preplayを 利用した探索の補助

石井・鈴ヶ嶺

神経科学的妥当性評価:実装したものに ✔ 印を入れてください。

		~			~
海馬内活動	リプレイ	~	脳領域構造	CA1	
	プリプレイ	~		CA2	
	場所細胞			CA3	
	グリッド細胞			歯状回	
	頭部方向細胞			嗅内皮質	
	シータ位相歳差			海馬支脚	
	スパース表現			Perirhinal Cortex	
	パターン補完			Postrhinal Cortex	
	細胞新生		その他	コネクトームの導入	V
行動機能	自律的フェーズ変化			BiCAMONでの可視化	
	エピソード記憶			その他	
	場所の再認				
	記憶転送				
	ナビゲーション/空間認知				
	Path integration				

規定課題点評価:成功・失敗エピソード数を記入してください。

課題番号	成功エピソード数	失敗エピソード数	合計エピソード数(成功+失敗)
1-1	22	0	22
1-2	22	0	22
1-3	762	1029	1791
1-4			
1-5			
1-6			
1-7			
1-8			
2-1			
2-2			
3-1			
3-2			
3-3			

課題1-1

課題1-3

課題1-2

課題1-4

preplayとは

George Dragoi, Susumu Tonegawa. Preplay of future place cell sequence by hippocampal cellular assemblies. Nature. 2011;469:397-401

休息中や睡眠中に、経験に先立って、

場所細胞の発火が起こる現象

マウスを使った実験

マウスを使った実験

	青い経路を 走っているときに発 火した細胞	青い経路上で 休んでいるときに発 火した細胞
赤い経路を 走行中に発火 している細胞	相関なし	相関大

preplayによって、迷路探索の際の 情報収集の基盤ができるのではないか

実装

preplayの実現においては、

事前に予測するための情報を

いかに取得するかがポイントだと考えた

処理プロセス

- experience replay
- preplay
 - experience replayと同様、ランダムサンプリングで更新する

preplayの更新

$$Q(s_t, a) \leftarrow Q(s_t, a) + \alpha \left[r_{t+1} + \gamma \max_{a'} (\overline{s_{t+1}}, a') - Q(s_t, a) \right]$$

時刻t+1におけるrewardに代わって、 時刻tにおけるrewardを用いている

t+1における状態sは、予測した情報を 利用した

方針1過去の経験から類似ベクトルを選ぶ

ベクトル距離の近いもの

• コサイン類似度による判定

方針1過去の経験から類似ベクトルを選ぶ

$$Q(s_t, \underline{a}) \leftarrow Q(s_t, \underline{a}) + \alpha \left[r_{t+1} + \gamma \max_{a'} (s_{t+1}, a') - Q(s_t, \underline{a}) \right]$$

a:以前に選んだアクション以外のものからランダムに選択

William Lotter, Gabriel Kreiman & David Cox. DEEP PREDICTIVE CODING NETWORKS FOR VIDEO PREDICTION AND UNSUPERVISED LEARNING. Harvard University. 2017

- RGBとdepthのそれぞれの画像について、 前進、右回転、左回転の計6種類の予測を行う必要がある
- 事前に、学習を行ったものを使用した。

結果

方針1過去の経験から類似ベクトルを選ぶ

- あまり良い結果は得られなかった
 - 得られた類似したものに対する行動を ランダムに選択していたため
 - ランダムな選択は、予測とは程遠い

	入力	予測	真の 結果
前進			
右回転			

- いずれのアクションについても、画像の予測は難しかった
 - 進むときの歩幅(画像の変化量)が大きく、 画像の予測がより難しくなったため
- 正面に進むときの画像の予測については、特にうまくいかなかった
 - 正面が壁の場合と空間が開けている場合とで、画像の予測が 変わってくるため
 - 正面が壁なのか空間なのかの情報が必要だった。 画像のみでは、突き当たるまでの距離の情報が無く、 その判定は難しい

- 改善するには?
 - エージェントの移動量をより小さく設定する
 - 得られる画像は、より連続的なものになる (車載カメラの例により近づく)
 - より細かな移動量で得られた画像を用いて PredNetの予測を繰り返せば、より精度が挙がったのではないか

まとめ

- 我々はpreplayのモデル化に関する 検討を行った
- preplayという現象が探索において基盤となる活動になりうると推測する