Modelagem Matemática I Primeiros exercícios de programação clinear

Matheus Gabriel

Agosto 2024

Aviso

Não consegui anotar as explicações dos exercícios, então tenho apenas os resultados finais.

1 Primeiro problema

1.1 Enunciado

A Marcenaria (recriação do enunciado original)

Uma marcenaria fabrica dois tipos de móveis: mesas e armários. Cada mesa gera um lucro de 4, enquanto cada armário gera 1 de lucro. Devido a restrições de produção, a marcenaria precisa maximizar o lucro total, respeitando as seguintes condições: Para cada mesa produzida, são necessários 2 metros de madeira, e para cada armário, 3 metros de madeira. No total, a marcenaria possui até 12 metros de madeira disponíveis. O tempo de trabalho necessário para produzir uma mesa é de 2 horas, e para produzir um armário é de 1 hora. A marcenaria possui um total de 8 horas de trabalho disponíveis.

Determine quantas mesas e quantos armários a marcenaria deve produzir para maximizar o lucro, respeitando as restrições de materiais e tempo.

1.2 Modelagem

Considere o seguinte problema de programação linear:

$$Maximizar \quad Z = 4x_1 + x_2$$

Sujeito às restrições:

$$2x_1 + 3x_2 \le 12$$
$$2x_1 + x_2 \le 8$$
$$x_1 \ge 0$$
$$x_2 \ge 0$$

Onde:

- x_1 representa o número de mesas.
- $\bullet \ x_2$ representa o número de armários.

1.3 Resposta

Resultado

A solução ótima é obtida quando:

$$x_1^* = 4$$

$$x_2^* = 0$$

E o valor máximo da função objetivo Zé:

$$Z^* = 4x_1^* + x_2^*$$

$$Z^* = 4 \cdot 4 + 0$$

$$Z^* = 16$$

2 Segundo problema

2.1 Enunciado

Fábrica de sapatos e botinas

Uma fábrica produz sapatos e botinas. Através da tabela abaixo, formule um modelo que maximize o lucro da fábrica.

Matéria Prima	Sapatos	Botinas	Disponibilidade
Couro	2	1	8
Borracha	1	2	7
Cola	0	1	3
Lucro por unidade (em R\$)	1	1	-

2.2 Modelagem

Modelando o problema temos: Onde:

- x_1 representa os valores do couro.
- $\bullet \ x_2$ representa os valores da borracha.

Importante

Apesar de existirem três itens na coluna de matéria prima, a cola não conta como \boldsymbol{x}_3

 $Maximizar \quad L = 1x_1 + 1x_2$

Sujeito às restrições:

 $2x_1 + x_2 \le 8$

 $x_1 + 2x_2 \le 7$

 $x_2 \le 3$

 $x_1 \ge 0$

 $x_2 \ge 0$

2.3 Resposta

Resultado

A solução ótima é obtida quando:

 $x_1^* = 3$

 $x_2^* = 2$

E o valor máximo da função objetivo L é:

 $L^* = 5$

3 Terceiro problema

3.1 Enunciado

Lucro de vendas

Um fabricante de bombons tem estocado bombons de chocolate, sendo 130kg com recheio de cerejas e 170kg com recheio de menta. Ele decide vender o estoque na forma de dois pacotes sortidos diferentes. Um pacote contém uma mistura com metade do peso em bombons de cereja e metade em menta e vende por R\$ 20,00 por kg. O outro pacote contpem uma mistura de um terço de bombons de cereja e dois terços de menta e vende por R\$ 12,50 por kg. O vendedor deveria preparar quantos quilos de cada mistura a fim de maximizar o seu lucro de vendas?

3.2 Modelagem

Modelando o problema temos:

Maximizar $L = 20x_1 + 12, 5x_2$

Sujeito às restrições:

$$\frac{x_1}{2} + \frac{x_2}{3} \le 130$$

$$\frac{x_1}{2} + \frac{2x_2}{3} \le 170$$

$$x_1 \ge 0$$

$$x_1 \ge 0$$
$$x_2 \ge 0$$

- x_1 representa o Kg do pacote 1.
- x_2 representa o Kg do pacote 2.

3.3 Resposta

Resultado

A solução ótima é obtida quando:

$$x_1^* = 260$$

$$x_2^* = 0$$

E o valor máximo da função objetivo L é:

$$L^* = 5200$$