Axler 7.B exercise 7 June 1, 2021

Suppose V is a complex inner product space and $T\in\mathcal{L}(V)$ is a normal operator such that $T^9=T^8$. Prove that T is self-adjoint and $T^2=T$.

If T=0, then $0^2=0$ and 0 is self-adjoint. Thus, let $T\neq 0$.

In 7.1, Axler asserts that V is finite-dimensional.

 $\it T$ has a diagonal matrix w.r.t. an orthonormal basis of $\it V$.

$$TT^* = T^*T$$

First, we will show that $T^2=T$. Suppose T is invertible. Then,

$$T^9 = T^8$$

 $T^9T^{-7} = T^8T^{-7}$
 $T^2 = T$

Suppose T is not invertible. Then, T has