代数学方法 (第一卷) 勘误表

李文威

2020-03-09

以下页码等信息参照高等教育出版社 2019 年 1 月出版之《代数学方法》第一卷, ISBN: 978-7-04-050725-6. 这些错误将在新版一并改正.

- ◇ **第 12 页, 倒数第 8 行 原文** 也可以由稍后的无穷公理保证. **更正** 也可以划入稍后的无穷公理. 感谢王东瀚指正.
- 。第 16 页, 定义 1.2.8 原文 若传递集 α 对于 \in 构成良序集 更正 若传递集 α 对于 $x < y \stackrel{\text{EV}}{\longleftrightarrow} x \in y$ 成为良序集 感谢王东瀚指正.
- 。第 16 页, 倒数第 5 行 原文 于是有 $\gamma \in \gamma$, 这同偏序的反称性矛盾. 更正 于是 有 $\gamma \in \gamma$, 亦即在偏序集 (α, \leq) 中 $\gamma < \gamma$, 这同 < 的涵义 ($\leq \ell \ell \neq$) 矛盾. 感谢王东 瀚指正.
- \diamond 第 19 页, 倒数第 5 行原文 $a_{\alpha} \notin C_{\alpha}$ 更正 $a_{\alpha} \notin \{a_{\beta}\}_{\beta < \alpha}$ 感谢胡旻杰指正
- \diamond **第 23 页**, **第 5** 行 **原文** 由于 σ 无穷... **更正** 由于 \aleph_{σ} 无穷... 感谢王东瀚指正.
- ◇ **第 42 页, 倒数第 2** 行 **原文** ... 同构. Z(···) ≃... 更正 ... 同构 Z(···) ≃... 感谢 王东瀚指正.
- ◇第54页最后 更正 图表微调成

兴许更易懂. 感谢熊锐提供意见.

◇ **第 94 页, 习题 5 倒数第 2 行 原文** Yang–Baxter 方程. **更正** 杨–Baxter 方程.

- \diamond 第 116 页, 第 5 行
 原文
 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$ 更正
 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$
- **⋄ 第 126 页, 第 6 行 原文** $(\cdots)_{i=0}^{n}$ **更正** $(\cdots)_{i=0}^{n-1}$
- ◇ 第 149 页, 第 3 行 CRing 表交换环范畴. 另外此行应缩进.
- **◇第156页,第2,3**行 **原文** a∈R 更正 a∈I
- **◇ 第 205 页, 第 7 行 原文** *M* 作为 *R*/ann(*M*)-模自动是无挠的. **更正** *M* 作为 *R*/ann(*M*)-模的零化子自动是 {0}. **感谢戴懿**韡指正.

感谢阳恩林指正

- **◇第220页** 本页出现的 Bil(◆ × •; •) 都应该改成 Bil(•, •; •), 以和 216 页的符号保持一致.
- ◇第230页,第13行 原文 萃取处 更正 萃取出
- ◇ 第 230 页, 第 6 行; 第 231 页, 第 9—10 行 原文 0; 更正 0; 感谢郑维喆指正
- **◇ 第 235 页底部** 图表中的垂直箭头 f_i, f_{i-1} 应改为 ϕ_i, ϕ_{i-1} .
- ◇第 237 页, 命题 6.8.5 证明最后两行 原文 故 $(v) \Rightarrow (i);$ 更正 故 $(iv) \Rightarrow (i);$
- ◆ **第 244 页, 倒数第 10 行 原文** 下面的引理 6.10.4 **更正** 引理 5.7.4 感谢郑维喆 指正
- ◇ 第 246 页, 第 2 行和定理 6.10.6, 6.10.7 "交换 Noether 模"应改为 "交换 Noether 环".
 两个定理的陈述中应该要求 R 是交换 Noether 环.
 感谢郑维喆指正
- **⋄第247頁,第6—7行 原文** 其长度记为n+1. **更正** 其长度定为n.
- ◇第251页起,第6.12节 术语"不可分模"似作"不可分解模"更佳,以免歧义. 感谢 郑维喆指正
- ◆ 第 252 頁, 第 2 行
 原文
 1 ≤ 1 ≤ n.
 更正
 1 ≤ i ≤ n.
 感谢傅煌指正.

◇ 第 255 页, 第 1 题 原文

$$N = \left\langle \alpha(f)(x_i) - x_j : i \xrightarrow{f} j, \ x_i \in M_i, x_j \in M_j \right\rangle$$

更正

$$N = \left\langle \alpha(f)(x_i) - x_i : i \xrightarrow{f} j, \ x_i \in M_i \right\rangle$$

感谢郑维喆指正

- **◇ 第 284 頁, 定理 7.6.6** 将定理陈述中的函子 U 由忘却函子改成映 A 为 A_1 的函子, 其余不变. 相应地, 证明第二段的 $\varphi: M \to A$ 应改成 $\varphi: M \to A_1$. 感谢郑维喆指正
- \diamond 第 285 頁, 倒数第 5 行 $T^n_\chi(M) := \{x \in T^n(M) : \forall \sigma \in \mathfrak{S}_n, \ \sigma x = \chi(\sigma)x\}$ 感谢郑维喆指正
- \diamond **第 286 頁, 定理 7.6.10** 原 "因而有 R-模的同构" 改为 "因而恒等诱导 R-模的同构". 以下两行公式开头的 $e_1:$ 和 $e_{sgn}:$ 皆删去. 感谢郑维喆指正
- **◇第311页, 命题 8.3.2 证明第4行** 更正 分别取...... 和 \overline{F}' |E'.
- ◆ 第 313 頁, 命题 8.3.9 (iii) "交"改为"非空交". 相应地, 证明第四行的"一族正规子扩张"后面加上"且 *I* 非空". 感谢郑维喆指正
- \diamond 第 315 頁, 定理 8.4.3 (iv) 原文 $\sum_{k>0}^n$ 更正 $\sum_{k=0}^n$ 感谢郑维喆指正
- ◇ 第 315 页, 倒数第 2 行原文deg $f(X^p) = pf(X)$ 更正deg $f(X^p) = p \deg f(X)$ 感谢杨历指正.
- **⋄第317页,倒数第13行** (出现两次) **原文** $\prod_{i=1}^{n}$ ··· **更正** $\prod_{m=1}^{n}$ ···
- \diamond 第 348 页, 命题 9.3.6 原文 $\lim_{m} \mathbb{Z}/n\mathbb{Z}$ 更正 $\lim_{m} \mathbb{Z}/m\mathbb{Z}$ 感谢郑维喆指正
- ◆ 第 352 页, 第 7 行
 原文
 p | n
 更正
 p ∤ n
 感谢郑维喆指正

- ◆ 第 363 页, 倒数第 4 行
 原文

 η_[E:F]

 更正

 η_[L:F]

 感谢郑维喆指正

- **第 372 页, 第 20 题** 问题 (b) 部分的 $P \in F[X]$ 改成 $Q \in F[X]$, 以免冲突. 相应地, 提示第一段的 P 都改成 Q.
 感谢郑维喆指正
- **◇第 395–396 页, 引理 10.5.3 的证明** 从第 395 页倒数第 3 行起 (即证明第二段), 修改如下:

置 $f_k = \sum_{h \geq 0} c_{k,h} t^h$. 注意到 $\lim_{k \to \infty} \|f_k\| = 0$, 这确保 $c_h := \sum_{k \geq 0} c_{k,h}$ 存在. 我们断言 $f := \sum_{h \geq 0} c_h t^h \in K \langle t \rangle$ 并给出 $\sum_{k=0}^{\infty} f_k$.

对任意 $\epsilon > 0$, 取 M 充分大使得 $k \ge M \implies \|f_k\| < \epsilon$, 再取 N 使得当 $0 \le k < M$ 而 $h \ge N$ 时 $|c_{k,h}| < \epsilon$. 于是

$$h \ge N \implies (\forall k \ge 0, |c_{k,h}| \le \epsilon) \implies |c_h| \le \epsilon,$$

故 $f := \sum_{h>0} c_h t^h \in K(t)$. 其次, 在K(t) 中有等式

$$f - \sum_{k=0}^{M} f_k = \sum_{h \ge 0} \left(c_h - \sum_{k=0}^{M} c_{k,h} \right) t^h = \sum_{h \ge 0} \underbrace{\left(\sum_{k > M} c_{k,h} \right)}_{|\cdot| \le \epsilon} t^h,$$

从而 $f = \sum_{k=0}^{\infty} f_k$.

感谢高煦指正.

⋄第417页,最后一行 它被刻画为对...