

RISC V Architecture

Mahesh Awati

Department of Electronics and Communication Engg.

RISC V ARCHITECTURE

UNIT 2 – Instructions: The Language of Computer

Mahesh Awati

Department of Electronics and Communication Engineering

Representing Instructions in the Computer

S-type Instruction Format

Syntax: mnemonics rs2,imm(rs1)

- Store needs to read two registers, rs1 for base memory address, and rs2 for data to be stored, as well immediate offset!
- Can't have both rs2 and immediate in same place as other instructions!
- Note that stores don't write a value to the register file, no rd!
- RISC-V design decision is to move low 5 bits of immediate to where rd field was in other instructions keep rs1/rs2 fields in same place

Representing Instructions in the Computer

S-type Instruction Format

Syntax: mnemonics rs2,imm(rs1)

sw x14, 8(x2)

Imm₁₂: 0000 000 0 1000 (08)

Hexadecimal Representation: 0x00E12423

Representing Instructions in the Computer

S-type Instruction Format

Syntax: mnemonics rs2,imm(rs1)

Store byte, half-word, word

Imm[11:5]									
Imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	sh			
Imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	sw			
width									

Representing Instructions in the Computer

- Translating RISC-V Assembly Language into Machine Language
- If x10 has the base of the array A and x21 corresponds to h, the assignment statement

```
A[30] = h + A[30] + 1; is compiled into
```

```
lw x9, 120(x10)
// Temporary reg x9 gets A[30]

add x9, x21, x9
// Temporary reg x9 gets h+A[30]

addi x9, x9, 1
// Temporary reg x9 gets h+A[30]+1

sw x9, 120(x10)
// Stores h+A[30]+1 back into A[30]
```

What is the RISC-V machine language code for these three instructions?

Since $120_{ten} = 0000011 \ 11000_{two}$, the binary equivalent to the decimal form is:

immediate	immediate rs1		funct3	rd	opcode	
000011110000	0101	0	010	01001	0000011	
funct7	rs2	rs1	funct3	3 rd	opcode	
0000000	01001	10101	000	01001	0110011	
immediate	immediate rs1		funct3	rd	opcode	
000000000001	0100	1 000		01001	0010011	
immediate[11:5] rs2		rs1	funct3	immediate[4	l:0] opcode	
0000011	0100	1 0101	LO 010	11000	0100011	

THANK YOU

Mahesh Awati

Department of Electronics and Communication

mahesha@pes.edu

+91 9741172822