Auktionen und Märkte

Common Value Auktionen

Jonas von Wangenheim, Carl-Christian Groh

Universität Bonn, Wintersemester 2024/2025

Einführung - Common Value Auktionen

Bisher: unabhänige und private Wertschätzungen

- Jeder Bieter kennt seine eigene Wertschätzung (WS) sicher.
- Die WS anderer ist von der eigenen komplett unabhängig.

Heute: gemeinsame Wertschätzungen.

- Die WS ist f
 ür alle Bieter exakt gleich
- Jeder Bieter hat aber nur stückweise, unvollständige Information über die WS.
- Formal: Jeder Bieter erhält ein Signal über die WS.

Beispiele: Staatsanleihen, Antiquitäten, Ölbohrfelder, Windparks, Spektralfrequenzen

 Gemeinsamkeit: Egal wer gewinnt, der Gewinner erhält immer den gleichen Wert durch das Gut.

Experiment - Die Münzgläser

Wir machen ein erstes Experiment zu Auktionen mit gemeinsamen WS:

- Schauen Sie sich die zwei Gläser mit Münzen im Video genau an.https://www.youtube.com/watch?v=K3NUwDkBpTs
- Schätzen Sie die Anzahl der Münzen in den beiden Gläsern.
- Wir versteigern den Betrag per Zweitpreisauktion.
- Bedenken Sie: der wahre Wert des Objekts ist für alle exakt gleich, jeder Bieter hat aber nur eine eigene Schätzung von diesem Wert.
- Geben Sie dann an, wie viel sie bereit wären zu bieten.

Experiment 2 - Wallet Auktion

Idee der Wallet Auktion (in Paaren von 2 Leuten):

- Jeder legt sein Portemonnaie auf den Tisch (metaphorisch).
- Es gibt eine Auktion. Der Gewinner erhält den Inhalt aus beiden Portemonnaies.
- Clou: Jeder kennt den Geldbetrag in seinem Portemonnaie, aber nicht den in der anderen.
- Zweitpreisauktion: Gewinner zahlt das Gebot, dass der Verlierer geboten hat.

Wir spielen die Wallet Auktion mit je zwei Bietern:

- Gehen Sie auf www.zufallsgenerator.net und generieren Sie eine Zufallszahl zwischen 0 und 100. Das ist der Wert Ihres Portemonnaies.
- Geben Sie Ihre Zufallszahl ein.
- Geben Sie ihr Gebot f
 ür die Wallet-Auktion an.
- Gemeinsame Wertschätzung = Summe der Zufallszahlen.

Beispiel Wallet Auktion

- Ihre Zufallszahl ist 60.
- Sie bieten 100.
- Ihr Gegner bietet 80.
- Sie haben die Auktion gewonnen und zahlen einen Preis von 80.
- Die Zufallszahl Ihres Gegners war 10.
- Dh die gemeinsame WS war 60+10=70.
- Da Sie die Auktion gewonnen haben ist Ihr Profit 70-80=-10, d.h. negativ.

Der Fluch des Gewinners

Geschichte des Fluchs:

- Um 1970 herum wurden um den Golf von Mexiko verschiedene Ölbohrrechte versteigert.
- Bieter hatten nur ein unvollständiges Bild über die genauen Ölvorkommen.
- Es stellte sich heraus, dass für Gewinner bei vielen Ölfeldern die Gewinne deutlich hinter den Erwartungen blieb.
- Gewinner schienen "verflucht": Sie hatten häufig Pech, dass die Realität schlechter war als die Prognosen.
- Capen, Clapp und Campbell fanden 1971 in einem theoretischen Aufsatz eine Begründung, woher der "Fluch"kommen könnte.

Der Fluch in der Münzauktion

Wir lösen die Münzauktion auf: Es befanden sich 1283 Münzen in den Gläsern.

- Schauen Sie sich die durchschnittliche Schätzung an.
- Vergleichen Sie diese mit der Schätzung des Gewinners.
- Hat der Gewinner einen Gewinn erzielt?
- Liegt der Gewinn/Verlust des Gewinners über oder unter seinen Erwartungen?
- Formulieren Sie eine Begründung für die Beobachtungen.

Ergebnisse des Münzexperiments

Schätzungen	
520	Durchschnittliche Schätzung:
500	662,47
800	
2200	Payoff des Gewinners:
270	-717
430	
380	
1000	
315	
262	
2000	
350	
100	
350	
460	

Ergebnisse der Common Value Auktion

Zufallszahl 1	Gebot 1	Zufallszahl 2	Gebot 2	Totale WS	Gewinn 1	Gewinn 2
71	100	56	60	127	67	0
49	61	42	92	91	0	30
84	140	85	135	169	34	0
11	40	52	81	63	0	23
82	122	3	30	85	55	0
21	71	72	162	93	0	22
18	40	65	80	83	0	43
18	60	70	30	88	58	0

Der Fluch des Gewinners - Intuition

Die Intuition für den Fluch:

- Wie in der Standardauktion mit privaten Wertschätzungen wäre es theoretisch schwach dominant die WS zu bieten.
- Nur: Man kennt diese WS nicht.
- Es erscheint naheliegend die beste Schätzung der Wertschätzung zu bieten.
- Dann gewinnt jedoch automatisch derjenige, der die WS am höchsten einschätzt, also im zweifelsfall sogar überschätzt!
- Im besseren Fall bleibt der Gewinn hinter den Erwartungen, im schlechteren Fall macht der Gewinner Verlust.
- Der "Fehler": Bieter erkennen nicht, dass Gewinnen bedeutet, dass sie den Wert vermutlich überschätzt haben.

Naive Strategie in der Wallet Auktion

Ein Beispiel: 2 Bieter mit Signalen $x_i \in [0, 100]$. WS also $v = x_1 + x_2$.

Naive Strategie:

- Das andere Portemonnaie hat im Durchschnitt einen Wert von 50.
- Der Erwartungswert für Bieter *i* ist $\mathbb{E}[v] = x_i + 50 \rightarrow$ also bietet er $x_i + 50$.

Ergebnis wenn beide naiv spielen:

- Der Bieter mit der höheren WS gewinnt, und zahlt $x_{(2)} + 50$, das Gebot des anderen.
- Die WS ist $x_{(1)} + x_{(2)}$. Also entsteht Verlust, wenn $x_{(1)} < 50$.

Wo liegt der "Fehler"?

- Mein Rivale gibt ein niedriges Gebot ab
 ⇔ ich gewinne mit hoher Wahrscheinlichkeit.

Das Gleichgewicht in der Wallet Auktion

Bieter sollten die Verteilung der WS bedingt darauf, dass sie gewinnen betrachten.

Grobe Intuition:

- Notation: x_i = Signal von Spieler i.
- In einem symmetrischen GG (in dem Bieter mit höheren Signalen höhere Gebote abgeben) gewinnt Spieler 1 wenn $x_2 \le x_1$.
- Für Bieter 1 gilt, falls er gewinnt, dass $v = x_1 + x_2 \le 2x_1$.
- D.h. er sollte in einem symmetrischen GG niemals mehr als das doppelte seines Wertes setzen.
- Wir zeigen auf der nächsten Slide formal, dass b(x) = 2x tatsächlich ein symmetrisches GG ist.

Das Gleichgewicht in der Wallet Auktion

Behauptung: b(x) = 2x ist ein symmetrisches BNGG in der Wallet Auktion mit 2 Bietern.

Beweis:

- Wir müssen zeigen, dass $b_i(x_i) = 2x_i$ eine beste Antwort auf $b_i(x_i) = 2x_i$ ist.
- Falls *i* gewinnt, dann ist der Preis $b_i = 2x_i$
- Bieter i möchte gewinnen wenn $v \ge b_i$, also wenn $x_i + x_i \ge 2x_i$.
- Dh *i* möchte genau dann gewinnen, wenn $x_i \ge x_i$.
- Dies erreicht er durch das Gebot $b_i(x_i) = b_i(x_i) = 2x_i$.

Bemerkung: Das Gleichgewicht sieht sehr niedrige Gebote für niedrige WS vor, entsprechend der Intuition auf der vorletzten Slide.

Exkurs: Das GG in der Wallet Auktion für *n* Bieter

Behauptung: $b(x) = \frac{n+2}{2}x$ ist ein symmetrisches BNGG in der Wallet Auktion mit n Bietern.

Beweis:

- Wir müssen zeigen, dass $b_i(x_i) = \frac{n+2}{2}x_i$ eine beste Antwort ist wenn alle $j \neq i$ die Strategie $b_i(x_i) = \frac{n+2}{2}x_i$ verwenden.
- Das höchste gegnerische Signal ist $\tilde{x}_{(1:n-1)}$. Die anderen n-2 Signale sind gleichverteilt auf $[0,\tilde{x}_{(1:n-1)}]$, mit Erwartungswert $\frac{\tilde{x}_{(1:n-1)}}{2}$.
- Dh. abhängig vom höchsten gegnerischen Signal gilt für Bieter i:

$$\mathbb{E}[v|\tilde{x}_{(1:n-1)}] = x_i + \tilde{x}_{(1:n-1)} + (n-2)\frac{\tilde{x}_{(1:n-1)}}{2} = x_i + \frac{n}{2}\tilde{x}_{(1:n-1)}$$

- Falls man gewinnt, ist der Preis $b(\tilde{x}_{(1:n-1)}) = \frac{n+2}{2}\tilde{x}_{(1:n-1)}$, der erwartete Gewinn also $E[v|\tilde{x}_{(1:n-1)}] b(\tilde{x}_{(1:n-1)}) = x_i \tilde{x}_{(1:n-1)}$.
- Bieter *i* möchte also gewinnen, genau dann wenn $x_i > \tilde{x}_{(1:n-1)}$. Dies erreicht er durch $b(x_i) = \frac{n+2}{2}x_i$.

Zusammenfassung

Die beiden gespielten Auktionen und das Beispiel der Ölbohrfelder haben subtile Unterschiede, aber einiges gemeinsam:

- Gewinnen bringt schlechte Neuigkeiten über den wahren Wert des Objekts.
- Bieter, welche das nicht in Betracht ziehen, bieten tendenziell zu hoch.

Bemerkung: Ähnlich kann man auch von einem Fluch des Verlierers sprechen. Denken Sie an die Münzgläser.

- Wenn ich verliere, dann habe ich die Anzahl vermutlich niedriger eingeschätzt als die anderen Bieter.
- Evtl habe ich mich nach unten verschätzt.
- Im Nachhinein hätte ich vielleicht lieber mehr geboten.