Odpowiedzi i schematy oceniania

Arkusz 12

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania		
zadania	odpowiedź			
1.	D.	$x = 3 \cdot 3^{40} = 3^{41}$		
2.	A.	$(3 - 2\sqrt{5})^2 = 9 - 2 \cdot 3 \cdot 2\sqrt{5} + 4 \cdot 5 \Rightarrow x = 29 - 12\sqrt{5}$		
3.	В.	$\frac{ x-1 }{3} < 9 \Rightarrow x-1 < 18 \Rightarrow x-1 > -18 \land x-1 < 18 \Rightarrow x > -17 \land x < 19$		
4.	A.	$\log_{\frac{1}{3}} \frac{81}{\sqrt{3}} = x \Leftrightarrow \left(\frac{1}{3}\right)^x = \frac{81}{\sqrt{3}} \Rightarrow 3^{-x} = 3^{\frac{1}{2}} \Rightarrow x = -3\frac{1}{2}$		
5.	C.	Liczba znajdująca się pod znakiem wartości bezwzględnej jest		
		ujemna.		
6.	C.	Nie odejmujemy liczb 0 i 5, zatem muszą one należeć do różnicy		
		zbiorów.		
7.	B.	Stopień iloczynu wielomianów to suma stopni tych wielomianów.		
8.	В.	Skorzystaj z interpretacji geometrycznej wartości bezwzględnej.		
9.	D.	$x^2 - 5x \neq 0 \Rightarrow x(x - 5) \neq 0 \Rightarrow x \neq 0 \land x \neq 5$		
10.	C.	Trójmian nie ma miejsc zerowych, a parabola będąca jego wykresem		
		ma ramiona skierowane do góry.		
11.	C.	$2 = 4(3x - 1) \Rightarrow 2 = 12x - 4 \Rightarrow 6 = 12x \Rightarrow x = \frac{1}{2}$		
12.	C.	$\Delta = 0 \Leftrightarrow 6 + 8c = 0 \Leftrightarrow c = -\frac{3}{4}$		
13.	D.	$-4 = -2\sqrt{3} \cdot \sqrt{3} + b \Rightarrow -4 = -6 + b \Rightarrow b = 2$		
14.	В.	Dla wszystkich liczb rzeczywistych x spełniony jest warunek		
		$ x \ge 0 \Longrightarrow x + 5 > 0.$		
15.	D.	$f(1) = \left(\frac{1}{2}\right)$		
16.	C.	$a = \log 200 \Rightarrow a = \log(2 \cdot 100) \Rightarrow a = \log 2 + \log 100 \Rightarrow a = \log 2 + 2$		

17.	В.	$a_{n-1} = \frac{3(n-1)+1}{2(n-1)+3} \Rightarrow a_{n-1} = \frac{3n-2}{2n+1}$
18.	C.	$a_5 = S_5 - S_4 = 155 - 75 = 80$
19.	В.	$\frac{1}{5} = \frac{a + \frac{1}{6}}{2} \Rightarrow 2 = 5a + \frac{5}{6} \Rightarrow a = \frac{7}{30}$
20.	A.	$W = \sin \alpha \cdot \frac{\cos \alpha}{\sin \alpha} \Rightarrow W = \cos \alpha = \sqrt{1 - \frac{4}{25}} \Rightarrow \cos \alpha = \frac{\sqrt{21}}{5}$
21.	C.	$x^{2} + (y-3)^{2} \le 9 \Rightarrow r = 3 \Rightarrow P = 9\pi$

Zadania otwarte

Numer	Modelowe etapy rozwiązywania zadania	Liczba	
zadania	Włodełowe etapy rozwiązywania zadania	punktów	
22.	Pogrupowanie wyrazów wielomianu:	1	
	$W = x^{2}(2x-7) + 4(2x-7).$		
	Rozłożenie wielomianu na czynniki $W = (x^2 + 4)(2x - 7)$ i	1	
	wyznaczenie pierwiastka wielomianu: $x = \frac{7}{2}$.		
23	Zapisanie lewej strony równania w postaci iloczynowej:	1	
	(x-8)(x+3)=0.		
	Przekształcenie lewej strony równania i podanie	1	
	współczynników: $b = -5 \land c = -24$.		
24.	Wprowadzenie oznaczeń i zastosowanie definicji logarytmu:	1	
	$\log_7 5 = x \Leftrightarrow 7^x = 5,$		
	$\log_{49} 25 = y \Leftrightarrow 49^y = 25$		
	Przekształcenie drugiego równania, skorzystanie z pierwszego i	1	
	uzyskanie tezy zadania: $7^{2y} = 5^2 \Rightarrow 7^{2y} = 7^{2x} \Rightarrow x = y$.		
25.	Zapisanie równania z niewiadomą x (liczba lat nowego	1	
	pracownika): $\frac{15 \cdot 33 + x}{16} = 34$.		

	Rozwiązanie równania: $x = 49$.	1
26.	Rozłożenie na czynniki licznika i mianownika ułamka:	1
	$u = \frac{(x+2)^2}{(x+2)(x-2)}.$	
	Skrócenie ułamka: $u = \frac{x+2}{x-2}$.	1
27.	Zapisanie równania: $\frac{1}{2} \cdot 10 \cdot 24 = \frac{1}{2} \cdot 26h$.	1
	Rozwiązanie równania: $h = \frac{120}{13}$.	1
28.	Wyznaczenie liczebności zbioru zdarzeń elementarnych:	1
	$\stackrel{=}{\Omega} = 10 \cdot 10 \ .$	
	Wyznaczenie liczebności zbioru zdarzeń elementarnych	1
	sprzyjających zdarzeniu $A: \stackrel{=}{A} = 6 \cdot 6 + 4 \cdot 4$ i obliczenie	
	prawdopodobieństwa zdarzenia $A: P(A) = \frac{52}{100}$.	
29.	Wprowadzenie oznaczeń:	1
	x, y – odpowiednio liczba uczniów w klasie i koszt autokaru	
	przypadający na jednego ucznia oraz zapisanie równania: $yx = 1500$.	
	Zapisanie układu równań: $\begin{cases} (x-5)(y+10) = 1500 \\ xy = 1500 \end{cases}$.	1
	Przekształcenie układu do postaci równania	1
	kwadratowego: $x^2 - 5x - 750 = 0$.	
	Rozwiązanie równania: $x_1 = -25, x_2 = 30$.	1
	Wybór rozwiązania i obliczenie drugiej	1
	niewiadomej: $x = 30 \land y = 50$.	
30.	Zapisanie układu równań wynikającego z treści	2 (po 1 punkcie
	zadania: $\begin{cases} \pi r l = 4\pi r^2 \\ 2r + 2l = 30 \end{cases}$	za każde
	2r + 2l = 30	równanie)
	Rozwiązanie układu: $\begin{cases} r = 3 \\ l = 12 \end{cases}$.	1

	Wyznaczenie wysokości stożka: $h = 3\sqrt{15}$.	1
	Obliczenie objętości stożka: $V = 9\pi\sqrt{15}$.	1
31.	Wyznaczenie równania prostej zawierającej odcinek	1
	$AB: y = \frac{1}{3}x - \frac{4}{3}.$	
	Wyznaczenie współrzędnych środka odcinka: $S_{AB} = (1, -1)$.	1
	Wyznaczenie równania prostej zawierającej symetralną odcinka:	2 (w tym 1
	y = -3x + 2.	punkt za
		wyznaczenie
		współczynnika
		kierunkowego
		symetralnej)
	Wyznaczenie równania okręgu: $(x-1)^2 + (y+1)^2 = 40$.	1