СОДЕРЖАНИЕ

ЛИНЕЙНЫЕ ПРОСТРАНСТВА
НОРМИРОВАННЫЕ ПРОСТРАНСТВА
ПРИМЕРЫ НОРМИРОВАННЫХ ПРОСТРАНСТВ
СХОДИМОСТЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ В НОРМИРОВАННЫХ ПРОСТРАНСТВАХ
КОМПАКТНОСТЬ
HEPABEHCTBA
ЧИСЛОВЫЕ ФУНКЦИИ??
ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ??
ПРЕДЕЛ ФУНКЦИИ??
НЕПРЕРЫВНОСТЬ ФУНКЦИЙ??
ПРОИЗВОДНЫЕ??
ПРИЛОЖЕНИЯ ПРОИЗВОДНЫХ??
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ??
ВЫЧИСЛЕНИЕ НЕОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ.І??
ВЫЧИСЛЕНИЕ НЕОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ.ІІ??
ОПРЕДЕЛЕННЫЕ ИНТЕГРАЛЫ??
ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ??
ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ??
НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ??
ВЫЧИСЛЕНИЕ НЕСОБСТВЕННЫХ ИНТЕГРАЛОВ??
ЧИСЛОВЫЕ РЯДЫ??
ФУНКЦИОНАЛЬНЫЕ РЯДЫ??
СТЕПЕННЫЕ РЯДЫ??
РЯДЫ ФУРЬЕ??
БЕСКОНЕЧНЫЕ ПРОИЗВЕДЕНИЯ??
цепные дроби??
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ??
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ??
ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ??
ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ??
СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ??
HEPABEHCTBA13
ПРИМЕРЫ ЧТЕНИЯ МАТЕМАТИЧЕСКИХ ВЫРАЖЕНИЙ НА АНГЛИЙСКОМ ЯЗЫКЕ??
ПРЕЛМЕТНЫЙ УКАЗАТЕЛЬ

ЛИНЕЙНЫЕ ПРОСТРАНСТВА

Определение. Непустое множество L называется линейным пространством над полем действительных чисел \mathbb{R} (комплексных чисел \mathbb{C}), если для любой пары элементов из L определена их сумма $(L \times L \to L)$ и для всякого действительного числа $\lambda \in \mathbb{R}$ (комплексного числа $\lambda \in \mathbb{C}$) и каждого элемента $\bar{a} \in L$ определено умножение \bar{a} на действительное (комплексное) число λ , удовлетворяющие следующим аксиомам, выполняющимся для всех $\bar{a}, \bar{b}, \bar{c} \in L$ и $\lambda, \mu \in \mathbb{R}$.

```
1C. (\bar{a} + \bar{b}) + \bar{c} = \bar{a} + (\bar{b} + \bar{c})
                                              (ассоциативность).
2C.
        \bar{a} + \bar{0} = \bar{a}
                                               (существование нейтрального элемента).
3C. \bar{a} + (-\bar{a}) = \bar{0}
                                               (существование противоположного элемента).
4C. \bar{a} + \bar{b} = \bar{b} + \bar{a}
                                               (коммутативность).
1У.
       \lambda(\bar{a} + \bar{b}) = \lambda \bar{a} + \lambda \bar{b}
                                               (дистрибутивность по сумме векторов).
        (\hat{\lambda} + \mu)\dot{\bar{a}} = \lambda \bar{a} + \mu \bar{a}
2У.
                                               (дистрибутивность по сумме чисел).
3Y.
        (\lambda \mu)\bar{a} = \lambda(\mu \bar{a})
                                               (ассоииативность).
4Y.
        1 \cdot \bar{a} = \bar{a}
                                               (yнитарность).
```

Элементы пространства L также называют точками или векторами, а числа из поля \mathbb{R} (или \mathbb{C}) — скалярами. Для обозначения векторов всюду в дальнейшем испльзуется черточка (стрелка) над буквой. Понятия "векторное пространство" и "линейное пространство" — синонимы. Первые четыре аксиомы означают, что линейное пространство является коммутативной группой по сложению.

Линейная зависимость векторов. Размерность. Базис

Определение. Линейной комбинацией векторов $\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_n$ называется вектор \bar{b} , определяемый формулой $[\bar{b} = \lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \cdots + \lambda_n \bar{a}_n]$. Линейная комбинация векторов иногда называется агрегатом.

Определение. Векторы $\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_n$ называются линейно зависимыми векторами, если существуют такие числа $\lambda_1, \lambda_2, \ldots, \lambda_n$, не все равные нулю, что $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \cdots + \lambda_n \bar{a}_n = \bar{0}$ (1) Векторы $\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_n$ линейно независимы, если из равенства (1) следует, что все числа $\lambda_1, \lambda_2, \ldots, \lambda_n$ равны нулю. Среди линейно зависимых векторов всегда найдется вектор, являющийся линейной комбинацией остальных.

Параметризация линейных пространств. Размерность. Базис Определение. Если в линейном пространстве L существует $n\ (n\in\mathbb{N})$ линейно независимых элементов, а любые n+1 элементов из L линейно зависимы, то пространство L называется конечномерным размерности $n\ (\dim L=n)$ или просто n-мерным. Если в пространстве L количество линейно независимых элементов не ограниченно, то пространство называется бесконечномерным.

Теорема. Пусть в n-мерном линейном пространстве выбрано n линейно независимых элементов $\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_n$. Тогда всякий элемент этого пространства единственным образом представим в виде линейной комбинации этих векторов $\bar{x} = x_1\bar{e}_1 + x_2\bar{e}_2 + \cdots + x_n\bar{e}_n$. При этом множество $\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_n$ называется базисом, а элементы, его составляющие, базисными. Числа $x_1, \ldots, x_n \in \mathbb{R}$ (\mathbb{C}) называются координатами элемента \bar{x} в базисе $\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_n$.

Определение. Пусть L — линейное пространство. Непустое подмножество $\hat{L} \subset L$ называется nodnpocmpancmeom линейного пространства L, если для всех $\bar{x}, \bar{y} \in \hat{L}$ и любых чисел $\lambda, \mu \in \mathbb{R}$ (\mathbb{C}) линейная комбинация $\lambda \bar{x} + \mu \bar{y} \in \hat{L}$, т.е. если оно само образует линейное пространство по отношению к опреде-

ленным в L операциям сложения и умножения на число. Другими словами, nuнейным подпространством или подпространством, или nuвекторного пространства называется подмножество $\hat{L} \subset L$, содержащее все линейные комбинации своих элементов. Во всяком линейном пространстве имеется подпространство, состоящее из одного нуля (ny-ne000 no000 no000

Определение. Пусть M некоторое подмножество пространства L. Линейной оболочкой множества M или подпространством, порождаемым множеством M, или подпространством, натянутым на множество M, называется множество всех линейных комбинаций элементов, принадлежащих M.

Линейная оболочка множества $M\subset L$ являентся наименьшим линейным подпространством в L, содержащим M.

Определение. Пусть L и E — линейные пространства. Отображение h : $L \to E$ называется гомоморфизмом, если для всех $\bar{x}, \bar{y} \in L$ и любых чисел λ, μ $h(\lambda \bar{x} + \mu \bar{y}) = \lambda h(\bar{x}) + \mu h(\bar{y})$. Взаимно однозначный гомоморфизм называется изоморфизмом. Линейные пространства называются изоморфиыми, если между ними можно установить взаимно однозначное соответствие "сохраняющее" операцию.

Теорема. Изоморфизм линейных пространств является отношением эквивалентности в множестве линейных пространств.

Теорема. Конечномерные линейные пространства одинаковой размерности изоморфны.

Примеры линейных пространств.

- 1. *Нуль пространство* состоит из одного нуля. Единственно возможный закон умножения на числа: $\lambda 0 = 0$.
- **2.** Множество действительных чисел $\mathbb R$ с обычными операциями сложения и умножения является одномерным векторным пространством. Пусть $\bar x$ ненулевой элемент линейного пространства L, тогда множество $\{\lambda \bar x \mid \lambda \in \mathbb R\}$ является одномерным подпространством L, изоморфным $\mathbb R$. Изоморфизм действует по правилу $\lambda \bar x \to \lambda \in \mathbb R$.

3. Линейное пространство V^3 состоит из свободных векторов в трехмерном пространстве, определяемых в аналитической геометрии. Пусть в пространстве, где рассматриваются геометрические векторы, введена декартова прямоугольная система координат. Векторы единичной длины (нормированные) $\bar{i} = \{1;0;0\}, \quad \bar{j} = \{0;1;0\}, \quad \bar{k} = \{0;0;1\}$ взаимно перпендикулярны (ортогональны) и образуют базис в V^3 . Всякий базис, состоящий из перпендикулярных векто-

ров, называется ортогональным. Базис, составленный из единичных векторов, называется нормированным. Базис $\bar{i},\bar{j},\bar{k},$ — ортонормированный. Для каждого вектора $\bar{b}\in V^3$ $\bar{b}=b_1\bar{i}+b_2\bar{j}+b_3\bar{k},$ где $(b_1;b_2;b_3)$ — координаты $\bar{b}.$

Замечание. Опираясь только на определение линейного пространства невозможно оперировать такими понятиями, как длина вектора и угол между векторами. В данном примере использовались геометрические представления о длине

и перпендикулярности отрезков.

- 4. Обозначим через Π_n множество многочленов степени не выше n-й, а через Π_{∞} множество всех многочленов любой степени. Рассмотрим Π_2 множество квадратных трехчленов $P(x) = a_0x^2 + a_1x + a_2$. В частности, при $a_0 = 0$ получаем множество линейных двучленов $P = 0x^2 + a_1x + a_2 = a_1x + a_2$ (Π_1), а при $a_0 = a_1 = 0$ множество многочленов нулевой степени $P = 0x^2 + 0x + a_2 = a_2$ (Π_0). Многочлены x^2 , x, 1 образуют базис в пространстве P_2 . Этот базис вместо многочлена позволяет рассматривать тройку чисел (a_0 ; a_1 ; a_2), которые являются числовыми коэффициентами многочлена.
- $\Pi_0 \subset \Pi_1 \subset \ldots \subset \Pi_n \subset \ldots \subset \Pi_\infty$ цепочка собственных подпространств Π_∞ . **5.** *Арифметическое пространство* \mathbb{R}^n является обобщением множества координат геометрических векторов и состоит из элементов декартова произведения множеств $\bar{x} \in \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$, сложение и умножение на число определяются формулами $(x_1; x_2; \ldots; x_n) + (y_1; y_2; \ldots; y_n) = (x_1 + y_1; x_2 + y_2; \ldots; x_n + y_n)$ и $\lambda(x_1; x_2; \ldots; x_n) = (\lambda x_1; \lambda x_2; \ldots; \lambda x_n)$. В пространстве \mathbb{R}^n базис вида $\bar{e}_1 = (1; 0; \ldots; 0), \bar{e}_2 = (0; 1; \ldots; 0), \ldots, \bar{e}_n = (0; 0; \ldots; 1)$ называется *каноническим*. Пространства V^3 , Π_2 , \mathbb{R}^3 изоморфны.
- **6.** Пространство \mathbb{R}^{∞} (\mathbb{C}^{∞}) состоит из всех бесконечных числовых последовательностей. Сложение и умножение на число определяются формулами

 $(x_1;x_2;\ldots;x_n;\ldots)+(y_1;y_2;\ldots;y_n;\ldots)=(x_1+y_1;x_2+y_2;\ldots;x_n+y_n;\ldots)$ и $\lambda(x_1;x_2;\ldots;x_n;\ldots)=(\lambda x_1;\lambda x_2;\ldots;\lambda x_n;\ldots)$. В пространстве \mathbb{R}^{∞} векторы $\bar{e}_1=(1;0;\ldots;0;\ldots),\ \bar{e}_2=(0;1;\ldots;0;\ldots),\ldots,\bar{e}_n=(0;0;\ldots;1;\ldots),\ldots$ — линейно независимые. Но представить элемент \mathbb{R}^{∞} как бесконечную линейную комбинацию этих векторов невозможно, поскольку среди аксиом линейного пространства не указан способ определить сумму бесконечного числа слагаемых.

- 7. Пространство l_{∞} (иногда иногда обозначают m) состоит из всех ограниченных бесконечных числовых последовательностей.
- 8. Пространство c состоит из всех сходящихся последовательностей.
- **9.** Пространство c_0 состоит из всех числовых последовательностей, сходящихся к нулю.
- **10.** Пространство l_p , $1 \le p < \infty$ состоит из всех числовых последовательностей, для которых конечна сумма $\sum\limits_{k=1}^{\infty}|x_k|^p<\infty$. Если p< q, то l_p является собственным подпространством l_q .
- **11.** Пространство C[a;b] всех непрерывных на отрезке [a;b] функций является бесконечномерным, т.к. функции $1,\,x,\,x^2,\,x^3,\,x^4,\,\dots$ линейно независимы.
- **12.** Пространство $C^n[a;b]$ всех n раз дифференцируемых на отрезка [a;b] функций, у которых n-я производная непрерывна на [a;b]. $C^n[a;b]$ является бесконечномерным, т.к. функции $1, x, x^2, x^3, x^4, \ldots$ линейно независимы в нем.
- 13. Пространство R[a;b] всех интегрируемых по Риману на отрезке [a;b] функций также является бесконечномерным, т.к. функции $1,x,x^2,x^3,x^4,\ldots$ линейно независимы.

Для любого пространства из цепочек включений все пространства, которые в него включаются являются собственными подпространствами.

$$l_1 \subset l_p \subset c_0 \subset c \subset l_\infty \subset \mathbb{R}^\infty$$
, $\Pi_0 \subset \Pi_n \subset \Pi_\infty \subset C^n[a;b] \subset C[a;b] \subset R[a;b]$.

НОРМИРОВАННЫЕ ПРОСТРАНСТВА (НП)

Обобщением длины вектора в аналитической геометрии является понятие нормы в линейном пространстве.

Определение. Пусть L — линейное пространство и пусть функция $\|.\|$ каждому элементу $\bar{x} \in L$ ставит в соответствие действительное число $\|\bar{x}\| \in \mathbb{R}$ ($\|.\|:L\to\mathbb{R}$). Функция $\|.\|$ называется *пормой*, если для каждого действительного числа $\lambda \in \mathbb{R}$ (комплексного числа $\lambda \in \mathbb{C}$) и всех элементов $\bar{x}, \bar{y} \in L$ функция $\|.\|$ обладает следующими свойствами:

```
1Н. \|\bar{x}\| \ge 0 (неотрицательность нормы)
2Н. \|\bar{x}\| = 0 \Leftrightarrow \bar{x} = \bar{0} (разделение элементов)
3Н. \|\lambda \bar{a}\| = |\lambda| \|\bar{a}\| (положительная однородность)
4H. \|\bar{a} + \bar{b}\| \le \|\bar{a}\| + \|\bar{b}\| (неравенство треугольника),
```

Значение функции $||\bar{x}||$ от аргумента \bar{x} называенся *пормой* элемента \bar{x} (или длиной вектора \bar{x}).

Определение. Линейное пространство L снабженное нормой $\| \cdot \|$ называется нормированным пространством (НП) (иногда линейным нормированным пространством (ЛНП)).

Итак, нормированное пространство — это пара (L, ||.||). Если из контекста ясно, что линейное пространство L является нормированным, то в тексте в обозначениях оставляют только обозначение пространства. В нашем случае L. В аналитической геометрии расстояние между векторами \bar{a}, \bar{b} определяется как расстояние между их концами, то есть, как длина вектора $\bar{a} - \bar{b}$.

Теорема. Пусть L — НП и $\bar{a}, \bar{b} \in L$. Функция двух переменных определяемая равенством $\rho(\bar{a}; \bar{b}) = ||\bar{a} - \bar{b}||$ является расстоянием (метрикой) в L.

Равенство $||\bar{x} - \bar{y}|| = ||(\bar{x} - \bar{a}) - (\bar{y} - \bar{a})||$ показывает, что в нормированном пространстве расстояние между точками не изменяется при параллельном переносе (трансляционная инвариантность норми). Справедливо и обратное. Если расстояние однородно ($\rho(\lambda \bar{x}; \lambda \bar{y}) = \lambda \rho(\bar{x}; \bar{y})$) и не изменяется при параллельном переносе ($\rho(\bar{x} + \bar{a}; \bar{y} + \bar{a}) = \lambda \rho(\bar{x}; \bar{y})$), то функция $\rho(\bar{x}; \bar{0})$ — норма.

Всякое нормированное пространство является метрическим пространством на множестве векторов L. Все определения и свойства метрических пространств переносятся и на нормированные пространства. Напомним некоторые из них. Определение. Множество всех элементов $\bar{x} \in L$, удаленых от одного элемента \bar{a} на постоянное расстояние r, называется $c \not = 0$ $\bar{x} \in L$ | $||\bar{x} - \bar{a}|| = r$ | Множество элементов $B(\bar{a};r) = \{\bar{x} \in L \mid ||\bar{x} - \bar{a}|| \leq r\}$ | называется mapom с центром в точке \bar{a} радиуса mapom с центром в точке \bar{a} радиуса mapom с пособов mapom с центром в точке mapom с пособов mapom с центром в точке mapom с центром в точк

Определение. Множество M элементов нормированного пространства L называется *ограниченным*, если найдется такое действительное число c>0, что для всех $\bar{x}\in M$, $||\bar{x}||< c$. Это означает, что существует такая окрестность нуля $\bar{0}$, что $M\subset O(\bar{0};c)$. Число diam $M=\sup_{\bar{x},\bar{y}\in M}||\bar{x}-\bar{y}||$ называется ∂ иметром множества M.

Йз неравенства треугольника вытекает, что в нормированном пространстве всякое множество M конечного диаметра d является ограниченным. Действительно, пусть $\bar{x} \in M$, тогда $||\bar{x}|| = ||\bar{a} + \bar{x} - \bar{a}|| \le ||\bar{a}|| + ||\bar{x} - \bar{a}|| < ||\bar{a}|| + d$.

Примеры. В множестве действительных чисел $\mathbb R$ определим норму числа λ как модуль этого числа $\|\lambda\| = |\lambda|$. **1.** В $\mathbb R$ множество целых чисел $\mathbb Z$ неограниченное. **2.** В $\mathbb R$ множество $M = (0;1] \cup \{2\}$ ограниченное. При C > 2 $M \subset (-C;C)$. **3.** В $\mathbb R$ последовательность $\{\frac{1}{k}\}_{k=1}^{\infty}$ ограниченная, т.к. при $k \in \mathbb N$, $\left|\frac{1}{k}\right| < 2$.

Определение. Пусть M некоторое подмножество нормированного пространства L. Точка \bar{x} называется изолированнюй точкой множества M, если существует такая окрестность точки \bar{x} которая, кроме точки \bar{x} , не содержит других точек из множества M. Противоположное понятие — точка \bar{x} множества M называется неизолированной, если в любой ее окрестности найдутся отличные от \bar{x} точки из множества M.

Любое множество точек нормированного пространства, можно разбить на два непересекающихся подмножества: изолированных и неизолированных точек.

Примеры. 1. В множестве действительных чисел $\mathbb R$ множество целых чисел $\mathbb Z$ состоит только из изолированных точек. **2.** В $\mathbb R$ множество $M=(0;1]\cup\{2\}$ имеет единственную изолированную точку 2 и бесконечное множество неизолированных, точек составляющих полузамкнутый интервал (0;1]. В этом множестве точка 0 тоже обладает тем свойством, что в любой ее окрестности имеются числа из полузамкнутого интервала (0;1], хотя она и не принадлежит множеству M. **3.** В $\mathbb R$ последовательность $\{\frac{1}{k}\}_{k=1}^{\infty}$ состоит из изолированных точек. Неизолированных точек нет. Точка $0=\lim_{k\to\infty}\frac{1}{k}$ не является членом последовательности, хотя в каждой своей окрестности содержит бесконечное количество ее членов.

Определение. Пусть M некоторое подмножество нормированного пространства L. Точка \bar{x} называется npedenьной точкой множества <math>M, если в каждой окрестности точки \bar{x} найдется хотя бы одна точка из M, отличная от \bar{x} .

Примеры. 1. В множестве целых чисел $\mathbb Z$ нет предельных точек. **2.** В множестве $M=(0;1]\cup\{2\}$ предельные точки составляют отрезок [0;1]. **3.** Последовательность $\{\frac{1}{k}\}_{k=1}^{\infty}$ имеет ендинственную предельную точку 0. Она не принадежит последовательности.

Определение. Множество всех предельных точек множества $M \in L$ называется производным множеством множества M и обозначается через M'. Объединение множества и всех его предельных точек называется замыканием множества (обозначается чертой над знаком множества $\overline{M} = M \cup M'$, реже квадратными скобками [M]). Множество, содержащее все свои предельные точки $(M' \subset M)$, называется замкнутым. Множество называется совершенным, если M' = M.

Примеры. 1. $\mathbb{Z} = \overline{\mathbb{Z}}$, а производное множество $\mathbb{Z}' = \emptyset$. 2. $M = (0;1] \cup \{2\}$, тогда $\overline{M} = [0;1] \cup \{2\}$, M' = [0;1] 3. $M = \{\frac{1}{k}\}_{k=1}^{\infty}$, тогда $\overline{M} = \{0\} \cup \{\frac{1}{k}\}_{k=1}^{\infty}$, $M' = \{0\}$.

Замыкание множества является объединением его изолированных и предельных точек.

Теорема (о свойствах замыкания). Пусть $M, M_1, M_2 \in L$. Тогда **1.** $M \subset \overline{M}$; **2.** $\overline{M} = \overline{\overline{M}}$; **3.** если $M_1 \subset M_2$, то $\overline{M_1} \subset \overline{M_2}$; **4.** $\overline{M_1 \cup M_2} = \overline{M_1} \cup \overline{M_2}$.

Теорема (об операциях над замкнутыми множествами). Пересечение любого числа и объединение конечного числа замкнутых множеств будет замкнутым множеством.

Замечание. Объединение бесконечного количества замкнутых множеств может быть открытым множеством. Например $\bigcup_{k=1}^{\infty} \left[\frac{1}{k}; 1 - \frac{1}{k} \right] = (0; 1).$

Определение. Пусть L — нормированное пространство, $M \subset L$ — некоторое множество. Точка $\bar{x} \in M$ называется внутренней точкой множества M, если найдется окрестность точки \bar{x} , полностью лежащая в M, т.е. найдется такое $r \in \mathbb{R}$, что $O(\bar{x};r) \subset M$. Множество, все точки которого внутренние, называется открытым. Множество всех внутренних точек множества M называется внутренностью множества M и обозначается символом M.

Примеры. 1. В множестве \mathbb{R} подмножество целых чисел \mathbb{Z} не имеет внутренних точек. **2.** В множестве $M = (0;1] \cup \{2\}$ внутренние точки образуют интервал (0;1). **3.** Последовательность $\{\frac{1}{k}\}_{k=1}^{\infty}$ не имеет внутренних точек.

Теорема (об операциях над открытыми множествами). Объединение любого числа и пересечение конечного числа открытых множеств будет открытым множеством.

Замечание. Требование конечности количества открытых множеств в пересечении существенно, поскольку $\bigcap\limits_{n=1}^{\infty} (-\frac{1}{k}; 1+\frac{1}{k}) = [0;1].$ **Теорема.** Для того, чтобы множество $M \subset L$ было открытым, необходимо

Теорема. Для того, чтобы множество $M\subset L$ было открытым, необходимо и достаточно, чтобы его дополнение $L\setminus M$ до всего пространства L, было замкнутым множеством. И наоборот. Для того, чтобы множество $M\subset L$ было замкнутым, необходимо и достаточно, чтобы его дополнение $L\setminus M$ до всего пространства L, было открытым.

Примеры. В любом нормированном пространстве каждая окрестность является открытым множеством. Все пространство и пустое множество являются одновременно и открытыми, и замкнутыми.

Теорема. Всякое открытое множество на числовой прямой является конечным или счетным объединением попарно непересекающихся интервалов, включая интервалы вида: $(\infty; \alpha)$, $(\beta; \infty)$, $(-\infty; \infty)$.

Определение. Пусть L — нормированное пространство, $M \subset L$ — некоторое множество. Точка \bar{x} называется $moчкo\ddot{u}$ границы множества M, если в каждой ее окрестности $O(\bar{x};r)$ найдутся, как точка из M, так и точка, не принадлежащая M. Границе \ddot{u} множества M называется множество всех его точек границы (обозначается ∂M).

Примеры. 1. Все изолированные точки множества являются точками его границы. Поэтому $\partial \mathbb{Z} = \mathbb{Z}$. Внутренних точек нет. **2.** В множестве $M = (0;1] \cup \{2\}$ $\partial M = \{0\} \cup \{1\} \cup \{2\}$. **3.** Пусть $M = \{\frac{1}{k}\}_{k=1}^{\infty}$, тогда $\partial M = \{0\} \cup \{\frac{1}{k}\}_{k=1}^{\infty}$.

Теорема. Граница множества является разностью между замыканием этого множества и множеством его внутренних точек.

Замечание. Следует понимать, что открытое множество в одном нормированном пространстве может не быть таковым при "погружении" в другое линейное пространство. Например, интервал (a;b) является открытым множеством на прямой \mathbb{R} . Но в числовой плоскости интервал не имеет внутренних точек. В плоскости каждая его точка является точкой границы множества $\partial(a;b) = [a;b]$.

ПРИМЕРЫ НОРМИРОВАННЫХ ПРОСТРАНСТВ

- 1. Нуль пространство состоит из одного нуля. Единственно возможный нормой является ||0|| = 0.
- 2. Пространство действительных чисел \mathbb{R} становится нормированным, если в качестве нормы элемента выбрать модуль числа. Эта норма не единственная. Для всякого m>0 функция ||x||=m|x|, где $x\in\mathbb{R}$ также будет нормой. Число m– масштабный коэффициент. Он часто встречается при переводе одних единиц измерения в другие. Например, при переходе от сантиметров в метры m=0.01. Сфера $S(a;\varepsilon)$, шар $B(a;\varepsilon)$, окрестность $O(a;\varepsilon)$ точки a радиуса ε имеют вид:

$$\begin{array}{c|c} S(a;\varepsilon) & & B(a;\varepsilon) \\ \hline \bullet & \vdots & \bullet \\ \hline a-\varepsilon & a & a+\varepsilon \end{array} \qquad \begin{array}{c|c} B(a;\varepsilon) & & O(a;\varepsilon) \\ \hline & & & \\ \hline & & & \\ \end{array} \rightarrow \begin{array}{c|c} & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \rightarrow \begin{array}{c|c} & & & \\ \hline & & & \\ \hline \end{array} \rightarrow \begin{array}{c|c} & & & \\ \hline & & & \\ \hline \end{array} \rightarrow \begin{array}{c|c} & & & \\ \hline & & & \\ \hline \end{array} \rightarrow \begin{array}{c|c} & & & \\ \hline & & & \\ \hline \end{array} \rightarrow \begin{array}{c|c} & & & \\ \hline & & & \\ \hline \end{array} \rightarrow \begin{array}{c|c} & & & \\ \hline & & & \\ \hline \end{array} \rightarrow \begin{array}{c|c} & & & \\ \hline & & & \\ \hline \end{array} \rightarrow \begin{array}{c|c} & & \\ \hline \end{array} \rightarrow \begin{array}{c|$$

5. $Apu\phi$ метическое пространство \mathbb{R}^n позволяет ввести бесконечное множество норм, которые не могут быть описаны столь просто, как все нормы в \mathbb{R} . Рассмотрим и проиллюстрируем наиболее важные из них.

Пусть $\bar{x}=(x_1;x_2;\dots;x_n)\in\mathbb{R}^n$. Для всех $p\geq 1$ нормой является каждая из семейства функций $\|.\|_p:\mathbb{R}^n\to\mathbb{R}$ вида $\|\bar{x}\|_p=\left(\sum\limits_{k=1}^n|x_k|^p\right)^{\frac{1}{p}}$. Действительно, справедливость аксиом 1Н и 2Н следует из того, что все слагаемые под зна-

ком суммы неотрицательны. Однородность 3Н проверяется непосредственно. Неравенство треугольника (свойство 4Н) является неравенством Минковского

$$||ar{x}+ar{y}||_p=\left(\sum\limits_{k=1}^n|x_k+y_k|^p
ight)^{rac{1}{p}}\leq \left(\sum\limits_{k=1}^n(|x_k|+|y_k|)^p
ight)^{rac{1}{p}}\leq ||ar{x}||_p+||ar{y}||_p.$$
 При $n=2$, т.е. в числовой плоскости \mathbb{R}^2 для наиболее важных случаев $p=1$,

p=2 и предельного случая $p=\infty$ указаны нормы и вид ε -окрестности точки $\bar{a}=(a_1;a_2).$

$$\|\bar{x}\|_1 = |x_1| + |x_2|$$
 $\|\bar{x}\|_2 = \sqrt{|x_1|^2 + |x_2|^2}$ $\|\bar{x}\|_{\infty} = \max\{|x_1|, |x_2|\}$

Существуют и другие способы введения нормы в \mathbb{R}^n .

Напомним, что статическим моментом материальной точки относительно

начала координат называется произведение коор- $\stackrel{\sim}{\downarrow} m_2 g$ динаты точки на ее вес (т.е. xmg "плечо" "на" $m_2 g$ "силу"). Воспользуемся тем свойством, что если $|m_1g+m_2g|$ в центре тяжести сосредоточить точечную массу, равную суммарной массе системы, то статический

момент этой точечной массы равен сумме статических моментов материальных точек, составляющих систему, т.е. $x_1m_1g + x_2m_2g = z(m_1 + m_2)g$, где z - координата центра тяжести. Сократив на величину ускорения свободного падения и разделив обе части равенства на массу системы (m_1+m_2) , получаем $z=\frac{m_1}{m_1+m_2}x_1+\frac{m_2}{m_1+m_2}x_2=\lambda_1x_1+\lambda_2x_2$, где $\lambda_1,\lambda_2>0$, $\lambda_1+\lambda_2=1$. Величины λ_1 , λ_2 называются барицентрическими координатами центра тяжести системы материальных точек (барицентр — центр тяжести фигуры, от греческого слова $\beta\acute{\alpha}\rho\iota\varsigma$ —тяжелый). Таким образом, центр тяжести является линейной комбинацией x_1 и x_2 с коэффициентами λ_1 и λ_2 . В общем случае, если все $\lambda_k\neq 0$, то функция $\|\bar{x}\|_{\bar{\lambda}}=\sum_{k=1}^n |\lambda_k x_k|$ является нормой и называется взвешенной, а коэффициенты λ_k называются весовыми коэффициентами или весами.

Рассмотрим еще одну интерпретацию взвешенных норм. Пусть координаты вектора $\bar{x} = \{x_1, x_2, x_3, \dots x_n\}$ обозначают количество товаров первого, второго, ... n-го наименования, реализованных в магазине. Координаты вектора $\bar{\lambda} = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$ обозначают цену единицы товара с тем же номером.

Тогда норма $\|\bar{x}\|_{\bar{\lambda}} = \sum_{k=1}^{n} |\lambda_k x_k|$ будет обозначать совокупный выторг магазина. 10. В пространстве l_p , $1 \le p < \infty$ всех числовых последовательностей, сумми-

- **10.** В пространстве l_p , $1 \le p < \infty$ всех числовых последовательностей, сумми руемых в p-й степени, сумма $||\bar{x}|| = \left(\sum\limits_{k=1}^{\infty}|x_k|^p\right)^{\frac{1}{p}}$ определяет норму элемента.
- **11.** В векторном пространстве C[a;b] всех непрерывных на отрезке [a;b] функций можно ввести следующую норму $||f||_{sup} := \sup_{x \in [a;b]} |f(x)|$, которая равна

наибольшему значению функции |f(x)| на отрезке [a;b]. Построим график функции y=f(x), пунктиром графики функций $y=f(x)-\varepsilon$ и $y=f(x)+\varepsilon$. Шар $B(f;\varepsilon)$ состоит из всех непрерывных функций, график которых принадлежит заштрихованной области, может быть касаясь штриховых границ. Сфера $S(f;\varepsilon)$ состоит

только из тех функций, график которых принадлежит заштрихованной области и по крайней мере в одной точке касается штриховых границ. Окрестность $O(f;\varepsilon)$ иногда называется ε -трубка и содержит только функции, принадлежащие заштрихованной области и не касающиеся штриховых границ.

В векторном пространстве C[a;b] интеграл $||f|| = \int_a^b |f(x)| dx$ определяет норму. Однако, в пространстве R[a;b] интегрируемых по Риману функций значение интеграла $\int_a^b |f(x)| dx$ нормой не является. Действительно, пусть функция $f \in R[a;b]$ отличается от нуля только в конечном количестве точек, т.е. функция не нулевая, а интеграл $\int_a^b |f(x)| \ dx = 0$, что противоречит свойству 2H.

Замечание. Расстояние, порождаемое нормой, не изменяется при параллельном переносе (*трансляционная инвариантность*). Поэтому форма окрестности точки не изменится при ее переносе в начало координат и наоборот любая окрестность нуля при переносе на вектор \bar{a} образует окрестность \bar{a} .

СХОЛИМОСТЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ В НОРМИРОВАННЫХ ПРОСТРАНСТВАХ

Определение. Последовательность $\{\bar{x}(k)\}_{k=1}^{\infty}$ элементов нормированного пространства L называется $\mathit{cxodsupe\"ucs}$ к элементу $\bar{x} \in L$ по норме $\|.\|$ или, попросту, сходящейся, если $\lim_{k \to \infty} ||\bar{x} - \bar{x}(k)|| = 0.$

Замечание. Рассмотрим обозначения. По определению, последовательность — это функция натурального аргумента. Традиционно, номер члена последовательности обозначается нижним индексом a_k . Однако, в \mathbb{R}^n в координатном представлении элемента $\bar{x} = (x_1, x_2, \dots, x_n)$ нижний индекс зарезервирован для обозначения номера координаты. Поэтому далее, номер члена последовательности, так же, как и аргумент функции f(k), заключается в круглые скобки $\bar{x}(k)$, а последовательность $\{x_l(k)\}_{k=1}^{\infty}$ обозначает числовую последовательность l-х (одноименных) координат последовательности векторов $\{\bar{x}(k)\}_{k=1}^{\infty}\subset\mathbb{R}^n.$

Свойства сходящихся последовательностей . Пусть при всех натуральных $k\in\mathbb{N},~\lambda,$ и $\lambda_k,$ — числа, а \bar{a} и $\bar{b},~\bar{a}(k)$ и $\bar{b}(k)$ элементы нормированного пространства L. Тогда:

- 1. Если последовательность имеет предел, то он единственный.
- 2. Если последовательность имеет предел, то она ограниченная.
- **3.** Если
- **4.** Если
- **5.** Если
- $\lim_{k\to\infty} \bar{a}(k) = \bar{a}, \quad \text{то} \quad \lim_{k\to\infty} \|\bar{a}(k)\| = \|\bar{a}\| \quad \text{и} \quad \lim_{k\to\infty} \lambda \bar{a}(k) = \lambda \bar{a}.$ $\lim_{k\to\infty} \bar{a}(k) = \bar{a} \quad \text{и} \quad \lim_{k\to\infty} \bar{b}(k) = \bar{b}, \quad \text{то} \quad \lim_{k\to\infty} \left(\bar{a}(k) \pm \bar{b}(k)\right) = \bar{a} \pm \bar{b}.$ $\lim_{k\to\infty} \lambda_k = \lambda \quad \text{и} \quad \lim_{k\to\infty} \bar{a}(k) = \bar{a} \quad \text{то} \quad \lim_{k\to\infty} \lambda_k \cdot \bar{a}(k) = \lambda \cdot \bar{a}.$ $\lim_{k\to\infty} \lambda_k = 0, \text{ а множество } \{\bar{a}(k)\}_{k=1}^{\infty} \text{ ограничено, то} \quad \lim_{k\to\infty} \lambda_k \cdot \bar{a}(k) = \bar{0}.$ **6.** Если
- 7. Если $\lim_{k \to \infty}^{k \to \infty} \bar{a}(k) = \bar{0}$, а множество $\{\lambda_k\}_{k=1}^{\infty}$ ограничено, то $\lim_{k \to \infty} \lambda_k \cdot \bar{a}(k) = \bar{0}$. Линейное пространство можно снабжать разными нормами. Спрашивается, будет ли последовательность, сходящаяся в одной норме, сходящейся и в другой? Определение. Нормы ||.|| и ||.||* называются эквивалентными, если существуют такие действительные постоянные α и β ($0 < \alpha \le \beta$), что для всех $\bar{x} \in L$ справедливо неравенство $|\alpha||\bar{x}|| \le ||\bar{x}||_* \le \beta ||\bar{x}||$.

Теорема. Для эквивалентности норм $\|.\|$ и $\|.\|_*$ необходимо и достаточно, чтобы из сходимости последовательности $\bar{x}(k) \xrightarrow[k \to \infty]{} \bar{x}$ по норме $\|.\|$ следовала сходимость $\bar{x}(k) \xrightarrow[k \to \infty]{} \bar{x}$ по норме $\|.\|_*$ и наоборот.

Теорема. В конечномерных пространствах все нормы попарно эквивалентны. Если в L существуют две неэквивалентные нормы, то L бесконечномерно.

Пример. В арифметическом пространстве \mathbb{R}^n введем норму $\|\bar{x}\|_p = \left(\sum_{k=1}^n |x|^p\right)^{\frac{1}{p}}$. При $1 \leq p \leq q$ $\|.\|_q \leq \|.\|_p \leq n^{\frac{1}{p} - \frac{1}{q}}\|.\|_q$. В частности: при p = 1 и q=2 получаем $||.||_2 \le ||.||_1 \le \sqrt{n}||.||_2$; при p=1 и $q=\infty$ получаем

 $\boxed{\|.\|_{\infty} \leq \|.\|_1 \leq n\|.\|_{\infty}};$ при p=2 и $q=\infty$ получаем $\boxed{\|.\|_{\infty} \leq \|.\|_2 \leq \sqrt{n}\|.\|_{\infty}}.$

Обозначим через $\hat{\alpha} = \max \alpha$ и $\hat{\beta} = \min \beta$. Постоянные $\hat{\alpha}$ и $\hat{\beta}$ определяются парой эквивалентных норм ||.|| и ||.||* однозначно и для них также выполняется неравенство $\hat{\alpha}||.|| < ||.||_* < \hat{\beta}||.||$. Назовем $\hat{\alpha}$ и $\hat{\beta}$ точными константами.

СХОЛИМОСТЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ В НОРМИРОВАННЫХ ПРОСТРАНСТВАХ

Определение. Последовательность $\{\bar{x}(k)\}_{k=1}^{\infty}$ элементов нормированного пространства L называется $\mathit{cxodsupe\"ucs}$ к элементу $\bar{x} \in L$ по норме $\|.\|$ или, попросту, сходящейся, если $\lim_{k \to \infty} ||\bar{x} - \bar{x}(k)|| = 0.$

Замечание. Рассмотрим обозначения. По определению, последовательность — это функция натурального аргумента. Традиционно, номер члена последовательности обозначается нижним индексом a_k . Однако, в \mathbb{R}^n в координатном представлении элемента $\bar{x} = (x_1, x_2, \dots, x_n)$ нижний индекс зарезервирован для обозначения номера координаты. Поэтому далее, номер члена последовательности, так же, как и аргумент функции f(k), заключается в круглые скобки $\bar{x}(k)$, а последовательность $\{x_l(k)\}_{k=1}^{\infty}$ обозначает числовую последовательность l-х (одноименных) координат последовательности векторов $\{\bar{x}(k)\}_{k=1}^{\infty}\subset\mathbb{R}^n.$

Свойства сходящихся последовательностей . Пусть при всех натуральных $k\in\mathbb{N},~\lambda,$ и $\lambda_k,$ — числа, а \bar{a} и $\bar{b},~\bar{a}(k)$ и $\bar{b}(k)$ элементы нормированного пространства L. Тогда:

- 1. Если последовательность имеет предел, то он единственный.
- 2. Если последовательность имеет предел, то она ограниченная.
- **3.** Если
- **4.** Если
- **5.** Если
- $\lim_{k\to\infty} \bar{a}(k) = \bar{a}, \quad \text{то} \quad \lim_{k\to\infty} \|\bar{a}(k)\| = \|\bar{a}\| \quad \text{и} \quad \lim_{k\to\infty} \lambda \bar{a}(k) = \lambda \bar{a}.$ $\lim_{k\to\infty} \bar{a}(k) = \bar{a} \quad \text{и} \quad \lim_{k\to\infty} \bar{b}(k) = \bar{b}, \quad \text{то} \quad \lim_{k\to\infty} \left(\bar{a}(k) \pm \bar{b}(k)\right) = \bar{a} \pm \bar{b}.$ $\lim_{k\to\infty} \lambda_k = \lambda \quad \text{и} \quad \lim_{k\to\infty} \bar{a}(k) = \bar{a} \quad \text{то} \quad \lim_{k\to\infty} \lambda_k \cdot \bar{a}(k) = \lambda \cdot \bar{a}.$ $\lim_{k\to\infty} \lambda_k = 0, \text{ а множество } \{\bar{a}(k)\}_{k=1}^{\infty} \text{ ограничено, то} \quad \lim_{k\to\infty} \lambda_k \cdot \bar{a}(k) = \bar{0}.$ **6.** Если
- 7. Если $\lim_{k \to \infty}^{k \to \infty} \bar{a}(k) = \bar{0}$, а множество $\{\lambda_k\}_{k=1}^{\infty}$ ограничено, то $\lim_{k \to \infty} \lambda_k \cdot \bar{a}(k) = \bar{0}$. Линейное пространство можно снабжать разными нормами. Спрашивается, будет ли последовательность, сходящаяся в одной норме, сходящейся и в другой? Определение. Нормы ||.|| и ||.||* называются эквивалентными, если существуют такие действительные постоянные α и β ($0 < \alpha \le \beta$), что для всех $\bar{x} \in L$ справедливо неравенство $|\alpha||\bar{x}|| \le ||\bar{x}||_* \le \beta ||\bar{x}||$.

Теорема. Для эквивалентности норм $\|.\|$ и $\|.\|_*$ необходимо и достаточно, чтобы из сходимости последовательности $\bar{x}(k) \xrightarrow[k \to \infty]{} \bar{x}$ по норме $\|.\|$ следовала сходимость $\bar{x}(k) \xrightarrow[k \to \infty]{} \bar{x}$ по норме $\|.\|_*$ и наоборот.

Теорема. В конечномерных пространствах все нормы попарно эквивалентны. Если в L существуют две неэквивалентные нормы, то L бесконечномерно.

Пример. В арифметическом пространстве \mathbb{R}^n введем норму $\|\bar{x}\|_p = \left(\sum_{k=1}^n |x|^p\right)^{\frac{1}{p}}$. При $1 \leq p \leq q$ $\|.\|_q \leq \|.\|_p \leq n^{\frac{1}{p} - \frac{1}{q}}\|.\|_q$. В частности: при p = 1 и q=2 получаем $||.||_2 \le ||.||_1 \le \sqrt{n}||.||_2$; при p=1 и $q=\infty$ получаем

 $\boxed{\|.\|_{\infty} \leq \|.\|_1 \leq n\|.\|_{\infty}};$ при p=2 и $q=\infty$ получаем $\boxed{\|.\|_{\infty} \leq \|.\|_2 \leq \sqrt{n}\|.\|_{\infty}}.$

Обозначим через $\hat{\alpha} = \max \alpha$ и $\hat{\beta} = \min \beta$. Постоянные $\hat{\alpha}$ и $\hat{\beta}$ определяются парой эквивалентных норм ||.|| и ||.||* однозначно и для них также выполняется неравенство $\hat{\alpha}||.|| < ||.||_* < \hat{\beta}||.||$. Назовем $\hat{\alpha}$ и $\hat{\beta}$ точными константами.

В примере все константы точны. Подставив в левую часть двойного неравенства координаты вектора $e_1 = (1, 0, 0, \dots, 0)$, а правую часть координаты вектора $(1, 1, 1, \dots, 1)$, проверяем точность констант.

Теорема. В n-мерном пространстве для сходимости последовательности векторов $\{\bar{x}(k)\}_{k=1}^{\infty} = \{(x_1(k); x_2(k); \dots; x_n(k))\}_{k=1}^{\infty}$ к вектору $\bar{a} = (a_1; a_2; \dots; a_n)$ необходимо и достаточно, чтобы для каждого $l = \overline{1,n}$ $\lim_{k \to \infty} x_l(k) = a_l$, т.е., чтобы каждая числовая последовательность одноименных координат сходилась. **Замечание.** В бесконечномерном случае покоординатная сходимость не влечет за собой сходимость по норме. Действительно, пусть l_1 - пространство суммируемлх последовательностей, снабженное нормой $||\bar{a}|| = \sum_{k=1}^{\infty} |a_k|$. Рассмотрим последовательность векторов

 $\bar{x}(1)=(1;0;0;0;\dots), \ \bar{x}(2)=(\frac{1}{2};\frac{1}{2};0;0;\dots), \ \bar{x}(3)=(\frac{1}{3};\frac{1}{3};\frac{1}{3};0;\dots),\dots$ Числовые последовательности, составленные из первых, вторых, третьих и т.д. координат векторов $\bar{x}(k)$, все стремятся к нулю, в то же время последовательность $\bar{x}(k)$ к нулю сходиться не может, поскольку при всех $k \|\bar{a}(k)\| = 1$, а значит, все векторы $\bar{x}(k)$ лежат на единичной сфере $\|\bar{x}(k) - \bar{0}\| = 1$.

Фундаментальные последовательности. Полнота пространства В определении предела фигурируют последовательность и ее предел. Рассмотрим иррациональное число $\sqrt{2}=1.41421356...$ и его десятичные приближения с недостатком $x(1)=1,\ x(2)=1.4,\ x(3)=1.41,\ x(4)=1.412...$ и т.д. В множестве $\mathbb R$ последовательность сходится к $\sqrt{2}$. Однако, в множестве рациональных чисел последовательность приближений расходится, т.к. иррациональное число $\sqrt{2}$ не входит в $\mathbb Q$. При этом в множествах $\mathbb Q$ и $\mathbb R$ все расстояния между членами последовательности одинаковые. Отличие лишь в том, что $\sqrt{2}$ отсуствует в $\mathbb Q$. Следовательно, сходимость последовательности элементов определяется как взаимным положением элементов последовательности, так и наличием ее предела. Описание последовательностей, которые могли бы сходится, если бы присутствовал их предел, с использованием только членов самой последовательности принадлежит Коши (Cauchi).

Определение. Последовательность $\{\bar{x}(k)\}_{k=1}^{\infty}$, где все $\bar{x}(k) \in L$, называется ϕ ундаментальной, если для любого $\varepsilon > 0$ существует такой номер $k(\varepsilon)$, что для всех $m > k(\varepsilon)$ и всех $l > k(\varepsilon)$ выполняется неравенство $\|\bar{x}(m) - \bar{x}(l)\| < \varepsilon$.

Определение. Пространство, в котором каждая фундаментальная последовательность имеет предел, называется *полным*. Полное нормированное пространство называется *банаховым пространством* или *B*-пространством.

Множество действительных чисел \mathbb{R} — полное (аксиома полноты).

Теорема. Всякое конечномерное нормированное пространство над полем действительных (комплексных) чисел является полным.

Пример. Пространство \mathbb{Q}^n , снабженное любой номой, не является полным. Векторное пространство C[a;b] всех непрерывных на отрезке [a;b] функций, снабженное нормой $||f||_{sup}:=\sup_{x\in [a;b]}|f(x)|$, является банаховым. В то же время векторное пространство C[a;b], снабженное нормой $||f||=\int\limits_a^b|f(x)|dx$, полным не является. При $p\geq 1$ пространства l_p — банаховы.

КОМПАКТНОСТЬ

Определение. Пусть A — некоторое множество. Множества B_{α} называются *покрытием* множества A, если $A \subset \bigcup B_{\alpha}$. Если среди множеств B_{α} можно вы брать часть, которая тоже является покрытием для A, то эту часть называют *подпокрытием*. Если все множества B_{α} открытые, то покрытие называется *открытым*.

Замечание. Никаких ограничений на множества B_{α} нет. Они могут пересекаться между собой. Их объдинение может содержать элементы, не входящие в A. Элементы из A могут содержаться не в одном, а в каком угодно количестве множеств B_{α} . Разбиение множества — представление множества в виде оъединения его непересекающихся подмножеств является частным случаем покрытия.

В математическом анализе функций одной действительной переменной важную роль израет:

Лемма (Гейне-Бореля). Из любого покрытия отрезка $[a;b]\subset \mathbb{R}$ интервалами $(\alpha;\beta)\subset \mathbb{R}$ можно выбрать конечное подпокрытие.

Обобщение этого свойства на множества более общего вида приводят к следующему понятию.

Определение. Множество A в соответствующем пространстве (топологическом, метрическом, нормированном, эвклидовом) называется *компактным* или попросту *компактном*, если любое его открытое покрытие содержит конечное подпокрытие.

Свойства компактных множеств

Рассматриваемые ниже теоремы справедливы для метрических, нормированных и эвклидовых пространств.

Теорема. Компактное множество ограниченно.

Теорема. Компактное множество замкнуто.

Теорема. Замкнутое подмножество компактного множества компактно.

Теорема. Для компактности множества A необходимо и достаточно, чтобы из каждой бескончной последовательности элементов множества A можно было выделить сходящуюся подпоследовательность, предел которой принадлежит A. **Замечание.** Иногда утверждение этой теоремы принимают за определние компактности. В таком случае оба определения компактности равносильны.

HEPABEHCTBA

Неравенство Бернулли. Пусть действительные числа $x_1, x_2, \dots x_n$ все одного знака и больше -1, тогда $(1+x_1)(1+x_2)\dots(1+x_n)\geq 1+x_1+x_2+\dots+x_n$, в частности, если $x_1=x_2=\dots=x_n=x>-1$, то $(1+x)^n\geq 1+nx$. Эти неравенства носят имя Бернулли и доказываются индукцией по числу членов x_k .

Средние арифметическое, геометрическое, пропорциональное Определение. Cpednum арифметическим чисел x_1, x_2, \ldots, x_n называется величина $A_n = \frac{x_1 + x_2 + \cdots + x_n}{n}$. Пусть все числа x_1, x_2, \ldots, x_n положительные. Cpednum геометрическим этих чисел называется величина $G_n = \sqrt[n]{x_1 x_2 \ldots x_n}$. Cpednum гармоническим этих чисел называется величина $H_n = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}}$.

Неравенство Коши. Среднее геометрическое положительных чисел не больше их среднего арифметического $\sqrt[n]{x_1x_2\dots x_n} \leq \frac{x_1+x_2+\dots+x_n}{n}$.

Неравенство Коши может быть доказано непосредственно методом математической индукции или как следствие неравенства Бернулли или из неравенства Иенсена.

Заменив в неравенстве Коши величины x_k на обратные им величины $\frac{1}{x_k}$, получаем неравенство между средним гармоническим и средним геометрическим. Среднее гармоническое положительных чисел не больше их среднего геометрического $\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} \leq \sqrt[n]{x_1 x_2 \dots x_n}$.

Непосредственно проверяется, что средние арифметическое, геометрическое и гармоническое лежат между наименьшим и наибольшим из чисел x_1, x_2, \ldots, x_n .

$$\min\{x_1, x_2, \dots, x_n\} \le H_n \le G_n \le A_n \le \max\{x_1, x_2, \dots, x_n\}$$
.

Причем в каждом из неравенств цепочки равенство выполняется тогда и только тогда, когда все числа $x_1, x_2, ..., x_n$ равны между собой, то есть в этом случае вся цепочка превращается в равенства.

Неравенство Коши, Буняковского, Шварца

Пусть заданы две последовательности чисел $\{a_1,a_2,\ldots,a_n\}$ и $\{b_1,b_2,\ldots,b_n\}$. Для всех действительных x выполняется неравенство $(a_kx+b_k)^2\geq 0$. Просуммировав эти выражения по переменной k, раскрыв скобки и приведя подобные члены, получаем $\sum\limits_{k=1}^{n}(a_kx+b_k)^2=\Big(\sum\limits_{k=1}^{n}(a_k)^2\Big)x^2+2\Big(\sum\limits_{k=1}^{n}(a_kb_k)\Big)x+\sum\limits_{k=1}^{n}(b_k)^2\geq 0$.

Квадратный трех
член неотрицательный при всех x тогда и только тогда, когда его диск
риминант неположительный. Отсюда получаем неравенство Коши

$$\left[\left(\sum_{k=1}^{n}(a_{k}b_{k})\right)^{2} \leq \sum_{k=1}^{n}(a_{k})^{2}\sum_{k=1}^{n}(b_{k})^{2}\right]$$
. По определению в эвклидовом пространстве

L для любых его элементов $\bar{a}, \bar{b} \in L$ задано их скалярное произведение (\bar{a}, \bar{b}) . Норма элемента вводится с помощью формулы $\sqrt{(\bar{a}, \bar{a})} = ||\bar{a}||$. Норма неотрицательна. Аналогично доказательству неравенства Коши, рассматривая дискриминант квадратичной функции $(\bar{a}x + \bar{b}, \bar{a}x + \bar{b})$, получаем неравенство Коши, Буняковского, Шварца $||(\bar{a}, \bar{b})| \leq ||\bar{a}|| \cdot ||\bar{b}||$.

Выпуклость функций, неравенства Иенсена, Гёльдера, Минковского

Определение. Функция называется выпуклой вниз на интервале (a;b), если для всех $x_1, x_2 \in (a; b)$, и любых $\lambda_1, \lambda_2 \ge 0$ таких, что $\lambda_1 + \lambda_2 = 1$, выполняется неравенство $f(\lambda_1 x_1 + \lambda_2 x_2) \leq \lambda_1 f(x_1) + \lambda_2 f(x_2)$. Если неравенство противоположное, то функция называется выпуклой вверх.

Неравенства Иенсена. Пусть функция является выпуклой вниз на интервале (a;b). Тогда для всех $x_1,x_2,\ldots,x_n\in(a;b)$, и любых положительных $\lambda_1,\lambda_2,\ldots,\lambda_n$ таких, что $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$ справедливо неравенство Иенсена

$$f(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) \le \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n).$$
 (1)

Для выпуклых вверх функций знак неравенства противоположный. Неравенства Иенсена получаются методом математической индукции из определения выпуклой функции.

Для произвольных положительных чисел
$$c_1, c_2, \dots, c_n$$
, положив $\lambda_k = \frac{c_k}{c_1 + c_2 + \dots + c_n}$, придадим неравенству (1) вид
$$\left[f\left(\frac{\sum_{k=1}^n c_k x_k}{\sum_{k=1}^n c_k}\right) \leq \frac{\sum_{k=1}^n c_k f(x_k)}{\sum_{k=1}^n c_k} \right]$$
 (2).

Средства математического анализа позволяют эффективно исследовать выпуклость функции. Подбирая в неравенствах Иенсена функцию f и значения параметров λ_k , c_k и x_k , можно получить конкретные неравенства.

Неравенство Гёльдера. Пусть заданы две последовательности произвольных чисел $\{a_1,a_2,\ldots,a_n\}$ и $\{b_1,b_2,\ldots,b_n\}$. Рассмотрим выпуклую вниз степенную функцию $f(x) = x^p$, где x > 0, p > 1. Положив $c_k = |b_k|^{\frac{p}{p-1}}$, $x_k = \frac{|a_k|}{|b_k|^{\frac{1}{p-1}}}$, получаем

неравенство
$$\Gamma$$
ёльдера $\sum_{k=1}^{n}|a_kb_k|\leq \left(\sum_{k=1}^{n}|a_k|^p\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}|b_k|^q\right)^{\frac{1}{q}},\;p,q>1,\;\frac{1}{p}+\frac{1}{q}=1$

При p = q = 2 неравентво Гёльдера превращается в неравенство Коши.

Неравенство Минковского
$$\left(\sum_{k=1}^n (|a_k| + |b_k|)^p\right)^{\frac{1}{p}} \leq \left(\sum_{k=1}^n |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^n |b_k|^p\right)^{\frac{1}{p}}\right)$$

где $p \ge 1$, доказывается применением неравенства Гёльдера к правой части равенства $\sum\limits_{k=1}^n (a_k+b_k)^p = \sum\limits_{k=1}^n (a_k)(a_k+b_k)^{p-1} + \sum\limits_{k=1}^n (b_k)(a_k+b_k)^{p-1}.$ Интегральная форма неравенств Коши, Гёльдера, Минковского

Пусть функции f и g интегрируемы на отрезке [a;b] и $\bar{x}=\{x_0,x_1,\ldots,x_n\}$ разбиение отрезка [a;b]. Полагая в неравенстве Гёльдера $a_k=f(x_k)(\Delta x_k)^{\frac{1}{p}},$ $b_k = g(x_k)(\Delta x_k)^{\frac{1}{q}}$ приходим к неравенству между интегральными суммами, из которого получаем интегральную форму неравенства $\Gamma \ddot{e}_{nb} \partial epa$

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} |g(x)|^{q} dx\right)^{\frac{1}{q}}, \quad p, q > 1, \quad \frac{1}{p} + \frac{1}{q} = 1$$

Аналогично при $a_k = f(x_k)(\Delta x_k)^{\frac{1}{p}}, b_k = g(x_k)(\Delta x_k)^{\frac{1}{p}}$ из дискретного неравенства Минковского вытекает интегральная форма неравенства Минковского

$$\left| \left(\int_a^b |f(x) + g(x)|^p dx \right)^{\frac{1}{p}} \le \left(\int_a^b |f(x)|^p dx \right)^{\frac{1}{p}} + \left(\int_a^b |g(x)|^p dx \right)^{\frac{1}{p}}, \ p \ge 1 \right|$$

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Агрегат	2	-свойства	5
Аксиома существования нейтралы	отон	- трансляционная инвариантность	5,9
элемента операции	2	- эквивалентные	10
Ассоциативность произведения в	ЛП	Оболочка линейная множества	3
2		Окрестность $O(\bar{a};r)$	5
сложения в ЛП	2	Подпространство (ЛП)	2
Базис	2	векторное	2
нормированный	3	линейное (ЛП)	2
канонический	4	натянутое на множество, порожд	ден-
ортогональный	3	ное множеством	3
ортонормированный	3	нормированное	5
Барицентр	9	нулевое	3
Векторы линейно зависимые	2	собственное	3
линейно независимые	2	Последовательность сходящаяся	10
Bec	9	- фундаментальная	11
Гомоморфизмом	3	Пространство линейное (ЛП)	
Граница множества	7	- банахово, В-пространство	11
Группа	2	арифметическое (векторное)	4,8
Дистрибутивность по сумме		бесконечномерное	2
векторов	2	нулевое	3,8
чисел	2	конечномерное, <i>п</i> -мерное	2
Изоморфизмо	3	- полное	11
Коммутативность сложения в ЛП	2	Противоположного элемента существо	
барицентрические	9	вание	2
Координаты элемента	2	Расстояние	5
весовые	9	Свойства сходящихся последовательно-	
Линейная комбинация векторов	2	стей	12
Метрика	5	Сфера $S(\bar{a};r)$	5
- однородная	5	Теорема	
Многообразие линейное	3	- о покоординатной сходимости вен	сто-
Множества внутренность $\inf M$	7	ров	11
- граница ∂M	7	- о свойствах замыкания	6
- диаметр $\dim M$	5	- о строении открытых множеств	
- замыкание	6	в ℝ	7
Множество ограниченное	5	- об эквивалентности норм в конеч	но-
открытое	7	мерных пространствах	10
производное	6	- об операциях над замкнутыми м	1HO-
совершенное	6	жествами	7
Момент статический	8	- об операциях над открытыми множе-	
Норма	5	ствами	7
- взвешенная	9	Точка внутренняя	7
- эквивалентныенормы эквивалент	границы	7	
$\text{Нормы } . _n, . _{\infty}, . _{eup}$	8.9	изолированнная	6

16	
неизолированная	6
предельная	6
Унитарность	2
$\coprod ap B(\bar{a};r)$	5
Эпсилон трубка, ε -трубка	9