

COMPILIER @BY 2019

for SUSTech CSE $\,$

HomeWork 2
Edited by

11610634

 $\begin{array}{c} 2019\\ \mathrm{SHENZHEN} \end{array}$

1 Exercise 1: Design finite automata (both deterministic and nondeterministic) for each of the following regular languages:

1.1 L(a(a|b)*b) [10 points]

1.1.1 NFA

1.1.2 DFA

1.2 $L(((\epsilon|a)*b*)*)$ [10 points]

1.2.1 NFA

1.2.2 DFA

 $1.3 \quad L((a|b)*a(a|b)(a|b)) \ [10 \ points]$

1.3.1 NFA

1.3.2 DFA

- 2 Exercise 2: Convert the following regular expressions to NFAs using the Thompson's Construction Algorithm (Algorithm 3.23 in the dragon book).
- 2.1 $((\epsilon | a)*b*)*[10 \text{ points}]$
 - Use the Basis Rule 1:

 $\bullet\,$ Use the Inductive Rule for the union case:

• Use the Inductive Rule for the kleene star case:

• Use the Inductive Rule for the concatenation case:

 $\bullet~$ Use the Inductive Rule for kleene start case

$2.2 \quad (a|b)*a(a|b)(a|b)[10 \ points]$

• Use the Basis Rule 1:

• Use the Inductive Rule for the union case:

• Use the Inductive Rule for the kleene star case:

• Use the Inductive Rule for the concatenation case:

2.3 a*ba*ba*ba* [10 points]

 $\bullet\,$ Use the Inductive Rule for the kleene star case:

 $\bullet\,$ Use the Inductive Rule for the concatenation case:

3 Exercise 3: Convert the NFAs in Exercise 2 to DFAs using the Subset Construction Algorithm (Algorithm 3.20 in the dragon book). [30 points in total; 10 points for each correct conversion]

3.1
$$((\epsilon|a)^* b^*)^* [10 \text{ points}]$$

NFA is:

If use the subset construction algorithm:

- 1. $Q1 = \{s,0,1,2,3,4,6,7,8,10,e\}$
- 2. $Q2 = \{0,1,2,3,4,5,6,7,8,10,e\}$
- 3. $Q3 = \{0,1,2,3,4,6,7,8,9,10,e\}$

DFA status transfer table:

Table 1: $((\epsilon a)^* b^*)^*$		
DFA Status	a	b
Q1	Q2	Q3
Q2	Q2	Q3
Q3	Q2	Q3

$3.2 \quad (a|b)*a(a|b)(a|b)[10 \text{ points}]$

NFA is:

If use the subset construction algorithm:

- 1. $Q1 = \{s,1,2,3,7\}$
- 2. $Q2 = \{1,2,3,5,6,7,8,9,10,11,12\}$
- 3. $Q3 = \{1,2,3,4,6,7\}$
- 4. $Q4 = Q2 + \{13,15,16,17,18\}$
- 5. $Q5 = Q3 + \{14,15,16,17,18\}$
- 6. $Q6 = Q4 + \{19,e\}$
- 7. $Q7 = Q5 + \{20,e\}$
- 8. $Q8 = Q2 + \{19,e\}$
- 9. $Q9 = Q3 + \{20,e\}$

DFA status transfer table:

Table 2: (a|b)*a(a|b)(a|b)[10 points]

DFA Status	a	b
Q1	Q2	Q3
Q2	Q4	Q5
Q3	Q2	Q3
Q4	Q6	Q7
Q5	Q8	Q9
Q6	Q6	Q7
Q7	Q8	Q9
Q8	Q4	Q5
Q9	Q2	Q3

DFA is:

3.3 a*ba*ba*ba* [10 points]

NFA is:

If use the subset construction algorithm:

- 1. $Q1 = \{s,0,2\}$
- 2. $Q2 = \{0,1,2\}$
- 3. $Q3 = \{3,4,6\}$
- 4. $Q4 = \{4,5,6\}$
- 5. $Q5 = \{7,8,10\}$
- 6. $Q6 = \{8,9,10\}$

7.
$$Q7 = \{11,12,14\}$$

8.
$$Q8 = \{12,13,14\}$$

DFA status transfer table:

Table 3: a*ba*ba*ba*		
DFA Status	a	b
Q1	Q2	Q3
Q2	Q2	Q3
Q3	Q4	Q5
Q4	Q4	Q5
Q5	Q6	Q7
Q6	Q6	Q7
Q7	Q8	ϵ
Q8	Q8	ϵ

