Universidade Federal Fluminense Instituto de Matemática e Estatística

Prova 1 - GAN140 - Álgebra Linear - Turmas A1 e M1 - 2024.01 Prof^a Cláudia Ossanai e Prof^a Míriam Abdon Todos os cálculos devem ser apresentados, fazem parte da avaliação.

24/04/2024

Nome:	Nota:

1. Seja o sistema de equações lineares abaixo:

$$\begin{cases} 2 x_1 + x_2 + 3 x_3 - x_4 = 2 \\ 3 x_1 + 2 x_2 + 4 x_3 - 2 x_4 = 2 \\ 3 x_1 - 3 x_2 + 9 x_3 + x_4 = 6 \end{cases}$$

- (a) Resolva o sistema utilizando o **método de Gauss Jordan** (1,5 pontos);
- (b) Obtenha uma solução Particular para o sistema (0,5 ponto);
- (c) Determine a solução do **sistema homogêneo associado** (0,5 ponto).
- 2. Calcule a inversa de $A = \begin{bmatrix} 2 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 4 \end{bmatrix}$ utilizando **operações elementares** (1,5 ponto).
- 3. Verifique se os conjuntos S e U são Subespaços Vetoriais de \mathbb{R}^2 , considerando soma de vetores e multiplicação por escalar usuais:
 - (a) $S = \{(x, y) \in \mathbb{R}^2 \mid y = |x|\};$
 - (b) $U = \{(x, y) \in \mathbb{R}^2 \mid 2x + y = 0\}.$
 - e **justifique** suas respostas (1,0 ponto cada item).
- 4. Seja $V=\mathbb{R}^4$, com as operações de adição de vetores e multiplicação por escalar usuais, e o conjunto A de V abaixo:

$$A = \{(3, 5, 6, 1), (2, 3, 4, 0), (1, 3, 2, 3)\}.$$

Obter **explicitamente** o subespaço S gerado por A, S = ger A, uma base para S e sua dimensão $dim\ S\ (1,5\ {\rm ponto}).$

5. Seja a base $B = \{u, v, w\}$ do subespaço V e os vetores:

$$a_1 = u + v + w$$
 $a_2 = 2u + v$ $a_3 = u + 2v + w$

- (a) O conjunto $A = \{a_1, a_2, a_3\}$ é também base de V? **Justifique** sua resposta (1,0 ponto);
- (b) Se $s_B = (1, 2, 3)$ é o vetor s na base B, escreva s como combinação linear dos vetores de A (1,0 ponto);
- (c) Determine a matriz mudança de base a matriz mudança de base de $\bf A$ para $\bf B$, ou seja, $[\bf I]_B^A$ (0,5 ponto).