- 1. (Definition) Initial functions: zero function (constant), successor function, projection functions.
- 2. (Definition) primitive recursion.
- 3. (Definition) A primitive function is either an initial function or obtained by applying composition or primitive recursion to primitive functions.
- 4. (Theorem) Every primitive function is provably recursive, i.e. there is a Σ_1 formula $\varphi(v^n, u)$ such that $\Phi_{PA} \vdash \varphi(\underline{a}^n, f(a^n))$ and $\Phi_{PA} \vdash \forall v^n \exists^{-1} u \varphi(v^n, u)$.
- 5. (Theorem) Σ_1 -completeness: For any Σ_1 -formula φ , if $\mathfrak{N} \models \varphi$ then $\Phi_{PA} \vdash \varphi$.
- 6. (Theorem) Formalized Σ_1 -completeness: For any Σ_1 -formula φ , $\Phi_{PA} \vdash (\varphi \to der(\underline{n}^{\varphi}))$.

Proof. Use induction to show

$$\Phi_{\mathrm{PA}} \vdash \forall v(\varphi \to \mathrm{der}(\underline{n^{subst(n^{\varphi}, f(v))}})),$$

where subst is a function that takes codes of φ and of the term represented by v and returns the code of formula that is φ with its v substituted by the term represented by v; f takes a variable-free term and returns its code.

- 7. (L1) If $\Phi \vdash \varphi$ then $\Phi \vdash \operatorname{der}(n^{\varphi})$.
- 8. (L2) $\Phi \vdash (\operatorname{der}(n^{\varphi}) \wedge \operatorname{der}(n^{(\varphi \to \psi)}) \to \operatorname{der}(n^{\psi}))$.
- 9. (L3) $\Phi \vdash (\operatorname{der}(\underline{n}^{\varphi}) \to \operatorname{der}(\underline{n}^{\operatorname{der}(\underline{n}^{\varphi})}))$.
- 10. Φ_{PA} satisfies (L1): Suppose $\Phi_{\text{PA}} \vdash \varphi$. Then there is a derivation for this. Encode this derivation with a number p. Then $\mathfrak{N} \models \text{prvs}(\underline{p}, \underline{n}^{\varphi})$. By Σ_1 -completeness, it follows that $\Phi_{\text{PA}} \vdash \text{prvs}(\underline{p}, \underline{n}^{\varphi})$.

Alternatively, one could obtain this fact by this line of reasoning: $\Phi_{PA} \vdash \varphi \Rightarrow \mathfrak{N} \models \operatorname{der}(\underline{n^{\varphi}}) \Rightarrow \Phi_{PA} \vdash \operatorname{der}(\underline{n^{\varphi}})$ (by Σ_1 -completeness) $\Rightarrow \Phi_{PA} \vdash \operatorname{der}(\underline{n^{\operatorname{der}}(\underline{n^{\varphi}})})$ (by L3) $\Rightarrow \mathfrak{N} \models \operatorname{der}(\underline{n^{\operatorname{der}}(\underline{n^{\varphi}})}) \Rightarrow \Phi_{PA} \vdash \operatorname{der}(\underline{n^{\varphi}})$.

11. Φ_{PA} satisfies (L3) since it is a special case of Formalized Σ_1 -completeness.