Theory of Computation

Paolo Bettelini

$\boldsymbol{\cap}$		ter	
1 :4	nn.	ГОТ	1TC
\sim	σ 11	$\mathbf{u} \mathbf{c} \mathbf{I}$	TUD

1	Alphabet	2
2	Turing Machines	2

1 Alphabet

An alphabet is a set of values which represents the solutions to a certain problem. The set $\{0,1\}$ is the binary set. The set $\{0,1\}^*$ is the set of all binary strings (union of all *n*-permutations of $\{0,1\}$ and an empty string). In general, if Σ is an alphabet Σ^* is the set of all strings over Σ

$$\Sigma^* = \lambda \cup \bigcup_{n \in \mathbb{N}} \Sigma^n$$

where λ is the empty string. Note that $\lambda \neq \varnothing \neq \{\lambda\}$.

2 Turing Machines