Guide d'utilisation de l'outil dendrométrique LiDAR

Décembre 2023

MINISTÈRE DES RESSOURCES NATURELLES ET DES FORÊTS

Pour obtenir des renseignements additionnels, veuillez communiquer avec le ministère des Ressources naturelles et des Forêts du Québec :

Ministère des Ressources naturelles et des Forêts

Direction des inventaires forestiers

5700, 4^e Avenue Ouest, A-108 Québec (Québec) G1H 6R1 Téléphone : 418 627-8669 Sans frais : 1 877 936-7387

Télécopieur : 418 646-1995

inventaires.forestiers@mrnf.gouv.qc.ca

© Gouvernement du Québec

Ministère des Ressources naturelles et des Forêts Dépôt légal – Bibliothèque et Archives nationales du Québec, 2023 ISBN 978-2-550-96557-2

Rédaction

Olivier Gagnon, tech. f. Dave Munger, analyste en géomatique et LiDAR Martin Riopel, ing. f., Ph. D.

Coordination

Isabelle Legault, ing. f., M. Sc.

Mise en page

Olivier Gagnon, tech. f.

Révision linguistique

Martine Soyez, réviseure linguistique

Table des matières

Introduction	
Fonctionnalités de l'outil	II
Importation de l'outil	2
Ajout de l'outil :	2
Importation des données LiDAR et des contours	3
Importation des données LiDAR	3
Ajout de la couche de contours	3
Création d'un champ de regroupement (Optionnel)	3
Ouverture de l'outil dendrométrique LiDAR	3
Lancement de l'outil	3
Paramétrage et configuration de l'outil	4
Couche dendrométrique LiDAR en entrée	4
Couche à analyser en entrée	4
Champ de regroupement (Optionnel)	4
Modèle de sélection (Optionnel)	4
Paramétrage personnalisé (Optionnel)	5
Calcul à effectuer	5
Essence à calculer	5
Groupement d'essences à calculer	5
Diamètre et utilisation (Optionnel)	5
Finalisation de l'exécution	6
Couche totale de l'intersection en sortie (Optionnel)	6
Couche synthèse en sortie	6
Exécution de l'outil	6
Conclusion	7
Annexes	
Annexe 1 : Exemple de table créée avec l'outil dendrométrique LiDAR	8
Annexe 2 : Signification des champs du tableau synthèse	g

Introduction

Ce guide présente la méthodologie de l'outil dendrométrique LiDAR. Cet outil permet de recalculer rapidement toutes les variables dendrométriques en fonction d'une couche délimitant un ou plusieurs secteurs et nécessite que le secteur soit desservi par la <u>Carte dendrométrique LiDAR</u>. Celle-ci propose des attributs forestiers pour des entités géométriques définies à partir des données LiDAR et qui sont à une échelle plus fine que celles de la carte écoforestière.

Polyvalent, cet outil a été conçu principalement pour répondre aux besoins de la planification opérationnelle de la récolte forestière. Sa capacité à sommer et à recalculer l'ensemble des champs de la Carte dendrométrique LiDAR lui permet de s'adapter à une multitude de tâches nécessitant la connaissance approfondie d'attributs, comme le volume marchand sur pied, la surface terrière, la densité de tiges marchandes ou le volume moyen par tige. Il incarne ainsi un outil adaptable offrant une efficacité accrue pour diverses applications liées à l'analyse dendrométrique des ressources forestières.

Ce guide détaille chaque étape nécessaire pour importer l'outil, préparer les données LiDAR et les contours, configurer les paramètres de l'outil et finalement exécuter le traitement des données de dendrométrie LiDAR dans la suite ArcGIS.

Fonctionnalités de l'outil

L'outil permet de :

- Intersecter géométriquement (deux à deux) les polygones de la Carte dendrométrique LiDAR (entité débutant par « CMP_ ») et les polygones de secteurs dont on a besoin en vue d'une évaluation des attributs.
- Calculer la superficie de chaque polygone créé en utilisant la projection cartographique de la couche en entrée. Si celle-ci est en projection Lambert ou autre, l'outil la transformera dans la projection Albers. Cette dernière est considérée comme plus appropriée que la projection Lambert.
- À partir de la surface calculée, compiler des volumes et le nombre de tiges pour chaque polygone afin de réaliser une sommation des superficies à l'échelle de chaque secteur. Ce qui permet d'obtenir des volumes en m³ et des nombres d'arbres marchands.
- Obtenir des résultats moyens pour les autres attributs.

Importation de l'outil

AJOUT DE L'OUTIL:

Dans ArcGIS Pro:

Ouvrez ArcGIS Pro, accédez à l'onglet « Catalogue » et faites un clic droit sur « Boîtes à outils ». Sélectionnez « Ajouter une boîte à outils » et recherchez l'outil de dendrométrie LiDAR dans le dossier où il est stocké. Importez-le dans ArcGIS Pro.

Dans ArcGIS 10.4:

Ouvrez ArcGIS 10.4, ouvrez l'onglet « Géotraitement » et cliquez sur « ArcToolbox ». Ensuite, faites un clic droit sur « ArcToolbox » tout en haut de la fenêtre et sélectionnez « Ajouter une boîte à outils... ». Recherchez l'outil de dendrométrie LiDAR dans le dossier où il est stocké et importez-le dans ArcGIS 10.4.

Importation des données LiDAR et des contours

IMPORTATION DES DONNÉES LIDAR

Depuis l'onglet « Catalogue », ajoutez la couche de données dendrométriques LiDAR préalablement téléchargées au format « CMP_DENDRO_LiDAR_xxxxx » pour la zone à analyser dans le projet.

AJOUT DE LA COUCHE DE CONTOURS

Ajoutez ou créez une couche représentant les contours de la zone d'intérêt à calculer dans le projet.

CRÉATION D'UN CHAMP DE REGROUPEMENT (OPTIONNEL)

Dans la couche de contours, il est fortement recommandé de créer au moins un champ pour regrouper les données finales lors de l'exécution de l'outil. Exemple : No bloc.

Ouverture de l'outil dendrométrique LiDAR

LANCEMENT DE L'OUTIL

Depuis l'onglet « Catalogue » (dans ArcGIS Pro) ou la fenêtre « ArcToolbox » (dans ArcGIS 10.4), ouvrez l'outil de dendrométrie LiDAR importé précédemment.

Paramétrage et configuration de l'outil

Dans ce guide, la version ArcGIS Pro est présentée pour le paramétrage de l'outil, mais le comportement de la version pour ArcGIS 10.4 est similaire.

COUCHE DENDROMÉTRIQUE LIDAR EN ENTRÉE

Sélectionnez ou glissez la couche « CMP_DENDRO_LIDAR_xxxxx ».

COUCHE À ANALYSER EN ENTRÉE

Sélectionnez ou glissez la couche de contours précédemment importée ou créée.

CHAMP DE REGROUPEMENT (OPTIONNEL)

Sélectionnez le ou les champs précédemment créés. Ceux-ci serviront à regrouper les données finales. Exemple : No_bloc. Notez qu'il est possible de n'en sélectionner aucun. Dans ce cas, la sommation finale ne comportera qu'un seul enregistrement total.

MODÈLE DE SÉLECTION (OPTIONNEL)

Choisissez un modèle prédéfini pour le traitement des données ou personnalisez-le selon vos besoins. Ces modèles permettent de remplir tous les paramètres de façon automatique sans que vous ayez à tous les définir manuellement. Si vous avez un besoin plus spécifique et que vous souhaitez configurer vos paramètres manuellement, passez à l'étape suivante.

Paramétrage personnalisé (Optionnel)

CALCUL À EFFECTUER

Choisissez les types de calculs à réaliser (type de couvert, densité, surface terrière, etc.). Vous devez en sélectionner au moins un.

ESSENCE À CALCULER

Sélectionnez toutes les essences à inclure dans l'analyse.

GROUPEMENT D'ESSENCES À CALCULER

Choisissez tous les groupes d'essences pour l'analyse. Notez que vous devez sélectionner au moins une essence ou un groupement d'essences à calculer. Il n'est pas nécessaire d'avoir une sélection dans les deux fenêtres.

DIAMÈTRE ET UTILISATION (OPTIONNEL)

Sélectionnez facultativement tous les diamètres ou types d'utilisation à inclure dans les calculs.

Finalisation de l'exécution

COUCHE TOTALE DE L'INTERSECTION EN SORTIE (OPTIONNEL)

Inscrivez le chemin d'accès et le nom de la couche qui regroupera toutes les données individuellement (par polygone de la Carte dendrométrique LiDAR) dans la table attributaire. Cette couche est facultative.

COUCHE SYNTHÈSE EN SORTIE

Si vous le souhaitez, vous pouvez modifier le chemin et le nom de la couche en sortie, où les données seront regroupées selon le ou les champs de regroupement que vous avez sélectionnés. La table obtenue présentera la plupart des champs provenant de l'entité « CMP_ » de la Carte dendrométrique LiDAR en plus de générer de nouveaux champs dont les noms débutent par « PT », « VT » et « TIGT » qui sont respectivement des pourcentages moyens d'essences, des volumes totaux (m³) et des nombres de tiges totaux pour chacun des secteurs provenant de la couche des contours fournie en entrée. De plus, la superficie en hectare (SupHa) est calculée pour chacun des secteurs. Voyez les annexes 1 et 2 pour un exemple avec la signification des champs.

EXÉCUTION DE L'OUTIL

Lancez l'outil afin que toutes les données soient traitées automatiquement selon les paramètres que vous avez définis.

Conclusion

Cet outil offre une solution complète pour exploiter les données dendrométriques LiDAR, permettant aux professionnels de la foresterie d'accéder à une analyse détaillée des caractéristiques forestières du secteur à analyser. Son utilisation facilite l'utilisation des données de la Carte dendrométrique LiDAR en accélérant la sommation des volumes et du nombre de tiges marchandes par secteur, notamment. Assurez-vous de personnaliser les paramètres en fonction de vos besoins spécifiques pour obtenir les résultats désirés dans votre analyse dendrométrique.

Vous êtes invités à consulter la documentation associée à la Carte dendrométrique LiDAR avant d'utiliser l'outil. Toutes les informations sont présentes sur Données Québec :

https://www.donneesquebec.ca/recherche/dataset/carte_dendrometrique_lidar

La DIF demeure à l'écoute de vos besoins et vous invite à lui faire part de vos commentaires et suggestions sur ces outils. À cet effet, n'hésitez pas à communiquer avec le service à la clientèle :

inventaires.forestiers@mrnf.gouv.gc.ca

Annexes

ANNEXE 1 : EXEMPLE DE TABLE CRÉÉE AVEC L'OUTIL DENDROMÉTRIQUE LIDAR (COUCHE SYNTHÈSE EN SORTIE)

No_bloc	BL-01	BL-02	BL-03	BL-04
TY_COUV_VT	F	R	MF	MR
ESS_PC_VT				EB10
DENSITE	84,75543478260	87,85310734460	86,17449664430	85,78231292520
HT_DOMI_5P	18,73804347830	17,41299435030	16,42818791950	16,33469387760
IDR	0,57318478261	0,49517514124	0,43062416107	0,42523809524
PT1_EPB	1,88750000000	2,91920903955	1,69328859060	7,09591836735
PT_RES	15,13043478260	82,32598870060	47,99798657720	51,27142857140
PT_BOU	57,10923913040	11,80282485880	34,86711409400	38,18571428570
VT1_EPB	63,51400000000	75,66300000000	36,49400000000	144,17300000000
VT_BOU	2128,70000000000	320,69600000000	760,73600000000	746,96400000000
VT_BOU14M	39,13300000000	75,16600000000	149,86000000000	145,33300000000
VT_BOU16P	2089,54100000000	245,55800000000	610,93100000000	601,60300000000
VT_BOU24P	1907,55800000000	141,00300000000	355,37400000000	308,11300000000
VTSB_BOU	294,52400000000	57,62600000000	140,23600000000	169,73900000000
VTSC_BOU	251,55800000000	10,25900000000	27,93600000000	8,25800000000
VTPA_BOU	592,87700000000	139,59400000000	320,41800000000	319,42500000000
TIGT_BOU	3655,78400000000	2046,00700000000	3878,69500000000	4158,94900000000
ST_BOU	15,68951086960	3,12977401130	8,83060402685	9,15217687075
DHPQ_BOU	31,70869795850	18,56712344540	20,78263373590	20,29476989360
VUTIG_BOU	582,28276068800	156,74237673700	196,13194644100	179,60402976800
SupHa	18,40000000000	17,70000000000	14,90000000000	14,70000000000

ANNEXE 2 : SIGNIFICATION DES CHAMPS DU TABLEAU SYNTHÈSE DE L'ANNEXE 1

Champ	Signification
	Type de couvert dominant dans le secteur selon les proportions du volume brut utilisable et les
TY_COUV_VT	essences retenues pour la compilation
	Concaténation des essences et des groupements d'essences et de leur proportion en volume
ESS_PC_VT	brut utilisable (%) pour le secteur et les essences retenues pour la compilation
DENSITE	Densité moyenne du couvert forestier estimée par le LiDAR (%)
HT_DOMI_5P	Hauteur dominante des cellules de 5 mètres et plus de hauteur (m)
IDR	Indice de densité relative
PT1_EPB	Pourcentage du volume brut utilisable en épinette blanche et en épinette de Norvège
PT_BOU	Pourcentage du volume brut utilisable en bouleau
	Volume brut utilisable de la totalité du secteur en épinette blanche et en épinette de Norvège
VT1_EPB	(m³)
VT_BOU	Volume brut utilisable de la totalité du secteur en bouleau (m³)
TIGT_BOU	Nombre de tiges de la totalité du secteur en bouleau (tiges)
ST_BOU	Surface terrière à l'hectare en bouleau (m²/ha)
DHPQ_BOU	Diamètre à hauteur de poitrine moyen quadratique des bouleaux (cm)
VUTIG_BOU	Volume brut utilisable moyen par tige de bouleau (dm³/tige)
SupHa	Superficie du secteur (ha)