1:

a) $S = \{RRS, RLS, RSR, RSL, RSSS, SRR, SRL, SRSS, SLR, SLSS, SLL, SSRS, SSSR, SSSL, SSSSS, SSLS, LRS, LLS, LSL, LSSS, LSR\}$

Answer: There are 21 outcomes

- b) Answer: $A = \{RRS, SRR, SRL, SRSS, LRS\}$
- c) Answer: $B = \{RLS, RSL, SRL, SLR, LRS, LSR\}$
- e) $X = \{x \mid x \in \{ [0,4], [0,2], [1,3], [1,5], [2,4], [3,5] \} \}$

2:

To order 7 objects you do the factorial

Answer: 7!

- Creating a 3 person team implicitly creates a 4 person team thus you do 7 choose 3

 Answer: $\binom{7}{3}$
- **c)** We can think of the 4 person team having 2 spots reserved for both Vanya and Allison. Thus we choose 2 slots from 4 from the 7 choose 4 teams.

Answer: $\binom{4}{2} \div \binom{7}{4} = \frac{6}{35}$

d)Same as before we just are now choosing 4 people from 6 remaining members.

Answer: $\binom{4}{2} \div \binom{6}{4} = \frac{6}{15}$

3:

a)
$$P(Feature) = P(crime) * P(feat|crime) + P(scifi) * P(feat|scifi) + P(comedy) * P(feat|comedy)$$

$$P(Feature) = 0.44$$

Answer: P(Feature) = 0.44 We use the Law of total probability

b)
$$P(crime|feature) = \frac{P(feature|crime)P(crime)}{P(feature)} = \frac{0.6(0.5)}{0.44} = \frac{0.3}{0.44}$$

Answer: $P(crime|feature) = \frac{0.3}{0.44}$ We use Bayes rule.

c)

His full name is

Jugemu Jugemu (寿限無、寿限無)

Gokō-no surikire (五劫の擦り切れ)

Kaijarisuigyo-no (海砂利水魚の)

Suigyōmatsu Unraimatsu Fūraimatsu (水行末 雲来末 風来末)

Kuunerutokoro-ni Sumutokoro (食う寝る処に住む処)

Yaburakōji-no burakōji (やぶら小路の藪柑子)

Paipopaipo Paipo-no-shūringan (パイポパイポ パイポのシューリンガン)

Shūringan-no Gūrindai (シューリンガンのグーリンダイ)

Gūrindai-no Ponpokopī-no Ponpokonā-no (グーリンダイのポンポコピーのポンポコナーの)

Chōkyūmei-no Chōsuke (長久命の長助)

But we call him Bob

4:

Ways numbers add to 10 *S* = {244,424,442,334,343,433}

244	$\binom{10}{2}\binom{8}{4}\binom{4}{4}$	3,375
424	$\binom{10}{4}\binom{6}{2}\binom{4}{4}$	3,150
442	$\binom{10}{4}\binom{6}{4}\binom{2}{4}$	3,150
334	$\binom{10}{3}\binom{7}{3}\binom{4}{4}$	4,200
343	$\binom{10}{3}\binom{7}{4}\binom{3}{4}$	4,200
433	$\binom{10}{4}\binom{6}{3}\binom{3}{4}$	4,200

Answer: Thus the total unique trips he can take is 22,275