Models for areal data

Lecture 19

Dr. Colin Rundel

areal / lattice data

Example - NC SIDS

EDA - Moran's I

If we have observations at n spatial locations $(s_1, ..., s_n)$

$$I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \left(y(s_i) - y\right) \left(y(s_j) - y\right)}{\sum_{i=1}^{n} \left(y(s_i) - y\right)^2}$$

where w is a spatial weights matrix.

Some properties of Moran's I when there is no spatial autocorrelation / dependence:

- E(I) = -1/(n-1)
- $Var(I) = Something ugly but closed form E(I)^2$
- $\lim_{n\to\infty} \frac{I-E(I)}{\sqrt{Var(I)}} \sim (0,1)$

Adjacency Matrix

[11,]

```
1*st_touches(nc[1:12,], sparse=FALSE)
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
                 1
                                    0
                                          0
                                                       0
                                                             0
 [1,]
           0
                       0
                             0
                                                0
                                                                    0
                                                                            0
                                                                                    0
 [2,]
                 0
                             0
                                    0
                                          0
                                                0
                                                       0
                                                             0
                                                                    0
                                                                                    0
[3,]
                       0
                             0
                                    0
                                          0
                                                             0
                                                                                    0
 [4,]
                 0
                       0
                             0
                                    0
                                          0
                                                       0
                                                             0
                                                                    0
                                                                                    0
[5,]
                 0
                       0
                             0
                                    0
                                          1
                                                0
                                                       0
                                                                    0
                                                                                    0
[6,]
                 0
                       0
                             0
                                          0
                                                             0
                                                                                    0
                                          0
                                                0
 [7,]
                 0
                       0
                                    0
                                                             0
                                                                                    0
                 0
                             0
                                          1
[8,]
           0
                       0
                                    0
                                                       0
                                                             0
                                                                    0
                                                                                    0
[9,]
           0
                 0
                       0
                             0
                                          0
                                                0
                                                       0
                                                             0
                                                                    0
                                                                            0
                                                                                    0
                                          0
[10,]
                 0
                                    0
                                                0
                                                       0
                                                             0
```

Sta 344 - Fall 2022

Normalized Adjacency Matrix

```
normalize weights = function(w) {
2
     w = 1*w
     diag(w) = 0
4
     rs = rowSums(w)
     rs[rs == 0] = 1
5
     w/rs
7
8
   normalize_weights( st_touches(nc[1:12,], sparse=FALSE) )
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,]
      0.0
            1.0
                 0.0
                       0.0
                            0.0
                                  0.0
                                       0.0
                                             0.0
                                                   0.0
                                                          0.0
                                                                0.0
                                                                       0.0
      0.5
            0.0
                 0.5
                       0.0
                             0.0
                                  0.0
                                        0.0
                                             0.0
                                                   0.0
                                                                0.0
                                                                       0.0
[2,]
                                                          0.0
      0.0
            0.5
                 0.0
                       0.0
                             0.0
                                  0.0
                                        0.0
                                                   0.0
                                                          0.5
                                                                0.0
                                                                       0.0
[3,]
                                             0.0
      0.0
                 0.0
                             0.0
                                  0.0
                                        1.0
                                                                0.0
                                                                       0.0
[4,]
            0.0
                       0.0
                                             0.0
                                                   0.0
                                                          0.0
      0.0
                 0.0
                             0.0
                                        0.0
                                                   0.5
                                                                0.0
                                                                       0.0
[5,]
            0.0
                       0.0
                                  0.5
                                             0.0
                                                          0.0
[6,]
      0.0
            0.0
                 0.0
                       0.0
                             0.5
                                  0.0
                                        0.0
                                             0.5
                                                   0.0
                                                          0.0
                                                                0.0
                                                                       0.0
[7,]
      0.0
            0.0
                 0.0
                       0.5
                             0.0
                                  0.0
                                        0.0
                                             0.5
                                                   0.0
                                                          0.0
                                                                0.0
                                                                       0.0
[8,]
      0.0
            0.0
                 0.0
                       0.0
                             0.0
                                  9ta 544 0 Pat 202.0
                                                   0.0
                                                          0.0
                                                                0.0
                                                                       0.0
```

NC SIDS & Moran's I

Lets start by using a normalized adjacency matrix for w (shared county borders).

```
1 morans_I = function(y, w) {
2     w = normalize_weights(w)
3     n = length(y)
4     num = sum(w * (y-mean(y)) %*% t(y-mean(y)))
5     denom = sum( (y-mean(y))^2 )
6     (n/sum(w)) * (num/denom)
7  }
8
9  w = st_touches(nc, sparse=FALSE)
10 morans_I(y = nc$SID74, w)
```

[1] 0.1477405

```
1 ape::Moran.I(nc$SID74, weight = w) %>% str()
```

```
List of 4
```

\$ observed: num 0.148

\$ expected: num -0.0101

\$ sd : num 0.0627

\$ p.value : num 0.0118

EDA - Geary's C

Like Moran's I, if we have observations at n spatial locations $(s_1, \dots s_n)$

$$C = \frac{n-1}{2\sum_{i=1}^{n}\sum_{j=1}^{n}W_{ij}} \frac{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}\left(y(s_{i})-y(s_{j})\right)^{2}}{\sum_{i=1}^{n}\left(y(s_{i})-y\right)^{2}}$$

where w is a spatial weights matrix.

Some properties of Geary's C:

- 0 < C < 2
 - \blacksquare If $C\approx 1$ then no spatial autocorrelation
 - If C > 1 then negative spatial autocorrelation
 - If C < 1 then positive spatial autocorrelation
- Geary's C is inversely related to Moran's I

NC SIDS & Geary's C

Again using an normalized adjacency matrix for w (shared county borders).

```
1 gearys C = function(y, w) {
     w = normalize weights(w)
 3
    n = length(y)
 4
    y_i = y %*% t(rep(1,n))
    y j = t(y i)
 6
     num = sum(w * (y_i-y_j)^2)
     denom = sum((y - mean(y))^2)
     ((n-1)/(2*sum(w))) * (num/denom)
10 }
11
12 w = 1*st touches(nc, sparse=FALSE)
13
14 gearys C(y = nc\$SID74, w = w)
```

[1] 0.8438767

Spatial Correlogram

```
1 nc_pt = st_centroid(nc)
2 plot(nc_pt[,"SID74"], pch=16)
```


Autoregressive Models

AR Models - Time

Lets just focus on the simplest case, an AR(1) process

$$y_t = \delta + \phi y_{t-1} + w_t$$

where $w_t \sim (0, \sigma_w^2)$ and $|\phi| < 1$, then

$$E(y_t) = \frac{\delta}{1 - \phi}$$

$$Var(y_t) = \frac{\sigma^2}{1 - \phi}$$

$$\rho(h) = \phi^h$$

$$\gamma(h) = \phi^h \frac{\sigma^2}{1 - \phi}$$

AR Models - Time - Joint Distribution

Previously we saw that an AR(1) model can be represented using a multivariate normal distribution

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \sim \begin{pmatrix} 1 \\ \frac{\delta}{1-\phi} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}, \quad \frac{\sigma^2}{1-\phi} \begin{pmatrix} 1 & \phi & \cdots & \phi^{n-1} \\ \phi & 1 & \cdots & \phi^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ \phi^{n-1} & \phi^{n-2} & \cdots & 1 \end{pmatrix} \end{pmatrix}$$

In writing down the likelihood we also saw that an AR(1) is 1st order Markovian,

$$f(y_1, ..., y_n) = f(y_1) f(y_2|y_1) f(y_3|y_2, y_1) \cdots f(y_n|y_{n-1}, y_{n-2}, ..., y_1)$$

= $f(y_1) f(y_2|y_1) f(y_3|y_2) \cdots f(y_n|y_{n-1})$

Sta 344 - Fall 2022 ₁₈

Alternative Definitions for y_t

$$y_t = \delta + \phi y_{t-1} + w_t$$

VS.

$$y_t | y_{t-1} \sim (\delta + \phi y_{t-1}, \sigma^2)$$

In the case of time, both of these definitions result in the same multivariate distribution for y.

AR in Space

Even in the simplest spatial case there is no clear / unique ordering,

$$f(y(s_1), ..., y(s_{10})) = f(y(s_1)) f(y(s_2)|y(s_1)) \cdots f(y(s_{10}|y(s_9), y(s_8), ..., y(s_1))$$

$$= f(y(s_{10})) f(y(s_9)|y(s_{10})) \cdots f(y(s_1|y(s_2), y(s_3), ..., y(s_{10}))$$

$$= ?$$

Instead we need to think about things in terms of their neighbors / neighborhoods. We define $N(s_i)$ to be the set of neighbors of location s_i .

Sta 344 - Fall 2022 ₂₀

Defining the Spatial AR model

Here we will consider a simple average of neighboring observations, just like with the temporal AR model we have two options in terms of defining the autoregressive process,

Simultaneous Autogressve (SAR)

$$y(s) = \delta + \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s') + (0, \sigma^2)$$

Conditional Autoregressive (CAR)

$$y(s)|y(-s) \sim \left(\delta + \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s'), \sigma^2\right)$$

Simultaneous Autogressve (SAR)

Using

$$y(s) = \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s') + (0, \sigma^2)$$

we want to find the distribution of $y = (y(s_1), y(s_2), ..., y(s_n))^t$.

First we can define a weight matrix $oldsymbol{W}$ where

$$\{\boldsymbol{W}\}_{ij} = \left\{ egin{array}{ll} 1/|N(s_i)| & \mbox{if } j \in N(s_i) \\ 0 & \mbox{otherwise} \end{array} \right.$$

then we can write y as follows,

$$y = \phi W y + \epsilon$$

where

$$\epsilon \sim (0, \sigma^2 I)$$

A toy example

Back to SAR

$$y = \phi W y + \epsilon$$

Conditional Autogressve (CAR)

This is a bit trickier, in the case of the temporal AR process we actually went from joint distribution \rightarrow conditional distributions (which we were then able to simplify).

Since we don't have a natural ordering we can't get away with this (at least not easily).

Going the other way, conditional distributions \rightarrow joint distribution is difficult because it is possible to specify conditional distributions that lead to an improper joint distribution.

Brooks' Lemma

For sets of observations x and y where $p(x) > 0 \quad \forall x \in x$ and $p(y) > 0 \quad \forall y \in y$ then

$$\frac{p(y)}{p(x)} = \prod_{i=1}^{n} \frac{p(y_i \mid y_1, \dots, y_{i-1}, x_{i+1}, \dots, x_n)}{p(x_i \mid y_1, \dots, y_{i-1}, x_{i+1}, \dots, x_n)}$$

$$= \prod_{i=1}^{n} \frac{p(y_i \mid x_1, \dots, x_{i-1}, y_{i+1}, \dots, y_n)}{p(x_i \mid x_1, \dots, x_{i-1}, y_{i+1}, \dots, y_n)}$$

A simplified example

Let $y = (y_1, y_2)$ and $x = (x_1, x_2)$ then we can derive Brook's Lemma for this case,

$$\begin{split} p(y_1,y_2) &= p(y_1|y_2)p(y_2) \\ &= p(y_1|y_2)\frac{p(y_2|x_1)}{p(x_1|y_2)}p(x_1) = \frac{p(y_1|y_2)}{p(x_1|y_2)}p(y_2|x_1)p(x_1) \\ &= \frac{p(y_1|y_2)}{p(x_1|y_2)}p(y_2|x_1)p(x_1)\left(\frac{p(x_2|x_1)}{p(x_2|x_1)}\right) \\ &= \frac{p(y_1|y_2)}{p(x_1|y_2)}\frac{p(y_2|x_1)}{p(x_2|x_1)}p(x_1,x_2) \end{split}$$

$$\frac{p(y_1, y_2)}{p(x_1, x_2)} = \frac{p(y_1|y_2)}{p(x_1|y_2)} \frac{p(y_2|x_1)}{p(x_2|x_1)}$$

Utility?

Lets repeat that last example but consider the case where $y = (y_1, y_2)$ but now we let $x = (y_1 = 0, y_2 = 0)$

$$\frac{p(y_1, y_2)}{p(x_1, x_2)} = \frac{p(y_1, y_2)}{p(y_1 = 0, y_2 = 0)}$$

$$p(y_1, y_2) = \frac{p(y_1|y_2)}{p(y_1 = 0|y_2)} \frac{p(y_2|y_1 = 0)}{p(y_2 = 0|y_1 = 0)} p(y_1 = 0, y_2 = 0)$$

$$p(y_1, y_2) \propto \frac{p(y_1|y_2) p(y_2|y_1 = 0)}{p(y_1 = 0|y_2)}$$

$$\propto \frac{p(y_2|y_1) p(y_1|y_2 = 0)}{p(y_2 = 0|y_1)}$$

As applied to a simple CAR

$$y(s_1)|y(s_2) \sim (\phi W_{12} \ y(s_2), \sigma^2)$$

 $y(s_2)|y(s_1)_{\text{Star344}} \cdot (\phi W_{21} \ y(s_1), \sigma^2)$

$$\begin{split} p \Big(y(s_1), y(s_2) \Big) & \propto \frac{p \Big(y(s_1) | y(s_2) \Big) \, p \Big(y(s_2) | y(s_1) = 0 \Big)}{p \Big(y(s_1) = 0 | y(s_2) \Big)} \\ & \propto \frac{exp \Big(-\frac{1}{2\sigma^2} \big(y(s_1) - \varphi \, W_{12} \, y(s_2) \big)^2 \big) \, exp \Big(-\frac{1}{2\sigma^2} \big(y(s_2) - \varphi \, W_{21} \, 0 \big)^2 \big)}{exp \Big(-\frac{1}{2\sigma^2} \big(0 - \varphi W_{12} y(s_2) \big)^2 \big)} \\ & \propto exp \Big(-\frac{1}{2\sigma^2} \Big(\big(y(s_1) - \varphi \, W_{12} \, y(s_2) \big)^2 + y(s_2)^2 - (\varphi W_{21} y(s_2))^2 \Big) \Big) \\ & \propto exp \Big(-\frac{1}{2\sigma^2} \big(y(s_1)^2 - \varphi \, W_{12} \, y(s_1) \, y(s_2) - \varphi \, W_{21} \, y(s_1) \, y(s_2) + y(s_2)^2 \big) \Big) \\ & \propto exp \Big(-\frac{1}{2\sigma^2} \big(y - 0 \big) \left(\begin{array}{cc} 1 & -\varphi W_{12} \\ -\varphi W_{21} & 1 \end{array} \right) \big(y - 0 \big)^t \Big) \end{split}$$

Implications for y

$$\boldsymbol{\mu} = 0$$

$$\boldsymbol{\Sigma}^{-1} = \frac{1}{\sigma^2} \begin{pmatrix} 1 & -\phi W_{12} \\ -\phi W_{21} & 1 \end{pmatrix}$$

$$= \frac{1}{\sigma^2} (\boldsymbol{I} - \phi \boldsymbol{W})$$

$$\boldsymbol{\Sigma} = \sigma^2 (\boldsymbol{I} - \phi \boldsymbol{W})^{-1}$$

we can then conclude that for $y = (y(s_1), y(s_2))^t$,

$$\mathbf{y} \sim \left(\mathbf{0}, \ \sigma^2 (\mathbf{I} - \phi \ \mathbf{W})^{-1}\right)$$

which generalizes for all mean 0 CAR models.

General Proof

Let $y=(y(s_1),\ldots,y(s_n))$ and $\mathbf{0}=(y(s_1)=0,\ldots,y(s_n)=0)$ then by Brook's lemma,

CAR vs SAR

Simultaneous Autogressve (SAR)

$$y(s) = \phi \sum_{s'} W_{s s'} y(s') + \epsilon$$
$$y \sim (0, \sigma^2 ((\mathbf{I} - \phi \mathbf{W})^{-1})((\mathbf{I} - \phi \mathbf{W})^{-1})^t)$$

Conditional Autoregressive (CAR)

$$y(s)|y(-s) \sim \left(\sum_{s'} W_{s s'} y(s'), \sigma^2\right)$$
$$y \sim (0, \sigma^2 (I - \phi W)^{-1})$$

Generalization

- ullet Adopting different weight matrices, W
 - Between SAR and CAR model we move to a generic weight matrix definition (beyond average of nearest neighbors)
 - In time we varied p in the AR(p) model, in space we adjust the weight matrix.
 - In general having a symmetric W is helpful, but not required
- More complex Variance (beyond σ^2 I)
 - \bullet σ^2 can be a vector (differences between areal locations)
 - i.e. since areal data tends to be aggregated adjust variance based on sample size
 - i.e. scale based on the number of neighbors

Some specific generalizations

Generally speaking we will want to work with a scaled / normalized version of the weight matrix,

$$\frac{W_{ij}}{W_{i}}$$

When W is derived from an adjacency matrix, A, we can express this as

$$\boldsymbol{W} = \boldsymbol{D}^{-1} \boldsymbol{A}$$

where $D^{-1} = diag(1/|N(s_i)|)$.

We can also allow σ^2 to vary between locations, we can define this as $\boldsymbol{D}_{\sigma^2} = \mathrm{diag}(\sigma_i^2)$ and most often we use

$$\boldsymbol{D}_{\sigma^2}^{-1} = \operatorname{diag}\left(\frac{\sigma^2}{\sqrt{2}}\right) = \sigma^2 \boldsymbol{D}^{-1}.$$

Revised SAR Model

Formula Model

$$y(s_i) = X_i \cdot \beta + \phi \sum_{j=1}^{n} D_{jj}^{-1} A_{ij} \left(y(s_j) - X_j \cdot \beta \right) + \epsilon_i$$

$$\epsilon \sim (\mathbf{0}, \mathbf{D}_{\sigma^2}^{-1}) = (\mathbf{0}, \sigma^2 \mathbf{D}^{-1})$$

Joint Model

$$y = X\beta + \phi D^{-1}A \left(y - X\beta \right) + \epsilon$$

$$\mathbf{y} \sim \left(\mathbf{X}\boldsymbol{\beta}, (\mathbf{I} - \phi \mathbf{D}^{-1} \mathbf{A})^{-1} \sigma^2 \mathbf{D}^{-1} \left((\mathbf{I} - \phi \mathbf{D}^{-1} \mathbf{A})^{-1} \right)^{\mathsf{t}} \right)$$

Revised CAR Model

Conditional Model

$$y(s_i)|y_{-s_i} \sim \left(X_{i\cdot}\beta + \phi \sum_{j=1}^{n} \frac{W_{ij}}{D_{ii}} (y(s_j) - X_{j\cdot}\beta), \sigma^2 D_{ii}^{-1}\right)$$

Joint Model

$$\mathbf{y} \sim (\mathbf{X}\boldsymbol{\beta}, \ \Sigma_{\text{CAR}})$$

$$\Sigma_{\text{CAR}} = (\mathbf{D}_{\sigma} (\mathbf{I} - \phi \mathbf{D}^{-1} \mathbf{A}))^{-1}$$

$$= (1/\sigma^{2} \mathbf{D} (\mathbf{I} - \phi \mathbf{D}^{-1} \mathbf{A}))^{-1}$$

$$= (1/\sigma^{2} (\mathbf{D} - \phi \mathbf{A}))^{-1}$$

$$= \sigma^{2} (\mathbf{D} - \phi \mathbf{A})^{-1}$$

Toy CAR Example

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\boldsymbol{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Sta 344 - Fall 2022

39

When does Σ exist?

```
check sigma = function(phi) {
      Sigma inv = matrix(c(1,-phi,0,-phi,2,-phi,0,-phi,1), ncol=3, byrow=TRUE)
      solve(Sigma inv)
 3
 4 }
 5
    check sigma(phi=0)
    [,1] [,2] [,3]
[1,] 1 0.0
[2,] 0 0.5
[3,] 0 0.0
 1 check sigma(phi=0.5)
         [,1]
                [,2]
                            [,3]
[1,] 1.1666667 0.3333333 0.1666667
[2,] 0.3333333 0.6666667 0.3333333
[3,] 0.1666667 0.3333333 1.1666667
 1 check sigma(phi=-0.6)
        [,1]
              [,2]
                          [,3]
[1,] 1.28125 -0.46875 0.28125
[2,] -0.46875 0.78125 -0.46875
[3,] 0.28125 -0.46875 1.28125
```

```
1 check sigma(phi=1)
Error in solve.default(Sigma inv): Lapack routine dgesv: system is exactly singular: U[3,3] = 0
  1 check sigma(phi=-1)
Error in solve.default(Sigma inv): Lapack routine dgesv: system is exactly singular: U[3,3] = 0
  1 check sigma(phi=1.2)
           [,1]
                    [,2]
                                [,3]
[1,] -0.6363636 -1.363636 -1.6363636
[2,] -1.3636364 -1.136364 -1.3636364
[3,] -1.6363636 -1.363636 -0.6363636
  1 check sigma(phi=-1.2)
           [,1]
                    [,2]
                                [,3]
[1,] -0.6363636 1.363636 -1.6363636
[2,] 1.3636364 -1.136364 1.3636364
[3,] -1.6363636 1.363636 -0.6363636
```

When is Σ positive semidefinite?

```
check sigma pd = function(phi) {
      Sigma inv = matrix(c(1,-phi,0,-phi,2,-phi,0,-phi,1), ncol=3, byrow=TRUE)
      chol(solve(Sigma inv))
 3
 4 }
 5
    check sigma pd(phi=0)
         [,2] [,3]
    [,1]
[1,] 1 0.0000000
[2,] 0 0.7071068
[3,] 0 0.0000000
                     1
 1 check sigma pd(phi=0.5)
        [,1]
                [,2]
                           [,3]
[1,] 1.080123 0.3086067 0.1543033
[2,] 0.000000 0.7559289 0.3779645
[3,] 0.000000 0.0000000 1.0000000
 1 check sigma pd(phi=-0.6)
        [,1]
              [,2]
                            [,3]
[1,] 1.131923 -0.4141182 0.2484709
[2,] 0.000000 0.7808688 -0.4685213
[3,] 0.000000 0.0000000 1.0000000
```

```
1 check_sigma_pd(phi=1)
Error in solve.default(Sigma_inv): Lapack routine dgesv: system is exactly singular: U[3,3] = 0
1 check_sigma_pd(phi=-1)
Error in solve.default(Sigma_inv): Lapack routine dgesv: system is exactly singular: U[3,3] = 0
1 check_sigma_pd(phi=1.2)
Error in chol.default(solve(Sigma_inv)): the leading minor of order 1 is not positive definite
1 check_sigma_pd(phi=-1.2)
```

Error in chol.default(solve(Sigma inv)): the leading minor of order 1 is not positive definite

Conclusions

Generally speaking just like the AR(1) model for time series we require that $|\phi| < 1$ for the CAR model to be proper.

These results for ϕ also apply in the context where σ_{i}^{2} is constant across locations (i.e. $\mathbf{\Sigma} = \left(\sigma^{2}\left(\mathbf{I} - \phi \mathbf{D}^{-1} \mathbf{A}\right)\right)^{-1}$)

As a side note, the special case where $\phi=1$ is known as an intrinsic autoregressive (IAR) model and they are popular as an *improper* prior for spatial random effects. An additional sum constraint is necessary for identifiability $(\sum_{i=1}^{n} y(s_i) = 0)$.