Comparing human and automatic thesaurus mapping approaches in the agricultural domain

Boris Lauser, Gudrun Johannsen, Caterina Caracciolo, Johannes Keizer, Willem Robert van Hage, Philipp Mayr

FAO, TNO Science & Industry / Vrije Universiteit Amsterdam and GESIS Social Science Information Centre

International Conference on Dublin Core and Metadata Applications 2008
Berlin, 23 September 2008

Outline

- Problem addressed by mapping
- Motivation of our work
- Experimental setup
- Results
- Conclusions

Problem Scenario: Why mapping?

Problem: Heterogeneous collections

- Many databases:
 - document types / formats
 - vocabularies
- Controlled vocabularies:
 - internal consistency (high)
 - intersystem compatibility (low) -> (semantic heterogeneity)
- Goal:
 - <u>Seamless search</u> across multiple heterogeneous collections/repositories based on semantically rich relations
- Solution: translate → cross-walks → terminology mapping

Aim of the study

Human and automatic mapping have pros & cons:

Time, money, correctness, completeness

then

 how and when automatic is best to use automatic vs manual techniques?

Controlled vocabularies in the study

- AGROVOC by FAO
 - Multilingual, structured thesaurus
 - 28,718 descriptors (Engl. version)
- NALT by National Agricultural Lib.
 - Thesaurus
 - 42,326 descriptors (Engl. version)
- SWD by German National Lib.
 - Subject authority file, flat structure
 - 5,350 German terms in agricultural subsection

Initiatives

- OAEI: AGROVOC-NALT mapping (automatic)
- KoMoHe: AGROVOC-SWD mapping (human)

Corresponding mappings within the initiatives

OAEI 2007 food task

- the OAEI (Ontology Alignment Evaluation Initiative)
 - a comparative evaluation initiative for automatic ontology-mapping systems
 - six tasks in 2007: benchmark, anatomy, directory, library, environment, and food
- the OAEI 2007 food task (AGROVOC-NALT)
 - Six mapping systems
 - Falcon-AO South East University
 - RiMOM Tsinghua University
 - X-SOM Polytechnic of Milan
 - DSSim Open University
 - SCARLET Open University
 see http://www.few.vu.nl/~wrvhage/oaei2007/food.html

KoMoHe Project (2004-2007)

KoMoHE (Competence Center Modeling and Treatment of Semantic Heterogeneity)

Goals:

- Models for searching heterogeneous collections
- Development, organization & management of cross-walks between controlled vocabularies
- IR evaluation of the mappings (effectiveness of intellectual mapping)

KoMoHe: Cross-concordances

- = manually created, directed relations between controlled terms of two knowledge organization systems (KOS)
- 25 Vocabularies in 64 cross-concordances
 - Thesauri (16)
 - Descriptor lists (4)
 - Classifications (3)
 - Subject heading lists (2)

KoMoHe: Relations

KOS 1	Relation	KOS 2
Library	= equivalence	Bibliothèque
Library	> Narrower term	Special library
Thesaurus	< Broader term	KOS
Hacker	^ Related term	Computers + Security
Virus	0 No mapping	

Mappings in the experiment

Leibniz Gemeinschaft

AGROVOC-NALT mapping (OAEI, automatic)

Number of mapping results and systems involved

Leibniz Gemeinschaft

AGROVOC-SWD mapping (KoMoHe, human)

 Two crosswalks (SWD-AG and AG-SWD) and number of mappings build

Our hypothesis

- 1. Machines are humans' equals in domains with clear naming schemes (e.g. taxonomy and geography). For other domains, machines are inferior.
- 2. Machines cannot find mappings that require background (domain) knowledge.

Experimental set-up

- 1. A <u>random sample</u> of 644 mappings from the (union of the) AGROVOC-NALT mappings
- 2. <u>Mappings classified</u> by their topic: taxonomical, biological & chemical, geographical, and miscellaneous
- 3. false mappings were filtered out
- 4. to each mapping we <u>added the corresponding</u> SWD-AGROVOC mapping(s)
- 5. the <u>difficulty</u> of each mapping was judged manually

Mappings by topic

- 1. Taxonomical
- 'Rubus plicatus'; 'Rubus fruticosus'
- 2. biological & chemical
- 'hexachlorobenzene'; 'Hch'
- 3. geographical
- 'Eastern Africa'; 'East Africa'
- 4. miscellaneous
- 'shelterbelts'; 'Windbreaks'

Classes of mapping according to difficulty

- 1. **simple**: the preferred terms are literally the same
 - → Ananas comosus ; Ananas comosus
- alt label: there is a literal match with an alternative term
 → Lipids; Fats
- **3. easy lexical**: the terms are so close that any layman can see that they match
 - → Rocks; Rock
- **4. hard lexical**: the labels are very close, but expert knowledge is needed to see that they match
 - → Smut diseases; Smuts
- **5. easy background knowledge**: there are no clues as in point 1-4, but general common knowledge suffices to see that the terms match
 - → Sewage treatment; Wastewater treatment
- **6.** hard background knowledge: there are no clues as in point 1-4, and domain expertise is needed to see that the terms match
 - → Probability analysis; Statistical methods

Results (difficulties)

All 20 geographical mappings were "Simple".

Taxonomic	Simple	Alt Label	Easy Lexical	Easy Backgr.	Hard Lexical	Hard Backgr.
	<u> </u>					
AGSWD	27% (70)	39% (102)	7% (18)	3.4% (9)	6.5% (17)	17% (45)
AGNALT	65% (170)	23% (59)	1.1% (3)	0% (0)	1.9% (5)	0% (0)
Biological			Easy	Easy	Hard	Hard
/Chemical	Simple	Alt Label	Lexical	Backgr.	Lexical	Backgr.
AGSWD	62% (53)	21% (18)	1.2% (1)	2.3% (2)	1.2% (1)	12% (10)
AGNALT	65% (55)	13% (11)	3.5% (3)	0% (0)	3.5% (3)	1.2% (1)
			Easy	Easy	Hard	Hard
Misc.	Simple	Alt Label	Lexical	Backgr.	Lexical	Backgr.
AGSWD	33% (92)	12% (33)	10% (28)	17% (46)	9.8% (27)	18% (50)
AGNALT	49% (136)	24% (67)	4.0% (11)	0.36% (1)	1.8% (5)	1.4% (4)

errors in the AGROVOC-NALT mappings

- 'Viola' in AGROVOC is not a music instrument (should be a 0).
- 'Sex differentiation disorders'; 'Seed certification' (should be 0).
- 'Kater' (tomcat) is a 'männliches Individuum' (male individual).
- 'Heckstapler' (rear stapler) is some kind of 'Handhabungsgeraet' (handling equipment).

should be:	<	>	null (0)	۸	total wrong
Taxonomic	2.7% (7)	0.38% (1)	5.7% (15)	0.38% (1)	9.2% (24 of 262)
Biological / Chemical	2.3% (2)	1.2% (1)	11% (9)	0% (0)	14% (12 of 84)
Miscellancous	1.4% (4)	0.36% (1)	14% (38)	3.3% (9)	19% (52 of 277)
all groups	2.0% (13)	0.0% (3)	9.6% (62)	1.5% (10)	14% (88 of 643)

Our hypothesis

- 1. Machines are humans' equals in domains with clear naming schemes (e.g. taxonomy and geography). For other domains, machines are inferior.
- 2. Machines cannot find mappings that require background (domain) knowledge.

Conclusion I: Hypothesis 1 does not hold as strictly as we phrased it

- <u>Biological/chemical like geographical</u> terminology is fairly <u>easy</u> to map (over 60% rated as Simple).
- If you include alternative labels, this statement also holds for taxonomic terminology.
- The 'Miscellaneous' group is the most difficult.
- BUT, with the exception of geographical terminology, machines are not as good as humans, even in domains with clear naming schemes (error rate 14% in our sample).

Conclusion II: Hypothesis 2 holds

- Most systems rely on (lexical) clues from within the thesauri and do not have background knowledge. This is necessary to find most < > relations.
- Therefore, machines have great difficulty to find the same kind of hierarchical mappings (< >) as humans.
- Of course, machines have <u>difficulty to disqualify</u> or exclude a mapping (0 relation).

Conclusion III: summing up...

- Machines might not be humans' equals, but they can take care of a large portion of the tedious work.
- Further problems appear if you match different disciplines automatically. Especially 'softer' sciences are hard to map automatically (e.g. social sciences).

Consequences

- Bi-lingual or interdisciplinary mappings are even more difficult to process automatically
- One need <u>well-structured KOS</u> to get automatic mapping being effective
- Correctness of automatic mapping has to be checked
- More quality measurement aspects: completeness, consistency

OAEI: Systems descriptions I

- Falcon-AO South East University
 - lexical matcher (V-Doc, similar to edit distance)
 - iterative structural matcher
 - ontology partitioner
 - try harder to find mappings where few obvious mappings are found
- RiMOM Tsinghua University
 - lexical matcher (edit distance)
 - structural similarity propagation
 - strategy selector (rely more on lexical or structural matches)
 - remove unlikely matches by heuristics
- X-SOM Polytechnic of Milan
 - lexical matcher (Jaro similarity, Levenshtein, and WordNet Leacock-Chodorow distance)
 - partitioning using SWOOP ontology editing framework
 - no other matchers due to scalability issues

OAEI: Systems descriptions II

DSSim - Open University

- lexical matcher (Monger-Elkan, similar to edit distance, plus Jaccard of term token sets)
- manual partitioning
- belief combination with Dempster's rule of combination

SCARLET - Open University

- literal matching to third party ontologies in the Watson semantic web search engine
- Description Logic reasoning over third party ontologies to find relations

Publications

Mayr, Philipp; Petras, Vivien (2008): Cross-concordances: terminology mapping and its effectiveness for information retrieval. In: 74th IFLA World Library and Information Congress. Québec, Canada-http://www.ifla.org/IV/ifla74/papers/129-Mayr_Petras-en.pdf

Mayr, Philipp; Petras, Vivien (2008 to appear): Building a terminology network for search: the KoMoHe project. In: International Conference on Dublin Core and Metadata Applications.

Thank you for your attention!

E-mail: philipp.mayr@gesis.org

