

A LTE Receiver Framework Implementation in GNU Radio

Johannes Demel, Sebastian Koslowski, Friedrich K. Jondral

Contents

- LTE air interface overview
 - Basic system parameters
- Project roadmap
- Implementation
 - Implementation overview
 - Synchronization
 - OFDM operation
 - Physical channel decoding
 - Test with recorded data
- Performance results
- Conclusion

LTE overview

Air interface basics (downlink)

- OFDM signal (15 kHz subcarrier bandwidth)
- different modes possible
 - variable bandwidth (up to 20 MHz)
 - MIMO capabilites (up to 4x4)
- 6 physical channels
 - 3 transport channels
 - 3 control information channels

Roadmap

Tasks

- synchronization
 - time, frequency, frame timing
- OFDM operation
 - radio channel estimation, equalization
- demodulation
 - STBC, FEC
 - physical channel demultiplexing
- extract system parameters
 - cell ID
 - MIMO configuration
 - system bandwidth

Implementation goals

- modular block-based structure
- separate handling of data and control information
- use stream- and event-based processing

Implementation overview

Receiver framework components at work: Example flowgraph with MIB decoding

cyclic prefix (CP)-based synchronization

- lacktriangleright recover coarse symbol timing \hat{n}_0
- \blacksquare calculate sliding window correlation with fixed lag of $\textit{N}_{\rm FFT}$

$$\hat{n}_0 = \arg \max_{n} |\gamma(n)|, \ \gamma(n) = \sum_{m=n}^{n+N_{\mathrm{CP}}-1} r(m) \ r^*(m-N_{\mathrm{FFT}})$$

- stream tags
 - tags indicate symbol start

primary synchronization symbol (PSS) detection

- recover fine symbol timing and half-frame timing
- lacktriangle extract cell ID number N_{ID2} from PSS
- stream tags
 - indicate half-frame start
 - propagate cell ID number N_{ID2}

frequency offset detection and correction

- recover fractional frequency offset
- half-frame timing needed
 - different CP-lengths within each slot

- secondary synchronization symbol (SSS) detection
 - recover frame timing
 - extract cell ID group N_{ID1}
- receive N_{ID2} tag
 - calculate cell ID $N_{\mathrm{ID}} = 3 * N_{\mathrm{ID1}} + N_{\mathrm{ID2}}$
- message port
 - lacktriangle publish $N_{
 m ID}$ for dynamic block configuration
- stream tags
 - indicate frame start

OFDM operation

inverse OFDM operation

- remove cyclic prefix
- compute FFT
- extract subcarriers of interest
 - complexity reduction

channel estimation

- get pilot positions
- calculate channel coefficients
- linearly interpolation
- output data stream and channel estimates for antenna port 0 and 1

Implementation overview

Receiver framework components at work: Example flowgraph with MIB decoding

Decode PBCH

- MIMO configuration still unknown at this point
 - trail & error: different configurations interleaved in output
- inverse Alamouti Operation
- deinterleave layers
- demodulation: PBCH always uses QPSK
- descrambling
 - lacktriangle scrambling sequence depends on $N_{
 m ID}$

Decode BCH

- BCH is transmitted on PBCH.
- Deinterleaving (block-based)
- Viterbi decoder
 - hierarchical block
 - parameterized GNU Radio Viterbi decoder
- Calculate CRC
 - CRC checksum depends on MIMO configuration
 - CRC match indicates number of TX antennas

Implementation overview

Receiver framework components at work: Example flowgraph with MIB decoding

Test with recorded data

- IQ baseband samples as input
 - recorded using a USBP N210
- flowgraph output
 - fixed parameters
 - MIMO: 2x1
 - RB: 50 equals 10 MHz
 - PHICH parameters
 - system frame number
- decoding rate 97.8%
- tests indicate real time capabilities

```
(N ant=2 N rb dl=50 PHICH: dur=0 res=1,00)
FN = 822
                diff = 1
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
                diff = 1
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
FN = 827
                diff = 1
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
freq estimate c
               ASYNC! new offset = 3250
                                                                          samp num = 1417
FN = 829
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
EN = 838
                diff = 1
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
   = 831
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1,00)
EN = 832
                diff = 1
                diff = 1
   = 834
                diff = 1
   = 835
                diff = 1
   = 836
                diff = 1
FN = 839
                diff = 1
    841
                diff = 1
EN - 843
                diff = 1
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
EN - 845
                diff - 1
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
                                (N ant=2 N rb dl=50 PHICH: dur=0 res=1.00)
itb unpack vb
                decoding rate = 0.978
```

Effect of sample rate on performance

- varying sample rate
 - FFT-length depends on sample rate

- relative performance changes
- lower sample rate
 - less multiplications
 - smaller correlation sequences
 - smaller FFT-length

Effect of computed resource blocks on performance

- varying number of RBs
 - FFT-length always 2048
 - number of RBs limited by FFT-length

- channel estimation is more complex
- great increase of power consumption in OFDM part

Conclusion

- ITF overview
- introduction to our GNU Radio LTE receiver
 - synchronization, OFDM operation, PBCH extraction
 - example output
- performance analysis
 - different parameters
- possibilities
 - Detect LTE cells with parameters
- What's next
 - extend flowgraph with additional channels and uplink
- source code available at github.com/kit-cel/gr-lte

The End

Thanks for your attention!

gr-lte source code available at github.com/kit-cel/gr-lte