Stereo Vision

 Stereo vision - inferring 3-D structure from two images taken from different viewpoints.

 Object appears in different positions in each image depending on its depth in the scene.

- ullet Depth ∞ position difference
- 3-D structure from stereo images.

IPCV-3D Lecture 2

The Two Problems of Stereo

- To estimate depth from a pair of stereo images we need to solve two main problems .
- Correspondence problem:
 - for all items in the left image, find their corresponding item in the right image
 - 'items' pixels, features (edges, etc), regions, objects, etc
- Reconstruction problem:
 - using the estimated disparities between items, reconstruct the 3-D structure of the scene
 - needs additional information about the cameras and assumptions about the scene

IPCV-3D Lecture 2

Epipolar Geometry

• The general stereo problem:

IPCV-3D Lectu

Epipolar Constraint

- Each 3-D point defines an epipolar plane intersecting each image along the epipolar line.
- \bullet Given a point \mathbf{p}_l in left image, correct match in right image MUST lie along corresponding epipolar line.
- Epipolar plane therefore constrains locations of possible matches for points in either image.
- Known as the epipolar constraint.
- Can be used to help in solving correspondence problem 2-D search becomes a 1-D search (more later).

Stereo Pair

IPCV-3D Lecture 2

Iriangulation

• A simple stereo system (parallel optical axes):

- ullet Using similar triangles: $rac{T+x_l-x_r}{Z-f}=rac{T}{Z} \quad o \quad Z=rac{fT}{x_r-x_l}$
- ullet Need to know: $d=x_r-x_l,\,f,\,T,\,c_l$ and c_r to compute Z

IPCV-3D Lecture

Stereo Extrinsic Parameters

- ullet Vectors \mathbf{P}_l and \mathbf{P}_r refer to same 3-D point \mathbf{P} with respect to left and right camera frames respectively.
- \bullet Relationship between \mathbf{P}_l and \mathbf{P}_r given by rotation matrix R and translation \mathbf{T} :

$$P_r = R(P_l - T) \tag{1}$$

- Defines the extrinsic parameters of the stereo system.
- \bullet Image points \mathbf{p}_l and \mathbf{p}_r (defined wrt camera frames) related to 3-D points by perspective equations:

$$p_l = f_l P_l / Z_l \qquad p_r = f_r P_r / Z_r \qquad (2)$$

IPCV-3D Lecture 2

Finding the Epipolar Line

- Knowing the epipolar line for a point helps to find its corresponding point in the other image.
- Therefore need way of determining equation for the epipolar line.
- Also needed to solve opposite problem determining extrinsic parameters of stereo system given set of corresponding points, ie calibration.
- Need to compute two matrices:
 - the essential matrix, defining relationship between an image point defined wrt to camera coordinates and the epipolar line;
 - the *fundamental matrix*, defining relationship between an image point defined wrt to pixel coordinates and the epipolar line.

IPCV-3D Lecture 2 8 IPCV-3D Lecture 2

The Essential Matrix

- The 3 vectors P_l , T, and $(P_l T)$ all lie in the epipolar plane.
- Equation of the plane is therefore (using eqn (1)):

$$(\mathbf{P}_l - \mathbf{T})^T (\mathbf{T} \times \mathbf{P}_l) = 0 \rightarrow (R^T \mathbf{P}_r)^T (\mathbf{T} \times \mathbf{P}_l) = 0$$
 (3)

- NB: the *cross product* $T \times P_l$ is a vector perpendicular to the plane containing T and P_l , ie the epipolar plane, and since $P_l T$ is also in the plane, the *dot product* $(P_l T)^T (T \times P_l)$ is zero.
- Cross product can be written as:

$$\mathbf{T} \times \mathbf{P}_{l} = S\mathbf{P}_{l} \quad \rightarrow \quad S = \begin{bmatrix} 0 & -T_{z} & T_{y} \\ T_{z} & 0 & -T_{x} \\ -T_{y} & T_{x} & 0 \end{bmatrix} \tag{4}$$

IPCV-3D Led

The Fundamental Matrix

 \bullet If $\bar{\mathbf{p}}_l$ represents a point in the left image in pixel coordinates, then from eqn (3) in Lecture 1:

$$\mathbf{p}_l = M_l^{-1} \bar{\mathbf{p}}_l \qquad \quad M_l = \begin{bmatrix} 1/s_x & 0 & o_x/f \\ 0 & 1/s_y & o_y/f \\ 0 & 0 & 1 \end{bmatrix}$$

ullet Given a corresponding point $ar{\mathbf{p}}_r$, also in pixel coordinates, then

$$\bar{\mathbf{p}}_r^T F \bar{\mathbf{p}}_l = 0 \quad \rightarrow \quad F = (M_r^{-1})^T E M_l^{-1}$$

• Matrix F is known as the *fundamental matrix* - defines epipolar line in pixel coordinates, ie if $\bar{\mathbf{u}}_T = F\bar{\mathbf{p}}_l$ then epipolar line given by:

$$\bar{x}_r\bar{u}_{rx}+\bar{y}_r\bar{u}_{ry}+f\bar{u}_{rz}=0$$

IPCV-3D Le

Determining F from Correspondences

- ullet If we know corresponding points, then can determine F (or E)
- Enables epipolar lines to be found without need to calibrate camera
- ullet We can rewrite $ar{\mathbf{p}}_r^T F ar{\mathbf{p}}_l = 0$ in form

$$\sum\limits_{i}\sum\limits_{j}a_{ij}F_{ij}=0$$

 For n correspondences we have n such equations, giving homogeneous linear system

$$A\bar{\mathrm{f}}=0$$

where A is $n \times 9$ and $\overline{\mathbf{f}}$ is vector containing elements of F.

• Solution up to scale factor can be obtained using singular value decomposition (SVD) if $n \ge 8 \to 8$ -point algorithm.

IPCV-3D Lectu

Reconstruction by Triangulation

- ullet Given corresponding points \mathbf{p}_l and \mathbf{p}_r , need to determine where rays $a\mathbf{p}_l$ and $b\mathbf{p}_r$ intersect, ie need to find a and b.
- ullet WRT left camera frame rays given by $a \mathrm{p}_l$ and $\mathrm{T} + b R^T \mathrm{p}_r$
- In general, rays will not intersect:

• In practice - find closest point to both rays.

The Essential Matrix ...cont . .

- From eqns (3) and (4) we get: $P_r^T E P_l = 0 \rightarrow E = RS$
- Matrix E is known as the essential matrix defines epipolar constraint in terms of system extrinsic parameters.
- ullet Also, using eqn (2) and dividing by $Z_r Z_l/f_r f_l$ gives

$$\mathbf{p}_r^T E \mathbf{p}_l = 0$$

ullet Hence, for image point \mathbf{p}_l , corresponding point \mathbf{p}_r must satisy:

$$\mathbf{p}_r^T \mathbf{u}_r = 0 \quad \to \quad \mathbf{u}_r = E \mathbf{p}_l$$

• Since $\mathbf{p}_r = [x_r, y_r, f]^T$, this gives the equation of the epipolar line in the right image (f is a constant):

$$x_r u_{rx} + y_r u_{ry} + f u_{rz} = 0$$

IPCV-3D Lecture

Epipolar Lines - Example

IPCV-3D Lecture

3-D Reconstruction

- Given a set of corresponding points now need to compute 3-D coordinates.
- Complexity of problem depends on whether stereo system is calibrated.
- Also reconstruction will always result in sparse set of 3-D points need to fill in the gaps, eg using surface fitting.
- Requires model of 3-D structure, eg piecewise planar, B-splines, etc.
- Relatively easy case determining 3-D points using triangulation for calibrated system.

4 IPCV-3D Lecture 2

Finding the Best 3-D Point

- ullet Denote rays $a\mathbf{p}_l$ and $\mathbf{T} + bR^T\mathbf{p}_r$ by l and r.
- ullet Required point P' is then the mid-point of segment which is perpendicular to l and r AND joins l and r.
- ullet We can find the endpoints of this segment, say $a_o\mathbf{p}_l$ and $\mathbf{T}+b_oR^T\mathbf{p}_r$, by solving the following system of 3 linear equations:

$$a\mathbf{p}_l - bR^T\mathbf{p}_r - \mathbf{T} + c(\mathbf{p}_l \times R^T\mathbf{p}_r) = 0$$

- ullet $a\mathbf{p}_l bR^T\mathbf{p}_r \mathbf{T}$ is a segment joining l and r
- ullet $c(\mathbf{p}_l imes R^T \mathbf{p}_r)$ is perpendicular to l and r
- Choosing a, b and c to make their difference = 0 therefore gives the required segment and hence the mid-point P'.

IPCV-3D Lecture 2 16 IPCV-3D Lecture 2