CSC236H, Winter 2016 Assignment 2 Due February 14th, 10:00 p.m.

- You may work in groups of no more than **two** students, and you should produce a single solution in a PDF file named a2.pdf, submitted to MarkUs. Submissions must be **typed**.
- Please refer to the course information sheet for the late submission policy.
- 1. Let T be a set of rooted trees such that for each $t \in T$:
 - nodes are labeled with positive integers. That is, each node v is labeled with an integer a_v ;
 - if w is a child of v, then $a_w < a_v$.

Prove that for all $t \in T$, the root of t has the largest label of all nodes in the tree.

- 2. Let $M \subseteq \mathbb{Z}^2$ be a set defined as follows:
 - $(3,2) \in M$;
 - for all $(x, y) \in M$, $(3x 2y, x) \in M$;
 - nothing else belongs to M.

Use structural induction to prove that for all $(x,y) \in M$, there exists $k \in \mathbb{N}$, such that

$$(x,y) = (2^{k+1} + 1, 2^k + 1).$$

- 3. Let G be a set defined as follows:
 - if x is a propositional variable, then $x \in G$;
 - if $f_1, f_2 \in G$, then $\neg f_1 \in G$, and $(f_1 \land f_2) \in G$;
 - nothing else belongs to G.

For a formula $f \in G$, let $c_{not}(f)$ be the number of occurrences of \neg in f, and $c_{and}(f)$ be the number of occurrences of \wedge in f. Let $H = \{f \in G : c_{not}(f) = c_{and}(f)\}$. That is, H is the set of formulas in G with equal number of \neg 's and \wedge 's.

Prove that for any formula $f \in G$, there is a formula f' such that $f' \in H$ and f' and f are logically equivalent.