- **Chapter 1 States of Matter**
- **Chapter 1 Lesson 1.1 Everything is Made of Particles Slide Set**
- **Chapter 1 Lesson 1.1 Slide 1**
- **Slide Title:** Everything is Made of Particles
- * All matter is made up of tiny particles too small to see.
- * These particles are constantly moving.
- * In solids, particles are closely packed and vibrate in place.
- * In liquids and gases, particles move more freely.
- * This movement leads to the mixing of particles, called diffusion.
- **Suggested Visual:** A diagram showing particles in a solid, liquid, and gas, with arrows indicatin
- **Think Prompt:** Can you think of everyday examples where you can see evidence of particles moving?
- **Chapter 1 Lesson 1.1 Slide 2**
- **Slide Title:** Evidence for Particles: Diffusion
- * Diffusion is the mixing of particles due to their random motion.
- * Examples include the spread of smells (cooking, perfume).
- * Another example is the movement of dust and smoke particles in sunlight (Brownian motion).
- * The spreading of color when potassium manganate(VII) dissolves in water is another example.
- * Diffusion happens because particles move from high concentration areas to low concentration areas
- **Suggested Visual:** A series of diagrams showing the diffusion of bromine gas into air, starting w
- **Think Prompt:** How does the concept of diffusion explain why you can smell freshly cut grass fro
- **Chapter 1 Lesson 1.1 Slide 3**
- **Slide Title:** Types of Particles
- * **Atoms:** The smallest particles that cannot be broken down chemically. Some substances, like Ar
- * **Molecules:** Two or more atoms joined together. Examples include water (H■O), oxygen (O■), and
- * **Ions:** Atoms or groups of atoms with an electric charge. Potassium manganate (VII) is an examp
- **Suggested Visual:** Simple diagrams of an atom, a water molecule (H■O), and a simple ion (e.g., N
- **Think Prompt:** How are atoms, molecules, and ions different from each other?
- **Chapter 1 Lesson 1.2 Solids, Liquids, and Gases Slide Set**
- **Chapter 1 Lesson 1.2 Slide 1**
- **Slide Title:** States of Matter: Solids
- * Solids have a fixed shape and volume.
- * Particles in a solid are tightly packed and vibrate in fixed positions.

- * Solids do not flow easily.
- **Suggested Visual:** A diagram of a tightly packed arrangement of particles vibrating in place. Ex
- **Think Prompt:** Why do solids maintain their shape and volume?
- **Chapter 1 Lesson 1.2 Slide 2**
- **Slide Title:** States of Matter: Liquids
- * Liquids have a fixed volume but take the shape of their container.
- * Particles in a liquid are loosely packed and move around each other.
- * Liquids flow easily.
- **Suggested Visual:** A diagram showing loosely packed particles moving and sliding past one another
- **Think Prompt:** Explain why liquids can flow but solids cannot.
- **Chapter 1 Lesson 1.2 Slide 3**
- **Slide Title:** States of Matter: Gases
- * Gases have no fixed shape or volume.
- * Particles in a gas are far apart and move randomly.
- * Gases fill their containers completely.
- **Suggested Visual:** A diagram showing widely spaced particles moving rapidly in all directions. E
- **Think Prompt:** Why are gases easily compressible?
- **Chapter 1 Lesson 1.2 Slide 4**
- **Slide Title:** Changes of State
- * **Melting:** Solid to liquid (e.g., ice melting to water).
- * **Boiling/Evaporation:** Liquid to gas (e.g., water boiling to steam).
- * **Freezing:** Liquid to solid (e.g., water freezing to ice).
- * **Condensation:** Gas to liquid (e.g., steam condensing to water).
- **Suggested Visual:** A diagram illustrating the different changes of state, using arrows to show th
- **Think Prompt:** What are the conditions required for each change of state?
- **Chapter 1 Lesson 1.2 Slide 5**
- **Slide Title:** Heating Curve for Water
- * A heating curve shows how the temperature changes during heating.
- * The temperature remains constant during melting and boiling.
- * Melting point of water is 0°C.
- * Boiling point of water is 100°C.

Suggested Visual: A graph showing a heating curve for water, with labeled sections indicating wa

Think Prompt: Why does the temperature stay constant during melting and boiling?

(Continue with Lesson 1.3 and subsequent lessons following the same format.)