Разработка системы управления для пятизвенного манипулятора

Сидоренко Данил Дмитриевич студент гр. № 3331506/60401

Консультант: Васильев Иван Анатольевич

Актуальность

- Манипулятор для роботизированного катамарана Кадет-М
- Решение обратной задачи кинематики для манипулятора с ременной передачей на приводе

На данный момент реализовано

- Манипулятор версии 1.0 (версия 2.0 находится в производстве).
- Кинематическая модель манипулятора в MATLAB Robotics System Toolbox.
- Ручное пошарнирное управление.

Научно-исследовательская работа

Цель

Разработать и реализовать систему ручного управления для пятизвенного ременного манипулятора.

Задачи

- Произвести обзор методов решения обратной задачи кинематики.
- Произвести кинематические расчеты для данной конструкции.
- Проверить правильность расчетов в MATLAB Robotics System Toolbox.
- Выбрать наиболее оптимальный по скорости вычислений и точности позиционирования метод решения обратной задачи кинематики для заданных ограничений.
- Реализовать выбранные ранее метод на микроконтроллере ATmega2560.

• Ожидаемые результаты

Система ручного управления манипулятора.

Календарный план

Содержание планируемой работы	Сроки выполнения	
	Начало	Конец
Обзор литературы и методов решения ОКЗ.	15.09.2019	30.09.2019
Решение обратной задачи кинематики несколькими способами	1.10.2019	31.10.2019
Тестирование разных решения и выбор оптимального	1.11.2019	15.11.2019
Реализация методов и алгоритмов	16.11.2019	25.11.2019
Написание отчета	26.11.2019	10.12.2019

Обзор литературы

- Guo, D., Ju, H., Yao, Y., Ling, F., & Li, T. (2009). Efficient Algorithms for the Kinematics and Path Planning of Manipulator. 2009 International Conference on Artificial Intelligence and Computational Intelligence.
- Kondak, K., Huber, F., Schwarzbach, M., Laiacker, M., Sommer, D., Bejar, M., & Ollero, A. (2014). Aerial manipulation robot composed of an autonomous helicopter and a 7 degrees of freedom industrial manipulator. 2014 IEEE International Conference on Robotics and Automation (ICRA).
- From, P. J., Duindam, V., Pettersen, K. Y., Gravdahl, J. T., & Sastry, S. (2010). Singularity-free dynamic equations of vehicle—manipulator systems. Simulation Modelling Practice and Theory, 18(6), 712–731.
- Wuthier, D., Kominiak, D., Kanellakis, C., Andrikopoulos, G., Fumagalli, M., Schipper, G., & Nikolakopoulos, G. (2016). On the design, modeling and control of a novel compact aerial manipulator. 2016 24th Mediterranean Conference on Control and Automation (MED).
- Love, L. J., Jansen, J. F., & Pin, F. G. (2004). On the modeling of robots operating on ships. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

В дальнейшем

- Реализовать систему стабилизации манипулятора при качке катамарана на волнах.
- Сделать управление с помощью ROS.
- Реализовать автоматический захват объектов при помощи камер на катамаране и на исполнительном устройстве манипулятора.

