MoskaliovYV 23122024-171237

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.038	67.5	0.366	-57.1
1.1	0.320	-155.5	12.461	91.4	0.040	67.2	0.341	-59.1
1.2	0.323	-159.5	11.379	88.9	0.043	67.1	0.320	-61.2
1.3	0.326	-162.8	10.531	86.9	0.046	67.0	0.302	-62.9
1.4	0.331	-165.9	9.800	85.0	0.049	66.9	0.285	-65.0
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
1.6	0.335	-171.5	8.475	81.1	0.055	66.3	0.256	-68.8
1.7	0.338	-173.9	7.988	79.7	0.058	66.1	0.243	-70.7
1.8	0.342	-176.0	7.561	78.3	0.061	66.0	0.232	-72.8
1.9	0.344	-178.6	7.147	76.2	0.064	65.5	0.222	-74.8
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1

и частоты $f_{\scriptscriptstyle \rm H}=1.4$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=2$ $\Gamma\Gamma$ ц. **Найти** модуль s_{11} в д ${\rm B}$ на частоте $f_{\scriptscriptstyle \rm B}$.

- 1) 16.5 дБ
- 2) -9.2 дБ
- 3) -23.5 дБ
- 4) -13.4 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s	22
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.1	0.728	90.5	1.369	6.6	0.159	32.5	0.215	-118.4
4.2	0.732	89.0	1.330	4.9	0.161	31.6	0.217	-121.7
4.3	0.737	87.5	1.292	3.1	0.164	30.7	0.219	-125.0
4.4	0.743	86.0	1.256	1.2	0.166	29.8	0.221	-128.3
4.5	0.749	84.6	1.221	-0.8	0.169	28.9	0.225	-131.4
4.6	0.752	83.4	1.190	-2.1	0.171	28.2	0.227	-134.2
4.7	0.755	82.3	1.161	-3.4	0.174	27.6	0.230	-136.9
4.8	0.759	81.1	1.131	-4.8	0.176	26.9	0.233	-139.5
4.9	0.763	80.0	1.103	-6.3	0.178	26.3	0.236	-142.1
5.0	0.767	78.9	1.075	-7.9	0.181	25.7	0.240	-144.6

и частоты $f_{\text{\tiny H}}=4.1$ ГГц, $f_{\text{\tiny B}}=4.8$ ГГц. Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}},$ используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

- 1) 0.4 дБ
- 2) 2.4 дБ
- 3) 1.7 дБ
- 4) 0.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.038	67.5	0.366	-57.1
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9

Найти точку (см. рисунок 2), соответствующую s_{22} на частоте 1.5 $\Gamma\Gamma$ ц.

Рисунок 2 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Задан двухполюсник на рисунке 3, причём R1 = 89.09 Ом.

Рисунок 3 – Двухполюсник

Найти полуокружность (см. рисунок 4), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 4 – Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать $unde\kappa c$ выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.3	0.352	-168.2	9.941	85.5	0.048	66.9	0.266	-70.5
1.6	0.362	-175.7	7.985	79.9	0.057	66.1	0.223	-78.0
1.9	0.373	177.7	6.731	75.2	0.066	65.3	0.194	-85.6
2.4	0.378	170.1	5.218	68.9	0.082	63.1	0.168	-98.4
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
4.5	0.406	146.0	2.758	47.2	0.145	51.5	0.140	-132.6
6.0	0.422	132.4	2.091	32.7	0.188	41.5	0.106	-159.6
7.5	0.472	117.4	1.674	18.4	0.226	31.0	0.100	147.0

и частоты $f_{\scriptscriptstyle \rm H}=1$ ГГц, $f_{\scriptscriptstyle \rm B}=6$ ГГц.

Найти развязку на $f_{\scriptscriptstyle \mathrm{B}}.$

- 1) 28.2 дБ
- 2) 7.3 дБ
- 3) 14.1 дБ
- 4) 14.5 дБ

Найти точку (см. рисунок 5), соответствующую коэффициенту отражения от нормированного импеданса $z=0.84\text{-}0.32\mathrm{i}$.

Рисунок 5 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.