6. Serie a termini di segno costante

Per le serie a termini di segno costante valgono alcuni criteri di convergenza:

- criterio del confronto
- criterio del rapporto
- criterio della radice
- criterio del confronto asintotico
- criterio dell'ordine di infinitesimo

Una serie $\sum a_k$ a termini non negativi (non positivi) è convergente o divergente a $+\infty$ ($-\infty$) .

Essa converge se e solo se la successione S_k delle somme parziali è limitata.

Criterio del confronto

Date le serie a termini non negativi

$$\sum a_k$$
 e $\sum b_k$

se definitivamente risulta

$$a_k \leq b_k$$

allora:

- a) se la $\sum b_k$ è convergente allora la $\sum a_k$ è convergente b) se la $\sum a_k$ è divergente allora la $\sum b_k$ è divergente.

Esempi

Studiare il carattere delle sequenti serie con il metodo del confronto:

- 1) $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ diverge se $\alpha \leq 1$ poiché in tal caso risulta $\frac{1}{k^{\alpha}} \geq \frac{1}{k}$ e la serie armonica
 - $\sum_{k=1}^{\infty} \frac{1}{k}$ è divergente.
- 2) $\sum_{k=1}^{\infty} \frac{a^k}{k}$ converge se $0 \le a < 1$ poiché $\frac{a^k}{k} < a^k$ e la serie geometrica

$$\sum_{k=1}^{\infty} a^k$$
 converge per $0 \le a < 1$.

Esercizi

(gli esercizi con asterisco sono avviati)

Studiare il carattere delle seguenti serie con il metodo del confronto:

*1.
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{k}}$$

*3.
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}\sqrt{k+1}}$$

* 5.
$$\sum_{k=1}^{\infty} \frac{1}{k!}$$

*7.
$$\sum_{k=1}^{\infty} \frac{1}{2k^2+5}$$

*9.
$$\sum_{k=1}^{\infty} \frac{1}{(k+2)^4+1}$$

*11.
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{k^4+1}}$$

*13.
$$\sum_{k=1}^{\infty} \frac{1}{k2^k}$$

*15.
$$\sum_{k=1}^{\infty} \frac{\cos^2 k}{3^k}$$

*17.
$$\sum_{k=1}^{\infty} \frac{arctangk^2}{k\sqrt{k}}$$

*19.
$$\sum_{k=3}^{\infty} \frac{\log k}{k}$$

*21.
$$\sum_{k=1}^{\infty} \left(\frac{k}{4k+1}\right)^k$$

*23.
$$\sum_{k=1}^{\infty} \frac{1}{k^3 + \sin^2 k}$$

*25.
$$\sum_{k=1}^{\infty} \frac{1}{(3k)^k}$$

*27.
$$\sum_{k=1}^{\infty} \left| \sin \frac{1}{k^2} \right|$$

*2.
$$\sum_{k=0}^{\infty} \frac{1}{\sqrt{k+1}}$$

*4.
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k(k+1)(k+2)}}$$

*6.
$$\sum_{k=0}^{\infty} \frac{1}{4^k+3}$$

*8.
$$\sum_{k=1}^{\infty} \frac{1}{k^3+1}$$

*10.
$$\sum_{k=0}^{\infty} \frac{1}{\sqrt{k+2}}$$

*12.
$$\sum_{k=1}^{\infty} \frac{1}{k^2+2k}$$

*14.
$$\sum_{k=1}^{\infty} \frac{\sin k}{k^4}$$

*16.
$$\sum_{k=0}^{\infty} \frac{1}{k+e^k}$$

*18.
$$\sum_{k=1}^{\infty} \frac{1}{1 + \log k}$$

*20.
$$\sum_{k=2}^{\infty} \frac{1}{logk}$$

*22.
$$\sum_{k=1}^{\infty} \left(\frac{5k}{6k+1}\right)^k$$

*24.
$$\sum_{k=1}^{\infty} sin\left(\frac{\pi}{3^k}\right)$$

*26.
$$\sum_{k=1}^{\infty} arcsin \frac{1}{\sqrt{k}}$$

Criterio del rapporto

Sia $\sum a_k$ una serie a termini positivi.

Se esiste il limite

$$\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} = l$$

allora se

- a) $0 \le l < 1$ la serie converge
- b) l > 1 la serie diverge positivamente
- c) l = 1 nulla si può dire sul carattere della serie.

Esempi

a) La serie $\sum_{k=1}^{\infty} \frac{k!}{k^k}$ converge , infatti applicando il metodo del rapporto si ha:

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{(k+1)!}{(k+1)^{k+1}} \cdot \frac{k^k}{k!} = \lim_{k \to \infty} \left(\frac{k}{k+1}\right)^k = \lim_{k \to \infty} \left(1 - \frac{1}{k+1}\right)^k = \frac{1}{e} < 1;$$

b) Mediante il criterio del rapporto studiare il carattere della seguente serie al variare di $x \ge 0$:

$$\sum_{k=1}^{\infty} \frac{x^k}{k}$$

- se x = 0 tutti i termini sono nulli, pertanto la somma della serie è zero;
- $\sin x > 0$, risulta

$$\frac{a_{k+1}}{a_k} = \frac{x^{k+1}}{k+1} \cdot \frac{k}{x^k} = x \cdot \frac{k}{k+1}$$

poiché $\lim_{k\to\infty}\frac{k}{k+1}=1$, si ha

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = x$$

Pertanto

se $0 \le x < 1$ la serie converge

se x > 1 la serie diverge

se x = 1 il criterio del rapporto non dice nulla, ma osserviamo che in tal caso

la serie coincide con la serie armonica divergente.

Esercizi

(gli esercizi con asterisco sono avviati)

Studiare il carattere delle seguenti serie con il metodo del rapporto:

*28.
$$\sum_{k=1}^{\infty} \frac{5^k}{k!}$$

*29.
$$\sum_{k=1}^{\infty} \frac{3^{k}+2}{k!}$$

*30.
$$\sum_{k=1}^{\infty} \frac{k(k+1)}{(k-1)!}$$

*31.
$$\sum_{k=1}^{\infty} \frac{e^k}{k!}$$

*32.
$$\sum_{k=1}^{\infty} \frac{k^3+4}{4^k}$$

*33.
$$\sum_{k=1}^{\infty} \frac{3^k}{k+1}$$

*34.
$$\sum_{k=1}^{\infty} \frac{k^2+1}{2^k}$$

*35.
$$\sum_{k=1}^{\infty} \frac{3^k \cdot k!}{k^k}$$

*36.
$$\sum_{k=1}^{\infty} \frac{5^{k}+1}{k!}$$

*37.
$$\sum_{k=1}^{\infty} \frac{1}{k \log(k+1)}$$

*38.
$$\sum_{k=1}^{\infty} \frac{k^2}{e^k}$$

*39.
$$\sum_{k=1}^{\infty} \frac{e^k}{k!}$$

*40.
$$\sum_{k=1}^{\infty} \frac{e^k}{k^k}$$

*41.
$$\sum_{k=1}^{\infty} \frac{k^3 + k}{4^k}$$

40.
$$\Delta k=1 \overline{k^k}$$

$$-\infty$$
 k^k

*42.
$$\sum_{k=1}^{\infty} \left(\frac{k}{2k+1}\right)^{2k}$$

*43.
$$\sum_{k=1}^{\infty} \frac{k^k}{k!}$$

*44.
$$\sum_{k=1}^{\infty} \frac{k^k}{7^k \cdot k!}$$

*45.
$$\sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k \frac{k^k}{k!}$$

*46.
$$\sum_{k=1}^{\infty} \frac{4k+1}{\sqrt[k]{3}}$$

*47.
$$\sum_{k=1}^{\infty} \frac{(2k)!}{(k+1)!}$$

*48.
$$\sum_{k=1}^{\infty} \frac{(2k)!}{(k!)^2}$$

*49.
$$\sum_{k=1}^{\infty} \frac{3^{k-1}}{(k-1)!}$$

*50.
$$\sum_{k=1}^{\infty} \frac{4^{k-2}}{k^k}$$

*51.
$$\sum_{k=1}^{\infty} \frac{2^{k} \cdot k!}{k!}$$

*52.
$$\sum_{k=1}^{\infty} \frac{5^k \cdot k!}{k^k}$$

Criterio della radice

Sia $\sum a_k$ una serie a termini non negativi.

Se esiste il limite

$$\lim_{k \to +\infty} \sqrt[k]{a_k} = l$$

allora se

- a) $0 \le l < 1$ la serie converge
- b) l > 1 la serie diverge positivamente
- c) l = 1 nulla si può dire sul carattere della serie.

Esempi

a)
$$\sum_{k=0}^{\infty} \frac{5^k}{(k+1)^2}$$
. Si ha, posto $k+1=n$, $\sum_{n=1}^{\infty} \frac{5^{n-1}}{n^2} = \frac{1}{5} \sum_{n=1}^{\infty} \frac{5^n}{n^2}$.

Poiché $\lim_{n\to\infty} \sqrt[n]{\frac{5^n}{n^2}} = \lim_{k\to\infty} \frac{5}{(\sqrt[n]{n})^2} = 5$ la serie è divergente, sapendo che

$$\lim_{n\to\infty} \sqrt[n]{n} = \lim_{n\to\infty} e^{\log \sqrt[n]{n}} = \lim_{n\to\infty} e^{\frac{1}{n}logn} = e^0 = 1 \; .$$

b)
$$\sum_{k=1}^{\infty} \frac{x^k}{(2k)^k}$$
 , con $x \ge 0$

- se x=0 tutti i termini sono nulli pertanto la somma della serie è zero
- se x > 0 si ha

$$\lim_{k \to +\infty} \sqrt[k]{a_k} = \lim_{k \to +\infty} \frac{x}{2k} = 0$$

qiundi la serie converge $\forall x \geq 0$.

Esercizi

*53)
$$\sum_{k=1}^{\infty} \frac{1}{k^k}$$

*54)
$$\sum_{k=0}^{\infty} \frac{1}{(k+2)^{k+2}}$$

*55)
$$\sum_{k=1}^{\infty} \frac{1}{3^k} \left(\frac{k+1}{k} \right)^{k^2}$$

*56)
$$\sum_{k=0}^{\infty} 4^{-k^2+2k}$$

*57)
$$\sum_{k=2}^{\infty} \frac{1}{(\log k)^k}$$

*58)
$$\sum_{k=1}^{\infty} \left(\frac{k}{3k+1}\right)^k$$

*59)
$$\sum_{k=1}^{\infty} \left(\frac{3k}{4k+1} \right)^k$$

*60)
$$\sum_{k=0}^{\infty} \frac{2^k}{(k+1)^{2k}}$$

*61)
$$\sum_{k=0}^{\infty} \frac{(2k)^k}{7^{2k}}$$

*62)
$$\sum_{k=0}^{\infty} e^{-\frac{k-2}{3}}$$

*63)
$$\sum_{k=0}^{\infty} \frac{2^k}{3^k(k+1)}$$

*64)
$$\sum_{k=0}^{\infty} \frac{4^{k+1}}{3^{2k+2}} \cdot \left(1 + \frac{1}{k}\right)^k$$

*65)
$$\sum_{k=1}^{\infty} \left(\frac{5k}{4k+1} \right)^{\frac{k}{2}}$$

*66)
$$\sum_{k=0}^{\infty} \left(\frac{k^2-1}{k^2+1}\right)^{k^3}$$

*67)
$$\sum_{k=1}^{\infty} \left(\frac{11k}{3k+2} \right)^k$$

*68)
$$\sum_{k=1}^{\infty} \left(\frac{4k}{k+5} \right)^k$$

*69)
$$\sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2}$$

*70)
$$\sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2} \cdot \frac{3^k}{4^{2k+1}}$$

*71)
$$\sum_{k=0}^{\infty} \frac{5^{k+1}}{(k!)^k}$$

Criterio del confronto asintotico

Siano $\{a_k\}$ e $\{b_k\}$ due successioni a termini positivi tali che esista (finito o infinito)

il limite

$$\lim_{k \to +\infty} \frac{a_k}{b_k} = l$$

allora se:

- a) l>0 le serie $\sum a_k$ e $\sum b_k$ hanno lo stesso carattere, cioè sono entrambe convergenti o entrambe divergenti
- b) l=0 se la serie $\sum b_k$ converge anche la serie $\sum a_k$ converge
- c) $l=+\infty$ se la serie $\sum b_k$ diverge anche la serie $\sum a_k$ diverge .

Esempi

a) La serie $\sum_{k=1}^{\infty} \frac{k+6}{k^2+k}$ diverge , infatti dal confronto con $\sum_{k=1}^{\infty} \frac{1}{k}$ serie armonica divergente si ha

$$\lim_{k \to \infty} \frac{\frac{k+6}{k^2+k}}{\frac{1}{k}} = 1$$

b) Consideriamo la serie $\sum_{k=1}^{\infty} \frac{2^k + 3k}{5^{k+2} + 4}$, poiché

$$\lim_{k \to \infty} \frac{\frac{2^k + 3k}{5^{k+2} + 4}}{\left(\frac{2}{5}\right)^k} = \lim_{k \to \infty} \frac{\left(\frac{2}{5}\right)^k \frac{1 + \frac{3k}{2^k}}{25 + \frac{4}{5^k}}}{\left(\frac{2}{5}\right)^k} = \frac{1}{25}$$

dal confronto con la serie geometrica $\sum_{k=1}^{\infty} \left(\frac{2}{5}\right)^k$ convergente, segue la convergenza della serie data.

Esercizi

*72)
$$\sum_{k=1}^{\infty} \frac{1}{2k+3}$$

*73)
$$\sum_{k=1}^{\infty} \frac{1}{5-3k}$$

*74)
$$\sum_{k=0}^{\infty} \frac{1}{2k+3}$$

*75)
$$\sum_{k=0}^{\infty} \frac{4}{5k+7}$$

*76)
$$\sum_{k=0}^{\infty} \frac{1}{\sqrt[4]{3k+1}}$$

*77)
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)\sqrt{2k+1}}$$

*78)
$$\sum_{k=1}^{\infty} \frac{5k^2 - k + 1}{k^3 + k}$$

* 79)
$$\sum_{k=1}^{\infty} \frac{2k+\sqrt{k}}{k^3+1}$$

*80)
$$\sum_{k=1}^{\infty} \frac{2k+3}{(k+1)\sqrt{k}}$$

*81)
$$\sum_{k=1}^{\infty} \frac{4^{-k} \cdot k^3}{k^3 + 1}$$

*82)
$$\sum_{k=1}^{\infty} \frac{5^k + 2}{7^{k+1} + 1}$$

*83)
$$\sum_{k=0}^{\infty} \frac{5^k + k}{2^k + 2k}$$

*84)
$$\sum_{k=1}^{\infty} \frac{2k^3+5}{3+4k^4}$$

*85)
$$\sum_{k=1}^{\infty} \frac{3k^2}{(k^2+1)\cdot k!}$$

*86)
$$\sum_{k=1}^{\infty} \sin \frac{1}{k}$$

*87)
$$\sum_{k=1}^{\infty} \sin \frac{2}{k^2}$$

*88)
$$\sum_{k=1}^{\infty} log \left(1 + \frac{3}{k^3}\right)$$

Come caso particolare del confronto asintotico con la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$, si ha il seguente

Criterio dell'ordine di infinitesimo

Se $\sum_{k=1}^{\infty} a_k$ è una serie a termini positivi e a_k è infinitesima , rispetto all'infinitesimo $\frac{1}{k}$, di ordine $\alpha>1$ la serie converge , altrimenti diverge.

In definitiva

se $\lim_{k\to\infty}\frac{a_k}{\frac{1}{k^{\alpha}}}=\lim_{k\to\infty}k^{\alpha}\cdot a_k=$ numero finito, allora se $\begin{cases} \alpha>1 \text{ la serie converge}\\ \alpha\leq 1 \text{ la serie diverge} \end{cases}$

Esercizi

*89)
$$\sum_{k=1}^{\infty} \frac{k^2}{k^3+1}$$

*90)
$$\sum_{k=1}^{\infty} \frac{k^3}{k^5+1}$$

*91)
$$\sum_{k=1}^{\infty} \frac{2k}{k^2 \sqrt{k+1}}$$

*92)
$$\sum_{k=1}^{\infty} \frac{\sqrt{k+1}}{k^3+1}$$

*93)
$$\sum_{k=1}^{\infty} \frac{\sqrt{k+1} - \sqrt{k}}{k}$$

*94)
$$\sum_{k=1}^{\infty} \frac{k^4}{k^5+4}$$

* 95)
$$\sum_{k=1}^{\infty} \frac{\sqrt{k^4+5}-\sqrt{k^4-3}}{k^2}$$

* 96)
$$\sum_{k=1}^{\infty} \frac{k^{\frac{1}{2}+1}}{k^4+k}$$

*97)
$$\sum_{k=1}^{\infty} \frac{k^{\frac{1}{2}} + k^{\frac{3}{2}}}{k^{\frac{1}{2}} + k^{\frac{5}{2}}}$$

Soluzioni

Criterio del confronto

- *1. S. diverge poiché $\frac{1}{\sqrt[3]{k}} > \frac{1}{k}$, $\forall k > 1$;
- *2. S. diverge poiché $\frac{1}{\sqrt{k+1}} > \frac{1}{k+1}$, $\forall k > 1$;
- *3. S. diverge poiché $\frac{1}{\sqrt{k}\sqrt{k+1}} > \frac{1}{\sqrt{k+1}\sqrt{k+1}} = \frac{1}{k+1}$, $\forall k \ge 1$;

*4. S. converge poiché $\frac{1}{\sqrt{k(k+1)(k+2)}} < \frac{1}{\sqrt{k^3}} = \frac{1}{k^{\frac{3}{2}}}$ e la serie armonica generalizzata $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ converge se $\alpha > 1$;

- *5. S. converge essendo $\frac{1}{k!} = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdots k} \le \frac{1}{1 \cdot 2 \cdot 2 \cdots 2}$ e quindi $\frac{1}{k!} \le \frac{1}{2^{k-1}} \quad \forall k \ge 1$ e la serie $\sum_{k=1}^{\infty} \frac{1}{2^{k-1}}$ è convergente in quanto serie geometrica di ragione $\frac{1}{2} < 1$;
- *6. S. converge essendo $\frac{1}{4^k+3} < \frac{1}{4^k}$ e $\sum_{k=0}^{\infty} \frac{1}{4^k}$ convergente in quanto serie geometrica di ragione $\frac{1}{4} < 1$;
- *7. S. converge essendo $\frac{1}{2k^2+5} < \frac{1}{2k^2}$ e $\sum_{k=1}^{\infty} \frac{1}{2k^2}$ serie armonica generalizzata convergente ;
- *8. S. converge essendo $\frac{1}{k^3+1} < \frac{1}{k^3}$ e $\sum_{k=1}^{\infty} \frac{1}{k^3}$ è una serie armonica generalizzata convergente;
- *9. S. converge essendo $\frac{1}{(k+2)^4+1} < \frac{1}{k^4}$ e $\sum_{k=1}^{\infty} \frac{1}{k^4}$ serie armonica generalizzata convergente;
- *10. S. diverge perché $\frac{1}{\sqrt{k+2}} \ge \frac{1}{k} \ \forall k \ge 2$ e la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k}$ diverge positivamente ;
- *11. S. converge essendo $\frac{1}{\sqrt[3]{k^4+1}} < \left(\frac{1}{k}\right)^{\frac{4}{3}} e \sum_{k=1}^{\infty} \left(\frac{1}{k}\right)^{\frac{4}{3}}$ serie armonica generalizzata convergente;
- *12. S. converge poiché $\frac{1}{k^2+2k}<\frac{1}{k^2}$ e $\sum_{k=1}^{\infty}\frac{1}{k^2}$ è una serie armonica generalizzata convergente;
- *13. S. converge essendo $\frac{1}{k2^k} \le \frac{1}{2^k}$ e $\sum_{k=1}^{\infty} \frac{1}{2^k}$ è convergente in quanto serie geometrica di ragione $\frac{1}{2} < 1$;
- *14. S. converge essendo $\frac{sink}{k^4} < \frac{1}{k^4}$ e $\sum_{k=1}^{\infty} \frac{1}{k^4}$ è una serie armonica generalizzata convergente ;
- *15. S. converge essendo $\frac{\cos^2 k}{3^k} \le \frac{1}{3^k}$ e $\sum_{k=0}^{\infty} \frac{1}{3^k}$ convergente in quanto serie geometrica di ragione $\frac{1}{3}$ <1;
- *16. S. converge poiché $\frac{1}{k+e^k} \le \frac{1}{e^k}$ e $\sum_{k=1}^{\infty} \frac{1}{e^k}$ è convergente in quanto serie geometrica di ragione $\frac{1}{e} < 1$;
- *17. S. converge poiché $\frac{arctgk^2}{k\sqrt{k}} < \frac{\pi}{2} \frac{1}{k^{\frac{3}{2}}}$ e $\sum_{k=1}^{\infty} \frac{1}{k^{\frac{3}{2}}}$ è convergente essendo una serie armonica generalizzata convergente;

*18. S. divergente in quanto , essendo $logk < k \ \forall k > 1$, si ha $\frac{1}{1 + logk} > \frac{1}{k+1}$;

- *19. S. diverge poiché $\frac{logk}{k} > \frac{1}{k}$;
- *20. S. diverge poiché, essendo logk < k, si ha $\frac{1}{logk} > \frac{1}{k}$ $(k \ge 2)$;
- *21. S. converge essendo $\left(\frac{k}{4k+1}\right)^k < \frac{1}{4^k}$ e $\sum_{k=0}^{\infty} \frac{1}{4^k}$ convergente in quanto serie geometrica di ragione $\frac{1}{4}$ < 1;
- *22. S. converge essendo $\left(\frac{5k}{6k+1}\right)^k < \left(\frac{5}{6}\right)^k$ e $\sum_{k=0}^{\infty} \left(\frac{5}{6}\right)^k$ convergente in quanto serie geometrica di ragione $\frac{5}{6}$ <1;
- *23. S. converge poiché $\frac{1}{k^3+sin^2k}<\frac{1}{k^3}$ e la serie armonica generalizzata $\sum_{k=1}^{\infty}\frac{1}{k^3}$ converge ;
- *24. S. converge poiché essendo $0 < \frac{\pi}{3^k} < \frac{\pi}{2}$, $\forall k \geq 1$, si ha $0 < sin\left(\frac{\pi}{3^k}\right) < \frac{\pi}{3^k}$ e $\sum_{k=0}^{\infty} \frac{\pi}{3^k} = \pi \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k \text{ e la serie } \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k \text{è una serie geometrica convergente perché la ragione è } \frac{1}{3} < 1;$
- *25. S. converge poiché $\frac{1}{(3k)^k} \le \frac{1}{3^k}$ e la serie geometrica $\sum_{k=1}^{\infty} \frac{1}{3^k}$ converge poiché la ragione è $\frac{1}{3} < 1$;
- *26. S. diverge poiché , essendo $\frac{1}{\sqrt{k}} > \frac{1}{k}$, si ha $arcsin\frac{1}{\sqrt{k}} > arcsin\frac{1}{k} > \frac{1}{k}$ $(k \ge 1)$ e la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k}$ diverge positivamente ;
- *27. S. converge poiché $\left|\sin\frac{1}{k^2}\right| < \frac{1}{k^2}$ e la serie armonica generalizzata $\sum_{k=1}^{\infty}\frac{1}{k^2}$ è convergente;

Criterio del rapporto

- *28. S. converge, infatti $\lim_{k \to +\infty} \frac{\frac{5^{k+1}}{(k+1)!}}{\frac{5^k}{k!}} = \lim_{k \to +\infty} \frac{5}{k+1} = 0$;
- *29. S. converge, infatti $\lim_{k \to +\infty} \frac{3^{k+1}+2}{(k+1)!} \cdot \frac{k!}{3^k+2} = \lim_{k \to +\infty} \frac{1}{k+1} \cdot \frac{3^{k+1}+2}{3^k+2} = \lim_{k \to +\infty} \frac{3}{k+1} = 0$;
- *30. S. converge, infatti $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{(k+1)(k+2)}{k!} \cdot \frac{(k-1)!}{k(k+1)} = \lim_{k \to \infty} \frac{k+2}{k^2} = 0;$

*31. S. converge, infatti $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{e^{k+1}}{(k+1)!} \cdot \frac{k!}{e^k} = \lim_{k \to \infty} \frac{e}{k+1} = 0$;

- *32. S. converge , infatti $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{(k+1)^3 + 4}{4^{k+1}} \cdot \frac{4^k}{k^3 + 4} = \frac{1}{4}$;
- *33. S. diverge , infatti $\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{3^{k+1}}{k+2} \cdot \frac{k+1}{3^k} = 3 > 1$; senza utilizzare il metodo del rapporto si poteva osservare subito che il $\lim_{k \to \infty} \frac{3^k}{k+1} = \infty$;
- *34. S. converge, infatti $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = \lim_{k\to\infty} \frac{(k+1)^2+1}{2^{k+1}} \cdot \frac{2^k}{k^2+1} = \frac{1}{2}$;
- *35. S. diverge positivamente, infatti $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{3^{k+1}(k+1)|}{(k+1)^{k+1}} \cdot \frac{k^k}{3^{k} \cdot k!} = \lim_{k \to \infty} \frac{3}{\left(1 + \frac{1}{k}\right)^k} = \frac{3}{e} > 1$;
- *36. S. converge, infatti $\lim_{k\to\infty}\frac{a_{k+1}}{a_k}=\lim_{k\to\infty}\frac{5^{k+1}+1}{(k+1)!}\cdot\frac{k!}{5^k+1}=0$;
- *37. S. poiché $\lim_{k\to +\infty} \frac{klog(k+1)}{(k+1)log(k+2)} = 1$ il criterio non dice nulla sul carattere della serie ;
- *38. S. converge , infatti $\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} = \lim_{k \to +\infty} \frac{(k+1)^2}{e^{k+1}} \cdot \frac{e^k}{k^2} = \frac{1}{e} < 1;$
- *39. S. converge, infatti $\lim_{k \to +\infty} \frac{k! e^{k+1}}{(k+1)! e^k} = \lim_{k \to +\infty} \frac{e}{k+1} = 0$;
- ***40. S.** converge, infatti $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{e^{k+1} k^k}{e^k (k+1)^{k+1}} = \lim_{k \to \infty} \frac{e}{(k+1) \left(1 + \frac{1}{k}\right)^k} = \lim_{k \to \infty} \frac{e}{k+1} \cdot \frac{1}{\lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k} = \lim_{k \to \infty} \frac{e}{k+1} \cdot \frac{1}{e} = 0$;
- *41. S. converge, infatti $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = \lim_{k\to+\infty} \frac{4^k \left[(k+1)^3 + k + 1 \right]}{4^{k+1} (k^3 + k)} = \frac{1}{4};$
- *42. S. converge, infatti $\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} = \lim_{k \to +\infty} \frac{\left(\frac{k+1}{2k+3}\right)^{2k+2}}{\left(\frac{k}{2k+1}\right)^{2k}} = \lim_{k \to +\infty} \left(\frac{k+1}{2k+3}\right)^2 \cdot \left(\frac{2k+1}{2k+3} \cdot \frac{k+1}{k}\right)^{2k} = \frac{1}{4}$,

infatti
$$\lim_{k \to +\infty} \left(\frac{k+1}{2k+3} \right)^2 = \frac{1}{4} e \lim_{k \to \infty} \left(\frac{2k+1}{2k+3} \cdot \frac{k+1}{k} \right)^{2k} = \lim_{k \to \infty} \left(\frac{2k^2+3k+1}{2k^2+3k} \right)^{2k} = \lim_{k \to \infty} \left(\frac{2k^2+3k+1}{2k^2+3k} \right)^{2k} = \lim_{k \to \infty} \left(\frac{2k^2+3k+1}{2k+3} \right)^{2k} = \lim_{k$$

$$= \lim_{k \to \infty} \left(1 + \frac{1}{2k^2 + 3k} \right)^{2k} = \lim_{k \to \infty} \left(1 + \frac{1}{2k^2 + 3k} \right)^{\left(2k^2 + 3k \right) \cdot \frac{2k}{2k^2 + 3k}} = e^0 = 1;$$

*43. S. diverge, infatti
$$\lim_{k \to +\infty} \frac{k!(k+1)^{k+1}}{k^k \cdot (k+1)!} = \lim_{k \to +\infty} \left(\frac{k+1}{k}\right)^k = \lim_{k \to +\infty} \left(1 + \frac{1}{k}\right)^k = e > 1;$$

*44. S. converge, infatti
$$\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} = \lim_{k \to +\infty} \frac{7^k k! \ (k+1)^{k+1}}{k^{k \cdot 7^{k+1}} (k+1)!} = \lim_{k \to +\infty} \frac{1}{7} \cdot \left(\frac{k+1}{k}\right)^k = \frac{e}{7} < 1$$
;

*45. S. diverge, infatti
$$\lim_{k\to+\infty}\frac{a_{k+1}}{a_k}=\lim_{k\to+\infty}\frac{1}{2}\left(\frac{k+1}{k}\right)^k=\frac{e}{2}>1$$
;

- *46. S. poiché $\lim_{k\to+\infty}\frac{a_{k+1}}{a_k}=1$ il criterio non dice nulla sul carattere della serie;
- ***47. S.** diverge tenendo presente che $(2k)! = k! \cdot (k+1)(k+2)...(k+k)$;
- *48. S. diverge , infatti $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = 4$;
- *49. S. converge, infatti $\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} = \lim_{k \to +\infty} \frac{3^{k \cdot (k-1)!}}{3^{k-1} \cdot k!} = \lim_{k \to +\infty} \frac{3}{k} = 0;$
- *50. S. converge , infatti $\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} = \lim_{k \to +\infty} \frac{4^{k-1}k^k}{4^{k-2}(k+1)^{k+1}} = 4 \lim_{k \to +\infty} \frac{1}{(k+1)\left(1+\frac{1}{k}\right)^k} = 0;$
- *51. S. converge, infatti $\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} = \lim_{k \to +\infty} \frac{2^{k+1} \cdot (k+1)!}{(k+1)^{k+1}} \cdot \frac{k^k}{2^{k} \cdot k!} = 2 \lim_{k \to +\infty} \frac{1}{\left(1 + \frac{1}{k}\right)^k} = \frac{2}{e} < 1;$
- *52. S. diverge , infatti, ripercorrendo i calcoli dell'esercizio 51, risulta $\lim_{k\to+\infty}\frac{a_{k+1}}{a_k}=\frac{5}{e}>1$;

Criterio della radice

- *53.S. converge, essendo $\lim_{k\to+\infty} \sqrt[k]{\frac{1}{k^k}} = \lim_{k\to+\infty} \frac{1}{k} = 0;$
- ***54.S.** converge, basta porre $k + 2 = n \dots$;
- *55.S. converge, infatti $\lim_{k \to +\infty} \sqrt[k]{\frac{1}{3^k} \left(\frac{k+1}{k}\right)^{k^2}} = \frac{1}{3} \lim_{k \to +\infty} \left(1 + \frac{1}{k}\right)^k = \frac{e}{3} < 1$;
- *56.S. converge, infatti $\lim_{k \to +\infty} \sqrt[k]{4^{-k^2+2k}} = \lim_{k \to +\infty} 4^{-k+2} = 16 \lim_{k \to +\infty} \frac{1}{4^k} = 0$;
- *57. S. converge, infatti $\lim_{k\to+\infty} \sqrt[k]{\frac{1}{(\log k)^k}} = \lim_{k\to+\infty} \frac{1}{\log k} = 0$;
- *58.S. converge, infatti $\lim_{k \to +\infty} \sqrt[k]{\left(\frac{k}{3k+1}\right)^k} = \lim_{k \to +\infty} \frac{k}{3k+1} = \frac{1}{3} < 1;$
- *59.S. converge, infatti $\lim_{k \to +\infty} \sqrt[k]{\left(\frac{3k}{4k+1}\right)^k} = \lim_{k \to +\infty} \frac{3k}{4k+1} = \frac{3}{4} < 1;$

*60. S. converge, infatti
$$\lim_{k \to \infty} \sqrt[k]{\frac{2^k}{(k+1)^{2k}}} = \lim_{k \to \infty} \frac{2}{(k+1)^2} = 0$$

*61. S. diverge positivamente, infatti
$$\lim_{k\to\infty} \sqrt[k]{\frac{(2k)^k}{7^{2k}}} = \lim_{k\to\infty} \frac{2k}{49} = +\infty$$

*62. S. converge, infatti
$$\lim_{k \to \infty} \sqrt[k]{e^{-\frac{k-2}{3}}} = \lim_{k \to \infty} e^{-\frac{k-2}{3k}} = \frac{1}{\sqrt[3]{e}} < 1$$

*63. S. converge, infatti
$$\lim_{k \to +\infty} \sqrt[k]{\frac{2^k}{3^k(k+1)}} = \frac{2}{3} \lim_{k \to +\infty} \frac{1}{\sqrt[k]{k+1}} = 0;$$

*64. S. converge, infatti
$$\lim_{k \to \infty} \sqrt[k]{\frac{4^{k+1}}{3^{2k+2}} \cdot \left(1 + \frac{1}{k}\right)^k} = \frac{4}{9} < 1$$

*65. S. diverge positivamente, infatti
$$\lim_{k \to +\infty} \sqrt[k]{\left(\frac{5k}{4k+1}\right)^{\frac{k}{2}}} = \lim_{k \to +\infty} \sqrt{\frac{5k}{4k+1}} = \sqrt{\frac{5}{4}} > 1$$
;

*66. S. converge, infatti
$$\lim_{k \to \infty} \sqrt[k]{\left(\frac{k^2 - 1}{k^2 + 1}\right)^{k^3}} = \lim_{k \to \infty} \left(\frac{k^2 - 1}{k^2 + 1}\right)^{k^2} = \dots = \frac{1}{e^2} < 1$$

*67. S. diverge positivamente, infatti
$$\lim_{k\to\infty} \sqrt[k]{\left(\frac{11k}{3k+2}\right)^k} = \lim_{k\to\infty} \frac{11k}{3k+2} = \frac{11}{3} > 1$$

*68. S. diverge positivamente, infatti
$$\lim_{k\to\infty} \sqrt[k]{\left(\frac{4k}{k+5}\right)^k} = \lim_{k\to\infty} \frac{4k}{k+5} = 4 > 1$$

*69. S. diverge positivamente, infatti
$$\lim_{k\to\infty} \sqrt[k]{\left(\frac{k+1}{k}\right)^{k^2}} = \lim_{k\to\infty} \left(1+\frac{1}{k}\right)^k = e > 1$$

*70. S. converge, infatti
$$\lim_{k \to \infty} \sqrt[k]{\left(\frac{k+1}{k}\right)^{k^2} \cdot \frac{3^k}{4^{2k+1}}} = \lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k \cdot \frac{3}{\frac{2k+1}{k}} = \frac{3e}{16} < 1$$

*71. S. converge,
$$\lim_{k\to\infty}^{k} \sqrt{\frac{5^{k+1}}{(k!)^k}} = \lim_{k\to\infty} \frac{\frac{k+1}{k!}}{k!} = 0$$

Criterio del confronto asintotico

- *72. S. diverge positivamente per confronto asintotico con la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k}$ divergente , infatti $\lim_{k\to\infty} \frac{\frac{1}{2k+3}}{\frac{1}{k}} = \lim_{k\to\infty} \frac{k}{2k+3} = \frac{1}{2}$;
- *73. S. diverge negativamente, poiché $\sum_{k=1}^{\infty} \frac{1}{5-3k} = \frac{1}{2} \sum_{k=2}^{\infty} \frac{1}{3k-5}$..., in cui questa ultima serie diverge per confronto asintotico con la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k}$ divergente, infatti

$$\lim_{k \to \infty} \frac{\frac{1}{3k-5}}{\frac{1}{5}} = \lim_{k \to \infty} \frac{k}{3k-5} = \frac{1}{3};$$

- *74. S. diverge positivamente per confronto asintotico con la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k}$ divergente, infatti..;
- *75. S. diverge positivamente per confronto asintotico con la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k}$ divergente, infatti...;
- *76. S. diverge positivamente per confronto asintotico con la serie armonica $\sum_{k=1}^{\infty} \frac{1}{\sqrt[4]{k}}$ divergente, infatti..;
- *77. **S.** converge, essendo $\frac{1}{(2k+1)\sqrt{2k+1}} = \frac{1}{(2k+1)^{\frac{3}{2}}}$ per confronto asintotico con la serie armonica
- $\sum_{k=1}^{\infty} \frac{1}{k^{\frac{3}{2}}}$ convergente, infatti...
- *78. S. diverge positivamente per confronto asintotico con $\sum_{k=1}^{\infty} \frac{1}{k}$ serie armonica divergente,

infatti
$$\lim_{k \to \infty} \frac{\frac{5k^2 - k + 1}{k^3 + k}}{\frac{1}{k}} = 5$$

- *79. S. converge per confronto asintotico con $\sum_{k=1}^{\infty} \frac{1}{k^2}$ serie armonica convergente, $\lim_{k \to \infty} \frac{\frac{2k + \sqrt{k}}{k^3 + 1}}{\frac{1}{k^2}} = 2$
- *80. S. diverge positivamente per confronto asintotico con $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ serie armonica

divergente;
$$\lim_{k \to \infty} \frac{\frac{2k+3}{(k+1)\sqrt{k}}}{\frac{1}{\sqrt{k}}} = 2$$

*81. S.converge per confronto asintotico con $\sum_{k=1}^{\infty} 4^{-k}$ serie geometrica

convergente,
$$\lim_{k \to \infty} \frac{\left(\frac{1}{4}\right)^k \frac{k^3}{k^3 + 1}}{\left(\frac{1}{4}\right)^k} = 1$$

*82. S. converge per confronto asintotico con la serie geometrica $\sum_{k=1}^{\infty} \left(\frac{5}{7}\right)^k$ convergente :

$$\lim_{k \to +\infty} \frac{\frac{5^{k}+2}{7^{k+1}+1}}{\left(\frac{5}{7}\right)^{k}} = \lim_{k \to +\infty} \frac{\left(\frac{5}{7}\right)^{k} \cdot \frac{1+\frac{2}{5^{k}}}{7+\frac{1}{7^{k}}}}{\left(\frac{5}{7}\right)^{k}} = \frac{1}{7};$$

*83. S. diverge positivamente per confronto asintotico con la serie geometrica $\sum_{k=1}^{\infty} \left(\frac{5}{2}\right)^k$ divergente ;

*84. S. diverge positivamente per confronto asintotico con la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k}$ divergente :

$$\lim_{k \to +\infty} \frac{\frac{2k^3 + 5}{3 + 4k^4}}{\left(\frac{1}{k}\right)} = \frac{1}{2} ;$$

*85. S. converge per confronto asintotico con $\sum_{k=1}^{\infty} \frac{1}{k!}$, poiché $\lim_{k \to +\infty} \frac{\frac{3k^2}{(k^2+1)\cdot k!}}{\frac{1}{k!}} = 3$ e $\sum_{k=1}^{\infty} \frac{1}{k!}$ serie convergente (infatti $\frac{1}{k!} = \frac{1}{2\cdot 3\cdot 4\dots k} \le \frac{1}{2^{k-1}} \ \forall k \ge 0$ e $\sum_{k=1}^{\infty} \frac{1}{2^{k-1}}$ serie geometrica convergente di ragione $\frac{1}{2}$ <1)

$$e \lim_{k \to \infty} \frac{\frac{3k^2}{(k^2+1)\cdot k!}}{\frac{1}{k!}} = 3;$$

- *86. S. diverge positivamente, per confronto asintotico con la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k}$ divergente, infatti $\lim_{k \to +\infty} \frac{\sin \frac{1}{k}}{\frac{1}{k}} = 1$;
- *87. S. converge per confronto asintotico con la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k^2}$ convergente:

$$\lim_{k\to+\infty}\frac{\sin\frac{2}{k^2}}{\frac{1}{k^2}}=2;$$

*88. S. converge per confronto asintotico con la serie armonica $\sum_{k=1}^{\infty} \frac{1}{k^3}$ convergente, infatti

$$\lim_{k \to +\infty} \frac{\log(1 + \frac{3}{k^3})}{\frac{1}{k^3}} = (\text{posto } \frac{3}{k^3} = x) = \lim_{x \to 0} \frac{\log(1 + x)}{\frac{x}{3}} = 3;$$

Criterio dell'ordine di infinitesimo

- *89. S. infinitesima di ordine 1, diverge infatti $\lim_{k\to\infty}\frac{k^2}{k^3+1}\cdot k=1$;
- *90. S. infinitesima di ordine 2 , converge infatti $\lim_{k\to\infty}\frac{k^3}{k^5+1}\cdot k^2=1$;
- *91. S. infinitesima di ordine $\frac{3}{2}$, converge infatti $\lim_{k\to\infty}\frac{2k}{k^2\sqrt{k}+1}\cdot k\sqrt{k}=2$;
- *92. S. infinitesima di ordine $\frac{5}{2}$, converge infatti $\lim_{k\to\infty}\frac{\sqrt{k+1}}{k^3+1}\cdot k^2\sqrt{k}=1$
- *93. S. infinitesima di ordine $\frac{3}{2}$, converge infatti $\lim_{k\to\infty}\frac{\sqrt{k+1}-\sqrt{k}}{k}\cdot k\sqrt{k}=\lim_{k\to\infty}\frac{\sqrt{k}}{(\sqrt{k+1}+\sqrt{k})}=\frac{1}{2}$
- *94. S. infinitesima di ordine 1. diverge, essendo $\lim_{k \to \infty} \frac{k^4}{k^5 + 4} \cdot k = 1$

*95. S. infinitesima di ordine 4 converge poichè $\lim_{k \to \infty} \frac{\sqrt{k^4 + 5} - \sqrt{k^4 - 3}}{k^2} \cdot k^4 = \lim_{k \to \infty} \frac{8k^4}{k^2(\sqrt{k^4 + 5} + \sqrt{k^4 - 3})} = 4$

- *96. S. . infinitesima di ordine $\frac{7}{2}$, converge, essendo $\lim_{k\to\infty}\frac{k^{\frac{1}{2}}+1}{k^4+k}$. $k^{\frac{7}{2}}=1$
- *97. S. . infinitesima di ordine 1, diverge essendo $\lim_{k \to \infty} \frac{k^{\frac{1}{2}} + k^{\frac{3}{2}}}{k^{\frac{1}{2}} + k^{\frac{5}{2}}} \cdot k = 1.$