Адаптивный рандомизированный алгоритм выделения сообществ в графах

Тимофей Проданов

Санкт-Петербургский государственный университет Кафедра информатики

Научный руководитель: д.ф.-м.н., проф. Граничин О.Н. Рецензент: Ерофеева В. А.

> Санкт-Петербург 2015

Выделение сообществ в графах

Рассматриваются только невзвешенные неориентированные графы. Сообщества — тесно связанные группы узлов в графах. Разбиение на сообщества — разбиение множества узлов графа.

Выделение сообществ в графах

Рассматриваются только невзвешенные неориентированные графы. Сообщества — тесно связанные группы узлов в графах. Разбиение на сообщества — разбиение множества узлов графа.

Целевая функция модулярность:

$$Q(G, P) = \sum_{i \in 1..K} (e_{ii} - a_i^2),$$

где

- *G* граф
- P разбиение на сообщества
- К количество сообществ
- е нормированная матрица смежности сообществ
- а вектор нормированных степеней сообществ

Задача выделения сообществ соответствует задаче максимизации модулярности.

Алгоритмы выделения сообществ

Рандомизированный жадный алгоритм RG_k :

- Каждую итерацию рассматриваются k случайных сообществ
- У каждого из k сообществ исследуются все соседи
- Соединяется лучшая пара соседей

Алгоритмы выделения сообществ

Рандомизированный жадный алгоритм RG_k :

- Каждую итерацию рассматриваются k случайных сообществ
- У каждого из k сообществ исследуются все соседи
- Соединяется лучшая пара соседей

Схема кластеризации основных групп графа CGGC:

- $1. \ s$ начальных алгоритмов создают множество разбиений на сообщества S
- 2. Создаётся разбиение \widetilde{P} максимальное перекрытие S
- 3. Финальный алгоритм выделяет сообщества на основе разбиения P

Алгоритмы выделения сообществ

Рандомизированный жадный алгоритм RG_k :

- Каждую итерацию рассматриваются k случайных сообществ
- ullet У каждого из k сообществ исследуются все соседи
- Соединяется лучшая пара соседей

Схема кластеризации основных групп графа CGGC:

- 1. s начальных алгоритмов создают множество разбиений на сообщества S
- 2. Создаётся разбиение \widetilde{P} максимальное перекрытие S
- 3. Финальный алгоритм выделяет сообщества на основе разбиения \widetilde{P}

Итеративная схема CGGCi повторяет шаги 1 и 2, пока это увеличивает модулярность.

В качестве начальных и финального алгоритмов можно использовать RG_k .

Стохастическая аппроксимация. Постановка задачи

Одновременно возмущаемая стохастическая аппроксимация SPSA: На каждой итерации алгоритма

- 1. Выбирается вектор возмущения Δ_n , каждая координата которого равна 1 или -1 с вероятностью $\frac{1}{2}$
- 2. Рассчитываются новые аргументы функционала $\theta_n^- \leftarrow \hat{\theta}_{n-1} - d\Delta_n, \ \theta_n^+ \leftarrow \hat{\theta}_{n-1} + d\Delta_n$
- 3. Вычисляются значения функционала $y_n^- \leftarrow f(\theta_n^-), \ y_n^+ \leftarrow f(\theta_n^+)$
- 4. Вычисляется следующая оценка $\hat{\theta}_n \leftarrow \hat{\theta}_{n-1} \alpha_n \Delta_n \frac{y_n^+ y_n^-}{2J}$

Стохастическая аппроксимация. Постановка задачи

Одновременно возмущаемая стохастическая аппроксимация SPSA: На каждой итерации алгоритма

- 1. Выбирается вектор возмущения Δ_n , каждая координата которого равна 1 или -1 с вероятностью $\frac{1}{2}$
- 2. Рассчитываются новые аргументы функционала $\theta_n^- \leftarrow \hat{\theta}_{n-1} - d\Delta_n, \ \theta_n^+ \leftarrow \hat{\theta}_{n-1} + d\Delta_n$
- 3. Вычисляются значения функционала $y_n^- \leftarrow f(\theta_n^-), \ y_n^+ \leftarrow f(\theta_n^+)$
- 4. Вычисляется следующая оценка $\hat{\theta}_n \leftarrow \hat{\theta}_{n-1} \alpha_n \Delta_n \frac{y_n^+ y_n^-}{2J}$

От выбора параметров RG_k и CGGC зависит качество их работы.

Остаётся открытым вопрос об адаптивных версиях алгоритмов, работоспособных на большем количестве задач.

В работе рассматривается применение алгоритма SPSA к RGи CGGC для решения этого вопроса.

Применимось SPSA. Функция качества

Применимость SPSA обоснована теоретически для выпуклой усреднённой функции качества. Зависимость модулярности от параметра k в работе RG_k выглядит так:

Время растёт линейно от k, поэтому можно использовать функцию качества $f(Q,k) = -\alpha(\ln Q - \beta \ln k)$

Адаптивный рандомизированный жадный алгоритм

Предлагается адапивный рандомизированный жадный алгоритм ARG. Два его последовательных шага при текущей оценке \hat{k}_{n-1} выглядят следующих образом:

- 1. Вычисляются аргументы функционала $k_n^- \leftarrow \max\{\hat{k}_{n-1} - d, 1\} \text{ if } k_n^+ \leftarrow \hat{k}_{n-1} + d$
- 2. Выполняется σ итераций RG_k с параметром $k=k_n^-$, медиана прироста модулярности μ_n^-
- 3. Выполняется σ итераций RG_k с параметром $k=k_n^+$, медиана прироста модулярности μ_n^+
- 4. Вычисляются значения функционала $y_n^- \leftarrow -\alpha(\ln \mu_n^- - \beta \ln k_n^-), \ y_n^+ \leftarrow -\alpha(\ln \mu_n^+ - \beta \ln k_n^+)$
- 5. Подсчитывается следующая оценка

$$\hat{k}_n \leftarrow \max \left\{ 1, \left[\hat{k}_{n-1} - \frac{y_n^+ - y_n^-}{k_n^+ - k_n^-} \right] \right\}$$

Сравнение RG и ARG

ARG как начальный алгоритм CGGC

Если начальные алгоритмы дают плохой результат в схеме CGGC, то и окончательный результат будет плохим. По модулярности одного разбиения нельзя сказать, хорошее разбиение или плохое. Запускать RG_k с разными параметрами для проверки качества разбиения не выгодно. Поэтому имеет смысл запускать более стабильный ARG.

Таблица: Модулярность разбиений, полученных в результате работы CGGC с начальным алгоритмом A_{init} и финальным алгоритмом A_{final} на трёх графах

$\overline{A_{init}}$	RG_3		RG_{10}		ARG	
A_{final}	RG_3	RG_{10}	RG_3	RG_{10}	RG_3	RG_{10}
$\overline{G_1}$	0.16840	0.71155	0.44934	0.74794	0.42708	0.74872
G_2	0.80628	0.80645	0.80633	0.80645	0.80628	0.80647
G_3	0.84078	0.85372	0.84031	0.84448	0.83671	0.85279

Адаптивная схема кластеризации основных групп графа

Cхема ACGGC:

- 1. $n \leftarrow n + 1$
- 2. Вычисляются аргументы функционала $k_n^- \leftarrow \max\{1, \hat{k}_{n-1} d\}$ и $k_n^+ \leftarrow \hat{k}_{n-1} + d$
- 3. $RG_{k_n^-}$ и $RG_{k_n^+}$ создают разбиения P_n^- и P_n^+ , они записываются в множество S, их модулярности Q_n^- и Q_n^+
- 4. Вычисляются значения функционала $y_n^- \leftarrow f(Q_n^-, k_n^-), \ y_n^+ \leftarrow f(Q_n^+, k_n^+)$
- 5. Рассчитывается следующая оценка:

$$\hat{k}_n \leftarrow \max \left\{ 1, \left[\hat{k}_{n-1} - \frac{y_n^+ - y_n^-}{k_n^+ - k_n^-} \right] \right\}$$

- 6. При $n \neq l$ переход на 1 шаг, иначе переход на 7 шаг
- 7. В зависимости от $r\in(0,1]$ выбирается несколько хороших разбиений из S, которые формируют максимальное перекрытие \widetilde{P}
- 8. Финальный алгоритм выделяет сообщества на основе \widetilde{P}

• $d \in \mathbb{N}, \ \alpha > 0 \in \mathbb{R}$

• $d \in \mathbb{N}, \ \alpha > 0 \in \mathbb{R}$

• $\hat{k}_0 \in \mathbb{N}$

•
$$r \in (0,1]$$

Время работы

Два механизма снижения времени работы:

Время работы

Два механизма снижения времени работы:

Сравнение CGGC и ACGGC

Таблица: Модулярность разбиений, полученных ACGGC и CGGC на тестовых графах

	$ACGGC^I$	$ACGGC^{II}$	$CGGC_{10}^{10}$	$CGGC_3^{10}$	$CGGC_{10}^3$
karate	0.417242	0.417406	0.415598	0.396532	0.405243
dolphins	0.524109	0.523338	0.521399	0.523338	0.522428
chesapeake	0.262439	0.262439	0.262439	0.262439	0.262370
adjnoun	0.299704	0.299197	0.295015	0.292703	0.290638
polbooks	0.527237	0.527237	0.527237	0.526938	0.526784
football	0.603324	0.604266	0.604266	0.599537	0.599026
celegans	0.439604	0.438584	0.435819	0.436066	0.432261
jazz	0.444739	0.444848	0.444871	0.444206	0.444206
netscience	0.907229	0.835267	0.724015	0.708812	0.331957
email	0.573333	0.573409	0.571018	0.572667	0.567423
polblogs	0.424107	0.423208	0.422901	0.421361	0.390395
pgpGiantCompo	0.883115	0.883085	0.882237	0.882532	0.880340
as-22july06	0.671249	0.670677	0.666766	0.669847	0.665260
cond-mat-2003	0.744533	0.750367	0.751109	0.708775	0.413719
caidaRouterLevel	0.846312	0.855651	0.851622	0.858955	0.843835
cnr-2000	0.912762	0.912783	0.912500	0.912777	0.912496
eu-2005	0.938292	0.936984	0.935510	0.936515	0.936420
in-2004	0.979844	0.979771	0.979883		

Сравнение CGGCi и ACGGCi

Таблица: Модулярность работы четырёх итеративных алгоритмов на небольших тестовых графах

	$ACGGCi^I$	$ACGGCi^{II}$	CGGCi	combined
karate	0.417242	0.417406	0.417242	0.417242
dolphins	0.525869	0.525869	0.525869	0.525869
chesapeake	0.262439	0.262439	0.262439	0.262439
adjnoun	0.303731	0.303504	0.303571	0.303970
polbooks	0.527237	0.527237	0.527237	0.527237
football	0.604266	0.604407	0.604429	0.604407
celegans	0.446964	0.446836	0.445442	0.447234
jazz	0.444871	0.444871	0.444871	0.444871
netscience	0.908845	0.888422	0.725781	0.907443
email	0.576778	0.577000	0.576749	0.577110
polblogs	0.424025	0.422920	0.423281	0.423996

Заключение

В рамках работы

- Проанализированы современные методы выделения сообществ
- Предложен алгоритм ARG, дающий более стабильные результаты, чем RG
- Описано возможное применение ARG
- Представлены схемы ACGGC и ACGGCi, дающая в среднем лучшие и более стабильные результаты, чем CGGC u CGGCi
- Описан механизм снижения времени работы ACGGC

Вопросы?