Parallele Algorithmen mit OpenCL

Universität Osnabrück, Henning Wenke, 2013-05-15

Beispiel

Matrixmultiplikation (Fortsetzung)

Wiederholung: Formel

- Möglich, wenn Spaltenzahl der linken mit Zeilenzahl der rechten Matrix identisch
- ▶ Dann ist $l \times n$ Matrix C Produkt aus $l \times m$ Matrix A und $m \times n$ Matrix B.
- > Ihre Komponenten sind:

$$c_{ij} = \sum_{k=1}^{m} a_{ik} \cdot b_{kj}$$

Andere Bezeichnungen:

$$c_{row,col} = \sum_{k=0}^{A.cols-1} (=B.rows-1) a_{row,k} \cdot b_{k,col}$$

ightharpoonup Hinweis: $c_{row,col}$ ist Skalarprodukt aus Zeilenvektor row von A und Spaltenvektor col von B

Indextransformationen

- 2D Index
 - $row : \{0, ..., rows 1\}$
 - $col : \{0, ..., cols 1\}$

- Row-Major-Order: $index1D \leftarrow row \cdot cols + col$
- Liefert index1D: $\{0, ..., rows \cdot cols 1\}$
- Elemente, gemäß 1D-Index in linearem Speicher angeordnet:

$$\left\{ \left[a_{00}, a_{01}, a_{02}, a_{03} \right], \left[a_{10}, a_{11}, a_{12}, a_{13} \right], \left[a_{20}, a_{21}, a_{22}, a_{23} \right], \left[a_{30}, a_{31}, a_{32}, a_{33} \right] \right\}$$

- > 1D → 2D Indextransformation (RMO)
 - $row \leftarrow index1D / cols$
 - $col \leftarrow index1D \% cols$

Komponentenberechnung mit OpenCL C

```
// 2D -> 1D Indextransformation. Wie letzte Woche.
int getIndexRowMO(int row, int col, int colCnt) {
  return row * colCnt + col;
// Berechnet Komponente \mathcal{C}_{rowA,colB} der Matrix C, mit C = A * B und liefert sie zurück
int calc c rowCol(
global int* A, global int* B, // Matrix A und B (Row-Major-Order)
int COLS A, int COLS B  // Spaltenzahlen Matrix A, B
) {
  int sum = 0;
  for (int k = 0; k < COLS A; k++) {
     sum += A[getIndexRowMO(rowA, k, COLS A)] * B[getIndexRowMO(k, colB, COLS B)];
  return sum;
```

$$c_{row,col} = \sum_{k=0}^{A.cols-1} a_{row,k} \cdot b_{k,col}$$

Matrixmultiplikation mit OpenCL C

```
kernel void matrixMul_Index1d(// Berechnet je 1 Element von C = A * B mit 1D-Index
global int* A, global int* B, global int* C, // Matrizen A, B, C
const int COLS_A, const int COLS_B // Hinweis: COLS_B = COLS_C
){
   int cIndex1D = get_global_id(0);// Index zu ber. Elem {0,...,c.cols*c.rows-1}
   int colC = cIndex1D % COLS_B; // Zeilenindex und ...
   int rowC = cIndex1D / COLS_B; // ... Spaltenindex des zu berechnenden Elements
   C[cIndex1D] = calc_c_rowCol(rowC, colC, A, B, COLS_A, COLS_B); // Letzte Folie
}
```

```
clEnqueueNDRangeKernel((...), work dim \leftarrow 1, global work size \leftarrow {c.cols * c.rows});
```

--- Oder ---

```
kernel void matrixMul_Index2d(// Berechnet je 1 Element von C = A * B mit 2D Index
global int* A, global int* B, global int* C, // Matrizen A, B, C
const int COLS_A // COLS_B kann optional auch übergeben werden...
){
   int rowC = get_global_id(0); // Zeilenindex {0, ..., c.rows - 1}
   int colC = get_global_id(1); // Spaltenindex {0, ..., c.cols - 1}
   int COLS_B = get_global_size(1); // Hinweis: COLS_B = COLS_C
   int cIndex1D = getIndexRowMO(rowC, colC, COLS_B);
   C[cIndex1D] = calc_c_rowCol(rowC, colC, A, B, COLS_A, COLS_B); // Wie oben!
}
```

clEnqueueNDRangeKernel((...), work_dim ← 2, global_work_size ← {c.rows, c.cols});

Vergleich: 1D / 2D Indexkombinationen

- \triangleright Beispiel: Berechne 3 x 2 Matrix C aus C = A * B, analog zur letzten Folie, mit:
 - A: 3 x 2 Matrix,
 - B: 2 x 2 Matrix

1D-Kernel: clEnqueueNDRangeKernel((...), global_work_size ← {3 * 2});

Instanz / Work Item	A	В	С	D	E	F
cIndex1D ← get_global_id(0)	0	1	2	3	4	5
colC ← cIndex1D % 2	0	1	0	1	0	1
rowC ← cIndex1D / 2	0	0	1	1	2	2

2D-Kernel: clEnqueueNDRangeKernel((...), global_work_size ← {3, 2});

Instanz / Work Item	A	В	C	D	E	F
rowC ← get_global_id(0)	0	1	2	0	1	2
colC ← get_global_id(1)	0	0	0	1	1	1
$cIndex1D \leftarrow rowC \cdot 2 + colC$	0	2	4	1	3	5
Entspricht Work Item des 1D-Kernels	Α	С	Е	В	D	F

Überblick

- ➤ All-pairs approach: Jeder der n Körper interagiert mit jedem anderen → Laufzeit $O(N^2)$
- Wechselwirkung je zweier Teilchen unabhängig bestimmbar
- Wechselwirkungen der Teilchen z.B. abhängig von:
 - Distanz
 - Masse, z.B. für Gravitationskraft
 - Radius, etwa für Kollisionen
- > Heute
 - Teilchen punktförmig
 - Nur Gravitationskraft
 - Massen aller Teilchen gleich

Simulation

- ➤ Anfänglich für alle Teilchen $i, i \in \{0, ..., N-1\}$ gegeben:
 - Geschwindigkeit: v_i
 - Position: p_i
- Gesucht: Neue Position $\boldsymbol{p}_{i,neu}$
- \triangleright Simulation findet in diskreten Zeitschritten Δt statt
- In jedem Simulationsschritt:
 - Berechne ∀ Teilchen i aktualisierte Geschwindigkeit und neue Position, ausgehend von Geschwindigkeit des Teilchens *i* und Positionen aller Teilchen *j* des vorherigen Iterationsschritts. Berechne dazu:
 - 1. Auf i wirkende Gesamtkraft F_i
 - 2. Daraus Beschleunigung...
 - 3. Aktualisiere damit Geschwindigkeit ...
 - 4. Neuen Ort $p_{i,neu}$ wenn sich i Δt Zeiteinheiten lang mit aktualisierter Geschwindigkeit ausgehend von p_i bewegt
- ightharpoonup Nächster Iterationsschritt: Vertausche $oldsymbol{p}_{i,neu}$ und $oldsymbol{p}_i$

Paarweise wirkende Gravitationskraft

- Gegeben: Teilchen i und j, mit:
 - p_i : Position von i
 - p_i : Position von j
 - m_i : Masse von i
 - m_i : Masse von j

- Dann ist
 - $r_{ij} = -p_i + p_j$ Vektor von p_i nach p_j
 - Normiert: $\frac{r_{ij}}{r_{ij}}$
- $f_{ij} = G \cdot \frac{m_i \cdot m_j}{r_{ij}} \cdot \frac{r_{ij}}{r_{ij}}$

 Kraft wirkt von i ausgehend in Richtung j
- Kraft proportional zum Produkt der Massen
- Kraft nimmt quadratisch mit Abstand von i und j ab

Resultierende Kraft

- Berechne für jeden Körper i die resultierende Kraft aus Gesamtheit aller anderer Körper j
- Diese Kraft F_i ergibt sich aus Summe über alle paarweise zu berechnenden auf i wirkenden Kräfte f_{ij}
 - $F_i = \sum_{j=1}^{N} f_{ij}$, $mit: i \neq j$ $= Gm_i \sum_{j=1}^{N} \left(\frac{m_j r_{ij}}{r_{ij}^3}\right), mit: i \neq j$
- ightharpoonup Problem: $\boldsymbol{F}_i \rightarrow \infty$, für $r_{ij} \rightarrow 0$
- \triangleright Lösung: Größe ε^2 , $mit \varepsilon > 0$ für Abschwächung hinzufügen
 - $\mathbf{F}_i \approx G m_i \sum_{j=1}^{N} \left(\frac{m_j r_{ij}}{\left(r_{ij}^2 + \varepsilon^2\right)^{\frac{3}{2}}} \right)$
- \triangleright Aufwand für ein F_i : O(N)
- \triangleright Gesamtaufwand: $O(N^2)$

Beschleunigung

 \triangleright Es gilt: $\mathbf{F} = m \cdot \mathbf{a}$, mit \mathbf{a} : Beschleunigung

$$\Rightarrow a = \frac{F}{m}$$

- Damit ergibt sich für die resultierende Beschleunigung des Teilchens i:
 - $a_i = \frac{F_i}{m_i}$

Geschwindigkeit

- Es gilt: $\mathbf{a} = \frac{d\mathbf{v}}{dt}$, \mathbf{v} : Geschwindigkeit $\Rightarrow d\mathbf{v} = \mathbf{a} \cdot dt$
- \triangleright Simulation verwendet diskrete Zeitschritte Δt
 - Innerhalb eines Zeitschritts Δt sind alle Größen nicht zeitabhängig

$$\Rightarrow \Delta v = a \cdot \Delta t$$

- Geschwindigkeitsänderung in einem Zeitschritt der Simulation
- ightharpoonup Gegeben: Bisherige Geschwindigkeit $oldsymbol{v}_i$ des Partikels i aus vorherigem Simulationsschritt
- > Aktualisiere Geschwindigkeit für den aktuellen Simulationsschritt: $\boldsymbol{v}_i \leftarrow \boldsymbol{v}_i + \Delta \boldsymbol{v}_i$

Neue Position

- Bereits bekannt:
 - Position des Teilchens aus letztem Simulationsschritt: p_i
 - Für diesen Simulationsschritt aktualisierte Geschwindigkeit: $oldsymbol{v}_i$
 - Δt
- > Es gilt:
 - $\boldsymbol{v} = \frac{d\boldsymbol{p}}{dt}$
 - $\Rightarrow d\mathbf{p} = \mathbf{v} \cdot dt$
 - Diskret: $\Delta \boldsymbol{p} = \boldsymbol{v} \cdot \Delta t$
- > Folglich gilt für die Ortsänderung des Teilchens i:
 - $\Delta \boldsymbol{p}_i = \boldsymbol{v}_i \cdot \Delta t$
- \triangleright Setze neue Position $p_{i,neu}$ des Teilchens i:
 - $p_{i,neu} \leftarrow p_i + \Delta p_i$

Algorithmus

Daten aller Teilchen liegen konsekutiv im Speicher:

```
• p[]: { p_{0,x}, p_{0,y}, p_{0,z}, p_{0,z}, p_{1,x}, \dots, p_{N-1,y}, p_{N-1,z}} 
• pNeu[]:{p_{Neu_{0,x}, p_{Neu_{0,y}, p_{Neu_{0,z}, p_{Neu_{1,x}, \dots, p_{Neu_{N-1,y}, p_{Neu_{N-1,z}}}}} 
• v[]: { v_{0,x}, v_{0,y}, v_{0,z}, v_{0,z}, v_{1,x}, \dots, v_{N-1,y}, v_{N-1,z}}
```

Kernel-Indizierung: 1, 2 oder 3D?

Daten des Teilchens i = 0

- 1D: Naheliegend. Index über Partikel
- 2D: Denkbar, wenn alle f_{ij} parallel berechnet werden sollen.
- 3D: Für passende Räumliche Datenstruktur. Sonst ungeeignet, da Teilchen nicht diskret im Raum verteilt...
- \triangleright Algorithmus (berechnet die f_{ij} für jedes i sequentiell):

Implementieren von nBodyIter als OpenCL C Kernel: Hausaufgabe