

# INTRO TO DATA SCIENCE SESSION 13: NAIVE BAYESIAN CLASSIFICATION

Rob Hall DAT13 SF // April 20, 2015

# I. PROBABILITY & BAYES' THEOREM II. NAÏVE BAYESIAN CLASSIFICATION

**EXERCISES:** 

III. LAB: NAIVE BAYES CLASSIFICATION IN PYTHON

# I. PROBABILITY AND BAYES' THEOREM



Let's pretend you are flipping a coin. This diagram represents the "universe" of all possible outcomes, also known as events. This universe is known as the sample space.

Q: What are the mutually exclusive events that make up the sample space for a coin flip?

A: Heads and tails



Let's now pretend that our universe involves a research study on humans. Event "A" is people in that study who have cancer.

Q: If our study has 100 people and "A" has 25 people, what is the **probability** of A?

A: P(A) = 25/100

Q: What is the max probability of any event?

A: 1



This represents the same set of people, except everyone in the study is given a test. Event "B" is everyone in the study for whom the test is positive.

Q: What portion of the diagram represents the subset of people with a negative test?

A: The white area between the smaller circle and the larger circle.



Because "A" and "B" are events from the same study, we can show them together.

Q: How would you describe the "cancer status" and "test status" of people in each area of the diagram?

A: Pink: cancer, negative test Purple: cancer, positive test Blue: no cancer, positive test

White: no cancer, negative test



The purple section is known as the intersection of A and B, denoted as P(AB).

Thinking of this test as a classifier for predicting cancer, draw the confusion matrix.

|         | Predicted: | Predicted: |
|---------|------------|------------|
| n=100   | NO         | YES        |
| Actual: |            |            |
| NO      | 65         | 10         |
| Actual: |            |            |
| YES     | 5          | 20         |



Q: Let's pick an arbitrary person from this study. If you were told their test result was positive, what is the probability they actually have cancer?

A: 20/30

This is the conditional probability of A given B, denoted as P(A|B).

P(A|B) = P(AB) / P(B) = (20/100) / (30/100)



You can think of conditional probability as "changing the relevant universe." P(A|B) is a way of saying "Given that my entire universe is now B, what is the probability of A?"

This is also known as transforming the sample space.



Q: Let's pick another arbitrary person from this study. If you were told they have cancer, what is the probability they had a positive test result?

A: P(B|A) = P(AB) / P(A) = 20/25

#### BAYES' THEOREM

### **Deriving Bayes' theorem:**

We know: 
$$P(A|B) = P(AB) / P(B)$$
 and  $P(B|A) = P(AB) / P(A)$ 

Thus: 
$$P(AB) = P(A|B) * P(B) = P(B|A) * P(A)$$

Rearrange to get Bayes' theorem: P(A|B) = P(B|A) \* P(A) / P(B)

INTERPRETATIONS OF PROBABILITY

## Briefly, the two interpretations can be described as follows:

INTERPRETATIONS OF PROBABILITY

Briefly, the two interpretations can be described as follows:

The frequentist interpretation regards an event's probability as its limiting frequency across a very large number of trials.

Briefly, the two interpretations can be described as follows:

The frequentist interpretation regards an event's probability as its limiting frequency across a very large number of trials.

The Bayesian interpretation regards an event's probability as a "degree of belief," which can apply even to events that have not yet occurred.

Suppose we have a dataset with features  $x_1, ..., x_n$  and a class label C. What can we say about classification using Bayes' theorem?

Suppose we have a dataset with features  $x_1, ..., x_n$  and a class label C. What can we say about classification using Bayes' theorem?

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Bayes' theorem can help us to determine the probability of a record belonging to a class, given the data we observe.

#### SOME TERMINOLOGY

Each term in this relationship has a name, and each plays a distinct role in any Bayesian calculation (including ours).

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the likelihood function. It represents the joint probability of observing features  $\{x_i\}$  given that that record belongs to class C.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The **likelihood** of seeing that evidence if your hypothesis is correct.

#### THE LIKELIHOOD FUNCTION

This term is the likelihood function. It represents the joint probability of observing features  $\{x_i\}$  given that that record belongs to class C.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

We can observe the value of the likelihood function from the training data.

This term is the **prior probability** of c. It represents the probability of a record belonging to class c before the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The **prior** 

This term is the prior probability of c. It represents the probability of a record belonging to class c before the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The value of the prior is also observed from the data.

#### THE NORMALIZATION CONSTANT

This term is the normalizing constant. It doesn't depend on c, and is generally ignored until the end of the computation.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The probability of the data under any hypothesis.

#### THE NORMALIZATION CONSTANT

This term is the normalizing constant. It doesn't depend on C, and is generally ignored until the end of the computation.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The normalizing constant doesn't tell us much.

This term is the posterior probability of c. It represents the probability of a record belonging to class c after the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

In other words, the probability of the hypothesis after seeing the evidence.

This term is the posterior probability of c. It represents the probability of a record belonging to class c after the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The goal of any Bayesian computation is to find ("learn") the posterior distribution of a particular variable.

#### **BAYESIAN INFERENCE**

The idea of Bayesian inference, then, is to **update** our beliefs about the distribution of c using the data ("evidence") at our disposal.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Then we can use the posterior for prediction.

Q: What piece of the puzzle we've seen so far looks like it could intractably difficult in practice?

## Remember the likelihood function?

$$P(\{x_i\}|C) = P(\{x_1, x_2, ..., x_n\})|C)$$

### Remember the likelihood function?

$$P(\{x_i\}|C) = P(\{x_1, x_2, ..., x_n\})|C)$$

Observing this exactly would require us to have enough data for every possible combination of features to make a reasonable estimate.

Q: What piece of the puzzle we've seen so far looks like it could intractably difficult in practice?

intractably difficult in practice?

A: Estimating the full likelihood function.

Q: So what can we do about it?

Q: So what can we do about it?

A: Make a simplifying assumption. In particular, we assume that the features  $x_i$  are conditionally independent from each other:

Q: So what can we do about it?

A: Make a simplifying assumption. In particular, we assume that the features  $x_i$  are conditionally independent from each other:

$$P(\{x_i\}|C) = P(x_1, x_2, ..., x_n|C) \approx P(x_1|C) * P(x_2|C) * ... * P(x_n|C)$$

Q: So what can we do about it?

A: Make a simplifying assumption. In particular, we assume that the features  $x_i$  are conditionally independent from each other:

$$P(\{x_i\}|C) = P(x_1, x_2, ..., x_n)|C) \approx P(x_1|C) * P(x_2|C) * ... * P(x_n|C)$$

This "naïve" assumption simplifies the likelihood function to make it tractable.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

In summary, the training phase of the model involves computing the likelihood function, which is the conditional probability of each feature given each class.

The prediction phase of the model involves computing the posterior probability of each class given the observed features, and choosing the class with the highest probability.

# III. LAB: NAIVE BAYESIAN CLASSIFICATION