Karl Jan Clinckspoor

Estudo estrutural, termodinâmico e cinético sobre a formação e interações de micelas gigantes em sistemas aquosos binários

Brasil

9 de julho de 2018

Karl Jan Clinckspoor

Estudo estrutural, termodinâmico e cinético sobre a formação e interações de micelas gigantes em sistemas aquosos binários

Tese de doutorado realizado no instituto de Química da Unicamp, na área de Físico-Química, que visa estudar micelas gigantes, sua formação, seu crescimento e as interações intermicelares

Universidade Estadual de Campinas Instituto de Química Programa de Pós-Graduação

Orientador: Prof. Dr. Edvaldo Sabadini

Brasil 9 de julho de 2018

Karl Jan Clinckspoor

Estudo estrutural, termodinâmico e cinético sobre a formação e interações de micelas gigantes em sistemas aquosos binários/ Karl Jan Clinckspoor. — Brasil, 9 de julho de 2018-

111 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Edvaldo Sabadini

Tese (Doutorado) – Universidade Estadual de Campinas Instituto de Química

Programa de Pós-Graduação, 9 de julho de 2018.

1. Palavra-chave1. 2. Palavra-chave2. 2. Palavra-chave3. I. Orientador. II. Universidade xxx. III. Faculdade de xxx. IV. Título

Este trabalho é dedicado às crianças adultas que, quando pequenas, sonharam em se tornar cientistas.

Agradecimentos

Agradeço à minha mãe, a quem amo muito, por ter sempre me apoiado em toda minha vida. Agradeço à Karen, minha maravilhosa namorada, por todos os singelos momentos vividos até agora. Agradeço à Lia, por ter sido uma ótima companhia, desde o início da graduação.

Agradeço ao Prof. Edvaldo, que dirigiu e focou minha, por vezes dispersa, atenção, e me apoiou nas diversas decisões que eu tive que tomar durante minha pós graduação. Agradeço ao Prof. Jan Skov Pedersen, por ter aceitado me receber em seu laboratório por um mês, mesmo eu sendo um completo amador em sua área de especialização.

Agradeço aos colegas do laboratório B145, pelas discussões e companhia durante esses anos.

Agradeço ao CNPq pelo financiamento.

"Não vos amoldeis às estruturas deste mundo, mas transformai-vos pela renovação da mente, a fim de distinguir qual é a vontade de Deus: o que é bom, o que Lhe é agradável, o que é perfeito. (Bíblia Sagrada, Romanos 12, 2)

Resumo

O objetivo deste trabalho é estudar o processo de formação de micelas – tanto sua cinética quanto sua termodinâmica – e, após sua formação, estudar a cinética de relaxação das micelas, quando presentes em solventes diferentes. Para isso, foram utilizadas técnicas como fluorescência, espalhamento de radiação, calorimetria e reologia. Foi possível estimar tempos de crescimento para micelas em dois regimes de concentração diferentes. Além disso, observou-se que é necessário considerar várias contribuições, além das citadas na literatura, para explicar as diferenças de comportamento reológico de micelas em misturas binárias com glicerina, sacarose, ureia, 1,3-butanodiol e dimetilsulfóxido.

Palavras-chave: latex. abntex. editoração de texto.

Abstract

This is the english abstract.

 ${\bf Keywords: \ latex. \ abntex. \ text \ editoration.}$

Lista de Figuras

Lista de Tabelas

Tabela 1 –	Símbolos e parâmetros utilizados no modelo, e seus significados $\dots 103$
Tabela 2 –	Parâmetros da equação A.2
Tabela 3 –	Termos da equação A.3
Tabela 4 -	Constantes
Tabela 5 -	Constantes utilizadas para o cálculo de Γ
Tabela 6 -	Parâmetros para a equação A.17

Lista de abreviaturas e siglas

NaSal Salicilato de sódio

Sal⁻ Salicilato

CTAB Brometo de cetiltrimetilamônio

TTAB Brometo de tetradeciltrimetilamônio

DTAB Brometo de dodeciltrimetilamônio

DMSO Dimetilsulfóxido

13BD 1,3-butanodiol

SAXS Espalhamento de Raios-X em baixos ângulos

DLS Espalhamento dinâmico de luz

ITC Calorimetria de titulação isotérmica

DSC Calorimetria diferencial de varredura abc(1)

Lista de símbolos

- Γ Letra grega Gama
- Λ Lambda
- \in Pertence

Sumário

1	INTRODUÇÃO	27
1	SURFACTANTES	29
1.1	Polaridade	33
1.2	Parâmetro de empacotamento	33
1.3	Mesofases	33
1.4	Aditivos	33
2	MICELAS GIGANTES	35
2.1	Crescimento de micelas	35
2.2	Termodinâmica de micelas	35
2.3	Modelos de comportamento reológico	35
2.4	Perfis de viscosidade	35
3	INSPIRAÇÕES PARA O PROJETO	37
4	ESTUDOS DE HOFFMANN SOBRE MICELAS E LAMELAS	39
5	ESTUDOS DE PEDERSEN SOBRE CINÉTICA	41
6	OBJETIVOS	43
II	TEORIA	45
7	REOLOGIA	47
7.1	Fundamentos	47
7.1.1	Fluídos Newtonianos	47
7.1.2	Sólidos Hookeanos	47
7.1.3	Fluidos viscoelásticos	47
7.2	Reologia oscilatória	47
7.2.1	Aquisição de dados	47
7.2.2	Modelo de Maxwell	47
7.2.3	Modelos mais complexos	47
7.3	Curvas de Fluxo	47
7.3.1	Modelos de curvas de fluxo	47
8	CALORIMETRIA DE TITULAÇÃO ISOTÉRMICA	49
8.1	Fundamentos	49

8.1.1	Aquisição de dados	49
8.2	Calorimetria de micelas esféricas	49
8.3	Calorimetria de micelas gigantes	49
8.4	Termodinâmica de micelização	49
9	SAXS	51
9.1	Fundamentos	51
9.2	Modelagem	51
9.2.1	Esferas	51
9.2.2	Micelas esféricas	51
9.2.3	Micelas gigantes	51
9.2.4	Visualização dos parâmetros	51
9.2.5	Indexação de picos	51
10	FLUORESCÊNCIA	53
10.1	Fundamentos	53
10.1.1	Diagramas	53
10.1.2	Rendimento quântico	53
10.1.2.1	Lei de X (não importa onde incide para fluorescência) $\ \ldots \ \ldots \ \ldots$	53
11	ANÁLISE MULTIVARIADA	55
11.1	Técnicas de classificação	55
11.1.1	Normalização dos dados	55
11.1.2	PCA	55
11.1.3	HCA	55
11.2	Técnicas de regressão	55
11.2.1	Regressão Multivariada	55
11.2.2	PCR	55
11.2.3	PLS	55
III	MATERIAIS E MÉTODOS	57
12	REAGENTES	59
13	REOLOGIA	61
13.1	Preparo das amostras	61
13.2	Tratamento de dados de reologia oscilatória	61
13.3	Tratamento de dados de curvas de fluxo	61
14	CALORIMETRIA DE TITULAÇÃO ISOTÉRMICA	63
14.1	Preparo das amostras	63

14.2	Tratamento de dados	63
15	SAXS	65
15.1	Aquisição de dados	65
15.1.1	LNLS	65
15.1.2	Grenoble	65
15.1.3	Stopped-flow	65
15.2	Tratamento de dados	65
15.2.1	Subtração do "branco"	65
15.2.2	Média das curvas de cinética	65
15.2.3	Ajuste das curvas pelo software superSAXS	65
16	FLUORESCÊNCIA	67
16.1	Aquisição de dados	67
16.1.1	Determinação da absorção e emissão	67
16.1.2	Fluorescência estática	67
16.1.3	Fluorescência resolvida no tempo	67
16.1.3.1	Programa LabView	67
16.2	Tratamento de dados	67
16.2.1	Filtro Savitzky-Golay	67
17	TÉCNICAS ADICIONAIS	69
17.1	Calorimetria diferencial de varredura	69
17.2	Espalhamento dinâmico de luz	69
17.3	Tensiometria	69
IV	EFEITO DOS ADITIVOS HIDROFÍLICOS	71
18	RESULTADOS	73
18.1	Efeitos dos aditivos na reologia	7 3
18.1.1	Glicerina	73
18.1.2	Sacarose	73
18.1.3	DMSO	73
18.1.4	1,3BD	73
18.1.5	Ureia	73
18.2	Efeito dos aditivos na calorimetria de micelas gigantes	7 3
18.3	Efeito dos aditivos na calorimetria de micelização	7 3
19	PARÂMETROS A SER ESTUDADOS	7 5
19.0.1	Índice de refração	75

19.0.2	Constante dielétrica	5
19.0.3	Parâmetro de Gordon	5
19.0.4	Interação dos aditivos com a superfície micelar	5
19.0.5	Decomposição em propriedades fundamentais	5
20	CORRELAÇÕES ENTRE OS PARÂMETROS E AS PRO-	
	PRIEDADES	7
20.0.1	Reologia	7
20.0.2	Calorimetria	7
21	EFEITO DA UREIA 7	9
21.1	Calorimetria diferencial de varredura	9
21.2	SAXS	9
21.3	DLS	9
21.4	Reologia do sólido	9
21.5	Entalpia de interação de ureia com surfactante	9
\mathbf{V}	CINÉTICA DE CRESCIMENTO 8	1
22	SAXS RESOLVIDO NO TEMPO	3
23	FLUORESCÊNCIA RESOLVIDA NO TEMPO 8	5
VI	PROJETOS MENORES 8'	7
24	ESTUDO SOBRE REGIÕES MAXWELLIANAS NOS PER- FIS DE VISCOSIDADE	9
25	COMPARAÇÃO DE ITC DE MG EM DOIS SENTIDOS OPOSTOS9	1
VII	CONTRIBUIÇÕES PARA OUTROS PROJETOS 93	3
26	MUCO	5
26.1	Breve descrição do projeto	5
26.2	Contribuição	5
26.2.1	Determinação de uma metodologia	5
26.2.2	Tratamento de dados	5
26.3	Resultado da colaboração	5

27	PREVISÃO DE TEMPERATURAS DE FUSÃO DE TRIA-
	CILGLICERÍDEOS
27.1	Breve descrição
27.2	Contribuição
	REFERÊNCIAS BIBLIOGRÁFICAS
	APÊNDICES 101
	APÊNDICE A – DESCRIÇÃO MATEMÁTICA DO MODELO
	DE MICELAS GIGANTES 103
A.1	Introdução e motivação
A.2	Resumo do modelo
A.3	Descrição detalhada do modelo
A.3.1	Fator forma das cadeias wormlike, F_{wc}
A.3.1.1	Fator de correção χ
A.3.1.2	Fator forma de cadeias com volume excluído, $F_{chain_{ExV}}$
A.3.1.3	Fator de correção Γ
A.3.1.4	Fator forma de um cilindro F_{rod}
A.3.2	Fator forma da seção transversal de um cilindro F_{cs}
	APÊNDICE B – SOFTWARES
B.1	Descrição e uso do software de tratamento de curvas de fluxo . 109
B.2	Softwares miscelâneos para tratamento de dados 109
	Índice Remissivo

Referências Bibliográficas

1 MILACIC, V.; FREGONA, D.; DOU, Q. P. Gold Complexes as Prospective Metal Based Anticancer Drugs. *Histol Histopathol*, v. 23, p. 101–108, 2008. ISSN 1699-5848.

APÊNDICE A – Descrição matemática do modelo de micelas gigantes

A.1 Introdução e motivação

A.2 Resumo do modelo

O modelo descreve cadeias alongadas caroço-casca (core-shell) de Kratky-Porod, considerando volume excluído, com interações intercadeias modeladas pelo modelo PRISM (Polymer Reference Interaction Site Model). No total, a equação de intensidade de espalhamento I em função do vetor de espalhamento q(I(q), Eq. A.1) possui 13 parâmetros, descritos na tabela 1.

$$I = f(q, scale, d_{head}, r_{core}, \rho_{rel}, \sigma, back, L, k_L, \varepsilon, D_{CQ}, \nu_{RPA}, SC_{pow}, exp_{pow})$$
(A.1)

Símbolo	Descrição
I	Intensidade de RX espalhado
q	Vetor de espalhamento
scale	Fator de escala
d_{head}	Espessura do shell
r_{core}	Raio do core
$ ho_{rel}$	Diferença de densidade eletrônica entre $core$ e $shell$
σ	Fator de <i>smearing</i> , o quão definido é o limite entre regiões
back	Constante referente ao background
L	Comprimento de contorno das cadeias
k_L	Comprimento de $Kuhn$ das cadeias, igual ao dobro do comprimento
	de correlação
ε	Excentricidade radial das micelas
D_{CQ}	Distância de correlação das micelas
$ u_{RPA} $	Fator de concentração
SC_{pow}	Fator de escala (preexponencial) da exponencial em baixo q
exp_{pow}	Fator exponencial, relativo à inclinação na escala log

Tabela 1 – Símbolos e parâmetros utilizados no modelo, e seus significados

A equação geral do modelo, e a descrição de seus fatores, estão descritos na Eq.A.2 e na Tab. 2.

$$I = \frac{scale\left(F_{KPchain_{ExV}}F_{rod_{CS}}\right)}{1 + \nu_{RPA}F_{sphere}\left(D_{CQ}\right)F_{KPchain_{ExV}}} + back + scale_{pow}^{-exp_{pow}}$$
(A.2)

Termo	Descrição
$F_{KPchain_{ExV}}$	Fator forma de cadeias de Kratky-Porod com volume excluído
$F_{rod_{CS}}$	Fator forma da seção transversão de um bastão
$F_{sphere}(D_{CQ})$	Fator forma de uma esfera, cujo raio é a distância de correlação

Tabela 2 – Parâmetros da equação A.2

Já o modelo do PRISM é descrito pela Eq. A.3. Note a similaridade com a Eq A.2.

$$I_{PRISM} = \frac{\varphi V_{mic} F_{wc}(q) F_{cs}(q)}{1 + \nu F_{rod}(q L_{c(q)}) F_{wc}(q)}$$
(A.3)

Termo	Descrição
φ	Fração volumétrica
V_{mic}	Volume da micela
F_{wc}	Fator forma de uma wormlike chain
F_{cs}	Fator forma de uma seção transversal de cilindro
F_{rod}	Fator forma de um bastão infinitamente longo
$L_{c(q)}$	$=6\xi$, comprimento característico
ξ	Comprimento de correlação da função $c(q) \approx F_{rod}$

Tabela 3 – Termos da equação A.3

A partir disso, podemos começar a adentrar nos termos.

A.3 Descrição detalhada do modelo

O modelo será dividido em duas partes, uma referente à cadeia micelar, F_{wc} e outra referente à seção transversal da cadeia, F_{cs} .

A.3.1 Fator forma das cadeias wormlike, F_{wc}

$$F_{wc} = \left[(1 - \chi) F_{chain_{ExV}} + \chi F_{rod} \right] \Gamma \tag{A.4}$$

A equação A.4 pode ser simplificada dependendo da faixa de q. A região de qintermediária precisa ser descrita pelo termo χ (Eq. A.6) e corrigida por Γ . Esses parâmetros são obtidos por simulações de Monte Carlo.

$$F_{wc} \begin{cases} q \ baixo : F_{wc} \approx F_{chain_{ExV}} \\ q \ alto : F_{wc} \approx F_{rod} \end{cases}$$
 (A.5)

A.3.1.1 Fator de correção χ

O termo χ é descrito pela equação A.6, que por sua vez é dependente da equação A.7.

$$\chi = \exp \xi^{-5} \tag{A.6}$$

$$\xi = qk_L \left(\frac{\pi b}{1,103L}\right)^{3/2} \left(\frac{\langle R_g^2 \rangle}{k_L^2}\right)^{1,282} \tag{A.7}$$

onde $\langle R_g^2 \rangle$ é a média do ensemble do quadrado do raio de giro das cadeias, no modelo.

A.3.1.2 Fator forma de cadeias com volume excluído, $F_{chain_{ExV}}$

O termo $F_{chain_{ExV}}$ possui a seguinte forma (Eq. A.8)

$$F_{chain_{ExV}} = w(qR_g)F_{Debye}(q, L, k_L) + \left[1 - w(qR_g)\right]$$

$$\left[C_1(qR_g)^{\frac{1}{\nu}} + C_2(qR_g)^{-\frac{2}{\nu}} + C_3(qR_g)^{-\frac{3}{\nu}}\right]$$
 (A.8)

O termo F_{Debye} , por sua vez, é dado pela Eq. A.9.

$$F_{Debye} = 2\left(\frac{e^{-u} + u - 1}{u^2}\right) \tag{A.9}$$

onde $u = R_g^2 q^2$. R_g é a raiz quadrada do raio de giro médio ao quadrado, $R_g = \langle R_g^2 \rangle^{1/2}$, considerando o volume excluído. Por sua vez, esse valor é dado pela Eq. A.10

$$\left\langle R_g^2 \right\rangle = \alpha \left(\frac{L}{k_I} \right)^2 \left\langle R_g^2 \right\rangle_0$$
 (A.10)

O termo w é uma equação empírica, da forma: (Eq A.11)

$$w(x) = \frac{\left[1 + \frac{\tanh(x - C_4)}{C_5}\right]}{2} \tag{A.11}$$

As constantes C_1 , C_2 , C_3 , C_4 e C_5 foram obtidas a partir de um ajuste, e estão na tabela 4.

Constante	Valor
C_1	1,220
C_2	$0,\!4288$
C_3	-1,651
C_4	1,523
C_5	0,1477

Tabela 4 – Constantes

A.3.1.3 Fator de correção Γ

O fator de correção Γ (Eq. A.12) é dependente de dois conjuntos de constantes, A (Eq. A.13) e B (Eq. A.14) determinadas empiricamente (Tab 5).

$$\Gamma(q, L, k_L) = 1 + (1 - \chi) \sum_{i=2}^{5} A_i \xi^i + \chi \sum_{i=0}^{2} B_i \xi^{-i}$$
(A.12)

$$A_{i} = \sum_{j=0}^{2} a_{1}(i, j) \left(\frac{L}{k_{L}}\right)^{-j} \exp\left(-\frac{10k_{L}}{L}\right) + \sum_{j=1}^{2} a_{2}(i, j) \left(\frac{L}{k_{L}}\right)^{j} \exp\left(-\frac{2L}{k_{L}}\right)$$
(A.13)

$$B_{i} = \sum_{j=0}^{2} b_{1}(i, j) \left(\frac{L}{k_{L}}\right)^{-j} + \sum_{j=1}^{2} b_{2}(i, j) \left(\frac{L}{k_{L}}\right)^{j} \exp\left(-\frac{2L}{k_{L}}\right)$$
(A.14)

$a_1(2,0)$	-0.1222	$a_2(2,1)$	0.1212	$b_1(0,0)$	-0.0699	$b_2(0,1)$	-0.5171
$a_1(3,0)$	0.3051	$a_2(3,1)$	-0.4169	$b_1(1,0)$	-0.09	$b_2(1,1)$	-0.2028
$a_1(4,0)$	-0.0711	$a_2(4,1)$	0.1988	$b_1(2,0)$	0.2677	$b_2(2,1)$	-0.3112
$a_1(5,0)$	0.0584	$a_2(5,1)$	0.3435	$b_1(0,1)$	0.1342	$b_2(0,2)$	0.6950
$a_1(2,1)$	1.761	$a_2(2,2)$	0.0170	$b_1(1,1)$	0.0138	$b_2(1,2)$	-0.3238
$a_1(3,1)$	2.252	$a_2(3,2)$	-0.4731	$b_1(2,1)$	0.1898	$b_2(2,2)$	-0.5403
$a_1(4,1)$	-1.291	$a_2(4,2)$	0.1869	$b_1(0,2)$	-0.2020		
$a_1(5,1)$	0.6994	$a_2(5,2)$	0.3350	$b_1(1,2)$	-0.0114		
$a_1(2,2)$	-26.04			$b_1(2,2)$	0.0123		
$a_1(3,2)$	20.00						
$a_1(4,2)$	4.382						
$a_1(5,2)$	1.594						

Tabela 5 – Constantes utilizadas para o cálculo de Γ

A.3.1.4 Fator forma de um cilindro F_{rod}

O fator forma de um cilindro segue a equação A.15.

$$F_{rod}(q, L) = \frac{2Si(qL)}{qL} - \frac{4\sin^2\frac{qL}{2}}{q^2L^2}$$
 (A.15)

onde Si é a função-integral de seno (Eq. A.16)

$$Si(x) = \int_0^x \frac{\sin t}{t} dt \tag{A.16}$$

A.3.2 Fator forma da seção transversal de um cilindro F_{cs}

O fator forma da seção transversal de um cilindro é descrito pela equação A.17. Seus parâmetros se encontram na tabela 6

$$F_{\rm cs} = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \left[(\rho_S - \rho_w) \frac{2J_1 \left(qR_s \left(\varepsilon, \theta \right) \right)}{qR_s \left(\varepsilon, \theta \right)} + \frac{\pi \varepsilon R_c^2}{\pi \varepsilon R_s^2} \left(\rho_c - \rho_s \right) \frac{2J_1 \left(qR_c \left(\varepsilon, \theta \right) \right)}{qR_c \left(\varepsilon, \theta \right)} \right]^2 d\theta \quad (A.17)$$

Parâmetro	Significado
$ ho_S$	Densidade eletrônica do shell
$ ho_C$	Densidade eletrônica do <i>core</i>
$ ho_w$	Densidade eletrônica da água
R_S	Raio do shell
R_C	Raio do <i>core</i>
J_1	Função de Bessel do primeiro tipo e de primeira ordem
C_4	1,523
C_5	0,1477

Tabela 6 – Parâmetros para a equação A.17

Os termos R_S e R_C podem ser calculados pelas expressões A.19 e A.18

$$R_C(\varepsilon\theta) = \sqrt{R_C^2 \sin^2 \theta + \varepsilon^2 R_c^2 \cos^2 \theta}$$
 (A.18)

$$R_C = \sqrt{\frac{V_{\text{surf, apolar}}}{V_{\text{surf, total}}}} R_S \tag{A.19}$$

onde V é o volume molecular das regiões do surfactante.

APÊNDICE B - Softwares

Neste apêndice serão descritos alguns dos métodos computacionais criados durante a execução deste doutorado. Todos os scripts foram escritos na linguagem Python. O aluno fortemente recomenda essa linguagem para outros que desejam tratar, visualizar e entender seus dados. Python possui uma sintaxe simples, mas poderosa, grande número de pacotes matemáticos e científicos de qualidade, e é totalmente gratuito. Em especial, a conjunção de *Jupyter Notebooks* (extensão ipynb) com um *kernel* de Python é uma ferramenta muito poderosa e conveniente.

Um curso de Python com foco em tratamento de dados foi elaborado pelo aluno, e se encontra disponível em um repositório no Github¹. Em brevo, o curso possui a seguinte estrutura:

- 1. "Hello world", strings, obtendo ajuda
- 2. Operações matemáticas, variáveis
- 3. Estruturas de dados
- 4. Condicionais e loops
- 5. Instalando e carregando módulos
- 6. Definindo funções
- 7. Matemática computacional com numpy
- 8. Carregando e manipulando dados com pandas
- 9. Criando gráficos com pyplot
- 10. Tarefas avançadas
- B.1 Descrição e uso do software de tratamento de curvas de fluxo
- B.2 Softwares miscelâneos para tratamento de dados

https://github.com/KarlClinckspoor/CursoPython

Índice Remissivo

Micelas gigantes, 44