АСТРАДЬ

Содержание

1	1 Небесная механика			
	1.1	Закон всемирного тяготения	2	
	1.2	Закон сохранения энергии и типы орбит	3	
	1.3	Законы Кеплера	4	

1 Небесная механика

1.1 Закон всемирного тяготения

Согласно закону всемирного тялотения, сила притяжения между двумя точечными телами с массами M и m, находящимися на расстоянии R выражается следующим образом:

$$F = \frac{GMm}{R^2},\tag{1}$$

где $G \simeq 6.67 \cdot 10^{-11} \; \mathrm{m}^3 / \left(\mathrm{kg} \cdot \mathrm{c}^2\right) -$ гравитационная постоянная.

 Γ равитационный потенциал поля точечной (или сферически симметричной) массы M на расстоянии R от нее равен работе, которую необходимо затратить, чтобы принести единичную массу с бесконечности в данную точку. Так как гравитационные силы между двумя массами — это силы притяжения, то эта работа отрицательна. Данная величина также является потенциальной энергией точечной массы на расстоянии R от массы M, а выражение для нее имеет следующий вид:

$$U = -\frac{GM}{R} \tag{2}$$

Напряженность гравитационного поля часто называют ускорением свободного падения g, где

$$g = \frac{GM}{R^2} \tag{3}$$

Тогда (1) можно переписать, как

$$F = mg (4)$$

Планета	$\mathbf{g}, \mathbf{m/c^2}$	Планета	$\mathbf{g}, \mathbf{m/c^2}$
Солнце	276.	Mapc	3.73
Меркурий	3.73	Юпитер	25.9
Венера	8.87	Сатурн	11.2
Земля	9.82	Уран	9.01
Луна	1.63	Нептун	11.3

 Таблица 1: Ускорение свободного падения на поверхности тел солнечной системы

1.2 Закон сохранения энергии и типы орбит

Для движения тела с массой m в гравитационном в поле тела с массой $M\gg m$ со скорость v на расстоянии r от гравитационного центра справедливо следующее соотношение:

$$\frac{mv^2}{2} - \frac{GMm}{r} = E_0, (5)$$

где E_0 — постоянная величина, если на тело не действуют внешние силы кроме силы притяжения к центральному телу, равная сумме кинетической и потенциальной энергии тела.

Если $E_0 > 0$, то траектория тела — $\it eunep6ona$, ветви которой асимптотически приближаются к двум прямым.

Если $E_0 = 0$, то траектория тела — *парабола*. При параболической и гиперболический траекториях движение не ограничено (инфинитно).

Если $E_0 < 0$, то траектория тела — *эллипс*. При эллиптической траектории движение ограничено (финитно).

Параболическая скорость — минимальная, при которой тело покидает центральное тело. Она также называется *вторая космическая скорость*. Выражение для нее имеет следующий вид:

$$v_2 = \sqrt{\frac{2GM}{r}} \tag{6}$$

На Рис. 1 представлены примеры возможных траекторий тела относительно центрального (точка C). При $v_0>v_2$ — тело движется по гиперболе, при $v_0=v_2$ — по параболе, а при $v_0< v_2$ — по эллипсу.

Рис. 1: Возможные траектории тела

1.3 Законы Кеплера

І-ый закон: Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

ІІ-ой закон: Радиус-вектор планеты за равные промежутки времени заметает равные площади.

$$\frac{dS}{dt} = const \tag{7}$$

Рис. 2: Первый закон Кеплера

Рис. 3: Второй закон Кеплера

3-ий закон: Квадраты периодов обращения планет относятся, как кубы больших полуосей их орбит.

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3},\tag{8}$$

где a — большая полуось, T — период обращения. Обобщённый Ньютоном III-ий закон имеет следующий вид:

$$\frac{T_1^2(M_1 + m_1)}{T_2^2(M_2 + m_2)} = \frac{a_1^3}{a_2^3} \tag{9}$$

или, что эквивалентно,

$$\frac{T^2}{a^3} = \frac{4\pi^2}{G(M+m)},\tag{10}$$

где M_1 и M_2 — массы центральных тел, m_1 и m_2 — массы обращающихся вокруг них тел. Так как массы планет m много меньше массы звезды M, то $M+m\simeq M$.