ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ»

ФАКУЛЬТЕТ ИНФОРМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Кафедра вычислительных систем

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

Выполнил:
студент группы ИВ-521
Прокопенко Р.П.

Проверил: доцент кафедры вычислительных систем Курносов М. Г.

U)ценка – «	_».
---	------------	-----

Постановка задачи

Требуется реализовать алгоритм Дейкстры поиска кратчайшего пути от заданной вершины до всех остальных. Для хранения длин кратчайших путей (массив d[i]) следует использовать бинарную кучу (min-heap). Для хранения графа использовать матрицу смежности.

Описание алгоритмов

Алгоритм Дейкстры(англ. Dijkstra 'salgorithm) — алгоритм на графах, изобретённый нидерландским учёным Эдсгером Дейкстрой в 1959 году. Находит кратчайшие пути от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса.

В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (большим максимального возможного пути в графе). Массив флагов заполняется нулями. Затем запускается основной цикл.

На каждом шаге цикла мы ищем вершину и с минимальным расстоянием и флагом равным нулю. Затем мы устанавливаем в ней флаг в 1 и проверяем все соседние с ней вершины u. Если в них (в u) расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то уменьшаем его. Цикл завершается, когда флаги всех вершин становятся равны 1, либо когда у всех вершин с флагом 0. $d[i] = \infty$ последний случай возможен тогда и только тогда, когда граф G несвязный.

Оценка сложности:

```
T_{\text{дейкстры}} = O(n \log n + m \log n) \mathrm{Dd}[i] хранятся в бинарной куче(Binary heap) T_{\mathrm{дейкстра}} = O(m \log n) \mathbf{Binary heap} T_{\mathrm{create}} = O(1) T_{\min} = O(1) T_{\mathrm{insert}} = O(\log n) T_{\mathrm{heapify}} = O(\log n) T_{\mathrm{decrease}} = O(\log n)
```

Экспериментальное исследование

20

2

 ∞

 ∞

 ∞

 ∞

 ∞

 ∞

 ∞

 ∞

 ∞

 ∞

1

 ∞

 ∞

 ∞

 ∞

 ∞

4

 ∞

 ∞

Таблица 1 - Таблица инцидентности 2 3 4 5 7 8 9 **10 12** 13 14 **15 16 17** 1 6 11 18 19 20 1 ∞ 3 **10** 3 2 ∞ ∞ 2 3 4 ∞ ∞ 3 ∞ 8 ∞ ∞ 4 ∞ 7 ∞ ∞ 5 8 7 ∞ ∞ 6 5 ∞ ∞ 7 **10** 3 2 ∞ ∞ 8 9 ∞ ∞ 9 4 2 ∞ ∞ **10** 2 11 5 ∞ ∞ 11 8 4 ∞ ∞ 12 7 7 ∞ 1 ∞ ∞ 13 ∞ 4 7 1 ∞ ∞ 14 3 11 ∞ ∞ 15 7 9 5 ∞ ∞ **16** 5 ∞ ∞ **17** 5 2 ∞ ∞ ∞ 6 ∞ ∞ 18 3 8 ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ 19 ∞ ∞ 5 4 ∞ ∞ 6 ∞ ∞ ∞

Рисунок 1 - Граф

После выполнения программы были получены следующие результаты:

```
Min path from 1 to 2 Min path from 1 to 8 partlen: 23 path 1 2 9 10 15 8 path 1 7 14

Min path from 1 to 3 Min path from 1 to 9 partlen: 11 path 1 2 9 10 15 8

Min path from 1 to 3 Min path from 1 to 9 partlen: 14 path 1 18 3 path 1 2 9 10 15

Min path from 1 to 4 Min path from 1 to 10 partlen: 21 path 1 2 9 10 15 4 path 1 2 9 10

Min path from 1 to 5 Min path from 1 to 11 path 1 20 19 16

Min path from 1 to 5 Min path from 1 to 11 path 1 20 19 16

Min path from 1 to 6 Min path from 1 to 12 path 1 20 19 17

Min path from 1 to 6 Min path from 1 to 12 path 1 20 19 17

Min path from 1 to 6 Min path from 1 to 12 path 1 20 19 17

Min path from 1 to 7 Min path from 1 to 13 partlen: 3 path 1 20 19 17

Min path from 1 to 7 Min path from 1 to 13 partlen: 6 path 1 7 partlen: 4 path 1 18 13 path 1 20 19
```

Min path from 1 to 20 partlen: 2 path 1 20

Выводы

Были реализованы алгоритмы для работы с бинарной кучей, алгоритм Дейкстры, алгоритмы работы с графами (создание графа, добавление ребра и др.). С помощью алгоритма Дейкстра были расчитаны минимальные пути и вершины 1 во все остальные 19 вершин (2-19).

Ссылки

- 1. http://www.mkurnosov.net/teaching/
- 2. https://ru.wikipedia.org/wiki/Алгоритм Дейкстры