ЯДЕРНЫЕ СТЕПЕНИЯ СВОБОДЫ В АТОМНОЙ ФИЗИКЕ

Е.В. Грызлова

НИИЯФ МГУ Весенний семестр 2020 г.

- о **«Разминка»**
- о Спектры систем со сферической симметрией
- о Сжатые атомы и резонансы формы
- о Двухуровневая система с сильно связанными состояниями
- о Атомная спектроскопия антипротония
- о Поляризация излучения и дихроизм
- о Плоская волна и волновой пакет волна вещества.
- о Нобелевская премия по физике 2012 года.
- Изучение одиночной квантовой системы
 - о Ионные ловушки
- о Когерентные и сжатые состояния волновых пакетов
 - о Начала теории рассеяния
 - о Особенности резонансного рассеяния и неэкспоненциальный распад

- о Атомная спектроскопия антипротония
- а) Ридберговские состояния мезоатомов
- б) Двухфотонная спектроскопия
- в) лазерное охлаждение

LETTER

Nature, 2011

loi:10 1038/nature10260

Masaki Hori^{1,2}, Anna Sótér¹, Daniel Barna^{2,3}, Andreas Dax², Ryugo Hayano², Susanne Friedreich⁴, Bertalan Juhász⁴, Thomas Pask⁴, Eberhard Widmann⁴, Dezső Horváth^{3,5}, Luca Venturelli⁶ & Nicola Zurlo⁶

Электрон находится в его основном состоянии Протон находится в Ридберговском состоянии, n=l+1

$$\langle r \rangle \sim \frac{n^2}{m}, \quad \langle r \rangle_{\bar{p}} \approx \frac{1}{2} \langle r \rangle_{e}$$

Обычно антипротонные атомы разрушаются за пикосекунды, через каскад электромагнитных переходов

Для $\overline{p}He^+$ распаду препятствует большая энергия связи электрона ~25 эВ и большое значение мультипольности соответствующего (большое Δl), и атом существует микросекунды

Метастабильные состояния мезоатомов

$$\overline{p}He^+$$

Оже-распад и радиационный распад

Метастабильные состояния мезоатомов

PHYSICAL REVIEW LETTERS

Оже-распад и радиационный распад

$$A^* \rightarrow A^+ + e^- \qquad A^* \rightarrow A^+ + \gamma$$

VOLUME 23 14 JULY 1969 NUMBER 2

METASTABLE STATES OF $\alpha\pi^-e^-$, αK^-e^- , AND $\alpha\bar{p}e^-$ ATOMS J. E. Russell

Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (Received 15 May 1969; revised manuscript received 16 June 1969)

It is suggested that antiprotons could be used to test Condo's conjecture that the large mean cascade time for K^- mesons in atomic orbits in liquid helium is due to metastable states.

Table I. Some properties of circular orbits of $\alpha \pi^- e^-$, $\alpha K^- e^-$, and $\alpha \bar{p} e^-$ atoms. The unit of energy is the rydberg.

atom	n	Е _b (Ry)	$ \Delta n _{\min}$	E _A (Ry)	P _A (sec ⁻¹)	P_R (sec-1)
$\alpha\pi^-e^-$	16	-5. 56	3	0.67	4×10 ⁹	2.8×10^{7}
	15	-6.01	2	0.22	2×10^{12}	4.8×10^{7}
αK^-e^-	29 28	-5.50 -5.73	5 4	0.43 0.20	$6 imes10^2 \ 4 imes10^5$	4.4×10^6 6.0×10^6
	27	-6.00	4	0.45	1×10^6	8.1×10^6
$\alpha \overline{p}e^{-}$	$\frac{38}{37}$	-5.50 -5.67	6 5	0.23		2.0×10^6 2.5×10^6
	36	- 5.86	5	0.25		3.1×10^{6}
	35	-6.09	4	0.02	$\lesssim 10^4$	3.9×10^{6}

Для $\overline{p}He^{\dagger}$ распаду препятствует большая энергия связи электрона ~25 эВ и большое значение мультипольности соответствующего (большое Δl), и атом существует микросекунды

Существуют переходы типа $(n,l) \rightarrow (n-2,l-2)$ с частотой в диапазоне глубокого ультрафиолета: 139.8; 193.0; 197.0 nm.

Двухфотонный переход, близкий к резонансному

Метастабильные состояния мезоатомов

PHYSICAL REVIEW A 77, 042506 (2008)

Calculation of transitions between metastable states of antiprotonic helium including relativistic and radiative corrections of order $R_{\infty}\alpha^4$

Vladimir I. Korobov*

Joint Institute for Nuclear Research, 141980, Dubna, Russia
(Received 23 February 2008; published 15 April 2008)

Precise numerical calculation of transition intervals between metastable states in the antiprotonic helium atom is performed. Theoretical consideration includes a complete account of the relativistic and radiative corrections of order $R_{\infty}\alpha^4$ in the nonrecoil limit. The final uncertainty is estimated to be about 1–2 MHz.

Оже-распад

TABLE II. Nonrelativistic energies E_{nr} , half-widths $\Gamma/2$, and the expectation values of the most important operators for individual states of ${}^4\text{He}^+\bar{p}$. All quantities are in atomic units.

State	E_{nr}	Γ/2	\mathbf{p}_e^4	$\delta\!({ m r}_{ m He})$	$\delta({f r}_{ar p})$	$Q(\mathbf{r}_{He})$	$Q(\mathbf{r}_{ar{p}})$	$E_{rc}^{(4)}\alpha^{-4}$
(31,30)	-3.6797747876576(1)	4.7602×10^{-9}	26.070956	0.9262219	0.1214405	-1.1942	0.1581	-1.2481
(32,31)	-3.50763503897101(1)	5.4×10^{-13}	28.308649	0.9938238	0.1130804	-1.2919	0.1616	-1.4078
(33,32)	-3.35375787083340(1)	1.07×10^{-12}	30.718285	1.0664983	0.1044583	-1.3964	0.1634	-1.5810
(34,32)	-3.2276763796294(3)	2.7237×10^{-9}	34.530638	1.1808676	0.0925595	-1.5613	0.1597	-1.8530
(35,32)	-3.116679795873(3)	6.9733×10^{-8}	38.370099	1.2958629	0.0812115	-1.7271	0.1538	-2.1171
(34,33)	-3.21624423907002(1)	1.4×10^{-13}	33.304865	1.1443963	0.0956136	-1.5086	0.1641	-1.7670
(35,33)	-3.1053826755489(3)	2.8×10^{-12}	37.278812	1.2635240	0.0838705	-1.6804	0.1583	-2.0442
(36,33)	-3.0079790936832(4)	2.9188×10^{-9}	41.233471	1.3819872	0.0729174	-1.8512	0.1505	-2.3062
(35,34)	-3.09346690791590(1)		36.069959	1.2275613	0.0865934	-1.6284	0.1632	-1.9644
(36,34)	-2.9963354479662700(5)	2.3×10^{-13}	40.168797	1.3503397	0.0751362	-1.8055	0.1554	-2.2415
(37,34)	-2.9111809394697(4)	2.6×10^{-12}	44.174196	1.4702684	0.0646698	-1.9785	0.1458	-2.4961
(38,34)	-2.836524601208(1)	1.604×10^{-9}	48.000329	1.5848219	0.0553288	-2.1439	0.1351	-2.7231
(39,34)	-2.771011573577(1)	9.920×10^{-9}	51.574850	1.6918636	0.0471712	-2.2983	0.1238	-2.9203
(37,35)	-2.89928218336728(1)		43.186470	1.4409042	0.0664487	-1.9361	0.1510	-2.4424
(38,35)	-2.8251468095450(1)		47.185100	1.5605889	0.0566232	-2.1088	0.1398	-2.6839
(39,35)	-2.7602333455733(1)	1.0×10^{-12}	50.925526	1.6725711	0.0480612	-2.2704	0.1279	-2.8932
(40,35)	-2.7032832165135(3)	1.9×10^{-12}	54.349384	1.7751265	0.0407571	-2.4184	0.1159	-3.0701

$$\overline{p}He^{+}$$

$$\sim v\sqrt{8k_{\mathrm{B}}T\log{(2)}/Mc^{2}}$$
 - Доплеровская ширина

Лазерное охлаждение

Сила, действующая на атом при поглощении фотона

$$\begin{split} \vec{F} &= r\vec{k} = \Gamma_{a}\rho_{aa}\vec{k} \\ \dot{\rho}_{ab} &= -(\frac{\Gamma}{2} + i\Delta)\widetilde{\rho}_{ab} + i\Omega_{R}\rho_{aa} - i\frac{\Omega_{R}}{2}; \\ \dot{\rho}_{aa} &= -\Gamma\rho_{aa} + i\frac{\Omega_{R}}{2}(\rho_{ab} - \rho_{ba}); \\ \dot{\rho}_{ba} &= -(\frac{\Gamma}{2} - i\Delta)\widetilde{\rho}_{ba} - i\Omega_{R}\rho_{aa} + i\frac{\Omega_{R}}{2}. \end{split}$$

$$\vec{F} = \Gamma_a \vec{k} \frac{\Omega_R^2}{4\Delta^2 + \Gamma^2 + 2\Omega_R^2}$$

$$\sim \frac{\Gamma_a \vec{k} \Omega_R^2}{4(\Delta \mp k v)^2 + \Gamma^2 + 2\Omega_R^2}$$

$$\vec{F} = F_a \mp m\beta v = \frac{\Gamma_a \vec{k} \Omega_R^2}{4\Delta^2 + \Gamma^2} \pm \frac{8\Gamma_a \vec{k}^2 \Omega_R^2 \Delta}{(4\Delta^2 + \Gamma^2)^2} v$$

Сила трения

$$\vec{F} = F_a - m\beta v - (F_a + m\beta v) = -2m\beta v$$

Индуцированная прозрачность в λ-системе

Решение уравнения, осциллирующее на частоте падающего поля

$$\chi(\Omega) = \frac{iN|d_{ab}|^2(\gamma_c + i\Delta)}{2(\Delta^2 - \gamma_a \gamma_c + \Omega_{\mu}^2 / 4 - i\Delta(\gamma_a + \gamma_c))}$$

$$-\frac{N|d_{ab}|^2(\Delta - i\gamma_c)}{2\sqrt{\Omega_{\mu}^2 - (\gamma_a - \gamma_c)^2}} \left(\frac{1}{\Delta - \Delta_r^{(1)}} - \frac{1}{\Delta - \Delta_r^{(2)}}\right)$$

$$\Delta_r = \frac{i(\gamma_a + \gamma_c) \pm \sqrt{\Omega_{\mu}^2 - (\gamma_a - \gamma_c)^2}}{2} \rightarrow \frac{i(\gamma_a + \gamma_c) \pm \Omega_{\mu}}{2}$$

Действительная и мнимая части нелинейной восприимчивости:

$$\chi(\Omega) = -\frac{N|d_{ab}|^{2} \Delta(\Delta^{2} - \Omega_{\mu}^{2}/4 + \gamma_{c}^{2})}{2((\Delta^{2} - \gamma_{a}\gamma_{c} + \Omega_{\mu}^{2}/4)^{2} + \Delta^{2}(\gamma_{a} + \gamma_{c})^{2})} + \frac{N|d_{ab}|^{2} (\gamma_{c}(-\gamma_{a}\gamma_{c} - \Omega_{\mu}^{2}/4) - \gamma_{a}\Delta^{2})}{2((\Delta^{2} - \gamma_{a}\gamma_{c} + \Omega_{\mu}^{2}/4)^{2} + \Delta^{2}(\gamma_{a} + \gamma_{c})^{2})}$$

$$\overline{p}He^+$$
 $\sim v\sqrt{8k_{
m B}T\log(2)/Mc^2}$ - Допплеровская ширина

Лазерное охлаждение

Лазерное охлаждение уменьшает ширину этих линий, и их энергия может быть измерена с относительной точностью 2.5-5 на 10⁹.

Понижение Раби осцилляций

Интенсивности, такие что $\Omega_1 = \Omega_2$

В пределе Допплеровская ширина (первого порядка) уменьшается в $\sim (v_1+v_2)/(v_1-v_2)$ раз

Два Ti:saphire лазера МВт, 30-100 нс, 6МГц –наименьшая ширина

