Review of Inverse Reinforcement Learning frameworks for Imitation Learning

Josselin Bonnevie Shahine Bouabid

MVA

Outline

- Introduction
 - What is Imitation Learning?
 - Behavioral Cloning
 - Direct policy learning
 - Problem Setup
- 2 A Linear Programming Approach
- Max-Margin algorithms
 - A Quadratic Programming approach
 - Max-margin Planning
- Maximum Entropy Inverse Reinforcement Learning
 - MaxEnt Principle
 - Deep IRL
 - Generative Adversarial Imitation Learning

Introduction

Bojarski et al. [2]

Taylor et al. [5]

 $\textbf{Given} \ \text{demonstrations} \longrightarrow \textbf{Find} \ \text{followed policy}$

Introduction

- Poor behavior recovery if step deviation
- Quadratic loss in task horizon

Introduction

- Linear loss in task horizon
- Requires interactive feedback

Idea: Use reward learning as a mean for policy derivation

Problem Setup

Framework:

- MDP : $\mathcal{M} = (S, A, P, R^*, \gamma, I)$ endowed with expert policy π^*
- ullet Energy : $\mathcal{E}(\pi,R)=\mathbb{E}_{s\sim I}[V^\pi(s)]$

Given:

- M\R*
- Environment simulation
- Demonstrations $\mathcal{D} = \{\zeta_i^*\}_i$ where $\zeta_i^* \sim \pi^*$
- Energy evaluation

Objective:

Find
$$R$$
 s.t. $\pi^* \in \arg\max_{\pi} \mathcal{E}(\pi, R)$

Approximation : Leverage $\mathcal{D} \to \mathsf{Find}\ R$ s.t. $\pi_{\mathcal{D}} \in \arg\max_{\pi} \mathcal{E}(\pi,R)$

Problem Setup

Environment feature functions : $\phi = (\phi_j)$, $\phi_j : S \times A \rightarrow \mathbb{R}$

- Model environment facets
- Introduce prior knowledge
- ightarrow Linear reward parametrization : $R = \theta^{\top} \phi$

Expected feature count:

$$\mu(\pi) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t \phi(s_t, a_t) \mid \pi\right] \Rightarrow \mathcal{E}(\pi, \theta) = \theta^{\top} \mu(\pi)$$

A Linear Programming Approach

Idea: Favor reward functions making deviation wrt optimal policy costly

Given $\{\pi_1, \ldots, \pi_k\}$ and linear penalization h, maximize :

$$\sum_{i=1}^{k} h(\mathcal{E}(\pi_{\mathcal{D}}, \theta) - \mathcal{E}(\pi_{i}, \theta)), \ |\theta_{j}| \leq 1 \,\forall j$$
 (LP_k)

A Linear Programming Approach

Algorithm 1 Ng and Russell [3]

- 1: Initialize $k \leftarrow 1$; θ randomly; $\mathcal{E}(\pi_{\mathcal{D}}, \theta) \leftarrow \theta^{\top} \mu(\mathcal{D})$
- 2: Initialize base case policy π_1 and collect trajectories \mathcal{Z}_1
- 3: Initialize $\mathcal{E}(\pi_1, \theta) \leftarrow \theta^\top \mu(\mathcal{Z}_1)$
- 4: while Termination condition not met do
- 5: $\theta \leftarrow \text{solve } (\mathsf{LP}_k)$
- 6: Derive $\pi_{k+1} = \arg \max \mathcal{E}(\pi, \theta)$
- 7: Roll out to collect trajectories \mathcal{Z}_{k+1}
- 8: Update $\mathcal{E}(\pi_{\mathcal{D}}, \theta) \leftarrow \theta^{\top} \mu(\mathcal{D})$ and $\mathcal{E}(\pi_j, \theta) \leftarrow \theta^{\top} \mu(\mathcal{Z}_j) \forall j \in \{1, \dots, k\}$
- 9: $k \leftarrow k + 1$
- 10: end while
- 11: return π_k
- → Simple, intuitive but no convergence guarantee

A Quadratic Programming approach

Idea : Move problem to feature expectation space : $\mathcal{E}(\pi,\theta) = \theta^{\top}\mu(\pi)$ with constraint $\|\theta\|_2 \leq 1$

$$\begin{array}{ll} \max_{\eta \, \theta} & \eta \\ \text{s.t.} & \theta^\top \mu(\mathcal{D}) - \eta \geq \theta^\top \mu(\mathcal{Z}_i) \ \, \forall i \in \llbracket 1, k \rrbracket \text{ and } \lVert \theta \rVert_2 \leq 1 \end{array} \tag{SVM}_k)$$

A Quadratic Programming approach

Algorithm 2 Abbeel and Ng [1]

- 1: Initialize $\eta \leftarrow 0$; $k \leftarrow 1$; θ randomly
- 2: Initialize base case policy π_1 and collect trajectories \mathcal{Z}_1
- 3: Compute $\mu(\mathcal{D})$ and $\mu(\mathcal{Z}_1)$
- 4: while $\eta > \varepsilon$ do
- 5: η , θ \leftarrow solve (SVM_k)
- 6: Derive $\pi_{k+1} = \arg\max_{\pi} \mathcal{E}(\pi, \theta)$ under R
- 7: Roll out to collect trajectories \mathcal{Z}_{k+1} and compute $\mu(Z_{k+1})$
- 8: $k \leftarrow k + 1$
- 9: end while
- 10: return π_k

A Quadratic Programming approach

Theorem

Let $\varepsilon>0$, $\delta\in]0,1[$, d the dimensionality of θ and m the number of Monte Carlo samples used.

- ullet If $m \geq rac{2d}{(1-\gamma)^2arepsilon^2}\lograc{2d}{\delta}$ and $\| heta\|_2 \leq 1$
- Then $\exists \mathcal{K} = \mathcal{O}\left(\frac{d}{(1-\gamma)^2\varepsilon^2}\log\frac{d}{(1-\gamma)\varepsilon}\right)$ s.t. $|\mathcal{E}(\pi^*,\theta) \mathcal{E}(\pi_{\mathcal{K}},\theta)| \leq \varepsilon$ with probability $1-\delta$

Pros:

- Convergence in a finite number of steps
- Control over solution's accuracy

Cons:

- Strong assumption: existence of a near-optimal policy
- Lack of generalization for start/goal variations

Max-margin Planning

Idea:

- Map each demonstration ζ_i^* to a different MDP endowed with its own expert policy π_i^* and set of feature functions
- ullet But unique weight vector θ
- Introduce for each MDP an occupancy loss vector $\ell_i \to$ weights in closeness to π_i^*

$$\begin{split} & \underset{\eta \, \theta}{\min} \quad \frac{\lambda}{2} \|\theta\|_2^2 + \frac{\kappa}{n} \sum_{i=1}^n \beta_i \eta_i^q \\ & \text{s.t.} \quad \theta^\top \mu(\zeta_i^*) + \eta_i \geq \max_{\zeta} \theta^\top \mu(\zeta) + \ell_i^\top \rho^\zeta \ \, \forall i \end{split} \tag{MMP}_k)$$

Number of constraints $\propto |\mathcal{D}| \prod_i |S_i \times A_i| \rightarrow \text{subgradient resolution}$

Max-margin Planning

Algorithm 3 Ratliff et al. [4]

- 1: Initialize hyperparameters, learning rate α_t , horizon T, $t \leftarrow 1$, $\theta \leftarrow 0$
- 2: while t < T do
- 3: **for** i in 1 ... n **do**
- 4: Update $R_i \leftarrow \theta^{\top} \phi^{(i)}$
- 5: Derive $\hat{\pi}_i^* = \arg\max \mathcal{E}(\pi, R_i) + \mathcal{L}_i(\pi)$
- 6: end for
- 7: Update $\theta \leftarrow \theta \alpha_t \cdot \text{subgradient}(\hat{\pi}_1^*, \dots, \hat{\pi}_n^*)$ and increment t
- 8: end while
- 9: **return** θ

Great:

- Weight vector prone to extrapolate to new feature maps
- Convergence guaranteed in batch and online settings (resp. linear and sublinear)

Feature and occupancy matching

Expected feature count

$$\mu(\pi) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t \phi(s_t, a_t) \mid \pi
ight] \Rightarrow \mathcal{E}(\pi, heta) = heta^ op \mu(\pi)$$

Occupancy measure

$$\rho^{\pi}(s,a) = \mathbb{E}_{\pi}\left[\sum_{t\geq 0} \gamma^{t} \mathbf{1}_{(s_{t},a_{t})=(s,a)}\right] \Rightarrow \mathcal{E}(\pi,\theta) = \sum_{(s,a)} \rho^{\pi}(s,a) R(s,a) = R^{\top} \rho^{\pi}$$

Idea: Find policy with same performance for whatever the reward

Maximum Entropy Principle - Deterministic MDP

Many policies can match the the expected features of the expert.

Entropy Maximization on the trajectory distribution

$$\max_{p_\pi} H(p_\pi)$$
 s.t. $\mu(p_\pi) = \hat{\mu}(\mathcal{D})$

Maximum likelihood in the exponential family

$$\hat{
ho}(\zeta) = rac{e^{ heta^ op \mu(\zeta)}}{Z(heta)} \quad ext{with } Z(heta) = \int e^{ heta^ op \mu(\zeta)} d\zeta$$

Gradient

$$\nabla_{\theta} L(\theta) = \hat{\mu}(\mathcal{D}) - \mu(\pi_{\theta}) = \hat{\mu}(\mathcal{D}) - \sum_{(s,a) \in S \times A} \rho^{\theta}(s,a) \phi(s,a)$$

Maximum Causal Entropy for non Deterministic MDPs:

Causal Entropy (γ discounted):

$$ilde{H}^{\gamma}(\pi) = \mathbb{E}\left[-\sum_{t \geq 0} \gamma^t \log \pi(a_t \mid s_t)
ight]$$

The associated IRL problem

$$\max_{\pi} \tilde{H}^{\gamma}(\pi)$$
 s.t. $\mu(\pi) = \hat{\mu}(\mathcal{D})$

Soft Bellman Equations:

$$\hat{\pi}(a \mid s) = \exp\left(Q_{\hat{\theta}}^{soft}(s, a) - V_{\hat{\theta}}^{soft}(s)\right) \tag{1}$$

Where

$$Q_{\hat{\theta}}^{soft}(s, a) = \theta^{\top} \phi(s, a) + \beta \sum_{s' \in S} P(s' \mid s, a) V_{\hat{\theta}}^{soft}(s')$$

$$V_{\hat{\theta}}^{soft}(s) = \operatorname{softmax}_{a \in A} Q_{\hat{\theta}}^{soft}(s, a) = \log \left(\sum_{s \in A} \exp(Q_{\hat{\theta}}^{soft}(s, a)) \right)$$
(2)

An other vision of MaxEnt IRL:

Maximum Entropy and Maximum Likelihood are dual problems :

$$\begin{split} \hat{\pi} &= \underset{\pi}{\operatorname{argmax}} \ \hat{H}^{\gamma}(\pi) + \hat{\theta}^{\top} \left(\mu(\pi) - \hat{\mu}(\mathcal{D}) \right) \\ &= \underset{\pi}{\operatorname{argmax}} \ \hat{H}^{\gamma}(\pi) + \mathcal{E}(\pi, \hat{\theta}) \end{split}$$

Maximum Entropy IRL can somehow be seen as a paradigm with a model on the agent's behaviour.

• We assume that for some R^* :

$$\pi^* \in rg \max_{\pi} \hat{H}^{\gamma}(\pi) + \mathcal{E}(\pi, R^*)$$

• We want to find \hat{R} such that

$$\pi^* \in \operatorname*{arg\,max}_{\pi} \hat{H}^{\gamma}(\pi) + \mathcal{E}(\pi,\hat{R})$$

Maximum Causal Entropy - Guarantees

Trajectories with equal reward have equal probabilities

Guarantees:

$$\hat{\pi} \in rg\min_{\pi} \sup_{\tilde{\pi}} \mathbb{E}_{\tilde{\pi}} \left[\sum_{t \geq 0} -eta^t \log \pi(a_t \mid s_t)
ight]$$

Resolution

Gradient of the demonstration's likelihood:

$$\nabla_{\theta} L(\theta) = \hat{\mu}(\mathcal{D}) - \mu(\pi_{\theta}) = \hat{\mu}(\mathcal{D}) - \sum_{(s,a) \in S \times A} \rho^{\theta}(s,a) \phi(s,a)$$

Solving the MDP

Soft Value Iteration

$$T_{ heta}^{ ext{soft}}(V)(s) = \operatorname{softmax}_{a} \left(heta^{ op} f(s, a) + \sum_{s' \in \mathcal{S}} P(s' \mid s, a) V(s')
ight)$$

Soft Q-learning :

$$\begin{aligned} &Q_{\theta}^{soft}(s_t, a_t) \leftarrow Q_{\theta}^{soft}(s_t, a_t) + \\ &\eta(t) \left[\theta^{\top} f(s_t, a_t) + \gamma \underset{a_{t+1}}{\text{softmax}} Q_{\theta}^{soft}(s_{t+1}, a_t) - Q_{\theta}^{soft}(s_t, a_t) \right] \end{aligned}$$

Estimating occupancy measures

• Dynamic programming or Monte-Carlo methods

Deep Inverse Reinforcement Learning

- Feature engineering : hard and painful
- Occupancy measure matching : computing a reward for each action-state pair

Middle ground:

$$R(s, a) = R_{\theta}(\mathbf{f}(s_t, a_t))$$

- Back-propagation of the likelihood's gradient to the network's parameter
- A way to include expert's knowledge

Generative Adversarial Imitation Learning

- Directly Recovering a policy
- No RL in a loop
- Using Neural Networks

Causal Entropy Inverse Reinforcement Learning Problem

$$\min_{R \in \mathcal{C}} \left(\max_{\pi \in \Pi} \hat{H}^{\gamma}(\pi) + \mathbb{E}_{\pi}[R(s,a)] \right) - \mathbb{E}_{\pi^*}[R(s,a)]$$

But we don't want exact occupancy measure matching

$$\min_{R \in \mathcal{C}} \left(\max_{\pi \in \Pi} \hat{H}^{\gamma}(\pi) + \mathbb{E}_{\pi}[R(s, a)] \right) - \mathbb{E}_{\pi^*}[R(s, a)] \underbrace{+ \psi(R)}_{\mathsf{Regularization}}$$

Generative Adversarial Imitation Learning

$$\mathit{RL} \circ \mathit{IRL}_{\psi}(\pi^*) = rg \max_{\pi} \hat{H}^{\gamma}(\pi) - \psi^*(
ho^{\pi} -
ho^{\pi^*})$$

By taking:

$$\psi_{GA}(R) = egin{cases} \mathbb{E}_{\pi^*}[g(R(s,a))] & \text{if } R>0 \ +\infty & \text{otherwise} \end{cases}$$
 With $g(R) = R - \log(1 - e^{-R})$ for all $R>0$

We get

$$\psi_{GA}^*(\rho^{\pi} - \rho^{\pi^*}) = \max_{D \in (0,1)^{S \times A}} \mathbb{E}_{\pi}[\log D(s,a)] + \mathbb{E}_{\pi^*}[\log(1 - D(s,a))]$$
$$= D_{JS}(\pi, \pi^*) + cst$$

Generative Adversarial Imitation Learning

Final formulation of Generative Adversarial Imitation Learning

Find
$$\hat{\pi} \in \operatorname*{arg\,min}_{\pi} D_{\mathsf{JS}}(\rho^{\pi}, \rho^{\pi^*}) - \lambda \tilde{H}^{\gamma}(\pi)$$

Or equivalently,

$$\hat{\pi} \in \arg\min_{\pi} \max_{D \in (0,1)^{\mathcal{S} \times \mathcal{A}}} \mathbb{E}_{\pi}[\log(D(s,a)] + \mathbb{E}_{\pi^*}[\log(1-D(s,a)] - \lambda \tilde{H}^{\gamma}(\pi)]$$

References

- P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the Twenty-first International Conference on Machine Learning, ICML '04, pages 1-, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5. doi: 10.1145/1015330.1015430. URL http://doi.acm.org/10.1145/1015330.1015430.
- [2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learning for self-driving cars. CoRR, abs/1604.07316, 2016. URL http://arxiv.org/abs/1604.07316.
- [3] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In *Proceedings of the Seventeenth International Conference on Machine Learning*, ICML '00, pages 663–670, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-707-2. URL http://dl.acm.org/citation.cfm?id=645529.657801.
- [4] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In Proceedings of the 23rd International Conference on Machine Learning, ICML '06, pages 729–736, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-2. doi: 10.1145/114384.1143936. URL http://doi.acm.org/10.1145/1143844.1143936.
- [5] S. Taylor, T. Kim, Y. Yue, M. Mahler, J. Krahe, A. Garcia Rodriguez, J. Hodgins, and I. Matthews. A deep learning approach for generalized speech animation. ACM Transactions on Graphics, 36:1–11, 07 2017. doi: 10.1145/3072959.3073699.