Low-Rank Adaptation / Stable Diffusion / LLaMa

Repository

https://github.com/MingyuKim87/day5.git

Low-Rank Adaptation

- The Pre-trained Network: $h = W_0 x + b_0$ where $W_0 \in \mathbb{R}^{d \times d}$, $b_0 \in \mathbb{R}^{d \times 1}$
- The LoRA Network : A, B where $A \in \mathbb{R}^{d \times r}, B \in \mathbb{R}^{r \times d}$ and $d \ll \min(d, r)$
 - $A \sim N(0, \sigma^2), B = 0$
- $h = (W_0x + b_0) + sBAx = W_0x + s\Delta Wx = (W_0 + s\Delta W)x + b_0$ where $s = \alpha/r$ (α : hyper-parameter)

Low-Rank Adaptation

- For instance, d = 768, $k = 256 \rightarrow$ the number of parameters W_0 : 196,608
 - $A:767 \times 4 = 3{,}068$
 - $B: 4 \times 256 = 1,024$
- A + B = 4,092

- Limitations of Previous Diffusion Models
 - Earlier diffusion models used a pixel-space UNet framework.
 - Generating high-resolution images with these models faces significant computational challenges due to the large amount of pixel data.

Model (regtype)	train throughput samples/sec.	sampling @256	throughput [†] @512	train+val hours/epoch	FID@2k epoch 6
LDM-1 (no first stage)	0.11	0.26	0.07	20.66	24.74
LDM-4 (KL , w/ attn)	0.32	0.97	0.34	7.66	15.21
LDM-4 (VQ , w/ attn)	0.33	0.97	0.34	7.04	14.99
LDM-4 (VQ , w/o attn)	0.35	0.99	0.36	6.66	15.95

Table 6. Assessing inpainting efficiency. †: Deviations from Fig. 7 due to varying GPU settings/batch sizes cf. the supplement.

- Advancements with Stable Diffusion
 - Stable Diffusion introduces diffusion models that operate within *latent spaces*, rather than direct pixel-space.
 - This approach is made possible by employing a Variational Autoencoder (VAE) architecture, which enables efficient high-resolution image synthesis by encoding images into compact latent representations.

'A zombie in the

'A street sign that reads

- Diversity in Conditional Information Sources
 - Text Information: Allows for semantic input, guiding image generation with descriptive text.
 - Sketch Information: Adds structure or outlines to provide foundational visual guidance.
 - Scene Generation: Combines various conditional inputs to produce cohesive and context-rich scenes.

Figure 8. Layout-to-image synthesis with an *LDM* on COCO [4], see Sec. 4.3.1. Quantitative evaluation in the supplement D.3.

Figure 9. A LDM trained on 256^2 resolution can generalize to larger resolution (here: 512×1024) for spatially conditioned tasks such as semantic synthesis of landscape images. See Sec. 4.3.2.

- Text-to-Image Architecture
 - CLIP Text Encoder (+ Tokenizer)
 - VAE: Encoder / Decoder
 - UNET: Diffusion Models

24.10.31 **Guidance**

• Three Equivalent Interpretations

24.10.31 Guidance

• Tweedie's Forumula

24.10.31 **Guidance**

• Score-Based Generative Models

Guidance

Classifier Guidance

$$\nabla \log p(\boldsymbol{x}_{t}|y) = \nabla \log \left(\frac{p(\boldsymbol{x}_{t})p(y|\boldsymbol{x}_{t})}{p(y)}\right)$$

$$= \nabla \log p(\boldsymbol{x}_{t}) + \nabla \log p(y|\boldsymbol{x}_{t}) - \nabla \log p(y)$$

$$= \underbrace{\nabla \log p(\boldsymbol{x}_{t})}_{\text{unconditional score}} + \underbrace{\nabla \log p(y|\boldsymbol{x}_{t})}_{\text{adversarial gradient}}$$

$$(163)$$

• Implementation

$$\nabla \log p(\boldsymbol{x}_t|y) = \nabla \log p(\boldsymbol{x}_t) + \gamma \nabla \log p(y|\boldsymbol{x}_t)$$
(166)

Guidance

- Classifier Free Guidance
 - We assume that $\log p(x_t | y)$ is accessible

$$\nabla \log p(\boldsymbol{x}_t|y) = \nabla \log \left(\frac{p(\boldsymbol{x}_t)p(y|\boldsymbol{x}_t)}{p(y)}\right)$$

$$= \nabla \log p(\boldsymbol{x}_t) + \nabla \log p(y|\boldsymbol{x}_t) - \nabla \log p(y)$$

$$= \underbrace{\nabla \log p(\boldsymbol{x}_t)}_{\text{unconditional score}} + \underbrace{\nabla \log p(y|\boldsymbol{x}_t)}_{\text{adversarial gradient}}$$

$$(163)$$

• Adversarial gradient breaks down:

$$\nabla \log p(y|\mathbf{x}_t) = \nabla \log p(\mathbf{x}_t|y) - \nabla \log p(\mathbf{x}_t)$$
(167)

• Substituting this into:

$$\nabla \log p(\boldsymbol{x}_t|y) = \nabla \log p(\boldsymbol{x}_t) + \gamma \left(\nabla \log p(\boldsymbol{x}_t|y) - \nabla \log p(\boldsymbol{x}_t)\right)$$

$$= \nabla \log p(\boldsymbol{x}_t) + \gamma \nabla \log p(\boldsymbol{x}_t|y) - \gamma \nabla \log p(\boldsymbol{x}_t)$$

$$= \underbrace{\gamma \nabla \log p(\boldsymbol{x}_t|y)}_{\text{conditional score}} + \underbrace{(1 - \gamma)\nabla \log p(\boldsymbol{x}_t)}_{\text{unconditional score}}$$

$$(168)$$

- Classifier Free Guidance outperforms other methods and its simple generations.
 - FID (Fréchet Inception Distance): how close the generated images are to real images by comparing the distributions of features
 - IS (Inception Score): Represent Objects + Diverse Across Classes

Text-Conditional Image Synthesis								
Method	FID ↓	IS↑	N_{params}					
CogView [†] [17]	27.10	18.20	4B	self-ranking, rejection rate 0.017				
LAFITE [†] [109]	26.94	<u>26.02</u>	75M					
GLIDE* [59]	12.24	-	6B	277 DDIM steps, c.f.g. [32] $s = 3$				
Make-A-Scene* [26]	11.84	-	<u>4B</u>	c.f.g for AR models [98] $s = 5$				
LDM-KL-8	23.31	20.03 ± 0.33	1.45B	250 DDIM steps				
LDM- KL - 8 - G *	12.63	$30.29 \scriptstyle{\pm 0.42}$	1.45B	250 DDIM steps, c.f.g. [32] $s = 1.5$				

End