

Introduction to Ameba-Z SDK

Compatible with Ameba-1

Content

- Ameba-Z
- SDK overview
- API of Components
- IDE Tool Demo
- MP Related

Ameba-Z Startup Document

- HW
 - UM0115 Realtek Ameba-Z Introduction.pdf
- Compare to Ameba-1
 - UM0116 Realtek Ameba-Z SDK change.pdf
- Datasheet
 - UM0114 Realtek Ameba-Z Data Sheet.pdf
- DEV board
 - UM0113 Realtek Ameba-Z DEV 1v0 User Manual.pdf
- IAR setup
 - UM0110 Realtek Ameba-Z build environment setup iar.pdf
- Memory Layout
 - UM0111 Realtek Ameba-Z memory layout.pdf
- OTA
 - AN0110 Realtek Ameba-Z over the air firmware update.pdf

Ameba-Z New Software Feature

- XIP
 - About 140K SRAM free and 200K flash free
 - RF Calibration data in EFUSE
 - OTA mechanism
- Security
 - Hidden EFUSE key + RDP
 - Polar SSL 1.3.8 in ROM (Most code)
- High-speed Log UART
 - For normal debug download or UART upgrade
- Peripheral API
 - Both Light weight and Mbed API

Flash Layout (Ref: UM0111)

- Flash Layout
 - Bootloader: Image1
 - System data
 - OTAx image: Image2
- Image Header (32Bytes)
 - Signature
 - Flash calibration data for image1
 - String "81958711" for image2
 - Address
 - Code executes address after boot
 - 'BOOT RAM', 'OTA1 DATA' 'OTA2 DATA' is target RAM address
 - 'BOOT XIP'. 'OTA1 TEXT', 'OTA2 TEXT' is Flash XIP address

Flash (1M)

REALTEK

System Data (Ref: UM0111)

- 1103H VH3CL VX.XVV	F	lash	Offset:	0x9000
----------------------	---	------	---------	--------

- OTA2 Flash Address
 - Consistent with Image2
 Flash offset selected at compile time
- RDP Flash Address
 - Any address from OTA1 end
 - Length less than 4K
- Valid IMG2
 - Used for OTA1 and OTA2 switch

0x0	00 0>	(04 0x	о8 08	:0C					
	OTA2 Flash Address	Valid IMG2	Forth OTA1 GPIO	OTA Rsvd					
	RDP Flash Address	RDP Rsvd							
	WORD1: SPI Speed WORD1: Flash Size WORD1: Flash Rsvd WORD0: SPI Mode WORD0: Flash ID WORD0: Status Register								
	ULOG BaudRate ULOG Rsvd ULOG Rsvd ULOG Rsvd								
	Reserved for Realtek								
	reserved								
	USB Parameter								
	reserved								
	ADC Prameter								

SWILCII				
	Validate Image2 (32 Bits)	0 1		
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12	2 11 10 9 8 7 6 5	4 3 2 1 0	0xFFFFFFFF Boot OTA1
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12	2 11 10 9 8 7 6 5	4 3 2 1 0	0xFFFFFFF Boot OTA2
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12	2 11 10 9 8 7 6 5	4 3 2 1 0	0xFFFFFFC Boot OTA1
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12	2 11 10 9 8 7 6 5	4 3 2 1 0	0xFFFFFFF8 Boot OTA2
	•••••			
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12	2 11 10 9 8 7 6 5	4 3 2 1 0	0x00000000 Boot OTA1
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12	2 11 10 9 8 7 6 5	4 3 2 1 0	0xFFFFFFFE Boot OTA2

0x00

0x10

0x20

0x30

0x40 ~ 0x5F

0x100

0x147

0x200

System data

- Flash speed
 - OxFFFF: 100MHz
 - 0x7FFF: 83MHz
 - 0x3FFF: 71MHz
 - 0x1FFF: 62MHz
 - Ox0FFF: 55MHz
 - 0x07FF: 50MHz
 - 0x03FF: 45MHz
- Flash size
 - OxFFFF: 2MB
 - 0x7FFF: 32M
 - 0x3FFF: 16M
 - 0x1FFF: 8MB
 - 0x0FFF: 4MB
 - 0x07FF: 2MB
 - 0x03FF: 1MB

- Flash SPI mode
 - OxFFFF: Read quad IO, Address & Data 4 bits mode
 - Ox7FFF: Read quad O, Just data 4 bits mode
 - 0x3FFF: Read dual IO, Address & Data 2 bits mode
 - Ox1FFF: Read dual O, Just data 2 bits mode
 - 0x0FFF: 1 bit mode
- Flash Status Register
 - user-defined flash status register value
 - OxFFFF: clear flash status register

RAM Layout (Ref: UM0111)

- SRAM layout
 - ROM BSS
 - Image 1 used SRAM
 - Image 2 used SRAM
 - MSP
 - RDP: Fixed location

	RAM(256k)
0x1000-0000	- ,
0x1000-2000	Reserved for ROM BSS(8k)
	Image 1 RAM(4k)
	(CODE + DATA)
0x1000-5000	Reserved
	Image2 RAM
	(DATA)
	Image2 RAM
	(BSS)
	Image2 RAM (HEAP)
0x1003-E000	
0x1003-F000	MSP (4k)
0x1003-FFFF	RDP (4k)

FLASH

32 bytes boot code header
Boot XIP
32 bytes boot data header
Boot RAM
System Data
32 bytes OTA1-TEXT header
OTA1-TEXT
32 bytes OTA1-DATA header
OTA1-DATA
32 bytes OTA2-TEXT header
OTA2-TEXT
32 bytes OTA2-DATA header
OTA2 DATA
User Data
///////// RDP(4k)

Output Binary

- Boot loader
 - boot_all.bin
 - Boot loader code and initial value of data
- Application Image2
 - image2_all_ota1.bin
 - Application code and initial value of data
 - Run in flash 0x0800B000
 - image2_all_ota2.bin
 - Application code and initial value of data
 - Default run in flash 0x08080000
- OTA image
 - ota_all.bin
 - Integrated OTA header, image2_all_ota1.bin and image2_all_ota2.bin

OTA Update (Ref: AN0110)

OTA Header

Version

0x00 Version (32bit) HDR Num (32bit)

The version of OTA image

0x08

Header Number

The number of OTA Entry Header

0x20

Signature	HDR Len	Checksum	IMG Len	Offset	FlashAddr
Signature	HDR Len	Checksum	IMG Len	Offset	FlashAddr

OTA Entry Header

Signature

"OTA1" for OTA1, and "OTA2" for OTA2

Header Length

The length of OTAx header

Checksum

The checksum of OTAx image

Image Length

The size of OTAx image

Offset

■ The start position of OTAx in current image

Flash Address

Address in flash where OTAx will be programmed

OTA Steps

- 1. Received upgrade command from the cloud server.
- 2. Find the target OTA area in flash according to "Valid IMG2" and erase.
- 3. Start receiving ota_all.bin from the server.
- 4. Find the correct OTA Entry header in OTA header.
- 5. Find the correct otax.bin start offset written in OTA Entry header .
- 6. Save otax.bin to the target flash area.
- 7. Calculate checksum of otax.bin in flash and compare to the checksum in OTA Entry header. If not equal, OTA fail.
- 8. If target is OTA2, verify OTA2 address in 0x9000 (flash system data) is the same as the flash offset in OTA Entry header. If not equal, OTA fail.
- 9. Update Validate IMG2 in 0x9004 (flash system data).
- 10. Reboot.

OTA Example

OTA2

V01

...

Flash

OTAL

V02

OTA2

V01

...

FW protection - Read Protection

RDP

- Top 4k RAM can not be read.
- RDP Interrupt will happen when invalid access happen.
- RDP image should be encrypted use RDP KEY
- RDP image can only be decrypted and load to RDP RAM use IPSEC.

KEY

- 16B RDP key should be written to EFUSE RDP key area
 - Hidden EFUSE 0xB0~0xBF
- Can not read back again. (HW protect)
- Auto-load to IPSEC when boot.

Enable

- Hidden EFUSE 0xC0[0].
- Can not be closed after open.

How to use RDP

- Prepare rdp.bin
 - Set CONFIG_ENABLE_RDP to 1 in Platform opts.h
 - Add secret data or codes use specified section name:
 - RDP_DATA_SECTION
 - RDP_TEXT_SECTION
 - Image2.icf will auto link RDP section to 0x1003F000
 - Output file: rdp.bin
- Enable RDP protection
 - efuse_rdp_enable
- Input RDP Software key and rdp.bin to Image Tool Encrypt page, click Encrypt, then generate rdp-en.bin
- Set RDP Hardware Key to Efuse
 - efuse_rdp_keyset
- Finally write rdp-en.bin to Flash

PIN Multiplex Table

QFN6	QFN48	QFN3	GPIO	UART	SPI Master	SPI Slave	SPI Flash	I2C	SDIO	PWM/TIMER	EXT32K	125	Others
8	√	2 ✓	PA_14							PWM0	SWD_CLK		
· /	✓	√ ·	PA_15							PWM1	SWD_DATA		
√	•	·	PA_13							PWM4	JVVD_DAIA		
✓	√	✓	PA_13 PA_0							PWM2	ext_32K		
· /	✓		PA_16	UART2_log_RXD						PWM1	RTC_OUT		
√	√		PA_17	UART2_log_TXD						PWM2			
√	✓		PA_25	UART1_RXD									
✓	✓		PA_26	UART1_TXD									
✓			PA_28					I2C1_SCL					
✓			PA_27					I2C1_SDA					
✓		✓	PA_12							PWM3			
√	√		PA_4	UARTO_TXD	SPI1_MOSI	SPI0_MOSI		I2CO_SDA					
✓	✓		PA_1	UARTO_RXD	SPI1_CLK	SPIO_SCK		I2CO_SCL					
✓	✓		PA_2	UARTO_CTS	SPI1_CS	SPIO_CS		I2C1_SDA					
✓	✓		PA_3	UARTO_RTS	SPI1_MISO	SPI0_MISO		I2C1_SCL					
✓	✓.	✓	PA_6				SPIC_CS		SD_D2				
√	√	√	PA_7				SPIC_DATA1 SPIC_DATA2		SD_D3				
√	∨	✓	PA_8 PA_9				SPIC_DATA2		SD_CMD SD_CLK				
✓	✓	✓	PA_10				SPIC_CLK		SD_D0				
✓	✓	✓	PA_11				SPIC_DATA3		SD_D1				
✓	✓	✓	PA_5						SDIO_SIDEBAND_INT	PWM4			WAKEUP_1
✓	✓	✓	PA_18	UARTO_RXD	SPI1_CLK	SPIO_SCK		I2C1_SCL	SD_D2	TIMER4_TRIG		I2S_MCK	WAKEUP_0
✓	✓	✓	PA_19	UARTO_CTS	SPI1_CS	SPIO_CS		I2C0_SDA	SD_D3	TIMER5_TRIG		I2S_SD_TX	ADC1
✓	✓		PA_20						SD_CMD			I2S_SD_RX	ADC3
✓	✓		PA_21						SD_CLK	PWM3		I2S_CLK	
✓	✓	✓	PA_22	UARTO_RTS	SPI1_MISO	SPI0_MISO		I2C0_SCL	SD_D0	PWM5		I2S_WS	WAKEUP_2
✓	✓	✓	PA_23	UARTO_TXD	SPI1_MOSI	SPI0_MOSI		I2C1_SDA	SD_D1	PWM0			WAKEUP_3
✓			PB_1		SPI1_CLK	SPI0_SCK							
✓			PB_0		SPI1_CS	SPIO_CS							
✓			PB_2		SPI1_MISO	SPI0_MISO							
√			PB_3		SPI1_MOSI	SPI0_MOSI					CIAID CIII	IOC MACK	
√			PB_4								SWD_CLK	I2S_MCK	
∨			PB_5								SWD_DATA	I2S_SD_TX	
∨			PA_24									I2S_SD_RX	
· /			PA_31 PB_6									I2S_CLK I2S_WS	
✓	✓	✓	PA_30	UART2_log_TXD				I2CO_SDA		PWM3	RTC_OUT	123_00	
· •	·	✓	PA 29	UART2 log RXD				12CO_SDA		PWM4			

How to find UARTO

- Firstly, find UARTO groups in Pin mux table defined in UM0113 Chapter 3 and shown in Blue and Red box in the lower left corner.
- Then pick the pin group which is enabled for your package. For example, PA_4/PA_1 is not available for QFN32.
- Finally, find the pin name in the right side of the dev board shown as below.

QFN68	QFN48	QFN32	GPIO	UART		SPI Master	SPI Slave
✓	✓	✓	PA_14				
✓	✓	✓	PA_15				
✓			PA_13				
✓	✓	✓	PA_0				
✓	✓		PA_16	UART2_log_RXE)		
✓	✓		PA_17	UART2_log_TXE)		
✓	✓		PA_25	UART1_RXD			
✓	✓		PA_26	UART1_TXD			
✓			PA_28				
✓			PA_27				
✓		✓	PA_12				
✓	✓		PA_4	UARTO_TXD		SPI1_MOSI	SPI0_MOSI
✓	✓		PA_1	UARTO_RXD		SPI1_CLK	SPIO_SCK
✓	✓		PA_2	UARTO_CTS		SPI1_CS	SPIO_CS
✓	✓		PA_3	UARTO_RTS		SPI1_MISO	SPIO_MISO
✓	✓	✓	PA_6				
✓	✓	✓	PA_7				
✓	✓	✓	PA_8				
✓	✓	✓	PA_9				
✓	✓	✓	PA_10				
✓	✓	✓	PA_11				
✓	✓	✓	PA_5				
✓	✓	✓	PA_18	UARTO_RXD		SPI1_CLK	SPIO_SCK
✓	✓	✓	PA_19	UARTO_CTS		SPI1_CS	SPIO_CS
✓	✓		PA_20				
✓	✓		PA_21				
✓	✓	✓	PA_22	UARTO_RTS		SPI1_MISO	SPI0_MISO
✓	✓	✓	PA_23	UARTO_TXD		SPI1_MOSI	SPI0_MOSI
✓			PB_1			SPI1_CLK	SPIO_SCK

DEV Board PIN Multiplex

Content

- Introduction to Ameba-Z
- SDK overview
- API of Components
- IDE Tool Demo
- MP Related

Software Stack

Software Features

- Operation System
 - FreeRTOS
- Network Stack
 - LW/IP
- Wlan Security
 - Open/WEP/TKIP/AES PSK
- Architecture
 - STA mode
 - AP mode
 - STA+AP mode
 - Promiscuous mode
 - P2P mode
- Device Simple Config
 - SoftAP mode config
 - WPS
 - Realtek simple config
 - Customizable Promiscuous Mode
- Secure Sockets Layer
 - Polar SSL (Ref: AN0012)
 - Mbed TLS 2.4.0

- Instant messaging protocol
 - MQTT
 - Web Socket
- Application examples
- Peripheral operation examples
- Update Firmware
 - OTA update
 - UART upgrade
- Cloud
 - Homekit (Ref: AN0035)
 - Google Nest(Ref: AN0038)
 - Gitwits (Ref: UM0062)
 - Joylink (Ref: AN0052)
 - Wechat/Airkiss (Ref: AN0054)
 - QQLink (Ref: UM0074)
 - Ali Alink (Ref: UM0098)
 - Amazon
 - Hilink (Ref: UM0095)
- Application
 - Wi-Fi RS 232 (Ref: AN0046)

Directory Structure – Overview

- Sdk-ameba-v3.6a beta v1
 - in component

 in comp

 - ⊿ 📗 os
 - ▶ I freertos
 - ⊿ 🏬 soc
 - ⊿ 🏬 realtek
 - ⊳ 🚹 8195a
 - ⊳ 🚹 8711b
 - doc
 - i project
 - Image: all a line in the property of the pr
 - ▶ III EWARM-RELEASE
 - example_sources
 - ine
 - ll sro
 - 🗦 📗 tools

- 🛮 📗 tools
 - 🛮 🌆 AmebaZ
 - DownloadServer
 - Image Tool
 - autopatch
 - DownloadServer
 - file_check_sum
 - 🗦 📗 serial_to_usb
 - b limple_config_wizard
 - 🗦 脂 simple_config_wizard_3.4b
 - b ll uart_adapter
 - 🗦 📗 wigadget

New element

Directory Structure – Peripheral example

- ▶ III efuse_mtp

- ▶ Illustration | block_protect
- D 🌆 gdma
- D 🌆 gpio
- Delta prio_dht_temp_humidity
- D pio_HC_SR04_ultrasonic
- b J gpio_irq
- pio_jtag
- B gpio_level_irq
- Delight_weight
- B gpio_pulse_measure
- 🕨 뷆 gspi

- ⊳ 📗 i2c_dual

- log_uart_char_loopback
- ▶ Iog_uart_loopback
- ▶ Nog_uart_stream_loopback
- þ j pm_deepsleep
- pm_deepstandby
- þ j pm_sleep
- pm_tickless
- ⊳ 🌆 pwm
- þ j pwm-buzzer

- ⊳ 🌆 sp
- ▶ B spi_gpio_chipselect
- ▶ III spi_master_write_read_one_byte

- 🗦 📗 spi_multislave
- ⊳ 📗 spi_pl7223
- ▶ III spi_stream_twoboard
- ▶ III spi_stream_twoboard_concurrent
- ▶ III spi_twoboard

- b ll uart_stream_dma
- b uart_stream_irq
- ▶ Wart_stream_rx_timeout
- ▶ uart_stream_rx_timeout_by_GTimer
- ▶ ☐ uart_stream_rx_timeout_by_semaphore_iar
- uart_stream_rx_timeout_by_SoftTimer
- ▶ uart_stream_rx_timeout_by_WaitSemaphore
- \bigwide \bigwide \text{uart_stream_tx_rx_concurrent_iar}

- ⊳ 📗 wlan

Freertos

- Minimal RAM and processing overhead
 - Typically an RTOS kernel binary image will be in the region of 4K to 9K bytes.
 - The core of the FreeRTOS kernel is contained in only 4 C files.
 - Tasks.c
 - Queue.c
 - Heap_5.c
 - Timer.c
- Real time, reliable and scalable

OS API

Usage

■ To use OS related API, the osdep_service.h in folder \$sdk\component\os\osdep\include provides all APIs that may be used.

Reference

The details of each function are declared in osdep_service.h

LWIP

- Lightweight and open source TCP/IP stack
- Provide basic features of TCP Protocol with decreased system occupation
- Fit for small embedded applications , requires only 20K RAM and 40K ROM
- Support protocols
 - IP protocol
 - ARP protocol
 - ICMP protocol
 - UDP protocol
 - TCP protocol including Congestion Control, RTT Estimation and Fast Recovery/Fast Retransmit

Security - SSL

- Three kinds of basic algorithms:
 - Asymmetric encryption algorithm
 - Identity Authentication
 - Key Negotiation
 - Symmetric encryption algorithms
 - Encrypted data using the negotiated key
 - Hash Functions
 - Verify the integrity of information

Security – 802.1x EAP

- 802.1x
 Authentication
 - Requester
 - Verifier
 - Authentication Server

Extensible Authentication Protocol (EAP)

- EAP Method
 - Support PEAP, TLS and TTLS

Simple Config R3 (Ref: AN0011)

- SoftAP + Promiscuous mode
- As fast as old version
- High success rate
- Cover both Android and iOS
- Cost Flash 14K and **SRAM 0.5K**

Third-party device(eg:Smart phone/ tablet/PC...) connects with AP, and run APP on itself to deliver WLAN profile to air(or via AP deliver)

Third-party device

Wi-Fi client(Fridge) captures the profile from air, and connects to AP-router specified by APP

Wi-Fi client(fridge)

Cloud Service

Cloud Service	Code	Data + BSS	Status
Homekit	-	-	Ready
Google	-	-	Ready
Amazon	-	-	Ready
Alink 1.1	60K+50K	68K	Ready
Joylink 1.3.3	61K	36K	Ready
QQlink 1.1.101	70K	44K	Ready
Hilink 0.5.4	73K	17K	Ready
Gagent + Airkiss	77K	22K	Ready
Wechat 3.1.0	89K	35K	Ready

Content

- Introduction to Ameba-Z
- SDK overview
- API of Components
- IDE Tool Demo
- MP Related

AT Command for Wi-Fi (Ref: AN0025)

- 'AT??' Print Log History
- 'AT--' Exit Log Service
- 'ATW0' Wlan Set Network SSID
- 'ATW1' Wlan set Network Passphrase
- 'ATW2' Wlan Set Key ID
- 'ATWC' Wlan Join a Network
- 'ATWD' Wlan Disconnect from Network
- 'ATW3' Wlan Set Access Point SSID
- 'ATW4' Wlan Set Access Point Security Key
- 'ATW5' Wlan Set Access Point Channel
- 'ATWA' Wlan Activate Access Point
- 'ATWB' Wlan Activate Access Point mode and Station mode
- \$sdk\component\common\api\at_cmd\atcmd_wifi.c

- 'ATW?' Wlan Show WiFi information
- 'ATWS' Wlan Scan for Network Access Point
- 'ATWR' Wlan Get RSSI of Associated Network Access Point
- 'ATWM' Wlan Wi-Fi promisc
- 'ATWE' Wlan Start Web Server
- 'ATWQ' Wlan Wi-Fi Simple Config
- 'ATWP' Wlan Power on/off wifi module
- 'ATWI' Wlan ping test
- 'ATWO' Wlan OTA update
- 'ATWT' Wlan TCP throughput test
- 'ATWU' Wlan UDP test
- 'ATWL' Wlan SSL client
- 'ATWW' Wlan Wi-Fi Protected Setup
- 'ATWZ' Wlan IWPRIV

AT Command for system

- 'ATSD' Dump register
- 'ATSE' Edit register
- 'ATSK' Set RDP/RSIP enable and key
- 'ATSC' Clear OTA signature
- 'ATSR' Recover OTA signature
- 'ATSA' MP ADC test
- 'ATSG' MP GPIO test
- 'ATSP' MP Power related test
- 'ATSB' OUT PIN setup
- 'ATSS' Show CPU stats
- 'ATSM' Apple CP test
- 'ATSJ' Turn off JTAG
- 'ATS@' Debug message setting
- 'ATS!' Debug configure setting
- 'ATS#' Test command
- 'ATS?' Help

WiFi common API (Ref:UM0006)

- Wifi enable/disable
 - wifi_on
 - wifi_off
 - wifi_is_up
 - wifi_is_ready_to_transceive
- Station Mode Connection
 - wifi_connect
 - wifi_disconnect
- AP Mode Startup
 - wifi_start_ap
 - wifi restart ap
 - wifi get ap info
 - wifi_get_associated_client_list
- AP+STA Concurrent Mode
 - wifi_start_ap
 - wifi_connect

- Wifi Scan
 - wifi_scan_networks
 - wifi_set_pscan_chan
- Wlan Driver Indication
 - wifi_indication
- Wifi Promiscuous Mode
 - wifi_enter_promisc_mode
 - wifi_set_promisc
 - wifi_init_packet_filter
 - wifi_add_packet_filter
 - wifi_enable_packet_filter
 - wifi_disable_packet_filter
 - wifi remove packet filter
- Wifi Setting Information
 - wifi_get_setting
 - wifi_show_setting

WiFi common API

- Wifi Mac Address
 - wifi_set_mac_address
 - wifi_get_mac_address
- Wifi Power save
 - wifi enable powersave
 - wifi disable powersave
- Wifi Tx Power
 - wifi_set_txpower
 - wifi_get_txpower
- Wifi Channel
 - wifi_set_channel
 - wifi_get_channel
- Wifi Multicast Address
 - wifi_register_multicast_address
 - wifi_register_multicast_address

\$sdk\component\common\api\wifi\wifi_conf.c

- Wifi RF Control
 - wifi_rf_on
 - wifi_rf_off
- Wifi Auto Reconnection
 - wifi set autoreconnect
 - wifi_get_autoreconnect
- Wifi Custom IE
 - wifi_add_custom_ie
 - wifi_update_custom_ie
 - wifi_del_custom_ie
- Wifi RSSI Information
 - wifi_get_rssi
- Country Code Setup
 - wifi set country
- Network Mode Setup
 - wifi set network mode

Peripheral API (Ref: UM0117)

- ☐ Modules
 - ☐ Marcha Z_Outline
 - AmebaZ Address Map
 - Management
 AmebaZ Peripheral_Registers_Structures
 - 🕀 🌭 AMEBAZ_UART
 - 🕀 🌭 AMEBAZ SPI
 - ★ AMEBAZ_SPIC

 - ⊕ ♦ AMEBAZ_I2C

 - ★ AMEBAZ_RTC
 - ⊕ ♦ AMEBAZ_PINMUX
 - ★ AMEBAZ_GPIO
 - ⊕ ♦ AMEBAZ_IPSEC
 - ⊕ AMEBAZ_USOC

 - ⊕ ♦ AMEBAZ_NCO8M

 - AmebaZ Peripheral Declarations

- ☐ Marchaz_Platform
 - BKUP_REG

 - 🛨 🌭 PIN
 - ⊕ PMC
 - ⊕ CACHE

 - 🕀 🌭 EFUSE

 - RCC

 RCC
 - ⊕ SYSCFG
 - 🛨 🄷 IRQ
 - 🕀 🌎 Debug

- - ⊕ CRYPTO
 - DONGLE
 - 🛨 🌭 INIC
 - ⊕ SDIO
 - ⊕ SOC
 - ⊕ ADC
 - ⊕ SELASH
 - ⊕ GDMA
 - 🕀 🌄 GPIO
 - ⊕ 🌄 I2S
 - ⊕ RTC
 - 🕀 🌄 SPI
 - 🕀 🌎 Timer
 - 🕀 🌭 UART

 - 🛨 🌎 I2C

Mbed API (Ref: UM0118)

- Modules
 - ☐ Manual Amelia Am

 - ⊕ MBED_GPIO

 - ⊕
 MBED_RTC

 - ⊕ MBED_GDMA
 - 🕀 🌎 MBED_EFUSE

 - 🛨 🌭 MBED_SYSAPI
 - MBED_WDG
 - ★ MBED_TIMER
- 🕀 🌭 Files

- 🕀 🌭 Modules
- Classes
- □ (ii) Files
 - ☐ (i) File List
 - ☐ (i) component
 - ⊡ 🕼 soc
 - 🖃 🕼 realtek
 - 🖃 🐚 8711b
 - □ M mbed
 - 🖃 🔟 hal
 - 🕀 🌭 analogin_api.h
 - 🕀 🍫 gpio_api.h
 - 🛨 🦠 gpio_irq_api.h
 - ⊕ ort_api.h
 - ⊕ vtc_api.h
 - 🛨 🌎 serial_api.h
 - 🕀 🌭 sleep_api.h
 - 🕀 🌑 spi_api.h
 - □ (i) hal_ext
 - 🛨 🍫 dma_api.h
 - 🛨 🦠 efuse_api.h
 - 🕀 🌭 flash_api.h
 - 🕀 🌎 i2s_api.h
 - 🕀 🌎 sys_api.h
 - 🛨 🌎 wdt_api.h
 - □ (ii) targets
 - ⊟ 🚺 hal
 - 🔋 📋 File Members

LWIP API

- Socket
- Shutdown
- Bind
- Listen
- Accept
- Connect
- Recv
- Recvfrom
- Send
- Sendto
- Select
- Ioctlsocket
- Read
- Write
- Close

\$sdk\component\common\network\lwip\lwip_ v1.4.1\src\api\sockets.c

- tcp_new
- tcp_accept
- tcp_recv
- tcp_sent
- tcp_poll
- tcp_recved
- tcp_bind
- tcp_connect
- tcp listen
- tcp_abort
- tcp_close
- tcp_write
- udp new
- udp_remove
- udp_bind
- udp_connect
- udp recv
- udp_send

Freertos API

Task

- rtw_create_task
- rtw delete task
- rtw_wakeup_task
- rtw_get_scheduler_state

Queue

- rtw_init_xqueue
- rtw_push_to_xqueue
- rtw_pop_from_xqueue
- rtw_deinit_xqueue

Semaphore

- rtw_init_sema
- rtw_free_sema
- rtw_up_sema
- rtw_up_sema_from_isr
- rtw_down_timeout_sema

Delay

rtw_mdelay_os

\$sdk\component\os\os_dep\osdep_service.c

Timer

- rtw timerCreate
- rtw timerDelete
- rtw timerIsTimerActive
- rtw timerStop
- rtw_timerChangePeriod

Memory

- rtw malloc
- rtw zmalloc
- rtw mfree
- rtw_getFreeHeapSize

Wake Lock

- rtw_acquire_wakelock
- rtw_release_wakelock
- rtw wakelock timeout

Time

- rtw get current time
- Random
 - rtw_get_random_bytes

Power Saving Related API

- CM4 power mode
 - sleep_ex
 - deepstandby_ex
 - deepsleep_ex
- Wi-Fi Power Save
 - wifi_enable_powersave
 - wifi_disable_powersave
 - wifi_set_power_mode
 - wifi_set_lps_dtim
 - wifi_get_lps_dtim
- Wakeup Event
 - DSLEEP_WAKEUP_BY_TIMER/GPIO
 - STANDBY_WAKEUP_BY_STIMER/GPI O/RTC
 - SLEEP_WAKEUP_BY_STIMER/GTIME R/GPIO_INT/WLANSDIO/USB/GPIO/ UART/I2C/RTC

PM tickles

- Suspend and Resume callback
 - pmu_register_sleep_callback
 - pmu_unregister_sleep_callback
- Wake Lock
 - pmu_acquire_wakelock
 - pmu_release_wakelock
 - pmu_get_wakelock_status
- Wakeup Event
 - add_wakeup_event
 - del_wakeup_event
- PMU_DEVICE: nDeviceId
 - PMU_OS/USER_BASE/WLAN/LO GUART/CONSOL/SDIO/UARTO/U ART1/RTC/I2CO/I2C1/ADC/USOC /DONGLE

Content

- Introduction to Ameba-Z
- SDK overview
- API of Components
- **IDE Tool Demo**
- MP Related

IAR build environment (Ref: UM0110)

IAR build code

- Open released IAR workspace
- Choose Cortex-M4F or Cortex-M4 at least
- Click Project -> Rebuild All
- image2.icf
 - Determines the location of sections on the Flash or SRAM
 - Include external symbol of functions in ROM and Boot loader

IAR build

OTA2 binary

- Change the secondary input parameter of prebuild VB script from "1" to "2" to build image2_all_ota2.bin and generate ota_all.bin
- Please Rebuild All
- OTA2 flash offset
 - The third input parameter of prebuild VB script is OTA2 flash offset, default set to 0x08080000

IAR Download

- Debugger
 - J-Link/J Trace
- J-Link Interface
 - SWD
- .board file
 - Decide what to write in output file and write to what position in Flash
 - tmp.board
 - Dynamically generated by postbuild VB script

IAR Debug

- Click Project->Download andDebug
- Set breakpoints
- View
 - Registers
 - Watch
 - Stack
 - Memory

Trouble shooting

- Project build fail
 - Check Core is set to CM4F or CM4.
 - Check if Flash and SRAM is enough.
- Download fail
 - Check SWD physical connection
 - Check the interface of J-Link settings is SWD
- UART log fail
 - Check jumper of J28
 - Check baud rate
- WLAN connect fail
 - Check log for connection status
 - Check security correctness
 - Check sniffer log

Trouble shooting – Hardfault

- Record register PC and LR
- Open application.asm and find out PC and LR in which function
- The system crash caused by the instructions near PC
- Check the PC's function and LR's function
- 5. If PC is not a valid memory address, may be memory overflow or catch flash instructions error
- 6. If PC is pointed to ROM or boot loader address, check the .icf symbol file to find the function.

```
RTL8195A[HAL]: R0 = 0x0
RTL8195A[HAL]: R1 = 0x1005a37a
RTL8195A[HAL]: R2 = 0x6
RTL8195A[HAL]: R3 = 0x0
RTL8195A[HAL]: R12 = 0x1005f4a5
RTL8195A[HAL]: LR = 0x1004d0bf
RTL8195A[HAL]: PC = 0x1001ce00
RTL8195A[HAL]: PSR = 0x60000000
RTL8195A[HAL]: BFAR = 0x8
RTL8195A[HAL]: CFSR = 0x20000
RTL8195A[HAL]: HFSR = 0x40000000
RTL8195A[HAL]: HFSR = 0x0
RTL8195A[HAL]: AFSR = 0x0
RTL8195A[HAL]: PriMask 0x0
RTL8195A[HAL]: BasePri 0x0
RTL8195A[HAL]: BasePri 0x0
RTL8195A[HAL]: SVC priority: 0x00
RTL8195A[HAL]: SVC priority: 0xf0
```


Content

- Introduction to Ameba-Z
- SDK overview
- API of Components
- IDE Tool Demo
- MP Related

MP tool – RF calibration (Ref: UM0119)

Realtek Ameba MP Flow (Ref: UM0059)

MP tool – EFUSE (Ref: UM0119)

Image Generation (Ref: AN0112)

- Prepare binary files
 - boot_all.bin
 - image2_all_ota1.bin
 - image2_all_ota2.bin
- Config System Data
 - Boot From OTA1 or OTA2
 - OTA2 Address must be the same as Addr3 in Image Layout
 - Force OTA1 Trigger
 - RDP Addr and Len
 - Flash Parameters
 - Configure or Load system.bin
- Output file
 - image_all.bin

Flash Downloader for Factory (Ref: AN0112)

- Demo board: Enter download mode
 - Push the Image Download Button and keep it pressed
 - Power on the board or press the Reset Button
 - Release the Image Download Button
- Image tool
 - Choose COM and click Open
 - Choose image_all.bin
 - Click Download

Flash Downloader for RD (Ref: AN0112)

Ameba-Z 1-10 MP Image Tool

Physical connection

■ 1-10 MP Image Tool

WiFi Performance

AP	Chipset	ch	Security		20M TP	40M TP
	Atheros	1	open	TX	11.9	11.7
TPLINK TL-				RX	12.2	11.9
WDR4310			WPA/WPA2AES	TX	11.4	11.5
				RX	11.9	12.8
	Quantenna	1	open	TX	17	17
ASUS RT- AC87U				RX	13.8	13.8
			WPA/WPA2AES	TX	16.7	16.8
				RX	13.4	13.1
	Broadcom	1	open	TX	12.8	
Tenda FH456				RX	8.78	
			WPA/WPA2AES	TX	12.5	
				RX	8.66	
Netgear R7000	Broadcom	1	open	TX	15.1	
				RX	13.7	
			WPA/WPA2AES	TX	14.6	
				RX	12.9	
	Broadcom	1	open	TX	15.8	
DLINK Dir-				RX	13.6	
880L			WPA/WPA2AES	TX	14	.9
yright © 2014 Realtek				RX	13	.1

REALTEK

PWM

- Ameba Z PWM Parameters:
 - Clock source = 40MHz
 - Prescaler: 8Bits (Max 255)
 - Counter: 16Bits (Max 65535)
- Which means Maximum Frequency is 4K if Steps equal to 10000.
- PWM waveform example:
 - Prescaler = 0, then Counter clock frequency = 40M/(0+1) = 40M
 - Steps = 10000, Duty ratio = 1/10000, Frequency = 4K

MAX Steps = 65536

MIN Counter Clock = 40M/256 = 156K

MAX Period = 1/156K * 65536 = 0.42s

Example - RTC

```
int main()
  time_t seconds;
 struct tm *timeinfo;
 rtc_init();
 rtc_write(1256729737); // Set RTC time to Wed, 28 Oct 2009 11:35:37
 while(1) {
    seconds = rtc read();
    timeinfo = localtime(&seconds);
    DBG_8195A("Time as seconds since January 1, 1970 = %d\n", seconds);
    DBG_8195A("Time as a basic string = %s", ctime(&seconds));
    DBG_8195A("Time as a custom formatted string = %d-%d-%d %d:%d:%d\n",
       timeinfo->tm_year, timeinfo->tm_mon, timeinfo->tm_mday, timeinfo->tm_hour,
       timeinfo->tm min,timeinfo->tm sec);
    wait(1.0);
?? end main?
Time as seconds since January 1, 1970 = 1256729737
Time as a basic string = Wed Oct 28 11:35:37 2009
Time as a custom formatted string = 109-9-28 11:35:37
Time as seconds since January 1, 1970 = 1256729738
Time as a basic string = Wed Oct 28 11:35:38 2009
Time as a custom formatted string = 109-9-28 11:35:38
Time as seconds since January 1, 1970 = 1256729739
Time as a basic string = Wed Oct 28 11:35:39 2009
Time as a custom formatted string = 109-9-28 11:35:39
Time as seconds since January 1, 1970 = 1256729740
Time as a basic string = Wed Oct 28 11:35:40 2009
Time as a custom formatted string = 109-9-28 11:35:40
```


Example – UART2 & GPIO Multiplex

- Assumption:
 - LOG UART TX PIN (PA_30) used to show log
 - LOG UART RX PIN (PA_29) used as normal GPIO
 - LOG UART function has been enabled

```
/* Disable LOG UART RX*/
UART_INTConfiq(UART2_DEV, RUART_IER_ERBI | RUART_IER_ELSI, DISABLE);
UART_ClearRxFifo(UART2_DEV);
UART RxCmd(UART2 DEV, DISABLE);
/* Enable GPIO function for PA29 */
Pinmux Config( PA 29, PINMUX FUNCTION GPIO);
/* Enable the GPIO interface clock */
RCC_PeriphClockCmd(APBPeriph_GPIO, APBPeriph_GPIO_CLOCK, ENABLE);
/* Configure GPIO */
GPIO_InitStruct.GPIO_Pin = _PA_29;
GPIO InitStruct.GPIO Mode = GPIO Mode OUT;
GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO Init(&GPIO InitStruct);
/* Output 1 */
GPIO_WriteBit(_PA_29, 1);
```


Thank you!

