本題分数		24 分
得	分	

一、填空题(每小题3分).

1.	旋转抛物面 $z = \frac{1}{2}(x^2 + y^2)$ 和上半球面 $z = \sqrt{8 - x^2 - y^2}$ 所
----	---

围成的闭曲面在 xOy 面上投影部分的面积为_____

2. 设向量
$$\bar{a}$$
 = (2,-1,3), \bar{b} = (3,-4,12),则 $Prj_{\bar{b}}$ \bar{a} = ______.

3. 直线
$$\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$$
 与平面 $x+y-2z+6=0$ 的夹角为______.

4.
$$\lim_{(x,y)\to(0,0)}\frac{\sin(x^2y+y^4)}{x^2+y^2}=\underline{\hspace{1cm}}.$$

5. 设函数
$$f(u,v)$$
 具有二阶连续偏导数且 $df|_{(1,1)} = 3du + 2dv$, 令 $y = f(\cos x, 1 + x^2)$,

则
$$\left. \frac{d^2y}{dx^2} \right|_{x=0} = \underline{\qquad}$$

6. 设函数
$$z = z(x, y)$$
 由方程 $e^z + xz = 2x - y$ 确定,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$.

8. 交换二次积分的次序:
$$\int_0^{\frac{\pi}{2}} dx \int_{\sin x}^1 f(x,y) dy =$$

本題分数	9分
得 分	

二、选择题(每小题3分).

- (A) 若函数 f(x,y) 在点 (x_0,y_0) 处一阶偏导数不存在,则 f(x,y) 在该点不可微:
- (B) 若函数 f(x,y) 在点 (x_0,y_0) 处的二阶偏导数连续,则 f(x,y) 在该点连续;
- (C) 若函数 f(x,y) 在点 (x_0,y_0) 处的一阶偏导数连续,则 f(x,y) 在该点沿任一 方向的方向导数都存在:
- (D) 若函数 f(x,y) 在点 (x_0,y_0) 处沿 x 轴和 y 轴正、负方向的方向导数都存在, 则 f(x,y) 在该点的一阶偏导数存在.
- 2. 设函数 $f(x,y) = \ln(y + |x \sin y|)$, 则()

 - (A) $f_{x}(0,1)$ 和 $f_{y}(0,1)$ 都存在; (B) $f_{x}(0,1)$ 存在, $f_{y}(0,1)$ 不存在;
 - (C) $f_{x}(0,1)$ 不存在, $f_{y}(0,1)$ 存在; (D) $f_{x}(0,1)$ 和 $f_{y}(0,1)$ 都不存在.
- 3. 设函数 f(t) 具有一阶连续导数,令 $F(x,y) = \int_{0}^{x-y} t f(t) dt$,则(

(A)
$$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y}$$
, $\frac{\partial^2 F}{\partial x^2} = \frac{\partial^2 F}{\partial y^2}$;

(B)
$$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y}$$
, $\frac{\partial^2 F}{\partial x^2} = -\frac{\partial^2 F}{\partial y^2}$;

(C)
$$\frac{\partial F}{\partial x} = -\frac{\partial F}{\partial y}, \quad \frac{\partial^2 F}{\partial x^2} = \frac{\partial^2 F}{\partial y^2};$$

(D)
$$\frac{\partial F}{\partial x} = -\frac{\partial F}{\partial y}, \quad \frac{\partial^2 F}{\partial x^2} = -\frac{\partial^2 F}{\partial y^2}.$$

本题分数		6分
得	分	

三、设 $z = f(e^x \sin y, x^2 + y^2)$, 其中 f 具有二阶连续偏导 求 $\frac{\partial z}{\partial r}$ 及 $\frac{\partial^2 z}{\partial r \partial y}$.

7分

五、求过点(-2,-4,3)且与直线 $L:\frac{x-1}{-1}=\frac{y}{0}=\frac{z-2}{2}$ 相交, 又与平面 $\pi: x+2y-z+4=0$ 平行的直线方程.

六、求过点
$$(1,2,1)$$
 且与两直线 L_1 :
$$\begin{cases} 2x-4y+z=1\\ x+3y=-5 \end{cases}$$
,
$$L_2: \frac{x-1}{1} = \frac{y}{-2} = \frac{z-2}{-3}$$
 都平行的平面方程.

七、设a,b为实数,函数 $z = 2 + ax^2 + by^2$ 在点(3,4)处的方向导数中,沿方向 $\tilde{l} = (-3,-4)$ 的方向导数最大,最大值为10,

- (1) 求a和b的值;
- (2) 求曲面 $z = 2 + ax^2 + by^2$ 与平面 z = 0 所围成立体的体积

8分

八、计算二重积分 $\iint_{D} (x^2 + y^2 + xy) dx dy$, 其中 D 是由曲线

y = |x| 和 $y = x^2$ 所围成的平面有界闭区域.

8分

九、求函数 $f(x,y) = 2x^3 - 9x^2 - 6y^4 + 12x + 24y$ 的极值.

0分

十、已知曲线
$$C: \begin{cases} x^2 + 2y^2 - z = 6 \\ 4x + 2y + z = 30 \end{cases}$$
, 求 C 上的点到 xOy

坐标面距离的最大值和最小值.

十一、设函数 f(x,y) 在单位圆域 $x^2 + y^2 \le 1$ 上具有一阶 连续偏导数,且在边界上的函数值恒为零,证明:

$$\lim_{\varepsilon \to 0^+} \frac{-1}{2\pi} \iint_D \frac{x f_x(x, y) + y f_y(x, y)}{x^2 + y^2} dx dy = f(0, 0) ,$$

其中 D 为圆环域 $\varepsilon^2 \le x^2 + y^2 \le 1$.