Tr Dataset	○ Platform ○	Samples Column Number of	material Tr I	Rows-Columns	Control Group	Levels Number	 Resumpling 	# MCC	# Flacore :	# AUC #	TPR #	TNR # PP	V # NPV	Present Genes Number	Making Grows	Top 10 feature - RE	Top 10 features blace it text	⊙ samples :	Spearman's Rank Correlation	Kendalls Tau Dietance	Standagoni bay 10 peras	Nomalization method	Batch effect correction	Genes in the top 20% of predicted importance by Linear Regression Model	Active Instrume response type
GSE185263	RNA-seq_Burnina Hz	392	3 39280	ows-56Columns (Healthy	34Exepsis_44healthy	SMOTE	0.938	0.971	"	0.965 0	0.5886	0.9405		man mus	FCGR1A-S100A9-8:10-CD177-S100A12-GATA3-TNFSF10-S100A8-CSAR1-MYD88	FCSR1A-S10SAR-S10SA12-S10SAR-GATA2-L10-CD177-MICRE-TRESF10-CSAR1	Whole-blood	0.768276	0.5994194	ACREE, JOSEN, JOSENS, JOSENS, JOSEN, JOSEN, JOSEN, JONEN, JANSEN, JONENS, COMB.	DEasgl-ved	Combat(ava)collection location	FCGR1A - \$190A9 - \$190A12 - \$190A8 - GATAJ - IL10 - CD177 - MYD89 - TNFSF10 - CSAR1 - RCL2 - MAPK14 - SDCS2	1. Tolk-Man receptor (TLS) and Mg/CBB signaling ~ Drives early inflammatory response. 2. S100 Almania Parhaug (DAMPA response) — Activates manaripolis de manaripolis de manaripolis de manaripolis de manaripolis de produce de la compansion (L-N, Dampa) (SAS, SAS, SAS, SAS, SAS, SAS, SAS, SAS
GSE65682	Microarraya Affyrima	234	Q 234row	ws - 107columns	Healthy	192sepsis - 42healthy	SMOTE	0.9676	0.9942	0.9994	0.993 0.9	27 0.9945	0.9738	-41	NAMES AND GOALS	SIGGA12-SIGGAR-CD177-ARGIT-GATA3-LLIR2-MARKIN-RCL2-CHICRI HLAGRA	C0177 - GATAD - 5100A12 - 5100AB - ARGIT - E.180 - MARYCH - BCL2 - CXXXXI - MMPB	Whole-blood	0.8543554	0.7	CENTY THERE' THERE'S THERE' SHELL IS NOT SHARKNE MICH, CHICKE,	RMA	Combat(ava)	CD177-GATA3-5100A12-5100A8-ARG1-L1R2-MARK14-RC13-CK3CR1-MMPR	Tablick in Engine (TCI) Fallowy — Transis memories students in regiones to factor. Deprise chained, 2. Cylineta C. Charresis (Charresis (Charresi (Charresis (Charresis (Charresis (Charresis (Charresis (Charre
GSE236713-D1	Microstray-agilest	155	O 155eo	ows-78columns (Healthy	125sepsis-30healthy	SMOTE	0.9606	0.9917	0.9998	0.988 0.9	16 0.9957	0.9572	_ =	PRAZ - PCSRTA.	MMP9 - \$100AB - ARG1 - GATAG - IL10 - TLR2 - CD177 - SDCS2 - \$100A12 - HLA-DRA	ARG1 - GATAG - E.10 - MMPH - S105AB - C0177 - S100A12 - S0CSB - TLR2 - HLA-GRA	Leukocytes	0.9232382	0.7792904	THE THE THE THEFT THESE THEFT THESE THEORY THE THAT	75th percentile normalization	NO batch effect	ARGI - GATAJ - IL10 - MMPP - 5100AB - CD177 - 5100A12 - 50C53 - TLR2 - HLA-GRA - RCL2 - C3AR1 - TLR8	Invade immunity activation (neutrophila, monocyles) with pro-inflammatory signaling via TLE2, TLEA, STICHAS, STICHA
GSE131761	Microarray-agilent	96	O 96ros	ws - 75columns	Control	81 septic - 15 control	SMOTE	1	1	1	1 1	1	1	- 53	PREI-FORMA	\$100A8-\$100A12-C0177-1L10-HLA-DRA-MAPK14-GATA2-MMP9-S0C52-BCL2	E10-50CS3-CDR7-MMP9-5100AB-5100A12-MAPRIA-HLA-09A-CD177-ARG1	Whole-blood	0.9613772	0.0400480	TOTAL SERVICE STATE SPRING SPRING STREET, STREET,	Linea	NO batch effect	ARG1 - CCR7 - CD177 - GATA2 - HLAGRA - E.10 - MAPK14 - MMPP - S100A12 - S100A8 - S0CS2 - CSAR1 - S100A8	1. systemic inflammation (SIGIA) 176 diseased immune reagence (e.g., choseic inflammation, post-infaction recovery, or allengy-elated conditions)(GANA), 8.10,) 1. Immune appression / resolution-phase of infection (invaled to -10, SGCSS), and AMS1 suggest immune dampering)
GSE54514	Microarray-Humina	71	O 71ros	ws - 76columns	Healthy	35eepsix - 36 healthy	NO-Ress	0.6326	0.8042	0.8874	0.7957 0.80	42 0.8338	0.8123	40 -	AT PAG PAR OF UP PTG	HMGR1-MYD68-CD14-L1R2-C3AR1-HF1A-TNFSF10-TNF-CXSCR1-PLAUR	L182 - CART - HMSRT - MIGRE - CXXCRT - HF1A - PLAUR - CD14 - LE - TAFSF10	Whole-blood	0.7626521	0.5714286	THE DRIFT WAS DOOR WHILE THE TOTAL TREAT	not mentioned	NO batch effect	E1R2 - CBAR1 - HMSR1 - MMSR8 - CKSCR1 - HF1A - PLAUR - CD14 - E8 - TNFSF10 - ICAM1 - CDR2	1. Contrast Immune Response: https://doi.org/10.1009/1
GSE154918	RNA seq Burnina His.	79	1 7980	ows-56columns (Healthy	39 sepsis-40 healthy	NO Ress.	0.9499	0.9688	0.998	0.95 0.9	37 0.9937	0.9626	- 22	OF THE THE	FCGR1A-S100AB-CD177-ARG1-MAPK1N-CDAR1-S100A12-GATA3-S100AB-SDCS3	FCGR1A - ARG1 - C0177 - S100AB - S100AB - S100A12 - S0CS3 - C3AR1 - TNFSF10 - MAPK14	Perpheral-boold	0101762	0.8220211	PORKE SMOT STREET STREET STREET STREET STREET STREET	Desegleved	NO batch effect	FCGR1A - ARG1 - CD177 - S100AB - S100AB - S100A12 - S0CS2 - CBAR1 - TNFSF10 - MAPKH - MMFB - IL 1R2	1. Invalue immune activation (Neutrophia & Monocytes) 2. Tabil-like receptor for regiment regularing (SINS) positions; CAMS1) 3. Cyblices stem and inflammatory regionals (LTIS, 2000L), MARTIS (4. Microphiago politicism in Ammune agreement (JAC), 1902 (10), 1903 (
GSE69063-T0	Microarrayo Affyrima	52	0 51Ros	ws-55Columns (Healthy	19sepsis_33healthy	SMOTE	0.9853	0.988	1	0.98	1	0.9914	_ =	PRAZ - POSETA.	\$100A12 - E.1R2 - SOCS2 - MMP9 - \$100A8 - MAPK14 - ARG1 - CD177 - TLR6 - \$100A9	MAPK14-S100AB-S100A12-IL1R2-SDCS2-GATA2-ARG1-C2177-S100AB-TLR2	Peripherial-boold	0.9508144	0.81857%	THEFOR THESE TREES THE THEFT THE THEFT THE THEFT	RMA	NO batch effect	MAPRIN 4-ST00AB-ST00A12-E-192-SOCE2-GATA2-ABG1-CD177-S10GAB-TL92-TL94-MMP9-MMP9	Threat in memority activation (materiophic neurophic in incorpolate) TLR and MMPu) 2 Part definenting response (TLR, TLD) options, MMPu) 3 Immune suppression (TLCC, TLD) options, MMPu) 3 Immune suppression (TLCC, TLD) options, MMPu) 4 TLC sitesing (CLCC, ARC), (1,102)
GSE57065_hr0	Microarrayo Affyrima	53	0 51row	ns - 101 columns (Healthy	26septic - 25healthy	NO-Ress.	1	1	1	1 1	1	1	22		\$100AH-175AM-MAPKH-\$100A12-C0177-MMPH-GATAG-IL182-LCN2-CCR7	ARG1 - CD177 - GATAG - ITGAM - MAPK14 - MMPR - S100A12 - S100A8 - RC12 - S100A8	Leukocytes	0.92947%	0.7858586	TREET STATE START MARKET SMART STRATE STRATE	RMA	lmma	ARG1 - C0177 - GATA3 - ITGAM- MAPK14 - MMPR - S100A12 - S100A9 - RCL2 - S100A8 - IL IR2 - SOCS2	1.10.5 Seasol hosts inflammation permit in appairs expend one transit immune activation (multireplik dominant) with a secondary and throaten Rich and immune septiation. 2. Dominant Innate Homes Activation (Multireplik Response) — 20177, TEAM, MEMPS, SIDMA, SIDMA12 3. Potential Sight 19.1, Innates Activation (Innates Regionse) — 0.0177, TEAM, MEMPS, SIDMA12 5. Potential Sight 19.1, Innates Activation (Innates Regions of CHAR), ARES, (2003.) 5. Teamed Sight 19.1, Innates Regions of CHAR, SIRES, (2003.) 5. Teamed Sight 19.1, Innates Regions of CHAR, ARES, (2003.) 5. Teamed Sight 19.1, Innates Regions of CHAR, ARES, (2003.)
GSE100159	Microarray-Ilumina	45	0 45ros	we-Mcolumns (Control	33sepsis-12control	SMOTE	0.9491	0.9803	1	0.965	1	0.935	25		MMP9 - MYGSE - CD177 - MMP9 - ITGAM - S100A12 - TLRE - S100A8 - S100A8 - GATA2	BCL2 - CD177 - ITGAM - MAPK14 - MMP9 - MMP9 - MMC68 - S100A12 - S100A8 - S100A9	Whole-blood	0.9638571	0.8141414	SELECT STORM SHAPE SHAPE SHOWN STORMS STORMS STORMS	log2-Limma	NO batch effect	BC12 - CD177 - ITGAM - MAPK14 - MMP9 - MMP9 - MMD88 - S100A12 - S100A6 - S100A6 - TLR6 - FCSR1A - GATA2 - IL1R	1. Primary Intersum Response Neutrophil & Myeloid Activation (\$100AL) \$100AL \$100AL\$ (\$100AL\$ (\$100AL\$ (\$100AL\$ (\$100AL\$ (\$10AA) \$116AA (\$10AA) \$10AA (\$10AA
GSE243217	(RNA-one MGGGQ-00.	37 5	5-6 37ros	nes-Sicolumns	Healthy	22:sepsis-15healthy	SMOTE	1	1	1	1 1	1	1	34	FNET	S100AB-S100AB-S100A12-ARGI: -GATAG-CD177-SDCS3-MMPR-ITGAM-MAPN:16	ABG1 - CD177 - PCDR1A - GATAG - IL192 - 175AM - LCN2 - MAPR14 - MNP4 - 5105A12	PBMCs	0.9619592	0.8378756		Disapord	NO batch effect	ARG1 - CD177 - PCGR1A - GATX4 - E.182 - ITGAM - LCN2 - MAPK14 - MAPP - S100A12 - S100A6 - S100A6 - S0CS3 - TLRC	1. Active Newmont Type Innex Hydrald Undermotation Confirmmentary The polline diagnosis in Active Section (Internation Confirmmentary Confirmment Confirmment (Internation Internation In
GSE28750	Microarrayo Affyreno.	30	0 30row	ws-100columns (Healthy	10sepsis-20healthy	SMOTE	0.974	0.9764	1	0.9646	1	0.9858	25		MMPR-5100A9-5100A12-CCR7-CD177-C3AR1-ELANE-E10-5100A8-MMPR	CIARI - COX7 - CD177 - FLANG - GATA2 - MMPR - S100A12 - S100A8 - S100A9 - S0CS2	Whole-blood	0.945671	0.8047138	CHAIR COST CHIST SHARE SHARE SHARE SHARE SHARE	RMA	NO batch effect	CSAR1 - CCR7 - CD177 - SLANG - GATA3 - MMPR - S100A12 - S100A6 - S100A6 - S0CS3 - ARG1 - E.10	Stoorg Innale Immune Activation (Neutrophil & Complement System) Secondary Emerging Th2 Response & Immunosuppressive Signals
							Average				0.96 0.9														
							Average	0.93	0.97	0.967	U.90 U.	0.98	0.95												