Medida de la Presión Atmosférica

Gabriel D'Andrade Furlanetto

February 17, 2022

1 Introducción

1.1 Datos de Laboratorio

Table 1: Temperatura y presión en el laboratorio

$T_0(^{\circ}\mathrm{C})$	$T_f(^{\circ}C)$	$P_0(\text{mmHg})$	$P_f(\text{mmHg})$
18.5 ± 0.5	18.0 ± 0.5	702 ± 1	702 ± 1

1.2 Objetivos

En está practica, queremos estimar la presión atmosférica en el laboratório, utilizando un montaje experimental que se basa, principalmente, en considerar el aire como un gás ideal y hacerlo pasar por procesos isotermos.

1.3 Ecuaciones Fundamentales

En una expansión isoterma de un gás ideal, sabemos que la presión y el volumen del gás son inversamente proporcionales, esto es, si un proceso isotermo nos lleva de (P_1, V_1) a (P_2, V_2) , se verifica que:

$$P_1 V_1 = P_2 V_2 \tag{1}$$

Concretamente, en nuestro experimento, vamos de un estado de (P_a-P_g,V_1) a un estado de (P_a,V_2) , donde P_a es la presión atmosférica, $P_m=\frac{Mg}{A}$ la presión que la masa que ponemos ejerce. Aplicando la ecuación $(\ref{eq:construction})$ y haciendo sencillas manipulaciones algebraicas, tendremos al final que:

$$\frac{Mg}{A}\frac{V_1}{V_1 - V_2} \tag{2}$$

2 Procedimiento Experimental

2.1 Datos Experimentales

Haciendo las mediciones, obtenemos los siguientes valores:

- 2.2 Cálculo de Errores
- 3 Resultados
- 4 Conclusiones
- 4.1 Observaciones y sugerencias
- 4.2 Measurements
- 5 Results
- 6 Final Discussion