ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ THI KẾT THÚC HỌC KÌ II NĂM HỌC 2021-2022

---oOo----

Môn thi: Phương trình đạo hàm riêng

Mã môn học: MAT3365

Số tín chỉ: 3

Đề số:

Dành cho sinh viên khoá: K65

Ngành học: Toán tin

Thời gian làm bài 120 phút (không kể thời gian phát đề)

Câu 1. (4 điểm) Xét bài toán biên Dirichlet trong hình tròn cho phương trình Laplace

$$\Delta u(x,y) = 0$$
 khi $1 < x^2 + y^2 < 4, y > |x|$

với điều kiện biên Neumann $\partial_{\nu}u(x,y)=0$ khi y=|x| và

$$\partial_{\nu}u(x,y) = \begin{cases} 2xy+1 & \text{khi } x^2+y^2=1, \\ C & \text{khi } x^2+y^2=4, \end{cases}$$

trong đó ν là pháp tuyến ngoài đơn vị, C là hằng số.

- (a) Tìm C để bài toán có nghiệm.
- (b) Với C tìm được ở câu (a) giải bài toán biên Dirichlet đã cho.
- (c) Thử lại nghiệm tìm được ở câu (b).

Câu 2. (2.5 điểm) Sử dụng công thức Poisson tính nghiệm tường minh bài toán Cauchy

$$u_t(x, y, z, t) = 4\Delta u(x, y, z, t), (x, y, z) \in \mathbb{R}^3, t > 0,$$

 $u(x, y, z, 0) = e^{-2x^2} \sin^2(y) \chi_{[1,2]}(z).$

Câu 3. (2.5 điểm) Giải bài toán biên hỗn hợp cho phương trình truyền nhiệt

$$u_t(x, y, t) = u_{xx}(x, y, t) + u_{yy}(x, y, t), 0 < x < 2, -1 < y < 1, t > 0,$$

với điều kiện biên:

$$u_x(0,y,t) = u(2,y,t) = 0$$
 khi $-1 \le y \le 1$, $u_y(x,-1,t) = u_y(x,1,t) = 0$ khi $0 \le x \le 2$, và điều kiện ban đầu $u(x,y,0) = x, 0 < x < 2, -1 < y < 1$.

Câu 4. (3 điểm) Xét bài toán Cauchy cho phương trình truyền sóng

$$u_{tt}(x, y, t) = 9\Delta u(x, y, t), (x, y) \in \mathbb{R}^2, t > 0,$$

với điều kiện ban đầu

$$u(x,y,0) = 0 \text{ và } u_t(x,y,0) = \begin{cases} 1 & \text{ khi } |x| > 1, y > 0, \\ -1 & \text{ khi } |x| < 1, y < 0, \\ 0 & \text{ còn lại.} \end{cases}$$

Tính u(100, 50, t) khi t > 0.

Chú ý: Sinh viên được sử dụng tài liệu.

ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI KẾT THÚC HỌC KÌ II, NĂM HỌC 2021-2022 Môn thi: Phương trình đạo hàm riêng

Mã môn học: **MAT3365** Số tín chỉ: **3** Đề số: **1** Dành cho sinh viên khoá: **K65** Ngành học: **Toán tin**

Lời giải 1. [4 điểm]

Chuyển sang hệ tọa độ cực $x=r\cos\theta,y=r\sin\theta$ ta có $v(r,\theta)=u(r\cos\theta,r\sin\theta)$ thỏa mãn phương trình	0.5
$v_{rr} + \frac{v_r}{r} + \frac{v_{ heta heta}}{r^2} = 0, 1 < r < 2, \pi/4 < heta < 3\pi/4,$	
và điều kiện biên Neumann $v_{\theta}(r,\pi/4)=v_{\theta}(r,3\pi/4)=0$,	
$-v_r(1,\theta) = \sin(2\theta) + 1, v_r(2,\theta) = C \text{ khi } \pi/4 < \theta < 3\pi/4.$	
(a) Để bài toán đang xét có nghiệm	0.5
$\int_{\pi/4}^{3\pi/4} (\sin(2\theta) + 1 + 2C) d\theta = 0$	
hay $C = -1/2$.	
(b)Tìm nghiệm tách biến $v(r,\theta)=R(r)\Phi(\theta)$ thỏa mãn phương trình và hai điều kiện $v_{\theta}(r,\pi/4)=v_{\theta}(r,3\pi/4)=0$. Khi đó ta có bài toán Sturm-Liouville:	0.5
$\Phi''(\theta) + \lambda \Phi(\theta) = 0, \pi/4 < \theta < 3\pi/4, \text{ và } \Phi'(\pi/4) = \Phi'(3\pi/4) = 0.$	
Lời giải bài toán này: - khi $\lambda=0$ thì $\Phi_0(\theta)=1$, lúc đó $R_0(r)=a_0+b_0\ln(r)$; - khi $\lambda=4n^2, n=1,2,\ldots$, thì $\Phi_n(\theta)=\cos(2n(\theta-\pi/4))$, lúc đó $R_0(r)=a_nr^{2n}+b_nr^{-2n}$.	0.5
Chuỗi nghiệm	
$v(r,\theta) = a_0 + b_0 \ln(r) + \sum_{n=1}^{\infty} (a_n r^{2n} + b_n r^{-2n}) \cos(2n(\theta - \pi/4)).$	
Tính $_{\infty}$	0.5
$v_r(r,\theta) = b_0/r + \sum_{n=1}^{\infty} 2n(a_n r^{2n-1} - b_n r^{-2n-1}) \cos(2n(\theta - \pi/4)).$	
rồi thay vào	
$-v_r(1,\theta) = \sin(2\theta) + 1 = \cos(2(\theta - \pi/4)) + 1, v_r(2,\theta) = C \text{ khi } \pi/4 < \theta < 3\pi/4$	
ta có (đồng nhất hệ số):	
(-) $b_0 = -1, 2(a_1 - b_1) = -1, 2n(a_n - b_n) = 0$ khi $n \ge 2$; (-) $b_0/2 = C = -1/2, n(2^{2n}a_n - 2^{-2n}b_n) = 0$ khi $n \ge 1$.	

Do dó
$$b_0 = -1$$
, $a_1 = 1/30$, $b_1 = 8/15$, $a_n = b_n = 0$ khi $n \ge 2$. Vậy nghiệm
$$v(r,\theta) = a_0 - \ln(r) + \left(\frac{r^2}{30} + \frac{8}{15r^2}\right) \cos(2\theta - \pi/2)$$
 hay
$$u(x,y) = a_0 - \frac{\ln(x^2 + y^2)}{2} + \frac{xy}{15} + \frac{16xy}{15(x^2 + y^2)^2}.$$
 0.5
$$u_x(x,y) = -\frac{x}{x^2 + y^2} + \frac{y}{15} + \frac{16(y^3 - 3x^2y)}{15(x^2 + y^2)^3}, u_y(x,y) = -\frac{y}{x^2 + y^2} + \frac{x}{15} + \frac{16(x^3 - 3xy^2)}{15(x^2 + y^2)^3},$$

$$u_{xx}(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2} + \frac{64xy(x^2 - y^2)}{5(x^2 + y^2)^4}, u_{yy}(x,y) = \frac{y^2 - x^2}{(x^2 + y^2)^2} + \frac{64xy(y^2 - x^2)}{5(x^2 + y^2)^4}.$$
 Trên $y = x$ có pháp tuyến $v = (-1/\sqrt{2}, 1/\sqrt{2})$ nên
$$\partial_v u \Big|_{y = -x} = -\frac{1}{\sqrt{2}}(u_x(x,x) - u_y(x,x)) = 0.$$
 Trên $y = -x$ có pháp tuyến $v = (-1/\sqrt{2}, -1/\sqrt{2})$ nên
$$\partial_v u \Big|_{y = -x} = -\frac{1}{\sqrt{2}}(u_x(x,-x) + u_y(x,-x)) = 0.$$
 Trên $x^2 + y^2 = 1$ có pháp tuyến $v = -(x,y)$ nên
$$\partial_v u \Big|_{x^2 + y^2 = 1} = -(xu_x(x,y) + yu_y(x,y)) \Big|_{x^2 + y^2 = 1} = 1 + 2xy.$$
 Trên $x^2 + y^2 = 4$ có pháp tuyến $v = (x/2,y/2)$ nên
$$\partial_v u \Big|_{x^2 + y^2 = 4} = \frac{1}{2}(xu_x(x,y) + yu_y(x,y)) \Big|_{x^2 + y^2 = 4} = -\frac{1}{2}.$$
 Trong quat $\Delta u = 0$.

Lời giải 2. [2.5 điểm]

Sử dụng công thức Poisson	0.5
$u(x,y,z,t) = \frac{1}{(16\pi t)^{3/2}} \int_{-\infty}^{\infty} e^{-2X^2} e^{-\frac{(x-X)^2}{16t}} dX \int_{-\infty}^{\infty} \sin^2(Y) e^{-\frac{(y-Y)^2}{16t}} dY \int_{-\infty}^{\infty} \chi_{[1,2]}(Z) e^{-\frac{(z-Z)^2}{16t}} dZ$	
Biến đổi $32tX^2 + (x - X)^2 = (32t + 1)(X - x/(32t + 1))^2 + 32tx^2/(32t + 1)$ nên	0.5
$\int_{-\infty}^{\infty} e^{-2X^2} e^{-\frac{(x-X)^2}{16t}} dX = \frac{\sqrt{16\pi t}}{\sqrt{32t+1}} e^{-\frac{2x^2}{32t+1}}.$	

Lời giải 3. [2.5 điểm]

Tìm nghiệm tách biến $u(x,y,t) = X(x)Y(y)T(t)$ ta có các bài toán Sturm-Liouville: (-) $X''(x) - \lambda X(x) = 0$, $0 < x < 2$ và $X'(0) = X(2) = 0$ có lời giải	0.5
$\lambda = -(n+1/2)^2 \pi^2 / 4$, $X_n(x) = \cos((n+1/2)\pi x / 2)$, $n = 0, 1, 2,$	
(-) $Y''(y) - \mu Y(y) = 0$, $-1 < x < 1$ và $Y'(-1) = Y'(1) = 0$ có lời giải	0.5
$\mu=0, Y_0(y)=1,$	
$\mu = -m^2 \pi^2 / 4, Y_m(y) = \cos(m\pi(y+1)/2), m = 1, 2, \dots$	
Chuỗi nghiệm	0.5
$u(x,y,t) = \sum_{n=0}^{\infty} a_{0n} e^{-\pi^2 t (n+1/2)^2/4} \cos((n+1/2)\pi x/2) +$	
$+\sum_{m=1}^{\infty}\sum_{n=0}^{\infty}a_{mn}e^{-\pi^{2}t(m^{2}+(n+1/2)^{2})/4}\cos(m\pi(y+1)/2)\cos((n+1/2)\pi x/2)$	
với các hệ số được tính bởi	1
$a_{0n} = \int_0^2 x \cos((n+1/2)\pi x/2) dx = \frac{4(-1)^n}{(n+1/2)\pi} - \frac{4}{(n+1/2)^2 \pi^2},$	
$a_{mn} = \int_0^2 x \cos((n+1/2)\pi x/2) dx \int_{-1}^1 \cos(m\pi (y+1)/2) dy = 0.$	
Do đó nghiệm	
$u(x,y,t) = \sum_{n=0}^{\infty} \frac{4[(-1)^n(n+1/2)\pi - 1]}{(n+1/2)^2\pi^2} e^{-\pi^2 t(n+1/2)^2/4} \cos((n+1/2)\pi x/2).$	

Lời giải 4. [3 điểm]

Nghiệm $u = u_1 - u_2$, với u_i là nghiệm của phương trình truyền sóng đã cho với điều kiện	1
ban đầu:	
$u_j(x, y, 0) = 0, u_{jt}(x, y, 0) = \psi_j(x, y)$	
trong đó	
$\psi_1(x,y) = \begin{cases} 1 & \text{khi } y > 0, \\ 0 & \text{khi } y < 0. \end{cases} \psi_2(x,y) = \begin{cases} 1 & \text{khi } x < 1, \\ 0 & \text{khi } x > 1; \end{cases}$	
$0 \text{Kill } y < 0. \qquad 0 \text{Kill } x > 1,$	
Khi đó ta có	0.5
$t (100.50 t) = \int t$ khi $0 < t < 50/3$,	
$u_1(100, 50, t) = \begin{cases} t & \text{khi } 0 < t < 50/3, \\ (50 + 3t)/6 & \text{khi } t \ge 50/3; \end{cases}$	
(0)	0.5
$0 \qquad \qquad \text{khi } 0 < t \le 33,$	
$u_2(100, 50, t) = \begin{cases} 0 & \text{khi } 0 < t \le 33, \\ (t - 33)/2 & \text{khi } 33 < t < 101/3, \\ 1/3 & \text{khi } t \ge 101/3. \end{cases}$	
$(1/3 khi t \ge 101/3.$	
7/^ 1 · ^	
Vậy nghiệm	1
t khi $0 < t < 50/3$,	
$u(100.50, t) = \int (3t + 50)/6$ khi $50/3 \le t \le 33$,	
$u(100,50,t) = \begin{cases} t & \text{khi } 0 < t < 50/3, \\ (3t+50)/6 & \text{khi } 50/3 \le t \le 33, \\ 149/6 & \text{khi } 33 < t < 101/3, \\ t/2+8 & \text{khi } t > 101/3. \end{cases}$	
t/2 + 8 khi $t > 101/3$.	
,	

Hà Nội, ngày 30 tháng 05 năm 2022 NGƯỜI LÀM ĐÁP ÁN (ký và ghi rõ họ tên)

TS. Đặng Anh Tuấn