Novo Espaço – Matemática A 11.º ano

Proposta de teste de avaliação [novembro - 2022]

Ano / Turma: _____ N.º: ____ Data: ___ - ___ -

- 1. Considera os ângulos orientados representados no círculo trigonométrico da figura e indica, em cada caso, a opção correta.
- 1.1. O lado extremidade do ângulo de amplitude -1200° pode ser a semirreta:
 - (A) OR
- (B) OS
- (C) OT
- (D) OU
- **1.2.** O lado extremidade do ângulo de amplitude $\frac{21\pi}{5}$ radianos pode ser a semirreta:

- (A) OR
- (B) OS
- (C) OT
- (D) OU
- Na figura, sobre um emoji de Natal, foi colocado um referencial o.n. Oxy e traçada a circunferência trigonométrica de centro O e raio 1. Sabe-se que:

- o ponto A tem coordenadas (1,0);
- os pontos B e C são simétricos em relação ao eixo Oy;
- o ponto *D*, de coordenadas $\left(1, -\frac{\sqrt{5}}{3}\right)$, é a interseção da reta

CO com a reta definida pela equação x = 1;

• a amplitude, em radianos, do ângulo AOB é representada por θ , com $\theta \in \left[0, \frac{\pi}{2}\right]$.

Para cada caso, indica a opção correta.

2.1. A abcissa do ponto C é:

(A)
$$-\frac{\sqrt{14}}{3}$$

(B)
$$-\frac{9}{14}$$

(A)
$$-\frac{\sqrt{14}}{3}$$
 (B) $-\frac{9}{14}$ (C) $-\frac{3\sqrt{14}}{14}$ (D) $-\frac{\sqrt{14}}{9}$

(D)
$$-\frac{\sqrt{14}}{9}$$

2.2. O valor de $sin(\pi + \theta)$ é:

(A)
$$-\sqrt{\frac{5}{14}}$$
 (B) $\frac{5\sqrt{14}}{14}$ (C) $-\frac{5}{15}$

(B)
$$\frac{5\sqrt{14}}{14}$$

(C)
$$-\frac{5}{15}$$

(D)
$$\frac{3\sqrt{14}}{14}$$

Na figura, em referencial o.n Oxy, está representada a circunferência trigonométrica de centro O e raio 1.

Sabe-se que:

- A, B e C são pontos da circunferência;
- o ponto A tem coordenadas (1,0);
- a abcissa do ponto B é 0,4;
- a corda [BC] é o lado de um quadrado inscrito na circunferência;
- $A\hat{O}B = \alpha$, em radianos.

Determina a abcissa do ponto C.

4. Considera a expressão $\cos\left(x-\frac{\pi}{2}\right)\sin\left(\frac{\pi}{2}+x\right)$.

A qual dos seguintes intervalos pertence x, de modo que a expressão dada tome sempre valores negativos?

(A)
$$\left] -\pi, -\frac{\pi}{2} \right[$$
 (B) $\left] 0, \pi \right[$

(C)
$$\left|-\frac{\pi}{2},\frac{\pi}{2}\right|$$

(C)
$$\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$
 (D) $\left] \frac{3\pi}{2}, 2\pi \right[$

5. Seja f a função, de domínio $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, definida por $f(x) = 1 + 2\cos x$.

Para cada uma das afirmações seguintes, indica se é verdadeira ou falsa:

$f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\rightarrow \mathbb{R}$ $x \mapsto 1 + 2\cos x$	Verdadeira	Falsa
5.1. A função <i>f</i> não tem zeros.		
5.2. A função <i>f</i> é crescente.		
5.3. A função <i>f</i> tem máximo.		
5.4. O contradomínio da função f é o intervalo $[-1,3]$.		
5.5. A equação $f(x) = \frac{5}{2}$ tem duas soluções.		

 θ

- Na figura está representada, em referencial o.n. Oxy, a circunferência trigonométrica de centro O e raio 1. Sabe-se que:
 - o ponto A tem coordenadas (1,0);
 - o ponto P pertence à circunferência, sendo a amplitude, em radianos, do ângulo AOP igual a θ , com $\theta \in \left|0, \frac{\pi}{2}\right|$;

- [OPRS] é um trapézio retângulo.
- **6.1.** Seja Q o simétrico do ponto R em relação ao ponto O (origem do referencial).

Se $\theta = \frac{\pi}{2}$ podes concluir que as coordenadas do ponto Q são:

(A)
$$\left(-1, -\frac{\sqrt{3}}{2}\right)$$
 (B) $\left(-\frac{1}{2}, -1\right)$ (C) $\left(-\frac{\sqrt{3}}{2}, -1\right)$

(B)
$$\left(-\frac{1}{2}, -1\right)$$

(C)
$$\left(-\frac{\sqrt{3}}{2},-1\right)$$

$$(\mathbf{D})\left(-\frac{\sqrt{2}}{2},-1\right)$$

- **6.2.** Seja f a função de domínio $\left|0,\frac{\pi}{2}\right|$ tal que $f(\theta)$ representa a área do trapézio [*OPRS*].
 - a) Mostra que $f(\theta) = \frac{1}{2}\cos(\theta)(2-\sin(\theta))$.
 - **b)** Para um determinado valor de θ a medida da área do triângulo [*OAP*] é $\frac{\sqrt{2}}{4}$. Determina a medida da área do trapézio [OPRS], para esse valor de θ .
 - c) Recorre às capacidades gráficas da calculadora e determina o valor de θ , em radianos, arredondado às centésimas, para o qual o trapézio [OPRS] e o triângulo [OAP] são equivalentes, isto é, têm igual área.

Na tua resolução deves apresentar:

- uma equação que traduza o problema;
- num referencial, o(s) gráfico(s) da(s) função(ões), visualizado(s) na calculadora, que te permite(m) resolver a equação, incluindo a janela de visualização;
- a resposta com o arredondamento indicado.

FIM

Cotações									Total	
Questões	1.	2.	3.	4.	5.	6.1.	6.2.a)	6.2.b)	6.2.c)	Total
Cotações	(2×15	(2×15	25	15	(5×5) 25	15	20	20	20	200