

Assignment 3 CSE251

Submitted By:

Iftekhar Hossain Rahi 22201168

Sec: 06

Submitted To:

Munshi Sanowar Raihan Lecturer, Brac University

BRAC UNIVERSITY

Department of Computer Science and Engineering

Assignment 03, Summer 2024

CSE 251: Electronic Devices and Circuits

1.

Relevant information for the circuit configuration on the right is given in the tables below:

Resistor values											
	in ($\mathrm{k}\mathbf{\Omega})$									
R_1	R_2	R_3	R_4								
4	6	3	4								

Transistor Parameters $k_n = 2 \,\text{mA/V}^2$ $V_T = 1 \,\mathbf{V}$

[1]

- a) Explain, in short, which of the two models (S and SR) of MOSFET is a better approximation?
- b) Determine the value of V_{12} . [1]
- c) Calculate the value of drain-to-source voltage of the transistor M1. In the process, determine the operating mode of M1. [3]
- d) Determine which one of the four resistors will consume the least amount of power. [Hint, Power = I^2R] [3]
- e) Determine how the operating mode of M2 would change if R_2 were set to zero. [2]

The SR-model of is generally a better approximation for compared to the S model. This is because the model includes more detailed effects like the body effect and velocity saturation, making it more occurate in representing real-world MOSFET characteristics.

$$\frac{1}{10} = \frac{K_n}{2} \times \frac{V_{ov}^2}{V_{ov}^2}$$

$$= \frac{2}{2} \times 5^2$$

$$=25 mA$$

Again,

$$\frac{10 - V_D}{3} = 1_D$$

$$\Rightarrow$$
 10 - $V_0 = 3 \times 25$

$$\Rightarrow 10 - V_0 = 75$$

$$\Rightarrow$$
 $V_0 = 10 - 75 = -65$

Vas>VT

VOV<2av

$$\Rightarrow$$
 $V_0 = -65 \text{ V}$

$$\therefore V_{DS} = V_D - V_S$$

$$V_{OS} = -65 \not> V_{OV} = 5 V$$

: Assumption wrong

Let's assume that the operating mode is triode, $1_D = K_n \left[V_{ov} V_{DS} - \frac{1}{2} V_{DS}^2 \right]$ $\Rightarrow \frac{10 - V_D}{3} = 2 \left[5 V_D - \frac{1}{2} V_D^2 \right]$ $\Rightarrow \frac{10 - V_D}{3} = 10 V_D - V_D^2$ $\Rightarrow 10 - V_D = 30 V_D - 3 V_D^2$ $\Rightarrow 3 V_D^2 - 31 V_D + D = 0$ $\therefore V_D = 10, \frac{1}{3}$

 \therefore $V_D \neq 10$ as the voltage drop would be 0.

$$\therefore V_D = \frac{1}{3}$$

: VDS < YOV

: So, the assumption is true, M, is in triode mode.

(Ans)

	0 - V V _D +			1 VD	10:	+ V _D												
	V _D = s = = (. 0.13	38															
:. \ -: A	V _{DS} <	otio 1	n C	-01717	ect.	M	2	is	im	7	πίος	e	M	ode	· (A-	ns)		