Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- B) z(t) ha supporto illimitato per ogni valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{1}{2T + j2\pi n}$
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 3.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

- B) Non è possibile campionare y(t) senza perdere informazione
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- **E)** La frequenza di campionamento deve essere $f_c \geq 4B_x$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

2

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- C) $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 6.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$
- E) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

2

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

B)
$$h[n] = (n-2) 2^n u[n]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D**) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.

C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- B) z(t) ha supporto illimitato per ogni valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 7.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_n(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

C)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

D)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) Il segnale $x_3(t)$ non è causale
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 5.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **E)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B**) $\mu_n = \frac{1}{2T + j2\pi n}$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- E) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

1

A)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

B)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

C) la serie di Fourier di x(t) non è definita

- **D)** nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 5.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4B_x$
- **E)** Non è possibile campionare y(t) senza perdere informazione

Esercizio 6

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) \mathrm{e}^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** $x_3(t)$ ha sempre supporto illimitato

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) \mathrm{e}^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 3.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos{(2\pi f_x t)}$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **D)** Non è possibile campionare y(t) senza perdere informazione

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

2

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [n + 4 \times 3^n]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** $\mu_n = \frac{1}{2T + j2\pi n}$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** la serie di Fourier di x(t) non è definita
- E) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) z(t) ha supporto illimitato per ogni valore di B
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [n + 4 \times 3^n]$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **E)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_{\nu}(\tau) = 0.5[1 + R_{\nu}(\tau)] \cos(2\pi f_c \tau)$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{2}{T + i2\pi n}$
- E) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 3.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- **A)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- E) La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Nessuna delle altre risposte è corretta
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) $y_2(t)$ ha sempre supporto illimitato
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

2

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- E) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto illimitato per ogni valore di B
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) non è definita

B)
$$\mu_n = \frac{2}{T + i2\pi n}$$

C)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) nessuna delle altre risposte

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

B)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

C)
$$R_u(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

2

A) Nessuna delle altre risposte è corretta

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^n u[n]$$

C)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

D)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **B)** la serie di Fourier di x(t) non è definita
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{2}{T + j2\pi n}$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Esercizio 6.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_{y}(\tau) = 0.5[1 R_{x}(\tau)]\cos(2\pi f_{c}\tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_\tau(\tau)\sin(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{T + i2\pi n}$
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- C) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2}{T + j2\pi n}$
- E) nessuna delle altre risposte

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- B) z(t) ha supporto illimitato per ogni valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

D) Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 4.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 7.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **E)** La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) nessuna delle altre risposte
- **D)** $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

2

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B**) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- **D)** nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- C) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 2.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- E) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- B) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

2

- A) Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **D)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- **E)** Non è possibile campionare y(t) senza perdere informazione

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- **D)** nessuna delle altre risposte

E)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_u(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 2.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- B) Non è possibile campionare y(t) senza perdere informazione
- C) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **D)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

- **B)** $\mu_n = \frac{2}{T + j2\pi n}$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 2.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- E) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **C)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- A) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_n(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_{\nu}(\tau) = 0.5[1 R_{\tau}(\tau)]\cos(2\pi f_c \tau)$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- D) nessuna delle altre risposte
- E) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n] [1 + 4 \times 3^n]$
- **D)** $h[n] = u[n] [n + 4 \times 3^n]$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) \mathrm{e}^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** $x_3(t)$ ha sempre supporto illimitato

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t - kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- $\mathbf{D)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_u(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 7.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- **E)** La frequenza di campionamento deve essere $f_c \geq 4B_x$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

${f Esercizio}\,\,{f 3}.$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

D) Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 4.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- B) Non è possibile campionare y(t) senza perdere informazione
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- E) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = n \, 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- C) la serie di Fourier di x(t) non è definita
- $\mathbf{D)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) z(t) ha supporto illimitato per ogni valore di B
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 3.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- B) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

- **D)** Non è possibile campionare y(t) senza perdere informazione
- E) La frequenza di campionamento deve essere $f_c \ge 4B_x$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

B)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

B)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- B) la serie di Fourier di x(t) non è definita
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{2}{T + j2\pi n}$
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 6.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- E) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

C)
$$R_n(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- **E**) $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

- **B)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- B) z(t) ha supporto illimitato per ogni valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 7.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

- **D)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{T + i2\pi n}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

B) $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

C) $h[n] = n 2^n u[n-1] + 2\delta[n]$

D) $h[n] = (2^{n-1} + 2) u[n-1]$

Esercizio 4.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

A) Il segnale $x_3(t)$ non è causale

B) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

C) $x_3(t)$ ha sempre supporto illimitato

D) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema è causale

B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$

D) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

E) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

2

A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

B) Nessuna delle altre risposte è corretta

C) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

D) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{T+j2\pi n}$
- **B**) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

- **D)** la serie di Fourier di x(t) non è definita
- E) nessuna delle altre risposte

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Il segnale $x_3(t)$ non è causale
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

D) Nessuna delle altre risposte è corretta

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

D)
$$h[n] = (n-3) 2^n u[n]$$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_{y}(\tau) = 0.5[1 - R_{x}(\tau)]\cos(2\pi f_{c}\tau)$$

B)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E**) $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- B) z(t) ha supporto illimitato per ogni valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

C)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{T+j2\pi n}$
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 6.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- **B)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto illimitato

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 2.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- E) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) non è definita

- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **C**) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = 2\delta[n] + (n-2)2^n u[n-3]$$

B)
$$h[n] = (n-3) 2^n u[n]$$

C)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

D)
$$h[n] = (n-2) 2^n u[n]$$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{2}{T+j2\pi n}$$

B)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

- C) la serie di Fourier di x(t) non è definita
- **D)** nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 3.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) z(t) ha supporto illimitato per ogni valore di B
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 6.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_x)$
- E) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_x)$
- **E)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- $\mathbf{B)} \ \mu_n = \frac{2}{T + j2\pi n}$
- C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) nessuna delle altre risposte

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- B) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- D) Nessuna delle altre risposte è corretta

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 2.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- **E)** Non è possibile campionare y(t) senza perdere informazione

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

- **B)** $h[n] = (n 2^{n-1} + 2) u[n]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** $\mu_n = \frac{1}{2T + i2\pi n}$
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) non è definita
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **B)** z(t) ha supporto illimitato per ogni valore di B
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{2}{T + j2\pi n}$

E)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 7.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- B) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \geq 4B_x$
- E) Non è possibile campionare y(t) senza perdere informazione

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t - kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) non è definita

B)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

D) nessuna delle altre risposte

E)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) z(t) ha supporto illimitato per ogni valore di B
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **B)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 7.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \geq 4(f_x + B_s)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 3.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4B_x$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** Non è possibile campionare y(t) senza perdere informazione
- E) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- **D)** nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- D) nessuna delle altre risposte
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \geq 2(f_0 + B_x)$
- **D)** La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

2

E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos{(2\pi f_x t)}$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4B_x$
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_u(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{1}{2T + j2\pi n}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) \mathrm{e}^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

2

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto illimitato

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- E) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 7.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- B) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

D) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 6.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **D)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- **E)** Non è possibile campionare y(t) senza perdere informazione

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

2

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

2

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n] [1 + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{1}{2T + i2\pi n}$$

B)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 3.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$

- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **C)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro

- **A)** $R_u(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **B)** Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto illimitato per ogni valore di B

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

C) Nessuna delle altre risposte è corretta

D) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 4.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 6.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

2

- **A)** la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \frac{2}{T + j2\pi n}$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) z(t) ha supporto illimitato per ogni valore di B
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Esercizio 2.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- D) nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Nessuna delle altre risposte è corretta
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

2

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

C)
$$R_u(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

D)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

E)
$$\mu_n = \frac{1}{2T + j2\pi n}$$

Esercizio 7.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **E)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

B) nessuna delle altre risposte

C)
$$\mu_n = \frac{1}{2T + j2\pi n}$$

D) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E) la serie di Fourier di x(t) non è definita

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) Il segnale $x_3(t)$ non è causale
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- D) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

D) Nessuna delle altre risposte è corretta

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_u(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- B) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- E) La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2)2^n u[n-3]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

2

- A) la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \frac{2}{T + j2\pi n}$
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq 2(f_0 + B_x)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) la serie di Fourier di x(t) non è definita
- **D)** nessuna delle altre risposte
- **E)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_u(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- **B)** la serie di Fourier di x(t) non è definita

C)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- D) Nessuna delle altre risposte è corretta

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 6.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

2

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- C) La frequenza di campionamento deve essere $f_c \ge 4B_x$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- E) La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_x)$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t-kT)\right] u(t-kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{T+j2\pi n}$
- **B)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 3.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$

- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_u(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{T+j2\pi n}$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita

E)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

2

A) Nessuna delle altre risposte è corretta

B) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- E) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) non è definita

- $\mathbf{B)} \ \mu_n = \frac{2}{T + j2\pi n}$
- C) nessuna delle altre risposte
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

2

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- **A)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

D) $R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 4.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- D) Nessuna delle altre risposte è corretta

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{1}{2T + i2\pi n}$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- **B)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

2

D) z(t) ha supporto illimitato per ogni valore di B

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

2

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{1}{2T + j2\pi n}$$

B)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

C) nessuna delle altre risposte

D) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E) la serie di Fourier di x(t) non è definita

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

B) Il sistema è causale

C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_u(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **B)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 5.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

2

A)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

B)
$$h[n] = (n-3) 2^n u[n]$$

C)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

D)
$$h[n] = (n-2) 2^n u[n]$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$

C)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

D)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

D) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) z(t) ha supporto illimitato per ogni valore di B
- B) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E)
$$\mu_n = \frac{1}{2T + j2\pi n}$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	57

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** la serie di Fourier di x(t) non è definita

E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 4.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 6.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- C) Non è possibile campionare y(t) senza perdere informazione
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- E) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	58

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

Esercizio 2.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** $x_3(t)$ ha sempre supporto illimitato

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) \mathrm{e}^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- C) $h[n] = u[n] [1 + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 3.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- B) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t-kT)\right] u(t-kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** $\mu_n = \frac{1}{2T + j2\pi n}$
- **E)** la serie di Fourier di x(t) non è definita

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) nessuna delle altre risposte

B)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

D) la serie di Fourier di x(t) non è definita

E)
$$\mu_n = \frac{2}{T+j2\pi n}$$

Esercizio 2

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$

B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

D) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

E) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

D)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- D) Nessuna delle altre risposte è corretta

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{1}{2T + j2\pi n}$
- **B**) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) non è definita

- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E**) $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n] [1 + 4 \times 3^n]$
- **D)** $h[n] = u[n] [n + 4 \times 3^n]$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** $x_3(t)$ ha sempre supporto illimitato

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	63

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.

C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Nessuna delle altre risposte è corretta

B) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

Esercizio 6.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos{(2\pi f_x t)}$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **D)** Non è possibile campionare y(t) senza perdere informazione
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_{\nu}(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_{\tau}(\tau)\sin(2\pi f_c \tau)$$

D)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) nessuna delle altre risposte

D)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

E)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

1

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- D) Nessuna delle altre risposte è corretta

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Esercizio 7.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- D) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

2

E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	65

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

- **B)** la serie di Fourier di x(t) non è definita
- C) nessuna delle altre risposte
- **D)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Nessuna delle altre risposte è corretta

- **B)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 5.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- B) Non è possibile campionare y(t) senza perdere informazione
- C) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4B_x$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	66

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t - kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- $\mathbf{D)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- E) nessuna delle altre risposte

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 3.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) Non è possibile campionare y(t) senza perdere informazione
- **D)** La frequenza di campionamento deve essere $f_c \ge 4B_x$
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto illimitato per ogni valore di B

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t - kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- $\mathbf{D)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- E) nessuna delle altre risposte

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

1

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$

C)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

D)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_u(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

Esercizio 6.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq 2(f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto illimitato per ogni valore di B

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Il segnale $x_3(t)$ non è causale
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** la serie di Fourier di x(t) non è definita
- E) nessuna delle altre risposte

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- **B)** $h[n] = (n-2) 2^n u[n]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 7.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- B) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	69

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos{(2\pi f_x t)}$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4B_x$
- B) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** Non è possibile campionare y(t) senza perdere informazione
- **E)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t-kT)\right] u(t-kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{1}{2T + j2\pi n}$
- **B)** la serie di Fourier di x(t) non è definita
- C) nessuna delle altre risposte
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

C)
$$h[n] = n 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$$

D)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) z(t) ha supporto illimitato per ogni valore di B
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- B) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** la serie di Fourier di x(t) non è definita
- E) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **B)** La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) non è definita
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

A)
$$h[n] = u[n] [n + 4 \times 3^n]$$

- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	72

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- **A)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **B)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- $\mathbf{D)} \ \mu_n = \frac{2}{T + j2\pi n}$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- E) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- ${f C}$) nessuna delle altre risposte
- **D)** $\mu_n = \frac{1}{2T + i2\pi n}$
- **E)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Il segnale $x_3(t)$ non è causale
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha sempre supporto illimitato

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	74

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **B)** $\mu_n = \frac{1}{2T + i2\pi n}$
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) nessuna delle altre risposte

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Il segnale $x_3(t)$ non è causale
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	75

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

C) Nessuna delle altre risposte è corretta

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_u(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto illimitato

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_0 + B_x)$
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	76

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- B) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- C) Non è possibile campionare y(t) senza perdere informazione
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_x)$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B**) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) $\mu_n = \frac{2}{T + j2\pi n}$
- **D)** la serie di Fourier di x(t) non è definita
- E) nessuna delle altre risposte

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) \mathrm{e}^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha sempre supporto limitato

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	77

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) z(t) ha supporto illimitato per ogni valore di B
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) nessuna delle altre risposte

- **B)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) $\mu_n = \frac{2}{T + j2\pi n}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	78

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

D)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **B)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- C) la serie di Fourier di x(t) non è definita
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha sempre supporto illimitato

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	79

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- C) La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- B) $\mu_n = \frac{2}{T+j2\pi n}$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** la serie di Fourier di x(t) non è definita
- E) nessuna delle altre risposte

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Nessuna delle altre risposte è corretta

- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- C) $h[n] = (n 2^{n-1} + 2) u[n]$
- **D)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di B per cui z(t) ha supporto pari a 3T
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) z(t) ha supporto illimitato per ogni valore di B
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	80

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n] [1 + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 2.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **B)** $\mu_n = \frac{2}{T + j2\pi n}$
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) nessuna delle altre risposte

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- B) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	81

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_{y}(\tau) = 0.5[1 + R_{x}(\tau)]\cos(2\pi f_{c}\tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{1}{2T + j2\pi n}$
- E) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	82

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

D)
$$R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 5.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t - kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	83

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^n u[n]$$

B)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

C)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

D)
$$h[n] = (n-2) 2^n u[n]$$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- B) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** $\mu_n = \frac{1}{2T + i2\pi n}$

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	84

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 2.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

- **B)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- C) $h[n] = (n-2) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^n u[n]$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- **D**) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto limitato

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	85

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

C)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

D)
$$h[n] = u[n] [n + 4 \times 3^n]$$

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 3.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \frac{2}{T + i2\pi n}$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- E) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** z(t) ha supporto illimitato per ogni valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	86

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

D) Nessuna delle altre risposte è corretta

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_u(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_u(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 5.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- **B)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- B) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) \mathrm{e}^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** Il segnale $x_3(t)$ non è causale

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	87

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto illimitato

- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto limitato

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t-kT)\right] u(t-kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{1}{2T + i2\pi n}$

Esercizio 6.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **E)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	88

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t - kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- C) nessuna delle altre risposte
- $\mathbf{D)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- D) Nessuna delle altre risposte è corretta

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	89

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = n \, 2^n u[n-1] + 2\delta[n]$

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- D) nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	90

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \frac{1}{2T + j2\pi n}$
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.

C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- B) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- C) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_0 + B_x)$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	91

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Il segnale $x_3(t)$ non è causale
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^n u[n]$$

B)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

C)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

D)
$$h[n] = (n-2) 2^n u[n]$$

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

B)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) nessuna delle altre risposte

D)
$$\mu_n = \frac{1}{2T + j2\pi n}$$

E)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	92

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) z(t) ha supporto illimitato per ogni valore di B
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- **B)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{1}{2T + j2\pi n}$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 6.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **E)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	93

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

B)
$$h[n] = (n-3) 2^n u[n]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

C) Nessuna delle altre risposte è corretta

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- **A)** La frequenza di campionamento deve essere $f_c \geq 2(f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** la serie di Fourier di x(t) non è definita
- E) nessuna delle altre risposte

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	94

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

C) Nessuna delle altre risposte è corretta

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

- C) nessuna delle altre risposte
- **D)** $\mu_n = \frac{1}{2T + j2\pi n}$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- C) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	95

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- E) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

1

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

- **C)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 7.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- B) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **E)** Non è possibile campionare y(t) senza perdere informazione

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	96

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

B)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

C)
$$h[n] = n 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 3.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$

- **D)** La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- B) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{T+j2\pi n}$
- **B)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) z(t) ha supporto limitato pari a 2T se $B=\mathrm{e}^{-\frac{T}{T_2}}$
- **B)** Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) z(t) ha supporto illimitato per ogni valore di B
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	97

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 2.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

1

A)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

B) la serie di Fourier di x(t) non è definita

- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- D) nessuna delle altre risposte

E)
$$\mu_n = \frac{2}{T + j2\pi n}$$

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) z(t) ha supporto illimitato per ogni valore di B
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

D)
$$h[n] = (n-3) 2^n u[n]$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	98

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = (n-2) 2^n u[n]$$

D)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B**) $\mu_n = \frac{1}{2T + j2\pi n}$
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	99

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 2

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

D) $R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 4.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos{(2\pi f_x t)}$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- B) La frequenza di campionamento deve essere $f_c \ge 4B_x$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** Non è possibile campionare y(t) senza perdere informazione
- E) La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_x)$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{T+j2\pi n}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

2

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

D)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	100

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- E) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.

C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B**) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **C**) $\mu_n = \frac{2}{T + j2\pi n}$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	101

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Esercizio 2.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

- **B)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	102

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^n u[n]$$

B)
$$h[n] = (n-2) 2^n u[n]$$

C)
$$h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$$

D)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

Esercizio 2.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **B)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- E) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

D)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

E)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto illimitato per ogni valore di B
- **B)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

C)
$$R_u(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	103

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si desidera campionare il segnale $z(t)=y^2(t)$ senza perdere informazione, sapendo che $y(t)=x(t)\cos{(2\pi f_x t)}$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x>2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 4B_x$
- C) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- E) Non è possibile campionare y(t) senza perdere informazione

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

C)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **C)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	104

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

- **B)** $\mu_n = \frac{1}{2T + j2\pi n}$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 4B_x$
- C) Non è possibile campionare y(t) senza perdere informazione
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_x)$
- **E)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = (n-3) 2^{n-1} u[n-1]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

D) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	105

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **D)** $h[n] = n \, 2^n u[n-1] + 2\delta[n]$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **B)** z(t) ha supporto illimitato per ogni valore di B

- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- **A)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- C) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{T+j2\pi n}$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) la serie di Fourier di x(t) non è definita
- D) nessuna delle altre risposte
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	106

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- B) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- C) Non è possibile campionare y(t) senza perdere informazione
- **D)** La frequenza di campionamento deve essere $f_c \geq 4B_x$
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- D) Nessuna delle altre risposte è corretta

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- E) nessuna delle altre risposte

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	107

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Il segnale $x_3(t)$ non è causale
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_{u}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \frac{1}{2T + j2\pi n}$
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- D) nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	108

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) nessuna delle altre risposte

$$\mathbf{D)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

E)
$$\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$$

Esercizio 5.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

C)
$$h[n] = n 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

B) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

D) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	109

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **B)** la serie di Fourier di x(t) non è definita

- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Nessuna delle altre risposte è corretta
- **B)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_u(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 7.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- B) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** Non è possibile campionare y(t) senza perdere informazione
- E) La frequenza di campionamento deve essere $f_c \geq 4B_x$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	110

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

D)
$$h[n] = u[n-1] [1+4 \times 3^{n-1}]$$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto illimitato per ogni valore di B
- **B)** Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

D) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 4.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **E)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- \mathbf{A}) la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{2}{T + i2\pi n}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro

- **A)** $R_u(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_{\nu}(\tau) = [1 + R_{\tau}(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	111

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 3.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **D)** La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- E) La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) Il segnale $x_3(t)$ non è causale
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- D) nessuna delle altre risposte
- E) $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	112

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{1}{2T + j2\pi n}$
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) non è definita
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 6.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- E) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

2

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	113

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	114

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

A)
$$R_{y}(\tau) = 0.5[1 - R_{x}(\tau)]\cos(2\pi f_{c}\tau)$$

B)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

C)
$$R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

D) Nessuna delle altre risposte è corretta

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

A)
$$z(t)$$
 ha supporto limitato pari a $2T$ se $B = e^{-\frac{T}{T_2}}$

B) Esiste un valore di B per cui z(t) ha supporto pari a 3T

C) z(t) ha supporto illimitato per ogni valore di B

D) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 4.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **E)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- B) $\mu_n = \frac{1}{2T + j2\pi n}$
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- ${f C}$) Il sistema è causale.

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- C) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	115

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Il segnale $x_3(t)$ non è causale
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

D) Nessuna delle altre risposte è corretta

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

B)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t - kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

C)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

$$\mathbf{D)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

E) nessuna delle altre risposte

Esercizio 7.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	116

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- B) La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \geq 4(f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Nessuna delle altre risposte è corretta

B) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

B) nessuna delle altre risposte

C)
$$\mu_n = \frac{2}{T + j2\pi n}$$

D) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E) la serie di Fourier di x(t) non è definita

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

2

A) $y_2(t)$ ha sempre supporto illimitato

B) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

C) $y_2(t)$ ha sempre supporto limitato

D) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	117

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{T+j2\pi n}$
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) non è definita
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **B)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (2^{n-1} + 2) u[n-1]$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq (f_0 + B_x)$
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	118

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_n(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) nessuna delle altre risposte

- **B)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **E)** la serie di Fourier di x(t) non è definita

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- B) z(t) ha supporto illimitato per ogni valore di B
- C) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- **D)** Esiste un valore di B per cui z(t) ha supporto pari a 3T

Esercizio 6.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- B) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \geq (f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

2

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	119

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto limitato
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 2.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4B_x$
- E) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

C) Nessuna delle altre risposte è corretta

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

B)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t - kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

B)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) la serie di Fourier di x(t) non è definita

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro

A)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

C)
$$R_{y}(\tau) = [1 + R_{x}(\tau)] \cos(2\pi f_{c}\tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	120

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t) e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita

C)
$$\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$$

D) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

Esercizio 4.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

Esercizio 5.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- B) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- C) La frequenza di campionamento deve essere $f_c \ge 4B_x$
- **D)** Non è possibile campionare y(t) senza perdere informazione
- **E)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_x)$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro

A)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

D)
$$R_u(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	121

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **C)** $h[n] = u[n] [n + 4 \times 3^n]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$
- B) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- E) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto illimitato per ogni valore di B
- B) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	122

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

B) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

D) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 4.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 5.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	123

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 3.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **B)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **B)** z(t) ha supporto illimitato per ogni valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = 2\delta[n] + (n-2) 2^n u[n-3]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **B)** la serie di Fourier di x(t) non è definita
- C) nessuna delle altre risposte
- **D)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	124

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Esercizio 2.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t-kT)\right] u(t-kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{1}{2T + i2\pi n}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

2

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **B)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **C)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	125

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- **B**) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{1}{2T + i2\pi n}$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

A) Il segnale $x_3(t)$ non è causale

- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 5.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- B) Non è possibile campionare y(t) senza perdere informazione
- C) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- **D)** La frequenza di campionamento deve essere $f_c \geq 4B_x$
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	126

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

2

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	127

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- **A)** z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **B)** Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

B) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

C) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) non è definita

B)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 6.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

2

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-2) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

D)
$$h[n] = (n-3) 2^n u[n]$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	128

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_u(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

C) Nessuna delle altre risposte è corretta

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **E)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- D) nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

2

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^n u[n]$
- C) $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	129

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{1}{2T + i2\pi n}$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) non è definita
- E) nessuna delle altre risposte

Esercizio 2.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **D)** Non è possibile campionare y(t) senza perdere informazione
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = n 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Nessuna delle altre risposte è corretta
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_{\nu}(\tau) = 0.5[1 + R_{\tau}(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	130

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 2.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- **B)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- **E)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) non è definita

B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

C)
$$\mu_n = \frac{2}{T+j2\pi n}$$

D)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

E) nessuna delle altre risposte

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^n u[n]$$

B)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

C)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

D)
$$h[n] = (n-2) 2^n u[n]$$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

B) Nessuna delle altre risposte è corretta

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema non è causale e h[n] = 0 per n > 0.

- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	131

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- B) Non è possibile campionare y(t) senza perdere informazione
- C) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B**) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale

C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

B)
$$h[n] = u[n] [n + 4 \times 3^n]$$

C)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

D)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- B) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

C)
$$R_u(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_u(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	132

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) nessuna delle altre risposte

B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

C) la serie di Fourier di x(t) non è definita

D)
$$\mu_n = \frac{2}{T + j2\pi n}$$

E)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

Esercizio 2

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

B) Il sistema è causale e h[n] = 0 per n > 0.

C) Il sistema è causale.

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di B per cui z(t) ha supporto pari a 3T
- B) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B
- C) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$
- **D)** z(t) ha supporto illimitato per ogni valore di B

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

B) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

D) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = u[n-1][n+4 \times 3^{n-1}-1]$$

B)
$$h[n] = u[n-1][1+4\times 3^{n-1}]$$

C)
$$h[n] = u[n] [n + 4 \times 3^n]$$

D)
$$h[n] = u[n] [1 + 4 \times 3^n]$$

Esercizio 7

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_s)$
- E) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	133

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

C) Nessuna delle altre risposte è corretta

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 2. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

B)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_{y}(\tau) = 0.5[1 - R_{x}(\tau)]\cos(2\pi f_{c}\tau)$$

B)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

- C) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- $\mathbf{B)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- D) nessuna delle altre risposte
- E) $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) Il segnale $x_3(t)$ non è causale
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 7.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **E)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	134

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 2.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

B)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

C)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

D)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- **A)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_0 + B_x)$
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- **B)** la serie di Fourier di x(t) non è definita
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** nessuna delle altre risposte
- **E)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	135

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) non è definita

B)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

C)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

D) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E) nessuna delle altre risposte

Esercizio 2

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera

A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$

C) Non è possibile campionare y(t) senza perdere informazione

D) La frequenza di campionamento deve essere $f_c \ge 4B_x$

E) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 4. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- **C)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **D)** $h[n] = u[n-1][1+4\times 3^{n-1}]$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 7.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** $x_3(t)$ ha sempre supporto illimitato

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	136

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 3.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **D)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

Esercizio 6. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

B) nessuna delle altre risposte

C)
$$\mu_n = \frac{2}{T+j2\pi n}$$

D) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E) la serie di Fourier di x(t) non è definita

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

C)
$$h[n] = n 2^n u[n-1] + 2\delta[n]$$

D)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	137

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- B) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- C) Nessuna delle altre risposte è corretta
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{T + i2\pi n}$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

- C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- B) Non è possibile campionare y(t) senza perdere informazione
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4B_x$
- E) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	138

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 2.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- B) Nessuna delle altre risposte è corretta
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_u(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

D) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 4.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema è causale.

B) Il sistema non è causale e h[n] = 0 per n > 0.

C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-3) 2^{n-1} u[n-1]$$

B)
$$h[n] = 2\delta[n] + (n-2)2^nu[n-3]$$

C)
$$h[n] = (n-3) 2^n u[n]$$

D)
$$h[n] = (n-2) 2^n u[n]$$

Esercizio 6.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$

B) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$

C) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

D) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$

E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

2

A) la serie di Fourier di x(t) non è definita

B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

D) nessuna delle altre risposte

E) $\mu_n = \frac{2}{T+j2\pi n}$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	139

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 2.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere f_c con $f_x \geq f_c \geq 2B_x$
- B) Non è possibile campionare y(t) senza perdere informazione
- C) La frequenza di campionamento deve essere $f_c \geq 4B_x$
- **D)** La frequenza di campionamento deve essere $f_c \geq 2(f_x + B_x)$
- **E)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$

Esercizio 3.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

- C) $y_2(t)$ ha sempre supporto limitato
- **D)** $y_2(t)$ ha sempre supporto illimitato

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) $\mu_n = \frac{2}{T+j2\pi n}$
- C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-2) 2^n u[n]$
- **B)** $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- C) $h[n] = (n-3) 2^n u[n]$
- **D)** $h[n] = (n-3) 2^{n-1} u[n-1]$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$

C) Se
$$H(e^{j\omega}) = 2$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 0$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	140

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- **E)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_u(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 3.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4B_x$
- **E)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- A) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** $x_3(t)$ ha sempre supporto illimitato

Esercizio 5.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [1 + 4 \times 3^n]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **D)** $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$

Esercizio 7.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- **B)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- D) Nessuna delle altre risposte è corretta

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	141

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- A) $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) $y_2(t)$ ha sempre supporto illimitato
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

D) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n] [n + 4 \times 3^n]$
- **B)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** la serie di Fourier di x(t) non è definita
- E) $\mu_n = \frac{2}{T+j2\pi n}$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	142

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 3. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) $\mu_n = \frac{2}{T+j2\pi n}$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- **B)** $y_2(t)$ ha sempre supporto illimitato
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{6 - 2z}{(z - 2)^2}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n-3) 2^n u[n]$
- **B)** $h[n] = (n-3) 2^{n-1} u[n-1]$
- C) $h[n] = 2\delta[n] + (n-2)2^nu[n-3]$
- **D)** $h[n] = (n-2) 2^n u[n]$

Esercizio 6

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 0$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 0$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 2$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = 1$ per $\omega = -\pi/2$
- **D)** Se $H(e^{j\omega}) = 2$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 2$ per $\omega = 0$

Esercizio 7.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- E) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	143

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) nessuna delle altre risposte

B)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

C) la serie di Fourier di x(t) non è definita

D)
$$\mu_n = \frac{2}{T + i2\pi n}$$

E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A) $R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$

B) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

D) $R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 4.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

A) Non è possibile campionare y(t) senza perdere informazione

B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$

C) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$

D) La frequenza di campionamento deve essere $f_c \geq 4B_x$

E) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T p(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_2}$ ottenendo il segnale y(t), il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - B\delta(t-T)$, dove B è una costante positiva, ottenendo in uscita il segnale z(t). Quale delle seguenti affermazioni è corretta?

A) z(t) ha supporto limitato pari a 2T se $B = e^{-\frac{T}{T_2}}$

B) Esiste un valore di B per cui z(t) ha supporto pari a 3T

C) z(t) ha supporto illimitato per ogni valore di B

D) Per valori finiti di B z(t) ha sempre supporto limitato, l'ampiezza del quale dipende dal valore di B

Esercizio 6.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema è causale.

B) Il sistema è causale e h[n] = 0 per n > 0.

C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

2

La risposta all'impulso h[n] vale

A) $h[n] = (2^{n-1} + 2) u[n-1]$

B) $h[n] = (n \ 2^{n-1} + 2) \ u[n]$

C) $h[n] = n 2^n u[n-1] + 2\delta[n]$

D) $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	144

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- B) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- C) La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- **D)** Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- $\mathbf{B)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- D) nessuna delle altre risposte
- E) $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$

Esercizio 3.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- B) Se $H(e^{j\omega})=1$ per $\omega=+\pi/2$ allora $H_1(e^{j\omega})=-1$ per $\omega=-\pi/2$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [n + 4 \times 3^n]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [1 + 4 \times 3^n]$

Esercizio 6.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **B)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- C) $x_3(t)$ ha sempre supporto illimitato
- **D)** Il segnale $x_3(t)$ non è causale

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	145

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** Il segnale $x_3(t)$ non è causale
- **B)** $x_3(t)$ ha sempre supporto illimitato
- C) Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T
- **D)** $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$

Esercizio 2. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B**) $\mu_n = \frac{1}{2T + j2\pi n}$
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 3.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

A) La frequenza di campionamento deve essere $f_c \geq 4B_x$

- B) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$
- C) La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- **D)** Non è possibile campionare y(t) senza perdere informazione
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 5. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = n \ 2^n u[n-1] + 2\delta[n]$
- **B)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- C) $h[n] = (2^{n-1} + 2) u[n-1]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 7.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	146

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$
- C) $y_2(t)$ ha sempre supporto limitato
- **D)** Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- B) $\mu_n = \frac{2}{T+j2\pi n}$
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- **A)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$
- D) Nessuna delle altre risposte è corretta

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- C) $h[n] = n \, 2^n u[n-1] + 2\delta[n]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Esercizio 7.

Si desidera campionare il segnale $z(t) = y^2(t)$ senza perdere informazione, sapendo che $y(t) = x(t) \cos(2\pi f_x t)$ dove x(t) è un segnale ad energia finita e banda limitata B_x e $f_x > 2B_x$. Dire quale delle seguenti affermazioni è vera.

- A) Non è possibile campionare y(t) senza perdere informazione
- B) La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_x)$
- C) La frequenza di campionamento deve essere $f_c \ge 4B_x$
- **D)** La frequenza di campionamento deve essere f_c con $f_x \ge f_c \ge 2B_x$
- E) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_x)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	147

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Si consideri un segnale $x(t) = s(t) \cos(2\pi f_x t)$ dove s(t) è un segnale ad energia finita e banda limitata B_s . Si vuole campionare il segnale $y(t) = x^2(t)$ senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- **B)** La frequenza di campionamento deve essere $f_c \ge (f_x + B_s)$
- C) La frequenza di campionamento deve essere $f_c \ge 2(f_x + B_s)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 4(f_x + B_s)$
- E) Non è possibile campionare y(t) senza perdere informazione perché la frequenza di campionamento è teoricamente infinita in quanto il quadratore è un sistema non lineare che crea infinite armoniche

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_u(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_u(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 3. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

La risposta all'impulso h[n] vale

A)
$$h[n] = n \ 2^n u[n-1] + 2\delta[n]$$

- **B)** $h[n] = (2^{n-1} + 2) u[n-1]$
- **C)** $h[n] = (n \ 2^{n-1} + 2) \ u[n]$
- **D)** $h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 5.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 6.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

- A) Se $H(e^{j\omega}) = 1$ per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$
- **B)** Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 7. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

2

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) $\mu_n = \frac{2}{T+j2\pi n}$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	148

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è corretta

- A) Nessuna delle altre risposte è corretta
- **B)** Se $H(e^{j\omega}) = 0$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- C) Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 1$ per $\omega = 0$
- **D)** Se $H(e^{j\omega}) = 1$ per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T x(t) = u(t) - u(t-T) viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/\tau}$ ottenendo il segnale $y_1(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = \delta(t) - C\delta(t-T)$, dove C è una costante positiva, ottenendo in uscita il segnale $y_2(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $y_2(t)$ ha sempre supporto illimitato
- **B)** $y_2(t)$ ha sempre supporto limitato
- C) Esiste un valore di C per cui $y_2(t)$ ha supporto pari a T
- **D)** $y_2(t)$ ha supporto limitato pari a 2T se $C = e^{-T/\tau}$

Esercizio 3.

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- B) La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- C) La frequenza di campionamento dipende dalla forma dello spettro di x(t)
- D) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- E) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **C**) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** la serie di Fourier di x(t) non è definita
- E) nessuna delle altre risposte

Esercizio 6. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{1}{(z-1)^2} + \frac{4}{z-3}$$

La risposta all'impulso h[n] vale

- **A)** $h[n] = u[n-1][1+4\times 3^{n-1}]$
- **B)** $h[n] = u[n] [1 + 4 \times 3^n]$
- C) $h[n] = u[n-1][n+4 \times 3^{n-1}-1]$
- **D)** $h[n] = u[n] [n + 4 \times 3^n]$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Compito di

Metodi di Elaborazione dei Segnali e Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	149

Esercizio	1	2	3	4	5	6	7
Risposta							

Esercizio 1.

Dato un filtro numerico con risposta all'impulso h[n], si consideri un altro filtro con risposta all'impulso $h_1[n] = (-1)^n h[n]$. Siano $H(e^{j\omega})$ e $H_1(e^{j\omega})$ rispettivamente le risposte in frequenza dei due filtri. Dire quale delle seguenti affermazioni è errata

A) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = +\pi/2$ allora $H_1(e^{j\omega}) = -1$ per $\omega = -\pi/2$

B) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 0$ per $\omega = \pi$

C) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = \pi$ allora $H_1(e^{j\omega}) = 0$ per $\omega = 0$

D) Se
$$H(e^{j\omega}) = 1$$
 per $\omega = 0$ allora $H_1(e^{j\omega}) = 1$ per $\omega = \pi$

Esercizio 2.

L'impulso rettangolare causale di ampiezza unitaria e durata T $x_1(t) = u(t) - u(t-T)$ viene posto in ingresso al sistema con risposta all'impulso $h_1(t) = u(t)e^{-t/T_1}$ ottenendo il segnale $x_2(t)$, il quale è posto in ingresso al sistema con risposta all'impulso $h_2(t) = -A\delta(t) + \delta(t-T)$, dove A è una costante positiva, ottenendo in uscita il segnale $x_3(t)$. Quale delle seguenti affermazioni è corretta?

- **A)** $x_3(t)$ ha sempre supporto illimitato
- **B)** Il segnale $x_3(t)$ non è causale
- C) $x_3(t)$ ha supporto limitato pari a 2T se $A = e^{T/T_1}$
- **D)** Esiste un valore di A per cui $x_3(t)$ ha supporto pari a T

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_u(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

B)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** la serie di Fourier di x(t) non è definita
- E) nessuna delle altre risposte

Esercizio 6.

Si consideri un segnale x(t) ad energia finita e banda limitata B_x e il segnale $y(t) = [x(t)\cos(2\pi f_0 t)]^2$. Si vuole campionare y(t) senza perdere informazione. Dire quale delle seguenti affermazioni è vera.

- A) La frequenza di campionamento deve essere $f_c \ge 4(f_0 + B_x)$
- B) La frequenza di campionamento è teoricamente infinita perché il quadratore è un sistema non lineare che crea infinite armoniche
- C) La frequenza di campionamento deve essere $f_c \ge (f_0 + B_x)$
- **D)** La frequenza di campionamento deve essere $f_c \ge 2(f_0 + B_x)$
- E) La frequenza di campionamento dipende dalla forma dello spettro di x(t)

Esercizio 7. Un sistema discreto causale, lineare e tempo-invariante, ha funzione di trasferimento

$$H(z) = \frac{2}{(z-2)^2} + \frac{2}{z-1}$$

2

La risposta all'impulso h[n] vale

A)
$$h[n] = (n-1) 2^{n-1} u[n-2] + 2 u[n-1]$$

B)
$$h[n] = (n \ 2^{n-1} + 2) \ u[n]$$

C)
$$h[n] = (2^{n-1} + 2) u[n-1]$$

D)
$$h[n] = n \, 2^n u[n-1] + 2\delta[n]$$