Cours MOdélisation, Vérification et EXpérimentations Exercices (avec les corrections) Utilisation d'un environnement de vérification Frama-c (I) par Dominique Méry 2 avril 2025

TD5

Annotations en Frama-c

Exercice 1

```
Exercice 2 framac/ex1.c Vérifier l'annotation suivante :
```

```
l1: x== 10 \&\& y == z+x \&\& z==2*x;

y= z+x;

l2: x== 10 \&\& y == x+2*10;

x = x+1;

l3: x-1== 10 \&\& y == x-1+2*10;
```

Solution de l'exercice 2 ...

Listing 1 – annotation 1 (wp2.c)

```
int q1() {
  int x=10,y=30,z=20;
//@ assert x== 10 && y == z+x && z==2*x;
y= z+x;
  //@ assert x== 10 && y == x+2*10;
x = x+1;
//@ assert x-1== 10 && y == x-1+2*10;
return(0);
}
```

Listing 2 – annotation 1 avec wp (wp2bis.c)

```
int q1() {
//@ assert 10== 10 && 30 == 20+10 && 20==2*10;
//@ assert 10== 10 && 20+10 == 10+2*10;
//@ assert 10+1-1== 10 && 20+10 == 10+1-1+2*10;
int x=10,y=30,z=20;
//@ assert x== 10 && y == z+x && z==2*x;
//@ assert x== 10 && z+x == x+2*10;
//@ assert x+1-1== 10 && z+x == x+1-1+2*10;
y= z+x;
//@ assert x== 10 && y == x+2*10;
//@ assert x+1-1== 10 && y == x+1-1+2*10;
x = x+1;
//@ assert x-1== 10 && y == x-1+2*10;
return(0);
}
```

Fin 2

Exercice 3 framac/ex2.c

On suppose que val est une valeur entière. Vérifier l'annotation suivante :

```
int q1() {
  int c = val ;
l1: x == 2;
  int x;
l2: c == 2;
  x = 3 * c ;
l3: x == 6;
  return (0);

    Solution de l'exercice 3 
    _____

                          Listing 3 – annotation 2 (wp3.c)
int q1() {
  int c = 2;
  /*@ assert c == 2; */
  int x;
  /*@ \ assert \ c == 2; */
  x = 3 * c ;
  /*@ assert x == 6; */
  return(0);
}
                                                                           Fin 3
Exercice 4 Vérifier l'annotation suivante :
int main()
  int \ a = 42; \ int \ b = 37;
  int c = a+b;
l1: b == 37;
  a = c;
  b += a;
l2: b == 0 \&\& c == 79;
  return(0);

    Solution de l'exercice 4 .

                          Listing 4 – annotation 2 (wp4.c)
int main()
  int a = 42; int b = 37;
  int c = a+b; // i:1
//@assert b == 37;
  a = c; // i:2
  b += a; // i:3
//@assert b == 0 \&\& c == 79;
  return(0);
                                                                           Fin 4
```

Exercice 5 Vérifier l'annotation suivante :

```
int main()
  int z;
  int \ a = 4;
l1: a == 4;
  int b = 3;
l2: b == 3 \&\& a == 4;
  int c = a+b;
l3: b == 3 \&\& c == 7 \&\& a == 4 ; */
  a += c;
  b += a;
14: a == 11 \&\& b == 14 \&\& c == 7;
l5: a +b == 25;
  z = a*b;
16: a == 11 \&\& b == 14 \&\& c == 7 \&\& z == 154;
  return(0);

    Solution de l'exercice 5 .

                          Listing 5 – annotation 4 (wp5.c)
int main()
  int z; // instruction 8
  int a = 4; // instruction 7
//@assert \quad a == 4;
  int b = 3; // instyruction 6
//@assert b == 3 \& a == 4;
  int c = a+b; // instruction 4
/*@ \ assert \ b == 3 \&\& c == 7 \&\& a == 4 ; */
  a += c; // instruction 3
  b += a; // instruction 2
//@ \ assert \ a == 11 \&\& b == 14 \&\& c == 7 ;
//@ assert a + b == 25;
  z = a*b; // instruction 1
//@assert \ a == 11 \&\& b == 14 \&\& c == 7 \&\& z == 154;
  return(0);
                                                                          Fin 5
Exercice 6 Vérifier l'annotation suivante :
int main()
  int \ a = 4;
  int b = 3;
  int c = a+b;
  a += c;
  b += a;
l: a == 11 \&\& b == 14 \&\& c == 7;
  return(0);

    Solution de l'exercice 6 
    ■
```

```
Listing 6 – annotation 5 (wp6.c)
int main()
  int a = 4;
  int b = 3;
  int c = a+b; // i:1
  a += c; // i:2
  b += a; // i:3
//@assert \ a == 11 \&\& b == 14 \&\& c == 7 ;
  return(0);
                                                                           Fin 6
Contrats en Frama-c
Exercice 7 Vérifier l'annotation suivante :
/*@ requires x0 >= 0;
    assigns \nothing;
    ensures \ \ result == x0+1;
int exemple(int x0) {
  int x=x0;
  //@ assert ...;
  x = x + 2;
//@ assert x== \ldots;
return x;

    Solution de l'exercice 7 
    _

                            Listing 7 – contrat (wp10.c)
/*@ requires x0 >= 0;
    assigns \nothing;
    ensures twp10 == x0+2;
  @*/
int exemple(int x0) {
  int x=x0;
//@ assert x == x0;
  x = x + 2;
//@ \ assert \ x== x0+2;
return x;
                       Listing 8 – contrat avec wp (wp10bis.c)
/*@ requires x0 >= 0;
    assigns \nothing;
    ensures \ \ result == x0+2;
  @*/
int exemple(int x0) {
//@ assert x0 == x0;
//@ \ assert \ x0 + 2 == x0 + 2;
```

```
int x=x0;
//@ assert x == x0;
//@ \ assert \ x0 + 2 == x0 + 2;
  x = x + 2;
//@ assert x== x0+2;
return x;
                       Listing 9 – contrat avec wp (wp10.c)
/*@ requires x0 >= 0;
    assigns \nothing;
    ensures \ \ result == x0+2;
  @*/
int exemple(int x0) {
  //@ \ assert \ x0+2 == x0+2;
  int x=x0;
  //@ \ assert \ x+2 == x0+2;
  x = x + 2;
  //@ \ assert \ x == x0+2;
return x;
}
                                                                        Fin 7
Exercice 8 Vérifier l'annotation suivante :
/ *@
  requires x < 3 \&\& x > 8;
  ensures \false;
void fonc(int x){
Listing 10 – annotation (wp9.c)
/*@
  requires x < 3 & x > 8;
  ensures \setminus false;
void fonc(int x){
                        Listing 11 – annotation (wp9bis.c)
  requires x < 3 & x > 8;
  ensures \true;
void fonc(int x){
}
```

Fin 8

TD8-IL

```
Exercice 9 Analyser et compléter l'annotation suivante pour qu'elle soit valide :
```

```
int annotation(int a, int b)
{
   int x,y,z;
   x = a;
l1: x == a; */
   y = b;
l2: x == a && y == b; */
   z = a+b-2;
l3: x == a && y == b && z==4; */
   return(z);
}
```

Solution de l'exercice 9 ____

```
Listing 12 – annotation wp11bis.c
```

```
/*@ requires a >= 0 \&\& b>= 0 \&\& a +b == 6;
 @ assigns \setminus nothing;
 @ ensures \ \ result == 4;
 @*/
int annotation(int a, int b)
//*@ a == a; */
//*@ a == a & b; */
//*@ a == a \&\& b == b \&\& a+b-2wp1.c
 ==4; */
 int x, y, z;
 x = a;
//*@ x == a; */
//*@ x == a & b; */
//* @ x == a \&\& b == b \&\& a+b-2==4; */
 y = b;
//*@ x == a & y == b; */
z = a+b-2;
//*@ x == a &  y == b &  z==4; */
 return(z);
                       Listing 13 – annotation (wp11.c)
/*@ requires
              a+b-2==4;
   assigns \setminus nothing;
   ensures \ \ result == 4;
 @*/
int annotation(int a, int b)
 int x, y, z;
  //@ assert
              a == a;
```

```
//@ assert
              a == a \&\& b == b;
  //@ assert a == a \&\& b == b \&\& a+b-2==4:
  x = a;
  //@ assert
               x == a;
  //@ assert
             x == a \&\& b == b;
  //@ assert x == a \&\& b == b \&\& a+b-2==4;
  y = b;
  //@ assert
              x == a \&\& y == b;
  //@ \ assert \ x == a \&\& y == b \&\& a+b-2==4;
  z = a+b-2;
  //@ assert x == a & y == b & z == 4;
  return(z);
  }
                                                                   Fin 9
Exercice 10 Définir une fonction abs avec son contrat.
int abs ( int x ) {
if (x \ge 0) return x;
return -x ; }

→ Solution de l'exercice 10 _

                          Listing 14 - abs.c (wp1.c)
// returns the absolute value of x
#include <limits.h>
/ *@
  requires x > INT\_MIN;
  ensures (x >= 0 ==> \land result == x);
   ensures (x < 0 \Longrightarrow \ \ \ );
int abs (int x) {
if (x >= 0) return x;
return -x; }
                                                                  Fin 10
Exercice 11 Définir une fonction max avec son contrat.
int max ( int x, int y ) {
  if (x \ge y) return x;
  return y ; }
← Solution de l'exercice 11
                          Listing 15 - max (mlax.c)
// returns the maximum of x and y
#include <limits.h>
/*@ requires x <= INT MAX && x >= INT MIN;
    requires y \le INT\_MAX \&\& y >= INT\_MIN;
    assigns \nothing;
    int max ( int x, int y ) {
  if (x \ge y) return x;
  return y ; }
```

Fin 11

Exercice 12 Soit l'algorithme annoté comme suit :

```
 \begin{array}{l} \textbf{Variables} : \textbf{X}, \textbf{Y}, \textbf{Z} \\ \textbf{Requires} : x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \\ \textbf{Ensures} : z_f = max(x_0, y_0) \\ \ell_0 : \{x = x_0 \land y = y_0 \land z = z_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \} \\ \textbf{if } X < Y \ \textbf{then} \\ & \quad \ell_1 : \{x < y \land x = x_0 \land y = y_0 \land z = z_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \} \\ Z := Y; \\ \ell_2 : \{x < y \land x = x_0 \land y = y_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \land z = y_0 \} \\ \textbf{else} \\ & \quad \ell_3 : \{x \geq y \land x = x_0 \land y = y_0 \land z = z_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \} \\ Z := X; \\ \ell_4 : \{x \geq y \land x = x_0 \land y = y_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \land z = x_0 \} \\ \vdots \\ \ell_5 : \{z = max(x_0, y_0) \land x = x_0 \land y = y_0 \land x_0, y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \} \end{array}
```

Algorithme 1: maximum de deux nombres non annotée

Question 12.1 Ecrire un programme ACSL qui traduit ce contrat et qui le vérifie.

Question 12.2 Ecrire un programme ACSL qui traduit ce contrat et qui le vérifie mais qui enlève les assertions.

Solution de l'exercice 12 .

```
Listing 16 – maximum.c (maximum.c)
```

```
/*@ axiomatic max{
  @ logic integer max(integer n, integer m);
  @ axiom max1: \land forall integer n,m; n \leq m
  ==> max(n,m) == m;
  @ axiom max2: \land forall integer n,m; n > m
  ==> max(n,m) == n;
@} */
/*@ requires x0 >= 0 && y0 >=0;
    assigns \nothing;
    @*/
int maximum(int x0,int y0,int z0) {
  int x=x0;
  int y=y0;
  int z=z0;
  //@ \ assert \ max(x0,x0) == x0;
  //@ assert max(x0,y0) == max(y0,x0);
//@ \ assert \ x== x0 \& y == y0 \& z==z0;
```

```
if (x < y) {
//@ \ assert \ x < y \&\& x == x0 \&\& y == y0 \&\& z == z0;
//@ \ assert \ x < y \&\& x == x0 \&\& y == y0 \&\& y == y;
 z = y;
//@ \ assert \ x < y \&\& x == x0 \&\& y == y0 \&\& z == y;
 else
   {
//@ \ assert \ x >= y \&\& x== x0 \&\& y == y0 \&\& z==z0;
//@ \ assert \ x >= y \&\& x == x0 \&\& y == y0 \&\& x == x;
 z = x;
//@ \ assert \ x >= y \&\& x == x0 \&\& y == y0 \&\& z == x;
//@ \ assert \ x== x0 \&\& y == y0 \&\& z==max(x,y);
return z;
}
                            Listing 17 – maximumlazy.c
/*@ axiomatic max{
  @ logic integer max(integer n, integer m);
  @ axiom max1: \land forall integer n,m; n \leq m
  ==> max(n,m) == m;
  @ axiom max2: \land forall integer n,m; n > m
  ==> max(n,m) == n;
@} */
/*@ requires x0 >= 0 && y0 >=0;
    assigns \nothing;
    ensures \result == max(x0, y0);
  @*/
int maximum(int x0,int y0,int z0) {
  int x=x0;
  int y=y0;
  int z=z0;
//@ \ assert \ (x < y \& y == max(x0, y0)) \ | \ (x >= y \& x == max(x0, y0));
if (x < y) {
//@ \ assert \ x < y & y == max(x0, y0);
 z = y;
//@ \ assert \ z == max(x0, y0);
}
 else
//@ \ assert \ x >= y \&\& x == max(x0, y0);
 z = x;
//@ \ assert \ z == max(x0, y0);
   };
//@ \ assert \ z == max(x0,y0);
return z;
```

Fin 12

Contrats avec invariants de boucle et ghosts en Frama-c

Exercice 13 Ecrire un contrat pour la fonction factorielle

```
int codefact(int n) {
  int y = 1;
  int x = n;
  while (x != 1) {
    y = y * x;
    x = x - 1;
  };
  return y;
}
```

← Solution de l'exercice 13

Listing 18 – factorial.c

```
/*@ axiomatic mathfact {
 @ logic integer mathfact(integer n);
 @ axiom mathfact_1: mathfact(1) == 1;
 @ axiom mathfact_rec: \land forall integer n; n > 1
 ==> mathfact(n) == n * mathfact(n-1);
 @ } */
/*@ requires n > 0;
  ensures \ \ result == mathfact(n);
*/
int codefact(int n) {
  int y = 1;
  int x = n;
  /*@ loop invariant x >= 1 &&
                      mathfact(n) == y * mathfact(x);
    loop \ assigns \ x, \ y;
    loop\ variant\ x-1;
  */
  while (x != 1) {
   y = y * x;
   x = x - 1;
  };
  return y;
```

Fin 13

Exercice 14 Ecrire un contrat pour la fonction calculant le reste de la division de a par b.

```
int reste(int a, int b) {
  int r = a;
  int q = 0;
  while (r >= b) {
    r = r - b;
    q = q +1;
  };
  return r;
}
```

Solution de l'exercice 14 ■

Listing 19 – remainder.c

#include <limits.h> #include <limits.h> /*@ requires a >= 0 & b > 0;requires a <= INT_MAX; $requires b \ll INT_MAX;$ assigns \nothing; ensures $0 \ll result$; $ensures \setminus result < b;$ ensures $\ensuremath{\ } \ensuremath{\ } \ens$ $ensures \land result <= INT_MAX;$ */ int reste (int a, int b) { int r = a; int q = 0; /*@ loop invariant (a == q * b + r) &r >= 0 && r <= a; $loop \ assigns \ r;$ loop assigns q; */ **while** (r >= b) { r = r - b;q = q +1;}; return r; } Listing 20 – remainder.c /*@ requires a >= 0 && b >= 0;assigns \nothing; ensures $0 \leftarrow result$; $ensures \ \ result < b;$ $ensures \setminus exists integer k$; $a == k * b + \setminus result$; int rem(int a, int b) { int r = a; /*@ ghost int q=0;*/ / ***@** loop invariant a == q * b + r &r >= 0loop assigns r; $loop \ assigns \ q;$ */ **while** (r >= b) { r = r - b;/*@ ghost

q = q+1;

```
*/
  };
  return r;
}
                                                                        Fin 14
                 Cours MOdélisation, Vérification et Expérimentations
                           Exercices (avec les corrections)
               Utilisation d'un environnement de vérification Frama-c (I)
                               par Dominique Méry
                                   2 avril 2025
Exercice 15 Nous vous donnons des annotations que vous devez analyser avec Frama-c.
                            Listing 21 – annotation3.c
Question 15.1 /*@ requires a >= 0 \&\& b >= 0;
  @ assigns \nothing;
  @*/
int annotation (int a, int b)
  int x, y, z;
  x = a;
/*@ assert l1: x == a; */
  y = b;
/*@ assert l2: x == a & y == b; */
  z = a+b-2;
/*@ assert l3: x == a && y == b && z==a+b-1; */
  return(z); // result = z
                            Listing 22 – annotation4.c
Question 15.2 /*@ requires a >= 0;
  @ assigns \setminus nothing;
  @ ensures \setminus result == 0;
  @*/
int annotation(int a)
  int x;
  x = a;
  return(x);
Exercice 16 Soit le petit programme suivant
                               Listing 23 - td61.c
void ex(void) {
```

x = x * x;

int x=2, y=4, z, a=1;

//@ assert $x \le y$;

```
//@ assert x == a*y;
y = 2*x;
z = x + y;
//@ assert z == x+y && x* y >= 8;
```

Analyser le correction des annotations avec Frama-c et trouver a pour que cela soit correctement analysé.

Exercice 17 Soit le petit programme suivant

```
Listing 24 - td62.c
```

```
void ex(void) {
  int x0,y0,z0;
  int x=x0,y=x0,z=x0*x0;
  //@ assert l1: x == y && z == x*y;
  x = x*x;
  //@ assert l2: x == y*y && z == x;
  y = x;
   //@ assert l3: x + y + 2*z == (x0+x0)*(x0+x0);
  z = x + y + 2*z;
  //@ assert z == (x0+x0)*(x0+x0);
}
```

Analyser la correction des annotations avec Frama-c.

TD6

Exercice 18 Soit le petit programme suivant

```
Listing 25 - td63.c
```

Analyser la correction des annotations avec Frama-c.

Exercice 19 La définition structurelle des transformateurs de prédicats est rappelée dans le tableau ci-dessous :

S	wp(S)(P)
X := E(X,D)	P[e(x,d)/x]
SKIP	P
$S_1; S_2$	$wp(\mathbf{S}_1)(wp(\mathbf{S}_2)(P))$
$ IF B S_1 ELSE S_2 FI $	$(B \Rightarrow wp(S_1)(P)) \land (\neg B \Rightarrow wp(S_2)(P))$

- Axiome d'affectation : $\{P(e/x)\}X := E(X)\{P\}$.
- Axiome du saut : $\{P\}$ **skip** $\{P\}$.
- Règle de composition : Si $\{P\}S_1\{R\}$ et $\{R\}S_2\{Q\}$, alors $\{P\}S_1;S_2\{Q\}$.
- $Si \{P \land B\}S_1\{Q\} \text{ et } \{P \land \neg B\}S_2\{Q\}, \text{ alors } \{P\}\text{if B then } S_1 \text{ then } S_2 \text{ fi}\{Q\}.$
- $Si \{P \land B\}S\{P\}$, alors $\{P\}$ while B do S od $\{P \land \neg B\}$.
- Règle de renforcement / affaiblissement : Si $P' \Rightarrow P$, $\{P\}S\{Q\}$, $Q \Rightarrow Q'$, alors $\{P'\}S\{Q'\}$.

Question 19.1 Simplifier les expressions suivantes :

- 1. WP(X := X+Y+7)(x+y=6)
- 2. WP(X := X+Y)(x < y)

Question 19.2 On rappelle que $\{P\}S\{Q\}$ est défini par l'implication $O \Rightarrow WP(S)(Q)$. Pour chaque point énuméré ci-dessous, monter que la propriété $\{P\}S\{Q\}$ est valide ou pas en utilisant la définition suivante :

$$\{P\}S\{Q\} = P \Rightarrow WP(S)(Q)$$

- 1. $\{x+y=7\}X := Y+X\{2\cdot x+y=6\}$
- 2. $\{x < y\}$ **IF** $x \neq y$ **THEN** x := 5 **ELSE** x := 8 **FI** $\{x \in \{5, 8\}\}$

Question 19.3 Utiliser frama-c pour vérifier les éléments suivants :

- 1. $\{x+y=7\}X := Y+X\{2\cdot x+y=6\}$
- 2. $\{x < y\}$ **IF** $x \neq y$ **THEN** x := 5 **ELSE** x := 8 **FI** $\{x \in \{5, 8\}\}$

Exercice 20 td65.c

Soit le petit programme suivant dans un fichier :

Listing
$$26 - td65.c$$

```
/*@
    assigns \nothing;

*/

void swap1(int a, int b) {
    int x = a;
    int y = b;
    //@ assert x == a && y == b;
    int tmp;

    //@ assert y == b && x == a;
    tmp = x;
    //@ assert y == b && tmp == a;
    x = y;
    //@ assert x == b && tmp == a;
    y = tmp;
    //@ assert x == b && y == a;
}
```

Question 20.1 Utiliser l'outil frama-c-gui avec la commande \$frama-c-gui ex1.c et cliquer sur le lien ex1.c apparaissant sur la gauche. A partir du fichier source, une fenêtre est créée et vous découvrez le texte du fichier.

Question 20.2 Cliquer à droite sur le mot-clé assert et cliqur sur Prove annotation by WP. Les boutons deviennent vert.

Question 20.3

```
void swap2(int a, int b) {
  int x = a;
  int y = b;
  //@ assert x == a && y == b;
  int tmp;
  tmp = x;
  x = y;
  y = tmp;
  //@ assert x == a && y == a;
}
```

Répétez les mêmes suites d'opérations mais avec le programme suivant dans ex2.c.

Question 20.4 Ajoutez une précondition pour que les preuves soient possibles.

\leftarrow Solution de la question 20.4

```
/*@ requires a==b;

*/

void swap2(int a, int b) {
    int x = a;
    int y = b;
    //@ assert x == a && y == b;
    int tmp;
    tmp = x;
    x = y;
    y = tmp;
    //@ assert x == a && y == a;
}
```

Fin 20.4

Question 20.5 Soit le nouvel algorithme avec un contrat qui établit ce que l'on attend de cet algorithme

Recommencer les opérations précédentes et observer ce qui a été utilisé comme outils de preuve.

MOVEX2-1

MALG2-1

Exercice 21 Etudier la correction de l'algorithme suivant en complétant l'invariant de boucle :

```
Listing 27 – td66.c
```

```
/*@
requires} 0 <= n;
ensures \result == n * n;
*/
int f(int n) {
   int i = 0;
/*@ assert i=0
   int s = 0;
   /*@ loop invariant ...;
   @ loop assigns ...; */
   while (i < n) {
    i++;
    s += 2 * i - 1;
};
return s;
}</pre>
```

Listing 28 – td66c.c

```
requires 0 \ll n;
  ensures \setminus result == n * n;
int f(int n) {
  int i = 0;
  //@ assert i==0;
  int s = 0;
              s == i * i &  0 <= i &  i <= n;
  //@ assert
  /*@ loop invariant i * i == s && 0 <= i && i <= n;
     @ loop assigns i, s;
   @ loop variant n-i; */
  while (i < n) {
    i++;
    s += 2 * i - 1;
  };
 //@ \ assert \ i==n \&\& s == n*n;
  return s;
```

Exercice 22

On rappelle que l'annotation suivante du listing 29 est correcte , si les conditions suivantes sont vérifiées :

```
\begin{array}{ll} & -\mathit{pre}(v_0) \land v = v_0 \Rightarrow A(v_0,v) \\ & -\mathit{pre}(v_0) \land B(v_0,v) \Rightarrow \mathit{post}(v_0,v) \\ & -\mathit{k}(v_0,v) \Rightarrow \mathit{k}(v_0,v) \Rightarrow \mathit{k}(v_0,v) \land k}(v_0,v) \land k}(v_0,v) \land k}(v_0,v) \land \mathit{k}(v_0,v) \land k}(v_0,v) \land k}(v_0,v) \land k}(v_0,v
```

Listing 29 – contrat

```
requires pre(v)
ensures post(\land old(v), v)
```

Listing 30 - td81.c

```
type1 truc(type2 v)
  /*@ assert A(v0,v); */
  v = f(v);
  /*@ assert B(v0,v); */
return val;
```

Soient les annotations suivantes. Les variables sont supposées de type int.

Question 22.1 ang81.c

```
\ell_1 : x = 64 \land y = x \cdot z \land z = 2 \cdot x
Y := X \cdot Z
\ell_2 : y \cdot z = 2 \cdot x \cdot x \cdot z
```

Montrer que l'annotation est correcte ou incorrecte en utilisant Frama-c

```
/*@
requires x0==64 && y0==x0*z0 && z0==2*x0;
ensures \result == 0;
*/
int ex(int x0,int y0,int z0) {
   int x=x0,y=y0,z=z0;

//@ assert x==64 && y==x*z && z==2*x;
   y = x*z;
   //@ assert y*z == 2*x*x*z;
```

Question 22.2 ang82.c

return 0;

Soient trois constantes n,m,p $\begin{cases} \ell_1: x=3^n \wedge y=3^p \wedge z=3^m; \\ T:=8\cdot X\cdot Y\cdot Z; \\ \ell_2: \ t=(y+z)^3 \wedge y=x; \end{cases}$

Montrer que l'annotation est correcte ou incorrecte en utilisant Frama-c. On prendra soin de discuter sur les valeurs de m,n,p et notamment de donner une condition sur ces valeurs pour que cel soit correcte.

Exercice 23 td68.c

```
Listing 31 – qpower2.c
```

```
#include #
```

```
*/
int power2(int x)
{ int r, k, cv, cw, or, ok, ocv, ocw;
  r=0; k=0; cv=0; cw=0; or=0; ok=k; ocv=cv; ocw=cw;
      /*@ loop invariant cv == k*k;
         @ loop invariant k \le x;
         @ loop\ invariant\ cw\ ==\ 2*k;
         @ loop\ invariant\ 4*cv\ ==\ cw*cw;
         @ loop assigns k, cv, cw, or, ok, ocv, ocw;
          @ loop variant x-k;
 while (k < x)
        {
           ok=k; ocv=cv; ocw=cw;
           k=ok+1;
           cv = ocv + ocw + 1;
          cw = ocw + 2;
  r=cv;
 return(r);
/*@ requires 0 \ll x;
     requires x \le INT\_MAX;
     requires x*x <= INT\_MAX;
  assigns \nothing;
     ensures \ \ result == x*x;
*/
int npower2(int x)
\{int r, k, cv, cw;
  r=0; k=0; cv=0; cw=0;
      /*@ loop invariant cv == k*k;
         @ loop\ invariant\ k <= x;
         @ loop\ invariant\ cw\ ==\ 2*k;
         @ loop\ invariant\ 4*cv\ ==\ cw*cw;
         @ loop assigns k, cv, cw;
          @ loop variant x-k;
 while (k < x)
        {
           k=k+1;
           cv = cv + cw + 1;
          cw=cw+2;
  r=cv;
 return(r);
    requires 0 \ll x;
     decreases x;
  assigns \nothing;
```

```
ensures \ \ result == x*x
*/
int p(int x)
  int r;
  if (x==0)
        {
          r=0;
  else
          r = p(x-1)+2*x-1;
  return(r);
     requires 0 \ll n;
     requires n*n \ll INT\_MAX;
  assigns \setminus nothing;
   ensures \ \ result == 1;
*/
int check(int n){
  int r1, r2, r;
  r1 = power2(n);
  r2 = p(n);
  if (r1 != r2)
    \{ r = 0;
  else
    \{ r = 1;
    };
 return r;
     requires 0 \ll n;
     requires n*n <= INT\_MAX;
  assigns \nothing;
   ensures \ \ result == 1;
int check2(int n){
  int r1, r2, r;
  r1 = power2(n);
  r2 = npower2(n);
  if (r1 != r2)
    \{ r = 0;
```

```
else
    \{ r = 1;
    };
  return r;
                             Listing 32 - mainpower2.c
#include <stdio.h>
#include <math.h>
int power2(int x)
{ int r, k, cv, cw, or, ok, ocv, ocw;
  r=0; k=0; cv=0; cw=0; or=0; ok=k; ocv=cv; ocw=cw;
  while (k < x)
         {
           ok=k; ocv=cv; ocw=cw;
           k=ok+1;
           cv = ocv + ocw + 1;
           cw = ocw + 2;
  r=cv;
  return(r);
int p(int x)
  int r;
  if (x==0)
         {
           r=0;
  else
           r = p(x-1)+2*x-1;
  return(r);
int check(int n){
  int r1, r2, r;
  r1 = power2(n);
  r2 = p(n);

if (?? == ??)
    \{ r = ??;
  else
    \{ r = ??;
    };
  return r;
int main()
  int val1, val2, val3, num;
```

```
printf("Enter_a_number:_");
scanf("%d", &num);
val1 = power2(num);
val2 = p(num);
val3 = check(num);
printf("Et_le_r\tilde{A}\subseteq sultat__pour_n=_%d:_%d_%d_%d\n", num, val1,val2,val3);
return 0;
}
```

Soit le fichier <code>qpower2.c</code> qui est pariellement complété et qui permet de calculer le carré d'un nombre naturel. L'exercice vise à compléter les points d'interrogation puis de simplifier le résultat et de montrer l'équivalence de deux fonctions. Le fichier <code>mainpower2.c</code> peut être compilé pour que vous puissiez faire des experimentations sur les valeurs calculées.

Question 23.1 Compléter le fichier apower2.cet produire le fichier power2.c qui est vérifié avec fraama-c.

Question 23.2 Simplifier la fonction itérative en supprimant les variables commençant par la lettre \circ . Puis vérifier les fonctions obtenues avec frama-c.

Question 23.3 En fait, vous avez montré que les deux fonctions étaient équivalentes. Expliquez pourquoi en quelques lignes.

MALG2-2

Exercice 24 td71.c

Soit le contrat suivant :

```
\begin{array}{l} \text{variables } X,Y,Z \\ \text{requires } x_0 >= 0 \land y_0 >= 0 \land z_0 >= 0 \\ Rootslst \land z_0 = 25 \land y_0 = x_0 + 1 \\ \text{ensures } z_f = 100; \\ \begin{bmatrix} \text{begin} \\ 0: x^2 + y^2 = z \land z = 25; \\ (X,Y,Z) := (X+3,Y+4,Z+75); \\ 1: x^2 + y^2 = z; \\ \text{end} \\ \end{bmatrix}
```

Question 24.1 Traduire ce contrat avec le langage PlusCal et proposer une validation pour que ce contrat soit valide.

```
Listing 33 - td71.c
```

```
/*@
requires x0>=0 && y0>= 0 && z0>= 25 && y0==x0+1 && x0*x0 + y0*y0
ensures \result == 100;
*/
int f(int x0, int y0, int z0) {
   int x = x0;
   int y = y0;
   int z = z0;
   /*@ assert x*x + y*y == z && z == 25 ;*/
   x = x +3;
y = y +4;
z = z + 75;
/*@ assert x*x + y*y == z ; */
   return z;
}
```

Listing 34 – td71bis.c

```
/ *@
  requires \ x0>=0 \ \&\&\ y0>=0 \ \&\&\ z0>=0 \ \&\&\ z0==25 \ \&\&\ y0==x0+1 \ \&\&
x0*x0 + y0*y0 == z0 \&\& z0 == 25 \&\& (x0+3)*(x0+3) + (y0+4)*(y0+4) == z0+75;
  ensures \ \ result == 100;
* /
int f(int x0, int y0, int z0) {
  int x = x0;
  int y = y0;
    int z = z0;
z == 25 ;*/
/*@ \ assert \ (x+3)*(x+3) + (y+4)*(y+4) == z+75 ; */
  x = x + 3;
/*@ \ assert \ x*x + (y+4)*(y+4) == z+75 ; */
y = y + 4;
/*@ \ assert \ x*x + y*y == z+75 ; */
z = z + 75;
/*@ \ assert \ x*x + y*y == z ; */
  return z;
```

Question 24.2 Traduire ce contrat en ACSL et vérifier qu'il est valide ou non. S'il est non valide, proposer une correction de la pré-condition et/ou de la postcondition.

```
Listing 35 – td71.tla
    ----- MODULE td71 ----
EXTENDS TLC, Integers, Naturals
CONSTANTS x0, y0, z0
ASSUME x0 \mid geq 0 \mid \lor y0 \mid geq 0 \mid \lor z0 \mid geq 0 \mid \lor z0 = 25 \mid \lor y0 = x0 +1
d71—fair algorithm q2 {
  variables x=x0, y=y0, z=z0;
l1: assert x*x + y*y = z / z=25;
x := x+3; y := y+4; z := z+75;
l2: assert x*x + y*y = z;
}
*)
VARIABLES x, y, z, pc
vars == \langle \langle x, y, z, pc \rangle \rangle
Init == (* Global variables *)
         / \setminus x = x0
         / \setminus y = y0
         / \setminus z = z0
         / \ pc = "l1"
l1 == / \cdot pc = "l1"
       / \land Assert(x*x + y*y = z) / \land z=25,
                  "Failure\_of\_assertion\_at\_line\_11,\_column\_5.")
```

```
/\ x '_=_x+3
____/\_y ' = y+4
       / \ z' = z + 75
_{\square\square\square\square\square}/\setminus_{\square}pc ' = "l2"
l2 == / \ pc = "l2"
       /\ Assert(x*x + y*y = z, "Failure\_of\_assertion\_at\_line\_13,\_column\_6.")
       / \ pc' = "Done"
____/\_UNCHANGED_<<_x,_y,_z_>>
(*\_Allow\_infinite\_stuttering\_to\_prevent\_deadlock\_on\_termination.\_*)
Terminating \_== \_pc \_= \_"Done" \_/ \setminus \_UNCHANGED \_vars
Next = l1 / l2
\Box
Spec = [Next]_vars
\_\_\_\_\_/\setminus\_WF\_vars(Next)
Termination = = < < (pc = "Done")
\*_END_TRANSLATION
check == pc = "Done" => z = 100
=======
```

Exercice 25 ang 11.c

Définir une fonction \max pointer (gex1.c) calculant la valeur du maxiSquaremum du ciontenu de deux adresses avec son contrat.

```
int max_ptr ( int *p, int *q ) {
if ( *p >= *q ) return *p ;
return *q ; }
```

Solution de l'exercice 25 ____

```
Listing 36 - gex1.c

// frama-c-gui -wp -wp-rte -report -wp-print maxpointer.c

/*@ requires \valid(p) && \valid(q);
    ensures \result >= *p && \result >= *q;
    ensures \result == *p || \result == *q;

*/

int max_ptr ( int *p, int *q ) {
    if ( *p >= *q ) return *p ;
    return *q ; }
```

Fin 25

Exercice 26 ang 12.c

Définir une fonction abs (anq12.c) calculant la valeur absolue d'un nombre entier avec son contrat.

```
#include <limits.h>
int abs (int x) {
  if (x >= 0) return x;
  return -x;}
```

→ Solution de l'exercice 26 _

Fin 26

Exercice 27 Etudier les fonctions pour la vérification de l'appel de abs et max (max-abs.c,max-abs1.c,max-abs2.c)

```
int abs ( int x );
int max ( int x, int y );
// returns maximum of absolute values of x and y
int max_abs( int x, int y ) {
x=abs(x); y=abs(y);
return max(x,y);
}
```

Solution de l'exercice 27 □

```
Listing 37 - \text{gex}4-1.c
```

```
/*@ requires a >= 0 & b >= 0;
                   ensures 0 \ll result;
                   ensures \setminus result < b;
                  ensures \ensuremath{\ } \ens
int rem(int a, int b) {
                  int r = a;
                   /*@
                                     loop invariant
                                     (\ensuremath{\mbox{\it exists}}\ integer\ i;\ a == i * b + r) \&\&
                                     r >= 0
                                     loop \ assigns \ r;
                           */
                   while (r >= b) {
                                \mathbf{r} = \mathbf{r} - \mathbf{b};
                   };
                  return r;
}
                                                                                                                                                                                                                                                               Listing 38 – gex4-1bis.c
/*@ requires a >= 0 && b >= 0;
                   ensures 0 \ll result;
                   ensures \ \ result < b;
                   ensures \ensuremath{\ } \ens
int rem(int a, int b) {
                   int r = a;
                 &&
                                      (a == i * b + r) \&\&
```

```
r >= 0 \&\& r <= a
   loop assigns r,i;
  while (r >= b) {
   r = r - b;
   ++i;
  };
 return r;
}
                           Listing 39 - \text{gex}4-2.c
/*@ axiomatic mathfact {
 @ logic integer mathfact(integer n);
 @ axiom \ mathfact_1: \ mathfact(1) == 1;
 @ axiom mathfact_rec: \forall integer n; n > 1
 ==> mathfact(n) == n * mathfact(n-1);
 @ } */
/*@ requires n > 0;
  ensures \ \ result == mathfact(n);
*/
int codefact(int n) {
 int y = 1;
  int x = n;
  /*@ loop invariant x >= 1 &&
                    mathfact(n) == y * mathfact(x);
   loop \ assigns \ x, \ y;
   loop\ variant\ x-1;
  */
  while (x != 1) {
   y = y * x;
   x = x - 1;
  };
 return y;
                           Listing 40 - \text{gex}4-3.c
/*@ assigns \nothing;
    ensures \ \ result >= a;
  ensures \ \ result >= b;
 */
int max (int a, int b) {
 if (a >= b) return a;
  else return b;
/*@ assigns \nothing;
    ensures \ \ result >= a;
  ensures \ \ result >= b;
```

```
*/
int max2 (int a, int b) {
  int r;
  if (a >= b)
    \{ r=a; \}
  else
    {r=b;};
 return r;
}
/*@
  requires n > 0;
  requires \forall valid(t+(0..n-1));
  assigns \nothing;
  ensures 0 \ll result \ll n;
  ensures \setminus for all int k; 0 \le k \le n \Longrightarrow t[k] \le t[\setminus result];
*/
int indice_max (int t[], int n) {
  int r = 0;
  /*@\ loop\ invariant\ 0 <= r < i <= n
    && (\forall int k; 0 \le k < i \Longrightarrow t[k] \le t[r])
    loop assigns i, r;
    loop\ variant\ n-i;
  */
  for (int i = 1; i < n; i++)
    if (t[i] > t[r]) r = i;
 return r;
}
  requires n > 0;
  requires \forall valid(t+(0..n-1));
  assigns \nothing;
  ensures \setminus forall\ int\ k;\ 0 <= k < n ==>
    t[k] \leftarrow result;
  ensures \exists int k; 0 \le k < n & t[k] == \result;
*/
int valeur_max (int t[], int n) {
  int r = t[0];
  /*@ loop invariant 0 <= i <= n
    && (\forall int k; 0 \le k < i ==> t[k] <= r)
    && (\exists int k; 0 \le k \le t[k] = r)
    loop assigns i, r;
     loop variant n-i;
  for (int i = 1; i < n; i++)
    if (t[i] > r) r = t[i];
 return r;
}
```

Solution de l'exercice 27 _

Fin 27

Exercice 28 Question 28.1 Soit la fonction suivante calculant le reste de la division de a par b. Vérifier la correction de cet algorithme.

```
int rem(int a, int b) {
  int r = a;
  while (r >= b) {
    r = r - b;
  };
  return r;
}
```

Il faut utiliser une variable ghost.

 \leftarrow Solution de la question 28.1

```
/*@ requires a >= 0 && b > 0;
  ensures 0 <= \result;</pre>
  ensures \result < b;
 ensures \exists integer k; a == k * b + \result;
*/
int rem(int a, int b) {
 int r = a;
  /*@
    loop invariant
    (\exists integer i; a == i * b + r) &&
   loop assigns r;
   loop variant r-b;
  */
 while (r >= b) {
   r = r - b;
  } ;
 return r;
}
/*@ requires a >= 0 && b > 0;
 ensures 0 <= \result;</pre>
 ensures \result < b;
 ensures \exists integer k; a == k * b + \result;
*/
int rem(int a, int b) {
  int r = a;
 /*@ ghost
            int q=0;
   */
  / * @
   loop invariant
    a == q * b + r &&
    r >= 0 \&\& r <= a
    loop assigns r;
    loop assigns q;
   loop variant r-b;
   */
  while (r >= b) {
```

```
r = r - b;
/*@ ghost
    q = q+1;
    */
};
return r;
}
```

_Fin 28.1

Question 28.2 Soit la fonction suivante calculant la fonction fact. Vérifier la correction de cet algorithme. Pour vérifier cette fonction, il est important de définir la fonction mathématique Fact avec ses propriétés.

```
/*@ axiomatic Fact {
  @ logic integer Fact(integer n);
  @ axiom Fact_1: Fact(1) == 1;
  @ axiom Fact_rec: \forall integer n; n > 1 ==> Fact(n) == n * Fact(n-1);
  @ \} */
int fact(int n) {
  int y = 1;
  int x = n;
  while (x != 1) {
    y = y * x;
    x = x - 1;
  };
  return y;
```

→ Solution de la question 28.2 .

Listing 41 – factoriel.c

```
/*@ axiomatic mathfact {
 @ logic integer mathfact(integer n);
 @ axiom mathfact_1: mathfact(1) == 1;
 @ axiom mathfact_rec: \land forall integer n; n > 1
 ==> mathfact(n) == n * mathfact(n-1);
 @ } */
/*@ requires n > 0;
  ensures \ \ result == mathfact(n);
*/
int codefact(int n) {
  int y = 1;
  int x = n;
  /*@ loop invariant x >= 1 &&
                      mathfact(n) == y * mathfact(x);
    loop \ assigns \ x, \ y;
    loop\ variant\ x-1;
  */
  while (x != 1) \{
   y = y * x;
   x = x - 1;
  };
 return y;
}
```

Fin 28.2

```
Question 28.3 Annoter les fonctions suivantes en vue de montrer leur correction.
```

```
int max (int a, int b) {
   if (a >= b) return a;
   else return b;
}

int indice_max (int t[], int n) {
   int r = 0;
   for (int i = 1; i < n; i++)
        if (t[i] > t[r]) r = i;
   return r;
}

int valeur_max (int t[], int n) {
   int r = t[0];

   for (int i = 1; i < n; i++)
        if (t[i] > r) r = t[i];
   return r;
}
```

La solution est donnée dans le fichier gex4-3.c.

Solution de la question 28.3 .

Listing 42 - gex4-3.c

```
/*@ assigns \nothing;
    ensures \ \ result >= a;
 ensures \ \ result >= b;
 */
int max (int a, int b) {
 if (a >= b) return a;
 else return b;
/*@ assigns \nothing;
    ensures \ \ result >= a;
 ensures \ \ result >= b;
 ensures \ \ result == a \ | \ \ \ result == b;
int max2 (int a, int b) {
 int r;
 if (a >= b)
   \{r=a;\}
 else
   \{r=b;\};
 return r;
```

```
/ *@
  requires n > 0;
  requires \forall valid(t+(0..n-1));
  assigns \nothing;
  ensures 0 \leftarrow result < n;
  ensures \setminus forall\ int\ k;\ 0 \mathrel{<=} k \mathrel{<} n \mathrel{==>}
                                               t[k] \leftarrow t[\result];
int indice_max (int t[], int n) {
  int r = 0;
  /*@\ loop\ invariant\ 0 <= r < i <= n
    && (\forall int k; 0 \le k < i \Longrightarrow t[k] \le t[r])
    loop assigns i, r;
    loop\ variant\ n-i;
  */
  for (int i = 1; i < n; i++)
    if (t[i] > t[r]) r = i;
  return r;
/ *@
  requires n > 0;
  requires \forall valid(t+(0..n-1));
  assigns \nothing;
  ensures \setminus forall\ int\ k;\ 0 <= k < n ==>
    t[k] \leftarrow result;
  ensures \ensures = k < n \& t[k] = \ensures;
*/
int \ valeur\_max \ (int \ t[], \ int \ n) \ 
  int r = t[0];
  /*@ loop invariant 0 <= i <= n
    && (\forall int k; 0 \le k < i => t[k] <= r)
    && (\exists int k; 0 \le k \le i && t[k] == r)
    loop assigns i, r;
     loop variant n-i;
  for (int i = 1; i < n; i++)
    if (t[i] > r) r = t[i];
  return r;
```

Fin 28.3

Reprise

Exercice 29 Pour chaque question, montrer que l'annotation est correcte ou incorrecte selon les conditions de vérifications énoncées comme suit

```
\forall x, y, x', y'.P_{\ell}(x,y) \land cond_{\ell,\ell'}(x,y) \land (x',y') = f_{\ell,\ell'}(x,y) \Rightarrow P_{\ell'}(x',y') Pour cela, on utilisera l'environnement Frama-c.
```

Question 29.1

$$\ell_1 : x = 10 \land y = z + x \land z = 2 \cdot x$$

 $y := z + x$
 $\ell_2 : x = 10 \land y = x + 2 \cdot 10$

Solution de la question 29.1 .

Listing 43 - hoare1.c

```
int q1() {
  int x=10,y=30,z=20;
//@ assert x== 10 && y == z+x && z==2*x;
y= z+x;
  //@ assert x== 10 && y == x+2*10;
return(0);
}
```

Fin 29.1

Question 29.2

$$\ell_1 : x = 1 \land y = 12$$

 $x := 2 \cdot y$
 $\ell_2 : x = 1 \land y = 24$

Question 29.3

$$\begin{array}{l} \ell_1 : x = 11 \ \land \ y = 13 \\ z := x; x := y; y := z; \\ \ell_2 : x = 26/2 \ \land \ y = 33/3 \end{array}$$

Exercice 30 Evaluer la validité de chaque annotation dans les questions suivent.

Question 30.1

$$\begin{array}{l} \ell_1: x = 64 \ \land \ y = x \cdot z \ \land z = 2 \cdot x \\ Y:= X \cdot Z \\ \ell_2: \ y \cdot z = 2 \cdot x \cdot x \cdot z \end{array}$$

Question 30.2

$$\ell_1 : x = 2 \land y = 4 Z := X \cdot Y + 3 \cdot Y \cdot Y + 3 \cdot X \cdot Y \cdot Y + X^6 \ell_2 : z = 6 \cdot (x+y)^2$$

Question 30.3

$$\ell_1: x = z \land y = x \cdot z Z := X \cdot Y + 3 \cdot Y \cdot Y + 3 \cdot X \cdot Y \cdot Y + Y \cdot X \cdot Z \cdot Z \cdot X; \ell_2: z = (x+y)^3$$

Soit l'annotation suivante :

$$\ell_1: x = 1 \land y = 2$$

$$X:= Y+2$$

$$\ell_2: x+y \ge m$$

où m est un entier ($m \in \mathbb{Z}$).

Question 30.4 Ecrire la condition de vérification correspondant à cette annotation en upposant que X et Y sont deux variables entières.

Question 30.5 Etudier la validité de cette condition de vérification selon la valeur de m.

Exercice 31 gex7.c

$$VARIABLES \ N, V, S, I$$

$$pre(n_0, v_0, s_0, i_0) \stackrel{def}{=} \begin{cases} n_0 \in \mathbb{N} \land n_0 \neq 0 \\ v_0 \in 0..n_0 - 1 \longrightarrow \mathbb{Z} \\ s_0 \in \mathbb{Z} \land i_0 \in \mathbb{Z} \end{cases}$$

$$REQUIRES \begin{cases} n_0 \in \mathbb{N} \land n_0 \neq 0 \\ v_0 \in 0..n_0 - 1 \longrightarrow \mathbb{Z} \end{cases}$$

$$ENSURES \begin{cases} s_f = \bigcup_{i=0}^{n_0 - 1} v_0(k) \\ n_f = n_0 \\ v_f = v_0 \end{cases}$$

$$\ell_0 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ (n, v, s, i) = (n_0, v_0, s_0, i_0) \end{cases}$$

$$S := V(0)$$

$$\ell_1 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{i=0}^{n_0 + 1} v(k) \\ (n, v, i) = (n_0, v_0, i_0) \end{cases}$$

$$I := 1$$

$$\ell_2 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{i=1}^{n_0 + 1} v(k) \land i = 1 \\ (n, v) = (n_0, v_0) \end{cases}$$

$$WHILE \ I < N \ DO$$

$$\ell_3 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{k=0}^{n_0 + 1} v(k) \land i \in 1..n - 1 \\ (n, v) = (n_0, v_0) \end{cases}$$

$$\ell_4 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{k=0}^{n_0 + 1} v(k) \land i \in 1..n - 1 \\ (n, v) = (n_0, v_0) \end{cases}$$

$$\ell_5 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{k=0}^{n_0 + 1} v(k) \land i \in 2..n \\ (n, v) = (n_0, v_0) \end{cases}$$

$$\ell_6 : \begin{cases} pre(n_0, v_0, s_0, i_0) \\ s = \bigcup_{k=0}^{n_0 + 1} v(k) \land i = n \\ (n, v) = (n_0, v_0) \end{cases}$$

La notation $\bigcup_{k=0}^{n} v(k)$ désigne la valeur maximale de la suite $v(0) \dots v(n)$. On suppose que l'opérateur \oplus est défini comme suit $a \oplus b = max(a,b)$.

Question 31.1 Ecrire une solution contractuelle de cet algorithme.

Question 31.2 Que faut-il faire pour vérifier que cet algorithme est bien annoté et qu'il est partiellement correct en utilisant TLA+? Expliquer simplement les éléments à mettre en œuvre et les propriétés de sûreté à vérifier.

Question 31.3 Ecrire un module TLA⁺ permettant de vérifier l'algorithme annoté à la fois pour la correction partielle et l'absence d'erreurs à l'exécution.

Exercice 32 gex8.c

On considère le petit programme se trouvant à droite de cette colonne. Nous allons poser quelques questions visant à compléter les parties marquées en gras et visant à définir la relation de calcul.

On notera $pre(n_0, x_0, b_0)$ l'expression suivante $n_0, x_0, b_0 \in \mathbb{Z}$ et $in(n, b, n_0, x_0, b_0)$ l'expression $n = n_0 \land b = b_0 \land pre(n_0, x_0, b_0)$.

Question 32.1 *Ecrire un algorithme avec le contrat et vérifier le* .

```
VARIABLES N, X, B
REQUIRES n_0, x_0, b_0 \in \mathbb{Z}
                    n_0 < b_0 \Rightarrow x_f = (n_0 + b_0)^2
                     n_0 \ge b_0 \Rightarrow x_f = b_0
ENSURES
                     n_f = n_0
                    b_{f} = b_{0}
BEGIN
\ell_0: n = n_0 \wedge b = b_0 \wedge x = x_0 \wedge pre(n_0, x_0, b_0)
  X := N;
\ell_1 : x = n \wedge in(n, b, n_0, x_0, b_0)
IF X < B THEN
  \ell_2:
X := X \cdot X + 2 \cdot B \cdot X + B \cdot B;
  \ell_3:
ELSE
   \ell_4:
      X := B;
  \ell_5:
FI
\ell_6:
END
```

Exercice 33 Soit le petit programme suivant :

```
Listing 44 – f91
```

```
#include <stdio.h>
#include <math.h>
int f1(int x)
\{ if (x > 100) \}
    \{ return(x-10); 
  else
    { return(f1(f1(x+11)));
}
int f2(int x)
\{ if (x > 100) \}
    \{ return(x-10); 
  else
    { return (91);
int mc91tail(int n, int c)
\{ if (c != 0) \}
    if (n > 100)  {
      return mc91tail(n-10,c-1);}
    else
      {
```

```
return mc91tail(n+11,c+1);
  }
   else
     \{ return n; \}
int mc91(int n)
   return mc91tail(n,1);
int main()
  int val1, val2, val3, num;
   printf("Enter_a_number:_");
   scanf("%d", &num);
   // Computes the square root of num and stores in root.
   val1 = f1(num);
     val2 = f2(num);
     val3 = mc91(num);
     printf("Et\_le\_r\tilde{A}@sultat\_\_f1(%d)=\%d\_et\_la\_v\tilde{A}@rification: \_\%d\_et\_....\%d \ n", num,
   return 0;
}
On veut montrer que les deux fonctions f1 et f2 sont équivalentes avec frama-c en montrant
```

Exercice 34 Soit le petit programme suivant :

qu'elles vérifient le même contrat;

```
Listing 45 – qpower2.c
```

```
#include inits.h>
/*@ axiomatic auxmath {
  @ axiom \quad rule1: \land forall \quad int \quad n; \quad n > 0 \implies n*n \implies (n-1)*(n-1)+2*n+1;
  @ } */
/*@ requires 0 \ll x;
     requires x \ll INT\_MAX;
     requires x*x <= INT\_MAX;
  assigns \nothing;
     ensures \ \ result == x*x;
*/
int power2(int x)
{ int r, k, cv, cw, or, ok, ocv, ocw;
  r=0; k=0; cv=0; cw=0; or=0; ok=k; ocv=cv; ocw=cw;
       /*@ loop invariant cv == k*k;
          @ loop invariant k \le x;
          @ loop invariant cw == 2*k;
          @ loop\ invariant\ 4*cv\ ==\ cw*cw;
          @ loop assigns k, cv, cw, or, ok, ocv, ocw;
           @ loop variant x-k;
  while (k < x)
           ok=k; ocv=cv; ocw=cw;
           k=ok+1;
```

```
cv = ocv + ocw + 1;
           cw = ocw + 2;
  r=cv;
  return(r);
/*@ requires 0 \ll x;
     decreases x;
  assigns \setminus nothing;
     ensures \ \ result == x*x
*/
int p(int x)
  int r;
  if (x==0)
        {
           r=0;
  else
           r = p(x-1)+2*x+1;
  return(r);
      requires 0 \ll n;
  assigns \setminus nothing;
   ensures \ \ result == 1;
int check(int n){
  int r1, r2, r;
  r1 = power2(n);
  r2 = p(n);
  if (r1 != r2)
    \{ r = 0;
  else
    \{ r = 1;
    };
  return r;
```

On veut montrer que les deux fonctions p et power2 sont équivalentes avec frama-c en montrant qu'elles vérifient le même contrat;

Cours MOdélisation, Vérification et Expérimentations Exercices (avec les corrections) Utilisation d'un environnement de vérification Frama-c (III) par Dominique Méry 2 avril 2025

Exercice 35 Utiliser frama-c pour vérifier ou non les annotations suivantes :

Question 35.1

$$\ell_1 : x = 10 \ \land \ y = z + x \ \land z = 2 \cdot x y := z + x \ell_2 : x = 10 \ \land \ y = x + 2 \cdot 10$$

Question 35.2

$$\ell_1 : x = 1 \land y = 12$$

 $x := 2 \cdot y$
 $\ell_2 : x = 1 \land y = 24$

Question 35.3

$$\ell_1 : x = 11 \land y = 13$$

 $z := x; x := y; y := z;$
 $\ell_2 : x = 26/2 \land y = 33/3$

Question 35.4

$$\begin{array}{l} \ell_1: x=3 \ \land \ y=z+x \ \land z=2\cdot x \\ y:=z+x \\ \ell_2: x=3 \ \land \ y=x+6 \end{array}$$

Question 35.5

$$\ell_1: x = 2^4 \land y = 2^{345} \land x \cdot y = 2^{350}$$

$$x := y + x + 2^x$$

$$\ell_2: x = 2^{56} \land y = 2^{345}$$

Question 35.6

$$\ell_1 : x = 1 \land y = 12$$

 $x := 2 \cdot y + x$
 $\ell_2 : x = 1 \land y = 25$

Exercice 36 Traduire ce contrat dans le langage ACSL et vérifier le contrat.

```
\begin{array}{c} \text{variables } x \\ \text{requires} \\ x_0 \in \mathbb{N} \\ \text{ensures} \\ x_f \in \mathbb{N} \\ \text{begin} \\ \ell_0 : \{ \ x = x_0 \wedge x_0 \in \mathbb{N} \} \\ \text{While } (0 < x) \\ \ell_1 : \{ 0 < x \leq x_0 \wedge x_0 \in \mathbb{N} \} \\ x := x - 1; \\ \ell_2 : \{ 0 \leq x \leq x_0 \wedge x_0 \in \mathbb{N} \} \\ \text{od}; \\ \ell_4 : \{ x = 0 \} \\ \text{end} \end{array}
```

Exercice 37 Utiliser frama-c pour vérifier le contrat suivant :

Algorithme 2: Algorithme du maximum d'une liste non annotée

Exercice 38

Utiliser frama-c pour vérifier ke contrat suivant :

Soit l'algorithme annoté suivant se trouvant à la page suivante et les pré et postconditions définies pour cet algorithme comme suit : On suppose que x1 et x2 sont des constantes.

Exercice 39 Soit la fonction suivante utiliée dans un programme

```
Listing 46 – mainpower.c
```

```
Variables: X1,X2,Y1,Y2,Y3,Z
Requires : x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0
Ensures : z_f = x 1_0^{x 2_0}
\ell_0 : \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, y1, y2, y3, z) = 0\}
 (x1_0, x2_0, y1_0, y2_0, y3_0, z0)
 (y_1, y_2, y_3) := (x_1, x_2, 1);
\ell_1: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1_0, x2_0, z0)
y_3 \cdot y_1^{y_2} = x_1^{x_2}
while y_2 \neq 0 do
                              \ell_2: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1, x2, z) \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (
                                y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 < y_2 \leq x_2
                              if impair(y_2) then
                                                                \ell_3: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1, x2, z) \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1_0, x2_0, z0
                                                                y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 < y_2 \leq x_2 \wedge impair(y_2)
                                                              y_2 := y_2 - 1;
                                                              \ell_4: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1, x2, z) \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = (x1_0, x2_0, z0) \land (x1_0, x2_0, z0
                                                             y_3 \cdot y_1 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 \le y_2 \le x_2 \wedge pair(y_2)
                                                             \ell_5: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = 0\}
                                                              (x1_0, x2_0, z0) \wedge y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 \le y2 \le x2 \wedge pair(y2))
                                \ell_6: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = 0\}
                                (x1_0, x2_0, z0) \wedge y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 \le y2 \le x2 \wedge pair(y2)
                              y_1 := y_1 \cdot y_1;
                              \ell_7: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = 0\}
                                (x1_0, x2_0, z0) \wedge y_3 \cdot y_1^{y_2 \ div \ 2} = x_1^{x_2} \wedge 0 \le y2 \le x2 \wedge pair(y2)
                              y_2 := y_2 \ div \ 2;
                              \ell_8 : \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = 0\}
                              (x1_0, x2_0, z0) \wedge y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge 0 \le y2 \le x2
\ell_9 : \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2, z) = 0\}
(x1_0, x2_0, z0) \wedge y_3 \cdot y_1^{y_2} = x_1^{x_2} \wedge y_2 = 0
z := y_3;
\ell_{10}: \{x1_0 \in \mathbb{N} \land x2_0 \in \mathbb{N} \land x1_0 \neq 0 \land y1_0, y2_0, y3_0, z_0 \in \mathbb{Z} \land (x1, x2) = (x1_0, x2_0) \land y_3 \cdot y_1^{y_2} = (x1_0, x2_0) \land (
x_1^{x_2} \wedge y_2 = 0 \wedge z = x_1^{x_2}
```

Algorithme 3: Algorithme de l'exponentitaion indienne annoté

```
printf("%d_\%d_\%d_\cz=%d_\%d\n",cu,cv,cw,cz,ct);
          cz = cz + cv + cw;
          cv = cv + ct;
          ct = ct + 6;
          cw=cw+3;
          cu=cu+1;
          k=k+1;
    r=cz;
 return(r);
int p(int x)
  int r;
  if (x==0)
        {
          r=0;
  else
          r = p(x-1)+3*(x-1)*(x-1) + 3*(x-1)+1;
 return(r);
int check(int n){
  int r1, r2, r;
  r1 = power(n);
  r2 = p(n);
  if (r1 != r2)
    \{ r = 0;
  else
    \{ r = 1; 
 return r;
int main () {
  int counter;
    for( counter=0; counter<5; counter++ ) {</pre>
      int v, r;
      printf("Enter_a_natural_number:");
      scanf("%d", &v);
      r = power(v);
      };
}
```

Question 39.1 Compiler ce programme et tester son exécution afin d'en dégager ses fonctionnalités.

Question 39.2 Annoter les fonctions principales.

Question 39.3 Vérifiez sa correction partielle et totale.