

5A LOW DROPOUT LINEAR REGULATOR

Description

The AZ1084C is a series of low dropout positive voltage regulators with a maximum dropout of 1.5V at 5A of load current.

The series features on-chip thermal limiting which provides protection against any combination of overload and ambient temperatures that would create excessive junction temperatures. It also includes a trimmed bandgap reference and a current limiting circuit.

The AZ1084C is available in 1.5V, 1.8V, 2.5V, 3.3V and 5.0V versions. The fixed versions integrate the adjust resistors. It is also available in an adjustable version which can set the output voltage with two external resistors.

The AZ1084C series is available in standard packages of TO263, TO263-2, TO252-2 (3), TO252-2 (4) and TO252-2 (5).

Features

- Low Dropout Voltage: 1.35V Typical at 5A
- Current Limiting and Thermal Protection
- Output Current: 5A
- Current Limit: 6.5A
- Operating Junction Temperature Range: 0 to +125°C
- Compatible with Low ESR Ceramic Capacitor
- Line Regulation (Adj Version): 0.015% (Typ)
- Load Regulation (Adj Version): 0.1% (Typ)
- Lead-Free Packages: TO263, TO263-2
 - Totally Lead-Free; RoHS Compliant (Notes 1 & 2)
- Lead-Free Packages, Available in "Green" Molding Compound: TO263, TO263-2, TO252-2 (3), TO252-2 (4), TO252-2 (5)
 - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
 - Halogen and Antimony Free. "Green" Device (Note 3)

Applications

- High Efficiency Linear Regulators
- Battery Chargers
- Post Regulation for Switching Supply
- Microprocessor Supply
- Desktop PCs, RISC and Embedded Processors' Supply

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Assignments

Typical Applications Circuit

Functional Block Diagram

Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rating		Unit
TJ	Operating Junction Temperature	+150		°C
T _{STG}	Storage Temperature Range	-65 to +150		°C
T _{LEAD}	Lead Temperature (Soldering, 10sec.)	+260		°C
		TO263-2	60	
θЈА	Thermal Resistance (Note 5)	TO263	60	°C/W
		TO252-2 (3)/TO252-2 (4)/TO252-2 (5)	100	
ESD	ESD (Human Body Model)	2000	2000	
ESD	ESD (Machine Model)	400	400	

Notes:

- 4. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
- 5. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, T_{J(max)}, the junction-to-ambient thermal resistance, θ_{JA}, and the ambient temperature, T_A. The maximum allowable power dissipation at any ambient temperature is calculated using: P_{D(max)}=(T_{J(max)}-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown

Recommended Operating Conditions

Symbol Parameter		Min	Max	Unit
V _{IN}	Input Voltage	_	12	V
TJ	Operating Junction Temperature Range	0	+125	°C

AZ1084C

Electrical Characteristics (Typicals and limits appearing in normal type apply for $T_J = +25$ °C. Limits appearing in **Boldface** type apply over the entire operating junction temperature range.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REF}	Reference Voltage	$\label{eq:azina} \begin{split} &\text{AZ1084C-ADJ,} \\ &\text{I}_{\text{OUT}} = \text{10mA, V}_{\text{IN}}\text{-V}_{\text{OUT}} = \text{3V,} \\ &\text{10mA} \leqslant \text{I}_{\text{OUT}} \leqslant \text{5A, 1.5V} \leqslant \text{V}_{\text{IN}}\text{-V}_{\text{OUT}} \\ &\leqslant \text{5V} \end{split}$	1.238 1.225	1.250 1.250	1.262 1.270	V
		$\begin{split} &\text{AZ1084C-1.5}, \\ &\text{I}_{\text{OUT}} = \text{0mA}, \ V_{\text{IN}} = 4.5 \text{V}, \\ &\text{10mA} \leqslant \text{I}_{\text{OUT}} \leqslant 5 \text{A}, \ 3.0 \text{V} \leqslant \text{V}_{\text{IN}} \leqslant 6 \text{V} \end{split}$	1.485 1.47	1.5 1.5	1.515 1.53	V
		AZ1084C-1.8, $I_{OUT} = 0mA, \ V_{IN} = 4.8V,$ $10mA \leqslant I_{OUT} \leqslant 5A, \ 3.3V \leqslant V_{IN} \leqslant 6V$	1.782 1.764	1.8 1.8	1.818 1.836	V
Vouт	Output Voltage	AZ1084C-2.5, $I_{OUT} = 0 \text{mA, } V_{IN} = 5.5 \text{V}$ $10 \text{mA} \leqslant I_{OUT} \leqslant 5 \text{A, } 4.0 \text{V} \leqslant V_{IN} \leqslant 7 \text{V}$	2.475 2.45	2.5 2.5	2.525 2.55	V
		$\begin{split} &\text{AZ1084C-3.3,} \\ &\text{I}_{\text{OUT}} = \text{0mA, V}_{\text{IN}} = \text{6.3V,} \\ &\text{10mA} \leqslant \text{I}_{\text{OUT}} \leqslant \text{5A, 4.8V} \leqslant \text{V}_{\text{IN}} \leqslant \text{8V} \end{split}$	3.267 3.234	3.3 3.3	3.333 3.366	V
		$\begin{split} &\text{AZ1084C-5.0,} \\ &\text{I}_{\text{OUT}} = \text{0mA, V}_{\text{IN}} = \text{8V,} \\ &\text{10mA} \leqslant \text{I}_{\text{OUT}} \leqslant \text{5A, 6.5V} \leqslant \text{V}_{\text{IN}} \leqslant \text{10V} \end{split}$	4.95 4.9	5 5	5.05 5.1	V
	Line Regulation	AZ1084C-ADJ, $I_{OUT} = 10$ mA, 2.85 V $\leq V_{IN} \leq 10$ V	_	0.015 0.035	0.2 0.2	%
		AZ1084C-1.5, $I_{OUT} = 10mA, 3.0V \le V_{IN} \le 10V$	-	0.5 1	6 6	mV
		AZ1084C-1.8, $I_{OUT} = 10mA$, 3.3V $\leq V_{IN} \leq 10V$	_	0.5 1	6 6	mV
ΔVουτ		AZ1084C-2.5,	_	0.5	6	mV
		$I_{OUT} = 10 \text{mA}, 4.0 \text{V} \le V_{IN} \le 10 \text{V}$ AZ1084C-3.3,	_	0.5	6	mV
		$\begin{aligned} &I_{OUT} = 10\text{mA}, \ 4.8\text{V} \leqslant \text{V}_{IN} \leqslant 10\text{V} \\ &AZ1084\text{C-}5.0, \\ &I_{OUT} = 10\text{mA}, \ 6.5\text{V} \leqslant \text{V}_{IN} \leqslant 10\text{V} \end{aligned}$	_	0.5 1	10 10	mV
		AZ1084C-ADJ,	_	0.1	0.3	%
		$0mA \le I_{OUT} \le 5A, V_{IN}-V_{OUT} = 3V$ AZ1084C-1.5,	_	3	0.4 15	mV
		$0mA \le I_{OUT} \le 5A$, V_{IN} - $V_{OUT} = 3V$ $AZ1084C$ -1.8, $0mA \le I_{OUT} \le 5A$, V_{IN} - $V_{OUT} = 3V$	_	3 7	20 15 20	mV
ΔVουτ	Load Regulation	AZ1084C-2.5, $0mA \le I_{OUT} \le 5A$, $V_{IN}-V_{OUT} = 3V$	-	3 7	15 20	mV
		AZ1084C-3.3, $0mA \le I_{OUT} \le 5A$, V_{IN} - $V_{OUT} = 3V$	_	3 7	15 20	mV
		AZ1084C-5.0, $0mA \leq I_{OUT} \leq 5A, V_{IN} \cdot V_{OUT} = 3V$	_	5 10	20 35	mV
V _{DROP}	Dropout Voltage	Iout = 4.5A, ΔV_{REF} , ΔV_{OUT} = 1%	-	1.35	1.5	V
		TO263	-	4.15	-	
θ_{JC}	Thermal Resistance (Junction to Case)	TO263-2	_	4.15	_	°C/V
	(22283 13 3400)	TO252-2 (3)/TO252-2 (4)/TO252-2 (5)	_	7.36	_	

AZ1084C

Electrical Characteristics (Cont. Typicals and limits appearing in normal type apply for $T_J = +25$ °C. Limits appearing in **Boldface** type apply over the entire operating junction temperature range.)

Symbol Parameter		Conditions	Min	Тур	Max	Unit
I _{LIMIT}	Current Limit	V_{IN} - $V_{OUT} = 3V$	5.5	6.5	-	Α
I _{LOAD} (MIN)	Minimum Load Current	V _{IN} = 10V (AZ1084C-ADJ)	-	3	10	mA
IQ	Quiescent Current	V _{IN} = 10V (AZ1084C)	-	5	10	mA
PSRR	Ripple Rejection	$f_{RIPPLE} = 120Hz, C_{OUT} = 25\mu F Tantalum, I_{OUT} = 5A, V_{IN}-V_{OUT} = 3V$ 60 72		72	_	dB
I _{ADJ}	Adjust Pin Current	V _{IN} = 4.25V, I _{OUT} = 10mA	-	55	120	μΑ
ΔI_{ADJ}	Adjust Pin Current Change	$\begin{array}{l} 10\text{mA} \leqslant I_{\text{OUT}} \leqslant 5\text{A, } 1.5\text{V} \leqslant (\text{V}_{\text{IN}}\text{-V}_{\text{OUT}}) \\ \leqslant 4.5\text{V} \end{array}$	_	0.2	5	μA
_	Temperature Stability	I _{OUT} = 10mA, V _{IN} -V _{OUT} = 1.5	_	0.5	-	%
-	Long Term Stability	T _A = +125°C, 1000Hrs	-	0.5	-	%
- RMS Noise (% of V _{OUT})		$10Hz \leqslant f \leqslant 10kHz$	-	0.003	-	%

Performance Characteristics

Dropout Voltage vs. Output Current

Reference Voltage vs. Junction Temperature

Adjust Pin Current vs. Junction Temperature

Output Voltage vs. Junction Temperature

Minimum Load Current vs. Junction Temperature

Line Regulation vs. Junction Temperature

Performance Characteristics (Cont.)

Adjust Pin Current vs. Output Current

Short Circuit Current vs. Dropout Voltage

Dropout Voltage vs. Junction Temperature

PSRR vs. Frequency

Line Transient Response (Conditions: V_{IN} = 4.5V to 6.5V, V_{OUT} = 2.5V, I_{OUT} = 200mA, C_{OUT} = 10 μ F)

Time (200µs/Div)

Ordering Information

Diodes IC's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

	Bashama	Temperature	Part I	Number	Marki	ng ID	Da alda a
	Package	Range	Lead Free	Green	Lead Free	Green	Packing
	TO263	0 to +125°C	AZ1084CS- ADJTRE1	AZ1084CS- ADJTRG1	AZ1084CS-ADJE1	AZ1084CS- ADJG1	800/Tape & Reel
	TO263	0 to +125°C	AZ1084CS- 1.5TRE1	AZ1084CS- 1.5TRG1	AZ1084CS-1.5E1	AZ1084CS-1.5G1	800/Tape & Reel
Lead-Free	TO263	0 to +125°C	AZ1084CS- 1.8TRE1	AZ1084CS- 1.8TRG1	AZ1084CS-1.8E1	AZ1084CS-1.8G1	800/Tape & Reel
Lead-free Green	TO263	0 to +125°C	AZ1084CS- 2.5TRE1	AZ1084CS- 2.5TRG1	AZ1084CS-2.5E1	AZ1084CS-2.5G1	800/Tape & Reel
	TO263	0 to +125°C	AZ1084CS- 3.3TRE1	AZ1084CS- 3.3TRG1	AZ1084CS-3.3E1	AZ1084CS-3.3G1	800/Tape & Reel
	TO263	0 to +125°C	AZ1084CS- 5.0TRE1	AZ1084CS- 5.0TRG1	AZ1084CS-5.0E1	AZ1084CS-5.0G1	800/Tape & Reel
	TO263-2	0 to +125°C	AZ1084CS2- ADJTRE1	AZ1084CS2- ADJTRG1	AZ1084CS2- ADJE1	AZ1084CS2- ADJG1	800/Tape & Reel
	TO263-2	0 to +125°C	AZ1084CS2- 1.5TRE1	AZ1084CS2- 1.5TRG1	AZ1084CS2-1.5E1	AZ1084CS2- 1.5G1	800/Tape & Reel
Lead-Free	TO263-2	0 to +125°C	AZ1084CS2- 1.8TRE1	AZ1084CS2- 1.8TRG1	AZ1084CS2-1.8E1	AZ1084CS2- 1.8G1	800/Tape & Reel
Pb Lead-free Green	TO263-2	0 to +125°C	AZ1084CS2- 2.5TRE1	AZ1084CS2- 2.5TRG1	AZ1084CS2-2.5E1	AZ1084CS2- 2.5G1	800/Tape & Reel
Lead-free Green	TO263-2	0 to +125°C	AZ1084CS2- 3.3TRE1	AZ1084CS2- 3.3TRG1	AZ1084CS2-3.3E1	AZ1084CS2- 3.3G1	800/Tape & Reel
	TO263-2	0 to +125°C	AZ1084CS2- 5.0TRE1	AZ1084CS2- 5.0TRG1	AZ1084CS2-5.0E1	AZ1084CS2- 5.0G1	800/Tape & Reel

Ordering Information (Cont.)

	Temperature		Part N	Part Number		Marking ID		
	Package	Range	Lead Free	Green	Lead Free	Green	Packing	
	TO252-2 (3)/(4)/(5)	0 to +125°C	_	AZ1084CD- ADJTRG1	_	AZ1084CD- ADJG1	2500/Tape & Reel	
	TO252-2 (3)/(4)/(5)	0 to +125°C	-	AZ1084CD- 1.5TRG1	-	AZ1084CD- 1.5G1	2500/Tape & Reel	
	TO252-2 (3)/(4)/(5)	0 to +125°C	-	AZ1084CD- 1.8TRG1	-	AZ1084CD- 1.8G1	2500/Tape & Reel	
een	TO252-2 (3)/(4)/(5)	0 to +125°C	1	AZ1084CD- 2.5TRG1	_	AZ1084CD- 2.5G1	2500/Tape & Reel	
	TO252-2 (3)/(4)/(5)	0 to +125°C	1	AZ1084CD- 3.3TRG1	_	AZ1084CD- 3.3G1	2500/Tape & Reel	
	TO252-2 (3)/(4)/(5)	0 to +125°C	-	AZ1084CD- 5.0TRG1	_	AZ1084CD- 5.0G1	2500/Tape & Reel	

Marking Information

(1) TO252-2 Series

First and Second Lines: Logo and Marking ID

(See Ordering Information)
Third Line: Date Code

Y: Year

WW: Work Week of Molding A: Assembly House Code

XX: 7th and 8th Digits of Batch Number

(2) TO263-2 Series

(Top View)

First and Second Lines: Logo and Marking ID

(See Ordering Information)
Third Line: Date Code

Y: Year

WW: Work Week of Molding A: Assembly House Code

XX: 7th and 8th Digits of Batch Number

Marking Information (Cont.)

(Top View)

First and Second Lines: Logo and Marking ID

(See Ordering Information)
Third Line: Date Code

Y: Year

WW: Work Week of Molding A: Assembly House Code

XX: 7th and 8th Digits of Batch Number

(3) TO263 Series

(Top View)

First and Second Lines: Logo and Marking ID

(See Ordering Information)
Third Line: Date Code

Y: Year

WW: Work Week of Molding A: Assembly House Code

XX: 7th and 8th Digits of Batch Number

(Top View)

First and Second Lines: Logo and Marking ID

(See Ordering Information)
Third Line: Date Code

Y: Year

WW: Work Week of Molding A: Assembly House Code

XX: 7th and 8th Digits of Batch Number

(1) Package Type: TO263

(2) Package Type: TO263-2

(3) Package Type: TO252-2 (3)

(4) Package Type: TO252-2 (4)

(5) Package Type: TO252-2 (5)

Suggested Pad Layout

(1) Package Type: TO263

Dimensions	Z (mm)/(inch)	X1 (mm)/(inch)	X2 (mm)/(inch)	X3 (mm)/(inch)
V 1	, , ,	, , ,	` , ` ,	, , ,
Value	16.760/0.660	1.200/0.047	8.540/0.336	10.540/0.415
Dimensions	Y1	Y2	Y3	E
Dimensions	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	3.830/0.151	8.560/0.337	3.000/0.118	2.540/0.100

(2) Package Type: TO263-2

Dimensions	Z	X1	X2	X3
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	16.760/0.660	1.200/0.047	8.540/0.336	10.540/0.415
Dimensions	Y1	Y2	Y3	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	3.830/0.151	8.560/0.337	3.000/0.118	5.080/0.200

(3) Package Type: TO252-2 (3)

Dimensions	Z	X1	X2=Y2	Y1	G	E1
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	11.600/0.457	1.500/0.059	7.000/0.276	2.500/0.098	2.100/0.083	2.300/0.091

(4) Package Type: TO252-2 (4)

	Dimensions	Z	X1	X2=Y2	Y1	G	E1
		(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
	Value	11.600/0.457	1.500/0.059	7.000/0.276	2.500/0.098	2.100/0.083	2.300/0.091

(5) Package Type: TO252-2 (5)

Dimensions	Z	X1	X2=Y2	Y1	G	E1
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	11.600/0.457	1.500/0.059	7.000/0.276	2.500/0.098	2.100/0.083	2.300/0.091

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2014, Diodes Incorporated

www.diodes.com