

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau **PCT** INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) WO 97/41526 (11) International Publication Number: (51) International Patent Classification 6: (43) International Publication Date: 6 November 1997 (06 1197) G06F 159:00 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PCT/US97/07218 (21) International Application Number: 28 April 1997 (28.04.97) PT. RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, (22) International Filing Date: TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, (30) Priority Data: US 26 April 1996 (26.04.96) GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). 08/641,071 (71) Applicant: THE SCRIPPS RESEARCH INSTITUTE [US/US]; 10666 North Torrey Pines Road, La Jolla, CA 92037 (US). (72) Inventors: WILSON, Ian, A.; 1025 Newkirk Drive, La Jolla, CA 92037 (US). LIVNAH, Oded: 5240 Fiore Terrace Published With international search report. #3114, San Diego, CA 92122 (US). STURA, Enrico, A.; 5172 Park West Avenue, San Diego, CA 92117 (US). JOHNSON, Dana, L.; 1343 Lonely CoHage Road, Upper Black Eddy, PA 18972 (US). JOLLIFFE, Linda, K.; 16 Davenport Way, Belle Mead, NJ 08502 (US). (74) Agent: LAND, John; Fish & Richardson, P.C., 4225 Executive Square, Suite 1400, La Jolla, CA 92037 (US). (54) Title: SMALL MOLECULE MIMETICS OF ERYTHROPOIETIN 100 (57) Abstract The invention features computer-assisted methods (100, 102, 104, 106, 200, 202, 204) for identifying molecules which will bind to the EPO receptor and act as an erythropoietin (EPO) mimetic. Preferred EPO mimetics identified using the method of the Input 3D coordinates of subset of EPO

invention act as agonists of the EPO receptor in one or more in vitro or in vivo biological assays of EPO activity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain				
M	Armenia	FI	Finland	LS	Lesotho	SI	Slovenia
T	Austria	FR	France	LT	l.khuania	SK	Slovakia
U	Australia	GA	Gabon	LU	Lucembourg	SN	Senegal
۸Z	Azerbaijan	GB		LV	Larvia	SZ	Swaziland
BA	Bosnia and Herzegovina	GE	United Kingdom	MC	Monaco	TD	Chad
BB	Barbados	GH	Georgia Ghana	MD	Republic of Moldova	TG	Togo
E	Belgium	GN	Guinea	MG	Madagascer	TJ	Tajikistan
3F	Burkina Faso	GR	Greece	MK	The former Yugoslav	TM	Turkmenistan
3G	Bulgaria	HU			Republic of Macedonia	TR	Turkey
ij	Benin .	IE.	Hungary Ireland	ML	Mali	TT	Trinidad and Tobago
R	Brazil	IL.	Israel	MN	Mongolia	· UA	Ukraine
3Y	Belarus	เร	Iceland	MR	Mauritania	UG	Uganda
CA	Canada	IT	Italy	MW	Malawi .	US	United States of America
CF.	Central African Republic	JP		MX	Mexico	UZ	Uzbekistan
CG	Congo	KE	Japan	NE	Niger	VN	Viet Nam
H	Switzerland	KG	Копуа	NL	Netherlands	YU	Yugoslavia
T.	Côte d'Ivoire	KP	Kyrgyzsten	NO	Norway	2.W	Zimbabwe
CM	Cameroon	r.r	Democratic People's	NZ	New Zealand		
N	China	KR	Republic of Korea	PL	Poland :		
TU UT	Cuba	KZ	Republic of Korea	PT	Portugal ^		
z	Czech Republic	LC.	Kazakstan	RO	Romania		
Ε	Germany	u	Saint Lucia	RU	Russian Federation		
K	Denmark	LK	Liechtenstein	SD	Sudan		
E	Estonia	LR	Sri Lanka	SÆ	Sweden		
		LR	Liberia	SG	Singapore		

10

15

20

25

SMALL MOLECULE MIMETICS OF ERYTHROPOIETIN

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to computer-assisted methods for identifying and designing small molecule mimetics of erythropoietin.

2. Description of Related Art

Erythropoietin (EPO) is the primary regulator of the proliferation and differentiation of immature erythroid cells. EPO is produced in the fetal liver and in the adult kidney in response to hypoxia (low oxygen levels in blood or tissue). It circulates in the blood stream where it targets the EPO receptor (EPOR) on committed progenitor cells in the bone marrow and other hematopoietic tissues. Recombinant human erythropoietin (rHuEPO) is widely used in therapy of patients with anaemia due to chronic renal failure, cancer chemotherapy and AZT treatment.

The PRO receptor belongs to the cytokine receptor superfamily, which includes receptors for other hematopoietic growth factors such as interleukins (ILs), colony stimulating factors (CSFs) as well as growth hormone prolactin and ciliary neurotrophic factor (CNIF). The structural architecture of this family of receptors consists of three modules: a ligand binding extracellular domain, a short trans membrane region and a large cytoplasmic domain. It has been proposed that the extracellular domain of this superfamily comprises two discrete domains each containing approximately 100 residues that fold into a sandwich consisting of 7 antiparallel β-strands with the topology of an Ig constant domain. Members of the family share two characteristic motifs in their extracellular domain: a pair of conserved disulfide bridges in the N-terminal domain, and a WSXWS box (where X is any amino acid residue) in the C-terminal domain. For most members of this receptor superfamily, oligomerization of one or more polypeptide chains

10

is essential for forming high affinity receptor complexes. A homodimer complex has been demonstrated to be the active form of hGHR and a similar model has been suggested for G-CSF, prolactin and EPO receptors.

Erythropoietin induces dimerization of two EPO receptor molecules, which results in subsequent phosphorylation of the cytoplasmic domains by the association with two tyrosine kinase (JAK2) molecules to initiate a cascade of events that leads to the relevant biological.

Given the importance of erythropoietin, it would be very desirable to be able to identify molecules capable of binding the EPO receptor and eliciting the response normally elicited by EPO.

10

15

20

-3-

SUMMARY OF THE INVENTION

The invention features methods for identifying molecules which will bind to the EPO receptor and act as a EPO mimetic. Preferred EPO mimetics identified using the method of the invention act as agonists of the EPO receptor in one or more *in vitro* or *in vivo* biological assays of EPO activity. Preferred mimetics are molecules lacking peptide bonds, i.e., are non peptidic mimetics. Preferred peptide mimetics have 15 or fewer, more preferably 10 or fewer amino acids.

The methods of the invention entail identification and design of molecules having a particular structure. The methods rely on the use of precise structural information derived from x-ray crystallographic studies of the extracellular domain of EPO receptor (amino acids 1 to 225) complexed with a peptide, EMP1 (EPO Mimetic Peptide 1; described below), which acts as an EPO mimetic. This crystallographic data permits the identification of atoms in the peptide mimetic that are important for EPO receptor binding and dimerization. More importantly, this data defines a three dimensional array of the important contact atoms. Other molecules which include a portion in which the atoms have a similar three dimensional arrangement similar to some or all of these contact atoms are likely to be capable of acting as an EPO mimetic. Moreover, one can use the structural information to design or identify molecules having even more EPO activity than the peptide mimetic described herein.

The details of the preferred embodiment of the present invention are set forth in the accompanying drawings and the description below. Once the details of the invention are known, numerous additional innovations and changes will become obvious to one skilled in the art.

4-

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a flowchart showing a first method for identifying potential mimetics of erythropoietin using a computer system.

FIGURE 2 is a flowchart showing a second method for identifying potential mimetics of erythropoietin using a computer system.

Like reference numbers and designations in the various drawings indicate like elements.

10

15

20

25

-5-

DETAILED DESCRIPTION OF THE INVENTION

Throughout this description, the preferred embodiment and examples shown should be considered as exemplars, rather than as limitations on the present invention.

Described below is the crystal structure of a small peptide mimetic of EPO bound to an peptide. The receptor. **EPO** the portion of extracellular (GGTYSCHFGPLTWVCKPQGG; SEQ ID NO:1), is characterized by an intramolecular distiffe bridge. Several lines of evidence suggest that EMP1 can act as an EPO mimetic. For example, EMP1 competes with EPO in receptor binding assays and induces cellular proliferation of cell lines engineered to be responsive to EPO. Both EPO and peptide induce a similar cascade of phosphorylation events and cell cycle progression in EPO responsive cells. Further, EMP1 demonstrates significant erythropoietic effects in mice as monitored by two different in vivo assays of nascent red blood cell production. This data, when combined, strongly supports the notion that the peptide ligand, which has a sequence unrelated to that of EPO, is capable of binding to and inducing an agonist conformation or assembly of EPO receptor.

Design of small molecule mimetics

The structure of the EMP1 dimer demonstrates that a molecule substantially smaller than the natural hormone can act as an agonist and induce the appropriate biological response. The peptide is assumed to have a substantially smaller contact interface with the receptor than its natural hormone. The binding determinants in the EPO receptor form an almost flat surface which is mainly hydrophobic in nature, without any cavities or charged residues that may help in design of a small molecule ligand to interact with the receptor.

This simplified framework of interactions revealed by the structural data presented herein can be used to identify additional EPO mimetics. The atoms of EMP1 which are important for binding to the EPO receptor and forming dimeric EPO receptor include those involved in the contact between the EMP1 (peptide) and EBP (EPO receptor) and

10

15

20

25

those involved in contacts between the two EMP1 molecules in the dimeric complex (peptide-peptide contacts). In addition to the contacts listed in Table 2, the following EMP1-EMP1 hydrophobic contacts are significant: Tyr^{P4}, Cys^{P6}, Phe^{P4}, Trp^{P13}, and Cys^{P13} in each peptide. The following EMP1-EBP hydrophobic interactions are also significant: Tyr^{P4}, Phe^{P4}, and Trp^{P13} in each peptide. It will be understood by those skilled in the art that not all of the atoms present in a significant contact residue need be present in a mimetic. In fact, it is only those few atoms which actually from important contacts with the EPO receptor which are likely to be important for mimetic activity. Those skilled in the art will be able to identify these important atoms based on the model of the dimeric EMP1-EPO complex which can be constructed using the structural data herein.

Preferred mimetics will include atoms at postions similar to those of the EPO receptor contacting atoms of EMP1. Even more preferred mimetics will be structurally similar to the dimer of EMP1 found in the structure described below. This is because the dimerization of EMP1 is an important factor in the diemerization of the EPO receptor.

The methods of the invention employ a computer-based methods for identifying compounds having a desired structure. More specifically, the invention uses the three-dimensional coordinates of a subset of the atoms in the peptide GGTYSCHFGPLTWVCKPQGG when the peptide is co-crystallized with a portion of the erythropoietin receptor comprising amino acids 1 to 225 of the human EPO receptor, to determine peptide and non-peptide mimetic candidates by means of computer methods.

These computer-based methods fall into two broad classes: database methods and *de novo* design methods. In database methods the compound of interest is compared to all compounds present in a database of chemical structures and compounds whose structure is in some way similar to the compound of interest are identified. The structures in the database are based on either experimental data, generated by NMR or x-ray crystallography, or modeled three-dimensional structures based on two-dimensional (*i.e.*, sequence)

10

15

20

25

data. In de novo design methods, models of compounds whose structure is in some way similar to the compound of interest are generated by a computer program using information derived from known structures, e.g., data generated by x-ray crystallography and/or theoretical rules. Such design methods can build a compound having a desired structure in either an atom-by-atom manner or by assembling stored small molecular fragments.

The success of both database and *de novo* methods in identifying compounds with activities similar to the compound of interest depends on the identification of the functionally relevant portion of the compound of interest. For drugs, the functionally relevant portion is referred to a pharmacophore. A pharmacophore then is an arrangement of structural features and functional groups important for biological activity, *e.g.*, EPO activity.

Not all identified compounds having the desired pharmacophore will act as an EPO mimetic. The actual activity can be finally determined only by measuring the activity of the compound in relevant biological assays. However, the methods of the invention are extremely valuable because they can be used to greatly reduce the number of compounds which must be tested to identify an actual mimetic.

Dimerization of the EPO receptor is important for activity. Accordingly, preferred mimetics will be based on the structure of the EMP1 dimer as it is bound to the EPO receptor dimer. Thus, preferred mimetics have include important contacts from both of the RWJ 61233 peptides present in the structure described below. Such mimetics will favor dimerization of the EPO receptor.

Programs suitable for generating predicted three-dimensional structures from two-dimensional data include: Concord (Tripos Associated, St. Louis, MO), 3-D Builder (Chemical Design Ltd., Oxford, U.K.), Catalyst (Bio-CAD Corp., Mountain View, CA), and Daylight (Abbott Laboratories, Abbott Park, IL).

Programs suitable for searching three-dimensional databases to identify molecules bearing a desired pharmacophore include: MACCS-3D and ISIS/3D (Molecular Design Ltd., San Leandro, GA), ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.), and Sybyl/3DB-Unity (Tripos Associates, St. Louis, MO).

Programs suitable for pharmacophore selection and design include: DISCO (Abbott Laboratories, Abbott Park, IL), Catalyst (Bio-CAD Corp., Mountain View, CA), and ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.).

Databases of chemical structures are available from Cambridge Crystallographic Data Centre (Cambridge, U.K.) and Chemical Abstracts Service (Columbus, OH).

De novo design programs include Ludi (Biosym Technologies Inc., San Diego, CA) and Aladdin (Daylight Chemical Information Systems, Irvine CA).

Those skilled in the art will recognize that the design of a mimetic may require slight structural alteration or adjustment of a chemical structure designed or identified using the methods of the invention.

- In general, chemical compounds identified or designed using the methods of the invention can be sythesized chemically and then tested for EPO activity using any of the methods described below. The methods of the invention are particularly useful because they can be used to greatly decrease the number potential mimetics which must be screened for EPO activity.
- The invention may be implemented in hardware or software, or a combination of both. However, preferably, the invention is implemented in computer programs executing on programmable computers each comprising a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the functions

10

15

20

described above and generate output information. The output information is applied to one or more output devices, in known fashion. The computer may be, for example, a personal computer, microcomputer, or workstation of conventional design.

Each program is preferably implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.

Each such computer program is preferably stored on a storage media or device (e.g., ROM or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The inventive system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.

FIGURE 1 is a flowchart showing a first method for identifying potential mimetics of erythropoietin using a computer system. The method uses a programmed computer comprising a processor, a data storage system, at least one input device, and at least one output device, and comprises the steps of:

- (1) inputting into the programmed computer through an input device data comprising the three-dimensional coordinates of a subset of the atoms in the peptide GGTYSCHFGPLTWVCKPQGG when the peptide is co-crystallized with a portion of the erythropoietin receptor comprising amino acids 1 to 225 of the receptor, thereby generating a criteria data set (STEP 100);
- comparing, using the processor, the criteria data set to a computer database of chemical structures stored in the computer data storage system (STEP 102);

10

15

25

- (3) selecting from the database, using a program suitable for searching three-dimensional databases to identify molecules bearing a desired pharmacophore (such as those described above or equivalents), chemical structures having a portion that is structurally similar to the criteria data set (STEP 104);
- (4) outputting to an output device the selected chemical structures having a portion similar to the criteria data set (STEP 106).

FIGURE 2 is a flowchart showing a second method for identifying potential mimetics of erythropoietin using a computer system. The method uses a programmed computer comprising a processor, a data storage system, at least one input device, and at least one output device, and comprises the steps of:

- (1) inputting into the programmed computer through an input device data comprising the three-dimensional coordinates of a subset of the atoms in the peptide GGTYSCHFGPLTWVCKPQGG when the peptide is co-crystallized with a portion of the erythropoietin receptor comprising amino acids 1 to 225 of the receptor, thereby generating a criteria data set (STEP 200);
- (2) constructing, using a program suitable for generating chemical structure models (such as those described above or equivalents), a model of a chemical structure having a portion that is structurally similar to the criteria data set (STEP 202);
- (3) outputting to the output device the constructed model (STEP 204).

20 Confirmation of Biological Activity

In order to determine whether a molecule identified using the methods of the invention can act as an EPO mimetic, one or more in vitro or in vivo assays of EPO activity should be performed. For example, mimetic molecules should be able to stimulate proliferation of TF-1 cells (Kitamura et al., J. Cell Physiol. 140:323, 1985) or B6Sut cells (Greenberger et al., Proc. Natl. Acad. Sci. USA 80:2931, 1983), but preferably do not stimulate proliferation of cells which do not bear the EPO receptor. Thus, preferred mimetics do not stimulate proliferation of Mo7e cells (Avanzi et al., Br. J. Haematol. 69:359, 1988).

10

15

20

Potential mimetics can also be tested in a murine model of erythropoiesis. In this assay a potential mimetic is administered to normal mice which express endogenous basal levels of EPO. Reticulocytes are counted, preferably by flow cytometry, to determine whether the candidate mimetic increases reticulocyte levels. An increase in reticulocyte levels indicates that the candidate mimetic is stimulating erythropoiesis. Because the mice used in this assay already express EPO, this assay may be relatively insensitive. As an alternative, candidate mimetics can be assayed in the exhypoxic-polycythemic mouse bioassay. In this assay polycythemia is induced by conditioning mice in a hypobaric chamber to reduce endogenous EPO levels. A potential EPO mimetic can be administered to a conditioned mouse. Incorporation of "Fe into blood serves as a measure of erythropoiesis. This erythropoiesis can be attributed to the candidate mimetic.

The assays described above are examples of suitable assays. Other assays for EPO activity known to those skilled in the art are also useful.

In order to determine the biological activity of a candidate mimetic it is preferable to measure biological activity at several concentrations of candidate mimetic. The activity at a given concentration of candidate mimetic can be compared to the activity of EPO itself.

Structural Data

The coordinates for amino acids 1 to 225 of the human EPO receptor bound to peptide EMP1 are presented in the attached appendix in standard Brookhaven database format. Also included in this appendix is a list of van der Waals interactions. These coordinates can be used in the design and identification of EPO mimetics according to the methods of the invention.

Structure of EBP-EMP1 Complex

The extracellular fragment of human EPO receptor (EPO binding protein, EBP), 25 consisting of residues 1-225, was expressed in Escherichia coli and purified as described

15

20

25

(Johnson et al., Protein Express. Purif. 7:104, 1996). Rhomboidal-shaped crystals of an EBP complex with EMP1 were obtained in orthorhombic space group P2₁2₁2₁, with cell parameters a=59.2Å, b=75.5Å, c=132.2Å, with two EBP and two peptide molecules in the asymmetric unit and a V_N=2.8 Å/dalton (Matthews, J. Mol. Biol. 33:491, 1968). The crystal structure was determined by multiple isomorphous replacement (MIR) using two heavy atom derivatives (Table 1). Residues 1-2 and 19-20 of each peptide as well as residues 1-9, 21-23, 164-166, 221-225 of receptor molecule I, and residues 1-9, 21-23, 133-135, 221-225 of receptor molecule II had poor or no electron density and are excluded from the structure analyses

An important break in the electron density that affects the structure interpretation occurs for the three residues (Argⁿ -Glyⁿ -Proⁿ) that link the amino terminal α -helix to the first β -strand in D1 of both receptor molecules. A molecular packing diagram shows the proximity of a second non-crystallographically related dimer in the crystal that gives two possibilities of how this three-residue linker may be connected. The current choice of linker connectivity is based on a structure of another independent EBP-peptide complex at higher resolution (2.5 Å), which shares a similar molecular packing, but for which the electron density is clear for these three residues. At present there are no experimental data to verify whether this N-terminal α -helix exists in solution or is a crystallization packing artifact. Notably, this helical region is not observed in the published structures of hGHbp (begins at residue 32; deVos et al., Science 255:306, 1992), PRLR (begins at residue 2, without any defined secondary structure until the first β-strand, residue 6; Somers et al., Nature 372:478, 1994), the INF-yRa (begins at residue 17; Walter et al., Nature 376:230, 1995) or the tissue factor (begins at residue 3 without any defined secondary structure until the first β-strand, residue 11; Muller et al., Nature 370:662, 1994).

The EBP monomer folds into two domains, D1 and D2, that form an L-shape with the long axis of each domain aligned at approximately 90° to each other, the overall molecular dimensions are $45 \text{ Å} \times 52 \text{ Å} \times 62 \text{ Å}$. The N-terminal domain (D1, residues 10-

15

20

25

114) and C-terminal domain (D2, residues 119-220) are connected by a short four residue α-helix linker. Both domains are more closely related in overall topology to Fibronectin type-III (FBN-III) domains than to Ig domains (Bork et al., J. Mol. Biol., 242:309, 1994). The FBN-lil fold is composed of two antiparallel β -pleated sheets, consisting of strands A, B, E and strands G, F, C and C', and is found in the two domains of the human growth hormone (de Vos et al., Science 255:306, 1992) and prolactin (Somers et al., Nature 372:478, 1994) receptors, the D1 and D2 domains of the \alpha chain of interferon-\gamma receptor (IFN-γRα) (Walter et al., Nature 376:230, 1995), the D2 domain of CD4 (Wang et al, Nature 348:411, 1990; Ryu et al., Nature 348:419, 1990), the two domains of tissue factor (Muller et al., Biochemistry 33:10864, 1994; Harlos et al., Nature 370:662, 1994), the third fibronectin-type repeat of tenacin (Leagy et al., Science 258:987, 1992) and the D2 domain of the chaperone protein PapD (Holmgren et al., Nature 342:248, 1989). The FBN-III topology differs from an Ig constant domain by a shift of strand D from one β sheet (strands A, B, E and D) to the other (strands G, F, C, C'), where it is defined as the C' strand. Superposition of equivalent β-sheet core residues of the D1 and D2 domains in EBP gives an r.m.s. deviation of 2.3 Å for 77 Ca pairs, which is significantly larger than the corresponding domain overlaps for hGHbp (1.1Å) and PRLR (0.8Å), and reflects a difference in the subclass of fold between the two EBP domains.

In Display a short α-helix (residues 10-20), precedes the first β-sandwich that is better described as a hybrid of the FBN-III fold with an Ig fold (residues 24-114), rather than strict FBN-III topology. In this h-type fold (Wang et al., Nature 348:411, 1990; Ryu et al., Nature 348:419, 1990), the C' strand is long and interacts first with strand C and then switches to interact with strand E (where C' changes its designation to strand D) forming a four-on-four strand β-sandwich. Discontains the two conserved disulfide bridges linking Cys. (βA) to Cys. (βB) and Cys. (βC) to Cys. (βE). The number of residues between the cysteine pairs that form the two disulfide bridges are 9 and 15 for EBP, compared to 9 and 10 in both GHR and PRLR. The longer connection between strands C and E enables the second half of strand C' to become strand D. This h-type topology is not found in either of the two s-type GHR domains. A potential glycoylation site exists

15

20

25

on residue Asn⁵² which is located towards the end of the loop region connecting the βB and βC strands. Although Asn⁵² is not glycosylated in this bacterially expressed protein, an external cavity around the Asn⁵² side chain could easily accommodate a carbohydrate moiety.

A helical linker (residues 115-118) connects D1 to D2 (The φ, Ψ torsion angles for the interdomain helical linker for lle¹¹⁷, Asn¹¹⁴, Glu¹¹⁷ and Val¹¹⁸ are -50° -27°, -76°, -21°, -99°, 26°, and -151°, 38° respectively.) and has been observed in other members of this receptor family, hGHbp, PRLR, IFN-γRα and tissue factor. In EBP, the domain association is further restricted by a mixed assortment of hydrogen bonding, hydrophobic interactions and one salt bridge (between Arg³¹ and Asp¹²¹) from 11 residues of D1 and 12 residues of D2 with a total buried surface [The molecular surface areas buried by interaction were calculated using the program MS (Connolly, J. Appl. Crystallog, 16:439, 1983) using a 1.7Å probe sphere and standard atomic radii (as described in Davies, et al, Ann. Rev. Biochem. 59:439, 1990). There may be some discrepancies between values reported here and other (deVos et al., Scince 255:306, 1992) published values due to use of a different algorithm (Connolly) vs. Lee et al., J. Mol. Biol., 55: 379, 1971) and probe radii. For clarity all values reported here have been calculated in the same way for better comparison between the receptors] of 950 Å² for the two domains.

D2 (residues 119-220) folds into the standard FBN-III (s-type) topology with one free cysteine and no disulfide bridges, consistent with GHR and PRLR that have three and two disulfide bridges, respectively, in D1 but none in D2. After the α -helix linker, D2 begins with an irregular coil (residues 118-126) that contains Pro^{124} which is conserved in the structures of hGHbp, PRLR, tissue factor and IFN γ -R α , and based on sequence alignment, in most class-1 and class-2 cytokine receptors (Bazan, Proc. Natl. Acad. Sci. USA 87:6934, 1990). This short coil ends with Gly¹²⁴ which has a positive ϕ (ϕ , Ψ = 52°,40°) consistent with the equivalent Ala¹³⁶ and Ala¹⁰¹ torsion angles in hGHbp (ϕ , Ψ = 63°,68°) and PRLR (ϕ , Ψ = 58°,38°). The Pro¹²⁴ region forms an analogous extended bulge conformation adjacent and parallel to a corresponding bulge containing the

10

15

20

25

WSXWS motif. The WSAWS sequence forms a modified wide β -bulge (Richardson, Adv. Prot. Chem. 34:167, 1981) and is located in an extended chain region immediately preceding the βG strand that would normally connect to the membrane spanning region of the EPOR.

The quaternary structure of the complex is composed of two peptides and two receptors that form a T-shapes assembly. A noncovalent peptide dimer interacts with two receptor molecules to generate an almost perfect 2-fold symmetrical arrangement. After superposition of D2 of the two EBP molecules in the dimer, the centers of mass of the two D1 domains are only 0.8 Å apart, sufficient to perturb perfect two-fold symmetry. Separate superposition of the corresponding D1 and D2 of each receptor in the dimer results in r.m.s. deviations of 0.53 Å (105 D1 Cα pairs) and 0.47 Å (93 D2 Cα pairs).

The cyclic EMP1 contains a single disulfide bridge between Cys^{P6} and Cys^{P15}, which links two short β-strands (residues 4-7 and 13-16) that are connected by a slightly distorted type 1 β -turn [Pro^{P10} (i+1) and Leu^{P11} (i+2) of the β -turn have ϕ , Ψ = -62°, -38° and -99°, -60°, respectively. The carbonyl oxygen of Leu^{P11} has a hydrogen bond to EBP distorting the Ψ value from its normal 0°±30° (i+2) in a standard type I β-turn.] consisting of residues Gly^{P9}-Pro^{P10}-Leu^{P11}-Thr^{P12}. Each peptide has a very close association with its other peptide partner and buries 320 Å of its 1220 Å2 molecular surface in this interaction (Connelly, J. Appl. Crystallog. 16:439, 1983; Davies et al., Ann. Rev. Biochem. 59:439, 1990; Richards, J. Mol. Biol. 55:379, 1971). Four hydrogen bonds between the mainchains of the two peptides results in formation of a four-stranded anti-parallel βpleated sheet (Table 2). Two symmetric hyrdophobic cores are assembled by peptide dimerization and are comprised of the disulfide bridges and the side chains of TyrP4,PheP2 and Trp^{P13}. The construction of each hydrophobic core resembles a box which places the aromatic rings of Phe P1, Trp P13 and Tyr P4 (from the other peptide) and the disulfide bridge (Cys^{P6}-Cys^{P15}) at the corners. The two glycine residues at either end of the peptide are not structured.

15

20

25

The peptide dimer is embedded in a deep crevice between two EBP receptor molecules. A portion of each peptide monomer interacts with both receptor molecules. The binding sites of each EBP are practically identical due to the 2-fold symmetric interactions imposed on binding the peptide dimer. The four major contact areas on EBP come from segments on four loop regions (L1, L3, L5, L6) that connect strands A to B (L1 residues 33-34) and F to G (L6 residues 90-94) in D1 and strands B to C (L5 residues 148-153) and F to G (L6 residues 203-205) in D2. The total buried molecular surfaces in the peptide-EBP assembly are 840 Å² and 880 Å² for the two peptides and EBP's, respectively. The peptide-EBP interaction can be separated into distinct hydrophobic (67%) and polar (33%) areas. A hydrophobic core is formed between the peptide and receptor and comprises Phe93, Met150 and Phe205 from one EBP molecule and the peptide hydrophobic box consisting of PhePs and TrpP13 from one peptide and TyrP4 and CysP15 from the other peptide. The polar interactions are located mainly at the bottom of the binding crevice and are mainly with loop L5 in D2. Five of the six hydrogen bonds are between the mainchain of the β-turn residues Gly^{P9},Pro^{P10} and Let^{P11} from one peptide with the mainchain and sidechain hydroxyl of conserved TyrP4, which crosses over its other peptide partner, to interact with loop L3 (Table 2). The EBP-EBP interaction makes a surprisingly minor contribution to the overall stability of the complex where the interreceptor buried molecular surface is only 75 Å², contributed by Leu¹⁷⁵ and Arg¹⁷⁸ from each receptor molecule.

Dimerization of EBP in Solution

10

15

20

To explore the interaction of EMP1 with EBP in solution we employed a [1,4-di-(2'-pyridyldithio DPDPB, crosslinker reactive bifunctionalsulphydryl propionamido) butane], in an attempt to stabilize a peptide-dependent dimeric structure. The choice of crosslinker was based on previous experiments with amine-reactive crosslinkers that were found to inactivate EBP. EBP contains a single free sulphydryl (Cys¹⁸¹) in D2 which is potentially reactive to crosslinking reagents (The DPDPB crosslinker itself does not inactivate the EPO binding potential of EBP nor the proliferative properties of EMP1). A dimeric EBP product is formed by co-incubation of EMP1, DPDPB and EBP. The amount of dimeric product increases with peptide concentration and no significant dimer product is observed in the absence of peptide. DPDPB-crosslinked products formed through disulfide-exchange reactions should be readily reversible by reduction as is seen for the covalently-linked EMP1-mediated dimer. Furthermore, we have constructed a covalently-linked dimeric form of EMP1 that demonstrates increased biological potency (Johnson et al, in preparation). The Cys¹⁸¹ residues in D2 of the EBP dimer are 20.7 Å apart (SY-SY distance) which approximates the 16 Å length (and approximately 2 Å in bond length at each end) of the DPDPB crosslinker. Thus EMP1 mediates formation of a soluble EBP dimer complex in solution consistent with the crystal structure.

The WSXWS motif

The WSAWS sequence (residues 209-213) corresponding to the WSXWS box occurs in a β -bulge (Richardson, Adv. Prot. Chem. 34:167, 1981; Chan et al., Protein Science, 2:1574, 1993) immediately preceding β -strand G in D2. Residues in this motif do not interact with ligand, have no role in receptor-receptor interactions and are located on the opposite side of the receptor-receptor and receptor-ligand interface. The WSAWS box represents only a segment of a complex array of interactions that involves several other conserved side chains from the four-stranded β -sheet in D2. The indole ring systems of Trp²⁰⁹ and Trp²¹² point toward an external concave surface of the β -sheet and are only partially solvent exposed, whereas the Ala²¹¹ side chain points directly out into solution. The amides and hydroxyls of both Ser²¹⁰ and Ser²¹³ form hydrogen bonds with the main

10

15

20

25

chain of residues 198 and 196 of adjacent strand F in a pseudo β-sheet type interaction that resembles a modified wide \(\beta\)-bulge (Richardson, Adv. Prot. Chem. 34:167, 1981; Chan et al., Protein Science, 2:1574, 1993) where the sidechain hydroxyl rather than the carbonyl oxygen makes the β -sheet interaction. The β -bulge architecture places the two Trp residues, which are spread four residues apart, on the same side of the β-sheet and not on opposite sides as in normal β -sheet or extended chain structures. The guanidinum group of Arg¹⁹⁷ from Strand F, the central residue (Richardson, Adv. Prot. Chem. 34: 167, 1981; Chan et al., Protein Science, 2:1574, 1993) in the bulge, is positioned exactly between the two Trp indole rings to form an extended π -cation system (Kumpf et al., Science 261:1708, 1993. The center of the pyrrole ring of Trp²⁰⁹, the NE of the Arg¹⁹⁷ and the center of the benzene ring of Trp212 are positioned on a straight line with the three planes of the conjugated systems stacked parallel to each other at approximately 4 Å spacing. In addition, the aliphatic portion of the Arg199 side chain has hydrophobic interactions with the indole ring of Trp²⁰⁹, completing the alternating stacking of two aromatic and two positively-charged amino acid residues. The side chain of Glu¹⁵⁷ forms a hydrogen bond with Arg197 presumably to help orient the guanidinium group and add some specificity and stabilization to the system.

It appears then that the linear WSXWS motif identified from sequence alignments of cytokine receptors represents only a component of a more complex conformational unit that contributes a significant structural feature to D2. Aromatic residues have previously been suggested to have a stabilizing effect and play a role as a folding nuclei in structures of antiparallel β -sandwiches (Finkelstein et al., Protein Eng. 6:367, 1993). The aminoaromatic parallel stacking between the guanidinium group of arginine and the aromatic rings is a common feature in protein structures (Burley et al., Adv. Prot. Chem., 39:125, 1988; Flocco et al., J. Mol. Biol., 235:709, 1994), but a parallel triple stacking of π -cation systems is rare (Kim et al., Biochemistry 32:8465, 1993) although observed in other class-1 cytokine receptors, hGHbp and PRLR.

10

15

20

25

30

The structural equivalents of the WSXWS motif in hGHbp (YGEFS) and PRLR (WSAWS) are involved in an even more intricate and complex array of π -cation interactions. The π -cation system is extended in hGHbp and PRLR to include an additional aromatic residue (Trp186 for hGHbp and Trp156 for PRLR) from the loop region that links BC and BC in D2 and a positively-charged residue (Arg211 for hGHbp and Arg147 for PRLR) that stacks between the Trp and the second aromatic residue. The additional Arg residue is contributed either from the BF strand as in hGHbp (Arg211) or from βC as in PRLR (Arg¹⁴⁷); the glutamine residue that hydrogen bonds and orients the arginine also switches strands. Sequence alignments suggest that this Arg-Gln switch could be common to other members of the class-1 cytokine receptor family. The extended n-cation system in hGHbp and PRLR consists of five positively charged and three aromatic residues stacked in an alternating order which comprises of Lys215, Tyr222, Arg²¹³, Phe²²⁵, Arg²¹¹, Trp¹⁴⁶, Lys¹⁷⁹ for hGHbp and Lys¹⁸⁵, Trp¹⁹¹, Arg¹⁸³, Trp¹⁹⁴, Arg¹⁴⁷, Trp156, Lys149 for PRLR. The first aromatic-Arg-aromatic trio are approximately 4Å apart, as in EBP, but the second system is stacked closer together at approximately 3.6 Å spacings consistent with π - π interaction (Burley et al., Adv. Prot. Chem., 39:125, 1988; Flocco et al., J. Mol. Biol., 235:709, 1994). The outer lysines also use the aliphatic portions of their side chains to form hydrophobic interactions with the aromatic rings. Based on sequence alignments with other members of the class-1 cytokine receptor superfamily, such structurally extended π -cation systems could exist in human thrombopietin, IL-6 and ciliary neurotrophic factor receptors, and in human IL-4 receptor based on structural modeling (Gustchina et al., Proteins 21:140, 1995). Although IFNγRα and tissue factor do not have a WSXWS motif, the corresponding sequences TTEKS (residues 213-217) for IFN-γRα (Walter et al., Nature 376:230, 1995) and KSTDS (residues 201-205) for tissue factor (Muller et al., Biochemistry 33:10864, 1994; Harlos et al., Nature 370:662, 1994), maintain a very similar β-bulge. The consensus sequence among these five x-ray structures indicates that a serine or threonine in positions 2 and 5 maintain a common set of hydrogen bonds between their side chain hydroxyls and the mainchain of the neighboring strand. Only in hGHbp is there no hydroxyl-containing residue in position 2, but Ser²²⁶ still maintains the equivalent interaction. A Ser²²⁶ to Ala

10

15

25

mutation abrogates hGHR binding to hGH, and its expression on the cell surface is drastically reduced (Baumgartner et al., J. Biol. Chem., 269: 29094, 1994). In GM-CSFRα and IL-2Rβ, point mutations of the serine residues cause a substantial decrease in cell surface expression but little or no effect on ligand binding (Ronco et al., J. Biol. Chem. 269:277, 1994; Miyazaki et al., EMBO Journal 10:3191, 1991).

Conservation of the WSXWS motif in EPOR or its equivalent in other members of the class 1 cytokine receptors has been proposed to be essential for biological activity and was thus assumed to be part of the receptor binding site (Yoshimura et al., J. Biol. Chem. 267:11619, 1992; Quelle, Mol. Cell. Biol. 12:4553 1992). For EPOR, a systematic study of 100 mutations of the WSAWS sequence demonstrates that most of the mutations of the two tryptophan and serine resulted in molecules that did not reach the cell surface but were retained in the endoplasmatic reticulum (Hilton et al., Proc. Natl. Acad. Sci. USA 92:190, 1995; Hilton et al., J. Biol. Chem. 271:4699, 1996). Furthermore, an Ala²¹¹ to Glu mutation in the WSAWS sequence resulted in better transportation from the ER to the Golgi and a 3-5 fold increase of the number of EPOR molecules on the cell surface compared to the wild-type (Hilton et al., Proc. Natl. Acad. Sci. USA 92:190, 1995; Hilton et al., J. Biol. Chem. 271:4699, 1996). These results support our conclusion that the WSXWS sequence plays an important role in the structure and folding of D2 in EPOR and other related receptors.

20 Comparison with other cytokine-receptor complex structures

The overall quaternary structure of the peptide-EBP complex substantially from the equivalent arrangement in the hGH-hGHR complex. The non-symmetric nature of the single four-helix-bundle structure of the growth hormone ligand results in an asymmetric homo-dimerization of the receptor that corresponds to a 159° rotation between receptors compared to the almost perfect 2-fold (180°) rotation for the EBP-peptide complex. The tertiary arrangement of domains within EBP and hGHbp is also somewhat different. When the equivalent EBP and hGHbp D2 domains are superimposed on each other, their corresponding D1 domains differ by a 12° rotation and a 4.3Å translatin.

10

15

20

25

The mechanism of hGH binding to its receptor has been well studied (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995) and is sequential. Initial high affinity (nM) binding of the hormone with one receptor results is a buried surface of 1130 Å² on the receptor. The second hGHbp2 has a substantially smaller interface (deVos et al., Science 255:306, 1992) with the second binding site on hGH and interacts only with the preformed 1:1 complex to generate buried surface areas of 740 Å² with hGH and 440 Å² with the first hGHbp1 (deVos et al., Science 255:306, 1992; (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995). The binding determinants of each hGHbp are comprised of the six recognition loops (L1-L6), three of which (L1-L3) come from one end of the β-sandwich structure in D1, one from the interdomain linker and two from D2.

Although these two receptor complexes, EBP-EMP1 and hGH-hGHbp, have different dimeric arrangements, which probably in this case represent differences in the size and shape of the natural versus synthetic ligand, both receptors share equivalent ligand recognition loops, L1, L3, L5 and L6 for the EBP and L1 to L6 for the hGHbp. A nonactive PRLR, complexed with only one molecule of hGH, also uses the same contact loops (L1 to L6) (Somers et al., Nature 372:478, 1994). Based on similarity of the ligand recognition sites in hGHbp and PRLR, one would expect that the binding site of EBP, when its natural EPO ligand is bound, would extend to include two additional loops, L2 and L4, that comprise residues 59-63 (L2) between strands C to C', and residues 110-118 (L4) from the carboxyl end of βG in D1 and the interdomain linker. These six loops in EBP, hGHbp and PRLR area in structurally equivalent positions but vary in size, amino acid composition and conformation although the interacting portions of each loop (side or tip) remain similar, L1, L2, L3, L5 interact mainly with their tips and L6 with its side. In EBP, the L5 loop is three residues shorter than in hGHbp and PRLR, where the L6 loop is three and four residues longer than in hGHbp and PRLR, respectively. The L2 loop also varies (6 to 10 residues) among the three receptors but in EBP does not participate in peptide binding, and in hGHbp is partially disordered, although it does contact th hormone. In one respect, this situation is similar to the complementarity-

15

20

determining regions (CDR's) in antibodies, where changes in length and sequence of the six binding loops impose specificity for different antigens, whereas the framework itself remains constant (Wilson et al., Ciba Foundation Symposium. Wiley, Chichester, 1991, Vol. 159, p. 13).

It has been shown for the hGH-hGHbp complex that only a subset of 9 out of 33 interacting residues that make up the structural epitope of the receptor constitute a functional epitope or hot spot (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995) where high affinity binding interaction takes place. This reduced epitope is substantially smaller than the structural epitope and is comprised from residues (Arg43, Glu44, Ile103, Trp104, Ile105, Pro106, Asp165, and Trp169) which are located in contact loops L1, L3 and L5 with the most significant contribution (>4.5 kcal/mol) coming from two aromatic residues (Trp104 and Trp169) in L3 and L5 (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995; Wells, Proc. Natl Acad. Sci. USA 93:1, 1996). In EBP, Phe⁹³ is equivalent to Trp ¹⁰⁴ in hGHbp, as suggested previously (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995; Wells, Proc. Natl Acad. Sci. USA 93:1, 1996; Jolliffe et al., Nephrol. Dial. Trans. 10:suppl. 2, 28, 1995), but there is no homologous residue to Trp169 in the shorter L5 loop. In the EBP-EMP1 complex, the PhePs peptide aromatic side chain occupies the equivalent position of the Trp 169 side chain in hGHbp. One can assume that when EPO binds to its receptor, the hormone may provide an aromatic residue to the hydrophobic core of the binding interface and/or the L6 loop in EBP may play a more significant role in the hormone binding than in hGHbp, since it is 3 residues longer and contains the aromatic Phe²⁰⁵.

In these three class-1 receptor structures, some loops are disordered which are in D2 for EBP for EBP (residues 164-166 in EBP1 and 133-135 in EBP2) and in D1 for both hGHbp (residues 55-58, 73-78 for hGHbp1 and 54-60, 73-75 for hGHbp2) and PRLR (residues 31-33, 84-86). Otherwise, these three class-1 cytokine receptors do not differ greatly in their over all tertiary structures; D1 and D2 have broadly similar general

10

15

20

25

arrangement in all three receptors such that the angle between the long axes of the two domains is approximately 90 degrees. I tis this arrangement of domains that allow these particular L1-L6 loops to be available for the recognition and binding of ligands. In a 2:2 complex between IFN-γ and its class-2 receptor IFN-γRα, D1 and D2 are related by a 125 degree angle, which elongates the receptor and restricts the binding determinants that can be used for interaction with hormone; the L1 loop now becomes buried in the D1-D2 interface, although the other five loops (L2-L6) are still available for ligand interaction. This elongated interdomain arrangement is also observed in tissue factor (Muller et al., Biochemistry 33:10864, 1994; Harlos et al., Nature 370:662, 1994) which has a distant relationship to the cytokine receptor superfamily.

A mutational analysis of the EBP molecule indicates that the most crucial amino acid residue for binding EPO is Phe⁹³ in the L3 loop (Jolliffe et al., Nephrol. Dial. Trans. 10:suppl 2,28, 1995). The Phe93Ala mutant shows an increase int he IC₅₀ compared to the wild-type by a factor of approximately 1000, whereas other mutants (Ser91Ala, Ser92Ala, Val94Ala, Met150Ala and His153Ala) show small relative increases in teh IC₅₀ of only 2.5-12.5 fold). The side chain of Phe⁹³ buries 66 Å² of molecular surface, which is the highest among interacting side chains. In hGHbp, the corresponding Trp104Ala mutation results in an increase in the K₄ by a factor of more than 2,500 compared to the wild-type indicating the equivalent importance of this residue in hGH binding and its key contribution to the hydrophobic core of the functional epitope (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995; Bass et al. Proc. Natl. Acad. Sci. USA 88:4498, 1991).

The role of dimerization on signal transduction

In the EBP-EMP1 complex structure, we surprisingly observe that a peptide, unrelated in sequence and probably in structure, to the natural ligand, can induce a biologically active dimerization of EPO receptor that promotes signal transduction and cell proliferation. Comparison of three class-1 cytokine receptor complexes, whose structures hav been determined so far, suggests that when the natural EPO hormone, which is

10

15

25

proposed to have a structure of a four-helix bundle (Boissel et al., J. Biol. Chem. 268:15983, 1993), induces receptor dimerization, it is more likely to resemble the hGH-hGHbp assemblage. This would suggest that more than one mode of productive extracellular dimerization is permissive for intracellular dimerization of the cytoplasmic domains with two JAK2 molecules in order to initialize the cascade of events that produces the biologically relevant signal (Ihle et al., Seminars in Immunology 5:375, 1993; Klingmuller et al., Cell 80:729, 1995). The peptide-EBP structure would then represent only one possible dimeric arrangement that promotes signal transduction.

Mutant EPOR molecules, containing a single Arg to Cys mutation (Arg¹²⁰ in human and Arg¹²⁰ in murine), have been shown to form biologically active dimers in the absence of EPO (Yoshimura et al., J. Biol. Chem. 267:11619, 1992); Watowich et al., Proc. Natl. Acad. Sci. USA 89:2140, 1992; Watowich et al., Mol. Cell. Biol. 14:3535, 1994), suggesting that extracellular recptor homo-dimerization may be sufficient in itself for signal transduction. It has been shown in another system (Spencer et al., Science 262:1019, 1993) that activation of a specific set of transcription factors can be induced by the chemical crosslinking of cytoplasmic domains of modified cell membrane receptors that do not contain the extracellular and transmembrane domains. These receptors are not related to the cytokine receptor superfamily but illustrate that oligomerication plays a key role in activation of the receptor, and that the main functional role of the extracellular, ligand-binding domain is to allow (in the presence of ligand) dimerization or oligomerization and induce similar association of the cytoplasmic domains.

Mutageneses experiments originally suggested a role for the WSXWS motif in this cell signalling process (Yoshimura et al., J. Biol. Chem. 267:11619, 1992; Quelle et al. Mol. Cell. Biol. 12:4553, 1992; Chiba et al., Biochem. Biophys. Res. Comm. 184:485, 1992) possibly by promoting receptor homo-dimerization. However, truncation mutants of EPOR (Miura et al., Arch. Biochem. Biophys. 306:200, 1993) do not confirm this role for the WSXWS motif. The EBP-EMP1 complex structure shows that the WSXWS motif

15

20

25

of the EPOR, as for the hGH-hGHbp complex (deVos et al., Science 255:306, 1992) is located on the opposite face of the molecule from the receptor dimerization. In the absence of unliganded structures for the extracellular domains of EPOR, hGHR and PRLR, it is not possible to determine whether any conformation change occurs on ligand binding that would involve the WSXWS box. Apart from being a striking structural feature in D2, and its obvious proximity to the membrane spanning domain, one cannot rule out possible interactions of this region with some other cell surface molecules that are involved somehow in the signal transduction process.

Towards design of small molecule mimetics

The structure of the EMP1 dimer demonstrates that a peptide considerably smaller than the natural hormone can act as an agonist and induce the appropriate biological response. The peptide can be assumed to form a substantially smaller contact interface than the natural hormone with the receptor. The peptide binding site in EBP forms an almost flat surface, which is mainly hydrophobic in nature, without any cavities or charged residues that are normally essential for the specific targeting of small molecule ligands to a receptor binding site. The hGHbp study (Wells et al., Science 267:383, 1995; Wells, Proc. Natl. Acad. Sci. USA 93:1, 1996) shows that only a small part of the observed structural binding site, the so-called functional epitope (supra), contributes most of the binding energy and strongly implied that a "minimized" hormone designed to interact with this site could form sufficient interactions to activate the receptor. Furthermore, the limited site of interaction of the small agonist peptide with the EBP corresponds almost exactly to the smaller functional epitope derived from alanine scanning of hGH and hGHbp. Thus, by a different approach, we have arrived at the similar conclusion that a small-number of key interactions can contribute to a functional epitope on a receptor. Understanding of this simplified interaction surface can be now combined with further mutational studies to assist in identifying the most crucial residues in the functional epitope, and consequently provide a more practical target for drug design.

Data Collection, MIR and Refinement Statistics

10

15

20

25

30

The crystallographic data is summarized in Table 1. Native crystallographic data were collected on a Siemens multiwire area detector mounted on an Elliott GX-18 generator, operating at 40kV and 55mA, with a crystal-to-detector distance of 120mm. Two derivative data sets were collected on a MAR image plate mounted on a Siemens generator operating at 50kV and 80mA, with crystal-to-image plate distance of 150mm. Data were integrated, scaled and reduced using the programs XENGEN (Howard et al., J. App. Cryst. 20:383, 1987) for the native data and DENZO/SCALEPACK (Otwinowski et al., SERC Darsbury Laboratory, Warrington, 1993) for the derivative data. Initial multiple isomorphous replacement anomalous scattering (MIRAS) phases were calculated to 3.1 Å using the program package PHASES (Furey, American Crystallographic Association Fortieth Anniversary Meeting, New Orleans, LA, 1990) with a mean figure of merit of 0.64 (25.0-3.1 Å). Phases were refined in PHASES using the solvent flattening protocol to a mean figure of merit of 0.92 (25.0-3.1 Å). The quality of the map was generally good and most of the complex structure (94%) could be fitted using the graphics program O (Jone et al., Acta Crystallogr A47:110, 1991). The register of the amino acid residues was verified from the positions of the two disulfide bridges in D1, and the positions of the two Hg's from the mercury acetate derivative that were correctly assumed to bind to the free Cys¹¹¹ residue. the peptide interpretation was verified from another data set from a complex between EBP and an iodinated peptide (TyrP4 was substituted for p-iodo-Phe), which diffracted to 3.3Å resolution, that in difference Fourier (Find-Fine) american gave a clear indication of the location of the iodine atoms. The structure was refined using the slow-cooling protocol in X-PLOR 3.1(Brunger et al., Acta Crystallogr A46:585, 1990; Brunger, X-PLOR, Version 3.1: A System for X-ray and NMR, Yale Univ. Press, New Haven, CT, 1992) and rebuilt using Fo-Fc, 3Fo-2Fc and SIGMAA(Read, Acta Crystallogr. A42:140, 1986) weighted electron density maps. After every two cycles of refinement, a set of simulated annealing omit maps (7-10%) to reduce model bias was calculated and the entire structure rebuilt. After several cycles of refinement, individual temperature factors were calculated and after 10 cycles of refinement and model building, the R-value was 0.21 for 8.0-2.8 Å data with F>10 (13,984 reflections). The average thermal parameters for receptor I, receptor II and the

peptides are 10.5Å², 12.3Å and 10.7Å respectively. Only one non-glycine residue [Asn¹⁶⁴ in EBP2], located in a loop region in D1, is in a disallowed region in the Ramachandran plot. No solvent molecules were included in the model due to the moderate resolution (2.8 Å) of the structure determination.

Binding Contacts

10

15

Binding contacts are summarized, in part, in Table 2: Hydrogen bond interactions in the binding site of the EBP-EMP1 complex. Due to the symmetrical nature of the complex, peptide-1 and peptide-2 have equivalent interactions with the two EBP molecules. The hydrogen bond interactions were analyzed using HBPLUS (McDonald et al., J. Mol. Biol. 238:777, 1994), based upon both distance (3.9 Å cutoff) and geometrical considerations.

A number of embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiment, but only by the scope of the appended claims.

all.con	Thu	Apr 25	15:08:07 19	96	1	
EBP	1-PEPTIDE1					
VDW	1 LEU 3:	з св	4 PHE 308	CEl	1	3.95
VDW	1 LEU 3:		4 PHE 308	CD1	î	4.11
VDW	1 PHE 9:	CE1	4 TRP 313	CH2	î	3.74
VDW	1 PHE 93	CZ-	4 TRP 313	CH2	ī	3.98
VDW	1 PRE 93	.CZ	4 TRP 313	CZ2	1	4.08
ADM	1 PRO 149		4 GLY 309	0	1	3.59
VDW	1 PRO 149		4 GLY 309	0	1	3.49
VDW	1 PRO 149	_	4 GLY 309	0	1	3.66
VDW	1 MET 150		4 PRO 310	0	1	3.35
VDW VDW	1 MET 150		4 PRO 310	Ċ	1	3.62
VDW	1 MET 150		4 LEU 311	0	1	3.41
VDW	1 MET 150		4 GLY 309	0 .	1	3.78
VDW	1 MET 150		4 LEU 311 4 PHE 308	C	1	3.87
VDW	1 MET 150		4 PHE 308 4 PHE 308	CD2	1	3.50
VDW	1 MET 150		4 PHE 308	CB	1	3.70
VDW	1 MET 150		4 PHE 308	CG CD2	1	3.79
VDW	1 MET 150		4 THR 312	C	1	3.52
VDW	1 MET 150		4 THR 312	CA	1	3.55
VDW	1 MET 150		4 TRP 313	N	1	3.58 3.75
, VDW	1 MET 150		4 PHE 308	CA	ì	3.75
VDW	1 MET 150	SD	4 PHE 308	CB	î	4.03
VDW	1 MET 150	CE	4 PHE 308	CD2	ī	3.45
VDW	1 MET 150	CE	4 TRP 313	CE2	ī	3.71
VDW	1 MET 150		4 PEE 308	CE2	1	3.79
VDW	1 MET 150		4 TRP 313	CD2	1	3.83
VDW	1 MET 150		4 TRP 313	NE1	1	3.91
VDW VDW	1 MET 150		4 TRP 313	CZ2	1	4.10
VDW	1 MET 150 1 THR 151		4 LEU 311	0	1	3.41
VDW VDW	1 THR 151 1 THR 151	N	4 LEU 311	0	1	3.45
VDW	1 THR 151	CA CB	4 PRO 310	0	1	3.82
VDW	1 THR 151	OG1	4 PRO 310	0	1	3.56
VDW	1 THR 151	OG1 -	4 LEU 311 4 LEU 311	CD2	1	3.43
VDW	1 THR 151	CG2	4 PRO 310	CA O	1	3.91
VDW	1 SER 152	CB	4 LEU 311	0	1	3.60
VDW	1 HIS 153	NDI	4 LEU 311	ŏ	1	3.54 3.57
SHORTVDW	1 HIS 153	CE1	4 THR 312	OG1	i	2.87
VDW	1 HIS 153	CE1	4 THR 312	CB	ī	3.48
.ADM	1 BIS 153	CEl	4 THR 312	CA	ī	3.76
VDW .	1 HIS 153	NE2	4 THR 312	OG1	1	3.57
VDW	1 PHE 205	CE2	4 PHE 308	CZ	1	3.90
VDW .	1 PHE 205	CZ	4 PHE 308	CE2	1	3.40
ADM	1 PHE 205	CZ	4 PHE 308	CZ	1	3.53
VDW	BP2-PEP1	CX	A 17500 004	011	_	_
VDW	.2 SER 591 2 SER 591	CA CB	4 TYR 304	OH	1	3.44
VDW	2 SER 591	СВ	4 TYR 304	OH	1	3.88
VDW .	2 SER 591	OG	4 PRO 317 4 TYR 304	CB OII	1	3.95
VDW	2 SER 591	OG	4 PRO 317	OH CB		3.44
VDW	2 SER 591	og	4 TYR 304	CZ	1	3.61
VDW	2 SER 591	OG	4 TYR 304	CE2	1	3.83
VDW	2 SER 591	Č	4 TYR 304	OH	1	3.84
VDW	2 SER 592	N	4 TYR 304	CE2	1	3.62
VDW	2 SER 592	N	4 TYR 304	CZ	1	3.66 3.68
VDW	2 SER 592	CA	4 TYR 304	ОН	1 .	3.80
VDW	2 SER 592	CB	4 TYR 304	ОН	ì	3.73
VDW	2 SER 592	С	4 TYR 304	CE2	i	4.00
VDW	2 SER 592	0	4 TYR 304	CE2	1	3.53
ADM.	2 SER 592	0	4 PRO 317	CD	1	3.59
ADM ADM	2 PHE 593	CB	4 CYS 315	0	1	3.74
VDW	2 PHE 593 2 PHE 593	CD1	4 CYS 315	CB	1	3.55
	2 PHE 593	CD1	4 TYR 304	CD2	1	3.72

	15.08·07 1996	2
all.con	Thu Apr 25 15:08:07 1996	1 3.90
VDW	2 PHE 593 CD1 4 11K 304	3.71
VDW	2 PHE 593 CE1 4 PRO 317 CG	1 3.17
SHORTVDW	2 VAL 394 CG1 4 PRO 317 CD	1 3.23
SHORTVDW	7 AWP 224 000	1 3.84
	- con 01 (M 4 140	1 3.90
VDW VDW	1 SER 91 CB 4 PRO 417 CB	1 3.90
VDW	1 SER 32 A TYR 404 CE2	1 3.82
VDW	1 SER 32 Ch 4 TYR 404 OB	1 3.85 1 3.42
VDW .	1 3DR 03 CB 4 TYR 404 OB	1 3.42
ADM ADM	1 SER 92 CB 4 TYR 404 CE2	1 4.09
VDW	1 SER 92 CB	1 3.43
VDW	1 PHE 93 CD1 4 TYR 404 CE2	1 3.71 1 3.83
VDW	1 PHP 93 CD1 4 TYR 404 CD2	1 3.83 1 3.92
VDW VDW	1 PHE 93 CD1 4 GWS 415 CB	1 4.08
VDW	1 PHE 93 CE1 4 TVR 404 CE2	1 4.09
VDW	1 PHE 93 CE1 4 PRO 417 CG	1 3.54
VDW	1 VAL 34 CG1 4 PRO 417 CD	1 3.54 1 4.11
VDW	1 VAL 94 CG2 4 PRO 417 CG	1 4.11
VDW EBP	2-PEPTIDE2	1 3.14
SHORTVDV	2 LEU 533 CB 4 PHE 408 CD1	1 3.77
VDW	2 LEU 533 CB 4 PHE 408 CZ	1 4.00
VDW	2 1155 E33 CG 4 PHE 408 CE1	1 4.05
VDW VDW	2 LEU 533 CD1 4 PHE 408 CE1	1 3.92
VDW	2 LEU 533 CD1 4 PHF 408 CE1	1 3.67
NDM	2 LEU 533 CE1 4 TRP 413 CE2	1 3.34
VDW	2 PHE 593 CE1 4 TRP 413 CZ2	1 3.41 1 3.67
VDW VDW	2 PHE 593 CZ 4 TRP 413 CB2	3.96
VDW	2 PBE 333 C3 4 Gt.Y 409 O	1 3.79
VDW	2 PRU 045 CT 4 CT 409 O	1 3.56
VDW	2 220 649 C 4 PRO 410 O	1 3.72 1 3.59
ADM ADM	2 MET 650 CA 4 PRO 410	1 3.67
VDW	2 MET 650 CA 4 7577 411 0	1 3.77
VDW	Z MET 650 CT.	1 3.80
VDW	2 MET 650 CG 4 PHE 408 CG	1 3.92 1 4.05
VDW VDW	2 MET 650 CG 4 PHE 400 CE	1 3.72
VDW	2 MET 650 SD 4 TRR 412 C	1 3.75
ADM	2 MEI 050 CD A PHE 408 CD2	1 3.76
VDW	2 MET 650 SD 4 THR 412 CA	1 3.78 1 4.02
VDW VDW	2 MET 650 SD 4 PHE 408 CA	1 3.67
VDW	2 MET 650 CE 110	1 3.76
VDW	2 177 650 CE 4 TRP 413 CD2	3.76
VDW	2 MET 650 CE 4 PHE 408 CD2	1 3.83 1 3.88
VDW VDW	2 MET 650 CE 4 TRP 413	1 3.88 1 3.89
VDW	2 MET 650 CE 4 TRP 413	1 3.90
VDW	2 MET 650 CE 4 LEU 411 O	1 3.54
VDW	2 MET 650 C 4 PRO 410 O	1 3.57 1 3.56
- ADM ADM	2 THR 651 N 4 LEU 411 0	1 3.56 1 3.77
VDW	2 TER 651 N 4 PRO 410 C	1 3.41
VDW	2 mm 651 CB 4 PRO 410 O	1 3.03
SHOR	1VDW 2 TIRK 651 CB 4 PRO 410 C	1 3.98
VDW WCV	2 THR 651 CB 4 LEU 411 CR	1 4.02
VDW	2 THR 651 OG1 4 PRO 410 C	-

all.con		Thu	Apr 25	15	:08:0	07 1	996	3	
VDW	2 5	ER 652	N	4	LEU	411	С	1	3.83
VDW	2 S	ER 652		4	LEU	411	õ	ī	3.51
VDW	2 S	ER 652	СВ	4	LEU	411	0	ī	3.18
VDW	2 S	ER 652		4	LEU	411	Ċ	ì	4.09
VDW	2 S	ER 652	OG-	4	THR	412	CB	ī	3.73
SHORTVDW	2 H	IS 653	.CE1	4		412	OG1	ī	3.00
VDW	2 B	IS 653		4		412	CB	ī	3.91
PEPTIDE1-PEPTIDE2									
SHORTVDW	3 T	BR 303	OG1	4	BIS	407	CB	1	2.94
VDW	3 T	BR 303	OG1	4	BIS	407	CA	1	3.61
VDW	3 T	YR 304	C B	4	CYS	406	0	1	3.86
VDW	3 T	YR 304	CD1	4	TRP	413	CZ3	1	3.81
VDW	3 T	YR 304	CD1	4	TRP	413	CH2	1	3.94
VDW	3 T	YR 304	0	4	CYS	406	N .	1	3.33
VDW	3 T	YR 304	0	4	CYS	406	0	1	3.47
VDW	3 T	YR 304	0	4	SER	405	CA	1	3.57
VDW	3 SI	ER 305	CA	4	TYR	404	0	1	3.51
VDW	3 SI	ER 305	С	4	TYR	404	С	1	3.77
VDW	3 C:	YS 306	0	4	THR	403	CB	1	3.50
VDW	3 C	YS 306	0	4	TYR	404	CB	ī	3.54
VDW	3 C:	YS 306	0	4	TYR	404	CD1	1	3.59
VDW	3 C	rs 306	0	4	TYR	404	CA	1	3.75
VDW	3 C		CB	4	CYS	406	\$G	1	3.81
VDW	3 C		SG	4	CYS	406	SG	1	3.75
VDW	3 C3	rs 306	SG	4	CYS	406	CB	1	4.06
VDW	3 P	E 308	CE1	4	TYR	404	OH	1	3.93
	.3 PI	E 308	CEl	4	TYR	404	CE1	1 -	4.08
VDW	3 TI	RP 313	CG	4	TRP	413	CD1	1	3.85
SHORTVDW	3 TF	₹P 313	CD1	4	TRP	413	CD1	1	3.04
VDW	3 TI	æ 313	CD1	4	TRP	413	NE1	1	3.37
VDW .	3 TF	RP 313	CD1	4	TRP	413	CG	1	4.09
VDW	3 TF	æ 313	NEl	4	TRP	413	CD1	1	3.31
VDW	3 TF		CZ2	4	CYS	415	SG	1	3.84
VDW	3 TF		CH2	4	CYS	415	SG	1	3.83
VDW	3 C.		SG	4	TRP	413	CZ2	1	3.59
VDW	3 C7		SG	4	TRP	413	CE2	1	3.95
VDW	3 C.		SG	4	TRP	413	CH2	1	4.00
VDW	3 G1		CD	4	GLN	418	NE2	1	3.28
VDW	3 G1	N 318	0E1	4	SER	405	CB	1	3.80

MOTA

```
Thu Apr 25 12:27:47 1996
bref21c.pdb
         REMARK
REMARK
REMARK
          INTO THE STRUCTURE. THESE RESIDUES HAVE A HIGH H OF 90.
REMARK
REMARK
          THE STRUCTURE CONSISTS OF TWO RECEPTOR (FESIDUES 10-220, 510-727)
AND PEPTIDE (PESIDUES 303-318, 403 418) MOLECULES.

1 N LYS 10 40.090 29.257 22.042 1.00 22.57
2 CA LYS 10 39.634 30.133 20.962 1.00 23.45
REMARK
 DEMARK
 REMARK
 MOTA
                     LYS
 ATOM
                                                           19.979
                                                                    1.00 22.87
                                        38.753
38.334
                                                 29.361
                              10
                ÇВ
                     LYS
                                                                     1.00 22.92
 ATOM
ATOM
                                                 30.155
                                                           18.735
                              10
                CG
                     LYS
                                                                     1.00 24.27
                                                           17.552
                                                 29.212
                                        38.119
                              10
                CD
                     LYS
                                                           17.890
                                                                     1.00 26.55
 ATOM
                                        27.165
                                                 28.015
                     LYS
                              : 0
                                                                     1.00 26.1B
1.00 22.91
 MOTA
                                                 28.367
                                                           17.998
                                        35.685
                     LYS
                ΝZ
                              10
 ATOM
ATOM
                                                 31.427
                                                           21.420
                                        38.921
39.589
                              10
             8
                C
                                                                     1.00 24.17
                                                           21.636
                                                 32.442
                              10
                     LYS
 ATOM
                0
                                                                           21.40
                                                  31.386
                                        37.602
                      PHE
                              11
                                                                     1.00 13.56
            10
 ATOM
                                                            22.026
                                        36.868
                              11
                 CA
                     PHE
                                                                     1.00 19.07
 ATOM
                                                  32.257
                                                           22.725
                      PHE
                 CB
 ATOM
            12
                                                                     1.00 20.24
                                        34.497
                                                  33.362
                 CG
                      PHE
                              11
 ATOM
            13
                                                  34.717
                                                            22.670
                                                                     1.00 19.49
                                        34.862
                                                                     1.00 19.51
                 CD1 PHE
                              11
                                                            22.400
 ATOM
                                                  33.038
                                         33.142
                 CD2 PHE
 ATOM
            15
                                         33.910
                                                  35.728
                 CE1 PHE
                               11
                                                                      1.00 20.10
  ATOM
                                                            22.257
                                                  34.041
35.395
                                         32.180
32.566
                 CE2 PHE
                               1:
  ATOM
                                                            22.321
                      PHE
                                                                      ..00 19.32
                 CZ
C
  ATOM
             19
                                                            22.887
                                                  33.567
                                         37.644
                       PHE
                               1.2
  ATOM
                                                            22.516
                                                                      1.00 18.89
                                         37.778
                               11
             20
                       PHE
                                                                      1.00 20.71
  MOTA
                                                   33.106
                                                            24.016
                                         38.181
                       GLU
                               12
                  N
                                                                      1.00 20.59
  ATOM
                                         38.905
                                                   34.036
                                                            24.886
                  CA
                       GLU
                               12
             22
  ATOM
                                                                      1.00 21.4B
                                                            26.246
                                         29.253
                                                  33.423
                               12
             23
                       GLU
                                                                      1.00 23.60
  ATOM
                                                            27.123
                                         40.185
  ATOM
             24
                  CG
                       GLU
                                                                      1.00 25.09
                                         39.455
                                                   35.301
                                                            28.056
                  CD
                       GLU
                               12
   ATOM
             25
                                                            28.275
                                                                      1.00 23.074
                                                   36.417
                                         40.024
                  OE1 GLU
              26
  MOTA
                                                            28.589
                                                                      1.00 21.05
                                         38.356
40.137
                                12
                  OE2 GLU
   ATOM
                                                                      1.00 19.22
                                                   34.539
                                                             24.172
                       GLU
              28
                  С
   ATOM
                                         40.513
                                                                       1.00 18.49
                                                            24.334
                                                   35.703
                                12
                       GLU
                  0
   ATOM
              29
                                                                       1.00 17.67
                                                   33,687
                       SER
                                13
              30
                                                                      1.00 16.71
   ATOM
                                                   34.094
                                                             22.571
                                          41.903
                                13
              31
                   CA
                       SEF.
   MOTA
                                                   32.898
                                                             21.851
                  CB
                                13
                       SER
   ATOM
              32
                                                                       1.00 23.19
                                                             20.459
                                          42.256
                                                   32.959
35.202
                                13
                   OG
                       SEF
              33
   MOTA
MOTA
                                                             21.354
                                                                       1.00 15.57
                                          41.570
                       SER
                                                                            15.13
                                                             21.546
20.698
                                                    36.248
                                                                       1.00
                        SEF.
                                13
                                                   34.355
35.912
35.287
34.366
   MOTA
              35
                                                                       1.00 12.00
                                          40.563
                        LYS
   ATOM
                                                             13.675
                                                                       1.00
                                                                              8.51
                                          40.117
              37
                   CA
                                                                              5.06
   ATOM
                                                             18.769
                                                                       1.00
                   CB
                        LYS
                                 14
               36
                                                                              2.36
    ATOH
                                                             17.714
                                                                       1.00
                                          39.629
                   CD
                        LYS
    ATOM
                                                    33.862
                                                             15.761
                                                                       1.00
               40
    ATOH
                                                    33.270
32.742
37.198
                                                             15.496
14.528
                                           39.191
                                                                        .. 00
                   CE
                        LYS
                                 14
    ATOM
               41
                                                                              2.00
                                                                       1.00
                                           38.193
                   NZ
                        LYS
                                 14
    ATOM
                                                              20.295
                                                                       1.00
                                                                              9.05
                                          39.586
39.782
                        LYS
               43
                   c
o
    MOTA
                                                                              7.15
                                                    38.290
                                                              19.755
                                                                       1.00
                        LYS
    ATOM
               44
                                                                       1.00
                                                              21.442
22.194
                                                                              11.98
                                                    37.053
38.188
                                           38.920
                        ALA
               45
                    H
    ATOM
                                                                        1.00
                                           38.375
                        ALA
               46
                    Cλ
                                                                       1.00 11.49
    MOTA
                                                     37.697
                                                              23.378
                   CB
C
               47
    ATCM
                                                              22.666
                                           39.592
                                                     38.960
                         ALA
                                 15
               42
    ATOM
                                           39.592
39.683
40.560
41.792
42.771
                                                                             13.59
                                                                        ..00
                                                     40.189
                                 15
                         ALA
     ATOM
                                                              23.167
                                                                        1.00 13.97
               50 'N
                         ALA
     ATOH
                                                                        1.90 14.97
                                                     38.796
                                                              23.615 24.052
                    CA
CB
                                  16
                         ALJ.
     MOTA
               51
                                                                              14.76
                                                                         ..00
                                  16
                         ALL
                                                                        1.00 15.45
     ATOM
                                                     39.567
                                                               22.426
                         ALA
                                           42.361
               53
54
     ATOM
                                                               22.537
                                            42.624
                                                     40.759
                                  16
                         ALA.
                    Ó
     ATON
                                                                         :.SC 16.12
                                                     38.896
                                            42.444
                         LES
                55
     STOM
                                                               20.042
                                                                         1.00 15.92
                         LEC
                                            43.007
                56
                    CA
SP
     ATOH
                                                                         1.00 15.72
                                                     38.428
                                                               18.910
                                            43.012
     ATOH
                                                               13.662
19.506
13.774
                                                     37.485
                                            44.204
                     CG
                58
     MOTA
                                                                         1.00 16.45
                                            45.474
                                                     38.294
                     CD1 LEC
     ATOM
                                                      36.462
                                                                         1.00 16.32
                                            44.360
     ATOM
                60
                                                                         :.00 15.04
                                            42.374
                                                      40.741
                                                               19.512
                61
     ATOM
                                                                         1.00 15.31
                                            42.985
     ATOM
                     •
                          LE:
                                                                         .00 17.34
                                                                13.908
                                                      41.013
                                             41.136
                          LEU
      ATOM
                63
                                             40.434
                                                      42.219
                                                               13.443
                64
                     CA
                          LEU
                                   18
     ATOM
                                                                           .00 13.72
                                            38.999
28.725
37.235
                                                                19.022
                                                      41.867
                     CP
                          LET
                                   18
                 65
      ATOM
                                                                17.640
17.329
                                                                          ..00
                                                                                9.76
                                                      41.263
                    CD1 LEU
CD2 LEU
C LEU
O
      ATOM
                 66
                                                                               5.61
                                                      41.260
                                                                         1.00
                 57
                                   16
                                                                         ..00 10.13
      ATOM
                                                                15.625
                                             39.422
                                                      42.117
                 δâ
                                   16
      ATOM
                                                                20.500
                                                      43.284
                                             40.393
      ATOM
                 69
                                                                          .00 19.32
                                             39.876
                                                                20.257
                                   16
```

bref21	c.pc	£Ъ		Thu I	Apr 25 1	2:27:47	1996	2	
ATOM	71	N	ALA	19	40.921	42.981	21.680	1.00 19.88	:
MOTA	72	CA	ALA	19	40.925	43.941	22.789	1.00 22.64	5
ATOM	7.3	CB	ALA	19	41.560	43.331	24.041	1.00 22.75	6
ATOM	74 75	c	ALA	19	41.601	45.273	22.445	1.0C 25.13	E
ATOM ATOM	76	11 O	ALA	19 20	42.026 41.649	45.499	21.294	1.00 25.03	3
ATOM	77	CA	ALA	20	42.246	46.164 47.514	23.333	1.00 28.77 1.00 28.51	÷ 6
ATOM	78	CE	ALA	26.	41.529	48.505	24.310	1.00 28.93	6
MOTA	79	С	ALA	20	43.770	47.526	23.562	1.00 27.54	6
MOTA	80	0	ALA	20	44.438	46.484	23.505	1.00 27.85	ž .
ATOM ATOM	81 82	N CA	ARG	2.	44.326	48.699	23.848	1.00 90.00	:
ATOM	83	CB	ARG	2: 21	45.765 46.562	48.784 48.353	24.075 22.819	1.00 90.00	5
ATOM	84	cG	ARG	21	45.827	48.428	21.446	1.00 90.00	6 5
ATOH	85	CD	ARG	21	45.719	49.E38	20.863	1.00 90.00	6
ATOH	86	NE	ARG	21	44.765	50.675	21.591	1.00 90.00	7
ATOM	87	CZ	ARG	21	43.448	50.471	21.610	1.00 90.00	6
ATOM ATOM	88 89		ARG ARG	21 21	42.915 42.669	49.448	20.926	1.00 90.00	7
ATOM	90	c	ARG	21	46.298	51.270 50.118	22.350 24.590	1.00 90.00	7
ATOM	91	ō	ARG	2:	45.875	51.199	24.132	1.00 90.00	8
MOTA	92	N	GLY	22	47.158	50.016	25.614	1.00 90.00	7
ATOM	92	CA	GLY	22	47.824	51.171	26.193	1.00 90.00	5
ATOM	94	C	CLY	22	49.053	51.371	25.314	1.00 90.00	ő
MOTA	95	Ö	GLY	22	48.939	51.174	24.089	1.00 90:00	3
ATOM ATOM	96 97	N CD	PRO PRO	23 23	50.230 50.316	51.765	25.B72	1.00 90.00	7
ATOM	98	CA	PRO	23	51.451	52.564 51.971	27.119 25.062	1.00 90.00	, 5
ATOH	99	СВ	PPO	23	51.713	53.452	25.287	1.00 90.00	5 5
ATOM	100	CG	PRO	23 ·	31.527	53.517	26.850	1.00 90.00	5
ATOH	101	С	PRO	23	52.681	51.167	25.544	1.00 90.00	6
ATOH	102	0	PRO	23	52.560	50.067	26.123	1.00 90.00	â
ATOH ATOH	103 104	N CA	ern ern	24 24	53.863 55.136	51.758 51.178		-1.00 28.27	7
ATOM	105	СВ	GLU	24	56.332	52.009	25.741 25.238	1.00 24.32	6 5
ATOM	106	CG	GLU	24	56.479	52.149	23.723	1.00 25.03	•
ATOH	107	CD	GLU	24	56.710	50.822	22.959	1.00 24.22	6
ATOM	108		CLU	24	57.171	50.954	21.793	1.00 23.14	S
ATOM	109	OE 2		24	56.430	49.692	23.478	1.00 18.50	5
ATOM ATOM	110 111	0	CLU	24 24	55.117 54.874	51.264	27.268	1.00 23.39	5
ATOM	112	N	GLU	25	55.342	52.365 50.124	27.829 27.925	1.00 24.36 1.00 18.35	3 7
ATOM	113	CA	GLU	25	55.371	50.058	29.377	1.00 14.09	5
ATOM	114	CB	CLU	25	53.962	49.818	29.907	1.00 17.09	5
ATOM	115	CC	CLU	25	53.789	49.985	31.410	1.00 22.21	5
ATOM ATOM	116	CD	GLU	25	52.199	51.348	21.799	1.00 27.17	÷
ATOM	118		CLU	2 <u>5.</u> 25	53.461 52.461	52.355 51.401	31.057	1.00 27.15	; =
ATOM	119	c	GLU	25	56.249	48.872	29.725	1.00 11.99	÷
MOTA	120	0	SLU	25	56.056	47.779	29.181	1.00 14.38	į
ATOM	121	N	LEU	26	57.246	49.098	39.572	1.00 8.48	7
MOTA MOTA	122	CY	LEU	26	58.147	48.034	21.001	1.00 5.93	÷
ATOM	123 124	CB	LEU	26 26	59.398 60.719	48.624 47.880	21.652 31.488	1.00 4.03	÷
ATOM	125		LEC	26	61.537	48.145	22.764	1.00 2.00	4
ATOM	126		LET	26	60.535	46.401	21.317	1.00 2.00	÷
ATOM	127	C	LEU	26	57.409	47.188	22.030	1.00 6.68	•
ATOM	128		LEC	26	56.951	47.727	33.041	1.00 9.43	3
atom atom	129 130	N	LEC	27	57.31C	45.880	21.797	1.00 5.17	7
ATOH	131	CA CB	LEU	27 27	56.613 55.426	44.996	22.719	1.00 5.71	£ .
ATOM	122	CG	12:	2-	54.281	45.268	21.673	1.00 6.50	•
HOTA	122		LET	2~	53.101	44.428	21.125	1.00 10.81	•
ATOM	134	CD2	LEU	27	53.871	46.133	12.906	1.00 7.08	
ATOM	135	÷	-=-	27	57.454	43.323	13.397	1.00 7.41	•
ATOM ATOM	136	Ú	LEU	27	58.003	43.037	32.742	1.00 7.62	3
atom atom	137	N CA	CYS	28 28	57.46C	43.964	34.726	1.00 7.42	:
ATOM	139	č	TYS	28	58.20£ 57.246	43.02?	35.554 36.529	1.00 4.67	:
ATCM	140	ē	273	28	56.217	42.345	35.861	1.00 -2.56	.
MOTA	141	CF	Z 7.3	2 €	59.26€	43.791	26.357	1.00 3.64	• •
MOTA	142	SC	273	28	60.429	44.763	35.358	1.00 4.37	16
ATOM ATOM	143 144	;) CA	PHE	2 :	57.599	41.153	25.977	1.00 2.00	•
ATOM	145	CA	PHE	25 25	36.817 55.474	40.40: 39.899	27.943	00 2.00	-
ATOM	146	čc	PHI	29	55.58€	38.643	37.322 36.427	1.00 4.26	:
ATOM	147		PHE	2 6	55.493	37.369	25.990	1.06 2.00	
ATOM	148	CD2	PHI	25	55.790	38.747	25.058	00 2.30	

ATOM 149 CE1 PHE 29 55.605 36.243 34.266 1.00 2 ATOM 150 CE2 PHE 29 55.906 37.616 24.266 1.00 2 ATOM 151 CZ PHE 29 55.815 36.365 34.843 1.00 2 ATOM 151 CZ PHE 29 57.678 39.260 13.543 1.00 3	.00 =
ATOM 149 CE1 PHE 29 55.605 36.243 36.246 1.00 2 ATOM 150 CE2 PHE 29 55.906 37.616 34.266 1.00 2 ATOM 151 CZ PHE 29 55.815 36.365 34.843 1.00 2 ATOM 151 CZ PHE 29 57.678 39.260 33.543 1.00 3	
ATOM 150 CE2 PHE 29 55.815 36.365 34.843 1.00 2 ATOM 151 CZ PHE 29 57.678 39.260 36.363 1.00 3	.00 5
ATOM 151 CZ PHE 29 57.678 39.260 23.543 1.00	1.00 € 1.80 €
	3.80 ÷ 2.00 €
Alum 29 38.704 10 766 1 00 4	1.17 7
ATOM 153 0 THR 30 57.340 38.814 1.00	3.12 ÷
ATOM 155 CA THP 30 58.021 37.116 41.820 1.00	2.00
156 CB THE 30 50.337 36.982 42.408 1.00	2.00 ⁵
157 OG1 THR 30 57 765 36,661 42.827 1.00	2.00 ÷ 6.81 ÷
ATOM 158 CG2 TRP. 30 56.951 36.601 40.674 1.00	8.70 3
ATOM 139 C THE 3D 55.774 30.724 40.665 1.00	7.95
ATOM 161 N GLU 31 57.342 34.719 40.786 1.00	8.18
ATOM 162 CA GLU 31 56.577 33.240 39.650 1.00	7.89 5 8.99 €
ATOM 163 CB GLU 31 56.490 33.821 38.286 1.00	
370M 164 CG GE 46.651 32:750 31-240	13.03 5
ATOM 166 OE1 GLU 31 57.538 32.053 27.302 1.00	14.01 3
ATOM 167 CE2 GLU 31 36.453 33.432 42.079 1.00	8.38 6 9.78 8
ATOM 168 C GLU 31 55,437 32.940 42.582 1.00	9.78 & 7.19 ⁷
ATCH 169 0 000 32 57.678 33.064 42.418 1.00	8.64 4
ATOM 171 C: ARG 32 58.006 32.154 43.405 1.00	9.16 5
NTOM 172 CB ARG 32 50.364 42.261 1.50	10.75 5 11.21 5
375 22 894 42.469 1.00	11.21 5 13.52 7
ATOM 174 CD AND 33 57.070 28.271 42.232	16.55
ATOM 175 NE ARG 32 56.328 28.333 (1.12)	17.12
ATCM 100 ARG 32 56.763 27.000 41 128 1.00	17.67 7
178 NH2 ARG 32 69 834 33 536 44.224 1.00	9.21 ⁶ 113.37 ⁸
ATOM 179 C ARG 32 59.004 34.526 43.520 1.00	
ATOM 101 1 150 33 59.382 33.735 45 716 1.00	8.01 . 5
182 CA LEU 33 25 403 46.986 1.0	
ATOM 183 CB LEU 33 58.323 36.310 46.699 1.0	
ATOM 184 CG LEO 33 57.061 35.584 47.032 1.0	
ATOM 185 CUI LEU 33 58.381 37.604 47.404 1.0	•
ATOM 100 37 61.610 34.893	0 10.67 6
ATOM 188 C LEU 33 62.269 33.174 44.516 1.0	0 6.25
ATOM 189 N GLU 34 53 539 34.210 44.144 1.	00 8.09 5 00 10.89 5
ATOM 190 CA GLU 34 64.315 32.005 44.732	00 18.21 5
ATOM 197 CG GLU 34 63.516 30.858 44.659 1.4	00 21.61 5
1704 193 CD GLU 34 (1 810 3C-224 45.257 1-	00 22.26 E
ATOM 194 OE1 GLU 34 63.082 20.645 43.494	00 22.29 5 00 7.89 5
ATOM 193 022 013 34 62.676 34.239	00 10.91
ATON 34 64.413 33.43	00 6.40 7
	.00 4.88 5
ATOM 198 N ASP 35 62.978 35.150 41.483 1.	
ATOM 198 N ASP 35 62.978 35.130 40.483 1. ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 199 CA ASP 35 62.215 34.034 29.895 1.	.00 5.00
ATOM 198 N · ASP 35 62.978 35.130 40.483 1. ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 199 CA ASP 35 62.215 34.034 19.895 1. ATOM 200 CB ASP 35 60.678 34.189 19.957 1.	.00 5.00 6 .00 6.69 5
ATOM 198 N ASP 35 62.978 35.130 40.483 1. ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 200 CB ASP 35 62.215 34.034 29.895 1. ATOM 201 CG ASP 35 60.678 34.189 29.957 1. ATOM 201 CG ASP 35 60.678 34.189 29.957 1. ATOM 202 OD1 ASP 35 60.055 34.542 28.912 1.	.00 5.00 6 .00 6.69 6 .00 6.86 3
ATOM 198 N · ASP 35 62.978 35.130 40.483 1. ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 199 CA ASP 35 62.913 34.034 29.895 1. ATOM 200 CB ASP 35 60.678 34.189 19.957 1. ATOM 201 CG ASP 35 60.055 34.542 18.912 1. ATOM 202 OD1 ASP 35 60.102 23.911 41.025 1. ATOM 203 OD2 ASP 35 60.102 33.911 41.025 1. ATOM 203 OD2 ASP 35 60.102 33.911 41.025 1.	.00 5.00 6 .00 6.69 6 .00 6.86 3 .00 2.00 8
ATOM 198 N · ASP 35 62.978 35.130 ATOM 198 N · ASP 35 62.981 35.244 40.483 1. ATOM 199 CA ASP 35 62.215 34.034 29.895 1. ATOM 200 CB ASP 35 60.678 34.189 19.957 1. ATOM 201 CG ASP 35 60.055 34.542 18.912 1. ATOM 202 OD1 ASP 35 60.055 34.542 18.912 1. ATOM 203 OD2 ASP 35 60.102 33.911 41.025 1. ATOM 204 C ASP 35 62.336 36.566 40.016 1. ATOM 204 C ASP 35 62.336 37.153 60.731 1.	.00 5.00 6 .00 6.69 6 .00 6.86 3 .00 2.00 8 .00 3.42 5
ATOM 198 N · RSP 35 62.978 35.130 40.483 1. ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 200 CB ASP 35 62.215 34.034 29.895 1. ATOM 201 CG ASP 35 60.678 34.189 29.957 1. ATOM 202 OD1 RSP 35 60.678 34.189 29.957 1. ATOM 203 OD2 ASP 35 60.102 23.911 41.025 1. ATOM 204 C ASP 35 60.102 23.911 41.025 1. ATOM 205 DASP 35 62.236 36.566 40.016 1. ATOM 205 DASP 35 62.673 37.046 28.834 1. ATOM 205 DASP 35 62.673 37.046 28.834 1.	.00 5.00 6 .00 6.69 6 .00 6.86 2 .00 2.00 2 .00 3.42 5 .00 4.41 2 .00 2.00 7
ATOM 198 N · RSP 35 62.978 35.130 40.483 1. ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 199 CA ASP 35 62.215 34.034 29.895 1. ATOM 200 CB ASP 35 60.678 34.189 29.957 1. ATOM 201 CG ASP 35 60.678 34.189 29.957 1. ATOM 202 OD1 RSP 35 60.678 34.182 28.912 1. ATOM 203 OD2 ASP 35 60.102 23.911 41.025 1. ATOM 204 C ASP 35 60.102 23.911 41.025 1. ATOM 205 D ASP 35 62.236 36.566 40.016 1. ATOM 206 N LEU 36 62.677 37.046 28.834 1. ATOM 206 N LEU 36 62.679 38.272 39.317 1.	.00 5.00 6 .00 6.69 6 .00 6.86 2 .00 2.00 2 .00 3.42 5 .00 4.41 2 .00 2.00 7
ATOM 198 N ASP 35 62.978 35.130 40.483 1. ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 199 CA ASP 35 62.215 34.034 19.895 1. ATOM 201 CG ASP 35 60.678 34.189 19.957 1. ATOM 202 OD1 ASP 35 60.678 34.189 19.957 1. ATOM 203 OD2 ASP 35 60.102 13.911 41.025 1. ATOM 203 OD2 ASP 35 60.102 13.911 41.025 1. ATOM 204 C ASP 35 62.236 36.566 40.016 1. ATOM 205 3 ASP 35 62.236 36.566 40.016 1. ATOM 205 3 ASP 35 62.677 37.046 38.834 1. ATOM 206 N LEU 36 62.677 37.046 38.834 1. ATOM 207 CA LEU 36 62.092 38.272 39.317 1. ATOM 208 CB LEU 36 62.092 38.272 39.317 1. ATOM 208 CB LEU 36 62.092 38.272 39.317 1. ATOM 208 CB LEU 36 62.092 38.272 39.345	.00 5.00 6 .00 6.69 6 .00 6.86 2 .00 2.00 2 .00 3.42 6 .00 2.00 7 .00 2.00 7 .00 2.00 6 .00 2.40 5
ATOM 198 N · ASP 35 62.978 35.130 ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 200 CB ASP 35 62.215 34.034 29.895 1. ATOM 201 CG ASP 35 60.678 34.189 29.957 1. ATOM 202 OD1 ASP 35 60.055 34.542 28:912 1. ATOM 203 OD2 ASP 35 60.055 34.542 28:912 1. ATOM 203 OD2 ASP 35 60.102 23.911 41.025 1. ATOM 204 C ASP 35 62.236 36.566 40.016 1. ATOM 205 3 ASP 35 62.236 36.566 40.016 1. ATOM 206 N LEU 36 62.677 37.046 29.834 1. ATOM 207 CA LEU 36 62.098 38.272 39.317 1. ATOM 208 CB LEU 36 62.098 38.272 39.317 1. ATOM 208 CB LEU 36 62.901 39.484 38.745 1. ATOM 209 CG LEU 36 62.219 40.825 1.3.459 1. ATOM 209 CG LEU 36 60.994 40.997 39.365	00 5.00 6 00 6.69 6 00 6.86 5 00 2.00 6 00 3.42 6 00 3.42 6 00 2.00 7 00 2.00 6 00 2.00 6 00 2.00 6 00 2.40 6
ATOM 198 N ASP 35 62.978 35.130 ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 200 CB ASP 35 62.215 34.034 19.895 1. ATOM 201 CG ASP 35 60.678 34.189 19.957 1. ATOM 202 OD1 ASP 35 60.678 34.189 19.957 1. ATOM 203 OD2 ASP 35 60.055 34.542 18.912 1. ATOM 203 OD2 ASP 35 60.102 23.911 41.025 1. ATOM 204 C ASP 35 60.102 23.911 41.025 1. ATOM 205 D ASP 35 62.236 36.566 40.016 1. ATOM 205 D ASP 35 62.236 36.566 40.016 1. ATOM 206 N LEU 36 62.236 37.153 62.731 1. ATOM 207 CA LEU 36 62.677 37.046 23.834 1. ATOM 208 CB LEU 36 62.902 38.272 39.317 1. ATOM 209 CG LEU 36 62.902 39.484 23.745 1. ATOM 209 CG LEU 36 62.902 39.484 23.745 1. ATOM 209 CG LEU 36 62.902 39.484 23.745 1. ATOM 209 CG LEU 36 62.902 39.484 23.745 1. ATOM 209 CG LEU 36 62.902 39.484 23.745 1. ATOM 209 CG LEU 36 62.904 40.997 29.365 1.	.00 5.00 6 .00 6.69 6 .00 6.86 8 .00 2.00 8 .00 3.42 6 .00 2.00 7 .00 2.00 7 .00 2.00 6 .00 2.00 6 .00 2.40 7 .00 2.31 6
ATOM 198 N ASP 35 62.978 35.130 40.483 1. ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 200 CB ASP 35 62.215 34.034 19.895 1. ATOM 201 CG ASP 35 60.678 34.189 19.957 1. ATOM 202 OD1 ASP 35 60.678 34.189 19.957 1. ATOM 203 OD2 ASP 35 60.102 23.911 41.025 1. ATOM 204 C ASP 35 60.102 23.911 41.025 1. ATOM 205 3 ASP 35 62.236 36.566 40.016 1. ATOM 205 3 ASP 35 62.236 36.566 40.016 1. ATOM 205 3 ASP 35 62.236 36.566 40.016 1. ATOM 207 CA LEU 36 62.677 37.046 23.834 23.717 1. ATOM 208 CB LEU 36 62.902 38.272 39.317 1. ATOM 209 CG LEU 36 62.902 39.484 23.745 1. ATOM 209 CG LEU 36 62.902 39.484 23.745 1. ATOM 209 CG LEU 36 62.902 39.484 23.745 1. ATOM 209 CG LEU 36 63.184 41.343 13.762 ATOM 211 CD2 LEU 36 63.184 41.343 13.762 ATOM 212 CEU 36 63.184 41.343 13.762 3. ATOM 212 CEU 36 62.219 38.170 25.803 3. ATOM 212 CEU 36 62.219 38.270 20. ATOM 212 CEU 37. ATOM	.00 5.00 6 .00 6.69 5 .00 6.86 2 .00 2.00 2 .00 3.42 5 .00 2.00 7 .00 2.00 6 .00 2.00 6 .00 2.40 5 .00 2.40 5 .00 2.31 6 .00 2.31 5 .00 2.31 5 .00 3.03 5
ATOM 198 N ASP 35 62.978 35.130 ATOM 199 CA ASP 35 62.981 35.244 40.483 1. ATOM 200 CB ASP 35 62.215 34.034 29.895 1. ATOM 201 CG ASP 35 60.678 34.189 39.957 1. ATOM 202 OD1 ASP 35 60.678 34.189 39.957 1. ATOM 203 OD2 ASP 35 60.055 34.542 28.912 1. ATOM 203 OD2 ASP 35 60.102 33.911 41.025 1. ATOM 204 C ASP 35 62.236 36.566 40.016 1. ATOM 205 ASP 35 62.236 36.566 40.016 1. ATOM 206 N LEU 36 62.902 39.484 28.317 1. ATOM 207 Ch LEU 36 62.902 39.484 28.345 1. ATOM 208 CB LEU 36 62.902 39.484 38.345 1. ATOM 209 CG LEU 36 62.902 39.484 38.345 1. ATOM 209 CG LEU 36 62.902 39.484 38.345 1. ATOM 211 CD2 LEU 36 62.119 38.170 25.803 1. ATOM 212 C LEU 36 62.119 38.170 25.803 1. ATOM 212 C LEU 36 62.119 38.170 25.803 1. ATOM 212 C LEU 36 63.184 41.343 12.762 1. ATOM 212 C LEU 36 63.184 38.170 25.803 1. ATOM 212 C LEU 36 63.187 37.640 1.56.803 1. ATOM 212 C LEU 36 63.071 37.640 1.56.803 1. ATOM 212 C LEU 36 64.073 38.589 25.15.	00 5.00 6 00 6.69 6 00 6.86 8 100 2.00 8 100 3.42 6 100 2.00 7 100 2.00 7 100 2.00 6 100 2.40 6 100 2.31 6 100 3.03 6 1.00 3.65 6 1.00 3.46 1
ATOM 198 N ASP 35 62.978 35.130 40.483 1. ATOM 199 CA ASP 35 62.215 34.034 29.895 1. ATOM 200 CB ASP 35 62.215 34.034 29.895 1. ATOM 201 CG ASP 35 60.678 34.189 29.957 1. ATOM 202 OD1 ASP 35 60.678 34.189 29.957 1. ATOM 203 OD2 ASP 35 60.102 23.911 41.025 1. ATOM 203 OD2 ASP 35 60.102 23.911 41.025 1. ATOM 204 C ASP 35 60.102 23.911 41.025 1. ATOM 205 0 ASP 25 60.102 33.911 41.025 1. ATOM 206 N LEU 36 62.677 37.046 28.834 1. ATOM 207 CA LEU 36 62.677 37.046 28.834 1. ATOM 208 CB LEU 36 62.902 38.272 39.317 1. ATOM 209 CG LEU 36 62.902 39.484 1. 3. ATOM 212 CB LEU 36 63.184 41.343 1. ATOM 212 CB LEU 36 63.071 37.640 1. ATOM 214 N YALL 37 60.960 38.559 1. ATOM 214 N YALL	00 5.00 6 00 6.69 6 00 6.86 8 00 2.00 8 00 3.42 6 00 2.00 7 00 2.00 6 00 2.00 6 00 2.00 6 1.00 2.00 6 1.00 2.31 6 1.00 3.03 6 1.00 3.65 8 1.00 3.46 7 1.00 3.46
ATOM 198 N ASP 35 62.978 35.130 40.483 LATOM 199 CA ASP 35 62.981 35.244 40.483 LATOM 199 CA ASP 35 62.215 34.034 29.895 LATOM 201 CG ASP 35 60.678 34.189 29.957 LATOM 202 OD1 ASP 35 60.678 34.189 29.957 LATOM 203 OD2 ASP 35 60.102 23.911 41.025 LATOM 205 DASP 35 60.102 23.911 41.025 LATOM 205 DASP 35 60.102 23.911 41.025 LATOM 206 N LEU 36 62.677 37.046 28.834 LATOM 207 CA LEU 36 62.677 37.046 28.834 LATOM 207 CA LEU 36 62.677 37.046 28.834 LATOM 208 CB LEU 36 62.902 38.272 39.317 LATOM 209 CG LEU 36 62.902 39.484 33.145 ATOM 209 CG LEU 36 62.912 40.825 28.459 LATOM 209 CG LEU 36 63.184 41.343 28.762 ATOM 212 CEU 36 63.184 41.343 28.762 ATOM 214 N WAL 37 60.960 38.559 34.707 ATOM 214 N WAL 37 60.960 38.559 34.707 27.5866 37.575 34.265	00 5.00 6 00 6.69 5 00 6.86 2 00 2.00 2 00 3.42 5 00 2.00 5 00 2.00 6 00 2.00 6 00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 3.03 6 1.00 3.03 6 1.00 3.04 7 1.00 3.05 6 1.00 3.05 6 1.00 2.00 6
ATOM 198 N ASP 35 62.978 35.130 40.483 LATOM 199 CA ASP 35 62.215 34.034 39.895 LATOM 200 CB ASP 35 60.678 34.189 39.957 LATOM 201 CG ASP 35 60.678 34.189 39.957 LATOM 202 OD1 ASP 35 60.605 34.542 38.912 LATOM 203 OD2 ASP 35 60.102 33.911 41.025 LATOM 204 C ASP 35 60.102 33.911 41.025 LATOM 205 D ASP 35 60.102 33.911 41.025 LATOM 206 N LEU 36 62.677 37.046 28.834 LATOM 207 CA LEU 36 62.677 37.046 28.834 LATOM 208 CB LEU 36 62.092 38.272 39.317 ATOM 208 CB LEU 36 62.092 38.272 39.317 LATOM 209 CG LEU 36 62.119 40.825 13.450 LATOM 209 CG LEU 36 62.214 40.825 13.450 LATOM 211 CD2 LEU 36 63.184 41.343 13.765 ATOM 212 C LEU 36 63.184 41.343 13.765 ATOM 212 C LEU 36 63.071 37.640 15.241 ATOM 212 C LEU 36 62.119 38.170 35.803 ATOM 212 C LEU 36 62.119 38.170 35.803 ATOM 212 C LEU 36 62.119 38.170 35.803 ATOM 212 C LEU 36 62.096 38.559 14.151 ATOM 215 CA VAL 37 60.960 38.559 14.151 ATOM 215 CA VAL 37 60.960 38.559 14.1707 ATOM 215 CA VAL 37 60.960 38.559 14.1707 ATOM 215 CA VAL 37 60.960 38.559 14.1707 31.1 216.669	00 5.00 6 00 6.69 6 00 2.00 8 00 2.00 8 00 2.00 7 00 2.00 6 00 2.00 6 00 2.00 6 00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 3.45 6 1.00 3.45 6 1.00 3.45 6 1.00 3.65 6 1.00 3.65 6 1.00 2.00 6 1.00 3.65 6 1.00 2.00 6 1.00 3.65 6 1.00 3.65 6 1.00 2.00 6 1.00 3.65 6 1.00 5
ATOM 198 N - RSP 35 62.978 35.130 40.483 L. ATOM 199 CA ASP 35 62.981 35.244 40.483 L. ATOM 200 CB ASP 35 62.215 34.034 29.895 L. ATOM 201 CG ASP 35 60.678 34.189 29.957 L. ATOM 202 OD1 ASP 35 60.605 34.542 28.912 L. ATOM 203 OD2 ASP 35 60.102 23.911 41.025 L. ATOM 204 C ASP 35 60.102 23.911 41.025 L. ATOM 205 D ASP 35 62.236 36.566 40.016 L. ATOM 205 D ASP 35 62.236 36.566 40.016 L. ATOM 206 N LEU 36 62.677 37.046 29.834 L. ATOM 207 CA LEU 36 62.677 37.046 29.834 L. ATOM 208 CB LEU 36 62.901 39.484 33.145 L. ATOM 209 CG LEU 36 62.901 39.484 33.145 L. ATOM 210 CD1 LEU 36 62.214 40.825 13.450 L. ATOM 211 CD2 LEU 36 63.184 41.343 23.762 ATOM 212 C LEU 36 62.119 38.170 25.803 ATOM 212 C LEU 36 63.071 37.640 13.241 ATOM 214 N VAL 37 60.960 38.559 14.707 ATOM 215 CA VAL 37 60.960 38.559 14.707 27.340 217 CG1 VAL 37 59.866 37.575 24.206 ATOM 213 CG2 VAL 37 59.866 37.575 24.206 ATOM 213 CG2 VAL 37 59.856 37.575 24.206 ATOM 213 CG2 VAL 37 59.957 36.271 34.329	00 5.00 6 00 6.69 5 00 6.86 5 00 2.00 6 00 3.42 5 00 2.00 6 00 2.00 6 00 2.00 6 00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.31 6 1.00 3.65 6 1.00 3.65 6 1.00 2.30 6 1.00 2.30 6 1.00 2.30 6 1.00 2.30 6 1.00 2.30 6 1.00 2.30 6 1.00 2.30 6 1.00 2.30 6 1.00 2.00 6 1.00 2.00 6
ATCH 198 N ASP 35 62.978 35.130 40.483 1. ATCH 199 CA ASP 35 62.981 35.244 40.483 1. ATCH 199 CA ASP 35 62.215 34.034 29.895 1. ATCH 201 CG ASP 35 60.678 34.189 29.895 1. ATCH 202 OD1 ASP 35 60.055 34.542 28.912 1. ATCH 203 OD2 ASP 35 60.055 34.542 28.912 1. ATCH 204 C ASP 35 60.102 23.911 41.025 1. ATCH 205 3 ASP 35 62.236 36.566 40.016 1. ATCH 205 3 ASP 35 62.236 36.566 40.016 1. ATCH 205 3 ASP 35 62.236 36.566 40.016 1. ATCH 206 N LEU 36 62.677 37.046 28.834 1. ATCH 207 CA LEU 36 62.992 38.272 39.317 1. ATCH 208 CB LEU 36 62.992 39.484 38.317 1. ATCH 208 CB LEU 36 62.219 40.825 13.459 1. ATCH 210 CD1 LEU 36 60.994 40.997 29.365 1. ATCH 210 CD1 LEU 36 60.994 40.997 29.365 1. ATCH 211 CD2 LEU 36 63.184 41.343 13.762 1. ATCH 212 C LEU 36 62.219 38.179 35.803 1. ATCH 212 C LEU 36 63.184 41.343 13.762 1. ATCH 214 N YAL 37 60.960 38.559 36.551 14.707 17.640 15.241 17. ATCH 216 CB VAL 37 59.866 37.575 14.266 1. ATCH 216 CB VAL 37 59.866 37.575 14.266 1. ATCH 217 CG1 VAL 37 59.866 37.575 14.266 1. ATCH 218 CG2 VAL 37 59.866 37.575 14.266 1. ATCH 218 CG2 VAL 37 59.866 37.575 14.266 1. ATCH 218 CG2 VAL 37 59.957 36.271 34.942 1. ATCH 218 CG2 VAL 37 59.957 36.271 34.942 1. ATCH 218 CG2 VAL 37 59.957 36.271 34.942 1. ATCH 218 CG2 VAL 37 59.957 36.271 34.942 1. ATCH 219 C VAL 37 59.738 40.553 25.042	00 5.00 6 00 6.69 6 00 2.00 2 00 3.42 6 00 2.00 7 00 2.00 6 00 2.00 6 00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6
ATOM 198 N ASP 35 62.978 35.130 40.483 LATOM 199 CA ASP 35 62.215 34.034 29.895 LATOM 200 CB ASP 35 60.055 34.542 23:912 1 ATOM 201 CG ASP 35 60.055 34.542 23:912 1 ATOM 202 OD1 ASP 35 60.055 34.542 23:912 1 ATOM 203 OD2 ASP 35 60.102 23.911 41.025 LATOM 204 C ASP 35 62.236 36.566 40.016 1 ATOM 205 3 ASP 35 62.236 36.566 40.016 1 ATOM 206 N LEU 36 62.677 37.046 23.834 1 ATOM 207 CA LEU 36 62.098 38.272 39.317 1 ATOM 208 CB LEU 36 62.098 38.272 39.317 1 ATOM 209 CG LEU 36 62.219 40.825 13.459 ATOM 209 CG LEU 36 62.219 40.825 13.459 ATOM 210 CD1 LEU 36 63.94 40.997 29.355 ATOM 211 CD2 LEU 36 63.184 41.343 32.762 ATOM 212 C LEU 36 62.219 38.170 37.560 ATOM 212 C LEU 36 63.184 41.343 32.762 ATOM 212 C LEU 36 63.071 37.640 15.241 ATOM 212 C LEU 36 63.071 37.640 15.241 ATOM 214 N NAL 37 60.960 38.559 34.707 ATOM 215 CA VAL 37 59.866 37.575 14.266 9 ATOM 216 CB VAL 37 59.866 37.575 14.266 9 ATOM 217 CG2 VAL 37 59.957 36.271 34.942 ATOM 219 C VAL 37 59.957 36.271 34.942 ATOM 219 C VAL 37 59.738 40.553 25.042 ATOM 220 C VAL 37 59.738 40.553 25.042	00 5.00 6 00 6.69 6 00 6.86 8 00 2.00 8 00 3.42 6 00 2.00 7 00 2.00 6 00 2.00 6 00 2.00 6 1.00 2.31 6 1.00 3.03 6 1.00 3.63 6 1.00 3.46 7 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 3.89 6 1.00 3.89 6 1.00 3.89 6 1.00 3.89 6
ATCH 198 N ASP 35 62.978 35.130 42.891 ATCH 199 CA ASP 35 62.981 35.244 40.483 1. ATCH 199 CA ASP 35 62.913 34.034 29.895 1. ATCH 200 CB ASP 35 60.678 34.189 29.895 1. ATCH 201 CG ASP 35 60.678 34.189 29.957 1. ATCH 202 OD1 ASP 35 60.605 34.542 23.912 1. ATCH 203 OD2 ASP 35 60.102 23.911 41.025 1. ATCH 204 C ASP 35 60.102 23.911 41.025 1. ATCH 205 D ASP 35 62.236 36.566 40.016 1. ATCH 205 D ASP 35 62.236 36.566 40.016 1. ATCH 206 N LEU 36 62.677 37.046 23.834 1. ATCH 207 CA LEU 36 62.098 38.272 39.317 1. ATCH 208 CB LEU 36 62.098 38.272 39.317 1. ATCH 209 CG LEU 36 62.098 38.272 39.317 1. ATCH 209 CG LEU 36 62.219 40.825 23.459 1. ATCH 210 CD1 LEU 36 63.184 41.343 13.762 1. ATCH 211 CD2 LEU 36 63.184 41.343 13.762 1. ATCH 212 C LEU 36 63.071 37.640 15.241 1. ATCH 213 CG2 VAL 37 60.960 38.559 14.707 1. ATCH 214 N VAL 37 60.960 38.559 14.707 1. ATCH 215 CG2 VAL 37 59.957 36.271 34.266 1. ATCH 217 CG1 VAL 37 59.957 36.271 34.266 1. ATCH 219 C VAL 37 59.957 36.271 34.942 1. ATCH 219 C VAL 37 59.957 36.271 34.942 1. ATCH 219 C VAL 37 59.738 40.553 25.042 1. ATCH 221 N TUS 38 60.831 41.886 22.332 1. ATCH 221 N TUS 38 60.831 41.886 22.332 1. ATCH 221 N TUS 38 60.831 41.886 22.332 1. ATCH 221 N TUS 38 60.831 41.886 22.332 1.	00 5.00 6 00 6.69 6 00 6.86 2 00 2.00 2 00 3.42 6 00 2.00 6 00 2.00 6 00 2.00 6 00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 3.63 6 1.00 3.63 6 1.00 3.69 6 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5
ATOM 198 N ASP 35 62.978 35.130 40.483 LATOM 199 CA ASP 35 62.215 34.034 29.895 1. ATOM 200 CB ASP 35 60.678 34.189 29.957 1. ATOM 201 CG ASP 35 60.678 34.189 29.957 1. ATOM 202 OD1 ASP 35 60.605 34.542 28.912 1. ATOM 203 OD2 ASP 35 60.102 33.911 41.025 1. ATOM 205 D ASP 35 60.102 33.911 41.025 1. ATOM 206 N LEU 36 62.677 37.046 28.834 1. ATOM 207 CA LEU 36 62.677 37.046 28.834 1. ATOM 208 CB LEU 36 62.677 37.046 28.834 1. ATOM 209 CG LEU 36 62.992 38.272 39.317 1. ATOM 209 CG LEU 36 62.902 39.484 38.145 1. ATOM 210 CD1 LEU 36 62.219 40.825 18.450 1. ATOM 211 CD2 LEU 36 62.219 40.825 18.450 1. ATOM 212 C LEU 36 63.184 41.343 18.762 18.762 18.764 18.764 19.764 18.764 18.764 19.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764	00 5.00 6 00 6.69 6 00 6.86 7 00 2.00 7 00 3.42 6 00 2.00 7 00 2.00 6 00 2.00 6 00 2.00 6 1.00 2.31 6 1.00 2.30 6 1.00 3.46 7 1.00 3.46 7 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 7 1.00 2.00 7 1.00 3.63 6 1.00 3.65 7
ATOM 198 N ASP 35 62.978 35.130 40.483 LATOM 199 CA ASP 35 62.215 34.034 29.895 12.404 200 CB ASP 35 62.215 34.034 29.895 12.404 201 CG ASP 35 60.678 34.189 29.957 12.404 201 CG ASP 35 60.678 34.189 29.957 12.404 201 CG ASP 35 60.055 34.542 23.912 12.404 202 OD1 ASP 35 60.102 23.911 41.025 12.404 202 CA CASP 35.404 20.405 23.912 14.025 12.404 202 CA CASP 35.404 20.406 23.834 12.404 202 CA CASP 36.267 37.046 28.834 12.404 29.317 12.404	00 5.00 6 00 6.69 6 00 6.86 8 00 2.00 8 00 3.42 6 00 2.00 6 00 2.00 6 00 2.00 6 00 2.00 6 00 2.00 6 1.00 2.00 6 1.00 3.45 6 1.00 3.45 6 1.00 3.45 6 1.00 3.45 6 1.00 3.45 7 1.00 2.00 6 1.00 3.89 6 1.00 3.89 6 1.00 3.99 6 1.00 3.99 6 1.00 3.99 6 1.00 5.63 7 1.00 5.63 7 1.00 5.63 7 1.00 5.63 7 1.00 5.63 7 1.00 5.63 7 1.00 5.63 7 1.00 5.63 7 1.00 5.63 7 1.00 5.64 6 1.00 5.14 6 1.00 5.14 6 1.00 5.14 6 1.00 5.14 6
ATOM 198 N ASP 35 62.978 35.130 40.483 LATOM 199 CA ASP 35 62.215 34.034 29.895 1. ATOM 200 CB ASP 35 60.678 34.189 29.957 1. ATOM 201 CG ASP 35 60.678 34.189 29.957 1. ATOM 202 OD1 ASP 35 60.605 34.542 28.912 1. ATOM 203 OD2 ASP 35 60.102 33.911 41.025 1. ATOM 205 D ASP 35 60.102 33.911 41.025 1. ATOM 206 N LEU 36 62.677 37.046 28.834 1. ATOM 207 CA LEU 36 62.677 37.046 28.834 1. ATOM 208 CB LEU 36 62.677 37.046 28.834 1. ATOM 209 CG LEU 36 62.992 38.272 39.317 1. ATOM 209 CG LEU 36 62.902 39.484 38.145 1. ATOM 210 CD1 LEU 36 62.219 40.825 18.450 1. ATOM 211 CD2 LEU 36 62.219 40.825 18.450 1. ATOM 212 C LEU 36 63.184 41.343 18.762 18.762 18.764 18.764 19.764 18.764 18.764 19.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764 18.764	00 5.00 6 00 6.69 6 00 6.86 7 00 2.00 7 00 3.42 6 00 2.00 7 00 2.00 6 00 2.00 6 00 2.00 6 1.00 2.31 6 1.00 2.30 6 1.00 3.46 7 1.00 3.46 7 1.00 2.00 6 1.00 2.00 6 1.00 2.00 6 1.00 2.00 7 1.00 2.00 7 1.00 3.63 6 1.00 3.65 7

bref2	lc.p	ďЬ		Thu	Apr 25 1	2:27:4	7 1996	4	
ATOM	227	N	PHE	29	59.811	42.540	30.742	1.00 4.25	:
ATOM	228	CA	PHE	39	59.621	42.507	29.286	1.00 5.38	
ATOM ATOM	229	CB	PHE	29	58.865	41.225	28.900	1.00 4.80	
ATOM	230 231	CG	PHE	39 · 39	57.461 56.416	41.198	29.411	1.00 7.53	
ATOM	232		PHE	29	57.190	41.686 40.807	28.636 20.709	1.00 8.61	5
MOTA	233	CE1	PHE	39	55.123	41.795	29.153	1.00 7.97	₹ ₹
ATOM	234		PRE	39	55.896	40.917	31.228	1.00 3.25	÷
ATOM ATOM	235 236	C2 C	PHE	39	54.868	41.411	30.451	1.00 a.72	:
ATOH	237	ō	PHE PHE	39 29	58.826 58.262	43.713 44.451	23.794	2.00 3.75	•
ATOM	238	N	TRP	40	58.837	43.926	29.58G 27.490	1.00 4.29	: :
MOTA	239	CA	TRP	40	58.084	44.996	26.846	1.00 4.71	÷
ATOM	240	CB	TRP	40	58.826	46.352	26.872	1.00 4.45	į.
ATOM	241 242	CC	TRP TRP	40 40	60.014 61.386	45.517	25.928	1.00 7.44	₹.
ATOM	243		TRP	40	62.143	46.185 46.555	26.200 25.062	1.00 9.31	5
ATOM	244	CE3	TRP	40	62.049	45.595	27.294	1.00 6.04	5
MOTA	245		TRF	40	60.003	47.056	24.661	1.00 8.12	5
MOTA MOTA	246 247		TP.P TRP	40	61.277	47.087	24.144	1.00 6.99	÷
ATOM	248		TRP	40 40	63.527 63.431	46.358 4 5 .395	24.989 27.217	1.00 10.83	•
ATOM	249		1.9T	40	64.152	45.780	26.068	1.00 10.61	÷
MOTA	250	С	TRP	40	57.785	44.539	25.418	1.00 5.55	Ę
ATOM	251	Ġ.	TRP	40	58.530	43.761	24.824	1.00 4.51	
ATOM ATOM	252 253	N CA	GLU GLU	41 41	56.625 56.267	44.914	24.914	1.00 7.38	
ATOM	254	CB	GLU	4:	54.898	44.533 43.840	23.556 23.555	1.00 3.54	:
MOTA	255	CC	GLU	41	54.860	42.586	24.450	1.00 7.91	6 5
MOTA	256	CD.	GLU	41	53.619	41.687	24.254	00 13.67	
ATOM ATOM	257 25B		GLU GLU	41 41	53.418.	40.748	25.055	1.00 15.11	3
ATOM	259	c	GLU	41.	52.843 56.335	41.891 45.715	23.301 22.558	1.00 17.90	•
MOTA	260	o ·	GLU	41	56.456	46.888	22.956	1.00 9.08	- 5
ATOM	261	N	GLU	42	56.403	45.389	21.271	1.00 8.40	÷
ATOM ATOM	262	CY	GLU	42	56.426	46.399	20.211	1.00 9.64	5
ATOM	263 264	CB CG	GLU GLU	42 42	57.729 58.974	47.207	20.227	1.00 6.56	÷
ATOH	265	CD	GLU	42	60.242	46.393 47.114	20.511	1.00 5.92	÷
ATOM	266	OE1	CTf.	42	61.019	46.519	19.371	1.00 7.01	÷
ATON	267	OE2		42	60.470	48.271	20.519	1.00 6.18	ě
ATOM ATOM	268 269	င ၁	GLU	42 42	56.167 55.880	45.73?	18.853	1.00 9.90	÷
ATOH	270	N	ALA	43	56.243	44.532	18.795 17.771	1.00 9.59	÷ 7
ATOM	271	CA	ALA.	43	55.988	46.007	16.400	1.00 12.17	5
ATOM	272	CB	ALA	43	55.513	47.145	15.515	1.00 12.5€	÷
ATOM ATOM	273 274	5	ALA ALA	43 43	57.164 58.309	45.291	15.731	1.00 10.71	÷
ATOM	275	N.	ALA	44	56.87E	45.683 44.282	15.930 14.903	1.00 12.41	;
ATOM	276	CÃ	ALA	44	57.928	43.514	14.208	1.00 3.23	į
ATOM	277	CB	ALA	44	57.326	42.507	13.263	1.00 4.9	Ė
MOTA HOTA	278 279	С Э	ala ala	44 44	58.828	44.442	13.438	1.00 8.50	÷
ATOM	280	N	SER	45	58.407 60.086	45.534 44.068	13.047 13.275	1.00 9.57	3
HOTA	281	CA	SER	45	60.962	44.925	12.508	1.00 3.05	. !
ATOM	282	CB	SER	45	61.61E	46.002	12.354	1.00 11.34	
ATOM ATOM	283 284 ·	CC .	SER SER	45 45	61.479	47.244	12.695	1.00 10.35	3
ATOM	285	õ	SEF	45	61.996 62.599	44.20? 43.221	11.683 12.124	1.00 13.53	ŧ
ATOM	286	N	ALA	46	62.113	44.571	10.435	1.00 15.72	=
ATOM	287	CA	AL:	46	63.041	44.134	3.469	1.00 14.41	:
atom atom	288 289	CB C	ALA ALA	46 46	52:81G	44.781	8.127	1.00 17.11	•
ATOM	290	9	ALA	46	64.379 64.657	44.538 45.746	10.028	1.00 15.43	•
ATOM	291	N	GLY	47	55.140	43.525	10.203 10.433	1.00 16.67	1
ATOM	292	CK.	GLY		66.45C	43.762	11.009	00	:
ATOH ATOH	293 294	C 0	GLY GLY	47	66.558	44.415	12.400	1.00 15.13	Ŧ
ATOM	295	R	VAL	48	67.231 65.872	45.457 43.843	12.546	1.00 16.13	•
ATOH	296	CA	VA:	46	55.950	44.302	13.399 14.799	1.00 13.37	:
ATOM	297	CF	VA1	46	64.825	45.230	15.231	00 3.24	: .
atom atom	298 299	CG1		46	64.572	45.071	16.701	1.00 8.16	•
ATOH	300	Ç.	VAL	48 46	65.21€ 65.904	45.556	14.964		:
MOTA	301	õ	VAL	48	65.062	42.183	15.642 15.443	1.00 2.65	:
ATOM	302	ĸ	GLY	49	56.RB2	42.349	15.521	1.00 9.93	
ATOM ATOM	302 304	CA	CLY	49	56.948	41.798	17.393	00 7.27	÷
0.1	504	c	GLY	49	67.199	42.211	18.829	1.00 5.14	÷

	. mella	Thu Apr	25 12:27:4	7 1996	5
bref21			67.294 43.396		.00 3.06 5
ATOM	305 0 GLY	49 50	67.274 41.234	19.732 1	
MOTA	306 N PRO	50	67.104 39.790		.00 2.00
MOTA	307 CD PRO 308 CA PRO	50	67.519 41.540		.00 2.99
MOTA		50	67.545 40.158	• • • • • • •	.00 3.97 5
ATOM	309 CB PRO 310 CG PRO	50	67.935 39.264		.00 2.00 5
ATOM	311 C PRO	5 C	68.837 42.307		.00 1.36
ATOM ATOM	312 O PRO	5 C.	68.962 43.122		.00 5.60
ATOM	313 N GLY	51	69.787 42.100 71.059 42.792		.00 2.83 4
ATOM	314 CA GLY	51			.00 3.36 5
MOTA	315 C GLY	51	70.991 44.263 72.025 44.910		1.00 5.85
ATOM	316 0 GLY	51 52	69.792 44.815		.00 2.00
ATOM	317 N ASN 318 CA ASN	52	69.670 46.211	19.604	1.00 2.00 5
ATOM	318 CA ASN	52	68.527 46.401		1.00 3.33 ⁵
HOTA HOTA	320 CG ASN	52	68.768 47.534		1.00 7.97 5 1.00 12.55 E
MOTA	321 OD1 ASN	52	69.233 47.31		1.00 10.05 7
MOTA	322 ND2 ASN	52	68.442 48.753 69.505 47.14		1.00 3.59 5
ATOM	323 C ASN	52			1.00 2.00 2
ATOM	324 O ASN	52	69.524 48.35 69.286 46.57		1.00 5.70 7
ATOM	325 N TYR	53	69.146 47.35		1.00 5.58 5
MOTA	326 CA TYP.	53 53	67.707 47.41		1.00 5.70 5
ATOM	327 CB TYP	53	66.615 47.54		1.00 4.84
MOTA	328 CG TYP	53	66.067 46.41		1.00 6.02
MOTA	329 CD1 TYP 230 CE1 TYP	53	65.080 46.49		1.00 5.48 5
ATOM ATOM	331 CD2 TYP.	53	66.123 48.78		1.00 5.30 f
ATOM	332 CE2 TYP.	53	65.119 48.89		1.00 8.17 5
ATOM	233 CZ TYR	53	64.598 47.78		1.00 12.54
ATOM	334 OH TYP.	53	63.590 47.76		1.00 3.83 5
ATOM	335 C TYR	53 53	70.176 45.4		1.00 4.09
MOTA	336 0 TYR 337 N SEP.	54	70.257 47.4	28 25.346	1.00 3.81
ATOM.	337 N SEP. 338 CA SEP.	54	70.977 46.9		1.00 6.59 6 1.00 8.72 6
ATOM	339 CB SER	54	72.296 47.6		
MOTA MOTA	340 OG SER	54	73.405 46.8		•
ATOH	341 C SER	54	70.077 47.0		1.00 4.52 2
ATOM	342 C SER	54	69.495 48.0 69.931 45.9		1.00 3.52 7
ATOM	343 N . PHE				1.00 3.38 6
ATOM	344 CA PHE	55	69.095 45.8 68.141 44.6		1.00 6.11 5
ATOM	345 CB PHE		67.052 44.7		1.00 6.96 5
MOTA	346 CG PHE 347 CD1 PHE		65.741 44.8		1.00 10.17
MOTA	347 CD1 PHE 348 CD2 PHE		67.330 44.5		1.00 8.73 5
MOTA	349 CE1 PHE		64.713 44.5		1.00 12.64 5
ATOM	250 CE2 PH	\$ \$5	66.317 44.		1.00 8.93 5
ATOM	351 CZ PHE		65.007 44.7 69.942 45.		1.00 8.93 ÷ 1.00 2.90 ÷
HOTA	352 C PRI		69.942 45. 70.476 44.		
ATOM	353 O PBI		70.083 46.		
ATOM	354 N SEI		70.854 46.		1.00 5.40 €
ATOM	255 CA SE		72.159 47.	651 32.681	
HOTA	356 CB SE			939 22.162	
MOTA MOTA	358 C SE			214 34.108 943 34.098	
ATOM	359 O SE				
ATOM	360 N TY			856 36.495	
ATOM				621 26.88	1.00 3.65
MOTA				334 37.00	
MOTA			70.254 43.	835 38.25	
ATOM			70.865 42	.587 28.38	
ATOM	4			.560 35.89	
ATOM ATOM				.316 35.02	
ATOM		rr 57		.834 37.26	
ATOM		YR 17		.591 37.33 .253 37.61	
ATO	4 270 C T	YR 5		.253 37.61 .181 37.46	
ATO	4 271 O T	YR 57		.781 36.70	5 1.00 11.03
ATO		ln 58 Ln 58		.143 39.83	12 1.00 9.11 f
ATO		LN 58 LN 58	71.613 49	.592 39.75	4 1.00 10.64
ATO:		1:1 56	72.167 50	.091 41.00	
ATO		LN SE	72.827 51	.436 40.93	
ATO	' ':: ::	i.: 56		472 4G.84	
ATO	M 378 NE2 C	IN SE		.435 41.01 7.886 41.1	28 2.30 14.30
ATO	м 379 С С	LN SE		7.886 41.13 3.581 41.4	68 :.CL 7.60
ATO	м 380 0 0	EU 39		6.798 4:.7	69 1.00 8.41 -
OTA		.EU 59	70.183 4		

bref2	lc.p	Ф		Thu	Apr 25	12:27:4	7 1996		6
ATOM	383	СB	LEU	59	70.534	44.993	43.313	1.00 4	.10 {
MOTA	384	CC	LEU	59	69.811	44.344	44.446		.46
ATOM .	385		LEU	59	68.343		44.227		. 98 ÷
ATOM	386 387	C	LEU LEU	59 59	70.246 70.926		44.462		.03 -
ATOM	388	5	LEU	39	72.125	47.335 47.210	43.995 44.085		.36 -
MOTA	389	N	CLU	6C	70.227	48.253	44.667	1.00 9	.93 E
MOTA	390	CA	GLU	60	70.844	49.221	45.603	1.00 13	
ATOM	391	C3	GLU	60	69.852	49.697	46.643		.05 5
ATOM ATOM	392	CG	GLU	60	70.448	50.769	47.531	1.00 15	.9ì ∻
ATOM	393 394	CD OE 1	GLU	60 60	69.443 69.263	51.351	48.510	1.00 16	
ATOM	395	OE2		60	€8.852	50.755 52.410	49.607 48.181	1.00 16	
ATOM	396	С	GLU	60	72.159	48.859	46.315	1.00 15	
ATOM	397	0	GLU	60	72.200	47.971	47.189	1.00 14	
ATOM ATOM	398 399	N CA	ASP ASP	61	73.193	49.638	45.973	1.00 16	.22 7
ATOH	400	CB	ASP	61 61	74.569 74.624	49.501 49.151	46.452	1.00 17	
ATOM	401	CG	ASP	61	74.287	50.345	47.930 48.814	1.00 22	
MOTA	402		ASP	61	74.262	50.144	50.054	1.00 30	
ATOM ATOM	403		ASP	61	74.036	51.470	48.271	1.00 27	
ATOM	404 405	c ၁	ASP ASP	61 61	75.390	48.539	45.610	1.00 16.	
ATOM	406	N	GLU	62	76.582 74.758	48.742	45.423	1.00 16.	
ATOM	407	A)	GLU	62	75.402	46.524	45.130 44.223	1.00 14.	
ATOM	408	CB	GLU	€2	74.418	45.359	43.931	1.00 15.	
ATCM	409	CC	CLU	62	74.592	44.612	42.585	1.00 20.	
ATOM ATOM	410	CD	CTO.	62	72.574	44.998	41.452	1.00 18.	.81 5
ATOM	411 412		CLU	62 62	?3.324 73.047	46.202	41.202	1.00 19.	
ATOM	413	c	GLU	62	75.709	44.078 47.363	40.78E 42.947	1.00 17.	
MOTA	414	0	GLU	62	75.069	48.402	42.704	1.00 10.	
ATOM	415	N	PRC.	- 63	76.744	46.984	42.173		C1. 2
ATOM ATOM	416 417	CD	PRC	63 63	77.785 77.069	45.973	42.435		66 6
ATOM	418	CB	PRO	63	78.517	47.740	40.959 40.691		47 €
ATOM	419	CG	PRC	63	78.504	45.895	41.103		.33 6 .09 6
ATOM	420	C	PRO	63	76.146	47.407	39.779		19 5
ATOM ATOM	421	0	PRC	63	75.473	46.366	39.775		91 8
ATOM	422 423	N CA	TP.P TP.P	64 64	76.119 75.298	48.300	38.788		27 7
ATOM	424	CB	TRP	64	75.441	48.092 49.259	37.613 36.645		00 5
ATOM	425	CC	TPP	64	74.591	50.490	36.923		40 5 00 5
MOTA	426	CDZ		64	73.181	50.651	36.678		00 5
ATOM ATOM	427 428	CE3		64 64	72.845	51.972	27.050		28 €
ATOM	429	SD1		54	72.174 75.027	49.811 51.682	36.186 37.410		18 -
MOTA	430	NE1	TP.F	54	72.995	52.573	27.487	-	00 5 00 7
MOTA	431	CZZ	TP.P	64	71.537	52.476	36.950		00 4
ATOM ATOM	432	CZZ	TRE	54	70.876	50.314	36.087		49 4
ATOM	432 434	CH2	TPF	64 64	70.575 75.706	51.636	35.471		00 é
ATOM	435	5	TPP	64	76.877	46.815 46. 5 28	36.903 26.736		00 ÷
ATOM	436	34	LYS	65	74.704	46.036	26.524		00 3 00 7
ATOM	437	ΞÀ	LYS	5.5	74.909	44.793	35.803		00 5
ATOM ATOM	438 439	C3	LYS	55 65	74.603	43.59?	26.668	1.00 2.	61 ÷
ATOM	440 .	CD	LYS	65	75.611 75.207	43.306 42.082	37.673 38.401		35 -
ATOM	441	CE	LYS	55	76.204	41.795	29.488	1.00 4.	33 é 13 é
ATOM	442	NZ	LYS	45	76.452	43.031	40.293	1.00 15.	
ATOM ATOM	443	2	LYS	55	74.017	44.725	24.584	1.00 2.	00 ÷
ATOM	445	Ñ	LET	55 56	73.125 74.201	45.534	24.416		81 3
ATOM:	446	CA	LET	56	72.421	43.692 43.532	33.780 32.559	1.96 2. 1.90 3.	
ATOM:	447	73	LET	÷ 5	14.342	43.524	21.340		38 4 67 4
ATOM	448	_CC	TE.	56	75.135	44.851	31.138		38 # 07 # 42 #
ATOM ATOM	449 455	CD1		56	14.363	44.485	20.416	1.00 5.	47 ÷
ATCH	451	ED3	LEU	56 45	74.327 72.651	45.880	20.283		99 ÷
ATCH	452	:	LET	56	73.125	42.234 41.193	22.492 22.943		16 3
ATCH	453	N	CYE	£_	71.479	42.263	21.885	1.00 .2.	
ATOM	454	ΞÀ	CYS	57	70.686	41.099	21.708		30 🐔
atom Atom	455 456	2 3	CYS	6 T	**.569	40.952	30.191	1.00 9.	34 -
ATOM	45?	28	CAS CAS	5- 3-	77.506	41.98)	29.512	1.00 11.	12 · 3
ATOM	453	š G	CYS	5-	68.331 58.297	41.275 39.785	22.363		68 :
ATOM	459	N	AF.C	é E	71.672	39.729	22.300 29.649	1.00 9.	98 16
ATOM	160	CX	ARS .	68:	76.567		28.187	00 11	

bref21	e ndi	,		Thu	Apr	25 12	:27:4	47 19	96	7	
•			ARG	68		71.380	38.35	9 27.	627	1.00 15.1 1.00 20.3	5 ⁵ B ⁵
MOTA	461	CB CB	ARG	68		73.366	38.37		. 053 . 359	1.00 21.1	
MOTA	463	CĐ	ARG	68		71.658	37.10			1.00 25.2	0 -
ATOH ATOH	464	NE.	ARG	68		71.010	34.83		. 288	1.00 27.6	6 :
ATOM	465	CZ	ARG	68		71.437 72.710	34.73		.705	00 28.6) £
ATOM	466	HH	ARG	68		10.601	33.B1	B 26	. 498	1.00 27.6	
ATOM	467		ARG	68.		69.143	39.32	27	.751	1.00 9.7	
ATOY.	468	2	arg arg	68		68.449	38.50		.317	1.00 3.1	i 8
MOTA	469	C. (3	LEU	69		68.762	40.0		.684	1.00 5.	-
ATOM	470 471	CA.	LEU	69			39.90		.328	1.00 4.	64 :
ATOM ATOM	472	ÇB	LEU	69		67.137	42.5		5.980	1.00 5.	
ATOM	473	CG	LEU	69		67.431 67.302	43.7		5.026	1.00 9.	
ATOM	474	CDI	LEU	69		66.498	42.7	73 2	7.111		06 [€] 45 [€]
ATOM	475		LEU	69 69		67.222	38.7	94 2	3.221		45 ÷
ATOM	476	c	LEU	69		68.175	38.2	17 2	4.655		17
ATOM	477 478	2	RIS	70		65.947	38.4		5.133 4.296		34
HOTA	479	ca.	HIS	70		65.448	37.3 36.3		5.103	1.00 3.	. 32 · [£]
MOTA	480		RIS	70		64.792 65.759	35.4		5.871	1.00 4	94
ATOM	481	CG		70		66.779		_	5.460		.46 ! .83 :
ATOM	482		2 HIS	70 70		65.759		444 2	7.243		.83
MOTA	483		1 HIS	70		66.738	34.		7.650		.22 5
ATOM	484		1 HIS	70		67.372	34.	193	26.586		.62
ATOM	486		HIS	70)	64.40	. 38.		23.546 23.863	_	. 52
MOTA MOTA	48		HIS	70		64.129		240 453	22.520		
ATOM	48		GLN			63.87		038	21.676	1.00 12	
MOTA	48					63.44		691	20.442	1.00 12	. 64 · .
MOTA	49			_		62.52	3 39.	628	19.67	1.00 12	
MOTA	49			_		63.19	3 40.		18.423		
MOTA	49		E1 GLN			63.25		. 364	18.18	1.00 1	3.04
HOTA HOTA	49	-	E2 GL	; 7	1	63.74		.254 .915	21.27	1.00 14	4.54 -
ATOH	49				1	61.86 62.29		.846	20.82	B 1.00° 13	3.15
ATOM	49				12	60.57		.148	21.51	0 1.00 1	
ATOM	49				12 12	59.54	-	.163	21.22		
ATOM			B AL		72	59.10	6 35	.462	22.51		
ATOM			B AL		72	58.3		. 816	20.55		
ATOM			AL		72	57.9		.949	19.53		5.70
ATOM	_		N PR		73	57.7		5.140 1.944	18.83	3 1.00 1	5.56 -
ATO	, 5	03	CD PF		73	58.2 56.6		6.681	18.83	5 1.00 1	4.26
ATO	4 5		CA PF CB PF	••	73 73	56.5		5.789	17.6		14.62 ÷
ATO	_		CB PF CG PF		73	57.0		4.500	18.0		1.69
ATO		507	c Pi		73	55.3		6.586 5.678	20.5		16.10
ATO		908	o Pi	RO	73	55.2 54.5		7.632	19.6	29 :.90	
ATO		509	-	HP.	74	53.		7.789	20.3	38 1.00	11.59
ATO	es :	510		HE .	74 74	52-	987 3	9.276	20.5		2.94 ÷
ATO		511	CG1 T	HR HR	74	54.	100 3	9.935	21.0		12.22 13.10 13.56
ATO		512 513	CG2 I		74	51.		9.484			13.56
ATC		514		HR	74	52.		37.289		98 1.00	15.99
ATC		515		HR	74	52.		37.637 36. 5 42			
ATC		516	-	LA	75	51. 30.		36.076		145 1.00	:0.05
AT		517		LLA	75 75			35.578	19.		10.80 ÷
TA.		518		ala Ala	75	49.	612	37.152			
AT		519 520		ALA	75	49.		36.83		545	9.12
AT.	OM OM	521		ARG	76			38.419		744 1.30	9.12
	OM	522	CA .	ARG	76		.107 .870	40.78		606 :.50	10.98
	OH	523		ARG	76		.709	40.72		529 :	
AT	TOM:	524		ARG	76 76		.936	41.67	6 20.	736 :.::	21.72
	101	525		arg arg	76	47	. 29E	41.16	-	95	23.95.
	MON	526 527	NE C2	ARG	76	47	.700	40.06		605 1.1	25.68
	MOT	525			76		.745	39.35		.160 1.00 .712 1.00	28.25
	POH .	529		ARG	76		.065 .026	40.04		64:	: 12.35
	TOM	530	=	ARG	76 76		6.6B0	41.0	02 15	.961 -:3	; :5.69 ·
. A'	TOM	531		ARG	70		. 223	39.4	89 16	.508 1.0	C 12.77
	TOM	532		GLY		5	2.121	39.9	82 1S	.473 1	11.39
	TOH	533 534		GLY	77	5	3.079	41.0			
	TOH	535		GLY	7		3.633	41.8		.102	
	TOM	53	6 %	ALA	76		3.242 4.158	42.2		. 759	11.50
	MOTA	53		ALA	7.5 7.1		3.465	43.0		3.821	: 10.26
,	LTOM	53	8 CB	ALA	•	•					

bref21	c.pc	Do		Thu	A pr	25	12	:27:47	1996		8	
ATOM	539	c	ALA	7€	5	5.26	3	41.329	18.357	1.00	11.11	5
MOTA	540	0	ALA	72		5.08		40.106	13.495	1.00		į
MOTA	541	N	VAL	79	5	6.41		41.923	18.640	1.00	9.69	-
MOTA	542	CA	VAL	79	. 5	7.54	6	41.178	19.192	1.00	7.22	5
ATOM	543	CB	VAL	79	5	8.84	4	41.391	18.354	1.00	6.05	5
ATOM	544	CCI		79	5	8.70	6	40.741	17.024	1.00	6.29	£
ATOM	545	CG2	VAL	75		9.13		42.848	18.171	1.00	5.80	5
ATOM	546	C	VAL	75		7.78		41.500	20.672	1.00	5.75	£
ATOM	547	0	VAL	79		7.63		42.637	21.125	1.00	4.75	£
ATOM	548	N	ARG	23		B.20		40.491	21.463	1.00	4.34	7
ATOM	549	CA	ARG	86		8.42		40.64B	22.813	1.00	7.09	6
ATOM	550 551	CB CG	ARG ARG	80 80		7.50° 7.46		39.672	23.550	1.00	8.65	3
- ATOM - ATOM	552	CD	ARG	8C		6.67		39.838 38.710	25.052	1.00	7.34	5
ATOM	553	NE	ARG	BC		5.27		38.809	25.630 25.237	1.00	6.89	6
ATOM	554	CZ	ARG	80		4.42		37.809	25.313	1.00	6.67	7
ATOM	555	NHI		80		4.82		36.631	25.743	1.00	4.11 5.04	5
ATOM	556		ARG	80		3.14		38.017	25.063	1.00	2.00	÷
MOTA	557	c	ARG	80	5	9.84	6	40.484	23.297	1.00	5.10	6
ATOM	558	O	ARG	80	61	0.46	6	39.434	23.114	1.00	3.87	8
ATOM	559	N	PHE	91	61	0.34	6	41.519	23.951	1.00	4.32	7
MOTA	560	CY	PHE	31	6:	1.68	8	41.481	24.488	1.00	3.56	6
ATOM	561	CB	PHE	91	62	2.38	5	42.Bl4	24.305	1.00	4.97	6
ATOM	562	CC	PHE	€1		2.74		43.102	22.915	1.00	5.97	÷
ATOM	563		PHE	ò.		1.86		43.781	22.091	1.00	6.98	6
ATOM	564		PHE	5.		3.94		42.670	22.409	1.00	7.17	€
ATOH	565		PHE	5.		2.16		44.030	20.763	1.00	7.58	÷
HOTA	566 567	CZ	PHE	<u>:</u> :		4.27		42.908	21.086		10.09	5
ATOM	568	c	PHE PHE	ê: 8:		3.37. 1.54		43.594	20.251	1.00		6
ATOH	569	ŏ	PHE	a:		0.72		41.209 41.848	25.955 26.604	1.00	7.23	6
ATOM	570	N	TRP	82		2.30		40.240	26.469	1.00	8.68	ě
	571	CA	TRP	. 82		2.26		39.911	27.891	1.00	7.82 8.83	. 5.
ATOH	572	СВ	TRP	62		1.25		38.789	28.199	1.00	9.85	- 5. 6
ATOH	573	CG	TRP	62		1.58		37.412	27.657		12.09	5
ATOH	574	CDZ	TRP	82	63	2.23		36.372	28.428		11.52	6
ATOM .	575	CE2	TRP	82	6	2.32	8	35.248	27.577		13.27	E
ATOH	576	CE3	TRF	82	63	2.74	4	36.277	29.722		15.61	ó
ATOM	577		TRP	32	61	1.30	4	36.888	26.453	1.00	14.64	÷
ATOM	578	NE1		82		1.75		35.581	26.378	1.00	12.57	?
ATOM	579		TRF	82		2.91		34.048	27.987	1.00	17.05	5
ATOM	580	CZ3		22		3.33		35.071	20.137		16.75	5
MOTA	581	CH2		82		3.41		33.980	29.272		17.82	5
MOTA MOTA	582 583	c e	TRF	32 53		3.65		39.561	28.371	1.00	8.05	6
ATOM	584	К	TRP	82 83		4.60 3.76		39.733 39. 156	27.623 29.635	1.00	7.22	3
ATOM	585	CA.	CYS	53		5.02		38.749	30.282	1.00	7.16 5.52	.5
ATOM	586	ς .	CYS	23		4 . 63		38.373	31.702	1.00	4.93	÷
ATOM	587	0	CYS	25		3.73		38.969	32.271	1.00	5.96	å
ATOM	588	СВ	CYS	53		6.02		39.909	20.319	1.00	7.79	Ę
MOTA	589	SG	CYS	23	6	6.43	5	40.538	21.992	1.00		15
ATOM	590	N	SER	84	6:	5.24	1	37.353	32.250	1.00	3.11	,
MOTA	591	CX	SER	84		4.90		36.980	33.610	1.00	4.32	÷
ATOM	592	CB	SEF.	34		4.39		35.555	33.658	1.00	5.70	5
ATOM ATOM	593	CC.	SEP.	54		5.09		34.752	32.731	1.00		3
ATOM	594 595	С 0	SEF. Ser	84 84		6.12 7.17		37.135	34.483	1.00	7.36	÷
ATOM	596 .	N	LEU	35				36.544	24.190	1.00		ŧ
ATOH	597	CA	LEU	85		6.00: 7.11:		37.940 38.209	35.546 36.457	1.00	7.67 4.88	;
ATOH	598	CB	LEU	85		6. 67		39.160	27.546	1.00		5
ATOH	599	CC	LEU	3.5		6.73		40.624	37.197	1.00	3.56 5.43	:
ATOM:	600		LEU	3.5		7.01	-	41.388	38.482	1.00	7.27	•
ATOH	601		LEU	35		7. 84		40.844	25.232	1.00	5.46	÷
ATOM	602	2	LEU	8:		7.70		36.991	27.110	1.00	5.00	
HOTA	603	>	LEC	=:	5	7.00		36.021	2:.352	:.oc	3.2:	٠,٠
MOTA	604	N	PP.C	3 6	6	9.02	7	37.01?	37.388	1.00	5.23	7
ATOM	605	co	PRC	3.5		9.95		38.092	25.989	1.00	6.27	4
ATOM	606	CA	P.P.C.	ě é		9.76		35.313	32.036	50	4.34	
MOTA	607	CP	PRC	8.5		3.21		36.361	37.921	1.00	3.16	÷
ATOM ATOM	608	CC	PPC	2.5		1.20		27.343	36.772	1.00	4	
ATOM	610 609	ç	PRC PRC	26 96		9.33		35.832	39.515	1.00	3.39	خ
ATOM	611	N	THR	3.5		9.14 9.22		36.847 34.622	40.187	1.00	4.26	.1
ATOM	612	CA	THR	- 2		8.79		34.399	40.329	oc	4.19 5.71	•
ATOM	613	CB	TEP.	ē.		8.96		32.949	41.727	1.00	ê.:2	:
ATOH	614	9G1	TER	£*		8.49		32.183	40.607	00	9.30	;
ATCH	615	CG2	THR	÷ *	6	8.14	ō	32.599	42.975	00	11.56	;
ATOH	616	C	THR	£-	5	9.25		35.263	42.531	1.00		-

					Apr 2	5 12	:27:	47	1996		9		
ref21	c.pd	Þ		Thu					3.384	1.00	9.13	3	
	617	0 1	HR	37		.606	35.73 35.47		2.541	00	8.99	•	
TOM	618		LA	88		.661	36.28		3.56B	1.00	B.39	£ .	
MOTA MOTA	619	CA A	LA	8.8		.313	36.17		43.419	2.30	3.06	ŧ ē	
ATOM	620		LA	86		.922	37.75	2 4	43.497	:.00	8.97	3	
ATOM	621	-	LA	88 98		.441	38.57	13	44.247	1.00	8.36	:	
ATOM	622		LA SP	5 è	70	.030	36.09		42.578	1.00	8.96		
MOTA	623		SP	3 9.	€:	9.633	39.4		42.397		7.68	€.	
MOTA	624		SP	δõ		0.047	39.9		49.78		6.73	÷	
MOTA	625 626		ASP	8 9		1.563	46.2		41.72	1.00	3.92	3	
MOTA MOTA	627	OD1 8		8 9		2.319 2.012	39.6		29.66	7 :.90	6.25	ē ÷	
ATOM	628	GD2		89 89		8.141	39.7		42.65		9.65 9.22		
ATOM	629		ASP	89		7.66B	40.8		42.52		7.69	1	
ATOM	630		asp Thr	90		7.420	38.7		43.09		5.03	5	
MOTA	631 632		THE	90		6.010	38.8 37.6		42.89			5	
MOTA MOTA	633	CB	THP.	90		55.29B 55.905			43.49	5 1.00	2.00	3	
ATOM	634	OC1	THR	90		65.464	37.4	445	41.43			£ 6	
ATOH	635		THR	90 90		65.667		219	44.82		8.87 11.62	£	
ATOM	636		THR THP	90		64.634	38.	790	45.3			7	
MOTA	637		SEP.	91		66.492			45.4			ŧ.	
ATOM	638 638		SER	91		66.264		178	47.4	48 1.00	9.23	÷	
MOTA MOTA	64		SEP	9:		67.47		343	47.4	7B :.0	c 9.38		
ATOM	64		SEP.	91		65.00		265	47.0				
ATOM	64		SER	9:		64.77	9 42.	. 197	46.2				
ATCM	64		SER	ç;		64.28	7 41.	.029	48.		·		
ATOM	64		SER SEP.	92		63.00	0 41	. 671	48-1		-		
ATOM	64 64		SEP.	9:		62.02		.702 .120				2 Ē	
MOTA MOTA	. 64		SER	9		61.12		. 992		963 1.0			
ATOM	64	18 C	SER	9		€1.6	12 43	. 499	9 48.		00 10.0		
MOTA	. 6		SER	9	3	63.6	00 43	. 58	4.9				
ATOM		50 N 51 CA	PHE	_	3	63.1		.84			00 2.3	-	
ATOM		51 CA 52 CB			3.	62.8	81 44 36 43	. 66 3.58		207 1-	00 2.0	10 5	
MOTA MOTA	_	53 CC	PHE		3	61.8 62.2		2.26	4 52.	444 1.	00 2.0		
HOTA		54 CI	1 PHE		93 93	60.4		3. BB	4 52.	232 1.	00 2.0		
RTOM	6		2 PHI 1 PHI	-	93	61.2	60 4	1.26	5 52		00 2.0		
ATOM		556 CI 557 CI	C2 PH	_	93	59.5		2.86			00 2.0		
ATOM		658 C		E	93	59.9 63.9		1.57 6.10		.035	.00 5.	65	
ATOM	4	659 C		_	93 93	€3.	753 4	7.1	56 59		. 50 5.		
ATON		660 0		_	94	64.	671 4	6.0		.938 -	.00 5. .00 4.		5
ATC	-	661 N 662 C	A VA		94	65.		7.0		.410 -			į
ATC:	-		B VA		94	66.		16.5 16.3			.00 6.		Ę
210		664 C	G1 V		94	66.	935	45.1	77 47	.522	.00 2.		ę.
ATO			C2 V		94 94		042	47.5	25 47		00 6.		£
ATC			. VI	YT T	94	64.	317	46.7				.26 .63	÷
ATO		•••		RO	95			48.7 49.6	-			.07	Ę
ATO ATO				RO	95		947 960	49.		9.365	00 2	.90	÷
ATO		670		RC .	95 95		.316	50-	826 4			.93	Ę.
ATC		•		ro Ro	95	65	. 261	51 -		7.004	1.00 4	7	÷
ATC				RO	95		.783	48.		4.248	00 7	1.49	:
ATC ATC				RC	35		.985 .128		419 4	3.141	00 6	6.65	
AT		675		.EU	96 36		.776	47.	852 4	1.957		5.19	•
AT!	OH	676		LEU	36		.088	46.	.531	:1.543		3.04 2.00	•
	OM OM	€77 676		LEU	9€	65	5.571			40.411 40.642		2.00	•
	CW MO	679	CD1	LEU	96	60	5.945	43.		40.315	00	2.CO	÷
	OH.	680	CD2	LEU	. 96		4.648 5.713	48	.886	40.816	1.00	5.21	:
	CM	681		LEU	9 6 9 6		4.639	49	.309	40.367		5.C2	:
λ7	MO1	582		LEU Glu	97 97	6	6.881	49	.355	40.416	00	8.18 3.49	•
	TON:	683 684	N Ck	CTC.	37		7.000	50	.324	29.326 29.476			
	TCH: TCM	685	CB	CLU	97		8.315	51	.069	23.849		10.56	:
	TCM	666	SC	SLU	3~ 3"		8.162 7.806		. 335	28.676	2.00	12.04	:
2	TOM	687	CD	CLU	3. 3.		8.087	54	1.545	28.734	2.30	14.20	
	TOM	685		GLU	· ·		57.252		2.787	27.691	1.30	17.32 3.71	
	atori Coori	659 690	C	CLC	3,	•	66.959		9.610 8.689	27.741	1.30	9.01	
	TCH	691	ð	GLU	ş		67.735 66.083		0.053	37.101	1.30	3.76	
	TCM	592		LEU	3B 36		65.954	4	9.400	35.821	1.56	3.77	
,	MOTA	€93 €94		LEU	3B		64.59		8.695	35.754	1.90	3.21	

bref2	1c.p	ďb		Thu	Apr 25	12:27:47	1996	10	
ATOM	695	CG	LEU	98	64.366	47.487	35.686	1.00 9.97	÷
MOTA	696	CD1	LEU	98	62.912		35.721	1.30 3.15	•
MOTA	697		LEU	9.8	65.203		35.266	1.00 3.89	
ATOM	698	2	LEU	39	66.141		24.676	30 9.74	5
ATOM ATOM	699 700	0	ARG	98 99	65.751		24.781	1.00 11.17	3
ATOH	701	CA	ARG	39	66.814 67.050		23.621	1.00 7.82	?
ATOM	702	СВ	ARG	90	68.265		12.680	1.00 8.42	5 5
ATOM	703	CG	ARG	99	68.319		23.915	1.00 13.57	÷
ATON	704	CD	ARG	99	69.548		33.832	1.00 15.65	•
ATOM	705	NE	ARG	99	70.798		23.766	1.00 21.42	7
atom atom	706 707	CZ	ARG ARG	99 99	71.623		12.709	i.00 23.75	5
ATOM	708		ARG	99	71.364 72.747		31.557 32.818	1.00 25.09	:
ATOH	709	С	ARG	99	67.294		31.174	1.00 24.11	5
NTOH	710	٥	A RG	99	68.179		31.118	1.00 8.53	3
ATOM	711	N	VAL	100	66.328		30.136	1.00 5.56	7
ATOH ATOH	712 713	CA	VAL	100	66.670		28.852	1.00 5.54	5
ATOH	714	CB	VAL	100 100	65.321 65.446		28.397	1.00 8.61	5
ATOM	715		VAL	100	64.821	48.467 48.100	27.008 29.419	1.00 7.63	ć
ATOH	716	С	VAL	100	67.146		27.877	1.00 7.70 1.00 6.61	5
ATOM	717	0	VAL	100	66.556		27.819	1.00 3.63	•
ATOH	718	к.	THR	101	68.236		27.156	1.00 7.98	;
ATOH ATOH	719 720	CA CB	THP.	101	68.768		25.193	1.00 10.18	6
ATOH	721	OG 1	THP.	101	70.000		26.748 27.308	1.00 8.43 1.00 13.91	÷
ATOM	722		THP.	101	€9.603		27.148	1.90 11.20	ŧ
ATOH	723	С	THR	191	€9.115		24.792	1.00 11.66	÷
ATOM ATOM	724	N N	THE	191	69.483	49.758	24.645	1.00 11.61	5
ATOH	726	CA	ALA ALA	102 102	68.915 69.216		23.767	1.30 12.50	?
ATOH	727	СВ	ALA	102	68.735		22.306 21.399	1.00 14.07	÷ 5
ATOM	728	С	ALA	102	90.721	51.154	22.249	1.00 13.24	5
ATOH	729	0	ALA	102	71.511	51.752	23.012	1.00 12.22	9
ATOM ATOM	730 731	N CA	ALA ALA	103 103	71.111	50.332	21.270	1.00 12.73	. 7
ATOH	732	СВ	ALA	103	72.520 72.631	50.004 48.712	21.021 20.183	1.00 13.74	5
ATOH	733	C	ALA	103	73.250		20.338	1.00 14.07	5
ATOH	734	0	ALA	193	73.958	51.013	19.345	1.00 16.53	á
ATOH ATOH	735 736	N CA	SER	104	73.105	52.341	20.931	1.00 12.51	7
ATOM	737	СВ	SEP.	104 104	73.673 72.834	53.569 54.066	20.440	1.00 10.25	•
ATOM	738	OG	SER	104	71.434	54.033	19.565	i.00 9.41 1.00 8.47	÷
ATOH	739	c	SER	104	73.507	54.528	21.600	1.00 11.58	÷
ATOM ATOM	740	0	SEP.	194	73.557	55.746	21.412	1.20 11.BO	=
ATOM	741 742	N CA	GLY	105 125	73.187 73.002	53.964 54.747	22.770	2.00 11.41	7
ATOM	743	c	GLY	105	71.737	55.568	22.976 23.980	1.00 12.64	÷ ÷
ATOM	744	9	SLY	195 -	71.507	56.335	24.921	1.00 15.64	
ATOM	745	ĸ	ALA	106	70.929	55.433	22.930	1.00 12.54	:
atom atom	746 747	CA CB	ALA	106 106	69.668 69.068	56.166	22.837	1.00 11.65	5
ATOM	748	5	ALA	196	68.752	56.040 55.553	21.444 23.884	1.00 13.77	÷
ATOH	749	0	ALA	126	68.501	54.338	23.899	1.00 10.70	÷
MOTA	750	N	PP.C	10~	68.239	56.392	24.779	1.00 8.60	5 ÷
ATOM ATOM	751 752 ·	CD	PP.C	107 107	68.390	57.855	24.666	1.00 9.28	÷
ATOM	753	CB.	PRC-	157	67.354 67.282	56.019 57.314	25.882 25.683	1.00 7.77	÷
ATOH	754	CC	PP.C.	107	67.302	58.358	25.605	1.00 8.42	÷
ATOM	755	С	PRO	197	65.964	55.453	25.552	1.00 7.66	÷
ATOM ATOM	756 757	N N	PRO ARG	107	65.224	56.048	24.761	1.00 a.78	ž
ATOH	758	CA	AP.G	108 128	65.595 64.290	54.353 53.751	25.196 25.990	1.20	:
MOTA.	759	C9	ARG	108	64.439	52.41:	25.258	1.00 4.63	÷ ÷.
ATOM	760	CC	ARG	198	63.168	51.902	24.695	1.30 10.88	į
ATOM ATOM	761 762	CD	ARG	108	62.783	52.688	23.4ED	14.12	•
ATON	763	NE CZ	arg arg	128	61.461 61.086	52.313 51.084	22.364	15.25	
ATOH	764	NHI		105	61.917	50.067	22.650 22.764	1.30 15.01 C 18.31	:
ATOM	765	NH2	AP.G	198	59.858	50.867	22.236	1.00 19.47	•
ATOH	766	ξ	ARG	867	63.455	53.524	27.253	00 5.36	· •
ATOH ATOH	767 768	: N	AP.G TYR	109	62.420	54.259	27.404	1.17 5.86	:
ATOM	769	C۸	TYF	:09	63.863 63.102	52.827 52.711	28.263 29.509	5.12	:
ATOH	770	CF	TYR	109	62.419	51.350	23.631	1.20 4.72	:
HOTA	771	CC	TYF	109	51.455	51.024	28.544	3.20	:
ATOM	772	CDI	TYR	109	61.775	50.089	27.565	36 11.38	•

					Apr. 2	. 12	.27:4	17 1	996		11		
bref21	c.pdb	•			Apr ∡. 60.		49.78	25	547	00 1	2.39	÷ 6	
ATON		CEL T		109 109	60.	230	51.64	2 28	.480	1.00 1	2 42	ę.	
ATOH		CD2 T		109	59.	337	51.34		1.476 5.511	:.00 1	2.48	£	
MOTA		CE2 T	YR	109		670	50.42	-	3.481	1.00 1	4.44	ė ·	•
ATOM	776 777		YR	109		777	52.90	9 3	0.774	2.00	B.52	5	
MOTA MOTA	778	c I	YR	109		911	52.73	7 3	0.794	1.00	9.59	ī	
ATOM:	779	•	TYR	109 110	63	198	53.25	9 3	1.835	1.00	14.45	÷	
ATOM	780	•	HIS HIS	110	63	.760	53.46		3.174	00	16.04	5	
HOTA	781 782		HIS	110		.468	54.83 55.03		4.613	:.00	21.12	6	
ATOM ATOM	783		BIS	110		.167	54.6	16 3	5.048		21.71	<u> </u>	
ATOM	784	CD2		110		. 623	55.7	64	5.652		24.07 23.40	6	
ATOM	785	ND1		110	65	.476	55.8		26.662		22.60	•	
ATOM	786	CE1 NE2		110	60	5.553	55.1	14	36.321 34.214	1.00	12.21	ē	
MOTA	787 788	C	RIS	110		2.628		24	34.24	1.00	13.06	B -	
ATOH	789	ŏ	BIS	110		1.740 2.693			25.06	2 1.00	11.08	7 6	
ATOM	790	N	ARG	111		1.716	52.1	116	36.11		10.30	6	
MOTA	791	CA	arg arg	111	. 6	0.878	50.	881	35.74			. 6	
MOTA	792 793		ARG	111	i 5	9.700	50.	145 145	25.86	2 :.00	8.40	5	
ATOM	794		ARG	111		8.370			25.78	3 1.00	8.93		
ATOH ATOM	795		ARG	111		7.829 57.09			36.73	000	8.80		
ATOH	798		ARG	11:		6.82	2 49.	182	37.84		0 10.13 0 10.84		
MOTA	79		ARG ARG	111		56.58	5 47.	308	36.5	_	0 11.2	7 5	
ATOM	791 791	•	ARG	111		62.54	6 51.	850 808	27.3	0.: 30	0 13.1) 3	
MOTA MOTA	80		ARG	111		63.77		758	28.5	10 :.0	0 11.5	6 7 5 6	
HOTA	80	1 8	VAL			62.49	3 51	.471	29.8		0 11.1 0 12.5	-	
ATOH	80					62.8	32 52	. B03	40.6 42.0		0 13.0)8 6	
HOTA			1 VAI			63.0	• • • • • • • • • • • • • • • • • • • •	.545 .354	40.0		0 12.3	31 6	
MOTA MOTA			2 VAI	. 11		64.2		. 668	40.5	42 - 1.0	00 .7.7		
ATOM		06 C	VAI			60.2	68 51	.105	40.	3B1 1.0			
ATOM	ş 80	07 0	VA:		13	61.7	09 45	.480	41.				
ATO	•	08 N 09 Ci			13	60.6		1.638 1.527			CO 5.	60 é	
ATO	•	09 C		E 1	13	60.2		B.130		426 🗀	00 6.		
ATO: ATO:	-	ii c	G2 IL	_	13	59.6	196 4	6.62	40.	315		39 5 87 6	
ATO	м 8		G1 II		13 13	61.	012 4	5.47	39.	-		.87 6 .16 ⁶	
ATO		_	DI II	_	13	61.	105 4	7.93				.02 å	
ATO	••	314 C			13	62.		8.23			.00 2	.78 7	
ATC ATC	••			is 1	.14			6.18	7 44	.645		.00 5	
ATC		817 (114 114		793 .4	16.75	8 45			.00 \$.00 \$	
AT(M				114	60.	554	47.82				.32 -	
ATC			CG R CD2 H		114			47.78 49.13		.106 :	.00 4	-03	
. AT		B21	ND1 H	IS	114		.589 .368	49.8	50 46	.891		2.34 ÷	
AT		822	CE1 E		114 114		.835	49.0	57 47			3.31 7 2.00 5	
AT		823	NE2 E	115 115	114	59	. 907	44.8		.330 1.221		2.00	
	OH	824 825		IIS	114		.705	44.6		1.2Ci	00	2.00	
	MOM MOM	826		ILE	115	60	.741	42.4		3.871		2.00 5 3.64 5	
	MOM	827		ILE	115 115	61	.439	41.4	80 4	3.883		3.84 · 4.23 · 6	
A?	POH	B28	CB CG2	ILE	115	760	3.953	40.0		3.984 2.650	1.00	2.00	
	TOH	829	· cci	ILE	115		2.333	41.4	•	2.966	00	2.23	
	TOH	831	CDI	ILE	115		3.731 9.107	42.	012 4	4.75	1.00	3.56	
	Ton Ton	832	c	ILE	115		8.294	41.	217 9	4.302	00	6.91 = 4.63 ?	
	TOM	833	0	ILE	115 116		9.012			5.925	1.00	5.21	
A	TOM	834	! SA	asn Asn	116	5	7.936			46.895 48.37C	1.30	5.23 -	
	TOM	835 836	CB	ASE	116	:	8.317			48.655	-	5.94	
	LTOM LTOH	£37	CG	ASH	116	:	8.582 59.470		421	48.075	2.00	8.06	
	ATOH	828	001	ASN	116		37.806	44.	.414	49.55:	1.00	•••	7
	MOTA	839	-	ash asn	116 116		56.589	42	.723	46.547	00 :.00	5.92 4.52	:
	MOTA	840 841		ASR	116		55.512		.223 .852	45.841		8.36	:
	MOTA MOTA	842		SLC	11"		56.664 55.480		.614	45.436	00	7.65	:
	ATOM	643	CA.	GLC	117 117		55.732		.113	45.534	2.00	6.11	•
	HOTA	844		GLU	117		55.95	8 46	.605	46.93	7.36	12.42	
	MOTA	84: 84:			117		56.16	0 46	1.099	47.002		18.35	;
	MOTA	84	7 OE	1 614	11-		56.64 55.81		3.601 8.757	45.002	: 1.00	15.72	•
	ATOM	84	8 OE	2 GLU	117		55.11	6 4	4.321	44.02			
	ATOM	84		GLU			54.44		5.12)	43.42	£ 1.30	9.90	
	ATOM	85	, o	320									

bref21	c.pc	Ъ		Thu	Apr 25 1	2:27:47	1996		12	
ATOH .	851	N	VAL	116	55.477	43.151	43.523	1.00	3.55	7
ATOM	852	CA	VAL	118	55.226	42.639	42.137	1.00	2.91	Ė
ATOM	853	CB	VAL	118	56.373	43.488	41.261	1.00	2.00	
MOTA	854	CG1		118	57.484	42.519	40.942	1.90	2.85	:
ATOM	855	CGS	VAL	118	55.828	44.165	40.062	1.00	2.00	÷
ATOM ATOM	856 857	0	VAL VAL	118 118	55.060	41.334	41.948	1.00	2.18	•
ATOM	858	N	YAL	119	55.453 54.404	40.755	40.936	1.00	3.56	:
ATON	859	CA	VAL	119	54.155	39.276	42.919 42.896	1.00	2.75	
ATON	860	CB	VAL	119	53.776	38.736	44.305	1.00	3.05 2.45	:
MOTA	661		VAL	119	53.749	37.26?	44.292	1.00	2.00	÷
	862		VAL	119	54.735	39.231	45.352	1.00	2.00	4
ATOM:	863	c	VAL	119	52.99B	38.960	41.945	1.00	2.00	÷
ATOM	864 865	N	VAL LEU	119 120	52.007 53.171	39.674	41.932	1.00	2.00	=
	866	CA	LEU	120	52.175	37.919 37.411	41.132	1.00	3.02	
ATOM	867	CB	LEU	120	52.446	37.894	38.745	1.00	2.95 5.65	÷
ATON	868	CG	LEU	120	51.496	37.332	37.674		11.07	5
MOTA	869		LEU	120	50.125	37.938	37.790	1.00	9.95	4
ATOM	870		LEU	120	52.053	37.605	26.306	1.00	11.67	5
ATOM ATOM	871 872	С 0	LEU	120	52.289	35.887	40.262	1.00	2.40	÷
ATON	873	ĸ	LEU	120 121	52.985 51.600	35.241 35.340	29.487	1.00	2.00	
ATON	874	CA	LEU	121	51.629	33.924	41.250 41.552	1.00	2.39 2.77	7
ATOM	875	CB	LEU	122	51.063	33.689	42.964	1.00	4.57	÷.
ATOM	876	CG	LEU	121	52.050	33.227	44.062		10.24	•
ATOM	877	CD1		121	52.939	32.976	43.550		14.5	:
ATOM	878	CD2		121	52.944	34.328	44.501	1.00	9.45	÷
ATON	879	c	LEU	121	50.974	32.995	49.554	1.90	5.41	÷
ATOM ATOM	880 881	O N	LEU ASP	121 122	50.256	33.420	29.654	1.00	7.50	÷
ATOM	882	CA .	ASP	122	51.279 50.687	31.709 30.726	40.672 39.782	1.00	8.57 6.90	?
ATOM	883	CB	ASP	122	51.493	29.421	39.773	1.00	7.76	÷
ATOH	884	CC	ASP	122	52.701	29.437	38.795	1.00	9.54	5
ATOH	685	OD1		122	52.927	30.429	38.066	1.00		5
MOTA MOTA	886 887	OD2 C		122 122	53.411	28.405	38.748		10.20	3
ATOM	888	ò	ASP ASP	122	49.292 48.957	30.494 30.954	40.343	1.00	7.04	5
ATOM	889	N	ALA	123	48.464	29.813	41.453	1.00	5.44 6.22	7
ATOM	890	CA	ALA	123	47.107	29.562	40.010	1.00	4.75	, ÷
ATOM	891	CB	ALA	123	46.187	29.374	38.839	1.00	2.02	ŧ
ATOM	892	Ç	YLY .	123	46.981	28.398	40.954	1.00	3.93	÷
ATCH ATCH	893 894	O N	ALA PRO	123 124	47.826	27.484	40.971	1.00	5.37	•
ATCH	895	CD	PRO	124	45.979 45.216	28.490 29.736	41.846 42.096	1.00	2.51	;
ATOH	896	CA	PRO	124	45.652	27.478	42.845	1.00	2.90	÷
ATCH	897	CB	PRO	124	44.362	28.022	43.436	1.90	2.50	•
ATOH	898	CC	PRC	124	44.602	29.485	43.432	1.90	2.::	÷
ATCH	899	C	PRC.	124	45.451	26.111	42.172	1.00	2.00	÷
ATOH ATOH	900 901	N O	PRO VAL	124	45.289	26.022	40.966	1.00	2.::	÷
ATOK	902	CA	VAL	125	45.524 45.345	25.042 23.715	42.944 42.381	1.00	2.31	:
ATOH	903	CS	VAL	125	46.724	23.006	42.025	1.00	4.06 2.00	÷
ATOM	904	CG1	VAL	125	47.474	23.806	40.974	1.00	2.::	•
ATOH	905		VAL	125	47.584	22.776	43.256	1.00	2.03	•
ATOM	906	C	VAL	125	44.436	22.838	43.267	1.00	5.51	:
ATOM ·	907 908 ·	0	VAL	125	44.002	23.281	44.316	1.00	6.2:	-
ATOM	909	, Z	GLY	126 126	44.068 43.230	21.661 20.735	42.768	1.00	5.22	
ATOM	910	c	GLY	126	41.939	21.283	43.494 44.035	1.00	4.13 5.54	÷ :
ATOH		C	SLY	125	41.588	20.981	45.170	1.00	8.3	:
ATOM .	912	N	LEU	127	41.246	22.112	43.268	1.00	5.13	-
MOTA	913	CY	LEU	127	39.971	22.667	43.718	1.00	7.2"	:
ATOM ATOM	914 915	CB	LEU	12-	39.594	23.949	42.935	1.00	3.72	:
ATOM	916	CD1		12-	38.175 37.954	24.573 25.322	43.071		11.:-	:
ATOM	917	CD2		12-	37.942	25.516	44.424	1.00	7.43	:
ATOM	918	C	LEU	12-	38.846	21.523	43.612	1.00	6.35	•
MOTA	919	٥	LEC	12-	38.585	21.083	42.53B	1.00	6.55	:
ATOM	920	N	VAL	125	38.177	21.369	44.737	1.00	7. : :	:
ATOM ATOM	921 922	CÀ	VAL	128	37.087	20.406	44.815	1.00	6. : 2	•
ATOM	923	CF CG1	VAL	12B 12E	37.485 37.999	19.147	45.616	1.00	2.:-	4 1
ATOH	924	CCS		128	38.521	19.477	44.701 45.659	1.90	7.35	•
ATOM	925	2	YAL	125	35.862	21.001	45.470	1.00	9.[_ 3.[:
ATOH	926	ů	VAL	126	35.972	21.795	46.374	1.00	5. 5-	÷
ATOH .	927	N	ALA	129	34.691	20.574	45.031	1.00	7.13	•
	928	C.	ALA	129	33.430	21.061	45.579	1.00	6. č.	ı

		mu An	r 25 12	:27:47	1996	13	
bref21				21.680	44.477	1.00 4.36	ę.
MOTA	929 CB ALA	129 129		19.876	46.202	1.00 9.11	5
ATOM		129	32.730	13.760	45.655	1.00 9.32	3
ATOM	931 O ALA 932 N ARG	130		20.106	47.329	1.00 9.76 1.00 10.55	5
MOTA	933 CA ARG	130		13.020	47.990	1.00 11.88	6
ATOM	934 CB ARG	130		18.310	48.967	1.00 11.87	6
MOTA	935 CG ARG	130	31.765	16.979	49.486	1.00 15.67	÷
ATOM ATOM	936 CD ARG	130	32.108	16.871	50.963 51.252	1.00 15.76	7
ATOM (937 NE ARG	130	33.351	17.567	52.414	.00 20.46	÷
ATOM	938 CZ ARG	130	33.669	18.135	53.449	1.00 18.08	7
ATON	939 NH1 ARG	130	32.818	18.092	52.514	1.00 21.04	;
ATOH	940 NH2 ARG	130	34.840	19.479	48.721	1.00 10.90	5
ATOH	941 C ARG	130	30.028	20.593	49.250	1.00 10.77	8
ATOM	942 0 ARG	130	29.932 29.065	18.582	48.792	1.00 12.00	7
ATOM	943 N LEU	131	27.813	18.909	49.460	1.00 13.66	6
ATOM'	944 CA LEU	131	26.640	18.313	48.688	1.00 12.73	6
ATOM	945 CB LEU	131	25.301	18.517	49.353	1.00 11.96	5
ATOM	946 CG LEU	131 121	25.035	20.002	49.487	1.00 10.47	E
ATÓH	947 CD1 LEU	131	24.252	17.783	48.531	1.00 11.69	6
HOTA	948 CD2 LEU	131	27,799	18.409	50.892	1.00 13.46	6
ATOM		131	27.702	17.204	51.128	1.00 12.81	8
MOTA		132	27.968	19.328	51.834	1.00 14.88	7
MOTA		132	27.964	18.982	53.249	1.00 16.22	6
ATOM		132	28.272	20.228		1.00 14.97	.6 .6
ATOM:	953 CB ALA 954 C ALA	132	26.638	18.324			.co å
ATOM	955 O ALA	122	25.719	19.000			7
ATOM ATOM	956 N ASP	133	26.553	17.009			5
ATOM	957 CA ASP	133	25.397	16.156			6
ATOM	958 CB ASP	122	25.868	14.755			5
MOTA	959 CG ASP	133	26.187	12.783			9
ATOM	960 OD1 ASP		25.704	14.012			3
ATOM	961 ODZ ASP	133	26.B94				6
ATOM	962 C ASP		24.655				8
ATOM	963 O ASP		23.575 25.310				7
ATOM	964 N GLU		24.742	-			6
ATOM	965 CA GLU		25.478				5
ATOM	966 CB GLU		26.589			7 1.00 17.83	6
ATOM	967 CG GLU		28.003			3 1.00 20.37	6
HOTA	968 CD GLC		28.980				
MOTA	969 OE1 GLU		28.13	5 17.77	5 58.18		
ATOH			24.78	4 18.93	3 57.06		
HOTA	971 C GLU		25.84	2 19.53			
HOTA MOTA	973 N SE		23.64				_
ATOM	974 CA SE		23.37				
ATOH	975 CB SE	P. 135	24.43				
ATOM	976 OG SE		25.62				
MOTA	977 C SE		22.99				
MOTA	978 C SE		22.36	6 22.50 7 20.6			
ATOM	979 N GL		23.28		·		
ATOM	980 CX G1		22.94				
MOTA	981 C GI		23.76 23.22				
ATOM	982 O GL		25.07				9 7
MOTA	983 N HI		25.99		32 52.3	01 1.00 19.6	
ATOM	984 CA H3	·	26.59			90 1.00 22.1	1 6
ATOM			25.7				
ATOM			26.0		62 :5.1		
ATOM			24.4	84 25.2	56 53.7		
ATCH			24.0				
ATOM			24.9	44 26.6			
ATOM		IS 127	27.0	81 22.8			
ATOM		IS 137	27.4				
ATOP ATOP		AL 138	27.5				
ATO		AL 128	28.5				43 4
ATO	995 CB V	AL 128	28.3				78 -
ATO	4 996 CG1 V	AL 138	29.7	25 24.			
ATO	997 CG2 V	AL 128	27.4				
ATO	8 998 C 1	AL 138	29.1		976 £0.		
. ATO	M 999 0 Y	13R	29.5		982 50.		36 7
ATO		AL 139	30.1			724 1.00 10.	
ATO		/AL :39	32.1 32.				78 -
ATO		/AL 139	32.				80 ÷
, ATO			31.				.80 -5
ATC			33.			615 1.00 10.	.04
ATC		VAL 139 VAL 139	33.			96100 10.	
ATC	ж 100 <u>е,</u> э	****	230	_			

bref2	lc.p	1 b		Thu	Apr 25	12:27:47	7 1996		14	
ATOH	1007	N	LEO	140	33.975	24.194	49.372	1.00	a.25	;
MOTA	1008	Cλ	LEU	140	35.027	24.306	43.384	1.00	6.26	ē.
ATOM	1009	CS	LEU	140	34.986		47.761	1.00	2.05	÷
ATOH	1010	CG.	LEO		33.726		47.000	1.00	2.50	÷
ATOH ATOH	1011		LEU	140 . 140	33.806 23.594		46.505 45.869	1.00	2.00	5
ATOM	1013	c	LEU	140	36.354		49.069	1.00	2.00 3.88	- 5 - 5
ATOH	1014	5	LEU	140	36.566		29.115		10.60	à
ATOM	1015	:3	ARG	141	37.279	23.481	48.409		11.34	:
HOTA	1016	CA	ARG	141	38.618		48.929		12.76	5
ATOM ATOM	1017	CG	ARG ARG	141 141	38.682 39.347		49.446		16.99	5
ATOH	1019	CD	ARG	141	40.849		59.793 50.697		21.35	5
ATOM	1020	NE	ARG	141	41.431		52.042		29.12	5
ATCH	1021	CZ	ARG	141	42.344		12.482		30.00	6
ATOH	1022	NHI		141	42.621		11.673		30.75	7
ATOH ATOH	1023 1024	C NH2	ARG	141 141	42.727		53.773		29.95	7
ATOH	1025	ò	ARG	141	39.632 39.289		47.804 46.639		13.10	6
ATOH	1026	N	TRP	142	40.871		48.154		13.55	7
ATOH	1027	CA	TRP	142	41.941		47.182	1.00	6.61	5
ATOM	1028	CB	TRP	142	41.754		46.354	1.00	6.92	5
ATON	1029	CG	TRP	142	41.661		47.155	1.00	9.55	5
ATON ATON	1030	CE2	TP.P TRP	142 142	40.422 40.852		47.749 48.397	1.00	9.85	Ý
ATOM	1032		TRP	142	39.145		47.788	1.00	9.31 10.67	5 5
ATOM	1033		TRF	142	42.671		47.456	1.00	10.90	ě
ATOM	1034	NEI	TRP	142	42.196		48.209	1.00	11.52	:
ATOM	1035		TRP	142	39.937		43.072		11.31	5
ATOH ATOH	1036		TRP	142	38.245		43.454		11.65	5
ATOM	1036	C	TRP	142 142	38.645 43.288		49.089 47.877	1.00 1.00	9.80 5.00	ę
ATOM	1039	Ŏ, .	TRP	142	43.380		49.076	1.00	6.66	3
ATOM	1040	И	LEO	143	44.349		47.109	1.00	5.47	7
ATOM	1041	CX	LEU	143	45.700		47.656	1.00	3.56	6
ATOH ATOH	1042	CB	LEU	143 143	46.520 46.031		47.123 47.408	1.00	2.35	÷
ATOM	1044		LEU	143	46.832		46.601	1.00	2.00 2.00	6 6
ATOM	1045		LEU	143	46.182		48.862	1.00	2.00	÷
MOTA	1046	C	LEU	143	46.310		47.158	1.00	2.00	5
ATON	1047	0	LEO	143	45.765		46.274	1.00	4.81	à
ATOM ATOM	1048	(C)	PRO PRO	144 144	47.411		47.762	1.00	2.00	7
ATOH	1050	C.A.	PRO	144	48.003 48.027		49.030 47.295	1.00	2.00	5
ATCH	1051	СВ	PRO	144	48.955		48.445	1.00	2.00	5
ATOM	1052	CG	PRO	144	48.442		49.601	1.00	2.00	6
ATOH	1053	c	PRO	144	48.821		46.011	1.00	2.00	÷
aton atoh	1054 1055	O N	PRO PRO	144 145	48.999 49.249		45.580 45.342	1.00	2.00	•
ATOH	1056	פס	PRO	145	49.058		43.645	1.00	_2.00 2.00	÷
ATON	1057	CĀ	PRO	145	50.022		44.113	1.00	2.72	÷
MOTA	1058	CB	PRO	145	50.532		43.839	1.00	2.80	÷
ATOH ATOH	1059 1060	CG	PRO	145 145	49.467 51.178		44.372	1.00	2.95	÷
ATON	1061	Š	PRO	145	51.875		44.455 45.448	1.00	4.71 3.80	÷
ATOM	1062	N	PRC	146	51.396		43.639	1.00	9.22	-
ATOM	1063	CD	PRO	146	50.738		42.347	1.90	5.90	÷
ATOM	1064		PRC	146	52.462		43.857	1.00	6.83	*
atom atom	1065 1066	CB	PRO PRO	146 146	52.358 50.972		42.622	1.00	7.88	•
ATOM	1067	c	PRC	146	53.863		42.167 43.967	1.00	5.28 3.28	÷
ATOM	1068	•	PRC	146	54.272		43.125		10.56	•
ATOM	1069	N	GLC	147	54.604	24.825	44.975		10.54	:
ATOM ATOM	1070	CÀ	GLC	14?	55.959		45.248	1.00	9.65	:·
ATOH	1071	CB CG	CT.	147	56.894 56.733		44.077	2.00	3.95	:
ATOM	:073	ΞD	GLU	147	57.477		43.456 44.166		18.10	:
ATOH	1074		GL:	147	58.335		45.061	1.06	25.12	÷
ATOM	1075		GLU	247	57.207	21.215	43.789	1.00	23.73	:
ATOH ATOM	1076 1077	ξ	CL:	14"	56.05		45.624	1.00	10.12	÷
ATCH	1077	S K	GLU	147 148	57.099 54.975		45.453 45.124		12.66	3,
ATOM	1079	ËÀ	TER	148	55.048		45.124	1.00	10.44	- :
MOTA	1080	CP	THE	148	53.77		45.178	1.00	5.61	:
ATOH	1081		TER	148	53.589	9 29.464	44.765	1.00	4.74	•
ATOM ATOM	1082	CCS	THR THR	148	53.881		45.621	:.00	2.00	÷
ATOM	1084	5	THR	148 146	55.272 54.609		43.048	1.00	5.00 4.51	•

						_	
		Thu Apr	25 12	:27:47	1996	15	
bref21c.pdb					48.503	1.00 7.63	-
. 1085 N	PRO	149	56.279	29.605 30.457		1.00 4.62	•
WION TOOK		149	57.156	29.757	49.926	1.00 5.20	4
ATOM		149	56.623	30.190	49.860	1.00 2.62	•
ATOS		149	5B.074	31.144	48.698	1.00 2.00	
ATUR COST	G PRO	149	58.050	30.869	50.498	1.00 7.00	•
ATOM COSC		149	55.742	31.600	49.737	1.00 10.E3	•
ATOM		149	55.080 55.727	31.012	51.814	1.00 7.26	ŧ
A100		150	54.916	32.048	52.464	1.00 5.42	•
	CA MET	150	55.415	33.469	52.109	1.00 5.16	•
	CB MET	150	56.864	33.812	52.512	1.00 2.00	: :
	CG MET	150	57.164	33.97B	54.292	1.00 8.51	- - - - -
	SD MET	150	57.009	25.706	54.546		į
ATOM 1097	CE MET	150 150	53.411	31.927	52.169		•
ATOM 1098	C MET	150	52.749	32.952	52.002	1.00 4.08	-
ATOM 1099	O MET	151	52.878	30.696	52.239		.
ATOM 1100	N THR	151	51.464	30.405	51.903		ŧ
ATOM 1101	CA THR	151	51.157	28.902	51.799		÷
ATOM 1102	CB THR	151	51.581	28.183	52.955	****	٤.
ATOM 1103	OG1 THR	151	51.821	28.347	7 50.609 52.922		Ę
ATOM 1104		151	50.403	30.92			•
ATOM 1105	C THE	151	49.21				
ATOM 1106	N SER		50.77				£
ATOM 1107	CA SER		49.75			6 :.00 6.46	
ATOM 1108	CB SER		50.17			3 :.30 5.38	
	OG SEF		51.02			2 1.30 74	
A, C	C SEF	152	49.56 48.98			7 1.00 10.50	
****						0 00	-
	97 7		50.14 50.0		91 53.48		
ATOM 1113 ATOM 1114			51.4		83 53.27	5 1.00 4.9	
ATOM 1115	CB HI		52.3		75 54.5		
ATOM 1116	CG HI		52.8	10 37.0	48 55-1	32 1.00 3.8 97 1.00 6.0	-
ATOM 1117	CD2 HI	5 153	52.7		68 55.1		
ATOM 111		s 153	53.5	40 35.2		** ***	
ATOM 111			53.5	73 36.5	70 56.2		
ATOM 112	O NE2 H		49.2	75 35.4			
ATOM 112		IS 153	49.0	36.			00 7
ATOM 112		LE 154	48.5			,00	go ÷
ATOM 112	•	LE 154	48.	201 34.			CO ÷
ATOM 112		LE 154	48.	493 33.		126 1.00 2.	06 -
ATOM 112 ATOM 112				906 33.	883 49.	376 i.00 2.	sc f
		LE 154			727 48.	512 1.00 2.	.00 -
		LE 134				669 1.00 2.	.05
M		LE 154		702 34. 165 33.	897 51.	564 1.00 Z	.00
ATOM 11 ATOM 11		ILE 154	46.	068 35	391 49.	885 30 4	. 20
	31 N	ARG 155	44		.649 49.		
	32 CA	ARG 155	44		.149 49		
	33 CB	ARG 155		.596 37	.920 51		
	134 CG	ARG 155		.382 39	.399 50	848 1.00 14	
ATOH 17	135 CD	ARG 155 ARG 155		.206 40			
ATOM 1	136 NE			.832 41			5.45
ATOM 1	137 CZ	ARG 15		3.71E 41			B. 94
		ARG 15	5 44			1.725 1.00 2 1.668 1.00	5.22 **
240 000		ARG 15	5 4		4.962 48		5.12 5
440	140 5	ARG 15	5 4			8.739 1.00	5.28
		TYP. 15	6 4			7.651 1.00	5.24
	142 ' N 1143 CA	TYR 15		2.077 3		a.011 1.00	5.18
	1144 CB	TYR 15			1.665 4	8.339 1.00	10.15
•••	1145 CG	TYR 15	, ,		1.591 4	0.651	13.49
	1146 CD	TYF. 1				a a 68	16.29
	1147 CE	TYR 1			31.012	7.341 :.CC	14.4
	1148 CD	2 TYF. 1		44.899	30.288	17.646	14.12
ATOM	1:49 CE		, ,	45.346	30.240	19 960 1.22	14.23
ATOM	1150 CZ		-	46.495	29.56?	49.289 :	12.2
ATOM	1151 OH			40.736	34.600	47.365	7.25
ATOM	1152 C				35.204	48.256	8.15
ATOM	1153 0		.56	40.284	34.531	46.107	••••
HOTA	1154 N		.57 .57	38.979	35.038	45.720 -1.50	4.80
- ATOM	1155 C		157	39.036	36.256	44.81335	4.31
MOTA	1156 C		157	37.632	36.826	44.614	
ATOH	1157		157	37.577	38.030		
MOTA			157	37.56E	39.171		
ATOM			157	37.486	37.826	AA 997	. 4.19
ATOH			157	38.254	33.920 33.290	44.102	10.44
HOTA	1161		157	38.799	33.470		

bref	21c.p	ф		Thu	Apr 25 1	2:27:4	7 1996		16	
ATOH	1163	N	VAL	150	37.022	33.675	45.406	1.00	5 40	
ATOH	1164	CA	VAL	158	36.196	32.627	44.842	1.00	5.40 6.15	; E
ATOH	1165	CB	VAL	158	35.459	31.877	45.934	1.00	3.03	÷
ATOM	1166		VAL	158	34.655	30.759	45.391	1.00	4.03	÷
ATOH	1167		VAL	158	36.429	31.369	46.962	1.00	3.63	4
MOTA MOTA	1168 1169	C	VAL	158	35.154	33.186	43.878	1.00	9.07	5
ATOH	1170	r:	VAL ASP	158 159	34.400	34.103	44.208		10.93	•
ATOM	1171	Ċ.	ASP	159	35.114 34.147	32.622 33.012	42.681		10.57	
ATOM	1172	CB	ASP	159	34.828	33.112	41.672 40.327		10.09 11.17	:
MOTA	1173	CG	ASP	159	33.873	33.473	39.256		13.89	÷
ATOM	1174	OD1	ASP	159	33.863	32.822	38.172	1.00		•
ATOM	1175		ASP	159	33.093	34.407	39.547	1.00		
ATOM	1176	C	ASP	159	32.997	31.985	41.575	1.00	9.91	÷
ATOM ATOM	1177 1178	N	ASP	159	33.227	30.761	41.474	1.00		÷
ATOM	1179	Ċ	VAL VAL	160 160	31.766 30.582	32.485	41.637	1.00	7.83	
ATOM	1180	CB	VAL	160	29.637	31.642	41.535 42.755	1.00	5.49	
ATOM	1181		VAL	160	28.512	30.738	42.742	1.00	3.19 3.00	4
ATOM	1182		VAL	160	30.362	31.602	44.091	1.00	2.00	÷-
ATOM	1183	C	VAL	160	29.842	32.132	40.286	1.00	6.19	5
MOTA	1184	0	VAL	160	29.364	33.280	40.238	1.00	8.22	=
ATOM ATOM	1185 1186	n Ca	SER	161	29.835	31.272	29.300	1.00	7.72	7
ATOM	1187	CB	SEP. Ser	161 161	29.104	31.475	38.046	1.00	8.29	÷
ATOM	1188	õs	SER	161	30.094 30.637	31.628 32.951	26.891 26.934	1.00		•
ATOM	1189	c	SER	161	28.161	30.275	27.938	1.00	7.24	•
ATOM	1190	၁	SER	161	28.601	29.117	28.024	1.00	7.94	₹.
ATOH	1191	N	ALA	162	26.885	30.605	37.791	1.00	9.16	:
MOTA	1192	CY	ALA	162	25.793	29.612	27.784		12.39	÷
ATOM ATOM	1193 1194	CB	ALA	162	24.689	30.055	38.736	1.00		÷
ATOM	1195	0	ALA	162 162	25.199	29.394	36.379	1.00		÷
ATOM	1196	N	CLY	163	25.593 24.220	30.044 28.499	35.406 36.369	1.00 1		3
ATOM	1197	CA	CLY	163	23.598	27.913	35.150	1.00 1		7
ATOM	1198	С	GLY	163	22.561	28.761	34.370	1.00		÷
atom	1199	0	CLY	163	21.996	29.729	34.897	1.00		3
ATOM	1200	N	ASN	164	22.416	28.231	23.146	1.00		5
ATOM ATOM	1201 1202	CY	ASN	164	21.56B	28.664	21.994	1.00 9	0.00	÷
ATOM	1202	CB	ASN ASN	164 '164	20.505	27.625	31.685		0.00	÷
ATOM	1204	OD1	ASN	164	19.337 19.322	27.730 27.033	32.702 33.726	1.00 9		÷
ATOM	1205		ASN	164	18.334	28.580	32.511	1.00 9		7
MOTA	1206	С	ASN	164	20.728	29.929	32.186	1.00		5
MOTA	1207	9	ASN	164	19.665	29.874	32.817	1.00 9		
ATOM ATOM	1208	N	GLY	165	21.227	31.004	21.601	1.00 9		å T
ATOM	1209 ·	Cy	GLY-	165 165	20.544	32.321	31.514	1.90 9		÷
ATOM	1211	5	GLY	165	20.274 19.470	33.048 33.98?	32.859 32.927	1700 9		÷
ATOM	1212	N	ALA	166	20.941	32.706	23.967	1.00 9		:
ATOM	1213	CX	ALA	166	20.602	33.406	35.242	1.20 9		÷
MOTA	1214	CB	ALA	166	19.550	32.609	35.015	1.00 9		4
ATOH	1215	c	ALA	166	21.795	33.647	36.188	1.00 9		÷
ATOM ATOH	1216 1217	N Ū	ALA	166	21.646	33.653	37.421	1.00 9		3
ATOM	1219	CA	GLY	167 167	22.964 24.167	33.851	35.614	1.00 1		7
ATOM	1219	c	GLY	157	24.110	34.185 35.688	36.400 36.704	1.00 1		Ē
ATOM		0	GLY	167	23.701	36.494	35.863	1.00 1		÷
ATOM	1221	N	SER	168	24.504	36.099	37.909	1.00 i		3 -
ATOM	1222	CA	SER	168	24.434	37.545	39.252	1.00 1		•
ATOM	1223 1224	CB	SER	168	23.543	37.788	39.465	1.00 2	21.81	÷
ATOM	1225	∞ c	SER SER	158 168	22.558	38.750	39.118	1.00 2		•
ATOH	1226	ŏ	SER	168	25.820 25.961	38.200 39.425	38.537 38.506	1.60 1		:
ATOH	1227	:3	VAL	169	26.808	37.379	28.789	1.00 1		•
ATOH	1228	CA	VAL	169	28.218	37.762	39.149	1.00 1		÷
ATOH	1229	CB	VAL	169	28.719	39.141	38.657	1.00 1		•
ATOH ATOH	1230	CCI		169	30.262	39.261	38.769	1.60 1	6.57	•
ATOH	1231 1232	CG2	VAL	169	28.407	39.441	27.197	1.00 1		÷
ATOM	1233	5	VAL	169	28.387 28.222	37.796	40.666	1.50 1		÷
ATOM	1234	N	GLN	170	28.725	38.845 36.631	41.313 41.201	1.00 1		
MOTA	1235	CA	CLN	170	28.905	36.475	42.647	1.00 1		
MOTA	1236	CB	GLN	170	27.928	35.459	43.23:	1.00 1		;
ATOM	1237	SC	GLN	170	27.921	35.468	44.766	1.00 2		
ATOM ATOM	1238 1239	CD	CLN	170	28.202	34.091	45.365	1.00 2	6.34	÷
ATOM	1240		GLN GLN	170 170	27.369	33.192	45.247	1.00 2		÷
				170	29.335	33.86%	45.004	1.00 2	έ.12	-

				97b-11	Anr	25 1	2:27	: 47	1996	i	17		
oref21	Lc.pd	b		Thu			36.0		43.04		14.76	ě	
ATOM	1241	c	GLN	170		0.344	34.8		42.81	9 1.00	10.49	5	
MOTA	1242	0	GLN	170 171	3	1.101	36.9	32	43.67		13.88	į	
MOTA	1243	N	ARG ARG	171	3	2.477	36.6		44.09		13.53	6	
MOTA	1244	CA -	ARG	171	3	3.441	37.7		43.57		12.56	5	
MOTA	1245 1246	CG	ARG	171		3.54			41.42		13.31	5	
ATOM ATOM	1247	CD	ARG	171	-	34.460 34.620			39.96	9 1.00	10.48	7	
ATOM	1248	NE	ARG	171		25.27	37.	932	39.37	6 1.00		5 7	
ATOM	1249	· CZ	ARG ARG	171		25.84	1 3B.	899	40.10			÷	
ATOM	1250 1251	NH2	ARG	171		25.30		000 543	38.04 45.6	:	15.23	5	
ATOM ATOM	1252	C	ARG	171		22.5B 31.70		062	46.3	50 1.00	17.57	3	
ATOM	1253	0	ARG	171		33.65		916	46.1	31 1.00	11.99	7 5	
MOTA	1254	И	VAL	172		33.81	6 35.	727	47.5		9.19 0 10.74		
MOTA	1255 1256	CA CB	VAL	172		33.47		260	48.0	_		_	
MOTK MOTK	1257	CG	VAL	172		33.30		. 155 . 745	47.2		0 11.43		
ATOM	125B	○	2 VAL	172		32.23		966	48.0	31 1.0			
ATOM	1259		VAL	172 172		36.1	4 35	.39B	47.5		0 10.28		
ATOM	1260		CTO	173		35.3	55 36	.778	49.0		0 14.2		
ATOM	1261 1262			173	3	36.6		.041	49.6 50.2		0 17.0		
MOTA MOTA	126		CLU	173		36.7		.463		173 1.0	0 21.9	6 5	
ATOM	126	4 CC		173		37.2		. 903	49.	573 1-0	0 25.1		
ATOM	126		GLU	17:		37.7	09 41	. 647	48.		00 23.2 00 26.8		
ATCH	126 126	-	2 GLU	_		37.3		. 206		779 1.	00 13.6		
atom atom	126		GLU	17		26.9 36.0		5.016 5.720		592 1.	00 13.2	4 8	
ATOM	126		CTU			38.0		5.40	3 50.	719 1.	00 14.3		
ATOM						38.	57 3	4.40	6 51.		00 14.9 00 12.1		
HOTA		_		7 7 4		38.	_	3.08 ¹ 2.38		966 l. 689 l.	00 13.0		
MOTA MOTA		73 C	G2 ILI	E 17		40.º		2.18		893 1.	00 13.	75 6	
ATOM	12		G1 ILI			36.	625 3	2.62	9 49		00 12.	34 6 60 6	
ATOM			D1 IL		14	39.	802 3	5.05			.00 15.		3
ATOM					74			5.69 4.95			00 16.		7
ATOP ATOP			i LE		75			5.58			.00 16.	56	é
ATO	4 12		A LE	_	75 75			35.97	2 55	.609 1	.00 15.	-	6 6
ATO			CB LE	_	75	40.	467	37.4			.00 16. .00 14.		6
ATO			CD1 LE		75			38.13 37.6			.00 16.		5
ATO		83	CD2 LE	ני טיב	75			34.7		.031 1	.00 16.	.41	ó
ATO	M 12		c LE		.75 .75	42	.322	33.5	35 53		-00 17		2 7
ATO	M 17		o Li p G		76	43	.542	35.4			.00 17	. 66	6
ATO ATO		286 287		בט ז	176		.842	34.7	93 5	3.946 7 4.145 1	.00 21	.33	5
210		288	CB G		176		.000 .963	36.4		5.432	1.00 20	. 62	5
ATC	M 1	289			176 176		.145	37.5	125 5		1.00 22		S
λTC		290 291	OE1 G		176		.330	38.3	_		1.00 23 1.00 23		9
ATC ATC		292	OE2 G	LU	176		.117	38.6			1.00 12		ŕ
AT		293	•		176 176	4:	5.068 1.875	33.	686	6.062	1.00 1		ş
AT		294		LU Ly	177	4	5.574	32.	545	4.259		9.95 B.11	7
λŢ		.295 .296		LY	177		5.839	31.		55.001 54.827		7.43	÷
aT.		297	C (GL Y	177		4.73E 4.990			54.962	1.00	9.00	ð
λT	OM 3			CLY	177 178		3.534		787	54.493		7.50	7
λT		1300	-	arg Arg	178		2.398			54.316	1.00	8.26	•
		1201		ARG	178		1.116			54.477 55.616	1.00 1	4.76	4
		1362	CG	A P.G	178		1.154		, 621 , 920	56.950	1.00 2	0.12	÷
λ1	МО	1203		ARG	178 178		1.904	31.	. 285	57.960	1.00 2	4.00	7
		1304	ne Cz	arg arg	178	٠.	12.40C	22	.509	58.135	1.00 2		+
		1305			178		42.004		. 543	57.381	1.00		7
	TOM TCH	1307	MR2	ARG	178		43.35C 42.375		.68? .216	52.954	00	7.67	•
3	TOM	1308	S	ARG	178 178		42.375 42.486		.881	11.938	1.00	8.54	3
	TOH	1309		ARG THF.	179		42.205	27	.906	52.934	1.30	7.97 9.51	1
	HOT	1312		THR	179		42.14		.157	51.689 51.542	1.00	9.72	
	TOM	1312	CB	THR	179		43.379	_	3.703	52.818	1.00	12.75	•
2	MCT.	12.		THR	179 179		44.55	2 2 2	7.162	51.073		6.02	
	NOTA NOTA	121		THR	179		40.87	2 20	6.265	51.641 51.155		14.19 15.46	
	ATOH	131	6 3	THR	179		40.89		5.102 6.831	52.151		13.36	
	ATOM	131		CLU	180		38.46	9 2	6.188	52.162		12.94	

bref2	lc.pd	D o		Thu	Apr 25 1	2:27:47	1996		18	
ATOH	1319	CB	GLU	180	38.329	25.242	:3.340	1.00	14.42	÷
ATOM	1320	CG	GLU	180	37.418	24.052	53.048		18.37	5
ATOM	1321	CD	CLU	180	37.112	23.255	14.299		19.86	÷
HOTA	1322	OE1	GLU	180	36.526	23.877	55.216	1.00	21.31	9
ATOM	1323	OE2		180	37.473	22.045	:4.387		18.58	ö
MOTA	1324	Ξ	GLU	180	37.442	27.288	52.301	1.00	14.56	÷
ATOH	1325	С	CLU	180	37.742	28.385	52.782		14.76	ટ
ATOH	1326	N	CYS	181	36.209	26.986	\$1.934		13.82	7
ATOM	1327	CA	CYS	181	35.149	27.967	22.034		12.64	•
ATOH	1328	CB SG	CYS	181	35.382	28.990	10.936		12.66	
ATCH ATCH	1329	C	CYS	181 181	33.911 33.766	29.643 27.287	50.288 51.905		13.38	1 5
ATON	1331	ò	CYS	181	33.606	26.383	11.086		13.84 15.56	
ATOM	1332	N	VAL	182	32.790	27.639	12.743	1.00	13.12	8 7
MOTA	1333	CA	VAL	182	31.478	26.985	:2.613		11.97	6
ATOM	1334	CB	VAL	182	31.093	26.072	53.820	1.00	9.54	5
HOTA	1335		VAL	182	32.003	26.307	55.003	1.00	10.81	6
ATOM	1336		VAL	182	29.669	26.255	54.193	1.00	8.15	5
ATOM	1337	Ç	VAL	182	30.353	27.910	52.171		12.84	6
ATOM	1338	0	VAL	182	29.930	28.828	52.872		13.90	9
ATOM ATOM	1339 1340	N CA	LEU	183 183	29.954 28.921	27.715	50.930		11.79	7
ATOM	1341	CB	LEU	183	29.052	28.515 28.500	10.33B 48.817		12.76	ś
ATOH	1342	cc	LEU	183	30.193	29.380	43.350		11.81	5 5
ATOM	1343		LEU	183	20.636	28.956	46.970	1.00	8.24	6
ATOM	1344		LEU .	183	29.734	30.852	45.398		13.91	5
ATOM	1345	C	LEU	183	27.564	28.027	53.778		14.24	5
ATCH	1346	0	LEU	183	27.139	26.887	22.514		15.09	5
ATOH	1347	Ħ	SER	184	26.897	28.909	::.487		14.69	7
ATOM	1348	CX	SER	184	25.583	28.642	11.998		16.60	6
ATCH ATCH	1350	CB OG	SER SER	184 184	25.558 26.601	29.046 28.369	23.461 24.144		17.40	6
ATOH	1351	c	SER	184	24.671	29.537	51.208		18.79	8 6
ATOM	1352	ō	SER	184	25.115		33.679		18.84	3
ATOH	1353	N	ASN	185	23.422	29.140	51.048		18.50	ž
ATOH	1354	Cλ	Naa	185	22.479	29.998	50.338	1.00	21.04	6
ATOH	1355	CB	ASN	185	22.463	31.389	51.008		27.82	6
ATOM	1356	CC	ASN	185	22.274	31.330	52.546		33.52	6
ATOH ATOH	1357 1358		asn asn	185 185	22.899 21.392	32.131 30.414	\$3.270 \$3.050		36.61 36.25	9 7
ATOM	1359	c	ASN	185	22.641	30.149	49.794		19.48	6
ATOM	1360	Ó	ASN	185	22.967	31.228	43.263		18.46	å
MOTA	1361	N	LEU	186	22.329	29.062	48.093		17.53	7
ATOM	1362	CX	LEU	186	22.384	28.972	46.635		15.82	6
ATOM	1363	CB	LEU	186	23.632	28.170	46.201		14.99	6
ATOM ATOM	1364 1365	CC.	LEU	196	25.006	28.318	45.924		15.24	5
ATOM	1366		LEU	186 186	25.951 25.689	27.172 29.663	45.540 46.637		13.51	5
ATOH	1367	ε	LEU	186	21.069	28.230	45.261		16.15	5
ATOH	1368	e	LEU	186	20.445	27.566	47.116		16.68	à
ATCH	1369	N	ARG	187	20.611	28.382	45.019		15.66	ž
ATOH	1370	CA	ARG	187	19.371	27.749	44.576	1.00	14.27	÷
ATCH	1371	СВ	ARG	187	18.845	28.415	43.327		14.63	é
ATCH ATCH	1372 1373	CG	ARG	187 187	19.153 18.525	29.870	43.263		19.73	÷
ATOM	1374	NE	ARG	187	19.216	30.512 30.197	42.054 43.905		23.74	5
ATOH	1375	cz	ARG	187	18.997	29.109	43.060		26.90	÷
ATOH	1376		ARG	187	18.110	28.181	42.430		29.72	į
ATOH	1377	NH 2	A P.G	187	19.594	29.001	35.874		31.36	7
ATOH	1378	C	ARG	187	19.528	26.264	44.298	1.00	16.07	ș.
ATON	1379	2	ARG	187	20.608	25.788	43.872		14.20	3
MOTA HOTA	1380 1381	CA CA	GLY	138 188	18.413	25.55?	44.483		15.94	:
ATOH	1382	ç.	CLY	188	18.369 18.304	24.124 23.695	44.291 42.842		17.35	ę 5
ATOH	1383	5	GLY	188	17.760	24.421	42.016		20.69	÷.
HOTA	1384	N	ARG	129	18.823	22.492		1.00	20.12	;
MOTA	1385	CA	ARG	129	18.891	21.885	41.239		20.15	÷
ATOM	1386	CB	AP.G	169	17.495	21.501	4:,721	1.30	22.54	•
ATOM	1387	CC	ARS	189	17.450	20.203	27.871		25.04	5
ATOM ATOM	1388	CD	APG	139	17.780	20.44?	11.38C		26.72	*
ATOM	1389 1390	NE CZ	AP.G ARG	169 189	18.576 18.076	19.373	37.756		27.40	!.
ATOH	1391		AFG	189	16.762	18.215	17.299 17.405		29.60	÷ ′
ATOH	1392		ARG	129	18.886	17.342	15.686		29.39	;
ATOH	1393	c	ARG	189	19.610	22.773	41.218		20.12	•
ATOM	1394	3 .	ARG	199	19.406	22.605	33.017	:.00	21.60	+
ATOM ATOM	1395	N	THR	130	20.432		42.693		13.12	:
A. U.	1396	CA	THR	190	21.195	24.611	33.312	1.00	17.05	÷

								17 19	396		19		
bref21	c.pd	Ь		Thu	Apr 2				. 460	1.00 1	5.30	÷	
•	1397		THR	190		494 370	25.94	6 41	.226	1.00 1	8.33	÷ •	
MOTA	1398	oGl	THP.	190 190		869	26.98	4 29	.390	1.00 1	7.97	÷	
ATOM	1399	CG2 C	THR	190		576	24.01		.612 .428	1.00 1	7.12	;	
MOTA HOTA	1400	õ	THR	190	23	.024 .262	24.46	0 20	.563	1.00 1	8.62	÷	
ATOM	1402	N	arg arg	191 191	24	.621	24.01		. 253	1.00	23.05	į	
ATOM	1403 1404	CA CB	ARG	191		.783 .243	23.68	77 24	5.278	1.00	28.15	.	
MOTA MOTA	1405	CC	ARG	191 191		.802	22.0	32 -	5.502	1.00	31.41	ī	
MOTA	1406	CD NE	ARG ARG	191		. 824	21.2	3	5.274 4.236	1.00	30.79	÷	
ATOM ATOM	1407	CZ	ARG	191	21	.677 8.650	22.2	61 2	4.198	1.00	30.20	7	
ATOM	1409		ARG ARG	191 191	3.	7.562	20.4		3.210 8.627		15.56	5	
ATOM ATOM	1410	_	ARG	191	2	5.471 5.174	25.2 26.3		0 21	1.00	14.09	5 7	
ATOM	1412	•	ARG	191 192	2	6.495	24.5	50	9.41°	1.00	11.03		
ATOM	1413		TYR TYR	192	2	7.380	25.9 26.9		41.41	1 1.00	10.18	ę.	
ATOH ATOM	141	CB	TYP	192	•	7.283	26.	759	41.89	0 1.00	13.18	5	
ATOM	141		TYR 1 TYR	192 192	;	26.10	3 28.		42.10 42.43	5 1.00	14.60	5	
MOTA MOTA	141	B CE	1 TYP.	192	2	24.94 24.83	9 28. 7 26.		42.03	9 1.00	14.10) ÷	
ATOM	141	9 Ct	OZ TYP	19	2	23.67	D 26.	840	42.37		15.9	4 .	
ATOM	142		E2 TYR Z TYR	19	2	23.74		217 972	42.7	55 1.0	0 14.2	4 =	
MOTA MOTA		22 0	H TYP			22.63	9 25	.55?	29.5	OB :.0	0 12.3 0 13.8		
ATOM	142					29.13	14 24	.402 .491	29.6	54 2.0	0 10.4	5	
MOTA MOTA			TH	R 19		29.5 30.8		.230	38.5	35 1.0	0 7.0		
ATOM	14		A TH		93	31.0	36 26	.551	27.0			14 3	
ATO:		28	OG1 TH	R 1	93	30.0		.130	36.5	529 1.0			
. ATO	4 14	29	CG2 TH		93 93 ·	31.6	88 27	1.182	39.			20 3) ·
ATO:			C TH	R 1	93	31.3		8.369 6.682	40.	113 1.	00 8.	39) 5
ATO	M 14	432	N BI		94	33.4	187 2	7.571					5
ATO	M 1	433 434			94	33.		7.133 6.778		427 1. 900 1.	00 B.	68	•
ATO		435	CG P		94	32. 31.		5.492	42.	723 1.			÷
ATC	M 1	436	CD1 P		194 194	31.	222 2	7.735		.519 1. .150 1	00 8	.14	5
ATC		437	CE1 P	HE	194 194		957	27.41	2 43	.946 1		.23 .24	s ÷
AT	DM 1	439	CE2 F		194	29.	482	26.12 ¹ 27.56			.00 5	. 55	Ē
TA TA		1441	C 1	PHE	194 194	34 . 35 .		26.59	4 29	.934 1		.55	3 :
AT	OH	1442		PHE ALA	195	35	. 646	28.63 28.78			.00 4	1.57	•
		1444	CA	ALX	195		.057 .173	29.29	8 23	.047	00	3.31 3.32	
A.T	MO	1445	CB.	ALA ALA	195 195	37	.747	29.75				2.79	:
	1407 1407	1446	Ö	ALA	195		.101	30.69	39 4	1.773	1.00	2.76	7
	POH	1448	N	VAL VAL	196 196		.839	30.3	98 4	2.689		2.78 2.30	
	Tom Tom	1449	CB	VAL	196		0.522 0.237	29.6 30.2		5.214	1.00	2.00	÷
	TOM	1451	CG1	VAL VAL	196 196		0.117	28.1	73	3.869 11.995	1.00	4.04 2.07	ŧ
	TON	1452	_	VAL	196		1.000	31.0		10.931	1.00	5.97	3 7
	MOT.	1454	. 0	VAL	196 197		1.418	32.1	121	42.629	1.00	2.00	ż
,	TOH	145		arg arg	197	4	2.687	32.0		42.129 41.069	1.00	2.30	•
	MOTA MOTA	145	7 CB	ARG	197		12.279 11.384	35.	010	41.574	1.00	2.30	ē Ā
	MOTA	145		ARG ARG	197 197		41.062	36.	000	40.504	1.00	3.47	7
	ntom Atom	145		ARG	197		40.345 40.269		124 323	49.517	1.00	2.30	
	ATOM	146		ARG 1 ARG	197 197		40.846	, 3B.	550	39.357	1.00	2.90	•
	MOTA	140		2 ARG	197		39.763	33.	. 339 . 489	43.362	1.00	2.09) :
	MOTA	14	64 C	ARG ARG	197		42.68	5 33	. 926	44.280			3 -
	MOTA	14 14		ALA	198		44.71		.490 .996	44.550	3.00	2.4	7 5
	ATOH	14	67 CI				46.42	0 32	.903	45.072	1.00		
	MOTA MOTA		168 CT		198		46.24	1 35	.326	43.34		2.1	8 3
	ATOM	14	70 0	ALJ			46.61	2 35	. 901	45.61	2 :.00	0 3.7 0 3.3	4
	ATOM		471 N 472 C	ARC A ARC	199		47.2	se 37	7.171 B.304	45.69 45.57		c 2.5	20
	ATOM			F AR			46.22		9.664				

.

bref2	lc.p	1 b		Thu	Apr 25 1	2:27:47	7 1996		20	
ATOM	1475	·CD	ARG	199	45.938	40.737	45.915	1.00	9.17	5
MOTA	1476	NE	ARG	:99	46.306	42.120	45.579	1.00 1		
ATOM	1477	CZ	ARG	199	46.187	42.662	44.363	1.00 1	.5.94	•
ATOM	1478		ARG	199	45.738	41.950	43.339	1.00 1		7
ATON	1479		ARG	: 99	46.417	43.954	44.181	1.00 1		•
ATOM ATOM	1480 1481	c	ARG	199 199	48.030 47.555	37.321 36.916	47.023	1.00	5.53	5
ATOM	1482	N	MET	200	49.243	37.864	48.058 46.984	1.00	8.08	:
ATOM	1483	CA	MET	200	50.015	38.096	48.197	1.00	5.53 4.85	5
ATOM	1484	CB	MET	290	51.484	38.423	47.891	1.00	3.73	3
ATOM	1485	CG	MET	200	52.311	37.271	47.346	1.00	4.67	ě
ATOM		· SD	MET	200	53.261	36.286	48.538	1.00	9.73	1.5
ATOM	1487	ĆΣ	MET	200	52.284	34.975	48.812	1.00	2.41	5
ATOM ATOM	1488	C	MET	200 200	49.340 49.074	39.289	48.874	1.00	7.02	5
ATOM	1490	N	ALA	201	49.050	40.314 39.126	48.228 50.167	1.00	6.42	3
ATOM	1491	CA	ALA	201	48.369	40.140	50.962	1.00 1	7.96	5
ATOM	1492	CB	ALA	201	47.633	39.474	52.117	1.00	4.85	ě
ATOH	1493	С	ALA	201	49.261	41.285	51.464	1.00 1		5
HOTA	1494	٥	ALA	201	50.488	41.204	51.453	1.00 1	3.02	5
MOTA	1495	N	GLU	202	48.622	42.360	51.901	1.00 1		7
ATOM	1496	CX	CILU	202	49.336	43.527	52.421	1.00 1		5
ATOM ATOM	1497 1498	CB	GLU GLU	202 202	48.428 47.650	44.756 44.796	52.276	1.00 2		5
ATOM	1499	CD	GLU	202	48.360	45.575	50.914 49.757	1.00 2		ş Ş
ATON	1500		GLU	202	49.466	46.164	49.968	1.00 3		÷
ATOM	1501	OE2	GLU	202	47.774	45.613	48.634	1.00 3		Ē
ATOM	1502	C	GLU	202	49.785	43.317	53.903	1.00 1		÷
ATOM	1503	0	CLU	202	49.394	42.327	54.561	1.00 2		3
ATOM ATOM	1504 1505	CD N	PRO	293	50.696	44.173	34.411	1.00 1		:
ATON	1506	CA	PRO	203 203	51.150 51.322	44.143 45.290	55.820 53.714	1.00 1		6
ATOM	1507	CB	PRO	203	51.339	46.367	54.782	1.00 1		6 6
ATOM	1508		PRO	203	51.846	45.538	55.984	1.00 1		5
MOTA	1509	C	PRO	203	52.740	44.892	53.356	1.00 1		6
ATOH	1510	0	PRO	203	53.537	45.743	52.985	1.00 1		3
ATOM	1511	N	SEP.	204	53.073	43.623	53.540	1.00	8.98	7
ATOM ATOM	1512 1513	CA CB	SEP.	294 294	54.420 54.674	43.146	53.222	1.00 1		5
ATOH	1514	OG	SER	204	55.093	41.764 41.856	53.868 55.224	1.00 1		5 3
ATOH	1515	c	SER	204	54.686	43.060	51.696	1.00 1		5
ATOM	1516	0	SER	204	55.632	43.660	51.152	1.00 1		Ē
ATOH	1517	N	PHE	205	53.816	42.309	51.031	1.00 1		7
ATOM	1518	CX	PRE	205	53.901	42.074	49.624		8.76	ě
ATOH ATOH	1519	CB	PHE	205	53.911	40.573	49.390	1.00	8.70	5
ATOM	1520 1521	CDI	PHE	205 203	55.073 54.854	39.862 38.885	50.052	1.00 1		ē
ATOM	1522		PHE	205	56.388	40.136	51.029 49.668	1.00 1		ž Ž
ATOM	1523		PHE	235	55.921	38.198	51.599		7.25	÷
ATOM	1524	CE2	PHE	235	57.452	39.449	50.237		1.11	Ė
MOTA	1525	cz	PHE	275	57.215	38.480	51.202	1.00	8.98	7
ATOM	1526	C	PHE	205	52.743	42.728	48.900	1.00	8.87	÷
ATOM ATOM	1527 1528	N	PHE	295 206	51.756 52.913	43.147 42.864	49.508 47.592	1.00	9.29	=
ATOH	1529	ĊA.	GLY	206	51.892	43.459	46.751	1.00 L.00	8.57 8.14	÷
ATOM	1530	c	GLY	296	52.007	42.855	45.367	1.00	7.24	÷
MOTA	1531	9	GLY	206	32.956	42.124	45.081	1.00	8.58	
MOTA	1532	. 14	GLY	207	51.020	43.080	44.520	1.00	7.18	=
ATOM	1533	ĊY.	GLY	237	51.122	42.334	43.176	1.00	7.59	÷
ATOH ATOH	1534 1535	5	SLY	297 297	49.825	42.355	42.430	1.00	4.80	÷
ATOH	1536	N	GLY PHE	237	48.857 49.784	41.332	42.656	1.00	5.05 3.71	3
ATOM	1537	CA	PRE	238	48.621	41.069	40.805	1.00	3.73	- -
ATOH	1536	CB	PHE	238	49.034	41.071	39.322	1.00	6.46	÷
ATON	1539	CC	PHE	228	50.158	42.013	39.011	00	6.53	<u>.</u>
ATOH	1540		PHE	238	49.956	43.377	39.004	1.00	5.75	÷
ATOM ATOM	1541		PHE	208	51.441	41.530	28.793	1.00	9.68	•
ATOM	1542 1543		PHE	238 298	51.022 52.506	44.253	18.790 18.579	1.00	7.99	•
ATOM	1544	CZ	PRE	236	52.292	42.393	28.580	1.00	8.12 6.95	÷
ATOM	1545	č	PHE	206	47.896	39.767	41.149	1.00	2.21	: :
ATOM	1546	÷	PHE	208	48.463	38.823	41.704	1.00	2.77	;
ATOM	1547	34	T7.P	209	46.602	39.780	49.878	1.00	2.30	•
ATOM .	1548 1549		TF.P	209	45.766	38.625	41.073	1.00	3.7:	3
ATOM	1550	CB	TRP TRP	209 209	44.302 43.505	38.979 39.378	40.811	1.00	4.79	•
ATOM	1551		TP.P	209	43.305 43.15€	39.378	42.011	1.00	4.76	:
ATOH	1552		TPP	209	42.347	39.315	43.959	1.00	2.87	•

					1nr 2	25 12	: 27 : 4	7 199	6		21		
bre£21	c.pd	0		Thu			37.234			. 00	2.00		
ATOM	1553	CE3	••••	209		.445	40.586		40 :	.00	2.25	5 ·	
MOTA	1554	CD1		209 209		.211	40.554			.00	2.00 4.70	į	
ATOM	1555	ME1 CZ2		209	41	.825	36.809				4.57	5	
MOTA	1556 1557	czs	TRF	209	42	. 933	36.729			1.00	4.76		
HOTA MOTA	:55B	CH2	TPP	209		2.131 5.222	37.60	4 49.0	23	1.00	3.17	ē 3	
ATOM	1559	c	TRP	209 209		6.556	37.96	9 33.		1.00	3.26 4.99	:	
MOTA	1560	9	TRP SER	210	4	6.235	36.33	5 40. 9 29.		1.00	5.25	ŧ	
MOTA	1561 1562	CA	SER	210		6.650	35.26			1.00	4.60	÷	
ATOM ATOM	1563	CB	SER	210		6.903 5.683	32.36	3 40.	660	1.00	3.40	ē Š	
ATOM	1564	OG	SEP.	210	4	5.571	34.96	8 38.	515	1.00	9.36 13.86	•	
ATOM	1565	c	SER	210	4	4.564	35.68		398 735	1.00	10.41	7	
MOTA	1566 1567	ĸ	ALA	211		15.832 14.895	23.92	23 26.	757	1.00	10.30	5	
ATOM.	1568		ALA	211		45.639	32.5	71 25.	768	1.00	10.37	á	
ATOM	1569		ALA ALA	211		43.893	32.5	58 -	.567 .706	1.00	14.78	à	
ATOM	1570 1571	_	ALA	211		44.160		63 37	.C14	1.00	9.47	:	
atom Mota	1572	N	TRP	212		42.736 41.791	31.4	33 37	.734	1.00			
ATOM	1573		TP.P TP.P	212 212		40.447	31.4	34 26	.993	1.00		_	
MOTA	1574 1573			212		39.723			.030	1.00			
MOTA MOTA	157		2 TPP	212		39.061			.547	1.00	2.33		
MOTA	157	7 CE	2 TPP	212		18.86	33.0)63 E3	.367	1.00	2.00 0 2.00) 5	
ATCH	157		3 TRP	21		29.56	6 33.5		867 5.219	1.00			
MOTA			1 TRP	21		38.85			3.259 3.259		0 4.5	5 🕏	
MOTA MOTA		1 C	Z2 TP.P	21.		27.81			3.167	1.0			
ATOM	158		Z3 TRF	21 21		27.64	0 35.	111 3	9.671	1.0			
ATOM		_	H2 TRP TRP			42.34	0 30.		7.771 7.043	1.0		3 3	1
ATOH ATOH				51		43.26		696 3 145 3	8.598	1.0	0 11.1	6 7	
ATON	·	86 <i>t</i> :				42.2		747 3	3.64	2 2.0	0 11.6		
ATO	1 15		A SEF		13	42.0	41 27.		0.04		00 12.7 00 13.1		è
ATO		-	B SE	2	13	40.6	-		7.73		00 12.6	57	5
ATO ATO			SE	. 2	13	41.3			17.29	3 1.1	00 14.4	82	3
ATO	H 15	91 (SE:	_	13 14	41.6	44 25	.718	27.44		00 12.5 00 12.5		5
ATO	••		DA GL		14	40.6	94 24		26.66 36.19		00 16.		4,
ATO			CB GL	υ 2	14	41.3			34.87	13 :.	00 23.	12	÷
ATC	M 15	595	ce er		14	41.2		. 291	23.64	10 L.	00 27.	82	6 3
ATC		596 507	CD GL OE1 GI		14	41.	527 25	5.337	33.00	01 1.	00 27.	91	•
ATC		597 598	OE2 GI		214	40.		3.63: 6.814	37.6		.00 11.	57	4
AT		599	C G	ט	214	29.5 29.		4.625	33.8	64 :	.00 11		:
AT	om :	600			214 215	28.	301 2	5.037	27.2	- : .	.00 11		•
YI		601			215	27.	959 2	5.363	35.8 33.0		.00 11		ř.
TK TA		602			215		•	4.965 5.896	27.2	90 1	.00 9	. 49	£
		604	CB P	RO	215	36.	155 2 430 2	5.447	25.9	37	.00 12	.12	ક દ
AT	OM 1	605		P.O RO	215 215	26.	378 2	3.609	23.2	237 1	.00 9	.78	
		1606 1607		P.O	215			22.654	27.3		00 7	1.47	:
	MO	1608	N A	ial	216		.440 2 .669 2	22.346	39.	434		7.05	÷
A7	rem .	1609	••••	/LL /LL	216 216	24	.740	21.829	45.			3.24 9.46	ě
		1610 1611	CGI ,		216			20.568 22. 9 29	41.	918 316		6.68	£
		1612	CG2 1	V& 1.	216			22.92, 22.834	39.	259	1.20	9.31	5
A	TOM	1613	-	iyr.	216 216			24.039	33.	445	1	0.20 a.47	:
	TCM	1614		val Sep	217	32	.357	21.913		927	• • • •	9.61	
	TCM	1615		SEF:	217		952	22.247		.766 .202	20 1	3.52	ī
	TCH TCH	1617		SEF.	217		9.610	23.179		. OC4	. 00 1	3.22	:
>	TC:	1618	ာင	SEP.	217 217		0.127	21.282	3.9	. 601	30 1	9.91	:
	VICX.	1615		BEP. 3ep.	217	2	C.424	20.06		.647 .224	00	9. é0 10. 92	:
	aton: Atom	1620		150	218	2	9.06?	21.79° 20.36		.102	00	11.10	:
	atom Atom	162	CA.	LET	218	2	8.223 8.605	21.29	5 42	. 566	2.00	9.62	•
	ATCM	162		LEU	218 218		7.995	20.61	5 43	.789	50	6.92 3.37	
	ATCM	162 162		LET	218	2	8.2C	19.15		.636	50	3.78	
	atch: Atch:	162		LEU	218		28.647	21.13		0.903	30	12.91	
	ATCI:	162	7 5	LEC	218		26.727 26.306	22.33	5 4	7.693	00	12.22	2
	ATCH:	162		LEU	218 219		25.956	20.11	4 4	3.670	33	14.15	2
	ATCM	162		LEU	219		24.486	20.10	64 4).760			-

bref2	lc.p	ಯ		Thu	Apr 25	12:27:47	1996		22	
ATOM	1631	CB	LEU	219	23.86	7 18.372	40.209	:.00	13.95	÷
ATOM	1632	CG	LEU	219	23.81		23.736		16.57	5
ATOM	1633		LEU	219	22.85		37.947		18.05	
MOTA	1634		LEU	219	25.20		23.096	00	15.67	5
ATOM	1635	č	LEG	219	24.08		42.248		12.96	÷
MOTA MOTA	1636 1637	o N	LEU Thr	219	24.37		42.986		12.64	ż
ATOM	1638	c۲	THE	220 220	23.50		42.692		12.52	7
ATOM	1639	ca	THP.	220	23.05 22.28		44.068		10.27	÷
ATOM	1640		THE	220	22.03		44.250 42.967		10.53	:
ATOM	1641		THP.	220	23.07		45.099		13.55	
MOTA	1642	C	THR	220	22.11		44.368	1.00		÷
ATOM	1643	0	THP	220	21.19		43.582		13.03	į
MOTA	1644	N	THR	303	67.97		64.372		11.41	7
ATOM	1645	다	THR	303	67.75		65.597	1.00	9.49	ŧ
ATOM	1646	C3	THP.	303	66.40		66.344		10.05	5
ATOM ATOM	1647 164B		THE.	303	65.98		65.963		12.85	ż
ATOM	1649	c	THE.	303 203	66.59		67.861		12.80	5
ATOM	1650	ŏ	THP.	303	67.73 68.52		65.280	1.00	9.93	÷
ATOM	1651	N	TYP.	304	66.88		65.838 64.343	1.00	9.37	ž
ATOM	1652	CA	TYP.	304	66.75		63.973	1.00	9.53	5
ATOM	1653	CB	TYF.	304	€5.30		64.148	1.00	7.06	é
ATOM	1654	CG	TYP.	304	64.83		65.585	1.00	7.97	•
ATOM	1655	201	TYF.	304	64.31		66.072	1.00	4.80	ē.
MOTA	1656	CEI	TYF.	304	€4.00		67.389	1.00	3.80	ř
ATOH ATOH	1657 1658	CD2	TYF.	304	45.03		65.406	1.90	6.93	÷
ATOH	1.659	CZ	TYE TYP	394 304	64.72		67.809	1.00	4.43	÷
ATOM	1660	09	TYF	304	64.20 63.88		68.261 69.598	:.00	4.88	÷
ATOM	1661	C	TYP	204	€7.18		62.554	1.00	10.24 8.23	:
MOTA	1662	0	TYP.	304	67.27		61.804		11.69	ż
HOTA	1663	ь.	SEF.	305	67.47	4 36.819	62.201	00	8.34	ń
ATOM	1664	CY	SEF.	305	67.85	6 36.442	60.843	1.00	9.43	6
ATOH	1665	CB	SEF.	305	69.20		60.838	1.00	13.12	5
ATOH ATOH	1666	ōC.	SEP.	305	10.22		61.427		18.03	3
ATOM	1667 1668	3	SEP. SEF.	305	66.73		60.273		10.05	6
ATOM	1669	2	CYS	305 306	66.49 66.09		60.754		10.34	å
ATOH	1670	CA	CYS	206	64.96		59.218 58.619	1.00	8.05	?
ATOM	1671	C	CYS	30€	64.97		57.131	1.00	5.52 6.70	ę
ATOM	1672	0	CYS	306	65.60		56.302	1.00	6.69	;
ATOM	1673	CB	CYE	306	63.73		58.889	1.00	6.36	÷
ATOM	1674	₿G	CYS	306	63.70		60.556	1.00	8.87	1.6
ATOM	1675	N	HIE	307	64.18		56.808	1.00	6.09	7
ATOM ATOM	1676 1677	23 23	HIS HIS	307 207	64.01		25.459	1.00	7.50	-5
ATOM	167B	22	B::	307	65.03 64.85		15.083		11.44	*
ATOM	1679	222		227	64.06		55.746 55.420		14.32 16.97	÷
ATOM	1680		2:8	307	65.70		56.734		16.54	÷ 7
ATOM	1681	CEl	HIE	307	65.46		\$5.976		14.82	•
ATOM	1682	NE2		307	64.47		56.192		17.24	÷
ATOM	1683	Ç	HI 5	307	62.57		55.236	1.00	9.06	é
ATOM	1684	5	HIE	307	61.81		56.188	:.00	11.93	•
ATOM ATOM	1685	::	PEE	308	62.16		53.980	1.00	8.50	7
ATOM	1686 1687	CA CB	PHE	308 308	60.81		53.647	1.00	6.63	•
ATOH	1688 -	55	PHE	308	60.48 60.53		52.167 51.891	1.30	7.92	÷
ATOM	1689		PEE	338	51.14		50.747	1.00	5.48 6.64	÷
ATOM	1690	CD2		308	59.93	_	52.738	1.26	9.42	•
ATOM	1691		PEE	308	51.15	2 36.452	50.448	1.00	3.48	÷
ATOM	1692	CE2		308	59.94		52.445	1.00	3.15	4
ATOM	1693	==	PHE	3.58	€0.54		51.307	1.00	€.33	:
ATOM ATOM	1694		PHE	308	. £0.68		53.849	1.00	5.44	₹.,
ATOM	1695 1696	÷	PHE	308 309	51.48		23.322	20	*	-2
ATOM	1697	24	SLE	339	59.74 59.51		54.691	1.20	5.25	•
ATOM	1698	=	51:	309	58.31		54.922 54.098	1.00	5.83	
ATOM	1699	:	213	209	57.80		53.316		6.57 8.19	<i>2</i>
ATOM	1700	N	PF:	210	\$2.29		14.222	1.00		:
ATOM	1731	CD	PP.:	210	58.48	6 26.582	54.742	1.00	3.04	ž.
ATOM	1702	£À.	P7.:	310	56.64	£ 27.439	53.364		5.55	÷
ATOM ATOM	1703	==	PF.:	210	:6.58		23.449	:.:::	2.32	•
ATOM	1704	53	PS.	310	\$7.95		53.857		10.25	•
ATOM	1706	5	PRI PRI	210 210	55.29		13.909	1.31	2.52	. •
ATOH	1707	X	LET	211	54.38 55.32		13.137		12.27	•
ATOH	1708	SA.	LE:	311	54.14		55.161 55.756	20.00	4.38 5.58	

	_		Moss	Apr 2	25 12	: 27 : 47	1996	23
bref21	lc.pdb	•				28.437	:7.080	1.00 4.94
ATOM	1709	CB LEU	311		.837	27.277	57.127	00 5 36
ATOM		CG LEU	311 311		.524	27.802	57.619	
MOTA		CD1 LEU CD2 LEU	311	52	. 684	26.580	15.781	1.00 5.32
MOTA		C LEU	311	54	1.346	30.580	56.002 55.540	1.00 4.76
MOTA		C LEU	311		3.586	31.411 30.898	\$6.741	1.00 5.21
ATOM ATOM	1715	: THE	312		5.390 5.680	32.285	57.075	1.00 7.52
ATOH	1716	CA THR	212		4.772	32.132	58.256	1.00 7.52
ATOM	1717	CB THR	312 312		4.898	34.144	58.476	
MOTA	1718	CG1 THR	312	5	5.115	31.95	59.526 57.444	1.00 €.58 €
MOTA	1719 1720	C THR	312		7.168	32.342		1.00 7.15
ATOM ATOM	1721	5 THR	312		7.868	33.477	57.979	3.20
ATOM	1722	: TRP	313 213		9.050	33.653	18.344	
ATOM	1723	CA TRP			39.294	35.032	58.992	
MOTA	1724	CS TRP			58.937	36.213		6 1.00 6.34 °
ATOM	1725 1726	CD2 TRP			59.685	36.77		2 1.00 4.38
MOTA MOTA	1727	CE2 TRP	313		59.026 60.845			2 1.00 8.66
ATOM:	1728	CE3 TRE			57.883		4 58.35	9 1.00 4.69
MOTA	1729	CD1 TRI	313		57.933	38.10	3 57.48	
ATOM	1730	NEI TRI			59.484			8 1.00
ATOH	1731 1732				61.301	37.22 38.39		0 5.72
ATOM ATOM	1723		P 313		60.618 59.60			o 30 3.38
ATOM	1734	; TR			58.93		6 (9.3:	
ATOM	1735				60.84	7 32.2		39
ATOM					61.53			49 :.00 4.52
ATOM ATOM			L 314		62.14			90 1.00 3.24 5
ATOM		GG1 V			62.86		33 58.5	36 1.00 3.95 7
ATOM	1 174				62.63	7 32.1	92 60.4	99 1.00 8.62 5 30 1.00 11.03 3
ATON		• • •	AL 31		63.51	2 32.5	62 59.7 72 61.7	30 1.00 00
YTO		•	YS 31		62.51	6 32.6		50 :.00 10.57
ATO:		-	ys 31		63.5		48 63.2	193 1.00 10.10
ATO		5 5 9	YS 31		64.1		25 63.	14B 1.00 12.69
ATO	H 174		YS 31		62.9	05 34.6	61 62.	
ATO			YS 31		62.1			
ATO ATO			YS 31		65.4			650 1.00 3.33
ATC		50 CA 1		16	66.3 67.3			860 1.00 13.47
ATC	DM 17			16 16	68.2		444 64.	
ATC				16	69.2	242 30.		700
ATC				16	70.2			288 1.00 34
ATC ATC				16	71.0 67.3			092 .20 ::.52
AT	OH 17	15€ □		16	67.	193 35.	468 64.	359 1.90 7.91
λT		757 3 758 B		17	67.	592 34.		.355 1.00 2.25 .471 1.00 1.88 1
		758 G 759 CD		117				855 1.00 10.51
		760 SA	PRO 3	17		344 35 365 25		348 1.00 6.33
		761 CB		317		381 33	.979 €8	.426 1.00 5.27
X.	rom 1	762 CG		317 317		773 35	.714 66	
		763 C 764 :		317				711 00 4.42
		765 ::		318		.105 36 .418 37		.144 1.90 16.93
		766 . 27	GLN	318			.436 6	1 126 1.00 15.13
λ'	TOM 1	767 CB	GLN GLN	318 318		.010 31	3.335 6	2. 340
		768 SG 769 SD		318		-		189 00 11.50
		170 SE1	GLN	318				2.305 1.00 15.42
		1771 XE	GLK	318				6.360 1.60 14.25
	TOM	1772 =	GLN	318			8.227 5	T 174 1.00 18.24
я	HOTA	1773	GLN THR	218 403	70	.252 3	5.791 \$	3.614
		1774 :: 1775 SA		403	6	9.393 3		4.455 1.00 12.35
		1776 CE		403	61			4.627 1.00 11.85
	ATOM	1777 00	1 THR	403				2.748 1.00 12.39
	ATOM	1778 CC	2 TER	403 403			37.47!	54.551 1.GC 11.13
	MOTA	1779 5	THR THR	403	6	9.149		33.13
	ATOM ATOM	1780	TYR	404				55.454 1.50 1.40 55.682 1.00 1.10
	ATCH	1782 5	TYP	404			39.04. 39.115	55.366 1.00 1.26
	ATOM	1783 7		404 404			38.965	53.910 1.00 2.42
	ATOM	_	G TYR Cl Typ	404		65.036	37.767	\$2.37700 2.72 52.042 1.00 2.00
	MOTA	1785 C	E1 TYR	404		64.723	37.548	52.042 1.00 2.00
	~ ~ ~ .							

bref2	lc.p	ďЬ		Thu	Apr 25	12:27:47	1996	24	.
ATOM	1787	CD2	TYP	404	65.299	40.971	13.050	1.00 2.00	
ATOM	1788	CE2		404	64.992		51.710	1.00 2.00 1.00 2.00	
ATOM	1789	cz	TYP.	404	€4.709		51.219	1.00 2.53	
ATOM	1790	OH	TYR	404	64.447		49.891	1.00 6.21	
ATON	1791	c	TYP	404	67.374		\$7.169	1.00 6.87	
ATOM:	1792	0	TYP	404	67.459		58.006	1.00 5.71	
ATOM	1793	ĸ	SER	495	67.453	40.653	57.500	1.00 7.44	
MOTA	1794	CY	SEP.	495	67.581	41.068	28.894	1.00 7.96	
ATOM	1795	C3	SEP	405	68.842	41.887	59.094	i.00 9.81	
ATOM	1796	OC	SER	405	69.985	41.082	58.88B	1.00 14.6]	
ATOM	1797	c	SEF.	405	66.332	41.863	59.305	1.00 10.09	
ATOM	1798	0	SER	405	66.154		58.975	1.00 10.03	•
ATOM	1799	N	CYS	496	65.466		€0.046	1.00 10.45	7
ATOM	1800	ĊΫ́	CYS	406	64.220		60.452	1.00 10.00	
ATOM ATOM	1801 1802	c	CYS	406	64.192		61.938	1.00 10.98	
ATOM	1803	CB	CYS	406 406	64.900		62.709	1.00 12.25	
ATOM	1804	SG	CYS	406	63.096 63.277		60.107 58.514	1.00 12.32	
ATOM	1805	N	HIS	407	63.363		62.332	1.00 12.21	
MOTA	1906	CA	HIS	407	63.162		63.721	1.00 10.98	
ATOM	1807	CB	HIS	407	64.007		64.165	1.00 11.52	
ATOM:	1808	CG	HIS	407	63.779		63.370	1.00 12.77	
ATOM	1809	CD2	HIS	407	64.324	46.233	62.204	1.00 11.11	÷
MOTA	1810	NDI	HIS	437	62.968	46.832	63.812	1.00 10.97	
ATOM	1811	CEI	HIS	467	63.025	47.837	€2.954	1.00 10.32	
ATOM	1812	NE 2	EIS	497	53.840	47.499	61.969	1.00 10.00	
ATOM:	1913	ς.	HIE	437	61.687	43.614	£3.801	1.00 3.26	
ATOM	1814	.)	äIS	437	61.078	43.935	€2.789	1.90 10.54	
ATOM	1815	ĸ	PHE	4 38	61.099	43.443	64.976	1.30 7.42	:
ATOM	1816	CY	PHE	408	59.690	43.746	65.16B	1.00 6.36	ē.
MOTA MOTA	1817 1818	CB	PHE	408	59.281	43.636	66.643	1.00 5.63	
ATOM	1619		PHE	408 408	59.441	42.280	67.218	1.00 3.30	
ATOM	1820		PHE	408	59.675 59.411	42.125	68.562	1.00 4.11	•
ATOH	1821		PHE	408	59.888	41.158 40.882	66.409	1.00 4.22	
ATOH	1822		PHE	408	59.626	39.885	69.095 66.935	1.00 2.80	
MOTA	1823	cz	JHE.	408	59.866	39.751	68.282	1.00 4.71	
ATOM	1824	C	PHE	408	59.459	45.185	64.736	1.00 6.02	
ATOM	1825	0	PHE	408	60.370	46.018	€4.744	1.00 B.84	
ATOM	1826	N	SLY	409	58.231	45.463	64.347	1.00 4.91	÷
ATOM	1827	CA	GLY	439	57.868	46.791	63.936	1.00 2.33	ž.
ATOM	1828	C	CT 1.	409	56.494	46.954	64.509	1.00 2.02	
ATOM	1829	0	SLY	429	55.996	46.065	£5.196	1.00 4.33	
ATOH	1830	N	PRC	410	55.879	48.100	64.299	1.00 2.00	7
ATCH	1831	CD	PRO	410	56.497	49.286	63.693	1.00 2.9B	ř
ATOM	1832	CÀ	PRC.	410	54.544	48.397	64.788	1.00 3.72	÷
ATOM ATOM	1833 1834	ES DS	PRO PRO	410	54.276	49.754	64.166	30 6.67	•
ATOH	1835	S.	PPC	410	55.623	50.390	64.195	:.00 6.29	:
ATOH	1836	อ	PPC	410 410	53.525 52.831	47.367	64.313	1.00 7.04	÷
ATOM	1837	N	LED	411	53.471	47.165	65.137 62.987	1.00 8.58	•
ATOM	1838	CA	LEO	411	52.544	46.233	€2.329	1.00 6.97	:
ATOH	1839	CB	LEU	411	52.254	46.674	€0.898		
ATOM	1840	20	LEC	411	51.310	47.803	€0.553	1.00 8.28	5 5
ATOM	1841	CD1	LEU	411	50.007	47.519	61.244	1.00 15.07	·
NOTA	1842	CD2	LET	411	51.886	49.156	€0.961	1.00 14.05	
ATOH	1843	C	LEO	411	`53.052	44.831	62.192	1.90 4.04	÷
ATOH	1844	. •	LEU	411	52.365	43.870	62.481	1.90 2.78	
ATOM	1845	N	THR	412	54.237	44.705	61.643	1.00 3.16	-
ATOH	1846	CA	AKT	412	54.749	_	61.431	1.00 2.09	
ATOM	1847	CR.	TAR	412	53.985		60.244	1.00 2.00	
MOTA	1848		THR	412	54.152		60.166	00 4.84	
ATOM	1850	5	TER	412 412	54.417		58.976	1.00 2.00	
ATOM	1851	ē	782	412	56.252		61.220	1.30 2.54	
ATOM	1852	×	700	512	56.722 57.003		£1.376 60.964	1.90 3.33	
ATOM	1853	CA.	TEP	4:2	58.468		60.747	1.00 3.36	
ATOM	1854	25	722	413	59.003		60.115	1.00 4.26	
ATOM	1855	CG	77.0	413	58.912		60.909	1.00 3.65 1.00 2.26	
ATON	1856		77.2	413	59.722		€2.023	1.00 4.36	
ATOM	1857		722	413	59.374	38.418		1.00 3.39	
ATOM	1858		TP.P	413	50.712			1.00 5.37	, ž
ATOM	1859		TP.P	413	58.121	39.011	60.667	1.06 2.00	
ATOM	1860		77.P	412	58.395		£1.546	1.00 3.14	
ATOM ATOM	1861		TEP	413	59.975		63.459	1.90 7.15	:
ATOM	1862 1863		TP.P	413	61.312		63.801	1.00 7.66	, . :
ATOH	1864	Ç	TE:P	413 413	50.941 58.960		64.152	1.00 9.17	
					_0.,00		J 1 . U J Z		

				_		25 12	.27:	47 3	996		25		
brof21	.c.pdi	>		Thu					9.115	1.00	7.06	÷	
ATOM	1865	: :	TRF	413		8.187	44.35		9.813	1.00	6.50	:	
ATOM	1866	N '	VAL	414		0.273	44.9		B.957	1.00	5.63	4	
ATOM	1867		VAL	414		1.078	46.21	B9 :	9.660	1.00	98. ר	:	
ATOM	186B		VAL	414		2 93	47.0		9.029	1.00	6.76 3.37	÷	
MOTA	1869	CGI		414		9.789	47.1		9.547	1.00	3.59	į.	
MOTA	1870	2	VAL	414		52.242	44.3		.8.533 .9.303		11.73	3	
MOTA	1871	:	VAL	414		63.183	44.2		,9.303 .7.314	1.00	9.75	7	
HOTA	1872 1873	:	CYS	415		62.296	43.8		6.809		9.19	ક	
ATOM ATOM	1874	Ch	CYS	415		63.515	44.0		5.767	1.00	3.05	•	
MOTA	1875	=	CYS	415		64.23e 63.714	44.9	-	55.189	1.00			
ATOM	1876	c	CYS	415		63.207	41.6	382	56.222	1.00		÷	
ATOM	1977	СВ	CYS	415 415		€2.0€7	41.0	71	57.341		14.13	16	
MOTA	1278	SG	LYS	416		65.484	43.		55.581				
ATOM	1879	C'Y	LYS	416		66.341	44.		54.585		14.71		
ATOM	1880 1881	CB	LYS	416		67.276			56.14		19.54		
MOTA	1882	cs	LYS	416		66.482			37.54		23.24		
MOTA	1883	CO	LYS	416		66.618			58.59	9 1.0	23.74	1 6	
ATOM	1884		LYS	416		65.851		888	59.93	7 1.0	27.0		
ATOM	1885		LYS	416		67.234	43.	008	54.27	B 1.0	0 12.10		
MOTA	1886		LYS	416 416		67.52	3 42.	187	55.17		0 10.9		
ATOM	:887		LYS PRO	417		67.57		817	52.99		0 12.45 0 11.3		
MOTA	1888 1889		PRO	417		€7.23		561	51.77	-	0 11.7		
MOTA MOTA	1890		PRO	417		66.43		.684 .647	51.14		0 10.5	8 =	
ATOM	189		PRO	41		68.39 68.24		.047	10.70	30 1.0	10 11.4	11	
ATOH	1892	2 55		41		69.84		.868	53.2	21 1.0	0 14-4		
ATOM	189	_	PRO			70.36	1 42	. 990	53.3		0 14.9		
ATOM			PRO GLN			70.40	0 40	.762	53.7		00 15.6 00 16.0	-	
ATOM						72.7		.741	54.2		00 15.8		
MOTA						71.9		.562	55.1 56.6		00 13.		
MOTA MOTA					8	71.9). 963 1.823	57.5		00 16.	21 È	
ATOM		9 5	D GLI			71.5		. 668		98 1.	00 16.	54	ē
ATON	190		E1 GL			71.4		2.131	58.8	107 1.	00 16.		7
ATON	1 190		E2 GL		18	72.6		0.583	52.9		00 17.		.
ATON		_			18	72.4	70 3	9.656		-	00 20.		;
ATO				_	10	36.6		5.747			00 20.		÷
ATO			A LY	_	10	36.9	83 4	4.827	97.3 58.		00 22.		÷
ATO ATO			3 LY		10	37.0		5.503	100.	099 :	.00 24.	. 41	*
ATO		07 3	:5 LY	_	10	37.7 39.5		4.78		984 i	.00 24		:
ATO	H 19	·	CO LY	_	10	40.	49 4	4.38	B 1G1.		.00 25	.09	÷
ATO			EE LI		10	40.2	281 4	2.90	7 101.	710 2	.00 21 .00 21	. 11	£
ATO			E L	_	10	36.		13.64		542 -	.30 20	.71	÷
ATO ATO		12		<u> </u>	310	26.		12.77 13.65		604	.00 20	. 62	•
ATO					11	35. 34.		42.50		453 :	.00 18	.81	÷
ATC		914			511	34.		42.83	3 95.	.720	20 17		÷
ATC	DM 1	915			511 511	31.		41.64	6 95		.00 17		÷
)TA		916	CG P	_	511		476	40.3	3 55		.00 17	7.10	÷
AT		917 918	502 P		511		. 594	41.89	6 . 95	. 279	30 19	6-04	÷
ATC AT		319	CE1 F		511			39.2		. 653	20	0.47	•
		920		HE	511		.738 .271	40.6		. 424	OC 1	7.16	•
		921	CZ I	HE	511		.064	41.6		.554	1.00 1	7.52	÷
	OM :	.922 '		HE	511		.406	40.4	83 95	. 913	1.00 1	5.93	•
AT	OH 1	.923		PHE SLU	511 512		.416	42.2	00 94	.392	1	7.14	٤
		924	••	SLU	512		.244	41.5		.406	1.30 1		•
		925		GLU	512		.534	42.3		2.172 1.075	1.20 2	8.00	
		927		GLC	512		.496	41.7		0.101	1.00 B	20.12	÷
		929	22	SLU	512		.e51	40.5		a.936	1.10	29.86	1
	TCM:	:529	:2:	CLU	512		. 869	40.0		0.501	1.30.3	30.27	
λ'	TOM	2930	:E2	GLU	512 512	3	07	41.	161 S	4.162	1.00	15.96	•
		: 231	ī	GLU	512	3.	3.936	40.	020 8	4.161	30	10./0	:
	TOM	1932	×	SER	513		7.984	42.		4.930	••••	13.17 12.13	;
	TOM TOM	1934	CA.	SER	213	3	9.184	42.		5.745 6.443	2.00	12.70	
	TOH	: 935	23	SER	513	3	9.534	43.		7.594	1.20	13.07	, .÷
	TOM	1936	:5	SER	513		0.319	45.		\$5.775	. : :	12.5?	:
7	TCM	: 337	:	SER	513 513		0.041	40.	023	5.846	:6	14.35	
	TOM	: 338		SER Lys	514		8.C56	40.	844	÷7.573	36	11.94	
	ATOM	1929		FIZ	514		7.903	39.		48.568	::	9.95 7.59	
	MOTA MOTA	:940		LYS	514				.12:	⊊⊋. 605 00. 627	:.30 :.50		
	.,,				614		11. 258	41	.107 1	-4.05,			

. .

bre£2	1c.pc	ф		Thu	Apr 25 1	12:27:4	7 1996	26	
ATOH	1943	CD	LYS	514	36.388	41.993	101.842	1.00 2.50	:
ATOM	1944	CΞ	LYS	514	36.374		102.539	1.00 2.10	•
ATOM ATOM	1945 1946	C 213	LYS	514 514	35.665	42.215 36.443	103.798	1.00 3.28	:
ATOM	1947	ò	LYS	514	37.621 37.841	37.435	97.959 98.620	00 11.55 1.00 13.26	:
ATOH	1948	N	ALA	\$15	37.138	36.401	96.716	1.00 13.26	•
ATOH	1949	CA	ALA	\$15	36.876	37.117	96.038	1.00 9.25	•
ATOM	1950	CB	ALA	\$15°	36.187	37.366	94.719	1.00 15.39	÷
ATOH ATOH	1951 1952	c c	ALA	515 515	38.165 38.176	36.299 35.068	95.806 95.920	1.00 ā.23 1.00 7.7ā	•
ATOH	1953	N	ALA	516	39.241	37.026	45.494	1.00 7.Tā 1.90 a.76	; :
ATOM	1954	CA	ALA	516	40.562	36.478	95.204	00 7.65	÷
ATOH	1955	CB	ALA	516	41.457	37.533	94.614	1.00 €.46	÷
ATOH ATOH	1956 1957	c	ALA Ala	516 51€	41.205 41.690	35.872 34.751	96.419	1.00 7.97	÷
ATOH	1958	N	LEU	517	41.226	36.599	96.353 97.530	1.00 a.25 1.00 a.64	÷
ATOH	1959	CY	LEU	517	41.809	36.040	98.743	1.00 5.52	5
ATOM	1960	CB	LEU	517	41.445	36.874	99.947	1.00 3.15	ŧ
ATOH ATOH	1961 1962	CG	LEU	517 517	42.14) 41.717		100.158	1.00 4.53	•
ATON	1963		LEU	517	41.754	39.177	99.108	1.00 8.66	5 5
ATOH	1964	c	LEU	517	41.271	34.634	98.992	1.00 7.39	ě
MOTA	1965	C	LEU	517	42.009	33.751	99.437	1.00 10.93	•
ATOH	1966	N	LEU	518	39.997	34.433	93.648	1.00 3.49	:
ATOM ATOM	1967 1968	CB	LEU	518 516	39.297 37.845	33.177 33.467	98.857	1.00 7.25	•
ATOM	1969	CC	LEU	518	37.614		99.273 160.773	1.00 5.35	
HOTA	1976		LEU	516	36.802	34.965	100.936	1.00 2.48	÷
ATOM	1971		LEU	518	36.951	32.519	IC1.495	1.00 6.87	Ę.
ATOM ATOM	1972 1973	Ċ.	LEU	518	29.239	32.158	97.723	1.00 9.11	÷
ATCH	1974	N	ALA	518 519	39.185 39.557	30.955 32.623	97.979 96.505	1.00 0.10	=
ATOM	1975	CA	ALA	519	39.603	31.726	95.342	1.00 13.55	5
ATOM	1976	CB	ALA	519	39.310	32.481	94.072	1.50 12.74	5
ATOM ATOM	1977 1978	C	ALA	519 519	40.90E 41.733	30.949 31.215	95.209	1.00 15.14	÷
ATOM	1979	N	ALA	520	41.047	29.935	94.311 96.068	1.00 15.55	2 7
ATOM	1980	CA	ALA	520	42.228	29.064	96.115	1.00 19.61	•
ATOM	1981	CB	ALA	520	42.169	28.165	97.371	1.00 20.83	€.
ATOM ATOM	1982 1983	၁	ALA	520	42.579	28.212	94.865	1.00 19.53	÷
ATOH	1984	N	ALA APG	520 521	41.764 43.834	27.430 28.352	94.339 94.449	2.00 19.29 1.00 90.00	;
ATOM	1985	Ch	ARG	521	44.407	27.633	93.322	1.00 90.00	į
ATOM	1986	СЭ	AP.G	\$21	45.499	28.484	£2.652	1.00 90.00	•
ATOM ATOM	1987 1988	CC	ARG	521 521	45.117 45.751	29.950	92.441	1.00 90.10	÷
ATOH	1989	NE.	ARG	521	45.512	30.871 30.373	£3.500 24.854	1.00 90.00	•
NOTA	1990	CZ	ARG	521	46.279	29.452	95.464	1.00 93.55	:
ATOM	1991		ARG	521	47.351	28.957	91.843	1.00 95.00	:
ATOH ATOH	1992 1993	C	ARG ARG	521 521	45.886 45.018	28.889 26.343	96.620 93.866	1.00 90.00	:
ATOH	1994	ŏ	ARG	521	44.842	26.022	\$5.032	1.00 90.00	÷
ATOM	1995	ĸ	GLY	522	45.710	25.592	93.022	1.00 90.30	-
ATOM	1996	CA	GLY.	522	46.338	24.375	\$3.500	1.00 90.00	-
ATOH ATOM	1997	5	GLY	522 522	47.851 48.282	24.578 25.677	93.549 93.891	1.00 90.00	÷
ATOM	1999	N	PRO	523	18.672	23.533	£3.225	30 93.20	:
ATOM	2000	. CD	PRC.	523	48.070	22.203	92.929	1.00 90.00	÷
ATOM ATOM	2001 2002	CA	PRC	523	50.157	23.469	£3.185	1.00 91.1C	ž
ATOM	2002	CB	PRO PRO	523 523	50.429 49.277		92.201 92.486	1.00 90.00	:
ATOM	2004	s.	PRO	523	50.966		92.741	1.00 90.00	3
ATOM	2005	S	PRO	523	50.499	25.517	91.984	1.00 91.10	:
ATOM ATOM	.2006 2007	N TA	STC	524	52.222		93.180	1.90 24.71	•
ATOH	2008	42	SLT	\$24 \$24	53.121 54.289		92.829 93.857	30 23.63 1.00 27.67	1
ATOH	2009	CS	SLU	524	55.487			00 23.25	:
ATCH	2015	CD	CLU	524	55.207	23.507	94.250	1.06 21.85	:
HOTA HOTA	2011 2012		CT.	524	54.910			1.00 23.10	?
ATOH	2012	C	GFA	524 524	55.343 53.672			20 31.26	:
ATOH	2014		GL:	524	52.705	24.359		1.00 25.22	
ATOM	2015	2	GLU	525	54.163	25.564	95.747	1.00 14.30	
MOTA MOTA	2016	CA	CLT GLT	525 525	54.722 53.557			96 13.55	:
ATOM	2018	CG	GT:	525	53.857			1.00 15.50	
ATOH	2019	CD	GLU	52:	52.595	25.163	26.357	1.00 31.74	:
MOTA	2020	OE 1	GLU	525	52.474	23.956	85.991	00 32.25	i

									27		
bref21	c.pd	ь	Thu	Apr		:27:47				ŧ	
•	2021	OE2 GLU	525			26.066	65.119 69.150		8.91	÷ ·	
MOTA	2022	C GLU	325		5.572	27.633	69.73		9.70	÷	
MOTA	2023	C GLU	525		5.306	28.676	88.33		5.52	•	
MOTA	2024	K LEU	526		6.619	28.63B	87.94		4.14	•	٠
ATOM	2025	CA LEU	526		7.455	28.182	87.48		4.80	•	
MOTA	2026	CB LEU	52€		8.859	29.082	87.59		2.00	•	
ATOM	2027	CC LEU	526		0.103	28.507	e6.70		2.90	•	
ATOM	2028	CD1 LEC	52E		1.166	30.499	67.19		2.00	:	
MOTA MOTA	2029	CD2 LEU	526		9.856 6.688	29.248		1 1.00	2.64		
ATOM	2030	C LEU	526		6.527	28.607		3 1.00	2.80	<u>:</u>	
ATOM	2031	o LEU	526		6.209	30.474	86.89	2 1.00	2.00	: -	
ATOM	2032	N LEU	527		35.415	31.107	85.8	34 1.30	2.00		
ATOM	2033	CA LEU	527		54.115	31.638		(1 1.00	4.05	1	
ATOM	2034	CB LEU	\$27 \$27		53.035	30.653	66.83		2.65		
ATOM	2035	CG LEU	527		51.951	31.429	27.4	41 :.30	2.00	•	
ATOM	2036	CD1 LEU	527		52.547	29.88		20 1.00			
ATOM	2037		527		56.110	32.25	6 85.1				
ATOM	2038		527		56.413	33.25	2 85.8			=	
ATOM	2039		528		56.234	32.17	6 83.B				
ATOH	2040		228		36.929		9 83.0				
MOTA	2041				55.987	33.81					
ATOM	204				55.087	33.12					
ATOM	204				58.132		3 62-				
MOTA	204				59.491					•	
HOTA	204				56.19						
ATOH	204 204				55.39					8	
MOTA					54.00			231 :.3		0 :	
ATOM				•	53.98			733 :.0		0 :	
ATOM				•	53.95		TT	611 :.0		0 =	
ATOM			E 529)	53.91			590		0 .	
ATOM			E 529		53.86			471 1.0	0 2.0		
ATOM ATOM			E 529		53.82 53.80			961 1.1	0 2.0		,
ATON		54 CZ PH			56.10			.200 :-		7 5	
ATO		55 C PH			57.07			.785 :-			
ATO		56 O Pi			55.6		171 79	.018 1.		_	
ATO		57 N T			56.2		555 78	.377	00 2.9		
ATO			iP. 53		57.2		280 77		00 2.		
ATO			IR 53		57.6		460 76		00 2.	_	
ATO		60 OC1 T			56.6	37 37.			00 2.		
ATO		61 CG2 T			55.0	76 39.			DC 2.		
ATO			••••		53.9	99 39.			00 4.		
ATO					55.2	75 40.				29 46 ÷	
ATC				31	54.2			1.747 .	.00 5. .30 10.		
ATC				31	54.1	78 42.			.30 12.	93 :	
ATC	_			3:	54.9			3.257 : 1.298 :	.00 14		•
AT				31	53.			1.079	.00 15		
AT		069 OE1		21	54-	- · · · · ·		2.355	.00 13	.13	
AT		070 CE2		31	53.					.42	
TA.			GLU 5	32	54.				.00 9	.10	i
AT.				531	53.				.00 5	. AT	
	-	2073 N		532	33.	659 43 039 43		4.832			•
		2074 Ch		532		900 44	. 795	4.890			:
	NOM 3	2075 CB	•11.	532			.059 '				:
		2076 CG	*****	532 532			.070			. 94	:
A?		2077 CD	• • • •	532		.531 46			00 14	1.70	:
3.7		34 . BLOS		532	54	.158 4		77.890	:.00 1		
		2079 CZ		532	54	.877 4		73.975	1.00 1	9.14	,
			ARG ARG	532	52	.998 4		78.017		∍.68	
	TOM		ARG	532	56			74.434			
	TOH	2082 C	ARG	532	56	.904 4	1.310	75.052	1.00 1	0.64	
	TOM	2083 C 2084 N	LEU	522	57	.767 4	2.502	73.436		5 . 5	
	TOM		IE:	533			1.256	73.125		3 - 3	
	TCM		LEU	522			6.790	71.021	1.00	0.95	
	TOH		LEU	\$33			0.298	71.741	1.90	1.69	
	HOTA		LEC	533	50		9.778	70.348	2.00 1	2.40	
	TOH		LEU	523			39.204	72.754		11.25	
	MOTA	2089 CD2	LEU	523			11.733	73.430 72.535	00	12.70	
	NTOH NTOM	2091 0	LEU	523		••	41.590	74.666	32	12.95	
	MOTA MOTA	2092 N	SLU	534			42.115	15.003		13.20	
	ATOM	2093 SA	GLT	234			42.52? 43.822	74.365		16.94	
	ATOH	2094 CB	SLU	534			44.374	74.791	1 30	23.08	
	ATOM	2095 CG	GLU	\$25			46.010	73.684	30	26.32	
	ATOM	2096 CD	GLU	534		50.768 59.849	46.863	73.862	20	25.36	
	ATOM	2097 98	1 522	534		59.049 51.461	45.933		:	25.53	

bref2	lc.pc	Ф		Thu	Apr 25	12:27:47	7 1996	28
ATOM	2099	С	GLU"	534	61.892	42.579	76.527	1.90 10.95
ATOM	2100	C	GLU	534	62.651	42.380	.066	
ATOM	2101	N	ASP	535	61.251	41.637	77.194	1.00 10.92
MOTA	2:02	CÀ	ASP	535	61.247	41.579	78.638	
ATOM	2103	CB	ASP	\$35	60.188	42.544	79.128	
MOE	2104	CG	ASP	535	58.848	42.334	78.430	1.00 8.31 £
ATOM	2105	0D1	ASP	535	58.020	41.541	78.913	1.00 11.89
ATOM	2106	OD2	ASP	535	58.635	42.949	77.372	1.00 15.77
ATOM	2107	c	ASP	535	60.793	40.201	79.033	1.00 6.27
ATOM	2108	5	ASP	535	60.063	39.577	73.295	1.00 6.65
ATOM	2109	N	LEU	536	61.176	39.731	€0.204	1.00 5.28 7
ATOM	2110	CA	LEU	536	60.717	38.436	80.651	1.00 4.48 ÷
ATOM	2111	CB	LEC	536	61.614	37.315	€0.149	1.00 2.00 ÷
ATOM	2112	CG	LEU	536	61.012	35.958	80.495	1.00 2.00 5
ATOM	2113	CD1	LEU	536	59.697	35.789	73.782	1.50 2.00 5
ATOM	2114	CD2	TEO .	536	61.955	34.853	80.152	1.00 2.00 4
ATOM	2115	C	LEU	536	60.725	38.468	82.154	1.00 5.42 6
ATOM	2116	0	LEU	536	61.701	38.896	82.751	1.00 5.81
ATOM	2117	N	VAL	537	59.606	38.093	62.767	1.00 6.59 7
ATOM	2118	CA	VAL	537	59.514	38.050	84.219	1.00 4.71 6
MOTA	2119	CB	VAL	537	58.439	39.006	84.761	1.00 3.90 6
ATOM	2120		VAL	537	58.391	38.900	86.262	1.00 7.66 4
MOTA	2121		VAL	537	58.754	40.434	E4.386	1.00 6.66 ÷
ATOM	2122	Ç	VAL	537	59.1;1	36.652	E4.604	1.00 2.70 4
MOTA	2123	0	VAL	537	58.232	36.096	63.977	1.00 5.62 3
ATOM	2124		CYS	538	59.812	36.048	E5.553	1.00 3.31 -
ATOM	2:25		CYS	52 R	59.452	34.711	E 5.055	1.00 4.73 +
ATOM ATOM	2126	c	CYS	538	59.375	34.771	27.597	1.35 5.86 4
ATOM	2127	CB	CYS	538	€0.165	35.457	£3.257	90 6.30 \$
ATOM	2129	SC	CYS	538	60.438	33.619	E5.600	1.00 2.00 -
ATOM	2130	N	PHE	538 539	60.634 58.426	33.421	23.795	1.00 3.79 15
ATOM	2131	CA	PHE	539	58.267	34.059 34.099	88.178 89.621	1.00 3.78 7
ATOM	2132	CB.	PHE	539	57.295	35.232	29.997	1.00 4.15 6
ATOM	2133	CG	PHE	539	55.852	35.009	e9.515	1.00 4.88 5
ATOM	2134		PHE	539	54.835	34.690	90.420	1.00 5.60 6
HOTA	2135		PHE	539	55.519	35.104	28.147	1.00 9.65 4
ATOM	2136	Œı	PHE	539	53.540	34.470	89.986	1.00 4.81 5
ATOM	2137	CE2	PHE	539	54.201	34.878	87.706	1.00 7.22 s
ATOM	2138	CZ	PHE	539	53.223	34.562	68.630	1.00 5.52 5
ATOM	2139	C	PHE	539	57.689	32.807	90.123	1.00 3.30 4
ATOM	2140	9	PHE	539 .	57,397	31.913	29.352	1.00 5.07 3
MOTA	2141	N	TFF	540	57.6 06	32.696	91.436	1.00 2.62 7
ATOM	2142	CA	TP.P	540	56.965	31.575	92.102	1.00 5.41 6
ATOH ATOH	2143	CB	TRP	540	57.859	30.331	92.252	1.00 5.13 ÷
ATOM	2144	CC -		540 540	58.890	30.380	93.315	1.00 7.06 4
ATOH	2146	Œ2		540	60.25G 60.861	30.807 30.65?	93.175	1.50 4.64
ATOM	2147	Œ3		540	61.006	21.299	94.430	1.00 5.73 4
ATOH	2148	CD1		540	58.738	29.995	92.110 94.610	1.00 5.86 5
ATOH	2149	NE1		540	59.914	30.161	95.286	1.56 B.29 5 1.56 B.36 7
ATOH	2150	CZ2		540	62.208	30.984	94.657	1.00 8.15 =
ATOH	2151	CZ3		540	62.336	31.623	92.328	1.00 7.58 4
ATOH	2152	CH2	TP.P	540	62.927	31.465	93.596	1.00 8.06 4
ATOM	2:53	C	TP.P	540	56.504	32.189	93.417	1.00 6.24 4
ATOM	2154	0	TPP	546	56.774	33.366	93.668	1.00 7.32 3
ATOM	2155	N	GLU	541	55.698	31.467	94.186	1.00 8.81 7
ATOH		CA	GLU	541	55.187	31.399	95.452	1.00 10.45 5
ATOM	2:57	CB	CIT	541	53.768	32.565	95.270	1.00 11.89 4
ATON	2158	CG	GLU	541	53.592	33.523	94.070	1.00 14.89 5
atom atom	2;59 2:60	OE1	GLU	541	52.202		93.991	1.50 16.24 ÷
ATOM	2161		CLU	541	52.094	35.229	93.415	1.50 17.33
ATCH	2:62	C	GLU	541 541	51.219	23.550	94.516	1.50 16.64
ATOM	2:63	ē	SLU	541	55.14B 54.744	30.925 29.811	95.507	17.50 10.03
ATCM	2164	ĸ	GLU	54%	55.552	31.242	94.232 97.724	1.00 10.32
ATOM	21.65	CA	GLU	542	55.521	30.222	98.766	
ATOM	2:56	СБ	GEU	542	56.871	29.482	98.833	1.00 10.78 A
ATCH	2167	CG	GLU	542	58.122	30.359	98.738	
atom	2168	CD	SLU	542	59.400	29.571	99.006	1.30 14.40 ÷
ATOM:	2169		CLU	542	59.711		100.188	1.00 17.03 3
ATOM	2170		GLU	542	60.095	29.263	98.026	1.00 17.30 3
ATOM	2171	Ξ	GLU	542	55.CB2	29.763	166.128	9.66
ATOM	21.72	3	GLU	215	54.741	31.947		1.50 9.88 3
ATCM ATCM	2173	.33	ALA	543	55.051	29.889		1.00 6.31 "
ATCH	2175	CA	ALA ALA	543 543	54.652	30.258		1.50 7.10 5
ATOM	2176	c c	ALA	543	54.466 51.716			4.26
	· -	-			55.716	31.141	103.108	1.00 £.66 3

			A	r 25 12	: 27 : 47	1996	29	
bref21	rc.bqp		Thu Ap				1.00 10.83	:
ATOM	2177 0	ALA	543		30.849	102.998 103.695	00 9.48	:
MOTA	2178 N		544	55.286 56.199	13.185	104.325	1.00 10.43	Ę
MOTA	2179	ALA	544 .	55.425	34.374	164.890	1.00 11.53	•
ATOM		B ALA	544 544	56.867	32.397	105.438	1.00 11.84	€ }
MOTA	2181		544	56.169	31.744	106.216	1.00 13.61 1.00 12.17	:
MOTA		N ALA	545	58.204	32.393	105.456	1.00 13.08	•
ATOM ATOM		A SER	545	58.993	31.009	105.980	:.00 12.92	:
ATCH	2185	CB SER	545	59.335 60:291	29.628	166.827	1.00 14.06	ŧ
ATOM		OG SER	545 545	60.245	32.440	106.851	1.00 14.68	₹ 2
MOTA		C SEP. C SER	545	60.865	33.184	166.117	:.00 15.67 :.00 17.50	: -
ATOM		N ALA	546	60.557	32.271	168.174 168.882		£.
ATOM ATOM	2190	CA ALA	546	61.639	32.942	119.200		£
ATOM	2191	CB ALA	546	61.927 62.928	33.213	198.143	1.00 18.94	•
ATOM	2192	C ALA	546	63.651	32.29	1 167.751	:.00 19.69	5
MOTA	2193	C ALA /	546 547	63.212	34.49	5 107.965	1.00 19.34	÷
ATOH	2194	N GLY CA GLY	54?	64.438	34.88	9 107.360	2.00 20.46	
ATOH	2195 2196	C GLY	547	64.841	34.14	0 106.03		
MOTA	2197	o GLY	547	66.045	34.04	6 105.739 0 105.32	1.00 18.62	
ATOM ATOM	2198	N VAL	548	63.867	33.30 32 AR	2 104.04		
MOTA	2199	CA VÁL	548	64.111 63.115	31.74	9 162.82	6 1.00 12.71	
ATOM	2200	CB VAL	548	63.134		9 102.36	3 [.00 13.04	
ATOM	2201	CG1 VAL	548 548	€3.450	20.57	9 124.75	6 1.00 11.20	1 1
ATOH	2202	CG2 VAL	548	63.874	33.97	1 102.99	5 1.00 15.3	
ATOM	2203 2204	O VAL	548	62.721		9 102.71	4 1.00 16.13	
ATOM	2205	N GLY	549	64.954		12 102.54 67 101.55		_
MOTA	2206	CA GLY	549	64.852		80 1C3.26		3 5
MOTA	2207	C GLY	549	65.473 65.76		91 102.17	7 1.00 11.8	2 5
ATOM	2208	C GLY	549 550	65.66		66 99.20	33 1.00 12.0	
ATOH	2209	N PRO	550	65.21	37.4	59 99.1		
ATOM		CA PRO	550	66.27		39 98.00 43 97.1		
HOTA MOTA		CB PRO	550	66.33				-
ATOM		CG PRO		66.20	·			4 5
ATOM				67.64 67.99			77 1.00 14.8	
ATOM	2215			6B.38		40 99.2	04 1.00 13.	
ATOM				69.71		797 99.4		
ATOM				69.77	6 33.3			
ATON				70.8				_
HOTA HOTA				68.6				
ATO		Ch ASI		68.5° 67.5°	72 31.	851 100.	04 1.00 4.	38 f
ATO	M 222	CB AS		67.7	97 31.	449 162.	226 1.00 6.	03 !
ATO	M 222			68.7	89 31.	112 162.	50 1.00 /·	24
ATO				66.9		411 102.		39 ·
ATO				68.2		504 58. 265 58.		91
ATO				68.1		265 98. 278 97.		28
ATO		B H II		68.1 67.8		738 95.		.43 🐔
ATO	× 222			66.4		088 95.		.87 ÷
ATO				65.3	67 30.			.46 f
ATC		·		64.4	191 31.		•	.71 f
ATC				63.				.40
ATO		4 'CD2 T'	YR 553	65.				.44 -
ATC		S CE2 T	YP. 553	64.1 62.				.00
ATC	OM 22		YF. 553 YF. 553	11.		.188 35	.778 1.30 3	. 67
AT			YF. 553 YR 553		791 31			.08
AT:		-	YR ::3	69.	-			85 :
	OH 22 OH 22	-	EF. 554				.980 1.30 3 .565 1.30	5.70
	OH 22	41 CA S	ER 554				832 90	3.42
		42 CF S	ER 554				.2:4 1.90 1	1.53 ÷
AT	OH 22	43 26 3	EF 154			D.783 Si	.621 :.30	5.93
			EF 154		289 2	9.584 🚉		1.83
			PHE 15	. 68	.574 3			7.40
			PHE SS	5 67				5.75 / 5
		48 CB 1	PRE 55:				1.3350:	1.79
	TOM 2	249 CG	PHE 35				3.567 1.00	3.96
A ^c	TOM 2	250 501			.242 3	2.554 -	7.319 1.30	4.43
		251 CD2, 252 CE1		•	. 541 3	2.382 2	7.50730	5.29 ·
		252 CE1 253 CE2		5.5	379 3		5.963 1.00	3.92 5.62
		254 GZ			.030	12.339 6	6.196 1.00	5.62

brefa	lc.p	đЪ		Thu	Apr 25 1	2:27:4	7.1996	:	30
ATOM	2255	c	PHE	555	68.779	31.759	E8.337	1.00 6.	86 ÷
ATOM	2256	၁	PHE	555	69.184	32.858	£7.945	1.00 a.	
MOTA	2257	N	SER	556	69.095	30.616	E7.740	2.90 7.	
ATOM	2256	CA	SZR	556	70.019	30.503	E6.619	1.90 6.	a3 ÷
ATOM	2259	CB	SER	556	70.969	29.315	66.879	1.00 4.	
ATOM	2260	OC	SER	556	71.923	29.587	27.891	1.00 B.	
ATOH ATOM	2261 2262	Š	SER SER	556	69.336	30.298	65.257	1.00 5.	
ATOM	2263	S N	TYR	556° 557	68.535 69.682	29.389	85.117	1.00 8.	
ATOM	2264	CA	TYP.	557	69.123	31.102 30.943	84.255 62.924	1.00 3.	
ATOM	2265	CB	TYP.	55?	68.198	32.089	82.569	1.00 3.	
ATOM	2266	CG	TYP.	557	68.832	33.434	62.422	1.00 2.	
ATOM	2267		TYP.	557	69.405	33.825	81.218	1.00 2.	
ATOM	2268	CE1	TYP.	557	69.851	35.126	£1.023	1.00 2.	
ATOM	2269		TYR	557	68.73?	34.36B	83.434	1.00 2.	
ATOM	2270		TYR	557	69.184	35.667	83.260	1.30 2.	00 ÷
ATOM	2271	CZ	TYR	557	69.734	36.047	82.051	1.00 3.	
ATOM .	2272 2273	С ОН	TYR TYR	557 557	70.124	37.356	61.865	1.00 3.	
ATOM	2274	ŏ	TYR	557	70.191 71.316	30.834 31.196	81.870 82.09 0	1.00 3.	
ATOM	2275	N	GLN	558	69.839	30.360	80.695	1.00 4.1	
ATOM	2276	CA	GLN	55B	70.831	30.227	79.648	1.00 3.	
ATOM	2277	CB	CLN	558	71.603	28.925	79.828	1.00 3.	
ATOM	2278	CC	GLN	558	72.506	28.598	78.648	1.30 6.	
MOTA	2279	CD	GLN	558	73.171	27.282	73.78B	1.00 5.	
ATOM	2280		GLN	558	72.552	26.329	79.183	1.00 6.	
ATOH	2281		GL1:	558	74.447	27.229	78.477	1.90 7.3	
HOTA	2282	5	GLN	558	70.204	35.208	78.279	1.50 3.	
ATOM ATOM	2283 2284	0	GLN	558 559	69.420	29.309	77.977	1.50 2.	
ATOH	2285	CA	LEU LEU	559	70.51E 69.945	31.189	77.445	1.00 2.0	
ATOM	2286	CB	LEU	559	70.036	31.139 32.487	76.120 75.399	1.00 2.0	
ATOH	2287	CG	LEU	559	68.975	33.527	75.792	1.00 2.0	
ATON	2288	CD1	LEU	559	69.103	34.810	75.005		00 - 5
ATOH	2289		LEU	559	67.612	32.955	75.564	1.00 2.0	
ATOM	2290	C	LEU	559	70.764	30.060	75.447	1.00 5.3	
ATOM	2291	0	LEU	559	71.951	29.947	75.728	1.00 4.	
ATOM ATOM	2292 2293	N CA	GLU	560	70.091	29.169	74.718	1.00 6.	
ATOM	2294	CB	CLU	560 560	70.737 69.787	28.064 27.517	73.997	1.00 11.0	
ATOM	2295	CG	GLU	560	70.290	26.305	72.938 72.163	1.00 14.4	
ATOM	2296	CD	GLU	560	69.701	26.207	70.738	1.00 20.	
ATOH	2297	OE1	GLU	560	69.790	27.202	69.983	1.00 25.	
ATOM	2298	OE2	GLU	560	69.200	25.130	70.346	1.00 21.	
MOTA	2299	ε	CLU	560	71.995	28.572	73.310	1.06 11.	
ATOM	2300	0	GLC	560	71.919	29.491	72.505	1.90 10.0	88 E
MOTA MOTA	2301	N	ASP	561	73.140	27.970	73.648	1.00 12.	
ATOM	2302 2303	CA CB	ASF ASP	561 561	74.460	28.346	73.118	1.00 13.	
ATOM	2304	CG	ASP	561	74.478 74.440	28.398 27.038	71.589 70.968	1.00 11.3	
ATOM	2305		ASP	561	74.530	26.039	71.725	1.00 13.	
ATOM	2306		ASP	561	74.296	26.963	69.729	1.30 11.	
ATOM	2307	C	ASP	561	74.995	29.667	73.661	1.00 17.	
MOTA	2308	٥	ASP	561	75.663	30.426	72.931	1.00 21.	
ATOM	2309	N	GTC.	562	74.714	29.972	74.926	1.30 17.	40 7
ATOM	2310	ΞÀ	GLT.	\$62	75.22C	31.218	75.504	1.00 16.	
ATOH ATOH	2311 2312	.CB	GLT.	562	74.093	32.235	75.652	1.30 20.	
ATOH	2313	CD	GLU	362 362	73.224 73.909	32.450 33.234	74.408 73.289	1.00 23.	
ATOM	2314		CI.	562	74.336	34.407	73.511	1.00 23.	
ATOM	2315		GL:	562	73.981		72.169	1.30 22.	
HOTA	2316	=	GLU	562	75.764	30.847	75.871	1.30 14.	
ATON	2317	2	SLU	562	75.431	29.759	77.373	1.5C 15.	
ATOM	2318	N.	PPO	563	76.662	31.581	77.465	1.30 11.3	29 :
ATOM	2319	CD	22:	563	77.200	22.000	77.084	1.11 3.1	
ATOM ATOM	2320 2321	CA	PEC	563	77.156	31.287	73.794	1.30 11.	
MOTA	2322	CR	PRC PRC	563 563	78.186 77.655	32.376	79.111		10 :
ATOH	2323	Š	PF.C.	563	75.965	23.548 31.277	78.404 73.788	1.00 6.	
ATOM	2324	ŏ	PRC	563	74.981	32.001	77.558	1.35 10.	36 :
MOTA	2325	N	TEF	564	75.995	30.362	80.772	1.30 8.	
MOTA	2326	C٨	TP.P	554	74.945	30.255	€1.806	1.22 5.	30 -
ATCM	2327	42	TEF	564	75.304	29.199	62.845	1.:: 2.	
ATOM	2328	CC	TRE	364	74.650	27.886	E2.700	:: S.	3B 5
ATOM ATOM	2329 2330		TRE	354	73.27€	27.585	e2.941	25 6.	
ATON	2331		TRF TPP	364 364	73.116	26.182	£2.761	30 6.	
ATOH	2332			364	72.156	28.357	E.1.296	1.11 8.	59 :

bref21	lo ndi	b		Thu	Apr	25	12:	: 27 :	47	199	6		31			
Dierra	.c.pa					4.33		25.6		82.42		.00	5.36	:		
MOTA	2333	NE1		564 564		1.88	0	25.5	46	62.92	29 L	.00	6.49			
MOTA	2334	CZ2		564		10.92	8	27.7		83.4		.00	6.79 3.18			
MOTA	2335 2336	CH2		564		0.80		26.3	28	63.2°		.00	5.66		Ę	
ATOM ATOM	2337	c	TRP	564		74.88		31.5	59	62.7		.00	9.32	: '	•	
ATOH	2338	C	TRP	564		75.90 73.69	90	31.9		82.9	27	.00	3.69		;	
ATOM	2339	r;	LYS	365 365		73.5	42	33.2		E3.6		1.00	2.00		ŧ ŧ	
ATOM	2340	CB	LYS	565		73.0		34.		62.6		1.00	2.00			
MOTA	2341 2342	CG	LYS	565		74.2		34.		. €1.7 €0.3		00	3.8		ŧ.	
MOTA MOTA	2343	CD	LYS	565		73.8		35.3 36.3		79.7		1.00	3.1		į	
ATOM	2344	CE	LYS	565		74.8		37.		80.4		1.00	6.3		:	
MOTA	2345	NZ	LYS	565 565		72.6		33.	171	84.6		1.00	3.2		ξ Ξ	
HOTA	2346	Ö	LYS LYS	565		71.8	56	32.		65.	103	1.00	2.9 3.4		-	
ATOH	2347 2348.		LEU	566		72.8		34.		85.1 87.1		1.00			÷	
ATOM ATOM	2349	CA	LEU	566		72.1			100 857	88.		1.00	7.1		•	
ATOM	2350		LEU	566		73.1		33.	890	89.			11.3		ī	
MOTA	2351		LEU	566 566		74.		33.	.292	90.			13.7		¥	
ATOM	2352		LEU LEU	56		72.	660	35.	.299	90.	155	1.00	11.2		•	
ATOM	2353 2354	_	LEU	56		71.			418		265 315	1.00			•	
HOTA HOTA	2355		LEU			72.			.430 .446		406	1.00				
ATOM	2356		CYS				199 636		.738		658		10.		•	
ATOM	2357		CYS				245	27	.013	69.	124		0 13.		:	
ATOM	2350		CYS			69.	271		.119		. 983		0 13. G 12.		į	
MOTA	2351 2361					68.	506	37	.017		.707 .808		0 17.		: :	
MOTA HOTA	236						. 190		. 79		. 405		0 15.		-	
ATOH	236	2 N	AR				.009 .626		77		. 727		0 14.		ž	
ATOM	236						.781	40	.31	0 90	.798		0 17.		ŧ	
MOTA				-	88	70	. 037	3 40), <u>B</u> 2		.510		0 20.		÷	
HOTA MOTA			·		68		.32		0.71		. 624		00 22		7	
ATOM					68		.04:		1.99 2.64		.671	1.0	OT 22	. 85	÷	
ATOM		8 C		-	68		. 53		2.15	1 9	2.918	1.0	00 20	. 25	:	
ATOH	236		B1 AR		6 6 68		.19		3.81	6 9	1.465		OD 24		; ;	
ATOM			H2 AF AF	-	6B		.18	5 3	B.39		1.08		00 14 00 15		1	
ATON				_	68		5.24		6.6		0.329 2.246		00 11		-	
OTA OTA			L		69	67	7.04 5.78		7.7		2.80		90 €	. 92		•
ATO	H 23				69 569		6.00		6.1	01 9	3.71	1.				÷
ATO					569		5.0	59 3	34.9	17 9	3.60			3.41 3.80		ŧ
ATO			DI L		569		4.3		34.9 33.6		2.28 3.75		CO	2.00		•
ATO			CD2 L	EU :	569		5.85 5.33		35.4 36.4		3.63	7 :	.00	• . š4		•
ATO	M 23				569 569		6.1	-	29.2		4.13	1 :		6.24		•
ATO	M 23				570		4.0	15	38.6	44	3.71			3.65	,	÷
ATO					570	•	3.4	54	39.7		94.53 93.65		.00 1			•
ATC				IIS	570		52.B		40.8		92.80		.00 1			ŧ
ATC				IIS	570		53.8 54.7		42.	492	\$3.10		.00 1			<u>:</u>
ATC		385	CD2 I		570 570		63.8		41.	421	21.4		. 90 1			
)TK	_	386 387	ND1 CE1		570	1	64.7	128	42.		90.9		.00 1			•
TK TK		388	NE2		570		65.2	285	42. 39.		91.9	93	. 50	3.9		•
AT	•••	389		HIS	570		62.	195 195		384	95.2		.00	14.4	4	:
AT		390		HIS	570 571		61.			869	96.2	46	1.00	3.2		
		2391		GLN GLN	571		60.	655		368	97.0					:
		2392 2393	CB CB	SLN	571		61.			806	90.3		1.00	13.	17	•
		2394	CS	SLK	5?1			150	38.	.01? .342	100.4		00			:
	POH 3	2395	CD	GLK	571			187 169	38	.03?	101.3	158	1.00	22.6	69	•
		2396		SLX	571 571		59.	116	38	. 962	101.	01	1.90	22.	 	
		2297 2398	C	SLN	571		59.	712		.504	٠٠.		1.00	2.		-
		2399	Š	SLN	571			.098		. 656	97.		:.30	÷.		
		2400	N	ALA.	572			.445 .348		.081		658	00	٤.		:
7.	TOH	2401	CA	ALA	572 572			. 920	41	.774	÷5.	356			27	:
	TOM	2402 2403	C.B.	ALA ALA	572		56	.217	40	.214		195	∵.0(25	:
	TOM	2404		ALA	572			.260		3.374	. 98°	057 864	70.		25	•
	MOT	2405		PP.0	573			.213).327 2.102		602			45	:
A	LTOH	2406	CD	PFC	573			.084	3	9.863	ç 3.	323	1.00		. 35	•
	MOT	2407		PRC- PPC-	573 573			.769	41	0.43?	100	696	:.30		. 62	
	HOTA	2409		PRO	573		54	.785	4	. 599		984	1.00		. 39 . 23	
	HOTA MOTA	2410		PRC	573		53	3.044	; 3	9.734	; ç:3	. 377	1.00	•		

brefa	21c.p	Ф		Thu	Apr 25 1	2:27:4	7 1996	32	
MOTA	2411	0	PRO	573	52.768	4C.608	97.552	1.00 7.72	ŧ
ATOM	2412	N	THR	574	52.428	38.574	98.476	1.00 8.95	:
ATOM	2413	CA	THR	574	51.255	38.232	97.727	1.00 10.96	÷
ATOM	2414	СЗ	THP.	574	51.075	36.738	97.733	1.00 10.37	é
ATOM	2415	001		574	52.135	36.153	96.980	1.00 14.24	:
ATOM	2416		THP	574	49.712	36.324	97.155	1.00 13.72	÷
ATOM ATOM	2417 2418	C	THP.	574 574	50.119	36.852	98.515	1.00 12.85	÷
· ATOH	2419	N	ALA	575	50.163 49.087	38.874 39.324	99.753 97.812	1.00 14.59	3
ATOM	2420	CA	ALA	575	47.934		98.467	1.00 14.88 1.00 14.50	ī 6
ATOM	2421	CB	ALA	575	46.933	40.433	57.439	1.00 14.72	5
ATOH	2422	C	ALA	575	47.282	38.960	99.443	1.00 14.38	ě
MOTA	2423	0	ALA	575	46.480	39.355	100.286	1.00 15.91	3
ATOM ATOM	2424	N CA	ARG	576	47.683	37.695	99.344	1.00 12.79	;
ATOM	2425 2426	CB	ARG	576 576	47.178 46.877		100.189	1.00 11.82	6
ATOM	2427	CG	ARG	576	45.534	35.414 35.451	99.328 98.664	1.00 15.95	6
ATOM	2428	CD	ARG	:76	45.633	34.621	97.302	1.00 20.92 1.00 24.61	ó ó
ATOM	2429	NE	ARG	576	44.350	34.081	96.848	1.00 27.37	7
ATOH	2430	cz	ARG	576	44.171	33.43B	95.687	1.00 28.99	6
ATOM	2431		ARG	576	45.188	33.261	94.833	1.00 29.46	7
HOTA	2432		ARG	576	42.979	32.928	95.391	1.00 27.90	7
HOTA	2433	c	ARG	576	48.090		101.351	1.00 9.90	5
ATON ATON	2434 2435	9	ARG GLY	576 577	47.843		101.972	1.00 8.14	£
ATOM	2436	CA	CLY	577	49.167 50.066		101.606	1.00 10.36	7
ATOM	2437	c	CLY	577	\$1.201		102.705	1.00 9.58	6
ATOM	2438	ō	GLY	\$77	\$1.959		103.356	1.00 10.42	é E
ATOM	2439	н	ALA	578	51.263		161.193	1.00 11.51	-
ATOM	2440	CA	ALA	578	52.332		100.720	1.00 10.32	6
ATOM	2441	CB	ALA	578	51.842	22.360	99.617	1.00 6.95	5
ATOM	2442 2443	.c	ALA	578	53.443		100.212	1.00 10.21	E
ATOM ATOM	2444	N	ALA VAL	578 579	53.278 54.597	34.593	100.138	1.00 9.88	8
ATOM	2445	CA	VAL	579	55.673	35.431	99.905 99.406	1.00 9.95	7 6
ATOM	2446	C9	VAL	579	56.957		100.247	1.00 9.32	6
ATOM	2447		VAL	579	56.734		101.618	1.00 8.45	š
ATOM	2448		VAL	579	57.363		100.350	1.00 11.44	6
ATOM	2449	c	VAL	579	55.923	35.128	\$7.939	1.00 9.09	6
ATOM	2450	0	VAL	579	55.599	34.044	97.452	1.00 8.40	÷
ATOM ATOM	2451 2452	N CA	ARG ARG	580 580	56.460	36.104	97.229	1.00 7.06	7
ATOM	2453	CB	ARG	580	56.721 55.769	35.917 36.792	95.816 94.991	1.00 7.86	÷
ATOM	2454	ČĞ	ARG	580	55.926	36.721	93.503	1.00 8.84	ŕ
MOTA	2455	CD	ARG	580	55.080	37.813	92.844	1.00 8.78	5
MOTA	2456	NE	ARG	580	53.652	37.517	92.913	1.00 6.85	-
YLOH-	2457	CZ	ARG	530	52.719	38.362	\$3.341	1.50 5.69	•
ATOM ATOM	2458 2459		AP.G ARG	560 580	53.050	39.581	93.731	1.00 5.12	:
ATON	2460	Ç	ARG	580	51.470 58.159	37.952 36.282	93.466 95.523	1.00 2.00	
ATOM	2461	Š	ARG	530	58.664	37.321	\$5.954	1.00 7.72 1.30 7.66	÷ 3
ATOM	2462	N	PHE	561	58.827	35.387	94.827	1.00 6.07	7
MOTA	2463	CA	PHE	581	60.200	35.596	94.458	1.00 5.52	5
ATOM	2464	СВ	PHE	581	60.982	34.355	94.803	1.00 4.84	ē
ATOM ATOM	2465 2466	CG	PHE	581 531	61.274	34.214	96.250	1.00 4.90	5
ATOM	2467		PHE	531	60.51C 82.371	22.372	97.045 96.822	1.00 3.60	ŧ.
ATOM	2468		PHE	531	60.835	34.883 33.191	98.390	1.00 5.69 1.00 4.44	÷
ATOM	2469		PHE	581	62.694	34.700	98.165	1.00 5.88	÷
ATOM	2470	CZ	PHE	581 .	61.92€	33.854	98.944	1.00 3.43	é.
ATOM	2471	٥	PHE	251	60.287	35.939	92.961	1.00 5.46	÷
ATOM	2472)	BHE	521	59.686	35.101	42.194	1.00 6.33	ž.
atom atom	2473 2474	И	TP.P	582	61.037	26.844	92.525	30 6.16	;
ATCH:	2475	CY	TRP TRP	532 582	61.129 59.861	27.054	91.090	1.00 7.26	, f
ATOM	2476	22	TEP	532	59.462	27.778 38.933	90.589	1.20 9.34	•
ATOH	2477		TPP	582	59.916	40.268	91.423 91.200	1.00 10.74	÷ ÷
ATOM	2478		TP.P	582	39.366	41.017	92.359	1.56 11.22	÷
ATOM	2479	CE3	TPP	532	60.744	40.906	90.356	1.00 11.65	÷
ATOH	2480		TPF	\$82	58.662	28.915	92.530	1.00 .14.19	÷
ATOH ATOH	2481		TP.P	532	58.604	43.165	93.105	1.00 12.18	>
ATOH	2482 2483		TP.P TRF	582 522	59.618	42.365	92.538	1.90 12.31	÷
ATON	2484		TRP	332	61.001 60.438	42.247	90.524 91.617	1.00 15.91	:
ATON	2485	:	TEP	232	62.409	37.522	91.017	1.00 16.33	:
ATOM	2486	.)	TP.F	532	63.215	38.299	51.041	1.90 6.37	•
MOTA	2487	Ж	275	583	62.55€	27.212	69.150	20 7.90	
ATOM	2488	CA	CYS	583	63.65ē	37.766	E3.334	1.00 3.15	÷

.

				Thu		25	12:	27:	47	199	6	33		
bref2	lc.pd	Ь		Thu						E?. 07		8.52	÷	
ATOM	2489	c	CYS	593		63.15 62.14		38.4 38.0	55	26.52	20 1.00	8.13	3	
ATOM	2490	0	CYS	583 T		64.50)?	36.5	91	€7.8		11.02	÷ 1÷	
MOTA	2491	SG	CAZ	583		65.60	33	36.9	96	66.4°		11.08	- ;	
ATOM ATOM	2492 2493	N	SER	584		63.8		39.4 40.1		25.3		11.13	÷	
ATOM	2494	CA	SER	584		€3.53 63.2		41.6		€5.6	49 1.0	14.00	÷	
MOTA	2495	CB	SEP.	584 584		62.2	_	42.1	41	24.6	_	22.72		
ATOM	2496	og C	SER SEP.	584		64.8	19	40.0		E4.5		0 11.03 0 14.12		
ATOM ATOM	2497 2498	5	SER	584		65.B		40.4 39.3		£3.3			7	
ATOM	2499	N	LEC	585		64.7		39.	214	€2.5	00 1.0			
ATOM	2500	CA	LEU	585 585		65.6		38.		81.3				
ATOM	2501	CB	LEU	585		65.2	265	36.		£1.5			-	
ATOM ATOM	2502 2503	CD	LEU	585		65.5		35. 36.		£2.			7 5	
MOTA	2504	CD	LEU	585		65.6		40.		61.	832 l.(0 8.7		
ATOM	2505	ç	LEU	585 585		65.		41.	282	21.		00 7.5 00 10.5	-	
HOTA	2506 2507		PRO	586		67.		40.	929	81. 62.	·	00 12.2	-	
ATOM ATOM	2508		PRO	586			622 746	42.	279 202		993 1.	00 11.8	5 5	
MOTA	2509			586 586		. 69.	257	42.	304			00 11.4		
MOTA	2510			596			505	41.	470			00 13.8 00 14.1		
MOTA	2511 2512	_	PRO	586			416		.019			00 14.1	7 6	
MOTA	2513		PRO	586			693		.019 .985		957 1.	00 13.1	17 7	
ATOM	2514	ុ អ	THR	587 587			261		. 949		569 1.	00 12.4		
ATOM	251			587		66.	. 168		. 355			00 15.		
ATOM	251 251	-	S1 THR	587			. 927		.330			00 17.	-	
MOTA MOTA	251	_	G2 THP.	58			.049		.408		.657 1.	00 12-	0 0 6	
ATOM	251	9 C	THR				.182 .739		.301	3 75	.948 1	.00 11.		
ATOM							.472	42	.53	76		.00 11.	96 6	
HOTA			i ALA				. 512		. 92				95	
ATOH ATOM		_	B ALA	, 5B			. B9		2.34 D.42				36	5
ATON		24 0					.43: .82		9.89	4 74	1.681 1			à
ATOR	1 25						3.87	7 3	9.74	7 76		_		7 5
ATO		-: .	; ASI A ASI			61	8.74	5 3	8.30					÷
ATO:			B AS	> 56			9.17		7.68 7.68			.00 5	.26	5
ATO	H 25	29	G AS				0.67 1.08	B 3	8.04		9.298		.38	•
ATO			DD1 A5		39	7	1.42	2 3	7.29	9 7			.00 .96	:
ATO ATO			c AS		9		7.34		7.8	-			.86	•
ATO		33	2 AS	-	B9		7.08 6.43		8.7	_		00 8	.88	7
ATO	M 25	34	K TH	-	90 90		5.04		38.4	51 -	5.899	00 10		÷
ATC		35	CA TH	_	90		4.17	18 3	39.5	-	5.426		1.46 1.66	3
ATC		536 537	ogl Ti		90		4.4		40.8	- : -	5.845 7.928	1.00 10		Š
ATO		53 B	CG2 TI	iF. 5	90		64.2 64.6		39.7 38.1		4.465	1.00 10	0.88	ř
ATC	OM 25	539		:	90		63.6		38.4	14	.4.007	1.00 1	5.28	ē 7
ATO	_	540			91		65.5	92	37.4		73.783	1.00 1		÷
ATC ATC		541 542		ER S	391		65.3		37.0		72.391 71.696	1.00 1		÷
AT		543			591		66.6 67.0		37.		73.790	1.00 1	6.79	3
AT	OH 2	544			591 591		64.4		35.	867	72.177	1.00 1		•
		545			591		64.4		34.		72.882 71.135	1.00 1	9.34	:
		547	K S		592		63.5		35. 34.		70.803	1.00	5.84	÷
	TOM 2	2548	•••	EP.	592 592		61.		35.		-0.119	:.00	6.26	÷
		2549 2550			592		60.	795		63B	70.916	1.00	5.45	ş
		2551		EF.	5 ? 2			216		945	69.663 63.563	00	4.72	3
	TOH :	2552	\$	SEF.	592			386 386		974 980	£3.527	1.00	5.79	7
A	гон	2553		PKE	593 593			715		900	£8.620	1.00	8.33	:
		2554		PKE PKE	593		62.	866	32	474	€7.189	1.00	7.57 6.76	:
	TOM TOM	2555 2556		PHI	233		61.	744		458	65.791 65.197	oc	9.27	•
	TOM	2557	221	PHE	592			399	34	.679 .162	(7.043	1.00	5.21	•
A	TOM	2515	222		593 593			.020		. 584	65.866	1.00	9.60	÷
	TOM	2559			233			.380	34	. 054	45.719		5.0	•
	TOM TOM	2563		PHE	593		59	. 68 🤄		. 262	15.121		7.44 9.84	
	TOH	256	2 5	PKE	593		43	.84E .302		.947	63.000 43.153		11.09	3
,	HOT	256	3	PEE	593 594		64	.222		. 958	79.291	1.00	y. 32	
	ATOM	256 256		VAL VAL	594		65	. 284	30	1.113	70.95			
	MOTA	250		VAL	594			. 588		. 403	71.15	500	9.17	

bref2	lc.pd	I b		Thu	Apr 25 1	2:27:47	1996	34	
ATOM	2567	CG1	YAL	594	67.086	21.490	€9.894	1.00 11.27	•
ATOM	2568	CG2	VAL	594	66.359	32.005	72.175	1.00 3.98	
ATOM	2569	C	VAL	594	64.874	29.552	72.261	1.00 6.85	•
ATOM	2570	5	YAL	594	64.201	30.239	73.037	1.00 9.44	:
MOTA	2571	K,	220	595	65.287	28.308	72.572	1.00 4.06	-
ATOM ATOM	2572 2573	CD	PRO PRO	595 595	65.910 65.040	27.414 27.558	71.592	1.00 4.50	•
ATOH	2574	CB	PRO	595	65.623	26.185	73.802 73.468	1.00 4.33	•
ATOM	2575	CG	PRO	595	65.442	26.084	72.064	1.00 4.07	÷
ATOM	2576	c	PRO	595	65.728	26.142	75.048	1.30 3.58	•
ATOM	2577	0	PRO	595	66.955	28.077	75.180	1.00 3.03	÷
ATOM	2578	N	LEU	596	64.923	28.692	75.955	1.00 3.21	-
ATOM	2579	CX	LEU	596	65.420	29.282	77.199	1.00 4.16	:
ATOM	2580	CB	LEU	596	64.670	30.596	77.561	1.00 3.29	:
ATOM	2581	CS	LEU	596	65.384	31.870	78.068	1.00 2.00	•
ATOM	2582		LEU	596	64.500	32.639	79.002	1.00 3.47	•
ATOM	2583 2584	C	LEU	596 596	66.646 65.252	31.534	78.783	1.00 2.16	•
ATOH	2585	ŏ	LEU	596	64.121	28.293 27.938	78.347 78.721	1.00 4.67	÷
ATOM -	2586	ĸ	GLU	597	66.384	27.861	78.900	1.00 2.52 1.00 4.53	1
MOTA	2587	CA	GLU	597	66.406	26.943	80.031	1.00 3.76	Ė
MOTA	2588	CB	CLU	597	67.566	25.980	79.909	1.00 2.00	÷
MOTA	2589	CC	GLU	597	67.699	25.125	81.113	1.00 2.00	÷
ATOM	2590	CD	era	597	68.548	23.955	00.855	1.00 5.62	•
ATOM	2591		CLU	597	69.206	23.971	79.805	1.00 10.01	:
ATOM	2592	OE2		597	68.562	23.014	81.675	1.00 6.65	÷
ATOM	2593	C	27.D	597	66.483	27.704	81.367	1.00 2.57	•
MOTA MOTA	2594 2595	o N	GLU LEU	597 59 8	67.32 <i>2</i> 65.590	28.596	61.536	1.00 3.19	•
ATOM	2596	CA	TEO	598	65.519	27.358 28.001	82.296 83.600	1.00 3.03	
ATOM	2597	СВ	LEU	598	64.159	28.670	83.777	1.00 2.16	•
ATOH	2598	CG	LEU	598	63.756	29.657	82.681	1.00 2.00	•
MOTA	2599	CD1		598	62.279	29.702	82.601	1.00 2.00	÷
ATOH .	2600	CD2		598	64.368	31:027,	82.888	1.90 2.00	•
ATOM	2601	C	LEU	598	65.761	26.988	64.700	1.00 2.92	Š.
ATOM	2602	0	LEU	598	65.337	25.B33	84.605	1.00 2.64	÷
ATOM	2603	N	ARG	599	66.462	27.428	85.736	1.00 2.34	:
ATON	2604	CA	ARG	599	66.804	26.580	86.862	1.00 3.62	÷
ATOH ATOH	2605 2606	CB	ARG	599	68.254	26.115	86.710	1.00 6.78	•
ATOM	2607	CD	ARG ARG	599 599	68.479 69.385	24.611 24.359	26.512	1.00 10.90	÷
ATOH	2608	NE	ARG	599	69.658	22.945	65.30B 65.047	1.00 14.84	=
ATOH	2609	CZ	ARG	599	70.176	22.100	£5.942	1.00 17.80	Ę
HOTA	2610	NH1		599	70.472	22.515	E7.182	1.30 17.23	-
ATOH	2611	NH2	ARG	599	70.452	20.845	E5.580	1.00 15.70	•
ATOM	2612	С	ARG	599	66.717	27.367	68.150	1.60 3.41	•
ATOM	2613	3	ARS	599	67.394	28.364	68.259	1.00 4.23	:
ATOM	2614	N C	YAL	600	65.843	26.379	89.081	1.2C 2.37	
atom Atom	2615 2616	C3	ツルレ ツルレ	500 500	55.756	27.644	50.387	1.00 2.07	•
ATOM	2617	CGI		600 600	64.322 64.336	28.001	90.825	1.00 2.02	:
ATOM	2618	CG2		600	63.737	28.512 29.035	\$2.248 89.917	1.36 2.20	:
ATOM	2619	c	YAL	600	66.273	26.622	91.371	1.00 2.00	•
ATOM	2620	ō	7AL	600	65.744	25.525	91.426	1.30 4.11	
ATOM	2621	N	TEF.	601	67.309	26.963	92.124	1.00 5.21	-
ATOM	2622	CA	THP.	601	67.881	25.043	\$3.098	1.00 6.74	÷
Atom	2623	CB	TEF.	601	59.296	25.601	92.688	1.00 8.50	÷
ATOM		061		601	69.228	24.939	91.430	1.00 12.77	:
ATOM	2625	CG2		601	69.890	24.631	93.684	30 8.70	÷
ATOM ATOM	2626 2627	ç	THE.	601	67.995	26.634	94.481	1.00 8.74	•
ATOM	2628	Ñ	THR ALA	601 602	68.267 67.788	27.822 25.792	54.637 55.484	1.00 11.77	Ė
ATOH	2629	CA	ALA	602	67.915	25.196	96.B77	1.00 9.57	
ATOH	2630	CB	ALA	602	67.254	25.191	97.745	1.00 9.62	:
MOTA	2631	Ξ	ÄLA	602	59.404	26.180	97.153	1.12-10.33	÷
MOTA	2632	C .	ネニム	602	70.107	25.324	96.613	11.56	i
ATOM	2633	ĸ	ALA.	603	69.872	27.969	93.036	1.00 9.75	-
ATOM	2634	CA	ai.A	603	71.292	27.162	98.415	1.00 7.22	:
ATOM	2635	CB	YTY	603	71.517	28.370	99.300	5.77	•
ATOM ATOM	2636 2637	5	ALA	603	73.873	25.882	99.070	5.23	:
ATOM	2638	N	ala Eer	603 604	73.066	25.785	£9.320	4.90	
ATOM	2633	CA	JER JER	604	71.026 71.497	24.892 23.639	99.324 99.897	5.87	
ATOM		CB	SER	604	70.409	22.380		1.00 7.44	
MOTA	2641	งธ	323	604	69.702	22.024	59.997	1.11 6.27 1.11 5.42	:
MOTA	2642	C	SER	604	71.914	22.689	\$8.777	9.15	•
ATOM	2643	•>	SER	604	72.462	21.617	99.042	1.33 11.68	:
ATOM	2644	N	25.	605	71.604	23.070	\$7.535	:: 7.29	

						25 12	:27:	47	1996		35		
oref21	.c.pd	Ь		Thu					£6.378	1.00	a.17	;	
ATOM	2645	CA	GLY	605		1.944	22.20		95.785	00	7.43	:	
ATOM	2646	τ	G FA	605	7	0.709 0.711	21.1		94.631	1.00	8.91	:	
ATOM	2647	S	GLY	605 606	6	9.639	21.6	06	96.573	1.00	7.11 6.20	•	
MOTA	2648	K CA	ALA	606	6	8.376	21.0	01	96.194 97.387	1.00	2.64	1	
ATOM	2649 2650	CB	ALA	606		7.492	20.8		95.113	00	6.88	•	
MOTA MOTA	2651	c	ALA	606		7.665	22.5		95.234	1.00	7.80	:	
ATOM	2652	Ð	ALA	606		57.222	21.0	163	94.074	1.00	6.21 6.78	÷	
MOTA	2653	N	PRO PRO	607	i	67.457	19.6	636	93.821		7.75	•	
ATOM	2654 2655	CD CA	PRO	607		66.520	21.0	660 897	92.950 91.845		7.27	•	
MOTA MOTA	2656	CB	PRO	607		66.656 67.655	19.	620	92.35	1.50	5.40	:	
MOTA	2657	56	PRO	607 607		65.046	21.	969	93.22		6.86 6.25	•	
MOTA	2658	ç	PRO	607		64.287		084	93.59			÷	
ATOM ATOM	2659 2660	N	ARG	608		64.656	23.	215 65B	93.09		6.82		
ATOM	2661		ARG	608		63.284		105	93.59	1 1.00			
MOTA	2662			608 608		63.510	25.	320	95.06		11.99 14.22	_	
ATOM	2663			608		62.606	24.	474	95.99 95.82		14.28	-	
MOTA	2669 2669			608		61.16		.719 .828	96.20	0 :.0	14.39) + 🚉	
MOTA MOTA	266	6 C2	ARG	608		60.53		.817	96.77	13 1.0	15.9		
MOTA	266	7 NI	11 ARG	608 608		59.21	6 25	. 936	46.0	180	0 13.30 0 6.9	,	
MOTA	266		12 ARG	608		€2.58	6 23	.548					
MOTA MOTA	266 267		ARG	608		61.61		.836			0 7.0		
ATOM	267	1 8				63.09 62.40		.140	89.4	06 1.9			
MOTA						61.5	2:	3.394			0 9.9		
ATOM		-	B TYR G TYP			60.54	13 Z:	5.684 6.79	4 90.2 B 91.1		0 12.3	6 :	
ATON		75 0	DI TYP			60.76 59.7		7.07		56 1.1	00 13.9	1B :	
ATO	1 26		E1 TYP			59.4	34 2	4.85	2 90.4		00 13.6	6 : 63 :	
ATO			EZ TY			58.4	94 2	5.12			00 13.0 00 15.3		
OTA OTA			Z TY	P. 60		58.6		6.23 6.52			00 17.	36	
ATO		80	OH TY			57.6 63.3		4.03	2 88.	193 1-	00 7-		
ATO	м 26		C TY O TY) 9) 9	64.4	48 2	4.51	4 8B.		00 10.	10 : 17	
ATO			N HI	·	10	62.6		23.41				51 :	
ATO ATO	·	584	CA HI	5 6	70	63. 64.		22.30	95 E5.	775 1	.00 2.	85	
ATO	M 26	685	CB BI		10	65.	112	21.8	B3 84.	524 1		00 :	
ATC	-	686	CD2 B		10 10	65.	692	22.8	30 B3.			.00 ±	
ATC ATC		687 688	ND1 H		10	65.		20.6 20.8	· · ·	786	.00 2	.00 :	;
ATC		689	CE1 H	IS 6	10	66.		22.1		676 1	.00 2	. 00	
ATC	OH 2	690	HE2 H		10 510	÷2.	506	23.4	56 E4			. 94	•
AT		691 692			510	£1 .	459	22.5					
AT.		693	N A	RG (511		790 838	24.		.756	.00 2		:
AT	ON 2	694	_		611 611		946	25.	703 E3	.222			:
	•••	2695 2696			611	59	.476	25.		.826 .920			•
		2697	CD /	LRG.	611		.701 .501	26. 26.		2.093	1.00	1.99	•
	MO	2698		arg Arg	611		.647	27.	834 B			1.31 9.07	•
		2699 2700	CZ NH1		611		.85C		_	2.542 1.138		2.00	•
		2701	NH2	arg	611		.605			1.558	1.00	2.00	•
A'	TOM	2702	-	ARG	611 611		.80C	25.	350 8	1.680		3.11	:
	TOM	2703	81	arg Val	612	÷	2.074			0.388	1.00	2.76 5.17	•
	TOM TOM	2705		VAL	£12		2.669	25	.068	9.118 8.19B	00	5.26	:
	TOH	270€	CB	VAL	612		3.056 3.806			6.967	:.00	6.96	:
	TOH	270		VAL	612 612		3.917	23	.089	18.935	:.00	9.67 4.40	•
	TOM	270		VLL VLL	612	£	: .490	25		78.464	00	5.97	:
	NOH NOT	271		YAL	612	•	C.382			77.968	1.00	2.39	•
	ATOM	27:	. N	ILE	613 613	é	0.55	21	.874	77.340	00	2.00	
	MOTA	271		ILE ILE	613	:	9.885	26	3.933	78.270	00	2.00 2.15	
	MOTA MOTA	271 271	4 CG2	ILE	613		9.24	_	3.279 0.015	73.471 73.669		2.00	
	HOTA	271	5 CG1	ILE	613		60.89(50.26		1.241	79.182	00	2.09	
	ATOM	271	_	ILE	613 613		60.99	£ 2	8.601	76.094	33	3.35 2.06	
	MOTA	271		ILE	513		62.16	4 2	0.553 9.173	73.709	1.00	3.35	
	ATOH	27	19 N	RIS	514		60.01 60.25	2 3	0.007	74.241):	4.63	
	ATOM	27		HIS	614 614		59.60	4 2	9.427	72.970	00	2.25 2.10	
	HOTA	27 27			614		ću.44	7 2	8.410	72.271	00		
	~	• •											

bref	21c.p	db .		Thu	Apr 25 1	.2:27:4°	7 1996		36	
ATOM	2723	coa	e His	614	61.353	28.536	71 201			
ATOM	2724		HIS	614	60.442	27.075	71.281	1.00	2.56 4.63	÷
ATOM	2725		HIS	614	61.310	26.419	71.865	1.00	2.00	ķ
ATOM	2726		HIS	614	£1.875	27.284	71.051	1.00	6.31	
ATOM ATOM	2727 2728	2 ت	HIS	614 614	59.580	31.311	74.664	1.00	3.58	5
ATOM	2729	N	ILE	615	58.419 €0.315	31.306	75.046	1.00	2.50	3
ATOM	2730	CA	ILE	615	59.717	32.412 33.661	74.674 75.10B	1.00	2.76	?
ATOM	2731	CB	ILE	615	60.770	34.768	75.221	1.00	2.55 2.49	÷
ATOM	2732		ILE	615	60.102	36.115	75.507	1.00	2.99	
ATOM ATOM	2733		ILE	615	61.785	34.387	76.307	1.00	2.00	6
ATOM	2734 2735	C	ILE	615	63.067 58.569	35.246	76.351	1.00	2.90	÷
ATOM	2736	ò	ILE	615 615		34.079 -34.687	74.205	1.00	3.27	÷
ATOM	2737	N	ASN	616	58.639	32.673	74.651 72.943	1.00	5.04	3
ATOM	2738	CA	Asn	616	57.618	34.015	71.945	1.00	5.73 4.76	7
MOTA	2739	CB	ASN	616	58.205	33.893	70.513	1.00	2.00	6
ATOM ATOM	2740 2741	25	ASN ASN	616	58.860	32.539	70.236	1.00	2.00	6
ATOM	2742		ASN	616 616	58.410 59.954	31.767	69.399	1.00	2.00	3
ATOM	2743	c	ASN	616	56.287	32.273 33.247	70.910 72.124	1.00	2.00	7
ATOM	2744	0	ASN	616	55.265	33.632	71.581	1.00	4.60 6.70	6 3
ATOM	2745	Я	GLD	617	56.280	32.240	72.989	1.00	4.63	7
atom Atom	2746 2747	CA	CTO	617	55.088	31.444	73.242	1.00	5.16	€
ATOM	2748	CG	GLU	617 ·	55.424 56.381	29.951	73.185	1.00	4.92	ž
ATOM	2749	CD	GLU	617	56.433	29.633 28.180	72.086 71.704	1.00	8.53	ě
ATOM	2750		GLD	617	56.653	27.922	70.498	1.00	11.83	÷
ATOM	2751		CLD	617	5€.276	27.297	72.575	1.00	14.68	å
ATOM ATOM	2752	5	CLU	617	54.438	31.744	74.587	1.00	4.18	5
ATOM	2753 2754	O N	GLU	617 618	53.440 54.995	21.127	74.930	1.00	7.74	8
ATOM	2755	CA	VAL	618	54.433	32.667 32.988	75.354	1.00	3.63	7
ATOM	2756	CB.	VAL	618	55.365	32.566	77.870	1.00	2.00	· 5
ATOM	2757		VAL	618	55.666	31.109	77.838	1.00	2.00	6
ATOM ATOM	2758 2759		VAL	618	36.651	33.337	77.890	1.00	2.00	5
ATOM	2760	C O	VAL	618 618	54.119 54.600	34.459	76.727	1.00	2.00	5
ATOM	2761	N	VAL	619	53.333	35.167 34.937	77.616 75.778	1.00	2.77	ā
ATOM	2762	CX	VAL	619	52.970	36.345	75.792	1.00	2.00 3.10	7 6
ATOM	2763	CB	VAL	619	\$2.765	36.886	74.407	1.00	2.32	5
atom atom	2764 2765		VAL VAL	619	52.741	38.409	74.449	1.00	2.43	5
ATOM	2766	5	VAL	619 519	53.884 51.700	36.412	73.519	1.00	7.61	6
MOTA	2767	ō	VAL	619	50.817	36.587 35.731	76.589 76.610	1.00	4-11	÷
ATOM	2768	N	LEU	620	51.639	37.734	77.268	1.00	6.41 2.53	3
ATOM	2769	ÇÀ.	LEU	620	50.492	38.143	78.080	1.00	3.37	÷
ATOM ATOM	2770 2771	23 32	LEU	620	50.702		79.554	1.00	3.39	÷
ATOM	2772		LEC	620 620	49.613 50.233	37.183	60.438	1.00	3.95	÷
ATOH	2773	CD2		620	48.306	37.141 37.985	81.775 80.529	1.00	5.62	÷
ATOM	2774	С	LEU	620	50.382	39.654	77.920	1.00	3.21 5.44	÷
ATOM	2775	3	LEU	620	50.858	40.437	78.736	1.00	7.07	ä
atom Mota	2776 2777	N CA	LEU	621	49.739	40.044	76.834	1.00	7-07	7
ATOM	2778	CB	LEU	621 621	49.549 48.832	41.432 41.498	76.465	1.00	5.70	ń
ATCM	2779	CG	LEO	621	49.469	40.971	75.111 73.845	1.00	3.38	÷
ATOM		CD1	LEU	621	48.395	40.832	72.831	1.00	2.00 2.42	÷
ATOM ATOM	2781		LEU	621	50.545	41.903	73.377	1.00	2.00	á
ATOM	2782 2783	2	LEU	621 621	48.730 47.941		77.427	1.00	7.59	÷
ATOM	2784	Ň	ASP	622	48.926	41.728 42.565	79.198	1.00	8.04	3
MOTA	2785	CA	ASF	622	48.148	44.513	77.355 78.128		11.43 10.55	?
ATOM:	2786	CB	ASP	622	48.678	45.938	77.968	1.00	9.98	÷
ATCM	2767	76	ASP	522	19.746	46.300	78.963		11.16	•
ATOH ATOH	2788 2789	221		522	50.398	47.342	78.724		12.42	•
ATOM	2790	= = = =	ASF	622 622	49.927 46.855	45.580	79.976		11.12	ą
ATCH	2791	5	ASP	622	46.867	44.429 44.075	77.336 75.152		10.98	:
ATOM:	2792	33	ALA	623	45.754	44.075	77.965		11.16	3
ATOH	2793	27	ALA	623	44.452	44.764	77.326		13.1 <u>1</u> 12.49	÷,
ATCH:	2794	£2	ALA	623	43.375	44.723	73.402		13.24	·,
ATOM	2795 2796	:	ALA ALA	623	44.267	45.975	76.399	1.50	10.77	- 5
ATO:	2797	3	PRO	523 624	43.311	46.953 45.890	76.489		11.45	3
ATCM	2798	CD	PRC-	624	42.607	44.628	75.462 75.175	1.00	7.62	?
MOTA	2799	ΞÀ	PP.C	624	42.969	46.328	74.486	1.00	7.09 6.69	- 1 - 3
ATOM	280C	CF	P.P.C	624	41.633	26 241	77 677			_

					100	25 12	:27:4	17 19	96		37		
bre£21	Lc.pd	þ		Thu					736	1.00	9.96	τ.	
	2801	CG	PRC	624		2.334	48.19	n 75.	095	1.00		ŕ	
ATOM	2802	Ç	PRO	624		2.366	48.13	•	.05€	1.00	13.30	•	
ATOM	2803	၁	PRO	624	4	1.591 2.693	49.35		.518	1.00	11.27	1	
ATOM	2804	×		625		2.152	50.63	B 74	. 969	1.00	8.57	ş	
ATOM	2805	CA	VAL	625 625		3.234	51.67	6 75	.160	1.00	8.17	5	
ATOM	2806	CB	VAL	625		4.097	51.32		.386		10.17	į	
NOTA	2807	CG1	VAL	625		4.116	51.74		. 933	1.00	11.00	ķ	
ATOH	2808		VAL VAL	625	4	11/136	51.19		.950	1.00	11.25	į	
MOTA	2809		VAL	625		10.779	50.51		970	1.00	19.53	7	
MOTA	2810	Ŋ	GLY	626		10.629	52.3		1.243	00	12.1	ŧ.	
ATOM	2811	57	GLY	626		39.683	53.0		2.843		14.18	ŧ	
ATOM	2812 2813	ē.	GLY	626		38.396	52.4		1.775		14.32	3	
MOTA	2814	3	GLY	626		37.906	52.9 51.5	•	3.565		16.36	7	
ATOM	2815	33	LEU	627		37.819	50.8		3.112	1.00	17.03	ŧ	
ATOM	2816	CA	LEU	627		36.576	49.7		4.092		13.89		
MOTA MOTA	2817	CB	LEU	627	- 1	36.138 34.946			3.631		13.26		
ATOM	2818	೮೩	LEU	627		35.399		_	2.467		15.73		
HOTA	2819	CD	1 LEU	627		34.421	_		4.740		12.93		
ATOM	2820		2 LEU	627		35.415		369 7	2.928		18.27		
ATOM	2821		LEU	627 627		35.007		548	3.681		17.62		
ATOM	2822		LEU	628		34.954	52.		11.682		19.54		
ATOM	282			628		23.814	52.		11.355		19.70		
MOTA	282			628		34.16	5 54.		70.499		19.0		
ATOM	282		1 VAL	621		34.93			71.31		18.4		
MOTA	282		32 VAL	62		34.94			69.244 70.60		0 21.3		
MOTA	282 282	_	VAL	62	В	32.78			69.74		0 19.3	5 3	
NOTA NOTA		_	VAL			33.14			71.03		0 21.2	3 ?	
ATOM						31.52	-	453	70.44	0 1.0	0 21.6		
MOTA			y yry			29.53		850	71.53		0 25.9		
ATOM						29.59	3 52	. 496	69.66	4 1.0	0 22.6	7 -	
ATOM						29.68		. 693	69.98	D. 1.0	0 23.	59 8 16 7	
ATON						28.82	23 52	.061	68.65	9 1.4	0 22.3		
ATON					30	28.0	4 52	. 979	67.84		07 19.		
ATO	4 2B	-	A AR		30	28.8	13 53	.703	66.B		00 19.		
ATO	M 28	-	B AR		30	29.0	B7 55	.154	67.1		00 22.	-	
ATO			CG AR	-	30	29.5	65 56	.016	65.9		00 24.º		
ATO			CD AR NE AR		30	29.3		.461	66.2		00 28.		5
ATO			CZ AR		30	29.6		1.112	67.3 68.4		00 26.		7
ATO ATO	••		NHL AR		30	30.1		7.460 9.440	67.4		00 26.	78	7
ATO			NH2 AP	G 6	30	29.4		2.308	67.1	25 1.	00 19.	96	÷
ATO	···	344	C AF		30	26.8 26.9		1.133	66.7	44 1.	00 19.	93	3
ATC		345	2 1		30	25.		3.049	66.9	44 1.	.00 18.		?
ATC	Des 21	846	9 L		531 531	24.	550 5	2.49B	66.2		. 30 18.		ē Ķ
ATC		847			531	23.3	379 5	3.267	66.		.00 18.		4
ATC		848			631	22.		2.408	67.		.00 18		5
ATY		849	CD1 L		631	22.		0.967	66.		.00 18		÷
AT		850 851	CD2 L		631	22.		2.322			.00 21		5
TA TA		852		£υ	631	24.		52.770 53.915			.00 23		a
AT.		B53		£U	631	24.		31.75E			.00 21	.42	7
		854		LA	632	25.	170	51.97			.00 22		÷,
		855		LA	632			50.69		943 3	.00 23		4
		2856		LA	632			52.42	62.	225 2	.00 24		÷
		2857		LA	632 632			51.60	4 61.		.00 2	.46	8
		2858	-	ALA	633		.542	53.70			.00 90	2.20	÷
A7		2859		ASP ASP	633	22	. 239	54.36	6 62	2CB	1.00 9	r. 30	
		2860		ASP	633			55.88			1.00 9		÷
		28.61 2862		ASP	632		.352	56.77		. 272 . 347	00 9	5.30	3
		2863	507		632		.776	56.36		. 22	1.00 9	C.:D	3
	TOM TOM	2864			633		.852	57.97		.921	1.00 9	21.20	÷
	TOM	2865		ASP	633		.466	53.89		. 947	1.00 9	E.20	.ī
	TOM	2866	•	ASP	633	20	.252 2.137	53.74		.752	1.00 \$	10.20	•
	TOH	2867	75	GLO	634		.428	53.4	55 58	.5:4	1.00 9	92.30	4
	TOH	2868		GLU	634		2.349	53.7	56 57	.325	1.00		÷
	NOT	2869		CLU	634 634		2.847	55.2	02 57	.22	1.00	90.00	-
	TOH	2870		CLU	634		3.766	55.5		5.15:	1.00	96.30	÷
	MOTA	287		CIO	634	2	4.012	54.6		3.261	60	90.00	:1
	RTOM RTOH	287		GLU	634	2	4.295	56.6		6.343 6.343	1 00	90.30 90.30	.,
	ATOH	287	_	GLU	634		2.911	52.0		B.373 7.553		9:.20	£
	ATON	287		GLU	634	. 2	0.024	51.7	_	9.155		9:.00	:-
	ATOM	287		SER	635	2	1.465	51.3 49.7		9.145		30.30	-7
	ATOM	287	7 CA	SER	635	2	11.062			6.35;		90.30	
	. =	207		SER	635	- 2	22.288	-0.0					

bref	21c.p	ďb		Thu	Apr 25 1	2:27:47	7 1996	38
ATOM	2879	oc	SEP.	635	23.189	49.037	60.063	1.00 90.00 3
MOTA	2880	C	SER	635	20.328	49.370	60.435	1.00 90.00 5
ATOM	2881	0	SER	635	19.394	48.552	60.427	1.00 90.00 3
ATOM	2882	N	GLY	636	20.780	50.010	61.458	1.00 90.00 7
ATOM ATOM	2883 2884	CY	GLY	636	20.217	49.834	62.821	1.00 90.00 5
ATOM	2885	Ö	CLY	636 636	20.996		63.586	1.00 90.00 5
ATOM	2886	N	BIS	637	20.541 22.203	47.640 49.107	63.790 64.010	1.00 90.00 £ 1.00 29.39 7
ATOM	2887	CA	RIS	637	22.920	48.155	64.847	1.00 29.39 7 1.00 28.30 8
ATOM	2688	CB	RIS	637	23.190	46.817	64.148	1.00 27.49 5
MOLY	2889	CG	HIS	637	23.915	46.854	62.796	1.00 26.32 5
ATOM ATOM	2890 2891		HIS	637 637	25.124	47.337	62.400	1.00 26.14 5
ATOM	2892		RIS	637	23.338 24.176	46.289 46.428	61.665 60.659	1.00 26.56
MOTA	2893		HIS	637	23.247	47.050	61.079	1.00 26.93 5
ATOM	2894	C	HIS	637	24.223	48.651	65.427	1.00 27.39 6
HOTA	2895	0	RIS	637	24.505	49.862	65.452	1.00 27.46 a
ATOM ATOM	2896 2897	N CA	VAL	638	24.921	47.631	65.868	1.00 25.98 7
ATOM	2898	CB	VAL	638 638	26.119 26.169	47.770	66.646	1.00 22.67 5
ATOM	2899		VAL	638	26.966	46.693 47.127	67.73D 68.963	1.00 23.93 6
ATOM	2900		VAL	638	24.781	46.310	68.251	1.00 24.68 5 1.00 23.20 5
ATOM	2901	C	VAL	638	27.422	47.694	65.B77	1.00 21.16 6
ATOM	2902	0	VAL	638	27.763	46.687	65.236	1.00 17.80
MOTA	2903	N	VAL	639	28.129	48.808	65.940	1.00 19.71 7
ATOM ATOM	2904 2905	CA CB	VAL	639 639	29.417	48.927	65.309	1.00 21.49 4
ATOM	2906		VAL	639	29.362 30.383	49.967 51.140	64.127 64.296	1.00 22.97
ATOM	2907		VAL	639	29.531	49.189	62.796	1.00 22.32 5 1.00 21.09 4
MOTA	2908	C	VAL	639	20.503		66.402	1.00 18.72 5
atom atom	2909 2910	O N	VAL	639	30.569	50.164	67.103	1.00 15.61 3.
ATOH	2911	CA	LEU	640 640	31.245 32.312	48.035	66.588	1.00 17.29 7
ATOM	2912	СВ	LEU	640	32.296	47.853	67.567 68.002	1.00 15.07 6 1.00 11.06 5
ATOM	2913	CC	LEO	640	31.948	45.925	69.398	1.00 9.33 6
ATOM ATOM	2914		LEU	640	30.755	46.635	69.940	1.00 6.96 5
ATOM	2915 2916	C	LEU	640 640	31.703 33.727	44.456 48.158	69.328	1.00 7.60 5
ATOH	2917	ō	LEU	640	34.319	47.345	67.106 66.393	1.00 15.19 & 1.00 13.52 =
ATOM	2918	N	ARG	641	34.320	49.236	67.616	1.00 13.52 ÷ 1.00 16.40 7
MOTA	2919	CY.	ARG	641	35.717	49.564	67.269	1.00 18.02 5
ATOM ATOM	2920 2921	CB	ARG ARG	641	35.744	50.820	66.406	1.00 18.96
ATOM	2922	CD	ARG	641 641	36.505 35.742	50.60B 51.114	65.100 63.884	1.00 23.80 5
ATOM	2923	NE	ARG	641	34.649	50.212	63.502	1.00 25.92 5 1.00 26.12 7
ATOM	2924	CZ .	ARG	641	33.446	50.620	63.085	1.00 27.21 #
ATOM ATOM	2925 2926	NH1		641	33.173	51.935	63.013	1.00 24.02 7
ATOM	2927	NK2	ARG	641 641	32.538 36.638	49.716 49.707	62.685	1.00 23.76
ATOM	2928	9	ARG	641	36.119	49.879	68.527 69.655	1.00 17.87 ÷
ATOM	2929	N	TRP	642	37.972	49.598	68.366	1.00 16.84
ATOM ATOM	2930	CX	TRP	642	38.925	49.723	69.515	1.00 14.61 #
ATOM	2931 2932	CB	TRP TRP	642 642	38.765 39.106	48.534	70.453	1.00 13.71 -
ATOM	2933	CDZ		642	38.203	47.243 46.359	69.819 69.123	1.00 3.75 5
ATOM	2934	C£2		642	38.926	45.195	68.814	1.00 10.16 # 1.00 10.08 #
ATOM	2935	CE3		642	36.855	46.438	€8.760	1.00 a.27 ÷
ATOM ATOM	2936 ·	NE1		642 642	40.304	46.612	69.860	1.00 7.42 4
MOTA	2938	CZZ		642	40.200 38.345	45.37? 44.116	69.267	1.00 10.16
ATOM	2939	CZ3		642	36.289	45.374	68.150 68.098	1.00 8.53 6 1.00 7.26 6
ATOM	2940	CE2		642	37.035	44.225	67.803	00 7.13 #
atom Atom	2941 2942	ç	TPF	642	40.424	49.824	69.178	1.00 15.14 =
ATOM	2743	o N	TP.P	642 643	40.79E 41.275	49.704	63.006	1.00 17.51
ATOM	2944	ĊA .	LET	643	42.747	49.982 50.063	70.207 70.039	1.00 12.07
ATOH	2945	CB	LE.	643	43.310	31.312	70.676	1.00 13.34 £ 1.00 9.27 £
ATOH	2946	CG	LET	643	42.887	52.627	70.081	1.00 3.05
ATOH HOTA	2947 2948	CD1		643 643	43.784	53.715	70.583	1.00 7.00 5
ATOH	2949	C CD3	LET	643	43.012 43.508	52.525 48.891	€8.601 70.662	1.00 15.42 ± 3.00 19.66 3
HOTA	2950	ō	LED	643	43.096	48.891	70.662	1.00 15.42 A
ATOH	2951	N -	PR.:-	644	44.645	48.493	70.959	1.00 15.88
ATOM ATOM	2952 2953	CD	PP.:	644	45.206	49.056	6B.817	1.00 15.21 3
ATON	2954	CA CB	PRC PRC	-644 644	45.481 46.485	47.381 47.175	70.556	1.00 14.66
MOTA	2955	CC	PRC	644	46.642	48.573	69.412 69.867	1.00 15.17 4 1.00 15.08 3
MOTA	2956	Ċ	PP.C	644	46.192	47.793	72.851	1.00 11.57

						25 12	.27:4	7 199	6	39	
bref2	lc.pd	b		Thu	Ybı	25 12				12.33	3
	2957	ò	PRO	644	4	6.148	48.978		1.00	10.67	7
ATOM ATOM	2958	N	PRO	645		6.806	45.392			10.47	÷ :
MOTA	2959	CD	PRO	645		6.832 7.530	47.04	9 73.8	31 1.00	2.59	<u>.</u> 5
MOTA	2960	CX	PRO	645 645		8.279	45.74	6 74.0		9.51	, ,
ATOM	2961	CB	PRO	645		7.321	44.74	2 73.5 8 73.5		9.51	ē
HOTA	2962 2963	c cc	PRO	645		18.475	48.17			11.71	3
ATOM	2964	ŏ	PRO	645		19.211	49.22			9.63	7
atom atom	2965	И	PRO	646		48.433 47.682	49.43	1 75.€	18 1.00	9.62	÷
ATOM	2966	CD	PRO	646 646		49.334	50.35	30 74-1	05 1-00		6 6
ATOM	2967	CA	PRO PRO	646		49.004	51.34		1.00	11.92	6
HOTA	2968	CB CB	PRO	646		47.619	50.94			13.01	÷
ATOM	2969 2970	c	PRO	646		50.809	49.9		679 1.00	14.24	å
ATOM	2971	ō	PRO	646		51.204			470 1.00	13.38	7
ATOM	2972		GLU	647 647		53.043		46 73.		14.58	5
ATOM	2973		CTD CTD	647		53.753	51.2			15.62 19.18	ě
ATOM	2974 2975			647		53.788				0 20.10	6
ATOM ATOM	2970			647		54.23			715 1.0	0 22.78	
ATOM	297		1 GLU	647		53.64		105 75.	563 1.0	0 19.41	
MOTA	297			647 647		53.48	5 49.0	082 73.		0 14.37	_
MOTA	297		GLU	647		54.50	8 48.			0 18.36 0 11.24	_
ATOM	298		THR	648		52.75	5 48.		.384 1.0 .062 1.5		
ATOM	298 298	-		€48	1	53.02			.452 1.0	0 9.76	3 *
ATOM ATOM		3 C	B THR	648		51.83 51.55			.852 1.0	00 10.70	
ATOM	298		G1 THR	648 641		52.13		533 72	.141 1-	00 8.0	
ATOM	298		G2 THR THR			53.29	15 46.		.534 1.1 2.715 1.1		_
ATOM						52.5				00 7.2	_
ATOM				64		54.3				00 6.5	4 6
ATO			D PRO			55.3 54.6		819 6	8.713 1.	00 6.8	
ATO			A PRO			56.1		.495 6		00 5.4	
ATO	4 29	:	B PRO			56.2	33 44			.00 3.3 .00 8.1	· -
YLO			C PR			53.8	••			00 9.1	_
YLO			O PR	-	19	52.9				.00 9.0	7
ATO ATO	• • • • • • • • • • • • • • • • • • • •		N ME	7 6	50	54.2 53.6				.00 9.	
ATO	••	96	CA ME		50 50	54.7	58 41	969 6		.00 8.	
ATO	M 25		CB ME		50 50	55.	676 41	1.834 (.00 7.	85 °
ATC	_	998 999	SD ME	-	50	56.					00 5
TA TA	-	000	CE ME	:T 6	50	56.			65.975	.00 11.	50 5
ATO	_	001	C 10		50	52. 51.			65.991 1	.00 13.	
ATC	DH 3	002	0 19		50 51		581 4	4.546	•	.00 11.	_
AT.		003			551		136 4	4.808		1.00 12. 1.00 13.	
λT		004			E51			6.198		1.00 14	
AT.		1006	0G1 T	HR	651			17.197 16.502	65.187	1.00 15	.74 +
		3007	CG2 T	HR	651		.364 4 .353 4	13.784	65.039	1.00 12	.51 5
		3008			651 651		309	13.264		1.00 16	.75 à
		3009		HR EP.	632		.866	43.478	63.829 62.863	1.00 11	.89 6
		3010 3011		ER	652			42.623 42.949	61.416		.16
		3012		EP.	652			41.990	60.895		.04
		3013		SER	652 652	49		41.114	63.151		7.54
A'	TOH	3014	-	ser Ser	652	45	.034	40.261	62.274		7.77
	TOM	3015		BIS	653		.523	40.795	64.390 64.805		6.49
	TOH TOM	3016		HIS	653		584	39.399	65.253		6.61 =
	TOM	301B		RIS	€53		0.991 1.8 9 2	38.953	64.029	L.00	9.79 =
	TOH	3019	CG	HIS	653	3	2.285	37.884	63.288		9.28
	TOM	3020		HIS	653 653	5	2.471	40.071	€3.438	1.00 1	0.33
	TON	3021		HIS	653	. 5	3.171	39.668		1.00	5.42 · · · · · · · · · · · · · · · · · · ·
	TOH	3022		HIS	553	5	3.071	38.36?		:.00	4.62
	NTOM NTOM	302		HIZ	653	4	8.476	39.163 38.044		1.00	5.90
	ATOM	302	-	HIE	653	9	7.989	40.234		1.00	5.11
	ATOM	302	6 N	ILE	554 554	1	17.072	40.14	67.580	1.00	4.75
	MOTA	302		ILE	654		17.059	41.45	68.355		3.95/ 5.93
	ATOH	302		ILE	654		46.252	41.36			3.24
	ATOM ATOM	302 303		ILE	654		48.469	41.89			2.00
	ATOH	303		ILE	654		48.560				5.10
	ATOM	303	12 C	ILE	654		45.633 44.981		a 66.395	1.00	7.39
	ATOM	303		ILE	654 653		45.214				5.70
	ATOH	30	34 N	ARG		-					

bref	lc.p	d b		Thu	Apr 25 1	2:27:47	7 1996	40	
ATOM	3035	Cλ	ARG	655	43.856	38.107	67.582	1.00 4.70	6
ATOM	3036	CB	ARG	655	43.947	36.608	67.851	1.00 6.54	6
ATOM	3037	CG	ARG	655	42.732	35.835	67.393	1.00 12.78	5
ATOM ATOM	3038 3039	CD	ARG ARG	655	42.923	35.234	66:013	1.00 19.16	÷
ATOM	3040	NE CZ	ARG	655 655	41.690 41.487	35.243 34.509	65.243	1.00 25.22	7
ATOM	3041		ARG	655	42.441	33.699	64.155 63.683	1.00 28.18 1.00 29.93	7
ATOM	3042	NH2	ARG	655	40.343	34.523	63.465	1.00 30.11	i
ATOM	3043	С	ARG	655	43.012	38.786	68.687	1.00 4.93	6
ATOM	3044	0	ARG	655	43.561	39.225	69.706	1.00 4.78	9
ATOM ATOM	3045 3046	N CA	TYR TYR	656 656	41.706	38.916	68.485	1.00 3.05	7
ATOM	3047	CB	TYR	656	40.852 40.315	39.533 40.886	69.491	1.00 4.57 1.00 5.74	6
ATOM	3048	CC	TYR	656	41.339	41.973	69.131	1.00 11.08	6
MOTA	3049		TYP.	656	41.994	42.423	67.995	1.00 11.86	6
ATOH	3050		TYR	656	43.029		68.077	1.00 13.79	6
MOTA MOTA	3051 3052		TYR TYR	656 656	41.736	42.482	70.366	1.00 13.83	6
ATOM	3053	cz	TYR	656	42.779 43.422	43.407 43.826	70.461 69.307	1.00 14.75	6
HOTA	3054	OH	TYR	656	44.498	44.701	69.373	1.00 14.26 1.00 19.33	6 8
ATOM	3055	C	TYR	656	39.693	38.646	69.848	1.00 7.31	6
ATOH	3056	0	TYP.	656	39.504	37.608	69.210	1.00 7.58	ā
atom Atom	3057 3058	N CA	GLU	657 657	38.967	39.048	70.905	1.00 9.63	7
ATOM	3059	CB	GLU	657	37.776 38.109	38.359 37.385	71.431 72.555	1.00 9.06	6
ATOM	3060	CG	CLU	657	36.874	36.766	73.217	1.00 11.39	6
ATOM	3061	CD	GLU	657	36.755	35.254	72.977	1.00 17.29	6
ATOM	3062			657	36.157	34.838	71.945	1.00 19.32	£
HOTA	3063 3064	C C	CLU	657	37.245	34.472	73.826	1.00 18.57	6
ATOH	3065	ò	CTO	657 657	36.827 37.163	39.366 40.033	72.006	1.00 10.04	6
ATOH	3066	N	VAL	658	35.635	39.428	72.985 71.412	1.00 8.78 1.00 13.32	8
ATOM	3067	CA	VAL	65B	34.550	40.334	71.819	1.00 15.04	6
ATOM	3068	CB	VAL	658	33.826	40.908	70.578	1.00 17.13	6
ATOH	3069 3070		VAL VAL	658	32.355	41.228	70.903	1.00 18.15	6
ATOH	3071	C	VAL	658 658	34.552 33.518	42.151 39.602	70.055	1.00 15.29	6
ATOH	3072	ŏ	VAL	658	33.025	38.519	72.697 72.336	1.00 15.57 1.00 16.39	6 8
ATOM	3073	N	ASP	659	33.168	40.225	73.818	1.00 15.80	î
ATOM	3074	CA	ASP	659	32.217	39.660	74.762	1.00 16.22	6
ATOH	3075	CB	ASP	659	32.857	39.583	76.152	1.00 18.33	6
ATOM ATOM	3076 3077	CG	ASP ASP	659 659	31.841 31.706	39.320 40.220	77.262 78.127	1.00 17.02	6
ATOM	3078		ASP	659	31.191	38.238	77.248	1.00 16.96 1.00 15.05	8
ATOM	3079	C	ASP	659	30.959	40.488	74.877	1.00 17.09	6
ATOM	3060	0	ASP	659	30.946	41.480	75.641	1.00 16.55	3
atom atom	3081 3082	К	VAL VAL	660 660	29. 9 24 28.623	40.D96	74.127	1.00 17.40	7
ATOM	3083	СВ	VAL	660	27.835	40.775 40.550	74.150 72.857	1.00 18.10 1.00 15.37	÷
ATOM	3084		VAL	660	28.760	40.397	71.683	1.00 16.34	ś
ATOM	3085	CG2	VAL	660	26.931	39.36B	72.990	1.00 15.04	5
ATOM	3086	c	VAL	660	27.768	40.299	75.335	1.00 20.40	5
ATOM ATOM	3087 3088	O N	VAL SER	660 661	27.719 27.018	39.092	75.635	1.00 21.69	8
ATOM	3089	CA	SER	661	26.210	41.218 40.865	75.943 77.104	1.00 22.33	7
ATOM	3090	СВ	SER	661	27.146	40.683	78.308	1.00 23.56	6
ATOM:	3091	OG	SER	661	28.007	39.569	78.169	1.00 25.08	ă
ATOH	3092	. c	SER	661	25.132	41.882	77.544	1.00 25.29	6
ATOM ATOM	3093 3094	N O	SER	661 662	24.814 24.676	42.901 41.596	76.839	1.00 24.57	a
ATOM:	3095	CA	ALA	662	23.690	42.325	78.784 79.598	1.00 26.02 1.00 23.48	7
ATOM	3096	CB	ALA	662	23.909	43.856	79.493	1.00 24.66	ń
ATOM:	3097	c	ALA	662	22.242	41.933	79.339	1.00 22.08	ŝ
ATOM	3098 3099	o N	ALA GLY	662	21.935	40.739	79.266	1.00 16.69	3
ATCM	3100	CA	GLY	663 6 63	21.367 19.936	42.948 42.775	73.300	1.00 23.15	"
ATCM	3101	C	GLY	663	19.124	41.953	79.047 80.038	1.00 24.87 1.00 23.53	4
ATOM	3102	0	GLY	663	18.542	40.929	79.649	1.00 22.72	a
ATOM	3103	N	ASN	664	19.032	42.453	81.277	1.00 24.09	7
ATOM ATOM	3104 3105	CA	asn Asn	6 54 6 6 4	18.317	41.816	82.410	1.00 25.66	5
ATCH:	3106	CG	A5N	664	17.157 15.907	42.706 42.725	82.938 82.013	1.00 27.33	9
ATC%	3107		ASN	664	12.791	43.578	81.114	1.00 28.05	
MOTA	3108		ASH	664	14.939	41.852	82.294	1.00 26.86	-;
ATOM ATOM	3109	C	ASN	664	17.831		82.334	1.00 25.TR	•5
ATON:	3110 3111	O N	ASN Gly	664	16.976	39.992	81.488	1.00 25.92	15
ATOH	3112		GLY	665 665	18.250	39.517	81.243	1.06 24.45	•

Thu Apr 25 12:27:47 1996 41	
DIGITAL . 1 00 23.94	;
GLY 665 18.560 36.011 62.454 1.00 24.01	5 7
ATOM 3114 0 GLY 665 18.767 37.805 81.047 1.00 22.31	, ÷
ATOM 3115 C ALA 666 19.457 37.334 78.693 1.00 21.95	6
ATOM 3117 CB BLA 666 19.331 37 166 80.577 1.00 24.38	ð a
170M 3118 C ALA 666 21.300 38.225 61.075 1.00 23.13	7
ATOM 3119 0 ALA 667 21.579 36.036 80.672 1.00 26.48	5
3121 CA GLY 667 23 838 35.946 79.949 1.00 28.11	5 3
ATOM 3122 C GLI 667 24.789 35.145 79.937 1.00 28 73	7
ATOM 3124 N SER 668 23.483 35.669 77.641 1.00 28.04	6
3125 CA SER 668 23.434 37.605 76.547 1.00 28.80	5 8
ATOM 3126 CB SER 668 24.312 37.574 75.278 1.00 27.60	6
ATCH 3128 C SER 668 25.597 38.220 78.798 1.00 27.37	8 7
370M 3129 O SER 868 26.523 36.397 77.762 1.00 20.39	6
ATOM 3130 N VAL 669 28.049 36.715 77.96 1.00 20.59	6
3132 CB VAL 669 29.460 34.484 79.178 1.00 19.42	5 6
ATOM 3133 CG1 VAL 659 30.175 36.316 79.456 1.00 20.00	6
ATOM 3135 C VAL 669 28.668 35.008 75.545 1.00 20.19	8
3136 O VAL 669 27.845 35.409 75.598 1.00 20.21	7
ATOH 3137 N GLN 670 28.193 36.009 74.245 00 17.59	6
ATOM 3139 CB GLN 670 27.003 36.236 71.935 1.00 22.13	6 6
ATOM 3140 CG GLN 670 27.933 36.432 70.932 1.00 24.66	8
ATOM 3142 OE1 GLN 670 28.500 31.00 69.634 1.00 23.69	7
ATON 3143 NE2 GLN 670 29.519 36.583 73.696 1.00 17.46	6 8
ATOM 3144 C 613 670 29.792 37.782 73.773 1 00 15.69	7
ATOM 3146 N ARG 671 30.332 36.013 72.639 1.00 16.60	6
ATOM 3147 CA ARG 671 32.678 35.334 73.517 1.00 17.35	
3149 CG ARG 671 32.90 76.139 1.00 18.73	6
1704 3150 CD ARG 671 32.986 35.894 77.368 1.00 19.4	7
ATOM 3151 NE ARG 671 33.863 35.344 78.218 1.00 17.4	_
ATOM 3153 NH1 ARG 671 34.370 36.062 79.241 1.00 17.9	3 7
ATOM 3154 NH2 ARG 671 31.869 35.669 71.158 1.00 18.5	
ATOM 3155 C ARG 671 31.425 34.618 70.645 1.00 18.1	8 7
ATCH 3157 N VAL 672 32.879 36.337 69.049 1.00 15.3	0 6 7 5
ATCM 3158 CA VAL 672 32.079 37.317 68.160 1.00 13.1	-
ATOM 3160 CG1 VAL 672 30.849 38.702 68.133 1.00 17.1	6 6
ATOM 3161 CG2 VAL 672 34.379 36.538 68.849 1.00 14.	2 6 8 8
ATCH 3162 C VAL 672 34.964 37.495 69.336 1.00 33.	10 7
ATOM 3164 N GLU 673 35.666 67.911 1.00 14.	95 6 98 6
ATCH 3165 CA GLD 673 36.902 34.409 67.15000 21.	
3167 CG GLU 673 36.621 33.299 64.759 1.00 22.	50 ÷
ATON 3168 CD GLD 673 36.964 32.153 65.300 1.00 20.	19 8 59 8
170 OEZ GLD 673	79 5
73 C GLU 673	66 9
ATCH 3172 0 015 674 37.899 37.192 66.708 1.00 15	34 5
ATOM 3174 CA ILE 674 38 39 659 66.498 1.00 16	.72 -
ATOM 3175 CB ILE 674 38.785 40.718 65.483 :.00 15	.50 6 .11 f
ATOH 3176 CGZ 112 574 37.060 40.044 67.289	
ATOM 3178 CD1 ILE 674 33.824 37.922 65.198 1.00 16	.94 5
ATON 3179 C ILE 674 40.511 37.502 65.909 1.00 1	.56 3
3100 3181 N LEC 675 39.722 38.012 63.251 1.00 1	.13 5
ATON 3182 CA LEG 675 40.846 37.553 61.744 2.00 1	5.02 5
- ATOM 3183 CB LEU 675 40.335 36.155 61.359 1.00 1	3.53 5
ATOM 3185 CD1 LET 675 38.786 36.030 01.00 1	B.65 6
ATOH 3186 CD2 LEG 675 41.944 38.895 63.585 :-00 1	6.58 f
ATOM 3187 L 120 41.500 40.013 63.920	
ATOM 3188 O LEU 676 43.240 38.587 63.521 1.00 1	4.67

bref	21c.p	ďb		Thu	A pr 25	12:27:4	7 1996	42	
ATOM	3191	CB	SLU	676	45.6	67 38.907	63.526	1.00 12.08	•
ATOM	3192	CG	ಆ೭೮	676	45.6		62.478	1.00 11.18	:
ATOH	3193	CD	GLU	676	45.4		63.080	1.00 13.77	į
HOTA	3194	0Σ1		676	46.5		63.546	1.00 16.32	•
ATOH	3195	OE 2		676	44.3		63.108	1.00 13.00	=
ATOM ATOM	3196 3197	0	era era	676	44.2		63.146	1.00 12.13	÷
ATOM	3198	N	CTA	676 67?	43.5		62.159	1.00 12.89	•
ATOM	3199	СY	GLY	677	45.03 45.13	_	63.699	1.00 11.52	•
ATOM	3200	c.	GLY	677	43.79		63.145 62.961	1.00 11.07	:
ATOM	3201	ō	SLY	677	43.7		62.523	1.00 11.96	:
ATOM	3202	N	ARG	678	42.70		63.329	1.00 12.98	:
ATOM	3203	CA	ars	678	41.38		63.174	1.00 14.43	÷
ATOM	3204	CB	ARG	67B	40.34	12 42.666	62.927	1.00 13.34	į
MOTA	3205	CG	ARG	678	39.52		61.695	1.00 15.05	į
ATOM	3206	CD	ARG	678	40.40		60.504	1.00 17.70	
atoh Atom	3207 3208	NE CZ	ARG ARG	678 678	41.01		60.643	1.00 22.61	÷
ATÓM	3209		AP.G	678	41.88 42.27		39.787	1.00 23.28	į
ATOH	3210		ARG	678	42.38		58.700 60.037	1.00 22.06	Ξ
ATOM	3211	C	ARG	678	41.00		64.420	1.00 25.26	£
ATOM	3212	0	ARG	678	41.19		63.529	1.00 15.07	
ATOM	3213	N	THE	679	40.46		64.249	1.00 13.15	3
ATOM	3214	CA	TEP.	679	40.02	7 46.552	65.390	1.00 14.13	÷
MOTA	3215	CB	THP	679	40.99		65.669	1.00 14.19	+
ATOM ATOM	3216 3217	OG1 CG2		679	41.20		64.448	1.00 17.57	:
ATOM	3218	C	THP.	679 679	42.33 38.63		66.229	1.00 13.59	₹.
ATOH	3219	ō	THE	679	38.39		65.182	1.00 16.43	£
ATOM	3220	N	GLU	680	37.73		63.540 64.604	1.00 15.23	:
ATOH	3221	CA	G2.0	680	36.35		64.332	1.00 18.09	
ATOM	J222	CB	C:D	680	36.28		63.128	1.00 18.69	
ATOM	3223	CC	CLU	680	36.14		61.755	1.00 18.32	÷
ATOH	3224	CD	GLU.	680	35.08		60.847	1.00 18.05	÷
ATOM ATOM	3225 3226		GTD GTD	680	34.34		60.138	1.00 16.53	ŧ
ATOM	3227	C	CLU	680 680	35.01 35.48		60.825	1.00 14.40	3
ATOH	3228	ŏ	GLU	680	35.88		64.076	1.00 21.29	•
ATOH	3229	N	CYS	601	34.29		63.364 64.654	1.00 22.54	=
ATOH	3230	CA	CYS	681	33.38		64.498	1.00 22.91	÷
ATON	3231	CB	CYS	681	33.61		65.603	1.00 26.42	÷
ATCH	3232	SG	CYS	681	32.13		66.606	1.00 26.71	: •
ATOH	3233	c	235	681	31.95		64.540	1.00 24.30	•
ATOH ATOH	3234 3235	O N	CYS	681 682	31.57		65.448	1.00 23.84	ŧ
ATOH	3236	CA	フルレ	682	31.18 29.81		63.517	1.00 21.58	-
ATOH	3237	CB	7AL	682	29.43		63.511 62.131	1.00 20.16	:
ATOM	3238	CG1	71.1	682	30.19		60.969	1.00 18.07	:
ATCH	3239	CG2	771	682	27.95		61.867	1.00 17.19	÷
ATOM	3240	5	YAL	682	28.86		64.001	1.00 17.00	÷
ATOH	3241	0	7XL	682	28.65	9 43.049	63.342	1.00 15.10	
YZOH	3242	N	LEU	683	28.44		65.258	1.00 17.47	Ė
ATCH ATCH	3243	CA	LEU	683	27.48		65.859	1.00 20.70	ŧ
ATOM	3244 3245	CB CC	LEU	683 683	27.32		67.348	1.00 17.50	:
ATOH	3246	αDı		683	28.42 28.20		68.299	1.00 13.82	•
ATOH	3247	CD2	II:	683	28.37		69.667 68.387	1.00 13.45	•
ATOH	3248 -	C	LED	683	26.22		65.104	1.00 15.36 1.00 24.03	: :
ATOH	3249	0	120	683	25.44		65.544	1.00 24.27	:
ATOH	3250	N	3ER	684	26.08	7 43.161	63.914	1.00 25.99	÷
ATOH ATOH	3251	CA	SEF.	684	25.00	_	63.028	1.00 26.98	:
ATOM	3252 3253	CB OG	SEF. SEF.	684	25.22		61.629	1.00 31.20	•
ATOM	3254	c	3E7.	684 684	26.50 23.61		61.067	1.00 36.99	•
ATOM	3255	ŏ	IEP.	584	22.80		63.491	1.00 26.69	:
ATOH	3256	N	ÄäS	685	23.39		63.699 63.826	1.00 27.76	-
ATOM	3257	CA	AEX	685	22.04		64.131	1.00 24.94	
ATOM	3258	CB	AI:	685	21.71		63.083	1.00 25.85 1.00 27.66	:
ATOH	3259	CC	¥52	685	22.99		62.504	1.00 28.61	: :
ATOM	3260	ODI		685	23.99	4 40.433	62.186	1.00 26.41	:
ATOM	3261	ND2		685	22.97		62.407	1.00 28.57	-
ATOM ATOM	3262 3263	Ç O	YEX	685	21.74		65.533	1.00 26.76	•
ATOH	3264	N	TE:	685 686	22.27		€5. 923	1.00 27.14	-
ATOM	3265	CA	•	686	20.89 20.58		66.287	1.00 25.95	
ATOM	3266	CB	<u> </u>	686	21.77		67.649 68.584	1.00 24.26	:
ATOM	3267	CG,	LET	686	22.71		68.474	1.00 22.44	<u> </u>
YLOH	326B	CDi	120	686	23.70			. 00 31 34	:

					Apr 2	E 19	.27:4	17 1	996		43		
oref2	Lc.pd	þ		Thu	Apr 2	25 12				1.00 2	0.88	5	
•	3269	CD2	LEU	686		.563	42.742		.173 .375	1.00 2	6.62	5	
atom Atom	3270	č	LEU	686		.233 .361	40.66	9 68	.478	1.00 2	7.06	a 7	
ATOM	3271	0	LEU	686 687		.035	42.80	1 68	.858	1.00 2	1.90	6	
MOTA	3272	N CA	ARG ARG	687		.838	43.14		. 636	1.00	1.00	6	
ATOM	3273 3274	CB	ARG	687		.117	42.90	7 71	.745	1.00	18.87	5	
ATOM .	3275	CG	ARG	687 687	17	1.254	40.47	1 7	1.410	1.00	20.25	5	
ATOM	3276	CD	arg arg	687	16	6.883	39.42		1.911	1.00	24.78	4	
MOTA	3277	NE CZ	ARG	687	19	6.832	38.18		1.416 0.405	1.00	25.89	. 2	
ATOM	3278 3279	NHI	ARG	687	1	7.636 5.969	37.30		1.90B	1.00	23.14	7	
MOTA	3280		ARG	687 687	1	7.358	44.5	B7 6	9.517		23.37 24.06	. 5 3	
ATOH	3281	c	arg arg	687	1	7.863	45.3		8.695		23.79	ř	
ATOH	3282 3283	N	GLY	688	1	6.420	44.9		0.434		22.75	6	
ATOM ATOM	3284		GLY	688	1	5.825		44 7	11.874		23.19	6 B	
ATOM	3285	C	CLY	688 688		5.359	45.7	60	2.726	-	21.67	7	
HOTA	3286		GLY ARG	689		15.712			72.154 73.500		23.70	6	
MOTA	3287 3288			689		15.531			73.90	1.00	22.81	6	
HOTA	3289		ARG	689		14.034 13.54		319	74.56	1.00	20.45	5 5	
ATOH	329	o co		689 689		13.39	50.5	988	73.57		18.41 17.79	_	
ATOM	329			689	3	14.07	32.		73.90 75.12		19.24	- 5	
MOTA	329 329			689	•	14.20	1 52.3 8 52.		76.25	0 1.00	12.88	י	
MOTA MOTA		4 NI	HI ARG	68		13.73		066	75.21	3 1.00	18.71	, 7	
ATOM	329	_	H2 ARG ARG	68 68		16.42	5 47.	958	74.64		25.87 0 25.20		
ATOH						16.51	2 48.	542 887	74.31	3 1.0	0 25.70	8 7	
ATOM			THR			17.15	3 46.	127	75.18	2 1.0	0 23.9	4 6 5 6	
ATOR	329	••	A THR			18.5	0 44	, 902	74.4		0 24.9	-	
ATO		-	B THE G1 THE			17.5	50 44.	.550	73.4		0 24.3	-	
ATO		-	G2 THE	₹ 69		18.8	DB 43	736	75.6	61 1.0	0 27.3	3 6	
ATO		03 (90	20.0	52 47	. 436	74.8	41 1.0	0 25.8	8 8	
ATO	н 33	• •	TH	_	90 91	19.6	53 46	.704	76.9		00 28.6 00 27.6	, -	
ATO		-	N AR CA AR		91	20.9	20 47	.275	77.5		00 28.3		
ATO ATO			CB AR	Ğ 6	91	20.9		.426	79.6	60 1.	00 30.	17 6	
ATO	·· .	808	CG AR	_	91	21.6	36 46	5.597	81.4	103 1.	00 30.	51 4	5 7
ATC	ys 33		CD AR		91 91	22.3	360 4:	5.549	B2.		00 29.3 00 31.		5
ATC			NE AF		91	21.		4.632 4.612		931 1.	00 32.	13	7
ATC		312	NH1 AF		391	20.		3.775		768 1.	00 28.		7 5
AT	OM 3	313	NH2 A		591 591	22.	024 4	6.269	77.		.00 27. .00 28.		8
AT	•••	314 315			691.	21.		5.028 6.781		682 1	00 27.	18	7
TA TA		316	N T		692	23.		5.89		256 1	.00 23.	.54	5
AT		317			692 692	24.	237 4	5.88	5 74.		.00 24	. 61	5 5
		318		YR YR	692	23.	317 4	4.90	5 74		.00 23		5
		1319 1320	CD1 T		692	23.		13.57 12.63			.00 23		6
		3321	CE1 T	YR ·	692	22.		45.28	3 73	.014 1	.00 24		5
A7	HOT	3322	CD2 T	MR Mar	692 692	21	.755	44.34	5 72		.00 24		6
		3323 3324		TYR	692	21	.772	43.02			.00 27		8
		3325		TYR	692			42.08		.739	.00 22	2.44	6
	TOH	3326	-	TYR	692 692	25	.776	47.6	13 76	.606	1.00 21	1.10	8 7
	TOH	3327		TYR · THR	693	26	.3B2	45.5		.302 1.758	1.00 1	4.99	6
ý	TOM TOM	3328 3329		THR	693		1.711	45.9		3.301	1.00 1	3.81	5
	TOH	3330	CB .	THR	693		7.877 5.746	46.6		9.909	1.00 1	4.05	Я
	TOH	3331		THR	693 693		9.125	46.7	45 7	9.685	1.00 1		ş
	TOM	3332		THR	692	2	B.703	45.0	70 7	7.062 6. 9 26	1.00 1		8
	NTOH NTOH	3333		THR	. 693		8.450	43.6		6.604	1.00 1	5.34	7
	ATOH	333	5 N	PHE	694		9.811	44.5	69 7	5.845	1.00 1	15.68	6
	MOTA	333		PHE	694 694	3	0.833	45.5	501 7	4.405	1.00 1		٠ 6
	MOTA	333 333		PHE	694		9.457	45.		13.816	00	18.66	6
	MOTA HOTA	333	9 CD1	PHE	694	3	8.740	44.	679	73.015	1.00	18.42	5
	ATOH	334	o CD2	PHE	694 634		27.480	47.	035	73.481	:.co		
	ATOH	334 334		PHE	694	:	27.617			72.450 72.679		16.44 16.79	6
	HOTA HOTA	334		PHE	694		26.919			72.679	1.00	14.83	6
	ATOM	334	4 C	PHE	694		32.237 32.233			76.835	1.00	14.75	
	ATOH	334		PHE	694 695		33.112		227	76.155	1.00	14.22	. `
	ATOH	33	46 N	*****									

bref	21c.p	ф		Thu	Apr 25	12:27:4	7 1996	44
ATOM	3347	CA	ALA	695	34.532	44.271	76.533	1.00 14.58 6
ATOM	3348	СB	ALA	695	34.704		77.959	1.00 15.52 6
ATOM	3349	C	ALA	695	35.331		75.579	1.00 16.59 6
ATOM ATOM	2350	0	λLλ	695	34.739		74.883	1.00 16.77 6
ATOM	3351 3352	N CA	VAL	696 696	36.663 37.475		75.554	1.00 18.89 7
ATOM	3353	CB	VAL	696	37.455		74.640 73.198	1.00 18.54 6 1.00 19.19 6
ATOM	2354	CG1	VAL	696	37.867		73.223	1.00 19.19 6 1.00 17.15 6
ATOM	3355	CG2		696	38.335		72.255	1.00 20.60 6
ATOM ATOM	3356 3357	0	VAL	696	38.923		75.047	1.00 18.64 €
ATOM	3358	ĸ	ARG	696 697	39.654 39.321		75.637	
ATOM	3359	CA	ARG	697	40.675		74.738 75.050	1.00 18.97 7 1.00 18.67 6
ATOM	3360	CB	ARG	697	40.593		75.664	1.00 18.67 6
ATOM	3361	CC	ARG	697	39.772		76.889	1.00 15.40 6
ATOM ATOM	3362 3363	CD NE	ARG	697 697	39.842		77.417	1.00 18.07 6
ATOM	3364	CZ	ARG	697	39.077 38.722		76.632	1.00 17.47 7
ATOM	3365	NH 1	ARG	697	39.061		77.081 78.309	1.00 19.24 6 1.00 20.70 7
· ATOM	3366	NH 2		697	38.014	34.643	76.318	1.00 20.70 7 1.00 18.93 7
ATOM	3367	c	ARG	697	41.625		73.818	1.00 18.98 6
ATOM ATOM	3368 3369	0	ARG	697	41.160		72.677	1.00 19.20 8
ATOH	3370	CY H	ALA	698 698	42.926 43.973		74.077	1.00 17.10 7
ATOH	3371	CB	ALA	698	44.816		73.057 73.146	1.00 14.99 6
ATOH	3372	c	ALA	698	44.838	39.366	73.296	1.00 15.98 6 1.00 14.49 6
ATOH	2373	0	ALA	698	45.073	38.999	74.432	1.00 16.90 0
ATOM	3374	N	ARG	699	45.349	38.753	72.234	1.00 13.57 7
ATOH ATOH	3375 3376	CA CB	ARG	699 699	46.174	37.540	72.325	1.00 10.72 6
ATOH	3377	CG	ARG	699	45.229 45.692	36.331 35.014	72.392 71.794	1.00 12.04 6
ATOM	3378	CD	ARG	699	46.738	34.349	72.665	1.00 12.63 6 1.00 20.39 6
ATOH	3379	NE	ARG	699	46.913	32.910	72.399	1.00 21.37 7
ATCH ATCH	3380	CZ NH1	ARG	699	46.119	31.955	72.895	1.00 21.92 6
ATOM	3381 3382		ARG ARG	699 699	45.069 46.442	32.257	73.672	1.00 21.47 7
ATCH	3383	c	ARG	699	47.090	30.682 37.470	72.710 71.094	1.00 22.33 7 1.00 9.38 6
ATCH	3384	0	ARG	699	46.680	37.820	69.991	1.00 9.38 6 1.00 10.86 8
ATOH	3385	N	MET	700	40.355	37.109	71.282	1.00 8.21 7
ATOH ATOH	3386	CA	MET	700	49.263	37.029	70.140	1.00 7.21 6
ATOH	3387 3388	CB	MET MET	700 700	50.724 51.322	36.955	70.551	1.00 6.01 6
ATOH	3389	SD	MET	700	52.092	38.292 39.250	70.963 69.678	1.00 5.33 5
ATCH	3390	CE	MET	700	51.368	40.792	69.955	1.00 9.84 16 1.00 8.49 5
ATOH	3391	C	MET	700	48.675	35.808	69.375	1.00 6.64 6
ATOH	2392	0	MET	700	48.609	34.755	69.939	1.00 6.32 8
ATOH ATOH	2393 3394	N CA	ALA ALA	701 701	48.849 48.425	35.943	68.069	1.00 7.50 7
ATOM	3395	CB	ALA	701	47.605	34.837 35.361	67.250 66.065	1.00 8.94 6 1.00 7.41 6
MOTA	3396	С	ALA	701	49.483	33.855	66.779	1.00 7.41 6 1.00 9.12 6
ATON	3397	0	ALA	701	50.679	34.165	66.639	1.00 9.86 3
ATOH ATOH	3398 3399	N	CLU	702	48.980	32.669	66.491	1.00 10.01 7
ATOM	3400	CA	GLU	702 702	49.763 48.971	31.574	65.987	1.00 13.16 6
ATOH	3401	CG	CLU	702	48.724	30.275 29.764	66.108 67.501	1.00 15.92 6 1.00 18.17 6
ATOM	3402	CD	GLU	702	48.597	28.264	67.507	1.00 18.17 6
ATOH	3403	OEL		702	37.904	27.731	66.611	1.00 22.10 8
ATOH ATOH	3404 ·	OE2	GLU	702 702	49.233	27.652	68.377	1.00 24.81 8
ATOH	3406	õ	CTO	702	50.126 49.560	31.770 32.617	64.510	1.00 13.07 6
ATOH	3407	N	PRO	703	51.106	30.986	63.802 64.037	1.00 12.10 8 1.00 14.95 7
ATOM	3408	CD	PP.C	703	51.501	30.820	62.625	1.00 17.31 6
HOTA	3409	CX	PRC	703	51.782	30.007	64.899	1.00 14.84 5
ATOH ATOH	3410 3411	CB CG	PRC PRC	703	51.896	28.794	63.999	1.00 14.77 6
ATOM	3412	C	PRC	703 703	52.253 53.150	29.467 30.488	62.635	1.00 19.35 6
MOTA	3413	ŏ	PRC	703	53.801	29.774	65.409 66.157	1.00 13.50 5
HOTA	3414	N	SER	704	53.587	31.681	65.002	1.00 15.09 8 1.00 11.82 7
ATOM	2415	CA	SER	704	54.873	32.218	65.461	1.00 9.78 4
ATOH ATOH	3416 3417	OC OC	SER SER	704 704	55.156	33.574	64.798	1.00 9.23 5
ATOH	3418	c C	SER	704	55.301 54.860	33.474 32.386	63.394	1.00 8.65 8
ATON	1419	ě	SER	704	55.621	32.386	67.003 67.736	1.00 11.09 5 1.00 12.01 H
ATOM	3420	N	PHE	705	53.937	33.229	67.468	1.00 12.01 A 1.00 8.75 7
ATOH ATOH	3421	CA	PHE	705	53.767	33.532	68.857	1.00 3.52 6
ATCM	3422 3423	CB	PHE PKE	705 705	53.223 54.159	34.973	68.988	1.00 2.09 6
ATOM	3424	CE1		705	53.696	35.924 36.417	68.184 66.957	1.00 7.49 6 1.00 8.92 6

					Apr	25	12:	: 27 :	47	199	6		45		
bref21	ic.pd	Þ						36.2		68.61	1. 1	.00	8.54	:	
ATOM	3425	CD2		705 705	5	5.44 4.51	2	37.2	52	66.16	3 1	.00	7.44		٠.
atom Atoh	3426 3427	CE2	PHE	705		6.27 5.80		37.1 37.5	10 98	65.60)6 k	.00	5.19	÷ :	
ATOM	3428	cz	PHE	705 705		2.78		32.5	91	69.50	05 I	.00	5.11 4.57	÷	
NOTA HOTA	3429 3430	C	PHE	705		2.2		31.6		68.8°		.00	8.69	:	
ATOM	3431	N	GLY	706 706		52.63 51.73	28	31.5	36	71.6	22 1	1.00	7.99 9.39	ŧ	
MOTA	3432 3433	Cy	GLY	706		51.6	61	32.	126	72.9		1.00	9.05	1.5	
atom atom	3434	ŏ	GLY	706		52.3 50.8		32.	295	73.8	7B	1.00	10.91	. 1	
ATOM	3435	CY N	GLY GLY	707 707		50.7	38	32.	990	75.1		1.00 1.00	9.87	_	
ATOM ATOM	3436 3437	č	GLY	707		49.4		32. 31.		76.0		1.00	7.37	š	
ATOM	3438		GLY	707 708		48.9	193	33.	927	76.		1.00	7.59 8.42		
HOTA HOTA	3439 3440		PHE	708		47.8			911	78.	874	1.00	9.14	5	
ATOM	3441	CB	PHE	708 708		49.	358	33.	126	79.		1.00			
atom Atom	3442	CD	1 PHE	708	3	49.	196		.787 .679	79. 79.	352 ·	1.00	6.3	2 -	
ATOM	3444	CD	2 PHE	701		50.	296	31	. 016	79.	974 -	1.00			
HOTA	344		1 PHE 2 PHE	70	В	51.	730		.912 .587		731 040	1.0		0 5	
HOTA	344	7 CZ	PHE	70			570 846	35	.066	, 77.	.077	1.0	7.9		
ATOM	344 344		PHE PHE	70		47.	260	36	.187	76.	. 721 . 285	1.0		7 و	1
ATOM	345	0 N	TPP				.562 .475		.75	2 77.	.119	1.0	0 12.1	4 4	<u> </u>
ATOH	345					43.	.114	35	. 08:	3 77	.396		0 11.5 0 12.0		5
MOTA HOTA		3 C	G TRE	70			.417 .098		1.59	•	.999	1.0	9.8	90	5
ATOH	34	34 C	D2 TRI E2 TRI			41	.46	3 3	4.48	1 74	.092	1.0			÷
ATO:		56 C	E3 TR	7	9	42	.28		6.68 3.32		. 634 . 929	1.0	0 11.	53	÷
ATO	34	57 0	D1 TR		09 09		.39	8 3	3.25	0 74	.68B	1.1	00 12.		7 ÷
ATO:			22 TR	p 7	09		.01	-	4.89 7.10		2.841 3.399	1.	00 11.	59	5
ATO	4 34	60 (23 TR	p 7	09 09		83	4 3	6.20	9 72	2.513	1.	OÒ 10.	54	÷
ATO			H2 TR	-	09	44	. 63	5 3	6.9		8.056 9.268		00 10. 00 12.		3
ato ato		63	D TF	P 7	109	44	4.77 4.62		8.1	77 7	7.508	1.	00 11.	52	7 E
ATO	H 34		n se Ca si	_	110 110	4	4.76	55	39.3		8.352 7.50	- :	00 12	78	÷
ATC	-	166	CB SI	EK	710		5.04 3.8		40.5 41.2	38 7	7.15	7 1	00 10	.05	3 5
ATC					710 710	4	3.5	22	39.5	67 7	9.21		.00 12 .00 17	.16	1
ATC ATC		469	0 5	ER	710		2.5 3.5		38.8 40.5	563 €	30.07	6 i	.00 12	.01	÷
ATC	рн 3	470 471			711 711	4	12.4	35	40.	367 8	80.89 81. 9 9		.00 12 .00 12	.49	4
AT:		472	CB A	1	711	4	12.8 11.4	32	41.5		79.96	55 1	.00 13	.23	Ť
AT	OH 3	473	-	LA LA	711 711	- 7	1.	10	42.	073	78.91	15 2	.00 14		5 •
TA TA		474 475		RP.	712		40.1	155	41. 42.		80.32 79.5		.00 12	2.59	÷
	OH 3	1476		TRP TRP	712 712		39.1 37.	751	42.	031	80.0	92 1		3.73 3.57	÷
		3477 3478		TRP	712		37.	202		647	79.8 78.5			8.04	÷
A7	MOM	3479	CD2	TRP TRP	712 712		36. 36.		38.	745	78.8	09	2.00	B.30 4.7B	÷
λ? 32		3480 3481	CE2		712			718		.600 .647	77.2 80.7		.00	8.29	5
A:	TCH	3482	· CD1	TRP	712 712			037 574	3 B	.499	80.1	.50	1.00	8.70 8.46	· -
	TOH TOM	3483 3484	NE1 CZ2	TRP	712			969 279		.906 .776	77.7	262 .	1.00	7.52	÷
X.	TOM	34,65	CZ3	TRP	712 712			908	38	.434	76.5	320	1.00	9.00	÷
	Tom Tom	3486 3487	CH2 C	TRP	712			.498		.747	77.5		1.00	12.3C	7
	TOM	3488	0	TRP	712 713			.124 .174		.385	78.	395	1.00	15.22	•
	TOM	3489		SEP. SER	713		39	.366		. B19		166 659	00	15.45 14.50	
	ATOH TOH	3491	CB	SER	713		39	.294		5.108 5.899		149	1.30	11.86	
1	MOT/	3492		SEF. SER	713 713		38	1.167	4	6.480		799		15.66 18.64	
	NTOM NTOM	349		SER	713			.081		5.908 7.705		.764 .279	1.00	17.04	t
	MOTA	349	5 R	CT.C.	714 714			7.16	3 4	8.391	79.	. 888	1.00	20.29)
	NOTA HOTA	349 349		CIL	714		3.	. 52	1 4	9.807		. 276	2.00	24.63	Ŀ
	ATOH	349	9 CG	GLC	714 714			B. 476 B. 69	9 5	1.236	81	.978	1.00	26.4	7
	MOTA HOTA	349 350		CLC GLC	714		3	9.86	0 5	1.479		.420 .957	1.00	27.5	9
	HOTA	350) OE	2 GLC	714 714			7.73 5.88		18.36		.027		22.4	
	ATOM	350	12 C	CLU	114		•								

bref2	lc.p	đb		Thu	Apr 25	12:27:47	1996	46	
ATON	3503	٥	GLD	.714	35.8	67 48.844	77.886	1.00 21.24	а
ATOM	3504	N	PRO	715	34.7		79.611	1.00 20.46	7
ATOM	3505	CD	PRO	715	34.7		81.090	1.00 20.48	5
ATOH .	3506	CA	PRO	715	33.4		79.015	1.60 19.23	5
ATOM	3507	СВ	PRO	715	32.6		80.182	1.00 21.32	5
ATOH	3508	CG	PRO	715	33.2		81.352	1.00 19.98	5
ATOM	3509	c	PRO	715	32.8		78.473	1.00 20.02	5
ATOH	3510	0	PRO	715	33.1		78.922	1.00 20.10	3
ATOM	3511	N	VAL	716	31.9		77.562	1.00 20.51	7
ATOM	3512	CA	VAL	716	31.2		76.910	1.00 19.79	5
ATOM	3513	CB	VAL	716	31.7		75.440	1.00 18.56	ž
ATOH	3514	CG1	VAL	716	30.9		74.396	1.00 18.80	5
ATCH	3515	CG2	VAL	716	31.7	49 51.563	75.099	1.00 16.95	á
ATOM	3516	C	VAL	716	29.7		76.908	1.00 21.79	6
ATOH	3517	0	VAL	716	29.5		76.624	1.00 20.72	á
ATOH	3518	N	SER	717	28.8		77.264	1.00 22.27	7
ATOH	3519	CA	SER	717	27.4		77.331	1.00 21.09	6
ATOH	3520	CB	SER	717	26.9		78.764	1.00 23.89	5
ATOH	3521	og í	SER	717	27.1		79.607	1.00 24.17	á
ATON	3522	C	SER	717	26.5	52 50.748	76.375	1.00 20.65	6
ATCH	3523	0	SER	717	.26.5		76.394	1.00 19.78	a
ATCH	3524	N.	LEU	718	25.8	38 50.014	75.523	1.00 21.29	7
ATOM	3525	CX	LEU	718	24.8	66 50.583	74.585	1.00 21.71	5
ATOH	3526	CB	LEU	718	25.0	09 49.949	73.188	1.00 17.72	5
ATOH	3527	CG	LED	718	24.5	02 50.860	72.057	1.00 15.29	5
ATOM	3528		LEU	718	25.2	71 52.197	72.069	1.00 11.08	€
ATON	3529		LEU	718	24.6		70.733	1.00 11.73	5
ATOH	3530	С	LEU	718	23.4		75.183	1.00 22.58	5
ATOH	3531	0	LEU	718	23.3		76.191	1.00 24.55	а
ATOH	3532	N	LEU	719	22.3		74.564	1.90 23.55	7
ATOH	3533	. CY	LEU	719	21.0			1.00 23.37	5
ATOH	3534	CB	LEU	719	20.6		76.069	1.00 23.00	6
ATOH	3535	œ	LEU	719	21.5		77.325	1.00 22.19	6
ATOH ATOH	3536		LEU	719	21.2		78.084	1.00 19.79	5
ATOH	3537 3538	CD2 C	LEU	719	21.4		78.254	1.00 20.88	6
ATOH				719	19.9		73.904	1.00 23.18	6
ATOH	3540	O N	LEU THR	719 720	18.8		74.036	1.00 24.17	8
ATOH	3541	CA.	THP.		20.3		72.828	1.00 22.42	7
ATOH	3542	CB	THP.	720	19.4		71.597	1.00 21.89	6
ATOM	3543	0G1		720	19.0		71.295	1.00 22.47	6
ATOH	3544	CG2		720 720	18.7		72.513	1.00 24.25	В
ATOH	3545	C	THE	720	20.0 18.2		70.444	1.00 20.74	5
ATOM	3546		THE	720	17.1		71.492	1.00 22.94	5

Table 1											
						+	+	7	Phasing Power'	SWBE'	
100	Resolution	910	Completeness	E.	2116	Sites Figo 'Cullis	3 11103		,		
Data ser	(¥)	3	0 91/0.91)	0.05	•	t	•	1		•	
Native	25.0-2.8	14158		•	ŗ	0.102	0.56	0.114	ISO 1.87 (3.1A)	(3.14)	
	25.0-3.0	11496	0.93 (0.91)	0.10	4			0.100	Ano 1.35	(·	
Zaufin			;	;	4	4 . 0.116	0.62	0.1374	180 1.95 (3.1A)	(3.1A)	
110 (180-)	25.0-3.0	11931	0.96 (0.94)	0.14	•			0.114		1	1
2/5/11/200										123	
				RMS (rom idea	RMS from ideal values	8 2	Average	Average B Value (n.)		
Refinement	Refinement Statistics:						1			8051	
101411000	Relflections	nessimples Relflections Total Number R-value	R-value	Bond Length	ngth	Bond Angle	ng le	EBP1	7483		
(A)	F>10	of atoms								7.01	
		2346	0.21		0.01	0.016(Å)	2.1	10.5	10.5 12.3		
8.0-2.8	13894	2402									

*R * 1 1- 1 1 1.

tRiso-El FpH-FpJ /EFp.

SPhase Power={[] FPH(calc) | FPH(obs) - Fp(calc) | FPH(obs) - Fp(calc) | 18 the lack of closure error to maximum resolution indicated. IR Kraut El Prucches Pruccate) H F PH(obs) F PH(cate) | / E (F PH(obs) F PH(obs) for aft acentric relfections (anamalous case). inculis I Frate Faceled /Fra Fp for all centric reflections.

*Completeness of data in the outer shell, (2.9-2.8Å) for the native and (3.1-3.0Å) for both derivatives. Hean Figure of Merit= $d P(a)e^{ia}/LP(a)i> where <math>P(a)$ is the phase probability.

7	
0	
7	
E	

5

10

CLAIMS

What is claimed is:

- A computer-assisted method for identifying potential mimetics of erythropoietin, using a programmed computer comprising a processor, a data storage system, an input device, and an output device, comprising the steps of:
 - (a) inputting into the programmed computer through said input device data comprising the three-dimensional coordinates of a subset of the atoms in the peptide GGTYSCHFGPLTWVCKPQGG when said peptide is cocrystallized with a portion of the erythropoietin receptor comprising amino acids 1 to 225 of said receptor, thereby generating a criteria data set;
 - (b) comparing, using said processor, said criteria data set to a computer database of chemical structures stored in said computer data storage system;
 - (c) selecting from said database, using computer methods, chemical structures having a portion that is structurally similar to said criteria data set;
- outputting to said output device the selected chemical structures having a portion similar to said criteria data set.

5

10

20

- A computer-assisted method for identifying potential mimetics of erythropoietin, using a programmed computer comprising a processor, a data storage system, an input device, and an output device, comprising the steps of:
 - (a) inputting into the programmed computer through said input device data comprising the three-dimensional coordinates of a subset of the atoms in the peptide GGTYSCHFGPLTWVCKPQGG when said peptide is cocrystallized with a portion of the erythropoietin receptor comprising amino acids 1 to 225 of said receptor, thereby generating a criteria data set;
 - (b) constructing, using computer methods, a model of a chemical structure having a portion that is structurally similar to said criteria data set;
 - (c) outputting to said output device the constructed model.
- A compound having a chemical structure selected using the method of claim 1,
 said compound being an EPO mimetic.
 - 4. The compound of claim 3 wherein said compound is not a peptide.
 - 5. The compound of claim 3 wherein said compound is a peptide.
 - 6. The compound of claims 5 wherein said peptide has 15 of fewer amino acids.

FIG. 1

FIG. 2

International application No. PCT/US97/07218

A. CLAS	SIFICATION OF SUBJECT MATTER		
(-)	G06F 159:00	ı ma	
According to	364/496 International Patent Classification (IPC) or to both nat	ional classification and IPC	
- CICI	DS SEARCHED		
Minimum do	cumentation searched (classification system followed by	y classification symbolary	·
	64/496, 497,498,578		
Dantati	on searched other than minimum documentation to the ex	stent that such documents are included i	in the fields searched
Documentari	(OI SCALCIOS GAINT AND THE COMMENT OF THE COMMENT O		
		a to the said when amplicable	search terms tracel)
Electronic d	ata base consulted during the international search (name	e of data base and, where practically,	
aps, dialo search te	og erms: erythropoletin, receptor, 3d, pdb or databas	se ,	
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Categorys	Citation of document, with indication, where appr	ropriate, of the relevant passages	Relevant to claim No.
x	US, 5,331,573 A (BALAJI et al.) 19 46-66, col. 13, lines 20-55, col. 14	July 1994, (col. 7, lines I, lines 12-23	1-6
A,P	US 5,557,535 A (SRINIVASAN et a (abstract, fig. 1, col. 4, line 57 - co	al.) 17 September 1996,	1,2
A,P	US 5,555,366 A (TEIG et al.) 10 Se fig. 8, fig. 12)	ptember 1996, (abstract,	1,2
A	US 5,265,030 A (SKOLNICK et al.) 2, line 20 - col. 3, line 20)	23 November 1993, (col.	1,2
A,P	MCCARTHY, "Small Peptide De Erythropoietin" Lancet, 8/96 vol. 3	signed that can Mimic 348, no. 24, p.395	1-6
		·	
X Fur	ther documents are listed in the continuation of Box C.	See patent family annex.	
· s	Special extegories of cited documents:	T later document published after the in date and not in conflict with the appli	CETTOE DOX CHEST ON ATTENNESS AND
·^.	locument defining the general state of the art which is not considered to be part of particular relevance.	principle or theory underlying the in "X" document of particular relevance;	the claimed invention cannot be
.E. e	partier document published on or after the international filing date	considered movel or cannot be come when the document is taken alone	lered to involve an inventive step
1 .	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		the claimed invention cannot be
-0-	special reason (as specified) Socument referring to an oral disclosure, use, exhibition or other	"Y" doormoot of particular reservance; considered to involve an inventi- combined with one or more other as being obvious to a person skilled in	CE SOCIETATION SALES AND ALIES
•р•	mount document published prior to the international filing date but inter than	"&" document member of the same pate	et fernily
1	the priority that elaimed to actual completion of the international search	Date of mailing of the international a	carch report
O2 10 L		0 4 AUG 1997	``\
Name and Commire Box PCT	I mailing address of the ISA/US signer of Patents and Trademarks	Authorized office	
Washing	ton, D.C. 20231 No. (703) 305-3230	Telephone No. (703) 305-3900	

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/07218

Category*	Citation of document, with indication	, where appropriate, of the relev	ant passages	Relevant to claim No
K,P	LIVNAH ET AL., "Functiona a Peptide Agonist" Science 26 464-471.	d Mimicry of a Protein F July 1996, vol. 273 no.	formone by 274, p.	1-6
	,			
	,		_	
	•			
				·
	•	•		
	ŧ			

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*