Matrices

Jérémy Meynier

Exercice 1

Soit u défini par $\forall P \in \mathbb{R}_3[X], \ u(P) = P' + P$.

- 1. Écrire la matrice de u dans la base $\beta = (1, X, X^2, X^3)$.
- 2. L'endomorphisme est-il inversible? Si oui donner la matrice de u^{-1} dans la base canonique

Exercice 2

Montrer que 2 matrices de $M_n(\mathbb{R})$ semblables dans $M_n(\mathbb{C})$ sont semblables dans $M_n(\mathbb{R})$

Exercice 3

Soit
$$A = (a_{ij}) \in M_n(\mathbb{C})$$
 tel que $\forall i \in [1, n], |a_{ij}| > \sum_{j \neq i} |a_{ij}|$. Montrer que $A \in GL_n(\mathbb{C})$

Exercice 4

Soit
$$A \in GL_n(\mathbb{R})$$
 tel que $A + A^{-1} = I_n$. Calculer $A^k + A^{-k}$ pour $k \in \mathbb{N}$

Exercice 5

Soit f un élément non nul de $L(\mathbb{R}^3)$ vérifiant $f^3+f=0$. Montrer que $\mathbb{R}^3=Im(f)\oplus Ker(f)$ et que l'on peut trouver une base dans laquelle f a pour matrice $A=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$

1

Exercice 6

Soit
$$A \in M_{3,2}(\mathbb{R})$$
 et $B \in M_{2,3}(\mathbb{R})$ tel que $AB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Trouver BA