- 1. Własności dla X przestrzeń, $A:I\to P(X),\,B:I\to P(X),C-{\rm zbiór}$
 - (a) Jeśli $i_0 \in I$, to $A_{i_0} \subseteq \bigcup_{i \in I} A_i$
 - (b) Jeśli $i_0 \in I$, to $\bigcap_{i \in I} A_i \subseteq A_{i_0}$
 - (c) Jeżeli $\forall_{i \in I} A_i \subseteq C$, to $\bigcup_{i \in I} A_i \subseteq C$
 - (d) Jeżeli $\forall_{i \in I} C \subseteq A_i$, to $C \subseteq \bigcap_{i \in I} A_i$
 - i. D: Niech $x \in C \implies \forall_{i \in I} x \in A_i \implies x \in \bigcap_{i \in I} A_i$
 - (e) $\bigcup_{i \in I} (A_i \cup B_i) = (\bigcup_{i \in I} A_i) \cup (\bigcup_{i \in I} B_i)$
 - (f) $\bigcap_{i \in I} (A_i \cap B_i) \subseteq (\bigcap_{i \in I} A_i) \cap (\bigcap_{i \in I} B_i)$
 - i. $D: x \in \bigcap_{i \in I} (A_i \cap B_i) \iff \forall_{i \in I} x \in A_i \cap B_i \iff \forall_{i \in I} (x \in A \land x \in B) \iff (x \in \bigcap_{i \in I} A_i) \land (x \in \bigcap_{i \in I} B_i) \iff x \in (\bigcap_{i \in I} A_i \cap \bigcap_{i \in I} B_i)$
 - (g) $\bigcup_{i \in I} (A_i \cap B_i) \subseteq (\bigcup_{i \in I} A_i) \cap (\bigcup_{i \in I} B_i)$
 - i. $D: x \in \bigcup_{i \in I} (A_i \cap B_i) \implies \exists_{i \in I} x \in A_i \cap B_i \implies \exists_{i \in I} (x \in A_i \wedge x \in B_i) \implies (\exists_{i \in I} a \in A_i) \wedge (\exists_{i \in I} x \in B_i) \implies x \in \bigcup_{i \in I} A_i \wedge x \in \bigcup_{i \in I} B_i \implies x \in (\bigcup_{i \in I} A_i) \cap (\bigcup_{i \in I} B_i)$
 - (h) $(\bigcap_{i\in I}A_i)\cup(\bigcap_{i\in I}B_I)\subseteq\bigcap_{i\in I}(A_i\cup B_i),$ Inkluzja przeciwna nie zachodzi
 - (i) $-\bigcup_{i\in I} A_i = \bigcap_{i\in I} -A_i$
 - i. D: $x \in -\bigcup_{i \in I} A_i \iff x \notin \bigcup_{i \in I} A_i \iff \neg(x \in \bigcup_{i \in I} A_i) \iff \neg(\exists_{i \in I} x \in A_i) \iff \forall_{i \in I} \neg(x \in A_i) \iff x \in \bigcap_{i \in I} -A_i$
 - $(j) \bigcap_{i \in I} A_i = \bigcup_{i \in I} -A$
 - (k) Jeżeli $\forall_{i\in I}A_i\subseteq B_i$ to $\bigcup_{i\in I}A_i\subseteq\bigcup_{i\in I}B_i$ oraz $\bigcap_{i\in I}A_i\subseteq\bigcap_{i\in I}B_i$
 - (1) $\bigcup_{i \in I} (C \cap A_i) = C \cap \bigcup_{i \in I} A_i$
 - i. D: $x \in \bigcup_{i \in I} (C \cap A_i) \iff \exists_{i \in I} x \in C \cap A_i \iff \exists_{i \in I} (x \in C \land x \in A_i) \iff x \in C \land \exists_{i \in I} x \in A_i \iff x \in C \land x \in A_i) \iff x \in C \land x \in A_i \implies x \in A$
 - (m) $\bigcap_{i \in I} (C \cup A_i) = C \cup (\bigcap_{i \in I} A_i)$
 - (n) Jeżeli $J \subseteq I$ to $\bigcup_{i \in J} A_i \subseteq \bigcup_{i \in I} A_i$ oraz $\bigcap_{i \in I} A_i \subseteq \bigcap_{j \in J} A_j$
 - i. D: $x \in \bigcap_{i \in I} A_i \implies \forall_{i \in I} x \in A_i \implies \forall_{j \in J} x \in A_j \implies x \in \bigcap_{j \in J} A_j$
 - (o) $\bigcup_{i \in \emptyset} A_i = \emptyset$
 - i. D: Przypuśćmy, że istnieje $x \in \bigcup_{i \in \emptyset} A_i$, to $\exists_{i \in \emptyset} x \in A_i \iff \exists_i i \in \emptyset \land x \in A_i$, ale $i \in \emptyset$ to zdanie fałszywe stąd sprzeczność
 - (p) $\bigcap_{i \in \emptyset} A_i = X$ D: $x \in \bigcap_{i \in I} A_i \iff \forall_{i \in \emptyset} x \in A_i \iff \forall_i i \in \emptyset \implies x \in A_i \iff x \in X$
- 2. Indeksowanie dwoma indeksami I, J zbiory indeksów $C: I \times J \to P(X), (i, j) \mapsto c_{ij} = C(i, j)$

 $x \in \bigcup_{j \in J} \bigcap_{i \in I} C_{ij} \iff \exists_{j \in J} x \in \bigcap_{i \in I} C_{ij} \iff \exists_{j \in J} \forall_{i \in I} x \in C_{ij}$

Analogicznie definiujemy $\bigcap_{j \in J} \bigcup_{i \in I} C_{ij}$ oraz $\bigcup_{j \in J} \bigcup_{i \in I} C_{ij}$ oraz $\bigcap_{j \in J} \bigcap_{i \in I} C_{ij}$

Własności: $C: I \times J \to P(X)$

- (a) $\bigcup_{j \in J} \bigcup_{i \in I} C_{ij} = \bigcup_{i \in I} \bigcup_{j \in J} C_{ij} \stackrel{\text{def.}}{=} \bigcup_{\substack{i \in I \\ j \in J}} C_{ij}$
- (b) $\bigcap_{j \in J} \bigcap_{i \in I} C_{ij} = \bigcap_{i \in I} \bigcap_{j \in J} C_{ij} \stackrel{\text{def.}}{=} \bigcap_{\substack{i \in I \\ j \in J}} C_{ij}$
- (c) $\bigcup_{i \in I} \bigcap_{j \in J} C_{ij} \subseteq \bigcap_{j \in J} \bigcup_{i \in I} C_{ij}$ i. $x \in \bigcup_{i \in I} \bigcap_{j \in J} C_{ij} \iff \exists_{i \in I} \forall_{j \in J} x \in C_{ij} \implies \forall_{j \in J} \exists_{i \in I} x \in C_{ij} \iff x \in \bigcap_{j \in J} \bigcup_{i \in I} C_{ij}$
- 3. Nieskończone rodziny indeksowane. $I=J=\mathbb{R}, X=\mathbb{R}^2$
 - (a) Dla każdego $a, b \in \mathbb{R}$, niech $C_{ab} = \{\langle x, y \rangle \in \mathbb{R}^2 : y \leq ax + b\}$

$$\bigcup_{a \in \mathbb{R}} C_{ab} = \mathbb{R}^2 \setminus \{0\} \times (b, +\infty)$$
$$\bigcup_{b \in \mathbb{R}} C_{ab} = \mathbb{R}^2$$

 $\bigcap_{a\in\mathbb{R}} C_{ab} = \{0\} \times (-\infty, b)$

$$\bigcap_{b\in\mathbb{R}} C_{ab} = \emptyset$$

 $\bigcap_{b\in\mathbb{R}}\bigcup_{a\in\mathbb{R}}C_{ab}=\bigcap_{b\in\mathbb{R}}(\mathbb{R}^2\setminus\{0\}\times(b,+\infty))=\mathbb{R}^2\setminus\{0\}\times\mathbb{R}$

 $\bigcup_{b\in\mathbb{R}}^{b\in\mathbb{R}}\bigcap_{a\in\mathbb{R}}^{a\in\mathbb{R}}C_{ab}=\bigcup_{b\in\mathbb{R}}^{b\in\mathbb{R}}(\{0\}\times(-\infty,b))=\{0\}\times\mathbb{R}$