Лабораторная работа №3

Арифметические команды центрального процессора

Цель работы: изучение арифметических команд центрального процессора для работы с целыми числами.

Теоретические сведения

Арифметико-логическое устройство центрального процессора содержит следующие основные команды для работы с целочисленной арифметикой:

ADD <операнд_1>, <операнд_2>. Команда складывает два числа, помещённых в регистры или память. Результат записывается на место первого операнда: **операнд_1** = **операнд_1** + **операнд_2**.

ADC <операнд_1>, <операнд_2>. Сложение чисел с учётом знака переноса. Команда складывает значения двух операндов со значением флага переноса **CF**.

XADD <операнд_1>, <операнд_2>. Команда сначала обменивает содержимое двух операндов, а затем складывает их и пересылает результат на место первого операнда.

INC <операнд>. Команда выполняет инкремент содержимого регистра или ячейки памяти.

SUB <операнд_1>, <операнд_2>. Команда выполняет вычитание значения второго операнда из первого и записывает результат на место первого операнда.

SBB <операнд_1>, <операнд_2>. Команда вычитает из значения первого операнда значение второго операнда и флага CF: **операнд_1 = операнд_1 - (операнд_2 + CF**).

DEC <операнд>. Выполняет уменьшение на единицу значения регистра или ячейки памяти.

MUL <операнд>. Команда выполняет умножение содержимого регистра **AL/AX/EAX** на значение операнда **без учёта знака**. Местоположение результата зависит размерности операнда и представлено в следующей таблице:

Размер	Первый	Результат	Пример
операндов	множитель		
байт	AL	AX	MUL BL
слово	AX	DX:AX	MUL CX
двойное слово	EAX	EDX:EAX	MUL ESI

IMUL. Команда выполняет умножение чисел **с учётом** знака и имеет три формы:

1. **IMUL** <операнд_множитель>. Механизм работы данной команды похож на работу команды **MUL** с тем отличием, что произведение выполняется с учётом знака. Местоположение множителей и результата смотреть в вышеприведённой таблице.

- 2. **IMUL** <onepaнд_1>, <onepaнд_2>. Команда выполняет умножение значения первого операнда на значение второго. Результат записывается на место первого: **операнд_1** * **операнд_2**.
- 3. **IMUL** <операнд_1>, <операнд_2>, <операнд_3>. Команда выполняет умножение второго и третьего операндов: **операнд_1 = операнд_2 * операнд_3**. Результат записывает на место первого операнда. Третий операнд может иметь только непосредственную адресацию.

DIV <операнд>. Команда выполняет деление без учёта знаков. Делимое задаётся неявно. Местоположение делимого и результат зависит от размерности операнда-делителя и определяется следующей таблицей:

Размер	Делимое	Частное	Остаток	Максимальное
операнда				частное
байт	AX	AL	AH	255
слово	DX:AX	AX	DX	65535
двойное слово	EDX:EAX	EAX	EDX	2 ³² -1

IDIV <операнд>. Команда выполняет деление с учётом знаков. Делимое задаётся неявно. Механизм работы данной команды похож на механизм работы команды DIV.

Команды изменения размерности и знака числа

Следующая группа команд расширяет число в два раза, сохраняя при этом его знак. Знак сохраняется за счёт копирования старшего (знакового) бита числа в старшую половину результирующего числа.

СВW. Команда расширяет байт до размерности слова, копируя старший бит регистра **AL** во все биты регистра **AH**.

CWD. Команда расширяет слово до размерности двойного слова, копируя старший бит регистра **AX** во все биты регистра **DX**.

CWDE. Команда расширяет слово до размерности двойного слова, копируя старший бит регистра **AX** во все биты старшей половины регистра **EAX**.

CDQ. Команда расширяет двойное слово до размерности учетверённого слова, копируя старший бит регистра **EAX** во все биты регистра **EDX**.

NEG <операнд>. Команда изменяет знак числа.

Задания для выполнения к работе

- 1. Написать программу для вычисления значения арифметического выражения согласно варианту задания. Все переменные, используемые в программе, требуется использовать как знаковые и расширять до размерности двойного слова. Результат должен быть записан в регистр **EAX**. Если результат содержит остаток от деления, оставить его в регистре **EDX**. Подобрать набор тестовых данных (не менее 3).
- 2. Написать программу для сложения или вычитания целых беззнаковых чисел большой размерности (размерность и операция зависят от варианта задания). Младшие байты при этом хранить по младшему адресу. Подобрать наборы тестовых данных (не менее 3). Для выполнения этого задания изучить теоретический материал главы «Вычитание и сложение операндов большой размерности», начиная со страницы 176 учебника Юрова «Assembler».

Пример выполнения первого задания:

#	$g^2 + \frac{r}{5} - 9^4$	g – word r – byte	сложение
	h	h – word	7 байт

Переменные g, r, h разместим в сегменте данных. Программа, вычисляющая значение этого выражения, имеет вид:

```
.386
 .model flat, stdcall
option casemap: none
 include d:\masm32\include\kernel32.inc
 includelib d:\masm32\lib\kernel32.lib
 .data
   g dw -102
   r db -1
   h dw 15
 .code
 start:
                  ; AX = g
 MOV AX, g
 CWDE ; Расширение в регистра 1MUL EAX ; EAX = EAX * EAX = g² MOV EBX, EAX ; EBX = EAX MOV AL, r ; AL = r ; Расширение до слова
                       ; Расширение в регистре АХ слова до двойного в ЕАХ
  CWDE
                       ; Расширение до двойного слова
  CWDE
  MOV ECX, 5
                       ; ECX = 5
 , асширение перед делением до двойного слова,
; следующая команда оперирует содержимым EDX.
IDIV ECX ; EAX = EDX:EAX / 5 = r / 5
ADD EAX, EBX ; EAX = FAX _ EDV
                       ; Расширение перед делением до двойного слова, т.к.
 ADD EAX, EBX ; EAX = EAX + EBX = r / 5 + g^2 
SUB EAX, 9*9*9*9 ; EAX = EAX - 9^4 = r / 5 + g^2 - 9^4
 MOV EBX, EAX ; Копирование в EBX
                       ; AX = h
  MOV AX, h
                       ; Расширение h до двойного слова
  CWDE
 ХСНG EAX, EBX ; Обмен местами содержимого EAX и EBX
  CDQ
                       ; Расширение до двойного слова
                  ; EAX = EDX:EAX / EBX = (r / 5 + g^2 - 9^4) / h
  IDIV EBX
  push 0
  call ExitProcess; Выход из программы
 end start
```

Тестовые данные

g	r	h	Частное (ЕАХ)	Остаток (ЕДХ)
1000	50	100	000026CEh=	00000031h=
-1000			9934	49
10	-100	4	FFFFF9ACh в	FFFFFFFFh в
			дополни-	дополни-
			тельном коде	тельном коде
			соответствует	соответствует
			-1620	-1
300	60	-1000	00000053h=	000001C3h=

83 451

При выполнении второго задания числа требуется хранить в виде последовательности байт следующим образом:

```
.386
.model flat, stdcall
option casemap: none

include d:\masm32\include\kernel32.inc
includelib d:\masm32\lib\kernel32.lib

.data
  a db 2Ah, 03h, 12h, 0DE, 43h, 0E2h, 34h; 7 байт
  b db 15h, 0DDh, 34h, 4Bh, 57h, 7Fh, 0CDh; 7 байт
  r db 8 dup(?); Для результата резервируется на один байт больше
.code
start:
...
push 0
call ExitProcess; Выход из программы
end start
```

В некоторых случаях целесообразно складывать сразу по 2 или 4 байта для уменьшения количества операций.

Вариант	Выражение	Размер входных параметров	Операция Размерность (2-е задание)
1	$\frac{a+a^2+bd-1}{a-d/8}$	a – dword b – byte d – word	сложение 17 байт
2	$ab + ad + bd - \frac{a+1}{d} - 1$	a – word b – word d – byte	вычитание 14 байт
3	$\frac{(x-3^4)^2 + (y-4)^2 + (z+5)^2}{4}$	x – word y – word z – word	сложение 30 байт
4	$\frac{abe + ab - \frac{b}{e} - 1}{a + 1 + 3^3}$	a – byte b – dword e – byte	вычитание 17 байт
5	$\frac{t+10^5}{s-2^5} + (r+1)^2$	t – dword r – word s – byte	сложение 16 байт
6	$((k+1)^2+1)^2-l/m+1$	k – word l – dword m – byte	вычитание 15 байт
7	$i^3 + j^3 - k^3 + 10^7/i$	i, j, k – word	сложение 21 байт
8	$(x+10)(y-5)\left(z-\frac{z}{3}\right)-7^4$	x, y, z – word	вычитание 15 байт
9	$t_1(x-a) + \frac{t_2(x-a)^2}{2} + \frac{t_3(x-a)^3}{6}$	t — массив из 3 чисел типа byte x , a — word	сложение 17 байт

		k – dword	вычитание
10	$\left \frac{\left(\frac{k}{m}+1\right)^3}{5}+9^4\right $	m – byte	22 байта
10	$\frac{\sqrt{m}}{5} + 9^4$		
11	$(r/s + 5^5)^4 - 1$	r – dword	сложение
11	, ,	s – byte	20 байт
12	$\frac{50i + 170j + 200k}{50 - 100k} + 11^3$	i, j, k – word	вычитание 19 байт
	50 – 100 <i>k</i>	7 7 1 4	
13	$ax + bx^2 + dx^3 - 14^3$	a, b, d – byte x – word	сложение 14 байт
	100 75 37	a, b, d – byte	вычитание
14	$\frac{100}{a^2} - \frac{7^5}{b^2} + \frac{3^7}{d^2} - 1$		18 байт
		x, y, z – byte	сложение
15	$\frac{x^2 - y^2}{y^2} + 14^3 + xz$,,,,,,	27 байт
	,	1	
16	$\frac{15^4}{x^2 + \frac{y}{2}} - \frac{9^5}{xz} - 1$	x, y, z – byte	вычитание 25 байт
10	$x^2 + \frac{y}{z}$ xz		
4.5	$(p)^3$	p-dword	сложение
17	$\left(\frac{p}{q}+1\right)^3-ps$	q – byte s – word	26 байт
	(n 500) ²	n-word	вычитание
18	$\frac{(n+500)^2}{(m-10)^3}r+1$	m – byte	25 байт
		r – word v – word	сложение
19	$vt + \frac{gt^2}{2} - 5^6$	t – word t – dword	25 байт
	2	g – word	
20	$\int_{a}^{b} f g^3$	f – word g – dword	вычитание 16 байт
20	$fg + \frac{f}{10^6h} - \frac{g^3}{h^2}$	h – byte	ТО Оаит
	<i>L</i> ⁴	i, j, k – byte	Сложение
21	$i^4 - j^4 + \frac{k^4}{2^4} + 1$		14 байт
	_	x, y, z – word	вычитание
22	$(x-500)^2 + \left(\frac{y}{4} + 200\right)^2 + z^2$		15 байт
	`4 '	m byto	опожание
23	$(l-(m+1)^2)^2 + \frac{m}{m} + 7^6$	m – byte l – word	сложение 19 байт
	n	n – byte	
	120	a – dword	вычитание
24	$(7+a)^2 + ab - \frac{12c}{d} - 1$	b – word c – word	26 байт
	u	d – byte	
25	$(ce + 30k)^2$, 5^{10}	c, e, k – byte	сложение
23	$\frac{(ce+30k)^2}{(ce-40k)^2} + \frac{5^{10}}{e}$		28 байт
			1