Présentation MPNA Méthode des itérations simultanées

Matthias Beaupère & Pierre Granger

M2 CHPS

19 février 2019

Plan

- 1 Intro
- 2 Présentation de l'algorithme
- 3 Séquentiel
- 4 Multicœurs
- 6 Multinœuds
- 6 Conclusion

Frame

La méthode des itérations simultanées

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Description de l'algorithme

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Performances théoriques

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Nombre d'itérations

Evolution du temps de calcul en fonction du nombre d'itérations.

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Taille du sous-espace de Krylov m

Evolution du temps de calcul en fonction de la taille du sous-espace de Krylov m.

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Taille de la matrice M

Evolution du temps de calcul en fonction de la taille de la matrice M.

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Influence de m

Nombre d'itérations N nécessaires pour faire converger e valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision $p=10^{-6}$

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Influence de p

Nombre d'itérations N nécessaires pour faire converger e=4 valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision p

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Principe du locking

Justifications

- Vitesses de convergence différentes des vp.
- Perte de temps
- Instabilités numériques

Le locking

- On verrouille les vp lorsqu'ils ont convergé.
- On ne le multiplie par A.
- On diminue m.
- On l'utilise pour l'orthonormalisation.

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Performances du locking

Précision au cours des itérations N pour e=4 valeurs propres pour une taille de sous-espace de Krylov m=8

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Performances du locking

Nombre d'itérations N nécessaires pour faire converger e=4 valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision p avec et sans utilisation du locking

Description Performances théorique Performances pratiques

Multicœurs

Description
Performances théoriques
Performances pratiques

Multicœurs : performances théoriques

Multicœurs : performances pratiques

Description
Performances th

Multinœuds

Description
Performances théoriques
Performances pratiques

Performances théoriques

Description
Performances théoriques
Performances pratiques

Multinœuds : performances pratiques

Conclusion