bool b;
$$b = (x < y);$$

bool b;
$$b = (x < y);$$

int z;
$$z = (x < y) ? x : y;$$

bool b;
$$b = (x < y);$$
int z; $z = (x < y) ? x : y;$
if $(x < y) {...} else {...}$

bool b;
$$b = (x < y)$$
;

int z; $z = (x < y)$? $x : y$;

if $(x < y)$ {...} else {...}

• A conditional expression can occur in various possible contexts.

```
bool b; b = (x < y);
int z; z = (x < y) ? x : y;
if (x < y) {...} else {...}
while (x < y) {...}</pre>
```

• In all cases, evaluating the conditional expression results in executing one of two other pieces of code identified by the symbolic labels L_{TRUE} and L_{FALSE} .

Conditionals: Short-Circuit Evaluation

- Evaluating E = (E1 & E2).
 - Evaluate E1.
 - If E1 evaluates to false, go to L_{FALSE} ; otherwise,
 - Evaluate E2.
 - If E2 evaluates to true, go to L_{TRUE} ; otherwise, go to L_{FALSE} .
- Evaluating E = (E1 | E2).
 - Evaluate E1.
 - If E1 evaluates to true, go to L_{TRUE} ; otherwise,
 - Evaluate E2.
 - If E2 evaluates to true, go to L_{TRUE} ; otherwise, go to L_{FALSE} .
- Evaluating E = (! E1).
 - Evaluate E1.
 - If E1 evaluates to true, go to L_{FALSE} ; otherwise, go to L_{TRUE} .
- The "Evaluate E1" and "Evaluate E2" steps may themselves be recursive.

Conditionals: Short-Circuit Code Generation

- $codegen(E, L_{TRUE}, L_{FALSE})$, where E = (E1 & E2).
 - Let $L_{new} = newlabel()$ and $L_{end} = newlabel()$.
 - C1 = $codegen(E1, L_{new}, L_{FALSE})$.
 - C2 = $codegen(E1, L_{TRUE}, L_{FALSE})$.
 - return C1 + " L_{new} :\n" + C2 + " L_{TRUE} :\n" + "PUSHIMM 1\n" + "JUMP L_{end} \n" + " L_{FALSE} :\n" + "PUSHIMM 0\n" + " L_{end} :\n".

Conditionals: Short-Circuit Code Generation

- $codegen(E, L_{TRUE}, L_{FALSE})$, where E = (E1 & E2).
 - Let L_{new} = newlabel() and L_{end} = newlabel().
 - C1 = $codegen(E1, L_{new}, L_{FALSE})$.
 - C2 = $codegen(E1, L_{TRUE}, L_{FALSE})$.
 - return C1 + " L_{new} :\n" + C2 + " L_{TRUE} :\n" + "PUSHIMM 1\n" + "JUMP L_{end} \n" + " L_{FALSE} :\n" + "PUSHIMM 0\n" + " L_{end} :\n".
- $codegen(E, L_{TRUE}, L_{FALSE})$, where $E = (E1 \mid E2)$.
 - C1 = $codegen(E1, L_{TRUE}, L_{new})$, where $L_{new} = newlabel()$.
 - C2 = $codegen(E1, L_{TRUE}, L_{FALSE})$.
 - return C1 + " L_{new} :\n" + C2 + " L_{TRUE} :\n" + "PUSHIMM 1\n" + "JUMP L_{end} \n" + " L_{FALSE} :\n" + "PUSHIMM 0\n" + " L_{end} :\n".

Conditionals: Short-Circuit Code Generation

- $codegen(E, L_{TRUE}, L_{FALSE})$, where E = (E1 & E2).
 - Let $L_{new} = newlabel()$ and $L_{end} = newlabel()$.
 - C1 = $codegen(E1, L_{new}, L_{FALSE})$.
 - C2 = $codegen(E1, L_{TRUE}, L_{FALSE})$.
 - return C1 + " L_{new} :\n" + C2 + " L_{TRUE} :\n" + "PUSHIMM 1\n" + "JUMP L_{end} \n" + " L_{FALSE} :\n" + "PUSHIMM 0\n" + " L_{end} :\n".
- $codegen(E, L_{TRUE}, L_{FALSE})$, where $E = (E1 \mid E2)$.
 - C1 = $codegen(E1, L_{TRUE}, L_{new})$, where $L_{new} = newlabel()$.
 - C2 = $codegen(E1, L_{TRUE}, L_{FALSE})$.
 - return C1 + " L_{new} :\n" + C2 + " L_{TRUE} :\n" + "PUSHIMM 1\n" + "JUMP L_{end} \n" + " L_{FALSE} :\n" + "PUSHIMM 0\n" + " L_{end} :\n".
- $codegen(E, L_{TRUE}, L_{FALSE})$, where E = (! E1).
 - return codegen(E1, L_{FALSE} , L_{TRUE}).

Example of Short-Circuit Code Generation

```
codegen(((a<b) | ((c<d)&(e<f))), Ltrue, Lfalse)</pre>
```