Acuña Alcázar, Flora

Adrados Betrón, Rubén

Arias Reyes, María del Pilar

Armario Ruiz, Ángel

Arriaza García, Mario

Azcunaga Veíga, Mario Humberto

Azofra Gómez, José Vicente

Barba López, Francisco José

Baro Torres, Pablo

Barrios Román, Luis

Bascuñana León, Cristina

Bocarando Sánchez, Carlos

Brea Lebrero, Roberto

Cáceres Aranega, Álvaro

Calo Del Pino, José

Cantos López, Alejandro

Carmona García, Eduardo

Castaño Torres, José María

Castilla Rodríguez, Alejandro

Castillo Caro, Iván

Coello López, Alberto

Cordero Rodríguez, Adrían

Cortés Pantoja, Luis Manuel

Cumbrera Sánchez, José Luis

De Arístegui Sánchez, Jaime

De Celis Muñoz, Luis

De la Higuera Cuesta, Jesús

Delgado Arroyo, Salvador

Díaz Durán, Rubén Fermín

Escribano Corrales, Raúl

Espinosa Barrios, Antonio

Facio Treceño, Jesús

Fariñas Fernández, Diego

Fernández Galindo, Javier

Fernández Rodríguez, David

Fernández Torrejón, Manuel Jesús

Gallo Chaves, Miguel Ángel

García Dormido, Javier

García Pérez, Luis Miguel

García Salguero, Ángel Yeray

Gaviria Ruiz, Johan Javier

Gómez Rodríguez, Sergio

Gordillo Fernández, Adrián

Guerrero Doval, Rafael

Helices Arena, José Ángel

Hormigo Invernón, Jesús

Iglesias Jiménez-Mena, José Lorenzo

Jiménez Vázquez, Jesús

Lago Carrera, Carmen Beatriz

Llamas Jaén, Carlos

Loiz Jordán, Carlos

López Márquez, Pablo

López Narbona, Juan Manuel

Martínez Iniesta, Raimundo

Martínez Mariscal, Victor

Martínez Márquez, Teodoro

Martínez-Esparza Castro, Paloma

Milán Real, Juan Jesús

Morón González, Joaquín

Muras González, Roberto

Núñez García, Pablo

Olivero Hedrera, José Manuel

Ortega Cabrera, Manuel

Peña Rodríguez, Juan Antonio

Peralta Barcia, Paula

Peralta Mateos, Juan Manuel

Peregrina Pérez, María Jesús

Pérez Ortega, Manuel

Pérez-Calderón Ortíz, José Joaquín

Periñán Campos, Álvaro

Periñán Freire, José Manuel

Prián Pérez, Miguel Alejandro

Ramírez Ruz, Javier

Rivero Litrán, María Isabel

Rivero Rivera, Lucía Judith

Robles Sorroche, Luis

Rodríguez Gómez, Pablo

Rodríguez Gracia, Juan Pedro

Rodríguez Heras, Jesús

Rodríguez Moreno, Juan Pastor

Romero Arias, Pablo

Rosa Colomo, Alejandro

Ruiz de Celis, Carmen del Mar

Ruiz Pino, Sergio

Sánchez Hernández, Paulo

Sánchez Peña, Jaime

Sánchez Rivero, Antonio

Segundo Galindo, Mario

Sibello Litrán, Nicolás

Sibón Jiménez, Teodoro Antonio

Sobrero Grosso, Roberto

Soto Vera, Francisco Javier

Afán Espinosa, Miguel

Álvarez González, Alberto

Arce Iniesta, Francisco

Arrieta Soto, José Manuel

Astorga Morillo, José Luis

Barba Aguilar, Eduardo

Beato García, María

Benítez García, Marco Adrían

Bernal Pérez, Guillermo Jesús

Blanco Vélez, Luis María

Caballero Marín, Ignacio

Cabello Cabello, Carlos

Cabral Ramírez, Miguel

Candón Berenguer, Fernando

Carpio Gavira, Luis Miguel

Cumbreras Hernández, Pablo

De los Ríos Gestoso, Pablo

Descalzo Fénix, Rubén Manuel

Fernández Blanco, Francisco José

Ferral Garrido, Miguel Ángel

Gallardo Ortegón, Francisco

García Moreno, Antonio

García Navarro, Sergio

García Rebollo, Luis

García-Pardo Montero, Javier David

Gómez Coronil, Francisco Javier

Gómez de la Torre López, Francisco José

Granados Valencia, Pablo

Güelfo Pineda, Manuel Jesús

Guerrero Guzmán, Diego

Güeto Matavera, Jordi

Izquierdo Álvarez, José Ángel

Jiménez Santana, Jesús

López Cala, Kevin

López García, Guillermo

López Sierra, Javier

Márquez Jiménez, José María

Martín Lloret, Javier

Martínez Chanivet, Manuel

Martínez Manito, Manuel Jesús

Meléndez Lapi, Ignacio

Melero Ligero, Teresa

Mellado Gómez, Enrique

Merlo Cuadra, Jesús

Montero Domínguez, Rubén

Olmo Barberá, José Luis

Olvera Ruiz, Jesús

Orellana Romero, Aitor Manuel

Ortega de la Rosa, Diego

Palacios Castro, Juan Antonio

Parada Cómez, Alejandro

Peña Puchi, Kevin

Perales Montero, Alberto Antonio

Pérez Baturone, Jaime

Pérez López, Juan Carlos

Piedad Garrido, Pablo

Pinto Torrejón, Alberto

Ramírez Lerate, Germán

Rendón Salvador, Marta

Riol Sánchez, José María

Riqué Bermúdez, Borja

Rodríguez Celdrán, Jaime

Rodríguez Escobar, David

Rodríguez González, Gabriel

Rodríguez Jiménez, Jesús

Rodríguez Pericacho, Félix

Rodríguez Visglerio, Sergio

Román Aguilar, Rafael

Romero Fernández, Borja

Romero Gómez, Luis

Rondán Rodríguez, Marta

Ruiz Bonald, Juan

Ruiz Gómez, Alberto

Salado Bornes, Esperanza

Sanabria Flores, Carlos Rodrigo

Sánchez Muñoz, Antonio José

Santana Mesa, Enrique

Sepúlveda Cornejo, Mario

Solano Carrasco, Pedro Ignacio

Soler Melero, José María

Soriano Roldán, Claudia

Soto Rosado, David

Suazo Cote, David

Tejada Pérez, Juan Antonio

Toledo Caravaca, Juan Jesús

Torres Gómez, Pablo Antonio

Ulibarri García, Gonzalo

Urrutia Sánchez, Iñaki

Vargas Torres, Guillermo

Velo Huerta, Cristobal José

Vidal Jiménez, Juan Carlos

Zarzuela Aparicio, Adrián

Zarzuela Morales, Javier Miguel

Acuña Alcázar, Flora

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(a) Espaikin la calución ónica de la caucaión propuesta para las candiciones iniciales de des			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.			
	Acuña Alcázar, Flora		

Adrados Betrón, Rubén

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.			
(6) Escribir la solución amenada de la ecuación propuesta para las condiciones iniciates dadas.			
	Adrados Betrón, Rubén		

Arias Reyes, María del Pilar

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.			
Arias Reyes, María del Pila	r		

Armario Ruiz, Ángel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.			
	Armario Ruiz, Ángel		

Arriaza García, Mario

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener lo	s coeficientes d	el principio de si	uperposición. ($\alpha_1, \alpha_2 \neq \alpha_3$). E	Scribir las ecuaci	ones y su soluciór	1.
(1	g) Escribir la	solución única	de la ecuación p	oropuesta para l	las condiciones	iniciales dadas.		
							Arriaza García,	Mario

Azcunaga Veíga, Mario Humberto

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir	las ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciale	es dadas.
	Azcunaga Veíga, Mario Humberto
	, wearing a verga, ividito Humberto

Azofra Gómez, José Vicente

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	das		
(g) Escribir la solución unica de la ecuación propuesta para las condiciones iniciales da	uas.		
	Azofra Gómez, José Vicente		

Barba López, Francisco José

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.				
(g)	Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	las.		
		Barba López, Francisco José		

Ecuaciones de Recurrencia Baro Torres, Pablo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f)	Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 y \alpha_3)$. Escribir las ecuaciones y su solución.
(g)	Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.
	Baro Torres, Pablo

Ecuaciones de Recurrencia Barrios Román, Luis

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.			
	Barrios Román, Luis		

Bascuñana León, Cristina

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	aciones y su solución.
(g) Escuibir la solución única de la consción propuesta para los condiciones iniciales dedes	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	
	Bascuñana León, Cristina
	Duscullaria Leon, Cristilla

Bocarando Sánchez, Carlos

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	naciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	c
(g) Escribir la solución unica de la ecuación propuesta para las condiciones iniciales dada	
	Bocarando Sánchez, Carlos
	Docarando Janenez, Carlos

Brea Lebrero, Roberto

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 y \alpha_3)$. Escribir las ecuaciones y su solución.	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Brea Lebrero, Robe	<u>erto</u>

Cáceres Aranega, Álvaro

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Cáceres Aranega, Álvar	<u>o</u>

Ecuaciones de Recurrencia Calo Del Pino, José

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Calo Del Pino, José

Cantos López, Alejandro

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuados	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Cantos López, Alejandro
	Cantos Lopez, Alejanuro

Carmona García, Eduardo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	
	Carmona García, Eduardo

Castaño Torres, José María

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ec	cuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	as
(8) Escribir la solución amenado la ecuación propaessa para las condiciones infolmes dada	
	Castaño Torres, José María

Castilla Rodríguez, Alejandro

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las equation (f) Obtener los coeficientes del principio de superposición.	cuaciones y su soluc	ción.
	I	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	ias.	
	Castilla Rodríguez,	Alejandro

Ecuaciones de Recurrencia Castillo Caro, Iván

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 y \alpha_3)$. Escribir las ecuaciones	y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Castillo Caro, Iván
	Castillo Calo, Ivall

Coello López, Alberto

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuado	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Coello López, Alberto

Cordero Rodríguez, Adrían

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Pserribir la solución única de la ecuación propuesta para las condiciones iniciales dadas. Cordero Rodríguez, Adrian	(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución	1.
Cordero Rodríguez, Adrian	(g) Escribir la solucion unica de la ecuación propuesta para las condiciones iniciales dadas.		
Cordero Rodríguez, Adrian			
Cordero Rodríguez, Adrian			
Cordero Rodríguez, Adrían			
Cordero Rodríguez, Adrian			
Cordero Rodríguez, Adrian			
Cordero Rodríguez, Adrían			
Cordero Rodríguez, Adrian			
Cordero Rodríguez, Adrían			
Cordero Rodríguez, Adrian			
Cordero Rodríguez, Adrian			
Cordero Rodríguez, Adrían			
		Cordero Rodríguez,	Adrían

Cortés Pantoja, Luis Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	s.
	Cortés Pantoja, Luis Manuel

Cumbrera Sánchez, José Luis

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	ecuaciones y su solución.
(g) Escribir la calución única de la caucción propuesta para las condiciones iniciales de	odog
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	adas.
	Cumbrera Sánchez, José Luis

De Arístegui Sánchez, Jaime

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales d	adas.
(8) Escribir la solución amos de la codación propaesta para las condiciones iniciatos d	
	De Arístegui Sánchez, Jaime

Ecuaciones de Recurrencia De Celis Muñoz, Luis

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacione	s y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	De Celis Muñoz, Luis

De la Higuera Cuesta, Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ec	cuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	lac
(g) Escribir la solucion unica de la cedación propuesta para las condiciones iniciales dad	ico.
	De la Higuera Cuesta, Jesús
	De la Higuera Cuesta, Jesus

Delgado Arroyo, Salvador

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuado	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Delgado Arroyo, Salvador

Díaz Durán, Rubén Fermín

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las es	cuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	as.
	Díaz Durán, Rubén Fermín

Escribano Corrales, Raúl

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	S.
	Escribano Corrales, Raúl

Espinosa Barrios, Antonio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	ones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
(8) Decision to condition distribution propagate part the conditioned information distribution d	
-	Ioningo Damiaa Asta I
<u> </u>	Espinosa Barrios, Antonio

Facio Treceño, Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. (α_1,α_2	y α_3). Escribir las ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las conc	liciones iniciales dadas.
	Facio Treceño, Jesús
	1 4010 11 000110, 30343

Fariñas Fernández, Diego

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	E '* E : 1 5:
	Fariñas Fernández, Diego

Fernández Galindo, Javier

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	2
(g) Escribir la solucion unica de la ecuación propuesta para las condiciones iniciales dadas	
	Fernández Galindo, Javier

Fernández Rodríguez, David

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.				
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.				
(8) Essensi la solución amou de la codución propuedes para las condiciones iniciación dedace.				
F	ا۔ ;,			
Fernández Rodríguez, Dav	'IC			

Fernández Torrejón, Manuel Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.					
	1 1				
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales	s dadas.				
	Fernández Torrejón, Manuel Jesús				
	remandez Torrejon, Mandel Jesus				

Gallo Chaves, Miguel Ángel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas. Gallo Chaves, Miguel Angel	(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.					
Gallo Chaves, Miguel Ángel	(g)	Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	las.			
Gallo Chaves, Miguel Ângel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ângel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ângel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ângel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
Gallo Chaves, Miguel Ángel						
			Gallo Chaves, Miguel Ángel			

García Dormido, Javier

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.				
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.				
	Causia Damaida da i			
	García Dormido, Javier			

García Pérez, Luis Miguel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.												
(g)	Escribin	la soluci	ón única o	de la ecua	ción propu	iesta para	las condic	ciones inic	iales dadas	S.		
										García P	érez, Luis	s Miguel

García Salguero, Ángel Yeray

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.					
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	as.				
	García Salguero, Ángel Yeray				

Gaviria Ruiz, Johan Javier

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu-	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	3.
	Gaviria Ruiz, Johan Javier

Gómez Rodríguez, Sergio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.					
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.					
	Gómez Rodríguez, Sergio				

Gordillo Fernández, Adrián

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.				
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	las.			
	Gordillo Fernández, Adrián			

Guerrero Doval, Rafael

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.					
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.					
(g) Escribir la solucion unica de la ecuación propuesta para las condiciones iniciales dadas.					
	Guerrero Doval, Rafael				

Helices Arena, José Ángel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solu	ción.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.		
	Hallers A	ا مُ ا
	Helices Arena,	Jose Angel

Hormigo Invernón, Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	
(g) Escribir la solucion unica de la cedación propuesta para las condiciones iniciales dadas	•
	Hormigo Invernón, Jesús

Iglesias Jiménez-Mena, José Lorenzo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escrib	oir las ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones inici	ales dadas.
	Iglesias Jiménez-Mena, José Lorenzo

Jiménez Vázquez, Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuados	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Jiménez Vázquez, Jesús
	Jillieliez Vazquez, Jesus

Lago Carrera, Carmen Beatriz

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	3.
<u> </u>	ago Carrera, Carmen Beatriz

Ecuaciones de Recurrencia Llamas Jaén, Carlos

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Llamas Jaén, Carlos

Ecuaciones de Recurrencia Loiz Jordán, Carlos

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Loiz Jordán, Carlos

López Márquez, Pablo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.		
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	s.	
	Lánca Márarra Dalla	
	López Márquez, Pablo	

López Narbona, Juan Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	das
(g) Escribir la solucion unica de la cedación propuesta para las condiciones iniciales da	uas.
	López Narbona, Juan Manuel

Martínez Iniesta, Raimundo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución	on.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Martínez Iniesta, R	<u>aimundo</u>

Martínez Mariscal, Victor

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	
(6) Escribir la sordeion diffica de la cedación propuesta para las condiciones iniciales dadas	•
	Martínez Mariscal, Victor

Martínez Márquez, Teodoro

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f)	Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ec	uaciones y su solución.
(g)	Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	as.
		Martínez Márquez, Teodoro

Martínez-Esparza Castro, Paloma

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir l	las ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales	e dadas
(g) Escribir la solucion unica de la ecuación propuesta para las condiciones iniciales	s uauas.
	Martínez-Esparza Castro, Paloma

Milán Real, Juan Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	ones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Milán Real, Juan Jesús

Morón González, Joaquín

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Morón González, Joaq	<u> Įuín</u>

Muras González, Roberto

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Muras González, Roberto

Núñez García, Pablo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	nes y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Núñez García, Pablo

Olivero Hedrera, José Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ccuación propuesta para las condiciones iniciales dadas.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.
Olivero Hedrera, José Manuel

Ortega Cabrera, Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuac	iones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Ortega Cabrera, Manuel

Peña Rodríguez, Juan Antonio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	s ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales o	ladas.
	Peña Rodríguez, Juan Antonio

Peralta Barcia, Paula

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Peralta Barcia, Paula

Peralta Mateos, Juan Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f)	Obtener los coeficientes del principio de superposición. ($\alpha_1, \alpha_2 \neq \alpha_3$). Escribir las	ecuaciones y su solución.
(g)	Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	adas.
		Peralta Mateos, Juan Manuel

Peregrina Pérez, María Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.	
	1 1
(g) Escribir la solución única de la ecuación propuesta para las condiciones inicial	es dadas.
	Peregrina Pérez, María Jesús

Pérez Ortega, Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Pérez Ortega, Manu	uel

Pérez-Calderón Ortíz, José Joaquín

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. ($\alpha_1, \alpha_2 \neq \alpha_3$). Escribir	las ecuaciones y su solución.
	1 1
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciale	es dadas.
	Pérez-Calderón Ortíz, José Joaquín
	·

Periñán Campos, Álvaro

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuac	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Periñán Campos, Álvaro

Periñán Freire, José Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f)	Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir la	as ecuaciones y su solución.
(g)	Escribir la solución única de la ecuación propuesta para las condiciones iniciales	dadas.
		Periñán Freire, José Manuel
		i erman i rene, Jose Malluel

Prián Pérez, Miguel Alejandro

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	ecuaciones y	su solución	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	adas.		
	D.14 . D4	NAT LAI	1
	Prián Pérez,	Miguel Ale	gandro

Ecuaciones de Recurrencia Ramírez Ruz, Javier

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.			
	Ramírez Ruz, Javier		

Rivero Litrán, María Isabel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.
Rivero Litrán, María Isabe

Rivero Rivera, Lucía Judith

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.				
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	as.			
	Rivero Rivera, Lucía Judith			

Robles Sorroche, Luis

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 y \alpha_3)$. Escribir las ecuaciones	y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Robles Sorroche, Luis

Rodríguez Gómez, Pablo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.			
	Rodríguez Gómez, Pablo		

Rodríguez Gracia, Juan Pedro

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ceuación propuesta para las condiciones iniciales dadas.	(f)	Obtener los coeficientes del p	principio de superposición	n. $(\alpha_1, \alpha_2 y \alpha_3)$. Escribi	r las ecuaciones y su solución.	
Rodriguez Gracia, Juan Pedro	(g)	Escribir la solución única de	la ecuación propuesta pa	ra las condiciones inicia	les dadas.	
Rodríguez Gracia, Juan Pedro						
Rodriguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodriguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
Rodríguez Gracia, Juan Pedro						
					Rodríguez Gracia, Juan Pedr	0

Rodríguez Heras, Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacione	es y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
<u> </u>	Rodríguez Heras, Jesús

Rodríguez Moreno, Juan Pastor

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales o	dadas.		
	B. I		
	Rodríguez Moreno, Juan Pastor		

Romero Arias, Pablo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.				
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.				
	Romero Arias, Pablo			

Rosa Colomo, Alejandro

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ceuación propuesta para las condiciones iniciales dadas.	(f)	Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuac	iones y su soluc	ión.
	(g)	Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.		
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
Rosa Colomo, Alejandro				
			Rosa Colomo,	Alejandro

Ruiz de Celis, Carmen del Mar

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.				
	1			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales d	adas.			
	Ruiz de Celis, Carmen del Mar			

Ecuaciones de Recurrencia Ruiz Pino, Sergio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones	s y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Ruiz Pino, Sergio
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sánchez Hernández, Paulo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	s ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales d	ladas.
	Sánchez Hernández, Paulo

Sánchez Peña, Jaime

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	ones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Sánchez Peña, Jaime

Sánchez Rivero, Antonio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las e	cuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	las.
	Sánchez Rivero, Antonio
	22

Segundo Galindo, Mario

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.					
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.					
Segundo Galindo, Mar	io				

Sibello Litrán, Nicolás

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.					
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.					
(8) —					
	Sibello Litrán,	<u>Nicolás</u>			

Sibón Jiménez, Teodoro Antonio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir la	as ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales	dadas.
(8) F	
	Cil. da limado a Tarala Arra i
	Sibón Jiménez, Teodoro Antonio

Sobrero Grosso, Roberto

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ec	uaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	as
(8) Escribir la solución unica de la ecuación propuesta para las condiciones iniciales dade	
	Sobrero Grosso, Roberto

Soto Vera, Francisco Javier

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.				
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	as.			
	Soto Vera, Francisco Javier			

Afán Espinosa, Miguel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuac	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Afán Espinosa, Miguel

Álvarez González, Alberto

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

	(f) Obtener los coeficientes del principio de superposición. ($\alpha_1, \alpha_2 \ y \ \alpha_3$). Escribir las ecuaciones y su solución.							
	(g)	Escribir la solució	n única de la ecuació	ón propuesta para	las condiciones in	iciales dadas.		
_						<u> </u>	Ilvarez González,	Alberto
			·					_

Arce Iniesta, Francisco

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Arce Iniesta, Francis	СО

Arrieta Soto, José Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	naciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	s.
	Arrieta Soto, José Manuel

Astorga Morillo, José Luis

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	s.
	Astorga Morillo, José Luis

Barba Aguilar, Eduardo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	nes y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Barba Aguilar, Eduardo

Ecuaciones de Recurrencia Beato García, María

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	es y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Beato García, María

Benítez García, Marco Adrían

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	adas.
	Rapitaz Carcía Marca Adrian
	Benítez García, Marco Adrían

Bernal Pérez, Guillermo Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	ndas
(g) Escribir la solucion unica de la ecuación propuesta para las condiciones iniciales da	idas.
	D. J.D. C.W. L.
	Bernal Pérez, Guillermo Jesús

Blanco Vélez, Luis María

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	
	Blanco Vélez, Luis María

Caballero Marín, Ignacio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuac	iones y su solución	n.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.		
(g) Escribir la sordeion unica de la ecuación propuesta para las condiciones iniciales dadas.		
	Caballara María	lancei -
	Caballero Marín,	ignacio

Cabello Cabello, Carlos

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuados	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Cabello Cabello, Carlos

Cabral Ramírez, Miguel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaci	ones y su soluciór	1.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.		
	Cabral Ramírez,	Miguel
	522.2	

Candón Berenguer, Fernando

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ec	cuaciones y su soluci	ón.
	I	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	.as.	
	Candón Berenguer,	<u>Fernando</u>

Carpio Gavira, Luis Miguel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.		
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	3.	
	Carpio Gavira, Luis Miguel	

Cumbreras Hernández, Pablo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.			
	umbroroe Harafada - Dalla		
C	umbreras Hernández, Pablo		

De los Ríos Gestoso, Pablo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las e	cuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	das.
	De los Ríos Gestoso, Pablo

Descalzo Fénix, Rubén Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	idas
(g) Escribir la solucion unica de la cedación propuesta para las condiciones iniciales da	uas.
	Descalzo Fénix, Rubén Manuel

Fernández Blanco, Francisco José

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.		
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales	s dadas	
(g) Escribir la solucion unica de la cedación propuesta para las condiciones iniciales	dadas.	
	Fernández Blanco, Francisco José	

Ferral Garrido, Miguel Ángel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ec	cuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	as.
	F 16 11 14 15 1
	Ferral Garrido, Miguel Ángel

Gallardo Ortegón, Francisco

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ceuación propuesta para las condiciones iniciales dadas.	(f)	Obtener los coeficientes del principio de superposición. (α	$\alpha_1, \alpha_2 \ y \ \alpha_3$). Escribir las ecu	naciones y su solución.
Gallardo Ortegón, Francisco	(g)	Escribir la solución única de la ecuación propuesta para la	as condiciones iniciales dada	s.
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
Gallardo Ortegón, Francisco				
				Gallardo Ortegón, Francisco

García Moreno, Antonio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.		
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.		
	García Moreno, Antonio	

García Navarro, Sergio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones	s y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	García Navarro, Sergio

Ecuaciones de Recurrencia García Rebollo, Luis

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	nes y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
(8) Escribir la solución amos de la codación propaesta para las condiciones iniciales dadas.	
	Caraía Dabella I.
	García Rebollo, Luis

García-Pardo Montero, Javier David

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.								
(g)	Escribir la solu	ción única de l	a ecuación pro	opuesta para	las condiciones	s iniciales dada	as.	
						García	-Pardo Monter	o, Javier David

Gómez Coronil, Francisco Javier

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.			
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales	dadas		
(6) Estribil la solution amen de la celassion propuesta para las condiciones iniciales	dudus.		
	Gómez Coronil, Francisco Javier		

Gómez de la Torre López, Francisco José

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Esc	cribir las ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones in	iciales dadas.
	Gómez de la Torre López, Francisco José

Granados Valencia, Pablo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	(f)	Obtener los coef	icientes del princip	oio de superposici	ión. $(\alpha_1, \alpha_2 y \alpha_3)$). Escribir las ecua	ciones y su solució	n.
	(g)	Escribir la soluci	ión única de la ecu	uación propuesta	para las condicion	nes iniciales dadas.		
Cranados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
Granados Valencia, Pablo								
							Granados Valenci	<u>a, Pablo</u>

Güelfo Pineda, Manuel Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.		
(g) Espaihir la salución única de la equación propuesta para las condiciones iniciales de	adag	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	adas.	
	Güelfo Pineda, Manuel Jesús	

Guerrero Guzmán, Diego

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaci	ones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Guerrero Guzmán, Diego

Güeto Matavera, Jordi

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 y \alpha_3)$. Escribir las ecuaciones del principio de superposición.	ones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Güeto Matavera, Jordi

Izquierdo Álvarez, José Ángel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f)	Obtener	los coefic	cientes del	principio d	le superpos	ición. $(\alpha_1,$	$\alpha_2 \ \mathrm{y} \ \alpha_3$). I	Escribir las e	ecuaciones y	su soluci	ón.
(g)	Escribir	la solució	ón única d	le la ecuació	ón propuest	a para las o	condiciones	iniciales dae	das.		
									Izquierdo <i>É</i>	Álvarez, Jo	osé Ángel

Jiménez Santana, Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y s	u solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Jiméne	ez Santana, Jesús

Ecuaciones de Recurrencia López Cala, Kevin

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.
López Cala, Kevin

López García, Guillermo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obt	ner los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	nes y su solución.
(g) Esc	bir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
		López García, Guillermo

López Sierra, Javier

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f)	Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones	s y su solución.
(g)	Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
		López Sierra, Javier
		•

Márquez Jiménez, José María

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales d	adas.
(8) Escribir la solución amenado a conación propaesta para las conaciónes iniciates a	
	Márquez Jiménez, José María

Ecuaciones de Recurrencia Martín Lloret, Javier

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su so	lución.
(a) E-milia la calcaión énica de la consción monocata non la condiciona iniciale de de-	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Martín	Lloret, Javier

Martínez Chanivet, Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.
Martínez Chanivet, Manuel

Martínez Manito, Manuel Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir la	s ecuaciones y su solución.
(g) Escribir la salvaión única de la equación propuesta para las condiciones iniciales	dadas
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales o	uadas.
	Martínez Manito, Manuel Jesús

Meléndez Lapi, Ignacio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	ones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Meléndez Lapi, Ignacio

Melero Ligero, Teresa

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	nes y su solución	١.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.		
	Melero Ligero,	Teresa

Mellado Gómez, Enrique

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

	(f)	Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones del principio de superposición.	iones y su solución.
	(g)	Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
			Mellado Gómez, Enrique
_	-		

Ecuaciones de Recurrencia Merlo Cuadra, Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	ones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Merlo Cuadra, Jesús

Montero Domínguez, Rubén

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir la	as ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales	dadas.
	Montero Domínguez, Rubén
	Montero Bominguez, Ruben

Olmo Barberá, José Luis

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 y \alpha_3)$. Escribir las ecu	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	3.
	Olmo Barberá, José Luis

Ecuaciones de Recurrencia Olvera Ruiz, Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacione	es y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Olvera Ruiz, Jesús
	Olycia Ruiz, Jesus

Orellana Romero, Aitor Manuel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas. Orellana Romero, Aitor Manuel	(f)	Obtener los coeficientes del prin	ncipio de superposición	a. $(\alpha_1, \alpha_2 y \alpha_3)$. Esc	cribir las ecuaciones y su	solución.
	(g)	Escribir la solución única de la	ecuación propuesta pa	ra las condiciones in	iciales dadas.	
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
Orellana Romero, Aitor Manuel						
					Orellana Romer	o, Aitor Manuel

Ortega de la Rosa, Diego

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f)	Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ec	uaciones y su solución.
(g)	Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	as.
		Ortega de la Rosa, Diego

Palacios Castro, Juan Antonio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir la	s ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales o	dadas
(g) Escribir la solución unica de la ecuación propuesta para las condiciones iniciales e	audus.
	Palacios Castro, Juan Antonio
	•

Parada Cómez, Alejandro

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtene	er los coeficientes del	principio de superp	posición. (α_1, α_2)	α_3). Escribir las e	cuaciones y su soluc	ión.
(g) Escribi	r la solución única d	e la ecuación propu	esta para las cond	liciones iniciales dad	las.	
					Parada Cómez,	Aleiandro
					. 5.222 0011102,	

Ecuaciones de Recurrencia Peña Puchi, Kevin

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y s	u solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
-	ona Duchi Kasi-
	Peña Puchi, Kevin

Perales Montero, Alberto Antonio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir	las ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciale	es dadas.
	Perales Montero, Alberto Antonio

Pérez Baturone, Jaime

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuac	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Pérez Baturone, Jaime

Pérez López, Juan Carlos

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
(6) Escribir la solución amenado la collección propuesta para las condiciones infolaces dadas.	
	Pérez López, Juan Carlos

Piedad Garrido, Pablo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	uaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	as.
	Piedad Garrido, Pablo

Pinto Torrejón, Alberto

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	nes y su solución.	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.		
	Pinto Torrejón, Albei	rto

Ramírez Lerate, Germán

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Ramírez Lerate, Germán

Rendón Salvador, Marta

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
(g) Escribir la solucion unica de la ecuacion propuesta para las condiciones iniciales dadas.	
	Rendón Salvador, Marta

Riol Sánchez, José María

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
	(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Riol Sánchez, José María		
Riol Sánchez, José María		
Riol Sánchez, José María		
Riol Sánchez, José Maria		
Riol Sánchez, José María		
		Riol Sánchez, José María

Riqué Bermúdez, Borja

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su soluciones	ön.
g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Riqué Bermúd	ez, Borja
·	

Rodríguez Celdrán, Jaime

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Rodríguez Celdrán, Jaime

Rodríguez Escobar, David

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ec	uaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	as.
	Dadisana Fredrik D. 11
	Rodríguez Escobar, David

Rodríguez González, Gabriel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.	
g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Rodríguez González, Gabrie	J
Rodriguez Gonzalez, Gabrie	1

Rodríguez Jiménez, Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Escribir la solución única de la ceuación propuesta para las condiciones iniciales dadas.	(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuados	ciones y su solución.
Rodríguez Jiménez, Jesús	(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
Rodríguez Jiménez, Jesús		
Rodríguez Jiménez, Jesús		
Rodriguez Jiménez, Jesús		
Rodríguez Jiménez, Jesús		
Rodríguez Jiménez, Jesús		
Rodriguez Jiménez, Jesús		
Rodríguez Jiménez, Jesús		
		Rodríguez Jiménez, Jesús

Rodríguez Pericacho, Félix

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	
	Rodríguez Pericacho, Félix

Rodríguez Visglerio, Sergio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Rodríguez Visglerio, Sergio

Román Aguilar, Rafael

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuacion	es y su solución.	
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.		
	Román Aguilar,	Rafael

Romero Fernández, Borja

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Romero Fernández, Borja

Romero Gómez, Luis

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.				
(a) Escuibin la solución ónica de la consción propuesta pero las condiciones iniciales de des				
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.				
	Romero Gómez, Luis			
	Goinez, Luis			

Rondán Rodríguez, Marta

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuados	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Rondán Rodríguez, Marta

Ecuaciones de Recurrencia Ruiz Bonald, Juan

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y su solución.				
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.				
	Ruiz Bonald, Juan			

Ruiz Gómez, Alberto

Ecuaciones de Recurrencia

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f)	Obtene	r los coefic	cientes del 1	principio de s	superposició	on. (α_1, α_2)	y α_3). Escri	bir las ecuacion	ones y su soluc	ción.
(g)	Escribin	· la solució	on única de	la ecuación	propuesta p	oara las con	diciones inic	iales dadas.		
									Ruiz Góme	ez, Alberto

Salado Bornes, Esperanza

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
(g) Escribir la solucion unica de la ecuacion propuesta para las condiciones iniciales dadas.	
	Salado Bornes, Esperanza

Sanabria Flores, Carlos Rodrigo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir la	s ecuaciones y su solución.
	1 1
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales o	ladas.
	Sanabria Flores, Carlos Rodrigo

Sánchez Muñoz, Antonio José

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	s ecuaciones y su solución.
(g) Escribir le solución únice de le consción propueste pere les condiciones iniciales d	la dag
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales d	radas.
	Sánchez Muñoz, Antonio José

Santana Mesa, Enrique

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	
(8) Escribir la sorderon amea de la cedación propuesta para las condiciones iniciales dadas	•
	Santana Mesa, Enrique

Sepúlveda Cornejo, Mario

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	
(6) Escribir la solución amenada de la conación propuesta para las conaciónes iniciales dadas	•
	Sepúlveda Cornejo, Mario

Solano Carrasco, Pedro Ignacio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	s ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales d	ladas.
	Solano Carrasco, Pedro Ignacio

Soler Melero, José María

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Soler Melero, José María
	Soler ivielero, Jose Iviaria

Soriano Roldán, Claudia

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuado	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
(g) Escribir la solucion unica de la ecuación propuesta para las condiciones iniciales dadas.	
	Soriano Roldán, Claudia

Ecuaciones de Recurrencia Soto Rosado, David

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ec	uaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	as.
	Soto Rosado, David

Ecuaciones de Recurrencia Suazo Cote, David

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaciones y	su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Suazo Cote, David
	Caaro Cote, Duvid

Tejada Pérez, Juan Antonio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	naciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	s.
	Tejada Pérez, Juan Antonio

Toledo Caravaca, Juan Jesús

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	das.
	Toledo Caravaca, Juan Jesús

Torres Gómez, Pablo Antonio

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las	ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales da	das.
	Torres Gómez, Pablo Antonio

Ulibarri García, Gonzalo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecua	ciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.	
	Ulibarri García, Gonzalo

Urrutia Sánchez, Iñaki

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	aciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas	s.
	Hamada Colo II - I - I - I
	Urrutia Sánchez, Iñaki

Vargas Torres, Guillermo

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuac	iones y su soluc	ción.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dadas.		
	Vargas Torres,	Guillermo

Velo Huerta, Cristobal José

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ec	cuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dad	as.
	Velo Huerta, Cristobal José

Vidal Jiménez, Juan Carlos

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición ($\alpha_1 \ y \ \alpha_2$). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecu	uaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales dada	
(g) Escribir la solucion unica de la ecuacion propuesta para las condiciones iniciales dada	is.
	Vidal Jiménez, Juan Carlo

Zarzuela Aparicio, Adrián

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(g) Ferribir la solución única de la ecanoción propuesta para los condiciones iniciales dadas.	(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir las ecuaci	ones y su solución	١.
Zarzuela Aparicio, Adrian	(g) Escribir la solucion unica de la ecuación propuesta para las condiciones iniciales dadas.		
Zarzuela Aparicio, Adrian			
Zarzuela Aparicio, Adrián			
Zarzuela Aparício, Adrián			
Zarzuela Aparicio, Adrián			
		Zarzuela Aparicio,	Adrián

Zarzuela Morales, Javier Miguel

1. Resolver la ecuación de recurrencia

$$a_{n+2} = -2a_{n+1} + 3a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 0$, $a_2 = -12$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 2. Resolver la ecuación de recurrencia

$$a_{n+2} = -4a_{n+1} - 4a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 8$, $a_2 = -28$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 y α_2). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 3. Dada la ecuación de recurrencia

$$a_{n+3} = -2a_{n+2} + 9a_{n+1} + 18a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.

- (d) Escribir la solución única para las condiciones iniciales dadas.
- 4. Dada la ecuación de recurrencia

$$a_{n+3} = -3a_{n+2} + 9a_{n+1} + 27a_n, \ n \geqslant 1$$

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 5. Dada la ecuación de recurrencia

$$a_{n+3} = 9a_{n+2} - 27a_{n+1} + 27a_n, \ n \geqslant 1$$

con las condiciones iniciales, $a_1 = 18$, $a_2 = 36$ y $a_3 = 0$.

- (a) Escribir la ecuación característica y sus soluciones.
- (b) Escribir la solución general de la ecuación propuesta.
- (c) Obtener los coeficientes del principio de superposición (α_1 , α_2 y α_3). Escribir las ecuaciones y su solución.
- (d) Escribir la solución única para las condiciones iniciales dadas.
- 6. Dada la ecuación de recurrencia

$$a_{n+3} = 3a_{n+2} + 10a_{n+1} - 24a_n + 12n - 25, \ n \geqslant 1$$

- (a) Escribir la ecuación característica de la homogénea asociada y sus soluciones.
- (b) Escribir la solución general de la homogénea asociada.
- (c) Escribir las ecuaciones que resultan de la aplicación del Método de los Coeficientes Indeterminados y su solución.
- (d) Escribir la solución particular de la ecuación propuesta.
- (e) Escribir la solución general de la ecuación propuesta.

(f) Obtener los coeficientes del principio de superposición. $(\alpha_1, \alpha_2 \ y \ \alpha_3)$. Escribir la	as ecuaciones y su solución.
(g) Escribir la solución única de la ecuación propuesta para las condiciones iniciales	dadas.
	Zarzuela Morales, Javier Miguel