l



| 1. A process for forming an article, comprising the steps of:                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| providing a substrate, and                                                                                                                        |
| forming on the substrate a film of (BiEu) <sub>3</sub> (Fe <sub>5-y</sub> (Ga <sub>x</sub> Al <sub>1-x</sub> ) <sub>y</sub> ) O <sub>12</sub> , w |

forming on the substrate a film of  $(BiEu)_3(Fe_{5-y}(Ga_xAl_{1-x})_y) O_{12}$ , where x is 0 to 1 and y is 0.8 to 1.2,

wherein the substrate is a single crystal material consisting essentially of a solid solution of two or more garnet materials, the substrate having a lattice parameter within 0.004 Angstrom of the lattice parameter of the  $(BiEu)_3(Fe_{5-y}(Ga_xAl_{1-x})_y) O_{12}$ .

- 2. The process of claim 1, wherein x is 1, and the substrate lattice parameter is 12.53 to 12.555 Angstroms.
- 3. The process of claim 1, wherein the substrate is of substantially uniform composition.
- 4. The process of claim 1, wherein the substrate consists essentially of a solid solution of gadolinium scandium gallium garnet and gadolinium scandium aluminum garnet, or a solid solution of gadolinium scandium gallium garnet and terbium scandium gallium garnet.
- 5. The process of claim 1, wherein y is selected such that the film exhibits a saturation magnetization, in absolute value, less than 100G at least at room temperature.
- 6. The process of claim 5, wherein the film exhibits a substantially rectangular magnetization loop, a saturation magnetization, in absolute value, less than 100G, a switching field, in absolute value, higher than the saturation magnetization, in a magnetic field applied parallel to the normal to the major surface of the film, over an operating temperature range of –40°C to +85°C.

l

1

2

1

2

3

4

5

6

7

8

1

- The process of claim 6, wherein the film exhibits a switching field, in 7. 1 absolute value, of at least 200 Oe over the operating temperature range, and a switching 2 field, in absolute value, of at least 500 Oe at least at room temperature. 3
- The process of claim 7, wherein the film exhibits a switching field, in 8. l absolute value, of 500 Oe or higher over the operating temperature range. 2
- The process of claim 1, further comprising the steps of: 9. processing the film to form chips, and 2 incorporating at least one chip into a device. 3
  - The process of claim 1, wherein the lattice parameter is within 0.002 10. Angstrom of the lattice parameter of the (BiEu)<sub>3</sub>(Fe<sub>5-v</sub>(Ga<sub>x</sub>Al<sub>1-x</sub>)<sub>v</sub>) O<sub>12</sub>.
    - A process for forming an article, comprising the steps of: XI. providing a substrate, and

forming on the substrate a film of  $(BiEu)_3(Fe_{5-v}(Ga_xAl_{1-x})_v)O_{12}$ , where x is 0 to 1 and y is 0.8 to 1.2,

wherein the substrate is a single crystal material consisting essentially of a solid solution of gadolinium scandium gallium garnet and gadolinium scandium aluminum garnet, or a solid solution of gadolinium scandium gallium garnet and terbium scandium gallium garnet.

- The process of claim 11, where x is 1. 12.
- 13. The process of claim 12, wherein the substrate lattice parameter if 12.53 to 1 12.555 Angstroms. 2
- The process of claim 13, wherein the substrate is of substantially uniform 14. 1 composition. 2

= h mil 1 1 1mm 1 1 1mm 1 mm

1

2

i

2 3

4

5

l

2 3

1

2

3

1

l

- 15. The process of claim 11, wherein y is selected such that the film exhibits a saturation magnetization, in absolute value, less than 100G at least at room temperature.
- 16. The process of claim 15, wherein the film exhibits a substantially rectangular magnetization loop, a saturation magnetization, in absolute value, less than 100G, a switching field, in absolute value, higher than the saturation magnetization, in a magnetic field applied parallel to the normal to the major surface of the film, over an operating temperature range of -40°C to +85°C.
  - 17. The process of claim 13, wherein the film exhibits a switching field, in absolute value, of at least 200 Oe over the operating temperature range, and a switching field, in absolute value, of at least 500 Oe at least at room temperature.
  - 18. The process of claim 17, wherein the film exhibits a switching field, in absolute value, of 500 Oe or higher over the operating temperature range.
    - 19. The process of claim 11, further comprising the steps of: processing the film to form chips, and incorporating at least one chip into a device.
    - 20. An article comprising the film according to claim 1.
  - 21. An article comprising the film according to claim 4.