# Predicting US flight delays and their causes

aviation industry use case project

Sebastian T. Gomez

# The problem

- Flight delays are expensive for airports and airlines
- Increasing traffic volumes makes schedules more sensitive to delays and disruptions
- Delays increase environmental impact
- No one likes to hang out in parked planes and airport gates

### The data

Monthly flight departures, delays, and cancellations per carrier and airport in the US during 2003-2020

30 airports, 28 carriers, 73k data points (monthly figures per carrier per airport)

https://www.transtats.bts.gov/OT\_Delay/Homepage.asp

### The data

Year, month, carrier, airport

number of delayed flights and breakdown by cause

delay duration and breakdown by cause

| Column Name         | Description                                                                                                                                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| date                | Year and month, in the format YYYY-M (e.g., 2018-1)                                                                                           |
| carrier             | The two character designator for the carrier/airline.                                                                                         |
| carrier_name        | The full name of the carrier/airline.                                                                                                         |
| airport             | The three character designator for the arrival airport.                                                                                       |
| airport_name        | The full name of the arrival airport.                                                                                                         |
| arr flights         | The total number of arriving flights for the carrier-airport pair for the month specified.                                                    |
| arr_del15           | The number of arriving flights that were delayed. Delayed is when a flight arrives more than 15 minutes later than the schedued arrival time. |
| carrier_ct          | The number of arriving flights delayed due to a carrier issue.                                                                                |
| weather_ct          | The number of arriving flights delayed due to a weather issue.                                                                                |
| nas_ct              | The number of arriving flights delayed due to a national air system issue.                                                                    |
| security_ct         | The number of arriving flights delayed due to a security issue.                                                                               |
| late_aircraft_ct    | The number of arriving flights delayed due to an earlier late arrival of an aircraft.                                                         |
| arr_cancelled       | The number of cancelled flights.                                                                                                              |
| arr_diverted        | The number of diverted flights.                                                                                                               |
| arr_delay           | The total number of delayed minutes due to delays.                                                                                            |
| carrier_delay       | The total number of delayed minutes due to carrier issues.                                                                                    |
| weather_delay       | The total number of delayed minutes due to weather issues.                                                                                    |
| nas_delay           | The total number of delayed minutes due to national air system issues.                                                                        |
| security_delay      | The total number of delayed minutes due to security issues.                                                                                   |
| late_aircraft_delay | The total number of delayed minutes due to earlier later arrival of aircraft.                                                                 |

### The data

#### Delay causes



- **Air Carrier:** The cause of the cancellation or delay was due to circumstances within the airline's control (e.g. maintenance or crew problems, aircraft cleaning, baggage loading, fueling, etc.).
- Extreme Weather: Significant meteorological conditions (actual or forecasted) that, in the judgment of the
  carrier, delays or prevents the operation of a flight such as tornado, blizzard or hurricane.
- National Aviation System (NAS): Delays and cancellations attributable to the national aviation system that
  refer to a broad set of conditions, such as non-extreme weather conditions, airport operations, heavy traffic
  volume, and air traffic control.
- Late-arriving aircraft: A previous flight with same aircraft arrived late, causing the present flight to depart late.
- **Security:** Delays or cancellations caused by evacuation of a terminal or concourse, re-boarding of aircraft because of security breach, inoperative screening equipment and/or long lines in excess of 29 minutes at screening areas.

### The questions

- 1. Is the delay probability and its duration predictable from time, airport, and carrier information?
- 2. Are the leading causes of delays predictable?
- 3. What are the main factors that help predict flight delays?

# Data exploration

... but first, some boring details

 clean the data: removing the few missing values by dropping rows

RangeIndex: 73282 entries, 0 to 73281 Data columns (total 21 columns): Column Non-Null Count Dtype 73282 non-null int64 year 73282 non-null month int64 73282 non-null carrier object 73282 non-null carrier\_name object 73282 non-null object airport 73282 non-null airport\_name object 73240 ron-null arr\_flights float64 arr\_del15 73211 ron-null float64 73240 ron-null carrier\_ct float64 73240 ron-null weather\_ct float64 73240 ron-null float64 nas\_ct 73240 ron-null security\_ct float64 late\_aircraft\_ct 73240 ron-null float64 73240 ron-null arr\_cancelled float64 73240 ron-null arr\_diverted float64 73240 ron-null arr\_delay float64 carrier\_delay 73240 ron-null float64 73240 ron-null float64 weather\_delay 73240 ron-null float64 nas\_delay 73240 ron-null float64 19 security\_delay 20 late\_aircraft\_delay 73240 pon-null float64 dtypes: float64(15), int64(2), object(4) memory usage: 11.7+ MB

# Data exploration

#### Look for general trends:

- Collapse data along carrier and airport dimensions to look for seasonal and yearly trends
- Collapse all delay data into three summary variables:
  - 1. total flights per month and year
  - 2. fraction delayed
  - 3. main delay cause

# Insights from the data

Seasonal and yearly variation





### Insights from the data

Carrier and airport trends



- Seasonal trend strong across all years
- 2020 flows trends until
   March and becomes outlier
   due to pandemic



 Delayed fraction increases with yearly flight volume



- Seasonal and yearly correlation between delayed fraction and volume
- Pre-pandemic 2020 had fewest delays despite high volume



#### **Number of flights**



#### **Delayed fraction**



#### Mean delay duration



#### Mean delay cause



# Use ML to predict delay statistics

- 1. Assume data is representative of all flights in the US
- 2. Select algorithm
  - Random Forest (Breiman 2001):

     an ensemble of decision trees optimized to find the best rules for predicting values or categories
  - good for both regression and classification
  - efficient, accurate, interpretable & good out of the box

# Use ML to predict delay statistics

#### 3. Prepare data

- Design feature variables:
  - year, month, airport, carrier, flight volume
- Design target variables:
  - delay probability = delayed/total flights
  - delay duration [min.]
  - delay cause (carrier, weather, NAS, late aircraft, security)
- 4. Encode categorical variable (C) using integers
- 5. Set aside random 20% of data for testing performance

# Use ML to predict delay statistics

- 6. Select performance metric
  - Delay probability and duration (regression): R<sup>2</sup>
  - Delay cause (classification): balanced accuracy
- 7. Tune model hyperparameters using grid search cross-validation
- 8. Python libraries: numpy, matplotlib, pandas, scikit-learn

# Delay probability prediction

#### Delay probabilities:

- R<sup>2</sup> = 0.42 (model captures about half of the variance in the data
- ~10% systematic bias
- ~8% precision





### Delay duration prediction

- R<sup>2</sup> = 0.89 (model captures most of the variance in the data)
- negligible (~10 sec.) systematic bias
- ~4 minute precision!





# Importance of predictive features

- RF has built-in interpretability
- MDI measures feature importance
- flight volume dominates predictions
- caveat: affected by cardinality
  - use permutation importances
  - year and month have larger impact than airport and carrier
- may need to account for feature covariance





### Delay cause prediction

#### Performance

- balanced accuracy = 0.38
- recall (fraction of correctly predicted causes)= 0.63-0.73 for 3 main causes
- recall = 0 for 'weather' and 'security'
- weather and security delays are too rare



### Delay cause prediction

- weather and security delays are too rare and under-represented in training data
- need to account for class imbalance
- use built-in class weights



### Delay cause prediction

#### Performance using balanced weights

- accuracy = 0.67
- balanced accuracy = 0.54
- 'weather' recall increases to 0.43



### Conclusions

- Flight volume and season have dominant impact on delays
  - airports and carriers less important
- Using only year, month, airport, carrier, flight volume:
  - predicts delay probability and duration
  - predicts main cause of delay in >64% of cases (for 3 leading causes)
  - Delays are driven by previous late arrivals due to high flight volumes
- Predictive performance could be improved by:
  - using tailored algorithms (i.e. deep learning)
  - better handling of class imbalance (e.g. weighting) and tuning decision threshold
  - including more info from discarded features
  - more granular data
  - adding extra features (e.g. location, weather)