Тема уроку: Лабораторна робота № 1. Визначення прискорення тіла в ході рівноприскореного прямолінійного руху

ВИКОНАННЯ ЛАБОРАТОРНОЇ РОБОТИ № 1

Тема. Визначення прискорення тіла в ході рівноприскореного прямолінійного руху

Мета: визначити прискорення руху кульки, яка скочується похилим жолобом.

Обладнання: металевий або дерев'яний жолоб, кулька, штатив із муфтою та лапкою, секундомір, вимірювальна стрічка, металевий циліндр або інший предмет для припинення руху кульки по жолобу.

Хід роботи Підготовка до експерименту

- 1. Закріпіть жолоб у лапці штатива. Опустіть лапку, розташувавши жолоб під невеликим кутом до горизонту (див. рисунок).
- 2. У нижній частині жолоба розташуйте металевий циліндр.
- 3. У верхній частині жолоба зробіть позначку.

Експеримент

Суворо дотримуйтесь інструкції з безпеки.

Результати вимірювань відразу заносьте до таблиці.

- 1. Виміряйте відстань s від позначки до циліндра (ця відстань дорівнює модулю переміщення кульки вздовж жолоба).
- 2. Розташуйте кульку навпроти позначки та виміряйте час t_1 , за який скочується кулька (до моменту її удару об металевий циліндр).
- 3. Повторіть дослід ще тричі.

No	Перемі- щення кульки <i>s</i> , м	Час руху кульки		Приско-	Похибка вимірювання прискорення		Результат вимірювання
		t_i , c	$t_{ m cep}$, c	рення кульки $a_{\text{cep}}, \frac{M}{C^2}$	відносна ε _а ,%	абсолютна $\Delta a, \frac{M}{c^2}$	прискорення $a = a_{\text{cep}} \pm \Delta a$, $\frac{M}{c^2}$
1							
2							
3							
4							

Опрацювання результатів експерименту

- 1. Обчисліть середній час руху кульки: $t_{\text{сер}} = (t_1 + t_2 + t_3 + t_4)/4$
- 2. Обчисліть середнє значення прискорення кульки: $a_{\rm cep}=2s/t_{\rm cep}^2$
- 3. Обчисліть абсолютну та відносну похибки вимірювання (див. п. 4 § 2):

1) vacy:
$$\Delta t_{\text{cep}} = \frac{|t_1 - t_{\text{cep}}| + |t_2 - t_{\text{cep}}| + |t_3 - t_{\text{cep}}| + |t_4 - t_{\text{cep}}|}{4}$$
; $\varepsilon_t = \frac{\Delta t_{\text{cep}}}{t_{\text{cep}}}$

2) модуля переміщення:
$$\Delta s = \Delta s_{\text{прил}} + \Delta s_{\text{вип}}$$
; $\varepsilon_s = \frac{\Delta s}{s}$

(Похибки приладів див. п. 4 § 2, якщо ви користуєтесь іншими приладами, то вважайте, що похибка приладу дорівнює *половині ціни поділки шкали цього приладу*.

Якщо вимірювання проводилися один раз, то випадкова похибка дорівнює половині ціни поділки шкали приладу)

3) модуля прискорення:
$$\varepsilon_a = \varepsilon_s + 2\varepsilon_t$$
; $\Delta a = \varepsilon_a \cdot a_{\rm cep}$

4. Округліть результати та запишіть результат вимірювання прискорення.

(Абсолютну похибку Δa округлюють до однієї значущої цифри із завищенням, а результат вимірювання $a_{\text{сер}}$ – до величини розряду, який залишився в абсолютній похибці після округлення)

Аналіз експерименту та його результатів

Проаналізуйте експеримент та його результати. Зробіть висновок, у якому зазначте:

- 1) величину, яку ви вимірювали;
- 2) результат вимірювання;
- 3) причини похибки;
- 4) вимірювання якої величини дає найбільшу похибку.

Творче завдання

Подумайте, від яких чинників залежить прискорення, з яким тіло скочується похилою площиною. Запишіть план проведення відповідного експерименту, проведіть його та зробіть висновок щодо правильності вашого припущення.

ДОМАШН€ ЗАВДАННЯ

Повторити § 5