Graph Coloring

- k-COLORING asks if the nodes of a graph can be colored with $\leq k$ colors such that no two adjacent nodes have the same color.
- 2-COLORING is in P (why?).
- But 3-coloring is NP-complete (see next page).
- k-COLORING is NP-complete for $k \geq 3$ (why?).

3-COLORING Is NP-Complete^a

- We will reduce NAESAT to 3-COLORING.
- We are given a set of clauses C_1, C_2, \ldots, C_m each with 3 literals.
- The boolean variables are x_1, x_2, \ldots, x_n .
- We shall construct a graph G such that it can be colored with colors $\{0, 1, 2\}$ if and only if all the clauses can be NAE-satisfied.

^aKarp (1972).

- Every variable x_i is involved in a triangle $[a, x_i, \neg x_i]$ with a common node a.
- Each clause $C_i = (c_{i1} \vee c_{i2} \vee c_{i3})$ is also represented by a triangle

$$[c_{i1}, c_{i2}, c_{i3}].$$

- Node c_{ij} with the same label as one in some triangle $[a, x_k, \neg x_k]$ represent distinct nodes.
- There is an edge between c_{ij} and the node that represents the jth literal of C_i .

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_i and $\neg x_i$ must take the color 0 and the other 1.

- Treat 1 as true and 0 as false.^a
 - We were dealing only with those triangles with the a node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0, the clauses are NAE-satisfied.

^aThe opposite also works.

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2.
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
 - We were dealing only with those triangles with the a node, not the clause triangles.

The Proof (concluded)

- For each clause triangle:
 - Pick any two literals with opposite truth values.
 - Color the corresponding nodes with 0 if the literal is
 true and 1 if it is false.
 - Color the remaining node with color 2.
- The coloring is legitimate.
 - If literal w of a clause triangle has color 2, then its color will never be an issue.
 - If literal w of a clause triangle has color 1, then it must be connected up to literal w with color 0.
 - If literal w of a clause triangle has color 0, then it must be connected up to literal w with color 1.

TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE MATCHING asks if there is a set of n triples in T, none of which has a component in common.
 - Each element in B is matched to a different element in G and different element in H.

Theorem 39 (Karp (1972)) TRIPARTITE MATCHING is NP-complete.

Related Problems

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- Assume |U| = 3m for some $m \in \mathbb{N}$ and $|S_i| = 3$ for all i.
- EXACT COVER BY 3-SETS asks if there are m sets in F that are disjoint and have U as their union.

Related Problems (concluded) Corollary 40 Set Covering, set packing, and exact COVER BY 3-SETS are all NP-complete.

The KNAPSACK Problem

- There is a set of n items.
- Item i has value $v_i \in \mathbb{Z}^+$ and weight $w_i \in \mathbb{Z}^+$.
- We are given $K \in \mathbb{Z}^+$ and $W \in \mathbb{Z}^+$.
- KNAPSACK asks if there exists a subset $S \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq K$.
 - We want to achieve the maximum satisfaction within the budget.

KNAPSACK Is NP-Complete

- KNAPSACK \in NP: Guess an S and verify the constraints.
- We assume $v_i = w_i$ for all i and K = W.
- KNAPSACK now asks if a subset of $\{v_1, v_2, \dots, v_n\}$ adds up to exactly K.
 - Picture yourself as a radio DJ.
 - Or a person trying to control the calories intake.
- We shall reduce exact cover by 3-sets to knapsack.

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of size-3 subsets of $U = \{1, 2, \dots, 3m\}$.
- EXACT COVER BY 3-SETS asks if there are m disjoint sets in F that cover the set U.
- Think of a set as a bit vector in $\{0,1\}^{3m}$.
 - 001100010 means the set $\{3,4,8\}$, and 110010000 means the set $\{1,2,5\}$.
- Our goal is $\overbrace{11\cdots 1}^{3m}$.

- A bit vector can also be considered as a binary number.
- Set union resembles addition.
 - 001100010 + 110010000 = 111110010, which denotes the set $\{1, 2, 3, 4, 5, 8\}$, as desired.
- Trouble occurs when there is *carry*.
 - 001100010 + 001110000 = 010010010, which denotes the set $\{2, 5, 8\}$, not the desired $\{3, 4, 5, 8\}$.

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.
 - -001100010 + 001110000 + 101100000 + 000001101 = 111111111.
 - But this "solution" $\{1, 3, 4, 5, 6, 7, 8, 9\}$ does not correspond to an exact cover.
 - And it uses 4 sets instead of the required 3.^a
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are n vectors in total, we change the base from 2 to n + 1.

^aThanks to a lively class discussion on November 20, 2002.

- Set v_i to be the (n+1)-ary number corresponding to the bit vector encoding S_i .
- Now in base n+1, if there is a set S such that $\sum_{v_i \in S} v_i = \overbrace{11 \cdots 1}^{3m}$, then every bit position must be contributed by exactly one v_i and |S| = m.
- Finally, set

$$K = \sum_{j=0}^{3m-1} (n+1)^j = \overbrace{11\cdots 1}^{3m}$$
 (base $n+1$).

- Suppose F admits an exact cover, say $\{S_1, S_2, \ldots, S_m\}$.
- Then picking $S = \{v_1, v_2, \dots, v_m\}$ clearly results in

$$v_1 + v_2 + \dots + v_m = \overbrace{11 \cdots 1}^{3m}.$$

- It is important to note that the meaning of addition
 (+) is independent of the base.^a
- It is just regular addition.
- But a S_i may give rise to different v_i 's under different bases.

^aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.

The Proof (concluded)

- On the other hand, suppose there exists an S such that $\sum_{v_i \in S} v_i = \overbrace{11 \cdots 1}^{3m} \text{ in base } n+1.$
- The no-carry property implies that |S| = m and $\{S_i : v_i \in S\}$ is an exact cover.

An Example

• Let $m=3, U=\{1,2,3,4,5,6,7,8,9\}$, and $S_1 = \{1,3,4\},$ $S_2 = \{2,3,4\},$ $S_3 = \{2,5,6\},$ $S_4 = \{6,7,8\},$ $S_5 = \{7,8,9\}.$

• Note that n = 5, as there are 5 S_i 's.

An Example (concluded)

• Our reduction produces

$$K = \sum_{j=0}^{3\times 3-1} 6^{j} = 11 \cdots 1 \quad \text{(base 6)} = 2015539,$$

$$v_{1} = 101100000 = 1734048,$$

$$v_{2} = 011100000 = 334368,$$

$$v_{3} = 010011000 = 281448,$$

$$v_{4} = 000001110 = 258,$$

$$v_{5} = 0000000111 = 43.$$

- Note $v_1 + v_3 + v_5 = K$.
- Indeed, $S_1 \cup S_3 \cup S_5 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, an exact cover by 3-sets.

BIN PACKINGS

- We are given N positive integers a_1, a_2, \ldots, a_N , an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 41 BIN PACKING is NP-complete.

INTEGER PROGRAMMING

- INTEGER PROGRAMMING asks whether a system of linear inequalities with integer coefficients has an integer solution.
 - LINEAR PROGRAMMING asks whether a system of linear inequalities with integer coefficients has a rational solution.

INTEGER PROGRAMMING Is NP-Complete^a

- SET COVERING can be expressed by the inequalities $Ax \ge \vec{1}$, $\sum_{i=1}^{n} x_i \le B$, $0 \le x_i \le 1$, where
 - $-x_i$ is one if and only if S_i is in the cover.
 - A is the matrix whose columns are the bit vectors of the sets S_1, S_2, \ldots
 - $-\vec{1}$ is the vector of 1s.
- This shows integer programming is NP-hard.
- Many NP-complete problems can be expressed as an INTEGER PROGRAMMING problem.

^aPapadimitriou (1981).

Easier or Harder?^a

- Adding restrictions on the allowable *problem instances* will not make a problem harder.
 - We are now solving a subset of problem instances.
 - The INDEPENDENT SET proof (p. 277) and the KNAPSACK proof (p. 322).
 - SAT to 2SAT (easier by p. 264).
 - CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (equally hard by p. 241).

^aThanks to a lively class discussion on October 29, 2003.

Easier or Harder? (concluded)

- Adding restrictions on the allowable *solutions* may make a problem easier, as hard, or harder.
- It is problem dependent.
 - MIN CUT to BISECTION WIDTH (harder by p. 303).
 - Linear programming to integer programming (harder by p. 332).
 - SAT to NAESAT (equally hard by p. 272) and MAX CUT to MAX BISECTION (equally hard by p. 301).
 - 3-coloring to 2-coloring (easier by p. 309).

coNP

- By definition, coNP is the class of problems whose complement is in NP.
- NP is the class of problems that have succinct certificates (recall Proposition 30 on p. 251).
- coNP is therefore the class of problems that have succinct disqualifications:
 - A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
 - Only "no" instances have such proofs.

coNP (continued)

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm M such that:
 - If $x \in L$, then M(x) = "yes" for all computation paths.
 - If $x \notin L$, then M(x) = "no" for some computation path.

coNP (concluded)

- Clearly $P \subseteq coNP$.
- It is not known if

$$P = NP \cap coNP$$
.

- Contrast this with

$$R = RE \cap coRE$$

(see Proposition 11 on p. 124).

Some coNP Problems

- VALIDITY \in coNP.
 - If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAT COMPLEMENT \in coNP.
 - The disqualification is a truth assignment that satisfies it.
- HAMILTONIAN PATH COMPLEMENT \in coNP.
 - The disqualification is a Hamiltonian path.
- OPTIMAL TSP (D) \in coNP.^a
 - The disqualification is a tour with a length < B.

^aAsked by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

An Alternative Characterization of coNP

Proposition 42 Let $L \subseteq \Sigma^*$ be a language. Then $L \in coNP$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$L = \{x : \forall y (x, y) \in R\}.$$

(As on p. 250, we assume $|y| \le |x|^k$ for some k.)

- $\bar{L} = \{x : (x, y) \in \neg R \text{ for some } y\}.$
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in \text{NP}$ by Proposition 30 (p. 251).
- Hence $L \in \text{coNP}$ by definition.

coNP Completeness

Proposition 43 L is NP-complete if and only if its complement $\bar{L} = \Sigma^* - L$ is coNP-complete.

Proof $(\Rightarrow; \text{ the } \Leftarrow \text{ part is symmetric})$

- Let \bar{L}' be any coNP language.
- Hence $L' \in NP$.
- Let R be the reduction from L' to L.
- So $x \in L'$ if and only if $R(x) \in L$.
- So $x \in \bar{L}'$ if and only if $R(x) \in \bar{L}$.
- R is a reduction from \bar{L}' to \bar{L} .

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
 - SAT COMPLEMENT is the complement of SAT.
- VALIDITY is coNP-complete.
 - $-\phi$ is valid if and only if $\neg \phi$ is not satisfiable.
 - The reduction from SAT COMPLEMENT to VALIDITY is hence easy.
- HAMILTONIAN PATH COMPLEMENT is coNP-complete.

Possible Relations between P, NP, coNP

1. P = NP = coNP.

2. NP = coNP but $P \neq NP$.

3. $NP \neq coNP$ and $P \neq NP$.

• This is current "consensus."

coNP Hardness and NP Hardness^a

Proposition 44 If a coNP-hard problem is in NP, then NP = coNP.

- Let $L \in NP$ be coNP-hard.
- Let NTM M decide L.
- For any $L' \in \text{coNP}$, there is a reduction R from L' to L.
- $L' \in NP$ as it is decided by NTM M(R(x)).
 - Alternatively, NP is closed under complement.
- Hence $coNP \subseteq NP$.
- The other direction $NP \subseteq coNP$ is symmetric.

^aBrassard (1979); Selman (1978).

coNP Hardness and NP Hardness (concluded)

Similarly,

Proposition 45 If an NP-hard problem is in coNP, then NP = coNP.

Hence NP-complete problems are unlikely to be in coNP and coNP-complete problems are unlikely to be in NP.

The Primality Problem

- An integer p is **prime** if p > 1 and all positive numbers other than 1 and p itself cannot divide it.
- \bullet PRIMES asks if an integer N is a prime number.
- Dividing N by $2, 3, \ldots, \sqrt{N}$ is not efficient.
 - The length of N is only $\log N$, but $\sqrt{N} = 2^{0.5 \log N}$.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- We will focus on efficient "probabilistic" algorithms for PRIMES (used in *Mathematica*, e.g.).

```
1: if n = a^b for some a, b > 1 then
      return "composite";
 3: end if
 4: for r = 2, 3, ..., n - 1 do
 5:
      if gcd(n, r) > 1 then
        return "composite";
      end if
      if r is a prime then
        Let q be the largest prime factor of r-1;
     if q \ge 4\sqrt{r} \log n and n^{(r-1)/q} \ne 1 \mod r then
10:
11:
           break; {Exit the for-loop.}
12:
         end if
13:
      end if
14: end for\{r-1 \text{ has a prime factor } q \geq 4\sqrt{r} \log n.\}
15: for a = 1, 2, \dots, 2\sqrt{r} \log n do
      if (x-a)^n \neq (x^n-a) \mod (x^r-1) in Z_n[x] then
16:
17:
        return "composite";
18:
      end if
19: end for
20: return "prime"; {The only place with "prime" output.}
```

DP

- DP \equiv NP \cap coNP is the class of problems that have succinct certificates and succinct disqualifications.
 - Each "yes" instance has a succinct certificate.
 - Each "no" instance has a succinct disqualification.
 - No instances have both.
- $P \subseteq DP$.
- We will see that PRIMES \in DP.
 - In fact, PRIMES \in P as mentioned earlier.

Primitive Roots in Finite Fields

Theorem 46 (Lucas and Lehmer (1927)) ^a A number p > 1 is prime if and only if there is a number 1 < r < p (called the **primitive root** or **generator**) such that

- 1. $r^{p-1} = 1 \mod p$, and
- 2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.
- We will prove the theorem later.

^aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry Lehmer (1905–1991).

Pratt's Theorem

Theorem 47 (Pratt (1975)) PRIMES $\in NP \cap coNP$.

- PRIMES is in coNP because a succinct disqualification is a divisor.
- Suppose p is a prime.
- p's certificate includes the r in Theorem 46 (p. 351).
- Use recursive doubling to check if $r^{p-1} = 1 \mod p$ in time polynomial in the length of the input, $\log_2 p$.
- We also need all *prime* divisors of $p-1: q_1, q_2, \ldots, q_k$.
- Checking $r^{(p-1)/q_i} \neq 1 \mod p$ is also easy.

The Proof (concluded)

- Checking q_1, q_2, \ldots, q_k are all the divisors of p-1 is easy.
- We still need certificates for the primality of the q_i 's.
- The complete certificate is recursive and tree-like:

$$C(p) = (r; q_1, C(q_1), q_2, C(q_2), \dots, q_k, C(q_k)).$$

- C(p) can also be checked in polynomial time.
- We next prove that C(p) is succinct.

The Succinctness of the Certificate

Lemma 48 The length of C(p) is at most quadratic at $5 \log_2^2 p$.

- This claim holds when p = 2 or p = 3.
- In general, p-1 has $k < \log_2 p$ prime divisors $q_1 = 2, q_2, \dots, q_k$.
- C(p) requires: 2 parentheses and $2k < 2\log_2 p$ separators (length at most $2\log_2 p \log_2 p$, r (length at most $\log_2 p$), $q_1 = 2$ and its certificate 1 (length at most 5 bits), the q_i 's (length at most $2\log_2 p$), and the $C(q_i)$ s.

The Proof (concluded)

• C(p) is succinct because

$$|C(p)| \leq 5\log_2 p + 5 + 5\sum_{i=2}^k \log_2^2 q_i$$

$$\leq 5\log_2 p + 5 + 5\left(\sum_{i=2}^k \log_2 q_i\right)^2$$

$$\leq 5\log_2 p + 5 + 5\log_2^2 \frac{p-1}{2}$$

$$< 5\log_2 p + 5 + 5(\log_2 p - 1)^2$$

$$= 5\log_2^2 p + 10 - 5\log_2 p \leq 5\log_2^2 p$$

for $p \geq 4$.

Basic Modular Arithmetics^a

- Let $m, n \in \mathbb{Z}^+$.
- m|n means m divides n and m is n's divisor.
- We call the numbers $0, 1, \ldots, n-1$ the **residue** modulo n.
- The greatest common divisor of m and n is denoted gcd(m, n).
- The r in Theorem 46 (p. 351) is a primitive root of p.
- We now prove the existence of primitive roots and then Theorem 46.

^aCarl Friedrich Gauss.

Euler's^a Totient or Phi Function

• Let

$$\Phi(n) = \{m : 1 \le m < n, \gcd(m, n) = 1\}$$

be the set of all positive integers less than n that are prime to n (Z_n^* is a more popular notation).

$$-\Phi(12) = \{1, 5, 7, 11\}.$$

- Define **Euler's function** of n to be $\phi(n) = |\Phi(n)|$.
- $\phi(p) = p 1$ for prime p, and $\phi(1) = 1$ by convention.
- Euler's function is not expected to be easy to compute without knowing n's factorization.

^aLeonhard Euler (1707–1783).

Two Properties of Euler's Function

The inclusion-exclusion principle^a can be used to prove the following.

Lemma 49
$$\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}).$$

• If $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ is the prime factorization of n, then

$$\phi(n) = n \prod_{i=1}^{t} \left(1 - \frac{1}{p_i} \right).$$

Corollary 50 $\phi(mn) = \phi(m) \phi(n)$ if gcd(m, n) = 1.

^aSee my *Discrete Mathematics* lecture notes.

A Key Lemma

Lemma 51 $\sum_{m|n} \phi(m) = n$.

• Let $\prod_{i=1}^{\ell} p_i^{k_i}$ be the prime factorization of n and consider

$$\prod_{i=1}^{\ell} [\phi(1) + \phi(p_i) + \dots + \phi(p_i^{k_i})]. \tag{4}$$

- Equation (4) equals n because $\phi(p_i^k) = p_i^k p_i^{k-1}$ by Lemma 49.
- Expand Eq. (4) to yield $\sum_{k'_1 \leq k_1, ..., k'_{\ell} \leq k_{\ell}} \prod_{i=1}^{\ell} \phi(p_i^{k'_i})$.

The Proof (concluded)

• By Corollary 50 (p. 359),

$$\prod_{i=1}^{\ell} \phi(p_i^{k_i'}) = \phi\left(\prod_{i=1}^{\ell} p_i^{k_i'}\right).$$

- Each $\prod_{i=1}^{\ell} p_i^{k_i'}$ is a unique divisor of $n = \prod_{i=1}^{\ell} p_i^{k_i}$.
- Equation (4) becomes

$$\sum_{m|n} \phi(m).$$

The Density Attack for PRIMES

All numbers < n

Witnesses to compositeness of n

• It works, but does it work well?

Factorization and Euler's Function

- The ratio of numbers $\leq n$ relatively prime to n is $\phi(n)/n$.
- When n = pq, where p and q are distinct primes,

$$\frac{\phi(n)}{n} = \frac{pq - p - q + 1}{pq} > 1 - \frac{1}{q} - \frac{1}{p}.$$

- The "density attack" to factor n = pq hence takes $\Omega(\sqrt{n})$ steps on average when $p \sim q = O(\sqrt{n})$.
- This running time is exponential: $\Omega(2^{0.5 \log_2 n})$.

The Chinese Remainder Theorem

- Let $n = n_1 n_2 \cdots n_k$, where n_i are pairwise relatively prime.
- For any integers a_1, a_2, \ldots, a_k , the set of simultaneous equations

$$x = a_1 \mod n_1,$$

$$x = a_2 \mod n_2,$$

$$\vdots$$

$$x = a_k \mod n_k,$$

has a unique solution modulo n for the unknown x.

Fermat's "Little" Theorem^a

Lemma 52 For all 0 < a < p, $a^{p-1} = 1 \mod p$.

- Consider $a\Phi(p) = \{am \mod p : m \in \Phi(p)\}.$
- $a\Phi(p) = \Phi(p)$.
 - $-a\Phi(p)\subseteq\Phi(p)$ as a remainder must be between 0 and p-1.
 - Suppose $am = am' \mod p$ for m > m', where $m, m' \in \Phi(p)$.
 - That means $a(m m') = 0 \mod p$, and p divides a or m m', which is impossible.

^aPierre de Fermat (1601–1665).

The Proof (concluded)

- Multiply all the numbers in $\Phi(p)$ to yield (p-1)!.
- Multiply all the numbers in $a\Phi(p)$ to yield $a^{p-1}(p-1)!$.
- As $a\Phi(p) = \Phi(p)$, $(p-1)! = a^{p-1}(p-1)! \mod p$.
- Finally, $a^{p-1} = 1 \mod p$ because $p \not ((p-1)!$.

The Fermat-Euler Theorem^a

Corollary 53 For all $a \in \Phi(n)$, $a^{\phi(n)} = 1 \mod n$.

- The proof is similar to that of Lemma 52 (p. 365).
- Consider $a\Phi(n) = \{am \mod n : m \in \Phi(n)\}.$
- $a\Phi(n) = \Phi(n)$.
 - $-a\Phi(n) \subseteq \Phi(n)$ as a remainder must be between 0 and n-1 and relatively prime to n.
 - Suppose $am = am' \mod n$ for m' < m < n, where $m, m' \in \Phi(n)$.
 - That means $a(m-m')=0 \mod n$, and n divides a or m-m', which is impossible.

^aProof by Mr. Wei-Cheng Cheng (R93922108) on November 24, 2004.

The Proof (concluded)

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a\Phi(n)$ to yield $a^{\Phi(n)} \prod_{m \in \Phi(n)} m$.
- As $a\Phi(n) = \Phi(n)$,

$$\prod_{m \in \Phi(n)} m = a^{\Phi(n)} \left(\prod_{m \in \Phi(n)} m \right) \bmod n.$$

• Finally, $a^{\Phi(n)} = 1 \mod n$ because $n \not \mid \prod_{m \in \Phi(n)} m$.

An Example

• As $12 = 2^2 \times 3$,

$$\phi(12) = 12 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = 4$$

- In fact, $\Phi(12) = \{1, 5, 7, 11\}.$
- For example,

$$5^4 = 625 = 1 \mod 12$$
.

Exponents

- The **exponent** of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^+$ such that $m^k = 1 \mod p$.
- Every residue $s \in \Phi(p)$ has an exponent.
 - $-1, s, s^2, s^3, \ldots$ eventually repeats itself, say $s^i = s^j \mod p$, which means $s^{j-i} = 1 \mod p$.
- If the exponent of m is k and $m^{\ell} = 1 \mod p$, then $k | \ell$.
 - Otherwise, $\ell = qk + a$ for 0 < a < k, and $m^{\ell} = m^{qk+a} = m^a = 1 \mod p$, a contradiction.

Lemma 54 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide p-1.
- A primitive root of p is thus a number with exponent p-1.
- Let R(k) denote the total number of residues in $\Phi(p)$ that have exponent k.
- We already knew that R(k) = 0 for $k \not | (p-1)$.
- So $\sum_{k|(p-1)} R(k) = p-1$ as every number has an exponent.

Size of R(k)

- Any $a \in \Phi(p)$ of exponent k satisfies $x^k = 1 \mod p$.
- Hence there are at most k residues of exponent k, i.e., $R(k) \le k$, by Lemma 54 on p. 370.
- Let s be a residue of exponent k.
- $1, s, s^2, \ldots, s^{k-1}$ are all distinct modulo p.
 - Otherwise, $s^i = s^j \mod p$ with i < j and s is of exponent j i < k, a contradiction.
- As all these k distinct numbers satisfy $x^k = 1 \mod p$, they are all the solutions of $x^k = 1 \mod p$.
- But do all of them have exponent k (i.e., R(k) = k)?

Size of R(k) (continued)

- And if not (i.e., R(k) < k), how many of them do?
- Suppose $\ell < k$ and $\ell \notin \Phi(k)$ with $gcd(\ell, k) = d > 1$.
- Then

$$(s^{\ell})^{k/d} = (s^k)^{\ell/d} = 1 \mod p.$$

- Therefore, s^{ℓ} has exponent at most k/d, which is less than k.
- We conclude that

$$R(k) \le \phi(k)$$
.

Size of R(k) (concluded)

• Because all p-1 residues have an exponent,

$$p - 1 = \sum_{k|(p-1)} R(k) \le \sum_{k|(p-1)} \phi(k) = p - 1$$

by Lemma 50 on p. 359.

• Hence

$$R(k) = \begin{cases} \phi(k) & \text{when } k | (p-1) \\ 0 & \text{otherwise} \end{cases}$$

- In particular, $R(p-1) = \phi(p-1) > 0$, and p has at least one primitive root.
- This proves one direction of Theorem 46 (p. 351).

A Few Calculations

- Let p = 13.
- From p. 367, we know $\phi(p-1) = 4$.
- Hence R(12) = 4.
- And there are 4 primitives roots of p.
- As $\Phi(p-1) = \{1, 5, 7, 11\}$, the primitive roots are g^1, g^5, g^7, g^{11} for any primitive root g.

The Other Direction of Theorem 46 (p. 351)

- We must show p is a prime only if there is a number r (called primitive root) such that
 - 1. $r^{p-1} = 1 \mod p$, and
 - 2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.
- Suppose p is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1} = 1 \mod p$ (note $\gcd(r, p) = 1$).
- We will show that the 2nd condition must be violated.

The Proof (concluded)

- $r^{\phi(p)} = 1 \mod p$ by the Fernat-Euler theorem (p. 367).
- Because p is not a prime, $\phi(p) .$
- Let k be the smallest integer such that $r^k = 1 \mod p$.
- As $k \le \phi(p), k .$
- Let q be a prime divisor of (p-1)/k > 1.
- Then k|(p-1)/q.
- Therefore, by virtue of the definition of k,

$$r^{(p-1)/q} = 1 \bmod p.$$

• But this violates the 2nd condition.

Function Problems

- Decisions problem are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
 - If you can find a satisfying truth assignment efficiently, then SAT is in P.
 - If you can find the best TSP tour efficiently, then TSP
 (D) is in P.
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
 - Let $\phi(x_1, x_2, \ldots, x_n)$ be a boolean expression.
 - If ϕ is satisfiable, then return a satisfying truth assignment.
 - Otherwise, return "no."
- We next show that if $SAT \in P$, then FSAT has a polynomial-time algorithm.

An Algorithm for FSAT Using SAT

```
1: t := \epsilon;
 2: if \phi \in SAT then
       for i = 1, 2, ..., n do
      if \phi[x_i = \mathtt{true}] \in \mathtt{SAT} then
     t := t \cup \{ x_i = \mathtt{true} \};
      \phi := \phi[x_i = \mathtt{true}];
     else
     t := t \cup \{ x_i = \mathtt{false} \};
        \phi := \phi[x_i = \mathtt{false}];
      end if
10:
11:
       end for
12:
       return t;
13: else
14:
       return "no";
15: end if
```

Analysis

- There are $\leq n+1$ calls to the algorithm for SAT.^a
- Shorter boolean expressions than ϕ are used in each call to the algorithm for SAT.
- So if sat can be solved in polynomial time, so can fsat.
- Hence SAT and FSAT are equally hard (or easy).

^aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

TSP and TSP (D) Revisited

- We are given n cities 1, 2, ..., n and integer distances $d_{ij} = d_{ji}$ between any two cities i and j.
- The TSP asks for a tour with the shortest total distance (not just the shortest total distance, as earlier).
 - The shortest total distance must be at most $2^{|x|}$, where x is the input.
- TSP (D) asks if there is a tour with a total distance at most B.
- We next show that if TSP $(D) \in P$, then TSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

- 1: Perform a binary search over interval $[0, 2^{|x|}]$ by calling TSP (D) to obtain the shortest distance C;
- 2: **for** $i, j = 1, 2, \dots, n$ **do**
- 3: Call TSP (D) with B = C and $d_{ij} = C + 1$;
- 4: **if** "no" **then**
- 5: Restore d_{ij} to old value; {Edge [i, j] is critical.}
- 6: end if
- 7: end for
- 8: **return** the tour with edges whose $d_{ij} \leq C$;

Analysis

- An edge that is not on any optimal tour will be eliminated, with its d_{ij} set to C+1.
- An edge which is not on all remaining optimal tours will also be eliminated.
- So the algorithm ends with n edges which are not eliminated (why?).
- There are $O(|x|+n^2)$ calls to the algorithm for TSP (D).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

I know that half my advertising works,

I just don't know which half.

— John Wanamaker

I know that half my advertising is a waste of money,
I just don't know which half!

— McGraw-Hill ad.

Randomized Algorithms^a

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient *deterministic* algorithms but for which very efficient randomized algorithms exist.
 - Extraction of square roots, for instance.
- There are problems where randomization is necessary.
 - Secure protocols.
- Randomized version can be more efficient.
 - Parallel algorithm for maximal independent set.
- Are randomized algorithms algorithms?

^aRabin (1976); Solovay and Strassen (1977).

"Four Most Important Randomized Algorithms" a

- 1. Primality testing.^b
- 2. Graph connectivity using random walks.^c
- 3. Polynomial identity testing.^d
- 4. Algorithms for approximate counting.^e

^aTrevisan (2006).

^bRabin (1976); Solovay and Strassen (1977).

^cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).

^dSchwartz (1980); Zippel (1979).

^eSinclair and Jerrum (1989).

Bipartite Perfect Matching

• We are given a **bipartite graph** G = (U, V, E).

$$- U = \{u_1, u_2, \dots, u_n\}.$$

$$-V = \{v_1, v_2, \dots, v_n\}.$$

$$-E \subseteq U \times V.$$

- We are asked if there is a **perfect matching**.
 - A permutation π of $\{1, 2, ..., n\}$ such that

$$(u_i, v_{\pi(i)}) \in E$$

for all $u_i \in U$.

Symbolic Determinants

- Given a bipartite graph G, construct the $n \times n$ matrix A^G whose (i, j)th entry A^G_{ij} is a variable x_{ij} if $(u_i, v_j) \in E$ and zero otherwise.
- The **determinant** of A^G is

$$\det(A^{G}) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}.$$
 (5)

- $-\pi$ ranges over all permutations of n elements.
- $-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.

Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}$, note the following:
 - Each summand corresponds to a possible prefect matching π .
 - As all variables appear only once, all of these summands are different monomials and will not cancel.
- It is essentially an exhaustive enumeration.

Proposition 55 (Edmonds (1967)) G has a perfect matching if and only if $det(A^G)$ is not identically zero.

A Perfect Matching in a Bipartite Graph

The Perfect Matching in the Determinant

• The matrix is

$$A^G = egin{bmatrix} 0 & 0 & x_{13} & x_{14} & 0 \ 0 & x_{22} & 0 & 0 & 0 \ x_{31} & 0 & 0 & 0 & x_{35} \ x_{41} & 0 & x_{43} & x_{44} & 0 \ \hline x_{51} & 0 & 0 & 0 & x_{55} \end{bmatrix}.$$

• $\det(A^G) = -x_{14}x_{22}x_{35}x_{43}x_{51} + x_{13}x_{22}x_{35}x_{44}x_{51} + x_{14}x_{22}x_{31}x_{43}x_{55} - x_{13}x_{22}x_{31}x_{44}x_{55}$, each denoting a perfect matching.

How To Test If a Polynomial Is Identically Zero?

- $\det(A^G)$ is a polynomial in n^2 variables.
- There are exponentially many terms in $det(A^G)$.
- Expanding the determinant polynomial is not feasible.
 - Too many terms.
- Observation: If $det(A^G)$ is *identically zero*, then it remains zero if we substitute *arbitrary* integers for the variables x_{11}, \ldots, x_{nn} .
- What is the likelihood of obtaining a zero when $det(A^G)$ is *not* identically zero?

Number of Roots of a Polynomial

Lemma 56 (Schwartz (1980)) Let $p(x_1, x_2, ..., x_m) \not\equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^+$. Then the number of m-tuples

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

such that $p(x_1, x_2, \dots, x_m) = 0$ is

$$< mdM^{m-1}$$
.

• By induction on m (consult the textbook).

Density Attack

• The density of roots in the domain is at most

$$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}.$$

- So suppose $p(x_1, x_2, \ldots, x_m) \not\equiv 0$.
- Then a random

$$(x_1, x_2, \dots, x_n) \in \{0, 1, \dots, M-1\}^n$$

has a probability of $\leq md/M$ of being a root of p.

Density Attack (concluded)

Here is a sampling algorithm to test if $p(x_1, x_2, ..., x_m) \not\equiv 0$.

- 1: Choose i_1, \ldots, i_m from $\{0, 1, \ldots, M-1\}$ randomly;
- 2: **if** $p(i_1, i_2, ..., i_m) \neq 0$ **then**
- 3: **return** "p is not identically zero";
- 4: **else**
- 5: **return** "p is identically zero";
- 6: end if

A Randomized Bipartite Perfect Matching Algorithm^a

We now return to the original problem of bipartite perfect matching.

```
1: Choose n^2 integers i_{11}, \ldots, i_{nn} from \{0, 1, \ldots, b-1\} randomly;
```

1: Calculate $\det(A^G(i_{11},\ldots,i_{nn}))$ by Gaussian elimination;

2: **if**
$$\det(A^G(i_{11},\ldots,i_{nn})) \neq 0$$
 then

3: **return** "G has a perfect matching";

4: else

5: **return** "G has no perfect matchings";

6: end if

^aLovász (1979).

Analysis

- Pick $b = 2n^2$.
- If G has no perfect matchings, the algorithm will always be correct.
- Suppose G has a perfect matching.
 - The algorithm will answer incorrectly with probability at most $n^2d/b = 0.5$ because d = 1.
 - Run the algorithm independently k times and output "G has no perfect matchings" if they all say no.
 - The error probability is now reduced to at most 2^{-k} .
- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for all bipartite graphs of 2n nodes?^a

^aThanks to a lively class discussion on November 24, 2004.

Perfect Matching for General Graphs

- Page 390 is about bipartite perfect matching
- Now we are given a graph G = (V, E).

$$- V = \{v_1, v_2, \dots, v_{2n}\}.$$

- We are asked if there is a perfect matching.
 - A permutation π of $\{1, 2, ..., 2n\}$ such that

$$(v_i, v_{\pi(i)}) \in E$$

for all $v_i \in V$.

The Tutte Matrix^a

• Given a graph G = (V, E), construct the $2n \times 2n$ **Tutte** matrix T^G such that

$$T_{ij}^{G} = \begin{cases} x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i < j, \\ -x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i > j, \\ 0 & \text{othersie.} \end{cases}$$

- The Tutte matrix is a skew-symmetric symbolic matrix.
- Similar to Proposition 55 (p. 393):

Proposition 57 G has a perfect matching if and only if $det(T^G)$ is not identically zero.

^aWilliam Thomas Tutte (1917–2002).

Monte Carlo Algorithms^a

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no **false positives**).
 - If the algorithm answers in the negative, then it may make an error (**false negative**).
- The algorithm makes a false negative with probability ≤ 0.5 .
- This probability is *not* over the space of all graphs or determinants, but *over* the algorithm's own coin flips.
 - It holds for *any* bipartite graph.

^aMetropolis and Ulam (1949).

The Markov Inequality^a

Lemma 58 Let x be a random variable taking nonnegative integer values. Then for any k > 0,

$$\operatorname{prob}[x \ge kE[x]] \le 1/k.$$

• Let p_i denote the probability that x = i.

$$E[x] = \sum_{i} ip_{i}$$

$$= \sum_{i < kE[x]} ip_{i} + \sum_{i \ge kE[x]} ip_{i}$$

$$\geq kE[x] \times \operatorname{prob}[x \ge kE[x]].$$

^aAndrei Andreyevich Markov (1856–1922).

An Application of Markov's Inequality

- Algorithm C runs in expected time T(n) and always gives the right answer.
- Consider an algorithm that runs C for time kT(n) and rejects the input if C does not stop within the time bound.
- By Markov's inequality, this new algorithm runs in time kT(n) and gives the wrong answer with probability $\leq 1/k$.
- By running this algorithm m times, we reduce the error probability to $\leq k^{-m}$.

An Application of Markov's Inequality (concluded)

- Suppose, instead, we run the algorithm for the same running time mkT(n) once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1/(mk)$.
- This is a far cry from the previous algorithm's error probability of $\leq k^{-m}$.
- The loss comes from the fact that Markov's inequality does not take advantage of any specific feature of the random variable.

FSAT for k-SAT Formulas (p. 380)

- Let $\phi(x_1, x_2, \dots, x_n)$ be a k-sat formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

```
1: Start with an arbitrary truth assignment T;
 2: for i = 1, 2, ..., r do
      if T \models \phi then
 3:
        return "\phi is satisfiable with T";
4:
      else
 5:
        Let c be an unsatisfiable clause in \phi under T; {All
6:
        of its literals are false under T.
        Pick any x of these literals at random;
7:
        Modify T to make x true;
8:
      end if
9:
10: end for
```

11: **return** " ϕ is unsatisfiable";

3SAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3SAT.
 - In fact, it runs in expected $O((1.333 \cdots + \epsilon)^n)$ time with r = 3n, a much better than $O(2^n)$.
- We will show immediately that it works well for 2sat.
- The state of the art is expected $O(1.322^n)$ time for 3sat and expected $O(1.474^n)$ time for 4sat.

^aUse this setting per run of the algorithm.

^bSchöning (1999).

^cKwama and Tamaki (2004); Rolf (2006).

Random Walk Works for 2SAT^a

Theorem 59 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Let t(i) denote the expected number of repetitions of the flipping step until a satisfying truth assignment is found if our starting T differs from \hat{T} in i values.
 - Their Hamming distance is i.

^aPapadimitriou (1991).

The Proof

- It can be shown that t(i) is finite.
- t(0) = 0 because it means that $T = \hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or T is not equal to any other satisfying truth assignment, then we need to flip at least once.
- We flip to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} , because \hat{T} satisfies all clauses.
- So we have at least 0.5 chance of moving closer to \hat{T} .

• Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

for 0 < i < n.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

• As we are only interested in upper bounds, we solve

$$x(0) = 0$$

 $x(n) = x(n-1) + 1$
 $x(i) = \frac{x(i-1) + x(i+1)}{2} + 1, \quad 0 < i < n$

• This is one-dimensional random walk with a reflecting and an absorbing barrier.

• Add the equations up to obtain

$$= \frac{x(1) + x(2) + \dots + x(n)}{\frac{x(0) + x(1) + 2x(2) + \dots + 2x(n-2) + x(n-1) + x(n)}{2}} + n + x(n-1).$$

• Simplify to yield

$$\frac{x(1) + x(n) - x(n-1)}{2} = n.$$

• As x(n) - x(n-1) = 1, we have

$$x(1) = 2n - 1.$$

• Iteratively, we obtain

$$x(2) = 4n - 4,$$

$$\vdots$$

$$x(i) = 2in - i^{2}.$$

• The worst case happens when i = n, in which case

$$x(n) = n^2$$
.

The Proof (concluded)

• We therefore reach the conclusion that

$$t(i) \le x(i) \le x(n) = n^2.$$

- So the expected number of steps is at most n^2 .
- The algorithm picks a running time $2n^2$.
- This amounts to invoking the Markov inequality (p. 405) with k = 2, with the consequence of having a probability of 0.5.
- The proof does not yield a polynomial bound for 3SAT.^a

 $^{^{\}rm a} {\rm Contributed}$ by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Boosting the Performance

- We can pick $r = 2mn^2$ to have an error probability of $\leq (2m)^{-1}$ by Markov's inequality.
- Alternatively, with the same running time, we can run the " $r = 2n^2$ " algorithm m times.
- But the error probability is reduced to $\leq 2^{-m}$!
- Again, the gain comes from the fact that Markov's inequality does not take advantage of any specific feature of the random variable.
- The gain also comes from the fact that the two algorithms are different.

How about Random CNF?

- Select m clauses independently and uniformly from the set of all possible disjunctions of k distinct, non-complementary literals with n boolean variables.
- Let m = cn.
- The formula is satisfiable with probability approaching 1 as $n \to \infty$ if $c < c_k$ for some $c_k < 2^k \ln 2 O(1)$.
- The formula is unsatisfiable with probability approaching 1 as $n \to \infty$ if $c > c_k$ for some $c_k > 2^k \ln 2 O(k)$.
- The above bounds are not tight yet.

Primality Tests

- \bullet PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k = 2, 3, ..., \sqrt{N}$.
- But it runs in $\Omega(2^{n/2})$ steps, where $n = |N| = \log_2 N$.

The Density Attack for PRIMES

```
1: Pick k \in \{2, ..., N-1\} randomly; {Assume N > 2.}
```

- 2: if $k \mid N$ then
- 3: **return** "N is composite";
- 4: **else**
- 5: \mathbf{return} "N is a prime";
- 6: end if

Analysis^a

- Suppose N = PQ, a product of 2 primes.
- The probability of success is

$$<1-\frac{\phi(N)}{N}=1-\frac{(P-1)(Q-1)}{PQ}=\frac{P+Q-1}{PQ}.$$

• In the case where $P \approx Q$, this probability becomes

$$<\frac{1}{P}+\frac{1}{Q}pprox \frac{2}{\sqrt{N}}.$$

• This probability is exponentially small.

^aSee also p. 363.

The Fermat Test for Primality

Fermat's "little" theorem on p. 365 suggests the following primality test for any given number p:

- 1: Pick a number a randomly from $\{1, 2, ..., N-1\}$;
- 2: if $a^{N-1} \neq 1 \mod N$ then
- 3: **return** "N is composite";
- 4: **else**
- 5: **return** "N is probably a prime";
- 6: end if

The Fermat Test for Primality (concluded)

- Unfortunately, there are composite numbers called **Carmichael numbers** that will pass the Fermat test for all $a \in \{1, 2, ..., N-1\}$.
- There are infinitely many Carmichael numbers.^a

^aAlford, Granville, and Pomerance (1992).

Square Roots Modulo a Prime

- Equation $x^2 = a \mod p$ has at most two (distinct) roots by Lemma 54 (p. 370).
 - The roots are called **square roots**.
 - Numbers a with square roots and gcd(a, p) = 1 are called **quadratic residues**.
 - * They are $1^2 \mod p, 2^2 \mod p, \dots, (p-1)^2 \mod p$.
- We shall show that a number either has two roots or has none, and testing which one is true is trivial.
- There are no known efficient deterministic algorithms to find the roots.

Euler's Test

Lemma 60 (Euler) Let p be an odd prime and $a \neq 0 \mod p$.

- 1. If $a^{(p-1)/2} = 1 \mod p$, then $x^2 = a \mod p$ has two roots.
- 2. If $a^{(p-1)/2} \neq 1 \mod p$, then $a^{(p-1)/2} = -1 \mod p$ and $x^2 = a \mod p$ has no roots.
- Let r be a primitive root of p.
- By Fermat's "little" theorem, $r^{(p-1)/2}$ is a square root of 1, so $r^{(p-1)/2} = \pm 1 \mod p$.
- But as r is a primitive root, $r^{(p-1)/2} \neq 1 \mod p$.
- Hence $r^{(p-1)/2} = -1 \mod p$.

- Suppose $a = r^{2j}$ for some $1 \le j \le (p-1)/2$.
- Then $a^{(p-1)/2} = r^{j(p-1)} = 1 \mod p$ and its two distinct roots are $r^j, -r^j (= r^{j+(p-1)/2})$.
 - If $r^j = -r^j \mod p$, then $2r^j = 0 \mod p$, which implies $r^j = 0 \mod p$, a contradiction.
- As $1 \le j \le (p-1)/2$, there are (p-1)/2 such a's.

The Proof (concluded)

- Each such a has 2 distinct square roots.
- The square roots of all the a's are distinct.
 - The square roots of different a's must be different.
- Hence the set of square roots is $\{1, 2, \dots, p-1\}$.

- I.e.,
$$\bigcup_{1 \le a \le p-1} \{x : x^2 = a \mod p\} = \{1, 2, \dots, p-1\}.$$

- If $a = r^{2j+1}$, then it has no roots because all the square roots have been taken.
- $a^{(p-1)/2} = [r^{(p-1)/2}]^{2j+1} = (-1)^{2j+1} = -1 \mod p$.

The Legendre Symbol^a and Quadratic Residuacity Test

- By Lemma 60 (p. 426) $a^{(p-1)/2} \mod p = \pm 1$ for $a \neq 0 \mod p$.
- For odd prime p, define the **Legendre symbol** $(a \mid p)$ as

$$(a \mid p) = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p. \end{cases}$$

- Euler's test implies $a^{(p-1)/2} = (a \mid p) \mod p$ for any odd prime p and any integer a.
- Note that (ab|p) = (a|p)(b|p).

^aAndrien-Marie Legendre (1752–1833).

Gauss's Lemma

Lemma 61 (Gauss) Let p and q be two odd primes. Then $(q|p) = (-1)^m$, where m is the number of residues in $R = \{iq \bmod p : 1 \le i \le (p-1)/2\}$ that are greater than (p-1)/2.

- \bullet All residues in R are distinct.
 - If $iq = jq \mod p$, then p|(j-i)q or p|q.
- No two elements of R add up to p.
 - If $iq + jq = 0 \mod p$, then p|(i+j) or p|q.
 - But neither is possible.

- Consider the set R' of residues that result from R if we replace each of the m elements $a \in R$ such that a > (p-1)/2 by p-a.
 - This is equivalent to performing $-a \mod p$.
- All residues in R' are now at most (p-1)/2.
- In fact, $R' = \{1, 2, \dots, (p-1)/2\}$ (see illustration next page).
 - Otherwise, two elements of R would add up to p, which has been shown to be impossible.

The Proof (concluded)

- Alternatively, $R' = \{\pm iq \mod p : 1 \le i \le (p-1)/2\}$, where exactly m of the elements have the minus sign.
- Take the product of all elements in the two representations of R'.
- So $[(p-1)/2]! = (-1)^m q^{(p-1)/2} [(p-1)/2]! \mod p$.
- Because gcd([(p-1)/2]!, p) = 1, the above implies

$$1 = (-1)^m q^{(p-1)/2} \bmod p.$$

Legendre's Law of Quadratic Reciprocity^a

- Let p and q be two odd primes.
- The next result says their Legendre symbols are distinct if and only if both numbers are 3 mod 4.

Lemma 62 (Legendre (1785), Gauss)

$$(p|q)(q|p) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$

^aFirst stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 6 different proofs during his life. The 152nd proof appeared in 1963.

- Sum the elements of R' in the previous proof in mod 2.
- On one hand, this is just $\sum_{i=1}^{(p-1)/2} i \mod 2$.
- On the other hand, the sum equals

$$\sum_{i=1}^{(p-1)/2} \left(qi - p \left\lfloor \frac{iq}{p} \right\rfloor \right) + mp \mod 2$$

$$= \left(q \sum_{i=1}^{(p-1)/2} i - p \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) + mp \mod 2.$$

- Signs are irrelevant under mod 2.
- -m is as in Lemma 61 (p. 430).

• Ignore odd multipliers to make the sum equal

$$\left(\sum_{i=1}^{(p-1)/2} i - \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) + m \mod 2.$$

• Equate the above with $\sum_{i=1}^{(p-1)/2} i \mod 2$ to obtain

$$m = \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \mod 2.$$

The Proof (concluded)

- $\sum_{i=1}^{(p-1)/2} \lfloor \frac{iq}{p} \rfloor$ is the number of integral points under the line y = (q/p) x for $1 \le x \le (p-1)/2$.
- Gauss's lemma (p. 430) says $(q|p) = (-1)^m$.
- Repeat the proof with p and q reversed.
- So $(p|q) = (-1)^{m'}$, where m' is the number of integral points above the line y = (q/p)x for $1 \le y \le (q-1)/2$.
- As a result, $(p|q)(q|p) = (-1)^{m+m'}$.
- But m + m' is the total number of integral points in the $\frac{p-1}{2} \times \frac{q-1}{2}$ rectangle, which is $\frac{p-1}{2} \cdot \frac{q-1}{2}$.

The Jacobi Symbol^a

- The Legendre symbol only works for odd *prime* moduli.
- The **Jacobi symbol** $(a \mid m)$ extends it to cases where m is not prime.
- Let $m = p_1 p_2 \cdots p_k$ be the prime factorization of m.
- When m > 1 is odd and gcd(a, m) = 1, then

$$(a|m) = \prod_{i=1}^{k} (a | p_i).$$

• Define (a | 1) = 1.

^aCarl Jacobi (1804–1851).

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for arguments for which it is defined.

1.
$$(ab | m) = (a | m)(b | m)$$
.

2.
$$(a \mid m_1 m_2) = (a \mid m_1)(a \mid m_2)$$
.

3. If
$$a = b \mod m$$
, then $(a | m) = (b | m)$.

4.
$$(-1 \mid m) = (-1)^{(m-1)/2}$$
 (by Lemma 61 on p. 430).

5.
$$(2 \mid m) = (-1)^{(m^2-1)/8}$$
 (by Lemma 61 on p. 430).

6. If a and m are both odd, then
$$(a \mid m)(m \mid a) = (-1)^{(a-1)(m-1)/4}$$
.

Calculation of (2200|999)

Similar to the Euclidean algorithm and does *not* require factorization.

$$(202|999) = (-1)^{(999^2-1)/8}(101|999)$$

$$= (-1)^{124750}(101|999) = (101|999)$$

$$= (-1)^{(100)(998)/4}(999|101) = (-1)^{24950}(999|101)$$

$$= (999|101) = (90|101) = (-1)^{(101^2-1)/8}(45|101)$$

$$= (-1)^{1275}(45|101) = -(45|101)$$

$$= -(-1)^{(44)(100)/4}(101|45) = -(101|45) = -(11|45)$$

$$= -(-1)^{(10)(44)/4}(45|11) = -(45|11)$$

$$= -(1|11) = -(11|1) = -1.$$

A Result Generalizing Proposition 10.3 in the Textbook

Theorem 63 The group of set $\Phi(n)$ under multiplication $\mod n$ has a primitive root if and only if n is either 1, 2, 4, p^k , or $2p^k$ for some nonnegative integer k and and odd prime p.

This result is essential in the proof of the next lemma.

The Jacobi Symbol and Primality Test^a

Lemma 64 If $(M|N) = M^{(N-1)/2} \mod N$ for all $M \in \Phi(N)$, then N is prime. (Assume N is odd.)

- Assume N = mp, where p is an odd prime, gcd(m, p) = 1, and m > 1 (not necessarily prime).
- Let $r \in \Phi(p)$ such that $(r \mid p) = -1$.
- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$M = r \bmod p,$$

 $M = 1 \mod m$.

^aMr. Clement Hsiao (R88526067) pointed out that the textbook's proof in Lemma 11.8 is incorrect while he was a senior in January 1999.

• By the hypothesis,

$$M^{(N-1)/2} = (M \mid N) = (M \mid p)(M \mid m) = -1 \mod N.$$

• Hence

$$M^{(N-1)/2} = -1 \bmod m.$$

• But because $M = 1 \mod m$,

$$M^{(N-1)/2} = 1 \bmod m,$$

a contradiction.

- Second, assume that $N = p^a$, where p is an odd prime and $a \ge 2$.
- By Theorem 63 (p. 442), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

• As $r \in \Phi(N)$ (prove it), we have

$$r^{N-1} = 1 \bmod N.$$

• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$,

$$p^{a-1}(p-1) | N-1,$$

which implies that $p \mid N-1$.

• But this is impossible given that $p \mid N$.

- Third, assume that $N = mp^a$, where p is an odd prime, gcd(m, p) = 1, m > 1 (not necessarily prime), and a is even.
- The proof mimics that of the second case.
- By Theorem 63 (p. 442), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

• In particular,

$$M^{N-1} = 1 \bmod p^a \tag{6}$$

for all $M \in \Phi(N)$.

• The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$M = r \bmod p^a$$

$$M = 1 \mod m$$
.

• Because $M = r \mod p^a$ and Eq. (6),

$$r^{N-1} = 1 \bmod p^a.$$

The Proof (concluded)

• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$,

$$p^{a-1}(p-1) | N-1,$$

which implies that $p \mid N-1$.

• But this is impossible given that $p \mid N$.

The Number of Witnesses to Compositeness

Theorem 65 (Solovay and Strassen (1977)) If N is an odd composite, then $(M|N) \neq M^{(N-1)/2} \mod N$ for at least half of $M \in \Phi(N)$.

- By Lemma 64 (p. 443) there is at least one $a \in \Phi(N)$ such that $(a|N) \neq a^{(N-1)/2} \mod N$.
- Let $B = \{b_1, b_2, \dots, b_k\} \subseteq \Phi(N)$ be the set of all distinct residues such that $(b_i|N) = b_i^{(N-1)/2} \mod N$.
- Let $aB = \{ab_i \mod N : i = 1, 2, \dots, k\}.$

The Proof (concluded)

- $\bullet |aB| = k.$
 - $-ab_i = ab_j \mod N$ implies $N|a(b_i b_j)$, which is impossible because gcd(a, N) = 1 and $N > |b_i b_j|$.
- $aB \cap B = \emptyset$ because $(ab_i)^{(N-1)/2} = a^{(N-1)/2} b_i^{(N-1)/2} \neq (a|N)(b_i|N) = (ab_i|N).$
- Combining the above two results, we know

$$\frac{|B|}{\phi(N)} \le 0.5$$

```
1: if N is even but N \neq 2 then
     return "N is composite";
3: else if N=2 then
     return "N is a prime";
5: end if
6: Pick M \in \{2, 3, ..., N - 1\} randomly;
7: if gcd(M, N) > 1 then
     return "N is a composite";
9: else
    if (M|N) \neq M^{(N-1)/2} \mod N then
       return "N is composite";
11:
     else
12:
       return "N is a prime";
     end if
14:
15: end if
```

Analysis

- The algorithm certainly runs in polynomial time.
- There are no false positives (for COMPOSITENESS).
 - When the algorithm says the number is composite, it is always correct.
- The probability of a false negative is at most one half.
 - When the algorithm says the number is a prime, it may err.
 - If the input is composite, then the probability that the algorithm errs is one half.
- The error probability can be reduced but not eliminated.

Randomized Complexity Classes; RP

- Let N be a polynomial-time precise NTM that runs in time p(n) and has 2 nondeterministic choices at each step.
- N is a **polynomial Monte Carlo Turing machine** for a language L if the following conditions hold:
 - If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with "yes" where n = |x|.
 - If $x \notin L$, then all computation paths halt with "no."
- The class of all languages with polynomial Monte Carlo TMs is denoted **RP** (randomized polynomial time).^a

^aAdleman and Manders (1977).

Comments on RP

- Nondeterministic steps can be seen as fair coin flips.
- There are no false positive answers.
- The probability of false negatives, 1ϵ , is at most 0.5.
- But any constant between 0 and 1 can replace 0.5.
 - By repeating the algorithm $k = \lceil -\frac{1}{\log_2 1 \epsilon} \rceil$ times, the probability of false negatives becomes $(1 \epsilon)^k \le 0.5$.
- In fact, ϵ can be arbitrarily close to 0 as long as it is of the order 1/p(n) for some polynomial p(n).

$$- -\frac{1}{\log_2 1 - \epsilon} = O(\frac{1}{\epsilon}) = O(p(n)).$$

Where RP Fits

- $P \subseteq RP \subseteq NP$.
 - A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
 - A Monte Carlo TM is an NTM with extra demands on the number of accepting paths.
- Compositeness $\in RP$; primes $\in coRP$; primes $\in RP$.
 - In fact, PRIMES $\in P$.
- RP \cup coRP is another "plausible" notion of efficient computation.

^aAdleman and Huang (1987).

^bAgrawal, Kayal, and Saxena (2002).

ZPP^a (Zero Probabilistic Polynomial)

- The class **ZPP** is defined as $RP \cap coRP$.
- A language in ZPP has *two* Monte Carlo algorithms, one with no false positives and the other with no false negatives.
- If we repeatedly run both Monte Carlo algorithms, eventually one definite answer will come (unlike RP).
 - A positive answer from the one without false positives.
 - A negative answer from the one without false negatives.

^aGill (1977).

The ZPP Algorithm (Las Vegas)

```
    {Suppose L ∈ ZPP.}
    {N₁ has no false positives, and N₂ has no false negatives.}
    while true do
    if N₁(x) = "yes" then
```

- 5: return "yes";
- 6: end if
- 7: **if** $N_2(x) = \text{"no"}$ **then**
- 8: **return** "no";
- 9: end if
- 10: end while

ZPP (concluded)

- The *expected* running time for the correct answer to emerge is polynomial.
 - The probability that a run of the 2 algorithms does not generate a definite answer is 0.5.
 - Let p(n) be the running time of each run.
 - The expected running time for a definite answer is

$$\sum_{i=1}^{\infty} 0.5^{i} i p(n) = 2p(n).$$

• Essentially, ZPP is the class of problems that can be solved without errors in expected polynomial time.

Et Tu, RP?

```
    {Suppose L ∈ RP.}
    {N decides L without false positives.}
    while true do
    if N(x) = "yes" then
    return "yes";
    end if
    {But what to do here?}
    end while
```

- You eventually get a "yes" if $x \in L$.
- But how to get a "no" when $x \notin L$?
- You have to sacrifice either correctness or bounded running time.

Large Deviations

- Suppose you have a biased coin.
- One side has probability $0.5 + \epsilon$ to appear and the other 0.5ϵ , for some $0 < \epsilon < 0.5$.
- But you do not know which is which.
- How to decide which side is the more likely—with high confidence?
- Answer: Flip the coin many times and pick the side that appeared the most times.
- Question: Can you quantify the confidence?

The Chernoff Bound^a

Theorem 66 (Chernoff (1952)) Suppose $x_1, x_2, ..., x_n$ are independent random variables taking the values 1 and 0 with probabilities p and 1-p, respectively. Let $X = \sum_{i=1}^{n} x_i$. Then for all $0 \le \theta \le 1$,

$$\text{prob}[X \ge (1+\theta) \, pn] \le e^{-\theta^2 pn/3}.$$

- The probability that the deviate of a **binomial** random variable from its expected value $E[X] = E[\sum_{i=1}^{n} x_i] = pn$ decreases exponentially with the deviation.
- The Chernoff bound is asymptotically optimal.

^aHerman Chernoff (1923–).

The Proof

- Let t be any positive real number.
- Then

$$\operatorname{prob}[X \ge (1+\theta) pn] = \operatorname{prob}[e^{tX} \ge e^{t(1+\theta) pn}].$$

• Markov's inequality (p. 405) generalized to real-valued random variables says that

$$\operatorname{prob}\left[e^{tX} \ge kE[e^{tX}]\right] \le 1/k.$$

• With $k = e^{t(1+\theta) pn} / E[e^{tX}]$, we have

$$\operatorname{prob}[X \ge (1+\theta) \, pn] \le e^{-t(1+\theta) \, pn} E[e^{tX}].$$

The Proof (continued)

• Because $X = \sum_{i=1}^{n} x_i$ and x_i 's are independent,

$$E[e^{tX}] = (E[e^{tx_1}])^n = [1 + p(e^t - 1)]^n.$$

• Substituting, we obtain

$$\operatorname{prob}[X \ge (1+\theta) pn] \le e^{-t(1+\theta) pn} [1 + p(e^t - 1)]^n$$

$$\le e^{-t(1+\theta) pn} e^{pn(e^t - 1)}$$

as
$$(1+a)^n \le e^{an}$$
 for all $a > 0$.

The Proof (concluded)

- With the choice of $t = \ln(1+\theta)$, the above becomes $\operatorname{prob}[X \geq (1+\theta) pn] \leq e^{pn[\theta-(1+\theta)\ln(1+\theta)]}$.
- The exponent expands to $-\frac{\theta^2}{2} + \frac{\theta^3}{6} \frac{\theta^4}{12} + \cdots$ for $0 \le \theta \le 1$, which is less than

$$-\frac{\theta^2}{2} + \frac{\theta^3}{6} \le \theta^2 \left(-\frac{1}{2} + \frac{\theta}{6} \right) \le \theta^2 \left(-\frac{1}{2} + \frac{1}{6} \right) = -\frac{\theta^2}{3}.$$

Power of the Majority Rule

From prob[$X \le (1-\theta) pn$] $\le e^{-\frac{\theta^2}{2}pn}$ (prove it):

Corollary 67 If $p = (1/2) + \epsilon$ for some $0 \le \epsilon \le 1/2$, then

prob
$$\left[\sum_{i=1}^{n} x_i \le n/2\right] \le e^{-\epsilon^2 n/2}$$
.

- The textbook's corollary to Lemma 11.9 seems incorrect.
- Our original problem (p. 462) hence demands $\approx 1.4k/\epsilon^2$ independent coin flips to guarantee making an error with probability at most 2^{-k} with the majority rule.

BPP^a (Bounded Probabilistic Polynomial)

- The class \mathbf{BPP} contains all languages for which there is a precise polynomial-time NTM N such that:
 - If $x \in L$, then at least 3/4 of the computation paths of N on x lead to "yes."
 - If $x \notin L$, then at least 3/4 of the computation paths of N on x lead to "no."
- N accepts or rejects by a *clear* majority.

^aGill (1977).

Magic 3/4?

- The number 3/4 bounds the probability of a right answer away from 1/2.
- Any constant strictly between 1/2 and 1 can be used without affecting the class BPP.
- In fact, 0.5 plus any inverse polynomial between 1/2 and 1,

$$0.5 + \frac{1}{p(n)},$$

can be used.

The Majority Vote Algorithm

Suppose L is decided by N by majority $(1/2) + \epsilon$.

```
1: for i = 1, 2, \dots, 2k + 1 do
```

- 2: Run N on input x;
- 3: end for
- 4: **if** "yes" is the majority answer **then**
- 5: "yes";
- 6: **else**
- 7: "no";
- 8: **end if**

Analysis

- The running time remains polynomial, being 2k + 1 times N's running time.
- By Corollary 67 (p. 467), the probability of a false answer is at most $e^{-\epsilon^2 k}$.
- By taking $k = \lceil 2/\epsilon^2 \rceil$, the error probability is at most 1/4.
- As with the RP case, ϵ can be any inverse polynomial, because k remains polynomial in n.

Probability Amplification for BPP

- Let m be the number of random bits used by a BPP algorithm.
 - By definition, m is polynomial in n.
- With $k = \Theta(\log m)$ in the majority vote algorithm, we can lower the error probability to $\leq (3m)^{-1}$.

Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
 - If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
 - In this aspect, BPP has effectively replaced P.
- $(RP \cup coRP) \subseteq (NP \cup coNP)$.
- $(RP \cup coRP) \subseteq BPP$.
- Whether BPP \subseteq (NP \cup coNP) is unknown.
- But it is unlikely that $NP \subseteq BPP$ (p. 487).

coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in BPP$ becomes one for \overline{L} by reversing the answer.
- So $\bar{L} \in BPP$ and $BPP \subseteq coBPP$.
- Similarly coBPP \subseteq BPP.
- Hence BPP = coBPP.
- This approach does not work for RP.
- It did not work for NP either.

"The Good, the Bad, and the Ugly" ZPP coRP RP · P BPP\

Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with n inputs computes a boolean function of n variables.
- By identify true with 1 and false with 0, a boolean circuit with n inputs accepts certain strings in $\{0,1\}^n$.
- To relate circuits with arbitrary languages, we need one circuit for each possible input length n.

Formal Definitions

- The **size** of a circuit is the number of *gates* in it.
- A family of circuits is an infinite sequence $C = (C_0, C_1, ...)$ of boolean circuits, where C_n has n boolean inputs.
- $L \subseteq \{0,1\}^*$ has **polynomial circuits** if there is a family of circuits C such that:
 - The size of C_n is at most p(n) for some fixed polynomial p.
 - For input $x \in \{0,1\}^*$, $C_{|x|}$ outputs 1 if and only if $x \in L$.
 - * C_n accepts $L \cap \{0,1\}^n$.

Exponential Circuits Contain All Languages

- Theorem 14 (p. 153) implies that there are languages that cannot be solved by circuits of size $2^n/(2n)$.
- But exponential circuits can solve all problems.

Proposition 68 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2} .

• We will show that for any language $L \subseteq \{0,1\}^*$, $L \cap \{0,1\}^n$ can be decided by a circuit of size 2^{n+2} .

The Proof (concluded)

• Define boolean function $f: \{0,1\}^n \to \{0,1\}$, where

$$f(x_1x_2\cdots x_n) = \begin{cases} 1 & x_1x_2\cdots x_n \in L, \\ 0 & x_1x_2\cdots x_n \notin L. \end{cases}$$

- $f(x_1x_2\cdots x_n)=(x_1\wedge f(1x_2\cdots x_n))\vee (\neg x_1\wedge f(0x_2\cdots x_n)).$
- The circuit size s(n) for $f(x_1x_2\cdots x_n)$ hence satisfies

$$s(n) = 4 + 2s(n-1)$$

with s(1) = 1.

• Solve it to obtain $s(n) = 5 \times 2^{n-1} - 4 \le 2^{n+2}$.

The Circuit Complexity of P

Proposition 69 All languages in P have polynomial circuits.

- Let $L \in P$ be decided by a TM in time p(n).
- By Corollary 27 (p. 239), there is a circuit with $O(p(n)^2)$ gates that accepts $L \cap \{0,1\}^n$.
- The size of the circuit depends only on L and the length of the input.
- The size of the circuit is polynomial in n.

Languages That Polynomial Circuits Accept

- Do polynomial circuits accept only languages in P?
- There are *undecidable* languages that have polynomial circuits.
 - Let $L \subseteq \{0,1\}^*$ be an undecidable language.
 - Let $U = \{1^n : \text{the binary expansion of } n \text{ is in } L\}$.
 - U is also undecidable.
 - $-U \cap \{1\}^n$ can be accepted by C_n that is trivially true if $1^n \in U$ and trivially false if $1^n \notin U$.
 - The family of circuits (C_0, C_1, \ldots) is polynomial in size.

^aAssume n's leading bit is always 1 without loss of generality.

A Patch

- Despite the simplicity of a circuit, the previous discussions imply the following:
 - Circuits are *not* a realistic model of computation.
 - Polynomial circuits are *not* a plausible notion of efficient computation.
- What gives?
- The effective and efficient constructibility of

$$C_0, C_1, \ldots$$

Uniformity

- A family $(C_0, C_1, ...)$ of circuits is **uniform** if there is a $\log n$ -space bounded TM which on input 1^n outputs C_n .
 - Circuits now cannot accept undecidable languages (why?).
 - The circuit family on p. 484 is not constructible by a single Turing machine (algorithm).
- A language has **uniformly polynomial circuits** if there is a *uniform* family of polynomial circuits that decide it.

Uniformly Polynomial Circuits and P

Theorem 70 $L \in P$ if and only if L has uniformly polynomial circuits.

- One direction was proved in Proposition 69 (p. 483).
- Now suppose L has uniformly polynomial circuits.
- Decide $x \in L$ in polynomial time as follows:
 - Let n = |x|.
 - Build C_n in $\log n$ space, hence polynomial time.
 - Evaluate the circuit with input x in polynomial time.
- Therefore $L \in P$.

Relation to P vs. NP

- Theorem 70 implies that $P \neq NP$ if and only if NP-complete problems have no *uniformly* polynomial circuits.
- A stronger conjecture: NP-complete problems have no polynomial circuits, uniformly or not.
- The above is currently the preferred approach to proving the $P \neq NP$ conjecture—without success so far.
 - Theorem 14 (p. 153) states that there are boolean functions requiring $2^n/(2n)$ gates to compute.
 - In fact, almost all boolean functions do.

BPP's Circuit Complexity

Theorem 71 (Adleman (1978)) All languages in BPP have polynomial circuits.

- Our proof will be *nonconstructive* in that only the existence of the desired circuits is shown.
 - Something exists if its probability of existence is nonzero.
- How to efficiently generate circuit C_n given 1^n is not known.
- If the construction of C_n is efficient, then P = BPP, an unlikely result.

The Proof

- Let $L \in BPP$ be decided by a precise NTM N by clear majority.
- We shall prove that L has polynomial circuits C_0, C_1, \ldots
- Suppose N runs in time p(n), where p(n) is a polynomial.
- Let $A_n = \{a_1, a_2, \dots, a_m\}$, where $a_i \in \{0, 1\}^{p(n)}$.
- Let m = 12(n+1).
- Each $a_i \in A_n$ represents a sequence of nondeterministic choices—i.e., a computation path—for N.

- Let x be an input with |x| = n.
- Circuit C_n simulates N on x with each sequence of choices in A_n and then takes the majority of the m outcomes.
- Because N with a_i is a polynomial-time TM, it can be simulated by polynomial circuits of size $O(p(n)^2)$.
 - See the proof of Proposition 69 (p. 483).
- The size of C_n is therefore $O(mp(n)^2) = O(np(n)^2)$, a polynomial.
- We next prove the existence of A_n making C_n correct.

- Call a_i bad if it leads N to a false positive or a false negative answer.
- Select A_n uniformly randomly.
- For each $x \in \{0,1\}^n$, 1/4 of the computations of N are erroneous.
- Because the sequences in A_n are chosen randomly and independently, the expected number of bad a_i 's is m/4.
- By the Chernoff bound (p. 464), the probability that the number of bad a_i 's is m/2 or more is at most

$$e^{-m/12} < 2^{-(n+1)}$$
.

The Proof (concluded)

- The error probability is $< 2^{-(n+1)}$ for each $x \in \{0,1\}^n$.
- The probability that there is an x such that A_n results in an incorrect answer is $< 2^n 2^{-(n+1)} = 2^{-1}$.
 - $-\operatorname{prob}[A \cup B \cup \cdots] \leq \operatorname{prob}[A] + \operatorname{prob}[B] + \cdots$
- So with probability one half, a random A_n produces a correct C_n for all inputs of length n.
- Because this probability exceeds 0, an A_n that makes majority vote work for all inputs of length n exists.
- Hence a correct C_n exists.

Cryptography

- Alice (A) wants to send a message to **Bob** (B) over a channel monitored by **Eve** (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is **cryptography**.

Encryption and Decryption

- Alice and Bob agree on two algorithms E and D—the encryption and the decryption algorithms.
- Both E and D are known to the public in the analysis.
- Alice runs E and wants to send a message x to Bob.
- Bob operates D.
- Privacy is assured in terms of two numbers e, d, the encryption and decryption keys.
- Alice sends y = E(e, x) to Bob, who then performs D(d, y) = x to recover x.
- x is called **plaintext**, and y is called **ciphertext**.^a

^aBoth "zero" and "cipher" come from the same Arab word.

Some Requirements

- D should be an inverse of E given e and d.
- D and E must both run in (probabilistic) polynomial time.
- Eve should not be able to recover x from y without knowing d.
 - As D is public, d must be kept secret.
 - -e may or may not be a secret.

Degrees of Security

- **Perfect secrecy**: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.
- Such systems are said to be **informationally secure**.
- A system is **computationally secure** if breaking it is theoretically possible but computationally infeasible.

Conditions for Perfect Secrecy^a

- Consider a cryptosystem where:
 - The space of ciphertext is as large as that of keys.
 - Every plaintext has a nonzero probability of being used.
- It is perfectly secure if and only if the following hold.
 - A key is chosen with uniform distribution.
 - For each plaintext x and ciphertext y, there exists a unique key e such that E(e, x) = y.

^aShannon (1949).

The One-Time Pada

- 1: Alice generates a random string r as long as x;
- 2: Alice sends r to Bob over a secret channel;
- 3: Alice sends $r \oplus x$ to Bob over a public channel;
- 4: Bob receives y;
- 5: Bob recovers $x := y \oplus r$;

^aMauborgne and Vernam (1917), Shannon (1949); allegedly used for the hotline between Russia and U.S.

Analysis

- The one-time pad uses e = d = r.
- This is said to be a **private-key cryptosystem**.
- Knowing x and knowing r are equivalent.
- Because r is random and private, the one-time pad achieves perfect secrecy (see also p. 501).
- The random bit string must be new for each round of communication.
 - Cryptographically strong pseudorandom
 generators require exchanging only the seed once.
- The assumption of a private channel is problematic.

Public-Key Cryptography^a

- Suppose only d is private to Bob, whereas e is public knowledge.
- Bob generates the (e, d) pair and publishes e.
- Anybody like Alice can send E(e, x) to Bob.
- Knowing d, Bob can recover x by D(d, E(e, x)) = x.
- The assumptions are complexity-theoretic.
 - It is computationally difficult to compute d from e.
 - It is computationally difficult to compute x from y without knowing d.

^aDiffie and Hellman (1976).

Complexity Issues

- Given y and x, it is easy to verify whether E(e, x) = y.
- \bullet Hence one can always guess an x and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $P \neq NP$.
- But more is needed than $P \neq NP$.
- It is not sufficient that *D* is hard to compute in the worst case.
- It should be hard in "most" or "average" cases.

One-Way Functions

A function f is a **one-way function** if the following hold.^a

- 1. f is one-to-one.
- 2. For all $x \in \Sigma^*$, $|x|^{1/k} \le |f(x)| \le |x|^k$ for some k > 0.
 - f is said to be honest.
- 3. f can be computed in polynomial time.
- 4. f^{-1} cannot be computed in polynomial time.
 - Exhaustive search works, but it is too slow.

^aDiffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe (1985); Young (1983).

Existence of One-Way Functions

- Even if $P \neq NP$, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
- Is breaking a glass a one-way function?

UP^a

- An NTM that has at most one accepting computation for any input is called an **unambiguous Turing** machine (UTM).
- UP denotes the set of languages accepted by UTMs in polynomial time.
- Obviously, $P \subseteq UP \subseteq NP$.

^aValiant (1976).

SAT and UP

- SAT is not expected to be in UP (so $UP \neq NP$).
 - Suppose SAT \in UP.
 - Then there is an NTM M that has a single accepting computation path for all satisfiable boolean expressions.
 - But M runs in polynomial time.
 - Hence M does not try all truth assignments for satisfiable boolean expressions.
 - At present, this seems implausible.

UP and One-Way Functions^a

Theorem 72 One-way functions exist if and only if $P \neq UP$.

- Suppose there exists a one-way function f.
- Define language

$$L_f \equiv \{ (x, y) : \exists z \text{ such that } f(z) = y \text{ and } z \leq x \}.$$

- Relation " \leq " orders strings of $\{0,1\}^*$ first by length and then lexicographically.
- So $\epsilon < 0 < 1 < 00 < 01 < 10 < 11 < \cdots$.

^aKo (1985); Grollmann and Selman (1988).

- $L_f \in \mathrm{UP}$.
 - There is an UTM M that accepts L_f .
 - * M on input (x, y) nondeterministically guesses a string z of length at most $|y|^k$.
 - * M tests if y = f(z).
 - * If the answer is "yes" (this happens at most once because f is one-to-one) and $z \leq x$, M accepts.

- $L_f \notin P$.
 - Suppose there is a polynomial-time algorithm for L_f .
 - Then f(x) = y can be inverted.
 - * Given y, ask $(1^{|y|^k}, y) \in L_f$.
 - * If the answer is "no," we know x does not exist as any such x must satisfy $|x| \le |y|^k$.
 - * Otherwise, ask $(1^{|y|^k-1}, y) \in L_f, (1^{|y|^k-2}, y) \in L_f, \dots$ until we got a "no" for $(1^{\ell-1}, y) \in L_f$.
 - * This means $|x| = \ell$.
 - The procedure makes $O(|y|^k)$ calls to L_f .

- (continued)
 - * Now conduct a binary search to find each bit of x as follows.
 - * If $(01^{\ell-1}, y) \in L_f$, then $x = 0 \cdots$ and we recur by asking " $(001^{\ell-2}, y) \in L_f$?"
 - * If $(01^{\ell-1}, y) \not\in L_f$, then $x = 1 \cdots$ and we recur by asking $(101^{\ell-2}, y) \in L_f$?"
 - The procedure makes $O(|y|^k)$ calls to L_f .
- $P \neq UP$ because $L_f \in UP P$.

- Now suppose $P \neq UP$ with $L \in UP P$.
- Let L be accepted by an UTM M.
- $comp_M(y)$ denotes an accepting computation of M(y).
- Define

$$f_M(x) = \begin{cases} 1y & \text{if } x = \text{comp}_M(y), \\ 0x & \text{otherwise.} \end{cases}$$

- f_M is well-defined as y is part of $comp_M(y)$ (recall p. 238) and there is at most one accepting computation for y.
- So f_M is a total function.

The Proof (concluded)

- f_M is one-way.
 - The lengths of argument and results are polynomially related as M has polynomially long computations.
 - f_M is one-to-one because f(x) = f(x') means that x = x' by the use of the flag and unambiguity of M.
 - f_M can be inverted on 1y if and only if M accepts y (i.e., if $y \in L$).
 - Were we able to invert f_M in polynomial time, then we would be able to decide L in polynomial time.

Complexity Issues

- For a language in UP, there is either 0 or 1 accepting path.
- So similar to RP, there are not likely to be UP-complete problems.
- Relating a cryptosystem with an NP-complete problem has been argued before to be not useful (p. 505).
- Theorem 72 (p. 510) shows that the relevant question is the P = UP question.
- There are stronger notions of one-way functions.

Candidates of One-Way Functions

- Modular exponentiation $f(x) = g^x \mod p$, where g is a primitive root of p.
 - Discrete logarithm is hard.^a
- The RSA^b function $f(x) = x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.
 - Breaking the RSA function is hard.
- Modular squaring $f(x) = x^2 \mod pq$.
 - Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard—the **quadratic residuacity** assumption (QRA).

^aBut it is in NP in some sense; Grollmann and Selman (1988). ^bRivest, Shamir, and Adleman (1978).

The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.
 - By Lemma 49 (p. 359),

$$\phi(pq) = pq\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right) = pq - p - q + 1.$$

• As $gcd(e, \phi(pq)) = 1$, there is a d such that

$$ed \equiv 1 \mod \phi(pq),$$

which can be found by the Euclidean algorithm.

A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes pq and the encryption key e, a number relatively prime to $\phi(pq)$.
 - The encryption function is $y = x^e \mod pq$.
- Knowing $\phi(pq)$, Bob calculates d such that $ed = 1 + k\phi(pq)$ for some $k \in \mathbb{Z}$.
 - The decryption function is $y^d \mod pq$.
 - It works because $y^d = x^{ed} = x^{1+k\phi(pq)} = x \mod pq$ by the Fermat-Euler theorem when $\gcd(x, pq) = 1$ (p. 367).

The "Security" of the RSA Function

- Factoring pq or calculating d from (e, pq) seems hard.
 - See also p. 363.
- Breaking the last bit of RSA is as hard as breaking the RSA.^a
- Recommended RSA key sizes:
 - 1024 bits up to 2010.
 - -2048 bits up to 2030.
 - -3072 bits up to 2031 and beyond.

^aAlexi, Chor, Goldreich, and Schnorr (1988).

The "Security" of the RSA Function (concluded)

- Recall that problem A is "harder than" problem B if solving A results in solving B.
 - Factorization is "harder than" breaking the RSA.
 - Calculating Euler's phi function is "harder than" breaking the RSA.
 - Factorization is "harder than" calculating Euler's phi function (see Lemma 49 on p. 359).
- Factorization cannot be NP-hard unless NP = coNP.^a
- So breaking the RSA is unlikely to imply P = NP.

^aBrassard (1979).

The Secret-Key Agreement Problem

- Exchanging messages securely using a private-key cryptosystem requires Alice and Bob possessing the same key (p. 503).
- How can they agree on the same secret key when the channel is insecure?
- This is called the **secret-key agreement problem**.
- It was solved by Diffie and Hellman (1976) using one-way functions.

The Diffie-Hellman Secret-Key Agreement Protocol

- 1: Alice and Bob agree on a large prime p and a primitive root g of p; $\{p \text{ and } g \text{ are public.}\}$
- 2: Alice chooses a large number a at random;
- 3: Alice computes $\alpha = g^a \mod p$;
- 4: Bob chooses a large number b at random;
- 5: Bob computes $\beta = g^b \mod p$;
- 6: Alice sends α to Bob, and Bob sends β to Alice;
- 7: Alice computes her key $\beta^a \mod p$;
- 8: Bob computes his key $\alpha^b \mod p$;

Analysis

• The keys computed by Alice and Bob are identical:

$$\beta^a = g^{ba} = g^{ab} = \alpha^b \bmod p.$$

- To compute the common key from p, g, α, β is known as the **Diffie-Hellman problem**.
- It is conjectured to be hard.
- If discrete logarithm is easy, then one can solve the Diffie-Hellman problem.
 - Because a and b can then be obtained by Eve.
- But the other direction is still open.

A Parallel History

- Diffie and Hellman's solution to the secret-key agreement problem led to public-key cryptography.
- At around the same time (or earlier) in Britain, the RSA public-key cryptosystem was invented first before the Diffie-Hellman secret-key agreement scheme was.
 - Ellis, Cocks, and Williamson of the Communications
 Electronics Security Group of the British Government
 Communications Head Quarters (GCHQ).

Digital Signatures^a

- Alice wants to send Bob a signed document x.
- The signature must unmistakably identifies the sender.
- Both Alice and Bob have public and private keys

$$e_{\text{Alice}}, e_{\text{Bob}}, d_{\text{Alice}}, d_{\text{Bob}}.$$

• Assume the cryptosystem satisfies the commutative property

$$E(e, D(d, x)) = D(d, E(e, x)). \tag{7}$$

- As $(x^d)^e = (x^e)^d$, the RSA system satisfies it.
- Every cryptosystem guarantees D(d, E(e, x)) = x.

^aDiffie and Hellman (1976).

Digital Signatures Based on Public-Key Systems

• Alice signs x as

$$(x, D(d_{Alice}, x)).$$

• Bob receives (x, y) and verifies the signature by checking

$$E(e_{\text{Alice}}, y) = E(e_{\text{Alice}}, D(d_{\text{Alice}}, x)) = x$$

based on Eq. (7).

- The claim of authenticity is founded on the difficulty of inverting E_{Alice} without knowing the key d_{Alice} .
- Warning: If Alice signs anything presented to her, she might inadvertently decrypt a ciphertext of hers.

Mental Poker^a

- Suppose Alice and Bob have agreed on 3 n-bit numbers a < b < c, the cards.
- They want to randomly choose one card each, so that:
 - Their cards are different.
 - All 6 pairs of distinct cards are equiprobable.
 - Alice's (Bob's) card is known to Alice (Bob) but not to
 Bob (Alice), until Alice (Bob) announces it.
 - The person with the highest card wins the game.
 - The outcome is indisputable.
- Assume Alice and Bob will not deviate from the protocol.

^aShamir, Rivest, and Adleman (1981).

The Setup

- Alice and Bob agree on a large prime p;
- Each has two secret keys e_{Alice} , e_{Bob} , d_{Alice} , d_{Bob} such that $e_{Alice}d_{Alice} = e_{Bob}d_{Bob} = 1 \mod (p-1)$;
 - This ensures that $(x^{e_{\text{Alice}}})^{d_{\text{Alice}}} = x \mod p$ and $(x^{e_{\text{Bob}}})^{d_{\text{Bob}}} = x \mod p$.
- The protocol lets Bob pick Alice's card and Alice pick Bob's card.
- Cryptographic techniques make it plausible that Alice's and Bob's choices are practically random, for lack of time to break the system.

The Protocol

1: Alice encrypts the cards

 $a^{e_{\text{Alice}}} \mod p, b^{e_{\text{Alice}}} \mod p, c^{e_{\text{Alice}}} \mod p$

and sends them in random order to Bob;

- 1: Bob picks one of the messages $x^{e_{Alice}}$ to send to Alice;
- 2: Alice decodes it $(x^{e_{Alice}})^{d_{Alice}} = x \mod p$ for her card;
- 3: Bob encrypts the two remaining cards $(x^{e_{\text{Alice}}})^{e_{\text{Bob}}} \mod p, (y^{e_{\text{Alice}}})^{e_{\text{Bob}}} \mod p$ and sends them in random order to Alice;
- 4: Alice picks one of the messages, $(z^{e_{\text{Alice}}})^{e_{\text{Bob}}}$, encrypts it $((z^{e_{\text{Alice}}})^{e_{\text{Bob}}})^{d_{\text{Alice}}} \mod p$, and sends it to Bob;
- 5: Bob decrypts the message $(((z^{e_{\text{Alice}}})^{e_{\text{Bob}}})^{d_{\text{Alice}}})^{d_{\text{Bob}}} = z \mod p \text{ for his card};$

Probabilistic Encryption^a

- The ability to forge signatures on even a vanishingly small fraction of strings of some length is a security weakness if those strings were the probable ones!
- What is required is a scheme that does not "leak" partial information.
- The first solution to the problems of skewed distribution and partial information was based on the QRA.

^aGoldwasser and Micali (1982).

The Setup

- Bob publishes n = pq, a product of two distinct primes, and a quadratic nonresidue y with Jacobi symbol 1.
- Bob keeps secret the factorization of n.
- To send bit string $b_1b_2\cdots b_k$ to Bob, Alice encrypts the bits by choosing a random quadratic residue modulo n if b_i is 1 and a random quadratic nonresidue with Jacobi symbol 1 otherwise.
- A sequence of residues and nonresidues are sent.
- Knowing the factorization of n, Bob can efficiently test quadratic residuacity and thus read the message.

A Useful Lemma

Lemma 73 Let n = pq be a product of two distinct primes. Then a number $y \in Z_n^*$ is a quadratic residue modulo n if and only if $(y \mid p) = (y \mid q) = 1$.

- The "only if" part:
 - Let x be a solution to $x^2 = y \mod pq$.
 - Then $x^2 = y \mod p$ and $x^2 = y \mod q$ also hold.
 - Hence y is a quadratic modulo p and a quadratic residue modulo q.

The Proof (concluded)

- The "if" part:
 - Let $a_1^2 = y \mod p$ and $a_2^2 = y \mod q$.
 - Solve

$$x = a_1 \bmod p,$$

$$x = a_2 \bmod q,$$

for x with the Chinese remainder theorem.

- As $x^2 = y \mod p$, $x^2 = y \mod q$, and gcd(p, q) = 1, we must have $x^2 = y \mod pq$.

The Protocol for Alice

```
1: for i = 1, 2, ..., k do
2: Pick r \in \mathbb{Z}_n^* randomly;
3: if b_i = 1 then
4: Send r^2 \mod n; {Jacobi symbol is 1.}
5: else
6: Send r^2y \mod n; {Jacobi symbol is still 1.}
7: end if
8: end for
```

The Protocol for Bob

```
1: for i = 1, 2, \dots, k do
```

2: Receive r;

3: **if**
$$(r | p) = 1$$
 and $(r | q) = 1$ **then**

4: $b_i := 1;$

5: **else**

6: $b_i := 0;$

7: end if

8: end for

Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
- This scheme is both polynomially secure and semantically secure.

What Is a Proof?

- A proof convinces a party of a certain claim.
 - "Is $x^n + y^n \neq z^n$ for all $x, y, z \in \mathbb{Z}^+$ and n > 2?"
 - "Is graph G Hamiltonian?"
 - "Is $x^p = x \mod p$ for prime p and p x?"
- In mathematics, a proof is a fixed sequence of theorems.
 - Think of a written examination.
- We will extend a proof to cover a proof *process* by which the validity of the assertion is established.
 - Think of a job interview or an oral examination.

Prover and Verifier

- There are two parties to a proof.
 - The **prover** (**Peggy**).
 - The verifier (Victor).
- Given an assertion, the prover's goal is to convince the verifier of its validity (**completeness**).
- The verifier's objective is to accept only correct assertions (soundness).
- The verifier usually has an easier job than the prover.
- The setup is very much like the Turing test.^a

^aTuring (1950).

Interactive Proof Systems

- An interactive proof for a language L is a sequence of questions and answers between the two parties.
- At the end of the interaction, the verifier decides based on the knowledge he acquired in the proof process whether the claim is true or false.
- The verifier must be a probabilistic polynomial-time algorithm.
- The prover runs an exponential-time algorithm.
 - If the prover is not more powerful than the verifier,
 no interaction is needed.

Interactive Proof Systems (concluded)

- The system decides L if the following two conditions hold for any common input x.
 - If $x \in L$, then the probability that x is accepted by the verifier is at least $1 2^{-|x|}$.
 - If $x \notin L$, then the probability that x is accepted by the verifier with any prover replacing the original prover is at most $2^{-|x|}$.
- Neither the number of rounds nor the lengths of the messages can be more than a polynomial of |x|.

IP^a

- IP is the class of all languages decided by an interactive proof system.
- When $x \in L$, the completeness condition can be modified to require that the verifier accepts with certainty without affecting IP.^b
- Similar things cannot be said of the soundness condition when $x \notin L$.
- Verifier's coin flips can be public.^c

^aGoldwasser, Micali, and Rackoff (1985).

^bGoldreich, Mansour, and Sipser (1987).

^cGoldwasser and Sipser (1989).

The Relations of IP with Other Classes

- $NP \subseteq IP$.
 - IP becomes NP when the verifier is deterministic.
- BPP \subseteq IP.
 - IP becomes BPP when the verifier ignores the prover's messages.
- IP actually coincides with PSPACE (see the textbook for a proof).^a

^aShamir (1990).

Graph Isomorphism

- $V_1 = V_2 = \{1, 2, \dots, n\}.$
- Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there exists a permutation π on $\{1, 2, ..., n\}$ so that $(u, v) \in E_1 \Leftrightarrow (\pi(u), \pi(v)) \in E_2$.
- The task is to answer if $G_1 \cong G_2$ (isomorphic).
- No known polynomial-time algorithms.
- The problem is in NP (hence IP).
- But it is not likely to be NP-complete.^a

^aSchöning (1987).

GRAPH NONISOMORPHISM

- $V_1 = V_2 = \{1, 2, \dots, n\}.$
- Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **nonisomorphic** if there exist no permutations π on $\{1, 2, ..., n\}$ so that $(u, v) \in E_1 \Leftrightarrow (\pi(u), \pi(v)) \in E_2$.
- The task is to answer if $G_1 \not\cong G_2$ (nonisomorphic).
- Again, no known polynomial-time algorithms.
 - It is in coNP, but how about NP or BPP?
 - It is not likely to be coNP-complete.
- Surprisingly, GRAPH NONISOMORPHISM ∈ IP.^a

^aGoldreich, Micali, and Wigderson (1986).

A 2-Round Algorithm

```
1: Victor selects a random i \in \{1, 2\};
2: Victor selects a random permutation \pi on \{1, 2, ..., n\};
3: Victor applies \pi on graph G_i to obtain graph H;
4: Victor sends (G_1, H) to Peggy;
5: if G_1 \cong H then
      Peggy sends j = 1 to Victor;
7: else
      Peggy sends j = 2 to Victor;
9: end if
10: if j = i then
      Victor accepts;
11:
12: else
      Victor rejects;
13:
14: end if
```

Analysis

- Victor runs in probabilistic polynomial time.
- Suppose the two graphs are not isomorphic.
 - Peggy is able to tell which G_i is isomorphic to H.
 - So Victor always accepts.
- Suppose the two graphs are isomorphic.
 - No matter which i is picked by Victor, Peggy or any prover sees 2 identical graphs.
 - Peggy or any prover with exponential power has only probability one half of guessing i correctly.
 - So Victor erroneously accepts with probability 1/2.
- Repeat the algorithm to obtain the desired probabilities.

Knowledge in Proofs

- Suppose I know a satisfying assignment to a satisfiable boolean expression.
- I can convince Alice of this by giving her the assignment.
- But then I give her more knowledge than necessary.
 - Alice can claim that she found the assignment!
 - Login authentication faces essentially the same issue.
 - See
 www.wired.com/wired/archive/1.05/atm_pr.html
 for a famous ATM fraud in the U.S.

Knowledge in Proofs (concluded)

- Digital signatures authenticate documents but not individuals.
- They hence do not solve the problem.
- Suppose I always give Alice random bits.
- Alice extracts no knowledge from me by any measure, but I prove nothing.
- Question 1: Can we design a protocol to convince Alice of (the knowledge of) a secret without revealing anything extra?
- Question 2: How to define this idea rigorously?

Zero Knowledge Proofs^a

An interactive proof protocol (P, V) for language L has the **perfect zero-knowledge** property if:

- For every verifier V', there is an algorithm M with expected polynomial running time.
- M on any input $x \in L$ generates the same probability distribution as the one that can be observed on the communication channel of (P, V') on input x.

^aGoldwasser, Micali, and Rackoff (1985).

Comments

- Zero knowledge is a property of the prover.
 - It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
 - The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
 - A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
 - The proof is hence not transferable.

Comments (continued)

- Whatever a verifier can "learn" from the specified prover P via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except " $x \in L$."
- For all practical purposes "whatever" can be done after interacting with a zero-knowledge prover can be done by just believing that the claim is indeed valid.
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.

Comments (continued)

- The "paradox" is resolved by noting that it is not the transcript of the conversation that convinces the verifier.
- But the fact that this conversation was held "on line."
- There is no zero-knowledge requirement when $x \notin L$.
- Computational zero-knowledge proofs are based on complexity assumptions.
 - M only needs to generate a distribution that is computationally indistinguishable from the verifier's view of the interaction.

Comments (concluded)

- It is known that if one-way functions exist, then zero-knowledge proofs exist for every problem in NP.^a
- The verifier can be restricted to the honest one (i.e., it follows the protocol).^b
- The coins can be public.^c

^aGoldreich, Micali, and Wigderson (1986).

^bVadhan (2006).

^cVadhan (2006).

Are You Convinced?

- A newspaper commercial for hair-growing products for men.
 - A (for all practical purposes) bald man has a full head of hair after 3 months.
- A TV commercial for weight-loss products.
 - A (by any reasonable measure) overweight woman loses 10 kilograms in 10 weeks.

Quadratic Residuacity

- \bullet Let n be a product of two distinct primes.
- Assume extracting the square root of a quadratic residue modulo n is hard without knowing the factors.
- We next present a zero-knowledge proof for x being a quadratic residue.

Zero-Knowledge Proof of Quadratic Residuacity (continued)

- 1: **for** $m = 1, 2, ..., \log_2 n$ **do**
- 2: Peggy chooses a random $v \in \mathbb{Z}_n^*$ and sends $y = v^2 \mod n$ to Victor;
- 3: Victor chooses a random bit i and sends it to Peggy;
- 4: Peggy sends $z = u^i v \mod n$, where u is a square root of x; $\{u^2 \equiv x \mod n.\}$
- 5: Victor checks if $z^2 \equiv x^i y \mod n$;
- 6: end for
- 7: Victor accepts x if Line 5 is confirmed every time;

Analysis

- \bullet Suppose x is a quadratic nonresidue.
 - Peggy can answer only one of the two possible challenges.
 - * Reason: a is a quadratic residue if and only if xa is a quadratic nonresidue.
 - So Peggy will be caught in any given round with probability one half.

Analysis (continued)

- \bullet Suppose x is a quadratic residue.
 - Peggy can answer all challenges.
 - So Victor will accept x.
- How about the claim of zero knowledge?
- The transcript between Peggy and Victor when x is a quadratic residue can be generated without Peggy!
 - So interaction with Peggy is useless.
- Here is how.

Analysis (continued)

- Suppose x is a quadratic residue.^a
- In each round of interaction with Peggy, the transcript is a triplet (y, i, z).
- We present an efficient Bob that generates (y, i, z) with the same probability without accessing Peggy.

^aBy definition, we do not need to consider the other case.

Analysis (concluded)

- 1: Bob chooses a random $z \in \mathbb{Z}_n^*$;
- 2: Bob chooses a random bit i;
- 3: Bob calculates $y = z^2 x^{-i} \mod n$;
- 4: Bob writes (y, i, z) into the transcript;

Comments

- \bullet Assume x is a quadratic residue.
- In both cases, for (y, i, z), y is a random quadratic residue, i is a random bit, and z is a random number.
- Bob cheats because (y, i, z) is not generated in the same order as in the original transcript.
 - Bob picks Victor's challenge first.
 - Bob then picks Peggy's answer.
 - Bob finally patches the transcript.

Comments (concluded)

- So it is not the transcript that convinces Victor, but that conversation with Peggy is held "on line."
- The same holds even if the transcript was generated by a cheating Victor's interaction with (honest) Peggy.
- But we skip the details.

Zero-Knowledge Proof of 3 Colorability^a

1: **for** $i = 1, 2, ..., |E|^2$ **do**

2: Peggy chooses a random permutation π of the 3-coloring ϕ ;

3: Peggy samples an encryption scheme randomly and sends $\pi(\phi(1)), \pi(\phi(2)), \dots, \pi(\phi(|V|))$ encrypted to Victor;

4: Victor chooses at random an edge $e \in E$ and sends it to Peggy for the coloring of the endpoints of e;

5: **if** $e = (u, v) \in E$ **then**

6: Peggy reveals the coloring of u and v and "proves" that they correspond to their encryption;

7: else

8: Peggy stops;

9: end if

^aGoldreich, Micali, and Wigderson (1986).

10: **if** the "proof" provided in Line 6 is not valid **then**

11: Victor rejects and stops;

12: **end if**

13: **if** $\pi(\phi(u)) = \pi(\phi(v))$ or $\pi(\phi(u)), \pi(\phi(v)) \notin \{1, 2, 3\}$ **then**

14: Victor rejects and stops;

15: **end if**

16: end for

17: Victor accepts;

Analysis

- If the graph is 3-colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- If the graph is not 3-colorable and Victor follows the protocol, then however Peggy plays, Victor will accept with probability $\leq (1 m^{-1})^{m^2} \leq e^{-m}$, where m = |E|.
- Thus the protocol is valid.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to any verifier is intricate.

Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are approximation algorithms.
- How good are the approximations?
 - We are looking for theoretically *guaranteed* bounds, not "empirical" bounds.
- Are there NP problems that cannot be approximated well (assuming $NP \neq P$)?
- Are there NP problems that cannot be approximated at all (assuming $NP \neq P$)?

Some Definitions

- Given an **optimization problem**, each problem instance x has a set of **feasible solutions** F(x).
- Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^+$.
- The **optimum cost** is $OPT(x) = \min_{s \in F(x)} c(s)$ for a minimization problem.
- It is $OPT(x) = \max_{s \in F(x)} c(s)$ for a maximization problem.

Approximation Algorithms

- \bullet Let algorithm M on x returns a feasible solution.
- M is an ϵ -approximation algorithm, where $\epsilon \geq 0$, if for all x,

$$\frac{|c(M(x)) - \text{OPT}(x)|}{\max(\text{OPT}(x), c(M(x)))} \le \epsilon.$$

- For a minimization problem,

$$\frac{c(M(x)) - \min_{s \in F(x)} c(s)}{c(M(x))} \le \epsilon.$$

- For a maximization problem,

$$\frac{\max_{s \in F(x)} c(s) - c(M(x))}{\max_{s \in F(x)} c(s)} \le \epsilon.$$

Lower and Upper Bounds

• For a minimization problem,

$$\min_{s \in F(x)} c(s) \le c(M(x)) \le \frac{\min_{s \in F(x)} c(s)}{1 - \epsilon}.$$

- So approximation ratio $\frac{\min_{s \in F(x)} c(s)}{c(M(x))} \ge 1 \epsilon$.
- For a maximization problem,

$$(1 - \epsilon) \times \max_{s \in F(x)} c(s) \le c(M(x)) \le \max_{s \in F(x)} c(s).$$

- So approximation ratio $\frac{c(M(x))}{\max_{s \in F(x)} c(s)} \ge 1 \epsilon$.
- The above are alternative definitions of ϵ -approximation algorithms.

Range Bounds

- ϵ takes values between 0 and 1.
- For maximization problems, an ϵ -approximation algorithm returns solutions within $[(1 \epsilon) \times \text{OPT}, \text{OPT}]$.
- For minimization problems, an ϵ -approximation algorithm returns solutions within $[OPT, \frac{OPT}{1-\epsilon}]$.
- For each NP-complete optimization problem, we shall be interested in determining the *smallest* ϵ for which there is a polynomial-time ϵ -approximation algorithm.
- Sometimes ϵ has no minimum value.

Approximation Thresholds

- The approximation threshold is the greatest lower bound of all $\epsilon \geq 0$ such that there is a polynomial-time ϵ -approximation algorithm.
- The approximation threshold of an optimization problem can be anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If P = NP, then all optimization problems in NP have an approximation threshold of 0.
- So we assume $P \neq NP$ for the rest of the discussion.

NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph G = (V, E) such that for each edge in E, at least one of its endpoints is in C.
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce

$$\frac{c(M(x))}{\text{OPT}(x)} = \Theta(\log n).$$

- Hence the approximation ratio is $\Theta(\log^{-1} n)$.
- It is not an ϵ -approximation algorithm for any $\epsilon < 1$.

A 0.5-Approximation Algorithm^a

```
1: C := \emptyset;
```

2: while $E \neq \emptyset$ do

3: Delete an arbitrary edge $\{u, v\}$ from E;

4: Delete edges incident with u and v from E;

5: Add u and v to C; {Add 2 nodes to C each time.}

6: end while

7: $\mathbf{return} \ C$;

^aJohnson (1974).

Analysis

- C contains |C|/2 edges.
- \bullet No two edges of C share a node.
- Any node cover must contain at least one node from each of these edges.
- This means that $OPT(G) \ge |C|/2$.
- So

$$\frac{\mathrm{OPT}(G)}{|C|} \ge 1/2.$$

- The approximation threshold is ≤ 0.5 .
- We remark that 0.5 is also the lower bound for any "greedy" algorithms.^a

^aDavis and Impagliazzo (2004).

The 0.5 Bound Is Tight for the Algorithm^a

 $^{^{\}rm a} \rm Contributed$ by Mr. Jenq-Chung Li (R92922087) on December 20, 2003.

Maximum Satisfiability

- Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most.
- MAX2SAT is already NP-complete (p. 266).
- Consider the more general k-MAXGSAT for constant k.
 - Given a set of boolean expressions $\Phi = \{\phi_1, \phi_2, \dots, \phi_m\}$ in n variables.
 - Each ϕ_i is a general expression involving k variables.
 - -k-MAXGSAT seeks the truth assignment that satisfies the most expressions.

A Probabilistic Interpretation of an Algorithm

- Each ϕ_i involves exactly k variables and is satisfied by t_i of the 2^k truth assignments.
- A random truth assignment $\in \{0,1\}^n$ satisfies ϕ_i with probability $p(\phi_i) = t_i/2^k$.
 - $-p(\phi_i)$ is easy to calculate as k is a constant.
- Hence a random truth assignment satisfies an expected number

$$p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$$

of expressions ϕ_i .

The Search Procedure

• Clearly

$$p(\Phi) = \frac{1}{2} \{ p(\Phi[x_1 = \text{true}]) + p(\Phi[x_1 = \text{false}]) \}.$$

- Select the $t_1 \in \{\text{true}, \text{false}\}$ such that $p(\Phi[x_1 = t_1])$ is the larger one.
- Note that $p(\Phi[x_1 = t_1]) \ge p(\Phi)$.
- Repeat with expression $\Phi[x_1 = t_1]$ until all variables x_i have been given truth values t_i and all ϕ_i either true or false.

The Search Procedure (concluded)

• By our hill-climbing procedure,

$$p(\Phi[x_1 = t_1, x_2 = t_2, ..., x_n = t_n])$$
 $\geq \cdots$
 $\geq p(\Phi[x_1 = t_1, x_2 = t_2])$
 $\geq p(\Phi[x_1 = t_1])$
 $\geq p(\Phi).$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment (t_1, t_2, \ldots, t_n) .
- The algorithm is deterministic.

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_i —i.e., those with $p(\phi_i) > 0$.
- Hence the ratio of algorithm's output vs. the optimum is

$$\geq \frac{p(\Phi)}{\sum_{p(\phi_i)>0} 1} = \frac{\sum_i p(\phi_i)}{\sum_{p(\phi_i)>0} 1} \geq \min_{p(\phi_i)>0} p(\phi_i).$$

- The heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 \min_{p(\phi_i) > 0} p(\phi_i)$.
- Because $p(\phi_i) \geq 2^{-k}$, the heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 2^{-k}$.

Back to MAXSAT

- In MAXSAT, the ϕ_i 's are clauses.
- Hence $p(\phi_i) \ge 1/2$, which happens when ϕ_i contains a single literal.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 1/2$.
- If the clauses have k distinct literals, $p(\phi_i) = 1 2^{-k}$.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 2^{-k}$.
 - This is the best possible for $k \geq 3$ unless P = NP.

^aJohnson (1974).

MAX CUT Revisited

- The NP-complete MAX CUT seeks to partition the nodes of graph G = (V, E) into (S, V S) so that there are as many edges as possible between S and V S (p. 290).
- Local search starts from a feasible solution and performs "local" improvements until none are possible.

A 0.5-Approximation Algorithm for MAX CUT

1: $S := \emptyset$;

2: while $\exists v \in V$ whose switching sides results in a larger cut do

3: Switch the side of v;

4: end while

5: return S;

- A 0.12-approximation algorithm exists.^a
- 0.059-approximation algorithms do not exist unless NP = ZPP.

^aGoemans and Williamson (1995).

Analysis (continued)

- Partition $V = V_1 \cup V_2 \cup V_3 \cup V_4$, where our algorithm returns $(V_1 \cup V_2, V_3 \cup V_4)$ and the optimum cut is $(V_1 \cup V_3, V_2 \cup V_4)$.
- Let e_{ij} be the number of edges between V_i and V_j .
- Because no migration of nodes can improve the algorithm's cut, for each node in V_1 , its edges to $V_1 \cup V_2$ are outnumbered by those to $V_3 \cup V_4$.
- Considering all nodes in V_1 together, we have $2e_{11} + e_{12} \le e_{13} + e_{14}$, which implies

$$e_{12} \le e_{13} + e_{14}$$
.

Analysis (concluded)

• Similarly,

$$e_{12} \leq e_{23} + e_{24}$$
 $e_{34} \leq e_{23} + e_{13}$
 $e_{34} \leq e_{14} + e_{24}$

• Adding all four inequalities, dividing both sides by 2, and adding the inequality

$$e_{14} + e_{23} \le e_{14} + e_{23} + e_{13} + e_{24}$$
, we obtain
$$e_{12} + e_{34} + e_{14} + e_{23} \le 2(e_{13} + e_{14} + e_{23} + e_{24}).$$

• The above says our solution is at least half the optimum.

Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
 - KNAPSACK has a threshold of 0 (see p. 590).
 - But NODE COVER and MAXSAT have a threshold larger than 0.
- The situation is maximally pessimistic for TSP: It cannot be approximated unless P = NP (see p. 588).
 - The approximation threshold of TSP is 1.
 - * The threshold is 1/3 if the TSP satisfies the triangular inequality.
 - The same holds for INDEPENDENT SET.

Unapproximability of TSP^a

Theorem 74 The approximation threshold of TSP is 1 unless P = NP.

- Suppose there is a polynomial-time ϵ -approximation algorithm for TSP for some $\epsilon < 1$.
- We shall construct a polynomial-time algorithm for the NP-complete HAMILTONIAN CYCLE.
- Given any graph G = (V, E), construct a TSP with |V| cities with distances

$$d_{ij} = \begin{cases} 1, & \text{if } \{i, j\} \in E\\ \frac{|V|}{1 - \epsilon}, & \text{otherwise} \end{cases}$$

^aSahni and Gonzales (1976).

The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost |V| is returned.
 - This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned.
 - The total length of this tour is $> \frac{|V|}{1-\epsilon}$.
 - Because the algorithm is ϵ -approximate, the optimum is at least 1ϵ times the returned tour's length.
 - The optimum tour has a cost exceeding |V|.
 - Hence G has no Hamiltonian cycles.

KNAPSACK Has an Approximation Threshold of Zero^a

Theorem 75 For any ϵ , there is a polynomial-time ϵ -approximation algorithm for KNAPSACK.

- We have n weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$, a weight limit W, and n values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$.
- We must find an $S \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is the largest possible.
- Let

$$V = \max\{v_1, v_2, \dots, v_n\}.$$

^aIbarra and Kim (1975).

^bIf the values are fractional, the result is slightly messier but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (R92922045) on December 29, 2004.

The Proof (continued)

- For $0 \le i \le n$ and $0 \le v \le nV$, define W(i, v) to be the minimum weight attainable by selecting some among the i first items, so that their value is exactly v.
- Start with $W(0, v) = \infty$ for all v.
- Then

$$W(i+1,v) = \min\{W(i,v), W(i,v-v_{i+1}) + w_{i+1}\}.$$

- Finally, pick the largest v such that $W(n, v) \leq W$.
- The running time is $O(n^2V)$, not polynomial time.
- Key idea: Limit the number of precision bits.

The Proof (continued)

• Given the instance $x = (w_1, \ldots, w_n, W, v_1, \ldots, v_n)$, we define the approximate instance

$$x' = (w_1, \dots, w_n, W, v'_1, \dots, v'_n),$$

where

$$v_i' = 2^b \left\lfloor \frac{v_i}{2^b} \right\rfloor.$$

- Solving x' takes time $O(n^2V/2^b)$.
- The solution S' is close to the optimum solution S:

$$\sum_{i \in S} v_i \ge \sum_{i \in S'} v_i \ge \sum_{i \in S'} v_i' \ge \sum_{i \in S} v_i' \ge \sum_{i \in S} (v_i - 2^b) \ge \sum_{i \in S} v_i - n2^b.$$

The Proof (continued)

• Hence

$$\sum_{i \in S'} v_i \ge \sum_{i \in S} v_i - n2^b.$$

- Without loss of generality, $w_i \leq W$ (otherwise item i is redundant).
- \bullet V is a lower bound on OPT.
 - Picking the item with value V alone is a legitimate choice.
- The relative error from the optimum is $\leq n2^b/V$ as

$$\frac{\sum_{i \in S} v_i - \sum_{i \in S'} v_i}{\sum_{i \in S} v_i} \le \frac{\sum_{i \in S} v_i - \sum_{i \in S'} v_i}{V} \le \frac{n2^b}{V}.$$

The Proof (concluded)

- Truncate the last $b = \lfloor \log_2 \frac{\epsilon V}{n} \rfloor$ bits of the values.
- The algorithm becomes ϵ -approximate (see Eq. (8) on p. 567).
- The running time is then $O(n^2V/2^b) = O(n^3/\epsilon)$, a polynomial in n and $1/\epsilon$.

Pseudo-Polynomial-Time Algorithms

- Consider problems with inputs that consist of a collection of integer parameters (TSP, KNAPSACK, etc.).
- An algorithm for such a problem whose running time is a polynomial of the input length and the *value* (not length) of the largest integer parameter is a **pseudo-polynomial-time algorithm**.^a
- On p. 591, we presented a pseudo-polynomial-time algorithm for KNAPSACK that runs in time $O(n^2V)$.
- How about TSP (D), another NP-complete problem?

^aGarey and Johnson (1978).

No Pseudo-Polynomial-Time Algorithms for TSP (D)

- By definition, a pseudo-polynomial-time algorithm becomes polynomial-time if each integer parameter is limited to having a *value* polynomial in the input length.
- Corollary 38 (p. 306) showed that HAMILTONIAN PATH is reducible to TSP (D) with weights 1 and 2.
- As Hamiltonian path is NP-complete, TSP (D) cannot have pseudo-polynomial-time algorithms unless P = NP.
- TSP (D) is said to be **strongly NP-hard**.
- Many weighted versions of NP-complete problems are strongly NP-hard.

Polynomial-Time Approximation Scheme

- Algorithm M is a **polynomial-time approximation** scheme (**PTAS**) for a problem if:
 - For each $\epsilon > 0$ and instance x of the problem, M runs in time polynomial (depending on ϵ) in |x|.
 - * Think of ϵ as a constant.
 - M is an ϵ -approximation algorithm for every $\epsilon > 0$.

Fully Polynomial-Time Approximation Scheme

- A polynomial-time approximation scheme is **fully polynomial** (**FPTAS**) if the running time depends polynomially on |x| and $1/\epsilon$.
 - Maybe the best result for a "hard" problem.
 - For instance, KNAPSACK is fully polynomial with a running time of $O(n^3/\epsilon)$ (p. 590).

Square of G

- Let G = (V, E) be an undirected graph.
- G^2 has nodes $\{(v_1, v_2) : v_1, v_2 \in V\}$ and edges

$$\{\{(u, u'), (v, v')\}: (u = v \land \{u', v'\} \in E) \lor \{u, v\} \in E\}.$$

Independent Sets of G and G^2

Lemma 76 G(V, E) has an independent set of size k if and only if G^2 has an independent set of size k^2 .

- Suppose G has an independent set $I \subseteq V$ of size k.
- $\{(u,v): u,v \in I\}$ is an independent set of size k^2 of G^2 .

- Suppose G^2 has an independent set I^2 of size k^2 .
- $U \equiv \{u : \exists v \in V (u, v) \in I^2\}$ is an independent set of G.

• |U| is the number of "rows" that the nodes in I^2 occupy.

The Proof (concluded)^a

- If $|U| \ge k$, then we are done.
- Now assume |U| < k.
- As the k^2 nodes in I^2 cover fewer than k "rows," there must be a "row" in possession of > k nodes of I^2 .
- Those > k nodes will be independent in G as each "row" is a copy of G.

^aThanks to a lively class discussion on December 29, 2004.

Approximability of INDEPENDENT SET

• The approximation threshold of the maximum independent set is either zero or one (it is one!).

Theorem 77 If there is a polynomial-time ϵ -approximation algorithm for INDEPENDENT SET for any $0 < \epsilon < 1$, then there is a polynomial-time approximation scheme.

- Let G be a graph with a maximum independent set of size k.
- Suppose there is an $O(n^i)$ -time ϵ -approximation algorithm for INDEPENDENT SET.

- By Lemma 76 (p. 600), the maximum independent set of G^2 has size k^2 .
- Apply the algorithm to G^2 .
- The running time is $O(n^{2i})$.
- The resulting independent set has size $\geq (1 \epsilon) k^2$.
- By the construction in Lemma 76 (p. 600), we can obtain an independent set of size $\geq \sqrt{(1-\epsilon)k^2}$ for G.
- Hence there is a $(1 \sqrt{1 \epsilon})$ -approximation algorithm for INDEPENDENT SET.

The Proof (concluded)

- In general, we can apply the algorithm to $G^{2^{\ell}}$ to obtain an $(1 (1 \epsilon)^{2^{-\ell}})$ -approximation algorithm for INDEPENDENT SET.
- The running time is $n^{2^{\ell}i}$.a
- Now pick $\ell = \lceil \log \frac{\log(1-\epsilon)}{\log(1-\epsilon')} \rceil$.
- The running time becomes $n^{i\frac{\log(1-\epsilon)}{\log(1-\epsilon')}}$.
- It is an ϵ' -approximation algorithm for INDEPENDENT SET.

^aIt is not fully polynomial.

Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 36, p. 286).
- NODE COVER has an approximation threshold at most 0.5 (p. 573).
- But INDEPENDENT SET is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET.
- k-DEGREE INDEPENDENT SET is approximable (see the textbook).

Density^a

The **density** of language $L \subseteq \Sigma^*$ is defined as

$$dens_L(n) = |\{x \in L : |x| \le n\}|.$$

- If $L = \{0, 1\}^*$, then $dens_L(n) = 2^{n+1} 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,

$$\operatorname{dens}_L(n) \leq n+1.$$

- Because
$$L \subseteq \{\epsilon, 0, 00, \dots, \overbrace{00 \cdots 0}^{n}, \dots\}$$
.

^aBerman and Hartmanis (1977).

Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- **Dense languages** are languages with superpolynomial density functions.

Self-Reducibility for SAT

- An algorithm exploits **self-reducibility** if it reduces the problem to the same problem with a smaller size.
- Let ϕ be a boolean expression in n variables x_1, x_2, \ldots, x_n .
- $t \in \{0,1\}^j$ is a **partial** truth assignment for x_1, x_2, \dots, x_j .
- $\phi[t]$ denotes the expression after substituting the truth values of t for x_1, x_2, \ldots, x_t in ϕ .

An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty t.

- 1: **if** |t| = n **then**
- 2: **return** $\phi[t]$;
- 3: **else**
- 4: **return** $\phi[t0] \lor \phi[t1];$
- 5: end if

The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth-n binary tree).

NP-Completeness and Density^a

Theorem 78 If a unary language $U \subseteq \{0\}^*$ is NP-complete, then P = NP.

- Suppose there is a reduction R from SAT to U.
- We shall use R to guide us in finding the truth assignment that satisfies a given boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 611.
- The trick is to keep the already discovered results $\phi[t]$ in a table H.

^aBerman (1978).

```
1: if |t| = n then
      return \phi[t];
 3: else
      if (R(\phi[t]), v) is in table H then
 5:
        return v;
      else
6:
        if \phi[t0] = "satisfiable" or \phi[t1] = "satisfiable" then
           Insert (R(\phi[t]), 1) into H;
8:
           return "satisfiable";
9:
         else
10:
           Insert (R(\phi[t]), 0) into H;
11:
           return "unsatisfiable";
12:
         end if
13:
      end if
14:
15: end if
```

- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because R runs in log space.
- As R maps to unary numbers, there are only polynomially many p(n) values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.

- A search of the table takes time O(p(n)) in the random access memory model.
- The running time is O(Mp(n)), where M is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most n.

- There is a set $T = \{t_1, t_2, ...\}$ of invocations (partial truth assignments, i.e.) such that:
 - $|T| \ge (M-1)/(2n).$
 - All invocations in T are **recursive** (nonleaves).
 - None of the elements of T is a prefix of another.

- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - None of $s, t \in T$ is a prefix of another.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of T implies that there are at least (M-1)/(2n) different $R(\phi[t])$ values in the table.

The Proof (concluded)

- We already know that there are at most p(n) such values.
- Hence $(M-1)/(2n) \le p(n)$.
- Thus $M \leq 2np(n) + 1$.
- The running time is therefore $O(Mp(n)) = O(np^2(n))$.
- We comment that this theorem holds for any sparse language, not just unary ones.^a

^aMahaney (1980).

Counting Problems

- Counting problems are concerned with the number of solutions.
 - #SAT: the number of satisfying truth assignments to a boolean formula.
 - #HAMILTONIAN PATH: the number of Hamiltonian paths in a graph.
- They cannot be easier than their decision versions.
 - The decision problem has a solution if and only if the solution count is larger than 0.
- But they can be harder than their decision versions.

Decision and Counting Problems

- FP is the set of polynomial-time computable functions $f: \{0,1\}^* \to \mathbb{Z}$.
 - GCD, LCM, matrix-matrix multiplication, etc.
- If $\#SAT \in FP$, then P = NP.
 - Given boolean formula ϕ , calculate its number of satisfying truth assignments, k, in polynomial time.
 - Declare " $\phi \in SAT$ " if and only if $k \geq 1$.
- The validity of the reverse direction is open.

A Counting Problem Harder than Its Decision Version

- Some counting problems are harder than their decision versions.
- CYCLE asks if a directed graph contains a cycle.
- #CYCLE counts the number of cycles in a directed graph.
- CYCLE is in P by a simple greedy algorithm.
- But #CYCLE is hard unless P = NP.

Counting Class #P

A function f is in #P (or $f \in \#P$) if

- There exists a polynomial-time NTM M.
- M(x) has f(x) accepting paths for all inputs x.
- f(x) = number of accepting paths of M(x).

Some #P Problems

- $f(\phi)$ = number of satisfying truth assignments to ϕ .
 - The desired NTM guesses a truth assignment T and accepts ϕ if and only if $T \models \phi$.
 - Hence $f \in \#P$.
 - f is also called #SAT.
- #HAMILTONIAN PATH.
- #3-coloring.

#P Completeness

- Function f is #P-complete if
 - $-f \in \#P.$
 - $\#P \subseteq FP^f$.
 - * Every function in #P can be computed in polynomial time with access to a black box or **oracle** for f.
 - Of course, oracle f will be accessed only a polynomial number of times.
 - #P is said to be **polynomial-time**Turing-reducible to f.

#SAT Is **#**P-Complete

- First, it is in #P (p. 625).
- Let $f \in \#P$ compute the number of accepting paths of M.
- Cook's theorem uses a parsimonious reduction from M on input x to an instance ϕ of SAT (p. 247).
 - Hence the number of accepting paths of M(x) equals the number of satisfying truth assignments to ϕ .
- Call the oracle #SAT with ϕ to obtain the desired answer regarding f(x).

CYCLE COVER

• A set of node-disjoint cycles that cover all nodes in a directed graph is called a **cycle cover**.

• There are 3 cycle covers (in red) above.

CYCLE COVER and BIPARTITE PERFECT MATCHING

Proposition 79 CYCLE COVER and BIPARTITE PERFECT MATCHING (p. 390) are parsimoniously reducible to each other.

- A polynomial-time algorithm creates a bipartite graph G' from any directed graph G.
- Moreover, the number cycle covers for G equals the number of bipartite perfect matchings for G'.
- And vice versa.

Corollary 80 CYCLE COVER $\in P$.

Permanent

• The **permanent** of an $n \times n$ integer matrix A is

$$perm(A) = \sum_{\pi} \prod_{i=1}^{n} A_{i,\pi(i)}.$$

- $-\pi$ ranges over all permutations of n elements.
- 0/1 PERMANENT computes the permanent of a 0/1 (binary) matrix.
 - The permanent of a binary matrix is at most n!.
- Simpler than determinant (5) on p. 392: no signs.
- But, surprisingly, much harder to compute than determinant!

Permanent and Counting Perfect Matchings

- BIPARTITE PERFECT MATCHING is related to determinant (p. 393).
- #BIPARTITE PERFECT MATCHING is related to permanent.

Proposition 81 0/1 PERMANENT and BIPARTITE PERFECT MATCHING are parsimoniously reducible to each other.

The Proof

- Given a bipartite graph G, construct an $n \times n$ binary matrix A.
 - The (i, j)th entry A_{ij} is 1 if $(i, j) \in E$ and 0 otherwise.
- Then perm(A) = number of perfect matchings in G.

Illustration of the Proof Based on p. 630 (Left)

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

- $\operatorname{perm}(A) = 4$.
- The permutation corresponding to the perfect matching on p. 630 is marked.

Permanent and Counting Cycle Covers

Proposition 82 0/1 PERMANENT and CYCLE COVER are parsimoniously reducible to each other.

- Let A be the adjacency matrix of the graph on p. 630 (right).
- Then perm(A) = number of cycle covers.

Three Parsimoniously Equivalent Problems

From Propositions 79 (p. 629) and 81 (p. 632), we summarize:

Lemma 83 0/1 Permanent, bipartite perfect Matching, and cycle cover are parsimoniously equivalent.

We will show that the counting versions of all three problems are in fact #P-complete.

WEIGHTED CYCLE COVER

- ullet Consider a directed graph G with integer weights on the edges.
- The weight of a cycle cover is the product of its edge weights.
- The **cycle count** of *G* is sum of the weights of all cycle covers.
 - Let A be G's adjacency matrix but $A_{ij} = w_i$ if the edge (i, j) has weight w_i .
 - Then perm(A) = G's cycle count (same proof as Proposition 82 on p. 635).
- #CYCLE COVER is a special case: All weights are 1.

An Example^a

There are 3 cycle covers, and the cycle count is

$$(4 \cdot 1 \cdot 1) \cdot (1) + (1 \cdot 1) \cdot (2 \cdot 3) + (4 \cdot 2 \cdot 1 \cdot 1) = 18.$$

^aEach edge has weight 1 unless stated otherwise.

Three #P-Complete Counting Problems

Theorem 84 (Valiant (1979)) 0/1 PERMANENT, #BIPARTITE PERFECT MATCHING, and #CYCLE COVER are #P-complete.

- By Lemma 83 (p. 636), it suffices to prove that #CYCLE COVER is #P-complete.
- #SAT is #P-complete (p. 627).
- #3sat is #P-complete because it and #sat are parsimoniously equivalent (p. 256).
- We shall prove that #3sat is polynomial-time Turing-reducible to #CYCLE COVER.

The Proof (continued)

- Let ϕ be the given 3sat formula.
 - It contains n variables and m clauses (hence 3m literals).
 - It has $\#\phi$ satisfying truth assignments.
- First we construct a weighted directed graph H with cycle count

$$\#H = 4^{3m} \times \#\phi.$$

- Then we construct an unweighted directed graph G.
- We make sure #H (hence $\#\phi$) is polynomial-time Turing-reducible to G's number of cycle covers (denoted #G).

The Proof: the Clause Gadget (continued)

• Each clause is associated with a **clause gadget**.

- Each edge has weight 1 unless stated otherwise.
- Each bold edge corresponds to one literal in the clause.
- There are not *parallel* lines as bold edges are schematic only (preview p. 654).

The Proof: the Clause Gadget (continued)

- Following a bold edge means making the literal false (0).
- A cycle cover cannot select all 3 bold edges.
 - The interior node would be missing.
- Every proper nonempty subset of bold edges corresponds to a unique cycle cover of weight 1 (see next page).

The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:

(1)
$$a = 0, b = 0, c = 1,$$
 (2) $a = 0, b = 1, c = 0,$ etc.

• The XOR gadget schema:

- At most one of the 2 schematic edges will be included in a cycle cover.
- There will be 3m XOR gadgets, one for each literal.

Total weight of -1 - 2 + 6 - 3 = 0 for cycle covers not entering or leaving it.

• Total weight of -1 + 1 = 0 for cycle covers entering at u and leaving at v'.

• Same for cycle covers entering at v and leaving at u'.

• Total weight of 1 + 2 + 2 - 1 + 1 - 1 = 4 for cycle covers entering at u and leaving at u'.

• Same for cycle covers entering at v and leaving at v'.

The Proof: Summary (continued)

- Cycle covers not entering *all* of the XOR gadgets contribute 0 to the cycle count.
 - Fix an XOR gadget x not entered.
 - Now,

$$= \sum_{\text{cycle cover } c \text{ for } H} \text{weight}(c)$$

$$= \sum_{\text{cycle cover } c \text{ for } H - x} \text{weight}(c) \sum_{\text{cycle cover } c \text{ for } x} \text{weight}(x)$$

$$= \sum_{\text{cycle cover } c \text{ for } H - x} \text{weight}(c) \cdot 0$$

$$= 0.$$

The Proof: Summary (continued)

- Cycle covers entering *any* of the XOR gadgets and leaving illegally contribute 0 to the cycle count.
- For every XOR gadget entered and left legally, the total weight of a cycle cover is multiplied by 4.
- Hereafter we consider only cycle covers which enter every XOR gadget and leaves it legally.
 - Only these cycle covers contribute nonzero weights to the cycle count.
 - They are said to **respect** the XOR gadgets.

The Proof: the Choice Gadget (continued)

• One choice gadget (a schema) for each variable.

- It gives the truth assignment for the variable.
- Use it with the XOR gadget to enforce consistency.

Schema for $(w \lor x \lor \bar{y}) \land (\bar{x} \lor \bar{y} \lor \bar{z})$

The Proof: a Key Observation (continued) Each satisfying truth assignment to ϕ corresponds to a schematic cycle cover that respects the XOR gadgets.

 $w=1, x=0, y=0, z=1 \Leftrightarrow \mathsf{One}\;\mathsf{Cycle}\;\mathsf{Cover}$

The Proof: a Key Corollary (continued)

- ullet Recall that there are 3m XOR gadgets.
- Each satisfying truth assignment to ϕ contributes 4^{3m} to the cycle count #H.
- Hence

$$\#H = 4^{3m} \times \#\phi,$$

as desired.

"w=1, x=0, y=0, z=1" Adds 4^6 to Cycle Count

The Proof (continued)

- We are almost done.
- The weighted directed graph H needs to be efficiently replaced by some unweighted graph G.
- Furthermore, knowing #G should enable us to calculate #H efficiently.
 - This done, $\#\phi$ will have been Turing-reducible to #G.^a
- We proceed to construct this graph G.

^aBy way of #H of course.

• Replace edges with weights 2 and 3 as follows (note that the graph cannot have parallel edges):

• The cycle count #H remains unchanged.

- We move on to edges with weight -1.
- \bullet First, we count the number of nodes, M.
- Each clause gadget contains 4 nodes (p. 641), and there are m of them (one per clause).
- Each XOR gadget contains 7 nodes (p. 660), and there are 3m of them (one per literal).
- Each choice gadget contains 2 nodes (p. 652), and there are $n \leq 3m$ of them (one per variable).
- So

$$M \le 4m + 21m + 6m = 31m.$$

- $\#H \le 2^L$ for some $L = O(m \log m)$.
 - The maximum absolute value of the edge weight is 1.
 - Hence each term in the permanent is at most 1.
 - There are $M! \leq (31m)!$ terms.
 - Hence

#
$$H \leq \sqrt{2\pi(31m)} \left(\frac{31m}{e}\right)^{31m} e^{\frac{1}{12\times(31m)}}$$

$$= 2^{O(m\log m)} \tag{10}$$

by a refined Stirling's formula.

• Replace each edge with weight -1 with the following:

- Each increases the number of cycle covers 2^{L+1} -fold.
- \bullet The desired unweighted G has been obtained.

The Proof (continued)

• #G equals #H after replacing each appearance -1 in #H with 2^{L+1} :

$$\# H = \cdots + \overbrace{(-1) \cdot 1 \cdot \cdots \cdot 1}^{\text{a cycle cover}} + \cdots,$$

$$\# G = \cdots + 2^{L+1} \cdot 1 \cdot \cdots \cdot 1 + \cdots.$$

- Let $\#G = \sum_{i=0}^{n} a_i \times (2^{L+1})^i$, where $0 \le a_i < 2^{L+1}$.
- As $\#H \leq 2^L$ even if we replace -1 by 1 (p. 662), each a_i equals the number of cycle covers with i edges of weight -1.

The Proof (concluded)

• We conclude that

$$#H = a_0 - a_1 + a_2 - \dots + (-1)^n a_n,$$

indeed easily computable from #G.

- We know $\#H = 4^{3m} \times \#\phi$ (p. 657).
- So

$$\#\phi = \frac{a_0 - a_1 + a_2 - \dots + (-1)^n a_n}{4^{3m}}.$$

- More succinctly,

$$\#\phi = \frac{\#G \bmod (2^{L+1} + 1)}{4^{3m}}.$$

PSPACE and Games

- Given a boolean expression ϕ in CNF with boolean variables x_1, x_2, \ldots, x_n , is it true that $\exists x_1 \forall x_2 \cdots Q_n x_n \phi$?
- This is called **quantified satisfiability** or QSAT.
- This problem is like a two-person game: \exists and \forall are the two players.
- We ask then is there a winning strategy for \exists ?
- QSAT Is PSPACE-Complete^a

^aStockmeyer and Meyer (1973).

IP and PSPACE

- We next prove that $coNP \subseteq IP$.
- Shamir in 1990 proved that IP equals PSPACE using similar ideas (p. 710).

Interactive Proof for Boolean Unsatisfiability

- Like GRAPH NONISOMORPHISM (p. 538), it is not clear how to construct a short certificate for UNSAT.
- But with interaction and randomization, we shall present an interactive proof for UNSAT.
- A 3SAT formula is a conjunction of disjunctions of at most three literals.
- For any unsatisfiable 3SAT formula $\phi(x_1, x_2, \ldots, x_n)$, there is an interactive proof for the fact that it is unsatisfiable.
- Therefore, $coNP \subseteq IP$.

Arithmetization of Boolean Formulas

The idea is to arithmetize the boolean formula.

- $T \rightarrow positive integer$
- $F \rightarrow 0$
- $\bullet \ x_i \to x_i$
- $\bullet \ \neg x_i \to 1 x_i$
- \bullet \lor \rightarrow +
- ullet $\wedge \to \times$

The Arithmetized Version

- A boolean formula is transformed into a multivariate polynomial Φ .
- It is easy to verify that ϕ is unsatisfiable if and only if

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) = 0.$$

- But the above seems to require exponential time.
- We turn to more intricate methods.

Choosing the Field

- Suppose ϕ has m clauses of length three each.
- Then $\Phi(x_1, x_2, \dots, x_n) \leq 3^m$ for any truth assignment (x_1, x_2, \dots, x_n) .
- Because there are at most 2^n truth assignments,

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) \le 2^n 3^m.$$

Choosing the Field (concluded)

• By choosing a prime $q > 2^n 3^m$ and working modulo this prime, proving unsatisfiability reduces to proving that

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) \equiv 0 \bmod q.$$
 (11)

• Working under a *finite* field allows us to uniformly select a random element in the field.

Binding Peggy

- Peggy has to find a sequence of polynomials that satisfy a number of restrictions.
- The restrictions are imposed by Victor: After receiving a polynomial from Peggy, Victor sets a new restriction for the next polynomial in the sequence.
- These restrictions guarantee that if ϕ is unsatisfiable, such a sequence can always be found.
- However, if ϕ is not unsatisfiable, any Peggy has only a small probability of finding such a sequence.
 - The probability is taken over Victor's coin tosses.

The Algorithm

- 1: Peggy and Victor both arithmetize ϕ to obtain Φ ;
- 2: Peggy picks a prime $q > 2^n 3^m$ and sends it to Victor;
- 3: Victor rejects and stops if q is not a prime;
- 4: Victor sets $v_0 = 0$;
- 5: **for** i = 1, 2, ..., n **do**
- 6: Peggy calculates $P_i^*(z) = \sum_{x_{i+1}=0,1} \cdots \sum_{x_n=0,1} \Phi(r_1, \dots, r_{i-1}, z, x_{i+1}, \dots, x_n);$
- 7: Peggy sends $P_i^*(z)$ to Victor;
- 8: Victor rejects and stops if $P_i^*(0) + P_i^*(1) \not\equiv v_{i-1} \mod q$ or $P_i^*(z)$'s degree exceeds m; $\{P_i^*(z) \text{ has at most } m \text{ clauses.}\}$
- 9: Victor uniformly picks $r_i \in Z_q$ and calculates $v_i = P_i^*(r_i)$;
- 10: Victor sends r_i to Peggy;
- 11: end for
- 12: Victor accepts iff $\Phi(r_1, r_2, \dots, r_n) \equiv v_n \mod q$;

Comments

• The following invariant is maintained by the algorithm:

$$P_i^*(0) + P_i^*(1) \equiv P_{i-1}^*(r_{i-1}) \bmod q \tag{12}$$

for $1 \leq i \leq n$.

- $P_i^*(0) + P_i^*(1) \text{ equals}$ $\sum_{x_i=0,1} \cdots \sum_{x_n=0,1} \Phi(r_1, \dots, r_{i-1}, x_i, x_{i+1}, \dots, x_n)$ modulo q.
- The above equals $P_{i-1}^*(r_{i-1}) \mod q$ by definition.

Comments (concluded)

- The computation of v_1, v_2, \ldots, v_n must rely on Peggy's supplied polynomials as Victor does not have the power to carry out the exponential-time calculations.
- But $\Phi(r_1, r_2, \dots, r_n)$ in Step 12 is computed without relying on Peggy.

Completeness

- Suppose ϕ is unsatisfiable.
- For $i \ge 1$, by Eq. (12) on p. 688,

$$P_{i}^{*}(0) + P_{i}^{*}(1)$$

$$= \sum_{x_{i}=0,1} \sum_{x_{i+1}=0,1} \cdots \sum_{x_{n}=0,1} \Phi(r_{1}, \dots, r_{i-1}, x_{i}, x_{i+1}, \dots, x_{n})$$

$$= P_{i-1}^{*}(r_{i-1})$$

$$\equiv v_{i-1} \mod q.$$

Completeness (concluded)

• In particular at i = 1, because ϕ is unsatisfiable, we have

$$P_1^*(0) + P_1^*(1) = \sum_{x_1=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, \dots, x_n)$$

 $\equiv v_0$
 $= 0 \mod q.$

- Finally, $v_n = P_n^*(r_n) = \Phi(r_1, r_2, \dots, r_n)$.
- Because all the tests by Victor will pass, Victor will accept ϕ .

Soundness

- Suppose ϕ is not unsatisfiable.
- Victor will reject after an honest Peggy sends $P_1^*(z)$.

$$- P_1^*(z) = \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(z, x_2, \dots, x_n).$$
- So

$$P_1^*(0) + P_1^*(1)$$

$$= \sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n)$$

$$\not\equiv 0 \bmod q$$

by Eq. (11) on p. 685.

- But $v_0 = 0$.

Soundness (continued)

- We will show that if Peggy is dishonest in one round (by sending a polynomial other than $P_i^*(z)$), then with high probability she must be dishonest in the next round, too.
- In the last round (Step 12), her dishonesty is exposed.

Soundness (continued)

- Let $P_i(z)$ represent the polynomial sent by Peggy in place of $P_i^*(z)$.
- Victor calculates $v_i = P_i(r_i) \mod p$.
- In order to deceive Victor in the next round, round i+1, Peggy must use r_1, r_2, \ldots, r_i to find a $P_{i+1}(z)$ of degree at most m such that

$$P_{i+1}(0) + P_{i+1}(1) \equiv v_i \bmod q$$

(see Step 8 of the algorithm on p. 687).

• And so on to the end, except that Peggy has no control over Step 12.

A Key Claim

Lemma 88 If $P_i^*(0) + P_i^*(1) \not\equiv v_{i-1} \mod q$, then either Victor rejects in the ith round, or $P_i^*(r_i) \not\equiv v_i \mod q$ with probability at least 1 - (m/q), where the probability is taken over Victor's choices of r_i .

- Think of $P_i^*(r_i)$ as the v_i that Victor should be computing if Peggy were honest.
- But Victor actually calculates $P_i(z)$ as v_i (Peggy claims $P_i(z)$ is $P_i^*(z)$).
- So $v_i = P_i(r_i) \mod q$.
- What Victor can do is to check for consistencies.

The Proof of Lemma 88 (continued)

• If Peggy sends a $P_i(z)$ which equals $P_i^*(z)$, then

$$P_i(0) + P_i(1) = P_i^*(0) + P_i^*(1) \not\equiv v_{i-1} \bmod q,$$

and Victor rejects immediately.

- Suppose Peggy sends a $P_i(z)$ different from $P_i^*(z)$.
- If $P_i(z)$ does not pass Victor's test

$$P_i(0) + P_i(1) \equiv v_{i-1} \bmod q,$$
 (13)

then Victor rejects and we are done, too.

The Proof of Lemma 88 (concluded)

- Finally, assume $P_i(z)$ passes the test (13).
- $P_i(z) P_i^*(z) \not\equiv 0$ is a polynomial of degree at most m.
- Hence equation $P_i(z) P_i^*(z) \equiv 0 \mod q$ has at most m roots $r \in \mathbb{Z}_q$, i.e.,

$$P_i^*(r) \equiv v_i \bmod q$$
.

• Hence Victor will pick one of these as his r_i so that

$$P_i^*(r_i) \equiv v_i \bmod q$$

with probability at most m/q.

Soundness (continued)

- Suppose Victor does not reject in any of the first n rounds.
- As ϕ is not unsatisfiable,

$$P_1^*(0) + P_1^*(1) \not\equiv v_0 \bmod q$$
.

- By Lemma 88 (p. 695) and the fact that Victor does not reject, we have $P_1^*(r_1) \not\equiv v_1 \mod q$ with probability at least 1 (m/q).
- Now by Eq. (12) on p. 688,

$$P_1^*(r_1) = P_2^*(0) + P_2^*(1) \not\equiv v_1 \bmod q.$$

Soundness (concluded)

• Iterating on this procedure, we eventually arrive at

$$P_n^*(r_n) \not\equiv v_n \bmod q$$

with probability at least $(1 - m/q)^n$.

- As $P_n^*(r_n) = \Phi(r_1, r_2, \dots, r_n)$, Victor's last test at Step 12 fails and he rejects.
- Altogether, Victor rejects with probability at least

$$[1 - (m/q)]^n > 1 - (nm/q) > 2/3$$
 (14)

because $q > 2^n 3^m$.

An Example

- $\bullet \ (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3).$
- The above is satisfied by assigning true to x_1 .
- The arithmetized formula is

$$\Phi(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \times [x_1 + (1 - x_2) + (1 - x_3)].$$

- Indeed, $\sum_{x_1=0,1} \sum_{x_2=0,1} \sum_{x_3=0,1} \Phi(x_1, x_2, x_3) = 16 \neq 0$.
- We have n=3 and m=2.
- A prime q that satisfies $q > 2^3 \times 3^2 = 72$ is 73.

An Example (continued)

• The table below is an execution of the algorithm in Z_{73} when Peggy follows the protocol.

• Victor therefore rejects ϕ early on at i=1.

An Example (continued)

- Now suppose Peggy does not follow the protocol.
- In order to deceive Victor, she comes up with fake polynomials $P_i(z)$ from i = 1.
- The table below is an execution of the algorithm.

i	$P_i(z)$	$P_i(0) + P_i(1)$	$= v_{i-1}?$	r_i	v_i
0					0
1	$8z^2 + 11z + 27$	0	yes	2	35
2	$z^2 + 8z + 13$	35	yes	3	46
3	$3z^2 + z + 21$	46	yes	r_3	$P_3(r_3)$

An Example (concluded)

- Victor has been satisfied up to round 3.
- Finally at Step 12, Victor checks if

$$\Phi(2, 3, r_3) \equiv P_3(r_3) \mod 73.$$

- It can be verified that the only choices of $r_3 \in \{0, 1, ..., 72\}$ that can mislead Victor are 31 and 59.
- The probability of that happening is only 2/73.

^aMs. Ching-Ju Lin (R92922038) on January 7, 2004, pointed out an error in an earlier calculation.

An Example

- $(x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2).$
- The above is unsatisfiable.
- The arithmetized formula is

$$\Phi(x_1, x_2) = (x_1 + x_2) \times (x_1 + 1 - x_2) \times (1 - x_1 + x_2) \times (2 - x_1 - x_2).$$

• Because $\Phi(x_1, x_2) = 0$ for any boolean assignment $\{0, 1\}^2$ to (x_1, x_2) , certainly

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \Phi(x_1, x_2) = 0.$$

• With n=2 and m=4, a prime q that satisfies $q>2^2\times 3^4=4\times 81=324$ is 331.

An Example (concluded)

• The table below is an execution of the algorithm in Z_{331} .

i	$P_i^*(z)$	$P_i^*(0) + P_i^*(1)$	$= v_{i-1}$?	r_i	v_i
0					0
1	z(z+1)(1-z)(2-z)	0	yes	10	283
	+(z+1)z(2-z)(1-z)				
2	$(10+z)\times(11-z)$	283	yes	5	46
	$\times (-9+z) \times (-8-z)$				

- Victor calculates $\Phi(10, 5) \equiv 46 \mod 331$.
- As it equals $v_2 = 46$, Victor accepts ϕ as unsatisfiable.

Objections to the Soundness Proof?^a

- Based on the steps required of a cheating Peggy on p. 694, why must we go through so many rounds (in fact, n rounds)?
- Why not just go directly to round n:
 - Victor sends $r_1, r_2, \ldots, r_{n-1}$ to Peggy.
 - Peggy returns with a (claimed) $P_n^*(z)$.
 - Victor accepts if and only if $\Phi(r_1, r_2, \dots, r_{n-1}, r_n) \equiv P_n^*(r_n) \bmod q \text{ for a random } r_n \in \mathbb{Z}_q.$

^aContributed by Ms. Emily Hou (D89011) and Mr. Pai-Hsuen Chen (R90008) on January 2, 2002.

Objections to the Soundness Proof? (continued)

- Let us analyze the compressed proposal when ϕ is satisfiable.
- To succeed in foiling Victor, Peggy must find a polynomial $P_n(z)$ of degree m such that

$$\Phi(r_1, r_2, \dots, r_{n-1}, z) \equiv P_n(z) \bmod q.$$

- But this she is able to do: Just give the verifier the polynomial $\Phi(r_1, r_2, \dots, r_{n-1}, z)!$
- What has happened?

Objections to the Soundness Proof? (concluded)

- You need the intermediate rounds to "tie" Peggy up with a chain of claims.
- In the original algorithm on p. 687, for example, $P_n(z)$ is bound by the equality $P_n(0) + P_n(1) \equiv v_{n-1} \mod q$ in Step 8.
- That v_{n-1} is in turn derived by an earlier polynomial $P_{n-1}(z)$, which is in turn bound by $P_{n-1}(0) + P_{n-1}(1) \equiv v_{n-2} \mod q$, and so on.

Shamir's Theorem^a

Theorem 89 IP = PSPACE.

- We first sketch the proof for $IP \subseteq PSPACE$.
- Without loss of generality, assume:
 - If $x \in L$, then the probability that x is accepted by the verifier is at least 3/4.
 - If $x \notin L$, then the probability that x is accepted by the verifier with any prover is at most 1/4.

^aShamir (1990).

The Proof (continued)

- Now we track down every possible message exchange based on random choices by the verifier and all possible messages generated by the prover.
- Use recursion to calculate $\operatorname{prob}[\operatorname{verifier\ accepts}\ x\,] = \max_{P} \operatorname{prob}[(V,P) \operatorname{accepts}\ x\,].$
- If this value is at least 3/4, then $x \in L$; otherwise, $x \notin L$.

The Proof (continued)

- To prove PSPACE \subseteq IP, we next prove that QSAT is in IP.
- We do so by describing an interactive protocol that decides QSAT.
- Suppose Alice and Bob are given

$$\phi = \forall x \exists y (x \lor y) \land \forall z [(x \land z) \lor (y \land \neg z)]$$
$$\lor \exists w [z \lor (y \land \neg w)].$$

• As above, we assume no occurrence of a variable is separated by more than one ∀ from its point of quantification.

- We also assume that \neg is applied only to variables, not subexpressions.
- We now arithmetize ϕ as before except:
 - 1 means true.
 - $\neg x \rightarrow 1 x$.
 - * It is the standard representation on p. 134.
 - $\exists x \to \sum_{x=0,1}.$
 - $\forall x \to \prod_{x=0,1}$.
- Alice tries to convince Bob that this arithmetization of ϕ is nonzero.

• Our ϕ becomes

$$A_{\phi} = \prod_{x=0}^{1} \sum_{y=0}^{1} \{(x+y) \cdot \prod_{z=0}^{1} [(x \cdot z + y \cdot (1-z)) + \sum_{w=0}^{1} (z + y \cdot (1-w))]\}.$$

- Call it a $\sum -\prod$ expression.
- A_{ϕ} is a number; it equals 96 here.

- As before, ϕ is true if and only if $A_{\phi} > 0$.
- In fact, more is true.
- For any ϕ and any truth assignment to its free variables:
 - If ϕ is true, then $A_{\phi} > 0$ under the corresponding 0-1 assignment.
 - If ϕ is false, then $A_{\phi} = 0$.
- So Alice only has to convince Bob that $A_{\phi} > 0$.

- The trouble is that A_{ϕ} evaluated can be exponential in length.
- Fortunately, it can be shown that if expression A_{ϕ} of length n is nonzero, then there is a prime p between 2^n and 2^{3n} such that $A_{\phi} \neq 0 \mod p$.
- So Alice only has to convince Bob that $A_{\phi} \neq 0$ under mod p.
- The protocol starts with Alice sending Bob p (assume p=13) and its primality certificate.

• Now Alice sends Bob $A_{\phi} \mod p$, which is

$$a = 96 \mod 13 = 5.$$

- Each stage starts with the following:
 - $-A \sum -\prod$ expression A, with a leading \sum_x or \prod_x .
 - -A's alleged value $a \mod p$, supplied by Alice.
- If the first \sum or \prod is deleted, the result is a polynomial in x, called A'(x).
- Bob demands from Alice the coefficients of A'(x).
- Trouble occurs if the degree of A'(x) is exponential in n.

- Luckily, $deg(A'(x)) \le 2n$.
 - No occurrence of a variable is separated by more than one \forall from its point of quantification.
 - So A'(x) has only one \prod symbol.
 - Other \prod s are over quantities not related to x, hence purely numerical.
 - Symbols other than \prod can only increase the degree of A'(x) by at most one.
 - For example, $\sum_{y} (x+y) \prod_{z} (x+\sum_{w} (x\cdot w))$.
- So Alice has no problem transmitting A'(x) to Bob.

- $A'(x) = 2x^2 + 8x + 6$.
- Bob verifies that $A'(0) \cdot A'(1) = 5 \mod 13$.
- Indeed $A'(0) \cdot A'(1) = 6 \cdot 16 = 5 \mod 13$.
- So far A'(x) is consistent with the alleged value 5.
- Bob deletes the leading \prod_x .
- The free variable x in the resulting expression prevents it from being an evaluation problem.

• So Bob replaces x with a random number mod 13, say 9:

$$\sum_{y=0}^{1} \left\{ (9+y) \cdot \prod_{z=0}^{1} \left[(9 \cdot z + y \cdot (1-z)) + \sum_{w=0}^{1} (z + y \cdot (1-w)) \right] \right\}.$$

• The above equals

$$a = A'(9) = 2 \cdot 9^2 + 8 \cdot 9 + 6 = 6 \mod 13.$$

• Bob sends 9 to Alice.

• In the new stage, Alice evaluates

$$A'(y) = 2y^3 + y^2 + 3y$$

after substituting x = 9 and sends it to Bob.

- Bob checks that $A'(0) + A'(1) = 6 \mod 13$.
- Indeed $0 + 6 = 6 \mod 13$.
- Bob deletes the leading \sum_{y} .
- Bob replaces y with a random number mod 13, say 3:

$$(9+3) \cdot \prod_{z=0}^{1} \left\{ \left[9 \cdot z + 3 \cdot (1-z) \right] + \sum_{w=0}^{1} \left[z + 3 \cdot (1-w) \right] \right\}.$$

• The above should equal $A'(3) = 2 \cdot 3^2 + 3^2 + 3 \cdot 3 = 7 \mod 13$.

• So

$$A = \prod_{z=0}^{1} \{ [9 \cdot z + 3 \cdot (1-z)] + \sum_{w=0}^{1} [z + 3 \cdot (1-w)] \}$$

should equal

$$a = 12^{-1} \cdot 7 = 12 \cdot 7 = 6 \mod 13.$$

• Bob sends 3 to Alice.

• In the new stage, Alice evaluates

$$A'(z) = 8z + 6$$

after substituting y = 3 and sends it to Bob.

- Bob checks that $A'(0) \cdot A'(1) = 6 \mod 13$.
- Indeed $6 \cdot 14 = 6 \mod 13$.
- Bob deletes the leading \prod_z .
- Bob replaces z with a random number mod 13, say 7:

$$[9 \cdot 7 + 3 \cdot (1 - 7)] + \sum_{w=0}^{1} [7 + 3 \cdot (1 - w)].$$

- The above should equal $A'(7) = 8 \cdot 7 + 6 = 10 \mod 13$.
- So

$$A = \sum_{w=0}^{1} [z + 3 \cdot (1 - w)]$$
 (15)

should equal

$$a = 10 - [9 \cdot 7 + 3 \cdot (1 - 7)] = 10 - 45 = 4 \mod 13.$$

• Bob sends 7 to Alice.

• In the new stage, Alice evaluates

$$A'(w) = 10 - 3w$$

after substituting z = 7 and sends it to Bob.

- Bob checks that $A'(0) + A'(1) = 4 \mod 13$.
- Indeed $10 + 7 = 4 \mod 13$.
- Now there are no more $\sum s$ and $\prod s$.
- Bob checks if A'(w) is indeed as claimed by using (15) with z = 7.
- It is, and Bob accepts $A_{\phi} \neq 0 \mod 13$.

- Clearly, if $A_{\phi} > 0$, the protocol convinces Bob of this.
- We next show that if $A_{\phi} = 0$, then Bob will be cheated with only negligible probability.

Lemma 90 Suppose $A_{\phi} = 0$ and Alice claims a nonzero value \boldsymbol{a} . Then with probability $\geq (1 - \frac{2n}{2^n})^{i-1}$, the value of \boldsymbol{a} claimed at the ith stage is wrong.

Proof of Lemma 90 (continued)

- The first *a* claimed by Alice is nonzero, which is certainly wrong.
- The lemma therefore holds for i = 1.
- By induction, for i > 1, the (i 1)st value was wrong with probability $\geq (1 \frac{2n}{2^n})^{i-2}$.
- Suppose it is indeed wrong.
- The polynomial A'(x) produced by Alice in the *i*th stage must be such that $A'(0) \cdot A'(1)$ or A'(0) + A'(1) equals the wrong value \boldsymbol{a} .

Proof of Lemma 90 (continued)

- Alice must therefore supply a wrong polynomial A'(x), different from the true polynomial C(x).
 - Recall that Bob uses A'(x) not C(x).
- C(x) A'(x) is a polynomial of degree 2n.
- Hence it has at most 2n roots.
- The random number between 0 and p-1 picked by Bob will be one of these roots with probability at most 2n/p.

Proof of Lemma 90 (concluded)

• The probability that a at the *i*th stage is correct is

$$\leq \left[1 - \left(1 - \frac{2n}{2^n}\right)^{i-2}\right] \left(1 - \frac{2n}{p}\right)$$

$$\leq 1 - \left(1 - \frac{2n}{2^n}\right)^{i-2} \left(1 - \frac{2n}{p}\right)$$

$$\leq 1 - \left(1 - \frac{2n}{2^n}\right)^{i-1}.$$

- Recall that $p \geq 2^n$.

Proof of Theorem (concluded)

- In the last round, Bob will catch Alice's deception with probability $(1 \frac{2n}{2^n})^n \to 1$.
- To achieve the confidence level of $1 2^{-n}$ required by the definition of IP, simply repeat the protocol.

The Algorithm

- 1: Alice and Bob both arithmetize ϕ to obtain Φ ;
- 2: Alice picks a prime p and sends it to Bob;
- 3: Bob rejects if p does not satisfy the desired conditions;
- 4: Alice claims $A_{\phi} = \boldsymbol{a} \mod p$ to Bob;
- 5: Bob set $A = A_{\phi}$;
- 6: repeat
- 7: Alice sends A'(x) to Bob;
- 8: Bob rejects if $\mathbf{a} \neq A'(0) \cdot A'(1) \mod p$ when $A = \prod_x \cdots$ or $\mathbf{a} \neq A'(0) + A'(1) \mod p$ when $A = \sum_x \cdots$;
- 9: Bob picks a random number r and sends it to Alice;
- 10: Bob calculates $\boldsymbol{a} = A'(r)$;
- 11: Alice and Bob both set A = A'(r); {Some details left out.}
- 12: **until** there no \prod or \sum left in A
- 13: Bob accepts iff A'(x) is as claimed in the last stage;

Exponential Circuit Complexity

- Almost all boolean functions require $\frac{2^n}{2n}$ gates to compute (generalized Theorem 14 on p. 153).
- Progress of using circuit complexity to prove exponential lower bounds for NP-complete problems has been slow.
 - As of January 2006, the best lower bound is 5n o(n).^a
- We next establish exponential lower bounds for depth-3 circuits.

^aIwama and Morizumi (2002).

Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets $\{P_1, P_2, \dots, P_p\}$, called **petals**, each of cardinality at most ℓ .
- All pairs of sets in the family must have the same intersection (called the **core** of the sunflower).

A Sample Sunflower

 $\{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\},$ $\{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$

The Erdős-Rado Lemma

Lemma 91 Let \mathcal{Z} be a family of more than $M = (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower.

- Induction on ℓ .
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} \mathcal{D}$ intersects some set in \mathcal{D} .

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - $-\mathcal{D}$ constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
 - Let D be the union of all sets in \mathcal{D} .
 - $-|D| \leq (p-1)\ell$ and D intersects every set in \mathbb{Z} .
 - There is a $d \in D$ that intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell-1}(\ell-1)! \text{ sets in } \mathcal{Z}.$
 - Consider $\mathcal{Z}' = \{Z \{d\} : Z \in \mathcal{Z}, d \in Z\}.$
 - $-\mathcal{Z}'$ has more than $M'=(p-1)^{\ell-1}(\ell-1)!$ sets.
 - -M' is just M with ℓ decreased by one.

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - $-\mathcal{Z}'$ contains a sunflower by induction, say

$$\{P_1,P_2,\ldots,P_p\}.$$

- Now,

$$\{P_1 \cup \{d\}, P_2 \cup \{d\}, \dots, P_p \cup \{d\}\}\$$

is a sunflower in \mathcal{Z} .

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower entails replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by $\operatorname{pluck}(\mathcal{Z})$.

An Example of Plucking

• Recall the sunflower on p. 733:

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$$

• Then

$$pluck(\mathcal{Z}) = \{\{1, 2\}\}.$$

Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using *monotone* circuits.
 - Monotone circuits are circuits without ¬ gates.
- Note that this does not settle the P vs. NP problem or any of the conjectures on p. 489.

The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem, MONOTONE CIRCUIT VALUE (p. 241).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.

$\mathrm{CLIQUE}_{n,k}$

- CLIQUE_{n,k} is the boolean function deciding whether a graph G = (V, E) with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
 - Gate g_{ij} is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE_{n,k} is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for $CLIQUE_{n,k}$ may use fewer gates.

Crude Circuits

- One possible circuit for $CLIQUE_{n,k}$ does the following.
 - 1. For each $S \subseteq V$ with |S| = k, there is a subcircuit with $O(k^2) \wedge$ -gates testing whether S forms a clique.
 - 2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_1, S_2, \ldots, S_{\binom{n}{k}}$.
- This is a monotone circuit with $O(k^2 \binom{n}{k})$ gates, which is exponentially large unless k or n-k is a constant.
- A crude circuit $CC(X_1, X_2, ..., X_m)$ tests if any of $X_i \subseteq V$ forms a clique.
 - The above-mentioned circuit is $CC(S_1, S_2, \ldots, S_{\binom{n}{k}})$.

Razborov's Theorem

Theorem 92 (Razborov (1985)) There is a constant c such that for large enough n, all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $CLIQUE_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the resulting crude circuit has exponentially many errors.

The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that

$$2\binom{\ell}{2} \le k$$

- p will be fixed later to be $n^{1/8} \log n$.
- Fix $M = (p-1)^{\ell} \ell!$.
 - Recall the Erdős-Rado lemma (p. 734).

The Proof (continued)

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, ..., X_m)$, where:
 - $-X_i\subseteq V.$
 - $-|X_i| \leq \ell.$
 - -m < M.
- We shall show how to approximate any circuit for $CLIQUE_{n,k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $CC(\{i,j\})$.

The Proof (continued)

- Any monotone circuit can be considered the OR or AND of two subcircuits.
- We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
 - We are given two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - $-\mathcal{X}$ and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.

The Proof: Positive Examples

- Error analysis will be applied to only **positive** examples and negative examples.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from $CLIQUE_{n,k}$.

The Proof: Negative Examples

- Color the nodes with k-1 different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^n$ such graphs.
- They all should elicit a false output from $CLIQUE_{n,k}$.

Positive and Negative Examples with k=5

A positive example

A negative example

The Proof: OR

- $CC(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
- Violations occur when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations can be eliminated by using

$$CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$$

as the approximate OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

• We now count the numbers of errors this approximate OR makes on the positive and negative examples.

The Proof: OR (concluded)

- $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a **false positive** if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a **false negative** if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- How many false positives and false negatives are introduced by $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$?

The Number of False Positives

Lemma 93 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most $\frac{M}{p-1} 2^{-p} (k-1)^n$ false positives.

- Assume a plucking replaces the sunflower $\{Z_1, Z_2, \ldots, Z_p\}$ with its core Z.
- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in each petal Z_i (and so both crude circuits return false).
 - But the core contains distinctly colored nodes.
 - * This implies at least one node from each same-color pair was plucked away.
- We now count the number of such colorings.

- Color nodes V at random with k-1 colors and let R(X) denote the event that there are repeated colors in set X.
- Now prob $[R(Z_1) \wedge \cdots \wedge R(Z_p) \wedge \neg R(Z)]$ is at most

$$\operatorname{prob}[R(Z_1) \wedge \cdots \wedge R(Z_p) | \neg R(Z)]$$

$$= \prod_{i=1}^{p} \operatorname{prob}[R(Z_i) | \neg R(Z)] \leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)]. (16)$$

- First equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in $Z \subseteq Z_i$.

- Consider two nodes in Z_i .
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now prob $[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}$.
- So the probability^a that a random coloring is a new false positive is at most 2^{-p} by inequality (16).
- As there are $(k-1)^n$ different colorings, each plucking introduces at most $2^{-p}(k-1)^n$ false positives.

^aProportion, i.e.

Proof of Lemma 93 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- Each plucking reduces the number of sets by p-1.
- Hence at most $\frac{M}{p-1}$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$\frac{M}{p-1} 2^{-p} (k-1)^n$$

false positives are introduced.

The Number of False Negatives

Lemma 94 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces no false negatives.

- Each plucking replaces a set in a crude circuit by a subset.
- This makes the test less stringent.
 - For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \text{pluck}(\mathcal{X} \cup \mathcal{Y})$ such that $X \subseteq Y$.
 - So if $Y \in \mathcal{X} \cup \mathcal{Y}$ is a clique, then $\text{pluck}(\mathcal{X} \cup \mathcal{Y})$ also contains a clique, in X.
- So plucking can only increase the number of accepted graphs.

The Proof: AND

• The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

$$CC(pluck(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})).$$

• We now count the numbers of errors this approximate AND makes on the positive and negative examples.

The Proof: AND (concluded)

- The approximate AND introduces a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.
- The approximate AND *introduces* a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.
- How many false positives and false negatives are introduced by the approximate AND?

The Number of False Positives

Lemma 95 The approximate AND introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives.
 - If $X_i \cup Y_j$ is a clique, both X_i and Y_j must be cliques, making both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces no false positives for the same reason as above.

Proof of Lemma 95 (concluded)

- $|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\}| \le M^2$.
- Each plucking reduces the number of sets by p-1.
- So pluck $(X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell)$ involves $\leq M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 93 (p. 752).
- The desired upper bound is

$$[M^2/(p-1)] 2^{-p}(k-1)^n \le M^2 2^{-p}(k-1)^n.$$

The Number of False Negatives

Lemma 96 The approximate AND introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We follow the same three-step proof as before.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives.
 - Suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique of size k.
 - The clique must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$.
 - As it contains $X_i \cup Y_j$, the new circuit returns true.

Proof of Lemma 96 (concluded)

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces $\leq M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - Deletion of set $Z = X_i \cup Y_j$ larger than ℓ introduces false negatives which are cliques containing Z.
 - There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
 - $-\binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1} \text{ as } |Z| > \ell.$
 - There are at most M^2 such Zs.
- Plucking introduces no false negatives.

Two Summarizing Lemmas

From Lemmas 93 (p. 752) and 95 (p. 760), we have:

Lemma 97 Each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

From Lemmas 94 (p. 757) and 96 (p. 762), we have:

Lemma 98 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduce "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 99 Every final crude circuit either is identically false—thus wrong on all positive examples—or outputs true on at least half of the negative examples.

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1/8}$ is less than $k = n^{1/4}$.
- The proof of Lemma 93 (p. 752ff) shows that at least half of the colorings assign different colors to nodes in X.
- So half of the negative examples have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 744: $k = n^{1/4}$, $\ell = n^{1/8}$, $p = n^{1/8} \log n$, $M = (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}}$ for large n.
- Suppose the final crude circuit is identically false.
 - By Lemma 98 (p. 764), each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2 \binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^{\ell} \ge n^{(1/12)n^{1/8}}$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 99 (p. 766) says that there are at least $(k-1)^n/2$ false positives.
 - By Lemma 97 (p. 764), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives
 - The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$

gates.

$P \neq NP \text{ Proved?}$

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

REACHABILITY Is NL-Complete

- REACHABILITY \in NL (p. 95).
- Suppose L is decided by the $\log n$ space-bounded TM N.
- Given input x, construct in logarithmic space the polynomial-sized configuration graph G of N on input x (see Theorem 21 on p. 176).
- G has a single initial node, call it 1.
- Assume G has a single accepting node n.
- $x \in L$ if and only if the instance of REACHABILITY has a "yes" answer.

2SAT Is NL-Complete

- $2\text{SAT} \in \text{NL (p. 265)}$.
- As NL = coNL (p. 191), it suffices to reduce the coNL-complete UNREACHABILITY to 2SAT.
- Start without loss of generality an acyclic graph G.
- Identify each edge (x, y) with clause $\neg x \lor y$.
- Add clauses (s) and $(\neg t)$ for the start and target nodes s and t.
- The resulting 2SAT instance is satisfiable if and only if there is no path from s to t in G.

The Class RL

- REACHABILITY is for directed graphs.
- It is not known if UNDIRECTED REACHABILITY is in L.
- But it is in randomized logarithmic space, called **RL**.
- RL is RP in which the space bound is logarithmic.
- We shall prove that UNDIRECTED REACHABILITY ∈ RL.^a
- As a note, UNDIRECTED REACHABILITY ∈ coRL.^b

^aAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).

^bBorodin, Cook, Dymond, Ruzzo, and Tompa (1989).

Random Walks

- Let G = (V, E) be an undirected graph with $1, n \in V$.
- Add self-loops $\{i, i\}$ at each node i.
- The randomized algorithm for testing if there is a path from 1 to n is a random walk.

The Random Walk Framework

1: x := 1;

2: while $x \neq n$ do

3: Pick y uniformly from x's neighbors (including x);

 $4: \quad x := y;$

5: end while

Some Terminology

- v_t is the node visited by the random walk at time t.
- In particular, $v_0 = 1$.
- d_i denotes the degree of i (including the self-loops).
- Let $p_t[i] = \operatorname{prob}[v_t = i]$.

A Convergence Result

Lemma 102 If G = (V, E) is connected, then $\lim_{t\to\infty} p_t[i] = \frac{d_i}{2\cdot |E|}$ for all nodes i.

- Here is the intuition.
- The random walk algorithm picks the edges uniformly randomly.
- In the limit, the algorithm will be well "mixed" and forgets about the initial node.
- Then the probability of each node being visited is proportional to its number of incident edges.
- Finally, observe that $\sum_{i=1}^{n} d_i = 2 \cdot |E|$.

Proof of Lemma 102

- Let $\delta_t[i] = p_t[i] \frac{d_i}{2 \cdot |E|}$, the deviation.
- Define $\Delta_t = \sum_{i \in V} |\delta_t[i]|$, the total absolute deviation.
- Now we calculate the $p_{t+1}[i]$'s from the $p_t[i]$'s.
- Each node divides its $p_i[t]$ into d_i equal parts and distributes them to its neighbors.
- Each node adds those portions from its neighbors (including itself) to form $p_i[t+1]$.

- $p_t[i] = \delta_t[i] + \frac{d_i}{2 \cdot |E|}$ by definition.
- Splitting and giving the $\frac{d_i}{2\cdot |E|}$ part does not affect $p_{t+1}[i]$ because the same $\frac{1}{2\cdot |E|}$ is exchanged between any two neighbors.
- So we only consider the splitting of the $\delta_t[i]$ part.
- The $\delta_t[i]$'s are exchanged between adjacent nodes.

- Clearly $\sum_{i} \delta_{t+1}[i] = \sum_{i} \delta_{t}[i]$ because of conservation.
- But $\Delta_{t+1} = \sum_{i} |\delta_{t+1}[i]| \leq \sum_{i} |\delta_{t}[i]| = \Delta_{t}$.
 - If $\delta_t[i]$'s are all of the same sign, then $\Delta_{t+1} = \sum_i |\delta_{t+1}[i]| = \sum_i |\delta_t[i]| = \Delta_t$.
 - When $\delta_t[i]$'s of opposite signs meet at a node, that will reduce $\sum_i |\delta_{t+1}[i]|$.
- We next quantify the decrease $\Delta_t \Delta_{t+1}$.

- There is a node i^+ with $\delta_t[i^+] \ge \frac{\Delta_t}{2 \cdot |V|}$, and there is a node i^- with $\delta_t[i^-] \le -\frac{\Delta_t}{2 \cdot |V|}$.
 - Recall that $\sum_{i} \delta_t[i] = 0$ and $\sum_{i \in V} |\delta_t[i]| = \Delta_t$.
 - So the sum of all $\delta_t[i] \geq 0$ equals $\Delta_t/2$.
 - As there are at most |V| such $\delta_t[i]$, there must be one with magnitude at least $(\Delta_t/2)/|V|$.
 - Similarly for $\delta_t[i] \leq 0$.

- There is a path $[i_0 = i^+, i_1, i_2, \dots, i_{2m} = i^-]$ with an even number of edges between i^+ and i^- .
 - Add self-loops to make it true.
- The positive deviation $\delta_t[i^+]$ from i^+ will travel along this path for m steps, always subdivided by the degree of the current node.
- Similarly for the negative deviation $\delta_t[i^-]$ from i^- .

- At least a positive deviation equal to $\frac{1}{|V|^m}$ of the original amount will arrive at the middle node i_m .
- Similarly for a negative deviation from the opposite direction.
- So after $m \leq n$ steps, a positive deviation of at least $\frac{\Delta_t}{2 \cdot |V|^n}$ will cancel an equal amount of negative deviation.
- We do not need to care about cases where numbers of the same sign meet at a node; they will not change Δ_t .

Proof of Lemma 102 (concluded)

- So in n steps the total absolute deviation decreases from Δ_t to at most $\Delta_t (1 \frac{1}{|V|^n})$.
- But we already knew that Δ_t will never increase.^a
- So in the limit, $\Delta_t \to 0$ (but exponentially slow).

^aContributed by Mr. Chih-Duo Hong (R95922079) on January 11, 2007.

First Return Times

- Lemma 102 (p. 783) and theory of Markov chains^a imply that the walk returns to i every $2 \cdot |E|/d_i$ steps, asymptotically and on the average.
- Equivalently, if $v_t = i$, then the expected time until the walk comes back to i for the first time after t is $2 \cdot |E|/d_i$, asymptotically.
 - This is called the **mean recurrence time**.

^aParticularly, theory of homogeneous Markov chains on first passage time.

First Return Times (concluded)

- Although the above is an asymptotic statement, the said expected return time is the same for any t—including the beginning t = 0.
- So from the beginning and onwards, the expected time between two successive visits to node i is exactly $2 \cdot |E|/d_i$.

Average Time To Reach Target Node n

- Assume there is a path $[1, i_1, \ldots, i_m = n]$ from 1 to n.
 - If there is none, we are done because the algorithm then returns no false positives.
- Starting from 1, we will return to 1 every expected $2 \cdot |E|/d_1$ steps.
- Every cycle of leaving and returning uses at least two edges of 1.
 - They may be identical.

Average Time To Reach Target Node n (continued)

- So after an expected $\frac{d_1}{2}$ of such returns, the walk will head to i_1 .
 - There are d_1^2 pairs of edges incident on node 1 used for the cycles.
 - Among them, d_1 of them leave node 1 by way of i_1 and d_1 of them return by way of i_1 .
- The expected number of steps is

$$\frac{d_1}{2} \frac{2 \cdot |E|}{d_1} = |E|.$$

Average Time To Reach Target Node n (concluded)

- Repeat the above argument from i_1, i_2, \ldots
- After an expected number of $\leq n \cdot |E|$ steps, we will have arrived at node n.
- Markov's inequality (p. 410) suggests that we run the algorithm for $2n \cdot |E|$ steps to obtain the desired probability of success, 0.5.

Probability To Visit All Nodes

Corollary 103 With probability at least 0.5, the random walk algorithm visits all nodes in $2n \cdot |E|$ steps.

• Repeat the above arguments for this particular path: [1, 2, ..., n].

The Complete Algorithm

```
1: x := 1;
2: c := 0;
 3: while x \neq n and c < 2n \cdot |E| do
     Pick y uniformly from x's neighbors (including x);
 5: x := y;
 6: c := c + 1;
 7: end while
8: if x = n then
   "yes";
9:
10: else
    "no";
11:
12: end if
```

Some Graph-Theoretic Notions

- A d-regular (undirected) graph has degree d for each node.
- Let G be d-regular.
- Each node's incident edge is labeled from 1 to d.
 - An edge is labeled at both ends.

Universal Sequences^a

- A sequence of numbers between 1 and d results in a walk on the graph if given the starting node.
 - E.g., (1, 3, 2, 2, 1, 3) from node 1.
- A sequence of numbers between 1 and d is called **universal** for d-regular graphs with n nodes if:
 - For any labeling of any n-node d-regular graph G, and for any starting node, all nodes of G are visited.
 - A node may be visited more than once.
- Useful for museum visitors, security guards, etc.

^aAttributed to Cook.

Existence of Universal Sequences

Theorem 104 For any n, a universal sequence exists for the set of d-regular connected undirected n-node graphs.

- Enumerate all the different labelings of d-regular n-node connected graphs and all starting nodes.
- Call them $(G_1, v_1), (G_2, v_2), \ldots$ (finitely many).
- S_1 is a sequence that traverses G_1 , starting from v_1 .
 - A spanning tree will accomplish this.
- S_2 is a sequence that traverses G_2 , starting from the node at which S_1 ends when applied to (G_2, v_2) .

The Proof (concluded)

- S_3 is a sequence that traverses G_3 , starting from the node at which S_1S_2 ends when applied to (G_3, v_3) , etc.
- The sequence $S \equiv S_1 S_2 S_3 \cdots$ is universal.
 - Suppose S starts from node v of a labeled d-regular n-node graph G'.
 - Let $(G', v) = (G_k, n_k)$, the kth enumerated pair.
 - By construction, S_k will traverse G' (if not earlier).

A $O(n^3 \log n)$ Bound on Universal Sequences

Theorem 105 For any n and d, a universal sequence of length $O(n^3 \log n)$ for d-regular n-node connected graphs exists.

- Fix a d-regular labeled n-node graph G.
- A random walk of length $2n \cdot |E| = n^2 d = O(n^2)$ fails to traverse G with probability at most 1/2.
 - By Corollary 103 (p. 797).
 - This holds wherever the walk starts.
- The failure probability for G drops to $2^{-\Theta(n \log n)}$ if the random walk has length $\Theta(n^3 \log n)$.

The Proof (continued)

- There are $2^{O(n \log n)}$ d-regular labeled n-node graphs.
 - Each node has $\leq n^d$ choices of neighbors.
 - So there are $\leq n^{d+1}$ d-regular graphs on nodes $\{1, 2, \dots, n\}$.
 - Each node's d edges are labeled with unique integers between 1 and d.
 - Hence the count is

$$\leq n^{d+1}(d!)^n = n^{O(n)} = 2^{O(n \log n)}.$$

The Proof (concluded)

- The probability that there exists a d-regular labeled n-node graph that the random walk fails to traverse can be made at most 1/2.
 - Lengthen the length of the walk suitably.
- Because the probability is less than one, there exists a walk that traverses all labeled d-regular graphs.

