Datastrukturer – tidskomplexitet

Skemaer – til sammenligning

Udfyld et skema som det herunder med Big O estimater (kun i tid, ikke i rum) for de datastrukturer du lærer. Skriv også noter til dig selv om nogle af de antagelser du gør dig (for eksempel tager det O(1) at fjerne det sidste element i en arraylist, hvis arrayet ikke kopieres, men O(n) hvis det gør ...)

Stack

Læs et element ¹	første	sidste	midterste	i'te	næste²
		O(1)		O(i)*	
Find element ³	eksisterer usorteret liste	eksisterer sorteret liste	eksisterer ikke usorteret liste	eksisterer ikke sorteret liste	
	O(n)*	O(n)*	O(n)*	O(n)*	
Indsæt nyt element	i starten	i slutningen	i midten	efter node	før node
		O(1)			
Fjern element	første	sidste	i'te	efter node	før node
		O(1)			
Byt om på to elementer	første og sidste	første og i'te	sidste og i'te	i'te og j'te	nodes

^{*}kun muligt med get(index)

¹ At læse et element er som regel det samme som at skrive nyt indhold i et eksisterende element

² Hvis vi allerede har fat i ét element i en datastruktur, kan vi måske læse det "næste" hurtigere end i+1'te

³ Find et element med en bestemt værdi – alt efter om vi ved at listen er sorteret eller ej, og om elementet findes eller ej.