WHI Working Group 2A: Quantifying the Quiet Sun / Irradiance for Solar Cycle Minimum (Version 2)

Tom Woods, Phil Chamberlin, Jerry Harder, Rachel Hock, Erik Richard, Marty Snow

LASP / University of Colorado

<tom.woods@lasp.colorado.edu>

Whole Heliosphere Interval (WHI) 2008

- Whole Heliosphere Interval is an international coordinated observing and modeling effort to characterize the 3-dimensional interconnected solar-heliospheric-planetary system.
- Period is March 20, 2008 to April 16, 2008
 - Solar Carrington Rotation 2068

Quantifying the Quiet Sun

- WHI period of April 10-16, 2008 chosen for the quiet Sun interval
 - Perhaps not solar cycle minimum, but it did turn out to be quiet solar conditions
 - Additional goal is to compare to Whole Sun Month (WSM, 1996) results (Thur PM discussion)
- Quiet Sun Scott McIntosh leading
 - Conditions / references / results from many solar imagers
 - SOHO SUMER, CDS, EIT (part of WSM 1996 study)
 - Hinode SOT, XRT TRACE STEREO SECCHI, EUVI
- Solar Cycle Minimum Irradiance Tom Woods leading
 - TIMED SEE, SORCE, Rocket EVE, SOHO SEM, SBUV

Solar Cycle Minimum Yet?

- Standard definition of "solar cycle minimum" is the minimum in SSN smoothed over 1-year
- <SSN> minimum level ~ 0-5

- Not seen minimum yet!
- however minimum will not be obvious until 6 months after the event ...

PSPT Images Used to Identify Solar Features

April 12-14 were very quiet days

 Day
 Features areas (relative to solar disk area)

 A
 B
 D
 F
 H
 P
 S
 R

 2008/04/12
 0.07283
 0.7051
 0.1971
 0.02365
 0.001226
 6.09e-005
 3.669e-006
 1.834e-005

 2008/04/14
 0.06446
 0.7234
 0.1916
 0.01921
 0.001110
 0.0001519
 4.046e-006
 1.839e-005

Solar Activity During WHI April 10-16, 2008 QS Interval

- PSPT images are used to generate feature areas
- Moderate solar activity in late March
- Very low solar activity during April 10-16

Solar Irradiance Data Sets

- TIMED Solar EUV Experiment (SEE)
 - XPS: 0.1-27 nm, $\Delta\lambda \sim 8$ nm
 - EGS: 27-194 nm, $\Delta\lambda$ ~ 0.4 nm
- Solar Radiation and Climate Experiment (SORCE)
 - XPS same as on TIMED SEE
 - SOLSTICE: 115-308 nm, $\Delta\lambda$ ~ 0.1 nm
 - SIM: 200-2400 nm, $\lambda/\Delta\lambda$ ~ 30
 - TIM: total solar irradiance (TSI)
- SOHO Solar EUV Monitor (SEM)
 - 26-34 nm and zeroth order 0-50 nm
- SDO EUV Variability Experiment (EVE)
 - Rocket EVE: 6-105 nm, $\Delta\lambda \sim 0.1$ nm
 - Suborbital rocket launched 14 April 08
- NOAA SBUV: 200-400 nm

Two Spectra to Prepare for WHI Interval

- "Quiet Sun" (solar cycle minimum) Reference Spectrum
 - WHI Quiet Sun dates of Apr 10-16 (Rocket 14-Apr-2008)
- "Active" Reference Spectra
 - "Sunspot" active spectrum: March 25 March 29
 - "Faculae" active spectrum: March 30 April 4
- Compare these new results to model and previous reference spectra
 - Models: SRPM, NRLEUV, VUV2002
 - Reference Spectra: Thuillier (ATLAS 1&3), ASTM-E490
 - ATLAS-3 Reference Spectrum:
 - May 1997 rocket measurement for < 119 nm
 - March 1995 UARS and ATLAS-3 observations for > 119 nm

Spectral Distributions for WHI Irradiance Sets

How to combine?

- consider accuracy, spectral resolution, degradation, etc.
- select wavelength boundaries or averages ?

Solution for Reference Spectra (version 1&2)

Spectral Intervals / Resolution

- 0.1-nm intervals on 0.05-nm centers
- Note that SIM instrument resolution (above 310 nm) is much less than 0.1-nm

Selected Wavelength Intervals

Did have to fill 113-116 nm (no measurements)

WHI Solar Irradiance – Full Range 0-2400 nm

WHI Solar Irradiance: Rocket EVE & SEE

WHI Solar Irradiance: SORCE SOLSTICE

WHI Solar Irradiance: SORCE SIM

WHI Solar Irradiance: Solar Variability

- Average of the active spectrum to minimum spectrum
 - Red represents negative variability (sunspot darkening)
 LASP SSI Reference for WHI-2008

WHI & Atlas-3 Comparison: EUV

 EUV range in Atlas-3 is actually based on May 1997 rocket measurement and old AE-E (EUV81) variability.
 Expect accuracy for Atlas-3 EUV to be ~50%

WHI & Atlas-3 Comparison: FUV-MUV-NUV

- FUV-MUV-NUV range in Atlas-3 is based on UARS SOLSTICE and UARS SUSIM, and validated with Atlas SUSIM, SOLSPEC, SBUV observations
- These results are from March 1995 (not solar cycle minimum)
- Accuracy / validation at 3-10% [Woods et al., JGR, 1996]

WHI & Atlas-3 Comparison: Visible & NIR

- Atlas-3 Visible and NIR results are from Atlas SOLSPEC
- Expected accuracy of ~2%

WHI Solar Irradiance Files

- ref_solar_irradiance_whi-2008_ver2.dat
 - text data file see header information for more details
- IDL code : plot_whi_ref.pro
 - supporting code: read_dat.pro, setplot.pro, rainbow.pro
 - supporting files: atlas3_1-nm.dat, vuv2002_whi-2008.dat
- plots (subdirectory, graphics are in JPEG format)
 - Spectra plots:
 - whi_ref_both, whi_ref_0-120nm, whi_ref_100-310nm, whi_ref_300-2400nm
 - Solar variability (ratio Mar / Apr 1.0)
 - whi_ref_variability (red = negative changes, sunspot blocking)
 - Comparison to ATLAS-3 (ratio WHI Apr / ATLAS-3)
 - whi_ref_ratio_atlas3, whi_ref_ratio_atlas3_0-120nm,
 whi_ref_ratio_atlas3_120-310nm, whi_ref_ratio_atlas3_300-2400nm

http://lasp.colorado.edu/lisird/ and http://ihy2007.org/WHI/