Procédures de qualification

Planificatrice-électricienne CFC Planificateur-électricien CFC

Connaissances professionnelles écrites

Pos. 4.2 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 90 minutes

Auxiliaires : Règle, équerre, chablon, calculatrice de poche sans transmission de

données et recueil de formules sans exemples de calcul.

Cotation: - Le nombre de points maximum est indiqué pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés

deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille, il suffit de le mentionner dans l'exercice.

1,0

Barème: Nombres de points maximum: 50,0

0.0 -

47,5	-	50,0	Points = Note	6,0
42,5	-	47,0	Points = Note	5,5
37,5	-	42,0	Points = Note	5,0
32,5	-	37,0	Points = Note	4,5
27,5	-	32,0	Points = Note	4,0
22,5	-	27,0	Points = Note	3,5
17,5	-	22,0	Points = Note	3,0
12,5	-	17,0	Points = Note	2,5
7,5	-	12,0	Points = Note	2,0
2,5	-	7,0	Points = Note	1,5

2,0 Points = Note

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente : Cette épreuve d'examen ne peut pas être utilisée librement comme

exercice avant le 1er septembre 2015.

Créé par : Groupe de travail EFA de l'USIE pour la profession de

planificatrice-électricienne CFC / planificateur-électricien CFC

Editeur : CSFO, département procédures de qualification, Berne

Exer	cices	Nombre of maximal	de points obtenus
1.	 5.1.1 Au sein du réseau interconnecté Suisse, l'énergie électrique produite dans les centrales est acheminée vers les récepteurs par des lignes à très haute tension (220/380 kV/50 Hz). Des parcs éoliens modernes situés dans la Mer du Nord transportent l'énergie vers le continent, par l'intermédiaire de câbles haute tension sous forme de tension continue. Citez un avantage déterminant du transport en tension continue. Dans les lignes de grande longueur, chaque brin agit comme une plaque dans un condensateur. Dans le cas de courant alternatif, il y a apparition d'une réactance capacitive X_c. Cette réactance surcharge le réseau! Par contre, si l'on travaille avec du courant continu, la partie réactive disparaît, et seule de l'énergie active est transportée. Economie de cuivre, une seule ligne. 	1	
2.	 5.2.2 Un client vous consulte et vous demande s'il est possible de remplacer un interrupteur dans la combinaison interrupteur + prise de courant par un variateur. Quels points devez-vous clarifier avant de pouvoir conseiller un variateur ? Donnez deux réponses. Type d'éclairage (charge active, charge inductive ou capacitive) ? Quelle est la puissance à faire varier ? Un interrupteur va et vient est-il nécessaire ? Compatibilité entre les produits. Le variateur est-il compatible avec la combinaison ? La source lumineuse est-elle compatible avec un variateur ? 	1 (0,5 chacun)	
3.	5.2.8 Quels sont les facteurs responsables de l'échauffement des transformateurs ?	2 (0,5	
	- Conversion de tension - Inversion magnétique - Flux de courant dans les spires	chacun)	

5.2.6		Nombre maximal	obter
		maxillal	Julei
	es quatre éléments de marquage suivants sur un disjoncteur unipolaire ?	4	
- <u>LS D 13 A</u> c e déclencheme	ourant de déclenchement nominal 13 A avec courbe de nt de type D		
- 10'000 P	ouvoir de coupure de 10'000 A		
- 3 C	lasse de limitation de courant 3	(0,5 chacun)	
- (+) H	omologation de sécurité suisse		
principaux d'ur dans l'illustratio	disjoncteur de canalisation et décrivez leur fonctionnement on.		
	ON ON		
7	Déclencheur électromagnétique : Déclenchement en cas de court-circuit ou de contact à la terre Courants selon le type 3-20 x ln Déclencheur bilame :	(1 chacun)	

Exer	cices	Nombre o	de points obtenus
5.	5.2.8 Un transformateur a une puissance apparente nominale de 400 VA et un rendement de 90 %. La tension primaire s'élève à 230 V, la tension secondaire à 12 V, le cos ϕ_1 = 0,88. On soumet le transformateur à une charge de 280 W. Calculez le courant absorbé par le transformateur.	2	
	$P_1 = \frac{P_2}{\eta} = \frac{280 \text{ W}}{0.9} = \frac{311,11 \text{ W}}{0.9}$	(1)	
	$I_1 = \frac{P_1}{U_1 \cdot \cos \phi_1} = \frac{311,11 \text{ W}}{230 \text{ V} \cdot 0,88} = \underline{\frac{1,54 \text{ A}}{230 \text{ V} \cdot 0,88}}$	(1)	
6.	5.3.1 Le graphique indique les coûts d'acquisition et d'exploitation de deux congélateurs différents. On part du principe que les deux appareils ont une durée de vie de 15 ans. Appareil 1 Appareil 2	2	
	a) Quel est l'appareil que vous conseilleriez à un client ?- Appareil 2	(1)	
	b) Justifiez votre réponse.		
	 Malgré des coûts d'acquisition inférieurs, le coût global de l'appareil 1 est plus élevé au bout de 15 ans Les coûts d'acquisition plus élevés de l'appareil 2 sont compensés au bout de 15 ans par une consommation énergétique moindre. 	(1)	

Exer	cices	Nombre of maximal	de points obtenus
7.	5.3.5 a) Indiquez le nom des deux corps de chauffe destinés à des chauffe-eau.	2	
	1) Corps de chauffe blindé 2) Corps de chauffe en céramique / résistance	(0,5 chacun)	
	thermoplongeuse 1) 2)		
	b) Citez un avantage et un inconvénient pour chaque corps de chauffe représenté ci-dessus.		
	1) - bon transfert thermique - les dépôts de calcaire diminuent le rendement, - le chauffe-eau doit être vidé, en cas de remplacement du corps de chauffe	(0,5)	
	2) - Remplacement sans vider le chauffe-eau - transfert thermique moins bon (tube thermoplongé épais)	(0,5)	
8.	5.3.9 Quel appareil électrique transforme le courant produit dans une installation photovoltaïque, afin qu'il puisse être injecté dans le réseau de distribution ?	1	
	Onduleur		

Exer	cices	Nombre maximal	de points obtenus
9.	5.4.3 a) Calculez la puissance apparente du moteur en fonctionnement nominal. Fabricant Type 1 ~ Moteur Nr. 230 V 13,9 A 2,0 kW S 1 cos φ 0,87 2'800 /min 50 Hz IsolKl. B IP 54	3	
	S _M = U · I = 230 V · 13, 9 A = <u>3′197 VA</u> b) Quelle est la valeur de la puissance réactive du moteur en fonctionnement nominal ?	(1)	
	$Q_{M} = U \cdot I \cdot \sin \phi = 230 \ V \cdot 13, 9 \ A \cdot 0, 493 = \underline{1'576, 29 \ var}$	(1)	
	c) Calculez le rendement du moteur. $\eta = \frac{P_2}{P_1} = \frac{P_2}{U \cdot I \cdot \cos \phi} = \frac{2'000 \ W}{230 \ V \cdot 13, 9 \ A \cdot 0, 87} = \underline{0,72}$	(1)	

Exer	cices	Nombre o	de points obtenus
10.	5.4.3 Circuit résistif $R_2 = 20 \ \Omega \qquad R_3 = 40 \ \Omega$ $R_4 = 180 \ \Omega$ $U = ?$	4	obtenus
	a) Calculez la résistance totale R _{tot} . $R_{23}=R_2+R_3=20~\Omega+40~\Omega=60~\Omega$ $R_{tot}=R_1+\frac{R_{23}\cdot R_4}{R_{23}+R_4}=10~\Omega+\frac{60~\Omega\cdot 180~\Omega}{60~\Omega+180~\Omega}=\underline{55~\Omega}$	(1)	
	b) Calculez U. $U_4 = R_4 \cdot I_4 = 180 \ \Omega \cdot 0, 5 \ A = 90 \ V$ $I_{23} = \frac{U_4}{R_{23}} = \frac{90 \ V}{60 \ \Omega} = 1, 5 \ A$ $I_1 = I_{23} + I_4 = 1, 5 \ A + 0, 5 \ A = 2 \ A$ $U = U_1 + U_4 = R_1 \cdot I_1 + U_4 = 10 \ \Omega \cdot 2 \ A + 90 \ V = \underline{110 \ V}$	(2)	
	c) Calculez P ₃ . $P_3 = I_{23}{}^2 \cdot R_3 = (1,5 \ A)^2 \cdot 40 \ \Omega = \underline{90 \ W}$	(1)	

Exercices	Nombre maximal	de points obtenus
 5.4.3 L'angle de déphasage entre la tension totale U et le courant I d'u s'élève à φ = 60 °. La tension active s'élève à 115 V. a) Calculez U. 		200000
$U = \frac{U_{w}}{\cos \varphi} = \frac{115 \text{ V}}{0.5} = \underline{230 \text{ V}}$	(1)	
b) Calculez U_{bl} $U_{bl} = \sqrt{U^2 - {U_w}^2} = \sqrt{(230V)^2 - (115V)^2} = \underline{199V}$	(1)	
 5.4.5 2. La tension à la sortie d'un transformateur électronique (230/12 V simultanément, à l'aide de deux appareils de mesure différents. l'appareils de mesure indiquent des tensions différentes. 		
Appareil de mesure 1 → 9,18 Volt Appareil de mesure 2 → 11,82 Volt		
Remarque : Les deux appareils sont réglés sur la bonne plage d câbles de mesure sont correctement connectés.	le tension et les	
Justifiez ces valeurs différentes.		
- Si la tension de sortie n'est pas sinusoïdale, seul un appa TRMS pourra la mesurer correctement.	areil de mesure	
 la valeur à mesurer est située en dehors de la largeur de de fréquence) de l'appareil de mesure. 	bande (plage	

	rcices	Nombre maximal	de points obtenus
13.	5.4.4 Sur une cuisinière en fonctionnement (réseau triphasé 3 x 400/230 V/50 Hz) on mesure les courants de phase suivants : $I_{L1} = 7.5 \text{ A}, I_{L2} = 10.1 \text{ A}, I_{L3} = 6.4 \text{ A}.$ Déterminez graphiquement le courant de neutre.	3	
	IL2 IL2 IL2 IL2		
	Echelle: 1 A \triangleq 5 mm 16, 6 mm \triangleq I _N = $3,3$ A		
	Tolérance ∓ 0, 2 A 2 Pt pour graphique correct, 1 Pt pour bon résultat		
14.	5.5.1 Interprétez le diagramme de temps d'un mini-automate programmable SPS/API. Trg Entrée Ta Réglage temps Q Sortie	2	
	a) De quel élément de fonction s'agit-il ?		
	Circuit de temporisation	(1)	
	b) T est réglé sur cinq secondes. Quel est le comportement de la sortie, si le signal d'entrée est maintenu pendant trois secondes ?		

3	obten
(1)	
(1)	
(1)	
(4)	
(1)	
	ł
	l
	(1)(1)

$\begin{array}{lll} 5.4.4 & \text{Plusieurs appareils sont raccord\'es \`a un r\'eseau de courant triphas\'e } 3 \times 400/230 \\ 1.50 \text{ Hz.} & \text{-} & $	cices	Nombre o	de poin
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5.4.4	Шахішаі	Obten
- Moteur triphasé aux caractéristiques suivantes : $P = 12 \text{ kW}, \ U = 3 \times 400 \ \text{V}, \ I = 27,2 \ \text{A}, \cos \phi = 0,75$ - Chauffe-eau triphasé aux caractéristiques suivantes : $U = 3 \times 400 \ \text{V}, \ I = 15 \ \text{A},$ - Eclairage 230 V de halle réparti sur les trois conducteurs polaires : $I_{L1} = 9,5 \ \text{A} \qquad I_{L2} = 7,2 \ \text{A} \qquad I_{L3} = 11,1 \ \text{A} \qquad \cos \phi_{L1} = 0,90 \qquad \cos \phi_{L2} = 0,85 \qquad \cos \phi_{L3} = 0,92$ Déterminez la puissance active raccordée totale. $P_M = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ \text{V} \cdot 27,2 \ \text{A} \cdot 0,75 = \underline{14,13 \ \text{kW}}$ $P_W = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ \text{V} \cdot 15 \ \text{A} \cdot 1 = \underline{10,39 \ \text{kW}}$ $P_{BL1} = U \cdot I_{L1} \cdot \cos \phi_{L1} = 230 \ \text{V} \cdot 9,5 \ \text{A} \cdot 0,9 = \underline{1,97 \ \text{kW}}$ $P_{BL2} = U \cdot I_{L2} \cdot \cos \phi_{L2} = 230 \ \text{V} \cdot 7,2 \ \text{A} \cdot 0,85 = \underline{1,41 \ \text{kW}}$ $P_{BL3} = U \cdot I_{L3} \cdot \cos \phi_{L3} = 230 \ \text{V} \cdot 11,1 \ \text{A} \cdot 0,92 = \underline{2,35 \ \text{kW}}$ $P_{Ges} = P_M + P_W + P_{BL1} + P_{BL2} + P_{BL3} =$		3	
$\begin{array}{lll} P = 12 \ kW, \ U = 3 \ x \ 400 \ V, \ I = 27, 2 \ A, \cos \phi = 0,75 \\ - \ Chauffe-eau \ triphas\'e \ aux \ caract\'eristiques \ suivantes : \\ U = 3 \ x \ 400 \ V, \ I = 15 \ A, \\ - \ Eclairage \ 230 \ V \ de \ halle \ r\'eparti \ sur les \ trois \ conducteurs polaires : \\ I_{L1} = 9,5 \ A & I_{L2} = 7,2 \ A & I_{L3} = 11,1 \ A \\ \cos \phi_{L1} = 0,90 & \cos \phi_{L2} = 0,85 & \cos \phi_{L3} = 0,92 \\ \hline D\'eterminez \ la \ puissance \ active \ raccord\'ee \ totale. \\ \\ P_M = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 27, 2 \ A \cdot 0,75 = \underline{14,13 \ kW} \\ P_W = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 15 \ A \cdot 1 = \underline{10,39 \ kW} \\ P_{BL1} = U \cdot I_{L1} \cdot \cos \phi_{L1} = 230 \ V \cdot 9, 5 \ A \cdot 0, 9 = \underline{1,97 \ kW} \\ P_{BL2} = U \cdot I_{L2} \cdot \cos \phi_{L2} = 230 \ V \cdot 7, 2 \ A \cdot 0, 85 = \underline{1,41 \ kW} \\ P_{BL3} = U \cdot I_{L3} \cdot \cos \phi_{L3} = 230 \ V \cdot 11, 1 \ A \cdot 0, 92 = \underline{2,35 \ kW} \\ P_{Ges} = P_M + P_W + P_{BL1} + P_{BL2} + P_{BL3} = \\ \end{array}$			
- Chauffe-eau triphasé aux caractéristiques suivantes : $U = 3 \times 400 \text{ V}$, $I = 15 \text{ A}$, - Eclairage 230 V de halle réparti sur les trois conducteurs polaires : $I_{L1} = 9,5 \text{ A}$ $I_{L2} = 7,2 \text{ A}$ $I_{L3} = 11,1 \text{ A}$ $\cos \phi_{L1} = 0,90$ $\cos \phi_{L2} = 0,85$ $\cos \phi_{L3} = 0,92$ Déterminez la puissance active raccordée totale. $P_{M} = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \text{ V} \cdot 27,2 \text{ A} \cdot 0,75 = \underline{14,13 \text{ kW}}$ $P_{W} = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \text{ V} \cdot 15 \text{ A} \cdot 1 = \underline{10,39 \text{ kW}}$ $P_{BL1} = U \cdot I_{L1} \cdot \cos \phi_{L1} = 230 \text{ V} \cdot 9,5 \text{ A} \cdot 0,9 = \underline{1,97 \text{ kW}}$ $P_{BL2} = U \cdot I_{L2} \cdot \cos \phi_{L2} = 230 \text{ V} \cdot 7,2 \text{ A} \cdot 0,85 = \underline{1,41 \text{ kW}}$ $P_{BL3} = U \cdot I_{L3} \cdot \cos \phi_{L3} = 230 \text{ V} \cdot 11,1 \text{ A} \cdot 0,92 = \underline{2,35 \text{ kW}}$ $P_{Ges} = P_{M} + P_{W} + P_{BL1} + P_{BL2} + P_{BL3} =$	· ·		
$\begin{array}{l} U = 3 \times 400 \text{ V, } I = 15 \text{ A,} \\ - \text{ Eclairage } 230 \text{ V de halle réparti sur les trois conducteurs polaires :} \\ I_{L1} = 9.5 \text{ A} & I_{L2} = 7.2 \text{ A} & I_{L3} = 11.1 \text{ A} \\ \cos \phi_{L1} = 0.90 & \cos \phi_{L2} = 0.85 & \cos \phi_{L3} = 0.92 \\ \hline \text{Déterminez la puissance active raccordée totale.} \\ \\ P_M = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \text{ V} \cdot 27.2 \text{ A} \cdot 0.75 = \underline{14.13 \text{ kW}} \\ P_W = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \text{ V} \cdot 15 \text{ A} \cdot 1 = \underline{10.39 \text{ kW}} \\ \\ P_{BL1} = U \cdot I_{L1} \cdot \cos \phi_{L1} = 230 \text{ V} \cdot 9.5 \text{ A} \cdot 0.9 = \underline{1.97 \text{ kW}} \\ P_{BL2} = U \cdot I_{L2} \cdot \cos \phi_{L2} = 230 \text{ V} \cdot 7.2 \text{ A} \cdot 0.85 = \underline{1.41 \text{ kW}} \\ \\ P_{BL3} = U \cdot I_{L3} \cdot \cos \phi_{L3} = 230 \text{ V} \cdot 11.1 \text{ A} \cdot 0.92 = \underline{2.35 \text{ kW}} \\ \\ P_{Ges} = P_M + P_W + P_{BL1} + P_{BL2} + P_{BL3} = \\ \end{array} $			
- Eclairage 230 V de halle réparti sur les trois conducteurs polaires : $I_{L1} = 9.5 \text{ A} \qquad I_{L2} = 7.2 \text{ A} \qquad I_{L3} = 11.1 \text{ A} \\ \cos \phi_{L1} = 0.90 \qquad \cos \phi_{L2} = 0.85 \qquad \cos \phi_{L3} = 0.92$ Déterminez la puissance active raccordée totale. $P_{M} = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 27.2 \ A \cdot 0.75 = \underline{14.13 \ kW}$ $P_{W} = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 15 \ A \cdot 1 = \underline{10.39 \ kW}$ $P_{BL1} = U \cdot I_{L1} \cdot \cos \phi_{L1} = 230 \ V \cdot 9.5 \ A \cdot 0.9 = \underline{1.97 \ kW}$ $P_{BL2} = U \cdot I_{L2} \cdot \cos \phi_{L2} = 230 \ V \cdot 7.2 \ A \cdot 0.85 = \underline{1.41 \ kW}$ $P_{BL3} = U \cdot I_{L3} \cdot \cos \phi_{L3} = 230 \ V \cdot 11.1 \ A \cdot 0.92 = \underline{2.35 \ kW}$ $P_{Ges} = P_{M} + P_{W} + P_{BL1} + P_{BL2} + P_{BL3} =$	·		
$\begin{array}{l} I_{L1} = 9.5 \ A \\ \cos \phi_{L1} = 0.90 \end{array} \qquad \begin{array}{l} I_{L2} = 7.2 \ A \\ \cos \phi_{L2} = 0.85 \end{array} \qquad \begin{array}{l} I_{L3} = 11.1 \ A \\ \cos \phi_{L3} = 0.92 \end{array}$ Déterminez la puissance active raccordée totale. $\begin{array}{l} P_M = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 27.2 \ A \cdot 0.75 = \underline{14.13 \ kW} \\ P_W = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 15 \ A \cdot 1 = \underline{10.39 \ kW} \\ P_{BL1} = U \cdot I_{L1} \cdot \cos \phi_{L1} = 230 \ V \cdot 9.5 \ A \cdot 0.9 = \underline{1.97 \ kW} \\ P_{BL2} = U \cdot I_{L2} \cdot \cos \phi_{L2} = 230 \ V \cdot 7.2 \ A \cdot 0.85 = \underline{1.41 \ kW} \\ P_{BL3} = U \cdot I_{L3} \cdot \cos \phi_{L3} = 230 \ V \cdot 11.1 \ A \cdot 0.92 = \underline{2.35 \ kW} \\ P_{Ges} = P_M + P_W + P_{BL1} + P_{BL2} + P_{BL3} = \end{array} \qquad (0.5)$			
$\begin{array}{l} \cos \phi_{\text{L}1} = 0.90 & \cos \phi_{\text{L}2} = 0.85 & \cos \phi_{\text{L}3} = 0.92 \\ \\ \text{D\'eterminez la puissance active raccord\'ee totale.} \\ \\ P_{M} = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 27, 2 \ A \cdot 0, 75 = \underline{14, 13 \ kW} \\ \\ P_{W} = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 15 \ A \cdot 1 = \underline{10, 39 \ kW} \\ \\ P_{BL1} = U \cdot I_{L1} \cdot \cos \phi_{L1} = 230 \ V \cdot 9, 5 \ A \cdot 0, 9 = \underline{1, 97 \ kW} \\ \\ P_{BL2} = U \cdot I_{L2} \cdot \cos \phi_{L2} = 230 \ V \cdot 7, 2 \ A \cdot 0, 85 = \underline{1, 41 \ kW} \\ \\ P_{BL3} = U \cdot I_{L3} \cdot \cos \phi_{L3} = 230 \ V \cdot 11, 1 \ A \cdot 0, 92 = \underline{2, 35 \ kW} \\ \\ P_{Ges} = P_{M} + P_{W} + P_{BL1} + P_{BL2} + P_{BL3} = \\ \end{array}$	$l_{13} = 9.5 \text{ A}$ $l_{12} = 7.2 \text{ A}$ $l_{13} = 11.1 \text{ A}$		
Déterminez la puissance active raccordée totale. $P_{M} = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 27, 2 \ A \cdot 0, 75 = \underline{14, 13 \ kW}$ $P_{W} = \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 15 \ A \cdot 1 = \underline{10, 39 \ kW}$ $P_{BL1} = U \cdot I_{L1} \cdot \cos \phi_{L1} = 230 \ V \cdot 9, 5 \ A \cdot 0, 9 = \underline{1, 97 \ kW}$ $(0,5)$ $P_{BL2} = U \cdot I_{L2} \cdot \cos \phi_{L2} = 230 \ V \cdot 7, 2 \ A \cdot 0, 85 = \underline{1, 41 \ kW}$ $P_{BL3} = U \cdot I_{L3} \cdot \cos \phi_{L3} = 230 \ V \cdot 11, 1 \ A \cdot 0, 92 = \underline{2, 35 \ kW}$ $P_{Ges} = P_{M} + P_{W} + P_{BL1} + P_{BL2} + P_{BL3} =$	$\cos \varphi_{L1} = 0.90$ $\cos \varphi_{L2} = 0.85$ $\cos \varphi_{L3} = 0.92$		
$\begin{split} P_W &= \sqrt{3} \cdot U \cdot I \cdot \cos \phi = \sqrt{3} \cdot 400 \ V \cdot 15 \ A \cdot 1 = \underline{10,39 \ kW} \\ P_{BL1} &= U \cdot I_{L1} \cdot \cos \phi_{L1} = 230 \ V \cdot 9, 5 \ A \cdot 0, 9 = \underline{1,97 \ kW} \\ P_{BL2} &= U \cdot I_{L2} \cdot \cos \phi_{L2} = 230 \ V \cdot 7, 2 \ A \cdot 0, 85 = \underline{1,41 \ kW} \\ P_{BL3} &= U \cdot I_{L3} \cdot \cos \phi_{L3} = 230 \ V \cdot 11, 1 \ A \cdot 0, 92 = \underline{2,35 \ kW} \\ P_{Ges} &= P_M + P_W + P_{BL1} + P_{BL2} + P_{BL3} = \end{split}$			
$\begin{array}{l} P_{BL1} = U \cdot I_{L1} \cdot cos \; \phi_{L1} = 230 \; V \cdot 9, 5 \; A \cdot 0, 9 = \underline{1,97 \; kW} \\ \\ P_{BL2} = U \cdot I_{L2} \cdot cos \; \phi_{L2} = 230 \; V \cdot 7, 2 \; A \cdot 0, 85 = \underline{1,41 \; kW} \\ \\ P_{BL3} = U \cdot I_{L3} \cdot cos \; \phi_{L3} = 230 \; V \cdot 11, 1 \; A \cdot 0, 92 = \underline{2,35 \; kW} \\ \\ P_{Ges} = P_M + P_W + P_{BL1} + P_{BL2} + P_{BL3} = \end{array}$			
$\begin{array}{l} P_{BL2} = U \cdot I_{L2} \cdot cos \ \phi_{L2} = 230 \ V \cdot 7, 2 \ A \cdot 0, 85 = \underline{1,41 \ kW} \\ \\ P_{BL3} = U \cdot I_{L3} \cdot cos \ \phi_{L3} = 230 \ V \cdot 11, 1 \ A \cdot 0, 92 = \underline{2,35 \ kW} \\ \\ P_{Ges} = P_M + P_W + P_{BL1} + P_{BL2} + P_{BL3} = \end{array}$		(0.5	
$\begin{split} P_{BL3} &= U \cdot I_{L3} \cdot cos \ \phi_{L3} = 230 \ V \cdot 11, 1 \ A \cdot 0, 92 = \underline{2,35 \ kW} \\ P_{Ges} &= P_M + P_W + P_{BL1} + P_{BL2} + P_{BL3} = \end{split}$		•	
$\begin{split} P_{BL3} &= U \cdot I_{L3} \cdot cos \ \phi_{L3} = 230 \ V \cdot 11, 1 \ A \cdot 0, 92 = \underline{2,35 \ kW} \\ P_{Ges} &= P_M + P_W + P_{BL1} + P_{BL2} + P_{BL3} = \end{split}$	$P_{\text{DL}2} = U \cdot I_{12} \cdot \cos \omega_{12} = 230 \text{V} \cdot 7.2 \text{A} \cdot 0.85 = 1.41 \text{kW}$	•	
$P_{Ges} = P_{M} + P_{W} + P_{BL1} + P_{BL2} + P_{BL3} =$	DLZ - LZ		
	$P_{BL3} = U \cdot I_{L3} \cdot \cos \phi_{L3} = 230 \ V \cdot 11, 1 \ A \cdot 0, 92 = 2,35 \ kW$		
14, 13 kW + 10, 39 kW + 1, 97 kW + 1, 41 kW + 2, 35 kW = 30, 25 kW			
	14, 13 kW + 10, 39 kW + 1, 97 kW + 1, 41 kW + 2, 35 kW = $\frac{30, 25 \text{ kW}}{2000 \text{ kW}}$		
l I			

Exe	cices	Nombre maximal	de points obtenus
	5.4.3 A l'aide d'un ohmmètre, on mesure sur une bobine, une résistance de 200 Ω . Si cette bobine est raccordée à une tension alternative de 230 V/50 Hz, elle est parcourue par un courant de 150 mA. a) Calculez l'inductance de la bobine en fonction de ces indications. $Z = \frac{U}{I} = \frac{230 \text{ V}}{0,15 \text{ A}} = 1'533,33 \Omega$	3	obtenus
	$\begin{split} X_L &= \sqrt{Z^2 - R^2} = \sqrt{(1'533, 33~\Omega)^2 - (200~\Omega)^2} = 1'520, 23~\Omega \\ L &= \frac{X_L}{2 \cdot \pi \cdot f} = \frac{1'520, 23~\Omega}{2 \cdot \pi \cdot 50~Hz} = \underline{\frac{4,84~H}{2}} \end{split}$	(2)	
	b) Calculez le cos ϕ de la bobine. $\cos\phi = \frac{R}{Z} = \frac{200~\Omega}{1'533,33~\Omega} = \underline{0,130}$	(1)	

Exer	cices	Nombre of maximal	de points obtenus
18.	5.3.3 Un bureau aux dimensions suivantes B x L = 5.4 m x 4.8 m est éclairé à l'aide de trois lampadaires.	3	cotonido
	Valeurs issues du catalogue de l'éclairage :		
	Type : Lampadaire Tulux LED PROP 8519-R1-88H3 Lampe : LED 88 W Rendement du luminaire : η _{LB} = 95 %		
	Rendement lumineux des LED : 80 lm par W		
	Calculez le rendement lumineux du local, lorsqu'on mesure une luminosité moyenne de 458 Lux à l'état neuf.		
	$\Phi_L = P \cdot \eta \ = \ 88 \ W \cdot 80 \ \frac{lm}{W} = \frac{7'040 \ lm}{}$	(1)	
	$E_m = \frac{n \cdot \Phi_L \cdot \eta_R \cdot \eta_{LB}}{A} = >$		
	$\eta_R = \frac{E_m \cdot A}{n \cdot \Phi_L \cdot \eta_{LB}} = \frac{458 \ lx \cdot 5, 4 \ m \cdot 4, 8 \ m}{3 \cdot 7' 040 \ lm \cdot 0, 95} = \underline{0, 592}$	(2)	

Exer	cices	Nombre of maximal	de points obtenus
19.	5.4.4 On mesure les valeurs suivantes, au niveau d'un tableau de distribution secondaire :	4	
	Tension 3 x 400/230 V, puissance active 24 kW, facteur de puissance 0,82.		
	Calculez la section minimale de la ligne d'alimentation de 240 m de long, afin que la chute de tension maximale ne dépasse pas le seuil de 3 %.		
	$\rho = 0.0178 \frac{\Omega \cdot mm^2}{m}$		
	$\Delta \mathbf{U} = \Delta \mathbf{u} \cdot \mathbf{U} = \frac{3 \% \cdot \mathbf{400 V}}{\mathbf{100 \%}} = \underline{\mathbf{12 V}}$	(1)	
	$P = \sqrt{3} \cdot U \cdot I \cdot \cos \varphi \implies I = \frac{P}{\sqrt{3} \cdot U \cdot I \cdot \cos \varphi}$		
	$I = \frac{24 \text{ kW}}{\sqrt{3} \cdot 400 \text{ V} \cdot 0.82} = \frac{42,25 \text{ A}}{}$	(1)	
	$\Delta \mathbf{U} = \frac{\sqrt{3} \cdot \mathbf{I} \cdot \mathbf{l} \cdot \cos \boldsymbol{\varphi} \cdot \boldsymbol{\rho}}{\mathbf{A}} = A = \frac{\sqrt{3} \cdot \mathbf{I} \cdot \mathbf{l} \cdot \cos \boldsymbol{\varphi} \cdot \boldsymbol{\rho}}{\Delta \mathbf{U}}$		
	$A = \frac{\sqrt{3} \cdot 42,25 \text{ A} \cdot 240 \text{ m} \cdot 0,82 \cdot 0,0178 \Omega \cdot \text{mm}^2}{12 \text{ V} \cdot \text{m}} = \underline{21,36 \text{ mm}^2}$	(1)	
	$=> choisi = \underline{25 \text{ mm}^2}$	(1)	

	es			Nombre of maximal	de points obtenus
0. Su	3.9 ır la plaque signaléti ivantes :	que d'un moteur triphasé,	on relève les caractéristiques	4	
	Fa	bricant			
	3 ~ Moteur	Nr.:			
	Δ/Y 400 V/690 V	24,1 A/14,0 A			
	12 kW S1	cosφ 0,82			
	1450 min ⁻¹	50 Hz			
	Is. Kl. B IP54	DIN VDE 0530			
Dé gra So	aphique (échelle: 2 /	d'alimentation après comp $A \triangleq 1$ cm), ou par calcul. $A \triangleq 1$ cm), $A \triangleq 1$ cm, ou par calcul. $A \triangleq 1$ cm), ou par calcul.		(1)	
		$I_1 = 24,1 \text{ A}$ $I_2 \triangleq 10,1 \text{ cm}$	I _C = 9,5 A		
	φ1	= 34.9°	I _{Q2}		
10	$0, 1 \text{ cm } \triangleq I_2 = \underline{20}$	2 A		(3)	
10					1
	olérance $\mp 0, \overline{5}$ A				

Exercices	Nombre d maximal	le points obtenus
20. Solution par calcul :		
$P_{el} = \sqrt{3} \cdot U \cdot I \cdot \cos \phi_1 = \sqrt{3} \cdot 400 \ V \cdot 24, 1 \ A \cdot 0, 82 = \underline{13,69 \ kW}$	(1)	
$Q_{C} = P_{el} \cdot (\tan \phi_{1} - \tan \phi_{2}) => \tan \phi_{2} = \tan \phi_{1} - \frac{Q_{C}}{P_{el}}$		
$\tan \varphi_2 = 0,698 - \frac{6,6 \text{ kvar}}{13,69 \text{ kW}} = \frac{0,216}{1}$	(1)	
$S_2 = \frac{P_{el}}{\cos \varphi_2} = \frac{13,69 \text{ kW}}{0,977} = \underline{14,01 \text{ kVA}}$	(1)	
$I_2 = \frac{S_2}{\sqrt{3} \cdot U} = \frac{14'010 \text{ VA}}{\sqrt{3} \cdot 400 \text{ V}} = \underline{20,22 \text{ A}}$	(1)	
ou:	ou:	
$I_C = \frac{Q_C}{\sqrt{3} \cdot U} = \frac{6'600 \text{ var}}{\sqrt{3} \cdot 400 \text{ V}} = \frac{9,53 \text{ A}}{2}$	(1)	
$I_W = I_1 \cdot \cos \phi_1 = 24, 1A \cdot 0, 82 = \underline{19,76 A}$	(1)	
$I_{Q_1} = I_1 \cdot \sin \phi_1 = 24, 1A \cdot 0, 572 = \underline{13, 79} A$	(1)	
$I_2 = \sqrt{(I_W)^2 + (I_{Q_1} - I_C)^2} =$		
$\sqrt{(19,76 \text{ A})^2 + (13,79 \text{ A} - 9,53 \text{ A})^2} = \underline{20,21 \text{ A}}$	(1)	
Total	50	