Semi-supervised Learning with Deep Generative Models

Обучение с использованием неразмеченных данных

Как бы вы провели разделяющую прямую?

Обучение с использованием неразмеченных данных

Обучение с использованием неразмеченных данных

Неразмеченные данные **имеют значение** и могут помогать в решении задачи.

Применения

Задачи, в которых сложно добыть разметку:

- Разметка речи
- Сегментация изображений, облак точек
- Разметка, требующая эксперта (медицинские данные)
- Разметка тегов слов

Как использовать неразмеченные данные в обучении?

Self-training

Как использовать неразмеченные данные в обучении?

Self-training

Ошибки сами себя подкрепляют

Сложно формализовать

Как использовать неразмеченные данные в обучении?

Graph-based

Строим граф, вершины - точки, рёбра - функции от расстояния между ними.

С помощью графа размечаем новые точки, похожие на существующие размеченные

Как использовать неразмеченные данные в обучении?

Graph-based

Хорошо показывает себя при хорошем подборе графа

Всё формально

Нужно подбирать граф

Если граф плохой, то вычислительная эффективность плохая

Как использовать неразмеченные данные в обучении?

Generative models

$$p(X_l, Y_l | \theta)$$

Как использовать неразмеченные данные в обучении?

Generative models

Модель учит совместное распределение, максимизируя его правдоподобие

$$p(X_l, Y_l, X_u | \theta)$$

with Deep generative models

Статья предлагает две модели (М1 и М2), позволяющие использовать размеченные и неразмеченные данные для решения задач машинного обучения.

Deep generative models: пререквизит - VAE

Идея **автоэнкодера** - закодировать данные в скрытое представление, и восстановить их из него.

Отличие **вариационного автоэнкодера** - скрытое представление является распределением.

Deep generative models: пререквизит - VAE

Энкодер возвращает параметры скрытого распределения. Затем из него сэмплируются значения скрытых переменных, которые идут в декодер.

После обучения можем использовать энкодер для классификации, надев на него нужную голову.

Deep generative models: пререквизит - VAE

Тут не нужны метки

Обучаемся и на размеченных и на неразмеченных данных.

Это и есть модель М1

Deep generative models: M2

Идея - использовать метки классов как скрытые переменные.

Моделируем Z энкодером, как и в M1, а распределение Y - дополнительной сетью классификатором.

По сэмплам Z и Y пытаемся восстановить X.

Deep generative models: формально

скрытые переменные: декодер:

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I}); \qquad p_{\theta}(\mathbf{x}|\mathbf{z}) = f(\mathbf{x}; \mathbf{z}, \boldsymbol{\theta}),$$

энкодер:

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \operatorname{diag}(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x})))$$

Deep generative models: формально

Нижняя оценка правдоподобия (ELBO):

$$\log p_{\theta}(\mathbf{x}) \ge \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - KL[q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}) \right] = -\mathcal{J}(\mathbf{x})$$
reconstruction loss KL loss

KL loss выводится аналитически, дифференциируем.

Reconstruction loss считается с помощью reparametrization trick (location-scale transformation)

Deep generative models: формально

Reparametrization trick

 $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] = \mathbb{E}_{\mathcal{N}(\boldsymbol{\epsilon}|\mathbf{0},\mathbf{I})} \left[\log p_{\theta}(\mathbf{x}|\boldsymbol{\mu}_{\phi}(\mathbf{x}) + \boldsymbol{\sigma}_{\phi}(\mathbf{x}) \odot \boldsymbol{\epsilon}) \right]$

Deep generative models: формально

скрытые переменные:

$$p(y) = \text{Cat}(y|\boldsymbol{\pi}); \qquad p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I});$$

декодер:

$$p_{\theta}(\mathbf{x}|y,\mathbf{z}) = f(\mathbf{x};y,\mathbf{z},\boldsymbol{\theta}).$$

энкодер:

$$q_{\phi}(\mathbf{z}|y,\mathbf{x}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(y,\mathbf{x}), \operatorname{diag}(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x}))); \ q_{\phi}(y|\mathbf{x}) = \operatorname{Cat}(y|\boldsymbol{\pi}_{\phi}(\mathbf{x}))$$

Deep generative models: формально

$$\log p_{\theta}(\mathbf{x}, y) \ge \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x}, y)} \left[\log p_{\theta}(\mathbf{x}|y, \mathbf{z}) + \log p_{\theta}(y) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}, y) \right] = -\mathcal{L}(\mathbf{x}, y)$$

$$\log p_{\theta}(\mathbf{x}) \ge \mathbb{E}_{q_{\phi}(y,\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|y,\mathbf{z}) + \log p_{\theta}(y) + \log p(\mathbf{z}) - \log q_{\phi}(y,\mathbf{z}|\mathbf{x}) \right]$$
$$= \sum_{y} q_{\phi}(y|\mathbf{x}) (-\mathcal{L}(\mathbf{x},y)) + \mathcal{H}(q_{\phi}(y|\mathbf{x})) = -\mathcal{U}(\mathbf{x}).$$

$$\mathcal{J} = \sum_{(\mathbf{x}, y) \sim \widetilde{p}_l} \mathcal{L}(\mathbf{x}, y) + \sum_{\mathbf{x} \sim \widetilde{p}_u} \mathcal{U}(\mathbf{x}) \qquad \qquad \mathcal{J}^{\alpha} = \mathcal{J} + \alpha \cdot \mathbb{E}_{\widetilde{p}_l(\mathbf{x}, y)} \left[-\log q_{\phi}(y | \mathbf{x}) \right]$$

Deep generative models: результаты

N	NN	CNN	TSVM	CAE	MTC	AtlasRBF	M1+TSVM	M2	M1+M2
100	25.81	22.98	16.81	13.47	12.03	$8.10 (\pm 0.95)$	$11.82 (\pm 0.25)$	$11.97 (\pm 1.71)$	$3.33 (\pm 0.14)$
600	11.44	7.68	6.16	6.3	5.13	_	$5.72 (\pm 0.049)$	$4.94 (\pm 0.13)$	$2.59 (\pm 0.05)$
1000	10.7	6.45	5.38	4.77	3.64	$3.68 (\pm 0.12)$	$4.24 (\pm 0.07)$	$3.60 (\pm 0.56)$	$2.40 (\pm 0.02)$
3000	6.04	3.35	3.45	3.22	2.57	_	$3.49 (\pm 0.04)$	$3.92 (\pm 0.63)$	$2.18 (\pm 0.04)$

(b) MNIST analogies

(c) SVHN analogies