

Evidencia 2-Review

Eugenio Loeza | A01067846 Diego Angulo | A01643797

Gael Castillo Zepeda | A01638638

Diego Alejandro Ibarra Flores | A01644350

20 de Agosto del 2025

Modelación de sistemas multiagentes con gráficas computacionales

Ivan Axel Dounce Nava

1. Descripción del Reto

El reto consiste en desarrollar una simulación en la que un micro vehículo aéreo (MAV) debe ejecutar de manera totalmente autónoma, una misión de búsqueda y localización de una persona a partir de una descripción textual de una persona, por ejemplo: "Encuentra a la persona con chaqueta naranja y casco amarillo", y una posición GPS donde es probable que se encuentre la persona. En la simulación el MAV debe volar desde una zona designada o zona de despegue, hasta la posición GPS objetivo, situada al menos 150 metros de distancia.

Una vez en el área, y dentro de un radio de 20 metros alrededor de la posición GPS, el MAV deberá identificar correctamente a la persona que cumpla con la descripción textual proporcionada, aun cuando haya otras personas presentes con características distintas. Finalmente, la simulación debe contemplar que el MAV realice un aterrizaje seguro a un radio o distancia de 2 metros de la persona, sin golpearlo. El objetivo principal del reto es que el MAV logre completar de forma autónoma el desplazamiento, la identificación y el aterrizaje bajo los criterios establecidos.

2. Identificación de los agentes involucrados

En la simulación propuesta se consideran los siguientes agentes autónomos:

- Agente MAV (1-3): Son 3 drones cada uno funciona como un agente autónomo con la capacidad para comunicarse, navegar y tomar decisiones. Estos tienen la capacidad de compartir información de búsqueda, en caso de encontrar a la persona y a la vez puede negociar entre ellos respecto a quien busca por cual zona, quien aterriza, etc.
- **Agente persona:** Es la representación de la descripción textual, y su rol es guiar a los agentes MAV a tomar decisiones. Es un objetivo de búsqueda el cual los drones deben identificar y aproximarse de manera segura.
- **Agentes distractores:** Otras entidades simuladas que dificultan la identificación y obligan al MAV a validar correctamente la descripción.
- Agente control en tierra: Supervisión mínima, sólo para monitoreo de métricas de desempeño del enjambre de MAVs.

2.1. Primera iteración del diagrama de Clases de Agentes presentando los diferentes agentes involucrados

2.2. Primera iteración del diagrama de protocolo de Interacción de Agentes.

3. Plan de trabajo y aprendizaje adquirido

Actividad	Responsables	Fecha estimada	Esfuerzo	Estado
Creación de repositorio GitHub	Eugenio	21 de agosto	10 min	pendiente
Diseño de	Eugenio y Gael	21 de agosto	30 min	pendiente

diagramas UML				
Desarrollo de prototipo de navegación autónoma	Diego A y Diego I	30 de Agosto	3 horas	pendiente
Implementación de protocolos de comunicación entre MAVs	Todo el equipo	5 de Septiembre	8 horas	pendiente
Prueba inicial de simulación	Todo el equipo	10 de Septiembre	3 horas	pendiente
Revisión y ajuste final	Todo el equipo	15 de Septiembre	3 horas	pendiente

- Eugenio Loeza: Experiencia en programación orientada a objetos y estructuras de datos en coordinación y diseño de arquitecturas. Área de oportunidad,: optimización de simulaciones en tiempo real
- **Diego Angulo:** Habilidades en modelación matemáti*ca*. Fortaleza en planeación de trayectorias. Área de oportunidad: implementación en código.
- Gael Castillo: Experiencia en trabajo con agentes y comunicación. Fortaleza en diseño de protocolos de interacción. Área de oportunidad: documentación.
- Diego Ibarra: Experiencia en programación y optimización fortaleza, en algoritmos de búsqueda. Área de oportunidad: Aumentar habilidades en entornos gráficos (Unity).

Expectativas y compromisos del equipo:

- Expectativas:
 - Desarrollar un prototipo funcional de simulación multiagente
 - Aprender a modelar, interacciones colaborativa entre MAVs
 - Integrar buenas prácticas de trabajo con GitHub
- Compromisos:
 - Mantener comunicación constante
 - Actualizar el repositorio después de cada avance individual
 - Respetar tiempos y responsabilidades asignadas.