Lecture #3: Online Learning*

Janardhan Rao (Jana) Doppa

School of EECS, Washington State University

^{*} Slides partly based on Koby Crammer

Formal setting – Classification

- Instances
 - emails
- Labels
 - Spam vs. non-spam
- Prediction rule
 - Linear prediction rule
- Loss
 - No. of mistakes

$$\mathbf{x} \in \mathcal{X}$$

$$y \in \mathcal{Y} = \{-1 ; 1\}$$

$$f(\mathbf{x}) = \hat{y}$$

$$\ell(\hat{y}, y) \in \mathbb{R}_+$$

Predictions

- ullet Continuous predictions: $f:\mathcal{X}
 ightarrow \mathbb{R}$
 - Label sign(f(x))
 - Confidence $|f(\mathbf{x})|$
- Linear Classifiers

Prediction:
$$\hat{y} = \text{sign}(f(\mathbf{x}))$$

$$= \arg \max_{y \in \mathcal{Y}} \mathbf{w} \cdot \Phi(\mathbf{x}, y)$$

$$= \text{sign}(\mathbf{w} \cdot \mathbf{x})$$

$$|f(\mathbf{x})| = |\mathbf{w} \cdot \mathbf{x}|$$

Loss Functions

Natural Loss:

Zero-One loss

$$\ell(\widehat{y}, y) = \begin{cases} 0 & y = \widehat{y} \\ 1 & y \neq \widehat{y} \end{cases}$$

Real-valued-predictions loss:

Hinge loss

$$\ell(\widehat{y}, y) = \max\{0, 1 - yf(\mathbf{x})\}\$$

Exponential loss (Boosting)

Loss Functions

Online Framework

 \mathbf{X}_{t}

- Initialize Classifier $f_1(\mathbf{x})$
- Algorithm works in rounds $t = 1 \dots T \dots$
- On round t the online algorithm :
 - Receives an input instance
 - Outputs a prediction $f_t(\mathbf{x}_t) = \hat{y}_t$
 - Receives a feedback label y_t
 - Computes loss $\ell(\hat{y}_t, y_t)$
 - Updates the prediction rule $f_t \rightarrow f_{t+1}$
- Goal:
 - Suffer small cumulative loss $\sum_t \ell(\hat{y}_t, y_t)$

Margin

• Margin of an example (\mathbf{x}_t, y_t) with respect to the classifier \mathbf{w}_t : $y_t(\mathbf{w}_t \cdot \mathbf{x}_t)$

• Note :
$$y_t(\mathbf{w}_t \cdot \mathbf{x}_t) > 0 \quad \Leftrightarrow \quad \ell_{01}(\hat{y}_t, \mathbf{x}_t) = 0$$

• The set $(\mathbf{x}_1, y_1) \dots (\mathbf{x}_T, y_T)$ is separable iff there exists u such that

$$y_t(\mathbf{u} \cdot \mathbf{x}_t) > 0 \quad \forall t$$

Geometrical Interpretation

Hinge Loss

Why Online Learning?

- Fast
- Memory efficient process one example at a time
- Simple to implement
- Formal guarantees Mistake bounds
- Online to Batch conversions
- No statistical assumptions
- Adaptive

Update Rules

- Online algorithms are based on an update rule which defines f_{t+1} from f_t (and possibly other information)
- Linear Classifiers : find \mathbf{w}_{t+1} from \mathbf{w}_t based on the input (\mathbf{x}_t, y_t)
- Some Update Rules :
 - Perceptron (Rosenblat)
 - ALMA (Gentile)
 - ROMMA (Li & Long)
 - NORMA (Kivinen et. al)

- MIRA (Crammer & Singer)
- EG (Littlestown and Warmuth)
- Bregman Based (Warmuth)
- CWL (Dredze et. al)

Design Principles of Algorithms

- If the learner suffers non-zero loss at any round,
 then we want to balance two goals:
 - Corrective: Change weights so that we don't make this error again
 - Conservative: Don't change the weights too much

$$d(w_{t+1}, w_t) + \eta L(y_t, w_{tt})$$

The Perceptron Algorithm

 If the learner suffers non-zero loss at any round, then we want to balance two goals:

$$d(w_{t+1}, w_t) + \eta L(y_t, w_{tt})$$

- Euclidean distance
- Hinge loss
- Stochastic Gradient Descent (SGD)

The Perceptron Algorithm ($\eta = 1$)

• If No-Mistake $y_t(\mathbf{w}_t \cdot \mathbf{x}_t) > 0$

• Do nothing
$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}$$

- If Mistake $y_t(\mathbf{w}_t \cdot \mathbf{x}_t) \leq 0$
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_t \mathbf{x}_t$

The Perceptron Algorithm ($\eta = 1$)

When mistake happens, what does the update do?

- - \checkmark w_{t+1} moves "closer to" x_t OR
 - \checkmark x_t moves towards the positive side of the decision boundary
- - \checkmark w_{t+1} moves "away from" x_t OR
 - \checkmark x_t moves towards the negative side of the decision boundary
- In both cases, we are moving towards the "correct solution"

Training Data:
$$((4,0), 1), ((1,1), -1), ((0,1), -1), ((-2,-2), 1)$$

Round 1:

**
$$W_1 = 0$$

Training Data: ((4,0), 1), ((1,1), -1), ((0,1), -1), ((-2,-2), 1)

** $V_1 \leftarrow V_1 \leftarrow V_1 \leftarrow V_1$

= (4,0)

** $V_2 \leftarrow V_1 \leftarrow V_1 \leftarrow V_1$

= (4,0)

** $V_2 \leftarrow V_2 \leftarrow V_2$

Training Data:
$$((4,0), 1), ((1,1), -1), ((0,1), -1), ((-2,-2), 1)$$

* So
$$w_5 = w_4 + y_4 x_4$$

= $(3,-1) + (-2,-2)$
= $(1,-3)$

The Perceptron Algorithm

• Suppose w_t makes a mistake on (x_t, y_t) , and we update w_{t+1} as $w_{t+1} = w_t + y_t x_t$. Is it possible for w_{t+1} to also make a mistake on (x_t, y_t) ?

The Perceptron Algorithm ($\eta = 1$)

• Suppose w_t makes a mistake on (x_t, y_t) , and we update w_{t+1} as $w_{t+1} = w_t + y_t x_t$. Is it possible for w_{t+1} to also make a mistake on (x_t, y_t) ?

rianlge Yes, depends on the learning rate η

When does Perceptron converge?

Linear Separability

◆ There exists a hyper-plane (weight vector) separating the positive and negative points

Linearly separable

Not linearly separable

Measure of Separability

Margin

lacktriangle For a weight vector w, and training set S, margin of w with respect to S is defined as follows:

$$\gamma(w) = \min_{(x,y) \in S} y(w.x)$$

• The training data S is linearly separable if there exists at least one weight vector w for which the margin is positive, i.e., $\gamma(w) > 0$.

Margin: Examples

27

Perceptron: Convergence Result

- Theorem: If the training data is linearly separable with margin γ , and if $||x_i|| \le 1$ for all examples (x_i, y_i) in the training set, then perceptron makes $\le \frac{1}{\gamma^2}$ mistakes.
 - Proof??

- Lower margin implies more mistakes
- May need more than one pass over the training data to get a classifier with no mistakes

What if data is not linearly separable?

- Ideally, we want to find a linear separator that makes the minimum number of mistakes on the training data
 - NP-Hard problem! (Minsky and Papert, 1969)
 - This result killed the neural networks research in 1970's

Perceptron still works

- there will be few mistakes close to the decision boundary
- will never converge to a single w as we make more passes

Problems with Perceptron

- Doesn't converge with inseparable data
- Weight updates may often be very "bold"
- Doesn't optimize margin
- Sensitive to the order of examples

Voted and Averaged perceptron

Voted Perceptron

- Initialization: m=1; $w_1=0$; $c_m=1$
- Training Examples: for t = 1, 2, 3, ...
 - If mistake, update weights
 - $w_{m+1} = w_m + y_t x_t$
 - = m = m + 1
 - $c_m = 1$
 - Else
 - $c_m = c_m + 1$ // counting how long w_m survived
- Output: $(w_1, c_1), (w_2, c_2), (w_3, c_3), ...$

Voted Perceptron Classifier

$$f(x) = sign\left(\sum_{i=1}^{m} c_i \, sign(\langle w_i, x \rangle)\right)$$

• Any drawbacks of voted perceptron?

Voted Perceptron Classifier

$$f(x) = sign\left(\sum_{i=1}^{m} c_i \, sign(\langle w_i, x \rangle)\right)$$

- Any drawbacks of voted perceptron?
- Yes, we have to store all the classifiers (in practice could be many)
- How can we solve this problem?

Averaged Perceptron

 Same algorithm as voted perceptron, but the classification rule is different

$$f_{average}(x) = sign\left(\sum_{i=1}^{m} (\langle c_i w_i, x \rangle)\right)$$

$$f_{voted}(x) = sign\left(\sum_{i=1}^{m} c_i \, sign(\langle w_i, x \rangle)\right)$$

Averaged vs. Voted Perceptron

• Simple Example: If $c_1=c_2=c_3=1$

$$f_{average}(x) = sign(\langle w_1 + w_2 + w_3, x \rangle)$$

$$f_{voted}(x) = majority \ sign \ of \ \langle w_1, x \rangle, \langle w_2, x \rangle, \langle w_3, x \rangle$$

Some Practical Tricks

Shuffling

shuffling the training examples in each iteration

Variable learning rate

- decrease as learning progresses
- follow some schedule
- Set automatically by line search (converges faster)
- See Leon Bottou's SGD website: http://leon.bottou.org/projects/sgd
- Averaged Perceptron can be implemented very efficiently (See Algorithm 7 in Hal's chapter)

Perceptron vs. Averaged Perceptron

Perceptron

- $w_{t+1} = w_t + \epsilon. y_t. x_t$
- X_t has "n" features, but only "d" features are nonzero => X_t is sparse
- \bullet O(n) => O(d) If d << n, then it is a huge saving

Averaged Perceptron

- \bullet w = 0, w_{sum} = 0, count = 0
- ▲ If we make a mistake, then we do the following:
 - Update w = w + \delta
 - Update w_{sum} = w_{sum} + w => O(n)
 - Update count = count + 1
- ♠ In the end, w_{avg} = w_{sum} / count

Some Practical Tricks

Learning Curve

- Training iterations vs. number of mistakes
- You want to see that the mistakes decrease as we increase the no. of iterations (curve goes down)
- Very useful in debugging and seeing the behavior of online learning algorithms

Hyper-parameter Optimization

- Split the training data: sub-train + validation data
- Tune hyper-parameters (e.g., no. of iterations) on the validation data
- The learner should not look at the test data!

Two kinds of learning curves

- General learning curve
 - Applicable for any learning algorithm
 - X-axis (number of training examples)
 - Y-axis (accuracy on unseen data)
- Online learning curve
 - Specific to online learning algorithms
 - For a fixed training set
 - X-axis (number of iterations or passes over the data)
 - Y-axis (number of mistakes made)

History of Perceptron*

^{*} slide from Liang Huang

Passive-Aggressive (PA) Algorithm

PA Algorithm: Motivation

- Perceptron: No guaranties of margin after the update
- PA: Enforce a minimal non-zero margin after the update
- In particular :
 - ◆ If the margin is large enough (1), then do nothing
 - ◆ If the margin is less then unit, update such that the margin after the update is enforced to be unit

Margin

- Y.(w_{t+1}.x) > 0 then the prediction is correct
 - +1 (>0) > 0 => Sign (w_{t+1}.x) = +1
 - -1 (< 0) > 0 => Sign (w_{t+1}.x) = -1
- If I'm making a mistake, then this margin is
 < 0
- If margin > 0 implies corrective behavior
 - Margin > 1 also implies corrective behavior

Input Space

Input Space vs. Version Space

• Input Space :

- lacktriangle Points are input data $y_t \mathbf{x}_t$
- One constraint is induced by weight vector
- Primal space
- Half space = all input examples that are classified correctly by a given predictor (weight vector)

$$\{y\mathbf{x} : \mathbf{w} \cdot (y\mathbf{x}) \ge 0\}$$

Version Space :

- Points are weight vectors W
- One constraints is induced by input data $y_t x_t$
- Dual space
- Half space = all predictors (weight vectors) that classify correctly a given input example

$$\{\mathbf{w} : \mathbf{w} \cdot (y\mathbf{x}) \ge 0\}$$

Weight vector (Version) Space

Passive Step

Aggressive Step

Aggressive Update Step

• Set \mathbf{w}_{t+1} to be the solution of the following optimization problem :

$$\mathbf{w}_{t+1} = \min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2$$
 Conservative s.t. $y_t(\mathbf{w} \cdot \mathbf{x}_t) \geq 1$ Corrective

• The Lagrangian :

$$\mathcal{L}(\mathbf{w},\tau) = \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 + \tau (1 - y_t(\mathbf{w} \cdot \mathbf{x}_t))$$

• Solve for the dual : $\max_{\tau \geq 0} \min_{\mathbf{w}} \quad \mathcal{L}(\mathbf{w}, \tau)$

Norm of a vector

- L_1 norm
- L_2 norm
- L_infinity norm
- W = [w_1, w_2,...,w_d]
- $||W|| = Sqrt(w_1^2 + w_2^2 + ... + w_d^2)$

Aggressive Update Step

Optimize for w :

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{w} - \mathbf{w}_t - \tau y_t \mathbf{x}_t$$

- Set the derivative to zero $\mathbf{w} = \mathbf{w}_t + \tau y_t \mathbf{x}_t$
- Substitute back into the Lagrangian :

$$\mathcal{L}(\tau) = -\frac{1}{2} \|\mathbf{x}_t\|^2 \tau^2 + \tau (1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t))$$

Dual optimization problem

$$\max_{\tau \ge 0} \quad -\frac{1}{2} \|\mathbf{x}_t\|^2 \tau^2 + \tau (1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t))$$

Aggressive Update Step

• Dual Problem :

$$\max_{\tau \ge 0} -\frac{1}{2} \|\mathbf{x}_t\|^2 \tau^2 + \tau (1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t))$$

Solve it :

$$\tau = \max \left\{ 0, \frac{1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)}{\|\mathbf{x}_t\|^2} \right\}$$

Alternative Derivation

Additional Constraint (linear update) :

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \tau y_t \mathbf{x}_t$$

Force the constraint to hold as equality

$$1 = y_t((\mathbf{w}_t + \tau y_t \mathbf{x}_t) \cdot \mathbf{x}_t) = y_t(\mathbf{w}_t \cdot \mathbf{x}_t) + \tau ||\mathbf{x}_t||^2$$

• Solve :
$$\tau = \frac{1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)}{\|\mathbf{x}_t\|^2}$$

Recap of last Lecture

- Perceptron algorithm
 - Convergence result for linearly separable data
 - Voted and Averaged perceptron
 - Practical tricks: shuffling, variable learning rate, ...
- History of Perceptron

Recap of Last Lecture

Passive-Aggressive Algorithm

- Smallest change to weights to ensure a margin of 1 on the new example
- Derivation of weight update
- Perceptron vs. Passive-Aggressive update

Passive-Aggressive Update

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \tau y_t \mathbf{x}_t$$

$$y_t(\mathbf{w}_t \cdot \mathbf{x}_t) \geq 1$$

$$y_t(\mathbf{w}_t \cdot \mathbf{x}_t) < 1$$

$$\tau = 0$$

$$\tau = \frac{1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)}{\|\mathbf{x}_t\|^2}$$

Perceptron vs. PA Update

Common Update :

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \tau y_t \mathbf{x}_t$$

Perceptron

$$\tau = \begin{cases} 1 & y_t(\mathbf{w}_t \cdot \mathbf{x}_t) > 0 \\ 0 & y_t(\mathbf{w}_t \cdot \mathbf{x}_t) \le 0 \end{cases}$$

Passive-Aggressive

$$\tau = \max \left\{ 0, \frac{1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)}{\|\mathbf{x}_t\|^2} \right\}$$

Two kinds of updates

- Additive update
 - w_{t+1} = w_t + \delta (adding some gradient)
- Multiplicative update
 - $W_{t+1} = w_t \times \langle t | times \rangle$
 - Example: Exponentiated Gradient Algorithm
- Yoram Singer => Hebrew Univ => Google (2007)
 - Spam classifiers in Gmail => they are passiveaggressive algorithm

The Passive-Aggressive Algorithm

- Each example defines a set of consistent hypotheses: $C_{\varepsilon}(\mathbf{z}_t) = \{\mathbf{w} \mid \delta(\mathbf{w}; \mathbf{z}_t) \leq \varepsilon\}$
- The new vector \mathbf{w}_{t+1} is set to be the projection of \mathbf{w}_t onto $C_{\varepsilon}(\mathbf{z}_t)$

$$\mathbf{w}_{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w} - \mathbf{w}_t\| \text{ s.t. } \mathbf{w} \in C_{\varepsilon}(\mathbf{z}_t)$$

Unrealizable Case

Unrealizable Case

$$\mathbf{w}_{t+1} = \min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 + C\xi^2$$
s.t.
$$y_t(\mathbf{w} \cdot \mathbf{x}_t) \ge 1 - \xi$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \tau y_t \mathbf{x}_t$$

$$\min\left\{C, \max\left\{0, \frac{1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)}{\|\mathbf{x}_t\|^2}\right\}\right\}$$

$$\max\left\{0, \frac{1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)}{\|\mathbf{x}_t\|^2 + C}\right\}$$

Reduction Hammer

- Smaller problem/nail (binary classification) =>
 Simpler solution/hammer (Perceptron or PA)
 - You have only two classes
- Harder problem/nail
 - You have more than two classes
 - How can I develop an appropriate hammer for this nail?
- Create some simpler problems that you know how to solve => Solve them => Aggregate the solutions to come up with a solution for the harder problem

Reduction for Multi-Class Classification

- Classes = {red, blue, green}
- Bunch of training examples {x,y} pairs where y is one of the three classes
- One against others {red vs. other; blue vs. others; green vs. others}
- Increasing the dimension of margin
- Tree of classifiers to filter candidate class labels
- One vs. One: Red vs. Blue; Blue vs. Green; Green vs. Red => Given a new example => Majority vote

Multi-Class: Representation-I

- k Prototypes $\mathbf{w}_1, \mathbf{w}_2 \dots \mathbf{w}_k$
- New instance x
- Compute $Score(r) = \mathbf{w}_r \cdot \mathbf{x}$

Class r	$\mathbf{w}_r \cdot \mathbf{x}$
1	-1.08
2	1.66
3	0.37
4	-2.09

• Prediction:

The class achieving the highest Score

Multi-Class Representation-II

- Weight-vector per class (Representation I)
 - **^** Intuitive
- Single weight-vector (Representation II)
 - Generalizes representation I

Predict label with highest score (Inference)

$$\arg \max_{\mathbf{z}} F(\mathbf{x}, \mathbf{z}) \cdot \mathbf{w}$$

Margin for Multi-Class

Binary:

$$\mathbf{w}_2 \cdot \mathbf{x} - \mathbf{w}_1 \cdot \mathbf{x} \ge 1$$

 $\mathbf{w} \cdot F(\mathbf{x}, 2) - \mathbf{w} \cdot F(\mathbf{x}, 1) \ge 1$

• Multi Class :

$$\mathbf{w}_y \cdot \mathbf{x} - \mathbf{w}_z \cdot \mathbf{x} \ge 1 \quad \forall z \ne y$$

$$\mathbf{w} \cdot F(\mathbf{x}, y) - \mathbf{w} \cdot F(\mathbf{x}, z) \ge 1$$

$$\forall z \ne y$$

Margin for Multi-Class

• Multi Class :

$$\mathbf{w} \cdot F(\mathbf{x}, y) - \mathbf{w} \cdot F(\mathbf{x}, z) \ge 1$$

 $\forall z \neq y$

Because the loss function is not constant!

Margin for Multi-Class

• Multi Class :

$$\mathbf{w} \cdot F(\mathbf{x}, y) - \mathbf{w} \cdot F(\mathbf{x}, z) \ge \ell(z, y)$$

 $\forall z \ne y$

So, use it!

Margin Scaled by Loss: Illustration

Margin Scaled by Loss: Illustration

PA Multi-Class Update

- Project the current weight vector such that the instance ranking is consistent with loss function
- Set \mathbf{w}_{t+1} to be the solution of the following optimization problem :

$$\mathbf{w}_{t+1} = \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2$$
s.t.
$$\mathbf{w} \cdot F(\mathbf{x}_t, y_t) - \mathbf{w} \cdot F(\mathbf{x}_t, z) \ge \ell(z, y_t)$$

$$\forall z \ne y_t$$

PA Multi-Class Update

Problem

intersection of constraints may be empty

$$\left\{\mathbf{w} : \begin{array}{c} \mathbf{w} \cdot F(\mathbf{x}_t, y_t) - \mathbf{w} \cdot F(\mathbf{x}_t, z) \ge \ell(z, y_t) \\ \forall z \ne y_t \end{array}\right\} = \emptyset$$

Solutions

- Does not occur in practice
- Add a slack variable
- Remove constraints

Add a Slack Variable

• Add a slack variable :

$$\mathbf{w}_{t+1} = \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 + C\xi$$
s.t.
$$\mathbf{w} \cdot F(\mathbf{x}_t, y_t) - \mathbf{w} \cdot F(\mathbf{x}_t, z) \ge \ell(z, y_t) - \xi$$

$$\forall z \ne y_t$$

$$\xi \ge 0$$

• Rewrite the optimization :

$$\frac{1}{2}\|\mathbf{w} - \mathbf{w}_t\|^2 + C \max \left\{ \frac{\mathbf{w} \cdot F(\mathbf{x}_t, z) - \mathbf{w} \cdot F(\mathbf{x}_t, y_t) + \ell(z, y_t)}{0} \right\}$$

PA Multi-Class Update

• Remove constraints :

$$\begin{aligned} \mathbf{w}_{t+1} &= & \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 \\ \text{s.t.} & & \mathbf{w} \cdot F(\mathbf{x}_t, y_t) - \mathbf{w} \cdot F(\mathbf{x}_t, z) \geq \ell(z, y_t) \\ & & \forall z \neq y_t \end{aligned}$$
$$\mathbf{w}_{t+1} &= & \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 \\ \text{s.t.} & & \mathbf{w} \cdot F(\mathbf{x}_t, y_t) - \mathbf{w} \cdot F(\mathbf{x}_t, \widehat{y}_t) \geq \ell(\widehat{y}_t, y_t) \end{aligned}$$

- How to choose the single competing labeling?
 - The labeling that attains the highest score!

$$\hat{y}_t = \arg \max_{z} \ \mathbf{w}_t \cdot F(\mathbf{x}_t, z)$$

... which is the predicted label according to the current model

PA Multi-Class Online Algorithm

- Initialize w₁
- For t = 1 ... T ...
 - Receive an input instance \mathbf{x}_t
 - Outputs a prediction
- $\widehat{y}_t = \arg \max_{z} \ \mathbf{w}_t \cdot F(\mathbf{x}_t, z)$
 - Receives a feedback label y_t
 - Computes loss $\ell(\widehat{y}_t, y_t)$
 - Update the prediction rule

$$\mathbf{w}_{t+1} = \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2$$

s.t.
$$\mathbf{w} \cdot F(\mathbf{x}_t, y_t) - \mathbf{w} \cdot F(\mathbf{x}_t, \hat{y}_t) \ge \ell(\hat{y}_t, y_t)$$

Multi-Class Online Algorithm

- Initialize w₁
- For t = 1 ... T ...
 - Receive an input instance \mathbf{x}_t
 - Outputs a prediction $\hat{y}_t = \arg\max_{z} \mathbf{w}_t \cdot F(\mathbf{x}_t, z)$
 - Receives a feedback label y_t
 - Computes loss $\ell(\widehat{y}_t, y_t)$
 - Update the prediction rule

$$w_{t+1} = w_t + \widehat{\tau} \cdot (F(x_t, y_t) - F(x_t, \widehat{y_t}))$$

Recap of Last Lecture

Multi-Class Representations

- \triangle Multi-prototype (one weight vector $\mathbf{w_i}$ for each class \mathbf{i})
- ^ Single-prototype (one weight vector w − concatenation of all the k weight vector) via extended feature space F(x, y)

Multi-Class Passive-Aggressive Algorithm

- Margin for multi-class classification
- Margin scaled by the loss function
- lacktriangle Mathematical optimization problem with k-1 constraints

Multi-Class Online Algorithm

- Initialize w₁
- For t = 1 ... T ...
 - Receive an input instance \mathbf{x}_t
 - Outputs a prediction
- $\widehat{y}_t = \arg \max_{z} \ \mathbf{w}_t \cdot F(\mathbf{x}_t, z)$
- Receives a feedback label y_t
- Computes loss $\ell(\widehat{y}_t, y_t)$
- Update the prediction rule

$$w_{t+1} = w_t + \widehat{\tau} \cdot (F(x_t, y_t) - F(x_t, \widehat{y_t}))$$

$$\tau = \frac{1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t)}{\|\mathbf{x}_t\|^2} \qquad \tau = \frac{1 - (w_t \cdot F(x_t, y_t) - w_t \cdot F(x_t, \hat{y}_t))}{\|F(x_t, y_t) - F(x_t, \hat{y}_t)\|^2}$$

Binary

Multi-class

Multi-Class Classification Implementation

- "d" features for each input example
- W1 (d weights) for class 1
- W2 (d weights for class 2
- •
- Score(class 1) = W1.X
- W_{correct} = W_{correct} + \eta.X
- W_{wrong} = W_{wrong} \eta.X

Multi-Class Update

- Score(correct-label) = 3.4
 - ◆ W_{correct-label}.X
- Score(wrong-label) = 5.6
 - ◆ W {wrong-label}.X
- Weight update
 - W_{correct-label} = W_{correct-label} + \tau. X
 - W_{wrong-label} = W_{wrong-label} \tau.X
- Updated score(correct-label)
 - ^ (W_{correct-label} + \tau. X).X = \tau.X^2 (added)
- Updated score(wrong-label)

Binary vs. Multi-Class Interpretation

- Correct-label y_t
- Wrong-label \hat{y_t}
- Feature vectors
 - **^** F(x, y_t)
 - ♠ F(x, \hat{y_t})
- F(x, y_t) F(x, \hat{y_t}) == Input feature vector
- Output label = +1
- F(x, \hat{y_t}) F(x, y_t) == Input feature vector
- Output label = -1

Confusion Matrix

• Measures which classes are easy or hard to separate -- k classes implies $k \times k$ matrix

$$All C_{ij} = \frac{\text{\# examples with class label } j \text{ that are classified as label } i}{\text{\# examples with label } j}$$

- High diagonal entry implies class is easy to classify
- High off-diagonal entry implies classes are easily confused

Learning Curves: Online vs. General

Online learning curve

- training iterations vs. Mistakes
- only applicable for online learning algorithms

General learning curve

- amount of training data vs. accuracy
- applicable to any learning algorithm

Confidence-Weighted (CW) Algorithm

Motivation: NLP problems

- Big datasets, large number of features
- Many features are only weakly correlated with target label
- Heavy-tailed feature distribution
- Linear classifiers: features are associated with word counts

Motivation: Sentiment Classification

Who needs this Simpsons book?
 You DOOOOOOO

This is one of the most extraordinary volumes I've ever encountered encapsulating a television series Exhaustive, informative, and ridiculously entertaining, it is the best accompaniment to the best television show Even if you only "enjoy" the Simpsons (as opposed to being a raving fanatic, which most people who watch the show are, after all ... Very highly recommended!

Motivation: Sentiment Classification

Many positive reviews with the word best

$$W_{best}$$

- Later negative review
 - "boring book best if you want to sleep in seconds"
- Linear update will reduce both

$$W_{\text{best}} W_{\text{boring}}$$

- But best appeared more than boring
- How to adjust weights at different rates? W_{boring} W_{best}

Span based Update Rules

 The weight vector is a linear combination of examples

- Two rate schedules (among others):
 - riangle Perceptron algorithm, conservative: $\eta = 1$

• Passive-aggressive
$$\eta = \max\left\{0, \frac{1-y(\mathbf{w}\cdot\mathbf{x})}{||\mathbf{x}||^2}\right\}$$

Distributions in Version Space

Margin as a Random Variable

Signed margin

$$M = y(\boldsymbol{w} \cdot \boldsymbol{x})$$

is a Gaussian-distributed variable

$$M \sim \mathcal{N}\left(y(\boldsymbol{x} \cdot \boldsymbol{\mu}) , \boldsymbol{x}^{\top} \boldsymbol{\Sigma} \boldsymbol{x}\right)$$

Thus:

$$\Pr\left[y\left(\boldsymbol{w}\cdot\boldsymbol{x}\right)\geq0\right]=\Phi\left(\frac{y(\boldsymbol{x}\cdot\boldsymbol{\mu})}{\sqrt{\boldsymbol{x}^{\top}\boldsymbol{\Sigma}\boldsymbol{x}}}\right)$$

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2} dt$$

Version (weight vector) Space

Passive Step

Aggressive Step

PA like Update

• PA:

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}_i\|^2$$
s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i) \ge 1$

• New Update :

$$\min_{m{\mu}, m{\Sigma}} \quad \mathsf{D}_{\mathsf{KL}} \left(\mathcal{N} \left(m{\mu}, m{\Sigma}
ight) \parallel \mathcal{N} \left(m{\mu}, m{\Sigma}_i
ight)
ight)$$
 s.t. $\mathsf{Pr} \left[y_i \left(m{w} \cdot m{x}_i
ight) \geq 0 \right] \geq \eta$

Confidence

Parameter

Summary of Online Learning

Online learning

▲ Iterative game between teacher and learner

Design principles of online learning

◆ Trade-off amount of change (conservative) and reduction in loss (corrective)

Online learning algorithms

- Perceptron (fixed learning rate for all examples)
- Passive-Aggressive (fixed learning rate for each example)
- Confidence-weighted classifier (fixed learning for each feature and each example)

Questions?