Adjustable Robust Optimization with discrete uncertainty

Henri Lefebvre¹, Enrico Malaguti¹, Michele Monaci¹

1University of Bologna, DEI
{henri.lefebvre,enrico.malaguti,michele.monaci}@unibo.it

EURO 2022, Espoo

Problem definition

minimize
$$\boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{d}^T \boldsymbol{y}$$
 (1)

subject to
$$Tx + Hy \le f$$
 (2)

$$\boldsymbol{x} \in X, \boldsymbol{y} \in Y \tag{3}$$

minimize
$$\boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{d}^T \boldsymbol{y}$$
 (1)

subject to
$$Tx + Hy \le f$$
 (2)

$$x \in X, y \in Y$$
 (3)

• We only know $\mathbf{H} \in \mathcal{H} = \{\mathbf{H}^1, ..., \mathbf{H}^Q\}$

minimize
$$\boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{d}^T \boldsymbol{y}$$
 (1)

subject to
$$Tx + Hy \le f$$
 (2)

$$x \in X, y \in Y$$
 (3)

- ullet We only know $oldsymbol{H} \in \mathcal{H} = \{oldsymbol{H}^1,...,oldsymbol{H}^Q\}$
- ullet Assume h_{ij} can only take two values \underline{h}_{ij} and $ar{h}_{ij}$ (with $\underline{h}_{ij} \leq ar{h}_{ij}$)

minimize
$$\boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{d}^T \boldsymbol{y}$$
 (1)

subject to
$$Tx + Hy \le f$$
 (2)

$$x \in X, y \in Y$$
 (3)

- ullet We only know $oldsymbol{H} \in \mathcal{H} = \{oldsymbol{H}^1,...,oldsymbol{H}^Q\}$
- ullet Assume h_{ij} can only take two values \underline{h}_{ij} and $ar{h}_{ij}$ (with $\underline{h}_{ij} \leq ar{h}_{ij}$)
- ullet We can represent ${\cal H}$ thanks to binary parameters $\xi_{ij} \in \{0,1\}$

$$h_{ij} = \underline{h}_{ij} + (\bar{h}_{ij} - \underline{h}_{ij})\xi_{ij} \qquad \boldsymbol{\xi} \in \Xi$$
 (4)

minimize
$$\boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{d}^T \boldsymbol{y}$$
 (1)

subject to
$$Tx + Hy \le f$$
 (2)

$$x \in X, y \in Y \tag{3}$$

- We only know $\mathbf{H} \in \mathcal{H} = \{\mathbf{H}^1, ..., \mathbf{H}^Q\}$
- ullet Assume h_{ij} can only take two values \underline{h}_{ij} and $ar{h}_{ij}$ (with $\underline{h}_{ij} \leq ar{h}_{ij}$)
- ullet We can represent ${\mathcal H}$ thanks to binary parameters $\xi_{ij} \in \{0,1\}$

$$h_{ij} = \underline{h}_{ij} + (\bar{h}_{ij} - \underline{h}_{ij})\xi_{ij} \qquad \boldsymbol{\xi} \in \Xi$$
 (4)

• For $\hat{\pmb{x}} \in X$ and appropriate $\hat{\pmb{\xi}} \in \Xi$, $Y(\pmb{x}, \hat{\pmb{H}})$ is encoded as

$$Y(\hat{\boldsymbol{x}},\hat{\boldsymbol{\xi}}) = \left\{ \boldsymbol{y} \in Y : \sum_{j=1}^{n_Y} \left(\underline{h}_{ij} + (\overline{h}_{ij} - \underline{h}_{ij}) \, \hat{\xi}_{ij} \right) y_j \le f_i - \sum_{j=1}^{n_X} t_{ij} \, \hat{x}_j \quad i = 1, ..., m_Y \right\}$$
(5)

An adjustable robust approach

$$\min_{\mathbf{x} \in X} \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \max_{\mathbf{\xi} \in \Xi} \min_{\mathbf{y} \in Y(\mathbf{x}, \mathbf{\xi})} \mathbf{d}^{\mathsf{T}} \mathbf{y} \right\}$$
(6)

An adjustable robust approach

Here and now

$$\min_{\mathbf{x} \in X} \left\{ \mathbf{c}^T \mathbf{x} + \max_{\mathbf{\xi} \in \Xi} \min_{\mathbf{y} \in Y(\mathbf{x}, \mathbf{\xi})} \mathbf{d}^T \mathbf{y} \right\}$$

$$\text{Make decision } \mathbf{x} \in X$$

$$\text{based on a priori}$$

$$\text{knowledge } \mathbf{\xi} \in \Xi$$

$$\text{Observe the real outcome } \tilde{\mathbf{\xi}} \text{ of } \tilde{\mathbf{\xi}}$$

$$\text{Make recourse decision}$$

$$\mathbf{y} \in Y(\mathbf{x}, \overline{\mathbf{\xi}}) \text{ based on a posteriori knowledge } \tilde{\mathbf{\xi}}$$

$$\text{a posteriori knowledge } \tilde{\mathbf{\xi}}$$

Uncertainty

Wait and see

Aim of this work

- Some bad news...
 - **1** These problems include Σ_2^P -hard
 - ★ Includes Knapsack Interdiction Problem
 - **2** Most of the literature considers $conv(\Xi)$ instead of Ξ
 - \odot Mixed-integer second-stage (even when Ξ is convex) are very hard to deal with
 - ★ Dual approaches are no longer feasible
 - column-and-constraint generation MP hard to solve, bilevel problem with integer follower for separation...

Aim of this work

- Some bad news...
 - **1** These problems include Σ_2^P -hard
 - ★ Includes Knapsack Interdiction Problem
 - 2 Most of the literature considers $conv(\Xi)$ instead of Ξ
 - \odot Mixed-integer second-stage (even when Ξ is convex) are very hard to deal with
 - ★ Dual approaches are no longer feasible
 - column-and-constraint generation MP hard to solve, bilevel problem with integer follower for separation...
- Some encouraging results
 - Efficient approaches for the sepcial case of objective uncertainty and convex uncertainty
 - ★ Kämmerling and Kurtz (2020): branch-and-cut
 - * Arslan and Detienne (2021): branch-and-price

Aim of this work

- Some bad news...
 - **1** These problems include Σ_2^P -hard
 - ★ Includes Knapsack Interdiction Problem
 - 2 Most of the literature considers $conv(\Xi)$ instead of Ξ
 - \odot Mixed-integer second-stage (even when Ξ is convex) are very hard to deal with
 - ★ Dual approaches are no longer feasible
 - column-and-constraint generation MP hard to solve, bilevel problem with integer follower for separation...
- Some encouraging results
 - Efficient approaches for the sepcial case of objective uncertainty and convex uncertainty
 - * Kämmerling and Kurtz (2020): branch-and-cut
 - * Arslan and Detienne (2021): branch-and-price
- Our contribution
 - **Constraint uncertainty = Objective uncertainty** for binary **=**
 - 2 We can then apply the results from Kämmerling and Kurtz (2020)

Reformulation for ARO with binary uncertainty

• Remember the second stage

$$Y(\hat{\boldsymbol{x}},\hat{\boldsymbol{\xi}}) = \left\{ \boldsymbol{y} \in Y : \sum_{j=1}^{n_Y} \left(\underline{h}_{ij} y_j + (\bar{h}_{ij} - \underline{h}_{ij}) \hat{\xi}_{ij} y_j \right) \le f_i - \sum_{j=1}^{n_X} t_{ij} \hat{x}_j \quad i = 1, ..., m_Y \right\}$$
(7)

• Remember the second stage

$$Y(\hat{\boldsymbol{x}},\hat{\boldsymbol{\xi}}) = \left\{ \boldsymbol{y} \in Y : \sum_{j=1}^{n_Y} \left(\underline{h}_{ij} y_j + (\bar{h}_{ij} - \underline{h}_{ij}) \hat{\boldsymbol{\xi}}_{ij} y_j \right) \le f_i - \sum_{j=1}^{n_X} t_{ij} \hat{x}_j \quad i = 1, ..., m_Y \right\}$$
(7)

• Introduce $z_{ij} = \xi_{ij} y_i$

$$\sum_{j=1}^{n_Y} \left(\underline{h}_{ij} y_j + (\bar{h}_{ij} - \underline{h}_{ij}) z_{ij} \right) \le f_i - \sum_{j=1}^{n_X} t_{ij} x_j \qquad i = 1, ..., m_Y$$
 (8)

• Remember the second stage

$$Y(\hat{\boldsymbol{x}},\hat{\boldsymbol{\xi}}) = \left\{ \boldsymbol{y} \in Y : \sum_{j=1}^{n_Y} \left(\underline{h}_{ij} y_j + (\overline{h}_{ij} - \underline{h}_{ij}) \hat{\boldsymbol{\xi}}_{ij} y_j \right) \le f_i - \sum_{j=1}^{n_X} t_{ij} \hat{x}_j \quad i = 1, ..., m_Y \right\}$$
(7)

• Introduce $z_{ij} = \xi_{ij} y_j$

$$\sum_{j=1}^{n_Y} \left(\underline{h}_{ij} y_j + (\overline{h}_{ij} - \underline{h}_{ij}) z_{ij} \right) \le f_i - \sum_{j=1}^{n_X} t_{ij} x_j \qquad i = 1, ..., m_Y$$
 (8)

Linearize

$$z_{ij} \le u_j \xi_{ij}$$
 $i = 1, ..., m_Y, j = 1, ..., n_Y$ (9)
 $z_{ij} \le y_j$ $i = 1, ..., m_Y, j = 1, ..., n_Y$ (10)
 $z_{ii} > y_i - (1 - \xi_{ii})u_i$ $i = 1, ..., m_Y, j = 1, ..., n_Y$ (11)

$$z_{ij} \geq 0$$
 $i = 1, ..., m_Y, j = 1, ..., n_{Y_{a}}, n_{Y_{a}}, \dots, n_{Y_{a}}$

• Remember the second stage

$$Y(\hat{\boldsymbol{x}},\hat{\boldsymbol{\xi}}) = \left\{ \boldsymbol{y} \in Y : \sum_{j=1}^{n_Y} \left(\underline{h}_{ij} y_j + (\overline{h}_{ij} - \underline{h}_{ij}) \hat{\boldsymbol{\xi}}_{ij} y_j \right) \le f_i - \sum_{j=1}^{n_X} t_{ij} \hat{x}_j \quad i = 1, ..., m_Y \right\}$$
(7)

• Introduce $z_{ij} = \xi_{ij} y_j$

$$\sum_{j=1}^{n_Y} \left(\underline{h}_{ij} y_j + (\overline{h}_{ij} - \underline{h}_{ij}) z_{ij} \right) \le f_i - \sum_{j=1}^{n_X} t_{ij} x_j \qquad i = 1, ..., m_Y$$
 (8)

Linearize

$$z_{ij} \le y_j$$
 $i = 1, ..., m_Y, j = 1, ..., n_Y$ (10)

$$z_{ij} \ge y_j - (1 - \xi_{ij})u_j$$
 $i = 1, ..., m_Y, j = 1, ..., n_Y$ (11)

$$z_{ii} \ge 0$$
 $i = 1, ..., m_Y, j = 1, ..., n_Y$ (12)

(9)

Thus, the second stage is

$$\min_{\mathbf{y} \in Y(\mathbf{x}, \boldsymbol{\xi})} \boldsymbol{d}^{T} \mathbf{y} = \min_{(\mathbf{y}, \mathbf{z}) \in Z(\mathbf{x}, \boldsymbol{\xi})} \boldsymbol{d}^{T} \mathbf{y}$$
 (13)

with

$$Z(\mathbf{x},\boldsymbol{\xi}) = \left\{ \begin{aligned} \sum_{j=1}^{n_{Y}} \left(\underline{h}_{ij} y_{j} + (\overline{h}_{ij} - \underline{h}_{ij}) z_{ij} \right) &\leq f_{i} - \sum_{j=1}^{n_{X}} t_{ij} x_{j} & i \in [m_{Y}] \\ (\mathbf{y}, \mathbf{z}) : & z_{ij} \leq y_{j} & i \in [m_{Y}], j \in [n_{Y}] \\ z_{ij} \geq 0 & i \in [m_{Y}], j \in [n_{Y}] \\ z_{ij} \geq y_{j} - (1 - \xi_{ij}) u_{j} & i \in [m_{Y}], j \in [n_{Y}] \\ \mathbf{y} \in Y \end{aligned} \right\}$$

$$(14)$$

Thus, the second stage is

$$\min_{\mathbf{y} \in Y(\mathbf{x}, \boldsymbol{\xi})} \boldsymbol{d}^{\mathsf{T}} \mathbf{y} = \min_{(\mathbf{y}, \mathbf{z}) \in Z(\mathbf{x}, \boldsymbol{\xi})} \boldsymbol{d}^{\mathsf{T}} \mathbf{y}$$
 (13)

with

$$Z(\mathbf{x},\boldsymbol{\xi}) = \begin{cases} \sum_{j=1}^{n_{Y}} \left(\underline{h}_{ij}y_{j} + (\overline{h}_{ij} - \underline{h}_{ij})z_{ij}\right) \leq f_{i} - \sum_{j=1}^{n_{X}} t_{ij}x_{j} & i \in [m_{Y}] \\ (\mathbf{y},\mathbf{z}) : & z_{ij} \leq y_{j} \\ z_{ij} \geq 0 & i \in [m_{Y}], j \in [n_{Y}] \\ z_{ij} \geq y_{j} - (1 - \xi_{ij})u_{j} & i \in [m_{Y}], j \in [n_{Y}] \\ \mathbf{y} \in Y \end{cases}$$

$$(14)$$

• Define Z'(x) such that

$$Z(x,\xi) = Z'(x) \cap \{(y,z) : z_{ij} \ge y_j - (1-\xi_{ij})u_j \quad i \in [m_Y], j \in [n_Y]\}$$
 (15)

Polyhedral analysis

Theorem (Arslan and Detienne (2021), Li and Grossman (2018))

Let $Y \subseteq \Pi_{j=1}^n[I_j,u_j]$ and let L(x) be defined, for $x \in \{0,1\}^n$ as follows,

$$L(\mathbf{x}) = \left\{ \mathbf{y} \in \mathbb{R}_{+}^{n} : \forall j \in \{1, ..., n\}, \begin{cases} x_{j} = 1 \Rightarrow y_{j} \in [\alpha_{j}^{1}, \beta_{j}^{1}] \\ x_{j} = 0 \Rightarrow y_{j} \in [\alpha_{j}^{0}, \beta_{j}^{0}] \end{cases} \right\}$$
(16)

with $\alpha_j^0, \alpha_j^1, \beta_j^0, \beta_j^1 \in \{l_j, u_j\}$. Then, the following equality holds,

$$\forall \mathbf{x} \in \{0,1\}^n, \quad \operatorname{conv}(\mathbf{Y} \cap L(\mathbf{x})) = \operatorname{conv}(\mathbf{Y}) \cap L(\mathbf{x}) \tag{17}$$

Polyhedral analysis

Theorem (Arslan and Detienne (2021), Li and Grossman (2018))

Let $Y \subseteq \Pi_{j=1}^n[l_j,u_j]$ and let L(x) be defined, for $x \in \{0,1\}^n$ as follows,

$$L(\mathbf{x}) = \left\{ \mathbf{y} \in \mathbb{R}_+^n : \forall j \in \{1, ..., n\}, \begin{cases} x_j = 1 \Rightarrow y_j \in [\alpha_j^1, \beta_j^1] \\ x_j = 0 \Rightarrow y_j \in [\alpha_j^0, \beta_j^0] \end{cases} \right\}$$
(16)

with $\alpha_j^0, \alpha_j^1, \beta_j^0, \beta_j^1 \in \{l_j, u_j\}$. Then, the following equality holds,

$$\forall \mathbf{x} \in \{0,1\}^n, \quad \operatorname{conv}(Y \cap L(\mathbf{x})) = \operatorname{conv}(Y) \cap L(\mathbf{x})$$
(17)

Corollary

We had

$$Z(\mathbf{x}, \boldsymbol{\xi}) = Z'(\mathbf{x}) \cap \{(\mathbf{y}, \mathbf{z}) : z_{ij} \ge y_j - (1 - \xi_{ij})u_j \quad i \in [m_Y], j \in [n_Y]\}$$
(18)

We also have

$$conv(Z(\mathbf{x}, \boldsymbol{\xi})) = conv(Z'(\mathbf{x})) \cap \{(\mathbf{y}, \mathbf{z}) : z_{ij} \ge y_j - (1 - \xi_{ij})u_j \quad i \in [m_Y], j \in [n_Y]\}$$
(19)

By linearity of the objective function

$$\min_{\mathbf{y} \in Y(\mathbf{x}, \boldsymbol{\xi})} \boldsymbol{d}^{\mathsf{T}} \mathbf{y} = \min_{(\mathbf{y}, \mathbf{z}) \in \text{conv}(Z(\mathbf{x}, \boldsymbol{\xi}))} \boldsymbol{d}^{\mathsf{T}} \mathbf{y}$$
 (20)

By linearity of the objective function

$$\min_{\mathbf{y} \in Y(\mathbf{x}, \boldsymbol{\xi})} \boldsymbol{d}^T \mathbf{y} = \min_{(\mathbf{y}, \mathbf{z}) \in \text{conv}(Z(\mathbf{x}, \boldsymbol{\xi}))} \boldsymbol{d}^T \mathbf{y}$$
 (20)

We also have,

$$conv(Z(x,\xi)) = conv(Z'(x) \cap \{(y,z) : z_{ij} \ge y_j - (1-\xi_{ij})u_j \quad i \in [m_Y], j \in [n_Y]\})$$
(21)

By linearity of the objective function

$$\min_{\mathbf{y} \in Y(\mathbf{x}, \boldsymbol{\xi})} \boldsymbol{d}^{T} \mathbf{y} = \min_{(\mathbf{y}, \mathbf{z}) \in \text{conv}(Z(\mathbf{x}, \boldsymbol{\xi}))} \boldsymbol{d}^{T} \mathbf{y}$$
 (20)

We also have.

$$conv(Z(x,\xi)) = conv(Z'(x) \cap \{(y,z) : z_{ij} \ge y_j - (1-\xi_{ij})u_j \quad i \in [m_Y], j \in [n_Y]\})$$
 (21)

• We can "split" the convex hull since ξ_{ii} is binary (Arslan and Detienne (2021))

$$conv(Z(x,\xi)) = conv(Z'(x)) \cap \{(y,z) : z_{ij} \ge y_j - (1-\xi_{ij})u_j \quad i \in [m_Y], j \in [n_Y]\}$$
 (22)

10 / 22

• By linearity of the objective function

$$\min_{\mathbf{y} \in Y(\mathbf{x}, \boldsymbol{\xi})} \boldsymbol{d}^T \mathbf{y} = \min_{(\mathbf{y}, \mathbf{z}) \in \text{conv}(Z(\mathbf{x}, \boldsymbol{\xi}))} \boldsymbol{d}^T \mathbf{y}$$
 (20)

We also have,

$$conv(Z(x,\xi)) = conv(Z'(x) \cap \{(y,z) : z_{ij} \ge y_j - (1-\xi_{ij})u_j \quad i \in [m_Y], j \in [n_Y]\})$$
 (21)

• We can "split" the convex hull since ξ_{ij} is binary (Arslan and Detienne (2021))

$$conv(Z(x,\xi)) = conv(Z'(x)) \cap \{(y,z) : z_{ij} \ge y_j - (1-\xi_{ij})u_j \quad i \in [m_Y], j \in [n_Y]\}$$
 (22)

Thus,

$$\min_{\mathbf{y} \in Y(\mathbf{x}, \boldsymbol{\xi})} \boldsymbol{d}^T \mathbf{y} = \min_{\substack{(\mathbf{y}, \mathbf{z}) \in \text{conv}(Z'(\mathbf{x})) \\ \mathbf{z}_{ii} > \mathbf{y}_i - (1 - \boldsymbol{\xi}_{ii}) \mathbf{u}_i}} \boldsymbol{d}^T \mathbf{y}$$
(23)

Step 3/5: dualize

The second stage problem is now an LP!

$$\text{minimize } \mathbf{d}^T \mathbf{y} \tag{24}$$

subject to
$$(\mathbf{y}, \mathbf{z}) \in \text{conv}(Z'(\mathbf{x}))$$
 (25)

$$z_{ij} \ge y_j - (1 - \xi_{ij})u_j \qquad (\lambda_{ij} \le 0)$$
 (26)

Step 3/5: dualize

The second stage problem is now an LP!

minimize
$$\mathbf{d}^T \mathbf{y}$$
 (24)

subject to
$$(\mathbf{y}, \mathbf{z}) \in \text{conv}(Z'(\mathbf{x}))$$
 (25)

$$z_{ij} \ge y_j - (1 - \xi_{ij})u_j \qquad (\lambda_{ij} \le 0)$$
 (26)

It is equal to its dual

$$= \max_{\lambda \le 0} \min_{(\mathbf{y}, \mathbf{z}) \in Z'(\mathbf{x})} \left\{ \sum_{j=1}^{n_Y} d_j y_j + \sum_{i=1}^{n_Y} \sum_{j=1}^{n_Y} \lambda_{ij} ((1 - \xi_{ij}) u_j + z_{ij} - y_j) \right\}$$
(27)

Step 4/5: re-arrange

• For a given $\xi \in \Xi$, let us rearrange the terms

$$\max_{\lambda \leq 0} \min_{(\mathbf{y}, \mathbf{z}) \in Z'(\mathbf{x})} \left\{ \sum_{j=1}^{n_{Y}} d_{j} y_{j} + \sum_{i=1}^{n_{Y}} \left(\sum_{j: \xi_{ij} = 0} \lambda_{ij} (u_{j} + z_{ij} - y_{j}) + \sum_{j: \xi_{ij} = 1} \lambda_{ij} (z_{ij} - y_{j}) \right) \right\}$$
(28)

Step 4/5: re-arrange

• For a given $\xi \in \Xi$, let us rearrange the terms

$$\max_{\lambda \leq 0} \min_{(\mathbf{y}, \mathbf{z}) \in Z'(\mathbf{x})} \left\{ \sum_{j=1}^{n_{Y}} d_{j} y_{j} + \sum_{i=1}^{n_{Y}} \left(\sum_{j: \xi_{ij} = 0} \lambda_{ij} (u_{j} + z_{ij} - y_{j}) + \sum_{j: \xi_{ij} = 1} \lambda_{ij} (z_{ij} - y_{j}) \right) \right\}$$
(28)

• By inspection, since $u_j+z_{ij}-y_j\geq 0$ and $\lambda_{ij}\leq 0,\ \xi_{ij}=0\Rightarrow \lambda_{ij}^*=0$

Step 4/5: re-arrange

• For a given $\xi \in \Xi$, let us rearrange the terms

$$\max_{\lambda \leq 0} \min_{(\mathbf{y}, \mathbf{z}) \in Z'(\mathbf{x})} \left\{ \sum_{j=1}^{n_{Y}} d_{j} y_{j} + \sum_{i=1}^{n_{Y}} \left(\sum_{j: \xi_{ij} = 0} \lambda_{ij} (u_{j} + z_{ij} - y_{j}) + \sum_{j: \xi_{ij} = 1} \lambda_{ij} (z_{ij} - y_{j}) \right) \right\}$$
(28)

- By inspection, since $u_j + z_{ij} y_j \ge 0$ and $\lambda_{ij} \le 0$, $\xi_{ij} = 0 \Rightarrow \lambda_{ij}^* = 0$
- Thus, we can write

$$= \max_{\boldsymbol{\lambda} \leq 0} \min_{(\boldsymbol{y}, \boldsymbol{z}) \in Z'(\boldsymbol{x})} \sum_{j=1}^{n_{Y}} \left(d_{j} y_{j} + \sum_{i=1}^{m_{Y}} \lambda_{ij} \xi_{ij} (z_{ij} - y_{j}) \right)$$
(29)

Step 5/5: dual fixation

We obtain

$$\min_{\mathbf{x} \in X} \left\{ \sum_{j=1}^{n_X} c_j x_j + \max_{\boldsymbol{\xi} \in \Xi, \boldsymbol{\lambda} \le 0} \min_{(\mathbf{y}, \mathbf{z}) \in Z'(\mathbf{x})} \sum_{j=1}^{n_Y} \left(d_j y_j + \sum_{i=1}^{m_Y} \lambda_{ij} \xi_{ij} (z_{ij} - y_j) \right) \right\}$$
(30)

Step 5/5: dual fixation

We obtain

$$\min_{\mathbf{x} \in X} \left\{ \sum_{j=1}^{n_X} c_j x_j + \max_{\boldsymbol{\xi} \in \Xi, \lambda \le 0} \min_{(\mathbf{y}, \mathbf{z}) \in Z'(\mathbf{x})} \sum_{j=1}^{n_Y} \left(d_j y_j + \sum_{i=1}^{m_Y} \lambda_{ij} \xi_{ij} (z_{ij} - y_j) \right) \right\}$$
(30)

• We can replace λ_{ij} by a sufficiently large value $\underline{\lambda}_{ij}$!

(i.e., bounds on $\lambda_{ij}^*(\boldsymbol{\xi})$ for all $\boldsymbol{\xi}$)

Step 5/5: dual fixation

We obtain

$$\min_{\mathbf{x} \in X} \left\{ \sum_{j=1}^{n_X} c_j x_j + \max_{\boldsymbol{\xi} \in \Xi, \boldsymbol{\lambda} \le 0} \min_{(\mathbf{y}, \mathbf{z}) \in Z'(\mathbf{x})} \sum_{j=1}^{n_Y} \left(d_j y_j + \sum_{i=1}^{m_Y} \lambda_{ij} \xi_{ij} (z_{ij} - y_j) \right) \right\}$$
(30)

• We can replace λ_{ij} by a sufficiently large value $\underline{\lambda}_{ij}$!

(i.e., bounds on $\lambda_{ij}^*(\boldsymbol{\xi})$ for all $\boldsymbol{\xi}$)

• For the special case of downward monotone second stage, $\underline{\lambda}_{ij} = d_j$ is large enough! (i.e., $d_i \leq 0$ and $\underline{h}_{ii} \geq 0$)

Summary

• We have shown that the following problem

$$\min_{\mathbf{x} \in X} \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \max_{\boldsymbol{\xi} \in \Xi} \min_{\mathbf{y} \in Y(\mathbf{x}, \boldsymbol{\xi})} \mathbf{d}^{\mathsf{T}} \mathbf{y} \right\}$$
(31)

is equivalently solved by the following one

$$\min_{\mathbf{x} \in X} \left\{ \sum_{j=1}^{n_X} c_j x_j + \max_{\boldsymbol{\xi} \in \Xi} \min_{(\mathbf{y}, \mathbf{z}) \in Z'(\mathbf{x})} \sum_{j=1}^{n_Y} \left(d_j y_j + \sum_{i=1}^{m_Y} \underline{\lambda}_{ij} \xi_{ij} (z_{ij} - y_j) \right) \right\}$$
(32)

• We may now use the algorithmic approach of Kämmerling and Kurtz (2020)

Application to a Facility Location Problem

Capacity Facility Location Problem (CFLP)

• Given a set of sites (in green) and a set of clients (in red), where should we open a facility in order to *efficiently* serve our clients?

Figure: Example of CFLP instance

Capacity Facility Location Problem (CFLP)

• Given a set of sites (in green) and a set of clients (in red), where should we open a facility in order to *efficiently* serve our clients?

Figure: Example of CFLP instance

Notations

- Let V_1 be a set of sites and, for all $i \in V_1$, define
 - q_i the capacity of site i
 - f_i the opening cost of site i

Notations

- Let V_1 be a set of sites and, for all $i \in V_1$, define
 - q_i the capacity of site i
 - f_i the opening cost of site i
- Let V_2 be a set of clients and, for all $j \in V_2$, define
 - $ightharpoonup d_i$ the demand of client j
 - \triangleright p_j the unitary profit for serving client j

Notations

- Let V_1 be a set of sites and, for all $i \in V_1$, define
 - $ightharpoonup q_i$ the capacity of site i
 - f_i the opening cost of site i
- Let V_2 be a set of clients and, for all $j \in V_2$, define
 - $ightharpoonup d_i$ the demand of client j
 - \triangleright p_j the unitary profit for serving client j
- For every connection $(i,j) \in V_1 \times V_2$, define
 - $ightharpoonup t_{ij}$ the unitary transportation cost from i to j

Uncertainty

Demands are uncertain

$$d_j = \bar{d}_j \pm \tilde{d}_j \tag{33}$$

Uncertainty

• Demands are uncertain

$$d_j = \bar{d}_j \pm \tilde{d}_j \tag{33}$$

• We introduce Ξ such that

$$(\mathbf{I}, \mathbf{h}) \in \Xi \Leftrightarrow \begin{cases} \hat{d}_{j} = \bar{d}_{j} - \tilde{d}_{j} & \text{if } l_{j} = 1 \text{ and } h_{j} = 0\\ \hat{d}_{j} = \bar{d}_{j} + \tilde{d}_{j} & \text{if } l_{j} = 0 \text{ and } h_{j} = 1\\ \hat{d}_{j} = \bar{d}_{j} & \text{if } l_{j} = 0 \text{ and } h_{j} = 0 \end{cases}$$

$$(34)$$

and at most Γ clients change their demands

Model

ullet Here-and-now decisions: $X=\{0,1\}^{|V_1|}$, opening facilities

$$x_i = 1 \Leftrightarrow \text{ site } i \text{ is opened}$$
 (35)

Model

• Here-and-now decisions: $X = \{0,1\}^{|V_1|}$, opening facilities $x_i = 1 \Leftrightarrow \text{ site } i \text{ is opened}$ (35)

• Uncertainty:
$$\hat{d}_j = \bar{d}_j - l_j \tilde{d}_j + h_j \tilde{d}_j$$

Model

• Here-and-now decisions: $X = \{0,1\}^{|V_1|}$, opening facilities

$$x_i = 1 \Leftrightarrow \text{ site } i \text{ is opened}$$
 (35)

- Uncertainty: $\hat{d}_j = \bar{d}_j l_j \tilde{d}_j + h_j \tilde{d}_j$
- Second-stage decisions: Let $\hat{x} \in X$ and $(\hat{I}, \hat{h}) \in \Xi$,

$$\sum_{i \in V_1} f_i x_i + \text{minimize } \sum_{(i,j) \in V_1 \times V_2} t_{ij} s_{ij} - \sum_{j \in V_1} p_j (\bar{d}_j - \hat{l}_j \tilde{d}_j + \hat{h}_j \tilde{d}_j) y_j$$
 (36)

$$\sum_{j \in V_1} s_{ij} \ge y_j (\bar{d}_j - \hat{l}_j \tilde{d}_j + \hat{h}_j \tilde{d}_j) \quad \forall j \in V_2$$
 (37)

$$\sum_{i \in V_2} s_{ij} \le q_i \hat{x}_i \tag{38}$$

$$s_{ij} \ge 0, y_j \in \{0, 1\} \quad (i, j) \in V_1 \times V_2$$
 (39)

Reformulation

$$\min_{\mathbf{x} \in X} \max_{(\mathbf{I}, \mathbf{h}) \in \Xi} \min_{(\mathbf{y}, \mathbf{s}, \mathbf{z}^I, \mathbf{z}^h) \in Z'(\mathbf{x})} \Pi(\mathbf{y}, \mathbf{s}, \mathbf{z}^I, \mathbf{z}^h, \mathbf{I}, \mathbf{h})$$
(40)

Reformulation

$$\min_{\boldsymbol{x} \in X} \max_{(\boldsymbol{I}, \boldsymbol{h}) \in \Xi} \min_{(\boldsymbol{y}, \boldsymbol{s}, \boldsymbol{z}^{I}, \boldsymbol{z}^{h}) \in Z'(\boldsymbol{x})} \Pi(\boldsymbol{y}, \boldsymbol{s}, \boldsymbol{z}^{I}, \boldsymbol{z}^{h}, \boldsymbol{I}, \boldsymbol{h})$$
(40)

where

$$\Pi(\boldsymbol{y},\boldsymbol{s},\boldsymbol{z}^{l},\boldsymbol{z}^{h},\boldsymbol{l},\boldsymbol{h}) = \sum_{v \in V_{2}} \left(\sum_{u \in V_{1}} t_{uv} s_{uv} - p_{v} (\bar{d}_{v} - \tilde{d}_{v} l_{v} + \tilde{d}_{v} h_{v}) y_{v} + \underline{\lambda}_{v}^{h} h_{v} (y_{v} - z_{v}^{h}) + (1 - l_{v}) \underline{\lambda}_{v}^{l} z_{v}^{l} \right)$$

$$(41)$$

with, for all $v \in V_2$, $\underline{\lambda}'_v = p_v(\bar{d}_v - \tilde{d}_v)$, $\underline{\lambda}'_v = p_v(\bar{d}_v + \tilde{d}_v)$

Reformulation

$$\min_{\boldsymbol{x} \in X} \max_{(\boldsymbol{I}, \boldsymbol{h}) \in \Xi} \min_{(\boldsymbol{y}, \boldsymbol{s}, \boldsymbol{z}^l, \boldsymbol{z}^h) \in Z'(\boldsymbol{x})} \Pi(\boldsymbol{y}, \boldsymbol{s}, \boldsymbol{z}^l, \boldsymbol{z}^h, \boldsymbol{I}, \boldsymbol{h})$$
(40)

where

$$\Pi(\boldsymbol{y},\boldsymbol{s},\boldsymbol{z}',\boldsymbol{z}^h,\boldsymbol{l},\boldsymbol{h}) = \sum_{v \in V_2} \left(\sum_{u \in V_1} t_{uv} s_{uv} - p_v (\bar{d}_v - \tilde{d}_v l_v + \tilde{d}_v h_v) y_v + \underline{\lambda}_v^h h_v (y_v - z_v^h) + (1 - l_v) \underline{\lambda}_v^l z_v^l \right)$$

$$\tag{41}$$

with, for all $v \in V_2$, $\lambda_v' = p_v(\bar{d}_v - \tilde{d}_v)$, $\lambda_v^h = p_v(\bar{d}_v + \tilde{d}_v)$ and.

$$Z'(\mathbf{x}) = \left\{ (\mathbf{y}, \mathbf{s}, \mathbf{z}^{l}, \mathbf{z}^{h}) : \begin{array}{l} \mathbf{y} \in \{0, 1\}^{|V_{2}|}, \mathbf{s} \in \mathbb{R}_{+}^{|V_{1}| \times |V_{2}|}, \mathbf{z}^{l} \in \{0, 1\}^{|V_{2}|}, \mathbf{z}^{h} \in \{0, 1\}_{+}^{|V_{2}|} \\ \sum_{u \in V_{1}} s_{uv} \geq \bar{d}_{v} y_{v} - \tilde{d}_{v} z_{v}^{l} + \tilde{d}_{v} z_{v}^{h} \quad \forall v \in V_{2} \\ z_{v}^{l} \leq y_{v} \quad \forall v \in V_{2} \\ z_{v}^{h} \leq y_{v} \quad \forall v \in V_{2} \end{array} \right\}$$

Experimental results

- AMD 3960 running at 3.8 GHz
- 3600s time limit
- C++17 using IBM CPLEX version 12.10 to solve every sub-problem.

			$\mu=1.5$				$\mu=$ 2.0				All			
$ V_1 $	$ V_2 $	Γ	opt.	time	nodes	cuts	opt.	time	nodes	cuts	opt.	time	nodes	cuts
6	12	2	16	0.9	2.4	80.3	16	0.8	2.3	65.3	32	0.9	2.3	72.8
		4	16	20.6	2.5	380.6	16	29.5	2.1	420.9	32	25.1	2.3	400.8
		6	16	117.9	3.1	825.1	15	107.0	1.9	633.5	31	112.6	2.5	732.4
8	16	2	16	3.5	2.4	155.5	16	2.8	2.1	136.6	32	3.2	2.3	146.1
		4	15	367.4	2.5	1338.5	15	173.9	2.2	947.6	30	270.6	2.3	1143.1
		6	5	143.7	1.4	709.2	11	845.5	1.7	1682.8	16	626.1	1.6	1378.6
10	20	2	16	9.4	3.3	282.2	16	6.4	2.0	179.5	32	7.9	2.6	230.8
		4	11	752.1	3.2	1990.0	14	549.3	1.7	1285.0	25	638.5	2.4	1595.2
		6	3	1150.2	1.0	1812.7	7	1123.1	1.0	1318.0	10	1131.3	1.0	1466.4
12	24	2	16	18.6	2.3	335.9	16	15.7	1.9	288.9	32	17.1	2.1	312.4
		4	9	1277.1	1.9	2106.4	5	797.1	1.4	1616.2	14	1105.7	1.7	1931.4
		6	2	708.7	1.0	1509.0	1	2173.8	1.0	1926.0	3	1197.1	1.0	1648.0

Conclusion

- We have proposed a generic reformulation technique for ARO with binary uncertainty
- The reformulation makes the second-stage independent of the uncertain parameters
- We have applied our approach to a Facility Location Problem using the existing literature