答:AB

3-3 判斷函數的方法

主題一 判斷函數的方法

1. 函數的對應方式:函數可以一對一,多對一,但不能夠一對多。

回到上一節曾提到的例子:假設t為時間(單位為秒),x是位置(單位為公分),然後某人的移動軌跡,時間與位置的關係如下: $x=x(t)=t^2+2t-1$ 。

為什麼函數一對一跟多對一是合理的呢?因為我們可以在某個時間走到某個位置,而且這個位置之後都不會再走到,這就是一對一的概念。我們也可以在不同的時間走到相同的位置, 也就是同一個位置被走到了好幾次,這就是多對一的概念。

但我們不可能在同一個時間出現在不同的位置,這已經脫離現實的世界了!一個t不能對應多個x,所以函數不能夠一對多。

【例】下列何者為函數關係:

《註》C 不是函數的原因是「定義域中所有的數一定要對應出去」,所以 3 一定要對應出去才行。 D 不是函數的原因是「一對多」。

從圖形判斷函數的方法 2.

【例】下列各圖,何者為函數圖形 $?(y \in x)$ 的函數)

(A)

(B)

(C)

(D)

答:ABDE

【例】下列各圖,何者為函數圖形 $?(y \in x)$ 的函數)

(A)

(B)

(C)

(D)

(E)

答:BCD

主題二 函數圖形的分析重點

- 一般而言,函數圖形的分析重點大致如下:
 - 1. 對稱性;
 - 2. 與兩軸的交點;
 - 3. 遞增遞減性;
 - 4. 最大最小值及局部極值(相對極值);
 - 5. 凹口方向與反曲點;
 - 6. 漸近線。

名稱	本課程之章節	未來將使用的 微分工具	備註
對稱性	3-5-5 奇函數與偶函數	無	1.奇函數的圖形會對原點對稱, 偶函數的圖形會對 y 軸對稱。 2.奇函數在[-a, a]上的積分為 0, 偶函數在[-a, a]上的積分為在 [0, a]上的積分值的兩倍
與兩軸的交點	3-3-2 函數交點的計算 6-2 多項函數圖形與兩軸的交點	無	
遞增遞減性	3-3-3 函數的遞增遞減性	一次微分	
極值	3-3-4 相對極值	一次微分	
凹口方向 反曲點	無	二次微分	
漸近線	6-5 漸近線	函數的極限	利用極限的計算,找出函數圖 形的水平漸近線、垂直漸近線 與斜漸近線

主題三 相關的定義

- 一、函數的遞增與遞減:
 - 1. 設 $f: A \to R$,若對於所有的 x_1 、 $x_2 \in A$,當 $x_1 < x_2$ 時恆有 $f(x_1) \le f(x_2)$,則稱 f 為遞增函數(increasing function)。
 - 2. 設 $f: A \to R$,若對於所有的 x_1 、 $x_2 \in A$,當 $x_1 < x_2$ 時恆有 $f(x_1) \ge f(x_2)$,則稱 f 為遞減函數(decreasing function)。
 - 3. 設 $f: A \to R$,若對於所有的 $x_1 \times x_2 \in A$,當 $x_1 < x_2$ 時恆有 $f(x_1) < f(x_2)$,則稱 f 為嚴格 遞增函數(strictly increasing function)。
 - 4. 設 $f: A \to R$,若對於所有的 $x_1 \times x_2 \in A$,當 $x_1 < x_2$ 時恆有 $f(x_1) > f(x_2)$,則稱 f 為嚴格 遞減函數(strictly decreasing function)。
 - 5. 設 $f:A\to R$,若對於所有的 $x_1\neq x_2$ 恆有 $f(x_1)=f(x_2)$,則稱 f 為常數函數(constant function)。
 - 《註》 f 的定義域 A 可以是 R ,也可以是 [a,b] 。
- 二、最大值與最小值(absolute maximum and absolute minimum):
 - 1.設 $f: A \to R \ \exists k \in A$,若對於所有的 $x \in A$ 恆有 $f(x) \le f(k)$,則稱f在k處有最大值f(k)。
 - 2.設 $f:A \to R$ 且 $k \in A$,若對於所有的 $x \in A$ 恆有 $f(x) \ge f(k)$,則稱 f 在 k 處有最小值 f(k)。
 - 《註》最大值又稱為絕對極大值;最小值又稱為絕對極小值。
- 三、相對極大值與相對極小值(relative maximum and relative minimum):
 - 1.設 $f: A \to R$ 且 $k \in A$,若 A 中存在包含 k 的開區間 I ,使得對於所有的 $x \in I$ 恆有 $f(x) \le f(k)$,則稱 f 在 k 處有相對極大值 f(k) 。
 - 2.設 $f: A \to R \ \exists \ k \in A$,若 A 中存在包含 k 的開區間 I ,使得對於所有的 $x \in I$ 恆有 $f(x) \ge f(k)$,則稱 f 在 k 處有相對極小值 f(k) 。
 - 《註》相對極大值又稱為局部極大值;相對極小值又稱為局部極小值。

四、奇函數與偶函數:

- 1.若函數 f 滿足 f(-x) = f(x) ,則 f 稱為偶函數 (even function) 。
- 2.若函數 f 滿足 f(-x) = -f(x) ,則 f 稱為奇函數(odd function)。
- 3.偶函數的圖形對 y 軸對稱;奇函數的圖形對原點對稱。

【例】
$$f(x) = |x|$$
、 $g(x) = \cos x$ 、 $h(x) = x^2$ 為偶函數。

【例】
$$f(x) = x \cdot g(x) = \sin x \cdot h(x) = x^3$$
 為奇函數。