Любая неабелева группа G, порядка 8 изоморфна либо D_4 , либо Q_8 .

Доказательство Если в G есть элемент порядка 8, то G циклическая.

Если в G все элементы порядка 2, то G абелева.

Если же в G нет элеента 8 порядка и не все элементы имеют порядок 2, то в G есть элемент a порядка 4. Тогда подгруппа $H = \{\varepsilon, a, a^2, a^3 = a^{-1}\} \cong Z_4$ является нормальной (т.к. G: H = 2). Предположим, что существует не лежащий в H элемент s порядка 2. Тогда элемент $s \cdot a \cdot s \in H$ имеет тот же порядок, что и a, то есть 4, поэтому либо

- $1)s \cdot a \cdot s = a$
- $2)s \cdot a \cdot s = a^{-1}$

В первом случае, домножая равенство $s \cdot a \cdot s = a$ справа на s, получаем, что $s \cdot a = a \cdot s$ т.е. s и a перестановочны, поэтому подгруппы H и $\{\varepsilon, s\} \cong \mathbb{Z}_2$ удовлетворяют условиям предложения 7.9., так что $G \cong H \times Z_2$, т.е. коммутативна. Во втором случае, согласно 6.7. $G \cong D_4$. Таким образом, осталось разобрать случай, когда все элементы, не лежащие в H, имеют порядок 4. Тогда обратные к этим элементам также не лежат в H, так что $G \setminus H = \{b, b^{-1}, c, c^{-1}\}$, причем элементы b^2 и c^2 — элементы степени 2, поэтому они должны лежать в H, где есть единственный элемент порядка 2 — это a^2 . Таким образом, $a^2 = b^2 = c^2$, обозначим это элемент через μ . Очевидно он перестановочен с каждым из элементов a, b и c, причем $a\mu = a^{-1}, b\mu = b^{-1}$ и $c\mu = c^{-1}$. Далее, очевидно, что $a \cdot b$ не может быть никакой степенью a или b (если, например, $a \cdot b = b^k$, то $a = b^{k-1}$, что неверно), поэтому $a \cdot b$ может быть либо c, либо c^{-1} , положим, для определенности, что $a \cdot b = c$. Аналогично $b \cdot a$ может быть только c, или c^{-1} , но если бы было $b \cdot a = c$, то, перемножая эти два равенства, получим $a \cdot b \cdot b \cdot a = c^2$, или $a \cdot \mu \cdot a = \mu$ или

 $\mu a^2 = \mu$, или $\mu^2 = \mu$, т. е. $\mu = \varepsilon$, что неверно, поэтому $b \cdot a = c^{-1}$. Покажем, что теперь таблица умножения группы G определена однозначно. Действитльно, таблица умножения на μ известна полностью, благодаря равенствам $\mu a = a^{-1}$ и $\mu b = b^{-1}$ мы умеем также перемножать любые степени a и b.

Умножаем a и c: $a \cdot c = a \cdot a \cdot b = \mu \cdot b = b^{-1}$; $c \cdot a = a \cdot b \cdot a = a \cdot c^{-1} = a \cdot \mu \cdot c = \mu \cdot a \cdot c = \mu \cdot \mu \cdot b = b$. Аналогично умножаем b и c: $c \cdot b = a \cdot b \cdot b = a \cdot \mu = a^{-1}$; $b \cdot c = b \cdot a \cdot b = c^{-1} \cdot b = \mu \cdot c \cdot b = \mu \cdot a \cdot b \cdot b = \mu \cdot a \cdot \mu = \mu \cdot \mu \cdot a = a$. Таким образом условие того, что все элементы, не входящие в H, имеют порядок 4, определяет однозначно всю таблицу умножения группы G, поэтому все такие группы изоморфны; одна такая группа нам известна — это Q_8 .