6 Anhang

6.1 Formelsammlung

		Zehnerpotenz	Symbol	Präfix
10^{-12}	=	0,000 000 000 001	p	Piko
10^{-9}	=	0,000 000 001	n	Nano
10^{-6}	=	0,000 001	μ	Mikro
10^{-3}	=	0,001	m	Milli
10^{-2}	=	0,01	С	Zenti
10^{-1}	=	0,1	d	Dezi
10 ⁰	=	1	-	-
10 ¹	=	10	da	Deka
10 ²	=	100	h	Hekto
10 ³	=	1000	k	Kilo
10^{6}	=	1000000	M	Mega
10 ⁹	=	1 000 000 000	G	Giga
10^{12}	=	1 000 000 000 000	T	Tera

Zweierpotenzen Bit						
2^0	=	1	0			
2^1	=	2	1			
2^2	=	4	2			
2^3	=	8	3			
2^4	=	16	4			
2^5	=	32	5			
2^6	=	64	6			
2^7	=	128	7			
28	=	256	8			
2^9	=	512	9			
2^{10}	=	1024	10			
2^{11}	=	2048	11			
2^{12}	=	4096	12			

Widerstände

Ohmsches Gesetz

$$U = R \cdot I$$
 $R = \frac{U}{I}$ $I = \frac{U}{R}$

Innenwiderstand

$$R_{\rm i} = \frac{\Delta U}{\Delta I}$$

Widerstand von Drähten

$$R = \frac{\rho \cdot l}{A_{\rm Dr}} \qquad \quad A_{\rm Dr} = \frac{d^2 \cdot \pi}{4} = r^2 \cdot \pi$$

l : Drahtlänge

 $A_{\rm Dr}$: Drahtquerschnitt ρ : Spezifischer Widerstand in Ω mm²/m (Tabelle am Ende der Formelsammlung)

Farbe	Wert	M	ul	tiplikator	
Silber	-	10^{-2}	=	0,	01 ±10%
Gold	-	10^{-1}	=	0,	1 ±5%
Schwarz	0	10 ⁰	=	1	-
Braun	1	10^1	=	10	±1%
Rot	2	10 ²	=	100	±2 %
Orange	3	10 ³	=	1000	-
Gelb	4	10^4	=	10 000	-
Grün	5	10 ⁵	=	100 000	±0,5 %
Blau	6	10^{6}	=	1 000 000	±0,25 %
Violett	7	10 ⁷	=	10 000 000	±0,1%
Grau	8	10 ⁸	=	100 000 000	-
Weiß	9	10 ⁹	=	1000000000	-
Keine	_			_	±20 %

Widerstände in Reihenschaltung

$$R_{\rm G} = R_1 + R_2 + R_3 + \dots + R_{\rm N}$$

Bei 2 Widerständen gilt

$$R_{\rm G} = R_1 + R_2$$

Widerstände in Parallelschaltung

$$\frac{1}{R_G} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}$$

Bei 2 Widerständen gilt

$$R_{\rm G} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Spannungsteiler (unbelastet)

$$U_{\rm G} = U_1 + U_2$$

$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

$$U_{\rm G} = U_1 + U_2$$
 $\frac{U_1}{U_2} = \frac{R_1}{R_2}$ $\frac{U_2}{U_{\rm G}} = \frac{R_2}{R_1 + R_2}$

Stromteiler

$$I_{\rm C} = I_1 + I_2$$

$$I_{\rm G} = I_1 + I_2$$
 $\frac{I_2}{I_1} = \frac{R_1}{R_2}$

Vorzugsreihen für die Nennwerte von Widerständen und Kondensatoren

Reihe Toleranz

Werte

E6	20%			1			1	,5			2	,2			3	,3			4	,7			6,	8	
E12	10%		1	1,	,2	1	,5	1	,8	2	,2	2	,7	3	,3	3	,9	4	,7	5	,6	6,	,8	8,	,2
E24	5%	1	1,1	1,2	1,3	1,5	1,6	1,8	2	2,2	2,4	2,7	3	3,3	3,6	3,9	4,3	4,7	5,1	5,6	6,2	6,8	7,5	8,2	9,1

Leistung

$$P = U \cdot I = \frac{U^2}{R} = I^2 \cdot R$$

$$U = \frac{P}{I} = \sqrt{P \cdot R}$$

$$I = \frac{P}{U} = \sqrt{\frac{P}{R}}$$

Arbeit/Energie

$$W = P \cdot t$$

Wirkungsgrad

$$\eta = \frac{P_{\rm ab}}{P_{\rm zu}} = \frac{P_{\rm ab}}{P_{\rm zu}} \cdot 100\,\% \qquad \qquad P_{\rm ab} = P_{\rm zu} - P_{\rm V}$$

$$P_{\rm ab} = P_{\rm zu} - P_{\rm V}$$

Wechselspannung

Effektiv- und Spitzenwerte bei Sinusförmiger Wechselspannung

$$\hat{U} = U_{\text{eff}} \cdot \sqrt{2}$$
 $U_{\text{SS}} = 2 \cdot \hat{U}$

$$II_{00} = 2 \cdot \hat{II}$$

Kreisfrequenz

$$\omega = 2 \cdot \pi \cdot f$$

Periodendauer

$$T = \frac{1}{f} \qquad f = \frac{1}{T}$$

Scheinwiderstand

$$Z = \sqrt{R^2 + X^2}$$

Z: Scheinwiderstand X: Blindwiderstand

Induktivität/Spule

Induktiver Blindwiderstand

$$X_{\rm L} = \omega \cdot L$$

Induktivitäten in Reihenschaltung

$$L_G = L_1 + L_2 + L_3 + ... + L_N$$

Induktivitäten in Parallelschaltung

$$\frac{1}{L_{\rm G}} = \frac{1}{L_{1}} + \frac{1}{L_{2}} + \frac{1}{L_{3}} + \dots + \frac{1}{L_{\rm N}}$$

Induktivität der Ringspule

$$L = \frac{\mu_0 \cdot \mu_{\rm r} \cdot N^2 \cdot A_{\rm S}}{l_{\rm m}}$$

Induktivität einer langen Zylinderspule

$$L = \frac{\mu_0 \cdot \mu_r \cdot N^2 \cdot A_S}{I}$$

Induktivität von Ringkernspulen

Auch für mehrlagige Spulen

$$L = N^2 \cdot A_{\rm L}$$

Magnetische Feldstärke in einer Ringspule

$$H = \frac{I \cdot N}{l_{\rm m}}$$

Magnetische Flussdichte

$$B_{\mathbf{m}} = \mu_r \cdot \mu_0 \cdot H$$

Transformator/ Übertrager

Übersetzungsverhältnis

$$\ddot{u} = \frac{N_{\rm P}}{N_{\rm S}} = \frac{U_{\rm P}}{U_{\rm S}} = \frac{I_{\rm S}}{I_{\rm P}} = \sqrt{\frac{Z_{\rm P}}{Z_{\rm S}}}$$

Belastbarkeit von Wicklungen

$$I = S \cdot A_{\rm Dr} \text{ mit } S \approx 2,5 \frac{A}{{\rm mm}^2}$$

Kapazität/Kondensator

Kapazitiver Blindwiderstand

$$X_{\rm C} = \frac{1}{\omega \cdot C}$$

Kondensatoren in Reihenschaltung

$$\frac{1}{C_{\rm G}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_{\rm N}}$$

Kondensatoren in Parallelschaltung

$$C_G = C_1 + C_2 + C_3 + ... + C_N$$

Elektrische Feldstärke im homogenen Feld

$$E = \frac{U}{d}$$

Kapazität eines Kondensators

$$C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$$

A: Kondensatorplattenfläche

d: Plattenabstand

 $\epsilon_{\rm r}$: Relative Dielektrizitätszahl

(Tabelle am Ende der Formelsammlung)

Filter

RC-Tiefpass / RC-Hochpass

$$f_{g} = \frac{1}{2 \cdot \pi \cdot R \cdot C}$$

$$f_{\rm g} = \frac{R}{2 \cdot \pi \cdot L}$$

fg: Grenzfrequenz (Frequenz am −3 dB-Punkt)

Schwingkreis

Es gilt

Reihenschwingkreis

Parallelschwingkreis

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

$$B = \frac{R_{\rm s}}{2 \cdot \pi \cdot L}$$

$$B = \frac{1}{2 \cdot \pi \cdot R_{p} \cdot C}$$

Im Resonanzfall $X_C = X_L$ gilt

$$Q = \frac{f_0}{B} = \frac{X_{\rm L}}{R_{\rm S}}$$

$$Q = \frac{f_0}{B} = \frac{R_p}{X_L}$$

Transistor

Für Gleichstrom gilt

$$B = \frac{I_{\rm C}}{I_{\rm R}}$$

$$B = \frac{I_{\rm C}}{I_{\rm B}} \qquad I_{\rm E} = I_{\rm C} + I_{\rm B}$$

Für Wechselstrom gilt

$$v_{\rm I} = \beta = \frac{\Delta I_{\rm C}}{\Delta I_{\rm B}}$$
 $v_{\rm U} = \beta = \frac{\Delta U_{\rm CE}}{\Delta U_{\rm BE}}$ $v_{\rm P} = \beta^2 = v_{\rm U} \cdot v_{\rm I}$

B: Gleichsstromverstärkung

 β : Wechselstromverstärkung

ZF und Spiegelfrequenzen

Um die Darstellung übersichtlich zu halten, wird der Fall $f_{ZF} = f_E + f_{OSZ}$ nicht betrachtet.

Zwischenfrequenz

$$f_{\rm ZF} = |f_{\rm E} - f_{\rm OSZ}| = \begin{cases} f_{\rm OSZ} - f_{\rm E} & \text{wenn } f_{\rm E} < f_{\rm OSZ} \\ f_{\rm E} - f_{\rm OSZ} & \text{wenn } f_{\rm E} > f_{\rm OSZ} \end{cases}$$

$$f_{\rm ZF} : \text{Zwischenfrequenz}$$

$$f_{\rm E} : \text{Eingangsfrequenz}$$

$$f_{\rm OSZ} : \text{Oszillatorfrequenz}$$

Spiegelfrequenz

$$f_{S} = 2 \cdot f_{OSZ} - f_{E} = \begin{cases} f_{OSZ} + f_{ZF} = f_{E} + 2 \cdot f_{ZF} & \text{wenn } f_{E} < f_{OSZ} \\ f_{OSZ} - f_{ZF} = f_{E} - 2 \cdot f_{ZF} & \text{wenn } f_{E} > f_{OSZ} \end{cases}$$

Pegel

Leistungs und Spannungspegel

$$\begin{aligned} p &= 10 \cdot \log_{10} \left(\frac{P}{1 \, \text{mW}} \right) \text{dBm} \\ p &= 10 \cdot \log_{10} \left(\frac{P}{1 \, \text{W}} \right) \text{dBW} \\ u &= 20 \cdot \log_{10} \left(\frac{P}{0,775 \, \text{V}} \right) \text{dBu} \end{aligned}$$

Verstärkung/Gewinn

$$g = 10 \cdot \log_{10} \left(\frac{P_2}{P_1} \right) \mathrm{dB} \qquad \qquad g = 20 \cdot \log_{10} \left(\frac{U_2}{U_1} \right) \mathrm{dB}$$

Dämpfung/Verluste

$$a = 10 \cdot \log_{10} \left(\frac{P_1}{P_2} \right) \mathrm{dB} \qquad \qquad a = 20 \cdot \log_{10} \left(\frac{U_1}{U_2} \right) \mathrm{dB}$$

Leistungsverhältnis Spannungsverhältnis

-20 dB	0,01	0,1
-10 dB	0,1	0,32
-6 dB	0,25	0,5
-3 dB	0,5	0,71
-1 dB	0,79	0,89
0 dB	1	1
1 dB	1,26	1,12
3 dB	2	1,41
6 dB	4	2
10 dB	10	3,16
20 dB	100	10

 P_1 : Eingangsleistung P_2 : Ausgangsleistung U_1 : Eingangsspannung U_2 : Ausgangsspannung

Strahlungsleistung und Gewinn von Antennen

ERP

$$p_{\text{ERP}} = p_{\text{S}} - a + g_{\text{d}}$$
$$P_{\text{ERP}} = P_{\text{S}} \cdot 10^{\frac{g_{\text{d}} - a}{10 \text{dB}}}$$

Feldstärke im Fernfeld einer Antenne

$$E = \frac{\sqrt{30\,\Omega \cdot P_{\rm A} \cdot G_{\rm i}}}{d} = \frac{\sqrt{30\,\Omega \cdot P_{\rm EIRP}}}{d}$$

Gilt für Freiraumausbreitung ab $d > \frac{\lambda}{2 \cdot \pi}$ $P_{\rm A}$: Leistung an der Antenne

Gewinn von Antennen

$$G_{
m i} = G_{
m d} \cdot 1{,}64 \qquad g_{
m i} = g_{
m d} + 2{,}15\,{
m dB} \qquad G = 10^{rac{g}{10{
m dB}}}$$

EIRP

$$\begin{aligned} p_{\text{EIRP}} &= p_{\text{ERP}} + 2,15 \text{ dB} \\ \\ P_{\text{EIRP}} &= P_{\text{ERP}} \cdot 1,64 = P_{\text{S}} \cdot 10^{\frac{g_{\text{d}} - a + 2,15 \text{ dB}}{10 \text{dB}}} \end{aligned}$$

Halbwellendipol

$$G_{\rm i} = 1,64$$
 $g_{\rm i} = 2,15\,{\rm dB}$

 $\lambda/4$ -Vertikalantenne mit Bodenreflexion

$$G_i = 3,28$$
 $g_i = 5,15 \, \mathrm{dB}$

Parabolspiegelantenne

$$g_i = 10 \cdot \log_{10} \left(\frac{\pi \cdot d}{\lambda} \right)^2 \cdot \eta \, dB$$

Rauschen

Thermisches Rauschen

$$\begin{aligned} &P_{\mathrm{R}} = k \cdot T_{\mathrm{K}} \cdot B \\ &\Delta p_{\mathrm{R}} = 10 \cdot \log_{10} \left(\frac{B_{1}}{B_{2}}\right) \mathrm{dB} \\ &U_{\mathrm{R}} = 2 \cdot \sqrt{P_{\mathrm{R}} \cdot R} \end{aligned}$$

P_R: Rauschleistung

 $\Delta p_{\rm R}$: Pegelunterschied der Rauschleistungen in B_1 und

 B_2 z. B. in dB

Signal-Rausch-Verhältnis (SNR)

$$\mathsf{SNR} = 10 \cdot \log_{10} \left(\frac{P_\mathsf{S}}{P_\mathsf{N}} \right) \mathsf{dB} = 20 \cdot \log_{10} \left(\frac{U_\mathsf{S}}{U_\mathsf{N}} \right) \mathsf{dB}$$

Shannon-Hartley-Gesetz für AWGN-Kanal

$$C = \frac{B}{1 \text{ Hz}} \cdot \log_2 \left(1 + \frac{P_S}{P_N} \right) \frac{\text{bit}}{\text{s}}$$

Rauschzahl

$$F = \frac{\left(\frac{P_{S}}{P_{N}}\right)_{\text{Eingang}}}{\left(\frac{P_{S}}{P_{N}}\right)_{\text{Ausgang}}}$$

$$a_{F} = 10 \cdot \log_{10} (F)$$

$$a_{F} = \text{SNR}_{\text{Eingang}} - \text{SNR}_{\text{Ausgang}}$$

 $P_{\rm S}$: Signalleistung $U_{\rm N}$: Rauschspannung $P_{\rm N}$: Rauschleistung $U_{\rm S}$: Signalspannung

C: Maximale Datenübertragungsrate

B: Bandbreite in Hz

Logarithmus zur Basis 2

$$\log_2(x) = \frac{\log_{10}(x)}{\log_{10}(2)}$$

Amplitudenmodulation

Modulationsgrad

$$m = \frac{\hat{U}_{\text{mod}}}{\hat{U}_{\text{T}}}$$

Bandbreite

$$B = 2 \cdot f_{\text{mod max}}$$

Frequenzmodulation

Modulationsindex

$$m = \frac{\Delta f_{\rm T}}{f_{\rm mod}}$$

 $\Delta f_{\rm T}$: Frequenzhub

Carson-Bandbreite

$$B \approx 2 \cdot (\Delta f_{\rm T} + f_{\rm mod \; max})$$

Ungefähre FM-Bandbreite B enthält etwa 99 % der Gesamtleistung des Signals

Wellenlänge und Frequenz

Lichtgeschwindigkeit

$$c = f \cdot \lambda$$
 $f = \frac{c}{\lambda}$ $\lambda = \frac{c}{f}$

Im Freiraum gilt

$$c = c_0 \approx 3 \cdot 10^8 \, \frac{\text{m}}{\text{s}} \approx 300\,000\,000 \, \frac{\text{m}}{\text{s}}$$

$$f[{\rm MHz}] pprox rac{300}{\lambda \, [{
m m}]} \qquad \quad \lambda \, [{
m m}] pprox rac{300}{f[{
m MHz}]}$$

Verkürzungsfaktor von HF-Leitungen

$$k_{\rm V} = \frac{l_{\rm G}}{l_{\rm E}} = \frac{1}{\sqrt{\epsilon_{\rm r}}} = \frac{c}{c_0}$$

 $l_{\rm G}$: mechanische Länge $l_{\rm E}$: elektrische Länge

Reflexion

Stehwellenverhältnis (SWR, SWV, VSWR)

$$s = \frac{U_{max}}{U_{min}} = \frac{U_{v} + U_{r}}{U_{v} - U_{r}} = \frac{\sqrt{P_{v}} + \sqrt{P_{r}}}{\sqrt{P_{v}} - \sqrt{P_{v}}} = \frac{1 + |r|}{1 - |r|}$$

$$s = \frac{R_2}{Z}$$
 wenn $R_2 > Z$ und $s = \frac{Z}{R_2}$ wenn $R_2 < Z$

Reflexionsfaktor

$$|r| = \frac{s-1}{s+1} = \left| \frac{R_2 - Z}{R_2 + Z} \right| = \frac{|U_{\rm r}|}{|U_{\rm v}|} = \sqrt{\frac{P_{\rm r}}{P_{\rm v}}}$$

Rücklaufende Leistung

$$P_{\rm r} = P_{\rm v} \cdot |r|^2$$

An R2 abgegebene Leistung

$$P_{\rm ab} = P_{\rm v} \cdot \left(1 - |r|^2\right)$$

 $U_{
m V}$: Spannung der hinlaufenden Welle $U_{
m r}$: Spannung der rücklaufenden Welle Z : Wellenwiderstand der HF-Leitung

 R_2 : reeller Abschlusswiderstand der HF-Leitung

 $P_{\rm v}$: vorlaufende Leistung

 $P_{\rm r}$: rücklaufende (reflektierte) Leistung

 $P_{\rm ab}$: Leistung an R_2

Wellenwiderstand

HF-Leitungen

$$Z = \sqrt{\frac{L'}{C'}}$$

Koaxiale Leitungen

$$Z = \frac{60 \,\Omega}{\sqrt{\epsilon_{\rm r}}} \cdot \ln\left(\frac{D}{d}\right)$$

D: Innendurchmesser Außenleiter *d*: Durchmesser des Innenleiters

Symmetrische Zweidrahtleitungen (a/d > 2.5)

$$Z = \frac{120\,\Omega}{\sqrt{\epsilon_{\rm r}}} \cdot \ln\left(\frac{2 \cdot a}{d}\right)$$

a: Mittenabstand der Leiterd: Durchmesser der Leiter

Viertelwellentransformator

$$Z = \sqrt{Z_{\rm E} \cdot Z_{\rm A}}$$

Z: erforderlicher Wellenwiderstand einer $\lambda/4$ -Transformationsleitung

Weitere Formeln

Höchste brauchbare Frequenz

$$MUF \approx \frac{f_c}{\sin(\alpha)}$$
 $f_{opt} = MUF \cdot 0.85$

 $f_{
m opt}$: Optimale Arbeitsfrequenz

Empfindlichkeit von Messsystemen

$$E_{\rm MESS} = \frac{R_{\rm i}}{U_{\rm i}} = \frac{1}{I_{\rm i}}$$

 $E_{\rm MESS}$: Empfindlichkeit in $\frac{\Omega}{V}$ $U_{\rm i}$: Spannung am System bei Vollausschlag : Strom durch das System bei Vollausschlag

Relativer maximaler Fehler

$$F_{\rm W} = \pm \frac{G}{100} \cdot \frac{W_{\rm E}}{W_{\rm M}}$$

: relativer maximaler Fehler (in %)

W_M : abgelesener Wert (Ist-Wert)

: Genauigkeitsklasse des Messinstruments $W_{\rm E}$: Endwert des Messbereichs

Abtasttheorem

$$f_{\text{abtast}} > 2 \cdot f_{\text{max}}$$

 $f_{
m abtast}$: Abtastrate

 f_{\min} : Minimale Frequenz $f_{
m max}$: Maximale Frequenz

für Nicht-Basisband-Signale

$$f_{\mathrm{abtast}} > 2 \cdot (f_{\mathrm{max}} - f_{\mathrm{min}}) \text{ wenn } f_{\mathrm{abtast}} < f_{\mathrm{min}} \text{ oder } f_{\mathrm{abtast}} > f_{\mathrm{max}}$$

Datenübertragungs-/Symbolrate

$$C = R_{\rm S} \cdot n$$

: Datenübertragungsrate in Bit/s

 R_{S} : Symbolrate in Baud

: Symbolgröße in Bit/Symbol

6.2 Formelzeichen, Konstanten und Tabellen

Sofern bei der jeweiligen Formel nicht anders angegeben, gilt:

A	Querschnitt, Fläche	g	Verstärkungsmaß/Gewinn (z.B. in dB)
A_{Dr}	Drahtquerschnitt	g _d	Gewinn bezogen auf den Halbwellendipol
A_{Fe}	Eisenkernquerschnitt		(z. B. in dB)
$A_{ m L}$	Induktivitätskonstante (z. B. in nH)	gi	Gewinn bezogen auf den isotropen Strahler (z. B. in dB)
$A_{ m S}$	Querschnittsfläche der Spule	GPSDO	GPS Disciplined Oscillator
a	Dämpfungsmaß (z.B. in dB)	**	(GPS-synchronisierter Oszillator)
$a_{ m F}$	Rauschzahl gemessen mit	Н	magnetische Feldstärke
ANICNI	Eingangsabschluss bei 290 K (z. B. in dB)	I	Stromstärke
AWGN	Additive White Gaussian Noise (Additives weißes gaußsches Rauschen)	$I_{ m B}$	Basisgleichstrom Vallebt angleich strong
B, B_1, B_2	Bandbreiten	I _C	Kollektorgleichstrom
$B_{\mathbf{m}}$	magnetische Flussdichte	$I_{ m E}$	Emittergleichstrom
C	Kapazität	$I_{ m G}$	Gesamtstrom
C'	Kapazitätsbelag (Kapazität pro Meter)	$I_{ m P}$	Primärstromstärke
C_{G}	Gesamtkapazität	$I_{\rm S}$	Sekundärstromstärke
$C_1, C_2, C_3,$	Teilkapazitäten	I_1 , I_2	Teilströme
C_n		k	Boltzmann-Konstante, $k = 1,38 \cdot 10^{-23} \frac{\text{W s}}{\text{K}}$
c	Phasengeschwindigkeit	$k_{ m v}$	Verkürzungsfaktor
c_0	Vakuumlichtgeschwindigkeit, $c_0 = 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$	L	Induktivität
d	Abstand, Entfernung	L'	Induktivitätsbelag (Induktivität pro Meter)
E	elektrische Feldstärke	$L_{\rm G}$	Gesamtinduktivität
EIRP	äquivalente isotrope Strahlungsleistung	L_1, L_2, L_3, L_n	Teilinduktivitäten
ERP	äquivalente (effektive) Strahlungsleistung	l	Länge
e	Eulersche Zahl, e = 2,718	$l_{ m m}$	mittlere Feldlinienlänge
F	Rauschzahl (Eingangsabschluss bei 290 K)	MUF	Höchste brauchbare Frequenz bei der
f	Frequenz	11101	Ausbreitung elektromagnetischer Wellen infolge ionosphärischer Brechung
f_{c} , f_{k} , f_{krit} , f_{oF2}	Höchste Frequenz, bei der senkrecht in die Ionosphäre eintretende Strahlung von der	m	Modulationsindex
	gegebenen Region noch gebrochen wird	N	Windungszahl
$f_{ m E}$	eingestellte Empfangsfrequenz	$N_{ m P}$	Primärwindungszahl
$f_{ m g}$	Grenzfrequenz	$N_{ m S}$	Sekundärwindungszahl
$f_{ m mod}$	Modulationsfrequenz	$N_{ m V}$	Windungszahl pro Volt
$f_{\text{mod max}}$	höchste Modulationsfrequenz	OCXO	Oven-Controlled Crystal Oscillator
$f_{ m opt}$	optimale Frequenz		(Quarzoszillator mit Quarzofen)
f_{OSZ}	Oszillatorfrequenz	P	Leistung
$f_{\rm S}$	Spiegelfrequenz	P_{R}	Rauschleistung
$f_{\rm ZF}$	Zwischenfrequenz	$P_{\rm S}$	Senderleistung
f_0	Resonanzfrequenz	$P_{\rm ERP}$	ERP Strahlungsleistung
G	Gewinnfaktor	P_{EIRP}	EIRP Strahlungsleistung
G_{d}	Gewinnfaktor bezogen auf den	P_{V}	Verlustleistung
C	Halbwellendipol	$P_{ m ab}$	abgegebene Leistung
G_{i}	Gewinnfaktor bezogen auf den isotropen Strahler	P_{zu}	zugeführte Leistung

p	Pegel der Leistung (z. B. in dBm oder dBW)	v_{I}	Wechselstromverstärkung
p _S	Pegel der Senderleistung (z. B. in dBm)	$v_{\rm U}$	Wechselspannungsverstärkung
$p_{\rm ERP}$	Pegel der ERP Strahlungsleistung (z. B. in	$v_{ m p}$	Leistungsverstärkung für Wechselstrom
<i>P</i> EIRP	dBm) Pegel der EIRP Strahlungsleistungen (z. B.	VCO	Voltage-Controlled Oscillator (Spannungsgesteuerter Oszillator)
FLIM	in dBm)	W	Arbeit/Energie
PEP	Peak Envelope Power	X	Blindwiderstand
Q	(Hüllkurvenspitzenleistung) Güte	$X_{\rm C}$	kapazitiver Blindwiderstand
æ R	Widerstand	$X_{\rm L}$	induktiver Blindwiderstand
$R_{\rm G}$	Gesamtwiderstand	XO	Crystal Oscillator (Quarzoszillator)
R_i	Innenwiderstand	Z	Wellenwiderstand
$R_1, R_2, R_3,$	Teilwiderstände	$Z_{ m A}$	Ausgangsscheinwiderstand
$R_1, R_2, R_3,$ R_n	Tenwiderstande	$Z_{ m A}$	Eingangsscheinwiderstand
$R_{\rm p}$	paralleler Verlustwiderstand		Feldwellenwiderstand des freien Raumes,
$R_{\rm s}$	serieller Verlustwiderstand	$Z_{ m F0}$	
r	Reflexionsfaktor		$Z_{\mathrm{F}0} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 120\pi\Omega$
S	Stromdichte		V Co
SNR	Signal-Rausch-Verhältnis (z. B. in dB)	$Z_{ m P}$	Primärer Scheinwiderstand
s, SWR,	Stehwellenverhältnis oder Welligkeit	$Z_{ m S}$	Sekundärer Scheinwiderstand
SWV, VSWR		ΔI	Stromänderung
T	Periodendauer	$\Delta I_{ m B}$	Basisstromänderung
$T_{ m K}$	Temperatur in Kelvin bezogen auf den	$\Delta I_{ m C}$	Kollektorstromänderung
	absoluten Nullpunkt T_0	ΔU	Spannungsänderung
t	$(T_0 = 0 \text{ K} = -273,15 ^{\circ}\text{C}; \text{d. h. } 20 ^{\circ}\text{C} \approx 293 \text{ K})$ Zeit	$\Delta U_{ m CE}$	Kollektor-Emitter-Spannungsänderung
TCXO	Temperature Compensated Crystal	$\Delta U_{ m BE}$	Basis-Emitter-Spannungsänderung
TONO	Oscillator (Temperaturkompensierter	α	Abstrahlwinkel der Antenne (Höhenwinkel)
	Quarzoszillator)	β	Wechselstromverstärkung
U	Spannung	ϵ_0	elektrische Feldkonstante,
$U_{ m eff}$	Effektivspannung		1
$U_{ m G}$	Gesamtspannung		$\epsilon_0 = \frac{1}{\mu_0 \cdot c_0^2} = 0.885 \cdot 10^{-11} \frac{\text{A s}}{\text{V m}}$
$U_{ m P}$	Primärspannung		, , ,
$U_{\rm R}$	effektive Rauschspannung an R	$\epsilon_{ m r}$	relative Dielektrizitätszahl
$U_{\rm S}$	Sekundärspannung	η	Wirkungsgrad
$U_{\rm SS}$	Spannung von Spitze zu Spitze	λ	Wellenlänge
U_1, U_2	Teilspannungen	μ_0	magnetische Feldkonstante,
Û	Spitzenspannung		$\mu_0 = \frac{4\pi}{10^7} \frac{\text{V s}}{\text{A m}} = 1,2566 \cdot 10^{-6} \frac{\text{H}}{\text{m}}$
$\hat{U}_{ ext{mod}}$	Amplitude der Modulationsspannung		
$\hat{U}_{ m T}$	Amplitude der HF-Trägerspannung	$\mu_{ m r}$	relative Permeabilität (Luft \approx 1)
u	Pegel der Spannung (z.B. in dBu)	ho	spezifischer elektrischer Widerstand
ü	Übersetzungsverhältnis	ω	Kreisfrequenz

Spezifischer Widerstand in $\Omega mm^2/m$

Material	Wert
Kupfer	0,018
Aluminium	0,028
Gold	0,022
Silber	0,016
Zink	0,11
Eisen	0,1
Messing	0,07

Relative Dielektrizitätszahl

Material	Wert
Luft (trocken)	1,00059
Voll-PE (Polyäthylen)	2,29
Schaum-PE	1,5
PTFE (Teflon)	2,0

6.3 Kabeldämpfungsdiagramm Koaxialkabel

Dämpfung gebräuchlicher Koaxleitungen in Abhängigkeit von der Betriebsfrequenz für eine Länge von 100 m

6.4 IARU Bandplan 2m

	Frequency Segment	Max.	. Preferred Mode and Usage				
	144,000-144,025 MHz	2,7 kHz	All mode	Sattelite downlink only			
	144,025-144,100 MHz	500 Hz	Telegraphy	144,050 MHz Telagraphy calling 144,100 MHz Random MS			
	144,100-144,150 MHz	500 Hz	MGM, Telegra- phy	144,110-144,160 MHz CW and MGM EME			
	144,150-144,400 MHz	2,7 kHz	MGM, Telegra- phy, SSB	144,195–144,205 MHz Random MS SSB 144,300 MHz SSB Centre of activity			
	144,400-144,490 MHz	500 Hz	MGM, Telegra- phy	Beacons exclusive			
	144,491-144,493 MHz	500 Hz	MGM	Experimental MGM, Personal weak signal MGM Beacons			
	144,500-144,794 MHz	20 kHz	All mode	144,500 MHz Image mode centre (SSTV, Fax,) 144,600 MHz Data Centre of activity (MGM, RTTY,) 144,750 MHz ATV Talk back			
144-146 MHz	144,794-144,9625 MHz	12 kHz	MGM Digital Communicati- on	144,8000 MHz APRS 144,8125 MHz DV internet voice gateway 144,8250 MHz DV internet voice gateway 144,8375 MHz DV internet voice gateway 144,8500 MHz DV internet voice gateway 144,8625 MHz DV internet voice gateway			
	144,975-145,194 MHz	12 kHz	FM/Digital Voice	Repeater input exclusive			
	145,194-145,206 MHz	12 kHz	FM/Digital Voice	Space Communication			
	145,206-145,5625 MHz	12 kHz	FM/Digital Voice	145,2375 MHz FM Internet Voice Gateway 145,2875 MHz FM Internet Voice Gateway 145,3375 MHz FM Internet Vocie Gateway 145,3750 MHz digital voice calling 145,5000 MHz FM calling			
	145,575-145,7935 MHz	12 kHz	FM/Digital Voice	Repeater output exclusive			
	145,794-145,806 MHz	12 kHz	FM/Digital Voice	Space Communication			
	145,806-146,000 MHz	12 kHz	All mode	Sattelite exclusive			

6.5 IARU Bandplan 70cm

	Frequency Segment	Max.	Preferred Mode ar	nd Usage
	430,000-431,975 MHz	20 kHz	All mode	430,025–430,375 MHz FM repeater output (1,6 MHz shift) 430,400–430,575 MHz digital communications 430,600–430,925 MHz digital communications repeater channels 430,925–431,025 MHz multimode channels 431,050–431,825 MHz Repeater input channel freqs 7,6 MHz shift 431,625–431,975 MHz Repeater input channels (1,6 MHz shift)
	432,000-432,100 MHz	500 Hz	MGM, Telegra- phy	432,050 MHz Telegraphy Centre of activity
	432,100-432,400 MHz	2,7 kHz	MGM, Telegra- phy, SSB	432,200 MHz SSB centre of activity 432,350 MHz Microwave talkback centre of acitivity 432,370 MHz Meteo Scatter centre of activity
	432,400-432,490 MHz	500 Hz	MGM, Telegra- phy	Beacons Exclusive
	432,191-432,193 MHz	500 Hz	EMGM	Experimental MGM
MHz	432,500-432,975 MHz	12 kHz	All mode	432,500 MHz New APRS frequency 432,600–432,9875 Repeater Input Region 1 Standard, 25 kHz spacing, 2 MHz shift (Channel freq 432,600–432,975 MHz)
430-440 MHz	433,000-433,375 MHz	12 kHz	FM, Digital Voice Repeaters	Repeater Input Region 1 Standard, 25 kHz spacing, 1,6 MHz shift
43	433,400-433,575 MHz	12 kHz	FM, Digital Voice	433,400 MHz SSTV (FM/AFSK) 433,450 MHz Digital Voice calling 433,500 MHz FM calling
	433,600-434,000 MHz	none	All mode	433,625–433,775 MHz Digital communications channels 434,000 MHz Centre frequency of digital experiments
	434,000-434,594 MHz	12 kHz	All mode, ATV	434,450-434,575 MHz Digital communications channels
	434,594-434,981 MHz	12 kHz	All mode	434,600–434,9875 MHz Repeater Output (12,5 kHz spacing 1,6 MHz or 2 MHz shift)
	435,000-436,000 MHz	none	Sattelite service	
	436,000-438,000 MHz	none	Sattelite service, DATV/data	DATV/data centre of activity
	438,000-440,000 MHz	none	All mode	438,025–438,175 MHz Digital communication channels 438,200–438,525 MHz Digital communication repeater channels 438,550–438,625 MHz Multi mode 438,650–439,425 MHz Repeater output channels (7,6 MHz shift) 439,800–439,975 MHz Digital communication link channels

Impressum

Herausgeber
Bundesnetzagentur für Elektrizität, Gas,
Telekommunikation, Post und Eisenbahnen
Tulpenfeld 4
53113 Bonn

Stand März 2024, 3. Auflage