EXAM OF STATISTICS (DESCRIPTIVE STATISTICS AND REGRESSION)

2nd Physiotherapy Version A March, 26 2019

Duration: 1 hour and 15 minutes.

(5 pts.) 1. The time required by a drug A to be effective has been measured in a sample of 150 patients. The table below summarize the results.

Response time	Patients
(0,5]	5
(5, 10]	15
(10, 15]	32
(15, 20]	36
(20, 30]	42
(30, 60]	20

- (a) Are there outliers in the sample? Justify the answer.
- (b) What is the minimum time for the 20% of patients with highest response time?
- (c) What is the average response time? Is the mean representative? What is the average response time of drug B? Is more or less respresentative than the one of drug A?
- (d) Can we assume that the sample comes from a normal population?
- (e) If we take another sample of patients with mean 18 min and standard deviation 15 min, in which group is greater a response time of 25 min?

Use the following sums for the computations: $\sum x_i = 3105 \text{ min}$, $\sum x_i^2 = 83650 \text{ min}^2$, $\sum (x_i - \bar{x})^3 = 206851.65 \text{ min}^3 \text{ y } \sum (x_i - \bar{x})^4 = 8140374.96 \text{ min}^4$.

Solution

- (a) $Q_1 = 12.5 \text{ min}$, $Q_2 = 17.5 \text{ min}$, IQR = 12.5 min, $f_1 = -6.25 \text{ min}$ and $f_2 = 43.75 \text{ min}$. Therefore there are outliers in the sample since the upper limit of the last interval is 60.
- (b) $P_{80} = 27.619 \text{ min.}$
- (c) $\bar{x} = 20.7$ min, $s^2 = 129.1767$ min², s = 11.3656 min and cv = 0.5491. The mean is not very representative since the cv > 0.5.
- (d) Let Y be the response time for drug B. $\bar{y} = 155.5$, $s_y = 5.6828$ and $cv_y = 0.3702$, therefore the mean of B is more representative since the coef. of variation is smaller.
- (e) For the first sample $z_i = 2.578$ and for the second one $z_i = 0.4667$, thus a time of 25 min is relatively greater in the second sample.
- (1.5 pts.) 2. In a regression study about the relation between two variables X and Y we got $\bar{x} = 7$ and $r^2 = 0.9$. If the equation of the regression line of Y on X is y x = 1, compute
 - (a) The mean of Y.
 - (b) The equation of the regression line of X on Y.
 - (c) ¿What value does this regression model predict for x = 6? ¿And for y = 10?

Solution

(3.5 pts.) 3. In a tennis club the age (X) and the height (Y) of the ten players conforming the female youth team has been measured.

Age (years)	9	10	11	12	13	14	15	16	17	18
Height (cm)	128	144	148	154	158	161	165	164	166	167

- (a) Plot the scatter plot.
- (b) Which regression model bests fits these data, the linear or the logarithmic?
- (c) ¿What is the expected height of a player 12.5 years old according to the best of two previous models?

Use the following sums for the computations:

$$\sum x_i = 135 \text{ years}, \sum \log(x_i) = 25.7908 \log(\text{years}), \sum y_j = 1555 \text{ cm}, \sum \log(y_j) = 50.4358 \log(\text{cm}),$$

 $\sum x_i^2 = 1905 \text{ years}^2, \sum \log(x_i)^2 = 67.0001 \log(\text{years})^2, \sum y_j^2 = 243191 \text{ cm}^2, \sum \log(y_j)^2 = 254.4404 \log(\text{cm})^2,$

 $\sum x_i y_j = 21303 \text{ years} \cdot \text{cm}, \sum x_i \log(y_j) = 682.9473 \text{ years} \cdot \log(\text{cm}), \sum \log(x_i) y_j = 4035.0697 \log(\text{years}) \text{cm}, \sum \log(x_i) \log(y_j) = 130.2422 \log(\text{years}) \log(\text{cm}).$

Solution