Le ventilateur VDR-4 Ventilation convective-diffusive

Nicolas Blais St-Laurent inh

Service d'inhalothérapie

Automne 2019

Plan de la présentation

Description du mode de ventilation

Intérêt du mode de ventilation

Le VDR-4 au CHUM Considérations pratiques Protocole clinique

Description du mode de ventilation

Intérêt du mode de ventilation

Le VDR-4 au CHUM Considérations pratiques Protocole clinique

Courbe pression-temps typique

Haute et basse fréquence

Le phasitron

Insuflation

Expiration

Amplification variable

Ratio d'appel d'air théorique du phasitron

1. Percussionairecorporation 2009.

Pression alvéolaire

Pression motrice

Caractéristiques du mode de ventilation

- ► Haute et basse fréquence simultanée
- Adaptation dynamique aux changements de mécanique pulmonaire
- Respiration spontanée permise
- Expiration passive

Description du mode de ventilation

Intérêt du mode de ventilation

Le VDR-4 au CHUM
Considérations pratiques
Protocole clinique

Bénéfices escomptés

- ► Ventilation protectrice
- Désencombrement
- ► Recrutement

Études randomisées

Auteur	Année	n	Clientèle	
Chung	2010	62	Grands brûlés, hôpital militaire	
Lucangelo	2009	44	Pneumonectomie (intra-op.)	
Bougatef	2007 (1989)	52	Prématurés	
Reper	2002	35	Brulure d'inhalation	
Platteau	1999	24	Chir. card. minimalement inv.	
			(intra-op.)	
Hurst	1990	113	SDRA	

Chung et col. 2010

Caractéristiques :

- Étude randomisée
- ▶ VDR-4 *versus* ventilation protectrice
- n = 60
- ▶ Population : brûlés avec ou sans inhaloation

Résultats :

- Mortalité et durée de ventilation inchangée
- Oxygénation améliorée (p < .05)
- Pression de crête et moyenne moins élevée
- Moins de barotrauma (0 vs 4, p = .04)
- Moins de recours à une thérapie de secours
- Étude interrompue sur une analyse interrimaire

2. Chung2010.

Reper et col.

Caractéristiques :

- Étude randomisée
- Population : patients avec brûlure d'inhalation
- ▶ VDR-4 *versus* ventilation conventionnelle (10 ml/kg)
- n = 37

Résultats:

- Oxygénation améliorée (p < 0.05)
- ▶ Pressions de crète, moyenne, et expiratoire comparable
- Mortalitée inchangée

Séries de cas

Auteur	Année	n	Clientèle
Salim	2004	10	Trauma cranien en SDRA
Oribabor	2018	24	P.O. Chir. card.

Description du mode de ventilation

Intérêt du mode de ventilation

Le VDR-4 au CHUM Considérations pratiques Protocole clinique

Le VDR-4 au CHUM

- ► Un seul appareil dans l'hôpital
- Três petite équipe d'inhalo formés
- ► Ordonnance collective
- Protocole

Paramètres de base

Paramètre	Valeur		
Fperc	500	/min	
	8)	hz)	
$P_{exp.moy.}$	5	cmH_2O	
$P_{motrice}$	10	cmH_2O	
T_{haut}	2	secondes	
T_{bas}	2	secondes	

Gestion de l'oxygénation

Gestion de l'hypercapnie

- 1. $\downarrow F_{perc}$ ad 300/min.
- 2. $\uparrow T_{inspi.}$ à 3 sec. et $\downarrow T_{expi.}$ à 1 sec.
- 3. $\uparrow P_{motrice}$ ad 20 cm H_2O

Références

Fonctionnement de l'appareil

Analyse des tracés pression - temps

Cartouche pneumatique

Cartouche ouverte

Cartouche fermée

Circuit logique

Fonctionnement de l'apparei

Analyse des tracés pression - temps

Ratio I : E normal et inversé

Ratio I : E normal et inversé

Augmentation des résistances

