Turing Degrees and the Friedberg-Muchnik Theorem

Mathematical Logic for Computer Science

Master's Degree in Computer Science Simone Bianco (1986936)

Academic Year 2024/2025

Table of Contents

1 Introduction

► Introduction

Degrees of Unsolvability

- If the computation halts after s steps, we write $\Phi_{i,s}^A(x) \downarrow$.
- When the computation halts for some s, we simply write $\Phi_i^A(x) \downarrow$.
- If no value s exists, we write $\Phi_i^A(x) \uparrow$.
- We denote with $\phi_i^A(x)$ the **output** of the computation (defined iff $\Phi_i^A(x) \downarrow$)

- If the computation halts after s steps, we write $\Phi_{i,s}^A(x) \downarrow$.
- When the computation halts for some s, we simply write $\Phi_i^A(x) \downarrow$.
- If no value s exists, we write $\Phi_i^A(x) \uparrow$.
- We denote with $\phi_i^A(x)$ the **output** of the computation (defined iff $\Phi_i^A(x) \downarrow$)

- If the computation halts after s steps, we write $\Phi_{i,s}^A(x) \downarrow$.
- When the computation halts for some s, we simply write $\Phi_i^A(x)\downarrow$.
- If no value s exists, we write $\Phi_i^A(x) \uparrow$.
- We denote with $\phi_i^A(x)$ the **output** of the computation (defined iff $\Phi_i^A(x) \downarrow$)

- If the computation halts after s steps, we write $\Phi_{i,s}^A(x) \downarrow$.
- When the computation halts for some s, we simply write $\Phi_i^A(x)\downarrow$.
- If no value s exists, we write $\Phi_i^A(x) \uparrow$.
- We denote with $\phi_i^A(x)$ the **output** of the computation (defined iff $\Phi_i^A(x) \downarrow$)

- If the computation halts after s steps, we write $\Phi_{i,s}^A(x) \downarrow$.
- When the computation halts for some s, we simply write $\Phi_i^A(x)\downarrow$.
- If no value s exists, we write $\Phi_i^A(x) \uparrow$.
- We denote with $\phi_i^A(x)$ the **output** of the computation (defined iff $\Phi_i^A(x) \downarrow$)

- *S* is **semi-decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in S$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$.
- *S* is **decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in \mathbb{N}$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$ if $x \in S$, otherwise $\phi_i(x) = 0$.
- *S* is **recursively enumerable** if there is an algorithmic procedure $A : \mathbb{N} \to \{0, 1\}$ such that $S = \{A(0), A(1), A(2), \ldots\}$

Obs. 1: S is semi-decidable if and only if it is r.e.

Obs. 2: S is decidable if and only if both S and \overline{S} are semi-decidable.

- *S* is **semi-decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in S$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$.
- S is **decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in \mathbb{N}$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$ if $x \in S$, otherwise $\phi_i(x) = 0$.
- *S* is **recursively enumerable** if there is an algorithmic procedure $A : \mathbb{N} \to \{0, 1\}$ such that $S = \{A(0), A(1), A(2), \ldots\}$

Obs. 1: S is semi-decidable if and only if it is r.e.

Obs. 2: S is decidable if and only if both S and \overline{S} are semi-decidable

- *S* is **semi-decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in S$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$.
- S is **decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in \mathbb{N}$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$ if $x \in S$, otherwise $\phi_i(x) = 0$.
- *S* is **recursively enumerable** if there is an algorithmic procedure $A : \mathbb{N} \to \{0, 1\}$ such that $S = \{A(0), A(1), A(2), \ldots\}$

Obs. 1: S is semi-decidable if and only if it is r.e.

Obs. 2: *S* is decidable if and only if both *S* and *S* are semi-decidable

- *S* is **semi-decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in S$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$.
- S is **decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in \mathbb{N}$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$ if $x \in S$, otherwise $\phi_i(x) = 0$.
- *S* is **recursively enumerable** if there is an algorithmic procedure $A : \mathbb{N} \to \{0, 1\}$ such that $S = \{A(0), A(1), A(2), \ldots\}$

Obs. 1: *S* is semi-decidable if and only if it is r.e.

Obs. 2: *S* is decidable if and only if both *S* and \overline{S} are semi-decidable.

- Turing [Tur37] proved that there are some problems that are some sets that are semi-decidable but undecidable (e.g. the set $H = \{(i, x) \mid \Phi_i(x) \downarrow \}$).
- He also proved that some sets cannot be semi-decided (e.g. the set \overline{H}).
- This gives three degrees of computability: solvable problems, semi-solvable problems and unsolvable problems.

- Turing [Tur37] proved that there are some problems that are some sets that are semi-decidable but undecidable (e.g. the set $H = \{(i, x) \mid \Phi_i(x) \downarrow \}$).
- He also proved that some sets cannot be semi-decided (e.g. the set \overline{H}).
- This gives three degrees of computability: solvable problems, semi-solvable problems and unsolvable problems.

- Turing [Tur37] proved that there are some problems that are some sets that are semi-decidable but undecidable (e.g. the set $H = \{(i, x) \mid \Phi_i(x) \downarrow \}$).
- He also proved that some sets cannot be semi-decided (e.g. the set \overline{H}).
- This gives three degrees of computability: solvable problems, semi-solvable problems and unsolvable problems.

- Turing [Tur37] proved that there are some problems that are some sets that are semi-decidable but undecidable (e.g. the set $H = \{(i, x) \mid \Phi_i(x) \downarrow \}$).
- He also proved that some sets cannot be semi-decided (e.g. the set \overline{H}).
- This gives three degrees of computability: solvable problems, semi-solvable problems and unsolvable problems.

Table of Contents

2 Degrees of Unsolvability

Introduction

► Degrees of Unsolvability

Post [Pos44] formalized the idea of computability degrees through Turing reductions.

- Given $A, B \subseteq \mathbb{N}$, we say that A is Turing reducible to B, written as $A \leq_T B$, if $\exists i \in \mathbb{N}$ such that $\Phi_i^B(x)$ for all $x \in \mathbb{N}$ and $\phi_i^B = A$.
- We say that A and B are Turing equivalent, written as $A \equiv_T B$, when $A \leq_T B$ and $B \leq_T A$
- \equiv_T is an equivalence relation over the set $2^{\mathbb{N}}$, inducing the quotient set $\mathcal{D}=2^{\mathbb{N}}/_{\equiv_T}$. Each equivalence class of \mathcal{D} is referred to as a **Turing degree**

Post [Pos44] formalized the idea of computability degrees through Turing reductions.

- Given $A, B \subseteq \mathbb{N}$, we say that A is Turing reducible to B, written as $A \leq_T B$, if $\exists i \in \mathbb{N}$ such that $\Phi_i^B(x)$ for all $x \in \mathbb{N}$ and $\phi_i^B = A$.
- We say that A and B are Turing equivalent, written as $A \equiv_T B$, when $A \leq_T B$ and $B \leq_T A$
- \equiv_T is an equivalence relation over the set $2^{\mathbb{N}}$, inducing the quotient set $\mathcal{D}=2^{\mathbb{N}}/_{\equiv_T}$. Each equivalence class of \mathcal{D} is referred to as a **Turing degree**

Post [Pos44] formalized the idea of computability degrees through Turing reductions.

- Given $A, B \subseteq \mathbb{N}$, we say that A is Turing reducible to B, written as $A \leq_T B$, if $\exists i \in \mathbb{N}$ such that $\Phi_i^B(x)$ for all $x \in \mathbb{N}$ and $\phi_i^B = A$.
- We say that A and B are Turing equivalent, written as $A \equiv_T B$, when $A \leq_T B$ and $B \leq_T A$
- \equiv_T is an equivalence relation over the set $2^{\mathbb{N}}$, inducing the quotient set $\mathcal{D}=2^{\mathbb{N}}/_{\equiv_T}$. Each equivalence class of \mathcal{D} is referred to as a **Turing degree**

- Prop. 1: There is an unique degree containing all the decidable problems
 Each decidable problem can be solved by ignoring the provided oracle
 This unique class is referred to as the 0 degree (formally 0 = |Ø|)
- Obs.: There are minimal degrees different from 0 E.g. the set \overline{H}

Turing degrees

- Prop. 1: There is an unique degree containing all the decidable problems
 - Each decidable problem can be solved by ignoring the provided oracle
 - This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)
- Prop. 2: 0 is a minimal degree
 If [A] ≤ 0 then A can be decided by reducing it to any decidable problem, thus [A] = 0
- Obs.: There are minimal degrees different from 0 E.g. the set \overline{H}

Turing degrees

- Prop. 1: There is an unique degree containing all the decidable problems
 - Each decidable problem can be solved by ignoring the provided oracle
 - This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$
- Prop. 2: 0 is a minimal degree
 If [A] < 0 then A can be decided by reducing it to any decidable problem, thus [A] = 0
- Obs.: There are minimal degrees different from 0 E.g. the set \overline{H}

Turing degrees

- **Prop. 1**: There is an unique degree containing all the decidable problems
 - Each decidable problem can be solved by ignoring the provided oracle
 - This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)
- Prop. 2: 0 is a minimal degree
 If [A] ≺ 0 then A can be decided by reducing it to any decidable problem, thus [A] = 1
- **Obs.**: There are minimal degrees different from 0 Fig. the set \overline{H}

Turing degrees

- **Prop. 1**: There is an unique degree containing all the decidable problems
 - Each decidable problem can be solved by ignoring the provided oracle
 - This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)
- **Prop. 2**: 0 is a minimal degree
 - If $[A] \preceq 0$ then A can be decided by reducing it to any decidable problem, thus [A] = 0
- Obs.: There are minimal degrees different from 0
 - E.g. the set \overline{H}

Turing degrees

- **Prop. 1**: There is an unique degree containing all the decidable problems
 - Each decidable problem can be solved by ignoring the provided oracle
 - This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)
- **Prop. 2**: 0 is a minimal degree
 - $-\,\,$ If $[A] \preceq 0$ then A can be decided by reducing it to any decidable problem, thus [A] = 0
- Obs.: There are minimal degrees different from 0
 - E.g. the set H

Turing degrees

- **Prop. 1**: There is an unique degree containing all the decidable problems
 - Each decidable problem can be solved by ignoring the provided oracle
 - This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)
- **Prop. 2**: 0 is a minimal degree
 - $-\,\,$ If $[A] \preceq 0$ then A can be decided by reducing it to any decidable problem, thus [A] = 0
- Obs.: There are minimal degrees different from 0
 - E.g. the set \overline{H}

Turing degrees

- **Prop. 1**: There is an unique degree containing all the decidable problems
 - Each decidable problem can be solved by ignoring the provided oracle
 - This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)
- **Prop. 2**: 0 is a minimal degree
 - $-\,\,$ If $[A] \preceq 0$ then A can be decided by reducing it to any decidable problem, thus [A] = 0
- Obs.: There are minimal degrees different from 0
 - E.g. the set \overline{H}

The jump operator

- Given a set $X \subseteq \mathbb{N}$, the Turing jump of X is the set $X' = \{i \mid \Phi^X_i(i) \downarrow\}$
- It's easy to see that $X \leq_T X'$ since X' is obtained by forcing a variant of the Halting problem on TMs with X as an oracle
- In particular, the jump 0' of 0 is exactly the class containing the Halting problem, meaning that 0' = [H]
- **Prop.**: $A \in O'$ if and only if A is r.e.
 - If $A \in O'$ then $A \leq_T H$, thus A is r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_i . We can build a new semi-decider M_j such that $\Phi_i(x) \downarrow$ if $\phi_i(x) = 1$, otherwise $\Phi_j(x) \uparrow$. By construction, $x \in A$ iff $(j, x) \in H$.

The jump operator

- Given a set $X \subseteq \mathbb{N}$, the Turing jump of X is the set $X' = \{i \mid \Phi^X_i(i) \downarrow\}$
- It's easy to see that $X \not\leq_T X'$ since X' is obtained by forcing a variant of the Halting problem on TMs with X as an oracle
- In particular, the jump 0' of 0 is exactly the class containing the Halting problem, meaning that 0' = [H]
- **Prop.**: $A \in O'$ if and only if A is r.e.
 - If $A \in O'$ then $A \leq_T H$, thus A is r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_l . We can build a new semi-decider M_l such that $\Phi_l(x) \downarrow$ if $\phi_l(x) = 1$, otherwise $\Phi_l(x) \uparrow$. By construction, $x \in A$ iff $(j, x) \in H$.

The jump operator

- Given a set $X \subseteq \mathbb{N}$, the Turing jump of X is the set $X' = \{i \mid \Phi_i^X(i) \downarrow\}$
- It's easy to see that $X \not\leq_T X'$ since X' is obtained by forcing a variant of the Halting problem on TMs with X as an oracle
- In particular, the jump 0' of 0 is exactly the class containing the Halting problem, meaning that 0' = [H]
- **Prop.**: $A \in O'$ if and only if A is r.e.
 - If $A \in O'$ then $A \leq_T H$, thus A is r.e. since H is r.e
 - If A is r.e. then it has a semi-decider M_l . We can build a new semi-decider M_l such that $\Phi_l(x) \downarrow$ if $\phi_l(x) = 1$, otherwise $\Phi_l(x) \uparrow$. By construction, $x \in A$ iff $(j, x) \in H$.

The jump operator

- Given a set $X \subseteq \mathbb{N}$, the Turing jump of X is the set $X' = \{i \mid \Phi_i^X(i) \downarrow\}$
- It's easy to see that $X \not\leq_T X'$ since X' is obtained by forcing a variant of the Halting problem on TMs with X as an oracle
- In particular, the jump 0' of 0 is exactly the class containing the Halting problem, meaning that 0' = [H]
- **Prop.**: $A \in O'$ if and only if A is r.e.
 - If $A \in O'$ then $A \leq_T H$, thus A is r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_i . We can build a new semi-decider M_j such that $\Phi_j(x) \downarrow$ if $\phi_i(x) = 1$, otherwise $\Phi_j(x) \uparrow$. By construction, $x \in A$ iff $(j, x) \in H$.

The jump operator

- Given a set $X \subseteq \mathbb{N}$, the Turing jump of X is the set $X' = \{i \mid \Phi_i^X(i) \downarrow\}$
- It's easy to see that $X \not\leq_T X'$ since X' is obtained by forcing a variant of the Halting problem on TMs with X as an oracle
- In particular, the jump 0' of 0 is exactly the class containing the Halting problem, meaning that 0' = [H]
- **Prop.**: $A \in O'$ if and only if A is r.e.
 - If $A \in O'$ then $A \leq_T H$, thus A is r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_i . We can build a new semi-decider M_j such that $\Phi_j(x) \downarrow$ if $\phi_i(x) = 1$, otherwise $\Phi_j(x) \uparrow$. By construction, $x \in A$ iff $(j, x) \in H$.

The jump operator

- Given a set $X \subseteq \mathbb{N}$, the Turing jump of X is the set $X' = \{i \mid \Phi_i^X(i) \downarrow\}$
- It's easy to see that $X \not\leq_T X'$ since X' is obtained by forcing a variant of the Halting problem on TMs with X as an oracle
- In particular, the jump 0' of 0 is exactly the class containing the Halting problem, meaning that 0' = [H]
- **Prop.**: $A \in O'$ if and only if A is r.e.
 - If A ∈ 0' then $A ≤_T H$, thus A is r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_i . We can build a new semi-decider M_j such that $\Phi_j(x) \downarrow$ if $\phi_i(x) = 1$, otherwise $\Phi_j(x) \uparrow$. By construction, $x \in A$ iff $(j, x) \in H$.

- The jump operator can be iteratively applied to get infinite levels of the hierarchy.
 This makes "going upwards" a less interesting question. This gave Post the idea of exploring the hierarchy sideways.
- Post proved that for each degree A there is another degree B that is incomparable
 with A.
 - Obs.: Simpson [Sim77] proved that the first-order theory of D over the language (≤, =) is many-one equivalent to the theory of true second-order arithmetic.
- After exploring many results of this type, Post's work stopped on the following simple problem: is there a degree that lies between 0 and 0'?
- This problem was only solved 12 years later independently by Friedberg [Fri57] and Muchnik [Muc56]

- The jump operator can be iteratively applied to get infinite levels of the hierarchy.
 This makes "going upwards" a less interesting question. This gave Post the idea of exploring the hierarchy sideways.
- Post proved that for each degree A there is another degree B that is incomparable
 with A.
 - **Obs.**: Simpson [Sim77] proved that the first-order theory of \mathcal{D} over the language $(\leq, =)$ is many-one equivalent to the theory of true second-order arithmetic.
- After exploring many results of this type, Post's work stopped on the following simple problem: is there a degree that lies between 0 and 0'?
- This problem was only solved 12 years later independently by Friedberg [Fri57] and Muchnik [Muc56]

- The jump operator can be iteratively applied to get infinite levels of the hierarchy.
 This makes "going upwards" a less interesting question. This gave Post the idea of exploring the hierarchy sideways.
- Post proved that for each degree A there is another degree B that is incomparable
 with A.
 - **Obs.**: Simpson [Sim77] proved that the first-order theory of \mathcal{D} over the language $(\leq, =)$ is many-one equivalent to the theory of true second-order arithmetic.
- After exploring many results of this type, Post's work stopped on the following simple problem: is there a degree that lies between 0 and 0'?
- This problem was only solved 12 years later independently by Friedberg [Fri57] and Muchnik [Muc56]

- The jump operator can be iteratively applied to get infinite levels of the hierarchy. This makes "going upwards" a less interesting question. This gave Post the idea of exploring the hierarchy sideways.
- Post proved that for each degree A there is another degree B that is incomparable
 with A.
 - **Obs.**: Simpson [Sim77] proved that the first-order theory of \mathcal{D} over the language $(\leq, =)$ is many-one equivalent to the theory of true second-order arithmetic.
- After exploring many results of this type, Post's work stopped on the following simple problem: is there a degree that lies between 0 and 0'?
- This problem was only solved 12 years later independently by Friedberg [Fri57] and Muchnik [Muc56]

- The jump operator can be iteratively applied to get infinite levels of the hierarchy.
 This makes "going upwards" a less interesting question. This gave Post the idea of exploring the hierarchy sideways.
- Post proved that for each degree A there is another degree B that is incomparable
 with A.
 - **Obs.**: Simpson [Sim77] proved that the first-order theory of \mathcal{D} over the language $(\leq, =)$ is many-one equivalent to the theory of true second-order arithmetic.
- After exploring many results of this type, Post's work stopped on the following simple problem: is there a degree that lies between 0 and 0'?
- This problem was only solved 12 years later independently by Friedberg [Fri57] and Muchnik [Muc56]

Bibliography

- [Fri57] Richard M. Friedberg. "Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post's problem, 1944)". In: *Proceedings of the National Academy of Sciences* (1957).
- [Muc56] Albert A. Muchnik. "On the unsolvability of the problem of reducibility in the theory of algorithms". In: *Dokl. Akad. Nauk SSSR* (1956).
- [Pos44] Emil L. Post. "Recursively enumerable sets of positive integers and their decision problems". In: *Bull. Amer. Math. Soc.* (1944).
- [Sim77] Stephen G. Simpson. "First-Order Theory of the Degrees of Recursive Unsolvability". In: *Annals of Mathematics* (1977).
- [Tur37] Alan M. Turing. "On Computable Numbers, with an Application to the Entscheidungsproblem". In: *Proceedings of the London Mathematical Society* (1937).