Reevaluating Composite Scores: Fast Quasi-Netwton Optimization and Bootstrapping

Eli Kravitz

Texas A&M

February 13, 2022

- It is common in epidemiology to use composite scores to assess health behavior.
 - Healthy Eating Index (next slide), Mediterranean Diet Score, Physical and Mental Health Composite Scores, etc.
- Assign individuals' health behavior a <u>single</u> interpretable score between 0 and 100. Use that score to model disease risk

Component	Units	HEI-2005 score calculation
Total Fruit	cups	$\min\left\{5, 5 \times (\text{density}/.8)\right\}$
Whole Fruit	cups	$\min \{5, 5 \times (\text{density}/.4)\}$
Total Vegetables	cups	$\min\left\{5, 5 \times \left(\frac{1.1}{1.1}\right)\right\}$
DOL	cups	$\min \{5, 5 \times (\text{density/.4})\}$
Total Grains	ounces	$\min \{5, 5 \times (\text{density/3})\}$
Whole Grains	ounces	$\min \{5, 5 \times (\text{density}/1.5)\}\$
Milk	cups	$\min\left\{10, 10 \times \left(\frac{1.3}{1.3}\right)\right\}$
Meat and Beans	ounces	$\min\left\{10, 10 \times \left(\text{density}/2.5\right)\right\}$
Oil	grams	$\min\left\{10, 10 \times \left(\frac{12}{12}\right)\right\}$
Saturated Fat	% of	if density ≥ 15 score = 0
	energy	else if density $\leq 7 \text{ score} = 10$
		else if density $> 10 \text{ score} = 8 - \{8 \times (\text{density} - 10)/5\}$
		else, score = $10 - \{2 \times (\text{density} - 7)/3\}$
Sodium	milligrams	if density $\geq 2000 \text{ score} = 0$
		else if density $\leq 700 \text{ score} = 10$
		else if density ≥ 1100
		$score = 8 - \{8 \times (density - 1100)/(2000 - 1100)\}$
		else score = $10 - \{2 \times (density - 700)/(1100 - 700)\}$
SoFAAS	% of	if density ≥ 50 score = 0
	energy	else if density ≤ 20 score=20
		else score = $20 - \{20 \times (density - 20)/(50 - 20)\}$

Figure: 2005 Healthy Index Index (HEI) developed by U.S. Department of Agriculture (USDA)

- Improvement: Use many populations and diseases to build a more accurate score.
 - single score but more predictive
- The data of interest NIH-AARP Study of Diet and Health
- Relate cancer and mortality with quality of diet as measured by the HEI.

Denote j=1,...,J as the index of the HEI component. There are k=1,...K populations and $\ell=1,...L_K$ diseases in each population. The data are observed as follows:

- $Y_{ik\ell}=1$ is a binary indicator of disease ℓ for the i^{th} person in population k .
- Let $(X_{i1},...,X_{iJ})$ be the HEI score for person i with components j=1,...,J. J=12 in the 2005-HEI
- Covariates are denoted as $Z_{ik\ell}$. This includes age, ethnicity, education, body mass index, smoking status, etc.

• We model the probability of someone of population ℓ having disease k as

$$\Pr(Y_{k\ell} = 1 | X_{ijl}, Z_{ik\ell}) = H(\beta_{k\ell} \sum_{j=1}^{J} X_{ijk} \alpha_j + Z_{ik\ell} \theta_{k\ell}), \quad (1)$$

where $H(\cdot)$ is the logistic function.

• This model needs a constraint for identifiability. Initially set $\beta_{11}=-1$. After model converges, set $\alpha_j^*=\alpha_j/\alpha^T c_{max}$ where c_{max} is the highest value assigned to a component in the HEI.

Written less compactly, we fit a system of nonlinear equations:

$$H(\beta_{11}\sum_{j=1}^{J}X_{i11}\alpha_{j} + Z_{i11}\theta_{11})$$

$$H(\beta_{12}\sum_{j=1}^{J}X_{i12}\alpha_{j} + Z_{i12}\theta_{i12})$$

$$\vdots$$

$$\vdots$$

$$H(\beta_{k\ell}\sum_{j=1}^{J}X_{ijk}\alpha_{j} + Z_{ik\ell}\theta_{k\ell}),$$

where each population, disease combination is modeled with separate β and θ but a single α

$$\Pr(Y_{ik\ell} = 1 | X_{ij}, Z_{ik\ell}) = H(\beta_{k\ell} \sum_{j=1}^{J} X_{ij} \alpha_j + Z_{ik\ell} \theta_{k\ell}),$$

- Three unknown vectors
 - α : The new weights assigned to the 12 HEI components. When $\alpha \equiv 1$, the HEI is unchanged.
 - β : The effect of diet on disease ℓ in population k
 - θ : Covariate effect
- Single dietary score, $\sum_{j=1}^{J} X_i \alpha_j$, that does not depend on population or disease
- Similarly, β and θ have no dependence on diet.

- There are two important areas that the methods from STAT605 can be used.
- Model Fitting
 - Reduce the computation time required to fit the model.
- Assessing relative risk (RR) of disease
 - RR has a complication asymptotic distribution that may not be valid.
 - Bootstrap can give SE and CI's.

- ullet This model falls outside of standard GLM software because of the dependence between lpha and eta
- Parameters are estimated using iterative profile likelihood procedure.
 - Fix α and estimate β , θ with standard GLM methods
 - Fix β and θ and maximize likelihood with respect to α . (very slow!)

- Maximize likelihood with the Broyden–Fletcher–Goldfarb-Shanno (BFGS) algorithm
 - BFGS is a quasi-Newton algorithm.
- Recall that a quasi-Newton algorithm alters the traditional Newton method,

$$x_{t+1} = x_t - \alpha_t H(x_t)^{-1} \nabla f(x_t)$$
 (2)

by replacing the inverse Hessian matrix, $H(\cdot)^{-1}$, by an approximation.

• In BFGS, H_{t+1}^{-1} is given by

$$\left(I - \frac{\Delta x_t y_t^T}{y_t^T \Delta x_t}\right) H_t^{-1} \left(I - \frac{y_t \Delta x_t}{y_t^T \Delta x_t}\right) + \frac{\Delta x_t \Delta x_t}{y_t^T \Delta x_t}.$$
 (3)

where

- y_t is the difference in
- Δx_t is the step size
- H_t^{-1} is the previous approximation of the Hessian.

• BFGS is implemented in C++ using the *Rcpp* package along with the matrix algebra library *Armadillo*.

	HEI Score	Cancer Weight	Mortality Weight
Total Grain	5	0.85	0.88
Total Fruit	5	1.76	-0.13
Whole Fruit	5	1.00	0.36
Whole Grain	5	3.74	5.55
Total Vegetables	5	1.77	2.16
DOL Vegetables	5	0.99	0.80
Dairy	10	0.78	0.57
Meat and Beans	10	0.69	1.09
Oils	10	0.46	0.6
Sodium	10	1.903	1.95
Saturated Fats	10	0.77	1.06
Empty Calories	20	0.17	-0.045

Table: Results from fitting our model Interpretation: A perfect score of 5 for total grains in the HEI would now received a score of $5 \times 3.74 = 18 \text{ J}$

- Replaced old dietary score, $\sum_J X_{ij}$, with new dietary score $\mathcal{T} = \sum_J X_{ij} \alpha_j$
- We want to assess how effective new dietary suggestions are.
 - We want to see if the disease risk of someone with a poor diet differs from the disease risk of someone with a good diet.
- Formally, we want to estimate the relative risk of moving from the 90th quantile of dietary scores to the 10th quantile:

$$exp\{\beta_{k\ell}(T_{k\ell,90^{th}} - T_{k\ell,10^{th}})\},$$
 (4)

where $T_{k\ell,q^{th}}$ is the q^{th} quantile of $\sum_{J} X_{ij} \alpha_{j}$

- I asses the variability in (4) using the non parametric bootstrap.
- In practice, models have a huge number of nusiance parameters, θ .
 - Reedy et. all (2008) suggest 25 covariates per population-disease combination
 - 100 nuisance parameters in our analysis.
- These can expand asymptotic confidence intervals well past nominal coverage.
- Diciccio and Efron (1996) suggest that bootstrap Cl's are "more dependable" than delta-method Cl's

- Getting an adequate number of samples is challenging. Fitting even a single model can be very time consuming.
- This limits the number of bootstraps samples that can be taken in a reasonable amount of time.
- To decrease variability in sampling, I implement the during-sampling balanced bootstrap suggested in Efron and Tibshirani (1993).
 - This allows the relatively small number of bootstrap sample to more accurately estimate the variability of the relative risk

- Balanced Bootstrap: Generate $b=1,\ldots,B$ copies each population. Permute each of the subgroups separately to assure that samples from each population appear the same number of times.
 - **1** Model Fitting: For the *b* generated data set fit the regression $(Y_{ik\ell,b} = 1|X_b, Z_b) = H(\beta_{k\ell} \sum_j X_{ij,b} \alpha_j + Z_{ikl,b} \theta_{kl})$ with $\beta_{11} = -1$
 - **2** Impose Constraint: $\widehat{\alpha}_b$ is set to $\widehat{\alpha}_{j,b}^* = \alpha_{j,b}/\alpha_b c_{\max}$ and calculate a value for β_{11} .
 - **Recalculate Dietary Score:** Using the <u>original</u> dataset, X define $T_{i,b} = \sum_j X_{ij} \widehat{\alpha}_{j,b}^*$
 - **Ompute log relative risk** Take the 10th and 90th percentile of $T_{i\ell,b}$ and calculate log relative risk as $\mathcal{L}_{kl,b} = \beta_{kl,b}^*(T_{i,b_{90th}} T_{il,b_{10th}})$.
- Repeat steps (1 \sim 4) for all B data sets.

- Steps (1 \sim 4) are completely parallelized.
- The bootstrap samples are asymptotically distributed as a Gaussian centered at the true log RR. (Not shown here)

	Me	en	Women	
	Relative Risk	CI	Relative Risk	CI
Lung	0.46	(0.42, 0.48)	0.52	(0.47, 0.55)
Colorectal	0.74	(0.67, 0.79)	0.82	(0.74, 0.92)
Prostate	1.12	(1.06, 1.16)	•	•
Breast	•	•	0.97	(0.91, 1.03)
Ovarian	•	•	1.03	(0.87, 1.26)

Table: Relative risk for men and women when cancer risk of interest.

	Men		Women	
	Relative Risk	CI	Relative Risk	CI
Cancer	0.77	(0.73, 0.80)	0.82	(0.77, 0.86)
CVD	0.69	(0.65, 0.73)	0.64	(0.59, 0.70)
Other	0.62	(0.59, 0.65)	0.62	(0.58, 0.67)

Table: Relative risk for men and women when mortality risk of interest.

Thank You

- Histograms of bootstraps are fairly symmetric.
- BC_a may have been helpful, but the distribution isn't extremely skewed.