

Bergische Universität Wuppertal Wissenschaftliches Rechnen und Hochleistungsrechnen Dr. Marcel Schweitzer

Bachelor-Seminar "Top 10 Algorithms in Data Mining"

AdaBoost

Marius Graf

06.12.2023

Inhalt

- Einleitung
- Grundlagen des Boosting
- Der AdaBoost Algorithmus
- Praktische Anwendung
- Vor- und Nachteile
- Erweiterungen und Variationen
- Literatur und Zusatzmaterial

Inhalt

- Einleitung

Was ist Data Mining?

- Analysiert große Datenmengen, um Muster und Zusammenhänge zu erkennen.
- Nutzt dabei Methoden aus der Statistik, dem Machine Learning und Datenbanktechnologien.
- Spielt zentrale Rolle in der Forschung und Industrie, um Erkenntnisse zu gewinnen und Entscheidungen zu unterstützen.

Was ist Data Mining?

- Analysiert große Datenmengen, um Muster und Zusammenhänge zu erkennen.
- Nutzt dabei Methoden aus der Statistik, dem Machine Learning und Datenbanktechnologien.
- Spielt zentrale Rolle in der Forschung und Industrie, um Erkenntnisse zu gewinnen und Entscheidungen zu unterstützen.

Was ist Data Mining?

- Analysiert große Datenmengen, um Muster und Zusammenhänge zu erkennen.
- Nutzt dabei Methoden aus der Statistik, dem Machine Learning und Datenbanktechnologien.
- Spielt zentrale Rolle in der Forschung und Industrie, um Erkenntnisse zu gewinnen und Entscheidungen zu unterstützen.

Was sind Ensemble-Methoden?

- Ensemble-Verfahren: Kombinieren mehrere Modelle für präzisere Vorhersagen
- **Fehlerminimierung:** Reduzieren von **systematischen Fehlern** in
- Arten von Ensemble-Methoden:
- AdaBoost gehört zu den Boosting-Verfahren

veiterunge

Was sind Ensemble-Methoden?

- Ensemble-Verfahren: Kombinieren mehrere Modelle für präzisere Vorhersagen
- ► Fehlerminimierung: Reduzieren von systematischen Fehlern in Modellprognosen
- Arten von Ensemble-Methoden:
 - Bagging
 - Stacking
 - Boosting
- AdaBoost gehört zu den Boosting-Verfahren

Was sind Ensemble-Methoden?

- Ensemble-Verfahren: Kombinieren mehrere Modelle für präzisere Vorhersagen
- ► Fehlerminimierung: Reduzieren von systematischen Fehlern in Modellprognosen
- Arten von Ensemble-Methoden:
 - Bagging
 - Stacking
 - Boosting
- AdaBoost gehört zu den Boosting-Verfahren

- Ensemble-Verfahren: Kombinieren mehrere Modelle für präzisere Vorhersagen
- ► Fehlerminimierung: Reduzieren von systematischen Fehlern in Modellprognosen
- Arten von Ensemble-Methoden:
 - Bagging
 - Stacking
 - Boosting
- AdaBoost gehört zu den Boosting-Verfahren

Inhalt

- 2 Grundlagen des Boosting

- ► Boosting kombiniert schwache Lerner zu einem starken Gesamtmodell
- Schwacher Lerner: Modell, das nur geringfügig besser ist als zufälliges Raten
- Passe Gewichtung der Trainingsdaten iterativ an, damit neue Modelle die Fehler der Vorgänger korrigieren
- verringerter Bias, bessere Vorhersagegenauigkeit für schwer klassifizierbare Beispiele

- ► Boosting kombiniert schwache Lerner zu einem starken Gesamtmodell
- Schwacher Lerner: Modell, das nur geringfügig besser ist als zufälliges Raten
- Passe Gewichtung der Trainingsdaten iterativ an, damit neue Modelle die Fehler der Vorgänger korrigieren
- verringerter Bias, bessere Vorhersagegenauigkeit für schwer klassifizierbare Beispiele

- ▶ Boosting kombiniert schwache Lerner zu einem starken Gesamtmodell
- Schwacher Lerner: Modell, das nur geringfügig besser ist als zufälliges Raten
- Passe Gewichtung der Trainingsdaten iterativ an, damit neue Modelle die Fehler der Vorgänger korrigieren
- verringerter Bias, bessere Vorhersagegenauigkeit für schwer klassifizierbare Beispiele

- ► Boosting kombiniert schwache Lerner zu einem starken Gesamtmodell
- Schwacher Lerner: Modell, das nur geringfügig besser ist als zufälliges Raten
- Passe Gewichtung der Trainingsdaten iterativ an, damit neue Modelle die Fehler der Vorgänger korrigieren
- verringerter Bias, bessere Vorhersagegenauigkeit für schwer klassifizierbare Beispiele

Veranschaulichung

Vorhersage von Hauspreisen

Wir möchten ein Modell entwickeln, das den Preis von Häusern basierend auf verschiedenen Merkmalen wie Größe, Lage, Anzahl der Zimmer und Baujahr vorhersagt.

Haus	Größe [m²]	Lage	Preis
Haus 1	100	Zentrum	440.000€
Haus 2	150	Vorort	500.000€
Haus 3	80	Zentrum	400.000€
Haus 4	120	Ländlich	200.000€

Vorhersage von Hauspreisen

- Einfaches Modell (schwacher Lerner): Preisvorhersage nur anhand von Größe
- ► Tatsächlich spielen auch andere Faktoren (z.B. Lage) eine Rolle
- ► → Bias des schwachen Lerners
 - Preis von Häusern in guter Lage wird unterschätzt
 - Preis von Häusern in schlechter Lage wird überschätzt

Vorhersage von Hauspreisen

- Einfaches Modell (schwacher Lerner): Preisvorhersage nur anhand von Größe
- ► Tatsächlich spielen auch andere Faktoren (z.B. Lage) eine Rolle
- ► → Bias des schwachen Lerners:
 - Preis von Häusern in guter Lage wird unterschätzt
 - Preis von Häusern in schlechter Lage wird überschätzt

Vorhersage von Hauspreisen

- Einfaches Modell (schwacher Lerner): Preisvorhersage nur anhand von Größe
- Tatsächlich spielen auch andere Faktoren (z.B. Lage) eine Rolle
- A Bias des schwachen Lerners:
 - Preis von Häusern in guter Lage wird unterschätzt
 - Preis von Häusern in schlechter Lage wird überschätzt

Vorhersage von Hauspreisen

Boosting: Passe iterativ Gewicht der Datenpunkte so an, dass nächstes Modell verstärkt die schlecht vorhergesagten Fälle beachtet

P = Vorhersage, W = Gewichtung

Haus	Grö	Be [<i>m</i> ²]	Lage		Preis	
Haus 1	100		Zentrum		440.000€	
Haus 2	150		Vorort		500.000€	
Haus 3	80	80 Zentrum			400.000€	
Haus 4	120	Ländlich		200.000€		
Haus	P(1)	W(1)	P(2)	W(2)		P(3)
Haus 1	450.000€	0.1307	445.000€	0.1192		443.000€
Haus 2	350.000€	0.5299	495.000€	0.4833		501.000€
Haus 3	380.000€	0.1444	430.000€	0.1691		410.000€
Haus 4	250.000€	0.1950	230.000€	0.2283		205.000€

Inhalt

- Der AdaBoost Algorithmus

- "Adaptive Boosting"
- ► Entwickelt in den 1990ern von Freund und Schapire einflussreiches Verfahren für binäre Klassifikation
- Berechnung eines Lernkoeffizienten zur Gewichtung eines Lerners im Ensemble
- Nutzung des Lernkoeffizienten zur exponentiellen Neugewichtung falsch klassifizierter Datenpunkte

- "Adaptive Boosting"
- ► Entwickelt in den 1990ern von Freund und Schapire, einflussreiches Verfahren für binäre Klassifikation
- Berechnung eines Lernkoeffizienten zur Gewichtung eines Lerners im Ensemble
- Nutzung des Lernkoeffizienten zur exponentiellen Neugewichtung falsch klassifizierter Datenpunkte

- "Adaptive Boosting"
- Entwickelt in den 1990ern von Freund und Schapire, einflussreiches Verfahren für binäre Klassifikation
- Berechnung eines Lernkoeffizienten zur Gewichtung eines Lerners im Ensemble
- Nutzung des Lernkoeffizienten zur exponentiellen Neugewichtung falsch klassifizierter Datenpunkte

- "Adaptive Boosting"
- Entwickelt in den 1990ern von Freund und Schapire, einflussreiches Verfahren für binäre Klassifikation
- Berechnung eines Lernkoeffizienten zur Gewichtung eines Lerners im Ensemble
- Nutzung des Lernkoeffizienten zur exponentiellen Neugewichtung falsch klassifizierter Datenpunkte

Vereinfachte Sicht auf den Algorithmus

Input: Datensatz, Lernalgorithmus Initialisiere Gewichte des Datensatzes

for t = 1 to T do

Trainiere schwache Lerner mit gewichtetem Datensatz

Bestimme Fehler der Lerner

Wähle schwachen Lerner mit geringstem Fehler

Berechne Lernkoeffizienten

Gewichte Datenpunkte neu

Output: Starker Lerner (Ensemble)

- X : Menge der Features
- D: Trainingdatensatz der Form $D = \{(x_i, y_i)\}, i = 1, ..., m$
- *n* Hypothesen $(h_i)_{i\in\mathcal{I}}, h_i: X \to \mathcal{Y}, h_i(\mathbf{x}) = y \text{ mit } \mathcal{I} = \{1, ..., n\}$

$$W_i^{(t)}$$

- X : Menge der Features
- \mathcal{Y} : Menge der **Labels** ($\mathcal{Y} = \{-1, +1\}$ bei binärer Klassifikation)
- D: Trainingdatensatz der Form $D = \{(x_i, y_i)\}, i = 1, ..., m$
- ▶ *n* Hypothesen $(h_i)_{i\in\mathcal{I}}$, $h_i: X \to \mathcal{Y}$, $h_i(\mathbf{x}) = y$ mit $\mathcal{I} = \{1, ..., n\}$

$$W_i^{(t)}$$

- X : Menge der Features
- \mathcal{Y} : Menge der **Labels** ($\mathcal{Y} = \{-1, +1\}$ bei binärer Klassifikation)
- D: Trainingdatensatz der Form $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}, i = 1, ..., m$
- ▶ *n* Hypothesen $(h_i)_{i \in \mathcal{I}}$, $h_i : X \to \mathcal{Y}$, $h_i(\mathbf{x}) = y$ mit $\mathcal{I} = \{1, ..., n\}$

$$W_i^{(t)}$$

- X : Menge der Features
- \triangleright \mathcal{Y} : Menge der **Labels** ($\mathcal{Y} = \{-1, +1\}$ bei binärer Klassifikation)
- D: Trainingdatensatz der Form $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}, i = 1, ..., m$
- Modell wird auf D durch **Lernalgorithmus** \mathcal{L} (meistens *Decision* Stump) trainiert und gibt
- ▶ *n* Hypothesen $(h_i)_{i \in \mathcal{I}}$, $h_i : X \to \mathcal{Y}$, $h_i(\mathbf{x}) = y$ mit $\mathcal{I} = \{1, ..., n\}$

$$W_i^{(t)}$$

- ► X : Menge der Features
- $ightharpoonup \mathcal{Y}$: Menge der **Labels** ($\mathcal{Y} = \{-1, +1\}$ bei binärer Klassifikation)
- ▶ D: Trainingdatensatz der Form $D = \{(\mathbf{x}_i, y_i)\}, i = 1, ..., m$
- Modell wird auf D durch Lernalgorithmus L (meistens Decision Stump) trainiert und gibt
- ▶ *n* Hypothesen $(h_j)_{j\in\mathcal{I}}$, $h_j: X \to \mathcal{Y}$, $h_j(\mathbf{x}) = y$ mit $\mathcal{I} = \{1, ..., n\}$ zurück
- Anzahl der Trainingsiterationen T
- bei jeder Iteration wird *D* um **Gewichte**

$$W_i^{(t)}$$

mit i = 1 m und t = 1 T erweitert

- X : Menge der Features
- $\triangleright \mathcal{Y}$: Menge der **Labels** ($\mathcal{Y} = \{-1, +1\}$ bei binärer Klassifikation)
- ▶ D: Trainingdatensatz der Form $D = \{(\mathbf{x}_i, y_i)\}, i = 1, ..., m$
- Modell wird auf D durch Lernalgorithmus L (meistens Decision Stump) trainiert und gibt
- ▶ *n* Hypothesen $(h_j)_{j\in\mathcal{I}}$, $h_j: X \to \mathcal{Y}$, $h_j(\mathbf{x}) = y$ mit $\mathcal{I} = \{1, ..., n\}$ zurück
- Anzahl der Trainingsiterationen T
- bei jeder Iteration wird D um Gewichte

$$W_i^{(t)}$$

mit $i = 1, \ldots, m$ und $t = 1, \ldots, T$ erweitert

- X : Menge der Features
- $\triangleright \mathcal{Y}$: Menge der **Labels** ($\mathcal{Y} = \{-1, +1\}$ bei binärer Klassifikation)
- ▶ D: Trainingdatensatz der Form $D = \{(x_i, y_i)\}, i = 1, ..., m$
- Modell wird auf D durch Lernalgorithmus L (meistens Decision Stump) trainiert und gibt
- ▶ *n* Hypothesen $(h_j)_{j\in\mathcal{I}}$, $h_j: X \to \mathcal{Y}$, $h_j(\mathbf{x}) = y$ mit $\mathcal{I} = \{1, ..., n\}$ zurück
- Anzahl der Trainingsiterationen T
- ▶ bei jeder Iteration wird *D* um **Gewichte**

$$\mathbf{w}_{i}^{(t)}$$

mit $i = 1, \dots, m$ und $t = 1, \dots, T$ erweitert

Initialisierung der Gewichte

Zu Beginn sind die Gewichte gleich verteilt

$$w_i^{(1)} = \frac{1}{m}, i = 1, \dots, m$$

$$\sum_{i=1}^{m} w_i^{(t)} = 1 \ \forall t = 1, \dots, T$$

Initialisierung der Gewichte

Zu Beginn sind die Gewichte gleich verteilt

$$w_i^{(1)} = \frac{1}{m}, i = 1, \dots, m$$

Die Summe der Gewichte ist stets 1

$$\sum_{i=1}^{m} w_i^{(t)} = 1 \quad \forall t = 1, \dots, T$$

Training der schwachen Lerner

Trainiere pro Iteration n schwache Lerner (für jedes Feature) zwei, je mit umgekehrter Polarität)

$$(h_j)_{j\in\mathcal{I}}=\mathcal{L}(D,\mathbf{w}^{(t)})$$

mit $w^{(t)}$ als Gewichte der t-ten Iteration

$$\varepsilon_j = \sum_{i=1}^m w_i^{(t)} \cdot I(y_i \neq h_j(\mathbf{x}_i)), j = 1, \dots, n$$

Wähle Lerner h_i aus der Folge mit **geringstem Fehler** ε_i als h_t

$$I(A) = \begin{cases} 1, & \text{wenn } A \\ 0, & \text{sonst.} \end{cases}$$

Training der schwachen Lerner

► **Trainiere** pro Iteration *n* **schwache Lerner** (für jedes Feature zwei, je mit umgekehrter Polarität)

$$(h_j)_{j\in\mathcal{I}}=\mathcal{L}(D,\mathbf{w}^{(t)})$$

mit $w^{(t)}$ als Gewichte der t-ten Iteration

Ziel: gewichteten Fehler minimieren

$$\varepsilon_{j} = \sum_{i=1}^{m} w_{i}^{(t)} \cdot I(y_{i} \neq h_{j}(\mathbf{x}_{i})), j = 1, \ldots, n$$

Wähle Lerner h_j aus der Folge mit **geringstem Fehler** ε_j als h_t

Dabei bezeichntet / die Indikatorfunktion

$$I(A) = \begin{cases} 1, & \text{wenn } A \\ 0, & \text{sonst.} \end{cases}$$

Training der schwachen Lerner

► Trainiere pro Iteration n schwache Lerner (für jedes Feature zwei, je mit umgekehrter Polarität)

$$(h_j)_{j\in\mathcal{I}} = \mathcal{L}(D, \mathbf{w}^{(t)})$$

mit $w^{(t)}$ als Gewichte der t-ten Iteration

Ziel: gewichteten Fehler minimieren

$$\varepsilon_{j} = \sum_{i=1}^{m} w_{i}^{(t)} \cdot I(y_{i} \neq h_{j}(\boldsymbol{x}_{i})), j = 1, \dots, n$$

Wähle Lerner h_j aus der Folge mit **geringstem Fehler** ε_j als h_t

Dabei bezeichntet / die Indikatorfunktion

$$I(A) = \begin{cases} 1, & \text{wenn } A \\ 0, & \text{sonst.} \end{cases}$$

Exponentieller Verlust

$$L(h_t) = \sum_{i=1}^{m} w_i^{(t)} e^{-y_i h_t(x_i)}$$

$$L(h_t) = \sum_{i=1}^m w_i^{(t)} e^{-\alpha_t y_i h_t(x_i)}$$

Exponentieller Verlust

$$L(h_t) = \sum_{i=1}^{m} w_i^{(t)} e^{-y_i h_t(x_i)}$$

▶ Herleitung: führe Lernkoeffizienten α_t ein

$$L(h_t) = \sum_{i=1}^m w_i^{(t)} e^{-\alpha_t y_i h_t(x_i)}$$

$$y_i = h_t(x_i) \implies y_i h_t(x_i) = 1$$
 \Rightarrow Beitrag zum Verlust: $w_i^{(t)} e^{-\alpha_t}$
 $y_i \neq h_t(x_i) \implies y_i h_t(x_i) = -1$
 \Rightarrow Beitrag zum Verlust: $w_i^{(t)} e^{\alpha_t}$

$$L(h_t) = \sum_{y_i = h_t(x_i)} w_i^{(t)} e^{-\alpha_t} + \sum_{y_i \neq h_t(x_i)} w_i^{(t)} e^{\alpha_t}$$

$$\frac{dL(h_t)}{d\alpha_t} = -e^{-\alpha_t} \sum_{y_i = h_t(x_i)} w_i^{(t)} + e^{\alpha_t} \sum_{y_i \neq h_t(x_i)} w_i^{(t)} = 0$$

$$y_i = h_t(x_i) \implies y_i h_t(x_i) = 1$$
 \Rightarrow Beitrag zum Verlust: $w_i^{(t)} e^{-\alpha_t}$
 $y_i \neq h_t(x_i) \implies y_i h_t(x_i) = -1$
 \Rightarrow Beitrag zum Verlust: $w_i^{(t)} e^{\alpha_t}$

Minimieren von $L(h_t)$:

$$L(h_t) = \sum_{y_i = h_t(x_i)} w_i^{(t)} e^{-\alpha_t} + \sum_{y_i \neq h_t(x_i)} w_i^{(t)} e^{\alpha_t}$$

$$\frac{dL(h_t)}{d\alpha_t} = -e^{-\alpha_t} \sum_{y_i = h_t(x_i)} w_i^{(t)} + e^{\alpha_t} \sum_{y_i \neq h_t(x_i)} w_i^{(t)} = 0$$

$$y_i = h_t(x_i) \implies y_i h_t(x_i) = 1$$
 \Rightarrow Beitrag zum Verlust: $w_i^{(t)} e^{-\alpha_t}$
 $y_i \neq h_t(x_i) \implies y_i h_t(x_i) = -1$
 \Rightarrow Beitrag zum Verlust: $w_i^{(t)} e^{\alpha_t}$

Minimieren von $L(h_t)$:

$$L(h_t) = \sum_{y_i = h_t(x_i)} w_i^{(t)} e^{-\alpha_t} + \sum_{y_i \neq h_t(x_i)} w_i^{(t)} e^{\alpha_t}$$

$$\frac{dL(h_t)}{d\alpha_t} = -e^{-\alpha_t} \sum_{y_i = h_t(x_i)} w_i^{(t)} + e^{\alpha_t} \sum_{y_i \neq h_t(x_i)} w_i^{(t)} = 0$$

$$\Leftrightarrow \mathbf{e}^{2\alpha_t} = \frac{\sum_{y_i = h_t(x_i)} \mathbf{w}_i^{(t)}}{\sum_{y_i \neq h_t(x_i)} \mathbf{w}_i^{(t)}}$$

$$\Leftrightarrow \alpha_t = \frac{1}{2} \ln \left(\frac{\sum_{y_i = h_t(x_i)} \mathbf{w}_i^{(t)}}{\sum_{y_i \neq h_t(x_i)} \mathbf{w}_i^{(t)}} \right)$$

Da
$$\sum_{y_i \neq h_t(x_i)} w_i^{(t)} = \varepsilon_t \text{ und } \sum_{y_i = h_t(x_i)} w_i^{(t)} = 1 - \varepsilon_t$$

$$\implies \alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

$$\Leftrightarrow e^{2\alpha_t} = \frac{\sum_{y_i = h_t(x_i)} w_i^{(t)}}{\sum_{y_i \neq h_t(x_i)} w_i^{(t)}}$$

$$\Leftrightarrow \alpha_t = \frac{1}{2} \ln \left(\frac{\sum_{y_i = h_t(x_i)} w_i^{(t)}}{\sum_{y_i \neq h_t(x_i)} w_i^{(t)}} \right)$$

▶ Da
$$\sum_{y_i \neq h_t(x_i)} w_i^{(t)} = \varepsilon_t$$
 und $\sum_{y_i = h_t(x_i)} w_i^{(t)} = 1 - \varepsilon_t$

$$\implies \alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

Aktualisierung der Gewichte

Neue Gewichte der Daten für den nächsten Durchlauf berechnen

$$w_i^{(t+1)} = w_i^{(t)} \cdot e^{-\alpha_t}$$
 für korrekt klassifizierte Datenpunke $w_i^{(t+1)} = w_i^{(t)} \cdot e^{\alpha_t}$ für falsch klassifizierte Datenpunke

$$Z_t = \sum_{j=1}^m w_i^{(t+1)}$$
 (Normalisierungsfaktor) $w_i^{(t+1)} = rac{w_i^{(t+1)}}{Z_t}$

Aktualisierung der Gewichte

Neue Gewichte der Daten für den nächsten Durchlauf berechnen

$$w_i^{(t+1)} = w_i^{(t)} \cdot e^{-\alpha_t}$$
 für korrekt klassifizierte Datenpunke $w_i^{(t+1)} = w_i^{(t)} \cdot e^{\alpha_t}$ für falsch klassifizierte Datenpunke

Die neuen Gewichte müssen anschließend normalisiert werden, damit ihre Summe wieder 1 ist:

$$Z_t = \sum_{j=1}^m w_i^{(t+1)}$$
 (Normalisierungsfaktor) $w_i^{(t+1)} = rac{w_i^{(t+1)}}{Z_t}$

Das Ergebnis des Algorithmus

Der Algorithmus gibt ein Gesamtmodell zurück, welches die Klassifizierung des Datenpunktes durch die gewichtete Summe aller schwachen Lerner darstellt:

$$H: X \to \{-1, +1\}$$

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Der vollständige Algorithmus I

```
Data: Trainingsdatensatz D, Anzahl der Iterationen T.
Result: Finale Klassifikationsfunktion: H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).
// Initialisiere Gewichte
w_i^{(1)} = \frac{1}{m}
for t = 1 to T do
      // Trainiere schwache Lerner
      (h_i)_i \in \mathcal{I} \leftarrow \mathcal{L}(D, \mathbf{w}_i^{(t)})
      // Berechne Fehler
      for i = 1 to n do
       \varepsilon_i = \sum_{i=1}^m w_i^{(t)} \cdot I(y_i \neq h_i(x_i))
      Wähle Lerner h_i mit minimalem Fehler \varepsilon_i als h_t
      // Berechne den Lernerkoeffizienten
     \alpha_t = \frac{1}{2} \ln \left( \frac{1 - \varepsilon_t}{\varepsilon_t} \right)
      // Algorithmus wird fortgesetzt...
```

Der vollständige Algorithmus II

```
// Fortsetzung des Algorithmus
     Weiterhin innerhalb des For-Loops
// Aktualisiere die Gewichte für die nächsten Iterationen
if y_i = h_t(x_i) then
      \mathbf{w}_{i}^{(t+1)} \leftarrow \mathbf{w}_{i}^{(t)} \cdot \mathbf{e}^{-\alpha_{t}}
else
     \mathbf{w}_{i}^{(t+1)} \leftarrow \mathbf{w}_{i}^{(t)} \cdot \mathbf{e}^{\alpha_{t}}
// Normalisiere Gewichte
Z_t \leftarrow \sum_{i=1}^m w_i^{(t+1)}
for i = 1 to m do
      w_i^{(t+1)} \leftarrow \frac{w_i^{(t+1)}}{7}
Output: H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)
// Ende des Algorithmus
```

Beispiel

Das XOR-Problem (eine Variation)

Inhalt

- Praktische Anwendung

Praktische Anwendung und Beispiele Bilderkennung und Computervision: Gesichtserkennung

Praktische Anwendung und Beispiele

Textklassifikation und Natural Language Processing: Erkennung von Spam-Mail

Praktische Anwendung und Beispiele

Medizinische Diagnostik: Risiko/Erkennung von Krankheiten basierend auf Patientendaten

Praktische Anwendung und Beispiele

Finanzwesen: Vorhersage von Aktienkursbewegungen

- 5 Vor- und Nachteile

Vorteile:

Vorteile:

- + Benutzerfreundlich
- + Flexibel
- + Identifiziert automatisch wichtige Features
- Neigt weniger zum Overfitting

- Anfällig für verrauschte Daten und Ausreißer
- Training auf großen Datensätzen kann zeitintensiv sein
- Hauptsächlich für binäre Klassifikation ausgelegt

Vorteile:

- Benutzerfreundlich
- Flexibel

Vorteile:

- Benutzerfreundlich
- Flexibel
- Identifiziert automatisch wichtige Features

Vorteile:

- + Benutzerfreundlich
- + Flexibel
- + Identifiziert automatisch wichtige Features
- Neigt weniger zum Overfitting

- Anfällig für verrauschte Daten und Ausreißen
- Training auf großen Datensätzen kann zeitintensiv sein
- Hauptsächlich für binäre Klassifikation ausgelegt

Vorteile:

- + Benutzerfreundlich
- + Flexibel
- + Identifiziert automatisch wichtige Features
- Neigt weniger zum Overfitting

- Anfällig für verrauschte Daten und Ausreißer
- Training auf großen Datensätzen kann zeitintensiv sein
- Hauptsächlich für binäre Klassifikation ausgelegt

Vorteile:

- Benutzerfreundlich
- Flexibel
- Identifiziert automatisch wichtige Features
- Neigt weniger zum Overfitting

- Anfällig für verrauschte Daten und Ausreißer
- Hauptsächlich für binäre Klassifikation ausgelegt

Vorteile:

- Benutzerfreundlich
- Flexibel
- Identifiziert automatisch wichtige Features
- Neigt weniger zum Overfitting

- Anfällig für verrauschte Daten und Ausreißer
- Training auf großen Datensätzen kann zeitintensiv sein
- Hauptsächlich für binäre Klassifikation ausgelegt

Vorteile:

- Benutzerfreundlich
- Flexibel
- Identifiziert automatisch wichtige Features
- Neigt weniger zum Overfitting

- Anfällig für verrauschte Daten und Ausreißer
- Training auf großen Datensätzen kann zeitintensiv sein
- Hauptsächlich für binäre Klassifikation ausgelegt

Inhalt

- 6 Erweiterungen und Variationen

Erweiterungen und Variationen von AdaBoost

- Ursprünglich für binäre Klassifikation entwickelt, durch verschiedene Erweiterungen für diverse Problemstellungen adaptiert
- "AdaBoost.M1" und "SAMME" für Multiklassen-Probleme
- Kosten-sensitives AdaBoost
- Neben Decision Stumps kann AdaBoost mit SVMs, Neuronalen Netzen und anderen Classifiern kombiniert werden

Erweiterungen und Variationen von AdaBoost

- Ursprünglich für binäre Klassifikation entwickelt, durch verschiedene Erweiterungen für diverse Problemstellungen adaptiert
- "AdaBoost, M1" und "SAMME" für Multiklassen-Probleme
- Kosten-sensitives AdaBoost
- Neben Decision Stumps kann AdaBoost mit SVMs, Neuronalen

Erweiterungen und Variationen von AdaBoost

- Ursprünglich für binäre Klassifikation entwickelt, durch verschiedene Erweiterungen für diverse Problemstellungen adaptiert
- "AdaBoost.M1" und "SAMME" für Multiklassen-Probleme
- Kosten-sensitives AdaBoost
- Neben Decision Stumps kann AdaBoost mit SVMs, Neuronalen Netzen und anderen Classifiern kombiniert werden

- Ursprünglich für binäre Klassifikation entwickelt, durch verschiedene Erweiterungen für diverse Problemstellungen adaptiert
- "AdaBoost.M1" und "SAMME" für Multiklassen-Probleme
- Kosten-sensitives AdaBoost
- Neben Decision Stumps kann AdaBoost mit SVMs, Neuronalen Netzen und anderen Classifiern kombiniert werden

- ▶ **Robuste** Varianten minimieren die Auswirkung von Ausreißern.
- Online AdaBoost aktualisiert Modelle ohne Neutrainierung.
- ▶ Direkte Feature Auswahl: Wählt während des Trainings aus, welche Features wichtig sind und betrachtet nur diese ~> schnelleres Training
- Variationen, welche die Interpretierbarkeit und Erklärbarkeit verbessern

- ▶ **Robuste** Varianten minimieren die Auswirkung von Ausreißern.
- Online AdaBoost aktualisiert Modelle ohne Neutrainierung.
- ▶ Direkte Feature Auswahl: Wählt während des Trainings aus, welche Features wichtig sind und betrachtet nur diese ~> schnelleres Training
- Variationen, welche die Interpretierbarkeit und Erklärbarkeit verbessern

- ► Robuste Varianten minimieren die Auswirkung von Ausreißern.
- Online AdaBoost aktualisiert Modelle ohne Neutrainierung.
- ▶ Direkte Feature Auswahl: Wählt während des Trainings aus, welche Features wichtig sind und betrachtet nur diese ~> schnelleres Training
- Variationen, welche die Interpretierbarkeit und Erklärbarkeit verbessern

- ► Robuste Varianten minimieren die Auswirkung von Ausreißern.
- Online AdaBoost aktualisiert Modelle ohne Neutrainierung.
- ▶ Direkte Feature Auswahl: Wählt während des Trainings aus, welche Features wichtig sind und betrachtet nur diese ~> schnelleres Training
- Variationen, welche die Interpretierbarkeit und Erklärbarkeit verbessern

- 2 Grundlagen des Boosting
- 3 Der AdaBoost Algorithmus
- 4 Praktische Anwendung
- 5 Vor- und Nachteile
- 6 Erweiterungen und Variationer
- 7 Literatur und Zusatzmaterial

Literatur I

Julian Hatwell, Mohamed Medhat Gaber, and R Muhammad Atif Azad.

Ada-WHIPS: explaining AdaBoost classification with applications in the health sciences.

BMC Medical Informatics and Decision Making, 20(1):1–25, 2020.

Weiming Hu, Jun Gao, Yanguo Wang, Ou Wu, and Stephen Maybank.

Online adaboost-based parameterized methods for dynamic distributed network intrusion detection.

IEEE Transactions on Cybernetics, 44(1):66–82, 2013.

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost.

Statistics and its Interface, 2(3):349-360, 2009.

Literatur II

IEEE Transactions on pattern analysis and machine intelligence, 33(2):294–309, 2010.

Manish Panwar, Jayesh Rajesh Jogi, Mahesh Vijay Mankar, Mohamed Alhassan, and Shreyas Kulkarni.

Detection of Spam Email.

AJISE, 1, 2022.

Paul Viola and Michael Jones.

Fast and robust classification using asymmetric adaboost and a detector cascade.

Advances in neural information processing systems, 14, 2001.

Literatur III

Paul Viola and Michael Jones.

Rapid object detection using a boosted cascade of simple features.

In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. IEEE, 2001.

Jianxin Wu, James M Rehg, and Matthew Mullin.

Learning a rare event detection cascade by direct feature selection.

Advances in Neural Information Processing Systems, 16, 2003.

Literatur IV

Xiao-dan Zhang, Ang Li, and Ran Pan.

Stock trend prediction based on a new status box method and AdaBoost probabilistic support vector machine.

Applied Soft Computing, 49:385–398, 2016.

Zusatzmaterial

Umsetzungen und Beispiele von AdaBoost + diese Präsentation mit Ausarbeitung in LATEX auf GitHub.

Danke

Vielen Dank für die Aufmerksamkeit!