

Circuitos Combinacionais de Controle e Correção de Erros

Universidade Federal de Uberlândia Faculdade de Computação Prof. João Henrique de Souza Pereira

Créditos dos slides para o Prof. Dr. Daniel D. Abdala

Na Aula Anterior ...

- Circuito para o Meio Somador;
- Circuito para o Somador Completo;
- Circuito para o Somador de 8 bits;
- Circuito para o Meio Subtrator;
- Circuito para o Subtrator Completo;
- Circuito para o Subtrator de 8 bits.

Nesta Aula

- Motivação do Problema de correção de erros;
- Método de Paridade;
- Código de Hamming;
- Circuito gerador de paridade;
- Circuito verificador de paridade;
- Código de Hamming(7,4).

Motivação

- A transmissão de informação em formato digital (binário) é uma das operações mais frequentes em Sistemas Digitais;
- Devido a interferência externa, ruídos, atenuação de sinal, etc, o sinal pode ser corrompido e, consequentemente, a informação transmitida torna-se incorreta;
- Detecção e correção de erros lida com mecanismos para atenuar tais problemas.

Motivação

Solução

- Enviar juntamente com a informação, dados adicionais que permitem a verificação e possivelmente a correção de erros de transmissão;
- Método de Paridade.

Método de Paridade

- Bit de paridade
 - Bit extra anexado ao conjunto de bits do código a ser transmitido
 - Paridade par e paridade impar;
- Paridade par o bit extra assume o valor 0
 ou 1 de modo que o total de bits 1 seja par;
 - P 0111000 | 1 0111000
 - $P 0111100 \Rightarrow 0 0111100$

Método de Paridade

Paridade impar – o bit extra assume o valor
 0 ou 1 de modo que o total de bits 1 seja impar;

Exemplo

- Deseja-se transmitir a mensagem "Gol do Verdao" representada em ASCII de um computador A para outro B.
- Quais seriam as cadeias de caracteres a serem transmitidas utilizando-se a paridade par?

Exemplo

Caractere	Cod. ASCII	ASCII com par. par
'G'	0100 0111	0100 0111
'o'	0110 1111	0110 1111
T	0110 1100	0110 1100
"	0010 0000	1010 0000
'd'	0110 0100	1110 0100
'o'	0110 1111	0110 1111
"	0010 0000	1010 0000
'V'	0101 0110	0101 0110
'e'	0110 0101	0110 0101
'r'	0111 0010	0111 0010
'd'	0110 0100	1110 0100
'a'	0110 0001	1110 0001
'o'	0110 1111	0110 1111

Gerador de Paridade

Α	В	С	D	Р
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

$$P = \overline{A \oplus B \oplus C \oplus D}$$

Problemas com o Método de Paridade

- Permite identificar que erros de transmissão ocorreram;
- O que acontece se ocorrem um número par de erros?
- Não permite identificar quais bits foram transmitidos erroneamente;
- Solução: RETRANSMISSÃO.

Correção de Erros

- Saber que há um erro é bom;
- Melhor ainda é saber onde está o erro;
- Sabendo-se que bit ou bits estão errados, como poderíamos proceder para corrigi-los?

Código de Hamming

- Código linear binário;
- Permite identificar até dois erros de transmissão e corrigir até um erro;
- Baseia-se na ideia de que apenas algumas combinações de bits são possíveis;

Hamming(7,4)

- No código Hamming(7,4), 7 bits são usados sendo 3 para paridade e 4 para dados;
- Dado uma mensagem d₁d₂d₃d₄ formamos a mensagem de Hamming(7,4) alocando para cada uma das posições correspondentes as potências de 2 (1,2,4,8,16,...) os bits de paridade, tal como mostrado na figura abaixo:

$$X_1 X_2 X_3 X_4 X_5 X_6 X_7$$

 $P_1 P_2 d_1 P_3 d_2 d_3 d_4$

• Os bits $x_1...x_7$ correspondem a mensagem codificada em Hamming(7,4)

Codificando uma Mensagem em Hamming(7,4)

- 1) Identificar bits de dados e paridades
- 2) Identificar as operações de paridades
- 3) Computar as paridades
- 4) Verificar erro / identificar posição do erro

Hamming(7,4)

- Para computar os bits de paridade $(p_1, p_2 e p_3)$ adotamos o seguinte procedimento:
 - Observamos as posições das casas na mensagem
 onde os bits de dados estão alocados
 001 010 011 100 101 110 111

 Para computar P₁ adotamos apenas os bits de dados que possuem valor "1" correspondentes a primeira casa da representação binária da posição da casa.
 Faz-se o mesmo raciocínio para P₂ e P₃.

Hamming(7,4)

 P_1 P_2 P_3 P_4 P_3 P_4 P_4 P_4 P_5 P_6 P_8 P_8

- Fazemos um ou-exclusivo

 correspondentes a casa a ser configurada,
 definida para 1
- $P_1 = d_1 \oplus d_2 \oplus d_4 = x_3 \oplus x_5 \oplus x_7$
- $P_2 = d_1 \oplus d_3 \oplus d_4 = x_3 \oplus x_6 \oplus x_7$
- $P_3 = d_2 \oplus d_3 \oplus d_4 = x_5 \oplus x_6 \oplus x_7$

Exemplo

- Considere a seguinte informação a ser codificada usando Hamming(7,4)
 1 1 0 1,
- Primeiramente, alocamos os bits de dados em suas posições correspondentes

Em seguida computamos os bits de paridade

$$-P_1 = d_1 \oplus d_2 \oplus d_4 = x_3 \oplus x_5 \oplus x_7 = 1 \oplus 1 \oplus 1 = 1$$

$$- P_2 = d_1 \oplus d_3 \oplus d_4 = x_3 \oplus x_6 \oplus x_7 = 1 \oplus 0 \oplus 1 = 0$$

$$-P_3 = d_2 \oplus d_3 \oplus d_4 = x_5 \oplus x_6 \oplus x_7 = 1 \oplus 0 \oplus 1 = 0$$

Exemplo

A seguir completamos a mensagem com os bits de paridade
 X₁ X₂ X₃ X₄ X₅ X₆ X₇

1 0 1 0 1 0 1

- Com base na mensagem, calculamos os bits de paridade k_1 , k_2 e k_3
- No cálculo dos ⊕'s consideramos também o bit de paridade

Hamming(7,4)

х3	х5	х6	x7	p1	p2	рЗ	Hamming(7,4)
0	0	0	0	0	0	0	0000000
0	0	0	1	1	1	1	1101001
0	0	1	0	0	1	1	0101010
0	0	1	1	1	0	0	1000011
0	1	0	0	1	0	1	1001100
0	1	0	1	0	1	0	0100101
0	1	1	0	1	1	0	1100110
0	1	1	1	0	0	1	0001111

$$P_1 = d_1 \oplus d_2 \oplus d_4 = x_3 \oplus x_5 \oplus x_7$$

$$P_2 = d_1 \oplus d_3 \oplus d_4 = x_3 \oplus x_6 \oplus x_7$$

$$P_3 = d_2 \oplus d_3 \oplus d_4 = x_5 \oplus x_6 \oplus x_7$$

Hamming(7,4)

х3	х5	х6	x7	p1	p2	рЗ	Hamming(7,4)
1	0	0	0	1	1	0	1110000
1	0	0	1	0	0	1	0011001
1	0	1	0	1	0	1	1011010
1	0	1	1	0	1	0	0110011
1	1	0	0	0	1	1	0111100
1	1	0	1	1	0	0	1010101
1	1	1	0	0	0	0	0010110
1	1	1	1	1	1	1	1111111

$$P_1 = d_1 \oplus d_2 \oplus d_4 = x_3 \oplus x_5 \oplus x_7$$

$$P_2 = d_1 \oplus d_3 \oplus d_4 = x_3 \oplus x_6 \oplus x_7$$

$$P_3 = d_2 \oplus d_3 \oplus d_4 = x_5 \oplus x_6 \oplus x_7$$

Exemplo

- Converta a mensagem **0 1 1 0 1 1 1**_{Hamming(7,4)} para a informação original em binário.
- Considere que pode haver até 1 erro na mensagem.

Estrutura da Composição das Mensagens

 A relação entre N (tamanho da mensagem) e k (qtd. Bits de paridade) é descrita pela seguinte equação:

dados (n)	paridade (k)	mensagem (N = n+k)
1	2	3
4	3	7
11	4	15
26	5	31
57	6	63
120	7	127
247	8	255

Taxa Dados/Controle

- Indica quanta informação é possível ser codificada com base no tamanho total da mensagem
- Também conhecida como taxa de Hamming

bits de dados	bits totais	taxa
1	3	≈0,333
4	7	≈0,571
11	15	≈0,733
26	31	≈0,839
57	63	≈0,904

Pro Lar

- Leitura: (Tocci) 2.9 (pgs. 38 40)
- Exercícios: (Tocci): E={2.24 2.29}

Bibliografia Comentada

TOCCI, R. J., WIDMER, N. S., MOSS, G. L. Sistemas Digitais – Princípios e Aplicações. 11ª Ed. Pearson Prentice Hall, São Paulo, S.P., 2011, Brasil.

- CAPUANO, F. G., IDOETA, I. V. Elementos de Eletrônica Digital. 40ª Ed. Editora Érica.
- São Paulo. S.P. 2008. Brasil.