GNN Layers in Practice

GNN Layer in Practice

 In practice, these classic GNN layers are a great starting point

A suggested GNN Layer

 We can often get better performance by considering a general GNN layer design

domains

 Concretely, we can include modern deep learning modules that proved to be useful in many

Transformation

GNN Layer in Practice

- Many modern deep learning modules can be incorporated into a GNN layer
 - Batch Normalization:
 - Stabilize neural network training
 - Dropout:
 - Prevent overfitting
 - Attention/Gating:
 - Control the importance of a message
 - More:
 - Any other useful deep learning modules

A suggested GNN Layer

Transformation

Batch Normalization

S. Loffe, C.Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

- Goal: Stabilize neural networks training
- Idea: Given a batch of inputs (node embeddings)
 - Re-center the node embeddings into zero mean
 - Re-scale the variance into unit variance

Input: $\mathbf{X} \in \mathbb{R}^{N \times D}$

N node embeddings

Trainable Parameters:

 γ , $\beta \in \mathbb{R}^D$

Output: $\mathbf{Y} \in \mathbb{R}^{N \times D}$

Normalized node embeddings

Step 1:

Compute the mean and variance over *N* embeddings

$$\mathbf{\mu}_{j} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i,j}$$

$$\mathbf{\sigma}_{j}^{2} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{X}_{i,j} - \mathbf{\mu}_{j})^{2}$$

Step 2:

Normalize the feature using computed mean and variance

$$\widehat{\mathbf{X}}_{i,j} = \frac{\mathbf{X}_{i,j} - \mathbf{\mu}_j}{\sqrt{\mathbf{\sigma}_j^2 + \epsilon}}$$

$$\mathbf{Y}_{i,j} = \mathbf{\gamma}_j \widehat{\mathbf{X}}_{i,j} + \mathbf{\beta}_j$$

Dropout

- Goal: Regularize a neural net to prevent overfitting.
- Idea:
 - **During training**: with some probability p, randomly set neurons to zero (turn off)
 - During testing: Use all the neurons for computation

Dropout for GNNs

 In GNN, Dropout is applied to the linear layer in the message function

A simple message function with linear

layer:
$$\mathbf{m}_u^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$$

Dropout

Activation (Non-linearity)

Apply activation to *i*-th dimension of embedding **x**

$$ReLU(\mathbf{x}_i) = max(\mathbf{x}_i, 0)$$

- Most commonly used
- Sigmoid

$$\sigma(\mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{x}_i}}$$

Used only when you want to restrict the range of your embeddings

PReLU(
$$\mathbf{x}_i$$
) = max(\mathbf{x}_i , 0) + a_i min(\mathbf{x}_i , 0)
 a_i is a trainable parameter

Empirically performs better than ReLU

GNN Layer in Practice

 Summary: Modern deep learning modules can be included into a GNN layer for better performance

Designing novel GNN layers is still
 an active research frontier!

Transformation

 Suggested resources: You can explore diverse GNN designs or try out your own ideas in <u>GraphGym</u>

