Pokročilá algoritmizace

topologické uspořádání, hledání minimální kostry grafu, Union-Find problém

Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Podgraf

podgraf

□ Graf H je *podgraf* grafu G, jestliže platí následující dvě inkluze:

$$V(H) \subseteq V(G)$$

$$E(H) \subseteq E(G) \cap \binom{V(H)}{2}$$

- □ Jinými slovy, podgraf vznikne:
 - vymazáním některých vrcholů původního grafu
 - všech hran do těchto vrcholů zasahujících a případně některých dalších hran.

Komponenta souvislosti

komponenta souvislosti grafu G = (V,E) určená vrcholem V je množina

$$C(v) = \{u \in V | \exists \text{ cesta } v \text{ G z } u \text{ do } v\}.$$

jinými slovy: Pokud graf není souvislý, části, ze kterých se skládá a které jsou samy o sobě souvislé, se nazývají komponenty souvislosti.

$$C(a) = C(b) = \{a,b\}$$

$$C(c) = C(d) = C(e) = \{c,d,e\}$$

DFS pro celý graf rekurzivně

Graf G. vstup: procedure DFS (Graf G) { for each Vrchol v in V(G) { stav[v] = NENAVŠTÍVENÝ; p[v] = null; } 2) $\check{c}as = 0$: 3) for each Vrchol v in V(G) if (stav[v] == NENAVŠTÍVENÝ) then DFS-Projdi(v); 5) 6) **procedure** DFS-Projdi(Vrchol *u*) { 7) stav[u] = OTEVŘENÝ; d[u] = ++čas;8) **for each** Vrchol *v* **in** Sousedí_s *u* 9) if (stav[v] == NENAVŠTÍVENÝ) then $\{p[v] = u; \text{DFS-Projdi}(v); \}$ 10) stav[u] = UZAVŘENÝ; f[u] = ++čas;11) 12)

výstup: pole p ukazující na předchozí vrchol, pole d s časy otevření vrcholu a pole f s časy uzavření vrcholu.

Topologické uspořádání

- topologické uspořádání vrcholů grafu
 - Mějme graf G, který je DAG. Definujme binární relaci R topologického uspořádání nad vrcholy grafu G takovou, že R(x,y) platí, právě když z x vede orientovaná cesta do y.
 - □ Jinými slovy: Očíslujeme-li všechny vrcholy grafu G tak, že pro každé dva vrcholy x a y platí:
 - $x \le y$, právě když z x vede orientovaná cesta do y.
 - Potom relace ≤ je topologické uspořádání nad grafem G s očíslovanými vrcholy.
- implementace pomocí předchozího DFS algoritmu
 - □ Očíslování vrcholů polem f s relací ≤ je topologické uspořádání.

Další využití mírně modifikovaného DFS

- zjišťování acykličnost grafu
- zjišťování souvislosti grafu
- hledání komponent souvislosti grafu
- převod grafu na orientovaný les

Kostra grafu

kostra grafu

□ Nechť G=(V,E) je graf. Kostra grafu G je podgraf H grafu G takový, že V(G)=V(H) a H je strom.

Minimální kostra grafu

- minimální kostra grafu
 - □ Nechť G=(V,E) je graf a $w: E \rightarrow \mathbb{R}$ je jeho váhová funkce.
 - \square *Minimální kostra grafu* G je taková kostra $K=(V,E_K)$ grafu G, že

$$\sum_{e \in E_K} w(e) = w(K)$$

je minimální.

Řez v grafu

řez

- □ Řez v grafu G = (V,E) je množina hran $F \subseteq E$ taková, že $\exists U \subset V : F = \{\{u,v\} \in E \mid u \in U, v \notin U\}.$
- tvrzení: Pokud G je graf, w jeho prosté ohodnocení, F je řez v grafu G a f je nejlehčí hrana v řezu F, pak pro každou minimální kostru K grafu G je f∈E(K).
 - Důkaz sporem: Buď K kostra a $f = \{u,v\} \notin E(K)$. Pak existuje cesta $P \subseteq K$ spojující u a v. Cesta musí řez alespoň jednou překročit. Proto existuje $e \in P \cap F$ a navíc víme, že w(f) < w(e). Uvažme K' = K e + f. Tento graf je rovněž kostra grafu G, protože odebráním hrany e se graf rozpadne na dvě komponenty souvislosti a přidáním hrany f se tyto komponenty opět spojí. Navíc w(K') = w(K) w(e) + w(f) < w(K).

- **vstup:** Graf G s ohodnocením w: G(E)→ \mathbb{R} .
 - 1) Zvolíme libovolný vrchol $v_0 \in V(G)$.
 - 2) $K := (\{v_0\}, \emptyset).$
 - 3) while $|V(K)| \neq |V(G)|$ {
 - Vybereme hranu $\{u,v\} \in E(G)$, kde $u \in V(K)$ a $v \notin V(K)$ tak, aby $w(\{u,v\})$ byla minimální.
 - 5) $K := K + hrana \{u, v\}.$
 - 6) }
- **výstup:** Minimální kostra K.

- tvrzení: Jarníkův algoritmus se zastaví po max. | V(G) |
 krocích a vydá minimální kostru grafu G.
 - \square Při každé iteraci algoritmus přidá jeden vrchol do K, a proto se po maximálně |V(G)| iteracích zastaví.
 - Výsledný graf K je strom, protože se stále přidává list k již existujícímu stromu. Navíc má K | V(G)| vrcholů tedy je to kostra.
 - Hrany mezi vrcholy stromu K a zbytkem grafu G tvoří řez a algoritmus nejlehčí hranu tohoto řezu přidá do K. Podle předhozího tvrzení tedy všechny hrany K musí být součástí každé minimální kostry a jelikož K je strom, musí být minimální kostrou.

Pokročilá algoritmizace

implementace:

- □ "přímočará"
 - Pamatujeme si, které vrcholy a hrany jsou v kostře K a které ne.
 - Časová složitost je $O(n \cdot m)$ kde n = |V(G)| a m = |E(G)|.

□ vylepšení

- Pro v ∉ V(K) si pamatujeme $D(v) = \min\{w(\{u,v\}) \mid u \in K\}$. Při každém průchodu hlavním cyklem pak procházíme všechna D(v) (to vždy trvá O(n)) a při přidání vrcholu do K kontrolujeme okolní D(s) pro $\{v,s\} \in E$ a případně je snižujeme (za každou hranu O(1)).
- Časovou složitost tím celkově zlepšíme na $O(n^2 + m) = O(n^2)$.
- Výslednou časovou složitost lze ještě významně vylepšit použitím vhodného druhu haldy.

- **vstup:** Graf G s ohodnocením $w: G(E) \rightarrow \mathbb{R}$, kde všechny váhy jsou různé.
 - 1) $K := (V(G), \emptyset).$
 - 2) while K má alespoň dvě komponenty souvislosti {
 - Pro každou komponentu T_i grafu K vybereme nejlehčí incidentní hranu t_i .
 - 4) Všechny hrany t_i přidáme do K.
 - **5**) }
- výstup: Minimální kostra K.

 $^{^{1}}$ *nejlehčí incidentní hrana* je hrana, která spojuje komponentu souvislosti T_{i} s nějakou jinou komponentou souvislosti a váha této hrany je nejmenší.

- tvrzení: Borůvkův algoritmus se zastaví po max. [log₂ | V(G)|]
 iteracích a vydá minimální kostru grafu G.
 - \square Po k iteracích mají všechny komponenty grafu K minimálně 2^k vrcholů.
 - indukcí: Na počátku jsou všechny komponenty jednovrcholové. V každé další iteraci se komponenty slučují do větších (každá s alespoň jednou sousední), takže se velikosti komponent minimálně zdvojnásobí.
 - □ Proto nejpozději po $\lceil \log_2 | V(G)| \rceil$ iteracích už velikost komponenty dosáhne počtu všech vrcholů a algoritmus se zastaví.
 - □ Hrany mezi každou komponentou souvislosti a zbytkem grafu tvoří řez, takže podle řezového tvrzení všechny hrany přidané do K musí být součástí (jednoznačně určené) minimální kostry. Graf K ⊆ G je tedy vždy les (= množina navzájem nepropojených stromů) a až se algoritmus zastaví, bude roven minimální kostře.

implementace iterace:

- Pomocí DFS rozložíme les na komponenty souvislosti. U každého vrcholu si pamatujeme číslo komponenty.
- Pro každou hranu zjistíme, do které komponenty patří, a pro každou komponentu si uchováme nejlehčí hranu.
- □ Takto dokážeme každou iteraci provést v čase O(|E(G)|) a celý algoritmus tedy doběhne v $O(|E(G)| \cdot \log |V(G)|)$.

- **vstup:** Graf G s ohodnocením $w: G(E) \rightarrow \mathbb{R}$.
 - 1) Setřídíme všechny hrany e_1 ,..., $e_{m=|E(G)|}$ z E(G) tak, aby $w(e_1) \le ... \le w(e_m)$.
 - 2) $K := (V(G), \emptyset).$
 - 3) for i := 1 to $m \{$
 - 4) if K+hrana $\{u,v\}$ je acyklický graf then K := K+hrana $\{u,v\}$.
 - 5) }
- **výstup:** Minimální kostra K.

- tvrzení: Kruskalův algoritmus se zastaví po |E(G)| iteracích a vydá minimální kostru.
 - \square Každá iterace algoritmu zpracovává jednu hranu, takže iterací je |E(G)| .
 - Indukcí dokážeme, že K je vždy podgrafem minimální kostry: prázdné počáteční K je podgrafem čehokoliv (tedy i minimální kostry), každá hrana, kterou pak přidáme, je minimální v řezu oddělujícím nějakou komponentu K od zbytku grafu (ostatní hrany tohoto řezu ještě nebyly zpracovány, a tudíž jsou těžší). Naopak žádná hrana, kterou jsme se rozhodli do K nepřidat, nemůže být součástí minimální kostry, jelikož s hranami, o kterých již víme, že v minimální kostře leží, tvoří cyklus.

Pokročilá algoritmizace

- implementace
 - □ Setřídění je v čase $O(|E(G)| \cdot \log |E(G)|) = O(|E(G)| \cdot \log |V(G)|)$.
 - Pak potřebujeme udržovat komponenty souvislosti grafu K, abychom uměli rychle určit, jestli právě zpracovávaná hrana vytvoří cyklus.
 - □ Potřebujeme tedy strukturu pro udržování komponent souvislosti, které se |E(G)|-krát zeptáme, zda dva vrcholy leží v téže komponentě (tomu budeme říkat operace Find), a právě (|V(G)| -1)-krát spojíme dvě komponenty do jedné (operace Union).

• Mějme graf G = (V, E).

Řešíme otázku: "Leží vrcholy u a v ve stejné komponentě souvislosti v grafu G?".

Problému se také někdy říká dynamické udržování komponent souvislosti a nebo problém udržování ekvivalence.

V každé komponentě souvislosti vybereme jednoho reprezentanta. Pro jednoduchost budeme reprezentanta komponenty $\mathcal{C}(v)$ značit r(v), takže pokud u a v leží ve stejné komponentě, tak r(u) = r(v). Úkol můžeme realizovat pomocí operací:

- FIND(v) = r(v), operace vrátí reprezentanta komponenty souvislosti C(v).
- **UNION**(u, v) provede sjednocení komponent souvislosti C(u) a C(v). To odpovídá přidání hrany $\{u, v\}$ do grafu.

jednoduché řešení:

- □ Předpokládejme, že všechny vrcholy jsou očíslované čísly 1 až n. Použijeme pole R[1..n], kde R[i] = r(i), tj. číslo reprezentanta komponenty C(i).
- □ Operace FIND(v) pouze vypíše hodnotu R[v] a tedy bude trvat O(1).
- □ K provedení UNION(u, v) najdeme reprezentanty r(u) = FIND(u) a r(v) = FIND(v).

 Pokud jsou různí, tak projdeme celé pole R a každý výskyt r(u) prepíšeme na r(v). To nám zabere čas O(n).

- lepší řešení (pomocí orientovaného stromu):
 - Každou komponentou si uložíme jako strom orientovaný směrem ke kořeni – každý vrchol si pamatuje svého otce, navíc každý kořen si pamatuje velikost komponenty. Kořen každé komponenty bude tedy jejím reprezentantem.
 - \square Operace FIND(v) vystoupá z vrcholu v ke kořeni a ten vrátí.
 - □ K provedení UNION(u, v) najdeme reprezentanty r(u) = FIND(u) a r(v) = FIND(v).

Pokud jsou různí, tak připojíme kořen menší komponenty ke kořeni větší komponenty. V koření nově vzniklé komponenty aktualizujeme její velikost.

- **3-4** 0 1 2 3 3 5 6 7 8 9
- 4-9 0 1 2 3 3 5 6 7 8 3
- 8-0 8 1 2 3 3 5 6 7 8 3
- **2-3** 8 1 3 3 3 5 6 7 8 3
- 5-6 8 1 3 3 3 5 5 7 8 3
- 5-9 8 1 3 3 3 3 5 7 8 3
- 7-3 8 1 3 3 3 3 5 3 8 3
- 4-8 8 1 3 3 3 3 5 3 3 3
- 6-1 8 3 3 3 3 3 5 3 3 3

- lepší řešení (pomocí orientovaného stromu):
 - □ tvrzení: Union-Find strom hloubky h má alespoň 2^h prvků.
 - důkaz indukcí: Pokud UNION spojí strom s hloubkou h s jiným stromem s hloubkou menší než h, pak hloubka výsledného stromu zůstává h. Pokud spojuje dva stromy stejné hloubky h, pak má výsledný strom hloubku h+1. Z indukčního předpokladu víme, že strom hloubky h má minimálně 2^h vrcholů, a tedy výsledný strom hloubky h+1 má alespoň 2^{h+1} vrcholů.
 - \square důsledek: Složitost operací UNION a FIND je O($\log |V|$).
- nejlepší známé řešení je $O(\alpha | V|)$ pro obě operace, kde funkce α je inverzní Ackermannova funkce.

- složitost Kruskalova algoritmu:
 - □ Setřídění je v čase $O(|E(G)| \cdot \log |E(G)|) = O(|E(G)| \cdot \log |V(G)|)$.
 - Dále potřebujeme strukturu pro udržování komponent souvislosti, které se |E(G)|-krát zeptáme, zda dva vrcholy leží v téže komponentě pomocí operace Find, a právě (|V(G)| 1)-krát spojíme dvě komponenty do jedné operací Union.
 - □ Při použití jednoduchého řešení bude celková složitost algoritmu: $O(|E(G)| \cdot \log |V(G)| + |E(G)| + |V(G)|^2) = O(|E(G)| \cdot \log |V(G)| + |V(G)|^2)$
 - □ Při použití lepšího řešení s orientovaným stromem bude celková složitost algoritmu:

$$O(|E(G)| \cdot \log |V(G)| + |E(G)| \cdot \log |V(G)| + |V(G)| \cdot \log |V(G)|) = O(|E(G)| \cdot \log |V(G)|)$$