Población y Muestra

Conceptos y simulación con R

Edimer David Jaramillo - Bioestadística 1

Agosto de 2018

- 1 Población y muestra
- 2 Conceptos
- Muestreo
- Simulación con R

Población y muestra

Población: concepto

Una **población** se puede definir como el conjunto de elementos acotados en tiempo y espacio, con alguna característica medible o cuantifiable.

• Ejemplos:

- Animales, plantas, días de producción, semillas, personas, ciudades, paises.
- Acotados en espacio y tiempo por intereses específicos.
- Si la población es finita, el tamaño poblacional es el número de elementos de la misma y se denota con N.

Muestra: concepto

- Generalmente, es difícil o impracticable examinar características de interés en la población completa, por esa razón se analiza una parte de ella y con base en la información relevante de ese fragmento, se hace inferencia o generalización sobre toda la población.
- Por muestra se entiende todo subconjunto de elementos u observaciones de la población.
- El **tamaño muestral** es el número de elementos u observaciones que constituyen la muestra y se denota con *n*.

Idea general

Variable y tipos de variables

- Variable: una variable es un atributo o propiedad que difiere de alguna forma entre los elementos de una población. Todas las observaciones o mediciones sobre los elementos de una población tienen la particularidad de cambiar su estado o expresión, por ello se denominan "variables"; aquellas que no cumplen esta condición se denominan "constantes". Las variables pueden ser cuantitativas o cualitativas.
 - Variables cuantitativas continuas: son aquellas que pueden asumir cualquier valor dentro de un intervalo. Medibles en la escala decimal.
 - Intervalo: el cero no representa ausencia de la característica
 - Razón: el cero representa ausencia de la característica
 - Variables cuantitativas discretas: son aquellas características que asumen un número finito o infinito numerable de valores posibles. No medibles en la escala decimal.

- Variables categóricas o cualitativas: son aquellas características cuya escala de medida es un conjunto de categorias.
 - Nominal: no poseen orden (ej. género, el color de semillas, la dirección del viento)
 - Ordinal: poseen orden (ej. el grado de afección de una virosis vegetal, "alto", "medio" y "bajo")

Parámetro, estadístico y estimador

- Parámetro: valor de la *población* sobre el que se desea realizar inferencia a partir de *estadísticos* obtenidos de la muestra, que se denominan *estimadores*. Se denotan por letras griegas.
- Estadístico: cualquier medida realizada sobre los valores de una variable. Se denotan con letras latinas.
- Estimadores: medidas de resumen que se calculan con el propósito de describir y caracterizar una muestra. Expresión matemática que permite cuantificar la estimación. Una buena estimación se caracteriza por:
 - No tener sesgo
 - Alto grado de precisión
 - Alto nivel de exactitud

Hipótesis, error muestral y modelo

- Hipótesis: supuestos realizados respecto a un parámetro o estadístico (ej. media, proporción, desviación estándar, varianza)
- Error muestral: denominado también *error de estimación*, determinado en gran medida por la observación y medición de variables en una muestra de la población completa.
- Modelo: conjunto de supuestos o presuposiciones acerca del fenómeno bajo estudio. Un modelo se puede definir como una abstracción matemática del mundo real.

Muestreo

Teoría del muestreo

Esta teoría define los fundamentos probabilísticos, distribuciones estadísticas, métodos o técnicas de selección, fórmulas de cálculo matemático de los errores muestrales, tablas y determinación del tamaño de muestra. Indica los procedimientos para extraer una muestra del colectivo bajo estudio, con la finalidad de analizar e inferir algo del universo total.

Los beneficios de realizar el muestreo son:

- Ahorra dinero
- Ahorra tiempo
- Las muestras son más precisas

Tipos de muestreo

- Probabilístico: se utiliza un procedimiento de selección al azar y cada elemento de la población tiene la misma probabilidad de ser seleccionado o incluido en la muestra.
 - Muestreo aleatorio simple
 - Muestreo aleatorio sistemático
 - Muestreo estratificado
 - Muestreo por áreas o conglomerados
- No probabilístico: las muestras se obtienen de un proceso que no ofrece a todos los elementos la misma oportunidad de ser seleccionados.
 - Muestreo por cuotas
 - Muestreo accidental o coincidental
 - Muestreo opinático
 - Muestreo de elección razonada

Simulación con R

Hombres y mujeres Bioestadíca 1 (grupo 3)

Mujeres: 17Hombres: 14¿Proporción?

Tres muestreos en clase

Tamaño muestral: 8 individuos
 Tamaño muestral: 16 individuos
 Tamaño muestral: 24 individuos

Simulación con R: población

- 20 muestras de tamaño 15
- 2 50 muestras de tamaño 15
- 100 muestras de tamaño 15
- 4 10.000 muestras de tamaño 15

```
bio1 <- c(rep("Mujer", mujeres), rep("Hombre", hombres))
bio1
## [1]
      "Mujer" "Mujer" "Mujer" "Mujer" "Mujer"
##
   [8]
       "Mujer" "Mujer" "Mujer" "Mujer" "Mujer"
       "Mujer" "Mujer" "Hombre" "Hombre" "Hombre"
  [15]
  [22]
       "Hombre" "Hombre" "Hombre"
                                "Hombre" "Hombre" "Hombre"
##
  [29]
       "Hombre" "Hombre" "Hombre"
##
```

mujeres <- 17

Simulación con R: 20 muestras

• Proporción de mujeres real: 54.83%

```
set.seed(1000)
t muestra <- 20
muestras <- c()</pre>
for (i in 1:t_muestra) {
  muestras[i] = prop.table(table(sample(x = bio1,
                                          size = 15)))[2]
}
head(muestras)[1:4]
## [1] 0.7333333 0.5333333 0.5333333 0.5333333
mean(muestras) #Proporción de mujeres promedio en 20 muestras
```

[1] 0.55

Simulación con R: 50 muestras

• Proporción de mujeres real: 54.83%

```
t muestra <- 50
muestras <- c()</pre>
for (i in 1:t_muestra) {
  muestras[i] = prop.table(table(sample(x = bio1,
                                          size = 15)))[2]
}
head(muestras)[1:4]
## [1] 0.7333333 0.5333333 0.5333333 0.5333333
mean(muestras) #Proporción de mujeres promedio en 50 muestras
```

[1] 0.544

set.seed(1000)

Simulación con R: 100 muestras

• Proporción de mujeres real: 54.83%

```
set.seed(1000)
t muestra <- 100
muestras <- c()</pre>
for (i in 1:t_muestra) {
  muestras[i] = prop.table(table(sample(x = bio1,
                                          size = 15)))[2]
}
head(muestras)[1:4]
## [1] 0.7333333 0.5333333 0.5333333 0.5333333
mean (muestras) #Proporción de mujeres promedio en 100 muestras
```

[1] 0.5466667

Simulación con R: 10.000 muestras

• Proporción de mujeres real: 54.83%

```
set.seed(1000)
t muestra <- 10000
muestras <- c()</pre>
for (i in 1:t_muestra) {
  muestras[i] = prop.table(table(sample(x = bio1,
                                          size = 15)))[2]
}
head(muestras)[1:4]
## [1] 0.7333333 0.5333333 0.5333333 0.5333333
mean (muestras) #Proporción de mujeres promedio en 10 mil muest
```

[1] 0.5489867

