MISURE DELL' ACCELERAZIONE DI GRAVITÀ g

In questo esperimento si vuole misurare l'accelerazione di gravità g. Diversi sono i modi possibili. Qui si considerano le oscillazioni di un pendolo fisico e la caduta libera di palline d'acciaio. Alla fine degli esperimenti si confrontino i risultati ottenuti, e si commentino pregi e difetti dei due diversi metodi.

1) PENDOLO REVERSIBILE DI KATER

INTRODUZIONE

Consideriamo un pendolo físico che oscilli sospeso alternativamente in due diversi punti, indicati con 1 e 2, non coincidenti col suo baricentro G. <u>Il periodo del pendolo che oscilla sospeso nel punto 1</u> è dato da:

$$T_1 = 2\pi \sqrt{\frac{l_1}{g}} = 2\pi \sqrt{\frac{I_1}{mgh_1}}$$

dove l_I indica la lunghezza ridotta del pendolo, I_I è il momento di inerzia del pendolo per rotazioni attorno l'asse passante per il punto 1, m la massa del pendolo e h_I è la distanza tra il punto 1 e il baricentro. Per il teorema di Steiner si ha: $I_I = I_G + mh_I^2$, con I_G momento di inerzia per oscillazioni attorno all'asse che passa per il baricentro.

Analogamente <u>il periodo del pendolo sospeso nel punto 2</u> sarà dato da:

$$T_2 = 2\pi \sqrt{\frac{l_2}{g}} = 2\pi \sqrt{\frac{I_2}{mgh}}$$

 $\operatorname{con} I_2 = I_G + mh_2^2.$

Se si trova una configurazione per cui i periodi T_1 e T_2 risultano uguali, significa che $l_1 = l_2$ cioè la lunghezza ridotta del pendolo è la stessa nelle due situazioni. Detta l tale lunghezza si ha:

$$l = l_1 = \frac{I_1}{mh_1} = \frac{I_G + mh_1^2}{mh_1}$$
 e $l = l_2 = \frac{I_2}{mh_2} = \frac{I_G + mh_2^2}{mh_2}$

da cui si ricava:

$$l m h_1 = I_G + m h_1^2$$
 e $l m h_2 = I_G + m h_2^2$

Sottraendo membro a membro le due equazioni si ottiene:

$$l m(h_1 - h_2) = m(h_1^2 - h_2^2) = m(h_1 - h_2)(h_1 + h_2)$$

Assumendo $h_1 \neq h_2$ e dividendo entrambi i membri per $m(h_1 - h_2)$ si ottiene infine:

$$l = h_1 + h_2$$
 e quindi $T = 2\pi \sqrt{\frac{h_1 + h_2}{g}}$

Pertanto, dati due punti di sospensione in corrispondenza dei quali si ha lo **stesso periodo di oscillazione**, la lunghezza ridotta del pendolo risulta uguale alla somma delle distanze dei due punti dal baricentro.

Il periodo dipende solo dalla somma h_1+h_2 e non è necessario conoscere i singoli valori di h_1 ed h_2 per ricavare g.

Il pendolo di Kater è un pendolo fisico reversibile in cui h_1+h_2 è conosciuto con gran precisione e consente quindi una misura precisa dell'accelerazione di gravità.

Il pendolo di Kater è costituito da un'asta rigida su cui scorrono due masse $(m_A=1000 \text{ g e } m_B=1400 \text{ g})$ fornita di due coltelli, in posizione simmetrica, che fungono da punti di sospensione 1 e 2 del pendolo. La distanza tra i coltelli è fissa e nota con precisione dal costruttore. Nel nostro caso vale D=99.4 cm.

Spostando le due masse lungo l'asta si sposta la posizione del baricentro G del pendolo. Per la simmetria del pendolo, il baricentro viene comunque a trovarsi sempre sulla retta congiungente i due coltelli 1 e 2.

Si spostano le masse e per ciascuna posizione si misura il periodo di oscillazione da entrambi i coltelli fino a trovare la configurazione in corrispondenza della quale i periodi di oscillazione del pendolo, relativi ai due assi di sospensione, sono uguali tra loro ($T_1 = T_2 = T^*$). Ciò significa che si è giunti alla situazione in cui il baricentro si trova tra i coltelli e la distanza tra i coltelli D coincide con la lunghezza ridotta del pendolo. Allora vale la relazione:

$$T^* = 2\pi \sqrt{\frac{h_1 + h_2}{g}} = 2\pi \sqrt{\frac{D}{g}}$$
 (1)

La misura di T* permette quindi di ricavare il valore di g.

PROCEDURA SPERIMENTALE

Si sospende il pendolo da uno dei due coltelli, si pone in oscillazione il pendolo e si misura il periodo T_1 . Si gira il pendolo, si sospende dal secondo coltello e si misura il periodo T_2 relativo al secondo asse di sospensione. Si spostano le masse e si ripetono le misure al coltello 1 e al coltello 2. Si procede fino a determinare la posizione in

corrispondenza della quale i due periodi di oscillazione del pendolo sono uguali ($T_1 = T_2 = T^*$).

Per evitare una lunga procedura di aggiustamenti successivi della posizione delle masse, non è necessario raggiungere esattamente la posizione per cui i due periodi sono identici: si misurano T_1 e T_2 in corrispondenza di alcune posizioni delle masse, a cavallo di quella cercata, e si determina per interpolazione il punto di intersezione.

Conviene lasciare fissa la massa m_E esterna ad entrambi i coltelli, posizionando il suo centro a circa 15 cm dal coltello più vicino, e muovere l'altra (m_I), partendo da una distanza di pochi centimetri dal coltello vicino alla massa esterna, ed allontanandola progressivamente a passi di 2-3 cm.

Si costruisce un grafico in cui si mette sulle ascisse la distanza x della massa mobile m_I da uno dei due coltelli e in ordinate si pongono i periodi di oscillazione T_1 e T_2 , relativi ai due assi di sospensione, misurati a tale distanza. Le due curve $T_1(x)$ e $T_2(x)$ ad un certo punto si devono intersecare. Ci saranno cioè avere due posizioni di m_I , che chiamiamo x_a e x_b , tra le quali si verifica l'intersezione: per una posizione, x_a , $T_1(x_a) > T_2(x_a)$, mentre per l'altra, x_b , sarà $T_1(x_b) < T_2(x_b)$. Se ciò non succede è necessario cambiare la posizione della massa fissa m_E e ripetere la procedura.

Quando si è determinata l'esistenza di un punto di intersezione si può procedere a spostare m_I entro le due posizioni che definiscono l'incrocio, per avvicinarsi il più possibile a quella che rende uguali i due periodi.

Per diminuire l'errore sulla misura del periodo, si ricava il suo valore dalla misura del tempo impiegato a compiere N oscillazioni complete (N \sim 10-20). In alternativa, è possibile utilizzare il cronometro collegato alla fotocellula, effettuando 10-20 misure di ogni periodo e calcolandone la media.

Nei pressi del punto d'intersezione le due curve $T_1(x)$ e $T_2(x)$ possono essere approssimate con due rette. Il valore cercato di T^* è dato dal punto di intersezione delle due rette, che può essere calcolato come:

$$T^* = \frac{T_2(x_a)T_1(x_b) - T_1(x_a)T_2(x_b)}{T_1(x_b) - T_2(x_b) - T_1(x_a) + T_2(x_a)}$$

dove x_a e x_b sono le due posizioni misurate più vicine all'intersezione.

Avendo ricavato T*, utilizzando il valore noto di D, determinare il valore di g e la sua incertezza.

NB. In realtà esistono due punti di intersezione tra le curve $T_1(x)$ e $T_2(x)$, entrambi corrispondono allo stesso valore di T^* . Non è necessario determinare anche la seconda intersezione.

OSSERVAZIONI

Il moto del pendolo è armonico ed il suo periodo è dato dalla (1) solo quando vale l'approssimazione $sin \theta_{max} \approx \theta_{max}$. Se θ_{max} non è sufficientemente piccolo, il periodo risulta meglio approssimato dall'equazione:

$$T = 2\pi \sqrt{\frac{D}{g}} \left(1 + \frac{\theta^2}{16} \right)$$

Il pendolo deve quindi compiere piccole oscillazioni. Quale angolo θ_{max} si è utilizzato? Calcolare la correzione al periodo corrispondente, valutare se è significativa rispetto le incertezze di misura ottenute ed eventualmente applicarla ai dati ricavati precedentemente.

NOTA SULL'USO DEL TIMER COLLEGATO ALLA FOTOCELLA

Dopo averlo acceso:

- con il primo pulsante "Select measurement" selezionare "Time"
- con il secondo pulsante "Select mode" selezionare "Pendulum"
- mettere in oscillazione il pendolo e utilizzare il terzo pulsante Start per far partire la misura di un periodo. È possibile misurare diverse volte il periodo mentre il pendolo oscilla.

2) MOTO DI CADUTA LIBERA

INTRODUZIONE

Un grave che cade sotto la sola azione della forza peso si muove con accelerazione uniforme, pari all'accelerazione di gravità g.

Il moto uniformemente accelerato è descritto dalla legge oraria:

$$y(t) = y(0) + v_0 t + \frac{1}{2} g t^2$$

dove y(t) indica la posizione al tempo t e v_0 la velocità iniziale.

È sempre possibile scegliere il punto di partenza come origine per la misura delle posizioni, in modo che y(0) = 0.

Da una serie di misure della posizione in funzione del tempo, è possibile determinare v_0 e g.

SVOLGIMENTO DELL' ESPERIENZA

Una sferetta d'acciaio, sospesa tramite un magnete ad un supporto, viene fatta cadere su una piattaforma. Il supporto è collegato ad un cronometro che misura il tempo di caduta della sferetta: inizia a contare il tempo quando la sferetta lascia il sostegno e si ferma quando la sferetta tocca la piattaforma. Il supporto è mobile su un'asta graduata e può essere posizionato a diverse altezze. La distanza percorsa dalla sferetta si misura con un metro a nastro.

Incominciando dalla distanza maggiore possibile, si scelgono 5 o 6 posizioni diverse \mathbf{y}_i , per ciascuna posizione si effettuano una decina di lanci della sferetta e si calcola il tempo medio di caduta \mathbf{t}_i .

Si costruisce un grafico di y in funzione di t medio.

In questo caso la velocita all'istante iniziale è nulla, pertanto l'equazione del moto si riduce a $y = \frac{1}{2} g t^2$. Ci si aspetta allora che il grafico rappresenti una parabola passante per l'origine degli assi. Facendo il grafico per la variabile $x = t^2$ si possono interpolare i dati con una retta.

Ricavare il valore dell'accelerazione di gravità e la sua incertezza dal coefficiente angolare della retta e confrontarlo con i risultati dell'esperimento precedente.