What is claimed is:

14

15

3

1

2

3

4

5

dielectric

- flash memory device with selective 1 within a substrate, comprising: 2 a substrate; 3 a floating gate disposed on the substrate; 4 a wordline extending along a first direction and 5 overlying the floating gate and the adjacent 6 7 substrate thereof; a trench disposed in the substrate adjacent to one 8 9 side of the wordline; 10 a selective gate vertically disposed in the trench and partially covering the floating gate; 11 a source region disposed in the substrate adjacent 12 to the other side of the wordline; and 13
 - selective gate. The flash memory device as claimed in claim 1, 1 2. wherein the floating gate further comprises a first 2

a

and

a drain region disposed in the substrate beneath the

first polysilicon

sequentially stacked on the substrate. 4

layer

з. The flash memory device as claimed in claim 2, further comprising an oxide layer with a width between 130Å and 220Å disposed on both sides of the first polysilicon layer such that one thereof contacts the selective gate.

Client's ref.: PSC-PT.AP-152 File:0532-9188-US/final/Shawn/Kevin

1

2

3

4

1

2

3

4

5

1

2

3

- 1 4. The flash memory device as claimed in claim 1, 2 further comprising a control gate formed by the portion 3 of the wordline overlying the floating gate.
 - 5. The flash memory device as claimed in claim 1, wherein the wordline extends along a first direction is composed of a second dielectric layer, a second conductive layer and a cap layer.
- 1 6. The flash memory device as claimed in claim 5, 2 further comprising a spacer disposed on both sides of the 3 cap layer.
 - 7. The flash memory device as claimed in claim 1, wherein the selective gate further comprises a third dielectric layer and a third conductive layer, and the third dielectric layer formed on one sidewall and portions of the bottom of the trench.
 - 8. The flash memory device as claimed in claim 1, wherein the trench extends along a first direction and has a depth between 800Å and 1200Å.
- 9. The flash memory device as claimed in claim 7, wherein the third dielectric layer is between 120Å and 200Å.
- 1 10. The flash memory device as claimed in claim 7,
 2 wherein the third conductive layer is between 200Å and
 3 500Å.

Client's ref.: PSC-PT.AP-152 File:0532-9188-US/final/Shawn/Kevin

1	11. A method of labricating a flash memory device
2	with selective gate within a substrate, comprising the
3	steps of:
4	providing a substrate;
5	sequentially depositing a first dielectric layer and
6	a first conductive layer on the substrate;
7	defining the first conductive layer, to form an
8	active area extending along a first direction;
9	sequentially depositing a second dielectric layer, a
10	second conductive layer and a cap layer on the
11	substrate, and covering the active area;
12	defining the cap layer and the second conductive
13	layer, to form a wordline pattern extending
14	along a second direction and partially covering
15	the active area;
16	forming a pair of spacers respectively disposed on
17	both sides of the wordline pattern to form a
18	wordline;
19	etching the second dielectric layer and the first
20	conductive layer exposed by the wordline, to
21	form a control gate within the portion of the
22	wordline in the active area;
23	etching the substrate at one side of the wordline to
24	form a trench therein;
25	forming a drain region in the substrate beneath the
26	trench;
27	sequentially forming a third dielectric layer and a
28	third conductive layer on one sidewall and
29	portions of the bottom of the trench, and

Client's ref.: PSC-PT.AP-152 File:0532-9188-US/final/Shawn/Kevin

30 partially covering the floating gate, 31 vertically form a selective gate in the trench; 32 and 33 forming a source region in the substrate at the 34 other side of the wordline, and electrically 35 contacting the floating gate. 1 12. The method as claimed in claim 11, wherein the method for forming the third dielectric layer is thermal 2 3 oxidation. 1 The method as claimed in claim 12, wherein when forming the third dielectric layer, an oxide layer is 2 formed on both sides of the second conductive layer 3 4 within the floating gate. 1 The method as claimed in claim 13, wherein the 2 oxide layer has a thickness between 130Å and 220Å. 1 The method as claimed in claim 11, wherein the 15. trench has a depth between 800Å and 1200Å. 2 1 16. The method as claimed in claim 11, wherein the first direction is substantially perpendicular to the 2 3 second direction. 1 The method as claimed in claim 11, wherein the third dielectric layer is formed on the sidewall and 2 3 portions of the bottom of the trench.