Definiciones básicas de elementos del Modelo Relacional

Objetivo: Introducir los conceptos fundamentales que definen la estructura y el funcionamiento de las bases de datos relacionales, destacando el rol de las **tablas**, **tuplas**, **claves** e **índices**, y su vínculo con estructuras de datos comunes.

¿Qué es una Tabla o Relación?

Una **tabla** en una base de datos representa un conjunto de datos organizados en **filas** y **columnas**. Cada tabla tiene un **nombre** (por ejemplo: Alumnos) y una **lista de atributos** o columnas (como DNI, Apellido, Nombre, Teléfono, Acceso).

Importante: El orden de los atributos en el esquema no afecta los datos almacenados, pero sí su definición.

Instancia de una Tabla: la Tupla

Concepto de Tupla

Cada **registro individual** o fila en una tabla se llama **tupla**. Representa una entidad específica (por ejemplo, un alumno) y contiene un **conjunto de valores**, uno por cada atributo de la tabla.

Ejemplo Práctico

Una tupla de la tabla Alumnos podría ser: (35234123, "Gómez", "Ana", "1134567890", true)

Colecciones de Datos: Vectores y Listas

Las tablas pueden pensarse como una **colección de tuplas**. En programación, estamos familiarizados con **vectores** o **listas**, donde se almacenan elementos de forma secuencial o dinámica.

Relación útil: Una **tabla** es una colección como una lista, pero cada elemento (tupla) tiene múltiples componentes (atributos).

La Clave: Identificador Único

Definición de Clave

Una **clave** es un atributo (o conjunto de atributos) que **identifica de forma única** a cada tupla. En Alumnos, el DNI puede ser clave, porque no se repite.

Claves Artificiales

Cuando no hay un identificador natural, se pueden usar **claves artificiales** (como un ID autogenerado).

Índices: Localización Eficiente de Datos

Un **índice** funciona como el índice de un libro: permite **buscar rápidamente** la ubicación de ciertos datos. Ayudan a **acelerar consultas**, especialmente sobre columnas usadas frecuentemente en búsquedas.

Ejemplo:

- El número de factura debe ser único, ideal para un índice.
- El **CUIT** del cliente puede repetirse (porque un cliente puede tener muchas facturas).

Estructuras de Almacenamiento y Búsqueda

Estructura	Características principales	
Vector	Tamaño fijo, búsqueda secuencial o binaria (si está ordenado)	
Lista ordenada	Tamaño dinámico, requiere más procesamiento para ordenar	
Árbol binario	Alta eficiencia en búsqueda, no permite duplicados, inserción dinámica	

Cada estructura tiene ventajas y limitaciones según el contexto del sistema.

Profundizando en las Tablas

Definición

Estructura fundamental que organiza datos en filas y columnas

Atributos

Columnas que definen las propiedades de los datos almacenados

Tuplas

Filas que contienen los valores específicos para cada atributo

Ejemplo Práctico: Tabla Alumnos

Veamos un ejemplo concreto de la tabla "Alumnos" mencionada anteriormente:

DNI	Apellido	Nombre	Teléfono	Acceso
35234123	Gómez	Ana	1134567 890	true
28456789	Pérez	Juan	1145678 901	true
39876543	López	María	1156789 012	false

Importancia de las Claves

Índices en Acción

Sin Índice

Buscar un alumno por DNI requeriría revisar cada registro secuencialmente hasta encontrarlo.

FOR cada tupla en Alumnos
IF tupla.DNI = 35234123 THEN
RETURN tupla
END IF
END FOR

Con Índice

Un índice sobre DNI permite localizar el registro directamente, similar a buscar en un diccionario.

Comparación de Estructuras de Datos

Vectores

Estructura de tamaño fijo con acceso directo a elementos por índice. Eficiente para búsquedas si está ordenado, pero ineficiente para inserciones y eliminaciones.

Listas

Estructura dinámica que facilita inserciones y eliminaciones, pero requiere recorrido secuencial para búsquedas.

Árboles

Estructura jerárquica que optimiza búsquedas, inserciones y eliminaciones, ideal para índices de bases de datos.

Reflexión Final

Los sistemas de bases de datos relacionales buscan **almacenar** y **recuperar información** de manera eficiente. La elección de claves, índices y estructuras de datos influye directamente en el **rendimiento** y **complejidad** del sistema.

La comprensión de estos conceptos fundamentales es esencial para diseñar bases de datos eficientes y escalables.

Conclusión

Este recorrido inicial nos da un marco conceptual básico para comprender cómo funcionan las bases de datos relacionales. Seguiremos explorando estos temas con mayor profundidad a lo largo de la asignatura.

Tablas y Tuplas

Estructuras fundamentales para organizar y representar datos

Claves e Índices

Mecanismos para identificar y acceder eficientemente a los datos

Estructuras de Datos

Fundamentos que sustentan la implementación de bases de datos eficientes

