Mechanics' Pocket Memoranda.

TECHNICAL SUPPLY COMPANY DRAWING MATERIALS SCRANTON, PHILADELPHIA AND NEW YORK

MECHANICS' POCKET MEMORANDA

A CONVENIENT POCKETBOOK

FORMALL PERSONS INTERESTED IN

Mechanical Engineering, Steam Engineering, Electrical
Engineering, Railroad Engineering, Hydraulic
Hhrineering, Bridge Engineering, Etc.

BY

INTERNATIONAL CORRESPONDENCE SCHOOLS SCRANTON, PA.

7th Edition, 277th Thousand, 18th Impression

SCRANTON, PA.

INTERNATIONAL TEXTBOOK COMPANY

Complimentary Ropey.

Copyright, 1893, 1894, 1897, 1898, 1899, 1900, by The Colliery Engineer Company

Copyright, 1904, by International Textbook Company ` Entered at Stationers' Hall, London

All rights reserved

PRINTED BY
INTERNATIONAL TEXTBOOK Co.
SCRANTON, Pa.

PREFACE.

624 Tenson

The first edition (2,000 copies) of the pocketbook of which this is the outcome was issued in October, 1893, in the form of a notebook containing 74 printed pages, with about the same number of blank pages for memoranda, whence the title Mechanics' Pocket Memoranda. The little book proved so popular that a new edition (10,000 copies) enlarged to 110 pages was issued 8 months later. In June, 1897, the blank pages were discarded, the work was entirely recast and enlarged to 318 pages, and the edition (third) consisted of 25,000 copies. Before printing the fifth edition (March, 1898), a large amount of matter relating especially to Plumbing, Heating, and Ventilation and the Building Trades was taken out, replaced by tables of logarithms, trigonometric functions, etc., together with directions for using them, and other new matter, the result being to confine the work more particularly to the different branches of engineering and mechanics.

It has been the aim of the publishers, from the first, to present to the public a handbook of a size convenient to carry in the coat or hip pocket—a pocketbook in reality—which would contain rules, formulas, tables, etc. in most common use by

engineers, together with explanations concerning them and practical examples illustrating their use. We have not endeavored to produce a condensed cyclopedia of engineering or of any branch of it, but we have striven to anticipate the daily wants of the user and to give him the information sought in the manner best suited to his needs. Our aim has been to meet the necessities not only of the engineer but of all in any manner interested in engineering, and in accomplishing this we have selected that rule, formula, or process which was, in our opinion, best adapted to the circumstances of the case, describing it fully, giving full directions how and when to use it, and not mentioning other methods (when such were available); in other words, we have made the selection instead of leaving the choice to the judgment of the user, which is frequently at fault. The exceedingly large sale proves that the idea was popular and has vindicated our judgment. We hope that succeeding editions will meet and merit the same approval that has been accorded those preceding.

The present (seventh) edition contains the most convenient table of powers, roots, and reciprocals of numbers yet printed. This table was arranged and computed by us and will be of great use to all having occasion to use it.

International Correspondence Schools, December 1, 1903.

A.

PA	GE
Absolute pressures	26
Alloys	19
Alternating system, Size of wires for	239
	250
Ampere	230
	243
	263
Arc lamps, Connections for	253
Arcs or angles, Measures of	2
Areas and circumferences of circles 82-	
	19
of circles, Table of	82
Avoirdupois weight	3
В.	
ь.	
Batteries, Storage	267
	267
Various chemical	66
	52 52
	52
	52
	52
	76
of a line, Deduced	283
Bearings for line shafting, Distance apart of 1	93
	41
	40
	209
Belt pulleys 2	04
Belt pulleys 2 Bending moments in beams 1	

	PAGE
Blueprint paper, To make	175
Blueprints	175
Boilers	158
(steam)	158
(steam)(steam) Foaming and priming of	168
(steam) Horsepower of	168
(steam) Inspection and care of	162
(steam) Prevention of scale in	164
(steam) To develop dome of	158
(steam) To develop slope sheet of	
Bolts for cylinder heads	217
for steam chests	217
Standard proportions of	22
Booster	267
Brake, Prony.	260
Bridge, Wheatstone	270
Briggs, or common, logarithms	32
· · · · · · · · · · · · · · · · · · ·	02
C.	
Cables, Carrying capacity of	239
Chain.	14
Testing of (electrical)	271
Calendar, Perpetual	327
Candlepower	236
Capacity, Measures of	6
of cables	239
Cathode of an electric battery	263
Center of gravity	121
Centrifugal force	121
Chain cables, Wrought-iron	14
Chains and ropes	157
Change gears	178
Characteristic of a logarithm	33
Chemical treatment of feedwater	165
Chimneys	170
Formulas for	171
Table of sizes of	172
Chord of circle	116
Circle, Area of	113
Chord of	116
Circumference of	113
Segment of	115
Circles, Tables of circumferences and areas of	82-90
Circuits, Derived, or shunt	234
Motor	253
Size of wire for arc-light	253
Circular pitch, Formula for	228
pitch, Table of	230
rings, Area of	116
rings, Volume of	117
Circumferences and areas of circles	82-90

	Page
Clearance, Piston	216
Coefficient of elasticity	
Coefficients of expansion	19
Columns, Formulas for strength of	156
Commutator Sparking at	250
Compass surveying	276 - 279
Compass surveying. Compound-geared lathes, Screw cutting with	182
pulley. Formula for	138
pulley, Formula for	151
Conductivity, Electrical	232
Conductor, Direction of motion of	
Size of	
Cone, Formulas for	117
Conical frustum, Formulas for	117
Connecting-rods	
Connections for dynamo-electric machines	
Copper and aluminum, Properties of	
Corliss engine crank-shaft	223
Colliss engine clank-shart	
engine cylinder	
Corrosion of boilers	
Cotters for connecting-rods	
Couplings, Flange	194
Flexible	
Proportions of	195 194
Shaft	
Course of a line in surveying.	276
Crank-shafts for Corliss engines	
-shafts for high-speed engines	223
Cross-over tracks	325
Cube root	105
Cubes and squares	106
Cubic expansion, Coefficient of	19
measureCurrent, Rules for direction of electrical	2
Current, Rules for direction of electrical	232
Strength of	231
Curves, Deflection angles of	286
Degree of	286
Elevation of railroad	311
of saturation	256
Tangent distance of	287
To lay out with transit	
To lay out without transit	290
Curving of rails	309
Cylinder heads	217
heads, Bolts for	217
Cylinders for Corliss engines	221
Formulae for etrenath of	157
Proportions of	216 - 219
Stuffingbox for	228
Surface of	
Volume of	116

D.	PAGE
Decimal equivalents of parts of one inch	91
Decimals of a foot. Equivalent in inches of	91
Declination of needle	277
Denected line	281
Deflection of beams	152
Deflection of beams Deflections, Tangent and chord	297
tangent and chord, Formulas for	297
Density	25
Derived circuits	234
Designs of machine details	192
Development of boiler dome	158
of boiler slope sheet	159
Diagram, Slide-valve	188
Diametral pitch, Formula for	229
_ pitch, Table of	230
Differential pulley	138
Division by logarithms	42
Dome of boiler, To develop	158
Double movable pulley	137
Draft of chimneys, Formulas for	171
Drills, Speed of twist	177
Dry measure	3
Duty of pumps	144
Dynamo designelectric machines, Connections for	254
-electric machines, Connections for	252
machines wiring, Underwriters' rules for	246
wiring, Underwriters' rules for	245
Dynamos and motors	253
Faults of	258
E.	
Earthwork, Calculation of	306
Eccentric	227
Efficiency, Lamp	240
Motor	
Elastic limit, Table of	152
Electric gas lighting	269
motors, Application of	261
Electricity	
Electrodeposition	269
Electrolyte of an electric battery	263
Electromagnet, Polarity of	233
Electromotive force	230
force, Formula for	254
Elements, Table of chemical	16
Elevation of railroad curves	311
Ellipse, Formulas for	115
Emery wheels, Speed of	176
Engine horsepower, Formula for	185
English and metric measures, Conversion tables of	7

	PAGE
Equivalent decimal parts of one foot	91
decimal parts of one inch	91
Evolution by logarithms	46
Table method of	103
Exhaust heating	
ports Dimensions of	217
ports, Dimensions of	19
Exponents	32
Exponents External inspection of boilers	164
External inspection of boners	101
F.	
Factors of safety, Table of	151
	80
Prime	258
Failure of dynamos	120
Falling bodies	
Feedwater heaters	166
Methods of purifying	165
Testing of	164
Field magnet	255
magnet, Reversal of	258
Filtration of feedwater	165
Flange coupling	194
Flanges, Pipe	215
Flexible coupling	195
Flexible coupling	151
Flow of water in pipes	147
Fluxes for soldering and welding	24
Foaming of boilers	168
Foot, Decimals of a	91
Force, Formula for electromotive	254
	255
Magnetizing	140
of a blow	137
Forces, Resultant of	
Formulas	93-102
How to useFrog (railroad work)	93
rrog (ranroad work)	312
Angle	313
Crotch or middle	324
_ distance	314
Frustum of cone, Formulas for	117
of pyramid, Formulas for	118
Fusion, Latent heat of	18
Temperature of	18
G.	
G ² , Values of	153
Galvanometer	271
Galvanometer Gases, Weights of	14
Gas lighting, Electric	269
Gas lighting, Electric	249
B. & S. wire	248

	Page
Gauge, sizes of wire, with equivalent sectional areas	248
Gearing Formulas for	228
Gears, Change, for screw cutting	178
To calculate speed of	142
Gibs for connecting-rods	224
Gland	228
Grade lines	296
Rate of	296
Rate of	121
Grindstone, Speed of	176
Grindstone, Speed of	153
To find radius of	131
To find radius of, experimentally	133
H.	
Hangers, Shaft	202
Heat	19
Latent, of fusion	18
of liquid	25
Heating by exhaust steam	173
of dynamos	259
surface, Square feet of, per horsepower16	8. 169
surface, Ratio of, to grate area	168
Helix, Formula for	116
To construct a	116
High-speed engines, Crank-shaft for	223
Horsepower of belts	140
of boilers	168
of electrical currents	232
of engines	185
of pumps	184
of rope belting	210
Theoretical	184
Hydrokinetics	145
Hydromechanics	144
Hydrostatics	144
Hyperbolic logarithms	32
l.	
I, Values of	153
Incandescent lamp data	240
wires, Underwriters' regulations for	245
Inch, Equivalent decimal parts of	91
Inches and parts thereof in decimals of one foot	91,92
Inclined planes, Formula for	138
Incrustation in boilers	164
Incrustation in boilers	185
Inertia. To find moment of	125
To find moment of, experimentally	133
To find moment of, for various sections	153
Inspection of boilers	162

	PAGE
Insulation, Test of	272
Interior wiring	235
Involution by logarithms	44
Involution by logarithms	21
Irregular areas	119
-	110
J.	
Joint coupling, Universal	195
Journal box, Design of	195
	190
K.	
	167
Kerosene in boilers	194
Kilowatt	
Kilowatt	232
1	
I Dominion of	0.40
Lamps, Efficiency of	240
Incandescent, data	240
in series (electric light)	253
Lap, Inside and outside	187
Latent heat of fusion	18
heat of vaporization	18
Lathe, Change gears of	178
Compound-geared	182
Simple-geared	178
Law, Ohm's	231
Lead of valve	187
Lead, Weight of sheet	21
Leakage, Magnetic	258
Leclanché cell	1.269
Legal ohm	230
Length, Measures of	5
Leveling, Direct	292
Grade lines in	296
notes, How to check and keep	294
Profiles in	296
Levers	136
Linear expansion, Coefficient of	18
measure	1
Line shafting	193
Time of four Tolling.	257
Lines of force, Leakage of	$\frac{257}{254}$
of force, Number of	216
Lining for seats	
Liquid, Heat of	25
measures	4
Liquids, Weights of	13
Locknuts	192
	50-67
table, Use of	34
Logarithms	32
Long-ton table	3

M.	PAGE
Machine design	175
tools, Cutting speeds for	176
tools, Motors for	263
Magnetic meridian	277
permeability	257
Manila rope belting	209
rope belting, Weight of	209
Mantissa of a logarithm	33
Materials, Strength of	150
Mean effective pressure	185
Measure, Cubic	2
Dry	3
Linear	1
Liquid	4
Surveyor's	1
Surveyor's square	2
Measures and weights	1-4
and weights, Metric	
of angles or arcs	5 2
of capacity	$\bar{6}$
of length	5
of gurface (not land)	5 5
of surface (not land)	5
of volume	6
of weight	
Mechanical powers	136
Mechanics	
Mensuration	113
Meridian, Magnetic	277
True	277
Metals, Weights of	10
Metric and English measures, Conversion table for	7
system	5
Mil	235
Mil, Circular	235
Miscellaneous table	4
Moment of inertia defined	125
of inertia of various sections	153
of inertia, To find, experimentally	133
of resistance defined	134
of resistance of various sections	133
Moments, Bending	152
Motor circuits	253
efficiency, Approximate	253
Motors, Application of electric	261
for machine tools	263
for machine toolsOutput and efficiency of	260
Delegity of	234
Polarity of	234
Underwriters' rules for	253
Multiplication by logarithms	255

N.	PAGE
Needle, Declination of	277
Neutral axis	135
Numbers, Prime	79
Nuts, Proportions of	22
0.	
	100
Oblique fixed pulley, Formula for	138 230
Ohm, Legal	230 231
Ohm's law	198
Oil cupOscillation, To find center of	$\frac{198}{127}$
To find radius of, experimentally	133
Output of motors	260
	200
P.	
Packing rings	224
Paper, To make blueprint	175
Parallel, Lamps in	253
Parallelogram	114
of forces, Explanation of	137
Passage, Steam	217
Pedestals, Design and proportions of	
Percussion, To find center of	130
Permeability, Magnetic	257
Perpetual calendar	327
Pipe flanges	215
Weight of cast-ironPipes and cylinders, Strength of	23
Pipes and cylinders, Strength of	157
Flow of water in	147
Sizes of wrought-iron	24
Piston clearance	$\frac{216}{223}$
Pistons Pitch, Formula for circular	228
	230
Table of circularFormula for diametral	228
Table of diametral	230
of bolts in cylinder heads	217
of bolts in steam-chest covers	217
Polarity of a dynamo. To determine	233
Polarity of a dynamo, To determine of an electromagnet, To determine	233
Polishing wheels, Speed of	176
Polygon of forces, Explanation of	137
Polygons, Regular	119
Port, Exhaust	217
Steam	217
Power transmitted by leather belting	141
transmitted by rope belting	209
Powers, Mechanical roots, and reciprocals, Table of roots.	136
roots, and reciprocals, Table of	110
Pressure, Mean effective	185

	PAGE
Pressures, Absolute	
Prime factors, Table of	80
numbers	79
Priming of boilers	
Prismoidal formula	
Profiles in leveling.	
Projectiles	120
Prony brake	260
of seturated steem	250 29
of saturated steam	
Proportions of belt pulleys	194
of journal boxes	
of keys	193
of rope-pulley rims	211
of shaft hangers	202
Pulleys, Belt	204
Differential	138
Double movable	137
Formula for compound	138
Proportions of	138
Quadruple movable	
Rope	211
Single fixed	137
Single movable	137
Speed of	142
Pumps, Discharge of	143
Duty of	144
Horsepower of	143
Pyramid Formulas for	
Formulas for frustum of	118
Q.	
	138
Quadruple movable pulley, Formula for	190
R.	
R Values of	153
R, Values or	174
Radii and deflections. Table of	208-300
Radius of gyration, To find	131
of gyration, To find, experimentally	133
of gyration, To find, for various sections	153
of oscillation, To find, experimentally	133
Rate of transmission of electricity	231
Reciprocal of a number	108
Rectangle, Formula for	114
Regular polygons.	119
Resistance, Electrical	231
	134
Moment of	153
of copper wire	
or copper wife	201 200

xv

	PAGE
Resistance of derived circuit	234
Resultant of forces	137
Retaining walls	300
walls, Resistance of, to overturning	303
Reversal of field	258
Ribs for piston	224
for steam-chest cover	220
Ring, Formula for circular	117
Formula for	116
Root, Cube	105
Square	103
Roots, Method of extracting	103
Table of	110
Rope belting	209
belting, Pulleys for	211
Weight of manila. Ropes and chains, Strength of	209
Ropes and chains, Strength of	157
Wire	212
wire, Pulleys for	213
S.	
	1 7 1
Safety, Table of factors of	151
valves	173
Saturated steam, Properties of	29
Saturation curves (electrical)	256
Scale in boilers, Prevention of	164
Screw cutting, Change gears for	178
Formulas for	139
threads, Proportion of	22
Seats, Lining for	216
Sector, Formula for	115
Segment, Formula for	115
Series. Lamps in	253
Shaft couplings	194
hangers	202
Shafting, Formulas for	157
Line	193
Shafts, Crank	223
Shearing strengths, Table of	151
Sheaves for rope gearing	213
Sheet lead, Weight of	21
Shunt circuit	234
Simple-geared lathe, Screw cutting with	178
Single fixed pulley, Formula for movable pulley, Formula f	137
movable pulley, Formula for	137
Size of copper wire for circuits	
Slide valve.	187
valve diagram	188
Slope sheet of boiler, To develop	160
Soldering, Fluxes for	24
Solders	20

	PAGE
Sparking at commutator	259
Specific gravity, Table of	10
heat, Table of	18
volumes	25
Speed, Cutting	176
of emery wheels	176
of gears, To calculate	142
of grindstones	176
of polishing wheels	176
of pulleys, To calculate	142
of twist drills	177
Sphere, Formula for	117
Spiral, Length of	118
Square measure	2
root	103
Squares and cubes	106
Standard pipe flanges	215
Steam chest	219
chest bolts	220
chest covers	221
Heating by exhaust	
port area	219
Properties of saturated	29
tables	25
Velocity of, through ports	219
Steel, Tempering of	6
Stone, Weight of	10
Storage batteries	263
Strands in wire rope	212
Strap, Eccentric and	226
end of connecting-rod	224
Strength of materials	150
Stroke of engine	216
Stuffingbox	228
Surcharged walls, Pressure on	305
Surface expansion, Coefficients of	19
Measures of (not land)	5
Surveying	0-320
with compass	276
with transit	280
Surveyor's measure	1
square measure	215
Switch	315
Point or split	315
Stub	315 320
stub, To lay out	
Systems, Annunciator	243
T.	
Table, Long-ton.	3
Miscellaneous	4

xvii

	PAGE
Table of abouted alamenta	16
Table of chemical elements	110
	25
Tables, Steam	7-251
Teeth of wheels	$\frac{231}{228}$
Temperature of fusion	18
of vaporization	18
Tempering steel.	6
Tensile strength of materials	151
Tension of rope belting, Formula for	210
Testing of cables (electrical)	271
Threads, Cutting screw.	178
Proportions of screw	22
Three-wire system, Edison.	253
Ton Long	3
Ton, Long	176
cutting, Motors for	263
Torque	261
Tracks, Cross-over	325
Trackwork	309
Transit notes, How to keep	291
curveying	279
surveying	115
Triangles, Formulas for	114
Triangulation	283
Triangulation	68
functions, Table of	74-78
Troy weight	3
Tunnel sections.	306
Turnouts	312
Type metals	15
	147
U.	
Ultimate strength of materials	151
Underwriters' line wire	247
rules for incandescent wire	245
Units, Electrical	230
Universal joint coupling	195
Useful tables	1-92
V.	
Valve diagram	188
Valves, Safety	173
Slide	187
Vaporization, Latent heat of	18, 25
Temperature of	18
Vapors, Weights of	14
Velocity of steam through ports	219
Vernier	279
Volt	230
Volume, Measures of	5
Volumes, Specific	25
	_0

W.	PAGE
Weter Testing of food	165
Water, Testing of feed	
Flow of, in pipes	147
Watt, The unit	231
Wedge, Formula for	117
Weight, Avoirdupois	3
Measures of	6
of bar iron, round and square	21
of copper wire	238
of manila rope	209
of sheet lead	21
of various substances	10
Troy	3
Weights and measures	1-4
and measures, Metric system of	5-6
Welding fluxes	24
Wheatstone bridge	270
Wheel and axle	136
Wheels, Speed of emery	176
Speed of polishing	176
Wheelwork, Formulas for	136
Width of belts, Formulas for	140
Wire, copper, Sizes for circuit	
copper, Weight of	238
gauges, Sizes of B. & S. and Birmingham	249
rope, Steel	212
	212
rope, Strands in	
tables2	247
Underwriters' line	
Wires, Equivalent areas of, B. & S. gauge	248
Wiring, Bell	241
Interior	235
Work, Definition of	139
Wristpin brasses	224
Wrought-iron pipe, Sizes of	24

MECHANICS' POCKET MEMORANDA

USEFUL TABLES.

WEIGHTS AND MEASURES.

LINEAR MEASURE.

12	inches (in.)	=	1	footft.
3	feet	=	1	yardyd.
5.5	yards	=	1	rodrd.
40	rods	=	1	furlongfur.
8	furlongs		1	milemi.
	9			

in, ft, yd, rd, fur, mi, 36 = 3 = 1 198 = 16.5 = 5.5 = 1 7,920 = 660 = 220 = 40 = 163.360 = 5.280 = 1.760 = 320 = 8 = 1

SURVEYOR'S MEASURE.

7.92	inches	=	= 1 linkli.
25	links	=	= 1 rodrd.
100 66	rods links feet }	_	= 1 chainch,
80	chains	=	= 1 milemi.
	1 mi. = 80 ch. = 320 rd.	=	= 8,000 li. = 63,360 in.

SQUARE MEASURE

144 square inches (sq. in.) = 1 square footsq. ft.
9 square feet = 1 square yardsq. yd.
$30\frac{1}{4}$ square yards = 1 square rodsq. rd.
160 square rods = 1 acre
640 acres = 1 square milesq. mi.
sq. mi. A. sq. rd. sq. yd. sq. ft. sq. in.
1 = 640 = 102,400 = 3,097,600 = 27,878,400 = 4,014,489,600

SURVEYOR'S SQUARE MEASURE.

625 square links (sq. li.) = 1 square rodsq. rd.
16 square rods = 1 square chainsq. ch.
10 square chains = 1 acre
640 acressq. mi.
36 square miles (6 mi. square) = 1 townshipTp.
1 sq. mi. = 640 A. = 6,400 sq. ch. = 102,400 sq. rd.
= 64,000,000 sq. li.

The acre contains 4,840 sq. yd., or 43,560 sq. ft., and is equal to the area of a square measuring 208,71 ft. on a side.

CUBIC MEASURE.

1,728	cubic inches (cu. in.) =	1	cubic footcu. ft.
27	cubic feet =	1	cubic yardcu. yd.
128	cubic feet =	1	corded.
$24\frac{3}{4}$	cubic feet =	1	perchP.
	1 cu. yd. = 27 cu. ft.	=	46,656 cu. in.

MEASURE OF ANGLES OR ARCS.

60	seconds	(")	•	=	1	minute	!
60	minutes			=	1	degree	0
90	degrees.			_	1	rt. angle or quadrant	
360	degrees.			=	1	circlec	ir.
	0.00	4 -2-				1 000 000#	

 $1 \text{ cir.} = 360^{\circ} = 21,600' = 1,296,000''$

AVOIRDUPOIS WEIGHT.

437.5	grains (gr.)	= 1	ounceoz.
16	ounces	= 1	poundlb.
100	pounds	= 1	hundredweightcwt.
20	cwt., or 2,000 lb	= 1	tonT.
1	T. = 20 cwt. = 2,000 lb. = 1000 lb.	= 32,	000 oz. = 14,000,000 gr.
וחו	ho avoirdunois nound cont	aine	7 000 grains

LONG TON TABLE.

16	ounces	=	1	poundlb.
112	pounds	=	1	hundredweightcwt.
20	cwt., or 2,240 lb.	=	1	tonT.

TROY WEIGHT.

24	grains (gr.)pwt.	
20	pennyweights = 1 ounceoz.	
12	ounces = 1 poundlb.	
	1 lb. = 12 oz. = 240 pwt. = 5,760 gr.	

DRY MEASURE.

2 pints (pt.)	A
4 pecks	= 1 bushelbu.

The U. S. struck bushel contains 2,150.42 cu. in. = 1.2444 cu. ft. · By law, its dimensions are those of a cylinder 18½ in. in diameter and 8 in. deep. The heaped bushel is equal to 1½ struck bushels, the cone being 6 in. high. The dry gallon contains 268.8 cu. in., being ½ of a struck bushel.

For approximations, the bushel may be taken at 1½ cu. ft.; or a cubic foot may be considered \$ of a bushel.

The British bushel contains 2,218.19 cu. in. = 1.2837 cu. ft. = 1.032 U. S. bushels.

LIQUID MEASURE

4 gills (gi.) = 1 pint	pt.
2 pints = 1 quart	
4 quarts = 1 gallong	
$31\frac{1}{2}$ gallons = 1 barrel b	
2 barrels, or 63 gallons = 1 hogsheadhl	
1 hhd. = 2 bbl. = 63 gal. = 252 qt. = 504 pt. = 2,016 gi	

The U. S. gallon contains 231 cu. in. = .134 cu. ft., nearly; or 1 cu. ft. contains 7.481 gal. The following cylinders contain the given measures very closely:

	Diam.	Height.		Diam.	Height.
Gill	1∦ in.	3 in.	Gallon	7 in.	6 in.
Pint	$3\frac{1}{2}$ in.	3 in.	8 gallons	14 in.	12 in.
Quart	. $3\frac{1}{2}$ in.	6 in.	10 gallons	14 in.	15 in.

When water is at its maximum density, 1 cu. ft. weighs 62.425 lb. and 1 gallon weighs 8.345 lb.

For approximations, 1 cu. ft. of water is considered equal to $7\frac{1}{2}$ gal., and 1 gal. as weighing $8\frac{1}{2}$ lb.

The British imperial gallon, both liquid and dry, contains 277.274 cu. in. = .16046 cu. ft., and is equivalent to the volume of 10 lb. of pure water at 62° F. To reduce British to U. S. liquid gallons, multiply by 1.2. Conversely, to convert U. S. into British liquid gallons, divide by 1.2; or, increase the number of gallons $\frac{1}{6}$.

MISCELLANEOUS TABLE.

12 articles	=	1 dozen.	20 quires	=	1 ream.
12 dozen	==	1 gross.	1 league	=	3 miles.
12 gross	_	1 great gross.	1 fathom	=	6 feet.
2 articles	=	1 pair.	1 hand	=	4 inches.
20 articles	=	1 score.	1 palm	=	3 inches.
24 sheets	=	1 quire.	1 span	=	9 inches.
		S.) = 6,080 ft. =	= 11 statute m	iles	(roughly).
1 meter =	= 3 1	feet 33 inches (n	early).		

THE METRIC SYSTEM.

The metric system is based on the meter, which, according to the U.S. Coast and Geodetic Survey Report of 1884, is equal to 39.370432 inches. The value commonly used is 39.37 inches, and is authorized by the U.S. government. The meter is defined as one ten-millionth the distance from the pole to the equator, measured on a meridian passing near Paris.

There are three principal units—the meter, the liter (pronounced lee-ter), and the gram, the units of length, capacity, and weight, respectively. Multiples of these units are obtained by prefixing to the names of the principal units the Greek words deca (10), hecto (100), and kilo (1,000); the submultiples, or divisions, are obtained by prefixing the Latin words deci (\frac{1}{10}), centi (\frac{1}{10}), and milli (\frac{1}{1000}). These prefixes form the key to the entire system. In the following tables, the abbreviations of the principal units of these submultiples begin with a small letter, while those of the multiples begin with a capital letter; they should always be written as here printed.

MEASURES OF LENGTH.

10 millimeters (mm.) = 1 centimetercm.
10 centimeters $=$ 1 decimeter dm .
10 decimeters = 1 meter m.
10 meters
10 decameters = 1 hectometer
10 hectometers = 1 kilometer Km.

MEASURES OF SURFACE (NOT LAND).

$100 \text{square millimeters (mm}^2$.) = 1 square centimetercm ² .	
100 square centimeters = 1 square decimeterdm2.	
100 square decimeters = 1 square meter m ² .	

MEASURES OF VOLUME.

1,000 cubic	millimeters (mm³.	.) = 1	Leubic	centimeter	cm ³ .
1,000 cubic	centimeters	= 3	l cubic	decimeter.	dm3.
1,000 cubic	decimeters	= 7	l cubic	meter	m³.

MEASURES OF CAPACITY.

10 milliliters (ml.) = 1 centiliter	
10 centiliters = 1 deciliterdl.	
10 deciliters = 1 liter 1.	
10 liters = 1 decaliter Dl.	
10 decaliters = 1 hectoliters Hl.	
10 hectoliters = 1 kiloliters Kl.	

Note.—The liter is equal to the volume that is occupied by 1 cubic decimeter,

MEASURES OF WEIGHT.

10 milligrams (mg.) = 1 centigram	cg.
10 centigrams = 1 decigram	
10 decigrams = 1 gram	g.
10 grams = 1 decagram	Dg.
10 decagrams = 1 hectogram	Hg.
10 hectograms = 1 kilogram	Kg.
1,000 kilograms = 1 ton	Т.

Note.—The gram is the weight of 1 cubic centimeter of pure distilled water at a temperature of 39.2° F.; the kilogram is the weight of 1 liter of water; the ton is the weight of 1 cubic meter of water.

TEMPERING OF STEEL.

The following colors may be made use of in tempering steel-cutting tools:

Corresponding Temperature F. f Pale yellow......430° Lancets Straw yellow450° Razors All kinds of wood-cutting Darker straw vellow470° tools..... Yellow490° Screw taps Brown yellow.....500° Chipping chisels, hatchets, Brown (slightly tinged purple) 520° and saws All kinds of percussive tools Light purple530° Clear black570° Springs Dark blue......600°

CONVERSION TARLES

By means of the tables on pages 8 and 9, metric measures can be converted into English, and *vice versa*, by simple addition. All the figures of the values given are not required, four or five digits being all that are commonly used; it is

only in very exact calculations that all the digits are necessary. Using table, proceed as follows: Change 6,471.8 feet into meters. Any number, as 6,471.8, may be regarded as 6,000 + 400 + 70 + 1 + .8; also, $6,000 = 1,000 \times 6$; $400 = 100 \times 4$, etc. Hence, looking in the left-hand column of the upper table, page 8, for figure 6 (the first figure of the given number), we find opposite it in the third

1,828.8 121.92 21.336 .3048 .2438

1,972.6046

column, which is headed "Feet to Meters," the number 1.8287838. Now, using but five digits and increasing the fifth digit by 1 (since the next is greater than 5), we get 1.8288. In other words, 6 feet = 1.8288 meters; hence, 6,000 feet = 1,000 × 1.8288 = 1,828.8, simply moving the decimal point three places to the right. Likewise, 400 feet = 121.92 meters; 70 feet = 21.336 meters; 1 foot = .3048 meter, and .8 foot = .242 meter. Adding as shown above, we get 1.972.6046 meters.

Again, convert 19.635 kilos into pounds. The work should be perfectly clear from the explanation given above. The result is 43.2875 pounds.

22.046 19.8416 1.3228 .0661

The only difficulty in applying these tables lies in locating the decimal point; it may always be found thus: If the figure considered lies to the left of the decimal point, count each figure in order.

.0110

beginning with units (but calling unit's place zero), until the desired figure is reached, then move the decimal point to the right as many places as the figure being considered is to the left of the unit figure. Thus, in the 'first case above, the left of the unit smoved three places to the right. By exchanging the words "right" and "left," the statement will also apply to decimals. Thus, in the second case above, the 5 lies three places to the right of unit's place; hence, the decimal point in the number taken from the table is moved three places to the left.

CONVERSION TABLE-ENGLISH MEASURES INTO METRIC.

	Metric.	Metric.	Metric.	Metric.
English.	Inches to Meters.	Feet to Meters.	Pounds to Kilos.	Gallons to Liters.
1 2 3 4 5 6 7 8 9	.0253998 .0507996 .0761993 .1015991 .1269989 .1523987 .1777984 .2031982 .2285980 .2539978	.3047973 .6095946 .9143919 1.2191892 1.5239865 1.8287838 2.1335811 2.4383784 2.7431757 3.0479730	.4535925 .9071850 1.3607775 1.8143700 2.2679625 2.7215550 3.1751475 3.6287400 4.0823325 4.5359250	3.7853122 7.5706244 11.3559366 15.1412488 18.9265610 22.7118732 26.4971854 30.2824976 34.0678098 37.8531220

CONVERSION TABLE—ENGLISH MEASURES INTO METRIC.

	Metric.	Metric.	Metric.	Metric.
English.	Square Inches to Square Meters.	Square Feet to Square Meters.	Cubic Feet to Cubic Meters.	Pounds per Square Inch to Kilo per Square Meter.
1 2 3 4 5 6 7 8 9	.000645150 .001290300 .001935450 .002580600 .003225750 .003870900 .004516050 .005161200 .005406350 .006451500	.092901394 .185802788 .278704182 .371605576 .464506970 .557408364 .650309758 .743211152 .836112546 .929013940	.028316094 .056632188 .084948282 .113264376 .141580470 .169896564 .198212658 .226528752 .254844846 .283160940	703.08241 1,406.16482 2,109.24723 2,812.32964 3,515.41205 4,218.49446 4,921.57687 5,624.65928 6,327.74169 7,030.82410

CONVERSION TABLE-METRIC MEASURES INTO ENGLISH.

	English.	English.	English.	English.
Metric.	Meters to Inches.	Meters to Feet.	Kilos to Pounds.	Liters to Gallons.
1 2 3 4 5 6 7 8 9	39.370432 78.740864 118.111296 157.481728 196.852160 236.222592 275.593024 314.963456 354.33388 393.704320	3.2808693 6.5617386 9.8426079 13.1234772 16.4043465 19.6852158 22.9660851 26.2469544 29.5278237 32.8086930	2.2046223 4.4092447 6.6138670 8.8184894 11.0231117 13.2277340 15.4323564 17.6369787 19.8416011 22.0462234	.2641790 .5283580 .7925371 1.0567161 1.3208951 1.5850741 1.8492531 2.1134322 2.3776112 2.6417902

CONVERSION TABLE-METRIC MEASURES INTO ENGLISH.

	English.	English.	English.	English.
Metric.	Square Meters to Square Inches.	Square Meters to Square - Feet.	Cubic Meters to Cubic Feet.	Kilos per Square Meter to Pounds per Square Inch.
1 2 3 4 5 6 7 8 9	1,550,03092 3,100,06184 4,650,09276 6,200,12368 7,750,15460 9,300,18552 10,850,21644 12,400,24736 13,950,27828 15,500,30920	10.7641034 21.5282068 32.2923102 43.0564136 53.8205170 64.5846204 75.3487238 86.1128272 96.8769306 107.6410340	35.3156163 70.6312326 105.9468489 141.2624652 176.5780815 211.8936978 247.2093141 282.5249304 317.8405467 353.1561630	.001422310 .002844620 .004266930 .005689240 .007111550 .008533860 .009956170 .011378480 .012800790 .014223100
				i

SPECIFIC GRAVITY.

The specific gravity of a body is the ratio between its weight and the weight of a like volume of distilled water at a temperature of 39.2° F. For gases, air is taken as the unit. One cubic foot of water at 39.2° F. weighs 62.425 pounds.

Name of Substance.	Specific Gravity.	Weight per Cu. In. Pounds.
METALS.		
Platinum, rolled	22,009	.819
Platinum, wire	21.042	.760
Platinum, hammered	20.337	.735
Gold, hammered	19.361	.699
Gold, pure cast	19.258	.696
Gold, 22 carats fine	17.486	.632
Gold, 22 carats fine	15.632	.565
Mercury, at +32° F Mercury, at 60° F	13.619	.492
Mercury, at 60° F.	13.580	.491
Mercury, at 212° F	13.375	.483
Lead, pureLead, hammered	11.330	.409
Lead, hammered	11.388	.411
Silver hammered	10.511	.380
Silver, pure	10.474	.378
Bismuth	9.746	.352
Silver, pure Bismuth Copper, wire and rolled	8.878	.321
Copper, pure	8.788	.317
Bronze, gun metal	8.500	.307
Rrass common	8.500	.307
Steel, cast steel Steel, common soft Steel, hardened and tempered Iron, pure Iron, wrought and rolled	7.919	.286
Steel, common soft	7.833	.283
Steel, hardened and tempered	7.818	.282
Iron, pure	7.768	.281
Iron, wrought and rolled	7.780	.281
fron, nammered	7.789	.281
Iron, cast	7.207	.260
Tin, from Böhmen	7.312	.264
Tin, English	7.201	.263
Tin, EnglishZinc, rolled	7.101	.260
Antimony	6.712	.242
Aluminum	2.660	.096
STONES AND EARTHS.		
Emery	4.000	.145
Limestone	2.700	.098
Asbestos, starry	3.073	.111

SPECIFIC GRAVITY.

TABLE—(Continued).

TABLE—(Continued).		
Name of Substance.	Specific Gravity.	Weight per Cu. In. Pounds.
Glass, flint Glass, white Glass, bottle Glass, speen Marble, Parlan Marble, African Marble, Egyptian Mica Chalk Coral, red Granite, Susquehanna Granite, Susquehanna Granite, Fatapsco Granite, Fatapsco Granite, Scotch Marble, white Italian Marble, common Talc, black Quartz Slate Pearl, oriental Shale Flint, white Flint, black Stone, common Stone, Bristol Stone, Bristol Stone, paving Gypsum, opaque, Grindstone	3.500 2.900 2.732 2.642 2.838 2.708 2.668 2.800 2.784 2.704 2.652 2.660 2.895 2.660 2.890 2.660 2.890 2.660 2.890 2.652 2.600 2.582 2.502 2.510 2.484 2.416 2.168 2.168	per Cü. In. Pounds. 1260 .1050 .0987 .0954 .1025 .0978 .0964 .1012 .1006 .0975 .0977 .0958 .0954 .0948 .0978 .0970 .0105 .0961 .1012 .0957 .0957 .0933 .0910 .0907 .0873 .0937 .0937 .0937 .0937 .0937 .0937 .0937 .0970 .0873 .0783 .0783 .0774
Salt, common Saltpeter Sulphur, native Common soil Rotten stone Clay Brick Niter Plaster Paris Ivort Sand Phosphorus Borax Coal, anthracite Salt, common Saltpeter Sulphur, native Common soil Rotter Sulphur, native Sulphur	2.130 2.090 2.033 1.984 1.981 1.990 2.000 1.900 1.872 2.473 1.822 2.650 1.770 1.714 1.640 1.436	.0769 .0755 .0734 .0717 .0716 .0686 .0723 .0686 .0676 .0893 .0659 .0659 .0619 .0592

Table—(Continued).

TABLE (Contenued).			
Name of Substance.	Specific Gravity.	Weight per Cu. In Pounds.	
Coal, Maryland	1.355	.0490	
Coal, Scotch	1.300	.0470	
Coal, Newcastle	1.270	.0459	
Coal, bituminous	1.350	.0488	
Earth, loose	1.360	.0491	
Lime, quick	1.500	.0542	
Charcoal	.441	.0159	
Woods (Dry).			
Alder	.800	.0289	
Apple tree	.793	.0287	
Ash, the trunk	.845	.0305	
Bay tree	.822	.0297	
Beech	.852	.0308	
Box, French	.960	.0347	
Box, Dutch	1.328	.0480	
Box, Brazilian red	1.031	.0372	
Cedar, wild	.596	.0215	
Cedar, Palestine	.613	.0221	
Cedar, American	.561	.0203	
Cherry tree	.672	.0243	
Cork	.250	.0090	
Ebony, American	1.220	.0441	
Elder tree	.695	.0251	
Elm	.560	.0202	
Filbert tree	.600	.0217	
Fir, male	.550	.0199	
Fir, female	.498	.0180	
Hazel	.600	.0217	
Lemon tree	.703	.0254	
Lignum-vitæ	1.330	.0481	
Linden tree	.604	.0218	
Logwood	.913	.0330	
Mahogany, Honduras	.560	.0202	
Maple	.790	.0285	
Mulberry	.897	.0324	
Oak	.950	.0343	
Orange tree	.705	.0255	
Pear tree	.661	.0239	
Poplar	.383	.0138	
Poplar, white Spanish	.529	.0191	
Sassafras	.482	.0174	
Spruce	.500	.0181	

TABLE—(Continued).

TABLE—(Continuea).		
Name of Substance.	Specific Gravity.	Weight per Cu. In. Pounds.
Pine, southern Pine, white Walnut	.720 .400 .610	.0260 .0144 .0220
Acid, acetic Acid, nitric Acid, nitric Acid, sulphuric Acid, sulphuric Acid, muriatic Acid, phosphoric Alcohol, commercial Alcohol, pure Beer, lager Champagne Cider Ether, sulphuric Egg Honey Human blood Milk Oil, linseed Oil, olive Oil, turpentine Oil, turpentine Oil, turpentine Oil, whale Proof spirit Vinegar Water, distilled (62.425 lb, per cu. ft.)	1.062 1.217 1.841 1.200 1.558 .833 .792 1.034 .997 1.018 .739 1.090 1.450 1.054 1.032 .940 .915 .870 .932 .925 1.080	.0384 .0440 .0665 .0434 .0563 .0301 .0286 .0374 .0360 .0368 .0267 .0394 .0524 .0381 .0373 .0331 .0331 .0331 .0331 .0331
Water, sea	1.030 .992	.0372 .0358
MISCELLANEOUS. Beeswax Butter India rubber Fat Gunpowder, loose Gunpowder, shaken Gun arabic Lard Spermaceti Sugar Tallow, sheep Tallow, calf Tallow, ox Atmospheric air.	.965 .942 .933 .923 .900 1.000 1.452 .947 .943 1.605 .924 .934 .934 .923	.0349 .0340 .0337 .0333 .0325 .0361 .0525 .0342 .0341 .0580 .0334 .0337

TABLE—(Continued).

Name of Substance.	Specific Gravity.	Weight per Cu. Ft. Grains.		
GASES AND VAPORS. At 32° and a tension of 1 atmosphere. Atmospheric air. Ammonia gas. Carbonic acid. Carbonic acid. Light carbureted hydrogen. Chlorine Olefiant gas. Hydrogen Oxygen Sulphureted hydrogen. Nitrogen Vapor of alcohol. Vapor of turpentine spirits Vapor of water. Smoke of bituminous coal. Smoke of wood. Steam at 212° F.	1.0000 .5894 1.5201 .9673 .5527 2.4502 .9672 .0692 1.1056 1.1747 .9713 1.5890 4.6978 .6219 .1020 .9000 .4880	565.11 333.1 859.0 546.6 312.3 1,384.6 646.6 39.1 624.8 663.8 548.9 898.0 2,654.8 551.4 57.6 508.6 275.8		

The weight of a cubic foot of any solid or liquid is found by multiplying its specific gravity by 62.425 lb. avoirdupois. The weight of a cubic foot of any gas at atmospheric pressure and at 32° F. is found by multiplying its specific gravity by .08073 lb. avoirdupois.

WROUGHT-IRON CHAIN CABLES.

The strength of a chain link is less than twice that of a straight bar of a sectional area equal to that of one side of the link. A weld exists at one end and a bend at the other, each requiring at least one heat, which produces a decrease in the strength. The report of the committee of the U.S. Testing Board, on tests of wrought-iron and chain cables, contains the following conclusions:

"That beyond doubt, when made of American bar iron, with cast-iron studs, the studded link is inferior in strength to the unstudded one.

"That, when proper care is exercised in the selection of material, a variation of 5% to 17% of the strongest may be expected in the resistance of cables. Without this care the variation may rise to 25%.

"That with proper material and construction the ultimate resistance of the chain may be expected to vary from 155% to 170% of that of the bar used in making the links, and show an average of about 163%.

"That the proof test of a chain cable should be about 50% of the ultimate resistance of the weakest link."

From a great number of tests of bars and unfinished cables, the committee considered that the average ultimate resistance and proof tests of chain cables made of the bars, whose diameters are given, should be such as are shown in the accompanying table.

ULTIMATE RESISTANCE AND PROOF TESTS OF CHAIN CABLES.

Diam. of Bar. Inches.	Average Resist. = 163% of Bar. Pounds.	Proof Test. Pounds.	Diam. of Bar. Inches.	Average Resist. = 163% of Bar. Pounds.	Proof Test. Pounds.
1 11/8 11/8 11/4 11/6 13/6 11/2	71,172 79,544 88,445 97,731 107,440 117,577 128,129 139,103 150,485	33,840 37,820 42,053 46,468 51,084 55,903 60,920 66,138 71,550	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	162,283 174,475 187,075 200,074 213,475 227,271 241 ,463 2 56,040	77,159 82,956 88,947 95,128 101,499 108,058 114,806 121,737

Name. TYPE METALS.	Proportions
Smallest type	3 L, 1 A
Small type	4 -, 1 A
Medium type	5 L, 1 A
Large type	6 L, 1 A
Largest type	

In the above table, L represents the lead, and A the antimony in the alloy.

TABLE OF ELEMENTS.

	Symbol.	Atomic Weight.*
Aluminum	Al	27.04
Antimony (stibium)	Sb	119.96
Arsenic	As	74.9
Barium	Ba	136.9
Beryllium	Be	9.08
Bismuth	Bi	207.5
Boron	\underline{B}	10.9
Bromine	Br	79.76
Cadmium	Cd	111.7
Cæsium	Cs	133.0
Calcium	Ca	39.91
Carbon	$C \sim$	11.97
Cerium	Ce	141.2
Chlorine	- Cl	35.37
Chromium	Cr	52.45
Cobalt	Co	58.6
Columbium	Cb	93.7
Copper (cuprum)	Cu	63.18
Didymium	$\frac{D}{r}$	147.0
Erbium	E	169.0
Fluorine	F	19.06
Gallium	G Ge	69.8 72.32
Germanium	Au	196.2
Gold (aurum)	H^{Au}	1.0
Hydrogen	In	113.4
Indium	T T	126.54
lodine	I_r	196.7
IridiumIron (ferrum)	Fe	55.88
Lanthanum	La	139.0
Lead (plumbum)	Pb	206.39
Lithium	Li	7.01
Magnesium	Ma	23.94
Magnesium (hydroregreum)	Ha	199.8
Mercury (hydrargyrum)	Mn	54.8
Molybdenum	Mo	95.6
Nickel	Ni	58.6
Niobium	N_b	94.0
Nitrogen	N	14.01
Osmium	08	198.6
	0.	15.96
Oxygen	0	10.50

^{*}Principally from the 16th edition Des Ingenieurs Taschenbuch. The names of the non-metals are printed in heavy type.

TABLE—(Continued).

-1	Symbol.	Atomic Weight.
Palladium Phosphorus Platinum Potassium (kalium) Rhodium Rubidium Ruthenium Scandium Selenium Silicon Silver (argentum) Sodium (natrium) Strontium Strontium Tantalum Tantalum Thallium Thallium Thorium Tin (stannum) Titanium Tungsten (wolfram) Uranium Vanadium Vanadium Ytterbium Tytrium	Pd Pd Pf Pf Rt Rt Rt Rt Rt Rs Sc Sc Sc Si Ag Na Sr Ta Te Tl Th Sn Ti W U V Y V	106.2 30.96 194.43 39.04 104.1 85.2 103.5 44.04 78.00 28.00 107.66 23.0 87.3 31.98 182.0 128.0 203.6 231.5 117.35 48.0 183.6 240.0 51.2 93.0 172.6
Zirconium	$\frac{Zn}{Zr}$	64.88 90.0

TABLE OF SPECIFIC HEATS.

SOLIDS.

Brass		Platinum .0324 Silver .0570 Tin .0562
Steel (hard) .1175 Tin .0562 Zinc .0956 Ice .5040 Brass .0989 Sulphur .2026		
Brass	Steel (hard)	Tin
Glass		

Water

LIQUIDS.

1 0000 Lead (melted)

0409

• Gases.	
	perheated steam4805 bonic oxide (CO)2479
Nitrogen	bonic acid (CO_2)
Hydrogen 3.40900 Ole	efiant gas4040

Substance,	Temperature of Fusion.	Temperature of Vaporization.	Latent Heat of Fusion.	Latent Heat of Vaporization.
Water	32° -37.8° 228.3° 446° 626°	212° 662° 824°	142.65 5.09 13.26 25.65 9.67	966.6 157
Zinc Alcohol Oil of turpentine Linseed oil Aluminum	680° Unknown 14° 1,400°	1,900° 173° 313° 600°	50.63	493 372 124
Copper Cast iron Wrought iron Steel Platinum Iridium	2,100° 2,192° 2,912° 2,520° 3,632° 4,892°	3,300° 5,000°		

EXAMPLE.—How many units of heat are required to melt 10 lb. of zinc from a temperature of 60° F.?

Solution.—The specific heat of zinc is found from the table to be .0956. Hence, the number of heat units necessary to raise it to the melting point is $10 \times (680 - 60) \times .0956 = 592.72$. Latent heat of fusion = 50.63 heat units. Hence, the total number of heat units required is $592.72 + 10 \times 50.63 = 1.099.02$.

HEAT.

COEFFICIENT OF EXPANSION FOR A NUMBER OF SUBSTANCES.

Name of Substance.	Linear Expansion.	Surface Expansion.	Cubic Expansion.
Cast iron	.00000617	.00001234	.00001850
Copper Brass	.00000955	.00001910	.00002864
Silver	.00001037	.00002074	.00003112
Steel (untempered)	.00000599	.00001198	.00001798
Steel (tempered)	.00000702 .00001634	.00001404 .00003268	.00002106
Tin Mercury	.00001410	.00002820	.00003229
Alcohol	.00019259	.00038518	.00057778

EXAMPLE.—A wrought-iron bar 22 ft. long is heated from 70° to 300°. How much will it lengthen?

SOLUTION.— $22 \times (300 - 70) \times .00000686 = .0347116 \text{ ft.} = .41654 \text{ in.}$

ALLOYS.

Note.—A= Antimony, B= Bismuth, C= Copper, G= Gold, I= Iron, L= Lead, N= Nickel, S= Silver, T= Tin, Z= Zinc.

 ${\tt Alloys-(\it Continued)}.$

Name.	Proportions.	
Copper flanges	. 9 C, 1 Z, .26 T	
Muntz's metal	6 C, 4 Z	
Statuary	91.4 C, 5.53 Z, 1.7 T, 1.37 L	
German silver	. 2 C, 7.9 N, 6.3 Z, 6.5 I	
Britannia metal	. 50 A, 25 T, 25 B	
Chinese silver	. 65.1 C, 19.3 Z, 13 N, 2.58 S, 12 I	
Chinese white copper	.20.2 C, 12.7 Z, 1.3 T, 15.8 N	
Medals	. 100 C, 8 Z	
Pinchbeck	. 5 C, 1 Z	
Babbitt's metal	25 T, 2 A, .5 C	
Bell metal, large	. 3 C, 1 T	
Bell metal, small	. 4 C, 1 T	
Chinese gongs	. 40.5 C, 9.2 T	
Telescope mirrors	. 33.3 C, 16.7 T	
White metal, ordinary	. 3.7 C, 3.7 Z, 14.2 T, 28.4 A	
White metal, hard	. 35 C, 13 Z, 2.2 T	
Sheeting metal	. 56 C, 45 Z, 12 arsenic	
Metal, expands in cooling	75 L, 16.7 A, 8.3 B	
	FOR SOLDERS.	Melti
- Name.	Proportions.	Poin
Newton's fusible	8 B, 5 L, 3 T,	21
Rose's fusible	2 R. 1 L. 1 T.	20

ALLOYS	FOR SOLDERS.	25.7/1
Name.	Proportions.	Melting Point.
Newton's fusible	8 B, 5 L, 3 T,	212°
Rose's fusible	2 B, 1 L, 1 T,	201°
A more fusible	5 B, 3 L, 2 T,	1990
Still more fusible	12 T, 25 L, 50 B, 13 ca	admium, 155°
For tin solder, coarse,	1 T, 3L,	500°
For tin solder, ordinary	2 T, 1 L,	360°
For brass, soft spelter	1 C, 1 Z,	550°
Hard, for iron	2 C, 1 Z,	700°
I or steel	19 S, 3 C, 1 Z	
For fine brasswork	1 S, 8 C, 8 Z	
Pewterer's soft solder	2 B, 4 L, 3 T	
Pewterer's soft solder	1 B, 1 L, 2 T	
Gold solder	24 G, 2 S, 1 C	
Silver solder, hard	4 S, 1 C	
Silver solder, soft	2 S, 1 brass wire	

For lead 16 T, 33 L

WEIGHT OF ROUND AND SQUARE ROLLED IRON.

From 16 in. to 91/2 in. in Diameter, and 1 ft. in Length.

Side or	Weight.	Lb. per ft.	Side or	Weight.	Lb. per ft.
Diam. Inches.	Round.	Square.	Diam. Inches.	Round.	Square.
11/2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	.010 .041 .093 .165 .373 .663 .1.043 .1.493 .2.062 .4.147 .5.019 .5.972 .7.010 .8.128 .9.333 .10.616 .1.988 .13.495 .14.975 .16.588 .18.2076 .21.944 .23.888 .25.926 .23.888 .25.926 .30.240 .30.240 .30.240 .30.240 .30.232 .34.886 .37.332	.013 .053 .118 .211 .475 .845 1.320 1.901 2.588 4.278 5.290 7.604 8.926 6.390 7.604 8.926 10.352 11.883 13.520 11.883 17.112 19.066 21.120 23.292 25.560 27.939 36.704 38.503 41.408 38.503 41.418 44.534	37.0 41.104.0 41.104.0 41.105.0 55.55.55.56.6 67.77.78.4 88.4.89.4 91.4.2	39.864 42.467 45.174 47.952 50.815 33.760 56.788 59.900 69.731 73.172 76.700 80.304 43.001 81	50.756 54.084 57.517 61.055 64.700 68.448 72.305 76.264 80.333 84.480 93.168 93.168 93.168 111.756 111.756 116.671 121.664 132.040 142.816 154.012 165.632 177.672 190.136 203.024 216.363 204.068 244.20 258.800 273.792 289.220 305.056

WEIGHT OF SHEET LEAD.

Thickness.	W'ght.	Thickness.	W'ght.	Thickness.	W'ght
Inches.	Lb.	Inches.	Lb.	Inches.	Lb.
.017	1	.085	5	.152	9
.034	2	.101	6	.169	10
.051	3	.118	7	.186	11
.068	4	.135	8	.203	· 12

PROPORTIONS OF THE UNITED STATES STANDARD SCREW THREADS, NUTS, AND BOLT HEADS.

Diam. of	Threads	Diam,	Width	Inside	Outside	Diago-	Height
Screw.	per In.	of Core.	of Flat.	Diam.	Diam.	nal.	of Head.
-2 -0 -0	2 2 2	0 0 0	0 0 0				
		(DHDH))	<i>(0>19</i> >//0\			· A	1 2
111151111	4				101	AQA	المنا
					101	100	
SCOOL STATE	$\sim\sim\sim$		<i>/\/\</i>				السانا
1-4	20	.185	.0062	1-2	37-64	45-64	1-4
5-16	18	.240	.0070	19-32	11-16	27-32	19-64
3-8	16	,294	.0078	11-16	51-64	31-32	11-32
7-16	14	.344	.0089	25-32	29-32	1 7-64	25-64
1-2	13	.400	.0096	7-8	1 1-64	1 15-64	7-16
9-16	12	.454	.0104	31-32	1 1-8	1 3-8	31-64
5-8	11	,507	.0113	1 1-16	1 15-64	1 1-2	17-32
3-4	10	.620	.0125	1 1-4	1 7-16	1 3-4	5-8
7-8	9	.731	.0140	1 7-16	1 21-32	2 1-32	23-32
1	8	.837	.0156	1 5-8	1 7-8	2 19-64	13-16
1 1-8	7	.940	.0180	1 13-16	1 15-16	2 9-16	29-32
1 1-4	7	1.065	.0180	2	2 5-16	2 53-64	1
1 3-8	6	1.160	.0210	2 3-16	2 17-32	3 3-32	1 3-32
1 1-2	6	1.284	.0210	2 3-8	2 3-4	3 23-64	1 3-16
1 5-8	5 1-2	1.389	.0227	2 9-16	2 31.32	3 · 5-8	1 9-32
1 3-4	5	1.490	.0250	2 3-4	3 11-64	3 57-64	1 3-8
1 7-8	5	1.615	.0250	2 15-16	3 25-64	4 5-32	1 15-32
2	4 1-2	1.712	.0280	3 1-8	3 39-64	4 27-64	1 9-16
2 1-4	4 1-2	1.962	.0280	3 1-2	4 3-64	4 61-64	1 3-4
2 1-2	4	2.175	.0310	3 7-8	4 15-32	5 31-64	1 15-16
2 3-4	4	2.425	.0310	4 1-4	4 29-32	6 1-64	2 1-8
3	3 1-2	2.628	.0357	4 5-8	5 11-32	6 35-64	2 5-16
3 1-4	3 1-2	2.878	.0357	5	5 25-32	7 5-64	2 1-2
3 1-2	3 1-4	3,100	.0384	5 3-8	6 13-64	7 19-32	2 11-16
3 3-4	3	3.317	.0410	5 3-4	6 41-64	8 1-8	2 7-8
4	3	3.566	.0410	6 1-8	7 5-64	8 21-32	3 1-16
4 1-4	2 7-8	3,798	.0435	6 1-2	7 1-2	9 3-16	3 1-4
4 1-2	2 3-4	4.027	.0460	6 7-8	7 15-16	9 23-32	3 7-16
4 3-4	2 5-8	4,255	.0480	7 1-4	8 3-8	10 1-4	3 5-8
5	2 1-2	4.480	.0500	7 5-8	8 13-16	10 25-32	3 13-16
5 1-4	2 1-2	4.730	.0500	8	9 15-64	11 5-16	4
5 1-2	2 3-8	4.953	.0526	8 3-8	9 21-32	11 27-32	4 3-16
5 3-4	2 3-8	5.203	.0526	8 3-4 9 1-8	10 7-64 10 35-64	12 3-8	4 3-8
6	2 1-4	5.423	.0000	9 1-8	10 35-64	12 13-16	4 9-16

The threads have an angle of 60°, with flat tops and bottoms, and are of the following proportions:

Notation of letters. All dimensions in inches.

D = outside diameter of screw: d = diameter of root of thread, or of

hole in the nut;

p = pitch of screw; t = number of threads per inch;

f = flat top and bottom;

o = outside diameter of hexagon nut

or bolt head:

i = inside [diameter of hexagon, or side of square nut or bolt head;

s = diagonal of square nut or bolt head;

h = height of rough or unfinished bolt

The height of finished nut or bolt head is made equal to the diameter D of the screw.

$$\begin{split} p &= \frac{\sqrt{16\ D + 10} - 2.909}{16.64}, \qquad t = \frac{1}{p}, \quad \pmb{s} = 1.414\ i, \\ d &= D - \frac{1.299}{r}, \quad i = \frac{3\ D}{2} + \frac{1}{8}, \quad o = 1.155\ i, \quad f = \frac{p}{8}, \end{split}$$

WEIGHT OF CAST-IRON PIPE PER FOOT IN POUNDS.

These weights are for plain pipe. For hautboy pipe add 8 in, in length for each joint. For copper add \(\frac{1}{2}\); for lead, \(\frac{2}{3}\); for welded iron, add \(\frac{1}{2}\), or multiply by 1.0667.

Diam- eter of	Thickness of Pipe in Inches.												
Bore. Inches.	1/4	3/8	1/2	5/8	3/4	7/8	1	11/8	11/4	13/8			
1,	3.07	5.07	7.38										
1 11/4 11/2 13/4 2 21/4 21/2 23/4 3 31/2	3.69 4.30	$6.00 \\ 6.92$	8.61 9.84										
13/	4.92	7.84	11.10										
2'4	5.53	8.76	12.30	16.2									
21/4	6.15	9.69	13.50	17.7									
21/2	6.76	10.60	14.80	19.2	24.0								
23/4	7.37 7.98 9.21	11.50 12.50	16.00	20.8	$25.9 \\ 27.7$	00.4							
31/	0.98	14.30	17.20 19.70	22.3 25.4	31.4	33.4 37.7							
4	10.30	16.10	22.20		35.1	42.0							
41/6	11.70	18.00	24.60	31.5	38.8	46.3							
5 51/2	12.90	19.80	27.10	34.6	42.5	50.6				}			
$5\frac{1}{2}$	14.20	21.70	29.50	37.7	46.1	54.9	•••						
6	15.40 16.60	$23.50 \\ 25.40$	$32.00 \\ 34.50$	40.8 43.8		59.2 63.5	68.9 73.8	84.4		ļ			
$\frac{6^{1}}{6^{1}/2}$	17.80	27.20	36.90			67.8	78.7	89.4					
71/2	19.10	29.10	39.40	50.0		72.1	83.7	95.5	108				
8	20.30	30.90	41.80	53.1	64.6	76.4	88.6	101.0	114	127			
81/2	21.50	32.80	44.30	56.1	68.3			107.0	120	134 140			
9	22.80	34.60	46.80	59.2				112.0	126	140			
$\frac{9\frac{1}{2}}{10}$	24.00 25.10	36.40 38.30		62.3 65.3	75.7 79.4			$\frac{118.0}{123.0}$	132 138	147 164			
11	27.60	42.00	56.60		86.7	102.0	118 0	134.0	151	168			
11 12	30.00	45.70	61.50	77.7	94.1	111.0	128.0	145.0	163	181			
13	32.50	49.40	66.40	83.8	102.0	120.0	138.0	156.0	163 175	195			
14	35.00	53.10 56.70	71.40					168.0	188	208			
15	37.40	56.70	76.30					179.0	200	222			
16 17	39.10 42.30	60.40 64.10						$190.0 \\ 201.0$	$\frac{212}{225}$	235 249			
18	44.80	67.80	91.00					212.0	237	262			
19	47.30	71.50						223.0	249	276			
20	49.70	75.20	101.00	127.0	153.0	180.0	207.0	234.0	261	289			
22	54.60	82.60	111.00	139.0	168.0	196.0	227.0	256.0	286	316			
24° 26	59.60	89.90	121.00	152.0	183.0	214.0	246.0	278.0	311	343			
26 28	69.40	97.30 105.00	131.00	176.0	212.0	231.0	200.0	303.0	335 360	370 397			
30	74.20	112.00	150.00	188.0	227.0	266.0	305.0	345.0	384	424			
	1.20		200,00	20010			0.00.0	025.0	001				

TABLE OF STANDARD DIMENSIONS OF WROUGHT-

							0.			
Nominal Diameter.	External Diameter.	Thickness.	Internal Diameter.	Internal Circum- ference.	External Circum- ference.	Length of Pipe per Sq. Ft. of Internal Surface.	Length of Pipe per Sq. Ft. of Exter- nal Surface.	Internal Area.	Weight per Foot.	No. of Threads per Inch of Screw.
In.	In.	In.	In.	Iñ.	In.	Ft.	Ft.	In.	Lb.	
	40	.068				14.15	9.440	.057		27
1/8 1/4 3/8 1/2 3/4	.54 .67 .84 1.05	.088	.27 .36 .49	.85 1.14 1.55	$\frac{1.27}{1.70}$	10.50	7.075	.104 .192 .305 .533	.24 .42	27 18
3/8	.67	.091	.49	1.55	$\frac{2.12}{2.65}$	7.67	5.657	.192	.56	18
1/2	.84	.109	.62 .82 1.05 1.38 1.61 2.07 2.47 3.07 3.55	1.96 2.59	2.65	6.13	4.502	.305	.84 1.13	14
3/4	1.05	.113	.82	2.59	3.30	4.64	3.637	.533	1.13	14
1	1.31	.134	1.05	3.29	4.13	3.66	2.903	.863	1.67	111/2
11/4	1.66	.140	1.38	4.33	5.21 5.97 7.46	3.66 2.77 2.37 1.85 1.55 1.24 1.08	2.301	1.496	2.26 2.69 3.67 5.77 7.55	111/2
1½	1.90 2.37 2.87 3.50	.145	1.61	5.06 6.49 7.75	5.97	2.37	2.010	2.038 3.355	2.69	111/2
2	2.37	.154	2.07	6.49	7.46	1.85	1.611	3.355	3.67	11/2
2/2	2.87	.204	2.47	9.64	9.03	1.00	1.328	4.783 7.388	5.77	8
917	4.00	.226	9.07	11.15	$11.00 \\ 12.57$	1.24	1.091 0.955	9.887	9.05	0
472	4.00 4.50	.237	4.03	12.65	14.14	.95	0.849	12.730	10.73	8
41/	5.00	.247	4.51	14.15	15.71	85	0.765	15.939	12.49	8
5	5.00 5.56	.259	5.04	15.85	17.47	.85 .78	0.629	19.990	14.56	8
6	6.62	.280	6.06	19.05	20.81	.63	0.577	28.889		8
7	7.62	.280 .301	7.02	22.06	23.95	.54	0.505	38.737	23.41	8
11/4 11/2 2 21/2 3 31/2 4 41/2 5 6 7 8 9 10	8.62	.322	7.98	25.08	27.10	.63 .54 .48	0.444	50.039	28.35	11½ 11½ 11½ 11½ 8 8 8 8 8 8 8 8
9	9.69	.344	9.00	28.28	30.43	.42	0.394	63.633	34.08	8
10	10.75	.366	10.02	31.47	33.77	.38	0.355	78.838	40.64	8

FLUXES FOR SOLDERING OR WELDING.

IronBorax	Zinc Chloride of zinc
Tinned iron Resin	
Copper and brass	Lead and tin pipes
Sal ammoniac	Resin and sweet oil
Sai ammoniac	Tresin and sweet on

Steel.—Pulverize together 1 part of sal ammoniac and 10 parts of borax and fuse until clear. When solidified, pulverize to powder.

STEAM TABLES.

Whenever the pressure of saturated steam is changed, there are other properties that change with it. These properties are the following:

- 1. The temperature of the steam, or, what is the same thing, the boiling point.
- 2. The number of B. T. U. required to raise a pound of water from 32° (freezing) to the boiling point corresponding to the given pressure. This is called the heat of the liquid.
- 3. The number of B. T. U. required to change the water at the boiling temperature into steam at the same temperature. This is called the *latent heat of vaporization*, or, simply, the *latent heat*.
- 4. The number of heat units required to change a pound of water at 32° to steam of the required temperature and pressure. This is called the *total heat of vaporization*, or, simply, the *total heat*.

It is plain that the total heat is the sum of the heat of the liquid and the latent heat. That is, total heat = heat of liquid + latent heat.

- 5. The *specific volume* of the steam at the given pressure; that is, the number of cubic feet occupied by a pound of steam of the given pressure.
- 6. The *density* of the steam; that is, the weight of 1 cubic foot of the steam at the given pressure.

All the above properties are different for different pressures. For example, if steam boils under atmospheric pressure, the temperature is 212°; the heat of the liquid is 180.531 B. T. U.; the latent heat, 966.069 B. T. U.; the total heat, 1,146.6 B. T. U. A pound of steam at this pressure occupies 26.37 cu. ft., and a cubic foot of the steam weighs about .037928 lb. When the pressure is 70 lb. per sq. in. above vacuum, the temperature is 302.774°; the heat of the liquid is 272.657 B. T. U.; the latent heat is 901.629 B. T. U.; the total heat is 1,174.286 B. T. U. A pound of the steam occupies 6.076 cu. ft., and a cubic foot of the steam weighs .164584 lb.

These properties have been determined by direct experiment for all ordinary steam pressures. They are given in the table of the properties of saturated steam, pages 29-31.

EXPLANATION OF THE TABLE.

Column 1 gives the pressures from 1 to 300 lb. These pressures are above vacuum. The steam gauges fitted on steam boilers register the pressure above the atmosphere. That is, if the steam is at atmospheric pressure, 14.7 lb. per sq. in., the gauge registers 0. Consequently, the atmospheric pressure must be added to the reading of the gauge to obtain the pressure above vacuum. In using the table, care must be taken not to use the gauge pressures without first adding 14.7 lb. per sq. in.

Pressures registered above vacuum are called absolute pressures. The pressures given in column 1 are absolute. Absolute pressure per square inch = gauge pressure per square inch + 14.7.

Column 2 gives the temperature of the steam when at the pressure shown in column 1.

Column 3 gives the heat of the liquid. It will be noticed that the values in column 3 may be obtained approximately by subtracting 32° from the temperature in column 2. If the specific heat of water were exactly 1.00, it would, of course, take exactly 212 – 32 = 180 B. T. U. to raise a pound of water from 32° to 212°. But experiment shows that the specific heat of water is slightly greater than 1.00 when the temperature of the water is above 62°, and it therefore takes 180.531 B. T. U. to raise a pound of water from 32° to 212°.

Column 4 gives the *latent heat of vaporization*, which is seen to decrease slightly as the pressure increases.

Column 5 gives the *total heat of vaporization*. The values in column 5 may be obtained by adding together the corresponding values in columns 3 and 4.

Column 6 gives the weight of a cubic foot of steam in pounds. As would be expected, the steam becomes denser as the pressure rises, and weighs more per cubic foot.

Column 7 gives the number of cubic feet occupied by 1 pound of steam at the given pressure. It will be noticed that the corresponding values of columns 6 and 7 multiplied together always produce 1. Thus, for 31.3 pounds pressure, gauge, $.11088 \times 9.018 = 1.000$, nearly.

Column 8 gives the ratio of the volume of a pound of

steam at the given pressure, and the volume of a pound of water at 39.2°. The values in column 8 may be obtained by dividing 62.425, the weight of a cubic foot of water at 39.2°, by the numbers in column 6.

EXAMPLES ON THE USE OF THE STEAM TABLE.

EXAMPLE 1.—Calculate the heat required to change 5 lb. of water at 32° into steam at 92 lb. pressure above vacuum.

Solution.—From column 5, the total heat of 1 lb. at 92 lb. pressure is 1,180.045 B. T. U.

 $1,180.045 \times 5 = 5,900.225$ B. T. U.

EXAMPLE 2.—How many heat units are required to raise $8\frac{1}{3}$ lb. of water from 32° to 250° F.?

Solution.—Looking in column 3, the heat of the liquid of 1 lb. at 250.298° is 219.261 B. T. U. 219.261 — .293 = 218.968 B. T. U. = heat of liquid for 250° . Then, for $8\frac{1}{2}$ lb. it is $218.968 \times 8\frac{1}{8} = 1.861.228$ B. T. U.

EXAMPLE 3.—How many foot-pounds of work will it require to change 60 lb. of boiling water at 80 lb. pressure, absolute, into steam of the same pressure?

Solution.—Looking under column 4, the latent heat of vaporization is 895.108; that is, it takes 895.108 B. T. U. to change 1 lb. of water at 80 lb. pressure into steam of the same pressure. Therefore, it takes $895.108 \times 60 = 53,706.48$ B. T. U. to perform the same operation on 60 lb. of water.

 $53.706.48 \times 778 = 41.783.641.44$ ft.-lb.

EXAMPLE 4.—Find the volume occupied by 14 lb. of steam at 30 lb., gauge pressure.

Solution.— 30 lb., gauge pressure = 30 + 14.7 = 44.7, absolute pressure. The nearest pressure in the table is 44 lb., and the volume of a pound of steam at that pressure is 9.403 cu. ft. The volume of a pound at 46 lb. pressure is 9.018 cu. ft. 9.403 – 9.018 = .385 cu. ft., the difference in volume for a difference in pressure of 2 lb. $\frac{.385}{.9} = .1925$ cu. ft., the difference

ence in volume for a difference in pressure of 1 lb. $.1925 \times .7$ = .135 cu. ft., the difference in volume for a difference in pressure of .7 lb. Therefore, 9.403 - .135 = 9.268 cu. ft. is the volume of 1 lb. of steam at 44.7 lb. pressure. The .135 cu. ft.

is subtracted from 9.403 cu. ft., since the volume is less for a pressure of 44.7 lb. than for a pressure of 44 lb.

$$9.268 \times 14 = 129.752$$
 cu. ft.

Example 5.—Find the weight of 40 cu, ft, of steam at a temperature of 254° F. $\,$

SOLUTION.—The weight of 1 cu. ft. of steam at 254.002°, from the table, is .078839 lb. Neglecting the .002°, the weight of 40 cu. ft. is, therefore,

$$.078839 \times 40 = 3.15356$$
 lb.

EXAMPLE 6.—How many pounds of steam at 64 lb. pressure, absolute, are required to raise the temperature of 300 lb. of water from 40° to 130° F., the water and steam being mixed?

Solution.—The number of heat units required to raise 1 lb, from 40° to 130° is 130-40=90 B. T. U. (Actually a little more than 90 would be required, but the above is near enough for all practical purposes.) Then, to raise 300 lb. from 40° to 130° requires $90\times300=27,000$ B. T. U. This quantity of heat must necessarily come from the steam. Now, 1 lb. of steam at 64 lb. pressure gives up, in condensing, its latent heat of vaporization, or 905.9 B. T. U. But, in addition tis latent heat, each pound of steam on condensing must give up an additional amount of heat in falling to 130° . Since the original temperature of the steam was 296.805° F. (see table), each pound gives up by its fall of temperature 296.805-130=166.805 B. T. U. Therefore, each pound of the steam gives up a total of

$$905.9 + 166.805 = 1,072.705$$
 B. T. U.

It will, therefore, take $\frac{27,000}{1,072,705} = 25.17$ lb. of steam to accomplish the desired result.

With the steam tables a reliable thermometer may be used for ascertaining the pressure of saturated steam or for testing the accuracy of a steam gauge. The temperature of the steam being measured by the thermometer, the corresponding absolute pressure is found from the steam tables; the gauge pressure is then found by subtracting 14.7 from the absolute pressure. Thus, the temperature of the steam in a condenser being 142°, we find from the steam tables that the corresponding absolute pressure is 3 lb. per sq. in., nearly.

THE PROPERTIES OF SATURATED STEAM.

m in ch.	neit	Quar British	ntity of H Therma	eat in l Units.	Steam.	Steam in	to Vol. of Water at Density.
Pressure Above Vacuum Pounds per Square Inch	Temperature, Fahrenheit Degrees.	Required to Raise Temperature of the Water From 32° to t° .	Total Latent Heat at Pressure p.	Total Heat Above 32°.	Weight of a Cubic Foot of Steam in Pounds.	Volume of a Pound of Ste Cubic Feet.	Ratio of Vol. of Steam to Vol. of Equal Weight of Dist. Water at Temp. of Maximum Density.
1	2	3	4	5	6	7	8
p	t	q	L	H	\overline{W}	V	R
1 2 3 4 5	102.018 126.302 141.654 153.122 162.370	70.040 94.368 109.764 121.271 130.563	1,043.015 1,026.094 1,015.380 1,007.370 1,000.899	1,113.055 1,120.462 1,125.144 1,128.641 1,131.462	.003027 .005818 .008522 .011172 .013781	330.4 171.9 117.3 89.51 72.56	20,623 10,730 7,325 5,588 4,530
6 7 8 9 10	170.173 176.945 182.952 188.357 193.284	138.401 145.213 151.255 156.699 161.660	995.441 990.695 986.485 982.690 979.232	1,133.842 1,135.908 1,137.740 1,139.389 1,140.892	.016357 .018908 .021436 .023944 .026437	61.14 52.89 46.65 41.77 37.83	3,816 3,302 2,912 2,607 2,361
11 12 13 14	197.814 202.012 205.929 209.604	166.225 170.457 174.402 178.112	976.050 973.098 970.346 967.757	1,142.275 1,143.555 1,144.748 1,145.869	.028911 .031376 .033828 .036265	34.59 31.87 29.56 27.58	2,159 1,990 1,845 1,721
14.69	212.000	180.531	966.069	1,146.600	.037928	26.37	1,646
15 16 17 18 19	213.067 216.347 219.452 222.424 225.255	181.608 184.919 188.056 191.058 193.918	965.318 963.007 960.818 958.721 956.725	1,146.926 1,147.926 1,148.874 1,149.779 1,150.643	.038688 .041109 .043519 .045920 .048312	25.85 24.33 22.98 21.78 20.70	1,614 1,519 1,434 1,359 1,292

TABLE—(Continued).

				(0010001000			
1	2	3	4	5	6	7	8
p	t	q	L	Н	W	v	R
20	227.964	196.655	954.814	1,151.469	.050696	19.730	1,231.0
22	233.069	201.817	951.209	1,153.026	.055446	18.040	1,126.0
24	237.803	206.610	947.861	1,154.471	.060171	16.620	1,038.0
26	242.225	211.089	944.730	1,155.819	.064870	15.420	962.3
28	246.376	215.293	941.791	1,157.084	.069545	14.380	897.6
30	250.293	219.261	939.019	1,158.280	.074201	13.480	841.3
32	254.002	223.021	936.389	1,159.410	.078839	12.680	791.8
34	257.523	226.594	933.891	1,160.485	.083461	11.980	948.0
36	260.883	230.001	931.508	1,161.509	.088067	11.360	708.8
38	264.093	233.261	929.227	1,162.488	.092657	10.790	673.7
40	267.168	236.386	927.040	1,163.426	.097231	10.280	642.0
42	270.122	239.389	924.940	1,164.329	.101794	9.826	613.3
44	272.965	242.275	922.919	1,165.194	.106345	9.403	587.0
46	275.704	245.061	920.968	1,166.029	.110884	9.018	563.0
48	278.348	247.752	919.084	1,166.836	.115411	8.665	540.9
50	280.904	250.355	917.260	1,167.615	.119927	8.338	520.5
52	283.381	252.875	915.494	1,168.369	.124433	8.037	501.7
54	285.781	255.321	913.781	1,169.102	.128928	7.756	484.2
56	288.111	257.695	912.118	1,169.813	.133414	7.496	467.9
58	290.374	260.002	910.501	1,170.503	.137892	7.252	452.7
60	292.575	262.248	908.928	1,171.176	.142362	7.024	438.5
62	294.717	264.433	907.396	1,171.829	.146824	6.811	425.2
64	296.805	266.566	905.900	1,172.466	.151277	6.610	412.6
66	298.842	268.644	904.443	1,173.087	.155721	6.422	400.8
68	300.831	270.674	903.020	1,173.694	.160157	6.244	389.8
70	302.774	272.657	901.629	1,174.286	.164584	6.076	379.3
72	304.669	274.597	900.269	1,174.866	.169003	5.917	369.4
74	306.526	276.493	898.938	1,175.431	.173417	5.767	360.0
76	308.344	278.350	897.635	1,175.985	.177825	5.624	351.1
78	310.123	280.170	896.359	1,176.529	.182229	5.488	342.6
80	311.866	281.952	895.108	1,177.060	.186627	5.358	334.5
82	313.576	283.701	893.879	1,177.580	.191017	5.235	326.8
84	315.250	285.414	892.677	1,178.091	.195401	5.118	319.5
86	316.893	287.096	891.496	1,178.592	.199781	5.006	312.5
88	318.510	288.750	890.335	1,179.085	.204155	4.898	305.8

STEAM TABLES.

 ${\tt Table--(\it Continued).}$

2	3	4	5	6	7	8
t	\overline{q}	L	H	W	V	R
320.094 321.653 323.183 324.688	290.373 291.970 293.539 295.083	889.196 888.075 886.972 885.887	1,179.569 1,180.045 1,180.511 1,180.970	.208525 .212892 .217253 .221604	4.796 4.697 4.603 4.513	299.4 293.2 287.3 281.7
327.625 331.169 334.582 337.874	298.093 301.731 305.242 308.621	883.773 881.214 878.744 876.371	1,181.866 1,182.945 1,183.986 1,184.992	.230293 .241139 .251947 .262732	4.342 4.147 3.969 3.806	276.3 271.1 258.9 247.8 237.6 228.3
344.136 347.121 350.015 352.827	315.051 318.121 321.105 324.003	871.848 869.688 867.590 865.552	1,186.899 1,187.809 1,188.695 1,189.555	.284243 .294961 .305659 .316338	3.518 3.390 3.272 3.161	219.6 211.6 204.2 197.3 190.9
358.223 363.346 368.226 372.886	329.566 334.850 339.892 344.708	861.634 857.912 854.359 850.963	1,191.200 1,192.762 1,194.251 1,195.671	.337643 .358886 .380071 .401201	2.962 2.786 2.631 2.493	184.9 173.9 164.3 155.6 147.8
381.636 385.759 389.736 393.575	353.766 358.041 362.168 366.152	844.573 841.556 838.642 835.828	1,198.339 1,199.597 1,200.810 1,201.980	.443310 .464295 .485237 .506139	2.256 2.154 2.061 1.976	140.8 134.5 128.7 123.3 118.5
400.883 404.370 407.755 411.048 414.250 417.371	373.750 377.377 380.905 384.337 387.677 390.933	830.459 827.896 825.401 822.973 820.609 818.305	1,204.209 1,205.273 1,206.306 1,207.310 1,208.286 1,209.238	.547831 .568626 .589390 .610124 .630829	1.825 1.759 1.697 1.639 1.585 1.535	114.0 109.8 105.9 102.3 99.0 95.8
	t 320.094 321.653 323.183 324.688 326.169 327.625 331.169 334.582 337.874 341.121 350.015 352.827 355.827 355.823 363.346 377.355 368.226 377.355 389.736 389.736 399.575 397.285 400.883 404.370 407.755 411.048	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t q L 320.094 290.373 889.196 321.653 291.970 888.075 323.183 293.539 886.972 324.688 295.683 885.887 326.169 296.601 884.821 327.625 298.093 883.773 331.169 301.731 881.214 334.582 305.242 876.371 341.058 311.885 874.076 344.136 315.051 871.848 347.121 318.121 869.688 347.121 318.121 869.688 347.121 318.121 869.688 350.015 321.105 867.590 352.827 324.003 865.552 355.562 326.823 863.567 358.223 329.566 861.634 363.346 334.850 857.912 368.226 339.892 854.359 372.886 344.708 850.963 377.352 349.329 847.703 381.636 353.766 844.573 385.739 358.041 841.556 389.736 366.152 835.828 397.285 370.008 833.103 400.883 373.750 830.459 404.370 377.377 827.896 404.370 377.377 827.896 404.370 377.377 827.896 407.755 380.905 825.401 411.048 384.337 822.973	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

LOGARITHMS.

EXPONENTS.

By the use of logarithms, the processes of multiplication, division, involution, and evolution are greatly shortened, and some operations may be performed that would be impossible without them. Ordinary logarithms cannot be applied to addition and subtraction.

The logarithm of a number is that exponent by which some fixed number, called the base, must be affected in order to equal the number. Any number may be taken as the base. Suppose we choose 4. Then the logarithm of 16 is 2, because 2 is the exponent by which 4 (the base) must be affected in order to equal 16, since $4^2 = 16$. In this case, instead of reading 4^2 as 4 square, read it 4 exponent 2. With the same base, the logarithms of 64 and 8 would be 3 and 1.5, respectively, since $4^3 = 64$, and $4^{1.5} = 4^{\frac{3}{2}} = 8$. In these cases, as in the preceding, read 4^3 and $4^{1.5}$ as 4 exponent 3, and 4 exponent 1.5, respectively.

Although any positive number except 1 can be used as a base and a table of logarithms calculated, but two numbers have ever been employed. For all arithmetical operations (except addition and subtraction) the logarithms used are called the Briggs, or common, logarithms, and the base used is 10. In abstract mathematical analysis, the logarithms used are variously called hyperbolic, Napierian, or natural logarithms, and the base is 2.718281828+. The common logarithm by multiplying the common logarithm by 2.3025859+, which is usually expressed as 2.3026, and sometimes as 2.3. Only the common system of logarithms will be considered here.

Since in the common system the base is 10, it follows that, since $10^1 = 10$, $10^2 = 100$, $10^3 = 1,000$, etc., the logarithm (exponent) of 10 is 1, of 100 is 2, of 1,000 is 3, etc. For the sake of brevity in writing, the words "logarithm of" are abbreviated to "log." Thus, instead of writing logarithm of 100 = 2, write $\log 100 = 2$. When speaking, however, the words for which "log" stands should always be pronounced in full.

```
From the above it will be seen that, when the base is 10, since 10^0 = 1, the exponent 0 = \log 1; since 10^1 = 10, the exponent 1 = \log 10; since 10^2 = 100, the exponent 2 = \log 100; since 10^3 = 1.000. the exponent 3 = \log 1.000; etc.
```

```
Also, since 10^{-1} = \frac{1}{10} = .1, the exponent -1 = \log .1; since 10^{-2} = \frac{1}{100} = .01, the exponent -2 = \log .01; since 10^{-3} = \frac{1}{1000} = .001, the exponent -3 = \log .001; etc.
```

From this it will be seen that the logarithms of exact powers of 10 and of decimals like 1, .01, and .001 are the whole numbers 1, 2, 3, etc. and -1, -2, -3, etc., respectively. Only numbers consisting of 1 and one or more ciphers have whole numbers for logarithms.

Now, it is evident that, to produce a number between 1 and 10, the exponent of 10 must be a fraction; to produce a number between 10 and 100, it must be 1 plus a fraction; to produce a number between 100 and 1,000, it must be 2 plus a fraction; etc. Hence, the logarithm of any number between 1 and 10 is a fraction; of any number between 10 and 100, 1 plus a fraction; of any number between 100 and 1,000, 2 plus a fraction, etc. A logarithm, therefore, usually consists of two parts: a whole number, called the *characteristic*, and a fraction, called the *mantissa*. The mantissa is always expressed as a decimal. For example, to produce 20, 10 must have an exponent of approximately 1.30103, or 101, 20103 = 20, very nearly, the degree of exactness depending on the number of decimal places used. Hence, log 20 = 1.30103, 1 being the characteristic, and .30103, the mantissa.

Referring to the second part of the preceding table, it is clear that the logarithms of all numbers less than 1 are negative, the logarithms of those between 1 and 1 being -1 plus a fraction. For, since $\log .1 = -1$, the logarithms of .2, .3, etc. (which are all greater than 1, but less than 1) must be greater than -1; i. e., they must equal -1 plus a fraction. For the same reason, to produce a number between .1 and .01, the logarithm (exponent of 10) would be equal to -2 plus a fraction, and for a number between .01 and .001, it would be equal to -3 plus a fraction. Hence, the logarithm

of any number between 1 and .01 has a negative characteristic of 1 and a positive mantissa; of a number between .1 and .01, a negative characteristic of 2 and a positive mantissa; of a number between .01 and .001, a negative characteristic of 3 and a positive mantissa; of a number between .001 and .0001, a negative characteristic of 4 and a positive mantissa, etc. The negative characteristics are distinguished from the positive by the — sign written over the characteristic. Thus, 3 indicates that 3 is negative.

It must be remembered that in all cases the mantissa is positive. Thus, the logarithm 1.30103 means +1 + .30103, and the logarithm $\overline{1.30103}$ means -1 + .30103. Were the minus sign written in front of the characteristic, it would indicate that the entire logarithm was negative. Thus, -1.30103 = -1

Rule for Characteristic.—Starting from the unit figure, count the number of places to the first (left-hand) digit of the given number, calling unit's place zero; the number of places thus counted will be the required characteristic. If the first digit lies to the left of the unit figure, the characteristic is positive; if to the right, negative. If the first digit of the number is the unit figure, the characteristic of the logarithm of 4,826 is 3, since the first digit, 4, lies in the 3d place to the left of the unit figure, 6. The characteristic of the logarithm of 0.0000072 is —6 or $\overline{6}$, since the first digit, 7, lies in the 6th place to the right of the unit figure. The characteristic of the logarithm of 4.391 is 0, since 4 is both the first digit of the number and also the unit figure.

TO FIND THE LOGARITHM OF A NUMBER.

To aid in obtaining the mantissas of logarithms, tables of logarithms have been calculated, some of which are very elaborate and convenient. In the Table of Logarithms, the mantissas of the logarithms of numbers from 1 to 9,999 are given to five places of decimals. The mantissas of logarithms of larger numbers can be found by interpolation. The table contains the mantissas only; the characteristics may be easily found by the preceding rule.

The table depends on the principle, which will be explained later, that all numbers having the same figures in the same order have the same mantissa, without regard to the position of the decimal point, which affects the characteristic only. To illustrate, if log 206 = 2.31887, then,

 $\log 20.6 = 1.31387;$ $\log .206 = \overline{1}.31387;$ $\log 2.06 = .31387;$ $\log .0206 = \overline{2}.31387;$ etc.

To find the logarithm of a number not having more than four figures:

Rule.—Find the first three significant figures of the number whose logarithm is desired, in the left-hand column; find the fourth figure in the column at the top (or bottom) of the page; and in the column under (or above) this figure, and opposite the first three figures previously found, will be the mantissa or decimal part of the logarithm. The characteristic being found as previously described, write it at the left of the mantissa, and the resulting expression will be the logarithm of the required number.

EXAMPLE.—Find from the table the logarithm (a) of 476; (b) of 25 47; (c) of 1 073; (d) of 06313

Solution.—(a) In order to economize space and make the labor of finding the logarithms easier, the first two figures of the mantissa are given only in the column headed 0. The last three figures of the mantissa, opposite 476 in the column headed N (N stands for number), are 761, found in the column headed 0; glancing upwards, we find the first two figures of the mantissa, viz., 67. The characteristic is 2; hence, $\log 476 = 2.67761$.

NOTE.—Since all numbers in the table are decimal fractions, the decimal point is omitted throughout; this is customary in all tables of logarithms.

- (b) To find the logarithm of 25.47, we find the first three figures, 254, in the column headed N, and on the same horizontal line, under the column headed 7 (the fourth figure of the given number), will be found the last three figures of the mantissa, viz., 603. The first two figures are evidently 40, and the characteristic is 1; hence, log 25.47 = 1.40603.
- (c) For 1.073; in the column headed 3, opposite 107 in the column headed N, the last three figures of the mantissa are found, in the usual manner, to be 060. It will be noticed

that these figures are printed *060, the star meaning that instead of glancing *upwards* in the column headed 0, and taking 02 for the first two figures, we must glance *downwards* and take the two figures opposite the number 108, in the left-hand column, i. e., 03. The characteristic being 0, log 1.073 = 0.03060, or, more simply, .03060.

(d) For .06313; the last three figures of the mantissa are found opposite 631, in column headed 3, to be 024. In this case, the first two figures occur in the same row, and are 80. Since the characteristic is \(\overline{2}\)_1 log .06313 = \(\overline{2}\).80024.

If the original number contains but one digit (a cipher is not a digit), annex mentally two ciphers to the right of the digit; if the number contains but two digits (with no ciphers between, as in 4,008), annex mentally one cipher on the right before seeking the mantissa. Thus, if the logarithm of 7 is wanted, seek the mantissa for 700, which is .84510; or, if the logarithm of 48 is wanted, seek the mantissa for 480, which is .68124. Or, find the mantissas of logarithms of numbers between 0 and 100. on the first page of the tables.

The process of finding the logarithm of a number from the table is technically called taking out the logarithm.

To take out the logarithm of a number consisting of more than four figures, it is inexpedient to use more than five figures of the number when using five-place logarithms (the logarithms given in the accompanying table are five-place). Hence, if the number consists of more than five figures and the sixth figure is less than 5, replace all figures after the fifth with ciphers; if the sixth figure is 5 or greater, increase the fifth figure by 1 and replace the remaining figures with ciphers. Thus, if the number is 31,415,926, find the logarithm of 31,416,000: if 31,415,000, find the logarithm of 31,415,000.

EXAMPLE.-Find log 31,416.

Solution.—Find the mantissa of the logarithm of the first four figures, as explained above. This is, in the present case, .49707. Now, subtract the number in the column headed 1, opposite 314 (the first three figures of the given number), from the next greater consecutive number, in this case 721, in the column headed 2. 721—707 = 14; this number is called the difference. At the extreme right of the page will be found a

secondary table headed P. P., and at the top of one of these columns, in this table, in bold-face type, will be found the difference. It will be noticed that each column is divided into two parts by a vertical line, and that the figures on the left of this line run in sequence from 1 to 9. Considering the difference column headed 14, we see opposite the number 6 (6 is the last or fifth figure of the number whose logarithm we are taking out) the number 8.4, and we add this number to the mantissa found above, disregarding the decimal point in the mantissa, obtaining 49,707 + 8.4 = 49,715.4. Now, since 4 is less than 5, we reject it, and obtain for our complete mantissa. 49715. Since the characteristic of the logarithm of 31,416 is 4, log 31,416 = 4.49715.

EXAMPLE.—Find log 380.93.

Solution.—Proceeding in exactly the same manner as above, the mantissa for 3,809 is 58,081 (the star directs us to take 58 instead of 57 for the first two figures); the next greater mantissa is 58,092, found in the column headed 0, opposite 381 in column headed N. The difference is 092-081=11. Looking in the section headed P. P. for column headed 11, we find opposite 3, 3.3; neglecting the 3, since it is less than 5, 3 is the amount to be added to the mantissa of the logarithm of 3,809 to form the logarithm of 38,093. Hence, 58,081 + 3 = 58,084, and since the characteristic is 2, $\log 380.93 = 2.58084$.

EXAMPLE.-Find log 1,296,728.

Solution.—Since this number consists of more than five figures and the sixth figure is less than 5, we find the logarithm of 1,296,700 and call it the logarithm of 1,296,728. The mantissa of log 1,296 is found to be 11,261. The difference is 294-261=33. Looking in the P. P. section for column headed 33, we find opposite 7, on the extreme left, 23.1; neglecting the .1, the amount to be added to the above mantissa is 23. Hence, the mantissa of log 1,296,728 = 11,261 + 23 = 11,284; since the characteristic is 6, log 1,296,728 = 6.11284.

EXAMPLE.-Find log 89.126.

Solution.—Log 89.12=1.94998. Difference between this and log 80.13=1.95002-1.94998=4. The P. P. (proportional part) for the fifth figure of the number 6 is 2.4, or 2.

Hence, $\log 89.126 = 1.94998 + .00002 = 1.95000$.

EXAMPLE.-Find log .096725.

SOLUTION. — Log $.09672 = \overline{2}.98552$. Difference = 4.

P. P. for 5 = 2

Hence, $\log .096725 = \overline{2}.98554$.

To find the logarithm of a number consisting of five or more figures:

Rule.—I. If the number consists of more than five figures and the sixth figure is 5 or greater, increase the fifth figure by 1 and write ciphers in place of the sixth and remaining figures.

II. Find the mantissa corresponding to the logarithm of the first four figures, and substract this mantissa from the next greater

mantissa in the table; the remainder is the difference.

III. Find in the secondary table headed P. P. a column headed by the same number as that just found for the difference, and in this column, opposite the number corresponding to the fifth figure increased by 1) of the given number (this figure is always situated at the left of the dividing line of the column), will be found the P. P. (proportional part) for that number. The P. P. thus found is to be added to the mantissa found in II, as in the preceding examples, and the result is the mantissa of the logarithm of the given number, as nearly as may be found with five-place tables.

TO FIND A NUMBER WHOSE LOGARITHM IS GIVEN.

- Rule,—I. Consider the mantissa first. Glance along the different columns of the table which are headed 0, until the first two figures of the mantissa are found. Then, glance down the same column until the third figure is found (or 1 less than the third figure). Having found the first three figures, glance to the right along the row in which they are situated until the last three figures of the mantissa are found. Then, the number that heads the column in which the last three figures of the mantissa are found is the fourth figure of the required number, and the first three figures lie in the column headed N, and in the same row in which lie the last three figures of the mantissa.
- II. If the mantissa cannot be found in the table, find the mantissa that is nearest to, but less than, the given mantissa, and which call the next less mantissa. Subtract the next less mantissa

from the next greater mantissa in the table to obtain the difference. Also, subtract the next less mantissa from the mantissa of the given logarithm, and call the remainder the P. P. Looking in the secondary table headed P. P. for the column headed by the difference just found, find the number opposite the P. P. just found (or the P. P. corresponding most nearly to that just found); this number is the fifth figure of the required number; the fourth figure will be found at the top of the column containing the next less mantissa, and the first three figures in the column headed N and in the same row that contains the next less mantissa.

III. Having found the figures of the number as above directed, locate the decimal point by the rules for the characteristic, annexing ciphers to bring the number up to the required number of figures if the characteristic is greater than 4.

EXAMPLE.—Find the number whose logarithm is 3.56867. SOLUTION.—The first two figures of the mantissa are 56;

SOLUTION.—The first two figures of the mantissa are 56; glancing down the column, we find the third figure, 8 (in connection with 820), opposite 370 in the N column. Glancing to the right along the row containing 820, the last three figures of the mantissa, 867, are found in the column headed 4; hence, the fourth figure of the required number is 4, and the first three figures are 370, making the figures of the required number 3,704. Since the characteristic is 3, there are three figures to the left of the unit figure, and the number whose logarithm is 3.56867 is 3,704.

EXAMPLE.—Find the number whose logarithm is 3.56871. SOLUTION.—The mantissa is not found in the table. The next less mantissa is 56,867; the difference between this and the next greater mantissa is 879—867 = 12, and the P. P. is 56,871—56,867 = 4. Looking in the P. P. section for the column headed 12, we do not find 4, but we do find 3.6 and 4.8. Since 3.6 is nearer 4 than 4.8, we take the number opposite 3.6 for the fifth figure of the required number; this is 3. Hence, the fourth figure is 4; the first three figures 370, and the figures of the number are 37,043. The characteristic being 3, the number is 3,704.3.

EXAMPLE.—Find the number whose logarithm is 5.95424. SOLUTION.—The mantissa is found in the column headed 0, opposite 900 in the column headed N. Hence, the fourth

figure is 0, and the number is 900,000, the characteristic being 5. Had the logarithm been $\overline{5}.95424$, the number would have been .00009.

EXAMPLE.—Find the number whose logarithm is .93036. SOLUTION.—The first three figures of the mantissa, 930, are found in the 0 column, opposite 852 in the N column; but since the last two figures of all the mantissas in this row are greater than 36, we must seek the next less mantissa in the preceding row. We find it to be 93,034 (the star directing us to use 93 instead of 92 for the first two figures), in the column headed 8. The difference for this case is 039—034 = 5, and the P.P. is 036—034 = 2. Looking in the P.P. section for the column headed 5, we find the P.P., 2, opposite 4. Hence, the fifth figure is 4; the fourth figure is 8; the first three figures 851, and the number is 8.5184, the characteristic being 0.

EXAMPLE.—Find the number whose logarithm is $\overline{2}.05753$. SOLUTION.—The next less mantissa is found in column headed 1, opposite 114 in the N column; hence, the first four figures are 1,141. The difference for this case is 767-729=38, and the P.P. is 753-729=24. Looking in the P.P. section for the column headed 38, we find that 24 falls between 22.8 and 26.6. The difference between 24 and 22.8 is 1.2, and between 24 and 26.6 is 2.6; hence, 24 is nearer 22.8 than it is to 26.6, and 6, opposite 22.8, is the fifth figure of the number. Hence, the number whose logarithm is $\overline{2}.05753$ is .011416.

In order to calculate by means of logarithms, a table is absolutely necessary. Hence, for this reason, we do not explain the method of calculating a logarithm. The work involved in calculating even a single logarithm is very great, and no method has yet been demonstrated, of which we are aware, by which the logarithm of a number like 121 can be calculated directly. Moreover, even if the logarithm could be readily obtained, it would be useless without a complete table, such as that which is here given, for the reason that after having used it, say to extract a root, the number corresponding to the logarithm of the result could not be found.

MULTIPLICATION BY LOGARITHMS.

The principle upon which the process is based may be illustrated as follows: Let X and Y represent two numbers whose logarithms are x and y. To find the logarithm of their product, we have, from the definition of a logarithm,

$$10^x = X,$$
 (1)
 $10^y = Y.$ (2)

Since both members of (1) may be multiplied by the same quantity without destroying the equality, they evidently may be multiplied by equal quantities like 10⁹ and Y. Hence, multiplying (1) by (2), member by member.

$$10^x \times 10^y = 10^{x+y} = XY$$

or, by the definition of a logarithm, $x+y=\log XY$. But XY is the product of X and Y, and x+y is the sum of their logarithms; from which it follows that the sum of the logarithms of two numbers is equal to the logarithm of their product. Hence,

To multiply two or more numbers by using logarithms:

Rule.—Add the logarithms of the several numbers, and the sum will be the logarithm of the product. Find the number corresponding to this logarithm, and the result will be the number sought.

EXAMPLE.-Multiply 4.38, 5.217, and 83 together.

Solution.— Log 4.38 = .64147 Log 5.217 = .71742 Log 83 = 1.91908

and

Adding, $3.27797 = \log (4.38 \times 5.217 \times 83)$.

Number corresponding to 3.27797 = 1,896.6. Hence, $4.38 \times 5.217 \times 83 = 1,896.6$, nearly. By actual multiplication, the product is 1,896.5818, showing that the result obtained by using logarithms was correct to five figures.

When adding logarithms, their algebraic sum is always to be found. Hence, if some of their numbers multiplied together are wholly decimal, the algebraic sum of the characteristics will be the characteristic of the product. It must be remembered that the mantissas are always positive.

Example.-Multiply 49.82, .00243, 17, and .97 together.

SOLUTION .-

Log 49.82 = 1.69740 $Log .00243 = \overline{3.38561}$

Log .00243 = 3.38561Log 17 = 1.23045

 $Log .97 = \overline{1.98677}$

 $\times .00243 \times 17 \times .97 = 1.9963.$

Adding, $0.30023 = \log (49.82 \times .00243 \times 17 \times .97)$. Number corresponding to 0.30023 = 1.9963. Hence, 49.82

In this case the sum of the mantissas was 2.30023. The integral 2 added to the positive characteristics makes their sum = 2+1+1=4; sum of negative characteristics $= \overline{3} + \overline{1} = \overline{4}$, whence 4+(-4)=0. If, instead of 17, the number had been 17 in the above example, the logarithm of .17 would have been $\overline{1}$.23045, and the sum of the logarithms would have been $\overline{2}$.30023; the product would then have been .019963.

It can now be shown why all numbers with figures in the same order have the same mantissa, without regard to the decimal point. Thus, suppose it were known that $\log 2.06 = .31387$. Then, $\log 20.6 = \log (2.06 \times 10) = \log 2.06 + \log 10 = .31387 + 1 = 1.31387$. And so it might be proved with the decimal point in any other position.

DIVISION BY LOGARITHMS.

As before, let X and Y represent two numbers whose logarithms are x and y. To find the logarithm of their quotient, we have, from the definition of a logarithm,

and
$$10^{x} = X$$
, (1) $10^{y} = Y$. (2)

Dividing (1) by (2), $10^{x-y} = \frac{X}{Y}$, or, by the definition of a logarithm, $x-y = \log \frac{X}{Y}$. But $\frac{X}{Y}$ is the quotient of $X \div Y$,

and x-y is the difference of their logarithms, from which it follows that the difference between the logarithms of two numbers is equal to the logarithm of their quotient. Hence, to divide one number by another by means of logarithms:

Rule.—Subtract the logarithm of the divisor from the logarithm of the dividend, and the result will be the logarithm of the quotient.

Example.—Divide 6,784.2 by 27.42. Solution.— Log 6,784.2 = 3.83150 Log 27.42 = 1.43807

 $difference = 2.39343 = \log(6.784.2 \div 27.42).$

Number corresponding to 2.39343 = 247.42. Hence, 6,784.2 \div 27.42 = 247.42.

When subtracting logarithms, their algebraic difference is to be found. The operation may sometimes be confusing, because the mantissa is always positive, and the characteristic may be either positive or negative. When the logarithm to be subtracted is greater than the logarithm from which it is to be taken, or when negative characteristics appear, subtract the mantissa first, and then the characteristic, by changing its sign and adding.

EXAMPLE.—Divide 274.2 by 6,784.2. Solution.— Log 274.2 = 2.43807 Log 6,784.2 = 3.83150 2.60657

First subtracting the mantissa .83150 gives .60657 for the mantissa of the quotient. In subtracting, 1 had to be taken from the characteristic of the minuend, leaving a characteristic of 1. Subtract the characteristic 3 from this, by changing its sign and adding $1-3=\overline{2}$, the characteristic of the quotient. Number corresponding to $\overline{2}.60657=.040418$. Hence, $274.2 \div 6,784.2=.040418$.

EXAMPLE.—Divide .067842 by .002742. SOLUTION.— Log .067842 = $\overline{2}$.83150 Log .002742 = $\overline{3}$.43807 difference = $\overline{1}$.39343

Since .83150 - .43807 = .39343 and -2+3=1, number corresponding to 1.39343 = 24.742. Hence, .067842 \div .002742 = 24.742.

The only case that is likely to cause trouble in subtracting is that in which the logarithm of the minuend has a negative characteristic, or none at all, and a mantissa less than the mantissa of the subtrahend. For example, let it be required to subtract the logarithm 3.74036 from the logarithm

 $\overline{3}.55145$. The logarithm $\overline{3}.55145$ is equivalent to -3 + .55145. Now, if we add both +1 and -1 to this logarithm, it will not change its value. Hence, $\overline{3}.55145 = -3 - 1 + 1 + .55145 = \overline{4} + 1.55145$. Therefore, $\overline{3}.55145 - 3.74036 =$

$$\overline{4} + 1.55145$$

3 + .74036

 $difference = \overline{7} + .81109 = \overline{7}.81109.$

Had the characteristic of the above logarithm been 0 instead of $\bar{3}$, the process would have been exactly the same. Thus, $.55145 = \bar{1} + 1.55145$; hence,

$$\frac{1}{1} + 1.55145$$

 $3 + .74036$

$$difference = \overline{\overline{4} + .81109} = \overline{4.81109}.$$

Example. - Divide .02742 by 67.842.

Solution.— Log $.02742 = \overline{2}.43807 = \overline{3} + 1.43807$

$$Log 67.842 = 1.83150 = 1 + .83150$$

$$difference = \overline{4} + .60657 = \overline{4}.60657.$$

Number corresponding to $\overline{4.60657} = .00040417$. Hence, $.02742 \div 67.842 = .00040417$.

EXAMPLE.—What is the reciprocal of 3.1416?

Solution.—Reciprocal of $3.1416 = \frac{1}{3.1416}$, and $\log \frac{1}{3.1416}$

$$= \log 1 - \log 3.1416 = 0 - .49715$$
. Since $0 = -1 + 1$,

$$\overline{1} + 1.00000$$

 $difference = \overline{1} + .50285 = \overline{1}.50285.$

Number whose logarithm is $\overline{1.50285} = .31831$.

INVOLUTION BY LOGARITHMS.

If X represents a number whose logarithm is x, we have, from the definition of a logarithm,

$$10^x = X$$
.

Raising both numbers to some power, as the nth, the equation becomes

$$10^{xn} = X^n.$$

But X^n is the required power of X, and xn is its logarithm, from which it follows that the logarithm of a number

multiplied by the exponent of the power to which it is raised is equal to the logarithm of the power. Hence, to raise a number to any power by the use of logarithms:

Rule.—Multiply the logarithm of the number by the exponent that denotes the power to which the number is to be raised, and the result will be the logarithm of the required power.

Example.—What is (a) the square of 7.92? (b) the cube of 94.7? (c) the 1.6 power of 512, that is, the value of 5121.6? Solution.—(a) Log 7.92 = .89873; exponent of power = 2.

Hence, $.89873 \times 2 = 1.79746 = \log 7.92^2$. Number corresponding to 1.79746 = 62.727. Hence, $7.92^2 = 62.727$, nearly.

(b) Log 94.7 = 1.97635; $1.97635 \times 3 = 5.92905 = \log 94.73$. Number corresponding to 5.92905 = 849,280, nearly. Hence, $94.7^3 = 849.280$, nearly,

(c) Log $512^{1.6} = 1.6 \times \log 512 = 1.6 \times 2.70927 = 4.334832$, or 4.33483 (when using five-place logarithms) = log 21,619. Hence, $512^{1.6} = 21.619$ nearly.

If the number is wholly decimal, so that the characteristic is negative, multiply the two parts of the logarithm separately by the exponent of the number. If, after multiplying the mantissa, the product has a characteristic, add it, algebraically, to the negative characteristic multiplied by the exponent, and the result will be the negative characteristic of the required power,

EXAMPLE.—Raise .0751 to the fourth power.

Solution.—Log $.0751^4 = 4 \times \log .0751 = 4 \times \overline{2}.87564$. Multiplying the parts separately, $4 \times \overline{2} = 8$ and $4 \times .87564$ = 3.50256. Adding the 3 and $\overline{8}$, 3 + (-8) = -5; therefore, $\log .0751^4 = \overline{5}.50256$. Number corresponding to this = .00003181. Hence, $.0751^4 = .00003181$.

A decimal may be raised to a power whose exponent contains a decimal as follows:

EXAMPLE.—Raise .8 to the 1.21 power.

Solution.—Log $.8^{1.21} = 1.21 \times \overline{1.90309}$. There are several ways of performing the multiplication.

First Method.-Adding the characteristic and mantissa algebraically, the result is -.09691. Multiplying this by 1.21 gives -.1172611, or -.11726, when using five-place logarithms. To obtain a positive mantissa, add +1 and -1; whence, $\log .8^{1.21} = -1 + 1 - .11726 = \overline{1.88274}$

Second Method.—Multiplying the characteristic and mantissa separately gives -1.21 + 1.09274. Adding characteristic and mantissa algebraically, gives -.11726; then, adding +1 and -1, log $.8^{1.21} = \overline{1}.88274$.

Third Method.—Multiplying the characteristic and mantissa separately gives -1.21 + 1.09274. Adding the decimal part of the characteristic to the mantissa gives $-1 + (-.21 + 1.09274) = \overline{1.88274} = \log.81.21$. The number corresponding to the logarithm $\overline{1.88274} = .76338$.

Any one of the above three methods may be used, but we recommend the first or the third. The third is the most elegant and saves figures, but requires the exercise of more caution than the first method does. Below will be found the entire work of multiplication for both .8^{1.21} and .8.²¹,

$\overline{1}.90309$	1.90309
1.21	21
90309	90309
180618	180618
90309	+1.1896489
1.0927389	-121
-1.21	1.9796489, or 1.97965.

1.8827389, or 1.88274.

In the second case, the negative decimal obtained by multiplying —1 and .21 was greater than the positive decimal obtained by multiplying .90309 and .21; hence, +1 and —1 were added, as shown.

EVOLUTION BY LOGARITHMS.

If X represents a number whose logarithm is x, we have, from the definition of a logarithm,

$$10^x = X.$$

Extracting some root of both members, as the nth, the equation becomes

 $10^{\frac{\mathbf{z}}{n}} = \sqrt[n]{X}.$

But $\sqrt[n]{X}$ is the required root of X, and $\frac{x}{n}$ is its logarithm, from which it follows that the logarithm of a number divided

by the index of the root to be extracted is equal to the logarithm of the root. Hence, to extract any root of a number by means of logarithms:

Rule.—Divide the logarithm of the number by the index of the root; the result will be the logarithm of the root.

EXAMPLE.—Extract (a) the square root of 77,851; (b) the cube root of 698,970; (c) the 2.4 root of 8,964,300.

Solution.—(a) Log 77,851 = 4.89127; the index of the root is 2; hence, $\log \sqrt{77,851} = 4.89127 \div 2 = 2.44564$; number corresponding to this = 279.02. Hence, $\sqrt{77,851} = 279.02$, nearly.

(b) Log $\sqrt[3]{698,970} = 5.84446 \div 3 = 1.94815 = \log 88.746$; or, $\sqrt[3]{698,970} = 88.747$, nearly.

(c) $\log^2 \sqrt[4]{8}$, 964, 300 = 6.95251 ÷ 2.4 = 2.89688 = $\log 788.64$; or. $2\sqrt[4]{8}$, 964, 300 = 788.64, nearly.

If it is required to extract a root of a number wholly decimal, and the negative characteristic will not exactly contain the index of the root, without a remainder, proceed as follows:

Separate the two parts of the logarithm; add as many units (or parts of a unit) to the negative characteristic as will make it exactly contain the index of the root. Add the same number to the mantissa, and divide both parts by the index. The result will be the characteristic and mantissa of the root.

EXAMPLE.—Extract the cube root of .0003181.

SOLUTION.—Log
$$\sqrt[3]{.0003181} = \frac{\log .0003181}{3} = \frac{\overline{4.50256}}{3}$$
. $(\overline{4} + \overline{2} = \overline{6}) + (2 + .50256 = 2.50256)$. $(\overline{6} + 3 = 2) + (2.50256 \div 3 = .83419)$; or, $\log \sqrt[3]{.0003181} = 2.83419 = \log .068263$. Hence, $\sqrt[3]{.0003181} = 0.068263$.

Example.—Find the value of $\sqrt[1.41]{.0003181}$.

Solution.—
$$\log^{1.41} \sqrt[7]{.0003181} = \frac{\log .0003181}{1.41} = \frac{\overline{4.50256}}{1.41}$$
.

If -.23 be added to the characteristic, it will contain 1.41 exactly 3 times. Hence,

EXAMPLE.—Solve this expression by logarithms:

$$\frac{497 \times .0181 \times 762}{3,300 \times .6517} = ?$$
SOLUTION.— Log 497 = 2.69636
Log .0181 = $\overline{2}.25768$
Log 762 = 2.88195
Log product = 3.83599
Log .3300 = 3.51851
Log .6517 = $\overline{1}.81405$
Log product = $\overline{3}.323256$

 $3.83599 - 3.33256 = .50343 = \log 3.1874.$

Hence,
$$\frac{497 \times .0181 \times 762}{3,300 \times .6517} = 3.1874.$$

EXAMPLE.—Solve
$$\sqrt[3]{\frac{504,203 \times 507}{1.75 \times 71.4 \times 87}}$$
 by logarithms.
SOLUTION.— Log $504.203 = 5.70260$

 $\begin{array}{ccc} \text{Log} & 507 = 2.70501 \\ \text{Log product} = 8.40761 \\ \text{Log} & 1.75 = .24304 \\ \text{Log} & 71.4 = 1.85370 \end{array}$

Log 71.4 = 1.85370 Log 87 = 1.93952

Log product = 4.03626

$$\frac{8.40761 - 4.03626}{3} = 1.45712 = \log 28.65.$$

Hence,
$$\sqrt[3]{\frac{504,203 \times 507}{1.75 \times 71.4 \times 87}} = 28.65.$$

Logarithms can often be applied to the solution of equations.

Example.—Solve the equation $2.43x^5 = \sqrt[6]{.0648}$.

Solution.—
$$2.43x^5 = \sqrt[6]{.0648}$$
.

Dividing by 2.43,
$$x^5 = \frac{\sqrt[6]{.0648}}{2.43}$$

Taking the logarithm of both numbers,

$$5 \times \log x = \frac{\log .0648}{6} - \log 2.43;$$

or
$$5 \log x = \frac{\overline{2.81158}}{6} - .38561$$

= $\overline{1.80193} - .38561$
= $\overline{1.41632}$.

Dividing by 5, $\log x = \overline{1.88326}$; x = .7643.whence.

Example.—Solve the equation $4.5^x = 8$.

SOLUTION.—Taking the logarithms of both numbers,

$$x \log 4.5 = \log 8,$$

$$x = \frac{\log 8}{\log 4.5} = \frac{.90309}{.65321}.$$

Taking logarithms again,

whence.

 $\log x = \log .90309 - \log .65321 = \overline{1.95573} - \overline{1.81505}$ = .14068; whence, x = 1.3825.

REMARK.-Logarithms are particularly useful in those cases when the unknown quantity is an exponent, as in the last example, or when the exponent contains a decimal, as in several instances in the examples given on pages 45-49. Such examples can be solved without the use of logarithms. but the process is very long and somewhat involved, and the arithmetical work required is enormous. To solve the example last given without using the logarithmic table and obtain the value of x correct to five figures would require, perhaps, 100 times as many figures as were used in the solution given. and the resulting liability to error would be correspondingly increased; indeed, to confine the work to this number of figures would also require a good knowledge of short-cut methods in multiplication and division, and judgment and skill on the part of the calculator that can only be acquired by practice and experience.

Formulas containing quantities affected with decimal exponents are generally of an empirical nature; that is, the constants or exponents or both are given such values as will make the results obtained by the formulas agree with those obtained by experiment. Such formulas occur frequently in works treating on thermodynamics, strength of materials, machine design, etc.

COMMON LOGARITHMS.

1	·	0 1		-			1 -	1 0	-		0 1	1	-	-	
N.	L.	0	1	2	3	4	5	6	7	8	9		Ρ.	. P.	
100	00 00	00	043	087	130	173	217	260	303	346	389				
101	43		475	518	561	604	647	689	732	775	817	١.	44	43	42
102	- 84	60	903	945	988	*030	*072	*115	*157	*199	*242	1	4.4	4.3	4.:
103	01 28		326	368	410	452	494	536	578	620	662	2 3	8.8	8.6	8.
104		03	745	787	828	870	912	953	995	±036	*078	4	13.2 17.6	12.9 17.2	16.
105	02 1		160	202	243 653	284 694	325	366	407 816	449 857	490 898	5	22.0	21.5	21.
106 107	51 91		572 979	612 *019	*060	±100	735 *141	776 *181	¥222	*262	*302	6	26.4	25.8	25.
107	03 3	19	383	423	463	503	543	583	623	663	703	7	30.8	30.1	29.
109	7	13	782	822	862	902	941	981	*021	*060	*100	8	35.2	34.4	33,
	04 13		179	218	258	297	336	376	415	454	493	9	39.6	38.7	37.
111	5		571	610	650	689	727	766	805	844	883		41	40	3
112	95		961	999	*038	#077	*115	*154	*192	*231	*269	1	4.1	4.0	3.
113			346	385	423	461	500	538	576	614	652	2	8.2	8.0	7.
114	6	90	729	767	805	843	881	918	956		*032	3	12.3	12.0	11.
115	06 0		108	145	183	221	258	296	333	371	408	4	16.4	16.0	15.
116	4	16	483	521	558	595	633	670	707	744	781	5	20.5	20.0	19.
117		19	856	893	930	967	*004	*041	*078	*115	*151	6	24.6	24.0	23.
	07 18		225	262	298	335	372	408	445	482	518	8	28.7 32.8	28.0 32.0	27. 31.
119	- 54		591	628	664	700	737	773	809	846	882	9	36.9	36.0	35.
120	9:		954	990	*027	≈ 063	*099	*135	*171	*207	*243		20	0.7	31
	08 2		314	350	386	422	458	493	529	565	600	١,	3.8	3.7	3.
122		36	672	707	743	778	814	849	884	920	955	1 2	7.6	7.4	7.
123	99		*026	*061	*096	*132	*167	*202	*237	*272	*307	3	11.4	11.1	10.
124 125	09 3		377 726	412 760	447 795	482 830	517 864	552 899	587 934	621	656 #003	4	15.2	14.8	14.
120	10 0		072	106	140	175	209	243	278	312	346	5	19.0	18.5	18.
127	3		415	449	483	517	551	585	619	653	687	6	22.8	22.2	21.
128	7:		755	789	823	857	890	924	958	992	*025	7	26.6	25.9	25.
129	11 0	59	093	126	160	193	227	261	294	327	361	8	30.4	29.6	28.
130	39	94	428	461	494	528	561	594	628	661	694	9	34.2	33.3	32.
131	7:	27	760	793	826	860	893	926	959	992	*024	1	35	34	33
132	12 0		090	123	156	189	222	254	287	320	352	1	3.5	3.4	3,
133	38		418	450	483	516	548	581	613	646	678	2	7.0	6.8	6.
134		10	743	775	808	840	872	905	937		*001	3 4	10.5	10.2 13.6	9.
	13 0		066	098	130	162	194	226	258	290	322	5	17.5	17.0	16.
136	3; 6'		386 704	418 735	450 767	481 799	513 830	545 862	577 893	609 925	640 956	6	21.0	20.4	19.
137 138	98		*019	*051	*082	*114	₹145	*176	*208	*239	*270	7	24.5	23.8	23.
139	14 30		333	364	395	426	457	489	520	551	582	8	28.0	27.2	26.
140	6		644	675	706	737	768	799	829	860	891	9	31.5	30.6	29.
141	9:		953	983	*014	*045	*076	*106	*137	*168	*198		32	31	30
	15 2		259	290	320	351	381	412	442	473	503	1	3.2	3.1	3.
143	51		564	594	625	655	685	715	746	776	806	2	6.4	6.2	6.
144	8	36	866	897	927	957	987	*017	¥047	*077	*107	3	9.6	9.3	9.
145	16 13		167	197	227	256	286	316	346	376	406	4	12.8	12.4	12.
146	43		465	495	524	554	584	613	643	673	702	5	16.0	15.5 18.6	15. 18.
147	73		761	791	820	850	879	909	938	967	997	6 7	19.2 22.4	21.7	21.
	17 05		056	085	114 406	143 435	173	202 493	231	260	289	8	25.6	24.8	24.
149 150	- 60		348	377	_	_	464	_	522	551	580 869	9	28.8	27.9	27.
	61	13	638	667	696	725	754	782	811	840	209				
N.	L.			2	3		5		7	8	9			P.	

TABLE—(Continued).

V I 0 1 0 2 4 5 6 7 8 0 D D														
N.	L. (0	1	2	3	4	5	6	7	8	9		P. P.	
150	17 60	9	638	667	696	725	754	782	811	840	869			
151	89	18	926	955	984	*013	*041	*070	*099	*127	*156		29	28
	18 18		213	241	270	298	327	355	384	412	441	1	2.9	2.8
153	46		498	526	554	583	611	639	667	696	724	2	5.8	5.6
154	75		780	808	837	865	893	921	949	977	₹005	3	8.7	8.4
155			061	089	117	145	173	201	229	257	285	4	11.6	11.2
156	31		340	368	396	424	45L	479	507	535	562	5 6	14.5	14.0
157 158	59		618	645 921	673	700	728	756 ±030	783	811	838	7	17.4 20.3	16.8 19.6
	86 20 14		893 167	194	948 222	976 249	*003 276	303	*058 330	*085 358	*112 385	8	23.2	22.4
160	41		439	466	493	520	548	575	602	629	656	9	26.1	25.2
				-			_	_	_	_			27	26
161 162	68		710	737	763	790	817	844	871	898	925	1	1 2.7	2.6
	95 21 21		978 245	*005 272	*032 299	*059 325	*085 352	*112 378	*139 405	*165 431	*192 458	2	5.4	5.2
164	21 21		511	537	564	590	617	643	669	696	722	3	8.1	7.8
165	74		775	801	827	854	880	906	932	958	985	4	10.8	10.4
166			037	063	089	115	141	167	194	220	246	5	13.5	13.0
167	2		298	324	350	376	401	427	453	479	505	6	16.2	15.6
168	58	31	557	583	608	634	660	686	712	737	763	7	18.9	18.2
169	78	89	814	840	866	891	917	943	968	994	*019	8	21.6	20.8
170	23 0	15	070	096	121	147	172	198	223	249	274	9	24.3	23.4
171	30	00	325	350	376	401	426	452	477	502	528		2	5
172	58		578	603	629	654	679	704	729	754	779			.5
173	80		830	855	880	905	930	955	980	*005	*030			.0
174			080	105	130	155	180	204	229	254	279			.5
175	30		329	353	378	403	428	452	477	502	527		4 10 5 12	
176 177	55		576	601	625	650	674	699	724	748 993	773		5 12 6 15	
	79 25 04	19	822 066	846 091	871 115	895 139	920 164	944 188	969 212	237	*018 261			
179	28		310	334	358	382	406	431	455	479	503		8 20	
180	- 52		551	575	600	624	648	672	696	720	744		9 22	
181	76		792	816	840	864	888	912	935	959	983		24	23 -
	26 00	77	031	055	079	102	126	150	174	198	221	1	1 2.4	2.3
183	2		269	293	316	340	364	387	411	435	458	2	4.8	4.6
184	48		505	529	553	576	600	623	647	670	694	3	7.2	6.9
185	73	17	741	764	788	811	834	858	881	905	928	4	9.6	9.2
186	98		975	998	*021		≈ 068	*091	*114		*161	5	12.0	11.5
187			207	231	254	277	300	323	346	370	393	6	14.4	13.8
188 189	4		439	462	485	508	531	554	577	600	623	7 8	16.8 19.2	16.1 18.4
	6		669	692	715	738	761	784	807	830	852	9	21.6	20.7
190	8		898	921	944	967	989	*012	*035	*058	*081		22	21
192	28 10		126 353	149 375	171 398	194 421	217 443	240 466	262 488	285 511	307 533	1	1 2.2	2.1
193		56	578	601	623	646	668	691	713	735	758	2	4.4	4.2
194	78		803	825	847	870	892	914	937	959	981	3	6.6	6.3
195	29 0		026	048	070	092	115	137	159	181	203	4	8.8	8.4
196	25	26	248	270	292	314	336	358	380	403	425	5	11.0	10.5
197	4		469	491	513	535	557	579	601	623	645	6	13.2	12.6
198	60		688	710	732	754	776	798	820	842	863	7	15.4	14.7
199	88	-	907	929	951	973	994	*016	*038	*060	*081	8	17.6 19.8	16.8 18.9
200	30 10	03	125	146	168	190	211	233	255	276	298		,	
N.	L.(0	1	2	3	4	5	6	7	8	9		P. P	

U. OF ILL

TABLE—(Continued).

	_			_	_		_	_					
N.	I	. 0	1	2	3	4	5	6	7	8	9		Р. Г.
200	30	103	125	146	168	190	211	233	255	276	298		
201	-	320	341	363	384	406	428	449	471	492	514	1	22 21
202		535	557	578	600	621	643	664	685	707	728	1 1	2.2 2.1
203		750	771	792	814	835	856	878	899	920	942	2	4.4 4.2
204	l	963	984	*006	*027	*048	₹069	*091	*112	*133	*154	3	6.6 6.3
205	31		197	218	239	260	281	302	323	345	366	4	8.8 8.4
206		387	408	429	450	471	492	513	534	555	576	5	11.0 10.5
207		597	618	639	660	681	702	723	744	765	785	6	13.2 12.6
208		806	827	848	869	890	911	931	952	973	994	7	15.4 14:7
209	32	015	035	056	077	098	118	139	160	181	201	8	17.6 16.8
210	-	222	243	263	284	305	325	346	366	387	408	9	19.8 18.9
				_	_	510		_	572	593	613		20
211 212		428 634	449	469	490 695	715	531 736	552	512	797	818	1	1 2.0
213		838	654 858	675 879	899	919	940	756 960	777		*021	2	4.0
214	33	041	062	082	102	122	143	163	980 183	*001 203	224	3	6.0
214	00	244	264	284	304	325	345	365	385	405	425	4	8.0
216		445	465	486	506	526	546	566	586	606	626		10.0
217		646	666	686	706	726	746	766	786	806	826	6	12.0
218		846	866	885	905	925	945	965	985		*025	7	14.0
219	34		064	084	104	124	143	163	183	203	223	8	16.0
	-	242	262	282	301	321	341	361	380	400	420	9	18.0
220	_				-				_				
221		439	459	479	498	518	537	557	577	596	616		19
222		635	655	674	694	713	733	753	772	792	811	1	1.9
223		830	850	869	889	908	928	947	967	986		2 3	3.8
224 225	35	025	044	064	083	102 295	122	141	160	180	199 392	4	7.6
225 226		218 411	238 430	257 449	276 468	488	315 507	334 526	353 545	372 564	583	5	9.5
227		603	622	641	660	679	698	717	736	755	774	6	11.4
228		793	813	832	851	870	889	908	927	946	965	7	13.3
229		984	*003	*021	*040	*059	±078	*097	*116	*135	*154	8	15.2
230	36	173	192	211	229	248	267	286	305	324	342	. 9	17.1
231		361	380	399	418	436	455	474	493	511	530		18
232		549	568	586	605	624	642	661	680	698	717	1	1.8
233		736	754	773	791	810		847	866	884	903	2	3.6
234		922	940	959	977	996	*014	*033		*070	*088	3	5.4
235	37	107	125	144	162	181	199	218	236	254	273	4	7.2
236		291	310	328	346	365	383	401	420	438	457	5	9.0
237		475	493	511	530	548	566	585	603	621	639	6	10.8
238		658	676	694	712	731	749	767	785	803	822	7	12.6
239		840	858	876	894	912	931	949	967	985	*003	8 9	14.4
240	38	021	039	057	075	093	112	130	148	166	184	9	16.2
241		202	220	238	256	274	292	310	328	346	364		17
242		382	399	417	435	453	471	489	507	525	543	1	1.7
243		561	578	596	614	632	650	668	686	703	721	2	3.4
244		739	757	775	792	810	828	846	863	881	899	3	5.1
245		917	934	952	970	987	*005	*023	*041	*058	*076	4 5	6.8
246	39	094	111	129	146	164	182	199	217	235	252	5 6	8.5 10.2
247		270	287	305	322	340	358	375	393	410	428	7	11.9
248 249		445	463	480	498	515 690	533 707	550 724	568 742	585 759	602 777	8	13.6
	_	620	637	655	672		_	=	_	_	-	9	15.3
250	_	794	811	829	846	863	881	898	915	933	950		
N.	L	. 0	1	2	3	4	5	6	7	8	9		P. P.
_	10											H.	

TABLE—(Continued).

	V I O 1 9 9 4 5 6 7 9 0 PP													
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.			
250	39 794	811	829	846	863	881	898	915	933	950				
251	967	985	*002	*019	*037	*054	*071	*088	*106	*123	18			
252		157	175	192	209	226	243	261	278	295	1 1.8			
253	312	329	346	364	381	398	415	432	449	466	2 3.6 3.4			
254	483	500	518	535	552	569	586	603	620	637	3 5.4 7.2			
255 256	654 824	671 841	688 858	705 875	722 892	739 909	756	773 943	790	807	5 9.0			
257	993	*010	*027	*044	*061	*078	926 *095	*111	960 *128	976 *145	6 10.8			
258	41 162	179	196	212	229	246	263	280	296	313	7 12.6			
259	330	347	363	380	397	414	430	447	464	481	8 14.4			
260	497	514	531	547	564	581	597	614	631	647	9 16.2			
261	664	681	697	714	731	747	764	780	797	814	17			
262	830	847	863	880	896	913	929	946	963	979	1 1.7			
263	996	*012	*029	*045	*062	*078		*111	*127	*144	2 3.4 3 5.1			
264 265	42 160	177 341	193	210 374	226 390	243	259	275	292	308	4 6.8			
266	325 488	504	357 521	537	553	406 570	423 586	439 602	455 619	472 635	5 8.5			
267	651	667	684	700	716	732	749	765	781	797	6 10.2			
268	813	830	846	862	878	894	911	927	943	959	7 11.9			
269	975	991	*008	*024	*040	*056	*072	*088	*104	*120	8 13.6			
270	43 136	152	169	185	201	217	233	249	265	281	9 15.3			
271	297	313	329	345	361	377	393	409	425	441	16			
272	457	473	489	505	521	537	553	569	584	600	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
273 274	616 775	632	648	664	680	696	712	727	743	759	3 4.8			
275	933	791 949	807 965	823 981	838 996	854 *012	870 #028	886 *044	902 *059	917 *075	4 6.4			
276		107	122	138	154	170	185	201	217	232	5 8.0			
277	248	264	279	295	311	326	342	358	373	389	6 9.6			
278	404	420	436	451	467	483	498	514	529	545	7 11.2			
279	560	576	592	607	623	638	654	669	685	700	8 12.8 9 14.4			
280	716	731	747	762	778	793	809	824	840	855	- 1			
281	871	886	902	917	932	948	963	979	994	*010	15			
282	45 025	040	056	071	086	102	117	133	148	163	1 1.5 3.0			
283 284	179 332	194	209 362	225 378	240 393	255	271 423	286 439	301	317 469	3 4.5			
285	484	347 500	515	530	545	408 561	576	591	454 606	621	4 6.0			
286	637	652	667	682	697	712	728	743	758	773	5 7.5			
287	788	803	818	834	849	864	879	894	909	924	6 9.0			
288	939	954	969	984	*000	*015		*045	*060	*075	7 10.5			
	46 090	105	120	135	150	165	180	195	210	225	8 12.0 9 13.5			
290	240	255	270	285	300	315	330	345	359	374	14			
291 292	389	404	419	434	449	464	479	494	509	523	1 1.4			
293	538 687	553 702	568 716	583 731	598 746	613 761	627 776	642 790	657 805	672 820	2 2.8			
294	835	850	864	879	894	909	923	938	953	967	3 4.2			
295	982	997	*012	*026	*041	*056	*070	*085	*100	*114	4 5.6			
296	47 129	144	159	173	188	202	217	232	246	261	5 7.0			
297	276	290	305	319	334	349	363	378	392	407	6 8.4 7 9.8			
298 299	422 567	436 582	451 596	465	480	640	509	524	538	553	8 11.2			
300	712	727	596 741	756	770	784	799	813	828	698 842	9 12.6			
		-			_		-				70 70			
N.	L.0	1.	2	3	4	5	6	7	8	9	P. P.			
										-				

TABLE—(Continued).

N.	L.0	1	2	3	4	5	6	7	8	9	P. P.
300	47 712	727	741	756	770	784	799	813	828	842	
301	857	871	885	900	914	929	943	958	972	986	
302		015	029	044	058	073	087	101	116	130	
303	144	159	173	187	202	216	230	244	259	273	15
304	287	302	316	330	344	359	373	387	401	416	1 1.5
305	430	444	458	473	487	501	515	530	544	558	2 3.0
306	572	586	601	615	629	643	657	671	686	700	3 4.5
307	714	728	742	. 756	770	785	799	813	827	841	5 7.5
308	855	869	883	897	911	926	940	954	968	982	6 9.0
309	996	*010	*024	*038	*052	*066	*080	*094	*108	*122	7 10.5
310	49 136	150	164	178	192	206	220	234	248	262	8 12.0
311	276	290	304	318	332	346	360	374	388	402	9 13.5
312	415	429	443	457	471	485	499	513	527	541	
313		568	582	596	610	624	638	651	665	679	
314	693	707	721	734 872	748	762 900	776	790 927	803 941	817 955	14
315 316		845 982	859 996		*024		914 *051	*065	±079	₹092	1 1.4
317		120	133	147	161	174	188	202	215	229	2 2.8
318	243	256		284	297	311	325	338	352	365	3 4.2
319		393	406	420	433	447	461	474	488	501	4 5.6
320	515	529	542	556	569	583	596	610	623	637	5 7.0 6 8.4
321	651	664	678	691	705	718	732	745	759	772	7 9.8
322	786	799		826	840				893	907	8 11.2
323		934	947	961	974	987	*001	*014	*028	₹041	9 12.6
324		068	081	095	108	121	135	148	162	175	
325		202	215	228	242	255		282	295	308	
326		335		362	375		402	415	428	441	
327	455	468	481	495	508	521	534	548	561	574	13
328	587	601	614	627	640	654	667	680 812	693 825	706 838	1 1.3
329	720	733	746	759	772	786	799		_	-	2 2.6 3 3.9
330	851	865	878	891	904	917	930	943	957	970	4 5.2
331	983	996		*022	*035			*075	£088	*101	5 6.5
332		127	140	153	166	179	192	205	218 349	231	6 7.8
333		257	270	284 414	297 427	310 440	323 453	336 466	479	362 492	7 9.1
334 335	375 504	388 517	401 530	543	556	569	582	595	608	621	8 10.4
336		647	660	673	686	699	711	724	737	750	9 11.7
337	763	776	789	802	815	827	840	853	866	879	
338	892	905	917	930	943	956	969	982	994	₹007	
339		033	046	058	071	084	697	110	122	135	12
340	148	161	173	186	199	212	224	237	250	263	1 1.2
341	275	288	301	314	326	339	352	364	377	390	2 2.4
342	403	415	428	441	453	466	479	491	504	517	3 3.6
343	529	542	555	567	580	593	605	618	631	643	4 4.8 5 6.0
344	656	668	681	694	706	719	732	744	757	769	5 6.0 6 7.2
345	782	794	807	820	832	845	857	870	882	895	7 8.4
346	908	920	933	945	958	970	983	995	*008	*020	8 9.6
347		045	058	070	083	095	108	120	133	145	9 10.8
348	158	170	183	195	208	220	233	245	258	270	2 1 20.0
349	283	295	307	320	332 456	345	357 481	370 494	382 506	394 518	
350	407	419	432	444		469	_	_	_		
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table—(Continued).

	TABLE (continued).													
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.			
350	54 407	419	432	444	456	469	481	494	506	518				
351	531	543	555	568	580	593	605	617	630	642				
352	654	667	679	691	704	716	728	741	753	765	13			
353	777	790	802	814	827	839	851	864	876	888				
354	900	913	925	937	949	962	974	986		*011	1 1.3 2.6			
355		035	047	060	072	084	096	108	121	133	3 3.9			
356	145	157 279	169 291	182 303	194 315	206 328	218 340	230 352	242 364	255 376	4 5.2			
357 358	267 388	400	413	425	437	449	461	473	485	497	5 6.5			
359	509	522	534	546	558	570	582	594	606	618	6 7.8			
360	630	642	654	666	678	691	703	715	727	739	7 9.1 8 10.4			
361	751	763	775	787	799	811	823	835	847	859	9 11.7			
362	871	883	895	907	919	931	943	955	967	979				
363	991	*003	*015	*027	*038	*050	*062	*074	*086	*098				
364		122	134	146	158	170	182	194	205	217	10			
365	229	241	253	265	277	289	301	312	324	336	1 1.2			
366	348	360	372	384	396	407	419	431	443	455	2 2.4			
367 368	467 585	478 597	490 608	502 620	514 632	526 644	538 656	549 667	561 679	573 691	3 3.6			
369	703	714	726	738	750	761	773	785	797	808	4 4.8			
370	820	832	844	855	867	879	891	902	914	926	5 6.0 6 7.2			
371	937	949	961	972	984	996	₹ 008	₹019	 ±031	*043	7 8.4			
372		066	078	089	101	113	124	136	148	159	8 9.6			
373	171	183	194	206	217	229	241	252	264	276	9 10.8			
374	287	299	310	322	334	345	357	368	380	392	·			
375	403	415	426	438	449	461	473	484	496	507				
376	519	530	542	553	565	576	588	600	611	623				
377 378	634 749	646 761	657 772	669 784	680 795	692 807	703 818	715 830	726 841	738 852	1 1.1			
379	864	875	887	898	910	921	933	944	955	967	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
380	978	990		*013	*024	*035	*047	₹058	*070	*081	3 3.3			
	58 092	104	115	127	138	149	161	172	184	195	4 4.4 5 5.5			
382	206			240	252	263	274	286	297	309	6 6.6			
383	320	331	343	354	365	377	388	399	410	422	7 7.7			
384	433		456	467	478	490	501	512	524	535	8 8.8			
385			569	580	591	602	614	625	636	647	9 9.9			
386 387	659 771	670 782		692 805	704 816	715 827	726 838	737 850	749 861	760 872				
388	883		906	917	928	939	950	961	973	984				
389				*028	*040	*051	₹062	#073	*084	*095	10			
390	59 106			140	151	162	173	184	195	207	1 1.0			
391	218			251	262	273	284	295	306	318	2 2.0			
392				362	373	384	395	406	417	428	3 3.0			
393				472	483		506	517	528	539	5 5.0			
394				583		605		627	638	649	6 6.0			
395 396						715		737	748 857	759	7 7.0			
397				802 912			835 945	846 956	966	868 977	8 8.0			
398					*032			*065	*076		9 9.0			
399	60 097	108				152		173	184	195				
400	206				249	260		282	293	304				
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.			
			1	ì	7	1	1	1						

TABLE—(Continued).

No. L. 0										,		
14	N.	L.0	1	2	3	4	*5	6	7	8	9	P. P.
402 434 325 336 347 335 368 379 399 401 412 424 434 454 464 473 487 487 489 489 499 490 490 590 520 490 490 590 590 520 490 490 590 590 590 590 690	400	60 206	217	228	239	249	260	271	282	293	304	
402		314	325	336	347	358	369	379	390	401	412	
405	402	423	433									
406 858 868 858 859 969 810 821 831 842 407 959 970 981 991 902 903 903 903 904 408 61 66 677 687 885 895 906 917 927 938 919 409 172 183 194 204 215 225 226 247 257 268 3 3,3 410 278 289 900 310 321 331 342 352 363 374 4 4,4 411 343 355 305 416 426 337 444 458 468 479 6 6.6 412 490 500 511 521 532 445 535 503 74 54 412 490 500 511 521 532 445 535 503 74 54 412 490 707 171 721 712 713 742 753 763 774 54 415 805 815 826 836 847 857 868 878 885 899 417 62 014 024 034 045 055 066 076 086 097 107 418 118 128 138 149 159 170 180 180 201 211 419 221 232 242 252 236 273 284 294 304 315 420 325 335 346 356 366 377 387 397 408 418 421 428 439 449 459 490 490 500 511 521 422 531 542 562 562 562 572 583 593 603 613 624 423 634 644 635 656 675 685 686 607 618 624 424 737 747 757 767 778 788 798 808 818 829 430 347 357 367 377 387 397 430 347 357 367 377 378 379 408 418 430 344 458 468 679 689 699 609 190 221 311 430 347 357 367 377 378 378 397 408 418 430 347 357 367 377 378 378 379 407 417 428 438 431 448 458 468 679 689 699 699 691 629 639 433 649 659 669 679 689 699 699 699 699 999 999 434 749 759 769 779 789 789 809 819 828 839 435 849 859 866 875 889 899 801 818 818 817 440 345 355 365 375 385 395 404 414 424 434 441 444 44												
400 553 863 874 885 895 906 917 927 938 949 11 407 999 970 981 991 902 9018 903 913 404 905 505 408 61 666 677 987 998 199 199 119 130 140 151 162 2 2 2 2 410 278 289 800 310 321 331 342 352 363 374 5 5.5 411 384 395 405 416 426 437 448 458 469 479 6 6.6 6.6 411 490 500 511 521 532 542 553 563 574 584 7 7.7 413 595 606 616 627 637 648 658 669 679 690 8 8.8 414 700 711 721 731 742 752 763 773 784 794 9 416 809 920 930 941 951 962 972 929 998 900 417 62 014 024 034 045 055 066 076 068 097 1071 418 118 128 138 491 959 170 160 686 097 1071 419 221 232 242 252 263 273 284 294 304 420 325 355 366 366 367 373 397 379 378 478 421 422 423 439 449 449 449 489 480 490 500 511 521 422 423 634 644 655 665 675 685 696 670 6716 726 2 2 424 473 747 757 776 778 788 788 788 888 829 430 347 337 367 377 387 397 407 411 430 347 337 367 377 387 397 407 411 449 240 242 543 648 645 655 665 676 685 696 670 6716 726 2 420 340 353 663 673 685 598 699 699 619 629 639 421 422 531 531 542 552 562 572 585 598 598 808 809 909 909 921 931 4 422 548 548 568 678 677 878 878 878 888 888 829 430 347 337 367 377 387 397 407 411 424 434 434 440 431 448								703				
406 61 066 077 087 088 109 119 300 140 151 162 2 2.2.2 408 61 066 077 087 301 321 331 342 352 663 374 410 278 289 300 310 321 331 342 352 663 374 4 4.4 411 384 395 405 416 426 437 448 458 466 479 6 6.6.6 412 490 500 511 521 525 542 553 563 574 584 7, 7, 7 413 580 606 616 521 637 648 658 669 679 890 99 99 99 414 505 511 526 886 847 757 787 787 888 899 415 62 09 90 90 90 90 90 90 90 90 90 90 90 90												
409 172 183 194 204 215 225 286 247 257 268 3 3.3 410 278 289 300 310 321 331 342 352 363 374 5 5 5.5 411 384 395 405 416 426 437 448 458 469 479 6 6 6.6 411 43 595 606 616 627 637 648 658 669 679 690 8 8.8 413 595 606 616 627 637 648 658 669 679 690 8 8.8 414 700 711 721 31 742 752 763 773 784 794 9 9.9 416 999 920 930 91 91 91 92 772 92 92 92 92 93 99 80 93 91 92 1931 4 4.0 420 325 355 365 666 66 66 66 67 66 67 66 67 66 68 697 107 67 67 78 78 68 68 68 69 67 67 69 60 8 8 8.8 421 490 21 22 242 252 263 273 284 294 304 818 128 137 747 757 767 778 788 788 88 88 899 408 492 422 653 653 666 676 670 670 670 670 670 670 670 670												
400												
410												
411			_					_			-	4 4.4
412 490 500 511 521 532 542 553 563 574 584 77 7.77 413 755 666 616 66 676 686 697 697 690 8 8 8.5 416 999 920 930 941 951 962 972 982 993 9003 411 61 61 61 61 61 61 61 61 61 61 61 61 6		-	-	-		_			-	-		
413 595 606 616 627 637 648 658 669 679 690 8 8.5 414 700 7111 721 731 742 752 763 773 784 794 9 9.9 9.9 416 90 920 930 911 951 962 763 773 784 794 161 909 920 930 911 951 962 972 982 993 *003 417 62 014 024 034 045 055 066 076 086 097 107 418 118 128 138 149 159 170 180 190 201 211 419 221 232 242 252 263 278 284 294 304 315 420 21 221 422 363 449 459 469 480 480 500 511 521 422 423 634 444 555 665 675 685 686 676 676 686 076 766 3 3 3 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0												
414 700 711 721 731 742 757 688 878 888 899 416 909 920 930 941 951 962 972 982 993 8003 417 62 014 024 034 045 055 066 076 086 097 107 418 118 128 138 149 159 170 180 190 201 211 419 221 232 242 252 263 278 284 294 304 315 420 325 335 346 356 366 377 387 397 408 418 421 422 453 449 449 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40												
416	414											
417 62 014 024 034 045 055 066 076 086 097 107 418 118 128 138 149 159 170 180 190 201 211 419 221 232 242 252 263 278 284 294 304 315 420 325 335 346 366 367 377 387 397 408 418 128 335 1542 552 562 572 583 593 603 613 624 1 1 1.0 10 128 128 137 1 1 1.0 128 128 137 1 1 1.0 128 128 137 1 1 1 1.0 128 128 137 1 1 1 1.0 128 128 137 1 1 1 1.0 128 128 137 1 1 1 1 1.0 128 128 137 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												0 0.0
418												
420 325 385 346 366 366 367 387 387 397 408 418 418 418 418 458 468 418 459 469 469 469 469 469 469 469 469 469 46												
420 325 385 346 356 366 377 387 397 408 418 422 426 426 426 426 426 426 426 426 426												
429		-						-	_			
1.0							_					10
12												
1												
1												3 3.0
426 941 951 961 972 982 992 **002 **012 **022 **033 5 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0												
427 63 043 053 063 073 083 094 104 114 124 134 6 6 6.0 7 7 7.0 428 144 155 165 175 185 195 205 215 225 236 36 7 7.0 429 246 256 266 276 286 296 306 317 327 337 8 8 8.0 9 9.0 431 431 448 488 468 478 488 498 508 518 528 538 432 548 508 568 579 589 599 609 619 629 639 433 649 659 669 679 689 699 709 719 729 739 433 649 659 669 679 689 699 709 719 729 739 435 849 839 849 859 849 819 829 839 89 435 849 839 849 879 889 899 819 829 839 89 438 848 848 848 858 868 878 889 899 819 829 839 89 438 848 848 848 848 848 848 848 848 848												
429 246 256 266 276 286 296 306 317 327 337 88 8.0 430 347 337 367 377 387 387 407 417 428 438 431 448 458 468 478 488 498 508 518 528 538 433 649 659 669 679 689 609 619 629 639 433 649 659 669 679 689 609 619 629 639 433 649 659 669 679 689 699 709 719 729 739 433 649 859 869 879 889 899 909 919 929 939 433 649 859 869 879 889 899 909 919 929 939 436 640 650 660 678 689 689 869 869 869 869 869 869 869 86												
430	428										236	
430	429	246	256	266	276	286	296	306	317	327	337	8 8.0
431	430	347	357	367	377	387	397	407	417	428	438	9 0.0
432 548 558 568 579 589 599 609 619 629 639 434 749 759 769 779 789 789 809 819 829 839 435 849 859 869 879 889 899 809 919 929 939 393 9436 836 846 856 856 8578 859 89 89 809 819 828 839 436 848 848 847 187 167 167 177 187 197 207 217 227 237 2 1.8 439 246 256 266 177 187 197 207 217 227 237 2 1.8 439 246 256 266 177 187 197 207 217 227 237 2 1.8 439 246 256 266 177 187 197 207 217 227 237 2 1.8 439 246 256 266 177 187 197 207 217 227 237 2 1.8 439 246 256 266 66 67 626 259 306 316 326 335 32 7 2 1.8 439 246 6 356 859 859 859 859 859 859 859 859 859 859		448	458	468	478	488	498	508	518	528	538	
434 749 759 769 779 789 799 809 819 829 839 435 849 859 869 879 889 89 909 919 929 939 939 436 94 959 969 979 989 909 919 919 929 939 939 436 94 959 969 979 989 999 919 919 919 939 939 939 939 94 94 94 94 94 94 94 94 94 94 94 94 94					579							
435						689						
436	434											
437 64 048 058 068 078 088 098 108 118 128 137 1 0.9 438 147 157 167 177 187 197 207 217 227 237 2 1.8 439 246 256 266 276 286 296 306 316 326 335 3 2.7 440 345 355 355 355 355 355 340 414 424 434 4 346 464 473 483 493 503 513 523 532 6 5.4 442 542 552 552 562 572 552 591 601 611 621 631 7 6.3 445 646 650 666 670 680 689 699 709 719 729 8 7.2 444 738 748 758 768 777 757 757 807 816 826 9 8.1 445 836 846 856 857 858 859 504 141 924 446 933 943 953 963 972 982 992 402 4011 4021 447 65 631 040 050 600 070 079 089 099 108 118 448 128 137 147 157 167 176 186 196 205 215 4499 222 234 244 243 243 243 233 233 233 24 450 321 331 341 350 360 369 379 389 398 408												
438												
439												
440 345 355 365 375 385 395 404 414 424 434 45 45 45 45 45 45 45 45 45 45 45 45 45												3 2.7
441 444 454 464 473 483 98 503 513 523 552 6 4.5 4 42 525 525 52 72 582 91 601 611 621 631 7 6.3 4 44 564 630 660 670 680 689 689 709 719 729 8 7.2 4 44 738 748 758 768 777 787 807 816 826 8 7.2 4 4 5 836 846 856 85 85 875 885 855 904 914 924 4 6 933 943 953 963 972 982 992 902 4011 4021 4 4 765 81 000 60 070 079 089 099 108 118 4 8 128 137 147 157 167 176 176 186 196 205 215 4 4 9 225 234 244 254 263 273 283 292 302 312 4 50			_	_		_	395	404	-		434	4 3.6
442 542 552 562 572 582 591 601 611 621 631 7 6.3 444 436 640 650 660 670 689 699 799 719 719 729 8 7.2 444 738 748 777 787 787 807 816 826 9 8.1 445 836 86 86 86 86 85 85 895 904 941 924 446 933 943 932 982 992 902 902 701 80 78 8 7.2 98 4 78 <		444	454	464	473	483	493	503	513	523	532	
443 640 650 660 670 680 689 699 709 719 729 8 7.2 444 738 748 758 768 777 787 807 816 826 445 836 846 856 865 865 875 885 895 904 914 924 446 933 943 953 963 972 982 992 902 901 901 18 921 447 65 031 040 050 060 070 079 089 099 108 118 448 128 137 147 157 167 176 186 196 205 215 449 225 234 244 254 263 273 283 292 302 312 450 321 331 341 350 360 369 379 389 398 408	442			562		582						
444 738 748 768 768 777 787 797 807 816 826 9 8.1 445 836 846 856 85 855 885 895 904 914 924 446 933 943 963 963 972 982 992 902 401 4021 447 65 81 10 40 650 60 701 679 089 099 108 118 448 128 137 147 157 167 176 186 196 205 215 449 225 234 244 254 263 278 283 283 293 203 312 450 321 331 341 350 360 369 379 389 398 408												
446 933 943 958 963 972 982 992 9002 9011 9021 447 65 501 040 050 060 070 079 089 099 108 108 118 448 128 137 147 157 167 176 186 196 205 215 449 225 234 244 254 263 273 283 292 302 312 450 321 331 341 350 360 369 379 389 398 408												
447 (55 031 040 050 060 070 079 089 099 108 118 448 128 137 147 157 167 176 176 186 196 205 215 449 225 234 244 254 263 273 283 292 302 312 450 321 331 341 350 360 369 379 389 398 408												
448 128 137 147 157 167 176 186 196 205 215 449 225 234 244 254 263 273 283 292 302 312 450 321 331 341 350 360 369 379 389 398 408	446											
449 225 234 244 263 273 283 292 302 312 450 321 331 341 350 360 369 379 389 398 408												
450 321 331 341 350 360 369 379 389 398 408												
N. L.0 1 2 3 4 5 6 7 8 9 P.P.			-		_							
N. L. 0 1 2 3 4 5 6 7 8 9 1. F.	NT	TO	1	0	9	1	5	C	7	0	0	D D
	74.	1.0	1	2	9	*	9	0	1	0	9	Γ. Γ.

TABLE—(Continued).

	1								,		
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.
450	65 321	331	341	350	360	369	379	389	398	408	
451	418	427	437	447	456	466	475	485	495	504	
452	514	523	533	543	552	562	571	581	591	600	
453	610	619	629	639	648	658	667	677	686	696	
454	706	715	725	734	744	753	763	772	782	792	
455	801	811	820	830 925	839	849	858 954	868	877	887	
456 457	896 992	906 *001	916 *011	*020	935 *030	944 *039	*049	963 *058	973 *068	982 *077	10
458	66 087	096	106	115	124	134	143	153	162	172	$\begin{array}{c c} 1 & 1.0 \\ 2 & 2.0 \end{array}$
459	181	191	200	210	219	229	238	247	257	266	3 3.0
460	276	285	295	304	314	323	332	342	351	361	4 4.0
461	370	380	389	398	408	417	427	436	445	455	5 5.0 6 6.0
462	464	474	483	492	502	511	521	530	539	549	7 7.0
463	558	567	577	586	596	605	614	624	633	642	8 8.0
464	652	661	671	680	689	699	708	717	727	736	9 9.0
465 466	745 839	755 848	764 857	773 867	783 876	792 885	801 894	811 904	820 913	829 922	
467	932	941	950	960	969	978	987	997	*006	*015	
468	67 025	034	043	052	062	071	080	089	099	108	
469	117	127	136	145	154	164	173	182	191	201	
470	210	219	228	237	247	256	265	274	284	293	
471	302	311	321	330	339	348	357	367	376	385	9
472	394	403	413	422	431	440	449	459	468	477	1 0.9
473	486	495	504	514	523	532	541	550	560	569	2 1.8 3 2.7
474 475	578 669	587 679	596 688	605 697	614 706	624 715	633 724	642 733	651 742	660 752	4 3.6
476	761	770	779	788	797	806	815	825	834	843	5 4.5
477	852	861	870	879	888	897	906	916	925	934	6 5.4
478	943	952	961	970	979	988	997	*006	*015	*024	7 6.3
479	68 034	043	052	061	070	079	088	097	106	115	8 7.2
480	124	133	142	151	160	169	178	187	196	205	9 8.1
481	215	224	233	242	251	260	269	278	287	296	
482	305		323 413	332 422	341 431	350	359	368	377	386	
483 484	395 485		502	511	520	440 529	449 538	458 547	467 556	476 565	
485	574		592	601	610	619		637	646	655	
486	664		681	690	699	708	717	726	735	744	8
487	753	762		780	789	797	806	815	824	833	1 0.8
488	842		860	869	878	886		904	913	922	2 1.6
489	931			958	966	975		993	*002		3 2.4
490	69 020		037	046	055	064	1	082	090	099	4 3.2 5 4.0
491	108			135	144 232	152	161 249	170 258	179 267	188 276	6 4.8
492 493		294	302	223 311	320	241 329		346	355	364	7 5.6
494				399				434	443	452	8 6.4
495				487	496				531	539	9 7.2
496	548	557	566	574	583	592	601	609	618	627	
497				662		679		697	705	714	
498	723			749				784	793	801	
499				836				871	880	888	
500	89	-	-	923		-	-	958	966	975	
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.

Table—(Continued).

	N I 1 0 1 2 3 4 5 6 7 8 9 P P													
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.			
500	69 897	906	914	923	932	940	949	958	966	975				
501	984	992	*001	*010	*018	*027	*036	*044	*053	*062				
502	70 070	079	088	096	105	114	122	131	140	148				
503	157	165	174	183	191	200	209	217	226	234				
504	243	252	260	269	278	286	295	303	312	321				
505	329	338	346	355	364	372	381	389	398	406				
506	415	424	432	441	449 535	458	467 552	475 561	484	492	9			
507 508	501 586	509 595	518 603	526 612	621	544 629	638	646	569 655	578 663	1 0.9			
509	672	680	689	697	706	714	723	731	740	749	2 1.8 3 2.7			
510	757	766	774	783	791	800	808	817	825	834	4 3.6			
511	842	851	859	868	876	885	893	902	910	919	5 4.5			
512	927	935	944	952	961	969	978	986	995	*003	6 5.4			
513	71 012	020	029	037	046	054	063	071	079	088	7 6.3			
514	096	105	113	122	130	139	147	155	164	172	8 7.2 9 8.1			
515	181	189	198	206	214	223	231	240	248	257	3 0.1			
516	265	273	282	290	299	307	315	324	332	341				
517	349	357	366	374	383	391	399	408	416	425				
518	433	441	450	458	466	475		492	500	508				
519	517	525	533	542	550	559	567	575	584	592				
520	600	609	617	625	634	642		659	667	675				
521	684	692	700	709	717	725		742	750	759	8			
522	767	775	784	792	800			825	834	842	1 0.8 2 1.6			
523	850	858 941	867	875	883			908 991	917 999	925 *008	3 2.4			
524 525	933 72 016	024	950 032	958 041	966			074	082		4 3.2			
526	099	107	115	123				156	165		5 4.0			
527	181	189	198	206				239	247	255	6 4.8			
528	263	272	280	288	296			321	329	337	7 5.6			
529	346	354	362	370	378	387	395	403	411	419	8 6.4			
530	428	436	444	452	460	469	477	485	493	501	9 7.2			
531	509	518	526	534	542	550	558	567	575	583				
532	591	599		616				648	656					
533	673	681	689	697	705			730	738	746				
534	754	762						811 892	819					
535 536	835 916	843 925		860 941	868 949			973	981	989	7			
. 537	997				₹030	#038	±046				1 0.7			
538				102		119		135	143		2 1.4			
539	159					199		215	223	231	3 2.1			
540	239		-				288	296	304	312	4 2.8			
541	320	328	336	344	352	360	368	376	384	392	5 3.5 6 4.2			
542	400	408		424	432	440		456	464		7 4.9			
543								536			8 5.6			
544								616			9 6.3			
545						679 759	687	695 775	703 783					
546 547	719 799					838	846	854	862					
548	878							933	941	949				
549	957	965						*013						
550	74 036				-	076		092	099	107				
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.			
٠٠.	1 1.0	1	4	0	7	10	0	,	0		1.1.			

LOGARITHMS.

Table—(Continued).

	TABLE—(Commun).													
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.			
550	74 036	044	052	060	068	076	084	092	099	107				
551	115	123	131	139	147	155	162	170	178	186				
552	194	202	210	218	225	233	241	249	257	265				
553	273	280	288	296	304	312	320	327	335	343				
554 555	351 429	359 437	367 445	374 453	382 461	390 468	398 476	406 484	414	421 500				
556	507	515	523	531	539	547	554	562	570	578				
557	586	593	601	609	617	624	632	640	648	656				
558	663	671	679	687	695	702	710	718	726	733				
559	741	749	757	764	772	780	788	796	803	811				
560	819	827	834	842	850	858	865	873	881	889				
561	896	904	912	920	927	935	943	950	958	966	1 0.8			
562	974	981	989	997	*005	*012	*020		*035	*043	1 0.8 2 1.6			
563 564	75 051 128	059	066	074	082 159	089 166	097 174	105 182	113 189	120 197	3 2.4			
565	205	136 213	143 220	151 228	236	243	251	259	266	274	4 3.2			
566	282	289	297	305	312	320	328	335	343	351	5 4.0			
567	358	366	374	381	289	397	404	412	420	427	6 4.8			
568	435	442	450	458	465	473	481	488	496	504	7 5.6 8 6.4			
569	511	519	526	534	542	549	557	565	572	580	9 7.2			
570	587	595	603	610	618	626	633	641	648	656				
571	664	671	679	686	694	702	709	717	724	732				
572	740	747	755	762	770	778	785	793	800	808				
573 574	815 891	823 899	831 906	838 914	846 921	853 929	861 937	868 944	876 952	884 959				
575	967	974	982	989		*005	*012	*020		*035				
576	76 042	050	057	065	072	080	087	095	103	110)			
577	118	125	133	140	148	155	163	170	178	185				
578	193	200	208	215	223	230	238	245	253	260				
579	268	275	283	290	298	305	313	320	328	335				
580	343	350	358	365	373	380	388	395	403	410				
581	418	425	433	440	448	455	462	470	477	485	1 0.7			
582 583	492 567	500 574	507	515	522 597	530 604	537	545 619	552 626	559 634	1 0.7			
584	641	649	582 656	589 664	671	678	612 686	693	701	708	3 2.1			
585	716	723	730	738	745	753	760	768	775	782	4 2.8			
586	790	797	805	812	819	827	834	842	849	856	5 3.5			
587	864	871	879	886	893	901	908	916	923	930	6 4.2 7 4.9			
588 589	938 77 012	945 019	953 026	960 034	967 041	975 048	982 056	989 063	997 070	*004 078	7 4.9 8 5.6			
	085	093	100	107	115	122	129	137	144	151	9 6.3			
590 591	159	166	173	181	188	195	203	210	217	225				
592	232	240	247	254	262	269	276	283	291	298				
593	305	313	320	327	335	342	349	357	364	371				
594	379	386	393	401	408	415	422	430	437	444				
595	452	459	466	474	481	488	495	503	510	517				
596 597	525 597	532 605	539	546	554	561	568	576	583	590 663				
598	670	677	612 685	619 692	627 699	634 706	641 714	648 721	656 728	735				
599	743	750	757	764	772	779	786	793	801	808				
600	815	822	830	837	844	851	959	866	873	880				
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.			

TABLE—(Continued).

	TABLE—(Continued).													
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.			
600	77 815	822	830	837	844	851	859	866	873	880				
601	887	895	902	909	916	924	931	938	945	952				
602	960	967	974	981	988	996	*003	*010	*017	*025				
603		039	046	053	061	068	075	082	089	097				
604 605	104 176	111 183	118 190	125 197	132 204	140 211	147 219	154 226	161 233	168 240				
606	247	254	262	269	276	283	290	297	305	312	8			
607	319	326	333	340	347	355	362	369	376	383	1 0.8			
608	390	398	405	412	419	426	433	440	447	455	2 1.6			
609	462	469	476	483	490	497	504	512	519	526	3 2.4			
610	533	540	547	554	561	569	576	583	590	597	4 3.2 5 4.0			
611	604	611	618	625	633	640	647	654	661	668	6 4.8			
612	675	682	689	696	704	711	718	725	732	739	7 5.6			
613 614	746 817	753 824	760 831	767 838	774 845	781 852	789 859	796 866	803 873	810 880	8 6.4			
615	888	895	902	909	916	923	930	937	944	951	9 7.2			
616	958	965	972	979	986	993	≇000	*007	*014	*021				
617	79 029	036	043	050	057	064	071	078	085	092				
618	099	106	113	120	127	134	141	148	155	162				
619	169	176	183	190	197	204	211	218	225	232				
620	239	246	253	260	267	274	281	288	295	302	_			
621	309	316	323	330	337	344	351	358	365	372	7			
622	379	386	393	400	407	414	421	428	435	442	$\begin{array}{c c} 1 & 0.7 \\ 2 & 1.4 \end{array}$			
623 624	449 518	456	463 532	470 539	477 546	484 553	491 560	498 567	505 574	511	3 2.1			
625	588	525 595	602	609	616	623	630	637	644	581 650	4 2.8			
626	657	664	671	678	685	692	699	706	713	720	5 3.5			
627	727	734	741	748	754	761	768	775	782	789	6 4.2			
628	796	803	810	817	824	831	837	844	851	858	7 4.9 8 5.6			
629	865	872	879	886	893	900	906	913	920	927	9 6.8			
630	934	941	948	955	962	969	975	982	989	996	0 0.0			
631	80 003	010	017	024	030	037	044	-051	058	065				
632 633	072 140	079	085 154	092	099 168	106 175	113 182	120 188	127 195	134 202				
634	209	147 216	223	161 229	236	243	250	257	264	271				
635	277	284	291	298	305	312	318	325	332	339				
636	346	353	359	366	373	380	387	393	400	407	6			
637	414	421	428	434	441	448	455	462	468	475	1 0.6			
638 639	482 550	489 557	496 564	502 570	509 577	516 584	523 591	530 598	536 604	543 611	2 1.2			
	618	625	632	638	645	652	659		672	679	3 1.8 4 2.4			
640			_					665	740		5 3.0			
641 642	686 754	693 760	699 767	706 774	713 781	720 787	726 794	733 801	740 808	747 814	6 3.6			
643	821	828	835	841	848	855	862	868	875	882	7 4.2			
644	889	895	902	909	916	922	929	936	943	949	8 4.8 9 5.4			
645	956	963	969	976	983	990	996	*003	*010	*017	0 0.4			
		030	037	043	050	057	064	070	077	084				
647 648	090 158	097 164	104 171	111	117 184	124 191	131 198	137 204	144 211	151 218				
649	224	231	238	178 245	251	258	265	271	278	285				
650	291	298	305	311	318	325	331	338	345	351				
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.			
	1						1			1				

TABLE-(Continued).

77 T 0 1 2 4 5 C 7 0 0 D D													
N.	L.0	1	2	3	4	5	6	7	8	9	P	. P.	
650	81 291	298	305	311	318	325	331	338	345	351			
651	358	365	371	378	385	391	398	405	411	418			
652	425	431	438	445	451	458	465	471	478	485			
653	491	498	505	511	518	525	531	538	544	551			
654	- 558	564	571	578	584 651	591 657	598 664	604	611	617			
655	624 690	631 697	637	644 710	717	723	730	671	677 743	684 750			
656 657	757	763	770	776	783	790	796	803	809	816	1		
658	823	829	836	842	849	856	862	869	875	882			
659	889	895	902	908	915	921	928	935	941	948			
660	954	961	968	974	981	987	994	*000	*007	*014			
661	82 020	027	033	040	046	053	060	066	073	079	1	7 0.7	
662	086	092	099	105	112	119	125	132	138	145	2	1.4	
663 664	151 217	158 223	164 230	171 236	178 243	184 249	191 256	197 263	204 269	210 276	3	2.1	
665	282	289	295	302	308	315	321	328	334	341	4	2.8	
666	347	354	360	367	373	380	387	393	400	406	5	3.5	
667	413	419	426	432	439	445	452	458	465	471	6	4.2	
668	478	484	491	497	504	510	517	523	530	536	7 8	4.9 5.6	
669	543	549	556	562	569	575	582	588	595	601	9	6.3	
670	607	614	620	627	633	640	646	653	659	666		0.0	
671	672	679	685	692	698	705	711	718	724	730			
672 673	737 802	743 808	750 814	756 821	763 827	769 834	776 840	782 847	789 853	795 860			
674	866	872		885	892	898	905	911	918	924			
675	930	837		950	956	963	969		982	988			
676	995	*001	*008	*014	*020	*027	*033	*040	*046	*052			
677	83 059	065	072	078	085	091	097	104	110	117			
678 679	123 187	129 193	136 200	142 206	149 213	155 219	161 225	168 232	174 238	181 245			
	251	257	264	270	276	283	289	296	302	308			
680		-	Station halled										
681 682	315 378	321 385	327 391	334 398	340 404	347 410	353 417	359 423	366 429	372 436	1 1	6 0.6	
683	. 442	448	455	461	467	474	480	487	493		2	1.2	
684	506	512	518	525	531	537	544	550	556	563	3	1.8	
685	569	575	582	588	594	601	607	613	620	626	4	2.4	
686	632	639	645	651	658	664	670	677	683	689	5	3.0	
687 688	696 759	702 765	708	715 778	721 784	727 790	734 797	740 803	746 809	753 816	7	3.6 4.2	
689	822	828	835	841	847	853	860	866	872	879	8	4.8	
690	885	891	897	904	910	916	923	929	935	942	9	5.4	
691	948	954	960	967	973	979	985	992		*004			
	84 011	017	023	029	036	042	048	055	061	067			
698	073	080	086	092	098	105	111	117	123	130			
694	136	142	148	155	161	167	173	180	186	192			
695 696	198	205	211 273	217 280	223 286	230 292	236 298	242	248	255 317			
697	261 323	267 330	336	342	348	354	361	305 367	311	379			
698	386	392	398	404	410	417	423	429	435	442			
699	448	454	460	466	473	479	485	491	497	504			
700	510	516	522	528	535	541	547	553	559	566			
N.	L.0	1	2	3	4	5	6	7	8	9	P.	P.	
		السبب											

TABLE—(Continued).

							(00.		ucu,		
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.
700	84 510	516	522	528	535	541	547	553	559	566	
701	572	578	584	590	597	603	609	615	621	628	
702	634	640	646	652	658	665	671	677	683	689	
703	696	702	708	714	720	726	733	739	745	751	
704	757	763	770	776	782	788	794	800	807	813	
705 706	819	825	831	837	844	850	856	862	868	874	_
707	880 942	887 948	893 954	899 960	905 967	911 973	917 979	924 985	930 991	936 997	7
708		009	016	022	028	034	040	046	052	058	1 0.7
709	065	071	077	083	089	095	101	107	114	120	3 2.1
710	126	132	138	144	150	156	163	169	175	181	4 2.8
711	187	193	199	205	211	217	224	230	236	242	5 3.5 6 4.2
712	248	254	260	266	272	278	285	291	297	303	7 4.9
713	309	315	321	327	333	339	345	352	358	364	8 5.6
714 715	370 431	376 437	382 443	388 449	394 455	400 461	406 467	412 473	418 479	425 485	9 6.3
716	491	497	503	509	516		528	534	540	546	
717	552	558	564	570	576	582	588	594	600	606	
718	612	618	625	631	637	648	649	655	661	667	
719	673	679	685	691	697	703	709	715	721	727	
720	733	739	745	751	757	763	769	775	781	788	
721	794	800	806	812	818	824	830	836	842	848	6
722	854	860	866	872	878	884	890	896	902	908	$\begin{array}{c c} 1 & 0.6 \\ 2 & 1.2 \end{array}$
723 724	914 974	920 980	926 986	932	938 998	944 *004	950 *010	956 *016	962 *022	968 *028	3 1.8
725	86 034	040	046	992 052	058	064	070	076	082	088	4 2.4
726	094	100	106	112	118	124	130	136	141	147	5 3.0
727	153	159	165	171	177	183	189	195	201	207	6 3.6
728	213	219	225	231	237	243	249	255	261	267	7 4.2 8 4.8
729	273	279	285	291	297	303	308	314	320	326	9 5.4
730	332	338	344	350	356	362	368	374	380	386	7 0.2
731 732	392	398	404	410	415	421	427	433	439	445	
733	451 510	457 516	463 522	469 528	475 534	481 540	487 546	493 552	499 558	504 564	
734	570	576	581	587	593	599	605	611	617	623	
735	629	635	641	646	652	658	664	670	676	682	
736	688	694	700	705	711	717	723	729	735	741	5
737	747	753	759	764	770	776	782	788	794	800	1 0.5
738 739	806 864	812 870	817	823	829 888	835 894	841 900	847 906	853 911	859 917	2 1.0
740	923	929	935	941	947	953	958	964	970	976	3 1.5 4 2.0
741	982	988	994	999	*005	*011	*017	*023	*029	*035	5 2.5
	87 040	046	052	058	064	070	075	081	087	093	6 3.0 7 3.5
743	099	105	111	116	122	128	134	140	146	151	8 4.0
744	157	163	169	175	181	186	192	198	204	210	9 4.5
745	216	221	227	233	239	245	251	256	262	268	
746	274	280	286	291	297	303	309	315	320	326 384	
747 748	332 390	338 396	344 402	349 408	355 413	361 419	367 425	373 431	379 437	442	
749	448	454	460	466	371	477	483	489	495	500	
750	506	512	518	523	529	535	541	547	552	558	
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.

TABLE—(Continued).

							`				
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
750	87 506	512	518	523	529	535	541	547	552	558	
- 751	564	570	576	581	587	593	599	604	610	616	
752	622	628	633	639	645	651	656	662	668	674	
753	679	685	691	697	703	708	714	720	726	731	
754	737	743	749	754	760	766	772	777	783	789	
755 756	795 852	800 858	806 864	812 869	818 875	823 881	829 887	835 892	841	846	
757	910	915	921	927	933	938	944	950	898 955	904 961	
758	967	973	978	984	990	996	*001	*007	*013	*018	
759		030	036	041	047	053	058	064	070	076	
760	081	087	093	098	104	110	116	121	127	133	
761	138	144	150	156	161	167	173	178	184	190	6
762	195	201	207	213	218	224	230	235	241	247	1 0.6
763	252	258	264	270	275	281	287	292	298	304	2 1.2 3 1.8
764 765	309 366	315 372	321 377	326	332 389	338 395	343	349	355	360	4 2.4
766	423	429	434	383 440	446	451	400 457	406 463	412 468	417	5 3.0
767	480	485	491	497	502	508	513	519	525	530	6 3.6
768	536	542	547	553	559	564	570	576	581	587	7 4.2
769	593	598	604	610	615	621	627	632	638	643	8 4.8 9 5.4
770	649	655	660	666	672	677	683	689	694	700	9 0.4
771	705	711	717	722	728	734	739	745	750	756	
772 773	762	767	773	779	784	790	795	801	807	812	
774	818 874	824 880	829 885	835 891	840 897	846 902	852 908	857 913	863 919	868 925	
775	930	936	941	947	953	958	964	969	975	981	to a second
776	986	992	997	*003	₹009		*020		*031	*037	
777	89 042	048	053	059	064	070	076	081	087	092	
778	098	104	109	115	120	126	131	137	143	148	
779	154	159	165	170	176	182	187	193	198	204	
780	209	215	221	226	232	237	243	248	254	260	
781	265	271	276	282	287	293	298	304	310	315	
782	321	326	332	337	343	348	354	360	365	371	$\begin{array}{c c} 1 & 0.5 \\ 2 & 1.0 \end{array}$
783 784	376 432	382 437	387 443	393 448	398 454	404 459	409 465	415 470	421 476	426 481	2 1.0 1.5
785	487	492	498	504	509	515	520	526	531	537	4 2.0
786	542	548	553	559	564	570	575	581	586	592	5 2.5
787	597	603	609	614	620	625	631	636	642	647	6 3.0
788	653	658	664	669	675	680	686	691	697	702	7 3.5
789	708	713	$\frac{719}{774}$	$\frac{724}{779}$	730	735	$\frac{741}{796}$	801	752	757	8 4.0 9 4.5
790 791	818	823	829	834	840	845	851	856	862	867	
791	818	878	883	889	894	900	905	911	916	922	
793	927	933	938	944	949	955	960	966	971	977	
794	982	988	993	998	*004	*009	*015	*020	*026	*031	
795		042	048	053	059	064	069	075	080	086	
796	091	097	102	108	113	119	124	129	135	140	
797 798	146 200	151 206	157 211	162 217	168 222	173 227	179 233	184 238	189 244	195 249	
798	255	260	266	271	276	282	287	293	298	304	
800	309	314	320	325	331	336	342	347	352	358	
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.
_X.	12.0	1	4	3	-1	0	0	1	0	0	1. F.

TABLE—(Continued).

					LAB.	DE-	(00)		uea)) -	
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.
800	90 309	314	320	325	331	336	342	347	352	358	
801	363	369	274	380	385	390	396	401	407	412	
802	417	423	428	434	439	445	450	455	461	466	
803	472	477	482	488	493	499	504	509	515	520	
804	526	531	536	542	547	553	558	563		574	
805 806	580 634	585 639	590 644	596 650	601 655	607 660	612 666	617 671	623	628 682	
807	687	693	698	703	709	714	720	725	730	736	
808	741	747	752	757	763	768	773	779	784	789	
809	795	800	806	811	816	822	827	832	838	843	
810	849	854	859	865	870	875	881	886	891	897	
811	902	907	913	918	924	929	934	940	945	950	6
812	956	961	966	972	977	982	988	993	998	*004	1 0.6
813	91 009	014	020	025	030	036	041	046	052	057	3 1.8
814 815	062 116	068 121	073 126	078 132	084 137	089 142	094 148	100 153	105 158	110 164	4 2.4
816	169	174	180	185	190	196	201	206	212	217	5 3.0
817	222	228	233	238	243	249	254	259	265	270	6 3.6
818	275	281	286	291	297	302	307	312	318	323	7 4.2
819	328	334	339	344	350	355	360	365	371	376	8 4.8 9 5.4
820	381	387	392	397	403	408	413	418	424	429	3 3.4
821	434	440	445	450	455	461	466	471	477	482	
822	487	492	498	503	508	514	519	524	529	535	
823 824	540 593	545 598	551 603	556 609	561 614	566 619	572 624	577 630	582 635	587 640	
825	645	651	656	661	666	672	677	682	687	693	
826	698	703	709	714	719	724	730	735	740	745	
827	751	756	761	766	772	777	782	787	793	798	
828	803	808	814	819	824	829	834	840	845	850	
829	855	861	866	871	876	882	887	892	897	903	
830	908	913	918	924	929	934	939	944	950	955	
831	960	965	971	976	981	986	991	997		*007	5
	92 012	018	023	028	033	038	044	049	054	059	$\begin{array}{c c} 1 & 0.5 \\ 2 & 1.0 \end{array}$
833 834	065 117	$070 \\ 122$	075 127	080 132	085 137	091 143	096 148	101 153	106 158	111 163	2 1.0 3 1.5
835	169	174	179	184	189	195	200	205	210	215	4 2.0
836	221	226	231	236	241	247	252	257	262	267	5 2.5
837	273	278	283	288	293	298	304	309	314	319	6 3.0
838	324	330	335	340	345	350	355	361	366	371	7 3.5
839	376	381	387	392	397	402	407	412	418	423	8 4.0 9 4.5
840	428	433	438	443	449	454	459	464	469	474	
841 842	480 531	485 536	490 542	495 547	500 552	505 557	511 562	516 567	521 572	526 578	
843	583	588	593	598	603	609	614	619	624	629	
844	634	639	645	650	655	660	665	670	675	681	
845	686	691	696	701	706	711	716	722	727	732	
846	737	742	747	752	758	763	768	773	778	783	
847	788	793	799	804	809	814	819	824	829	334	
848 849	840 891	845 996	850 901	855 906	860 911	865 916	921	875 927	881 932	886 937	
850	942	947	952	957	962	967	973	978	983	988	
N.	L.0	1	2	3		5	6	7	8	9	P. P.
IN.	1.0	1	2	9	4	9	0	1	8	9	r. P.

TABLE—(Continued).

N.	L.0	1	2	3	4	5	6	7	8	9	P. P.
850	92 942	947	952	957	962	967	973	978	983	988	
851	993	998	*003	*008	*013	*018	*024	*029	*034	*039	
852	93 044	049	. 054	059	064	069	075	080	085	090	
853	095	100	105	110	115	120	125	131	136	141	
854	146	151	156	161	166	171	176	181	186	192	
855	197	202	207	212	217	222	227	232	237	242	
856	247	252	258	263	268	273	278	283	288	293	6
857	298	303	308	313	318	323	328	334	339	344	1 0.6
858	349	354	359	364	369	374	379	384	389	394	2 1.2
859	399	404	409	4.4	420	425	430	435	440	445	3 1.8
860	450	455	460	465	470	475	480	485	490	495	4 2.4
861	500	505	510	515	520	526	531	536	541	546	5 3.0 6 3.6
862	551	556	561	566	571	576	581	586	591	596	7 4.2
863	601	606	611	616	621	626	631	636	641	646	8 4.8
864	651	656	661	666	671	676	682	687	892	897	9 5.4
865	702	707	712	717	722	727	732	737	742	747	V 01.2
866	752	757	762	767	772	777	782	787	792	797	
867	802	807	812	817	822	827	832	837	842	847	
868	852	857	862	867	872	877	882	887	892	897	
869	902	907	912	917	922	927	932	937	942	947	
870	952	957	962	967	972	977	982	987	992	997	
871	94 002	007	012	017	022	027	032	037	042	047	5
872	052	057	062	067	072	077	082	086	091	096	1 0.5
873	101	106	111	116	121	126	131	136	141	146	2 1.0 3 1.5
874	151	156	161	166	171	176	181	186	191	196	3 1.5
875	201	206	211	216	221	226	231	236	240	245	5 2.5
876 877	250 300	255 305	260	265	270	275	280	285	290	295	6 3.0
878	349	354	310 359	315 364	320 369	325 374	330 379	335 384	340 389	345 394	7 3.5
879	399	404	409	414	419	424	429	433	438	443	8 4.0
880	448	453	458	463	468	473	478	483	488	493	9 4.5
	498	503	507	512	517	522		MARKOCOUT &	537	542	
881 882	547	552	557	562	567	571	527 576	532	586	591	
883	596	601	606	611	616	621	626	581 630	635	640	
884	645	650	655	660	665	670	675	680	685	689	
885	694	699	704	709	714	719	724	729	734	738	
886	743	748	753	758	763	768	773	778	783	787	4
887	792	797	802	807	812	817	822	827	832	836	1 0.4
888	841	846	851	856	861	866	871	876	880	885	2 0.8
889	890	895	900	905	910	915	919	924	929	934	3 1.2
890	939	944	949	954	959	963	968	973	978	983	4 1.6 5 2.0
891	988	993	998	*002	*007	*012	*017	*022	*027	*032	6 2.4
892	95 036	041	7046	051	056	061	066	071	075	080	7 2.8
893	085	090	095	100	105	109	114	119	124	129	8 3.2
894	134	139	143	148	153	158	163	168	173	177	9 3.6
895	182	187	192	197	202	207	211	216	221	226	
896	231	236	240	245	250	255	260	265	270	274	
897. 898	279 328	284 332	289 337	294 342	299 347	303 352	308	313	318	323 371	
899	376	381	386	390	395	400	357 405	361 410	366 415	419	
900	424	429	434	439	444	448	453	458	463	468	
* CONTRACTOR CONTRACTO			Makes Parket				-	i	-		T) D
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.

TABLE—(Continued).

					ADI	JE-	(001	uin	ueu j	•	
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.
900	95 424	429	434	439	444	448	453	458	463	468	
901	472	477	482	487	492	497	501	506	511	516	
902	521	525	530	535	540	545	550	554	559	564	
903	569	574	578	583	588	593	598	602	607	612	
904	617 665	622 670	626 674	631 679	636 684	641	646 694	650 698	655	660	
905 906	713	718	722	727	732	737	742	746	703 751	708 756	
907	761	766	770	775	780	785	789	794	799	804	
908	809	813	818	823	828	832	837	842	847	852	
909	856	861	866	871	875	880	885	890	895	899	
910	904	909	914	918	923	928	933	938	942	947	
911	952	957	961	966	971	976	980	985	990	995	5
912	999	*004	*009	*014	*019	*023	₹028	*033	*038	₹042	1 0.5
913 914	96 047 095	052 099	057 104	061 109	066 114	071 118	076 123	080 128	085 133	090	3 1.5
914	142	147	152	156	161	166	171	175	180	137 185	4 2.0
916	190	194	199	204	209	213	218	223	227	232	5 2.5
917	237	242	246	251	256	261	265	270	275	280	6 3.0
918	284	289	294	298	303	308	313	317	322	327	7 3.5
919	332	336	341	346	350	355	360	365	369	374	8 4.0
920	379	384	388	393	398	402	407	412	417	421	9 4.5
921	426	431	435	440	445	450	.454	459	464	468	
922	473	478	483	487	492	497	501	506	511	515	
923	520	525	530	534	539	544	548	553	558	562	
924	567	572	577	581	586	591	595	600	605	609	
925	614 661	619 666	624 670	628 675	633 680	638 685	642 689	647 694	652 699	656 703	
926 927	708	713	717	722	727	731	736	741	745	750	
928	755	759	764	769	774	778	783	788	792	797	
929	802	806	811	816	820	825	830	834	839	844	
930	848	853	858	862	867	872	876	881	886	890	
931	895	900	904	909	914	918	923	928	932	937	4
932	942	946	951	956	960	965	970	974	979	984	1 0.4
933	988	993	997	*002	*007	*011	*016	*021	*025	×030	2 0.8
934	97 035	039	044	049	053	058	063	067	072	077	3 1.2 4 1.6
935 936	081 128	086 132	090 137	095 142	100 146	104 151	109 155	114 160	118 165	123 169	4 1.6 5 2,0
937	174	179	183	188	192	197	202	206	211	216	6 2.4
938	220	225	230	234	239	243	248	253	257	262	7 2.8
939	267	271	276	280	285	290	294	299	304	308	8 3.2
940	313	317	322	327	331	336	340	345	350	354	9 3.6
941	359	364	368	373	377	382	387	391	396	400	
942	405	410	414	419	424	428	433	437	442	447	
943	451	456	460	465	470	474	479	483	488	493	
944	497	502	506	511	516	520	525 571	529 575	534	539 585	
945 946	543 589	548 594	552 598	557 603	562 607	566 612	617	621	580 626	630	
947	635	640	644	649	653	658	663	667	672	676	
948	681	685	690	695	699	704	708	713	717	722	
949	727	731	736	740	745	749	754	759	763	768	
950	772	777	782	786	791	795	800	804	809	813	
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.
21.	1 0		_		. 1	1					

LOGARITHMS.

TABLE—(Continued).

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
950	97 772	777	782	786	791	795	800	804	809	813	
951	818	823	827	832	836	841	845	850	855	859	
952	864	868	873	877	882	886	891	896	900	905	
953	909	914	918	923	928	932	937	941	946	950	
954 955	955 98 000	959 005	964	868 014	973 019	978 023	982 028	987 032	991 037	996 041	
956	046	050	055	059	064	068	073	078	082	087	
957	091	096	100	105	109	114	118	123	127	132	
958	137	141	146	150	155	159	164	168	173	177	
959	182	186	191	195	200	204	209	214	218	223	
960	227	232	236	241	245	250	254	259	263	268	5
961	272	277	281	286	290	295	299	304	308	313	1 0.5
962 963	318 363	322 367	327 372	331 376	336 381	340 385	345	349 394	354 399	358 403	2 1.0
964	408	412	417	421	426	430	435	439	444	448	3 1.5
965	453	457	462	466	471	475	480	484	489	493	4 2.0
966	498	502	507	511		520	525	529	534	538	5 2.5 5 3.0
967	543	547	552	556	561	565	570	574	579	583	7 3.5
968 969	588 632	592 637	597 641	601	605 650	655	614 659	619 664	623 668	628 673	8 4.0
970	677	682	686	691	695	700	704	709	713	717	9 4.5
971	722	726	731	735	740	744	749	753	758	762	
972	767	771	776	780	784	789	793	798	802	807	
973	811	816	820	825	829	834	838	843	847	851	
974	856	860	865	869	874	878	883		892	896	
975	900	905	909	914	918	923	927	932	936	941	
976 977	945 989	949	954	958 *003	963 *007	967 *012	972 *016	976	981 #025	985 *029	
978		038	043	047	052	056	061	065	069	074	
979	078	083	087	092	096	100	105	109	114	118	
980	123	127	131	136	140	145	149	154	158	162	
981	167	171	176	180	185	189	193	198	202	207	4
982 983	211 255	216 260	220 264	224 269	229 273	233 277	238 282	242 286	247 291	251 295	$\begin{array}{c c} 1 & 0.4 \\ 2 & 0.8 \end{array}$
984	300	304	308	313	317	322	326	330	335	339	3 1.2
985	344	348	352	357	361	366	370	374	379	383	4 1.6
986	388	392	396	401	405	410	414	419	423	427	5 2.0
987 988	432 476	436 480	441 484	445 489	449 493	454 498	458 502	463 506	467 511	471 515	6 2.4 7 2.8
989	520	524	528	533	537	542	546	550	555	559	8 3.2
990	564	568	572	577	581	585	590	594	599	603	9 3.6
991	607	612	616	621	625	629	634	638	642	647	
992	651	656	660	664	669	673	677	682	686	691	
993		699	704	708	712	717	721	726	730	734	
994 995	739 782	743 787	747 791	752 795	756 800	760 804	765 808	769 813	774	778 822	
996		830	835	839	843	848	852	856	861	865	
997	870	874	878	883	887	891	896	900	904	909	
998		917	922	926	930	935	939	944	948	952	
999		961	965	970	974	978	983	987	991	996	
1000	00 000	004	009	013	017	022	026	030	035	039	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

TRIGONOMETRIC FUNCTIONS.

DIRECTIONS FOR USING THE TABLE.

The table given on pages 74-78 contains the natural sines. cosines, tangents, and cotangents of angles from 0° to 90°. Angles less than 45° are given in the first column at the lefthand side of the page, and the names of the functions are given at the top of the page; angles greater than 45° appear at the right-hand side of the page, and the names of the functions are given at the bottom. Thus, the second column contains the sines of angles less than 45° and the cosines of angles greater than 45°; the sixth column contains the cotangents of angles less than 45° and the tangents of angles greater than 45°. To find the function of an angle less than 45°, look in the column of angles at the left of the page for the angle, and at the top of the page for the name of the function; to find a function of an angle greater than 45°, look in the column at the right of the page for the angle and at the bottom of the page for the name of the function. The successive angles differ by an interval of 10'; they increase downwards in the left-hand column and upwards in the right-hand column, Thus, for angles less than 45° read down from top of page, and for angles greater than 45° read up from bottom of page.

The third, fifth, seventh, and ninth columns, headed d, contain the differences between the successive functions; for example, in the second column we find that the sine of 32° 10' is .5324 and that the sine of 32° 20' is .5348; the difference is .5348 — .5324 = .0024, and the 24 is written in the third column, just opposite the space between .5324 and .5348. In like manner the differences between the successive tabular values of the tangents are given in the fifth column, those between the cotangents in the seventh column, and those for the cosines in the ninth column. These differences in the functions correspond to a difference of 10' in the angle; thus, when the angle 32° 10' is increased by 10', that is, to 32° 20', the increase of the sine is .0024, or, as given in the table, 24. It will be observed that in the tabular difference no attention is paid to the decimal point, it being understood that the difference is

merely the number obtained by subtracting the last two or three figures of the smaller function from those of the larger. These differences are used to obtain the sines, cosines, etc. of angles not given in the table; the method employed may be illustrated by an example. Required, the tangent of $27^{\circ}34'$. Looking in the table, we see that the tangent of $27^{\circ}30'$ is .5206, and (in column 5) the difference for 10 is 37. Difference for 1' is $37 \div 10 = 3.7$, and difference for 4' is $3.7 \times 4 = 14.8$. Adding this difference to the value of the tan $27^{\circ}30'$, we have

 $\tan 27^{\circ} 30' = .5206$ difference for 4' = 14.8

 $\tan 27^{\circ} 34' = .5220.8 \text{ or } .5221, \text{ to four places.}$

Since only four decimal places are retained, the 8 in the fifth place is dropped and the figure in the fourth place is increased by 1, because 8 is greater than 5.

To avoid multiplication, the column of proportional parts, headed P. P., at the extreme right of the page, is used. At the head of each table in this column is the difference for 10'. and below are the differences for any intermediate number of minutes from 1' to 9'. In the above example, the difference for 10' was 37; looking in the table with 37 at the head, the difference opposite 4 is 14.8; that opposite 7 is 25.9; and so on. For want of space, the differences for the cotangents for angles less than 45° (or the tangents of angles greater than 45°) have been omitted from the tables of proportional parts. The use of these functions should be avoided, if possible, since the differences change very rapidly, and the computation is therefore likely to be inexact. The method to be employed when dealing with these functions may be shown by an example: Required, the tangent of 76° 34'. Since this angle is greater than 45°, we look for it in the column at the right, and read up; opposite the 76° 30', we find, in sixth column, the number 4.1653, and corresponding to it in seventh column is the difference 540. Since 540 is the difference for 10', the difference for 4' is $540 \times 4_h = 216$. Adding this difference: $\tan 76^{\circ} 30' = 4.1653$

difference for 4' = 216 $\tan 76^{\circ} 34' = 4.1869$

When the angle contains a certain number of seconds, divide the number by 6, and take the whole number nearest to the quotient: look out this number in the table of proportional parts (under the proper difference), and take out the number that is opposite to it. Shift the decimal point one place to the left, and then add it to the partial function already found.

Find the sine of 34° 26′ 44".

$$\sin 84^{\circ} 20' = .5640$$

difference for
$$6' = 14.4$$

difference for $44'' = 1.7$

Difference for 10' = 24.

 $\frac{44}{8} = 7\frac{1}{3}$. Look out in the P. P. table the number under 24 and opposite 7. It is 16.8. Shifting the decimal point one place to the left, we get 1.68, or, say, 1.7.

The tangent is found in the same way as the sine.

To find the cosine of an angle:

As the angle increases, the value of the cosine decreases. so that, instead of adding the values corresponding to 6' and 44" to the function already found, we subtract them from it. Thus, find cos 34° 26′ 44″.

cos
$$34^{\circ}$$
 $20' = .8258$ Difference for $10' = 17$.

10.2 difference for 6' =

difference for 44" = 1.2

total difference =
$$\frac{1.2}{8247}$$

The number under the 17 and opposite the 7, in the P. P. table, is 11.9. Therefore, take 1.19, or, say, 1.2.

Therefore, $\cos 34^{\circ} 26' 44'' = .8258 - .0011 = .824^{\circ}$.

Only four decimal places are kept; therefore, the figure of the difference following the decimal point is dropped before subtracting.

The cotangent is found in the same manner.

We will now consider angles greater than 45°.

Find the sine of 68° 47' 99".

In obtaining the difference, it must be remembered to choose the one between the sine of 68° 40' and the next angle above it, namely, 68° 50'.

 $\sin 68^{\circ} 40' = .9315$ difference for 7' = 7difference for 19'' = .4 $\sin 68^{\circ} 47' 22'' = .9322$ Difference for 10' = 10.

22 = 32, say 4. Under the 10 and opposite the 4 is the number 4.0; shifting the decimal point, we get 4.

As usual, only four decimal places are kept.

The tangent is found in the same manner.

Find cos 68° 47′ 22″.

As before, the cosine decreases as the angle increases; therefore, we subtract the successive sine values corresponding to the increments in the angle.

 $\cos 68^{\circ} 40' = .3638$ Difference for 10' = 27.

 $\begin{array}{ll} \text{difference for 7'} = & 18.9 \\ \text{difference for 22''} = & 1.1 \\ \text{total difference} = & 20 \\ \hline & .3618 \end{array}$

Under the 27 and opposite the 4 is the number 10.8; therefore, take 1.08 in this case, or, say, 1.1.

Therefore, $\cos 68^{\circ} 47' 22'' = .3638 - .002 = .3618$.

The cotangent is found in the same way.

In finding the functions of an angle, the only difficulty likely to be encountered is to determine whether the difference obtained from the table of proportional parts is to be added or subtracted. This can be told in every case by observing whether the function is increasing or decreasing as the angle increases. For example, take the angle 21°; its sine is .3584, and the following sines, reading downwards, are .3611, .3638, etc. It is plain, therefore, that the sine of say 21° 6' is greater than that of 21°, and that the difference for 6' must be added. On the other hand, the cosine of 21° is .9336, and the following cosines, reading downwards, are .9325, .9315, etc.; that is, as the angle grows larger the cosine decreases. The cosine of an angle between 21° and 21° 10', say 21° 6', must therefore lie between .9325 and .9315; that is, it must be smaller than .9325, which shows that in this case the difference for 6' must be subtracted from the cosine of 21°.

We will now consider the case in which the function, i. e., the sine, cosine, tangent, or cotangent, is given and the corresponding angle is to be found. Find the angle whose sine is .4943. The operation is

$$\begin{array}{rcl}
.4943 & \text{Difference for } 10' = 26, \\
.4924 & = \sin 29^{\circ} 30', \\
1st remainder & 19 \\
& 18.2 & = \text{difference for } 7', \\
2d remainder & .8 & & & \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3' \text{ or } 18'', \\
.8 & = \text{difference for } 3'', \\
.8 & = \text{difference for } 3'', \\
.8 & = \text{difference fo$$

 $.4943 = \sin 29^{\circ} 37' 18''$

Looking down the second column, we find the sine next smaller than .4943 to be .4924, and the difference for 10' to be 26. The angle corresponding to .4924 is 29°30'. Subtracting the .4924 from .4943, the first remainder is 19; looking in the table of proportional parts, the part next lower than this difference is 18.2, opposite which is 7'. Subtracting this difference from the remainder, we get .8, and, looking in the table, we see that 7.8 with its decimal point moved one place to the left is nearest to the second difference. This is the difference for .3' or 18". Hence, the angle is 29°30' +7' +18 = 29°37' 18".

Find the angle whose tangent is .8824.

$$.8824 \qquad \text{Difference for } 10' = 51.$$

$$.8796 \qquad = \tan 41^{\circ} 20'.$$
1st remainder 28

$$25.5 \qquad = \text{difference for } 5'.$$
2d remainder 2.5

$$2.5 \qquad = \text{difference for } .5' \text{ or } 30''.$$

 $.8824 = \tan 41^{\circ} 25' 30''$.

In the two examples just given, the minutes and seconds corresponding to the 1st and 2d remainders are added to the angle taken from the table. Thus, in the first example, an inspection of the table shows that the angle increases as the sine increases; hence, the angle whose sine is .4943 must be greater than 29° 30′, whose sine is .4924. For this reason the correction must be added to 29° 30′. The same reasoning applies to the second example.

Find the angle whose cosine is .7742.

.7742 Difference for 10' = 18. .7735 = cos 39° 20'.

1st remainder

5.4 = difference for

2d remainder 1.6

1.62 = difference for .9' or 54''.

 $39^{\circ} 20' - 3' 54'' = 39^{\circ} 16' 6''$, which is the angle whose cosine is .7742.

Looking down the eighth column, headed cos, the next smaller cosine is .7735, to which corresponds the angle 39°20′. The difference for 10′ is 18. Subtracting, the remainder is 7, and the next lower number in the table of proportional parts is 5.4, which is the difference for 3′. Subtracting this from 1st remainder, 2d remainder is 1.6, which is nearest 16.2 of table of proportional parts, if the decimal point of the latter is moved to the left onc place. Since 16.2 corresponds to a difference of 9′, 1.62 corresponds to a difference of .9′, or 54″. Hence, the correction for the angle 39° 20′ is 3′ 54″. From the table, it appears that, as the cosine increases, the angle grows smaller; therefore, the angle whose cosine is .7742 must be smaller than the angle whose cosine is .7735, and the correction for the angle must be subtracted.

Find the angle whose cotangent is .9847.

.9847 Difference for
$$10' = 57$$
.
.9827 = $\cos 45^{\circ} 30'$.

1st remainder 20

17.1 = difference for 3'.

2d remainder 2.9

2.85 = difference for .5' or 30''.

 $45^{\circ}30' - 3'30'' = 45^{\circ}26'30''$, the angle whose cotangent is .9847.

In finding the angle corresponding to a function, as in the above examples, the angles obtained may vary from the true angle by 2 or 3 seconds; in order to obtain the number of seconds accurately, the functions should contain six or seven decimal places.

0	,	Sin.	d.	Tan.	d.	Cot.	d.	Cos.	d.	1	_	l P	. P.
0	0	0.0000	-	0,0000	-	infinit.		1.0000	-	10	90		
٠	10	0.0029	29	0.0029	29	343,7737		1.0000	0	50	30		
	20	0.0058	29	0.0058	29	171.8854		1.0000	0	40			30
		0.0087	29 29	0.0087	29 29	114.5887		1.0000	0	30		1	3.0
		0.0116	29	0.0116	29	85.9398		0.9999	0	20		2	6.0
	50	0.0145	1	0.0145		68.7501		0.9999		10		3 ,	9.0
1	0	0.0175	30	0.0175	30	57.2900		0.9998	1	0	89	4	12.0
•	10	0.0204	29	0.0204	29	49,1039	81861	0.9998	0	50	-	5	15.0 18.0
		0.0233	29	0.0233	29 29	42.9641	61398	0.0007	1	40		7	21.0
		0.0262	29 29	0.0262	29	38.1885	47756 38207	0.9997	0	30		8	24.0
		0.0291	29	0.0291	29	34.3678	31262	0 0000	1	20		9	27.0
	50	0.0320		0.0320	29	31.2416		0.9995	1	10			
2	0	0.0349	29	0.0349		28.6363	26053	0.9994		0	88	1	
-	10	0.0378	29	0.0378	29	26.4316	22047	0.9993	1	50			29
		0.0407	29 29	0.0407	29 30	24.5418	18898	0.0000	1 2	40		.1	2.9
		0.0436	29	0.0437	29	22.9038	16380 14334	0.0000	1	30		2 3	5.8 8.7
		0.0465	29	0.0466	29	21.4704	12648	0.9989	î	20		4	11.6
	50	0.0494	29	0.0495	29	20.2056	11245	0.9988	2	10		5	14.5
3	0	0.0523		0.0524		19.0811		0.9986	1	0	87	6	17.4
•	10	0.0552	29	0.0553	29 29	18.0750	10061	0.9985	1 2	50		7	20.3
		0.0581	29	0.0582	30	17.1693	9057 8194	0.9983	2	40		8	23.2
		0.0610	30	0.0612	29	16.3499	7451	0.9981	Ĩ	30		9	26.1
		0.0640	29	0.0641	29	15.6048	6804	0.9980	2	20			
	50	0.0669	29	0.0670	29	14.9244	6237	0.9978	2	10			28
4	0	0.0698		0.0699	30	14.3007		0.9976	2	0	86	1	2.8
	10	0.0727	29 29	0.0729	29	13,7267	5740 5298	0.9974	3	50		2	5.6
		0.0756	29	0.0758	29	13.1969	4907	0.9971	2	40		3	8.4
		0.0783	29	0.0787	29	12.7062	4557	0.9969	2	30		4	11.2
		0.0814	29	0.0816	30	12.2505	4243	0.9967	3	20		5	14.0
	50	0.0843	29	0.0846	29	11.8262	3961	0.9964	2	10		6 7	16.8 19.6
5	0	0.0872		0.0875		11.4301		0.9962		0	85	. 8	22.4
	10	0.0901	29 28	0.0904	29 30	11.0594	3707 3475	0.9959	3 2	50		9	25.2
		0.0929	29	0.0934	29	10.7119	3265	0.9957	3	40			
		0,0958	29	0.0963	29	10.3854	3074	0.9954	3	30			_ `
		0.0987 0.1016	29	$0.0992 \\ 0.1022$	30	10.0780 9.7882	2898	0.9951	3	20 10			5 0.5
			29	-	29	-	2738		3		٠.	1 2	1.0
6	0	0.1045	29	0.1051	29	9.5144	2591	0.9945	3	0	84	3	1.5
	10	0.1074	29	0.1080	30	9.2553	2455	0.9942	3	50		4	2.0
		0.1103	29	0.1110	29	9.0098	2329	0.9939	3	40		5	2.5
		$0.1132 \\ 0.1161$	29	0.1139	30	8.7769 8.5555	2214	0.9936	4	30 20		6	3.0
		0.1190	29	0.1198	29	8.3450	2105	0.9929	3	10		7	3.5
_		0.1219	29	0.1228	30		2007	0.9925	4		83	8 9	4.0
7	0		29		29	8.1443	1913		3		00	,	T.0
		0.1248	28	0.1257	30	7.9530	1826	0.9922	4	50			
		$0.1276 \\ 0.1305$	29	0.1287 0.1317	30	7.7704 7.5958	1746	0.9918	4	40 30			4
		0.1334	29	0.1346	29	7.4287	1671	0.9911	3	20		1	0.4
		0.1363	29	0.1376	30	7.2687	1600	0.9907	4	10		2 3	0.8
8		0,1392	29	0.1405	29	7.1154	1533	0.9903	4		82	4	1.2 1.6
0			29		30	THE RESERVE THE PERSON NAMED IN	1472		4		02	5	2.0
		$0.1421 \\ 0.1449$	28	$0.1435 \\ 0.1465$	30	6.9682 6.8269	1413	0.9899 0.9894	5	50 40	11	6	2.4
		0.1449	29	0.1465	30	6.6912	1357	0.9894	4	30		7	2.8
		0.1507	29 29	0.1524	29	6.5606	1306	0.9886	4	20		8	3.2
		0.1536		0.1554	30	6.4348	1258	0.9881	5	10		9	3.6
9		0.1564	28	0.1584	30	6.3138	1210	0.9877	4	0	81		
-			7		-				3	-	0		D
_	1	Cos.	d.	Cot.	d.	Tan.	d.	Sin.	d.	1	_	Ρ.	Р.

0	/	Sin.	d.	Tan. d	Cot.	d.	Cos.	d.		P. P.
9	0	0.1564	-	0.1584	6.3138	17.00	0.9877	5	0 81	
	10	0.1593	29 29	0.1614 30		1168 1126	0.9872	4	50	00 0/ 00
	20	0.1622	28	0.1644 90	6,0844	1086	0.9868	5	40	32 31 30
		0.1650	29	0.1673 36	5.9758	1050	0.9863	5	30	1 3.2 3.1 3.0 2 6.4 6.2 6.0
		0.1679	29	$\begin{bmatrix} 0.1703 \\ 0.1733 \end{bmatrix}$ 30	5.8708	1014	$0.9858 \\ 0.9853$	5	20 10	3 9.6 9.3 9.0
		0.1708	28	30		981		5		4 12 8 12.4 12.0
10	0	0.1736	29	0.1763	5.6713	949	0.9848	5	0 80	5 16.0 15.5 15.0
	10	0.1765	29	$ 0.1793 _{36}$	5.5764	919	0.9843	5	50	6 19.2 18.6 18.0
	20	0.1794	28	0.1823 36	5.4845	890	0.9838	5	40	7 22.4 21.7 21.0 8 25.6 24.8 24.0
		$0.1822 \\ 0.1851$	29	$0.1853 \begin{array}{c} 30 \\ 0.1883 \end{array}$	5.3955 5.3093	862	$0.9833 \\ 0.9827$	6	30 20	8 25.6 24.8 24.0 9 28.8 27.9 27.0
		0.1880	29	0.1855 31	5.2257	836	0.9822	5	10	0 20:0;21:0;21:0
			28	30	5.1446	811	0.9816	6	_	
Ш		0.1908	29	0.1944		788		5	, ,	29 28 27
	10	$\begin{bmatrix} 0.1937 \\ 0.1965 \end{bmatrix}$	28	0.1974 30	5.0658 4.9894	764	$0.9811 \\ 0.9805$	6	50 40	1 2.9 2.8 2.7
		0.1903	29	0.000= 01	4.9094	742	0.9799	6	30	2 5.8 5.6 5.4 3 8.7 8.4 8.1
		0.2022	28 29	$0.2035 _{30} \\ 0.2065 _{30}$	4.8430	722 701	0.9793	6	20	3 8.7 8.4 8.1 4 11.6 11.2 10.8
		0.2951		0.2095	4.7729		0.9787		10	5 14.5 14.0 13.5
12	0	0.2079	28	0.2126	4.7046	683	0.9781	6	0 78	6 17.4 16.8 16.2
12	10	0.2108	29	30	4.6382	664	0.9775	6	50	7 20.3 19.6 18.9
	20	0.2136	28 28	$0.2156 \ 30 \ 0.2186 \ 31$	4.5736	646	0.9769	6	40	8 23.2 22.4 21.6
	30		29	0.2217 30	4.5107	613	0.9763	6	30	9 26.1 25.2 24.3
		0.2193	28	0.2247 31	4.4494	597	0.9757	7	20	
	50	0.2221	29	0.2278	4.3897	582	0.9750	6	10	9 8
13	0	0.2250	28	0.2309	4.3315	568	0.9744	7	0 77	1 0.9 0.8
	10	0.2278	28	0.2339 31	4.2747	554	0.9737	7	50	2 1.8 1.6
		0.2306	28	$ 0.2370 _{31}$	4.2193	540	0.9730	6	40	3 2.7 2.4
		0.2334	29	0.2401 31	4.1653	527	0.9724	7	30	4 3.6 3.2 5 4.5 4.0
		$0.2363 \\ 0.2391$	28	$\begin{bmatrix} 0.2432 \\ 0.2462 \end{bmatrix}$ 30	4.1126	515	0.9717	7	20 10	6 5.4 4.8
		-	28	31		503	PROGRAMMENT STORY CO.	7		7 6.3 5.6
14	0	0.2419	28	0.2493	4.0108	491	0.9703	7	0 76	8 7.2 6.4
	10	$0.2447 \\ 0.2476$	29	$0.2524 \ 31 \ 0.2555 \ 31$	3.9617	481	$0.9696 \\ 0.9689$	7	50 40	9 8.1 7.2
	20 30		28		3.8667	469	0.9681	8	30	
		0.2532	28 28	$0.2586 \ 31$ $0.2617 \ 31$	3.8208	459 448	0.9674	7	20	7 6
		0.2560		0.2648	3.7760		0.9667	7	10	1 0.7 0.6
15	0	0.2588	28	0.2679	3,7321	439	0.9659	8	0 75	2 1.4 1.2
	10	0.2616	28	0 2711 32	3,6891	430	0.9652	7	50	3 2.1 1.8
	20	0.2644	28	0.2742 31	3.6470	421	0.9644	8	40	4 2.8 2.4 5 3.5 3.0
	30		28	0.2773	3.6059	403	0.9636	8	30	6 4.2 3.6
		0.2700	28	0.2805 31	3.5656	395	0.9628	7	20	7 4.9 4.2
	50	0.2728	28	0.2836	3.5261	387	0.9621	8	10	8 5.6 4.8
16	0	0.2756	28	0.2867	3.4874	379	0.9613	8	074	9 6.3 5.4
	10	0.2784	28	0.2899 20	3.4495	371	0.9605	9	50	
	20	0.2812	28	0.2931_{31}	3.4124	365	0.9596	8	40	5 [4
		$0.2840 \\ 0.2868$	28	$\begin{bmatrix} 0.2962 & 32 \\ 0.2994 & 36 \end{bmatrix}$	3.3759 3.3402	357	$0.9588 \\ 0.9580$	8	30 20	1 0.5 0.4
		0.2896	28	0.2334 32	3.3052	350	0.9572	8	10	2 1.0 0.8
17	0	0.2924	28	0.3057 31	3,2709	343	0.9563	9		3 1.5 1.2 4 2.0 1.6
17		0.2952	28	39	3.2371	338		8	0 73	5 2.5 2.0
	10	0.2952	27	$\begin{bmatrix} 0.3089 \\ 0.3121 \end{bmatrix}_{20}^{32}$	3.2371	330	$0.9555 \\ 0.9546$	9	50 40	6 3.0 2.4
		0.3007	28	0 9159 02	3.1716	325	0.9537	9	30	7 3.5 2.8
	40	0.3035	28 27	$0.3185 \begin{array}{l} 32 \\ 0.3185 \end{array}$	3.1397	319 313	0.9528	9 8	20	8 4.0 3.2
-	50	0.3062	28	0.3217	3,1084	307	0.9520		10	9 4.5,3.6
18	0	0.3090	40	0.3249	3.0777	307	0.9511	9	0 72	
		Cos.	d.	Cot. d	Tan.	d.	Sin.	d.	1 0	P. P.
-								-	-	

0	/	Sin.	d.	Tan. d.	Cot.	d.	Cos.	d.		P. P.
18	0	0.3090	28	0.3249 32	3.0777	302	0.9511	9	0 72	
	10	0.3118	27	0.3281 33	3.0475	297	0.9502	10	50	37 36 35
		$0.3145 \\ 0.3173$	28	0.3314 32	3.0178	291	$0.9492 \\ 0.9483$	9	40 30	1 3.7 3.6 3.5
		0.3201	28	$0.3346_{32} \\ 0.3378_{33}$	2.9600	287 281	0.9474	9 9	20	2 7.4 7.2 7.0
		0.3228	27	0.3411	2.9319	1	0.9465	1	10	3 11.1 10.8 10.5
19	0	0.3256	28	${0.3443}$ 32	2.9042	277	0.9455	10	0 71	4 14.8 14.4 14.0 5 18.5 18.0 17.5
	10	0.3283	27 28	$\frac{0.3476}{0.3476} \frac{33}{32}$	2.8770	272 268	0.9446	10	50	6 22.2 21.6 21.0
	20	0.3311	27	0.3508 33	2.8502	263	0.9436	10	40	7 25.9 25.2 24.5
		$0.3338 \\ 0.3365$	27	$0.3541_{0.3574_{0.00}}$	2.8239 2.7980	259	$0.9426 \\ 0.9417$	9	30 20	8 29.6 28.8 28.0 9 33.3 32.4 31.5
		0.3393	28	0.3607	2.7725	255	0.9407	10	10	0 00.0,02.4,01.0
20	0	0.3420	27	0.3640 33	2.7475	250	0.9397	10	0 70	
20	10	0.3448	28	33	2,7228	247	0.9387	10	50	34 33 32
	20	0.3475	27 27	$0.3673 \ 33 \ 0.3706 \ 33$	2.6985	243	0.9377	10 10	40	1 3.4 3.3 3.2 2 6.8 6.6 6.4
	30	0.3502	27	0.3739_{33}	2.6746	235	0.9367	11	30	3 10.2 9.9 9.6
	40	0.3529	28	0.3772 33	2.6511	232	0.9356	10	20	4 13.6 13.2 12.8
	50	0.3557	27	0.3805	2.6279	228	0.9346	10	10	5 17.0 16.5 16.0 6 20.4 19.8 19.2
21	0	0.3584	27	0.3839 33	2.6051	225	0.9336	11	0 69	7 23.8 23.1 22.4
	10	$0.3611 \\ 0.3638$	27	$0.3872 34 \\ 0.3906 33$	2.5826 2.5605	221	$0.9325 \\ 0.9315$	10	50 40	8 27.2 26.4 25.6
		0.3665	27 27	$0.3906 33 \\ 0.3939 34$	2.5386	219 214	0.9304	11 11	30	9 30.6 29.7 28.8
		0.3692	27	0.3973 33	2.5172	212	0.9293	10	20	
	50	0.3719	27	0.4006 34	2.4960	209	0.9283	11	10	28 27 26
22	0	0.3746	27	0.4040 34	2.4751	206	0.9272	11	0 68	1 2.8 2.7 2.6
	10	0.3773	27	0.4074 34	2.4545	203	0.9261	11	50	2 5.6 5.4 5.2
	20 30	$0.3800 \\ 0.3827$	27	$0.4108 \ 34 \ 0.4142 \ 34$	2.4342	200	$0.9250 \\ 0.9239$	11	40 30	3 8.4 8.1 7.8 4 11.2 10.8 10.4
		0.3854	27 27	$0.414234 \\ 0.417634$	2.3945	197 195	0.9238	11 12	20	5 14.0 13.5 13.0
		0.3881		0.4210 35	2.3750	191	0.9216	11	10	6 16.8 16.2 15.6
23	0	0.3907	26 27	0.4245 34	2.3559	190	0.9205	11	0 67	7 19.6 18.9 18.2 8 22.4 21.6 20.8
	10	0.3934	27	$0.4279 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.3369	186	0.9194	12	50	9 25.2 24.3 23.4
		0.3961	26	0.4314 34	2.3183	185	0.9182	11	40	
		$0.3987 \\ 0.4014$	27	$0.4348 \begin{array}{c} 35 \\ 0.4383 \end{array}$	2.2998 2.2817	181	$0.9171 \\ 0.9159$	12	30 20	13 12
		0.4041	27	0.4417	2.2637	180	0.9147	12	10	1 1.3 1.2
24	0	0.4067	26	0.4452 35	2.2460	177	0.9135	12	0 66	2 2.6 2.4
24		0.4094	27	0.4197 35	2.2286	174	0.9124	11	50	3 3.9 3.6 4 5.2 4.8
		0.4120	26 27	0.4522 35	2.2113	173 170	0.9112	12 12	40	5 6.5 6.0
		0.4147	26	0.4557 95	2.1943	168	0.9100	12	30	6 7.8 7.2
		$0.4173 \\ 0.4200$	27	$\begin{bmatrix} 0.4592 \\ 0.4628 \end{bmatrix} \stackrel{33}{36}$	$\begin{bmatrix} 2.1775 \\ 2.1609 \end{bmatrix}$	166	$0.9088 \\ 0.9075$	13	20 10	7 9.1 8.4 8 10.4 9.6
25	0	0.4226	26	$\frac{0.1628}{0.4663}$ 35	2.1445	164	0.9063	12	0 65	9 11.7 10.8
23		0.4253	27	0.4699 36	$\frac{2.1443}{2.1283}$	162	0.9051	12	50	1
		$0.4235 \\ 0.4279$	26	0 4724 00	2.1123	160	0.9031	13	40	11 11019
		0.4305	26 26	0.4770 36	2.0965	158 156	0.9026	12 13	30	1 11.1 1.0 0.9
		0.4331	27	0.4806 35	2.0809	154	0.9013	12	20	2 2.2 2.0 1.8
		0.4358	26	0.4841 36	2.0655	152	0.9001	13	10	3 3.3 3.0 2.7
26	0	0.4384	26	0.4877	2.0503	150	0.8988	13	0 64	4 4.4 4.0 3.6 5 5.5 5.0 4.5
	10 20	$0.4410 \\ 0.4436$	26	0.4913 37	2.0353	149	$0.8975 \\ 0.8962$	13	50 40	6 6.6 6.0 5.4
		0.4462	26	0.4950 36	2.0204	147	0.8949	13	30	7 7.7 7.0 6.3
	40	0.4488	26 26	0.5022 37	1.9912	145 144	0.8936	13 13	20	8 8.8 8.0 7.2 9 9.9 9.0 8.1
	50	0.4514	26	0.5059	1.9768	142	0.8923	13	10	0 10.0,0.0,0.1
27	0	0.4540	20	0.5095	1.9626	142	0.8910		0 63	
		Cos.	$ \bar{\mathbf{d}}.$	Cot. d.	Tan.	d.	Sin.	d.	1 0	P. P.
_	-		_						-	

0	,	Sin.	d.	Tan.	d.	Cot.	d.	Cos.	d.		P. P.
27	0	0.4540	1	0.5095		1.9626	7.40	0.8910	1.	0 63	44 43 42
	10	0.4566	26	0.5132	37	1.9486	140	0.8897	13 13	50	1 4.4 4.3 4.2
	20	0.4592	25	0.5169	37	1.9347	137	0.8884	14	40	2 8.8 8.6 8.4 3 13.2 12.9 12.6
		0.4617 0.4643	26	0.5206	37	1.9210 1.9074	136	0.8870 0.8857	13	30 20	3 13.2 12.9 12.6 4 17.6 17.2 16.8
	40 50		26	0.5245	37	1.8940	134	0.8843	14	10	5 22.0 21.5 21.0
		0.4695	- 26	0.5317	37	1.8807	133	0.8829		1	6 26.4 25.8 25.2
28			25		37	-	131	-	113		
	10 20	$0.4720 \\ 0.4746$	26		38	1.8676 1.8546	130	0.8816 0.8802	17.7	50 40	8 35.2 34.4 33.6 9 39.6 38.7 37.8
	60	0.4772	26	0 5 490	38	1.8418	128	0.8788	Y.X	30	
	40	0.4797	25 26	O FION	37	1,8291	127 126	0.8774	14 14	20	1 41 40 39 3.9
	50	0.4823		10.5505	38	1.8165	125	0.8760		10	2 8.2 8.0 7.8
29	0	0.4848	25	0.5543		1.8040		0.8746	14	0 6	
	10	0.4874	26 25		38	1.7917	123 121	0.8732	14 14	50	4 16.4 16.0 15.6
	20	0,4899	25	O FOTO	39	1.7796	121	0.8718	14	40	5 20.5 20.0 19.5
		0.4924	26	0.5658	38	1.7675	119	0.8704	15	30	6 24.6 24.0 23.4 7 28.7 28.0 27.3
		0.4950	25	0.5696	39	1.7556	119	0.8689	14	20	8 32.8 32.0 31.2
	50	0.4975	25	0.5735	39	1.7437	116	0.8675	15	10	9 36.9 36.0 35.1
30		0.5000	25	0.5774	38	1.7321	116	0.8660	14	0 60	38 37
	10	0.5025	25	0.5812	39	$1.720\bar{5}$	115	0.8646	15	50	1 3.8 3.7
		$0.5050 \\ 0.5075$	25		39	1.7090	113	0.8631 0.8616	15	40	2 7.6 7.4
		0.5100	25	0.5000	40	1.6977 1.6864	113	0.8601	15	30 20	3 11.4 11.1 4 15.2 14.8
		0.5125	25	0.5969	39	1.6753	111	0.8587	14	10	4 15.2 14.8 5 19.0 18.5
31	0	0.5150	25	0.6009	40	1.6643	110	0.8572	15	0 59	
31	10	0.5175	25	0.0010	39	1.6534	109	0.8557	15	50	7 26.6 25.9
	20	$0.5175 \\ 0.5200$	25	0.0000	40 40	1.6426	108 107	0.8542	15	40	8 30.4 29.6
		0.5223	25 25	0.0100	40	1.6319	107	0.8526	16 15	30	9 34.2 33.3
	40	0.5250	25	0.6168	40	1.6212	105	0.8511	15	2Q	26 25 24
	50	0.5275	24	0.6208	41	1.6107	104	0.8496	16	10	1 2.6 2.5 2.4 2 5.2 5.0 4.8
32	0	0.5299	25	0.62491	40	1.6003	103	0.8480	15	0 58	2 5.2 5.0 4.8 3 7.8 7.5 7.2
	10	0.5324	24	0.6289	41	1.5900	103	0.8465	15	50	4 10.4 10.0 9.6
		0.5348	25	0.6330	41	1.5798	101	0.8450	16	40	4 13.0 12.5 12.0
		0.5373 0.5398	25		41	1.5697 1.5597	100	$0.8434 \\ 0.8418$	16	30 20	6 15.6 15.0 14.4 7 18.2 17.5 16.8
		0.5422	24	0 6453	41	1.5497	100	0.8403	15	10	8 20.8 20.0 19.2
33		0.5446	24	0.6494	41	1.5399	98	0.8387	16		0 09 4 00 5 07 6
33		0.5471	25	0.6536	42	1.5301	98	0.8371	16	0 5 7 50	23 17 16
		0.5495	24	0 6577	41	1.5204	97	$0.835\overline{5}$	16	40	1 2.3 1.7 1.6
		0.5519	24 25		42 42	1.5108	96 95	0.8339	16	30	2 4.6 3.4 3.2
		0.5544	24	0.6661	42	1.5013	94	0.8323	16 16	20	3 6.9 5.1 4.8 4 9.2 6.8 6.4
	50	0.5568	24	0.6703	42	1.4919	93	0.8307	17	10	5 11.5 8.5 8.0
34	0	0.5592		0.6745		1.4826		0.8290		0 56	
		0.5616	24 24	0.6187	42 43	1.4733	93	0.8274	16 16	50	7 16.1 11.9 11.2
		0.5640	24	0.6830	43	1.4641	91	0.8258	17	40	8 18.4 13.6 12.8 9 20.7 15.3 14.4
		$0.5664 \\ 0.5688$	24		43	1.4550 1.4460	90	$0.8241 \\ 0.8225$	16	30 20	
		0.5712	24	0.6959	43	1.4370	90	0.8228	17	10	1 1.5 1.4 1.3
25		0.5736	24	0.7002	43	1,4281	89	0.8192	16		2 3.0 2.8 2.6
35			24	2 =040	14		88		17		3 4.5 4.2 3.9
		$0.5760 \\ 0.5783$	23		13	1.4193 1.4106	87	$0.8175 \\ 0.8158$	17	50 40	4 6.0 5.6 5.2
		0.5807	24	O #100	14	1.4019	87	0.8141	111	30	5 7.5 7.0 6.5
	40	0.5831	24 23	0.7177	14	1.3934	85 86	0.8124	17	20	6 9.0 8.4 7.8 7 10.5 9.8 9.1
		0.5854	24	0.7221	14	1.3848	84	0.8107	_	10	8 12.0 11.2 10.4
36	0	0.5878	24	0.7265	**	1.3764	04	0.8090	17	0 54	9 13.5 12.6 11.7
		Cos.	d.	Cot.	1. f	Tan.	d.	Sin.	\overline{d} .	/ 0	P. P.
-	_								-		

			_		_				_	_	-	
0	1	Sin.	d.	Tan.	d.	Cot.	d.	Cos.	d.		ı	P. P.
	-0	0.5878	-	0.7265		1.3764		0.8090		0.5	7	58 57 56 55
36	-		23		45		84		17		"	1 5.8 5.7 5.6 5.5
	10	0.5901	24	0.7310	45	1.3680	83	0.8073	17	50	- 1	2 11.6 11.4 11.2 11.0
		0.5925	23	0.7355	45	1.3597	83	0.8056	17	40	- 1	3 17.4 17.1 16.8 16.5
		0.5948	24	0.7400	45	1.3514	82	0.8039	18	30	-	4 23.2 22.8 22.4 22.0
		0.5972	23	0.7445	45	1.3432	81	0.8021	17	20 10	- 1	5 29.0 28.5 28.0 27.5
	50	0.5995	23	0.7490	46	1.3351	81	0.8004	18	10	- 1	6 34.8 34.2 33.6 33.0
37	0	0.6018		0.7536		1.3270		0.7986		0 5	3	7 40.6 39.9 39.2 38.5
٠,	10	0.6041	23	0.7581	45	1.3190	80	0.7969	17	50		8 46.4 45.6 44.8 44.0
		0.6065	24	0.7627	46	1,3111	79	0.7951	18	40		9 52.2 51.3 50.4 49.5
		0.6088	23	0.7673	46	1.3032	79	0.7934	17	30		54 53 52 51
		0.6111	23	0.7720	47	1.2954	78	0.7916	18	20		
	50	0.6134	23	0.7766	46	1.2876	. 78	0.7898	18	10		1 5.4 5.3 5.2 5.1 2 10.8 10.6 10.4 10.2
			23		47	1.2799	77	0.7880	18	0.5	.!	3 16.2 15.9 15.6 15.3
38	0	0.6157	23	0.7813	47		76	-	18		2	4 21.6 21.2 20.8 20.4
	10	0.6180	22	0.7860	47	1.2723	76	0.7862	18	50		5 27.0 26.5 26.0 25.5
		0.6202	23	0.7907	47	1.2647	75	0.7844	18	40		6 32.4 31.8 31.2 30.6
	30	0.6225	23	0.7954	48	1.2572	75	0.7826	18	30		7 37.8 37.1 36.4 35.7
	40	0.6248	23	0.8002	48	1.2497	74	0.7808	18	20		8 43.2 42.4 41.6 40.8
	50	0.6271	22	0.8000	48	1.2423	74	0.7790	19	10		9 48.6 47.7 46.8 45.9
39	0	0.6293		0.8098		1.2349		0.7771		0	51	50 49 48
33	10	0.6316	23	0.8146	48	1.2276	73	0.7753	18	50		
	20	0.6338	22	0.8146	49	1.2203	73	0.7735	18	40		1 5.0 4.9 4.8 2 10.0 9.8 9.6
			23	0.8243	48	1.2131	72	0.7716	19	30		8 15.0 14.7 14.4
	40	0.6383	22	0.8292	49	1.2059	72	0.7698	18	20		4 20.0 19.6 19.2
	50	0.6406	23	0.8342	50	1.1988	71	0.7679	19	10		5 25.0 24.5 24.0
			22	-	49	1.1918	70		19	1		6 30.0 29.4 28.8
40	0	0.6428	22	0.8391	50		71	0.7660	18		0	7 35.0 34.3 33.6
	10	0.6450	22	0.8441	50	1.1847	69	0.7642	19	50		8 40.0 39.2 38.4
	20	0.6472	22	0.8491	50	1.1778	70	0.7623	19	40		9 45.0 44.1 43.2
	30	0.6494	23	0.8541	50	1.1708	68	0.7604	19	30		47 46 45
	40	0.6517	22	0.8591	51	1.1640	69	0.7585	19	20		1 4.7 4.6 4.5
	50	0.6539	22	0.8642	51	1.1571	67	0.7566	19	10		2 9.4 9.2 9.0
41	0	0.6561		0.8693		1.1504		0.7547		0 4	9	3 14.1 13.8 13.5
7,	10	0.6583	22	0,8744	51 52	1.1436	68 67	0.7528	19	50		4 18.8 18.4 18.0
	20	0.6604	21	0.8796	51	1.1369	66	0.7509	19	40		5 23.5 23.0 22.5
	30		22	0.8847	52	1.1303	66	0.7490	20	30		6 28.2 27.6 27.0
	40		22	0.8899	53	1,1237	66	0.7470		20		7 32.9 32.2 31.5
	50		1	0.8952		1.1171	1	0.7451	1	10		8 37.6 36.8 36.0
		0.6691	21	0.9004	52	1.1106	65	0.7431	20	0 4	8	9 42.3 41.4 40.5
42			. 22		53	I	65		19		10	24 23 22 21
	10		21	0.9057	53	1.1041	64	0.7412	20	50		1 2.4 2.3 2.2 2.1
	20	0.6734	22	0.9110	53	1.0977	64	0.7392		40 30		2 4.8 4.6 4.4 4.2
	30		21	0.9163		1.0913	63	0.7373		20		3 7.2 6.9 6.6 6.3
	40		22	0.9217	54	1.0850	64	0.7333	20	10		4 9.6 9.2 8.8 8.4
	50	1	21	0.9271	54	1.0786	62		19	1		5 12.0 11.5 11.0 10.5
43	0	0.6820	t	0.9325		1.0724	V.	0.7314	1	0 4	.7	6 14.4 13.8 13.2 12.6
	10	0.6841	21	0.9380	55	1.0661	63	0.7294	20	50		7 16.8 16.1 15.4 14.7
	20		21	0.943	99	1.0599	61	0.7274	20	140		8 19.2 18.4 17.6 16.8
	30		22 21	0.9490	55 55	1,0538	61	0.7254	20	130		9 21.6 20.7 19.8 18.9
	40	0.6905	21	0.9545	56	1.0477	61	0.7234	20			20 19 18 17
	50	0.6926	1	0.9601		1.0416		0.7214		10		1 2.0 1.9 1.8 1.7
4.6	. 0	0.6947	- 21	0.9657	56	1.0355	61	0.7193	21	0 4	6	2 4.0 3.8 3.6 3.4
44			- 20		56		60		20	50		3 6.0 5.7 5.4 5.1
	10		21	0.9713	57	1.0295	60	0.7173				4 8.0 7.6 7.2 6.8
	20		21	0.9770	57	1.0235	59	0.7153	20	30		5 10.0 9.5 9.0 8.5
	30		21	0.9827	57	1.0176	59		41	20		6 12.0 11.4 10.8 10.2
	40		20	0.9884		1.0117	59	0.7112	20	10		7 14.0 13.3 12.6 11.9
	50		21	0.9942	5.0	1.0058	58	0.7092	21		-	8 16.0 15.2 14.4 13.6
45	0	0.7071	121	1.0000	1	1.0000		0.7071		0 4	5	9 18.0 17.1 16.2 15.3
-		Cos	d.	Cot.	d.	Tan.	d.	Sin.	d.	1	0	P. P.
		Cos.	u.	Toot.	u.	lan.	u.	DIII.	u.	1	11	1.1.

PRIME NUMBERS.

Every prime number is an odd number and has for its unit figure 1 3 7 or 9 any odd number that has 5 for its unit figure is divisible by 5, and is not a prime number. The prime factors of any number less than 1.000 may be found from the following table. If the number is odd and does not end with 5, the factors are given directly; thus, the prime factors of 357 are 3, 7, and 17; those of 931 are 7, 7, and 19, the exponent 2 of the 7 indicating that 7 is used twice as a factor. If a number is a prime number, the space beside it is blank; thus, 317 and 859 are prime numbers. To find the prime factors of an odd number that has 5 for the unit figure, divide by 5 until a quotient is obtained which does not have 5 for a unit figure: the factors of this quotient are then found from the table, and with the 5's already used as divisors constitute the prime factors. For example, to find the prime factors of 5.775 proceed as follows: $5.775 \div 5 = 1.155$: $1.155 \div 5 = 231$: from the table, $231 = 3 \times 7 \times 11$; hence, $5.775 = 3 \times 5 \times 5 \times 5 \times 11$ 7×11 . If the number is even, divide it by 2, the quotient by 2. and so on until an odd quotient is reached; then find the prime factors of the quotient from the table. The process of finding the prime factors of 936 is as follows:

 $936 \div 2 = 468$; $468 \div 2 = 234$; $234 \div 2 = 117$; $117 = 3^2 \times 13$, from table. Hence, $936 = 2^3 \times 3^2 \times 13 = 2 \times 2 \times 2 \times 3 \times 3 \times 13$.

FACTORS OF 3.1416.

NOT REGARDING DECIMAL POINT, 3.1416 =

	1	
2×15708 3×10472 4×7854 6×5236	$\begin{array}{c} -22 \times 1428 \\ 24 \times 1309 \\ 28 \times 1122 \\ 33 \times 952 \end{array}$	68×462 77×408 84×374 88×357
$7 \times 4488 \\ 8 \times 3927 \\ 11 \times 2856$	34×924 42×748 44×714	102×308 119×264 132×238
12×2618 14×2244 17×1848	51×616 56×561 66×476	$ \begin{array}{c c} 136 \times 231 \\ 154 \times 204 \\ 168 \times 187 \end{array} $

PRIME FACTORS.

PRIME FACTORS OF ALL ODD NUMBERS FROM 1 TO 1,000
THAT ARE NOT DIVISIBLE BY 5.

1		101		201	3.67	301	7.43	401	
Ţ		101		201	7.29	303	3.101	401	13:31
3 7		103		203	3- 23	307	9.101	407	11:37
9	32	107		207	11.19	309	3.103	407	11.91
11	5"	111	3:37	209	11.19	311	9.109	411	3.137
13		113	9.91	213	3.71	313		413	7.59
17		117	32.13	217	7:31	317		417	3.139
19		119	7.17	219	3.73	319	11.29	419	9 199
21	3.7	121	112	221	13.17	321	3.107	421	
23	9.1	123	3.41	223	19 17	323	17.19	423	32.47
27	33	$\frac{123}{127}$	9.41	227		327	3.109	427	7.61
29	9,	$\begin{vmatrix} 127 \\ 129 \end{vmatrix}$	3.43	229		329	7.47	429	3.11.13
31		131	9 49	231	3.7.11	331	1 41	431	9 11 16
33	3.11	133	7.19	233	9 / 11	333	32.37	433	
37	9.11	137	7.19	237	3.79	337	9-91	437	19.23
39	3.13	139		239	3.19	339	3.113	437	19.25
41	9.19	141	3.47	241		341	• 11:31	441	32.72
43		143	11.13	241	35	343	73	443	5- 1-
47		145	3.72	243	13.19	347	10	447	3.149
49	72	149	9.1-	247	3.83	349		449	5.149
51	3.17	151		251	9.09	351	33-13	451	11.41
53	2.11	153	$3^2 \cdot 17$	253	11.23	353	20.12	453	3.151
57	3.19	157	911	257	11.79	357	3.7.17	457	9.191
59	9.19	159	3.53	259	7:37	359	2.1.11	459	33-17
61		161	7.23	261	32.29	361	192	461	20.17
63	32.7	163	1.729	263	5- 29	363	3.112	463	
67	2-1	167		267	3.89	367	2.11.	467	
69	3.23	169	13^{2}	269	000	369	32.41	469	7.67
71	5.72	171	32.19	271		371	7:53	471	3.157
73		173	5-19	$\frac{271}{273}$	3.7.13	373	7 00	473	11.43
77	7.11	177	3.59	277	9 / 19	377	13.29	477	32.53
79	7.11	179	2.99	279	32.31	379	15.29	479	5" 55
81	34	181		281	9, 91	381	3.127	481	13.37
83	9.	183	3.61	283		383	0 127	483	3.7.23
87	3.29	187	11.17	287	7.41	387	32.43	487	0 1 20
89	5 28	189	33.7	289	172	389	0-45	489	3.163
91	7.13	191	2.1	209	3.97	391	17.23	491	0 100
93	3.31	191		291	091	393	3.131	491	17.29
93	9.31	193		293	33-11	397	9 191	497	7.71
99	32.11	199		299	13.23	399	3.7.19	499	/ /1
99	911	199		299	10 40	099	0 / 19	400	
		1				1	1		

PRIME FACTORS OF ALL ODD NUMBERS FROM 1 TO 1,000 THAT ARE NOT DIVISIBLE BY 5.

(Continued).

501	3.167	601		701		801	32.89	901	17.53
503	0.400	603	32.67	703	19:37	803	11.73	903	3.7.43
507	3.13^{2}	607	0 1 20	707	7.101	807	3.269	907	-0 - 0 -
509	W WO	609	3.7.29	709	00 00	809		909	$3^2 \cdot 101$
511	7.73	611	13.47	711	32.79	811	0.000	911	
513	33.19	613		713	23.31	813	3.271	913	11.83
517	11.47	617		717	3.539	817	19.43	917	7.131
519	3.173	619	02.00	719	H 100	819	32.7.13	919	0.00
521		621	33.23	721	7.103	821	1	921	3.307
523	45.04	623	7.89	723	3.241	823		923	13.71
527	17:31	627	3.11.19	727	00 -	827		927	$3^2 \cdot 103$
529	232	629	17:37	729	36	829	0.000	929	m0 - 0
531	32.59	631	0.011	731	17.43	831	3.277	931	72.19
533	13.41	633	3.211	733		833	72.17	933	3.311
537 539	3.179	637	72.13	737	11.67	837	33.31	937	
	72.11	639	32.71	739	0 10 10	839	000	939	3.313
541	0.101	641		741	3.13.19	841	292	941	00 44
543	3.181	643		743	00.00	843	3.281	943	23.41
547 549	32.61	647	11 50	747	32.83	847	7.112	947	40 WO
551	19.29	649	11·59 3·7·31	749	7.107	849	3.283	949	13.73
553	7.79	651	3.7.31	751 753	3.251	851	23.37	951	3.317
5 57	1.19	657	32.73	757	5.201	853		953	0.11.00
559	13.43	659	5.19	759	3.11.23	857 859		957	3.11.29
561	3.11.17	661		761	5.11.75	861	3.7.41	959 961	7·137 312
563	9 11 17	663	3.13.17	763	7.109	863	5.7.41	963	32.107
567	34.7	667	23.29	767	13.59	867	3.172		32.107
569	9. 1	669	3.223	769	19.99	869	11.79	967 969	3.17.19
571		671	11.61	771	3.257	871	13.67	909	2.11.13
573	3.191	673	11 01	773	3 201	873	32.97	973	7.139
577	0 101	677		777	3.7.37	877	3- 51	977	1 100
579	3.193	679	7.97	779	19.41	879	3.293	979	11.89
581	7.83	681	3.227	781	11.71	881	0 200	981	32.109
583	11.53	683	0 221	783	33.29	883		983	5- 109
587	11 00	687	3.229	787	5 25	887		987	3.7.47
589	19.31	689	13.53	789	3.263	889	7.127	989	23.43
591	3.197	691	10 00	791	7.113	891	34.11	991	20 43
593	0 101	693	32.7.11	793	13.61	893	19.47	993	3.331
597	3.199	697	17:41	797	10 01	897	3.13.23	997	0 001
599	0 100	699	3.533	799	17.47	899	29.31	999	33.37

CIRCUMFERENCES AND AREAS OF CIRCLES FROM 1-64 TO 100.

Diam.	Circum.	Area.	Diam.	Circum.	Area.			
1111975000400 (874.00) 22222222222222222222222222222222222	.0491 .0982 .1963 .3927 .5890 .7854 .9817 .1.1781 .3744 .1.5708 .1.7671 .1.9635 .2.1598 .2.3562 .2.7489 .2.3562 .2.7489 .2.9452 .3.1416 .3.5343 .3.9270 .4.3197 .4.7124 .5.1051 .5.4978 .5.8905 .6.2832 .6.6759 .7.0686 .7.4613 .7.8540 .8.2467 .8.6394 .9.321 .9.4248 .9.8175 .10.2102 .10.6029 .10.6029	.0002 .0008 .0031 .0123 .0276 .0491 .0767 .1104 .1503 .2485 .308 .2485 .3712 .4418 .3712 .4418 .6013 .7854 .6903 .7854 .9940 .1.2272 .1.4874 .2.4053 .2.7612 .3.5466 .3.9761 .4.4301 .4.9087 .5.4119 .5.9396 .4.938 .7.6686 .7.6699 .8.2958 .8.2968 .8.2968 .8.2968 .8.2968 .8.2968 .8.2968 .8.2968 .8.2968 .8.2968 .8.2968	49.2.5.4.6.7.6.2.5.5.5.5.5.6.6.6.6.6.6.6.7.7.7.7.7.7.7.7	13.7445 14.1372 14.5299 14.9226 15.3153 15.7080 16.1007 16.4934 16.8861 17.2788 17.6715 18.0642 18.4569 18.8496 19.2423 19.6350 20.0277 20.4204 20.8131 21.2058 21.5985 21.9912 22.3839 22.7766 23.1698 23.5620 23.9547 24.3474 24.7401 25.1328 25.5255 25.9182 26.3109 26.7036 27.4890 27.8817 28.2744	15.0330 15.9043 16.8002 17.7206 18.6555 19.6650 20.6290 21.6476 22.6907 23.7583 24.8505 25.9673 27.1086 28.2744 30.6797 31.1831 31.831 37.1224 38.4846 47.1731 44.1737 44.1787 45.6636 47.1731 48.7071 50.2656 47.1731 48.7071 50.2656 6636 67451 58.4866 67.451 58.4876 67.4876 67.			
35/8 33/4 37/8	11.3883 11.7810 12.1737 12.5664	10.3206 11.0447 11.7933 12.5664	91/8 91/4 93/8 91/2	28.6671 29.0598 29.4525 29.8452	65.3968 67.2008 69.0293 70.8823			
4 ¹ / ₈ 4 ¹ / ₄	12.9591 13.3518	13.3641 14.1863	95/8 93/4	30.2379 30.6306	72.7599 74.6621			

TABLE—(Continued).

_		1				
1	Diam.	Circum.	Area.	Diam.	Circum.	Area.
_						
	97/8	31.0233	76.589	155/8	49.0875	191.748
	10	31.4160	78.540	153/4	49.4802	194.828
	101/8	31.8087	80.516	157/8	49.8729	197.933
	101/4	32.2014	82.516	16	50.2656	201.062
	$10^{3}/_{8}$	32.5941	84.541	$16\frac{1}{8}$	50.6583	204.216
	$10\frac{1}{2}$	32.9868	86.590	$16\frac{1}{4}$	51.0510	207.395
	$10\frac{5}{8}$	33.3795	88.664	$16\frac{3}{8}$	51.4437	210.598
	103/4	33.7722	90.763	$16\frac{1}{2}$	51.8364	213.825
	107/8	34.1649	92.886	165/8	52.2291	217.077
	11	34.5576	95.033	16%	52.6218	220.354
	111/8	34.9503	97.205	167/8	53.0145	223.655
	111/4	35.3430	99.402	17	53.4072	226.981
	113/8	35.7357	101.623	171/8	53.7999	230.331
	$11\frac{1}{2}$	36.1284	103.869	171/4	54.1926	233.706
	115%	36.5211	106.139	173/8	54.5853	237.105
	113/4	36.9138	108.434	171/2	54.9780	240.529
	111/8	37.3065	110.754	175/8	55.3707	243.977
	12	37.6992	113.098	173/4	55.7634	247.450
	121/8	38.0919	115.466	177/8	56.1561	250.948
	121/4	38.4846	117.859	18	56.5488	254.470
	$12^{3}/_{8}$	38.8773	120.277	181/8	56.9415	258.016
	$12\frac{1}{2}$	39.2700	122.719	181/4	57.3342	261.587
	$12\frac{5}{8}$	39.6627	125.185	183/8	57.7269	265.183
	12%	40.0554	127.677	181/2	58.1196	268.803
	127/8	40.4481	130.192	185%	58.5123	272.448
	13	40.8408	132.733	183/4	58.9050	276.117
	131/8	41.2335	135.297	187/8	59.2977	279.811
	131/4	41.6262	137.887	19	59.6904	283.529
	133/8	42.0189	140.501	191/8	60.0831	287.272
	$13\frac{1}{2}$ $13\frac{5}{2}$	42.4116	143.139	191/4	60.4758	291.040
	133/4	42.8043	145.802	193/8	60.8685	294.832
	137/2	43.1970 43.5897	148.490 151.202	$19\frac{1}{2}$ $19\frac{5}{2}$		298.648
	13/8	43.9824	153.938	193/4	61.6539	302.489
	141/6	44.3751	156.700	197%	62.0466 62.4393	306.355 310.245
	141/4	44.7678	159.485	20	62.8320	314.160
	143%	45.1605	162.296	201/6	63.2247	318.099
	1/1/8	45.5532	165.130	201/4	63.6174	322.063
	1452	45.9459	167.990	203/2	64.0101	326.051
	143	46.3386	170.874	201/8	64.4028	330.064
	147%	46.7313	173.782	205/2	64.7955	334.102
	15	47.1240	176.715	203/4	65.1882	338.164
	151/6	47.5167	179.673	207%	65.5809	342.250
	151/	47.9094	182.655	21/8	65.9736	346.361
	158%	48.3021	185.661	011/	66.3663	350.497
	151/2	48.6948	188.692	211/8	66.7590	354.657
	14			/-		

TABLE—(Continued).

TABLE—(Continued).							
Diam.	Circum.	Area.	Diam.	Circum.	Area.		
213/8	67.1517	358.842	271/6	85.2159	577.870		
211%	67.5444	363.051	271%	85,6086	583,209		
215%	67.9371	367.285	273%	86.0013	588.571		
213/4	68.3298	371.543	$27\frac{1}{2}$	86.3940	593.959		
217/8	68.7225	375.826	275%	86.7867	599.371		
22	69.1152	380.134	273/4	87.1794	604.807		
$22\frac{1}{8}$	69.5079	384.466	277/8	87.5721	610.268		
$22\frac{1}{4}$	69.9006	388.822	28	87.9648	615.754		
223/8	70.2933	393.203	281/8	88.3575	621.264		
221/2	70.6860	397.609	281/4	88.7502	626.798		
223/8	71.0787	402.038	283/8	89.1429	632.357		
22%	71.4714 71.8641	406.494 410.973	28/2	89.5356 89.9283	637.941 643.549		
23	72.2568	410.975	20%	90.3210	649.182		
231/2	72.2300	420.004	287%	90.7137	654.840		
2378	73.0422	424.558	29/8	91.1064	660.521		
233/2	73.4349	429.135	291/6	91.4991	666.228		
231/2	73.8276	433.737	291/4	91.8918	671.959		
235%	74.2203	438.364	293%	92.2845	677.714		
233/4	74.6130	443.015	291/3	92.6772	683.494		
237/8	75.0057	447.690	295%	93.0699	689.299		
24	75.3984	452.390	293/4	93.4626	695.128		
$24\frac{1}{8}$	75.7911	457.115	297/8	93.8553	700.982		
$24\frac{1}{4}$	76.1838	461.864	30	94.2480	706.860		
$24^{3}/_{8}$	76.5765	466.638	301/8	94.6407	712.763		
$24\frac{1}{2}$	76.9692	471.436	301/4	95.0334	718.690		
24578	77.3619	476.259	303/8	95.4261	724.642		
243/4	77.7546 78.1473	481.107 485.979	30½ 305%	95.8188 96.2115	730.618 736.619		
$\frac{247}{8}$	78.5400	485.979	303/4	96.6042	742.645		
251/8	78.9327	495.796	3078	96.9969	748.695		
251/4	79.3254	500.742	31	97.3896	754.769		
253%	79.7181	505.712	311/6	97.7823	760.869		
251%	80.1108	510.706	311/4	98.1750	766.992		
255%	80.5035	515.726	313%	98.5677	773.140		
253/4	80.8962	520.769	311/2	98.9604	779.313		
257/8	81.2889	525.838	315%	99.3531	785.510		
26	81.6816	530.930	313/4	99.7458	791.732		
261/8	82.0743	536.048	317/8	100.1385	797.979		
$26\frac{1}{4}$	82.4670	541.190	32	100.5312	804.250		
263/8	82.8597	546.356	321/8	100.9239	810.545		
261/2	83.2524	551.547	321/4	101.3166	816.865		
265/8	83.6451	556.763	32%	101.7093	823.210		
26%	84.0378 84.4305	562.003 567.267	32/2	102.1020 102.4947	829.579 835.972		
26/8 27	84.4303	572.557	3278	102.4947	842.391		
41	01.0202	012.001	02/4	1 100.0014	OTT OFF		

TABLE—(Continued).

Diam.	Circum.	Area.	Diam.	Circum.	Area.		
327/8	103,280	848.833	385%	121.344	1,171.731		
33	103.673	855.301	383/4	121.737	1,179,327		
331/2	104.065	861.792	0077	122.130	1,186.948		
331/4	104.458	868.309	38/8	122.522	1.194.593		
2237	104.851	874.850	391%	122.915	1,202,263		
331%	105.244	881.415	391/4	123,308	1,209.958		
335%	105.636	888.005	393%	123.700	1,217.677		
3334	106.029	894.620	391%	124.093	1,225.420		
337/8	106.422	901.259	395%	124.486	1,233.188		
34	106.814	907.922	393/4	124.879	1,240.981		
341%	107.207	914.611	397/8	125.271	1,248.798		
341/	107.600	921.323	40	125,664	1,256,640		
343%	107.992	928,061	401/8	126.057	1.264.510		
341%	108.385	934.822	401/1	126,449	1,272,400		
345%	108.778	941.609	403%	126.842	1,280.310		
343/4	109.171	948.420	401%	127,235	1,288.250		
34%	109.563	955.255	405%	127.627	1,296.220		
35	109.956	962.115	403/4	128.020	1,304.210		
351/6	110.349	969.000	407/8	128,413	1,312.220		
351/4	110.741	975.909	41	128.806	1,320.260		
353/8	111.134	982.842	411/8	129.198	1,328.320		
351/2	111.527	989.800	411/4	129.591	1,336.410		
355%	111.919	996.783	413/8	129.984	1,344.520		
353/4	112.312	1,003.790	$41\frac{1}{2}$	130.376	1,352.660		
357/8	112.705	1,010.822	415%	130.769	1,360.820		
36	113.098	1,017.878	413/4	131.162	1,369.000		
361/8	113.490	1,024.960	417/8	131.554	1,377.210		
361/4	113.883	1,032.065	42	131.947	1,385.450		
363/8	114.276	1,039.195	421/8	132.340	1,393.700		
361/2	114.668	1,046.349	421/4	132.733	1,401.990		
365/8	115.061	1,053.528	423/8	133.125	1,410.300		
363/4	115.454	1,060.732	421/2	133.518	1,418.630		
367/8	115.846	1,067.960	425/8	133.911	1,426.990		
37	116.239	1,075.213	423/4	134.303	1,435.370		
371/8	116.632 117.025	1,082.490 1,089.792	$\frac{427/8}{43}$	134.696 135.089	1,443.770 1,452.200		
2737	117.025	1,009.792	431/8	135.481	1,460.660		
271/	117.810	1.104.469	431/4	135.874	1,469.140		
3752	118.203	1,111.844	433%	136.267	1,405.140		
373	118.595	1,111.044	431/2	136.660	1,486.170		
377%	118.988	1,126.669	435%	137.052	1,494.730		
38	119.381	1,120.003	433/4	137.445	1,503.300		
381/4	119.773	1,141.591	437/8	137.838	1,511.910		
381/4	120.166	1,149.089	44/8	138.230	1,520,530		
383%	120.559	1,156.612	441/8	138,623	1,529.190		
381/2	120.952	1,164.159		139.016	1.537.860		
/2	1	, , , , , , , , , , , , , , , , , , , ,	/4	, 200.020	_,_,		

TABLE—(Continued).

TABLE—(Continued).							
Diam.	Circum.	Area.	Diam.	Circum.	Area.		
443%	139,408	1,546.56	501/6	157.473	1,973.33		
441/8	139.801	1,555.29	501/8	157.865	1.983.18		
1152	140.194	1,564.04	5032	158.258	1,993.06		
443/4	140.134	1,572.81	501%	158.651	2,002.97		
4.477	140.979	1,581.61	505%	159.043	2,012.89		
44/8	141.372	1,590.43	5034	159.436	2.022.85		
451%	141.765	1,599.28	F 06'5	159.829	2,032.82		
451/4	142.157	1,608.16	50'/8 51	160.222	2,042.83		
453%	142.550	1,617.05	511%	160.614	2,052.85		
451%	142.943	1,625.97	511/	161.007	2,062.90		
455%	143.335	1,634.92	51%	161.400	2,072.98		
453%	143.728	1,643.89	511%	161.792	2,083,08		
457%	144.121	1,652.89	515%	162,185	2,093.20		
46	144.514	1,661.91	513%	162.578	2,103.35		
461%	144.906	1,670.95	51%	162.970	2,113.52		
4614	145,299	1,680.02	52	163,363	2,123.72		
463/8	145.692	1,689.11	521%	163.756	2,133,94		
461%	146.084	1,698.23	521/4	164.149	2,144.19		
465%	146.477	1,707.37	5232	164.541	2,154.46		
463/4	146.870	1,716.54	521/3	164.934	2,164.76		
467/8	147.262	1,725.73	525%	165.327	2,175.08		
47	147.655	1,734.95	523/4	165.719	2,185.42		
471/2	148.048	1,744.19	527/3	166.112	2,195.79		
471/4	148.441	1,753.45	53	166.505	2,206.19		
$47\frac{3}{8}$	148.833	1,762.74	531/8	166.897	2,216.61		
$47\frac{1}{2}$	149.226	1,772.06	$53\frac{1}{4}$	167.290	2,227.05		
$47\frac{5}{8}$	149.619	1,781.40	533/8	167.683	2,237.52		
473/4	150.011	1,790.76	$53\frac{1}{2}$	168.076	2,248.01		
477/8	150.404	1,800.15	535/8	168.468	2,258.53		
48	150.797	1,809.56	533/4	168.861	2,269.07		
481/8	151.189	1,819.00	537/8	169.254	2,279.64		
481/4	151.582	1,828.46	54	169.646	2,290.23		
483/8	151.975	1,837.95	541/8	170.039	2,300.84		
48 ¹ / ₂ 48 ⁵ / ₄	152.368	1,847.46	541/4	170.432	2,311.48		
483/4	152.760	1,856.99	543/8	170.824	2,322.15 2,332.83		
4007	153.153 153.546	1,866.55	54½ 545%	171.217 171.610	2,343.55		
48½ 49	153.938	1,876.14 1,885.75	543/4	172.003	2,354.29		
491/6	154.331	1,895.38	F 76.5	172.005	2,365.05		
491/8	154.551	1,905.04	54 1/8 55	172.393	2,375.83		
493%	155.116	1,905.04	551/2	173.181	2,386.65		
491/2	155.509	1,924.43	5514	173.573	2,397.48		
495%	155.902	1,934.16	553%	173.966	2,408.34		
493	156.295	1,943.91	5512	174.359	2,419.23		
497/8	156.687	1.953.69	555%	174.751	2,430.14		
50	157.080	1.963.50	553%	175.144	2.441.07		

TABLE—(Continued).

		TABLE (•	
Diam.	Circum.	Area.	Diam.	Circum.	Area.
556 6144 8 556 556 56 56 56 56 56 56 56 56 56 56 5	175.537 175.930 176.322 176.715 177.108 177.500 177.893 178.286 179.071 179.464 179.857 180.249 180.642 181.035 181.427 181.820 182.213 182.605 182.998 183.391 183.784 184.176 184.569 184.569 184.569 184.569 184.569 185.354 185.354 185.747 186.140 186.532 187.318 187.318 187.318 187.318 187.318 187.318 188.496 188.889 189.281 188.496 188.889 189.281 189.674 190.067 190.459 190.459 190.459	2,452.03 2,468.01 2,474.02 2,486.11 2,507.19 2,518.30 2,529.43 2,518.30 2,529.43 2,561.76 2,562.51 2,674.20 2,565.45 2,669.33 2,664.91 2,663.49 2,664.91 2,664.91 2,667.84 2,676.84 2,772.24 1,733.98 2,744.57 2,780.51 2,780.51 2,880.53 2,881.67 2,887.44 2,887.44 2,889.23 2,881.67 2,889.23 2,889.23 2,889.23 2,889.23 2,889.23 2,861.05 2,889.23 2,861.05 2,889.23 2,861.05 2,889.23 2,862.89 2,874.76	615/6/4/8 615/8/8 615/8/8 615/8/8 615/8/8 625/8/8 625/8/8 625/8/8 625/8/8 625/8/8 625/8/8 625/8/8 625/8/8 625/8/8 625/8/8 625/	193.601 193.994 194.386 194.779 195.172 195.565 196.743 197.135 197.135 197.921 198.313 197.921 198.706 199.099 201.062 201.062 201.062 201.455 201.484 202.244 202.244 202.2633 203.029 203.419 203.811 204.204 204.204 204.204 204.204 205.382 205.775 206.656 207.346 207.3	2,982.67 2,994.78 3,006.92 3,013.83 3,031.26 3,031.47 3,055.71 3,057.97 3,129.64 3,117.25 3,129.64 3,142.04 3,154.47 3,129.64 3,154.47 3,129.64 3,142.04 3,154.47 3,129.64 3,129.64 3,142.04 3,154.47 3,129.64 3,142.04 3,154.47 3,204.18 3,204.18 3,204.18 3,204.18 3,204.18 3,204.18 3,205.56 3,209.56 3,209.56 3,209.56 3,209.56 3,318.31 3,331.09 3,355.33 3,365.33 3,365.33 3,365.33 3,365.33 3,408.26 3,421.18 3,467.19 3,4
60 ^{7/3} 61 61 ¹ /8	191.245 191.638 192.030	2,910.51 2,922.47 2,934.46	66 ⁵ / ₈ 66 ⁷ / ₈	209.309 209.702 210.094	3,486.30 3,499.40 3,512.52
$61\frac{1}{4}$ $61\frac{3}{8}$ $61\frac{1}{2}$	192.423 192.816 193.208	2,946.48 2,958.52 2,970.58	67 67 ¹ / ₈ 67 ¹ / ₄	210.487 210.880 211.273	3,525.66 3,538.83 3,552.02

TABLE—(Continued).

		TABLE—(Continuea).											
Diam.	Circum.	Area.	Diam.	Circum.	Area.								
673%	211.665	3,565.24	731/6	229,729	4,199.74								
671%	212.058	3,578.48	731/4	230.122	4,214.11								
675%	212.451	3,591.74	7937	230.515	4.228.51								
673%	212.843	3,605.04	731%	230.908	4.242.93								
CH77	213.236	3,618.35	735%	231.300	4,257.37								
68	213.629	3,631.69	733%	231.693	4,271.84								
681/6	214.021	3,645.05	737/8	232.086	4,286.33								
681/4	214.414	3,658,44	7/	232.478	4,300.85								
683%	214.807	3,671.86	741/8	232.871	4,315.39								
681/2	215.200	3,685.29	741%	233.264	4,329.96								
685%	215.592	3,698.76	743%	233.656	4,344.55								
683/4	215.985	3,712.24	741%	234.049	4,359.17								
687/8	216.378	3,725.75	745%	234.442	4,373.81								
69	216.770	3,739.29	743%	234.835	4,388.47								
691/4	217.163	3,752.85	747/8	235,227	4,403.16								
691/4	217.556	3,766,43	75	235,620	4,417.87								
693%	217.948	3,780.04	751%	236.013	4,432.61								
691%	218.341	3,793.68	751%	236,405	4,447.38								
695%	218.734	3,807.34	753%	236.798	4,462.16								
693%	219.127	3,821.02	751%	237.191	4,476.98								
697/8	219.519	3,834.73	755%	237.583	4,491.81								
70	219.912	3,848.46	753%	237.976	4,506.67								
701/8	220.305	3,862.22	757/8	238.369	4,521.56								
$70\frac{1}{4}$	220.697	3,876.00	76	238.762	4,536.47								
703%	221.090	3,889.80	761/8	239.154	4,551.41								
701/2	221.483	3,903.63	761/4	239.547	4,566.36								
70^{5} /8	221.875	3,917.49	$76\frac{3}{8}$	239.940	4,581.35								
703/4	222.268	3,931.37	$76\frac{1}{2}$	240.332	4,596.36								
701/8	222.661	3,945.27	765/8	240.725	4,611.39								
71	223.054	3,959.20	763/4	241.118	4,626.45								
711/8	223.446	3,973.15	767/8	241.510	4,641.53								
711/4	223.839	3,987.13	77	241.903	4,656.64								
713/8	224.232	4,001.13	771/8	242.296	4,671.77								
$71\frac{7}{2}$	224.624	4,015.16	771/4	242.689	4,686.92								
$71\frac{5}{8}$	225.017	4,029.21	77%	243.081	4,702.10								
713/4	225.410	4,043.29	77/2	243.474	4,717.31								
717/8	225.802	4,057.39	77/8	243.867	4,732.54								
72	226.195	4,071.51	773/4	244.259	4,747.79								
721/8	226.588	4,085.66	777/8	244.652	4,763.07								
721/4	226.981	4,099.84	78	245.045	4,778.37 4,793.70								
723/8	227.373	4,114.04	78½ 78¼	245.437 245.830	4,793.70								
721/2	227.766	4,128.26	703/	245.850	4,809.03								
72 ⁵ / ₈ 72 ³ / ₄	228.159 228.551	4,142.51 4,156.78	781/	246.223	4,839.83								
7077	228.551	4,130.78	785%	247.008	4,855.26								
721/8	229.337	4,171.00	783/4	247.401	4,833.20								
• • • •	220.001	4,400.10	, 0/4		1 2,0.0.12								

TABLE—(Continued).

Diam.	Circum.	Area.	Diam.	Circum.	Area.
787/8	247.794	4,886,18	845/8	265,858	5.624.56
79	248.186	4,901.68	843/4	266.251	5.641.18
791/6	248,579	4,917.21	8472	266,643	5,657.84
791/4	248.972	4.932.75	85	267.036	5,674.51
793%	249.364	4,948.33	851/6	267,429	5,691.22
791%	249,757	4,963.92	851%	267.821	5,707.94
795%	250,150	4,979,55	853%	268,214	5,724.69
793/	250.543	4,995.19	851%	268.607	5,741.47
797%	250.935	5,010.86	855%	268.999	5,758.27
80	251.328	5,026.56	853/4	269.392	5,775.10
801/8	251.721	5,042.28	857/8	269.785	5,791.94
801/4	252.113	5,058.03	86	270.178	5,808.82
803/8	252.506	5,073.79	861/8	270.570	5,825.72
801/2	252.899	5,089.59	861/4	270.963	5,842.64
805/8	253.291	5,105.41	863/8	271.356	5,859.59
803/4	253.684	5,121.25	$86\frac{1}{2}$	271.748	5,876.56
807/8	254.077	5,137.12	865/8	272.141	5,893.55
81	254.470	5,153.01	863/4	272.534	5,910.58
811/8	254.862	5,168.93	867/8	272.926	5,927.62
811/4	255.255	5,184.87	87	273.319	5,944.69
813/8	255.648	5,200.83	871/8	273.712	5,961.79
811/2	256.040	5,216.82	871/4	274.105	5,978.91
815/8	256.433	5,232.84	87%	274.497	5,996.05
813/4	256.826	5,248.88	871/2	274.890	6,013.22
817/8	257.218	5,264.94	87%	275.283	6,030.41
82	257.611	5,281.03	879/4	275.675	6,047.63
821/8	258.004	5,297.14	81/8	276.068	6,064.87
821/4	258.397 258.789	5,313.28	88 88½	276.461 276.853	6,082.14 6,099.43
82 ³ / ₈ 82 ¹ / ₉		5,329.44 5,345.63	881/	277.246	6,116.74
82 ⁵ / ₈	259.182 259.575	5,361.84	883/2	277.629	6,134.08
823/4	259.967	5,378.08	991	278.032	6,151.45
0077	260,360	5.394.34	885%	278.424	6,168.84
82½ 83	250.753	5,410.62	883/	278.817	6,186.25
831/4	261.145	5,426,93	887%	279.210	6,203.69
831/4	261.538	5,443.26	89 ⁸	279.602	6,221.15
833%	261.931	5,459.62	891/9	279.995	6,238.64
831%	262.324	5,476.01	891/4	280.388	6,256.15
835%	262.716	5,492,41	893/2	280.780	6.273.69
833%	263.109	5,508.84	891%	281.173	6,291.25
837/8	263.502	5,525.30	895%	281.566	6,308,84
84	263.894	5,541.78	893/4	281.959	6,326.45
841/8	264.287	5,558.29	897/8	282.351	6,344.08
841/4	264.680	5,574.82	90	282.744	6,361.74
843/8	265.072	5,591.37	901/8	283.137	6,379.42
841/2	265.465	5,607.95	901/4	283.529	6,397.13

TABLE-(Continued).

		TABLE(Jonainaea)		
Diam.	Circum.	Area.	Diam.	Circum.	Area.
903 4 901 4	283.922 284.315 284.707 285.493 285.100 285.493 286.671 287.064 287.849 288.624 289.027 288.642 289.027 289.813 290.598 290.598 290.598 290.598 290.598 291.766 293.347 293.347 293.746 293.347 293.746 293.347 293.746 293.347 293.747 293.767 296.688	6,414.86 6,432.40 6,468.21 6,486.04 6,503.90 6,521.78 6,539.68 6,557.61 6,575.56 6,575.56 6,673.35 6,629.57 6,647.63 6,685.70 6,685.80 6,730.92 6,730.82 6,730.93 6,7	9514 9534 9534 9534 9534 9614 9614 9614 9614 9614 9614 9614 961	299.237 299.630 300.023 300.415 300.808 301.201 301.594 301.986 302.379 302.772 303.950 304.342 304.735 305.128 305.521 305.913 306.306 306.699 307.484 307.877 308.270 308.662 309.840 307.873 308.626 311.018 311.411 311.804 312.196 312.589 312.982 313.375	7,125.59 7,144.31 7,163.04 7,181.81 7,200.60 7,219.41 7,238.25 7,257.11 7,275.99 7,339.83 7,408.89 7,427.97 7,447.08 7,447.08 7,447.08 7,466.21 7,455.37 7,504.55 7,523.75 7,542.98 7,660.82 7,600.82
951/8	298.845	7,106.90	100	314.160	7,854.00

The preceding table may be used to determine the diameter when the circumference or area is known. Thus, the diameter of a circle having an area of 7,200 sq. in. is, approximately, 95‡ in.

DECIMAL EQUIVALENTS OF PARTS OF ONE INCH.

_							
1-64 1-32 3-64 1-16 5-64 3-32 7-64 1-8 9-64 5-32 11-64 3-16	.015625 .031250 .046875 .062500 .078125 .093750 .109375 .125000 .140625 .156250 .171875	17-64 9-32 19-64 5-16 21-64 11-32 23-64 3-8 25-64 13-32 27-64 7-16	.265625 .281250 .296875 .312500 .328125 .343750 .359375 .375000 .390625 .406250 .421875 .437500	33-64 17-32 35-64 9-16 37-64 19-32 39-64 5-8 41-64 21-32 43-64 II-16	.515625 .531250 .546875 .562500 .578125 .593750 .609375 .625000 .640625 .656250 .671875	49-64 25-32 51-64 13-16 53-64 27-32 55-64 7-8 57-64 29-32 59-64 15-16	.765625 .781250 .796875 .812500 .828125 .843750 .859375 .875000 .890625 .906250 .921875 .937500
5-32 11-64	.156250 .171875	13-32 27-64	.406250 .421875	21-32 43-64	.656250 .671875	29-32 59-64	.906250 .921875
7-32 15-64 1-4	.218750 .234375 .250000	15-32 31-64 1-2	.468750 .484375 .500000	23-32 47-64 3-4	.718750 .734375 .750000	31-32 63-64	.968750 .984375

DECIMALS OF A FOOT FOR EACH 1-32 OF AN INCH.

Inch.	0" -	1"	2"	3′′	4''	5′′
Inch. 0 *** ** *** *** *** *** *** *** *** *	0 .0026 .0052 .0078 .0104 .0136 .0156 .0182 .0208 .0234 .0260 .0312 .0339 .0369 .0391 .0417 .0443	.0833 .0859 .0859 .0851 .0911 .0937 .0964 .0990 .1016 .1042 .1068 .1094 .1120 .1146 .1172 .1198 .1224 .1254 .1257 .1276	.1667 .1693 .1719 .1745 .1771 .1823 .1849 .1875 .1901 .1927 .1953 .1979 .2005 .2067 .2067 .2087	.2500 .2526 .2526 .2552 .2578 .2604 .2656 .2652 .2708 .2734 .2760 .2812 .2812 .2831 .2851 .2891 .2913	.3333 .3359 .3385 .3411 .3437 .3464 .3516 .3542 .3568 .3594 .3620 .3646 .3672 .3698 .3724 .3776	.4167 .4193 .4219 .4241 .4271 .4297 .4323 .4349 .4375 .4401 .4427 .4453 .4479 .4505 .4581 .4587 .4583
Charles Of Calendaria	.0469 .0495 .0521	.1302 .1328 .1354	.2135 .2161 .2188	.2969 .2995 .3021	.3802 .3828 .3854	.4635 .4661 .4688
Special Color	.0547 .0573 .0599	.1380 .1406 .1432	.2214 .2240 .2266	.3047 .3073 .3099	.3880 .3906 .3932	.4714 .4740 .4766

Table—(Continued).

Inch.	0′′	1''	2"	3"	4''	5"
Colorado Mariantes de Colorado	.0625 .0651 .0677 .0703 .0729 .0755 .0781	.1458 .1484 .1510 .1536 .1562 .1589 .1615 .1641	.2292 .2318 .2344 .2370 .2396 .2422 .2448 .2474	.3125 .3151 .3177 .3203 .3229 .3255 .3281 .3307	.3958 .3984 .4010 .4036 .4062 .4089 .4115 .4141	.4792 .4818 .4844 .4870 .4896 .4922 .4948 .4974

DECIMALS OF A FOOT FOR EACH 1-32 OF AN INCH.

Inch.	6''	7''	8"	9''	10"	11''
0	.5000	.5833	.6667	.7500	.8333	.9167
32	.5026	.5859	.6693	.7526	.8359	.9193
	.5052	.5885	.6719	.7552	.8385	.9219
3	.5078	.5911	.6745	.7578	.8411	.9245
1%	.5104	.5937	.6771	.7604	.8437	.9271
5 7 7	.5130	.5964	.6797	.7630	.8464	.9297
3	.5156	.5990	.6823	.7656	.8490	.9323
16 32 1/8 6 32 18 18 72 31/	.5182	.6016	.6849	.7682	.8516	.9349
1/2	.5208	.6042	.6875	.7708	.8542	.9375
7/4 3/2 5	.5234	.6068	.6901	.7734	.8568	.9401
5 7 5	.5260	.6094	.6927	.7760	.8594	.9427
11	.5286	.6120	.6953	.7786	.8620	.9453
3/2	.5312	.6146	.6979	.7812	.8646	.9479
3/8/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	.5339	.6172	.7005	.7839	.8672	.9505
76	.5365	.6198	.7031	.7865	.8698	.9531
16 15 32	.5391	.6224	.7057	.7891	.8724	.9557
1/2	.5417	.6250	.7083	.7917	.8750	.9583
17	.5443	.6276	.7109	.7943	.8776	.9609
9 16 19	.5469	.6302	.7135	.7969	.8802	.9635
19	.5495	.6328	.7161	.7995	.8828	.9661
5/8	.5521	.6354	.7188	.8021	.8854	.9688
$\frac{21}{32}$.5547	.6380	.7214	.8047	.8880	.9714
11	.5573	.6406	.7240	.8073	.8906	.9740
23	.5599	.6432	.7266	.8099	.8932	.9766
3/4	.5625	.6458	.7292	.8125	.8958	.9792
25 32	.5651	.6484	.7318	.8151	.8984	.9818
13	.5677	.6510	.7344	.8177	.9010	.9844
37	.5703	.6536	.7370	.8203	.9036	.9870
7/8	.5729	.6562	.7396	.8229	.9062	.9896
09 N5 0- N	.5755	.6589	.7422	.8255	.9089	.9922
15	.5781	.6615	.7448	.8281	.9115	.9948
3 1 3 2	.5807	.6641	.7474	.8307	.9141	,9974

FORMULAS.

$$= \{ +[-:(\sqrt{\times/\div}):-] \} =$$

The term formula, as used in mathematics and in technical books, may be defined as a rule in which symbols are used instead of words; in fact, a formula may be regarded as a shorthand method of expressing a rule.

Most people having no knowledge of algebra regard formulas with distrust; they think that a person must be a good algebraic scholar in order to be able to use formulas. This idea, however, is erroneous. As a rule, no knowledge of any branch of mathematics except arithmetic is required to enable one to use a formula. Any formula can be expressed in words, and when so expressed it becomes a rule.

Formulas are much more convenient than rules; they show at a glance all the operations that are to be performed; they do not require to be read three or four times, as is the case with most rules, to enable one to understand their meaning; they take up much less space, both in the printed book and in one's note book, than rules; in short, whenever a rule can be expressed as a formula, the formula is to be preferred. In the following pages we purpose to show the reader how to use such formulas as he is likely to encounter in "pocket-books," or other works of like nature.

The signs used in formulas are the ordinary signs indicative of operations and the signs of aggregation. All these signs are used in arithmetic, but, to refresh the reader's memory, we will explain their nature and uses before proceeding further.

The signs indicative of operations are six in number, viz.: $+, -, \times, \div, |\cdot, \sqrt{\cdot}|$

The sign (+) indicates addition, and is called *plus*; when placed between two quantities, it indicates that the two quantities are to be added. Thus, in the expression 25+17, the sign (+) shows that 17 is to be added to 25.

The sign (-) indicates subtraction, and is called minus; when placed between two quantities, it indicates that the

quantity on the right is to be subtracted from that on the left. Thus, in the expression 25 – 17, the sign (-) shows that 17 is to be subtracted from 25

The sign (\times) indicates multiplication, and is read *times*, or *multiplied by*; when placed between two quantities, it indicates that the quantity on the left is to be multiplied by that on the right. Thus, in the expression 25×17 , the sign (\times) shows that 25 is to be multiplied by 17.

The sign (\div) indicates division, and is read *divided by*; when placed between two quantities, it indicates that the quantity on the left is to be divided by that on the right. Thus, in the expression $25 \div 17$, the sign (\div) shows that 25 is to be divided by 17.

Division is also indicated by placing a straight line between the two quantities. Thus, 25 | 17, 25 / 17, and \(\frac{2}{7} \) all indicate that 25 is to be divided by 17. When both quantities are placed on the same horizontal line, the straight line indicates that the quantity on the left is to be divided by that on the right. When one quantity is below the other, the straight line between indicates that the quantity above the line is to be divided by the one below it.

The sign (γ') indicates that some root of the quantity to the right is to be taken; it is called the *radical* sign. To indicate what root is to be taken, a small figure, called the *index*, is placed within the sign, this being always omitted when the square root is to be indicated. Thus, $\sqrt{25}$ indicates that the square root of 25 is to be taken; $\sqrt[3]{25}$ indicates that the cube root of 25 is to be taken. etc.

Note.—As the term "quantity" is a very convenient one to use, we will define it. In mathematics the word quantity is applied to anything that it is desired to subject to the ordinary operations of addition, subtraction, multiplication, etc., when we do not wish to be more specific and state exactly what the thing is. Thus, we can say "two or more numbers," or "two or more quantities." The word quantity is more general in its meaning than the word number.

The signs of aggregation are four in number, viz.: —, (), [], and { }, respectively called the vinculum, the parenthesis, the brackets, and the brace; they are used when it is desired to indicate that all the quantities included by them

are to be subjected to the same operation. Thus, if we desire to indicate that the sum of 5 and 8 is to be multiplied by 7, and we do not wish to actually add 5 and 8 before indicating the multiplication, we may employ any one of the four signs of aggregation as here shown: $5+8\times7$, $(5+8)\times7$, $[5+8]\times7$, $\{5+8\}\times7$. The vinculum is placed above the quantities which are to be treated as one quantity and subjected to the same operations.

While any one of the four signs may be used as shown above, custom has restricted their use somewhat. The vinculum is rarely used except in connection with the radical sign. Thus, instead of writing $\sqrt[3]{(5+8)}$, $\sqrt[3]{[5+8]}$, or $\sqrt[3]{\{5+8\}}$ for the cube root of 5 plus 8, all of which would be correct, the vinculum is nearly always used. $\sqrt[3]{5+8}$.

In cases where but one sign of aggregation is needed (except, of course, when a root is to be indicated), the parenthesis is always used. Hence, $(5+8) \times 7$ would be the usual way of expressing the product of 5 plus 8 and 7.

If two signs of aggregation are needed, the brackets and parenthesis are used, so as to avoid having a parenthesis within a parenthesis, the brackets being placed outside. For example, $[(20-5) \div 3] \times 9$ means that the difference between 20 and 5 is to be divided by 3, and this result multiplied by 9.

If three signs of aggregation are required, the brace, brackets, and parenthesis are used, the brace being placed outside, the brackets next, and the parenthesis inside. For example, $\{[(20-5)\div 3]\times 9-21\}\div 8$ means that the quotient obtained by dividing the difference between 20 and 5 by 3 is to be multiplied by 9; and that 21 is to be subtracted from the product thus obtained, and the result divided by 8.

Should it be necessary to use all four signs of aggregation, the brace would be put outside, the brackets next, the parenthesis next, and the vinculum inside. For example, $\left\{ \left[(20-5+3)\times 9-21\right] +8\right\} \times 12$. The reason for using the brace in this last instance will be explained, as it is not generally understood.

When several quantities are connected by the various signs indicating addition, subtraction, multiplication, and division, the operation indicated by the sign of multiplication must always be performed first. Thus, $2+3\times 4$ equals 14, 3 being multiplied by 4 before adding to 2. Similarly, $10 \div 2 \times 5$ equals 1, since 2×5 equals 10, and $10 \div 10$ equals 1. Hence, in the above case, if the brace were omitted, the result would be $\frac{1}{4}$; whereas, by inserting the brace, the result is 36.

Following the sign of multiplication comes the sign of division in its order of importance. For example, $5-9 \div 3$ equals 2, 9 being divided by 3 before subtracting from 5. The signs of addition and subtraction are of equal value; that is, if several quantities are connected by plus and minus signs, the indicated operations may be performed in the order in which the quantities are placed.

There is one other sign used, which is neither a sign of aggregation nor a sign indicative of an operation to be performed; it is (=), and is called the sign of equality; it means that all on one side of it is exactly equal to all on the other side. For example, 2 = 2, 5 - 3 = 2, $5 \times (14 - 9) = 25$.

Having described the signs used in formulas, the formulas themselves will now be explained. First consider the well-known rule for finding the horsepower of a steam engine, which may be stated as follows:

Divide the continued product of the mean effective pressure in pounds per square inch, the length of the stroke in feet, the area of the piston in square inches, and the number of strokes per minute by 33,000; the result will be the horsepower.

This is a very simple rule, and very little, if anything, will be saved by expressing it as a formula, so far as clearness is concerned. The formula, however, will occupy a great deal less space, as we shall show.

An examination of the rule will show that four quantities (viz., the mean effective pressure, the length of the stroke, the area of the piston, and the number of strokes) are multiplied together, and the result is divided by 33,000. Hence, the rule might be expressed as follows:

 $\begin{aligned} & \text{Horsepower} = \underset{(\text{in pounds per square inch})}{\text{mean effective pressure}} \times \underset{(\text{in feet})}{\text{stroke}} \\ & \times \underset{(\text{in square inches})}{\text{area of piston}} \times \underset{(\text{per minute})}{\text{number of strokes}} \div 33,000. \end{aligned}$

This expression could be shortened by representing each quantity by a single letter, thus: representing horsepower by the letter "H," the mean effective pressure in pounds per square inch by "P," the length of the stroke in feet by "L," the area of the piston in square inches by "A," the number of strokes per minute by "N," and substituting these letters for the quantities that they represent, the above expression would reduce to

$$H = \frac{P \times L \times A \times N}{33,000},$$

a much simpler and shorter expression. This last expression is called a formula.

The formula just given shows, as we stated in the beginning, that a formula is really a shorthand method of expressing a rule. It is customary, however, to omit the sign of multiplication between two or more quantities when they are to be multiplied together, or between a number and a letter representing a quantity, it being always understood that when two letters are adjacent with no sign between them, the quantities represented by these letters are to be multiplied. Bearing this fact in mind, the formula just given can be further simplified to

$$H = \frac{PLAN}{33,000}.$$

The sign of multiplication, evidently, cannot be omitted between two or more numbers, as it would then be impossible to distinguish the numbers. A near approach to this, however, may be attained by placing a dot between the numbers that are to be multiplied together, and this is frequently done in works on mathematics when it is desired to economize space. In such cases it is usual to put the dot higher than the position occupied by the decimal point. Thus, 23 means the same as 2×3 ; 542.749.1,006 indicates that the numbers 542.749, and 1,006 are to be multiplied together.

It is also customary to omit the sign of multiplication in expressions similar to the following: $a\times v/\overline{b+c}$, $3\times (b+c)$, $(b+c)\times a$, etc., writing them $a\sqrt{b+c}$, 3(b+c), (b+c)a, etc. The sign is not omitted when several quantities are included by a vinculum, and it is desired to indicate that the quantities

so included are to be multiplied by another quantity. For example, $3 \times \overline{b+c}$, $\overline{b+c} \times a$, $\sqrt{b+c} \times a$, etc., are always written as here printed.

Before proceeding further, we will explain one other device that is used by formula makers, and which is apt to puzzle one who encounters it for the first time. It is the use of what mathematicians call primes and subs., and what printers call superior and inferior characters. As a rule, formula makers designate quantities by the initial letters of the names of the quantities. For example, they represent volume by v, pressure by p, height by h, etc. This practice is to be commended, as the letter itself serves in many cases to identify the quantity that it represents. Some authors carry the practice a little further and represent all quantities of the same nature by the same letter throughout the book, always having the same letter represent the same thing. Now, this practice necessitates the use of the primes and subs. above mentioned when two quantities have the same name, but represent different things. Thus, consider the word pressure as applied to steam at different stages between the boiler and the condenser. First, there is absolute pressure, which is equal to the gauge pressure in pounds per square inch plus the pressure indicated by the barometer reading (usually assumed in practice to be 14.7 pounds per square inch, when a barometer is not at hand). If this be represented by p, how shall we represent the gauge pressure? Since the absolute pressure is always greater than the gauge pressure, suppose we decide to represent it by a capital letter, and the gauge pressure by a small (lower-case) letter. Doing so, P represents absolute pressure, and p gauge pressure. Further, there is usually a "drop" in pressure between the boiler and the engine, so that the initial pressure, or pressure at the beginning of the stroke, is less than the pressure at the boiler. How shall we represent the initial pressure? We may do this in one of three ways, and still retain the letter p or P to represent the word pressure: First, by the use of the prime mark; thus, p' or P' (read pprime and p major prime) may be considered to represent the initial gauge pressure or the initial absolute pressure. Second, by the use of sub. figures; thus, p_1 or P_1 (read p sub. one and p major sub. one). Third, by the use of sub. letters: thus, p_i or P_i (read p sub. i and P major sub. i). Likewise, p'' (read p second), p_2 , or p_r might be used to represent the gauge pressure at release, etc. Sub. letters have the advantage of still further identifying the quantity represented; in many instances, however, it is not convenient to use them, in which case primes and subs. are used instead. The prime notation may be continued as follows: p''', p^{i_1} , p^{i_2} , etc.; it is inadvisable to use superior figures, for example, p^1 , p^2 , p^3 , p^a , etc., as they are liable to be mistaken for exponents.

The main thing to be remembered by the reader is that when a formula is given in which the same letters occur several times, all like letters having the same primes or subs. represent the same quantities, while those that differ in any respect represent different quantities. Thus, in the formula

$$t = \frac{w_1 s_1 t_1 + w_2 s_2 t_2 + w_3 s_3 t_3}{w_1 s_1 + w_2 s_2 + w_3 s_3},$$

 w_1 , w_2 , and w_3 represent the weights of three different bodies; s_1 , s_2 , and s_3 their specific heats; and t_1 , t_2 , and t_3 their temperatures; while t represents the final temperature, after the bodies have been mixed together.

It is very easy to apply the above formula when the values of the quantities represented by the different letters are known. All that is required is to substitute the numerical values of the letters, and then perform the indicated operations. Thus, suppose that the values of w_1 , s_1 , and t_1 are, respectively, 2 pounds, .0951, and 80°; of w_2 , s_2 , and t_2 7.8 pounds, 1, and 80°, and of w_2 , s_3 , and t_3 , 3^4 pounds, .1138, and 780°; then, the final temperature t is, substituting these values for their respective letters in the formula,

$$t = \frac{2 \times .0951 \times 80 + 7.8 \times 1 \times 80 + 3\frac{1}{4} \times .1138 \times 780}{2 \times .0951 + 7.8 \times 1 + 3\frac{1}{4} \times .1138} = \frac{15.216 + 624 + 288.483}{1.902 + 7.8 + .36985} = \frac{927.699}{8.36005} = 110.97^{\circ}.$$

In substituting the numerical values, the signs of multiplication are, of course, written in their proper places; all the multiplications are performed before adding, according to the rule previously given. The reader should now be able to apply any formula involving only algebraic expressions that he may meet with, not requiring the use of logarithms for their solution. We will, however, call his attention to one or two other facts which he may have forgotten.

Expressions similar to $\frac{160}{660}$ sometimes occur, the heavy line

indicating that 160 is to be divided by the quotient obtained by dividing 660 by 25. If both lines were light it would be impossible to tell whether 160 was to be divided by $\frac{660}{25}$, or

whether $\frac{160}{660}$ was to be divided by 25. If this latter result

were desired, the expression would be written $\frac{\overline{660}}{25}$. In every case the heavy line indicates that all above it is to be divided by all below it.

In an expression like the following, $\frac{160}{7 + \frac{660}{25}}$ the heavy line

is not necessary, since it is impossible to mistake the operation that is required to be performed. But, since $7+\frac{660}{25}=\frac{175+660}{25}$, if we substitute $\frac{175+660}{25}$ for $7+\frac{660}{25}$, the heavy line becomes necessary in order to make the resulting expression of the state of the

line becomes sion clear. Thus, $\frac{160}{7 + \frac{660}{25}} = \frac{160}{\frac{175 + 660}{25}} = \frac{\frac{160}{835}}{\frac{835}{25}}.$

Fractional exponents are sometimes used instead of the radical sign. That is, instead of indicating the square, cube, fourth root, etc. of some quantity, as 37 by $\sqrt{37}$, $\sqrt[3]{37}$, $\sqrt[4]{37}$, etc. these roots are indicated by $37^{\frac{1}{2}}$, $37^{\frac{3}{2}}$, $37^{\frac{1}{2}}$, etc. Should the numerator of the fractional exponent be some quantity other than 1, this quantity, whatever it may be, indicates that the quantity affected by the exponent is to be raised to the power indicated by the numerator; the denominator is

always the index of the root. Hence, instead of expressing the cube root of the square of 37 as $\sqrt[3]{37^2}$, it may be expressed $37^{\frac{3}{8}}$, the denominator being the index of the root; in other words, $\sqrt[3]{37^2} = 37^{\frac{3}{8}}$. Likewise, $\sqrt[5]{(1+a^2b)^3}$ may also be written $(1+a^2b)^{\frac{3}{8}}$, a much simpler expression.

We will now give several examples showing how to apply some of the more difficult formulas that the reader may

encounter.

The area of any segment of a circle that is less than (or equal to) a semicircle is expressed by the formula.

$$A = \frac{\pi r^2 E}{360} - \frac{c}{2} (r - h),$$

in which A =area of segment:

 $\pi = 3.1416$:

r = radius:

E = angle obtained by drawing lines from the center to the extremities of arc of segment:

c = chord of segment;

h = height of segment.

EXAMPLE.—What is the area of a segment whose chord is 10 in. long, angle subtended by chord is 83.46°, radius is 7.5 in., and height of segment is 1.91 in.?

SOLUTION .- Applying the formula just given,

$$A = \frac{\pi r^2 E}{360} - \frac{c}{2}(r - h) = \frac{3.1416 \times 7.5^2 \times 83.46}{360} - \frac{10}{2}(7.5 - 1.91)$$

= 40.968 - 27.95 = 13.018 sq. in., nearly.

The area of any triangle may be found by means of the following formula, in which A = the area, and a, b, and c represent the lengths of the sides:

$$A = \frac{b}{2} \sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2}$$

EXAMPLE.—What is the area of a triangle whose sides are 21 ft., 46 ft., and 50 ft. long?

SOLUTION.—In order to apply the formula, suppose we let α represent the side that is 21 ft. long; b, the side that is 50 ft. long; and c, the side that is 46 ft. long. Then, substituting in the formula,

$$\begin{split} \mathbf{A} &= \frac{b}{2} \sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2} = \frac{50}{2} \sqrt{21^2 - \left(\frac{21^2 + 50^2 - 46^2}{2 \times 50}\right)^2} \\ &= \frac{50}{2} \sqrt{441 - \left(\frac{441 + 2,500 - 2,116}{100}\right)^2} = 25 \sqrt{441 - \left(\frac{825}{100}\right)^2} \\ &= 25 \sqrt{441 - 8.25^2} = 25 \sqrt{441 - 68.0625} = 25 \sqrt{372.9375} \\ &= 25 \times 19.312 = 482.8 \text{ sq. ft., nearly.} \end{split}$$

The above operations have been extended much further than was necessary; this was done in order to show the reader every step of the process.

The Rankine-Gordon formula for determining the least load in pounds that will cause a long column to break is

$$P = \frac{SA}{1 + q\frac{l^2}{C^2}},$$

in which P= load (pressure) in 1b.; S= ultimate strength (in lb. per sq. in.) of material composing column; A= area of cross-section of column in sq. in.; q= a factor (multiplier) whose value depends on the shape of the ends of the column and on the material composing the column; l= length of the column in in.; G= least radius of gyration of cross-section of column.

The values of S, q, and G^2 are all given in printed tables on pages 151, 153, and 156.

EXAMPLE.—What is the least load that will break a hollow steel column whose outside diameter is 14 in., inside diameter 11 in., length 20 ft., and whose ends are flat?

SOLUTION.—For steel, S=150,000, and $q=\frac{1}{25,000}$ for flatended steel columns; A, the area of the cross-section, = .7854 $(d_1^2-d_2^2)$, d_1 and d_2 being the outside and inside diameters, respectively; $l=20\times 12=240$ in.; and $G^2=\frac{d_1^2+d_2^2}{16}$. Substituting these values in the formula.

$$P = \frac{SA}{1+q} \frac{l^2}{G^2} = \frac{150.000 \times .7854(14^2 - 11^2)}{1 + \frac{1}{25,000} \times \frac{240^2}{14^2 + 11^2}} = \frac{150.000 \times 58.905}{1 + .1163} = \frac{8.835.750}{1.1163} = 7.915,211 \text{ lb.}$$

INVOLUTION AND EVOLUTION.

By means of the following table the square, cube, square root, cube root, and reciprocal of any number may be obtained correct always to five significant figures, and in the majority of cases correct to six significant figures.

In any number, the figures beginning with the first digit * at the left and ending with the last digit at the right, are called the *significant figures* of the number. Thus, the number 405,800 has the four significant figures 4, 0, 5, 8; and the number .000090067 has the five significant figures 9, 0, 0, 6, and 7.

The part of a number consisting of its significant figures is called the *significant part* of the number. Thus, in the number 28,070, the significant part is 2807; in the number .00812, the significant part is 812; and in the number 170.3, the significant part is 1703.

In speaking of the significant figures or of the significant part of a number, the figures are considered, in their proper order, from the first digit at the left to the last digit at the right, but no attention is paid to the position of the decimal point. Hence, all numbers that differ only in the position of the decimal point have the same significant part. For example, .002103, 21.03, 21.030, and 210,300 have the same significant figures 2, 1, 0, and 3, and the same significant part 2103.

The integral part of a number is the part to the left of the decimal point.

It will be more convenient to explain first how to use the table for finding square and cube roots.

SQUARE ROOT.

First point off the given number into periods of two figures each, beginning with the decimal point and proceeding to the left and right. The following numbers are thus pointed off: 12703, 1'27'03; 12.703, 12.70'30; 220000, 22'00'00; .000442, .00'04'42.

^{*} A cipher is not a digit.

Having pointed off the number, move the decimal point so that it will fall between the first and second periods of the significant part of the number. In the above numbers, the decimal point will be placed thus: 1.2703, 12.703, 22, 4.42.

If the number has but three (or less) significant figures, find the significant part of the number in the column headed \sqrt{n} n; the square root will be found in the column headed \sqrt{n} or $\sqrt{10n}$, according to whether the part to the left of the decimal point contains one figure or two figures. Thus, $\sqrt{4.42} = 2.1024$, and $\sqrt{122} = \sqrt{10} \times 2.20 = 4.6904$. The decimal point is located in all cases by reference to the original number after pointing off into periods.

There will be as many figures in the root preceding the decimal point as there are periods preceding the decimal point in the given number; if the number is entirely decimal, the root is entirely decimal, and there will be as many ciphers following the decimal point in the root as there are cipher periods following the decimal point in the given number.

Applying this rule, $\sqrt{220000} = 469.04$ and $\sqrt{.000442} = .021024$.

The operation when the given number has more than three significant figures is best explained by an example.

EXAMPLE.—(a) $\sqrt{3.1416} = ?$ (b) $\sqrt{2342.9} = ?$

Solution.—(a) Since the first period contains but one figure, there is no need of moving the decimal point. Look in the column headed n² and find two consecutive numbers, one a little greater and the other a little less than the given number; in the present case, 3.1684 = 1.78² and 3.1329 = 1.77². The first three figures of the root are therefore 177. Find the difference between the two numbers between which the given number falls, and the difference between the smaller number and the given number; divide the second difference by the first difference, carrying the quotient to three decimal places and increasing the second figure by 1 if the third is 5 or a greater digit. The two figures of the quotient thus determined will be the fourth and fifth figures of the root. In the present example, dropping decimal points in the remainders, 3.1684 = 3.1329 = 355, the first difference:

3.1416 - 3 1329 = 87, the second difference; $87 \div 355 = .245 +$, or .25. Hence, $\sqrt{3.1416} = 1.7725$.

(b) $\sqrt{2342.9} = ?$ Pointing off into periods we get 23'42.90; moving the decimal point we get 23.4290; the first three figures of the root are 484; the first difference is 23.525 = 23.4256 = 969; the second difference is 23.4290 = 23.4256 = 34; $34 \div 969 = .035 +$, or .04. Hence, 1/2342.9 = 48.404.

CURE ROOT

The cube root of a number is found in the same manner as the square root, except the given number is pointed off into periods of three figures each. The following numbers would be pointed off thus: 3141.6, 3′141.6; 67296428, 67′296′428; 601426.314; 601′426.314; .000000217, .000′000′021′700.

Having pointed off, move the decimal point so that it will fall between the first and second periods of the significant part of the number, as in square root. In the above numbers the decimal point will be placed thus: 3.1416, 67.296428, 601.426314, and 21.7.

EXAMPLE.—(a) $\sqrt[3]{.000062417} = ?$ (b) $\sqrt[3]{50932676} = ?$

Solution.—(a) Pointing off into periods, we get 000'006'241'700; moving the decimal point, we get 6.2417. The number falls between $6.22950 = 1.84^3$ and $6.33163 = 1.85^3$; the first difference = 10213; the second difference is

6.24170 - 6.22950 = 1220; $1220 \div 10213 = .119+$, or .12, the fourth and fifth figures of the root. The decimal point is located by the rule previously given; hence, $\sqrt[3]{.000062417} = .018412$.

(b) $\sqrt[3]{50932676} = ?$ As the number contains more than six significant figures, reduce it to six significant figures by replacing all after the sixth figure with ciphers, increasing the sixth figure by 1 when the seventh is 5 or a greater digit. In other words, the first five figures of $\sqrt[3]{50932700}$ and of $\sqrt[3]{50932676}$ are the same. Pointing off into periods, we get 50.9327, which falls between $50.6530 = 3.70^3$ and $51.0648 = 3.71^3$; the first difference is 4118; the second difference is 2797; $2797 \div 4118 = .679 +$, or .68. The integral part of the root evidently contains three figures; hence, $\sqrt[3]{50932676} = 370.68$, correct to five figures.

SQUARES AND CUBES.

If the given number contains but three (or less) significant figures, the square or cube is found in the column headed n^2 or n^3 , opposite the given number in the column headed n. If the given number contains more than three significant figures, proceed in a manner similar to that described for extracting roots. To square a number, place the decimal point between the first and second significant figures and find in the column headed \sqrt{n} or $\sqrt{10n}$ two consecutive numbers, one of which shall be a little greater and the other a little less than the given number. The remainder of the work is exactly as heretofore described. To locate the decimal point, employ the principle that the square of any number contains either twice as many figures as the number squared or twice as many less one. If the column headed $\sqrt{10}\,\hat{n}$ is used, the square will contain twice as many figures, while if the column headed \sqrt{n} is used, the square will contain twice as many figures as the number squared, less one. If the number contains an integral part, the principle is applied to the integral part only; if the number is wholly decimal, there will be twice as many ciphers following the

decimal in the square or twice as many plus one as in the number squared, depending on whether $\sqrt{10\,n}$ or \sqrt{n} column is used. For example, 273.422 will contain five figures in the integral part; 4516.22 will contain eight figures in the integral part, all after the fifth being denoted by ciphers; .00294533 will have five ciphers following the decimal point; .0524362 will have two ciphers following the decimal point.

EXAMPLE.—(a) $273.42^2 = ?$ (b) $.052436^2 = ?$

Solution.—(a) Placing the decimal point between the first and second significant figures, the result is 2.7342; this number occurs between 2.73313 = $\sqrt{7.47}$ and 2.73496 = $\sqrt{7.48}$ in the column headed \sqrt{n} . The first difference is 2.73496 — 2.73313 = 183; the second difference is 2.73420 — 2.73313 = 107; and $107 \div 183 = .584 +$, or .58. Hence, 273.422 = 74,758, correct to five significant figures.

(b) Shifting the decimal point to between the first and second significant figures, we get the number 5.2436, which falls between 5.2450 = 1/27.4 and 5.24404 = 1/27.5. The first difference is 954; the second difference is 910; 910 \div 954 = .953 \div , or .95. Hence, .052436 2 = .0027495, to five significant figures.

A number is cubed in exactly the same manner, using the column headed $\sqrt[p]{n}$, $\sqrt[p]{10}\,n$, or $\sqrt[p]{100}\,n$, according to whether the first period of the significant part of the number contains one, two, or three figures, respectively. If the number contains an integral part, the number of figures in the integral part of the cube will be three times as many as in the given number if column headed $\sqrt[p]{100}\,n$ is used; it will be three times as many less 1 if the column headed $\sqrt[p]{100}\,n$ is used; and it will be three times as many less 2 if the column headed $\sqrt[p]{n}$ is used. If the given number is wholly decimal the cube will have either three times, three times plus one, or three times plus two, as many ciphers following the decimal as there are ciphers following the decimal point in the given number.

EXAMPLE.—(a) $129.684^3 = ?$ (b) $.76442^3 = ?$ (c) $.032425^3 = ?$

Solution .- (a) Placing the decimal point between the

first and second significant figures, the number 1.29684 is found between 1.29664 = $\sqrt[3]{2.18}$ and 1.29862 = $\sqrt[3]{2.19}$. The first difference is 198; the second difference is 20; and 20 \div 198 = .101+, or .10. Hence, the first five significant figures are 21810; the number of figures in the integral part of the cube is $3 \times 3 - 2 = 7$; and 129.684 $^3 = 2$,181,000, correct to five significant figures.

(b) 7.64420 occurs between 7.64032 = $\sqrt[3]{446}$ and 7.64603 = $\sqrt[3]{47}$. The first difference is 571; the second difference is 388; and 388 ÷ 571 = .679 +, or .68. Hence, the first five significant figures are 44668; the number of ciphers following the decimal point is $3 \times 0 = 0$; and .764423 = .44668, correct to five significant figures.

 $\sqrt[3]{34.0}$ 3.2425 falls between 3.24278 = $\sqrt[3]{34.1}$ and 3.23961 = $\sqrt[3]{34.0}$. The first difference is 317; the second difference is 289; 289 ÷ 317 = .911+, or .91. Hence, the first five significant figures are 34091; the number of ciphers following the decimal point is $3 \times 1 + 1 = 4$; and $.032425^3 = .000034091$, correct to five significant figures.

RECIPROCALS.

The reciprocal of a number is 1 divided by the number. By using reciprocals, division is changed into multiplication, since $a \div b = \frac{a}{b} = a \times \frac{1}{b}$. The table gives the reciprocals of all numbers expressed with three significant figures to six significant figures. By proceeding in a manner similar to that just described for powers and roots, the reciprocal of any number correct to five significant ngures may be obtained. The decimal point in the result may be located as follows: If the given number has an integral part, the number of ciphers following the decimal point in the reciprocal will be one less than the number of figures in the integral part of the given number; and if the given number is entirely decimal. the number of figures in the integral part of the reciprocal will be one greater than the number of ciphers following the decimal point in the given number. For example, the reciprocal of 3370 = .000296736 and of .00348 = 287.356.

When the number whose reciprocal is desired contains more than three significant figures, express the number to six significant figures (adding ciphers, if necessary, to make six figures) and find between what two numbers in the column headed $\frac{1}{n}$ the significant figures of the given number falls; then proceed exactly as previously described to determine the fourth and fifth figures.

EXAMPLE.— (a) The reciprocal of 379.426 =? (b) $\frac{1}{.0004692}$ =?

Solution. -(a) .379426 falls between .378788 $=\frac{1}{2.64}$ and .380228 $=\frac{1}{2.63}$. The first difference is 380228 - 378788 = 1440; the second difference is 380228 - 379426 = 802; 802 + 1440 = .557, or .56. Hence, the first five significant figures are 26356, and the reciprocal of 379.426 is .0026356, to five significant figures.

(b) .469200 falls between .469484 = $\frac{1}{2.13}$ and .467290 = $\frac{1}{2.14}$. The first difference is 2194; the second difference is 284; 284 \div 2194 = .129+, or .13. Hence, $\frac{1}{.0004692}$ = 2131.3, correct to five significant figures.

					$\sqrt[3]{n}$	3	3	1
n	n^2	n^3	\sqrt{n}	V 10 n	₹n	$\sqrt[3]{10} n$	$\sqrt[3]{100 n}$	\overline{n}
1.01	1.0201	1 03030	1.00499	3.17805	1.00332	2.16159	4,65701	.990099
1.02	1.0404	1.06121	1.00995	3.19374	1.00662	2.16870	4.67233	.980392
1.03	1.0609	1.09273	1.01489	3.20936	1.00990	2.17577	4.68755	.970874
1.04	1.0816	1.12486	1.01980	3,22490	1.01316	2.18278	4.70267	.961539
1.05	1.1025	1.15763	1.02470	3.24037	1.01640	2.18976	4.71769	.952381
1.06	1.1236	1.19102	1.02956	3.25576	1.01961	2.19669	4.73262	.943396
1.07	1.1449	1.22504	1.03441	3.27109	1.02281	2.20358	4.74746	.934579
1.08	1.1664	1.25971	1.03923	3.28634	1.02599	2.21042	4.76220	.925926
1.09	1.1881	1.29503 1.33100	1.04403 1.04881	3.30151 3.31662	1.02914	2.21722 2.22398	4.77686 4.79142	.917431
1.11	1.2321	1 36763	1.05357	3.33167	1.03540	2.23070	4.80590	.900901
1.12	1.2544	1.40493	1.05830	3.34664	1.03850	2.23738	4.82028	.892857
1.13	1.2769	1.44290	1.06301	3.36155	1.04158	2.24402	4.83459	.884956
1.14	1.2996	1.48154	1.06771	3.37639	1.04464	2.25062	4.84881	.877193
1.15	1.3225	1.52088	1.07238	3.39116	1.04769	2.25718	4.86294	.869565
1.16	1.3456	1.56090	1.07703	3.40588	1.05072	2.26370	4.87700	.862069
1.17	1.3689	1.60161	1.08167	3.42053	1.05373	2.27019	4.89097	.854701
1.18	1.3924	1.64303	1.08628	3.43511	1.05672	2.27664	4.90487	.847458
1.19	1.4161	1.68516	1.09087	3.44964	1.05970	2.28305	4.91868	.840336
1.20	1.4400	1.72800	1.09545	3.46410	1.06266	2.28943	4.93242	.833333
1.21	1.4641	1.77156	1.10000	3.47851	1.06560	2.29577	4.94609	.826446
1.22	1.4884	1.81585	1.10454	3.49285	1.06853	2.30208	4.95968	.819672
1.23	1.5129	1.86087	1.10905	3.50714	1.07144	2.30835	4.97319	.813008
1.24	1.5376	1.90662	1.11355	3.52136	1.07434	2.31459	4.98663	.806452
1.25	1.5625	1.95313	1.11803	3.53553	1.07722	2.32080	5.00000	.800000
1.26	1.5876	2.00038	1.12250	3.54965	1.08008	2.32697	5.01330	.793651
1.27	1.6129	2.04838	1.12694	3.56371	1.08293	2.33310	5.02653	.787402
1.28	1.6384	2.09715	1.13137	3.57771	1.08577	2.33921	5.03968	781250
1.29	1.6641	2.14669	1.13578	3.59166	1.08859	2.34529	5.05277	.775194
1.30	1.6900	2.19700	1.14018	3.60555	1.09139	2.35134	5.06580	.769231
1.31	1.7161	2.24809	1.14455	3.61939	1.09418	2.35735	5.07875	.763359
1.32	1.7424	2.29997	1.14891	3.63318	1.09696	2.36333	5.09164	.757576
1.33	1.7689	2.35264	1.15326	3.64692	1.09972	2.36928	5.10447	.751880
1.34	1.7956	2.40610	1.15758	3.66060	1.10247	2.37521	5.11723	.746269
1.35	1.8225	2.46038	1.16190	3.67423	1.10521	2.38110	5.12993	.740741
1.36	1.8496	2.51546	1.16619	3.68782	1.10793	2.38696	5.14256	.735294
1.37	1.8769	2.57135	1.17047	3.70135	1.11064	2.39280	5.15514	.729927
1.38	1.9044	2.62807	1.17473	3.71484	1.11334	2.39861	5.16765	.724638
1.39	1.9321	2.68562	1.17898	3.72827	1.11602	2.40439	5.18010	.719425
1.40	1.9600	2.74400	1.18322	3.74166	1.11869	2.41014	5.19249	.714286
1.41	1.9881	2.80322	1.18743	3.75500	1.12135	2.41587	5.20483	.709220
1.42	2.0164	2.86329	1.19164	3.76829	1.12399	2.42156	5.21710	.704225
1.43	2.0449	2.92421	1.19583	3.78153	1.12662	2.42724	5.22932	.699301
1.44	2.0736 2.1025	2.98598 3.04863	1,20000 1,20416	3.79473 3.80789	1.12924 1.13185	2.43288 2.43850	5.24148 5.25359	.689655
1.46	2.1316	3.11214	1.20830	3.82099	1.13445	2.44409	5.26564	.684932
1.46	2.1316	3.11214	1.20830	3,83406	1.13445	2.44409	5.27763	.684932
1.48	2.1909	3.24179	1.21244	3.84708	1.13960	2.45520	5.28957	.675676
1.49	2.1904	3.30795	1.22066	3.86005	1.13960	2.46072	5.30146	.671141
1.50	2.2500	3,37500	1,22474	3.87298	1.14471	2.46621	5.31329	.666667
1.00	2.2300	0.01300	1,22414	0.01230	1.11111	2.70021	0.01020	.000001

22	n^2	n3	\sqrt{n}	$\sqrt{10 n}$	$\sqrt[3]{n}$	$\sqrt[3]{10 \ n}$	$\sqrt[3]{100 n}$	1
n	712			V10 71		V10 71	V10071	n
1.51	2,2801	3.44295	1,22882	3,88587	1.14725	2,47168	5,32507	.662252
1.52	2,3104	3.51181	1.23288	3,89872	1.14978	2.47713	5.33680	.657895
1.53	2,3409	3.58158	1.23693	3,91152	1.15230	2.48255	5.34848	.65359
1.54	2.3716	3.65226	1.24097	3,92428	1.15480	2.48794	5.36011	.64935
1.55	2.4025	3.72388	1.24499	3.93700	1.15729	2,49332	5.37169	.64516
1.56	2.4336	3.79642	1.24900	3,94968	1.15978	2.49866	5,38321	.64102
1.57	2.4649	3.86989	1.25300	3.96232	1.16225	2.50399	5.39469	.63694
1.58	2.4964	3.94431	1.25698	3.97492	1.16471	2,50930	5.40612	.63291
1.59	2.5281 2.5600	4.01968 4.09600	1.26095 1.26491	3.98748 4.00000	1.16717	2.51458 2.51984	5.41750 5.42884	.62893
	2.5921	4.17328	1.26886	4.01248	1.17204	2.52508	5.44012	.62111
1.61		4.251531	1.27279	4.02492	1.17446	2.53030	5.45136	.61728
1.63	2.6244 2.6569	4.231353	1.27671	4.02492	1.17687	2,53549	5.46256	.61349
1.64	2.6896	4.41094	1.28062	4.04969	1.17927	2.54067	5.47370	.60975
1.65	2.6896	4.41094	1.28452	4.04969	1.18167	2.54582	5,48481	.60606
1.66	2.7556	4.57430	1.28841	4.07431	1.18405	2.55095	5,49586	.60241
1.67	2.7889	4.65746	1.29228	4.08656	1.18642	2.55607	5.50688	.59880
1.68	2.8224	4.74163	1.29615	4.09878	1.18878	2.56116	5.51785	.59523
1.69	2.8561	4.82681	1.30000	4.11096	1,19114	2.56623	5.52877	.59171
1.70	2.8900	4.91300	1.30384	4.12311	1.19348	2.57128	5.53966	.58823
1.71	2.9241	5.00021	1.30767	4.13521	1.19582	2.57631	5.55050	.58479
1.72	2.9584	5.08845	1.31149	4.14729	1.19815	2.58133	5.56130	.58139
1.73	2.9929	5.17772	1.31529	4.15933	1.20046	2.58632	5.57205	.57803
1.74	3.0276	5.26802	1.31909	4.17133	1.20277	2.59129	5.58277	.57471
1.75	3.0625	5.35938	1.32288	4.18330	1.20507	2.59625	5.59344	.57142
1.76	3.0976	5.45178	1.32665	4.19524	1.20736	2.60118	5.60408	.56818
1.77	3.1329	5.54523	1.33041	4.20714	1.20964	2.60610	5.61467	.56497
1.78	3.1684	5.63975	1.33417	4.21900	1.21192	2.61100	5.62523	.56179
1.79	3.2041	5.73534	1.33791	4.23084	1.21418	2.61588	5.63574	.55865
1.80	3.2400	5.83200	1.34164	4.24264	1.21644	2.62074	5.64622	.55555
1.81	3.2761	5.92974	1.34536	4.25441	1.21869	2.62558	5.65665	.55248
1.82	3.3124	6.02857	1.34907	4.26615	1.22093	2.63041	5.66705	.54945
1.83	3.3489	6.12849	1.35277	4.27785	1.22316	2.63522	5.67741	.54644
1.84	3.3856	6.22950	1.35647	4.28952	1.22539	2.64001	5.68773	.54347
1.85	3,4225	6.33163	1.36015	4.30116	1.22760	2.64479	5.69802	.54054
1.86	3.4596	6.43486	1.36382	4.31277	1.22981	2.64954	5.70827	.53763
1.87	3.4969	6.53920	1.36748	4.32435	1 23201	2.65428	5.71848	.53475
1.88	3.5344	6.64467	1.37113	4.33590	1.23420	2.65900	5.72865	.53191
1.89	3.5721 3.6100	6.75127 6.85900	1.37477	4.34741 4.35890	1.23639 1.23856	2.66371 2.66840	5.73879 5.74890	.52910
1.91	3.6481	6.96787	1.38203	4.37035	1.24073	2,67307	5.75897	.52356
1.92	3.6864	7.07789	1.38564	4.38178	1.24289	2.67773	5.76900	.52083
1.93	3.7249	7.18906	1.38924	4.39318	1.24505	2.68237	5.77900	.51813
1.94	3.7636	7.30138	1.39284	4.40454	1.24719	2.68700	5.78896	.51546
1.95	3.8025	7.41488	1.39642	4.41588	1,24933	2.69161	5.79889	.51282
1.96	3.8416	7.52954	1.40000	4.42719	1.25146	2.69620	5.80879	.51020
1.97	3,8809	7.64537	1.40357	4.43847	1.25359	2.70078	5.81865	.50761
1.98	3.9204	7.76239	1.40712	4.44972	1.25571	2.70534	5.82848	.50505
1.99	3.9601	7.88060	1.41067	4.46094	1.25782	2.70989	5.83827	.50251
2.00	4.0000	8,00000	1.41421	4.47214	1.25992	2.71442	5.84804	.50000

					3,-	3/10	3/	1
n	n^2	n^3	\sqrt{n}	$\sqrt{10 n}$	$\sqrt[3]{n}$	$\sqrt[3]{10 \ n}$	$\sqrt[3]{100 n}$	\overline{n}
2.01	4.0401	8.12060	1.41774	4.48330	1.26202	2.71893	5.85777	.497512
2.02	4.0804	8.24241	1.42127	4.49444	1.26411	2.72343	5.86746	.495050
2.03	4.1209	8.36543	1.42478	4.50555	1.26619	2.72792	5.87713	.492611
2.04	4.1616	8.48966	1.42829	4.51664	1.26827	2.73239	5.88677	.490196
2.05	4.2025	8.61513	1.43178	4.52769	1.27033	2.73685	5.89637	.487805
2.06	4.2436	8.74182	1.43527	4.53872	1.27240	2.74129	5.90594	.485437
2.07	4.2849	8.86974	1.43875	4.54973	1.27445	2.74572	5.91548	.483092
2.08	4.3264	8.99891	1.44222	4.56070	1.27650	2.75014	5.92499	.480769
2.09	4.3681	9.12933	1.44568	4.57165	1.27854	2.75454	5.93447	.478469
2.10	4.4100	9.26100	1.44914	4.58258	1.28058	2.75893	5.94392	.476191
2.11	4.4521	9.39393	1.45258	4.59347	1.28261	2.76330	5.95334	.473934
2.11	4.4944	9.52813	1.45602	4.60435	1.28463	2.76766	5.96273	.471698
2.13	4.5369	9.66360	1.45945	4.61519	1.28665	2.77200	5.97209	.469484
2.14	4.5796	9.80034	1.46287	4.62601	1.28866	2.77633	5.98142	.467290
2.15	4.6225	9.93838	1.46629	4.63681	1.29066	2.78065	5.99073	.465116
2.16	4.6656	10.0777	1.46969	4.64758	1.29266	2.78495	6.00000	.462963
2.17	4.7089	10.2183	1.47309	4.65833	1.29465	2.78924	6.00925	.460830
2.18	4.7524	10.3602	1.47648	4.66905	1.29664	2.79352	6.01846	.458716
2.19	4.7961	10.5035	1.47986	4.67974	1.29862	2.79779	6.02765	.456621
2.20	4.8400	10.6480	1.48324	4.69042	1.30059	2.80204	6.03681	.454546
2.21	4.8841	10.7939	1.48661	4.70106	1.30256	2.80628	6.04594	.452489
2.22	4.9284	10,9410	1.48997	4.71169	1.30452	2.81051	6.05505	.450451
2.23	4.9729	11.0896	1.49332	4.72229	1.30648	2.81472	6.06413	.448431
2.24	5.0176	11.2394	1.49666	4.73286	1.30843	2.81892	6.07318	.446429
2.25	5.0625	11.3906	1.50000	4.74342	1.31037	2.82311	6.08220	.444444
2.26	5.1076	11.5432	1.50333	4.75395	1.31231	2.82728	6.09120	.442478
2.27	5.1529	11.6971	1.50665	4.76445	1.31424	2.83145	6.10017	.440529
2.28	5.1984	11.8524	1.50997	4.77493	1.31617	2.83560	6.10911	,438597
2.29	5.2441	12.0090	1.51327	4.78539	1.31809	2.83974	6.11803	.436681
2.30	5.2900	12.1670	1,51658	4.79583	1.32001	2.84387	6.12693	.434783
					1 00100	0.04500	0.105=0	100000
2.31	5.3361	12.3264	1.51987	4.80625	1.32192	2.84798 2.85209	6.13579	.432900 .431035
2.32	5.3824	12.4872 12.6493	1.52315 1.52643	4.81664 4.82701	1.32382 1.32572	2.85618	6.15345	.429185
2.33	5.4289 5.4756	12.8129	1.52971	4.83735	1.32761	2.86026	6.16224	.427350
2.35	5.5225	12.9779	1.53297	4.84768	1.32950	2.86433	6.17101	.425532
2.36	5.5696	13.1443	1.53623	4.85798	1.33139	2.86838	6.17975	.423729
2.37	5.6169	13.3121	1.53948	4.86826	1.33326	2.87243	6.18846	.421941
2.38	5.6644	13.4813	1.54272	4.87852	1.33514	2.87646	6.19715	.420168
2.39	5.7121	13.6519	1.54596	4.88876	1.33700	2.88049	6.20582	.418410
2.40	5.7600	13.8240	1.54919	4.89898	1.33887	2.88450	6.21447	.416667
2.41	5.8081	13.9975	1.55242	4.90918	1.34072	2.88850	6.22308	.414938
2.42	5.8564	14.1725	1.55563	4.91935	1.34257	2.89249	6.23168	.413223
2.43	5.9049	14.3489	1.55885	4.92950	1.34442	2.89647	6.24025	.411523
2.44	5.9536	14.5268	1.56205	4.93964	1.34626	2.90044	6.24880	.409836
2.45	6.0025	14.7061	1.56525	4.94975	1.34810	2.90439	6.25732	.408163
2.46	6.0516	14.8869	1.56844	4.95984	1.34993	2.90834	6.26583	.406504
2.47	6.1009	15.0692	1.57162	4.96991	1.35176	2.91227	6.27431	.404858
2.48	6.1504	15.2530	1.57480	4.97996	1.35358	2.91620	6.28276	,403226
2.49	6,2001	15.4382	1.57797	4.98999	1.35540	2.92011	6.29119	.401606
2.50	6.2500	15.6250	1.58114	5.00000	1.35721	2.92402	6.29961	.400000

	n^2	n^3	\sqrt{n}	$\sqrt{10}n$	3-	₹10 n	$\sqrt[3]{100 n}$	1
n	71.2	710	476	V10 71	110	V10 11	V1007	n
2.51	6,3001	15.8133	1.58430	5.00999	1.35902	2.92791	6.30799	.398406
2.52	6.3504	16,0030	1.58745	5.01996	1.36082	2.93179	6.31636	.396825
2.53	6.4009	16.1943	1,59060	5.02991	1.36262	2.93567	6.32470	.395257
2 54	6.4516	16.3871	1.59374	5.03984	1.36441	2,93953	6.33303	.393701
2.55	6.5025	16.5814	1.59687	5.04975	1.36620	2.94338	6.34133	.392157
2.56	6.5536	16.7772	1.60000	5.05964	1.36798	2.94728	6.34960	.390625
2.57	6.6049	16.9746	1.60312	5.06952	1.36976	2.95106	6.35786	.389105
2.58	6.6564	17.1735	1.60624	5.07937	1.37153	2.95488	6.36610	.387597
2.59	6.7081	17.3740	1.60935	5.08920	1.37330	2.95869	6.37431	.386100
2.60	6.7600	17.5760	1.61245	5.09902	1.37507	2.96250	6.38250	.384615
2.61	6.8121	17.7796	1.61555	5.10882	1.37683	2.96629	6.39068	,383142
2.62	6.8644	17.9847	1.61864	5.11859	1.37859	2.97007	6.39883	.381679
2.63	6.9169	18.1914	1.62173	5,12835	1.38034	2.97385	6.40696	.380228
2.64	6.9696	18.3997	1.62481	5.13809	1.39208	2.97761	6.41507	.378788
2.65	7.0225	18.6096	1.62788	5.14782	1.38383	2.98137	6.42316	.377359
2.66	7.0756	18.8211	1.63095	5.15752	1.38557	2.98511	6.43123	.375940
2.67	7.1289	19,0342	1.63401	5.16720	1.38730	2.98885	6.43928	.374532
2.68	7.1824	19.2488	1.63707	5.17687	1.38903	2.99257	6.44731	.373134
2.69	7.2361	19.4651	1.64012	5.18652	1.39076	2.99629	6.45531	.371747
2.70	7.2900	19.6830	1.64317	5.19615	1.39248	3.00000	6.46330	.370370
2.71	7.3441	19,9025	1.64621	5.20577	1.39419	3.00370	6.47127	.369004
2.72	7.3984	20.1236	1.64924	5.21536	1.39591	3.00739	6.47922	.367647
2.73	7.4529	20.3464	1.65227	5.22494	1.39761	3.01107	6.48715	.366300
2.74	7.5076	20.5708	1.65529	5.23450	1.39932	3.01474	6.49507	.364964
2.75	7.5625	20.7969	1.65831	5.24404	1.40102	3.01841	6.50296	.363636
2.76	7.6176	21.0246	1.66132	5.25357	1.40272	3.02206	6.51083	.362319
2.77	7.6729	21.2539	1.66433	5.26308	1.40441	3.02571	6.51868	.361011
2.78	7.7284	21.4850	1.66733	5.27257	1.40610	3.02934	6.52652	.359712
2.79	7.7841	21.7176	1.67033	5.28205	1.40778	3.03297	6.53434	.358423
2.80	7.8400	21.9520	1.67332	5.29150	1.40946	3.03659	6.54213	.357142
2.81	7.8961	22.1880	1.67631	5.30094	1.41114	3.04020	6.54991	.355872
2.82	7.9524	22.4258	1.67929	5.31037	1.41281	3.04380	6.55767	.354610
2.83	8.0089	22.6652	1.68226	5.31977	1.41448	3.04740	6.56541	.353357
2.84	8.0656	22.9063	1.68523	5.32917	1,41614	3.05098	6.57314	.352113
2.85	8.1225	23,1491	1.68819	5.33854	1.41780	3.05456	6.58084	.350877
2.86	8.1796	23.3937	1.69115	5.34790	1.41946	3.05813	6.58853	.349650
2.87	8.2369	23,6399	1.69411	5.35724	1.42111	3.06169	6.59620	.348432
2.88	8.2944	23.8879	1.69706	5.36656	1.42276	3.06524	6.60385	.347222
2.89	8.3521	24.1376	1.70000	5.37587	1.42440	3.06878	6.61149	.346021
2.90	8.4100	24.3890	1.70294	5.38516	1.42604	3.07232	6.61911	.344828
2.91	8.4681	24.6422	1.70587	5.39444	1.42768	3.07585	6.62671	.343643
2.92	8.5264	24.8971	1.70880	5.40370	1.42931	3.07936	6.63429	.342466
2.93	8.5849	25.1538	1.71172	5.41295	1.43094	3.08287	6.64185	.341297
2.94	8.6436	25.4122	1.71464	5.42218	1.43257	3.08638	6.64940	.340136
2.95	8.7025	25.6724	1.71756	5.43139	1.43419	3.08987	6.65693	.338983
2.96	8.7616	25.9343	1.72047	5.44059	1.43581	3.09336	6.66444	.337838
2.97	8.8209	26.1981	1.72337	5.44977	1.43743	3.09684	6.67194	.336700
2.98	8.8804	26.4636	1.72627	5.45894	1.43904	3.10031	6.67942	.335571
2.99	8.9401	26.7309	1.72916	5.46809	1.44065	3.10378	6.68688	.334448
3.00	9.0000	27.0000	1.73205	5.47723	1.44225	3.10723	6.69433	.333333

n	n^2	n^3	\sqrt{n}	$\sqrt{10 n}$	$\sqrt[3]{n}$	$\sqrt[3]{10 \ n}$	$\sqrt[3]{100 n}$	$\frac{1}{n}$
3.01	9.0601	27.2709	1.73494	5.48635	1.44385	3.11068	6.70176	.332226
3.02	9.1204	27.5436	1.73781	5.49545	1.44545	3.11412	6.70917	.331126
3.03	9.1809	27.8181	1.74069	5.50454	1.44704	3.11755	6.71657	.330033
3.04	9.2416	28.0945	1.74356	5.51362	1.44863	3.12098	6.72395	.328947
3.05	9.3025	28.3726	1.74642	5.52268	1 45022	3.12440	6.73132	.327869
3.06	9.3636	28.6526	1.74929	5.53173	1.45180	3.12781	6.73866	.326797
3.07	9.4249	28.9344	1.75214	5.54076	1.45338	3.13121	6.74600	.325733
3.08	9.4864	29.2181	1.75499	5.54977	1.45496	3.13461	6.75331	.324675
3.09	9.5481	29.5036	1.75784	5.55878	1.45653	3.13800	6.76061	.323625
3.10	9.6100	29.7910	1.76068	5.56776	1.45810	3.14138	6.76790	.322581
3.11	9.6721	30.0802	1.76352	5.57674	1.45967	3.14475	6.77517	.321543
3.12	9.7344	30.3713	1.76635	5.58570	1.46123	3.14812	6.78242	.320513
3.13	9.7969	30.6643	1.76918	5.59464	1.46279	3.15148	6.78966	.319489
3.14	9.8596	30.9591	1.77200	5.60357	1.46434	3.15484	6.79688	.318471
3.15	9.9225	31.2559	1.77482	5.61249	1.46590	3.15818	6.80409	.317460
3.16	9.9856	31.5545	1.77764	5.62139	1.46745	3.16152	6.81128	.316456
3.17	10.0489	31.8550	1.78045	5.63028	1.46899	3.16485	6.81846	.315457
3.18	10.1124	32.1574	1.78326	5.63915	1.47054	3.16817	6.82562	.314465
3.19	10.1761	32.4618	1.78606	5.64801	1.47208	3.17149	6.83277	.313480
3.20	10.2400	32.7680	1.78885	5.65685	1.47361	3.17480	6.83990	.312500
3.21	10.3041	33,0762	1.79165	5.66569	1.47515	3.17811	6.84702	.311527
3.22	10.3684	33,3862	1.79444	5.67450	1.47668	3.18140	6.85412	.310559
3.23	10.4329	33,6983	1.79722	5.68331	1.47820	3.18469	6.86121	.309598
3.24	10.4976	34,0122	1.80000	5.69210	1.47973	3.18798	6.86829	.308642
3.25	10.5625	34,3281	1.80278	5.70088	1.48125	3.19125	6.87534	.307692
3.26	10.6276	34.6460	1.80555	5.70964	1.48277	3.19452	6.88239	.306749
3.27	10.6929	34.9658	1.80831	5.71839	1.48428	3.19779	6.88942	.305810
3.28	10.7584	35.2876	1.81108	5.72713	1.48579	3.20104	6.89643	.304878
3.29	10.8241	35.6129	1.81384	5.73585	1.48730	3.20429	6.90344	.303951
3.30	10.8900	35.9370	1.81659	5.74456	1.48881	3.20753	6.91042	.303030
3.31	10.9561	36.2647	1,81934	5.75326	1.49031	3.21077	6.91740	.302115
3.32	11.0224	36.5944	1,82209	5.76194	1.49181	3.21400	6.92436	.301205
3.33	11.0889	36.9260	1,82483	5.77062	1.49330	3.21723	6.93130	.300300
3.34	11.1556	37.2597	1,82757	5.77927	1.49480	3.22044	6.93823	.299401
3.35	11.2225	37.5954	1,83030	5.78792	1.49629	3.22365	6.94515	.298508
3.36	11.2896	37.9331	1.83303	5.79655	1.49777	3.22686	6.95205	.297619
3.37	11.3569	38.2728	1.83576	5.80517	1.49926	3.23005	6.95894	.296736
3.38	11.4244	38.6145	1.83848	5.81378	1.50074	3.23325	6.96582	.295858
3.39	11.4921	38.9582	1.84120	5.82237	1.50222	3.23643	6.97268	.294985
3.40	11.5600	39,3040	1.84391	5.83095	1.50369	3.23961	6.97953	.294118
3.41	11.6281	39.6518	1.84662	5.83952	1.50517	3.24278	6.98637	.293255
3.42	11.6964	40.0017	1.84932	5.84808	1.50664	3.24595	6.99319	.292398
3.43	11.7649	40.3536	1.85203	5.85662	1.50810	3.24911	7.00000	.291545
3.44	11.8336	40.7076	1.85472	5.86515	1.50957	3.25227	7.00680	.290698
3.45	11.9025	41.0636	1.85742	5.87367	1.51103	3.25542	7.01358	.289855
3.46	11.9716	41.4217	1.86011	5.88218	1.51249	3.25856	7.02035	.289017
3.47	12.0409	41.7819	1.86279	5.89067	1.51394	3.26169	7.02711	.288184
3.48	12.1104	42.1442	1.86548	5.89915	1.51540	3.26482	7.03385	.287356
3.49	12.1801	42.5085	1.86815	5.90762	1.51685	3.26795	7.04058	.286533
3.50	12.2500	42.8750	1.87083	5.91608	1.51829	3.27107	7.04730	.285714

n	n^2	n^3	√n	√10 n	$\sqrt[3]{n}$	$\sqrt[3]{10 \ n}$	$\sqrt[3]{100 n}$	$\frac{1}{n}$
3.51	12.3201	43,2436	1.87350	5.92453	1,51974	3.27418	7.05400	.284900
3.52	12.3904	43,6142	1.87617	5.93296	1,52118	3.27729	7.06070	.284091
3.53	12.4609	43,9870	1.87883	5.94138	1,52262	3.28039	7.06738	.283286
3.54	12.5316	44,3619	1.88149	5.94979	1,52406	3.28348	7.07404	.282486
3.55	12.6025	44,7389	1.88414	5.95819	1,52549	3.28657	7.08070	.281690
3.56	12.6736	45,1180	1.88680	5.96657	$\begin{array}{c} 1.52692 \\ 1.52835 \\ 1.52978 \\ 1.53120 \\ 1.53262 \end{array}$	3.28965	7.08734	.280899
3.57	12.7449	45,4993	1.88944	5.97495		3.29273	7.09397	.280112
3.58	12.8164	45,8827	1.89209	5.98331		3.29580	7.10059	.279330
3.59	12.8881	46,2683	1.89473	5.99166		3.29887	7.10719	.278552
3.60	12.9600	46,6560	1.89737	6.00000		3.30193	7.11379	.277778
3.61	13.0321	47.0459	1.90000	6.00833	1.53404	3,30498	7.12037	.277008
3.62	13.1044	47.4379	1.90263	6.01664	1.53545	3,30803	7.12694	.276243
3.63	13.1769	47.8321	1.90526	6.02495	1.53686	3,31107	7.13349	.275482
3.64	13.2496	48.2285	1.90788	6.03324	1.53827	3,31411	7.14004	.274725
3.65	13.3225	48.6271	1.91050	6.04152	1.53968	3,31714	7.14657	.273973
3.66	13.3956	49.0279	1.91311	6.04979	1.54109	3.32017	7.15309	.273224
3.67	13.4689	49.4309	1.91572	6.05805	1.54249	3.32319	7.15960	.272480
3.68	13.5424	49.8360	1.91833	6.06630	1.54389	3.32621	7.16610	.271739
3.69	13.6161	50.2434	1.92094	6.07454	1.54529	3.32922	7.17258	.271003
3.70	13.6900	50.6530	1.92354	6.08276	1.54668	3.33222	7.17905	.270270
3.71	13.7641	51.0648	1.92614	6.09098	$\begin{array}{c} 1.54807 \\ 1.54946 \\ 1.55085 \\ 1.55223 \\ 1.55362 \end{array}$	3.33522	7.18552	.269542
3.72	13.8384	51.4788	1.92873	6.09918		3.33822	7.19197	.268817
3.73	13.9129	51.8951	1.93132	6.10737		3.34120	7.19841	.268097
3.74	13.9876	52.3136	1.93391	6.11555		3.34419	7.20483	.267380
3.75	14.0625	52.7344	1.93649	6.12372		3.34716	7.21125	.266667
3.76	14.1376	53.1574	1.93907	6.13188	1.55500	3.35014	7.21765	.265957
3.77	14.2129	53.5826	1.94165	6.14003	1.55637	3.35310	7.22405	.265252
3.78	14.2884	54.0102	1.94422	6.14817	1.55775	3.35607	7.23043	.264550
3.79	14.3641	54.4399	1.94679	6.15630	1.55912	3.35902	7.23680	.263852
3.80	14.4400	54.8720	1.94936	6.16441	1.56049	3.36198	7.24316	.263158
3.81	14.5161	55.3063	1.95192	6.17252	1.56186	3,36492	7.24950	.262467
3.82	14.5924	55.7430	1.95448	6.18061	1.56322	3,36786	7.25584	.261780
3.83	14.6689	56.1819	1.95704	6.18870	1.56459	3,37080	7.26217	.261097
3.84	14.7456	56.6231	1.95959	6.19677	1.56595	3,37373	7.26848	.260417
3.85	14.8225	57.0666	1.96214	6.20484	1.56731	3,37666	7.27479	.259740
3.86	14.8996	57.5125	1.96469	6.21289	1.56866	3.37958	7.28108	.259067
3.87	14.9769	57.9606	1.96723	6.22093	1.57001	3.38249	7.28736	.258398
3.88	15.0544	58.4111	1.96977	6.22896	1.57137	3.38540	7.29363	.257732
3.89	15.1321	58.8639	1.97231	6.23699	1.57271	3.38831	7.29989	.257069
3.90	15.2100	59.3190	1.97484	6.24500	1.57406	3.39121	7.30614	.256410
3.91	15.2881	59.7765	1.97737	6.25300	1.57541	3.39411	7,31238	.255755
3.92	15.3664	60.2363	1.97990	6.26099	1.57675	3.39700	7,31861	.255102
3.93	15.4449	60.6985	1.98242	6.26897	1.57809	3.39988	7,32483	.254453
3.94	15.5236	61,1630	1.98494	6.27694	1.57942	3.40277	7,33104	.253807
3.95	15.6025	61.6299	1.98746	6.28490	1.58076	3.40564	7,33723	.253165
3.96	15.6816	62.0991	1.98997	6.29285	1.58209	3.40851	7.34342	.252525
3.97	15.7609	62.5708	1.99249	6.30079	1.58342	3.41138	7.34960	.251889
3.98	15.8404	63.0448	1.99499	6.30872	1.58475	3.41424	7.35576	.251256
3.99	15.9201	63.5212	1.99750	6.31664	1.58608	3.41710	7.36192	.250627
4.00	16.0000	64.0000	2.00000	6.32456	1.58740	3.41995	7.36806	.250000

$n = n^2 = n^3 = \sqrt{n} = \sqrt{10 \ n} = \sqrt[3]{n} = \sqrt[3]{10 \ n} = \sqrt[3]{10}$	$\frac{1}{00n}$
n n^2 n^3 \sqrt{n} $\sqrt{10}$ n \sqrt{n} $\sqrt{10}$ n	00 n =
	n
	7420 .249377
	8032 .248756
	8644 .2481 39 9254 .247525
	9864 .246914
	0472 .246305
	1080 .245700
	1686 .245098
	2291 .244499
4.10 16.8100 68.9210 2.02485 6.40312 1.60052 3.44822 7.4	2896 .243902
	3499 .243309
	4102 .242718
	4703 .242131 5304 .241546
	5904 .240964
	6502 .240385
	7100 ,239808
	7697 .239234
	8292 .238664
4.20 17.6400 74.0880 2.04939 6.48074 1.61343 3.47603 7.4	8887 .238095
	9481 .237530
	0074 .236967
	0666 .236407 1257 .235849
	1847 .235294
4.26 18.1476 77.3088 2.06398 6.52687 1.62108 3.49250 7.5	2437 .234742
	3025 .234192
4.28 18.3184 78.4028 2.06882 6.54217 1.62361 3.49796 7.5	3612 .233645
	4199 .233100
	.232558
	5369 .232019
	5953 .231482
	6535 .230947 7117 .230415
	7698 .229885
4.36 19.0096 82.8819 2.08806 6.60303 1.63366 3.51962 7.5	8279 .229358
	8858 228833
4.38 19.1844 84.0277 2.09284 6.61816 1.63616 3.52499 7.5	9436 .228311
	0014 .227790
	0590 .227273
	1166 .226757
	1741 .226244 2315 .225734
	2888 .225225
	3461 .224719
4.46 19.8916 88.7165 2.11187 6.67832 1.64606 3.54632 7.6	4032 .224215
	4603 .223714
4.48 20.0704 89.9154 2.11660 6.69328 1.64851 3.55162 7.63	5172 .223214
	5741 .222717
4.50 20.2500 91.1250 2.12132 6.70820 1.65096 3.55689 7.60	6309 .222222

-				./==	3;	3/	3	1
n	n^2	n^3	v n	V 10 n	$\sqrt[3]{n}$	$\sqrt[3]{10} n$	₹100 n	\overline{n}
4.51	20.3401	91.7339	2.12368	6.71565	1.65219	3.55953	7.66877	.221730
4.52	20,4304	92,3454	2,12603	6.72309	1.65341	3.56215	7.67443	.221239
4.53	20.5209	92.9597	2,12838	6.73053	1.65462	3.56478	7.68009	.220751
4.54	20.6116	93,5767	2,13073	6.73795	1.65584	3.56740	7.68573	.220264
4.55	20.7025	94.1964	2.13307	6.74537	1.65706	3.57002	7.69137	.219780
4.56	20.7936	94.8188	2.13542	6.75278	1.65827	3.57263	7.69700	.219298
4.57	20.8849	95.4440	2.13776	6.76018	1.65948	3.57524	7.70262	218818
4.58	20.9764	96.0719	2.14009	6.76757	1.66069	3.57785	7.70824	.218341
4.59	21.0681 21.1600	96.7026 97.3360	2.14243	6.77495 6.78233	1.66190 1.66310	3.58045 3.58305	7.71384 7.71944	.217865
4.61	21.2521	97.9722	2.14709	6.78970	1.66431	3.58564	7.72503	.216920
4.62	21.3444	98.6111	2.14942	6.79706	1.66551	3.58823	7.73061	.216450
4.63	21,4369	99.2528	2.15174	6.80441	1.66671	3,59082	7.73619	.215983
4.64	21.5296	99.8973	2.15407	6.81175	1.66791	3.59340	7.74175	.215517
4.65	21.6225	100.545	2.15639	6.81909	1.66911	3,59598	7.74731	.215054
4.66	21.7156	101.195	2.15870	6.82642	1.67030	3.59856	7.75286	.214592
4.67	21.8089	101.848	2.16102	6.83374	1.67150	3,60113	7.75840	.214133
4.68	21.9024	102.503	2.16333	6.84105	1.67269	3.60370	7.76394	.213675
4.69	21.9961	103,162	2.16564	6.84836	1.67388	3.60626	7.76946	.213220
4.70	22.0900	103.823	2.16795	6.85565	1.67507	3.60883	7.77498	.212766
4.71	22.1841	104.487	2.17025	6.86294	1.67626	3.61138	7.78049	.212314
4.72	22.2784	105.154	2.17256	6.87023	1.67744	3.61394	7.78599	.211864
4.73	22,3729	105.824	2.17486	6.87750	1.67863	3.61649	7.79149	.211417
4.74	22.4676	106.496	2.17715	6.88477	1.67981	3.61904	7.79697	.210971
4.75	22.5625	107.172	2.17945	6.89202	1.68099	3.62158	7.80245	,210526
4.76	22.6576	107.850	2.18174	6.89928	1.68217	3.62412	7.80793	.210084
4.77	22.7529	108.531	2.18403	6.90652	1.68334	3.62665	7.81339	,209644
4.78	22.8484	109.215	2.18632	6.91375	1.68452	3.62919	7.81885	.209205
4.79	22.9441	109.902	2.18861	6.92098	1.68569	3.63171	7.82429	.208768
4.80	23.0400	110.592	2.19089	6,92820	1.68687	3.63424	7.82974	.208333
4.81	23.1361	111.285	2.19317	6.93542	1.68804	3.63676	7.83517	.207900
4.82	23.2324	111.980	2.19545	6.94262	1.68920	3.63928	7.84059	.207469
4.83	23.3289	112.679	2.19773	6.94982	1.69037	3.64180	7.84601	.207039
4.84	23.4256	113.380	2.20000	6.95701	1.69154	3.64431	7.85142	.206612
4.85	23.5225	114.084	2.20227	6.96419	1.69270	3.64682	7.85683	.206186
4.86	23.6196	114.791	2.20454	6.97137	1.69386	3.64932	7.86222	.205761
4.87	23.7169	115.501	2.20681	6.97854	1.69503	3.65182	7.86761	.205339
4.88	23.8144	116.214	2.20907	6.98570	1.69619	3.65432	7.87299	.204918
4.89	23.9121	116.930	2.21133	6.99285	1.69734	3.65682	7.87837	.204499
4.90	24.0100	117.649	2.21359	7,00000	1.69850	3.65931	7.88374	.204082
4.91	24.1081	118.371	2.21585	7.00714	1.69965	3.66179	7.88909	.203666
4.92	24.2064	119.095	2.21811	7.01427	1.70081	3 66428	7.89445	.203252
4,93	24,3049	119.823	2.22036	7.02140	1.70196	3.66676	7.89979	.202840
4.94	24.4036 24,5025	120.554 121.287	2 22261 2,22486	7.02851	1.70311	3.66924 3.67171	7.90513 7.91046	.20242 9 .20202 0
	1							
4.96	24.6016	122,024	2.22711	7.04273	1.70540	3.67418	7.91578	.201613
4.97	24.7009	122.763	2.22935	7.04982	1.70655	3.67665	7.92110	.201207
4.98	24.8004	123.506	2.23159	7.05691	1.70769	3.67911	7.92641	.200803
4.99	24.9001	124.251	2.23383	7.06399	1.70884	3.68157	7.93171	.200401
5.00	25.0000	125.000	2.23607	7.07107	1.70998	3.68403	7.93701	.200000

n	n^2	n^3	√n	$\sqrt{10 n}$	$\sqrt[3]{n}$	$\sqrt[3]{10 \ n}$	$\sqrt[3]{100 n}$	$\frac{1}{n}$
5.01	25.1001	125.752	2.23830	7.07814	1.71112	3.68649	7.94229	.199601
5.02	25.2004	126.506	2.24054	7.08520	1.71225	3.68894	7.94757	.199203
5.03	25.3009	127.264	2.24277	7.09225	1.71339	3.69138	7.95285	.198807
5.04	25.4016	128.024	2.24499	7.09930	1.71452	3.69383	7.95811	.198413
5.05	25.5025	128.788	2.24722	7.10634	1.71566	3.69627	7.96337	.198020
5.06	25.6036	129.554	2.24944	7.11337	1.71679	3.69871	7.96863	.197629
5.07	25.7049	130.324	2.25167	7.12039	1.71792	3.70114	7.97387	.197239
5.08	25.8064	131.097	2.25389	7.12741	1.71905	3.70358	7.97911	.196850
5.09	25.9081	131.872	2.25610	7.13442	1.72017	3.70600	7.98434	.196464
5.10	26.0100	132.651	2.25832	7.14143	1.72130	3.70843	7.98957	.196078
5.11	26.1121	133.433	2.26053	7.14843	1.72242	3.71085	7.99479	.195695
5.12	26.2144	134.218	2.23274	7.15542	1.72355	3.71327	8.00000	.195313
5.13	26.3169	135.006	2.26495	7.16240	1.72467	3.71566	8.00520	.194932
5.14	26.4196	135.797	2.26716	7.16938	1.72579	3.71810	8.01040	.194553
5.15	26.5225	136.591	2.26936	7.17635	1.72691	3.72051	8.01559	.194175
5.16	26.6256	137.388	2.27156	7.18331	1.72802	3.72292	8.02078	.193798
5.17	26.7289	138.188	2.27376	7.19027	1.72914	3.72532	8.02596	.193424
5.18	26.8324	138.992	2.27596	7.19722	1.73025	3.72772	8.03113	.193050
5.19	26.9361	139.798	2.27816	7.20417	1.73137	3.73012	8.03629	.192678
5.20	27.0400	140.608	2.28035	7.21110	1.73248	3.73251	8.04145	.192308
5.21	27.1441	141.421	2.28254	7.21803	1.73359	3.73490	8.04660	.191939
5.22	27.2484	142.237	2.28473	7.22496	1.73470	3.73729	8.05175	.191571
5.23	27.3529	143.056	2.28692	7.23187	1:73580	3.73968	8.05689	.191205
5.24	27.4576	143.878	2.28910	7.23878	1.73691	3.74206	8.06202	.190840
5.25	27.5625	144.703	2.29129	7.24569	1.73801	3.74443	8.06714	,190476
5.26	27.6676	145.532	2.29347	7.25259	1.73912	3.74681	8.07226	.190114
5.27	27.7729	146.363	2,29565	7.25948	1.74022	3.74918	8.07737	.189753
5.28	27.8784	147.198	2.29783	7.26636	1.74132	3.75158	8.08248	.189394
5.29	27.9841	148.036	2,30000	7.27324	1.74242	3.75392	8.08758	.189036
5.30	28.0900	148.877	2.30217	7.28011	1.74351	3.75629	8.09267	.188679
5.31	28.1961	149.721	2.30434	7.28697	1.74461	3.75865	8.09776	.188324
5.32	28.3024	150.569	2.30651	7.29383	1.74570	3.76100	8.10284	.187970
5.33	28.4089	151.419	2.30868	7.30068	1.74680	3.76336	8.10791	.187617
5.34	28.5156	152.273	2.31084	7.30753	1.74789	3.76571	8.11298	.187266
5.35	28.6225	153.130	2.31301	7.31437	1.74898	3.76806	8.11804	.186916
5.36	28.7296	153,991	2.31517	7.32120	1.75007	3.77041	8.12310	.186567
5.37	28.8369	154,854	2.31733	7.32803	1.75116	3.77275	8.12814	.186220
5.38	28.9444	155,721	2.31948	7.33485	1.75224	3.77509	8.13319	.185874
5.39	29.0521	156,591	2.32164	7.34166	1.75333	3.77740	8.13822	.185529
5.40	29.1600	157,464	2.32379	7.34847	1.75441	3.77976	8.14325	.185185
5.41	29.2681	158.340	2.32594	7.35527	1.75549	3.78210	8.14828	.184843
5.42	29.3764	159.220	2.32809	7.36206	1.75657	3.78442	8.15329	.184502
5.43	29.4849	160.103	2.33024	7.36885	1.75765	3.78675	8.15831	.184162
5.44	29.5936	160.989	2.33238	7.37564	1.75873	3.78907	8.16331	.183824
5.45	29.7025	161.879	2.33452	7.38241	1.75981	3.79139	8.16831	.183486
5.46	29.8116	162.771	2.33666	7.38918	1.76088	3.79371	8.17330	.183150
5.47	29.9209	163.667	2.33880	7.39594	1.76196	3.79603	8.17829	.182815
5.48	30.0304	164.567	2.34094	7.40270	1.76303	3.79834	8.18327	.182482
5.49	30.1401	165.469	2.34307	7.40945	1.76410	3.80065	8.18824	.182149
5.50	30.2500	166.375	2.34521	7.41620	1.76517	3.80295	8.19321	.181818

n	n^2	n^3	\sqrt{n}	$\sqrt{10 n}$	3 /n	3/10 m	$\sqrt[3]{100}n$	1
n	712	76-	476	110 11	476	110 16	1100 1	n
5.51	30.3601	167.284	2.34734	7.42294	1.76624	3,80526	8.19818	.181488
5.52	30.4704	168,197	2.34947	7.42967	1.76731	3.80756	8.20313	.181159
5.53	30,5809	169.112	2,35160	7.43640	1.76838	3.80986	8.20808	.180832
5.54	30.6916	170.031	2,35372	7.44312	1.76944	3.80115	8.21303	.180505
5.55	30.8025	170.954	2.35584	7.44983	1.77051	3.81444	8.21797	.180180
5,56	30.9136	171.880	2.35797	7.45654	1.77157	3.81673	8.22290	.179856
		172.809	2.36008	7.46324	1.77263	3.81902	8.22783	.179533
5.57	31.0249			7.46994		3.82130		
5.58	31.1364	173.741	2.36220 2.36432	7.47663	1.77369	3.82358	8.23275	.179212
5.59	31,2481 31,3600	174.677 175.616	2.36643	7.48331	1.77475	3.82586	8.23766 8.24257	.178891
5.61	31.4721	176.558	2.36854	7.48999	1.77686	3.82814	8.24747	.178253
5.62	31.5844	177.504	2.37065	7.49667	1.77792	3.83041	8.25237	.177936
5.63	31.6969	178.454	2.37276	7.50333	1.77897	3.83268	8.25726	.177620
5.64	31,8096	179.406	2.37487	7.50999	1.78003	3.83495	8.26215	.177305
5.65	31.9225	180.362	2.37697	7.51665	1.78108	3.83721	8.26703	.176991
5.66	32.0356	181.321	2.37908	7.52330	1.78213	3.83948	8.27190	.176678
5.67	32.1489	182.284	2.38118	7.52994	1.78318	3.84174	8.27677	.176367
5.68	32.2624	183.250	2.38328	7.53658	1.78422	3.84400	8.28164	.176056
5.69	32.3761	184,220	2.38537	7.54321	1.78527	3.84625	8.28649	.175747
5.70	32.4900	185,193	2.38747	7.54983	1.78632	3.84850	8.29134	.175439
5.71	32,6041	186,169	2.38956	7.55645	1.78736	3.85075	8,29619	.175131
5.72	32.7184	187.149	2.39165	7.56307	1.78840	3,85300	8.30103	.174825
5.73	32.8329	188,133	2,39374	7.56968	1.78944	3.85524	8.30587	.174520
5.74	32.9476	189,119	2.39583	7.57628	1.79048	3,85748	8.31069	.174216
5.75	33.0625	190.109	2.39792	7.58288	1.79152	3.85972	8.31552	.173913
5.76	33.1776	191,103	2,40000	7.58947	1.79256	3.86196	8,32034	.173611
5.77	33,2929	192,100	2.40208	7.59605	1.79360	3.86419	8,32515	.173310
5.78	33,4084	193.101	2.40416	7.60263	1.79463	3,86642	8.32995	.173010
5.79	33.5241	194,105	2,40624	7.60920	1.79567	3,86865	8.33476	.172712
5.80	33.6400	195.112	2.40832	7.61577	1.79670	3.87088	8,33955	.172414
5.81	33,7561	196,123	2.41039	7.62234	1.79773	3.87310	8,34434	.172117
5.82	33.8724	197.137	2.41247	7.62889	1.79876	3.87532	8.34913	.171821
5.83	33.9889	198.155	2.41454	7.63544	1.79979	3.87754	8.35390	.171527
5.84	34.1056	199.177	2.41661	7.64199	1.80082	3.87975	8.35868	.171233
5.85	34.2225	200,202	2,41868	7.64853	1.80185	3.88197	8.36345	.170940
5.86	34.3396	201.230	2,42074	7.65506	1.80288	3.88418	8.36821	.170649
5.87	34.4569	201.250	2.42074	7.66159	1.80288	3.88639	8.37297	.170358
		203.297						
5.88	34.5744	204.336	2.42487 2.42693	7.66812 7.67463	1.80492	3.88859 3.89082	8.37772	.170068
5.89	34.6921 34.8100	205,379	2,42899	7.68115	1.80595 1.80697	3,89300	8.38247 8.38721	.169779 .169492
5.91	34.9281	206.425	2.43105	7.68765	1.80799	3.89520	8.39194	.169205
5.92	35.0464	207.475	2.43311	7.69415	1.80901	3.89739	8.39667	.168919
5.93	35.1649	208.528	2.43516	7.70065	1.81003	3.89958	8.40140	.168634
5.94 5.95	35.2836 35,4025	209.585 210.645	2.43721 2.43926	7.70714 7.71362	1.81104	3.90177 3.90396	8.40612 8.41083	.168350
					1.81206			
5.96	35.5216	211.709	2.44131	7.72010	1.81307	3.90615	8.41554	.167785
5.97	35.6409	212.776	2.44336	7.72658	1.81409	3.90833	8.42025	.167504
5.98	35.7604	213.847	2.44540	7.73305	1.81510	3.91051	8.42494	.167224
5.99	35.8801*	214.922	2.44745	7.73951	1.81611	3.91269	8.42964	.166945
6.00	36.0000	216.000	2.44949	7.74597	1.81712	3.91487	8.43433	.166667

n	n^2	n^3	\sqrt{n}	√10 n	$\sqrt[3]{n}$	∛10 n	$\sqrt[3]{100 n}$	$\frac{1}{n}$
6.01 6.02	36.1201 36.2404	217.082 218.167	2.45153 2.45357	7.75242 7.75887	1.81813 1.81914	3.91704 3.91921	8.43901 8.44369	.166389
6.03	36.3609 36.4816	219.256 220,349	2,45561 2,45764	7.76531 7.77174	1.82014	3.92138 3.92355	8.44836 8.45303	.165838
6.05	36.6025 36.7236	221.445 222.545	2.45967 2.46171	7.77817 7.78460	1.82215 1.82316	3.92571 3.92787	8.45769 8.46235	.165289
6.07 6.08 6.09	36.8449 36.9664 37.0881	223.649 224.756 225.867	2.46374 2.46577 2.46779	7.79102 7.79744 7.80385	1.82416 1.82516 1.82616	3.93003 3.93219 3.93434	8.46700 8.47165	.164745 .164474 .164204
6.10	37.2100	226.981	2.46982	7.81025	1.82716	3.93650	8.47629 8.48093	.163934
6.11 6.12 6.13	37.3321 37.4544 37.5769	228.099 229.221 230,346	2.47184 2.47386 2.47588	7.81665 7.82304 7.82943	1.82816 1.82915 1.83015	3.93865 3.94079 3.94294	8.48556 8.49018 8.49481	.163666 .163399 .163132
6.14	37.6996 37.8225	231.476 232.608	2.47790 2.47992	7.83582 7.84219	1.83115 1.83214	3.94508 3.94722	8.49942 8.50404	.162866
6.16 6.17	37.9456 38.0689	233.745 234.885	2.48193 2.48395	7.84857 7.85493	1.83313 1.83412	3.94936 3.95150	8.50864 8.51324	.162338 .162075
6.18 6.19	38.1924 38.3161	236.029 237.177	2.48596 2.48797	7.86130 7.86766	1.83511 1.83610	3.95363 3.95576	8.51784 8.52243	.161812
6.20 6.21	38.4400 38.5641	238.328 239.483	2.48998 2.49199	7.87401 7.88036	1.83709	3.95789 3.96002	8.52702 8.53160	.161290
6.22 6.23 6.24	38.6884 38.8129 38.9376	240.642 241.804 242.971	2.49399 2.49600 2.49800	7.88670 7.89303 7.89937	1.83906 1.84005 1.84103	3.96214 3.96426 3.96639	8.53618 8.54075 8.54532	.160772 .160514 .160256
6.25	39.0625 39.1876	244.141 245.314	2,50000	7.90569	1.84202	3.96850 3.97062	8.54988 8.55444	.160000
6.27 6.28	39.3129 39.4384	246.492 247.673	2.50400 2.50599	7.91833 7.92465	1.84398 1.84496	3.97273 3.97484	8.55899 8.56354	.159490
6.29 6.30	39.5641 39.6900	248.858 250.047	2.50799 2.50998	7.93095 7.93725	1.84594 1.84691	3.97695 3.97906	8.56808 8.57262	.15898 3 .158730
6.31	39.8161 39.9424	251.240 252.436	2.51197 2.51396	7.94355	1.84789	3.98116 3.98326	8.57715 8.58168	.158479
6.33 6.34 6.35	40.0689 40.1956 40.3225	253.636 254.840 256.048	2.51595 2.51794 2.51992	7.95613 7.96241 7.96869	1.84984 1.85082 1.85179	3.98536 3.98746 3.98956	8.58620 8.59072 8.59524	.157978 .157729 .157480
6.36 6.37	40.4496 40.5769	257.259 258.475	2.52190 2.52389	7.97496 7.98123	1.85276 1.85373	3.99165 3.99374	8.59975 8.60425	.157233
6.38 6.39	40.7044 40.8321	259.694 260.917	2.52587 2.52784	7.98749 7.99375	1.85470 1.85567	3.99583 3.99792	8.60875 8.61325	.156740 .156495
6.40	40.9600 41.0881	262.144 263.375	2.52982 2.53180	8,00000 8.00625	1.85664 1.85760	4.00000 4.00208	8.61774 8.62222	.156250
6.42 6.43 6.44	41.2164 41.3449 41.4736	264.609 265.848 267.090	2.53377 2.53574 2.53772	8.01249 8.01873 8.02496	1.85857 1.85953 1.86050	4.00416 4.00624 4.00832	8.62671 8.63118 8.63566	.155763 .155521 .155280
6.45	41.6025	267.090 268.336 269.586	2.53969 2.54165	8.03119 8.03741	1.86146	4.01039	8.64459	.155039
6.46 6.47 6.48	41.7316 41.8609 41.9904	269.586 270.840 272.098	2.54362 2.54558	8.03741 8.04363 8.04984	1.86242 1.86338 1.86434	4.01246 4.01453 4.01660	8.64459 8.64904 8.65350	.154560 .154321
6.49 6.50	42.1201 42.2500	273.359 274.625	2.54755 2.54951	8.05605 8.06226	1.86530 1.86626	4.01866 4.02073	8.65795 8.66239	.154083 .153846

n	n^2	n^3	\sqrt{n}	$\sqrt{10 n}$	$\sqrt[3]{n}$	∛ 10 n	₹100 n	$\frac{1}{n}$
6.51	42,3801	275.894	2.55147	8.06846	1.86721	4,02279	8,66683	.153610
6.52	42.5104	277.168	2.55343	8.07465	1.86817	4.02485	8.67127	.153374
6.53	42.6409	278.445	2,55539	8.08084	1.86912	4.02690	8.67570	.153139
6.54	42.7716	279.726	2.55734	8.08703	1.87008	4.02896	8.68012	.152905
6.55	42,9025	281.011	2,55930	8.09321	1.87103	4.03101	8.68455	.152672
6.56	43.0336	282.300	2.56125	8.09938	1.87198	4.03306	8.68896	.152439
6.57	43.1649	283,593	2.56320	8.10555	1.87293	4.03511	8.69338	.152207
6.58	43.2964	284.890	2.56515	8.11172	1.87388	4.03715	8.69778	.151976
6.59	43.4281	286.191	2.56710	8.11788	1.87483	4.03920	8.70219	.151745
6.60	43.5600	287.496	2.56905	8.12404	1.87578	4.04124	8.70659	.151515
6.61	43.6921	288.805	2.57099	8.13019	1.87672	4.04328	8.71098	.151286
6.62	43.8244	290.118	2.57294	8.13634	1.87767	4.04532	8.71537	.151057
6.63	43.9569	291.434	2.57488	8.14248	1.87862	4.04735	8.71976	.150830
6.64	44.0896	292.755	2.57682	8.14862	1.87956	4.04939	8.72414	.150602
6.65	44.2225	294.080	2.57876	8.15475	1.88050	4.05142	8.72852	.150376
6.66	44.3556	295.408	2.58070	8.16088	1.88144	4.05345	8.73289	.150150
6.67	44.4889	296.741	2.58263	8.16701	1.88239	4.05548	8.73726	.149925
6.68	44.6224	298.078	2.58457	8.17313	1.88333	4.05750	8.74162	.149701
6.69	44.7561	299.418	2.58650	8.17924	1.88427	4.05953	8.74598	.149477
6.70	44.8900	300.763	2.58844	8.18535	1.88520	4.06155	8.75034	.149254
6.71	45.0241	302.112	2.59037	8.19146	1.88614	4.06357	8.75469	.149031
6.72	45.1584	303.464	2.59230	8.19756	1.88708	4.06558	8.75904	.148810
6.73	45.2929	304.821	2.59422	8.20366	1.88801	4.06760	8.76338	.148588
6.74	45.4276	306.182	2.59615	8.20975	1.88895	4.06961	8.76772	.148368
. 6.75	45.5625	307.547	2,59808	8.21584	1.88988	4.07163	8.77205	.148148
6.76	45.6976	308.916	2.60000	8.22192	1.89081	4.07364	8.77638	.147929
6.77	45.8329	310.289	2.60192	8.22800	1.89175	4.07564	8.78071	.147711
6.78	45.9684	311.666	2.60384	8.23408	1.89268	4.07765	8.78503	.147493
6.79	46.1041	313.047	2.60576	8.24015	1.89361	4.07965	8.78935	.147275
6.80	46.2400	314.432	2.60768	8.24621	1.89454	4.08166	8.79366	.147059
6.81	46.3761	315.821	2.60960	8.25227	1.89546	4.08365	8.79797	.146843
6.82	46.5124	317.215	2.61151	8.25833	1.89639	4.08565	8.80227	.146628
6.83	46.6489	318.612	2.61343	8.26438	1.89732	4.08765	8.80657	.146413
6.84	46.7856	320.014	2.61534	8.27043	1.89824	4.08964	8.81087	.146199
6.85	46.9225	321.419	2.61725	8.27647	1.89917	4.09164	8.81516	.145985
6.86	47.0596	322.829	2.61916	8.28251	1.90009	4.09362	8.81945	.145773
6.87	47.1969	324.243	2.62107	8.28855	1.90102	4.09561	8.82373	.145560
6.88	47.3344	325.661	2.62298	8.29458	1.90194	4.09760	8.82801	.145349
6.89	47.4721	327.083	2.62488	8.30060	1.90286	4.09958	8.83229	.145138
6.90	47.6100	328.509	2.62679	8.30662	1.90378	4.10157	8.83656	.144928
6.91	47.7481	329.939	2.62869	8.31264	1.90470	4.10355	8.84082	.144718
6.92	47.8864	331.374	2.63059	8.31865	1.90562	4.10552	8.84509	.144509
6.93	48.0249	332.813	2.63249	8.32466	1.90653	4.10750	8.84934	.144300
6.94	48.1636	334.255	2.63439	8.33067	1.90745	4.10948	8.85360	.144092
6.95	48.3025	335.702	2.63629	8.33667	1.90837	4.11145	8.85785	.143885
6.96	48.4416	337.154	2.63818	8.34266	1.90928	4.11342	8.86210	.143678
6.97	48.5809	338.609	2.64008	8.34865	1.91019	4.11539	8.86634	.143472
6.98	48.7204	340.068	2.64197	8.35464	1.91111	4.11736	8.87058	.143267
6.99	48.8601	341.532	2.64386	8.36062	1.91202	4.11932	8.87481	.143062
7.00	49.0000	343.000	2.64575	8.36660	1.91293	4.12129	8.87904	.142857

	1 0	1 2	\sqrt{n}	4/10	$\sqrt[3]{n}$	$\sqrt[3]{10 \ n}$	$\sqrt[3]{100 n}$	1
n	n^2	n^3	\n	√10 n	V n	V10 n	V 100 n	\overline{n}
7.01	49.1401	344,472	2.64764	8.37257	1.91384	4.12325	8.88327	.142653
7.02	49.2804	345.948	2.64953	8.37854	1.91475	4.12521	8.88749	.142450
7.03	49.4209	347.429	2.65141	8.38451	1,91566	4.12716	8.89171	.142248
7.04	49,5616	348.914	2.65330	8,39047	1.91657	4.12912	8.89592	.142046
7.05	49.7025	350,403	2.65518	8.39643	1.91747	4.13107	8.90013	.141844
7.06	49.8436	351.896	2.65707	8.40238	1.91838	4.13303	8.90434	.141643
7.07	49.9849	353.393	2.65895	8.40833	1.91929	4.13498	8.90854	.141443
7.08	50.1264	354.895	2.66083	8.41427	1.92019	4.13695	8.91274	.141243
7.09	50.2681	356.401	2.66271	8.42021	1.92109	4.13887	8.91693	.141044
7.10	50,4100	357.911	2.66458	8.42615	1.92200	4.14082	8.92112	.140845
7.11	50.5521	359,425	2.66646	8.43208	1.92290	4.14276	8.92531	.140647
7.12	50.6944	360.944	2.66833	8.43801	1.92380	4.14470	8.92949	.140449
7.13	50.8369	362.467	2.67021	8.44393	1.92470	4.14664	8.93367	.140253
7.14	50.9796	363.994	2.67208	8.44985	1.92560	4.14858	8.93784	.140056
7,15	51.1225	365.526	2.67395	8.45577	1.92650	4.15051	8.94201	.139860
7.16	51.2656	367.062	2.67582	8.46168	1.92740	4.15245	8.94618	.139665
7.17	51.4089	368.602	2.67769	8.46759	1.92829	4.15438	8.95034	.139470
7.18	51.5524	370.146	2.67955	8.47349	1.92919	4.15631	8.95450	.139276
7.19	51.6961	371.695	2.68142	8.47939	1.93008	4.15824	8.95866	.139082
7.20	51.8400	373.248	2.68328	8.48528	1.93098	4.16017	8.96281	.138889
7.21	51.9841	374.805	2.68514	8,49117	1.93187	4.16209	8.96696	.138696
7.22	52.1284	376.367	2.68701	8.49706	1.93277	4.16402	8.97110	.138504
7 23	52.2729	377.933	2.68887	8.50294	1.93366	4.16594	8.97524	.138313
7.24	52.4176	379.503	2.69072	8.50882	1.93455	4.16786	8.97938	.138122
7.25	52.5625	381.078	2.69258	8.51469	1.93544	4.16978	8.98351	.137931
7.26	52.7076	382.657	2.69444	8.52056	1.93633	4.17169	8.98764	.137741
7.27	52.8529	384.241	2.69629	8.52643	1.93722	4.17361	8.99176	.137552
7.28	52.9984	385.828	2.69815	8.53229	1.93810	4.17552	8.99588	.137363
7.29	53.1441	387.420	2.70000	8.53815	1.93899	4.17743	9.00000	.137174
7.30	53,2900	389.017	2.70185	8.54400	1.93988	4.17934	9.00411	.136986
7.31	53.4361	390.618	2.70370	8.54985	1.94076	4.18125	9.00822	.136799
7.32	53.5824	392.223	2.70555	8.55570	1.94165	4.18315	9.01233	.136612
7.33	53.7289	393.833	2.70740	8.56154	1.94253	4.18506	9.01643	.136426
7.34	53.8756	395.447	2.70924	8.56738	1.94341	4.18696	9.02053	.136240
7.35	54.0225	397.065	2.71109	8.57321	1.94430	4.18886	9.02462	.136054
7.36	54.1696	398.688	2.71293	8.57904	1.94518	4.19076	9.02871	.135870
7.37	54.3169	400.316	2.71477	8.58487	1.94606	4.19266	9.03280	.135685
7.38	54.4644	401.947	2.71662	8.59069	1.94694	4.19455	9.03689	.135501
7.39	54.6121	403.583	2.71846	8.59651	1.94782	4.19644	9.04097	.135318
7.40	54.7600	405.224	2.72029	8.60233	1.94870	4.19834	9.04504	.135135
7.41	54.9081	406.869	2.72213	8.60814	1.94957	4.20023	9.04911	.134953
7.42	55.0564	408.518	2.72397	8.61394	1.95045	4.20212	9.05318	.134771
7.43	55.2049	410.172	2.72580	8.61974	1.95132	4.20400	9.05725	.134590
7.44	55.3536	411.831	2.72764	8.62554	1.95220	4.20589	9.06131	.134409
7.45	55.5025	413.494	2.72947	8.63134	1.95307	4.20777	9.06537	.134228
7.46	55.6516	415.161	2.73130	8.63713	1.95395	4.20965	9.06942	.134048
7.47	55.8009	416.833	2.73313	8.64292	1.95482	4.21153	9.07347	.133869
7.48	55.9504	418.509	2.73496	8.64870	1.95569	4.21341	9.07752	.133690
7.49	56.1001	420.190	2.73679	8.65448	1.95656	4.21529	9.08156	.133511
7.50	56.2500	421.875	2.73861	8.66025	1.95743	4.21716	9.08560	.133333

			\sqrt{n}	4/20	$\sqrt[3]{n}$	$\sqrt[3]{10 \ n}$	$\sqrt[3]{100 n}$	1
n	n^2	n^3	\n	$\sqrt{10 n}$	VII	V10 71	V100 n	\overline{n}
7.51	56,4001	423,565	2.74044	8,66603	1.95830	4.21904	9.08964	.133156
7.52	56.5504	425,259	2.74226	8.67179	1.95917	4.22091	9.09367	.132979
7.53	56.7009	426,958	2.74408	8.67756	1.96004	4.22278	9.09770	.132802
7.54	56.8516	428,661	2,74591	8,68332	1.96091	4.22465	9.10173	.132626
7.55	57.0025	430,369	2.74773	8.68907	1.96177	4.22651	9.10575	.132450
7.56	57.1536	432.081	2.74955	8.69483	1.96264	4.22838	9.10977	.132275
7.57	57.3049	433.798	2.75136	8.70057	1.96350	4.23024	9.11378	.132100
7.58	57.4564	435.520	2.75318	8.70632	1.96437	4.23210	9.11779	.131926
7.59	57.6081	437,245	2.75500	8.71206	1.96523	4.23396	9.12180	.131752
7.60	57.7600	438.976	2.75681	8.71780	1.96610	4.23582	9.12581	.131579
7.61	57.9121	440.711	2.75862	8.72353	1.96696	4.23768	9.12981	.131406
7.62	58.0644	442.451	2.76043	8.72926	1.96782	4.23954	9.13380	.131234
7.63	58.2169	444.195	2.76225	8.73499	1.96868	4.24139	9.13780	.131062
7.64	58.3696	445.994	2.76405	8.74071	1.96954	4.24324	9.14179	.130890
7.65	58.5225	447.697	2.76586	8.74643	1.97040	4.24509	9.14577	.130719
7.66	58.6756	449.455	2.76767	8.75214	1.97126	4.24694	9.14976	.130548
7.67	58.8289	451.218	2.76948	8.75785	1.97211	4.24879	9.15374	.130378
7.68	58.9824	452.985	2.77128	8.76356	1.97297	4.25063	9.15771	.130208
7.69	59.1361	454.757	2.77308	8.76926	1.97383	4.25248	9.16169	.130039
7.70	59.2900	456.533	2.77489	8.77496	1.97468	4.25432	9.16566	.129870
7.71	59,4441	458.314	2.77669	8.78066	1.97554	4.25616	9.16962	.129702
7.72	59.5984	460,100	2.77849	8.78635	1.97639	4.25800	9.17359	.129534
7.73	59.7529	461,890	2.78029	8.79204	1.97724	4.25984	9.17754	.129366
7.74	59,9076	463.685	2.78209	8.79773	1.97809	4.26168	9.18150	,129199
7.75	60.0625	465.484	2.78388	8.80341	1.97895	4.26351	9.18545	.129032
7.76	60.2176	467.289	2.78568	8.80909	1.97980	4.26534	9.18940	.128866
7.77	60.3729	469.097	2.78747	8.81476	1.98065	4.26717	9.19335	.128700
7.78	60.5284	470,911	2.78927	8.82043	1.98150	4.26900	9.19729	.128535
7.79	60.6841	472.729	2.79106	8.82610	1.98234	4.27083	9.20123	.128370
7.80	60.8400	474.552	2.79285	8.83176	1.98319	4.27266	9.20516	.128205
7.81	60.9961	476.380	2.79464	8.83742	1.98404	4,27448	9.20910	.128041
7.82	61.1524	478.212	2.79643	8.84308	1.98489	4.27631	9.21303	.127877
7.83	61.3089	480.049	2.79821	8.84873	1.98573	4.27813	9.21695	.127714
7.84	61.4656	481.890	2.80000	8.85438	1.98658	4.27995	9.22087	.127551
7.85	61.6225	483.737	2.80179	8.86002	1.98742	4.28177	9.22479	.127389
7.86	61.7796	485.588	2.80357	8.86566	1.98826	4.28359	9.22871	.127227
7.87	61.9369	487.443	2.80535	8.87130	1.98911	4.28540	9.23262	.127065
7.88	62.0944	489.304	2.80713	8.87694	1.98995	4.28722	9.23653	.126904
7.89	62.2521	491.169	2.80891	8.88257	1.99079	4,28903	9.24043	.126743
7.90	62.4100	493,039	2.81069	8.88819	1.99163	4.29084	9.24433	.126582
7.91	62.5681	494.914	2.81247	8.89382	1.99247	4.29265	9.24823	.126422
7.92	62.7264	496.793	2.81425	8.89944	1.99331	4.29446	9.25213	.126263
7.93	62.8849	498.677	2.81603	8.90505	1.99415	4.29627	9.25602	.126103
7.94	63.0436	500.566	2.81780	8.91067	1.99499	4.29807	9.25991	.125945
7.95	63,2025	502,460	2.81957	8.91628	1.99582	4.29987	9.26380	.125786
7.96	63.3616	504.358	2.82135	8.92188	1.99666	4.30168	9.26768	.125628
7.97	63.5209	506.262	2.82312	8.92749	1.99750	4.30348	9.27156	.125471
7.98	63.6804	508.170	2.82489	8.93308	1.99833	4.30528	9.27544	.125313
7.99 8.00	63.8401	510.082	2.82666	8.93868	1.99917	4.30707	9.27931	.125156
5.00	64.0000	512.000	2.82843	8.94427	2.00000	4.30887	9,28318	.125000

n	n^2	n^3	\sqrt{n}	$\sqrt{10 n}$	$\sqrt[3]{n}$	₹10 n	$\sqrt[3]{100 n}$	$\frac{1}{n}$
8.01	64.1601	513.922	2.83019	8.94986	2.00083	4.31066	9.28704	.124844
8.02	64.3204	515.850	2.83196	8.95545	2.00167	4.31246	9.29091	.124688
8.03	64.4809	517.782	2.83373	8.96103	2.00250	4.31425	9.29477	.124533
8.04	64.6416	519.718	2.83549	8.96660	2.00333	4.31604	9.29862	.124378
8.05	64.8025	521.660	2.83725	8.97218	2.00416	4.31783	9.30248	.124224
8.06	64.9636	523.607	2.83901	8.97775	2.00499	4.31961	9.30633	.124070
8.07	65.1249	525.558	2.84077	8.98332	2.00582	4.32140	9.31018	.123916
8.08	65.2864	527.514	2.84253	8.98888	2.00664	4.32318	9.31402	.123762
8.09	65.4481	529.475	2.84429	8.99444	2.00747	4.32497	9.31786	.123609
8,10	65,6100	531,441	2,84605	9.00000	2.00830	4.32675	9.32170	.123457
8.11	65.7721	533.412	2.84781	9.00555	2,00912	4.32853	9.32553	.123305
8.12	65.9344	535.387	2.84956	9.01110	2,00995	4.33031	9.32936	.123153
8.13	66.0969	537.368	2.85132	9.01665	2,01078	4.33208	9.33319	.123001
8.14	66.2596	539.353	2.85307	9.02219	2,01160	4.33386	9.33702	.122850
8.15	66.4225	541.343	2.85482	9.02774	2,01242	4.33563	9.34084	.122699
8.16	66.5856	543.338	2.85657	9.03327	2.01325	4.33741	9.34466	.122549
8.17	66.7489	545.339	2.85832	9.03881	2.01407	4.33918	9.34847	.122399
8.18	66.9124	547.343	2.86007	9.04434	2.01489	4.34095	9.35229	.122249
8.19	67.0761	549.353	2.86182	9.04986	2.01571	4.34272	9.35610	.122100
8.20	67.2400	551.368	2.86356	9.05539	2.01653	4.34448	9.35990	.121951
8.21	67.4041	553.388	2.86531	9.06091	2.01735	4.34625	9.36370	.121803
8.22	67.5684	555.412	2.86705	9.06642	2.01817	4.34801	9.36751	.121655
8.23	67.7329	557.442	2.86880	9.07193	2.01899	4.34977	9.37130	.121507
8.24	67.8976	559.476	2.87054	9.07744	2.01980	4.35153	9.37510	.121359
8.25	68.0625	561.516	2.87228	9.08295	2.02062	4.35329	9.37889	.121212
8.26	68.2276	563.560	2.87402	9.08845	2.02144	4.35505	9.38268	.121065
8.27	68.3929	565.609	2.87576	9.09395	2.02225	4.35681	9.38646	.120919
8.28	68.5584	567.664	2.87750	9.09945	2.02307	4.35856	9.39024	.120773
8.29	68.7241	569.723	2.87924	9.10494	2.02388	4.36032	9.39402	.120627
8.30	68.8900	571.787	2.88097	9.11043	2.02469	4.36207	9.39780	.120482
8.31	69.0561	573.856	2.88271	9.11592	2.02551	4.36382	9.40157	.120337
8.32	69.2224	575.930	2.88444	9.12140	2.02632	4.36557	9.40534	.120192
8.33	69.3889	578.010	2.88617	9.12688	2.02713	4.36732	9.40911	.120048
8.34	69.5556	580.094	2.88791	9.13236	2.02794	4.36907	9.41287	.119904
8.35	69.7225	582,183	2.88964	9.13783	2.02875	4.37081	9.41663	.119761
8.36	69.8896	584.277	2.89137	9.14330	2.02956	4.37255	9,42039	.119617
8.37	70.0569	586.376	2.89310	9.14877	2.03037	4.37430	9,42414	.119474
8.38	70.2244	588.480	2.89482	9.15423	2.03118	4.37604	9,42789	.119332
8.39	70.3921	590.590	2.89655	9.15969	2.03199	4.37778	9,43164	.119190
8.40	70.5600	592.704	2.89828	9.16515	2.03279	4.37952	9,43539	.119048
8.41	70.7281	594.823	2.90000	9.17061	2.03360	4.38126	9,43913	.118906
8.42	70.8964	596.948	2.90172	9.17606	2.03440	4.38299	9,44287	.118765
8.43	71.0649	599.077	2.90345	9.18150	2.03521	4.38473	9,44661	.118624
8.44	71.2336	601.212	2.90517	9.18695	2.03601	4.38646	9,45034	.118483
8.45	71.4025	603.351	2.90689	9.19239	2.03682	4.38819	9,45407	.118343
8.46	71.5716	605.496	2.90861	9.19783	2.03762	4.38992	9.45780	.118203
8.47	71.7409	607.645	2.91033	9.20326	2.03842	4.39165	9.46152	.118064
8.48	71.9104	609.800	2.91204	9.20869	2.03923	4.39338	9.46525	.117925
8.49	72.0801	611.960	2.91376	9.21412	2.04003	4.39511	9.46897	.117786
8.50	72.2500	614.125	2.91548	9.21954	2.04083	4.39683	9.47268	.117647

					3/-	3/	31-00	1
n	n^2	n^3	v n	√10 n	$\sqrt[3]{n}$	$\sqrt[3]{10 \ n}$	$\sqrt[3]{100} n$	\overline{n}
8.51	72,4201	616.295	2.91719	9.22497	2.04163	4,39855	9,47640	.117509
8.52	72.5904	618,470	2.91890	9.23038	2.04243	4,40028	9.48011	.117371
8.53	72.7609	620.650	2,92062	9.23580	2.04323	4,40200	9.48381	.117233
8.54	72,9316	622,836	2.92233	9.24121	2.04402	4,40372	9.48752	.117096
8.55	73,1025	625.026	2.92404	9.24662	2.04482	4.40543	9,49122	.116959
8.56	73.2736	627.222	2.92575	9.25203	2.04562	4.40715	9.49492	.116822
8.57	73,4449	629.423	2.92746	9.25743	2.04641	4.40887	9.49861	.116686
8.58	73,6164	631.629	2.92916	9.26283	2.04721	4.41058	9,50231	.116550
8.59	73.7881	633.840	2.90387	9.26823	2.04801	4.41229	9.50600	.116414
8,60	73,9600	636.056	2,93258	9,27362	2.04880	4.41400	9.50969	.116279
8.61	74.1321	638.277	2.93428	9.27901	2.04959	4.41571	9.51337 9.51705	.116144
8.62	74.3044	640.504	2.93598	9.28440	2.05039			
8.63 8.64	74.4769	642.736	2.93769 2.93939	9.28978 9.29516	2.05118 2.05197	4.41913 4.42084	9.52073 9.52441	.115875
	74.6496	644.973	2.93939	9.29516		4.42254	9.52808	.115607
8.65	74.8225	647.215			2.05276			
8.66	74.9956	649.462	2.94279	9,30591	2.05355	4.42425	9.53175	.115473
8,67	75.1689	651.714	2.94449	9.31128	2.05434	4.42595	9.53542	.115340
8.68	75.3424	653.972	2.94618	9.31665	2.05513	4.42765	9.53908 9.54274	.115207
8.69	75.5161	656.235	2.94788	9.32202	2.05592	4.42935		.115075
8.70	75.6900	658.503	2.94958	9.32738	2.05671	4.43105	9.54640	
8.71	75.8641	660.776	2.95127	9.33274	2.05750	4.43274	9.55006	.114811
8.72	76.0384	663.055	2.95296	9.33809	2.05828	4,43444	9.55371	.114679
8.73	76.2129	665.339	2.95466	9.34345	2.05907	4.43614	9.55736	.114548
8.74 8.75	76.3876 76.5625	667.628 669.922	2.95635 2.95804	9.34880 9.35414	2.05986 2.06064	4.43783	9.56101 9.56466	.114417
8.76	76.7376	672.221	2.95973	9.35949	2.06143	4.44121	9.56830	.114155
8.77	76.9129	674.526	2.96142	9.36483	2.06221	4.44290	9.57194	.114025
8.78	77.0884	676.836	2.96311	9.37017	2.06299	4.44459	9.57557	.113895
8.79	77.2641	679.151	2.96479	9.37550	2.06378	4.44627	9.57921	.113766
8.80	77.4400	681.472	2.96648	9,38083	2.06456	4.44796	9.58284	.113636
8.81	77.6161	683.798	2.96816	9.38616	2.06534	4.44964	9.58647	.113507
8.82	77.7924	686.129	2.96985	9.39149	2.06612	4.45133	9.59009	.113379
8.83	77.9689	688.465	2.97153	9.39681	2.06690	4.45301	9.59372	.113250
8.84	78.1456	690.807	2.97321	9,40213	2.06768	4,45469	9.59734	.113122
8.85	78.3225	*693.154	2.97489	9.40744	2.06846	4.45637	9,60095	.112994
8.86	78.4996	695.506	2.97658	9.41276	2.06924	4.45805	9.60457	.112867
8.87	78.6769	697.864	2.97825	9,41807	2.07002	4.45972	9.60818	.112740
8.88	78.8544	700.227	2.97993	9.42338	2.07080	4.46140	9.61179	.112613
8.89	79.0321	702.595	2.98161	9.42868	2.07157	4.46307	9.61540	.112486
8.90	79,2100	704.969	2.98329	9.43398	2.07235	4.46474	9.61900	.112360
8.91	79.3881	707.348	2.98496	9.43928	2.07313	4.46642	9.62260	,112233
8.92	79.5664	709.732	2.98664	9.44458	2.07390	4.46809	9 62620	.112108
8.93	79:7449	712,122	2.98831	9.44987	2.07468	4.46976	9.62980	.111982
8.94	79.9236	714.517	2.98998	9.45516	2.07545	4.47142	9.63339	.111857
8.95	80,1025	716.917	2.99166	9.46044	2.07622	4.47309	9.63698	.111732
8.96	80.2816	719,323	2.99333	9.46573	2.07700	4.47476	9.64057	.11160
8.97	80.4609	721.734	2.99500	9.47101	2.07777	4.47642	9.64415	.111483
8.98	80.6404	724.151	2.99666	9.47629	2.07854	4.47808	9.64774	.111359
8.99	80.8201	726.573	2.99833	9.48156	2.07931	4.47974	9.65132	.111235
9.00	81.0000	729,000	3,00000	9.48683	2.08008	4,48140	9.65489	,111111

\overline{n}	n^2	n^3	\sqrt{n}	$\sqrt{10 n}$	$\sqrt[3]{n}$	³ √10 n	$\sqrt[3]{100 n}$	$\frac{1}{n}$
9.01	81,1801	731,433	3.00167	9.49210	2.08085	4.48306	9.65847	.110988
9.02	81.3604	733.871	3.00333	9.49737	2.08162	4.48472	9.66204	.110365
9.03	81.5409	736.314	3.00500	9.50263	2,08239	4,48638	9.66561	.110742
9.04	81.7216	738.763	3.00666	9.50789	2.08316	4.48803	9.66918	.110620
9.05	81.9025	741.218	3.00832	9.51315	2.08393	4.48968	9.67274	.110497
9.06	82.0836	743.677	3.00998	9.51840	2.08470	4.49134	9.67630	.110375
9.07	82.2649	746.143	3.01164	9.52365	2.08546	4.49299	9.67986	.110254
9.08	82.4464	748.613	3.01330	9.52890	2.08623	4.49464	9.68342	.110132
9.09	82.6281	751.089	3.01496	9.53415	2.08699	4.49629	9.68697	.110011
9,10	82,8100	753.571	3.01662	9.53939	2.08776	4.49794	9.69052	.109890
9.11	82.9921	756.058	3.01828	9.54463	2.08852	4.49959	9.69407	.109770
9.12	83.1744	758.551	3.01993	9.54987	2.08929 2.09005	4.50123	9.69762	.109649
9.13 9.14	83.3569 83.5396	761.048 763.552	3.02159 3.02324	9.55510 9.56033	2.09003	4.50288 4.50452	9.70116 9.70470	.109529
9.15	83.7225	766,061	3,02490	9.56556	2.09158	4.50616	9.70824	.109290
				9.57079	2.09234		9.71177	
9.16 9.17	83.9056 84.0889	768.575 771.095	3.02655	9.57601	2.09234	4.50780 4.50945	9.71531	.109170
9.18	84.2724	773.621	3.02985	9.58123	2.09386	4.51108	9.71884	.108933
9.19	84.4561	776.152	3,03150	9.58645	2.09462	4.51272	9.72236	.108814
9.20	84.6400	778.688	3,03315	9.59166	2.09538	4.51436	9.72589	.108696
9.21	84,8241	781.230	3,03480	9.59687	2.09614	4.51599	9.72941	.108578
9.22	85.0084	783.777	3.03645	9.60208	2.09690	4.51763	9.73293	.108460
9.23	85.1929	786.330	3.03809	9.60729	2.09765	4.51926	9.73645	.108342
9,24	85.3776	788.889	3.03974	9.61249	2.09841	4.52089	9.73996	.108225
9.25	85,5625	791.453	3.04138	9.61769	2.09917	4.52252	9.74348	.108108
9.26	85.7476	794.023	3.04302	9.62289	2.09992	4.52415	9.74699	.107991
9.27	85.9329	796.598	3.04467	9.62808 9.63328	2.10068 2.10144	4.52578	9.75049	.107875
9.28 9.29	86.1184 86.3041	799.179 801.765	3.04631 3.04795	9.63846	2.10144	4.52740 4.52903	9.75750	.107759
9.30	86,4900	804.357	3.04959	9.64365	2.10294	4.53065	9.76100	.107527
9.31	86.6761	806.954	3,05123	9.64883	2,10370	4.53228	9.76450	.107411
9.31	86.8624	809.558	3.05287	9.65401	2.10310	4.53390	9.76799	.107296
9,33	87.0489	812.166	3.05450	9,65919	2,10520	4.53552	9.77148	.107181
9.34	87.2356	814.781	3.05614	9.66437	2.10595	4.53714	9.77497	.107066
9.35	87.4225	817.400	3.05778	9.66954	2.10671	4.53876	9.77846	.106952
9.36	87.6096	820,026	3,05941	9.67471	2.10746	4.54038	9.78195	.106838
9.37	87.7969	822.657	3.06105	9.67988	2.10821	4.54199	9.78543	.106724
9.38	87.9844	825.294	3.06268	9.68504	2,10896	4.54361	9.78891	.106610
9.39	88.1721	827.936	3.06431	9.69020	2.10971	4.54522	9.79239 9.79586	,106496 ,106383
9.40	88.3600	830.584	3.06594	9.69536	2.11045	4.54684		
9.41	88.5481	833.238	3.06757	9.70052	2.11120	4.54845	9.79933	.106270
9.42	88.7364	835.897	3.06920	9.70567	2.11195	4.55006	9.80280	.106157
9.43 9.44	88.9249 89.1136	838.562 841.232	3.07083 3.07246	9.71082 9.71597	2.11270 2.11344	4.55167 4.55328	9.80627 9.80974	.106045
9.45	89,3025	843,909	3.07409	9,72111	2.11419	4.55488	9.81320	.105820
				9.72625	2.11494	4.55649	9.81666	.105708
9.46 9.47	89.4916 89.6809	846.591 849.278	3.07571 3.07734	9.72625	2.11494	4.55809	9.81000	.105708
9.48	89.8704	851.971	3.07896	9.73653	2.11642	4.55970	9.82357	.105485
9.49	90.0601	854.670	3.08058	9.74166	2.11717	4.56130	9.82703	.105374
9.50	90,2500	857,375	3.08221	9.74679	2.11791	4.56290	9.83048	.105263

	1		\sqrt{n}	1 4/10	$\sqrt[3]{n}$	$\sqrt[3]{10 \ n}$	31.00	1
n	n^2	n^3	\\n	V10 n	\\n	V10 n	$\sqrt[3]{100} n$	$\frac{1}{n}$
					-			
9.51	90,4401	860.085	3.08383	9.75192	2.11865	4.56450	9.83392	.105153
9.52	90.6304	862.801	3.08545	9.75705	2.11940	4.56610	9.83737	.105042
9.53	90,8209	865.523	3.08707	9.76217	2.12014	4.56770	9.84081	.104932
9.54	91.0116	868,251	3.08869	9.76729	2.12088	4.56930	9.84425	.104822
9.55	91.2025	870.984	3.09031	9.77241	2.12162	4.57089	9.84769	.104712
9.56	91,3936	873.723	3.09192	9.77753	2.12236	4.57249	9.85113	.104603
9.57	91.5849	876,467	3.09354	9.78264	2.12310	4.57408	9.85456	.104493
9.58	91.7764	879.218	3,09516	9.78775	2.12384	4.57568	9.85799	.104384
9.59	91.9681	881.974	3.09677	9.79285	2.12458	4.57727	9.86142	.104275
9.60	92.1600	884.736	3.09839	9.79796	2,12532	4.57886	9.86485	.104167
9.61	92,3521	887,504	3.10000	9.80306	2.12605	4.58045	9.86827	.104058
9.62	92.5444	890,277	3.10161	9.80816	2.12679	4.58203	9.87169	.103950
9.63	92.7369	893.056	3,10322	9.81326	2.12753	4.58362	9.87511	.103842
9.64	92,9296	895.841	3.10483	9.81835	2.12826	4.58521	9.87853	.103734
9.65	93,1225	898.632	3,10644	9.82344	2.12900	4.58679	9.88195	.103627
9.66	93.3156	901.429	3.10805	9,82853	2.12974	4.58838	9.88536	.103520
9.67	93.5089	904.231	3.10966	9.83362	2.13047	4.58996	9.88877	.103320
9.68	93,7024	907.039	3.11127	9.83870	2.13120	4.59154	9.89217	.103306
9,69	93.8961	909,853	3,11288	9.84378	2.13194	4.59312	9.89558	.103199
9.70	94.0900	912.673	3.11448	9.84886	2,13267	4.59470	9.89898	,103093
9.71	94.2841	915,499	3,11609	9.85393	2.13340	4.59628	9.90238	.102987
9.72	94.4784	918.330	3.11769	9.85901	2.13414	4.59786	9.90578	.102881
9.73	94.6729	921.167	3.11929	9.86408	2.13487	4.59943	9.90918	.102775
9.74	94.8676	924.010	3.11929	9.86914	2.13560	4.60101	9.91257	.102773
9.75	95.0625	926.859	3.12250	9.87421	2.13633	4.60258	9.91596	.102564
9.76	95.2576	929,714	3.12410	9.87927	2.13706	4.60416	9.91935	.102459
9.77	95.4529	932.575	3.12570	9.88433	2.13779	4,60573	9.92274	.102354
9.78	95.6484	935.441	3.12730	9.88939	2.13852	4.60730	9.92612	.102250
9.79	95.8441	938.314	3,12890	9.89444	2.13925	4.60887	9.92950	.102145
9.80	96.0400	941.192	3,13050	9.89949	2.13997	4.61044	9.93288	.102041
9.81	96.2361	944.076	3.13209	9.90454	2.14070	4.61200	9.93626	.101937
9.82	96.4324	946,966	3.13369	9.90959	2.14143	4.61357	9.93964	.101833
9.83	96.6289	949.862	3.13528	9.91464	2.14216	4.61513	9.94301	.101729
9.84	96.8256	952.764	3,13688	9,91968	2.14288	4.61670	9.94638	.101626
9.85	97.0225	955.672	3.13847	9.92472	2.14361	4.61826	9.94975	.101523
9.86	97.2196	958.585	3.14006	9.92975	2.14433	4.61983	9.95311	.101420
9.87	97.4169	961.505	3.14166	9.93479	2.14506	4.62139	9.95648	.101317
9.88	97.6144	964.430	3.14325	9.93982	2.14578	4.62295	9.95984	.101317
9.89	97.8121	967.362	3.14323	9.94485	2.14651	4.62451	9.96320	.101213
9.90	98.0100	970.299	3.14643	9.94987	2.14723	4.62607	9.96655	.101010
9.91	98.2081	973.242	3.14802	9.95490	2.14795	4.62762	9.96991	.100908
9.92	98.4064	976.191	3.14960	9.95992	2.14867	4.62918	9.97326	.100303
9,93	98.6049	979.147	3.15119	9.96494	2.14940	4.63073	9.97661	.100507
9.94	98,8036	982.108	3.15278	9,96995	2.15012	4.63229	9.97996	.100604
9.95	99.0025	985.075	3.15436	9.97497	2.15084	4.63384	9.98331	.100503
9.96	99,2016	988.048	3.15595	9.97998	2.15156	4.63539	9.98665	.100402
9.97	99,4009	991.027	3.15753	9.98499	2.15136	4.63694	9.98999	.100301
9.98	99,6004	994.012	3.15911	9.98999	2.15300	4.63849	9.99333	.100301
9.99	99.8001	997.003	3.16070	9.99500	2.15372	4.64004	9.99667	.100100
10,00	100,000	1000.00	3.16228	10.0000	2.15443	4.64159	10.0000	.100000
-0100	200.000	1300.00	0.10220	10.0000	CFT DI.	T.UTIOU	10.0000	.100000

DECIMAL EQUIVALENTS OF 64ths.

The decimal fractions printed in large type give the exact value of the corresponding fraction to the fourth decimal place. A given decimal fraction is rarely exactly equal to any of these values, and the numbers in small type show which common fraction is nearest to the given decimal. Thus, lay off the fraction 1330 in 64ths. The nearest decimal fractions are .1250 and .1406. The value of any fraction in small type is the mean of the two adjacent fractions. In this instance the mean fraction is .1328, and as .1330 is greater than this, .1406 or $\frac{2}{53}$ will be chosen. In the same manner the nearest 64ths corresponding to the decimal fractions .3670 and .8979 are found to be $\frac{2}{53}$ and $\frac{2}{53}$, respectively.

and .8	1		1			1	1
Frac- tion	Decimal	Frac- tion	Decimal	Frac- tion	Decimal	Frac- tion	Decimal
	.0078		.2578		.5078		.7578
1/4	.0156	17	.2656	33	.5156	42	.7656
	.0235		.2735	1.0	.5235	0.5	.7735
32	.0313	32	.2813	17 32	.531 3 .5391	35	.7813
84	.0469	19	.2969	35 64	.5469	51	.7969
84	.0547	84	.3047	64	.5547	04	.8047
16	.0625	5 16	.3125	16	.5625	13	.8125
	.0703		,3203		.5703		.8203
₩.L	.0781	21 64	.3281	37 64	.5781	53 64	.8281
32	.0860	11 32	.3438	19	.5938	37	.8438
32	,1016	32	.3516	32	.6016	32	.8516
7 84	.1094	23	.3594	39 64	.6094	55	.8594
	.1172		.3672		6172		.8672
1 8	.1250	3 8	.3750	5 8	.6250	78	.8750
84	.1328 .1406	25 64	.3906	81	.6406	57	.8906
84	.1485	64	.3985	64	.6485	64	.8985
32	.1563	13	.4063	21 32	.6563	29 32	.9063
	.1641		4141		.6641		.91 41 .921 9
81	.1719	87	.4219 .4297	43 64	.6719	59	.9219
3 16	.1875	7 16	.4375	116	.6875	15	.9375
18	.1953	16	.4453	16	.6953	16	.9453
13	.2031	29 64	.4531	45 64	.7031	61	.9531
	.2110		.4610		.7110	31	.9610
32	.2188	35	.4688	23 32	.7188	31 32	.968 8
15	.2344	31 64	.4844	47	.7344	63	.9844
6.5	.2422	64	.4922		.7422		.9922
1	.2500	1	.5000	3	.7500	1	1.0000
	.2578		.5078		.7578		1.0078

MENSURATION.

In the following formulas, the letters have the meanings here given, unless otherwise stated.

D = larger diameter:

d = smaller diameter:

R = radius corresponding to D

r = radius corresponding to d;

p = perimeter or circumference;

C = area of convex surface = area of flat surface which can be rolled into the shape shown;

S =area of entire surface = C + area of the end or ends;

A =area of plane figure;

π = 3.1416, nearly = ratio of any circumference to its diameter;

V = volume of solid.

The other letters used will be found on the cuts.

CIRCLE.
$$p = \pi d = 3.1416 d, \\ p = 2 \pi r = 6.2832 r, \\ p = 2 \sqrt{\pi} A = 3.5449 \sqrt{A}, \\ p = \frac{2 \sqrt{\pi} A}{r} = \frac{4 A}{d}, \\ d = \frac{p}{\pi} = \frac{p}{3.1416} = .3183 p, \\ d = 2 \sqrt{\frac{A}{\pi}} = 1.1284 \sqrt{A}, \\ r = \frac{p}{2\pi} = \frac{p}{6.2832} = .1592 p, \\ r = \sqrt{\frac{A}{\pi}} = .5642 \sqrt{A}, \\ A = \frac{\pi d^2}{4} = .7854 d^2, \\ A = \pi r^2 = 3.1416 r^2, \\ A = \frac{pr}{2} = \frac{pd}{4},$$

TRIANGLES.

$$D = B + C.$$
 $E + B + C = 180^{\circ}.$ $E' + B + C = 180^{\circ}.$ $E' + B + C = 180^{\circ}.$ $E' + B + C = 180^{\circ}.$

The above letters refer to angles.

For a right-angled triangle, c being the hypotenuse,

$$c = \sqrt{a^2 + b^2}.$$

$$a = \sqrt{c^2 - b^2}.$$

$$b = \sqrt{c^2 - a^2}.$$

c = length of side opposite an acute angle of an oblique-angled triangle.

$$c = \sqrt{a^2 + b^2 - 2be}.$$

$$h = \sqrt{a^2 - e^2}.$$

c =length of side opposite an obtuse angle of an oblique-angled triangle.

$$c = \sqrt{a^2 + b^2 + 2be}.$$

 $h = \sqrt{a^2 - e^2}.$

For a triangle inscribed in a semicircle; i.e., any rightangled triangle,

$$c:b::a:h.$$

$$h = \frac{ab}{c} = \frac{ce}{a}.$$

$$a:b+e=e:a=h:c.$$

For any triangle,
$$A=\frac{b}{2}\frac{h}{2}=\tfrac{1}{4}b\,h.$$

$$A=\frac{b}{2}\sqrt{a^2-\left(\frac{a^2+b^2-c^2}{2b}\right)^2}.$$

RECTANGLE AND PARALLELOGRAM.

$$A = ab.$$

$$A = b\sqrt{c^2 - b^2}.$$

TRAPEZOID.

$$A = \frac{1}{9}h(a+b).$$

TRAPEZIUM.

Divide into two triangles and a trapezoid.

$$A = \frac{1}{2}bh' + \frac{1}{2}a(h'+h) + \frac{1}{2}ch;$$

or, $A = \frac{1}{2} [b h' + c h + a(h' + h)].$ Or, divide into two triangles by drawing

Or, divide into two triangles by drawing a diagonal. Consider the diagonal as the base of both triangles, call its length *l*; call the altitudes of the triangles *h*₁ and *h*₂: then

$$A = \frac{1}{9} l (h_1 + h_2).$$

$$p* = \pi \sqrt{\frac{D^2 + d^2}{2} - \frac{(D - d)^2}{8.8}}.$$

$$A = \frac{\pi}{4} D d = .7854 D d.$$

SECTOR.
$$A=\frac{1}{2}lr$$
. $A=\frac{\pi}{360}=.008727~r^2~E$.

l = length of arc.

SEGMENT.

$$A = \frac{1}{2} [lr - c(r - h)].$$

$$A = \frac{\pi r^2 E}{360} - \frac{c}{2} (r - h).$$

$$l = \frac{\pi r E}{180} = .0175 r E.$$

$$l = \frac{\pi r E}{180} = .0175 r E$$

$$E = \frac{180 \, l}{\pi \, r} = 57.2956 \, \frac{l}{r}.$$

^{*} The perimeter of an ellipse cannot be exactly determined without a very elaborate calculation, and this formula is merely an approximation giving fairly close results.

RING.

$$A = \frac{\pi}{4} (D^2 - d^2).$$

CHORD.

c = length of chord.

$$c = \text{length of chord.}$$

 $r = \frac{c^2 + 4h^2}{8h} = \frac{e^2}{2h}.$
 $c = 2\sqrt{2hr - h^2}.$

 $l = \frac{8e - c}{2}$, approximately.

HELIX.

To construct a helix

l = length of helix:n = number of turns:

$$t = \text{pitch}.$$

$$t = \sqrt{\frac{l^2}{n^2} - \pi^2 d^2}.$$

$$l = n \sqrt{\frac{n^2}{\pi^2 d^2 + t^2}}.$$

$$l = n \sqrt{\pi^2 d^2 + t^2}.
onumber \ n = rac{l}{\sqrt{\pi^2 a^2 + t^2}}.$$

CYLINDER.

$$C = \pi dh$$
.

$$S = 2 \pi r h + 2 \pi r^2$$

$$= \pi dh + \frac{\pi}{2}d^2,$$

$$V = \pi r^2 h = \frac{\pi}{4} d^2 h.$$

$$V = \frac{p^2 h}{4 \pi} = .0796 \, p^2 h.$$

FRUSTUM OF CYLINDER.

 $h = \frac{1}{3}$ sum of greatest and least heights. $C = ph = \pi dh$

 $S = \pi dh + \frac{\pi}{4} d^2 + \text{area of elliptical top.}$

$$V = A h = \frac{\pi}{4} d^2 h.$$

CONE

$$C = \frac{1}{2}\pi dl = \pi rl,$$

$$S = \pi rl + \pi r^2 = \pi r \sqrt{r^2 + h^2} + \pi r^2,$$

$$V = \frac{\pi d^2}{4} \times \frac{h}{3} = \frac{.7854 d^2 h}{3} = \frac{p^2 h}{12\pi}.$$

FRUSTUM OF CONE.

$$C = \frac{1}{2}l(P+p) = \frac{\pi}{2}l(D+d).$$

$$S = \frac{\pi}{2}[l(D+d) + \frac{1}{2}(D^2+d^2)].$$

$$V = \frac{\pi}{4}(D^2 + Dd + d^2) \times \frac{1}{2}h$$

$$= .2618h(D^2 + Dd + d^2).$$

SPHERE.

$$S = \pi d^2 = 4 \pi r^2 = 12.5664 r^2.$$

$$V = \frac{1}{6} \pi d^3 = \frac{4}{3} \pi r^3 = .5236 d^3 = 4.1888 r^2.$$

CIRCULAR RING.

D = mean diameter; R = mean radius.

 $S = 4 \pi^2 R r = 9.8696 D d.$ $V = 2 \pi^2 R r^2 = 2.4674 D d^2.$

WEDGE.

$$V = \frac{1}{6} w h(a + b + c).$$

PRISMOID.

A prismoid is a solid having two parallel plane ends, the edges of which are connected by plane triangular or quadrilateral surfaces.

A =area one end:

a =area of other end:

m =area of section midway between ends: l = perpendicular distance between ends.

$$V = \frac{1}{6} l(A + a + 4m).$$

The area m is not in general a mean between the areas of the two ends, but its sides are means between the corresponding lengths of the ends.

Approximately,
$$V = \frac{A+a}{2}l$$
.

REGULAR PYRAMID.

P = perimeter of base:

$$A = \text{ area of base}$$

$$C = \frac{1}{2}Pl.$$

$$S = \frac{1}{2}Pl + A.$$

$$V = \frac{Ah}{2}.$$

To obtain area of base, divide it into triangles, and find their sum.

The formula for V applies to any pyramid whose base is A and altitude h.

FRUSTUM OF REGULAR PYRAMID.

a =area of upper base;

A =area of lower base: p = perimeter of upper base;

P = perimeter of lower base.

$$P = \text{perimeter of lower bas}$$

 $C = \frac{1}{2}l(P + p).$

$$C = \frac{1}{2}l(P+p).$$

$$S = \frac{1}{2}l(P+p) + A + a.$$

$$V = \frac{1}{3}h(A+a+\sqrt{Aa}).$$

The formula for V applies to the frustum of any pyramid.

LENGTH OF SPIRAL.

$$l = \pi n \left(\frac{D+d}{2}\right)$$
, $n = \text{number of coil};$ $l = \text{length of spiral};$

$$l = \frac{\pi}{t}(R^2 - r^2).$$
 $t = \text{pitch.}$

PRISM OR PARALIFICPIPED

C = Ph.

S = Ph + 2A.

V = A h

For prisms with regular polygon as bases, $P = \text{length of one side} \times \text{number of sides}$.

To obtain area of base, if it is a polygon, divide it into triangles, and find sum of partial areas.

FRUSTUM OF PRISM.

If a section perpendicular to the edges is a triangle, square, parallelogram, or regular polygon,

 $V = \frac{\text{sum of lengths of edges}}{\text{number of edges}} \times \text{area of right section.}$

RECILIAR POLYCONS

Divide the polygon into equal triangles and find the sum of the partial areas. Otherwise, square the length of one side and multiply by proper number from the following table:

MA

~	Humber Ho	m the lone w	mg word
	Name.	No. Sides.	Multiplie
	Triangle	3	.433
	Square	4	1.000
	Pentagon	5	1.720
	Hexagon	6	2.598
	Heptagon	. 7	3.634
	Octagon	8	4.828
	Nonagon	9	6.182
	Decagon	10	7.694

IRREGULAR AREAS.

Divide the area into trapezoids, triangles, parts of circles, etc., and find the sum of the partial areas.

If the figure is very irregular, the approximate area may be found as follows: Divide the figure into trapezoids by equidistant parallel lines b, c, d, etc. The lengths of these lines being measured, then, calling a the first and n the last length, and y the width of strips,

Area =
$$y\left(\frac{a+n}{2}+b+c+\text{etc.}+m\right)$$
.

MECHANICS.

FALLING BODIES

Let g = 32.16 = constant acceleration due to the attraction of the earth.

t = number of seconds that the body falls:

v =velocity in feet per second at the end of the time t;

h = distance that the body falls during the time t.

Then,
$$v = g t = \frac{2h}{t} = \sqrt{2gh} = 8.02 \sqrt[4]{h}.$$

$$h = \frac{vt}{2} = \frac{gt^2}{2} = \frac{v^2}{2g} = .015547 v^2.$$

$$t = \frac{v}{g} = \frac{2h}{v} = \sqrt{\frac{2h}{g}} = .24938 \sqrt[4]{h}.$$

PROJECTILES.

The formulas under this and the preceding heading are rigidly true only for bodies moving in a vacuum or in space (as the stars and planets); they are approximately true for bodies moving in air, provided they are dense and the velocity is not very great. Fairly good results may be obtained by applying the formulas for projectiles in calculating the range of a jet of water issuing from a small orifice in the side of a vessel.

Let g = 32.16 = acceleration due to gravity;

v = initial velocity in feet per second:

r = range:

y = vertical height of starting point above ground:

A = elevation in degrees = angle that the direction of the projectile at the start makes with the horizontal.

Then the range, or distance from the starting point to the point where the projectile crosses a horizontal line through the starting point, is

 $r = \frac{v^2}{a} \sin 2A.$

If the body is projected in a horizontal direction, the range is the distance from the starting point to the point where the projectile strikes the ground, and

$$r = v\sqrt{\frac{2y}{g}} = .24938 \ v\sqrt{y}.$$

The range of a projectile fired in a horizontal direction, 30 ft. above the ground, with a velocity of 300 ft. per second, equals $r = .24938 \times 300 \times \sqrt{30} = 409.77$ ft.

CENTRIFUGAL FORCE.

F = centrifugal force in pounds;

W = weight of revolving body in pounds;

r = distance from the axis of motion to the center of gravity of the body in feet;

N = number of revolutions per minute;

v =velocity in feet per second.

$$F = \frac{W v^2}{g r} = .00034 Wr N^2.$$

In calculating the centrifugal force of flywheels, it is customary to neglect the arms and take r equal to the mean radius of the rim; in such cases W is taken as one-half the weight of the rim. The result thus obtained, divided by π , is approximately the force tending to burst the flywheel rim.

EXAMPLE.—What is the force tending to burst a flywheel rim weighing 7 tons, making 150 rev. per min., and having a mean radius of 5 ft.?

SOLUTION .-

$$F = \frac{.00034 \times (\frac{1}{8} \times 7 \times 2,000) \ 5 \times 150^2}{3.1416} = 85,227 \ \text{lb.}$$

CENTER OF GRAVITY.

The center of gravity of a body, or of a system of bodies, is that point from which, if the body or system were suspended, it would be in equilibrium.

If a line or a surface has two axes, or a solid has three axes of symmetry, the center of gravity lies at their point of intersection, and corresponds with the geometrical center of the figure. An axis of symmetry is any line so drawn that, if part of the figure on one side of the line is folded on this line, it will coincide exactly with the other part, point for point and line for line. Thus, in Fig. 1, if the part ab is folded on the line AB, the upper half will coincide exactly with the lower half; also, if bc is folded on the line CD, the right-hand half will coincide exactly with the left-hand half. Hence, the point O where AB and CD intersect is the center of gravity of the rectangle abcd. If the figure has one axis of symmetry, the center of gravity may be found as follows: Let

m n be an axis of symmetry of the area in Fig. 2. The center of gravity will lie somewhere on this line. Draw any line A B perpendicular to m n. Divide the area into squares, rectangles, triangles, parallelograms, circles, etc., whose centers of gravity are easily found, and measure the perpendicular distances of these centers of gravity from, the line A B. Add the sum of the products obtained by multiplying each area by the distance of its center of gravity from the line A B, and divide by the area of the entire figure; the result is the distance x of the center of gravity from A B measured on m n, or the point E.

If the figure has no axis of symmetry, as in Fig. 3, draw any line, as A B, and find the distance x of the center of gravity from A B, and through x draw f g parallel to A B. Choose any other line, C D, and find the distance y of the center of gravity from C D by the same method, and through y draw m n parallel to C D. The point of intersection o of f g and m n is the center of gravity.

Thus, suppose that the area of the triangle, Fig. 3, is A sq. in., and the distance of its center of gravity from A B is

a in., and from CD, a_1 in.; that the area of the small rectangle is B sq. in., and the distance of its center of gravity from AB is b in., and from CD is b_1 in.; that the area of the large rectangle is C sq. in., and the distance of its center of gravity from AB is c in., and from CD is c_1 in.; then,

$$x = \frac{(A \times a) + (B \times b) + (C \times c)}{A + B + C},$$

$$y = \frac{(A \times a_1) + (B \times b_1) + (C \times c_1)}{A + B + C}.$$

and

To find the center of gravity mechanically, suspend the object from a point near its edge and mark on it the direction of a plumb-line from that point; then suspend it from another point and again mark the direction of a plumb-line. The intersection of these two lines will be directly over the center of gravity.

The center of gravity of a body having parallel sides may be found by drawing the outline of one of the sides upon heavy paper, and cutting out the exact shape of the figure. Then suspend the paper from the two points and find the center of gravity, as in the last case.

The center of gravity of a triangle lies on a line drawn from a vertex to the middle point of the opposite side, and at a distance from that side equal to one-third of the length of the line. Or, draw a line from another vertex to the middle point of the side opposite, and the intersection of the two lines will be the center of gravity.

For a parallelogram, the center of gravity is at the intersection of the two diagonals.

For an irregular four-sided figure, draw a diagonal, dividing it into two triangles. Draw a line joining these centers of gravity. Draw the other diagonal, dividing the figure into two other triangles, and join the centers of gravity by a straight line. The intersection of these lines is the center of gravity of the figure.

For a figure having more than four sides, find the center of gravity by the general method explained in connection with Fig. 3.

For an arc of a circle, the center of gravity lies on the radius drawn to the middle point of the arc (an axis of

symmetry) and at a distance from the center equal to the length of the chord multiplied by the radius and divided by the length of the arc.

For a semicircle, the distance from the center = $\frac{2 r}{\pi}$ = .6366 r, when r = the radius.

For the area included in a half circle, the distance of the center of gravity from the center $=\frac{4}{3}\frac{r}{\pi}=.4244~r.$

For circular sector, the distance of the center of gravity from the center equals two-thirds of the length of the chord multiplied by the radius and divided by the length of the arc.

For a circular segment, let A be its area and C the length of its chord; then the distance of the center of gravity from the center of the circle is equal to $\frac{C^3}{C}$.

the center of the circle is equal to $\frac{C^3}{12A}$.

For a solid having three axes of symmetry, all perpendicular to each other, like a sphere, cube, right parallelopiped, etc., their point of intersection is the center of gravity.

For a cone or pyramid, draw a line from the apex to the center of gravity of the base; the required center of gravity is one-fourth the length of this line from the base, measured on the line.

For two bodies, the larger weighing W lb., and the smaller P lb., the center of gravity will lie on the line joining the centers of gravity of the two bodies and at a distance from the

larger body equal to $\frac{Pa}{P+W}$, where a is the distance between the centers of gravity of the two bodies

the centers of gravity of the two bodies.

For any number of bodies, first find the center of gravity of two of them as above, and consider them as one weight whose center of gravity is at the point just found. Find the center of gravity of this combined weight and a third body. So continue for the rest of the bodies, and the last center of gravity will be the center of gravity of the whole system of bodies.

MOMENT OF INERTIA.

The *moment of inertia* of a body or section is a mathematical expression that is much used in computations relating to rotating bodies and to the strength of materials.

It may be defined as follows:

The moment of inertia of a body, rotating about a given axis, is the sum of the products obtained by multiplying the weights of the elementary particles of which it is composed by the square of their distances from the axis.

It is often desirable to use the moment of inertia for a plane section; but as a plane surface has no weight, it is apparent that the above definition does not correctly apply. The following definition applies to plane surfaces:

The moment of inertia of a plane surface about a given axis is the sum of the products obtained by multiplying each elementary areas into which the surface may be conceived to be divided by the square of its distance from the axis.

The axis about which the body or surface rotates, or is assumed to rotate, i. e., the axis from which the distance to each area or particle is measured, is called the axis of rotation. The least moment of inertia is that value of the moment of inertia of a body or section when the axis of rotation passes through the center of gravity, since its value is less for that position of the axis than for any other.

To find the moment of inertia of a body about a given axis: Divide the body or section into many small parts and multiply the weight or area of each part by the square of the distance from its center of gravity to the axis of rotation; the sum of these products will be the moment of inertia.

Note.—The results obtained by the above rules are really only approximate; for practically it is impossible to divide a body or surface into parts sufficiently small for absolute accuracy. The smaller the parts the more accurate will be the result; but the results obtained by these rules will always be slightly too small.

The moment of inertia is usually designated by the letter I. Formulas for the values of I about an axis of rotation passing through the center of gravity of the section are given for various forms of sections in Table V, page 153.

The moment of inertia about an axis of rotation not passing through the center of gravity is equal to the moment of inertia about a parallel axis through the center of gravity plus the product of the entire weight of the body (or area of the section) multiplied by the source of the distance between the two axes.

EXAMPLE.—It is desired to find the moment of inertia of a 6'' I-beam of the dimensions shown in Fig. 1 about an axis xy perpendicular to the web of the beam at the center.

SOLUTION.—Since the axis about which the moment of

inertia is to be found is an axis of symmetry of the beam, it is necessary to make the computations only for the half section of the beam lying at one side of the axis, and multiply the result by 2. As stated before, the smaller the parts into which the area is divided, the more accurate will be the result.

It will be sufficiently accurate for present purposes to divide the section in the manner shown in Fig. 2.

The operations are given at the side of the figure, and will be readily under-

stood. The sum of the products is the approximate value of the moment of inertia of this half of the section about the axis xy, and when multiplied by 2 is the approximate value of I for the entire section. It is found to equal 23.444.

	Square of
Area.	Distance.
$3.50 \times .25 = .875$	$.875 \times 2.875^2 = 7.232$
$3.27 \times .125 = .409$	$.409 \times 2.667^2 = 2.907$
$.23 \times .50 = .115$	$.115 \times 2.50^2 = .719$
$.23 \times .50 = .115$	$.115 \times 2.00^2 = .460$
$.23 \times .50 = .115$	$.115 \times 1.50^2 = .259$
$.23 \times .50 = .115$	$.115 \times 1.00^2 = .115$
$.23 \times .50 = .115$	$.115 \times 0.50^2 = .029$
$.23 \times .25 = .058$	$.058 \times 0.125^2 = .001$
1.917	11.722
2	2
$A = \overline{3.834}$	$I = \overline{23.444}$

If the web of the beam is divided into areas $\frac{1}{4}$ in. in height (instead of $\frac{1}{4}$ in.), the value of I obtained will be 23.46 in. If the section is considered to be of the form indicated by the dotted lines in Fig. 1, and to have the same area as the original section, then, by the formula for the moment of inertia of an I-beam given in Table V, page 153, the value of

$$I = \frac{3.50 \times 6^3 - 3.27 \times 5.25^3}{19} = 23.57$$

The true value is almost exactly 23.48 in. Any one of

these values would be sufficiently correct for most practical purposes.

If it is desired to find the moment of inertia of a body about a given axis with reference to the weight of the body, the process is substantially the same as in the example given for the plane section, except that the weight of each small part of the body is taken instead

Fig. 2.

of the area of each small part of the section,

CENTER OF OSCILLATION.

The center of oscillation of a pendulum or other body vibrating or rotating about a fixed axis or center is that point at which, if the entire weight of the body were concentrated, the body would continue to vibrate in the same intervals of time.

When a pendulum, or other suspended body, is oscillating backward and forward, it is plain that those particles that are farther from the point of suspension travel through greater distances, and therefore move with greater velocities than those particles that are nearer the point of suspension.

But there is evidently some point on the pendulum that travels through the same distance and has the same velocity as the average distance and average velocity of all the particles. This point is called the *center of oscillation*; it is not situated at the center of gravity. It always exists in the ball of a revolving governor or other rotating body. The axis or center around which the body rotates (corresponding to the point of suspension in pendulum) is the axis of rotation.

The distance from the axis, or center of rotation, to the center of oscillation is sometimes called the true length of the pendulum; it is also called the radius of oscillation; the latter name is preferable. To find the radius of oscillation:

Divide the moment of inertia of the body about the given axis of rotation by the product of the total weight of the body, multiplied by the distance from the given axis to the center of gravity of the body.

The centers of oscillation and of rotation (point of suspension) are *interchangeable*. If the position of a pendulum is reversed, and suspended from its center of oscillation, the pendulum will vibrate in the same intervals of time.

EXAMPLE.—It is desired to find the position of the center of oscillation of a wrought-iron bar 1 in, square and 12 in, long, axis of rotation perpendicular to the bar at one end:

Weight $Sq.$ of $Cu.$ $Im.$ Dist. $Cu.$ $Im.$ $281 \times 0.5^2 = 0.0$	
$.281 \times 0.5^2 = 0.0$	
	70
$281 \times 1.5^2 = 0.6$	32
$281 \times 2.5^2 = 1.7$	56
$281 \times 3.5^2 = 3.4$	42
$281 \times 4.5^2 = 5.6$	90
$281 \times 5.5^2 = 8.5$	00
$281 \times 6.5^2 = 11.8$	72
$.281 \times 7.5^2 = 15.8$	06
$.281 \times 8.5^2 = 20.3$	02
$281 \times 9.5^2 = 25.3$	60
$281 \times 10.5^2 = 30.9$	80
$.281 \times 11.5^2 = 37.1$	62
3.372	$\frac{1}{72} = 1$

SOLUTION.—For the purposes of the example it will be sufficiently accurate to find the moment of inertia by considering the bar to be divided into 12 equal cubes, each containing 1 cu, in, of metal, as indicated in the figure, and the weight of each cube to be concentrated at its center of gravity.

The weight of 1 cu. in. of wrought iron is .281 lb., and of a bar 1 in. square and 1 ft. long it is $.281 \times 12 = 3.372$ lb. Hence, $I = .281 \times .5^2 + .281 \times 1.5^2 + \text{etc.} = 161.572$. (See page 128.) The exact value of I is 161.856; this shows that the approximate method is very close.

According to the rule previously given, if the moment of inertia is divided by the product of the weight of the body, by the distance from the axis of rotation to the center of gravity, the quotient will be the radius of oscillation.

Therefore, the distance from the exact center of oscillation of a wrought-iron bar, 1 in. square and 12 in. long, to an axis of rotation perpendicular to the end of the bar, is

$$\frac{161.856}{3.372 \times 6} = 8 \text{ in.},$$

or two-thirds of the length of the bar.

The value of I for a bar of any cross-section, provided it is uniform throughout its length, revolving about an axis perpendicular to it and passing through its end, is

$$\frac{W l^2}{2}$$

in which
$$W$$
 is the weight of the bar, and l is its length. Hence,
$$I = \frac{Wl^2}{3} = \frac{3.372 \times 12^2}{3} = 161.856.$$

If the axis passes through the center of gravity of the bar,

$$I = \frac{Wl^2}{12}.$$

CENTER OF PERCUSSION.

The center of percussion with respect to a given axis of rotation may be defined as the point of application of the resultant of the forces that cause the body to rotate. It is that point at which if a force is applied, the force will have no effect at the axis of rotation.

Strike anything solid, as an anvil, with a stick. If the end of the stick hits the anvil, the opposite end will sting your hand and will jerk in the direction in which the blow is struck; if the center of the stick hits the anvil it will again sting your hand, but you will jerk it in a direction opposite to the movement of the blow. But somewhere between the end and the center of the stick will be a point where it may hit the anvil and not sting your hand at all. This point is the center of percussion.

Level off the surface of some wet sand and lay a strip of board upon it (say 18 in. long and 3 in. wide). Strike or press the board near the center and the entire length of the board will be imprinted in the sand; but press it near one end and the opposite end will be raised up from the sand and will make no imprint. Between the center and the end of the board is a point that if pressed upon will cause no movement in the opposite end, i. e., the end of the board will neither press into the sand nor be lifted from it, but the imprint in the sand will diminish to zero at the end of the board. The point pressed or struck will be the center of percussion. If the board is of uniform width, the center of percussion will be at one-third of the distance from one end of the board.

Similarly in the preceding illustration, if the stick is of uniform size and weight, and your hand grasps it at one end, the point at which it can strike the anvil without affecting your hand will be at one-third the distance from the opposite end.

In all cases the center of percussion is identical with the center of oscillation, and its position is found in the same manner.

215.0

EXAMPLE.—It is desired to find the position of the center of oscillation or percussion of two balls fastened upon a rod. The first, weighing 2 lb., is at a distance of 18 in. from the axis of rotation, and the second, weighing 1 lb., is at a distance of 36 in. from the axis. (See figure.)

SOLUTION.—For simplicity, the rod will be assumed to have no weight. Consider the weight of each ball to be concentrated at its center of gravity.

The moment of inertia is found as follows.

The center of gravity of the two balls is found to be at a distance of 6 in. from the larger, or 24 in. from the axis of rotation (see page 124), and the combined weight of the two balls is 2+1=3 lb. Therefore, the center of percussion is found

to be at a distance of $\frac{1,944}{3\times24}=27$ in. from the axis of rotation.

But, in an actual case, the rod would have weight, and its moment of inertia must be considered as well as the moment of inertia of the balls.

If we assume that the rod is of steel, $\frac{2}{8}$ in. in diameter and 86 in. long, it will weigh $\left(\frac{3}{8}\right)^2 \times .7854 \times 36 \times .283 = 1.125$ lb. .283 lb. is the weight of 1 cu. in. of steel.

Using the formula given on page 129,

$$I = \frac{Wl^2}{3} = \frac{1.125 \times 36^2}{3} = 486.$$

Adding this result to the former, 1.944 + 486 = 2.430 = moment of inertia of rods and balls. The center of gravity of the combination is found by the formula (see page 124)

$$\frac{P\,a}{P+W}. \quad \text{Substituting, } \frac{1.125\times 6}{1.125+3} = 1\frac{7}{11}. \quad 24-1\frac{7}{11} = 22\frac{4}{11} \ \text{in.}$$

= distance from end of rod to center of gravity.

Applying the rule given for finding the center of oscillation, the distance of the center of percussion from the end of the bar is $\frac{2,430}{(1+2+1.125)\times 22_{17}^4} = 26.34$ in., very nearly.

RADIUS OF GYRATION.

The center of gyration is that point in a revolving body at which, if the entire mass of the body were concentrated, the moment of inertia with respect to a given axis would be the same as in the body.

An ounce of cork occupies about 94 times as much space as

an ounce of platinum; but the ounce of platinum can have the same moment of inertia as the ounce of cork, if its center of gyration has the same position with respect to the axis of rotation

The center of gyration is not at the center of gravity, nor at the center of oscillation, but at some point in a straight line between those centers.

The radius of gyration is the distance from the axis of rotation to the center of gyration.

The square of the radius of gyration is the average of the squares of the distances from the axis of rotation to each elementary particle of the body, or to each elementary area of the section, as the case may be. But the sum of these squares of distances, multiplied by the weight or area of each elementary part, equals the moment of inertia; therefore, the moment of inertia divided by the weight of the body or area of the section equals the square of the radius of gyration; the square root of this quotient is the radius of gyration.

But, according to the rule for finding the radius of oscillation, the quotient obtained by dividing the moment of inertia by the weight or area equals the product of the distance from the axis of rotation to the center of gravity, multiplied by the radius of oscillation; and, therefore, the radius of gravition is a mean proportional between these distances.

If the distance from the axis of rotation to the center of gravity is known, and the radius of oscillation is known, the radius of gyration may be found by multiplying these two known distances together and extracting the square root of the product.

In the example of the **I**-beam, Fig. 2, page 126, the sum of the areas of the half section of the beam is 1.917, and the area of the entire section is 3.834 sq. in. Therefore, the radius of gyration of this beam about an axis through the center of gravity perpendicular to the web = $\sqrt{\frac{23.44}{8.834}} = 2.47$ in.

In the example of the iron bar 12 in. long (see figure, page 128), the distance from the axis of rotation to the center of gravity is 6 in., and the radius of oscillation was found to equal 8 in. Therefore, the radius of gyration about an

axis perpendicular to the bar at one end = $\sqrt{6 \times 8}$ = 6.93 in. Or, the moment of inertia of the bar = 161.586, and the weight of the bar = 3.372 lb. Therefore, the radius of gyra-

tion =
$$\sqrt{\frac{161.586}{3.372}}$$
 = 6.93 in., very nearly.

The radius of gyration is used in determining the strength of columns. The axis must be taken in such a direction that the result will be the *least* radius of gyration of the column; this condition is usually obtained when the axis is perpendicular to the least diameter or side of the column.

The various relations between these quantities may be concisely expressed by the following formulas, in which

A =area of section (or weight of body if the weight is used);

q =distance from axis of rotation to center of gravity;

G = radius of gyration;

 $r_{o} = \text{radius of oscillation}$:

I = moment of inertia.

Then,

$$I = A G^2.$$
 $I = A g r_o.$ $G^2 = g r_o.$ $G = \sqrt{\frac{I}{A}}.$ $g = \frac{I}{A r_o}.$ $r_o = \frac{I}{A g}.$ $r_o = \frac{G^2}{g}.$ $g : G = G : r_o.$

To find the radius of oscillation, radius of gyration, and moment of inertia, experimentally.

The connecting-rod of an engine is represented in the

figure. It is desired to find the moment of inertia of the rod about an axis of rotation through the center of the crosshead pin A.

This may be accomplished, experimentally, as follows: Suspend the rod from the crosshead pin in such a manner

that it will swing freely: cause it to swing or oscillate and note the exact time of the vibrations Remove the crosshead pin and reverse the rod, but, instead of suspending it by the crankpin, suspend it by a movable pin B, that can be clamped ' at any desired point upon the rod. C is another view of this pin. There will be a point on the rod from which it may be suspended by means of the movable pin, so that it will vibrate in exactly the same intervals of time as when suspended from the crosshead pin. This point is the center of oscillation, for the center of oscillation and the center of rotation are interchangeable; the point will be found at about one-third the length of the rod from the crankpin. Find this center of oscillation, experimentally, and carefully measure the distance from the center of the movable pin to the center of the crosshead-pin hole. This distance is the radius of oscillation = r_o. Next remove the movable pin, and find the center of gravity (lengthwise) of the rod by balancing it across a knife edge, and measure the distance from the center of gravity thus found to the center of the crosshead-pin hole; this distance = q. Finally, weigh the rod.

The product of the weight (=A), the radius of oscillation $(=r_o)$, and the distance from the center of crosshead pin (axis of rotation) to the center of gravity (=g) will be the moment of inertia. For, by the formula, $I=Agr_o$. The radius of gyration G may be found by the formula

$$G = \sqrt{\frac{I}{A}}$$
, or $G = \sqrt{g r_o}$.

MOMENT OF RESISTANCE.

If the moment of inertia of the cross-section of a beam is divided by the distance from the neutral axis (see definition on next page) to the extreme fiber, i. e., the fiber that is farthest from the axis, the quotient will be the quantity known as the moment of resistance.

It is evident that, if a beam is strained by a vertical load, the greatest stress will be in the extreme upper and lower fibers of the beam. The intensity of the stress that can be borne by the extreme fibers is the limit of the strength of the beam.

The upper fibers are compressed and the lower fibers are stretched, but somewhere along or near the center of a vertical section of the beam, the fibers are neither extended nor compressed; the position of these fibers is called the neutral surface, and the line where this neutral surface intersects a right section of the beam is the neutral axis of the section.

The neutral axis passes through the center of gravity of the section.

If the moment of resistance is multiplied by the amount of stress that may be allowed per square inch upon the extreme fiber, the product will represent the efficiency of the beam to resist bending moment.

EXAMPLE.—Referring to the 6" I-beam, Figs. 1 and 2, pages 126 and 127, for which the moment of inertia of the section has been found, it is desired to ascertain the load that a wrought-iron beam of the same dimensions as Fig. 1 will carry at the center of a span 8 ft. between supports.

Solution.—The moment of resistance for the section = $\frac{23.48}{3} = 7.83$. In Table II, page 151, the ultimate strength or fiber stress for wrought iron is given as 50,000 lb. per sq. in., and in Table I, page 151, the factor of safety given for wrought iron under a steady stress is 4; therefore, the safe fiber stress for wrought iron = $\frac{S}{f} = \frac{50,000}{4} = 12,500$ lb. per sq. in., and the moment of resistance multiplied by the safe fiber stress, or $\frac{SR}{f} = 7.83 \times 12,500 = 97,875$ in.-lb. But l = 8 ft., or 96 in.; equating the bending moment for a load at the center of a beam $\left(= \frac{Wl}{4} \right)$ with the moment of resistance, or putting $M = \frac{SR}{4} = \frac{Wl}{4}$; then $\frac{96}{4} = 97,875$; therefore, W = 4.078 lb., the load that can be safely supported at the

center of the beam.

MECHANICAL POWERS.

$$\begin{split} F \colon W &= l \colon L, \quad FL = Wl, \\ F &= \frac{Wl}{L}, \qquad W &= \frac{FL}{l}, \\ l &= \frac{Fa}{W + F}, \quad L &= \frac{Wa}{W + F}, \end{split}$$

$$F: W = l: L. \quad FL = Wl.$$

$$F = \frac{Wl}{L}, \qquad W = \frac{FL}{l}.$$

$$L = \frac{Wa}{W-F}, \quad l = \frac{Fa}{W-F}.$$

$$\begin{split} F \colon W &= l \colon L. \quad FL = Wl. \\ F &= \frac{Wl}{L}. \qquad W = \frac{FL}{l}. \\ L &= \frac{Wa}{F-W}. \quad l = \frac{Fa}{F-W}. \end{split}$$

$$F:W=r:R$$
. $FR=Wr$.

$$F = \frac{Wr}{R}$$
. $R = \frac{Wr}{F}$. $W = \frac{RF}{R}$. $R = \frac{RF}{W}$.

$$F = \frac{W r r'}{R R'}. \qquad W = \frac{F R R'}{r r'}.$$

n = number of revolutions of large gear.

$$n: n' = r': R.$$

$$v: v' = r r': R R'.$$

v = velocity of W; v' = velocity of F.

$$F = \frac{Wr \, r' \, r''}{R \, R' \, R''}.$$
 $W = \frac{F \, R \, R' \, R''}{r \, r' \, r''}.$ $n : n'' = r' \, r'' : R \, R'.$

v: v' = r r' r'' : R R' R''. r, r', r'', etc. = radii of the pinions; R, R', R'', etc. = radii of the wheels. Let db and qb represent the magnitudes and direc-

tions of two forces that act to move the body b. By completing the parallelogram there will be obtained a diagonal force fb, whose magnitude and direction are equal to the effect produced by db and qb. fb is called the resultant of db and qb.

If three or more forces act in different directions to

move a body b, find the resultant of any two of them, and consider it as a single force. Between this and the next force find a second resultant. Thus, pb, qb, and rb are magnitudes and directions of the forces. pb+qb+rb=gb+rb=fb, the magnitude and directions of the forces.

gb + rb = fb, the magnitude and direction of the three forces, pb, qb, and rb.

A SINGLE FIXED PULLEY.

$$F = W$$
. $v = v'$.

v = velocity of W; v' = velocity of F.

A SINGLE MOVABLE PULLEY.

F: W = 1: 2, or $F = \frac{1}{2} W$.

If the force F be applied at a and act upwards, the result will be the same.

$$v' = 2 v$$

v = velocity of W; v' = velocity of F.

A DOUBLE MOVABLE PULLEY.

 $F: W = 1: 4, \text{ or } F = \frac{1}{4} W.$

Let u = number of parts of rope, not counting the free end.

 $F = W \div u$. v : v' = 1 : u. v = velocity of W': v' = velocity of F.

QUADRUPLE MOVABLE PULLEY.

$$F = \frac{1}{8} W$$
, $F : W = 1 : 8$.

Let u = number of parts of rope, notcounting the free end: then.

$$F = W \div u$$
. $v : v' = 1 : u$.
 $v = \text{velocity of } W$; $v' = \text{velocity of } F$.

COMPOUND PULLEY.

u = number of movable pulleys.

$$F = \frac{W}{2^{u}}$$
. $W = 2^{u} F$. $v : v' = 1 : 2^{u}$.

v = velocity of W; v' = velocity of F.

DIFFERENTIAL PULLEY.

$$W = \frac{2 P R}{R - r}.$$

$$F: W = 1: 2\cos z$$

$$W = 2 F \cos z$$
. $F = \frac{W}{2 \cos z}$.

INCLINED PLANE.

$$F = \frac{Wh}{l} = W \sin \alpha.$$

$$W - \frac{Fl}{l} = \frac{F}{l}$$

WEDGE.

F = force required to drive the wedge: R = resistance.

$$F = \frac{Ra}{l}$$
. $R = \frac{Fl}{a}$.

$$R = \frac{Fl}{a}$$

SCREW.

P = pitch of the screw:

r = radius on which the force F acts.

$$F: W:: P: 2\pi r.$$

$$F = \frac{WP}{2\pi r}. \qquad W = \frac{2\pi r F}{P}.$$

WORK.

Work is the overcoming of resistance through a distance. The unit of work is the foot-pound: that is, it equals 1 pound raised vertically 1 foot. The amount of work done is equal to the resistance in pounds multiplied by the distance in feet through which it is overcome. If a body is lifted, the resistance is the weight or the overcoming of the attraction of gravity, the work done being the weight in pounds multiplied by the height of the lift in feet. If a body moves in a horizontal direction, the work done is the friction overcome, or the force needed to move a resistant body or combination of bodies, multiplied by the distance moved. In order to compare the different amounts of work done by different systems of forces, time is also considered.

One horsepower is 550 ft.-lb, of work in 1 second, or 33,000 ft.-lb. in 1 minute, or 1,980,000 ft.-lb. in 1 hour.

The work necessary to be done in raising a body weighing W lb. through a height of h ft. equals Wh ft.-lb. The total work that any moving body is capable of doing in being brought to rest equals its kinetic energy, or $\frac{Wv^2}{2\sigma}$, when v is

the velocity in feet per second.

Thus, the work that a cannon ball weighing 800 lb. and traveling with a velocity of 1,200 ft. per sec. could do, is $\frac{800 \times 1,200^2}{2 \times 32.16} = 17,910,447 \text{ ft.-lb.}$

If stopped in 1 min., the horsepower would be 17,910,447 \div 33,000 = 542.8, nearly,

FORCE OF A BLOW.

In order to determine the force of a blow, the velocity of the object at the instant of striking must be known, and also the time required to bring the body to rest. It is a very difficult matter to determine the exact time, but a close approximation to the striking force may be obtained by dividing the kinetic energy of the body at the instant of striking by the average amount of penetration or compression produced by the striking body.

Let F = striking force in pounds;

W =weight of striking body in pounds;

v = velocity of striking body in feet per second;

R = distance penetrated or amount of compression = the distance through which the resistance acts, in feet;

t = time required to bring the body to rest;

h = height in feet which would produce the velocity v.

Then,
$$F = \frac{Wv}{gt}$$
, or $F = \frac{Wv^2}{2gR} = \frac{Wh}{R}$.

EXAMPLE.—A steam hammer weighing 1,000 lb. (with its piston) falls from a height of 8 ft., and compresses a piece of iron $\frac{1}{6}$ in.; what is its striking force?

SOLUTION.—If gravity be considered as the only force acting, the steam on top of the piston being used to prevent a rebound of the hammer,

$$F = \frac{Wh}{R} = \frac{1,000 \times 8}{(\frac{1}{8} \div 12)} = 1,000 \times 8 \times 8 \times 12 = 768,000 \text{ lb.}$$

Divide $\frac{1}{8}$ in. by 12, to obtain the amount of compression in feet or parts of a foot.

BELTING.

D = diameter of larger pulley in inches;

d = diameter of smaller pulley in inches;

N = revolutions per minute of larger pulley;

n = revolutions per minute of smaller pulley;

W =width of double belt in inches;

w =width of single belt in inches;

H =horsepower that can be transmitted by the belt.

Then,
$$H = \frac{D\,N\,w}{2,750} \text{ for single belts.}$$

$$H = \frac{D\,N\,W}{1,925} \text{ for double belts.}$$

$$w = \frac{2,750\,H}{D\,N} = \frac{2,750\,H}{d\,n}.$$

$$W = \frac{1,925\,H}{D\,N} = \frac{1,925\,H}{d\,n}.$$

$$D = \frac{2,750\,H}{w\,N} \text{ for single belt.}$$

$$D = \frac{1,925\,H}{w\,N} \text{ for double belt.}$$

$$N = \frac{2,750\,H}{w\,D} \text{ for single belt.}$$

$$N = \frac{1,925\,H}{w\,D} \text{ for double belt.}$$

$$N = \frac{1,925\,H}{w\,D} \text{ for double belt.}$$

same diameter, the arc of contact being, in this case, half the circumference, or 180°. For open belts and pulleys of different diameters, the arc of contact is less than 180° on the smaller pulley, and a different constant, to be taken from the following table, must be substituted in the formulas. To find the arc of contact, let l be the distance in inches between the centers of the pulleys. Then, $\frac{D-d}{2l}=$ cosine of half the angle

The above rules are for open belts and pulleys having the

centers of the pulleys. Then, $\frac{D-a}{2l}$ = cosine of half the angle Find this half angle from a table of natural cosines, and

Degrees.	Fraction of Circumference.	Single Belt Constant.	Double Belt Constant.
90	$\begin{array}{c} 1_{4} = .25 \\ \frac{5}{16} = .3125 \\ \frac{1}{16} = .3333 \\ \frac{5}{3} = .375 \\ \frac{7}{12} = .4167 \\ \frac{7}{16} = .4375 \\ \frac{1}{2} \text{ to } \frac{3}{4} = .5 \text{ to } .75 \\ \end{array}$	6,080	4,250
112 ¹ / ₂		4,730	3,310
120		4,400	3,080
135		3,850	2,700
150		3,410	2,390
157 ¹ / ₂		3,220	2,250
180 to 270		2,750	1,925

multiply by 2. The result is the arc of contact in degrees. Find the number in the first column of the table, which is nearest to this result, and use the constant corresponding to

that number. If a table of natural cosines is not at hand, measure the length of the arc of contact on the smaller pulley and divide it by the circumference of the pulley. Find the fraction in the second column that corresponds nearest to this result, and opposite this its corresponding constant.

EXAMPLE.—What must be the width of a single belt to transmit 12 horsepower, when the diameter of the larger pulley is 42 in., of the smaller pulley 20 in., distance between their centers 14 ft. = 188 in., and R.P.M. of smaller pulley 150?

SOLUTION.— $\frac{42-20}{2\times168}=.06548=$ cosine of half the arc of contact, which thus = 86° 15′, nearly; 86° 15′ × 2 = 172\\$\\^0 = arc of contact; the nearest number in the table is 180°, and the corresponding constant is 2,750; hence, $w = \frac{2,750\times12}{20\times150} = 11$ in.

Oak-tanned leather makes the best belts. When belts are run with the hair side over the pulley, they have greater adhesion.

The ordinary thickness of leather belts is 3 in., and their weight is about 60 lb. per cu. ft.

Ordinarily, four-ply cotton belting is considered equivalent to single-leather belting.

RULES FOR CALCULATING THE SPEED OF GEARS OR PULLEYS.

In calculating for gears, multiply or divide by the diameter or the number of teeth, as may be required. In calculating for pulleys, multiply or divide by their diameters in inches.

The driving wheel is called the *driver*, and the driven wheel the *driven* or *follower*.

PROBLEM I.

The revolutions of driver and driven, and the diameter of the driven, being given, required the diameter of the driver.

Rule.—Multiply the diameter of the driven by its number of revolutions, and divide by the number of revolutions of the driver.

PROBLEM II.

The diameter and revolutions of the driver being given, required the diameter of the driven to make a given number of revolutions in the same time.

Rule.—Multiply the diameter of the driver by its number of revolutions, and divide the product by the required number of revolutions.

PROBLEM III.

The diameter or number of teeth, and number of revolutions of the driver, with the diameter or number of teeth of the driven, being given, required the revolutions of the driven.

Rule.—Multiply the diameter or number of teeth of the driver by its number of revolutions, and divide by the diameter or number of teeth of the driven.

PROBLEM IV.

The diameter of driver and driven, and the number of revolutions of the driven, being given, required the number of revolutions of the driver.

Rule.—Multiply the diameter of the driven by its number of revolutions, and divide by the diameter of the driver.

PUMPS.

In all pumps, whether lifting, force, steam, single-acting, double-acting, or centrifugal, the number of foot-pounds of work performed by the pump is equal to the weight of the water discharged in pounds, multiplied by the vertical distance in feet between the level of the water in the well or source and the point of discharge, plus the work done in overcoming the friction and other resistances. (It is assumed that the water is delivered with practically no velocity.)

To find the discharge of a pump in gallons per minute:

Let T = piston travel in feet per minute;

d = diameter of cylinder in inches:

G = number of gallons discharged per minute.

Then, $G = .03264 \ T \ d^2$.

To find the horsepower of a pump, use the following formula, in which T and d are the same as above, and h is the vertical distance in feet between the level of the water at the source and the point of Gischarge:

H. P. = $.00033724 \ G h = .00001238 \ T d^2 h$.

In both the above formulas, allowance has been made for friction, leakage, etc.

DUTY

The duty of a pump is the number of foot-pounds of work actually done for 100 lb, of coal burned.

Duty = $835.53 \frac{G h}{W}$,

where

W =weight of coal burned, in pounds.

HYDROMECHANICS.

HYDROSTATICS.

Hydrostatics treats of liquids at rest under the action of forces. If a liquid is acted on by a pressure, the pressure per unit of area exerted anywhere on the mass of liquid is transmitted undiminished in all directions, and acts with the same force on all surfaces, in a direction at right angles to those surfaces.

General Law for the Downward Pressure on the Bottom of Any Vessel.—The pressure on the bottom of a vessel containing a liquid is independent of the shape of the vessel, and is equal to the weight of a prism of the liquid whose base is the same as the bottom of the vessel, and whose altitude is the distance between the bottom and the upper surface of the liquid, plus the pressure per unit of area upon the upper surface of the liquid multiplied by the area of the bottom of the vessel.

General Law for Upward Pressure.—The upward pressure on any submerged horizontal surface equals the weight of a prism of the liquid whose base has an area equal to the area of the submerged surface, and whose altitude is the distance between the submerged surface and the upper surface of the liquid, plus the pressure per unit of area on the upper surface of the liquid multiplied by the area of the submerged surface.

General Law for Lateral Pressure.—The pressure on any vertical surface due to the weight of the liquid is equal to the weight of a prism of the liquid whose base has the same area as the vertical surface, and whose altitude is the depth of the center of gravity of the vertical surface below the level of the liquid. Any additional pressure is to be added, as in the previous cases.

Pressure on Oblique Surfaces.—The pressure exerted by a liquid in any direction on a plane surface is equal to the weight of a prism of the liquid whose base is the projection of the surface at right angles to the given direction, and whose height is the depth of the center of gravity of the surface below the level of the liquid.

If a cylinder is filled with water, and a pressure applied, the total pressure on any half section of the cylinder is equal to the projected area of the half cylinder (or the diameter multiplied by the length of the cylinder) multiplied by the depth of the center of gravity of the half cylinder, multiplied by the weight of a cubic inch of water, plus the diameter of the shell, multiplied by the pressure per square inch, multiplied by the length of the cylinder.

If d= the diameter, and l= the length of the cylinder, the pressure due to the weight of the water when the cylinder is vertical upon the half cylinder $= d \times l \times \frac{l}{2} \times$ the

weight of a cubic inch of water = $d \times \frac{l^2}{2} \times$ the weight of a cubic inch of water; d and l are to be measured in inches.

The pressure in pounds per square inch due to a head of water is equal to the head in feet multiplied by .434.

The head equals the pressure in pounds per square inch multiplied by 2.304.

EXAMPLE.—(a) What is the pressure per square inch corresponding to a head of water of 175 ft.? (b) If the pressure had been 90 lb. per sq. in., what would the head have been?

Solution.—(a) $175 \times .434 = 75.95$ lb. per sq. in.

(b) $90 \times 2.304 = 207.36$ ft.

HYDROKINETICS.

Hydrokinetics, also called hydrodynamics and hydraulics, treats of water in motion. When water flows in a pipe, conduit, or channel of any kind, the velocity is not the same at all points of the flow, unless all cross-sections of the pipe or channel are equal. That velocity which, being multiplied by the area of the cross-section of the stream, will equal the total quantity discharged, is called the mean velocity.

Let Q = quantity that passes any section in 1 second;

A =area of the section:

v = mean velocity in feet per second.

Then,
$$Q = A v$$
, and $v = \frac{Q}{A}$.

The vertical distance between the level surface of the water and the center of the aperture through which it flows, is called the head.

Let V = mean velocity of efflux through a small aperture;

h = head in feet at the center of the aperture;

w = weight of water flowing through the aperture per second.

Then, $V = \sqrt{2gh}$; that is, the velocity of efflux is the same as if the water had fallen through a height equal to the head.

Let Q = theoretical number of cubic feet discharged per second;

 V_m = mean velocity through orifice in feet per second;

A =area of orifice;

h =theoretical head necessary to give a mean velocity V_m ;

 $Q_a =$ actual quantity/discharged in cubic feet per second.

Then, for an orifice in a thin plate, or a square-edged orifice (the hole itself may be of any shape, triangular, square, circular, etc., but the edges must not be rounded), the actual quantity discharged is

$$Q_a = .615 Q = .615 A V_m$$

The weir is a device used for measuring the discharge of water. It is a retangular orifice through which the water flows

If d= the depth of the opening in feet, and b its breadth in feet, the area of the opening is $A=d\times b$, and the theoretical discharge is $Q=d\times b\times V_m=db\times \frac{1}{2}\sqrt{2\,g\,d}$, the nead for this case being taken as d.

The actual discharge when the top of the weir lies at the surface of the water is

 $Q_a = .615 \ Q = .615 \times db \times \frac{2}{3} \sqrt{2gd} = .615 \times \frac{2}{3} b \sqrt{2gd^3} = 3.288 b \sqrt{d^3}.$

If h_1 is the depth in feet of the top of a weir below the surface of the water, and h is the depth in feet of the bottom of the weir below the surface of the water, the actual discharge Q_a , in cubic feet per second, is

 $Q_a = .615 \times \frac{9}{3} b \sqrt{2g} (\sqrt{h^3} - \sqrt{h_1^3}) = 3.288 b (\sqrt{h^3} - \sqrt{h_1^3}).$

FLOW OF WATER IN PIPES.

Let $V_m =$ mean velocity of discharge in feet per second; h = total head in feet = vertical distance betweenthe level of water in reservoir and the point of discharge:

l = length of pipe in feet;

d = diameter of pipe in inches;

f = coefficient of friction.

Then, for straight cylindrical pipes of uniform diameter, the mean velocity of efflux may be calculated by the formula.

 $V_m = 2.315 \sqrt{\frac{h d}{f l + 125 d}}$. (a)

Note.—The head is always taken as the vertical distance between the point of discharge and the level of the water at the source, or point from which it is taken, and is always measured in feet. It matters not how long the pipe is—whether vertical or inclined, whether straight or curved, nor whether any part of the pipe goes below the level of the point of discharge or not—the head is always measured as stated above.

EXAMPLE.—What is the mean velocity of efflux from a 6" pipe, 5,780 ft, long, if the head is 170 ft.? Take f = .021.

SOLUTION -

$$V_m = 2.315 \sqrt{\frac{h d}{f l + .125 d}} = 2.315 \sqrt{\frac{170 \times 6}{.021 \times 5,780 + (.125 \times 6)}}$$

= 6.69 ft. per sec.

When the pipe is very long compared with the diameter, as in the above example, the following formula may be

used: $V_m = 2.315 \sqrt{\frac{h d}{f l}}, \qquad (b)$

in which the letters have the same meaning as in the preceding formula. This formula may be used when the length of the pipe exceeds 10,000 times its diameter.

The actual head necessary to produce a certain velocity V_m may be calculated by the formula

$$h = \frac{f \, l \, V_m^2}{5.36 \, d} + .0233 \, V_m^2. \tag{c}$$

If the head, the length of the pipe, and the diameter of the pipe are given, to find the discharge, use the formula

$$Q = .09445 \ d^2 \sqrt{\frac{h \ d}{f \ l + .125 \ d}}; \tag{d}$$

that is, the discharge in gallons per second equals .09445 times the square of the diameter of the pipe in inches, multiplied by the square root of the head in feet, multiplied by the diameter of the pipe in inches, divided by the coefficient of friction times the length of the pipe in feet, plus .125 times the diameter of the pipe in inches.

To find the value of f, calculate V_m by formula (b) assuming that f = .025, and get the final value of from the following table:

V_m	f	V_m	f	V_m	f
.1	.0686	.7	.0349	2	.0265
.2	.0527	.8	.0336	3	.0243
.3	.0457	.9	.0325	4	.0230
.4	.0415	1	.0315	6	.0214
.5	.0387	1 ¹ / ₄	.0297	8	.0205
.6	.0365	1 ¹ / ₂	.0284	12	.0193

EXAMPLE.—The length of a pipe is 6,270 ft., its diameter is 8 in., and the total head at the point of discharge is 215 ft. How many gallons are discharged per minute?

SOLUTION .-

$$V_m = 2.315 \sqrt{\frac{215 \times 8}{.025 \times 6.270}} = 7.67 \text{ ft. per sec., nearly.}$$

Using the value of f = .0205 for $V_m = 8$ (see table), Q =

$$.09455 \times 8^2 \sqrt{\frac{215 \times 8}{.0205 \times 6,270 + (.125 \times 8)}} = 22.03$$
 gal. per sec. = $22.03 \times 60 = 1,321.8$ gal. per min.

If it is desired to find the head necessary to give a discharge of a certain number of gallons per second through a pipe

whose length and diameter are known, calculate the mean velocity of efflux by using the formula

$$V_m = \frac{24.51 \ Q}{d^2};$$
 (e)

find the value of f from the table, corresponding to this value of V_m , and substitute these values of f and V_m in the formula for the head.

EXAMPLE.—A 4" pipe, 2,000 ft. long, is to discharge 24,000 gal. of water per hr.; what head is necessary?

SOLUTION.—
$$\frac{24,000}{60\times60} = 6\frac{2}{3}$$
 gal. per sec. $V_m = \frac{24.51\times6\frac{3}{4}}{4^2}$

= 10.2 ft. per sec.

From the table, f = .0205 for $V_m = 8$, and .0193 for $V_m = 12$; assume that f = .02 for $V_m = 10.2$.

Then,
$$h = \frac{.02 \times 2,000 \times 10.2^2}{5.36 \times 4} + .0233 \times 10.2^2 = 196.53 \text{ ft.}$$

To find the diameter of a pipe that will give any required discharge in gallons per second, the total length of the pipe and the head being known, find the value of d by formula (f), substitute this value in formula (e), and find the value of V_m . Then find from the table the value of f corresponding to this value of V_m . Substitute the values of f and f just found in the righthand member of formula (g) and solve for f; the result will be the diameter of the pipe, accurate enough for all practical purposes.

$$d = 1.229 \sqrt[5]{\frac{l \ \overline{Q^2}}{h}}.$$
 (f) $d = 2.57 \sqrt[5]{\frac{(fl + \frac{1}{8}d) \ \overline{Q^2}}{h}}.$ (g)

EXAMPLE.—A pipe 2,000 ft. long is required to discharge 24,000 gal. of water per hr. The head being 195 ft., what should be the diameter of the pipe?

Solution.
$$-Q = \frac{24,000}{60 \times 60} = 6\frac{2}{3}$$
 gal. per sec. Substitu-

ting in formula
$$(f)$$
, $d = 1.229 \sqrt[5]{\frac{2,000 \times (6\frac{3}{4})^2}{195}} = 4.18 + \text{in.}$

Substituting this value in formula (e), $V_m = \frac{24.51 \times 6\frac{3}{4}}{4.18^2} = 9.352$ ft. per. sec. From the table, the value of f for $V_m = 9.352$ is .0201. Substituting this value of f and the value of f, found above, in formula (g),

$$d=2.57\sqrt[5]{\frac{(.0201\times2,000+\frac{1}{6}\times4.18)\times(6\frac{5}{4})^2}{195}}=4.01+; \text{ say, } 4 \text{ in}$$

STRENGTH OF MATERIALS.

The ultimate strengths of different materials vary greatly from the average values given in the following tables. In actual practice, the safest procedure would be to make a test of the material for its ultimate strength and coefficient of elasticity, or else specify in the contract that it shall not fall below certain prescribed limits. In the following formulas,

A =area of cross-section of material in square inches;

E = coefficient of elasticity in pounds per square inch;

 G^2 = square of least radius of gyration;

I = moment of inertia about an axis passing through the center of gravity of the cross-section;

M = maximum bending moment in inch-pounds;

P = total stress in pounds;

R = moment of resistance;

S = ultimate stress in lb. per sq. in. of area of section;

W = weight placed on a beam in pounds;

b =breadth of cross-section of beam in inches;

d = depth of beam (in.) = diam. of circ. section = altitude of triangular section = length of vertical side;

e = amount of elongation or shortening in inches;

f = factor of safety:

l = length in inches;

p = pressure in pounds per square inch;

 π = ratio of circumference to diameter = 3.1416, nearly;

q = a constant used in formula for columns;

r = radius of a circular section:

s = elastic set or deflection in inches of a beam under a

transverse (bending) stress;

t =thickness of a shell or hollow section.

For tension, compression (where the piece does not exceed 10 times its least diameter), and shear,

$$P = \frac{AS}{f}.$$
 (1)

To find the breaking stress (P), make f=1. For safe load, take f from Table I, and S from Table II, according to the nature and character of stress.

TABLE I. FACTORS OF SAFETY (f).

Name of Material.	Steady Stress.	Varying Stress,	Shocks (Ma- chines).
Cast iron Wrought iron Steel Wood Brick and stone	6	15	20
	4	6	10
	5	7	15
	8	10	15
	15	25	30

TABLE II. ULTIMATE STRENGTHS (S).

Name of Material.	Tension.	Com- pression.	Shear.	Flexure.
Cast iron	20,000 50,000 100,000 10,000	90,000 50,000 150,000 8,000 6,000 2,500	20,000 47,000 70,000 600 to 3,000	36,000 50,000 120,000 9,000 2,000

EXAMPLE.—A square cast-iron pillar 18 in, long is required to sustain a steady load of 75,000 lb.; what must be the length of a side?

Solution.—From the table, f = 6, and S = 90,000. By formula (1),

$$P = \frac{AS}{f}$$
, or $A = \frac{Pf}{S} = \frac{75,000 \times 6}{90,000} = 5 \text{ sq. in.}$

Length of side = $\sqrt{5}$ = 2.236 in., say $2\frac{1}{4}$ in.

The amount of elongation or of shortening of a piece under a stress is given by the formula

$$e = \frac{Pl}{AE} \quad (2)$$

The coefficient of elasticity (E) must be taken from the following table:

TABLE III.

1.000					
Name of Material.	Coefficient of Elasticity.	Elastic Limit for Tension.			
Cast iron	15,000,000 25,000,000 30,000,000 1,500,000	6,000 25,000 50,000 3,000			

A wrought-iron bar 24 ft. long, 1½ in. in diameter, would elongate, under a tensile stress of 15 tons,

$$e = \frac{(15 \times 2,000) \times (24 \times 12)}{\frac{1}{2} \pi (1\frac{1}{2})^2 \times 25,000,000} = .196 \text{ in.}$$

To find the breaking strength of a beam, use the formula M = SR. (3)

Obtain M and R from the two following tables, according to the kind of beam and nature of cross-section. A simple beam is one merely supported at its ends. In the expression for R, d is always understood to be the vertical side or depth; hence, that beam is the stronger which always has its greatest depth or longest side vertical. The moment of inertia I is taken about an axis perpendicular to d, and lying in the same plane.

TABLE IV.

Kind of Beam and Man- ner of Loading.	Bending Moment.	Deflection.
Cantilever, load at end	Wl	$\frac{1}{2}\frac{Wl^3}{EI}$
Cantilever, uniformly loaded	½ Wl	$\frac{1}{8} \frac{W l^3}{E I}$
Simple beam, load at mid- dle	1/4 W1	$\frac{1}{48} \frac{\widetilde{W} \widetilde{l}^3}{E I}$
Simple beam, uniformly loaded	½ W1	$\frac{5}{384} \frac{\overline{W} l^3}{E I}$
Beam fixed at both ends, load at middle	½ Wl	$\frac{1}{192} \frac{W l^3}{E I}$
Beam fixed at both ends, uniformly loaded	1 Wl	$\frac{1}{384} \frac{\widetilde{W} \widetilde{l}^3}{E I}$

TABLE V.

Name of	Section.	I	R	G^2
Solid circular	2	$\frac{\pi d^4}{64}$	$\frac{\pi d^3}{32}$	$\frac{d^2}{16}$
Hollow circular		$\frac{\pi(d^4 - d_1^4)}{64}$	$\frac{\pi(d^4 - d_{1^4})}{32d}$	$\frac{d^2 + d_1^2}{16}$
Solid square	4	$\frac{d^4}{12}$	$\frac{d^3}{6}$	$\frac{d^2}{12}$
Hollow square	-d ₁ -	$\frac{d^4-d_{1}^4}{12}$	$\frac{d^4 - d_1^4}{6d}$	$\frac{d^2 + d_{1^2}}{12}$
Solid rectangular	- b	$\frac{bd^3}{12}$	$\frac{bd^2}{6}$	$\frac{b^2}{12}$
Hollow rectangular	P or P	$\frac{bd^3 - b_1d_1^3}{12}$	$\frac{bd^3 - b_1d_1^3}{6d}$	$\frac{b^3d - b_1{}^3d_1}{12(bd - b_1d_1)}$
Solid triangular		$\frac{bd^3}{36}$	$\frac{bd^2}{24}$	$\frac{d^2}{18}$
Solid elliptical		$\frac{\pi b d^3}{64}$	$\frac{\pi b d^2}{32}$	$\frac{b^2}{16}$
Hollow elliptical	E P	$\frac{\pi}{64}(bd^3-b_1d_1^3)$	$\frac{\pi(bd^3 - b_1d_1^3)}{32d}$	$\frac{b^3d - b_1{}^3d_1}{16(bd - b_1d_1)}$
I-beam Cross with equal arms (approxi- mate) Angle with	£ 107 107	$\frac{bd^{3}-b_{1}d_{1}^{3}}{12}$	$\frac{bd^3 - b_1d_1^3}{6d}$	$\frac{b^3d - b_1^3d_1}{12(bd - b_1d_1)}$ $\frac{d^2}{22.5}$
equal arms (approxi- mate)				$\frac{d^2}{25}$

Thus, the breaking strength of a cast-iron simple beam uniformly loaded and 20 ft. long between the supports, having a hollow rectangular cross-section 8 in. by 6 in. outside and 6 in, by 4 in. inside, is given by the formula

$$\begin{split} M &= S\,R, \text{ or } \tfrac{1}{8}W\,l = 36,000 \times \frac{b\,d^3 - b_1\,d_1^3}{6\,d}; \\ W &= \frac{36,000 \times 8 \times (6 \times 8^3 - 4 \times 6^3)}{(20 \times 12) \times (6 \times 8)} = 55,200. \end{split}$$

Using a factor of safety of 6, the beam should support

$$\frac{55,200}{6}$$
 = 9,200 lb.

 $\frac{55,200}{6} = 9,200 \, \text{lb}.$ with perfect safety. The value of S for beams should be taken from the flexure column of Table II.

To find the amount of deflection in a beam due to a load, substitute the values of W. l. E. and I in the different expressions for the deflection s in Table IV.

The value of I is to be taken from Table V.

EXAMPLE.—What is the deflection of a wrought-iron beam fixed at both ends, 7 ft. long between the supports, having a solid rectangular cross-section 6 in, wide and 23 in, deep, carrying a load of 21,000 lb, in the middle?

SOLUTION .- From the table.

$$s = \frac{Wl^3}{192 EI} = \frac{Wl^3}{192 E \times \frac{b d^3}{19}} = \frac{21,000 \times (7 \times 12)^3 \times 12}{192 \times 25,000,000 \times 6 \times (2\frac{3}{4})^3} = .249^{\prime\prime}.$$

EXAMPLE.-It is desired to calculate the depth (d) of a cast-iron cantilever 36 in. in length (= l) that will sustain at its end a weight of 4,000 lb. (= W), the lever to be of rectangular section and 2 in. in width.

SOLUTION.-The ultimate stress per square inch for cast iron in flexure is given in Table II as 36,000 lb. (= S). The weight will be a steady load, and therefore, according to Table I, a factor of safety of 6 should be used. By formula (3), M = SR. For a cantilever beam carrying a load at the end, M = Wl (Table IV); and for a rectangular section, $R = \frac{b d^2}{6}$ (Table V).

Then, as W = 4,000, l = 36, b = 2, f = 6, we have

$$\frac{SR}{f} = M, \text{ or } \frac{Sb d^2}{6f} = Wl.$$

The value of d is found by substituting in this equation the known values of S, b, W, l, and f, as follows:

$$\frac{36,000\times2\times d^2}{6\times6}=4,\!000\times36;$$
 whence, $d=8.49$ in.

At the point where the beam is supported, the required depth is found to be 8.49, or, practically, $8\frac{1}{2}$ in. At a point 6 in. from the support, the depth may again be calculated by substituting in the equation the value of l (the overhanging length beyond this point); l = 30, and the equation becomes

$$\frac{36,000 \times 2 \times d^2}{6 \times 6} = 4,000 \times 30.$$

$$\frac{36,000 \times 2 \times d^2}{6 \times 6} = 7.75 \text{ in.}$$

At a point 12 in, from the support, l = 24, and

$$\frac{36,000 \times 2 \times d^2}{6 \times 6} = 4,000 \times 24$$
; whence, $d = 6.93$ in.

At a point 18 in. from the support, l=18; and from the equation, d=6 in.; at 24 in. from the support, l=12 and d=4.9 in.; at 30 in. from the support, l=6 and d=3.46 in.; at 36 in. from the support, or at the end of the beam, l=0 and d=0.

The depths required to be given to the lever or beam at the point of support and at intervals of 6 inches along its

length, are found to be 8.49, 7.75, 6.93, 6, 4.90, and 3.46 inches, respectively.

The lever is shown in the figure; theoretically, it would taper to nothing at the end, as indicated by dotted lines, but practically sufficient metal must be added at that point to provide means of attaching the weight. NOTE.—In the preceding examples the weight of the beam has been neglected. If, however, this weight is large in comparison with the weight or weights carried by the beam, it should be taken into account, considering it (when the cross-section of the beam is the same throughout) as a load uniformly distributed over the whole length of the beam.

COLUMNS.

To find the breaking strength of a column, use the following formula:

$$P = \frac{SA}{1 + q \frac{l^2}{G^2}}.$$
 (4)

S is taken from Table II, in the column for compression, G^2 from Table V, and q from the following table, according to the character of the ends.

TABLE VI.

Material.	Both Ends Flator Fixed.	One End Round,	Both Ends Round.
Cast iron	1 5,000	1.78 5,000	4 5,000
Wrought iron	$\frac{1}{36,000}$	$\frac{1.78}{36,000}$	36,000 4 36,000
Steel	25,000	$\frac{1.78}{25,000}$	$\frac{4}{25,000}$
Wood	3,000	$\frac{1.78}{3,000}$	3,000

The breaking load of an elliptical wooden column 18 ft. long, having rounded ends, the diameters of the cross-section being 12 in. and 8 in., is

$$P = \frac{SA}{1+q\frac{l^2}{G^2}} = \frac{8,000 \times (\frac{1}{6}\pi \times 12 \times 8)}{1+\frac{4}{3,000} \times \frac{(18 \times 12)^2}{\frac{8^2}{16}}} = 36,442 \text{ lb.}$$

Using a factor of safety of 8, the column should support $\frac{36,442}{c} = 4,565$ lb. with perfect safety.

SHAFTING.

The diameter of a shaft may be found by the following formulas. The first is used when great stiffness is required, and the shafts are very long; the second when strength only is required to be considered.

d = diameter of shaft in inches;

H = horsepower transmitted;

N = number of revolutions per minute;

c = constant in formula (5);

k = constant in formula (6).

$$d = c \sqrt[4]{\frac{\overline{H}}{N}}. (5) d = k \sqrt[4]{\frac{\overline{H}}{N}}. (6)$$

c = 5.26 for east iron; 4.75 for wrought iron; 3.96 for steel;

k = 4.02 for east iron; 3.63 for wrought iron; 3.03 for steel.

Note.—To extract the fourth root, extract the square root twice.

PIPES AND CYLINDERS.

p =pressure in pounds per square inch;

d = diameter of pipe or cylinder in inches;

t =thickness in inches:

S = ultimate tensile strength taken from Table II;

r = inside radius in inches;

f = factor of safety, usually taken as 6 for wrought iron and 12 for cast iron.

For thin pipes, p df = 2 tS. (7)

For thick pipes or cylinders,

 $pf = \frac{St}{r+t}. (8)$

ROPES AND CHAINS.

D = diameter of the rope in inches = diameter of iron from which the link in chain is made;

W = safe load in tons of 2.000 lb.

For common hemp rope, $W = \frac{1}{3} D^2$.

For iron-wire rope, $W = \frac{8}{3} D^2$.

For steel-wire rope, $W = \frac{14}{3} D^2$.

For close-link wrought-iron chain, $W = 6 D^2$.

For stud-link wrought-iron chain, $W = 9 D^2$.

BOILERS.

BOILER DESIGN.

TO DEVELOP THE DOME OF A BOILER.

A side view of the dome, together with a section of the boiler, is shown in Fig. A. Draw Fig. B, the end view of the dome and of the boiler. Above the dome draw a circle $i n e^{\mu} m$ of the same diameter as the dome. Divide the lower

half of this circle, as n e'' m, into any number of equal parts, as m c'', c'' d'', d'' e'', e'' f'', and f'' g''. The greater the number of these divisions, the more accurate will be the results. From the points of division c'', d'', e'', f'', and g'', draw lines parallel to the vertical center line of the boiler, as c'' c', d'' d', f'' f', and g'' g'.

We are now ready to draw the templet of the dome, as shown in Fig. C. Draw a straight line of indefinite length, and on it lay off a distance hi equal to the circumference of

the dome. (The circumference of the dome is found by multiplying the diameter ab of the dome by 3.1416.) Divide the distance hi into twice the number of equal parts that the semicircle above the dome in Fig. B has. In the figure it has been divided into 6 equal parts; therefore, divide this line into $2\times 6=12$ equal parts, as bg, gf, fe, ed, etc., and through these points of division draw lines at right angles to the line hi, as shown; make the length of each of these lines the same as the length of the line that corresponds to it in Fig. B. Thus, ee' is equal to ee' in Fig. B, dd' is equal to dd' in Fig. B, aa' is equal to aa' in Fig. B, etc. After having laid off the lengths of these lines, draw the curved line i'e' h'. This being done, we have the templet of the dome on the seam. The lap for riveting must be allowed, as shown by the dotted lines around the templet.

TO DEVELOP THE SLOPE SHEET $a\,b\,c\,d$ OF A BOILER, SHOWN AT A IN THE FIGURE BELOW.

Draw a straight line ab, as shown in Fig. B, and on it lay off the distance ad, equal to bc, Fig. A. At a and d, erect

perpendiculars $a\,c$ and $d\,e$, respectively, making $a\,c$ equal to $b\,a$, and $d\,e$ equal to $c\,d$, of Fig. A. With a point b on $a\,b$ as a center, and a radius $d\,e$, describe the quadrant $f\,g$. Divide this quadrant into any number of parts; the greater the number,

the more accurate will be the results. Here it is divided into three, as g=1, 1=2, and 2=f. Through the points g, 1, and 2. draw lines parallel to ap, intersecting the perpendicular de in e. 1' and 2' and the perpendicular b a in h and i. Through the points 1', 2', and d, draw lines parallel to ce. Through any point, as J. on the line ce. draw JK perpendicular to ce. cutting the lines 1''-1', 2''-2', and 3''-d in the points i, n, and K. respectively. From the line JK lay off the distances im, no. and Kn equal to the distances h 1 i 2 and h f respectively. and pass the dotted curve Jmon through the points. Now draw Fig C. Draw the straight line ka and through the point J draw ec perpendicular to it. Lay off on the line ka. on each side of the line ce points m' and m' at distances from it equal to the length of Jm in Fig. B. Lay off, also, points o' and o' at distances from m' and m' equal to mo in Fig. B: also, points p' and p' at distances from p' and p' equal to an of Fig. B. Through the points thus laid off, draw lines parallel to ce. Lay off the distances Jc and Je from J. in Fig. C, equal to Jc and Je, respectively, in Fig. B: the distances m' 1" and m' 1" from m' equal to i1" and i1' in Fig. B: o' 2''' and o' 2'' from o' equal to n2" and n2'; and p' 3" and p' 3" from p' equal to K3" and Kd of Fig. B. Through the points thus laid off draw the curved lines 3" c3" and 3" e 3". With the points 3" as centers and a radius a d. Fig. B. describe the arcs r and r. With the points 3" as centers and a radius 3" a, Fig. B, describe the arcs s and s. From the points of intersection of these arcs, draw lines to the points 3'" and 3". This being done, we have the templet of the slope sheet on the seams. The laps for riveting must be allowed as shown by the dotted lines around the templet.

TO DEVELOP THE SLOPE SHEET lmno of a Boiler, shown at A in the figure on the following page.

Draw the two views of the sheet as shown in Figs. B and C. Suppose the seam to be at o n, Fig. A, and the sheet to be made in one piece. Divide the semicircles a d g and a' d' g', Fig. C, into any number of equal parts; the greater the number

of these divisions, the more accurate will be the results. Join the points b and b', c and c', d and d', e and e', and f and f by full lines, and join the points b and a', c and b', d and e', e and d', f and e', and g and f' by dotted lines, as shown. Then draw Figs. D and E. Draw at right angles to one another the lines wa and wx, also the lines za' and zy. Make the length of the line wx equal to r, Fig. B, and the

length of the line wa equal to aa', Fig. C. From w lay off on the line wa, Fig. D, distances wb, wc, wd, we, wf, and wg, respectively, equal to the lengths of the full lines bb', cc', etc. of Fig. C, and draw the lines ax, bx, cx, dx, ex, fx, and gx, as shown. Make the length of the line zy, Fig. E, the same as that of wx, Fig. D. From z lay off on the line za',

Fig. E, distances za', zb', zc', zd', ze', and zf', respectively, equal to the lengths of the dotted lines ba', cb', etc., in Fig. C, and draw the lines a'y, b'y, c'y, f'y, d'y, and e'y.

We are now ready to draw the templet of the slope sheet. Instead of drawing the whole templet, we will draw only one-half of it, as is shown in Fig. F, since the other half is exactly the same. Draw the line aa', and make it equal in length to the distance ax, Fig. D. With a' as a center, and a radius ya', Fig. E, describe an arc at b. With a as a center and a radius = are ab, Fig. C, describe another are intersecting the first arc in b. With a' as a center, and a radius = arc $\alpha' b'$, Fig. C, describe an arc at b'. With b as a center, and a radius xb, Fig. D, describe an arc, intersecting the arc already drawn, at b'; draw the full line bb' and dotted line ba'. With b' as a center, and a radius yb', Fig. E, describe an arc at c. With b as a center, and a radius = arc cb. Fig. C. describe an arc cutting the last arc at c. With b' as a center. and a radius = arc c'b', Fig. C. describe an arc at c'. With cas a center, and a radius xc, Fig. D, describe an arc cutting the last arc at c': draw the full line cc' and dotted line cb'.

Continue to construct the remaining portion of the half templet in a similar manner, taking the distances for the full lines from Fig. D, and those for the dotted lines from Fig. E. Through the points a, b, c, d, e, f, and g, and through the points a', b', c', d', e', f', and g', draw the curved lines shown. Since this is the development of the slope sheet at the seam, the laps for riveting must be allowed; they are shown by the dotted lines around the templet in Fig. F.

CARE AND INSPECTION OF BOILERS.

POINTS TO BE OBSERVED.

Preliminary to a boiler inspection, the boiler, flues, muddrum, ash-pit, and all connections should be thoroughly cleaned, to facilitate a careful examination. Blisters may occur in the best iron or steel, and their presence, and also that of thin places, is ascertained by going over all parts of the boiler with a hammer. When blisters are discovered, the plates should be repaired or replaced. Repairing a blister

consists in cutting out the blistered space and riveting a "hard patch" over the hole on the inside of the boiler, if possible, to avoid forming a pocket for sediment. All seams, heads, and tube ends should be examined for leaks, cracks, corrosions, pitting, and grooving, detection of the latter possibly requiring the use of a magnifying glass. Uniform corrosion is a wasting away of the plates, and its depth can be determined only by drilling through the plate and measuring the thickness, afterwards plugging the hole. Pitting is due to a local chemical action, and is readily perceived. Grooving is usually due to buckling of the plates when under pressure, and frequently to the careless use of the sharp calking tool. Seam leaks are generally caused by overheating, and demand careful examination, as there may be cracks under the rivet heads. If such cracks are discovered, the seam should be cut out, and a patch riveted on. Loose rivets should be carefully looked for, and should be cut out and replaced, if found. Pockets, or bulging, and burns should be looked for in the firebox. The former are not necessarily dangerous, but if there are indications of their increasing, they should be heated and forced back into place or cut out and a patch put on. Burns are due to low water, the presence of scales, or to the continuous action of flames formed on account of air leaking through the brickwork. The burned spots should be cut out and patched as previously described. The conditions of all stays, braces, and their fastenings should be examined and defective ones replaced. The shell of the boiler should be thoroughly examined externally for evidences of corrosion, which is liable to set in on account of dampness, exposure to weather, leakage, etc., and may be serious. The boiler should be so set that joints and seams are accessible for inspection, and should have as little brickwork in contact with it as possible. The brickwork should be in good condition, and not have air holes in it, since they decrease the efficiency of the boiler and are liable to cause injury to the plates by burning, as above explained, and also by unevenly heating and distorting them. The mud-drum and its connections are liable to corrosion, pitting, and grooving, and should be examined as carefully as the boiler.

All valves about a boiler should be easy of access, and should be kept clean and working freely. Each boiler should have at least three gauge-cocks, properly located, and it is of the utmost importance that they be kept clean and in order, and the same may be said of the glass water gauge. The middle gauge-cock should be at the water level of the boiler, and the other two should be placed one above and one below it, at a distance of about 6 in.

The condition of the pumps or injectors should be looked into to make sure that they are in the best working order. The steam gauge should be tested to ascertain that it indicates correctly, and if it does not, it should be corrected. If the hydraulic test is to be used, the boiler should be tested to a pressure of 50% higher than that at which the safety valve will be set.

External Inspection When Boiler Is Under Steam,-The gaugecocks, and also the gauge glass, should be tried, to make sure that they are not choked. The steam gauge should be taken down, if permissible, and tested, and corrected if necessary. The gauge pointer should move freely. Blowing out the gauge connection will show whether it is clear or not. The boiler connections should be examined for leaks. The safety valve should be lifted from its seat, to make sure that it does not stick from any cause, and it should be seen that the weight is in the right place. Observe from the steam gauge if the valve blows off at the pressure it is set for. See that all pumps and feed-apparatus are working properly, and that the blow-off and check-valves are in order. Blisters and bagging may sometimes be detected in the furnace. The condition of the brickwork is of considerable importance, since the existence of air holes is a source of trouble, as already explained.

Incrustation.—One of the chief sources of trouble to the boiler user is that of incrustation. All water is more or less impure; and as the water in the boiler is continuously evaporated, the impurities are left behind as powder or sediment. This collects on the plates, forming a scaly deposit, varying in nature from a spongy, friable texture to a hard, stony one. This deposit impedes the transmission of heat from the plates

to the water and often causes overheating and injury to the plates. It is probable that χ_t in. of scale necessitates the consumption of 12% to 20% more fuel. The various impurities in the water may be either in suspension or solution. If the former, the water can be purified by filtration before going into the boiler. If the latter, the substances must first be precipitated and then filtered. Many impurities (sulphate and carbonate of lime, etc.) may be removed by heating the water before feeding it into the boiler.

The first thing to do, when dealing with a water supply, is to have an analysis of it made by a competent chemist. The fact that a water contains a certain amount of solid matter is no criterion as to its unfitness for boiler use. The presence of certain salts, as carbonate or chloride of sodium, even in large quantities (say 40 to 50 gr. per gal.), would not be serious if due attention were given to the blowing off. On the other hand, salts of lime in the above proportion would be very objectionable, requiring greatly increased attention in the matter of purification and blowing off or else cleaning out.

The various methods of dealing with impure water may be classed as follows:

- 1. Filtration.—Where the matter (sand, mud, etc.) is held in suspension, it can be removed, before the water enters the boiler, by the aid of settling tanks or by filtering, or by forcing the water up through layers of sand, broken brick, etc., or by using filtering cloths in a proper machine.
- 2. Chemical Treatment.—Clark's process, combined with a subsequent filtration (the joint process being known as the Atkins system), has been successfully applied on both small and large scales in the chalk districts of England. Lime water is mixed with the water to be purified, the amount used depending on the composition of the water, as determined by a careful analysis. The lime is thus precipitated, and the water is then filtered in a machine containing traveling cotton cloths. Not only is the carbonate of lime entirely removed, but it has been proved that any sulphate of lime that may be present is also prevented from incrusting. This is important, as the latter impurity forms, perhaps, the worst scale one has to contend with.

Various chemical compounds are in use for boilers. Carbonate of soda is perhaps the best general remedy. It forms the basis, in fact, of nearly all boiler compounds, whatever their name or appearance. This soda deals efficaciously both with the carbonate and the sulphate of lime. The precipitates thus thrown down do not form a hard crust; they can be washed out in the form of sludge or mud.

Carbonate of soda is also useful where condensers are employed, as it counteracts the effect of the grease, which is brought over with the exhaust steam. If used in too large quantities, it will cause priming. The best way to use it is to make a solution of it and connect with the feed, fixing a cock so as to regulate the amount fed in. Soda ash is cheaper. but more of it is required, and, besides, it is generally impure. Caustic soda removes lime scale quicker than ordinary soda does, but it is much stronger and liable to attack the plates. It should be used in smaller quantities than the ordinary kind.

Barks, molasses, vinegar, etc. develop acids that attack the plates. Animal and vegetable oils do the same, and also harden the deposits and make their removal more difficult. It is a good rule to keep all animal and vegetable matter out

of boilers altogether.

Feed-Water Heaters.—Carbonates and sulphates of lime are precipitated by high temperatures. The heaters should be arranged so that the deposit forms chiefly on a series of plates that can be easily removed for cleaning. If the deposit gathers in pipes, however, it is simply transferring the evil from one vessel to another. A double advantage is gained by these heaters, for the feedwater is put into the boiler already heated, and so fuel is saved.

Mechanical Aids.—Deposits take place chiefly in sluggish places. Various devices to aid circulation have been brought out. With good attention and a not too impure water, they

give satisfactory results.

Potatoes, linseed oil, molasses, etc. are sometimes put into the boiler with the idea of lessening scale formation, by forming a kind of coating round the particles of solid matter and so preventing their adhering together. This certainly takes place, but the substances are injurious, as already pointed out.

Whenever a boiler has been cleaned out, we may with advantage give the inside a thin coating of oil, or tallow and black lead; this arrests the incrustation to a great extent.

Sand, sawdust, etc. are often used, the idea being that their grains act as centers for the gathering together of the solid matter in the water, the resulting small masses not readily collecting together themselves and therefore being easily washed out. This may be so, but the cocks, valves, etc. are liable to suffer from the practice.

Kerosene is strongly recommended by some boiler users. There is no doubt that in many cases its use has given good results. It prevents incrustation, by coating the particles of matter with a thin covering of oil, the deposit thus formed being easily blown out. The oil also seems to act on the scale already formed, breaking it up and thus facilitating its removal. As already remarked, it is a good plan, when the boiler is empty, to give the inside a good coating of this oil, afterwards putting it in with the feed, the supply being regulated automatically. As to the quantity required, this will be found to vary in different cases, according to the nature of the water; an average of 1 qt. per day for every 100 horsepower will give good results in most cases.

In marine boilers, strips of zinc are often suspended; the deposit largely settles on them instead of on the boiler plates. Also, any scale that may be formed on the latter is less hard and compact and more easily broken up. Further, any acids formed by the oil and grease brought over from the condenser attack this zinc instead of the boiler plates.

Miscellaneous.—Acids are often introduced into boilers to dissolve the scale already formed, the solid matter then being washed out. This treatment should be adopted with great care, if at all, as the plates are likely to be affected.

Scale is often loosened and broken up by deliberately inducing sudden expansion or contraction in the boiler. In the former case, the expansion is brought about by blowing off the boiler, and then, when it is quite cooled down, turning on steam at as high a temperature as obtainable, thus causing the scale to expand more quickly than the plates and thus become loose.

In the second method, the boiler is blown off when the steam (and therefore the temperature) is at its highest and a stream of cold water then turned in. The fires are then drawn and the fire-hole doors, dampers, etc. opened, letting in a rush of cold air. All this cools the plates and, by the contraction thus brought about, loosens the scale. These two practices should be guarded against.

Foaming or priming is usually due either to forcing a boiler beyond its capacity for furnishing dry steam, or to the presence of foreign matter. It is dangerous if occurring to any great extent, since water may be carried along with steam into the engine, and a cylinder head knocked out. Foaming, when it cannot be checked by the use of the surface blow-out apparatus, may necessitate the emptying of the boiler, which must then be filled with fresh water; this rids the boiler of the impurities that have collected during the operation of the boiler.

HORSEPOWER OF BOILERS.

In actual practice, the result of a great many tests has shown that an evaporation of 30 lb. of water per hr. from a feedwater temperature of 100° F. into steam at 70 lb. gauge pressure is the equivalent of 1 horsepower, or that this steam, in a properly designed engine, will do the equivalent of $33,000 \times 60 = 1,980,000$ ft.-lb. of work per hr. In order, however, to have a more ready standard of comparison, the above evaporation has been reduced to another standard, and is found to be equal to the evaporation of 34.5 lb. of water from and at a temperature of 212° F. under atmospheric pressure, and it is on this latter quantity that the calculations of the horsepower of boilers are usually based.

In making an approximation of the horsepower of a given boiler, the square feet of water-heating surface of the boiler should first be determined, and in doing this the area of all the surfaces exposed to the fire and hot gases, which, on their opposite sides come in contact with the water in the boiler, should be taken into account.

EXAMPLE.—An externally-fired flue boiler, having a shell 38 in. in diameter, and containing two flue pipes 10 in. in

diameter, is 22 ft, long without the smokebox. If the greatest depth of the water in the boiler is $\frac{4}{3} \times 38 = 25.33$ in., what is the total water-heating area of the boiler?

Solution.—Six feet of the circumference of the boiler shell lies below the water-line, as could be found by actual measurement, and the circumference of the two flues is equal to $\left(\frac{10\times3.1416}{12}\right)\times2=5.24~\mathrm{ft}.$

Therefore, the water-heating surface of the shell is $6 \times 22 = 132 \text{ sq. ft.}$, and that of the flues is $5.24 \times 22 = 115.28 \text{ sq. ft.}$ The water-heating surface of the heads of the shell (that is, the area below the water-line, minus the area of the flues, which could be obtained by direct measurement) is $4.5 \times 2 = 9 \text{ sq. ft.}$ Therefore, the total water-heating surface of the boiler is the sum of all these, or 256.28 sq. ft.

Having determined the water-heating surface of a boiler, to approximate its horsepower;

Rule.—Divide the total water-heating surface in square feet by the number of square feet of heating area, as given in the table below, required to produce an evaporation equivalent to 1 horsepower in boilers of the given type.

EXAMPLE.—The total water-heating surface of the above externally-fired flue boiler is 256.28 sq. ft. What is the horse-power of the boiler?

SOLUTION.—By referring to the table, we find that it takes about 10 sq. ft. of heating surface to produce 1 horsepower; therefore, the above boiler would be rated at about

$$\frac{256.28}{10} = 25.63 \text{ H. P.}$$

Type of Boiler.	Water-Heating Surface for 1 Horsepower. Square Feet.	Ratio of Water- Heating Area to Grate Area Required.		
Cylindrical Flue Firebox tubular Return tubular Vertical Water tube	9 10 12 15 15 11	From 12 to 15:1 From 20 to 25:1 From 25 to 35:1 From 25 to 35:1 From 25 to 30:1 From 35 to 40:1		

The above rule must not be taken as furnishing anything but an approximate method, since the same boiler will give a different horsepower whenever the conditions under which it is operated are changed; or, in other words, the horsepower developed depends largely on the amount of coal burned per square foot of grate area per hour, the velocity and character of the furnace draft, and the quality of the coal used. In ordinary practice, however, we may expect an evaporation of from 8 to 11 lb. of water from and at 212° F. for each pound of good coal burned, where from 11 to 13 lb. of coal are consumed per sq. ft. of grate surface per hr., or about from 3 to 4 lb. per H. P. per hr.

CHIMNEYS

The chimney serves the double purpose of creating a draft and carrying away obnoxious gases. The production of the draft depends on the fact that the furnace gases (the products of combustion) passing up the chimney have a high temperature, and are, consequently, lighter than an equal volume of outside air at the ordinary temperature; that is, the pressure within the chimney is slightly less than the pressure of the outside air. Consequently, the air will flow from the place of higher pressure to the place of lower pressure, that is, into the chimney through the furnace.

Suppose, for example, the average temperature of the gases in a chimney 150 ft. high is 500° F. A pound of the gases at 62° F. has a volume of 12.5 cu. ft.; its volume at 500° is, then, $\frac{12.5\times(500+460)}{2}=23 \text{ cu. ft.}$ Therefore, a column of the

gases 1 ft. square and 150 ft. long would weigh $\frac{150}{23} = 6.52$ lb.

A similar column of air at 62° F, would weigh $\frac{150}{13.14} = 11.42$ lb., nearly. Hence, the pressure of the draft is 11.42 - 6.52 = 4.9 lb. per sq. ft. = .941 in. of water. It is evident-that the pressure of the draft depends on the temperature of the furnace gases and the height of the chimney. The higher the chimney, the lower may be the temperature of the gases to produce

the same draft, and the greater will be the economy of the furnace. In general, chimneys are not built much less than 100 ft. in height.

The relation between the height of the chimney and the pressure of the draft in inches of water is given by the following formula: -7.76 - 7.9

 $p = H\left(\frac{7.6}{T_a} - \frac{7.9}{T_c}\right),\,$

where p = draft in inches of water;

H = height of chimney in feet;

 T_a = absolute temperature of outside air;

 T_c = absolute temperature of chimney gases.

Absolute temperatures are found by adding 460° F. to the ordinary temperatures.

EXAMPLE.—What draft pressure will be produced by a chimney 120 ft. high, the temperature of the chimney gases being 600° F. and the external air 60° F.?

SOLUTION .- By the formula we find

$$p = H\left(\frac{7.6}{T_a} - \frac{7.9}{T_c}\right) = 120\left(\frac{7.6}{460 + 60} - \frac{7.9}{460 + 600}\right) = .86 \text{ in. of }$$
 water.

The draft pressures ordinarily produced by chimneys vary from 0 to 2 in. of water. A water-gauge pressure of 1 in. is equivalent to .03617 lb. per sq. in. Wood requires least draft, and the small sizes of anthracite coal the greatest draft. To successfully burn anthracite, slack, or culm, a draft of 1½ in. is necessary.

To find the height of chimney to give a specified draft pressure, the formula may be transformed:

$$H = \frac{p}{\frac{7.6}{T_c} - \frac{7.9}{T_c}}$$

EXAMPLE.—Required the height of the chimney to produce a draft of $1\frac{1}{6}$ in. of water, the temperature of the gases and of the external air being, respectively, 550° and 62° F.

SOLUTION .- By the formula we find

$$H = \frac{p}{\frac{7.6}{T_a} - \frac{7.9}{T_c}} = \frac{1.125}{\frac{7.6}{522} - \frac{7.9}{1,010}} = 167 \text{ ft.}$$

The sizes of chimneys for boilers of various horsepowers are given in the following table:

SIZES OF CHIMNEYS AND HORSEPOWERS OF BOILERS

Height of Chimney in Feet.				a in	in In.	n In.
50 60 70 80 90	50 60 70 80 90 100 110 125 150 175 200 Commercial Horsepower.				Side of Sq. in In	Diameter in
Com	mercial Ho	orsepower.		Actu	Side	Dian
23 25 27 35 38 41 49 54 58 62 65 72 78 83 84 92 100 107 113 114 152 163 173 183 196 208 216 231 246 231 246 231 246 231 247 505 505 538 658 792	182 219 258 271 348 365 449 472 565 593 694 728 835 876 995 1,038 1,163 1,214 1,344 1,415	389 503 551 632 692 776 849 934 1,023 1,107 1,212 1,294 1,418 1,496 1,639	748	28.27 33.18 38.48 44.18	16 19 22 24 27 30 32 35 38 43 48 54 70 75 80 86	18 21 24 27 30 33 36 39 42 48 54 60 66 72 78 84 90 96

EXAMPLE.—A round chimney 100 ft. high is to be used for a battery of boilers of 550 H. P. What should be the internal diameter?

SOLUTION.—Looking under column 100 in "Height of Chimney in Feet" the nearest horsepower is 565, and the diameter corresponding is 60 in., which should be the internal diameter of the chimney.

Chimneys are usually built of brick, though in some cases iron stacks are preferred. The external diameter of the base should be $\frac{1}{10}$ of the height, in order to provide stability. The taper of a chimney is from $\frac{1}{10}$ to $\frac{1}{10}$ in. to the foot on each side. The thickness of brickwork is usually 1 brick (8 or 9 in.) for 25 ft. from the top, increasing $\frac{1}{2}$ brick for each 25 ft. from the top downward. If the inside diameter is greater than 5 ft., the top length should be $1\frac{1}{2}$ bricks, and if under 3 ft., it may be

brick in thickness for the first 10 ft. A round chimney is better than a square one, and a straight flue better than a tapering one. If the flue is tapering the area for calculation is measured at the top.

The flue through which the gases pass from the furnaces to the chimney should have an area equal to, or a little larger than, the area of the chimney. Abrupt turns in the flue or contractions of its area should be carefully avoided, as they greatly retard the flow of the gases. Where one chimney serves several boilers, the branch flue from each furnace to the main flue must be somewhat larger than its proportionate part of the area of the main flue.

SAFETY VALVES.

Balance the valve and lever over a sharp, knife-like edge, and measure the distance from the point of suspension to the fulcrum (center of pin on which the lever turns).

Let a =distance thus measured in inches;

b =distance from center of valve to fulcrum in inches:

x =distance of weight from fulcrum in inches:

W = weight in pounds hung on lever;

Q = weight of lever and valve in pounds;

A = area of safety valve in square inches;

p =pressure per square inch in the boiler.

Then, $x = \frac{A p b - Q a}{W}$; $W = \frac{A p b - Q a}{x}$; $p = \frac{Wx + Qa}{Ab}$.

EXHAUST HEATING.

Exhaust steam from non-condensing engines usually contains from 20% to 25% of water and oil, the latter being employed to lubricate the engine cylinders. Before exhaust steam is allowed to enter a heating system, the water and oil should be separated from it.

The effect of turning exhaust steam into a heating system is to form a back pressure on engine, which must be avoided as far as possible by using large steam-distributing pipes.

A direct connection to the steam boilers through a pressurereducing valve must be employed, to automatically furnish steam to the heating system when the exhaust fails. A relief valve, also, should be placed upon the system, so that surplus exhaust steam may escape to the atmosphere.

To proportion an exhaust-heating system, it is necessary to know about how many square feet of radiating surface we should employ to properly condense the exhaust steam from the non-condensing engines. To do this we must first know the weight of steam that would be discharged from the engine.

Class of Non-Condensing Engine.	Water Used per Hour for Indicated Horsepower.
Compound automatic Simple Corliss Simple automatic Simple throttling	25 lb. 30 lb. 35 lb. 40 lb.

From this must be deducted about 10% for condensation in the cylinders, etc., in order to obtain the real available weight of steam for heating purposes.

APPROXIMATE RATIO BETWEEN CUBIC CONTENTS AND RADI-ATOR SURFACE FOR EXHAUST HEATING.

Class of Building.	Direct	Indirect	Blower	
	Radiation.	Radiation.	System.	
Dwellings Offices Stores and shops Churches, etc	_	sq.ft. cu.ft. 1 to 40 1 to 60 1 to 80 1 to 150	sq.ft. cu.ft. 1 to 300 1 to 365 1 to 500 1 to 900	

The figures in the foregoing tables simply form a reasonable average, and allowance must be made for exposure, etc.

Each square foot of direct radiating surface gives off to the air around it about $1\frac{1}{4}$ thermal units per hour per degree of difference between the temperature of the steam and that of the surrounding air. This is equivalent to about $\frac{1}{4}$ lb. of steam per hr., or, in other words, about 4 to $4\frac{1}{4}$ sq. ft. of surface to each pound of steam to be condensed.

MACHINE DESIGN.

BLUEPRINTS.

Blueprint paper for copying tracings of plans and other drawings may be prepared as follows: Dissolve 1 oz., avoirdupois, of ammonia citrate of iron in 6 oz. of water, and in a separate bottle dissolve the same quantity of potassium ferricyanide in 6 oz. of water. Keep these solutions separate, and in a dark place, or in opaque bottles.

To prepare the paper, mix equal quantities of the two solutions, and with a sponge spread it evenly over the surface. Let the paper remain in a horizontal position until the chemical has set on the surface, which will take but a few minutes; then hang the paper up to dry. In preparing the paper darken the room by pulling down the shades, as direct rays of light affect sensitized surfaces. The prepared paper should be kept in a closed drawer, well covered with heavy paper, so that no light can come in contact with the sensitized surface; otherwise it will lose much of its value.

To make a blueprint from a tracing, lay the tracing with ink side down against the glass of the printing frame, then take the prepared paper, and place the sensitized surface down on the tracing. On the top of the paper place the felt cushion, on top of which place the hinged back of the printing frame, after which expose to the sunlight. The exposure will vary in sunlight from about 3 to 10 minutes. After the exposure, wash the paper thoroughly in a trough of cold water for about 10 minutes, and hang it up to dry.

The print after washing should be of a deep-blue color, with clear white lines. If the color is a pale blue, this indicates that the print has not had sufficient exposure, and if the lines of the drawing are not perfectly clear and white, that the exposure has been too long.

Corrections may be made on the print with an ordinary writing or ruling pen and a solution of washing soda, caustic potash, strong ammonia, or any other alkali. When any of these are mixed with carmine ink, the marks on the print will be red, thus making the corrections clear.

MACHINE TOOLS.

SPEED OF EMERY WHEELS.

The speed most strongly recommended by their manufacturers is a peripheral velocity of 5,500 ft. per min. for all sizes. All things being considered, it is stated that no advantage is gained by exceeding this speed. If run much slower than this, the wear on the wheels is much greater in proportion to the work accomplished, and if run much faster, the wheel is likely to burst

SPEED OF GRINDSTONES.

Grindstones used for grinding machinists' tools are usually run so as to have a peripheral speed of about 900 ft. per min., and those used for grinding carpenters' tools at about 600 ft. per min. With regard to safety, it may be stated in general that with any size of grindstone having a compact and strong grain, a peripheral velocity of 2,800 ft. per min. should not be exceeded.

SPEED OF POLISHING WHEELS.

SPEED OF GUTS FOR MACHINE TOOLS.

Brass: Use high speeds, about the same as for wood.
Bronze: 6 to 18 ft. per min., according to alloy used.

Cast or wrought iron: 20 ft. per min. is a good average for all machines, except millers. 30 is about the maximum.

Machinery steel: 15 ft. on shapers, planers, and slotters. 20 to 45 on turret lathes, according to cut.

Tool steel: 8 to 10 ft.

Milling Cutters.—Gun metal, 80 ft. per min.; cast iron, 30; wrought iron, 35 to 40; machinery steel, 30. These are good speeds to adopt, with a view to economy, time required for regrinding, etc.

Twist Drills.—The best results are obtained when the rates of speed of twist drills are as given in the following table:

Diameter	Revolutions of Drills per Minute.				
of Drills.	Steel.	Iron.	Brass.		
TO A	940 460 310 230 190 150 130 115 100 95 85 75 70 62 62 58 54 42 49 46 44 42 40 39 37 36 36 34 33	1,280 660 420 320 220 220 185 160 140 130 115 105 90 85 80 75 70 66 62 60 58 56 54 51 49 47	1,560 785 540 400 320 230 200 230 200 180 160 145 130 120 115 110 95 90 85 80 75 72 69 66 68 60 58 56		
178 178 115 2	32 31 30 29	43 41 40 39	54 52 51 49		

The following are recommended as the best rates of feed for twist drills:

Diameter of drill in inches Number of revolu- tions per inch depth		1/4	3/8 1/2	3/4 1 11/2
of hole	125	125	120 to 140	1 in. feed per min.

CHANGE GEARS REQUIRED FOR CUTTING SCREW THREADS.

The pitch of a single-threaded screw is the distance between two adjacent threads, measured on a line parallel to the axis of the screw; or, in any screw, whether single- or multiple-threaded, it is the distance the nut is moved by 1 revolution of the screw. Usually, a screw is spoken of as having a certain number of threads to the inch, and this is equal to the number of revolutions the screw must make in order to move the nut a distance of 1 inch; so, whether the screw is single- or multiple-threaded, the pitch is always equal to 1 divided by the number of revolutions that the screw must make in order to move the nut 1 inch.

The Simple-Geared Lathe.—In Fig. 1 is shown the usual arrangement of the change gears of a simple-geared screwcutting lathe. By a simple-geared lathe is meant a lathe in

Fig. 1.

which the change gears are so arranged that the circumferential velocity of the change gear on the stud is the same as that of the change gear on the lead screw, which means that, when the change gear on the stud has rotated, say, 5 teeth, the change gear on the lead screw has also rotated 5 teeth, whatever the diameter of these gears, or of any intermediate gears between them, may be.

Referring to Fig. 1, the gear a is fastened to the spindle b and drives another gear c by means of either one of the

reversing gears d, d'. The gear c is keyed to one end of the spindle e; this spindle is called the stud, and carries on its outer end a change gear f. The lead screw g carries a change gear h; and these two change gears f and h are connected by means of the idler gear i, so that gear f drives gear h, and with it, the lead screw g.

In making calculations for the change gears of a simple-geared screw-cutting lathe, the idler gear i is ignored, as it is only introduced to connect gears f and h. The gears d and d' are also ignored, since they are only used to change the direction of rotation of the gear c, their duty being to facilitate the cutting of either right-hand or left-hand threads; when d meshes with gear a, as shown in Fig. 1, a a right-hand thread is cut, and when d' meshes with gear a, a left-hand thread is cut.

The number of teeth in the gear a is not always the same as the number of teeth in the gear c; it is so in some lathes, but in others it is not; hence, in calculating the change gears for any lathe, the number of teeth in the gears a and c must be taken into account.

By the following formulas and rules, the number of teeth required in each change gear in order to cut a given number of threads to the inch, or the number of threads to the inch that given change gears will produce may be found.

Let a = number of teeth in the spindle gear a;

c = number of teeth in the gear c;

f = number of teeth in the change gear on stud;

h = number of teeth in the change gear on lead screw;

g = number of threads to the inch in the lead screw;

n = number of threads to the inch to be cut.

Then,
$$n = \frac{gch}{af}$$
. (1) $h = \frac{naf}{gc}$. (3) $\frac{h}{f} = \frac{na}{gc}$. (2) $f = \frac{gch}{na}$. (4)

Now, of the gears h, f, c, a, a and f are the *drivers*, and c and h being driven by a and f, are called the *driven* gears; remembering this, we deduce, from formula (1), the following rule for simple-geared screw-cutting lathes:

Rule.—The number of threads to the inch to be cut is equal to the number of threads to the inch in the lead screw, multiplied by the product of the number of teeth in each driven gear, and divided by the product of the number of teeth in each driving gear.

EXAMPLE.—If the lead screw g of a simple-geared lathe has 5 threads to the inch, and the gear a has 21 teeth, the gear c 42 teeth, the change gear f 60 teeth, and the change gear h 72 teeth, how many threads to the inch will be cut?

Solution.—Using formula (1), we have

$$n = \frac{g c h}{a f} = \frac{5 \times 42 \times 72}{21 \times 60} = 12 \text{ teeth.}$$

From formula (2) we deduce the following rule for simplegeared screw-cutting lathes:

Rule.—The number of teeth in the change gear on the lead screw, divided by the number of teeth in the change gear on the stud, is equal to the product of the number of threads to the inch to be cut and the number of teeth in the driving spindle gear, divided by the product of the number of threads to the inch in lead screw and the number of teeth in the fixed gear on the stud.

EXAMPLE.—If the lead screw g of a simple-geared lathe has 8 threads to the inch, and the gear a has 16 teeth, and the gear c 32 teeth, how many teeth must there be in each of the gears f and h in order that the lathe may cut 10 threads to the inch?

SOLUTION.—Using formula (2),

$$\frac{h}{f} = \frac{n \, a}{g \, c} = \frac{10 \times 16}{8 \times 32} = \frac{5}{8},$$

and, if it were possible to have gears with 5 and 8 teeth, respectively, then a solution of the problem would be, h=5,f=8. It is evident that such gears are impracticable; but, as it does not change the value of a fraction to multiply both numerator and denominator by the same number, we may multiply 5 and 8, each by such a number that the resulting numbers of teeth in the gears are satisfactory. There is evidently, therefore, more than one solution to the problem—for if we multiply by 10 we, shall have h=50, f=80, which would give 12 threads to the inch; and if we multiply by 13, we shall have, as another solution, h=65, f=104, which would also give 12 threads to the inch, because $\frac{65}{104}=\frac{4}{8}$.

Having found that $\frac{h}{f} = \frac{a}{b}$, it is customary in practice to choose the change gears in the following manner: From the assortment of gears belonging to the lathe, choose one of convenient diameter, the number of whose teeth is divisible

assortment of gears belonging to the lathe, choose one of convenient diameter, the number of whose teeth is divisible by either the numerator 5 or the denominator 8, and, after dividing by one of these numbers, multiply both numerator and denominator by the quotient.

Example.—Given, $\frac{h}{f} = \frac{s}{s}$, to find the number of teeth in the two change gears h and f, respectively.

SOLUTION.—Choose a gear of convenient diameter, the number of whose teeth, say 60, is divisible by either 5 or 8, in this case by 5; divide 60 by 5, and the answer is 12. Then,

$$\frac{5 \times 12}{8 \times 12} = \frac{60}{96}$$
;

that is, h has 60 teeth, and f 96 teeth.

If one of the change gears is given, and it is desired to find the number of teeth in the other change gear in order to cut a given number of threads to the inch, use either formula (3) or formula (4) according as the number of teeth in gear h or in gear f is required. After the examples given, these formulas will not need explanation.

In a simple-geared screw-cutting lathe, it is often possible to cut a fractional number of threads to the inch, as is the case in the following example:

Example.—If the lead screw g has 2 threads per inch, and the gear a has 20 teeth, and the gear c has 20 teeth, how many teeth must there be in each of the change gears f and h, in order to cut $5\frac{1}{4}$ threads to the inch?

SOLUTION.—Using formula (2),

$$\frac{h}{f} = \frac{n \, a}{g \, c} = \frac{5\frac{1}{4} \times 20}{2 \times 20} = \frac{5\frac{1}{4}}{2}.$$

Then, choosing a gear whose number of teeth, say 32, is divisible by 2, divide 32 by 2 and the quotient is 16. Then, $\frac{54 \times 16}{2 \times 16} = \frac{84}{32}$; that is, h has 84 teeth, and f 32 teeth. In many cases, however, it is impossible, out of the assortment

many cases, however, it is impossible, out of the assortment of gears supplied with a simple-geared screw-cutting lathe, to

find gears to cut a screw of the required number of threads to the inch. In such cases, it becomes necessary either to make suitable gears or to resort to a compound-geared lathe.

The Compound-Geared Lathe.—In Fig. 2 is shown the usual arrangement of the change gears of a compound-geared screw-cutting lathe. The difference between this and the simple-geared lathe lies in putting two change gears of different sizes on one spindle, in place of the idler between the gear on the stud and the gear on the lead screw. These two gears on one spindle are shown at i and j in Fig. 2, gear j meshing with gear h on the lead screw, and gear i meshing with gear f on the stud.

From the following formulas, the number of teeth in each change gear, or the number of threads per inch that can be cut with given change gears, can be found.

Let a = number of teeth in the spindle gear a:

c = number of teeth in the gear c;

f = number of teeth in the change gear f;

h = number of teeth in the change gear h;

i = number of teeth in the change gear i, which meshes with the change gear f;

j = number of teeth in the change gear j, which meshes with the change gear h;

g = number of threads to the inch in the lead screw;

n = number of threads to the inch to be cut.

Then, $n = \frac{g \times e^{nt}}{afj}.$ (5)

Now, remembering that gears a, f, and f are the drivers, and gears c, h, and f are the driven gears, and also that the idlers are ignored in all calculations, we can, from formula (5), deduce the following rule for compound-geared screwcutting lathes:

Rule.—The number of threads to the inch to be cut is equal to the number of threads to the inch in the lead screw, multiplied by the product of the number of the teeth in each of the driven gears, and divided by the product of the number of teeth in each of the driving gears.

Example.—If the lead screw g of a compound-geared lathe has 2 threads to the inch, and the gear a has 20 teeth, gear c 40 teeth, change gear f 48 teeth, change gear f 72 teeth, change gear f 36 teeth, and change gear f 96 teeth, how many threads to the inch will be cut?

SOLUTION.—Using formula (5), we have

$$n=rac{g imes c\,h\,i}{afj}=rac{2 imes 40 imes 96 imes 72}{20 imes 48 imes 36}=$$
 16 threads to the inch.

If it is desired to find what combination of change gears will enable us to cut a given number of threads to the inch, the following formula may be used:

$$\frac{i}{j} = \frac{n \, af}{g \, c \, h}. \tag{6}$$

From this formula the following rule is deduced:

Rule.—Of the change gears of a lathe, any driven gear divided by any driver gear is equal to the product of the numbers of teeth in each of the other driver gears and the number of threads to the inch to be cut, divided by the product of the numbers of teeth in each of the other driven gears and the number of threads to the inch in the lead screw.

Example.—In a compound-geared lathe, in which the lead screw has 5 threads to the inch, gear a 20 teeth, gear c 40 teeth, and the number of threads per inch to be cut is $3\frac{1}{2}$, what must be the number of teeth in each of the change gears h, i, j, f?

Solution.-Using formula (6), we have

$$\frac{i}{j} = \frac{n \, a f}{g \, c \, h}.$$

From the assortment of gears belonging to the lathe, choose, for the driven gear h, one whose number of teeth, say 28, can be divided by the number of threads per inch to be cut, in this case $3\frac{1}{6}$; 28 is a multiple of $3\frac{1}{6}$, because it is obtained by multiplying $3\frac{1}{6}$ by 8. Substitute this value in place of h; then choose any gear of convenient size, say one having 40 teeth, and substitute 40 in place of h; we shall then have,

$$\frac{i}{i} = \frac{n \, a \times 40}{a \, c \times 28};$$

or, substituting the given values of n, a, g, and c,

$$\frac{i}{j} = \frac{3\frac{1}{2} \times 20 \times 40}{5 \times 40 \times 28} = \frac{1}{2}.$$

Choose, for j, a gear whose number of teeth, say 60, is divisible by 2; then, dividing the number of teeth in j by 2, we have $60 \div 2 = 30$. Now multiplying both terms of the fraction $\frac{1}{2}$ by 30,

$$\frac{i}{i} = \frac{1 \times 30}{2 \times 30} = \frac{30}{60};$$

that is, i = 30, and j = 60. Hence, one solution of the problem is, h = 28; i = 30; j = 60; f = 40.

HORSEPOWER OF ENGINES, BOILERS, AND PUMPS.

THEORETICAL HORSEPOWER.

The theoretical horsepower of any machine that uses a fluid (steam, gas, water, etc.) as a motive power, or that discharges a fluid (i. e., a pump or a fan), may be readily computed by the following formula, in which v is the volume of the fluid used or discharged in cubic feet per minute, and p is the average pressure in pounds per square inch:

H. P.
$$=\frac{144 \ v \ p}{33,000}$$
.

If, in the above formula, allowance for friction, etc. is made, the final result will be the actual horsepower.

EXAMPLE.—A ventilating fan delivers 5,000 cu. ft. of air per min. at a pressure of .56 lb. above the atmospheric pressure; what is the theoretical horsepower required to drive the fan?

Solution.—
H. P. =
$$\frac{144 \ v \ p}{33,000} = \frac{144 \times 5,000 \times .56}{33,000} = 12.218.$$

If all hurtful resistances are taken in this case as 20% of the total horsepower, the actual horsepower will be

$$12.218 \div (1 - .20) = 12.218 \div .80 = 15.27 \text{ H. P.}$$

EXAMPLE.—The mean effective pressure computed from an indicator card taken from the air cylinder of an air compressor is 30.6 lb. per sq. in.; diameter of cylinder, 28 in.; stroke, 48 in.; number of strokes per minute, 108; what is the horsepower?

SOLUTION .- In this case

$$v = \frac{28^2 \times .7854 \times 48 \times 108}{1,728}$$
 cu. ft. per min.

Hence,
$$\frac{144 \, v \, p}{33,000} = \frac{144 \times 28^2 \times .7854 \times 48 \times 108 \times 30.6}{1,728 \times 33,000} = 246.66 \text{ H. P.}$$

HORSEPOWER OF AN ENGINE.

Let P = mean effective pressure in pounds per square inch on the piston during one stroke:

L =length of stroke in feet;

A =area of piston in square inches:

N = number of strokes per minute;

D = diameter of piston in inches.

Then, to find the indicated horsepower,

I. H. P.
$$=\frac{PLAN}{33,000}=\frac{238\ PLD^2N}{10,000,000}$$
.

The actual horsepower may be taken as three-fourths of the indicated horsepower. The mean effective pressure may be found exactly by taking some indicator cards, finding the areas by means of a planimeter, and dividing the area by the length of the card. Multiply the result by the scale of the indicator spring, and the product will be the mean effective pressure, or M. E. P. If no planimeter is at hand, divide the card into 10 equal parts and measure each part in the middle, as shown by the dotted lines in the following figure.

Add, all the dotted ordinates together, and divide by 10; this result, multiplied by the scale of the indicator spring, gives the M. E. P.

Thus, suppose a double-acting engine $26" \times 30"$, making 80 rev. per min. (80 R. P. M.), gives an indicator card that, being divided up as shown in the figure and measured, gives, for the total length of the ordinates. 21.4 in. This divided by

10=2.14 in. for the length of the mean ordinate. If a No. 40 spring is used in the indicator, every inch measured vertically on the diagram = 40 lb. per sq. in., and $2.14 \times 40 = 85.6$ lb. per sq. in. for the M. E. P. on the piston. Then the indicated horsepower, or I. H. P., equals

$$\frac{PLAN}{33,000} = \frac{85.6 \times \frac{30}{12} \times (.7854 \times 26^2) \times (2 \times 80)}{33,000} = 550.88.$$

The calculation is rendered much easier by using the second formula. Thus,

I. H. P. =
$$\frac{238 \times 85.6 \times \frac{39}{10,000,000} \times (2 \times 80)}{10,000,000} = 550.88.$$

If an indicator card cannot be obtained, a fair approximation to the M. E. P. may be obtained by adding 14.7 to the gauge pressure, and multiplying the number opposite the fraction indicating the point of cut-off in the following table by the boiler pressure. Subtract 17 from the product, and multiply by .9. The result is the M. E. P. for good simple non-condensing engines. If the engine is a simple condensing engine, subtract the pressure in the condenser instead of 17. The fraction indicating the point of cut-off is obtained by dividing the distance that the piston has traveled when the steam is cut off by the whole length of the stroke. Thus, if the stroke is 30 in., and the steam is cut off when the piston

has traveled 20 in., the engine cuts off at $\frac{2}{36} = \frac{1}{3}$ stroke. For a $\frac{3}{5}$ cut-off, and 92-lb. gauge pressure in the boiler, the M. E. P. is $[(92 + 14.7) \times .917 - 17] \times .9 = 72.76$ lb. per sq. in.

Cut-off.	Constant.	Cut-off.	Constant.	Cut-off.	Constant.
1/6	.566	3/8	.771	2/3	.917
1/4	.603	.4	.789	.7	.926
1/4	.659	1/2	.847	3/4	.937
.3	.708	.6	.895	.8	.944
1/3	.743	5/8	.904	7/8	.951

THE SLIDE VALVE.

Figs. A, B, C, and D show sections of an ordinary D slide valve at different points of its travel. Fig. A shows the valve in its central position, with the center of the valve in line with the center line of the exhaust port. The names of the various parts are as follows: p and p are the steam ports; e is the exhaust port: s, s is the valve seat: the amount o by which the valve overlaps the outer edges of the steam ports is the outside lap; the amount i by which the valve overlaps the inside edges of the steam port is called the inside lap; the amount l (Fig. C) that the port is open when the piston is at the end of the stroke is called the lead. The valve travel is the total distance in one direction that the valve can be moved by the eccentric; it is the total distance between two extreme positions of the valve. The displacement of the valve is the distance that the valve has moved (in either direction) from its central position.

The line joining the center of the eccentric with the center of the crank-shaft is called the eccentric radius. When the eccentric radius makes a right angle with the center line of the crank, that is, when the eccentric radius is vertical (see o.e., Fig. E), the valve is in its central position, provided the valve seat is horizontal, as is usually the case. When the crank is on a dead center, say a. Fig. E, the valve must be in the position shown in Fig. C; that is to say, the crank must

have moved from its central position an amount equal to the outside lap plus the lead. In order that this may happen, the eccentric must be at c, Fig. E. The angle ecc, through which the eccentric must be moved from its vertical position when the crank is on a dead center, is called the angle of advance.

In Fig. B, the valve is shown in its extreme position at the right. The distance marked m is the maximum port opening. It matters not whether the outer edge of the valve travels beyond the inner edge of the port or falls short of it, as in the figure, the distance m between the edge of the valve and the edge of the port when the valve is in its extreme position is the maximum port opening. If, in Fig. C, the valve were shown moving to the left, a little farther movement would bring the left outer edge just even with the outer edge of the left steam port, and from here on to the end of the stroke no more steam could enter the left end of the cylinder; in other words, the valve cuts off at this point. A little farther movement of the valve to the left brings the valve to the position shown in Fig. D, with the right inner edge opposite the inner edge of the right steam port; it is at this point that compression begins.

When designing a valve for an engine, some of the above quantities are assumed and the remaining ones are required; these may be found by means of the diagram shown in Fig. E.

Let ab, Fig. E, drawn to any convenient scale, represent the stroke of the engine; then adb will represent the crankpin circle. About o, the center of the crankpin circle, describe a circle a'eb', whose diameter a'b' is equal to the actual travel of the valve. Draw the line gh parallel to ab and at a distance from it equal to the lead of the valve. Then, with a radius o'j equal to the outside lap of the valve, describe a circle, called the outside lap circle, tangent to the line gh, and having its center o' on the circle a'eb'. Draw the line oo', and produce it to f; then fob = eoc = angle of advance.

Now, draw any position of the crank center line, such as $a\,o$, and drop upon it, from the point o', a perpendicular; the length of this perpendicular (marked r in Fig. E) is the displacement of the valve for that position of crank center line.

About the center o' with a radius equal to the inside lap of the valve, describe a circle; this is called the *inside lap circle*.

The radius od, drawn from the point o tangent to the outside lap circle, is the position of the center line of crank at the point of cut-off. Drop a perpendicular from point d,

meeting the line ab at k; then ak is the distance moved by piston before cut-off, and the fraction of the stroke at which the valve cuts off is represented by the fraction $\frac{ak}{-1}$.

Draw the radius ol tangent to the upper side of the inside lap circle, and it will be the position of the center line of the crank when *compression* commences; if a perpendicular is dropped from point l, meeting the line ab at p, the fraction of the stroke of piston at which compression begins will be represented by the fraction $\frac{ap}{ab}$.

In like manner, the radius om, drawn tangent to the lower side of the inside lap circle, is the position of the center line of the crank at the moment of release; and $\frac{ay}{ab}$ is the fractional part of the stroke at which the expanding steam

is released.

The maximum steam-port opening is equal to on, n being the point of intersection of the outside lap circle with the angle of advance line of.

The essential features of the valve diagram having been given, the following examples will make clear its application in practice:

EXAMPLE 1.—Given, the point of cut-off, the point of release, the lead, and the maximum port opening, to find the valve travel, the outside and inside lap, the angle of advance, and the point of compression.

Solution.—Draw to a convenient scale the crankpin circle $a\,d\,b$, Fig. E, having its center at o, and its diameter $a\,b$ equal to the stroke of the piston.

From the point a, lay off, on the line ab, the distances ak and ay, so that $\frac{ak}{ab}$ and $\frac{ay}{ab}$ are equal, respectively, to the fractions of the stroke at which cut-off and release are to occur. At k and y draw perpendiculars to the line ab, intersecting the crankpin circle at d and m, respectively; the radii ab and ab will represent the positions of the crank at cut-off and release, respectively. Now draw ab parallel to ab, and at ab distance above it equal to the lead; then, about ab

a center, and with a radius equal to the given maximum port opening, describe an arc. Find by trial a center o', from which a circle can be drawn tangent to this arc, and also to the radius o d, and to the line g h. The radius of this circle will be the required outside lap; and its center o' will be a point in the valve circle whose center is at o; this circle can now be drawn, since the radius o o' is known.

The diameter a'b' is equal to the required valve travel. Now, with o' as a center, draw a circle tangent to om, and the radius of this circle will be the required inside lap. Draw of through o' and the angle fob is the required angle of advance. Draw the radius ol tangent to the inside lap circle on its upper side, and lp perpendicular to ab.

Then, $\frac{ap}{ab}$ represents the fraction of the stroke at which compression begins.

EXAMPLE 2.—Given, the valve travel, the angle of advance, the cut-off, and the point of compression, to find the lead and the outside and inside lap.

Solution.—Draw the crankpin circle, as before, and the valve circle a'eb'; construct the angle fob equal to the angle of advance. By the same method as employed in the last example, locate the radii od and ol, representing the positions of the crank at the points of cut-off and compression, respectively.

About the point o', at which of intersects the valve circle, describe a circle tangent to od, and the radius o'j of this circle will be the required outside lap. Now draw the line gh parallel to ab and tangent to the outside lap circle; then, the perpendicular distance between gh and ab is the required lead. The radius of a circle drawn from o' tangent to ol will be the inside lap.

EXAMPLE 3.—Given, the valve travel, outside lap, and the lead, to find the point of cut-off and angle of advance.

Solution.—Draw the crankpin circle and the valve circle $\alpha'eb'$ as before; draw a line parallel to ab, at a distance above it equal to the outside lap r plus the lead, intersecting the valve circle at the point o'. About o' as center, and with a radius equal to the given lap, describe a circle; draw od

tangent to this circle, and drop a perpendicular from d, meeting line ab at a point k; then the required cut-off is represented by the fraction $\frac{ak}{ab}$. Draw the radius of through the point of

and the angle fob is the required angle of advance.

EXAMPLE 4.—Given, the outside lap, the lead, and the point of cut-off, to find the valve travel and the angle of advance.

Solution.—Draw the crankpin circle as before, and by the same method as employed in Example 1 locate the radius od, the position of the crank at the point of cut-off. Draw gh parallel to ah, and at a distance above it equal to the lead. At a distance above the line ah equal to the lap plus the lead, draw another line parallel to ah; about a center o' on this line, and with a radius o'j equal to the outside lap, describe a circle tangent to ah and ah. Draw the radius ah through ah, then ah of will be the required angle of advance. About ah as a center, and with a radius ah o', describe the valve circle ah eh', and ah b' will be the required valve travel.

LOCKNUTS.

A good method of locking a nut is shown in the figure.

The lower portion of the nut is turned down, and in the center of the circular portion a groove is cut. A collar is fastened by means of a pin to one of the pieces to be connected, and into this collar is fitted the circular part of the nut. The nut is then bound to the collar by a setscrew passing through the

latter, the point of the setscrew engaging into the groove turned in the nut. The following proportions have proved very satisfactory, in which d, the diameter of the bolt, is taken as the unit. All dimensions are in inches:

$$\begin{array}{ll} a = 1\frac{1}{2} \, d - \frac{1}{16}''; & f = \frac{1}{6} \, d + \frac{1}{8}''; \\ b = 1\frac{1}{2} \, d + \frac{1}{6}''; & g = \frac{1}{6} \, d + \frac{1}{16}''; \\ c = \frac{1}{4} \, d + \frac{1}{4}''; & h = \frac{1}{4} \, d + \frac{1}{4}''. \\ \boldsymbol{e} = \frac{3}{2} \, d; & \end{array}$$

PROPORTION OF KEYS.

In common designing, the sizes of keys are determined by empirical formulas, which give an excess of strength. For an ordinary sunk key, these proportions may be adopted:

t =thickness of key in inches;

b =breadth of key in inches;

d = diameter of shaft in inches;

 $b = \frac{1}{4}d;$

 $t = \frac{2}{3}b = \frac{1}{6}d$.

LINE SHAFTING.

The speed of a shaft is fixed largely by the speed of the driving belt or the diameters of the pulleys upon it. In general, machine-shop shafts run about 120 to 150 rev. per min.; shafts driving wood-working machinery, about 200 to 250 rev. per min.; in cotton mills, the practice is to make the shaft diameter smaller and run at a higher speed. Line shafts should generally not be less than 1\(\frac{1}{2}\) in. in diameter.

The distance between the bearings should not be great enough to permit a deflection of more than $\frac{1}{16}$ in. per foot of length; hence, the bearings must be closer when the shaft is heavily loaded with pulleys.

The maximum distances between bearings of different sizes of continuous shafts used for transmitting power are:

DISTANCES BETWEEN BEARINGS.

Diameter of Shaft.	Distance Between Bearings in Feet.					
Inches.	Wrought-Iron Shaft.	Steel Shaft.				
2 3	11 13	11.50 13.75				
4 5 6	15 17 19	15.75 18.25 20.00				
7 8	21 23	22.25 24.00				
9	25	26.00				

Pulleys that give out'a large amount of power should be placed as near a hanger as possible.

SHAFT COUPLINGS.

A box, or muff, coupling is shown in the figure. It consists

of a cast-iron cylinder that fits over the ends of the shaft. The two ends are prevented from moving relatively to each other by the

sunk key. The keyway is cut half into the box and half into the shaft ends. Quite commonly the ends of the shafts are enlarged to allow the keyway to be cut without weakening the shaft.

The key may be proportioned by the formula already given. For the other dimensions, take

$$l = 2\frac{1}{2}d + 2''$$

 $t = .4d + .5''$

EXAMPLE.—Find the dimensions of a muff coupling for a shaft 2½ in, in diameter.

SOLUTION.—For the key we use the formula previously given,

$$b = \frac{1}{4}d = \frac{1}{4} \times 2\frac{1}{2} = \frac{5''}{8}$$

 $t = \frac{1}{6}d = \frac{1}{6} \times 2\frac{1}{2} = \frac{7}{16}$

For the muff,

$$\begin{array}{l} l = 2\frac{1}{2}d + 2^{\prime\prime} = 2\frac{1}{2} \times 2\frac{1}{2} + 2^{\prime\prime} = 8\frac{1}{4}^{\prime\prime} \\ t = .4d + .5^{\prime\prime} = .4 \times 2\frac{1}{2} + .5^{\prime\prime} = 1\frac{1}{2}^{\prime\prime} \end{array}$$

A flange coupling is shown in the following figure. Cast-

iron flanges are keyed to the ends of the shafts. To insure a

perfect joint the flange is usually faced in the lathe after being keyed to the shaft. The two flanges are then brought face to face and bolted together.

Sometimes the ends of the shafts are enlarged to allow for the keyway. To prevent the possibility of the shafts getting out of line, the end of one may enter the flange of the other.

The following proportions may be used for this form of flange coupling:

d = diameter of shaft; n = number of bolts.

$$D = \frac{1^3}{4}d + \frac{1}{1}$$

$$D_1 = \frac{2^1}{2}d + \frac{2}{1}$$

$$l = \frac{1^1}{8}d + \frac{1}{1}$$

$$n = 3 + \frac{d}{2}$$

(Take the nearest whole number for n.)

$$d_1 = \frac{d}{n} + \frac{1}{4}''$$

$$D_2 = 1.4 D_1$$

$$b = \frac{1}{2} d + \frac{5}{8}''$$

$$e = 2b$$

$$t = \frac{1}{6} d$$

The proportions for the key have already been given.

In the accompanying figure is shown a flexible coupling, or universal joint. These joints, when constructed of wrought iron, may have the following proportions in terms of the diameter d of the shaft:

$$a = 1.8d$$
 $g = .6d$
 $b = 2d$ $h = .5d$
 $c = d$ $k = .6d$

$$e = 1.6 d$$

$$\kappa = 0.0$$

The names pedestal, pillow-block, bearing, and journal-box are used indiscriminately. They are all a form of bearing, and indicate a support for a rotating piece.

A form of journal-box frequently used for small shafts is shown in Fig. 1. It consists of two parts: (1) the box that supports the journal, and (2) the cap that is screwed down to the box. In this journal-box the seats are of babbitt, or, as it is commonly expressed, the box is babbitted. The cap is held in place by what are called capscrews. This is invariably done in small pedestals.

The proportioning of a pedestal is largely a matter of

experience. Few or none of the parts are calculated for strength.

All the proportions of the pedestals that follow are based on the diameter of the journal d as the unit; the length of the seats is the same as that of the journal.

For the journal-box shown in Fig. 1, the following proportions may be used for sizes of journals from $\frac{1}{2}$ in. to 2 in. diameter, inclusive. The diameter of shaft d is the unit.


```
a = 2.25 d;
                                  m = .25 d + .1875'';
b = 1.75 d:
                                  n = .5 d:
c = d:
                                  o = .625'' \text{ (constant)};
                                  p = 1.5 d;
e = .375 d;
f = .08 d + .0625'';
                                  a = 1.333 d:
g = 1.75 d;
                                   r = .08 d;
h = 2.45 d;
                                   s = .125'' \text{ (constant)}:
i = .3 d:
                                   t = .16 d:
i = .33 d;
                                  u = 1.333 d;
k = .25 d + .125'':
                                   v := .125 d.
l = .08 d:
```

In Fig. 2 is shown a common form of pedestal that is used for somewhat larger journals than the one shown in Fig. 1.

It consists of (1) a foundation plate that is bolted to the foundation on which the pedestal rests; the plate is essential when the pedestal rests on brickwork or masonry, but may be dispensed with when the pedestal rests on the frame of the machine: (2) the block that carries the seats and supports the journal: (3) the cap that is screwed down over the seats. The bolt holes in both foundation plate and block are oblong, so that the pedestal may be readily adjusted.

The following proportions may be used for this kind of pedestal, having journals from 2 in. to 6 in., inclusive. An oil cup having a 1/4 in. pipe-tap shank may be used on pedestals for journals having diameters from 3 in, to 4 in., and 3 in. pipe-tap shank for larger sizes up to 6 in. diameter.

Note.—The shanks of oil cups and grease cups bought in the market are made with a $\frac{1}{2}'', \frac{1}{2}'', \frac{3}{3}''$, or $\frac{1}{2}''$ pipe thread. The amount of oil or grease the cup holds when filled is usually expressed in ounces.

The diameter of journal d is the unit.

```
r = .25 d;
a = 3.25 d:
                    i = .375 d:
                                                 s = .1875d;
b = 1.75 d:
                   k = 1.0625 d:
c = d;
                    l = .875 d:
                                                 t = .65 d:
                                                 u = .75 d;
e = .5d:
                    m = 1.75 d:
                    n = 1.25 d:
f = .4375 d:
                                                 v = 1.375 d:
                                                 x = .25 d;
g = .09 d;
                    o = .125'' \text{ (constant)}:
h = .3125 d:
                    p = .875'' \text{ (constant)};
                                                 y = .5 d;
i = .25 d;
                   q = .625 d;
                                                 z = .0625 d.
```


Fig. 3 shows a pedestal suitable for the crank-shaft of a horizontal engine with journals from 8 in. to 20 in. in diameter. The block may be complete in itself, as shown in the figure, but more often it forms part of the engine bed.

The seats are in three parts, and may be adjusted horizontally by means of the wedges W. The lower seat may be raised by placing packing pieces under it. To obtain its dimensions, use the following proportions, which are based on the unit d = the diameter of the crank-shaft journal.

```
a = d + 1'':
                                q' = 1.5 d;
b = .5d + 1'';
                                 r = .15 d;
c = .66 d:
                                 r' = .1d:
e = .825 d - .25'';
                                r_1 = d;
f = .6d;
                                 s = .9d;
g = .1d + .5625'';
                                t = 15d + .375'';
                                t' = .9d;
h = .1d + .25'';
                                u = 1.5 d;
h' = .08 d;
i = .11d:
                                v = .25 d + .375'';
                                w = 1.45 d;
j = .625'' (constant);
                                w' = 1.47 d
k = .5d + 1.25'';
l = .375'' (constant):
                                w_1 = 1.75 d;
m = .175 d + .31.25'';
                                x = .1d:
n = .25 d + 25'';
                                y = .3d + .75'';
n' = .1d + .375'';
                                y' = .2d + .5'':
o = 1'' \text{ (constant)};
                                z = .09 d:
p = .25 d + .625'';
                                z' = 2.5'' (constant).
q = 1.75 d;
```

Taper of adjusting wedge, 1:10.

Further details of the bottom seat and the cap are shown in Fig. 4, in which the unit is the same as in Fig. 3, and the proportions are as follows:

$$a = 1'' \text{ (constant)};$$
 $c = .08 d;$ $b = 1.65 d - .5'';$ $d = .1 d.$

The foundation casting, or the bed casting, is shown in Fig. 5, and has dimensions to suit the pedestal that is shown in Fig. 3. The proportions of the casting are given in connection with Fig. 5, on page 201. The diameter d of the crank-shaft journal is taken as the unit.

Fig. 5.

HANGERS.

A hanger is used when a shaft bearing is to be suspended from the ceiling. The figure on page 203 shows a form of hanger made by a leading manufacturing company.

The frame of the hanger is divided and the parts are connected by bolts. With such a form, the shaft may be more easily removed than when the hanger frame is a solid piece.

The units for determining the leading dimensions of a shaft hanger are the diameter d of the shaft and the drop D of the hanger.

The following proportions are suitable for shafts ranging from $1\frac{1}{4}$ in, to $4\frac{1}{4}$ in, in diameter:

```
A = 6d + .45D;
                               X = .375 d:
A_1 = 2d + .03D;
                               Y = .25 d + .125'';
B = 4d + .35D;
                               Z = .625 d;
                               a = .15d + .375'':
C = 2d + .3D;
E = 2d + .25D;
                               a_1 = 2.4 d + .3125'';
F = .5 d + .01 D;
                              b = .08 d:
                              c = .125 d + .0625'';
F_1 = 1.5 d + .05 D;
G = 1.25 d:
                               e = .2d;
H = 2d;
                               e_1 = .4d:
I = .4d:
                               e_2 = .2 d;
J = .125 d + .01 D;
                               f = .375 d + 1'';
K = .5d + .5''
                               f_1 = .09 d + .25'';
L = .25 d + .5'';
                               g = .75 d;
M = .75 d + .6875'';
                               g_1 = 1.3125 d + .125'';
N = .25 d + .375'';
                               h = 1.25 d + .1875'':
                               i = .1d;
0 = 1.25 d;
O_1 = .094 d + .002 D;
                               j = .25 d + .25'';
P = .375 d + .008 D;
                               j_1 = .125 d + .0625'':
Q = .375 d + .008 D;
                               k = 2.2 d;
R and R_1 (see note);
                              l = 4d:
S = .25 d + .005 D;
                               m = 1.4 d + .375'';
S_1 = .125 d + .003 D;
                               n = d:
                              o = .25 d;
T = .125 d + .01 D;
T_1 = (\text{see note});
                               o_1 = .0625 d;
U = 2d;
                               p = d;
V = .5d;
                               p_1 = .0625 d;
W = .75 d;
                               q = .4 d;
```


Thread of plugs, .5 in. pitch for all sizes.

Note.—To find R_1 , draw the arc J; also, draw the arc Q tangent to P; then, draw a straight line tangent to these arcs, and R_1 will be the distance along the center line determined by B included between this tangent and the upper face of the hanger. Having found R_1 , make R equal to it.

The radius T_1 is made equal to three-eighths of the thickness at the middle.

The steps of the ball-and-socket bearings are of cast iron, and are bored to fit the journal without using either lining or brasses. The ball and the recesses in the ends of the plugs, into which the ball is fitted, should be faced. The screw threads on the plugs may be cast on the plugs or turned, the latter being preferable. It is customary to use 2 threads per inch for all sizes of plugs.

BELT PULLEYS.

The accompanying table gives the dimensions of a set of ${f cast}$ iron belt pulleys ranging from 6 in. to 72 in. in diameter, as

made by a well-known manufacturing company. These pulleys are so designed that the number of patterns may be kept within reasonable limits, and at the same time have the dimensions correspond as nearly as possible with well-established rules.

The letters over the columns of dimensions given in the table correspond to the letters in the figure.

In all cases the num-

ber of arms is 6, and the arms increase in size toward the hub, the taper being $\frac{1}{2}$ in. per ft.

In order to prevent heavy stresses in shafts and bearings, pulleys that are to run at high speeds must be carefully

balanced. Perfect balance involves two conditions: (a) the center of gravity of the pulley must lie in the center line of the shaft, (b) the straight line joining the centers of gravity of any pair of opposite halves of the pulley must be perpendicular to the center line of the shaft.

The usual method of balancing a pulley is to rivet a weight to the light side and test the balance by putting the pulley on a mandrel that is placed on two carefully leveled ways on which it can roll with very little friction. If the center of gravity of the pulley lies in the center of the shaft, the pulley will stay in position when stopped with any point of its circumference over the mandrel; if, however, one side of the pulley is heavier, the mandrel will roll until the heavy side is at the lowest possible point.

While the above method does not determine whether or not the second condition of perfect balance is fulfilled, it is generally sufficient for pulleys running at ordinary limits of speed and reasonably well made.

In some cases, however, a failure to meet the requirements of the second condition of perfect balance may result in unsatisfactory running and severe stresses in the shaft and its bearings. Consider a pulley in which the center of gravity of one half is at the right of a line perpendicular to the center line of the shaft while the center of gravity of the opposite half is on the left of the perpendicular. This condition will not affect the balance of the pulley when tested by the mandrel rolling on the ways; when, however, the pulley revolves around the center line of the shaft, the centrifugal forces of the two halves act in opposite directions and along different lines. These forces thus form a couple that tends to bend the shaft. Since the centrifugal force is proportional to the square of the number of revolutions, it is apparent that, at high speeds, the bending effect may be considerable, even though the lack of symmetry is not very great.

It is usually considered unsafe to run a cast-iron pulley, gear-wheel, or flywheel at a higher rim speed than 100 ft. per sec. Since the centrifugal force increases in direct proportion to the cross-section of the rim, it is evident that it is useless to try to provide against it by putting more material in the rim.

PROPORTIONS OF PULLEYS.

THOTOMINIONS OF TOURISM											
Diam.	Face.	Rim.		Ar	m.	Нυ	ıb.		Boss.		
Di	F	A	B	C	D	E	F	G	H	I	
6"	4 6 8 10	1/8	3 16	3/4/3/4/3/4/3/6	7 16 7 16 17 16 7 16 7 16	3 3½ 3½ 3½	3/8/1/2	1/2 1/2 1/2 1/2 1/2 1/2	1 1 1	1/4 1/4 1/4	
8	12 4 6	1/8	36 16		7 16 7 16 7 16	4 4 3 3 ¹ / ₂ 4 ¹ / ₂ 5 ¹ / ₂	3/8 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	1/2 1/2 1/2 1/2	1 1 1 1	14 14 14 14	
	8	32	74	116	9 16	$5\frac{1}{2}$					
10	12 4 6 8	1/8 5 32	3 16 1/4	15 16 176	16	3 3 ¹ / ₂ 4 ¹ / ₂ 5 ¹ / ₂	1/2	1/2	1	1/4	
	10			15	5/8	$5\frac{1}{2}$	5/8	5/8	11/4	3/8	
12	12 4 6	5 32	1/4	1 1 ³ / ₄	7 16 1/2	31/4	1/2	1/2	1	1/4	
	8	3+	5 16	1½	3/4	51/6	5/8	5/8	11/4	3/8	
14	12 4 6	5 32+	1/4	11/8	1/2	6½ 3½ 4½	1/2 5/8	1/2 5/8	1 11/4	1/4 3/8	
	8 10	3 16	5 18	15	18	5	/8		-/4		
16	12 4	 5 32+	1/4	111 13/8	13 16 9 16	6½ 3½ 4½	1/2 5/8	1/2 · 3/4	1 11/4	1/4 3/8	
	6 8 10	3+	5 18	1,7	5/8	5	78	74	1/4	/8	
18	10 12 16 4 6	3 16	11 32 5 16	17/8 15/16	9 16 13 16 16 16 16 16 16 16 16 16 16 16 16 16	5 51/2 61/2 31/2 41/2 5 6 61/2 31/2 41/2 5 6 61/2 81/4 41/2	3/4 7/8 5/8	3/4 5/8	13/4 11/4	3/8	
	8	7 32	$\frac{1}{3}\frac{1}{2}$	1½	11 16	51/2	3/4				
	12 16	1/4	3/8	21/4	11/4	141/2 51/2 6 71/4 8 9 4 41/2 5 6 7 8 10	7/8	3/4	13/8		
20	20 4 6	3+	5 18	13/8	5/8	9 4 41/2	5/8	5/8	11/4	3/8	
	8		11 31 32	15/8	3/4	5	3/4				
	12	32				7		3/4	13/4		
	16 20	23	18	21/4	11/8	10	1 7/8	74	174	1	

Table—(Continued).

TABLE—(Continued).											
Diam.	Face.	Ri	im.	Aı	m.	H	ub.		Boss.		
Dig	Fa	A	B	C	D	E	F	G	H	I	
22"	4 6	3 16	5 16	1½	5/8	4 4½ 5	5/8 3/4	5/8	11/4	3/8	
	8 10 12 16	372+	32	13/4	13 16	8 ³ / ₄ 11	7/8	3/4	13/8		
24	20 4 6	32+ 32 32	7 16 11 32	2½ 13 13	11/4 11 18	11 4 4 ³ / ₄ 5 ¹ / ₂ 7	7/8 1 11/8 5/8 3/4 	7/8 5/8	1½ 1¼	3/8	
	8 10 12	1/4	3/8	17/8		7		3/4	13/8		
	16 20 24	5 16	15 32	23/4	13/8	9½	1 11/8	7/8	1½		
26	4 6 8 10	7 32	11 32	111	3/4	41/4	3/4	5/8	11/4	3/8	
	8 10 12	1/4	3/8	2	7/8	5 6 7	7/8	3/4	13/8		
	16 20	15+	15	215	176	$ \begin{array}{c} 7\frac{1}{2} \\ 10 \\ 10\frac{1}{2} \\ 11 \end{array} $	11/8	7/8	1½		
28	24 4 6 8	37 32+	15	13/4	3/4	$ \begin{array}{c} 11 \\ 4^{1/2} \\ 5^{1/2} \\ 7 \end{array} $	3/4 //8	5/8 3/4	11/4 13/8	3/8	
	10 12 16	1/4+	3/8	21/8	13 16	7½ 8 10	1				
	20 24	5 16 11 32 7 32+	15 32 1/2 11 32	3½ 1½ 1½	1½ 13 18	11	11/8	7/8	1½		
30	6 8	32+	32	1/8	18	5 ¹ / ₂ 6 ¹ / ₄	3/4 7/8	5/8 3/4	1½ 1¾	3/8	
	8 10 12	9 32	7 16	21/4	1	61/2	1		-/8		
	16 20 24		9		15/6	4 ¹ / ₂ 5 ¹ / ₂ 6 ¹ / ₄ 6 ¹ / ₂ 8 8 ¹ / ₂ 11 ¹ / ₂ 13	11/4	7/8	1½		
32	6	3/8 1/4+	9 16 8/8	3 5 21/8	15/8 15 16	$4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$ $7\frac{1}{2}$	7/8	3/4	13/8	3/8	
	8	******				$\frac{61/2}{71/2}$	1				

TABLE—(Continued).

Diam.	Face.	Rim.		Ar	m.	H	1b.	Boss.			
Di	E	A	В	C	D	E	F	G	H	I	
	12 16 20	5 16	15 32	276	116	8 9½ 11	11/8	7/8	1½		
34"	24 4 6	1/4+	3/8	21/8	15 16	13 4 ¹ / ₂ 5 ¹ / ₂ 6 ¹ / ₂	7/8	3/4	13/8	3/8	
	8 10 12 16	5 16	15 32	27/16	116	51/2 71/4 73/4 91/2		7/8	1½		
36	20 24 4	1/4+	3/8	23	15	12	7/8	3/4	13/8	3/8	
	6 8 10					$4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{3}{4}$ $7\frac{1}{4}$					
	12 16 20	5 16	15 32	29	11/8	73/4 101/4 12	1½ ·1¼ ·1¼	7/8	1½	******	
40	24 8 12 16	5 16	15 32 1/2	25/4	1 11/4	10/4 12 13½ 63/4 73/4 10	13/8 1 11/8 11/4 13/8	1 3/4 7/8	$1\frac{3}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$	1/2 3/8	
44	20 24 8	32 9 32	7 16	21/2	11/4	11½ 15¼ 6¾	13/8 11/2 11/8	1 7/8	13/4	1/2 3/8	
	12 16 20	11 32	1/2	3	1 ⁵ / ₁₆	10		1	13/4	1/2	
48	24 8 12 16	9 32+	7 16 9 16	3½ 2¾ 3¼ 3¼	$1\frac{3}{4}$ $1\frac{7}{16}$	15 7 ¹ / ₂ 8 ³ / ₄ 10	11/4 13/8 11/2 11/8 11/4 13/8	7/8	1½ 13/4	3/8	
54	20 24 12	3/8 	16	2	1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	12 15	1½ 1½ 1¾ 1½ 1½	1	13/4	1/2	
J-	16 20 24	13 32	19 32	35/8	15/8	93/4 111/4 15			2 13/4		
60	12 16 20	11 32 	1/ ₂ 5/ ₈	3 ⁵ / ₁₆	13/4	10 $11\frac{1}{4}$ $12\frac{1}{2}$ 15	$\begin{array}{c} 13/4 \\ 13/8 \\ 11/2 \\ 13/4 \end{array}$	1½ 1 1½	13/4 2	1/2	
	24					15					

TARIE-	(Continued)	

Diam.	Rim.		Arm.		Hub.		Boss.			
Dia		_1	В	C	D	E	F	G	H	I
66″ 72	12 16 20 24; 12 16 20 24	11 32 1/2 3/8 16	1/2 3/4 Y6 18	37/8 41/4 37/8 45/8	1_{16}^{9} 1_{16}^{15} 1_{16}^{11} 2_{16}^{16}	$ \begin{array}{c} 10 \\ 11\frac{1}{2} \\ 13\frac{1}{2} \\ 15 \\ 10\frac{1}{2} \\ 12\frac{1}{2} \\ 13\frac{1}{2} \\ 15 \end{array} $	1½ 15/8 17/8 17/8 13/4 17/8 2	11/4	2	1/2

ROPE BELTING.

There is a growing tendency toward the substitution of hemp and cotton ropes for belting and line shafting as a means of transmitting power in large factories and shops. The advantages claimed for the rope-driving system are:

- 1. Economy; for a rope system is cheaper to install than either leather belting or shafting.
 - 2. In the rope system there is less loss of power by slipping.
- 3. Flexibility; that is, the ease with which the power is transmitted to any distance and in any direction.

In this country, a single rope is carried round the pulley as many times as is necessary to produce the required power, and the necessary tension is obtained by passing the rope round a tension pulley weighted to give the desired tension.

The ropes used in rope transmission are either of hemp, manila, or cotton. Manila ropes are mostly used in this country. They are of three strands, hawser laid, and may be from $\frac{1}{4}$ in. to 2 in. in diameter.

The weight of ordinary manila or cotton rope is about $3D^2$ lb. per ft. of length, where D represents the diameter of the rope in inches. Letting w = the weight per foot of length, $w = .3D^2$.

The breaking strength of the rope varies from 7,000 to 12,000 lb. per sq.in. of cross-section. The average value may be taken as 7,000 D^2 . when D is the diameter of rope.

For a continuous transmission, it has been determined by experiment that the best results are obtained when the tension in the driving side of the rope is about $\frac{1}{10}$ of the breaking strength. That is,

$$T_1 = \text{tension in tight side} = \frac{7,000 D^2}{35} = 200 D^2.$$

The ropes run in **V**-shaped grooves, and the coefficient of friction is, of course, greater than on a smooth surface. The coefficient for grooves with sides at an angle of 45° may be taken at from .25 to .33.

The horsepower that can be transmitted by a single rope running under favorable conditions is given by the formula

$$H = \frac{v D^2}{825} \left(200 - \frac{v^2}{107.2}\right),$$

in which H = horsepower transmitted:

D = diameter of rope in inches;

v =velocity of rope in feet per second.

The maximum power is obtained at a speed of about 84 ft. per sec. For higher velocities, the centrifugal force becomes so great that the power is decreased, and when the speed reaches 145 ft. per sec. the centrifugal force just balances the tension, so that no power at all is transmitted. Consequently, a rope should not run faster than about 5,000 ft. per min., and it is preferable on the score of durability to limit the velocity to 3,500 ft. per min.

EXAMPLE.—A rope flywheel is 26 ft. in diameter, and makes 55 rev. per min. The wheel is grooved for 35 turns of $1\frac{\pi}{3}$ " rope. What horsepower may be transmitted?

Solution.-Velocity in feet per second =

$$v = \frac{26 \times \pi \times 55}{60} = \frac{4,492}{60} = 74.9 \text{ ft.}$$

Applying the formula.

$$H = \frac{v D^2}{825} \left(200 - \frac{V^2}{107.2}\right),$$

the horsepower transmitted by one rope or turn is

$$\frac{74.9 \times (1\frac{1}{2})^2}{825} \left(200 - \frac{(74.9)^2}{107.2}\right) = 30.16.$$

Then, $30.16 \times 35 = 1,055.6 = \text{horsepower transmitted by the } 35 \text{ ropes.}$

EXAMPLE.—How many times should a 1" rope be wrapped around a grooved wheel in order to transmit 200 horsepower, the speed being 3,500 ft. per min.?

Solution.— 3,500 ft. per min. =
$$\frac{3,500}{60}$$
 = $58\frac{1}{3}$ ft. per sec.

Applying the formula, the horsepower transmitted with one turn is,

$$H = \frac{58\frac{1}{3} \times 1^2}{825} \left[200 - \frac{(58\frac{1}{3})^2}{107.2} \right] = 11.9.$$

Hence, $200 \div 11.9 = 16.8$, say 17 turns.

Rope pulleys differ from belt pulleys only in their rims. The inclination of the sides of the grooves may vary from 30° to 60°. The more acute the angle, the greater the coefficient and, consequently, the wear on the rope.

A section of a grooved rim in which the sides of the grooves are formed with circular arcs is shown in the figure.

The proportions for this rim are as follows, using the diameter D of the rope as a unit:

$$\begin{array}{lll} a = \frac{1}{2} \, D; & e = \frac{1}{4} \, D + \frac{1}{16}''; \\ b = \frac{1}{4} \, D + \frac{1}{16}''; & f = \frac{1}{4} \, D + \frac{1}{36}''; \\ c = D; & g = \frac{1}{2} \, D; \\ d = 1.6 \, D; & h = \frac{1}{4} \, D + \frac{1}{16}''. \end{array}$$

The radii r_1 and r_2 are to be found by trial; they should be of such lengths as to make the curves drawn by them tangent to the required lines.

The long radius R is determined by drawing a line through the center of the rope at an angle of 22½° with the horizontal, and producing it until it intersects a line drawn through the tops of the dividing ribs; then, with this point of intersection as a center, draw the curve forming the side of the groove tangent to the circumference of the rope.

The advantage claimed for this groove is that the rope will turn more freely in it, thus presenting new sets of fibers to the sides of the grooves and increasing the life of the rope.

The diameter of a rope pulley should be at least 30 times the diameter of the rope. Good results are obtained when the diameters of pulleys and idlers on the driving side are 40 times, and those on the driven side 30 times, the rope diameter. Idlers used simply to support a long span may have diameters as small as 18 rope diameters, without injuring the rope.

When possible, the lower side of the rope should be the driving side, for in that case the rope embraces a greater portion of the circumference of the pulley, and increases the arc of contact.

When the continuous system of rope transmission is used, the tension pulley should act on as large an amount of rope as possible. It is good practice to use a tension pulley and carriage for every 1,200 ft. of rope, and have at least 10% of the rope subjected directly to the tension.

Aside from the grooved rim, rope pulleys are constructed the same as other pulleys. They may be cast solid, in halves, or in sections. The pulley grooves must be turned to exactly the same diameter; otherwise, the rope will be severely strained.

TRANSMISSION OF POWER BY WIRE ROPE.

Wire rope for transmitting power is made up of 6 strands twisted about a hemp core, each strand being composed of either 7 or 19 wires, according to the size of the sheaves, the 19-wire rope being employed in cases where it is impracticable to use the larger sheaves required by the 7-wire rope. Where the conditions, however, do not preclude the use of the

proper size of sheaves, the 7-wire rope is to be recommended in preference to the other, except sometimes on very short spans, where 19-wire rope is to be preferred, composed of the same size of wires as the smaller 7-wire rope, such as would ordinarily be used to transmit the power, and run under a tension corresponding to the smaller rope, or considerably below the maximum safe tension of the rope used. This is done in order to avoid stretching, which would otherwise occur, and the consequent use of mechanical appliances for preserving the necessary tension.

In flying transmission, where the rope makes a single half lap at each end, the sheaves are usually made of cast iron, with rims having grooves lined with segments of rubber and leather, dipped in tar, and laid in alternately, upon which the rope tracks. The diameters of the minimum sheaves, corresponding to a maximum efficiency, are as follows, according to a prominent manufacturer:

Diam. of sheave for 7-wire steel rope, 77 times diam. of rope. Diam. of sheave for 19-wire steel rope, 46 times diam. of rope. Diam. of sheave for 7-wire iron rope, 160 times diam. of rope. Diam. of sheave for 19-wire iron rope, 96 times diam. of rope.

In long-distance transmissions, where the rope makes 2 or more half laps at each end about a pair of drums or several sheaves, the rims may be lined with wood or the rope may be run in plain turned grooves.

The horsepower capable of being transmitted is determined by the general formula:

 $N = [c D^2 - .000006 (w + g_1 + g_2)]v,$

in which

D = diameter of rope in inches;

v = velocity of rope in feet per second;

w = weight of rope in pounds:

 g_1 = weight of terminal sheaves and shafts;

 g_2 = weight of intermediate sheaves and shafts;

c = constant depending on the material of which rope is made, the character of the filling or surface material in the sheaves or drums upon which the rope tracks, and the number of half laps at each end.

The values of c for from 1 up to 6 half laps for steel rope are given in the following table:

c for Steel Rope on	Number of Half Laps at Each End.									
	1	2	3	4	5	6				
Iron. Wood. Rubber and Leather.	5.61 6.70 9.29	8.81 9.93 11.95	10.62 11.51 12.70	11.65 12.26 12.91	12.16 12.66 12.97	12.56 12.83 13.00				

The values of c for iron ropes are one-half the above. It is apparent from this table that, when more than 3 half laps are made, the character of filling or surface in contact is immaterial so far as slipping is concerned.

Where the distance is comparatively short, as in most flying transmissions, the effect of the weight of the rope and sheaves is so slight that it may be neglected, and we have the general rule, that the actual horsepower capable of being transmitted by a wire rope approximately equals c times the square of the diameter of the rope in inches, multiplied by the speed of the rope in feet per second.

The tension of the rope is measured by the amount of sag or deflection at the center of the span, and the deflection corresponding to the maximum safe working tension is determined by the following formulas, in which s represents the span in feet:

In very long transmissions it often happens that the conditions will not allow of the required amount of tension to drive properly with but a single half lap on the pulley. In such cases it is customary to give the rope a sufficient number of half turns around successive grooves in the driving pulley and a series of guide pulleys that serve to lead the rope from one groove on the driving pulley to the next.

With this arrangement a guide pulley at one end of the

line is usually made to serve the purpose of a tension pulley by being mounted in a movable frame that can be drawn by means of a screw or a weight so as to give the rope the desired tension.

PIPE FLANGES.

The figure shows the method of flanging and bolting the

ends of two castiron pipes. The dimensions of the flanges for the various sizes of pipes are given in the following table:

STANDARD PIPE FLANGES, n = number of bolts.

а	ь	c	d	n	e	f	g
2.0 2.5 3.0 3.5 4.0 4.5 5 6 7 8 9 10 12 14 15 16 18 20 22 24 24 28 30 48	.409 .429 .448 .466 .486 .498 .525 .563 .600 .638 .790 .864 .946 1.020 1.180 1.250 1.300 1.250 1.300 1.480 1.1870 2.170	5-5-5-6-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-	2.000 2.250 2.500 2.750 3.000 3.000 3.000 3.250 3.500 3.500 4.250 4.250 4.250 4.750 5.500 5.750 6.250 6.250 7.750	4 4 4 4 4 8 8 8 8 8 12 12 12 12 16 16 20 20 24 28 28 28 24 44	5.4483.448804881888 LEVS/SERVERSERSERSERSERSERSERSERSERSERSERSERSERSE	4.75 5.50 6.00 7.00 7.50 7.75 8.50 9.50 9.50 10.75 11.75 14.25 14.25 120.00 21.25 22.75 22.70 27.25 29.50 31.75 34.00 42.75 49.50 49.50 56.00	6.00 7.00 7.50 9.00 9.25 10.00 11.00 12.50 13.50 15.00 16.00 21.00 22.25 23.50 29.50 32.00 34.25 36.50 38.75 45.75 59.50

LINING FOR SEATS.

Seats for large bearings are often lined with Babbitt metal, or anti-friction metal. It has been found by experience that a bearing will run cooler when so lined, probably because the Babbitt metal, being softer, accommodates itself to the journal more readily than the more rigid gun metal.

Some of the common methods of lining the seats are shown in the figure. At (a) the Babbitt metal is shown cast

into shallow helical grooves; at (b), into a series of round holes; and at (c), into shallow rectangular grooves. Consequently, the journal rests partly on the brass and partly on the Babbitt metal.

In cheap work, very frequently the seats are made entirely of Babbitt metal. A mandrel the exact size of the journal is placed inside the bearing, and the melted Babbitt metal is poured around it. In better work a smaller mandrel is used, and the metal is hammered in, the bearing being then bored out to the exact size of the journal.

CYLINDERS AND STEAM CHESTS.

Fig. 1 shows a cylinder designed for a simple slide-valve engine. The front head A is cast solid with the cylinder. The method of fastening to the frame B is clearly shown.

The principal dimensions of this cylinder may be determined from the following proportions:

D = diameter of cylinder;

L = length of stroke + thickness of piston + twice the piston clearance;

C = length of stroke + distance from outer edge to outeredge of piston rings - (.01 D + .125'');

a = 5.5i:

```
egin{array}{ll} b &= 4.2\,i; \\ c &= i; \\ d &= i; \\ e' &= {
m net\ area\ of\ a\ single\ cylinder-head\ bolt\ whose\ nominal} \end{array}
```

diameter is $e = \frac{AP}{4,000n}$, where A = area of cylinder head in square inches; P = steam pressure:

P = steam pressure;n = number of bolts

The pitch of the bolts may be from 4.5 to 5.5 in., but should never be more than 5 f.

f = 1.5 i;

g = .04 D + .125". Take the nearest nominal size pipe tap.

h = twice the outside diameter of drain pipe.

 $i=.0003\ PD+.375'',$ where P is the steam pressure. If the steam pressure is less than 100 lb., make P=100.

j = .85 i; k = 4 i;l = .75 i;

m = 1.01 D + .125'';

n=m+6e, never less. Here, e is the nominal diameter of the bolt.

o= the nominal diameter of steam-chest bolts. The net area of a single steam-chest bolt $=\frac{A'P}{4,000\ n'}$, where A'= area of steam chest:

n' = number of bolts in steam chest.

p = 2.75 o;

q = 1.5 r;r = 1.25 i;

s = i. This is required only when the length of the port is greater than 12 in.

t = 1.25 i. When D is greater than 24 in., use 4 bolts in the standard and make t = 1.1 i.

u = 1.5 i:

v = .25'' (constant).

The dimensions of the steam ports, exhaust ports, and other steam passages depend on the velocity of the flow of steam. The ports and passages must be large enough to allow the steam to follow up the advancing piston without loss of

pressure. The maximum allowable velocity of the steam in the passages, when they are short, is about 160 ft. per sec. But, with the ordinary ratio between the length of connecting-rod and length of crank, the average velocity is about five-eighths of the maximum. Hence, the allowable average velocities are 100 to 125 ft. per sec. for long and short passages, respectively.

Let l = length of port in inches;

b =breadth of port in inches;

A =area of cylinder;

S = average piston speed in feet per second;

v = average velocity of steam in feet per second.

Then, area of port \times velocity of steam = area of piston \times velocity of piston, or $lb\ v = AS$; whence,

$$lb = \frac{AS}{v}$$

For long indirect passages, take v=100; and for short direct passages, take v=125.

The constant 100 may be used for v, when designing plain slide-valve engines of the ordinary type, which cut off late in the stroke, and 125 may be used for high-speed engines with early cut-off, and for the Corliss type.

The area of the exhaust port or ports may be from $1\frac{2}{8}$ to $2\frac{1}{8}$ times the area of a steam port.

The area of the cross-section of the steam pipe is approximately equal to the area of the steam port; likewise, the area of the exhaust pipe should be equal to that of the exhaust port.

The length l of the port may be .6 D to .9 D for slide-valve engines, and about .9 D to D for the Corliss type.

The height w, Fig. 1, of the valve seat must be such that the area of the most contracted part of the exhaust port is not less than 75% of the area of the steam port.

THE STEAM CHEST.

Fig. 2 shows a steam chest for the cylinder illustrated in Fig. 1. The principal dimensions are to be determined by the following proportions, which are based on the thickness i of the cylinder walls, and on the travel and dimensions of the valve:

- a = length of valve + travel of valve + twice the clearance between the valve and the steam chest at ends of valve travel;
- b = breadth of valve + twice the clearance between one valve and steam chest;
- c = .75 i;

- d = 2.75 o, where o is the nominal diameter of the steamchest bolts, as in Fig. 1;
- $e = .04 \sqrt{A'} + .125''$ for all areas above 100 sq. in. A' = area of steam chest, outside measurement, in square inches:

f = 1.3 e;

g = .85 i;

h = height of valve + necessary clearance;

t = .85 i;

j = 2.5 i.

Note.—When the area of the steam-chest cover is less than 100 sq. in., its thickness e may be made equal to i. If the area of the steam-chest cover exceds 600 sq. in., the height of the ribs should be $3.5\,i$, and their number should be increased.

Fig. 3 shows a design for a steam-chest cover when the steam-pipe flange is on one side of the steam chest. Determine the thickness e by the same formula and rules as for the cover in Fig. 2. The other dimensions are found as follows:

$$c = .75 e;$$
 $j = 2.6 c;$ $f = 1.3 e;$ $r = 6 e.$

p should never exceed the distance in inches given by the

formula $p=\sqrt{rac{40\,e_1^2}{p_g}},$ where e_1 is the numerator of the frac-

tion expressing the thickness of the cover in sixteenths of an inch, and p_g is the gauge boiler pressure in pounds per square inch.

EXAMPLE.—Find the maximum pitch of the ribs for a cover 15 in. thick, subjected to a steam pressure of 160 lb. per sq. in.

f = .82 e;

l' = .32 D, about:

SOLUTION.—Substituting in the formula for p, we have

$$p = \sqrt{\frac{40 \times e_1^2}{p_g}} = \sqrt{\frac{40 \times 15^2}{160}} = 7.5 \text{ in.}$$

Fig. 4 shows a Corliss engine cylinder that may be designed according to the following proportions:

D =diameter of cylinder.

$$\begin{array}{lll} a &= 1.21\,D + 2\,e + 1.22^{\prime\prime}; & g &= .9\,e; \\ b &= 2\,D + 1.125^{\prime\prime}; & h &= b + 2\,(c + g); \\ c &= .048\,D; & h^{\prime} &= h; \\ c^{\prime} &= .079\,D; & i &= 1.8\,e; \\ d &= .17\,D; & j &= e; \\ e &= .0003\,P\,D + .375^{\prime\prime}, & \text{if} & k &= 1.2\,e; \\ & & \text{boiler pressure is above} & l &= 1.7\,x + 2^{\prime\prime} - 1.2\,e, \text{ where} \\ 100 & lb.; & \text{otherwise}, & e & x &= \text{diameter of piston} \\ &= .03\,D + .375^{\prime\prime}; & \text{rod}; \end{array}$$

FIG. 4.

A is to be made according to proportions given on page 215. Bolts to be made according to the same table.

NOTE.—The bolts for cylinder heads are to be calculated from the formula given for cylinder-head bolts in connection with Fig. 1.

In this cylinder the stuffingbox S is a separate piece that is to be bolted to the cylinder head.

CRANK-SHAFTS.

For high-speed, automatic short-stroke engines, the following formula corresponds with good practice:

$$d = .44 D + \frac{1}{8}$$

where d is the diameter of shaft and D is the diameter of cylinders.

For the Corliss type, in which the stroke is equal to or greater than twice the diameter.

$$d = .34 D + 2\frac{1}{9}$$

when D is equal to or greater than 16 in. When D is less than 16 in., $d = \frac{1}{2}D.$

PISTONS.

A form of piston that is much used is shown in the following figure. It consists simply of a hollow circular disk of cast iron.

The packing rings s, s are made of east iron, and are split and sprung into place. Their elasticity causes them to press against the cylinder walls and thus prevent the leakage of steam.

The following proportions will give dimensions suitable for this piston:

 $\begin{array}{cccc} D = \text{diameter of cylinder in inches;} \\ a = .2\,D + 1.5^{\prime\prime}; & e = .75\,c; \\ b = \text{diameter of piston rod;} & r = .5\,c; \\ b^{\prime} = 2\,b; & p = \text{core plug;} \\ c = .18\sqrt{2\,D} - .1875^{\prime\prime}; & \text{number of ribs} = .08(D + 34). \end{array}$

CONNECTING-RODS.

The figure shows a strap-end connecting-rod. The straps c_1 and c_2 are fastened to the ends of the rods by means of the gibs a_1 and a_2 and the cotters b_1 and b_2 . The cotters are held in place by the setscrews s_1 and s_2 . Small steel blocks shown between the ends of the setscrews and the cotters are used to prevent injury of the cotter by the setscrews.

The rod, cotters, gibs, and straps may be made of either wrought iron or steel. The crankpin brasses are shown babbitted and wristpin brasses without babbitt. The brasses are adjusted by means of the cotters, which draw the straps farther on to the rod when they are driven in.

The dimensions for the rod are given by the following proportions:

For wristpin end: D = diameter of cylinder:c = .25b: d = .2D = diameter ofe = .125 d;f = .26 D + .5'' for cylinders wristpin: to 26" in diameter, and n = .155 D + .0625''; f = .28 D for cylinders $x = \frac{\pi}{4} n^2 = a$ factor for use above 26" in diameter: in finding proportions g = 1.3 n; below: $h = \frac{.5 x}{g - c};$ a = .75 d + .125'':

 $i = \frac{.32x}{b}$;

a' = .75 d + .125'':

 $b = \sqrt{2.5}x$

 $k = \frac{x}{1.8 d};$ l = .375 b;o = .25 b; m = 1.35 d for wristpins up to 3.5'' in diameter, and m = 1.48 n for pins above 3.5'' in diameter;

p = .33 b;r = n: q = 1.125 d for wristpins up s = .125 d;to 3.5" in diameter, and t = 1.35 d: q = 4'', constant, for pins u = .02 D + .25'': above 3.5" in diameter; v = .125 d. The taper of the cotter is \(\frac{3}{2}\) in, per foot, Proportions for the crankpin end: D = diameter of cylinder in $i = \frac{.32 \, x'}{h};$ inches: d' = .28 D = diameter of $k = \frac{x}{1.8d}$ same as wristpin crankpin; $n' = 1.1 \ n; \ (n = .155 \ D + .155)$ l = .375 b: .0625"); m = 1.3 d'; $x' = \frac{\pi}{4} n'^2 = a$ factor used a = .25 b: p = .33 b;below: q = same values as fora = .75 d';wristpin end; a' = .75 d': r = 1.1 n; $b = \sqrt{2.5 \, x'}$ s = .125 d: c' = .25 b;t = 1.35 d';e = .125 d': v = .125' (constant); f = .26 D for cylinder diamw = .02 D + .0625'': eters up to 26", and $n''=n\left(\sqrt{\frac{L}{S}}-.22''\right),$ f = .28 D for cylinders above 26" in diameter; q = 1.3 n = same as wristwhere L = length of rod, and pin end; $h = \frac{.5 x'}{a - \dot{c}'};$ S = stroke, both in inches.

The taper of the cotter is \(\frac{1}{2} \) in. per foot.

ECCENTRIC AND STRAP.

The figure shows an eccentric sheave and strap, both of cast iron. The eccentric sheave is cast solid, and must be slipped over end of shaft. The eccentric rod is held in a boss on the strap by a cotter. For eccentrics used with valve stems $\frac{1}{2}$ in. in diameter or less, holes for bolts j are not to be cored. A = boss for oil cup; B = cross-section of rib r.

STUFFINGBOXES.

The stuffingbox of the form shown in the figure is generally used for small work, such as the spindles of valves, etc. The outside of the stuffingbox is threaded to receive a hexagonal nut that fits over the gland. As the nut is sere wed down, the gland is pressed downwards and compresses the packing.

The proportions used are:

d = diameter of rod; a = 2.5 d + .5''; b = 1.5 d + .125'';c = 3 d + .25'';

e = 3.5 d + 625'':

f = d + .125''; g = 2 d + .25'';h = 1.5 d + .25'';

i = .25 d + .0625'';k = .5 d.

This design may be used for rods up to 1½ in, in diameter.

Make the number of threads per inch the same as for a
bolt whose diameter is equal to the diameter of the rod.

GEARING.

The circular pitch of a gear-wheel is the distance in inches measured on the pitch circle from the center of one tooth to the center of the next tooth.

If the distance of the teeth of a gear thus measured were $2\frac{1}{3}$ in., we would say that the circular pitch was $2\frac{1}{3}$ in.

Let P = circular pitch;

D = diameter of pitch circle, in inches:

C =circumference of pitch circle, in inches;

N = number of teeth;

 $\pi = 3.1416$.

Then,
$$P = \frac{C}{N} \text{ or } \frac{\pi D}{N}$$
. $N = \frac{C}{P} \text{ or } \frac{\pi D}{P}$. $C = PN \text{ or } \pi D$. $D = \frac{PN}{\pi} \text{ or } \frac{C}{\pi}$. Addendum = .3 P . Root = .4 P .

The thickness of the teeth for a cut gear is equal to .5 P, and for a cast gear .48 P.

The diametral pitch of a gear-wheel is the name given to the quotient that is obtained by dividing the number of teeth in the wheel by the diameter of the pitch circle in inches; or, the diametral pitch may be defined as the number of teeth on the circumference of the gear-wheel for 1 in. diameter of pitch circle.

A gear with a pitch diameter of 5 in., and having 40 teeth is 8 pitch; one with the same pitch diameter and having 70 teeth is 14 pitch.

In the gear of 8 pitch there are 8 teeth on the circumference for each inch of the diameter of the pitch circle; and in one of 14 pitch there are 14 teeth on the circumference for each inch of the diameter of the pitch circle.

Let P = diametral pitch;

D = diameter of pitch circle, in inches;

N = number of teeth;

d = outside diameter:

l = length of tooth:

t =thickness of tooth;

$$P = \frac{N}{D}$$
, $D = \frac{N}{P}$, $N = PD$, $d = \frac{N+2}{P}$, $l = \frac{2.157}{P}$, $t = \frac{1.57}{P}$.

The circular pitch corresponding to any diametral pitch may be found by dividing 3.1416 by the diametral pitch; and the diametral pitch corresponding to any circular pitch may be found by dividing 3.1416 by the circular pitch.

- (a) If the diametral pitch of a gear is 6, what is the corresponding circular pitch?
- (b) If the circular pitch is 1.5708 in., what is the corresponding diametral pitch?

(a)
$$\frac{3.1416}{6}$$
 = .5236 in. (b) $\frac{3.1416}{1.5708}$ = 2.

DIAMETRAL PITCHES WITH THEIR CORRESPONDING CIRCULAR PITCHES.

Diametral Pitch, or Teeth, per Inch in Diameter.	Corresponding Circular Pitch.	Diametral Pitch, or Teeth, per Inch in Diameter.	Corresponding Circular Pitch.
1	3.1416	8	.3927
2	1.5708	9	.3491
3	1.0472	10	.3142
4	.7854	12	.2618
5	.6283	14	.2244
6	.5226	16	.1963
7	.4488	20	.1571

ELECTRICITY.

PRACTICAL UNITS.

The *volt* is the practical unit of electromotive force or electrical pressure. It is that electromotive force which will maintain a current of 1 ampere in a circuit whose resistance is 1 ohm.

The electromotive force of a Daniell's cell is 1.072 volts.

The ampere is the practical unit denoting the strength of an electric current, or the rate of flow of electricity. It is that strength of current or rate of flow which would be maintained in a circuit whose resistance is 1 ohm by an electromotive force of 1 volt.

One ampere decomposes .00009342 gram of water (H_2O) per second; or deposits .001118 gram of silver per second.

The *ohm* is the practical unit of resistance. It is that resistance which will limit the flow of an electric current under an electromotive force of 1 volt to 1 ampere.

The legal ohm is the resistance of a column of mercury 106 centimeters long and 1 square millimeter sectional area at 0° C.

One mile of pure copper wire $\frac{1}{16}$ in. in diameter has a resistance of 13.59 ohms at a temperature of 59.9° F.

To make the significance of these units clearer, take the analogous case of water flowing through a pipe under a pressure of a column of water. The force that causes the water to flow is due to the pressure or head; the flow or current of water is measured in *gallons per minute*; and the resistance that opposes or resists the flow of water is caused by the friction of the water against the inside of the pipe.

In electrotechnics, the electromotive force or electrical potential expressed in volts corresponds to the pressure or head of water; and the resistance in ohms to the friction in the pipe.

The unit that expresses the rate of transmission of electricity per second is called the ampere, while the flow of water is expressed in gallons per minute.

In either case the strength of current or rate of flow depends on the ratio between the pressure and the resistance; for, as the pressure increases, the current increases proportionately; and as the resistance increases, the current diminishes.

This relation, as applied to electricity, was discovered by Dr. G. S. Ohm, and has since been called *Ohm's law*.

Ohm's Law.—The strength of the current in any circuit is directly proportional to the electromotive force in that circuit and inversely proportional to the resistance of that circuit, i. e., is equal to the quotient arising from dividing the electromotive force by the resistance.

Let E =electromotive force in volts:

R = resistance in ohms:

C =strength of current in amperes.

Then
$$C = \frac{E}{R}$$
. $R = \frac{E}{C}$. $E = CR$.

EXAMPLE.—The electromotive force of a circuit is 110 volts, and its resistance is 55 ohms; what is the strength of current?

Solution.—
$$E=110$$
 volts. $R=55$ ohms. $C=\frac{E}{R}=\frac{110}{55}$

= 2 amperes.

The unit by which electrical power is expressed is called the *watt*. It is that *rate of doing work* when a current of 1 ampere is passing through a conductor under an electromotive force of 1 volt, and is equal to $\frac{1}{146}$ of a horsepower.

E = electromotive force in volts: Let

C = strength of current in amperes;
 R = resistance in ohms;

W = power in watts;

H. P. = horsepower.

$$\begin{split} W &= E \times C = C^2 \times R = \frac{E^2}{R}, \\ \text{H. P.} &= \frac{E \times C}{746} = \frac{C^2 \times R}{746} = \frac{E^2}{R \times 746} = \frac{W}{746}, \end{split}$$

One kilowatt is equal to 1,000 watts: sometimes abbreviated to K. W.

Watt hour is a unit of work. It is used to indicate the expenditure of an electrical power of 1 watt for 1 hour.

EXAMPLE.—The resistance of a lighting circuit is 5 ohms and the electromotive force is 110 volts. (a) What is the amount of electrical power in watts required for this current? (b) What is the equivalent horsepower?

Solution.—
$$E=110. \ R=5.$$

$$\frac{E^2}{R}=\frac{110^2}{5}=2,420 \text{ watts.}$$

$$\frac{E^2}{R\times746}=\frac{110^2}{5\times746}=3.244 \text{ H. P.}$$

Conductivity is the name given to the reciprocal of the resistance of any conductor. There is no unit by which to express conductivity.

Note.—The reciprocal of any number is unity divided by that number. Thus, the reciprocal of 2 is $\frac{1}{2}$ or .5.

CURRENTS.

RULES FOR DIRECTION OF CURRENT, ETC.

To determine the direction of a current in a conductor by the aid of a compass:

Rule.—If the current flows from the south pole over the needle to the north, the north end of the needle will point towards the west, as in Fig. 1. If the compass is placed over the conductor so that the current will flow from the south under the needle to the north, the north end of the needle will point towards the east, as in Fig. 2.

To determine the polarity of an electromagnet:

Rule. - In looking at the face of a pole (Fig. 3), if the current

flows in the direction a, of the hands of a watch, it will be a south pole, and if in the opposite direction b, it will be a north pole.

To determine the direction of an induced current in a conductor that is moving in a magnetic field:

Rule.—Place thumb, forefinger, and middle finger of right hand, each at a right angle to the other two, as shown in Fig. 4; if the forefinger shows direction of lines of force and the thumb the direction of motion of conductor, then the middle finger will show the direction of

FIG. 4.

will show the direction of the induced current.

Note.—The above rule will give the polarity of a dynamo.

To determine the direction of motion of a conductor carrying a current when placed in a magnetic field:

Rule.—Place thumb, forefinger, and middle finger of the left hand, each at a right angle to the other two, as shown in Fig. 5: if the forefinger shows the direction of the lines of force and the middle finger shows the direction of the current, then the thumb will show the direction of motion of the conductor.

Note.—The above rule will give the polarity of a motor.

DERIVED OR SHUNT CIRCUITS.

A circuit divided into two or more branches, each branch transmitting part of the current, is said to be a derived circuit; the individual branches are in multiple-arc, or parallel with each other.

To find the joint resistance of a derived circuit:

Rule.—As the conductivity of any conductor is equal to the reciprocal of its resistance, then the joint conductivity of two or more circuits in parallel is equal to the sum of the reciprocals of their separate resistances. The joint resistance of two or more circuits in parallel is equal to the reciprocal of their joint conductivity.

In a derived circuit of three branches, let r_1 , r_2 , and r_3 be the resistances of the three branches, respectively. Their joint conductivity, or the sum of the reciprocals of their resistances, is

 $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$, or $\frac{r_2 r_3 + r_1 r_3 + r_1 r_2}{r_1 r_2 r_3}$

$$\begin{array}{c} \text{Their joint resistance is, therefore,} \\ \frac{1}{\frac{r_2\,r_3+r_1\,r_3+r_1\,r_2}{r_1\,r_2\,r_3}}, \text{or} \\ \frac{r_1\,r_2\,r_3}{r_2\,r_3+r_1\,r_3+r_1\,r_2}, \end{array}$$

The joint resistance of a derived circuit with but two branches in parallel may be thus expressed:

product of their resistances sum of their resistances

EXAMPLE.—The resistances of two branches of a derived circuit are 20 and 30 ohms, respectively. Find their joint resistance.

SOLUTION .-

$$\frac{\text{product of their resistances}}{\text{sum of their resistances}} = \frac{600}{50} = 12 \text{ ohms.}$$

To find the strength of current in the separate branches of a derived circuit:

Rule.—A current is divided among the branches of a derived circuit in proportion to their conductivities—i. e., to the reciprocal of their resistances.

EXAMPLE.—If the resistances of the two branches A and B of a derived circuit are 20 and 30 ohms, respectively, and the total current in the main circuit is 60 amperes, what is the current in each? The conductivity of A is $\frac{1}{10}$ and of B $\frac{1}{30}$.

SOLUTION.—If C_1 represents the current in A, and C_2 represents the current in B,

then,
$$C_1: C_2 = \frac{1}{20}: \frac{1}{30}.$$

Hence, $\frac{C_1}{C_2} = \frac{\frac{1}{20}}{\frac{1}{30}}, \text{ or } \frac{C_1}{C_2} = \frac{30}{20} = \frac{3}{2}.$
Now. $C_1 + C_2 = 60, \text{ or } C_2 = 60 - C_1.$
Substituting, $\frac{C_1}{60 - C_1} = \frac{3}{2};$
 $C_1 = 36, \text{ and } C_2 = 24.$

WIRING.

INTERIOR WIRING.

A mil is a unit of length used in measuring the diameters of wires, and is equal to .001 in.

A circular mil is a unit of area used in measuring the cross-sections of wires, and is equal to $\frac{.7854}{100}$ sq. in.

The sectional area of a wire expressed in circular mils is equal to the square of its diameter in mils.

Let c. m. = circular mils;

C = total current in amperes;

c = current in amperes to each lamp;

n = number of lamps in multiple:

v = volts lost in line:

r = resistance per foot of wire:

d = distance from dynamo to lamps.

The resistance of 1 ft. of commercial copper wire, 1 mil in diameter, at a temperature of 75° F., is 10.8 ohms.

A 16 c. p. (candlepower) 110-volt lamp takes about .5 ampere; a 16 c. p. 55-volt lamp takes about 1 ampere.

All calculations for size of wire must be checked by comparing with a table of safe carrying capacity (see table on pages 238 and 239), and the current value there given must not be exceeded.

To find the size of wire for 110-volt circuit with 16 c. p. lamps:

$$r = \frac{v}{n \, d}.$$

For large cables, c. m. = $\frac{10.8 n d}{v}$.

EXAMPLE.—Find the size of wire necessary for a circuit supplying current to 50 110-volt 16 c. p. lamps, 300 ft. from the dynamo, allowing a loss of 5% in line.

Solution.—Volts at dynamo =
$$\frac{110}{.95}$$
 = 115.8.

Volts lost in line =
$$115.8 - 110 = 5.8 = v$$
.

Then,
$$r = \frac{v}{n d} = \frac{5.8}{50 \times 300} = .000386$$
 ohm per ft.,
= .386 ohm per 1,000 ft.

The nearest size of wire, as given in the table on page 238, is No. 6 B. & S., and its current capacity is 35 amperes; therefore it is safe.

To find the size of wire for a 55-volt circuit with 16 c. p. lamps:

$$r = \frac{v}{2 n d}.$$

For large cables, c. m. = $\frac{21.6 \, n \, d}{v}$.

EXAMPLE.—What size of wire should be used for supplying current to 75 16 c. p. lamps on a 55-volt circuit, the distance from dynamo being 230 ft., and line loss, 4 volts?

SOLUTION .-

$$r = \frac{v}{2 n d} = \frac{4}{2 \times 75 \times 230} = .000116 \text{ ohm per ft.,}$$

= .116 ohm per 1,000 ft.

By referring to the table, (page 238) the nearest wire is found to be No. 1 B. & S., and its carrying capacity is greater than the current (75 amperes) that it is to conduct.

To find the size of wire for any circuit on a 2-wire system:

In general,
$$r = \frac{v}{C \times 2 \, d};$$
 or,
$$\text{c. m.} = \frac{10.8 \times 2 \, d \times C}{v}.$$

EXAMPLE.—What wire should be used to carry 450 amperes a distance of 600 ft., the allowable drop being 6%, and the E. M. F. at the end of the circuit 115 volts?

SOLUTION.—Volts at dynamo =
$$\frac{115}{.94}$$
 = 122.3.
Volts lost in line = 7.3.
Then, c. m. = $\frac{10.8 \times 2 \times 600 \times 450}{7.3}$ = 798,900.

Comparing this number with the table on page 239, giving current capacity of cables, it will be seen that it is within the

prescribed limits.

These formulas may be used for feeders, mains, branch mains, service mains, and inside wiring on continuous-current circuits, and for secondary wiring on alternating systems.

To find the size of wire for a 110-volt circuit, 3-wire system, 16 c. p. lamps:

$$r = \frac{4v}{nd}$$
 for each wire.

For large cables,

c. m. =
$$\frac{2.7 n d}{v}$$
 for each wire.

In checking for carrying capacity, remember that the wire carries only one-half the current that would be used on a 2-wire system, as the voltage between the outside conductors is double the voltage at the terminal of 1 lamp.

EXAMPLE.—What should be the size of the conductors for a 3-wire system, when 132 110-volt, 16 c. p. lamps are installed at a distance of 210 ft. from the source of supply, the loss being 4 volts?

SOLUTION.—

$$r = \frac{4 \times 4}{132 \times 210} = .000577$$
 ohm per ft.,
= .577 ohm per 1,000 ft.

This would call for a wire between Nos. 7 and 8. The

current will be $\frac{132 \times .5}{2}$ = 33 amperes; but this is too much for the wire to carry, and No. 6 B. & S. wire should be used,

for the wire to carry, and No. 6 B. & S. wire should be used, notwithstanding the somewhat less drop in volts that will result.

For continuous-current circuits, 5% loss is usually allowed, with full current-from the dynamo to the lamps. For long distances a larger line loss may be allowed, if the dynamo is wound for that loss.

DIMENSIONS, WEIGHT, AND RESISTANCE OF COPPER WIRE

DIMENSIONS, WEIGHT, AND RESISTANCE OF COPPER WIRE.								
Gauge.	ter in (d) 001 in.	Longini		se at ns per	Current. Amperes.		Gauge.	
B. & S. G8	Diameter Mils (d) 1 mil = .00	Circular Mils (d²).	Lb. per 1,000 Ft.	Ft. per Lb.	Resistance 75° F. Ohms 1,000 ft.	Exposed.	Concealed.	B. & S. Ga
0000	460,000	211,600.0	639.33	1.56	.049	300	175	0000
000	409,640	167,805.0	507.01	1.97	.062	245	145	000
00	364.800	133,079.0	402.09	2.49	.078	215	120	00
0	324.950	105,592.0	319.04	3.13	.098	190	100	0
1	289.300	83,694.0	252.88	3.95	.124	160	95	
1 2 3	257.630	66,373.0	200.54	4.99	.156	135	70	1 2 3 4 5 6 7 8 9
	229,420	52,634.0	159.03	6.29	.197	115	60	3
4	204.310	41,742.0	126.12	7.93	.248	100	50	4
5	181.940	33,102.0	100.01	10.00	.313	90	45	5
6	162.020	26,250.0	79.32	12.61	.395	80	35	6
7	144.280	20,817.0	62.90	15.90	.498	67	30	7
8	128.490	16,509.0	49.88	20.05	.628	60	25	8
9 10	114.430 101.890	13,094.0 10,381.0	39.56 31.37	25.28 31.88	.792	40	20	10
11	90.742	8,234.1	24.88	40.20	1.260	40	20	11
12	80.808	6,529.9	19.73	50.69	1.589	30	15	12
13	71.961	5,178.4	15.65	63.91	2.003	50	10	13
14	64.084	4,106.8	12.41	80.59	2.526	22	10	14
15	57.068	3,256.7	9.83	101.65	3.186		10	15
16	50.820	2,582.9	7.80	128.17	4.017	15	5	16
17	45.257	2,048.2	6.19	161.59	5.066			17
18	40.303	1,624.3	4.91	203.76	6.388	10		18
19	35.890	1,288.1	3.89	257.42	8.055			19
20	31.961	1,021.5	3.08	324.12	10.158	5		20

CARRETTEC	CAPACITY OF	CARTES

		rent. eres.		Current. Amperes.	
Area. Circular Mils.	Exposed.	Concealed.	Area. Circular Mils.	Exposed.	Concealed.
200,000 300,000 400,000 500,000 600,000 700,000 800,000 1,000,000 1,100,000	299 405 503 595 682 765 846 924 1,000 1,075	200 272 336 393 445 494 541 586 630 673	1,200,000 1,300,000 1,400,000 1,500,000 1,600,000 1,700,000 1,900,000 2,000,000	1,147 1,217 1,287 1,356 1,423 1,489 1,554 1,618 1,681	715 756 796 835 873 910 946 981 1,015

To find the size of wire on primary circuits for alternating system:

c. m. =
$$\frac{10.8 \times 2 d \times C^1}{v}$$
; $\tau = \frac{v}{C^1 \times 2 d}$

 C^1 = the total current in amperes on primary circuit, and may be determined by dividing the total current on the secondary circuit by the product of the ratio and efficiency of conversion.

The ratio is generally 20 to 1 on a 1,000-volt apparatus when using 52-volt lamps, and 10 to 1 when using 100- to 110-volt lamps.

The efficiency of conversion can be taken as 95% in ordinary transformers.

EXAMPLE.—If the loss is 5%, find the size of wire necessary on a 1,000-volt primary circuit when the distance between the dynamo and transformer is 2,000 ft., and the dynamo is supplying current for 500 16 c. p. 52-volt lamps.

Volts at dynamo =
$$\frac{1,000}{.95}$$
 = 1,052, nearly.
Volts lost in line = 52.

Assume the lamp efficiency to be 3.6 watts per c. p. Then. since the product of amperes and volts gives watts.

Current to each lamp =
$$\frac{3.6 \times 16}{52}$$
 = 1.11 amperes.

Current on secondary =
$$1.11 \times 500 = 555$$
 amperes.

Total current on primary is $\frac{555}{.95 \times 20} = 29.21$ amperes.

Therefore,

Therefore,
$$\frac{10.8 \times 2 d \times C^{1}}{c} = \frac{10.8 \times 4.000 \times 29.21}{52} = 24,267.$$
And $r = \frac{v}{C^{1} \times 2 d} = \frac{52}{29.21 \times 4.000} = .000445$ ohm per ft., or

And
$$r = \frac{v}{C^1 \times 2d} = \frac{52}{29.21 \times 4,000} = .000445$$
 ohm per ft., or .445 ohm per 1,000 ft. This gives No. 6 B. & S. See page 238.

For alternating systems under ordinary conditions, 5% loss at full load from dynamo to transformer on primary circuit is a maximum, although some dynamos are specially wound for 10% loss. A loss of from 1% to 2% may be allowed on secondary circuits from transformer to lamps,

INCANDESCENT LAMPS.

Let c = current in amperes to each lamp;

E =electromotive force in volts;

$$R = \frac{E}{c} = \text{resistance of lamp when hot;}$$

c.p. = candlepower of lamp;

W. per c. p. = watts per c. p. (often called lamp efficiency).

W. per c. p.
$$=\frac{c \times E}{c. p}$$
.

The number of candles per electrical H. P. = $\frac{746}{\text{W. per c. p.}}$.

$$e = \frac{W. \text{ per c. p.} \times \text{c. p.}}{E}$$

As the commercial efficiency of good dynamos is about 90%, the calculations of candles per electrical H. P. must be multiplied by .90 to give the number of candles per mechanical H. P.

LAMP EFFICIENCIES.

3.1 watts per c. p., or 12 lamps, 16 c. p., to 1 mechanical H. P. 3.6 watts per c. p., or 10 lamps, 16 c. p., to 1 mechanical H. P.

4.0 watts per c. p., or 8 lamps, 16 c. p., to 1 mechanical H. P.

NOTE.—Lamps of an efficiency of 3.1 watts per c. p. should not be used where the voltage averages, for any length of time, more than 2% high; lamps of 3.6 watts per c. p. should not be used where the voltage averages more than 4% high; and lamps of an efficiency of 4 watts per c. p. should be used where the regulation of the plant receives little or no attention. If these cautions are not followed, the life of the lamp will be greatly diminished.

Size of Wire for Arc-Light Circuits.—For ordinary distances, or small currents, use No. 8 B. & S. wire. For longer distances, or large currents, use No. 6 B. & S. wire.

BELL WIRING.

The simple bell circuit is shown in Fig. 1, where p is the push button, b the bell, and c, c the cells of the battery con-

nected up in series. When two or more bells are to be rung from one push button, they may be joined up in parallel across the battery wires as in Fig. 2 at a

and b, or they may be arranged in series as in Fig. 3. The battery B is indicated in each diagram by short parallel lines,

this being the conventional method. In the parallel arrangement of the bells, they are independent of each other, and the failure of one to ring would not affect the others; but in the

series grouping all but one bell must be changed to a singlestroke action, so that each impulse of current will produce only one movement of the hammer. The current is then

interrupted by the vibrator in the remaining bell, the result being that each bell will ring with full power. The only change necessary to

produce this effect is to cut out the circuit-breaker on all but one bell by connecting the ends of the magnet wires directly

to the bell terminals.

When it is desired to ring a bell from one of two places some distance apart, the wires may be run as shown in Fig. 4. The pushes p, p' are located at the required points, and the battery and bell are put in series with each other across the wires joining the pushes.

A single wire may be used to ring signal bells at each end of a line, the connections

Fig. 4.

being given in Fig. 5. Two batteries are required, B and B', and a key and bell at each station. The keys k, k' are of the double-contact type, making connections normally between

bell b or b' and line wire L. When one key, as k, is depressed, a current from B flows along the wire through the upper contact of k' to bell b' and back through ground plates G', G.

When a bell is intended for use with burglar-alarm apparatus, a constant-ringing attachment may be introduced, which closes the bell circuit through an extra wire as soon as

the trip at door or window is disturbed. In the diagram, Fig. 6, the main circuit, when the push p is depressed, is through the automatic drop a by way of the terminals a, b to the bell and battery. This

current releases a pivoted arm which, on falling, completes the circuit between b and c, establishing a new path for the current by way of e, independent of the push p.

For operating electric bells, any good type of open-circuit battery may be used. The Leclanché cell is largely used for this purpose, also several types of dry cells.

ANNUNCIATOR SYSTEM.

The wiring diagram for a simple annunciator system is shown in Fig. 1. The pushes 1, 2, 3, etc. are located in the various rooms, one side being connected to the battery wire

b, and the other to the leading wire l in communication with the annunciator drop corresponding to that room. A battery of 2 or 3 Leclanché cells is placed at B in any convenient location. The size of wire used throughout may be No. 18 annunciator wire.

A return-call system is illustrated in Fig. 2, in which there is one battery wire b, one return wire r, and one leading wire l, l_2 , etc.

for each room. The upper portion of the annunciator board is provided with the usual drops, and below these are the

return-call pushes. These are double-contact buttons, held normally against the upper contact by a spring. When in this position, the closing of the circuit by the push button in any room, such as No. 4, rings the office bell and releases No. 4 drop, the path of the current in this case being from

push 4 to a-c-d-e-f-g-B-h-bback to the push button. On the return signal being made by pressing the button at the lower part of the annunciator board, the office-bell circuit is broken at d, and a new circuit formed through k as follows: From the battery B to g-m-r-n-o-a-c-k-p to battery, the room bell being in this circuit. A general fire-alarm may be added to this system, consisting of an automatic clockwork apparatus for closing all the room-bell circuits at once, or as many at a time as a battery can ring. When this system is

installed, the battery wire should be either No. 14 or No. 16. Four or five Leclanché cells are usually required in this case.

It will be seen that the connections are so arranged that the room bell will ring when the push in that room is pressed. If this be not desired, a double-contact push may be substituted, so that the room-bell circuit is broken at the same time that the circuit is made through the annunciator. This double push should be so connected that the circuit is normally complete through the bell, the leading wire being connected to the tongue and the battery wire being connected to the second contact point, which is normally out of circuit.

EXTRACT FROM THE REGULATIONS OF THE UNDER-WRITERS' ASSOCIATION.

Incandescent Wires.—Conducting wires, carried over or attached to buildings, must be (a) at least 7 ft. above the highest point of flat roofs, and (b) 1 ft. above the ridge of pitch roofs; (c) when in proximity to other conductors likely to divert any portion of the current, they must be protected by guard irons or wires, or a proper additional insulation, as the case may require.

For entering buildings, (a) wires with an extra-heavy waterproof insulation must be used; (b) they must be protected by drip loops; (c) also protected from abrasion by awning frames; (d) be at least 6 in apart; (e) the holes through which they pass in the outer walls of such buildings must be bushed with a non-inflammable, waterproof, insulating tube, and (f) should slant upward toward the inside.

(a) Wires must never be left exposed to mechanical injury, or to disturbance of any kind. (b) Wires must not be fastened by metallic staples. (c) When wires pass through walls, floors, partitions, timbers, etc., glass tubing, or so-called "floor insulators," or other moisture-proof, non-inflammable insulating tubing must be used. (d) At all outlets to and from cut-outs, switches, fixtures, etc., wires must be separated from gas pipes or parts of the building by porcelain, glass, or other non-inflammable insulating tubing, (e) and should be left in such a way as not to be disturbed by the plasterers. (f) Wires of whatever insulation must not in any case be taped, or otherwise be fastened, to gas piping. (g) If no gas pipes are installed at the outlets, an approved substantial support must be provided for the fixtures.

In crossing any metal pipes, or any other conductor, (a) wires must be separated from the same by an air space of at least ½ in., where possible, and (b) so arranged that they cannot come in contact with each other by accident. (c) They should go over water pipes, where possible, so that moisture will not settle on the wires.

In unfinished lofts, between floors and ceilings, in partitions, and other concealed places, wires must (a) be kept free of contact with the building; (b) be supported on glass,

porcelain, or other non-combustible insulators; (c) have at least 1 in. clear air space surrounding them; (d) be at least 10 in. apart, when possible; and (e) should be run singly on separate timbers or studding. (f) When thus run in perfectly dry places, not liable to be exposed to moisture, a wire having simply a non-combustible insulation may be used.

Soft rubber tubing is not desirable as an insulator.

Care must be taken that the wires are not placed above each other in such a manner that water could make a cross-connection.

On all loops of incandescent circuits, safety catches must be used on both sides of the loop, and switches on such loops should be double-poled.

Wires must not be fished (a) for any great distance, and (b) only in cases where the inspector can satisfy himself that the above rules have been complied with. (c) Twin wires must never be employed in this class of concealed work.

Dynamo Machines.—Dynamo machines must be located in dry places, not exposed to flyings or easily combustible material, and insulated upon wooden foundations. The machines must be provided with devices that shall be capable of controlling any changes in the quantity of the current; and if the governors are not automatic, a competent person must be in attendance near the machine whenever it is in operation.

Each machine must be used with complete wire circuits; and connections of wires with pipes, or the use of circuits in any other method, are absolutely prohibited.

The whole system must be kept insulated, and tested every day with a magneto for ground connections in ample time before lighting, to remedy faults of insulation, if they are discovered; and proper testing apparatus must in each case be provided. This applies to both central station and isolated plants.

Testing circuits for grounds with a battery and bell is not considered a reliable test.

Preference is given to switches constructed with a lapping connection, so that no electric arc can be formed at the switch when it is changed; otherwise the stands of switches, where powerful currents are used, must be made of some incombustible substances that will withstand the heat of the are when the switch is changed.

Motors.—Wires for motors should be run exactly as for lamps on similar circuits.

On low-tension circuits, where motors are run in multiple, safety catches must be used on each side of the circuit.

On high-tension circuits the same restrictions apply as for arc lamps, and suitable cut-outs must be provided.

Motors must be treated as dynamos as regards insulation, flyings, dampness, etc.

Note.—If the regulations of the Underwriters' Association are not followed in wiring buildings, the wiring is liable to be condemned by the Insurance Inspectors and the policy canceled.

WIRE TABLES.
WEIGHT OF UNDERWRITERS' LINE WIRE, INSULATED.

No. B. & S.	Pounds per 1,000 Feet.	Feet per Pound.
0000	800	1.25
000	666	. 1.50
00	500	2.00
0	363	2.75
1	313	3.20
2	250	4.00
3	200	5.00
4	144	6.9
5	125	8.0
6	105	9.5
7	87	11.5
. 8	69	14.5
10	50	20.0
12	31	32.0
14	22	45.0
16	14	70.0
18	11	90.0

EQUIVALENT SECTIONAL AREA OF WIRES, B. & S. GAUGE.

Gauge No.	No. of Wires. Gauge No.	Gauge No.					
0000	2- 0	4- 3	8- 6	16- 9	32-12	64-15	
000	2- 1	4- 4	8- 7	16-10	32-13	64-16	
00	2- 2	4- 5	8-8	16-11	32-14	64-17	1 and 3
0	2-3	4- 6	8-9	16-12	32-15	64-18	2 and 3
1	2-4	4-7	8-10	16–13	32-16		3 and 5
2	2- 5	4-8	8-11	16-14	32-17		4 and 6
3	2- 6	4- 9	8-12	16-15	32-18		5 and 7
4	2- 7	4-10	8-13	16–16			6 and 8
5	2-8	4-11	8-14	16-17			7 and 9
6	2- 9	4-12	8-15	16-18			8 and 10
7	2-10	4-13	8-16				9 and 11
8	2-11	4-14	8-17				10 and 12
9	2-12	4-15	8-18				11 and 13
10	2-13	4-16					12 and 14
11	2-14	4-17					13 and 15
12	2-15	4-18					14 and 16
13	2-16						15 and 17
14	2-17						16 and 18
15	2-18						

The above table indicates the number of smaller wires required to give a sectional area equal to one larger size wire, the figures between the horizontal lines corresponding to each other. For example: It requires two wires, No. 0, or 4 wires, No. 3, etc., to give a sectional area equal to 1 wire, No. 0000. Again: it requires two wires, No. 13, or 4 wires, No. 16; or 2 wires, 1 No. 12 plus 1 No. 14, to give a sectional area equal to 1 No. 10.

COMPARATIVE SIZES OF WIRES, B. & S. AND BIRMINGHAM GAUGES,

Diameter. Inches.	B. & S.	Birmingham
.460	0000	-
.454		0000
.425		000
.4096	000	
.380		00
.3648	00	
.340		0
.3249	0	
.3000		1
.2893	1	
.284		2
.259		3
.2576	2	
.238		4
.2294	3	
.22		5
.2043	4	
.203		. 6
.1819	5	
.18		7
.165		8
.162	6	
.148		9
.1443	- 7	
.134		10
.1285	8	
.12		11
.1144	9	
.109		12
.1019	10	
.095		13
.0907	11	14

COMPARATIVE SIZES OF WIRES, B. & S. AND BIRMINGHAM GAUGES—(Continued).

Diameter, Inches.	B. & S.	Birmingham.
.0808	12	
.0720	13	15
.0650		16
.0641	14	
.0580		17
.0571	15	
.0508	16	
.0490		18
.0453	17	
.0420		19
.0403	18	
.0359	19	

Note.—B. & S. gauge is generally used in America.

COMPARISON OF PROPERTIES OF ALUMINUM AND COPPER.

	Aluminum.	Copper.
Conductivity (for equal sizes)	.54 to .63	1. 1.
Weight (for equal length and resistance)	.48	1.
Price (per pound) Aluminum, 29c.; Copper, 16c. (bare wire) Price (equal length and resistance,	1.81	1.
bare line wire)	-,868	1.
Temperature coefficient per degree F. Resistance of mil-foot (20° C.) Specific gravity Breaking strength (equal sizes)	.002138 18.73 2.5 to 2.68 1.	

RESISTANCE OF PURE COPPER WIRE.

No. B. & S.	Resistance at 75° F.								
	R. Ohms per 1,000 Feet.	Ohms per Mile.	Feet per Ohm.	Ohms per Pound.					
4-0	.04904	.25891	20,392.90	.00007653					
3-0	.06184	.32649	16,172.10	.00012169					
00	.07797	.41168	12,825.40	.00019438					
0	.09827	.51885	10,176.40	.00030734					
1	.12398	.65460	8,066.00	.00048920					
2	.15633	.82543	6,396.70	.00077784					
3	.19714	1.04090	5,072.50	.00123700					
4	.24858	1.31248	4,022.90	.00196660					
5	.31346	1.65507	3,190.20	.00312730					
6	.39528	2.08706	2,529.90	.00497280					
7	.49845	2.63184	2,006.20	.00790780					
8	.62849	3.31843	1,591.10	.01257190					
9	.79242	4.18400	1,262.00	.01998530					
10	.99948	5.27726	1,000.50	.03170460					
11	1.26020	6.65357	793.56	.05054130					
12	1.58900	8.39001	629.32	.08036410					
13	2.00370	10.57980	499.06	.12778800					
14	2.52660	13.34050	395.79	.20318000					
15	3.18600	16.82230	313.87	.32307900					
16	4.01760	21.21300	248.90	.51373700					
17	5.06600	26.74850	197.39	.81683900					
18	6.38800	33.72850	156.54	1.29876400					
19	8.05550	42.53290	124.14	2.06531200					
20	10.15840	53.63620	98.44	3.28437400					

CONNECTIONS FOR DYNAMO-ELECTRIC MACHINES.

In the diagrams showing the connections of dynamoelectric machines, the heavy coils represent the series winding on the field magnets through which the entire current of the machine passes; the lighter coils represent the shunt winding on the field magnets through which only part of the main current passes.

Lamps connected in series.

Lamps connected in multiplearc or parallel.

Edison three-wire system.

DYNAMOS AND MOTORS.

MOTOR CIRCUITS.

To find the size of wire on stationary motor circuits: Let c. m. = circular mils:

e = E. M. F. of motor in volts;

v = loss of volts in line;

d = distance from generator to motor in feet;

k =efficiency of motor;

10.8 ohms is the resistance of 1 ft. of commercial copper wire 1 mil in diameter.

c. m. =
$$\frac{\text{H. P. of motor} \times 746 \times 2d \times 10.8}{\text{ev k}}$$
.

APPROXIMATE MOTOR EFFICIENCY.

 $\frac{3}{2}$ to $1\frac{1}{2}$ H. P. inclusive = 75% efficiency.

3 to 5 H. P. inclusive = 80% efficiency.

 $7\frac{1}{2}$ to 10 H. P. inclusive = 85% efficiency.

15 H. P. and upwards = 90% efficiency.

DSC 620IN8M 620IN8M INTERNATIONAL CORRESPONDEN MECHANICS' POCKET MEMORANDA\$7TH ED\$S 698792 1904 2 ADDED: 01 001 3W ENX

ENX

002 3M

02

PAGE 1 END

SCHOOLS, SCRANTON, PA. tANTON 4-33907

780603

Under ordinary circumstances, 10% loss from generator to motor is a maximum on stationary motor circuits.

EXAMPLE.—What is the size of wire necessary for a circuit on which a 10 H. P. 500-volt motor is running, when the distance between the motor and generator is 2,000 ft. and the loss is 5½?

Solution.—Volts at generator,
$$\frac{500}{.95} = 526$$
, nearly.

Volts lost in line, 526 - 500 = 26.

In the table on page 253, the approximate efficiency of a 10 H. P. motor is given as 85%.

c. m. =
$$\frac{10 \times 746 \times 4,000 \times 10.8}{500 \times 26 \times .85}$$
 = 29,165.

In the table on page 238, the nearest size of wire corresponding to this area is No. 6 B. & S. gauge.

The approximate weight and resistance per mile of round bare wire when d is the diameter in mils, are, for copper wire, $\frac{d^2}{62.5}$ lb. and $\frac{56,970}{d^2}$ ohms; for iron wire, $\frac{d^2}{72}$ lb. and $\frac{380,060}{d^2}$ ohms.

Copper wire is approximately 17 times the weight of an iron wire of the same diameter.

In determining the size of wire to be used for inside work, after finding the c. m., always refer to the table on page 238, and see that the wire obtained by the formula is sufficiently large to carry the current; if not, use larger wire, regardless of per-cent. loss. For pole-line construction, never use wire smaller than No. 5 ½, & S. gauge.

DYNAMO DESIGN.

The fundamental principle of dynamo design is expressed by the formula

 $E = \frac{NCn}{108 \times 60},$

in which

E = electromotive force in volts given by the dynamo;

N = number of lines of force used to magnetize the armature; C = number of conductors in a bipolar machine, measured

all round the outside of the armature (whether in one

or more layers), or in a multipolar machine, as measured from a point opposite one north pole to a corresponding point opposite the next succeeding north pole;

n = number of revolutions per minute of the armature.

For example, a 2-pole dynamo has 2,000,000 lines of force passing from the north pole through the armature to the south pole; there are 200 conductors on the surface of the armature, and the speed is 1,500 rev. per min. The electromotive force generated will then be

$$E = \frac{2,000,000 \times 200 \times 1,500}{100,000,000 \times 60} = 100 \text{ volts.}$$

If a 4-pole dynamo were used, having a 4-circuit armature and 4 sets of brushes, with 1,000,000 lines of force passing through any one pole piece, then the total number would be 2,000,000, because the same lines of force pass into a south pole that emerge from a north pole. With the same armature as above, the number of conductors to be counted is only 100, as taken from one north pole to the next, and the electromotive force is

$$E = \frac{2,000,000 \times 100 \times 1,500}{100,000,000 \times 60} = 50$$
 volts.

For determining the number of lines of force required in a specific case, the above formula may be reversed, and we have $N = \frac{E \times 10^8 \times 60}{C_R}.$

These lines of force have a circuit to traverse composed of three different paths. One of these is through the field magnet and yoke M, Fig. 1; next, through a double air gap G; and, lastly, through the armature core A. A given density of lines of force may not be exceeded, this limit being for ordinary cast iron about 50,000 lines per square inch; for wrought-iron forgings or cast steel, about 90,000; and for soft sheet iron, 110,000.

Fig. 1.

The ratio of magnetization to magnetizing force is called

FIG. 2.

the permeability. The permeability of air is very low, the intensity of magnetization being a direct measure of the magnetizing force required; therefore, the air gap is usually made short.

In order to drive the lines of force through the magnetic circuit, magnetizing coils are wound on the cores at M,M. A certain number of ampere-turns will be required, depending on the density of the lines of force and the permeability of the different portions of the circuit. The number of turns may be found by taking a convenient current value, and dividing the ampere-turns by this. Reference to a wire table will then determine whether the resistance of the wire will be such that the terminal E. M. F. of the machine will supply the proper current. A margin should be allowed for regulating, and for the increase in resistance due to rise in temperature, which is about .4% for every degree centigrade, or .222% for every degree Fahrenheit above 75° F.

In the saturation curves of Fig. 2 are represented graphically the different values of the induction ($\bf B$) in lines of force per square inch, corresponding to the magnetizing force expressed in ampere-turns per inch of length of circuit. Thus, to send 70,000 lines of force through a cast-steel core 1 sq. in. in cross-sectional area, would require about 30 ampere-turns for every inch in length of core. The 30 ampere-turns might be obtained by using a coil of 30 turns carrying 1 ampere, or 300 turns of $\frac{1}{10}$ ampere, etc. The number of lines of force N for any particular case being known, and also the allowable density $\bf B$, which will vary somewhat with different samples

of iron, the cross-sectional area $A = \frac{N}{\mathbf{B}}$.

The ampere-turns to be added to the magnetizing coils to overcome the resistance of the air gap is $\,$

A. T. =
$$\frac{\mathbf{H} \times l}{3.192}$$
,

where **H** = number of lines of force per square inch;

and l = length of air gap (the two sides added together) in inches, usually a fraction.

It is necessary, in calculating the ampere-turns for the field circuit, to allow for leakage of lines of force through the

surrounding air, as the total number generated does not pass through the armature core. This leakage may amount to 30% or 40% of the whole, but is much less in well-designed machines.

For example, a bipolar dynamo has magnet cores having a mean length, with pole pieces, of 10 in. each; the yoke of the magnet is 13 in.; air gap, $\frac{3}{16}$ in. each side; armature core, 10 in. The magnetic density in the core is 85,000; air gap, 46,000; yoke, 65,000; armature core, 90,000 lines of force per square inch. If the fields are wrought-iron forgings, and the armature is built up of soft sheet iron, then the ampere-turns necessary will be:

1	Length.	В	AT. per In.	Ampere- Turns.
Magnet cores		85,000	44	880 .
Yoke		65,000	16	208
Armature		90,000	40	400
Air gap	$\frac{3}{8}$ in.	46,000		5,425
Total ampere-turn	ıs			6,913

In determining the size of wire to be used in the armature winding, a certain density of current may be assumed as the limit. This is usually expressed in circular mils or thousandths of an inch per ampere. For most purposes of design, a density of 600 circular mils per ampere may be allowed. In estimating the current passing through the armature, it must be remembered that the current of the outside circuit divides on reaching the armature, and passes through it along two paths in parallel with each other.

FAULTS OF DYNAMOS.

Reversal of Field.—Run the machine up to speed, and hold a small compass near each pole piece in succession. Their polarity should alternate all the way round.

Failure to Build Up.—This is probably due to reversal of shunt connections. Rock the brushes around until any one set occupies a position formerly occupied by the next set. If this should remedy the trouble, and such position is inconvenient, move them back and reverse connections of shunt

windings. If the failure of machine is due to want of residual magnetism, send a current from some external source through the fields. If it is due to a broken circuit, each coil may be tested separately with a battery and galvanometer or low-reading Weston voltmeter. Failure to generate may be due to the brushes being out of the neutral plane, which may be tested by moving them into different positions.

Heating.—This may be caused by a short-circuited armature coil. Allow the machine to cool, then run for a few minutes with no load, and stop. The defective coil will be found to be much hotter than the rest. It should be marked, and the armature taken out, when the coil may be rewound or otherwise repaired. If the heating is even, the load may be excessive and should be reduced. The effect may be due to eddy currents in the armature core, but this is a question of design in the first instance.

Sparking at Commutator .- If this be due to overload, the sparking cannot be cured except by reducing the load. The trouble may be due to improper position of brushes. Move the rocker-arm to one side or the other to determine this. If copper brushes (tangential) are used, they may be unevenly spaced round the commutator: each set of brushes should have the same relative position with regard to the respective pole tips. Sparking may be caused by an uneven commutator, in which case it should be smoothed with sandpaper (never emery) or turned down in the lathe. A broken connection at the commutator leads will produce flashing at each revolution, and one of the bars will show a burn extending nearly across it. The loose wire should be secured, or if broken, the commutator bars may be connected together with a piece of wire or a drop of solder as a temporary repair. As soon as possible a new coil should be put in. Sparking may also occur, in a multipolar machine, from the wearing away of the bearings, which produces eccentricity of the armature with respect to field, and consequent unequal magnetic induction at different points. A slight sparking at the brushes of the machine is not detrimental.

OUTPUT AND EFFICIENCY OF MOTORS.

A dynamo, when supplied with current from an external source, becomes a motor, turning the electrical energy into mechanical energy. The ratio between these two quantities, that is, between the input and output, determines the efficiency of the motor. The input may be found by measuring the current C with an ammeter, and the voltage E with a voltmeter, their product giving the power supplied in watts, W = CE. This quantity, divided by 746, gives the electrical

horsepower, or E. H. P. $=\frac{W}{746}$.

The output is measured by means of a Prony brake (see figure). The motor pulley P is clamped between two blocks

of wood B, B, their pressure being regulated by the thumbscrews N, N, on the long bolts which hold them together. The lower block is extended to form an arm A of convenient length, and furnished with a sharp lagscrew C at the end. The lagscrew presses on the platform of a set of scales S, whereby its pressure may be determined. A counterbalance at W neutralizes the weight of the arm. When the pulley is revolved in the direction shown, the pressure on the scale will indicate the torque, or twisting power, developed, which is expressed as the product of the pressure on the scale into the distance between the center of pulley and the point of the screw. If the length of arm $R=2\,\mathrm{ft.}$, and the pressure is 50 lb., the torque $T=100\,\mathrm{ft.-lb.}$ The horsepower may be determined by the following formula:

H. P. = $\frac{2 \times 3.1416 \, TS}{33.000}$,

in which S is the speed of motor in revolutions per minute.

APPLICATIONS OF ELECTRIC MOTORS.

The same varieties of field and armature connections are used for motors as for dynamos, namely, series, shunt, and compound, and each type has distinguishing characteristics. The series motor is especially suitable for use in cases where a very high starting torque is required in order to obtain rapid acceleration under load, as, for instance, in street-railway work. Torque may be defined as the reaction of the current in the armature or moving part against the magnetic lines of force in the field magnets or stationary part. Strength of field is obtained by the current circulating through the magnet coils: consequently, the torque in a series motor will be a maximum when the current passing through is a maximum, as the same amount flows through armature and field. The opposition to the flow of current is the resistance of the circuit and the counter E. M. F. of the armature. When the current is applied, its value is determinable by Ohm's law for the first moment, supposing self-induction to be eliminated. The resistance of a series motor is usually so low that an additional resistance must be used at starting in order to prevent an excessive flow of current; but, as soon as the armature begins to revolve, the counter E. M. F. opposes and cuts down the current, and, consequently, the torque. The speed will continue to increase and the torque to decrease until the mechanical resistance to rotation balances the torque. If the motor is running light, the speed will rise continually, the counter E. M. F. will also increase and cut down the current, and the consequent reduction of field strength will require a still higher speed in order to develop the necessary counter E. M. F., the final result being, probacily, the bursting of the armature. The speed of a series motor under a constant load may be regulated by the somewhat wasteful method of introducing a resistance in series to reduce the speed, and by cutting out or shunting part of the field coils, to increase it. When two motors are used, they may be put in series at starting and connected in parallel for higher speeds. The series motor is well adapted for electric cranes, because it will automatically regulate its speed to the weight to be raised, exerting a very powerful torque at low speed for a heavy load.

The shunt motor will give a nearly constant speed for any variation in load, as long as the potential of current supply (the applied E. M. F.) is constant. This condition produces a constant field, as the shunt winding is directly across the main leads, and the speed of the motor will then be such that the difference between the E. M. F. of supply and the counter E. M. F., divided by the resistance of the armature, will be equal to the current passing through the armature. A change in the current will then produce but a relatively small change in the required counter E. M. F. of the motor, and the speed will only vary to that extent. As the load is put on, the motor tends to slow down; but this, by decreasing. the counter E. M. F., allows more current to flow, thereby producing more torque to overcome the added mechanical resistance. Change of speed may be produced by varying the strength of the magnetic field, the weaker the field the higher the speed. If the load is constant, the torque will be decreased, but, if the load be correspondingly increased, the torque will remain nearly constant. Considerable weakening of the field is inadvisable, as it will cause destructive sparking at the commutator. The theoretically perfect method of speed regulation for a shunt motor is to provide a constant and independent field, and effect change of speed by varying the applied E. M. F. at the armature terminals without insertion of extra resistance. In this case the torque will always be proportional to the load, and the efficiency will be constant and independent of speed and torque. In the operation of such a system, certain complications are introduced, inasmuch as it is necessary to install in connection with each motor a special dynamo with variable field, and this condition may therefore constitute a serious objection when the first cost of the plant is required to be low.

A differential compound winding may be used when a more nearly constant speed is wanted. The series turns on the field magnets are so connected as to oppose the shunt turns, and when an increase of load tends to cut down the speed, the additional current through the series turns weakens the field slightly, so that the same speed as before is required to generate the lower counter E. M. F.

Shunt motors are especially useful for machine tools, which require a constant speed irrespective of load, and may also be used on printing presses and similar machines where the load is more nearly uniform. When a variation in speed with load is immaterial, a cumulative compound winding may be employed, in which the series turns act with the shunt, thereby increasing the torque at starting, and affording some of the characteristics of both the shunt and series windings.

BATTERIES.

The simple primary battery consists of two elements, the anode, which is usually zine, and the cathode, which may be carbon, both immersed in an exciting liquid called the electrolyte. The chemical action incident to the generation of current dissolves the zinc and liberates free hydrogen at the cathode, which adheres to the surface and reduces the E. M. F. of the battery. To overcome this effect, called polarization, a depolarizer is used which will take up the hydrogen as it is formed.

Depolarizers may be solid or liquid. When solid, the material is usually packed round the cathode, as in the case of the Leclanché cell; when the depolarizer is liquid, it may be prevented from mixing with the electrolyte by a porous partition, or, if their specific gravities differ considerably, they will remain separated one over the other in the jur. The following table gives the elements and depolarizers for different cells, with the E. M. F. in volts:

				-					
Remarks.	Dolonizog navidly	r orannes rapidity.			1.9 to 2 For large currents.	Non-polarizing electrolyte.	Cathode and depolarizer in porous cup.	Anode in porous cup.	Gravity cell. Resistance with sodium chloride, .5 ohn; with magnesium sulphate, I ohm.
E.M.F.	d	. · ·	T.30	1.08	1.9 to 2	.78	1.89	2.14	1.9 to 2
Depolarizer.	Mono	M. C.	None	None	Carbon Electrolyte		Nitric acid	Electropoion fluid diluted one-half	Bichromate solu- tion (sulphochro- mic salt)
Cathode.	Connar	ooppor	Carbon	Carbon	Carbon	Carbon	Carbon	Carbon	
Electrolyte.	Sulphuric acid (di-Conner None	Sulphuric acid (di-	lute)	(common salt) Sulphuric acid 4)		Wrought Ferric chloride Carbon	Sulphuric acid (di- lute)	Sulphuric acid (very dilute) or water	Sodium chloride or magnesium sul-Carbon phate
Anode.			Zinc	Zinc	Zinc	Wrought iron	Bunsen Zinc	Amalga- mated zincin mercury	Zinc
Name.	Volta	VO108	Law	Zinc	Grenet Zinc	Pabst	Bunsen	Fuller	Partz Zinc

BATTERIES.

Remarks.	Porous cup used; pores become filled with ferric hy- drate, an insoluble conductor.	Cathode and depolarizer in porous cup.	For closed - circuit work only; resistance 3 ohms.	Carbon and depolar- izer in porous cup; resistance 4 ohms.	Surface of electrolyte covered with layer of oil.	Surface of electrolyte covered with layer of oil; resistance .07 ohm.	Cathode and depolarizer in porous cups. For small currents.
E.M.F.	2.7	1.07	1.07	1.48	7.	۲.	1.45
Depolarizer.	Ferric chloride	Copper sulphate with copper-sulphate crystals	Copper sulphate with copper-sulphate crystals	Peroxide of man-	Iron or Cupric oxide	Molded plates of cupric oxide and magnesic chloride held in copper frames	Paste of mercurous chloride
Cathode.	Carbon				Iron or Copper.	Molded pla and mag in coppe	
Electrolyte.	Caustic soda Carbon Ferric chloride	Zinc sulphate Copper	Zine sulphate. Sp. Copper	Ammonium chlo-carbon	Caustic potash	Edison-Zinc Caustic potash	Sal ammoniac (am- monium chloride)
Anode.)aniell Zinc	Zinc	Zinc	Ziņc	Zinc	
Name.	D'Arson- Zinc	baniell	Gravity Daniell. Zinc.	Leclan-	Lalande and Chaperon	Edison- Lalande	Chloride- of-mer- cury cell

•	200		ELEC.	TRICIT	Y.				
	Remarks,	For medical work and testing.		Depolarizer in form of paste. Poison- ous.	Standard cell, for very minute currents.	Standard cell.	Standard cell. No temperature coef-ficient.	Standard cell.	
	E.M.F.	1.03	1.02	1.3to1.5	1.442	1.39	1.019	τċ	
	Depolarizer.	Ammonium chlo-Silver wire or plate with chlo- ride (dilute) ride of silver	Silver wire or plate with chio- ride of silver	Mercuric sulphate, mercurous sul-1.3to1.5 of paste. phate, or turpeth mineral.	aste of mercurous sulphate formed Mercury . Electrolyte with zinc sulphate	Zine sulphate 10% Mercury. Oxide of mercury	Cadmium Cadmium sulphate Mercury, with sulphate of amalgam	Lead, with crystals of lead chloride	-
	Cathode.	Silver wire or pla	Silver wire or pla ride of silver Silver wire or pla ride of silver	Carbon	Mercury.	Mercury.	Mercury, wit	Lead, wit chloride	
	Electrolyte.	Ammonium chlo- ride (dilute)	Zinc chloride	Sulphuric acid (di- lute)	Paste of mercurous sulphate formed with zinc sulphate	Zinc sulphate 10% solution	Cadmium sulphate	malga- mated Zincchloride	
	Anode.	Zinc			Zinc	Zinc	Cadmium	Amalga- mated zinc	
	Name.	hloride- of-silver cell	of-silver Zinc cell khloride- of-silver Zinc cell	Zinc	atimer- Clark	ouy Zinc	Veston	and Fery	

STORAGE BATTERIES.

Storage batteries or accumulators are composed of plates of prepared lead, placed side by side in glass cells or wooden boxes lined with rubber or lead, alternate plates being connected together, thus forming two sets, which constitute the positive and negative elements. The plates are entirely submerged in dilute sulphuric acid, specific gravity 1.17. The charging E. M. F. is about 2.5 volts per cell, so that, if 10 cells are connected in series, the required E. M. F. will be 25 volts. The discharging E. M. F. is usually taken as 1.9 volts, so that an installation to supply current at 115 volts should consist of 115

1.9 = 61 cells, with a few added to replace any that are out of order or to serve as regulators to vary the E. M. F. As soon as the battery is set up and the electrolyte added, the charging should commence, the first charge being continued a long while at a comparatively slow rate. Observe that the direction of current through the cell in charging is from the positive or brown plate to the negative or gray one. Discharging should be at a low rate, as rapid discharge leads to deterioration of the positive plates.

The rating of the capacity of accumulators is usually made on the basis of a discharge current that will cause the E. M. F. to fall to 1.8 volts in 10 hours, but it is well to stop discharging when the E. M. F. falls to 1.9 volts.

Storage-Battery Regulation.—In electric-lighting plants, an equalization of load on the dynamos is sometimes obtained by installing accumulators or storage batteries. Automatic or hand regulation may be employed, the usual method being to cut out one or more cells when the load is light and change the remainder, these cells being connected in again when the load rises. The following method obviates the many disadvantages of this system.

A shunt dynamo d, Fig. 1, supplies current to the lighting mains m, n, this current passing through the fields c of a low-voltage dynamo or booster b, driven by a shunt motor and connected across the mains in series with the battery B. The E. M. F. of the dynamo d is a little greater than that of the battery, so that it will charge the battery when there is no

external load. When all the lights are turned on, the booster field will be fully energized, and the E. M. F. of the booster

FIG. 1.

will be added to that of the battery, thereby causing the battery to discharge and assist the dynamo. At a medium load, the battery will be neutral, neither taking current nor discharging, while the dynamo is running at full load. Any increase that

may be made in the load will then be taken up by the battery.

In electric-railway plants the dynamos are usually overcompounded, thus giving a higher E. M. F. at the brushes at full load than at light load. In a case of this kind, a differential winding is employed, as shown in Fig. 2, which

causes the booster to work both ways. On light loads a differential winding will assist the dynamos d' and d'' to charge the battery, raising the E. M. F. to the required value: but on heavy loads the series winding c will overpower the shunt s, and the battery will discharge into the outer circuit. The shunt field must be regulated so that the total charging and discharging that is done within a given time will balance each other, as the battery will otherwise tend either to overcharge or to undercharge. If the shunt field is strengthened, it will cause the batteries to charge, while if the field is weakened, it will cause the batteries to discharge at a lower value of the external load than before

ELECTRODEPOSITION.

For electrodeposition of metals, low-resistance primary batteries giving from 2 to 10 volts may be used when the work is on a small scale. For larger work, accumulators may be employed, or the current may be taken directly from a lowvoltage dynamo. The electroplating bath consists of a solution that has little or no chemical action on the objects to be plated, and that are suspended in it and electrically connected to the negative pole of the battery. The anode is a plate of the metal that it is desired to transfer: it is also submerged in the solution and connected through a resistance, if necessary, the positive pole of the battery. For deposition of copper, the bath is made by taking 4 parts saturated solution of sulphate of copper mixed with 1 part of water containing onetenth its volume of sulphuric acid. The current used must not exceed 18 amperes per square foot of surface of cathode. For nickel, use the double sulphate of nickel and ammonia, specific gravity 1.03; the current density must be low, and the solution should be neutral or slightly alkaline, as an acid bath will cause the nickel to peel off. For silver, the bath is a solution of cyanide of silver dissolved in cyanide of potassium. For gold, use evanide of gold dissolved in evanide of potassium. This solution is kept at 150° F, while in use.

ELECTRIC GAS LIGHTING.

The arrangement of the apparatus required for electric gas lighting is shown in the figure. A battery of about 6

Leclanché cells c, c, etc., joined up in series, is connected to one terminal of a spark coil k, the other terminal of which is soldered to a gas pipe p. The wire from the free end of the

battery is carried up through the house, and branches are run to the burners as at b, wherever needed. The insulation of this wire must be very thorough, special precautions being taken when it is carried through or along the fixtures. The burners are provided with a chain a attached to a movable contact spring, which is drawn past the burner, producing a spark of sufficient intensity to ignite the gas if it is previously turned on.

In multiple gas lighting, a fine wire is run from one burner to another of a group, as on a chandelier, leaving a small air gap at each one, and a current of very high tension is used, generated by a small frictional machine, causing a spark at each burner. The last contact in a series of burners is connected to the gas pipe.

THE WHEATSTONE BRIDGE.

A diagrammatic sketch of the Wheatstone bridge is shown in Fig. 1. This instrument is widely used for the determination of unknown resistances, and consists of such an arrangement of three circuits, M. N. P. of variable resistance, that

the value of a fourth may be found from their relation. This unknown resistance is connected between the points b and c, and the battery B between a and b. The variable resistances are then so adjusted that there shall be no

difference of potential between c and d, which form the terminals of the galvanometer G. The drop in potential from a to c will then be the same as from a to d, and a c bears the same proportion to a c b as a d bears to a db. From this it follows

that ac: ad = cb: db, or the unknown resistance $X = \frac{MP}{N}$.

For a certain test, the ratio of the arms, $\frac{M}{N} = \frac{10}{100}$. On

adjusting the resistance P, a balance is obtained when it is equal to 7,800 ohms. Then,

$$X = \frac{10 \times 7,800}{100} = 780$$
 ohms.

A commercial form of bridge is shown in Fig. 2. The same letters of reference are used as in the preceding diagram. Two keys, K and K', are added, to be used in closing the

circuits. Resistances are put in by withdrawing the plugs. In the arm N there is a resistance of 10 ohms; in M, 1,000 ohms; in P, 5,838 ohms. If the galvanometer G indicates a balance, the value of the unknown resistance

$$X = \frac{1,000 \times 5,838}{10} = 583,800$$
 ohms.

CABLE TESTING.

Test for Capacity.—A condenser of known capacity k is charged by a battery and discharged through a galvanometer, producing a deflection d_1 . The cable, having an unknown capacity k_2 , is charged and discharged in similar manner, giving a deflection d_2 . Then $k_2 = k_1 \frac{d_2}{d_1}$. The connections for the test are shown in Fig. 1. A plug commutator p may be used to make connection with the insulated line wire L or

with one side of the condenser c, by putting a plug in 1 or 2.

On depressing the key k, contact is made with one pole of the battery B, having about 100 cells; on releasing the key, the discharge from the line or the condenser passes through the galvanometer to the ground at G.

EXAMPLE.—The deflection through a condenser of 1.5 microfarads (mfds.) was 82 divisions,

and through a cable, 154 divisions. Find the capacity of cable. SOLUTION.—From the formula given,

$$k_2 = 1.5 \times \frac{154}{82} = 2.8$$
 microfarads.

Voltmeter Method of Testing Insulation.—An ordinary Weston voltmeter with a range of 150 volts has a resistance of about 19,000 ohms. If, then, this instrument is connected across a 110-volt circuit, it will indicate the resistance of the circuit, that is, of itself, since the resistance of the armature and leads is very low. If v is the voltage across the mains, r the resistance of the voltmeter, and x the voltmeter reading,

resistance of the voltmeter, and x the voltmeter reading, then the resistance to be determined, $R = \frac{v\,r}{x}$. When the voltmeter is put across the mains, v=110, r=19,000, and x=110. The only resistance in the circuit is the voltmeter itself, for $R=\frac{110\times19,000}{110}=19,000$ ohms. If we now put in series with the voltmeter a high resistance, thereby reducing the reading to 2 divisions, the total resistance $R=\frac{110\times19,000}{2}=1,045,000$ ohms. From this we must subtract the voltmeter resistance in order to find the added resistance, which is 1,045,000-19,000=1,026,000 ohms. A deflection of one division gives 2,071,000 ohms. To obtain higher readings, a special high-resistance voltmeter should be used. The con-

nections are made as shown in Fig. 2, where V is the

voltmeter, F the feeder, and D the source of current. If I is the insulation resist-

ance of a feeder, the corrected formula becomes $I = \frac{v r}{r} - r.$

When a voltmeter is used having a resistance of 1 megohm (1,000,000 ohms), then a deflection of 1 division, when connected up as shown, would give an insulation resistance

$$I = \frac{110 \times 1,000,000}{1} - 1,000,000 = 109 \text{ megohms.}$$

Loss-of-Charge Method of Cable Testing.—The core of the cable must first be put to earth a sufficient length of time to be thoroughly clear from any charge due to previous electrification; then the far end is freed, and connections are

made as shown in Fig. 3. On depressing the key k, the cable is put to earth through the condenser c, which should be of very small capacity, say one-fiftieth of a microfarad. Both the cable L and the condenser c are then charged from the battery B by depressing the key k', and on releasing k, the condenser is discharged through the ballistic galvanometer g, a moment being chosen when the galvanometer is at zero, show-

ing that the charge is steady. The deflection produced (d_1) represents the full charge held by the cable. The key k is then again depressed, and cable and condenser are charged for, say, half a minute, after which the battery is disconnected at k', and leakage of the charge is allowed to take place for perhaps 5 minutes. Selecting a moment when the charge is steady, indicating an even distribution, the key k is raised, and the condenser discharged through the

galvanometer. The deflection (d_2) obtained will be less than the first one, owing to the leakage of charge during the 5 minutes, and will therefore be a measure of the conducting power of the cable covering, or its insulation resistance. The ratio of these two deflections, d_1 and d_2 , will ordinarily be sufficient to indicate the condition of the cable without further calculation; the exact insulation resistance may be found by the following formula.

$$I = \frac{26.06 t}{K \log \frac{d_1}{d_2}},$$

where I = insulation resistance of the cable in megohms;

t = time in minutes during which the charge is allowed to leak:

K = capacity of the cable in microfarads;

 $d_1 = \text{initial discharge deflection};$

 $d_2 = \text{final deflection after } t \text{ minutes.}$

EXAMPLE.—In a loss-of-charge insulation test, the initial deflection was 238 divisions, and the deflection after 5 minutes' leakage was 137 divisions. The capacity of the cable being 1.8 microfarads, what was the insulation resistance?

SOLUTION.—
$$I = \frac{26.06 \times 5}{1.8 \times \log \frac{238}{137}} = 301.8$$
 megohms.

The battery used in this test may be about 100 chloride-ofsilver cells, or the same number of Leclanché cells. In the latter case it will be better to make the electrolyte of only about one-fifth the usual strength, to prevent creeping of the salts, as only very small currents are required for these tests. The battery must be very thoroughly insulated.

Location of Faults.
A fault in a cable usually develops slowly, and there is considerable resistance at that point:

therefore, in determining the location of the fault, its resistance must be taken into account. Let AB, Fig. 4, be the cable, and let a fault F connect to the ground at G through

a resistance R. When the end B of the cable is insulated, the resistance is measured at the station A, and is equal to the resistance of that portion of the cable between the station and the fault plus the resistance of the fault, that is, x + R. B is then grounded at G', and the resistance is

$$x + \frac{yR}{y+R}.$$
Let
$$x + R = r.$$
Let
$$x + \frac{yr}{y+R} = r'.$$
Let
$$x + y = r''.$$
Then,
$$x = r' - \sqrt{(\check{r} - r')(r'' - r')};$$

$$y = r'' - r' + \sqrt{(r - r')(r'' - r')}.$$

If L = length of cable in feet, the distance from A to the fault is

$$\frac{Lx}{x+y}$$
.

EXAMPLE.—The resistance of a cable in good condition is 3 ohms. A fault develops, and, on testing, the resistance through it is 160 ohms, the far end of the cable being insulated. When the far end is grounded, the resistance is 2.95 ohms. What is the distance to the fault, the length of cable being 5,180 ft.?

Solution.— r = 160, r' = 2.95, r'' = 3.

Then,
$$x = 2.95 - \sqrt{157.05 \times .05} = .15$$
 ohm.
 $y = 3 - 2.95 + \sqrt{157.05 \times .05} = 2.85$ ohms.
The distance to the fault $= \frac{5.180 \times .15}{9} = 259$ ft.

SURVEYING.

COMPASS SURVEYING.

The magnetic bearing of a line is the angle that the line makes with the magnetic needle. The length of a line, together with its bearing, is termed a course. To take the bearing of a line, set the compass directly over a point in it, at one extremity, if possible. This may be done by means of a plumb-bob suspended from the compass.

Bring the compass to a perfectly level position. Let a flagman hold a rod carefully plumbed at another point of the line, preferably the other extremity, if he can be distinctly seen. Direct the sights upon this rod and as near the bottom of it as possible. Always keep the same end of the compass ahead—the north end is preferable, as it is readily distinguished by some conspicuous mark, usually a fleur-de-lis—and always read the same end of the needle, that is, the north end of the needle if the north point of the compass is ahead, and vice versa. Before reading the angle, see that the eye is in the direct line of the needle, so as to avoid the error that would otherwise result from parallax, or apparent change of the position of the needle, due to looking at it obliquely.

The angle is read and recorded by noting, first, whether the N or S point of the compass is nearest the end of the needle being read; second, the number of degrees to which it points; and third, the letter E or W nearest the end of the needle being read.

Let AB in Fig. 1 be the direction of the magnetic needle, B being at the north end. Let the sights of the compass be directed along the line CD. The north point of the compass will be seen to be nearest the north end of the needle which is to be read. The needle, which has remained stationary while the sights were being turned to CD, now points to 45° between the N and E points, and the angle is read north forty-five degrees east (N 45° E).

A sure test of the accuracy of a bearing is to set up the compass at the other end of the line, i. e., the end first sighted

to, and sight to a rod set up at the starting point. This proc-

ess is called backsighting. If the second bearing is the same as the first, the reading is correct. If it is not the same, it shows that there is some disturbing influence at either one or the other end of the line. To determine which of these two bearings is the true one, the compass must be set up at one or more intermediate points, when two or more similar bearings will prove the true one.

The magnetic meridian is the direction of the magnetic

needle. The true meridian is a true north and south line, which, if produced, would pass through the poles of the earth. The declination of the needle is the angle that the magnetic meridian and the true meridian make with each other.

is reached, which has been previously decided on as a proper place for changing the direction of the line. The compass having

Fig. 2. The compass having been set up at E, the bearing of the line A E, which is the

line A D produced, is found by sighting to A, or, what is still better, to the point D, if that point can be seen. The number of Sta. (Station) E, namely, 4+40, and the bearing of A E are then recorded by the compassman. By this time the chief of party has located the point F, and the flag is in place for sighting. The axmen, if there is work for them to do, are now put in line by the head chainman; the axmen clear only so much as would interfere with rapid chaining. The bearing of the line E F having been recorded, the compass is moved quickly to F, replacing the target left by the flagman, leveled up, and directed toward the point G, which is already located. The chainmen reaching F, its number 11+20 is recorded by the compassman and the instrument sighted to G and the work continued as before.

FORM FOR KEEPING NOTES.

A plain and convenient form for keeping compass notes is the form given on page 279, which is a record of the survey platted in Fig. 2. The first column of the table contains the station numbers, the notation running from the bottom to the top of the page. By means of this arrangement, the lengths of the courses are found by subtracting the number of the station of one compass point from the number of the station of the next succeeding compass point. Before work has commenced on the plat, the subtractions are made and the lengths of the courses are written in red ink between the station numbers.

The second column contains the bearings of the lines. The bearing recorded opposite to a station is the bearing at the course between the given station and the one next above. Thus, the bearing recorded opposite Sta. 0 is 75°00′ W, and is the bearing of the line extending from Sta. 0 to Sta. 4 + 40 next above. The length of the course is the difference between 0 and 4 + 40 equal to 440 ft. The bearing recorded opposite to 4 + 40 is N 25°00′ W. It is the bearing of the line extending from Sta. 4 + 40 to Sta. 11 + 20 next above. Its length is found by subtracting 4 + 40 from 11 + 20 equal to 680 ft., and so on.

In the third column, under the head of remarks, are recorded notes of reference, topography, and any information that may aid in platting or subsequent location.

Station.	Bearing.	Remarks.
47 + 75		End of line.
$\frac{47 + 75}{35 + 75}$	N 25° 40′ E	End of fine.
27 + 50	N 14° 10′ E	
20 + 35	N 2° 30′ W	Woodland.
11 + 20	N 15° 10′ W	
4 + 40	N 25° 00′ W	
0	N 75° 00′ W	Sta. 0 is at P. C. of 14° curve to
		left at Bellford Sta. O. & P. R. R.

TRANSIT SURVEYING.

The Vernier.—A vernier is a contrivance for measuring smaller portions of space than those into which a line is actually divided. The divided circle of the transit is graduated to half degrees, or 30'. The graduations on the verniers run in both directions from its zero mark, making two distinct verniers, one for reading angles turned to the right and

the other for reading those turned to the left. In reading the vernier, the observer should first note in which direction the graduations of the divided

FIG. 1.

circle run. In Fig. 1 the graduations increase from left to right and extend from 57° to 91°. Next, he should note the point where the zero mark of the vernier comes on the divided circle. In Fig. 1 the zero mark comes between 74° and 74½°. Now, as the circle graduations read from left to right, we read the right-hand vernier and find that the 23d graduation on the vernier coincides with a graduation on the

divided circle and the vernier reads 23′, which we add to 74°, making a reading of 74° 23′, an angle to the *left*. In Fig. 2 the

graduations on the circle increase from right to left, and we accordingly read the left-hand vernier. The zero mark of the vernier comes between 67½° and 68°. Reading the vernier, we

FIG. 2.

find that the 13th graduation on the vernier coincides with a graduation on the circle and the vernier reads 13'. Accordingly, we add to 67°_{1} , the reading = 13', making a total reading of 67°_{2} 43', an angle to the right.

Setting Up the Instrument.—In setting up a transit, three preliminary conditions should be met as nearly as possible: $\frac{1}{2}$

- 1. The tripod feet should be firmly planted.
- 2. The plate on which the leveling screws rest should be level.
- 3. The plumb-bob should be directly over the given point. When these three conditions are met, the completion of the operation is quickly performed with the leveling screws.

How to Prolong a Straight Line.—Let A B, in Fig. 3, be a straight line which it is required to prolong or "produce."

The line can be prolonged in two ways: by means of foresight or by means of backsight.

- 1. By foresight, set up the transit at A and sight to B; measure 400 ft. from B in the opposite direction from A. Then, by means of signals, move the flag to the right or left until the vertical cross-hair shall exactly bisect the flag held at C. Then, the line B C will be the prolongation of the line A B.
- 2. By backsight, set the transit at B and sight to A. Reverse the telescope, and having measured 400 ft. from B in the opposite direction from A, set the flag at C; then will the line B C be the line A B produced.

Horizontal Angles and Their Measurement.—A horizontal angle is one the boundary lines of which lie in the same horizontal plane. Let A, B, and C, in Fig. 4, be three points, and let it be required to find the horizontal angle formed by the lines

AB and AC joining these points. Set up the instrument precisely over the point A, and carefully level it. Set the vernier at zero, and place flags at B and C. Sight to the flag at

B and set the lower clamp. Then, by means of the lower tangent screw, cause the vertical cross-hair to exactly bisect the flag at B. Loosen the upper clamp. With a hand on

either standard, turn the telescope in the same direction as that of the hands of a watch until the flag at C is covered or nearly covered by the vertical cross-hair. Clamp the upper plate, and with the upper tangent screw bring the line of sight exactly on the flag at C. The arc of the graduated circle traversed by the zero point of the vernier will be the measure of the angle BAC, as 143° 30′. The points A, B, and C are not necessarily in the same horizontal plane, but the level plate of the instrument projects them into the horizontal plane in which it revolves.

A Deflected Line.—A deflected line, or "angle line," is a consecutive series of lines and angles. The direction of each line is referred to the line immediately preceding it, the latter being, in imagination, produced, and the angle measured between it and the next line actually run. The angles are recorded R⁷ or L⁷, according as they are turned to the right or left of the prolongation of the immediately preceding line. An example of a deflected line is shown in Fig. 5; it starts from the head block of switch at Benton Station O. & P. R. R.

Set up the transit at A with vernier at zero. Sight to a flag

held at F on the center line of the track, O. & P. R. R. Loosen the vernier clamp, the point B being determined, and turn the telescope until the point B is distinctly seen; clamp the vernier, and accurately sight to flag held at B; the angle reads 32° 30' and is recorded RT 32° 30', with a sketch showing the connection. The bearing of the line AB cannot be taken at A on account of the attraction of the rails. The point A is in the head block of the switch (which is designated by the abbreviation H. B.) at Benton Station, O. & P. R. R. The instrument is now moved to B, the vernier set at zero and backsighted to A; the bearing of AB, viz., N 75° 00' E, is taken, and the number of station B, viz., 2 + 90, together with the bearing of AB recorded. The telescope is then reversed, pointing in the direction BB'. The point C being determined, the upper clamp is loosened and the telescope turned to the right and sighted to C. The reading is found to be 14° 30' and recorded RT 14° 30'. It measures the angle B' B C. The bearing N 89° 20' E is then recorded. The instrument is next set up at C, the vernier set at zero, backsighted to B, and then reversed; the deflection to D, viz., RT 10° 00' read and recorded, together with the number of the station at C, viz., 6 + 85. This deflection measures the angle C'CD and gives the direction of the line CD. A good form of notes for such a survey is the following:

Station.	Deflection.	Mag. Bearing.	Ded. Bearing.	Remarks.		
13+63				End of Lin		
10+31	L=30°00'	N. 69°25' E.	N. 69°30'E.	32,30		
6+85	R*10°00'	S. 80°30' E.	S. 80°30'E.	21 24 A		
2+90	R* 14°30'	N. 89°20' E.	N. 89°30'E.	3/8	H. R. of Smitch	
0		N. 75°00' E.			at Benton Sta	

Checking Angles by the Needle.—In spite of the greatest care, errors in the reading and recording of angles will occur-The best check to such errors is the magnetic needle.

In Fig. 6, we have an example of the use of the needle in checking angles. The bearing of the line AB, which corresponds to AB in Fig. 5, is N 75° 00′ E, and is assumed to be correct. The bearing of the line BC, as read from the needle,

is N 89° 20′ E. Its deduced bearing is obtained as follows: To the bearing of the line A B, viz., N 75° 00′ E, we add the R^{τ} deflection 14° 30′; the sum is 89° 30′, which is recorded in the column headed Ded. Bearing. The deduced bearing, it will

be seen, is 10 minutes greater than the magnetic bearing read from the needle. Had the deflection angle been recorded L^x instead of R^x, the deduced bearing would have been the difference between 75°00' and 14°30', which is 60°30', and would be recorded N 60°30' E.

Fig. 6.

The magnetic bearing being N 89° 20′ E, would have at once revealed the error. The confusion of the directions \mathbb{R}^T and \mathbb{L}^T is the commonest source of error in recording deflections, though sometimes a mistake of 10 degrees is made in reading the vernier. Both angle and bearing should be read after they are recorded, and compared with the recorded readings.

TRIANGULATION.

Triangulation is an application of the principles of trigonometry to the calculation of inaccessible lines and angles.

FIG. 1.

A common occasion for its use is illustrated in Fig. 1, where the line of survey crosses a stream too wide and deep for actual measurement. Set two points A and B on line, one on each side of the stream. Estimate roughly the distance A B. Suppose the estimate is 425 ft. Set another point C, making the distance A C equal to the estimated

distance AB=425 ft. Set the transit at A and measure the angle BAC= say, 79°00′. Next set up at the point C and

measure the angle A CB = say, $56^{\circ} 20'$. The angle A B C is then determined by subtracting the sum of the angles A and C from 180° ; thus, $79^{\circ} 00' + 56^{\circ} 20' = 135^{\circ} 20'$; $180^{\circ} 00' - 135^{\circ} 20'$ = $44^{\circ} 40'$ = the angle A B C. We now have a side and three angles of a triangle given, to find the other two sides A B and CB. In trigonometry, it is demonstrated that, in any triangle the sines of the angles are proportional to the lengths of the sides opposite to them. In other words, $\sin A : \sin B = B C : A C$; or, $\sin A : \sin C = B C : A B$, and $\sin B : \sin C = A C : A B$.

Hence, we have $\sin 44^{\circ} 40' : \sin 56^{\circ} 20' = 425 : \text{side } AB$;

 $\sin 56^{\circ} 20' = .83228;$ $.83228 \times 425 = 353.719;$ $\sin 44^{\circ} 40' = .70298;$

 $353.719 \div .70298 = 503.17$ ft. = side AB. Adding this distance to 76 + 15, the station of the point A,

We have 81 + 18.17, the station at B.

Another case is the following: Two tangents, AB and CD (see Fig. 2), which are to be united by a curve, meet at some inaccessible point E. Tangents are the straight portions of a

line of railroad. The angle CEF, which the tangents make with each other, and the distances BE and CE are required. Two points A and B of the tangent

AB, and two points C and D of the tangent CD, being carefully located, set the transit at B, and backsighting to A, measure the angle $EBC=21^{\circ}45'$; set up at C, and, backsighting to D, measure the angle $ECB=21^{\circ}25'$. Measure the side BC=304.2 ft.

Angle CEF being an exterior angle of triangle EBC equals sum of EBC and $ECB = 21^{\circ}45' + 21^{\circ}25' = 43^{\circ}10'$; angle $B \perp C = 180^{\circ} - CEF = 136^{\circ}50'$. From trigonometry, we have

 $\sin 136^{\circ} 50'$: $\sin 21^{\circ} 45' = 304.2 \text{ ft.}$: CE; $\sin 21^{\circ} 45' = .37056$; $.37056 \times 304.2 = 112.724352$; $\sin 136^{\circ} 50' = .68412$; $ide CE = 112.724352 \div .68412 = 164.77 \text{ ft.}$

Again, we find B E by the following proportion:

 $\sin 136^{\circ} 50'$; $\sin 21^{\circ} 25' = 304.2$; side BE:

 $\sin 21^{\circ} 25' = .36515;$

 $.36515 \times 304.2 = 111.07863;$

 $\sin 136^{\circ} 50' = .68412;$

side $R E = 111.07863 \div 68412 = 162.36 \text{ ft.}$

A building H, Fig. 3, lies directly in the path of the line A B, which must be produced beyond H. Set a plug at B,

and then turn an angle DBC = 60°. Set a plug at C in the line BC, at a suitable distance from B, sav. 150 ft. Set up at C. and turn an angle $BCD = 60^{\circ}$. and set a plug at D, 150 ft, from C. The point D will be in the prolongation of AB. Then, set up at D, and backsighting to

C, turn the angle $CDD' = 120^{\circ}$. DD' will be the line

FIG. 4.

required, and the distance BD will be 150 ft., since BCD is an equilateral triangle.

A B and CD, Fig. 4, are tangents intersecting at some inaccessible point H. The line AB crosses a dock OP, too wide for direct measurement, and the wharf LM. F is a point on the line AB at the wharf crossing. It is required to find the distance BH and the angle FHG. At B, an angle of 103° 30' is turned to the left and the point E set 217' from B = to the estimated distance BF. Setting up at E, the angle BEF is found to be 39° 00'.

Whence, we find the angle

 $BFE = 180^{\circ} - (103^{\circ} 30' + 39^{\circ}) = 37^{\circ} 30'$

From trigonometry, we have

 $\sin 37^{\circ} 30' : \sin 39^{\circ} 00' = 217 \text{ ft.} : \text{side } BF$:

 $\sin 39^{\circ} 00' = .62932;$

 $.62932 \times 217 = 136.56244;$

 $\sin 37^{\circ} 30' = .60876;$

side $BF = 136.56244 \div .60876 = 224.33$ ft.

Whence, we find station F to be 20+17+224.33=22+41.33. Set up at F and turn an angle $HFG=71^{\circ}00'$ and set up at a point G where the line CD prolonged intersects FG. Measure the angle $FGH=57^{\circ}50'$, and the side FG=180.3. The angle $FHG=180^{\circ}-(71^{\circ}+57^{\circ}50')=51^{\circ}10'$. From trigonometry we have

 $\sin 51^{\circ}10' : \sin 57^{\circ}50' = 180.3 : \text{side } FH.$

Sin 57° 50′ = .84650; .84650 \times 180.3 = 152.62395; sin 51° 10′ = .77897; side $FH = 152.62395 \div .77897 = 195.93$ ft.; whence we find station H to be 24 + 37.26.

CURVES.

Two lines forming an angle of 1° with each other will, at a distance of 100 ft. from the angular point, diverge by 1.745 ft.

FIG. 1.

The degree of a curve is determined by that central angle which is subtended by a chord of 100 ft. Thus, if BOG (Fig. 1) is 10° and BG is 100 ft., BGHKC is a 10° curve.

The deflection angle of a curve is the angle formed at any point of the curve between a tangent and a chord of 100 ft. The deflection angle is therefore half the degree of the curve. Thus, if the chord BG is 100 ft., the angle EG is the deflection angle of curve BGHKC, and is half the angle BOG, and is half the angle BOG.

EXAMPLE.—Given, the deflection angle EBG = D (Fig. 1), to find the radius EO = R.

Solution.—Draw OL perpendicular to BG. In the right-angled triangle BOL, we have $\sin BOL = \frac{BL}{BO}$; but BOL = EBG = D, since OL, being perpendicular to the chord BG, bisects the arc BLG. But the angle $D = \frac{1}{2}BOG$; hence, angle BOL = D. BL = 50 ft., and the radius BO = R. Substituting these values in the given equation, we have $\sin D = \frac{50}{R}$; whence, $R\sin D = 50$, and $R = \frac{50}{\sin D}$.

For curves of from 1° to 10°, the radius may be found by dividing 5,730 ft. (the radius of a 1° curve) by the degree of the curve. The results obtained are sufficiently accurate for all practical purposes. For sharp curves, i. e., for those exceeding 10°, the above formula, viz., $R = \frac{50}{\sin D}$, should be used, especially if the radius is to be used as a basis for further calculation.

Tangent Distances.—When an intersection of tangents has been made and the intersection angle measured, the next question is the degree of curve that is to unite them, which being decided, the next step in order is the location of the points on the tangents where the curve begins and ends. These two points are equally distant from the point of intersection of the tangents, which is called the P. I. The point where the curve begins is called the point of curve, or the P. C., the point where the curve terminates is called the point of tangent, or the P. T. The distance of the P. C. and P. T. from the P. I. is called the tangent distance.

In Fig.1, let AB and CD be tangents intersecting at the point E and forming an angle $CEF = 40^{\circ}00'$ with each other. It is decided to unite these tangents by a 10° curve, whose radius is 573.7 ft. Call the angle of intersection I, the radius BO, R, and the tangent distance BE, T. From geometry we know that BOC = CEF, hence the angle $BOE = \frac{1}{3}CEF$. From the right triangle EBO, we have tan $BOE = \frac{BE}{BO}$.

Substituting the above equivalents, we have $\tan \frac{1}{4}I = \frac{T}{R}$, or $T = R \tan \frac{1}{4}I$; R = 573.7; $\frac{1}{4}I = 20^\circ$; $\tan 20^\circ = .36397$;

 $573.7 \times .36397 = 208.81$ ft. Measure back from the point E on both tangents the distance 208.81 ft. to the points B and C. Drive plug flush with the ground at both points and set accurate center points, marked by tacks, in both. Directly opposite each of these plugs drive a stake, called a guard stake because it guards or rather indicates where the plug is. The stake at B, if the numbering of the stations runs from B toward C, will be marked P. C., and the stake at C will be marked P. C.

To Lay Out a Curve With a Transit.-Having set the tangent points B and C, Fig. 1, set up the transit at B, the P. C. Set the vernier at zero and sight to E, the intersection point. Suppose B to be an even or "full station," say 18, and that it has been decided to set stakes at each hundred feet. Let the central angle BOG, measured by the 100-ft. chord BG, be 10°: then, the deflection angle EBG, whose vertex B is in the circumference and subtended by the same chord BG. will be \(\frac{1}{6} \) B O G, or 5°. Turn an angle of 5° from B, which in this case will be to the right, measure a full chain 100 ft. from B and line in the flag at G; drive a stake at G, which will be marked 19. Turn off an additional 5° making 10° from zero, and at the end of another chain from G, at H, set at a stake marked 20. Continue turning deflections of 50 until 20° or one-half of the intersection angle is reached. This last deflection, if the work has been correctly done, will bring the head chainman to the point of tangent C. It is but rarely that the P. C. comes at a full station. When the P. C. comes between full stations it is called a substation, and the chord between it and the next full station is called a subchord. Had the P.C. come at a substation, say 17 + 32, the deflection for the subchord of 100 - 32, or 68 ft., the distance to the next station, is found as follows: The deflection for a full station, i. e., $100 \, \text{ft.}$, is $5^{\circ} = 300'$, and the deflection for 1 ft.

is $\frac{300'}{100}=$ 3', and for 68 ft. the deflection will be $68\times3=204'$

^{= 3°24′,} which is turned off from zero and a stake set on line, 68 ft. from the transit, at station 18. The length of a curve uniting two given tangents whose intersection is determined, is found as follows:

Suppose $I = 32^{\circ}40'$ and that the tangents are to be united by a 6° curve. 32° 40′ reduced to the decimal form is 32.667°: as each central angle of 6° will subtend a 100-ft, chord or one chain, there will be as many such chords or chains as the number of times 6 is contained in 32.667, which is 5.444, that is, there will be 5.444 chains in the curve, or 544.4 ft., which is the required length of the curve. The P. C. and P. T. having been set and the station of the P. C. determined by actual measurement, say 58 + 71, the station number of the P. T. is found by adding to 58 + 71, the station number of the P. C., the calculated length of the curve 544.4 ft. 58 + 71 + 544.4 =64 + 15.4, the station of the P. T.

Tangent and Chord Deflections.—Let A B in Fig. 2 be a tangent, and BCEH a curve commencing at B. Produce the tangent AB to the point D. The line CD is a tangent deflection, and is the perpendicular distance from the tangent to

the curve. If the chord BC is produced to the point G, making CG =BC = CE, the distance G E is a chord deflection and is double the tangent deflection D C.

Given, the radius BO = R, Fig. 2, to find the chord deflection EG and the tangent deflection CD = FE.

The triangles OCE and CEG are similar, since both are isosceles, and the angle GCE = angle COE. Hence, we have OC: CE = CE: EG. Denoting the chord CE by c and the chord deflection EG by d, we have, from the above propor-

tion, R: c = c: d. Therefore, $d = \frac{c^2}{R}$. To find the tangent deflection, draw CF to the middle point of EG. Then FEis equal to the tangent deflection, or DC. Hence, the tangent deflection is equal to one-half the chord deflection, or

the tangent deflection $=\frac{c^2}{2R}$.

If the P. C. does not fall at a full station (and this is usually the case), compute the chord deflection by substituting for c in the formula for chord deflection $\frac{1}{2}c(c+c')$. Where c' is the length of the chord from the P. C to the full station; or if the tangent deflection f for a chord of 100 feet has been previously found, the chord deflection for the second station

beyond the P. C. is $d_0 = f\left(1 + \frac{c'}{c}\right)$.

Laying Out Curves Without a Transit.—During construction, the engineer is often called upon to restore center stakes on a curve when the transit is not at hand. This can be accomplished reasonably well with a tape, as follows:

In Fig. 3, A B is a tangent and B, at Sta. 8 + 25, is the P. C. of a 4° curve; a stake is required at each full station. The stakes at A and B are restored, determining the P. C. and the direction of the tangent. For a 4° curve the regular chord

r 1G. 5.

deflection for 100 feet is 6.98 ft., and the tangent deflection is $6.98 \div 2 = 3.49$ ft.

The distance from the P. C. to the next station C is 75 ft.; hence, the tangent deflection $CF = 75^2 + (2 \times 5,730 + 4) = 1.96$ ft. The point F is found

by first measuring 75 feet from B, thus locating the point C, in the line with A B, then from C measuring C F=1.96 feet, at right angles to B C; the point F thus determined will be Station 9. Next, the chord B F is prolonged 100 feet to D; as B F is only 75 feet, D $G=d_0=3.49\times(1+\frac{76}{100})=6.11$ feet. This distance is measured at right angles to B D; the point G thus determined will be Station 10. The position of Station 11, the P. T., is determined in the same manner, except that, as the chords F G and G H are each 100 feet long, the regular chord deflection of 6.98 feet is used for E H. A stake is driven at each station thus located.

To Determine Degree of Curve by Measuring a Middle Ordinate. In trackwork, it is often necessary to know the degree of a curve when no transit is available for measuring it. The degree can be found by measuring the middle ordinate of any convenient chord, and multiplying its length by 8, which will give the chord deflection for that curve.

Let A B, in Fig. 4, be a 50-ft. chord, measured on the track, and let the middle ordinate a b be .44 ft. $44 \times 8 = 3.52$ = chord deflection for 50 ft., which, expressed in decimal parts of a full station, is 5.5: .52 = .25. The chord deflection for 100 ft. multiplied by .25 = the chord deflection for 50 ft., which we know

 $3.52 \div .25 = 14.08$ ft., the chord deflection for 100 ft., which, if divided by 1.745, the chord deflection for a 1° curve, gives a quotient of 8.07, nearly. The inference is that the curve is 8°.

by calculation to be 3.52 ft. Hence.

How to Keep Transit Notes .- A good form for location notes is the following:

			Mag. Bearing			June 30. 1894
	Deflection.	THE Augus	Mag. Dearing	Day Donnell	Ben	arke.
9						
8						
7						
6+95	4°54'P.T.	15°00'	N. 35'20' E.	N. 35°15' E.		
4+50	4'00'					
8	3'00'					"70 o gighwall
5+50	200				5+80	relient 0)
5	1000				5+60	Constraints of Highway
4+50	2°36'	5°12′				
4	1°36′				Int Angle=15°00'	A°Curve Br
3+50	0°36"				T=188.61 ft.	Def. Angle for 50 ft.1°00
3+20	P.C.4°ET				P.C=3+20	Def.Angle for 1 ft=1.2°
3					Longth of Curve -375 ft	
2					P.T:=6+95	
1						
0			N. 20°18' E.	E 20°15'E		

In the first column the station numbers are recorded. the second column are recorded the deflections with the abbreviations P. C. and P. T., together with the degree of curve and the abbreviation RT or LT, according as the line curves to the right or left. At each transit point on the curve, the total or central angle from the P. C. to that point is calculated and recorded in the third column. This total angle is double the deflection angle between the P. C. and the transit point. In the above notes there is but one intermediate transit point between the P.C. and P.T. The deflection from P. C. at Sta. 3+20 to the intermediate transit point at Sta. 4+50 is 2° 36°. The total angle is double this deflection, or 5° 12°, which is recorded on the same line in the third column. The record of total angles at once indicates the stations at which transit points are placed. The total angle at the P. T. will be the same as the angle of intersection, if the work is correct. When the curve is finished, the transit is set up at the P. T., and the bearing at the forward tangent taken, which affords an additional check upon the previous calculations. The magnetic bearing is recorded in the fourth column, and the deduced or calculated bearing is recorded in the fifth column.

LEVELING.

Examples in Direct Leveling.—The principles of direct leveling are illustrated in the figure.

Let A be the starting point, which has a known elevation of 20 ft. The instrument is set at B, leveled up and sighted to a rod held at A. The target being set, the reading, 8.42 ft., called a backsight, is the distance that the point where the line of sight cuts the rod is above the point A, and is to be added to the elevation of the point A. 20.00 + 8.42 = 28.42 is called the height of instrument and is designated by H. I. The instrument being turned in the opposite direction, a point C is chosen, which must be below the line of sight. This point is called a turning point, and is designated by the abbreviation I. I. Drive a peg at I, or take for a turning point a point of rock or some other permanent object upon which the rod is held. The reading at this point is a foresight, and is to be subtracted from the height of the instrument at I be find the elevation of the point at I.

Let the rod reading be 1.20 ft. As this reading is a fore-sight, it must be subtracted from 28.42, the height of instrument at B; 28.42-1.20=27.22 ft., the elevation of the point C. The leveler carries the instrument to D, which should be of such a height above C that, when leveled up, the line of sight will cut the rod near the top. The backsight to C gives a reading of 11.56 ft., which, added to 27.22 ft., the elevation

Turning points
previously mentioned are the
points where backsights and fore-

sights are taken. The backsights are plus (+) readings, and

are to be added; the foresights are minus (—) readings, and are to be subtracted. A point for a foresight having been determined, the rodman drives a peg firmly in the ground and holds the rod upon it. After the instrument is moved, set up, and a backsight taken, the peg is pulled up and carried in the pocket until another turning point is called for. Turning points should be taken at about equal distances from the instrument, in order to equalize any small errors in adjustment. In smooth country an ordinary level will permit of sights of from 300 to ,500 ft.

To Keep Level Notes.—Many forms are used. The distinguishing feature of one of the best (see page 295) is a single column for all rod readings. The backsights being additive and the foresights subtractive readings, they are distinguished from other rod readings by the characteristic signs + (plus) and — (minus). The turning points, whose foresight readings are —, are further abbreviated T. P.

To Check Level Notes.—A well-known method of checking level notes provides for checking the elevations of turning points and heights of instrument only, which is sufficient, as all other elevations are deduced from them. The method depends on the fact that all backsights are additive (i. e. +) quantities, and all foresights are subtractive (i.e.—) quantities. The notes given on page 295 are checked as follows: The elevation of the bench mark at station 0 is 100.00 ft., to which all backsights, or + readings, are to be added and from this sum all foresights, or — readings, are to be subtracted. The sum of the backsights, with elevation of bench mark at 0, is 122.59. Sum of foresights is 24.27, and difference is 98.32 ft., the elevation of the chacksights, with elevation of bench mark at 0, is 122.59.

	+	
Thus,	100.00	10.22
	5.61	2.52
	5.41	11.53
	11.57	24.27
	122.59	
	' 24.27	

98.32

4.27, and difference is 98.32 ft., the elevation of the turning point last taken. As soon as a page of level notes is filled, the notes should be checked and a check mark \(\frac{1}{2} \) placed at the last height of instrument or elevation checked. When the work of staking out or crosssectioning is being done, the levels should be checked at each bench mark on the line. After each day's

work, the leveler must check on the nearest bench mark.

Date.	Stump 10' L. Sta. 0.															
Remarks.	On root of white oak Stump 10' L. Sta. 0.									Spring Brook.				Annual control		
Fill.																
Cut.																
Grade.																
Eleva- tion.	100.00	99.5	98.3	97.2	96.4	95.39		94.5	9.96	89.3	98.28		103.6	101.3	2.66	98.32
Ht. Instru- ment.	192.61						100.80					109.85				
Rod Read- ing.	+ 5.61	6.1	7.3	8.4	9.5	-10.22	+ 5.41	6.3	4.2	11.5	- 2.52	+11.57	6.2	8.5	10.1	-11.53
1. Station	B. M.	0	1	2	3	T. P.		4	2	2+50	T. P.		9	7	∞	T. P.

Profiles.—A profile represents a longitudinal projection of the line of survey. In it all abrupt changes in elevation are clearly outlined. Vertical and horizontal measurements are usually represented by different scales, to render irregularities of surface more distinct through exaggeration. For railroad work, profiles are commonly made to the following scales, viz., horizontal, 400 ft. = 1 in.; vertical, 20 ft. = 1 in.

A section of profile paper is shown in the following diagram. Every fifth horizontal line and every tenth vertical line is heavy. By the aid of these heavy lines, distances and elevations are quickly and correctly estimated and the work of platting greatly facilitated. The level notes

given in the preceding diagram are platted in the accompanying section. The elevation of some horizontal line is assumed. This elevation is, of course, referred to the datum plane, and is the base from which the other elevations are estimated. Every tenth station number is written at the bottom of the sheet under the heavy vertical lines. The profile is first platted in pencil and then inked in in black.

Grade Lines.—The principal use of a profile is to enable the engineer to establish a grade line, i. e., a line showing the slope of the road on which the amounts of excavation and embankment depend. The rate of a grade line is measured by the vertical rise or fall in each hundred feet of its length,

and is designated by the term per cent. Thus, a grade line that rises or falls 1 ft. in each hundred feet of its length is called an ascending or descending 1 per cent. grade, and is written +1.0 or -1.0 per hundred. A rise or fall of $\frac{1}{8}$ ft. in each hundred feet is called a 0.5 grade, and is written +0.5 or -0.5 per hundred. The grade line having been decided on, it is drawn in red ink.

EXAMPLE.—The elevation of station 20 is 140.0 ft.; between stations 20 and 100 there is an ascending grade of 75%. What is the elevation of the grade at station 71?

Solution.—To obtain the elevation of the grade at station 71, we add to the elevation of the grade at station 20, or 140 ft., the total rise in grade between stations 20 and 71. Accordingly, 71-20=51; .75 ft. $\times 51=38.25$ ft.; 140 ft. +38.25 ft. = 178.25 ft., the elevation of grade at station 71.

RADII AND CHORD AND TANGENT DEFLECTIONS.

The formulas used in the computation of the following table are as follows:

For radius,
$$R = \frac{50}{\sin D}$$
.

For chord deflection, $d = \frac{c^2}{R}$.

For tangent deflection, tan deflection $=\frac{c^2}{2R}$.

In these formulas, R is the radius of the curve, D is its deflection angle (equal to one-half the degree of curve), and c is the length of chord for which the chord or tangent deflection is to be determined. The chord and tangent deflections given in the table are computed for chords of 100 feet.

Thus, for a 6° curve the deflection angle is 3°, the sine of which is .052336. Hence, for the radius and chord deflection, we have

$$R = \frac{50}{.052336} = 955.37 \text{ ft.}$$
 $d = \frac{100^2}{955.37} = 10.467 \text{ ft.},$

as given in the table. The tangent deflection is always one-half the chord deflection.

TABLE OF RADII AND DEFLECTIONS.

TABLE OF KADII AND DEFLECTIONS.									
Degree.	Radii.	Chord Deflection.	Tangent Deflection.	Degree.	Radii.	Chord Deflection.	Tangent Deflection.		
0 5 10 15 20 25 30 35 40 45 50 55	68,754.94 34,377.48 22,918.33 17,188.76 13,751.02 11,459.19 9,822.18 8,594.41 7,639.49 6,875.55 6,250.51	.145 .291 .436 .582 .727 .873 1.018 1.164 1.309 1.454 1.600	.073 .145 .218 .291 .364 .436 .509 .582 .654 .727	3 25 30 35 40 45 50 55 4 0 5 10	1,677.20 1,637.28 1,599.21 1,562.88 1,528.16 1,494.95 1,463.16 1,432.69 1,403.46 1,375.40	5.962 6.108 6.253 6.398 6.544 6.689 6.835 6.980 7.125 7.271	2.981 3.054 3.127 3.199 3.272 3.345 3.417 3.490 3.563 3.635		
1 0 5 10 15 20 25 30 35 40 45 50 55	5,729.65 5,288.92 4,911.15 4,583.75 4,297.28 4,044.51 3,819.83 3,618.80 3,487.87 3,274.17 3,125.36 2,989.48	1.745 1.891 2.036 2.182 2.327 2.472 2.618 2.763 2.909 3.054 3.200 3.345	.873 .945 1.018 1.091 1.164 1.236 1.309 1.382 1.454 1.527 1.600 1.673	15 20 25 30 35 40 45 50 55	1,348.45 1,322.53 1,297.58 1,273.57 1,250.42 1,228.11 1,206.57 1,185.78 1,165.70 1,146.28 1,127.50 1,109.33	7.416 7.561 7.707 7.852 7.997 8.143 8.288 8.433 8.579 8.724 8.869 9.014	3.708 3.781 3.853 3.926 3.999 4.071 4.144 4.217 4.289 4.362 4.435 4.507		
2 0 5 10 15 20 25 30 35 40 45 50	2,864.93 2,750.35 2,644.58 2,546.64 2,455.70 2,871.04 2,292.01 2,218.09 2,148.79 2,083.68 2,022.41	3.490 3.636 3.781 3.927 4.072 4.218 4.363 4.508 4.654 4.799 4.945	1.745 1.818 1.891 1.963 2.036 2.109 2.181 2.254 2.327 2.400 2.472	15 20 25 30 35 40 45 50 55 6 0	1,091.73 1,074.68 1,058.16 1,042.14 1,026.60 1,011.51 996.87 982.64 968.81 955.37 942.29	9.160 9.305 9.450 9.596 9.741 9.886 10.031 10.177 10.322 10.467 10.612	4.580 4.653 4.725 4.798 4.870 4.943 5.016 5.088 5.161 5.234 5.306		
55 3 0 5 10 15 20	1,964.64 1,910.08 1,858.47 1,809.57 1,763.18 1.719.12	5.235 5.381 5.526 5.672 5.817	2.545 2.618 2.690 2.763 2.836 2.908	10 15 20 25 30 35	929.57 917.19 905.13 893.39 881.95 870.79 8 5 9.92	10.758 10.903 11.048 11.193 11.339 11.484 11.629	5.379 5.451 5.524 5.597 5.669 5.742 5.814		

Table—(Continued).

Degree.	Radii.	Chord Deflection.	Tangent Deflection.	Degree.	Radii.	Chord Deflection.	Tangent Deflection.
6 45 50 55	849.32 838.97 828.88	11.774 11.919 12.065	5.887 5.960 6.032	10 0 10 20 30	573.69 564.31 555.23 546.44	17.431 17.721 18.011 18.300	8.716 8.860 9.005 9.150
7 0 5 10 15	819.02 809.40 800.00 790.81	12.210 12.355 12.500 12.645	6.105 6.177 6.250 6.323	40 50	537.92 529.67 521.67	18.590 18.880 19.169	9.295 9.440 9.585
20 25 30 35	781.84 773.07 764.49 756.10	12.790 12.936 13.081 13.226	6.395 6.468 6.540 6.613	10 20 30 40	513.91 506.38 499.06 491.96	19.459 19.748 20.038 20.327	9.729 9.874 10.019 10.164
40 45 50 55	747.89 739.86 732.01 724.31	13.371 13.516 13.661 13.806	6.685 6.758 6.831 6.903	12 0 10	485.05 478.34 471.81	20.616 20.906 12.195	10.308 10.453 10.597
8 0 5 10	716.78 709.40 702.18	13.951 14.096 14.241	6.976 7.048 7.121	20 30 40 50	465.46 459.28 453.26 447.40	21.484 21.773 22.063 22.352	10.742 10.887 11.031 11.176
15 20 25 30 35	695.09 688.16 681.35 674.69 668.15	14.387 14.532 14.677 14.822 14.967	7.193 7.266 7.338 7.411 7.483	10 20	441.68 436.12 430.69	22.641 22.930 23.219	11.320 11.465 11.609
40 45 50 55	661.74 655.45 649.27 643.22	15.112 15.257 15.402 15.547	7.556 7.628 7.701 7.773	30 40 50	425.40 420.23 415.19	23.507 23.796 24.085	11.754 11.898 12.043
9 0 5 10	637.27 631.44 625.71	15.692 15.837 15.982	7.846 7.918 7.991	14 0 10 20 30 40	410.28 405.47 400.78 396.20 391.72	24.374 24.663 24.951 25.240 25.528	12.187 12.331 12.476 12.620 12.764
15 20 25 30 35	620.09 614.56 609.14 603.80 598.57	16.127 16.272 16.417 16.562 16.707	8.063 8.136 8.208 8.281 8.353	50	387.34 383.06 378.88	25.328 25.817 26.105 26.394	12.764 12.908 13.053 13.197
40 45 50 55	593.42 588.36 583.38 578.49	16.852 16.996 17.141 17.286	8.426 8.498 8.571 8.643	20 30 40	374.79 370.78 366.86 363.02	26.682 26.970 27.258	13.341 13.485 13.629 13.773

TABLE-(Continued).

Degree.	Radii.	Chord Deflection.	Tangent Deflection.	Degree.	Radii.	Chord Deflection.	Tangent Deflection.
16 0 10 20 30 40 50	359.26 355.59 351.98 348.45 344.99 341.60	27.835 28.123 28.411 28.699 28.986 29.274	14.205 14.349 14.493	20 30	316.71 313.86 311.06 308.30 305.60 302.94 300.33	31.861 32.149 32.436 32.723 33.010	15.787 15.931 16.074 16.218 16.361 16.505 16.648
10 20 30 40 50	335.07 335.01 331.82 328.68 325.60 322.59 319.62	29.850 30.137 30.425	14.925 15.069 15.212 15.356 15.500	20 30 40 50	297.77 295.25 292.77 290.33 287.94		16.792 16.935 17.078 17.222

RETAINING WALLS.

On the Theory of Retaining Walls.—Let abdc, Fig. 1, be a retaining wall with battered face and vertical back. The top bc of the backing is level with the top of the wall. Let dc represent the natural slope of the material composing the filling, viz., $1\frac{1}{2}$ horizontal to 1 vertical, which is the average of materials used for back filling.

It is assumed that the wall abdc is heavy enough to resist sliding along its base and that it can fail only by overturning,

i. e., rotating about its toe c. Now, if the angle ode (between the vertical line od drawn from the inner bottom edge of the wall and the natural slope de) be bisected by the line df, the angle odf is called the angle, and the line df the slope, of maxi-

mum pressure. The triangular prism of earth odf is called the prism of maximum pressure, because, if considered as a

wedge acting against the back of the wall, it would exert a greater pressure against it than would the entire triangle ode of earth considered as a single wedge. For though the latter is more than double the weight of the former, yet it receives much greater support from the underlying earth. It has been proved by experiment that, if the triangle of earth ode is divided by any line df into wedges, the wedge that will press most against the wall is that formed when the line df divides the angle ode into two equal parts.

The angle odh formed by the vertical od and the horizontal dh is 90°. The angle of natural slope hde is 33° 41°; hence, the angle odf of maximum pressure is equal to $(90^{\circ} - 33^{\circ} 41') \div 2 = 28^{\circ} 09'$.

In making calculations, only one foot of the length of wall and of the backing is taken, so all that is necessary is to take the area of the section of the wall and backing. The material composing the backing is supposed to be perfectly dry and to possess no cohesive power, which is practically true of pure sand.

If we conceive the wall abdc, Fig. 1, to be suddenly removed, the triangle bdf of sand included between the line of maximum pressure df and the vertical back bd of the wall would slide downward, impelled by a force nP, acting in a direction nP at right angles to the side bd of the triangle, i. e., at right angles to the vertical back bd of the wall; the center of pressure being at P one-third of the distance between b and d measured from the bottom of the wall d. The amount of this force nP is:

Perpendicular pressure = $\frac{\text{Wt. of triangle of earth } b \, df \times of}{\text{vertical depth } o \, d}$

This formula not only applies to walls with vertical backs, as in Fig. 1, but to those with inclined backs, as in Fig. 2, for inclinations as high as 6 in. horizontal to 1 ft. vertical, which is rarely met with and never exceeded.

Friction Caused by Pressure of Backing.-If all the backing

material contained between the line of natural slope and the back of the wall were unconfined, it would slide, producing

If the wall were to begin to overturn about its toe c (Figs. 1 and 2) as a fulcrum, its back bd would rise, producing friction against the backing. So long as the wall does not move, the friction of the backing acts constantly, and must, therefore, be one of the forces that prevent overturning. We ascertain the amount and effect of this fric-

tion as follows: Let abdc, Fig. 3, be a retaining wall, and let nP represent to some scale the perpendicular pressure against the back of the wall calculated by the preceding formula, $\forall iz$, perpendicular pressure =

viz., perpendicular pressure =

FIG. 3.

 $n P = \frac{\text{weight of triangle } d \, b f \times o f}{\text{vertical depth } o \, d}.$

Make the angle n Ph equal to the angle of wall friction, viz., that at which a plane of masonry must be inclined to the horizontal in order that dry sand and earth may slide freely over it, and taken at $33^{\circ}41'$. Draw nh perpendicular to nP and complete the parallelogram nhkP. Then will kP represent to the same scale the amount of friction against the back of the wall. As the friction acts in the direction of the back bd of the wall, it may be considered as acting at any point P of the line of the back, and we will have two forces, viz., the perpendicular pressure nP and the friction kP acting at P. By composition and resolution of forces, the diagonal

hP measured to the same scale will give us the amount of their resultant, which is approximately the single theoretical force both in amount and direction that the wall has to resist. This force includes the wall friction. The force h P is always equal to the perpendicular force n P, divided by the cosine of the angle of wall friction. The cosine of the angle of wall friction is .832 and the value of the force h P may be expressed in the following formula:

Approximate theoretical pressure

$$= h P = \frac{\text{weight of triangle } b \, df \times of}{\text{vertical height } o \, d \times .832}.$$

When the back of the wall does not incline forward more than 6 in, horizontal to 1 ft, vertical, equal to an angle of about 26° 34', the following formula by Trautwine is used, viz.: Approximate theoretical pressure

= hP = weight of triangle $b df \times .643$, which includes friction of earth against the back of the wall.

To Find the Overturning and Resisting Forces .- To find the overturning tendency of the earth pressure and the resistance of the wall against being overturned about its toe c, as a fulcrum (see Fig. 3). Find the center of gravity g of the wall, and through g draw the vertical line gi. Produce the line of pressure hP, and draw cv at right angles to this line. To any convenient scale, lay off lt equal to the weight of the wall and to the same scale lm equal to the pressure hP. Complete the parallelogram lmst. The diagonal ls will be the resultant of the pressure and the weight of the wall. The stability of the wall will increase as the distance cr from the toe to the point where the resultant ls cuts the base, increases. To insure stability, cr must be greater than $\frac{1}{5}cd$.

The pressure hP, if multiplied by its leverage cv, will give the moment of the pressure about c, and the weight of the wall lt, multiplied by its leverage cr', will give the moment of the wall. The wall is secure against overturning in proportion as its moment exceeds that of the pressure.

For example, let the height of the wall abdc, in Fig. 3, be 9 ft.; the thickness at the base cd, 4.5 ft., and at the top ab, 2 ft.; and the batter of ac be 1 in. to the foot. The triangle of earth b df has a base bf = 6.57 ft, and altitude do = 9 ft. Taking the section as 1 ft. in thickness, we have the contents equal to $6.57 \times 9 \div 2 = 29.56$ cu. ft. Assuming the material to weigh 120 lb. per cu. ft., the weight of the triangle bdf is $29.56 \times 120 = 3,547$ lb.; of = 4.81 ft. $3,547 \times 4.81 = 17,061$. $17,061 \div od = 1,895.7$ lb. = the perpendicular pressure nF Lay off on a line perpendicular to the back of the wall at F, to a scale of 2,000 lb. = 1 in., $nP = 1,895.7 \div 2,000 = .948$ in., the perpendicular pressure. Draw Ph, making the angle $nPh = 33^\circ 41'$. Draw nh intersecting hP in h; then will nh to the same scale equal the friction of the earth against the back of the wall. Completing this parallelogram, nhkP, the diagonal nP = 1,139 in., which, to a scale of 2,000 lb. = 1 in., amounts to 2,278 lb., and is the resultant of the pressure and the friction.

Produce the resultant h P to u. We next find the center of gravity g of the wall $ab \, dc$. The section of the wall is a trapezoid, and the center of gravity g is readily found as follows: Produce the upper base of the section to x, and make $ax = c \, d = 4.5$ ft. Then produce the lower base in the opposite direction to y, and make dy = ab = 2 ft. Join x and y. Find the middle points x' and y' of the upper and lower bases of the section. Join these points. The intersection g of the lines xy and x'y' is the center of gravity of the trapezoid $ab \, dc$.

The volume of the section of wall abdc is readily found. The sum of top and bottom widths = 2.0 + 4.5 = 6.5 ft. 6.5 + 2 = 3.25 ft. $3.25 \times 9 = 29.25$ cu. ft. $29.25 \times 154 = 4,504$ lb. (the weight per cubic foot of good mortar rubble = 154 lb.) the weight of the section abdc. Draw through g a vertical line gi, and lay off on it, to a scale of 2,000 lb. to the inch, from the point l, where the line of gravity intersects the prolongation of the line of pressure hP, the length lt equal to 4,504 lb., the weight of the wall. Lay off from l on the prolongation of hP, lm equal to 2,278 lb. to the same scale. Complete the parallelogram lmst. The diagonal ls represents the resultant of the pressure and of the weight of the wall. The distance cr from the toe c to the intersection of the resultant ls with the base cd is more than one-third of the width of the base, which insures ample stability.

Pressure of the Backing on Surcharged Walls.—In ${\rm\ Fig.}\,4$ the surcharge of backing $m\,b\,o$ slopes from b at its natural slope,

and attains its maximum pressure where the slope of maximum pressure ak intersects the natural slope bm at f. Any additional height of surcharge does not increase this pressure. If the surcharge slopes from a, as shown by the line ap, or from any point between a and b, then the slope of maximum pressure must be extended, intersecting the slope from a in the

point k. The prism of maximum pressure will then be dik. The triangle of earth abi on the top of the wall exerts no pressure against the back of the wall, but adds to its stability.

Having found the weight of the triangle b df, we have approximate pressure = weight of triangle $b df \times .643$, which includes the pressure of the backing and the friction of the earth against the back of the wall.

Draw Pn perpendicular to the back of the wall and draw hP making the angle $nPh=33^\circ$ 41, the angle of wall friction. Then, hP will be the direction of the pressure. The point of application of this pressure will not always be at P, one-third of the height of bd measured from d, but above P, as at r, where a line drawn from the center of gravity g of the prism of maximum pressure d is (omitting any earth resting directly upon the top of the wall), and parallel to the line dk of maximum pressure, cuts the back bd of the wall. The center of pressure P will be at one-third the height of the wall when the sustained earth dbs or dbf forms a complete triangle, one of whose angles is at b, the inner top edge of the wall. For all other surcharges, the point of pressure will be above P.

TUNNEL SECTIONS.

Tunnel sections vary somewhat, according to the material to be excavated, but the general form and dimensions are much the same.

The general dimensions are as follows: For double track, from 22 to 27 ft. wide and from 21 to 24 ft. high, and for single track, from 14 to 16 ft. wide and from 17 to 20 ft. high (see Figs. 1 and 2).

In seamy or rotten rock the section is sufficiently enlarged to receive a lining of substantial rubble or brick masonry laid in good cement morter. When the material has not sufficient consistency to sustain itself until the masonry lining is built, resort is had to timbering, which furnishes the necessary support.

CALCULATION OF 'EARTHWORK.

In calculating the quantity of material in excavation and embankment, two general methods are used, namely, the end-area formula and the prismoidal formula.

Calculation by the end-area method consists in multiplying the mean, or average, area in square feet of two consecutive sections by the distance in feet between them. Thus, let A represent the area in square feet of one section; B, the area in square feet of the next section; C, the number of feet between the sections; and D, the total number of cubic feet in the prismoid lying between these sections. Then,

$$D = \frac{A+B}{2} \times C$$
, approximately.

The distance between sections should not be more than 100 ft., and should be less if the surface of the ground is irregular.

A more accurate result is obtained by the use of the prismoidal formula. In applying the prismoidal formula to the calculation of cubic contents, it is requisite to know the middle cross-section between each two that are measured on the ground. The dimensions of this middle section are the means of the dimensions of the end sections.

Calling one of the given sections A, the other B, the middle (not the mean) section M, the distance between the sections L, and the required contents S, we have, by the prismoidal formula,

$$S = \frac{L}{6} (A + 4 M + B).$$

EXAMPLE.—Two sections are represented by Figs. 1 and 2, and are denoted by the letters 4 and B. The perpendicular distance between them is 50 ft. It

is required to find the cubical contents of the prismoid.

SOLUTION.—The section given in Fig. 1 is composed of the four triangles a, b, c, and d. The triangles a and b have equal bases of 9ft., the half width of the roadway; hence, if we

take half the sum of their altitudes and multiply it by the common base we shall have the sum of the areas of the triangles a and b.

The triangles c and d have a common base 8 ft., the center cut of the section, and if we take the half sum of the side distances and multiply it by 8 ft., we shall obtain the areas of the triangles c and d. Taking the dimensions of section A given in Fig. 1, we have

Areas of triangles
$$a + b = \frac{12.8 + 5}{2} \times 9 = 80.1 \text{ sq. ft.}$$

Areas of triangles
$$c + d = \frac{21.8 + 14}{2} \times 8 = \frac{143.2 \text{ sq. ft.}}{2}$$

Total area of section
$$A = 223.3$$
 sq. ft.

Taking the dimensions of the section B given in Fig. 2, we have

Areas of triangles
$$a' + b' = \frac{9.7 + 2.2}{2} \times 9 = 53.55 \text{ sq. ft.}$$

Areas of triangles
$$c' + d' = \frac{18.7 + 11.2}{2} \times 5 = 74.75$$
 sq. ft.

Total area of section B = 128.3 sq. ft.

In applying the prismoidal formula we calculate the area of a section midway between the given sections, and for its

dimensions we take the mean of the dimensions of the given sections. These dimensions will be as follows:

Center cut,
$$\frac{8+5}{2} = 6.5$$
 ft.

Right-side distance,
$$\frac{14+11.2}{2} = 12.6$$
 ft.

Left-side distance,
$$\frac{21.8 + 18.7}{2} = 20.25 \text{ ft.}$$

With dimensions thus found, construct the section M shown in Fig. 3.

The area of section M is computed by the same method as that used with sections A and B in Figs. 1 and 2, and is as follows:

Area of triangles
$$a'' + b'' = \frac{11.2 + 3.6}{2} \times 9 = 66.6 \text{ sq. ft.}$$

Area of triangles
$$c'' + d'' = \frac{20.2 + 12.6}{2} \times 6.5 = \frac{106.6}{2}$$
 sq. ft.

Total area of section M = 173.2 sq. ft.

Denoting the distance between the sections by L and the cubical contents of the prismoid by S, we have, by substituting in the prismoidal formula.

$$S = \frac{L}{6}(A + 4M + B).$$

$$S = \frac{50}{6}(223.3 + 4 \times 173.2 + 128.3) = 8.703 \text{ cu. ft.} = 322.3 \text{ cu. yd.}$$

TRACKWORK.

Curving Rails.—When laying track on curves, in order to have a smooth line, the rails themselves must conform to the curve of the center line. To accomplish this, the rails must be curved. The curving should be done with a rail bender or with a lever, preferably with the former.

To guide those in charge of this work, a table of middle and quarter ordinates for a 30-ft. rail for all degrees of curve should be prepared.

The following table of middle ordinates for curving rails is calculated by using the formula

$$m = \frac{c^2}{8R},$$

in which m =middle ordinate:

c = chord, assumed to be of the same length as the rail:

R = radius of the curve.

The results obtained by this formula are not theoretically correct, yet the error is so small that it may be ignored in practical work. In curving rails, the ordinate is measured by stretching a cord from end to end of the rail against the gauge side, as shown in Fig. 1. Suppose the rail AB is 30 ft. in length, and

the curve 8° . Then, by the previous problem, the middle ordinate at a should be $1\frac{\pi}{4}$ in. To insure

a uniform curve to the rails, the ordinates at the quarters b and b' should be tested. In all cases the quarter ordinates should be three-quarters of the middle ordinate. In Fig. 1, if the rail has been properly curved, the quarter ordinates at b and b' will be $\frac{3}{2} \times 1\frac{5}{6}$ in. = 13 $\frac{3}{6}$, say 1 $\frac{3}{6}$ in.

MIDDLE ORDINATES FOR CURVING RAILS.

Degree of	Length of Rail.									
Degree of Curve.	30 ft.	28 ft.	26 ft.	24 ft.	22 ft.	20 ft.				
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20	in. 1/4/16/88 1/16/88	in. 175 588 114 475 58 114 475 58 114 475 58 114 475 58 114 475 58 114 5	in. 1988 1144 1144 1144 1144 1144 1144 1144	in.	in. 1/5 5 5 5 5 5 5 6 5 5 6 6 6 6 6 6 6 6 6 6	in. 1/835 9 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				

In trackwork it is often necessary to ascertain the degree of a curve, though no transit is available for measuring it. The following table contains the middle ordinates of a 1° curve for chords of various lengths:

The lengths of the chords are varied, so that a longer or shorter chord may be used, according as the curve is regular or not.

The table is applied as follows: Suppose the middle ordinate of a 44-ft.

Length of Chord. Feet.	Middle Ordinate of a 1° Curve. Inches.
20 30 44 50 62 100 120	1/8 1/4 1/4 5/2 5/8 1 25/4 33/4

chord is 3 in. We find in the table that the middle ordinate of a 44-ft. chord of a 1° curve is $\frac{1}{2}$ in. Hence, the degree of the given curve is equal to the quotient of $3 \div \frac{1}{4} = 6$ ° curve.

Elevation of Curves.—To counteract the centrifugal force developed when a car passes around a curve, the outer rail is elevated. The amount of elevation will depend on the radius of the curve and the speed at which trains are to be run. There is, however, a limit in track elevation as there is a limit in widening gauge, beyond which it is not safe to pass.

The best authorities on this subject place the maximum elevation at one-seventh the gauge, or about 8 in. for standard gauge of 4 ft. 8½ in. The gauge on a 10° curve elevated for a speed of 40 miles an hour should be widened to 4 ft. 9½ in.

All curves, when possible, should have an elevated approach on the straight main track, of such length that trains may pass on and off the curve without any sudden or disagreeable lurch.

A good rule for curve approaches is the following: For each half inch or fraction thereof of curve elevation, add 30 ft., for 1 rail length, to the approach; that is, if a curve has an elevation of 2 in., the approach will have as many rail lengths as the number of times $\frac{1}{2}$ is contained in 2, or 4. The approach will, therefore, have a length of 4 rails of 30 ft. each, or 120 ft.

The following table for elevation of curves is a compromise between the extremes recommended by different engineers. It is a striking fact that experienced trackmen never elevate track above 6 in. and many of them place the limit at 5 in.

Degree of Curve.	Length of Approach. Feet.	Elevation. Inches.	Width of Gauge.	Speed of Train. Miles per Hour.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	60 120 150 180 180 210 210 240 240 270 270 270 240 240 240 240	1 2 25/3 36/4 31/4 31/4 31/4 31/4 41/4 41/4 41/4 41	4' 81,2" 4' 83,3" 4' 83,3" 4' 83,2" 4' 83,2" 4' 90" 4' 90" 4' 90" 4' 90" 4' 90" 4' 90,4" 4' 91,2" 4' 91,2" 4' 91,2" 4' 91,2" 4' 91,2" 4' 91,2" 4' 91,2" 4' 91,2" 4' 91,2"	60 60 60 55 50 45 40 35 30 25 20 15 10 10

The Elevation of Turnout Curves.—The speed of all trains in passing over turnout curves and crossovers is greatly reduced, so that an elevation of $\frac{1}{2}$ in. per degree is amply sufficient for all curves under 16°. On curves exceeding 16°, the elevation may be held at 4 in. until 20° is reached, and on curves extending 20°, $\frac{1}{16}$ in. of elevation per degree may be allowed until the total elevation amounts to 5 in., which is sufficient for the shortest curves.

The Frog.—The frog is a device by means of which the rail at the turnout curve crosses the rail of the main track. The frog shown in Fig. 2 is made of rails having the same cross-section as those used in the track. The wedge-shaped part A is the tongue, of which the extreme end a is the point. The space b, between the ends c and d of the rails, is the mouth, and the channel that they form at its narrowest point e is the throat. The curved ends f and g are the wings.

That part of the frog between A and A' is called the heel. The width h of the frog is called its spread. Holes are drilled

in the ends of the rails c, d, k, and l to receive the bolts used in fastening the rail splices, so that the rails of which the frog is composed form a part of the continuous track.

The Frog Number.—The number of a frog is the ratio of its length to its breadth; i. e., the quotient of its length divided by its breadth.

Thus, in Fig. 2, if the length a' l, from point to heel of frog is 5 ft., or 60 in., and the breadth h of the heel is 15 in., the number of the frog is the quotient of $60 \div 15 = 4$. Theoretically, the length of the frog is the distance from a to the middle point of a line drawn from k to l: practically, we take from a to las the distance. As it is often difficult to determine the exact point a of the frog, a more accurate method of determining the frog number is to measure the entire length dl of the frog from mouth to heel, and divide this length by the sum of the mouth width b and the heel width h. The quotient will be the exact number of the frog.

For example, if, in Fig. 2, the total length d l of the frog is 7 ft. 4 in., or 88 in., and the width h is 15 in., and the width b of the mouth is 7 in., then the frog number is $88 \div (15 + 7) = 4$. Frogs are known by their numbers. That in Fig. 2 is a No. 4 frog.

The Frog Angle.—The frog angle is the angle formed by the gauge lines of the rails, which form its tongue. Thus. in Fig. 2, the frog angle is the angle la'k. The amount

of the angle may be found as follows: The tongue and heel of

the frog form an isosceles triangle (see Fig. 3). By drawing a line from the point a of the frog to the middle point b of the heel cd, we form a right-angled triangle, right-angled at b. The perpendicular line ab bisects the angle a, and, by

trigonometry, we have $\tan \frac{1}{a} a = \frac{b c}{a b}$. The dimensions of

the frog point given in Fig. 3 are not the same as those given in Fig. 2, but their relative proportions are the same, viz., the length is four times the breadth. The length ab=4 and the width cd=1; hence, $bc=\frac{1}{4}$. Substituting these values,

we have $\tan \frac{1}{8} a = \frac{\frac{1}{8}}{4} = \frac{1}{8} = .125$. Whence, $\frac{1}{8} a = 7^{\circ} 7_{2}^{1}$ and

 $a = 14^{\circ} 15'$; that is, the angle of a No. 4 frog is $14^{\circ} 15'$.

Frog numbers run from 4 to 12, including half numbers, the spread of the frog increasing as the number decreases.

The Parts of a Turnout.—The several parts of a turnout are represented in Fig. 4. The distance pf from the P. C. of the turnout curve to the point of frog is called the frog distance. The radius co of the turnout curve, the frog distance, the

frog angle, and the frog number bear certain relations to one another, which are expressed by the following formulas:

Tangent of half frog angle = gauge \div frog distance.

Frog number = $\sqrt{\text{radius } c \circ \div \text{twice the gauge}}$.

Frog number = $1 \div \frac{1}{2}$ the tangent of $\frac{1}{2}$ the frog angle.

Radius co = twice the gauge \times square of the frog number.

Radius $co = (\text{frog distance } pf \div \text{sine of frog angle}) - \frac{1}{4}$ the gauge.

Radius co = gauge \div (1 - cosine of frog angle) - $\frac{1}{4}$ the gauge.

Frog distance $pf = \text{frog number} \times \text{twice the gauge}$.

Frog distance $pf = \text{gauge } pq \div \text{tangent of } \frac{1}{2}$ the frog angle.

Frog distance $pf = (\text{radius } c \, o + \text{half the gauge}) \times \text{sine of frog angle.}$

Middle ordinate (approximate) = $\frac{1}{4}$ the gauge.

Each side ordinate (approximate) = $\frac{3}{4}$ the middle ordinate = $\frac{3}{4}$ (or .188) of the gauge.

Switch length (approximate) =

throw in feet × 10,000

tan deflection for chords of 100 ft. for radius co of turnout curve

The tangent deflection may be obtained from the table on pages 298-300.

TURNOUTS FROM A STRAIGHT TRACK. Gauge, 4 ft. $8\frac{1}{2}$ in. Throw of switch, 5 in.

Frog Number.	Frog Angle.	Turnout Radius.	Degree of Turnout Curve.	Frog Distance.	Middle Ordinate.	Side Ordinate.	Stub Switch Length.			
$\begin{array}{c} 12\\ 111_{2}\\ 11\\ 101_{2}\\ 10\\ 91_{2}\\ 9\\ 81_{2}\\ 8\\ 71_{2}\\ 6\\ 51_{2}\\ 6\\ 51_{2}\\ 4\\ 4\\ 4\end{array}$	0 / 4 46 4 58 5 12 5 28 5 44 6 02 6 22 6 44 7 10 7 38 8 10 8 48 9 32 10 24 11 26 12 40 14 14	Feet. 1,356 1,245 1,139 1,038 942 850 603 530 461 398 339 285 191 151	0 / 4 14 4 36 5 02 5 31. 6 05 6 45 7 31 10 50 12 27 14 26. 16 58 20 13 24 32 30 24 38 46	Feet. 113.0 108.3 103.6 98.9 94.2 89.5 84.7 80.0 75.3 70.6 65.9 61.2 56.5 51.8 47.1 42.4 37.7	Feet. 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177	Feet	Feet. 34 32 31 29 28 27 25 24 22 21 20 18 17 15 14 13 11			

The switch lengths in the above table merely denote the shortest length of stub switch that will at the same time form part of the turnout curve, and give 5 in. throw. Point or split switches require a throw of not more than $3\frac{1}{2}$ in., though many have a throw of 5 in., with an equal space between the gauge lines at the heel. The heels of a split switch, which occupy the same position as the toes of a stub switch, should

be placed at the point where the tangent deflection or offset is 5 in. The point where the tangent deflection is but 41 in. will answer for many rail sections, but for those above 65 lb. per yd., 5 in. should be taken.

In the table on pages 298-300, tangent deflections for chords of 100 ft, are given for all curves up to 20°; and for a curve of higher degree, the tangent deflection may be found by applying the formula tan deflection = $\frac{c^2}{2R}$.

In complicated trackwork, where space is limited, curves must be chosen to meet the existing conditions, and not with reference to particular frog angles, in which case the frogs are called special frogs and are made to fit the particular

curve used. The determination of the frog distance, switch length, and frog angle may be understood by referring to Fig. 5.

Let the main track ab be a straight line: the gauge pq =4 ft. $8\frac{1}{2}$ in. (= 4.71 ft.); the degree of the turnout curve = 13°; the chord qd = 100 ft.; cd = the tangent deflection of the chord qd; and pf =the frog distance. From the table on page 299, we find the

tangent deflection for a chord 100 ft. long of a 13° curve is 11.32 ft. Then, from Fig. 5, we have the proportion

$$cd: ef = \overline{q} c^2: \overline{q} e^2.$$

Now, in curves of large radius, qc and qd are assumed to be equal. Also, qe = pf, the frog distance, and substituting these equivalents we have the proportion

$$cd:ef = \overline{qd^2}: \overline{pf^2}.$$

Substituting the above given quantities in the proportion,

we have

$$11.32:4.71 = 100^2:\overline{pf}^2;$$

whence.

$$\overline{pf^2} = \frac{100^2 \times 4.71}{11.32}$$

and the frog distance, pf = 64.5 ft.

If the space between the gauge lines at the heels of a split switch be taken at 5 in. = .42 ft., the distance from the P. C. of the turnout curve to the heel of the switch may be found as follows:

In Fig. 5, let h, the tangent offset at the heel of the switch = .42 ft., we have the proportion

$$c\,d:h=\overline{q\,d^2}:\overline{q\,h^2},$$

and substituting known values, we have

$$\frac{11.32: .42 = 100^2: \overline{qh}^2,}{\overline{qh}^2 = \frac{10,000 \times .42}{11.32} = 371.02,}$$

whence,
$$qh^2 = \frac{10,000 \times .42}{11.32} = 3$$
 and $qh = 19.26$ ft.

This locates the heel of a *split switch* and the toe of a *stub switch*.

The frog angle is the angle kfl (see Fig. 5) formed by the gauge line of the main rail fk and the tangent to the outer rail qf of the turnout curve at the point where the two rails intersect. This angle is equal to the central angle qof. The arcs qf and rs are assumed to be of the same length. The turnout curve being 13°, the central angle for a chord of 1 ft.

is $\frac{13\times60}{100}=7.8'$, and the central angle for 64.5 ft. the frog distance, is $7.8'\times64.5=8^{\circ}$ 23', the frog angle for a 13° curve.

By this process the frog distance, switch length, and frog angle may be calculated for curves of any radius.

To Lay Out a Turnout From a Curved Main Track.—There are

two cases:

Case I.—When the two curves deflect in opposite direc-

CASE 1.—When the two curves deflect in opposite directions, illustrated in Fig. 6.

Case II.—When the two curves deflect in the same direction, illustrated in Fig. 7.

In Fig. 6, the curve ab is 3° 30', and it is proposed to use a No. 8 frog. By reference to the table on page 315, we find that the degree of curve corresponding to a No. 8 frog is 9° 31'. Accordingly, we use a turnout curve ac, whose degree when added to the degree of curve of the main track shall equal the degree required for a No. 8 frog; i. e., we use a 6° turnout curve, which is within 1 minute of the required degree, and close enough for practical purposes. We know that for

curves of moderate radii, i. e., from 1° up to 12°, the tangent deflections or offsets increase as the degree of the curve. That is, the tangent deflection of a 2°, 4°, and 6° is two, four, and six times, respectively, that of a 1° curve. In the accompanying cuts illustrating the location of frogs and switches, each curve is represented by two lines indicating the rails, whereas only the center lines of the curves are run in on the ground, In Fig. 6, the line $c\,d$ is tangent to the center lines of the curves. These center lines do not appear in the cut.

Again referring to Fig. 6, if a tangent cd be drawn at c,

the point common to the center lines of the curves, the sum of the deflections of both curves from the common tangent will be equal, in this case, to the tangent deflec-

tion of a 9° 30' curve from a straight line.

Accordingly, to find the frog distance for a 6° turnout curve from a 3° 30′ curve, the curves being in opposite directions, as shown in Fig. 6, we find the tangent deflection of a 9° 30′ curve for a chord of 100 ft. This deflection is 8.28 ft., as given in the table on page 299.

Assuming the gauge of track to be standard, viz., 4 ft. $8\frac{1}{8}$ in. = 4.71 ft., and denoting the required frog distance by x, we have the following proportion:

$$8.28 : 4.71 = 100^{2} : x^{2},$$

$$= \frac{10,000 \times 4.71}{8.28} = 5,688.4$$

and the frog distance, x = 75.42 ft.

whence.

We use the tangent deflection for a 9° 30′ curve, which very nearly equals the tangent deflection for a 9° 31′ curve, thus saving the labor of a calculation; this will not appreciably affect the result.

We locate the heel of the switch in the same way, using for the second term of the proportion, .42 ft., the distance between the gauge lines at the heel, instead of 4.71 ft., the gauge of the track. In Fig. 7, which comes under Case II, both curves deflect in the same direction, and the rate of their deflection from each other is equal to the rate of the deflection of a curve whose degree is equal to the

difference of the degrees of the two curves from a tangent.

Let the main-track curve ab be 5°, and the turnout curve ac be 10°. Then, the rate of deflection or divergence of the 10° curve from the 5° curve equals the divergence

Gourve c

of a $(10^{\circ}-5^{\circ})=5^{\circ}$ curve from a straight track or tangent. Accordingly, we find, in the table on page 298, the tangent

deflection for a 5° curve for a chord of 100 ft. = 4.36 ft. Denoting the required frog distance by x, we have the following proportion: $4.36:4.71=100^{\circ}:x^{\circ}$.

whence,
$$x^2 = \frac{10,000 \times 4.71}{4.36} = 10,802.8$$

and the frog distance, x = 103.9 ft.

Distances are not calculated nearer than to tenths of a foot.

How to Lay Out a Switch.—In laying out a switch, locate the frog so as to cut the least possible number of rails. Where there is some latitude in the choice of location, the P. C. of the turnout curve can be located so as to bring the frog near the end of a rail.

To do this, take from the table on page 315 the frog distance corresponding to the number of the frog to be used. Locate approximately the P. C. of the turnout curve, and measure from it, along the main-track rail, the tabular frog distance. If this brings the frog point near the end of the rail, the P. C. of the turnout curve may be moved so as to require the cutting of but one main-track rail. Measure the total length of the frog, and deduct it from the length of the rail to be cut, marking with red chalk on the flange of the rail the point at which the rail is to be cut. Measure the width of the frog at the heel, and calculate the distance from the heel

to the theoretical point of frog. For example, if the width of the frog at the heel is $\1_* in., and a No. 8 frog is to be used, the theoretical distance from the heel to the point of frog is $8.5 \times 8 = 68$ in. = 5 ft. 8 in. Measure off this distance from the point, marking the heel of the frog. This will locate the point of the frog, which should be distinctly marked with red chalk on the flange of the rail. It is a common practice to make a distinct mark on the web of the main-track rail, directly opposite the point of frog. This point being under the head of the rail, it is protected from wear and the weather. The P. C. of the turnout curve is then located by measuring the frog distance from the point of frog. From the table on page 315, we find the frog distance for a No. 8 frog is 75.3 ft., and the switch length, i. e., distance from P. C. of turnout curve to heel of split switch or toe of stub switch, is 22 ft.

If a stub switch is to be laid, make a chalk mark on both main-track rails on a line, marking the center of the headblock. A more permanent mark is made with a center punch. Stretch a cord touching these marks, and drive a stake on each side of the track, with a tack in each. This line should be at right angles, to the center line of the track, and the stakes should be far enough from the track not to be disturbed when putting in switch ties. Next, cut the switch ties of proper length; draw the spikes from the track ties. three or four at a time, and remove them from the track. replacing them with switch ties, and tamping them securely in place. When all the long ties are bedded, cut the maintrack rail for the frog, being careful that the amount cut off is just equal to the length of the frog. If, by increasing or decreasing the length of the lead 5%, it is possible to avoid cutting a rail, do not hesitate to do so, especially for frogs above No. 8.

Use full-length rails (30 ft.) for moving, or switch, rails, and be careful to leave a joint of proper width at the head-chair. Spike the head-chairs to the head-block so that the main-track rails will be in perfect line. Spike from 8 to 11 ft. of the switch rails to the ties, and slide the cross-rods on to the rail flanges, spacing them at equal intervals. The cross-rods are placed between the switch ties, which should not

be more than 15 in, from center to center of tie. The switch ties, especially those under the moving rails, should be of sawed oak timber. Southern pine is a good second choice. Attach the connection-rod to the head-rod and to the switch stand. With these connections made, it is an easy matter to place the switch stand so as to give the proper throw of the switch

It is common practice to fasten the switch stand to the head-block with track spikes, but a better fastening is made with bolts. The stand is first properly placed, and the holes marked and bored, and the bolts passed through from the under side of the head-block. This obviates all danger of movement of the switch stand in fastening, which is liable to occur when spikes are used, and insures a perfect throw.

The use of track spikes is quite admissible when holes are bored to receive them, in which case a half-inch auger should be used for standard track spikes. The switch stand should, when possible, be placed facing the switch, so as to be seen from the engineer's side of the engine—the right-hand side.

Next stretch a cord from a, Fig. 8, a point on the outer main-track rail opposite the P. C. of the turnout curve to b'. the point of the frog. This cord will take the position of the

chord of the arc of the outer rail of the turnout curve. Mark the middle point c and the quarter points d and e. Whatever the degree of the turnout curve, the distance from the middle point c of the chord to the arc ab' is 1.18 ft., and the distances from the quarter points d and e are .88 ft.; hence, at c lay off the ordinate 1.18 ft., and at both d and e the ordinate .88 ft., three-quarters of the middle ordinate. These offsets will mark the gauge line of the rail ab'. Add to these offsets the distance from the gauge line to outside of the rail flange, and mark the points on the switch ties. Spike a

FIG. 8.

lead rail to these marks, and place the other at easy track gauge from it. Spike the rails of the turnout as far as the point of frog to exact gauge, unless the gauge has been widened owing to the sharpness of the curve. Beyond the point of frog the curve may be allowed to vary a little in gauge to prevent a kink showing opposite the frog. In case the gauge is widened at the frog, increase the guard-rail distance an equal amount. For a gauge of 4 ft. 8½ in., place the side of the guard rail that comes in contact with the car wheels at 4 ft. 6½ in. from the gauge line of the frog. This gives a space of 1½ in. between the main and guard rails.

In case the gauge is widened $\frac{1}{4}$ or $\frac{1}{2}$ in., increase the guard-rail distance an equal amount.

When the turnout curve is very sharp, it will be necessary to curve the switch rails, to avoid an angle at the head-block. The lead rails should be carefully curved before being laid, and great pains should be taken to secure a perfect line.

If a point, or split, switch is to be laid, the order of work is nearly the same. The same precautions must be taken to avoid the unnecessary cutting of rails, with the additional precaution of keeping the switch points clear of rail joints, as the bolts and angle splices will prevent the switch points from lying close to the stock rails. As already stated, these conditions can usually be met where there is some range in the choice of the location of the switch. Where there is none, the main-track rails must be cut to fit the switch.

Having located the point of frog, the P. C. of the turnout curve, and the heel line of the switch, measure back from the heel line a distance equal to the length of the switch rails, and place on the flange of each rail a chalk mark to locate the ends of the switch points. This will also locate the head-block. Prepare switch ties of the requisite number and length, and place them in the track in proper order. As in the case of stub switches, see to it that all long switch ties are in place before cutting the rail for placing the frog; also, that the ends of the lead rails, with which the switch points connect, are exactly even; otherwise, the switch rods will be skewed, and the switch will not work or fit well. Fasten the switch rods in place, being careful to place them in their proper order, the head-rod being No. 1. Each rod is marked with a center punch, the number of the punch marks corresponding to the number of the rod.

Couple the switch points with the lead rails, and place the

sliding plates in position, securely spiking them to the ties. Connect the head-rod with the switch stand, and close the switch, giving a clear main track.

Adjust the stand for this position of the switch, and bolt it fast to the head-block. Next, crowd the stock rail against the switch point so as to insure a close fit, and secure it in place with a rail brace at each tie; then continue the laying of the rails of the turnout.

If there is no engineer to lay out the center line of the

turnout, the section foreman can put in the lead from ordinates, as explained in Fig. 8. In modern railroad practice, however, most trackwork is done under the direction of an engineer, in which case the center line of the turnout is located with a transit. This insures a correct line and expedites work. For ordinary curves. center stakes at intervals of 50 ft. are sufficient, excepting between the P. C. of the turnout and the point of frog, where there should be a center stake at each interval of 25 ft. Place a guard rail opposite the point of frog on both main track and turnout. The guard rail should be 10 ft. in length; this is an economical

dl an alan dlam

length for cutting rails, as each full-length rail makes three guard rails.

Two styles of guard rails are shown in Fig. 9. That shown at B is in general use, but the style shown at A is growing in favor. The latter is curved throughout its entire length. At its middle point a, directly opposite the point of frog, the guard rail is spaced 1_t^2 in. from the gauge line of the turnout rail bc. From this point the guard rail diverges in both directions, giving at each end a flangeway of 4 in. This allows the wheels full play, excepting at the point of frog, where the guard rail is exactly adjusted to the track gauge, and holds the wheels in true line, preventing them from climbing, or mounting, the frog. The style of guard rail shown at B, though still much used, has two objectionable features;

viz., first, the abruptly curved ends d and e often receive an almost direct blow from the wheel flanges, which causes a car to lurch violently; and second, the flangeway of uniform width, though proper for the main track when straight, as in Fig. 9, is unsuited for sharp curves on either a main track or a turnout, as it compels the wheels to follow a curved line; whereas the normal position of the wheel base of each truck is that of a chord of, or a tangent to, the curve. These two defects alone produce what is known as a rough-riding frog, even though the frog is well lined and ballasted.

Location of Crotch Frog.—A crotch, or middle, frog is a frog placed at the point where the outer rails of both turnouts of

a three-throw switch cross each other. When both turnouts are of the same degree, the crotch frog comes midway be tween the main-track rails. Its location

and angle may be determined as follows: Let the turnout curves A and B, Fig. 10, be each 9° 30', uniting with the main track C by a three-throw switch. Let a be the P. C. common to both curves, and b, the location of crotch, or middle, frog.

It is evident that the point of the crotch frog should be exactly midway between the gauge lines of the main-track rails, and if the gauge is 4 ft. $8\frac{1}{2}$ in. = 4.71 ft., the point of

the crotch of the frog will be $\frac{4.71}{2} = 2.35$ ft. from each rail.

Now, the problem is to find the frog distance from a, the P. C., to the point c, where the tangent deflection will equal 2.35, or half the gauge. From the table on page 299, we find the tangent deflection of a 9° 30′ curve is 8.28 ft. Applying the principle explained in connection with Fig. 5, and letting x represent the required frog distance, we have the following proportion: 8.28:2.35 = 100^9 : x^2 ;

whence, $x^2 = \frac{100^2 \times 2.35}{8.28} = 2,838.2 \text{ ft.},$

and the required frog distance x = 53.3 feet, nearly.

Now, there are two curves starting at the common point a; the outer rails intersect at b, and the angle dbe, formed by tangents drawn at the point of intersection, is the angle of the crotch, or middle frog. The angle is equal to the sum of the angles afb and af'b; that is, equal to double the central angle of either curve between the P. C. and the point of intersection b. The degree of the curve is $9^{\circ}30' = 570'$, and the central angle or total deflection for each foot is $\frac{570'}{}$

= 5.7'; and for the frog distance of 53.3 ft., the central angle is $53.3 \times 5.7' = 303.8' = 5^{\circ}03.8'$. The angle of the crotch frog is double this angle; i. e., $5^{\circ}03.8' \times 2 = 10^{\circ}07.6'$. The crotch frog should be accurately located and spiked in place before the lead rails are placed.

The one objection to the three-throw switch is the open joint at the head-block, the inevitable attendant of the stub switch, but its advantages are so great that it will continue to be used, especially in yard service.

Crossover Tracks .- A crossover is a track by means of which a train passes from one track to another. The tracks united are usually parallel, as are the tracks of a double-track road. Such a crossover is shown in Fig. 11. The tracks a b and cd are 13 ft. apart from center to center, which is the standard distance for double tracks. The crossover consists of two

turnout curves, ef and ah. These curves are usually, though not necessarily, of the same degree. The curves terminate at the points of frog f and h, between which the track fh is a tangent. The essential point in laving out a crossover is to so place the frogs that the connecting track shall be tangent to both curves. In Fig. 11, suppose the frogs are No. 9. requiring 7° 31' turnout curves.

From the table on page 315, we find the required frog distance is 84.7 ft., and the switch length 25 ft. As previously

noted, if there is considerable range in choice of location. the frogs can be so placed as to largely avoid the cutting of rails; but usually crossovers are required at certain precise places, and the rails must be cut as occasion demands. Having located the point of frog at f, we determine the point of the next frog at h, as follows: A No. 9 frog is one that spreads 1 in. in width to every 9 in. in length; and, as the track between the frog points is straight, the distance fh between these points will be as many times 9 in, as is the space kbetween the tracks at the frog point f. The main-track centers are 13 ft. apart, making the space between the gauge lines of the inside rails 8 ft. $3\frac{1}{6}$ in. As it is the rail l of the turnout that joins the second frog at h, we subtract the gauge. 4 ft. $8\frac{1}{3}$ in. from 8 ft. $3\frac{1}{3}$ in., leaving 3 ft. 7 in., the distance k, between the gauge line of the rail l, opposite the frog point f, and the gauge line of the nearest rail of the track cd. This distance multiplied by 9 in, will give the distance from the frog point f to the frog point h; 3 ft. 7 in. = 43 in.; $43 \times 9 = 387$ in. = 32 ft. 3 in. Accordingly, having located the point or frog f, we mark a corresponding point on the nearest rail of the opposite track. From this point we measure along the rail the distance 32 ft. 3 in., locating the second frog point h, and again the frog distance 84.7 ft. to the P.C. of the second turnout curve at a.

If frogs of different numbers, say 7 and 9, were to be used, the distance between the frogs is found as follows:

As the No. 7 frog spreads $\bar{1}$ in, in 7 in., and the No. 9 frog 1 in. in 9 in., the two will together spread 2 in. in 7 + 9 = 16 in., or 1 in. in 8 in. Now, if the rails to be united are 3 ft. 7 in., or 43 in., apart, as in the previous problem, the distance between the frog points will be $43 \times 8 = 344$ in. = 28 ft. 8 in.

In locating crossover tracks, regard should be paid to the direction in which the bulk of the traffic moves, and the crossover tracks should be so placed that loaded cars will be backed, not pushed, from one track to the other.

At all stations on double-track roads there should be a crossover to facilitate the exchange of cars and the making up of trains.

PERPETUAL CALENDAR-1797-1904.

3	4	5	6	0	1	2
June.	Sept.	April. July.	Jan. Oct.	May.	Aug.	Feb. Mar. Nov.
1797	1798	1799	1800	1801	1802	1803
	1804	1805	1806	1807		1808
1809	1810	1811		1812	1813	1814
1815		1816	1817	1818	1819	
1820	1821	1822	1823		1824	1825
1826	1827		1828	1829	1830	1831
	1832	1833	1834	1835		1836
1837	1838	1839		1840	1841	1842
1843		1844	1845	1846	1847	
1848	1849	1850	1851		1852	1853
1854	1855		1856	1857	1858	1859
	1860	1861	1862	1863		1864
1865	1866	1867		1868	1869	1870
1871		1872	1873	1874	1875	
1876	1877	1878	1879		1880	1881
1882	1883		1884 .	1885	1886	1887
	1888	1889	1890	1891		1892
1893	1894	1895		1896	1897	1898
1899	1900	1901	1902	1903		1904
Sun.	Mon.	Tues.	-Wed.	Thur.	Fri.	Sat.
1	2	3	4	5	6	7
8	- 9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	32	33	.34	35
36	37	38	39	40	41 🗸	42
43	44					

By means of the table given on the preceding page, the day of the week corresponding to any date between 1797 and 1904. inclusive, may be readily found. Before every leap year there is a blank space. To find the day of the week on which January 1 of any year fell, find that year in the table: glance down the column containing that year, and the day of the week at the foot of the column will be the day of the week required. Thus, to find on what day of the week January 1, 1895, fell, we find under 1895 in the table, Tuesday. For leap years, we look for day of week under the blank space before the year. Thus, January 1, 1896, fell on Wednesday, Wednesday being in the column containing the blank space before 1896. To find the day of the week for any other date, add (mentally) to the day of the month the first number under the day of the week that is contained in the column containing the year of the century; to this sum, add the number above the month at the top of the table. Find the number thus obtained in the columns of figures under the days of the week; the day of the week at the head of the column containing this number will be the day required. Thus, to find on what day of the week September 10, 1813, fell, we find 1813 in the table. The number under the day of the week in the column containing 1813 is 6, and the number above September at the top of the table is 4. Hence, 10+6+4=20. The day of the week above 20, in the lower part of the table, is Friday.

For dates in January and February of leap years, take one day less, or add the number beneath the day of the week under the blank space preceding the year. Thus, for February 12, 1896, we have 12+4+2=18, and the day of the week above 18 is Wednesday.

The table may also be used for fixing dates. Thus, Thanksgiving Day is the last Thursday in November; on what day of the month did it fall in 1897? Since the earliest day on which it can fall is the 24th, we find on what day of the week November 24 falls, and then count ahead to Thursday. Referring to the table, 24+6+2=32; the day of the week above 32 is Wednesday, and since Thursday is one day lates, it follows that Thanksgiving Day in 1897 fell on the 25th.

UNIVERSITY OF ILLINOIS-URBANA
3 0112 073207935