Section I 75 marks

Part A – 15 marks Attempt Questions 1-15 Allow about 30 minutes for this part

Use the multiple-choice answer sheet.

Select the alternative A,B,C or D that best answers the question.

1.	A chemist observed a colour change after adding bromine water, Br ₂ (aq), to an
	unknown hydrocarbon.

Which one of the following substances could she have produced in this reaction?

- (A) pentane
- (B) 2-pentene
- (C) 1,3-dibromopentane
- (D) 2,3-dibromopentane
- **2.** Which of the following correctly identifies the systematic name of the monomer that forms the polymer known as PVC?
 - (A) chloroethene
 - (B) vinyl chloride
 - (C) chloroethane
 - (D) polyvinylchloride
- **3.** Neutron-rich radioisotopes, such as cobalt-60, are most likely to be produced in which of the following?
 - (A) Particle accelerator
 - (B) Cloud chamber
 - (C) Catalytic cracker
 - (D) Nuclear reactor

4.	Which	one of the following species is the strongest oxidising agent?
	(A)	Na^+
	(B)	Na
	(C)	F
	(D)	F_2
5.		n of the following combinations, of equal volumes of $1.00 \text{ mol } \text{L}^{-1}$ solutions, act as an acid-base <i>buffer</i> ?
	(A)	Acetic acid and sodium hydroxide
	(B)	Sodium acetate and hydrochloric acid
	(C)	Acetic acid and sodium acetate
	(D)	Hydrochloric acid and sodium hydroxide
6.	This q	uestion refers to the following substances:
	iii.	H ₂ CO ₃ NH ₄ Cl NaCH ₃ COO CH ₃ COOH
	Solution	ons of which of the substances listed would be acidic?
	(A)	(i) only
	(B)	(i) and (iv)
	(C)	(i), (ii) and (iv)
	(D)	(i), (iii) and (iv)
7.	Which hardne	a of the following may indicate a fresh water sample has a high degree of ess?
	(A)	A lower than normal pH.
	(B)	A lower than normal BOD.
	(C)	A higher than normal electrical conductivity.
	(D)	A higher than normal turbidity.

8. Energy content per kg is an important consideration for bushwalkers carrying liquid fuels.

Which one of the following fuels releases the most energy per kg when it undergoes complete combustion?

Alkanol	Molar mass	Heat of combustion (kJ/mol)
ethanol	46.1	1364
butane	58.1	2877
1-propanol	60.1	2021
hexane	86.2	4163

- (A) ethanol
- (B) butane
- (C) 1-propanol
- (D) hexane
- **9.** Rainwater has a pH of about 5, while seawater has a pH of about 8.

Which statement is correct concerning the *hydrogen ion concentrations* of rainwater and seawater?

- (A) The hydrogen in concentration in rainwater is greater by a factor of 1000.
- (B) The hydrogen in concentration in rainwater is greater by a factor of 3.
- (C) The hydrogen in concentration in rainwater is less by a factor of 1000.
- (D) The hydrogen in concentration in rainwater is less by a factor of 5/8.
- **10.** Borate ion (BO_3^{3-}) assists in buffering seawater at a pH of about 8, in the following equilibrium:

$$H_3BO_3 + H_2O \rightleftarrows H_2BO_3 + H_3O^+$$

Which of the above species are amphiprotic?

- (A) H_3BO_3 and H_2O
- (B) H_2O and H_2BO_3
- (C) H_2O and H_3O^+
- (D) H_3BO_3 and H_2BO_3

11. Methanol can be produced through the reaction of carbon monoxide with hydrogen, as shown below:

$$CO_{(g)} + 2H_{2(g)} \rightleftarrows CH_3OH_{(g)}$$
 $\Delta H = -155 \text{ kJ mol}^{-1}$

Which set of conditions would increase the *equilibrium yield* of methanol?

- (A) Low pressure and high temperature
- (B) High pressure and low temperature
- (C) Low pressure and temperature
- (D) High temperature and pressure
- **12.** Which of the following correctly matches the name of the scientist with the theory on the nature of acids they proposed?

	Scientist	Theory of the nature of acids
(A)	Arrhenius	Acids produce H ⁺ ions in solution.
(B)	Bronsted	Acids accept protons.
(C)	Davy	Acids contain oxygen.
(D)	Lavoisier	Acids contain hydrogen.

13. Observe the following structural diagram.

Which of the following is the *systematic name* for this compound?

- (A) 3,4-dibromo-4-chlorobutane
- (B) 1,2-dibromo-1-chlorobutane
- (C) 1-chloro-1,2-dibromobutane
- (D) 4-chloro-3,4-dibromobutane

- **14.** Which one of the following is used as a catalyst in the dehydration of ethanol?
 - (A) concentrated H₂SO₄
 - (B) dilute H₂SO₄
 - (C) concentrated HCl
 - (D) dilute HCl
- **15.** A chemistry class was asked to determine the % of sulfate in lawn fertiliser. According to the packet, the fertiliser contained 36% sulfate by mass.

Each student weighed out 2.00 g of the lawn fertilizer and dissolved it in dilute nitric acid. They added excess 2M barium nitrate solution and noted that a white precipitate formed. They then followed slightly different techniques to obtain dry samples of barium sulfate, which they weighed carefully. Each student repeated the investigation 3 times. Their results are shown below.

G ₄ 1 4	Mass of ppt (g)			
Student	TRIAL 1	TRIAL 2	TRIAL 3	Average
1	1.12	1.56	1.30	1.33
2	1.87	1.80	1.72	1.80
3	1.75	2.15	1.46	1.79
4	1.35	1.40	1.45	1.40

Which student's results could be described as being the most accurate and reliable?

- (A) Student 1.
- (B) Student 2.
- (C) Student 3.
- (D) Student 4.

Attempt questions 16 – 28 Allow about 1 hour and 45 minutes for this part		
Answer the questions in the spaces provided. Show all relevant working in questions involving calculations.		
Question 16 (3 marks)	Marks	
Most of the ethanol used in industry within Australia is produced from <i>ethylene</i> , which is derived from petroleum.	3	
Explain how ethanol could be used as an alternative to petroleum, as a source of ethylene.		

Part B

Student Number:

Question I (I mains	Q	uestion	17	(4	marks)
----------------------	---	---------	-----------	----	-------	---

7.50~g of a pure, monoprotic alkanoic acid (represented as HX) is reacted with excess Na_2CO_3 producing 2.02~L of dry carbon dioxide gas, measured at $25^{\circ}C$ and 100~kPa pressure.

(a)	Calculate the moles of carbon dioxide gas released by this reaction.	1
(b)	Use your answer to (a) to calculate the molar mass of the alkanoic acid.	2
(c)	Another monoprotic alkanoic acid is propanoic acid. Draw the structural formula of propanoic acid.	1

Marks

2

Question 18 (5 marks)

(a)

Colourless dinitrogen tetroxide decomposes to brown nitrogen dioxide according to the following equation:

$$NO(0) \longleftrightarrow 2NO(0)$$

The graph below shows how the moles of $N_2O_4\left(g\right)$ in a 1 L sealed flask changes over time.

At what time did the system come to a state of equilibrium? Provide a

	chemical justification of your answer.	
(b)	Identify how an observer of the flask may infer the system has reached a state of equilibrium.	1
(c)	Use the data in the graph to determine the moles of nitrogen dioxide which would be present when the system is at equilibrium.	2

Questi	ion 19 (7 marks)	Mark
unacce contair The hi was no	y 2009, an estimated 4000 Brisbane homes were supplied with water with eptably high levels of the fluoride ion. The water they were supplied with ned up to 31 mg/L of fluoride instead of the maximum allowable 1.5 mg/L. gh fluoride levels were due to an error made at a water treatment plant, which of detected until after the release of the water. Fluoride poisoning may result umber of adverse health effects, including extreme nausea.	
(a)	Given that high levels of fluoride can result in adverse health effects, account for addition of fluoride to the mass water supply.	1
(b)	Calculate the moles of fluoride ion present in a 250 mL glass of water containing the maximum acceptable levels of fluoride.	2
(c)	Accidents such as the one described above illustrate the need for careful monitoring of the quality of the mass water supply. Describe TWO other tests which must be carried out on water prior to its release for public consumption and justify the need for each test.	4

Student Number	
Student Number.	

Marks

4

Question 20 (4 marks)

A chemistry teacher carried out the following demonstration.

A small mass of sulfur was combusted a in a spoon, burning with a blue flame. Whilst alight, it was placed into a gas jar to collect the gas produced.

A mist of water was sprayed into the gas jar. Some of the water which fell to the bottom of the jar was collected and tested with universal indicator. The indicator turned red.

Evaluate the above demonstration as a model for the formation of environmental

acid rain. Include relevant balanced equations in your answer.		

Question 21 (5 marks)

Marks

In early 2009 astronomers announced the discovery of molecules of ethyl methanoate, in interstellar space. It was noted that this is the chemical giving raspberries their characteristic flavour.

The table compares properties of three related substances.

Substance	Ethanol	Methanoic acid	Ethyl methanoate
Boiling point (°C)	78	101	54
Solubility in water	Soluble	Soluble	Soluble

(a)	Provide a structural formula for ethyl methanoate.	1
(b)	Outline a procedure for making a sample of ethyl methanoate in the laboratory.	2
(c)	Identify a compound, which is <i>not</i> an ester, that is an isomer of ethyl methanoate and describe an <i>observable property</i> in which the two compounds would differ.	2

Question 22 (6 marks)		Marks
(a)	Provide a description of Le Chatelier's Principle.	1
(b)	Assess the significance of this principle to the work carried out by Haber in his efforts to industrially produce ammonia.	5

Student Number:

Question 23 (5 marks)

Marks

5

The table below shows the structural formula of two monomers, labelled A and B.

Monomer	Structural formula
A	H C=C CI
В	O H-O-H H-O-H

Compare the polymerisation reactions of monomers A and B. Use appropriate equations to support your answer.		

Student Number	
Student Number.	

Ques	stion 24 (7 marks)	Marks
(a)	Draw the Lewis electron dot diagrams for molecular oxygen and ozone.	1
(b)	Compare the structure and reactivity of these allotropes of oxygen.	2
(c)	Write the equation for the production of ozone in the stratosphere.	1
(d)	Compare the impact of ozone concentration at ground level and in the stratosphere.	3

Question 25 (5 marks)

Marks

In monitoring the effect of the discharge effluent on river water quality, a chemist uses *atomic absorption spectroscopy* to compare the sodium ion concentrations above and below the discharge point in the Ottawa River. The table below shows the absorbance values at a wavelength of 589 nm, of water samples, and also those for a range of standard solutions.

Solution	Na^+ Concentration (mg L^{-1})	Absorbance at 589 nm (%)
Standard	10	16
Standard	20	34
Standard	40	63
Standard	60	98
Upriver Sample		4
Downriver Sample		54

(a) Plot the 'Standards on the grid below. (Label axes).

2

(b) Complete the entries for Na^+ Concentration of water samples in the table above.

1

(c) Assess the downstream water quality for freshwater organisms, for which the maximum sodium ion concentration is 100 ppm.

2

.....

.....

Student Number:		
-----------------	--	--

Question 26 (3 marks)

One suggested method to remove carbon dioxide from the atmosphere is to construct "artificial trees" in which air passes through slats wet with dilute sodium hydroxide solution. The descending solution of sodium carbonate and water is collected and missed with calcium hydroxide, precipitating calcium carbonate and regenerating sodium hydroxide for reuse.

Marks

Calcium carbonate is separated and heated to recover the carbon dioxide, for burial, and the calcium oxide recycled.

a)	Construct an equation for the reaction of carbon dioxide with sodium hydroxide.	1
b)	The main energy input in the above process is to decompose calcium carbonate, requiring 180 kJ mol ⁻¹ .	2
	If the heat of combustion of natural gas is 1000 kJ mol ⁻¹ , determine the necessary volume of gas, at 298 K and 100 kPa, needed to provide the heat to decompose 1000 kg of calcium carbonate.	

uesti	ion 27 (3 marks)	Marks
	250 mL of a 0.15 mol L ⁻¹ solution of sodium hydroxide is added to a 175 mL solution of 0.08 mol L ⁻¹ sulfuric acid.	
	Calculate the pH of the resulting solution. Show all working.	3
uesti	ion 28 (3 marks)	
	Referring to <i>oxidation-reduction</i> reactions, explain the structure AND chemistry of either the dry-cell OR lead-acid cell.	3

Student Number:											
Student Mannet.	 • •	• •	 	 ٠	٠	 ٠	٠		٠		٠

Section II

Total marks: 25

Allow about 45 minutes for this Section.

Answer the questions in a writing booklet. Extra writing booklets are available.

Show all relevant working in questions involving calculations.

Questi	ion 29	- Shipwrecks, Corrosion and Conservation (25 marks)	Marks
(a)	Ident	tify TWO sources of minerals in oceans.	2
(b)		lation-reduction (or redox) reactions, are the basis of many industrial biological processes.	
	(i)	Outline the major features in the operation of a galvanic cell.	2
	(ii)	Discuss the contribution of Volta and Davy in increasing our understanding of electron transfer reactions and its applications.	4
(c)		ain the difference in concentration of dissolved oxygen AND carbon ide at the surface of the ocean AND at a depth of 1000 m.	4
(d)		erstanding the chemistry of metals and alloys is essential for using and ecting them appropriately.	
	(i)	A mild steel bracket has been bolted to a copper earthing plate in a seaside location. Explain the rapid corrosion of the steel under these conditions.	3
	(ii)	Aluminium is a more active metal than iron, yet it is commonly used for window frames. Explain this statement.	2
	(iii)	Explain how the composition of various types of steel affects their use. Include specific examples in your answer.	4
(e)	(i)	Define the term <i>corrosion</i> .	1
	(ii)	Explain the process of rusting. Include chemical equations in your answer.	3

Chemistry

DATA SHEET

wogadro constant, N_A 6.022×10^{23} mol ⁻	-1
olume of 1 mole ideal gas: at 100 kPa and	
at 0°C (273.15 K) 22.71 L	
at 25°C (298.15 K) 24.79 L	
onisation constant for water at 25°C (298.15 K), K_w	
pecific heat capacity of water	K^{-1}

Some useful formulae

$$\mathrm{pH} = -\mathrm{log}_{10}[\,\mathrm{H}^+\,] \qquad \qquad \Delta H = -m\,C\,\Delta T$$

Some standard potentials

K++e-	<	K(s)	-2.94 V
Ba ²⁺ + 2e ⁻	~	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	4	Ca(s)	-2.87 V
Na++ e-	~	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	4	Mg(s)	-2.36 V
Al ³⁺ + 3e ⁻	~	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$		Mn(s)	-1.18 V
H ₂ O + e ⁻	~	$\frac{1}{2}H_2(g) + OH^-$	-0.83 V
$Zn^{2+} + 2e^{-}$		Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	~	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	=	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	~	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	~	Pb(s)	-0.13 V
H ⁺ + e ⁻	~	$\frac{1}{2}H_2(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	~	$SO_2(aq) + 2H_2O$	0.16 V
Cu ²⁺ + 2e ⁻	~	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^-$	~	20H-	0.40 V
Cu ⁺ + e ⁻	4	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	~	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	4	I-	0.62 V
Fe ³⁺ + e ⁻	<	Fe ²⁺	0.77 V
Ag+ + e-		Ag(s)	0.80 V
$\frac{1}{2} Br_2(l) + e^-$	~	Br-	1.08 V
$\frac{1}{2} Br_2(aq) + e^-$		Br-	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	<	H_2O	1.23 V
$\frac{1}{2}Cl_2(g) + e^-$	-	CI ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	<	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}Cl_2(aq) + e^-$	~	CI-	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	~	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	~	F-	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

	2 He	4.003 Helium	10	Ne	20.18	Neon	18	Ā	39.95	Argon	36	Z	83.80	Krypton	54	Xe	131.3	Xenon	98		[222.0]	Radon	118	Ono	1	Ununotium
,			6	ц	19.00	Fluorine	17	<u></u>	35.45	Chlorine	35	Br	79.90	Bromine	53	ı	126.9	lodine	85	A.	[210.0]	Astatine	117			
			∞	0	16.00	Oxygen	91	n	32.07	Sulfur	33	Se	78.96	Selenium	52	Te	127.6	Tellurium	28.5	2	[210.0]	Polonium	116	Cuh	I	Unanhexium
			7	z	14.01	Nitrogen	15	٦,	30.97	Phosphorus	33	As	74.92	Arsenio	51	SP	121.8	Antimony	83	DI	209.0	Bismuth	115			
			9	O	12.01	Carbon	14	SI	28.09	Shoon	32	ge	72.61	Germanium	50	Sn	118.7	Tin	82	21	207.2	Lend	114	Uuq	1	Ununquadium
			2	В	10.81	Boron	13	F	26.98	Aluminium	31	g	69.72	Galliam	49	П	114.8	Indum	81	= ;	204.4	Thallium	113			
ZLZ											30	Zu	65.39	Zinc	48	2	112.4	Cadmium	08	811	200.6	Mercury	112	Oub	I	Unumbiam
THE ELEMENTS				ment		ent					56	5	63.55	Cop per	47	Ag	107.9	Silver	62	100	197.0	Gold	111	Ouu	1	Unumunium
THE				Symbol of element		Name of dement					28	ź	58.69	Niclea	46	Pd	106.4	Pallactum	87	1	195.1	Platinum	110	Cun	l	Unumiliam
VRLE O		KEY	79	Αn	197.0	Gold					ĬŽ	S	58.93	Cobalt	45	Rh	102.9	Rhodum	<u>LL</u>	= :	192.2	Iridium	109	Mt	[268]	Meimenum
ODIC TARLE OF	2		Atomic Number		Atomic Weight						97	Не	55.85	Iron	44	Ru	101.1	Ruthenium	92	S S	190.2	Osmium	801	Hs	[265.1]	Hassium
PERIC			Ā		•						25	Mn	54.94	Manganese	43	Tc	[98.91]	Technetium	SŽ.	Ke	186.2	Rhenium	107	Bh	[264.1]	Bohrium
											1 2	ت	52.00	Chromium	42	Mo	95.94	Molybdenum	47,	4	183.8	Tungsten	106	Sg	[263.1]	Seaborgium
											53	>	50.94	Vanadim	41	ź	92.91	Niobium	£7.	10	180.9	Tantalum	201	å	[262.1]	Dubnium
											22	Ţ	47.87	Titamium	40	Zr	91.22	Zirconium	27	= 1	178.5	Hafnium	101	Rf	[261.1]	Rutherfordum
											21	Š	44.96	Scandium	36	Y	88.91	Yttrium	57-71			Lanthanides	89-103			Actinides
			4	Be	9.012	Beryllium	12	M	24.31	Magnesium	20	ర	40.08	Calcium	38	Sr	87.62	Strontium	56	pg	137.3	Barium	88	Ra	[226.0]	Radium
	1 Н	1.008 Hydrogen	3	Ľ	6.941	Lithium	11;	e Z	22.99	Sodium	19	¥	39.10	Potassium	37	윒	85.47	Rubidium	55	ĉ	132.9	Caesium	87	Ŧ	[223.0]	Francium

Lanthanid	es													
22	58	59	09	61	62	63	64	65	99	29	89	69	70	71
La	ඊ	Pr	PZ	Pm	Sm	Eu	РS	Tb	Dy	Ж	д	Tm	Yb	Γn
138.9	140.1	140.9	144.2	[146.9]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Lanthanum	Cerium	Prascodymium	Neodymium	Promethium	Samerium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium

89 90 91 92 93 94 95 96 97 98 Ac Th Pa U Np Pu Am Cm Bk Cf [227:0] 232.0 231.0 238.0 [237:0] [239.1] [244.1] [244.1] [249.1] [252.1] Actinium Protactinium Neptunium Patronium Patronium Patronium Saltomium Saltomium <t< th=""><th>Actinides</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Actinides														
Th Pa U Np Pu Am Cm Bk 232.0 231.0 238.0 [237.0] [239.1] [241.1] [244.1] [249.1] Thorism Proxactinism Umnium Reparation Patronium Americana Scriena Berkelian	68	06	91	92	93	94	95	96	6	86		100	101	102	103
232.0 231.0 238.0 [237.0] [239.1] [241.1] [244.1] [249.1] Thorium Proxactinium Unnium Repartation Phronium American Contain Berhalian	Ac	Th	Pa	Þ	νp	Pu	Am	Cm	Bk	ŭ		Fm	Md	Š	Lr
Thorium Protectinium Uranium Neptanium Phatonium Americium Curium Berkelium	[227.0]		231.0	238.0	[237.0]	[239.1]	[241.1]	[244.1]	[249.1]	[252.1]	[252.1]	[257.1]	[258.1]	[259.1]	[262.1]
	Actinium	F	Protectinism	Ummium	Neptunium	Pletonium	Americism	Ounium	Berkelium	Californium		Fermium	Mendelevium	Nobelium	Lawrencium

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes 23 Np and 99 Tc.

20

Strathfield Girls High School 2009 Year 12 Trial Examination

Part A – Multiple choice Answer sheet

Student Number	
----------------	--

	A	В	C	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

HSC CHEMISTRY 2009 Trial HSC Examination

Marking scheme and sample answers

Multiple Choice

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Answer	D	A	D	D	С	С	С	В	A	В	В	A	В	A	В

SECTION II - OPTION 9.6

Question 29 - Shipwrecks, Corrosion and Conservation

(a)

Marking Criteria	Marks
Identifies TWO sources of minerals in oceans	2
Identifies one source of minerals in oceans	1

Sample Answer

Sources of minerals in oceans include-

- Rainwater falling onto land (terrestrial environments) that penetrates through rocks and soil and leaches out soluble minerals.
- Hydrothermal vents in mid-ocean ridges.

(b) (i)

Marking Criteria	Marks
Outlines all major features of a galvanic cell – oxidation half cell, reduction half cell, salt	2
bridge and external circuit	
Outlines some of the major features of a galvanic cell	1

Sample Answer

A galvanic cell must have two half cells which are linked by a metallic conductor to allow electron transfer and a salt bridge to allow ion transfer. One half cell is the oxidation half cell and the other is the reduction half cell. Each half cell must have an electrode, which is a conductor of electrons such as a metal or carbon, and an electrolyte which contains mobile ions. When a galvanic cell operates, electrons are transferred from the oxidation half cell to the reduction half cell through the metallic conductor.

(b) (ii)

Marking Criteria	Marks
Describes the work of Volta and Davy and indicates their contribution to our understanding	3 – 4
of electron transfer reactions.	
Describes the work of Volta OR Davy	2
OR outlines the work of both Volta and Davy	
Outlines the work of Volta OR Davy	1

Volta's main contribution was the construction of a useable galvanic cell – the first source of direct electric current. He showed that if two different metals, silver and zinc, were bought into contact in a salt solution an electric current was generated. He later obtained much larger currents from his Voltaic pile. This device was made of a vertical pile of alternating disks of zinc and silver, with each pair of disks separated by cardboard soaked in a concentrated salt solution called brine. Attaching a wire to the ends of the Pile produced an electric current.

Davy's major contribution was to use the Voltaic pile to electrolyse many compounds and so decompose them. He also coined the term 'electrochemistry' which we use today. Davy developed improved versions of Volta's pile and used them to pass strong electric currents through molten salts, such as potash (potassium hydroxide) and soda (sodium hydroxide), that were suspected of containing undiscovered elements. In this way he isolated the new elements potassium, sodium, barium, calcium, strontium and magnesium.

(c)

Marking Criteria	Marks
Explains the difference in the concentration of oxygen and carbon dioxide at the surface and	3 - 4
at a depth of 1000 m by referring to the effects of the processes of dissolution, photosynthesis	
and respiration at each depth.	
Explains the difference in the concentration of oxygen at the surface and at a depth of 1000	1 - 2
m by referring to the effects of the processes of dissolution, photosynthesis and the	
penetration of light, respiration and decomposition at each depth OR	
Explains the difference in the concentration of carbon dioxide at the surface and at a depth of	
1000 m by referring to the effects of the processes of dissolution, respiration and	
decomposition at each depth.	

Sample Answer

Ocean water near the surface is generally saturated with oxygen and carbon dioxide as there is good stirring of both the water and the atmosphere near the surface facilitating the dissolution of these gases. As well as being dissolved directly from the atmosphere, oxygen is produced in the surface waters by the photosynthetic process of phytoplankton.

Oxygen concentration generally decreases with increasing depth. This is because production of oxygen by photosynthetic organisms occurs only in the top 100 m as light cannot penetrate further. Also oxygen is continually consumed by organisms such as fish and aerobic bacteria. Thus at depths of 1000 m respiration processes of marine organisms as well as of decomposition dominate and oxygen levels fall. Thus oxygen concentrations at 1000 m are typically around 0.5 ppm.

Carbon dioxide concentrations increase with increasing depth. At a depth of 1000 m carbon dioxide gas is continually being generated by organisms through respiration and decomposition of organic matter, however, it is not being removed as no photosynthesis occurs at great depths.

(d) (i)

$(\mathbf{u})(\mathbf{l})$	
Marking Criteria	Marks
Explains how the presence of a less active metal AND	3
a more conductive electrolyte accelerate corrosion.	
Explains how the presence of a less active metal accelerates corrosion OR	2
explains how a more conductive electrolyte accelerates corrosion.	
Identifies that contact with a less active metal accelerates corrosion OR	1
Identifies that the presence of ions in the moisture layer accelerates corrosion.	

Sample Answer

Contact with a less active metal will accelerate the rate at which rusting occurs. The less reactive metal acts as a cathode, a site for reduction, and so makes it easier for electrons to be transferred to the oxygen so that the reactive metal is oxidised more rapidly.

Also the presence of sodium and chloride ions provides a more conductive electrolyte than water to allow ion migration and faster charge movement thus increasing the rate of corrosion.

(d) (ii)

Marking Criteria	Marks
Explains the passivating behaviour of aluminium in terms of the type of oxide layer formed	2
compared to the oxide layer formed by iron.	
Identifies aluminium as a passivating metal.	1

Sample Answer

Aluminium is a more active metal than iron. When aluminium is exposed to the air, it rapidly forms an oxide layer on the metal surface. Unlike rust, the oxide layer formed when iron is exposed to the air, the thin layer of aluminium oxide is tightly bonded to the metal and is non-porous so oxygen and water cannot penetrate to the aluminium metal beneath. Consequently, corrosion of the aluminium does not continue and the aluminium is protected by its own oxide layer and so can be used as window frames.

(d) (iii)

Marking criteria	Marks
Provides a detailed explanation of how the composition of steel affects its use in terms of its	3 - 4
properties for at least TWO identified types of steel.	
Explains how the composition of one identified type of steel affects its use in terms of its	2
properties.	
Identifies one alloying metal in steel and describes how it affects the use of the steel in terms	
of its properties.	
Correctly identifies the composition of an identified type of steel	1
OR states the effect on a property of steel due to an added element	

Sample answer

All steel is an alloy of iron and a small amount of carbon. As steel is a mixture, adding different elements to the steel will produce steels with particular properties for certain applications as the steel takes on the properties of the added elements.

Mild steel has < 0.2% carbon and is soft and malleable and it can be easily welded and so it is used in car bodies and to make ship hulls. However, structural steel has 0.2-0.5% carbon. Increasing the carbon content of the steel increases its hardness and tensile strength and so it is used as girders and beams in buildings and as reinforcing for buildings where high tensile strength is necessary.

Stainless steel contains about 10 - 20 % chromium and about 10% nickel. Alloying steel with chromium produces a passive oxide layer on the surface of the steel which makes it very resistant to corrosion. The presence of nickel improves the steel's tensile strength and hardness. Thus stainless steel can be used for cutlery, kitchen sinks and dental instruments as it is hard and takes a high polish and is resistant to chemicals in food such as acids.

(e) (i)

Criteria	Marks
Any correct definition of corrosion	1

Sample answer

Corrosion is the degradation (or eating away) of a metal due to the oxidation of the metal by substances in the environment so that it loses its strength and properties and is unable to perform its intended purpose.

(e) (ii)

Marking Criteria	Marks
Outlines the reactions at the anode and cathode, supported by <u>correct</u> chemical equations.	
Describes the migration of Fe ²⁺ ions and OH ions in the electrolyte and the formation of	
Fe(OH) _{2 (s)} . Outlines the formation of rust as hydrated iron (III) oxide.	3
Describes the reactions at the anode and cathode, supported by a <u>correct</u> chemical equation	
for one and describes the migration of the ions.	2
OR	
Describes the reactions at the anode and cathode, formation of $Fe(OH)_{2(s)}$ and the	
formation of rust as hydrated iron (III) oxide.	
Outlines the reactions at the anode (oxidation of iron) and cathode (reduction of oxygen).	1
OR	
Outlines the rusting process as an electrochemical process involving oxidation, reduction	
and the migration of ions.	

Sample answer

Rusting of iron occurs when oxygen and water are present. In the process of rusting a galvanic cell is set up. An anode site occurs where the iron is under stress such as at bends. At the anode, the iron is oxidised to form iron (II) ions.

Anode reaction: Fe (s) \rightarrow Fe²⁺ (aq) + 2e⁻

The electrons produced at the anode flow through the iron to a cathode site. This occurs where an impurity such as carbon is located. At the cathode, reduction of oxygen occurs to produce hydroxide ions.

Cathode reaction: $O_{2 (aq)} + 2H_2O_{(l)} + 4e^- \rightarrow 4OH^-_{(aq)}$

The moisture layer (water) allows for the migration of the ions (cations to cathode and anions towards anode) to maintain electrical neutrality, so the Fe²⁺ and OH⁻ ions move towards each other and react to form insoluble iron (II) hydroxide.

Equation: $Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_{2 (s)}$

Finally, iron (II) hydroxide reacts with oxygen to form rust (hydrated iron (III) oxide).

Equation: $2\text{Fe}(OH)_{2(s)} + \frac{1}{2}O_2 \rightarrow \text{Fe}_2O_3$. $H_2O + H_2O$