JEDNOSTAJNIE NAJMOCNIEJSZY

Z wykładu wiemy, że jednoparametrowa rodzina wykładnicza:

$$p_{\theta}(x_1, ..., x_n) = h(x_1, ..., x_n) \exp[C(\theta)T(x_1, ..., x_n) - B(\theta)],$$

gdzie $C(\theta)$ jest funkcją ściśle rosnącą, jest rodziną z monotonicznym ilorazem wiarogodności względem statystyki T. Pokazanie tego będzie nam potrzebne, aby były spełnione założenia tw. Karlina-Rubina.

$$\begin{cases} H: \beta \geqslant \beta_0 \\ K: \beta < \beta_0 \end{cases} \quad \phi(x) = \begin{cases} 1 & T(x) < k \\ 0 & T(x) > k \end{cases}$$

| H:
$$\beta \leq \beta_0$$

| K: $\beta > \beta_0$
| Scisle rosngea | $\phi(x) = \{1, T(x) > k\}$

 $T \in K_{\alpha} \Rightarrow ext{odrzucamy } H.$ $T \notin K_{\alpha} \Rightarrow ext{nie mamy podstaw do odrzucenia } H$

Przedziały ufności dla wartości średniej μ

Model I. Cecha $X \sim N(\mu, \sigma)$, μ - nieznane, σ - znane

 $\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$ Model II. Cecha $X \sim N(\mu, \sigma)$, μ - nieznane, σ - nieznane

 $\overline{X} - t_{1-\alpha/2}^{[n-1]} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{1-\alpha/2}^{[n-1]} \frac{S}{\sqrt{n}}$ Model III. Cecha X ma rozkład dowolny (duża próba) $\overline{X} - z_{1-\alpha/2} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}$

Ma duight

Rijest obsduknie niesymetryczny

Przedziały ufności dla wariancji σ^2 (odchylenia standardowego σ)

Model I. Cecha $X \sim N(\mu, \sigma), \mu$ - nieznane, σ - nieznane

 $\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}$ Model II. Cecha X ma rozkład dowolny (duża próba)

 $\frac{S\sqrt{2n-2}}{\sqrt{2n-3}+z_{1-\alpha/2}} < \sigma < \frac{S\sqrt{2n-2}}{\sqrt{2n-3}-z_{1-\alpha/2}}$

Przedział ufności dla wskaźnika struktury (proporcji)

Cecha X ma rozkład dwupunktowy P(X = 1) = p (duża próba)

$$\widehat{p} - z_{1-\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$$

Wyznaczanie niezbędnej liczby pomiarów do próby do oszacowania wartości średniej μ z maksymalnym błędem d na poziomie ufności $1-\alpha$

Model I. Cecha $X \sim N(\mu, \sigma), \mu$ - nieznane, σ - znane

$$n \geq \left(z_{1-\alpha/2} \frac{\sigma}{d}\right)^2$$

 $n \geq \left(z_{1-\alpha/2} \frac{\sigma}{d}\right)^2$ Model II. Cecha $X \sim N(\mu, \sigma), \mu$ - nieznane, σ - nieznane

 $n \geq \left(t_{1-\alpha/2}^{[n_0-1]} \frac{S}{2}\right)^2$ gdzie n_0 jest licznością pobranej próby wstępnej

Model III. Cecha X ma rozkład dwupunktowy P(X = 1) = p, p - nieznane jeżeli znany jest szacunkowy procent p_0 , to $n \geq z_{1-\alpha/2}^2 \frac{p_0(1-p_0)}{d^2}$. jeżeli nie jest znany szacunkowy procent p_0 , to $n \ge z_{1-\alpha/2}^2 \frac{1}{4d^2}$

Weryfikacja hipotez dotyczących wartości średniej Model I. Cecha $X \sim N(\mu, \sigma)$, μ - nieznane, σ - znane. Hipoteza zerowa $H: \mu = \mu_0$. Statystyka testowa $T = \frac{\overline{X} - \mu_0}{2} \sqrt{n}$ Hipoteza alternatywna Hipoteza alternatywna Hipoteza alternatywna $K: \mu \neq \mu_0$ $K: \mu > \mu_0$ $K: \mu < \mu_0$ Obszar krytyczny Obszar krytyczny Obszar krytyczny $(-\infty; -z_{1-\alpha/2}] \cup [z_{1-\alpha/2}; +\infty)$ $[z_{1-\alpha}; +\infty)$ $(-\infty; -z_{1-\alpha}]$ Model II. Cecha $X \sim N(\mu, \sigma), \mu$ - nieznane, σ - nieznane. Hipoteza zerowa $H: \mu = \mu_0$. Statystyka testowa $T = \frac{X - \mu_0}{S} \sqrt{n}$ Hipoteza alternatywna Hipoteza alternatywna Hipoteza alternatywna $K: \mu \neq \mu_0$ $K: \mu > \mu_0$ $K: \mu < \mu_0$ Obszar krytyczny Obszar krytyczny Obszar krytyczny $\left(-\infty; -t_{1-lpha/2}^{[n-1]}\right) \cup \left[t_{1-lpha/2}^{[n-1]}; +\infty\right)$ $\left[t_{1-lpha}^{[n-1]};+\infty\right)$ $\left(-\infty;-t_{1-\alpha}^{[n-1]}\right]$ Model III. Cecha X ma rozkład dowolny (duża próba). Hipoteza zerowa $H: \mu = \mu_0$: Statystyka testowa $T = \frac{\overline{X} - \mu_0}{S} \sqrt{n}$ Hipoteza alternatywna Hipoteza alternatywna Hipoteza alternatywna $K: \mu \neq \mu_0$ $K: \mu > \mu_0$ $K: \mu < \mu_0$ Obszar krytyczny Obszar krytyczny Obszar krytyczny $-\infty; -z_{1-\alpha/2} \cup [z_{1-\alpha/2}; +\infty)$ $[z_{1-\alpha};+\infty)$ $(-\infty; -z_{1-\alpha}]$

Weryfikacja hipotezy dotyczącej wariancji (odchylenia standardowego) Model Cecha $X \sim N(\mu, \sigma)$, μ - nieznane, σ - nieznane. Hipoteza zerowa $H: \sigma^2 = \sigma_0^2$. Statystyka testowa $T = \frac{(n-1)S^2}{\sigma_0^2}$ Hipoteza alternatywna Hipoteza alternatywna $K: \sigma^2 > \sigma_0^2$ Hipoteza alternatywna $K: \sigma^2 < \sigma_0^2$ $K: \sigma^2 \neq \sigma_0^2$ $\kappa : \sigma^* \neq \sigma_0^*$ Obszar krytyczny Obszar krytyczny $\left(0,\chi^2_{\alpha/2;n-1}\right]\cup\left[\chi^2_{1-\alpha/2;n-1};+\infty\right)$ $\left[\chi^2_{1-\alpha;n-1};+\infty\right)$ Obszar krytyczny $(0;\chi^2_{\alpha:n-1}]$

Weryfikacja hipotez dotyczących wartości wskaźnika struktury (proporcji) Model Cecha X ma rozkład dwupunktowy: P(X=1)=p. Hipoteza zerowa $H: p=p_0$. Dla dużej próby n statystyka testowa $T=(\widehat{p}-p_0)/\sqrt{\frac{p_0\left(1-p_0\right)}{n}}$ Dla małej próby n statystyka testowa $T=2\left(arcsin\sqrt{\hat{p}}-arcsin\sqrt{p_0}\right)\sqrt{n}$ Hipoteza alternatywna Hipoteza alternatywna Hipoteza alternatywna $K: p \neq p_0$ $K: p > p_0$ $K: p < p_0$ Obszar krytyczny Obszar krytyczny Obszar krytyczny $[-\infty; -z_{1-\alpha/2}] \cup [z_{1-\alpha/2}; +\infty)$ $[z_{1-\alpha}; +\infty)$ $(-\infty; -z_{1-\alpha})$

Weryfikacja hipotez dotyczących dwóch średnich			
Model I. Cechy $X \sim N(\mu_1, \sigma_1), Y \sim N(\mu_2, \sigma_2)$, σ_1, σ_2 - znane			
Hipoteza zerowa $H: \mu_1 = \mu_2$. Statystyka testowa $T = (\overline{X} - \overline{Y})/\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$			
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna	
$K: \mu_1 \neq \mu_2$	$K: \mu_1 > \mu_2$	$K: \mu_1 < \mu_2$	
Obszar krytyczny	Obszar krytyczny	Obszar krytyczny	
$\left(-\infty;-z_{1-\alpha/2}\right]\cup\left[z_{1-\alpha/2};+\infty\right)$	$[z_{1-lpha};+\infty)$	$(-\infty;-z_{1-\alpha}]$	
$ \begin{array}{c c} (-\infty;-z_{1-\alpha/2}] \cup \begin{bmatrix} z_{1-\alpha/2};+\infty \end{bmatrix} & \begin{bmatrix} z_{1-\alpha};+\infty \end{bmatrix} & (-\infty;-z_{1-\alpha}] \\ \hline \text{Model II. Cechy } X \sim N(\mu_1,\sigma_1) \ , \ Y \sim N(\mu_2,\sigma_2), \ \sigma_1,\sigma_2 \ - \text{ nieznane, ale rowne (tzn. } \sigma_1=\sigma_2) \\ \hline \end{array} $			
Hipoteza zerowa $H: \mu_1 = \mu_2$. Statystyka testowa $T = (\overline{X} - \overline{Y})/\sqrt{\frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}} \left(\frac{n_1 + n_2}{n_1 n_2}\right)$			
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna	
$K: \mu_1 \neq \mu_2$	$K: \mu_1 > \mu_2$	$K: \mu_1 < \mu_2$	
Obszar krytyczny	Obszar krytyczny	Obszar krytyczny	
$\left(-\infty, -t_{1-\alpha/2}^{[n_1+n_2-2]}\right] \cup \left[t_{1-\alpha/2}^{[n_1+n_2-2]}; +\infty\right)$		$\left(-\infty, -t_{1-\alpha}^{[n_1+n_2-2]}\right]$	
Model III. Cechy X , Y mają rozkłady dowolne (duże próby)			
Hipoteza zerowa $H: \mu_1 = \mu_2$. Statystyka testowa $T = (\overline{X} - \overline{Y})/\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$			
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna	
$K: \mu_1 \neq \mu_2$	$K: \mu_1 > \mu_2$	$K: \mu_1 < \mu_2$	
Obszar krytyczny	Obszar krytyczny	Obszar krytyczny	
$\left(-\infty;-z_{1-lpha/2} ight]\cup\left[z_{1-lpha/2};+\infty ight)$	$[z_{1-lpha};+\infty)$	$(-\infty;-z_{1-\alpha}]$	
obserwacje w parach (X_i, Y_i) są zależne			
Hipoteza zerowa $H: \mu_1 = \mu_2$. Statystyka testowa $T = \frac{\overline{Z}}{S_Z} \sqrt{n}$, gdzie $Z_i = X_i - Y_i$			
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna	
$K: \mu_1 \neq \mu_2$	$K: \mu_1 > \mu_2$	$K: \mu_1 < \mu_2$	
Obszar krytyczny	Obszar krytyczny	Obszar krytyczny	
$\left(-\infty; -t_{1-\alpha/2}^{[n-1]}\right) \cup \left[t_{1-\alpha/2}^{[n-1]}; +\infty\right)$	$\left[t_{1-\alpha}^{[n-1]};+\infty\right)$	$\left(-\infty; -t_{1-\alpha}^{[n-1]}\right]$	

Weryfikacja hipotez dotyczących dwóch wskaźników struktury (proporcji)			
Model Cechy X, Y mają rozkłady dwupunktowe, $P(X = 1) = p_1$, $P(Y = 1) = p_2$			
Hipoteza zerowa $H: p_1 = p_2$. Niech $\widehat{p}_1 = \frac{k_1}{n_1}$, $\widehat{p}_2 = \frac{k_2}{n_2}$, $p^* = \frac{k_1 + k_2}{n_1 + n_2}$, $n^* = \frac{n_1 n_2}{n_1 + n_2}$			
Dla dużych prób n_1, n_2 statystyka testowa $T = (\widehat{p}_1 - \widehat{p}_2) / \sqrt{\frac{p^*(1-p^*)}{n^*}}$			
Dla małych prób n_1, n_2 statystyka testowa $T = 2\left(arcsin\sqrt{\widehat{p}_1} - arcsin\sqrt{\widehat{p}_2}\right)\sqrt{n^*}$			
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna	
$K: p_1 \neq p_2$	$K: p_1 > p_2$	$K: p_1 < p_2$	
Obszar krytyczny	Obszar krytyczny	Obszar krytyczny	
$\left[(-\infty; -z_{1-\alpha/2}] \cup \left[z_{1-\alpha/2}; +\infty \right) \right]$	$[z_{1-lpha};+\infty)$	$(-\infty; -z_{1-\alpha}]$	

Weryfikacja hipotez o niezależności cech X i Y Hipoteza zerowa H: cechy X i Y sa niezależne Hipoteza alternatywna K: cechy X i Y sa zależne Statystyka testowa $T = \sum_{i=1}^{r \cdot c} \frac{(O_i - E_i)^2}{E_i}$ gdzie O_i - liczba obserwacji w i-tej komórce, $E_i = \frac{R_i \cdot C_i}{n}$, R_i - suma obserwacji w wierszu, w którym jest położona i-ta komórka, C_i - suma obserwacji w kolumnie, do której należy *i*-ta komórka. r - liczba wierszy, c - liczba kolumn w tabeli kontyngencji, n - liczba wszystkich obserwacji, $\left|\chi^2_{1-\alpha,(r-1)(c-1)};+\infty\right|$ Obszar krytyczny

Weryfikacja hipotezy dotyczącej równości dwóch wariancji Model Cechy $X \sim N(\mu_1, \sigma_1), Y \sim N(\mu_2, \sigma_2)$ Hipoteza zerowa $H: \sigma_1^2 = \sigma_2^2$. Statystyka testowa $T = \frac{S_1^2}{S_2^2}$ Hipoteza alternatywna $K: \sigma_1^2 > \sigma_2^2$ Obszar krytyczny $F_{1-\alpha}^{[n_1-1,n_2-1]}; +\infty$ Hipoteza alternatywna K: $G_1^2 \neq G_2^2$ Obszar krytyczny (0, $F_{4-\frac{d}{2}}^{[n_1-1,n_2-1]}$] $F_{4-\frac{d}{2}}^{[n_4-4,n_2-4]}$, $+\infty$)

Weryfikacja hipotez o postaci rozkładu Hipoteza zerowa H: cecha X ma rozkład o dystrybuancie FHipoteza alternatywna K: cecha X ma rozkład inny niż FStatystyka testowa $T = \sum_{i=1}^{k} \frac{(n_i - n p_i)^2}{n p_i}$ gdzie k - liczba klas, p_i - prawdopodobieństwo znalezienia się w i-tej klasie $\left[\chi^2_{1-\alpha,k-1-r};+\infty\right)$ Obszar krytyczny gdzie r - liczba parametrów szacowanych z próby

ENW ESTYHATORY

Poiss
$$(\lambda)$$
 $\longrightarrow \overline{\chi}$
 $\exp(\theta)$ $\longrightarrow \frac{1}{\overline{\chi}}$

200.4.14. INNY Maupetnienie. 2 tw. Cramera-Rao.

SPOSOB. - KOLOKUTIVM.

 \bar{X} - nieobigiony. Rowność zamodzi, gdy $d\bar{\theta}$ $|mp_{\theta}(x)\rangle = k(\theta) \cdot [T(x) - g(\theta)]$

 $F_{4:n}(x) = 1 - (1 - F(x))^n$

stotystyka pongakowo