1. FELADAT

K: A Perrin kísérlet megértéséhez először oldjuk meg a két-dimenziós Brown mozgás következő változatát:

Egy l rácsállandójú négyzetrácson egy részecske τ időközönként, egyenlő valószínűséggel ugrik a négy szomszédos rácspont egyikébe, s az egymást követő lépések függetlenek egymástól. A részecske az $(x_0 = 0, y_0 = 0)$ pontból indul.

Határozzuk meg a $t=N\tau$ idő alatti várható elmozdulást, $\sqrt{\langle r^2 \rangle}=\sqrt{\langle x_t^2 \rangle + \langle y_t^2 \rangle}$ -t!

1.1. Matematikai megfontolások

Keressük az $\langle x_t^2 \rangle$ és az $\langle y_t^2 \rangle$ értékeket, amikből aztán megkaphatjuk a keresett $\sqrt{\langle r^2 \rangle}$ mennyiséget. Ezeknek definíciója ismert:

$$\langle x_t^2 \rangle = \int_{-\infty}^{\infty} x^2 \cdot P(x, t) dx$$
 (1)

$$\left\langle y_t^2 \right\rangle = \int_{-\infty}^{\infty} y^2 \cdot P\left(y, t\right) dy$$
 (2)

Jelen esetben a 2D Brown-mozgás leírását kell megadnunk, amely esetében egy részecske, az adott pontban történő tartózkodásának valószínűségét egy $P_{12}(x, y, t)$ mennyiség jellemzi. Ekkor az $\langle x^2 \cdot y^2 \rangle$ megadhatjuk a következő módon:

$$\langle x^2 \cdot y^2 \rangle = \iint x^2 \cdot y^2 \cdot P_{12}(x, y, t) \, dx \, dy \tag{3}$$

Mivel x és y független események, ezért $P_{12}(x, y, t)$ felbontható egy $P_{1}(x, t)$ és egy $P_{2}(y, t)$ függvény szorzatára a következőek alapján:

$$P_{12}(x, y, t) = P_1(x, t) \cdot P_2(y, t) \quad \text{ha } x \text{ \'es } y \text{ f\"uggetlen.}$$

$$\tag{4}$$

Ekkor a fenti (3)-as egyenlet így alakul:

$$\iint x^{2} \cdot y^{2} \cdot P_{12}(x, y, t) \, dx \, dy = \iint x^{2} \cdot y^{2} \cdot P_{1}(x, t) \cdot P_{2}(y, t) \, dx \, dy \tag{5}$$

Ezt azonos változók szerint ketté bonthatunk és bevezethetünk egy többi változótól független időfüggőséget is, mely végeredménye a következő:

$$\langle x^{2} \cdot y^{2} \rangle = \iint x^{2} \cdot y^{2} \cdot P_{1}(x,t) \cdot P_{2}(y,t) \, dx \, dy = \underbrace{\int x^{2} \cdot P_{1}(x,t) \, dx}_{\langle x^{2} \rangle} \cdot \underbrace{\int y^{2} \cdot P_{2}(y,t) \, dy}_{\langle y^{2} \rangle}$$

$$(6)$$

Ez azt jelenti, hogy a probléma felbontható az x és az y irányú 1D Brown-mozgás problémájára, ahol az elmozdulási valószínűségek mindkét esetben azonosak:

$$p_{x_{+}} = \frac{1}{4}$$
 $p_{x_{-}} = \frac{1}{4}$ $p_{y_{+}} = \frac{1}{4}$ $p_{y_{-}} = \frac{1}{4}$

1.2. Az átlagok vizsgálata

Megoldandó tehát a $p_{x_+}=\frac{1}{4}$, $p_{x_-}=\frac{1}{4}$ és a $p_{y_+}=\frac{1}{4}$, $p_{y_-}=\frac{1}{4}$ elmozdulási valószínűségekkel rendelkező 1D Brown-mozgás feladatai. Az első házifeladatban[1] már bebizonyítottuk, hogy ha 1D-ban a két irányba történő elmozdulás valószínűsége azonos, akkor a rendszer sodródása 0, valamint

$$\langle x_t \rangle = \langle y_t \rangle = 0$$
 ha $p_+ = p_-.$ (7)

A Fokker-Planck-egyenlet(ek), driftmentes rendszerben, 1D diffúzió esetén a következőképp fest(enek), szintén az első házifeladat alapján[1]:

$$\frac{\partial P_1(x,t)}{\partial t} = \frac{l^2}{2\tau} \cdot \frac{\partial^2 P_1(x,t)}{\partial x^2} = D \cdot \frac{\partial^2 P_1(x,t)}{\partial x^2}$$
(8)

$$\frac{\partial P_2(y,t)}{\partial t} = \frac{l^2}{2\tau} \cdot \frac{\partial^2 P_2(y,t)}{\partial y^2} = D \cdot \frac{\partial^2 P_2(y,t)}{\partial y^2}$$
(9)

Megjegyzendő, hogy a két egyenletben megjelenő D, diffúziós együttható egy és ugyanaz a mennyiség. A kezdőfeltétel mindkét esetben $x_0 = 0$ és $y_0 = 0$, amit felírhatunk a következő-képpen:

$$P_1\left(x, t = 0\right) = \delta\left(x\right)$$

$$P_2(y, t = 0) = \delta(y)$$

Ezeknek megoldása ismert módon a Gauss-függvény:

$$P_{1}(x,t) = \frac{1}{\sqrt{4\pi Dt}} \cdot e^{-\frac{x^{2}}{4Dt}}$$
 (10)

$$P_2(x,t) = \frac{1}{\sqrt{4\pi Dt}} \cdot e^{-\frac{y^2}{4Dt}}$$
 (11)

A feladat megoldása végül a már egyszer megoldott, ugyanezen feladat alapján[1]:

$$\langle x_t^2 \rangle = \langle y_t^2 \rangle = 2Dt \tag{12}$$

Igy ezen feladat megoldása ezek segítségével már megadható:

Pál Balázs UXB26I

Véletlen fizikai folyamatok 2. házifeladat

2019. február 24.

$$\sqrt{\langle r_t^2 \rangle} = \sqrt{\langle x_t^2 \rangle + \langle y_t^2 \rangle} = \sqrt{2Dt + 2Dt} = \boxed{2\sqrt{Dt}}$$
(13)

Ami ismert módon a helyes eredmény a 2D diffúzió esetében. Általánosan azt mondhatjuk, hogy az elmozdulás négyzetének várható értéke az n dimenziós izotróp diffúzió esetén[2]:

$$\left\langle r_t^2 \right\rangle = 2nDt \tag{14}$$

2. FELADAT

K: Perrin kísérletében (1. ábra) kolloid részecskék mozgását vizsgálták híg, vizes oldatban. A részecskék sugara $a=0.52~\mu m,~\tau=30~s$ -ként mérték a helyzetüket, s az ábrán látható négyzetrács rácsállandója $3.125~\mu m$. Becsüljük meg a kolloid részecskék diffúziós együtthatóját kétféleképpen:

- 1. A kezdő és a végpont közötti elmozdulásból, feltételezve, hogy a mozgás diffúziv!
- 2. A τ idő alatti ugráshosszok négyzetének átlagából!

1. ábra. Tracings of the motion of three colloidal particles of radius 0.52 μm as seen under the microscope in J. Perrin's experiments. Successive positions every 30 seconds are joined by straight line segments. The mesh size is 3.125 μm .

2.1. Technikai adatok

A fenti (1)-es kép Perrin kísérletét, egyik részletesen leíró 1909-es könyvéből származik[3], aminek 1910-es angol fordítása online is elérhető[4]. Ez az ábra .svg, vektorgrafikus formátumban megtalálható a Wikipédián[5], azonban az eredetihez képest 180°-al elforgatott verzióban. Itt fentebb az eredeti, Perrin könyvében szereplő orientációjában illesztettem be

Véletlen fizikai folyamatok 2. házifeladat

2019. február 24.

(ahogy az a házifeladat kiírásában is szerepel).

A megszerzett vektorgrafikus képet Inkscape program segítségével elemeztem, ahol pontosan le tudtam mérni a τ időnként megtett lépéshosszakat, valamint a végpontok távolságát. Ezeket táblázatba rendeztem és az alábbiakban mellékeltem.

A rácsállandó a képen 21.53~px nagyságúnak volt mérhető, a pontok távolságát ehhez arányosan mértem.

1. táblázat. A lépéshosszak τ időközönként px-ben

Lépéshosszak méretei $[px]$				Lépéshosszak méretei $[px]$		
1. trajektória	2. trajektória	3. trajektória	1	. trajektória	2. trajektória	3. trajektória
70.62	89.01	29.13		51.54	28.26	25.05
28.31	44.65	24.74		53.37	16.94	82.95
65.86	34.60	80.65		41.20	29.12	25.88
55.66	33.98	47.36		48.96	27.74	34.42
72.35	66.46	74.11		81.17	31.66	57.43
86.17	24.61	20.75		86.46	69.58	75.67
47.27	30.99	45.02		32.95		19.52
36.95	24.00	70.59		46.57		25.05
37.55	37.18	42.47		63.96		42.80
33.75	26.73	66.75		49.48		31.76
52.03	46.72	40.03		41.77		19.75
86.46	65.03	27.91		96.20		53.63
68.78	13.81	39.64		40.61		61.54
43.53	56.28	48.34		113.00		17.98
58.72	29.14	17.48		71.62		36.43
38.22	20.80	33.52		48.12		50.16
78.09	50.71	65.51		17.83		72.16
31.30	48.80	5.54		14.10		24.70
26.36	61.37	56.84		81.25		
57.78	25.90	22.51		15.93		
19.92	39.94	24.67		30.56		
15.79	37.38	27.17		111.93		
20.07	24.30	38.21		49.85		
89.43	19.65	14.47				

2. táblázat. A végpontok távolsága px-ben

Végpontok távolsága $[px]$					
1. trajektória 2. trajektória 3. trajektória					
239.92	357.18	181.30			

Pál Balázs UXB26I

Véletlen fizikai folyamatok 2. házifeladat

2019. február 24.

Ezeket az eredményeket $\frac{1}{21.53 px} \cdot 3.125 \ \mu m$ szorzó segítségével válthatjuk át μm dimenziójú hosszmennyiségekké, hogy számolni tudjunk velük. Ezeket ismét két táblázatban ismertetem:

3. táblázat. A lépéshosszak τ időközönként μm -ben

Lépéshosszak méretei $[\mu m]$			Lépéshosszak méretei $[\mu m]$			
1. trajektória	2. trajektória	3. trajektória	ľ	1. trajektória	2. trajektória	3. trajektória
10.25	12.92	4.23		7.48	4.10	3.64
4.11	6.48	3.59		7.75	2.46	12.04
9.56	5.02	11.71	ıT	5.98	4.23	3.76
8.08	4.93	6.87	ıT	7.11	4.03	5.00
10.50	9.65	10.76	ı	11.78	4.60	8.34
12.51	3.57	3.01	ı	12.55	10.10	10.98
6.86	4.50	6.53		4.78		2.83
5.36	3.48	10.25		6.76		3.64
5.45	5.40	6.16		9.28		6.21
4.90	3.88	9.69	ı	7.18		4.61
7.55	6.78	5.81	ıT	6.06		2.87
12.55	9.44	4.05	ıT	13.96		7.78
9.98	2.00	5.75	ı	5.89		8.93
6.32	8.17	7.02		16.40		2.61
8.52	4.23	2.54	ı	10.40		5.29
5.55	3.02	4.87	ıſ	6.98		7.28
11.33	7.36	9.51	ı	2.59		10.47
4.54	7.08	0.80	ı I	2.05		3.59
3.83	8.91	8.25	ı	11.79		
8.39	3.76	3.27	ıT	2.31		
2.89	5.80	3.58		4.44		
2.29	5.43	3.94		16.25		
2.91	3.53	5.55		7.24		
12.98	2.85	2.10				

4. táblázat. A végpontok távolsága μm -ben.

Végpontok távolsága $[\mu m]$					
1. trajektória 2. trajektória 3. trajektória					
34.82	51.84	26.32			

2.2. Diffúziós együttható becslése

A diffúzió Langevin-féle tárgyalása esetén végeredményben a következőket kapjuk elmozdulás négyzetének várható értékére:

$$\langle r^2 \rangle = 2 \cdot \frac{k_B T}{6\pi \eta a} \cdot N \cdot \tau = 2 \cdot D \cdot N \cdot \tau$$
 (15)

Ezt másképp az elmozdulások négyzetének átlagának hívjuk, amit - a fogalmak megkülönböztetése érdekében - az előzőhöz képest más módon jelölünk:

$$\langle x^2 \rangle = 2 \cdot \frac{k_B T}{6\pi \eta a} \cdot N \cdot \tau = 2 \cdot D \cdot N \cdot \tau$$
 (16)

Ezeket az értékeket a fenti táblázatok alapján kaphatjuk meg. Az első, (15)-ös egyenletben szereplő értéket közvetlenül ki tudtuk mérni, ugyanis csak 1-1 mennyiséget kaptunk mind a 3 trajektória esetén az elmozdulások értékére. Ezek μm hosszdimenzióval a 4. táblázatban szerepelnek. Ezeknek ezután a négyzetét kell vegyük, hogy megkapjuk a becslésünket a keresett $\langle r^2 \rangle$ -re vonatkozóan.

A (16)-os egyenletben szereplő mennyiséget a 3. táblázatban szereplő értékek négyzetének kiátlagolásával kaphatjuk meg. A számításokat könnyen elvégezhetjük, amire az alábbi értékeket kapjuk összesítve egy táblázatban a többi adattal együtt:

5. táblázat. Az elmozdulások négyzeteinek átlaga $(\mu m)^2\text{-ben}$

Ī		1. trajektória	2. trajektória	3. trajektória
	$\langle r^2 \rangle$	1212.31	2687.73	692.48
Ĭ	$\langle x^2 \rangle$	73.31	37.84	43.87

A (15) és (16) egyenletekben ismertetett összefüggésből megkaphatjuk a diffúziós együttható értékének számítási módját:

$$D = \frac{k_B T}{6\pi na} = \frac{\langle r^2 \rangle}{2 \cdot N \cdot \tau} \approx \frac{\langle x^2 \rangle}{2 \cdot N \cdot \tau}$$
 (17)

Megfelelő mértékegységeket használva, a diffúziós együttható következő értékeit kapjuk a fenti adatok alapján:

6. táblázat. A diffúziós együttható értéke $\left[\frac{m^2}{s}\right]$

	1. trajektória	2. trajektória	3. trajektória
$D\left(\langle r^2 \rangle\right)$	$4.30 \cdot 10^{-13}$	$1.49 \cdot 10^{-12}$	$2.75 \cdot 10^{-13}$
$D\left(\langle x^2 \rangle\right)$	$2.60 \cdot 10^{-14}$	$1.85 \cdot 10^{-14}$	$1.70 \cdot 10^{-14}$

3. FELADAT

K: Használjuk a 2. feladat eredményét, valamint a Brown mozgás Langevin féle leirásának eredményeképp kapott kifejezést a kolloidrészecskék diffúziós együtthatójára, s becsüljük meg az Avogadro számot! A kolloidrészecskék sűrűségét tekinthetjük vizhez közelinek, a hőmérsékletet pedig szobahőmérsékletnek.

A diffúziós együtthatő Langevin-féle definíciója már szerepelt az előző feladat végén, azonban ezt tovább tudjuk alakítani, hogy az Avogadro szám kifejezésére alkalmas legyen.

$$D = \frac{k_B T}{6\pi \eta a} = \frac{\frac{R}{N_A} T}{6\pi \eta a} \tag{18}$$

Ebből pedig kifejezhetjük az Avogadro számot:

$$N_A = \frac{RT}{6D\pi na} \tag{19}$$

A megadott $a=0.52~\mu m$ részecskesugár felhasználásával és feltételezve, hogy a diffúzió 298 K, szobahőmérsékleten történik, ahol a víz viszkozitása $\eta=0.89\cdot 10^{-3}~Pa\cdot s$, ki tudjuk számítani az N_A különböző értékeit az összes fenti D-re kapott eredményre:

7. táblázat. Az Avogadro szám értéke

	1. trajektória	2. trajektória	3. trajektória
$N_A\left(D\left(\langle r^2\rangle\right)\right)$	$6.60 \cdot 10^{23}$	$1.90 \cdot 10^{23}$	$1.03 \cdot 10^{24}$
$N_A\left(D\left(\langle x^2\rangle\right)\right)$	$1.09 \cdot 10^{25}$	$1.53 \cdot 10^{25}$	$1.67 \cdot 10^{25}$
Irodalmi érték		$6.022 \cdot 10^{23}$	

2019. február 24.

4. FELADAT

K: Tegyük fel, hogy a kolloidrészecskék diffúziós együtthatójára kapott kifejezés extrapolálható molekuláris szintre. Milyen értéket kapunk egy nem túlságosan nagy molekula vízben történő termális mozgásának diffúziós együtthatójára? És egy biológiai molekulára (pl. DNS)?

4.1. Mérettartományok

A (18)-as egyenletben leírt definíció alapján, minél nagyobb egy részecske, annál kisebb a diffúziós együtthatója, ugyanis $D \sim \frac{1}{a}$. Mivel a molekulák nem tekinthetőek gömbszerű részecskéknek, hisz méretük közel megegyezik a környező anyag részecskéinek méretével, alakja pedig ténylegesen nem egy gömb, ezért az extrapoláció csak erős közelítés esetében lehetséges. Ha közelítésként feltesszük, hogy a molekulák és pl. a DNS is egy méretarányával megegyező sugarú gömb, akkor ezt az értéket felhasználhatjuk a további számításainkban. Egy nem szerves anyagmolekula nagysága pár Ånsgtröm és pár tucat Ångström között változik. Átlagosan azt mondhatjuk tehát, hogy ezek a 10 Å nagyságrendjébe esnek, így ezzel az adattal fogunk számolni a továbbiakban.

Egy szerves molekula ellenben ennél jóval nagyobb is lehet a szén láncképző (katenációs) tulajdonsága miatt (pl. maitotoxin (MTX), $C_{164}H_{256}Na_2O_{68}S_2[6]$), amik így már a 100 Å nagyságrendet is elérik, ahol szintén ezt az adatot használhatjuk majd a számításokban. A DNS, mint molekula értelmezése azonban nem magától értetődő. A DNS, vagy Dezoxiribonukleinsav egy különböző szerves molekulákból álló jobbkezes csavarodású kettős α -hélix, amiket a kettő közötti nitrogéntartalmú nukleobázisok kapcsolnak össze. A kettős hélixen vertikális irányban haladva két bázispár között 3.4 Å távolság van, és kb. 10 bázispáronként következik be egy teljes hélix-fordulat[7]. Ezek az emberi sejteken belül kromoszómákba rendeződnek, melyek átmérője nagyjából 1400 $nm=1.4~\mu m$ és egyesével kb. 2 m hosszú DNS láncot tartalmaznak[8]. Legalkalmasabban ezt a struktúrát értelmezhetjük úgy, mint a "DNS, mint biológiai molekula", így ebben az esetben ezt fogjuk a számításokban használni.

4.2. Diffúziós együttható

A 2. és 3. feladatban szereplő pollenek sugara $a=0.52~\mu m$ volt. Ehhez képest a jelenleg vizsgált szervetlen és szerves molekulák nagyságrendileg jóval kisebbek, míg a DNS lánc kromoszómába rendeződve csak egy kicsivel nagyobb. Ha az eredményeket extrapoláljuk, akkor a lenti táblázatban található értéket kaphatjuk a mostani feladatban szereplő molekulák diffúziós együtthatójára, használva az alábbi összefüggést:

$$D_2 = D_1 \cdot \frac{a_2}{a_1} \tag{20}$$

Pál Balázs UXB26I

Véletlen fizikai folyamatok 2. házifeladat

2019. február 24.

0

8. táblázat. Diffúziós együtthatók

		Pollen	Szervetlen molekula	Szerves molekula	Kromoszóma (DNS)
(.	$D\left(\langle r^2 \rangle\right)$	$7.33 \cdot 10^{-13}$	$1.41 \cdot 10^{-16}$	$1.41 \cdot 10^{-15}$	$1.97 \cdot 10^{-12}$
(.	$D\left(\langle x^2 \rangle\right)$	$2.05 \cdot 10^{-14}$	$3.95 \cdot 10^{-18}$	$3.95 \cdot 10^{-17}$	$5.53 \cdot 10^{-14}$

A táblázatban szereplő adatokat mind az $\langle r^2 \rangle$ és $\langle x^2 \rangle$ -es számításból kapott diffúzióértékekre összehasonlítottam, ahogy ez az első oszlopban jelölve is van.

Véletlen fizikai folyamatok 2. házifeladat

2019. február 24.

5. FELADAT

- WORK IN PROGRESS -

Felhasznált irodalom

- [1] Pál Balázs. *ELTE Stochastic Porcesses 2019 GitHub*. [Online; accessed February 22, 2019]. 2019. URL: https://github.com/masterdesky/ELTE_Stochastic_processes_2019.
- [2] Tristan Ursell. Diffusion of Solid Particles Confined in a Viscous Fluid. [Online; accessed February 23, 2019]. 2005. URL: http://rpdata.caltech.edu/courses/aph162/2006/Protocols/diffusion.pdf.
- [3] J. B. Perrin. Mouvement brownien et réalité moléculaire. Masson et Cie, Éditeurs, 1909. URL: https://books.google.hu/books?id=U6weHQAACAAJ.
- [4] J. B. Perrin. Brownian Movement and Molecular Reality. Taylor and Francis, Red Lion Court, Fleet Street, 1910. URL: http://web.mit.edu/swangroup/footer/perrin_bm.pdf.
- [5] Wikipedia, the free encyclopedia. *Brownian motion*. [Online; accessed February 23, 2019]. 2015. URL: https://commons.wikimedia.org/wiki/File:PerrinPlot2.svg.
- [6] National Center for Biotechnology Information. PubChem Compound Database; CID=71460273. [Online; accessed February 24, 2019]. 2013. URL: https://pubchem.ncbi.nlm.nih.gov/compound/71460273.
- [7] James D. Watson, Francis H. C. Crick, et al. "Molecular structure of nucleic acids". In: *Nature* 171.4356 (1953), pp. 737–738.
- [8] A. Annunziato. "DNA Packaging: Nucleosomes and Chromatin". In: *Nature Education* 1(1):26 (2008). [Online; accessed February 24, 2019]. URL: https://www.nature.com/scitable/topicpage/dna-packaging-nucleosomes-and-chromatin-310.