

TO BE ONT UNDER MANDER OF THE WIND BIR (OX

TO ALL TO WHOM THESE; PRESENTS SHALL COME;

UNITED STATES DEPARTMENT OF COMMERCE **United States Patent and Trademark Office**

May 27, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/528,750 FILING DATE: December 10, 2003

RELATED PCT APPLICATION NUMBER: PCT/US04/09215

REC'D 0 1 JUN 2004

WIPO

PCT

M. SIAS **Certifying Officer**

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

	1420
	6 5
<u>ه</u>	SAR SAR

Atty. Docket No.: PF-1724 P

Type a plus sign (+) inside this box →

Certificate of Express Mail" mailing label number EV 310 863 595 US I hereby certify that this document and referenced attachments are being deposited for the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10, addressed to: Mail Stop Provisional Patent Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on December 10, 2003

PROVISIONAL APPLICATION FOR PATENT COVER SHEET (Large Entity)

This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53(b)(2).

TITLE OF THE INVENTION (500 characters max) KINASES AND PHOSPHATASES INVENTOR(S)/APPLICANT(S)				
			FIRST NAME/MIDDLE INITIAL/LAST NAME	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)
			Narinder K. Chawla	Union City, California
Shanya D. Becha	San Francisco, California			
Amy D. Wilson	Encino, California			
Pei Jin	Palo Alto, California			

CORRESPONDENCE ADDRESS (Customer No.: 27904)		
INCYTE CORPORATION Legal Department 3160 Porter Drive Palo Alto, California 94304	Phone: (650) 855-0555 Fax: (650) 849-8886 or (650) 845-4166	

Atty. Docket No.: PF-1724 P

Type a plus sign (+) inside this box -

	ENCLOSURES				
Encl	Enclosed are:				
1.	Return	Receipt Postcard;			
2. Provisional Application Cover Sheet w/certificate of Express Mailing (2 pp., in duplicate);					
3.		Pages of Specification	(1 - 99)	;	
· 4.	11	Pages of Claims	(100 - 110)	;	
5.	1	Page of Abstract	(111)	;	
6.	45	Pages of Tables	(Tables 1 - 8)	; and	
7.	37	Pages of Sequence Listing	(1 - 37)		
METHOD OF PAYMENT					

Applicants hereby authorize the Commissioner to treat any concurrent or future reply in this application that requires a petition for an extension of time under 37 CFR 1.136(a) to be timely, as incorporating a petition for extension of time for the appropriate length of time; and to charge all required fees, including fees under 37 CFR 1.16, 1.17, and all required extension of time fees, or to credit any overpayment, to Deposit Account 09-0108. This sheet is enclosed in duplicate.

PROVISIONAL FILING FEE AMOUNT: \$ 160.00

The invention was not made by an agency of the United States Government or under a contract with an agency of the United States Government.

Respectfully submitted,

INCYTE CORPORATION

Date: <u>December 10, 2003</u>

Barrie D. Greene

Reg. No. 46,740

Direct Dial Telephone: (650) 621-7576

EXPRESS MAIL NO.

KINASES AND PHOSPHATASES

TECHNICAL FIELD

The invention relates to novel nucleic acids, kinases and phosphatases encoded by these nucleic acids, and to the use of these nucleic acids and proteins in the diagnosis, treatment, and prevention of cardiovascular diseases, immune system disorders, neurological disorders, disorders affecting growth and development, lipid disorders, cell proliferative disorders, and cancers. The invention also relates to the assessment of the effects of exogenous compounds on the expression of nucleic acids and kinases and phosphatases.

10

15

20

25

30

35

BACKGROUND OF THE INVENTION

Reversible protein phosphorylation is the ubiquitous strategy used to control many of the intracellular events in eukaryotic cells. It is estimated that more than ten percent of proteins active in a typical mammalian cell are phosphorylated. Kinases catalyze the transfer of high-energy phosphate groups from adenosine triphosphate (ATP) to target proteins on the hydroxyamino acid residues serine, threonine, or tyrosine. Phosphatases, in contrast, remove these phosphate groups. Extracellular signals including hormones, neurotransmitters, and growth and differentiation factors can activate kinases, which can occur as cell surface receptors or as the activator of the final effector protein, as well as other locations along the signal transduction pathway. Cascades of kinases occur, as well as kinases sensitive to second messenger molecules. This system allows for the amplification of weak signals (low abundance growth factor molecules, for example), as well as the synthesis of many weak signals into an all-or-nothing response. Phosphatases, then, are essential in determining the extent of phosphorylation in the cell and, together with kinases, regulate key cellular processes such as metabolic enzyme activity, proliferation, cell growth and differentiation, cell adhesion, and cell cycle progression.

KINASES

Kinases comprise the largest known enzyme superfamily and vary widely in their target molecules. Kinases catalyze the transfer of high energy phosphate groups from a phosphate donor to a phosphate acceptor. Nucleotides usually serve as the phosphate donor in these reactions, with most kinases utilizing adenosine triphosphate (ATP). The phosphate acceptor can be any of a variety of molecules, including nucleosides, nucleotides, lipids, carbohydrates, and proteins. Proteins are phosphorylated on hydroxyamino acids. Addition of a phosphate group alters the local charge on the acceptor molecule, causing internal conformational changes and potentially influencing intermolecular contacts. Reversible protein phosphorylation is the primary method for regulating protein activity in eukaryotic cells. In general, proteins are activated by phosphorylation in response

10

15

20

25

to extracellular signals such as hormones, neurotransmitters, and growth and differentiation factors. The activated proteins initiate the cell's intracellular response by way of intracellular signaling pathways and second messenger molecules such as cyclic nucleotides, calcium-calmodulin, inositol, and various mitogens, that regulate protein phosphorylation.

Kinases are involved in all aspects of a cell's function, from basic metabolic processes, such as glycolysis, to cell-cycle regulation, differentiation, and communication with the extracellular environment through signal transduction cascades. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle.

There are two classes of protein kinases. One class, protein tyrosine kinases (PTKs), phosphorylates tyrosine residues, and the other class, protein serine/threonine kinases (STKs), phosphorylates serine and threonine residues. Some PTKs and STKs possess structural characteristics of both families and have dual specificity for both tyrosine and serine/threonine residues. Almost all kinases contain a conserved 250-300 amino acid catalytic domain containing specific residues and sequence motifs characteristic of the kinase family. The protein kinase catalytic domain can be further divided into 11 subdomains. N-terminal subdomains I-IV fold into a two-lobed structure which binds and orients the ATP donor molecule, and subdomain V spans the two lobes. C-terminal subdomains VI-XI bind the protein substrate and transfer the gamma phosphate from ATP to the hydroxyl group of a tyrosine, serine, or threonine residue. Each of the 11 subdomains contains specific catalytic residues or amino acid motifs characteristic of that subdomain. For example, subdomain I contains an 8-amino acid glycine-rich ATP binding consensus motif, subdomain II contains a critical lysine residue required for maximal catalytic activity, and subdomains VI through IX comprise the highly conserved catalytic core. PTKs and STKs also contain distinct sequence motifs in subdomains VI and VIII which may confer hydroxyamino acid specificity.

In addition, kinases may also be classified by additional amino acid sequences, generally between 5 and 100 residues, which either flank or occur within the kinase domain. These additional amino acid sequences regulate kinase activity and determine substrate specificity. (Reviewed in Hardie, G. and S. Hanks (1995) The Protein-Kinase Facts Book, Vol I, pp. 17-20 Academic Press, San Diego CA.). In particular, two protein kinase signature sequences have been identified in the kinase domain, the first containing an active site lysine residue involved in ATP binding, and the second containing an aspartate residue important for catalytic activity. If a protein analyzed includes the two protein kinase signatures, the probability of that protein being a protein kinase is close to 100% (PROSITE: PDOC00100, November 1995).

30

15

20

25

35

Protein Tyrosine Kinases

Protein tyrosine kinases (PTKs) may be classified as either transmembrane, receptor PTKs or nontransmembrane, nonreceptor PTK proteins. Transmembrane tyrosine kinases function as receptors for most growth factors. Growth factors bind to the receptor tyrosine kinase (RTK), which causes the receptor to phosphorylate itself (autophosphorylation) and specific intracellular second messenger proteins. Growth factors (GF) that associate with receptor PTKs include epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.

Nontransmembrane, nonreceptor PTKs lack transmembrane regions and, instead, form signaling complexes with the cytosolic domains of plasma membrane receptors. Receptors that function through non-receptor PTKs include those for cytokines and hormones (growth hormone and prolactin), and antigen-specific receptors on T and B lymphocytes.

Many PTKs were first identified as oncogene products in cancer cells in which PTK activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs. Furthermore, cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Charbonneau, H. and N.K. Tonks (1992) Annu. Rev. Cell Biol. 8:463-493). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.

Protein Serine/Threonine Kinases

Protein serine/threonine kinases (STKs) are nontransmembrane proteins. A subclass of STKs are known as ERKs (extracellular signal regulated kinases) or MAPs (mitogen-activated protein kinases) and are activated after cell stimulation by a variety of hormones and growth factors. Cell stimulation induces a signaling cascade leading to phosphorylation of MEK (MAP/ERK kinase) which, in turn, activates ERK via serine and threonine phosphorylation. A varied number of proteins represent the downstream effectors for the active ERK and implicate it in the control of cell proliferation and differentiation, as well as regulation of the cytoskeleton. Activation of ERK is normally transient, and cells possess dual specificity phosphatases that are responsible for its downregulation. Also, numerous studies have shown that elevated ERK activity is associated with some cancers. Other STKs include the second messenger dependent protein kinases such as the cyclic-AMP dependent protein kinases (PKA), calcium-calmodulin (CaM) dependent protein kinases, and the mitogen-activated protein kinases (MAP); the cyclin-dependent protein kinases; checkpoint and cell cycle kinases; Numb-associated kinase (Nak); human Fused (hFu); proliferation-related kinases; 5'-AMP-activated protein kinases; and kinases involved in apoptosis.

One member of the ERK family of MAP kinases, ERK 7, is a novel 61-kDa protein that has motif similarities to ERK1 and ERK2, but is not activated by extracellular stimuli as are ERK1 and

20

ERK2 nor by the common activators, c-Jun N-terminal kinase (JNK) and p38 kinase. ERK7 regulates its nuclear localization and inhibition of growth through its C-terminal tail, not through the kinase domain as is typical with other MAP kinases (Abe, M.K. (1999) Mol. Cell. Biol. 19:1301-1312).

The second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic ADP ribose, arachidonic acid, diacylglycerol and calcium-calmodulin. The PKAs are involved in mediating hormone-induced cellular responses and are activated by cAMP produced within the cell in response to hormone stimulation. cAMP is an intracellular mediator of hormone action in all animal cells that have been studied. Hormone-induced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glycogen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cAMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York NY, pp. 416-431, 1887).

The casein kinase I (CKI) gene family is another subfamily of serine/threonine protein kinases. This continuously expanding group of kinases have been implicated in the regulation of numerous cytoplasmic and nuclear processes, including cell metabolism and DNA replication and repair. CKI enzymes are present in the membranes, nucleus, cytoplasm and cytoskeleton of eukaryotic cells, and on the mitotic spindles of mammalian cells (Fish, K.J. et al. (1995) J. Biol. Chem. 270:14875-14883).

The CKI family members all have a short amino-terminal domain of 9-76 amino acids, a highly conserved kinase domain of 284 amino acids, and a variable carboxyl-terminal domain that ranges from 24 to over 200 amino acids in length (Cegielska, A. et al. (1998) J. Biol. Chem. 273:1357-1364). The CKI family is comprised of highly related proteins, as seen by the identification of isoforms of casein kinase I from a variety of sources. There are at least five mammalian isoforms, α, β, γ, δ, and ε. Fish et al. identified CKI-epsilon from a human placenta cDNA library. It is a basic protein of 416 amino acids and is closest to CKI-delta. Through recombinant expression, it was determined to phosphorylate known CKI substrates and was inhibited by the CKI-specific inhibitor CKI-7. The human gene for CKI-epsilon was able to rescue yeast with a slow-growth phenotype caused by deletion of the yeast CKI locus, HRR250 (Fish et al., supra).

The mammalian circadian mutation tau was found to be a semidominant autosomal allele of CKI-epsilon that markedly shortens period length of circadian rhythms in Syrian hamsters. The tau locus is encoded by casein kinase I-epsilon, which is also a homolog of the *Drosophila* circadian gene double-time. Studies of both the wildtype and tau mutant CKI-epsilon enzyme indicated that the

15

20

25

30

35

mutant enzyme has a noticeable reduction in the maximum velocity and autophosphorylation state. Further, in vitro, CKI-epsilon is able to interact with mammalian PERIOD proteins, while the mutant enzyme is deficient in its ability to phosphorylate PERIOD. Lowrey et al. have proposed that CKI-epsilon plays a major role in delaying the negative feedback signal within the transcription-translation-based autoregulatory loop that composes the core of the circadian mechanism. Therefore the CKI-epsilon enzyme is an ideal target for pharmaceutical compounds influencing circadian rhythms, jet-lag and sleep, in addition to other physiologic and metabolic processes under circadian regulation (Lowrey, P.L. et al. (2000) Science 288:483-491).

Homeodomain-interacting protein kinases (HIPKs) are serine/threonine kinases and novel members of the DYRK kinase subfamily (Hofmann, T.G. et al. (2000) Biochimie 82:1123-1127). HIPKs contain a conserved protein kinase domain separated from a domain that interacts with homeoproteins. HIPKs are nuclear kinases, and HIPK2 is highly expressed in neuronal tissue (Kim, Y.H. et al. (1998) J. Biol. Chem. 273:25875-25879; Wang, Y. et al. (2001) Biochim. Biophys. Acta 1518:168-172). HIPKs act as corepressors for homeodomian transcription factors. This corepressor activity is seen in posttranslational modifications such as ubiquitination and phosphorylation, each of which are important in the regulation of cellular protein function (Kim, Y.H. et al. (1999) Proc. Natl. Acad. Sci. USA 96:12350-12355).

The human h-warts protein, a homolog of *Drosophila* warts tumor suppressor gene, maps to chromosome 6q24-25.1. It has a serine/threonine kinase domain and is localized to centrosomes in interphase cells. It is involved in mitosis and functions as a component of the mitotic apparatus (Nishiyama, Y. et al. (1999) FEBS Lett. 459:159-165).

Calcium-Calmodulin Dependent Protein Kinases

Calcium-calmodulin dependent (CaM) kinases are involved in regulation of smooth muscle contraction, glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM dependent protein kinases are activated by calmodulin, an intracellular calcium receptor, in response to the concentration of free calcium in the cell. Many CaM kinases are also activated by phosphorylation. Some CaM kinases are also activated by autophosphorylation or by other regulatory kinases. CaM kinase I phosphorylates a variety of substrates including the neurotransmitter-related proteins synapsin I and II, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) EMBO J. 14:3679-3686). CaM kinase II also phosphorylates synapsin at different sites and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. CaM kinase II controls the synthesis of catecholamines and seratonin, through phosphorylation/activation of tyrosine hydroxylase and tryptophan hydroxylase, respectively (Fujisawa, H. (1990) BioEssays 12:27-29). The mRNA encoding a calmodulin-binding protein kinase-like protein was found to be

enriched in mammalian forebrain. This protein is associated with vesicles in both axons and dendrites and accumulates largely postnatally. The amino acid sequence of this protein is similar to CaM-dependent STKs, and the protein binds calmodulin in the presence of calcium (Godbout, M. et al. (1994) J. Neurosci. 14:1-13).

5 Mitogen-Activated Protein Kinases

The mitogen-activated protein kinases (MAP), which mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades, are another STK family that regulates intracellular signaling pathways. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan, S.E. and R.A. Weinberg (1993) Nature 365:781-783). There are three kinase modules comprising the MAP kinase cascade: MAPK (MAP), MAPK kinase (MAP2K, MAPKK, or MKK), and MKK kinase (MAP3K, MAPKKK, OR MEKK) (Wang, X.S. et al (1998) Biochem. Biophys. Res. Commun. 253:33-37). The extracellular-regulated kinase (ERK) pathway is activated by growth factors and mitogens, for example, epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, or endotoxic lipopolysaccharide (LPS). The closely related though distinct parallel pathways, the c-Jun N-terminal kinase (JNK), or stress-activated kinase (SAPK) pathway, and the p38 kinase pathway are activated by stress stimuli and proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1). Altered MAP kinase expression is implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development.. MAP kinase signaling pathways are present in mammalian cells as well as in yeast.

Cyclin-Dependent Protein Kinases

The cyclin-dependent protein kinases (CDKs) are STKs that control the progression of cells through the cell cycle. The entry and exit of a cell from mitosis are regulated by the synthesis and destruction of a family of activating proteins called cyclins. Cyclins are small regulatory proteins that bind to and activate CDKs, which then phosphorylate and activate selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to cyclin binding, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine residue on the CDK.

Another family of STKs associated with the cell cycle are the NIMA (never in mitosis)related kinases (Neks). Both CDKs and Neks are involved in duplication, maturation, and separation
of the microtubule organizing center, the centrosome, in animal cells (Fry, A.M. et al. (1998) EMBO
J. 17:470-481).

Checkpoint and Cell Cycle Kinases

In the process of cell division, the order and timing of cell cycle transitions are under control of cell cycle checkpoints, which ensure that critical events such as DNA replication and chromosome

15

20

30

35

pathway is activated that arrests the cell cycle to provide time for repair. If the damage is extensive, apoptosis is induced. In the absence of such checkpoints, the damaged DNA is inherited by aberrant cells which may cause proliferative disorders such as cancer. Protein kinases play an important role in this process. For example, a specific kinase, checkpoint kinase 1 (Chk1), has been identified in yeast and mammals, and is activated by DNA damage in yeast. Activation of Chk1 leads to the arrest of the cell at the G2/M transition (Sanchez, Y. et al. (1997) Science 277:1497-1501). Specifically, Chk1 phosphorylates the cell division cycle phosphatase CDC25, inhibiting its normal function which is to dephosphorylate and activate the cyclin-dependent kinase Cdc2. Cdc2 activation controls the entry of cells into mitosis (Peng, C.-Y. et al. (1997) Science 277:1501-1505). Thus, activation of Chk1 prevents the damaged cell from entering mitosis. A deficiency in a checkpoint kinase, such as Chk1, may also contribute to cancer by failure to arrest cells with damaged DNA at other checkpoints such as G2/M.

Proliferation-Related Kinases

Proliferation-related kinase is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakarocytic cells (Li, B. et al. (1996) J. Biol. Chem. 271:19402-19408). Proliferation-related kinase is related to the polo (derived from Drosophila polo gene) family of STKs implicated in cell division. Proliferation-related kinase is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation.

5'-AMP-activated protein kinase

A ligand-activated STK protein kinase is 5'-AMP-activated protein kinase (AMPK) (Gao, G. et al. (1996) J. Biol Chem. 271:8675-8681). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotrimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit. Subunits of AMPK have a much wider distribution in non-lipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone.

Kinases in Apoptosis

Apoptosis is a highly regulated signaling pathway leading to cell death that plays a crucial role in tissue development and homeostasis. Deregulation of this process is associated with the pathogenesis of a number of diseases including autoimmune diseases, neurodegenerative disorders, and cancer. Various STKs play key roles in this process. ZIP kinase is an STK containing a

PF-1724 P

15

20

C-terminal leucine zipper domain in addition to its N-terminal protein kinase domain. This C-terminal domain appears to mediate homodimerization and activation of the kinase as well as interactions with transcription factors such as activating transcription factor, ATF4, a member of the cyclic-AMP responsive element binding protein (ATF/CREB) family of transcriptional factors (Sanjo, H. et al. (1998) J. Biol. Chem. 273:29066-29071). DRAK1 and DRAK2 are STKs that share homology with the death-associated protein kinases (DAP kinases), known to function in interferon- γ induced apoptosis (Sanjo et al., *supra*). Like ZIP kinase, DAP kinases contain a C-terminal protein-protein interaction domain, in the form of ankyrin repeats, in addition to the N-terminal kinase domain. ZIP, DAP, and DRAK kinases induce morphological changes associated with apoptosis when transfected into NIH3T3 cells (Sanjo et al., *supra*). However, deletion of either the N-terminal kinase catalytic domain or the C-terminal domain of these proteins abolishes apoptosis activity, indicating that in addition to the kinase activity, activity in the C-terminal domain is also necessary for apoptosis, possibly as an interacting domain with a regulator or a specific substrate.

RICK is another STK recently identified as mediating a specific apoptotic pathway involving the death receptor, CD95 (Inohara, N. et al. (1998) J. Biol. Chem. 273:12296-12300). CD95 is a member of the tumor necrosis factor receptor superfamily and plays a critical role in the regulation and homeostasis of the immune system (Nagata, S. (1997) Cell 88:355-365). The CD95 receptor signaling pathway involves recruitment of various intracellular molecules to a receptor complex following ligand binding. This process includes recruitment of the cysteine protease caspase-8 which, in turn, activates a caspase cascade leading to cell death. RICK is composed of an N-terminal kinase catalytic domain and a C-terminal "caspase-recruitment" domain that interacts with caspase-like domains, indicating that RICK plays a role in the recruitment of caspase-8. This interpretation is supported by the fact that the expression of RICK in human 293T cells promotes activation of caspase-8 and potentiates the induction of apoptosis by various proteins involved in the CD95 apoptosis pathway (Inohara et al., supra).

Mitochondrial Protein Kinases

A novel class of eukaryotic kinases, related by sequence to prokaryotic histidine protein kinases, are the mitochondrial protein kinases (MPKs) which seem to have no sequence similarity with other eukaryotic protein kinases. These protein kinases are located exclusively in the mitochondrial matrix space and may have evolved from genes originally present in respiration-dependent bacteria which were endocytosed by primitive eukaryotic cells. MPKs are responsible for phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase complexes (Harris, R.A. et al. (1995) Adv. Enzyme Regul. 34:147-162). Five MPKs have been identified. Four members correspond to pyruvate dehydrogenase kinase isozymes, regulating the activity of the pyruvate dehydrogenase complex, which is an important regulatory

25

35

enzyme at the interface between glycolysis and the citric acid cycle. The fifth member corresponds to a branched-chain alpha-ketoacid dehydrogenase kinase, important in the regulation of the pathway for the disposal of branched-chain amino acids. (Harris, R.A. et al. (1997) Adv. Enzyme Regul. 37:271-293). Both starvation and the diabetic state are known to result in a great increase in the activity of the pyruvate dehydrogenase kinase in the liver, heart and muscle of the rat. This increase contributes in both disease states to the phosphorylation and inactivation of the pyruvate dehydrogenase complex and conservation of pyruvate and lactate for gluconeogenesis (Harris (1995) supra).

KINASES WITH NON-PROTEIN SUBSTRATES

Lipid and Inositol kinases

Lipid kinases phosphorylate hydroxyl residues on lipid head groups. A family of kinases involved in phosphorylation of phosphatidylinositol (PI) has been described, each member phosphorylating a specific carbon on the inositol ring (Leevers, S.J. et al. (1999) Curr. Opin. Cell. Biol. 11:219-225). The phosphorylation of phosphatidylinositol is involved in activation of the protein kinase C signaling pathway. The inositol phospholipids (phosphoinositides) intracellular signaling pathway begins with binding of a signaling molecule to a G-protein linked receptor in the plasma membrane. This leads to the phosphorylation of phosphatidylinositol (PI) residues on the inner side of the plasma membrane by inositol kinases, thus converting PI residues to the biphosphate state (PIP₂). PIP₂ is then cleaved into inositol triphosphate (IP₃) and diacylglycerol. These two products act as mediators for separate signaling pathways. Cellular responses that are mediated by 20 these pathways are glycogen breakdown in the liver in response to vasopressin, smooth muscle contraction in response to acetylcholine, and thrombin-induced platelet aggregation.

PI 3-kinase (PI3K), which phosphorylates the D3 position of PI and its derivatives, has a central role in growth factor signal cascades involved in cell growth, differentiation, and metabolism. PI3K is a heterodimer consisting of an adapter subunit and a catalytic subunit. The adapter subunit acts as a scaffolding protein, interacting with specific tyrosine-phosphorylated proteins, lipid moieties, and other cytosolic factors. When the adapter subunit binds tyrosine phosphorylated targets, such as the insulin responsive substrate (IRS)-1, the catalytic subunit is activated and converts PI (4,5) bisphosphate (PIP₂) to PI (3,4,5) P₃ (PIP₃). PIP₃ then activates a number of other proteins, including PKA, protein kinase B (PKB), protein kinase C (PKC), glycogen synthase kinase (GSK)-3, and p70 ribosomal s6 kinase. PI3K also interacts directly with the cytoskeletal organizing proteins, Rac, rho, and cdc42 (Shepherd, P.R. et al. (1998) Biochem. J. 333:471-490). Animal models for diabetes, such as obese and fat mice, have altered PI3K adapter subunit levels. Specific mutations in the adapter subunit have also been found in an insulin-resistant Danish population, suggesting a role for PI3K in type-2 diabetes (Shepard, supra).

An example of lipid kinase phosphorylation activity is the phosphorylation of

PF-1724 P

15

20

30

D-erythro-sphingosine to the sphingolipid metabolite, sphingosine-1-phosphate (SPP). SPP has emerged as a novel lipid second-messenger with both extracellular and intracellular actions (Kohama, T. et al. (1998) J. Biol. Chem. 273:23722-23728). Extracellularly, SPP is a ligand for the G-protein coupled receptor EDG-1 (endothelial-derived, G-protein coupled receptor). Intracellularly, SPP regulates cell growth, survival, motility, and cytoskeletal changes. SPP levels are regulated by sphingosine kinases that specifically phosphorylate D-erythro-sphingosine to SPP. The importance of sphingosine kinase in cell signaling is indicated by the fact that various stimuli, including platelet-derived growth factor (PDGF), nerve growth factor, and activation of protein kinase C, increase cellular levels of SPP by activation of sphingosine kinase, and the fact that competitive inhibitors of the enzyme selectively inhibit cell proliferation induced by PDGF (Kohama et al., supra).

Purine Nucleotide Kinases

The purine nucleotide kinases, adenylate kinase (ATP:AMP phosphotransferase, or AdK) and guanylate kinase (ATP:GMP phosphotransferase, or GuK) play a key role in nucleotide metabolism and are crucial to the synthesis and regulation of cellular levels of ATP and GTP, respectively. These two molecules are precursors in DNA and RNA synthesis in growing cells and provide the primary source of biochemical energy in cells (ATP), and signal transduction pathways (GTP). Inhibition of various steps in the synthesis of these two molecules has been the basis of many antiproliferative drugs for cancer and antiviral therapy (Pillwein, K. et al. (1990) Cancer Res. 50:1576-1579).

AdK is found in almost all cell types and is especially abundant in cells having high rates of ATP synthesis and utilization such as skeletal muscle. In these cells AdK is physically associated with mitochondria and myofibrils, the subcellular structures that are involved in energy production and utilization, respectively. Recent studies have demonstrated a major function for AdK in transferring high energy phosphoryls from metabolic processes generating ATP to cellular components consuming ATP (Zeleznikar, R.J. et al. (1995) J. Biol. Chem. 270:7311-7319). Thus AdK may have a pivotal role in maintaining energy production in cells, particularly those having a high rate of growth or metabolism such as cancer cells, and may provide a target for suppression of its activity in order to treat certain cancers. Alternatively, reduced AdK activity may be a source of various metabolic, muscle-energy disorders that can result in cardiac or respiratory failure and may be treatable by increasing AdK activity.

GuK, in addition to providing a key step in the synthesis of GTP for RNA and DNA synthesis, also fulfills an essential function in signal transduction pathways of cells through the regulation of GDP and GTP. Specifically, GTP binding to membrane associated G proteins mediates the activation of cell receptors, subsequent intracellular activation of adenyl cyclase, and production of the second messenger, cyclic AMP. GDP binding to G proteins inhibits these processes. GDP and

PF-1724 P

10

15

30

35

GTP levels also control the activity of certain oncogenic proteins such as p21^{rss} known to be involved in control of cell proliferation and oncogenesis (Bos, J.L. (1989) Cancer Res. 49:4682-4689). High ratios of GTP:GDP caused by suppression of GuK cause activation of p21^{rss} and promote oncogenesis. Increasing GuK activity to increase levels of GDP and reduce the GTP:GDP ratio may provide a therapeutic strategy to reverse oncogenesis.

GuK is an important enzyme in the phosphorylation and activation of certain antiviral drugs useful in the treatment of herpes virus infections. These drugs include the guanine homologs acyclovir and buciclovir (Miller, W.H. and R.L. Miller (1980) J. Biol. Chem. 255:7204-7207; Stenberg, K. et al. (1986) J. Biol. Chem. 261:2134-2139). Increasing GuK activity in infected cells may provide a therapeutic strategy for augmenting the effectiveness of these drugs and possibly for reducing the necessary dosages of the drugs.

Pyrimidine Kinases

The pyrimidine kinases are deoxycytidine kinase and thymidine kinase 1 and 2. Deoxycytidine kinase is located in the nucleus, and thymidine kinase 1 and 2 are found in the cytosol (Johansson, M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:11941-11945). Phosphorylation of deoxyribonucleosides by pyrimidine kinases provides an alternative pathway for *de novo* synthesis of DNA precursors. The role of pyrimidine kinases, like purine kinases, in phosphorylation is critical to the activation of several chemotherapeutically important nucleoside analogues (Arner E.S. and S. Eriksson (1995) Pharmacol. Ther. 67:155-186).

20 PHOSPHATASES

Protein phosphatases are generally characterized as either serine/threonine- or tyrosine-specific based on their preferred phospho-amino acid substrate. However, some phosphatases (DSPs, for dual specificity phosphatases) can act on phosphorylated tyrosine, serine, or threonine residues. The protein serine/threonine phosphatases (PSPs) are important regulators of many cAMP-mediated hormone responses in cells. Protein tyrosine phosphatases (PTPs) play a significant role in cell cycle and cell signaling processes. Another family of phosphatases is the acid phosphatase or histidine acid phosphatase (HAP) family whose members hydrolyze phosphate esters at acidic pH conditions.

PSPs are found in the cytosol, nucleus, and mitochondria and in association with cytoskeletal and membranous structures in most tissues, especially the brain. Some PSPs require divalent cations, such as Ca²⁺ or Mn²⁺, for activity. PSPs play important roles in glycogen metabolism, muscle contraction, protein synthesis, T cell function, neuronal activity, oocyte maturation, and hepatic metabolism (reviewed in Cohen, P. (1989) Annu. Rev. Biochem. 58:453-508). PSPs can be separated into two classes. The PPP class includes PP1, PP2A, PP2B/calcineurin, PP4, PP5, PP6, and PP7. Members of this class are composed of a homologous catalytic subunit bearing a very highly conserved signature sequence, coupled with one or more regulatory subunits (PROSITE

PDOC00115). Further interactions with scaffold and anchoring molecules determine the intracellular localization of PSPs and substrate specificity. The PPM class consists of several closely related isoforms of PP2C and is evolutionarily unrelated to the PPP class.

PP1 dephosphorylates many of the proteins phosphorylated by cyclic AMP-dependent protein kinase (PKA) and is an important regulator of many cAMP-mediated hormone responses in cells. A number of isoforms have been identified, with the alpha and beta forms being produced by alternative splicing of the same gene. Both ubiquitous and tissue-specific targeting proteins for PP1 have been identified. In the brain, inhibition of PP1 activity by the dopamine and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32kDa (DARPP-32) is necessary for normal dopamine response in neostriatal neurons (reviewed in Price, N.E. and M.C. Mumby (1999) Curr. Opin. Neurobiol. 9:336-342). PP1, along with PP2A, has been shown to limit motility in microvascular endothelial cells, suggesting a role for PSPs in the inhibition of angiogenesis (Gabel, S. et al. (1999) Otolaryngol. Head Neck Surg. 121:463-468).

PP2A is the main serine/threonine phosphatase. The core PP2A enzyme consists of a single 36 kDa catalytic subunit (C) associated with a 65 kDa scaffold subunit (A), whose role is to recruit 15 additional regulatory subunits (B). Three gene families encoding B subunits are known (PR55, PR61, and PR72), each of which contain multiple isoforms, and additional families may exist (Millward, T.A et al. (1999) Trends Biosci. 24:186-191). These "B-type" subunits are cell type- and tissuespecific and determine the substrate specificity, enzymatic activity, and subcellular localization of the holoenzyme. The PR55 family is highly conserved and bears a conserved motif (PROSITE 20 PDOC00785). PR55 increases PP2A activity toward mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK). PP2A dephosphorylates the MAPK active site, inhibiting the cell's entry into mitosis. Several proteins can compete with PR55 for PP2A core enzyme binding, including the CKII kinase catalytic subunit, polyomavirus middle and small T antigens, and SV40 small t antigen. 25 Viruses may use this mechanism to commandeer PP2A and stimulate progression of the cell through the cell cycle (Pallas, D.C. et al. (1992) J. Virol. 66:886-893). Altered MAP kinase expression is also implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development. PP2A, in fact, can dephosphorylate and modulate the activities of more than 30 protein kinases in vitro, and other evidence suggests that the same is true in vivo for such kinases as PKB, PKC, the calmodulin-dependent kinases, ERK family MAP kinases, cyclin-dependent kinases, and the IkB kinases (reviewed in Millward et al., supra). PP2A is itself a substrate for CKI and CKII kinases, and can be stimulated by polycationic macromolecules. A PP2Alike phosphatase is necessary to maintain the G1 phase destruction of mammalian cyclins A and B (Bastians, H. et al. (1999) Mol. Biol. Cell 10:3927-3941). PP2A is a major activity in the brain and is implicated in regulating neurofilament stability and normal neural function, particularly the

15

20

25

30

35

phosphorylation of the microtubule-associated protein tau. Hyperphosphorylation of tau has been proposed to lead to the neuronal degeneration seen in Alzheimer's disease (reviewed in Price and Mumby, *supra*).

PP2B, or calcineurin, is a Ca²⁺-activated dimeric phosphatase and is particularly abundant in the brain. It consists of catalytic and regulatory subunits, and is activated by the binding of the calcium/calmodulin complex. Calcineurin is the target of the immunosuppressant drugs cyclosporine and FK506. Along with other cellular factors, these drugs interact with calcineurin and inhibit phosphatase activity. In T cells, this blocks the calcium dependent activation of the NF-AT family of transcription factors, leading to immunosuppression. This family is widely distributed, and it is likely that calcineurin regulates gene expression in other tissues as well. In neurons, calcineurin modulates functions which range from the inhibition of neurotransmitter release to desensitization of postsynaptic NMDA-receptor coupled calcium channels to long term memory (reviewed in Price and Mumby, supra).

Other members of the PPP class have recently been identified (Cohen, P.T. (1997) Trends Biochem. Sci. 22:245-251). One of them, PP5, contains regulatory domains with tetratricopeptide repeats. It can be activated by polyunsaturated fatty acids and anionic phospholipids in vitro and appears to be involved in a number of signaling pathways, including those controlled by atrial, natriuretic peptide or steroid hormones (reviewed in Andreeva, A.V. and M.A. Kutuzov (1999) Cell Signal. 11:555-562).

PP2C is a ~42kDa monomer with broad substrate specificity and is dependent on divalent cations (mainly Mn²⁺ or Mg²⁺) for its activity. PP2C proteins share a conserved N-terminal region with an invariant DGH motif, which contains an aspartate residue involved in cation binding (PROSITE PDOC00792). Targeting proteins and mechanisms regulating PP2C activity have not been identified. PP2C has been shown to inhibit the stress-responsive p38 and Jun kinase (JNK) pathways (Takekawa, M. et al. (1998) EMBO J. 17:4744-4752).

In contrast to PSPs, tyrosine-specific phosphatases (PTPs) are generally monomeric proteins of very diverse size (from 20kDa to greater than 100kDa) and structure that function primarily in the transduction of signals across the plasma membrane. PTPs are categorized as either soluble phosphatases or transmembrane receptor proteins that contain a phosphatase domain. All PTPs share a conserved catalytic domain of about 300 amino acids which contains the active site. The active site consensus sequence includes a cysteine residue which executes a nucleophilic attack on the phosphate moiety during catalysis (Neel, B.G. and N.K. Tonks (1997) Curr. Opin. Cell Biol. 9:193-204). Receptor PTPs are made up of an N-terminal extracellular domain of variable length, a transmembrane region, and a cytoplasmic region that generally contains two copies of the catalytic domain. Although only the first copy seems to have enzymatic activity, the second copy apparently

15

. 20

30

35

affects the substrate specificity of the first. The extracellular domains of some receptor PTPs contain fibronectin-like repeats, immunoglobulin-like domains, MAM domains (an extracellular motif likely to have an adhesive function), or carbonic anhydrase-like domains (PROSITE PDOC 00323). This wide variety of structural motifs accounts for the diversity in size and specificity of PTPs.

PTPs play important roles in biological processes such as cell adhesion, lymphocyte activation, and cell proliferation. PTPs μ and κ are involved in cell-cell contacts, perhaps regulating cadherin/catenin function. A number of PTPs affect cell spreading, focal adhesions, and cell motility, most of them via the integrin/tyrosine kinase signaling pathway (reviewed in Neel and Tonks, supra). CD45 phosphatases regulate signal transduction and lymphocyte activation (Ledbetter, J.A. et al. (1988) Proc. Natl. Acad. Sci. USA 85:8628-8632). Soluble PTPs containing Src-homology-2 domains have been identified (SHPs), suggesting that these molecules might interact with receptor tyrosine kinases. SHP-1 regulates cytokine receptor signaling by controlling the Janus family PTKs in hematopoietic cells, as well as signaling by the T-cell receptor and c-Kit (reviewed in Neel and Tonks, supra). M-phase inducer phosphatase plays a key role in the induction of mitosis by dephosphorylating and activating the PTK CDC2, leading to cell division (Sadhu, K. et al. (1990) Proc. Natl. Acad. Sci. USA 87:5139-5143). In addition, the genes encoding at least eight PTPs have been mapped to chromosomal regions that are translocated or rearranged in various neoplastic conditions, including lymphoma, small cell lung carcinoma, leukemia, adenocarcinoma, and neuroblastoma (reviewed in Charbonneau, H. and N.K. Tonks (1992) Annu. Rev. Cell Biol. 8:463-493). The PTP enzyme active site comprises the consensus sequence of the MTM1 gene family. The MTM1 gene is responsible for X-linked recessive myotubular myopathy, a congenital muscle disorder that has been linked to Xq28 (Kioschis, P. et al., (1998) Genomics 54:256-266). Many PTKs are encoded by oncogenes, and it is well known that oncogenesis is often accompanied by increased tyrosine phosphorylation activity. It is therefore possible that PTPs may serve to prevent or reverse cell transformation and the growth of various cancers by controlling the levels of tyrosine phosphorylation in cells. This is supported by studies showing that overexpression of PTP can suppress transformation in cells and that specific inhibition of PTP can enhance cell transformation (Charbonneau and Tonks, supra).

-Dual specificity phosphatases (DSPs) are structurally more similar to the PTPs than the PSPs. DSPs bear an extended PTP active site motif with an additional 7 amino acid residues. DSPs are primarily associated with cell proliferation and include the cell cycle regulators cdc25A, B, and C. The phosphatases DUSP1 and DUSP2 inactivate the MAPK family members ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), and p38 on both tyrosine and threonine residues (PROSITE PDOC 00323, *supra*). In the activated state, these kinases have been implicated in neuronal differentiation, proliferation, oncogenic transformation, platelet aggregation, and

25

30

35

apoptosis. Thus, DSPs are necessary for proper regulation of these processes (Muda, M. et al. (1996) J. Biol. Chem. 271:27205-27208). The tumor suppressor PTEN is a DSP that also shows lipid phosphatase activity. It seems to negatively regulate interactions with the extracellular matrix and maintains sensitivity to apoptosis. PTEN has been implicated in the prevention of angiogenesis (Giri, D. and M. Ittmann (1999) Hum. Pathol. 30:419-424) and abnormalities in its expression are associated with numerous cancers (reviewed in Tamura, M. et al. (1999) J. Natl. Cancer Inst. 91:1820-1828).

Histidine acid phosphatase (HAP; EXPASY EC 3.1.3.2), also known as acid phosphatase, hydrolyzes a wide spectrum of substrates including alkyl, aryl, and acyl orthophosphate monoesters and phosphorylated proteins at low pH. HAPs share two regions of conserved sequences, each centered around a histidine residue which is involved in catalytic activity. Members of the HAP family include lysosomal acid phosphatase (LAP) and prostatic acid phosphatase (PAP), both sensitive to inhibition by L-tartrate (PROSITE PDOC00538).

Synaptojanin, a polyphosphoinositide phosphatase, dephosphorylates phosphoinositides at positions 3, 4 and 5 of the inositol ring. Synaptojanin is a major presynaptic protein found at clathrin-coated endocytic intermediates in nerve terminals, and binds the clathrin coat-associated protein, EPS15. This binding is mediated by the C-terminal region of synaptojanin-170, which has 3 Asp-Pro-Phe amino acid repeats. Further, this 3 residue repeat had been found to be the binding site for the EH domains of EPS15 (Haffner, C. et al. (1997) FEBS Lett. 419:175-180). Additionally, synaptojanin may potentially regulate interactions of endocytic proteins with the plasma membrane, and be involved in synaptic vesicle recycling (Brodin, L. et al. (2000) Curr. Opin. Neurobiol. 10:312-320). Studies in mice with a targeted disruption in the synaptojanin 1 gene (Synj1) were shown to support coat formation of endocytic vesicles more effectively than was seen in wild-type mice, suggesting that Synj1 can act as a negative regulator of membrane-coat protein interactions. These findings provide genetic evidence for a crucial role of phosphoinositide metabolism in synaptic vesicle recycling (Cremona, O. et al. (1999) Cell 99:179-188).

Expression profiling

Microarrays are analytical tools used in bioanalysis. A microarray has a plurality of molecules spatially distributed over, and stably associated with, the surface of a solid support.

Microarrays of polypeptides, polynucleotides, and/or antibodies have been developed and find use in a variety of applications, such as gene sequencing, monitoring gene expression, gene mapping, bacterial identification, drug discovery, and combinatorial chemistry.

One area in particular in which microarrays find use is in gene expression analysis. Array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes. When the expression of a single

gene is examined, arrays are employed to detect the expression of a specific gene or its variants. When an expression profile is examined, arrays provide a platform for identifying genes that are tissue specific, are affected by a substance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.

Neurological disorders

Characterization of region-specific gene expression in the human brain provides a context and background for molecular neurobiology on a variety of neurological disorders. For example, Alzheimer's disease (AD) is a progressive, neurodestructive process of the human neocortex, characterized by the deterioration of memory and higher cognitive function. A progressive and irreversible brain disorder, AD is characterized by three major pathogenic episodes involving (a) an aberrant processing and deposition of beta-amyloid precursor protein (betaAPP) to form neurotoxic beta-amyloid (betaA) peptides and an aggregated insoluble polymer of betaA that forms the senile plaque, (b) the establishment of intraneuronal neuritic tau pathology yielding widespread deposits of ... agyrophilic neurofibrillary tangles (NFT) and (c) the initiation and proliferation of a brain-specific inflammatory response. These three seemingly disperse attributes of AD etiopathogenesis are linked by the fact that proinflammatory microglia, reactive astrocytes and their associated cytokines and chemokines are associated with the biology of the microtubule associated protein tau, betaA speciation and aggregation. Missense mutations in the presentlin genes PS1 and PS2, implicated in. early onset familial AD, cause abnormal betaAPP processing with resultant overproduction of betaA42 and related neurotoxic peptides. Specific betaA fragments such as betaA42 can further potentiate proinflammatory mechanisms. Expression of the inducible oxidoreductase cyclooxygenase-2 and cytosolic phospholipase A2 (cPLA2) is strongly activated during cerebral ischemia and trauma, epilepsy and AD, indicating the induction of proinflammatory gene pathways as a response to brain injury. Neurotoxic metals such as aluminum and zinc, both implicated in AD etiopathogenesis, and arachidonic acid, a major metabolite of brain cPLA2 activity, each polymerize hyperphosphorylated tau to form NFT-like bundles. Studies have identified a reduced risk for AD in patients aged over 70 years who were previously treated with non-steroidal anti-inflammatory drugs for non-CNS afflictions that include arthritis. (For a review of the interrelationships between the mechanisms of PS1, PS2 and betaAPP gene expression, tau and betaA deposition and the induction, regulation and proliferation in AD of the neuroinflammatory response, see Lukiw, W.J. and Bazan, N.G. (2000) Neurochem. Res. 2000 25:1173-1184).

Breast cancer

20

25

30

35

More than 180,000 new cases of breast cancer are diagnosed each year, and the mortality rate for breast cancer approaches 10% of all deaths in females between the ages of 45-54 (Gish, K. (1999)

15

20

30

AWIS Magazine 28:7-10). However the survival rate based on early diagnosis of localized breast cancer is extremely high (97%), compared with the advanced stage of the disease in which the tumor has spread beyond the breast (22%). Current procedures for clinical breast examination are lacking in sensitivity and specificity, and efforts are underway to develop comprehensive gene expression profiles for breast cancer that may be used in conjunction with conventional screening methods to improve diagnosis and prognosis of this disease (Perou, C.M. et al. (2000) Nature 406:747-752).

Mutations in two genes, BRCA1 and BRCA2, are known to greatly predispose a woman to breast cancer and may be passed on from parents to children (Gish, *supra*). However, this type of hereditary breast cancer accounts for only about 5% to 9% of breast cancers, while the vast majority of breast cancer is due to non-inherited mutations that occur in breast epithelial cells.

The relationship between expression of epidermal growth factor (EGF) and its receptor, EGFR, to human mammary carcinoma has been particularly well studied. (See Khazaie, K. et al. (1993) Cancer and Metastasis Rev. 12:255-274, and references cited therein for a review of this area.) Overexpression of EGFR, particularly coupled with down-regulation of the estrogen receptor, is a marker of poor prognosis in breast cancer patients. In addition, EGFR expression in breast tumor metastases is frequently elevated relative to the primary tumor, suggesting that EGFR is involved in tumor progression and metastasis. This is supported by accumulating evidence that EGF has effects on cell functions related to metastatic potential, such as cell motility, chemotaxis, secretion and differentiation. Changes in expression of other members of the erbB receptor family, of which EGFR is one, have also been implicated in breast cancer. The abundance of erbB receptors, such as HER-2/neu, HER-3, and HER-4, and their ligands in breast cancer points to their functional importance in the pathogenesis of the disease, and may therefore provide targets for therapy of the disease (Bacus, S.S. et al. (1994) Am. J. Clin. Pathol. 102:S13-S24). Other known markers of breast cancer include a human secreted frizzled protein mRNA that is downregulated in breast tumors; the matrix G1a protein which is overexpressed in human breast carcinoma cells; Drg1 or RTP, a gene whose expression is diminished in colon, breast, and prostate tumors; maspin, a tumor suppressor gene downregulated in invasive breast carcinomas; and CaN19, a member of the S100 protein family, all of which are down-regulated in mammary carcinoma cells relative to normal mammary epithelial cells (Zhou, Z. et al. (1998) Int. J. Cancer 78:95-99; Chen, L. et al. (1990) Oncogene 5:1391-1395; Ulrix, W. et al (1999) FEBS Lett 455:23-26; Sager, R. et al. (1996) Curr. Top. Microbiol. Immunol. 213:51-64; and Lee, S.W. et al. (1992) Proc. Natl. Acad. Sci. USA 89:2504-2508).

Cell lines derived from human mammary epithelial cells at various stages of breast cancer provide a useful model to study the process of malignant transformation and tumor progression as it has been shown that these cell lines retain many of the properties of their parental tumors for lengthy culture periods (Wistuba, I.I. et al. (1998) Clin. Cancer Res. 4:2931-2938). Such a model is

20

25

30

35

particularly useful for comparing phenotypic and molecular characteristics of human mammary epithelial cells at various stages of malignant transformation.

There is a need in the art for new compositions, including nucleic acids and proteins, for the diagnosis, prevention, and treatment of cardiovascular diseases, immune system disorders, neurological disorders, disorders affecting growth and development, lipid disorders, cell proliferative disorders, and cancers.

SUMMARY OF THE INVENTION

Various embodiments of the invention provide purified polypeptides, kinases and phosphatases, referred to collectively as 'KPP' and individually as 'KPP-1,' 'KPP-2,' 'KPP-3,' 'KPP-4,' 'KPP-5,' 'KPP-6,' 'KPP-8,' 'KPP-9,' 'KPP-10,' 'KPP-11,' 'KPP-12,' 'KPP-13,' 'KPP-14,' and 'KPP-15' and methods for using these proteins and their encoding polynucleotides for the detection, diagnosis, and treatment of diseases and medical conditions. Embodiments also provide methods for utilizing the purified kinases and phosphatases and/or their encoding polynucleotides for facilitating the drug discovery process, including determination of efficacy, dosage, toxicity, and pharmacology. Related embodiments provide methods for utilizing the purified kinases and phosphatases and/or their encoding polynucleotides for investigating the pathogenesis of diseases and medical conditions.

An embodiment provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15. Another embodiment provides an isolated polypeptide comprising an amino acid sequence of SEQ ID NO:1-15.

Still another embodiment provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15. In another embodiment, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-15. In an alternative embodiment, the polynucleotide is selected from the group consisting of SEQ ID NO:1-15. In an alternative embodiment, the

20

30

Still another embodiment provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, b) a polypeptide comprising a naturally occurring amino acid sequence at least 5 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15. Another embodiment provides a cell transformed with the recombinant polynucleotide. Yet another embodiment provides a transgenic organism comprising the recombinant polynucleotide.

Another embodiment provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Yet another embodiment provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15.

Still yet another embodiment provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA

25

equivalent of a)-d). In other embodiments, the polynucleotide can comprise at least about 20, 30, 40, 60, 80, or 100 contiguous nucleotides.

Yet another embodiment provides a method for detecting a target polynucleotide in a sample, said target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex. In a related embodiment, the method can include detecting the amount of the hybridization complex. In still other embodiments, the probe can comprise at least about 20, 30, 40, 60, 80, or 100 contiguous nucleotides.

Still yet another embodiment provides a method for detecting a target polynucleotide in a sample, said target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof. In a related embodiment, the method can include detecting the amount of the amplified target polynucleotide or fragment thereof.

Another embodiment provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and a pharmaceutically acceptable excipient. In one

20

25

30

35

embodiment, the composition can comprise an amino acid sequence selected from the group consisting of SEQ ID NO:1-15. Other embodiments provide a method of treating a disease or condition associated with decreased or abnormal expression of functional KPP, comprising administering to a patient in need of such treatment the composition.

Yet another embodiment provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15. The method comprises a) contacting a sample comprising the polypeptide with a compound, and b) detecting agonist activity in the sample. Another embodiment provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. Yet another embodiment provides a method of treating a disease or condition associated with decreased expression of functional KPP, comprising administering to a patient in need of such treatment the composition.

Still yet another embodiment provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15. The method comprises a) contacting a sample comprising the polypeptide with a compound, and b) detecting antagonist activity in the sample. Another embodiment provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. Yet another embodiment provides a method of treating a disease or condition associated with overexpression of functional KPP, comprising administering to a patient in need of such treatment the composition.

Another embodiment provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, c) a biologically active

20

25

30

35

fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

Yet another embodiment provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

Still yet another embodiment provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, the method comprising a) contacting a sample comprising the target polynucleotide with a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.

Another embodiment provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide

15

25

30

complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide can comprise a fragment of a polynucleotide selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

BRIEF DESCRIPTION OF THE TABLES

Table 1 summarizes the nomenclature for full length polynucleotide and polypeptide embodiments of the invention.

Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog, and the PROTEOME database identification numbers and annotations of PROTEOME database homologs, for polypeptide embodiments of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.

Table 3 shows structural features of polypeptide embodiments, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.

Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide embodiments, along with selected fragments of the polynucleotides.

Table 5 shows representative cDNA libraries for polynucleotide embodiments.

Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.

Table 7 shows the tools, programs, and algorithms used to analyze polynucleotides and polypeptides, along with applicable descriptions, references, and threshold parameters.

Table 8 shows single nucleotide polymorphisms found in polynucleotide sequences of the invention, along with allele frequencies in different human populations.

10

20

25

30

Before the present proteins, nucleic acids, and methods are described, it is understood that embodiments of the invention are not limited to the particular machines, instruments, materials, and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the invention.

As used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with various embodiments of the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"KPP" refers to the amino acid sequences of substantially purified KPP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of KPP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of KPP either by directly interacting with KPP or by acting on components of the biological pathway in which KPP participates.

An "allelic variant" is an alternative form of the gene encoding KPP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding KPP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as KPP or a polypeptide with at least one functional characteristic of KPP. Included within this definition are

PF-1724 P

20

25

35

polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding KPP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide encoding KPP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent KPP. Deliberate amino acid substitutions may be made on the basis of one or more similarities in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of KPP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" can refer to an oligopeptide, a peptide, a polypeptide, or a protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid. Amplification may be carried out using polymerase chain reaction (PCR) technologies or other nucleic acid amplification technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of KPP. Antagonists may include proteins such as antibodies, anticalins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of KPP either by directly interacting with KPP or by acting on components of the biological pathway in which KPP participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind KPP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that

25

35

makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "aptamer" refers to a nucleic acid or oligonucleotide molecule that binds to a

specific molecular target. Aptamers are derived from an *in vitro* evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by EXponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries. Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH₂), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker (Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13).

The term "intramer" refers to an aptamer which is expressed *in vivo*. For example, a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci. USA . 96:3606-3610).

The term "spiegelmer" refers to an aptamer which includes L-DNA, L-RNA, or other left-handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.

The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a polynucleotide having a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand,

and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic KPP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'.

A "composition comprising a given polynucleotide" and a "composition comprising a given polypeptide" can refer to any composition containing the given polynucleotide or polypeptide. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotides encoding KPP or fragments of KPP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (Accelrys, Burlington MA) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
30	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
35	Gln	Asn, Glu, His
•	Glu	Asp, Gln, His
	Gly	Ala

20

25

30

35

	His	Asn, Arg, Gln, Glu
	Пе	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
5	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
10	Tyr	His, Phe, Trp
	Val	Ile, Leu, Thr

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

"Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.

"Exon shuffling" refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.

A "fragment" is a unique portion of KPP or a polynucleotide encoding KPP which can be identical in sequence to, but shorter in length than, the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from about 5 to about 1000 contiguous nucleotides or amino acid residues. A

30

35

fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:16-30 can comprise a region of unique polynucleotide sequence
that specifically identifies SEQ ID NO:16-30, for example, as distinct from any other sequence in the
genome from which the fragment was obtained. A fragment of SEQ ID NO:16-30 can be employed
in one or more embodiments of methods of the invention, for example, in hybridization and
amplification technologies and in analogous methods that distinguish SEQ ID NO:16-30 from related
polynucleotides. The precise length of a fragment of SEQ ID NO:16-30 and the region of SEQ ID
NO:16-30 to which the fragment corresponds are routinely determinable by one of ordinary skill in the
art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-15 is encoded by a fragment of SEQ ID NO:16-30. A fragment of SEQ ID NO:1-15 can comprise a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-15. For example, a fragment of SEQ ID NO:1-15 can be used as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-15. The precise length of a fragment of SEQ ID NO:1-15 and the region of SEQ ID NO:1-15 to which the fragment corresponds can be determined based on the intended purpose for the fragment using one or more analytical methods described herein or otherwise known in the art.

A "full length" polynucleotide is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.

"Homology" refers to sequence similarity or, alternatively, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of identical nucleotide matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using one or more computer algorithms or programs known in the art or described herein. For example, percent identity

PF-1724 P

can be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989; CABIOS 5:151-153) and in Higgins, D.G. et al. (1992; CABIOS 8:189-191). For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms which can be used is provided by the National Center for Biotechnology Information (NCBI) Basic

Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Reward for match: 1

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

25

30

Word Size: 11

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

15

20

25

30

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of identical residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide. The phrases "percent similarity" and "% similarity," as applied to polypeptide sequences, refer to the percentage of residue matches, including identical residue matches and conservative substitutions, between at least two polypeptide sequences aligned using a standardized algorithm. In contrast, conservative substitutions are not included in the calculation of percent identity between polypeptide sequences.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

. Word Size: 3

Filter: on

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least

. 10

20

25

30

35

150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.

The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 μg/ml sheared, denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. and D.W. Russell (2001; Molecular Cloning: A Laboratory Manual, 3rd ed., vol. 1-3, Cold Spring Harbor Press, Cold Spring Harbor NY, ch. 9).

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 μ g/ml. Organic solvent, such as

20

25

30

formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acids by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_0 t or R_0 t analysis) or formed between one nucleic acid present in solution and another nucleic acid immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or polynucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of KPP which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of KPP which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, antibodies, or other chemical compounds on a substrate.

The terms "element" and "array element" refer to a polynucleotide, polypeptide, antibody, or other chemical compound having a unique and defined position on a microarray.

The term "modulate" refers to a change in the activity of KPP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of KPP.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding

20

30

sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an KPP may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of KPP.

"Probe" refers to nucleic acids encoding KPP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acids. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in, for example, Sambrook, J. and D.W. Russell (2001; Molecular Cloning: A Laboratory Manual, 3rd ed., vol. 1-3, Cold Spring Harbor Press, Cold Spring Harbor NY), Ausubel, F.M. et al. (1999; Short Protocols in Molecular Biology, 4th ed., John Wiley & Sons, New York NY), and Innis, M. et al. (1990; PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA). PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000

20

30

nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a nucleic acid that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook and Russell (supra). The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

10

20

25

30

35

"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An "RNA equivalent," in reference to a DNA molecule, is composed of the same linear sequence of nucleotides as the reference DNA molecule with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The term "sample" is used in its broadest sense. A sample suspected of containing KPP, nucleic acids encoding KPP, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably at least about 75% free, and most preferably at least about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" or "expression profile" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based

15

20

on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. In another embodiment, the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C. et al. (2002) Science 295:868-872). The term genetic manipulation does not include classical cross-breeding, or *in vitro* fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook and Russell (supra).

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotides that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of,

for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity or sequence similarity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool

Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity or sequence similarity over a certain defined length of one of the polypeptides.

10

25

THE INVENTION

Various embodiments of the invention include new human kinases and phosphatases (KPP), the polynucleotides encoding KPP, and the use of these compositions for the diagnosis, treatment, or prevention of cardiovascular diseases, immune system disorders, neurological disorders, disorders affecting growth and development, lipid disorders, cell proliferative disorders, and cancers.

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide embodiments of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.

Table 2 shows sequences with homology to polypeptide embodiments of the invention as identified by BLAST analysis against the GenBank protein (genpept) database and the PROTEOME database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (GenBank ID NO:) of the nearest GenBank homolog and the PROTEOME database identification numbers (PROTEOME ID NO:) of the nearest PROTEOME database homologs. Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s). Column 5 shows the annotation of the GenBank and PROTEOME database homolog(s) along with relevant citations where applicable, all of which are expressly incorporated by reference herein.

Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column

20

25

35

3 shows the number of amino acid residues in each polypeptide. Column 4 shows amino acid residues comprising signature sequences, domains, motifs, potential phosphorylation sites, and potential glycosylation sites. Column 5 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.

Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are kinases and phosphatases. For example, SEQ ID NO:6 is 93% identical, from residue E39 to residue I490, to human multifunctional calcium/calmodulin-dependent protein kinase II delta2 isoform (GenBank ID g4426595) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 9.0E-255, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:6 also has homology to calcium-calmodulin dependent protein kinase II delta, a member of the multifunctional CAMKII family involved in Ca2+ regulated processes, of which the alternative form delta 3 is specifically upregulated in the myocardium of patients with heart failure, as determined by BLAST analysis using the PROTEOME database. SEQ ID NO:6 also contains a protein kinase domain and a serine/threonine protein kinase catalytic domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM and SMART databases of conserved protein families/domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses, and BLAST analyses against the PRODOM and DOMO databases, provide further corroborative evidence that SEQ ID NO:6 is a calcium-calmodulin dependent protein kinase. The foregoing provides evidence that SEQ ID NO:6 is a calciumcalmodulin dependent protein kinase. SEQ ID NO:1-5 and SEQ ID NO:7-15 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-15 are described in Table 7.

As shown in Table 4, full length polynucleotide embodiments were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Column 1 lists the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:), the corresponding Incyte polynucleotide consensus sequence number (Incyte ID) for each polynucleotide of the invention, and the length of each polynucleotide sequence in basepairs. Column 2 lists fragments of the polynucleotides which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:16-30 or that distinguish between SEQ ID NO:16-30 and related polynucleotides. Column 3 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide embodiments. Columns 4 and 5 of Table 4 show the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences in column 3 relative to their respective

30

full length sequences.

The identification numbers in Column 3 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries. For example, 2944771F7 is the identification number of an Incyte cDNA sequence, and BRAITUT23 is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries (e.g., 72678960V1). Alternatively, the identification numbers in column 3 may refer to GenBank cDNAs or ESTs (e.g., g3422499) which contributed to the assembly of the full length polynucleotides. In addition, the identification numbers in column 3 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the designation "ENST"). Alternatively, the identification numbers in column 3 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (i.e., those sequences including the designation "NM" or "NT") or the NCBI RefSeq Protein Sequence Records (i.e., those sequences including the designation "NP"). Alternatively, the identification numbers in column 3 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, FL_XXXXXX_N₁_N₂_YYYYY_N₃_N₄ represents a "stitched" sequence in which XXXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY is the number of the prediction generated by the algorithm, and $N_{1,2,1}$, if present, represent specific exons that may have been manually edited during analysis (See Example V). Alternatively, the identification numbers in column 3 may refer to assemblages of exons 20 brought together by an "exon-stretching" algorithm. For example, FLXXXXXX_gAAAAA_gBBBBB_1_N is the identification number of a "stretched" sequence, with XXXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the "exon-stretching" algorithm, a RefSeq identifier (denoted by "NM," "NP," or "NT") may be used in place of the GenBank identifier (i.e., gBBBBB).

Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example IV and Example V).

Prefix	Type of analysis and/or examples of programs

10

15

20

25

30

GNN, GFG,	Exon prediction from genomic sequences using, for example,
ENST	GENSCAN (Stanford University, CA, USA) or FGENES
	(Computer Genomics Group, The Sanger Centre, Cambridge, UK).
GBI	Hand-edited analysis of genomic sequences.
FL	Stitched or stretched genomic sequences (see Example V).
INCY	Full length transcript and exon prediction from mapping of EST
	sequences to the genome. Genomic location and EST composition
	data are combined to predict the exons and resulting transcript.

In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in Table 4 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.

Table 5 shows the representative cDNA libraries for those full length polynucleotides which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotides. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.

Table 8 shows single nucleotide polymorphisms (SNPs) found in polynucleotide sequences of the invention, along with allele frequencies in different human populations. Columns 1 and 2 show the polynucleotide sequence identification number (SEQ ID NO:) and the corresponding Incyte project identification number (PID) for polynucleotides of the invention. Column 3 shows the Incyte identification number for the EST in which the SNP was detected (EST ID), and column 4 shows the identification number for the SNP (SNP ID). Column 5 shows the position within the EST sequence at which the SNP is located (EST SNP), and column 6 shows the position of the SNP within the full-length polynucleotide sequence (CB1 SNP). Column 7 shows the allele found in the EST sequence. Columns 8 and 9 show the two alleles found at the SNP site. Column 10 shows the amino acid encoded by the codon including the SNP site, based upon the allele found in the EST. Golumns-11-14 show the frequency of allele 1 in four different human populations. An entry of n/d (not detected) indicates that the frequency of allele 1 in the population was too low to be detected, while n/a (not available) indicates that the allele frequency was not determined for the population.

The invention also encompasses KPP variants. Various embodiments of KPP variants can have at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% amino acid

sequence identity to the KPP amino acid sequence, and can contain at least one functional or structural characteristic of KPP.

Various embodiments also encompass polynucleotides which encode KPP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:16-30, which encodes KPP. The polynucleotide sequences of SEQ ID NO:16-30, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The invention also encompasses variants of a polynucleotide encoding KPP. In particular, such a variant polynucleotide will have at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% polynucleotide sequence identity to a polynucleotide encoding KPP. A particular aspect of the invention encompasses a variant of a polynucleotide comprising a sequence selected from the group consisting of SEQ ID NO:16-30 which has at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:16-30. Any one of the polynucleotide variants described above can encode a polypeptide which contains at least one functional or structural characteristic of KPP.

In addition, or in the alternative, a polynucleotide variant of the invention is a splice variant of a polynucleotide encoding KPP. A splice variant may have portions which have significant sequence identity to a polynucleotide encoding KPP, but will generally have a greater or lesser number of nucleotides due to additions or deletions of blocks of sequence arising from alternate splicing during mRNA processing. A splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% polynucleotide sequence identity to a polynucleotide encoding KPP over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide encoding KPP. For example, a polynucleotide comprising a sequence of SEQ ID NO:19 and a polynucleotide comprising a sequence of SEQ ID NO:20 are splice variants of each other; a polynucleotide comprising a sequence of SEQ ID NO:21 and a polynucleotide comprising a sequence of SEQ ID NO:22 are splice variants of each other; and a polynucleotide comprising a sequence of SEQ ID NO:23 and a polynucleotide comprising a sequence of SEQ ID NO:24 are splice variants of each other. Any one of the splice variants

20

25

30

described above can encode a polypeptide which contains at least one functional or structural characteristic of KPP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding KPP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring KPP, and all such variations are to be considered as being specifically disclosed.

Although polynucleotides which encode KPP and its variants are generally capable of hybridizing to polynucleotides encoding naturally occurring KPP under appropriately selected conditions of stringency, it may be advantageous to produce polynucleotides encoding KPP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding KPP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of polynucleotides which encode KPP and KPP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic polynucleotide may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a polynucleotide encoding KPP or any fragment thereof.

Embodiments of the invention can also include polynucleotides that are capable of hybridizing to the claimed polynucleotides, and, in particular, to those having the sequences shown in SEQ ID NO:16-30 and fragments thereof, under various conditions of stringency (Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511). Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Biosciences, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification 35. system (Invitrogen, Carlsbad CA). Preferably, sequence preparation is automated with machines

.

15

20

25

30

35

such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Amersham Biosciences), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art (Ausubel et al., *supra*, ch. 7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853).

The nucleic acids encoding KPP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector (Sarkar, G. (1993) PCR Methods Applic. 2:318-322). Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences (Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186). A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119). In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art (Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (BD Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-

20

30

35

specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotides or fragments thereof which encode KPP may be cloned in recombinant DNA molecules that direct expression of KPP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other polynucleotides which encode substantially the same or a functionally equivalent polypeptides may be produced and used to express KPP.

The polynucleotides of the invention can be engineered using methods generally known in the art in order to alter KPP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of KPP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

In another embodiment, polynucleotides encoding KPP may be synthesized, in whole or in part, using one or more chemical methods well known in the art (Caruthers, M.H. et al. (1980)

15

20

25

30

35

Nucleic Acids Symp. Ser. 7:215-223; Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232). Alternatively, KPP itself or a fragment thereof may be synthesized using chemical methods known in the art. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques (Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; Roberge, J.Y. et al. (1995) Science 269:202-204). Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of KPP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography (Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421). The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing (Creighton, *supra*, pp. 28-53).

In order to express a biologically active KPP, the polynucleotides encoding KPP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotides encoding KPP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of polynucleotides encoding KPP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where a polynucleotide sequence encoding KPP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used (Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162).

Methods which are well known to those skilled in the art may be used to construct expression vectors containing polynucleotides encoding KPP and appropriate transcriptional and translational control elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination (Sambrook and Russell, *supra*, ch. 1-4, and 8; Ausubel et al., *supra*, ch. 1, 3, and 15).

A variety of expression vector/host systems may be utilized to contain and express

30

polynucleotides encoding KPP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems (Sambrook and Russell, supra; Ausubel et al., supra; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355). Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of polynucleotides to the targeted organ, tissue, or cell population (Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5:350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90:6340-6344; Buller, R.M. et al. (1985) Nature 317:813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31:219-226; Verma, I.M. and N. Somia (1997) Nature 389:239-242). The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotides encoding KPP. For example, routine cloning, subcloning, and propagation of polynucleotides encoding KPP can be achieved using a multifunctional *E. coli* vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Invitrogen). Ligation of polynucleotides encoding KPP into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for *in vitro* transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence (Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509). When large quantities of KPP are needed, e.g. for the production of antibodies, vectors which direct high level expression of KPP may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of KPP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast *Saccharomyces cerevisiae* or *Pichia pastoris*. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign polynucleotide sequences into the host genome for stable propagation (Ausubel et al., *supra*; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; Scorer, C.A. et al. (1994)

Bio/Technology 12:181-184).

Plant systems may also be used for expression of KPP. Transcription of polynucleotides encoding KPP may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection (The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196).

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, polynucleotides encoding KPP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses KPP in host cells (Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes (Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355).

For long term production of recombinant proteins in mammalian systems, stable expression of KPP in cell lines is preferred. For example, polynucleotides encoding KPP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively (Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823). Also, antimetabolite, antibiotic, or herbicide

25

resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14). Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites (Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051). Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; BD Clontech), β-glucuronidase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131).

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding KPP is inserted within a marker gene sequence, transformed cells containing polynucleotides encoding KPP can be identified by the absence of marker gene function.

Alternatively, a marker gene can be placed in tandem with a sequence encoding KPP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the polynucleotide encoding KPP and that express KPP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of KPP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on KPP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art (Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding KPP include oligolabeling,

15

20

25

30

nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, polynucleotides encoding KPP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Biosciences, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with polynucleotides encoding KPP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode KPP may be designed to contain signal sequences which direct secretion of KPP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted polynucleotides or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant polynucleotides encoding KPP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric KPP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of KPP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion

25

30

proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the KPP encoding sequence and the heterologous protein sequence, so that KPP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel et al. (supra, ch. 10 and 16). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In another embodiment, synthesis of radiolabeled KPP may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

KPP, fragments of KPP, or variants of KPP may be used to screen for compounds that specifically bind to KPP. One or more test compounds may be screened for specific binding to KPP. In various embodiments, 1, 2, 3, 4, 5, 10, 20, 50, 100, or 200 test compounds can be screened for specific binding to KPP. Examples of test compounds can include antibodies, anticalins, oligonucleotides, proteins (e.g., ligands or receptors), or small molecules.

In related embodiments, variants of KPP can be used to screen for binding of test compounds, such as antibodies, to KPP, a variant of KPP, or a combination of KPP and/or one or more variants KPP. In an embodiment, a variant of KPP can be used to screen for compounds that bind to a variant of KPP, but not to KPP having the exact sequence of a sequence of SEQ ID NO:1-15. KPP variants used to perform such screening can have a range of about 50% to about 99% sequence identity to KPP, with various embodiments having 60%, 70%, 75%, 80%, 85%, 90%, and 95% sequence identity.

In an embodiment, a compound identified in a screen for specific binding to KPP can be closely related to the natural ligand of KPP, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner (Coligan, J.E. et al. (1991) <u>Current Protocols in Immunology</u> 1(2):Chapter 5). In another embodiment, the compound thus identified can be a natural ligand of a receptor KPP (Howard, A.D. et al. (2001) Trends Pharmacol. Sci.22:132-140; Wise, A. et al. (2002) Drug Discovery Today 7:235-246).

In other embodiments, a compound identified in a screen for specific binding to KPP can be closely related to the natural receptor to which KPP binds, at least a fragment of the receptor, or a fragment of the receptor including all or a portion of the ligand binding site or binding pocket. For example, the compound may be a receptor for KPP which is capable of propagating a signal, or a decoy receptor for KPP which is not capable of propagating a signal (Ashkenazi, A. and V.M. Divit (1999) Curr. Opin. Cell Biol. 11:255-260; Mantovani, A. et al. (2001) Trends Immunol. 22:328-336).

20

The compound can be rationally designed using known techniques. Examples of such techniques include those used to construct the compound etanercept (ENBREL; Amgen Inc., Thousand Oaks CA), which is efficacious for treating rheumatoid arthritis in humans. Etanercept is an engineered p75 tumor necrosis factor (TNF) receptor dimer linked to the Fc portion of human IgG₁ (Taylor, P.C. et al. (2001) Curr. Opin. Immunol. 13:611-616).

In one embodiment, two or more antibodies having similar or, alternatively, different specificities can be screened for specific binding to KPP, fragments of KPP, or variants of KPP. The binding specificity of the antibodies thus screened can thereby be selected to identify particular fragments or variants of KPP. In one embodiment, an antibody can be selected such that its binding specificity allows for preferential identification of specific fragments or variants of KPP. In another embodiment, an antibody can be selected such that its binding specificity allows for preferential diagnosis of a specific disease or condition having increased, decreased, or otherwise abnormal production of KPP.

In an embodiment, anticalins can be screened for specific binding to KPP, fragments of KPP, or variants of KPP. Anticalins are ligand-binding proteins that have been constructed based on a lipocalin scaffold (Weiss, G.A. and H.B. Lowman (2000) Chem. Biol. 7:R177-R184; Skerra, A. (2001) J. Biotechnol. 74:257-275). The protein architecture of lipocalins can include a beta-barrel having eight antiparallel beta-strands, which supports four loops at its open end. These loops form the natural ligand-binding site of the lipocalins, a site which can be re-engineered *in vitro* by amino acid substitutions to impart novel binding specificities. The amino acid substitutions can be made using methods known in the art or described herein, and can include conservative substitutions (e.g., substitutions that do not alter binding specificity) or substitutions that modestly, moderately, or significantly alter binding specificity.

In one embodiment, screening for compounds which specifically bind to, stimulate, or inhibit KPP involves producing appropriate cells which express KPP, either as a secreted protein or on the cell membrane. Preferred cells can include cells from mammals, yeast, *Drosophila*, or *E. coli*. Cells expressing KPP or cell membrane fractions which contain KPP are then contacted with a test compound and binding, stimulation, or inhibition of activity of either KPP or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is

detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the
assay may comprise the steps of combining at least one test compound with KPP, either in solution or
affixed to a solid support, and detecting the binding of KPP to the compound. Alternatively, the assay
may detect or measure binding of a test compound in the presence of a labeled competitor.
Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural
product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

10

20

An assay can be used to assess the ability of a compound to bind to its natural ligand and/or to inhibit the binding of its natural ligand to its natural receptors. Examples of such assays include radio-labeling assays such as those described in U.S. Patent No. 5,914,236 and U.S. Patent No. 6,372,724. In a related embodiment, one or more amino acid substitutions can be introduced into a polypeptide compound (such as a receptor) to improve or alter its ability to bind to its natural ligands (Matthews, D.J. and J.A. Wells. (1994) Chem. Biol. 1:25-30). In another related embodiment, one or more amino acid substitutions can be introduced into a polypeptide compound (such as a ligand) to improve or alter its ability to bind to its natural receptors (Cunningham, B.C. and J.A. Wells (1991) Proc. Natl. Acad. Sci. USA 88:3407-3411; Lowman, H.B. et al. (1991) J. Biol. Chem. 266:10982-10988).

KPP, fragments of KPP, or variants of KPP may be used to screen for compounds that modulate the activity of KPP. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for KPP activity, wherein KPP is combined with at least one test compound, and the activity of KPP in the presence of a test compound is compared with the activity of KPP in the absence of the test compound. A change in the activity of KPP in the presence of the test compound is indicative of a compound that modulates the activity of KPP. Alternatively, a test compound is combined with an *in vitro* or cell-free system comprising KPP under conditions suitable for KPP activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of KPP may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.

In another embodiment, polynucleotides encoding KPP or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease (see, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337). For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

15

25

Polynucleotides encoding KPP may also be manipulated *in vitro* in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

Polynucleotides encoding KPP can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding KPP is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress KPP, e.g., by secreting KPP in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of KPP and kinases and phosphatases. In addition, examples of tissues expressing KPP can be found in Table 6 and can also be found in Example XI. Therefore, KPP appears to play a role in cardiovascular diseases, immune system disorders, neurological disorders, disorders affecting growth and development, lipid disorders, cell proliferative disorders, and cancers. In the treatment of disorders associated with increased KPP expression or activity, it is desirable to decrease the expression or activity of KPP. In the treatment of disorders associated with decreased KPP expression or activity, it is desirable to increase the expression or activity of KPP.

Therefore, in one embodiment, KPP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of KPP. Examples of such disorders include, but are not limited to, a cardiovascular disease such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary

25

30

35

hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, drug-induced lung disease, radiationinduced lung disease, and complications of lung transplantation; an immune system disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other

neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis,

15

inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a disorder affecting growth and development such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a lipid disorder such as fatty liver, cholestasis, primary biliary cirrhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy, adrenoleukodystrophy, GM, gangliosidosis, and ceroid lipofuscinosis, abetalipoproteinemia, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, lipoid adrenal hyperplasia, 20 minimal change disease, lipomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphalipoproteinemia, hypothyroidism, renal disease, liver disease, lecithin:cholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay-Sachs disease, Sandhoff's disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, colon, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, uterus, leukemias such as multiple myeloma, and lymphomas such as Hodgkin's disease.

In another embodiment, a vector capable of expressing KPP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of KPP including, but not limited to, those described above.

5

15

25

35

In a further embodiment, a composition comprising a substantially purified KPP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of KPP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of KPP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of KPP including, but not limited to, those listed above.

In a further embodiment, an antagonist of KPP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of KPP. Examples of such disorders include, but are not limited to, those cardiovascular diseases, immune system disorders, neurological disorders, disorders affecting growth and development, lipid disorders, cell proliferative disorders, and cancers described above. In one aspect, an antibody which specifically binds KPP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express KPP.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding KPP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of KPP including, but not limited to, those described above.

In other embodiments, any protein, agonist, antagonist, antibody, complementary sequence, or vector embodiments may be administered in combination with other appropriate therapeutic agents.

20 Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of KPP may be produced using methods which are generally known in the art. In particular, purified KPP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind KPP. Antibodies to KPP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. In an embodiment, neutralizing antibodies (i.e., those which inhibit dimer formation) can be used therapeutically. Single chain antibodies (e.g., from camels or llamas) may be potent enzyme inhibitors and may have application in the design of peptide mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. Biotechnol. 74:277-302).

For the production of antibodies, various hosts including goats, rabbits, rats, mice, camels, dromedaries, llamas, humans, and others may be immunized by injection with KPP or with any

20

30

fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and *Corynebacterium parvum* are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to KPP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are substantially identical to a portion of the amino acid sequence of the natural protein. Short stretches of KPP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to KPP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120).

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; Takeda, S. et al. (1985) Nature 314:452-454). Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce KPP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries (Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137).

Antibodies may also be produced by inducing *in vivo* production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299).

Antibody fragments which contain specific binding sites for KPP may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and

10

30

35

easy identification of monoclonal Fab fragments with the desired specificity (Huse, W.D. et al. (1989) Science 246:1275-1281).

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between KPP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering KPP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for KPP. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of KPP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple KPP epitopes, represents the average affinity, or avidity, of the antibodies for KPP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular KPP epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the KPP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of KPP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of KPP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available (Catty, supra; Coligan et al., supra).

In another embodiment of the invention, polynucleotides encoding KPP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding KPP. Such technology is well known in the art, and antisense oligonucleotides or larger fragments

can be designed from various locations along the coding or control regions of sequences encoding KPP (Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press, Totawa NJ).

In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered

5 intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein (Slater, J.E. et al. (1998) J. Allergy Clin. Immunol. 102:469-475; Scanlon, K.J. et al. (1995) FASEB J. 9:1288-1296). Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors (Miller, A.D. (1990) Blood 76:271-278; Ausubel et al., supra; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63:323-347). Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art (Rossi, J.J. (1995) Br. Med. Bull. 51:217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87:1308-1315; Morris, M.C. et al. (1997) Nucleic Acids Res. 25:2730-2736).

In another embodiment of the invention, polynucleotides encoding KPP may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency 15 (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by Xlinked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in KPP expression or regulation causes disease, the expression of KPP from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

In a further embodiment of the invention, diseases or disorders caused by deficiencies in KPP are treated by constructing mammalian expression vectors encoding KPP and introducing these

vectors by mechanical means into KPP-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-5 217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J.-L. and H. Récipon (1998) Curr. Opin. Biotechnol. 9:445-450).

Expression vectors that may be effective for the expression of KPP include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), 10 and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (BD Clontech, Palo Alto CA). KPP may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and H.M. Blau, supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding KPP from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. 25 (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to KPP expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding KPP under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for

35

receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent No. 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su. L. (1997) Blood 89:2283-2290).

In an embodiment, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding KPP to cells which have one or more genetic abnormalities with respect to the expression of KPP. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999; Annu. Rev. Nutr. 19:511-544) and Verma, I.M. and N. Somia (1997; Nature 18:389:239-242).

In another embodiment, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding KPP to target cells which have one or more genetic abnormalities with respect to the expression of KPP. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing KPP to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999; J. Virol. 73:519-532) and Xu, H. et al. (1994; Dev. Biol. 163:152-161). The manipulation of cloned herpesvirus sequences, the generation of

30

recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

In another embodiment, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding KPP to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for KPP into the alphavirus genome in place of the capsid-coding region results in the production of a large number of KPP-coding RNAs and the synthesis of high levels of KPP in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in harmster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of KPP into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature (Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177). A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of RNA molecules encoding KPP.

15

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by *in vitro* and *in vivo* transcription of DNA molecules encoding KPP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothicate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytosine, guanine, thymine, and uracil which are not as easily recognized by endogenous endonucleases.

In other embodiments of the invention, the expression of one or more selected polynucleotides of the present invention can be altered, inhibited, decreased, or silenced using RNA interference (RNAi) or post-transcriptional gene silencing (PTGS) methods known in the art. RNAi is a post-transcriptional mode of gene silencing in which double-stranded RNA (dsRNA) introduced into a targeted cell specifically suppresses the expression of the homologous gene (i.e., the gene bearing the sequence complementary to the dsRNA). This effectively knocks out or substantially reduces the expression of the targeted gene. PTGS can also be accomplished by use of DNA or DNA fragments as well. RNAi methods are described by Fire, A. et al. (1998; Nature 391:806-811) and Gura, T. (2000; Nature 404:804-808). PTGS can also be initiated by introduction of a complementary segment of DNA into the selected tissue using gene delivery and/or viral vector delivery methods described herein or known in the art.

RNAi can be induced in mammalian cells by the use of small interfering RNA also known as siRNA. siRNA are shorter segments of dsRNA (typically about 21 to 23 nucleotides in length) that result *in vivo* from cleavage of introduced dsRNA by the action of an endogenous ribonuclease.

30

siRNA appear to be the mediators of the RNAi effect in mammals. The most effective siRNAs appear to be 21 nucleotide dsRNAs with 2 nucleotide 3' overhangs. The use of siRNA for inducing RNAi in mammalian cells is described by Elbashir, S.M. et al. (2001; Nature 411:494-498).

siRNA can be generated indirectly by introduction of dsRNA into the targeted cell. Alternatively, siRNA can be synthesized directly and introduced into a cell by transfection methods and agents described herein or known in the art (such as liposome-mediated transfection, viral vector methods, or other polynucleotide delivery/introductory methods). Suitable siRNAs can be selected by examining a transcript of the target polynucleotide (e.g., mRNA) for nucleotide sequences downstream from the AUG start codon and recording the occurrence of each nucleotide and the 3' adjacent 19 to 23 nucleotides as potential siRNA target sites, with sequences having a 21 nucleotide length being preferred. Regions to be avoided for target siRNA sites include the 5' and 3' untranslated regions (UTRs) and regions near the start codon (within 75 bases), as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP endonuclease complex. The selected target sites for siRNA can then be compared to the appropriate genome database (e.g., human, etc.) using BLAST or other sequence comparison algorithms known in the art. Target sequences with significant homology to other coding sequences can be eliminated from consideration. The selected siRNAs can be produced by chemical synthesis methods known in the art or by in vitro transcription using commercially available methods and kits such as the SILENCER siRNA construction kit (Ambion, Austin TX).

In alternative embodiments, long-term gene silencing and/or RNAi effects can be induced in selected tissue using expression vectors that continuously express siRNA. This can be accomplished using expression vectors that are engineered to express hairpin RNAs (shRNAs) using methods known in the art (see, e.g., Brummelkamp, T.R. et al. (2002) Science 296:550-553; and Paddison, P.J. et al. (2002) Genes Dev. 16:948-958). In these and related embodiments, shRNAs can be delivered to target cells using expression vectors known in the art. An example of a suitable expression vector for delivery of siRNA is the PSILENCER1.0-U6 (circular) plasmid (Ambion). Once delivered to the target tissue, shRNAs are processed in vivo into siRNA-like molecules capable of carrying out genespecific silencing.

In various embodiments, the expression levels of genes targeted by RNAi or PTGS methods can be determined by assays for mRNA and/or protein analysis. Expression levels of the mRNA of a targeted gene can be determined, for example, by northern analysis methods using the NORTHERNMAX-GLY kit (Ambion); by microarray methods; by PCR methods; by real time PCR methods; and by other RNA/polynucleotide assays known in the art or described herein. Expression levels of the protein encoded by the targeted gene can be determined, for example, by microarray methods; by polyacrylamide gel electrophoresis; and by Western analysis using standard techniques

35

known in the art.

An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding KPP. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased KPP expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding KPP may be therapeutically useful, and in the treatment of disorders associated with decreased KPP expression or activity, a compound which specifically promotes expression of the polynucleotide encoding KPP may be therapeutically useful.

In various embodiments, one or more test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding KPP is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding KPP are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding KPP. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified

30

oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art (Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466).

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of KPP, antibodies to KPP, and mimetics, agonists, antagonists, or inhibitors of KPP.

In various embodiments, the compositions described herein, such as pharmaceutical compositions, may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery allows administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising KPP or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the

5

10

macromolecule. Alternatively, KPP or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example KPP or fragments thereof, antibodies of KPP, and agonists, antagonists or inhibitors of KPP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μ g to 100,000 μ g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

15

20

25

30

35

DIAGNOSTICS

In another embodiment, antibodies which specifically bind KPP may be used for the diagnosis of disorders characterized by expression of KPP, or in assays to monitor patients being treated with KPP or agonists, antagonists, or inhibitors of KPP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for KPP include methods which utilize the antibody and a label to detect KPP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring KPP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of KPP expression. Normal or standard values for KPP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to KPP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of KPP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, polynucleotides encoding KPP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotides, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of KPP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of KPP, and to monitor regulation of KPP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotides, including genomic sequences, encoding KPP or closely related molecules may be used to identify nucleic acid sequences which encode KPP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding KPP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the KPP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:16-30 or from genomic sequences including promoters, enhancers, and introns of the KPP gene.

Means for producing specific hybridization probes for polynucleotides encoding KPP include the cloning of polynucleotides encoding KPP or KPP derivatives into vectors for the production of

mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotides encoding KPP may be used for the diagnosis of disorders associated with expression of KPP. Examples of such disorders include, but are not limited to, a cardiovascular disease such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary 25 hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, druginduced lung disease, radiation-induced lung disease, and complications of lung transplantation; an immune system disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or

pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a disorder affecting growth and development such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a lipid disorder such as fatty liver. cholestasis, primary biliary cirrhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's

disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy,

PF-1724 P

15

20

30

adrenoleukodystrophy, GM₂ gangliosidosis, and ceroid lipofuscinosis, abetalipoproteinemia, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, lipoid adrenal hyperplasia, minimal change disease, lipomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphalipoproteinemia, hypothyroidism, renal disease, liver disease, lecithin:cholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay-Sachs disease, Sandhoff's disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, colon, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, uterus, leukemias such as multiple myeloma, and lymphomas such as Hodgkin's disease. Polynucleotides encoding KPP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered KPP expression. Such qualitative or quantitative methods are well known in the art.

In a particular embodiment, polynucleotides encoding KPP may be used in assays that detect the presence of associated disorders, particularly those mentioned above. Polynucleotides complementary to sequences encoding KPP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of polynucleotides encoding KPP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of KPP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding KPP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used.

20

25

35

Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier, thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding KPP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced *in vitro*. Oligomers will preferably contain a fragment of a polynucleotide encoding KPP, or a fragment of a polynucleotide complementary to the polynucleotide encoding KPP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

In a particular aspect, oligonucleotide primers derived from polynucleotides encoding KPP may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from polynucleotides encoding KPP are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory

20

25

30

preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes mellitus. SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibrosis, sickle cell anemia, or chronic granulomatous disease. For example, variants in the mannose-binding lectin, MBL2, have been shown to be correlated with deleterious pulmonary outcomes in cystic fibrosis. SNPs also have utility in pharmacogenomics, the identification of genetic variants that influence a patient's response to a drug, such as life-threatening toxicity. For example, a variation in N-acetyl transferase is associated with a high incidence of peripheral neuropathy in response to the anti-tuberculosis drug isoniazid, while a variation in the core promoter of the ALOX5 gene results in diminished clinical response to treatment with an anti-asthma drug that targets the 5-lipoxygenase pathway. Analysis of the distribution of SNPs in different populations is useful for investigating genetic drift, mutation, recombination, and selection, as well as for tracing the origins of populations and their migrations (Taylor, J.G. et al. (2001) Trends Mol. Med. 7:507-512; Kwok, P.-Y. and Z. Gu (1999) Mol. Med. Today 5:538-543; Nowotny, P. et al. (2001) Curr. Opin. Neurobiol. 11:637-641).

Methods which may also be used to quantify the expression of KPP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves (Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236). The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotides described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the

PF-1724 P

5

fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

In another embodiment, KPP, fragments of KPP, or antibodies specific for KPP may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time (Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484; 10 hereby expressly incorporated by reference herein). Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of 20 pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as 30 well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity (see, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at

25

30

niehs.nih.gov/oc/news/toxchip.htm). Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

In an embodiment, the toxicity of a test compound can be assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another embodiment relates to the use of the polypeptides disclosed herein to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of interest. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for KPP to quantify the levels of KPP expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by contacting the microarray with the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol-

. 10

15

20

25

30

or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

Microarrays may be prepared, used, and analyzed using methods known in the art (Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/25116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662). Various types of microarrays are well known and thoroughly described in Schena, M., ed. (1999; DNA Microarrays: A Practical Approach, Oxford University Press, London).

In another embodiment of the invention, nucleic acid sequences encoding KPP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal

mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries (Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; Trask, B.J. (1991) Trends Genet. 7:149-154). Once mapped, the nucleic acid sequences may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP) (Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357).

Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data (Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968). Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding KPP on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation (Gatti, R.A. et al. (1988) Nature 336:577-580). The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, KPP, its catalytic or immunogenic fragments, or oligopeptides thereof-can be used for-screening-libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between KPP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest (Geysen, et al. (1984) PCT application WO84/03564). In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with KPP, or fragments thereof, and washed.

Come provided by HODTO from the DACH Income Database on Co

15

30

35

Bound KPP is then detected by methods well known in the art. Purified KPP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding KPP specifically compete with a test compound for binding KPP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with KPP.

In additional embodiments, the nucleotide sequences which encode KPP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications and publications, mentioned above and below, are expressly incorporated by reference herein.

EXAMPLES

20 I. Construction of cDNA Libraries

Incyte cDNAs are derived from cDNA libraries described in the LIFESEQ database (Incyte, Palo Alto CA) and shown in Table 4, column 3. Some tissues are homogenized and lysed in guanidinium isothiocyanate, while others are homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Invitrogen), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates are centrifuged over CsCl cushions or extracted with chloroform. RNA is precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA are repeated as necessary to increase RNA purity. In some cases, RNA is treated with DNase. For most libraries, poly(A)+ RNA is isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA is isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene is provided with RNA and constructs the corresponding cDNA libraries. Otherwise, cDNA is synthesized and cDNA libraries are constructed with the UNIZAP

Contracaded LivileDTA from the DACO large

vector system (Stratagene) or SUPERSCRIPT plasmid system (Invitrogen), using the recommended procedures or similar methods known in the art (Ausubel et al., *supra*, ch. 5). Reverse transcription is initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters are ligated to double stranded cDNA, and the cDNA is digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA is size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Biosciences) or preparative agarose gel electrophoresis. cDNAs are ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Invitrogen, Carlsbad CA), PCDNA2.1 plasmid (Invitrogen), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte, Palo Alto CA), pRARE (Incyte), or pINCY (Incyte), or derivatives thereof. Recombinant plasmids are transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Invitrogen.

15 II. Isolation of cDNA Clones

Plasmids obtained as described in Example I are recovered from host cells by *in vivo* excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids are purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP

96 plasmid purification kit from QIAGEN. Following precipitation, plasmids are resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA is amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps are carried out in a single reaction mixture. Samples are processed and stored in 384-well plates, and the concentration of amplified plasmid DNA is quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

30

Incyte cDNA recovered in plasmids as described in Example II are sequenced as follows. Sequencing reactions are processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions are prepared using reagents provided by Amersham Biosciences or supplied in ABI sequencing kits such as the ABI

PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides are carried out using the MEGABACE 1000 DNA sequencing system (Amersham Biosciences); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences are identified using standard methods (Ausubel et al., *supra*, ch. 7). Some of the cDNA sequences are selected for extension using the techniques disclosed in Example VIII.

Polynucleotide sequences derived from Incyte cDNAs are validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof are then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans (Incyte, Palo Alto CA); hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM (Haft, D.H. et al. (2001) Nucleic Acids Res. 29:41-43); and HMM-based protein domain databases such as SMART (Schultz, J. et al. (1998) Proc. Natl. Acad. Sci. USA 95:5857-5864; Letunic, I. et al. (2002) Nucleic Acids Res. 30:242-244). (HMM is a probabilistic approach which analyzes consensus primary structures of gene families; see, for example, Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.) The queries are performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences are assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) are used to extend Incyte cDNA assemblages to full length. Assembly is performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages are screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences are translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide may begin at any of 30 the methionine residues of the full length translated polypeptide. Full length polypeptide sequences are subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM; and HMM-based protein domain databases such as SMART. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (MiraiBio, Alameda CA) and

Contracted the HORTO from the DAOD to

LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are presented using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

Table 7 summarizes tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).

The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences are also used to identify polynucleotide sequence fragments from SEQ ID NO:16-30. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 2.

IV. Identification and Editing of Coding Sequences from Genomic DNA

Putative kinases and phosphatases are initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94; Burge, C. and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for 25 Genscan to analyze at once is set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode kinases and phosphatases, the encoded polypeptides are analyzed by querying against PFAM models for kinases and phosphatases. Potential kinases and phosphatases are also ----identified by homology to Incyte cDNA sequences that have been annotated as kinases and phosphatases. These selected Genscan-predicted sequences are then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences are then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis is also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage is available, this information is used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences are obtained by assembling

20

Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences are derived entirely from edited or unedited Genscan-predicted coding sequences.

V. Assembly of Genomic Sequence Data with cDNA Sequence Data

"Stitched" Sequences

Partial cDNA sequences are extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III are mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster is analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that are subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval is present on more than one sequence in the cluster are identified, and intervals thus identified are considered to be equivalent by transitivity. For example, if an interval is present on a cDNA and two genomic sequences, then all three intervals are considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified are then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) are given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences are translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan are corrected by comparison to the top BLAST hit from genpept. Sequences are further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.

25 "Stretched" Sequences

Partial DNA sequences are extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III are queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog is then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein is generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both are used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences are therefore

"stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences are examined to determine whether they contain a complete gene.

VI. Chromosomal Mapping of KPP Encoding Polynucleotides

The sequences used to assemble SEQ ID NO:16-30 are compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:16-30 are assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon are used to determine if any of the clustered sequences have been previously mapped. Inclusion of a mapped sequence in a cluster results in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (ncbi.nlm.nih.gov/genemap/), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.

VII. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound (Sambrook and Russell, *supra*, ch. 7; Ausubel et al., *supra*, ch. 4).

Analogous computer techniques applying BLAST are used to search for identical or related molecules in databases such as GenBank or LIFESEQ (Incyte). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

BLAST Score x Percent Identity

5 x minimum {length(Seq. 1), length(Seq. 2)}

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

Alternatively, polynucleotides encoding KPP are analyzed with respect to the tissue sources from which they are derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA, library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding KPP. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ database (Incyte, Palo Alto CA).

VIII. Extension of KPP Encoding Polynucleotides

Full length polynucleotides are produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer is synthesized to initiate 5' extension of the known fragment, and the other primer is synthesized to initiate 3'

35

extension of the known fragment. The initial primers are designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations is avoided.

Selected human cDNA libraries are used to extend the sequence. If more than one extension is necessary or desired, additional or nested sets of primers are designed.

High fidelity amplification is obtained by PCR using methods well known in the art. PCR is performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contains DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Biosciences), ELONGASE enzyme (Invitrogen), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ are as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well is determined by dispensing 100 μ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate is scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture is analyzed by electrophoresis on a 1% agarose gel to determine which reactions are successful in extending the sequence.

The extended nucleotides are desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Biosciences). For shotgun sequencing, the digested nucleotides are separated on-low-concentration-(0:6-to-0.8%) agarose gels, fragments are excised, and agar digested with Agar ACE (Promega). Extended clones are religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Biosciences), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent *E. coli* cells. Transformed cells are selected on antibiotic-containing media, and individual colonies are picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells are lysed, and DNA is amplified by PCR using Taq DNA polymerase (Amersham

Biosciences) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA is quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries are reamplified using the same conditions as described above. Samples are diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Biosciences) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

In like manner, full length polynucleotides are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.

IX. Identification of Single Nucleotide Polymorphisms in KPP Encoding Polynucleotides

Common DNA sequence variants known as single nucleotide polymorphisms (SNPs) are identified in SEQ ID NO:16-30 using the LIFESEQ database (Incyte). Sequences from the same gene are clustered together and assembled as described in Example III, allowing the identification of all sequence variants in the gene. An algorithm consisting of a series of filters is used to distinguish SNPs from other sequence variants. Preliminary filters remove the majority of basecall errors by requiring a minimum Phred quality score of 15, and remove sequence alignment errors and errors resulting from improper trimming of vector sequences, chimeras, and splice variants. An automated procedure of advanced chromosome analysis is applied to the original chromatogram files in the vicinity of the putative SNP. Clone error filters use statistically generated algorithms to identify errors introduced during laboratory processing, such as those caused by reverse transcriptase, polymerase, or somatic mutation. Clustering error filters use statistically generated algorithms to identify errors resulting from clustering of close homolog's or pseudogenes, or due to contamination by non-human sequences. A final set of filters removes duplicates and SNPs found in immunoglobulins or T-cell receptors.

Certain SNPs are selected for further characterization by mass spectrometry using the high throughput MASSARRAY system (Sequenom,-Inc.) to analyze-allele-frequencies-at-the-SNP-sites in four different human populations. The Caucasian population comprises 92 individuals (46 male, 46 female), including 83 from Utah, four French, three Venezualan, and two Amish individuals. The African population comprises 194 individuals (97 male, 97 female), all African Americans. The Hispanic population comprises 324 individuals (162 male, 162 female), all Mexican Hispanic. The Asian population comprises 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian. Allele frequencies are first analyzed in the Caucasian population; in some cases those SNPs which show no

35

allelic variance in this population are not further tested in the other three populations.

X. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:16-30 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of $[\gamma^{-32}P]$ adenosine triphosphate (Amersham Biosciences), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Biosciences). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to NYTRAN PLUS nylon membranes (Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

20 XI. Microarrays

The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing; see, e.g., Baldeschweiler et al., supra), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena, M., ed. (1999) DNA Microarrays: A Practical Approach, Oxford University Press, London). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements (Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31).

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The

20

25

30

array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorbtion and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

Tissue or Cell Sample Preparation

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/μl oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/μl RNase inhibitor, 500 μM dATP, 500 μM dGTP, 500 μM dTTP, 40 μM dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Biosciences). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)⁺ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)⁺ RNAs are synthesized by *in vitro* transcription from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (BD Clontech, Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μl 5X SSC/0.2% SDS.

Microarray Preparation

Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μ g. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Biosciences).

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma-Aldrich, St. Louis MO) in 95% ethanol. Coated slides

are cured in a 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, incorporated herein by reference. 1 μ l of the array element DNA, at an average concentration of 100 ng/ μ l, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

Hybridization

Hybridization reactions contain 9 μ l of sample mixture consisting of 0.2 μ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 μ l of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

20 Detection

35

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a

cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte). Array elements that exhibit at least about a two-fold change in expression, a signal-to-background ratio of at least about 2.5, and an element spot size of at least about 40%, are considered to be differentially expressed.

Expression

15

For example, expression of SEQ ID NO:18 was downregulated in brain tissue affected by Alzheimer's Disease versus normal brain tissue as determined by microarray analysis. Specific dissected brain regions from the brain patients with AD were compared to dissected regions from normal brain. The diagnosis of normal or AD was established by a certified neuropathologist based on microscopic examination of multiple sections throughout the brain. Expression of SEQ ID NO:18 was decreased at least two-fold in 7 of 10 AD-affected tissue samples. Therefore, in various embodiments, SEQ ID NO:18 can be used for one or more of the following: i) monitoring treatment of Alzheimer's Disease, ii) diagnostic assays for Alzheimer's Disease, and iii) developing therapeutics and/or other treatments for Alzheimer's Disease as determined by microarray analysis.

As another example, SEQ ID NO:16 and SEQ ID NO:18 were downregulated in breast cancer cells versus nonmalignant mammary epithelial cells, as determined by microarray analysis.

Cell lines compared included: a) MCF-10A, a breast mammary gland (luminal ductal characteristics)

cell line isolated from a 36-year-old woman with fibrocystic breast disease, b) MCF7, a nonmalignant breast adenocarcinoma cell line isolated from the pleural effusion of a 69-year-old female, c) BT-20, a breast carcinoma cell line derived in vitro from the cells emigrating out of thin slices of tumor mass isolated from a 74-year-old female, d) T-47D, a breast carcinoma cell line isolated from a pleural effusion obtained from a 54-year-old female with an infiltrating ductal carcinoma of the breast, e) Sk-BR-3, a breast adenocarcinoma cell line isolated from a malignant pleural effusion of a 43-year-old female, f) MDA-mb-231, a breast tumor cell line isolated from the pleural effusion of a 51-year-old female, g) MDA-mb-435S, a spindle-shaped strain that evolved from the parent line (435) isolated by R. Cailleau from pleural effusion of a 31-year-old female with metastatic, ductal adenocarcinoma of the breast, and h) HMEC, a primary breast epithelial cell line isolated from a normal donor. Expression of SEQ ID NO:16 was decreased at least two-fold in the Sk-BR-3, BT-20, MDA-mb-435S, T-47D, and MCF7 cell lines as compared to the normal breast epithelial cells. Expression of SEQ ID NO:18 was decreased at least two-fold in the MCF-10A, T-47D, Sk-BR-3, and MCF7 cell lines as compared to the normal breast epithelial cells. Therefore, in various embodiments, SEQ ID NO:16 and SEQ ID NO:18 can be used for one or more of the following: i) monitoring treatment of breast cancer, ii) diagnostic assays for breast cancer, and iii) developing therapeutics and/or other treatments for breast cancer as determined by microarray analysis.

As another example, SEQ ID NO:18 and SEQ ID NO:21 showed tissue-specific expression as determined by microarray analysis. RNA samples isolated from a variety of normal human tissues were compared to a common reference sample. Tissues contributing to the reference sample were selected for their ability to provide a complete distribution of RNA in the human body and include brain (4%), heart (7%), kidney (3%), lung (8%), placenta (46%), small intestine (9%), spleen (3%), stomach (6%), testis (9%), and uterus (5%). The normal tissues assayed were obtained from at least three different donors. RNA from each donor was separately isolated and individually hybridized to the microarray. Since these hybridization experiments were conducted using a common reference sample, differential expression values are directly comparable from one tissue to another. The expression of SEQ ID NO:18 was increased by at least two-fold in brain cortex tissue as compared to the reference sample. Therefore, SEQ ID NO:18 can be used as a tissue marker for brain cortex tissue. The expression of SEQ ID NO:21 was increased by at least two-fold in heart tissue as compared to the reference sample. Therefore, SEQ ID NO:21 can be used as a tissue marker for heart tissue.

XII. Complementary Polynucleotides

Sequences complementary to the KPP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring KPP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with

smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of KPP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the KPP-encoding transcript.

XIII. Expression of KPP

Expression and purification of KPP is achieved using bacterial or virus-based expression systems. For expression of KPP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express KPP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of KPP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding KPP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus (Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945).

In most expression systems, KPP is synthesized as a fusion protein with, e.g., glutathione Stransferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Biosciences). Following purification, the GST moiety can be proteolytically cleaved from KPP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel et al. (supra, ch. 10 and 16). Purified KPP obtained by these methods can be used directly in the assays shown in Examples XVII, XVIII, XIX, XX, and XXI, where applicable.

XIV. Functional Assays

KPP function is assessed by expressing the sequences encoding KPP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV'SPORT plasmid (Invitrogen, Carlsbad CA) and PCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. $5-10 \mu g$ of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; BD Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994; Flow Cytometry, Oxford, New York NY).

The influence of KPP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding KPP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well-known by those of skill in the art. Expression of mRNA encoding KPP and other genes of interest can be analyzed by northern analysis or microarray techniques.

XV. Production of KPP Specific Antibodies

30

35

KPP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize animals (e.g., rabbits, mice, etc.) and to produce antibodies using standard protocols.

Alternatively, the KPP amino acid sequence is analyzed using LASERGENE software

Constructed by HCDTO from the DACD Image Database or Of the

30

(DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art (Ausubel et al., *supra*, ch. 11).

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity (Ausubel et al., supra). Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-KPP activity by, for example, binding the peptide or KPP to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XVI. Purification of Naturally Occurring KPP Using Specific Antibodies

Naturally occurring or recombinant KPP is substantially purified by immunoaffinity chromatography using antibodies specific for KPP. An immunoaffinity column is constructed by covalently coupling anti-KPP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Biosciences). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing KPP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of KPP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/KPP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and KPP is collected.

XVII. Identification of Molecules Which Interact with KPP

KPP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent (Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539). Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled KPP, washed, and any wells with labeled KPP complex are assayed. Data obtained using different concentrations of KPP are used to calculate values for the number, affinity, and association of KPP with the candidate molecules.

Alternatively, molecules interacting with KPP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989; Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (BD Clontech).

KPP may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S.

25

----.

Patent No. 6,057,101).

XVIII. Demonstration of KPP Activity

Generally, protein kinase activity is measured by quantifying the phosphorylation of a protein substrate by KPP in the presence of [γ-³²P]ATP. KPP is incubated with the protein substrate, ³²P-ATP, and an appropriate kinase buffer. The ³²P incorporated into the substrate is separated from free ³²P-ATP by electrophoresis and the incorporated ³²P is counted using a radioisotope counter. The amount of incorporated ³²P is proportional to the activity of KPP. A determination of the specific amino acid residue phosphorylated is made by phosphoamino acid analysis of the hydrolyzed protein.

In one alternative, protein kinase activity is measured by quantifying the transfer of gamma phosphate from adenosine triphosphate (ATP) to a serine, threonine or tyrosine residue in a protein substrate. The reaction occurs between a protein kinase sample with a biotinylated peptide substrate and gamma ³²P-ATP. Following the reaction, free avidin in solution is added for binding to the biotinylated ³²P-peptide product. The binding sample then undergoes a centrifugal ultrafiltration process with a membrane which will retain the product-avidin complex and allow passage of free gamma ³²P-ATP. The reservoir of the centrifuged unit containing the ³²P-peptide product as retentate is then counted in a scintillation counter. This procedure allows the assay of any type of protein kinase sample, depending on the peptide substrate and kinase reaction buffer selected. This assay is provided in kit form (ASUA, Affinity Ultrafiltration Separation Assay, Transbio Corporation, Baltimore MD, U.S. Patent No. 5,869,275). Suggested substrates and their respective enzymes include but are not limited to: Histone H1 (Sigma) and p34cdc2kinase, Annexin I, Angiotensin (Sigma) and EGF receptor kinase, Annexin II and src kinase, ERK1 & ERK2 substrates and MEK, and myelin basic protein and ERK (Pearson, J.D. et al. (1991) Methods Enzymol. 200:62-81).

In another alternative, protein kinase activity of KPP is demonstrated in an assay containing KPP, 50 μl of kinase buffer, 1 μg substrate, such as myelin basic protein (MBP) or synthetic peptide substrates, 1 mM DTT, 10 μg ATP, and 0.5 μCi [γ-32P]ATP. The reaction is incubated at 30°C for 30 minutes and stopped by pipetting onto P81 paper. The unincorporated [γ-32P]ATP is removed by washing and the incorporated radioactivity is measured using a scintillation counter. Alternatively, the reaction is stopped by heating to 100°C in the presence of SDS loading buffer and resolved on a 12% SDS polyacrylamide gel followed by autoradiography. The amount of incorporated ³²P is proportional to the activity of KPP.

In yet another alternative, adenylate kinase or guanylate kinase activity of KPP may be measured by the incorporation of 32 P from $[\gamma^{-32}$ P]ATP into ADP or GDP using a gamma radioisotope counter. KPP, in a kinase buffer, is incubated together with the appropriate nucleotide mono-phosphate substrate (AMP or GMP) and 32 P-labeled ATP as the phosphate donor. The

10

reaction is incubated at 37°C and terminated by addition of trichloroacetic acid. The acid extract is neutralized and subjected to gel electrophoresis to separate the mono-, di-, and triphosphonucleotide fractions. The diphosphonucleotide fraction is excised and counted. The radioactivity recovered is proportional to the activity of KPP.

In yet another alternative, other assays for KPP include scintillation proximity assays (SPA), scintillation plate technology and filter binding assays. Useful substrates include recombinant proteins tagged with glutathione transferase, or synthetic peptide substrates tagged with biotin. Inhibitors of KPP activity, such as small organic molecules, proteins or peptides, may be identified by such assays.

In another alternative, phosphatase activity of KPP is measured by the hydrolysis of paranitrophenyl phosphate (PNPP). KPP is incubated together with PNPP in HEPES buffer pH 7.5, in the presence of 0.1% β-mercaptoethanol at 37°C for 60 min. The reaction is stopped by the addition of 6 ml of 10 N NaOH (Diamond, R.H. et al. (1994) Mol. Cell. Biol. 14:3752-62). Alternatively, acid phosphatase activity of KPP is demonstrated by incubating KPP-containing extract with 100 μ l of 10 mM PNPP in 0.1 M sodium citrate, pH 4.5, and 50 μ l of 40 mM NaCl at 37 °C for 20 min. The 15 reaction is stopped by the addition of 0.5 ml of 0.4 M glycine/NaOH, pH 10.4 (Saftig, P. et al. (1997) J. Biol. Chem. 272:18628-18635). The increase in light absorbance at 410 nm resulting from the hydrolysis of PNPP is measured using a spectrophotometer. The increase in light absorbance is proportional to the activity of KPP in the assay.

In the alternative, KPP activity is determined by measuring the amount of phosphate removed 20 from a phosphorylated protein substrate. Reactions are performed with 2 or 4 nM KPP in a final volume of 30 μ l containing 60 mM Tris, pH 7.6, 1 mM EDTA, 1 mM EGTA, 0.1% β -mercaptoethanol and 10 μ M substrate, ³²P-labeled on serine/threonine or tyrosine, as appropriate. Reactions are initiated with substrate and incubated at 30° C for 10-15 min. Reactions are quenched with 450 μ l of 4% (w/v) activated charcoal in 0.6 M HCl, 90 mM Na₄P₂O₇, and 2 mM NaH₂PO₄, then centrifuged 25 at $12,000 \times g$ for 5 min. Acid-soluble ³²Pi is quantified by liquid scintillation counting (Sinclair, C. et al. (1999) J. Biol. Chem. 274:23666-23672).

XIX. **Kinase Binding Assay**

Binding of KPP to a FLAG-CD44 cyt fusion protein can be determined by incubating KPP with anti-KPP-conjugated immunoaffinity beads followed by incubating portions of the beads (having 10-20 ng of protein) with 0.5 ml of a binding buffer (20 mM Tris-HCL (pH 7.4), 150 mM NaCl, 0.1% bovine serum albumin, and 0.05% Triton X-100) in the presence of ¹²⁵I-labeled FLAG-CD44cyt fusion protein (5,000 cpm/ng protein) at 4 °C for 5 hours. Following binding, beads were washed thoroughly in the binding buffer and the bead-bound radioactivity measured in a scintillation counter (Bourguignon, L.Y.W. et al. (2001) J. Biol. Chem. 276:7327-7336). The amount of incorporated ³²P is proportional to the amount of bound KPP.

15

30

XX. Identification of KPP Inhibitors

Compounds to be tested are arrayed in the wells of a 384-well plate in varying concentrations along with an appropriate buffer and substrate, as described in the assays in Example XVII. KPP activity is measured for each well and the ability of each compound to inhibit KPP activity can be determined, as well as the dose-response kinetics. This assay could also be used to identify molecules which enhance KPP activity.

XXI. Identification of KPP Substrates

A KPP "substrate-trapping" assay takes advantage of the increased substrate affinity that may be conferred by certain mutations in the PTP signature sequence of protein tyrosine phosphatases. KPP bearing these mutations form a stable complex with their substrate; this complex may be isolated biochemically. Site-directed mutagenesis of invariant residues in the PTP signature sequence in a clone encoding the catalytic domain of KPP is performed using a method standard in the art or a commercial kit, such as the MUTA-GENE kit from BIO-RAD. For expression of KPP mutants in *Escherichia coli*, DNA fragments containing the mutation are exchanged with the corresponding wild-type sequence in an expression vector bearing the sequence encoding KPP or a glutathione S-transferase (GST)-KPP fusion protein. KPP mutants are expressed in *E. coli* and purified by chromatography.

The expression vector is transfected into COS1 or 293 cells via calcium phosphate-mediated transfection with 20 μ g of CsCl-purified DNA per 10-cm dish of cells or 8 μ g per 6-cm dish. Forty-eight hours after transfection, cells are stimulated with 100 ng/ml epidermal growth factor to increase tyrosine phosphorylation in cells, as the tyrosine kinase EGFR is abundant in COS cells. Cells are lysed in 50 mM Tris·HCl, pH 7.5/5 mM EDTA/150 mM NaCl/1% Triton X-100/5 mM iodoacetic acid/10 mM sodium phosphate/10 mM NaF/5 μ g/ml leupeptin/5 μ g/ml aprotinin/1 mM benzamidine (1 ml per 10-cm dish, 0.5 ml per 6-cm dish). KPP is immunoprecipitated from lysates with an appropriate antibody. GST-KPP fusion proteins are precipitated with glutathione-Sepharose, 4 μ g of mAb or 10 μ l of beads respectively per mg of cell lysate. Complexes can be visualized by PAGE or further purified to identify substrate molecules (Flint, A.J. et al. (1997) Proc. Natl. Acad. Sci. USA 94:1680-1685).

Various modifications and variations of the described compositions, methods, and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. It will be appreciated that the invention provides novel and useful proteins, and their encoding polynucleotides, which can be used in the drug discovery process, as well as methods for using these compositions for the detection, diagnosis, and treatment of diseases and conditions.

Although the invention has been described in connection with certain embodiments, it should be

PF-1724 P

understood that the invention as claimed should not be unduly limited to such specific embodiments.

Nor should the description of such embodiments be considered exhaustive or limit the invention to the precise forms disclosed. Furthermore, elements from one embodiment can be readily recombined with elements from one or more other embodiments. Such combinations can form a number of embodiments within the scope of the invention. It is intended that the scope of the invention be defined by the following claims and their equivalents.

10

15

What is claimed is:

- 1. An isolated polypeptide selected from the group consisting of:
- a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15,
- a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:2-4, SEQ ID NO:8-13 and SEQ ID NO:15,
- a polypeptide comprising a naturally occurring amino acid sequence at least 97% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:5 and SEQ ID NO:6,
- a polypeptide comprising a naturally occurring amino acid sequence at least 94% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:7 and SEQ ID NO:1,
- e) a polypeptide consisting essentially of a naturally occurring amino acid sequence at least 90% identical to the amino acid sequence of SEQ ID NO:14,
 - f) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, and
- g) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-15.
 - 2. An isolated polypeptide of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15.
- 253. An isolated polynucleotide encoding a polypeptide of claim 1.
 - 4. An isolated polynucleotide encoding a polypeptide of claim 2.
 - 5. An isolated polynucleotide of claim 4 comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30.
 - 6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
 - 7. A cell transformed with a recombinant polynucleotide of claim 6.

20

30

- 8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
- 9. A method of producing a polypeptide of claim 1, the method comprising:
 a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
- b) recovering the polypeptide so expressed.
- 10. A method of claim 9, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-15.
 - 11. An isolated antibody which specifically binds to a polypeptide of claim 1.
- 15 12. An isolated polynucleotide selected from the group consisting of:
 - a) a polymicleotide comprising a polymicleotide sequence selected from the group consisting of SEQ ID NO:16-30,
 - b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30,
 - c) a polynucleotide complementary to a polynucleotide of a),
 - d) a polynucleotide complementary to a polynucleotide of b), and
 - e) an RNA equivalent of a)-d).
- 25 12. An isolated polynucleotide selected from the group consisting of:
 - a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-30,
 - b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:16-19 and SEQ ID NO:21-25,
 - a polynucleotide comprising a naturally occurring polynucleotide sequence at least
 99% identical to the polynucleotide sequence of SEQ ID NO:29,
 - a polynucleotide comprising a naturally occurring polynucleotide sequence at least
 96% identical to the polynucleotide sequence of SEQ ID NO:28,
- a polynucleotide comprising a naturally occurring polynucleotide sequence at least

		·
		93% identical to the polynucleotide sequence of SEQ ID NO:20,
	f)	a polynucleotide comprising a naturally occurring polynucleotide sequence at least
		92% identical to the polynucleotide sequence of SEQ ID NO:27,
	g)	a polynucleotide comprising a naturally occurring polynucleotide sequence at least
5		91% identical to the polynucleotide sequence of SEQ ID NO:26,
	h)	a polynucleotide consisting essentially of a naturally occurring polynucleotide
	•	sequence at least 90% identical to the polynucleotide sequence of SEQ ID NO:30,
	i)	a polynucleotide complementary to a polynucleotide of a),
	j)	a polynucleotide complementary to a polynucleotide of b),
10	k)	a polynucleotide complementary to a polynucleotide of c),
	1)	a polynucleotide complementary to a polynucleotide of d),
	m)	a polynucleotide complementary to a polynucleotide of e),
	n)	a polynucleotide complementary to a polynucleotide of f),
	0)	a polynucleotide complementary to a polynucleotide of g),
15	p)	a polynucleotide complementary to a polynucleotide of h), and
	q)	an RNA equivalent of a)-p).
	13. A	n isolated polynucleotide comprising at least 60 contiguous nucleotides of a
	polynucleotide	of claim 12.
20		
	14. A	method of detecting a target polynucleotide in a sample, said target polynucleotide
	having a seque	ence of a polynucleotide of claim 12, the method comprising:
	a)	hybridizing the sample with a probe comprising at least 20 contiguous nucleotides
		comprising a sequence complementary to said target polynucleotide in the sample,
25		and which probe specifically hybridizes to said target polynucleotide, under
		conditions whereby a hybridization complex is formed between said probe and said
		target polynucleotide or fragments thereof, and
•	b)	detecting the presence or absence of said hybridization complex, and, optionally, if
		present, the amount thereof.
30		
	15. A	A method of claim 14, wherein the probe comprises at least 60 contiguous nucleotides.
	16. <i>A</i>	A method of detecting a target polynucleotide in a sample, said target polynucleotide
	having a sequ	ence of a polynucleotide of claim 12, the method comprising:
25	ره .	amplifying said target polymicleotide or fragment thereof using polymerase chain

15

25

30

reaction amplification, and

- b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
- 5 . 17. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
 - 18. A composition of claim 17, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-15.
 - 19. A method for treating a disease or condition associated with decreased expression of functional KPP, comprising administering to a patient in need of such treatment the composition of claim 17.
 - 20. A method of screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:
 - a) contacting a sample comprising a polypeptide of claim 1 with a compound, and
 - b) detecting agonist activity in the sample.
- 20 21. A composition comprising an agonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.
 - 22. A method for treating a disease or condition associated with decreased expression of functional KPP, comprising administering to a patient in need of such treatment a composition of claim 21.
 - 23. A method of screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
 - a) contacting a sample comprising a polypeptide of claim 1-with a compound, and
 - b) detecting antagonist activity in the sample.
 - 24. A composition comprising an antagonist compound identified by a method of claim 23 and a pharmaceutically acceptable excipient.
 - 25. A method for treating a disease or condition associated with overexpression of functional

15

20

25

30

35

KPP, comprising administering to a patient in need of such treatment a composition of claim 24.

- 26. A method of screening for a compound that specifically binds to the polypeptide of claim1, the method comprising:
 - a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and
 - b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
- 27. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising:
 - a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
 - b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
 - comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
 - 28. A method of screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:
 - a) contacting a sample comprising the target polynucleotide with a compound, under conditions suitable for the expression of the target polynucleotide,
 - b) detecting altered expression of the target polynucleotide, and
 - c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
 - 29. A method of screening for potential toxicity of a test compound, the method comprising:
 - a) treating a biological sample containing nucleic acids with the test compound,
 - b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 12 under conditions whereby a specific hybridization complex is formed between said probe and a target

25

35

- polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 12 or fragment thereof,
- c) quantifying the amount of hybridization complex, and
- d) comparing the amount of hybridization complex in the treated biological sample with
 the amount of hybridization complex in an untreated biological sample, wherein a
 difference in the amount of hybridization complex in the treated biological sample
 indicates potential toxicity of the test compound.
- 30. A method for a diagnostic test for a condition or disease associated with the expression of KPP in a biological sample, the method comprising:
 - combining the biological sample with an antibody of claim 11, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex, and
 - b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
 - 31. The antibody of claim 11, wherein the antibody is:
 - a) a chimeric antibody,
 - b) a single chain antibody,
- 20 c) a Fab fragment,
 - d) a F(ab')₂ fragment, or
 - e) a humanized antibody.
 - 32. A composition comprising an antibody of claim 11 and an acceptable excipient.
 - 33. A method of diagnosing a condition or disease associated with the expression of KPP in a subject, comprising administering to said subject an effective amount of the composition of claim 32.
- 30 34. A composition of claim 32, further comprising a label.
 - 35. A method of diagnosing a condition or disease associated with the expression of KPP in a subject, comprising administering to said subject an effective amount of the composition of claim 34.
 - 36. A method of preparing a polyclonal antibody with the specificity of the antibody of claim

30

11, the method comprising:

- a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, or an immunogenic fragment thereof, under conditions to elicit an antibody response,
- 5 b) isolating antibodies from the animal, and
 - c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15.
- 10 37. A polyclonal antibody produced by a method of claim 36.
 - 38. A composition comprising the polyclonal antibody of claim 37 and a suitable carrier.
- 39. A method of making a monoclonal antibody with the specificity of the antibody of claim
 15 11, the method comprising:
 - immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-15, or an immunogenic fragment thereof, under conditions to elicit an antibody response,
 - b) isolating antibody producing cells from the animal,
- 20 c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells,
 - d) culturing the hybridoma cells, and
 - e) isolating from the culture monoclonal antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15.
 - 40. A monoclonal antibody produced by a method of claim 39.
 - 41. A composition comprising the monoclonal antibody of claim 40 and a suitable carrier.
 - 42. The antibody of claim 11, wherein the antibody is produced by screening a Fab expression library.
- 43. The antibody of claim 11, wherein the antibody is produced by screening a recombinant immunoglobulin library.

15

25

- 44. A method of detecting a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15 in a sample, the method comprising:
 - a) incubating the antibody of claim 11 with the sample under conditions to allow
 specific binding of the antibody and the polypeptide, and
 - b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15 in the sample.
- 45. A method of purifying a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15 from a sample, the method comprising:
 - a) incubating the antibody of claim 11 with the sample under conditions to allow specific binding of the antibody and the polypeptide, and
 - separating the antibody from the sample and obtaining the purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-15.
 - 46. A microarray wherein at least one element of the microarray is a polynucleotide of claim 13.
- 20 47. A method of generating an expression profile of a sample which contains polynucleotides, the method comprising:
 - a) labeling the polynucleotides of the sample,
 - b) contacting the elements of the microarray of claim 46 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and
 - c) quantifying the expression of the polynucleotides in the sample.
 - 48. An array comprising different nucleotide molecules affixed in distinct physical locations on a solid substrate, wherein at least one of said nucleotide molecules comprises a first oligonucleotide or polynucleotide sequence specifically hybridizable with at least 30 contiguous nucleotides of a target polynucleotide, and wherein said target polynucleotide is a polynucleotide of claim 12.
- 49. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is
 completely complementary to at least 30 contiguous nucleotides of said target polynucleotide.

20

25

- 50. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 60 contiguous nucleotides of said target polynucleotide.
- 51. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to said target polynucleotide.
 - 52. An array of claim 48, which is a microarray.
- 53. An array of claim 48, further comprising said target polynucleotide hybridized to a nucleotide molecule comprising said first oligonucleotide or polynucleotide sequence.
 - 54. An array of claim 48, wherein a linker joins at least one of said nucleotide molecules to said solid substrate.
 - 55. An array of claim 48, wherein each distinct physical location on the substrate contains multiple nucleotide molecules, and the multiple nucleotide molecules at any single distinct physical location have the same sequence, and each distinct physical location on the substrate contains nucleotide molecules having a sequence which differs from the sequence of nucleotide molecules at another distinct physical location on the substrate.
 - 56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:1.
 - 57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.
 - 58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:3.
 - 59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:4.
 - 60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.
 - 61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:6.
 - 62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:7.
- 35 63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:8.

20

- 64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:9.
- 65. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:10.
- 5 66. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:11.
 - 67. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:12.
 - 68. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:13.
 - 69. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:14.
 - 70. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:15.
- 71. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ IDNO:16.
 - 72. A polymucleotide of claim 12, comprising the polymucleotide sequence of SEQ ID NO:17.
 - 73. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:18.
- 74. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ IDNO:19.
 - 75. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:20.
- 76. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ IDNO:21.
 - 77. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:22.
 - 78. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID

		_
DC 1	777 A	D
PF-1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•

N	2	2
IN	r. Z.	

79. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:24.

5

- 80. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:25.
- 81. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID 10 NO:26.
 - 82. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:27.
- 83. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:28.
 - 84. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:29.

20

85. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:30.

ABSTRACT OF THE DISCLOSURE

Various embodiments of the invention provide human kinases and phosphatases (KPP) and polynucleotides which identify and encode KPP. Embodiments of the invention also provide expression vectors, host cells, antibodies, agonists, and antagonists. Other embodiments provide methods for diagnosing, treating, or preventing disorders associated with aberrant expression of KPP.

```
<110> CHAWLA, Narinder K.
                BECHA, Shanya D.
                WILSON, Amy D.
                JIN, Pei
<120> KINASES AND PHOSPHATASES
<130> PF-1724 P
<140> To Be Assigned
<141> Herewith
<160> 30
<170> PERL Program
<210> 1
<211> 157
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
 <223> Incyte ID No: 7526185CD1
Met Ala His Ser Pro Val Gln Ser Gly Leu Pro Gly Met Gln Asn
                                                                                                       10
                                                                                                                                                               15
     1
Leu Lys Ala Asp Pro Glu Glu Leu Phe Thr Lys Leu Glu Lys Ile
                                                                                                                                                               30
                                                20
                                                                                                       25
 Gly Lys Gly Ser Phe Gly Glu Val Phe Lys Gly Ile Asp Asn Arg
                                                                                                        40
                                                                                                                                                               45
 Thr Gln Lys Val Val Ala Ile Lys Ile Ile Asp Leu Glu Glu Ala
                                                                                                        55
                                                50
 Glu Asp Glu Ile Glu Asp Ile Gln Glu Ile Thr Val Leu Ser
                                                                                                                                                               75
                                                                                                        70
                                                65
 Gln Cys Asp Ser Pro Tyr Val Thr Lys Tyr Tyr Gly Ser Tyr Leu
                                                                                                                                                               90
                                                                                                        85
                                                80
 Lys Asp Thr Lys Leu Trp Ile Ile Met Glu Tyr Leu Gly Gly Gly
                                                                                                                                                             105
                                                95
                                                                                                     100
 Ser Ala Leu Asp Leu Leu Glu Pro Gly Pro Leu Asp Glu Thr Gln
                                                                                                     115
                                                                                                                                                             120
                                             110
 Ile Ala Thr Ile Leu Arg Glu Ile Leu Lys Gly Leu Asp Tyr Leu
                                             125
                                                                                                     130
                                                                                                                                                             135
 His Ser Glu Lys Lys Ile His Arg Asp Ile Lys Gly Arg His Leu
                                             140
                                                                                                     145
 Val Pro Gly His Asn Ser Tyr
                                             155
                                                                                                                                                                  and the second of the second o
  <210> 2
 <211> 305
  <212> PRT
 <213> Homo sapiens '
 <220>
  <221> misc_feature
  <223> Incyte ID No: 7526192CD1
  <400> 2
 Met Asp Phe Asp Lys Lys Gly Gly Lys Gly Glu Thr Glu Glu Gly
```

Communicated by HONTO from the DEOD bears Detabase or or to and

```
Arg Arg Met Ser Lys Ala Gly Gly Gly Arg Ser Ser His Gly Ile
                 20
                                      25
Arg Ser Ser Gly Thr Ser Ser Gly Val Leu Met Val Gly Pro Asn
                 35
                                      40
Phe Arg Val Gly Lys Lys Ile Gly Cys Gly Asn Phe Gly Glu Leu
                                                           60
                                      55
                 50
Arg Leu Gly Lys Asn Leu Tyr Thr Asn Glu Tyr Val Ala Ile Lys
                                      70
                                                           75
                 65
Leu Val Ser Arg Pro Leu His Pro Thr Pro Ala Asp Val Pro Pro
                                                           90
                 80
Arg Asp Phe Arg Ala Ala Thr Arg Ser Pro Gly Asp Ser Leu Leu
                                     100
                 95
Cys Pro Gln Glu Pro Ile Lys Ser Arg Ala Pro Gln Leu His Leu
                 110
                                     115
                                                          120
Glu Tyr Arg Phe Tyr Lys Gln Leu Ser Ala Thr Glu Gly Val Pro
                                     130
                                                          135
                 125
Gln Val Tyr Tyr Phe Gly Pro Cys Gly Lys Tyr Asn Ala Met Val
                                     145
                140
Leu Glu Leu Leu Gly Pro Ile Leu Glu Asp Leu Phe Asp Leu Cys
                                                          165
                155
                                     160
Asp Arg Thr Phe Thr Leu Thr Thr Val Leu Met Ile Ala Ile Gln
                 170
                                     175
Leu Ile Thr Arg Met Glu Tyr Val His Thr Lys Ser Leu Ile Tyr
                 185
                                     190
                                                          195
Arg Asp Val Lys Pro Glu Asn Phe Leu Val Gly Arg Pro Gly Thr
                                     205
                                                          210
                 200
Lys Arg Gln His Ala Ile His Ile Ile Asp Phe Gly Leu Ala Lys
                                     220
                                                          225
                 215
Glu Tyr Ile Asp Pro Glu Thr Lys Lys His Ile Pro Tyr Arg Glu
                                                          240
                 230
                                     235
His Lys Ser Leu Thr Gly Thr Ala Arg Tyr Met Ser Ile Asn Thr
                                      250
                                                          255
                 245
His Leu Gly Lys Glu Gln Ser Arg Arg Asp Asp Leu Glu Ala Leu
                                                          270
                                      265
                 260
Gly His Met Phe Met Tyr Phe Leu Arg Gly Ser Leu Pro Trp Gln
                                      280
                                                          285
                 275
Gly Leu Lys Val Gly Glu Glu Ala Gly Gln Ala Gly Gly Asp Ala
                                      295
                 290
Gly Arg Glu Gln Gly
                 305
 <210> 3
 <211> 930
 <212> PRT
 <213> Homo sapiens
<220>
 <221> misc_feature
 <223> Incyte ID No: 7526193CD1
 <400> 3
 Met Lys Lys Phe Phe Asp Ser Arg Arg Glu Gln Gly Gly Ser Gly
 Leu Gly Ser Gly Ser Ser Gly Gly Gly Ser Thr Ser Gly Leu
                                       25
```

Gly Ser Gly Tyr Ile Gly Arg Val Phe Gly Ile Gly Arg Gln Gln

Val Thr Val Asp Glu Val Leu Ala Glu Gly Gly Phe Ala Ile Val

				50					55					60
Phe	Leu	Val	Arg	Thr 65	Ser	Asn	Gly	Met	Lys 70	Суѕ	Ala	Leu	Lys	Arg 75
Met	Phe	Val	Asn	Asn 80	Glu	His	Asp	Leu	Gln 85	Val	Суз	ŗ,	Arg	Glu 90
Ile	Gln	Ile	Met	Arg 95	Asp	Leu	Ser	Gly	His 100	Lys	Asn	Ile	Val	Gly 105
Tyr	Ile	Asp	Ser	Ser 110	Ile	Asn	Asn	Val	Ser 115	Ser	Gly	Asp	Va1	Trp 120
Glu	Va1	Leu	Ile		Met	Asp	Phe	Cys		Gly	Gly	Gln	Val	
Asn	Leu	Met	Asn	Gln 140	Arg	Leu	Gln	Thr	Gly 145	Phe	Thr	Glu	Asn	
Val	Leu	Gln	Ile		Cys	Asp	Thr	Сув		Ala	Va1	Ala	Arg	
His	Gln	Cys	Lys		Pro	Ile	Ile	His	_	Asp	Leu	Lys	Val	
Asn	Ile	Leu	Leu		Asp	Arg	Gly	His		Val	Leu	Суз	Asp	
Gly	Ser	Ala	Thr		Lys	Phe	Gln	Asn		Gln	Thr	Glu	Gly	
Asn	Ala	Va1	Glu		Glu	Ile	Lys	Lys		Thr	Thr	Leu	Ser	
Arg	Ala	Pro	Glu		Val	Asn	Leu	Tyr		Gly	Lys	Ile	Ile	
Thr	Lys	Ala	Asp		Trp	Ala	Leu	Gly		Leu	Leu	Tyr	Lys	
Cys	Tyr	Phe	Thr		Pro	Phe	Gly	Glu	Ser 265	Gln	Va1	Ala	Ile	
Asp	G1y	Asn	Phe	Thr 275	Ile	Pro	qaA	Asn	Ser 280	Arg	Tyr	Ser	Gln	Asp 285
Me _i t	His	Cys	Leu	Ile 290	Arg	Tyr	Met	Leu	Glu 295	Pro	Asp	Pro	Asp	Lys 300
Arg	Pro	Asp	Ile	Tyr 305	Gln	Val	Ser	Tyr	Phe 310	Ser	Phe	Lys	Leu	Leu 315
Lys	Lys	Glu	Сўз	Pro 320	Ile	Pro	Asn	Val	Gln 325	Asn	Ser	Pro	Ile	Pro 330
Ala	Lys	Leu	Pro	Glu 335	Pro	Val	Lys	Ala	Ser 340	Glu	Ala	Ala	Ala	Lys 345
Ĺys	Thr	Gln	Pro	Lys 350	Ala	Arg	Leu	Thr	Asp 355	Pro	Ile	Pro	Thr	Thr 360
Glu	Thr	Ser	Ile	Ala 365	Pro	Arg	Gln	Arg	Pro 370	_	Ala	Gly	Gln	Thr 375
Gln	Pro	Asn	Pro	Gly 380	Ile	Leu	Pro	Ile	Gln 385		Ala	Leu	Thr	Pro 390
Arg	Lys	Arg	Ala	Thr 395	Val	Gln	Pro	Pro	Pro 400		Ala	Ala	Gly	Ser 405
Ser	Asn	G1n	Pro	Gly 410		Leu	Ala	Ser	_Val		Gln	Pro	ŗÀs	Pro 420
Gln	Ala	Pro	Pro	Ser 425		Pro	Leu	Pro	Gln 430		Gln	Ala	Lys	Gln 435
Pro	Gln	Ala	Pro		Thr	Pro	Gln	Gln		Pro	Ser	Thr	Gln	Ala 450
Gln	Gly	Leu	Pro		Gln	Ala	Glr	Ala		Pro	Gln	His	Gln	Gln 465
Gln	Leu	Phe	Leu		Gln	Gln	Glr	Gln		Gln	Gln	Pro	Ьċо	Pro 480
Ala	Gln	Gln	Gln	Pro 485		Gly	Thr	Phe	Tyr 490		Gln	Gln	Gln	Ala 495

THE WALL STORE STORE SEE THE PART SEED TO SEE THE SEED OF SERVICES

G.	ln	Thr	Gln	Gln	Phe 500	Gln	Ala	Val	His	Pro 505	Ala	Thr	Gln	Gln	Pro 510
A.	la	Ile	Ala	Gln	Phe 515	Pro	Val	Val	Ser	Gln 520	Gly	Gly	Ser	Gln	
G.	ln	Leu	Met	Gln		Pḥe	Tyr	Gln	Gln		Gln	Gln	Gln	Gln	
G	ln	Gln	Gln	Gln		Gln	Leu	Ala	Thr		Leu	His	Gln	Gln [,]	
L	eu	Met	Thr	Gln		Ala	Ala	Leu	Gln		ГÀз	Pro	Thr	Met	
A.	la	Gly	Gln	Gln		Gln	Pro	Gln	Pro		Ala	Ala	Pro	Gln	
A.	la	Pro	Ala	Gln		Pro	Ala	Gln	Ile		Ala	Pro	Val	Arg	
G.	ln	Pro	Lys			Thr	Thr	Pro	Pro		Ala	Val	Gln	Gly	
L	Уs	Val	Gly			Thr	Pro	Pro	Ser		Pro	Lys	Thr	Gln	
A.	la	Gly	His	Arg		Ile	Leu	Ser	Asp		Thr	His	Ser	Ala	
Pl	he	Gly	Va1	Pro		Ser	Lys	Ser	Thr		Leu	Leu	Gln	Ala	
A.	la	Ala	Glu	Ala		Leu	Asn	Lys	Ser		Ser	Ala	Thr	Thr	
P	ro	Ser	Gly	Ser		Arg	Thr	Ser	Gln		Asn	Val	Tyr	Asn	
S	er	Glu	Gly	Ser		Trp	Asn	Pro	Phe		Asp	Asp	Asn	Phe	
L	ys	Leu	Thr	Ala		Glu	Leu	Leu	Asn		Asp	Phe	Ala	Lys	
G	1у	Glu	Gly	Lys	His 725	Pro	Glu	Lys	Leu		Gly	Ser	Ala	Glu	
L	eu	Ile	Pro	Gly	Phe	Gln	Ser	Thr	Gln		Asp	Ala	Phe	Ala	
T	hr	Ser	Phe	Ser	Ala 755	Gly	Thr	Glu	Lys		Ile	Glu	Gly	Leu	
S	er	Pro	Asp	Thr	Ser 770	Leu	Leu	Leu	Pro	Asp 775	Leu	Leu	Pro	Met	Thr 780
A	sp	Pro	Phe	Gly	Ser 785	Thr	Ser	Asp	Ala	Val 790	.Ile	Glu	Lys	Ala	Asp. 795
V	al	Ala	Val	Glu	Ser 800	Leu	Ile	Pro	Gly	Leu 805	Glu	Pro	Pro	Val	Pro 810
					815			Glu		820				_	825
					830			Ser		835					840
					845			Leu		850					855
					860			Ala		865					870
					875			Gly		880					885
					890			Leu		895					900
					905			Gly		910					915
A	sn	Leu	Ala	Arg	Ser 920	Leu	Leu	Leu	Val	Asp 925	Gln	Leu	Ile	Asp	Leu 930

```
<210> 4
<211> 118
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526196CD1
<400> 4
Met Ser Leu Leu Gln Ser Ala Leu Asp Phe Leu Ala Gly Pro Gly
Ser Leu Gly Gly Ala Ser Gly Arg Asp Gln Ser Asp Phe Val Gly
                                      25
Gln Thr Val Glu Leu Gly Glu Leu Arg Leu Arg Val Arg Arg Val
                                                           45
                 35
                                      40
Leu Ala Glu Gly Gly Phe Ala Phe Val Tyr Glu Ala Gln Asp Val
                                      55
                                                           60
Gly Ser Gly Arg Glu Tyr Ala Leu Lys Arg Leu Leu Ser Asn Glu
                 65
Glu Glu Lys Asn Arg Ala Ile Ile Gln Glu Val Cys Phe Met Leu
                                      85
                 80
Cys Ser Leu Gly Glu Pro Ala Gly Cys Leu Ser Val Gly Ser Gly
                 95
                                     100
Gly His Ser His Ala Ser Ala Ser Leu Arg Thr Ala Pro
                110
<210> 5
<211> 1355
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526198CD1
<400> 5
Met Ser Leu Leu Gln Ser Ala Leu Asp Phe Leu Ala Gly Pro Gly
                                                           15
                                      10
Ser Leu Gly Gly Ala Ser Gly Arg Asp Gln Ser Asp Phe Val Gly
                                      25
                                                           30
                  20
Gin Thr Val Glu Leu Gly Glu Leu Arg Leu Arg Val Arg Arg Val
                                      40
                  35
Leu Ala Glu Gly Gly Phe Ala Phe Val Tyr Glu Ala Gln Asp Val
                  50
                                       55
Gly Ser Gly Arg Glu Tyr Ala Leu Lys Arg Leu Leu Ser Asn Glu
                                                           75
                  65
                                      70
Glu Glu Lys Asn Arg Ala Ile Ile Gln Glu Val Cys Phe Met Lys
                                                           90
                  80
                                      85
Lys Leu Ser Gly His Pro Asn Ile Val Gln Phe Cys Ser Ala Ala
                  95
                                      100
                                                          105
Ser Ile Gly Lys Glu Glu Ser Asp Thr Gly Gln Ala Glu Phe Leu
                                      115
                                                          120
                 110
Leu Leu Thr Glu Leu Cys Lys Gly Gln Leu Val Glu Phe Leu Lys
                                                          135
                                      130
                 125
Lys Met Glu Ser Arg Gly Pro Leu Ser Cys Asp Thr Val Leu Lys
                                                          150
                 140
                                      145
Ile Phe Tyr Gln Thr Cys Arg Ala Val Gln His Met His Arg Gln
                                      160
                                                           165
```

ГЛЗ	Pro	Pro	Ile	Ile 170	His	Arg	Asp	Leu	Lys 175	Val	Glu	Asn	Leu	Leu 180
Leu	Ser	Asn	Gln		Thr	Ile	ŗħa	Leu	Cys 190	Asp	Phe	Gly	Ser	Ala 195
Thr	Thr	Ile	Ser		Tyr	Pro	Asp	Tyr		Trp	Ser	Ala	Gln	Arg 210
Arg	Ala	Leu	Val		Glu	Glu	Ile	Thr		Asn	Thr	Thr	Pro	
Tyr	Arg	Thr	Pro		Ile	Ile	Asp	Leu		Ser	Asn	Phe	Pro	
Gly	Glu	Lys	Gln		Ile	Trp	Ala	Leu		Сув	Ile	Leu	Tyr	
Leu	Cýs	Phe	Arg		His	Pro	Phe	Glu		Gly	Ala	ГЛа	Leu	
Ile	Val	Asn	G1y		Tyr	Ser	Ile	Pro		His	Asp	Thr	Gln	Tyr 285
Thr	Val	Phe	His		Leu	Ile	Arg	Ala		Leu	Gln	Val	Asn	_
Glu	Glu	Arg	Leu	Ser	Ile	Ala	Glu	Val	Val 310	His	Gln	Leu	Gln	Glu 315
Ile	Ala	Ala	Ala	Arg 320	Asn	Val	Asn	Pro	Lys 325	Ser	Pro	Ile	Thr	Glu 330
Leu	Leu	Glu :	Gln	Asn 335	Gly	Gly	Tyr	Gly	Ser 340	Ala	Thr	Leu	Ser	Arg 345
Gly	Pro	Pro	Pro	Pro 350	Val	Gly	Pro	Ala	Gly 355	Ser	Gly	Tyr	Ser	G1y 360
Gly	Leu	Ala	Leu	Ala 365	Glu	Tyr	Asp	Gln	Pro 370	Tyr	Gly	Gly	Phe	Leu 375
_			_	380			Glu		385					390
Asp	Thr	Ser	Ser	Lys 395	Val	Ile	Gln	Ser	Val 400	Ala	Asn	Tyr	Ala	Lys 405
_	_		_	410		_	Ile		415	_				420
				425			Glu	•	430					435
	_		_	440			Asp		445					450
				455			Arg		460					465
				470			Gly		475					480
				485	_		Ile		490					495
			-	500			Val		505				:	510
_	_			515					520					Phe 525
				530			Glu		535					540
	-	-	_	545		_	Ile		550					555
				560			. Val		565					570
				575			. Arg		580					585
				590					595					Glu 600
val	ıyr	Val	. сту	wab	GIL	HIC	ı val	Ата	ser	inr	ser	GTL	COLU	Tyr

				605					610					615
Asp	Lys	Met	Arg		Phe	Lys	Ile	G1u		Gly	Ile	Ala	Val	
Pro	Leu	Gly	Val		Val	Gln	Gly	Asp		Leu	Ile	Val	Ile	
His	Ala	Arg	Ser	Thr 650	Leu	Gly	Gly	Arg	Leu 655	Gln	Ala	Lys	Met	
Ser	Met	Lys	Met	Phe 665	Gln	Ile	Gln	Phe	His 670	Thr	Gly	Phe	Val	Pro 675
Arg	Asn	Ala	Thr	Thr 680	Val	ГÀЗ	Phe	Ala	Lys 685	Tyr	Asp	Leu	Asp	Ala 690
Cys	Asp	Ile	Gln	Glu 695	Lys	Tyr	Pro	Asp	Leu 700	Phe	Gln	Val	Asn	Leu 705
Glu	Va1	Glu	Val	Glu 710	Pro	Arg	Asp	Arg	Pro 715	Ser	Arg	Glu	Ala	Pro 720
Pro	Trp	Glu	Asn	Ser 725	Ser	Met	Arg	Gly	Leu 730	Asn	Pro	Lys	Ile	Leu 735
Phe	Ser	Ser	Arg	Glu 740	Glu	Gln	Gln	Asp	Ile 745	Leu	Ser	ГÀЗ	Phe	Gly 750
Lys	Pro	Glu	Leu	Pro 755	Arg	Gln	Pro	Gly	Ser 760	Thr	Ala	Gln	Tyr	Asp 765
Ala	Gly	Ala	Gly	Ser 770	Pro	Glu	Ala	Glu	Pro 775	Thr	Asp	Ser	Asp	Ser 780
Pro	Pro	Ser	Ser	Set 785	'Ala	Asp	Ala	Ser	Arg 790	Phe	Leu	His	Thr	Leu 795
Asp	Trp	Gln	Glu	Glu 800	Lys	Glu	Ala	Glu	Thr 805	Gly	Ala	Glu	Asn	Ala 810
Ser	Ser	Lys	Glu	Ser 815	Glu	Ser	Ala	Leu	Met 820	Glu	Asp	Arg	Asp	Glu 825
Ser	Glu	Va1	Ser	Asp 830	Glu	Gly	Gly	Ser	Pro 835	Ile	Ser	Ser	Glu	Gly 840
Gln	Glu	Pro	Arg	A1a 845	Asp	Pro	Glu	Pro	Pro 850	Gly	Leu	Ala	Ala	Gly 855
Leu	Val	Gln	Gln	Asp 860	Leu	Val	Phe	Glu	Val 865	Glu	Thr	Pro	Ala	Val 870
Leu	Pro	Glu	Pro	Val 875	Pro	Gln	Glu	Asp	Gly 880	Val	Asp	Leu	Leu	Gly 885
Leu	His	Ser	Glu	Val 890	Gly	Ala	Gly	Pro	Ala 895	Val	Pro	Pro	Gln	Ala 900
Суз	Lys	Ala	Pro	Ser 905	Ser	Asn	Thr	Asp	Leu 910	Leu	Ser	Cys	Leu	Leu 915
Gly	Pro	Pro	Glu	Ala 920	Ala	Ser	Gln	Gly	Pro 925	Pro	Glu	Asp	Leu	Leu 930
Ser	Glu	Asp	Pro	Leu 935	Leu	Leu	Ala	Ser	Pro 940	Ala	Pro	Pro	Leu	Ser 945
Va1	Gln	Ser	Thr	Pro 950	Arg	Gly	Gly	Pro	Pro 955		Ala	Ala	Asp	Pro 960
Phe	Gly	Pro	Leu	Leu 965		Ser	Ser	Gly	Asn 970		Ser	Gln	Pro	Cys_ 975
Ser	Asn	Pro	Asp	Leu 980		Gly	Glu	. Phe	Leu 985		Ser	Asp	Ser	Val 990
Thr	Val	Pro	Pro	Ser 995		Pro	Ser		His 1000		Ala	Pro	Pro	Pro 1005
Ser	Cys	Ser		Asp 1010		Leu	His		Gly 1015		Leu	Pro	Gly	Glu 1020
Pro	Ser	ГЛЗ		Thr 1025		Ser	Ser		Asn 1030		Asp	Leu	. Leu	Gly 1035
Gly	Trp	Ala	Ala		Thr	G1u	Thr	Ala		Ser	Ala	. Val	. Ala	

```
Thr Pro Ala Thr Glu Gly Pro Leu Phe Ser Pro Gly Gly Gln Pro
                                    1060
               1055
Ala Pro Cys Gly Ser Gln Ala Ser Trp Thr Lys Ser Gln Asn Pro
                                    1075
               1070
Asp Pro Phe Ala Asp Leu Gly Asp Leu Ser Ser Gly Leu Gln Asp
                                                         1095
                                    1090
               1085
Pro Gln Ala Gln Ser Thr Val Ser Pro Arg Gly Gln Arg Val Cys
                                                         1110
                                    1105
               1100
Thr Cys Ser Arg Arg Leu Pro Thr Gly Lys Leu Lys Pro Gly Val
                                                         1125
                                    1120
               1115
Ala Asp Thr Gly Thr Ala Ala Ser Pro His Arg His Cys Gly Ser
                                                         1140
                                    1135
               1130
Pro Ala Gly Phe Pro Pro Gly Gly Phe Ile Pro Lys Thr Ala Thr
                                                         1155
                                    1150
                1145
Thr Pro Lys Gly Ser Ser Ser Trp Gln Thr Ser Arg Pro Pro Ala
                                     1165
                1160
Gln Gly Ala Ser Trp Pro Pro Gln Ala Lys Pro Pro Pro Lys Ala
                                                         1185
                                     1180
                1175
Cys Thr Gln Pro Arg Pro Asn Tyr Ala Ser Asn Phe Ser Val Ile
                                                         1200
                                     1195
                1190
Gly Ala Arg Glu Glu Arg Gly Val Arg Ala Pro Ser Phe Ala Gln
                                                         1215
                                     1210
                1205
 Lys Pro Lys Val Ser Glu Asn Asp Phe Glu Asp Leu Leu Ser Asn
                                                          1230
                                     1225
                1220
 Gln Gly Phe Ser Ser Arg Ser Asp Lys Lys Gly Pro Lys Thr Ile
                                     1240
                1235
 Ala Glu Met Arg Lys Gln Asp Leu Ala Lys Asp Thr Asp Pro Leu
                                                          1260
                                     1255
                1250
 Lys Leu Lys Leu Leu Asp Trp Ile Glu Gly Lys Glu Arg Asn Ile
                                                          1275
                                     1270
                 1265
 Arg Ala Leu Leu Ser Thr Leu His Thr Val Leu Trp Asp Gly Glu
                                                          1290
                                     1285
                1280
 Ser Arg Trp Thr Pro Val Gly Met Ala Asp Leu Val Ala Pro Glu
                                                          1305
                                     1300
                 1295
 Gln Val Lys Lys His Tyr Arg Arg Ala Val Leu Ala Val His Pro
                                                          1320
                                     1315
                 1310
 Asp Lys Ala Ala Gly Gln Pro Tyr Glu Gln His Ala Lys Met Ile
                                      1330
                 1325
 Phe Met Glu Leu Asn Asp Ala Trp Ser Glu Phe Glu Asn Gln Gly
                                                          1350
                                      1345
                 1340
  Ser Arg Pro Leu Phe
                 1355
  <210> 6
  <211> 490
  <212> PRT
  <213> Homo sapiens
  <220>
  <221> misc_feature
  <223> Incyte ID No: 7526208CD1
  <400> 6
  Met Ala Ser Thr Thr Thr Cys Thr Arg Phe Thr Asp Glu Tyr Gln
                                         10
  Leu Phe Glu Glu Leu Gly Lys Gly Ala Phe Ser Val Val Arg Arg
    1
                                         25
                    20
  Cys Met Lys Ile Pro Thr Gly Gln Glu Tyr Ala Ala Lys Ile Ile
                                         40
```

Asn Thr Lys Lys Leu Ser Ala Arg Val Arg Leu His Asp Ser Ile Ser Glu Glu Gly Phe His Tyr Leu Val Phe Asp Leu Val Thr Gly Gly Glu Leu Phe Glu Asp Ile Val Ala Arg Glu Tyr Tyr Ser Glu Ala Asp Ala Ser His Cys Ile Gln Gln Ile Leu Glu Ala Val Leu His Cys His Gln Met Gly Val Val His Arg Asp Leu Lys Pro Glu Asn Leu Leu Ala Ser Lys Ser Lys Gly Ala Ala Val Lys Leu Ala Asp Phe Gly Leu Ala Ile Glu Val Gln Gly Asp Gln Gln Ala Trp Phe Gly Phe Ala Gly Thr Pro Gly Tyr Leu Ser Pro Glu Val Leu Arg Lys Asp Pro Tyr Gly Lys Pro Val Asp Met Trp Ala Cys Gly Val Ile Leu Tyr Ile Leu Leu Val Gly Tyr Pro Pro Phe Trp Asp Glu Asp Gln His Arg Leu Tyr Gln Gln Ile Lys Ala Gly Ala Tyr Asp Phe Pro Ser Pro Glu Trp Asp Thr Val Thr Pro Glu Ala Lys Asp Leu Ile Asn Lys Met Leu Thr Ile Asn Pro Ala Lys Arg Ile Thr Ala Ser Glu Ala Leu Lys His Pro Trp Ile Cys Gln Arg Ser Thr Val Ala Ser Met Met His Arg Gln Glu Thr Val Asp Cys Leu Lys Lys Phe Asn Ala Arg Arg Lys Leu Lys Gly Ala Ile Leu Thr Thr Met Leu Ala Thr Arg Asn Phe Ser Ala Ala Lys Ser Leu Leu Lys Lys Pro Asp Gly Val Lys Lys Arg Lys Ser Ser Ser Ser Val Gln Met Met Glu Ser Thr Glu Ser Ser Asn Thr Thr Ile Glu Asp Glu Asp Val Glu Ala Arg Lys Gln Glu Ile Ile Lys Val Thr Glu Gln Leu Ile Glu Ala Ile Asn Asn Gly Asp Phe Glu Ala Tyr Thr Lys Ile Cys Asp Pro Gly Leu Thr Ala Phe Glu Pro Glu Ala Leu Gly Asn Leu Val Glu Gly Met Asp Phe His Arg Phe Tyr Phe Glu Asn Ala Leu Ser Lys Ser Asn Lys Pro Ile His Thr Ile Ile Leu Asn Pro His Val His Leu Val Gly Asp Asp Ala Ala Cys Ile Ala Tyr Ile Arg Leu Thr Gln Tyr Met Asp Gly Ser Gly Met Pro Lys Thr Met Gln Ser Glu Glu Thr Arg Val Trp His Arg Arg Asp Gly Lys Trp Gln Asn Val His Phe His Arg Ser Gly Ser Pro Thr Val Pro Ile Lys Pro Pro Cys Ile Pro Asn Gly Lys Glu Asn Phe Ser Gly Gly Thr Ser Leu Trp Gln Asn Ile

<210> 7

```
<211> 344
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526212CD1
<400> 7
Met Ala Ser Thr Thr Thr Cys Thr Arg Phe Thr Asp Glu Tyr Gln
Leu Phe Glu Glu Leu Gly Lys Gly Ala Phe Ser Val Val Arg Arg
                                                           30
                                      25
                 20
Cys Met Lys Ile Pro Thr Gly Gln Glu Tyr Ala Ala Lys Ile Ile
                                      40
                 35
Asn Thr Lys Lys Leu Ser Ala Arg Val Arg Leu His Asp Ser Ile
                                                           60
                 50
                                      55
Ser Glu Glu Gly Phe His Tyr Leu Val Val Asp Leu Val Thr Gly
                                                           75
                                      70
                  65
Gly Glu Leu Phe Glu Asp Ile Val Ala Arg Glu Tyr Tyr Ser Glu
                                       85
                                                           90
                 80
Ala Asp Ala Ser His Cys Ile Gln Gln Ile Leu Glu Ala Val Leu
                                      100
                  95
His Cys His Gln Met Gly Val Val His Arg Asp Leu Lys Pro Glu
                                                          120
                 110
                                      115
Asn Leu Leu Leu Ala Ser Lys Ser Lys Gly Ala Ala Val Lys Leu
                                                          135
                                      130
                 125
Ala Asp Phe Gly Leu Ala Ile Glu Val Gln Gly Asp Gln Gln Ala
                                                          150
                                      145
                 140
 Trp Phe Gly Phe Ala Gly Thr Pro Gly Tyr Leu Ser Pro Glu Val
                                      160
                 155
 Leu Arg Lys Asp Pro Tyr Gly Lys Pro Val Asp Met Trp Ala Cys
                                                           180
                . 170
                                      175
 Gly Val Ile Leu Tyr Ile Leu Leu Val Gly Tyr Pro Pro Phe Trp
                                                           195
                                      190
                 185
 Asp Glu Asp Gln His Arg Leu Tyr Gln Gln Ile Lys Ala Gly Ala
                                      205
                                                           210
                 200
 Tyr Asp Phe Pro Ser Pro Glu Trp Asp Thr Val Thr Pro Glu Ala
                                      220
                                                           225
                 215
 Lys Asp Leu Ile Asn Lys Met Leu Thr Ile Asn Pro Ala Lys Arg
                                      235
                 230
 Ile Thr Ala Ser Glu Ala Leu Lys His Pro Trp Ile Cys Gln Arg
                                                           255
                                      250
                 245
 Ser Thr Val Ala Ser Met Met His Arg Gln Glu Thr Val Asp Cys
                                                           270
                                      265
                 260
 Leu Lys Lys Phe Asn Ala Arg Arg Lys Leu Lys Gly Ala Ile Leu
                                      280
                                                           285
                 275
 Thr Thr Met Leu Ala Thr Arg Asn Phe Ser Ala Ala Lys Ser Leu
                                      295
                  290
 Leu Lys Lys Pro Asp Gly Val Lys Glu Ser Thr Glu Ser Ser Asn
                                                           315
                  305
                                      310
 Thr Thr Ile Glu Asp Glu Asp Val Lys Gly Thr Val Ala His Ala
                                       325
                  320
 Cys Asn Pro Ser Thr Leu Gly Gly Arg Gly Gly Gln Ile Thr
                  335
```

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7526213CD1

<400> 8

Met Lys Lys Phe Ser Arg Met Pro Lys Ser Glu Gly Gly Ser Gly 1 10 15 Gly Gly Ala Ala Gly Gly Ala Gly Gly Ala Gly Ala Gly Ala Gly Cys Gly Ser Gly Gly Ser Ser Val Gly Val Arg Val Phe Ala 35 40 Val Gly Arg His Gln Val Thr Leu Glu Glu Ser Leu Ala Glu Val 50 55 Ile Gln Met Leu Pro Val Gln Glu Pro Arg Leu Glu Tyr Arg Val 70 65 Pro Leu Ile Ser Ser Gly Arg Arg Leu Arg Arg Arg Cys 80

<210> 9 <211> 88 <212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7526214CD1

<400> 9

Met Lys Lys Phe Ser Arg Met Pro Lys Ser Glu Gly Gly Ser Gly Gly Gly Ala Ala Gly Gly Gly Ala Gly Ala Gly Ala Gly Ala 20 25 Gly Cys Gly Ser Gly Gly Ser Ser Val Gly Val Arg Val Phe Ala 40 45 Val Gly Arg His Gln Val Thr Leu Glu Glu Ser Leu Ala Glu Gly 50 55 60 Thr Gly Ala Arg Gly Gly Ser Asp Arg Gln Val Asp Ser Pro Gln 65 70 Phe Ser Ser Cys Val Leu Thr Val Glu Ser Asp Val His 80

<210> 10 <211> 137 <212> PRT <213> Homo sapiens <220> <221> misc_feature

<223> Incyte ID No: 7526228CD1

<400> 10

Met Ser Thr Ala Ser Ala Ala Ser Ser Ser Ser Ser Ser Ser Ala 1 10 Gly Glu Met Ile Glu Ala Pro Ser Gln Val Leu Asn Phe Glu Glu

```
20
Ile Asp Tyr Lys Glu Ile Glu Val Glu Glu Val Val Gly Arg Gly
                 35
Ala Phe Gly Val Val Cys Lys Ala Lys Trp Arg Ala Lys Asp Val
                 50
                                      55
Ala Ile Lys Gln Ile Glu Ser Glu Ser Glu Arg Lys Ala Phe Ile
                                      70
                 65
Val Glu Leu Arg Gln Leu Ser Arg Val Asn His Pro Asn Ile Val
                                                          90
                 80
                                      85
Lys Leu Tyr Gly Ala Cys Leu Asn Pro Val Cys Leu Val Met Glu
                 95
                                     100
                                                         105
Tyr Ala Glu Gly Gly Ser Leu Tyr Asn Val Cys Ala Phe Leu Ser
                110
                                     115
Gln Cys Cys Met Val Leu Asn His Cys His Ile Ile Leu Leu Pro
                125
Thr Gln
<210> 11
<211> 243
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526246CD1
<400> 11
Met Ala Asp Leu Glu Ala Val Leu Ala Asp Val Ser Tyr Leu Met
                                      10
Ala Met Glu Lys Ser Lys Ala Thr Pro Ala Ala Arg Ala Ser Lys
                                                           30
                  20
Lys Ile Leu Leu Pro Glu Pro Ser Ile Arg Ser Val Met Gln Lys
                  35
Tyr Leu Glu Asp Arg Gly Glu Val Thr Phe Glu Lys Ile Phe Ser
                                      55
                  50
Gln Lys Leu Gly Tyr Leu Leu Phe Arg Asp Phe Cys Leu Asn His
                                                           75
                  65
                                      70
Leu Glu Glu Ala Arg Pro Leu Val Glu Phe Tyr Glu Glu Ile Lys
                                       85
                                                           90
                  80
Lys Tyr Glu Lys Leu Glu Thr Glu Glu Glu Arg Val Ala Arg Ser
                  95
                                     100
                                                          105
Arg Glu Ile Phe Asp Ser Tyr Ile Met Lys Glu Leu Leu Ala Cys
                                      115
                 110
Ser His Pro Phe Ser Lys Ser Ala Thr Glu His Val Gln Gly His
                                                          135
                 125
                                     130
Leu Gly Lys Lys Gln Val Pro Pro Asp Leu Phe Gln Pro Tyr Ile
                                                          150
                 140
                                     145
Glu Glu Ile Cys Gln Asn Leu Arg Gly Asp Val Phe Gln Lys Phe
                 155
                                      160
                                                          165
Ile Glu Ser Asp Lys Phe Thr Arg Phe Cys Gln Trp Lys Asn Val
                 170
                                      175
Glu Leu Asn Ile His Val Ser Gly Leu Gly Trp Gly Met Glu Ser
                                      190
                 185
His Ala Pro Cys Cys Ser Ser Pro Gly Ser Trp Ala Cys Gly Leu
                                      205
                 200
Ala Gly Arg Gly Arg Ser Gly Asp Val Cys Pro Leu Ala Pro Arg
                                                          225
                                      220
                 215
```

Ala Val Ala Met Gly Val Arg Ala Gly Ile Pro Ala Trp Gly Gly

230 235 240

Arg Ser Arg

<210> 12 <211> 463

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7526258CD1

<400> 12

Met Arg Arg Pro Arg Gly Glu Pro Gly Pro Arg Ala Pro Arg Pro Thr Glu Gly Ala Thr Cys Ala Gly Pro Gly Glu Ser Trp Ser Pro Ser Pro Asn Ser Met Leu Arg Val Leu Leu Ser Ala Gln Thr Ser Pro Ala Arg Leu Ser Gly Leu Leu Ile Pro Pro Val Gln Pro Cys Cys Leu Gly Pro Ser Lys Trp Gly Asp Arg Pro Val Gly Gly Gly Pro Ser Ala Gly Pro Val Gln Gly Leu Gln Arg Leu Leu Glu Gln Ala Lys Ser Pro Gly Glu Leu Leu Arg Trp Leu Gly Gln Asn Pro Ser Lys Val Arg Ala His His Tyr Ser Val Ala Leu Arg Arg Leu Gly Gln Leu Leu Gly Ser Arg Pro Arg Pro Pro Pro Val Glu Gln Val Thr Leu Gln Asp Leu Ser Gln Leu Ile Ile Arg Asn Cys Pro Ser Phe Asp Ile His Thr Ile His Val Cys Leu His Leu Ala Val Leu Leu Gly Phe Pro Ser Asp Gly Pro Leu Val Cys Ala Leu Glu Gln Glu Arg Arg Leu Arg Leu Pro Pro Lys Pro Pro Pro Pro Leu Gln Pro Leu Leu Arg Glu Ala Arg Pro Glu Glu Leu Thr Pro His Val Met Val Leu Leu Ala Gln His Leu Ala Arg His Arg Leu Arg Glu Pro Gln Leu Leu Glu Ala Ile Thr His Phe Leu Val Val Gln Glu Thr Gln Leu Ser Ser Lys Val Val Gln Lys Leu Val Leu Pro Phe Gly Arg Leu Asn Tyr Leu Pro Leu Glu Gln Gln Phe Met Pro Cys Leu Glu Arg Ile Leu Ala Arg Glu Ala Gly Val Ala Pro Leu Ala Thr Val Asn Ile Leu Met Ser Leu Cys Gln Leu Arg Cys Leu Pro Phe Arg Ala Leu His Phe Val Phe Ser Pro Gly Phe Ile Asn Tyr Ile Ser Gly Thr Pro His Ala Leu Ile Val Arg Arg Tyr Leu Ser Leu Leu Asp Thr Ala Val Glu Leu Glu Leu Pro Gly Tyr

```
Arg Gly Pro Arg Leu Pro Arg Arg Gln Gln Val Pro Ile Phe Pro
                350
                                     355
                                                         360
Gln Pro Leu Ile Thr Asp Arg Ala Arg Cys Lys Tyr Ser His Lys
                                     370
                365
                                                         375
Asp Ile Val Ala Glu Gly Leu Arg Gln Leu Leu Gly Glu Glu Lys
                380
                                     385
Tyr Arg Gln Asp Leu Thr Val Pro Pro Gly Tyr Cys Thr Gly Glu
                395
                                     400
                                                         405
Gln Gly Ala Gly Gly Arg Pro Gly Glu Thr Glu Pro Trp Leu Arg
                410
                                     415
                                                         420
Pro Pro Ala Leu Leu Pro Ser Arg Leu Pro Ala Val Arg Gln Gln
                425
                                     430
                                                         435
Leu Trp Cys Cys Ala Ser Arg Glu Asp Pro Gly Pro Leu Pro Ala
                440
                                     445
Ile Pro Thr Lys Val Leu Pro Thr Gly Pro Gly Cys Leu
                455
<210> 13
<211> 184
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526311CD1
<400> 13
Met Arg Leu Ala Arg Leu Leu Arg Gly Ala Ala Leu Ala Gly Pro
Gly Pro Gly Leu Arg Ala Ala Gly Phe Ser Arg Ser Phe Ser Ser
                 20
                                      25
Asp Ser Gly Ser Ser Pro Ala Ser Glu Arg Gly Val Pro Gly Gln
Val Asp Phe Tyr Ala Arg Phe Ser Pro Ser Pro Leu Ser Met Lys
                 50
                                      55
                                                           60
Gin Phe Leu Asp Phe Gly Ser Val Asn Ala Cys Glu Lys Thr Ser
                 65
                                      70
                                                          75
Phe Met Phe Leu Arg Gln Glu Leu Pro Val Arg Leu Ala Asn Ile
                 80
                                      85
                                                          90
Met Lys Glu Ile Ser Leu Leu Pro Asp Asn Leu Leu Arg Thr Pro
                 95
                                     100
                                                          105
Ser Val Gln Leu Val Gln Ser Trp Tyr Ile Gln Ser Leu Gln Glu
                110
                                                          120
Leu Leu Asp Phe Lys Asp Lys Ser Ala Glu Asp Ala Lys Ala Ile
                125
                                     130
                                                          135
Tyr Glu Arg Pro Arg Arg Thr Trp Leu Gln Val Ser Ser Leu Cys
                140
                                     145
                                                          150
Cys Met Ala Cys Lys Met Ile Phe Ile Val Trp Trp Lys Arg Gln
                155
                                     160
                                                          165
Arg Lys Ser Ile Ser Ser Lys Thr His Trp Lys His Lys Ser Lys
                170
                                     175
Leu Gln Cys Thr
<210> 14
<211> 386
<212> PRT
<213> Homo sapiens
```

<220>

```
<221> misc_feature
<223> Incyte ID No: 7526315CD1
<400> 14
Met Ser Ser Leu Gly Ala Ser Phe Val Gln Ile Lys Phe Asp Asp
Leu Gln Phe Phe Glu Asn Cys Gly Gly Ser Phe Gly Ser Val
                 20
Tyr Arg Ala Lys Trp Ile Ser Gln Asp Lys Glu Val Ala Val Lys
                                                          45
                 35
                                      40
Lys Leu Leu Lys Ile Glu Lys Glu Ala Glu Ile Leu Ser Val Leu
                 50
                                                          60
Ser His Arg Asn Ile Ile Gln Phe Tyr Gly Val Ile Leu Glu Pro
                 65
Pro Asn Tyr Gly Ile Val Thr Glu Tyr Ala Ser Leu Gly Ser Leu
                                      85
                 80
Tyr Asp Tyr Ile Asn Ser Asn Arg Ser Glu Glu Met Asp Met Asp
                 95
                                     100
                                                         105
His Ile Met Thr Trp Ala Thr Asp Val Ala Lys Gly Met His Tyr
                110
                                     115
                                                         120
Leu His Met Glu Ala Pro Val Lys Val Ile His Arg Asp Leu Lys
                125
                                     130
Ser Arg Asn Val Val Ile Ala Ala Asp Gly Val Leu Lys Ile Cys
                140
                                     145
                                                         150
Asp Phe Gly Ala Ser Arg Leu His Asn His Thr Thr His Met Ser
                155
                                     160
                                                         165
Leu Val Gly Thr Phe Pro Trp Met Ala Pro Glu Val Ile Gln Ser
                170
                                     175
                                                          180
Leu Pro Val Ser Glu Thr Cys Asp Thr Tyr Ser Tyr Gly Val Val
                                     190
                185
                                                          195
Leu Trp Glu Met Leu Thr Arg Glu Val Pro Phe Lys Gly Leu Glu
                200
                                     205
                                                          210
Gly Leu Gln Val Ala Trp Leu Val Val Glu Lys Asn Glu Arg Leu
                215
                                     220
Lys Lys Leu Glu Arg Asp Leu Ser Phe Lys Glu Glu Leu Lys
                230
                                     235
                                                          240
Glu Arg Glu Arg Arg Leu Lys Met Trp Glu Gln Lys Leu Thr Glu
                245
                                     250
                                                          255
Gln Ser Asn Thr Pro Leu Leu Pro Leu Val Ala Arg Met Ser
                260
                                     265
Glu Glu Ser Tyr Phe Glu Ser Lys Thr Glu Glu Ser Asn Ser Ala
                275
                                                          285
                                     280
Glu Met Ser Cys Gln Ile Thr Ala Thr Ser Asn Gly Glu Gly His
                290
                                     295
                                                          300
Gly Met Asn Pro Ser Leu Gln Ala Met Met Leu Met Gly Phe Gly
                305
                                     310
                                                          315
Asp Ile Phe Ser Met Asn Lys Ala Gly Ala Val Met His Ser Gly
                320
                                     325
                                                          330
Met Gln Ile Asn Met Gln Ala Lys Gln Asn Ser Ser Lys Thr Thr
                335
                                     340
                                                          345
Ser Lys Arg Arg Gly Lys Lys Val Asn Met Ala Leu Gly Phe Ser
                 350
                                     355
                                                          360
Asp Phe Asp Leu Ser Glu Gly Asp Asp Asp Asp Asp Asp Gly
                365
                                     370
Glu Glu Glu Asp Asn Asp Met Asp Asn Ser Glu
                 380
                                     385
```

<210> 15

```
<211> 152
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526442CD1
<400> 15
Met Asp Gln Tyr Cys Ile Leu Gly Arg Ile Gly Glu Gly Ala His
                                     10
  1
Gly Ile Val Phe Lys Ala Lys His Val Glu Thr Gly Glu Ile Val
                                                          30
                 20
                                     25
Ala Leu Lys Lys Val Ala Leu Arg Arg Leu Glu Asp Gly Phe Pro
                                      40
                                                          45
Asn Gln Ala Leu Arg Glu Ile Lys Ala Leu Gln Glu Met Glu Asp
                                                          60
                 50
Asn Gln Tyr Val Val Gln Leu Lys Ala Val Phe Pro His Gly Gly
                 65
                                      70
Gly Phe Val Leu Ala Phe Glu Phe Met Leu Ser Asp Leu Ala Glu
                                                          90
                 80
                                      85
Val Val Arg His Ala Gln Arg Pro Leu Ala Gln Ala Gln Val Lys
                                     100
                                                         105
Ser Tyr Leu Gln Met Leu Leu Lys Gly Val Ala Phe Cys His Ala
                110
                                     115
                                                         120
Asn Asn Ile Val His Arg Asp Leu Pro Pro Arg Pro Ile Gln Gly
                                     130
                125
Pro Pro Thr Ser Met Thr Ser Thr Trp Thr Gly Leu Leu Arg Ser
                                     145
                140
Arg Cys
<210> 16
<211> 4430
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526185CB1
<400> 16
ccggctccag cggccagcgc gcgcgggccc aggccgcccg gctccagccc agcagtagcg 60
gcagcagcgg cggcggcggc agtgcgcgcg aggccctgcg ccccagcag ctcctcctg 120
gegeegtgea tggagaegeg geeegeeace egeegetgag eeeeegeege eeggeeggga 180
cccgccaggg ctggggtggc ctcgggctcc ggccggcccc gccgcccgag ggctgcgcgc 240
ggcccgcggg cctcgccgcc ccgcgcggat cgtcgcggcc cggccgtccc gtcccaggaa 300
gtggccgtcc tgagcgccat ggctcactcc ccggtgcagt cgggcctgcc cggcatgcag 360
 aacctaaagg cagacccaga agagcttttt acaaaactag agaaaattgg gaagggctcc 420
 tttggagagg tgttcaaagg cattgacaat cggactcaga aagtggttgc cataaagatc 480
 attgatetgg aagaagetga agatgagata gaggacatte aacaagaaat cacagtgetg 540
 agtcagtgtg acagtccata tgtaaccaaa tattatggat cctatctgaa ggatacaaaa 600
 ttatggataa taatggaata tettggtgga ggeteegeac tagatetatt agaacetgge 660
 ccattagatg aaacccagat cgctactata ttaagagaaa tactgaaagg actcgattat 720
 ctccattcgg agaagaaat ccacagagac attaaaggca gacatctggt ccctgggcat 780
 aacagetatt gaacttgeaa gaggggaace aceteattee gagetgeace ceatgaaagt 840
 tttattcctc attccaaaga acaacccacc gacgttggaa ggaaactaca gtaaacccct 900
 caaggagttt gtggaggcct gtttgaataa ggagccgagc tttagaccca ctgctaagga 960
 gttattgaag cacaagttta tactacgcaa tgcaaagaaa acttcctact tgaccgagct 1020
```

catcgacagg tacaagagat ggaaggccga gcagagccat gacgactcga gctccgagga 1080 tteegacgeg gaaacagatg geeaageete ggggggcagt gattetgggg actggatett 1140 cacaatccga gaaaaagatc ccaagaatct cgagaatgga gctcttcagc catcggactt 1200 ggacagaaat aagatgaaag acatcccaaa gaggcctttc tctcagtgtt tatctacaat 1260 tatttctcct ctgtttgcag agttgaagga gaaggccag gcgtgcggag ggaacttggg 1320 gtccattgaa gagctgcgag gggccatcta cctagcggag gaggcgtgcc ctggcatctc 1380 cgacaccatg gtggcccagc tcgtgcagcg gctccagaga tactctctaa gtggtggagg 1440 aacttcatcc cactgaaatt cctttggcat ttggggtttt gttttcctt ttttccttct 1500 teatecteet cetttttaa aagteaaega gageettege tgaeteeaee gaagaggtge 1560 gccactggga gccacccag tgccaggcgc ccgtccaggg acacacaag tcttcactgt 1620 gctgcagcca gatgaagtct ctcagatggg tggggagggt cagctccttc cagcgatcat 1680 tttattttat tttattactt ttgtttttaa ttttaaccat agtgcacata ttccaggaaa 1740 gtgtctttaa aaacaaaaac aaaccctgaa atgtatattt gggattatga taaggcaact 1800 aaagacatga aacctcaggt atcctgcttt aagttgataa ctccctctgg gagctggaga 1860 ategetetgg tggatgggtg tacagatttg tatataatgt catttttacg gaaaccettt 1920 cggcgtgcat aaggaatcac tgtgtacaaa ctggccaagt gcttctgtag ataacgtcag 1980 tggagtaaat attegacagg ccataacttg agtetattge ettgeettta ttacatgtae 2040 attttgaatt ctgtgaccag tgatttgggt tttattttgt atttgcaggg tttgtcatta 2100 ataattaatg cccctctctt acagaacact cctatttgta cctcaacaaa tgcaaatttt 2160 ccccgtttgc cctacgcccc ttttggtaca cctagaggtt gatttccttt ttcatcgatg 2220 gtactatttc ttagtgtttt aaattggaac atatcttgcc tcatgaagct ttaaattata 2280 attttcagtt tetececatg aagegetete gtetgacatt tgtttggaat egtgecactg 2340 ctggtctgcg ccagatgtac cgtcctttcc aatacgattt tctgttgcac cttgtagtgg 2400 attctgcata tcatctttcc cacctaaaaa tgtctgaatg cttacacaaa taaattttat 2460 aacacgetta tittgeatae teetigaaat gigaetette agaggacagg geacetgeig 2520 tgtatgtgtg gccgtgcgtg tgtactcgtg gctgtgtgtg tgtgatgaga cactttggaa 2580 gactccaggg agaagtcccc aggcctggag ctgccgagtg cccaggtcag cgccctggac 2640 tgcttgcgca cttgctcacc gagatgatgc agttggaggt tgctgatctg tgcgattgct 2700 gtageggttg ceggggacet taagagttat tttgettete tggaagggge ctatgettge 2760 taggcaggca gccagtgtgt ctgtttttct tggtttgctg tgggaccttg cttggcgagg 2820 gggaaaatet etgggtttet ggagtgggag ggttegtgea geagetgttg aetggtaeat 2880 gaagcattet tttatgtttg ttgaagetga tgattgacat etecegtggg tgtgeeagtt 2940 cttgtggagt taagacagga tttttggaag caaggaagtt agtgggtgag cttggggatg 3000 tagctcagct atctgctggt ctagtggcct ctaagctata gggaggggac agagccctga 3060 gctacagatg cttgagtggg ttattgtgtc ggtttgctag tgcagtctgg tttttaaget 3120 ctaaaattga ggtattttat tagaagtgga tttgggttga actcttaatt tgtataaggg 3180 atatattttg gttggggaaa tagaactgag ttgctaattc ttattgtact cattactcca 3240 tacaagaatg ttatgttgaa taataaaatt ggagaagatt tcattttgtg tttccaggga 3300 gtattctgtg tggggaactg tttccttacg tgaggccggc ggcataagtc aaagatgagt 3360 tttgtccttg cgaatcacac agattgagtc tgtgttcccc agggtgtgcc gttacctgat 3420 ttttaagtga gccagggcgg acagcagctt ttctgattta cagagttctt cagatttaca 3480 aatggacaat gacatcacag tttttagcac tgaagccagt ctcatgctag taacagtggg 3540 tgagccgctc gagggactgg gttctaatga atactggtat gaacggggag tctctgcagt 3600 cgccagacaa atcatactca gccccttccc ccgtagagca acaagtggtt cttttagagt 3660 tgactggcag catttectgt cgggggaggt ggggtttgat ggagttagaa agctcgcctc 3720 tgtgtacatt ctctcctggg ctgttacttt ctgtagacgc acaaaatcag ccccaatgtt 3780 tttaagggca tcttagccaa ggaagctggc ttttgtgtcg ccacttccag gcctgcatta 3840 agagagagec caggeaccag ggetaccact ggaacctgec teagegteaa etgetgetgg 3900 tetgtageca ggeceageet ttgagaeggg tttaetgtea ecagtageet eteagtgeca 3960 geeetgaget geteetgget eagetgeeea gageetgeag eetggggagg tacteageet 4020 ctgggagacg agggccgtgg actgggtggc tggtagctcc tgcgtttttg agctgtgtcc 4080 tggctggctg ctgccaatga ggtggacacc agtgtggttt ggggtgcact ggccacttct 4140 tgctgggttc tgattttctt ggaagtgcat ctgccttcct tatccaatag ttttatccct 4200 gcattgctct tgtgaagtgg ctggtttggt tctgtatgta gcattttgta cctttcctct 4260 ggcaaaacac tgtcagttta taaacatttt ttatatttcc ctcctttaaa aacagcttgt 4320 gtatttetge tataaaatgt gteageaaag geagagtgae etaataggge atgttettaa 4380 geacagggae tgtateatge aggggeeaat aaageteaag aaaacgagta 4430

<210> 17

<211> 3276 <212> DNA

```
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526192CB1
<400> 17
caaaacgccg tggccgtcgc gcggcgccat ccgttgtcgc aaagcggcgc gagaaacgcc 60
cageegggtg ttggceecgc eeeggetgt gaegteggeg gegegegeec eeggegeegt 120
ggccgcggct gcgcagtggg gcgcgtatgg ctgccgccc ccgctggcag acgctggcgg 180
cgtaaggcgc gcgggccccg gagcgggcgc ggcggagcgc ggcgagcccg gcgcctcccg 240 tcccgaacat gcggaggccg gcccaggcgg cgcgggagcc ggagcggggg cccaagcggc 300
accggageeg gagegegagg gggegegggg eceggagegg gggteegege tgegetgetg 360
aggeegggee ggeegeecag aegetgeeeg egggeeegge caeggeggag ceaagetgtg 420
ageogtgage tttgaggegg tgggatgtgt cagcagaatg teteetgeee eegagagega 480
ccccgaggcc actgagaaga gcagcgcgc ctggccggcc cgaacgcctg cgtctcagta 540
getgggagee aegggeeeae geeegeeaae eggeegeagt gatgttetag eeacagagga 600
gccaagacct caggtttcca gagacttggg atttgcacgg cagcagagtc accgtggaga 660
ggccagggta tcacaaactt atggattttg acaagaaagg agggaaaggg gagacggagg 720
agggeeggag aatgteeaag geeggegggg geeggageag eeaeggeate eggagetegg 780
ggaccagete gggggteetg atggtgggee ceaactteeg egteggeaag aagategget 840
geggeaaett eggggagete egeetaggaa agaateteta tacaaatgaa taegtggeta 900
tcaaattggt gagtcggccc ctccacccca cccccgctga cgtgcccccc agggatttca 960
gggcagcgac ceggtecect ggtgaetege tettgtgece ecaggageeg atcaagtece 1020
gggccccgca gctgcacctg gagtaccggt tctacaagca gctcagcgcc acagagggcg 1080
teceteaggt etactaette ggteegtgeg ggaagtacaa egecatggtg etggagetge 1140
tggggcccat cctggaggac ctgttcgacc tgtgcgaccg gaccttcacg ctcacgacgg 1200
tgctgatgat cgccatccag ctgatcacgc gcatggagta tgtgcacacc aagagcctaa 1260
tctaccggga cgtgaagccc gagaacttcc tggtgggccg cccggggacc aagcggcagc 1320
atgccatcca catcatcgac ttegggetgg ccaaggagta catcgaccc gagaccaaga 1380
agcacatece gtacegegag cacaagagee tgacgggeae ggegegetae atgageatea 1440
acacgcacct gggcaaggag cagagccgcc gcgacgacct ggaggcgctg ggccacatgt 1500 tcatgtactt cctgcgcggc agcctcccct ggcaggggct caaggtgggc gaggaggccg 1560
ggcaggcggg cggggacgca gggcgggagc aaggctgacc acagaccccc gcaggccgac 1620
acgeteaagg ageggtaeca gaagateggg gacaccaaac gegecaegee categaggtg 1680
ctctgcgaga acttcccaga ggagatggcc acgtacctgc gctatgtgcg gcgcctggac 1740
ttettegaga agecegaeta tgaetaeetg eggaagetet teacegaeet ettegaeege 1800 agtggetteg tgttegaeta tgagtaegae tgggeeggga ageceetgee gaeeeceate 1860
ggcaccgtcc acaccgacct gccctcccag cctcagctcc gggacaaagc ccagccgcac 1920
agcaaaaacc aggcgttgaa ctccaccaac ggggagctga atgcggacga ccccacggcc 1980
ggccactcca acgccccgat cacagcgcct gcagaggtgg aggtggccga tgaaaccaaa 2040
atgetgeace anageteggg egeegeggge aeggetgetg eagtetette eeageetgge 2100 cetggeaagg ggegggtggg egetgeeagg egggtgette tegaegeact tgeteeegga 2160
ggetgegeec eggegeetgg aaccegaggt gggaggaeeg gttggtgtea eeetgetegg 2220
eceteageee tgeegegtgg ggegegtggg caeggagett ettgeetete tgeteegaca 2280
cccggcaagc agccggagac aaaacgcctt aaagcccccg gcccagccct gcaggtatat 2340.
tgcaggggcc tgggggggcc cetggactgg cgggcggttc cecagtgggg tgccctggag 2400
getgeeggge agagtggage agettgggge egtgeecagg geggtggetg tgagtetagt 2460
ttttgcttta ccaagtgtac agaaatggca tttacgtttc tctgatgctc ccttgaagcc 2520
atagaattta ggggcttttt taaaaaaata aaagaaaaat gaaaccaaac ccaagtgtag 2580
agggatttgt ctgggctttc cacgaagctt gacctggaac gggcgttgct tccatcccca 2640
teetgeetgt eegggaegag teeggagegg etggeggeet eeggtaacag aaacegaetg 2700 atgaggegga aggtaaggaa gatggaagca gagggeagag etgggetetg tetggggaga 2760
gggcaggaga cgagtgttca cgtaccatgg aaaggggaag tcacacacat gcgacttggc 2820
cccgggggtc ccgttccccg acactacaca aacatacctg aaagcctcag cgacggggcc 2880
caggcaggat ggtcctggct gctctgacgg cggaaggcct ccttgactcc ctctgttcac 2940
gcagcagggc agaaaacatc tccacggggg ccacgacact gtgaagggaa tcagcagtag 3000
```

```
ctcccagaag aacagcggaa actgcaggca ggtgaagacc ttgcagcact agccccggct 3060
ecgeccegtg cettetecce agacaacace ceataceegg cageaagggt ggaagaceag 3120
taccaccgta atatgttgtg acaaagcaga aataatgcac ctgtaagagt cagatggcaa 3180
gagggaaatg gaatgagete ategatggtt tteeeggeag tagettgggg ataaggaeta 3240
cttgtcatgt gctttatata tttacccaca tgttaa
<210> 18
<211> 3910
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526193CB1
<400> 18
tgcggggggc tggggggga acttagttgt tggcagtttc ttcacgggat gtgtttaaat 60
tgccgagtcc ccacatacgc gccaccccac aaatctcctt cgaggccgtg gaggccacac 120
ggctgccgcc tcgccctctc ctccaggagt atgctgggat ttgtagtcca gcagccggac 180
tgtgccgagc tacctttccc agcttgccct gcggctcggg tgatatcaac agtcttttcc 240
agaactetgt etgeactgag accetettee eccagteete ttetegeggt egaeteette 300
ccatccgtgg cgacagaacg gcggttgcag gagaggcccc ggtccctcgc cgcgccgccc 360 cgaggggcac ttccggcggc ggttcacttc ctggttgggt ggatggagcc gggcgggagc 420
gegegeggg gagggegge gggteagtet eegeeeggeg eteeegggat eagetggegg 480
gegggeggga geegagegeg geeeeggete tegetgeage geegeetett etetgegteg 540
caggeeggee eggeggeegt gacaatgteg eggggetggt ageagggege eggeegeega 600
gccgtctcaa gtttaaactt acacgaatcg ctttctggag gaggagggga cccgctgcgc 660
gattgacacg catattecta taggeatect ceeteageee ceaceceae ggeeggatte 720
gggtggetee teteegaggt gaaatetgag aagaaateet tggatetett ttettaaaaa 780
aaaaaaaaa aaaaaaaaa tetagaaace ateggtattt tgetttgetg etecetatte 840
gcaagatgaa gaagtttttc gactcccggc gagagcaggg cggctctggc ctgggctccg 900
getecagegg aggagggge ageacetegg geetgggeag tggetacate ggaagagtet 960 teggeategg gegacageag gteacagtgg acgaggtgtt ggeggaaggt ggatttgeta 1020
ttgtatttct ggtgaggaca agcaatggga tgaaatgtgc cttgaaacgc atgtttgtca 1080
acaatgagca tgatetecag gtgtgcaaga gagaaateca gataatgagg gatettteag 1140
ggcacaagaa tattgtgggt tacattgatt ctagtatcaa caacgtgagt agcggtgatg 1200
tatgggaagt geteattetg atggaetttt gtagaggtgg ceaggtggta aacetgatga 1260
accagegect geaaacagge tttacagaga atgaagtget ccagatattt tgtgatacet 1320
gtgaagctgt tgcccgcctg catcagtgca aaactcctat tatccaccgg gacctgaagg 1380
ttgaaaacat cetettgeat gacegaggee actatgteet gtgtgaettt ggaagegeea 1440
ccaacaaatt ccagaatcca caaactgagg gagtcaatgc agtagaagat gagattaaga 1500
aatacacaac gctgtcctat cgagcaccag aaatggtcaa cctgtacagt ggcaaaatca 1560
tcactacgaa ggcagacatt tgggctcttg gatgtttgtt gtataaatta tgctacttca 1620
ctttgccatt tggggaaagt caggtggcaa tttgtgatgg aaacttcaca attcctgata 1680
attetegata tteteaagae atgeaetgee taattaggta tatgttggaa ceagaecetg 1740
acaaaaggcc ggatatttac caggtgtcct acttctcatt taagctactc aagaaagagt 1800
geccaattee aaatgtacag aacteteeca tteetgeaaa getteetgaa eeagtgaaag 1860
ccagtgaggc agctgcaaaa aagacccagc caaaggccag actgacagat cccattccca 1920 ____ccacagagac ttcaattgca ccccgccaga ggcctaaagc tgggcagact cagccgaacc 1980
caggaatcet teccatecag ecagegetga caeeeeggaa gagggeeact gttcageeee 2040
cacctcaggc tgcaggatcc agcaatcagc ctggcctttt agccagtgtt ccccaaccaa 2100
aaccccaagc cccacccagc cagcctctgc cgcaaactca ggccaagcag ccacaggctc 2160
ctcccactcc acagcagacg ccttctactc aggcccaggg tctgcccgct caggcccagg 2220
ccacaccca gcaccagcag caactettee tcaagcagca acagcagcag caacagccae 2280
cgccagcaca gcagcagcg gcaggcacgt tttaccagca gcagcaggcc cagactcagc 2340
agtttcaggc agtacatcca gcaacccagc aaccagcaat tgctcagttc cctgtggtgt 2400
cccaaggagg ctctcaacag cagctaatgc agaatttcta ccagcagcag cagcagcagc 2460
aacaacaaca gcaacagcaa cagetggcca cagecetgca tcaacaacag etgatgacte 2520
agcaggetge ettgeageaa aagcecacta tggeageagg acageagee cagecacage 2580
```

```
cagetgeage eccaegeea geecetgeee aggageeage geagatteaa geeceagtaa 2640 gacaacagee aaaggtteag acaaceecae eteetgeegt ecaggggeag aaagttggat 2700
ctctcactcc accctcatcc cccaaaaccc aacgtgctgg gcacaggcgt attctcagtg 2760
acgtaaccca cagtgcagtc tttggggtcc ctgccagcaa atcaacccag ctgctccagg 2820
cagetgeage tgaggecagt etcaataagt ecaagtetge aaceaceaet ecateagget 2880
ctcctcggac ctctcaacaa aacgtttata atccttcaga agggtctacg tggaatccct 2940
ttgatgacga taatttctcc aaactcacag ctgaagaact gctaaacaag gactttgcca 3000
agettgggga aggeaaacat ceegagaage ttggaggete agetgagagt ttgateecag 3060
gettteaate aacceaaggt gatgettttg ctacgacete attttetget ggaactgaaa 3120
aactaattga gggactcaaa teteetgaca ettetettet geteeetgac etettgeeta 3180
tgacagatcc ttttggtagc acttctgatg ctgtaattga aaaagctgat gttgctgttg 3240
agagteteat accaggactg gagececcag tteeccageg ceteccatet cagaeggaat 3300
ctgtgacctc gaatcgcaca gattctctca ccggggaaga ttccctgctt gattgctctc 3360
tgetetetaa eectaetaet gaeettetgg aagagtttge eeccaeagea atetetgete 3420
cagtecataa agetgeagaa gatagtaate teateteagg ttttgatgte eetgaggget 3480
eggacaaggt ggetgaagat gagtttgace etatteetgt attgataace aaaaacccae 3540
aaggtgggca etetagaaac agcagtggga getetgagte eagtetteee aacetageca 3600
ggtctttact gctggtggat cagctcatag acctgtagec gtgacceagt agcagatgca 3660
gttctgtaac cttcataccg taaaatacat tttcattacg gagttatgaa aaaaatgatt 3720
tttttaaaaa aatctgcaaa taaggggccc tccagccctt ttctcctacc ccttgccttc 3780
tectgtagaa atgataagga aagaaaatea etttgggeet eeagatatte ettgggeagt 3840
tecteetigt tagittgeig tgitttetea ttaccettet teaatageat tatettaaat 3900
                                                                     3910
caagcactag
<210> 19
<211> 4380
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526196CB1
<400> 19
gegeetaegt caeggegteg aggeggaaga tggtgeaect eegggeegge ggttgetgag 120
ctgacccgga cggcgaggga gcgggagccc gagcccgacc actccggctg ccgcggggtg 180
eggegeagee acceptate egetgetgea gteggegete gaettettgg egggteeagg 240
ctecetggge ggtgetteeg geegegaeea gagtgaette gtggggeaga eggtggaaet 300 gggegagetg eggetgeggg tgeggegggt eetggeegaa ggagggtttg eatttgtgta 360
tgaageteaa gatgtgggga gtggeagaga gtatgeatta aagaggetat tateeaatga 420
agaggaaaag aacagagcca tcattcaaga agtttgcttc atgctctgtt cactcggaga 480
geoegeegge tgeetgagtg tgggtteggg tggacacage caegeeteag cetecetgeg 540
cacageeece tgagggeeet geeteeteet geeaegegeg ggatggaett tggtgteget 600 gtggteagtg cacagaactg tggacatggt tatgtaegtt eteetttaaa caagacaact 660
gcagaaaaag ettteeggee accegaacat tgteeagttt tgttetgeag egtetatagg 720
aaaagaggag teagacaegg ggeaggetga gtteetettg eteacagage tetgtaaagg 780
geagetggtg gaatttttga agaaaatgga atetegagge_eccetttegt gegacaeggt_840
totgaagate ttetaccaga egtgeegege egtgeageae atgeacegge agaageegee 900
catcatccac agggacctca aggttgagaa cttgttgctt agtaaccaag ggaccattaa 960
gctgtgtgac tttggcagtg ccacgaccat ctcgcactac cctgactaca gctggagcgc 1020
ccagaggcga gccctggtgg aggaagagat cacgaggaat acaacaccaa tgtatagaac 1080
accagaaatc atagacttgt attccaactt cccgatcggc gagaagcagg atatctgggc 1140
cctgggctgc atcttgtacc tgctgtgctt ccggcagcac ccttttgagg atggagcgaa 1200
acttegaata gteaatggga agtactegat ecceeggae gacaegeagt acaeggtett 1260
ccacagecte atecgegeca tgetgeaggt gaaceeggag gageggetgt ccategeega 1320
ggtggtgcac cagctgcagg agatcgcggc cgcccgcaac gtgaacccca agtctcccat 1380
cacagagete etggageaga atggaggeta egggagegee acaetgteee gagggeeace 1440
eccteeegtg ggeeeegetg geagtggeta eagtggagge etggegetgg eggagtaega 1500
```

```
ccagccgtat ggcggcttcc tggacattct gcggggtggg acagagcggc tcttcaccaa 1560
cctcaaggac acctcctcca aggtcatcca gtccgtcgct aattatgcaa agggtgacct 1620
ggacatatet tacatcacat ccagaattge agtgatgtea tteccageag aaggtgtgga 1680
gtcagcgctc aaaaacaaca tcgaagatgt gcggttgttc ctggactcca agcacccagg 1740
gcactatgcc gtctacaacc tgtccccgag gacctaccgg ccctccaggt tccacaaccg 1800
ggtctccgag tgtggctggg cagcacggcg ggccccacac ctgcacaccc tgtacaacat 1860
ctgcaggaac atgcacgcct ggctgcggca ggaccacaag aacgtctgcg tcgtgcactg 1920
catggacggg agagccgcgt ctgctgtggc cgtctgctcc ttcctgtgct tctgccgtct 1980
cttcagcacc gcggaggccg ccgtgtacat gttcagcatg aagcgctgcc caccaggcat 2040
ctggccatcc cacaaaaggt acatcgagta catgtgtgac atggtggcgg aggagccat 2100
cacaccccac agcaagccca tcctggtgag ggccgtggtc attgacaccc gtgccgcgtg 2160 ttcagcaagc agaggagcgg ctgcaggccc ttctgcgagg tctacgtggg ggacgagcgt 2220 gtggccagca cctcccagga gtacgacaag atgcgggact ttaagattga agatggcata 2280
ggggtgattc ccctgggcgt cacggtgcaa ggagacgtgc tcatcgtcat ctatcacgcc 2340
eggtecaete tgggeggeeg getgeaggee aagatggeat eeatgaagat gttecagatt 2400
cagttccaca cggggtttgt gcctcggaac gccaccactg tgaaatttgc caagtatgac 2460 ctggacgcgt gtgacattca agaaaaatac ccggatttat ttcaagtgaa cctggaagtg 2520
gaggtggagc ccagggacag gccgagccgg gaagccccac catgggagaa ctcgagcatg 2580
agggggetga accccaaaat cetgttttec ageegggagg ageagcaaga cattetgtet 2640
aagtttggga agccggaget teeceggeag eetggeteea eggeteagta tgatgetggg 2700
gcagggtccc cggaagccga acccacagac tctgactcac cgccaagcag cagcgcggac 2760
gccagtcgct tectgcacac gctggactgg caggaagaga aggaggcaga gactggtgca 2820 gaaaatgcct cttccaagga gagcgagtct gccctgatgg aggacagaga cgagagtgag 2880
gtgtcagatg aagggggatc cccgatctcc agcgagggcc aggaacccag ggccgaccca 2940
gagececeeg geetggeage agggetggtg eageaggaet tggtttttga ggtggagaea 3000
eeggetgtge tgeeagagee tgtgeeacag gaagaegggg tegaeeteet gggeetgeae 3060
tccgaggtgg gcgcagggcc agctgtaccc ccgcaggcct gcaaggcccc ctccagcaac 3120
accgacctgc tcagctgcct ccttgggccc cctgaggccg cctcccaggg gcccccggag 3180
ageceecaag aggagggeee eetgeegetg etgaeecett tggeeegett etgeegtett 3300
caggcaacaa ctcccagccc tgctccaatc ctgatctctt cggcgaattt ctcaattcgg 3360
actotytyac cytoccacca toottoccyt ctycccacay cyctocyccc ccatcotyca 3420
gegeegaett cetgeacetg ggggatetge caggagagee cageaagatg acageetegt 3480
ccagcaaccc agacctgctg ggaggatggg ctgcctggac cgagactgca gcgtcggcag 3540
tggcccccac gccagccaca gaaggccccc tettetetec tggaggtcag ccggccctt 3600
gtggetetea ggeeagetgg accaagtete agaaccegga eccatttget gaeettggeg 3660
aceteagete eggeeteeaa gaceeecaag eecagageae agtgageeca aggggacage 3720
gtgtctgcac ctgttccagg cgactgccaa ctggcaagct aaaaccggga gttgctgaca 3780
etggcactge tgccagecce caceggcatt gtggeteace agetggatte ceteetgggg 3840
getteattee caaaaeggee accaegeeca aaggeageag eteetggeag acaagtegge 3900
cgccagecca gggcgcctca tggccccctc aggccaagec gcccccaaa gcctgcacac 3960
agccaaggcc taactatgcc tcgaacttca gtgtgatcgg ggcgcgggaa gagcgggggg 4020
teegegeace agetttgete aaaaceaaaa gtetetgaga aegaetttga agattgttgt 4080
ccaataaggc ttctcctcca ggtctgaaag aaagggcaaa gacattgcag agatgaggag 4140
aggacctggc taaagacacg gacccactca agctgaagct cctggactgg attgagggca 4200
aggageggaa cateegggee etgetgteea egetgeacae agtgetgtgg gaeggggaga 4260
geogetggae geoegtggge atggeegaee tggtggetee ggageaagtg aagaageaet 4320
ategeegege ggtgetgget gtgeaceeeg acaaggtgag cagagetgee aggeggeege 4380
<210> 20
<211> 4293
<212> DNA
```

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7526198CB1

<400> 20

					gtcctcacgg	
gcgcttacgt	cacggcgtcg	aggcggaaga	tggtgcacct	ccgggccggc	ggttgctgag	120
					ccgcggggtg	
					cgggtccagg	
					cggtggaact	
					catttgtgta	
					tatccaatga	
					tttccggcca	
					cagacacggg	
					aatttttgaa	
					tctaccagac	
					gggacctcaa	
					ttggcagtgc	
cacgaccatc	tcgcactacc	ctgactacag	ctggagcgcc	cagaggcgag	ccctggtgga	840
ggaagagatc	acgaggaata	caacaccaat	gtatagaaca	ccagaaatca	tagacttgta	900
ttccaacttc	ccgatcggcg	agaagcagga	tatctgggcc	ctgggctgca	tcttgtacct	960
getgtgette	cggcagcacc	cttttgagga	tggagcgaaa	cttcgaatag	tcaatgggaa	1020
					tccgcgccat	
					agctgcagga	
					tggagcagaa	
					geceegetgg	
					gcggcttcct	
ggacattctg	cggggtggga	cagagcggct	cttcaccaac	ctcaaggaca	cctcctccaa	1380
					acatcacatc	
cagaattgca	gtgatgtcat	tcccagcaga	aggtgtggag	tcagcgctca	aaaacaacat	1500
					tctacaacct	
gtccccgagg	acctaccggc	cctccaggtt	ccacaaccgg	gtctccgagt	gtggctgggc	1620
agcacggcgg	gccccacacc	tgcacaccct	gtacaacatc	tgcaggaaca	tgcacgcctg	1680
gctgcggcag	gaccacaaga	acgtctgcgt	cgtgcactgc	atggacggga	gageegegte	1740
tgctgtggcc	gtctgctcct	tcctgtgctt	ctgccgtctc	ttcagcaccg	cggaggccgc	1800
					acaaaaggta	
catcgagtac	atgtgtgaca	tggtggcgga	ggagcccatc	acaccccaca	gcaagcccat	1920
cctggtgagg	gccgtggtca	tgacacccgt	gccgctgttc	agcaagcaga	ggagcggctg	1980
					cccaggagta	
cgacaagatg	cgggacttta	agattgaaga	tggcatagcg	gtgattcccc	tgggcgtcac	2100
					gcggccggct	
					ggtttgtgcc	
					acattcaaga	
					gggacaggcc	
					ccaaaatcct	
					cggagcttcc	
					aagccgaacc	
					tgcacacgct	
					ccaaggagag	
					ggggatcccc	
gatetecage	gagggccagg	aacccagggc	cgacccagag	cccccggcc	tggcagcagg	2760
					cagageetgt	
gccacaggaa	gacggggtcg	acctcctggg	cctgcactcc	gaggtgggcg	cagggccagc	2880.
					getgeeteet	
					aggacccgct	
					gagggccccc	
					cccagccctg	
					tcccaccatc	
					tgcacctggg	
					acctgctggg	
					cagccacaga	
aggeceete	ttctctcctg	gaggtcagcc	ggccccttgt	ggctctcagg	ccagctggac	3420
					gcctccaaga	
cccccaagcc	cagagcacag	tgagcccaag	gggacagcgt	gtctgcacct	gttccaggcg	3540

```
actgccaact ggcaagctaa aaccgggagt tgctgacact ggcactgctg ccagccccca 3600
ceggeattgt ggeteaceag etggattece teetggggge tteattecea aaacggecac 3660
cacgcccaaa ggcagcagct cetggcagac aagtcggecg ccagcccagg gcgcctcatg 3720
gccccetcag gccaagccgc cccccaaagc ctgcacacag ccaaggccta actatgcctc 3780
gaactteagt gtgategggg egegggggga geggggggte egegeaceea getttgetea 3840
aaagccaaaa gtctctgaga acgactttga agatctgttg tccaatcaag gcttctcctc 3900
caggtctgac aagaaagggc caaagaccat tgcagagatg aggaagcagg acctggctaa 3960
agacacggac ccactcaagc tgaagctcct ggactggatt gagggcaagg agcggaacat 4020
ccgggccctg ctgtccacgc tgcacacagt gctgtgggac ggggagagcc gctggacgcc 4080
cgtgggcatg gccgacctgg tggctccgga gcaagtgaag aagcactatc gccgcgcggt 4140
gctggccgtg cacccgaca aggctgcggg gcagccgtac gagcagcacg ccaagatgat 4200
cttcatggag ctgaatgacg cctggtcgga gtttgagaac cagggctccc ggcccctctt 4260
ctgaggccgc agtggtggtg gctgcgcaca cag
<210> 21
<211> 6538
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526208CB1
<400> 21
ggagttactc agaagggaag ggaaggtgtg gttgtgcggc ggagtttttg ctttcattct 60
tttaacgttc acagccaaag caaaggcctt tggggattgc cagagtctca gccaccatcc 120
tggaaaacag cgggggaggt gggcctggag gtggcaagtg taatgtggct caggggccgt 180
cattgcccct tgcagaaggg gctgcggggg agggagaaaa cctgcgcccg gttctgggga 240
getggegaeg cagtgaacce tgetgagget gggttttgee cegacagteg etggtggetg 300
tgggaagggt tgggaccett ctctgagage agtgaacage ccacateegg eccetgetgt 360
gtcaactctg ageggegtgg agatgaagtg gttgetetee ettgetegge ceaeegggtg 420
tegtggeeeg ggaaceggee tggagaagte cetgetgeee ggegeeeaaa acaggggegt 480
gggetteege gacceaggge ggetgeeeeg ggecateete gagttgeeet geatetteee 540
gctcagtcag ccccagattg aggcagcett ctctgtgcgg gtttaaatgg gtaactgtga 600 cttctcgcct cattcaccca aacctccagt cttctcccc gcacatcctc ctccacccac 660
ctggtttctc cctagactgg tgtgctcgtg tgtgcaacca aaggagggag tgcgagagat 720
ccacgaaggg acaggcttgg agtcgctaga gggaggtgtg ggaccagcga ggaggggct 780
tegecaggga gggggtgetg geaggeggag ggageggegg gaggaggege eggaggagga 840 gaeggaggee tggggaegge agaagagget tegeetgage egagegetet ttetetegee 900
gcgccgtctt gaagccgcgc gggctcgtga gcagcgcgag gccgccaagg tgcctcgctt 960
cgccggagcc gctgccgccc gccggaggga agccggcctc gggcgcgcac gctcgtcgga 1020
geceeggege geceegegee tgageetget gaeagegeeg eggggeeagt eeeggggtta 1080
geogegete tgetegette tggteegteg egeteecage cagggeacag eceggacega 1140
ggatggette gaccacaace tgcaccaggt tcacggacga gtatcagett ttcgaggage 1200
ttggaaaggg ggcattctca gtggtgagaa gatgtatgaa aattcctact ggacaagaat 1260
atgetgeeaa aattateaae aeeaaaaage tttetgetag ggtgegaett catgatagea 1320
tatcagaaga gggctttcac tacttggtgt ttgatttagt tactggaggt gaactgtttg 1380
aagacatagt ggcaagagaa tactacagtg aagctgatgc cagtcattgc attcagcaga_1440 _ ...
tectggagge tgtgetaeae tgeeateaga tgggegtggt ceategggae etgaageetg 1500
agaatttgct tttagctagc aaatccaagg gagcagctgt gaaattggca gactttggct 1560
tagecataga agtteaaggg gaceageagg egtggtttgg ttttgetgge acacetggat 1620
atctttctcc agaagtttta cgtaaagatc cttatggaaa gccagtggat atgtgggcat 1680
gtggtgtcat tetetatatt etaettgtgg ggtatecace ettetgggat gaagaceaac 1740
acagaeteta teageagate aaggetggag ettatgattt teeateacea gaatgggaca 1800
cggtgactcc tgaagccaaa gacctcatca ataaaatgct tactatcaac cctgccaaac 1860
gcatcacage ctcagaggca ctgaagcace catggatety tcaacgttet actgttgett 1920
ccatgatgca cagacaggag actgtagact gcttgaagaa atttaatgct agaagaaaac 1980
taaagggtgc catcttgaca actatgctgg ctacaaggaa tttctcagca gccaagagtt 2040
tgttgaagaa accagatgga gtaaagaaaa ggaagtccag ttcgagtgtt cagatgatgg 2100
```

agtcaactga	gagttcaaat	acaacaattg	aggatgaaga	tgtggaagca	cgaaagcaag	2160
agattatcaa	agtcactgaa	caactgatcg	aagctatcaa	caatggggac	tttgaagcct	2220
					ggtaatttag	
					agcaataaac	
					gccgcctgca	
					acaatgcagt	
					cattttcatc	
					aaagaaaact	
					cacatatggg	
					ctggatggtg	
					gttgtgaagg	
tcctacatgt	aatgcatatg	tgatgcatca	tcttatcata	tattccttcc	tatacattgt	2820
ttacacttca	actacgggga	tgttccacac	aaacttaaat,	tactgttggc	aaaacaatag	2880
ggggagatta	gacaaaaaaa	aaaatccaca	atattccaag	tacaactctt	catcaagttt	2940
ctctqttaat	gccaagattt	aacagactta	agaactattg	ttctctgaat	gacagttgta	3000
					gtttggtttt	
					gatcctggtt	
					gatgatatgt	
					acataaagcc	
					gagtttaatc	
					ttttctttct	
					ctttcttatt	
					ggaggctggc	
					aagggaaata	
					cacaaaaatg	
		•	_		taggtatcct	
					cctcctgtga	
ctgcaacgtc	ttactgattg	ggacagttgc	caggaggata	ccaacttgat	agcagagggg	3780
gttttatgca	aacgcactca	cctccgcctt	ggggaatgaa	agggtcactt	ctgcatcatc	3840
					ataagtgttt	
					gagtatcatt	
					gtcctaggtt	
					gttetettee	
					agtaattcac	
					aacaaaaaca	
					cttagatatt	
					acacaattta	
					tgttaacctg	
					cttttaccct	
					gatgtagagt	
					atcaagtttg	
					atgaattaca	
					tgtatatatt	
					ttgtgatttc	
					gcctgcatag	
					ataacaattt	
					tctctaaact	
					acgaacctgt	
ccttgtaaca	ctttgatgtt	atcatttctg	ggatacaggo	aagcaccca	gctcctgcta	5040
					gctaaaaaca	
					tacctagaat	
					attcagtgta	
					ttccctctca	
aaacctacat	aatagattgt	atttacctct	cctatcaaco	acattotttt	gaaaatatat	5340
ttctatttat	atctcctcte	ctacaatata	atoteteest	. dddcaadaac	tgtgtattca	5400
					taaatagttg	
					gatagteett	
attttaat-	tagabbabab	crtyataaca	gaayeeteaa	. ggggtaccca	cctcttccct	5500
geeetaatga		thetasas-	gatgetet	. yaycaaycta	atanamatat	2200
Gugaceetea	guildeatat	ctytaaaatg	ayaataaaca	Laccaactta	ataaagatat	304U

```
tgtgaggatt aatgggtaca gagtgactag aatgatattt gatagaaatt aaatggtagc 5700
agtataacta ttctgatcac tgacattaat attcctattg ttattattct ttactcacga 5760
gggtatacaa ctcttgtttt gctgttgggc tgccctcttt atgtaggttt actgttaatg 5820
ctgaggatat actcggactc aaatgtctca gcagaaggct gagagacacc aaatgaagtg 5880
gtcatctagc tgaatgtagg aaaaatgaaa tgtagtagca aatcagtata ttctaaggaa 5940
attttcaagg aatattaatc ttcacccaaa ttttgaattt ttatgtaaaa aattataatt 6000
taagggtaaa catagatgac acagctttcg agtgatttca ttgaataaaa ttctactgac 6060
ttctatgaac ctttcatggc tctgtggtct ttttatcaga ttttttaaag gtgagaatgt 6120
acaaaaagat tacaatgaag atcaggtact agaccatgtg tccatgaacg tgaacaaaca 6180
getgteataa accaecetaa eetgagaaag cagcaggaag catttacage atteetgett 6240
ttctctcaga caaaaccaat tctcagaaga gagctagaat gttctcctgc agactggagt 6300
aggaaaagtt gataacagat taagcagtaa ttgtactcca gaaggatttg catttaggct 6360
tttgctgctt tacaacagaa aaaaaaaatt cttgtttgtc cgtaaaaagt gtttttatgt 6420
ttttttaaat gtcaccaaca tttaaaaatt ggatatgtca tgtaaaagtc aagatttctg 6480
gcttaattaa tttgaaaaag tgtaaggtct gccccactgg ttctgtgttc actacagc
<210> 22
<211> 2349
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526212CB1
<400> 22
ggagttactc agaagggaag ggaaggtgtg gttgtgcggc ggagtttttg ctttcattct 60
tttaacgttc acagccaaag caaaggcctt tggggattgc cagagtctca gccaccatcc 120
 tggaaaacag cgggggaggt gggcctggag gtggcaagtg taatgtggct caggggccgt 180
 cattgcccct tgcagaaggg gctgcggggg agggagaaaa cctgcgcccg gttctgggga 240
getggegaeg cagtgaacce tgctgagget gggttttgcc ccgacagtcg ctggtggctg 300
 tgggaagggt tgggaccctt ctctgagagc agtgaacagc ccacatccgg cccctgctgt 360
 gtcaactctg ageggegtgg agatgaagtg gttgctctcc cttgctcggc ccaccgggtg 420
 tegtggeeeg ggaaceggee tggagaagte cetgetgeee ggegeecaaa acaggggegt 480
 gggetteege gacceaggge ggetgeeeeg ggecateete gagttgeeet geatetteee 540
 gctcagtcag ccccagattg aggcagcctt ctctgtgcgg gtttaaatgg gtaactgtga 600 cttctcgcct cattcaccca aacctccagt cttctccccc gcacatcctc ctccacccac 660
 ctggtttctc cctagactgg tgtgctcgtg tgtgcaacca aaggagggag tgcgagagat 720
 ccacgaaggg acaggcttgg agtcgctaga gggaggtgtg ggaccagcga ggaggggct 780
 tcgccaggga gggggtgctg gcaggcggag ggagcggcgg gaggaggcgc cggaggagga 840
 gacggaggcc tggggacggc agaagaggct tcgcctgagc cgagcgctct ttctctcgcc 900
 gegeegtett gaageegege gggetegtga geagegegag geegeeaagg tgeetegett 960
 cgccggagec getgccgccc gccggaggga agccggcctc gggcgcgcac gctcgtcgga 1020
 gccccggcgc gccccgcgcc tgagcctgct gacagcgccg cggggccagt cccggggtta 1080
 geogegegte tgetegette tggteegteg egeteceage eagggeacag eceggacega 1140
 ggatggette gaccacaace tgcaccaggt tcacggacga gtatcagett ttcgaggage 1200
 ttggaaaggg ggcattctca gtggtgagaa gatgtatgaa aattcctact ggacaagaat 1260
 atgctgccaa aattatcaac accaaaaagc tttctgctag ggtgcgactt catgatagca 1320
 tatcagaaga gggctttcac tacttggtgg ttgatttagt tactggaggt gaactgtttg 1380
 aagacatagt ggcaagagaa tactacagtg aagctgatge cagtcattge attcagcaga 1440
 tectggagge tgtgctacac tgccatcaga tgggcgtggt ccatcgggac ctgaagcctg 1500
 agaatttgct tttagctagc aaatccaagg gagcagctgt gaaattggca gactttggct 1560
 tagccataga agttcaaggg gaccagcagg cgtggtttgg ttttgctggc acacctggat 1620
 atctttctcc agaagtttta cgtaaagatc cttatggaaa gccagtggat atgtgggcat 1680
 gtggtgtcat tetetatatt etaettgtgg ggtatecace ettetgggat gaagaccaae 1740
 acagacteta teageagate aaggetggag ettatgattt teeateacea gaatgggaca 1800
 cggtgactcc tgaagccaaa gacctcatca ataaaatgct tactatcaac cctgccaaac 1860
 geatcacage etcagaggea etgaageace catggatetg teaacgttet actgttgett 1920
 ccatgatgca cagacaggag actgtagact gcttgaagaa atttaatgct agaagaaaac 1980
```

```
taaagggtgc catcttgaca actatgctgg ctacaaggaa tttctcagca gccaagagtt 2040
tgttgaagaa accagatgga gtaaaggagt caactgagag ttcaaataca acaattgagg 2100
atgaagatgt gaaaggcacg gtggctcacg cctgtaatcc cagcactttg ggaggtcgag 2160
gegggeagat eacetgaggt caggagttea agaccageat ggecaacatg gtgaaaccet 2220
gtctctacta aaaatacaaa aattagctgg gtgtggtggc aggcacctgt aatcccagct 2280
actotggagg ctgagacagg agaatcgctt gaacccggga ggtggaggtt gcagtgagcc 2340
gagatcaca
<210> 23
<211> 8015
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526213CB1
<400> 23
agccgggcag ctgcagcgga gccgcggagc gggcggcggg gcccaggctg tgcgcttggg 60
gagcgcggaa tgtgaggett ggcgggccgc agcacgetcg gacgggccag gggcggcgac 120
ccetegegga egeceggetg egegeeggge eggggaettg ecettgeaeg etecetgege 180
cctccagctc gccggcggga ccatgaagaa gttctctcgg atgcccaagt cggagggcgg 240
cageggegge ggageggegg gtggegggge tggeggggee ggggeegggg eeggetgegg 300
ctccggcggc tcgtccgtgg gggtccgggt gttcgcggtc ggccgccacc aggtcaccct 360
ggaagagteg etggeegaag tgatacagat getgeeggtt eaggaaceae gtettgagta 420
ccgagtacca ctgatttcga gcgggcgaag aagactaaga agaaggtgct agagaggtgg 480
attetecaea gtttteeteg tgegtaetea eggtggaate egatgtgeat tgaagegaat 540
gtatgtcaat aacatgccag acctcaatgt ttgtaaaagg gaaattacaa ttatgaaaga 600
gctatctggt cacaaaaata ttgtgggcta tttgggctgt gctgttaatt caattagtga 660
taatgtatgg gaagteetta tettaatgga atattgtega getggaeagg tagtgaatea 720
aatgaataag aagctacaga cgggttttac agaaccagaa gtgttacaga tattctgtga 780
tacctgtgaa gctgttgcaa ggttgcatca gtgtaagact ccaataattc accgggatct 840
gaaggtagaa aatattttgt tgaatgatgg tgggaactat gtactttgtg actttggcag 900 tgccactaat aaatttctta atcctcaaaa agatggagtt aatgtagtag aagaagaaat 960
taaaaagtat acaactctgt catacagagc ccctgaaatg atcaaccttt atggagggaa 1020
acceateace accaaggetg atatetggge actgggatgt ctaetetata aactttgttt 1080
etteaetett cettttggtg agagteaggt tgetatetgt gatggeaact teaecatece 1140
agacaattet egttaeteee gtaacataca ttgettaata aggtteatge ttgaaccaga 1200
tccggaacat agacctgata tatttcaagt gtcatatttt gcatttaaat ttgccaaaaa 1260
ggattgtcca gtctccaaca tcaataattc ttctattcct tcagctcttc ctgaaccgat 1320
gactgctagt gaagcagctg ctaggaaaag ccaaataaaa gccagaataa cagataccat 1380
tggaccaaca gaaacctcaa ttgcaccaag acaaagacca aaggccaact ctgctactac 1440
tgccactccc agtgtgctga ccattcaaag ttcagcaaca cctgttaaag tccttgctcc 1500
tggtgaattc ggtaaccata gaccaaaagg ggcactaaga cctggaaatg gccctgaaat 1560 tttattgggt cagggacctc ctcagcagcc gccacagcag catagagtac tccagcaact 1620
acagcaggga gattggagat tacagcaact ccatttacag catcgtcatc ctcaccagca 1680
gcagcagcag cagcagcagc aacagcaaca gcagcagcag caacagcaac agcagcagca 1740
gcagcagcag cagcagcagc agcaccacca ccaccaccac cacactactt caagatgctt_1800
atatgcagca gtatcaacat ggcaacacag cagcaacaga tgcttcaaca acaattttta 1860
atgcattcgg tatatcaacc acaaccttct gcatcacagt atcctacaat gatgccgcag 1920
tateageagg etttettea acageagatg etageteaac ateageegte teaacaacag 1980
geateacetg aatatettae etecceteaa gagtteteae eageettagt ttectaeaet 2040
tcatcactte cageteaggt tggaaceata atggaeteet cetatagtge caataggtea 2100
gttgctgata aagaggccat tgcaaatttc acaaatcaga agaacatcag caatccacct 2160
gatatgtcag ggtggaatcc ttttggagag gataatttct ctaagttaac agaagaggaa 2220
ctattggaca gagaatttga ccttctaaga tcaagttctc ctgaaaagaa agctgaacat 2280
tcatctataa atcaagaaaa tggcactgca aaccctatca agaacggtaa aacaagtcca 2340
gcatctaaag atcagcggac tggaaagaaa acctcagtac agggtcaagt gcaaaagggg 2400
aatgatgaat ctgaaagtga ttttgaatca gatcccctt ctcctaagag cagtgaagag 2460
```

	atgatgaaga					
	aaaatctggg					
gaggagaaac	atagctctga	ttctgattat	gagcaggcta	aagcaaagta	cagtgacatg	2640
agctctgtct	acagagacag	atctggcagt	ggaccaaccc	aagatcttaa	tacaatactc	2700
ctcacctcag	cccaattatc	ctctgatgtt	gcagtggaga	ctcccaaaca	ggagtttgat	2760
	ctgtcccctt					
	tccctcaaca					
	aggcgccttt					
	atactatccc					
	tcctcacatc					
	atgaaataac					
gagactatco	tctcgccaaa	addadacad	aceanateta	tccasasata	ataggeeaca	3180
	acgccaacta					
	aggcacaaaa					
	actccaagga					
	aacctgagga					
	catggcaccc					
	cagggcggcc					
	tggatgattt					
	agtcccaaca					
	aacagtagat					
	gttttatgaa					
	tcagaatagg					
	aacttgattc					
	gctactgaca					
	ctttctaggt					
	gtcattttta					
agttacactt	gtgaattttt	tttaaggtct	cttttaattt	ccagacagtt	aaaaacaatc	4140
tagttatctt	aaagcattag	aaagttatta	tctggagagt	gcagagattt	cagtccatac	4200
acctttctcc	acaaagcaga	gccagaagta	actgactatt	gtgcctaaaa	ctctgtttca	4260
tttttaaaaa	caagtgccat	taaaatggaa	tatctaatga	taagcatatg	aaataatgtg	4320
taattagctc	aatttaacta	ttccacaact	tacatattcc	aaaacaatgt	tatacatgat	4380
	aatttttgtc					
agcctagaac	aaaaatatga	agagaaatat	ctgacatttg	taaagaaatt	ataagaagaa	4500
	agaacagaaa					
	ttattgtgat					
	aaaattttat					
	gtgaaatcat					
	gtcataagca					
	acagaatggt					
	gtacctctgc					
	tctgctagtt					
	accacaaatc					
	atatgtgaat					
	ataattgtgc					
	acagaaagga					
tttaaattaa	ctctcttcga	tetessarts	tattttacca	ateatttat	taggaatete	5280
	ccaatgggat					
	atgtaactaa					
tatestaat	caaatataga	tttataata	gcccccca	ateteaatea	coctettetta	5460
	aagcattaca					
	aaatatgttt					
	aaatgctcaa					
	aaagtgaaga					
	acaattttt					
	tccttggtct					
yaggatgaac	taatgtctcc	ttcagatgta	aacatgaaat	acctagagtt	ttacttgctt	2880
ccaacacac	tgaataattt	taaatgatto	tgacactgat	gtagaccctt	tgacttataa	5940
accecgagga	aacaactgac	agcataaaat	atttacattc	ttataacaca	gcacagtgac	6000

```
tttcttcttt caagattgta gctcagagaa aagatacagg attcaattgg gggttcaata 6060
ggatagaaat ggagagattc ctttgtgttg tagtagaggc attttcctaa ggagtataga 6120
tttatacttt gcattttcat tcatcatccc ccagaatcat ggtcaaggtg taggtcactc 6180
cacacagetg atgetcaggt tattecettg tgagaattat gagaataaag eteccaagat 6240
atgtgaaagt gettaacaca gtacetggca cacagcacte aataaaagtt tggetetatt 6300
atgggatggt tcaattctgg tttaaggaag gaagaaaggt tattatatat gtaccactaa 6360
gcaaatatat atatatat atatttgggg ttttttttcc ctaatattat ttgggtgtcc 6420
cetgtgette tttaggatgt agttataact aaacetgtta tacttgaaca tcactaagag 6480
aagtaaatta ttatgaagct agcaaaaatc ttgaggccaa agttgtttct taacagcttt 6540
aataatgett gttgattttg aataateett taaaaagtgg accatttget tattttaata 6600 teaegteagt aaaatgttag tattaaaaag ateagetttt tatggeattg aagaatgtat 6660
ctgctaagac acaaaaattg catggtaagt ataataggtg gaggaggaaa ggttgtaggc 6720
cggatgaaaa tttaactgac tagaacattt attcaggagt gtaattattt tcccttaccc 6780
caatcoctgt gtacgtgttg ggtatagtta cgacattatc cggatttgca aatagacaca 6840 actttcagtc ttaccctgtt tattgtttaa gagtgataga ctgttgtcct cttgctggtg 6900
gaaaatctaa ggtggagccc actcttctat gctgaagttc accaggcaga gcagttttct 6960
tacaagtcag ctactctgct tggtttattt taggttttgg tacttcacgt aagcactgtt 7020
agaaggtaca agtgtattaa tatcactagt tttgaggege ttgggtacat ttgtttttaa 7080
tatatttaga atgtgcagta aactttttc tcatttttt ttcttttag caaacttgtt 7140
attttaggtc caattattga gttgacagtc tactgtgaga atgagatgac atatctactg 7200
tgagaatacc ataaatgatg aatagtttat ttgagaactt ttatactcag tggtgtttat 7260
atattaagat aaaaatatgt acacacatgc atgtcacatc tctctactgt ggagttaatg 7320 tgaattttta aaaaatggaa ttgcaaccac aatcatatct aagagaacat tcactcctag 7380 tgagggttta caaaagctac taagagaata aggtagatga taatgcaaag ggtcatgatt 7440
tggggttatt tttgttttat tttaaaattt atactgctac ttttgaaaga attgtttta 7500
tgactatgct ctttttgtga ttgaaaagtc atctaataga agctgtatag aagctacttt 7560
 ttaattgctg gcaaacagct ttaagtgcac tttctttgat tacacttcca ttttttgtta 7620
aacttgaatt ttctgaagcc ttttatgtac cactaagcaa ataactttaa cctttaaata 7680
 aagcaaattt acatctttat tgtatttcta cttgttacaa aacatacttg ctaaagtaac 7740
 ttcagtcctc aaatatagct gggaaacaat tatgagatag actcagtctc cccctcccac 7800
 cecttttece etgecatate taattaagca etaactgatt ttattaettt attgeettta 7860
 cactgettat tetttttgae tgaattetgt eeetgattea etgttttgtt tgaaatttaa 7920
 agttattttc ttactgtatt tatcatacct gttttaatct gttttcttta aatgcaataa 7980
                                                                           8015
 atcccaaatg gattgcatat tctttataat cagtg
 <210> 24
 <211> 7945
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 7526214CB1
 <400> 24
 agccgggcag ctgcagcgga gccgcggagc gggcggcggg gcccaggctg tgcgcttggg 60
 gagegeggaa tgtgaggett ggegggeege ageaegeteg gaegggeeag gggeggegae 120
 cectegegga egeceggetg egegeeggge eggggaettg ecettgeaeg etecetgege. 180
 cetecagete geeggegga ecatgaagaa gttetetegg atgeecaagt eggaggegg 240
 cageggegge ggageggegg gtggegggge tggeggggee ggggeegggg eeggetgegg 300
 ctccggcggc tcgtccgtgg. gggtccgggt gttcgcggtc ggccgccacc aggtcaccct 360
 ggaagagtcg ctggccgaag gtacgggcgc ccggggaggc tcggacaggc aggtggattc 420
  tocacagttt toctogtgog tactcacggt ggaatccgat gtgcattgaa gcgaatgtat 480
 gtcaataaca tgccagacct caatgtttgt aaaagggaaa ttacaattat gaaagagcta 540
  tetggtcaca aaaatattgt gggctatttg gactgtgctg ttaattcaat tagtgataat 600
 gtatgggaag teettatett aatggaatat tgtegagetg gacaggtagt gaatcaaatg 660 aataagaage tacagacggg ttttacagaa ccagaagtgt tacagatatt etgtgatace 720
  tgtgaagetg ttgcaaggtt gcatcagtgt aagactccaa taattcaccg ggatctgaag 780
  gtagaaaata tttgctgaat gatggtggga actatgtact ttgtgacttt ggcagtgcca 840
```

ctaataaatt	tcttaatcct	caaaaagatg	gagttaatgt	agtagaagaa	gaaattaaaa	900
agtatacaac	tctgtcatac	agagcccctg	aaatgatcaa	cctttatgga	gggaaaccca	960
tcaccaccaa	ggctgatatc	tagacactag	gatgtctact	ctataaactt	totttcttca	1020
ctcttccttt	tggtgagagt	caggttggta	tetataataa	caacttcacc	atcccadara	1080
attetentta	ctcccgtaac	atagattget	taataaaatt	catcottcaa	coacatooca	1140
	tgatatattt					
	caacatcaat					
ctagtgaagc	agctgctagg	aaaagccaaa	taaaagccag	aataacagat	accattggac	1320
caacagaaac	ctcaattgca	ccaagacaaa	gaccaaaggc	caactctgct	actactgcca	1380
ctcccagtgt	gctgaccatt	caaagttcag	caacacctgt	taaagtcctt	actectaata	1440
	ccatagacca					
	acctcctcag					
	gagattacag					
agcagcagca	gcagcaacag	caacagcagc	agcagcaaca	gcaacagcag	cagcagcagc	1680
ageageagea	gcagcagcac	caccaccacc	accaccaccc	tacttcaaga	tgcttatatg	1740
cagcagtate	aacatggcaa	cacagcagca	acagatgctt	caacaacaat	ttttaatgca	1800
ttcggtatat	caaccacaac	cttctgcatc	acagtatcct	acaatgatgc	cgcagtatca	1860
gcaggctttc	tttcaacagc	agatgctagc	tcaacatcag	ccgtctcaac	aacaggcatc	1920
acctgaatat	cttacctccc	ctcaagagtt	ctcaccagcc	ttagtttcct	acacttcatc	1980
acttccagct	caggttggaa	ccataatgga	ctcctcctat	agtgccaata	ggtcagttgc	2040
tgataaagag	gccattgcaa	atttcacaaa	tcagaagaac	atcagcaatc	cacctgatat	2100
atcagagtag	aatccttttg	gagaggataa	tttctctaag	ttaacagaag	addaactatt	2160
ggacagaga	tttgaccttc	taaratcaar	ttctcctcaa	aaraaarctr	aggaattcatc	2220
tataaatcaa	gaaaatggca	ctagaccaag	tatcaacaac	aagaaageeg	atacaccacc	2220
tasacatcac	gaaaatggca	ageanagete	nathanana	gytaaaacaa	greeageare	2200
	cggactggaa					
tgaatetgaa	agtgattttg	aatcagatcc	cccttctcct	aagagcagtg	aagaggaaga	2400
gcaagatgat	gaagaagttc	ttcaggggga	acaaggagat	tttaagtgat	gatgatactg	2460
aaccagaaaa	tctgggtcat	aggcctctcc	tcatggattc	tgaagatgag	gaagaagagg	2520
agaaacatag	ctctgattct	gattatgagc	aggctaaagg	caaagtacag	tgacatgagc	2580
tctgtctaca	gagacggatc	tggcagtggg	accaacccaa	gatcttaata	caatactcct	2640
cacctcagcc	caattatcct	ctgatgttgc	agtggagact	cccaaacagg	agtttgatgt	2700
atttggcgct	gtccccttct	ttacagtaca	toctcaacao	ccccagcaag	aaaagaatga	2760
aaagaacctc	cctcaacaca	gattteetae	tgcaggactg	dadcaddadd	aatttgatgt	2820
attcacaaag	gcgcctttta	acaagaagat	reatritarea	reatrocatr	cautagaaga	2880
tgagggagat	actatecetg	attatoccas	aaatataaat	gtatgttatg	cagegggee	2040
	ctcacatcaa					
gecercigat	gaaataacgg	ggagccagca	gcaaaaagtc	aaacagcgca	gcttacagaa	3060
actgtcctct	cgccaaaggc	gcacaaagca	ggatatgtcc	aaaagtaatg	ggaagcggca	3120
rcarggcacg	ccaactagca	caaagaagac	tttgaagcct	acctatcgca	ctccagagag	3180
ggctcgcagg	cacaaaaaag	tgggccgccg	agactctcaa	agtagcaatg	aatttttaac	3240
catctcagac	tccaaggaga	acattagtgt	tgcactgact	gatgggaaag	atagggggaa	3300
tgtcttacaa	cctgaggaga	gcctgttgga	ccccttcggt	gccaagccct	tccattctcc	3360
agacctgtca	tggcaccctc	cacatcaggg	cctgagcgac	atccgtgctg	atcacaatac	3420
tgtcctgcca	gggcggccaa	gacaaaattc	actacatggg	tcattccata	gtgcagatgt	3480
attgaaaatg	gatgattttg	ataccatacc	ctttacagaa	cttataatac	aaagcatcac	3540
tecacateag	tcccaacagt	cccaaccagt	cgaattagac	ccatttggtg	ctactccatt	3600
teettetaaa	cagtagatac	ttctgatgga	ttctccccat	taactcctct	ttcasasaac	3660
	tttatgaatt					
. egogaacago	agaataggtg	atttataaat	aaaaaaaata	gaagaatga	atatatata	2790
adgateagee	agaacaggcg	atticidaat	aaaccaaata	gaagaatgaa	graceretae	3/60
agggtagtaa	ctcgattcct	cccaggaga	aaagggagct	aaaccgcaag	ccctaactaa	3840
gggtttetge	tactgacatc	acaacacaga	aatgcaagtg	tggtacttcc	agcgaaagca	3900
	ttctaggtgt					
atcagaatgt	catttttatg	tgcatatccc	taaaattagg	gttatttcta	catacactag	4020
ttacacttgt	gaatttttt	taaggtetet	tttaatttcc	agacagttaa	aaacaatcta	4080
gttatcttaa	agcattagaa	agttattatc	tggagagtgc	agagatttca	gtccatacac	4140
ctttctccac	aaagcagagc	cagaagtaac	tgactattgt	gcctaaaact	ctgtttcatt	4200
tttaaaaaca	agtgccatta	aaatggaata	tctaatgata	agcatatgaa	ataatgtgta	4260
attagctcaa	tttaactatt	ccacaactta	catattccaa	aacaatotta	tacatoataa	4320
atatataa	tttttgtcag	ttaaaacaaa	ttaaaaaaa	ggactategt	cacacadasa	4380
	-55				- 3 3 - 49	

cctagaacaa aaatatgaag agaaatatct gacatttgta aagaaattat aagaagaaaa 4440 aaagatacag aacagaaaac attcactact ttagaaacac tttatgcatg gcttcttgcc 4500 ccaaactttt attgtgatgg ccctaataaa gcagattatt ggaaaaattg gaggacaagg 4560 gttgtataaa aattttattt tatgaagaaa atatgtagcg gaaactgaat tttcaagaca 4620 tttacaatgt gaaatcatgt tgcatttaac aatgtacttt attagcaact tcaccaaata 4680 ttccccaagt cataagcaac aattatttt attaggtttt ggggggtgga gtagttttaa 4740 taaagtgcac agaatggtga cacccacaaa gccttatata aaggcaggat tcatgcatcc 4800 tgctgcaagt acctctgcac taatatacca gatcctaaaa tgcatataag gtggactagc 4860 atettaatte tgetagttga ttgtgtettt aetgaaaaga aeceagetae caatttgeet 4920 ttttttacac cacaaatcct aattagaaac ttgaggtttt atagaaatca tttaatgata 4980 gagattacat atgtgaatta atgtgaatat agtatctgtg cttcctgtgt ctatgactat 5040 tttaagatat aattgtgetg egetateaga ttaacatttg gaagttteta gaacagttaa 5100 tgetatttac agaaaggagt agaaactcat caactggeac tetetttgat ttttatattt 5160 taaattaact ctettegate teaaagtata ttttaegagt aattttatta ggaatetett 5220 atagtgcccc aatgggataa gctattgcct attttcacag ttctgaactt ggaaagaagc 5280 aaagtatatg taactaaagc acatattgtc tttttattgc tttttccctt cttttatatg 5340 ctaaatcaat atagatttgt ggatagggaa gcaatatgtg aatcacaatg tagcagaggc 5400 agaccaagca ttacattatt atttagagct ggactgcacc aattacttgt cetegtgcca 5460 aaggcaaata tgtttgcacc ttttttttt tttctgattc tcaggttgat taatactgct 5520 aatgcaaatg ctcaagtaga tgtttaaaaa ctttacaaaa tagattcaag tgatactttc 5580 ttttaaaagt gaagagttga tgattacaca tagtaaattc atgaactaca gtaggtttgt 5640 atcaaacaat tttttttaat gaaaatetgt tgaggtgtac acaatatget tettgattgt 5700 attagteett ggtetetget agaeeteatg agttteatea tttagaaaag gggtagagga 5760 tgaactaatg teteetteag atgtaaacat gaaataceta gagttttaet tgettteaa 5820 tacactgaat aattttaaat gattetgaca etgatgtaga eeetttgact tataaattet 5880 gaggaaacaa ctgacagcat aaaatattta cattcttata acacagcaca gtgactttct 5940 tctttcaaga ttgtagctca gagaaaagat acaggattca attgggggtt caataggata 6000 gaaatggaga gattcctttg tgttgtagta gaggcatttt cctaaggagt atagatttat 6060 actttgcatt ttcattcatc atcccccaga atcatggtca aggtgtaggt cactccacac 6120 agetgatget caggitatic cettgtgaga attatgagaa taaageteee aagatatgtg 6180 aaagtgetta acacagtace tggcacacag cactcaataa aagtttgget etattatggg 6240 atggttcaat tctggtttaa ggaaggaaga aaggttatta tatatgtacc actaagcaaa 6300 tatatata tatatatt tggggttttt tttccctaat attatttggg tgtcccctgt 6360 gettetttag gatgtagtta taactaaace tgttataett gaacateact aagagaagta 6420 aattattatg aagetageaa aaatettgag gecaaagttg tttettaaca getttaataa 6480 tgcttgttga ttttgaataa tcctttaaaa agtggaccat ttgcttattt taatatcacg 6540 tcagtaaaat gttagtatta aaaagatcag ctttttatgg cattgaagaa tgtatctgct 6600 aagacacaaa aattgcatgg taagtataat aggtggagga ggaaaggttg taggccggat 6660 gaaaatttaa ctgactagaa catttattca ggagtgtaat tattttccct taccccaatc 6720 cctgtgtacg tgttgggtat agttacgaca ttatccggat ttgcaaatag acacaacttt 6780 cagtettace etgtttattg tttaagagtg atagactgtt gteetettge tggtggaaaa 6840 tetaaggtgg ageceaetet tetatgetga agtteaecag geagageagt tttettacaa 6900 gtcagctact ctgcttggtt tattttaggt tittggtactt cacgtaagca ctgttagaag 6960 gtacaagtgt attaatatca ctagttttga ggcgcttggg tacatttgtt tttaatatat 7020 ttagaatgtg cagtaaactt ttttctcatt ttttttctt tttagcaaac ttgttattt 7080 aggtccaatt attgagttga cagtctactg tgagaatgag atgacatatc tactgtgaga 7140 ataccataaa tgatgaatag tttatttgag aacttttata ctcagtggtg ttttatatat 7200 taagataaaa atatgtacac acatgcatgt cacatctctc tactgtggag_ttaatgtgaa_7260_ tttttaaaaa atggaattgc aaccacaatc atatctaaga gaacattcac tcctagtgag 7320 ggtttacaaa agctactaag agaataaggt agatgataat gcaaagggtc atgatttggg 7380 gttatttttg ttttatttta aaatttatac tgctactttt gaaagaattg tttttatgac 7440 tatgetettt tigigatiga aaagteatet aatagaaget gtatagaage taetittitaa 7500 ttgctggcaa acagctttaa gtgcactttc tttgattaca cttccatttt ttgttaaact 7560 tgaattttct gaagcetttt atgtaccact aagcaaataa etttaacett taaataaage 7620 aaatttacat etttattgta tttctacttg ttacaaaaca tacttgctaa agtaacttca 7680 gtoctcaaat atagotggga aacaattatg agatagacto agtotococo toccaccoct 7740 ttteccetge catatetaat taageactaa etgattttat taetttattg cetttacaet 7800 gettattett titgactgaa tietgteeet gatteaetgt titgtitgaa atttaaagti 7860 attitettae tgtatttate atacetgtit taatetgtit tetttaaatg caataaatee 7920

caaatggatt gcatattctt tataa

```
<210> 25
 <211> 3149
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 7526228CB1
 <400> 25
 ctcgcggtat catccggtgc tgaggccctg taataaaggt ctcgcgaaat ttgttctaga 60
 ggtccaagtt gcttcttagc ttactccacc ccaccccaa cctgtccctc cttttctttc 120
 caagtcacaa aatteteece teecetacee eggagtttae ggeeeteete etgttteega 180
 tttcageceg gaaceggaag tgaagtggge ggggeeegte ggeggaaaae geageggage 240
 cagagoogga cacggotgtg googetgeet etaccoogg cacggatege ogggtagtag 300
 gactgcgcgg ctccaggctg agggtcggtc cggaggcggg tgggcgcggg tctcacccgg 360
 attgtccggg tggcaccgtt cccggcccca ccgggcgccg cgagggatca tgtctacagc 420
 ctctgccgcc tcctcctcct cctcgtcttc ggccggtgag atgatcgaag ccccttccca 480
 ggtcctcaac tttgaagaga tcgactacaa ggagatcgag gtggaagagg ttgttggaag 540
 aggagccttt ggagttgttt gcaaagctaa gtggagagca aaagatgttg ctattaaaca 600
 aatagaaagt gaatctgaga ggaaagcgtt tattgtagag cttcggcagt tatcccgtgt 660
 gaaccatect aatattgtaa agetttatgg ageetgettg aatecagtgt gtettgtgat 720
 ggaatatget gaaggggget cittatataa tgtttgtgee tttetttege agtgetgeat 780
 ggtgctgaac cattgccata ttatactgct gcccacgcaa tgagttggtg tttacagtgt 840
 tcccaaggag tggcttatct tcacagcatg caacccaaag cgctaattca cagggacctg 900
 aaaccaccaa acttactgct ggttgcaggg gggacagttc taaaaatttg tgattttggt 960
 acagcctgtg acattcagac acacatgacc aataacaagg ggagtgctgc ttggatggca 1020
 cctgaagttt ttgaaggtag taattacagt gaaaaatgtg acgtcttcag ctggggtatt 1080
 attetttggg aagtgataae gegteggaaa eeettttgat gagattggtg geeeagettt 1140
 cegaatcatg tgggctgttc ataatggtac tegaccacca etgataaaaa atttacctaa 1200
 geceattgag agectgatga etegtigttg gtetaaagat cetteecage geeetteaat 1260
 ggaggaaatt gtgaaaataa tgactcactt gatgcggaga aatatttgct gttttcttca 1320 agactatcta gactccaatg taagctagat tcttagtact ttccaggagc agatgagcca 1380
 ttacagtate ettgteagta tteagatgaa ggacagagea aetetgeeae eagtacagge 1440
 tcattcatgg acattgcttc tacaaatacg agtaacaaaa gtgacactaa tatggagcaa 1500
 gttcctgcca caaatgatac tattaagcgc ttagaatcaa aattgttgaa aaatcaggca 1560
 aagcaacaga gtgaatctgg acgtttaagc ttggggagcc tcccgtggga gcagtgtgga 1620
 gagettgece ceaacetetg agggeaagag gatgagtget gacatgtetg aaatagaage 1680
 taggategee geaaceacag geaacggaca gecaagaegt agatecatee aagaettgae 1740
 tgtaactgga acagaacctg gtcaggtgag cagtaggtca tccagtccca gtgtcagaat 1800
 gattactacc tcaggaccaa cctcagaaaa gccaactcga agtcatccat ggacccctga 1860
 tgattccaca gataccaatg gatcagataa ctccatccca atggcttatc ttacactgga 1920
 tcaccaacta cagcetetag caccgtgeec aaactecaaa gaatetatgg cagtgtttga 1980
 acagcattgt aaaatggcac aagaatatat gaaagttcaa acagaaattg cattgttatt 2040
 acagagaaag caagaactag ttgcagaact ggaccaggat gaaaaggacc agcaaaatac 2100
 atctcgcctg gtacaggaac ataaaaagct tttagatgaa aacaaaagcc tttctactta_2160.___.
 ctaccagcaa tgcaaaaaac aactagaggt catcagaagt cagcagcaga aacgacaagg 2220
 cacticatga tictotggga cogttacatt tigaaatatg caaagaaaga cittitita 2280
 aggaaaggaa aaccttataa tgacgattca tgagtgttag ctttttggcg tgttctgaat 2340
 gccaactgcc tatatttgct gcattttttt cattgtttat tttccttttc tcatggtgga 2400
 catacaattt tactgtttca ttgcataaca tggtagcatc tgtgacttga atgagcagca 2460
 ctttgcaact tcaaaacaga tgcagtgaac tgtggctgta tatgcatgct cattgtgtga 2520
 aggctagect aacagaacag gaggtateaa actagetget atgtgcaaac agegtecatt 2580
 ttttcatatt agaggtggaa cctcaagaat gactttattc ttgtatctca tctcaaaata 2640
 ttaataattt ttttcccaaa agatggtata taccaagtta aagacagggt attataaatt 2700
 tagagtgatt ggtggtatat tacggaaata cggaaccttt agggatagtt ccgtgtaagg 2760
 getttgatge cageateett ggateagtae tgaacteagt tecateegta aaatatgtaa 2820
```

7945

```
agataagcaa gatctaagaa gttatcaaaa ctattcttta aaatgctaaa gcagctcctg 2880
tagecagaga teacaggtet teeetgtgaa actttggttt etttetataa atgtgtgtgg 2940 tttteagege teaacteetg tetteaaatg gtagtaagtt etaettetae ttetgteatt 3000
cagaacattt tatgtcaaat gatgtaatgc agaaattctt gtgcatattt gtaactgaag 3060 gaagcttttt agatttattt ttgtttttaa taaaattcag attcctattc taaactggta 3120
cataaaagtg gtgaatgact tgtatcagc
<210> 26
<211> 3617
<212> 'DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 7526246CB1
<400> 26
taagatggcg gacctggagg cggtgctggc cgacgtgagc tacctgatgg ccatggagaa 60
gagcaaggcc acgccggccg cgcgcgccag caagaagata ctgctgcccg agcccagcat 120
ccgcagtgtc atgcagaagt acctggagga ccggggcgag gtgacctttg agaagatctt 180
ttcccagaag ctggggtacc tgctcttccg agacttctgc ctgaaccacc tggaggaggc 240
caggcccttg gtggaattct atgaggagat caagaagtac gagaagctgg agacggagga 300
ggagcgtgtg gcccgcagcc gggagatett cgactcatac atcatgaagg agetgctggc 360
ctgctcgcat cccttctcga agagtgccac tgagcatgtc caaggccacc tgggggaagaa 420
gcaggtgcct ccggatetet tecagecata categaagag atttgtcaaa acetecgagg 480
ggacgtgttc cagaaattca ttgagagcga taagttcaca cggttttgcc agtggaagaa 540
tgtggagctc aacatccacg tgagtgggct tgggtggggc atggaaagcc acgcaccctg 600
ctgctcctct cccgggaget gggcctgtgg cttggctggg agggggaggt caggggatgt 660
ctgtccttta gcccccaggg ccgtggctat gggggtcagg gccgggatcc cagcatgggg 720
aggeeggage aggtaaatat gtggeaagga tggeeággae atgggtatgg ggaeeetgge 780
atggggccag cecetgetge ccaggtgeet etgececagg getgggcaga ggcageetgt 840
ggtgaccgca gctgtcgctg cccctcagct gaccatgaat gacttcagcg tgcatcgcat 900
cattgggcgc gggggctttg gcgaggtcta tgggtgccgg aaggctgaca caggcaagat 960
gtacgccatg aagtgcctgg acaaaaagcg catcaagatg aagcaggggg agaccctggc 1020
cctgaacgag cgcatcatgc tctcgctcgt cagcactggg gactgcccat tcattgtctg 1080
catgicatac gcgttccaca cgccagacaa gctcagcttc atcctggacc tcatgaacgg 1140 tggggacctg cactaccacc tctcccagca cggggtcttc tcagaggctg acatgcgctt 1200
ctatgcggcc gagatcatcc tgggcctgga gcacatgcac aaccgcttcg tggtctaccg 1260
ggacctgaag gggcacccac gggtacatgg ctccggaggt cctgcagaag ggcgtggcct 1320
acgacagcag tgccgactgg ttctctctgg ggtgcatgct cttcaagttg ctgcgggggc 1380
acageceett ceggeageac aagaceaaag acaageatga gategaeege atgaegetga 1440
cgatggccgt ggagctgccc gactccttct cccctgaact acgctccctg ctggaggggt 1500
 tgctgcagag ggatgtcaac cggagattgg gctgcctggg ccgagggggct caggaggtga 1560
aagagagccc ctttttccgc tccctggact ggcagatggt cttcttgcag aagtaccctc 1620
ccccgctgat cccccacga ggggaggtga acgcggccga cgccttcgac attggctcct 1680
 tcgatgagga ggacacaaaa ggaatcaagt tactggacag tgatcaggag ctctaccgca 1740
 acttcccct caccatctcg gagcggtggc agcaggaggt ggcagagact gtcttcgaca 1800
- ccatcaacgc tgagacagac cggctggagg ctcgcaagaa agccaagaac aagcagctgg. 1860. ....
 gccatgagga agactacgcc ctgggcaagg actgcatcat gcatggctac atgtccaaga 1920
 tgggcaaccc cttcctgacc cagtggcagc ggcggtactt ctacctgttc cccaaccgcc 1980
 tcgagtggcg gggcgagggc gaggccccgc agagcctgct gaccatggag gagatccagt 2040
 cggtggagga gacgcagatc aaggagcgca agtgcctgct cctcaagatc cgcggtggga 2100
 aacagttcat tttgcagtgc gatagcgacc ctgagctggt gcagtggaag aaggagctgc 2160
 gcgacgccta ccgcgaggcc cagcagctgg tgcagcgggt gcccaagatg aagaacaagc 2220
 cgcgctcgcc cgtggtggag ctgagcaagg tgccgctggt ccagcgcggc agtgccaacg 2280
 qcctctgacc cgcccacccg ccttttataa acctctaatt tattttgtcg aatttttatt 2340
 atttgttttc ccgccaagcg gaaaaggttt tattttgtaa ttattgtgat ttcccgtggc 2400
 cccagcctgg cccagctccc ccgggagggg cccgcttgcc tcggctcctg ctgcaccaac 2460
 ccagccgctg cccggcgccc tctgtcctga cttcaggggc tgcccgctcc cagtgtcttc 2520
```

```
etgtggggga agagcacage cetecegece etteceegag ggatgatgee acaccaaget 2580
gtgccaccet gggctctgtg ggctgcactc tgtgcccatg ggcactgctg ggtggcccat 2640
ccccctcac cagggcaggc acagcacagg gatccgactt gaattttccc actgcaccc 2700
etectgetge agaggggeag geeetgeact gteetgetee acagtgttgg egagaggagg 2760
ggcccgttgt ctccctggcc ctcaaggcct cccacagtga ctcgggctcc tgtgccctta 2820
ttcaggaaaa gcctctgtgt cactggctgc ctccactccc acttccctga cactgcgggg 2880
cttggctgag agagtggcat tggcagcagg tgctgctacc ctccctgctg tcccctcttg 2940
ccccaacccc cagcacccgg gctcagggac cacagcaagg cacctgcagg ttgggccata 3000
etggeetege etggeetgag gtetegetga tgetgggetg ggtgeegeeg eetegeeeae 3060
cgcatgcccc ctcgtgccag tcgcgctgcc tgtgtggtgt cgcgccttct ccccccggg 3120
gctgggttgg cgcaccetec cetecegtet acteattece eggggegttt etttgeegat 3180
ttttgaatgt gattttaaag agtgaaaaat gagactatgc gtttttataa aaaatggtgc 3240
ctgattcggc tgtctcagac tctttttgta cctggtgacc ccttttcagc ttctgctggg 3300
ctggggcctg atggggaggg tctcggtggt accaggtctc ctccaccgcc atggcttcca 3360
aggtggtetg etegggeeca ggeeatette caggtggggt gaggeagtgg gteecaette 3420
cectectace ecteceaget gacagteete tecacetagt ggetgteeag tgeceattee 3480
teacetttte eeggggagga gagageaget tetgeeaett eeeaggtaag eaggaggagg 3540
tgccaacagt gttaggcctg gcacagtgtc tgggctgact gggaccgtct caggcccaca 3600
gaacacccct gcacage
<210> 27
<211> 1955
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526258CB1
<400> 27
agtgcctgcc gggagccacg tctccgaaga ccgatagctg cttcgggatt ggcgtccggg 60
eggetateta ggggetgetg ggaagatgge ggaeteggtg getageegat gaggaggeeg 120
cggggggaac ccggccccg ggccccgaga ccgactgagg gagcgacctg cgcagggccc 180 ggggagtcat ggtctccatc acceaactcc atgcttcgag tcctgctctc tgctcagacc 240
teccetgete ggetgtetgg cetgetgetg atcectceag tacagecetg etgtttgggg 300
cccagcaaat ggggggaccg gcctgttgga ggaggcccca gtgcaggtcc tgtgcaagga 360
ctgcagcggc ttctggaaca ggcgaagagc cctggggagc tgctgcgctg gctgggccag 420
aaccccagca aggtgcgcgc ccaccactac teggtggcgc ttcgtcgtct gggccagctc 480
ttggggtete ggecaeggee eceteetgtg gageaggtea caetgeagga ettgagteag 540
ctcatcatcc gtaactgccc ctcctttgac attcacacca tccacgtgtg tctgcacctt 600
geagtettae ttggetttee atetgatggt eeeetggtgt gtgeeetgga acaggagega 660
aggeteegee teeeteegaa geeaceteee eetttgeage eeetteteeg agaggeaagg 720
ccagaggaac tgactcccca cgtgatggtg ctcctggccc agcacctggc ccggcaccgg 780
ttgcgggagc cccagcttct ggaagccatt acccacttcc tggtggttca ggaaacgcaa 840
etcagcagca aggtggtaca gaagttggtc etgecetttg ggcgaetgaa etacetgece 900
ctggaacagc agtttatgcc ctgccttgag aggatcctgg ctcgggaagc aggggtggca 960
cccctggcta cagtcaacat cttgatgtca ctgtgccaac tgcggtgcct gcccttcaga 1020
gccctgcact ttgttttttc ccctggcttc atcaactaca tcagtggcac ccctcatgct_1080
ctgattgtgc gtcgctacct ctccctgctg gacacggccg tggagctgga gctcccagga 1140
taceggggte ecegeettee eegaaggeag caagtgeeca tettteecea geeteteate 1200
accgaccgtg cccgctgcaa gtacagtcac aaggacatag tagctgaggg gttgcgccag 1260
ctgctggggg aggagaaata ccgccaggac ctgactgtgc ctccaggcta ctgcacaggt 1320
gagcaagggg caggcggcag gcccggggag acggagccct ggctaaggcc gccggccctg 1380 ctcccctcca gacttcctgc tgtgcgccag cagctctggt gctgtgcttc ccgtgaggac 1440
ccaggacccc ttcctgccat acccaccaag gtcctgccca cagggccagg ctgcctctag 1500
cgccactact cgagaccctg cccagaggta aaggaggcag ggtgggggag ccctggccac 1560
cttgcccgcc atgccctgag ccacgtccct cccctgcag ggtggtgctg gtgttgcggg 1620
aacgctggca tttctgccgg gacggccggg tgctgctggg ctcgagggcc ctgagggagc 1680 ggcacctagg cctgatgggc taccagctcc tgccgctacc cttcgaggaa ctggagtccc 1740
```

```
agagaggeet geeceagete aagagetace tgaggeagaa geteeaggee etgggeetge 1800
gctgggggcc tgaagggggc tgaggggttg atgtggggtt caggatggcc cccccatggg 1860
teccegttgt gaateteagt tttgggaegg ggage
<210> 28
<211> 2937
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 7526311CB1
gcgcaggggg ccgggctccg gctaggaggg tgggggccgc gccggtgaca gccgatcccc 60
geceetgetg eeegeeacgt eeeteacgta eeacteggea gaggegeggg gaaacetgge 120
gtactggctg tggcttctct agcgggactc ggcatgaggc tggcgcggct gcttcgcgga 180
geogeettgg eeggeeggg eeeggggetg egegeegeeg getteageeg eagetteage 240
teggactegg getecagee ggegteegag egeggegtte egggeeaggt ggacttetae 300
gegegettet egeegteece getetecatg aagcagttee tggacttegg atcagtgaat 360
gcttgtgaaa agacctcatt tatgtttctg cggcaagagt tgcctgtcag actggcaaat 420
ataatgaaag aaataagtet eetteeagat aatettetea ggacaceate egtteaattg 480
gtacaaaget ggtatateea gagtetteag gagettettg attttaagga caaaagtget 540 gaggatgeta aagetattta tgaaaggeet agaagaacat ggttgeaggt etetagttta 600
tgctgtatgg cctgcaagat gatctttatt gtttggtgga aaaggcaaag gaagtccatc 660
tcatcgaaaa cacattggaa gcataaatcc aaactgcaat gtacttgaag ttattaaaga 720
tggctatgaa aatgctaggc gtctgtgtga tttgtattat attaactctc ccgaactaga 780
acttgaagaa ctaaatgcaa aatcaccagg acagccaata caagtggttt atgtaccatc 840
ccatctctat cacatggtgt ttgaactttt caagaatgca atgagagcca ctatggaaca 900
ccatgccaac agaggtgttt accccctat tcaagttcat gtcacgctgg gtaatgagga 960
tttgactgtg aagatgagtg accgaggagg tggcgttcct ttgaggaaaa ttgacagact 1020
tttcaactac atgtattcaa ctgcaccaag acctcgtgtt gagacctccc gcgcagtgcc 1080
tctggctggt tttggttatg gattgcccat atcacgtctt tacgcacaat acttccaagg 1140 agacctgaag ctgtattccc tagagggtta cgggacagat gcagttatct acattaaggc 1200
tetgteaaca gacteaatag aaagacteee agtgtataac aaagetgtet ggaageatta 1260
caacaccaac cacgaggetg atgactggtg cgtccccagc agagaaccca aagacatgac 1320
gacgttccgc agtgcctaga cacacttggg acatcggaaa atccaaatgt ggcttttgta 1380.
ttaaatttgg aagtgtggcc cagagttgct cagaattgga gcagagcctg agacgtatct 1440
gcagatcctg tcatcagctg gcaagtccag gagactgtgt catttagaga ctgtgttgtt 1500
agttatccct caacatcttc taaggtggca ggaaataata ttggaaataa cattttaaag 1560
taaaaatttt aaagtttaaa gaagagtttt gccacttaaa caggggagct ttgtctggaa 1620
aatacactga gttgaaacac ttcatccttg gaaggattat ataagatgaa cagttgtgat 1680
aaatgtgtag attagaggga tgtgaatggg cagttagtcc agtgccctca tttaagaggc 1740
caagateetg atteagagga ggeateettt geeeagaget gettagetaa tetgaeeaaa 1800
tgttgggaaa aatgtctcac ctaacccact attccttaat tatggatttt gtgaaaaaca 1860
atagaacatg ttaatgagta atttatatta gttcgatgta ttacaatttt ttagctttaa 1920
attacagttt tottataatg ttgaaatgtt ttagaatcct ttgaatctaa gtatttgttt 1980 .
cctaaatgaa acatttgtac aacatttgat gtttttactt atgaaatatt ctcctcccc 2040
aagaaaattt aaactttttc tctctattta aaagctaaga aatgttttaa aggaaaaatg 2100
aaattatett eetttagett attittaagg taaaacaget tittaetetg ttatigtggt 2160
aatggacaga atattacata caaaaatatt ctgggagagc tttttcctag ttggttttaa 2220
atcattgtgc cacctgaaag gtttttagat tttataggag ctaatttgtc caccagcatt 2280
aatgtaacac agtgtagtta tgaaaatata ttgaaggaca ggaagtggac acgaagtgat 2340
 ttttgtaacc tgagcagtta atgaatgtgc caacattttc taggaaggga cagcaagaat 2400
attetgetet gtagttaaaa taetggetgg ettttgatgt etteatgett aattgtgate 2460
actttcttqc actqtqatqt ttttacqtqa atatqttqaa gtagaagtct accatattat 2520
 tttataaaat gttttctgta tggcaataaa ctgaaaacat ggatcaaccc ttcttttgaa 2580
aataaactga gtcaatttag ccttttaaaa atatagtcat ctcttttaaa tagaatcctc 2640
```

```
ttccaccatc aaggetcaac attttgtaag catccaaaaa attggtaatt agggggettg 2700
cactaaattt cactatette agtagagagg aactgtttgg aacttagatt tecaatgtgt 2760
atattetaat ggagaaagca agaggtagag tttgtatgtt tgacttacct tagattttta 2820
ttttccatac atactgcaaa tgattgactt gttgcataaa tgaagatctt ctgttgtgtg 2880
cttttcaaac actgtaaata aatttgaaat ttgaataact ttccacagta taactgt
<210> 29
<211> 6122
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526315CB1
<400> 29
ctgagaggag acctggtgac acagtagcct ttcggcagag ctccttggga tgagtaggaa 60
gtgctgctgc aggttttgtc tgggggatat ctgagccatt tctctgtggg cagctgtgtt 120
tcaaagtctg ggcaggttgt tgttgaattt tgcgtgggct gccaggattt tgtggaagta 180
taatactttg tcattatgag atgtcgtctc tcggtgcctc ctttgtgcaa attaaatttg 240
atgacttgca gttttttgaa aactgcggtg gaggaagttt tgggagtgtt tatcgagcca 300
aatggatatc acaggacaag gaggtggctg taaagaagct cctcaaaata gagaaagagg 360
cagaaatact cagtgtcctc agtcacagaa acatcatcca gttttatgga gtaattcttg 420
aacctcccaa ctatggcatt gtcacagaat atgcttctct gggatcactc tatgattaca 480
ttaacagtaa cagaagtgag gagatggata tggatcacat tatgacctgg gccactgatg 540
tagecaaagg aatgeattat ttaeatatgg aggeteetgt caaggtgatt caeagagaee 600
tcaagtcaag aaacgttgtt atagctgctg atggagtatt gaagatctgt gactttggtg 660
cctctcggct ccataaccat acaacacaca tgtccttggt tggaactttc ccatggatgg 720
ctccagaagt tatccagagt ctccctgtgt cagaaacttg tgacacatat tcctatggtg 780
tggttctctg ggagatgcta acaagggagg tcccctttaa aggtttggaa ggattacaag 840
tagettgget tgtagtggaa aaaaacgaga ggetaaagaa actagagegt gateteaget 900
ttaaggagca ggagcttaaa gaacgagaaa gacgtttaaa gatgtgggag caaaagctga 960
cagageagte caacaccccg ettetettge etettgttge aagaatgtet gaggagtett 1020
actttgaatc taaaacagag gagtcaaaca gtgcagagat gtcatgtcag atcacagcaa 1080
caagtaacgg ggagggccat ggcatgaacc caagtctgca ggccatgatg ctgatgggct 1140
ttggggatat cttctcaatg aacaaagcag gagetgtgat gcattctggg atgcagataa 1200
acatgcaagc caagcagaat tettecaaaa ccacatetaa gagaaggggg aagaaagtca: 1260
acatggetet ggggtteagt gattttgaet tgteagaagg tgaegatgat gatgatgatg 1320
acggtgagga ggaggataat gacatggata atagtgaatg aaagcagaaa gcaaagtaat 1380
aaaatcacaa atgtttggaa aacacaaaag taacttgttt atctcagtct gtacaaaaac 1440
agtaaggagg cagaaagcca agcactgcat ttttaggcca atcacattta catgaccgta 1500
atticttatc aattetactt ttattittgc ttacagaaaa acggggggag aattaagcca 1560
aagaagtaca tttatgaatc agcaaatgtg gtgcctgatt atagaaattt gtgatcctat 1620
atacaatata ggacttttaa agttgtgaca ttctggcttt ttcttttaat gaatactttt 1680
tagtttgtat ttgactttat ttcctttatt caaatcattt ttaaaaactt acattttgaa 1740
caaacactet țaactectaa ttgttetttg acacgtagta attetgtgac atacttttt 1800
tttcttatag caatacactg taatatcaga aatggttggc ctgagcaacc tagtaagacc 1860
togtototac taataattaa aaaactagot ggcatggtag cacacacotg tagtoccaga_1920.
tacttgggag gecaaggeag gaggattget tgagacetag caatcagtca gggetgeagt 1980
gagocatgat ggcaccactg cactotagco tgggcaagag aacaagatco tgtctcaaaa 2040
aacaaaaaa agaaagaatt gatagtacaa aatccaacaa caatactgag atgatctaag 2100
aaggttataa caaaatgctc ttcagaaata cctaagtgct gagaattttt agtactaaag 2160
agcacagctg ctcaaagtaa agcctgagca gtgttctcag taatgtattt gaaggaaaaa 2220
taccctgatt tgaaaccaac agcagatgtt gcaaactttc ataccactgc tggccatgga 2280
agestettaa saacasatg tsatttaagg stgtgettgt getttatasa aagagaaaga 2340
ggtggtctta aggggatgct tccagggggt gagttcatgc ctctcctgta ttttccagca 2400
agtggggtat gtgtggtggt tgttttttag aggggcataa taatccagga ttctaagcat 2460
atgotoagot attittaaaga ggaaattaaa tattataaaa gaaatagtaa agataagtta 2520
tecteactta ggeaaaagea caggteettt ecatateaag tttageetae cagggttgtt 2580
```

ttttgtttta accetgetta ataatgttgg tgttttagaa gtagatacag gcactgetet 2640 gaaaacctgg ctagccaagg atattctcag aatgttatca cctgtttgtc aaagcttgtt 2700 taaattataa aacactttta attatatata tgaggcaaaa gaactaagac ttttttcaaa 2760 ctaaattaga aaggagtgtc attatttgac tgttaaacca aaatattttt ggtgggtctt 2820 tttatggaag tttaaagaaa ggacatcatc atagatatga tctaacagta tttctaacta 2880 tatttgatca ttaaaagcct cttggaattt gaagcgtgac gtgtttctaa tgccccttga 2940 gaggtgaaaa ataccacata atgatcagta tgctgtgcca gcttcatttg gggagaaata 3000 actagtagaa agttetgggt gtgaggtgta cageagteta ggtggeatag tgatgaagaa 3060 agggatcaga gtctgactgt cactcagaat cctgggctca gttgcttgac aaccttggga 3120 aaattgtttt atctttgtgc gtctgtttgc tgatcttcag cgtgggaata ataacagtac 3180 ctacttgaaa ggatcattgt gcggattaaa agaaataata tatgtaaagc actttaacac 3240 agcaccaggc ccacggaaag tggctaatgt tagctactat gaatggtgcc agtgaagaca 3300 ctgaaaaata agtgatttca gtaaccttct ggaaagctat cagtttcaaa taatattttc 3360 tetgtagtat gagatgaaat taaaagtgga tagettteag gaaagataaa gagaacatge 3420 ttagaatgta agctaaacag attttttctg ttgctctttg aaaactatga gccctggcca 3480 gettaacetg gtetgaggtg agaetaaaea caaaaaeagt agataaatet eteeetaaaa 3540 gatggattcc cccacatacc catgctacta gtttctctgt ctattcacac atatgtacaa 3600 atacatgaac acageetgte tgtgeteaga catagagaag taetaeetga ettgagteaa 3660 tgcacccaag aagaaaagct tggagtagag cagaagggag ggcttgggac tcctgtcttt 3720 ccagcatgcc ctggggtgca gtggtcagcc acctgaagag agagccaata gccatggggt 3780 ttacaaggca aagatagtca ttcattcaaa cacatattca tagaagctcc ttctctgtgc 3840 cagacaactg ttctggaaga tagctagatg aaaatctttg cactcacagg agcttaacat 3900 gccagtgagt gaagatcgat gataaataaa gcaaatgcat catatgttca catttgataa 3960 gtatatgcca aaaaatgaag ccgggaagga ggacaaggcc catgggtggg tgttgaggtt 4020 tttaaagtgt ggtcaggaaa ggccccactg ataaggtaac atttgagcaa gtctgaaaaa 4080 ggcaagggga tctttggggc taacttcggg atccctgcac tttatgtaag aatgtaaacc 4140 tggagtetea tttaagaatg atcageaata egtttagaae atatgaaetg aatgaaatgg 4200 acattttttc ttaatttatg tataaatcca tatgattata cataaagttc tgatgcatta 4260 ataaaagcag ccaaataggg ccaaagagaa aaataacagg actctgtact ggacctaact 4320 ttatcattaa ttaggtaata ttttcctcat ttctttactg ctgccatttt cctcaccagt 4380 attecagaga tggteatage teattaetet accaceaaga acctaaaagg aattagaata 4440 cagcagaatt ggcctcagtg aagagcttaa aattgttctc ctcgtagaac tggactattg 4500 atcattacca cgtgacgttg gctctattac tttctgttcc caatgtcctt ctagtggttt 4560 gaaaatgtta aaacatccaa aaaaaaacaa cccggtagca ttgtcccttc cccactgaca 4620 aacttatcaa atccagaagc tttagagttt cgtctctaat tatttttctc ctgaacaaaa 4680 ttacccaagt caaaacaaaa tgtattttta gaattacggc agcatacgac ctgaattttg 4740 tgagtttegt ggetttatet taaateacea ttteeetaaa aatggtttet tteteettag 4800 aaatgctggt ggcaacttga tgaaacagcc aaatgcacca gggcaggtca ctttcccatt 4860 acactgattc cacaattaaa aaaataaaaa aaagaaaaaa aactcattga gatagctaca 4920 gttetatagg ttaatttaaa geeteetttt tetaeteatt tttgaaagea aaattaeatt 4980 ttactatttt acataaccag tgaaaagacg ttgaaagcct acagctcact gttttgggtg 5040 ctctggaaat gttgagggtg ggtttttaac cagtgatttt taacgtgcag tgaatttgtt 5100 agactittaa acaccageta aggtagteaa acttgatece cattaaaaat caaggaatta 5160 ggggtcgggg gagggtttag gagtgatcca gaatgacctc ccagaattac tgtgcgtaca 5220 actttatttt tcagagtttt cattgggaat ggtaagagtg tttatgaaag acagttttaa 5280 aacttattet gagttaaata ttaataettt aaaaaattat tgtactagae ttategeage 5340 cttttgaaag tagcagagtt tcatcatacc acatatataa cagagcataa attttctata 5400 atcaggcacc ttttgctgct tttgagtaag actgttttcc tgtttaagtg ttaagcatcg 5460 ecagacataa aaatetatte teteeteteg attgtageat ageetgacag etetagatae 5520 agcatttcta tgatgaaaaa tgagtatcca tcaggaaatc tagaagacta gccgtgtttt 5580 ctcagactcc acctttgttt gcactctgtt gcctgtgagg agctttctgg catgtgatta 5640 tttacttcaa aactagagtt ccaagcacct acattaatta ttttatattg tgtgcagaat 5700 agtatatett ttaatgteag atatgataea etgeaeatat tgettttgea etettaaaat 5760 ttttgtacta aataatagaa aatatttata ttctttgagt gtgagctttg aatagatggc 5820 attatcactt tattgttttt ttaacaaaaa ctttttctca attattctat tgcaatgtta 5880 ttctgagcaa gtcctatgcc aaatatcttg tataatgttt gtatggaaga ttaaatttta 5940 ctcttgtgtg gtaagactat ttcagttact gattttatag ttggaatttg atattccagc 6000 acaaagtcca cagtgtattc agaaatccaa gttggtgtca tacatttcat tttgatgtga 6060 acttttcttt gctttccttt gttctaagac tccattttgc aataaacgtt ttgacagcaa 6120

```
<210> 30
<211> 1914
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7526442CB1
<400> 30
getgtcatcg ttccgtgggc cctgctgcgg gcacgctctc ggcgcatgcg ttttttatgc 60
gggattaagc ttgctgctgc gtgacagcgg agggctagga aaaggcgcag tggggcccgg 120
agetgteace cetgactega egeagettee gtteteetgg tgacgtegee tacaggaace 180
gececagtgg teagetgeeg egetgttget aggeaacage gtgegagete agateagegt 240
ggggtggagg agaagtggag tttggaagtt caggggcaca ggggcacagg cccacgactg 300
cagegggatg gaccagtact geatectggg ecgcateggg gagggegeec acggcategt 360 cttcaaggec aagcacgtgg agactggega gatagttgec etcaagaagg tggeectaag 420
geggttggaa gaeggettee etaaceagge eetgegggag attaaggete tgeaggagat 480
ggaggacaat cagtatgtgg tacaactgaa ggctgtgttc ccacacggtg gaggctttgt 540
gctggccttt gagttcatgc tgtcggatct ggccgaggtg gtgcgccatg cccagaggcc 600
actageceag geacaggica agagetacet geagatgetg eteaagggig tegeettetg 660
ccatgccaac aacattgtac atcgggacct gcccccaagg cccatccagg gccccccac 720
atccatgact tccacgtgga ccggcctctt gaggagtcgc tgttgaaccc agagctgatt 780
cggcccttca tcctggaggg gtgagaagtt ggccctggtc ccgtctgcct gctcctcagg 840
accactcagt ccacctgttc ctctgccacc tgcctggctt caccctccaa ggcctcccca 900
tggccacagt gggcccacac cacaccctgc cccttagccc ttgcgagggt tggtctcgag 960
gcagaggtca tgttcccagc caagagtatg agaacatcca gtcgagcaga ggagattcat 1020
ggcctgtgct cggtgagcct taccttctgt gtgctactga cgtacccatc aggacagtga 1080
getetgetge cagteaagge etgeatatge agaatgaega tgeetgeett ggtgetgett 1140
ccccgagtgc tgcctcctgg tcaaggagaa gtgcagagag taaggtgtcc ttatgttgga 1200
aactcaagtg gaaggaagat ttggtttggt tttattctca gagccattaa acactagttc 1260
agtatgtgag atatagattc taaaaacctc aggtggctct gccttatgtc tgttcctcct 1320
tcatttctct caagggaaat ggctaaggtg gcattgtctc atggctctcg tttttggggt 1380
catggggagg gtagcaccag gcatagccac ttttgccctg agggactcct gtgtacttca 1440
catcactgag cactcattta gaagtgaggg agacagaagt ctaggcccag ggatggctcc 1500
agttggggat ccagcaggag accetetgea catgaggetg gtttaccaac atetactece 1560
tcaggatgag cgtgagccag aagcagctgt gtatttaagg aaacaagcgt tcctggaatt 1620 aatttataaa tttaataaat cccaatataa tcccagctag tgctttttcc ttattataat 1680
ttgataaggt gattataaaa gatacatgga aggaagtgga accagatgca gaagaggaaa 1740
tgatggaagg acttatggta tcagatacca atatttaaaa gtttgtataa taataaagag 1800
 tatgattgtg gttcaaggat aaaaacagac tagagaaact tattcttagc catcctttat 1860
ttttatttta tttattttt gatggagtct tgcactccag cctggtgaca gact
```

6122

Incyte Project ID				250
	rotypepade	nicyte Delegate	CEO TO NO.	Dolymorlantida
•	SEQ ID NO:	rolypepude L	35Q ID 110.	D
7526185	1	7526185CD1	16	7526185CB1
7526192	2	7526192CD1	17	7526192CB1
7526193	3	7526193CD1	. 81	7526193CB1
7526196	4	7526196CD1	19	7526196CB1
7526198	5	7526198CD1	20	7526198CB1
7526208	9	7526208CD1	21	7526208CB1
7526212	7	7526212CD1	22	7526212CB1
7526213	8	7526213CD1	23	7526213CB1
7526214	6	7526214CD1	24	7526214CB1
7526228	10	7526228CD1	25	7526228CB1
7526246	11	7526246CD1	26	7526246CB1
7526258	12	7526258CD1	27	7526258CB1
7526311	13	7526311CD1	28	7526311CB1
7526315	14	7526315CD1		7526315CB1
7526442	15	7526442CD1	30	7526442CB1

Polypeptide SEQ Incyte	Incyte	GenBank ID NO: Probability	Probability	Annotation
D NO:	ptide ID	or PROTEOME ID NO:	Score	
1	7526185CD1	g2582413	8.0E-74	STE20-like kinase 3 [Homo sapiens]
				Schinkmann, K. A. et al., Cloning and characterization of a novel mammalian STE20-like kinase (mst-3). J. Biol. Chem. 272, 286995-286703 (1997)
1	7526185CD1	336486ISTK24	4.4E-75	[Homo sapiens][Protein kinase; Transferase] Serine-threonine kinase 24 (Ste20 yeast
1				homolog), member of the SPS1 subgroup of the STE20-like protein family, a serine-
				threonine kinase that prefers manganese as a cofactor and uses either GTP or ATP as a
				phosphate donor
				Zhou, T. H. et al., Identification of a human brain-specific isoform of mammalian STE20-
				like kinase 3 that is regulated by cAMP-dependent protein kinase., J Biol Chem 275, 2513-
				9 (2000).
	7526185CD1	743574 MST4	4.0E-65	[Homo sapiens][Protein kinase, Transferase] Mst3 and SOK1-related kinase, a protein
				kinase, induces apoptosis, involved in cell growth, appears to activate MAPK but not JNK
				nor p38 kinase pathways, alternative form MST4a may regulate MST4; gene maps to a
				region associated with mental retardation
				Lin, J. L. et al., MST4, a new Ste20-related kinase that mediates cell growth and
				transformation via modulating ERK pathway. Oncogene 20, 6559-69. (2001).
2	7526192CD1	g2199529	1.5E-134	casein kinase I gamma 2 [Homo sapiens]
				Kitabayashi, A. N. et al., Cloning and chromosomal mapping of human casein kinase I
				gamma 2 (CSNK1G2), Genomics 46, 133-137 (1997)
2	7526192CD1	344104CSNK1G 8.1E-136	8.1E-136	[Homo sapiens][Protein kinase; Transferase] Casein kinase 1 gamma 2, a putative
		2		serine/threonine protein kinase, may play a role in signal transduction
				Kitabayashi, A. N. et al., Cloning and chromosomal mapping of human casein kinase I
				gamma 2 (CSNKIG2),, Genomics 46, 133-7 (1997).
2	7526192CD1	664931 Csnk1g2 2.9E-129	2.9E-129	[Rattus norvegicus][Protein kinase;Transferase] Casein kinase 1 gamma 2, serine/threonine
	•			protein kinase, may play a role in receptor tyrosine kinase-mediated signal transduction
				Voisin, L. et al., Angiotensin II stimulates serine phosphorylation of the adaptor protein
	- :			Nck: physical association with the serine/threonine kinases Pak1 and casein kinase I.,
				Biochem J 341, 217-23 (1999).
3	7526193CD1	g15215576	1.1E-166	BMP-2 inducible kinase [Mus musculus]
			3	

Polypeptide SEQ Incyte	Incyte	GenBank ID NO: Probability	Probability	Annotation
ID NO:	ptide ID	or PROTEOME Score	Score	
				Kearns, A. E. et al., Cloning and characterization of a novel protein kinase that impairs
				Ostgonias uniterentation in view, st. crist.
3	7526193CD1	770160 Bike	6.1E-168	[Mus musculus] Protein containing a protein kinase domain, has low similarity to C. clegans
1				SEL-5, which is a serine-threonine protein kinase that likely regulates LIN-12 and GLF-1
				signaling
				Kearns, A. E. et al. (supra)
3	7526193CD1	244458 sel-5	1.2E-60	[Caenorhabditis elegans][Protein kinase][Cytoplasmic] Serine/threonine protein kinase
		•		which likely regulates LIN-12 and GLP-1 signaling; has similarity to S. cerevisiae Ark1p
				and Prk1p protein kinases which are involved in regulation of the cytoskeleton
				Fares, H. et al., SEL-5, A Serine/Threonine Kinase That Facilitates lin-12 Activity in
				Caenorhabditis elegans., Genetics 153, 1641-1654 (1999).
4	7526196CD1	e2506080	4.5E-40	HsGAK [Homo sapiens]
				Kimura, S. H. et al., Structure, expression, and chromosomal localization of human GAK,
				Genomics 44,179-187 (1997)
V	7526196CD1	342050IGAK	2.5E-41	Homo sapiens] Protein kinase; Transferase] Cyclin G-associated kinase, a putative
+ _				serine/threonine protein kinase that shares homology with tensin and auxilin, may play a
				role in cell cycle regulation
				Kimura, S. H. et al. (supra)
V	7526196CD1	704892 Gak	1.1E-40	[Rattus norvegicus][Protein kinase; Transferase] Cyclin G-associated kinase, a
<u>+</u>	-			serine/threonine protein kinase that shares homology with tensin and auxilin, interacts with
				cyclin G (Ccng1)- Cdk5 complex, involved in the dissociation of clathrin-coated vesicles in
	•			non-neuronal cells
				Greener, T. et al., Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles
	•			from non-neuronal cells., J Biol Chem 275, 1365-70. (2000).
v	7526198CD1	92506080	0.0	HsGAK [Homo sapiens]
	2000			Kimura, S. H. et al. (supra)

Polypeptide SEO Incyte	Incyte	GenBank ID NO: Probability	Probability	Annotation
D NO:	Polypeptide ID	or PROTEOME ID NO:	Score	
2	7526198CD1	342050 GAK	0:0	[Homo sapiens][Protein kinase; Transferase] Cyclin G-associated kinase, a putative serine/threonine protein kinase that shares homology with tensin and auxilin, may play a me in cell cycle regulation
				Note in Carlot of Carlots)
				Kimura, S. H. et al. (supra)
5	7526198CD1	704892 Gak	0.0	[Rattus norvegicus][Protein kinase;Transferase] Cyclin G-associated kinase, a serine/threonine protein kinase that shares homology with tensin and auxilin, interacts with
				cyclin G (Ccng1)- Cdk5 complex, involved in the dissociation of clathrin-coated vesicles in
				non-neuronal cells
				Greener, T. et al. (supra)
9	7526208CD1	g4426595	9.0E-255	multifunctional calcium/calmodulin-dependent protein kinase II delta2 isoform [Homo sapiens]
				Hoch, B. et al., Identification and expression of delta-isoforms of the multifunctional
				Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium,
				Circ. Res. 84, 713-721 (1999)
9	7526208CD1	742886 CAMK2 4.9E-256	4.9E-256	[Homo sapiens][Protein kinase;Transferase][Nuclear;Cytoplasmic] Calcium/calmodulin-
	-	Ω		dependent protein kinase II delta, member of the multifunctional CAMKII family involved
			.	in Ca2+ regulated processes; alternative form delta 3 is specifically upregulated in the
				Hoch. B. et al. (supra)
9	7526208CD1	772372 Camk2d	3.1E-243	[Mus musculus] Protein with strong similarity to calcium-calmodulin-dependent protein
		•		kinase II delta (rat Camk2d), which is involved in Ca2+ regulated processes, contains two
				protein kinase domains
				Hoch, B. et al., delta-Ca(2+)/calmodulin-dependent protein kinase II expression pattern in
•	- • •			adult mouse heart and cardiogenic differentiation of embryonic stem cells, J Cell Biochem
	<i>-</i> -			79, 293-300 (2000).
7	7526212CD1	g1661132	5.3E-169	calcium/calmodulin-dependent protein kinase II delta 2-subunit [Sus scrofa]

Polypeptide SEQ Incyte ID NO:	ptide ID	GenBank ID NO: Probability or PROTEOME Score		Annotation
				Singer, H. A. et al., Novel Ca2+/calmodulin-dependent protein kinase II gamma-subunit variants expressed in vascular smooth muscle, brain, and cardiomyocytes, J. Biol. Chem.
7	7526212CD1	772372 Camk2d 2.9E-170	2.9E-170	[Mus musculus] Protein with strong similarity to calcium-calmodulin-dependent protein kinase II delta (rat Camk2d), which is involved in Ca2+ regulated processes, contains two
				Hoch, B. et al., J Cell Biochem 79, 293-300 (2000). (supra)
7	7526212CD1	742886 CAMK2 D	1.6E-169	[Homo sapiens][Protein kinase;Transferase][Nuclear;Cytoplasmic] Calcium/calmodulindependent protein kinase II delta, member of the multifunctional CAMKII family involved
				in Ca2+ regulated processes; alternative form delta 3 is specifically upregulated in the myocardium of patients with heart failure
				Hoch, B. et al., Circ Res 84, 713-21. (1999). (supra)
00	7526213CD1	g15215576	2.IE-15	BMP-2 inducible kinase [Mus musculus]
				Kearns, A. E. et al. (supra)
8_	7526213CD1	605792 BIKE	1.7E-27	[Homo sapiens][Protein kinase;Transferase] Protein containing a eukaryouc protein kinase domain
∞	7526213CD1	770160 Bike	1.1E-16	[Mus musculus] Protein containing a protein kinase domain, has low similarity to C. elegans SFI -5, which is a serine-threonine protein kinase that likely regulates LIN-12 and GLP-1
	;			signaling
				Kearns, A. E. et al. (supra)
6	7526214CD1	g15215576	1.7E-16	BMP-2 inducible kinase [Mus musculus]
				Kearns, A. E. et al. (supra)
6	7526214CD1	605792BIKE	3.8E-28	[Homo sapiens][Protein kinase; Transferase] Protein containing a eukaryotic protein kinase domain
6	7526214CD1	770160 Bike	9.4E-18	[Mus musculus] Protein containing a protein kinase domain, has low similarity to C. elegans SEL-5, which is a serine-threonine protein kinase that likely regulates LIN-12 and GLP-1
				signaling
				Kearns, A. E. et al. (supra)
10	7526228CD1	g2924624	4.6E-55	TGF-beta activated kinase 1a [Homo sapiens]
	-			

		D. 1. 10 MO.	D-chok:1:to.	Amototion
Polypeptide SEQ incyte ID NO: Polype	ptide ID	or PROTEOME Score	Score	
				Sakurai, H. et al., TGF-beta-activated kinase 1 stimulates NF-kappa B activation by an NF-
				kappa B-inducing kinase-independent incentament, procession or project (1998)
9	7526228CD1	338400 MAP3K7 2.5E-56	2.SE-56	[Homo sapiens][Protein kinase;Transferase] Mitogen-activated protein kinase kinase kinase
2		•		7 (TGF beta activated kinase 1), mediates TGFbeta and IL1 signal transduction, induces
				NFkappaB activation, may act as a regulatory kinase of a kappa B kinase character.
				Sakurai, H. et al., Functional interactions of transforming growin factor deta-activated
				kinase 1 with IkappaB kinases to stimulate NF-kappaB activation., J Biol Chem 2/4, 100417
		*		8 (1999).
2	7526228CD1	338400 MAP3K7 2.50E-56	2.50E-56	[Homo sapiens][Protein kinase; Transferase] Mitogen-activated protein kinase kinase kinase
2		-		7 (TGF beta activated kinase 1), mediates TGFbeta and IL1 signal transduction, induces
				NFkappaB activation, may act as a regulatory kinase of I kappa B kinases (IKKs)
				Craig, R. et al., p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene
				expression and release. Evidence for a cytoprotective autocrine signaling pathway in a
				cardiac myocyte model system., J Biol Chem 275, 23814-24 (2000).
1	7526746CD1	o23272739	5.7E-96	adrenergic, beta, receptor kinase 1 [Homo sapiens]
11	ושמייייייי			Strausberg, R. L. et al., Generation and initial analysis of more than 15,000 full-length
				human and mouse cDNA sequences, Proc. Natl. Acad. Sci. U.S.A. 99, 16899-16903 (2002)
11	757674601	334086 ADRRK 3.1E-97	3 1E-97	Homo sapiens [Protein kinase; Transferase] [Cytoplasmic; Plasma membrane] Beta-
11	1770470761	second poorter		adrenergic receptor kinase 1, kinase that mediates desensitization of G protein-coupled
		4		receptors, phosphorylated by PKC, may modulate cardiovascular function; mouse and rat
				Adrbk1 appear to be involved with cardiomyopathy and myocardial infarction
				Shih, M. et al., Oligodeoxynucleotides antisense to mRNA encoding protein kinase A,
<u>.</u>	-		_	protein kinase C, and beta-adrenergic receptor kinase reveal distinctive cell-type-specific
		_		roles in agonist-induced desensitization., Proc Natl Acad Sci U S A 91, 12193-7 (1994).
-	7526246CD1	775647 Adrbk1	1.1E-94	[Mus musculus][Protein kinase, Transferase] Beta-adrenergic receptor kinase 1, a kinase
1	ייי			that may mediate desensitization of G protein-coupled receptors, modulates myocardial
	· · •.			function and involved in cardiomyopathy; human ADRBK1 may play roles in hypertension
				and cardiomyopathy

Polypeptide SEQ Incyte ID NO: Polype	Incyte Polypeptide ID	GenBank ID NO: Probability or PROTEOME Score		Annotation
	1			Proll, M. A. et al., Beta 2-adrenergic receptor mutants reveal structural requirements for the desensitization observed with long-term epinephrine treatment., Mol Pharmacol 44, 569-74 (1993)
2	7526258CD1	033303889	9.6E-110	FAST kinase [synthetic construct]
12	7526258CD1	4 FASTK	5.2E-111	[Homo sapiens][Protein kinase; Transferase] Fas-activated serine threonine kinase, a serine-threonine kinase that phosphorylates RNA binding protein TIA1 during Fas mediated
				apoptosis, upregulated in peripheral blood mononuclear cells of atopic asthmatics and atopic non asthmatic patients
	÷			Brutsche, M. H. et al., Apoptosis signals in atopy and asthma measured with CDNA arrays., Clin Exp Immunol 123, 181-7. (2001).
12	7526258CD1	685389 MGC529 1.6E-11	1.6E-11	[Homo sapiens] Protein of unknown function, has a region of low similarity to a region of fas-activated serine threonine kinase (human FASTK), which is a serine-threonine kinase
				that phosphorylates RNA binding protein numan 11A1 during ras incurated apopusas
13	7526311CD1	g1088281	7.9E-67	pyruvate dehydrogenase kinase [Homo sapiens]
	-			Gudi, R. et al., Diversity of the pyruvate denydrogenase Kniase gene rannity in manans, 3: Biol. Chem. 270, 28989-28994 (1995)
13	7526311CD1	336846PDK1	4.3E-68	[Homo sapiens][Protein kinase;Transferase;Other kinase][Cytoplasmic;Mitochondrial]
	-			dehydrogenase complex and thus regulates pyruvate metabolism
			,	Taylor, V. et al., 5' phospholipid phosphatase SHIP-2 causes protein kinase D machyanon and cell cycle arrest in glioblastoma cells., Mol Cell Biol 20, 6860-71 (2000).
13	7526311CD1	757382 Pdk1	2.2E-55	[Rattus norvegicus][Protein kinase;Transferase;Other kinase][Cytoplasmic;Mitochondrial] Pyruvate dehydrogenase kinase 1, phosphorylates and inactivates the pyruvate
	-			Sunden M. C. et al., Expression and regulation of pyruvate dehydrogenase kinase isoforms
	<u></u> ,			in the developing rat heart and in adulthood: role of thyroid hormone status and lipid
				Supply, Biochem J 352, 731-6. (2000).
14	7526315CD1	g12655099	7.2E-121	Mixed lineage kinase-related kinase mixed a literae septema. Strausberg, R. L. et al. (supra)
	-			

Dol.montide CEO Incute	Incute	GenBank ID NO: Probability		Annotation
Follypepings SECT IN NO:	ptide ID	or PROTEOME	Score	
	7526315CD1		3.9E-122	[Homo sapiens] Mixed lineage kinase with a leucine zipper and a sterile alpha motif, a mixed lineage kinase-like protein that stimulates the JNK/SAPK pathway and activates NF-
				Liu, T. C. et al., Cloning and expression of ZAK, a mixed lineage kinase-like protein containing a leucine-zipper and a sterile-alpha motif, Biochem Biophys Res Commun 274, 811-6 (2000).
	7526315CD1	662697 Zak	2.7E-121	[Mus musculus][Protein kinase;Transferase] Mixed lineage kinase with a leucine zipper and a sterile alpha motif, activated by osmotic shock; overexpression activates the p38 (Mapk1), INK/SAPK, ERK (Mapk3), and ERK5 (Mapk7) pathways, alpha alternative
				form disrupts actin stress fibers
				O0001, 1. et al., 10cm 126, 4276-86 (2001). (supra)
	7526442CD1	g12803641	3.5E-64	CCRK protein [Homo sapiens]
				Strausberg, R. L. et al. (supra)
	7526442CD1	568698 CCRK	2.4E-65	[Homo sapiens][Protein kinase; I ransterase] I forein commining four procession of moderate similarity to cyclin-dependent kinase 3 (human CDK3), which is a kinase a region of moderate similarity to cyclin-dependent from G1 to S phase kinase that binds to cyclin-A and is required for progression from G1 to S phase
	7526442CD1	583769 Cdk5	1.6E-22	[Mus musculus][Protein kinase; Transferase][Cell body (soma); Growin conej Cycuir-dependent protein kinase 5, serine-threonine kinase that associates with the regulatory
	. •			differentiation, regulation of myogenesis, and adaptive responses to cocaine
				Ohshima, T. et al., Targeted disruption of the cyclin-repelled and Arad Sci U S abnormal corticogenesis, neuronal pathology and perinatal death., Proc Natl Acad Sci U S A 21172-8 (1996).
				M 33, 1111 3 0 (1730)

Table 3

BLIMPS PRODOM BLAST DOMO BLIMPS_BLOCKS Analytical Methods BLAST_PRODOM BLIMPS BLOCKS HIMIMER_SIMART HMMER_SMART HMMER_SMART HIMIMER PFAM HIMMER_PFAM **PROFILESCAN** BLAST_DOMO and Databases MOTIFS MOTIFS MOTIFS MOTIFS MOTIFS SPSCAN MOTIFS SERINE/THREONINEPROTEIN ATPBINDING MULTIGENE PD026544: M1-N45 Potential Phosphorylation Sites: S19, S99, S129, S262, T84, T183, T210, T232, T247 CASEIN KINASE I GAMMA ISOFORM CKIGAMMA TRANSFERASE KINASE PROTEIN DOMAIN TRANSFERASE PD00584: L27-G36 Serine/Threonine protein kinases active-site signature: L193-V205 Potential Phosphorylation Sites: S34, S75, S106, S137, T25, T46 Serine/Threonine protein kinases, catalytic domain: V46-K313 Eukaryotic protein kinase IPB000719: C168-L183, I239-G249 Serine/Threonine protein kinases, catalytic domain: F46-G305 Serine/Threonine protein kinases, catalytic domain: F24-Y157 Protein kinases ATP-binding region signature: I30-K53 Protein kinases ATP-binding region signature: IS2-K75 Eukaryotic protein kinase IPB000719: H189-L204 Protein kinases signatures and profile: T173-P230 DM00004|A56711|46-303:V48-L76 E109-R302 DM00004|C56711|45-301:V48-L76 E109-R302 DM00004|B56711|48-303:V48-L76 E109-R302 DM00004|D56406|31-276:V48-L76 E109-R302 Amino Acid |Signature Sequences, Domains and Motifs DM00004[149376[270-509: K26-G153 DM00004|A53714|17-262: L27-V151 DM00004|P38692|24-266; K26-V151 DM00004|P08458|20-262: 130-V151 Potential Glycosylation Sites: N44 Protein kinase domain: V46-F310 Protein kinase domain: F46-G305 PROTEIN KINASE DOMAIN PROTEIN KINASE DOMAIN Signal_cleavage: M1-G68 Residues 305 930 157 7526185CDI Polypeptide ID 7526193CD1 7526192CD1 Incyte

,

· Table 3

5	Transfer	Aming Agid	manting Commonse Domaine and Motife	Analytical Methods
A B B	SEC Incyce D Polypeptide	Residues		and Databases
ö	白			
			PROTEIN REPEAT SIGNAL PRECURSOR PRION GLYCOPROTEIN NUCLEAR GPIANCHOR BLAST_PRODOM	BLAST_PRODOM
			BRAIN MAJOR PD001091: G373-P626, G404-P626, P358-Q601, P349-Q574, P320-S519, P296-	
	, -		Q541	-
			PROTEIN KINASE DOMAIN	BLAST_DOMO
			DM00004 P38080 36-309: L52-1304	
			DM00004 P40494 23-287: L52-1304	
			DM00004P51954 6-248: L52-1304	1
	•		DM00004 P53974 23-288: L52-1304	
			Potential Phosphorylation Sites: S7, S115, S224, S235, S311, S625, S679, S785, S815, S822, S833,	MOTIFS
			S871, S879, T47, T147, T199, T221, T240, T241, T275, T389, T395, T628, T708, T743, T757,	
			T829	
			Potential Glycosylation Sites: N113, N273, N667, N703, N823, N905	MOTTES
			Serine/Threonine protein kinases active-site signature: 1172-L184	MOTIFS
V	7526196CD1	118	Signal Pentide: M1-G22	HMMER
-	1250170		Signal cleavage: MI-G22	SPSCAN
			Serine/threonine dehydratase pyridoxal-phosphate attachment site IPB000634: E95-S104	BLIMPS_BLOCKS
			CYCLIN G-ASSOCIATED KINASE TRANSFERASE SERINE/THREONINEPROTEIN BLA	BLAST_PRODOM
			ATPBINDING HSGAK PD026473: M1-L40	
			Potential Phosphorylation Sites: S6, S21, S62, S73, S92, S113	MOTIFS
ر ا	7526198CD1	1355	Protein kinase domain: L40-E315	HIMMER PFAM
		1	Dna1 molecular chaperone homology domain: E1290-S1351	HIMMER_SMART
			Serine/Threonine protein kinases, catalytic domain: L40-A317	HIMIMER_SMART
		-	Eukarvotic protein kinase IPB000719: Q165-L180, 1240-G250	BLIMPS_BLOCKS
			Protein kinases signatures and profile: V148-H200	PROFILESCAN
		-	CYCLIN G-ASSOCIATED KINASE TRANSFERASE SERINE/THREONINEPROTEIN	BLAST_PRODOM
		,-	ATPBINDING HSGAK PD039449: A317-N402	

Table 3

						_				
Analytical Methods and Databases	BLAST_PRODOM	BLAST_DOMO	MOTIFS	MOTIFS	HIMMER_PPAIM	HIMMER_SMART	BLIMPS_BLOCKS PROFILESCAN	BLIMPS_PRINTS	BLAST_PRODOM	BLAST_PRODOM
d Signature Sequences, Domains and Motifs	PROTEIN AUXILIN COAT REPEAT PHOSPHORYLATION KIAA0473 CYCLIN G- ASSOCIATED KINASE TRANSFERASE PD010124: Q1215-Q1349 PD025411: \$456-V640 PD151518: L641-L1093, P868-S1235, R320-E366	PROTEIN KINASE DOMAIN DM00004 P38080 36-309: L46-1306 DM00004 P40494 23-287: R41-1306 DM00004 P53974 23-288: R44-1306 DM00004 Q09170 169-423: R44-S305	Potential Phosphorylation Sites: S6, S21, S62, S73, S93, S305, S393, S456, S530, S540, S551, S661, S726, S737, S738, S784, S811, S906, S976, S1029, S1103, S1113, S1220, S1234, S1235, S1237, S1344, T155, T186, T382, T414, T459, T611, T680, T776, T805, T949, T1118, T1156, T1165, T164, Y412	Potential Glycosylation Sites: N677, N724, N809, N970, N1196 Serine/Threonine protein kinases active-site signature: 1169-1.181	Protein kinase domain: Y14-I252	Serine/Threonine protein kinases, catalytic domain: Y14-I252	Eukaryotic protein kinase IPB000719: H108-L123, Y171-G181 Protein kinases signatures and profile: F65-D147	Tyrosine kinase catalytic domain signature PR00109: H106-L124, V175-E197, V221-A243	KINASE PROTEIN II CALCIUM/CALMODULIN-DEPENDENT TYPE SUBUNIT CALMODULINBINDING CHAIN TRANSFERASE SERINE/THREONINEPROTEIN PD001779:1252-K303 S312-V380	KINASE PROTEIN II CALCIUM/CALMODULIN-DEPENDENT TYPE SUBUNIT CHAIN TRANSFERASE SERINE/THREONINEPROTEIN CALMODULINBINDING PD004250: E381- IK469
Amino Acid Residues					490					- -
SEQ Incyte ID Polypeptide NO: ID					7526208CD1					
S 0 S		· —			9					

!

PF-1724 P

SEQ	SEQ Incyte	Amino Acid	Amino Acid Signature Sequences, Domains and Motifs	Analytical Methods
<u>a</u>	ptide	Residues		and Databases
ÿ Z	3		AG: 1	RI AST DOMO
			PROTEIN KINASE DOMAIN	סיייסת" זמטיות
			DM00004 JU0270 16-262:E18-R53 V54-A243	
			DM000004 A44412 16-262:E18-R53 V54-A243	
			DM00004P11798 15-261: E39-A243, L16-E63	
			KINASE; DEPENDENT; II; CALMODULIN;	BLAST_DOMO
			DM05068 P11798 263-426: S244-A418	
			Potential Phosphorylation Sites: S51, S59, S89, S312, S313, S397, T36, T47, T74, T242, T327,	MOTIFS
	•		T328, T369	
			Potential Glycosylation Sites: N293, N326, N479	MOTIFS
			Protein kinases ATP-hinding region signature: L20-K43	MOTIFS
			Carine Meaning professin kinases active-site signature: V112-L124	MOTIFS
,		244	Dentain kinses demain V14.175?	HIMMER PFAM
	1777170701		HUGGII Milaby dolimii: 11 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HMMER SMART
			Serine/Threonine protein kinases, catalytic domain: Y 14-1252	DI DADE DI OCIVE
			Eukaryotic protein kinase IPB000719: H108-L123, Y171-G181	
			Protein kinases signatures and profile: F65-D147	PROFILESCAN
			Tyrosine kinase catalytic domain signature PR00109: H106-L124, V175-B197, V221-A243	BLIMPS PRINTS
			KINASE PROTEIN II CAI CHIM/CALMODULIN-DEPENDENT TYPE SUBUNIT	BLAST_PRODOM
			CALMODIII INBINDING CHAIN TRANSFERASE SERINE/THREONINEPROTEIN	
			PD001779: 1252-K324	
			PROTEIN KINASE DOMAIN	BLAST_DOMO
			DM00004JJJ027016-262:E18-R53 V54-A243	
			DM00004 A44412 16-262:E18-R53 V54-A243	
		•	DM00004 P08414 44-285: E19-T242	
		. •	DM00004 P11798 15-261: E39-A243, L16-E63	
			Potential Phosphorylation Sites: S51, S59, S89, T36, T47, T74, T242, T316, T317	
			Potential Glycosylation Sites: N293, N315	MOTIFS
		2	Protein kinases ATP-hinding region signature: L20-K43	MOTIFS
			Coming Infrarential kinases active-site signature: V112-L124	MOTIFS
	1.		December of the Country Cities of Off RAD	MOTIFS
<u>∞</u>	7526213CDI	89.1	Potential Phosphoryiation Sites, 32, 320, 300, 124	

<u>SEQ</u>	SEQ Incyte	Amino Acid S	Signature Sequences, Domains and Motifs	Analytical Methods
ДÖ	Polypeptide ID	Residues		and Databases
			Hexokinase family IPB001312: S10-G24	BLIMPS_BLOCKS
٥	7526214CD1	88	Potential Phosphorylation Sites: S5, S56, S67, T52	MOTIFS
			Hexokinase family IPB001312: S10-G24	BLIMPS_BLOCKS
2	7526228CD1	137	Signal_cleavage: M1-A15	SPSCAN
			PROTEIN KINASE DOMAIN	BLAST_DOMO
			DM00004 I38044 100-349: V38-A117	
			DM00004 P08630 329-573: E35-N114	
			DM00004 Q08881 361-604; E35-L112	
			Potential Phosphorylation Sites: S14, S67, S69	MOTIFS
			Leucine zipper pattern: L112-L133	MOTIFS
			Protein kinases ATP-binding region signature: V42-K63	MOTIFS
=	7526246CD1	243	Regulator of G protein signaling domain: T54-C175	HIMMER_PPAM
			Regulator of G protein signalling domain: T54-C175	HIMMER_SIMART
			GPCR kinase signature PR00717: F171-N183	BLIMPS PRINTS
			Regulator of G protein signalling domain proteins PF00615: M15-K21, F162-K178	BLIMPS_PFAM
			RECEPTOR KINASE TRANSFERASE SERINE/THREONINEPROTEIN ATPBINDING	BLAST_PRODOM
			BETAADRENERGIC COUPLED PROTEIN MULTIGENE FAMILY PD007430: MI-V53	
			KINASE; THREONINE; ATP; SERINE;	BLAST_DOMO
			П	
				BLAST_DOMO
			DM05135 P21146 33-150: L33-B151	
		•	DM05135 P32865 33-150: L34-B151	
			DM05135 Q09639 34-149: L34-1150	
			Potential Phosphorylation Sites: S29, S38, S60, S127, S168, T97	MOTIFS
		 :	Cell attachment sequence: R158-D160	MOTIFS
12	7526258CD1	463	CELL CYCLE PROGRESSION PROTEIN FAST KINASE PD041692: L200-P417	BLAST_PRODOM
				BLAST_PRODOM
			Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365	MOTIFS
13	7526311CD1	184	Signal Peptide: MI-G18, MI-A21	HMMER

Analytical Methods	and Databases	SPSCAN	TMHMMER			אנטרוטמת משת זת	BLIMPS PRODOM	BLAST_PRODOM		BLAST_PRODOM		DI ACT DOMO	שואים בויים				00000	MOTIFS	HIMMER PFAM	HIMIMER_SIMART	PROFILESCAN	BLAST_DOMO					MOTIFS	LACAMER	MOLIES	MOLIFS
Amino Acid Signature Sequences, Domains and Motifs		Simal alcovage M1.A21	Organia distriction V163 T194	Cytosolic dollidali. A.co. 1 104	Transmemorarie comain: W-5- vr 102	Non-cytosolic domain: M1-T142	KINASE DEHYDROGENASE TRANSFERASE PD01976: P54-G66, N69-S117	KINASE PYRUVATE DEHYDROGENASE TRANSFERASE DEHYDROGENASE-LIPOAMIDE BLAST_PRODOM MITOCHONDRIAL PRECURSOR TRANSIT PEPTIDE MITOCHONDRION PD004994: V42-	11.35	PYRUVATE DEHYDROGENASE-LIPOAMIDE KINASE ISOZYME 1, MITOCHONDRIAL	PRECURSOR EC 2.7.1.99 DEHYDROGENASE ISOFORM I TRANSFERASE TRANSII	PEPTIDE MITUCHUNDKIUN MULLIDGINE FAMILLE EDITAGES. MITUS	KINASE; DEHYDROGENASE; PYRUVATE; ACID;	DM01978 A55305 2-103: A37-B130	DM01978[155465 28-129: F28-E130	DM01978 170159 2-103: A37-E130	DM01978 170160 1-99: V42-E130	Potential Phosphorylation Sites: S38, S58, S117, S128, S170	Protein kinase domain: L16-V266	Serine Threenine profess catalytic domain: L16-L262	Design Universe circultures and profile 1107-T161	PROTEIN KINASE DOMAIN	DM00004 A53800 119-368: E20-K221	DM00004[455318[159-389: D15-W216	DM00004JJC2363J126-356: D15-W216	DM00004 O05609 553-797; E20-S233	Potential Phosphorylation Sites: S61, S89, S96, S233, S273, S277, S295, S341, S346, S360, S365,	T345, Y274	Potential Glycosylation Sites: N97, N159, N340	Leucine zipper pattern: L225-L246, L232-L253
Amino Ac	Residues																-		386	200	-								. :	
Incyte	ptide	1																	7525215CD1	Т										
SEO		2																		<u> </u>										

				Analytical Mathode
SEQ		Amino Acid	Amino Acid Signature Sequences, Domains and Motifs	Alialyuda Menom
В	ptide	Residues		BIIU Daraoases
NO:	Ω			MOTHER
			Serine/Threonine protein kinases active-site signature: V129-1141	THOUSE OF THE POST OF THE
1	ומטכאאטמטר	150	Entranging motein kinase IPB000719: H119-O134	BLIMES_BLUCKS
<u> </u>	13 (1320442CD) 1134	176	Lunal John Morein Commercial	DI ACT DOMO
			PROTEIN KINAȘE DOMAIN	מאיסת ופשקם
			DM00004[149592 6-276: L7-R131	
			22.200001 12 COS. DO D121	
_			DMUNUU4 2545/ 0-260: K3-K151	
			DM00004P29620 21-289:110-P130	
			MM00004100230916-276: 1.7-R131	
				MOTITES
			Protein kinases ATP-binding region signature: II0-K33	INCLUS
_				

-

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments			
incyte ID/		,		ł
Sequence Length				
16/ 7526185CB1/	2471-4430.	FL1002225_382	1	4430
1430	1476-1534, 1-		<u> </u>	1
	754, 1679-1715			
	101,101,5 1,125	95083778J1	313	1222
		GBI.NT_009952_014.10.edit2	358	592
		GBI.NT_009952_014.10.edit1	649	4430
		72678960V1	938	1574
		72678288V1	1084	1754
		g9777972	1095	1765
		72682030V1	1185	1978
		g14503665	1198	1884
		g11642692	1204	1880
	1	73197364D1	1208	1859
	 	g14810994	1214	2029
		72680814V1	1223	2017
		73197252V1	1255	1917
	 	g24471308	1255	2004
		73199082D1	1259	.1957
		73197393D1	1282	2255
		73196694D1	1298	1950
		g12769183	1321	2017
		g23286620	1335	2004
		g23286086	1352	2002
	 	g29389943	1354	2002
		g21980207	1383	2004
		g12763752	1396	2064
		g13531552	1469	2171
		g31267289	1503	2297
		g13341861	1506	2183
		g11643902	1515	2243
		g31271373	1528	2457
		g31069857	1546	2437
···		g30307375	1560	2428
	 	g30307376	1560	2458
	 	+	1582	
	ļ	g13534533 8568096T1 (KIDNFEC01)	1582 -	2282
	 			- 2429
	ļ	g19119842	1587	2305
	 	g16200364	1599	2338
	 	g14814256	1605	2350
	 	g30463287	1625	2433
	 	8567187T1 (KIDNFEC01)	1638	2413
	 	g30758954	1640	2392
	 	g31295054	1666	2445
	 	71382643V1	1693	2395
	ļ	g24809844	1716	2469_
	<u> </u>	g24806937	1718	2467
		g29391117	1720	2469

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments	_		
Incyte ID/				1
Sequence Length		•	1.	·
		8557426T1 (LUNGNOT30)	1724	2451
		8628262H1 (UTREDMF02)	1724	2463
		8628262J1 (UTREDMF02)	1724	2467
		g12760412	1772	2468
		g10745442 .	1775	2468
		g14294389	1782	2468
		g24794954	1782	2469
		7623349H1 (HEARFEE03)	1783	2431
		g23288713	1786	2468
		g23295470	1801	2467
		8215062H1 (FIBRTXC01)	1809	2468
		g23293825	1816	2469
		g24810755	1829	2469
		g21981399	1833	2469
		g31148999	1852	2469
		g19751033	1858	2469
		g22697148	2196	2847
	· · · · · · · · ·	g12877899	2386	3249
	<u> </u>	g11261005	3402	4093
		4289337F6 (BRABDIR01)	3471	4274
	-	g24795218	3698	4426
111 1320192CB1/	11999-3276, 910-	GBI_NT_011255_001.13.edit1	1	3276
	1999-3276, 910- 1003, 1-224, 1546-1612			
	1003, 1-224,	g14077475	734	1407
	1003, 1-224,	g14077475 6981630H1 (BRAIFER05)	734 1223	1407 1711
	1003, 1-224,	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03)	734 1223 1860	1407 1711 2512
	1003, 1-224,	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03)	734 1223 1860 1860	1407 1711 2512 2524
	1003, 1-224, 1546-1612	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03)	734 1223 1860 1860 1925	1407 1711 2512 2524 2468
	1003, 1-224,	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1	734 1223 1860 1860 1925 2447	1407 1711 2512 2524 2468 3057
3276	1003, 1-224, 1546-1612	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1	734 1223 1860 1860 1925	1407 1711 2512 2524 2468 3057 3009
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1	734 1223 1860 1860 1925 2447	1407 1711 2512 2524 2468 3057 3009 344
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 73709-3732, 2091-3219, 1-	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01)	734 1223 1860 1860 1925 2447 2552 1	1407 1711 2512 2524 2468 3057 3009 344
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 1546-1612 13709-3732, 2091-3219, 1-823, 3788-3910	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82	734 1223 1860 1860 1925 2447 2552 1	1407 1711 2512 2524 2468 3057 3009 344
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 73709-3732, 2091-3219, 1-	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82 g19373027	734 1223 1860 1860 1925 2447 2552 1	1407 1711 2512 2524 2468 3057 3009 344 367
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 1546-1612 13709-3732, 2091-3219, 1-823, 3788-3910	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82 g19373027 g6992730	734 1223 1860 1860 1925 2447 2552 1	1407 1711 2512 2524 2468 3057 3009 344 367 - 3910 612 775
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 1546-1612 13709-3732, 2091-3219, 1-823, 3788-3910	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82 g19373027	734 1223 1860 1860 1925 2447 2552 1	1407 1711 2512 2524 2468 3057 3009 344 367
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 1546-1612 13709-3732, 2091-3219, 1-823, 3788-3910	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82 g19373027 g6992730	734 1223 1860 1860 1925 2447 2552 1	1407 1711 2512 2524 2468 3057 3009 344 367 - 3910 612 775
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 1546-1612 13709-3732, 2091-3219, 1-823, 3788-3910	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82 g19373027 g6992730 3617328F6 (EPIPNOT01)	734 1223 1860 1860 1925 2447 2552 1 20 20 99 340 464	1407 1711 2512 2524 2468 3057 3009 344 367 3910
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 1546-1612 13709-3732, 2091-3219, 1-823, 3788-3910	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82 g19373027 g6992730 3617328F6 (EPIPNOT01) 55139719H1	734 1223 1860 1860 1925 2447 2552 1 20 20 99 340 464 486	1407 1711 2512 2524 2468 3057 3009 344 367 3910 612 775 775
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 1546-1612 13709-3732, 2091-3219, 1-823, 3788-3910	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82 g19373027 g6992730 3617328F6 (EPIPNOT01) 55139719H1 1328791H1 (PANCNOT07)	734 1223 1860 1860 1925 2447 2552 1 20 20 99 340 464 486 500	1407 1711 2512 2524 2468 3057 3009 344 367 3910612 775 775 797 746
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 23709-3732, 2091-3219, 1-823, 3788-3910	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82 g19373027 g6992730 3617328F6 (EPIPNOT01) 55139719H1 1328791H1 (PANCNOT07) g9707306	734 1223 1860 1860 1925 2447 2552 1 20 20 99 340 464 486 500 520	1407 1711 2512 2524 2468 3057 3009 344 367 3910 612 775 775 777 746
	1003, 1-224, 1546-1612 23709-3732, 2091-3219, 1-823, 3788-3910	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82 g19373027 g6992730 3617328F6 (EPIPNOT01) 55139719H1 1328791H1 (PANCNOT07) g9707306 g4740126	734 1223 1860 1860 1925 2447 2552 1 20 20 99 340 464 486 500 520	1407 1711 2512 2524 2468 3057 3009 344 367 3910 612 775 775 777 746 779 779
3276 18/ 7526193CB1/	1003, 1-224, 1546-1612 23709-3732, 2091-3219, 1-823, 3788-3910	g14077475 6981630H1 (BRAIFER05) 6306286F7 (NERDTDN03) 6306286F8 (NERDTDN03) 6306286T6 (NERDTDN03) 55139024H1 55139140J1 7217965H1 (COLNTMC01) 7266654H2 (NOSEDIC01) GBI.938794.82 g19373027 g6992730 3617328F6 (EPIPNOT01) 55139719H1 1328791H1 (PANCNOT07) g9707306 g4740126 g9705742	734 1223 1860 1860 1925 2447 2552 1 20 20 99 340 464 486 500 520 520	1407 1711 2512 2524 2468 3057 3009 344 367 - 3910

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments			
Incyte ID/				l
Sequence Length			U	
		1679654H1 (STOMFET01)	552	768
		g5849814	560	779
		6844123H1 (KIDNTMN03)	567	790.
		55099275J1	582	1094
		8018416F6 (BMARTXE01)	587	1213
		3574386H1 (BRONNOT01)	610	895
		72717764V1	616	1173
•		72719264V1	634	1307
		55099283J1	698	1094
		g10091676	706	1162
		55139943H1	776	1097
	<u> </u>	55139835J1	778	1097
		55139827J1	797	1101
·		55139819J1	799	1093
		g13410426	805	1348
		g9331447	824	1456
		g10734144	824	1504
		g9336431	825	1466
		g10143324	830	1503
		g7930221	834	1412
		g11316872	840	1124
	 	g7254240	840	1426
		55139803J1	849	1097
		55139811J1	868	1096
		g6868467	885	1348
	†·	g20968062	1048	1744
		g20856405	1115	1714
		g14254976	1124	1734
·		g14254972	1127	1742
		g20967828	1146	1711
		g8039829	1217	1481
		g8039887	1222	1524
		g14404428	1246	1525
		7275351H2 (LIVRUNE01)	. 1249	1757
-	†	g14404429	1251	1509
	 	g21012570	1295 -	_ 1751
	 	g14451882	1321	1832
	 	g14453118	1334	1889
	 	4291033H1 (BRABDIR01)	1376	1647
	 	72337884V1	1376	1670
	 	72337654V1	1376	1768
	 	72336903V1	1376	
	 			1768
	 	72338409V1	1376	1768
		72337087V1	1376	1768
	 	72338101V1 72337058V1	1376 1376	1768
		1/233/D38V4	11.570	1768

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments	Joquenoe I raginona	J Tosidon	J T OSITION
Incyte ID/	l regiments			•
Sequence Length				
	ļ		_	
		72338656V1	1376	1768
	ļ <u> </u>	72337641V1 ,	1376	1768
		72338238V1	1376	1768
		72337228V1	1376	1768
·		72338353V1	1376	1768
		72766921V1	1376	1768
······		72338557V1	1376	1768
		72338434V1	1376	1768
	ļ	72336974V1	1376	1768
		72338470V1	1376	1768
		72338136V1	1376	1768
		72338013V1	1376	1768
		4291033F6 (BRABDIR01)	1376	1768
		72338336V1	1376	1768
		72337535V1	1376	1768
		72338790V1	1376	1768
		72338126V1	1376 .	1768
		72338444V1	1376	1768
		72338450V1	1376	1768
		72337857V1	1376	1768
		72337183V1	1387	1768
		g21012239	1466	1742
		g12199215	1470	1829
		g14404390	1491	2092
		g28118293	1497	1880
		7993480H1 (UTRSDIC01)	1502	1820
		8018416R6 (BMARTXE01)	1520	2235
		7067749H1 (BRATNOR01)	1599	2231
		6345837H1 (LUNGDIS03)	1961	1989
		6345837H1 (LUNGDIS03)	1992	2298
		6038785H1 (PITUNOT06)	2014	2654
		g2354017	2076	2336
		8360236J1 (MIXDUNN06)	2092	2727
		g12371898	2135	2425
		g12361664	2135	2448
		5781301F6 (BRAXNOT03)	2147 -	2580
		g12361674	2153	2443
		56057236H1	2226	2705
		g12370692	2476	2624
·····	 	g10460662	2508	2889
		5497716F6 (BRABDIRO1)	2511	2969
	,	g12233185	2530	2930
		g14345747	2807	3117
		6327887H1 (BRANDINOI)	2862	3393
	1	5497716R6 (BRABDIRO1)	2870	3085
	 	6245571H1 (TESTNOT17)	3117	3543
	 	5772648H1 (BRAINOT20)	3343	3863

Table 4

Polynucleotide SEQ ID NO:/	Selected Fragments	Sequence Fragments	5' Position	3' Position
ncyte ID/		1		
Sequence Length			_	
		g2237352 .	3458	3789
	 	5790314H1 (FIBRTXS07)	3569	3807
		5786172H1 (FIBRTXS07)	3569	3807
	1	5786527H1 (FIBRTXS07)	3569	3807
9/7526196CB1	464-663, 2075-	GBI.g29789976.edit1	1	4380
4380	2164, 1-349, 3320-4380			
	3320 4300	g9772401	41	683
		9505159U1	763	1641
		9524857U1	818	1676
		9649412U2	884	1835
		9505172U1	887	1743/
		9524956U1	887	1834
		9649412U1 .	887	1835
		9611509U1	897 ·	1740
· ·		9611509U3	900	1709
		9509648U1	954	1835
		7754868J1 (SPLNTUE01)	1032	1590
		9580055U3	1035	1895
		9600429U1	1036	1729
		9600055U1	1036	1835
		9600429U3	1039	1835
		9580055U1	1065	1676
		55095641J1	1141	1738
	- 	72484222D1	1169	1738
 -		72481795D1	1176	1738
<u> </u>		72616020V1	1188	1738
		72484068DI	1189	1737
		8516684H1 (HNT2TXF01)	1198	1920
		8757725H1 (TLYJTXN01)	1198	2052
		72481336D1	1202	1738
		6831090J1 (SINTNOR01)	1304	1944
		7719693H1 (SINTFEE02)	1353	2006
		6819080J1 (BRAUNOR01)	1354	1879
		8016820J1 (BMARTXE01)	1354	1985
·		8021257J1 (BMARTXE01)	1354	2016
		8016427J1 (BMARTXE01)	1354	2051
		7050749F6 (BRACNOK02)	1354	2086
		7600819J1 (ESOGTME01)	1356	2011
		55144872J1	1411	2084
	1	55144879J1	1411	2094
		g11295923	1498	2168
		90217915J1	2279	2898
<u> </u>		90218047J1	2279	2901
		90217923J1	2279	2918
		90218039J1	2279	2945
———		90217907J1	2279	2987

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments			
Incyte ID/				ł
Sequence Length				
		90217931J1	2279	2041
		9021793131		3041
	 	9021794731	2279	3091
	 	9021803331	2279	3111
	<u> </u>		2279	3151
		9679740U1	2285	3136
		95103533H1	2361	2898
		7208870H1 (FIBPFEA01)	2365	3037
		7050749R6 (BRACNOK02)	2368	3037
,	 	822846R1 (KERANOT02)	2392	2942
		7253472H1 (BRAMNOA01)	2398	3036
•		7703764H1 (UTRETUE01)	2406	2999
		g12097556	2422	3076
···	ļ	7050236H1 (BRACNOK02)	2429	3046
	<u> </u>	7115279H1 (BRAENOK01)	2430	3037
		g19212752	2447	3014
	ļ	7685360H1 (BRABDIK02)	2500	3037
	<u> </u>	6946127F6 (FTUBTUR01)	2538	3118
		90218039J1	3013	3077
·		g30442850	3108	4157
20/7526198CB1/		73232879V1	1	622
4293	3610, 1319-			
	1887	73232879D1	1	624
	 	GBI.g29789976.edit1	1	4163
· · · · · · · · · · · · · · · · · · ·	<u> </u>	g14002261	3	
	 	g10937540	49	677 748
		g13997818	76	
		8684117H1 (BRAIUNF01)	83	607
		g22275488		981
	 	g222/3488 g22660086	86 86	731
	 			826
	-	8042207H1 (OVARTUE01) 7751875H1 (HEAONOE01)	101	650
	 		102	660
	 	7441147H1 (ADRETUE02) g30216686	102	693
		- 9	138	660
	 	9713909U2	138	847
	 	90049479J1	139	- 730
····	 	90049355F6	139	807
	-	90049387J1	139	833
		9713909U1	139	847
		90049363J1	139	848
	 	90049379H1	139	914
	_	90049495J1	139	926
	ļ	90049355H1	139	1002
		60215662U1	194	827
		g21012603	299	882
		g21012604	318	882
	1	9679740U1	2082	2933

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments		1	
ncyte ID/				
Sequence Length				
		90217915J1	2092	2695
		90218047J1	2092	2698
		90217923J1	2092	2715
		90218039J1	2092	2742
1		90217907J1	2092	2784
		90217931J1	2092	2838
i		90217947J1	2092	2888
- · · · · · · · · · · · · · · · · · · ·		90218031J1	2092	2908
	-	90218023J1		2948
		95103533H1	<u></u>	2695
		7208870H1 (FIBPFEA01)		2834
		7050749R6 (BRACNOK02)		2834
		822846R1 (KERANOT02)		2739
		7253472H1 (BRAMNOA01)		2833
	 	7703764H1 (UTRETUE01)	2203	2796
		g12097556	2219	2873
		7050236H1 (BRACNOK02)	2226	2843
		7115279H1 (BRAENOK01)	2227	2834
		g19212752	2244	2811
		7685360H1 (BRABDIK02)	2297	2834
		6946127F6 (FTUBTUR01)	2335	2915
		90218039J1	2810	2874
		g30442850	2905	3964
		GBI.g29789976.edit2	3908	4293
21/7526208CB1	2067-2098.	2944771F7 (BRAITUT23)	1	581
6538	4319-5404,	,		ļ
	4173-4201, 1-			
	1485, 6070-		•	
	6538, 2539-	1.		
	3468			
	0.00	GBI_NT_016354_004.13.edit1	21	6538
		8018737J1 (BMARTXE01)	438	1053
		g3422499	581	1057
		g3330808	589	1057
	-	8198864H1 (BRAINOR03)	906	1436
	 	8198864J1 (BRAINOR03)	1332	1978
		7580306H1 (BRAIFEC01)	1483	2045
		8159951J1 (MIXDTME02)	1486	2135
	<u></u>	8161727H1 (MIXDTME02)	1645	2142
	1	90041465H1	2127	2864
		90041465F6	2129	2864
/	+	g5926184	2304	2751
	 	8267027H1 (MIXDUNF02)	2382	2971
	 	8498563H1 (BRSMTXF01)	2543	3089
	 	g2162976	2564	3118
	1	8123676H1 (HEAONOCO1)	2568	3068
-	 	71891427V1	3104	3725

Table 4

Polynucleotide SEQ ID NO:/	Selected Fragments	Sequence Fragments	5' Position	3' Position
Incyte ID/	i ruginonu			
Sequence Length				
		71893456V1	3255	3883
		2228879F6 (PROSNOT16)	3376	3897
		71892008V1	3450	4136
		g11290981	3459	4057
		1236920F1 (LUNGFET03)	3476	3968
·	 	6517912F8 (BRAFTDT02)	3478	4027
	· · · · · · · · · · · · · · · · · · ·	g11976492	3479	4046
		g24786219	3481	4172
		56010211H1	3489	4296
		g10823987	3502	4173
		g24787165	3522	4172
		g30853338	3533	4165
	 	g18521727	3555	4177
	<u> </u>	g13285388	3564	4310
	 	g6890090	3578	4049
		3967421F7 (PROSTUT10)	3643	4157
		3967421F6 (PROSTUT10)	3643	4275
		g2836991	3652	4172
		g28094190	3663	4244
	 	1803939F6 (SINTNOT13)	3676	4334
		g22767266	3699	4147
		g10825536	3806	4475
	 	4827574F6 (BLADDIT01)	3959	4517
		4827574T8 (BLADDITO1)	3972	4672
		7682581T8 (BRABDIK02)	4006	4691
		g24779423	4007	4745
•		g24794912	4028	4745
<u> </u>		g12102435	4040	4746
	 	g12102433 g9876920	4043	
	 		4067	4695 4745
· · · · · · · · · · · · · · · · · · ·		g19734318	4076	
		g23285997	4078	4745
	- 	g27792216		4745
		g11364160	4104	4659
		g24775063	4116	4745
		g19729780	4155	4745
	-	g19755171 =		~ 4745····· -
		g21175144	4184	4745
		1803939T6 (SINTNOT13)	4194	4686
	<u> </u>	1625628T6 (COLNPOTO1)	4195	4685
		2228879T6 (PROSNOT16)	4215	4689
		4827574T6 (BLADDIT01)	4216	4688
		g23286214	4242	4745
		2851843T6 (BRSTTUT13)	4251	4702
		2153236F6 (BRAINOT09)	4284	4745
		7621418J1 (HEARFEE03)	4873	5519
		g12413646	4878	5586
	_	g10319848	5089	5766

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments			
Incyte ID/				
Sequence Length				
		6610468H2 (KIDNTMC01)	5144	5808
		414471F1 (BRSTNOT01)	5483	6067
		6480671H1 (PROSTMC01)	5491	6053
		7326473R8 (THYMNOE02)	5502	6329
		g10318203	5571	6067
·		7621418H1 (HEARFEE03)	5580	6040
		g3099121	5586	6065
-		7012818F7 (KIDNNOC01)	5587	6067
,		7012918F8 (KIDNNOC01)	5587	6069
		g10035211	5603	6069
		g4188696	5614	6067
22/ 7526212CB1/	1442-1485.	2944771F7 (BRAITUT23)	1	581
2349	2116-2349, 1- 1049			
		GBI_NT_016354_004.13.edit1	1	2290
	<u> </u>	8018737J1 (BMARTXE01)	438	1053
		g3422499	581	1057
	<u> </u>	g3330808	589	1057
****		8198864H1 (BRAINOR03)	906	1436
		8198864J1 (BRAINOR03)	1332	1978
	<u> </u>	7580306H1 (BRAIFEC01)	1483	2045
	†	73073134V1	1608	2349
23/ 7526213CB1/	6365-6398	GBI_NT_016354_003.15.edit1	1	8009
8015	7104-7128,	ODJ_111_010354_005.15.0dit1	•	0005
	4028-5749, 1-			
	2254, 2817-			
	3243	'		
······		90214127H1	203	877
		9815193U2	203	877
		9775316U2	203	936
		9822048U1	571	1314
		9770976U2	571	1436
	 	***		1450
		19785981U1	1571	
	 	9785981U1 9770976U1	571 577	
		9770976U1	577	1378
		9770976U1 9785972U1	577 586	1378 1449
		9770976U1 9785972U1 9822048U2	577 586 594	1378 1449 - 1332
		9770976U1 9785972U1 9822048U2 9746466U2	577 586 594	1378 1449 - 1332 1450
		9770976U1 9785972U1 9822048U2 9746466U2 9773732U2	577 586 594 652 731	1378 1449 - 1332
		9770976U1 9785972U1 9822048U2 9746466U2 9773732U2 9784110U2	577 586 594 652 731 747	1378 1449 - 1332
		9770976U1 9785972U1 9822048U2 9746466U2 9773732U2 9784110U2 9784110U1	577 586 594 652 731 747 756	1378 1449 - 1332 1450 1652 1525 1532
		9770976U1 9785972U1 9822048U2 9746466U2 9773732U2 9784110U2 9784110U1 9770966U1	577 586 594 652 731 747 756	1378 1449
		9770976U1 9785972U1 9822048U2 9746466U2 9773732U2 9784110U2 9784110U1 9770966U1 9796042U2	577 586 594 652 731 747 756 799 806	1378 1449 - 1332
		9770976U1 9785972U1 9822048U2 9746466U2 9773732U2 9784110U2 9784110U1 9770966U1 9796042U2 9746439U1	577 586 594 652 731 747 756 799 806 833	1378 1449 1332 1450 1652 1525 1532 1670 1686 1552
		9770976U1 9785972U1 9822048U2 9746466U2 9773732U2 9784110U2 9784110U1 9770966U1 9796042U2 9746439U1 9746180U2	577 586 594 652 731 747 756 799 806 833 833	1378 1449 - 1332
		9770976U1 9785972U1 9822048U2 9746466U2 9773732U2 9784110U2 9784110U1 9770966U1 9796042U2 9746439U1	577 586 594 652 731 747 756 799 806 833	1378 1449 1332 1450 1652 1525 1532 1670 1686 1552

Table 4

Polynucleotide SEQ ID NO:/	Selected Fragments	Sequence Fragments	5' Position	3' Position
Incyte ID/	1 Tuginoniu	İ		
Sequence Length				
		9770980U2	849	1612
	· · · · · · · · · · · · · · · · · · ·	9746180U1	850	1644
		9770984U2	850	1675
		9770970U1	855	1615
	 	9770970U2	856	1771
		9770962U2	857	1624
	 	9746239U2	857	1678
		9746359U1	915	1764
		9811817U2	928	1675
		9822051U2	928	1768
		9822051U1	928	1899
		9770964U1	933	1753
	+	9770964U2	933	1779
		9773790U2	934	1774
<u>-</u>	·	9785982U2	943	1759
	 	9746294U1	947	1898
	 	9746294U2	950	1844
		9822053U1	1827	2719
		9785984U2	1829	2642
	 	9785975U2	1829	2704
	 	9785975U1	1829	2737
	 	9785984U1	1830	2720
		9746440U2	2108	3060
· · · · · · · · · · · · · · · · · · ·		9746414U1	2154	3036
		9770983U2	2155	3043
		9786418U1	2160	3084
		9746414U2	2161	3052
		9770973U2	2172	3054
		9822054U1	2174	3015
<u></u>	+	9822054U2	2180	2972
~~~	<del></del>	9785985U1	2212	3066
	_	9785976U1	2212	3163
		9785976U2	2215	2958
· · · · · · · · · · · · · · · · · · ·		9785985U2	2215	3030
		9770975U1	2277	3051 ·
		9770979U1	- 2281	3068
		9785986U2	2422	3338
	-	9822055U1	2430	3130
		9785986U1	2430	3212
	-	9785977U2	2430	3244
	<del> </del>	9822055U2	2430	3322
	<del></del>	9784111U2	2434	3184
		g10934151	5975	6837
<del>-</del>		g15763429	6557	7314
		g18513541	7215	7903
		g21477809	7241	8015

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments			
ncyte ID/	•			
Sequence Length		1	i	
24/ 7526214CB1/	7039-7063 1	GBI_NT_016354_003.15.edit1	1	7945
7945	2933, 3938-	OB1_141_010334_003.13.edit1	*	1943
1943	5684, 6300-		1	
	6373			
	0373	9775320U2	203	668
<del></del>	<del> </del>	9775320U2	203	955
· · · · · · · · · · · · · · · · · · ·		9785981U2	492	1352
		9785990U2	507	1304
<del></del>		9770976U2	507	1371
		9785981U1	507	1385
		9770976U1		
	<del> </del>	9785972U2	513 514	1313
<del>- "</del>		9785972U1	522	1304
		9746466U2 9770978U2	588 692	1385 1396
	<del> </del>			
		9775320U2	707	787
		9770974U1	735 742	1548
		9796042U2		1621
	<del> </del>	9746439U1	769	1487
	<del> </del>	9746439U2	769	1656
<del></del>		97,38822U2	769	1703
<del></del>	ļ	9746215U2	785	1551
	<del> </del>	9770984U2	786	1610
	<del> </del>	9770970U1	787	1550
<del></del>	<del></del>	9770962U2	787	1559
_ <del></del>		9770970U2	788	1706
•	-	9770968U2	790	1712
		9746215U1	791	1488
		9746239U2	792	1613
	<del> </del>	9770968U1	796	1676
	<del> </del>	9811817U2	863	1610
		9822051U2	863	1703
	<del> </del>	9822051U1	863	1834
		9770964U1	868	1688
	-	9770964U2	868	1714
		9773790U2	869 -	- 1709 -
		9785982U2	878	1694
		9746294U1	882 .	1833
	ļ	9746294U2	885	1779
	- <del> </del>	9822053U1	1762	2657
	<del>- </del>	9785984U2	1764	2579
		9785975U2	1764	2642
		9785975U1	1764	2675
		9785984U1	1765	2658
	ļ	9746295U1	2418	3318
		9811820U2	2583	3356
	<u> </u>	95037369J1	2664	3334

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments	1		1 ,
Incyte ID/				1
Sequence Length				
<del></del>	<del> </del>	95048903H1	2664	3380
·		95049151H1	2664	3382
	<del> </del>	95048851H1	2664	3382
		95037269J1	2664	3382
	-	95049119J1	2664	3389
		95049103J1	2664	3405
	<del> </del>	95049127J1	2664	3422
		95048935H1	2664	3431
		95049011H1	2664	3445
	<del> </del>	95049135J1	2664	3454
		9504913311 95048927H1	2664	3458
	<del> </del>		2664	3458
	<del> </del>	95048943H1 95037385H1	2664	3459
	<del> </del>		2664	3464
	<del> </del>	95037377J1	2664	
	<del> </del>	95049183H1		3469
· <del>-</del>		95037277J1	2664	3469
		95049191H1	2664	3470
		95037393H1	2664	3471
<del></del>	ļ	95048891H1	2664	3480
		95048975H1	2664	3510
	<b></b>	95048983H1	2664	3511
		95037293H1	2664	3532
<del></del>		95048911H1	2664	3562
		95048919J1	2668	3458
		95049075H1	2668	3609
		95049011J1	2668	3617
		95048991H1	2706	3617
		95048935J1	2711	3617
		95037293J1	2776	3617
		95037369H1	2779	3617
		95037385J1	2779	3617
		95048951J1	2779	3617
		9743770U1	2781	3654
		95048903J1	2782	3617
	·	90214227J1	2784	3654
		95037377H1	2804	- 3617::::-
		9775731U2	2810	3654
·		90214259J1	2823	3653
		9775730U2	2848	3654
		9785996U2	2849	3628
		9785996U1	2849	3651
		9785978U1	2849	3654
		9775731U1	2854	3654
		90214227R6	2876	3653
		9775722U2	2876	3654
		9775718U2	2876	3654
		9775723U2	2899	3650

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments			
Incyte ID/				
Sequence Length				
		9775725U2	2906	3654
		9775719U1	2915	3654
		9791941U1	2949	3654
		9775718U1	2952	3654
		9775720U1	2971	3654
		g24792102		3682
		g14047307	3181	3922
		8138972T1 (SPLNNOT10)	3471	4320
		g19732719	3797	4551
		8760604H1 (MYEPUNNOI)	4066	4870
		8720327H1 (TLYJUNF01)	4320	5134
		8717314H1 (TLYJTXF03)	4541	5355
`,		8502029H1 (KIDEUNF01)	4764	5490
		g21170624	5247	5934
			5910	
		g10934151		6772
<u></u>	<del></del>	g15763429	6492	7250
•		g10153702	6854	7555
		g18513541	7150	7839
0.0.00000000000000000000000000000000000		g21477809	7176	7945
25/ 7526228CB1/ 3149	1298-1355, 2272-3149	g14083204 ·	1	528
		8507486H1 (SMCCTXF01)	1	719
		GBI_NT_007299_017.12.edit1	30	3149 -
		7953010H1 (SYNONOC01)	217	706
		73414963V1	229	740
		g15748947	239	1013
		8711164H1 (MYEPUNF01)	243	910
		g15759491	263	996
		95104290J1	402	1249
		95104234H1	1515	2354
		71634372V1	1538	2050
		95104302H1	1569	2354
		8208729H1 (LIVRTXS02)	1889	2602
		g13521551	2023	2773
		71769306V1	2112	2648
	<del> </del>	71638426V1	2124	2819
	<del> </del>	71635426 V 1	2147	2671
		g12365044	2211	2688
	<del>                                     </del>	g11014334	2566	3119
26/ 7526246CB1/	1-1020 2000	95079085H1	1	563
3617	3617	, , , , , , , , , , , , , , , , , , ,	1	303
		GBI.1859885.71	118	3617
		6828803J1 (SINTNOR01)	407	1087
		g14290834	412	1145
		7401136H1 (SINIDME01)	506	1090

Table 4

Polynucleotide SEQ ID NO:/	Selected Fragments	Sequence Fragments	5' Position	3' Position
Incyte ID/				ŀ
Sequence Length				
		7741107H1 (THYMNOE01)	521	563
		g15763036	703	1270
		95079085H1	869	1158
<del> </del>	٠.		869	1501
		g11937225	1194	1870
<del></del>	<del></del>	g13915792	1194	1985
· · · · · · · · · · · · · · · · · · ·		g13916980	1194	1992
		9743772U2	1358	2314
		8183605H1 (EYERNON01)	1371	2039
<del></del>		95078961H1	1373	2314
		95079093H1	1376	2303
		95078713J1	1385	2314
		g19891326	1421	2000
		g19895139	1423	2016
·		9817121U4	1423	2314
		g19370851	1429	2101
		56082957H1	1439	2254
		9817121U3	1455	2314
	1	g14054691	1457	2209
·		95078937J1	1466	2314
<del></del>	<del>                                     </del>	95078777H1	1471	2313
		95078913J1	1471	2314
	<del>                                     </del>	95078729J1	1471	2314
	<del>  \                                   </del>	95078985H1	1480	2314
·	<del> </del>	95043360J1	1480	2314
	<del>                                     </del>	95078993H1	1492	2313
	<del> </del>	95079077H1	1492	2313
		95043452J1	1494	2314
ſ		90155990J1	1494	2351
···		95078837J1	1497	2314
		9743371U1	1497	2314
·····	<del>                                     </del>	90155858J1	1497	2351
		g12766544	1509	2150
	<del> </del>	90155874J1	1509	2351
****		95079005F6	1515	<del></del>
<del> </del>		95079003F6 95078793H1	1515	2314
····		95079795H1	1520	2303
		g11641958	1521	2314
		95043436J1		2249
			1529	2314
		9805472U2	1529	2314
<del> </del>		g8658271	1539	2152
	<u> </u>	90151356J1	1542	2130
	<del> </del>	90161465H1	1542	2336
		90161565H1	1542	2367
	<del> </del>	90161481H1	1542	2412
	1	98054 <b>72</b> U1	1544	2314

Table 4

	1	Sequence Fragments	5' Position	3' Position
•	Fragments			1
cyte ID/				
equence Length				
		7721181J1 (THYRDIE01)	1557	2187
		95078893H1	1568	2313
		95078861H1	1568	2314
		95078885H1	1568	2314
		72677129V1	1592	2177
		95079093F6	1594	2303
·		950790931 <del>0</del> 95079013J1	1598	2314
			1599	2282
		g12684079	1599	2351
		90155866J1	1601	2189
		g18515296	1613	2314
		9743772U1		2267
		90154817H1	1616	
		95078705H1	1616	2314
		95078829J1	1616	2314
		g22371114	1625	2252
		g21120536	1631	2190
	ļ <u>.</u>	95078853J1	1638	2313
		g16175992	1648	2404
		7726720J1 (UTRCDIE01)	1653	2201
		7690765J1 (PROSTME06)	1656	2242
		g19367868	1661	2344
		72681393V1	1677	2397
		g15348804	1679	2352
		993893R6 (COLNNOT11)	1688	2368
		g10454044	1714	2320
		g9720208	1715	2528
		7621966J1 (HEARFEE03)	1728	2280
		6054035F6 (BRAENOT04)	1737	2340
		g30775472	1740	2392
		95079029J1	1744	2314
		g10320808	1773	2465
		90155982H1	1782	2351
		g14814460	1797	2414
		7723759J1 (THYRDIE01)	1824	2428
		8752975H1 (TLYJTXN02)	2599	3242
27/ 7526258CB1	/ 1-41, 1882-	GBI.NT_007914_013.10.edit1	. 1	1955
1955	1955, 1529- 1598			
	1	g13910802	81	946
	<del>                                     </del>	73381212D1	715	1172
	1	g19374315	812	1528
		7212021H2 (BLYRTXT03)	987	1540
28/7526311CR	1/ 1394-1429, 1-	GBI.928308.PT127_1	1	2937
2937	92, 2612-2937		-	
		95117349H1	122	658
		95117218H1	122	690

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments			•
Incyte ID/				
Sequence Length				1
		95117318H1	122	739
		GBI.95117318CL1	123	1393
		95117318J1	539	1393
<del></del>	·	95117349J1	621	1393
		95117218J1	807	1393
		g10357922	1099	1644
		6701408H1 (DRGCNOT02)	1237	1848
		2745158H1 (LUNGTUT11)	1251	1561
<del></del>	<del> </del>	8374138J1 (MIXDUNN16)	1390	2042
<del>~</del>		g10208513	1392	2069
,	<del></del>	g11112201	1396	2052
<u>'</u>	<del> </del>	g31804533	1430	1987
	<del> -</del>	7651467F6 (STOMTDE01)	1495	1949
	+	7651467H1 (STOMTDE01)	1502	1940
•		g12336360	1531	2266
	<u> </u>	55094066H1		
			1542	2039
	<del> </del>	55094066J1	1542	2039
		2927987F6 (TLYMNOT04)	1549	2106
	<u> </u>	g24902268	1579	1965
	ļ	g31010996	1658	2132
		g9772813	1731	2380
		g12427833	1737	2490
		g13581931	1759	2540
		6280867T8 (SKINDIA01)	1837	2534
	/	g23285666	1853	2606
		g8909555	1871	2301
		1649261F6 (PROSTUT09)	1880	2223
		2596906F6 (OVARTUT02)	1925	2496
		268900T6 (HNT2NOT01)	1960	2513
		2921276F6 (SININOT04)	1971	2483_
		g1476946	1984	2421
	,	g1479766	1984	2491
		55005237J1 (PHDEDNV02)	1984	2567
		g1484668	1984	2611
		g1927463	1992	2496
		907626R2 (COLNNOT09)	: 2000	- 2404
		g11008053	2015	2565
		2921293T6 (SININOT04)	2021	2502
		g1505878	2033	2567
	1	770052R1 (COLNCRT01)	2038	2544
-		g434511	2060	2394
	1	8450642J1 (MIXDTUN01)	2062	2561
<del></del>		gi 1014883	2066	2606
	<del> </del>	1649261T6 (PROSTUT09)	2083	2510
	<del></del>	g10821187	2107	2572
	<del>                                     </del>		2107	2500
ļ	<del></del>	8398230T1 (SPLNNOT04) 7628312H1 (GBLADIE01)	2129	2573

Table 4

Polynucleotide	Selected	Sequence Fragments	5' Position	3' Position
SEQ ID NO:/	Fragments			
incyte ID/				
Sequence Length	n			1
	<del></del>	g2706188	2136	2565
	<del></del>	g3899217	2139	2582
	+	g5742157	2147	2567
<del></del>	<del></del>	4163995T6 (BRSTNOT32)	2154	2547
	- <del> </del>	g7319568	2156	2606
•		g4188364	2160	2609
		6562933H1 (MCLDTXT04)	2169	2741
<del></del>	<del></del>	g11512426	2182	2609
		g274460	2223	2552
•		g2567099	2240	2586
		g7319495	2246	2606
		g4620813	2247	2568
<del> </del>		g13584179	2247	2602
	-	2927987T6 (TLYMNOT04)	2328	2878
		8556290T2 (LUNGNOT30)	2355	2860
		1299477T6 (BRSTNOT07)	2374	2890
···········	<del></del>		2472	2913
		g19758531	2478	2937
	1/ 1-88, 983-2443	g10810599  GBI.928294.PT122_0	1	6121
5122	3020-5194			
6122		9790480U1	193	871
		9790480U1 9709180U2	193	871
5122			193 193	871 871
5122		9709180U2	193 193 193	871 871 871
5122		9709180U2 9807280U2	193 193 193 193	871 871 871 871
5122		9709180U2 9807280U2 9807280U1	193 193 193 193 310	871 871 871 871 931
5122		9709180U2 9807280U2 9807280U1 9709180U1	193 193 193 193 193 310 573	871 871 871 871 971 982
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1	193 193 193 193 310	871 871 871 871 931 982 1481
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1	193 193 193 193 193 310 573	871 871 871 871 931 982 1481 1492
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1	193 193 193 193 310 573 867 867	871 871 871 871 931 982 1481 1492
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1	193 193 193 193 310 573 867	871 871 871 871 931 982 1481 1492 1496
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343082V1	193 193 193 193 310 573 867 867	871 871 871 871 931 982 1481 1492 1496 1573
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343082V1 72343409V1	193 193 193 193 310 573 867 867 867	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 72343152V1 72343264V1 72342802V1	193 193 193 193 310 573 867 867 867 867 867 890 919	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 723434082V1 72343152V1 72343264V1 72342802V1 72343571V1	193 193 193 193 310 573 867 867 867 867 890 919	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 72343152V1 72343264V1 72343571V1 72006034V1	193 193 193 193 310 573 867 867 867 867 890 919	871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643 
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 72343152V1 72342802V1 72343571V1 72006034V1 8514925H1 (BRSTUNF01)	193 193 193 193 310 573 867 867 867 867 867 890 919 	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643 
5122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 7234352V1 72343264V1 72343571V1 72006034V1 8514925H1 (BRSTUNF01)	193 193 193 193 310 573 867 867 867 867 890 919 	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643 
0122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 7234352V1 72342802V1 72343571V1 72006034V1 8514925H1 (BRSTUNF01) 8699971H1 (LIVRTXF01)	193 193 193 193 193 193 310 573 867 867 867 867 890 919	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643 
0122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 7234352V1 72343264V1 72343571V1 72006034V1 8514925H1 (BRSTUNF01) 8699971H1 (LIVRTXF01) 6610909J1 (PLACFER06)	193 193 193 193 193 193 310 573 867 867 867 867 890 919 922 1103 2143 2339 2423 2471	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643 
0122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 7234352V1 72342802V1 72343571V1 72006034V1 8514925H1 (BRSTUNF01) 8699971H1 (LIVRTXF01)	193 193 193 193 193 193 310 573 867 867 867 867 890 919 922 1103 2143 2339 2423 2471 2669	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643 
0122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 7234352V1 72343264V1 72343571V1 72006034V1 8514925H1 (BRSTUNF01) 8699971H1 (LIVRTXF01) 6610909J1 (PLACFER06)	193 193 193 193 193 193 193 310 573 867 867 867 867 867 890 919	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643 
0122		9709180U2 9807280U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 72343152V1 72343264V1 72343571V1 72006034V1 8514925H1 (BRSTUNF01) 8699971H1 (LIVRTXF01) 6610909J1 (PLACFER06) 6935902F8 (SINTTMR02) 7314251H1 (UTREDME02)	193 193 193 193 310 573 867 867 867 867 890 919 922	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643 
0122		9709180U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 72343152V1 72343264V1 72343571V1 72006034V1 8514925H1 (BRSTUNF01) 8699971H1 (LIVRTXF01) 6610909J1 (PLACFER06) 6935902F8 (SINTTMR02) 7314251H1 (UTREDME02)	193 193 193 193 193 193 310 573 867 867 867 867 867 890 919 922 1103 2143 2339 2423 2471 2669 2738 2738	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643 - 1655 1948 2950 3054 3023 3073 3237 3490 3554 3554
6122		9709180U2 9807280U1 9709180U1 71866765V1 72697902V1 72343088V1 72343412V1 72343409V1 72343264V1 72343264V1 72343571V1 72006034V1 8514925H1 (BRSTUNF01) 8699971H1 (LIVRTXF01) 6610909J1 (PLACFER06) 6935902F8 (SINTTMR02) 73396792V1 73396412V1	193 193 193 193 310 573 867 867 867 867 890 919 922	871 871 871 871 931 982 1481 1492 1496 1573 1595 1609 1643 

Table 4

SEQ ID NO:/ ncyte ID/ Sequence Length	Selected Fragments	Sequence Fragments	5' Position	3' Position
		7625836H1 (KIDNFEE02)	3247	3955
	<del> </del>	g12613318	4679	5357
	<del> </del>	1501689F6 (SINTBST01)	4789	5413
		g12095619	5055	5683
		8243847J1 (BONEUNR01)	5121	5809
	<del> </del>	g11979244	5167	5854
	<del> </del>	3016112T6 (MUSCNOT07)	5317	6012
	-	8546927T1 (OVARTUT01)	5343	6045
		g12763553	5356	6064
	<del> </del>	g12758671	5370	6043
		8736604J1 (BRAJNON03)	5370	6116
	<del>                                     </del>	7753003J1 (HEAONOE01)	5405	6106
	+	58004288J1	5410	6122
	<del>                                     </del>	g23283197	5424	6117
		7752327H1 (HEAONOE01)	5458	6108
	<del></del>	58004372H1	5461	6122
		896404T2 (BRSTNOT05)	5479	6079
	<del></del>	g24799829	5493	6117
	-	1682961T7 (PROSNOT15)	5495	6063
	<del></del> -	g15996499	5524	6117
30/ 7526442CB	1/ 1826-1914	g30290081	1	437
30/ 7526442CB 1914	1/ 1826-1914		1	647
	1/ 1826-1914	90004721J1		
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1	1	647
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29	1 1	647 1893
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1	1 1 1	647 1893 1914
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1	1 1 1 260	647 1893 1914 862
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1	1 1 1 260 260	647 1893 1914 862 863
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1	1 1 1 260 260 684	647 1893 1914 862 863 1206 1379
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1	1 1 1 260 260 684 684	647 1893 1914 862 863 1206 1379 1262 1452
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1	1 1 1 260 260 684 684 720	647 1893 1914 862 863 1206 1379 1262 1452 1453
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1 71564044V1	1 1 260 260 684 684 720 741	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1	1 1 260 260 684 684 720 741 744 748	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1 71564044V1 g1728583	1 1 260 260 684 684 720 741 744 748 750	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1 71564044V1 g1728583 71567352V1	1 1 260 260 684 684 720 741 744 748 750 760	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71564044V1 g1728583 71567352V1 70623897V1	1 1 260 260 684 684 720 741 744 748 750 760 762	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283 1262 1394
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1 71564044V1 g1728583 71567352V1 70623897V1 70622825V1	1 1 260 260 684 684 720 741 744 748 750 760 762 784 789	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283 1262 1394 1234
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1 71564044V1 g1728583 71567352V1 70623897V1 70622825V1 70645387V1	1 1 260 260 684 684 720 741 744 748 750 760 762 784 789	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283 1262 1394 1234 1378
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1 71564044V1 g1728583 71567352V1 70623897V1 70623897V1 70645387V1 70645387V1	1 1 260 260 684 684 720 741 744 748 750 760 762 784 789 789	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1 71564044V1 g1728583 71567352V1 70623897V1 70623897V1 70645387V1 70643337V1 71566273V1	1 1 260 260 684 684 720 741 744 748 750 760 762 784 789	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283 1262 1394 1234 1378
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1 71564044V1 g1728583 71567352V1 70623897V1 70623897V1 70645387V1 70643337V1 71566273V1 70494443V1	1 1 260 260 684 684 720 741 744 748 750 760 762 784 789 791 794	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283 1262 1394 1234 1378 1267 1261 1623
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1 71564044V1 g1728583 71567352V1 70623897V1 70622825V1 70645387V1 70643337V1 71566273V1 70494443V1 71567483V1	1 1 260 260 684 684 720 741 744 748 750 760 762 784 789 789 791	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283 1262 1394 1234 1378 1267 1261 1623 1405
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71563390V1 71564044V1 g1728583 71567352V1 70622825V1 70645387V1 70645387V1 70643337V1 71566273V1 70494443V1 71567483V1 90004721H1	1 1 260 260 684 684 720 741 744 748 750 760 762 784 789 791 794 796 807 814	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283 1262 1394 1234 1378 1267 1261 1623 1405 1325
	1/ 1826-1914	90004721J1 GBI.g22046009.edit1 GBI.FL931374.29 90134244J1 90134244H1 70623209V1 71565564V1 70626918V1 71564044V1 g1728583 71567352V1 70623897V1 70622825V1 70645387V1 70645387V1 70643337V1 71566273V1 70494443V1 71567483V1 90004721H1 7925523H2 (COLNTUS02)	1 1 260 260 684 684 720 741 744 748 750 760 762 784 789 791 794 796 807	647 1893 1914 862 863 1206 1379 1262 1452 1453 1386 1276 - 1283 1262 1394 1234 1378 1267 1261 1623 1405

Table 4

Polynucleotide SEQ ID NO:/ Incyte ID/ Sequence Length	Selected Fragments	Sequence Fragments	5' Position	3' Position
Sequence Lengur			045	1278
	ļ	70622349V1	845	
		71564547V1	845	1332
		71565477V1	856	1377
		6853128H1 (BRAIFEN08)	863	1451
		6200676H1 (PITUNON01)	876	1423
		6200476H1 (PITUNON01)	880	1464
		70622609V1	953	1403
	•	8587450T1 (SCOMDIC01)	960	1772
***		g3894478	961	1395
		71563494V1	969	1452
		6537489H1 (OVARDIN02)	1474	1914

Polynucleotide SEQ	Incyte Project ID:	Polynucleotide SEQ Incyte Project ID: Representative Library
B NO:		
16	7526185CB1	UTREDMF02
17	7526192CB1	NERDTDN03
18	7526193CB1	BRABDIR01
61	7526196CB1	BRACNOK02
20	7526198CB1	BRACNOK02
	7526208CB1	BLADDIT01
22	7526212CB1	BRAINOR03
24	7526214CB1	MYEPUNNOI
25	7526228CB1	MYEPUNF01
26	7526246CB1	THYMNOE01
27	7526258CB1	BLYRTXT03
28	7526311CB1	SININOT04
29	7526315CB1	OVARDIN02
30	7526442CB1	PITUNONOI

PF-1724 P

Library	Vector	Library Description
10710	pINCY	Library was constructed using RNA isolated from diseased bladder tissue removed from a 73-year-old male during a total cystectomy. Pathology indicated the bladder mucosa showed mild chronic cystitis. Pathology for the associated tumor tissue indicated invasive grade 3 adenocarcinoma, which formed a friable mass situated within the proximal urethra, 14 cm from the distal urethral resection margin. The tumor invaded superficially into, but not through, muscularis propria.
BLYRTXT03	pINCY	Library was constructed using RNA isolated from a treated Raji cell line derived from the B-lymphocyte cells of an 11-year-old Black male (ATCC CCL-86). The cells were treated for 18 hours with 10ng/ml of interleukin 18 (IL-18). Pathology indicated Burkitt's lymphoma.
BRABDIR01	pINCY	Library was constructed using RNA isolated from diseased cerebellum tissue removed from the brain of a 2 /-year-bin Caucasian male, who died from a cerebrovascular accident. Patient history included Huntington's disease, emphysema, and tobacco abuse.
BRACNOK02	PSPORT1	This amplified and normalized library was constructed using RNA isolated from posterior cingulate ussue removed from an exper-old Caucasian female who died from myocardial infarction and retroperitoneal hemorrhage. Pathology indicated atherosclerosis, moderate to severe, involving the circle of Willis, middle cerebral, basilar and vertebral arteries; infarction, remote, left dentate nucleus; and amyloid plaque deposition consistent with age. There was mild to moderate leptomeningeal fibrosis, especially over the convexity of the frontal lobe. There was mild generalized atrophy involving all lobes. The white matter was mildly thinned. Cortical thickness in the temporal lobes, both maximal and minimal, was slightly reduced. The substantia nigra pars compacta appeared mildly depigmented. Patient history included COPD, hypertension, and recurrent deep venous thrombosis. 6.4 million independent clones from this amplified library were normalized in one round using conditions
		adapted from Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research 0 (1990):1731.
BRAINOR03	PBK-CMV	This random primed library was constructed using pooled CDNA from two donors. CDNA was generated using interpretation brain its succession and fetus (donor A) who was stillborn with a hypoplastic left heart at 23 weeks' gestation and from brain tissue removed from a Caucasian male fetus (donor B), who died at 23 weeks' gestation from premature birth. Scrologies were negative for both donors and family history for donor B included diabetes in the mother.
MYEPUNF01	prare.	This 5' cap isolated full-length library was constructed using RNA isolated from an untreated K-362 cell line, derived from a 53-year-old female.
MYEPUNN01	prare	This normalized untreated K-562 cell line tissue library was constructed from independent clones from a K-502 cell line library. Starting RNA was made from an untreated K-562 cell line, derived from chronic myelogenous leukemia precursor cells removed from a 53-year-old female. The library was normalized in one round using conditions adapted from Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research 6 (1996):791, except that a significantly longer (48 hours/round) reannealing hybridization was used.

Library	Vector	Library Description
DN03	pINCY	This normalized dorsal root ganglion tissue library was constructed from 1.00 million independent contest from 4 32-year-ganglion tissue removed from the cervical spine of a 32-year-ganglion tissue removed from the cervical spine of a 32-year-
		old Caucasian male who died from acute pulmonary edema, acute bronchopneumonia, bilateral pleural effusions, pericardial
		effusion, and malignant lymphoma (natural killer cell type). The pattent presented with pyroxia of unknown origin; menangles of the pattern o
		fatigue, and gastrointestinal bleeding. Patient history included probable cylonogadornus incomercia, include and gastrointestinal bleeding. Included killer
		steatosis, splenomegaly, hemorrhagic cysnus, invision nemoninage, respiratory failure, processes, included colonoscopy, closed
		cell lymphoma of the pharynx, Bell's palsy, and todacco and alcohol abuse. I to tour suggests medically and included Diffucan
		colon biopsy, adenotonsillectomy, and nasopharyngeal endoscopy and biopsy. Faucin incurcations incident
		(fluconazole), Deltasone (prednisone),
		hydrocodone, Lortab, Alprazolam, Reazodone, ProMace-Cytabom, Etoposide, Cispiatin, Cytarabine, and devanted association association and devanted association and devanted association association and devanted association association and devanted association and devanted association and devanted association association association association association association and devanted association associat
		nation received radiation therapy and multiple blood transfusions. The library was normalized in 2 rounds using conditions
		adapted from Scares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research 6 (1996):791, except that a
		simificantly longer (48 hours/mind) reanneating hybridization was used.
		Signification congest from 6 76 million independent clones from an ovary library. Starting
OVARDINO2 PINCY	pINCY	This normalized ovarian tissue itorary was consumed itoms of a conscious female during total abdominal
		RNA was made from diseased ovarian tissue removed from a 39-year-old Caucasian islamic daming from a serial parameters and
		hysterectomy, bilateral salpingo-oophorectomy, dilation and curettage, partial colectomy, inclueinal appendence,
		removery colosiomy. Pathology indicated the right and left adnexa, mesentery and muscularis propria of the sigmoid colon
		white in the second of the surfaces of the surfaces of the second posterior serosal surfaces of the
		were extensively involved by an analysis and properties. Pathology for the associated tumor tissue indicated multiple (3
		uterus and the cur-ue-sac. The choons are the sac with showing hair and infertility. Patient history included
		intramural, 1 subserosal) leiomyomata. Ine patient presenteu with accomming pure
		scoliosis. Family history included hyperlipidemia, benign hypertension, atherosclerone coronary artery usease, depressive
		disorder, brain cancer, and type II diabetes. The
		In PNAS(1994) 91:9228 and Bonaldo et al.,
	•	library was normalized in two rounds and the contract of the principal reasoned in Publicization was used.
		Genome Research 6 (1996): /91, except that a significating foregreen council to the council of t

Library	Vector	Library Description
10NO	pINCY .	This normalized pituitary gland tissue library was constructed from 6.92 inition independent control of the chromic from chronic
		tissue library. Starting RNA was made from pituitary giant ussue to consider a construction of the mild ventricular
	<i>7</i>	obstructive pullibriary disease, including the new state of the neocortical areas examined, except for a number of
		silver positive neurons with apical dendrite staining, particularly in the frontal lobe. The significance of this was undetermined.
		The only other microscopic abnormality was that there was prominent silver staining with some swollen axons in the CAS
		region of the anterior and posterior hippocampus. Microscopic sections of the celebratum revenue and posterior hippocampus.
		the Purkinje cell layer. Patient history included schizophrenia. 1 ne noral was normanized in the cell layer. Patient history included schizophrenia.
		(1994) 91:9228-9232 and Bonaldo et al., Genome Research (1990) 0:791, except unat a significantly 10:192
		reannealing hybridization was used.
PULLUNING	nINCY .	Library was constructed using RNA isolated from diseased ileum tissue obtained from a 20-year-old Caucasium man
	<u>-</u> .	partial colectomy, permanent colostomy, and an incidental appendectomy. Pathology indicated moderately to severcy active
	. <u>-</u> -	Crohn's disease. Family history included enteritis of the small intestine.
THYMNOE01	PCDNA2.1	This 5' biased random primed library was constructed using KNA isolated irom ulyllius ussue removed from a 5 years of gross
	<b>-</b> ·	Caucasian female during a thymectomy and patch closure of left atrioventricular usuas. Tautough mucasa and patch closure of left in the contract of the left in the contract of the contract o
	. •:	abnormality of the thymus. The patient presented with congenital heart abnormalities, raucult instances and a fracture of the
		ventricle and a rudimentary right ventricle, pulmonary hypertension, cyanosis, subaortic stenosis, seizues, and a maker
	:	skull base. Patient medications included Lasix and Captopril. Family history included reflux neuropausy in the modern
TEMBERACEO BOMY-ICIS	SIJI-MJG	This full-length enriched library was constructed using 1.5 micrograms of polyA RNA isolated from endomediat ussue
OIKEDIMENT		removed from a 32-year-old female. The endometrium was in secretory phase.

		Deference	Parameter Threshold
Program	Description		
ABI FACTURA	A program that removes vector sequences and masks Applied biosystems, roster City, Cr.	Applied Biosystems, Poster City, Cr.	
ABIPARACEL	ng and annotating	Applied Biosystems, Foster City, CA; Paracel	Mismatch <50%
FDF		Inc., rasadena, CA.	
ABI	2		ESTs: Probability value = 1.0E-8 or
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic	5	less; Full Length sequences:
	acid sequences. BLAST includes five functions:	Nucleic Acids Res. 25:3389-3402.	Probability value = 1.05-10 of 153
	blastp, blastn, blastx, tblastn, and tblastx.	70 (1088) Pmc. T I imman (1088) Pmc.	ESTs: fasta E value = 1.06E-6;
FASTA	A Pearson and Lipman algorithm that searches for cimilarity hetween a onery sequence and a group of	Natl. Acad Sci. USA 85:2444-2448; Pearson,	Assembled ESTs: fasta Identity =
	sequences of the same type. FASTA comprises as	W.R. (1990) Methods Enzymol. 183:63-98;	95% or greater and Match length =
	least five functions: fasta, tfasta, fastx, tfastx, and	and Smith, T.F. and M.S. Waterman (1981)	200 bases of greater; lasty is value = 1.10E.8 or less: Fill I ength sequences:
	ssearch.	Adv. Appl. Math. 2:402-409.	fastx score = 100 or greater
		1.0E-3 or less	Prohability value = 1.0E-3 or less
BLIMPS	A BLocks IMProved Searcher that matches a sequence	Acid, Dec 10:6565-6572; Henikoff, J.G. and	
	against those in BLOCKS, PRINTS, DUMO,	Acids Acs. 17:0000 00/2; 15:0000 00/2; 15:0000 00/2; 15:0000 00/2; 15:0000 00/2; 15:0000 00/2; 15:00000 00/2; 15:00000 00/2; 15:000000 00/2; 15:000000000000000000000000000000000000	
	PRODOM, and PFAM databases to search for gene	S. Henikoli (1990) Meniods Lilly mon. Econoci	-
	families, sequence homology, and structural fingerprint 105; and Attwood, 1.15, et al. (1791) 3. Cucan.	t 105; and Attwood, 1.5. et al. (1791) 3. Cuchin.	
	regions.	Int. Comput. Sci. 3/-21/22: 1501. Biol. 235:1501- PFAM, INCY, SMART or TIGREAM	PFAM, INCY, SMART or TIGRFAM
HIMMER	An algorithm for searching a query sequence against	1531: Sonnhammer. E.L.L. et al. (1988)	hits: Probability value = $1.0E-3$ or
	hidden Markov model (Alvini)-based databases of	Nucleic Acids Res. 26:320-322; Durbin, R. et	less; Signal peptide hits: Score = 0 or
	protein family conscisus sequences, such as a conscisuo sequen	al. (1998) Our World View, in a Nutshell,	greater
		Cambridge Univ. Press, pp. 1-350.	900
ProfileScan	An algorithm that searches for structural and sequence	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol.	Normalized quality score < 000.
	monts in protein sequences that makes sequence patterns defined in Prosite.	183:146-159; Bairoch, A. et al. (1997) Nucleic	particular Prosite motif. Generally, score = 1.4-2.1.
		Acids Res. 23.211-221:	

		Reference	Parameter Infestion
Program Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome	
		Kes. 8:180-194.	Score = 120 or orester: Match length
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient	Smith, T.F. and M.S. waterman (1901) Apr. Appl. Math. 2:482-489; Smith, T.F. and M.S.	= 56 or greater
	implementation of the Smith-Waterman algorithm,	Waterman (1981) J. Mol. Biol. 147:195-197;	
	useful in searching sequence homology and assembling and Green, P., University of Washington,	and Green, P., University of Washington, Seartle. WA.	
Consed	for viewing and editing Phrap	Gordon, D. et al. (1998) Genome Res. 8:195-	
		202.	Coore - 3 5 or greater
SPScan	atrix ana	Nielson, H. et al. (1997) Protein Engineering	
	sequences for the presence of secretary signar	CABIOS 12:431-439.	
	pepulges.	Persson B. and P. Argos (1994) J. Mol. Biol.	
TMAP	A program that uses weight mannes to commend	237:182-192; Persson, B. and P. Argos (1996)	
	Tansmitte organization	Protein Sci. 5:363-371.	
TAKTAKTED	A program that uses a hidden Markov model (HIMM)	Sonnhammer, E.L. et al. (1998) Proc. Sixth	
LIVITUALIVILATA	to delineate transmembrane segments on protein	Intl. Conf. On Intelligent Systems for Mol.	ì
	sequences and determine orientation.	Biol., Glasgow et al., eds., The Am. Assoc. for	
		Artificial Intelligence (AAAI) Press, Menlo	
	-	Park, CA, and MIT Press, Cambridge, MA, pp.	
		175-182.	
Monifs	A program that searches amino acid sequences for	Bairoch, A. et al. (1997) Nucleic Acids Res.	-
	natterns that matched those defined in Prosite.	25:217-221; Wisconsin Package Program	
	-	Manual, version 9, page M51-59, Genetics	
		Computer Group, Madison, WI.	

									_					_	_	_		_	-				_		_	-		_	_	_	Τ-	1	1
Hispanic	Allele 1	frequency	0.61	n/a	n/a	n/a	1/3	301	100	אַם	a/a	11/a	1/4 1/4	2/4	200	Ina	<u>pa</u> .	n/a	n/a	n/a	n/a	n/d	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Asian	Allele 1	frequency	0.61	n/a	n/a	2/2	700	PA -	n/a	n/a	D/a	age of	n/a	n/a		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	16	5	9/2	3/0	111.0
African	Allele 1	frequency	0.47	n/a	n/a	of a	IVa	Za.	n/a	n/a	n/a	n/a	n/a	n/a	nya	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	8/0	2/2	300	2/0	an of	INA
Caucasian	Allele 1	frequency	0.61	n/a	S _L	50	n/a	īga Iga	n/a	P/u	n/a	DQ.	n/a	n/d	n/a	n/a	2	n/a	p/u	₽⁄a	a/a	p/u	p/u	n/a	6/4	2/2	P/4	200	200	0.70	000	16.0	n/a
Amino Acid			noncodino	noncodina	noncoding	HOHOUNE	noncoding	noncoding	noncoding	noncoding	S113	noncoding	noncoding	noncoding	noncoding	noncoding	noncoding	noncoding	noncoding	noncoding	noncoding	noncodino	noncodino	noncodina	Nro20	1767 T941	1471	HOHOOMING	noncoding	noncoung	noncoding	noncoding	noncoding
Allele	2	1	E					ت ن	A				V		A	A	T	T	ی	ے ر	.  4	E	1 0	) F	٠ ر	ם כ	5 0	ופ	=	او	5	V	0
Allele	-	4	C	۽ اد	- E	1	ŋ	F	Ö	ပ	၁	A	ß	၁	Ö	Ö	ပ	ပ		داد	ן כ		ار	< 0	<u>.</u>	⋖ :	⋖ .	<	5	⋖	⋖	و	≤
FOT	Allela	3	١	- E	_   -		A	ပ	Ŋ	ပ	ပ	Ą	Ŋ	၁	G	Ŋ	ر	ر	) <	دار	ی ار	2 5	ر د	₹ 0	5	⋖ .	V.	5	5	<b>⋖</b>	⋖	٥	4
ē		JATO	Т	Т	1488	1533	2713	1582	2429	2922	1018	1909	2446	2279	2482	2453	1727	1686		1121	202	7507	717	200	110	1539	28	145	715	4315	2487	3533	3121
TOT	3 8	JAIC	1		1	216	262	. 181	151		∞	_		224	34		6	Γ	\$ 6	243	47	180	347	342	217	2	<u>8</u>	200	118	8	162	103	102
9 9 9	OI JAIC		$\neg \tau$	$\neg \vdash$	_		SNP00051188	_	П	$\overline{}$	-	T	T	1	_	Т			- 1	!	_	_	Т		$\neg$	SNP00142508	SNP00142509	SNP00118120	SNP00057788	SNP00006796	SNP00124328	SNP00006288	SNP00124330
, I	ESTE			125901F1	1553407H1	2197671T6	6723530H1	829638T6	120800H1	1208504111	1231274R6	1341206H1	1405367T6	1405367T6	1417137T6	1552059TK	133303010	10/821910	1722/18F0	1722718F6	1722718H1	2997552T6	2997552T6	7674218H2	1328791H1	4291033F6	4291033F6	7217965H1	7760201H1	1216956H1	1224406H1	1436210H1	1438205H1
	OLA C			7526185	7526185			T	1	7610761	7576100	7576107	7506100	7506100	7576102	2610261	7610757	7570197	7526192	7526192	7526192	7526192	7526192	7526192	7526193	7526193	7526193	7526193	7526193	7526196	7526196	7576196	7526196
Į	SEO	A	ÖN	16	91	91	T		Ţ		;	T		1	1 5	-	1		17		17	17	11	12	18	82	22	8	∞	2	1 0	1 0	5

PF-1724 P

				_							,	,		_	_	_	_	_	÷	_		_	-	τ	_	_	1	_	T	_	_		$\neg$	
Hispanic	Allele 1	frequency	n/a	p/u	n/a	n/d	p/u	n/a	n/a	n/a	n/a	p/u	a/a	9/4	2/0	IIVE	n/a	n/a	n/a	n/a	n/a	p/u	n/a	n/a	6/4	2/0	2/2	n/a	pg:	n/d	n/a	n/a	n/a	
Asian	Allele 1	frequency	n/a	p/u	n/a	p/u	p/u	n/a	n/a	n/a	n/a	100	300	ala ala	IVA	n/a	n/a	n/a	n/a	n/a	n/a	p/u	24	2/2	200	E/C	IIVa	n/a	Pa Pa	p/u	n/a	n/a	n/a	
African	Allele 1	frequency	n/a	p/u	n/a	p/u	p/u	n/a	n/a	8/4	2/2	P/4	201	Na 1	nva	n/a	n/a	n/a	n/a	n/a	n/a	P/a	9/2	2/0	IVA	IVa	n/a	n/a	p/u	n/d	n/a	n/a	n/a	
_	Allele 1	frequency	0.34	p/u	n/a	p/u	P/u	n/a	n/a	2/0	100	77	מם יי	D/4	0.34	0.97	96.0	p/u	0.97	p/u	D 34	P/e	200	IVa	IIVa	n/a	11/a	n/a	n/d	p/u	0.91	11/a	n/a	
Amino Acid			noncoding	noncoding	noncoding	noncoding	noncoding	noncoding	noncodino	Honoding	HOUROUME	noncoding	noncoding	noncoding	noncoding	noncoding	K1309	K696	A1045	T908	61001	NION	Nous	noncoung	noncoaing	D1341	noncoding	A1317	N487	Y486	T1244	R596	8399	
Allele	7		ပ	U	U	ß	ی	) 4	£	١,	5 0	5 0	5	ڻ	ပ	٧	ව	Ö	4	٢	2	اد	5 0	اد		4	H	T	ß	U	E	. 4	E	<u> </u>
Allele	_		E	• 4	<u> </u>	•		ز ر	2 0	ا ر	A.	V.	V	A	L	Ö	A	4	ع	)	C E	-	₹ [	=	ပ	ŋ	C	၁	4	4	<u></u>	ع اد	ر ا	,
EST	Allele		ر		ار	> 4	<   <	כיל	2 0	ار	A	V	A	A	T	Ö	A	4	٢	> <	ر د	ار	<u> </u>	ပ	ပ	ပ	ပ	ပ	A	A	ار	ع د	اد	2
CBI	SNP	!	3401	2824	5 5	386	201	107	/017	2 3	3	3128	2852	3149	3428	3560	4122	2284	2221	1000	01/27		792	છ	4272	4217	4270	4147	1655	1653	200	1007	2 5	7777
EST	a.V.	 }	133	512	11 y	201	2 2	3 3	134	2	420	162	510	213	238	370	9	163	3 5	3 3	701	2	12	46	329	84	61	25	160	5	2 2	\$ 2	2 2	111
CIT GIVS	1		CATDOOOCO	SINFUGGGGZ87	SINFOO124529	SINFOOLS#327	SINFOUCESSO	SNPUUUOSASU	SNP00153438	SNP00068979	SNP00068978	SNP00124330	SNP00124329	SNP00124330	SNP00006287	SNP00006288	96290000dNS	SNEOO124328	ONTE COLLECTION AND	SINFOUNDESS	SNF00124330	SNP00006287	SNP00124329	SNP00124327	SNP00029581	SNP00092542	SNP00029581	376978 JUNE 1976	08689000dNS	08/00000 INIC	SINFU0000500	SNF0000289	SNF00155450	SINFOUCOSSIS
Eer III	3	,		T			1.				6754284H1	770376411	7753868H1	7753868H1	8598525H1	8408475H1	1116260760	1210930111	172440011	1436210H1	1438205H1	1555235H1	1597263F6	1669032H1	1806969T6	1922794H1	2005750H1	2180073H1	21099/2111	2333440F0	2555446H1	2936740H1	3337906H1	3643184H1
a did	Đ.			7526196	7526196	7526196	7526196	7526196	7526196	7526196	7526196	7526196	7526196	7526196	7526196	2019036	7575100	72,0190	/526198	7526198	7526198	7526198	7526198	7526198	7526198	7526198	7576108	7576100	0210707	720198	7526198	7526198	7526198	7526198
010	אָלָבָּ	3	Ö	<u>e</u>	2			61	19	61	61	6	6				1	1	-1	8	20	20	8	ន	8	18	2 2	3 8	3 3	2	8	8	8	ຂ

																		1		_	-					-	_	_	_		7	
Hispanic	Ailele I	frequency	n/a	n/a	n/d	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Asian	Allele 1	frequency	n/a	n/a	p/u	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
African	Allele 1	frequency	n/a	n/a	P/u	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n⁄a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n⁄a	ī⁄a	n/a	n/a	n/a	n/a	n/a	
Caucasian	Allele 1	frequency	n/a	p/u	p/u	p/u	0.34	260	2	100	9/0	n/a	p/u	n/a	e/u	P/u	8/4	2/2	100 m	n/a	p/u	n/a	200	169	n/a	n/a	nga Inga	200	9/2	20.0	n/a	
Amino Acid			4965	0010	7818	H017	טוטוע	T1054	noncodina	11011V041116	Transporting 1	noncoding	1 348	W718	noncoding	noncoding	noncoding	noncoding	MONCOLINE V77K	W218	noncodina	7076 V276	noncoding	noncoding agricoding	noncoding	noncoding	noncoding	noncoding	noncoding	noncoding	noncoding	Guina
Allele	,	1	c	T					€ €			) E	٠ ر			٤	-	- 0	5 F	- اد	ا ع إد	- 1	٠   ر	٤ ر	4 E	٠٠	) <u>F</u>	٠   د	<u> ار</u>	د ر	) E	
Allele	} -	٠,			< -	ح  ح	<   E	_	واد	وار	ار.	∢ ⟨	۽ ر	- E	-   E	-  5	ار	ပ ၂	- 5	۽ اد	-\	واد	واد	פ	ی د	۔ ار	د د	واد	5 0	5 0	2 0	اِذ
TOT	3 :	Alleje		₹ .	۷.	∢ .	₹ E	_ ,	ופ	ار	ار.	<b>√</b>	 ع د	E	_	_	ار	ال		-   [	- (	ع اد	_	راد	ပြ	ار	<b>₹</b>  0	اد	ار.	4	وار	اد
1	3 8	AZ Z	1	1	7	_	7	$\neg$	Т	Т	Т	$\neg$	$\neg$	2185	1794	2866	1113	3806	2405	1969	175		201	3197	1189	8 5	7408	886	86	2210	21.2	9/40
2000	ES		T	Т	$\top$	1		$\exists$	T				T	T			29			88	187	29	8	123	151	2	131	352	ন্ত	12	123	2
	OII ANS			7	$\neg$	_	$\neg$	_	$\neg$	$\neg$				-	-	_	-1	一十		SNP00053973	_ 1	$\neg$	$\neg$ r	SNP00014900	SNP00044591	SNP00044591	SNP00139931			SNP00139930	SNP00014900	SNP00044591
-	ESTID	-		6754284H1 S			7753868H1	8598525H1	8598525H1	1236920F1	1284901H1		2528372H1	2681418H1	2749684F6		3693823H1		5055874H1		2749684F6		6449431H1	1430148F6	2113230H1	2113230R6	2556574H1	2987033F6	3844660H1	712904R6	1430148F6	2113230H1
	P.D.	-		7526198	7526198		7526198				7526208			7526208	7526208	7526208	7526208	7526208	7526208	7526208	7526212	7526212	7526212	7526213	7526213	7526213	7526213	7526213	7526213	7526213	7526214	7526214
	SEO	А	Ö	20		20	20	20			1	Ι.	21	21	21	21	2	21	21	21	ន	Z	2	23	8	ß	23	ß	23	2	72	22

Hispanic	Allele 1 frequency	2/3	301	E/U	n/a	n/a	n/d	p/u	p/u	n/a	p/u	p/u	n/a	n/a	n/a	n/a	n/a	2/2	10 p/u	2 2	100	IN S	n/a	n/a	יים	n/d	n/a	n/a	n/a	0.92	n/a	n/a	
Asian	Allele 1	7	iva ,	n/a	n/a	n/a	96.0	96.0	96.0	n/a	96.0	96.0	n/a	n/a	n/a	8/2	5	3 4	a/d	201	n/a	n/a	n/a	n/a	p _{/u}	됩	n/a	n/a	n/a	96.0	n/a	n/a	
African	Allele 1	Irequency ,	n/a	n/a	n/a	n/a	p/u	p/u	p/u	n/a	ρμ	P	8/2	8/4	9	200	2/4	RAI.	n/a	D/G	n/a	n/a	n/a	n/a	p/u	p/u	n/a	n/a	n/a	6.0	n/a	n/a	
Caucasian	Allele 1	requency	n/a	n/a	n/a	0.04	p/u	p/u	p/u	2/2	p/u	p/u	96	iva n/o	100	PAI Y	n/a	g .	n/a	n/d	n/a	n/a	n/a	n/a	p/u	1	n/a	n/a	100	0.82	n/a	n/a	
Amino Acid		丁	noncoding	noncoding	noncoding	Π	Т	noncodino	noncoding	noncoding	noncodina	Concoding	HOLICOULLE	noncoung	noncouling	noncoaing	noncoding	noncoding	noncoding	G74	R14	F 867	P362	D335	L348	1.334	noncoding	noncoding	noncoding	noncodino	noncoding	noncoding	HUMANIA
Allele /			T . T		E									2 0		1		Ö			G	ပ	ပ	ပ	ī	F	ر.	اد	) (	ي اد	ي اد	2 0	2
Allele	1		ပ	A	ر	י	) (	5 0	5 0	5 0	2 0	שׁ	و	4	اد	ပ	V	ပ	A	ß	Ą	ŋ	E-	F	ပ	ر	ع اد	-   E	- E	- E	- E	- E	-
FOT	Allele		Ü	¥	C	ار	ار	5 0	او	5 0	ا ز	יפ	5	V	ပ	ပ	V	ပ	Ą	g	A	ŭ	E	ر ا	E	ار	عاد	- E	-   8	-   8	- 0	) 	=
100			6749	2403	2222	255	3133	2716	2712	2740	234	2787	2713	2362	2115	2182	2946	2116	2365	328	55	400	70		151	1 2	0 2	2 2 2	677		787	134	2235
Tion			151	137		725	8	319	<b>∞</b>	<u>4</u> 1	82	251	194	123	78	28	224	165	486	241	2	13	5 6	2 2	3 6	2 6	2 8	35	727	257	33	5	268
4 4 4 5	a a s		CNP00044591	1	٦,	┰	SNP00014900	SNP00066816		T	SNP00136441	SNP00066816	SNP00066816	SNP00068998	SNP00068997	SNP00068997	SNP00041996	SNP00068997	SNP00068998	SNP00076027	CNP00132757	CNEDO0027430	SINFU003/439	SNF00043963	SINFOOD97440	SNF0003/440	SNP00111294	SNP00019740	SNP00019740	SNP00019740	SNP00058093	SNP00114001	SNP00019740
	ESTID		112220DK	T	1			1485690T6	1835249H1	2169542T6	2536771H1	2805663T6	510019T6	1294154H1	1545488H1	280325T6	4407121H1	762196611	7751044H1	1248K38EK	134003010	134003000	1444 / / 3H L	1897166H1	2//094/HI	3143852H1	3143852H1	1649261F6	1649261T6	268900T6	2745158H1	2745158H1	2921293T6
	E.		710703	1526214	7526214	7526214	7526214	7526228	7526228	7526228	7526228	7526228	7526228	7526246	7526246	7526246	7526246	7506046	7506246	200000	9070701	857075/	7526258	7526258	7526258	7526258	7526258	7526311	7526311	7526311	7526311	7526311	7526311
	SEQ E	Ş	51	T	24	24	22		1			Γ	2		Τ	Τ	T	T	१	8 8	77	- 1			l	21	27	78	8	8	82	8	80

_			_	,	<b>.</b>	_				<del>-,</del>	<del></del>				-1	-			- (	T	_	7	$\neg$	1	7	$\neg$	7	Т	٦	
Hispanic	Allele 1	frequency	n/a	37	IVa	n/a	29.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	p/u	n/a	n/a	n/a	n/a	
Asian	Allele 1	frequency	9,5	IVa	n/a	n/a	0.86	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a,	n/a	n/a	n/a	n/a	n/a	
African	Allele 1	frequency		nva	n/a	n/a	0.63	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	a/a	n/a	n/a	n/a	n/a	n/a	n/a	p/u	n/a	n/a	n/a	n/a	
Concesian	Allele 1	fraguency	יובאותחווים	n/a	n/a	n/a	0.71	n/a	n/a	p/u	n/a	2/3	p/u	2/2	n/a	100	n/d	2/4	P/u	8/2	p/u	2/2	n/a	n/a	p/u	p/u	n/a	10/a	n/a	
Aming Agid	Allele Amino Acid			A129	noncoding	noncoding	noncoding	noncodino	noncodino	noncoding	noncoding	noncodino.	noncoding	noncoding	ampooror.	1101100umB	Silven	noncoding	noncoding	noncoding	noncodino	noncoding	noncoding	noncodino	S130	poncodino	noncoding	noncoding	noncoding	
		7		T	<u>-</u> ق									₹ ₽	-   5			€ 0	ر د	₹ (	۰	د ر	ی ر	ي ر	٤	1	ן כ	ם כ	) [-	
	Allele	-		ပ	4	ار	٠	₹ 0	اد	ه اد	< ⟨	ار	- 0	5 0	اد	ופ	<u> </u>	ופ	<u>-</u>	5   E	- 0	יןכ	) F	- E	-	واد	5 0	<u>ا</u> ر	٦	2
	EST	Allele	(	၁	A	<u> </u>	٠ (	5 0	ار	ا و	₹ (	ارد		4	اد	اح	П		1	1	7	$\neg$		7		Т	T	Т	٠   د	2
	<u>e</u>	NS		540	1775	2003	2333	¥ :	ङ्ग	260	24 2	4/83	33.6	3367	4/80	200	215	3387	3317	3368	3239	3348		1048	हु <u>।</u>	42/	Z :	<u> </u>	77/1	9
	EST	SS		438	107	20 6	5	<u></u>	8	8	-	$\neg \neg$	$\neg$				<u>중</u>	336	$\neg$	$\neg$	-		_ 1	1			- 1			
	SNPID			CNP00125603	0111 0012300 TVD	SNP00003/40	SNP00012539	SNP00012540	SNP00045700	SNP00045701	SNP00022215	SNP00012538	SNP00028237	SNP00028238	SNP00012538	SNP00045701	SNP00023889	SNP00028238 336	SNP00028237	SNP00028238	SNP00028237	SNP00028238	SNP00045701	SNP00149600	SNP00149600	SNP00066979	SNP00114113	SNP00022802	SNP00149600	SNP00031991
₹.	ESTID	<u>-,</u> .		11305111			1004004H1	1004004H1	1004004H1		1363254H1	1377277F1	1675313F6	1675313F6	1675313T6	1682961T7	3003741H1	403838T6	762283731	762283711	7625836H1	7625836H1	7752327H1	1265917F1	1382145F6	1824201F6	2046231H1	2744627F6	691185T6	7622751H1
	E.					7526315	7526315	7526315	7526315		'	7526315	7526315	7526315	7526315	7526315	7526315	7526315	7526315	7526315	7526315	7526315	7526315	7526442	7526442	7526442	7526442	7526442	7526442	7526442
	CEO	É	Ş	5	8	53	53	53		Į.	82	59			62	2	1	1	2	8	50	8	52	8	8	8	8	8	ဓ္က	ല

#### This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES	
□ COLORED OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ OTHER:	

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox