

HDLayout: Hierarchical and Directional Layout Planning for Arbitrary Shaped Visual Text Generation

AAAI-25 / IAAI-25 / EAAI-25

Tonghui Feng¹ Chunsheng Yan² Qianru Wang¹ Jiangtao Cui¹ Xiaotian Qiao^{1, 2}*

¹School of Computer Science and Technology, Xidian University, China ²Guangzhou Institute of Technology, Xidian University, China

Introduction

Problem

- Arbitrary Shaped Visual Text Generation
- Real-world visual text often appears in various shapes and layouts (e.g., curved, multi-oriented).

Motivation

- Multi-Granularity Perception
- Text in scenes inherently exhibits correlations across different granularities (character, word, line).
- Flexibility and User Accessibility
- Design a framework that allows users to generate diverse and coherent visual text directly from text prompts.

Related Work

> GlyphControl^[3] (left), TextDiffuser^[4] (middle), Ours (right).

Contribution

- ➤ A hierarchical and directional layout representation to model the unique characteristics of visual text.
- A new separation and composition framework to generate both textual and visual information.
- A new HDLayout3k dataset with diverse and arbitrarily shaped text layout.

Approach

Visual Text Generation Architecture

- > T2I Generation Module
- Separating description and keywords, and generating initial visual content.
- HDLayout Generation Module
 - Predicting fine-grained visual text structures.

- Text Rendering Module
 - Visual text image generation.

HDLayout Background Diffusion Model Diffusion Model

Training

- Bezier Point Loss $L_{L1} = \frac{1}{N} \sum_{i=1}^{N} |\hat{B} B|$
- Bounding Box Loss $L_{bbox} = c_1 L_{L1} + c_2 L_{GIoU} + c_3 L_{ol}$

$$L_{ol} = \frac{2}{M(M-1)} \sum_{i=1}^{M} \sum_{j=i+1}^{M} \text{IoU}(B_i, B_j) \qquad L_{GloU} = \frac{1}{N} \sum_{i=1}^{N} \left(1 - \text{GIoU}(\widehat{B}, B) \right)$$

• Confidence Loss $L_{conf} = -p \cdot \log(q)$

Dataset

HDLayout3k

➤ We construct the HDLayout3k dataset, which consists of 2,749 training samples and 813 test samples.

Evaluation

Qualitative Results

Quantitative Results

Metric	SD-XL ^[1]	ControlNet ^[2]	GlyphControl ^[3]	TextDiffuser ^[4]	Ours
Image FID ↓	102.128	89.802	83.402	82.068	78.027
Layout FID ψ	-	-	_	27.135	12.343

References

- [1] Podell, D, et al. Sdxl: Improving latent diffusion models for high-resolution image synthesis. In ICLR 2024.
- [2] Zhang, L, et al. Adding conditional control to text-to-image diffusion models. In ICCV 2023.
- [3] Yang, Y, et al. GlyphControl: Glyph Conditional Control for Visual Text Generation. In NeurIPS 2024.
- [4] Chen, J, et al. Textdiffuser: Diffusion models as text painters. In NeurIPS 2024.