

Automatic Academic Paper Rating Based on Modularized Hierarchical Convolutional Neural Network

Pengcheng Yang¹, Xu Sun^{1,2}, Wei Li², Shuming Ma²

¹Deep Learning Lab, Beijing Institute of Big Data Research, Peking University

²MOE Key Laboratory of Computational Linguistics, Peking University

{yang_pc, xusun, liweitj47, shumingma}@pku.edu.cn

Abstract

●Task:

Automatically determine whether to accept an academic paper.

• Motivation:

- More and more academic papers are being submitted to conferences and journals.
- > Evaluating papers by professionals is time-consuming and can cause inequality due to the personal factors.

Proposal:

- > A new dataset for automatic academic paper rating.
- > A modularized hierarchical convolutional neural network.

• Conclusion:

Experiment

• Result:

> The proposed MHCNN outperforms all baselines.

Accuracy

50.0%

58.6%

58.3%

61.6%

59.4%

61.3%

67.7%

Models

CART

MNB

SVM

CNN

Bagging

MHCNN

The modularized hierarchical structure and attention mechanism are of great help to improve accuracy.

Models

Logistic

AdaBoost

C-LSTM

KNN

GNB

LSTM

Accuracy

60.0%

60.3%

58.5%

58.9%

60.5%

60.8%

Attention-Based Convolutional Neural Network

•Model:

 (x_1, x_2, \dots, x_m) is the input sequence, u_w is parameter vector, s is the high slevel representation of the whole sequence.

Ablation Study

•Result:

Models	Accuracy	Decline
MHCNN	67.7%	
w/o Attention	66.8%*	↓0.9%
w/o Module	61.3%*	↓6.4%

• Conclusion:

- Either the modularized hierarchical structure or the attention mechanism is of great help to improve accuracy.
- The modularized hierarchical structure of the model is beneficial to obtain better representations by incorporating structure knowledge of the source paper.

Modularized Hierarchical Convolutional Neural Network

•Model:

ACNN denotes attention-based CNN and AP denotes attentive pooling. r_i and m_i represent the token sequence and high ssssslevel representation of the i-th module, respectively. d denotes the final representation of the source paper.

Comparison of Various Parts of the Source Paper

•Result:

Contexts	Accuracy	Decline
Full data	67.7%	
w/o Title	66.6%*	↓1.1%
w/o Abstract	65.5%*	$\downarrow 2.2\%$
w/o Authors	64.6%*	↓3.1%
w/o Introduction	65.7%*	$\downarrow 2.0\%$
w/o Related work	66.0%*	\downarrow 1.7%
w/o <i>Methods</i>	66.2%*	\downarrow 1.5%
w/o Conclusion	65.0%*	↓2.7%

Conclusion:

- Except for *authors*, the two most significant modules affecting acceptance are *conclusions* and *abstract*.
- The impact of the *title* is the smallest.

Proposed Model

• Modularize:

The source paper r —> Several modules (r_1, r_2, \dots, r_l) .

• Module representation:

- \triangleright Input the token sequence r_i .
- > ACNN: word level —> sentence level —> module level.
- \triangleright Output the module sslevel representation m_i .

• Aggregation and classification:

- \triangleright Aggregate (m_1, m_2, \cdots, m_l) to d.
- \succ Perform classification based on d.

Conclusion

We propose the task of automatic academic paper rating (AAPR), which aims to automatically determine whether to accept academic papers. We propose a novel modularized hierarchical CNN for this task to make use of the structure of a source paper. Experimental results show that the proposed model outperforms various baselines by a large margin. In addition, we find that the conclusion and abstract parts have the most influence on whether the source paper can be accepted when setting aside the factor of authors.