Tracking Error

Tracking error is a measurement used to evaluate the performance of an investment or portfolio relative to a benchmark or target. It quantifies the extent to which the returns of the investment or portfolio deviate from the returns of the benchmark.

The concept of tracking error is applicable to various investment vehicles, including mutual funds, index funds, hedge funds, and ETFs. It is used to assess how closely an investment vehicle replicates the performance of its benchmark.

Tracking error is typically calculated as the standard deviation of the difference between the investment's returns and the benchmark's returns over a specific period of time. A low tracking error indicates that the investment closely tracks the benchmark, while a high tracking error suggests a greater divergence.

Several factors contribute to tracking error. One key factor is the investment manager's ability to accurately replicate the benchmark. This involves selecting appropriate securities or assets that closely resemble the constituents of the benchmark. In the case of actively managed funds, tracking error may arise from the manager's intentional deviations from the benchmark to achieve outperformance.

Transaction costs, such as brokerage fees and bid-ask spreads, can also impact tracking error. Rebalancing the portfolio or making adjustments to holdings incurs costs that can contribute to deviations from the benchmark.

Additionally, tracking error can be influenced by differences in expenses, dividend reinvestment policies, and cash holdings between the investment and the benchmark. Corporate actions, such as stock splits or mergers, can also introduce tracking differences.

Investors and fund managers monitor tracking error to evaluate the effectiveness of an investment strategy and to assess the fund manager's ability to deliver returns in line with the benchmark. A low tracking error suggests a more accurate replication of the benchmark and may be preferred by investors seeking close alignment with the benchmark's performance.

However, tracking error should not be considered in isolation. Other factors, such as expenses, risk measures, investment style, and the fund manager's expertise, should also be evaluated when selecting an investment vehicle.

In summary, tracking error provides insights into the consistency and accuracy with which an investment vehicle replicates its benchmark. By understanding the factors that contribute to tracking error, investors can make informed decisions and assess the potential risks and returns associated with an investment relative to its benchmark.

In [104]:

```
# Library
import yfinance as yf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

```
In [105]:
```

```
# Define the ticker symbol for VOO
   ticker_symbol = "VOO"
 3
 4
   # Historical
 5
   V00_data = yf.download(ticker_symbol, period="4y")
   # Add the Ticker
 7
   V00_data['Ticker'] = ticker_symbol
   print(VOO_data.head())
[********* 100%********* 1 of 1 completed
                            High
                                                  Close
                                                         Adj Close \
Date
2019-06-17 265.940002
                      266.559998
                                 265.619995
                                             265.859985
                                                        248.497894
2019-06-18 267.649994 269.660004 267.299988 268.510010
                                                        250.974869
2019-06-19 268.739990
                      269.720001 267.760010 269.220001
                                                        251.638428
2019-06-20 271.940002
                      272.190002
                                 269.730011 271.730011
                                                        253.984573
2019-06-21 271.529999 272.790009 271.170013 271.410004 253.685455
            Volume Ticker
Date
2019-06-17 1782500
                     V00
2019-06-18 2340700
                     V00
2019-06-19 1684500
                     V00
2019-06-20 3288100
                     V00
2019-06-21 2226000
                     V00
In [106]:
 1 ticker_symbol = "^GSPC"
 2 GSPC_data = yf.download(ticker_symbol, period="4y")
 3 GSPC_data['Ticker'] = ticker_symbol
 4 print(GSPC_data.head())
1 of 1 completed
                  0pen
                              High
                                           Low
                                                      Close
                                                              Adj Clos
e
Date
2019-06-17 2889.750000
                       2897.270020
                                   2887.300049
                                                2889.669922 2889.66992
2019-06-18 2906.709961
                       2930.790039
                                   2905.439941
                                                2917.750000
                                                            2917.75000
2019-06-19 2920.550049
                       2931.739990
                                   2911.429932
                                                2926.459961
                                                            2926.45996
1
2019-06-20 2949.600098
                       2958.060059
                                   2931.500000
                                                2954.179932 2954.17993
2019-06-21 2952.709961
                       2964.149902 2946.870117
                                                2950.459961 2950.45996
               Volume Ticker
Date
                      ^GSPC
2019-06-17 2828400000
2019-06-18 3441540000
                      ^GSPC
2019-06-19 3300220000
                      ^GSPC
2019-06-20 3943060000
                      ^GSPC
2019-06-21 5003540000
                      ^GSPC
```

In [107]:

```
# Calculate the percentage variation of 'Close' for 'VOO_data'
VOO_data['Percen_Diff_VOO'] = VOO_data.groupby('Ticker')['Close'].pct_change() * 100
VOO_data.dropna(subset=['Percen_Diff_VOO'], inplace=True)
print(VOO_data)
```

	0pen	High	Low	Close	Adj Close	\
Date						
2019-06-18	267.649994	269.660004	267.299988	268.510010	250.974869	
2019-06-19	268.739990	269.720001	267.760010	269.220001	251.638428	
2019-06-20	271.940002	272.190002	269.730011	271.730011	253.984573	
2019-06-21	271.529999	272.790009	271.170013	271.410004	253.685455	
2019-06-24	271.589996	271.920013	270.899994	271.059998	253.358322	
	• • •		• • •			
2023-06-12	395.980011	398.690002	395.299988	398.660004	398.660004	
2023-06-13	400.019989	401.850006	399.399994	401.290009	401.290009	
2023-06-14	401.609985	403.440002	398.459991	401.600006	401.600006	
2023-06-15	401.000000	407.929993	400.890015	406.750000	406.750000	
2023-06-16	408.690002	408.739990	406.160004	406.920013	406.920013	
	Volume Tic	ker Percen_	Diff_VOO			
Date						
2019-06-18	2340700	V00	0.996774			
2019-06-19	1684500	V00	0.264419			
2019-06-20	3288100	V00	0.932327			
2019-06-21	2226000	V00 -	0.117767			
2019-06-24	3518400	V00 -	0.128958			
• • •	• • •	• • •				
2023-06-12	3792700	V00	0.918919			
2023-06-13	3913100	V00	0.659711			
2023-06-14	5161300	V00	0.077250			
2023-06-15	5265600	V00	1.282369			
2023-06-16	2069340	V00	0.041798			

[1008 rows x 8 columns]

In [108]:

```
# Calculate the percentage variation of 'Close' for 'GSPC_data'
GSPC_data['Percen_Diff_GSPC'] = GSPC_data.groupby('Ticker')['Close'].pct_change() * 1
GSPC_data.dropna(subset=['Percen_Diff_GSPC'], inplace=True)
print(GSPC_data)
```

- \	0pen	High	Low	Close	Adj Clos
e \ Date					
2019-06-18 0	2906.709961	2930.790039	2905.439941	2917.750000	2917.75000
2019-06-19 1	2920.550049	2931.739990	2911.429932	2926.459961	2926.45996
2019-06-20	2949.600098	2958.060059	2931.500000	2954.179932	2954.17993
2019-06-21 1	2952.709961	2964.149902	2946.870117	2950.459961	2950.45996
2019-06-24 8	2951.419922	2954.919922	2944.050049	2945.350098	2945.35009
• • •					
• • •					
2023-06-12 6	4308.319824	4340.129883	4304.370117	4338.930176	4338.93017
2023-06-13 6	4352.609863	4375.370117	4349.310059	4369.009766	4369.00976
2023-06-14 4	4366.290039	4391.819824	4337.850098	4372.589844	4372.58984
2023-06-15 4	4365.330078	4439.200195	4362.600098	4425.839844	4425.83984
2023-06-16 7	4440.950195	4448.470215	4421.160156	4428.390137	4428.39013
	Volume T	icker Percen _.	_Diff_GSPC		
Date					
2019-06-18		^GSPC	0.971740		
2019-06-19		^GSPC	0.298516		
2019-06-20		^GSPC	0.947219		
2019-06-21		^GSPC	-0.125922		
2019-06-24	3136960000	^GSPC	-0.173189		
	2045670000		0.022445		
2023-06-12		^GSPC	0.932115		
2023-06-13		^GSPC	0.693249		
2023-06-14 2023-06-15		^GSPC ^GSPC	0.081943 1.217814		
2023-06-15		^GSPC ^GSPC	0.057623		
7077-00-10	1227047000	USFC	0.037023		

[1008 rows x 8 columns]

In [109]:

```
# Select the desired date range (4-year period)
 2
   start_date = '2019-06-18'
   end_date = '2023-06-16'
   voo_data_range = V00_data.loc[start_date:end_date]
4
 5
   gspc_data_range = GSPC_data.loc[start_date:end_date]
 6
 7
   # Line chart size
 8
   plt.figure(figsize=(14, 8))
9
   # Plot the Percen Diff VOO
10
11
   plt.plot(voo_data_range.index, voo_data_range['Percen_Diff_VOO'], label='Percen_Diff_
12
   # Plot the Percen_Diff_GSPC
13
14
   plt.plot(gspc_data_range.index, gspc_data_range['Percen_Diff_GSPC'], label='Percen_Di
15
16
   # Set the X-axis tick labels to show every 6 months
   plt.xticks(rotation=45)
17
   plt.gca().xaxis.set_major_locator(plt.matplotlib.dates.MonthLocator(interval=6))
18
   plt.gca().xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter('%Y-%m'))
19
20
21
   # Title
   plt.title('Percentage Difference: VOO vs GSPC')
22
   plt.xlabel('Date')
23
24
   plt.ylabel('Percentage Difference')
   plt.legend()
   plt.tight_layout()
26
27
   plt.show()
```


This close in volatility is expected as the aim of the fund Vanguard is to replicate the S&P500 index. We will use the tracking error now to check how much the fund's returns deviate from the benchmark.

The formula to calculate the tracking error is as follows:

Tracking Error = Standard Deviation(Returns of the Fund - Returns of the Benchmark)

Here's a step-by-step breakdown of the formula:

- 1 Calculate the returns of the fund by taking the percentage change in its value over a specific period. Fund Returns = (Fund Price at End Fund Price at Start) / Fund Price at Start
- 2 Calculate the returns of the benchmark index using the same period. Benchmark Returns = (Benchmark Price at End Benchmark Price at Start) / Benchmark Price at Start
- 3 Calculate the difference between the fund returns and benchmark returns. Difference = Fund Returns Benchmark Returns
- 4 Calculate the standard deviation of the difference to determine the tracking error. Tracking Error = Standard Deviation(Difference)

The tracking error is typically expressed as a percentage or a decimal value. It provides an indication of how closely the fund or portfolio follows the benchmark. A lower tracking error suggests a better alignment with

In [110]:

```
# Percentages of missing values if there is any
VOO_data.isna().sum().sort_values(ascending=False)
```

Out[110]:

0pen 0 0 High Low 0 Close 0 Adj Close Volume 0 Ticker 0 Percen_Diff_V00 0 dtype: int64

In [111]:

```
# Percentages of missing values if there is any
GSPC_data.isna().sum().sort_values(ascending=False)
```

Out[111]:

0pen 0 High 0 0 Low Close 0 Adj Close 0 Volume 0 Ticker 0 Percen_Diff_GSPC dtype: int64

In [112]:

```
# Calculating the funds returns (VOO_data)
# Get the Fund Price at End
fund_price_end = VOO_data['Close'].iloc[-1]
# Get the Fund Price at Start
fund_price_start = VOO_data['Close'].iloc[0]

fund_returns = (fund_price_end - fund_price_start) / fund_price_start
print('Fund Returns:', fund_returns)
```

Fund Returns: 0.5154742789027629

In [113]:

```
# Calculating the Benchmark returns (GSPC_data)
# Get the benchmark Price at End
benchmark_price_end = GSPC_data['Close'].iloc[-1]
# Get the benchmark Price at Start
benchmark_price_start = GSPC_data['Close'].iloc[0]

bench_returns = (benchmark_price_end - benchmark_price_start) / benchmark_price_start
print('Fund Returns:', bench_returns)
```

Fund Returns: 0.5177414571909005

In [114]:

```
# Difference
difference = fund_returns - bench_returns
print('Difference:', difference)
```

Difference: -0.0022671782881376057

In [116]:

```
Diff_returns = V00_data['Percen_Diff_V00'] - GSPC_data['Percen_Diff_GSPC']
tracking_error = np.std(Diff_returns)
print("Tracking Error:", tracking_error)
```

Tracking Error: 0.07502161541678053

The tracking error of the Vanguard fund is 0.075, which is very low. It basically means that one can expect the fund to deviate from its benchmark around 0.075 for more or less.

The tracking error is an important measure in evaluating the performance and effectiveness of an investment fund or portfolio in relation to its benchmark. Here are some key reasons why tracking error is important:

- 1 Performance Evaluation: Tracking error allows investors to assess how closely a fund's returns track or deviate from its benchmark. It provides a quantitative measure of the fund manager's ability to replicate the performance of the benchmark. A low tracking error indicates a higher level of consistency in tracking the benchmark, while a high tracking error suggests greater divergence.
- 2 Benchmark Comparison: Tracking error helps investors compare different funds that track the same benchmark. It provides a basis for evaluating which fund is more successful in closely replicating the benchmark's returns. Investors can use tracking error as a criterion to select funds that align with their investment objectives.

- 3 Risk Assessment: Tracking error is a useful tool in assessing the risk associated with an investment fund. A higher tracking error indicates higher deviation from the benchmark, which implies increased active management and potential for divergent performance. This can be desirable for investors seeking actively managed funds but may introduce additional risk and uncertainty.
- 4 Performance Attribution: Tracking error analysis enables investors to understand the sources of a fund's outperformance or underperformance relative to the benchmark. By decomposing the tracking error, investors can identify whether the deviations are due to stock selection, sector allocation, or other factors. This information is valuable in understanding the fund manager's investment decisions and style.
- 5 Fund Selection and Monitoring: Tracking error is a critical metric when selecting and monitoring investment funds. It helps investors determine the degree of risk they are exposed to by investing in a particular fund. Additionally, ongoing monitoring of tracking error allows investors to evaluate whether the fund is consistently delivering the desired level of benchmark replication over time.

Overall, tracking error provides insight into the fund manager's ability to generate returns consistent with the benchmark and helps investors make informed decisions about fund selection, performance evaluation, and risk assessment. However, it is important to consider tracking error in conjunction with other factors such as fund expenses, investment strategy, and risk tolerance to gain a comprehensive understanding of a fund's performance and suitability.