Advanced Software Security

9. Propositional Logic

Kihong Heo

Logic

- What is logic? A tool for reasoning about truths
- Why logic for computer scientists? Reasoning about computation
- For example,
 - "Does this program accept an array of integers and produce a sorted array?"
 - "Does this program access an unallocated memory?"
 - "Does this function always halt?"
- This course: propositional logic (PL) and first-order logic (FOL)

Syntax

- Atom: basic elements
 - Truth symbols: T ("true") and ⊥ ("false")
 - Propositional variables: P, Q, R, \dots
- Literal: an atom α or its negation $\neg \alpha$
- Formula: a literal or the application of a logical connective to formulae

$$F
ightarrow
ightharpoonup \Gamma$$
 $|
ightharpoonup T$
 $|
ightharpoonup P, Q, R, \dots$
 $|
ightharpoonup T$
 $|
ightharpoonup F$
 $|
ightharpoonup F_1 \wedge F_2$
 $|
ightharpoonup F_1
ightharpoonup F_2$
 $|
ightharpoonup F_1
ightharpoonup F_2$
 $|
ightharpoonup F_1
ightharpoonup F_2$

Semantics

- Give meaning to formulae
 - In propositional logic, the truth values
- ullet The semantics of a formula is defined with an interpretation I
 - An interpretation assigns to every propositional variable exactly one truth value
- For example, $F: P \land Q \rightarrow P \lor \neg Q$ and $I: \{P \mapsto \top, Q \mapsto \bot\}$

Inductive Definition of PL

- Notation:
 - $I \models F$ if F evaluates to true under I
 - $I \not\models F$ if F evaluates to false under I

```
\begin{split} I &\models \top \\ I \not\models \bot \\ I &\models P & \text{iff } I[P] = \text{true} \\ I \not\models P & \text{iff } I[P] = \text{false} \\ I &\models \neg F & \text{iff } I \not\models F \\ I &\models F_1 \land F_2 & \text{iff } I \models F_1 \text{ and } I \models F_2 \\ I &\models F_1 \lor F_2 & \text{iff } I \models F_1 \text{ or } I \models F_2 \\ I &\models F_1 \to F_2 & \text{iff, if } I \models F_1 \text{ then } I \models F_2 \\ I &\models F_1 \leftrightarrow F_2 & \text{iff, if } I \models F_1 \text{ and } I \models F_2 \\ I &\models F_1 \leftrightarrow F_2 & \text{iff, if } I \models F_1 \text{ and } I \models F_2, \text{ or if } I \not\models F_1 \text{ and } I \not\models F_2 \end{split}
```

Example

• $F: P \land Q \rightarrow P \lor \neg Q$ and $I: \{P \mapsto T, Q \mapsto \bot\}$

Satisfiability and Validity

- Two important tasks in logic (why? when?)
- A formula F is satisfiable iff there exists an interpretation I such that $I \models F$
- A formula F is valid iff for all interpretations I, $I \models F$
- Satisfiability and validity are dual: F is valid iff $\neg F$ is unsatisfiable
- We are free to focus on either one; the other will follow

Determining Validity and Satisfiability (1)

- Truth table method
 - For example, $F: P \land Q \rightarrow P \lor \neg Q$
- Impractical: 2ⁿ interpretations

P	Q	PΛQ	٦Q	PV⊐Q	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

• Impossible: for any other logic where the domain is not finite (e.g., first-order logic)

Determining Validity and Satisfiability (2)

- Semantic argument method (proof by contradiction)
 - Assume F is invalid: $I \not\models F$
 - Apply proof rules to derive
 - Derive a contradiction in every branch of the proof
 - Then, F is valid

Proof Rules (1)

According to semantics of negation,

$$\frac{I \models \neg F}{I \not\models F}$$

$$\frac{I \not\models \neg F}{I \models F}$$

According to semantics of conjunction,

$$\frac{I \models F \land G}{I \models F, I \models G}$$

$$\frac{I \not\models F \land G}{I \not\models F \mid I \not\models G}$$

Proof Rules (2)

According to semantics of disjunction,

$$\frac{I \models F \lor G}{I \models F \mid I \models G}$$

$$\frac{I \not\models F \lor G}{I \not\models F, \ I \not\models G}$$

According to semantics of implication,

$$\frac{I \models F \to G}{I \not\models F \mid I \models G}$$

$$\frac{I \not\models F \to G}{I \models F, \ I \not\models G}$$

Proof Rules (3)

According to semantics of iff,

$$\frac{I \models F \leftrightarrow G}{I \models F \land G \mid I \models \neg F \land \neg G}$$

$$\begin{array}{c|c} I \models F \leftrightarrow G \\ \hline I \models F \land G \mid I \models \neg F \land \neg G \end{array} & \begin{array}{c|c} I \not\models F \leftrightarrow G \\ \hline I \models F \land \neg G \mid I \models \neg F \land G \end{array} \\ \hline \end{array}$$

Contradiction

$$\frac{I \models F, \ I \not\models F}{I \models \bot}$$

Example

• Prove $F: P \land Q \rightarrow P \lor \neg Q$ is valid

Summary

- Propositional logic: the simplest form of logic
- Interpretation: decide the meaning of a formula (either true or false)
- Satisfiability: is there any interpretation that makes the formula be true?
- Validity: does the formula evaluate to be true for all interpretations?
- Duality of satisfiability and validity
 - E.g., "no input can trigger this bug" = "all inputs work well"