Question 1:

A situation that would benefit from a classification model is, "Should I mow my lawn or not?" Predictors for this model would include the height of the grass, the probability of rain, time of day, my energy level, and air temperature.

Question 2.1:

Value of C	Training Error	Applications		Error Interpretation
		Positive (exp. 354)	Negative (exp. 300)	Error Interpretation
0.0005	35.02%	73	581	Much worse than default
0.005	13.61%	351	303	Same as default
0.05	13.61%	351	303	Same as default
0.5	13.61%	351	303	Same as default
Default of 1	13.61%	351	303	Default
10	13.61%	351	303	Same as default
100	13.61%	351	303	Same as default
1000	13.76%	350	304	Slightly worse than default
10000	13.76%	350	304	Slightly worse than default

Model ←

- -0.0010065348*A1 -0.0011729048*A2 -0.0016261967*A3 + 0.0030064203*A8 +
- 1.0049405641*A9 -0.0028259432*A10 + 0.0002600295*A11 -0.0005349551*A12
- -0.0012283758*A14 + 0.1063633995*A15 + 0.08158492

Given that we're analyzing whether to extend credit to a person; I assumed that the potential loss of someone defaulting was greater than the marginal revenue of extending them credit. With this assumption, I think that since the training error is the same for values of C between 0.005 and 100, we should place more importance on not extending credit to a potential defaulter. As a result, I think that C = 100 is the optimal choice.

R-script is also attached and named question-2.1.R

```
4 # Load credit card data and convert to matrix
 5 data_df <- read.table("credit_card_data-headers.txt", header=TRUE)</pre>
 6 data_mx <- data.matrix(data_df)</pre>
8 # Train the model
9 model <- ksvm(
data_mx[,1:10], # predictors
data_mx[,11], # response
kernel="vanilladot", # kernel selector
type="C-svc", # ksvm type
C=100, # cost of constraints violation
     C=100,
scaled = TRUE
15
                                  # scale flag
16
17
18 # Print model error
19 model@error
20
21 # Score data_mx against the model
22 results <- predict(model, data_mx[,1:10], type='response')</pre>
23
24 # Calculate number of predicted Positive applications (actual is 354)
25 sum(results)
26
27
    # calculate a1...am for model
28 a <- colSums(model@xmatrix[[1]] * model@coef[[1]])</pre>
29 a
31 # calculate a0
32 a0 <- -model@b
33 a0
```

Question 2.2

Value of k	Accuracy	
1	94.19%	
2	94.19%	
3	94.19%	
4	94.19%	
5	92.20%	
6	90.98%	
7	91.28%	
8	91.74%	
9	90.67%	
10	90.06%	
15	89.76%	
20	89.60%	

For k values between one and four, the model's accuracy held constant. Increases in the value of k past four resulted in accuracy losses. As a result, I believe that four would be an optimal choice for k. This k value choice is due to the belief that when applying the model to a new data point, comparing it to four neighbors instead of one, two, or three, the likelihood of misclassifying the new data point will be lessened.

R-script is also attached and named question-2.2.R

```
1 #Load the kknn library
 2 require('kknn')
 3
4
   # Load credit card data into a data frame
 5 data_df <- read.table("credit_card_data-headers.txt", header=TRUE)</pre>
 6
   # set.seed(42) - comment in to repeat results across different values of k
 7
 8
 9
   # Identifies 70% of the records that will be used to determine the train_df
10 sample <- sample(nrow(data_df), round(nrow(data_df)*.7))</pre>
11
12
   # Create training (80pct) and test (20pct) datasets
   train_df <- data_df[sample, ]
13
   test_df <- data_df[-sample, ]
14
15
16 # Train the model - test using full dataset per homework instructions
    model <- kknn(R1 ~ ., train_df, data_df, k = 4, scale = TRUE)
17
18
19 # Compare data_df R1 to model fit
20 results_df <- data.frame(data_df$R1, model$fit)</pre>
21
22 # Create a confusion matrix - round model$fit since fit is continuous and R1 is 0 or 1
23 CM <- table(data_df[, 11], round(model$fit))</pre>
24
   # Calculate accuracy using CM
25
26 accuracy <- (sum(diag(CM)))/sum(CM)</pre>
27
28 # Print accuracy
29 accuracy
```