COMP564 Paper Review

Sequence-based identification of 3D structural modules in RNA with RMDetect

José Almeida Cruz and Eric Westhof

Jake Zhu

McGill

2019-04-02

Background

Problem: Provide Computational Search Tool for Structural RNA Module based on Sequence Information

- RNA is made up of Watson-Crick Pairs:
 - Guanine-Cytosine
 - Adenine-Uracil
- Structural RNA Modules are sets of ordered non-Watson-Crick Base
 Pairs embedded between Watson-Crick Pairs
- RNA Motifs, sets of Secondary Structure Elements, are Different from Sequence Motifs

Previous Solutions

- Motif Search Tools: RNAMotif, MilPal and CMFinder
- Requires Computer Resources
- Computer Expertise also Obligatory

Objectives

Objectives

- To Analyse Crystal Structures
- To Characterise a Module and its Interaction Network
- Interaction Networks depict
 - Nucleotide Frequencies
 - Base-Base Interactions

for each Module Instance.

Challenges

- Only a few of the possible sequences are compatible with the given module are found in the crystal structure.
- Other Modules that are not covered by the Current Implementation of RMDetect exist.
- New Modules are likely to be Discovered

Methods

To capture all possible tertiary interactions and Base Pairs, RMDetect Relies on 3 Criteria:

- Bayesian Network Models are Probabilistic Models where
 - Random Variables
 - Dependencies

are represented as an Acylic Direct Graph

- Base-Pair Probability Predictions
- Positional Clustering of Candidates

Figure: https://en.wikipedia.org/wiki/Bayesian_network

Methods

Single Sequence Search

- 15 Test Cases
- Previously Identified Modules in Crystal Structures
- Previously Obtained Reliable Sequence Alignments
- BPP = Base Pair Probability; M_{BN} = Bayesian Network Model; M_{GC} = Null Model; k, T = constants; FE = Free Energy
- $sp_{ij} = \{seq_i, seq_j\}$: pair of non-overlapping subsequences of S starting from i and j; $WC_M = Set$ of all WC Pairs from M

$$score_{ij} = \log_2\left(\frac{\Pr(sp_{ij}|M_{BN})}{\Pr(sp_{ij}|M_{GC})}\right), BPP_{ij} = \frac{\exp\left(-\frac{FE_{ij}}{kT}\right)}{\exp\left(-\frac{FE_{all}}{kT}\right)}$$

Multiple Sequence Search

Same 15 Data Sets

Results

- Mapped to Edges of the Bayesian Network:
 - All Watson-Crick Base Pairs
 - Most Non-Watson-Crick Base Pairs
 - Some Stacking Interactions
- Single Sequence Search
 - True Positive Rate > 0.5
 - Exception: Tandem-GA Module where
 - False Discovery Rate > 0.5
- Multiple Sequence Search
 - ullet True Positive Rate =1
 - 37 Instances
 - False Discovery Rate = 0.23
 - $\frac{5}{11}$ False Readings : Tandem-GA Module

Results

Why is it Significant?

- Fewer Computer Resources and Less Computer Expertise are needed to run RMDetect
- A Computational Tool for RNA Module Searching has been found.

Potential Pitfalls

- Numerous False Positives in the Single Sequence Search
 - Small Size of Bayesian Networks
 - Short Alphabet of Nucleotides due to the score equation
 - Guanine
 - Occupanie
 Occupanie
 - Adenine
 - Uracil

Discussion

Significance

 Key Information on the Secondary Structure and Tertiary Fold can be provided by the Module in a RNA Sequence

Impact - Can be Extended to:

- Searches in Public Databases
- Rfam Results
- Group I Intron Results
- Bacterial ncRNA Results

Conclusion and Future Work

- RMDetect (at the time) had issues, but it became an additional search tool.
- Today, the performance has been refuted: JAR3D and BayesPairing are two recent tools.
- According to the paper cited below, RMDetect does not allow the addition of more than a single model and "suffers of high computational costs and a minimal structural diversity in the modules considered due to its base pair probabilities scanning method."
- Automated, customizable and efficient identification of 3D base pair modules with BayesPairing. 4 March 2019. (Roman Sarrazin-Gendron¹, Vladimir Reinharz², Carlos G. Oliver¹, Nicolas Moitessier³ and Jérôme Waldispühl^{1,*})

Modules

Sequence Search Algorithms

