

CT101 Computing Systems

Dr. Bharathi Raja Chakravarthi Lecturer-above-the-bar

Email: bharathi.raja@universityofgalway.ie

University of Galway.i

The Process of Computational Problem Solving

- Computational problem solving does not simply involve the act of computer programming. It is a process, with programming being only one of the steps.
- Before a program is written, a design for the program must be developed.
- Before a design can be developed, the problem to be solved must be well understood.
- Once written, the program must be thoroughly tested.

Analyze Problem

- Clearly understand the problem
- Know the constitutes a solution

Describes Data & Algorithm

- Determine what type of data is needed
- Determine how data is to be structured
- Find and/or design appropriate algorithmss

Implement Program

- Represent data within programming language
- Implement algorithms in programming language

Test and Debug

- Test the program on a selected set of problem instances
- Correct and understand the causes of any errors found

Digital System and Binary Numbers

● **Digital age**: Digital system have such a prominent role in everyday life that we refer to the present technological period

Digital system:

- Telephone switching exchanges
- Digital camera
- Electronic calculators
- Digital TV
- Discrete information processing systems
 - Manipulate discrete elements of information

Analog system

The physical quantities or signals may vary continuously over a specified range.

Digital system

The physical quantities or signals can assume only discrete values and greater accuracy

Why Digital System Important?

- ✓ It is well suited for numerical and non-numerical information processing.
- ✓ Information processing can use a general-purpose system (computer).
- ✓ Finite number of values in a digital signal is represented by a vector of signals with just 2 vlaues (Binary Signals).

Why Digital System Important?

- ✓ It is well suited for numerical and non-numerical information processing.
- ✓ Information processing can use a general-purpose system (computer).
- ✓ Finite number of values in a digital signal is represented by a vector of signals with just 2 vlaues (**Binary Signals**).

Digit	Vector			Digit	Vector
0	0000			5	0101
1	0001	Digit	Vector	6	0110
2	0010	4	0100	7	0111
3	0011			8	1000

Digital Systems

- → Digital signals are quite insensitive to variations of component variable values.
- → Numerical digital systems can be made more accurate by increasing the number of digits used in the representation.
- → Complex digital systems are built as integrated circuits composed of a large number of very simple devices.
- →It is possible to select among different implementations of systems that trade off speed and amount of hardware.

Binary Numbers

❖ 7392 represents a quantity that is equal to

$$7 * 10^3 + 3 * 10^2 + 9 * 10^1 + 2 * 10^0$$

❖ In a binary system, possible values are 0 and 1 and each digit is multiplied by 2ⁱ

Example: 11010.11 is

$$1*2^{4} + 1*2^{3} + 0*2^{2} + 1*2^{1} + 0*2^{0} + 1*2^{-1} + 1*2^{-2}$$

$$11010.11 = 26.75$$

Binary numbers and others

System

Binary

Octal

Decimal

Hexadecimal

Binary numbers and others

System	Radix
Binary	2
Octal	8
Decimal	10
Hexadecimal	16

Binary numbers and others

System	Radix	Allowable Digits
Binary	2	0 and 1
Octal	8	0, 1, 2, 3, 4, 5, 6, 7
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Hexadecimal	16	0 to 9 A, B, C, D, E, F

Decimal to Binary

WHOLE NUMBER PART

- We convert the whole number and fractional parts separately and then combine the results.
- The whole number part of 85.375 is 85. Divide this number repeatedly by 2 until the quotient becomes 0.

	Remainders
2 85	1 ↑
2 42	0
2 21	1
2 10	0
25	1
2 2	0
2 1	1
0	_

Pemainders

Write the remainders from bottom to top.

$$(85)_{10} = (1010101)_2$$

FRACTIONAL PART

The fractional part of **85.375** is **0.375**. Multiply the fractional part repeatedly by **2** until it becomes **0**.

•
$$0.375 \times 2 = 0.750$$

•
$$0.750 \times 2 = 1.500$$

•
$$0.500 \times 2 = 1.000$$

From top to bottom, write the integer parts of the results to the fractional part of the number in base **2**.

$$(0.375)_{10} = (0.011)_{2}$$

Combine the whole number and fractional parts to obtain the overall result.

$$(85.375)_{10} = (1010101)_2 + (0.011)_2 = (1010101.011)_2$$

Binary to Decimal

 $(1010.11)_2$

We multiply each binary digit with its place value and add the products.

$$(\mathbf{1010.11})_2 = (\mathbf{1} \times \mathbf{2^3}) + (\mathbf{0} \times \mathbf{2^2}) + (\mathbf{1} \times \mathbf{2^1}) + (\mathbf{0} \times \mathbf{2^0}) + (\mathbf{1} \times \mathbf{2^{-1}}) + (\mathbf{1} \times \mathbf{2^{-2}})$$

$$= 8 + 2 + \frac{1}{2} + \frac{1}{4}$$

$$=(10.75)_{10}$$

Decimal to Hexadecimal

Write the remainders from **bottom to top.**

$$(479)_{10} = (1DF)_{16}$$

Hexadecimal to

Decimal

$$(B65F)_{16} = (11 \times 16^3) + (6 \times 16^2) + (5 \times 16^1) + (15 \times 16^0)$$

$$= 45056 + 1536 + 80 + 15$$

$$= (46687)_{10}$$

Decimal to Octal

Divide the number repeatedly by 8 until the quotient becomes 0.

$$(739)_{10}$$

$$(739)_{10} = (1343)_8$$

Octal to Decimal

$(137.24)_8$

We multiply each digit with its place value and add the products.

$$(137.24)_8 = (1 \times 8^2) + (3 \times 8^1) + (7 \times 8^0) + (2 \times 8^{-1}) + (4 \times 8^{-2})$$

$$= 64 + 24 + 7 + \frac{2}{8} + \frac{4}{64}$$

$$= (95.3125)_{10}$$

$$(137.24)_8 = (95.3125)_{10}$$

Hexadecimal to Octal

Convert each hex digit to 4 binary digits and then convert each 3 binary digits to octal digits. Example, we can take $(B65F)_{16}$

Hexadecimal to Binary

In the first step, we convert the hexadecimal number to binary.

Binary to Octal

In the second step, we convert the binary number to octal.

Combining Results

Using the equalities we obtained in steps 1 and 2, we reach the following result.

$$(B65F)_{16} = (133137)_8$$

Hexadecimal to Binary

 $(A46.09)_2$

To convert a hexadecimal number to binary, we write 4 bit binary equivalent of each hexadecimal digit in the same order.

 $(A46.09)_2 = (101001000110.00001001)_8$

Homework

☐ Decimal to Hexadecimal

Example: Convert $(5386)_{10}$ to a hexadecimal $(?)_{16}$ number.

Number (Division)	Quotient	Remainder	
5386 / 16	336		
336 / 16	21	0	
21 / 16	1	5	
1/16	0	1	

Binary to Octal

 $(1100.11011)_2$

Starting from the binary point, we partition the binary number into groups of three bits.

In the **integer part**, we proceed to the left. To complete the leftmost group of bits, we append **two zeros** to the left.

In the **fractional part**, we proceed to the right. To complete the rightmost group of bits, we append **a zero** to the right.

$$(001)_2 = (1)_8$$

$$(100)_2 = (4)_8$$

$$(110)_2 = (6)_8$$

$$(110)_2 = (6)_8$$

We convert each group of binary numbers to octal and write them in the same order.

$$(1100.11011)_2 = (14.66)_8$$

Octal to Binary

 $(1743)_{8}$

To convert an octal number to binary, we write 3 bit binary equivalent of each octal digit in the same order.

$$(1743)_8 = (001111100011)_2$$

Octal to Hexadecimal

 $(46.1)_8$

We can convert an octal number to hexadecimal in two steps.

In the first step, we convert the octal number to binary.

To convert an octal number to binary, we write 3 bit binary equivalent of each octal digit in the same order.

$$(46.1)_8 = (100110.001)_2$$

In the second step, we convert the binary number to hexadecimal.

Starting from the binary point, we partition the binary number into groups of 4 bits. In the whole number part, we proceed to the left and in the fractional part, we proceed to the right.

$$(100110.001)_2 = (26.2)_{16}$$

COMBINING RESULTS

Using the equalities we obtained in steps 1 and 2, we reach the following result.

$$(46.1)_8 = (26.2)_{16}$$

Binary to Hexadecimal

$(1100.11011)_2$

Starting from the binary point, we partition the binary number into groups of four bits.

In the integer part, we proceed to the left.

In the **fractional part**, we proceed to the right. To complete the rightmost group of bits, we append **three zeros** to the right.

$$(1100)_2 = (C)_{16}$$

 $(1101)_2 = (D)_{16}$
 $(1000)_2 = (8)_{16}$

In the integer part, we proceed to the left.

In the **fractional part**, we proceed to the right. To complete the rightmost group of bits, we append **three zeros** to the right.

$$(1100)_2 = (C)_{16}$$

 $(1101)_2 = (D)_{16}$
 $(1000)_2 = (8)_{16}$

We convert each group of binary numbers to octal and write them in the same order.

$$(1100.11011)_2 = (C.D8)_{16}$$

Binary Numbers

Operations work similarly in all bases.

Augend: 101101 Addend: +100111

1010100

Minuend: 101101 Subtrahend: -100111

000110

Multiplicand: 1011 Multiplier: x 101

> 1011 0000 1011

Product: 110111

References

- Computer Organization and Architecture Designing for Performance Tenth Edition by William Stallings
- Digital Design With an Introduction to the Verilog HDL FIFTH EDITION by M Morris, M. and Michael, D., 2013.

Thank you