Вариант 1

Задачи 1—3 являются обязательными и необходимыми для получения максимальной оценки. Задача 4 — дополнительная и будет оцениваться отдельно; приступайте к ней, если останется время после решения первых трех задач.

На контрольной разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

1. Линейный оператор $T \colon C[-1,1] \to C[-1,1]$ задан формулой

$$(Tf)(x) = \int_{-1}^{1} (e^{(x+1)y} - 1)f(y) \, dy.$$

- $\mathbf{1}$) Докажите, что T ограничен.
- **2)** Вычислите ||T||.
- **3)** Достигает ли T нормы?
- 2. Пространство BV[a,b] состоит из всех функций $f:[a,b]\to\mathbb{C}$, удовлетворяющих условию

$$\operatorname{var}_{[a,b]}(f) = \sup \left\{ \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})| : a = t_0 < t_1 < \dots < t_n = b \right\} < \infty$$

(функции ограниченной вариации). Это пространство снабжается нормой $||f|| = ||f||_{\infty} + \text{var}_{[a,b]}(f)$ (где $||\cdot||_{\infty}$ — sup-норма).

- 1) Эквивалентна ли исходная норма на BV[a,b] норме $||f||' = |f(a)| + \text{var}_{[a,b]}(f)$?
- **2)** Докажите, что BV[a,b] банахово пространство.
- **3)** Полно ли BV[a,b] относительно нормы $\|\cdot\|_{\infty}$?
- **3.** Докажите, что линейный оператор между нормированными пространствами, имеющий замкнутое ядро и конечномерный образ, ограничен.
- **4.** Пусть G компактная топологическая группа (т.е. группа, снабженная компактной топологией, относительно которой операция умножения и операция $g\mapsto g^{-1}$ непрерывны). Пусть $\pi\colon G\to \mathrm{GL}(X)$ представление G в нормированном пространстве X, такое, что соответствующее действие $G\times X\to X$ непрерывно. Докажите, что на X есть норма, эквивалентная исходной, относительно которой все операторы $\pi(g)$ ($g\in G$) изометричны.

Вариант 2

Задачи 1—3 являются обязательными и необходимыми для получения максимальной оценки. Задача 4 — дополнительная и будет оцениваться отдельно; приступайте к ней, если останется время после решения первых трех задач.

На контрольной разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

1. Линейный оператор $T \colon C[-1,1] \to C[-1,1]$ задан формулой

$$(Tf)(x) = \int_{-1}^{1} \sin(|x|y) f(y) \, dy.$$

- $\mathbf{1}$) Докажите, что T ограничен.
- **2)** Вычислите ||T||.
- **3)** Достигает ли T нормы?
- **2.** Пусть $0<\alpha\leqslant 1$. Пространство $\mathrm{Lip}_{\alpha}[a,b]$ состоит из всех функций $f\colon [a,b]\to\mathbb{C},$ удовлетворяющих условию

$$p_{\alpha}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty$$

(ycловие Липшица с показателем α). Это пространство снабжается нормой $||f|| = ||f||_{\infty} + p_{\alpha}(f)$ (где $||\cdot||_{\infty}$ — sup-норма).

- **1)** Эквивалентна ли исходная норма на $\text{Lip}_{\alpha}[a,b]$ норме $||f||' = |f(a)| + p_{\alpha}(f)$?
- **2)** Докажите, что $\operatorname{Lip}_{\alpha}[a,b]$ банахово пространство.
- 3) Полно ли $\operatorname{Lip}_{\alpha}[a,b]$ относительно нормы $\|\cdot\|_{\infty}$?
- **3.** Пусть X нормированное пространство и $X_0 \subset X$ векторное подпространство. Предположим, что X_0 и X/X_0 сепарабельны. Докажите, что и X сепарабельно.
- **4.** Пусть $\mathbb{K} = \mathbb{R}$ или \mathbb{C} . Зафиксируем $p \geqslant 2$ и обозначим через \mathbb{K}_p^n пространство \mathbb{K}^n , снабженное нормой $\|x\|_p = (\sum_i |x_i|^p)^{1/p}$. Пусть $T \colon \mathbb{K}_p^n \to \mathbb{K}_2^n$ изоморфизм векторных пространств. Докажите, что $\|T\| \|T^{-1}\| \geqslant n^{1/2-1/p}$. Выведите отсюда, что при $p,q \geqslant 2, \ p \neq q$, пространства \mathbb{K}_p^n и \mathbb{K}_q^n не являются изометрически изоморфными (если $n \neq 1$).