EEP1 ELogBook - Week 5

AXXXXXXX - Brians Tjipto Meidianto

Studio

Activity 1

1. IL vs VL (Load line) Graph

- 2. y = -0.01x + 0.1 / IL = -0.01VL + 0.1
- 3. Operating points (VL, IL)
 - a. RL is removed, VL = 10V, IL = 0A
 - b. RL is shorted, VL = 0V, IL = 10/100 = 0.1A

4. Doubled Rs

When Rs is doubled the equations becomes y = -0.005x + 0.05

X intercept: (10,0), Y intercept: (0, 0.05)

5. Doubled Vs

When Rs is doubled the equations becomes y = -0.01x + 0.2

X intercept: (20,0), Y intercept: (0, 0.2)

$$Vd = -(1/rd) * Id + Vs$$

$$Vd = -(1/1 \text{ ohm}) * Id + 10V$$

$$Vd = -Id + 10V$$

$$y = -x + 10$$

Activity 2

1. R_{TH}

R1 and R2 are parallel, while R3 is in series to the parallel resistor.

$$R_{TH} = \frac{R1 \times R2}{R1 + R2} + R3 = \frac{10 \times 20}{10 + 20} + 10 = 16.67\Omega$$

 $2. \quad V_{TH}$

$$\frac{6 - V_{R3}}{10} - 0.15 = \frac{V_{R3} - 0}{20}$$

$$V_{TH} = V_{R3} = 3V$$

 I_{TH}

$$I_{TH} = \frac{V_{TH}}{R_{TH}} = \frac{3}{16.67} = 0.18A = 180mA$$

Lab

- 1. Voc = 1.45V
- 2. IB = VB(1/Rload) + 1/Rload * VB
- 3. Readings

IB (mA)	VB (V)	RL (Ω)	
111.2	1.39	4.9	5W4R7J
118.4	1.37	5.8	5W5R6J
151.2	1.33	2.7	5W4R7J // 5W5R6J
85.9	1.43	10.6	5W4R7J + 5W5R6J

4. Plotted Graph

Voc = 1.5593V I = 1.039A

Rint = $1.5593 \div 1.039 = 1.5\Omega$

6 series - 6S

Woltage: 1.5×6 = 9V

Capacity:
$$(\frac{1}{500} \times 6)^{-1} = 833.3$$

Energy: 833.33
 $\times 9 = 2.08$

Resistance: 0.02×6 = 0.12 \(\text{L} \)

S.D.C: 933.33×0.2

= 166.67 mA

6 series - 6S

| HHHHHH
| Voltage: 1.5×6 = 9V

Capacity:
$$(\frac{1}{500} \times 6)^{-1} = $33.3$$

Whenever $(\frac{1}{500} \times 6)^{-1} = 33.3

Resistance: $0.02 \times 6 = 0.12 \Omega$

S.D.C: $(9.33.33 \times 0.2)$

= 166.67 mA

6 parallel - 6P

Voltage: 1.5 V

Capacity: 5000×6

= 30000 mAh

Energy: $30.000/3600$

× 1.5

= (2.5 mWh

Resistance: $(\frac{1}{500} \times 6)^{-1}$

= 3.33 m.l.

S.D.C: $(9.33.33 \times 0.2)$

= 166.67 mA

382P

Voltage: 1.5×3 = 4.5V

Capacity:
$$(\frac{1}{500}x3)^{-1}$$
 X2

= 3333:33 MAh-

Energy: 333333/3606

× 4.5=4.167mM

Resistance: $(\frac{1}{0.06} + \frac{1}{0.06})^{-1}$

= 0.03 Ω
= 30m Ω

5.D. C. 333333 X 0.2
= 666.67 MA

Practice Problem

0

1. Q Point
$$\Rightarrow$$
 1.1V & 2.7mA_H
 $\frac{2}{33} = 60$ mA \Rightarrow (60,0), (0,2)

C)
$$R_{TH} = 100 + 100 = 200 \text{ s}_{-\frac{1}{2}}$$

Vs = 0.1 x 200 = 20V.
 $V_{TH} = \frac{100}{1004100} \times -20 = -10 \text{ y}_{-\frac{1}{2}}$

$$\frac{25 - V_{TH}}{5} + 3 = \frac{V_{TH} - 0}{20} \longrightarrow V_{TH} = 32 \frac{1}{20}$$

$$V_{TH} = V_{AB} = V_{B} - V_{A}$$

$$= \frac{100}{150 \times 100} \times 10 - \frac{100}{100 + 100} \times 10 = -1 \text{ V}_{A}$$

$$\frac{5-V_c}{10} + 0.01 - \frac{V_c - 0}{68} = 0.$$
 $\rightarrow V_c = 4.45V_c$

$$I_{\alpha} = \frac{2.65}{77.1} = 34.37 \text{mA}$$

Q1 and Q3 Graph

