# Imaging's Potential to Assist in COVID-19 Crisis

- CSIC 5011 / MATH 5473 Project 2 -

Yingshu CHEN<sup>1</sup>, Wing Hei SUM<sup>2</sup>, Ho Pan IP<sup>3</sup>, Zipeng WU<sup>4</sup>

Department of Computer Science and Engineering<sup>1</sup>, Industrial Engineering and Decision Analytics<sup>2</sup>, Mathematics<sup>3</sup>, Physics<sup>4</sup>



#### Motivation

- Severe COVID-19 pandemic
  - How to detect COVID without detection kit?
  - How to speed up detection?
- Chest X-ray Image Classification!
  - Issue: lack sufficient data
- Data augmentation via synthesis!



#### Outline

- Data and observation
- Data augmentation using generative model
- Data distribution
- Classification results

#### Data Observation

- Data\* Statistics
  - Small original dataset
  - 20k images
  - Viral PNA only 1k
- Real Data visualization
  - Normal is scattered
  - Normal and Viral are close
  - COVID and Lung are close

Table 1: Data Statistics

| Class         | Normal | COVID-19 | Lung Opacity <sup>a</sup> | Viral Pneumonia <sup>b</sup> |
|---------------|--------|----------|---------------------------|------------------------------|
| Train         | 9,942  | 3,366    | 5,762                     | 1,095                        |
| Test          | 250    | 250      | 250                       | 250                          |
| Total         | 10,192 | 3,616    | 6,012                     | 1,345                        |
| Blended Train | 9,942  | 7,000    | 5,762                     | 7,000                        |

a,b Non-COVID lung infection.

t-SNE (14 sec)



## Data Augmentation

- Generative Model SOTA conditional GAN
  - stylegan2-ada model with limited data (thousand scale)
  - Photorealistic synthesis
  - Unconditional vs Conditional GAN

## Data Augmentation

Real Normal CXRs

## - Photorealism of Synthesis

Real Viral PNA CXRs



Synthetic Normal CXRs

Synthetic Viral PNA CXRs

## Data Augmentation

- Generative Model
  - SOTA conditional GAN
    - stylegan2-ada model with limited data (thousand scale)

FID↓

18.28

33.48

28.74

- Photorealistic synthesis
- Unconditional vs Conditional GAN
- Expected to assist in data augmentation

| Model* | Unconditional |          |              |           | Conditional |          |              |           |  |
|--------|---------------|----------|--------------|-----------|-------------|----------|--------------|-----------|--|
| Wiodei | Normal        | COVID-19 | Lung Opacity | Viral PNA | Normal      | COVID-19 | Lung Opacity | Viral PNA |  |

16.39

25.24

24.22

26.85

Table 3: Unconditional vs. Conditional Generative Model

28.25

Lower FID means closer to real data distribution



Unconditional - COVID-19

Conditional - COVID-19

<sup>\*</sup>Four unconditional models and one conditional model with 4 labels

#### Blended Data Distribution Visualization

• Generative model to some extent reproduce real data distribution



#### Classification

#### Method description

- Convolutional Neural Network (CNN)
- Layers: 13
- Architecture: Conv2D, Dense, Dropout, MaxPooling2D, Flatten
- Activation functions:
   ReLU and Softmax
- Early stopping to avoid over-fitting

Table 2: Hyper-parameter settings

| Optimizer | Loss                            | Metrics  | Batch Size | Epochs |  |
|-----------|---------------------------------|----------|------------|--------|--|
| Adam      | sparse_categorical_crossentropy | Accuracy | 32         | 20     |  |

#### Blended Data

Table 5: Experiments on Data Combination

| Data                                                | Validation Acc <sup>a</sup> | Prediction Acc per Class <sup>b</sup> |        |        |       |
|-----------------------------------------------------|-----------------------------|---------------------------------------|--------|--------|-------|
| Data                                                | validation Acc              | COVID                                 | Lung   | Normal | Viral |
| Real only                                           | 86.41%                      | 92.4%                                 | 75.2%  | 82.4%  | 92.0% |
| Real + 3,634 COVID synthesis                        | 88.04%                      | 90.4%                                 | 82.4%  | 89.2%  | 95.2% |
| Real + 1,238 Lung synthesis                         | 86.05%                      | 88.8%                                 | 81.2%  | 88.8%  | 90.4% |
| Real + 5,905 Viral synthesis                        | 89.09%                      | 94.4%                                 | 80.04% | 87.6%  | 94.8% |
| Real + 3,634 COVID & 5,905 Viral synthesis          | 90.35%                      | 95.2%                                 | 80.0%  | 91.6%  | 96.4% |
| Real + 3,634 COVID&1,238 Lung&5,905 Viral synthesis | 89.35%                      | 94.4%                                 | 81.2%  | 89.2%  | 97.2% |

a,b Different from Sec.4.1, here we use #correct/#prediction in validation set and testing set as accuracy.

#### **Evaluation on the Classification**

#### **Real Data**



## Real Data + Synthetic Data (COVID-19 & Viral)



**Overall Accuracy: 84.1%** 



#### Evaluation on the Classification

#### **Real Data**



## Real Data + Synthetic Data (COVID-19 & Viral)



### Summary

- Dimensionality reduction methods can work as a visualization and evaluation means to visualize data distribution and get data distribution observation.
- High-quality chest X-ray images synthesis with limited data can be synthesized via a conditional GAN.
- We transfer the COVID-19 CXR detection problem to a 4-class classification problem considering other non-COVID lung infectious CXRs as well.
- We validate the effectiveness of synthetic images for medical data augmentation and visual classification enhancement.
- Qualitatively and quantitatively verify the potential of image generative model to assist in new respiratory infectious disease detection.