Introduction to Computer Networks

Foundation

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of Professor Nen-Fu Huang (E-mail: nfhuang@cs.nthu.edu.tw).

Outline

- Applications
- Network Connectivity
- Network Architecture
- Network Performance

Applications

- Most people know about the Internet (a computer network) through applications
 - World Wide Web
 - On line games
 - Email (Gmail, hotmail,...)
 - Online Social Network (Facebook, twitter,...)
 - Streaming Audio Video (Youtube, ppstream, kkbox, ...)
 - File Sharing (dropbox, ...)
 - Instant Messaging (Skype, IM+, MSN, Line, WeChat,...)
 - ...

Example of an application

A multimedia application including video-conferencing

Application Protocol

- URL
 - Uniform resource locater
 - http://www.sharecourse.net/sharecourse/
- HTTP
 - Hyper Text Transfer Protocol
- TCP
 - Transmission Control Protocol
- 17 messages for one URL request
 - 6 to find the IP (Internet Protocol) address
 - 3 for connection establishment of TCP
 - 4 for HTTP request and acknowledgement
 - Request: I got your request and I will send the data
 - Reply: Here is the data you requested; I got the data
 - 4 messages for tearing down TCP connection

Outline

- Applications
- **■** Network Connectivity
- Network Architecture
- Network Performance

Network Connectivity

- Important terminologies
 - Link
 - Nodes
 - Point-to-point
 - Multiple access
 - Switched Network
 - Circuit Switched
 - Packet Switched
 - Packet, message
 - Store-and-forward

Multiple access

Network Connectivity

- Terminologies (contd.)
 - Hosts
 - Switches
 - Spanning tree
 - internetwork
 - Router/gateway
 - Host-to-host connectivity
 - Address
 - Routing
 - Unicast/broadcast/multicast
 - LAN (Local Area Networks)
 - MAN (Metropolitan Area Networks)
 - WAN (Wide Area Networks)

(a) A switched network

(b) Interconnection of networks

How datagrams are delivered in an Internet?

Cost-Effective Resource Sharing

- Resource: links and nodes
- How to share a link?
 - Multiplexing
 - De-multiplexing

Multiplexing multiple logical flows over a single physical link

Cost-Effective Resource Sharing

- Synchronous Time-division Multiplexing (TDM)
 - ▶ Time slots/data transmitted in predetermined slots

Cost-Effective Resource Sharing

Statistical Multiplexing

- Data is transmitted based on demand of each flow.
- What is a flow?
- Packets vs. Messages
- FIFO, Round-Robin, Priorities (Quality-of-Service (QoS))
- Congested?

A switch multiplexing packets from multiple sources onto one shared link

Logical Channels

- Logical Channels
 - Application-to-Application communication path or a pipe

Process communicating over an abstract channel

Network Reliability

- Network should hide the errors
- Bits are lost
 - Bit errors (1 to a 0, and vice versa)
 - Burst errors several consecutive errors
- Packets are lost (Congestion)
- Links and Node failures
- Messages are delayed
- Messages are delivered out-of-order
- Third parties eavesdrop

Outline

- Applications
- Network Connectivity
- Network Architecture
- Network Performance

Network Architecture

Application Programs

Process-to-process Channels

Host-to-Host Connectivity

Hardware

Example of a layered network system

Protocols

- Protocol defines the interfaces between
 - the layers in the same system and with
 - the layers of peer system
- Building blocks of a network architecture
- Each protocol object has two different interfaces
 - Service interface: operations on this protocol
 - Peer-to-peer interface: messages exchanged with peer

Protocol Interfaces

Service and Peer Interfaces for a protocol

Protocols

- Protocol Specification: pseudo-code, state transition diagram, message format
- Interoperable: when two or more protocols that implement the specification accurately
- IETF: Internet Engineering Task Force
 - Define Internet standard protocols

Protocol Architecture

Example of a protocol architecture nodes are the protocols and links the "depends-on" relation

Encapsulation

High-level messages are encapsulated inside of low-level messages

OSI Architecture

The OSI 7-layer Model
OSI – Open Systems Interconnection

OSI Architecture

OSI Architecture

OSI – Open Systems Interconnection

- Physical Layer (如何將原始資料在 link 上傳輸)
 - Handles the transmission of raw bits over a communication link
 - Coaxial cable

- Twisted pair
- Optical Fiber
- Air space (wireless radio channel)
- Different Signal Coding schemes

- Data Link Layer (如何將 frame 傳給直接相連的主機或設備)
 - Collects a stream of bits into a frame
 - How to transmit a frame to a directly connected host (destination)?
 - MAC (Media Access Control Protocol)
 - CSMA/CD (IEEE 802.3 Ethernet)
 - CSMA/CA (IEEE 802.11 Wireless LAN)

Point-to-point

- Layer 2 devices
- Switches

- Network Layer (如何將封包透過 Internet 送給目的地主機)
 - How to transmit frames to a host via the Internet?
 - Handles routing among nodes within a packet-switched network
 - Data exchanged between nodes in this layer is called a packet
 - IP protocol
 - Routers
 - Routing protocols
 - ▶ RIP
 - OSPF
 - **BGP**
 - Routing Tables

Interconnection of networks

- Transport Layer (提供不同主機 processes 之間的資料傳送)
 - Implements a process-to-process channel
 - Unit of data exchanges in this layer is called a message
 - TCP (Transmission Control Protocol) Reliable service
 - UDP (User Datagram Protocol) Unreliable service

- Session Layer
 - Provides a name space that is used to tie together the potentially different transport streams that are part of a single application
- Presentation Layer
 - Concerned about the format of data exchanged between peers
- Application Layer
 - Standardize common type of exchanges
 - FTP/E-mail/DNS/HTTP/Browsers/FB,

The transport layer and the higher layers typically run only on endhosts and not on the intermediate switches and routers

Internet Architecture

- Defined by IETF
- Three main features
 - Does not imply strict layering. The application is free to bypass the defined transport layers and to directly use IP or other underlying networks

Internet Architecture

 An hour-glass shape – wide at the top, narrow in the middle and wide at the bottom. IP serves as the focal point for the architecture

Internet Architecture

Internet Architecture

 In order for a new protocol to be officially included in the architecture, there needs to be both a protocol specification and at least one (and preferably two) representative implementations of the specification

Outline

- Applications
- Network Connectivity
- Network Architecture
- **Network Performance**

Network Performance

Bandwidth

- Width of the frequency band
- Number of bits per second that can be transmitted over a communication link
- 1 Mbps: 1 x 10⁶ bits/second
- 1 x 10⁻⁶ seconds to transmit each bit or imagine that a timeline, now each bit occupies 1 micro second space.
- On a 2 Mbps link the width is 0.5 micro second.
- Smaller the width more will be transmission per unit time.

Bandwidth

Bits transmitted at a particular bandwidth can be regarded as having some width:

- (a) bits transmitted at 1Mbps (each bit 1 μs wide);
- (b) bits transmitted at 2Mbps (each bit 0.5 μs wide).

Network Performance

- Latency = Propagation time + transmission time + queuing time
- Propagation time = distance/speed of light
- Transmission time = size/bandwidth

- One bit transmission => propagation is important (短資料很快就送完, 但需要 長時間才能傳到對方, 資料已送完, 但前導資料還未到達對方)
 - Propagation time >> transmission time
- Large bytes transmission => bandwidth is important (長資料很慢才能送完,未送完前,前導資料已到對方)
 - Transmission time >> propagation time

Delay X Bandwidth

- The channel between a pair of processes can be viewed as a pipe
- Latency (delay): length of the pipe
- Bandwidth: width of the pipe
- Delay x Bandwidth means how many data can be stored in the pipe
- For example, delay of 80 ms and bandwidth of 100 Mbps
- \Rightarrow 80 x 10⁻³ seconds x 100 x 10⁶ bits/second
- \Rightarrow 8 x 10⁶ bits = 8 M bits = 1 MB data.

Network as a pipe

Delay X Bandwidth

- Relative importance of bandwidth and latency depends on application
 - For large file transfer, bandwidth is critical
 - For small messages (HTTP, NFS, etc.), latency is critical
 - Variance in latency (jitter) can also affect some applications (e.g., audio/video conferencing)

Delay X Bandwidth

- if the sender keeps the pipe full, delay x bandwidth is the number of bits the sender must transmit before the first bit arrives at the receiver
- Takes another one-way latency to receive a response from the receiver
- The sender will not fully utilize the network if the sender does not fill the pipe
 - send a whole delay x bandwidth product's worth of data before it stops to wait for a signal
 - ▶在停下來等對方回應之前應該要傳送 delay x bandwidth 的資料量

Throughput

- Infinite bandwidth
 - RTT (Round Trip Time) dominates
 - Throughput = TransferSize / TransferTime
 - TransferTime = RTT + TransferSize/Bandwidth
 - Its all relative

• 1-MB file to 1-Gbps link looks like a 1-KB packet to 1-Mbps

link

Summary

- A layered architecture for computer network
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Session layer / Presentation Layer / Application layer
- Two performance metrics used to analyze the performance of computer networks
 - Bandwidth
 - Delay