0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

T5844156025 SLC500, TPOP MIDI TETRA THERM ASEPTIC FLEX 10

IDENTIFICACION DE DOCUMENTOS

EL ULTIMO DIGITO EN EL NUMERO DEL DIBUJO SE UTILIZA PARA IDENTIFICAR EL TIPO DE DOCUMENTO:

- -O LISTA DE CONTENIDO
- -1 LISTA DE COMPONENTES
- -2 EXPLICACION DE FUNCION
- -3 DOCUMENTACION DE SOFTWARE
- -4 DIBUJO DE MONTAJE
- -5 DIAGRAMA DE CIRCUITOS
- -6 TABLA DE INTERCONEXIONES
- -7 DIBUJO DE INSTALACION

(E.G. 3541-xxxx-5 ES EN DIAGRAMA DE CIRCUITOS)

IDENTIFICACION DE DOCUMENTOS

Nota			Tetra Pak Processing Systems	C C P	05.08.24		3542-4276	125
Sign.			No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5	POP MIC		LEX 10	Cont. en página 1 Página
		Observaciones dibujo	3542-4276-0		 (11 11321	110 1		U

						Este dibujo no	podrá copiarse, transmitirse	o comunicarse a terceros sin el	consentimento de Tetra Pak AB
0	1	2	3	4	5	6	7	8	9

REVISIÓN	PAGINA CONTENIOO	REVISIÓN PAGINA CONTENIOO
	=0/0 IDENTIFICACION DE DOCUMENTOS	=5/2 NEUMATICOS
	=0/1 LISTA DE CONTENIDO	=5/3 NEUMATICOS
	=0/2 LISTA DE CONTENIDO	=5/4 NEUMATICOS
	=0/3 LISTA DE CONTENIDO	=5/5 NEUMATICOS
	=0/4 LISTA DE CONTENIDO	=5/6 NEUMATICOS
	=1/1 LISTA DE COMPONENTES	=5/7 NEUMATICOS
	=1/2 LISTA DE COMPONENTES	=5/8 NEUMATICOS
	=1/3 LISTA DE COMPONENTES	=5/9 MOTOR, VOLTAJE DE ALIMENTACION
	=1/4 LISTA DE COMPONENTES	=5/10 MOTOR, VOLTAJE DE ALIMENTACION
	=1/5 LISTA DE COMPONENTES	=5/11 CONTROL, VOLTAJE DE ALIMENTACION
	=1/6 LISTA DE COMPONENTES	=5/12 CONTROL, VOLTAJE DE ALIMENTACION
	=1/7 LISTA DE COMPONENTES	=5/13 24VCD, VOLTAJE DE ALIMENTACION
	=1/8 LISTA DE COMPONENTES	=5/14 24VCD, VOLTAJE DE ALIMENTACION
	=1/9 LISTA DE COMPONENTES	=5/15 SLC500, ALIMENTACION
	=1/10 LISTA DE COMPONENTES	=5/16 ETHERNET
	=4/1 DIBUJO DE MONTAJE	= 5 / 17 RS 2 3 2
	=4/2 DIBUJO DE MONTAJE	=5/18 VENTILADOR DE ARMARIO, LAMPARA DE ALARMA
	=4/3 DIBUJO DE MONTAJE	=5/19 REGISTRADOR
	=5/0 IDENTIFICACION DE CABLEADO DENTRO DEL ARMARIO DE CONTROL	=5/20 TRANSMISOR DE NIVEL
	=5/1 NEUMATICOS	=5/21 TRANSMISOR DE CAUDAL

Nota			Tetra Pak Processing Systems	C C P	L A	05.08.24		3542-4276	125
Sign.			No. de proyecto.	T 5 8 4	41560	2 5	•		Cont. en página
Fecha			6801269			POP MID RM ASEP		LEX 10	Página
		Observaciones dibujo	3542-4276-0				110 1	LLX IO	

							Este dibujo no	o podrá copiarse, transmitirse	o comunicarse a terceros sin e	el consentimento de Tetra Pak
	0	1	2	3	4	5	6	7	8	9
_										
				1	ISTA DE CONT	ENTDO				
			=	<u>L</u> .	TOLU DE COMI	LNIDU				

REVISIÓN PAGINA CONTENIDO	REVISIÓN PAGINA CONTENIDO
=5/22 TRANSMISOR DE CAUDAL	=5/42 MODULO DE ENTRADA DIGITAL 2_13
=5/23 TRANSMISOR DE CONDUCTIVIDAD	=5/43 MODULO DE ENTRADA DIGITAL 2_13
=5/24 CONFIGURACION ANALOGICA	=5/44 MODULO DE ENTRADA DIGITAL 2_13
=5/25 MODULO DE ENTRADA ANALOGICA 1_2	=5/45 MODULO DE ENTRADA DIGITAL 2_14
=5/26 MODULO DE ENTRADA ANALOGICA 1_2	=5/46 MODULO DE ENTRADA DIGITAL 2_14
=5/27 MODULO DE ENTRADA ANALOGICA 1_3	=5/47 MODULO DE ENTRADA DIGITAL 2_15
=5/28 MODULO DE ENTRADA ANALOGICA 1_3	=5/48 MODULO DE ENTRADA DIGITAL 2_15
=5/29 MODULO DE ENTRADA ANALOGICA 1_4	=5/49 MODULO DE SALIDA DIGITAL 2_17
=5/30 MODULO DE ENTRADA ANALOGICA 1_4	=5/50 MODULO DE SALIDA DIGITAL 2_17
=5/31 MODULO DE SALIDA ANALOGICO 1_7	=5/51 MODULO DE SALIDA DIGITAL 2_17
=5/32 MODULO DE SALIDA ANALOGICO 1_7	=5/52 MODULO DE SALIDA DIGITAL 2_17
=5/33 MODULO DE SALIDA ANALOGICO 1_8	=5/53 MODULO DE SALIDA DIGITAL 2_18
=5/34 MODULO DE SALIDA ANALOGICO 1_8	=5/54 MODULO DE SALIDA DIGITAL 2_18
=5/35 MODULO DE SALIDA ANALOGICO 1_9	=5/55 MODULO DE SALIDA DIGITAL 2_18
=5/36 MODULO DE SALIDA ANALOGICO 1_9	=5/56 MODULO DE SALIDA DIGITAL 2_18
=5/37 MODULO DE ENTRADA DIGITAL 1_12	=5/57 MODULO DE SALIDA DIGITAL 2_19
=5/38 MODULO DE ENTRADA DIGITAL 1_12	=5/58 MODULO DE SALIDA DIGITAL 2_19
=5/39 MODULO DE ENTRADA DIGITAL 1_12	=5/59 MODULO DE SALIDA DIGITAL 2_19
=5/40 MODULO DE ENTRADA DIGITAL 1_12	=5/60 MODULO DE SALIDA DIGITAL 2_19
=5/41 MODULO DE ENTRADA DIGITAL 2_13	=5/61 MODULO DE SALIDA DIGITAL 2_20

Nota			Tetra Pak Processing Systems	C C P	L A	05.08.24		3542-4276	No. de páginas 125	
Sign.			No. de proyecto. 6801269		415602 00, TI	25 POP MID) I		Cont. en página 3 Página	
Fecha			No. dibujo.	TETR	A THE	RM ASEF	TIC F	LEX 10	2	
		Observaciones dibujo	3542-4276-0							

						tate dibajo no	podra copiarse, cransmittirse	o comunicarse a cerceros sin el	conzentimento de terra ray	HD.
0	1	2	3	4	5	6	7	8	9	

SIÓN PAGINA CONTENIDO	REVISIÓN PAGINA CONTENIDO
=5/62 MODULO DE SALIDA DIGITAL 2_20	=5/82 SEÑALES PARA AFM3
=5/63 MODULO DE SALIDA DIGITAL 2_21	=5/83 SEÑALES PARA AFM4/ALSAFE
=5/64 MODULO DE SALIDA DIGITAL 2_21	=6/0 LISTA DE CABLES
=5/65 MODULO DE SALIDA DIGITAL 2_22	=6/1 LISTA DE CABLES
=5/66 MODULO DE SALIDA DIGITAL 2_22	=6/2 LISTA DE CABLES
=5/67 PARO EMERGENCIA	=6/3 LISTA DE CABLES
=5/68 SEÑALES INVERSOR DE FRECUENCIA, M2	= 6 / 11 X1
=5/69 SEÑALES INVERSOR DE FRECUENCIA, M9	= 6 / 1 2 X 3
=5/70 SEÑALES INVERSOR DE FRECUENCIA, M10	= 6 / 1 3 X 3
=5/71 SEÑALES PARA EL HOMOGENEIZADOR	= 6 / 1 4 X 3
=5/72 SEÑALES PARA EL HOMOGENEIZADOR	= 6 / 15 X 3
=5/73 SEÑALES PARA EL HOMOGENEIZADOR	= 6 / 1 6 X 4
=5/74 SEÑALES PARA EL HOMOGENEIZADOR	= 6 / 17 X 4
=5/75 SEÑALES PARA EL HOMOGENEIZADOR	= 6 / 1 8 X 4
=5/76 SEÑAL PARA ALIM. PROD.	= 6 / 1 9 X / G
=5/77 SEÑALES PARA UNIDAD CIP	= 6 / 2 0 X / K
=5/78 SEÑALES PARA COLECC.	= 6 / 2 1 X / K
=5/79 SEÑALES PARA V15	= 6 / 2 2 X / K
=5/80 SEÑALES PARA AFM1	= 6 / 2 3 X / Q
=5/81 SEÑALES PARA AFM2	= 6 / 2 4 X / U

			Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplan	No. de páginas	1
Nota		Tetra Pak Processing Systems	CCP	LA	05.08.24	JL	3542-4276	125	
				•	•	•	•	Cont. en página	1
Sign.		No. de proyecto.	T 5 8 4	41560	2 5			4	
		G 8 0 1 2 6 9	SI C 5	nn T	POP MIC	1 T		Página	
Fecha		No. dibujo.		•			LEX 10		
			ILLIK	н іпс	VII H 2 E L	IIC F	LEX 10	3	
	Observaciones dibujo	3542-4276-0							

Nota			Tetra Pak Processing Systems	Departamento CCP	Diseñador L A	05.08.24		3542-4276	No. de páginas 125
Sign.			No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5		POP MID			Cont. en página = 1 / 1 Página
		Observaciones dibujo	3542-4276-0	TETR	A THE	RM ASEP	TIC F	LEX 10	4

Este dibujo no podrá copiarse, transmitirse o comunicarse a terceros sin el consentimento de Tetra Pak AB.

6 7 8 9

No. POS.	ARTICULO No.	REF. PÁG.	CANTIDAD	DENOMINACACION	No. REV
D V	3530210213	5/12.2	10,0	TERMINAL, WDU4	
A 1	63180192432	5/15.1	1,0	BASTIDOR, SLC500 A13	
A 1	63180192534	5/15.1	1,0	SUMINISTRO ELÉCTRICO, SLC500 P4	
A 1	63180192437	5/15.1	1,0	CABLE DE EXTENSIÓN DE E/S,1,27m,ROCKWELL 1746-C16	
A 1	63180192491	5/15.1	5,0	CUBIERTA, SLC500 N2	
A 1 _ 0	63180192559	5/16.2	1,0	UNIDAD CENTRAL,SLC-5/05 64k ENET	
A 1 _ 2	63180192502	5/25.1	1,0	UNIDAD DE E/S,SLC500 NI8	
A1_3	63180192502	5/27.1	1,0	UNIDAD DE E/S,SLC500 NI8	
A1_4	63180192502	5/29.1	1,0	UNIDAD DE E/S,SLC500 NI8	
A1_7	63180192505	5/31.1	1,0	UNIDAD DE E/S,SLC500 NO4I	
A1_8	63180192505	5/33.1	1,0	UNIDAD DE E/S,SLC500 NO4I	
A 1 _ 9	63180192505	5/35.1	1,0	UNIDAD DE E/S,SLC500 NO4I	
A1_12	63180192464	5/37.1	1,0	UNIDAD DE E/S,SLC500 IB16	
A 2	63180192432	5/15.3	1,0	BASTIDOR, SLC500 A13	
A 2	63180192532	5/15.3	1,0	SUMINISTRO ELÉCTRICO, SLC500 P2	
A 2	63180192491	5/15.3	4.0	CUBIERTA, SLC500 N2	
A 2 _ 1 3	63180192464	5/41.1	1,0	UNIDAD DE E/S,SLC500 IB16	
A 2 _ 1 4	63180192464	5/45.1	1,0	UNIDAD DE E/S,SLC500 IB16	
A 2 _ 1 5	63180192464	5/47.1	1,0	UNIDAD DE E/S,SLC500 IB16	
A 2 _ 1 7	63180192514	5/49.1	1,0	UNIDAD DE E/S,SLC500 OB16	
A 2 _ 1 8	63180192514	5/53.1	1,0	UNIDAD DE E/S,SLC500 OB16	
A 2 _ 1 9	63180192514	5/57.1	1,0	UNIDAD DE E/S,SLC500 OB16	
A 2 _ 2 0	63180192514	5/61.1	1.0	UNIDAD DE E/S,SLC500 OB16	
A 2 _ 2 1	63180192514	5/63.1	1,0	UNIDAD DE E/S,SLC500 OB16	
A 2 _ 2 2	63180192514	5/65.1	1,0	UNIDAD DE E/S,SLC500 OB16	
A 1 0	63180196241	5/17.1	1,0	UNIDAD SEGURIDAD PROGRAMA,SLC500 PSD	
A10	63180192545	5/17.1	1,0	CABLE PARA COMUNIC. RS232,SLC500 CP3	

2 3

			A Takaa Dak	Departamento	Diseñador	Fecha	Verificado	No. de proye cto Epla	n No. de páginas
Nota			Tetra Pak Processing Systems	CCP	LA	05.08.24	JL	3542-4276	1 2 5
					•	•	•	•	Cont. en página
Sign.			No. de proyecto.	T 5 8 4		2			
			G 8 0 1 2 6 9	SLC500, TPOP MIDI TETRA THERM ASEPTIC FLEX 10					Página
Fecha			No. dibujo.						
				ILLIK	н іпс	VII H 2 E L	IIC F	LEX IO	1 1
		Observaciones dibujo	3542-4276-1						

						Este dibujo no	podrá copiarse, transmitirse	o comunicarse a terceros sin el	consentimento de Tetra Pak AB.
0	1	2	3	4	5	6	7	8	9

No. POS.	ARTICULO No.	REF. PÁG.	CANTIDAD	DENOMINACACION	No. R	₹E V
A10	63180196431	5/17.1	1,0	CABLE DE SUMINISTRO,ELFA 42-048-55		
A 1 0	903340004	5/17.1	2,0	BATERIA,AAA/LRO3		
A 2 0	904593310	5/16.1	1.0	MÓDULO DE OPERADOR,10" TFT+IFC CF/ET,BEIJER ELECTRONICS		
A 2 0	905034189	5/16.1	1,0	MEMORIA,COMPACT FLASH,64MB,SILICON SYSTEM CF64		
A 2 0	63180198337	5/16.1	1,0	CABLE BLINDADO,RJ45 3M		
A100	60099040709	5/16.6	1,0	INTERRUPTOR,5TX,ETHERNET,10/100Mbit/s,24V,PH0ENIX 2832085		
A 1 0 0	60099040719	5/16.6	1,0	CABLE, BLINDADO, RJ45, 1m, ETHERNET, COMPUTER CABLE STP-61		
E100	63180159752	5/18.7	1,0	ENFRIADOR, 120VAC, 650W, FRIGADON MCL-06-TP		
F	3530210212	5/12.0	5,0	TERMINAL, WDU2.5		
F10	3525500134	5/13.0	1,0	FUSIBLE, 2.0A F		
F 1 0	63180151821	5/13.0	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V		
F 1 1	3525500134	5/13.1	1,0	FUSIBLE, 2.0A F		
F 1 1	63180151821	5/13.1	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V		
F 1 2	3525500134	5/13.2	1,0	FUSIBLE, 2.0A F		
F 1 2	63180151821	5/13.2	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V		
F13	3525500134	5/14.0	1,0	FUSIBLE, 2.0A F		
F13	63180151821	5/14.0	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V		
F14	3525500134	5/14.1	1,0	FUSIBLE, 2.0A F		
F14	63180151821	5/14.1	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V		
F 1 5	3525500134	5/14.2	1,0	FUSIBLE, 2.0A F		
F15	63180151821	5/14.2	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V		
F 1 6	3525500134	5/14.2	1,0	FUSIBLE, 2.0A F		
F 1 6	63180151821	5/14.2	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V		
F 1 7	3525500133	5/14.3	1,0	FUSIBLE, 1.6A F		
F 1 7	63180151821	5/14.3	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V		
F 1 8	3525500133	5/14.4	1,0	FUSIBLE, 1.6A F		
F18	63180151821	5/14.4	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V		

Nota		Tetra Pak Processing Systems	Departamento CCP	Diseñador L A	05.08.24		3542-4276	No. de páginas 125
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5		25 POP MID RM ASEP		IFX 10	Cont. en página 3 Página
	Observaciones dibujo	3542-4276-1	1511		2			

Este dibujo no podrá copiarse, transmitirse o comunicarse a terceros sin el consentimento de Tetra Pak RB.

1 2 3 4 5 6 7 8 9

No. POS.	ARTICULO No.	REF. PÁG.	CANTIDAD	DENOMINACACION	No. REV
F19	3525500133	5/14.5	1,0	FUSIBLE, 1.6A F	
F19	63180151821	5/14.5	1.0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V	
F 2 0	3525500133	5/14.5	1.0	FUSIBLE, 1.6A F	
F 2 0	63180151821	5/14.5	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V	
F 2 1	3525500133	5/14.6	1,0	FUSIBLE, 1.6A F	
F 2 1	63180151821	5/14.6	1.0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V	
F 2 2	3525500133	5/14.7	1.0	FUSIBLE, 1.6A F	
F 2 2	63180151821	5/14.7	1,0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V	
F 2 3	3525500133	5/14.7	1,0	FUSIBLE, 1.6A F	
F 2 3	63180151821	5/14.7	1.0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V	
F 2 4	3525500134	5/14.8	1.0	FUSIBLE, 2.0A F	
F 2 4	63180151821	5/14.8	1.0	PORTAFUSIBLES,5X20MM,IND.,WSI6 24/48V	
F31	905033668	5/11.2	1.0	DISYUNTOR, D4/1, SIEMENS 5SY4104-8	
F 3 2	905033666	5/12.5	1.0	DISYUNTOR, D1/1, SIEMENS 5SY4101-8	
F100	905031748	5/12.4	1,0	DISPOSITIVO DE CORRIENTE RESIDUAL,25A,2P,30mA,SIEMENS 5SM3312-6	
G 0	63180194413	5/12.0	1,0	UNIDAD DE DESERVA DE ALIM. UPS,700VA,SIEMENS A700	
G 0	14851650101	5/12.0	1,0	SOPORTE, UPS	
G 0	901100141	5/12.0	1,0	SUBCONECTOR D,9 POLOS,MACHO	
G 3	904595632	5/13.0	2,0	SUMINISTRO ELÉCTRICO,100-240VAC/24VDC,2.5A,OMRON S8TS-06024_1	
G 3	904582904	5/13.0	1.0	CONECTOR, BUS, AC/DC, OMRON S8TS	
G 4	904595632	5/14.0	4.0	SUMINISTRO ELÉCTRICO,100-240VAC/24VDC,2.5A,DMRON S8TS-06024_1	
G 4	904582904	5/14.0	3,0	CONECTOR, BUS, AC/DC, OMRON S8TS	
G 2 0	60099050346	5/9.2	1,0	CONVERTIDOR DE FRECUENCIA,400V,IP54,VLT5032,DANFOSS 175Z4159	
G 4 0	63180198141	5/9.4	1.0	ARRANCADOR PROGRESIVO,45A,15/22kW,SIEMENS 3RW3036-1AB14	
G 4 0	63180198146	5/9.4	1.0	VENTILADOR, ARRANCADOR PROGRESIVO, 34-46, SIEMENS 3RW3936-8A	
G 9 0	60099050343	5/10.0	1.0	CONVERTIDOR DE FRECUENCIA,400V,IP54,VLT5016,DANFOSS 175Z4105	
G100	60099050343	5/10.3	1,0	CONVERTIDOR DE FRECUENCIA,400V,IP54,VLT5016,DANFOSS 175Z4105	

Nota		Tetra Pak Processing Systems	C C P	Diseñador L A	05.08.24		3542-4276	No. de páginas 125	
Sign.		No. de proyecto. 6801269 No. dibujo.	S L C 5		POP MID		LEX 10	Cont. en página 4 Página	
	Observaciones dibujo	3542-4276-1			VII IIJLI	1101	LLA 10	3	

Este dibujo no podrá copiarse, transmitirse o comunicarse a terceros sin el consentimento de Tetra Pak RB.

0 1 2 3 4 5 6 7 8 9

No. POS.	ARTICULO No.	REF. PÁG.	CANTIDAD	DENOMINACACION	No. REV.
H100_G	60099050614	5/52.8	1,0	UNIDAD DE LÁMPARA, VERDE, SIRENA ELECTRA TWS F	
H100_6	60099050691	5/52.8	1.0	BOMBILLA,BA15D,24V,5W,SIRENA ELECTRA 27-16027781	
H100_R	60099050613	5/18.2	1.0	UNIDAD DE LÁMPARA,ROJO,SIRENA ELECTRA TWS F	
H100_R	60099050691	5/18.2	1.0	BOMBILLA,BA15D,24V,5W,SIRENA ELECTRA 27-16027781	
H100_R	60099050601	5/18.2	1.0	UNIDAD BÁSICA, SIRENA ELECTRA TWS BC	
H100_Y	60099050615	5/18.3	1.0	UNIDAD DE LÁMPARA,AMARILLO,SIRENA ELECTRA TWS F	
H100_Y	60099050691	5/18.3	1.0	BOMBILLA,BA15D,24V,5W,SIRENA ELECTRA 27-16027781	
K 2	905031772	5/49.1	1,0	CONTACTOR, SIRIUS, S2, 18.5kW, 230V, SIEMENS 3RT1035-1AL20	
K 2	59457179117	5/49.1	1,0	CONTACTO AUXILIAR, SIRIUS, SO-S12, 1NO, F, SIEMENS 3RH1921-1CA10	
K 2	59457179118	5/49.1	1,0	CONTACTO AUXILIAR, SIRIUS, SO-S12, 1NC, F, SIEMENS 3RH1921-1CA01	
K 2 G	63180195271	5/49.1	1,0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
К 4	905031773	5/49.4	1,0	CONTACTOR, SIRIUS, S2, 22kW, 230V, SIEMENS 3RT1036-1AL20	
К 4	59457179117	5/49.4	1,0	CONTACTO AUXILIAR, SIRIUS, SO-S12, 1NO, F, SIEMENS 3RH1921-1CA10	
K 4	59457179118	5/49.4	1,0	CONTACTO AUXILIAR, SIRIUS, SO-S12, 1NC, F, SIEMENS 3RH1921-1CA01	
K 4 G	905033382	5/49.5	1,0	RELÉ,ENCHUFE DE RELÉ,LED,3CO,24VDC,SIEMENS LZX:PT3A5L24	
К 9	905031768	5/50.3	1.0	CONTACTOR, SIRIUS, SO, 5.5kW, 230V, SIEMENS 3RT1024-1AL20	
K 9	59457179117	5/50.3	1,0	CONTACTO AUXILIAR, SIRIUS, SO-S12, 1NO, F, SIEMENS 3RH1921-1CA10	
К 9	59457179118	5/50.3	1,0	CONTACTO AUXILIAR, SIRIUS, SO-S12, 1NC, F, SIEMENS 3RH1921-1CA01	
K 9 G	63180195271	5/50.3	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 1 0	905031768	5/50.5	1.0	CONTACTOR, SIRIUS, SO, 5.5kW, 230V, SIEMENS 3RT1024-1AL20	
K 1 0	59457179117	5/50.5	1.0	CONTACTO AUXILIAR, SIRIUS, SO-S12, 1NO, F, SIEMENS 3RH1921-1CA10	
K 1 0	59457179118	5/50.5	1.0	CONTACTO AUXILIAR, SIRIUS, SO-S12, 1NC, F, SIEMENS 3RH1921-1CA01	
K 1 0 G	63180195271	5/50.5	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 1 0 0	901190106	5/67.4	1.0	RELÉ DE SEGURIDAD,24VDC,JOKAB RT6	
K 1 0 1	905033382	5/18.4	1.0	RELÉ,ENCHUFE DE RELÉ,LED,3CO,24VDC,SIEMENS LZX:PT3A5L24	
K105	905033382	5/52.6	1.0	RELÉ,ENCHUFE DE RELÉ,LED,3CO,24VDC,SIEMENS LZX:PT3A5L24	
K130	905033382	5/51.5	1,0	RELÉ,ENCHUFE DE RELÉ,LED,3CO,24VDC,SIEMENS LZX:PT3A5L24	

Nota		▲ Totra Pak	CCP	Diseñador L A	05.08.24		3542-4276	No. de páginas 125	
Sign.		No. de proyecto. 6801269 No. dibujo.	S L C 5 (POP MID			Cont. en página 5 Página	_
	Observaciones dibujo	3542-4276-1	1 - 1 1/1	1 11161	VII IISLI	110 11	LLA IO	4	

Este dibujo no podrá copiarse, transmitirse o comunicarse a terceros sin el consentimento de Tetra Pak RB.

O 1 2 3 4 5 6 7 8 9

No. POS.	ARTICULO No.	REF. PÁG.	CANTIDAD	DENOMINACACION	No. REV
K 1 3 5	905033382	5/58.8	1,0	RELÉ, ENCHUFE DE RELÉ, LED, 3CO, 24VDC, SIEMENS LZX: PT3A5L24	
K 2 0 0	63180195271	5/50.1	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 2 0 5	63180195271	5/53.2	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 2 1 0	63180195271	5/53.4	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 3 0	63180195271	5/53.6	1,0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 3 5	63180195271	5/53.8	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 4 0	63180195271	5/54.2	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 4 5	63180195271	5/54.4	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 5 0	63180195271	5/54.6	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 5 5	63180195271	5/54.8	1,0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 6 0	63180195271	5/55.2	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 6 5	63180195271	5/55.4	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 7 0	63180195271	5/55.6	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 7 5	63180195271	5/55.8	1,0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 3 8 0	63180195271	5/56.2	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 4 1 5	63180195271	5/56.4	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 4 2 0	63180195271	5/56.6	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 4 2 5	63180195271	5/56.8	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 5 0 0	63180195271	5/57.2	1,0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 5 0 5	63180195271	5/57.4	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
K 5 1 0	63180195271	5/57.6	1.0	RELÉ DE TERMINAL,SPDT,24V,LED,WEIDM.DK5R	
КС	905033540	5/18.5	1.0	CONTACTOR,4P,SIRIUS,SOO,5.5kW,230V,SIEMENS 3RT1317-1AP00	
КС	905034026	5/18.5	1,0	CONTACTO AUXILIAR, SIRIUS, SOO, 1NC+1NO, SIEMENS 3RH1911-1FA11	
M100	63180151444	5/18.0	1,0	VENTILADOR, 24VDC, SOPORTE, REJILLA PROTECTORA	
M101	63180151444	5/18.1	1.0	VENTILADOR, 24VDC, SOPORTE, REJILLA PROTECTORA	
N	3530210216	5/12.0	5.0	TERMINAL,AZUL,WDU2.5,WEIDMÜLLER 1020080000	
P 2	63180151801	5/49.2	1,0	CRONÓMETRO DE OPERACIÓN,24VDC,MÜLLER	

				Departamento	Diseñador	Fecha	Verificado	No. de proye cto Epla	an No. de páginas
Nota			Tetra Pak Processing Systems	CCP	LA	05.08.24	JL	3542-4276	1 2 5
					•	•	•	•	Cont. en página
Sign.			No. de proyecto.	T 5 8 4		6			
			G 8 0 1 2 6 9	SLC500, TPOP MIDI					Página
Fecha			No. dibujo.		L F V 4 0				
				ILIK	LEX 10	5			
		Observaciones dibujo	3542-4276-1			J			

Este dibujo no podrá copiarse, transmitirse o comunicarse a terceros sin el consentimento de Tetra Pak RB.

1 2 3 4 5 6 7 8 9

No. POS.	ARTICULO No.	REF. PÁG.	CANTIDAD	DENOMINACACION	No. REV
P 4 5	63180195471	5/19.1	1,0	REGISTRADOR, 24V, JUMO LOGOSCREEN 500	
Q O	905033897	5/9.0	1,0	INTERRUPTOR PRINCIPAL,90kW,SIEMENS HLT180/3E/Z33S/F908	
Q O	905033456	5/9.0	1.0	CONTACTO AUXILIAR,1NO+1NC,90/132kW,SIEMENS HE11/250	
QO	905033458	5/9.0	3,0	PROTECCIÓN CONTRA TOQUE,1P(3P),90/132kW,SIEMENS Z62 1-pol	
Q O	3592410124	5/9.0	1,0	LETRERO, MAIN SWITCH	
Q 0 _ 1	59457179066	5/11.2	1.0	PROTECTOR DE MOTOR, SIRIUS, SO, 2.2-3.2A, SIEMENS 3RV1021-1DA10	
Q 2	59457179079	5/9.2	1.0	PROTECTOR DE MOTOR, SIRIUS, S2, 36-45A, SIEMENS 3RV1031-4GA10	
Q 2	59457179081	5/9.2	1.0	CONTACTO AUXILIAR, SIRIUS, NO+NC, T, SIEMENS 3RV1901-1E	
Q 4	59457179079	5/9.4	1.0	PROTECTOR DE MOTOR, SIRIUS, S2, 36-45A, SIEMENS 3RV1031-4GA10	
Q 4	59457179081	5/9.4	1,0	CONTACTO AUXILIAR, SIRIUS, NO+NC, T, SIEMENS 3RV1901-1E	
Q 9	59457179077	5/10.1	1.0	PROTECTOR DE MOTOR, SIRIUS, S2, 22-32A, SIEMENS 3RV1031-4EA10	
Q 9	59457179081	5/10.1	1.0	CONTACTO AUXILIAR, SIRIUS, NO+NC, T, SIEMENS 3RV1901-1E	
Q10	59457179077	5/10.3	1,0	PROTECTOR DE MOTOR, SIRIUS, S2, 22-32A, SIEMENS 3RV1031-4EA10	
Q10	59457179081	5/10.3	1,0	CONTACTO AUXILIAR, SIRIUS, NO+NC, T, SIEMENS 3RV1901-1E	
Q C	59457179068	5/18.6	1,0	PROTECTOR DE MOTOR, SIRIUS, SO, 3.5-5A, SIEMENS 3RV1021-1FA10	
Q C	59457179081	5/18.6	1.0	CONTACTO AUXILIAR, SIRIUS, NO+NC, T, SIEMENS 3RV1901-1E	
\$ 5	59457189030	5/40.2	1,0	ACTIVADOR DE PALANCA,2-POS.,SIEMENS 3SB3500-2KA11	
\$ 5	59457189050	5/40.2	1,0	BLOQUE DE CONTACTOS,1NO,SIEMENS 3SB3	
\$ 5	3592410494	5/40.2	1,0	LETRERO,STEAM 0-1	
\$10	59457189044	5/67.2	1,0	ACTIVADOR TIPO HONGO,ROJO,SIEMENS 3SB3	
\$10	59457189051	5/67.2	2,0	BLOQUE DE CONTACTOS,1NC,SIEMENS 3SB3	
\$10	60099040666	5/67.2	1,0	LETRERO, PARADA DE EMERGENCIA, AMARILLO, d=80mm, SIEMENS 3SB1902-2BA	
\$15	905031265	5/40.6	1,0	ACTIVADOR DE TECLA,2-POS.,SIEMENS 3SB3500-4HD11	
S 1 5	59457189050	5/40.6	1,0	BLOQUE DE CONTACTOS,1NO,SIEMENS 3SB3	
\$15	3592410452	5/40.6	1.0	LETRERO,REMOTE CONTROL	
\$50	63180159762	5/51.5	1,0	CONMUTADOR MÓDULO,A/O/M,16PIEZAS	
S H 1 1	60099040664	5/67.7	1.0	ACTIVADOR DEL PULSADOR,AZUL,SIEMENS 3SB3501-0AA51	

Nota		Tetra Pak Processing Systems	C C P	L A	05.08.24		3542-4276	1 2 5	
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibuso.	S L C 5		OP MID			7 Página	
	Observaciones dibujo	3542-4276-1		1111	VII IISLI	110 1	LLX IO	6	

Este dibujo no podrá copiarse, transmitirse o comunicarse a terceros sin el consentimento de Tetra Pak AB.

O 1 2 3 4 5 6 7 8 9

No. POS.	ARTICULO No.	REF. PÁG.	CANTIDAD	DENOMINACACION	No. REV
S H 1 1	60099040670	5/67.7	1,0	UNIDAD DE LÁMPARA,AZUL,LED,SIEMENS 3SB3400-1PD	
S H 1 1	59457189050	5/67.7	1.0	BLOQUE DE CONTACTOS,1NO,SIEMENS 3SB3	
S H 1 1	3592410485	5/67.7	1,0	LETRERO, RESET	
T 0	63180152384	5/11.2	1,0	TRANSFORMADOR, 200-480/230V, 920VA, BLINDADO	
U/LT08	904594581	5/20.1	1,0	CONVERTIDOR, MUL-D2, 24V, 4-20mA, KÜBLER 516440	
U 1	63180197051	5/26.5	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 2	63180197051	5/26.7	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 3	63180197051	5/27.1	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 4	63180197051	5/27.3	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 6	63180197051	5/27.7	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 8	63180197051	5/28.3	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 9	63180197051	5/28.5	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 1 0	63180197051	5/28.7	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 4 2	63180197051	5/25.1	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 4 4	63180197051	5/25.3	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 6 3	63180197051	5/25.5	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 6 4	63180197051	5/25.7	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
U 7 1	63180197051	5/26.1	1,0	PT100/mA CONVERTIDOR,O-160C,CAMILLE BAUER V609	
V 1	63180152511	5/73.2	1,0	DIODO,0,5A,2000V	
V 2	63180152511	5/73.3	1,0	DIODO,O,5A,2000V	
W O _ 1	63180159611	5/12.2	3,0	SOPORTE, BARRA DE CONEXÍON, 10×3mm, DHT	
W O _ 2	63180159611	5/12.2	6,0	SOPORTE, BARRA DE CONEXÍON, 10×3mm, DHT	
W O _ 1 1	63180159611	5/12.2	2,0	SOPORTE, BARRA DE CONEXÍON, 10×3mm, DHT	
W 1 0	63180159611	5/12.2	2,0	SOPORTE, BARRA DE CONEXÍON, 10×3mm, DHT	
X 1	63180197242	5/49.1	1,0	FILA DE TERMINALES,WDU2.5,1-25,WEIDMÜLLER 7770006876	
Х 3	63180198913	5/19.1	1.0	FILA DE TERMINALES,WDK2.5,1-150,WEIDMÜLLER 7770006883	
X 4	63180198913	5/41.2	1,0	FILA DE TERMINALES,WDK2.5,1-150,WEIDMÜLLER 7770006883	

Nota			Tetra Pak Processing Systems	Departamento CCP	Diseñador L A	05.08.24		3542-4276	No. de páginas 125
Sign.			No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5		25 POP MID RM ASEP		IFX 10	Cont. en página 8 Página
		Observaciones dibujo	3542-4276-1	ILIN		(11 11361	110 1	LLX 10	/

						Este dibujo no	podrá copiarse, transmitirse o	o comunicarse a terceros sin el	consentimento de Tetra Pak AB.
0	1	2	3	4	5	6	7	8	9

No. POS.	ARTICULO No.	REF. PÁG.	CANTIDAD	DENOMINACACION	No. REV
X 1 1	905031671	5/12.5	1,0	ENCHUFE MURAL,DIN,SIEMENS 5TE6700	
X100	60099040710	5/16.6	1,0	TERMINAL,ETHERNET,100Mbit/s, FL CAT5 RJ45	
X100	63180198337	5/16.6	1.0	CABLE BLINDADO,RJ45 3M	
ΧF	63180152737	5/67.2	1,0	FILA DE TERMINALES,WDK2.5,1-20,WEIDMÜLLER 7770010039	
Y 1	63180191922	5/59.1	1,0	VÁLVULA DE SOLENOIDE,1×8,24VDC,FESTO CPV	
Y 1	60099040088	5/59.1	1,0	LETRERO, 8CPV, FESTO	
Y 1	60099040089	5/59.1	1,0	LETRERO,16CPV,FESTO	
Y 1	63180191953	5/59.1	1,0	CABLE PARA VÁLVULA DE SOLENOIDE 1×8, 3m,FESTO	
Y 2	63180191921	5/61.1	1,0	VÁLVULA DE SOLENOIDE,1×16,24VDC,FESTO CPV	
Y 2	63180191943	5/61.1	1,0	CABLE PARA VÁLVULA DE SOLENOID.1×16, 3m,FESTO	
Y 3	63180191921	5/63.1	1,0	VÁLVULA DE SOLENOIDE,1×16,24VDC,FESTO CPV	
Y 3	63180191943	5/63.1	1,0	CABLE PARA VÁLVULA DE SOLENOID.1x16, 3m,FESTO	
Y 4	63180191921	5/65.1	1,0	VÁLVULA DE SOLENOIDE,1×16,24VDC,FESTO CPV	
Y 4	63180191943	5/65.1	1,0	CABLE PARA VÁLVULA DE SOLENOID.1×16, 3m,FESTO	
Z 0	904582381	5/11.2	1,0	FILTRO DE LA RED,5A	
ZZA	14851220101	5/1.2	1,0	ARMARIO,22S,MCL06+9FL21+5CPV	
ZZA	14851420134	5/1.2	1,0	PUERTAS, 22S, E910T+4d22.5+R	
ZZA	14856710000	5/1.2	1,0	PLACA DE MONTAJE,22S,SLC500	
ZZA	14856740000	5/1.2	1,0	PLACA DE MONTAJE,22/31S,PWR	
ZZA	63182030779	5/1.2	1,0	PESTAÑA DE CUBIERTA PARA FESTO CPV	
ZZA	60099040001	5/1.2	1,0	LETRERO,LOGOTIPO,TETRA PAK	
ZZA	60099040004	5/1.2	1,0	LETRERO, TETRA THERM ASEPTIC	
ZZA	60099040029	5/1.2	1,0	LETRERO, FLEX	
Z Z A 1	60099048012	5/1.2	1,0	CAJA DE DISQUETE,RITTAL SZ2446	

Nota		Tetra Pak Processing Systems	C C P	Diseñador L A	05.08.24		3542-4276	No. de páginas 125	
Sign.		No. de proyecto. 6801269 No. dibujo.	SLC5		POP MID		LEX 10	Cont. en página 9 Página	_
	Observaciones dibujo	3542-4276-1			VII IIJLI	1101		8	

T5844156025

SLC500, TPOP MIDI

TETRA THERM ASEPTIC FLEX 10

10

9

Página

CANTIDAD | DENOMINACACION No. POS. ARTICULO No. REF. PÁG. No. REV. ZZC 63180197051 5/1.2 1,0 PT100/mA CONVERTIDOR,0-160C,CAMILLE BAUER V609 1,0 VÁLVULA DE SOLENOIDE,1x2,24VDC,FESTO CPV ZZC63180191931 5/1.2 60099050691 5/1.2 1,0 | BOMBILLA, BA15D, 24V, 5W, SIRENA ELECTRA 27-16027781 ZZC ZZC1 3525500133 5/1.2 10,0 | FUSIBLE,1.6A F 3525500134 5/1.2 10,0 FUSIBLE,2.0A F ZZC1 LISTA DE COMPONENTES Tetra Pak
Processing Systems Diseñador Fecha Verificado No. de proye cto Eplan No. de páginas Departamento 125 05.08.24 JL 3542-4276 Cont. en página

No. de proyecto.

No. dibujo.

Observaciones dibujo

G801269

3542-4276-1

0

Nota

Fecha

T5844156025

SLC500, TPOP MIDI

TETRA THERM ASEPTIC FLEX 10

= 4 / 1

10

Página

No. POS.	ARTICULO No.	REF. PÁG.	CANTIDAD	DENOMINACACION	No. REV.
ZZE	63180151922	5/1.3	7,0	PESTAÑA DE PLÁSTICO,FL21,12xPR22.5,FIBOX MB10014	
ZZE	63180151924	5/1.3	1,0	PESTAÑA DE PLÁSTICO,FL21,4xPR22.5+3xPR37,FIBOX MB10017	
ZZE	3521030111	5/1.3	50,0	ENTRADA DE CABLE,PLÁSTICO,9-14mm,PR22.5	
ZZE	3521030121	5/1.3	1,0	ENTRADA DE CABLE,PLÁSTICO,14-25mm,PR37	
ZZE	905034628	5/1.3	9,0	JUNTA DE CAUCHO,PESTAÑA,FL21,7mm,ELEKTRO-LINDEN FCP 21/7	
ZZE	63180152699	5/1.3	32,0	REMACHE PARA LA JUNTA DE LA BRIDA	
Z Z E 1	63180152411	5/1.3	1,0	PESTAÑA,FL21,1X20-40MM,LNPB2113/14	
Z Z E 1	60022103602	5/1.3	4,0	TORNILLO, ACERO INOXIDABLE, M6S, 8×25mm	
Z Z E 1	60022180321	5/1.3	4,0	TUERCA, M8	
Z Z E 1	3151050165	5/1.3	4,0	ARANDELA, M8	
TO DE 50%					
TA DE COMPI	UNENIES				lo No. de proye cto Eplan No.
				Tetra Pak CCP CCP LA Diseñador Fecha Verificac O5.08.24 JL	3542-4276

No. de proyecto.

No. dibujo.

Observaciones dibujo

G801269

3542-4276-1

Sign.

		Υ	1	
4	. 1	. 3	. 5	. 7
	M12	V13.1	V 1 4	V 7 6
2	. 2	. 4	. 6	. 8
	M13	V13.2	V 7 5	V 1 5 A

				Y	2			
4	. 1	. 3	. 5	. 7	. 9	. 11	. 13	. 15
	V 1 5 B	V 7 4 A	V 7 8	V 0 8		V 5 1 B	V 5 3 A	V 5 5
2	. 2	. 4	. 6	. 8	. 10	. 12	. 14	. 16
	V 4 4	V 7 4 B		V 1 0	V 5 1 A	V 5 2	V 5 3 B	V 5 9 . 1

				Y	3			
4	. 1	. 3	. 5	. 7	. 9	. 11	. 13	. 15
	V 5 9 . 2	V 6 3	V 6 6	V 9 7	V 8 O	V 8 2	V 8 5	V 2 2 A
2	. 2	. 4	. 6	. 8	. 10	. 12	. 14	. 16
		V 6 4	V 9 6	V 9 8	V 8 1	V 8 4	V 0 5	V 2 2 B

				Y	4			
4	. 1	. 3	. 5	. 7	. 9	. 11	. 13	. 15
2	. 2	. 4	. 6	. 8	.10	. 12	. 14	. 16
				V 7 7				

<u>E – E</u>

DIBUJO DE MONTAJE

Nota			Tetra Pak Processing Systems	Departamento CCP	Diseñador L A	05.08.24		3542-4276	No. de páginas
Sign.			No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5		POP MID			en página = 5 / 0
		Observaciones dibujo	3542-4276-4				, 10		3

0 1 2 3 4 5 6 7 8 9

IDENTIFICACION DE CABLEADO DENTRO DEL ARMARIO DE CONTROL

CODIGO DE COLOR UTILIZADO PARA IDENTIFICACION DE CABLES MONOFILARES:

VERDE Y AMARILLO

AZUL

CONDUCTORES DE TIERRA

CONDUCTORES NEUTROS

NEGRO

CIRCUITOS DE POTENCIA

ROJO

CIRCUITOS DE CONTROL CA

CIRCUITOS DE CONTROL CC

NARANJA CIRCUITOS DE CONTROL DE ENCLAVEMIENTO,
SUMINISTRADOS CON POTENCIA EXTERNA

LA SECCION TRANSVERSAL DE CABLES MONOFILARES ES 0,75mm², CUANDO NO SE ESPECIFICA OTRA COSA.

IDENTIFICACION DE CABLEADO DENTRO DEL ARMARIO DE CONTROL

Nota		Tetra Pak Processing Systems	C C P	LA	05.08.24		3542-4276	125	
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	S L C 5		25 POP MID RM ASEP			Cont. en página 1 Página	
	Observaciones dibujo	3542-4276-5	1211		\	110 11		U	

Nota		Tetra Pak Processing Systems	ССР	LA	05.08.24	JL	3542-4276	125	
Sign.	ZZR ZZR1 ZZE1 ZZC ZZC1 ZZE ZZS	No. de proyecto. 6801269 No. dibujo.	S L C 5		POP MID		5 V 4 O	Cont. en página Z Página	. na
	Observaciones dibujo	3542-4276-5	TETR	1					

CONTROL, VOLTAJE DE ALIMENTACION

Nota		Tetra Pak Processing Systems	Departamento CCP	Diseñador L A	05.08.24		3542-4276	1 2 5		
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5		POP MID		Cont. en s 12 Página			
	Observaciones dibujo	3542-4276-5	1 - 1 1 1	TETRA THERM ASEPTIC FLEX 10						

F10 F11 F12 OV = 16.0 I/O ANALOGO TPOP PSD

ETHERNET INTERRUPTOR

24VCD, VOLTAJE DE ALIMENTACION

Nota			Tetra Pak Processing Systems	CCP	LA	05.08.24		3542-4276	1 2 5
Sign			No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5		POP MID			Cont. en página 14 Página
	Observaci	ones dibujo	3542-4276-5	TETRA THERM ASEPTIC FLEX 10					13

3542-4276-5

Observaciones dibujo

TETRA THERM ASEPTIC FLEX 10

14

Fecha

3542-4276-5

Observaciones dibujo

TETRA THERM ASEPTIC FLEX 10

15

Observaciones dibujo

REGISTRADOR

Nota		Tetra Pak Processing Systems	C C P	Diseñador L A	05.08.24		3542-4276	No. de páginas 125
Sign.		No. de proyecto. 6801269 No. dibujo.	T 5 8 4 S L C 5		Z O Página			
	Observaciones dibujo	3542-4276-5	I LIK	LLX IO	19			

TRANSMISOR DE NIVEL

KUBLER / MUL-D

			Departamento	Diseñador	Fecha	Verificado	No. de proye cto Epla	an No. de páginas
Nota		Tetra Pak Processing Systems	CCP	LA	05.08.24	JL	3542-4276	1 2 5
				•	•	•	•	Cont. en página
Sign.		No. de proyecto.	T 5 8 4	2 1				
		G 8 0 1 2 6 9	SLC5		Página			
Fecha		No. dibujo.		L E V 4 0				
		•	TETR	20				
	Observaciones dibujo	3542-4276-5			20			

TRANSMISOR DE CAUDAL

				Departamento Diseñador Fecha Verificado No. de pro					an No. de páginas
Nota			Tetra Pak Processing Systems	CCP	LA	05.08.24	JL	3542-4276	1 2 5
					•	•	•	•	Cont. en página
Sign.			No. de proyecto.	T 5 8 4		2 2			
			G 8 0 1 2 6 9	SLC5		Página			
Fecha			No. dibujo.		L E V 4 0				
				TETR	2.1				
		Observaciones dibujo	3542-4276-5			2 1			

TRANSMISOR DE CAUDAL

Nota		Tetra Pak Processing Systems	C C P	LA	05.08.24		3542-4276	1 2 5	
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5		25 POP MID RM ASEP		IFX 10	23 Página	
	Observaciones dibujo	3542-4276-5	1211		(11 11321	116 1		2 2	

TRANSMISOR DE CONDUCTIVIDAD

Nota		↑ Tetra Pak Processing Systems	C C P	LA	05.08.24		3542-4276	125	
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	S L C 5		POP MID		LEX 10	Cont. en página 24 Página	
	Observaciones dibujo	3542-4276-5	TETI		(11 11321	110 1		23	

	 · · · · · · · · · · · · · · · · · · ·								
				Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplan	No. de páginas
Nota			Tetra Pak Processing Systems	ССР	LA	05.08.24	JL	3542-4276	1 2 5
					•		•	•	Cont. en página
Sign.			No. de proyecto.	T 5 8 4	2 6				
			6801269	G801269 SLC500, TPI					
Fecha			No. dibujo.					I F V 1 0	
				ILIK	н іпсі	RM ASEP	IIC F	LEX IU	25
	Observ	aciones dibujo	3542-4276-5						

			. T. I. D. I.	Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplan	No. de páginas
Nota			Tetra Pak Processing Systems	ССР	LA	05.08.24	JL	3542-4276	125
					•		•	•	Cont. en página
Sign.			No. de proyecto.	T 5 8 4		27			
			G 8 0 1 2 6 9	SI C 5		Página			
Fecha			SLC500, TPOP MIDI TETRA THERM ASEPTIC FLEX 10						
				ILIK	н іпсі	KII HZEF	IIL	LEX IO	26
		Observaciones dibujo	3542-4276-5						

Nota			Tetra Pak Processing Systems	C C P	Diseñador L A	05.08.24		3542-4276	125		
Sign.			No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	T584 SLC5		2 8 Página					
		Observaciones dibujo	3542-4276-5	TETRA THERM ASEPTIC FLEX 10							

Nota		Tetra Pak Processing Systems	Departamento CCP	3542-4276	No. de páginas 125			
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5		POP MID		LEX 10	Cont. en página 29 Página
	Observaciones dibujo	3542-4276-5			116 1	LLA 10	2 8	

_				Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplan	No de páginas		
Nota			Tetra Pak Processing Systems	ССР	LA	05.08.24		3542-4276	1 2 5		
						•	•	•	Cont. en página		
Sign.			No. de proyecto.	T 5 8 4		3 0					
			G 8 O 1 2 6 9	SLC500, TPOP MIDI					Página		
Fecha			No. dibujo.								
				TETR	A THE	RM ASEP	TIC F	LEX 10	29		
		Observaciones dibujo	3542-4276-5	6-5							

Not	3		Tetra Pak Processing Systems	ССР	LA	05.08.24	JL	3542-4276	1 2 5
Sig	٦.		No. de proyecto.	T 5 8 4	415602	2 5			Cont. en página
Fec	na		6801269	SLC5		LEX 10	Página		
		Observaciones dibujo	3542-4276-5				1101		36

No. dibujo.

Observaciones dibujo

3542-4276-5

TETRA THERM ASEPTIC FLEX 10

40

Fecha

Observaciones dibujo

G801269

3542-4276-5

No. dibujo.

Observaciones dibujo

Página

53

SLC500, TPOP MIDI

TETRA THERM ASEPTIC FLEX 10

Observaciones dibujo

57

				Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplar	No. de páginas
Nota			↑ Tetra Pak ▼ Processing Systems	ССР	LA	05.08.24	JL	3542-4276	1 2 5
					•		•	•	Cont. en página
Sign.			No. de proyecto.	T 5 8 4	6 0				
			G 8 0 1 2 6 9	SLC5		Página			
Fecha			No. dibujo.						
				IFIK	H IHEI	KM H2EF	IIL F	LEX 10	5 9
		Observaciones dibujo	3542-4276-5						

Nota			Tetra Pak Processing Systems	C C P	LA	05.08.24		3542-4276	1 2 5	
Sign.			No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	S L C 5		POP MID		LEX 10	Cont. en página 61 Página	
		Observaciones dibujo	3542-4276-5		11 11161	(11 11311	110 1	LLX 10	6 0	

				Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplan	No. de páginas
Nota			▼ Tetra Pak ▼ Processing Systems	ССР	LA	05.08.24	JL	3542-4276	125
					Cont. en página				
Sign.			No. de proyecto.	T 5 8 4		6 2			
			G801269	SLC5	Página				
Fecha			No. dibujo.						
				TETR	61				
		Observaciones dibujo	3542-4276-5						

MODULO DE SALIDA DIGITAL 2_20 Departamento Diseñador Fecha Verificado No. de proye cto Eplan No. de páginas Tetra Pak Processing Systems 125 LΑ CCP05.08.24 JL 3542-4276 Nota Cont. en página No. de proyecto. T5844156025 63 Sign. G801269 Página SLC500, TPOP MIDI No. dibujo. TETRA THERM ASEPTIC FLEX 10 62 3542-4276-5 Observaciones dibujo

				Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplan	No. de páginas
Nota			▼ Tetra Pak ▼ Processing Systems	ССР	LA	05.08.24	JL	3542-4276	125
					•	•	•	•	Cont. en página
Sign.			No. de proyecto.	T584		6 4			
		-	G801269	SLC5	Página				
Fecha			No. dibujo.						
				TETR	63				
		Observaciones dibujo	3 5 4 2 - 4 2 7 6 - 5		0.5				

Nota			Tetra Pak Processing Systems	CCP	LA	05.08.24		3542-4276	1 2 5	ì
Sign.			No. de proyecto. 6801269 No. dibujo.	SLC5		25 POP MID RM ASEP		IFY 10	Cont. en página 65 Página	Ì
		Observaciones dibujo	3542-4276-5	ILIN		\II II3E1	110 1	LLA IO	64	1

Nota		Tetra Pak ▼Processing Systems	CCP	LA	05.08.24		3542-4276	125
								Cont. en página
Sign.		No. de proyecto.	T5844156025					66
		G 8 0 1 2 6 9	S L C 5	00, TF	OP MID	I		Página
Fecha		0540 4070 5	TETR	A THEF	RM ASEP	TIC F	LEX 10	65

Observaciones dibujo

3542-4276-5

MODULO DE SALIDA DI	GITAL 2_22							
			Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplar	n No. de páginas
Nota		Tetra Pak Processing Systems	ССР	LA	05.08.24	JL	3542-4276	1 2 5
				•	•	•	'	Cont. en página
Sign.		No. de proyecto.	T 5 8 4		67			
		G 8 O 1 2 6 9	SLC5		Página			
Fecha		No. dibujo.						
			TETR	A THE	RM ASEP	TIC F	LEX 10	66
	Observaciones dibujo	3542-4276-5						

	·		Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplan	No. de páginas
Nota		Tetra Pak Processing Systems	ССР	LA	05.08.24	JL	3542-4276	125
				•				Cont. en página
Sign.		No. de proyecto.	T 5 8 4	41560	2 5			6 9
		G 8 O 1 2 G 9	」 SLC5	00. T	POP MID	I		Página
Fecha		No. dibujo.					LEX 10	
	Observaciones dibujo	3542-4276-5	IEIK	н іпс	NII HSEF	IIC F	LEV IO	6 8

Observaciones dibujo

6 9

TETRA THERM ASEPTIC FLEX 10

Observaciones dibujo

TETRA THERM ASEPTIC FLEX 10

70

Fecha

SEÑALES PARA EL HOMOGENEIZADOR

				Departamento	Diseñador	Fecha	Verificado	No. de proye cto Epla	n No. de páginas		
Nota			Tetra Pak Processing Systems	CCP	LA	05.08.24	JL	3542-4276	1 2 5		
					•		•	•	Cont. en página		
Sign.			No. de proyecto.	T 5 8 4	7 3						
			G 8 0 1 2 6 9	SLC5		Página					
Fecha			No. dibujo.		TETRA THERM ASEPTIC FLEX 10						
				1 - 1 11							
		Observaciones dibujo	3542-4276-5								

Nota			Tetra Pak Processing Systems	C C P	LA	05.08.24		3542-4276	125	
Sign.			No. de proyecto. 6801269 No. dibujo.	SLC5		POP MID		LEX 10	Zont. en página 77	
		Observaciones dibujo	3542-4276-5	ILIN	11 11161	\	1101	LLA IO	7 6	

Nota		Tetra Pak ▼Processing Systems	C C P	Diseñador L A	05.08.24		3542-4276	No. de páginas
Sign.		No. de proyecto.	T 5 8 4	41560	2 5			Cont. en página 78
Fecha		G 8 0 1 2 6 9			POP MID RM ASEP		LEX 10	Página -
	Observaciones dibuio	3542-4276-5	1 - 1 1 1		IVII IIJEI	110 1	LLX 10	//

No. dibujo.

Observaciones dibujo

3542-4276-5

TETRA THERM ASEPTIC FLEX 10

78

Fecha

CODIGO PARA TIPO DE CABLE EN MESA DE INTERCONEXION (=6/1..9)

1	BLINDADO
2	
3	ETHERNET
4	
5	
6	
7	
8	

LISTA DE CABLES

Nota		Tetra Pak Processing Systems	C C P	L A	05.08.24		3542-4276	125	
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	S L C 5	•	25 POP MID RM ASEP			Cont. en págin: 1 Página	
	Observaciones dibujo	3542-4276-6			(11 11361	116 11	LLX IO	0	

Este dibujo ne	podrá copiarse, tran	smitirse o comunicarse	a terceros sin el	consentimento de	Tetra Pak AB

0	1	2	3	'	<u> </u>	5 6 7 8 9
CABLE No.	PUNTO DE CONEXION A	PUNTO DE CONEXION B	PIEZAS	AREA (mm²)	TIPO DE CABLE	OBSERVACION
W006	X/K	- G 2 O	4/PE	-	-	INVERSOR DE FREC. PARA M2
W 0 0 7	X / G	- Q 2 S	4 / P E	_	1	SWITCH SEGUR. P. MOTOR (Q-S), OPCIONAL, M2
W011	X / G	- Q 4 S	4 / P E	-	-	SWITCH SEGUR. P. MOTOR (Q-S), OPCIONAL, M4
W014	X / K	- G 9 O	4 / P E	-	-	INVERSOR DE FREC. PARA M9
W015	X / G	- 0 9 S	4 / P E	-	1	SWITCH SEGUR. P. MOTOR (Q-S), OPCIONAL, M9
W016	X / K	-G100	4 / P E	-	-	INVERSOR DE FREC. PARA M10
W017	X / G	-Q10S	4 / P E	-	1	SWITCH SEGUR. P. MOTOR (Q-S), OPCIONAL, M10
W 0 2 1	X / K	-E100	3 / P E	-	-	
W O 2 4	X1	- Q 2 S	2	-	-	OPCION
W 0 2 6	X 1	- Q 4 S	2	-	-	OPCION
W O 2 8	X 1	- Q 9 S	2	-	-	OPCION
W O 2 9	X 1	-Q10S	2	-	-	OPCION
W 0 3 5	X 3	-B/TE45	3	-	1	
W036	Х 3	-B/LE08	3	-	1	
W O 37	X 3	-B/LE10	2	-	1	
W O 3 9	Х 3	-B/FT10	6	-	1	
W O 4 O	X 3	-B/FT66	6	-	1	
W O 4 1	X 3	-U/QT76-J2	4	-	1	
W O 4 9	X 3	-B/PT78	2	-	1	
W 0 5 1	X 3	- G 2 0	2	-	1	INVERSOR DE FREC. PARA M2
W 0 5 2	X 3	- G 2 0	2	-	1	INVERSOR DE FREC. PARA M2
W 0 5 5	X 3	- G 9 O	2	-	1	INVERSOR DE FREC. PARA M9
W 0 5 6	X 3	- G 9 O	2	-	1	INVERSOR DE FREC. PARA M9
W 0 5 7	Х3	-6100	2	-	1	INVERSOR DE FREC. PARA M10
W 0 5 8	Х3	-6100	2	-	1	INVERSOR DE FREC. PARA M10
W 0 6 1	Х3	-B/V08	2	-	1	TRANSDUSOR I/P EN VALVULA DE REGUL.
W 0 7 1	Х3	- B / V 4 4	2	-	1	TRANSDUSOR I/P EN VALVULA DE REGUL.
W 0 7 5	Х3	-B/V63	2	-	1	TRANSDUSOR I/P EN VALVULA DE REGUL.
W 0 7 6	Х3	-B/V63	2	-	-	NOTE THAT EARTH CABLE MAX LENGHT 300mm
W 0 7 7	Х3	-B/V64	2	-	1	TRANSDUSOR I/P EN VALVULA DE REGUL.
W 0 7 8	Х3	-B/V64	2	-	-	NOTE THAT EARTH CABLE MAX LENGHT 300mm
W081	Х 3	-B/V78	2	-	1	TRANSDUSOR I/P EN VALVULA DE REGUL.
W 0 8 3	X 3	-B/V97	2	_	1	TRANSDUSOR I/P EN VALVULA DE REGUL.

LIS	IH D	F CHBLES		▲ Tetra Pak	Departamento	Diseñador	Fecha	Verificado	No. de proye cto Epla	n No. de páginas 125
Nota				Tetra Pak Processing Systems	ССР	LA	05.08.24	JL JL	3542-4276	IZJ Cont. en página
Sign.				No. de proyecto. 6801269		41560				2
Fecha				No. dibujo.			TPOP MIO ERM ASEF		IFX 10	Página
			Observaciones dibujo	3542-4276-6	7 2 7 10		11321	, 1	LLX 10	1

Este dibujo no	podrá copiarse, trans	mitirse o comunicarse :	a terceros sin el	consentimento de	Tetra Pak AB

0	1	2	3	4		5	6	7	8	9
CABLE No.	PUNTO DE CONEXION A	PUNTO DE CONEXION B	PIEZAS	AREA	TIPO DE CABLE	OBSERVACION				
W091	X 4	-B/LSH50	3	-	-					
W 0 9 3	X 4	-B/PS66	2	-	-					
W097	X 4	- B / V 8 4	3	-	-					
W098	X 4	-00-B/PS	2	-	-	PRESIÓN DE A	I R E			
W133	X 4	-B/GS30	2	-	-					
W134	X 4	-B/GS40	2	-	-					
W140	X / K	- G 2 O	2	-	1	INVERSOR DE 1	FREC. PARA M2			
W142	X / K	- 690	2	-	1	INVERSOR DE 1	FREC. PARA M9			
W143	X / K	-G100	2	-	1	INVERSOR DE 1	REC. PARA M10			
W161	X / U	-B/TE1	3	-	1					
W162	X / U	- B / T E 2	3	-	1					
W163	X / U	-B/TE3	3	-	1					
W164	X / U	-B/TE4	3	-	1					
W166	X / U	-B/TE6	3	-	1					
W168	X / U	-B/TE8	3	-	1					
W169	X / U	-B/TE9	3	-	1					
W170	X / U	-B/TE10	3	-	1					
W173	X/U	-B/TE42	3	-	1					
W175	X / U	-B/TE44	3	-	1					
W 1 7 8	X / U	-B/TE63	3	-	1					
W179	X / U	-B/TE64	3	-	1					
W 1 8 1	X / U	-B/TE71	3	-	1					
W 8 0 1	X/W10		1	10	-	TOMA DE TIERI	RA DE LAS INSTAL	ACIONES		
W 8 0 2	X/Q		4/PE	-	-	SUMINISTRO DE	RED			
W 8 0 4	X / K		3/PE	-	-	ALIMENTACION	DE RED PARA ENF	RIADOR		
W 8 3 2	X 1	X2	3/PE	-	-	PANEL DE ARRI	ANCADOR PARA HOM	10 G E N E I Z A D O R		
W 8 8 1	X 3	X/K	4	-	-	PANEL DE ARRI	ANCADOR PARA HOM	10 G E N E I Z A D O R		
W 8 8 2	X 3	X/K	4	-	-	PANEL DE ARRI	ANCADOR PARA HOM	10 G E N E I Z A D O R		
W 8 8 3	X 3	X2	2	-	1	PANEL DE ARRI	ANCADOR PARA HOM	10 G E N E I Z A D O R		
W 8 8 5	Х 3	X1	4	-	-	CAJA DE CONEX	KIONES EN EL HOM	10 G E N E I Z A D O R		
W 8 8 7	Х 3	X1	3	-	1	CAJA DE CONEX	KIONES EN EL HOM	10 G E N E I Z A D O R		
W 8 8 9	Х 3	X1	10	-	-	CAJA DE CONEX	KIONES EN EL HOM	10 G E N E I Z A D O R		
W 8 9 0	Х 3	X1	4	_	_	CAJA DE CONEX	KIONES EN EL HOM	106ENET7ADOR		

LIS	STA D	E CABLES								
Nota				Tetra Pak Processing Systems	Departamento CCP	Diseñador L A	05.08.24	Verificado JL	3542-4276	No. de páginas
Sign.				No. de proyecto. 6801269 No. dibujo.	T 5 8 4 S L C 5		POP MIC		1.5.7.10	Cont. en página 3 Página
			Observaciones dibujo	3542-4276-6	IEIK	н іпс	תוו א 1 בו	IIL F	LEX 10	2

T5844156025

SLC500, TPOP MIDI

TETRA THERM ASEPTIC FLEX 10

Cont. en página

11

3

Página

0	1	2	3		1	5 6 7 8 9
CABLE No.	PUNTO DE CONEXION A	PUNTO DE CONEXION B	PIEZAS	AREA (mm²)	TIPO DE CABLE	OBSERVACION
W 9 0 1	Х4	- V 1 5	3	-	-	
W 9 0 2	х 4	-REJECT	2	-	-	
W 9 0 3	х 4	-CIP	2	-	-	
W 9 0 4	X 4		2	_	-	CONTROL DE ALIMENTACION DE PRODUCTO, ENTREGADO
W 9 1 1	X 4	- A F M 1	4	_	_	
W 9 1 2	X 4	- A F M 2	4	-	-	
W913	X 4	- A F M 3	4	-	-	
W915	X 4	-AFM4/ALSAFE	5	-	-	
W 9 4 4	X / K		2	-	-	CONTROL DE ALIMENTACION DE PRODUCTO, ENTREGADO
W945	X / K	- A F M 1	3	-	-	
W946	X / K	- A F M 2	3	-	-	
W947	X / K	- A F M 3	3	-	-	
W949	X / K	-AFM4/ALSAFE	6	-	-	
W 9 5 4	X / K	-CIP	4	-	-	
W 9 5 5	X / K	-REJECT	3	-	-	
W956	X / K	- V 1 5	2	-	-	
W990	X100		4	-	3	ETHERNET
W995	XF		2	-	-	PARADA DE EMERGENCIA EXTERNA, OPCION
W996	XF		2	-	-	PARADA DE EMERGENCIA EXTERNA, OPCION
W997	XF	X F	4	-	-	RED PARADA DE EMERGENCIA, OPCION
TO DE CO!		VEASE OBSERV	 A C I O N		VEASE LI	PAGINA =6/0 PARA TIPO
TA DE CAE) L E 3					Departamento Diseñador Fecha Verificado No. de proye cto Eplan No. de
						Tetra Pak Processing Systems Departmento Diseñador Fecha Verificado No. de proye cto Eplan No. de Proye cto
						Processing Systems Cont. (

No. de proyecto.

No. dibujo.

Observaciones dibujo

G801269

3542-4276-6

Sign.

															ste dibujo no podi	ra copiarse, tr	ansmitirse o comuni	carse a terce	eros sin el consentimer	ito de letra
0	<u> </u>	1				2			3		4		5	6		7		8		9
TERMINAL	С 2 Ш. Ж		026	W028 W029	832					T E D M T N O I	T.F.W		DOCINO	TEVID DE	- UN - T O N					
TERMINAL		+ +	3 :	3 3	3					TERMINAL			PAGINA	TEXTO DE I						
X 1	3	1									- Q 2 S		= 5 / 4 9 . 1	SWITCH SE			CIONAL			
	4	2									- Q 2 S		= 5 / 4 9 . 1	CONETAR PI						
	7	\perp	1								- Q 4 S		= 5 / 4 9 . 4				CIONAL			
	8	\perp	2								- Q 4 S		= 5 / 4 9 . 4	CONETAR PI						
	11	+		1							- Q 9 S		=5/50.3		GUR. P. MC	OTOR, OP	CIONAL			
	12	+		2							- Q 9 S		= 5 / 5 0 . 3		UENTE SI N	O USADO				
	13	111		1							-Q10S		= 5 / 5 0 . 5	SWITCH SE	GUR. P. MC	OTOR, OP	CIONAL			
	14	\perp		2							-Q10S		= 5 / 5 0 . 5	CONETAR PI	UENTE SI N	O U S A D O				
	19	\perp			1					14	X 2		= 5 / 7 2 . 2	PANEL DE I	ARRANCADOR	R PARA H	OMOGENEIZA	DOR		
	2 0	\perp			2				:	15	X 2		= 5 / 7 2 . 2							
W	0_11	\perp			PΕ					W 0 _ 1	X 2		= 5 / 7 2 . 3							
	2.2	\perp								L 1	/ G O		= 5 / 1 2 . 0	USO INTERI	N 0					
	23	\perp								N 1	/ G O		= 5 / 1 2 . 1							
	2 4									L 2	/ G O		=5/12.0							
	2 5									N 2	/ G O		= 5 / 1 2 . 1							
		\top																		
		+							\vdash											
		+																		
		+																		
		+			\vdash		+		\vdash											
									 		VEO	CE TEVTO	DE FUNCIÓN							
											VEH	SE IEVIU	PE I ONCIOL	•						
													Tetra ▼Processi	Pak	Departamento C C P	Diseñador L A	05.08.24		3542-4276	lan No. de
1													▲ IIOFE22T	ina parrema	1	1	1	1	1	- 1

T E R M I N A L	ш		M 0 3 6	W 0 3 7	W 0 3 9	W040	H 				TERMINAL	ITEM	PAGINA	TEXTO DE FUNCION
(3	1	1										-B/TE45	=5/19.1	
	2	2										-B/TE45	= 5 / 1 9 . 1	
	3	3										-B/TE45	=5/19.1	
	W O _ 2										GND	-B/TE45	=5/19.2	PANTALLA
	10		1								BU	-B/LE08	= 5 / 20.1	
	11		2								BN	-B/LE08	= 5 / 2 0 . 2	
	12		3								BK	-B/LE08	= 5 / 2 0 . 2	
	W O _ 2										GND	-B/LE08	= 5 / 2 0 . 2	PANTALLA
	13			1							2	-B/LE10	=5/29.3	
	14			2							1	-B/LE10	=5/29.4	
	W O _ 2										GND	-B/LE10	=5/29.4	PANTALLA
	21				1						RD	-B/FT10	=5/21.1	
	2 2				2						BU	-B/FT10	= 5 / 21 . 2	
	23				3						PK	-B/FT10	=5/21.3	
	24				4						BN	-B/FT10	=5/21.3	
	2 5				5						GY	-B/FT10	= 5 / 21 . 4	
	26				6						ΥE	-B/FT10	= 5 / 21 . 5	
	W O _ 2	\perp		_					_		GND		= 5 / 21 . 5	BLINDAJE, A CONECTOR EMC
	2.7	\perp				1		Ш			R D	-B/FT66	= 5 / 2 2 . 1	
	2 8					2					BU	-B/FT66	= 5 / 2 2 . 2	
	29	\perp				3		ш			PK	-B/FT66	= 5 / 2 2 . 3	
	3 0	\perp	_	_		4		\sqcup	\perp	_	B N	-B/FT66	= 5 / 2 2 . 3	
	31	\perp	4	4		5			\perp	_	G Y	-B/FT66	= 5 / 2 2 . 4	
	3 2	\perp	4	4		6			1	_	ΥE	-B/FT66	= 5 / 2 2 . 5	
	W O _ 2		\rightarrow	_					4		GND		= 5 / 2 2 . 5	BLINDAJE, A CONECTOR EMC
	3 3	\perp	4	4		1			\perp	_	3	-U/QT76-J2	= 5 / 2 3 . 1	
	3 4		\rightarrow	4		2			4		2	-U/QT76-J2	= 5 / 2 3 . 2	
	3 5	\perp	4	4		3			\perp	_	+4	-U/QT76-J2	= 5 / 2 3 . 4	
	3 6	\perp	\dashv	_	_	ц			_		- 5	-U/QT76-J2	= 5 / 23.5	
	W O _ 2										GND		= 5 / 23 . 5	PANTALLA

inas Tetra Pak
Processing Systems 125 05.08.24 JL CCP3542-4276 Cont. en página No. de proyecto. T5844156025 13 Sign. G801269 SLC500, TPOP MIDI Página No. dibujo. TETRA THERM ASEPTIC FLEX 10 12 3542-4276-6 Observaciones dibujo

	;	N N													
ERMINAL	- - - - - - -	C A B L	-1 10	W 0 5 2	W 0 5 5	W 0 5 6	W 0 2 8	W 0 6 1	W 0 8 1			TERMINAL	ITEM	PAGINA	TEXTO DE FUNCION
3	37	1										S +	-B/PT78	= 5 / 29 . 5	
	3 8	2										S -	-B/PT78	= 5 / 29 . 6	
	W 0 _ 2												SCREEN	= 5 / 29 . 6	PANTALLA
	53		1									+60	- G 2 O	= 5 / 68.4	INVERSOR DE FREC. PARA M2
	5 4		2									- 5 5	- G 2 O	= 5 / 68.4	
	W O _ 2											GND	- G 2 O	= 5 / 68.4	PANTALLA
	5 5			1								01	- G 2 O	= 5 / 68.5	INVERSOR DE FREC. PARA M2
	56			2								0 2	- G 2 O	= 5 / 68 . 6	
	W O _ 2											GND	- G 2 O	= 5 / 68 . 6	PANTALLA
	5 7													= 5 / 31 . 2	SIN CONEXION
	5 8													=5/31.3	
	61				1							+60	- 6 9 0	=5/69.4	INVERSOR DE FREC. PARA M9
	6 2				2							- 5 5	- G 9 O	=5/69.4	
	W O _ 2											G N D	- 6 9 0	=5/69.4	PANTALLA
	63					1					\perp	01	- G 9 O	= 5 / 6 9 . 5	INVERSOR DE FREC. PARA M9
	64					2					\perp	0 2	- G 9 O	= 5 / 6 9 . 6	
	W O _ 2										\perp	GND	- G 9 O	= 5 / 6 9 . 6	PANTALLA
	65										\perp	+60	- G 1 O O	= 5 / 7 0 . 4	INVERSOR DE FREC. PARA M10
	66						:				\perp	- 5 5	- G 1 O O	= 5 / 7 0 . 4	
	W O _ 2										\perp	GND	- G 1 O O	= 5 / 7 0 . 4	PANTALLA
	67						1				\perp	01	- G 1 O O	= 5 / 7 0 . 5	INVERSOR DE FREC. PARA M10
	6.8						2					0 2	- G 1 O O	= 5 / 7 0 . 6	
	W O _ 2		_		_	_						GND	- G 1 O O	= 5 / 7 0 . 6	PANTALLA
	6 9		_		_			1				+	- B / V O 8	= 5 / 3 3 . 6	TRANSDUSOR I/P EN VALVULA DE REGUL.
	7 0		_		_			2				_	- B / V O 8	= 5 / 3 3 . 6	
	W O _ 2		_		_							GND	- B / V O 8	= 5 / 3 3 . 6	PANTALLA
	71		-	Ш				\perp	1	\perp	+	11+	-B/V78	= 5 / 36 . 2	TRANSDUSOR I/P EN VALVULA DE REGUL.
	7 2		-					\perp	2	\perp	+	12-	- B / V 7 8	= 5 / 36 . 3	
	W O _ 2		-					\perp		_	$\perp \perp$	GND	- B / V 7 8	= 5 / 36 . 3	PANTALLA
	73													=5/36.3	SIN CONEXION

jinas 05.08.24 JL 3542-4276 Processing Systems Cont. en página No. de proyecto. T5844156025 14 Sign. G801269 SLC500, TPOP MIDI Página No. dibujo. TETRA THERM ASEPTIC FLEX 10 13 3542-4276-6 Observaciones dibujo

TERMINAL	l	LHBLE NO	W 0 7 5	M 0 7 6	W077	W 0 / 8	W881		TERMINAL	ITEM	PAGINA	TEXTO DE FUNCION
X 3	7 4										= 5 / 36 . 4	
	7.7										=5/36.6	
	7 8										= 5 / 36 . 6	
	7 9										= 5 / 36 . 7	
	8 0										= 5 / 36 . 7	
	8 3	1							+	- B / V 4 4	= 5 / 3 4 . 2	TRANSDUSOR I/P EN VALVULA DE REGUL.
	8 4	2							-	- B / V 4 4	= 5 / 3 4 . 3	
	W O _ 2								G N D	- B / V 4 4	= 5 / 3 4 . 3	PANTALLA
	8 7		1						I 1	-B/V63	= 5 / 35 . 2	TRANSDUSOR I/P EN VALVULA DE REGUL.
	8 8		2						GND1	-B/V63	=5/35.3	
	W O _ 2								G N D	-B/V63	=5/35.3	PANTALLA
	8 9			1					+ 2 4 V	-B/V63	=5/35.3	
	90			2					-	-B/V63	=5/35.4	
	91				1				I1	-B/V64	=5/35.6	TRANSDUSOR I/P EN VALVULA DE REGUL.
	9 2				2				GND1	-B/V64	=5/35.6	
	W O _ 2								GND	-B/V64	= 5 / 35 . 6	PANTALLA
	93					1			+ 2 4 V	-B/V64	= 5 / 35 . 7	
	94					2			-	-B/V64	= 5 / 35 . 7	
	101					1			+	-B/V97	= 5 / 3 4 . 6	TRANSDUSOR I/P EN VALVULA DE REGUL.
	102					2			-	-B/V97	= 5 / 3 4 . 6	
	W O _ 2								GND	-B/V97	= 5 / 3 4 . 6	PANTALLA
	109						1		201:A1	X/K	= 5 / 7 1 . 2	PANEL DE ARRANCADOR PARA HOMOGENEIZADOR
	110	_				_	2		201:A2	X/K	= 5 / 7 1 . 2	
	111	\perp				_					= 5 / 71.3	SIN CONEXION
	112	\perp				_					= 5 / 71.3	
	113	\perp				_	3		202:A1	X/K	= 5 / 71.4	PANEL DE ARRANCADOR PARA HOMOGENEIZADOR
	114	_				_	4	\perp	202:A2	X/K	= 5 / 7 1 . 5	
	115	\perp				_	1	\perp	204:13	X/K	= 5 / 7 1 . 5	PANEL DE ARRANCADOR PARA HOMOGENEIZADOR
	116	\perp				_	2		204:14	X/K	= 5 / 7 1 . 6	
	117						3		205:13	X/K	= 5 / 71 . 6	

Nota		A.
Sign.		No. de proy
529		G 8 0

Observaciones dibujo

4	▲ Tetra Pak ✓ Processing Systems
A	Trocessing Systems
No.	de proyecto.
	G801269
No.	dibujo.

3542-4276-6

Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplan	No. de págin
ССР	LA	05.08.24	JL	3542-4276	125
					Cont. en pág
T 5 8 4 4	415602	: 5			15

T5844156025 SLC500, TPOP MIDI TETRA THERM ASEPTIC FLEX 10

Página 14

T E R M I N A L	u	W882	W 8 8 3	W 8 8 5	W887	W 8 8 9	M890						TERMINAL	ITEM	PAGINA	TEXTO DE FUNCION
(3	118	4											205:14	X/K	=5/71.7	
	119		1		\perp	_	_						2 4	X 2	= 5 / 71 . 7	PANEL DE ARRANCADOR PARA HOMOGENEIZADOR
	120		2	_	\perp	\perp	_						2 5	X 2	= 5 / 71 . 8	
	W O _ 2			_	\perp	\perp	_						W O _ 2	X 2	= 5 / 71 . 8	PANTALLA
	123			1	\perp	\perp	_						103	X 1	= 5 / 7 3 . 2	CAJA DE CONEXIONES EN EL HOMOGENEIZADOR
	124			2	\perp	\perp	\perp		_	_	\perp	\perp	104	X 1	= 5 / 7 3 . 2	
	125			3	\dashv	\perp	\perp		_	_	\perp	\perp	105	X 1	= 5 / 7 3 . 3	
	126			4	_	_	_						106	X 1	= 5 / 7 3 . 3	
	131			_	1	\perp	\perp						115	X 1	=5/73.4	CAJA DE CONEXIONES EN EL HOMOGENEIZADOR
	132			_	2	\perp	_						116	X 1	= 5 / 7 3 . 5	
	133			_	3	\perp	\perp					_	117	X 1	=5/73.5	
	137			_	\perp	1	\perp					_	313	X 1	= 5 / 7 4 . 2	CAJA DE CONEXIONES EN EL HOMOGENEIZADOR
	138			_	\perp	2	_			_			315	X 1	= 5 / 7 4 . 2	
	139			_		3	_			_			317	X 1	= 5 / 7 4 . 3	
	140			_	_	4	_			_			319	X 1	= 5 / 7 4 . 4	
	141	_		_	\perp	5	\perp				_	\perp	321	X 1	= 5 / 7 4 . 5	
	142	_		_	\perp	6	\perp				_	\perp	3 2 3	X 1	= 5 / 7 4 . 5	
	143	_		_	\perp	7	\perp				_	\perp	3 2 5	X 1	= 5 / 7 4 . 6	
	144	_		_	\rightarrow	8	\perp				_	\perp	3 2 7	X 1	= 5 / 7 4 . 7	
	145			_		9	_			_			329	X1	= 5 / 7 4 . 7	
	146			_	1	10	_			_			3 3 2	X1	= 5 / 7 4 . 8	
	147			\dashv	\dashv		1			_		_	309	X1	= 5 / 7 5 . 2	CAJA DE CONEXIONES EN EL HOMOGENEIZADOR
	148	_		\dashv	+	_	2		+	_	+	+	310	X 1	= 5 / 7 5 . 2	
	149	_		\dashv	+	_	3		+	_	+	+	311	X 1	= 5 / 7 5 . 3	
	150	+		\dashv	+	+	4		\perp	+	+	+	312	X 1	= 5 / 7 5 . 3	
				\dashv	+	+	+		_	+	+	+				
				\dashv	+	+	+		_	+	+	+				
				\dashv	+	+	+		_	+	+	+				
		_		_	_	\perp	\perp			\perp	_	\perp				

inas Tetra Pak
Processing Systems 125 05.08.24 JL CCP3542-4276 Cont. en página No. de proyecto. T5844156025 16 Sign. G801269 SLC500, TPOP MIDI Página No. dibujo. TETRA THERM ASEPTIC FLEX 10 15 3542-4276-6 Observaciones dibujo

	_												_			e dibujo no pod		ransmitirse o comun		eros sin el consentimen	
0		1					2			3		4	5		6	ļ	7		8		9
		0 Z																			
		C A B L	M 0 8 1	9.7	8 6	0 1	M 3 0 2 M 3 0 3	M 9 0 t													
ERMINAL	1		3 3	3	3	8 3	3 3	3			TERMINAL	ITEM	PAG	I N A	TEXTO DE FL	INCION					
4	1	1	1								3	-B/LSH50	= 5 /	11.2							
	2	1	2								2	-B/LSH50	= 5 /	11.2							
	4		3								1	-B/LSH50	= 5 /	11.2							
	5												= 5 /	11.4	SIN CONEXIC) N					
	6												= 5 /	11.4							
	7		1								N 0	-B/PS66	= 5 /	11.6							
	8		2								С	-B/PS66	= 5 /	11.6							
	9												= 5 /	11.8	SIN CONEXIC) N					
	10												= 5 /	11.8							
	11												= 5 /	12.2							
	12												= 5 /	12.2							
	14												= 5 /	12.2							
	15												= 5 /	12.4							
	16												= 5 /	12.4							
	18												= 5 /	12.4							_
	19			1							4	-B/V84	= 5 /	12.6							
	2 0			2							3	-B/V84	= 5 /	12.6							_
	2 2			3							1	-B/V84	= 5 /	12.6							
	23				1						2	-00-B/PS	= 5 /	12.8							_
	2 4		\perp	╙	2					\perp	3	-00-B/PS	= 5 /	12.8							
	2 5		\perp	╙		1				\perp		- V 1 5	= 5 / 3	79.5							
	26		\perp	_		2			\perp			- V 1 5	= 5 / 3	79.5							_
	2.7		\perp	_		3			\perp			- V 1 5	= 5 / 3	79.6							_
	29	_	+	_		:			$\perp \perp$	\perp		-REJECT	= 5 / 3	78.5							_
	3 0		_	1			2		\sqcup	\perp		-REJECT	= 5 / 3	78.5							
	31		_	1			1		\sqcup	\perp		- C I P	= 5 / 3	77.5							
	3 2			_			2		$\perp \perp$	\perp		- C I P	= 5 / 3	77.5							
	33	\perp	+	_		_		1		\perp			= 5 / 3	76.3	CONTROL DE	ALIMENTA	ACION DE	PRODUCTO	, ENTREG	3 A D O	_
	3 4	\perp	+	_				2	$\perp \perp$	\perp			= 5 / 3	76.3	1						_
	43												= 5 /	14.8	USO INTERNO)					
												VEASE TE	XTO DE FUI	NCIÓN							
																Departamento	Diseñador	Fecha	Verificado	No. de proye cto Epl	ian
													A Tet	ra f	Pak a Systems	ССР	LA	05.08.24	4 JL	3542-4276	

^` '								
			Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplan	No. de páginas
Nota		Tetra Pak Processing Systems	ССР	LA	05.08.24	JL	3542-4276	1 2 5
								Cont. en página
Sign.		No. de proyecto.	T 5 8 4	41560	25			17
		G 8 0 1 2 6 9	SICS	nn T	POP MID	ı T		Página
Fecha		No. dibujo.						
			IEIR	H IHE	RM ASEP	'IIL F	LEX 10	1.6
	Observaciones dibujo	3542-4276-6						10

																	Este dib	ujo no pod	rá copiarse, t	transmitirse	o comunicar	se a tercer	os sin el conse	entimento d
0		1					2		 3	l .		4		5			6		7			8		9
		LE No.	1 2	3 8	22	m =	-																	
TERMINAL		CABL	W911	W 9 1	W915	W13) H E			TERM	1 I N A L	ITEM		PAGINA	Т	EXTO DE	E FUNC	ION						
(4	44													= 5 / 4 4 . 8										
	47		1									-AFM1		= 5 / 8 0 . 4										
	48		2									- A F M 1		= 5 / 80 . 4										
	49		3									- A F M 1		=5/80.5										
	50		4									- A F M 1		=5/80.6										
	51													= 5 / 8 0 . 7	S	IN CONE	EXION							
	53		1									- A F M 2		=5/81.4										
	54		2									- A F M 2		=5/81.4										
	5 5		3									- A F M 2		=5/81.5										
	56		4									- A F M 2		=5/81.6										
	57													= 5 / 81.7	S	IN CONE	EXION							
	59			1								- A F M 3		= 5 / 8 2 . 4										
	60			2								- A F M 3		= 5 / 8 2 . 4										
	61			3								- A F M 3		=5/82.5										
	6 2			4								- A F M 3		= 5 / 8 2 . 6										
	63													= 5 / 8 2 . 7	S	IN CONE	EXION							
	65				1							-AFM4/AL	SAFE	=5/83.5										
	66				2							-AFM4/AL	SAFE	= 5 / 8 3 . 6										
	67				3							-AFM4/AL	SAFE	= 5 / 8 3 . 7										
	68				4							-AFM4/AL	SAFE	= 5 / 8 3 . 8										
	69				5							-AFM4/AL	SAFE	= 5 / 8 3 . 8										
	99													=5/48.2	S	IN CONE	EXION							
	100													=5/48.2										
	101													=5/48.3										
	102													=5/48.3										
	103													=5/48.4										
	104													=5/48.4										
	105					1				1		-B/GS30		=5/48.5										
	106					2				4		-B/GS30		=5/48.5										
	107					1				1		-B/GS40		=5/48.6										
·												VEASE	TEXTO	DE FUNCIÓN		·								
																	Dei	partamento	Diseñador	Fecha	V e	rificado	No. de proye	cto Eplan
														Tetra F	Pal	(c	СР	LA) 8 . 24 J		3542-42	

	0			1			2			3			4		5		6		7			8		9	
			ABLE No.	W134																					
	TERMINAL		ں				\vdash				TERM	INAL	ITEM		PAGINA	TEX	(TO DE F	UNCION							
	X 4	108		2							4		-B/GS40		=5/48.6										_
		109													=5/48.7	SIN	LONEXI	0 N							
		110													=5/48.7										
		111													=5/48.8										
		112			Ш										=5/48.8										_
		149			Ш										=5/39.8	USO	INTERN	0							_
		150													=5/39.8										
																									_
					П																				
																									\neg
					П																				\neg
					П				\top																\neg
			П		П																				٦
					П																				\exists
					\Box																				\exists
X 4	L	ı				 	1 1	 					VEASE T	EXTO DE	E FUNCIÓN										
/\ r																		Departam	ento Diseñador	Fecha	V	erificado	No. de proye	cto Eplan No. d	e pági

Nota			Tetra Pak Processing Systems	C C P	Diseñador L A	05.08.24		3542-4276	an No. de páginas 125
Sign.			No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5		25 POP MID RM ASEP		I F.Y. 1 N	19
		Observaciones dibujo	3542-4276-6		11 1116	IVII II 3 L I	110 1		18

																	n el consentiment
0	1				2		3		4	5		6	7	7		8	
	0 Z																
	ш																
	CABL W011	M 0 0 7	W015														
TERMINAL	<u> </u>	3	3 3				T	ERMINAL	ITEM	PAGIN	А	TEXTO DE FUNCION					
X/G 40_2	1								- Q 4 S	= 5 / 9 .	4						
40_4	2								-045	= 5 / 9 .	4						
40_6	3								-045	= 5 / 9 .	5						
W O _ 1	PΕ						P	E	- 0 4 S	= 5 / 9 .	5						
20_96		1							- Q 2 S	= 5 / 9 .	2	SWITCH SEGUR. P.	MOTOR (Q-S),	OPCIONAL	., M2	
20_97		2	$\perp \perp$						- Q 2 S	= 5 / 9 .	2						
20_98		3	\perp						- Q 2 S	= 5 / 9 .	2						
20_95		PΕ	\perp	\perp			P	Е	- Q 2 S	= 5 / 9 .							
2 O _ G N D			\perp				G	N D	- M 2	= 5 / 9 .		PANTALLA					
90_96			1						- Q 9 S	= 5 / 1 0		SWITCH SEGUR. P.	MOTOR (Q - S) ,	OPCIONAL	., M9	
90_97			2				\sqcup		- Q 9 S	= 5 / 1 0	. 1						
90_98			3	_					- Q 9 S	= 5 / 1 0	. 1						
90_95		P	E				P	E	- Q 9 S	= 5 / 1 0							
90_GND							G	N D	- M 9	= 5 / 1 0		PANTALLA					
100_96			1						-Q10S	= 5 / 1 0	. 3	SWITCH SEGUR. P.	MOTOR (Q-S),	OPCIONAL	M10	
100_97			2						-Q10S	= 5 / 1 0	. 3						
100_98			3						-Q10S	= 5 / 1 0	. 3						
100_95			PE				P		-Q10S	= 5 / 1 0	. 4						
100_GND		_	\perp				G	N D	-M10	= 5 / 1 0	. 4	PANTALLA					
		_	\perp	_													
		_	\perp	_													
			+			\perp											
	-	_	+	\perp		+	\vdash										
	-	_	+	\perp		+	\vdash										
		_		+													
		_		+													
			++	\perp		+	++										
		_		+													
		_	+	\perp		+	\vdash										
;									VEASE T	EXTO DE FUNC	ΙÓΝ						
										▲ Tetr		Departam	ento Diseñado	or Fech	a V e	rificado No.	de proye cto Epl

۸ / ن								
			Departamento	Diseñador	Fecha	Verificado	No. de proye cto Epla	an No. de páginas
Nota		Tetra Pak Processing Systems	ССР	LA	05.08.24	JL	3542-4276	1 2 5
				•		•	•	Cont. en página
Sign.		No. de proyecto.	T 5 8 4	41560	25			20
		G 8 0 1 2 6 9				т		Página
Fecha		No. dibujo.	7 2 7 7 3	00, 1	POP MID	1		
reciia			TETR	A THE	RM ASEP	TIC F	LEX 10	1 0
	Observaciones dibujo	3542-4276-6						19

ERMINAL	CABLE No	W006 W014	4016	W804	170M	M945				TERMINAL	ITEM	PAGINA	TEXTO DE FUNCION
		1	-		+-		++			91	- G 2 O	= 5 / 9 . 2	INVERSOR DE FREC. PARA M2
/ K 2_2 2_4		2								92	- G 2 O	= 5 / 9 . 2	INVERSOR DE FREC. FARA 112
2_6		3								93	- G 2 O	= 5 / 9 . 2	
W O _ 1		E								94	- G 2 O	= 5 / 9 . 3	
9_2	'	1								91	- G 9 O	= 5 / 10 . 1	INVERSOR DE FREC. PARA M9
9_4		2								9 2	- G 9 O	= 5 / 10 . 1	THICKSON BE THEE. THAN 113
9_6		3					+			93	- G 9 O	= 5 / 10 . 1	
W O _ 1		PE								94	- G 9 O	=5/10.1	
10_2			1							91	- G 1 O O	= 5 / 10 . 3	INVERSOR DE FREC. PARA M10
10_4			2							9 2	- G 1 O O	= 5 / 10 . 3	
10_6			3							9 3	- G 1 O O	= 5 / 10 . 3	
W O _ 1			PΕ							9 4	- G 1 O O	=5/10.4	
C _ 2				1						L		=5/18.6	ALIMENTACION DE RED PARA ENFRIADOR
C _ 4				2						N		=5/18.6	1~ 60Hz 120V
W O _ 1				PΕ						PE		= 5 / 18 . 7	FUSIBLE (A): 10
C_6				1						1 L	-E100	=5/18.8	
C_8				2						2 N	-E100	=5/18.8	
W O _ 1				PI	Ξ					PE	-E100	= 5 / 18 . 8	
200_11												= 5 / 71 . 2	SIN CONEXION
200_14												= 5 / 71 . 2	
205_11												=5/71.3	SIN CONEXION
205_14												= 5 / 71 . 3	
210_11					1		$\perp \perp$		\perp			= 5 / 7 6 . 2	CONTROL DE ALIMENTACION DE PRODUCTO, ENTREGADO
210_14		\perp			2		$\perp \perp$					= 5 / 7 6 . 2	
330_11		\perp				1	$\perp \perp$				- A F M 1	= 5 / 8 0 . 2	
330_14		\perp				2	$\perp \perp$	$\perp \perp$	\perp		- A F M 1	= 5 / 8 0 . 2	
335_11		\perp				3	$\perp \perp \perp$				- A F M 1	= 5 / 8 0 . 3	
335_14		\perp			\perp		$\perp \perp$	\perp	\perp	330_14	X / K	= 5 / 8 0 . 3	PUENTE
340_11		\perp			\perp	1	$\perp \perp$	\perp	\perp		- A F M 2	= 5 / 81 . 2	
340_14						2					- A F M 2	= 5 / 81.2	

^ / '	`								
				Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplar	No. de páginas
Nota			Tetra Pak Processing Systems	ССР	LA	05.08.24	JL	3542-4276	125
							•		Cont. en página
Sign.			No. de proyecto.	T 5 8 4	41560	2 5			21
			G 8 0 1 2 6 9	SLC5	00. T	POP MID	I		Página
Fecha			No. dibujo.					L E V 10	
				IEIR	н інс	RM ASEP	IIC F	LEY IO	2 N
		Observaciones dibujo	3542-4276-6						20

ERMINAL		CABLE No W946	Z + 6 M	6 h 6 M	M954	1955	M300 W140					TERMINA	ı	ITEM	PAGINA	TEXTO DE FUNCION
				-	_	-	_		+	_	+	TERMIN	_			TEXTO BE TONEION
	345_11	3										2110 411		- A F M 2	= 5 / 81 . 3	DUENTE
	345_14											340_14		X/K	= 5 / 81 . 3	PUENTE
	350_11		1											- AFM3	= 5 / 8 2 . 2	
	350_14		2											- AFM3	= 5 / 8 2 . 2	
	355_11 355_14		3									250 44		- A F M 3	= 5 / 8 2 . 3	DUENTE
				1								350_14		-AFM4/ALSAFE		PUENTE
	360 <u>11</u> 360 <u>1</u> 4			2										-AFM4/ALSAFE	= 5 / 8 3 . 1	
	365 <u>-</u> 14			3							+			-AFM4/ALSAFE	= 5 / 8 3 . 2	
	365_14					+			\dashv		+	360_14		X/K	= 5 / 8 3 . 2	PUENTE
	370_14			4		+			\dashv		+	300_14		-AFM4/ALSAFE	= 5 / 8 3 . 3	TOUNTE
	370 <u>-11</u> 370 <u>-</u> 14			+		+			+		+	365_14		X/K	= 5 / 8 3 . 3	PUENTE
	375_11			5								303_14		-AFM4/ALSAFE	= 5 / 8 3 . 3	TOUNTE
	375 <u>-11</u> 375 <u>-</u> 14											370_14		X/K	= 5 / 8 3 . 4	PUENTE
	380_11			6							\top	3,0_11		-AFM4/ALSAFE	= 5 / 8 3 . 4	TOURIE
	380_14			Ť								375_14		X/K	= 5 / 8 3 . 4	PUENTE
	 415_11				1									-CIP	= 5 / 7 7 . 2	
	 415_14				2	\top					\top			- C I P	= 5 / 7 7 . 2	
	420_11				3									-CIP	=5/77.3	
	420_14											415_14		X / K	=5/77.3	PUENTE
	425_11				4									-CIP	=5/77.3	
	425_14											420_14		X/K	=5/77.4	PUENTE
	500_11					1								-REJECT	= 5 / 7 8 . 2	
	500_14					2								-REJECT	= 5 / 7 8 . 2	
	505_11					3								-REJECT	=5/78.3	
!	505_14					I						500_14		X / K	= 5 / 7 8 . 3	PUENTE
!	510_11						1							- V 1 5	=5/79.2	
!	510_14						2							- V 1 5	=5/79.2	
	2 G _ 1 1						1					1 2		- G 2 0	= 5 / 68.2	INVERSOR DE FREC. PARA M2
	2 G _ 1 4						2					18		- G 2 0	= 5 / 68 . 2	

Nota		Tetra Pak Processing Systems	C C P	Diseñador L A	05.08.24		3542-4276	1 2 5
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	S L C 5		POP MID			Cont. en página 22 Página
	Observaciones dibujo	3542-4276-6	1 - 1 1 1		VII IIJEI	110 11		21

ERMINAL	I	W142	W143				TERMINAL	ITEM	PAGINA	TEXTO DE FUNCION
/ K	W O _ 2						G N D	- G 2 O	= 5 / 68 . 3	PANTALLA
	9 G _ 1 1	1					12	-690	= 5 / 6 9 . 2	INVERSOR DE FREC. PARA M9
	9G_14	2					18	-690	= 5 / 6 9 . 2	
	W O _ 2						GND	- G 9 O	= 5 / 6 9 . 3	PANTALLA
1	06_11		1				12	-G100	= 5 / 7 0 . 2	INVERSOR DE FREC. PARA M10
1	0G_14		2				18	-6100	= 5 / 7 0 . 2	
	W O _ 2						GND	- G 1 O O	= 5 / 7 0 . 3	PANTALLA

Nota		Tetra Pak Processing Systems	Departamento CCP	Diseñador L A	05.08.24		3542-4276	No. de páginas 125
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	SLC5		OP MID		LEX 10	23 Página
	Observaciones dibujo	3542-4276-6	1 - 1 1 1		VII IIJEI	116 1		22

Nota		Tetra Pak Processing Systems	Departamento CCP	Diseñador L A	05.08.24		3542-4276	No. de páginas 125
Sign.		No. de proyecto. G 8 0 1 2 6 9		415602 00. TE	25 POP MID	Т		Cont. en página 24 Página
Fecha	Observaciones dibujo	3542-4276-6					LEX 10	23

	1			<u> </u> 	1 1	2	1 1			3		4	5	6 7 8
								- 1						
		1 1												
	S S													
	3.1	3 2	93	36	9 9	5.9								
	L I	3 3	м 1	Z Z	M 1	X 2					TERMINAL	ITEM	PAGINA	TEXTO DE FUNCION
1 B	1											-B/TE1	=5/26.5	
W O _ 2											GND	-B/TE1	= 5 / 26 . 6	PANTALLA
2 _ B		1										-B/TE2	= 5 / 26 . 7	
2 <u></u> C		2										-B/TE2	= 5 / 26 . 7	
2 _ D		3										-B/TE2	= 5 / 26 . 7	
W O _ 2											GND	- B / T E 2	= 5 / 26 . 8	PANTALLA
3 _ B			1									-B/TE3	= 5 / 27 . 1	
3 _ C			2									-B/TE3	= 5 / 27 . 1	
3 _ D			3									-B/TE3	= 5 / 27 . 2	
W O _ 2											GND	-B/TE3	= 5 / 27 . 2	PANTALLA
4 _ B				1								-B/TE4	= 5 / 27 . 3	
4 _ C				2								-B/TE4	= 5 / 27 . 3	
4 _ D				3								-B/TE4	= 5 / 27 . 3	
W O _ 2											GND	-B/TE4	= 5 / 27 . 4	PANTALLA
6 _ B			4	1								-B/TE6	= 5 / 27 . 7	
6 <u>C</u>			4	2	-							-B/TE6	= 5 / 27 . 7	
6_D		\perp		3								-B/TE6	= 5 / 27 . 7	
W O _ 2		\perp									GND	-B/TE6	= 5 / 27 . 8	PANTALLA
8 _ B			4		1							-B/TE8	= 5 / 28.3	
8 _ C					2				$\perp \perp$			-B/TE8		
8 _ D	_				3				$\perp \perp$			-B/TE8	= 5 / 28.3	
W 0 _ 2	\perp	\vdash	\perp		\vdash		+	_	+	_	G N D	-B/TE8	= 5 / 2 8 . 4	PANTALLA
	\perp	\vdash	+		\vdash	1		+	+	\perp		-B/TE9	= 5 / 2 8 . 5	
9_0	+	\vdash	+		\vdash			\perp	+	_		-B/TE9	= 5 / 2 8 . 5	
	-	+	_			3			+ +			-B/TE9	= 5 / 2 8 . 5	
	_	+	\perp		\vdash			_	++	_	GND			PANTALLA
	_	+	_		\vdash				++					
10_C						2						_	-	
h h h h	1 _ B 1 _ C 1 _ D W 0 _ 2 2 _ B 2 _ C 2 _ D W 0 _ 2 3 _ B 3 _ C 3 _ D W 0 _ 2 4 _ B 4 _ C 4 _ D W 0 _ 2 6 _ B 6 _ C 6 _ D W 0 _ 2 8 _ B 8 _ C 8 _ D W 0 _ 2 9 _ B 9 _ C 9 _ D W 0 _ 2 1 _ D B 9 _ C 9 _ D W 0 _ 2 1 _ D B D W 0 _ 2 1 _ D B D W 0 _ 2 1 _ D B D W 0 _ 2 1 _ D D W 0 _ 2 1 _ D D W 0 _ 2 1 _ D B D W 0 _ 2 1 _ D D W 0 _ 2 1 _ D B D W 0 _ 2 D D D D D D D D D	1 _ B	1_B	1_B	1_B	1_B	1_B	1_B	1_B	1_B	1 _ B	1 _ B	1	1_B

Nota		Tetra Pak Processing Systems	C C P	Diseñador L A	05.08.24		3542-4276	No. de páginas 125
Sign.		No. de proyecto. G 8 0 1 2 6 9 No. dibujo.	S L C 5		POP MID			Cont. en página 25
	Observaciones dibujo	3542-4276-6			VII IIJET	110 11	LLX 10	2 4

																							consentimento
0	<u> </u>	1						2			 3		4			5		6		7	7	8	
		0 N																					
		B L E	7 0 7 3	7 5	7 8	7 9	8 1																
T E R M I N A L		CABL	3 3 1	3	W178	Σ 1	м Т					TERMINAL	ITEM		PΑ	GINA	TEXTO	DE FUNC	ION				
. / U	10_D		3										- B / T E 1	0	= 5	/28.7							
	W O _ 2											G N D	-B/TE1			/28.8	PANTAL	LA					
	42_B		1										- B / T E 4			/25.1							
	4 2 _ C		2										- B / T E 4			/25.1							
	42_D		3										- B / T E 4			/25.2							
	W O _ 2											G N D	- B / T E 4			/25.2	PANTAL	LA					
	44_B	\top		1									-B/TE4			/25.3							
	44_C			2	_								-B/TE4			/25.3							
	44_D			3									- B / T E 4			/25.3							
	W O _ 2				П							G N D	- B / T E 4			/25.4	PANTAL	LA					
	63_B				1								-B/TE6			/25.5							
	63_C				2								-B/TE6			/25.5							
	63_D				3								-B/TE6			/25.5							
	W O _ 2	T			П							G N D	- B / T E 6			/25.6	PANTAL	LA					
	64_B	\top				1							-B/TE6			/25.7							
	64_C				_	2							-B/TE6			/25.7							
	64_D					3							- B / T E 6			/25.7							
	W O _ 2											G N D	-B/TE6			/25.8	PANTAL	LA					
	71_B						1						-B/TE7			/26.1							
	71_C						2						- B / T E 7			/26.1							
	71_D						3						- B / T E 7			/26.2							
	W O _ 2											G N D	- B / T E 7			/26.2	PANTAL	LA					
		\top																					
				•						•	 		VEOS	F TFX	TO DE F	пистии							

X / U								
			Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplar	n No. de páginas
Nota		Tetra Pak Processing Systems	CCP	LA	05.08.24	JL	3542-4276	125
					•		•	Cont. en página
Sign.		No. de proyecto.	T 5 8 4	41560	25			2 6
		G 8 0 1 2 6 9				т		Página
Fecha		No. dibujo.	7 2 7 7 3	00, 1	POP MID	1		
reciia			TETR	A THE	RM ASEP	TIC F	LEX 10	2.5
	Observaciones dibuio	3542-4276-6						23

Nota		Tetra Pak Processing Systems	C C P	Diseñador L A	05.08.24		3542-4276	No. de páginas 125 Cont. en página	
Sign.		No. de proyecto. 6801269	T5844156025 SLC500, TPOP MIDI TETRA THERM ASEPTIC FLEX 10				I E Y 1 O	27 Página 26	
	Observaciones dibujo	3542-4276-6		TETRI THEKI HISET FIE TEEX TO					

G801269

3542-4276-6

No. dibujo.

Observaciones dibujo

Fecha

Página

27

SLC500, TPOP MIDI

TETRA THERM ASEPTIC FLEX 10

	Z											
ERMINAL	7 B B T	M995	9 6 6 M	M 9 9 7					TERMINAL	ITEM	PAGINA	TEXTO DE FUNCION
(F	1								4	XF	= 5 / 67 . 2	RED PARADA DE EMERGENCIA, OPCION
	2								3	XF	= 5 / 67 . 3	
	3								2	ΧF	= 5 / 67 . 5	
	4								1	ΧF	= 5 / 67 . 5	·
	5	1									=5/67.0	
	6	2									=5/67.0	
	7		1								= 5 / 67 . 1	
	8		2								= 5 / 67 . 1	DESCONECTAR PUENTE SI SE USA
	9			1					1	XF	= 5 / 67 . 2	RED PARADA DE EMERGENCIA, OPCION
	10			2					2	XF	=5/67.3	DESCONECTAR PUENTE SI SE USA
	11			3					3	XF	=5/67.3	RED PARADA DE EMERGENCIA, OPCION
	12			4					4	XF	=5/67.3	
	15										=5/67.6	PARADA DE EMERGENCIA REPOSICION
	17										= 5 / 67 . 7	VER DIAGRAMA DE CIRCUITO
	19										= 5 / 67 . 7	
		Ш		\perp								
		Ш	\perp	\perp								
				\perp								
				\perp								
				\perp			\perp					
				\perp			\perp					

XF								
			Departamento	Diseñador	Fecha	Verificado	No. de proye cto Eplan	n No. de páginas
Nota		Tetra Pak ✓ Processing Systems	ССР	LA	05.08.24	JL	3542-4276	125
				•	•	•	•	Cont. en página
Sign.		No. de proyecto.	T5844156025 SLC500, TPOP MIDI					
		G 8 0 1 2 6 9						
Fecha		No. dibujo.					. =	
			IEIR	H IHE	RM ASEF	'IIL F	LEX 10	28
	Observaciones dibuio	3542-4276-6						

