Logistic Regression Algorithm: It's basically a binary class classification algorithm.

Pseudocode	Variable Description
for in range(n):	n is the number of epochs
totalError =0	
for each training sample x:	
z = xw + c	x is the matrix of inputs and w is the matrix of weights
h=sigmoid(z)	
error = $-y \log(h) - (1-y) \log(1-h)$	
totalError = totalError + error	
dv = x(h-y)	dv is the change of gradient by partial
	dedrivation
w = w - dv*lr	lr is the learning rate
c = c - (h-y)	
if(i==0):	
print(totalError)	
elif(i+1 % 50 == 0):	
print(totalError)	
totalErrorForCurvePloting.append(totalError)	

Also show the accuracy (%) and error (%) by using testing dataset

Plot the **iteration** vs **training error** (totalError) curve