n\in I}\in\mathbb{R}^I$ and $N\in\mathbb{N}$ such that $\lim_{n\in I, n\to +\infty}\epsilon_n=0$ and $\forall n\in I_{\geq N}, |x_N|\leq |\epsilon y_m|$, then we write $x_n=\circ (y_n), n\in I, n\to +\infty$ Example:

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

9.2 Prop.

Let I and X be partially ordered sets and $f:I\to X$ be an increasing/decreasing mapping. Let J ba a subset of I. Assume that any elements of I has an upper bound in J. Then f(I) and f(J) have the same upper/lower bounds in X

9.3 Theorem

Let I be a totally ordered set, $f: I \to [-\infty, +\infty]$ and $g: I \to [-\infty, +\infty]$ be two mappings that are both increasing/decreasing. Then the following equalities holds, provided that the sum on the right hand side of the equality is well defined.

$$\sup_{x\in I,\{f(x),g(x)\}\neq\{-\infty,+\infty\}}=(\sup_{x\in I}f(x))+(\sup_{y\in I}g(y))$$

$$\inf_{x \in I, \{f(x), g(x)\} \neq \{-\infty, +\infty\}} = (\inf_{x \in I} f(x)) + (\inf_{y \in I} g(y))$$

9.3.1 Proof

We can assume f and g increasing. Let $a = \sup f(I), b = \sup g(I)$ Let $A = \{(x,y) \in I \times I \mid \{f(x),g(x)\} \neq \{-\infty,+\infty\}\}$ We equip A with the following order relation.

$$(x,y) \le (x',y') \text{ iff } x \le x', y \le y'$$

Let $B = A \cap \Delta_I = \{(x, y) \in A \mid x = y\}.$

Consider

$$h: A \to [-\infty, +\infty]$$
 $h(x, y) = f(x) + g(y)$

h is increasing.

Let $(x, y) \in A$. Assume that $x \leq y$

If $\{f(y), g(y)\} \neq \{-\infty, +\infty\}$ then $(y, y) \in B$ and $(x, y) \leq (y, y)$

If $\{f(y), g(y)\} = \{-\infty, +\infty\}$ and for $(x, y) \in A \Rightarrow f(y) = +\infty, g(y) = -\infty$. So $a = +\infty$, Hence $b > -\infty$

So $\exists z \in I$ such that $g(z) > -\infty$. We should have $y \leq z$ Hence f(z) + g(z) is well defined, $(z, z) \in B$ and $(x, y) \leq (z, z)$ Similarly, if $x \geq y$, (x, y) has also an upper bound in B. Therefore: $\sup h(A) = \sup h(B)$

9.4 Prop.

Let $I \subseteq \mathbb{N}$ be an infinite subset. Let $(x_n)_{n \in I}$ and $(y_n)_{n \in I}$ be elements of $[-\infty, +\infty]^I$ such that $\forall n \in I \mid \{x_n, y_n\} \neq \{-\infty, +\infty\}$. Then the following inequalities holds, provided that the sum on the right hand side is well defined.

$$\limsup_{n \in I, n \to +\infty} (x_n + y_n) \leq (\limsup_{n \in I, n \to +\infty} x_n) + (\limsup_{n \in I, n \to +\infty} y_n)$$

$$\lim_{n \in I, n \to +\infty} \inf (x_n + y_n) \ge (\lim_{n \in I, n \to +\infty} x_n) + (\lim_{n \in I, n \to +\infty} y_n)$$

9.4.1 Proof

 $\forall n \in \mathbb{N}, \text{ let } A_N = \sup_{n \in I, n \geq N} x_n \quad B_N = \sup_{n \in I, n \geq N} y_n. \ (A_N)_{N \in \mathbb{N}} \text{ and } (B_N)_{N \in \mathbb{N}}$ are decreasing, and $\limsup_{n \in I, n \to +\infty} x_n = \inf_{N \in \mathbb{N}} A_N \quad \limsup_{n \in I, n \to +\infty} y_n = \inf_{N \in \mathbb{N}} B_N$ By theorem:

$$\inf_{N\in\mathbb{N}} A_N + \inf_{N\in\mathbb{N}} B_N = \inf_{N\in\mathbb{N}, \{A_N, B_N\} \neq \{-\infty, +\infty\}} (A_N + B_N)$$

Let
$$C_N = \sup_{n \in I, n \ge N} (x_n + y_n) \le A_N + B_N$$
 if $A_N + B_N$ is defined.

Therefore

$$\inf_{N\in\mathbb{N}}C_N \leq \inf_{N\in\mathbb{N},\{A_N,B_N\}\neq \{-\infty,+\infty\}}(A_N+B_N) = \inf_{N\in\mathbb{N}}A_N + \inf_{N\in\mathbb{N}}B_N$$

9.5. PROP. 37

9.5 Prop.

Let $I \subseteq \mathbb{N}$ be an infinite subset. Let $(x_n)_{n \in I}$ and $(y_n)_{n \in I}$ be elements of $[-\infty, +\infty]^I$ such that $\forall n \in I \mid \{x_n, y_n\} \neq \{-\infty, +\infty\}$. Then the following inequalities holds, provided that the sum on the right hand side is well defined.

$$\limsup_{n \in I, n \to +\infty} (x_n + y_n) \ge (\limsup_{n \in I, n \to +\infty} x_n) + (\limsup_{n \in I, n \to +\infty} y_n)$$

$$\lim_{n \in I, n \to +\infty} \inf(x_n + y_n) \ge (\lim_{n \in I, n \to +\infty} x_n) + (\lim_{n \in I, n \to +\infty} y_n)$$

9.5.1 Proof

a tricky proof?:

$$\limsup_{n\in I, n\to} x_n = \limsup_{n\in I, n\to} (x_n+y_n-y_n) \leq \limsup_{n\in I, n\to} (x_n+y_n) - \liminf_{n\in I, n\to} y_n$$

to have a true proof, only need to discuss conditions with ∞

9.6 Theorem

Let $(x_n)_{n\in I}$ and $(y_n)_{n\in I}$ be elements of $[-\infty,+\infty]^I$. Assume that $\forall n\in I,y_n\in\mathbb{R}$ and $(y_n)_{n\in I}$ converges to some $i\in\mathbb{R}$. Then:

$$\lim_{n \in I, n \to +\infty} (x_n + y_n) = (\lim_{n \in I, n \to +\infty} x_n) + l$$

$$\liminf_{n \in I, n \to +\infty} (x_n + y_n) = (\liminf_{n \in I, n \to +\infty} x_n) + l$$

9.7 Prop.

Let $(x_n)_{n\in I}$ and $(y_n)_{n\in I}$ be elements of $[-\infty, +\infty]^I$ Then:

$$\liminf_{n\in I, n\to +\infty} \max\{x_n,y_n\} = \max\{\liminf_{n\in I, n\to +\infty} x_n, \liminf_{n\in I, n\to +\infty} y_n\}$$

$$\lim_{n\in I, n\to +\infty} \min\{x_n,y_n\} = \min\{\lim_{n\in I, n\to +\infty} x_n, \liminf_{n\in I, n\to +\infty} y_n\}$$

9.7.1 Proof

About the first inequality. Since $\max\{x_n,y_n\} \geq x_n \quad \max\{x_n,y_N\} \geq y_n$ By the theorem of Bolzano-Weierstrass theorem, there exists an infinite subset J of I such that

$$\lim_{n \in J, n \to +\infty} = \limsup_{n \in J, n \to +\infty} \max \{x_n, y_n\}$$

Let
$$J_1 = \{n \in J \mid x_n \geq y_n\}$$
 $J_1 = \{n \in J \mid x_n \leq y_n\}$
 $J_1 \cup J_2 = J$ So either J_1 or J_2 is infinite
Suppose that J_1 is infinite, then

$$\lim_{n\in J, n\to} \max\{x_n, y_n\} = \lim_{n\in J_1, n\to} \max\{x_n, y_n\} = \lim_{n\in J, n\to} x_n \le \limsup_{n\in I, n\to +\infty} x_n$$

If J_2 is infinite

$$\limsup_{n \in I, n \to +\infty} = \lim_{n \in J_2, n \to +\infty} \max\{x_n, y_n\} \leq \limsup_{n \in I, n \to +\infty} y_n$$

9.8 Theorem

Let $(a_N)_{n\in I} \in \mathbb{R}^I$ $l \in \mathbb{R}$. The following statements are equivalent

- $(a_N)_{n\in I}$ converges to l
- $\lim \sup |a_n l| = 0$ $n \in I, n \to +\infty$

9.8.1 Proof

$$|a_n - l| = \max\{a_n - l, l - a_n\}$$

$$\lim \sup_{n \in I, n \to +\infty} |a_n - l| = \max\{\left(\lim \sup_{n \in I, n \to +\infty} a_n\right) - l, l - \left(\lim \inf_{n \in I, n \to +\infty} a_n\right)\}$$

 $(1) \Rightarrow (2)$: If $(a_n)_{n\in I}$ converges to l, then $\limsup_{n\in I, n\to +\infty} a_n = \liminf_{n\in I, n\to +\infty} a_n = l$

 $(2) \Rightarrow (1)$: If $\limsup_{n \in I} |a_n - l| = 0$, then $\limsup_{n \in I} a_n \le l \le \liminf_{n \in I, n \to +\infty} a_n$ Therefore: $\limsup_{n \in I, n \to +\infty} a_n = \liminf_{n \in I, n \to +\infty} a_n = l$ $n \in I, n \to +\infty$

9.9 Remark

Let $(a_n)_{n\in I}$ be a sequence in \mathbb{R} , $l\in \mathbb{R}$ The sequence $(a_n)_{n\in I}$ converges to l iff $a_n-l=o(1), n\in I, n\to +\infty$

Calculates on O(),o() 9.10

9.10.1Plus

Let $(a_n)_{n\in I}$ $(a'_n)_{n\in I}$ and $(b_n)_{n\in I}$ be elements in \mathbb{R}^I

• If
$$a_n = O(b_n), a'_n = O(b_n), n \in I, n \to +\infty$$

then $\forall (\lambda, \mu) \in \mathbb{R}^2 \quad \lambda a_n + \mu a'_n = O(b_n), n \in I, n \to +\infty$

• If
$$a_n = o(b_n), a'_n = o(b_n), n \in I, n \to +\infty$$

then $\forall (\lambda, \mu) \in \mathbb{R}^2$ $\lambda a_n + \mu a'_n = o(b_n), n \in I, n \to +\infty$

9.10.2 Transform

Let $(a_n)_{n\in I}$ and $(b_n)_{n\in I}$ be two sequence in \mathbb{R} If $a_n=o(b_n), n\in I, n\to +\infty$, then $a_n=O(b_n), n\in I, n\to +\infty$

9.10.3 Transition

Let $(a_n)_{n\in I}$, $(b_n)_{n\in I}$ and $(c_n)_{n\in I}$ be elements in \mathbb{R}^I

- If $a_n = O(b_n)$ and $b_n = O(c_n), n \in I, n \to +\infty$ then $a_n = O(c_n), n \in I, n \to +\infty$
- If $a_n = O(b_n)$ and $b_n = o(c_n), n \in I, n \to +\infty$ then $a_n = o(c_n), n \in I, n \to +\infty$
- If $a_n = o(b_n)$ and $b_n = O(c_n), n \in I, n \to +\infty$ then $a_n = o(c_n), n \in I, n \to +\infty$

9.10.4 Times

Let $(a_n)_{n\in I}, (b_n)_{n\in I}, (c_n)_{n\in I}, (d_n)_{n\in I}$ be sequences in \mathbb{R}

- If $a N = O(b_n), c_n = O(d_n), n \in I, n \to +\infty$ then $a_n c_n = O(b_n d_n), n \in I, n \to +\infty$
- If $a N = o(b_n), c_n = O(d_n), n \in I, n \to +\infty$ then $a_n c_n = o(b_n d_n), n \in I, n \to +\infty$

9.11 On the limit

Let $(a_n)_{n\in I}$, $(b_n)_{n\in I}$ be elements of \mathbb{R}^I that converges to $l\in\mathbb{R}$ and $l'\in\mathbb{R}$ respectively. Then:

- $(a_n + b_n)_{n \in I}$ converges to l + l'
- $(a_n b_n)_{n \in I}$ converges to ll'

9.12 Prop

Let $a \in \mathbb{R}$ THen $a^n = o(n!)$ $n \to +\infty$

9.12.1 Proof

Let $N \in \mathbb{N}$ such that |a| < NFor $n \in \mathbb{N}$ such that $n \ge N$

$$0 \le \frac{|a^n|}{n!} = \frac{|a^N|}{N!} \cdot frac|a^n - N|\frac{n!}{N!} \le \frac{|a^N|}{N!} (\frac{|a|}{N})^n - N$$

And $0 < \frac{|a|}{<}1 \Rightarrow \lim_{n \to +\infty} (\frac{|a|}{N})^n = 0$. Therefore:

$$\lim_{n \to +\infty} \frac{|a^n|}{n!} = 0$$

namely:

$$a^n = o(n!)$$

9.13 Prop

$$n! = o(n^n) \quad n \to +\infty$$

9.13.1 Proof

Let
$$N \in \mathbb{N}_{\geq 1}$$

 $0 \leq \frac{n!}{n^n} \leq \frac{1}{n} \Rightarrow \lim_{n \to +\infty} \frac{n!}{n^n} = 0$

9.14 Prop

Let $(a_n)_{n\in I}, (b_n)_{n\in I}$ be the elements of \mathbb{R}^I If the series $\sum_{n\in I} b_n$ converges absolutely and if $on = O(b_n)$ $n \to +\infty$ Then $\sum_{n\in I} a_n$ converges absolutely

9.14.1 Proof

By definition $\sum\limits_{n\in I}|b_N|<+\infty$ If $|a_N|\leq M|b_N|$ fro $n\in I, n\geq N$ where $N\in\mathbb{N}$ Then

$$\sum_{n \in I} |a_n| = \sum_{n \in I, n < N} |a_n| + \sum_{n \in I, n \ge N} |a_n| \le \sum_{n \in I, n < N} |a_n| + \sum_{n \in I, n \ge N} |b_n| < +\infty$$

9.15 Theorem: d'Alembort ratio test

Let $(a_N)_{n\in\mathbb{N}}\in(\mathbb{R}\setminus\{0\})^{\mathbb{N}}$

- If $\limsup_{n\to+\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$, then $\sum_{n\in\mathbb{N}} a_n$ converges absolutely
- If $\liminf_{n\to +\infty} |\frac{a_{n+1}}{a_n}| > 1$, then $\sum_{n\in\mathbb{N}} a_n$ does not converge (diverges)

9.16. PROP 41

9.15.1Proof

(1)

Let $\alpha\in\mathbb{R}$ such that $\limsup_{n\to+\infty}|\frac{a_{n+1}}{a_n}|<\alpha<1,$ alpha isn't a lower bound of $(\sup_{n\geq N} \left| \frac{a_{n+1}}{a_n} \right|)_{N\in\mathbb{N}}$

So $\exists N \in \mathbb{N}$ such that $\sup_{n \geq N} \left| \frac{a_{n+1}}{a_n} \right| < \alpha \text{Hence for } n \geq N \quad |a_n| \leq \alpha^{n-N} |a_N| \text{ since }$

$$\frac{a_n}{a_N} = \frac{a_{N+1}}{a_N} \frac{a_{N+2}}{a_{N+1}} \dots \frac{a_n}{a_{n-1}}$$

Therefore $a_n = O(\alpha^n)$ since $\sum_{n \in \mathbb{N}} = \frac{1}{1-\alpha} < +\infty$, $\sum_{n \in \mathbb{N}} a_n$ converge absolutely.

9.15.2Lemma

If a series $\sum_{n\in\mathbb{N}} a_n \in \mathbb{R}$ converges, then $\lim_{n\to+\infty} a_n = 0$

Proof

If $(\sum_{i=0}^n a_i)_{n\in\mathbb{N}}$ converges to some $l\in\mathbb{R}$, then $(\sum_{i=0}^{n-1} a_i)_{n\in\mathbb{N}, n\geq 1}$ converges to l, too. Hence $\left(a_n = \left(\sum_{i=0}^n a_i\right) - \left(\sum_{i=0}^{n-1} a_i\right)\right)_{n \in \mathbb{N}}$ converges to l-l=0

9.15.3(2)

Let $\beta \in \mathbb{R}$ such that $1 < \beta < \liminf_{n \to +\infty} |\frac{a_{n+1}}{a_n}| = \sup_{N \in \mathbb{N}} \inf_{n \geq N} |\frac{a_{n+1}}{a_n}|$ So there exists $N \in \mathbb{N}$ such that $\beta < \inf_{n \geq N} |\frac{a_{n+1}}{a_n}|$

 $\forall n \in \mathbb{N}, n \geq N \quad |\frac{a_{n+1}}{a_n}| \geq \beta$

Hence $(|a_n|)_{n\in\mathbb{N}}$ is not bounded since $|a_n| \ge \beta^{n-N} |a_n|$ By the lemma: $\sum_{n\in\mathbb{N}} a_n$ diverges.

9.16 Prop

Let $a \in \mathbb{R}, a > 1$ Then $n = o(a^n), n \to +\infty$

9.16.1Proof

Let $\epsilon > 0$ such that $a = (1 + \epsilon)^2$

$$a^{n} = (1 + \epsilon)^{2n} = (1 + \epsilon)^{n} (1 + \epsilon)^{n} \ge (1 + n\epsilon)(1 + n\epsilon) \ge \epsilon^{2} n^{2}$$

Hence

$$n \le \frac{a^n}{\epsilon^2 n} = o(a^n)$$

9.16.2 Corollary

Let
$$a > 1, t \in \mathbb{R}_{>0}$$
 Then $n^t = o(a^n), n \to +\infty$

Proof

Let $d \in \mathbb{N}_{\geq 1}$ such that $t \leq d$ Then $n^{t-d} \leq 1$ So

$$n^t = n^d n^{t-d} = O(n^d)$$

Let
$$b = \sqrt[d]{a} > 1$$

$$n^d = o((b^n)^d) = o(a^n)$$

Hence $n^t = o(a^n)$

9.16.3 Corollary

There exists $M \ge 1$ such that $\forall x \in \mathbb{R}, x \ge M, \ln(x) \le x$

Proof

Let $a \in \mathbb{R}$ such that 1 < a < e

9.17 Theorem: Cauchy root test

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Let $\alpha = \limsup_{n\to+\infty} |a_n|^{\frac{1}{n}}$

- If $\alpha < 1$, then $\sum_{n \in \mathbb{N}} a_n$ converges absolutely.
- If a > 1 then $\sum_{n \in \mathbb{N}} a_n$ diverges

9.17.1 Proof

(1)

Let $\beta \in \mathbb{R}$, $\alpha < \beta < 1$. There exists $N \in \mathbb{N}$ such that $|a_N|^{\frac{1}{n}} \leq \beta$ for $n \geq N$. That means $|a_n| = O(\beta^n)$ since $0 < \beta < 1$, $\sum_{n \in \mathbb{N}} a_n$ converges absolutely.

(2)

If $\alpha > 1$ then $\forall N \in \mathbb{N} \quad \exists n \geq N$ such that $|a_n|^{\frac{1}{n}} \geq 1$, since otherwise $\exists N \in \mathbb{N} \ \forall n \geq N, |a_n|^{\frac{1}{n}} < 1$ contradiction Hence $(|a_n|)_{n \in \mathbb{N}}$ cannot converge to 0.

Part III
Topology

Absolute value and norms

10.1 Def

Let K be a field . By absolute value on K, we mean a mapping $|\cdot|:K\to\mathbb{R}_{\geq 0}$ that satisfies:

- (1) $\forall a \in K \quad |a| = 0 \text{ iff } a = 0$
- $(2) \ \forall (a,b) \in K^2 \quad |ab| = |a| \cdot |b|$
- (3) $\forall (a,b) \in K^2 \quad |a+b| \le |a| + |b|$ (triangle inequality)

10.2 Notation

 \mathbb{Q} Take a prime num $p \ \forall \alpha \in \mathbb{Q} \setminus \{0\}$ there exists a integer $ord_p(\alpha) \frac{a}{b}$, where $a \in \mathbb{Z} \setminus \{0\}$ $b \in \mathbb{N} \setminus \{0\}$

10.3 Prop

$$\mathbb{Q} \to \mathbb{R}_{\geq 0}$$

$$|\cdot| : \alpha \mapsto \begin{cases} p^{-ord_p(\alpha)} & \text{if } \alpha \neq 0\\ 0 & \text{if } \alpha = 0 \end{cases}$$

is a absolute value on $\mathbb Q$

10.3.1 proof

(1) Obviously

(2) If
$$\alpha = p^{ord_p(\alpha)} \frac{a}{b}, \beta = p^{ord_p(\beta)} \frac{c}{d} \quad p \nmid abcd$$

$$\alpha\beta = p^{ord_p(\alpha) + ord_p(\beta)} \frac{ac}{bd} \quad p \nmid ac, p \nmid bd$$

$$\begin{aligned} (3) & \ \alpha+\beta = p^{ord_p(\alpha)} \frac{a}{b} + p^{ord_p(\beta)} \frac{c}{d} \\ & \text{Assume} \ ord_p(\alpha) \geq ord_p(\beta) \\ & \alpha+\beta \\ & = p^{ord_p(\beta)} \left(p^{ord_p(\alpha) - ord_p(\beta)} \frac{a}{b} + \frac{c}{d} \right) \\ & = p^{ord_p(\beta)} \frac{p^{ord_p(\alpha) - ord_p(\beta)} ad + bc}{bd} \quad p \nmid bd \\ & \text{So} \end{aligned}$$

$$ord_p(\alpha + \beta) \ge ord(\beta)$$

Hence
$$ord_p(\alpha + \beta) \ge \min\{ord_p(\alpha), ord_p(\beta)\}\$$

So $|\alpha + \beta|_p = p^{-ord_p(\alpha + \beta)} \le \max\{p^{-ord_p(\alpha)}, p^{-ord_p(\beta)}\} = \max\{|\alpha|_p, |\alpha|_p\} \le |\alpha|_p, |\alpha|_p$