Assignment Project Exam Help

https://powcoder.com

Add We@hatepowcoder

Generative vs. Discriminative Learning

• Generative models:

Assignment Project Exam Help

 $\propto \Pr[\mathbf{x} \mid y]\Pr[y] = \Pr[\mathbf{x}, y]$

https://powcoder.com

- The key is to model the generative probability: Pr[x | y].
- Example: Naive Bayes.
- Discription of the property of the party o
 - Example: Decision tree, Logistic Regression.
- Instance-based Learning.
 - Example: kNN classifier.

Assignment Project Exam Help https://powcoder.com

Task Add We Chat powcoder

- Input: $(x^{(i)}, y^{(i)})$ pairs (1 < i < n)
- Preprocess: let $\mathbf{x}^{(i)} = \begin{bmatrix} 1 & x^{(i)} \end{bmatrix}^{\top}$
- Output: The best $\mathbf{w} = \begin{bmatrix} w_0 & w_1 \end{bmatrix}^{\top}$ such that $\hat{y} = \mathbf{w}^{\top} \mathbf{x}$ best explains the observations

Assignment Project Exam Help

The criterion for "best":

https://ped.error/

Find **w** such that ℓ is minimized.

Add WeChat powcoder

Minimizing a Function

Taylor Series of f(x) at point a

Assign hent-Project Exam Help

=
$$f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2} (x - a)^2 + o((x - a)^2)$$
 (2)

• Intuitively, $f(x)$ is almost $f(a) + f'(a) \cdot (x - a)$ for all a if it is

- close to x.
- If A(x) has local minimum at the powcoder • $f''(x^*) > 0$.

Minimum of the local minima is the global minimum if it is smaller than the function values at all the boundary points.

• Intuitively, f(x) is almost $f(a) + \frac{f''(a)}{2}(x-a)^2$ if a is close to x^*

Find the Least Square Fit for Linear Regression

Assignment Project Exam Help

https://powceder.com

By setting the above to 0, this essentially requires, for all j Add WeChat powcoder

$$\sum_{i=1}^{n} \hat{y}^{(i)} x_{j}^{(i)} \neq \sum_{i=1}^{n} y^{(i)} x_{j}^{(i)}$$

what the model predicts

what the data says

Find the Least Square Fit for Linear Regression

In the simple 1D case, we have only two parameters in $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$

Assignment Project Exam Help

 $https_{i=1}^{\sum_{i=1}^{n}(w_{0}+w_{1}x_{1}^{(i)})x_{1}^{(i)}=\sum_{i=1}^{n}y_{i}^{(i)}x_{1}^{(i)}$

Since $x_0^{(i)} = 1$, they are essentially

$$Add_{\sum_{i=1}^{n}(w_0 + w_1x_1^{(i)}) \cdot 1} = \underbrace{pow_{i=1}}_{j=1} \underbrace{pow_{i=1}}_{j=1}$$

$$\sum_{i=1}^{n} (w_0 + w_1 x_1^{(i)}) \cdot x_1^{(i)} = \sum_{i=1}^{n} y^{(i)} \cdot x_1^{(i)}$$

Example

Using the same example in https://en.wikipedia.org/wiki/

$$\begin{array}{c} \textbf{Assignment Project Exam Help} \\ \textbf{x} = \begin{bmatrix} - & (x^{(1)})^\top & - \\ - & (x^{(2)})^\top & - \\ - & (x^{(3)})^\top & - \\ \textbf{http} & \textbf{y} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 3 \end{bmatrix} \quad \textbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} \quad \textbf{y} = \begin{bmatrix} 6 \\ 5 \\ 7 \\ 10 \end{bmatrix} \\ \textbf{http} & \textbf{y} \end{bmatrix}$$

Generalization to *m*-dim

Easily generalizes to more than 2-dim:

- How to perform polynomial regression for one dimensional x?

 Allow + Wx Exx2 natux powcoder
 - Let $x_j^{(i)} = (x_1^{(i)})^j \Longrightarrow \text{Polynomial}$ least square fitting (http://mathworld.wolfram.com/ LeastSquaresFittingPolynomial.html)

Probablistic Interpretation

High-level idea:

Assignment Project Exam Help

- Any w is possible, but some w is most likely.
 - Assuming independence of training examples, the likelihood of

- Maximum likelihood estimation (MLE)
- \bullet If we also incorporate some prior on $\boldsymbol{w},$ this becomes

Maximum Posterior Estimation (MAP): If we assume some faustiant proton on the objective function.

• Many models and their variants can be deemed as different ways of estimating $P(y^{(i)} | \hat{y}^{(i)})$

Geometric Interpretation and the Closed Form Solution

Find **w** such that $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2$ is minimized.

Assignment Project Exam Help

- It is the hyperplane spanned by the d column vectors of \mathbf{X} .
- y in general is a vector outside the hyperplane. So the rinhing stance is a vector outside the hyperplane. So the rinhing stance is a vector outside the hyperplane. This means (denote *i*-th column of **X** as X_i)

$$\begin{array}{ccc} Add_{1}^{\top} WeChat & powcoder \\ X_{2}^{\top}(\mathbf{y}-\mathbf{X}\mathbf{w}) & = 0 \\ \dots & = 0 \\ X_{d}^{\top}(\mathbf{y}-\mathbf{X}\mathbf{w}) & = 0 \end{array} \} \Longrightarrow \mathbf{X}^{\top}(\mathbf{y}-\mathbf{X}\mathbf{w}) = \mathbf{0}$$

$$\bullet \ \mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{+}\mathbf{y}$$

(X⁺: pseudo inverse of X)

Logistic Regression

Special case: $y^{(i)} \in \{0,1\}.$

• Not appropriate to directly regress $y^{(i)}$.

Assignment a Projectut De Normal With an unknown parameter p_i

• How to model p_i

he assume that
$$p_i$$
 depends on $\mathbf{x} \triangleq \mathbf{X}_i$ rename p_i to p_x .

MLE: $p_x = \mathbf{E}[y = 1 \mid \mathbf{x}]$

- What can we say about $p_{x+\epsilon}$ when p_x is given?
- Answel: We impose a linear relationship between $p_x = \mathbf{w}^T \mathbf{x}$ for some \mathbf{w} ? (Note: all points share the same parameter \mathbf{w})
 - Problem: mismatch of the domains: vs
 - Solution: mean function / inverse of link function: $g^{-1}: \Re \to \mathrm{params}$

Solution

• Solution: Link function $g(parameters) \to \Re$

Assignment Project Exam Help

• Equivalently, solve for *p*.

https://powcoder.com
$$p = \frac{1 + e^{\mathbf{w}^{\mathsf{T}}\mathbf{x}}}{1 + e^{\mathbf{w}^{\mathsf{T}}\mathbf{x}}} = \frac{\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})}{1 + e^{-\mathbf{w}^{\mathsf{T}}\mathbf{x}}} = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$
(4)

Recall that $p_x = E[y]$ that powcoder

- Decision boundary is $p \ge 0.5$.
 - Equivalent to whether w[⊤]x ≥ 0. Hence, LR is a linear classifier.

Learning the Parameter w

- Consider a training data point $\mathbf{x}^{(i)}$.
 - Recall that the conditional probability $(\mathbf{Pr}[y^{(i)} = 1 \mid \mathbf{x^{(i)}}])$ computed by the model is denoted by the shorthand notation

Assignmentally and its sentence by the short and instantial insta

. https://politically.com

Add
$$\overset{L(\mathbf{w})}{\text{Wethat}} \overset{\text{in}}{\text{powcoder}}$$

• Log-likelihood is (assume $\log \triangleq \ln$)

$$\ell(\mathbf{w}) = \sum_{i=1}^{n} y^{(i)} \log p(\mathbf{x}^{(i)}) + (1 - y^{(i)}) \log (1 - p(\mathbf{x}^{(i)}))$$
 (5)

Learning the Parameter w

ullet To maximize ℓ , notice that it is concave. So take its partial

$$\begin{aligned} & \underbrace{Assignment}_{\partial \boldsymbol{\ell}(\mathbf{w})} \underbrace{Project}_{\boldsymbol{k}} \underbrace{Exam}_{\boldsymbol{k}} \underbrace{Help}_{\boldsymbol{k}} \\ & \underbrace{\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_{j}}} = \sum_{i=1}^{n} \left(y^{(i)} \frac{1}{p(\mathbf{x}^{(i)})} \frac{\partial p(\mathbf{x}^{(i)})}{\partial \mathbf{w}_{j}} + (1 - y^{(i)}) \frac{1}{1 - p(\mathbf{x}^{(i)})} \frac{\partial (1 - p(\mathbf{x}^{(i)}))}{\partial \mathbf{w}_{j}} \right) \\ & \underbrace{\mathbf{https}_{i=1}}_{i=1} \underbrace{\mathbf{https}_{j}}_{\boldsymbol{k}} \underbrace{\mathbf{https}_{j}}_{\boldsymbol{k}}$$

and set them we essentially means, for all j and j and j and j and j and j and j are j and j

what the model predicts

what the data says

Understand the Equilibrium

Assignment Project Exam Help

$$\sum_{i=1}^{n} p^{(i)} x^{(i)} = \sum_{i=1}^{n} y^{(i)} x^{(i)}$$

 $\begin{array}{c} https://powcoder.com \\ \bullet \text{ The RHS is essentially the sum of } x \text{ values only for the} \end{array}$

- The RHS is essentially the sum of x values **only** for the training data in class Y = 1.
- The Ltd Stay in five use bur learned model to assign a probability (of belonging to the class O W) Good T training data, the LHS is the expected sum of x values.
- If this is still abstract, think of an example.

Assignment Project Exam Help

- ullet There is no closed-form solution to maximize $\ell.$
- · https://peweroder.com
- There are faster algorithms.

Add WeChat powcoder

(Stochastic) Gradient Ascent

- w is intialized to some random value (e.g., 0).
- Since the gradient gives the steepest direction to increase a

Assignment Project Exam Help

where decreasing over the epochs.

• Stochastic version: using the gradient on a randomly selected training instance, i.e.,

$$w_j \leftarrow w_j + \alpha(y^{(i)} - p(\mathbf{x^{(i)}}))\mathbf{x^{(i)}}_j$$

Newton's Method

- Gradient Ascent moves to the "right" direction a tiny step a time. Can we find a good step size?
- Assignation we find a good step size?

 Assignation the permitties of the property of the property of the property of the property of the permitted property of the property of the permitted property o
 - To minimize f(x), take $\frac{\partial f(x)}{\partial x} = 0$, i.e.,

https://powcoder.com

$$A \underset{\Leftrightarrow}{\rightleftharpoons} d_{x}^{f'(a) \cdot 1} + \underbrace{f''(a)}_{f''(a)} \cdot 2(x - a) \cdot 1 = f'(a) + f''(a)(x - a) = 0$$

$$A \underset{\Leftrightarrow}{\rightleftharpoons} d_{x}^{f'(a) \cdot 1} + \underbrace{f''(a)}_{f''(a)} \cdot 2(x - a) \cdot 1 = f'(a) + f''(a)(x - a) = 0$$

• Can be applied to multiple dimension cases too \Rightarrow need to use ∇ (gradient) and Hess (Hessian).

Regularization

- Regularization is another method to deal with overfitting.
 - It is designed to penalize large values of the model parameters.

there it encoural simpler models, which are less like He

- Instead of optimizing for $\ell(\mathbf{w})$, we optimize $\ell(\mathbf{w}) + \lambda R(\mathbf{w})$.
 - ullet λ is a hyper-parameter that controls the strength of

Grid search: http:

//swikiy-learn rg/stable/modules/grid_search.html Ther Vale internative method:

- $R(\mathbf{w})$ quantifies the "size" of the model parameters. Popular choices are:
 - L_2 regularization (Ridge LR) $R(\mathbf{w}) = ||\mathbf{w}||_2^2$
 - L_1 regularization (Lasso LR) $R(\mathbf{w}) = ||w||_1$
 - L_1 regularization is more likely to result in sparse models.

Generalizing LR to Multiple Classes

Assignment Projects Examt. Help

$$\begin{array}{c} \Pr[c \mid \mathbf{x}] \propto \exp\left(\mathbf{w}_{c}^{\top}\mathbf{x}\right) \implies \Pr[c \mid \mathbf{x}] = \frac{\exp\left(\mathbf{w}_{c}^{\top}\mathbf{x}\right)}{\text{ttps://powcoder.com}} \\ \end{array}$$

- Z is the normalization constant.
- Let \mathbf{c}^* be the last class in C, then $\mathbf{w}_{\mathbf{c}^*} = \mathbf{0}$.
- · Med from enthat? powcoder
- Both belong to exponential or log-linear classifiers.

Assignment Project Exam Help

- Andrew Ng s note: http://cs229.stanford.edu/notes/cs229-notes1.pdf
- Isme Shalizi's hote http://www.sat.cmuodh/ cshalizi/uada/12/lectures/cn12.pdf
- Tom Mitchell's book chapter: https:

```
Add WeChat powcoder
```