Differential program semantics now with real bi-orthogonality pieces

Guillaume Geoffroy

DIAPASoN, Unibo

11 December 2019

$$\lambda$$
-terms — syntax

$$t, u ::= x \mid \lambda x. t \mid tu$$

λ -terms – syntax

$$t, u ::= x \mid \lambda x. t \mid tu$$

 $\mid \langle t, u \rangle \mid \rho_L(t) \mid \rho_R(t)$

λ -terms — syntax

- \blacktriangleright $(\lambda x. t)u \rightarrow_{\beta} t [x := u]$
- $f(t_1,\ldots,t_j,g(u_1,\ldots u_k),v_1,\ldots,v_l) \rightarrow_{\beta}$ $(f\circ_j g)(t_1,\ldots,t_j,u_1,\ldots u_k,v_1,\ldots,v_l)$

- \blacktriangleright $(\lambda x. t)u \rightarrow_{\beta} t [x := u]$
- $f(t_1,\ldots,t_j,g(u_1,\ldots u_k),v_1,\ldots,v_l)\rightarrow_{\beta} (f\circ_j g)(t_1,\ldots,t_j,u_1,\ldots u_k,v_1,\ldots,v_l)$ add $(1,\operatorname{add}(2,3))$

- \blacktriangleright $(\lambda x. t)u \rightarrow_{\beta} t [x := u]$
- $f(t_1,\ldots,t_j,g(u_1,\ldots u_k),v_1,\ldots,v_l)\rightarrow_{\beta} (f\circ_j g)(t_1,\ldots,t_j,u_1,\ldots u_k,v_1,\ldots,v_l)$ $\operatorname{add}(1,\operatorname{add}(2,3))\rightarrow_{\beta}\operatorname{add}_3(1,2,3)$

- \blacktriangleright $(\lambda x. t)u \rightarrow_{\beta} t [x := u]$
- $f(t_1,\ldots,t_j,g(u_1,\ldots u_k),v_1,\ldots,v_l)\rightarrow_{\beta} (f\circ_j g)(t_1,\ldots,t_j,u_1,\ldots u_k,v_1,\ldots,v_l)$ $\operatorname{add}(1,\operatorname{add}(2,3))\rightarrow_{\beta}\operatorname{add}_3(1,2,3)\rightarrow_{\beta}^3 6$

- \blacktriangleright $(\lambda x. t)u \rightarrow_{\beta} t [x := u]$
- $f(t_1,\ldots,t_j,g(u_1,\ldots u_k),v_1,\ldots,\overline{v_l})\rightarrow_{\beta} (f\circ_j g)(t_1,\ldots,t_j,u_1,\ldots u_k,v_1,\ldots,v_l)$ $\operatorname{add}(1,\operatorname{add}(2,3))\rightarrow_{\beta}\operatorname{add}_3(1,2,3)\rightarrow_{\beta}^3 6$

A,B ::= \mathbb{R}

$$\begin{array}{ccc} A,B & ::= & \mathbb{R} \\ & | & A \to B \end{array}$$

$$\begin{array}{ccc} A,B & ::= & \mathbb{R} \\ & | & A \to B \\ & | & A \times B \end{array}$$

$$\begin{array}{ccc}
A, B & ::= & \mathbb{R} \\
& | & A \to B \\
& | & A \times B
\end{array}$$

Expect: confluence + strong normalization

λ -terms – typing

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x. \ t : A \rightarrow B}$$

etc.

λ -terms – typing

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x. \ t : A \to B}$$
 etc.
$$\frac{(f : \mathbb{R}^n \to \mathbb{R}) \quad \Gamma \vdash t_1 : \mathbb{R} \quad \dots \quad \Gamma \vdash t_n : \mathbb{R}}{\Gamma \vdash f(t_1, \dots, t_n) : \mathbb{R}}$$

λ -terms – typing

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x. \ t : A \to B} \qquad \text{etc.}$$

$$\frac{(f : \mathbb{R}^n \to \mathbb{R}) \quad \Gamma \vdash t_1 : \mathbb{R} \quad \dots \quad \Gamma \vdash t_n : \mathbb{R}}{\Gamma \vdash f(t_1, \dots, t_n) : \mathbb{R}}$$

 $\Lambda_A := \{ \text{closed terms of type } A \}$

Stacks (i.e. tests) – syntax

$$\pi ::= I$$
 (closed interval)

Stacks (i.e. tests) – syntax

```
\pi ::= I \text{ (closed interval)} 
t \cdot \pi \text{ (t closed term)}
```

Stacks (i.e. tests) – syntax

```
egin{array}{ll} \pi & ::= & I 	ext{ (closed interval)} \ & \mid & t \cdot \pi & (t 	ext{ closed term)} \ & \mid & L \cdot \pi & \mid R \cdot \pi \end{array}
```

Stacks – typing

```
\frac{(I \text{ closed interval})}{\vdash I : \mathbb{R}}
```

Stacks – typing

$$\frac{(I \text{ closed interval})}{\vdash I : \mathbb{R}}$$

$$\frac{\vdash t : A \vdash \pi : B}{\vdash t \cdot \pi \vdash A \to B}$$

Stacks - typing

$$\frac{(I \text{ closed interval})}{\vdash I : \mathbb{R}}$$

$$\frac{\vdash \pi : A}{\vdash L \cdot \pi : A \times B}$$

$$\frac{\vdash t : A \vdash \pi : B}{\vdash t \cdot \pi \vdash A \to B}$$

Stacks - typing

Stacks - typing

 $\Pi_A := \{ \text{stacks of type } A \}$

 $ightharpoonup t \perp\!\!\!\perp I$ iff $t \to_{\beta}^* r$ for some real $r \in I$

- $ightharpoonup t \perp\!\!\!\perp I$ iff $t \to_{\beta}^* r$ for some real $r \in I$
- $ightharpoonup t \perp \!\!\!\! \perp u \cdot \pi \text{ iff } tu \perp \!\!\!\! \perp \pi$

- $\blacktriangleright t \perp I \text{ iff } t \rightarrow_{\beta}^* r \text{ for some real } r \in I$
- \blacktriangleright $t \perp \!\!\!\perp u \cdot \pi$ iff $tu \perp \!\!\!\perp \pi$
- \blacktriangleright $t \perp \!\!\!\perp L \cdot \pi$ iff $\rho_L(t) \perp \!\!\!\perp \pi$
- \blacktriangleright $t \perp \!\!\! \perp R \cdot \pi$ iff $\rho_R(t) \perp \!\!\! \perp \pi$

- $ightharpoonup t \perp\!\!\!\perp I$ iff $t \to_{eta}^* r$ for some real $r \in I$
- \blacktriangleright $t \perp \!\!\!\perp u \cdot \pi$ iff $tu \perp \!\!\!\perp \pi$
- \blacktriangleright $t \perp \!\!\!\perp L \cdot \pi$ iff $\rho_L(t) \perp \!\!\!\perp \pi$
- \blacktriangleright $t \perp \!\!\! \perp R \cdot \pi$ iff $\rho_R(t) \perp \!\!\! \perp \pi$

For
$$Y\subseteq \Pi_A$$
, $Y^\perp := \{t\in \Lambda_A: \ \forall \pi\in Y\ \ t\perp\!\!\!\perp \pi\}$

- $ightharpoonup t \perp\!\!\!\perp I$ iff $t \to_{\beta}^* r$ for some real $r \in I$
- \blacktriangleright $t \perp \!\!\!\perp u \cdot \pi$ iff $tu \perp \!\!\!\perp \pi$
- \blacktriangleright $t \perp \!\!\!\perp L \cdot \pi$ iff $\rho_L(t) \perp \!\!\!\perp \pi$
- \blacktriangleright $t \perp \!\!\! \perp R \cdot \pi$ iff $\rho_R(t) \perp \!\!\! \perp \pi$

For
$$Y \subseteq \Pi_A$$
, $Y^{\perp} := \{t \in \Lambda_A : \ \forall \pi \in Y \ t \perp\!\!\!\perp \pi\}$

For
$$X \subseteq \Lambda_A$$
, $X^{\perp} := \{ \pi \in \Pi_A : \forall t \in X \mid t \perp \!\!\!\perp \pi \}$

$$\llbracket A \rrbracket := \{ X \subseteq \Lambda_A; X^{\perp\!\!\perp} = X \}$$

```
\begin{bmatrix}
[A] & := \overline{X \subseteq \Lambda_A; X^{\perp \perp} = X} \\
& = \overline{Y^{\perp}; Y \subseteq \Pi_A}
\end{bmatrix}
```

Example (Approximate reals)

► For all I, let $|I| := \{I\}^{\perp}$

Example (Approximate reals)

- ► For all I, let $|I| := \{I\}^{\perp}$
- ▶ Then $\{I_k; k \in K\}^{\perp} = \left|\bigcap_{k \in K} I_k\right|$

Example (Approximate reals)

- ► For all I, let $|I| := \{I\}^{\perp}$
- ▶ Then $\{I_k; k \in K\}^{\perp} = \left|\bigcap_{k \in K} I_k\right|$
- ► So $[\mathbb{R}] = \{ |I| ; I \text{ closed interval} \}$

$$\llbracket A \rrbracket^* := \llbracket A \rrbracket \setminus \{\emptyset\}$$

$$\llbracket A
rbracket^* := \llbracket A
rbracket \setminus \{\emptyset\}$$

Example (Approximate functions)

► For all
$$F : \mathbb{R} \times \ldots \times \mathbb{R} \to \{I \neq \emptyset\}$$
, let $|F| := \{r_1 \cdot \ldots \cdot r_n \cdot F(r_1, \ldots, r_n); r_1, \ldots, r_n \in \mathbb{R}\}^{\perp}$

$$\llbracket A
rbracket^* := \llbracket A
rbracket \setminus \{\emptyset\}$$

Example (Approximate functions)

- ► For all $F : \mathbb{R} \times \ldots \times \mathbb{R} \to \{I \neq \emptyset\}$, let $|F| := \{r_1 \cdot \ldots \cdot r_n \cdot F(r_1, \ldots, r_n); r_1, \ldots, r_n \in \mathbb{R}\}^{\perp}$
- ▶ Then $[\mathbb{R} \to \ldots \to \mathbb{R} \to \mathbb{R}]^* = \{|F|; F \ldots\}$

Example (Approximate pairs)

For all $a \in \llbracket A
rbracket$, $b \in \llbracket B
rbracket$, let $|a \times b| := \left\{ t; \ t
ightarrow_{eta}^* \left\langle u, v
ight
angle, u \in a, v \in b
ight\}$

Example (Approximate pairs)

- For all $a \in \llbracket A \rrbracket$, $b \in \llbracket B \rrbracket$, let $|a \times b| := \{t; t \rightarrow_{\beta}^* \langle u, v \rangle, u \in a, v \in b\}$
- ▶ Then $[A \times B]^* = \{|a \times b|; a \in [A]^*, b \in [B]^*\}$

Substitution

 $\blacktriangleright t[x_1:A_1,\ldots,x_n:\underline{A_n}]:B$

Substitution

- $ightharpoonup t [x_1 : A_1, ..., x_n : A_n] : B$
- ▶ $a_1 \in [\![A_1]\!], \ldots, a_n \in [\![A_n]\!]$

Substitution

- $ightharpoonup t [x_1 : A_1, \dots, x_n : A_n] : B$
- ▶ $a_1 \in [\![A_1]\!], \ldots, a_n \in [\![A_n]\!]$
- ► Then let

$$t [x_1 := a_1, \dots, x_n := a_n]$$
 $:= \left\{ \begin{array}{l} t [x_1 := u_1, \dots, x_n := u_n]; \\ u_1 \in a_1, \dots, u_n \in a_n \end{array} \right\}^{\perp \perp} \in \llbracket B \rrbracket$

 $\blacktriangleright t [y_1 : B_1, \dots, y_n : B_n] : C$

- $\blacktriangleright t [y_1 : B_1, \dots, y_n : B_n] : C$
- $\blacktriangleright u_1[x_1:A_1,\ldots,x_m:A_m]:B_1,\ldots,u_n[x_1:A_1,\ldots,x_m:A_m]:B_n$

- $ightharpoonup t [y_1 : B_1, \dots, y_n : B_n] : C$
- $\blacktriangleright u_1[x_1:A_1,\ldots,x_m:A_m]:B_1,\ldots,u_n[x_1:A_1,\ldots,x_m:A_m]:B_n$
- $ightharpoonup a_1 \in [\![A_1]\!], \ldots, a_m \in [\![A_m]\!]$

- $\blacktriangleright t[y_1:B_1,\ldots,y_n:B_n]:C$
- $\blacktriangleright u_1[x_1:A_1,\ldots,x_m:A_m]:B_1,\ldots,u_n[x_1:A_1,\ldots,x_m:A_m]:B_n$
- $ightharpoonup a_1 \in [\![A_1]\!], \ldots, a_m \in [\![A_m]\!]$
- $\begin{array}{c}
 & t \left[u_1, \ldots, u_n \right] \left[a_1, \ldots, a_m \right] \\
 & \subseteq t \left[u_1 \left[a_1, \ldots, a_m \right], \ldots, u_n \left[a_1, \ldots, a_m \right] \right]
 \end{array}$

Distances – distance spaces

- $ightharpoonup (|\mathbb{R}|) := \mathbb{R}_+^{\infty}$
- $\blacktriangleright (A \times B) := (A) \times (B)$
- $\blacktriangleright \ (A \to B) := [A] \to (B)$

Distances – diameter function

$$\delta_{\mathcal{A}}: \llbracket \mathcal{A} \rrbracket \to \langle \mathcal{A} \rangle$$
:

- $ightharpoonup \delta_{\mathbb{R}}\left(\left|I\right|
 ight):=\operatorname{length}\left(I\right)$
- $\blacktriangleright \ \delta_{A\to B}(f)(a) := \delta_B(fa)$

Distances – diameter function

$$\delta_A: [\![A]\!] \to (\![A]\!]:$$

- $ightharpoonup \delta_{\mathbb{R}}(|I|) := \operatorname{length}(I)$
- $\blacktriangleright \ \delta_{A\to B}(f)(a) := \delta_B(fa)$

$$d_{A}(a,b) := \delta_{A}(a \vee b)$$

Distances – sub-modularity

Proposition

If
$$a \wedge b \neq \emptyset$$
 then

$$\delta_{\mathcal{A}}(\mathsf{a}\vee\mathsf{b})+\delta_{\mathcal{A}}(\mathsf{a}\wedge\mathsf{b})\leq\delta_{\mathcal{A}}(\mathsf{a})+\delta_{\mathcal{A}}(\mathsf{b})$$

Distances – sub-modularity

Proposition

If $a \wedge b \neq \emptyset$ then

$$\delta_{A}(a \lor b) + \delta_{A}(a \land b) \le \delta_{A}(a) + \delta_{A}(b)$$

Corollary

For all $a, b, c \in [A]^*$,

$$\delta_A(a \lor c) + \delta_A(b) \le \delta_A(a \lor b) + \delta_A(b \lor c)$$

Distances – sub-modularity

Proposition

If $a \wedge b \neq \emptyset$ then

$$\delta_{A}(a \lor b) + \delta_{A}(a \land b) \le \delta_{A}(a) + \delta_{A}(b)$$

Corollary

For all
$$a, b, c \in [\![A]\!]^*$$
,

$$d_A(a,c)+d_A(b,b)\leq d_A(a,b)+d_A(b,c)$$

Distances – partial metric?

Proposition?

 $[A]^*$ is a partial metric space:

- $ightharpoonup d_A(a,b) = d_A(b,a)$
- $ightharpoonup d_A(a,c) + d_A(b,b) \le d_A(a,b) + d_A(b,c)$
- ▶ if $d_A(a, a) = d_A(a, b) = d_A(b, b)$, then a = b

Distances – partial metric?

Proposition?

 $[A]^*$ is a partial metric space:

- $ightharpoonup d_A(a,a) \leq d_A(a,b)$
- $ightharpoonup d_A(a,c) + d_A(b,b) \le d_A(a,b) + d_A(b,c)$
- if $d_A(a, a) = d_A(a, b) = d_A(b, b)$, then a = b

Distances – locally finite distances

 $ightharpoonup (\mathbb{R})_f := \mathbb{R}_+$

Distances – locally finite distances

- $ightharpoonup (\mathbb{R})_f := \mathbb{R}_+$

Distances – locally finite distances

Distances - locally finite distances

- $ightharpoonup (\mathbb{R})_f := \mathbb{R}_+$
- $\qquad \qquad \{\varepsilon: [\![A]\!] \to (\![B]\!]; \ \forall u: A, \ \varepsilon(\{u\}) \in (\![B]\!]_f \}$

$$\llbracket A \rrbracket_f = \{ a \in \llbracket A \rrbracket ; \ \delta_A(a) \in (A)_f \}$$

Distances – partial metric

Proposition

 $[A]^*$ is almost a partial metric space:

- $ightharpoonup d_A(a,a) \leq d_A(a,b)$
- $ightharpoonup d_A(a,c) + d_A(b,b) \le d_A(a,b) + d_A(b,c)$
- lacksquare if $d_A(a,a)=d_A(a,b)=d_A(b,b)\in (A)_f$, then a=b