EE240: Power Engineering LAB Inverters

Instructor

Prof. B. G. Fernandes

19/3/2021, Friday

Recap

For star connection:

$$I_{L(Y)} = I_{ph} = \frac{V_{ph}}{Z_{ph}} = \frac{V_L}{\sqrt{3}Z_{ph}}$$

$$T_e \propto V_{ph}^2 \qquad T_{e(Y)} \propto \left(\frac{V_L}{\sqrt{3}}\right)^2 = \frac{V_L^2}{3}$$

For delta connection:

$$I_{ph} = \frac{V_{ph}}{Z_{ph}} = \frac{V_L}{Z_{ph}}$$

$$I_{ph} = \frac{V_{ph}}{Z_{ph}} = \frac{V_L}{Z_{ph}}$$
$$I_{L(\Delta)} = \sqrt{3}I_{ph} = \frac{\sqrt{3}V_L}{Z_{ph}}$$

$$T_{e(\Delta)} \propto V_{ph}^2 \quad \Rightarrow \quad T_{e(\Delta)} \propto V_L^2$$

$$\therefore \frac{T_{e(Y)}}{T_{e(\Delta)}} = \frac{1}{3} \quad and \quad \frac{I_{L(Y)}}{I_{L(\Delta)}} = \frac{1}{3}$$

Inverters

<u>DC – AC Converters</u>: Inverters

Why there is a need?

Power is generated $\rightarrow AC$

Voltage induced in the conductor rotating in a magnetic field is <u>AC</u>

$U.P.S. \rightarrow Input is 12V$

Constant 'V' and constant 'F' supply is required.

$3-\varphi$ Induction Motor Stator field is rotating at $N_s = 120 \frac{\Gamma}{D}$

Rotor is stationary($N_r = 0$)

$$N_S - N_r = N_S$$

- \Rightarrow Current in rotor \rightarrow Current in stator
- \Rightarrow Supply current is very high ($\simeq 6 I_{rated}$)

Assume that T_L' is constant.

$$T_L = \text{developed torque} \approx constant = \frac{P_2}{2\pi N_S}$$

- ⇒ Air gap power input is constant
- \Rightarrow Input power is constant \rightarrow almost independent of speed
- \Rightarrow In order to \downarrow the speed, \downarrow the applied voltage (F is constant)

$$T \propto V^2$$

$$N_r$$
 has to $\downarrow \Rightarrow :: 's' \uparrow$

$$P_2$$
 is constant $\Rightarrow sP_2$ has dissipated as heat.

$$\Rightarrow T_e \propto P_2 \propto \frac{I^2 R}{s}$$

$$\therefore I \propto \sqrt{s}$$

- ⇒ Stator core loss ↑
- \Rightarrow Heat \uparrow and $\eta \downarrow$

If
$$T_L \propto N_r^2 \rightarrow$$
 Fan type of load $\propto (1-s)^2$

$$T_e \propto \frac{I^2 R}{s}$$

$$\therefore I = (1 - s)s^{0.5}$$

If the process requires wide variation in speed

- \Rightarrow N_S should be changed especially for T_L = constant (In principle, this may not be required for fan type of loads)
- \Rightarrow Even for fan type of load, it is preferred.
- ⇒ Frequency of stator should be changed.

Relationship between Output Voltage and Frequency

$$T \propto F_{SR}F_r sin \angle (F_{SR} \text{ and } F_r)$$

$$\propto \phi I'_r$$

$$\propto I_m I'_r$$

$$I_m = \frac{E_1}{2\pi f L_m}$$

Equivalent circuit of Induction motor

Generally, R_s and x_{sl} are small

Also at relatively high frequency i.e at 25-50 Hz

$$|E_1| \simeq |V_S| \longrightarrow I_m = \frac{V_S}{2\pi f L_m}$$

Case 1: V_s is constant and $F \downarrow \Rightarrow N_s$ decreases

$$|I_m| \uparrow \Rightarrow \phi \text{ tends to } \uparrow$$

All magnetic circuits operated at the knee point of magnetising curve.

If magnetising AT ↑, core gets saturated.

⇒ Input current becomes peaky and core losses ↑

Case 2: V_S is constant and $F \uparrow \Rightarrow N_S$ increases

$$\Rightarrow I_m = \frac{V_S}{2\pi f L_m} \downarrow \quad \Rightarrow \quad \phi \downarrow$$

$$\Rightarrow$$
 If $V_S = V_{rated}$ and $F \uparrow$ above F_{rated}

$$\Rightarrow N_S$$
 and $\therefore N_r$ also \uparrow above rated

$$\Rightarrow |\phi| \downarrow$$

- \Rightarrow Similar to the field weakening mode of DC motor $(V_0 \text{ constant and } I_r \downarrow)$
- ⇒ Possible mode of operation
- \Rightarrow DC/AC converter should have the feature that $|V_S| = V_{rated}$ and F should be able to increase

Case 3: *Variable voltage and variable frequency* \Rightarrow N_s *can increase* and decrease

$$\Rightarrow I_m = \frac{V_s}{2\pi f L_m}$$
 constant \Rightarrow ϕ is constant (in speed range 0 to N_{rated})

- $\Rightarrow T_{max}$ is constant $: \phi$ is constant
- \Rightarrow fast variation in acceleration can be achieved by stator current control
- $\Rightarrow high \frac{T}{I} ratio$
- \Rightarrow variable volatge and variable frequenct till V_{rated} and constant V and variable frequency above rated

Therefore DC-AC converter should have feature of "Variable voltage and Variable frequency"

The source should have following features:

- (a) Output voltage should vary with frequency
- (b) Voltage magnitude should remain constant for rise in frequency >50 Hz.

Types of Inverters

Voltage Source Converter (VSC): If the input to the inverter is a voltage source

- \Rightarrow Battery or large 'C' (input impedance 'Z' \rightarrow 0)
- \Rightarrow DC-AC \rightarrow Voltage Source Inverter (VSI)
- \Rightarrow 'I' can reverse but not 'V'
- ⇒ Anti –parallel diodes are essential

Current Source Inverter (CSI):

- \Rightarrow 'V' can reverse but not 'I'
- ⇒ Input L is very high, hence no possibility of shoot through fault.
- ⇒ Circuit is rugged and reliable
- ⇒ Device having anti-parallel diode can not be used.

Single Phase Voltage Source Inverter

Circuit configuration of V.S.I.:

Basic Block : Half bridge

Since 'i' can reverse, switches should be able to carry bi-directional 'I'

⇒ Connect a diode in anti-parallel fashion

In V.S.I.:

Switching signal for $S_1 \& S_2$ (same leg) are always complimentary (Ideal condition).

Case 1: R-L load

For
$$\frac{T}{2}$$
 duration, $V_{AB} = \frac{V_{DC}}{2}$

$$\frac{S_1 \text{ ON:}}{\text{For } \frac{T}{2} \text{ duration, } V_{AB} = \frac{V_{DC}}{2}$$

$$\text{Load} \Rightarrow \text{R-L} \qquad i = \frac{V}{R} \left(1 - e^{-\frac{t}{T}} \right)$$

S_2 ON and S_1 OFF:

For
$$V_{AB} = -\frac{V_{DC}}{2}$$
 'i' will decay and become negative.

Observations:

Time for which S_1/S_2 is ON will determine the frequency of ' V_0 '.

$$\Rightarrow \text{If } \frac{T}{2} = 10ms, \text{ F} = 50\text{Hz}$$
$$= 100\text{ms}, \text{ F} = 5\text{Hz}$$

At steady state:

P-Q: V applied to the load = +ve, i_L is -ve (I flowing from B to A)

 \Rightarrow ' D_1 ' is carrying 'I'

Q-R: 'V' and 'I' are +ve

 \Rightarrow ' S_1 ' is carrying 'I'

R-S: 'V' is –ve and 'i' is +ve

 \Rightarrow ' D_2 ' is carrying 'I'

S-T: 'V' and 'I' are –ve \Rightarrow 'S₂' is carrying 'I'

• If load is not purely resistive, switch should have a diode across it.

Dead Time:

To avoid shoot through across DC bus.

$$\Rightarrow$$
 Input 'V' = V_{DC}

Output
$$V = \frac{V_{DC}}{2}$$

EE240: Power Engineering LAB

 \Rightarrow Has 3rd, 5th, 7th ... all odd harmonics. THD $\approx 48\%$

Case 2: Load = L

$$\gamma$$
 for D = γ for $S = \frac{\pi}{2}$ radians
Average power = 0
Input power = 0 (neglect loss)

- \Rightarrow replace battery by 'C'
- ⇒ VSI can supply reactive power
- \Rightarrow active input = inverter losses

Case 2: Load = R-L-C

- \Rightarrow Series R-L-C with $w < w_r, X_c > X_L$
- \Rightarrow P.F. is leading
- $\Rightarrow i_l$ is sinusoidal
- ⇒ 'i' through the device has become zero much before it is turned
- ⇒ Device is turned off of its own
- ⇒ Reason: Load 'I' is leading
- ⇒ Load commutation

If all the switches are SCR's & Load is R-L

Input to DC: SCR cannot be turned OFF through gate

EE240: Power Engineering LAB

$$i_{device} < i_{holding}$$

Reverse voltage should be applied to turn it OFF

- ⇒ Separate L&C
- ⇒ Forcibly turned OFF
- ⇒ Forced commutation
- ⇒ Bulky and noisy
- ⇒ Inverter grade SCR's are required

If P.F. is leading:

'i' through the device = 0 & flows through the diode of its complimentary switch before the voltage is reversed.

 $V_{DC} -$

- ⇒ SCR has turned OFF
- ⇒ No external L-C circuit is required.
- ⇒ Inverter using SCR's feeding a leading P.F. load is quite attractive.
- ⇒ Inverter feeding over-excited synchronous motor
- ⇒ Large power
- ⇒ Load commutated inverter fed synchronous motor.

Limitations of Half Bridge Inverter:

Input =
$$V_{DC}$$

Output = $\frac{V_{DC}}{2}$

⇒ One device is conducting at a time

Instead use a full bridge.

- \Rightarrow 2 devices are conducting at a time.
- ⇒ Centre point of DC link is not required.

 D_{μ}

 $D_2 \Delta$

Three Phase Inverters

Required output : 3φ AC

Phase displacement between S_1 & $S_3 = 120^\circ$

$$S_1 \text{ ON}: V_{AO} = \frac{V_{DC}}{2}$$

$$S_1 \text{ OFF} : V_{AO} = -\frac{V_{DC}}{2}$$

$$V_{AB} = V_{AO} - V_{BO}$$

From 0 to
$$\frac{2\pi}{3}$$

$$V_{AB} = V_{AO} - V_{BO}$$
From 0 to $\frac{2\pi}{3}$

$$V_{AO} = \frac{V_{DC}}{2} \qquad V_{BO} = -\frac{V_{DC}}{2} \qquad \therefore V_{AB} = V_{DC}$$

$$: V_{AB} = V_{DC}$$

From
$$\frac{2\pi}{3}$$
 to π

$$V_{AO} = V_{BO} = \frac{V_{DC}}{2}$$

$$\dot{V}_{AO} = 0$$

Potential of A = Potential of B

⇒ Either +ve DC bus or -ve DC bus

$$V_{CA}$$
: $0 - \frac{\pi}{3} = 0$

$$\frac{\pi}{3} - \pi = -V_{DC}$$

<u>Δ Connected Load</u>

$$i_{AB} = \frac{V_{AB}}{Z}$$

$$i_A = i_{AB} - i_{CA}$$

Observations:

There are 6 steps/cycle in load current

- ⇒ Six step inverter
- $\Rightarrow V_{AO}, V_{BO}, V_{CO} \rightarrow \text{pole voltage}$

$$V_{AB}$$
, V_{BC} , V_{CA} \rightarrow predominant harmonic is 5^{th} , 7^{th} , ...

$$=(6N \pm 1)$$

R.M.S. of L-L is
$$\sqrt{\frac{2}{3}} V_{DC} = 0.816 V_{DC}$$
 Fundamental = $\frac{\sqrt{6}}{\pi} V_{DC} = 0.78 V_{DC}$

- \Rightarrow Y Connected Load
- \Rightarrow 180° mode of conduction (square wave operation)
- \Rightarrow VSI \rightarrow switching signals for the leg of the inverter are complimentary
- \Rightarrow If status of S_A , S_B , S_C are known, the status of the other switches will also be known.

$$\Rightarrow \{0,0,0\} \longrightarrow S_A, S_B, S_C \text{ are OFF}$$

- → Points A,B and C are connected to –ve DC bus
- \rightarrow I_L is freewheeling through –ve DC bus

$$\Rightarrow V_{AB} = V_{BC} = V_{CA} = 0$$

- \Rightarrow True for $\{1,1,1\}$
- ⇒ known as "0 Voltage Vectors"

$$S_A \rightarrow 1, S_B \rightarrow 0, S_C \rightarrow 0$$

$$\therefore V_{AN} = \frac{2}{3}V_{DC}$$

$$\therefore V_{AN} = \frac{2}{3} V_{DC} \qquad V_{BN} = V_{CN} = -\frac{1}{3} V_{DC}$$

$$S_A \rightarrow 0, S_B \rightarrow 1, S_C \rightarrow 0$$

$$\therefore V_{BN} = \frac{2}{3}V_{DC}$$

$$\therefore V_{BN} = \frac{2}{3}V_{DC} \qquad V_{AN} = V_{CN} = -\frac{1}{3}V_{DC}$$

$$S_A \rightarrow 1, S_B \rightarrow 1, S_C \rightarrow 0$$

$$\therefore V_{CN} = -\frac{2}{3}V_{DC}$$

$$\therefore V_{CN} = -\frac{2}{3}V_{DC} \qquad V_{BN} = V_{AN} = \frac{1}{3}V_{DC}$$

$$0 - \frac{\pi}{3} \colon S_A = 1, S_C = 1, S_B = 0$$

$$\therefore V_{AN} = \frac{1}{3}V_{DC}$$

$$\frac{\pi}{3} - \frac{2\pi}{3} : S_A = 1, S_C = 0, S_B = 0$$

$$\therefore V_{AN} = \frac{2}{3}V_{DC}$$

$$\frac{2\pi}{3} - \pi : S_A = 1, S_C = 0, S_B = 1$$

$$\therefore V_{AN} = \frac{1}{3}V_{DC}$$

$$\Rightarrow V_{AN} \rightarrow 6 steps/cycle$$

 \rightarrow 6 step inverter

DC-AC Conversion: Varying the Voltage

- Frequency variation can be obtained by changing the value of T, the time period
- How to vary the voltage value?
- A straight forward approach: Vary the input DC supply of the inverter (DC-AC Convertor) using a DC-DC converter
- In this method, the efficiency of the system is $\eta_{dc-dc} \times \eta_{dc-ac}$
- Also, the device count is high \rightarrow low reliability
- Here, the switches are allowed to conduct for 180° (50% of *T*)

- Instead, keep the DC input to the inverter fixed and vary the duty of the inverter switches
- This scheme is know as Pulse Width Modulation (PWM)

Sine Pulse Width Modulation: Switch Gate Pulse Generation

- A sinusoidal voltage (50 Hz) is compared with a triangular wave (High frequency)
- The obtained output is given as gate pulses to the corresponding switch

Sine Pulse Width Modulation

VSI feeding an R - L load, R = 10 ohm, L = 50 mH, $f_s = 1050$ Hz

→ It is possible to obtain sinusoidal current waveform

Sine Pulse Width Modulation: Variation of Load current with reference sine

Line-Line voltage & line current waveform of PWM inverted fed IM at 15Hz

Line-Line voltage & line current waveform of PWM inverted fed IM at 40 Hz

Line-Line voltage & line current waveform of PWM inverted fed IM at 40 Hz

