

NIST PUBLICATIONS



United States Department of Commerce Technology Administration National Institute of Standards and Technology

#### NISTIR 5088

**Experimental Thermal Conductivity and Thermal Diffusivity Values for Neon and Mixtures of Neon and Nitrogen** 

R.A. Perkins H.M. Roder

QC 100 .U56 NO.5088 1999



#### NISTIR 5088

# Experimental Thermal Conductivity and Thermal Diffusivity Values for Neon and Mixtures of Neon and Nitrogen

R.A. Perkins H.M. Roder

Physical and Chemical Properties Division Chemical Science and Technology Laboratory National Institute of Standards and Technology Boulder, Colorado 80303-3328

Final Report November 1999



| e. |  |  |
|----|--|--|
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |

### **CONTENTS**

| 1.     | ntroduction                                                                               | 1  |
|--------|-------------------------------------------------------------------------------------------|----|
| 2.     | The thermal conductivity and thermal diffusivity of pure neon                             | 4  |
| 3.     | The thermal conductivity and thermal diffusivity of the 75 % neon – 25 % nitrogen mixture | 6  |
| 4.     | The thermal conductivity and thermal diffusivity of the 50 % neon – 50 % nitrogen mixture | 8  |
| 5.     | References                                                                                | 10 |
| 6.     | Data tables                                                                               | 11 |
|        |                                                                                           |    |
|        |                                                                                           |    |
|        |                                                                                           |    |
|        | List of Tables                                                                            |    |
| Table  | 1. The thermal conductivity and thermal diffusivity of pure neon                          | 11 |
| Table  | 2. Thermal conductivity and thermal diffusivity of the 75.007 % neon – 24.993 % nitrogen  |    |
|        |                                                                                           | 31 |
| Table  | , ,                                                                                       |    |
|        | mixture                                                                                   | 36 |
|        |                                                                                           |    |
|        |                                                                                           |    |
|        |                                                                                           |    |
|        | List of Figures                                                                           |    |
| Figure |                                                                                           |    |
|        | nitrogen (111 K - 302 K), and 49.936 mol % neon - 50.064 mol % nitrogen (121 K - 302      |    |
|        | K)                                                                                        | 3  |
| Figure | •                                                                                         |    |
|        | pure neon.                                                                                | 5  |
| Figure | •                                                                                         | _  |
|        | the 75 % neon – 25 % nitrogen mixture.                                                    | 7  |
| Figure | •                                                                                         |    |
|        | the 50 % neon – 50 % nitrogen mixture                                                     | 9  |

# Experimental Thermal Conductivity and Thermal Diffusivity Values for Neon and Mixtures of Neon and Nitrogen

R.A. Perkins, H.M. Roder

We report new measurements of thermal conductivity and thermal diffusivity, obtained with a transient hot-wire apparatus, for neon and two mixtures of neon with nitrogen. The measurements were made at temperatures between 58 K and 303 K (ITS 90) with pressures between 0.1 MPa and 70 MPa. The data cover only the supercritical gas phase. The number of points reported for pure neon is 829, for the 75 mol % neon -25 mol % nitrogen mixture, 204, and for the 50 mol % neon -50 mol % nitrogen mixture, 188. Empirical thermal conductivity correlations are provided for neon and the two neon-nitrogen mixtures.

Key Words: mixtures; neon; nitrogen; thermal conductivity; thermal diffusivity; transient hotwire.

#### 1. Introduction

This report is the archival record of the results of our transient hot-wire measurements on neon and mixtures of neon and nitrogen. The tables contain experimental values of the thermal conductivity and thermal diffusivity. The mixtures were gravimetrically prepared, with all compositions reported on a molar basis. They are designated as (a)the 75 mol % neon – 25 mol % nitrogen mixture, and (b) the 50 mol % neon – 50 mol % nitrogen mixture. The precise compositions are (a) 75.007 mol % neon – 24.993 mol % nitrogen, and (b) 49.936 mol % neon – 50:064 mol % nitrogen. The purities of the neon and nitrogen used to prepare the mixtures was verified with gas chromatography and found to exceed 99.999 mol % in each case. The quantity of data obtained is so large that an electronically accessible version is necessary to facilitate use of the data. All of the transient hot-wire results described in this series of Interagency Reports are available in an ASCII form at the NIST anonymous ftp site:

ftp://ftp.boulder.nist.gov/pub/fluids/NISTData/Hot-Wire/

The transient hot-wire instrument used in this study has been described elsewhere [1]. This hot-wire instrument has two hot wires of different lengths that are operated in a differential mode using a Wheatstone-bridge circuit to eliminate effects due to axial conduction near the ends of the wires. This system has been used previously to study the thermal conductivity of oxygen [2], hydrogen [3, 4], methane [3, 5], ethane [3, 6], methane-ethane mixtures [7, 8], propane [3, 9], argon [10–13], nitrogen [10, 14], and nitrogen-oxygen-argon mixtures [15]. For the present measurements, the temperature range of the instrument has been extended down to 58 K from 65 K. The pressure range remains 0.1 to 70 MPa.

The apparatus has been improved considerably during the past few years so that the thermal diffusivity can be obtained at the same time as the thermal conductivity. The specific heat capacity at constant pressure,  $C_p$ , can then be computed from the measured values of thermal conductivity and thermal diffusivity provided that the density of the fluid is known. However, the specific heat is not reported here since it is a derived, rather than a directly measured, value that depends on the equation of state used for analysis. A detailed description of the measurement of the thermal diffusivity, including an analysis of the various errors, is given in reference[16].

The transient hot-wire measurements were conducted along isotherms. The isotherm temperature increments were selected to be between 20 to 50 K to provide a change of several percent in thermal conductivity between adjacent isotherms. Measurements were made at a number of pressures along each isotherm. The pressure increment was selected to give a density increment of 0.5 to 1.0 mol/L. Finally, replicated measurements were made at each fixed cell temperature and pressure with about four different applied powers to check the reproducibility of the measurements. It should be noted that each different power level yields a thermal conductivity at a slightly different experimental temperature. All of the measurements on pure neon and the two mixtures of neon with nitrogen are shown in Figure 1.

In comparison to all of the other measurements that we have made, the results for neon and its mixtures with nitrogen are unique in two respects. First, convection in the cell occured for smaller temperature rises and at shorter elapsed times than with any of the other fluids or fluid mixtures studied with this apparatus before. This particular factor forced us to decrease the applied power for many of the measurements; that is, many of the experimental temperature rises were considerably smaller than our normal one of around 4 K. Second, even though we were at supercritical conditions, the equations of state available to us were not nearly as accurate as those for the other fluids. Combined, these two factors lead to a degradation in the uncertainty estimated for the thermal conductivity, to about  $\pm 3$  %, and a severe degradation in the uncertainty estimated for the thermal diffusivity, to about  $\pm 20$  %.

The data tables for neon and its two mixtures with nitrogen are arranged in order of increasing nominal isotherm temperatures and in order of increasing density for each nominal isotherm. The nominal isotherm temperatures are the averages of all the experimental temperatures rounded to the nearest degree. All temperatures are reported on the ITS 90 temperature scale. Recorded in the tables are the run-point numbers; the pressure  $P_{exp}$ , temperature  $T_{exp}$ , and the calculated density  $\rho_{calc}$  of the fluid to which the thermal conductivity is assigned; the applied power per unit length of the wire Q; the experimental thermal conductivity  $\lambda_{exp}$  and its 2  $\sigma$  uncertainty value (STAT); the cell temperature  $T_{cell}$  to which the measured thermal diffusivity a is assigned. STAT and DSTAT are the uncertainties of the slope and intercept, at the 2  $\sigma$  level, as determined in the data reduction program [1, 16]. STAT and DSTAT are direct measures of the precision of the thermal conductivity and thermal diffusivity, respectively. A STAT of 0.001, for example, corresponds to a precision of 0.1 % in thermal conductivity. Empirical thermal conductivity correlations are provided for neon and for each mixture based on these new measurements. Deviations of the thermal conductivity data from these empirical fits are plotted as a function of the fluid density for each surface.



Figure 1. Thermal conductivities of pure neon (59K - 300 K), 75.007 mol % neon - 24.993 mol % nitrogen (111 K - 302 K), and 49.936 mol % neon - 50.064 mol % nitrogen (121 K - 302 K).

#### 2. The thermal conductivity and thermal diffusivity of pure neon

A total of 829 points are given in Table 1. The densities reported in the table have been calculated using the most recent equation of state for neon [17]. The FORTRAN programs developed to represent the thermal conductivity surface of pure neon are listed below. The relative deviations in percent between the experimental data and this fit are shown in Figure 2.

```
FUNCTION TCNEON(RHO,T)
С
      COEFFICIENTS FROM SURFFIT
                                            HMR 25 AUG 1994
      IMPLICIT DOUBLE PRECISION(A-H, O-Z)
      DIMENSION A(3), B(4)
      DATA A/0.3135952879E-02,0.2001005323E-03,-0.1653906212E-06/
      DATA B/0.6049399450E-03,0.1113031584E-05,0.3131775987E-06
     1 ,0.3031663664E-10/
      TCZERO=A(1)+A(2)*T+A(3)*T**2
      EXCESS = (B(1) + B(2) *T) *RHO + B(3) *RHO ** 3 + B(4) *RHO ** 5
      TCCRIT=CRITNE(RHO,T)
      TCNEON=TCZERO+EXCESS+TCCRIT
      RETURN
      END
      FUNCTION CRITNE (RHO, T)
      AMPL & RHOCEN SLOPES FROM LINEAR GRAPHS, REMAINDER, HMR 15 OCT 1994
С
      SIMILAR TO THE AIR FUNCTIONS, EXP(-X**2), ETC.
      TC=44.4918 AND RHOC=23.882 USED IN SLOPES, C(5) FROM N2
      IMPLICIT DOUBLE PRECISION(A-H, O-Z)
      DIMENSION C(6)
      DATA C/0.0069478D0,-0.000065D0,32.5993D0,-0.19593D0,0.1D0,0.07D0/
      TC=44.4918
      IF(T.LT.TC) T=TC+(TC-T)
      AMPL=C(1)+C(2)*T
      IF(AMPL.LT.0.0D0) AMPL=0.0D0
      RHOCEN=C(3)+C(4)*T
      X1=C(5)*(RHO-RHOCEN)
      IF(RHO.GT.RHOCEN) X1=C(6)*(RHO-RHOCEN)
      CRITNE=AMPL*DEXP(-(X1**2))
      IF(CRITNE.LT.0.0D0) CRITNE=0.0D0
      RETURN
      END
```



Figure 2. Relative deviations between the empirical thermal conductivity surface fit and the data for pure neon.

## 3. The thermal conductivity and thermal diffusivity of the 75 % neon – 25 % nitrogen mixture

A total of 204 points are given in Table 2. The densities reported in the table have been calculated from a mixture program for nitrogen, oxygen, and argon [18] to which the most recent equation of state for neon [17] has been added as an additional parameter in the mixing relations. The FORTRAN programs developed to represent the thermal conductivity surface of the mixture are listed below. The precise molar composition was 0.75007 neon and 0.24993 nitrogen. The relative deviations in percent between the experimental data and this fit are shown in Figure 3.

```
FUNCTION TC7525 (RHO, T)
C
      COEFFICIENTS FROM NEON\REPORT\TEST5.FOR HMR 15 OCT 1994
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION A(3), B(4)
     DATA A/0.2066520666E-02,0.1654831916E-03,-0.1279101379E-06/
     DATA B/0.6500437142E-03,0.1235320643E-05,0.8146682572E-06
     1 ,0.1853376899E-10/
      TCZERO=A(1)+A(2)*T+A(3)*T**2
     EXCESS=(B(1)+B(2)*T)*RHO+B(3)*RHO**3+B(4)*RHO**5
      TCCRIT=CRIT75(RHO,T)
      TC7525=TCZERO+EXCESS+TCCRIT
     RETURN
      END
     FUNCTION CRIT75 (RHO, T)
С
     AMPL & RHOCEN SLOPES FROM LINEAR GRAPHS, REMAINDER, HMR 15 OCT 1994
С
     SIMILAR TO THE AIR FUNCTIONS, EXP(-X**2), ETC.
     TC=64.9171 AND RHOC=20.705 USED IN SLOPES, C(5) ESTIMATED
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     DIMENSION C(6)
     DATA C/0.0089796D0, -0.000065D0, 28.415D0, -0.1187667D0, 0.1D0, 0.07D0/
      TC=64.9171
      IF(T.LT.TC) T=TC+(TC-T)
     AMPL=C(1)+C(2)*T
      IF(AMPL.LT.0.0D0) AMPL=0.0D0
     RHOCEN=C(3)+C(4)*T
     X1=C(5)*(RHO-RHOCEN)
     IF (RHO.GT.RHOCEN) X1=C(6)*(RHO-RHOCEN)
     CRIT75 = AMPL*DEXP(-(X1**2))
      IF(CRIT75.LT.0.0D0) CRIT75=0.0D0
     RETURN
      END
```



Figure 3. Relative deviations between the empirical thermal conductivity surface fit and the data for the 75 % neon – 25 % nitrogen mixture.

## 4. The thermal conductivity and thermal diffusivity of the 50 % neon – 50 % nitrogen mixture

A total of 188 points are given in Table 3. The densities reported in the table have been calculated from a mixture program for nitrogen, oxygen and argon [18] to which the most recent equation of state for neon [17] has been added as an additional parameter in the mixing relations. The FORTRAN programs developed to represent the thermal conductivity surface of the mixture are listed below. The precise molar composition was 0.49936 neon and 0.50064 nitrogen. The relative deviations in percent between the experimental data and this fit are shown in Figure 4.

```
FUNCTION TC5050 (RHO, T)
C
      COEFFICIENTS FROM NEON\REPORT\TEST8.FOR HMR 16 OCT 1994
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION A(3), B(4)
      DATA A/-0.4106003595E-04,0.1499063261E-03,-0.1217043385E-06/
      DATA B/0.8061178185E-03,0.1218141343E-05,0.1336491308E-05
     1 ,0.1891782633E-09/
      TCZERO=A(1)+A(2)*T+A(3)*T**2
      EXCESS = (B(1) + B(2) *T) *RHO + B(3) *RHO ** 3 + B(4) *RHO ** 5
      TCCRIT=CRIT50 (RHO, T)
      TC5050=TCZERO+EXCESS+TCCRIT
      RETURN
      END
      FUNCTION CRIT50 (RHO, T)
C
      AMPL & RHOCEN SLOPES FROM LINEAR GRAPHS, REMAINDER, HMR 16 OCT 1994
C
      SIMILAR TO THE AIR FUNCTIONS, EXP(-X**2), ETC.
      TC=85.3424 AND RHOC=17.5295 USED IN SLOPES, C(5) TRIAL & ERROR
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION C(6)
      DATA C/0.0118689D0, -0.000065D0, 30.0325D0, -0.146504D0, 0.2D0, 0.09D0/
      TC=85.3424
      IF(T.LT.TC) T=TC+(TC-T)
      AMPL=C(1)+C(2)*T
      IF(AMPL.LT.0.0D0) AMPL=0.0D0
      RHOCEN=C(3)+C(4)*T
      X1=C(5)*(RHO-RHOCEN)
      IF (RHO.GT.RHOCEN) X1=C(6) * (RHO-RHOCEN)
      CRIT50=AMPL*DEXP(-(X1**2))
      IF(CRIT50.LT.0.0D0) CRIT50=0.0D0
      RETURN
      END
```



Figure 4. Relative deviations between the empirical thermal conductivity surface fit and the data for the 50 % neon -50 % nitrogen mixture.

#### 5. References

- [1] Roder, H.M., A transient hot wire thermal conductivity apparatus for fluids, *J. Res. Nat. Bur. Stand.* (U.S.) 86, 457 (1981).
- [2] Roder, H.M., The thermal conductivity values of oxygen, J. Res. Nat. Bur. Stand. (U.S.) 86, 279 (1982).
- [3] Roder, H.M., Experimental thermal conductivity values for hydrogen, methane, ethane, and propane, *Nat. Bur. Stand. Interagency Report 84-3006* (1984).
- [4] Roder, H.M., The thermal conductivity of hydrogen for temperatures between 78 and 310 K with pressures to 70 MPa, *Int. J. Thermophys.* 5, 323 (1984).
- [5] Roder, H.M., The thermal conductivity of methane for temperatures between 110 and 310 K with pressures to 70 MPa, *Int. J. Thermophys.* **6**, 119 (1985).
- [6] Roder, H.M., Nieto de Castro, C.A., The thermal conductivity of ethane for temperatures between 110 and 325 K at pressures to 70 MPa, *High Temp. High Press.* 17, 453 (1985).
- [7] Roder, H.M., Friend, D.G., Experimental thermal conductivity values mixtures of methane and ethane, *Nat. Bur. Stand. Interagency Report 85-3024* (1985).
- [8] Roder, H.M., Friend D.G., The thermal conductivity of methane-ethane mixtures at temperatures between 140 and 330 K and at pressures to 70 MPa, *Int. J. Thermophys.* **6**, 607 (1985).
- [9] Roder, H.M., Nieto de Castro, C.A., The thermal conductivity of liquid propane, *J. Chem. Eng. Data* 17, 12 (1982).
- [10] Roder, H.M., Perkins, R.A., Nieto de Castro, C.A., Experimental thermal conductivity, thermal diffusivity, and specific heat values of argon and nitrogen, *Nat. Inst. Stand. Tech. Interagency Report* 88-3902 (1988).
- [11] Roder, H.M., Nieto de Castro, C.A., Mardolcar, U.V., The thermal conductivity of liquid argon for temperatures between 110 and 140 K with pressures to 70 MPa, *Int. J. Thermophys.* **8**, 521 (1987).
- [12] Roder, H.M., Perkins, R.A., Nieto de Castro, C.A., The thermal conductivity and heat capacity of gaseous argon, *Int. J. Thermophys.* **10**, 1141 (1989).
- [13] Perkins, R.A., Friend, D.G., Roder, H.M., Nieto de Castro, C.A., Thermal conductivity surface of argon: a fresh analysis, *Int. J. Thermophys.* 12, 965 (1991).
- [14] Perkins, R.A., Roder, H.M., Friend, D.G., Nieto de Castro, C.A., The thermal conductivity and heat capacity of fluid nitrogen, *Physica* A173, 332 (1991).
- [15] Perkins, R.A., Cieszkiewicz, M.T., Experimental thermal conductivity, thermal diffusivity, and specific heat values for mixtures of nitrogen, oxygen, and argon, *Nat. Inst. Stand. Tech. Interagency Report* 3961 (1991).
- [16] Nieto de Castro, C.A., Taxis, B., Roder, H.M., Wakeham, W.A., Thermal diffusivity measurement by the transient hot-wire technique: a reappraisal, *Int. J. Thermophys.* **9**, 293 (1988).
- [17] Katti, R., Jacobsen, R.T., Stewart, R.B., Jahangiri, M., Thermodynamic properties of neon for temperatures from the triple point to 700 K at pressure to 700 MPa, Adv. Cryog. Eng. 31, 1189 (1986).
- [18] Jacobsen, R.T., Penoncello, S.G., Beyerlein, S.W., Lemmon, E.W., Clarke, W.P., Thermophysical properties of air, *Supplement to NASP Technical Memorandum 1005*, NIST, Boulder, Colorado, July 1991.

## 6. Data tables

Table 1. The thermal conductivity and thermal diffusivity of pure neon.

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$                     | $\lambda_{exp}$                    | STAT  | $T_{cell}$ | a                    | DSTAT |
|-------|------------|------------------|-----------|----------------------------------|------------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot \text{L}^{-1}$ | W·m <sup>-1</sup> ·K <sup>-1</sup> |       | K          | $m^{2} \cdot s^{-1}$ |       |
| Nomin | al temp    | erature = 5      | 59 K      |                                  |                                    |       |            |                      |       |
| 7117  | 0.638      | 0.01696          | 59.219    | 1.3421                           | 0.01568                            | 0.005 | 58.401     | 0.787E-06            | 0.056 |
| 7118  | 0.638      | 0.01462          | 59.044    | 1.3465                           | 0.01568                            | 0.007 | 58.402     | 0.801E-06            | 0.076 |
| 7119  | 0.638      | 0.01247          | 58.906    | 1.3500                           | 0.01566                            | 0.008 | 58.402     | 0.849E-06            | 0.087 |
| 7120  | 0.638      | 0.01049          | 58.759    | 1.3538                           | 0.01566                            | 0.010 | 58.403     | 0.813E-06            | 0.108 |
| 7113  | 1.104      | 0.01692          | 59.069    | 2.3893                           | 0.01639                            | 0.005 | 58.396     | 0.396E-06            | 0.055 |
| 7114  | 1.104      | 0.01459          | 58.997    | 2.3929                           | 0.01635                            | 0.007 | 58.396     | 0.391E-06            | 0.065 |
| 7115  | 1.104      | 0.01244          | 58.807    | 2.4023                           | 0.01631                            | 0.009 | 58.396     | 0.375E-06            | 0.088 |
| 7116  | 1.104      | 0.01047          | 58.774    | 2.4039                           | 0.01613                            | 0.011 | 58.396     | 0.361E-06            | 0.113 |
| 7109  | 1.546      | 0.01689          | 59.047    | 3.4371                           | 0.01710                            | 0.006 | 58.392     | 0.257E-06            | 0.056 |
| 7110  | 1.546      | 0.01457          | 58.938    | 3.4455                           | 0.01705                            | 0.007 | 58.392     | 0.251E-06            | 0.066 |
| 7111  | 1.546      | 0.01243          | 58.848    | 3.4524                           | 0.01715                            | 0.010 | 58.392     | 0.288E-06            | 0.092 |
| 7112  | 1.546      | 0.01046          | 58.603    | 3.4715                           | 0.01702                            | 0.012 | 58.392     | 0.263E-06            | 0.111 |
| 7105  | 1.958      | 0.01687          | 58.928    | 4.4752                           | 0.01784                            | 0.006 | 58.393     | 0.208E-06            | 0.056 |
| 7106  | 1.958      | 0.01455          | 58.870    | 4.4816                           | 0.01778                            | 0.008 | 58.393     | 0.201E-06            | 0.070 |
| 7107  | 1.958      | 0.01242          | 58.720    | 4.4979                           | 0.01774                            | 0.009 | 58.394     | 0.203E-06            | 0.088 |
| 7108  | 1.958      | 0.01045          | 58.622    | 4.5086                           | 0.01775                            | 0.012 | 58.392     | 0.218E-06            | 0.115 |
| 7101  | 2.694      | 0.01683          | 58.922    | 6.4542                           | 0.01945                            | 0.007 | 58.389     | 0.128E-06            | 0.059 |
| 7102  | 2.694      | 0.01453          | 58.811    | 6.4742                           | 0.01931                            | 0.008 | 58.388     | 0.123E-06            | 0.074 |
| 7103  | 2.694      | 0.01240          | 58.765    | 6.4826                           | 0.01907                            | 0.010 | 58.388     | 0.113E-06            | 0.091 |
| 7104  | 2.694      | 0.01044          | 58.658    | 6.5023                           | 0.01917                            | 0.013 | 58.389     | 0.127E-06            | 0.118 |
| 7097  | 3.587      | 0.01678          | 58.769    | 9.1605                           | 0.02175                            | 0.006 | 58.376     | 0.758E-07            | 0.050 |
| 7098  | 3.587      | 0.01448          | 58.686    | 9.1862                           | 0.02154                            | 0.006 | 58.376     | 0.681E-07            | 0.053 |
| 7099  | 3.587      | 0.01236          | 58.662    | 9.1938                           | 0.02163                            | 0.009 | 58.376     | 0.731E-07            | 0.071 |
| 7100  | 3.587      | 0.01042          | 58.575    | 9.2210                           | 0.02153                            | 0.011 | 58.375     | 0.715E-07            | 0.091 |
| 7093  | 4.276      | 0.01675          | 58.661    | 11.4889                          | 0.02391                            | 0.006 | 58.375     | 0.539E-07            | 0.052 |
| 7094  | 4.276      | 0.01447          | 58.632    | 11.5020                          | 0.02394                            | 0.007 | 58.375     | 0.566E-07            | 0.059 |
| 7095  | 4.277      | 0.01235          | 58.548    | 11.5420                          | 0.02374                            | 0.011 | 58.375     | 0.503E-07            | 0.083 |
| 7089  | 4.808      | 0.01674          | 58.718    | 13.3568                          | 0.02589                            | 0.009 | 58.383     | 0.530E-07            | 0.073 |
| 7091  | 4.809      | 0.01235          | 58.590    | 13.4333                          | 0.02589                            | 0.015 | 58.384     | 0.527E-07            | 0.116 |
| 7090  | 4.809      | 0.01446          | 58.535    | 13.4654                          | 0.02594                            | 0.012 | 58.384     | 0.523E-07            | 0.093 |
| 7085  | 5.368      | 0.01673          | 58.660    | 15.4886                          | 0.02833                            | 0.010 | 58.392     | 0.519E-07            | 0.078 |
| 7086  | 5.368      | 0.01445          | 58.574    | 15.5536                          | 0.02830                            | 0.013 | 58.395     | 0.528E-07            | 0.101 |
| 7081  | 6.065      | 0.01918          | 58.657    | 18.1917                          | 0.03128                            | 0.009 | 58.408     | 0.504E-07            | 0.075 |
| 7083  | 6.068      | 0.01445          | 58.632    | 18.2258                          | 0.03137                            | 0.014 | 58.412     | 0.645E-07            | 0.117 |
| 7082  | 6.066      | 0.01673          | 58.574    | 18.2743                          | 0.03142                            | 0.011 | 58.409     | 0.554E-07            | 0.091 |
| 7078  | 6.638      | 0.01916          | 58.705    | 20.3566                          | 0.03372                            | 0.010 | 58.415     | 0.523E-07            | 0.080 |
| 7077  | 6.638      | 0.02177          | 58.644    | 20.4203                          | 0.03398                            | 0.006 | 58.416     | 0.477E-07            | 0.048 |
| 7079  | 6.638      | 0.01671          | 58.609    | 20.4579                          | 0.03387                            | 0.013 | 58.417     | 0.578E-07            | 0.105 |
| 7073  | 7.205      | 0.02453          | 58.700    | 22.4643                          | 0.03675                            | 0.010 | 58.385     | 0.406E-07            | 0.080 |
| 7074  | 7.205      | 0.02175          | 58.647    | 22.5246                          | 0.03637                            | 0.012 | 58.386     | 0.414E-07            | 0.092 |
| 7076  | 7.205      | 0.01669          | 58.605    | 22.5736                          | 0.03637                            | 0.018 | 58.384     | 0.435E-07            | 0.140 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$    | $T_{exp}$ | $\rho_{calc}$ | $\lambda_{exp}$                    | STAT  | $T_{cell}$ | a                               | DSTAT |
|-------|------------|-------------------|-----------|---------------|------------------------------------|-------|------------|---------------------------------|-------|
| point | MPa        | W·m <sup>−1</sup> | K         |               | W·m <sup>-1</sup> ·K <sup>-1</sup> |       | K          | m <sup>2</sup> ·s <sup>-1</sup> |       |
| 7075  | 7.205      | 0.01914           | 58.556    | 22.6310       | 0.03651                            | 0.014 | 58.386     | 0.443E-07                       | 0.112 |
| 7069  | 7.792      | 0.02746           | 58.675    | 24.5211       | 0.03938                            | 0.005 | 58.387     | 0.393E-07                       | 0.042 |
| 7070  | 7.792      | 0.02452           | 58.626    | 24.5811       | 0.03913                            | 0.006 | 58.387     | 0.388E-07                       | 0.048 |
| 7072  | 7.794      | 0.01913           | 58.580    | 24.6407       | 0.03894                            | 0.009 | 58.386     | 0.445E-07                       | 0.072 |
| 7071  | 7.793      | 0.02174           | 58.538    | 24.6897       | 0.03896                            | 0.007 | 58.387     | 0.392E-07                       | 0.057 |
| 7065  | 8.479      | 0.03053           | 58.704    | 26.6139       | 0.04154                            | 0.005 | 58.357     | 0.271E-07                       | 0.038 |
| 7067  | 8.480      | 0.02447           | 58.628    | 26.7094       | 0.04166                            | 0.007 | 58.357     | 0.263E-07                       | 0.048 |
| 7066  | 8.479      | 0.02741           | 58.577    | 26.7678       | 0.04190                            | 0.005 | 58.358     | 0.286E-07                       | 0.040 |
| 7068  | 8.481      | 0.02170           | 58.532    | 26.8285       | 0.04191                            | 0.008 | 58.357     | 0.297E-07                       | 0.060 |
| 7061  | 9.283      | 0.03382           | 58.710    | 28.7686       | 0.04503                            | 0.005 | 58.378     | 0.364E-07                       | 0.034 |
| 7062  | 9.284      |                   | 58.602    | 28.8979       | 0.04480                            | 0.005 | 58.378     | 0.364E-07                       | 0.041 |
| 7064  | 9.285      | 0.02038           | 58.601    | 28.9019       | 0.04450                            | 0.009 | 58.378     | 0.341E-07                       | 0.069 |
| 7063  | 9.284      | 0.02448           | 58.533    | 28.9820       | 0.04436                            | 0.007 | 58.378     | 0.344E-07                       | 0.054 |
| 7057  | 10.200     | 0.03908           | 58.752    | 30.8125       | 0.04789                            | 0.004 | 58.400     | 0.431E-07                       | 0.030 |
| 7058  | 10.200     | 0.03383           | 58.681    | 30.8936       | 0.04787                            | 0.005 | 58.400     | 0.451E-07                       | 0.039 |
| 7059  | 10.201     | 0.02896           | 58.654    | 30.9258       | 0.04769                            | 0.006 | 58.400     | 0.467E-07                       | 0.048 |
| 7060  | 10.203     | 0.02449           | 58.574    | 31.0203       | 0.04732                            | 0.007 | 58.399     | 0.483E-07                       | 0.059 |
| 7053  | 11.068     | 0.04469           | 58.817    | 32.4316       | 0.05072                            | 0.004 | 58.395     | 0.441E-07                       | 0.034 |
| 7054  | 11.071     | 0.03726           | 58.738    | 32.5222       | 0.05056                            | 0.006 | 58.394     | 0.422E-07                       | 0.045 |
| 7055  | 11.073     | 0.03052           | 58.649    | 32.6211       | 0.05043                            | 0.007 | 58.393     | 0.424E-07                       | 0.057 |
| 7056  | 11.075     | 0.02448           | 58.589    | 32.6891       | 0.04995                            | 0.010 | 58.394     | 0.483E-07                       | 0.079 |
| 7049  | 12.108     | 0.04860           | 58.778    | 34.2093       | 0.05374                            | 0.004 | 58.378     | 0.386E-07                       | 0.033 |
| 7050  | 12.112     | 0.04084           | 58.700    | 34.2945       | 0.05345                            | 0.005 | 58.379     | 0.378E-07                       | 0.042 |
| 7051  | 12.115     | 0.03377           | 58.612    | 34.3884       | 0.05332                            | 0.007 | 58.378     | 0.401E-07                       | 0.053 |
| 7052  | 12.118     | 0.02739           | 58.555    | 34.4504       | 0.05295                            | 0.010 | 58.380     | 0.401E-07                       | 0.075 |
| 7045  | 13.409     | 0.05270           | 58.811    | 36.0119       | 0.05695                            | 0.004 | 58.374     |                                 | 0.029 |
| 7046  | 13.414     | 0.04459           | 58.753    | 36.0721       | 0.05683                            | 0.005 | 58.373     | 0.392E-07                       | 0.037 |
| 7047  | 13.416     | 0.03719           | 58.700    | 36.1250       | 0.05672                            | 0.006 | 58.374     | 0.393E-07                       | 0.047 |
| 7048  | 13.418     | 0.03047           | 58.537    | 36.2832       | 0.05651                            | 0.008 | 58.375     | 0.394E-07                       | 0.062 |
| 7041  | 15.037     | 0.05697           | 58.818    | 37.9179       | 0.06063                            | 0.004 |            | 0.311E-07                       | 0.028 |
| 7042  | 15.042     | 0.04853           | 58.759    | 37.9757       | 0.06047                            | 0.004 |            | 0.306E-07                       | 0.032 |
| 7043  | 15.047     | 0.04079           | 58.703    | 38.0298       | 0.06042                            | 0.006 |            | 0.285E-07                       | 0.041 |
| 7044  | 15.050     | 0.03374           | 58.544    | 38.1719       | 0.06011                            | 0.008 |            | 0.272E-07                       | 0.057 |
| 7037  | 17.026     |                   | 58.898    | 39.7830       | 0.06475                            | 0.003 |            | 0.391E-07                       | 0.024 |
| 1     | 17.030     | 0.05268           | 58.767    | 39.8915       | 0.06460                            | 0.004 |            | 0.380E-07                       | 0.031 |
| 1     | 17.036     | 0.04268           | 58.739    | 39.9190       | 0.06462                            | 0.006 |            | 0.391E-07                       | 0.044 |
| 1     |            | 0.03375           | 58.587    | 40.0439       | 0.06422                            | 0.007 | 58.417     | 0.372E-07                       | 0.056 |
| 7033  | 19.186     | 0.07592           | 58.958    | 41.4831       | 0.06903                            | 0.003 |            | 0.437E-07                       | 0.020 |
| 7034  | 19.192     | 0.06373           | 58.857    | 41.5631       | 0.06908                            | 0.003 |            | 0.428E-07                       | 0.026 |
| 7035  | 19.198     | 0.05266           | 58.740    | 41.6542       | 0.06900                            | 0.004 | 58.418     | 0.421E-07                       | 0.034 |
| 7036  | 19.204     | 0.04267           | 58.664    | 41.7146       | 0.06910                            | 0.005 | 58.419     | 0.432E-07                       | 0.043 |
| 7029  |            | 0.07581           | 58.941    | 43.3221       | 0.07402                            | 0.002 | 58.406     | 0.508E-07                       | 0.018 |
| 7030  | 21.900     | 0.06365           | 58.852    | 43.3893       | 0.07403                            | 0.003 | 58.409     |                                 | 0.021 |
| 7031  | 21.909     | 0.05260           | 58.778    | 43.4453       | 0.07400                            | 0.003 | 58.408     | 0.537E-07                       | 0.026 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$    | $\overline{Q}$   | $T_{exp}$ | $\rho_{calc}$   | $\lambda_{exp}$ .             | STAT  | $T_{cell}$ | $\overline{a}$         | DSTAT |
|-------|---------------|------------------|-----------|-----------------|-------------------------------|-------|------------|------------------------|-------|
| point | MPa           | $W \cdot m^{-1}$ | K         |                 | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$   |       |
| 7032  | 21.917        | 0.04262          | 58.691    | 43.5102         | 0.07400                       | 0.005 | 58.408     | 0.566E-07              | 0.037 |
| 7025  | 25.215        | 0.08897          | 58.969    | 45.1730         | 0.07956                       | 0.002 | 58.408     | 0.522E-07              | 0.015 |
| 7026  | 25.227        | 0.07573          | 58.873    | 45.2391         | 0.07951                       | 0.002 | 58.409     | 0.527E-07              | 0.017 |
| 7027  | 25.237        | 0.06360          | 58.773    | 45.3063         | 0.07953                       | 0.003 | 58.407     | 0.563E-07              | 0.023 |
| 7028  | 25.246        | 0.05255          | 58.730    | 45.3381         | 0.07942                       | 0.004 | 58.410     | 0.554E-07              | 0.030 |
| 7021  | 29.223        | 0.10317          | 59.027    | 47.0149         | 0.08571                       | 0.001 | 58.396     | 0.533E-07              | 0.011 |
| 7022  | 29.235        | 0.08883          | 58.918    | 47.0825         | 0.08548                       | 0.002 | 58.398     | 0.511E-07              | 0.014 |
| 7023  | 29.246        | 0.07561          | 58.817    | 47.1452         | 0.08561                       | 0.002 | 58.397     | 0.519E-07              | 0.019 |
| 7024  | 29.257        | 0.06351          | 58.740    | 47.1940         | 0.08562                       | 0.003 | 58.400     | 0.502E-07              | 0.025 |
| 7017  | 34.047        | 0.11838          | 59.062    | 48.8833         | 0.09255                       | 0.001 | 58.385     | 0.517E-07              | 0.010 |
| 7018  | 34.066        | 0.10298          | 58.966    | 48.9407         | 0.09252                       | 0.001 | 58.385     | 0.509E-07              | 0.011 |
| 7019  | 34.083        | 0.08869          | 58.866    | 48.9993         | 0.09240                       | 0.002 | 58.385     | 0.485E-07              | 0.014 |
| 7020  | 34.096        | 0.07553          | 58.801    | 49.0386         | 0.09251                       | 0.002 | 58.385     | 0.495E-07              | 0.017 |
| 7013  | 39.944        | 0.13479          | 59.107    | 50.7907         | 0.09981                       | 0.001 | 58.394     | 0.554E-07              | 0.009 |
| 7014  | 39.959        | 0.11827          | 59.030    | 50.8327         | 0.10004                       | 0.001 | 58.396     | 0.564E-07              | 0.009 |
| 7015  | 39.974        | 0.10291          | 58.940    | 50.8806         | 0.09961                       | 0.001 | 58.395     | 0.544E-07              | 0.012 |
| 7016  | 39.986        | 0.08864          | 58.855    | 50.9255         | 0.10003                       | 0.002 | 58.396     | 0.540E-07              | 0.015 |
| 7009  | 46.396        | 0.17098          | 59.261    | 52.5040         | 0.10762                       | 0.001 | 58.406     | 0.605E-07              | 0.007 |
| 7010  | 46.423        | 0.15223          | 59.169    | 52.5521         | 0.10768                       | 0.001 | 58.407     | 0.603E-07              | 0.008 |
| 7011  | 46.446        | 0.13464          | 59.078    | 52.5985         | 0.10768                       | 0.001 | 58.405     | 0.605E-07              | 0.008 |
| 7012  | 46.470        | 0.11817          | 58.982    | 52.6475         | 0.10784                       | 0.001 | 58.406     | 0.611E-07              | 0.010 |
| 7005  | 54.786        | 0.19050          | 59.288    | 54.4552         | 0.11662                       | 0.001 | 58.406     | 0.614E-07              | 0.006 |
| 7006  | 54.803        | 0.17067          | 59.196    | 54.4969         | 0.11676                       | 0.001 | 58.405     | 0.615E-07              | 0.007 |
| 7007  | 54.818        | 0.15200          | 59.110    | 54.5354         | 0.11677                       | 0.001 | 58.407     | 0.623E-07              | 0.008 |
| 7008  | 54.832        | 0.13444          | 59.035    | 54.5690         | 0.11697                       | 0.001 | 58.406     | 0.643E-07              | 0.009 |
| 7001  | 63.097        | 0.21077          | 59.285    | 56.1125         | 0.12519                       | 0.001 | 58.368     | 0.658E-07              | 0.006 |
| 7002  | 63.110        | 0.18997          | 59.197    | 56.1486         | 0.12518                       | 0.001 | 58.368     | 0.642E-07              | 0.006 |
| 7003  | 63.127        | 0.17021          | 59.107    | 56.1863         | 0.12544                       | 0.001 | 58.370     | 0.650E-07              | 0.007 |
| 7004  | 63.137        | 0.15160          | 59.032    | 56.2167         | 0.12529                       | 0.001 |            | 0.655E-07              | 0.008 |
| Nomi  | nal tempe     | erature =        | 101 K     |                 |                               |       |            |                        |       |
| 2189  |               | 0.04376          |           | 0.4323          | 0.02210                       | 0.004 | 100.018    | 0.337E-05              | 0.045 |
| 2190  | 0.365         | 0.03824          | 101.532   | 0.4332          | 0.02196                       | 0.005 | 100.020    | 0.334E-05              | 0.055 |
| 2191  |               | 0.03305          |           | 0.4341          | 0.02188                       | 0.005 |            | 0.335E-05              | 0.066 |
| 2192  |               |                  | 101.122   | 0.4350          | 0.02197                       | 0.007 |            | 0.348E-05              | 0.089 |
| 2185  | 0.702         |                  | 101.607   | 0.8337          | 0.02256                       | 0.005 |            | 0.165E-05              | 0.060 |
| 2186  |               | 0.03830          | 101.414   | 0.8353          | 0.02259                       | 0.007 |            | 0.166E-05              | 0.076 |
| 2187  |               | 0.03295          | 101.204   | 0.8371          | 0.02250                       | 0.008 |            | 0.166E-05              | 0.093 |
| 2188  |               | 0.02823          | 101.033   | 0.8386          | 0.02244                       | 0.007 |            | 0.168E-05              | 0.081 |
| 2181  | 1.052         |                  | 101.493   | 1.2532          | 0.02254                       | 0.007 |            | 0.100E 05<br>0.107E-05 | 0.038 |
| 2182  |               | 0.04200          |           | 1.2552 $1.2558$ | 0.02234                       | 0.003 |            | 0.107E-05<br>0.103E-05 | 0.035 |
| 2182  |               | 0.03763          |           | 1.2581          | 0.02281                       | 0.004 |            | 0.103E-05              | 0.043 |
| 2184  | 1.052 $1.052$ | 0.03230          | 100.960   | 1.2601          | 0.02271                       | 0.005 |            | 0.103E-05              | 0.066 |
| 2177  | 1.052 $1.453$ |                  | 100.900   | 1.7343          | 0.02277                       | 0.003 |            | 0.752E-06              | 0.036 |
| 2177  |               |                  |           |                 |                               |       |            | 0.732E-06<br>0.732E-06 | 0.036 |
| 21/8  | 1.403         | 0.03765          | 101.228   | 1.7376          | 0.02307                       | 0.004 | 100.010    | U.134E-U0              | 0.044 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | Q                | $T_{exp}$ | $ ho_{calc}$ | $\lambda_{exp}$               | STAT  | $T_{cell}$ | a                    | DSTAT |
|-------|------------|------------------|-----------|--------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         |              | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 2179  | 1.453      | 0.03264          | 101.076   | 1.7403       | 0.02313                       | 0.005 | 100.018    | 0.741E-06            | 0.054 |
| 2180  | 1.453      | 0.02779          | 100.888   | 1.7437       | 0.02311                       | 0.007 | 100.015    | 0.747E-06            | 0.070 |
| 2173  | 2.023      | 0.04281          | 101.288   | 2.4231       | 0.02386                       | 0.004 | 100.009    | 0.501E-06            | 0.036 |
| 2174  | 2.023      | 0.03744          | 101.136   | 2.4270       | 0.02376                       | 0.004 | 100.005    | 0.493E-06            | 0.045 |
| 2175  | 2.023      | 0.03234          | 100.979   | 2.4311       | 0.02357                       | 0.005 | 100.010    | 0.494E-06            | 0.054 |
| 2176  | 2.023      | 0.02772          | 100.851   | 2.4344       | 0.02351                       | 0.006 | 100.011    | 0.502E-06            | 0.066 |
| 2169  | 2.407      | 0.04403          | 101.304   | 2.8862       | 0.02427                       | 0.003 | 100.024    | 0.447E-06            | 0.035 |
| 2170  | 2.407      | 0.03829          | 101.149   | 2.8911       | 0.02403                       | 0.004 | 100.024    | 0.437E-06            | 0.045 |
| 2172  | 2.407      | 0.03300          | 100.996   | 2.8958       | 0.02379                       | 0.005 | 100.024    | 0.442E-06            | 0.054 |
| 2172  | 2.407      | 0.02822          | 100.857   | 2.9002       | 0.02384                       | 0.007 | 100.022    | 0.452E-06            | 0.070 |
| 2165  | 2.714      | 0.04398          | 101.289   | 3.2576       | 0.02417                       | 0.003 | 100.030    | 0.376E-06            | 0.035 |
| 2166  | 2.714      | 0.03819          | 101.115   | 3.2637       | 0.02418                       | 0.004 | 100.027    | 0.391E-06            | 0.042 |
| 2167  | 2.714      | 0.03290          | 100.963   | 3.2691       | 0.02421                       | 0.005 | 100.026    | 0.395E-06            | 0.053 |
| 2168  | 2.714      | 0.02809          | 100.823   | 3.2741       | 0.02422                       | 0.007 | 100.024    | 0.408E-06            | 0.068 |
| 2161  | 3.489      | 0.04390          | 101.215   | 4.1998       | 0.02479                       | 0.004 | 100.021    | 0.297E-06            | 0.040 |
| 2162  | 3.489      | 0.03845          | 101.048   | 4.2076       | 0.02498                       | 0.005 | 100.021    | 0.299E-06            | 0.050 |
| 2163  | 3.489      | 0.03302          | 100.910   | 4.2141       | 0.02470                       | 0.005 | 100.020    | 0.293E-06            | 0.052 |
| 2164  | 3.489      | 0.02827          | 100.775   | 4.2205       | 0.02477                       | 0.007 | 100.021    | 0.281E-06            | 0.064 |
| 2157  | 4.413      | 0.04380          | 101.124   | 5.3243       | 0.02568                       | 0.004 | 100.014    | 0.225E-06            | 0.041 |
| 1     | 4.413      | 0.03814          | 100.990   | 5.3325       | 0.02541                       | 0.005 | 100.014    | 0.228E-06            | 0.052 |
| l .   | 4.413      | 0.03303          | 100.872   | 5.3397       | 0.02537                       | 0.006 | 100.017    | 0.229E-06            | 0.060 |
| 2160  | 4.413      | 0.02821          | 100.729   | 5.3484       | 0.02532                       | 0.008 | 100.013    | 0.226E-06            | 0.076 |
| 2153  | 5.392      | 0.04405          | 101.073   | 6.5132       | 0.02643                       | 0.004 | 100.012    | 0.185E-06            | 0.041 |
| 2154  | 5.392      | 0.03852          | 100.946   | 6.5229       | 0.02648                       | 0.005 | 100.017    | 0.186E-06            | 0.051 |
| 2155  | 5.393      | 0.03317          | 100.817   | 6.5337       | 0.02642                       | 0.007 | 100.015    | 0.182E-06            | 0.061 |
| 2156  | 5.393      | 0.02825          | 100.698   | 6.5427       | 0.02615                       | 0.009 | 100.017    | 0.179E-06            | 0.079 |
| 2149  | 6.190      | 0.04417          | 101.017   | 7.4800       | 0.02743                       | 0.004 | 100.007    | 0.160E-06            | 0.041 |
| 2150  | 6.190      | 0.03844          | 100.880   | 7.4921       | 0.02725                       | 0.006 | 100.010    | 0.154E-06            | 0.050 |
| 2151  | 6.190      | 0.03313          | 100.761   | 7.5027       | 0.02711                       | 0.007 | 100.010    | 0.153E-06            | 0.066 |
| 2152  | 6.190      | 0.02828          | 100.648   | 7.5129       | 0.02701                       | 0.009 | 100.008    | 0.153E-06            | 0.078 |
| 2145  | 7.017      | 0.04422          | 101.029   | 8.4698       | 0.02802                       | 0.005 | 100.033    | 0.180E-06            | 0.044 |
| 2146  | 7.017      | 0.03798          | 100.883   | 8.4847       | 0.02776                       | 0.005 | 100.033    | 0.180E-06            | 0.050 |
| 2147  | 7.017      | 0.03299          | 100.772   | 8.4961       | 0.02789                       | 0.007 | 100.036    | 0.185E-06            | 0.061 |
| 2148  | 7.017      | 0.02817          | 100.677   | 8.5058       | 0.02784                       | 0.009 | 100.038    | 0.195E-06            | 0.081 |
| 2141  | 7.738      | 0.04428          | 100.991   | 9.3314       | 0.02868                       | 0.005 | 100.029    | 0.164E-06            | 0.043 |
| 2142  | 7.738      | 0.03866          | 100.857   | 9.3466       | 0.02876                       | 0.006 | 100.028    | 0.168E-06            | 0.053 |
| 2143  | 7.738      | 0.03337          | 100.748   | 9.3590       | 0.02858                       | 0.007 | 100.028    | 0.170E-06            | 0.067 |
| ì     |            | 0.02850          | 100.639   | 9.3715       | 0.02852                       | 0.009 | 100.030    | 0.182E-06            | 0.085 |
| ł     |            |                  | 100.949   | 10.2892      | 0.02954                       | 0.005 |            | 0.149E-06            | 0.047 |
| 1     |            |                  | 100.826   | 10.3048      | 0.02942                       | 0.006 |            | 0.152E-06            | 0.058 |
| 1     |            | 0.03321          | 100.729   | 10.3178      | 0.02945                       | 0.008 |            | 0.157E-06            | 0.069 |
| 1     |            | 0.02836          | 100.629   | 10.3306      | 0.02928                       | 0.010 |            | 0.163E-06            | 0.088 |
| 1     |            | 0.04421          |           | 11.3507      | 0.03033                       | 0.005 |            | 0.102E-06            | 0.042 |
| 1     |            | 0.03863          |           | 11.3678      | 0.03026                       | 0.006 |            | 0.102E-06            | 0.055 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$ | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|--------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         |              | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 2135  | 9.454      | 0.03342          | 100.682   | 11.3810      | 0.03024                       | 0.007 | 100.032    | 0.977E-07            | 0.062 |
| 2136  | 9.454      | 0.02854          | 100.553   | 11.3994      | 0.03017                       | 0.009 | 100.031    | 0.982E-07            | 0.082 |
| 2129  | 10.412     | 0.04417          | 100.858   | 12.4542      | 0.03135                       | 0.005 | 100.033    | 0.965E-07            | 0.044 |
| 2130  | 10.413     | 0.03855          | 100.741   | 12.4731      | 0.03124                       | 0.006 | 100.035    | 0.961E-07            | 0.056 |
| 2131  | 10.413     | 0.03337          | 100.650   | 12.4873      | 0.03122                       | 0.008 | 100.037    | 0.945E-07            | 0.068 |
| 2132  | 10.414     | 0.02852          | 100.536   | 12.5060      | 0.03112                       | 0.010 | 100.035    | 0.925E-07            | 0.084 |
| 2125  | 11.336     | 0.04704          | 100.866   | 13.4900      | 0.03220                       | 0.005 | 100.033    | 0.891E-07            | 0.042 |
| 2126  | 11.336     | 0.04127          | 100.769   | 13.5072      | 0.03210                       | 0.006 | 100.033    | 0.893E-07            | 0.050 |
| 2127  | 11.337     | 0.03591          | 100.668   | 13.5251      | 0.03207                       | 0.007 | 100.034    | 0.855E-07            | 0.062 |
| 2128  | 11.337     | 0.03092          | 100.588   | 13.5386      | 0.03213                       | 0.009 | 100.033    | 0.875E-07            | 0.078 |
| 2121  | 12.234     | 0.04999          | 100.893   | 14.4746      | 0.03309                       | 0.004 | 100.032    | 0.852E-07            | 0.038 |
| 2122  | 12.235     | 0.04418          | 100.794   | 14.4934      | 0.03308                       | 0.006 | 100.033    | 0.829E-07            | 0.047 |
| 2123  | 12.236     | 0.03862          | 100.685   | 14.5140      | 0.03310                       | 0.007 | 100.032    | 0.836E-07            | 0.058 |
| 2124  | 12.236     | 0.03335          | 100.597   | 14.5299      | 0.03343                       | 0.008 | 100.034    | 0.883E-07            | 0.068 |
| 2117  | 13.202     | 0.04995          | 100.859   | 15.5226      | 0.03404                       | 0.005 | 100.033    | 0.810E-07            | 0.040 |
| 2118  | 13.203     | 0.04416          | 100.759   | 15.5429      | 0.03412                       | 0.006 | 100.033    | 0.793E-07            | 0.050 |
| 2119  | 13.204     | 0.03860          | 100.653   | 15.5642      | 0.03409                       | 0.007 | 100.033    | 0.798E-07            | 0.058 |
| 2120  | 13.204     | 0.03339          | 100.570   | 15.5806      | 0.03411                       | 0.009 | 100.033    | 0.777E-07            | 0.073 |
| 2113  | 14.109     | 0.05615          | 100.938   | 16.4593      | 0.03497                       | 0.004 | 100.030    | 0.792E-07            | 0.035 |
| 2114  | 14.112     | 0.05010          | 100.836   | 16.4825      | 0.03508                       | 0.005 | 100.033    | 0.773E-07            | 0.041 |
| 2115  | 14.112     | 0.04414          | 100.744   | 16.5022      | 0.03505                       | 0.006 | 100.036    | 0.754E-07            | 0.048 |
| 2116  | 14.113     | 0.03859          | 100.647   | 16.5229      | 0.03494                       | 0.007 | 100.034    | 0.728E-07            | 0.057 |
| 2109  | 15.271     | 0.05594          | 100.903   | 17.6512      | 0.03631                       | 0.004 | 100.035    | 0.796E-07            | 0.036 |
| 2110  | 15.272     | 0.04968          | 100.803   | 17.6738      | 0.03667                       | 0.005 | 100.038    | 0.782E-07            | 0.043 |
| 2111  | 15.273     | 0.04376          | 100.705   | 17.6961      | 0.03606                       | 0.006 | 100.037    | 0.759E-07            | 0.049 |
| 2112  | 15.273     | 0.03840          | 100.621   | 17.7153      | 0.03619                       | 0.007 | 100.039    | 0.771E-07            | 0.062 |
| 2105  | 16.174     | 0.05622          | 100.876   | 18.5501      | 0.03734                       | 0.004 | 100.030    | 0.739E-07            | 0.037 |
| 2106  |            | 0.04986          | 100.772   | 18.5740      | 0.03748                       | 0.005 | 100.031    | 0.736E-07            | 0.042 |
| 2107  | 16.174     | 0.04345          | 100.655   | 18.6007      | 0.03764                       | 0.006 | 100.023    | 0.771E-07            | 0.055 |
| 2108  |            | 0.03787          | 100.564   | 18.6217      | 0.03708                       | 0.008 | 100.026    | 0.732E-07            | 0.063 |
| 2101  | 17.190     | 0.05628          | 100.829   | 19.5372      | 0.03877                       | 0.005 | 100.029    | 0.679E-07            | 0.039 |
| 2102  | 17.192     | 0.04956          | 100.730   | 19.5622      | 0.03848                       | 0.006 | 100.024    | 0.662E-07            | 0.045 |
| 2103  |            | 0.04374          | 100.638   | 19.5848      | 0.03840                       | 0.007 |            | 0.683E-07            | 0.054 |
| 2104  |            | 0.03823          | 100.580   | 19.5993      | 0.03807                       | 0.008 | 100.024    | 0.653E-07            | 0.066 |
| 2097  | 18.344     | 0.06279          | 100.895   | 20.5912      | 0.03951                       | 0.004 | 100.023    |                      | 0.032 |
| 2098  | 18.345     | 0.05637          | 100.815   | 20.6114      | 0.03974                       | 0.005 | 100.025    |                      | 0.038 |
| 2099  |            |                  | 100.699   | 20.6408      | 0.03960                       | 0.005 | 100.025    | 0.622E-07            | 0.044 |
| 2100  | 18.346     | 0.04411          | 100.626   | 20.6596      | 0.03947                       | 0.006 | 100.027    |                      | 0.052 |
| 2093  | 19.341     | 0.06286          | 100.849   | 21.4949      | 0.04100                       | 0.004 | 100.013    |                      | 0.029 |
| 2094  |            | 0.05601          | 100.762   | 21.5178      | 0.04082                       | 0.004 |            | 0.613E-07            | 0.034 |
| 2095  |            | 0.04981          | 100.672   | 21.5412      | 0.04060                       | 0.005 |            | 0.617E-07            | 0.041 |
| 2096  | 19.344     | 0.04383          | 100.612   | 21.5574      | 0.04039                       | 0.007 |            | 0.594E-07            | 0.056 |
| 2089  | 20.490     | 0.06987          | 100.935   | 22.4629      | 0.04206                       | 0.003 | 100.019    |                      | 0.026 |
| 2090  | 20.492     | 0.06284          | 100.835   | 22.4903      | 0.04205                       | 0.004 | 100.018    | 0.637E-07            | 0.031 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $\rho_{calc}$                    | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|----------------------------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 2091  | 20.492     | 0.05603          | 100.729   | 22.5186                          | 0.04210                       | 0.004 | 100.016    | 0.621E-07            | 0.033 |
| 2092  | 20.493     | 0.04987          | 100.650   | 22.5402                          | 0.04197                       | 0.005 | 100.020    | 0.599E-07            | 0.041 |
| 2085  | 21.780     | 0.07034          | 100.927   | 23.5301                          | 0.04346                       | 0.004 | 100.034    | 0.648E-07            | 0.032 |
| 2086  | 21.780     | 0.06312          | 100.830   | 23.5562                          | 0.04344                       | 0.004 | 100.032    | 0.649E-07            | 0.031 |
| 2087  | 21.780     | 0.05611          | 100.729   | 23.5836                          | 0.04347                       | 0.004 | 100.026    | 0.646E-07            | 0.036 |
| 2088  | 21.780     | 0.04974          | 100.669   | 23.5996                          | 0.04334                       | 0.005 | 100.030    | 0.652E-07            | 0.044 |
| 2081  | 23.021     | 0.07058          | 100.931   | 24.5097                          | 0.04463                       | 0.004 | 100.051    | 0.688E-07            | 0.030 |
| 2082  | 23.021     | 0.06324          | 100.840   | 24.5346                          | 0.04457                       | 0.004 | 100.049    | 0.703E-07            | 0.036 |
| 2083  | 23.021     | 0.05642          | 100.749   | 24.5596                          | 0.04456                       | 0.005 | 100.049    | 0.709E-07            | 0.042 |
| 2084  | 23.021     | 0.05001          | 100.676   | 24.5797                          | 0.04451                       | 0.006 | 100.046    | 0.729E-07            | 0.051 |
| 2077  | 24.290     | 0.07000          | 100.885   | 25.4807                          | 0.04571                       | 0.005 | 100.027    | 0.718E-07            | 0.045 |
| 2078  | 24.290     | 0.06306          | 100.793   | 25.5068                          | 0.04574                       | 0.005 | 100.030    | 0.732E-07            | 0.046 |
| 2079  | 24.292     | 0.05645          | 100.709   | 25.5314                          | 0.04579                       | 0.007 | 100.032    | 0.749E-07            | 0.062 |
| 2080  | 24.293     | 0.05010          | 100.617   | 25.5576                          | 0.04581                       | 0.009 | 100.031    | 0.769E-07            | 0.075 |
| 2073  | 25.738     | 0.07798          | 100.954   | 26.5038                          | 0.04751                       | 0.005 | 100.034    | 0.706E-07            | 0.040 |
| 2074  | 25.739     | 0.07036          | 100.854   | 26.5333                          | 0.04728                       | 0.006 | 100.030    | 0.695E-07            | 0.046 |
| 2075  | 25.740     | 0.06309          | 100.761   | 26.5600                          | 0.04715                       | 0.006 | 100.030    | 0.718E-07            | 0.054 |
| 2076  | 25.740     | 0.05643          | 100.682   | 26.5828                          | 0.04709                       | 0.008 | 100.031    | 0.719E-07            | 0.065 |
| 2069  | 27.117     | 0.07771          | 100.905   | 27.4630                          | 0.04868                       | 0.005 | 100.024    | 0.681E-07            | 0.042 |
| 2070  | 27.118     | 0.07029          | 100.812   | 27.4905                          | 0.04878                       | 0.006 | 100.023    | 0.690E-07            | 0.048 |
| 2071  | 27.119     | 0.06314          | 100.742   | 27.5109                          | 0.04852                       | 0.007 | 100.024    | 0.677E-07            | 0.056 |
| 2072  | 27.120     | 0.05648          | 100.649   | 27.5387                          | 0.04854                       | 0.008 | 100.027    | 0.697E-07            | 0.066 |
| 2065  | 28.607     | 0.07773          | 100.881   | 28.4419                          | 0.05012                       | 0.004 | 100.025    | 0.665E-07            | 0.036 |
| 2066  | 28.609     | 0.07028          | 100.789   | 28.4694                          | 0.05017                       | 0.005 | 100.025    | 0.661E-07            | 0.042 |
| 2067  | 28.611     | 0.06313          | 100.712   | 28.4933                          | 0.05038                       | 0.006 | 100.027    | 0.687E-07            | 0.049 |
| 2068  | 28.611     | 0.05622          | 100.619   | 28.5200                          | 0.05013                       | 0.007 | 100.025    | 0.676E-07            | 0.059 |
| 2061  | 30.278     | 0.08583          | 100.928   | 29.4613                          | 0.05194                       | 0.004 | 100.020    | 0.637E-07            | 0.032 |
| 2062  | 30.279     | 0.07411          | 100.798   | 29.4997                          | 0.05179                       | 0.005 | 100.021    | 0.642E-07            | 0.040 |
| 2063  | 30.281     | 0.06323          | 100.677   | 29.5357                          | 0.05168                       | 0.006 | 100.020    | 0.621E-07            | 0.051 |
| 2064  |            |                  | 100.595   | 29.5602                          | 0.05171                       | 0.008 |            | 0.660E-07            | 0.065 |
| 2057  |            | 0.08572          |           | 30.4849                          | 0.05347                       | 0.004 |            | 0.645E-07            | 0.034 |
| 2058  | 32.026     | 0.07416          | 100.788   | 30.5238                          | 0.05364                       | 0.005 | 100.029    |                      | 0.041 |
| 2059  |            |                  | 100.662   | 30.5607                          | 0.05339                       | 0.006 |            | 0.656E-07            | 0.052 |
| 2060  |            | 0.05324          |           | 30.5951                          | 0.05331                       | 0.008 |            | 0.663E-07            | 0.068 |
| 2053  |            |                  | 100.966   | 31.5366                          | 0.05550                       | 0.004 | 100.033    |                      | 0.030 |
| 2054  |            | 0.07788          |           | 31.5822                          | 0.05513                       | 0.005 |            | 0.638E-07            | 0.039 |
| 2055  |            | 0.06325          |           | 31.6323                          | 0.05517                       | 0.006 |            | 0.650E-07            | 0.052 |
| 2056  | 33.961     | 0.05013          | 100.492   | 31.6767                          | 0.05529                       | 0.009 | 100.037    |                      | 0.077 |
| 2049  | 35.730     | 0.09403          | 100.942   | 32.4676                          | 0.05691                       | 0.004 | 100.033    | 0.639E-07            | 0.031 |
| 2050  |            | 0.07801          | 100.783   | 32.5147                          | 0.05691                       | 0.003 | 100.035    |                      | 0.027 |
| 2051  |            | 0.06344          |           | 32.5574                          | 0.05696                       | 0.006 |            | 0.640E-07            | 0.053 |
| 2052  |            |                  | 100.513   | 32.5947                          | 0.05695                       | 0.009 |            | 0.632E-07            | 0.076 |
| 2045  |            | 0.10246          |           | 33.4436                          | 0.05899                       | 0.003 | 100.027    |                      | 0.028 |
| 2046  | 37.742     | 0.08568          | 100.838   | 33.4887                          | 0.05863                       | 0.005 | 100.027    | 0.634E-07            | 0.037 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | Q                 | $T_{exp}$ | $\rho_{calc}$ | $\lambda_{exp}$ W·m <sup>-1</sup> ·K <sup>-1</sup> | STAT  | $T_{cell}$ | $a$ $m^2 \cdot s^{-1}$ | DSTAT |
|-------|------------|-------------------|-----------|---------------|----------------------------------------------------|-------|------------|------------------------|-------|
| point | MPa        | W·m <sup>-1</sup> | K         |               |                                                    | 0.006 | K          |                        | 0.040 |
| 2047  | 37.745     | 0.07042           | 100.682   | 33.5351       | 0.05889                                            | 0.006 | 100.028    | 0.632E-07              | 0.049 |
| 2048  | 37.748     | 0.05640           | 100.538   | 33.5781       | 0.05881                                            | 0.008 | 100.030    | 0.628E-07              | 0.069 |
| 2041  | 39.754     |                   | 101.050   | 34.3642       | 0.06076                                            | 0.003 |            | 0.651E-07              | 0.025 |
| 2042  |            | 0.08967           | 100.843   | 34.4241       | 0.06051                                            | 0.004 | l          | 0.636E-07              | 0.036 |
| 2043  | 39.755     | 0.07024           | 100.669   | 34.4742       | 0.06088                                            | 0.006 | 100.037    |                        | 0.050 |
| 2044  | 39.756     | 0.05310           | 100.520   | 34.5176       | 0.06044                                            | 0.009 | 100.036    | 0.682E-07              | 0.078 |
| 2037  | 42.204     | 0.11167           | 100.992   | 35.4552       | 0.06297                                            | 0.003 | l          | 0.588E-07              | 0.021 |
| 2038  | 42.208     | 0.08986           | 100.802   | 35.5110       | 0.06276                                            | 0.004 |            | 0.565E-07              | 0.029 |
| 2039  | 42.210     | 0.07034           | 100.624   | 35.5627       | 0.06292                                            | 0.005 |            | 0.557E-07              | 0.043 |
| 2040  | 42.212     | 0.05325           | 100.480   | 35.6046       | 0.06274                                            | 0.008 |            | 0.551E-07              | 0.065 |
| 2033  | 44.672     | 0.12100           | 101.059   | 36.4520       | 0.06564                                            | 0.002 |            | 0.621E-07              | 0.018 |
| 2034  | 44.675     | 0.09806           | 100.859   | 36.5095       | 0.06481                                            | 0.003 |            | 0.615E-07              | 0.028 |
|       | 44.677     | 0.07778           | 100.697   | 36.5564       | 0.06499                                            | 0.005 |            | 0.628E-07              | 0.038 |
| 2036  | 44.680     | 0.05975           | 100.540   | 36.6021       | 0.06506                                            | 0.007 | 100.040    | 0.616E-07              | 0.055 |
| 2029  | 47.118     | 0.12109           | 101.012   | 37.4138       | 0.06735                                            | 0.002 | 100.027    | 0.592E-07              | 0.017 |
| 2030  | 47.119     | 0.09825           | 100.816   | 37.4692       | 0.06721                                            | 0.003 | 100.027    |                        | 0.023 |
| 2031  | 47.124     |                   | 100.659   | 37.5148       | 0.06720                                            | 0.004 | 100.029    | 0.565E-07              | 0.035 |
| 2032  | 47.125     | 0.05964           | 100.503   | 37.5591       | 0.06717                                            | 0.006 | 100.029    | 0.575E-07              | 0.049 |
| 2025  | 49.880     | 0.12101           | 101.054   | 38.4106       | 0.06968                                            | 0.002 | 100.076    | 0.702E-07              | 0.019 |
| 2026  | 49.888     | 0.09798           | 100.848   | 38.4703       | 0.07031                                            | 0.003 | 100.077    | 0.708E-07              | 0.025 |
| 2027  | 49.890     | 0.07737           | 100.684   | 38.5167       | 0.06978                                            | 0.004 | 100.075    | 0.739E-07              | 0.037 |
| 2028  | 49.891     | 0.05938           | 100.520   | 38.5627       | 0.06960                                            | 0.006 | 100.070    | 0.787E-07              | 0.053 |
| 2021  | 52.842     | 0.12091           | 100.951   | 39.4548       | 0.07254                                            | 0.002 | 100.041    | 0.627E-07              | 0.019 |
| 2022  | 52.844     | 0.09776           | 100.777   | 39.5031       | 0.07201                                            | 0.003 | 100.040    | 0.604E-07              | 0.026 |
| 2023  | 52.845     | 0.07742           | 100.604   | 39.5509       | 0.07188                                            | 0.004 | 100.039    | 0.612E-07              | 0.035 |
| 2024  | 52.846     | 0.05958           | 100.449   | 39.5940       | 0.07195                                            | 0.007 | 100.040    | 0.635E-07              | 0.053 |
| 2017  | 55.910     | 0.12944           | 100.860   | 40.4679       | 0.07508                                            | 0.002 | 99.915     | 0.620E-07              | 0.019 |
| 2018  | 55.914     | 0.10585           | 100.689   | 40.5153       | 0.07478                                            | 0.003 | 99.918     | 0.606E-07              | 0.025 |
| 2019  | 55.918     | 0.08469           | 100.534   | 40.5586       | 0.07470                                            | 0.004 | 99.915     | 0.597E-07              | 0.035 |
| 2020  | 55.921     | 0.06586           | 100.399   | 40.5963       | 0.07477                                            | 0.006 | 99.917     | 0.595E-07              | 0.050 |
| 2013  | 59.232     | 0.12995           | 100.845   | 41.4771       | 0.07814                                            | 0.002 | 99.914     | 0.734E-07              | 0.021 |
| 2014  | 59.234     | 0.10593           | 100.688   | 41.5194       | 0.07743                                            | 0.003 | 99.913     | 0.782E-07              | 0.027 |
| 2015  | 59.235     | 0.08489           | 100.541   | 41.5594       | 0.07765                                            | 0.004 | 99.914     | 0.805E-07              | 0.037 |
| 2016  | 59.236     | 0.06607           | 100.365   | 41.6070       | 0.07757                                            | 0.006 | 99.914     | 0.860E-07              | 0.055 |
| 2009  | 62.864     | 0.14559           | 100.929   | 42.4857       | 0.08050                                            | 0.002 | 99.913     | 0.707E-07              | 0.018 |
| 2010  | 62.867     | 0.12058           | 100.756   | 42.5321       | 0.08060                                            | 0.003 | 99.919     | 0.728E-07              | 0.024 |
| 2011  | 62.868     | 0.09785           | 100.581   | 42.5788       | 0.08048                                            | 0.004 | 99.916     | 0.729E-07              | 0.031 |
| 2012  | 62.864     | 0.07732           | 100.429   | 42.6178       | 0.08055                                            | 0.005 | 99.921     | 0.748E-07              | 0.045 |
| 2005  | 66.383     | 0.14532           | 100.897   | 43.4330       | 0.08323                                            | 0.002 | 99.914     | 0.716E-07              | 0.020 |
| 2006  | 66.385     | 0.12031           |           | 43.4795       | 0.08317                                            | 0.003 | 99.914     | 0.743E-07              | 0.026 |
|       |            | 0.09777           | 100.562   | 43.5214       | 0.08346                                            | 0.004 |            | 0.765E-07              | 0.036 |
|       |            | 0.07714           | 100.405   | 43.5636       | 0.08326                                            | 0.006 |            | 0.794E-07              | 0.050 |
| 2001  |            | 0.14398           |           | 44.4024       | 0.08584                                            | 0.002 |            | 0.695E-07              | 0.020 |
|       |            | 0.11973           |           | 44.4439       | 0.08604                                            | 0.003 |            | 0.694E-07              | 0.027 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | 0 1                                 | λ                                                 | STAT  | $T_{cell}$ | $\overline{a}$                       | DSTAT |
|-------|------------|------------------|-----------|-------------------------------------|---------------------------------------------------|-------|------------|--------------------------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $ \rho_{calc} $ mol·L <sup>-1</sup> | $\lambda_{exp}$ W·m <sup>-1</sup> ·K <sup>-</sup> |       | K          | $\mathrm{m}^{2}\cdot\mathrm{s}^{-1}$ | DSIAI |
| 2003  | 70.173     | 0.09735          | 100.521   | 44.4816                             | 0.08618                                           | 0.004 | 99.898     | 0.715E-07                            | 0.036 |
| 2004  | 70.173     |                  | 100.364   | 44.5219                             | 0.08606                                           | 0.006 | 99.899     | 0.718E-07                            | 0.050 |
|       |            | erature =        |           |                                     |                                                   |       |            |                                      |       |
| 5141  | 0.941      |                  | 152.232   | 0.7409                              | 0.03036                                           | 0.002 | 150.116    | 0.195E-05                            | 0.027 |
| 5142  | 0.941      | 0.06519          | 151.965   | 0.7422                              | 0.03033                                           | 0.003 | 150.116    | 0.197E-05                            | 0.034 |
| 5143  | 0.940      | 0.05632          | 151.713   | 0.7429                              | 0.03028                                           | 0.004 | 150.115    | 0.196E-05                            | 0.041 |
| 5144  | 0.940      | 0.04811          | 151.480   | 0.7440                              | 0.03022                                           | 0.005 |            | 0.193E-05                            | 0.053 |
| 5137  | 1.726      | 0.07469          | 152.078   | 1.3560                              | 0.03095                                           | 0.002 | 150.117    | 0.108E-05                            | 0.027 |
| 5138  | 1.726      | 0.06516          | 151.831   | 1.3583                              | 0.03095                                           | 0.003 | 150.119    | 0.109E-05                            | 0.033 |
| 5139  | 1.726      | 0.05630          | 151.598   | 1.3604                              | 0.03091                                           | 0.004 | 150.117    | 0.109E-05                            | 0.040 |
| 5140  | 1.726      | 0.04809          | 151.386   | 1.3623                              | 0.03084                                           | 0.004 | 150.117    | 0.111E-05                            | 0.050 |
| 5133  | 2.423      | 0.07467          | 151.970   | 1.8990                              | 0.03144                                           | 0.002 | 150.115    | 0.793E-06                            | 0.023 |
| 5134  | 2.423      | 0.06515          | 151.740   | 1.9020                              | 0.03146                                           | 0.003 | 150.116    | 0.825E-06                            | 0.028 |
| 5135  | 2.423      | 0.05629          | 151.517   | 1.9048                              | 0.03137                                           | 0.003 | 150.118    | 0.788E-06                            | 0.035 |
| 5136  | 2.423      | 0.04809          | 151.313   | 1.9074                              | 0.03138                                           | 0.004 | 150.115    | 0.810E-06                            | 0.039 |
| 5129  | 3.064      | 0.07466          | 151.907   | 2.3957                              | 0.03189                                           | 0.002 | 150.116    | 0.651E-06                            | 0.023 |
| 5130  | 3.064      | 0.06514          | 151.681   | 2.3993                              | 0.03184                                           | 0.003 | 150.117    | 0.646E-06                            | 0.028 |
| 5131  | 3.064      | 0.05629          | 151.468   | 2.4028                              | 0.03173                                           | 0.003 | 150.116    | 0.632E-06                            | 0.034 |
| 5132  | 3.064      | 0.04808          | 151.277   | 2.4059                              | 0.03176                                           | 0.004 | 150.118    | 0.655E-06                            | 0.044 |
| 5125  | 3.741      | 0.07465          | 151.851   | 2.9175                              | 0.03231                                           | 0.002 | 150.117    | 0.542E-06                            | 0.023 |
| 5126  | 3.741      | 0.06514          | 151.632   | 2.9218                              | 0.03223                                           | 0.003 | 150.118    | 0.532E-06                            | 0.028 |
| 5127  | 3.740      | 0.05628          | 151.425   | 2.9254                              | 0.03211                                           | 0.003 | 150.115    | 0.527E-06                            | 0.035 |
| 5128  | 3.740      | 0.04809          | 151.236   | 2.9291                              | 0.03211                                           | 0.004 | 150.114    | 0.530E-06                            | 0.044 |
| 5121  | 4.423      | 0.07463          | 151.746   | 3.4410                              | 0.03262                                           | 0.004 | 150.119    | 0.460E-06                            | 0.043 |
| 5122  | 4.423      | 0.06512          | 151.534   | 3.4460                              | 0.03258                                           | 0.005 | 150.117    | 0.464E-06                            | 0.053 |
| 5123  | 4.422      | 0.05627          | 151.338   | 3.4500                              | 0.03272                                           | 0.006 | 150.120    | 0.479E-06                            | 0.065 |
| 5124  | 4.422      | 0.04807          | 151.171   | 3.4540                              | 0.03255                                           | 0.008 | 150.120    | 0.461E-06                            | 0.078 |
| 5117  | 5.851      | 0.07461          | 151.667   | 4.5225                              | 0.03340                                           | 0.004 | 150.119    | 0.362E-06                            | 0.043 |
| 5118  | 5.851      | 0.06510          | 151.470   | 4.5286                              | 0.03338                                           | 0.005 | 150.117    | 0.363E-06                            | 0.050 |
| 5119  | 5.851      | 0.05626          | 151.282   | 4.5344                              | 0.03330                                           | 0.006 | 150.119    | 0.358E-06                            | 0.063 |
| 5120  | 5.851      | 0.04807          | 151.101   | 4.5401                              | 0.03325                                           | 0.008 | 150.117    | 0.358 <b>E-</b> 06                   | 0.080 |
| 5113  | 7.140      | 0.07460          | 151.592   | 5.4849                              | 0.03420                                           | 0.004 | 150.117    | 0.296E-06                            | 0.042 |
| 5114  | 7.140      | 0.06509          | 151.399   | 5.4922                              | 0.03408                                           | 0.005 | 150.116    | 0.294E-06                            | 0.051 |
| 5115  | 7.140      | 0.05625          | 151.226   | 5.4987                              | 0.03399                                           | 0.006 | 150.116    | 0.287E-06                            | 0.063 |
| 5116  | 7.140      | 0.04807          | 151.049   | 5.5055                              | 0.03397                                           | 0.008 | 150.114    | 0.290E-06                            | 0.079 |
| 5109  | 8.555      | 0.07457          | 151.539   | 6.5229                              | 0.03486                                           | 0.005 | 150.117    | 0.251E-06                            | 0.044 |
| 5110  | 8.555      | 0.06507          | 151.360   | 6.5310                              | 0.03476                                           | 0.005 | 150.118    | 0.248E-06                            | 0.053 |
| 5111  | 8.554      | 0.05624          | 151.187   | 6.5383                              | 0.03475                                           | 0.007 | 150.116    | 0.251E-06                            | 0.066 |
| 5112  | 8.554      | 0.04806          | 151.022   | 6.5458                              | 0.03480                                           | 0.009 | 150.115    | 0.258E-06                            | 0.082 |
| 5105  | 10.051     | 0.07456          | 151.473   | 7.6012                              | 0.03574                                           | 0.005 | 150.118    | 0.218E-06                            | 0.044 |
| 5106  | 10.051     | 0.06506          | 151.296   | 7.6105                              | 0.03543                                           | 0.006 | 150.117    | 0.204E-06                            | 0.054 |
| 5107  |            | 0.05622          |           | 7.6191                              | 0.03565                                           | 0.007 | 150.117    | 0.212E-06                            | 0.067 |
| 5108  | 10.051     | 0.04804          | 150.980   | 7.6267                              | 0.03541                                           | 0.009 | 150.117    | 0.203E-06                            | 0.083 |
| 5101  | 11.457     | 0.07454          | 151.426   | 8.5929                              | 0.03650                                           | 0.005 | 150.112    | 0.192E-06                            | 0.043 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run          | $P_{cell}$ | $\overline{Q}$     | $T_{exp}$ | $ ho_{calc}$                     | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$         | DSTAT          |
|--------------|------------|--------------------|-----------|----------------------------------|-------------------------------|-------|------------|------------------------|----------------|
| point        | MPa        | $W \cdot m^{-1}$   | ĸ.        | $\text{mol} \cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$   |                |
| 5102         | 11.457     | 0.06505            | 151.258   | 8.6028                           | 0.03644                       | 0.006 | 150.114    | 0.189E-06              | 0.053          |
| 5103         | 11.457     | 0.05621            | 151.093   | 8.6127                           | 0.03642                       | 0.007 | 150.112    | 0.188E-06              | 0.067          |
| 5104         | 11.457     | 0.04803            | 150.944   | 8.6216                           | 0.03639                       | 0.010 | 150.114    | 0.191E-06              | 0.092          |
| 5097         | 13.096     | 0.07454            | 151.380   | 9.7236                           | 0.03743                       | 0.005 | 150.117    | 0.176E-06              | 0.043          |
| 5098         | 13.096     | 0.06505            | 151.218   | 9.7346                           | 0.03745                       | 0.006 | 150.117    | 0.177E-06              | 0.055          |
| 5099         | 13.096     | 0.05621            | 151.071   | 9.7444                           | 0.03750                       | 0.007 | 150.114    | 0.180E-06              | 0.066          |
| 5100         | 13.096     | 0.04803            | 150.930   | 9.7540                           | 0.03727                       | 0.009 | 150.114    | 0.173E-06              | 0.087          |
| 5093         | 14.396     | 0.07454            | 151.332   | 10.6016                          | 0.03805                       | 0.005 | 150.112    | 0.156E-06              | 0.046          |
| 5094         | 14.396     | 0.06505            | 151.177   | 10.6129                          | 0.03820                       | 0.006 | 150.112    | 0.162E-06              | 0.055          |
| 5095         | 14.396     | 0.05622            | 151.034   | 10.6234                          | 0.03810                       | 0.007 | 150.110    | 0.159E-06              | 0.067          |
| 5096         | 14.396     | 0.04804            | 150.903   | 10.6330                          | 0.03806                       | 0.009 | 150.111    | 0.164E-06              | 0.083          |
| 5089         | 16.023     | 0.07452            | 151.282   | 11.6741                          | 0.03909                       | 0.005 | 150.110    | 0.144E-06              | 0.044          |
| 5090         | 16.023     | 0.06504            | 151.132   | 11.6861                          | 0.03925                       | 0.006 | 150.110    | 0.152E-06              | 0.055          |
| 5091         | 16.023     |                    | 150.993   | 11.6973                          | 0.03912                       | 0.008 | 150.110    |                        | 0.068          |
| 5092         | 16.024     |                    | 150.856   | 11.7088                          | 0.03916                       | 0.009 | 150.111    |                        | 0.085          |
| 5084         |            | 0.07451            | 151.245   | 12.6849                          | 0.04006                       | 0.005 | 150.109    | 0.135E-06              | 0.046          |
| 5086         | 17.598     |                    | 151.106   | 12.6970                          | 0.04011                       | 0.006 |            | 0.134E-06              | 0.056          |
| 5087         | 17.599     | 0.05620            | 150.965   | 12.7097                          | 0.04004                       | 0.008 | 150.111    |                        | 0.069          |
| 5088         | 17.599     | 0.04803            | 150.819   | 12.7225                          | 0.03996                       | 0.010 | 150.107    |                        | 0.088          |
| 5081         |            | 0.07449            | 151.212   | 13.6510                          | 0.04097                       | 0.005 | 150.108    |                        | 0.046          |
| 5082         |            | 0.06502            |           | 13.6655                          | 0.04103                       | 0.006 | 150.109    |                        | 0.056          |
| 5083         | 19.146     |                    | 150.929   | 13.6781                          | 0.04096                       | 0.008 | 150.109    | 0.121E-06              | 0.071          |
| 5084         | 19.146     | 0.04802            | 150.785   | 13.6914                          | 0.04092                       | 0.010 | 150.107    | 0.120E-06              | 0.086          |
| 5077         | 20.879     | 0.08991            | 151.402   | 14.6822                          | 0.04213                       | 0.004 | 150.117    |                        | 0.037          |
| 5078         | 20.880     |                    | 151.179   | 14.7046                          | 0.04208                       | 0.005 |            | 0.118E-06              | 0.047          |
| 5079         | 20.881     | 0.06052            |           | 14.7252                          | 0.04203                       | 0.007 | 150.117    |                        | 0.065          |
| 5080         | 20.881     | 0.04801            | 150.795   | 14.7435                          | 0.04198                       | 0.009 | 150.116    | 0.115E-06              | 0.081          |
| 5073         | 22.791     | 0.08988            | 151.351   | 15.8061                          | 0.04330                       | 0.004 | 150.123    | 0.106E-06              | 0.034          |
| 5074         | 22.791     | 0.07446            |           | 15.8281                          | 0.04323                       | 0.005 | 150.120    | 0.106E-06              | 0.047          |
| 5075         | 22.792     | 0.06050            |           | 15.8510                          | 0.04319                       | 0.005 | 150.121    | 0.103E-06              | 0.045          |
| 5076         |            | 0.04800            |           | 15.8690                          | 0.04316                       | 0.010 |            | 0.989E-07              | 0.088          |
| 1            |            | 0.08989            |           | 16.6609                          | 0.04425                       | 0.004 |            | 0.104E-06              | 0.037          |
| 1            |            | 0.07446            |           | 16.6844                          | 0.04418                       | 0.005 |            | 0.102E-06              | 0.048          |
| !            |            | 0.06049            |           | 16.7056                          | 0.04407                       | 0.007 |            | 0.977E-07              | 0.063          |
| 5072         |            | 0.04800            |           | 16.7238                          | 0.04405                       | 0.010 |            | 0.948E-07              | 0.086          |
| 5065<br>5066 |            | 0.08979            |           | 17.7138                          | 0.04560                       | 0.004 |            | 0.112E-06              | 0.039          |
| ļ            |            | 0.07439<br>0.06044 |           | 17.7386                          | 0.04529                       | 0.006 |            | 0.107E-06              | 0.050<br>0.066 |
| 5067         |            | 0.06044            |           | 17.7606                          | 0.04524                       | 0.008 |            | 0.106E-06<br>0.109E-06 | 0.096          |
| 5061         |            | 0.04796            |           | 17.7802<br>18.7838               | 0.04518<br>0.04645            | 0.011 |            | 0.109E-06<br>0.100E-06 | 0.096          |
|              |            | 0.08977            |           | 18.8090                          | 0.04643                       | 0.004 |            | 0.100E-06<br>0.102E-06 | 0.050          |
| 5062         |            |                    | 150.860   | 18.8320                          | 0.04630                       | 0.008 |            | 0.102E-06<br>0.103E-06 | 0.030          |
| 5064         |            |                    | 150.685   | 18.8535                          | 0.04654                       | 0.008 |            | 0.105E-06              | 0.076          |
| 5057         |            | 0.04793            |           | 19.8266                          | 0.04034                       | 0.011 |            | 0.103E-00<br>0.993E-07 | 0.041          |
| 5057         | 00.204     | 0.00970            | 101.419   | 13.0400                          | 0.04777                       | 0.005 | 100.110    | U.222L-U1              | 0.041          |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$                    | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$                       | DSTAT |
|-------|------------|------------------|-----------|---------------------------------|-------------------------------|-------|------------|--------------------------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol}\cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $\mathrm{m}^{2}\cdot\mathrm{s}^{-1}$ |       |
| 5058  | 30.235     | 0.07437          | 151.025   | 19.8511                         | 0.04779                       | 0.006 | 150.117    | 0.997E-07                            | 0.052 |
| 5059  | 30.236     | 0.06043          | 150.845   | 19.8741                         | 0.04773                       | 0.008 | 150.116    | 0.995E-07                            | 0.069 |
| 5060  | 30.237     | 0.04795          | 150.673   | 19.8961                         | 0.04784                       | 0.011 | 150.115    | 0.101E-06                            | 0.098 |
| 5053  | 32.158     | 0.08975          | 151.187   | 20.7795                         | 0.04888                       | 0.005 | 150.118    | 0.941E-07                            | 0.041 |
| 5054  | 32.158     | 0.07436          | 150.989   | 20.8054                         | 0.04899                       | 0.006 | 150.116    | 0.943E-07                            | 0.054 |
| 5055  | 32.159     | 0.06042          | 150.821   | 20.8275                         | 0.04888                       | 0.008 | 150.118    | 0.929E-07                            | 0.069 |
| 5056  | 32.160     | 0.04795          | 150.652   | 20.8498                         | 0.04889                       | 0.012 | 150.118    | 0.966E-07                            | 0.100 |
| 5049  | 34.356     | 0.10660          | 151.360   | 21.8008                         | 0.05043                       | 0.003 | 150.123    | 0.949E-07                            | 0.022 |
| 5050  | 34.358     | 0.08976          | 151.166   | 21.8275                         | 0.05027                       | 0.005 | 150.124    | 0.932E-07                            | 0.042 |
| 5051  | 34.359     | 0.07436          | 150.978   | 21.8529                         | 0.05029                       | 0.006 | 150.122    | 0.922E-07                            | 0.056 |
| 5052  | 34.359     | 0.06042          | 150.801   | 21.8766                         | 0.05023                       | 0.008 | 150.123    | 0.915E-07                            | 0.073 |
| 5045  | 36.545     | 0.10659          | 151.322   | 22.8044                         | 0.05171                       | 0.004 | 150.121    | 0.894E-07                            | 0.032 |
| 5046  | 36.547     | 0.08974          | 151.120   | 22.8325                         | 0.05151                       | 0.005 | 150.118    | 0.868E-07                            | 0.043 |
| 5047  | 36.547     | 0.07436          | 150.953   | 22.8557                         | 0.05161                       | 0.006 | 150.120    | 0.896E-07                            | 0.055 |
| 5048  | 36.548     | 0.06042          | 150.798   | 22.8773                         | 0.05150                       | 0.009 | 150.119    | 0.864E-07                            | 0.076 |
| 5041  | 38.911     | 0.10657          | 151.294   | 23.8436                         | 0.05313                       | 0.003 | 150.130    | 0.888E-07                            | 0.024 |
| 5042  | 38.913     | 0.08973          | 151.095   | 23.8720                         | 0.05305                       | 0.005 | 150.130    | 0.860E-07                            | 0.043 |
| 5043  | 38.913     | 0.07435          | 150.920   | 23.8969                         | 0.05323                       | 0.007 | 150.129    | 0.888E-07                            | 0.057 |
| 5044  | 38.913     | 0.06042          | 150.770   | 23.9179                         | 0.05288                       | 0.009 | 150.126    | 0.844E-07                            | 0.078 |
| 5037  | 41.318     | 0.10659          | 151.261   | 24.8576                         | 0.05445                       | 0.003 | 150.137    | 0.837E-07                            | 0.026 |
| 5038  | 41.319     | 0.08975          | 151.081   | 24.8837                         | 0.05428                       | 0.004 | 150.139    | 0.827E-07                            | 0.031 |
| 5039  | 41.319     | 0.07436          | 150.920   | 24.9070                         | 0.05466                       | 0.005 | 150.136    | 0.874E-07                            | 0.044 |
| 5040  | 41.319     | 0.06042          | 150.779   | 24.9271                         | 0.05431                       | 0.007 | 150.137    | 0.844E-07                            | 0.055 |
| 5033  | 43.578     | 0.10660          | 151.228   | 25.7719                         | 0.05591                       | 0.003 | 150.133    | 0.830E-07                            | 0.025 |
| 5034  | 43.578     | 0.08974          | 151.041   | 25.7991                         | 0.05594                       | 0.004 | 150.131    | 0.829E-07                            | 0.033 |
| 5035  | 43.579     | 0.07436          | 150.871   | 25.8240                         | 0.05591                       | 0.005 | 150.131    | 0.801E-07                            | 0.044 |
| 5036  | 43.579     | 0.06043          | 150.732   | 25.8444                         | 0.05581                       | 0.007 |            | 0.799E-07                            | 0.056 |
| 5029  | 46.198     | 0.11855          | 151.303   | 26.7717                         | 0.05751                       | 0.003 | 150.113    | 0.876E-07                            | 0.023 |
| 5030  | 46.199     | 0.09514          | 151.066   | 26.8070                         | 0.05740                       | 0.004 | 150.111    |                                      | 0.030 |
| 5031  | 46.199     | 0.07431          | 150.838   | 26.8405                         | 0.05738                       | 0.005 |            | 0.876E-07                            | 0.045 |
| 5032  | 46.199     | 0.05608          | 150.652   | 26.8684                         | 0.05748                       | 0.008 |            | 0.921E-07                            | 0.068 |
| 5025  | 49.048     |                  | 151.270   | 27.8260                         | 0.05920                       | 0.003 |            | 0.862E-07                            | 0.023 |
| 5026  | 49.049     | 0.09514          | 151.038   | 27.8612                         | 0.05916                       | 0.004 |            | 0.846E-07                            | 0.033 |
| 5027  | 49.051     |                  | 150.829   | 27.8932                         | 0.05925                       | 0.005 |            | 0.871E-07                            | 0.045 |
| 5028  | 49.051     |                  |           | 27.9222                         | 0.05909                       | 0.008 |            | 0.892E-07                            | 0.069 |
| 5021  | 51.868     |                  | 151.238   | 28.8219                         | 0.06078                       | 0.003 |            | 0.826E-07                            | 0.024 |
| 5022  |            |                  | 151.014   | 28.8565                         | 0.06081                       | 0.004 |            | 0.855E-07                            | 0.032 |
| 5023  |            | 0.07432          |           | 28.8885                         | 0.06084                       | 0.005 |            | 0.871E-07                            | 0.046 |
| 5024  | 51.871     |                  | 150.603   | 28.9191                         | 0.06031                       | 0.008 |            | 0.788E-07                            | 0.069 |
| 5017  | 55.109     | 0.11852          | 151.216   | 29.9099                         | 0.06276                       | 0.003 |            | 0.941E-07                            | 0.022 |
| 5018  |            | 0.09512          | 150.986   | 29.9454                         | 0.06264                       | 0.003 |            | 0.890E-07                            | 0.028 |
| 5019  |            | 0.07431          |           | 29.9779                         | 0.06272                       | 0.005 |            | 0.959E-07                            | 0.041 |
| 5020  |            | 0.05608          |           | 30.0000                         | 0.06274                       | 0.008 |            | 0.102E-06                            | 0.065 |
| 5013  | 58.085     | 0.13119          | 151.287   | 30.8481                         | 0.06458                       | 0.002 | 150.107    | 0.906E-07                            | 0.019 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $\rho_{calc}$   | $\lambda_{exp}$                    | STAT  | $T_{cell}$ | a                      | DSTAT |
|-------|------------|------------------|-----------|-----------------|------------------------------------|-------|------------|------------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         |                 | W·m <sup>-1</sup> ·K <sup>-1</sup> |       | K          | $m^{2} \cdot s^{-1}$   |       |
| 5014  | 58.086     | 0.10648          | 151.066   | 30.8826         | 0.06432                            | 0.003 | 150.109    | 0.892E-07              | 0.025 |
| 5015  | 58.087     | 0.08438          | 150.874   | 30.9123         | 0.06444                            | 0.004 | 150.109    | 0.932E-07              | 0.037 |
| 5016  | 58.088     | 0.06486          | 150.663   | 30.9450         | 0.06443                            | 0.006 | 150.109    | 0.923E-07              | 0.052 |
| 5009  | 61.587     | 0.13117          | 151.244   | 31.9184         | 0.06652                            | 0.002 | 150.112    | 0.854E-07              | 0.020 |
| 5010  | 61.589     | 0.10646          | 151.021   | 31.9533         | 0.06637                            | 0.003 | 150.111    |                        | 0.026 |
| 5011  | 61.590     | 0.08437          | 150.836   | 31.9824         | 0.06645                            | 0.004 | 150.110    | 0.865E-07              | 0.037 |
| 5012  | 61.591     | 0.06485          | 150.651   | 32.0112         | 0.06653                            | 0.006 | 150.110    | 0.890E-07              | 0.054 |
| 5005  | 64.755     | 0.13114          | 151.210   | 32.8403         | 0.06847                            | 0.002 | 150.112    |                        | 0.019 |
| 5006  | 64.757     |                  | 150.995   | 32.8739         | 0.06814                            | 0.003 |            | 0.819E-07              | 0.028 |
| 5007  | 64.758     | 0.08436          | 150.818   | 32.9018         | 0.06835                            | 0.004 | 150.112    | 0.829E-07              | 0.038 |
| 5008  | 64.758     | 0.06485          | 150.627   | 32.9314         | 0.06816                            | 0.007 | 150.111    | 0.848E-07              | 0.057 |
| 5001  | 68.624     | 0.14441          | 151.271   | 33.8964         | 0.07063                            | 0.002 | 150.107    | 0.795E-07              | 0.017 |
| 5002  | 68.622     | 0.11844          | 151.055   | 33.9293         | 0.07058                            | 0.003 | 150.108    | 0.774E-07              | 0.022 |
| 5003  | 68.621     | 0.09506          | 150.872   | 33.9576         | 0.07022                            | 0.004 | 150.106    | 0.740E-07              | 0.032 |
| 5004  | 68.620     | 0.07427          | 150.701   | 33.9840         | 0.07082                            | 0.005 | 150.106    | 0.769E-07              | 0.046 |
| Nomi  | nal tempo  | erature = 2      | 201 K     |                 |                                    |       |            |                        |       |
| 3121  | 0.837      | 0.13236          | 203.007   | 0.4941          | 0.03712                            | 0.002 | 199.876    | 0.365E-05              | 0.026 |
| 3122  | 0.837      | 0.11029          | 202.490   | 0.4953          | 0.03704                            | 0.003 | 199.876    | 0.366E-05              | 0.034 |
| 3123  | 0.837      | 0.09025          | 202.011   | 0.4965          | 0.03688                            | 0.004 | 199.876    | 0.349E-05              | 0.046 |
| 3124  | 0.837      | 0.07224          | 201.589   | 0.4975          | 0.03697                            | 0.005 | 199.873    | 0.370E-05              | 0.063 |
| 3117  | 1.795      | 0.13234          | 202.884   | 1.0540          | 0.03754                            | 0.002 | 199.868    | 0.157E-05              | 0.022 |
| 3118  | 1.795      | 0.11028          | 202.388   | 1.0566          | 0.03743                            | 0.002 | 199.873    | 0.153E-05              | 0.028 |
| 3119  | 1.795      | 0.09024          | 201.932   | 1.0590          | 0.03728                            | 0.003 | 199.870    | 0.150E-05              | 0.037 |
| 3120  | 1.795      | 0.07223          | 201.514   | 1.0612          | 0.03728                            | 0.005 | 199.869    | 0.148E-05              | 0.051 |
| 3113  | 2.540      | 0.13227          | 202.742   | 1.4869          | 0.03797                            | 0.002 | 199.860    | 0.111E-05              | 0.022 |
| 3114  | 2.540      | 0.11023          | 202.264   | 1.4904          | 0.03787                            | 0.003 | 199.860    | 0.108E-05              | 0.028 |
| 3115  | 2.540      | 0.09021          | 201.823   | 1.4937          | 0.03781                            | 0.003 | 199.856    | 0.108E-05              | 0.037 |
| 3116  | 2.540      | 0.07222          | 201.436   | 1.4965          | 0.03776                            | 0.005 | 199.859    | 0.106E-05              | 0.051 |
| 3109  | 3.514      | 0.13226          | 202.546   | 2.0486          | 0.03857                            | 0.001 | 199.877    | 0.876E-06              | 0.013 |
| 3110  | 3.514      |                  | 202.103   | 2.0531          | 0.03851                            | 0.002 | 199.877    | 0.870E-06              | 0.022 |
| 3111  |            | 0.09019          |           | 2.0572          | 0.03845                            | 0.003 |            | 0.863E-06              | 0.030 |
| 3112  |            | 0.07219          |           | 2.0609          | 0.03836                            | 0.004 |            | 0.860E-06              | 0.041 |
| 3105  |            | 0.13211          |           | 2.5554          | 0.03895                            | 0.002 |            | 0.720E-06              | 0.017 |
| 3106  | 4.402      |                  | 202.034   | 2.5609          | 0.03890                            | 0.002 | 199.881    |                        | 0.022 |
| 3107  |            | 0.09010          | 201.642   | 2.5659          | 0.03882                            | 0.003 | 199.881    |                        | 0.030 |
| 3108  |            | 0.07217          |           | 2.5704          | 0.03870                            | 0.003 |            | 0.680E-06              | 0.040 |
| 3101  |            | 0.13210          |           | 2.9998          | 0.03928                            | 0.004 | 199.879    |                        | 0.017 |
| 3102  | 5.188      |                  | 201.982   | 3.0060          | 0.03928                            | 0.002 | 199.881    |                        | 0.017 |
| 3102  |            | 0.09009          | 201.599   | 3.0000          | 0.03922                            | 0.002 |            | 0.598E-06              | 0.021 |
| 3103  |            | 0.09009          |           | 3.0117 $3.0169$ | 0.03918                            | 0.003 |            | 0.590E-06              | 0.029 |
| 3097  | 6.112      |                  | 201.250   | 3.5174          | 0.03904                            | 0.004 | 199.883    |                        | 0.040 |
| 3097  | 6.112      |                  |           |                 |                                    |       | 199.885    |                        | 0.017 |
| 3098  |            | 0.11009          | 201.935   | 3.5245          | 0.03958                            | 0.002 |            | 0.524E-06<br>0.503E-06 | 0.022 |
|       |            |                  |           | 3.5311          | 0.03955                            | 0.003 |            |                        |       |
| 3100  | 0.112      | 0.07211          | 201.224   | 3.5369          | 0.03943                            | 0.004 | 199.881    | 0.503E-06              | 0.040 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$                     | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT  |
|-------|------------|------------------|-----------|----------------------------------|-------------------------------|-------|------------|----------------------|--------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ | 01/11 | K          | $m^{2} \cdot s^{-1}$ | D31/11 |
| 3093  | 7.765      | 0.13206          | 202.263   | 4.4295                           | 0.04037                       | 0.002 | 199.878    | 0.472E-06            | 0.017  |
| 3094  | 7.765      | 0.11006          | 201.868   | 4.4381                           | 0.04027                       | 0.002 | 199.877    | 0.472E-06            | 0.022  |
| 3095  | 7.765      | 0.09008          | 201.505   | 4.4461                           | 0.04029                       | 0.003 | 199.875    | 0.474E-06            | 0.030  |
| 3096  | 7.765      | 0.07210          | 201.186   | 4.4532                           | 0.04012                       | 0.004 | 199.873    | 0.479E-06            | 0.040  |
| 3089  | 9.896      | 0.13208          | 202.108   | 5.5826                           | 0.04126                       | 0.002 | 199.878    | 0.375E-06            | 0.024  |
| 3090  | 9.896      | 0.11006          | 201.747   | 5.5925                           | 0.04114                       | 0.003 | 199.883    | 0.375E-06            | 0.030  |
| 3091  | 9.896      | 0.09008          | 201.403   | 5.6021                           | 0.04116                       | 0.004 | 199.878    | 0.377E-06            | 0.041  |
| 3092  | 9.896      | 0.07211          | 201.095   | 5.6106                           | 0.04110                       | 0.006 | 199.879    | 0.388E-06            | 0.059  |
| 3085  | 11.950     | 0.13207          | 202.019   | 6.6652                           | 0.04212                       | 0.002 | 199.880    | 0.315E-06            | 0.024  |
| 3086  | 11.950     | 0.11007          | 201.673   | 6.6766                           | 0.04204                       | 0.003 | 199.884    | 0.318E-06            | 0.031  |
| 3087  | 11.950     | 0.09009          | 201.336   | 6.6877                           | 0.04193                       | 0.004 | 199.875    | 0.312E-06            | 0.042  |
| 3088  | 11.950     | 0.07212          | 201.052   | 6.6971                           | 0.04199                       | 0.006 | 199.878    | 0.334E-06            | 0.059  |
| 3081  | 13.746     | 0.13205          | 201.948   | 7.5901                           | 0.04284                       | 0.002 | 199.878    | 0.275E-06            | 0.024  |
| 3082  | 13.746     | 0.11008          | 201.610   | 7.6027                           | 0.04281                       | 0.003 | 199.882    | 0.280E-06            | 0.031  |
| 3083  | 13.746     | 0.09008          | 201.295   | 7.6145                           | 0.04277                       | 0.004 | 199.881    | 0.277E-06            | 0.041  |
| 3084  | 13.747     | 0.07213          | 201.007   | 7.6256                           | 0.04271                       | 0.006 | 199.875    | 0.279E-06            | 0.061  |
| 3077  | 15.941     | 0.13137          | 201.868   | 8.6927                           | 0.04377                       | 0.003 | 199.878    | 0.247E-06            | 0.025  |
| 3078  | 15.941     | 0.10948          | 201.543   | 8.7065                           | 0.04368                       | 0.003 | 199.881    | 0.246E-06            | 0.034  |
| 3079  | 15.941     | 0.08960          | 201.235   | 8.7196                           | 0.04368                       | 0.004 | 199.878    | 0.251E-06            | 0.042  |
| 3080  | 15.941     | 0.07173          | 200.971   | 8.7308                           | 0.04366                       | 0.006 | 199.879    | 0.257E-06            | 0.061  |
| 3073  | 17.944     | 0.13140          | 201.804   | 9.6720                           | 0.04464                       | 0.003 | 199.881    | 0.219E-06            | 0.025  |
| 3074  | 17.944     | 0.10951          | 201.483   | 9.6871                           | 0.04460                       | 0.004 | 199.875    | 0.223E-06            | 0.035  |
| 3075  | 17.944     | 0.08963          | 201.192   | 9.7007                           | 0.04449                       | 0.005 | 199.878    | 0.222E-06            | 0.044  |
| 3076  | 17.944     | 0.07175          | 200.923   | 9.7134                           | 0.04461                       | 0.007 | 199.874    | 0.232E-06            | 0.063  |
| 3069  | 19.982     | 0.13148          | 201.742   | 10.6432                          | 0.04552                       | 0.003 | 199.879    | 0.197E-06            | 0.025  |
| 3070  | 19.982     | 0.10958          | 201.430   | 10.6591                          | 0.04546                       | 0.004 | 199.876    | 0.199E-06            | 0.033  |
| 3071  | 19.982     | 0.08970          | 201.148   | 10.6736                          | 0.04539                       | 0.005 | 199.877    | 0.198E-06            | 0.043  |
| 3072  | 19.982     | 0.07174          | 200.889   | 10.6869                          | 0.04536                       | 0.006 | 199.879    | 0.202E-06            | 0.060  |
| 3065  | 22.274     | 0.13151          | 201.691   | 11.7048                          | 0.04652                       | 0.003 | 199.881    | 0.184E-06            | 0.026  |
| 3066  | 22.274     | 0.10962          | 201.385   | 11.7218                          | 0.04647                       | 0.004 | 199.879    | 0.182E-06            | 0.034  |
| 3067  |            | 0.08971          | 201.118   | 11.7367                          | 0.04634                       | 0.005 |            | 0.180E-06            | 0.046  |
|       |            | 0.07182          | 200.853   | 11.7515                          | 0.04640                       | 0.007 |            | 0.184E-06            | 0.062  |
| 3061  |            | 0.13162          |           | 12.7585                          | 0.04749                       | 0.002 |            | 0.167E-06            | 0.019  |
| 3062  |            | 0.10961          | 201.344   | 12.7760                          | 0.04750                       | 0.003 |            | 0.171E-06            | 0.024  |
| 3063  |            | 0.08972          |           | 12.7928                          | 0.04736                       | 0.004 |            | 0.167E-06            | 0.033  |
|       |            | 0.07180          |           | 12.8074                          | 0.04753                       | 0.005 |            | 0.176E-06            | 0.047  |
| 3057  |            | 0.14736          | 201.804   | 13.7639                          | 0.04860                       | 0.002 |            | 0.169E-06            | 0.016  |
| 3058  | 26.959     | 0.12411          | 201.504   | 13.7828                          | 0.04857                       | 0.002 |            | 0.171E-06            | 0.022  |
|       | 26.959     |                  | 201.226   | 13.8006                          | 0.04853                       | 0.003 | 199.883    |                      | 0.027  |
|       |            | 0.08361          | 200.984   | 13.8162                          | 0.04846                       | 0.004 |            | 0.181E-06            | 0.040  |
| 3053  |            | 0.14735          | 201.759   | 14.7999                          | 0.04971                       | 0.002 |            | 0.160E-06            | 0.016  |
| 3054  | 29.418     |                  |           | 14.8202                          | 0.04966                       | 0.002 | 199.887    |                      | 0.021  |
|       |            | 0.10287          | 201.192   | 14.8383                          | 0.04961                       | 0.003 |            | 0.166E-06            | 0.028  |
| 3036  | 29.417     | 0.08361          | 200.941   | 14.8554                          | 0.04960                       | 0.004 | 199.887    | 0.171E-06            | 0.037  |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$                     | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|----------------------------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 3049  | 31.936     | 0.14741          | 201.697   | 15.8285                          | 0.05100                       | 0.002 | 199.886    | 0.157E-06            | 0.017 |
| 3050  |            | 0.12415          | 201.413   | 15.8489                          | 0.05075                       | 0.002 | 199.887    |                      | 0.022 |
| 3051  | 31.936     | 0.10289          | 201.149   | 15.8679                          | 0.05073                       | 0.003 | 199.886    | 0.155E-06            | 0.028 |
| 3052  | 31.936     | 0.08363          | 200.920   | 15.8847                          | 0.05072                       | 0.004 | 199.887    | 0.159E-06            | 0.040 |
| 3045  | 34.631     | 0.14741          | 201.640   | 16.8923                          | 0.05199                       | 0.002 | 199.887    | 0.140E-06            | 0.017 |
| 3046  | 34.631     | 0.12413          | 201.371   | 16.9127                          | 0.05199                       | 0.002 | 199.892    | 0.143E-06            | 0.021 |
| 3047  | 34.633     | 0.10289          | 201.110   | 16.9330                          | 0.05192                       | 0.003 | 199.883    | 0.144E-06            | 0.028 |
| 3048  | 34.633     | 0.08363          | 200.878   | 16.9506                          | 0.05195                       | 0.004 | 199.885    | 0.151E-06            | 0.038 |
| 3041  | 37.123     | 0.16405          | 201.784   | 17.8281                          | 0.05316                       | 0.002 | 199.886    | 0.134E-06            | 0.015 |
| 3042  | 37.125     | 0.13948          | 201.494   | 17.8514                          | 0.05307                       | 0.002 | 199.881    | 0.132E-06            | 0.018 |
| 3043  | 37.125     | 0.11687          | 201.230   | 17.8722                          | 0.05308                       | 0.003 | 199.878    | 0.132E-06            | 0.023 |
| 3044  | 37.126     | 0.09627          | 200.985   | 17.8921                          | 0.05297                       | 0.003 | 199.879    | 0.133E-06            | 0.031 |
| 3037  | 39.998     | 0.16358          | 201.730   | 18.8868                          | 0.05439                       | 0.001 | 199.892    | 0.127E-06            | 0.013 |
| 3038  | 39.998     | 0.13913          | 201.451   | 18.9096                          | 0.05440                       | 0.002 | 199.891    | 0.127E-06            | 0.016 |
| 3039  | 39.998     | 0.11659          | 201.198   | 18.9304                          | 0.05434                       | 0.002 | 199.886    | 0.128E-06            | 0.021 |
| 3040  | 39.998     | 0.09605          | 200.966   | 18.9495                          | 0.05439                       | 0.003 | 199.885    | 0.134E-06            | 0.028 |
| 3033  | 42.835     | 0.16366          | 201.663   | 19.8956                          | 0.05588                       | 0.002 | 199.889    | 0.120E-06            | 0.014 |
| 3034  | 42.835     | 0.13897          | 201.400   | 19.9179                          | 0.05574                       | 0.002 | 199.886    | 0.122E-06            | 0.017 |
| 3035  | 42.835     | 0.11647          | 201.155   | 19.9388                          | 0.05559                       | 0.003 | 199.886    | 0.122E-06            | 0.023 |
| 3029  | 45.715     | 0.16381          | 201.616   | 20.8822                          | 0.05695                       | 0.002 | 199.884    | 0.114E-06            | 0.014 |
| 3030  | 45.715     | 0.13924          | 201.348   | 20.9057                          | 0.05696                       | 0.002 | 199.883    | 0.112E-06            | 0.018 |
| 3031  | 45.715     | 0.11672          | 201.109   | 20.9267                          | 0.05700                       | 0.003 | 199.881    | 0.115E-06            | 0.023 |
| 3032  | 45.714     | 0.09615          | 200.876   | 20.9467                          | 0.05694                       | 0.003 | 199.874    | 0.111E-06            | 0.030 |
| 3025  | 48.900     | 0.18079          | 201.717   | 21.9188                          | 0.05871                       | 0.001 | 199.875    | 0.109E-06            | 0.013 |
| 3026  | 48.899     | 0.15494          | 201.452   | 21.9426                          | 0.05857                       | 0.002 | 199.879    | 0.106E-06            | 0.016 |
| 3027  | 48.899     | 0.13113          | 201.211   | 21.9641                          | 0.05857                       | 0.002 | 199.875    | 0.109E-06            | 0.019 |
| 3028  | 48.899     | 0.10930          | 200.974   | 21.9856                          | 0.05849                       | 0.003 | 199.875    | 0.104E-06            | 0.026 |
| 3021  | 52.241     | 0.18078          | 201.699   | 22.9737                          | 0.06019                       | 0.002 | 199.882    | 0.118E-06            | 0.013 |
| 3022  | 52.238     | 0.15498          | 201.434   | 22.9976                          | 0.06004                       | 0.002 | 199.874    | 0.120E-06            | 0.017 |
| 3023  | 52.238     | 0.13118          | 201.203   | 23.0191                          | 0.05985                       | 0.002 | 199.877    | 0.123E-06            | 0.021 |
| 3024  | 52.238     | 0.10935          | 200.978   | 23.0400                          | 0.05971                       | 0.003 | 199.876    | 0.122E-06            | 0.026 |
| 3017  | 55.425     | 0.18085          | 201.654   | 23.9430                          | 0.06139                       | 0.001 | 199.879    | 0.114E-06            | 0.013 |
| 3018  | 55.423     | 0.15500          | 201.398   | 23.9665                          | 0.06126                       | 0.002 | 199.877    | 0.113E-06            | 0.017 |
| 3019  | 55.423     | 0.13118          | 201.168   | 23.9885                          | 0.06132                       | 0.002 | 199.878    | 0.116E-06            | 0.020 |
| 3020  | 55.423     | 0.10934          | 200.949   | 24.0093                          | 0.06123                       | 0.003 | 199.877    | 0.117E-06            | 0.029 |
| 3013  | 58.900     | 0.18075          | 201.580   | 24.9624                          | 0.06294                       | 0.002 | 199.866    | 0.107E-06            | 0.014 |
| 3014  | 58.897     | 0.15492          | 201.338   | 24.9851                          | 0.06279                       | 0.002 | 199.869    | 0.106E-06            | 0.017 |
| 3015  | 58.898     | 0.13116          | 201.113   | 25.0071                          | 0.06283                       | 0.003 | 199.867    | 0.107E-06            | 0.022 |
| 3016  |            | 0.10937          | 200.897   | 25.0281                          | 0.06284                       | 0.003 |            |                      | 0.028 |
| 3009  | 62.358     | 0.19913          | 201.723   | 25.9159                          | 0.06446                       | 0.001 | 199.888    | 0.104E-06            | 0.012 |
| I     |            |                  |           | 25.9401                          | 0.06431                       | 0.002 |            | 0.103E-06            | 0.014 |
| 3011  |            | 0.14681          | 201.236   | 25.9629                          | 0.06441                       | 0.002 |            | 0.104E-06            | 0.018 |
| 3012  | 62.356     | 0.12363          | 201.027   | 25.9839                          | 0.06433                       | 0.003 |            | 0.106E-06            | 0.023 |
| 3005  | 66.079     | 0.19698          | 201.638   | 26.9234                          | 0.06575                       | 0.002 | 199.864    | 0.101E-06            | 0.014 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run  | $P_{cell}$ MPa | $Q$ $W \cdot m^{-1}$ | $T_{exp} \  m K$   | $\rho_{calc}$ | $\lambda_{exp}$ W·m <sup>-1</sup> ·K <sup>-1</sup> | STAT  | $T_{cell} \  m K$ | $a$ $m^2 \cdot s^{-1}$ | DSTAT |
|------|----------------|----------------------|--------------------|---------------|----------------------------------------------------|-------|-------------------|------------------------|-------|
| 3006 | 66.078         | 0.17062              | 201.399            | 26.9472       | 0.06568                                            | 0.002 | 199.872           | 0.973E-07              | 0.017 |
| 3007 | 66.077         | 0.17002              | 201.399            | 26.9689       | 0.06570                                            | 0.002 | 199.871           | 0.973E-07<br>0.990E-07 | 0.017 |
| 3008 | 66.077         |                      | 200.969            | 26.9902       | 0.06576                                            | 0.002 |                   | 0.974E-07              | 0.021 |
| 3001 | 68.873         | 0.12312              | 200.909            | 27.6481       | 0.06730                                            | 0.003 | 199.885           | 0.374E-07<br>0.100E-06 | 0.027 |
| 3001 | 68.871         | 0.17089              | 201.027            | 27.6726       | 0.06704                                            | 0.002 | 199.876           | 0.100E-00<br>0.985E-07 | 0.014 |
| 3002 | 68.871         |                      |                    |               |                                                    |       |                   |                        |       |
|      |                | 0.14578              | 201.149<br>200.951 | 27.6960       | 0.06702<br>0.06677                                 | 0.002 | 199.873           | 0.982E-07              | 0.020 |
| 3004 | 68.870         |                      |                    | 27.7160       | 0.00077                                            | 0.003 | 199.870           | 0.968E-07              | 0.028 |
|      |                | erature = 2          |                    | 0.7500        | 0.04274                                            | 0.001 | 940.020           | 0.060E.05              | 0.015 |
| 4097 |                | 0.15865              |                    | 0.7569        | 0.04374                                            | 0.001 | 249.839           | 0.262E-05              | 0.015 |
| 4098 | 1.605          | 0.13153              | 252.466            | 0.7585        | 0.04373                                            | 0.002 | 249.841           | 0.265E-05              | 0.019 |
| 4099 | 1.605          | 0.10695              | 251.976            | 0.7600        | 0.04373                                            | 0.002 | 249.840           | 0.268E-05              | 0.027 |
| 4100 | 1.605          | 0.08492              | 251.541            | 0.7613        | 0.04375                                            | 0.003 | 249.839           | 0.283E-05              | 0.038 |
| 4093 | 2.665          | 0.15865              | 252.895            | 1.2504        | 0.04408                                            | 0.002 | 249.840           | 0.154E-05              | 0.019 |
| 4094 | 2.665          | 0.13154              | 252.375            | 1.2530        | 0.04415                                            | 0.002 | 249.840           | 0.159E-05              | 0.023 |
| 4095 | 2.665          | 0.10695              | 251.899            | 1.2553        | 0.04414                                            | 0.003 |                   | 0.160E-05              | 0.031 |
| 4096 | 2.665          | 0.08492              | 251.477            | 1.2574        | 0.04411                                            | 0.004 | 249.839           | 0.162E-05              | 0.045 |
| 4089 | 3.744          |                      | 252.757            | 1.7480        | 0.04462                                            | 0.002 | 249.830           | 0.112E-05              | 0.018 |
| 4090 | 3.744          | 0.13154              | 252.262            | 1.7514        | 0.04463                                            | 0.002 |                   | 0.114E-05              | 0.024 |
| 4091 | 3.744          | 0.10695              | 251.813            | 1.7545        | 0.04465                                            | 0.003 | 249.834           | 0.117E-05              | 0.033 |
| 4092 | 3.744          | 0.08493              | 251.410            | 1.7573        | 0.04460                                            | 0.004 | 249.834           | 0.118E-05              | 0.044 |
| 4085 | 4.786          | 0.15863              | 252.654            | 2.2234        | 0.04503                                            | 0.002 | 249.824           | 0.870E-06              | 0.018 |
| 4086 | 4.786          | 0.13151              | 252.173            | 2.2276        | 0.04512                                            | 0.002 | 249.825           | 0.894E-06              | 0.023 |
| 4087 | 4.786          | 0.10695              | 251.735            | 2.2315        | 0.04510                                            | 0.003 | 249.825           | 0.893E-06              | 0.031 |
| 4088 | 4.786          | 0.08492              | 251.339            | 2.2350        | 0.04489                                            | 0.004 | 249.823           | 0.858E-06              | 0.041 |
| 4081 | 5.869          | 0.18824              | 253.111            | 2.7068        | 0.04551                                            | 0.001 | 249.842           | 0.736E-06              | 0.013 |
| 4082 | 5.869          | 0.15861              | 252.591            | 2.7123        | 0.04555                                            | 0.002 | 249.838           | 0.743E-06              | 0.017 |
| 4083 | 5.869          | 0.13149              | 252.121            | 2.7173        | 0.04559                                            | 0.002 | 249.840           | 0.751E-06              | 0.023 |
| 4084 | 5.869          | 0.10693              | 251.691            | 2.7219        | 0.04552                                            | 0.003 | 249.835           | 0.750E-06              | 0.030 |
| 4077 | 6.885          | 0.18819              | 253.044            | 3.1594        | 0.04586                                            | 0.001 | 249.849           | 0.637E-06              | 0.013 |
| 4078 | 6.885          | 0.15853              | 252.540            | 3.1656        | 0.04590                                            | 0.002 | 249.847           | 0.647E-06              | 0.016 |
| 4079 | 6.885          | 0.13150              | 252.086            | 3.1712        | 0.04600                                            | 0.002 | 249.848           | 0.669E-06              | 0.021 |
| 4080 |                | 0.10693              | 251.663            | 3.1765        | 0.04593                                            | 0.003 | 249.847           | 0.663E-06              | 0.031 |
| 4073 |                | 0.18824              |                    | 4.3018        | 0.04683                                            | 0.001 |                   | 0.494E-06              | 0.013 |
| 4074 |                | 0.15860              |                    | 4.3097        | 0.04683                                            | 0.002 |                   | 0.500E-06              | 0.017 |
| 4075 |                | 0.13149              |                    | 4.3174        | 0.04696                                            | 0.002 |                   | 0.517E-06              | 0.022 |
| 4076 |                | 0.10689              |                    | 4.3241        | 0.04679                                            | 0.003 |                   | 0.502E-06              | 0.030 |
| 4069 |                | 0.18813              | 252.778            | 5.3277        | 0.04764                                            | 0.003 |                   | 0.420E-06              | 0.009 |
| 4070 |                | 0.15850              | 252.320            | 5.3368        | 0.04767                                            | 0.001 | 249.841           | 0.420E-06              | 0.005 |
| 4071 | 11.899         | 0.13141              | 251.893            | 5.3453        | 0.04764                                            | 0.001 | 249.839           | 0.423E-06              | 0.020 |
| 4072 |                | 0.13141              | 251.516            | 5.3528        | 0.04769                                            | 0.002 | 249.840           | 0.423E-06<br>0.439E-06 | 0.025 |
| 1    |                |                      |                    | 6.2762        | 0.04709                                            | 0.002 |                   | 0.459E-00<br>0.357E-06 | 0.023 |
| 4065 |                | 0.15850              |                    | 6.2866        | 0.04849                                            | 0.001 | 249.847           | 0.357E-06<br>0.362E-06 | 0.009 |
| 4067 |                | 0.13830              |                    |               |                                                    |       | 249.847           | 0.367E-06              | 0.015 |
| 4067 |                | 0.13141              |                    | 6.2964        | 0.04847                                            | 0.001 |                   | 0.367E-06<br>0.369E-06 | 0.013 |
| 4008 | 14.179         | 0.10084              | 201.407            | 6.3051        | 0.04845                                            | 0.002 | 249.042           | 0.309E-00              | 0.019 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$                   | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|--------------------------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol}\cdot\text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 4061  | 16.756     | 0.20929          | 252.894   | 7.3122                         | 0.04933                       | 0.001 | 249.847    | 0.308E-06            | 0.007 |
| 4062  | 16.756     | 0.17795          | 252.442   | 7.3244                         | 0.04933                       | 0.001 | 249.850    | 0.309E-06            | 0.009 |
| 4063  | 16.755     | 0.14917          | 252.017   | 7.3360                         | 0.04941                       | 0.001 | 249.846    | 0.313E-06            | 0.012 |
| 4064  | 16.755     | 0.12291          | 251.639   | 7.3466                         | 0.04935                       | 0.002 | 249.847    | 0.314E-06            | 0.015 |
| 4057  | 19.467     | 0.20924          | 252.796   | 8.3798                         | 0.05025                       | 0.001 | 249.851    | 0.268E-06            | 0.008 |
| 4058  | 19.466     | 0.17795          | 252.359   | 8.3933                         | 0.05026                       | 0.001 | 249.854    | 0.269E-06            | 0.010 |
| 4059  | 19.465     | 0.14917          | 251.962   | 8.4056                         | 0.05036                       | 0.001 | 249.857    | 0.281E-06            | 0.012 |
| 4060  | 19.465     | 0.12290          | 251.590   | 8.4171                         | 0.05031                       | 0.002 | 249.855    | 0.279E-06            | 0.015 |
| 4053  | 22.089     | 0.23155          | 253.011   | 9.3730                         | 0.05132                       | 0.001 | 249.849    | 0.247E-06            | 0.009 |
| 4054  | 22.089     | 0.18810          | 252.418   | 9.3937                         | 0.05130                       | 0.001 | 249.849    | 0.246E-06            | 0.012 |
| 4055  | 22.089     | 0.14916          | 251.883   | 9.4124                         | 0.05127                       | 0.002 | 249.847    | 0.245E-06            | 0.016 |
| 4056  | 22.088     | 0.11474          | 251.416   | 9.4286                         | 0.05123                       | 0.003 | 249.851    | 0.243E-06            | 0.025 |
| 4049  | 24.614     | 0.23155          | 252.920   | 10.3131                        | 0.05223                       | 0.001 | 249.835    | 0.232E-06            | 0.009 |
| 4050  | 24.614     | 0.18809          | 252.346   | 10.3349                        | 0.05219                       | 0.001 | 249.836    | 0.234E-06            | 0.012 |
| 4051  | 24.613     | 0.14916          | 251.825   | 10.3545                        | 0.05214                       | 0.002 | 249.833    | 0.235E-06            | 0.017 |
| 4052  | 24.613     |                  | 251.366   | 10.3722                        | 0.05217                       | 0.003 | 249.833    | 0.237E-06            | 0.025 |
| 4045  | 27.445     |                  | 252.833   | 11.3372                        | 0.05325                       | 0.001 | 249.852    | 0.204E-06            | 0.009 |
| 4046  | 27.445     | 0.18811          | 252.269   | 11.3605                        | 0.05321                       | 0.001 | 249.849    | 0.201E-06            | 0.012 |
| 4047  | 27.446     | 0.14917          | 251.764   | 11.3817                        | 0.05318                       | 0.002 | 249.848    | 0.198E-06            | 0.017 |
| 4048  |            | 0.11474          | 251.320   | 11.4003                        | 0.05315                       | 0.003 | 249.847    | 0.197E-06            | 0.025 |
| 4041  |            | 0.23155          | 252.786   | 12.4044                        | 0.05433                       | 0.001 | 249.865    | 0.203E-06            | 0.009 |
| 4042  | 30.494     | 0.18810          | 252.234   | 12.4290                        | 0.05428                       | 0.001 | 249.857    | 0.205E-06            | 0.012 |
| 4043  | 30.495     | 0.14916          | 251.746   | 12.4512                        | 0.05425                       | 0.002 | 249.856    | 0.210E-06            | 0.017 |
| 4044  | 30.495     | 0.11474          | 251.319   | 12.4704                        | 0.05427                       | 0.003 | 249.862    | 0.215E-06            | 0.026 |
| 4037  | 33.644     |                  | 252.697   | 13.4733                        | 0.05543                       | 0.001 | 249.861    |                      | 0.009 |
| 4038  |            | 0.18814          | 252.164   | 13.4990                        | 0.05543                       | 0.001 | 249.858    | 0.189E-06            | 0.012 |
| 4039  | 33.644     |                  | 251.688   | 13.5219                        | 0.05540                       | 0.001 | 249.857    | 0.191E-06            | 0.013 |
| 4040  |            | 0.11474          | 251.265   | 13.5424                        | 0.05536                       | 0.002 | 249.857    | 0.190E-06            | 0.020 |
| 4033  |            | 0.25509          | 252.899   | 14.3124                        | 0.05644                       | 0.001 | 249.852    | 0.176E-06            | 0.008 |
| 4034  |            | 0.20935          | 252.353   | 14.3400                        | 0.05642                       | 0.001 | 249.850    | 0.178E-06            | 0.011 |
| 4035  |            | 0.16814          | -         | 14.3654                        | 0.05647                       | 0.002 |            | 0.182E-06            | 0.015 |
| 1     |            | 0.13145          |           | 14.3877                        | 0.05640                       | 0.002 |            | 0.180E-06            | 0.021 |
|       |            | 0.25494          |           | 15.4483                        | 0.05770                       | 0.001 |            | 0.166E-06            | 0.006 |
| 4030  |            | 0.20924          |           | 15.4762                        | 0.05766                       | 0.001 |            | 0.165E-06            | 0.008 |
| 4031  |            | 0.16806          |           | 15.5014                        | 0.05778                       | 0.001 |            | 0.171E-06            | 0.012 |
|       |            | 0.13140          |           | 15.5243                        | 0.05769                       | 0.002 |            | 0.167E-06            | 0.021 |
|       |            | 0.25496          |           | 16.4793                        | 0.05888                       | 0.001 |            | 0.152E-06            | 0.008 |
| 1     |            | 0.20924          |           | 16.5079                        | 0.05885                       | 0.001 |            | 0.152E-06            | 0.011 |
|       |            | 0.16808          |           | 16.5341                        | 0.05886                       | 0.001 |            | 0.153E-06            | 0.012 |
|       |            | 0.13139          |           | 16.5575                        | 0.05886                       | 0.002 |            | 0.150E-06            | 0.021 |
|       |            | 0.25497          |           | 17.4602                        | 0.06012                       | 0.001 |            | 0.157E-06            | 0.009 |
| 4022  |            | 0.20925          | 252.155   | 17.4894                        | 0.06004                       | 0.001 |            | 0.158E-06            | 0.011 |
| 4023  |            | 0.16806          |           | 17.5163                        | 0.06008                       | 0.002 |            | 0.159E-06            | 0.015 |
| 4024  | 40.444     | 0.13138          | 251.295   | 17.5401                        | 0.06013                       | 0.002 | 249.833    | 0.166E-06            | 0.022 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$ | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|--------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         |              | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 4018  | 50.179     | 0.29221          | 252.977   | 18.5086      | 0.06149                       | 0.001 | 249.842    | 0.147E-06            | 0.007 |
| 4018  | 50.179     | 0.23158          | 252.338   | 18.5476      | 0.06148                       | 0.001 | 249.848    | 0.150E-06            | 0.010 |
| 4019  | 50.178     | 0.17796          | 251.758   | 18.5827      | 0.06149                       | 0.002 | 249.844    | 0.152E-06            | 0.014 |
| 4020  | 50.178     | 0.13140          | 251.260   | 18.6134      | 0.06146                       | 0.002 | 249.842    | 0.156E-06            | 0.022 |
| 4013  | 53.676     | 0.29219          | 252.909   | 19.4771      | 0.06276                       | 0.001 | 249.851    | 0.142E-06            | 0.007 |
| 4014  | 53.676     | 0.23155          | 252.277   | 19.5171      | 0.06281                       | 0.001 | 249.852    | 0.144E-06            | 0.010 |
| 4015  | 53.676     | 0.17796          | 251.716   | 19.5527      | 0.06277                       | 0.002 | 249.847    | 0.146E-06            | 0.015 |
| 4016  | 53.676     | 0.13140          | 251.228   | 19.5837      | 0.06269                       | 0.002 | 249.849    | 0.145E-06            | 0.020 |
| 4009  | 57.410     | 0.29224          | 252.829   | 20.4762      | 0.06410                       | 0.001 | 249.850    | 0.136E-06            | 0.006 |
| 4010  | 57.409     | 0.23158          | 252.206   | 20.5167      | 0.06415                       | 0.001 | 249.844    | 0.138E-06            | 0.010 |
| 4011  | 57.409     | 0.17798          | 251.660   | 20.5526      | 0.06415                       | 0.001 | 249.845    | 0.138E-06            | 0.013 |
| 4012  | 57.409     | 0.13141          | 251.184   | 20.5840      | 0.06413                       | 0.002 | 249.844    | 0.139E-06            | 0.021 |
| 4005  | 61.329     | 0.29227          | 252.724   | 21.4895      | 0.06557                       | 0.001 | 249.831    | 0.128E-06            | 0.006 |
| 4006  | 61.329     | 0.23159          | 252.119   | 21.5303      | 0.06561                       | 0.001 | 249.832    | 0.127E-06            | 0.008 |
| 4007  | 61.329     | 0.17798          | 251.590   | 21.5662      | 0.06546                       | 0.001 | 249.832    | 0.125E-06            | 0.011 |
| 4008  | 61.329     | 0.13142          | 251.121   | 21.5980      | 0.06542                       | 0.002 | 249.829    | 0.122E-06            | 0.017 |
| 4001  | 66.574     | 0.29230          | 252.620   | 22.7870      | 0.06747                       | 0.001 | 249.831    | 0.121E-06            | 0.006 |
| 4002  | 66.574     | 0.23162          | 252.031   | 22.8280      | 0.06753                       | 0.001 | 249.827    | 0.119E-06            | 0.008 |
| 4003  | 66.574     | 0.17801          | 251.513   | 22.8644      | 0.06734                       | 0.001 | 249.826    | 0.113E-06            | 0.012 |
| 4004  | 66.574     | 0.13143          | 251.066   | 22.8958      | 0.06728                       | 0.002 | 249.825    | 0.109E-06            | 0.018 |
| Nomi  | nal tempo  | erature = 2      | 299 K     |              |                               |       |            |                      |       |
| 1057  | 1.409      | 0.21203          | 300.170   | 0.5607       | 0.04913                       | 0.002 | 296.329    | 0.392E-05            | 0.027 |
| 1058  | 1.409      | 0.17778          | 299.559   | 0.5618       | 0.04903                       | 0.003 | 296.337    | 0.384E-05            | 0.036 |
| 1059  | 1.409      | 0.14657          | 298.982   | 0.5629       | 0.04919                       | 0.004 | 296.332    | 0.404E-05            | 0.049 |
| 1060  | 1.409      | 0.11833          | 298.432   | 0.5639       | 0.04908                       | 0.006 | 296.328    | 0.396E-05            | 0.070 |
| 1053  | 2.265      | 0.22407          | 300.349   | 0.8974       | 0.04937                       | 0.001 | 296.337    | 0.238E-05            | 0.013 |
| 1054  | 2.265      | 0.18853          | 299.712   | 0.8993       | 0.04930                       | 0.001 | 296.337    | 0.235E-05            | 0.016 |
| 1055  | 2.265      | 0.15659          | 299.145   | 0.9010       | 0.04915                       | 0.002 | 296.334    | 0.236E-05            | 0.021 |
| 1056  | 2.265      | 0.12742          | 298.625   | 0.9026       | 0.04914                       | 0.002 | 296.337    | 0.234E-05            | 0.028 |
| 1049  | 3.335      | 0.22398          | 300.162   | 1.3154       | 0.04956                       | 0.001 | 296.344    | 0.145E-05            | 0.013 |
| 1050  | 3.335      | 0.18887          | 299.553   | 1.3181       | 0.04965                       | 0.001 | 296.342    | 0.145E-05            | 0.015 |
| 1051  | 3.335      | 0.15672          | 299.016   | 1.3204       | 0.04957                       | 0.002 | 296.348    | 0.144E-05            | 0.019 |
| 1052  | 3.335      | 0.12747          | 298.509   | 1.3226       | 0.04968                       | 0.002 | 296.347    | 0.145E-05            | 0.027 |
| 1045  | 4.475      | 0.22449          | 300.052   | 1.7562       | 0.05008                       | 0.001 | 296.350    | 0.115E-05            | 0.012 |
| 1046  | 4.475      | 0.18919          | 299.465   | 1.7596       | 0.05001                       | 0.001 | 296.351    | 0.111E-05            | 0.016 |
| 1047  |            | 0.15673          | 298.932   | 1.7627       | 0.04993                       | 0.002 | 296.352    |                      | 0.021 |
| 1048  |            | 0.12743          | 298.442   | 1.7655       | 0.04998                       | 0.002 | 296.346    |                      | 0.026 |
| 1041  |            | 0.24995          | 300.347   | 2.2994       | 0.05086                       | 0.001 |            | 0.949E-06            | 0.010 |
| 1042  |            | 0.21221          | 299.754   | 2.3039       | 0.05057                       | 0.001 | 296.361    |                      | 0.012 |
| 1043  |            | 0.17784          | 299.208   | 2.3080       | 0.05022                       | 0.002 | 296.368    |                      | 0.017 |
| 1044  |            | 0.14669          | 298.697   | 2.3119       | 0.05023                       | 0.002 | 296.358    |                      | 0.021 |
| 1037  |            | 0.25013          | 300.173   | 2.7171       | 0.05111                       | 0.001 |            | 0.810E-06            | 0.010 |
| 1038  |            | 0.21272          | 299.594   | 2.7223       | 0.05111                       | 0.001 |            | 0.796E-06            | 0.012 |
| 1039  |            | 0.17831          | 299.051   | 2.7271       | 0.05083                       | 0.001 |            | 0.762E-06            | 0.015 |
| 1007  |            | 3.1,031          |           |              |                               | 3.001 |            |                      | 0.010 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$                     | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|----------------------------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 1040  | 7.008      | 0.14701          | 298.567   | 2.7315                           | 0.05093                       | 0.002 | 296.272    | 0.784E-06            | 0.020 |
| 1033  | 8.492      | 0.24998          | 300.077   | 3.2705                           | 0.05111                       | 0.001 | 296.261    | 0.646E-06            | 0.013 |
| 1034  | 8.492      | 0.21272          | 299.510   | 3.2765                           | 0.05123                       | 0.001 | 296.259    | 0.667E-06            | 0.014 |
| 1035  | 8.492      | 0.17840          | 298.989   | 3.2821                           | 0.05139                       | 0.002 | 296.262    | 0.696E-06            | 0.016 |
| 1036  | 8.492      | 0.14710          | 298.508   | 3.2873                           | 0.05139                       | 0.002 | 296.257    | 0.699E-06            | 0.022 |
| 1029  | 11.564     | 0.27664          | 300.292   | 4.3875                           | 0.05249                       | 0.001 | 296.261    | 0.532E-06            | 0.009 |
| 1030  | 11.564     | 0.23728          | 299.720   | 4.3956                           | 0.05244                       | 0.001 | 296.261    | 0.529E-06            | 0.010 |
| 1031  | 11.564     | 0.20087          | 299.194   | 4.4030                           | 0.05209                       | 0.001 | 296.264    | 0.503E-06            | 0.014 |
| 1032  | 11.564     | 0.16757          | 298.709   | 4.4100                           | 0.05228                       | 0.002 | 296.262    | 0.523E-06            | 0.017 |
| 1025  | 13.987     | 0.27646          | 300.147   | 5.2499                           | 0.05312                       | 0.001 | 296.249    | 0.436E-06            | 0.009 |
| 1026  | 13.987     | 0.23718          | 299.594   | 5.2592                           | 0.05299                       | 0.001 | 296.247    | 0.430E-06            | 0.011 |
| 1027  | 13.987     | 0.20100          | 299.082   | 5.2678                           | 0.05291                       | 0.001 | 296.253    | 0.415E-06            | 0.013 |
| 1028  | 13.987     | 0.16764          | 298.614   | 5.2758                           | 0.05298                       | 0.002 | 296.255    | 0.419E-06            | 0.017 |
| 1021  | 16.612     | 0.27683          | 300.027   | 6.1622                           | 0.05396                       | 0.001 | 296.245    | 0.376E-06            | 0.009 |
| 1022  | 16.612     | 0.23738          | 299.482   | 6.1728                           | 0.05364                       | 0.001 | 296.244    | 0.351E-06            | 0.010 |
| 1023  | 16.612     | 0.20097          | 298.984   | 6.1826                           | 0.05351                       | 0.001 | 296.247    | 0.340E-06            | 0.013 |
| 1024  | 16.612     | 0.16761          | 298.525   | 6.1917                           | 0.05394                       | 0.002 | 296.247    | 0.359E-06            | 0.017 |
| 1017  | 20.213     | 0.30480          | 300.276   | 7.3692                           | 0.05499                       | 0.001 | 296.239    | 0.336E-06            | 0.008 |
| 1018  | 20.213     | 0.26336          | 299.726   | 7.3819                           | 0.05493                       | 0.001 | 296.240    | 0.331E-06            | 0.008 |
| 1019  | 20.213     | 0.22511          | 299.221   | 7.3936                           | 0.05475                       | 0.001 | 296.240    | 0.323E-06            | 0.012 |
| 1020  | 20.213     | 0.18967          | 298.750   | 7.4045                           | 0.05468                       | 0.002 | 296.240    | 0.316E-06            | 0.015 |
| 1013  | 23.345     | 0.30484          | 300.149   | 8.3936                           | 0.05599                       | 0.001 | 296.233    | 0.301E-06            | 0.008 |
| 1014  | 23.345     | 0.26343          | 299.610   | 8.4076                           | 0.05597                       | 0.001 | 296.227    | 0.298E-06            | 0.010 |
| 1015  | 23.345     | 0.22499          | 299.114   | 8.4205                           | 0.05551                       | 0.001 | 296.221    | 0.281E-06            | 0.011 |
| 1016  | 23.345     | 0.18974          | 298.671   | 8.4322                           | 0.05560                       | 0.001 | 296.225    | 0.290E-06            | 0.015 |
| 1009  | 26.509     | 0.30488          | 300.026   | 9.3991                           | 0.05687                       | 0.001 | 296.227    | 0.263E-06            | 0.007 |
| 1010  | 26.509     | 0.26353          | 299.518   | 9.4138                           | 0.05684                       | 0.001 | 296.230    | 0.265E-06            | 0.009 |
| 1011  | 26.509     | 0.22512          | 299.046   | 9.4274                           | 0.05672                       | 0.001 | 296.239    | 0.258E-06            | 0.011 |
| 1012  | 26.509     | 0.18978          | 298.596   | 9.4405                           | 0.05700                       | 0.001 | 296.231    | 0.269E-06            | 0.014 |
| 1005  | 30.179     | 0.33426          | 300.266   | 10.5179                          | 0.05826                       | 0.001 | 296.230    | 0.246E-06            | 0.006 |
| 1006  | 30.180     | 0.29087          | 299.741   | 10.5348                          | 0.05821                       | 0.001 | 296.231    | 0.243E-06            | 0.007 |
| 1007  |            | 0.25039          |           | 10.5502                          | 0.05804                       | 0.001 |            | 0.238E-06            | 0.009 |
| 1008  |            | 0.21300          |           | 10.5648                          | 0.05812                       | 0.001 |            | 0.243E-06            | 0.011 |
| 1001  |            | 0.33457          | 300.151   | 11.3580                          | 0.05914                       | 0.001 |            | 0.219E-06            | 0.005 |
| 1002  | 32.989     | 0.29110          | 299.636   | 11.3757                          | 0.05888                       | 0.001 |            | 0.211E-06            | 0.007 |
| 1003  | 32.989     | 0.25063          | 299.160   | 11.3919                          | 0.05889                       | 0.001 | 296.223    | 0.208E-06            | 0.008 |
| 1004  |            | 0.21317          | 298.719   | 11.4072                          | 0.05886                       | 0.001 |            | 0.206E-06            | 0.010 |
| 6093  |            | 0.15919          | 303.013   | 0.4454                           | 0.04950                       | 0.002 |            | 0.492E-05            | 0.030 |
| 6094  |            | 0.12947          | 302.475   | 0.4462                           | 0.04944                       | 0.003 |            | 0.496E-05            | 0.041 |
| 6095  |            | 0.10282          | 302.011   | 0.4469                           | 0.04955                       | 0.004 |            | 0.519E-05            | 0.055 |
| 6096  |            | 0.07923          | 301.566   | 0.4476                           | 0.04952                       | 0.007 |            | 0.529E-05            | 0.085 |
| 6089  |            | 0.15920          | 302.774   | 1.0106                           | 0.05033                       | 0.003 |            | 0.226E-05            | 0.034 |
| 6090  | 2.575      |                  | 302.304   | 1.0121                           | 0.05032                       | 0.004 |            | 0.230E-05            | 0.045 |
| 6091  | 2.575      | 0.10284          | 301.838   | 1.0137                           | 0.05027                       | 0.005 | 300.207    | 0.234E-05            | 0.059 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$ | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|--------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         |              | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ | 20111 |
| 6092  | 2.575      | 0.07924          | 301.500   | 1.0148       | 0.05027                       | 0.008 | 300.208    | 0.240E-05            | 0.095 |
| 6085  | 4.007      | 0.15923          | 302.657   | 1.5628       | 0.05098                       | 0.003 | 300.207    | 0.152E-05            | 0.034 |
| 6086  | 4.007      | 0.12950          | 302.199   | 1.5651       | 0.05098                       | 0.004 | 300.208    | 0.155E-05            | 0.048 |
| 6087  | 4.007      | 0.10283          | 301.780   | 1.5673       | 0.05085                       | 0.005 | 300.209    | 0.152E-05            | 0.062 |
| 6088  | 4.007      | 0.07924          | 301.372   | 1.5694       | 0.05100                       | 0.008 | 300.209    | 0.163E-05            | 0.096 |
| 6081  | 5.449      | 0.15919          | 302.652   | 2.1110       | 0.05136                       | 0.002 | 300.226    | 0.111E-05            | 0.020 |
| 6082  | 5.449      | 0.12947          | 302.195   | 2.1142       | 0.05131                       | 0.002 | 300.225    | 0.112E-05            | 0.024 |
| 6083  | 5.449      | 0.10282          | 301.792   | 2.1170       | 0.05120                       | 0.003 | 300.226    | 0.111E-05            | 0.033 |
| 6084  | 5.449      | 0.07922          | 301.428   | 2.1195       | 0.05142                       | 0.005 | 300.226    | 0.116E-05            | 0.052 |
| 6073  | 6.620      | 0.19191          | 303.077   | 2.5469       | 0.05162                       | 0.001 | 300.225    | 0.911E-06            | 0.016 |
| 6077  | 6.620      | 0.19192          | 303.053   | 2.5471       | 0.05152                       | 0.003 | 300.220    | 0.837E-06            | 0.038 |
| 6074  | 6.620      | 0.15916          | 302.594   | 2.5509       | 0.05154                       | 0.002 | 300.229    | 0.903E-06            | 0.020 |
| 6078  | 6.620      | 0.15917          | 302.564   | 2.5511       | 0.05143                       | 0.005 | 300.219    | 0.810E-06            | 0.050 |
| 6075  | 6.620      | 0.12946          | 302.148   | 2.5546       | 0.05159                       | 0.003 | 300.223    | 0.917E-06            | 0.028 |
| 6080  | 6.620      | 0.12944          | 302.118   | 2.5548       | 0.05127                       | 0.006 | 300.219    | 0.762E-06            | 0.068 |
| 6076  | 6.620      | 0.10281          | 301.749   | 2.5579       | 0.05135                       | 0.004 | 300.220    | 0.892E-06            | 0.039 |
| 6080  | 6.620      | 0.10282          | 301.721   | 2.5581       | 0.05115                       | 0.009 | 300.218    | 0.715E-06            | 0.095 |
| 6069  | 8.092      | 0.19190          | 302.995   | 3.0929       | 0.05202                       | 0.001 | 300.230    | 0.730E-06            | 0.016 |
| 6070  | 8.092      | 0.15915          | 302.518   | 3.0977       | 0.05215                       | 0.002 | 300.231    | 0.739E-06            | 0.021 |
| 6071  | 8.092      | 0.12943          | 302.090   | 3.1020       | 0.05220                       | 0.003 | 300.225    | 0.754E-06            | 0.028 |
| 6072  | 8.092      | 0.10279          | 301.703   | 3.1059       | 0.05203                       | 0.004 | 300.229    | 0.717E-06            | 0.040 |
| 6065  | 9.548      | 0.19191          | 302.928   | 3.6257       | 0.05238                       | 0.001 | 300.232    | 0.615E-06            | 0.016 |
| 6066  | 9.548      | 0.15917          | 302.457   | 3.6312       | 0.05257                       | 0.002 | 300.231    | 0.617E-06            | 0.020 |
| 6067  | 9.548      | 0.12944          | 302.047   | 3.6360       | 0.05266                       | 0.003 | 300.234    | 0.635E-06            | 0.027 |
| 6068  | 9.548      | 0.10279          | 301.658   | 3.6406       | 0.05251                       | 0.004 | 300.230    | 0.608E-06            | 0.039 |
| 6061  | 10.965     | 0.19191          | 302.863   | 4.1374       | 0.05299                       | 0.001 | 300.229    | 0.555E-06            | 0.015 |
| 6062  | 10.964     | 0.15916          | 302.415   | 4.1430       | 0.05301                       | 0.002 | 300.234    | 0.553E-06            | 0.020 |
| 6063  | 10.964     | 0.12944          | 301.995   | 4.1486       | 0.05301                       | 0.003 | 300.229    | 0.539E-06            | 0.029 |
| 6064  | 10.964     |                  | 301.625   | 4.1536       | 0.05303                       | 0.004 | 300.230    | 0.539E-06            | 0.039 |
| 6057  |            | 0.19193          | 302.796   | 5.1377       | 0.05353                       | 0.002 | 300.229    | 0.478E-06            | 0.016 |
| 6058  |            | 0.15917          |           | 5.1448       | 0.05379                       | 0.002 |            | 0.499E-06            | 0.020 |
| 6059  |            | 0.12944          | 301.962   | 5.1513       | 0.05390                       | 0.003 |            | 0.521E-06            | 0.029 |
| 6060  |            | 0.10279          | 301.597   | 5.1570       | 0.05379                       | 0.004 |            | 0.522E-06            | 0.039 |
| 6053  |            | 0.22774          | 303.214   | 6.1607       | 0.05453                       | 0.001 |            | 0.402E-06            | 0.010 |
| 6054  | 16.789     |                  | 302.744   | 6.1698       | 0.05448                       | 0.001 |            | 0.397E-06            | 0.011 |
| 6055  |            | 0.15918          | 302.312   | 6.1782       | 0.05445                       | 0.001 |            | 0.401E-06            | 0.014 |
| 6056  |            | 0.12944          | 301.924   | 6.1857       | 0.05457                       | 0.002 |            | 0.412E-06            | 0.019 |
| 6049  |            | 0.22776          | 303.115   | 7.1897       | 0.05524                       | 0.001 |            | 0.335E-06            | 0.009 |
| 6050  |            | 0.19194          | 302.660   | 7.1998       | 0.05526                       | 0.001 |            | 0.335E-06            | 0.011 |
| 6051  |            | 0.15918          | 302.244   | 7.2092       | 0.05511                       | 0.001 |            | 0.328E-06            | 0.014 |
| 6052  |            | 0.12945          | 301.864   | 7.2177       | 0.05528                       | 0.002 |            | 0.333E-06            | 0.019 |
| 6045  | 22.962     |                  | 303.052   | 8.1966       | 0.05608                       | 0.001 |            | 0.312E-06            | 0.009 |
| 6046  |            | 0.19194          | 302.613   | 8.2077       | 0.05616                       | 0.001 |            | 0.323E-06            | 0.011 |
| 6047  | 22.962     | 0.15917          | 302.205   | 8.2180       | 0.05611                       | 0.001 | 300.227    | 0.319E-06            | 0.014 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                 | E-06 0.019 |
|-------------------------------------------------------------------------|------------|
|                                                                         |            |
| 6041 26 151 0 22778 303 027 0 2024 0 05720 0 001 200 220 0 220          | 5.06 0.000 |
| 100+120.1010.22776305.027 $9.2024$ $0.03720$ $0.001$ $1300.220$ $0.280$ | E-06 0.008 |
| 6042 26.151 0.19195 302.594 9.2146 0.05722 0.001 300.225 0.285          | E-06 0.011 |
| 6043 26.151 0.15918 302.189 9.2259 0.05687 0.001 300.224 0.270          | E-06 0.013 |
| 6044 26.151 0.12945 301.823 9.2362 0.05690 0.002 300.220 0.278          | E-06 0.017 |
| 6037 29.565 0.22782 302.961 10.2487 0.05793 0.001 300.228 0.246         | E-06 0.008 |
| 6037 29.565 0.19198 302.531 10.2619 0.05807 0.001 300.229 0.252         | E-06 0.010 |
| 6039 29.565 0.15921 302.136 10.2741 0.05814 0.001 300.225 0.256         | E-06 0.014 |
| 6040 29.565 0.12947 301.783 10.2850 0.05817 0.002 300.229 0.260         | E-06 0.018 |
| 6033 32.935 0.22785 302.876 11.2506 0.05940 0.001 300.232 0.230         | E-06 0.008 |
| 6034 32.935 0.19200 302.464 11.2643 0.05928 0.001 300.231 0.230         | E-06 0.011 |
| 6035 32.935 0.15922 302.073 11.2774 0.05931 0.001 300.229 0.223         | E-06 0.013 |
| 6036 32.935 0.12949 301.728 11.2890 0.05947 0.002 300.229 0.230         | E-06 0.018 |
| 6029 36.486 0.26649 303.258 12.2578 0.06056 0.001 300.235 0.223         | E-06 0.007 |
| 6030 36.486 0.22763 302.817 12.2736 0.06054 0.001 300.234 0.223         | E-06 0.008 |
| 6031 36.486 0.19184 302.406 12.2882 0.06054 0.001 300.230 0.222         | E-06 0.010 |
| 6032 36.485 0.15909 302.035 12.3013 0.06049 0.001 300.230 0.223         | E-06 0.013 |
| 6025 40.226 0.26650 303.172 13.3008 0.06176 0.001 300.237 0.205         | E-06 0.007 |
| 6026 40.226 0.22766 302.746 13.3171 0.06178 0.001 300.240 0.206         | E-06 0.008 |
| 6027 40.226 0.19184 302.352 13.3323 0.06183 0.001 300.239 0.207         | E-06 0.011 |
| 6028 40.226 0.15910 301.991 13.3462 0.06182 0.001 300.237 0.209         | E-06 0.014 |
| 6021 43.942 0.28003 303.257 14.2973 0.06285 0.001 300.234 0.200         | E-06 0.006 |
| 6022 43.942 0.22756 302.693 14.3201 0.06286 0.001 300.236 0.201         | E-06 0.008 |
| 6023 43.942 0.18050 302.192 14.3405 0.06284 0.001 300.239 0.205         | E-06 0.012 |
| 6024 43.943 0.13888 301.742 14.3592 0.06297 0.002 300.235 0.214         | E-06 0.017 |
| 6017 47.901 0.28003 303.177 15.3311 0.06388 0.001 300.237 0.182         | E-06 0.006 |
| 6018 47.901 0.22758 302.625 15.3548 0.06382 0.001 300.235 0.181         | E-06 0.008 |
| 6019 47.900 0.18051 302.133 15.3758 0.06392 0.001 300.236 0.185         | E-06 0.012 |
| 6020 47.899 0.13887 301.698 15.3942 0.06413 0.002 300.237 0.192         | E-06 0.018 |
| 6013 51.969 0.28012 303.091 16.3584 0.06525 0.001 300.238 0.168         | E-06 0.006 |
| 6014 51.969 0.22762 302.553 16.3827 0.06517 0.001 300.238 0.165         | E-06 0.008 |
| 6015 51.968 0.18055 302.069 16.4042 0.06523 0.001 300.234 0.165         | E-06 0.011 |
| 6016 51.969 0.13889 301.643 16.4237 0.06542 0.002 300.233 0.168         | E-06 0.016 |
| 6009 56.019 0.30834 303.308 17.3333 0.06653 0.001 300.249 0.159         | E-06 0.005 |
| 6010 56.019 0.25317 302.754 17.3592 0.06655 0.001 300.243 0.159         | E-06 0.007 |
| 6011 56.018 0.20340 302.256 17.3825 0.06647 0.001 300.242 0.156         | E-06 0.010 |
| 6012 56.018 0.15907 301.808 17.4037 0.06655 0.001 300.236 0.156         | E-06 0.013 |
| 6005 60.103 0.30817 303.232 18.2973 0.06777 0.001 300.234 0.157         | E-06 0.006 |
| 6006 60.103 0.25301 302.694 18.3236 0.06788 0.001 300.234 0.159         | E-06 0.008 |
| 6007 60.103 0.20326 302.210 18.3473 0.06792 0.001 300.229 0.163         | E-06 0.011 |
| 6008 60.102 0.15895 301.777 18.3682 0.06793 0.002 300.229 0.164         | E-06 0.016 |
| 6001 65.946 0.30818 303.149 19.6219 0.06956 0.001 300.249 0.149         | E-06 0.006 |
| 6002 65.946 0.25304 302.624 19.6489 0.06950 0.001 300.244 0.147         | E-06 0.008 |
| 6003 65.946 0.20329 302.158 19.6729 0.06964 0.001 300.245 0.150         | E-06 0.011 |

Table 1. The thermal conductivity and thermal diffusivity of pure neon. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $\rho_{calc}$                    | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|----------------------------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 6004  | 65.946     | 0.15896          | 301.730   | 19.6949                          | 0.06986                       | 0.002 | 300.239    | 0.151E-06            | 0.017 |

Table 2. Thermal conductivity and thermal diffusivity of the 75.007 % neon -24.993 % nitrogen mixture.

| Run<br>point | $P_{cell}$ MPa | $Q$ $W \cdot m^{-1}$                      | $T_{exp} \  m K$ | $\rho_{calc}$   | $\lambda_{exp}$ W·m <sup>-1</sup> ·K <sup>-1</sup> | STAT           | $T_{cell} \  m K$ | $a$ $m^2 \cdot s^{-1}$ | DSTAT |
|--------------|----------------|-------------------------------------------|------------------|-----------------|----------------------------------------------------|----------------|-------------------|------------------------|-------|
|              |                | $\frac{\text{vv iii}}{\text{rature} = 1}$ |                  | IIIOI L         | VV III IX                                          |                | IX                | 111 8                  |       |
| 11085        |                | 0.03836                                   | 111.567          | 0.6971          | 0.01941                                            | 0.002          | 109.932           | 0.158E-05              | 0.022 |
| 11086        | 0.639          | 0.03275                                   | 111.332          | 0.6986          | 0.01934                                            | 0.002          | 109.929           | 0.150E-05              | 0.022 |
| 11087        | 0.639          | 0.02758                                   | 111.114          | 0.7001          | 0.01934                                            | 0.002          | 109.929           |                        | 0.027 |
| 11088        | 0.639          | 0.02738                                   | 110.921          | 0.7013          | 0.01933                                            | 0.003          |                   | 0.100E-05              | 0.037 |
| 11081        | 1.092          | 0.03832                                   | 111.429          | 1.2026          | 0.01992                                            | 0.004          | 109.927           | 0.173E-05<br>0.882E-06 | 0.022 |
| 11081        | 1.092          | 0.03032                                   | 111.425          | 1.2051          | 0.01984                                            | 0.002          | 109.927           |                        | 0.022 |
| 11082        | 1.092          |                                           | 111.016          | 1.2075          | 0.01983                                            | 0.002          | 109.927           |                        | 0.027 |
| 11083        |                |                                           | 110.834          | 1.2016          | 0.01980                                            | 0.003          |                   | 0.973E-06              | 0.035 |
| 11034        |                | 0.02283                                   | 111.191          | 2.4465          | 0.01980                                            | 0.004          | 109.924           |                        | 0.040 |
| 11077        | 2.176          | 0.03820                                   | 111.191          | 2.4403 $2.4501$ | 0.02087                                            | 0.004          | 109.924           |                        | 0.037 |
| 11078        | 2.176 $2.176$  | 0.03267                                   | 110.882          | 2.4501 $2.4545$ | 0.02093                                            | 0.003          |                   | 0.420E-06              | 0.028 |
|              | 2.176 $2.176$  | 0.02733                                   | 110.882          |                 |                                                    | 0.003          | 109.925           |                        |       |
| 11080        |                |                                           |                  | 2.4586          | 0.02076<br>0.02186                                 |                |                   |                        | 0.046 |
| 11073        | 3.111          | 0.03822                                   | 111.078          | 3.5537          |                                                    | 0.004          | 109.921           | 0.280E-06              | 0.036 |
| 11074        | 3.111          | 0.03263                                   | 110.912          | 3.5603          | 0.02185                                            | 0.005<br>0.006 | 109.921           | 0.287E-06              | 0.046 |
| 11075        | 3.111          |                                           | 110.755          | 3.5665          | 0.02179                                            |                | 109.923           |                        | 0.058 |
| 11076        | 3.111          | 0.02281                                   | 110.622          | 3.5719          | 0.02173                                            | 0.008          | 109.920           |                        | 0.077 |
| 11069        | 4.170          | 0.03819                                   | 110.974          | 4.8421          | 0.02305                                            | 0.004          | 109.927           | 0.198E-06              | 0.036 |
| 11070        | 4.170          | 0.03262                                   | 110.833          | 4.8503          | 0.02298                                            | 0.005          | 109.927           |                        | 0.047 |
| 11071        | 4.170          |                                           | 110.695          | 4.8583          | 0.02293                                            | 0.006          | 109.926           |                        | 0.060 |
| 11072        | 4.170          |                                           | 110.541          | 4.8672          | 0.02298                                            | 0.009          | 109.925           | 0.228E-06              | 0.083 |
| 11065        | 5.851          | 0.03815                                   | 110.859          | 6.9431          | 0.02526                                            | 0.004          | 109.939           | 0.145E-06              | 0.039 |
| 11066        | 5.851          | 0.03258                                   | 110.730          | 6.9548          | 0.02518                                            | 0.005          | 109.938           | 0.151E-06              | 0.049 |
| 11067        | 5.851          | 0.02747                                   | 110.608          | 6.9660          | 0.02512                                            | 0.007          | 109.938           | 0.152E-06              | 0.063 |
| 11068        | 5.851          |                                           | 110.471          | 6.9785          | 0.02505                                            | 0.009          | 109.937           |                        | 0.084 |
| 11061        |                | 0.03813                                   | 110.755          | 8.6326          | 0.02716                                            | 0.005          | 109.928           | 0.115E-06              | 0.041 |
| 11062        | 7.176          | 0.03256                                   | 110.635          | 8.6470          | 0.02708                                            | 0.006          | 109.929           | 0.116E-06              | 0.052 |
| 11063        |                |                                           | 110.516          | 8.6614          | 0.02698                                            | 0.007          | 109.929           | 0.115E-06              | 0.066 |
| 11064        |                | 0.02277                                   | 110.430          | 8.6718          | 0.02696                                            | 0.009          | 109.928           | 0.125E-06              | 0.082 |
| 11057        | 8.705          | 0.03833                                   | 110.642          | 10.5878         | 0.02956                                            | 0.007          | 109.920           | 0.812E-07              | 0.055 |
| 11058        | 8.705          | 0.03274                                   | 110.524          | 10.6060         | 0.02948                                            | 0.009          |                   | 0.785E-07              | 0.072 |
| 11059        |                | 0.02760                                   |                  | 10.6185         | 0.02923                                            | 0.011          | 109.919           | 0.771E-07              | 0.094 |
| 11060        | 8.705          | 0.02290                                   | 110.324          | 10.6372         | 0.02924                                            | 0.015          | 109.921           | 0.758E-07              | 0.121 |
| 11053        | 10.449         | 0.03831                                   | 110.573          | 12.7703         | 0.03268                                            | 0.006          | 109.930           | 0.761E-07              | 0.050 |
| 11054        | 10.450         | 0.03273                                   | 110.468          | 12.7913         | 0.03226                                            | 0.007          | 109.932           | 0.703E-07              | 0.057 |
| 11055        | 10.450         | 0.02759                                   | 110.400          | 12.8053         | 0.03158                                            | 0.009          | 109.930           | 0.605E-07              | 0.071 |
| 11056        | 10.450         | 0.02290                                   | 110.314          | 12.8220         | 0.03225                                            | 0.011          | 109.932           | 0.721E-07              | 0.092 |
| 11049        | 11.808         | 0.03829                                   | 110.528          | 14.4053         | 0.03441                                            | 0.005          | 109.926           | 0.620E-07              | 0.043 |
| 11050        | 11.809         | 0.03271                                   | 110.444          | 14.4244         | 0.03441                                            | 0.006          | 109.925           | 0.642E-07              | 0.053 |
| 11051        | 11.809         | 0.02758                                   | 110.345          | 14.4469         | 0.03404                                            | 0.008          | 109.925           | 0.602E-07              | 0.067 |
|              |                |                                           | 110.235          | 14.4720         | 0.03441                                            | 0.011          | 109.924           | 0.636E-07              | 0.089 |
|              |                |                                           | 110.578          | 16.3150         | 0.03726                                            | 0.004          |                   | 0.615E-07              | 0.037 |
|              |                |                                           | 110.478          | 16.3408         | 0.03717                                            | 0.006          |                   | 0.594E-07              | 0.045 |
|              |                | 0.03270                                   |                  | 16.3629         | 0.03708                                            | 0.007          |                   | 0.590E-07              | 0.056 |

Table 2. Thermal conductivity and thermal diffusivity of the 75.007 % neon – 24.993 % nitrogen mixture. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $\rho_{calc}$ | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|---------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         |               | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 11048 | 13.515     | 0.02757          | 110.324   | 16.3809       | 0.03674                       | 0.009 | 109.932    | 0.579E-07            | 0.070 |
| 11041 | 15.465     | 0.05074          | 110.622   | 18.3164       | 0.04021                       | 0.004 | 109.945    | 0.579E-07            | 0.032 |
| 11042 | 15.467     | 0.04428          | 110.532   | 18.3411       | 0.04012                       | 0.005 | 109.943    | 0.587E-07            | 0.040 |
| 11043 | 15.468     | 0.03827          | 110.429   | 18.3695       | 0.04011                       | 0.006 | 109.944    | 0.583E-07            | 0.049 |
| 11044 | 15.469     | 0.03270          | 110.360   | 18.3885       | 0.04010                       | 0.007 | 109.945    | 0.612E-07            | 0.060 |
| 11037 | 17.346     | 0.05763          | 110.648   | 20.0484       | 0.04307                       | 0.004 | 109.938    | 0.552E-07            | 0.032 |
| 11038 | 17.348     | 0.05072          | 110.553   | 20.0761       | 0.04296                       | 0.005 | 109.939    | 0.553E-07            | 0.039 |
| 11039 | 17.350     | 0.04426          | 110.482   | 20.0966       | 0.04287                       | 0.006 | 109.938    | 0.547E-07            | 0.046 |
| 11040 | 17.350     | 0.03826          | 110.391   | 20.1221       | 0.04286                       | 0.006 | 109.940    | 0.549E-07            | 0.051 |
| 11033 | 19.619     | 0.05760          | 110.572   | 21.9302       | 0.04627                       | 0.004 | 109.930    | 0.515E-07            | 0.033 |
| 11034 | 19.623     | 0.05070          | 110.506   | 21.9513       | 0.04619                       | 0.005 | 109.932    | 0.519E-07            | 0.041 |
| 11035 | 19.627     | 0.04425          | 110.411   | 21.9802       | 0.04610                       | 0.006 | 109.931    | 0.509E-07            | 0.049 |
| 11036 | 19.629     | 0.03824          | 110.331   | 22.0038       | 0.04609                       | 0.008 | 109.931    | 0.501E-07            | 0.062 |
| 11029 | 22.707     | 0.07271          | 110.694   | 24.0634       | 0.05040                       | 0.003 | 109.937    | 0.538E-07            | 0.027 |
| 11030 | 22.712     | 0.06117          | 110.575   | 24.0995       | 0.05026                       | 0.004 | 109.941    | 0.523E-07            | 0.034 |
| 11031 | 22.710     | 0.05069          | 110.449   | 24.1324       | 0.05004                       | 0.006 | 109.938    | 0.522E-07            | 0.046 |
| 11032 | 22.714     | 0.04119          | 110.351   | 24.1617       | 0.05027                       | 0.008 | 109.940    | 0.524E-07            | 0.061 |
| 11025 | 25.841     | 0.08957          | 110.794   | 25.8973       | 0.05438                       | 0.003 | 109.928    | 0.524E-07            | 0.022 |
| 11026 | 25.845     | 0.07672          | 110.665   | 25.9341       | 0.05437                       | 0.003 | 109.929    | 0.516E-07            | 0.026 |
| 11027 | 25.848     | 0.06488          | 110.547   | 25.9674       | 0.05434                       | 0.004 | 109.927    | 0.505E-07            | 0.034 |
| 11028 | 25.852     | 0.05406          | 110.431   | 26.0005       | 0.05439                       | 0.006 | 109.928    | 0.496E-07            | 0.045 |
| 11021 | 30.026     | 0.10821          | 110.897   | 27.9578       | 0.05945                       | 0.002 | 109.929    | 0.554E-07            | 0.019 |
| 11022 | 30.029     | 0.08950          | 110.731   | 28.0015       | 0.05926                       | 0.003 | 109.932    | 0.520E-07            | 0.024 |
| 11023 | 30.033     | 0.07262          | 110.578   | 28.0430       | 0.05938                       | 0.004 | 109.931    | 0.532E-07            | 0.031 |
| 11024 | 30.037     | 0.05754          | 110.427   | 28.0837       | 0.05925                       | 0.006 | 109.929    | 0.498E-07            | 0.045 |
| 11017 | 34.843     | 0.12866          | 111.003   | 29.9234       | 0.06477                       | 0.002 | 109.917    | 0.651E-07            | 0.015 |
| 11018 | 34.843     | 0.10818          | 110.828   | 29.9661       | 0.06479                       | 0.002 | 109.916    | 0.661E-07            | 0.020 |
| 11019 | 34.844     | 0.08951          | 110.669   | 30.0055       | 0.06469                       | 0.003 | 109.918    | 0.669E-07            | 0.025 |
| 11020 | 34.844     | 0.07262          | 110.534   | 30.0384       | 0.06479                       | 0.004 | 109.919    | 0.678E-07            | 0.034 |
| 11013 | 40.061     |                  | 110.992   | 31.7291       | 0.07034                       | 0.002 |            | 0.622E-07            | 0.018 |
|       |            | 0.11819          |           | 31.7686       | 0.07036                       | 0.003 |            | 0.622E-07            | 0.023 |
| 11015 | 40.071     | 0.09862          | 110.676   | 31.8057       | 0.07025                       | 0.004 |            | 0.615E-07            | 0.029 |
| 1     |            | 0.08086          |           | 31.8426       | 0.07033                       | 0.005 |            | 0.605E-07            | 0.039 |
| 11009 | 47.868     | 0.15077          | 111.001   | 33.9476       | 0.07804                       | 0.002 |            | 0.661E-07            | 0.014 |
| į.    |            | 0.12851          |           | 33.9832       | 0.07803                       | 0.002 |            | 0.658E-07            | 0.018 |
| i     |            | 0.10807          |           | 34.0171       | 0.07802                       | 0.003 |            | 0.663E-07            | 0.023 |
| 1     |            |                  | 110.552   | 34.0488       | 0.07816                       | 0.004 |            | 0.658E-07            | 0.032 |
| 1     |            | 0.20054          |           | 35.9362       | 0.08618                       | 0.001 |            | 0.679E-07            | 0.011 |
| 1     |            | 0.16851          |           | 35.9790       | 0.08617                       | 0.002 |            | 0.679E-07            | 0.014 |
| ]     |            | 0.13933          |           | 36.0200       | 0.08626                       | 0.002 |            | 0.666E-07            | 0.018 |
| 11008 |            |                  |           | 36.0555       | 0.08614                       | 0.003 |            | 0.666E-07            | 0.024 |
| 11001 |            | 0.23511          |           | 37.9436       | 0.09519                       | 0.001 |            | 0.708E-07            | 0.008 |
| 11002 | 67.249     | 0.20029          | 111.069   | 37.9821       | 0.09529                       | 0.002 | 109.905    | 0.719E-07            | 0.013 |

Table 2. Thermal conductivity and thermal diffusivity of the 75.007~% neon -24.993~% nitrogen mixture. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$             | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$     | DSTAT |
|-------|------------|------------------|-----------|--------------------------|-------------------------------|-------|------------|--------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol}\cdot L^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^2 \cdot s^{-1}$ |       |
| 11003 | 67.247     | 0.16831          | 110.890   | 38.0157                  | 0.09527                       | 0.002 | 109.907    | 0.724E-07          | 0.019 |
| 11004 | 67.247     | 0.13918          | 110.709   | 38.0497                  | 0.09534                       | 0.003 | 109.905    | 0.709E-07          | 0.024 |
| Nomin | al tempe   | rature = 2       | 01 K      |                          |                               |       |            |                    |       |
| 12061 | 1.083      | 0.09012          | 202.258   | 0.6424                   | 0.03065                       | 0.001 | 199.711    | 0.212E-05          | 0.017 |
| 12062 | 1.085      | 0.07212          | 201.755   | 0.6448                   | 0.03060                       | 0.002 | 199.711    | 0.214E-05          | 0.023 |
| 12063 | 1.083      | 0.05613          | 201.311   | 0.6455                   | 0.03044                       | 0.003 | 199.715    | 0.210E-05          | 0.033 |
| 12064 | 1.083      | 0.04215          | 200.917   | 0.6467                   | 0.03049                       | 0.005 | 199.710    | 0.230E-05          | 0.053 |
| 12057 | 1.893      | 0.09010          | 202.045   | 1.1212                   | 0.03119                       | 0.001 | 199.714    | 0.122E-05          | 0.012 |
| 12058 | 1.893      | 0.07211          | 201.584   | 1.1234                   | 0.03114                       | 0.002 | 199.712    | 0.124E-05          | 0.017 |
| 12059 | 1.893      | 0.05613          | 201.207   | 1.1256                   | 0.03097                       | 0.003 | 199.714    | 0.125E-05          | 0.033 |
| 12060 | 1.893      | 0.04215          | 200.833   | 1.1277                   | 0.03103                       | 0.004 | 199.711    | 0.129E-05          | 0.050 |
| 12053 | 3.206      | 0.10320          | 202.151   | 1.8896                   | 0.03199                       | 0.001 | 199.709    | 0.749E-06          | 0.012 |
| 12054 | 3.206      | 0.08386          | 201.698   | 1.8940                   | 0.03190                       | 0.001 | 199.710    | 0.742E-06          | 0.016 |
| 12055 | 3.206      | 0.06655          | 201.313   | 1.8977                   | 0.03184                       | 0.002 | 199.708    | 0.745E-06          | 0.019 |
| 12056 | 3.206      | 0.05125          | 200.949   | 1.9013                   | 0.03180                       | 0.003 | 199.710    | 0.761E-06          | 0.027 |
| 12049 | 4.596      | 0.10318          | 202.017   | 2.6966                   | 0.03268                       | 0.001 | 199.713    | 0.530E-06          | 0.012 |
| 12050 | 4.596      | 0.08385          | 201.586   | 2.7026                   | 0.03259                       | 0.002 | 199.712    | 0.525E-06          | 0.017 |
| 12051 | 4.596      | 0.06654          | 201.206   | 2.7075                   | 0.03249                       | 0.002 | 199.713    | 0.530E-06          | 0.023 |
| 12052 | 4.596      | 0.05124          | 200.861   | 2.7124                   | 0.03250                       | 0.003 | 199.710    | 0.540E-06          | 0.033 |
| 12045 | 5.949      | 0.10317          | 201.872   | 3.4730                   | 0.03330                       | 0.002 | 199.718    | 0.416E-06          | 0.018 |
| 12046 | 5.949      | 0.08385          | 201.470   | 3.4803                   | 0.03326                       | 0.002 | 199.716    | 0.419E-06          | 0.022 |
| 12048 | 5.949      | 0.06654          | 201.107   | 3.4869                   | 0.03315                       | 0.003 | 199.714    | 0.417E-06          | 0.031 |
| 12048 | 5.949      | 0.05124          |           | 3.4926                   | 0.03336                       | 0.005 |            | 0.464E-06          | 0.048 |
| 12041 | 9.686      | 0.11712          | 201.893   | 5.5538                   | 0.03526                       | 0.001 | 199.705    | 0.260E-06          | 0.014 |
| 12042 | 9.686      | 0.09645          | 201.510   | 5.5650                   | 0.03520                       | 0.002 | 199.709    | 0.258E-06          | 0.018 |
| 12043 | 9.686      | 0.07785          | 201.165   | 5.5752                   | 0.03513                       | 0.003 | 199.708    | 0.257E-06          | 0.024 |
| 12044 | 9.686      | 0.06121          | 200.853   | 5.5844                   | 0.03510                       | 0.004 | 199.708    | 0.259E-06          | 0.036 |
| 12037 | 13.198     | 0.11712          | 201.698   | 7.4287                   | 0.03710                       | 0.001 | 199.698    | 0.191E-06          | 0.014 |
| 12038 | 13.199     | 0.09645          | 201.346   | 7.4430                   | 0.03711                       | 0.002 | 199.697    | 0.192E-06          | 0.019 |
| 12039 | 13.199     |                  | 201.026   | 7.4556                   | 0.03699                       | 0.003 |            | 0.188E-06          | 0.025 |
| 12040 | 13.199     | 0.06121          | 200.736   | 7.4675                   | 0.03700                       | 0.004 | 199.695    | 0.187E-06          | 0.035 |
| 12033 | 17.312     | 0.11703          | 201.553   | 9.5060                   | 0.03938                       | 0.002 | i e        | 0.161E-06          | 0.020 |
| 12034 | 17.312     | 0.09640          | 201.230   | 9.5221                   | 0.03935                       | 0.003 | 199.710    | 0.164E-06          | 0.026 |
| 12035 | 17.312     | 0.07779          |           | 9.5368                   | 0.03931                       | 0.003 | 199.710    | 0.168E-06          | 0.025 |
|       |            |                  | 200.679   | 9.5495                   | 0.03931                       | 0.006 |            | 0.172E-06          | 0.052 |
|       |            |                  | 201.635   | 11.4531                  | 0.04175                       | 0.002 |            | 0.144E-06          | 0.017 |
|       |            |                  | 201.211   | 11.4772                  | 0.04172                       | 0.003 |            | 0.147E-06          | 0.025 |
|       |            |                  | 200.841   | 11.4990                  | 0.04168                       | 0.004 | 199.698    | 0.149E-06          | 0.039 |
| 12032 | 21.453     | 0.05607          | 200.522   | 11.5177                  | 0.04165                       | 0.007 | 199.699    | 0.158E-06          | 0.063 |
| 12025 | 26.169     | 0.13183          | 201.477   | 13.5182                  | 0.04443                       | 0.002 | 199.697    | 0.125E-06          | 0.019 |
| 12026 | 26.168     | 0.10300          | 201.089   | 13.5444                  | 0.04443                       | 0.003 | 199.700    | 0.125E-06          | 0.027 |
| 12027 | 26.168     |                  | 200.756   | 13.5672                  | 0.04444                       | 0.005 | 199.700    | 0.130E-06          | 0.042 |
| 12028 | 26.168     | 0.05607          | 200.457   | 13.5878                  | 0.04431                       | 0.007 | 199.698    | 0.134E-06          | 0.063 |

Table 2. Thermal conductivity and thermal diffusivity of the 75.007% neon -24.993% nitrogen mixture. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$ | $\lambda_{exp}$               | STAT   | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|--------------|-------------------------------|--------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         |              | $W \cdot m^{-1} \cdot K^{-1}$ |        | K          | $m^{2} \cdot s^{-1}$ |       |
| 12021 | 31.256     | 0.13181          | 201.346   | 15.5598      | 0.04738                       | 0.002  | 199.703    | 0.110E-06            | 0.019 |
| 12022 | 31.256     | 0.10300          | 200.985   | 15.5872      | 0.04734                       | 0.003  | 199.700    | 0.113E-06            | 0.027 |
| 12023 | 31.255     | 0.07775          | 200.670   | 15.6107      | 0.04724                       | 0.005  | 199.701    | 0.113E-06            | 0.043 |
| 12024 | 31.255     | 0.05605          | 200.385   | 15.6324      | 0.04727                       | 0.008  | 199.698    | 0.116E-06            | 0.069 |
| 12017 | 36.558     | 0.14752          | 201.389   | 17.4824      | 0.05045                       | 0.002  | 199.695    | 0.973E-07            | 0.017 |
| 12018 | 36.558     | 0.11693          | 201.033   | 17.5115      | 0.05052                       | 0.003  | 199.691    | 0.986E-07            | 0.024 |
| 12019 | 36.558     | 0.08991          | 200.727   | 17.5363      | 0.05041                       | 0.004  | 199.693    | 0.966E-07            | 0.036 |
| 12020 | 36.556     | 0.06645          | 200.452   | 17.5584      | 0.05037                       | 0.006  | 199.690    | 0.974E-07            | 0.054 |
| 12013 | 42.778     | 0.16411          | 201.448   | 19.5127      | 0.05410                       | 0.001  | 199.682    | 0.100E-06            | 0.011 |
| 12014 | 42.777     | 0.13175          | 201.104   | 19.5422      | 0.05409                       | 0.002  | 199.683    | 0.102E-06            | 0.017 |
| 12015 | 42.778     | 0.10296          | 200.792   | 19.5698      | 0.05399                       | 0.004  | 199.682    | 0.103E-06            | 0.032 |
| 12016 | 42.778     | 0.07773          | 200.524   | 19.5930      | 0.05402                       | 0.005  | 199.683    | 0.106E-06            | 0.048 |
| 12009 | 49.619     | 0.18155          | 201.526   | 21.5031      | 0.05799                       | 0.001  | 199.712    | 0.969E-07            | 0.011 |
| 12010 | 49.620     | 0.13947          | 201.105   | 21.5414      | 0.05795                       | 0.002  | 199.711    | 0.975E-07            | 0.015 |
| 12011 | 49.619     | 0.10296          | 200.736   | 21.5742      | 0.05800                       | 0.003  | 199.701    | 0.102E-06            | 0.025 |
| 12012 | 49.619     | 0.07197          | 200.420   | 21.6027      | 0.05799                       | .0.005 | 199.703    | 0.104E-06            | 0.042 |
| 12005 | 56.613     | 0.18160          | 201.388   | 23.3374      | 0.06192                       | 0.002  | 199.701    | 0.922E-07            | 0.015 |
| 12006 | 56.615     | 0.13950          | 200.993   | 23.3741      | 0.06189                       | 0.003  | 199.698    | 0.908E-07            | 0.022 |
| 12007 | 56.618     | 0.10297          | 200.659   | 23.4056      | 0.06190                       | 0.004  | 199.700    | 0.944E-07            | 0.035 |
| 12008 | 56.619     | 0.07197          | 200.371   | 23.4325      | 0.06181                       | 0.007  | 199.700    | 0.965E-07            | 0.060 |
| 12001 | 65.541     | 0.22928          | 201.654   | 25.3717      | 0.06685                       | 0.001  | 199.699    | 0.855E-07            | 0.012 |
| 12002 | 65.544     | 0.18160          | 201.240   | 25.4107      | 0.06685                       | 0.002  | 199.697    | 0.840E-07            | 0.016 |
| 12003 | 65.546     | 0.13950          | 200.879   | 25.4449      | 0.06688                       | 0.003  | 199.697    | 0.822E-07            | 0.024 |
| 12004 | 65.545     | 0.10296          | 200.557   | 25.4748      | 0.06687                       | 0.004  | 199.694    | 0.811E-07            | 0.036 |
| Nomin | al tempe   | rature = 3       | 02 K      |              |                               |        |            |                      |       |
| 13049 | 1.661      | 0.15889          | 302.901   | 0.6546       | 0.04122                       | 0.001  | 299.555    | 0.247E-05            | 0.015 |
| 13050 | 1.660      | 0.12924          | 302.265   | 0.6557       | 0.04128                       | 0.002  | 299.547    | 0.250E-05            | 0.020 |
| 13051 | 1.660      | 0.10265          | 301.720   | 0.6568       | 0.04124                       | 0.002  | 299.552    | 0.258E-05            | 0.027 |
| 13052 | 1.660      | 0.07910          | 301.227   | 0.6579       | 0.04109                       | 0.003  | 299.553    |                      | 0.041 |
| 13045 | 3.734      | 0.15893          | 302.619   | 1.4586       | 0.04222                       | 0.001  | 299.544    | 0.114E-05            | 0.011 |
| 13046 | 3.734      | 0.12926          | 302.051   | 1.4613       | 0.04222                       | 0.001  | 299.545    | 0.117E-05            | 0.014 |
| 13047 | 3.733      | 0.10266          | 301.530   | 1.4636       | 0.04225                       | 0.002  | 299.542    | 0.117E-05            | 0.020 |
| 13048 | 3.733      | 0.07912          | 301.076   | 1.4655       | 0.04227                       | 0.003  | 299.540    | 0.121E-05            | 0.029 |
| 13041 | 6.462      | 0.15893          | 302.413   | 2.4924       | 0.04319                       | 0.001  | 299.542    | 0.720E-06            | 0.010 |
| 13042 |            | 0.12926          | 301.878   | 2.4969       | 0.04325                       | 0.001  |            | 0.733E-06            | 0.012 |
| 13043 | 6.461      | 0.10265          | 301.400   | 2.5005       | 0.04326                       | 0.002  | 299.540    |                      | 0.018 |
| 13044 | 6.461      |                  | 300.977   | 2.5040       | 0.04333                       | 0.002  |            | 0.787E-06            | 0.024 |
| 13037 | 9.413      | 0.15893          | 302.248   | 3.5792       | 0.04428                       | 0.001  |            | 0.511E-06            | 0.010 |
| 13038 | 9.413      | 0.12926          | 301.742   | 3.5852       | 0.04418                       | 0.001  | 299.542    |                      | 0.014 |
| 13039 | 9.413      | 0.10265          | 301.295   | 3.5905       | 0.04426                       | 0.002  | 299.544    | 0.528E-06            | 0.018 |
| 13040 | 9.413      | 0.07910          | 300.895   | 3.5952       | 0.04432                       | 0.003  |            | 0.549E-06            | 0.026 |
| 13033 | 12.071     | 0.19148          | 302.670   | 4.5211       | 0.04508                       | 0.001  | 299.541    | 0.417E-06            | 0.007 |
| 13034 | 12.071     | 0.15880          | 302.134   | 4.5290       | 0.04515                       | 0.001  | 299.539    | 0.424E-06            | 0.010 |

Table 2. Thermal conductivity and thermal diffusivity of the 75.007% neon -24.993% nitrogen mixture. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$ | $\lambda_{exp}$               | STAT  | $T_{cell}$ | a                               | DSTAT |
|-------|------------|------------------|-----------|--------------|-------------------------------|-------|------------|---------------------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         |              | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | m <sup>2</sup> ·s <sup>-1</sup> |       |
| 13035 | 12.071     | 0.12914          | 301.658   | 4.5358       | 0.04505                       | 0.001 | 299.541    | 0.428E-06                       | 0.014 |
| 13036 | 12.071     |                  | 301.223   | 4.5423       | 0.04503                       | 0.002 |            | 0.430E-06                       | 0.017 |
| 13029 | 15.159     | 0.19149          | 302.529   | 5.5891       | 0.04624                       | 0.001 |            | 0.342E-06                       | 0.007 |
| 13030 | 15.158     | 0.15882          | 302.018   | 5.5978       | 0.04619                       | 0.001 | 299.542    | 0.339E-06                       | 0.009 |
| 13031 | 15.157     | 0.12916          | 301.555   | 5.6060       | 0.04616                       | 0.001 | 299.540    | 0.341E-06                       | 0.012 |
| 13032 | 15.156     | 0.10258          | 301.144   | 5.6133       | 0.04606                       | 0.002 | 299.539    | 0.343E-06                       | 0.017 |
| 13025 | 17.978     | 0.19149          | 302.396   | 6.5330       | 0.04730                       | 0.001 | 299.530    | 0.291E-06                       | 0.007 |
| 13026 | 17.978     | 0.15882          | 301.917   | 6.5431       | 0.04714                       | 0.001 | 299.538    | 0.285E-06                       | 0.009 |
| 13027 | 17.978     | 0.12917          | 301.467   | 6.5526       | 0.04724                       | 0.001 | 299.532    | 0.290E-06                       | 0.013 |
| 13028 | 17.978     | 0.10258          | 301.062   | 6.5611       | 0.04701                       | 0.002 | 299.529    | 0.274E-06                       | 0.017 |
| 13021 | 24.202     | 0.22722          | 302.767   | 8.4971       | 0.04927                       | 0.001 | 299.534    | 0.225E-06                       | 0.007 |
| 13022 | 24.202     | 0.18027          | 302.102   | 8.5148       | 0.04919                       | 0.001 | 299.534    | 0.226E-06                       | 0.011 |
| 13023 | 24.202     | 0.13871          | 301.510   | 8.5306       | 0.04925                       | 0.002 | 299.537    | 0.225E-06                       | 0.015 |
| 13024 | 24.202     | 0.10258          | 300.996   | 8.5444       | 0.04939                       | 0.003 | 299.538    | 0.236E-06                       | 0.025 |
| 13017 | 31.170     | 0.25277          | 302.890   | 10.5387      | 0.05202                       | 0.001 | 299.535    | 0.197E-06                       | 0.007 |
| 13018 | 31.170     | 0.20311          | 302.236   | 10.5598      | 0.05184                       | 0.001 | 299.538    | 0.193E-06                       | 0.010 |
| 13019 | 31.169     | 0.15884          | 301.644   | 10.5788      | 0.05174                       | 0.001 | 299.535    | 0.191E-06                       | 0.014 |
| 13020 | 31.169     | 0.11997          | 301.131   | 10.5953      | 0.05181                       | 0.002 | 299.534    | 0.200E-06                       | 0.020 |
| 13013 | 38.857     | 0.25281          | 302.651   | 12.6216      | 0.05463                       | 0.001 | 299.542    | 0.156E-06                       | 0.008 |
| 13014 | 38.857     | 0.20314          | 302.037   | 12.6445      | 0.05480                       | 0.001 | 299.540    | 0.160E-06                       | 0.009 |
| 13015 | 38.857     | 0.15886          | 301.496   | 12.6648      | 0.05474                       | 0.001 | 299.544    | 0.159E-06                       | 0.014 |
| 13016 | 38.857     | 0.11999          | 301.011   | 12.6830      | 0.05488                       | 0.002 | 299.539    | 0.161E-06                       | 0.022 |
| 13009 | 47.207     | 0.27970          | 302.756   | 14.6761      | 0.05799                       | 0.001 | 299.537    | 0.148E-06                       | 0.006 |
| 13010 | 47.206     | 0.22731          | 302.154   | 14.7010      | 0.05799                       | 0.001 | 299.539    | 0.148E-06                       | 0.008 |
| 13011 | 47.205     | 0.18034          | 301.614   | 14.7233      | 0.05809                       | 0.001 | 299.540    | 0.150E-06                       | 0.012 |
| 13012 | 47.205     | 0.13874          | 301.137   | 14.7434      | 0.05812                       | 0.002 | 299.538    | 0.153E-06                       | 0.018 |
| 13005 |            | 0.27978          | 302.526   | 16.7347      | 0.06106                       | 0.001 | 299.528    | 0.125E-06                       | 0.006 |
| 13006 | 56.349     | 0.22734          | 301.960   | 16.7602      | 0.06117                       | 0.001 | 299.529    | 0.125E-06                       | 0.009 |
| 13007 | 56.348     | 0.18034          | 301.448   | 16.7834      | 0.06119                       | 0.001 | 299.526    | 0.124E-06                       | 0.013 |
| 13008 | 56.348     | 0.13875          | 300.995   | 16.8040      | 0.06151                       | 0.002 | 299.522    | 0.127E-06                       | 0.018 |
| 13001 | 67.079     | 0.27977          | 302.334   | 18.9107      | 0.06499                       | 0.001 | 299.513    | 0.127E-06                       | 0.007 |
| 13002 | 67.079     | 0.22733          | 301.805   | 18.9365      | 0.06518                       | 0.001 | 299.512    | 0.131E-06                       | 0.009 |
| 13003 | 67.078     | 0.18032          | 301.330   | 18.9596      | 0.06546                       | 0.001 | 299.510    | 0.138E-06                       | 0.013 |
| 13004 | 67.078     | 0.13871          | 300.911   | 18.9800      | 0.06566                       | 0.002 | 299.512    | 0.143E-06                       | 0.019 |

Table 3. Thermal conductivity and thermal diffusivity of the 49.936~% neon -50.064~% nitrogen mixture.

| Run   | $P_{cell}$ | Q                | $T_{exp}$ | $ ho_{calc}$              | $\lambda_{exp}$               | STAT  | $T_{cell}$ | a                  | DSTAT |
|-------|------------|------------------|-----------|---------------------------|-------------------------------|-------|------------|--------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot L^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^2 \cdot s^{-1}$ |       |
|       |            | rature = 1       |           |                           | ·····                         |       |            |                    |       |
| 22077 |            |                  | 121.498   | 0.5676                    | 0.01687                       | 0.004 | 119.964    |                    | 0.049 |
| 22078 |            | 0.02582          | 121.235   | 0.5689                    | 0.01688                       | 0.006 | 119.961    | 0.140E-05          | 0.063 |
| 22079 | 0.562      | 0.02100          | 121.003   | 0.5701                    | 0.01684                       | 0.007 | 119.964    |                    | 0.084 |
| 22080 | 0.562      | 0.01669          | 120.783   | 0.5712                    | 0.01687                       | 0.010 | 119.960    | 0.152E-05          | 0.119 |
| 22073 | 1.270      | 0.03111          | 121.274   | 1.3163                    | 0.01778                       | 0.005 | 119.945    | 0.561E-06          | 0.049 |
| 22074 | 1.270      | 0.02580          | 121.046   | 1.3191                    | 0.01774                       | 0.006 | 119.942    | 0.557E-06          | 0.065 |
| 22075 | 1.270      | 0.02098          | 120.839   | 1.3218                    | 0.01766                       | 0.008 | 119.941    | 0.558E-06          | 0.087 |
| 22076 | 1.270      | 0.01669          | 120.656   | 1.3241                    | 0.01758                       | 0.012 | 119.944    | 0.550E-06          | 0.122 |
| 22069 | 2.077      | 0.03107          | 121.076   | 2.2204                    | 0.01852                       | 0.004 | 119.957    | 0.311E-06          | 0.043 |
| 22070 | 2.077      | 0.02578          | 120.939   | 2.2236                    | 0.01858                       | 0.006 | 119.958    | 0.332E-06          | 0.057 |
| 22071 | 2.077      | 0.02097          | 120.748   | 2.2281                    | 0.01844                       | 0.008 | 119.957    | 0.323E-06          | 0.080 |
| 22072 | 2.077      | 0.01667          | 120.583   | 2.2320                    | 0.01844                       | 0.012 | 119.958    | 0.343E-06          | 0.114 |
| 22065 | 2.867      | 0.03105          | 120.953   | 3.1573                    | 0.01963                       | 0.005 | 119.948    | 0.210E-06          | 0.044 |
| 22066 | 2.867      | 0.02575          | 120.787   | 3.1634                    | 0.01964                       | 0.006 | 119.951    | 0.213E-06          | 0.059 |
| 22067 | 2.867      | 0.02096          | 120.630   | 3.1692                    | 0.01967                       | 0.009 | 119.949    | 0.220E-06          | 0.082 |
| 22068 | 2.867      | 0.01666          | 120.475   | 3.1750                    | 0.01947                       | 0.012 | 119.949    | 0.209E-06          | 0.111 |
| 22061 | 3.796      | 0.03102          | 120.856   | 4.3270                    | 0.02104                       | 0.005 | 119.941    | 0.179E-06          | 0.047 |
| 22062 | 3.796      | 0.02574          | 120.713   | 4.3351                    | 0.02097                       | 0.007 | 119.943    | 0.182E-06          | 0.060 |
| 22063 | 3.796      | 0.02094          | 120.550   | 4.3444                    | 0.02097                       | 0.009 | 119.942    | 0.195E-06          | 0.084 |
| 22064 | 3.796      | 0.01665          | 120.425   | 4.3515                    | 0.02102                       | 0.013 | 119.943    | 0.219E-06          | 0.123 |
| 22057 | 5.319      | 0.03100          | 120.681   | 6.4146                    | 0.02415                       | 0.006 | 119.927    | 0.107E-06          | 0.049 |
| 22058 | 5.319      | 0.02571          | 120.532   | 6.4296                    | 0.02414                       | 0.007 | 119.924    | 0.107E-06          | 0.065 |
| 22059 | 5.319      | 0.02093          | 120.422   | 6.4407                    | 0.02379                       | 0.010 | 119.924    | 0.104E-06          | 0.087 |
| 22060 | 5.319      | 0.01665          | 120.322   | 6.4509                    | 0.02393                       | 0.014 | 119.924    | 0.122E-06          | 0.124 |
| 22053 | 6.872      | 0.03097          | 120.531   | 8.7312                    | 0.02808                       | 0.007 | 119.941    | 0.632E-07          | 0.055 |
| 22054 | 6.872      | 0.02570          | 120.426   | 8.7478                    | 0.02786                       | 0.009 | 119.940    | 0.598E-07          | 0.074 |
| 22055 | 6.872      | 0.02092          | 120.334   | 8.7625                    | 0.02795                       | 0.012 | 119.941    | 0.614E-07          | 0.099 |
| 21056 | 6.872      | 0.01664          | 120.264   | 8.7737                    | 0.02835                       | 0.013 | 119.940    | 0.692E-07          | 0.111 |
| 22049 | 7.972      | 0.03096          | 120.454   | 10.4337                   | 0.03132                       | 0.006 | 119.945    | 0.583E-07          | 0.052 |
| 22050 | 7.972      | 0.02569          | 120.353   | 10.4543                   | 0.03122                       | 0.008 | 119.945    | 0.594E-07          | 0.066 |
| 22051 | 7.972      | 0.02092          | 120.250   | 10.4753                   | 0.03107                       | 0.012 | 119.947    | 0.566E-07          | 0.098 |
| 22052 | 7.972      |                  | 120.233   | 10.4788                   | 0.03104                       | 0.016 | 119.947    | 0.616E-07          | 0.132 |
| 22045 | 9.370      | 0.03674          | 120.533   | 12.5327                   | 0.03510                       | 0.006 | 119.978    | 0.598E-07          | 0.048 |
| 22046 | 9.370      |                  | 120.432   | 12.5581                   | 0.03493                       | 0.007 | 119.975    |                    | 0.061 |
| 22047 | 9.371      |                  | 120.333   | 12.5843                   | 0.03504                       | 0.010 | 119.974    |                    | 0.078 |
| 22048 | 9.372      | 0.02092          | 120.281   | 12.5987                   | 0.03490                       | 0.013 | 119.975    | 0.681E-07          | 0.109 |
|       |            |                  | 120.488   | 13.8923                   | 0.03742                       | 0.007 |            | 0.498E-07          | 0.055 |
|       |            | 0.03095          | 120.409   | 13.9152                   | 0.03718                       | 0.009 | 119.971    |                    | 0.074 |
|       |            | 0.02569          | 120.319   | 13.9412                   | 0.03716                       | 0.012 | 119.971    | 0.521E-07          | 0.096 |
|       |            | 0.02091          | 120.232   | 13.9654                   | 0.03728                       | 0.012 |            | 0.594E-07          | 0.129 |
|       |            | 0.04294          | 120.519   | 15.7734                   | 0.04081                       | 0.006 | 119.970    |                    | 0.129 |
|       |            | 0.03669          | 120.412   | 15.8058                   | 0.04074                       | 0.008 | 119.970    |                    | 0.060 |
|       |            | 0.03094          |           | 15.8246                   | 0.04069                       | 0.010 |            | 0.485E-07          | 0.076 |

Table 3. Thermal conductivity and thermal diffusivity of the 49.936% neon -50.064% nitrogen mixture. (continued)

| Run   | $P_{cell}$ | Q                | $T_{exp}$ | $ ho_{calc}$                     | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|----------------------------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 22040 | 11.767     | 0.02568          | 120.244   | 15.8572                          | 0.04073                       | 0.013 | 119.968    | 0.506E-07            | 0.103 |
| 22033 | 13.377     | 0.04970          | 120.531   | 17.5724                          | 0.04407                       | 0.005 | 119.966    | 0.449E-07            | 0.042 |
| 22034 | 13.379     | 0.04295          | 120.465   | 17.5942                          | 0.04425                       | 0.006 | 119.967    | 0.463E-07            | 0.051 |
| 22035 | 13.381     | 0.03670          | 120.400   | 17.6151                          | 0.04386                       | 0.008 | 119.967    | 0.454E-07            | 0.063 |
| 22036 | 13.382     | 0.03095          | 120.311   | 17.6432                          | 0.04470                       | 0.010 | 119.966    | 0.500E-07            | 0.083 |
| 22029 | 15.543     | 0.05696          | 120.583   | 19.5488                          | 0.04818                       | 0.004 | 119.970    | 0.467E-07            | 0.030 |
| 22030 | 15.543     | 0.04971          | 120.487   | 19.5765                          | 0.04812                       | 0.005 | 119.969    | 0.455E-07            | 0.037 |
| 22031 | 15.543     | 0.04297          | 120.423   | 19.5950                          | 0.04836                       | 0.006 | 119.968    | 0.487E-07            | 0.048 |
| 22032 | 15.543     | 0.03672          | 120.344   | 19.6179                          | 0.04788                       | 0.007 | 119.968    | 0.441E-07            | 0.056 |
| 22025 | 18.138     | 0.07653          | 120.751   | 21.3994                          | 0.05254                       | 0.003 | 119.970    | 0.583E-07            | 0.026 |
| 22026 | 18.142     | 0.06410          | 120.618   | 21.4384                          | 0.05249                       | 0.004 | 119.969    | 0.596E-07            | 0.034 |
| 22027 | 18.145     | 0.05278          | 120.516   | 21.4679                          | 0.05255                       | 0.005 | 119.968    | 0.632E-07            | 0.044 |
| 22028 | 18.145     | 0.04258          | 120.389   | 21.5029                          | 0.05263                       | 0.008 | 119.967    | 0.691E-07            | 0.062 |
| 22021 | 21.810     | 0.09001          | 120.800   | 23.4618                          | 0.05815                       | 0.003 | 119.969    | 0.587E-07            | 0.023 |
| 22022 | 21.813     | 0.07648          | 120.676   | 23.4939                          | 0.05826                       | 0.003 | 119.970    | 0.608E-07            | 0.028 |
| 22023 | 21.814     | 0.06406          | 120.565   | 23.5217                          | 0.05824                       | 0.005 | 119.971    | 0.625E-07            | 0.038 |
| 22024 | 21.817     | 0.05275          | 120.441   | 23.5538                          | 0.05822                       | 0.006 | 119.971    | 0.674E-07            | 0.050 |
| 22017 | 27.285     | 0.10969          | 120.892   | 25.7283                          | 0.06593                       | 0.002 | 119.983    | 0.644E-07            | 0.020 |
| 22018 | 27.291     | 0.09468          | 120.759   | 25.7594                          | 0.06587                       | 0.003 | 119.983    | 0.652E-07            | 0.024 |
| 22019 | 27.295     | 0.08081          | 120.643   | 25.7864                          | 0.06590                       | 0.004 | 119.981    | 0.686E-07            | 0.032 |
| 22020 | 27.299     | 0.06804          | 120.553   | 25.8077                          | 0.06600                       | 0.005 | 119.981    | 0.727E-07            | 0.042 |
| 22013 | 33.549     | 0.15504          | 121.133   | 27.6232                          | 0.07371                       | 0.002 | 119.984    | 0.648E-07            | 0.014 |
| 22014 | 33.555     | 0.13132          | 120.959   | 27.6588                          | 0.07373                       | 0.002 | 119.983    | 0.661E-07            | 0.017 |
| 22015 | 33.561     | 0.10960          | 120.798   | 27.6919                          | 0.07375                       | 0.003 | 119.984    | 0.670E-07            | 0.023 |
| 22016 | 33.564     | 0.08988          | 120.637   | 27.7240                          | 0.07394                       | 0.003 | 119.983    | 0.672E-07            | 0.029 |
| 22009 | 42.193     | 0.22290          | 121.449   | 29.5963                          | 0.08335                       | 0.002 | 119.976    | 0.675E-07            | 0.013 |
| 1     |            | 0.18732          |           | 29.6382                          | 0.08340                       | 0.002 |            | 0.679E-07            | 0.016 |
|       |            |                  | 120.999   | 29.6770                          | 0.08356                       | 0.003 |            | 0.677E-07            | 0.021 |
| 1     |            | 0.12561          | 120.794   | 29.7131                          | 0.08351                       | 0.004 |            | 0.667E-07            | 0.030 |
|       |            |                  | 121.506   | 31.6146                          | 0.09467                       | 0.001 |            | 0.709E-07            | 0.011 |
|       |            |                  | 121.276   | 31.6505                          | 0.09477                       | 0.002 |            | 0.705E-07            | 0.014 |
| 22007 |            | 0.18712          | 121.066   | 31.6836                          | 0.09478                       | 0.002 |            | 0.692E-07            | 0.018 |
|       |            |                  | 120.870   | 31.7145                          | 0.09505                       | 0.003 |            | 0.693E-07            | 0.024 |
|       |            |                  | 121.525   | 33.6128                          | 0.10776                       | 0.001 |            | 0.853E-07            | 0.011 |
| 1     |            | 0.26087          | 121.302   | 33.6436                          | 0.10788                       | 0.002 |            | 0.860E-07            | 0.013 |
|       |            |                  | 121.103   | 33.6713                          | 0.10801                       | 0.002 |            | 0.875E-07            | 0.017 |
|       |            |                  | 120.913   | 33.6975                          | 0.10793                       | 0.003 | 119.926    | 0.879E-07            | 0.022 |
|       |            | rature $= 2$     |           |                                  |                               |       | 00         | 0.460== 0=           | 0.015 |
| 21057 |            | 0.10444          |           | 0.6028                           | 0.02599                       | 0.001 |            | 0.180E-05            | 0.013 |
| 21058 |            | 0.08486          |           | 0.6047                           | 0.02591                       | 0.002 |            | 0.178E-05            | 0.019 |
| 21060 | 1.027      | 0.06735          | 204.021   | 0.6065                           | 0.02585                       | 0.002 |            | 0.179E-05            | 0.019 |
| 21060 |            | 0.05186          |           | 0.6080                           | 0.02579                       | 0.002 |            | 0.181E-05            | 0.028 |
| 21053 | 2.190      | 0.10441          | 204.861   | 1.2899                           | 0.02679                       | 0.001 | 201.795    | 0.782E-06            | 0.014 |

Table 3. Thermal conductivity and thermal diffusivity of the 49.936 % neon -50.064 % nitrogen mixture. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$                     | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|----------------------------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ | 01/11 | K          | $m^{2} \cdot s^{-1}$ | DOM   |
| 21054 | 2.190      |                  | 204.310   | 1.2936                           | 0.02672                       | 0.002 | 201.791    | 0.848E-06            | 0.020 |
| 21055 | 2.190      | 0.06732          |           | 1.2970                           | 0.02664                       | 0.003 | 201.793    | 0.850E-06            | 0.027 |
| 21056 | 2.190      | 0.05183          | 203.340   | 1.3001                           | 0.02657                       | 0.004 |            | 0.842E-06            | 0.039 |
| 21049 | 3.723      | 0.10438          | 204.636   | 2.1969                           | 0.02774                       | 0.002 | 201.796    | 0.524E-06            | 0.016 |
| 21050 | 3.723      | 0.08482          | 204.105   | 2.2031                           | 0.02766                       | 0.002 | 201.792    | 0.520E-06            | 0.020 |
| 21051 | 3.723      | 0.06731          | 203.635   | 2.2086                           | 0.02756                       | 0.003 | 201.793    | 0.522E-06            | 0.027 |
| 21052 | 3.723      | 0.05183          | 203.216   | 2.2136                           | 0.02752                       | 0.004 |            | 0.527E-06            | 0.041 |
| 21045 | 5.149      | 0.10436          | 204.350   | 3.0403                           | 0.02854                       | 0.001 | 201.785    | 0.372E-06            | 0.014 |
| 21046 | 5.149      | 0.08480          | 203.872   | 3.0483                           | 0.02843                       | 0.002 | 201.785    | 0.364E-06            | 0.018 |
| 21047 | 5.149      | 0.06730          | 203.447   | 3.0554                           | 0.02844                       | 0.003 |            | 0.378E-06            | 0.026 |
| 21048 | 5.149      | 0.05182          |           | 3.0617                           | 0.02841                       | 0.004 | 201.785    | 0.388E-06            | 0.041 |
| 21041 | 8.752      | 0.10431          | 203.969   | 5.1416                           | 0.03082                       | 0.002 | 201.790    | 0.216E-06            | 0.020 |
| 21042 | 8.752      | 0.08477          | 203.557   | 5.1538                           | 0.03077                       | 0.003 | 201.787    | 0.216E-06            | 0.026 |
| 21043 | 8.751      | 0.06728          | 203.195   | 5.1641                           | 0.03068                       | 0.004 | 201.787    | 0.217E-06            | 0.038 |
| 21044 | 8.751      | 0.05181          | 202.879   | 5.1735                           | 0.03066                       | 0.006 | 201.786    | 0.226E-06            | 0.055 |
| 21037 | 12.360     | 0.10429          | 203.747   | 7.1714                           | 0.03331                       | 0.002 | 201.803    | 0.163E-06            | 0.020 |
| 21038 | 12.360     | 0.08476          | 203.380   | 7.1865                           | 0.03330                       | 0.003 | 201.802    | 0.162E-06            | 0.027 |
| 21039 | 12.360     | 0.06727          | 203.062   | 7.2000                           | 0.03329                       | 0.004 | 201.804    | 0.167E-06            | 0.039 |
| 21040 | 12.360     | 0.05181          | 202.771   | 7.2124                           | 0.03327                       | 0.006 | 201.803    | 0.176E-06            | 0.057 |
| 21033 | 15.974     | 0.10425          | 203.563   | 9.0963                           | 0.03602                       | 0.002 | 201.811    | 0.134E-06            | 0.022 |
| 21034 | 15.974     | 0.08474          | 203.231   | 9.1142                           | 0.03596                       | 0.003 | 201.808    | 0.133E-06            | 0.030 |
| 21035 | 15.973     | 0.06726          | 202.944   | 9.1294                           | 0.03602                       | 0.005 | 201.810    | 0.140E-06            | 0.042 |
| 21036 | 15.973     | 0.05180          | 202.686   | 9.1434                           | 0.03595                       | 0.007 | 201.808    | 0.143E-06            | 0.060 |
| 21029 | 19.555     | 0.11837          | 203.618   | 10.8629                          | 0.03874                       | 0.002 | 201.806    | 0.114E-06            | 0.019 |
| 21030 | 19.555     | 0.09750          | 203.297   | 10.8833                          | 0.03872                       | 0.003 | 201.806    | 0.114E-06            | 0.025 |
| 21031 | 19.555     | 0.07867          | 203.013   | 10.9014                          | 0.03864                       | 0.004 | 201.806    | 0.115E-06            | 0.034 |
| 21032 | 19.555     | 0.06186          | 202.758   | 10.9177                          | 0.03872                       | 0.005 | 201.805    | 0.119E-06            | 0.048 |
| 21025 | 23.513     | 0.11835          | 203.449   | 12.6695                          | 0.04178                       | 0.002 | 201.798    | 0.100E-06            | 0.020 |
| 21026 | 23.514     | 0.09749          | 203.152   | 12.6911                          | 0.04176                       | 0.003 | 201.798    | 0.993E-07            | 0.027 |
| 21027 | 23.514     | 0.07867          | 202.887   | 12.7102                          | 0.04175                       | 0.004 |            | 0.992E-07            | 0.037 |
| 21028 | 23.514     | 0.06186          | 202.664   | 12.7264                          | 0.04169                       | 0.006 | 201.798    | 0.101E-06            | 0.052 |
| 21021 | 28.934     | 0.13319          | 203.478   | 14.8552                          | 0.04585                       | 0.002 | 201.801    | 0.938E-07            | 0.014 |
| 21022 | 28.934     | 0.11102          | 203.203   | 14.8770                          | 0.04586                       | 0.002 | 201.802    | 0.954E-07            | 0.017 |
| 21023 | 28.932     | 0.09087          | 202.946   | 14.8970                          | 0.04581                       | 0.003 | 201.801    | 0.940E-07            | 0.023 |
| 21024 | 28.932     | 0.07275          | 202.712   | 14.9154                          | 0.04586                       | 0.004 | 201.801    | 0.967E-07            | 0.033 |
| 21017 | 33.999     | 0.15735          | 203.625   | 16.6300                          | 0.04965                       | 0.001 | 201.799    | 0.927E-07            | 0.012 |
| 21018 | 33.998     | 0.13315          | 203.348   | 16.6526                          | 0.04966                       | 0.002 | 201.799    | 0.948E-07            | 0.015 |
| 21019 | 33.997     |                  | 203.089   | 16.6741                          | 0.04962                       | 0.002 |            | 0.951E-07            | 0.019 |
| 21020 | 33.997     | 0.09085          | 202.858   | 16.6936                          | 0.04961                       | 0.003 | 201.795    | 0.975E-07            | 0.025 |
| 21013 | 40.689     | 0.17455          | 203.629   | 18.6693                          | 0.05450                       | 0.001 |            |                      | 0.011 |
| 21014 | 40.689     | 0.14902          | 203.360   | 18.6926                          | 0.05443                       | 0.001 | 201.799    | 0.860E-07            | 0.013 |
| 21015 |            | 0.12551          | 203.112   | 18.7138                          | 0.05449                       | 0.002 |            | 0.867E-07            | 0.016 |
| 21016 | 40.688     | 0.10403          | 202.890   | 18.7329                          | 0.05438                       | 0.003 | 201.802    | 0.861E-07            | 0.023 |

Table 3. Thermal conductivity and thermal diffusivity of the 49.936~% neon -50.064~% nitrogen mixture. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$                     | $\lambda_{exp}$               | STAT  | $T_{cell}$ | $\overline{a}$       | DSTAT |
|-------|------------|------------------|-----------|----------------------------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 21009 | 48.279     | 0.20195          | 203.722   | 20.6232                          | 0.05977                       | 0.001 | 201.808    | 0.818E-07            | 0.010 |
| 21010 | 48.279     | 0.17447          | 203.454   | 20.6465                          | 0.05978                       | 0.001 | 201.805    |                      | 0.011 |
| 21011 | 48.279     | 0.14899          | 203.211   | 20.6676                          | 0.05984                       | 0.002 | 201.806    | 0.809E-07            | 0.014 |
| 21012 | 48.278     | 0.12549          | 202.983   | 20.6874                          | 0.05982                       | 0.002 | 201.802    | 0.805E-07            | 0.019 |
| 21005 | 56.947     | 0.24181          | 203.905   | 22.4994                          | 0.06568                       | 0.001 | 201.806    | 0.856E-07            | 0.008 |
| 21006 | 56.946     | 0.20190          | 203.564   | 22.5285                          | 0.06568                       | 0.001 | 201.809    | 0.864E-07            | 0.011 |
| 21007 | 56.945     | 0.16567          | 203.243   | 22.5561                          | 0.06568                       | 0.002 | 201.805    | 0.870E-07            | 0.014 |
| 21008 | 56.942     | 0.13300          | 202.962   | 22.5799                          | 0.06580                       | 0.002 | 201.805    | 0.891E-07            | 0.019 |
| 21001 | 67.572     | 0.26304          | 203.823   | 24.4511                          | 0.07263                       | 0.001 | 201.761    | 0.846E-07            | 0.008 |
| 21002 | 67.571     | 0.22138          | 203.492   | 24.4789                          | 0.07269                       | 0.001 | 201.760    | 0.839E-07            | 0.010 |
| 21003 | 67.570     | 0.18329          | 203.194   | 24.5038                          | 0.07262                       | 0.002 | 201.758    | 0.850E-07            | 0.014 |
| 21004 | 67.568     | 0.14885          | 202.919   | 24.5269                          | 0.07278                       | 0.002 | 201.756    | 0.863E-07            | 0.018 |
| Nomin | al tempe   | rature = 3       | 02 K      |                                  |                               |       |            |                      |       |
| 23045 | 1.550      | 0.12858          | 302.584   | 0.6126                           | 0.03507                       | 0.001 | 299.377    | 0.201E-05            | 0.015 |
| 23046 | 1.550      | 0.10212          | 301.925   | 0.6140                           | 0.03521                       | 0.002 | 299.376    | 0.212E-05            | 0.022 |
| 23047 | 1.550      | 0.07870          | 301.350   | 0.6152                           | 0.03521                       | 0.002 | 299.382    | 0.216E-05            | 0.029 |
| 23048 | 1.550      | 0.05830          | 300.833   | 0.6162                           | 0.03533                       | 0.004 | 299.374    | 0.231E-05            | 0.051 |
| 23041 | 4.175      | 0.12861          | 302.198   | 1.6349                           | 0.03638                       | 0.001 | 299.370    | 0.786E-06            | 0.016 |
| 23042 | 4.175      | 0.10215          | 301.616   | 1.6382                           | 0.03642                       | 0.002 | 299.372    | 0.785E-06            | 0.023 |
| 23043 | 4.175      | 0.07871          | 301.101   | 1.6410                           | 0.03636                       | 0.003 | 299.371    | 0.797E-06            | 0.033 |
| 23044 | 4.175      | 0.05831          | 300.655   | 1.6435                           | 0.03652                       | 0.005 | 299.373    | 0.828E-06            | 0.049 |
| 23037 | 6.746      | 0.15813          | 302.616   | 2.6082                           | 0.03752                       | 0.001 | 299.383    | 0.519E-06            | 0.011 |
| 23038 | 6.746      | 0.12863          | 302.016   | 2.6135                           | 0.03751                       | 0.001 | 299.385    | 0.521E-06            | 0.013 |
| 23039 | 6.746      | 0.10216          | 301.471   | 2.6184                           | 0.03746                       | 0.002 |            | 0.516E-06            | 0.021 |
| 23040 | 6.746      | 0.07872          | 300.989   | 2.6227                           | 0.03751                       | 0.003 | 299.381    | 0.516E-06            | 0.032 |
| 23033 | 9.634      | 0.15818          | 302.451   | 3.6750                           | 0.03862                       | 0.001 | 299.398    | 0.396E-06            | 0.011 |
| 23034 | 9.634      | 0.12864          | 301.885   | 3.6821                           | 0.03870                       | 0.001 | 299.398    | 0.410E-06            | 0.015 |
| 23035 | 9.634      | 0.10218          | 301.372   | 3.6886                           | 0.03864                       | 0.002 | 299.390    | 0.416E-06            | 0.021 |
| 23036 | 9.634      | 0.07873          | 300.916   | 3.6944                           | 0.03860                       | 0.003 | 299.387    | 0.428E-06            | 0.027 |
| 23029 | 12.431     | 0.15820          | 302.303   | 4.6762                           | 0.03967                       | 0.001 | 299.405    | 0.312E-06            | 0.008 |
|       |            | 0.12867          |           | 4.6849                           | 0.03942                       | 0.001 |            | 0.297E-06            | 0.011 |
|       |            | 0.10218          |           | 4.6928                           | 0.03956                       | 0.002 |            | 0.305E-06            | 0.017 |
|       |            |                  | 300.833   | 4.6998                           | 0.03977                       | 0.002 |            | 0.317E-06            | 0.024 |
|       |            | 0.19080          | 302.737   | 5.6584                           | 0.04090                       | 0.001 |            | 0.262E-06            | 0.007 |
|       |            |                  | 302.160   | 5.6695                           | 0.04091                       | 0.001 |            | 0.263E-06            | 0.009 |
|       |            |                  | 301.652   | 5.6793                           | 0.04068                       | 0.001 |            | 0.252E-06            | 0.012 |
| 1     |            | 0.10220          | 301.188   | 5.6883                           | 0.04085                       | 0.002 |            | 0.264E-06            | 0.016 |
|       |            | 0.19085          | 302.440   | 7.6577                           | 0.04361                       | 0.001 |            | 0.202E-06            | 0.007 |
|       |            | 0.15827          | 301.926   | 7.6708                           | 0.04359                       | 0.001 |            | 0.201E-06            | 0.009 |
|       |            | 0.12873          | 301.449   | 7.6829                           | 0.04361                       | 0.001 |            | 0.201E-06            | 0.011 |
| 23024 |            | 0.10222          | 301.032   | 7.6937                           | 0.04362                       | 0.002 |            | 0.203E-06            | 0.016 |
| 23017 |            | 0.22640          | 302.684   | 9.7730                           | 0.04673                       | 0.001 | 299.403    | 0.167E-06            | 0.006 |
| 23018 | 28.581     | 0.19080          | 302.173   | 9.7891                           | 0.04667                       | 0.001 | 299.403    | 0.168E-06            | 0.007 |

Table 3. Thermal conductivity and thermal diffusivity of the 49.936% neon -50.064% nitrogen mixture. (continued)

| Run   | $P_{cell}$ | $\overline{Q}$   | $T_{exp}$ | $ ho_{calc}$                     | $\lambda_{exp}$               | STAT  | $T_{cell}$ | a                    | DSTAT |
|-------|------------|------------------|-----------|----------------------------------|-------------------------------|-------|------------|----------------------|-------|
| point | MPa        | $W \cdot m^{-1}$ | K         | $\text{mol} \cdot \text{L}^{-1}$ | $W \cdot m^{-1} \cdot K^{-1}$ |       | K          | $m^{2} \cdot s^{-1}$ |       |
| 23019 | 28.580     | 0.15825          | 301.700   | 9.8039                           | 0.04644                       | 0.001 | 299.403    | 0.162E-06            | 0.008 |
| 23020 | 28.580     | 0.12868          | 301.268   | 9.8177                           | 0.04652                       | 0.001 | 299.401    | 0.164E-06            | 0.012 |
| 23013 | 36.133     | 0.22647          | 302.406   | 11.7989                          | 0.05012                       | 0.001 | 299.406    | 0.142E-06            | 0.005 |
| 23014 | 36.133     | 0.19086          | 301.933   | 11.8163                          | 0.05012                       | 0.001 | 299.407    | 0.141E-06            | 0.007 |
| 23015 | 36.133     | 0.15827          | 301.496   | 11.8324                          | 0.04965                       | 0.001 | 299.404    | 0.130E-06            | 0.009 |
| 23016 | 36.133     | 0.12871          | 301.104   | 11.8470                          | 0.04986                       | 0.001 | 299.406    | 0.131E-06            | 0.012 |
| 23009 | 45.070     | 0.27873          | 302.793   | 13.9032                          | 0.05406                       | 0.000 | 299.413    | 0.128E-06            | 0.004 |
| 23010 | 45.071     | 0.22652          | 302.162   | 13.9292                          | 0.05389                       | 0.001 | 299.416    | 0.124E-06            | 0.007 |
| 23011 | 45.071     | 0.17969          | 301.591   | 13.9527                          | 0.05391                       | 0.001 | 299.413    | 0.124E-06            | 0.008 |
| 23012 | 45.072     | 0.13826          | 301.084   | 13.9738                          | 0.05416                       | 0.001 | 299.410    | 0.129E-06            | 0.012 |
| 23005 | 56.654     | 0.30696          | 302.770   | 16.2855                          | 0.05918                       | 0.001 | 299.427    | 0.111E-06            | 0.005 |
| 23006 | 56.653     | 0.25203          | 302.158   | 16.3127                          | 0.05933                       | 0.001 | 299.422    | 0.111E-06            | 0.005 |
| 23007 | 56.655     | 0.20249          | 301.620   | 16.3370                          | 0.05936                       | 0.001 | 299.424    | 0.110E-06            | 0.007 |
| 23008 | 56.659     | 0.15834          | 301.145   | 16.3591                          | 0.05934                       | 0.001 | 299.432    | 0.109E-06            | 0.010 |
| 23001 | 69.441     | 0.33658          | 302.744   | 18.5313                          | 0.06482                       | 0.000 | 299.417    | 0.106E-06            | 0.004 |
| 23002 | 69.442     | 0.27894          | 302.162   | 18.5588                          | 0.06483                       | 0.001 | 299.413    | 0.104E-06            | 0.006 |
| 23003 | 69.443     | 0.22666          | 301.645   | 18.5831                          | 0.06506                       | 0.001 | 299.414    | 0.106E-06            | 0.007 |
| 23004 | 69.445     | 0.17979          | 301.175   | 18.6056                          | 0.06520                       | 0.001 | 299.409    | 0.106E-06            | 0.010 |



