

euucation		Croated Will	
Company Name	Vasudev R. Upadhye	Project Title	Fin Plate
Group/Team Name	MIT	Subtitle	
Designer	VRU	Job Number	Numerical 1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Conclusion	
Finplate	Pass
Finplate	
Connection Properties	
Connection	
Connection Title	Single Finplate
Connection Type	Shear Connection
Connection Category	
Connectivity	Column flange-Beam web
Beam Connection	Bolted
Column Connection	Welded
Loading (Factored Load)	
Shear Force (kN)	160
Components	
Column Section	ISSC 200
Material	Fe 410
Beam Section	ISMB 400
Material	Fe 410
Hole	STD
Plate Section	320X100X10
Thickness (mm)	10
Width (mm)	100
Depth (mm)	320
Hole	STD
Weld	·
Туре	Double Fillet
Size (mm)	8
Bolts	,
Туре	HSFG
Grade	8.8
Diameter (mm)	20
Bolt Numbers	3
Columns (Vertical Lines)	1
Bolts Per Column	3

Gauge (mm)	0
Pitch (mm)	120
End Distance (mm)	40
Edge Distance (mm)	40
Assembly	
Column-Beam Clearance (mm)	20

TOSSEC e d u c a t i o n			Created with OSdag
Company Name	Vasudev R. Upadhye	Project Title	Fin Plate
Group/Team Name	MIT	Subtitle	
Designer	VRU	Job Number	Numerical 1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Check	Di d	Durani da d	D
Check	Required	Provided	Remar
Bolt shear capacity (kN)		$V_{\rm dsb}$ = (800*0.6126*20*20)/($\sqrt{3}$ *1.25*1000) = 90.529 [cl. 10.3.3]	
Bolt bearing capacity (kN)		V_{dpb} = (2.5*0.508*20*8.9*410)/(1.25*1000) = 74.148 [cl. 10.3.4]	
Bolt capacity (kN)		Min (90.529, 74.148) = 74.148	
No. of bolts	160/74.148 = 2.2	3	Pass
No.of column(s)	≤ 2	1	
No. of bolts per column		3	
Bolt pitch (mm)	≥ 2.5* 20 = 50, ≤ Min(32*8.9, 300) = 285 [cl. 10.2.2]	120	Pass
Bolt gauge (mm)	≥ 2.5*20 = 50, ≤ Min(32*8.9, 300) = 285 [cl. 10.2.2]	0	
End distance (mm)	≥ 1.7*22 = 37.4, ≤ 12*8.9 = 106.8 [cl. 10.2.4]	40	Pass
Edge distance (mm)	≥ 1.7*22 = 37.4, ≤ 12*8.9 = 106.8 [cl. 10.2.4]	40	Pass
Block shear capacity (kN)	≥ 160	V _{db} = 453	Pass
Plate thickness (mm)	(5*160*1000)/(320*250) = 10.0 [Owens and Cheal, 1989]	10	Pass
Plate height (mm)	≥ 0.6*400=240.0, ≤ 400-16-14- 10=330.0 [cl. 10.2.4, Insdag Detailing Manual, 2002]	320	Pass
Plate width (mm)		100	
Plate moment capacity (kNm)	(2*90.529*120 ²)/(120*1000) = 14.485	$M_{\rm d}$ = (1.2*250* Z)/(1000*1.1) = 46.55 [cl. 8.2.1.2]	Pass
Effective weld length (mm)		320-2*8 = 304	

Weld strength (kN/mm)	$\sqrt{[(14485*6)/(2*304^2)]^2}$ + $[160/(2*304)]^2$ = 0.539	f_{V} = (0.7*8*410)/($\sqrt{3}$ *1.25) = 1.06 [cl. 10.5.7]	Pass
Weld thickness (mm)	Max($(0.539*1000*\sqrt{3}*1.25)$ /($0.7*410$), $10*0.8$) = 8.0 [cl. 10.5.7, Insdag Detailing Manual, 2002]	8	Pass

iossee e t t e r e d u c a t i o n			Created with OSdag
Company Name	Vasudev R. Upadhye	Project Title	Fin Plate
Group/Team Name	MIT	Subtitle	
Designer	VRU	Job Number	Numerical 1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

fossec better education			Created with OSdag
Company Name	Vasudev R. Upadhye	Project Title	Fin Plate
Group/Team Name	MIT	Subtitle	
Designer	VRU	Job Number	Numerical 1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Additional Comments	Ok
---------------------	----