

RealMan Robot rm_ros_interface User Manual V1.0

RealMan Intelligent Technology (Beijing) Co., Ltd.

Revision History:

No.	Date	Comment
V1.0	11/20/2023	Draft

Content

1. rm_ros_	Interface Package Description	4
2. rm_ros_	_interface Package Use	4
3. rm_ros_	_interface Package Architecture Description	4
3.1 Over	rview of Package Files	4
4. rm_ros_	_interface message description	5
1.	Joint error code: Jointerrorcode.msg	5
2.	Clearing the joint's error code: Jointerrclear.msg	5
3.	All coordinate system names: Getallframe.msg	6
4.	Joine motion: Movej.msg	6
5.	Linear motion: Movel.msg	6
6.	Circular motion: Movec.msg	6
7.	Joint space planning to target pose: Movejp.msg	7
8.	Joint transmission: Jointpos.msg	7
9.	Pose transmission: Cartepos.msg	8
10.	Current robotic arm state (Angle + Euler angle): Armoriginalstate.n	1 sg 8
11.	Current arm state (radians + quaternion): Armstate.msg	9
12.	Getting the software version: Armsoftversion.msg	9
13.	Gripper's pick: Gripperpick.msg	10
14.	Gripper's pick (gripper's pick-on): Gripperpick.msg	10
15.	Gripper reaching the given position: Gripperset.msg	10
16.	Force-position mixing control: Setforceposition.msg	11
17.	Six-axis force data: Sixforce.msg	11
18.	Setting the dexterous hand posture: Hand posture.msg	12
19.	Setting the dexterous hand action sequence: Handseq.msg	12
20.	Setting the angles of various degrees of freedom for the dexterous ha	nd:
Hand	angle.msg	13
21.	Setting the dexterous hand action sequence: Handspeed.msg	13
22.	Setting the force threshold for the dexterous hand: Handforce.msg	13

23.	Transmissive force-position mixing control compensation (angle):	
Forcep	ositionmovejoint.msg	13
24.	Transmissive force-position mixing control compensation (pose):	
Forcep	ositionmovejoint.msg	14
25.	Speed open loop control (lifting mechanism): Liftspeed.msg	15
26.	Position closed-loop control (lifting mechanism): Lift height.msg	15
27.	Getting the state of the lifting mechanism: Liftstate.msg	16
29.	Getting the state of the lifting mechanism: Liftstate.msg	16
30.	Getting the state of the lifting mechanism: Liftstate.msg	17

1. rm ros interface Package Description

The main function of the rm_ros_interface package is to provide necessary message files for the robotic arm to run under the framework of ROS2. In the following text, we will provide a detailed introduction to this package through the following aspects.

- 1. Package use.
- 2. Package architecture description.
- 3. Package topic description.

Through the introduction of the three parts, it can help you:

- 1. Understand the package use.
- 2. Familiar with the file structure and function of the package.
- 3. Familiar with the topic related to the package for easy development and use.

Source code address: https://github.com/RealManRobot/ros2 rm robot.git.

2. rm ros interface Package Use

This package does not have any executable commands, but it is used to provide the necessary message files for other packages.

3. rm ros interface Package Architecture Description

3.1 Overview of package files

The current rm driver package is composed of the following files.

L CM L L'AAA	" '1 ': 1 C1
CMakeLists.txt	# compilation rule file
include	# dependency header file folder
rm_ros_interfaces	
├── msg	# current message file (see below for details)
Armoriginalstate.msg	
Armsoftversion.msg	
Armstate.msg	
Cartepos.msg	
Forcepositionmovejoint75.ms	g
Forcepositionmovejoint.msg	
Forcepositionmovepose.msg	
Force_Position_State.msg	
Getallframe.msg	
GetArmState_Command.msg	
Gripperpick.msg	
Gripperset.msg	
Handangle.msg	
Hand force.msg	
Handposture.msg	
Handseq.msg	
Handspeed.msg	
Jointerrelear.msg	

4. rm ros interface message description

1. Joint error code: Jointerrorcode.msg

```
uint16[] joint_error uint8 dof
```

msg member

uint16[] joint_error

Error message for each joint.

uint8 dof

Degree of freedom message of the robotic arm.

2. Clearing the joint's error code: Jointerrclear.msg

```
uint8 joint_num bool block
```

msg member

joint_num

the corresponding joint number, from the base to the robotic arm gripper, the number is 1-6 or 1-7.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

3. All coordinate system names: Getallframe.msg

string[10] frame_name

msg member

frame name

The array of work coordinate system names returned

4. Joined motion: Movej.msg

float32[] joint

uint8 speed

bool block

uint8 dof

msg member

joint

Joint angle, float type, unit: radians.

speed

Speed percentage ratio coefficient, 0-100.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

dof

Degree of freedom message of the robotic arm.

5. Linear motion: Movel.msg

geometry_msgs/Pose pose uint8 speed bool block

msg member

pose

Robotic arm pose: geometry_msgs/Pose type, x, y, z coordinates (float type, unit: m) + quaternion (float type).

speed

Speed percentage ratio coefficient, 0-100.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

6. Circular motion: Movec.msg


```
geometry_msgs/Pose pose_mid
geometry_msgs/Pose pose_end
uint8 speed
bool block
```

msg member

pose mid

Middle pose: geometry_msgs/Pose type, x, y, z coordinates (float type, unit: m) + quaternion.

pose_end

Target pose: geometry_msgs/Pose type, x, y, z coordinates (float type, unit: m) + quaternion.

speed

Speed percentage ratio coefficient, 0-100.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

7. Joint space planning to target pose: Movejp.msg

```
geometry_msgs/Pose pose uint8 speed bool block
```

msg member

pose

Target pose: geometry_msgs/Pose type, x, y, z coordinates (float type, unit: m) + quaternion.

speed

Speed percentage ratio coefficient, 0-100.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

8. Joint transmission: Jointpos.msg

float32[] joint bool follow float32 expand uint8 dof

msg member

joint

Joint angle, float type, unit: radians.

follow

Follow state, bool type, true: high follow, false: low follow, default high follow if not set.

expand

Expand joint, float type, unit: radians.

dof

Degree of freedom message of the robotic arm.

9. Pose transmission: Cartepos.msg

```
geometry_msgs/Pose pose bool follow
```

msg member

pose

Robotic arm poses geometry_msgs/Pose type, x, y, z coordinates (float type, unit: m) + quaternion.

follow

Follow state, bool type, true: high follow, false: low follow, default high follow if not set.

10. Current robotic arm state (Angle + Euler angle): Armoriginalstate.msg

```
float32[] joint
float32[6] pose
uint16 arm_err
uint16 sys_err
uint8 dof
```

msg member

joint

Joint angle, float type, unit: °.

pose

Current pose of the robotic arm, float type, x, y, z coordinates, unit: m, x, y, z Euler angle, unit: degree.

arm_err

Robotic arm running error code, unsigned int type.

arm err

Controller error code, unsigned int type.

dof

Degree of freedom message of the robotic arm.

11. Current arm state (radians + quaternion): Armstate.msg

```
float32[] joint
geometry_msgs/Pose pose
uint16 arm_err
uint16 sys_err
uint8 dof
```

msg member

joint

Joint angle, float type, unit: radians.

pose

Current pose of the robotic arm, float type, x, y, z coordinates, unit: m, x, y, z, w quaternion.

arm_err

Robotic arm running error code, unsigned int type.

arm err

Controller error code, unsigned int type.

dof

Degree of freedom message of the robotic arm.

12. Getting the software version: Armsoftversion.msg

```
string plan version
string ctrlversion
string kernal1
string kernal2
string productversion
```

msg member

planversion

The read user interface kernel version number, string type.

ctrlversion

Real-time kernel version number, string type.

kernal1

The version number of sub-core 1 of the real-time kernel, string type.

kernal2

The version number of sub-core 2 of the real-time kernel, string type.

productversion

Robotic arm model, string type.

13. Gripper's pick: Gripperpick.msg

uint16 speed

uint16 force

bool block

msg member

speed

Gripper pick speed, unsigned int type, range: 1-1000.

force

Gripper pick torque threshold, unsigned int type, range: 50-1000.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

14. Gripper's pick (gripper's pick-on): Gripperpick.msg

uint16 speed

uint16 force

bool block

msg member

speed

Gripper pick speed, unsigned int type, range: 1-1000.

force

Gripper picks torque threshold, unsigned int type, range: 50-1000.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

15. Gripper reaching the given position: Gripperset.msg

uint16 position

bool block

msg member

position:

Gripper target position, unsigned int type, range: 1-1000, representing the degree of opening of the gripper: 0-70 mm.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

16. Force-position mixing control: Setforceposition.msg

```
uint8 sensor
uint8 mode
uint8 direction
int16 n
bool block
```

msg member

sensor

Sensor; 0 - One-axis force; 1 - Six-axis force.

mode

Mode: 0 - Base coordinate system force control; 1 - Tool coordinate system force control.

Direction

Force control direction; 0 - Along the X-axis; 1 - Along the Y-axis; 2 - Along the Z-axis; 3 - Along the RX posture direction; 4 - Along the RY posture direction; 5 - Along the RZ posture direction.

n

Force value, unit: 0.1 N.

block

whether it is a blocking mode, true: blocking, false: non-blocking.

17. Six-axis force data: Sixforce.msg

```
float32 force_fx
float32 force_fy
float32 force_fz
float32 force_mx
float32 force_my
float32 force_mz
```


msg member

force fx

the force along the x-axis direction.

force_fy

the force along the y-axis direction.

force fz

the force along the z-axis direction.

force mx

the force when rotating along the x-axis direction.

force my

the force when rotating along the y-axis direction.

force mz

the force when rotating along the z-axis direction.

18. Setting the dexterous hand posture: Handposture.msg

uint16 posture_num bool block

msg member

posture num

The serial number of the posture pre-saved in the dexterous hand, ranges from 1 to 40.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

19. Setting the dexterous hand action sequence: Handseq.msg

uint16 seq_num bool block

msg member

seq num

The serial number of the sequence pre-saved in the dexterous hand, ranging from 1 to 40.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

20. Setting the angles of various degrees of freedom for the dexterous hand:

Handangle.msg

int16[6] hand_angle bool block

msg member

hand angle

Hand angle array, range: 0-1000. And -1 represents that no operation is performed on this degree of freedom and the current state remains.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

21. Setting the dexterous hand action sequence: Handspeed.msg

uint16 hand_speed bool block

msg member

hand_speed

Hand speed, range: 1-1000.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

22. Setting the force threshold for the dexterous hand: Handforce.msg

uint16 hand_force bool block

msg member

hand force

Hand force, range: 1-1000.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

23. Transmissive force-position mixing control compensation (angle): Forcepositionmovejoint.msg

float32[] joint uint8 sensor uint8 mode int16 dir float32 force

bool follow uint8 dof

msg member

joint

Angle force-position mixing transmission, unit: radians.

sensor

Type of sensor used, 0 - One-axis force, 1 - Six-axis force.

mode

Mode, 0 - Along the work coordinate system, 1 - Along the tool end coordinate system.

dir

Force control direction, 0 to 5 represent X/Y/Z/Rx/Ry/Rz respectively, and the default direction for one-axis force type is the Z direction.

force

Force value, accuracy: 0.1 N or 0.1 Nm.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

dof

Degree of freedom message of the robotic arm.

24. Transmissive force-position mixing control compensation (pose): Forcepositionmovejoint.msg

geometry msgs/Pose pose

uint8 sensor

uint8 mode

int16 dir

float32 force

bool follow

msg member

pose

Robotic arm pose message, x, y, z position message + quaternion posture message.

sensor

Type of sensor used, 0 - One-axis force, 1 - Six-axis force.

mode

Mode, 0 - Along the work coordinate system, 1 - Along the tool end coordinate system.

dir

Force control direction, 0 to 5 represent X/Y/Z/Rx/Ry/Rz respectively, and the default direction for one-axis force type is the Z direction.

force

Force value, accuracy: 0.1 N or 0.1 Nm.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

25. Speed open loop control (lifting mechanism): Liftspeed.msg

int16 speed bool block

msg member

speed

Speed percentage, -100-100. Speed < 0: the lifting mechanism moves downward; Speed > 0: the lifting mechanism moves upward; Speed = 0: the lifting mechanism stops.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

26. Position closed-loop control (lifting mechanism): Lift height.msg

uint16 height uint16 speed bool block

msg member

height

Target height, unit: mm, accuracy: 0-2600.

speed

Speed percentage, 1-100.

block

whether it is a blocking mode, bool type, true: blocking, false: non-blocking.

27. Getting the state of the lifting mechanism: Liftstate.msg

```
int16 height
int16 current
uint16 err flag
```

msg member

height

Current lifting mechanism height, unit: mm, accuracy: 1mm, range: 0-2300.

current

Lifting drive error code, error code type refers to joint error code.

28. Getting (setting) UDP active reporting configuration: Setrealtimepush.msg

```
uint16 cycle
uint16 port
uint16 force_coordinate
string ip
```

msg member

cycle

Set the broadcast cycle, which is a multiple of 5ms.

port

Set the port number for broadcasting.

force coordinate

Coordinate system for external force data of the system, where 0 is the sensor coordinate system, 1 is the current work coordinate system, and 2 is the current tool coordinate system.

IP

Customized reporting target IP address.

29. Getting the state of the lifting mechanism: Liftstate.msg

```
int16 height
int16 current
uint16 err_flag
```

msg member

height

Current lifting mechanism height, unit: mm, accuracy: 1mm, range: 0-2300.

current

Lifting drive error code, error code type refers to joint error code.

30. Getting the state of the lifting mechanism: Liftstate.msg

```
uint16 cycle
uint16 port
uint16 force_coordinate
string ip
```

msg member

cycle

Set the broadcast cycle, which is a multiple of 5ms (default 1 i.e. 1 * 5 = 5 ms, 200 Hz).

port

Set the port number for broadcasting (default 8089).

force coordinate

Set the coordinate system for external force data (only supported by robotic arms with force sensors).

string ip

Set the custom reporting target IP address (default 192.168.1.10).