Foundations of Statistics

Homework 7

Exercise 1 (Empirical distribution functions and histograms).

(a) For a given sample x_1, \ldots, x_n , consider the empirical distribution function

$$\hat{F}_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}(x_i \le x),$$

and the histogram over the intervals $(c_k, c_{k+1}]$. Show that the height of the histogram on each bin $(c_k, c_{k+1}]$ is given by

$$\frac{\hat{F}_n(c_{k+1}) - \hat{F}_n(c_k)}{c_{k+1} - c_k}.$$

- (b) Given $\alpha \in [0, 1]$, let $x \in \mathbb{R}$ so that $\alpha = \hat{F}_n(x)$. Explain that this x can be considered as the α -quantile of the sample.
- (c) From now on, let x_1, \ldots, x_n realizations of i.i.d. continuous random variables $X_1, \ldots X_n$ with continuous density function f. Consider an equidistant histogram $\hat{f}_n(x)$ with bandwidth parameter $b := c_{k+1} c_k$ for all k. Find the distribution of $nb\hat{f}_n(x)$ for each x and hence, find its mean and variance. Note that in this exercise n is fixed.
- (d) Show that

$$\lim_{b \to 0} \mathbb{E}[\hat{f}_n(x)] = f(x).$$

(e) Use task (c) to find $\mathbb{E}\left[(\hat{f}_n(x) - f(x))^2\right]$, which can be regard as a mean squared error. Now take the limit $b \to 0$ and $nb \to \infty$ to prove

$$\lim_{\substack{b \to 0 \\ nb \to \infty}} \mathbb{E}\left[(\hat{f}_n(x) - f(x))^2 \right] = 0.$$

(f) Finally, use Chebyshev's inequality to show that for any $\epsilon > 0$,

$$\mathbb{P}\left[|\hat{f}_n(x) - f(x)| > \epsilon\right] \to 0$$

as $b \to 0$ and $nb \to \infty$. This demonstrates that $\hat{f}_n(x)$ is a consistent estimator for f(x).

Exercise 2 (Order statistic, part II). In HW 6, Exercise 2, we studied distribution of smallest and largest order statistics. Here we would like to study distribution of j-th order statistics.

Let $n \in \mathbb{N}$ be fixed. Given i.i.d. random variables with CDF $x \mapsto F(x)$,

$$X_1, X_2, \cdots, X_n,$$

we sort them in increasing order

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}.$$

We have proved that CDF of minimum $X_{(1)}$ and maximum $X_{(n)}$ are given by

$$F_{X_{(1)}}(x) = 1 - [1 - F(x)]^n \qquad \forall x \in \mathbb{R},$$

$$F_{X_{(n)}}(x) = [F(x)]^n \qquad \forall x \in \mathbb{R},$$

respectively.

(a) Prove that CDF of *j*-th order statistics $X_{(j)}, j \in \{1, 2, \dots, n\}$, is given by

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F(x)]^k [1 - F(x)]^{n-k} \qquad x \in \mathbb{R}.$$

Hint: Fix x and let Y be the random variable that counts the number of X_1, X_2, \dots, X_n that are less than or equal to x. Then use distribution of Y to find the distribution of $X_{(j)}$.

(b) If, in particular, F has density function f, find the density function $f_{X_{(j)}}$ of the random variable $X_{(j)}$.

Exercise 3 (Order statistic, part II, examples). Let's consider the same assumptions as in the preceding exercise. The goal of this exercise is to study the distribution of order statistics in \mathbb{R} when n becomes large.

- (a) Consider the standard normal distribution $\mathcal{N}(0,1)$. In R, generate $k=10^5$ random samples of j-th order statistics $X_{(j)}^n$, where $j:=\lceil \alpha n \rceil$ for $n \in \{1,10,100,1000\}$ and $\alpha=0.6$. For each n, use the density() function to fit a density to the samples. To compare these densities, overlay them on a single plot with xlim = c(-0.5, 1.5), ylim = c(0, 10), and label them accordingly. What is the theoretical value that $X_{(j)}^n$ is expected to approach as n increases? Add a vertical line to the plot at this theoretical value and comment on your observations.
- (b) Consider i.i.d. random variables $X_i \sim \text{Unif}(0,1)$ for $i = 1, \dots, n$. Find the PDF of j-th order statistics $X_{(j)}$ for a fixed j and n.
- (c) Using the PDF you have found in (b), compute the mean and variance of $X_{(j)}$. Now let $j = \lceil \alpha n \rceil$ for a fixed number $\alpha \in [0, 1]$ and find the mean and variance of $X_{(j)}$ as $n \to \infty$. What is your conclusion?

Exercise 4.

(a) Assume that $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$ are independent random variables, with X having a continuous distribution. Assume Y to be either discrete or continuous. Show that

$$\mathbb{P}\Big(\{\omega\in\Omega:X(\omega)\neq Y(\omega)\}\Big)=1.$$

(b) Let X_n , $n \ge 1$, be a sequence of independent continuous random variables. Show that

$$\mathbb{P}\Big(\{\omega\in\Omega:X_i(\omega)=X_j(\omega)\text{ for some distinct indexes }i,j\geq1\}\Big)=0.$$

Exercise 5. The dataset pi2000 in the package UsingR contains the first two thousand digits of π .

- (a) Fit a density estimate to the dataset (use the command density()). Compare with the appropriate histogram. Why might you want to add an argument like breaks=0:10-0.5 to hist?
- (b) Determine the absolute frequencies $n_0, ..., n_9$ of the digits for the π and plot the empirical CDF.
- (c) What kind of distribution do you suspect? (If you are interested to know more, read the Wikipedia article about normal numbers!)