

4MM013 - Computational Mathematics

Mathematics Assignment-2

Full Marks: 20

University ID : 2332244

Submitted by : Naomi Thing

Submitted on : 2023/04/29

1. Using Cramer's rule obtain the solutions to the following set of equations:

$$2 x_1 + x_2 - x_3 = 0$$
$$x_1 + x_3 = 4$$
$$x_1 + x_2 + x_3 = 0$$

(4)

	Mattu	ma	tics	Ass	ign	men	t 2	1		200				
									0	Date	_	5		
	Naom	i N	ring	- 2	332	2244	4		6	rage				
(Luchanged								heir	1 0	4 1		1		
-	$2x_1 + x_2 - x_3 = 0$ — 0 $x_1 + x_3 = 4$ — 11 $x_2 + x_2 + x_3 = 0$ — 111 usriting the given eq ⁿ s into matrix form, $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$, $x = x_2$ & $\theta = 4$ $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ = $\begin{bmatrix} x_1 \\ x_3 \end{bmatrix}$ = 0													
	0-1	7	-1	1	, -	X,		1,	Q -	1	1			+
	A = 1	1		1'	-	X2	1	X	0 -	17				+
	Now,		-			_ ~ 3					_			+
	Acces		_ 1	- (400								+
	Δ =									1	1+	1-1)	1 0	T
1000		1	0	1			1 1		1	1			1 -	
		1	1	1					-11					
	1	0				2(0	- 1) -	16	-1)	- 1	1(1-	(0)	
	3									- 1.				
	C 6				=	- !	2 -	0 -	1					
	/3 -				=	- 3	5				1			
	Then,									,				-
	Δχ	=	D	1	-1	= 0	0	1	-1	4.	L	+(-1)	4	0
	100		4	0	1		1	1		0	1		0	1
			D		L					1				_
						= 01	0 -	1)-	14	-0)	-1	14-0)_	
						= 0								
	a residence				1100	= -								
			300								15.00		1 6	
	Comments.		1							3				
				No.			-			SECTION AND ADDRESS OF THE PARTY NAMED IN	SER.	2000000		

2.

a) Solve the following using Gauss elimination:

$$x_1 + x_2 + x_3 = 2$$
$$2x_1 + 3x_2 + 4x_3 = 3$$
$$x_1 - 2x_2 - x_3 = 1$$

(4)

b) Find the inverse of the matrix from (a) using elimination.

Naomi Thing - 2332244								
Naomi Thing - 2332244								
P 2 Solity 1 1 0 - 1 + 2 = 1 - 0 2 = xx								
Gjiveri, 1 1 0 1 1 1								
x1+x2+x3=2 -100 1								
(A-0) 12x, +3x, +4x = 3 0								
x1 - 2x2 - x3 = 1 = 0								
1 1 1 : 270								
0 1 0+ P 1 12 3 040:30 1 2 = 8XA								
Writing the equs in augunted forms, 1 1 1 : 2 1 0 + 1 12 3 040: 30 1 2 = 8x A								
Men, 0 1 1								
(0-10+() Echelon (form) =								
R2 = R2 2R1								
R3 = R3 - R1								
we act.								
1 81 1 8: 2 XA = X								
Q C1 20:-1 ·A								
0-3-2:-1								
R ₃ = R ₃ + 3R ₂ A × A = × X								
noe get,								
0 1 1 1 : 2								
0 1 2:-1								
0 0 4:-4								
Now,								
doing backward substitution,								

	Q) Boths
	Naomi Tring - 2332244 8 0 - pris
	Their to make echiler Andres
-	Or. 23 = -4 1 19 = 68 170
	R3 = R3 - R1 R .:
-	Again, 0 0 1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	X2+2x3 =-1 - 1 0
1	or, x2+2.1-1)=-1-8-0
	Or, x2 = R2+3R2 244 7= 89
	:.x2=11:11
	New, 0 1 2: 2 1 0
	2,+x2+x3=2 P 0 0]
	or, x,+1+(-1)=2
1 30	or, x, 4-1=2 e9 - 191 = 19
1 30	Ro = 2 Ro - Rs :
	:. x1=27 x2=1/x3=-1-y. A
-	Naomi Ming = 2332244
<u> </u>	Soly 1 & +-: P 0 0]
-	Ogiven, mispit
-	$\chi_1 + \chi_2 + \chi_3 = 2$
-	2x1+3x2+4x3=3-0
-	x, -2x2-x3=1 1
	Now, writing the eque in augmented Af form, [AI] = [1 1 1 : 1 0 0]
1	
1	1 -2 -1: 0 0 1 deg and

Date Page	
Naomi Thing - 2332244 - crim ina	
Then, to make echelon form, XP R2 = R2 - 2R1	
R = R2 - 2R4 1 - = 200 179	
R3 = R3 - R1	
he act, 1-2 ex.:	7000
0 1 2 :-2 1x 0, x 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-
0 1 2 :-2 1 0	-
0 -3 -2:-1-00+50,70	
Then, Rs = Rs+3R2 pare get p 10	1
[1 1 1 : 1 0 0 0 X .	
0 1 2 :-2 1 0 , audit	
LO 0 4 5-7 8+ 2 -1 x	
Again, Q=(1-)+1+1×170	
R= 4R - R3 2= X-141 x :70	
R2 = 2R2 - R3 S= 10.:	
4.A1-0 x 11 = 53 -1 = ,x .:	
0 2 Ospi 3 = = -1 protil imana	
[LO 0 4:-7 3 L] wood (d	
- Hyam, novine	
$R_1 = R_1 \oplus 2R_2 \oplus 2 = e^{\chi} + e^{\chi} + e^{\chi}$	
400000000000000000000000000000000000000	_
10 2 10 : 3 -1x (-1)	
More, usitive to Fine Pu Component Al france	-
Now, 001:11:1A	-
dividing R, by 4, R, by 2 and R3 by 4,	-
we get, 11 0 0:1-2-1	-
_	

	Naoni Thing -2332244 & Price Page
	TA-1 = 1 0 0 : 5/4 -1/4 1/4
-	0 1 0 : 3/2 -1/2 -1/2
waterat.	2 jeine 0 mp (+): -7/4 3/4 +/4
-	We know,
-	$AI = IA^{-1} = I_{A} = I_{A}$
	3/2 -1/2 -1/2 Company
XIV 12	the market Hour Hour Phonesian of the

3. Determine whether the following sequence converges or diverges.

$$t_n = (-1)^{n+1} \, \frac{n+1}{n^2+3}$$

(4)

	Naoni Thing - 2332244 nd main i
+ 8.	"Given+(0)"> = x+(0)" = x+(0)" = x+(0) = (0)
	Naoni Thing - 2332244 ud mais i "Gjivent(0)" = x+(0)" = x+(0)" +
	n ² +3 .cvel/
l X	To check whether the torm converges or diverges,
	lim to ration (als) the n+ wais of
	n-> = 02n->00/01/4 (n2+320) = /10/12
	0 = 0 (1) 2+ (n+1) 2-= (x) 11
	$0 = 0 \lim_{n \to \infty} (1) n + (n+1) = (x) $ $1 - 0 \ln x + (n^2 + 3) \ln x = (x) $
	0 = 0/lim= (0) (-1)n+1 +t+/n= (x) 1111
	$0 = 0 \lim_{n \to \infty} (0) (-1)^{n+1} \frac{1}{1+1} \ln (x)^{n+1}$ $n \to \infty \qquad n+3/n \qquad 0$
O O	40. +x1+10 00+12 x ++1.x+0 = xni2
	14 100 + 5/20
	(=1).++++++++++++++++++++++++++++++++++++
	- 80-70
1	= x-x3 + x51-1400/11
	3! 5! 00 F! 3! 5! 00 F!

Naomi Ming - 2332244 Page

= [-1] = 0; which is positive real number

: So; this given term (tn) converges, i.e; convergent.

4. Find the Maclaurin series expansion of **Sinx**, also calculate the radius of convergence. (4).

1									
	Naonii (Davissa -	_0.2.2.0.0.1/1	Dari Pag					
	Maomi Ming -2332244 Pren,								
-	to find radius of convergence of sinx, In summation form, Sinx = $\frac{2}{n} \left(-1\right)^n x^{2n+1}$ n=0 $(2n+1)!$								
	In Summation form,								
	$8inx = \sum_{n=0}^{\infty} (-1)^n x^{n+1}$								
	Using ratio test,								
	lim	anti	- lim n→∞	(-1) n+1 x 2(n+	1)+1				
	n->∞	qn	n->00	(2(n+1)+ (-1) ⁿ . x ²ⁿ					
					1				
			1.	(2n+1)	· · · · · · · · · · · · · · · · · · ·				
			= um n→∞	$(-1)^{n+1} \cdot \chi^{2n+1}$	(2n+2+1)!				
			lim	LS) (-1) 222	1. x2. (2n+1)[
			n > 00	-17 x2nts. (2)	1+3)(21+2)(21+1)	T]			
			lim _	χ2					
				2n+3)(2n+2)					
		=	x ² (2.∞+3)(2	∞+0)					
			0	,					
	·. M	cadius	of cour	vergence of	$\sin x$ is ∞ .				
	·	UMMS		9					

The End