		i) Are the lines parallel?
₹ = ⟨७,1,-3⟩	$\overrightarrow{\rho_1 \rho_2} = \langle 3, 2, -5 \rangle$	ii) Do the lines intersect?
$\overrightarrow{\nabla}_{i} = \langle -1, 0, 2 \rangle$		
	$\overrightarrow{P_1P_3} = \langle -2, 5, -3 \rangle$	1) $\vec{v_i} = \langle 2, -1, 3 \rangle$ no such scalar multiple t
$\vec{n} = \langle 2, -(14-3), 0+1 \rangle$	$\vec{p}_1\vec{p}_2 \times \vec{p}_1\vec{p}_3 = \langle -6 + 25, -(-9 - 10), 15 + 4 \rangle$	
= \(2 -11 1 \)		$\overrightarrow{V_{i}} = \langle 3, -5, 2 \rangle$ for which $\overrightarrow{V_{i}} = \overrightarrow{V_{i}}$: not parallel
	= < 19, 19, 19> -> normal	
passing point on L2 P2 (4,6,7)	parsing point (0,-2,3)	11) let (x0, y0, Z0) be the intersecting point
egn of the plane containing Lz	egn of the plane	for L,: xo=1+2+, y=3-+, zo=3+,
2(x-4)-11(y-6)+1(z-7)=0	19(x-0)+19(y+2)+19(z-3)=0	$\int_{e^{-1}}^{e^{-1}} \frac{1}{x_0} = \frac{1}{4} + 3t_2 y_0 = 2 - 5t_2 z_0 = -1 + 2t_2$
3 2x -8 - 11y +66 + z - 7 = 0	⇒ 19x + 19y + 38 + 19z - 57 = 0	1+2+, = 4+3+2 3-+, = 2-5+2
=> 2x - 11y + z + 51 = 0	-> 19x + 19y + 19z - 19=0	
		$\Rightarrow 2t_1 - 3t_2 = 3 \Rightarrow -t_1 + 5t_2 = -1$
paning point on L,: P,(1,3,5)		$t_1 = \frac{12}{7}$ now $3t_1 = -1 + 2t_2$
12-33+5+51		
distance between L, and $L_2 = \frac{ 2-33+5+5 }{\sqrt{2^2+11^2+1^2}}$		$\frac{t_2 = 1/7}{7} \Rightarrow 3 \frac{12}{7} = -1 + 2 \frac{1}{7}$
		$\Rightarrow \frac{3c}{7} = -\frac{5}{7}$
= 2.227		
		which is a contradiction
Find the area of the triangle with vertices $P_1(1,3,0)$ $P_2(-2,0,1)$: the lines don't intersect
P ₃ (0,5,-6).		
) $\overrightarrow{p}, \overrightarrow{p}_{1} = \langle -3, -3, 1 \rangle$ $\overrightarrow{p}, \overrightarrow{p}_{2} \times \overrightarrow{p}, \overrightarrow{p}_{3} = \langle -3, -3, 1 \rangle$	(18-2, -(18+1), -6-3)	
P, P, = <-1, 2, -6> = .	(16, -19, -9)	
$cne \alpha = \frac{1}{2} \sqrt{16^2 + 16^2}$	192 + 92	
= 19.209		
- 17.20 7		

b) Find the equation of the plane passing through the points

 $p_1(0,-2,3), p_2(3,0,-2) \text{ and } p_3(-2, 3,0).$

c) Let L_1 and L_2 be the lines

 L_1 : x = 1 + 2t, y = 3 - t, z = 3t

 L_2 : x = 4 + 3t, y = 2 - 5t, z = -1 + 2t

2. a) Find the distance between the given skew lines L_1 : x=1+7t, y=3+t, z=5-3t L_2 : x=4-t, y=6, z=7+2t

