Конспект по алгебре

Содержание

1	Вопрос 1	ė
2	Вопрос 2	4

1 Вопрос 1

Группа, подгруппа, гомоморфизм групп. Ядро и образ гомоморфизма.

Определение. < G, *, e > - группа, $*: G \times G \to G, e \in G$

- 1. $\forall a, b, c \in G \ (ab)c = a(bc)$
- $2. \ \forall g \in G \ eg = ge = g$
- 3. $\forall g \in G \ \exists g^{-1} \in G \ gg^{-1} = g^{-1}g = e$

Если $\forall a,b \in G \ ab = ba$ то группу называют абелевой

Теорема. $\exists ! e \in G \ eq = qe = q$

Определение. G - группа, тогда $H \subset G$ называют $noderpynno\ddot{u}$, если

- 1. $e \in H$
- 2. $\forall h_1, h_2 \in H \ h_1 h_2 \in H \mid HH \subset H$
- 3. $\forall h \in H \ h^{-1} \in H \mid H^{-1} \subset H$

Определение. G, W - группы.

 $f: G \to W$ называют гомоморфизмом (групп), если $\forall g_1, g_2 \in G \ f(g_1g_2) = f(g_1) * f(g_2)$

Теорема. $f:G \to W$ - гомоморфизм $f(e_G)=e_W$

Определение. $f:G\to W$ - гомоморфизм, тогда $kerf=g\in G|f(g)=e_W$ - называют ядром гомоморфизма f

 $Teopema.\ kerf$ - noderpynna G

Определение. $f: G \to W$ - гомоморфизм, тогда $Imf = \{w \in W | \exists g \in G \ f(g) = w\}$ - называют *образом гомоморфизма* f

2 Вопрос 2

Мономорфизмы, эпиморфизмы и изоморфизмы. Понятие нормального делителя (нормальной подгруппы). Факторгруппа.

Определение. Сюръективный гомоморфизм - эпиморфизм.

Инъективный гомоморфизм - мономорфизм.

Биективный гомоморфизм - изоморфизм.

Изоморфизм $f:G\to G$ - автоморфизм.

Пусть $H\subset G$. Введем отношение эквивалентности \sim соответствующее подгруппе. $g_1,g_2\in G.$ $g_1\sim g_2,$ если $g_1g_2^{-1}\in H$

Определение. $\tilde{g} = \{k \in G | k \sim g\}$ - класс эквивалентности элемента g

Определение. G/H - факторгруппа, левые смежные классы. $\tilde{g} = Hg$

Заметим, что в случае некоммутативной группы можно ввести правые смежные классы qH.

Теорема. Если gH = Hg, то G/H - группа.

Доказательство. Введем умножение: $\forall g_1H, g_2H \in G/H \ (g_1H)(g_2H) = g_1g_2H$. Проверим корректность умножения: пусть $g_1' \sim g_1, g_2' \sim g_2$. Тогда $g_1' = g_1h_1, g_2' = g_2h_2$, а значит $g_1'g_2' = g_1h_1g_2h_2 = g_1g_2h_1h_2$. То есть $g_1'g_2'H = g_1g_2H$.

Теперь проверим свойства умножения:

- 1. eHqH = qH
- 2. $g_1Hg_2Hg_3H = g_1g_2g_3H$
- 3. $gHg^{-1}H = eH$

Определение. $H\subset G$ назовем нормальной подгруппой, если $\forall g\in G\ gH=Hg$ или $gHg^{-1}=H$ или $ghg^{-1}\in H$

Обозначение: $H \triangleleft G$

Теорема. G - абелева группа, тогда $\forall H \subset G$ - нормальная.

Теорема. Ядра гомоморфизмов и только они суть нормальные подгруп-nы.

Доказательство. Сперва докажем, что если $f:G\to W$ - гомоморфизм, то $kerf \triangleleft G.$ $g\in G, h\in kerf$, тогда $f(ghg^{-1})=f(g)f(h)f(g^{-1})=f(g)f(g)^{-1}=e_W.$

Теперь покажем, что $\forall H \triangleleft G \ \exists f$ - гомоморфизм и kerf = H. Введем $\pi_H: G \to G/H$ - канонической гомоморфизм. Пусть $g \in G, h \in H$ тогда $\pi_H(g) = gH, \pi_H(h) = hH = H$. Следовательно $ker\pi_H = H$.