Homework 3 Problem 2 Solution

Konstantin Miagkov

October 28, 2018

Problem 2.

Let I be the intersection of diagonals of ABCD, which is incidentally also the center of the inscribed circle. Let E be the point at which the inscribed circle is tangent to AB, and F – the point of tangency to AD. Then note that AE = AF and IE = IF. Then $\triangle AEI = \triangle AFI$, which in turn implies $\angle BAI = \angle DAI$. Similarly, we can show that $\angle BCI = \angle DCI$. The two angle equalities imply that $\triangle ABC = \triangle ADC$, which means that AB = CD and AD = BC. Now we can remember that AB + CD = AD + BC, and we get AB = CD = AD = BC which means that ABCD is a rhombus.