

Fourth Industrial Summer School

Advanced Machine Learning

Neural Networks and Deep learning-part2

Session Objectives

- ✓ Introduction
- ✓ Fundamentals
- ✓ Neural Network Intuitions
- ✓ 2-Layer Neural Network

Neural Networks

Basic Architecture

Architecture of a standard neural network

Neural Network Representation

Normally termed as 2-layer neural network. (input layer is not counted).

Neural Network Representation

$$z = w^T x + b$$

$$a = \sigma(z)$$

Computing a Neural Network's Output

4IR Summer School

Computing a Neural Network's Output

Given input x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Vectorising across multiple examples

$$X = \left| \begin{array}{c|c} | & | & | \\ \chi^{(1)} \chi^{(2)} & \dots \chi^{(m)} \\ | & | & | \end{array} \right|$$

for i = 1 to m $z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$ $a^{[1](i)} = \sigma(z^{[1](i)})$ $z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$ $a^{[2](i)} = \sigma(z^{[2](i)})$

Vectorising across multiple examples

for i = 1 to m
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

Activations

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Different activation functions

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zerocentered
- exp() is a bit compute expensive

Still kills gradients when saturated

Different activation functions

ReLU $\max(0, x)$

- Does not saturate
- Computationally efficient
- Converges much faster
- Not zero-centered output
- Loosing half the spectrum

Leaky ReLU max(0.1x, x)

will not "die".

Derivatives of activation functions

Gradient descent for Neural Networks

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Update of parameters

Learning

- Initialize parameters
- Loop n times:
 - Forward pass
 - Compute Cost (Cross entropy loss)
 - Back propagation
 - Update parameters

Loss function is not convex!

- There is a possibility of getting trapped in local minima
- Mainly on low-dimension feature space

Bob chillin at a local optima

Multi-class classification

- One-hot encoding:
- Python:
- OneHotEncoder(categories='auto', sparse=False)
- onehotencoder.fit_transform(Y)
- Changing the dimension of the output layer
- Softmax:

$$a_j^L = rac{e^{z_j^L}}{\sum_k e^{z_k^L}},$$

Exercise

References

- Introduction to Deep Learning, National Research University
 Higher School of Economics
- Andrew Ng, Neural Networks and Deep Learning, Stanford University
- Sanjoy Dasgupta, Machine Learning Fundamentals, UC San Diego
- https://playground.tensorflow.org
- Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, Foundations of Machine Learning, second edition, The MIT Press
- Andrew Ng, Machine Learning Yearning, deeplearning.ai