Online tools for planetary sciences

B. Carry¹ & M. Mahlke² ¹Lagrange, Observatoire de la Côte d'Azur ¹Institut d'Astrophysique Spatiale

— A typical research project

— A typical research project

Repetitive (and tedious) tasks!

- Planning and conduction of observations
 - Observations already exist?
 - Target/sample available? visible?
- Gathering ancillary data for the analysis
 - $\hbox{$\circ$ } \hbox{$Complementary information $_{diameter, \ fall/find, \ ...} } \\$
 - \circ Context for research another population
- Repetitive low-level analysis
 - Spectral classification
 - Cross-matches & merges

Shared resources save community time =

Tedious tasks? Share the load!

- Many agencies have the mission to support the community ESO/ESA/NASA, JPL/MPC/IMCCE, ...
- \circ The expertize is in the community \to individual initiatives SSHADE, Meteoretical Bulletin, SMASS
- ▶ More time for your research

Tedious tasks? Automatize them!

- Click, click, click... copy-paste, click...
- Or code some processes to work for you
- ▶ Virtual Observatory & Community librairies

Community services are less prone to errors!

- \circ One user \to one lpha-, eta-tester, user...
- \circ Many users \to bug reports! and community solutions & patches!
- ► Robustness of analysis → results

—— Pointing a telescope

Example

Where do I point the telescope from the name of a target?

—— Pointing a telescope

Example

Where do I point the telescope from the name of a target?

Answer: CDS, IMCCE Miriade, JPL SSD, MPC, Lowell AstEph

Visibility of targets

Example

Can I observe asteroids Ceres, Pallas, 4321 tonight? And M31?

Visibility of targets

Example

Can I observe asteroids Ceres, Pallas, 4321 tonight? And M31?

Answer: IMCCE ViSiON, Lowell AstObs

—— Accessing data

Example

What is the taxonomy of Vernazza? the diameter of Groussin?

—— Accessing data

Example

What is the taxonomy of Vernazza? the diameter of Groussin?

Answer: IMCCE SsODNet, JPL sbdb, OCA MP3C, Lowell AstInfo, SiMDA

- Web forms Access at human-scale
 - Reprocess archival observations
 - Need to contextualize and complement
 - Perform operations beyond our confort zone
- Shared libraries Automatize and rationalize
 - Local installation & calls
 - \circ Part of codes, scripts \rightarrow repeatability
- Web services and APIs Use remote resources
 - Send query & get answer
 - Maintenance on the provider side

- Web forms Access at human-scale
 - Reprocess archival observations
 - Need to contextualize and complement
 - Perform operations beyond our confort zone
- Shared libraries Automatize and rationalize
 - Local installation & calls
 - Part of codes, scripts → repeatability
- Web services and APIs Use remote resources
 - Send query & get answer
 - Maintenance on the provider side

- Web forms Access at human-scale
 - Reprocess archival observations
 - Need to contextualize and complement
 - Perform operations beyond our confort zone
- Shared libraries Automatize and rationalize
 - Local installation & calls
 - Part of codes, scripts → repeatability
- Web services and APIs Use remote resources
 - Send query & get answer
 - Maintenance on the provider side

red resources? Examples How to do it? Typical tasks and solutions

—— Pimp my processing

- Web forms Access at human-scale
 - Reprocess archival observations
 - Need to contextualize and complement
 - Perform operations beyond our confort zone
- Shared libraries Automatize and rationalize
 - Local installation & calls
 - Part of codes, scripts → repeatability
- Web services and APIs Use remote resources
 - Send query & get answer
 - Maintenance on the provider side

Reddened solar spectrum

sbpy's sbpy.spectroscopy.SpectralGradient can be used to redden a solar spectrum, although this approach may be revised with future sbpy capabilities.

```
Linguage though as on the second of the seco
```

MANIMOS (Source spectrum is tapered. (Symphot, observation)
MANIMOS astroy/Source spectrum is tapered.
14.0 v / 100 nm
(Spectral Gradient) works with behaved obsorbed represent as maniholes. To use if for a spectrum the function to volocify

must be repeatedly called:

In (31): rolar (adex = u.fluantity(IS.to.color((6.55.* u.us. v)) for v (a vevel)

(a) x = pit.pcai)
xx.plottwwe.fluxd, label="Solar spectrum")
xx.plottwwe.fluxd, label="reddened by () ".format(S))
pit.setplax, ylabel="flux density (!))", format(fluxd.unit),
xlabel="miwelength" (!)", format(wave.unit))
pit.tegond1)

r = 10**(0.4 * color_index.value)

- Web forms Access at human-scale
 - Reprocess archival observations
 - Need to contextualize and complement
 - Perform operations beyond our confort zone
- Shared libraries Automatize and rationalize
 - Local installation & calls
 - Part of codes, scripts → repeatability
- Web services and APIs Use remote resources
 - Send query & get answer
 - Maintenance on the provider side

Typical tasks and some solutions =

TBD

