Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Claims 1-18 (canceled)

1	Claim 19 (currently amended): A method for assessing the uniformity in
2	temperature distribution in regions of a sensor comprising a sensor array which comprise
3	conduction paths, monitoring the quality of a sensor, comprising:
4	applying a voltage to said sensor to cause said sensor to dissipate energy;
5	capturing an image of said sensor with an infrared camera to generate a
6	thermographic image of said sensor while said sensor is dissipating energy;
7	identifying conduction paths in said sensor array as regions having a higher
8	temperature than their surroundings;
9	calculating a measure of the uniformity of the temperature distribution of the
10	image; and
11	assessing the uniformity of the temperature distribution is said regions, using said
12	measure, wherein a higher measure value corresponds with a more uniform temperature
13	distribution; and
14	monitoring the quality of said sensor using said temperature distribution.
1	Claim 20 (original): The method according to claim 19, wherein at least one of
2	said sensors in said array is a member selected from the group consisting of
3	conducting/nonconducting sensors, bulk conducting polymer films, surface acoustic wave
4	devices, fiber optic micromirrors, quartz crystal microbalances, dye impregnated polymeric
5	coatings on optical fibers, sintered metal oxide sensors, phthalocyanine sensors, Pd-gate
6	MOSFET devices, electrochemical cells, conducting polymer sensors, lipid coating sensors,

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Claims 1-18 (canceled)

1.	Claim 19 (crrently amended): A method for assessing the uniformity in
2	temperature distribution in regions of a sensor comprising a sensor array which comprise
3	conduction paths, monitoring the quality of a sensor, comprising:
4	applying a voltage to said sensor to cause said sensor to dissipate energy;
5	capturing an image of said sensor with an infrared camera to generate a
6	thermographic image of said sensor while said sensor is dissipating energy;
7	identifying conduction paths in said sensor array as regions having a higher
8	temperature than their surroundings;
9	calculating a measure of the uniformity of the temperature distribution of the
10	image; and
11	assessing the uniformity of the temperature distribution is said regions, using said
12	measure, wherein a higher measure value corresponds with a more uniform temperature
13	distribution; and
14	monitoring the quality of said sensor using said temperature distribution.
1	Claim 20 (original): The method according to claim 19, wherein at least one of
2	said sensors in said array is a member selected from the group consisting of
3	conducting/nonconducting sensors, bulk conducting polymer films, surface acoustic wave
4	devices, fiber optic micromirrors, quartz crystal microbalances, dye impregnated polymeric
5	coatings on optical fibers, sintered metal oxide sensors, phthalocyanine sensors, Pd-gate
6 .	MOSFET devices, electrochemical cells, conducting polymer sensors, lipid coating sensors,

Appl. No. 09/660,138 Amdt. dated October 8, 2003 Reply to Office Action of April 9, 2003

7 metal FET structures, carbon black-polymer composites, micro-electro-mechanical system devices, micromachined cantilevers, and micro-opto-electro-mechanical system devices. 8 1 Claim 21 (original): The method according to claim 20, wherein at least one of 2 said sensors in said array is a conducting/nonconducting regions sensor. 1 Claim 22 (currently amended): A method for identifying the conducting path of 2 a sensor comprising a sensor array, comprising: 3 applying a voltage to said sensor to cause said sensor to dissipate energy; 4 capturing an image of said sensor with an infrared camera to generate a 5 thermographic image of said sensor while said sensor is dissipating energy; and 6 identifying [[said]] conduction paths in said sensor array as regions having a higher temperature than their surroundings. 7 1 Claim 23 (original): The method according to claim 22, wherein said sensor is a 2 member selected from the group consisting of conducting/nonconducting regions sensors, bulk 3 conducting polymer films, surface acoustic wave devices, fiber optic micromirrors, quartz crystal 4 microbalances, dye impregnated polymeric coatings on optical fibers, sintered metal oxide 5 sensors, phthalocyanine sensors, Pd-gate MOSFET devices, electrochemical cells, conducting 6 polymer sensors, lipid coating sensors, metal FET structures, carbon black-polymer composites, 7 micro-electro-mechanical system devices, micromachined cantilevers, and micro-opto-electro-8 mechanical system devices Claims 24-25 (canceled) 1 Claim 26 (new): The method according to claim 19 wherein said measure 2 comprises a temperature uniformity factor comprising a ratio of regions in said image that 3 contribute to a proportion of a cumulative sum of the temperatures.