```
import pandas as pd
```

Load the dataset

data = pd.read_csv('/content/Unemployment_Rate_upto_11_2020.csv')

Display basic information about the dataset
data.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 267 entries, 0 to 266
 Data columns (total 0 columns):

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Region	267 non-null	object
1	Date	267 non-null	object
2	Frequency	267 non-null	object
3	Estimated Unemployment Rate (%)	267 non-null	float64
4	Estimated Employed	267 non-null	int64
5	Estimated Labour Participation Rate (%)	267 non-null	float64
6	Region.1	267 non-null	object
7	longitude	267 non-null	float64
8	latitude	267 non-null	float64

dtypes: float64(4), int64(1), object(4)

memory usage: 18.9+ KB

Identify numerical columns
numerical_columns = data.select_dtypes(include=['float64', 'int64']).columns

Calculate mean, median, and standard deviation for each numerical column
descriptive_stats = data[numerical_columns].agg(['mean', 'median', 'std'])
descriptive_stats

→		Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	longitude	latitude
	mean	12.236929	1.396211e+07	41.681573	22.826048	80.532425
	median	9.650000	9.732417e+06	40.390000	23.610200	79.019300

import seaborn as sns
import matplotlib.pyplot as plt

Compute the correlation matrix
correlation_matrix = data[numerical_columns].corr()

Plot the heatman

1 of 4 05-07-2024, 09:48

```
plt.figure(figsize=(10, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Correlation Matrix')
plt.show()
```


Clean up column names

2 of 4 05-07-2024, 09:48

```
data.columns = data.columns.str.strip()

# Scatter plot for Estimated Employed vs. Estimated Unemployment Rate (%)
plt.figure(figsize=(10, 6))
sns.scatterplot(x=data['Estimated Employed'], y=data['Estimated Unemployment Rate (%)'])
plt.title('Estimated Employed vs. Estimated Unemployment Rate (%)')
plt.xlabel('Estimated Employed')
plt.ylabel('Estimated Unemployment Rate (%)')
plt.show()

# Scatter plot for Estimated Labour Participation Rate (%) vs. Estimated Employed
plt.figure(figsize=(10, 6))
sns.scatterplot(x=data['Estimated Labour Participation Rate (%)'], y=data['Estimated Empl
plt.title('Estimated Labour Participation Rate (%) vs. Estimated Employed')
plt.xlabel('Estimated Labour Participation Rate (%)')
plt.ylabel('Estimated Employed')
plt.show()
```


3 of 4 05-07-2024, 09:48

4 of 4