Taller preparatorio Examen Final de Cálculo Vectorial MATE 1207 Sección 5

PREGUNTAS ABIERTAS

Mayo 17 de 2019

S. Adarve, A. F. Patiño, N. Ramírez

- 1. Halle los máximos y mínimos absolutos de la función f(x,y,z)=x+z sujeto a las restricciones x+y+z=1 y $x^2+y^2+z^2=1$.
- 2. Una caja rectangular sin tapa debe hacerse con 12 m^2 de cartón. Encuentre el máximo volumen de tal caja.
- 3. Encuentre los valores máximo y mínimo locales y los puntos de ensilladura de la función $f(x,y) = x^4 + y^4 4xy + 1$.
- 4. Determine los puntos de máximo (mínimo) absoluto de la función $f(x,y) = x^2 + 2y^2 2x + 4y$ sobre el disco elíptico $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + 2y^2 \le 6\}$.
- 5. Halle los puntos más cercanos al origen de la curva de intersección del cilindro circular $x^2 + y^2 = 4$ con el plano y + z = 2.
- 6. Halle los máximos y mínimos absolutos de la función f(x, y, z) = x + 2y + 4z sujeto a las restricciones x + z = 1 y $x^2 + y^2 = 4$.
- 7. Utilice una transformación lineal apropiada $T: \mathbb{R}^2 \to \mathbb{R}^2$ para calcular la integral

$$\iint_{R} (x+y)^2 e^{x-y} dx dy,$$

siendo R el cuadrado de vértices (0, -1), (1, 0), (0, 1) y (-1, 0).

- 8. Considere el cambio de variables definido mediante la transformación $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por x = v, y = u/v, y sea D la región en el plano xy limitada por las hipérbolas xy = 1, xy = 2 y las rectas x = 2, x = 4.
 - a) Dibuje la región D en el plano xy y también la región D^* en el plano uv tal que $T(D^*) = D$.
 - b) Utilice la transformación T para hallar la integral $\iint_D x^3 y \ dA$.

- 9. Un alambre delgado tiene la forma del círculo C de intersección del plano y=x con la esfera $x^2+y^2+z^2=1$. Suponga que C está orientado en contra de las manecillas del reloj al observarse desde la normal (1,-1,0). Halle el trabajo realizado por la fuerza F(x,y,z)=i+j+k para mover una partícula una vez alrededor de C, esto es, calcule la integral $\int_C F \cdot ds$.
- 10. Sea C la curva de intersección del cilindro $x^2 + y^2 = 1$ y el plano y + z = 1 y sea $F(x, y, z) = 1/3 (-y^3 \mathbf{i} + x^3 \mathbf{j} z^3 \mathbf{k}).$
 - a) Calcule la integral $\int_C \mathbf{F} \cdot d\mathbf{s}$.
 - b) Utilice el Teorema de Stokes para calcular de nuevo la integral de la parte a).
- 11. Sea E el sólido limitado por las superficies $x^2+y^2=1$, y+z=1 y z=0 y sea S la frontera de E orientada con la normal exterior. Para cada uno de los campos vectoriales F dados a continuación, halle $\iint_S F \cdot dS$, el flujo de F a través de S, de manera directa como integral de superficie. Compruebe el resultado mediante el Teorema de Gauss.
 - a) $F(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$
 - b) $F(x, y, z) = x^2 i$
 - c) $F(x, y, z) = z^3 k$
- 12. Considere el campo vectorial F(x, y, z) = xyi + yzj + zxk. Utilice el Teorema de Gauss para calcular la integral de superficie $\iint_S F \cdot dS$, donde S es la superficie esférica de ecuación $x^2 + y^2 + z^2 = 9$ orientada con la normal exterior.
- 13. Repita el ejercicio anterior con el campo vectorial $F(x, y, z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$ y con la superficie S obtenida al unir el paraboloide $z = 1 (x^2 + y^2)$, $z \ge 0$, con el disco de radio 1 centrado en el origen ubicado en el plano z = 0, donde S está orientada con la normal exterior.

- 14. Sean $F(x, y, z) = z^2 \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ y S el cono circular dado por $x = r cos \theta$, $y = r sen \theta$, z = 4 2r, donde $0 \le \theta \le 2\pi$, $0 \le r \le 2$.
 - a) Halle rot F.
 - b) Calcule el flujo de $rot {\it F}$ hacia afuera de ${\it S}$ de dos maneras diferentes: evaluando directamente la integral de superficie $\iint_{S} rot {\it F} \cdot d{\it S}$ y utilizando el Teorema de Stokes.
 - c) Sea D el disco $x^2 + y^2 \le 4$, z = 0, en \mathbb{R}^3 orientado con la normal que apunta en la dirección del eje z positivo. Explique porqué

$$\iint\limits_{\mathcal{D}} rot \mathbf{F} \bullet d\mathbf{S} = \iint\limits_{\mathcal{S}} rot \mathbf{F} \bullet d\mathbf{S}.$$

d) Sea R el hemisferio (superficie) $x^2 + y^2 + z^2 = 4$, $z \ge 0$, orientado con la normal con componente z positiva. Explique porqué

$$\iint\limits_R rot \mathbf{F} \bullet d\mathbf{S} = \iint\limits_S rot \mathbf{F} \bullet d\mathbf{S}.$$

- e) Compruebe las partes c) y d) calculando directamente las integrales $\iint_D rot F \cdot dS$ y $\iint_R rot F \cdot dS$.
- f) En general, describa las superficies Q en \mathbb{R}^3 para las cuales se tiene

$$\iint\limits_{O} rot \mathbf{F} \bullet d\mathbf{S} = \iint\limits_{S} rot \mathbf{F} \bullet d\mathbf{S}.$$