QCM : Vacances de la Toussaint

N°	Question	Vrai	Faux
1	Le principe de superposition permet de caractériser n'importe quel système linéaire	√	
2	A l'équation différentielle $\dot{u} + au(t) = 0$, où a est réel, on peut associer l'équation caractéristique $p^2 + ap = 0$.		√
3	Dans un circuit RLC (quelconque) soumis à une excitation sinu- soïdale, par exemple la tension issue d'un Générateur Basse Fré- quence de la forme $e_0.\cos(\omega t)$, la tension aux bornes d'un élément est alors de la forme $u(t) = u_0.\cos(\omega t)$		√
4	Quand le gain en dB est négatif, le système atténue le signal.	√	
5	Dans un diagramme de Bode, l'intervalle $[\omega, 5\omega]$ occupe approximativement 70% d'une décade	√	
6	Soit un système dont le régime libre est décrit par l'équation dif- férentielle $\ddot{u} + \alpha \dot{u} + 2\omega_0^2 u(t) = 0$, où α et ω_0 sont deux constantes positives. Ce système est linéaire et sa pulsation propre vaut ω_0 .		√
7	Le système dont le régime libre est décrit par l'équation différentielle $\ddot{u} + \alpha \dot{u} - \omega_0^2 u(t) = 0$, où α et ω_0 sont deux constantes positives est instable.	√	
8	Soit un système linéaire dont la fonction de transfert en régime harmonique s'écrit $\underline{H}(j\omega) = \frac{\underline{S}}{\underline{E}} = \frac{-x^2}{1-x^2+j\frac{x}{Q}}$, avec $x = \omega/\omega_0$ et $Q > 0$. L'équation différentielle associée est donc $-\ddot{s} + \frac{\omega_0}{Q}\dot{s} + \omega_0^2 s(t) = -\omega_0^2 e(t)$		√
9	L'amplitude C_p des harmoniques permet de reconstruire un signal périodique		√
10	Le régime libre d'un système linéaire stable ne diverge pas	√	
11	Lorsque le critère de Shannon est respecté, le spectre du signal échantillonné est identique à celui du signal analogique de départ.		√
12	Lorsque le nombre d'échantillon est fixé, il suffit d'augmenter la durée d'acquisition pour que le spectre calculé par FFT soit correct.		√
13	Augmenter la durée d'acquisition permet d'améliorer la résolution spectrale	√	
14	Signaux numériques et signaux échantillonnés représentent la même chose.		√

15	Le pas de quantification est d'autant plus faible que l'encodage se fait sur un petit nombre de bits	√
16	On fait l'acquisition d'un signal en créneau, de période $T=0,12$ ms. La période d'échantillonnage vaut $T_e=10~\mu s$. L'analyse spectrale présente un repliement de spectre.	√
17	La résolution spectrale est proportionnelle à l'inverse de la période d'échantillonnage.	√
18	Il est possible de trouver des porteurs de charge dont la charge est strictement inférieure à la charge élémentaire	√
19	Un ampèremètre se branche en série	√
20	Lorsque l'on place dans le cadre de l'approximation des régimes quasi stationnaires, on néglige le retard nécessaire à la propagation des signaux électriques	√
21	Il est nécessaire d'utiliser la convention récepteur pour orienter un récepteur électrique	√
22	On peut toujours identifier la puissance Joule à la puissance électrique reçue par un conducteur ohmique	✓
23	Si u est la tension aux bornes d'un conducteur ohmique de résistance R et i l'intensité du courant la traversant, la loi d'Ohm locale s'écrit toujours $u=Ri$	√
24	L'énergie d'un condensateur est une fonction continue du temps	✓
25	Dans un circuit RC, le condensateur se comporte toujours comme un récepteur électrique.	√
26	Le temps caractéristique associé à la charge ou à la décharge d'un condensateur est RC	√
27	L'intensité du courant dans un circuit RC est une fonction conti- nue du temps	√
28	Au cours de la décharge d'un condensateur, les électrons se dé- placent de l'armature chargée négativement vers l'armature char- gée positivement	√
29	En régime établi, le condensateur est équivalent à un interrupteur ouvert.	✓
30	L'équation de la trajectoire de phase en réponse à un échelon de tension est donnée par $\frac{du_c}{dt}: u_c \mapsto -\frac{1}{\tau}u_c + E$	✓
31	Le facteur de qualité d'oscillateur mécanique augmente lorsque les frottements diminuent.	✓
32	L'équation différentielle canonique vérifiée par la tension aux bornes du condensateur dans un circuit RLC série en régime libre s'écrit $\frac{du_c}{dt} + \frac{u_c}{7} = 0$ Lorsque $Q < \frac{1}{2}$, le régime transitoire est apériodique	√
33		✓
34	En régime transitoire pseudo-périodique, les solutions de l'équation homogène sont de la forme $s(t) = Ae^{-t/\tau}\cos(\omega_0 t + \phi)$	✓
35	La réponse $s(t)$, en régime établi, d'un oscillateur à un forçage sinusoïdal de fréquence f est entièrement déterminée par l'amplitude complexe associée \underline{S}	√

36	Lorsque l'élongation et le forçage sont en quadrature, on a accès à la pulsation propre de l'oscillateur	✓
37	La résonance en élongation est d'autant plus aiguë que le facteur de qualité est petit	√
38	L'association en dérivation de deux condensateur de capacité C est équivalente en régime sinusoïdal forcé de pulsation ω à un dipôle complexe d'impédance complexe $2j\omega$	√
39	La valeur efficace d'un signal sinusoïdal $u(t) = U\cos(\omega t)$ vaut $\frac{U^2}{2}$	✓
40	On impose en entrée d'un filtre passe-bas de fréquence de coupure $f_c = 1,0.10^3$ Hz un signal sinusoïdal de fréquence $1,0.10^6$ Hz. Le signal de sortie est sinusoïdal.	√
41	On impose à l'entrée d'un quadripôle un signal de la forme $e(t) = E_1 \cos(2\pi f t) + E_2 \cos(30\pi f t + \phi)$. Le signal de sortie est de la forme $s(t) = S_1 \cos(2\pi f t + \phi_{s_1})$. On en déduit que le quadripôle est non linéaire.	√
42	Si l'on veut pouvoir prévoir le comportement de deux quadripôles linéaires branchés en cascade, il est nécessaire que les impédances d'entrée soient faibles devant les impédances de sortie.	√
43	Pour intégrer un signal il est possible d'utiliser un filtre passe-bas	✓
44	Pour obtenir la valeur moyenne d'un signal, on peut utiliser un filtre passe-bas	√
45	La force de rappel exercé par un ressort est constante	✓
46	Soit une force \vec{F} pointant dans la même direction et même sens que \vec{e}_x alors on a $F_x < 0$	√
47	La pulsation propre d'un système masse-ressort est définie par $\omega_0 = \sqrt{\frac{k}{m}}$	√
48	L'équation différentielle d'un oscillateur harmonique s'écrit $\frac{dx}{dt} + \omega_0 x = 0$	√
49	La solution générale de l'équation différentielle vérifiée par un os- cillateur harmonique peut s'écrire sous la forme $x(t) = A\cos(\omega_0 t + \phi)$	√
50	Si $x(0) = x_0$ et $v(0) = 0$, avec $x_0 < 0$, alors l'allongement du ressort peut s'écrire sous la forme $x(t) = x_0 \cos(\omega_0 t)$	✓
51	La position d'un point M accroché à un ressort est donné par $x_M(t) = l_0 + A\sin(2\pi f_0 t + \frac{\pi}{3})$. Cela revient à la même chose d'écrire $x_M(t) = l_0 + A\cos(\frac{2\pi}{T_0}t + \frac{\pi}{3})$	√
52	Si l'amplitude du mouvement d'un système masse-ressort est multiplié par deux, son énergie mécanique est multiplié par quatre.	√
53	L'étude d'un mouvement dans un référentiel mobile se fait avec la même horloge que le référentiel absolu.	√
54	Le temps est considéré comme absolu, il est uniforme et s'écoule de la même manière dans tous les référentiels.	√

55	La force d'inertie de Coriolis existe lors d'un mouvement dans un référentiel en rotation dans un référentiel galiléen	✓
56	Le référentiel terrestre peut être considéré comme galiléen pour des expériences de courte durée.	√
57	En l'absence de glissement, \vec{T} est nulle	√
58	La puissance des actions de contact entre deux solides est toujours positive.	✓
59	D'après la loi de Coulomb, $\vec{T} = f\vec{N}$ quand il y a glissement	✓
60	La puissance des actions de contact entre deux solides n'est nulle qu'en l'absence de frottement	✓
61	On se frotte les mains pour augmenter les transferts thermiques et, ainsi, se réchauffer	√
62	Deux mouvements différents ont nécessairement des trajectoires différentes	√
63	L'accélération est nulle dans un mouvement à vitesse constante	√
64	Le sens de la composante radiale de l'accélération sur un mouve- ment circulaire ne dépend pas du sens de rotation	✓
65	Le sens de la composante orthoradiale de l'accélération sur un mouvement circulaire ne dépend que du sens de rotation	✓
66	Les vecteurs vitesse et accélération sont constants dans un mouvement circulaire uniforme	√
67	Le mouvement des nacelles d'une grande roue par rapport à la Terre est une translation	√
68	Le mouvement de la carrosserie d'une automobile par rapport à la Terre est toujours une translation	√
69	Un point matériel en mouvement rectiligne uniforme dans un référentiel galiléen est isolé	√
70	Un point matériel isolé dans un référentiel galiléen est en équilibre	√
71	Lors d'un choc entre un marteau et un clou, le clou exerce sur le marteau une force de même intensité que le marteau sur le clou	√
72	Une masse accrochée à un ressort oscille à la même fréquence sur la Terre et sur la Lune	✓
73	Les petites oscillations d'un pendule ont la même fréquence sur la Terre et sur la Lune	√
74	La force exercée par un point matériel sur une corde à l'extrémité de laquelle il est fixé est l'opposé de son poids	✓
75	On associe à toute force une énergie potentielle dont elle dérive	√
76	La puissance d'une force de frottement est toujours négative	√
77	L'énergie potentielle d'un système masse ressort horizontal dépend de la valeur de la masse	✓
78	L'énergie potentielle d'un système masse ressort horizontal dépend de la valeur de la raideur du ressort	√
79	L'énergie potentielle d'un ressort est supérieure quand il est allongé d'une longueur Δl à ce qu'elle est s'il est comprimé de Δl	√

80	Tout mouvement au voisinage d'une position d'équilibre stable est sinusoïdal	√
81	La force de tension d'un fil idéal peut fournir un travail	√
82	Une force conservative s'exprime comme la dérivée d'une énergie potentielle par rapport au temps	√
83	L'énergie potentielle d'un ressort maintenu immobile en étant allongé de Δl par une force d'intensité F est égale à la moitié du produit $F\Delta l$	√
84	Le moment cinétique par rapport à un point O quelconque d'un point matériel pseudo-isolé se conserve	✓
85	Le mouvement d'un point matériel dont le moment cinétique par rapport à un point O quelconque est constant est plan	✓
86	Le mouvement d'un point matériel dont le moment cinétique par rapport à un axe Δ quelconque est constant est plan	√
87	Le moment par rapport à tout point O des actions intérieures d'un objet est nul	✓
88	La puissance des actions intérieures d'un objet est nulle	√
89	Le moment cinétique par rapport à tout point O d'un point ma- tériel en mouvement rectiligne est nul	✓
90	Le moment d'inertie d'une boule homogène de rayon R par rapport à un axe passant par son centre est inférieur à celui d'un cylindre de révolution homogène de même masse, de rayon R et de hauteur R, autour de son axe de symétrie de révolution	√
91	L'énergie cinétique d'un cylindre de révolution d'axe Δ se met toujours sous la forme $E_c=J\omega^2/2$ avec J le moment d'inertie autour de l'axe Δ	√
92	La force de gravitation dérive de l'énergie potentielle effective	√
93	L'énergie potentielle effective varie avec la vitesse radiale initiale	√
94	L'énergie mécanique d'une planète en orbite autour d'un astre dépend de la masse de la planète	✓
95	La deuxième vitesse cosmique dépend du produit du rayon et de la masse de l'astre à l'attraction duquel on cherche à échapper	√
96	La direction d'une force centrale est constante	√
97	La première vitesse cosmique correspond à un état lié	√
98	La deuxième vitesse cosmique correspond à un état lié	√
99	Si la période d'une orbite elliptique de demi-grand axe a et T_a , la période d'une orbite circulaire de rayon 4a autour du même astre sera $8T_a$	√
100	On peut parcourir une orbite circulaire à une vitesse constante quelconque en utilisant des moteurs exerçant une force radiale	✓
101	Un spationaute se détache de la navette spatiale alors que celle- ci est en orbite autour de la Terre. Il s'éloignera à l'infini de la navette.	√

	le deuxième principe de la thermodynamique s'ap- ✓
I pliquent uniqu	ement à des systèmes fermés
	ression extérieures n'interviennent pas dans le pre- ✓
mier principe	ndustriel
	er principe industriel la différence des grandeurs $ $ \checkmark
	espond à la différence entre ces grandeurs massiques
	e et en sortie du système ouvert
	asse peut être différent en entrée et en sortie d'un ✓
	traversé par un écoulement stationnaire
	incipe de la thermodynamique et le théorème de
	que sont équivalents
I I	dermique est un phénomène de transport d'énergie $ $ \checkmark
sans transport	
	ermique est toujours positif
109 La loi de Four	ier indique dans quel sens se fait un échange ther- \checkmark
mique	
110 Le phénomène	de diffusion thermique est efficace sur de longues \checkmark
distances	
	hermique d'un milieu dépend des écarts de tempé- \checkmark
	iés au système
	le international, l'unité de température est le degré \checkmark
Celsius	
	mé n'échange pas d'énergie avec le milieu extérieur ✓
	st homogène à une énergie par unité de volume \checkmark
	intensives sont additives
	thermodynamique, les échanges sont négatifs, s'ils \checkmark
	le système au milieu extérieur
	mique ρ est une grandeur extensive
_	se comportent comme des gaz parfaits aux basses $ $ \checkmark
	x basses températures
_	e condensée, les phénomènes de dilatation peuvent $ $ \checkmark
toujours être	
	t à l'état d'équilibre thermodynamique si et seule- \checkmark
	iables intensives sont uniformes et stationnaires
	on d'une atmosphère, l'évaporation ou l'ébullition ✓
	at avoir lieu qu'à 100°C
	'isotherme" n'est pas isotherme ✓
1	omme à la température de 20°C et cassons-la en ✓
	peu près identiques. La température de chaque
	viron égale à 10°C
	t d'état isobare est nécessairement isotherme \checkmark
125 L'énergie inter	ne est de nature microscopique ✓
126 La variation d toutes les force	énergie interne est égale à la somme des travaux de \checkmark

127	Le rôle d'une isolation thermique est de maintenir la température	√
100	constante	,
128	Le travail des forces de pression s'écrit $W = -\int PdV$	√
129	Pendant une transformation monobare, P=cte	√
130	L'enthalpie H est une fonction d'état	✓
131	Au cours d'une transformation, la variation d'une fonction d'état dépend du chemin suivi	√
132	Au cours d'une transformation isotherme réversible, la tempéra- ture du système est égale à celle du milieu extérieur	✓
133	Il existe trois mode de transfert thermique	√
134	L'entropie s'exprime en Joule	√
135	L'entropie d'un système ne peut qu'augmenter au cours d'une transformation adiabatique brutale	√
136	L'entropie ne peut jamais diminuer	√
137	Transformation adiabatique réversible $\Leftrightarrow \Delta S = 0$	√
138	L'entropie molaire d'une phase condensée ne dépend que de la température	√
138	Pour l'eau liquide subissant une compression adiabatique dans un nettoyeur haute pression, on peut utiliser les lois de Laplace	√
139	Lors d'un bilan entropique, on peut commencer indifféremment par ΔS , S_{ech} ou S_c	✓
140	L'entropie échangée a pour expression $S_{ech} = \frac{Q}{T}$	√
141	Pour convertir une entropie massique s en entropie molaire, il suffit de multiplier s par la masse molaire	✓
142	Une machine cyclique fermée a besoin d'au moins deux sources thermiques pour fournir du travail	\checkmark
143	Comme transfert thermique et travail sont deux formes d'énergie équivalentes, on peut convertir intégralement un transfert thermique en travail récupérable	√
144	Dans le diagramme de Clapeyron, les cycles moteurs tournent dans le sens horaire	√
145	Le rendement d'une machine motrice ou réceptrice est forcément inférieur à 1	√
146	Dans un diagramme entropique (T, s) un cycle de Carnot a l'allure d'un rectangle	√
147	Le coefficient de performance d'une pompe à chaleur est l'inverse d'un rendement de moteur thermique	√
148	Pour fonctionner, une pompe à chaleur a besoin de deux sources à des températures différentes	√