

# D1-H Tina Linux PWM 开发指南

发布日期: 2021.04.09

版本号: 1.0





### 版本历史

 版本号
 日期
 制/修订人
 内容描述

 4.0
 2021.04.09
 AWA1611
 新建初始版本

Therefore theref

131051

版权所有 © 珠海全志科技股份有限公司。保留一切权利

USI PSI

10 m





# 目 录

| 1 | 概述                                              | 1                |
|---|-------------------------------------------------|------------------|
|   | 1.1分编写目的 (4)                                    | 1551<br>1        |
|   | 1.3 相关人员                                        | 1                |
| 2 | 模块介绍         2.1 源码结构说明                         | 2<br>2<br>2<br>2 |
|   | 2.2.1.1 pwm-sunxi-group.c                       | 2                |
|   | 2.2.2 dts 配直                                    | ۷                |
| 3 | 接口描述 3.1 驱动层使用说明                                | <b>6</b> 6 7     |
|   | thates, thates, thates, thates, thates, thates, | 181051           |
|   |                                                 |                  |

1200 ST

版权所有 © 珠海全志科技股份有限公司。保留一切权利

(Aliby)

v ~3





#### 格 表

| 1-1 适用产品列表                 | 1  |
|----------------------------|----|
| 3-15 pwm_request 接口说明表     | 6% |
| 3-2 pwm_free 接口说明表         | 6  |
| 3-3 pwm_config 接口说明表       | 7  |
| 3-4 pwm_set_polarity 接口说明表 | 7  |
| 3-5 pwm_enable 接口说明表       | 7  |
| 3-6 pwm 节点列表               | 8  |

Inamed In

8





# 1.1 编写目的

介绍全志 PWM 的使用方法。

# 1.2 适用范围

|                          | 表 1-1: 适用 | 产品列表 | (8)               |        |
|--------------------------|-----------|------|-------------------|--------|
|                          | est est   | 189  | et D              | SI     |
| 产品名称                     | 内核版本      | That | 驱动文件              | Thalls |
| D1-H                     | Linux-5.4 |      | pwm-sunxi-group.c |        |
| 1.3 相关人员<br>PWM 驱动和应用开发人 | 员。        |      |                   |        |

# 1.3 相关人员



# 2.1 源码结构说明

本模块借助于标准 Linux PWM 子系统。其代码路径为:

tina/lichee/linux-5.4/drivers/pwm/pwm-sunxi-group.c

## 2.2 模块配置说明

在 tina 根目录下,执行 make kernel\_menuconfig,进行内核驱动的配置。

### 2.2.1.1 pwm-sunxi-group.c

```
Device Drivers
└->Pulse-Width Modulation (PWM) Support
    └─>SUNXI PWM SELECT.
        └─>Sunxi PWM group support
```

## 2.2.2 dts 配置

通过命令 cdts 可以跳转到方案 dts 的路径。

方案 dts 路径:

tina/lichee/linux-5.4/arch/riscv/boot/dts/sunxi/sun20iw1p1.dtsi

#### pwm 配置如下:

```
pwm: pwm@2000c00 {
        \#pwm\text{-cells} = <0x3>;
        compatible = "allwinner,sunxi-pwm";
        reg = <0x0 0x02000c00 0x0 0x3ff>;
        clocks = <&ccu CLK_BUS_PWM>;
```



```
resets = <&ccu RST BUS PWM>;
        pwm-number = <8>;
        pwm-base = <0x0>;
        sunxi-pwms = <&pwm0>, <&pwm1>, <&pwm2>, <&pwm3>, <&pwm4>,
                <&pwm5>, <&pwm6>, <&pwm7>; <
pwm0: pwm0@2000c10 {
        compatible = "allwinner,sunxi-pwm0";
        reg = <0x0 0x02000c10 0x0 0x4>;
        reg base = <0x02000c00>;
};
pwm1: pwm1@2000c11 {
        compatible = "allwinner,sunxi-pwm1";
        reg = <0x0 0x02000c11 0x0 0x4>;
        reg_base = <0x02000c00>;
};
pwm2: pwm2@2000c12 {
        compatible = "allwinner,sunxi-pwm2";
                                             Transfer (S)
        reg = <0x0 0x02000c12 0x0 0x4>;
        reg_base = <0x02000c00>;
};
pwm3: pwm3@2000c13 {
        compatible = "allwinner,sunxi-pwm3";
        reg = <0x0 0x02000c13 0x0 0x4>;
        reg_base = <0x02000c00>;
};
pwm4: pwm4@2000c14 {
        compatible = "allwinner,sunxi-pwm4";
        reg = <0x0 0x02000c14 0x0 0x4>;
        reg_base = <0x02000c00>;
};
pwm5: pwm5@2000c15 {
        compatible = "allwinner,sunxi-pwm5";
        reg = <0x0 0x02000c15 0x0 0x4>;
        reg_base = <0x02000c00>;
};
pwm6: pwm6@2000c16 {
       compatible = "allwinner, sunxi-pwm6";
        reg = <0x0 0x02000c16 0x0 0x4>;
        reg base = <0x02000c00>;
};
pwm7: pwm7@2000c17 {
        compatible = "allwinner,sunxi-pwm7";
        reg = <0x0 0x02000c17 0x0 0x4>;
        reg_base = <0x02000c00>;
```

板级 dts 主要是配置 pwm 的引脚设置,通过 cconfigs 可以跳转到板级 dts 的路径下:

```
tina/device/config/chips/dl-h/configs/nezha/linux/board.dts
```

board.dts 配置如下所示:

vanos1

版权所有 © 珠海全志科技股份有限公司。保留一切权利

351

SL



```
&pio {
          .....//省略其他模块的引脚设置
       pwm0_pin_a: pwm0@0 {
               pins = "PD16";
               function = "pwm0";
              drive-strength = <10>;
               bias-pull-up;
       };
       pwm0 pin b: pwm0@1 {
               pins = "PD16";
               function = "gpio_in";
               bias-disable;
       };
       pwm2_pin_a: pwm2@0 {
               pins = "PD18";
               function = "pwm2";
               drive-strength = <10>;
               bias-pull-up;
       };
                                      Tranget P. Tranget
       pwm2_pin_b: pwm2@1 {
               pins = "PD18";
               function = "gpio_in";
       pwm7_pin_a: pwm7@0 {
               pins = "PD22";
               function = "pwm7";
               drive-strength = <10>;
               bias-pull-up;
       };
       pwm7_pin_b: pwm7@1 {
               pins = "PD22";
               function = "gpio_in";
       };
                ..//省略其他模块的引脚设置
};
&pwm0 {
       pinctrl-names = "active", "sleep";
      pinctrl-0 = <&pwm0_pin_a>;
       pinctrl-1 = <&pwm0_pin_b>;
       status = "okay";
};
&pwm2 {
       pinctrl-names = "active", "sleep";
       pinctrl-0 = <&pwm2_pin_a>;
       pinctrl-1 = <&pwm2_pin_b>;
       status = "okay";
};
&pwm7 {
       pinctrl-names = "active", "sleep";
       pinctrl-0 = <&pwm7_pin_a>;
       pinctrl-1 = <&pwm7_pin_b>;
       status = "okay";
```

Tro.

Hangst

Walus

Sulle

版权所有 © 珠海全志科技股份有限公司。保留一切权利

20051





一般方案的 dts 已经是配置完成的,想要使用 pwm 的时候只需在 board.dts 配置好 pwm 通路以及对应的引脚,即可使用。

tranger tranger

Walldan

版权所有 © 珠海全志科技股份有限公司。保留一切权利

There



# 3 接口描述

# 3.1 驱动层使用说明

#### 1、按照以下接口使用:

1. pwm\_request: 申请pwm句柄

2. pwm\_config: 配置pwm period & duty, 注意单位是ns

3. pwm\_set\_polarity: 设置pwm的极性

4. pwm\_enable: 使能pwm

#### 2、不使用时:

1. pwm\_disable: 美闭pwm 2. pwm\_free: 释放pwm句柄

#### 3、接口具体说明如下:

(1)pwm request

#### 表 3-1: pwm request 接口说明表

| 类别   |       |            |            | 介绍           |           |              |      |
|------|-------|------------|------------|--------------|-----------|--------------|------|
| 函数原型 | S     | struct pwm | _device *p | wm_request(i | int pwm_i | d, const cha | r    |
|      |       |            |            | *label);     |           |              |      |
| 参数   |       | pwm_i      | d: pwm 的   | 索引号,从 0 🥫    | 开始;labe   | l: 标签名       |      |
| 返回   |       | 成功         | 返回 pwm '   | 句柄,如果失败      | 7,则返回 1   | NULL         |      |
| 功能描述 | angel | angst      | 21952      | 申请pwm        | angel     | angst        | oile |
| Me   | 160   | Mo         | 160        | Me           | Ma        | Me           | 160  |

#### (2)pwm\_free

表 3-2: pwm\_free 接口说明表

| 类别   | 介绍                                                |
|------|---------------------------------------------------|
| 函数原型 | <pre>void pwm_free(struct pwm_device *pwm);</pre> |
| 参数   | pwm: pwm 句柄                                       |
| 返回   | 无返回值                                              |
| 功能描述 | 释放 pwm                                            |

-051

版权所有 © 珠海全志科技股份有限公司。保留一切权利



#### (3)pwm\_config

表 3-3: pwm\_config 接口说明表

| 类别   | Tusuda | thands    | thangs       | 介绍          | Thands  | Tranga         | Thang |
|------|--------|-----------|--------------|-------------|---------|----------------|-------|
| 函数原型 |        | int pwm_c | config(struc | t pwm_devic | e *pwm, | int duty_ns, i | nt    |
|      |        |           |              | period_ns   | )       |                |       |
| 参数   |        | pwm: pwm  | 句柄。duty_     | ns: 有效区域的   | 时间,duty | _ns / period_r | ns =  |
|      |        | 占空        | 性。period_    | ns: pwm 的/  | 周期时间,   | 单位为 ns         |       |
| 返回   |        |           | 成功则返         | 返回 0,失败则    | 返回错误码   | 马              |       |
| 功能描述 |        |           | 配置p          | wm 的周期以     | 及占空比    |                |       |

#### (4)pwm\_set\_polarity

表 3-4: pwm\_set\_polarity 接口说明表

| 类别          | <sub>0</sub> 51 | 451         | ust.                       | 介绍          |                   | - 151  |
|-------------|-----------------|-------------|----------------------------|-------------|-------------------|--------|
| 函数原型        | Thatles         | int pwm_set | polarity(st                | ruct pwm    | device *pwm, enum | Tugues |
|             |                 |             | pwm_pol                    | larity pola | arity);           |        |
| 参数          |                 | pwm:        | : pwm 句柄。                  | 。 polarity  | : pwm 极性,         |        |
|             |                 | PWM_POI     | LARITY_NO                  | DRMAL 为     | 正常,高电平有效,         |        |
|             |                 | PWM_POL     | ARITY_INV                  | 'ERSED 为    | 7反转,即低电平有效        |        |
| 返回          |                 | Į.          | 成功则返回 0                    | ,失败则返       | 回错误码              |        |
| 功能描述        |                 |             | 配置 pwm                     | 的周期以及       | <b></b> 占空比       |        |
| (5)pwm_enal | ole             | 表 3-5: pw   | /<br>m_enable <del>j</del> | 妾口说明表       |                   |        |
| 类别          | si              | 05L         | 51                         | 介绍          | ist ist           |        |
| 函数原型        | Thoms           | void pwr    | n_enable(s                 | truct pwn   | n_device *pwm);   | Tugues |
| 参数          |                 |             | pwm                        | :pwm 句      | 柄                 |        |
| 返回          |                 | <u>F</u>    | 成功则返回 0                    | ,失败则返       | 回错误码              |        |
| 功能描述        |                 |             | 使                          | 能 pwm       |                   |        |

# 3.2 应用层使用说明

相关调试节点一般在/sys/class/pwm 目录下,它创建了一个 pwmchip, 对应 CPUX 上面的 pwm 功能:

版权所有 © 珠海全志科技股份有限公司。保留一切权利



```
root@TinaLinux:/sys/class/pwm# ls
pwmchip0
```

1、要使用 pwm,例如使用 CPUX 的 pwm0 则按如下操作,生成 pwm0 目录:

```
root@TinaLinux:/# echo 0 > /sys/class/pwm/pwmchip0/export
root@TinaLinux:/# ls /sys/class/pwm/pwmchip0/pwm0/
capture enable polarity uevent
duty_cycle period power
```

如果要使用 CPUX 的 pwm1,则写 1 进去节点。

#### 🛄 说明

如果在驱动 (例如 Icd 背光驱动) 中已经申请过该 pwm,则这里再次申请 (export) 会提示"Resource busy"。

2、通过新增的 pwm0 目录下的节点来设置 pwm:

表 3-6: pwm 节点列表

| <br>节点               | 介绍                           |
|----------------------|------------------------------|
| period<br>duty cycle | 表示 pwm 的周期,单位 ns 表示占空比,单位 ns |
| enable               | 表示是否使能 pwm                   |
| polarity             | 表示 pwm 极性 (normal/inversed)  |

使能 pwm 操作节点顺序可如下所示:

- period 可通过 "echo N > period" 写入数据, 修改频率;
- duty cycle 可以通过 "echo N > duty cycle 写入数据,修改占空比";
- 最后,"echo 1 > enable" 来使能该通道的 pwm。
- 3、通过 cat 以下节点,可查看 pwm 使用情况:

```
root@TinaLinux:/# cat sys/kernel/debug/pwm
platform/7020c00.s_pwm, 1 PWM device
pwm-0 ((null) ): period: 0 ns duty: 0 ns polarity: normal

platform/300a000.pwm, 2 PWM devices
pwm-0 (sysfs ): requested period: 0 ns duty: 0 ns polarity: normal
pwm-1 ((null) ): period: 0 ns duty: 0 ns polarity: normal
```

#### 🛄 说明

#### 括号里的名称有以下几种方式:

- 在驱动层通过 API 接口 pwm\_request 申请时传入参数标签名 label 来确定的,比如说 lcd 背光驱动的 pwm 节点 "lcd";
- 在应用层通过 export 节点使能的,显示为 "sysfs";
- 没有使能的 pwm 通道,显示为 "(null)"。

1200 ST

版权所有 © 珠海全志科技股份有限公司。保留一切权利



4、通过编写代码来操作 pwm:操作 pwm 的节点与上述三小节的节点一样,不过操作的方式变成了:编写代码 open/fopen 打开 pwm 节点,write/fwrite 来向 pwm 节点写入数据等等。

简单的示例如下所示法 int pwm\_setup() 2 3 int ret, fd; 4 fd = open("/sys/class/pwm/pwmchip0/export", 0\_WRONLY); 5 if (fd < 0) {</pre> dbmsg("open export failed\n"); 6 7 return -1; 8 } 9 ret = write(fd, "0", strlen("0")); 10 11 if(ret < 0) { 12 ("creat pwm0 error\n"); dbmsg 13 return -1; 14 } 15 16 return 0; 17

the first thanks the first thanks the first thanks the first

Mandey

right tranger tranger tranger tranger tranger

NSU OZ.

版权所有 © 珠海全志科技股份有限公司。保留一切权利

Walder



#### 著作权声明

版权所有 © 2022 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

#### 商标声明



举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

#### 免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。

st therest therest therest therest therest therest therest

版权所有 © 珠海全志科技股份有限公司。