1 Medición de capacitores

Figura 1: Puente con Impedancias genericas

Se diseñó un puente que permita medir capacitores en un rango de capacidad $C \in [10nF, 100nF]$ y en un rango de factor de disipación $D \in [0.015, 0.09]$, para una frecuencia de 10KHz.

Partiendo del puente de la figura 1, donde $V_d=\frac{Z_3}{Z_1+Z_3}-\frac{Z_4}{Z_4+Z_2}$, en el equilibrio $Z_1Z_4=Z_2Z_3$. Reemplazando $Z_1=R_1+\frac{1}{SC_1},\ Z_2=R_x+\frac{1}{SC_x},\ Z_3=R_3$ y $Z_4=R_4$. En el equilibrio se cumple que $C_x=\frac{C_1R_3}{R_4},\ R_x=\frac{R_1R_4}{R_3}$ y $D_x=2\pi fC_1R_1$.

1.1 Elección de componentes

Fijando $C_1=3nF$ y $R_3=1K\Omega$, y a partir de las ecuaciones $C_x=\frac{C_1R_3}{R_4}$ y $D_x=2\pi fC_1R_1$, se obtuvieron los valores de las variables de ajuste, $R_1\in\left[\frac{D_{min}}{2\pi fC_1R_1},\frac{D_{max}}{2\pi fC_1R_1}\right]=[79.5\Omega,477.46\Omega]$ y $R_4\in\left[\frac{C_1R_3}{C_{X_{max}}},\frac{C_1R_3}{C_{X_{min}}}\right]=[30\Omega,300\Omega]$.

La resistencia R_1 se implementó con una resistencia de 68Ω en serie con dos presets de 200Ω y la resistencia R_4 se implementó con una resistencia de 20Ω en serie con un preset de 200Ω y otro de 100Ω .

1.2 Análisis de sensibilidades

Para analizar la sensibilidad del puente, se graficó el cociente de la sensibilidad de V_d respecto de R_1 y R_2 . El objetivo es que dicho cociente se encuentre lo mejor posible ditribuido entre 0 y 1.

Con los valores de los componentes indicados anterioremente se obtuvo el siguiente gráfico del cociente de las sensibilidades

Figura 2: Cociente de sensibilidades

Como se observa en el gráfico, al variar R_1 y R_4 se obtuvo una superficie acotada entre 0 y 1.

1.3 Calculo del error

Para calcular el error en la medición se tuvo que distinguir cuáles fueron las fuentes de error en la medición. Supusimos que el error en analizador de impedancias es despreciable.

Las fuentes de error que supusimos fueron las siguientes:

- El error en la medición de las resistencias por parte del óhmetro lo consideramos de 1Ω
- Como V_d nunca llega a cero, y como la medición se realizó con el voltímetro de banco consideramos que el error en la medición de V_d es de 1mV

Conociendo que constructivamente R_1 y R_4 se realizaron con presets de 200 Ω , estimamos el $\Delta R_1 = \Delta R_2 = 2\Omega$ (un cuarto de vuelta del preset).

$$S_{R_1}^{V_d} \Delta R_1 = \Delta V_d$$
$$\Delta R_1 = 8\Omega$$

Considerando el peor caso cuando se suman los errores, para $\Delta R_1=8\Omega$, ahora calculamos para C_x .

$$\Delta C_x = C_1 R_3 \frac{\Delta R_4}{R_4^2}$$

Como en el peor caso $R_4=30\Omega$

$$\Delta C_x = 3nF$$

Y por último, hay que hallar el error en D_x . Como $D_x = 2\pi f C_1 R_1$, entonces:

$$\Delta D_x = 2\pi f C_1 \cdot \Delta R_1$$

$$\Delta D_x = 0.0009$$

1.4 Convergencia

Se analizó si el puente convergía para un único valor de R_1 a un único D_x y R_4 a un único C_x . Para ello se graficó Vd en funcion de C_x y R_4 en un caso y R_1 , D_x para el otro.

Figura 3: Convergencia de ${\cal V}_d$ respecto de ${\cal R}_4$ y ${\cal C}_x$

Figura 4: Convergencia de V_d respecto de R_1 y D_x

Como se observa en ambas figuras hay una unica franja violeta (mínimo) de V_d , por ende la convergancia del puente es unica para cada C_x y D_x .

1.5 Manual de uso

Para poder medir en el puente, se recomienda primero ajustar el preset correspoendiente a R_4 , debido a que la sensibilidad del puente es mayor respecto a dicha reisitencia, encontrando el mínimo de V_d . Después variar R_1 para minimizar aún mas V_d . Posteriormente desconectar todos los elementos del puente y medir las resistencias R_4 y R_1 . Finalmente con las ecuaciones anteriormente mencionadas se obtiene el valor del capacitor medido, donde $C_x = \frac{C_1 R_3}{R_4}$, $R_x = \frac{R_1 R_4}{R_3}$ y $D_x = 2\pi f C_1 R_1$.

1.6 Mediciones

Se midieron los capacitores con el analizador de impedancias y con el puente.

1.6.1 Analizador de impedancia

Frecuencia	С	D
1KHz	9.8nF	0.015
10KHz	9.6nF	0.023
100KHz	$9.3\mathrm{nF}$	0.085

Table 1: Capacitor mínimo

Frecuencia	С	D
1KHz	47.24nF	0.019
10KHz	$26 \mathrm{nF}$	0.003
100KHz	$43.56\mathrm{nF}$	0.08

Table 2: Capacitor medio

Frecuencia	С	D
1KHz	108nF	0.018
10KHz	108nF	0.024
100KHz	102nF	0.083

Table 3: Capacitor máximo

Frecuencia	С	D
1KHz	186nF	0.01
10KHz	181nF	0.016
100KHz	$171 \mathrm{nF}$	0.08

Table 4: Capacitor doble del máximo

1.6.2 Puente

Se midió V_d con el voltímetro de banco

Frecuencia	С	D
1KHz	9.87nF	0.005
10KHz	9.9nF	0.013
100KHz	$9.58\mathrm{nF}$	0.1

Table 5: Capacitor mínimo

Frecuencia	С	D
1KHz	44.8nF	0.0013
10KHz	$45.5\mathrm{nF}$	0.012
100KHz	$42.4\mathrm{nF}$	0.13

Table 6: Capacitor medio

Frecuencia	С	D
1KHz	108nF	0.0013
10KHz	$108\mathrm{nF}$	0.013
100KHz	$89.6\mathrm{nF}$	0.14

Table 7: Capacitor máximo

Frecuencia	С	D
1KHz	115nF	0.003
10KHz	115 nF	0.037
100KHz	115nF	0.3

Table 8: Capacitor doble del máximo

1.7 Conclusión

Como era de esperarse la medicion del capacitor al doble del maximo, no se puedo medir debido que el preset llegó a su maximo. En cuanto a la medicion del D del capacitor en todos los casos nos dio mal, esto atribuimos a un errado analisis de sensibilidades, y esto implicó que al variar el preset correspondiente al D no se pudiese apreciar una variacion en el V_d . Además para mejorar la medición se tendria que haber medido con un amplificador de instrumentación.