INF152 Estructuras Discretas

Profesores: R. Astudillo – M. Bugueño Universidad Técnica Federico Santa María Departamento de Informática – Septiembre 2, 2020. ${\bf Nombre} :$ Maximiliano Sepúlveda

 \mathbf{Rol} : 201973536-5 $\mathbf{Paralelo}$: 200

Certamen 1 – Pregunta 3

Esta evaluación tiene como máximo 25 puntos del C1.

a) Se definen dos conjuntos A, B dados por

$$A = \{x \in \mathbb{N}_0 \mid x \text{ es impar, } x < 10\}$$
$$B = \{x \in \mathbb{N}_0 \mid x \text{ es primo}\}.$$

Sea C un conjunto definido por $C = A \cap B$, enumere los elementos del conjunto potencia 2^C [3 pts].

Respuesta:

Considerando que 0 es par, y que 0 y 1 no son primos, se tienen los siguientes conjuntos:

$$A = \{1, 3, 5, 7, 9\}$$

$$B = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$$

Por lo tanto, el conjunto C esta dado por:

$$A\cap B= \boxed{C=\{3,5,7\}}$$

Entonces, los elementos del conjunto potencia de C serian:

En total, 2^C tiene $2^{|C|}$ elementos, es decir, $2^3 = \boxed{8}$.

b) Sean A,B dos conjuntos arbitrarios y sean $2^A,2^B$ sus respectivos conjuntos potencias. Demuestre que

$$A \subseteq B \implies 2^A \subseteq 2^B$$
 [8 pts]

Respuesta:

Formalizacion:

Se definen las siguientes proposiciones para la demostración directa $p \implies q$:

- $p:A\subseteq B$
- $\quad \blacksquare \ q:2^A\subseteq 2^B$

Demostración:

Según la definición de subconjuntos:

$$A\subseteq B\iff \forall x\,(x\in A\implies x\in B)$$

Quiere decir que "todos los elementos de A están en B". Por lo tanto, se puede concluir que:

$$A \cap B = A$$

Como todos los elementos de A están dentro de B, todos los subconjuntos posibles de A también van a estar dentro de B, es decir:

$$2^A \subseteq B$$

Luego, por propiedades de los conjuntos potencia, estos siempre contienen al conjunto completo como tal, es decir:

$$\boxed{A \subseteq 2^A \ \text{y} \ B \subseteq 2^B}$$

Si juntamos todas las conclusiones, tenemos que:

$$(A \subseteq 2^A) \land (2^A \subseteq B) \land (B \subseteq 2^B) \implies (A \subseteq 2^A \subseteq B \subseteq 2^B)$$

Conclusión:

Se puede notar como 2^A esta contenido en B, y éste a su vez esta contenido en 2^B . Por lo tanto, se puede concluir que:

$$2^A \subseteq 2^B$$

∴ La implicancia es cierta.

c) Sea $f:A\to A$ una función biyectiva, demuestre que $f\circ f:A\to A$ también es biyectiva. [12 pts]

Respuesta:

Formalización:

Se definen las siguientes proposiciones para la demostración directa $p \implies q$:

Sea una funcion $f:A\to A$

p: f es biyectiva

 \bullet $q: f \circ f$ es biyectiva

Demostración:

Si consideramos que f es biyectiva, significa que es inyectiva y sobreyectiva.

Es decir que, segun la definicion de inyectividad, cumple que:

1)
$$\forall x, y \in A \left((f(x) = f(y)) \implies (x = y) \right)$$

Si consideramos x = f(a) e y = f(b), entonces se tiene que:

$$\Big(f(f(a)) = f(f(b))\Big) \implies \Big(f(a) = f(b)\Big) \implies (a = b)$$

Por transitividad de la implicancia, se concluye que:

$$\left(f(f(a)) = f(f(b))\right) \implies (a = b)$$

.: Teniendo en cuenta que $\boxed{(f\circ f)(x)=f(f(x))}$, entonces $f\circ f$ es **inyectiva**.

Y ahora, si consideramos que es sobreyectiva, segun su definicion, cumple que:

2)
$$\forall y \in A, \exists x \in A \left(y = f(x) \right)$$

Consideremos entonces que uno de los resultados de f es $a \in A$. Si es sobreyectiva, quiere decir que debe existir algun valor $b \in A$ tal que al evauarlo en f resulte en a.

$$\forall a \in A, \exists b \in A \left(f(b) = a \right)$$

Y a su vez, deberia haber un valor $x \in A$ tal que al evaluarlo en f resulte en b.

$$\exists x \in A \left(f(x) = b \right)$$

Juntando las conclusiones, entonces se tiene:

$$\forall a \in A, \exists b, x \in A \left((f(x) = b) \land (f(b) = a) \right)$$

Como b ya se define, y existe, entonces se puede reducir a:

$$\forall a \in A, \exists x \in A \left(f(f(x)) = a \right)$$

 \therefore Teniendo en cuenta que $(f \circ f)(x) = f(f(x))$, entonces $f \circ f$ es **sobreyectiva**.

Conclusión:

Como se demostró que $f\circ f$ es inyectiva y sobreyectiva, se puede concluir finalmente que $f\circ f$ es biyectiva.