Actuadores y sensores

Sensores

Sensor de ultrasonido HC-SR04:

Para permitir que el robot pueda detectar obstáculos cercanos, se utilizan sensores de ultrasonido HC-SR04. Éstos permiten detectar y medir distancias a objetos y permite que el robot, a partir de la información recabada, pueda tomar decisiones.

Figure 1: Sensor de ultrasonido HC-SR04

MPU-9250 giróscopo, acelerómetro y magnetómetro

Para poder determinar la orientación del hexapodo, se utiliza un módulo integrado de acelerómetro, giróscopo y magnetómetro MPU-9250. El magnetómetro permite determinar la orientación absoluta del robot con respecto a los polos magnéticos.

Figure 2: Acelerómetro, giróscopo y magnetómetro MPU-9250

Módulo de comunicación Bluetooth HC-05

Para el control inalámbrico del robot de utiliza un módulo Bluetooth HC-05. Permite el envio de consignas para el posicionamiento del robot así como para determinar su estado en tiempo real.

Figure 3: Módulo Bluetooth HC-05

Módulo GPS NEO-6

Para determinar la posición absoluta del robot en función de la latitud y longitud terrestre se utiliza un módulo GPS NEO-6. Éste permitiría que el robot pueda planificar y realizar trayectorias entre dos puntos de forma más precisa.

Figure 4: Módulo GPS NEO-6

Sensor de imágenes ov7670

Para poder reconocer objetos y obstáculos durante las trayectorias del robot, podría utilizarse un sensor de imagenes ov7670. Se facilita de esta forma el control inalámbrico del robot.

Figure 5: Sensor de imágenes ov7670

Actuadores

Servo TowerPro 996r

Para el caso de las articulaciones más desfavorables (las más alejadas del centro del robot) se utiliza Servo TowerPro 996r con un torque máximo de 11 kg.cm a 6V.

Figure 6: Servo TowerPro 996r

Servo Futaba S3003

Para el caso de las articulaciones menos desfavorables se utilizan motores Futaba S3003 con un torque máximo de $4.1~{\rm kg.cm}$ a $6{\rm V}.$

Figure 7: Servo Futaba S3003

Drivers

Controlador USC-32

El USC-32 es un controladorde servos de 32 canales para controlar hasta 32 servos de forma simultánea. La comunicación se realiza a través de UART. El control se realiza mediante comandos que indican el servo a controlar, el ángulo y el tiempo de duración de los moviemientos.

Figure 8: Controlador USC-32