3 Dudas

Exercício (Para revisión, creo que está bien) Sea \mathbb{V} un espacio vectorial. Suponga que $\mathbb{R}, \mathbb{R}' : \mathbb{V}^4 \to \mathbb{R}$ son dos tensores tipo curvatura. Si $\mathbb{K} = \mathbb{K}' \implies \mathbb{R} = \mathbb{R}'$. Sugerencia: polarizar.

Solution. Polarizamos así:

$$4R(X,Y,Z,W) = R(X + Z,Y + W,X + Z,Y + W) - R(X - Z,Y - W,X - Z,Y - W)$$
(1)

donde el truco es simplemente que $\mathbb{V}^4 \cong \mathbb{V}^2 \times \mathbb{V}^2$. Entonces la polarización usual para formas bilineales simétricas arbitrarias $T: \mathbb{W} \times \mathbb{W} \to \mathbb{R}$, que nos dice que

$$4T(X,Y) = T(X + Y, X + Y) - T(X - Y, X - Y),$$

aplica para R con $\mathbb{W}=\mathbb{V}^2$. Para llegar de eq. (1) a la curvatura escalar simplemente aplicamos la antisimetría en las primeras dos o las últimas dos entradas. De ahí podremos sustituir K por K' y recuperar R'.

Exercício Si la curvatura seccional de (M, g) es idénticamente cero, la exponencial $\exp_p : B_{\varepsilon}(0) \to B_{\varepsilon}(p)$ es una isometría.

Ideas

• (Idea 1.) Considerar dos vectores tangentes $u,v\in T_pM$ a algún punto de M,y la superficie Σ generada por ellos mediante la exponencial. Es decir, definimos $V:= span\{u,v\}$ y $\Sigma:= exp_p(V\cap B_\epsilon(0))$ donde $B_\epsilon(0)$ es el dominio de definición de la exponencial en p. Trabajar en una superficie nos permite usar el lema de simetría para curvatura, i.e. que

$$\nabla_{\partial_s} \nabla_{\partial_t} X - \nabla_{\partial_t} \nabla_{\partial_s} X = R(\partial_s, \partial_t) X$$

donde se trata de la conexión inducida por la exponencial y el tensor de curvatura inducido por la exponencial; s y t son los parámetros de la exponencial restringida a $V \cap B_{\epsilon}(0)$ y X es un campo ao longo de exp $_p$.

Por el ejercicio anterior sabemos el tensor de curvatura R de M es idénticamente cero. (Porque también la curvatura seccional del tensor R':= 0 es cero.) Como $R_{\nabla^{\exp}} = \exp_{\mathfrak{p}}^* R = 0$, tenemos que

$$\nabla_{\partial_s} \nabla_{\partial_t} X = \nabla_{\partial_t} \nabla_{\partial_s} X$$

¿Esta idea tiene futuro?

• (Idea 2.) Sabemos que el pullback de la curvatura de M coincide con la curvatura de T_pM, que también es cero por ser un espacio euclidiano. Es decir: tenemos dos variedades con el mismo tensor de curvatura, ¿podemos concluir desde aquí que sus métricas también coinciden? (Cf. pregunta de Arthur: curvaturas iguales ==> métricas iguales?).

• (Idea 3.) Consultando notas de monitoria, la idea correcta es demostrar que

$$|d_{\nu} \exp_{n}(w)| = |w|, \quad \nu \in T_{p}M, \quad w \in T_{\nu}(T_{p}M)$$

Para eso consideramos la variación por geodésicas

$$f(s,t) := \exp_p \left(t(v + sw) \right)$$

cuyo campo variacional J es de Jacobi. Como R \equiv 0, J" = 0. De acuerdo a mis notas: esto significa que

"coordenada a coordenada tenemos líneas."

Pero no entiendo esto qué quiere decir. El siguiente paso es aplicar el lema de Gauss.

Exercício Provar que são equivalentes:

- (a) M é localmente isométrica a \mathbb{R}^n .
- (b) A traslação ao longo de curvas é localmente independente das curvas.
- (c) K = 0.

Solução. (c) \Longrightarrow (a) Ejercicio anterior.

(a) \Longrightarrow (b) (Para revisión.) Considere un vector $X(p) \in T_pM$ y su traslación paralela X(q) a lo largo de la curva γ . Análogamente sea $\tilde{X}(q)$ la traslación paralela de X(p) a lo largo de σ . Considere una isometría local $\phi: U \subset M \to V \subset \mathbb{R}^n$.

Considere el transporte paralelo de $\phi_*X(p)$ a lo largo de $\phi\circ\gamma$, y compare con $\phi_*X(q)$. Afirmo que el siguiente diagrama conmuta

$$\begin{array}{ccc} T_pM \stackrel{P}{\longrightarrow} T_qM \\ \downarrow^{\phi_*} & \downarrow^{\phi_*} \\ \mathbb{R}^n \stackrel{P}{\longrightarrow} \mathbb{R}^n \end{array}$$

porque:

- El transporte paralelo de X(p) a lo largo de γ es el único campo $X \in \mathfrak{X}_{\gamma}$ satisfaciendo que X(0) = X(p) y $\nabla^{\gamma}_{\frac{d}{dt}}X(t) = 0$.
- El transporte paralelo de $\phi_*X(p)$ a lo largo de $\phi\circ\gamma$ es el único campo $\tilde{X}\in\mathfrak{X}_{\phi\circ\gamma}$ satisfaciendo que $\tilde{X}(0)=\phi_*X(p)$ y $\nabla_{\frac{d}{dt}}^{\phi\circ\gamma}\tilde{X}(t)=0$.
- Entonces $\tilde{X}(t) = \phi_* X(t)$ porque $\phi_* X(t)$ también es un campo paralelo a lo largo de $\phi \circ \gamma$:

$$0 = \phi_* \left(\nabla^{\gamma}_{\frac{d}{dt}} X(t) \right) = \nabla^{\phi \circ \gamma}_{\frac{d}{dt}} \phi_* X(t)$$

En particular $\phi_*X(q)$ es el transporte paralelo de $\phi_*X(p)$ a lo largo de $\phi \circ \gamma$.

Para concluir note que el transporte paralelo de \mathbb{R}^n no depende de la curva. De hecho, el transporte paralelo de cualquier vector en \mathbb{R}^n es el campo constante. Esto es porque la derivada covariante a lo largo de cualquier curva consiste en derivar el campo entrada a entrada. Que esa derivada se anule significa que las coordenadas del campo deben ser constantes.

Para confirmar que de hecho esa es la derivada covariante en \mathbb{R}^n , recuerde que la derivada covariante de campos vectoriales en \mathbb{R}^n definida como

$$D_{V_p}W = V_pW^i\partial_i$$

es métrica y simétrica (lo comprobé).

(b) \Longrightarrow (c) (Tengo duda.) Éste es el ejercicio 4 del capítulo IV del libro de Manfredo. La sugerencia Manfredo es parecida a la idea de construir una superfície Σ como en la Idea 1 del ejercicio anterior. De acuerdo a la notación de la Idea 1, sabemos que

$$\nabla_{\partial_s} \nabla_{\partial_t} X - \nabla_{\partial_t} \nabla_{\partial_s} X = R(\partial_s, \partial_t) X.$$

Queremos demostrar que el lado izquierdo de la ecuación anterior es cero.

La sugerencia de Manfredo es definir un campo X como la traslación paralela de un vector cualquiera $v \in T_pM$, a lo largo de curvas verticales $t \mapsto (s,t)$; bajo la suposición de que la superficie Σ está parametrizada de tal forma que la recta (s,0) va a dar a un sólo punto de Σ . Me parece que para argumentar que $\nabla_{\partial_\tau} X = 0$ usa el lema 4.1 sobre cómo las geodésicas tangentes a las esferas geodésicas permanecen fuera de las respectivas bolas geodésicas.

No consigo ver exactamente cómo se usa este lema, y me pregunto si hay otra forma más simple de resolver esta pregunta.

Exercício Suponha que M tem curvatura seccional não-positiva, $K \le 0$. Mostre que M é uma variedade sem pontos conjugados, isto é, para todo $p \in M$, o conjunto dos pontos conjugados a p é vazio.

Solução. Suponga que existen dos puntos conjugados p y q. Es decir, existe una geodésica $\gamma:(\mathfrak{a},\mathfrak{b})\to M$ uniendo p y q, y un campo de Jacobi $J\in\mathfrak{X}_{\gamma}^J$ tal que $J(\mathfrak{a})=0$, $J(\mathfrak{b})=0$. De acuerdo a las cuentas hechas en aula, sabemos que

$$||J(t)||^2 = ||w||^2 t^2 - \frac{1}{3}K(w,v)t^4 + O(t^4)$$

donde $v = \gamma'(0)$ y w = J'(0). Evaluando en b y pasando la curvatura seccional (que es negativa) del lado izquierdo, obtenemos que $||w||^2b^2 + O(b^4)$ es un número negativo.

Pregunta: puedo tener problemas con los términos $O(b^4)$? La sugerencia de Manfredo (ex. 5 cap. V) es diferente (también logré seguirla).