CURSO DE PYTHON PARA ENGENHARIA MECÂNICA

PYTHON PARA ENGENHARIA MECÂNICA

Preparado por: Prof. Gustavo Anjos

21 de Julho de 2017

Resumo. Este texto de nível introdutório tem como objetivo familiarizar o aluno de graduação na criação de ferramentas e solução de problemas em engenharia mecânica com a utlização de uma moderna linguagem de computador - Python. Este texto não se restringe a futuros engenheiros mecânicos, mas também pode ser usado por alunos que desejam obter um conhecimento inicial de solução de problemas diferenciais e como introdução à construção de códigos numéricos mais elaborados.

Conteúdo

1 Introdução

-	11101	oduşao	_
	1.1	Importânica da linguagem Python na Engenharia Mecânica	1
	1.2	Importância da validação do código numérico	1
	1.3	Controle de versões - GIT	1
	1.4	Editor de texto - VIM	2
2	Me	cânica de massas pontuais	2
	2.1	Movimento Horizontal de um Carrinho	2
	2.2	Velocidade terminal de uma gota	3
	2.3	Lançamento de projétil	4
	2.4	Sistema massa-mola	5
	2.5	Sistema massa-mola dissipativo	6
	2.6	Sistema massa-mola vertical	6
	2.7	Pêndulo simples	7
3	Ger	ração de malha 1D	8
4	Sol	ução de problema térmico permanente 1D	9
5	Sol	ução de problema térmico permanente com geração de calor 1D	10
6	Sol	ução de problema térmico transiente 1D	10
7	Sol	ução de problema térmico transiente 1D com geração de calor	11
8	Sol	ução de equação de transporte	11
9	Esc	oamento com partículas - solução numérica	13

1 Introdução

1.1 Importânica da linguagem Python na Engenharia Mecânica

O Python é uma linguagem de programação de alto nível, de script, que pode ser orientada a objetos. Esta linguagem foi lançada por Guido van Rossun em 1991 como uma linguagem acadêmica para ensino de programação numérica a alunos de graduação.

Solução de problemas diferenciais.

1.2 Importância da validação do código numérico

Validação de código é importante para se testar os limites de aplicação do código numérico bem como se certificar que o código está respondendo de acordo como planejado. Um código numérico para solução de equações deverá sempre ser validado.

Curso baseado nos livros Mecânica Clássica...

1.3 Controle de versões - GIT

O controle de versões é necessário no desenvolvimento de softwares para que o programador tenha um histórico de cada etapa relacionada a sua construção. Existem diversos controladores de versão que ainda são bastante utilizados pela comunidade: SVN, CVS, Mercurial, Monotone, SVK, Rational ClearCase, Borland StarTeam etc.

A ferramenta *Git* é um sistema de controle de versão distribuído e também um sistema de gerenciamento de código fonte. O *Git* foi projetado pelo criador do sistema Linux (Linus Torvalds) e é adotado por diversas empresas que desenvolvem softwares comerciais de pequeno e grande porte. O *Git* é um software livre e pode ser instalado em todos os sistemas operacionais através de download na página (https://gitscm.com)

É importante notar que o Git não é um sistema dedicado à linguagem de programação, podendo ser usando em qualquer tipo de de código fonte, como por exemplo em documentos Word ou Notepad, além de LaTeX e outras linguagens de programação como Bash, C/C++ e Perl.

1.4 Editor de texto - VIM

Existem diversos editores de texto são aplicativos essenciais em qualquer ambiente de trabalho e estão disponíveis para instalação nos diversos sistemas operacionais existentes. Alguns deles já são pré-instalados pelo sistema, enquanto que alguns outros devem ser comprados ou transferidos gratuitamente de páginas na internet. Alguns exemplos de editores de texto conhecidos no sistema Windows são Microsoft Office e Notepad, no sistema $Mac\ OS\ X$ pode-se citar o TextEdit e o Notes. Alguns editores

Figura 1: Exemplo da visualização do histórico de um projeto usando um sistema de controle de versões

estão disponíveis para os diversos sistemas operacionais, como é o caso do Microsoft Word, encontrado nos sistemas Windows e $Mac\ OS\ X$ e o OpenOffice que pode ser instalados nos sistemas Windows, $Mac\ OS\ X$ e Linux. Um editor de texto pode ser projetado para criar/editar diversos tipos de texto, entretanto também

pode ser especializado em uma determinada função, como por exemplo em textos de programação numérica. O VIM é um editor de texto poderoso que utiliza baixo recurso gráfico, tornando-o flexível, versátil e de baixíssimo consumo de processador. Este editor de texto é compatível com os mais importantes sistemas operacionais.

2 Mecânica de massas pontuais

2.1 Movimento Horizontal de um Carrinho

Neste exemplo deseja-se calcular como a força de atrito linear $F_{drag} = -bv$ atua em um carrinho com massa m a fim de desacelerá-lo até sua completa parada na direcao x. Desconsidere o atrito dos mancais no eixo de rodas do carrinho em Fig. (3).

Figura 2: Desaceleração de carrinho por atrito do ar linear $F_{drag}=-bv$.

$$m\frac{dv}{dt} = -bv\tag{1}$$

A Eq. (1) pode ser resolvida analiticamente para v(t) e sua solução analítica toma a seguinte forma:

$$v(t) = v_0 e^{-bt/m} \tag{2}$$

onde V_0 é a velocidade inicial do carrinho, t é o tempo medido em segundos e b é o coeficiente de atrito. Ao integrarmos novamente a equação de v(t) obtemos a solução da posição, já que dx/dt = v:

$$x(t) = \int_0^t v(t)dt = x_{\infty}(1 - e^{-bt/m})$$
(3)

onde $x_{\infty} = v_0 m/b$

Dados da simulação:

Tabela 1: Dados da simulação do carrinho submetido à força de atrito linear do ar.

massa da particula	coeficiente de atrito	passo de tempo
[kg]	[kg]/[s]	[s]
m = 1.0	b = 0.1	dt = 0.1

Condições iniciais:

2.2 Velocidade terminal de uma gota

Neste problema deseja-se calcular como a força de atrito linear $F_{drag} = -bv$ atua em uma partícula com massa m sob uma força de gravidade $F_{grav} = mg$ a fim de desacelerá-la até o equilíbrio de forças, onde a aceleração seja igual a 0 na direcao y.

Tabela 2: Condições iniciais da da simulação do carrinho submetido à força de atrito linear do ar.

Figura 3: Aceleração de uma gota caíndo sob efeito gravitacional $F_g=mg$ e atrito do ar linear $F_{drag}=-bv$.

Através da 2a. Lei de Newton, a equação matemática para modelar este problema pode ser escrito como:

$$m\frac{dv}{dt} = F_{drag} + F_g \tag{4}$$

onde v, que é uma função do tempo t é a incógnita que queremos resolver. A Eq. (4) pode ser resolvida analiticamente para v(t) e sua solução analítica toma a seguinte forma:

$$v(t) = v_0 e^{-bt/m} + v_{lim} (1 - e^{-bt/m})$$
(5)

onde V_0 é a velocidade inicial do carrinho, t é o tempo medido em segundos e b é o coeficiente de atrito. Ao integrarmos novamente a equação de v(t) obtemos a solução da posição, já que dx/dt = v:

$$x(t) = \int_0^t v(t)dt \tag{6}$$

Tabela 3: Dados da simulação da gota submetida à força de atrito linear do ar.

diâmetro da gota óleo	densidade do líquido	aceleração da gravidade	volume da gota
[m]	$[kg]/[m^3]$	$[m]/[s^2]$	$[m^3]$
D = 1.5e - 06	$\rho = 840.0$	g = 9.81	$V = \pi D^3/6.0$

Tabela 4: Continuação de dados da simulação do carrinho submetido à força de atrito linear do ar.

massa da partícula	viscosidade dinâmica do ar	coeficiente de atrito linear	passo de tempo
[kg]	[kg]/[m][s]	[kg]/[s]	[s]
$m = \rho V$	$\beta = 1.6e - 04$	$b = \beta D$	dt = 1e - 7

2.3 Lançamento de projétil

Neste exemplo deseja-se calcular como a forca de atrito linear F = bv, ou a forca de atrito quadratica $F = cv^2$ ou ausencia de forcas de atrito atuam em uma particula com massa m sob uma forca de gravidade F = mq.

Figura 4: Desaceleração de um projetil por atrito do ar $F_{drag} = -bv$ sob efeito de gravidade.

A equacao vetorial (em X e Y) toma a seguinte forma:

(7)

$$m\frac{d\mathbf{v}}{dt} = \mathbf{F}_{drag} + \mathbf{F}_g \begin{cases} m\frac{dv_x}{dt} = F_{drag_x} \\ m\frac{dv_y}{dt} = F_{drag_y} + F_{g_y} \end{cases}$$
(8)

Dados da simulação;

• #D = 1.5e - 06 [m] diâmetro do projétil

• D = 7.0e - 02 [m] diâmetro da gota de neblina

• g = 9.81 [m/s^2] aceleração da gravidade

• $V = \pi D^3/6.0$ [m^3] volume da gota

• m = 0.15 [kg] massa da partícula

• $\beta = 0.25$ [kg/ms] viscosidade dinâmica do ar

• $b = \beta D$ [kg/s] coeficiente de atrito linear

• $\gamma = 0.25$ $[Ns^2/m^4]$

• $c = \gamma D^2$ coeficiente de atrito linear

• dt = 0.01 [s] passo de tempo

Condições iniciais

• time = 0.0 [s] tempo

• x = 0.0 [m] posição

• y = 0.0 [m] posição

- vx = 19.3 [m/s] velocidade
- vy = 23.0 [m/s] velocidade

2.4 Sistema massa-mola

Neste exemplo deseja-se calcular como a força de mola $F_{spring} = -kx$ atua em uma particula com massa m sem dissipação.

Figura 5: Sistema massa-mola sem dissipação $F_{spring} = -kx$

A solução analítica da equação:

$$m\frac{dv}{dt} = -kx\tag{9}$$

$$v(t) = v_0 e^{-bt/m} \tag{10}$$

$$x(t) = \int_0^t v(t)dt = x_{\infty}(1 - e^{-bt/m})$$
(11)

onde $x_{inf} = v_0 m/b$

Dados da simulação

- m=1.0 massa da partícula
- k = 0.1 coeficiente da mola
- \bullet dt = 0.1 passo de tempo

Condições iniciais:

- time = 0.0 tempo total da simulação
- x = 0.0 posição inicial da partícula
- $v_x = 10.0$ velocidade inicial da partícula

2.5 Sistema massa-mola dissipativo

Neste exemplo deseja-se calcular como a forca de atrito linear F = -bv atua em uma partícula com massa m sob uma forca elástica (de mola) linear F = -kx a fim de desacelerá-la ate o equilíbrio de forças, onde a aceleração seja igual a 0 na direcao y.

A equação em X:

$$m\frac{d\mathbf{v}}{dt} = \mathbf{F}_{spring} + \mathbf{F}_{friction} \tag{12}$$

Dados da simulação:

- m = 1.0 massa da partícula
- k = 0.1 coeficiente da mola
- b = 0.1 coeficiente de atrito linear
- dt = 0.1 passo de tempo

Condições iniciais:

- $\bullet \ time = 0.0$ tempo total da simulação
- ullet x=0.0 posição inicial da partícula
- $v_0 = 10.0$ velocidade inicial da partícula

2.6 Sistema massa-mola vertical

Neste exemplo deseja-se calcular como a força de gravidade F = -mg atua em uma partícula com massa m sob uma forca elástica (de mola) F = -ky a fim de mantê-la oscilando.

A equação em X:

$$m\frac{d\mathbf{v}}{dt} = \mathbf{F}_{spring} + \mathbf{F}_{grav} \tag{13}$$

 $\mathbf{F}_{spring} = F_{spring_y} - ky \in \mathbf{F}_{grav} = F_{grav_y} mg$

Dados da simulação:

- m = 1.0 massa da partícula
- k = 0.1 coeficiente da mola
- b = 0.1 coeficiente de atrito linear
- y = 0.0 posição inicial da partícula
- $v_0 = 10.0$ velocidade inicial da partícula
- g = 9.81 $[m/s^2]$ aceleração da gravidade
- $\gamma = 0.25$ $[Ns^2/m^4]$
- $c = \gamma * D * D$ coeficiente de atrito linear
- dt = 0.1 [s] passo de tempo
- time = 0.0 tempo total da simulação

• #D = 1.5e - 06 [m] diâmetro do projétil

• m = 0.15 [kg] massa da partícula

• $\beta = 0.25$ [kg/ms] viscosidade dinâmica do ar

• $b = \beta D$ [kg/s] coeficiente de atrito linear

2.7 Pêndulo simples

Deseja-se resolver o problema do pêndulo simples sob efeito de força gravitacional $F_g=mg$:

$$m\frac{d^2\theta}{dt^2} + \frac{mg}{l}\sin\theta = 0\tag{14}$$

Figura 6: Pêndulo simples sob efeito de força gravitacional ${\cal F}_g=mg.$

Esta equação pode ser resolvida de diferentes formas. A mais simples é tornar esta equação diferencial de segunda ordem em duas equações de ordem mais baixa:

$$\frac{d\theta}{dt} = v \tag{15}$$

е

$$m\frac{dv}{dt} + \frac{mg}{l}\sin\theta = 0\tag{16}$$

Com isso, resolve-se a primeira equação para encontrar θ , fazendo:

$$\frac{\theta^{n+1} - \theta^n}{\Delta t} = v^n \tag{17}$$

seguido da solução de v após a substituição do θ encontrado na equação anterior. Este processo deve ser repetido sucessivamente.

Para pequenas perturbações esta equação tem solução analítica, com isso aproxima-se $\sin \theta = \theta$, chegando à seguinte equação:

$$m\frac{d^2\theta}{dt^2} + \frac{mg}{l}theta = 0 (18)$$

A solucao analítica é então escrita da seguinte forma para pequenos angulos ($< 10^{\circ}$):

$$\theta(t) = \theta_0 \cos(\sqrt{g/lt}) \tag{19}$$

Dados da simulação:

Tabela 5: Dados da simulação do pêndulo submetido à força de gravidade.

massa da particula	aceleração da gravidade	passo de tempo	comprimento da haste
[kg]	$[m]/[s^2]$	[s]	[m]
m = 1.0	g = 9.81	dt = 0.01	L = 1.0

Condições iniciais:

Tabela 6: Condições iniciais da simulação do pêndulo simples.

tempo inicial	velocidade inicial	ângulo inicial	posição inicial
[s]	[m]/[s]	0	[rad]
time = 0.0	$v_0 = 0.0$	10	$\theta_0 = \frac{2grad\pi}{360}$

3 Geração de malha 1D

Criação de malha 1D para o método de elementos finitos com dx variando conforme as seguintes equações:

• constante: dx = cte

• quadrática: x^2

 \bullet cúbica: x^3

• exponencial: exp(x)

Observe cada caso ilustriado na Fig. (7), onde a função escolhida fornece o espaçamento entre nós da malha. Para o caso linear Fig. (7a), o espaçamento dx é constante. Para os outros casos, o espaçamento varia conforme a função adotada.

Parâmetros da malha:

• L = 1.0 comprimento total da malha

• nx = 10 número total de nós

• ne = nx - 1 número total de elementos

Dica: para criação de malha computacional, 2 estruturas são necessárias: um vetor de coordenadas dos nós da malha onde cada elemento do vetor é a posição do nó, e uma matriz de conectividade de nós onde a linha da matriz representa o elemento e as colunas representam os nós daquele elemento.

4 Solução de problema térmico permanente 1D

Neste exemplo deseja-se calcular a distribuição de temperatura unidimensional em regime permanente em uma barra com dimensão adimensional L=1 e temperaturas constantes T(x=0)=0 e T(x=L)=1 nas extremidades da barra.

Figura 7: Distribuição de espaçamento de malha dx usando função (a) linear, (b) quadrática, (c) cúbica e (d) exponecial.

A equação de interesse:

$$\frac{d^2T}{dx^2} = 0\tag{20}$$

para T(x = 0) = 0 e T(x = L) = 1

Execução do programa:

• nx = 40 número de pontos em x

• L = 1.0 comprimento total

• dx = L/nx intervalo dx

• Tf = 0.0 condição de contorno do último nó

• Q = 2.0 fonte de calor

5 Solução de problema térmico permanente com geração de calor 1D

Neste exemplo deseja-se calcular a distribuica
o de temperatura unidimensional em regime permanente em uma barra com dimensão a
dimensional L=1 e temperaturas adimensionais constantes
 T(x=0)=0 e T(x=L)=0 nas extremidades da barra e com geração de calor Q.

A equação de interesse:

$$\alpha \frac{d^2T}{dx^2} = Q \tag{21}$$

para T(x=0)=0 e T(x=L)=0

Execução do programa:

• nx = 40 número de pontos em x

• L = 1.0 comprimento total

• dx = L/nx intervalo dx

• Ti = 0.0 condição de contorno do primeiro nó

• Tf = 0.0 condição de contorno do último nó

• $\alpha = 1.0$ difusividade térmica do material

• Q = 2.0 fonte de calor

6 Solução de problema térmico transiente 1D

Neste exemplo deseja-se calcular a evolução temporal da distribui cão de temperatura unidimensional em uma barra com dimensao L = 1 e temperaturas constantes T(x = 0) = 0 e T(x = L) = 1 nas extremidades da barra.

A equação de interesse:

$$\frac{dT}{dt} = \alpha \frac{d^2T}{dx^2} \tag{22}$$

para T(x = 0) = 0 e T(x = L) = 1

A solução da equação em estado permanente se escreve:

$$T(x) = c_1 x + c_2 (23)$$

Com constantes c_1 e c_2 a serem determinadas através da aplicação das condições de contorno. Para condições de contorno arbitrárias com temperatura fixa nas extremidades (condição de contorno do tipo Dirichlet), as constantes assumem os seguintes valores:

$$c_1 = \frac{T_{s2} - T_{s1}}{L} \qquad c_2 = T_{s1} \tag{24}$$

onde T_{s1} é a temperatura da superfície 1 e T_{s2} é a temperatura da superfície 2. Com isso, a distribuição de temperatura para o caso de duas condições de contorno do tipo Dirichlet toma a forma:

$$T(x) = \frac{T_{s2} - T_{s1}}{L}x + T_{s1} \tag{25}$$

Para o caso do problema sugerido, a solução final toma a forma de:

$$T(x) = \frac{x}{L} \tag{26}$$

7 Solução de problema térmico transiente 1D com geração de calor

Neste exemplo deseja-se calcular a evoluca
o temporal da distribuica
o de temperatura unidimensional em uma barra com dimensa
oL=1me temperaturas constantes T(x=0)=0e
 T(x=L)=1nas extremidades da barra. A forma forte do problema se escreve:

$$\frac{dT}{dt} = \alpha \frac{d^2T}{dx^2} + Q \tag{27}$$

para T(x = 0) = 0 e T(x = L) = 1

A solução da equação em estado permanente se escreve:

$$T(x) = -\frac{QL}{2k} \left(x - \frac{x^2}{L} \right) + \frac{T_{s2}}{L} x + T_{s1}$$
 (28)

Esta é a solucao particular para temperatura da superficie 1 igual a T_{s1} e temperatura da superficie 2 igual a T_{s2} no caso permanente ($\partial/\partial t = 0$). No caso de tomarmos as condições de contorno do problema $T_{s1} = T_{s2} = 0$, a solução da distribuição de temperatura T(x) fica:

$$T(x) = -\frac{QL}{2k} \left(x - \frac{x^2}{L} \right) \tag{29}$$

8 Solução de equação de transporte

Neste exemplo deseja-se calcular a posição do perfil de temperatura T em função do tempo através da equação diferencial parcial usando o método de diferencas finitas com as seguintes metodologias:

- diferencas centradas
- upwind 1a. ordem
- upwind 2a. ordem
- semi-lagrangiano 1a. ordem
- semi-lagrangiano 2a. ordem
- lagrangiano

A equação diferencial parcial para T(t, x):

$$\frac{dT}{dt} + v\frac{dT}{dx} = 0\tag{30}$$

O número de Courant (CFL) é definido como:

$$CFL = v\frac{dt}{dx} \tag{31}$$

Condições iniciais:

Usando o método de diferenças centradas para o termo espacial e um esquema explícito de derivação temporal,

Tabela 7: Condições iniciais da simulação para equação de transporte.

tempo inicial	velocidade inicial	CFL	perfil inicial
[s]	[m]/[s]	_	[m]
time = 0.0	a = 1.0	0.5	$T[i] = \sin(\pi * (X[i] - L/6.0)/(L/6.0))$

obtém-se a seguinte expressão para a equação:

$$\frac{T_i^{n+1} - T_i^n}{dt} - v^n \frac{T_{i+1}^n - T_{i-1}^n}{2dx} = 0 ag{32}$$

note que nesta equação o índice i representa a variação espacial, enquanto que n representa a variação temporal. Para o método de upwind de 1a. ordem, a seguinte expressão é usada:

$$\frac{T_i^{n+1} - T_i^n}{dt} - v^n \frac{T_{i+1}^n - T_i^n}{dx} = 0 (33)$$

$$\frac{T_i^{n+1} - T_i^n}{dt} - v^n \frac{T_i^n - T_{i-1}^n}{dx} = 0 (34)$$

Para o método de upwind de 2a. ordem, a seguinte expressão é usada:

$$\frac{T_i^{n+1} - T_i^n}{dt} - v^n \frac{-1T_{i+2}^n + 4T_{i+1}^n - 3T_i^n}{2dx} = 0$$
(35)

$$\frac{T_i^{n+1} - T_i^n}{dt} - v^n \frac{3T_i^n - 4T_{i-1}^n + T_{i-2}^n}{2dx} = 0$$
(36)

No método Semi-lagrangiano, discretiza-se a derivada material DT(x,t)/Dt diretamente aon invés do termo transiente e do termo convectivo (representação euleriana) como feito anteriormente. Para tal, é necessário encontrar o valor de T(x,t) no passo de tempo anterior fazendo-se uma busca na malha e interpolando o valor de T(x,t) na posição x_d^{n-1} :

$$\frac{DT}{Dt} \approx \frac{T^{n+1}(x^n) - T^n(x_d^{n-1})}{\Delta t} = 0 \tag{37}$$

Para sabermos qual é o valor de T na posição x_d^{n-1} precisamos calcular x_d através da seguinte equação:

$$\frac{x^n - x_d^{n-1}}{\Delta t} = v^n \tag{38}$$

de modo que o valor final de x_d^{n-1} possa ser encontrado:

$$x_d^{n-1} = x^n - \Delta t v^n \tag{39}$$

Este procedimento define a malha computacional do tempo anterior n-1, a qual chamaremos aqui de x_d . Esta malha é então usada para encontrar o valor de $T^n(x_d)$ através de uma interpolação dos valores de T^n em todos os pontos da mala x_d . Esta interpolação é necessária pois os valores de T geralmente não coincidem com os pontos da malha x_d . Uma vez encontrados os valores de T^n , calcula-se a derivada material para encontrar o

Figura 8: Domínio numérico e condições de contorno para partículas e perfil de velocidade.

valor de T^{n+1} :

$$\frac{T^{n+1}(x^n) - T^n(x_d^{n-1})}{\Delta t} = 0 (40)$$

$$T^{n+1}(x^n) = T^n(x_d^{n-1}) (41)$$

9 Escoamento com partículas - solução numérica

Deseja-se calcular a trajetoria de uma partícula em um canal sob efeito de um perfil de velocidades conhecido (dado por uma função em y) e submetida às forças de gravidade F_g , de arrasto F_{drag} e de sustentação F_{lift} .

A equação vetorial (x e y):

$$m\frac{d\mathbf{v}}{dt} = \mathbf{F}_{drag} + \mathbf{F}_{lift} + \mathbf{F}_g \tag{42}$$

onde:

$$\mathbf{F_{drag}} = 3\pi\mu d_p v \tag{43}$$

$$\mathbf{F_{lift}} = 1.61\sqrt{\mu\rho_d} \, dp^2 |u - v| \frac{du}{dy} \sqrt{\left| \frac{du}{dy} \right|}$$
 (44)

$$\mathbf{F_g} = mg \tag{45}$$

Note que esta equação vetorial tem solução analítica, porém neste problema usaremos uma aproximação numérica explícita para encontrarmos v^{n+1} e, consequentemente, a posição das partículas x^{n+1} .

O perfil de velocidade v(y) é conhecido e da forma:

$$v(y) = \frac{6}{L^2} (yL - y^2) \tag{46}$$

As condições de contorno deste problema estão ilustradas na Fig. (8):

Dados da simulação:

fluido (fase contínua)

partícula (fase dispersa)

Tabela 8: Propriedades de algumas fases contínuas.

fluido	viscosidade	densidade	temperatura
	$[N][s]/[m^2]$	$[kg]/[m^3]$	[°]
ar	$\mu = 17.2e - 6$	$\rho=1.225$	T = 25
água	$\mu = 1.003e - 3$	$\rho=997.0$	T = 25
azeite	$\mu = 81.0e - 3$	$\rho = 703.0$	T = 15

Tabela 9: Propriedades de algumas fases dispersas. O volume pode ser calculado a partir de $V_p = (1.0/6.0)\pi d_p^3$, enquanto que a massa é dada por $m = \rho_p V_p$.

material	diâmetro	densidade
	[m]	$[kg]/[m^3]$
madeira	$d_p = 1.0e - 3$	$\rho = 785.0$
alumínio	$d_p = 1.0e - 3$	$\rho=2700.0$

condição inicial

- \bullet numParticles = 100 número total de partículas
- $\#v_x = \text{np.zeros}((\text{numParticles}, 1), \text{dtype=float})$
- g = 9.81 [m]/[s^2] gravidade
- $v_x = \text{np.random.uniform}(-0.1, 0.1, (\text{numParticles}, 1))$
- $\#v_y = \text{np.zeros}((\text{numParticles}, 1), \text{dtype=float})$
- $v_y = \text{np.random.uniform}(-0.1, 0.1, (\text{numParticles}, 1))$
- time = 0.0 [s] tempo
- x = np.random.uniform(2.0,1.0,(numParticles, 1))
- #x = np.zeros((numParticles, 1), dtype=float)
- y = np.random.uniform(0.8h, 0.2h, (numParticles, 1))
- $\bullet \ \#y = \text{np.zeros}((\text{numParticles,1}), \text{dtype=float})$

passo de tempo

• dt = 0.01 [s] passo de tempo