19.11 Derivace implicitní funkce

- ${f 57}$ Užitím derivace funkce dané implicitně určete rovnici tečny v bodě T dané směrový úhel tečny. Vypočítejte směrový úhel tečny s přesností na minuty a) $x^2 + y^2 = 10$, $T[2; \sqrt{6}]$ kuželosečky. Načrtněte kuželosečku i tečnu v soustavě souřadnic. Vyznačte
- b) $x^2 + 2y^2 = 4$, $T[\sqrt{2}; 1]$
- c) $4x^2 + y^2 = 16$, $T[\sqrt{3}; 2]$
- $y^2 = 6x 8$, T[2; -2] $x^2 = 4y + 5$, T[3; 1] $x^2 - 4y^2 = 4$, $T\left[\sqrt{5}; \frac{1}{2}\right]$ $y^2 - 2x^2 = 16$, T[0; 4]
- h) $x^2 + 4y^2 = 4$, $T[1; -\frac{\sqrt{3}}{2}]$ $x^2 + 4y^2 = 4$, T[0; 1] $x^2 + 4y^2 = 4$, T[2; 0]
- $x^{2} + 4y^{2} 2x + 16y + 13 = 0$, T[1; -1] $x^2 + y^2 + 4x - 2y - 20 = 0$, T[-5; 5]
- $x^{2} 4y^{2} 2x 8y 19 = 0, T[9; 2\sqrt{3} 1]$
- $x^{2} + 6x + 4y + 9 = 0$, T[1; -4] $y^{2} - 2y - 2x + 1 = 0$, T[8; 5] $(x+1)^2 + (y-2)^2 = 25$, T[2; 6]
- $(x+1)^2 + (y-2)^2 = 25$, T[4;2]
- $2x^2 (y+3)^2 = 4$, $T[2\sqrt{5}; 3]$ $(x+2)^2 + 4y^2 = 8$, T[-4; -1]
- t) $y^2 = 2(x-1)$, T[9; 4]
- Ve kterém bodě elipsy $4(x-1)^2 + y^2$ poloosou x úhel 45°? = 1 svírá tečna elipsy s kladnou
- **59** Ve kterém bodě paraboly $y^2 = 4x 8$ je tečna kolmá na osu I. a III. kvad
- **60** Vypočítejte odchylku tečen křivek $x^2 + y^2$ 11 $5, 2x^2 + y^2$ 11 9 v jejich

19.12 Derivace funkce a výpočet limity

- 61 Užitím definice derivace funkce vypočítejte následující limity:
- a) $\lim_{x \to 2} \frac{x^3 8}{x 2}$

 $\sqrt[3]{x}-1$

- d) $\lim_{x \to \frac{\pi}{3}}$ $\frac{x-\pi}{3}$
- $\cos x 0.5$

9

 $\lim_{x \to 0} \frac{\sin x}{x}$

 $\lim_{x\to 0}$ $\cos x$ x

e)

- C lim $\sqrt[5]{x} - \sqrt[5]{3}$ x-1
- f) $\lim_{\sqrt{-\pi}} \frac{\sin x}{\sqrt{-\pi}}$
 - h) $\lim_{x \to 1} \frac{\ln x}{x - 1}$
- i) $\lim \frac{e^x - 1}{}$

- **62** Užitím l'Hospitalova pravidla vypočítejte limity
- a) $\lim_{x \to 2} \frac{1}{x^2 x 2}$ b) $\lim_{x \to 1} \frac{1}{x - 1}$ $x^4 - 1$ $x^2 + x - 6$ 010
- $\text{h) } \lim_{x \to 0} \frac{1}{\sqrt{x+1}-1}$ g) $\lim_{x \to \pi} \cdot$ $\cos x + 1$ $x-\pi$ $\sin 4x$

0

- c) $\lim_{x\to 0}$ $3x^3 - 4x^2 + x$ $4x^{3} + x$
- i) $\lim_{x \to 0}$ $\cos x - 1$ 132 TX-20-8
- d) $\lim_{x \to -1} \frac{1}{x^4 x^3 + x 1}$ tgx-x
 - $\lim_{x\to 0}$ $\sin x$
- e) $\lim_{x \to 0} \frac{1}{x \sin x}$ $\sin 3x + 2x$
- f) $\lim_{x \to 0} \frac{1}{\sin x + x}$ NIG

19.13 Slovní úlohy řešené pomocí derivací

- (63)Z papíru tvaru čtverce $40\,\mathrm{cm} \times 40\,\mathrm{cm}$ vystřihneme ve všech rozích stejné měla maximální objem čtverečky a složíme krabičku. Určete stranu čtverečku tak, aby tato krabička
- 64 Určete stranu čtverce, které musíme vyříznout ve všech rozích obdélníkového papíru o rozměřech 8 cm \times 5 cm tak, aby po složení vznikla krabička maximalniho objemu.
- 65) Určete rozměry válcové nádoby s víkem tak, aby při objemu 2 litry měla tato nádoba minimální povrch.
- 66 Určete rozměry válcové nádoby bez víka tak, aby při objemu 2 litry měla tato nádoba minimální povrch.
- (67) Do koule o poloměru 3 cm vepište válec maximálního objemu. Určete jeho rozmery.
- 68 Do koule o poloměru 3 cm vepište kužel maximálního objemu. Určete polo měr podstavy a výšku kužele.
- **69**/Do rotačního kužele o rozměrech r=6 cm, v=3 cm vepište válec maxi málního objemu tak, aby osa válce splývala s osou kužele. Určete rozměry
- **70** Do rotačního kužele o rozměrech r=6 cm, v=3 cm vepište válec maximálního objemu tak, aby osa válce byla kolmá na osu kužele. Určete rozměry
- 71)Kouli o poloměru 3 cm opište kužel minimálního objemu. Určete jeho roz-
- 73) Určete rozměry obdélníku tak, aby při daném obsahu 16 cm² měl minimální **72** Do elipsy $4x^2 + 9y^2 = 36$ vepište obdélník maximálního obsahu. Určete jeho rozmery
- **74**/Určete rozměry obdélníku tak, aby při daném obvodu 20 cm měl maximální