0 H B M 2 2 3

MONTRÉAL

JULY 22-26

I have no disclosures

Educational course Beyond blobology: advances in statistical inference for neuroimaging

Beyond blobology educational course

0 H B M

Morning theoretical sessions:

08:00 - 08:15 Walk-in with coffee

- 08:15 08:20 Organizers, General Introduction
- 08:20 08:40 Wouter Weeda, Classical cluster inference and its caveats
- 08:40 09:00 Stephanie Noble, Cluster failure or power failure?
- 09:00 09:40 Jelle Goeman FDP/TDP based methods primer

09:40 - 09:50 Coffee break (10min)

- 09:50 10:30 Alexandre Blain, Non-parametric templates
- 10:30 11:10 Samuel Davenport, TDP Inference in GLM

11:10 - 11:20 Coffee break (10min)

- 11:20 12:00 Thomas Nichols, Spatial inference via confidence sets
- 12:00 12:40 Amanda Mejia, Spatial Bayesian models

12:40 - 13:45 Lunch break (1hr05)

Afternoon practicals:

13:45 - 14:30 Xu Chen, All-resolutions Inference Framework

14:30 - 15:15 Alexandre Blain, Introducing the Sansouci package and Notip.

15:15 - 15:30 Tea break (15 min)

15:30 - 16:15 Samuel Davenport, TDP Inference in regression

16:15 - 17:00 Tom Maullin, Spatial inference via confidence sets

17:00- 17:15 Organizers, Closing statements

Our mission today

0 H B M 2 0 2 3

Insert famous quote about blobs here

"It is a mistake to think you can solve any major problems just with potatoes."

 Douglas Adams, Life, the Universe and Everything

Classical inference and its caveats

Wouter Weeda, Leiden University

Part 1: Inference in functional MRI

0 H B M

0 H B M 2 0 2 3

- For most functional MRI studies measured signal comes from distinct locations in the brain called voxels: a 3-dimensional grid of 3x3x3 mm cubes.
- Inference in functional MRI is done on each location (voxel) separately.
- The maps that you often see are the outcomes of this inference (usually in the form of a z or t-statistic indicating significance).

0 H B M 2 0 2 3

- Outcomes are usually statistics values for a contrast (e.g., rest versus task, or group A vs group B).
- These statistics can be converted into per voxel p-values and subsequently z-values.
- Note that p-values can also be obtained using permutations/randomization designs.

- How to decide which areas of the brain are 'active' (or more active in one condition than another)?
- We use classical null-hypothesis testing:
 - H₀: voxel is not active
 - H₁: voxel is active
- Calculate a p-value that conveys surprise of observing the data when H₀ is true

0 H B M 2 0 2 3

In classical inference there are four possible

scenarios:

	Statistical test H ₀ = TRUE (test not significant)	Statistical test H ₀ = FALSE (test significant)
Reality H ₀ = TRUE (no effect)	Correct acceptance of H ₀ (True negative)	False positive decision
Reality H ₀ = FALSE (genuine effect)	False negative decision	Correct rejection of H ₀ (True positive)

- 0 H B M 2 0 2 3
- In the decision of whether H₀ can be rejected we allow some uncertainty:
 - An $\alpha\%$ chance for falsely rejecting H₀ when H₀ is actually true (a false-positive result)
- Usually, α is set at 5%.
- So, if I would repeat my experiment multiple times, in about 5% of the cases I would falsely reject H₀

And now for the big problem

- In functional MRI studies we don't do just one test, we do over 200.000 in one experiment.
- This increases the chances of finding falsepositive voxels dramatically (out of our 200.000 voxels 10.000 could be false-positives)
- If we don't control, we are in trouble. As pointed out by the dead salmon of Bennett et al. in 2009.

What do we want to control?

0 H B M 2 0 2 3

- When performing multiple hypothesis tests, we want to control the 'Family-wise error rate':
 - FWER: the chance of at least one falsepositive result in a 'family' of tests. We want this chance to be lower than α.
- The family of tests is usually either all the voxels or clusters in the brain

Quick recap

0 H B M 2 0 2 3

- The goal of fMRI inference is to decide for each voxel whether it is active or not (using a hypothesis test).
- For each test we allow a little uncertainty of whether our decision is the right one.
- When doing multiple tests, the chances of making a wrong decision somewhere in our 'family' of tests increases dramatically.
- The family-wise error rate (FWER) of our family of tests is what we want 'controlled'.

Part 2: Multiple testing in functional MRI

Let's start with an example

0 H B M 2 0 2 3

Study on vocal and non-vocal sounds, Pernet et al., 2015

Let's start with an example

- In total 166.407 in-mask voxels.
- Focus only on positive values for now.
- Z-statistics indicate whether a voxel is more active in the *non-vocal* condition than in the *vocal* condition.
 - H_0 = not active (z-value = 0)
 - H₁= active (z-value > 0)

Voxel-wise error control

- Controls the FWER over all voxels in the brain (mask). Family = all voxels.
- Easiest method to control the FWER is Bonferroni correction.
- Calculated by setting the per-voxel α to be α / #voxels

$$.05 / 166407 = .0000003$$

Usually not very powerful.

Voxel-wise error control

- But...
- Since our family is all voxels, we know exactly where the activation is!
- In other words: we have high spatial specificity.
- (because the chance of any of these voxels being a false-positive < 5%)

Voxel-wise error control

- Additional methods are available, for example:
 - Random Field Theory based peakthresholding
 - Permutation based methods
 - False Discovery Rate based methods (more powerful, but weaker control of the FWER)

- Usually, we are not interested in singlevoxel activity per se. A more natural unit is a 'cluster' of voxels (which we will name 'blob').
- A cluster or blob is defined as a contiguous/connected set of voxels.
- We control the number of false-positive blobs (our family in FWER is thus all possible blobs, not all voxels).

- In practice, using a two-step approach:
 - 1. Choose a 'cluster-forming' threshold z and estimate the size of all contiguous clusters above this threshold.

Determine the minimum cluster size k that occurs by chance under the null (95%) given the smoothness of the data and the chosen threshold z (e.g., using RFT or permutations)

2. Check which clusters are larger than *k* (all clusters that are larger are significant).

0 H B M 2 0 2 3

- More powerful than voxel-wise approaches, but... more powerful in detecting activation, not in localizing it.
- Because of hypotheses being on the 'cluster' level:
 - Non-significant when cluster-extent is smaller than k
 - Significant when cluster-extent is larger than k
- No information about voxels within a cluster (clusters are large enough or not).

O H B M O 2 3

Formal way of stating this:

 H_0 = no activation within a cluster H_1 = at least one voxel active within a cluster

- So, the larger the cluster found, the less we know about activation within a cluster.
- This is called the Spatial specificity paradox (Woo et al., 2014, Lindquist & Mejia, 2015).

0 H B M 2 0 2 3

Left: more voxels but we know less about location

Right: less voxels but we know more about location

No formal way of deciding the optimal threshold.

0 H B M 2 0 2 3

And we cannot run the analysis with another threshold after seeing the data without compromising our FWER.

Cluster-extent vs voxel-wise

- The chance of finding at least one contiguous cluster of size at least k, given threshold z, under the null-hypothesis of no activation must be smaller than a criterion (e.g. 5%).
- Usually, researchers choose z and estimate k (e.g., using RFT, permutations, Monte-Carlo simulations).
- Setting *k* and estimating *z* is also possible:
 - With k = 1, this reverts to a voxel-wise threshold.
 - With k > 1, this reverts to selecting a minimum cluster size one is interested in.

Another cluster-extent caveat

0 H B M 2 0 2 3

Another issues (more general with p-value based research): when the number of participants increases, the p-values get smaller, clusters get larger for the same threshold.

Summary part 2

- Voxel-wise approaches are usually less powerful in detecting activation but allow for proper localization of activity.
- Cluster-extent approaches are usually more powerful in detection activation but are less spatially specific (and it gets worse the larger the cluster).
- No principled way to select the arbitrary threshold.
- With increasing n, cluster extent becomes too large with the same threshold.

Is all then lost?

- Cluster-extent approaches are a sub-optimal way to do inference, because statements like this cannot be answered using this approach:
 - "A large significant cluster contains a substantial number of active voxels."
 - "A large significant cluster is a more substantial scientific finding than a small significant cluster."
 - "Substantial overlap between a significant cluster and an anatomical brain area indicates evidence for the presence of activity in that anatomical brain area."

Goeman et al., accepted

0 H B M 2 0 2 3

Of (educational) course not

0 H B M 2 0 2 3

- Today is about solutions to the problems of classical cluster-extent inference:
 - Approaches based on recent advances in multiple testing: true/false discovery proportions, closed testing, and joint error-rate control.
 - Approaches based on effect-sizes (instead of p-values)
 - Approaches based on (Bayesian) spatial modelling and surface (edge/vertex) data.

What to expect today

- We can actually quantify the number of 'truly' active voxels within a (or any cluster) in the data, without losing FWER control, increasing spatial specificity.
- We can leverage the information (aka spatial correlations)
 in the data to optimize this estimation.
- We can quantify spatial confidence bounds for clusters, alleviating the increasing *n* problem.
- We can use explicit statistical models to test spatial hypotheses.

Beyond blobology educational course

0 H B M

Morning theoretical sessions:

08:00 - 08:15 Walk-in with coffee

- 08:15 08:20 Organizers, General Introduction
- 08:20 08:40 Wouter Weeda, Classical cluster inference and its caveats
- 08:40 09:00 Stephanie Noble, Cluster failure or power failure?
- 09:00 09:40 Jelle Goeman FDP/TDP based methods primer

09:40 - 09:50 Coffee break (10min)

- 09:50 10:30 Alexandre Blain, Non-parametric templates
- 10:30 11:10 Samuel Davenport, TDP Inference in GLM

11:10 - 11:20 Coffee break (10min)

- 11:20 12:00 Thomas Nichols, Spatial inference via confidence sets
- 12:00 12:40 Amanda Mejia, Spatial Bayesian models

12:40 - 13:45 Lunch break (1hr05)

Afternoon practicals:

13:45 - 14:30 Xu Chen, All-resolutions Inference Framework

14:30 - 15:15 Alexandre Blain, Introducing the Sansouci package and Notip.

15:15 - 15:30 Tea break (15 min)

15:30 - 16:15 Samuel Davenport, TDP Inference in regression

16:15 - 17:00 Tom Maullin, Spatial inference via confidence sets

17:00- 17:15 Organizers, Closing statements

Advanced blobology

