# Analog IC Design Homework 4 Report

♦ Student ID: 110011207

◆ Name: 林士登

◆ Department: ESS 工科系 25 級

# Question 1. - Differential Amplifier

(a) 這題的要求是設計一個差動放大器,但因為電路複雜性提高,因此要考慮的 trade off 也變多,我的策略是先調整 differential mode 的 ADM 與 bandwidth,接下來再考慮 common mode 的 Acm,最後再測試 input range 與 5V/V 頭尾端之 Vin\_cm 是否讓所有電晶體在飽和區工作。

首先要先將 M1、M2、M3 都調整到飽和區,在調整參數時發現控制 M1 與 M2 的 source 端,也就是 virtual ground 電壓點是很重要的,定為 Vz,要達到 ADM 的條件要先探討影響它的參數

$$\begin{aligned} A_{\rm DM} &= g_{\rm m1}(r_{\rm o1} \mid\mid R_{\rm D}) = \mu_{\rm n} C_{ox} \left(\frac{W}{L}\right) (V_{GS1} - V_{th1})^2 \left(\frac{r_{o1} R_D}{r_{o1} + R_D}\right) \\ &= \mu_{\rm n} C_{ox} \left(\frac{W}{L}\right) (V_{GS1} - V_{th1})^2 \left(\frac{R_D}{1 + g_{ds1} R_D}\right) \end{aligned}$$

在這邊可以發現提高  $V_{GS1}$  或是降低  $V_{th1}$  和增加 W/L、 $R_D$  都可以提高 gain 值,但是在這些參數之中,我發現調高 W/L 和 $R_D$  會降低 bandwidth,因此我盡量使用提高  $V_{GS1}$  以及降低  $V_{th1}$  來使 gain 提高,提高  $V_{GS1}$  就要盡量降低  $V_{Z}$  ,但因為要讓  $V_{Z}$  相地太低,會讓  $V_{Z}$  能力 linear 狀態。

$$2\left(\frac{W}{L}\right)_{1} \left(V_{\text{in}_{CM}} - Vz - V_{\text{th}1}\right)^{2} \cong \left(\frac{W}{L}\right)_{3} (V_{b} - V_{th3})^{2}$$

$$set \ V_{in_{CM}} = 0.4565V, V_{b} = 0.3529V, V_{th1} = V_{th3} = 0.35V$$

$$(V_{z} - 0.1065)^{2} = \frac{\left(\frac{W}{L}\right)_{3}}{\left(\frac{W}{L}\right)_{1}} * (0.029)$$

由上述推導可以得知 Vz 與 W/L 的關係,並進行調整。再來要考慮 Acm-cm,為了讓 CMRR 增加, Acm-cm 勢必越小越好,與它有關的參數為輸出的單端電壓 Voutp 和輸入  $Vin\_cm$ ,又大訊號的  $Voutp = V_{DD} - Id * R_D$ ,因此使  $R_D$  之跨電壓大或使  $Vin\_cm$  大都可以有效地提高 CMRR,但要注意的是這些調整也會影響  $A_{DM}$  的值。

最後 input range 的要求  $A_{DM}>5V/V$ ,我們要驗證在邊界的  $Vin\_cm$  值帶入電路的所有 MOS 都會在 saturation 狀態,這邊主要考慮的地方是電晶體的 Vov 不能太小,在設計  $A_{DM}$  的時候就必須考慮, 否則在 input range 的最小值輸入時可能會因為先前 Vov 不夠大導致較低的  $Vin\_cm$  輸入後 Vov 變 負的值,會讓電晶體進入 subthrethold 關閉,或者是 Vds 不夠大導致電晶體進入 Iinear,因此在 調整  $A_{DM}$  與  $A_{CM-CM}$  時就必須考慮 Vov 之大小。

## 我最終的參數設定為

1. 
$$\left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 = \frac{15u}{4.5u}, m = 8$$

2. 
$$\left(\frac{W}{L}\right)_3 = \frac{5.21u}{2.2u}, m = 30$$

- 3.  $R_D = 100.8k\Omega$
- 4.  $V_b = 0.3529V$
- 5.  $V_{\text{in cm}} = 0.4565V$

## (b) Small signal parameters

| 0:mm1      | 0:mm2                                                                                                                                                                                             | 0:mm3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:n_18.1   | 0:n_18.1                                                                                                                                                                                          | 0:n_18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Saturation | Saturation                                                                                                                                                                                        | Saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10.7484u   | <b>10.7484</b> u                                                                                                                                                                                  | 21.4969u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -847.7653a | -847.7653a                                                                                                                                                                                        | -3.778e-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -3.7677f   | -3.7677f                                                                                                                                                                                          | -1.2378f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 362.7706m  | 362.7706m                                                                                                                                                                                         | 352.9000m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 322.8281m  | 322.8281m                                                                                                                                                                                         | 93.7294m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -93.7294m  | -93.7294m                                                                                                                                                                                         | Θ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 347.0773m  | 347.0773m                                                                                                                                                                                         | 349.8600m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 65.1536m   | 65.1536m                                                                                                                                                                                          | 60.6715m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15.6933m   | 15.6933m                                                                                                                                                                                          | 3.0400m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.9914m    | 7.9914m                                                                                                                                                                                           | 21.4440m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 510.0074m  | 510.0074m                                                                                                                                                                                         | 507.4459m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 225.3863u  | 225.3863u                                                                                                                                                                                         | 460.1273u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.3383u    | 1.3383u                                                                                                                                                                                           | 26.9500u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 44.4978u   | 44.4978u                                                                                                                                                                                          | 96.7065u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 170.6075f  | 170.6075f                                                                                                                                                                                         | 269.9785f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.6240p    | 2.6240p                                                                                                                                                                                           | 1.5593p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.4361p    | 2.4361p                                                                                                                                                                                           | 1.4090p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.1436p    | 1.1436p                                                                                                                                                                                           | 944.5696f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.0833p    | 2.0833p                                                                                                                                                                                           | 1.1316p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 41.6338f   | 41.6338f                                                                                                                                                                                          | 68.7651f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 0:n_18.1 Saturation 10.7484u -847.7653a -3.7677f 362.7706m 322.8281m -93.7294m 347.0773m 65.1536m 15.6933m 7.9914m 510.0074m 225.3863u 1.3383u 44.4978u 170.6075f 2.6240p 2.4361p 1.1436p 2.0833p | 0:n_18.1       0:n_18.1         Saturation       10.7484u         -847.7653a       -847.7653a         -3.7677f       362.7706m         362.7706m       362.7706m         322.8281m       -93.7294m         347.0773m       347.0773m         65.1536m       65.1536m         15.6933m       7.9914m         510.0074m       225.3863u         225.3863u       225.3863u         1.3383u       44.4978u         170.6075f       2.6240p         2.4361p       2.4361p         1.1436p       2.0833p |

## (c) Small signal parameters

\*\*\*\* small-signal transfer characteristics

 $A_{DM} = 20.0184 \text{ V/V}$ 

## (d) Calculate A<sub>DM</sub> with parameters in (b)

$$A_{\rm DM} = g_{\rm m1}(r_{\rm o1} \mid\mid R_{\rm D}) = g_{\rm m1}\left(\frac{R_D}{1+g_{ds1}R_D}\right) = 225.3863u * \left(\frac{100.8k}{1+1.3383u*100.8k}\right) = 20.01843(\frac{V}{V})$$

觀察手算估計值可以發現和模擬值近乎相同。

### (e) Find common mode gain at 10kHz

\*\*\*\*\* ac analysis tnom= 25.000 temp= 25.000 \*\*\*\*\*
acm\_in\_db= 575.0785m

$$\text{CMRR} = 20 \log \left( \frac{A_{\text{DM}}}{A_{\text{CM-CM}}} \right) = 20 \log(20.0184) - 0.5750785 = 25.45351 \text{dB}$$

### (f) Hand calculation for CMRR

| Acm_cm     | Ideal (simulation) | Actual (hand calculation) |
|------------|--------------------|---------------------------|
| Unit (V/V) | 1.068449315 V/V    | 1.12931062 V/V            |
| Unit (dB)  | 0.5750785 dB       | 1.056268241 dB            |

Hand calculation CMRR =  $20\log 20.0184 - 1.056268241 = 24.97231902 \, dB$ 

從上述公式推導可以發現 gain 只差了一點,但是因為轉成 dB 的關係,要做 20log(Av)的動作,而這樣會讓原本的誤差增加,最後影響到手算 CMRR 的準確度,至於誤差來源可能是因為有些節點的頻率響應未考慮到或者是模擬的公式比手算推導出的公式更複雜精準,以至於造成微小誤差。

#### (g) Dominant pole



## Waveview of ADM/Phase degree diagram



frequency(Hz)

從模擬結果可以看到共有三個 pole 與三個 zero,而在遇到每個 pole 時會使 frequency response 之斜率下降 20dB/decade,且會使 phase 轉負 45 度,而每遇到一個 zero 會使 frequency response 之斜率上升 20dB/decade,且會使 phase 轉正 45 度。由這次的電路頻率響應分析來看,因為第一個 pole 與第一個 zero 太相近導致他們造成的結果相消,影響不大,而第一個真正主宰的 dominant pole 是第二個 pole,也就是 f=1.53075MHz 的位置,相位第一次轉了負 45 度,接下來相位到 90 度時第二個 zero 又與第三個 pole 趨近相消的關係,直到第三個 zero 時把相位轉回來趨近平穩。

### (h) Dominant pole calculation



let 
$$C_1 = C_{gb} + C_{gs}$$
,  $C_2 = C_{db} + C_L$ ,  $R_1 = r_o \parallel R_D$   

$$\Rightarrow (V_{out} - V_{in}) * sC_{gd} + g_m V_{in} + \frac{V_{out}}{R_1} + V_{out} sC_2 = 0$$

$$\Rightarrow \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{sC_{gd} - g_m}{sC_{gd} + \frac{1}{R_1} + sC_2} = \frac{sC_{gd} - g_m}{\left(s(C_{gd} + C_2) + \frac{1}{R_1}\right)} = g_m R_1 \frac{j\frac{\omega}{\left(\frac{g_m}{C_{gd}}\right)} - 1}{j\frac{\omega}{\left(\frac{1}{R_1(C_{gd} + C_2)}\right)} + 1}$$

由上述推導可以得到

$$\begin{cases} Av = g_m(r_o \parallel R_D) \\ pole = \frac{1}{(r_o \parallel R_D)\left(C_{gd} + C_{db} + C_L\right)} = 1.530757 \, MHz \\ zero = \frac{g_m}{C_{gd}} \end{cases}$$

從手算的結果來看 pole 估算值與模擬值很相近

Error(pole) = 
$$\left| \frac{1.53075 - 1.530757}{1.530757} \right| \simeq 0$$

接下來估算-3dB pole 之 bandwidth

$$\frac{A_{V_{-3dB}}}{A_{v_{-max}}} = \frac{1}{\sqrt{2}} = \frac{sC_{gd} - g_m}{\left(s(C_{gd} + C_2) + \frac{1}{R_1}\right)} * A_{v_{-max}}$$

$$let C_{gd} = a, g_m = b, (C_{gd} + C_2) = c, \frac{1}{R_1} = d$$

$$\Rightarrow \frac{1}{\sqrt{2}} |A_{v_{-max}}| = \sqrt{\frac{(b^2 + \omega^2 a^2)}{(d^2 + \omega^2 c^2)}} = A_{v_{-3dB}}$$

$$\Rightarrow A_{v_{-3dB}}^2 d^2 + \omega^2 * A_{v_{-3dB}} * c^2 = b^2 + \omega^2 a^2$$

$$\Rightarrow bw = \omega = \sqrt{\frac{(b^2 - d^2 A_{v_{-3dB}}^2)}{A_{v_{-3dB}}^2 c^2 - a^2}} = 1530767.362 \text{ Hz}$$

觀察 bandwidth 可以發現它會比 pole 所在的頻率稍微大一些,這是因為 bandwidth 的頻率值是 在-3dB gain 的條件下求得,因此 bandwidth  $>\omega_{pole}$ 。

## (i) Input range

| 432.0000m | 1.000e+20 | 37.2083k  | 4.9573  |
|-----------|-----------|-----------|---------|
| 433.0000m | 1.000e+20 | 38.2479k  | 5.0527  |
| 434.0000m | 1.000e+20 | 39.5287k  | 5.1727  |
| 435.0000m | 1.000e+20 | 41.1172k  | 5.3240  |
| 436.0000m | 1.000e+20 | 43.1061k  | 5.5160  |
| 437.0000m | 1.000e+20 | 45.6279k  | 5.7625  |
| 438.0000m | 1.000e+20 | 48.8753k  | 6.0831  |
| 439.0000m | 1.000e+20 | 53.1346k  | 6.5074  |
| 440.0000m | 1.000e+20 | 58.8292k  | 7.0792  |
| 441.0000m | 1.000e+20 | 66.5765k  | 7.8625  |
| 442.0000m | 1.000e+20 | 77.1924k  | 8.9432  |
| 443.0000m | 1.000e+20 | 91.4606k  | 10.4061 |
| 444.0000m | 1.000e+20 | 109.3100k | 12.2519 |
| 445.0000m | 1.000e+20 | 128.6036k | 14.2706 |
| 446.0000m | 1.000e+20 | 145.6118k | 16.0822 |
| 447.0000m | 1.000e+20 | 157.9360k | 17.4323 |
| 448.0000m | 1.000e+20 | 165.7891k | 18.3305 |
| 449.0000m | 1.000e+20 | 170.5298k | 18.9075 |
| 450.0000m | 1.000e+20 | 173.3741k | 19.2832 |
| 451.0000m | 1.000e+20 | 175.1061k | 19.5358 |
| 452.0000m | 1.000e+20 | 176.1803k | 19.7110 |
| 453.0000m | 1.000e+20 | 176.8533k | 19.8345 |
| 454.0000m | 1.000e+20 | 177.2700k | 19.9209 |
| 455.0000m | 1.000e+20 | 177.5120k | 19.9783 |
| 456.0000m | 1.000e+20 | 177.6233k | 20.0108 |
| 457.0000m | 1.000e+20 | 177.6233k | 20.0202 |
| 458.0000m | 1.000e+20 | 177.5120k | 20.0059 |
| 459.0000m | 1.000e+20 | 177.2700k | 19.9651 |
| 460.0000m | 1.000e+20 | 176.8533k | 19.8923 |
| 461.0000m | 1.000e+20 | 176.1803k | 19.7771 |
| 462.0000m | 1.000e+20 | 175.1061k | 19.6013 |
| 463.0000m | 1.000e+20 | 173.3741k | 19.3334 |
| 464.0000m | 1.000e+20 | 170.5298k | 18.9171 |
| 465.0000m | 1.000e+20 | 165.7891k | 18.2561 |
| 466.0000m | 1.000e+20 | 157.9360k | 17.2023 |
| 467.0000m | 1.000e+20 | 145.6118k | 15.5929 |
| 468.0000m | 1.000e+20 | 128.6036k | 13.4108 |
| 469.0000m | 1.000e+20 | 109.3100k | 10.9614 |
| 470.0000m | 1.000e+20 | 91.4606k  | 8.7080  |
| 471.0000m | 1.000e+20 | 77.1924k  | 6.9098  |
| 472.0000m | 1.000e+20 | 66.5765k  | 5.5697  |
| 473.0000m | 1.000e+20 | 58.8292k  | 4.5869  |

## 1. Input range minimum Vin\_cm=0.433V

| subckt  |            |            |            |
|---------|------------|------------|------------|
| element | 0:mm1      | 0:mm2      | 0:mm3      |
| model   | 0:n_18.1   | 0:n_18.1   | 0:n_18.1   |
| region  | Saturation | Saturation | Saturation |
| id      | 7.7711u    | 13.5577u   | 21.3288u   |
| ibs     | -796.7837a | -796.7846a | -3.748e-21 |
| ibd     | -6.4821f   | -1.2064f   | -1.1634f   |
| vgs     | 344.9071m  | 391.9071m  | 352.9000m  |
| vds     | 628.5783m  | 45.2875m   | 88.0929m   |
| vbs     | -88.0929m  | -88.0929m  | Θ.         |
| vth     | 344.8356m  | 346.9177m  | 349.8863m  |
| vdsat   | 58.9539m   | 78.9293m   | 60.6615m   |
| vod     | 71.5138u   | 44.9894m   | 3.0137m    |

## 2. Input range maximum Vin\_cm=0.472V

| subckt  |            |            |            |
|---------|------------|------------|------------|
| element | 0:mm1      | 0:mm2      | 0:mm3      |
| model   | 0:n_18.1   | 0:n_18.1   | 0:n_18.1   |
| region  | Saturation | Saturation | Saturation |
| id      | 13.2632u   | 8.2003u    | 21.4636u   |
| ibs     | -836.8262a | -836.8254a | -3.772e-21 |
| ibd     | -1.4749f   | -6.0908f   | -1.2218f   |
| vgs     | 379.4801m  | 348.4801m  | 352.9000m  |
| vds     | 70.5454m   | 580.8850m  | 92.5199m   |
| vbs     | -92.5199m  | -92.5199m  | Θ.         |
| vth     | 347.7352m  | 345.9056m  | 349.8656m  |
| vdsat   | 72.3704m   | 59.9131m   | 60.6693m   |
| vod     | 31.7449m   | 2.5745m    | 3.0344m    |

# $Input\ range\ =\ 472mV-433mV=39mV$

(值得注意的是設計電路時,電晶體的 Vov 不能設計太小,否則測試 input range 會跳出飽和區)

## (j) FOM discussion

因為 FOM = total current input range\*bandwidth ,因此目標很明確的要增加 input range 以及 bandwidth 然後降低

總電流,但我發現 total current 與 bandwidth 互相為 trade-off,當減少電流並且讓  $R_D$  變大時,會讓 bandwidth 下降,但總體 FOM 會下降一點點,因此 FOM 要進步顯著的話,我後來選擇設計大一點的 input range,對於整體 FOM 的影響會超過 total current 與 bandwidth 之影響,最終我擬定的策略為增加 input range 為優先,第二為減少 total current,而最後才是考慮加大 bandwidth。

我最終的 
$$FOM = \frac{21.4969}{1.5269*39} = 0.361$$
。

## Question 2. - Wide-Swing cascade current source

(a) 首先分析此電路的資訊,若要讓四顆電晶體在飽和區

$$\begin{cases} V_{A} \geq V_{X} - V_{th1} \\ V_{X} \geq V_{b} - V_{th2} \\ V_{B} \geq V_{X} - V_{th3} \\ V_{out} \geq V_{b} - V_{th4} \end{cases} for each mosfet to saturate$$

整理 M4 飽和條件得到

$$V_b \le V_{out} + V_{th4} \cong 0.3 + 0.4 = 0.7$$

這條式子說明可以選定 Vb 大小粗估的範圍接下來分析左側與右側電流的關係

$$\begin{cases} I_{ref} = \frac{1}{2} u_n C_{ox} \left(\frac{W}{L}\right)_1 (V_x - V_{th1})^2 = 20uA \\ I_{out} = \frac{1}{2} u_n C_{ox} \left(\frac{W}{L}\right)_3 (V_x - V_{th3})^2 = 120uA \end{cases}$$

若選定 $(W/L)_3=6(W/L)_1$ ,代表需要 $V_{th1}$ 約等於 $V_{th3}$ 才能達到電流六倍的關係,因此要選定 $L_1=L_3$ 才能讓它們閥值電壓相近。再來考慮M1與M2電流相等之公式

$$I_{\text{ref}} = \frac{1}{2} u_n C_{ox} \left(\frac{W}{L}\right)_1 (V_X - V_{th1})^2 = \frac{1}{2} u_n C_{ox} \left(\frac{W}{L}\right)_3 (V_b - V_A - V_{th2})^2$$

$$\therefore \text{ let } \left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 \text{ and } L_1 = L_2 \Rightarrow V_{th1} = V_{th2}$$

$$\therefore V_b = V_x + V_A$$

我選定一個接近 $V_{th1}$ 值的 $V_{x=0.4V}$ ,這樣可以讓M1較容易達到飽和,再考慮M2飽和狀態公式

$$V_x = V_b - V_A \ge V_b - V_{th2} \Rightarrow V_A \le V_{th2} \Rightarrow$$
 選定 $V_A$  大約等於 0.2V 則可推斷所需的  $V_b = V_X + V_A$  可以選定在 0.4V + 0.2V = 0.6V

最後綜合以上推導且為了電路的平衡,可以選定尺寸

$$6 \times \left(\frac{W}{L}\right)_1 = 6 \times \left(\frac{W}{L}\right)_2 = \left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4 = 6 \times \frac{80um}{2um}$$

最終量測出來的  $Iout=119.9566uA \cdot Rout=816.5623k\Omega > 700k\Omega$  (when Vout=300mV)。 輸出電阻的估算值也可以藉由 cascode stage 之公式來估算

$$R_{\text{out}} \cong (g_{\text{m4}} + g_{\text{mb4}})r_{\text{o4}}r_{\text{o3}} = (0.00239 + 0.000452) * 9021.175 * 32434.045 = 831.084k\Omega$$

$$Error(R_{\text{out}}) = \left| \frac{816.5623 - 831.084}{831.084} \right| = 0.01747 \cong 1.75\%$$

| subckt  |            |            |                   |                   |          |         |
|---------|------------|------------|-------------------|-------------------|----------|---------|
| element | 0:mm1      | 0:mm2      | 0:mm3             | 0:mm4             |          |         |
| model   | 0:n_18.1   | 0:n_18.1   | 0:n_18.1          | 0:n_18.1          |          |         |
| region  | Saturation | Saturation | Saturation        | Saturation        |          |         |
| id      | 20.0000u   | 20.0000u   | <b>119.9</b> 566u | <b>119.9</b> 566u |          |         |
| ibs     | -2.971e-21 | -1.0787f   | -1.782e-20        | -6.4235f          |          |         |
| ibd     | -1.0787f   | -2.1358f   | -6.4235f          | -10.2859f         |          |         |
| vgs     | 373.7510m  | 411.2362m  | 373.7510m         | 412.6518m         |          |         |
| vds     | 188.7638m  | 184.9872m  | 187.3482m         | 112.6518m         |          |         |
| vbs     | Θ.         | -188.7638m | Θ.                | -187.3482m        |          |         |
| vth     | 349.5853m  | 388.1812m  | 349.5922m         | 388.3163m         |          |         |
| vdsat   | 70.7311m   | 71.7929m   | 70.7279m          | 72.3836m          |          |         |
| vod     | 24.1657m   | 23.0550m   | 24.1588m          | 24.3354m          |          |         |
| beta    | 12.1337m   | 12.2071m   | 72.8021m          | 73.2454m          |          |         |
| gam eff | 507.4459m  | 512.4822m  | 507.4459m         | 512.4462m         |          |         |
| gm      | 401.7178u  | 405.2245u  | 2.4094m           | 2.3887m           |          |         |
| gds     | 5.0875u    | 5.6039u    | 30.8318u          | 110.8503u         |          |         |
| gmb     | 83.9340u   | 76.4246u   | 503.4286u         | 451.7074u         |          |         |
| cdtot   | 121.9883f  | 116.8104f  | 732.7211f         | 786.9420f         |          |         |
| cgtot   | 857.8742f  | 841.9653f  | 5.1474p           | 5.1447p           |          |         |
| cstot   | 851.5444f  | 826.4478f  | 5.1087p           | 5.0010p           |          |         |
| cbtot   | 449.7355f  | 414.2225f  | 2.6987p           | 2.5040p           | deriv=   | 1.2246u |
| cgs     | 690.6282f  | 683.7380f  | 4.1438p           | 4.1830p           |          |         |
| cgd     | 30.1372f   | 29.7863f   | 181.0393f         | 209.9791f         | rout= 81 | 0.5623K |
|         |            |            |                   |                   |          |         |

(b) 這題是依據(a)小題的電路架構將 Vb 用 M5 與 M6 產生,而要調整 M5 與 M6 的 size 使兩顆電晶體都要在飽和區與 Vin1=Vb=0.6V,我使用以下方法分析。(令 M5 drain 節點電壓為 Vx)

$$\begin{cases} M5: I_{in} = \frac{1}{2} u_n C_{ox} \left(\frac{W}{L}\right)_5 (V_{in1} - V_{th5})^2 = 20uA \\ M6: I_{in} = \frac{1}{2} u_n C_{ox} \left(\frac{W}{L}\right)_6 (V_{in1} - V_x - V_{th6})^2 = 20uA \end{cases}$$

由上式得知,若要使 Vin1=Vb=0.6V,M5 的地方下手較容易調整,因為公式中僅有 $(W/L)_5$  一個 參數需要調整,但是 M6 式子中多了 Vx 一個節點需要考慮,因此若電流要足夠小(20uA)且 Vin1 要同時等於 0.6V, $(W/L)_5$  就要足夠小。

再來,要考慮 M5 與 M6 的飽和狀態,在調整過程中,我發現較困難的點式讓 M5 進入飽和狀態,因題目設定在 Vin1=0.6V,所以為了防止 M5 進入 triode 區,比較理想的方法為提高 Vx 的電壓 (M5 與 M6 之間的節點),又 <math>ID 固定,因此讓 Vx 點電壓上升的方法為調高 M5 的電阻值,因此策略為降低通道長度 L5,使 ros 因為 SCE 的效應提升。

再來估算(W/L)5 大約需要取在甚麼區間,取  $Vin1=Vb=0.6V \cdot Vth5=0.4V \cdot u_nC_{ox}=300u$ ,可得

$$20uA = \frac{1}{2}(300u) \left(\frac{W}{L}\right)_5 (0.6 - 0.4)^2$$
$$\Rightarrow \left(\frac{W}{L}\right)_5 = \frac{20 * 2}{0.2^2 * 300} \approx 3.333 = \frac{10}{3}$$

但在調參數時發現 Vx 太小導致 M5 在線性區,因此由上述推導降低 L 值,選定  $\left(\frac{W}{L}\right)_5 = \frac{3um}{0.7um}$  得到 Vin1=0.595V,而為了使左右側電路平衡 Vx=Vy (M6 source=M4 source),因此選  $\left(\frac{W}{L}\right)_6 = \frac{80um}{2um}$ ,與 M4 size 一樣能保證 M6 與 M4 之 source 之電壓值相同。

綜合上述推論與計算,最後選定的  $\left\{ \begin{pmatrix} \frac{W}{L} \end{pmatrix}_5 = \frac{3um}{0.7um} \text{,} m = 1 \\ \left( \frac{W}{L} \right)_6 = \frac{80um}{2um} \text{,} m = 1 \end{pmatrix} \right\}$ ,使電壓節點 $V_{\text{in1}} = 0.595 \text{V} \approx 0.6 \text{V}$ ,且 M5 與 M6 皆飽和, $I_{\text{out}} = 119.9583 \text{uA}$ 。

| subckt  |            |            |                   |            |            |            |
|---------|------------|------------|-------------------|------------|------------|------------|
| element | 0:mm6      | 0:mm5      | 0:mm4             | 0:mm3      | 0:mm2      | 0:mm1      |
| model   | 0:n_18.1   | 0:n_18.1   | 0:n_18.1          | 0:n_18.1   | 0:n_18.1   | 0:n_18.1   |
| region  | Saturation | Saturation | Saturation        | Saturation | Saturation | Saturation |
| id      | 20.0000u   | 20.0000u   | 20.0000u          | 20.0000u   | 119.9583u  | 119.9583u  |
| ibs     | -1.0667f   | -3.943e-21 | -1.0561f          | -2.971e-21 | -6.2913f   | -1.782e-20 |
| ibd     | -3.4015f   | -53.0782a  | -2.1361f          | -1.0561f   | -10.2859f  | -6.2913f   |
| vgs     | 408.5746m  | 595.2468m  | 410.4355m         | 373.8018m  | 411.7538m  | 373.8018m  |
| vds     | 408.5746m  | 186.6723m  | 188.9906m         | 184.8113m  | 116.5070m  | 183.4930m  |
| vbs     | -186.6723m | Θ.         | -184.8113m        | Θ.         | -183.4930m | Θ.         |
| vth     | 386.5111m  | 420.6677m  | 387.3922m         | 349.6047m  | 387.5454m  | 349.6112m  |
| vdsat   | 71.3165m   | 172.4673m  | 71.7587m          | 70.7455m   | 72.2954m   | 70.7425m   |
| vod     | 22.0635m   | 174.5791m  | 23.0433m          | 24.1971m   | 24.2084m   | 24.1906m   |
| beta    | 12.2045m   | 1.3572m    | 12.2057m          | 12.1337m   | 73.2370m   | 72.8024m   |
| gam eff | 512.4290m  | 507.4463m  | 512.3815m         | 507.4459m  | 512.3479m  | 507.4459m  |
| gm      | 406.9547u  | 180.7546u  | 405.2660u         | 401.6130u  | 2.3940m    | 2.4088m    |
| gds     | 3.6700u    | 21.5243u   | 5.4381u           | 5.2409u    | 99.1388u   | 31.7634u   |
| gmb     | 76.4676u   | 35.8932u   | 76.5774u          | 83.9189u   | 453.5338u  | 503.3420u  |
| cdtot   | 108.0388f  | 5.4177f    | 116.5652f         | 122.3689f  | 778.2854f  | 734.9913f  |
| cgtot   | 832.4098f  | 15.1488f   | 841.8752f         | 858.2437f  | 5.1364p    | 5.1496p    |
| cstot   | 820.4124f  | 17.3799f   | 826.7426f         | 851.6956f  | 4.9984p    | 5.1097p    |
| cbtot   | 409.0955f  | 10.3215f   | <b>414.</b> 7507f | 449.8892f  | 2.5067p    | 2.6996p    |
| cgs     | 673.1469f  | 12.7217f   | 683.4956f         | 690.9853f  | 4.1753p    | 4.1459p    |
| cgd     | 28.2261f   | 1.4191f    | 29.6922f          | 30.2414f   | 206.3772f  | 181.6659f  |

$$\begin{cases} V_{in1} = V_{DS5} + V_{DS6} = V_{ov5} + V_{GS6} = V_{ov5} + V_{ov6} + V_{th6} \\ V_{in2} = V_{GS3} = V_{ov3} + V_{th3} \\ V_{out} = V_{DS1} + V_{DS2} = V_{ov1} + V_{ov2} \end{cases}$$