FSA and regular languages

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2021/22

ersion: 509510d @2022-01-16

Languages and automata

- Recognizing strings from a language defined by a grammar is a fundamental question in computer science
- The efficiency of computation, and required properties of computing device depends on the grammar (and the language)
- A well-known hierarchy of grammars both in computer science and linguistics is the *Chomsky hierarchy*
- Each grammar in the Chomsky hierarchy corresponds to an abstract computing device (an automaton)
- The class of *regular grammars* are the class that corresponds to *finite state* automata

How to describe a language?

Formal grammars

A formal *grammar* is a finite specification of a (formal) language.

- Since we consider languages as sets of strings, for a finite language, we can (conceivably) list all strings
- How to define an infinite language?
- Is the definition {ba, baa, baaa, baaaa, ...} 'formal enough'?
- Using regular expressions, we can define it as baa*
- But we will introduce a more general method for defining languages

Phrase structure grammars

- A phrase structure grammar is a generative device
- If a given string can be generated by the grammar, the string is in the language
- The grammar generates *all* and the *only* strings that are valid in the language
- A phrase structure grammar has the following components
 - Σ A set of *terminal* symbols
 - N A set of *non-terminal* symbols
- $S \in \mathbb{N}$ A special non-terminal, called the start symbol
 - R A set of *rewrite rules* or *production rules* of the form:

$$\alpha \rightarrow \beta$$

which means that the sequence α can be rewritten as β (both α and β are sequences of terminal and non-terminal symbols)

Chomsky hierarchy and automata

Grammar class	Rules	Automata
Unrestricted grammars	$lpha{ ightarrow}eta$	Turing machines
Context-sensitive grammars	$\alpha \land \beta \rightarrow \alpha \gamma \beta$	Linear-bounded automata
Context-free grammars	$A{ ightarrow}lpha$	Pushdown automata
Regular grammars	$A \rightarrow a \mid A \rightarrow a $ $A \rightarrow aB \mid A \rightarrow B \mid a$	Finite state automata

Regular grammars: definition

A regular grammar is a tuple $G = (\Sigma, N, S, R)$ where

- Σ is an alphabet of terminal symbols
- N are a set of non-terminal symbols
- S is a special 'start' symbol $\in N$
- R is a set of rewrite rules following one of the following patterns (A, B \in N, $\alpha \in \Sigma$, ε is the empty string)

Left regular	
1. $A \rightarrow a$	
2. $A \rightarrow Ba$	
3. $A \rightarrow \epsilon$	

Right regular	
1. $A \rightarrow a$	
$2. \ A \to \alpha B$	
3. $A \rightarrow \epsilon$	

Regular languages: some properties/operations

- $\mathcal{L}_1\mathcal{L}_2$ Concatenation of two languages \mathcal{L}_1 and \mathcal{L}_2 : any sentence of \mathcal{L}_1 followed by any sentence of \mathcal{L}_2
 - \mathcal{L}^* Kleene star of \mathcal{L} : \mathcal{L} concatenated with itself 0 or more times
 - \mathcal{L}^{R} Reverse of \mathcal{L} : reverse of any string in \mathcal{L}
 - $\overline{\mathcal{L}}$ Complement of \mathcal{L} : all strings in $\Sigma_{\mathcal{L}}^*$ except the ones in \mathcal{L} $(\Sigma_{\mathcal{L}}^* \mathcal{L})$
- $\mathcal{L}_1 \cup \mathcal{L}_2$ Union of languages \mathcal{L}_1 and \mathcal{L}_2 : strings that are in any of the languages
- $\mathcal{L}_1 \cap \mathcal{L}_2$ Intersection of languages \mathcal{L}_1 and \mathcal{L}_2 : strings that are in both languages

Regular languages are closed under all of these operations.

Three ways to define a regular language

- A language is regular if there is regular grammar that generates/recognizes it
- A language is regular if there is an FSA that generates/recognizes it
- A language is regular regular if we can define a regular expressions for the language

Regular expressions

- Every regular language (RL) can be expressed by a regular expression (RE), and every RE defines a RL
- A RE e defines a RL $\mathcal{L}(e)$
- Relations between RE and RL

$$\begin{aligned}
&-\mathcal{L}(\varnothing) = \varnothing, \\
&-\mathcal{L}(\varepsilon) = \varepsilon, \\
&-\mathcal{L}(\mathbf{a}) = \alpha \\
&-\mathcal{L}(\mathbf{ab}) = \mathcal{L}(\alpha)\mathcal{L}(\mathbf{b}) \\
&-\mathcal{L}(\mathbf{a*}) = \mathcal{L}(\alpha)^*
\end{aligned}$$

-
$$\mathcal{L}(\mathbf{a}|\mathbf{b}) = \mathcal{L}(\mathbf{a}) \cup \mathcal{L}(\mathbf{b})$$
 (some author use the notation $\mathbf{a}+\mathbf{b}$, we will use $\mathbf{a}|\mathbf{b}$ as in many practical implementations)

where, $a,b\in \Sigma$, ε is empty string, \varnothing is the language that accepts nothing (e.g., $\Sigma^* - \Sigma^*$)

• Note: no standard complement and intersection in RE

Regular expressions

and some extensions

- Kleene star (a*), concatenation (ab) and union (a|b) are the basic operations
- Parentheses can be used to group the sub-expressions. Otherwise, the priority of the operators are as listed above: a|bc*=a|(b(c*))
- In practice some short-hand notations are common

```
 \begin{array}{lll} -\ . &= (a_1 | \ldots | a_n), & -\ [ \hat{} a - c ] = . \ -\ (a | b | c) \\ &= for \ \Sigma = \{ \alpha_1, \ldots, \alpha_n \} & -\ d = (0 | 1 | \ldots | 8 | 9) \\ &-\ a + = a a * & -\ [ a - c ] = (a | b | c) & -\ \ldots \end{array}
```

• And some non-regular extensions, like (a*)b\1 (sometimes the term *regexp* is used for expressions with non-regular extensions)

Useful identities for simplifying regular expressions

- u|(v|w) = (u|v)|w
- u | v = v | u
- u(v|w) = uv|uw
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- $u\varepsilon = \varepsilon u = u$
- $\varnothing \mathbf{u} = \varnothing$
- u(vw) = (uv)w
- $\varnothing * = \epsilon$
- $\epsilon * = \epsilon$
- (u*)* = u*
- u | u = u
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- (u|v)* = (u*|v*)*
- u*|ε = u*

Useful identities for simplifying regular expressions

- $u \mid (v \mid w) = (u \mid v) \mid w$
- u | v = v | u
- u(v|w) = uv|uw
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- $11\epsilon = \epsilon 11 = 11$
- \bullet \varnothing 11 = \varnothing
- u(vw) = (uv)w
- $\varnothing * = \epsilon$
- $\epsilon * = \epsilon$
- (u*)* = u*
- u | u = u
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- (u|v)* = (u*|v*)*
- $u*|\epsilon = u*$

An exercise

Simplify a | ab*

Useful identities for simplifying regular expressions

- $u \mid (v \mid w) = (u \mid v) \mid w$
- u | v = v | u
- u(v|w) = uv|uw
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- 116 = 611 = 11
- \bullet \varnothing 11 = \varnothing
- u(vw) = (uv)w
- $\varnothing * = \epsilon$
- $\epsilon * = \epsilon$
- (u*)* = u*
- u | u = u
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- (u|v)* = (u*|v*)*
- $u*|\epsilon = u*$

An exercise

Simplify a | ab* alab* = aelab*

Useful identities for simplifying regular expressions

- u | (v | w) = (u | v) | w
- u | v = v | u
- u(v|w) = uv|uw
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- $11\epsilon = \epsilon 11 = 11$
- \bullet \varnothing 11 = \varnothing
- u(vw) = (uv)w
- $\varnothing * = \epsilon$
- $\epsilon * = \epsilon$
- (u*)* = u*
- u | u = u
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- (u|v)* = (u*|v*)*
- $u*|\epsilon = u*$

An exercise

Simplify
$$a \mid ab*$$

 $a \mid ab* = a\epsilon \mid ab*$
 $= a(\epsilon \mid b*)$

Useful identities for simplifying regular expressions

- $u \mid (v \mid w) = (u \mid v) \mid w$
- u | v = v | u
- u(v|w) = uv|uw
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- $11\epsilon = \epsilon 11 = 11$
- \bullet \varnothing 11 = \varnothing
- u(vw) = (uv)w
- $\varnothing * = \epsilon$
- $\epsilon * = \epsilon$
- (u*)* = u*
- u | u = u
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- (u|v)* = (u*|v*)*
- $u*|\epsilon = u*$

An exercise

Simplify
$$a \mid ab*$$

 $a \mid ab* = a\epsilon \mid ab*$
 $= a(\epsilon \mid b*)$
 $= ab*$

Converting regular expressions to FSA

- For more complex expressions, one can replace the paths for individual symbols with corresponding automata
- Using ϵ transitions may ease the task
- The reverse conversion (from automata to regular expressions) is also easy:
 - identify the patterns on the left, collapse paths to single transitions with regular expressions

• The general idea: remove (intermediate) states, replacing edge labels with regular expressions

An exercise: simplify the resulting regular expressions

Two example FSA

what languages do they accept?

Two example FSA

what languages do they accept?

We will use these languages and automata for demonstration.

Concatenation

Kleene star

Kleene star

• What if there were more than one accepting states?

Reversal

Complement

Union

Intersection

Intersection

...or

$$L_1\cap L_2=\overline{\overline{L_1}\cup\overline{L_2}}$$

Closure properties of regular languages

- Since results of all the operations we studied are FSA: Regular languages are closed under
 - Concatenation
 - Kleene star
 - Reversal
 - Complement
 - Union
 - Intersection

Wrapping up

- FSA and regular expressions express regular languages
- Regular languages and FSA are closed under

ConcatenationReversal

Kleene starUnion

ComplementIntersection

- To prove a language is regular, it is sufficient to find a regular expression or FSA for it
- To prove a language is not regular, we can use pumping lemma (see Appendix)

Wrapping up

- FSA and regular expressions express regular languages
- Regular languages and FSA are closed under

ConcatenationReversal

Kleene starUnion

ComplementIntersection

- To prove a language is regular, it is sufficient to find a regular expression or FSA for it
- To prove a language is not regular, we can use pumping lemma (see Appendix)

Next:

Parsing

Acknowledgments, credits, references

Is a language regular?

— or not

- To show that a language is regular, it is sufficient to find an FSA that recognizes it.
- Showing that a language is not regular is more involved
- We will study a method based on *pumping lemma*

intuition

• What is the length of longest string generated by this FSA?

intuition

• What is the length of longest string generated by this FSA?

intuition

- What is the length of longest string generated by this FSA?
- Any FSA generating an infinite language has to have a loop (application of recursive rule(s) in the grammar)
- Part of every string longer than some number will include repetition of the same substring ('cklm' above)

definition

For every regular language L, there exist an integer p such that a string $x \in L$ can be factored as x = uvw,

- $uv^iw \in L, \forall i \geqslant 0$
- $v \neq \epsilon$
- $|uv| \leq p$

definition

For every regular language L, there exist an integer p such that a string $x \in L$ can be factored as x = uvw,

- $uv^iw \in L, \forall i \geqslant 0$
- $v \neq \epsilon$
- $|uv| \leqslant p$

How to use pumping lemma

- We use pumping lemma to prove that a language is not regular
- Proof is by contradiction:
 - Assume the language is regular
 - Find a string x in the language, for all splits of x = uvw, at least one of the pumping lemma conditions does not hold
 - $uv^iw \in L \ (\forall i \geq 0)$
 - $v \neq \epsilon$
 - $|uv| \leq p$

Pumping lemma example

prove $L = a^n b^n$ is not regular

- Assume L is regular: there must be a p such that, if uvw is in the language
 - 1. $uv^iw \in L \ (\forall i \geqslant 0)$
 - 2. $v \neq \epsilon$
 - 3. $|uv| \leq p$
- Pick the string a^pb^p
- For the sake of example, assume p = 5, x = aaaabbbbb
- Three different ways to split

a aaa abbbbb	violates 1
aaaa ab bbbb	violates 1 & 3
aaaaab bbb b	violates 1 & 3
ů v w	