

MONASH INFORMATION TECHNOLOGY

FIT2100 Semester 2 2017 Lecture 1: Computer System Overview

Jojo Wong

Lecture 1: Learning Outcomes

- Upon the completion of this lecture, you should be able to:
 - Describe the building blocks of a computer system
 - Understand various terminologies with respect to resource allocation for the execution of programs
 - Explain the steps taken by a processor to execute a program instruction
 - Understand the concept of interrupts and how and why a processor uses interrupts

What is an operating system?

Operating System

- Exploits the hardware resources of one or more processors
- Provides a set of services to system users
- Manages secondary memory and I/O (input/output) devices on behalf of its users

What are the basic elements of a computer system?

Computer System: Basic Elements

I/O Modules **Processor** Main Memory System Bus

Processor

Controls the operation of the computer

Performs the data processing functions

Central
Processing Unit
(CPU)

Main Memory

- Stores data and programs
- Volatile
 - Contents of the memory is lost when the computer is shut down
- A.k.a. real memory or primary memory

I/O Modules

System Bus

 Provides for communication among processors, main memory, and I/O modules

- Comprises of:
 - Address bus
 - Data bus
 - Control bus

Computer Components: Top-level View

How does a program get executed by a processor?

Instruction Execution

 A program consists of a set of instructions stored in memory

processor reads (fetches) instructions from memory processor

Basic Instruction Cycle

Fetch Instructions

- The processor fetches the instruction from memory
- Program Counter (PC) holds address of the instruction to be fetched next
- PC is incremented after each fetch

Execute Instructions

- Fetched instructions are loaded into Instruction Register (IR)
- The processor interprets the instruction and performs the required action.
- Four categories of actions:
 - Processor-memory
 - Processor-I/O
 - Data processing
 - Control

Example: A Hypothetical Processor

Example: Program Execution

What are interrupts? Why a processor uses interrupts?

Interrupts

- Interrupt the normal sequencing of the processor
- Provided to improve processor utilisation
- Most I/O devices are slower than the processor
 - Processor must pause to wait for the device to complete the operation
 - Wasteful use of the processor

Classes of Interrupts

Program Generated by some condition that occurs as a result of an

instruction execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, and reference outside a user's allowed memory space.

Timer Generated by a timer within the processor. This allows the

operating system to perform certain functions on a regular

basis.

I/O Generated by an I/O controller, to signal normal

completion of an operation or to signal a variety of error

conditions.

Hardware

failure

Generated by a failure, such as power failure or memory

parity error.

Flow of Control: Without Interrupts

Flow of Control: Short I/O Wait

Flow of Control: Long I/O Wait

Interrupts: Transfer of Control

Instruction Cycle with Interrupts

Program Timing: Short I/O Wait

Program Timing: Long I/O Wait

Simple Interrupt Processing

Interrupt: Memory and Register Changes

Multiple Interrupts

An interrupt occurs while another interrupt is being processed

 e.g. receiving data from a communications line and printing results at the same time

Two approaches:

- disable interrupts while an interrupt is being processed
- use a priority scheme

Multiple Interrupts: Transfer of Control

Multiple Interrupts: Time Sequence

What are the design constraints of a computer's memory?

Computer Memory

- Major constraints in a computer's memory:
 - Amount (capacity)
 - Speed (access time)
 - Expense (cost)
- Memory must be able to keep up with the processor
- Cost of memory must be reasonable in relationship to other components

Memory Relationships

Faster access time
= greater cost per
bit

Greater capacity = smaller cost per bit

Greater capacity = slower access speed

The Memory Hierarchy

Moving down the hierarchy:

Decreasing cost per bit

Increasing capacity

Increasing access time

 Decreasing frequency of access to the memory by the processor

Principle of Locality

- Memory references by the processor tend to cluster
- Data is organised so that the percentage of accesses to each successively lower level is substantially less than that of the level above
- Can be applied across more than two levels of memory

Cache Memory

- Invisible to the OS
- Interacts with other memory management hardware
- Motivation:
 - Processor must access memory at least once per instruction cycle
 - Processor execution is limited by memory cycle time
- Exploit the principle of locality with a small, fast memory

Cache Principles

- Cache contains a copy of portion of main memory
- Processor first checks the cache
- If not found, a block of main memory is read into the cache
- Because of locality of reference, it is likely that many of the future memory references will be to other bytes within the block

Cache vs Main Memory

Structure: Cache vs Main Memory

Cache: Read Operation

What are multiprocessor systems and multicore computers?

Symmetric Multiprocessors (SMP)

- A stand-alone computer system with the following characteristics:
 - Two or more similar processors of comparable capability
 - Processors share the same main memory and are interconnected by a bus or other internal connection scheme
 - Processors share access to I/O devices
 - All processors can perform the same functions (symmetric)
 - The system is controlled by an integrated operating system that provides interaction between processors and their programs at the job, task, file, and data element levels

The operating system takes care of scheduling of tasks on individual processors and of synchronisation among processors.

SMP: Advantages

Performance

 A system with multiple processors will yield greater performance if work can be done in parallel

Availability

 The failure of a single processor does not halt the machine

Scaling

 Vendors can offer a range of products with different pricing and performance characteristics

Incremental Growth

 An additional processor can be added to enhance performance

Symmetric Multiprocessor Organisation

Multicore Computers

- A.k.a. a chip multiprocessor
- Combines two or more processors (cores) on a single piece of silicon (die):
 - Each core consists of all the components of an independent processor, including L1 cache
- Multicore chips also include L2 cache and in some cases
 L3 cache

Example: Intel Core i7-9990x (32-bit Architecture)

Summary

- So far, we have discussed:
 - Basic elements of a computer system
 - Instruction execution cycle
 - Interrupts and interrupt processing
 - Memory hierarchy and cache memory
 - Multiprocessor systems and multicore computers
- Next week:
 - Overview of operating systems

Reminder: Tutorials begin this week.

