TEST REPORT

Reference No. : WTS18S01101152-1E

FCC ID : 2AA3H-ESB2018

Applicant : Shenzhen 3nod Digital Technology Co., Ltd.

Address..... Bld D, No.8 Langhui Road, Tangxiayong Community, Songgang Street,

Baoan District, Shenzhen, China

Manufacturer: Shenzhen 3nod Digital Technology Co., Ltd.

Address..... Bld D, No.8 Langhui Road, Tangxiayong Community, Songgang Street,

Baoan District, Shenzhen, China

Product.....: Element 2.0 Sound bar

Model(s) : ESB2018

Brand Name...... G ELEMENT

Standards..... : FCC CFR47 Part 15 Section 15.247:2017

Date of Receipt sample ... : 2018-01-19

Date of Test : 2018-01-20 to 2018-04-03

Date of Issue.....: 2018-04-04

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel :+86-755-83551033

Fax:+86-755-83552400

Tested by:

Robin Zhou / Test Engineer

Philo Zhong / Manager

Approved by:

1 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation) of USA, Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), IC(Industry Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. Electro Magnetic Compatibility (EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

1.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Accreditation Body	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe	A2LA (Certificate No.: 4243.01)	EMCD \ RED	-
Taiwan		NCC	-
Hong Kong		OFCA	-
Australia		RCM	-
India		WPC	-
Thailand	International Services	NTC	-
Singapore		IDA	_

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

2 Contents

			Page
1		IES INTRODUCTION	
		ILITY	
2			
3	REVISION HIS	TORY	6
4	GENERAL INF	ORMATION	7
		DESCRIPTION OF E.U.T.	
		F E.U.T	
		LIST DE	
5		JSED DURING TEST	
		ITS LIST	
		MENT UNCERTAINTY	
		RACTED	
6	TEST SUMMA	RY	11
7	CONDUCTED	EMISSION	12
		PERATION	
		JP	
		MENT DESCRIPTION ED EMISSION TEST RESULT	
8		PURIOUS EMISSIONS	
o		RATION	
		UP	
		M ANALYZER SETUP	
		CEDURE	
		OF TEST RESULTS	
9		MEASUREMENT	
		CEDURE	
		ULT	
10		MEASUREMENT	
		ROCEDURE	
		ETUP	
	10.3 TEST R	ESULT	30
11	MAXIMUM PE	AK OUTPUT POWER	36
		ROCEDURE	
		ETUP	
10		ESULT	
12		ANNEL SEPARATION	
		ROCEDURE	
		ESULT	
13		HOPPING FREQUENCY	
-		ROCEDURE	
	13.1 TEST S		10

Reference No.: WTS18S01101152-1E Page 5 of 58

	13.3	TEST RESULT	49
14	DWE	LL TIME	51
		Test Procedure	
		TEST SETUP	
		TEST RESULT	
15	ANTE	ENNA REQUIREMENT	57
16	FCC	ID: 2AA3H-ESB2018 RF EXPOSURE REPORT	58
17	PHOT	TOGRAPHS-MODEL ESB2018 TEST SETUP	58
18	PHOT	TOGRAPHS-CONSTRUCTIONAL DETAILS	58
	18.1	MODEL ESB2018-EXTERNAL PHOTOS	58
	18.2	MODEL ESB2018-INTERNAL PHOTOS	58

Reference No.: WTS18S01101152-1E Page 6 of 58

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS18S01101152-1E	2018-01-19	2018-01-20 to 2018-04-03	2018-04-04	original	-	Valid

Reference No.: WTS18S01101152-1E Page 7 of 58

4 General Information

4.1 General Description of E.U.T.

Product: Element 2.0 Sound bar

Model(s): ESB2018

Operation Frequency: 2402-2480MHz, 79(EDR) Channels in total

Type of Modulation: GFSK, π /4DQPSK, 8DPSK

Antenna Gain: 0 dBi

Antenna installation: Internal Integral Antenna

4.2 Details of E.U.T.

Ratings: Power Supply: 20V === 2A from SWITCHING ADAPTER

(SWITCHING ADAPTER INPUT: 100-240V~50/60Hz, 1.2A,

Model: ASSA79A-200200)

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

Reference No.: WTS18S01101152-1E Page 8 of 58

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

5 Equipment Used during Test

5.1 Equipments List

	5.1 Equipments L	-151				
Item	cted Emissions Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	2017-09-12	2018-09-11
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2017-09-12	2018-09-11
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2017-09-12	2018-09-11
4.	Cable	Laplace	RF300	-	2017-09-12	2018-09-11
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP30	100091	2017-04-29	2018-04-28
2	Broad-band Horn Antenna(1-18GHz)	SCHWARZBECK	BBHA 9120 D	667	2017-04-09	2018-04-08
3	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2017-04-13	2018-04-12
4	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	2017-04-13	2018-04-12
5	Spectrum Analyzer	R&S	FSP40	100501	2017-10-20	2018-10-19
6	Broad-band Horn Antenna(18-40GHz)	SCHWARZBECK	BBHA 9170	BBHA917065 1	2017-10-25	2018-10-24
7	Microwave Broadband Preamplifier (18-40GHz)	SCHWARZBECK	BBV 9721	100472	2017-10-25	2018-10-24
8	Cable	Тор	18-40GHz	-	2017-10-25	2018-10-24
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2017-04-13	2018-04-12
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2017-04-13	2018-04-12
3	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	2017-04-09	2018-04-08
4	Amplifier	ANRITSU	MH648A	M43381	2017-04-13	2018-04-12
5	Cable	HUBER+SUHNER	CBL2	525178	2017-04-13	2018-04-12
6	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017-09-12	2018-09-11
RF Cor	nducted Testing			·		

					Calibration Date	Due Date
1	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2017-09-12	2018-09-11
2	Coaxial Cable	Тор	10Hz-30GHz	-	2017-09-12	2018-09-11
3	Antenna Connector*	Realacc	45RSm	-	2017-09-12	2018-09-11

[&]quot;*": The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Radiated Spurious Emissions test	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Subcontracted

Whether parts	of tests for the product have been subcontracted to other labs
☐ Yes	⊠ No

If Yes, list the related test items and lab information:

Test Lab: N/A Lab address: N/A

FCC Designation No.: N/A. Test Firm Registration No.: N/A

Test items: N/A

Reference No.: WTS18S01101152-1E Page 11 of 58

6 Test Summary

Test Items	Test Requirement	Result		
	15.205(a)			
Radiated Spurious Emissions	15.209	PASS		
	15.247(d)			
Conducted Emissions	15.207(a)	PASS		
Dond adap	15.247(d)	DACC		
Band edge	15.205(a)	PASS		
Bandwidth	15.247(a)(1)	PASS		
Maximum Peak Output Power	15.247(b)(1)	PASS		
Frequency Separation	15.247(a)(1)	PASS		
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS		
Dwell time	15.247(a)(1)(iii)	PASS		
Antenna Requirement	15.203	PASS		
RF Exposure	1.1307(b)(1)	PASS		
Note: Pass=Compliance; Fail=Not Compliance; N/A=Not Applicable.				

Reference No.: WTS18S01101152-1E Page 12 of 58

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

oldss/ceventy.

Fraguency (MHz)	Limit (dBµV)				
Frequency (MHz)	Qsi-peak	Average			
0.15 to 0.5	66 to 56*	56 to 46*			
0.5 to 5	50	60			
5 to 30	60	50			

7.1 E.U.T. Operation

Limit:

Operating Environment:

Temperature: 25.5 °C
Humidity: 51 % RH
Atmospheric Pressure: 101.2kPa

Test Voltage: AC 120V, 60Hz

EUT Operation:

The test was performed in Transmitting mode, the worst test data (GFSK modulation Low channel) were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

7.4 Conducted Emission Test Result

Remark: only the worst data (GFSK modulation Low channel mode) were reported

Live line:

Neutral line: 80.0 dBu∀ Limit: AVG: 70 60 50 40 30 20 10 0.0 0.150 0.5 30.0 MHz Freq. Reading Factor Result Limit Margin No. Detector Remark (MHz) (dBuV) (dBuV) dBuV (dB) (dB) 29.39 9.94 39.33 65.36 QP 0.1620 -26.03 1 2 AVG 0.1620 16.36 9.94 26.30 55.36 -29.06 3 0.3140 35.84 10.00 45.84 59.86 -14.02 QP 4 0.3140 26.38 10.00 36.38 49.86 -13.48 AVG 10.02 QP 5 0.3260 33.45 43.47 59.55 -16.08 22.60 10.02 6 0.3260 32.62 49.55 -16.93 AVG 7 0.3860 33.40 10.04 43.44 58.15 -14.71 QP 8 0.3860 33.02 10.04 43.06 48.15 -5.09 AVG 9 1.6780 20.12 10.17 30.29 56.00 -25.71 QP

-22.82

-28.47

50.00 -27.69

46.00

60.00

AVG

QP

AVG

13.01

21.16

11.94

1.6780

10.7540

10.7540

10

11

12

10.17

10.37

10.37

23.18

31.53

22.31

Reference No.: WTS18S01101152-1E Page 15 of 58

8 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

LITHIC.									
Fraguenav	Field Stre	ngth	Field Strength Limit at 3m Measurement Distance						
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m					
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80					
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40					
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40					
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾					
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾					
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾					
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾					

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C Humidity: 51.1 % RH

Atmospheric Pressure: 101.2kPa

Test Voltage: AC 120V, 60Hz

EUT Operation:

The test was performed in Transmitting mode, the worst test data (GFSK modulation) were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10:2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS18S01101152-1E Page 18 of 58

8.4 Test Procedure

- 1. The EUT is placed on a turntable, which is above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

8.5 Summary of Test Results

Test Frequency: 9kHz to 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Remark: only the worst data (GFSK modulation mode) were reported

Remark: only the worst data (GFSK modulation mode) were reported									
Receive	Receiver	Receiver	Turn table Angle	RX Antenna Corre		Corrected	orrected Corrected		
Frequency	Frequency Reading	Detector		Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GI	SK Low	Channel				
301.59	42.35	QP	49	1.5	Н	-13.35	29.00	46.00	-17.00
301.59	45.61	QP	302	1.1	V	-13.35	32.26	46.00	-13.74
4804.00	54.33	PK	87	1.8	V	-1.06	53.27	74.00	-20.73
4804.00	42.78	Ave	87	1.8	V	-1.06	41.72	54.00	-12.28
7206.00	55.89	PK	266	1.9	Н	1.33	57.22	74.00	-16.78
7206.00	40.89	Ave	266	1.9	Н	1.33	42.22	54.00	-11.78
2334.00	45.47	PK	322	1.2	V	-13.19	32.28	74.00	-41.72
2334.00	38.60	Ave	322	1.2	V	-13.19	25.41	54.00	-28.59
2376.31	44.77	PK	164	1.8	Н	-13.14	31.63	74.00	-42.37
2376.31	38.73	Ave	164	1.8	Н	-13.14	25.59	54.00	-28.41
2486.44	42.32	PK	8	2.0	V	-13.08	29.24	74.00	-44.76
2486.44	37.21	Ave	8	2.0	V	-13.08	24.13	54.00	-29.87

Receiver	ceiver	Turn	RX Antenna		Corrected	Corrected			
Frequency	ency Detector table	Amplitude	Limit	Margin					
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Middle	e Channe	el			
301.59	42.34	QP	97	1.4	Н	-13.35	28.99	46.00	-17.01
301.59	46.59	QP	59	1.3	V	-13.35	33.24	46.00	-12.76
4882.00	54.77	PK	329	1.4	V	-0.62	54.15	74.00	-19.85
4882.00	44.15	Ave	329	1.4	V	-0.62	43.53	54.00	-10.47
7323.00	54.71	PK	103	1.3	Н	2.21	56.92	74.00	-17.08
7323.00	39.96	Ave	103	1.3	Н	2.21	42.17	54.00	-11.83
2321.86	45.59	PK	135	1.8	V	-13.19	32.40	74.00	-41.60
2321.86	38.67	Ave	135	1.8	V	-13.19	25.48	54.00	-28.52
2372.15	43.47	PK	358	1.4	Н	-13.14	30.33	74.00	-43.67
2372.15	37.82	Ave	358	1.4	Н	-13.14	24.68	54.00	-29.32
2485.03	42.82	PK	158	1.1	V	-13.08	29.74	74.00	-44.26
2485.03	37.75	Ave	158	1.1	V	-13.08	24.67	54.00	-29.33

Frequency Receiver Reading	deceiver	Turn	TOCHING		Corrected	Corrected			
	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK High	Channel	l			
301.59	43.53	QP	180	1.2	Н	-13.35	30.18	46.00	-15.82
301.59	46.19	QP	43	1.7	V	-13.35	32.84	46.00	-13.16
4960.00	55.46	PK	35	1.8	V	-0.24	55.22	74.00	-18.78
4960.00	42.98	Ave	35	1.8	V	-0.24	42.74	54.00	-11.26
7440.00	54.20	PK	185	1.0	Н	2.84	57.04	74.00	-16.96
7440.00	41.12	Ave	185	1.0	Н	2.84	43.96	54.00	-10.04
2343.97	45.17	PK	59	1.1	V	-13.19	31.98	74.00	-42.02
2343.97	37.77	Ave	59	1.1	V	-13.19	24.58	54.00	-29.42
2367.52	44.54	PK	214	1.3	Н	-13.14	31.40	74.00	-42.60
2367.52	37.45	Ave	214	1.3	Н	-13.14	24.31	54.00	-29.69
2498.78	44.32	PK	323	1.8	V	-13.08	31.24	74.00	-42.76
2498.78	38.89	Ave	323	1.8	V	-13.08	25.81	54.00	-28.19

Test Frequency: 18GHz to 25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS18S01101152-1E Page 22 of 58

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see

§15.205(c)).

Test Mode: Transmitting and Hopping

9.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

9.2 Test Setup

9.3 Test Result

Test plots

Reference No.: WTS18S01101152-1E Page 30 of 58

10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Mode: Test in fixing operating frequency at low, Middle, high

channel.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

10.2 Test Setup

10.3 Test Result

Modulation	Test Channel	20 dB Bandwidth (MHz)	99% Bandwidth (MHz)
	Low	1.018	0.880
GFSK	Middle	1.018	0.898
	High	1.018	0.904
	Low	1.311	1.192
л /4DQPSK	Middle	1.311	1.198
	High	1.311	1.204
	Low	1.293	1.204
8DPSK	Middle	1.293	1.210
	High	1.293	1.222

Reference No.: WTS18S01101152-1E Page 36 of 58

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

11.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Setup

11.3 Test Result

	Doto	Pea			
Test Mode	Data Rate	CH00	CH39	CH78	Limit (dBm)
GFSK	1Mbps	2.65	3.36	1.29	20.97
π /4DQPSK	2Mbps	2.27	2.97	0.85	20.97
8DPSK	3Mbps	2.33	3.11	0.95	20.97

Test plots

Modulation: GFSK

Reference No.: WTS18S01101152-1E Page 42 of 58

12 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz , Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Setup

12.3 Test Result

Modulation	Test Channel	Separation (MHz)	Result	
	Low	Low 1.000		
GFSK	Middle 1.000		PASS	
	High 1.000		PASS	
π /4DQPSK	Low	Low 1.000		
	Middle	1.000	PASS	
	High	1.000	PASS	
8DPSK	Low 1.00		PASS	
	Middle 1.000		PASS	
	High	1.000	PASS	

Test plots Modulation: GFSK

Reference No.: WTS18S01101152-1E Page 48 of 58

13 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 300 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

13.2 Test Setup

13.3 Test Result

Test Plots: 79 Channels in total

Reference No.: WTS18S01101152-1E Page 51 of 58

14 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Setup

14.3 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Reference No.: WTS18S01101152-1E Page 52 of 58

Data Packet	Dwell Time(s)	
DH5	1600/79/6*0.4*79*(MkrDelta)/1000	
DH3	1600/79/4*0.4*79*(MkrDelta)/1000	
DH1	1600/79/2*0.4*79*(MkrDelta)/1000	

Remark: Mkr Delta is once pulse time. Only the worst data(DH5) were show as follow.

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	2.872	0.306	0.4
		middle	2.872	0.306	0.4
		High	2.872	0.306	0.4
л /4DQPSK	DH5	Low	2.872	0.306	0.4
		middle	2.872	0.306	0.4
		High	2.872	0.306	0.4
8DPSK	DH5	Low	2.872	0.306	0.4
		middle	2.872	0.306	0.4
		High	2.872	0.306	0.4

Modulation: GFSK Data Packet:

-70 dBm -80 dBm

CF 2.441 GHz

Data Packet:

Data Packet: DH5,High channel

400.0 μs/

π /4DQPSK

Data Packet:

DH5, Lower channel

Data Packet: DH5, Middle channel

Data Packet: DH5, High channel

8DPSK
Data Packet:
DH5, Lower channel

Data Packet: DH5, Middle channel

Data Packet: DH5, High channel

15 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one Internal Integral Antenna, the gain is 0dBi. meets the requirements of FCC 15.203.

Reference No.: WTS18S01101152-1E Page 58 of 58

16 FCC ID: 2AA3H-ESB2018 RF Exposure Report

Note: Please refer to RF Exposure report: WTS18S01101152-2E.

17 Photographs-Model ESB2018 Test Setup

Note: Please refer to Photos: WTS18S01101152-3E.

18 Photographs-Constructional Details

18.1 Model ESB2018-External Photos

Note: Please refer to Photos: WTS18S01101152-3E.

18.2 Model ESB2018-Internal Photos

Note: Please refer to Photos: WTS18S01101152-3E.

====End of Report=====