AED-Algoritmos e Estruturas de Dados

Aula 7 – Conceitos de Complexidade Computacional

Prof. Rodrigo MafortProf. Rodrigo Mafort

Como avaliar um algoritmo?

• Ideia: Vamos usar o tempo de execução

Pergunta: Essa é uma comparação justa?

Mas como podemos avaliar ou comparar um algoritmo sem depender da máquina?

Como avaliar um algoritmo?

Algoritmo 1: **Entrada:** Vetor V com n elementos ı para $i \leftarrow 1 \ldots n$ faça $min \leftarrow i$ $\mathbf{2}$ para $j \leftarrow i+1 \ldots n$ faça 3 se V[j] < V[min] então 4 $| min \leftarrow j |$ $aux \leftarrow V[i]$ $V[i] \leftarrow V[min]$ $V[min] \leftarrow aux$

9 retorne V

Como avaliar um algoritmo?

Algoritmo 2:

```
Entrada: Vetor V com n elementos
  Função Ajustar (V, ini, fim)
       se ini < fim então
           meio \leftarrow (ini + fim)/2
\mathbf{2}
                                                     Função Unir (V, ini, meio, fim)
           Ajustar (V, ini, meio)
3
                                                        x \leftarrow fim - ini + 1
           Ajustar (V, meio + 1, fim)
                                                        Criar vetor A \operatorname{com} x \operatorname{posições}
          Unir (V, ini, meio, fim)
                                                        p_1 \leftarrow ini p_2 \leftarrow fim
5
                                                         para i \leftarrow 1 \ldots x faça
                                                 10
       retorne V
6
                                                             se p_1 \leq meio \land p_2 \leq fim então
                                                 11
                                                                 se V[p_1] < V[p_2] então A[i] \leftarrow V[p_1] p_1 \leftarrow p_1 + 1;
                                                 12
                                                                 senão A[i] \leftarrow V[p_2] p_2 \leftarrow p_2 + 1;
                                                 13
                                                             senão
                                                 14
                                                                 se p_1] \leq meio então A[i] \leftarrow V[p_1] p_1 \leftarrow p_1 + 1;
                                                 15
                                                                 senão A[i] \leftarrow V[p_2] p_2 \leftarrow p_2 + 1;
                                                 16
                                                         para i \leftarrow 1 \dots x faça V[ini+i] \leftarrow A[i];
                                                 17
                                                         retorne V
                                                 18
```

Como avaliar um algoritmo

- O que os algoritmos fazem?
 - Ordenação de vetores
- Qual é mais eficiente em tempo de execução?
 - O segundo
- Por que?
 - Estudo da complexidade computacional.
- Curiosidade: O que acontece quando o computador tem a memória limitada praticamente ao tamanho do vetor?

 Podemos estudar o algoritmo e ver quantas instruções ele executa

```
Algoritmo 1: Identificar o maior elemento

Entrada: Vetor V com n elementos

Saída: Maior elemento maior

1 maior \leftarrow v[0]

2 para i \leftarrow 1 \dots n-1 faça

3 | se v[i] > maior então

4 | maior \leftarrow v[i]

5 retorne maior
```

O algoritmo executa 5 instruções!

 Podemos estudar o algoritmo e ver quantas instruções ele executa

```
Algoritmo 1: Identificar o maior elemento

Entrada: Vetor V com n elementos

Saída: Maior elemento maior

1 maior \leftarrow v[0]
2 para i \leftarrow 1 \dots n-1 faça
3 | se v[i] > maior então
4 | maior \leftarrow v[i]
5 retorne maior
```

O algoritmo executa n-1 instruções no total?

Mas vamos contar TODOS os comandos?

• Não! Somente a operação dominante do algoritmo

 Dentre todos os comandos do algoritmo, a operação dominante é aquela operação básica executada com a maior frequência no algoritmo.

- Em um algoritmo de ordenação, qual é a operação dominante?
 - Comparações! Mesmo as trocas, dependem das comparações...

Qual é a operação dominante desse algoritmo?

```
Algoritmo 1: Identificar o maior elemento
```

Entrada: Vetor V com n elementos

Saída: Maior elemento maior

```
1 maior \leftarrow v[0]
```

2 para $i \leftarrow 1 \ldots n-1$ faça

```
\mathbf{s} \mid \mathbf{se} \ v[i] > maior \ \mathbf{ent\tilde{ao}}
```

5 retorne maior

A comparação!

Precisamos compara todos os elementos do vetor para identificar o maior

Em um vetor com n elementos, realizamos n-1 comparações

Quantas comparações esse algoritmo faz?

```
Algoritmo 2: Identificar o maior e o menor elemento

Entrada: Vetor V com n elementos

Saída: Maior elemento maior

1 maior \leftarrow v[0]

2 menor \leftarrow v[0]

3 para i \leftarrow 1 \dots n-1 faça

4 | se v[i] > maior então maior \leftarrow v[i]

5 | se v[i] < menor então menor \leftarrow v[i]

6 retorne maior, menor
```

Podemos melhorar esse número??? Como?

E agora?

```
Algoritmo 3: Identificar o maior e o menor elemento
  Entrada: Vetor V com n elementos
  Saída: Maior elemento maior
1 maior \leftarrow v[0]
2 menor \leftarrow v[0]
з para i \leftarrow 1 ... n-1 faça
      se v[i] > maior então
         maior \leftarrow v[i]
      senão
         se v[i] < menor então
             menor \leftarrow v[i]
```

Complicou... 🙁

Agora depende da entrada... Mas e no pior caso?

E agora?

```
Algoritmo 3: Identificar o maior e o menor elemento
  Entrada: Vetor V com n elementos
  Saída: Maior elemento maior
1 maior \leftarrow v[0]
2 menor \leftarrow v[0]
з para i \leftarrow 1 ... n-1 faça
      se v[i] > maior então
         maior \leftarrow v[i]
      senão
         se v[i] < menor então
             menor \leftarrow v[i]
```

Complicou... 🙁

Agora depende da entrada... Mas e no pior caso?

• E agora?

```
Algoritmo 3: Identificar o maior e o menor elemento
```

```
Entrada: Vetor V com n elementos
  Saída: Maior elemento maior
1 maior \leftarrow v[0]
2 menor \leftarrow v[0]
з para i \leftarrow 1 ... n-1 faça
      se v[i] > maior então
          maior \leftarrow v[i]
      senão
          se v[i] < menor então
              menor \leftarrow v[i]
```

Pior caso:

Vamos ter que fazer as duas perguntas todas as vezes...

Logo, executamos 2(n-1) comparações

Exemplo de pior caso:

```
V = [1,2,3,4,5,6,7,8,9,10]
```

• E agora?

```
Algoritmo 3: Identificar o maior e o menor elemento
```

```
Saída: Maior elemento maior

1 maior \leftarrow v[0]

2 menor \leftarrow v[0]

3 para i \leftarrow 1 \dots n-1 faça

4 |se v[i] > maior então

5 |maior \leftarrow v[i]

6 senão

7 |se v[i] < menor então

8 |menor \leftarrow v[i]
```

Entrada: Vetor V com n elementos

Mas e no melhor caso?

No melhor caso, vamos executar apenas uma das comparações, isto é (n-1) comparações.

Exemplo de melhor caso:

```
V = [10,9,8,7,6,5,4,3,2,1]
```

• E agora?

```
Algoritmo 3: Identificar o maior e o menor elemento
```

```
Entrada: Vetor V com n elementos
```

Saída: Maior elemento maior

Mas e na média?

Neste caso, precisamos estudar a probabilidade de que cada caso ocorra...

Em média,
$$\frac{3n-2}{2}$$
 comparações

```
Algoritmo 4: "Ajustar" vetor
```

Entrada: Vetor V com n elementos

Saída: Vetor V

1 para
$$i \leftarrow 0 \ldots \lfloor \frac{n}{2} \rfloor$$
 faça

- $\mathbf{a} = aux \leftarrow V[i]$
- $v[i] \leftarrow V[(n-1)-i]$
- 4 $V[(n-1)-i] \leftarrow aux$
- 5 retorne V
- Qual é a operação dominante? Trocas.
- Qual operações dominantes são executadas?

```
Algoritmo 5: O que o algoritmo faz?
  Entrada: Vetor V com n elementos
  Saída: Vetor V
1 faça
      troca \leftarrow  Falso
      para i \leftarrow 0 \ldots n-2 faça
\mathbf{3}
          se V[i] > V[i+1] então
              aux \leftarrow V[i]
              V[i] \leftarrow V[i+1]
              V[i+1] \leftarrow aux
             troca \leftarrow Verdadeiro
```

- 9 enquanto troca =Falso
- 10 retorne V

Algoritmo 5: Qual é a complexidade de pior caso?

```
Entrada: Vetor V com n elementos
```

Saída: Vetor V

1 faça

- 9 enquanto troca = Falso
- 10 retorne V

Algoritmo 5: Qual é a complexidade de melhor caso?

```
Entrada: Vetor V com n elementos
```

Saída: Vetor V

1 faça

- 9 enquanto troca =Falso
- 10 retorne V

Complexidade

- Essa contagem de instruções é a base para se obter a complexidade de um algoritmo.
- O objetivo aqui é avaliar como o número de instruções que são executadas cresce de acordo com o tamanho da entrada
- Existem três formas de medir:
 - Complexidade de Pior Caso
 - Complexidade de Melhor Caso
 - Complexidade de Caso Médio
- A complexidade de pior caso é a mais usada (ela é o limite máximo).

Complexidade

Seja A um algoritmo qualquer

Seja $E = \{E_1 \dots E_m\}$ o conjunto de todos os tipos de entradas possíveis para A.

Seja t_i o número de operações dominantes efetuadas por A, quando a entrada for E_i

- Complexidade de pior caso: $\max_{E_i \in E} \{ t_i \}$
- Complexidade de melhor caso: $\min_{E_i \in E} \; \{ \; t_i \; \}$
- Complexidade de caso médio: $\sum_{E_i \in E} p_i t_i$, onde p_i é a probabilidade da entrada E_i ocorrer
- Podemos definir também a complexidade de espaço de um algoritmo, isto é, a quantidade de memória necessária para executar um algoritmo (memória principal, também conhecida como memória RAM)

Exemplo:

```
vetor = [5,6,11,3,10,2,1,4,8,9,7,13,15,25,12]
```

Algoritmo 6: Buscar posição

Entrada: Vetor V com n elementos, Elemento e

Saída: Posição do vetor

- ı para $i \leftarrow 0 \ldots n-1$ faça
- $\mathbf{z} \mid \mathbf{se} V[i] = e \mathbf{ent\tilde{ao}}$
- $\mathbf{a} \quad \boxed{\quad \mathbf{retorne} \ i}$
- 4 retorne n
- Qual é a complexidade de pior caso?
- Qual é a complexidade de melhor caso?

n comparações1 comparação

```
Algoritmo 7: Qual é a complexidade?
   Entrada: Vetor V com n posições
   Saída: Vetor V ordenado
   Chamada Inicial: CocktailSort (V, 0, n-1)
 1 Procedimento CocktailSort(V, ini, L)
      se ini < fim então
          menor \leftarrow ini
          maior \leftarrow ini
          para i \leftarrow ini + 1 \dots fim faça
 5
              se V[i] < V[menor] então menor \leftarrow i
 6
             senão se V[i] > V[maior] então maior \leftarrow i
          V[ini] \leftrightarrow V[menor]
          V[fim] \leftrightarrow V[maior]
          CocktailSort (V, ini + 1, fim - 1)
10
```

- Para determinar a complexidade de algoritmos recursivos precisamos muitas vezes retornar à fórmula da recorrência.
- A fórmula será usada para calcular o número de operações dominantes em cada chamada recursiva. Vamos chamar de T(n) o trabalho necessário para uma entrada de tamanho n.

•
$$T(n) = \begin{cases} 2(n-1) + T(n-2), se \ n > 1 \\ 0, caso \ contrário \end{cases}$$

• Onde 2(n-1) é o número de comparações efetuadas no pior caso para uma lista de tamanho n.

•
$$T(n) = \begin{cases} 2(n-1) + T(n-2), & \text{se } n > 1 \\ 0, & \text{caso contrário} \end{cases}$$

• Desenvolvendo a equação:

•
$$T(n) = 2(n-1) + T(n-2)$$

•
$$T(n) = 2(n-1) + 2(n-3) + T(n-5)$$

• ...

•
$$T(n) = 2(n-1) + 2(n-3) + 2(n-5) + \dots + 0$$

• Quantos termos tem essa sequência?

•
$$T(n) = 2(n-1) + 2(n-3) + 2(n-5) + \dots + 0$$

- Quantas subtrações são necessárias até atingir 0?
- 2(n-2k-1)=0
- 2n 4k 2 = 0
- -4k = 2 2n
- -2k = 1 n
- 2k = n 1
- $k = \frac{n-1}{2}$

•
$$T(n) = \begin{cases} 2(n-1) + T(n-2), & se \ n > 1 \\ 0, & caso \ contrário \end{cases}$$

•
$$T(n) = 2(n-1) + 2(n-3) + 2(n-5) + \dots + 0$$

•
$$T(n) = 2(n-1+n-3+n-5+\cdots+0)$$

•
$$n-1+n-3+n-5+\cdots+0$$

• Soma de PA com razão -2 com $\frac{n-1}{2}$ termos e termo inicial n-1:

•
$$S = \frac{\frac{n-1}{2}(n-1+0)}{2} = \frac{n^2-2n+1}{4}$$

•
$$T(n) = \begin{cases} 2(n-1) + T(n-2), & se \ n > 1 \\ 0, & caso \ contrário \end{cases}$$

•
$$T(n) = 2(n-1) + 2(n-3) + 2(n-5) + \dots + 0$$

•
$$T(n) = 2(n-1+n-3+n-5+\cdots+0)$$

$$\bullet \ T(n) = 2\left(\frac{n^2 - 2n + 1}{4}\right)$$

•
$$T(n) = \frac{n^2 - 2n + 1}{2}$$
 comparações

Crescimento Assintótico de Funções

- Quando estudamos a complexidade de um algoritmo, estamos interessados em seu comportamento assintótico
- Isto é, o crescimento de sua complexidade para entradas suficientemente grandes.
- Por que?
- Simples: muitas vezes é difícil determinar o número exato de vezes que as instruções são executadas...
- Além disso, algumas vezes encontramos expressões grandes, com muitas informações, como: $3n^2 + \frac{12}{8}n + 7$

Crescimento Assintótico de Funções

- Quando analisamos o comportamento assintótico de tais funções, podemos verificar que, à medida que o valor de n cresce, a parcela quadrática $3n^2$ torna-se dominante em relação às demais parcelas.
- Isto é: o valor de $3n^2$ se torna tão mais significativo do que $\frac{12}{8}n+7$, que podemos considerar apenas a primeira parte sem nenhuma perda importante.
- Podemos aplicar a mesma lógica a $3n^2$ e n^2 : Como o comportamento assintótico das duas funções é praticamente o mesmo, podemos desconsiderar a constante 3
- Isto é: Podemos considerar que $3n^2 + \frac{12}{8}n + 7$ é "assintoticamente equivalente" a n^2 .

Crescimento Assintótico de Funções

Crescimento das Funções para Entradas Pequenas

Notação O

- Sejam f e h duas funções reais positivas.
- Dizemos que $f \in O(h)$ (escrevemos que f = O(h)), quando:
 - Existe uma constante c > 0
 - Existe um valor inteiro n_0
 - Tais que: para todo $n > n_0$, vale $f(n) \le c \cdot h(n)$
- Exemplo: f(n) = 2n + 2, h(n) = n, $n_0 = 2$ e c = 3
- A partir de $n_0 = 2$, podemos notar que $f(n) \le c \cdot h(n)$
- Ou seja: $f(n) \le 3 \cdot h(n)$ ou $2n + 2 \le 3 \cdot n$
- Logo: $f \in O(h)$ ou $f \in O(n)$

Notação 0

Exemplos de Notação O

•
$$f(n) = n^2 - 1$$
 \Rightarrow $f = O(n^2)$
• $f(n) = n^2 - 1$ \Rightarrow $f = O(n^3)$
• $f(n) = 1058987125$ \Rightarrow $f = O(1)$
• $f(n) = 3n + 5\log n + 5$ \Rightarrow $f = O(n)$
• $f(n) = 2n * \log n$ \Rightarrow $f = O(n\log n)$
• $f(n) = 2^n + n^2$ \Rightarrow $f = O(2^n)$
• $f(n) = \frac{n!}{6!(n-6)!}$ \Rightarrow $f = O(n!)$

Exemplos de Notação 0

- Algoritmo para encontrar o máximo: O(n)
- Algoritmo para encontrar o máximo e o mínimo: O(n)
- Algoritmo para buscar um elemento no vetor: O(n)
- Algoritmo de ordenação MergeSort: $O(n \log n)$
- Algoritmo de ordenação BubbleSort: $O(n^2)$
- Algoritmo de ordenação BogoSort: O(n!)

Notação Ω

- Usada para definir limites assintoticamente inferiores
- Sejam f, h duas funções reais positivas
- Dizemos que $f \in \Omega(h)$ ($f = \Omega(h)$) quando:
 - Existe uma constante c > 0
 - Existe um valor inteiro n_0
 - Tais que para todo $n > n_0$, vale $f(n) \ge c \cdot h(n)$
- Exemplo:

•
$$f(n) = n^2 - 1 \Rightarrow f = \Omega(n^2)$$

•
$$f(n) = n^2 - 1 \implies f = \Omega(n)$$

•
$$f(n) = n^2 - 1 \Rightarrow f = \Omega(1)$$

•
$$f(n) = n^2 - 1 \implies f = \Omega(n^3)$$

Notação θ

- Usada para definir um limite mais próximo (as duas funções crescem da mesma forma)
- Sejam f, h duas funções reais positivas: f(n) = 4n + 5 e h(n) = n
- Dizemos que $f \in \Theta(h)$ ($f = \Theta(h)$) quando:
 - Existem duas constante $c_1 > 0$ e $c_2 > 0$ tais que $c_1 \le c_2$
 - Existe um valor inteiro n_0
 - Tais que para todo $n>n_0$, wals $c_1 h(n) \leq f(n) \leq c_2 h(n)$ 5 h(n)

h(n)

1

3

5

6

- 10(10_.

Notação $0 e \Omega$

- Usamos para expressar respectivamente o pior e o melhor caso de um algoritmo. Por exemplo:
 - Um algoritmo O(n) nunca vai executar mais do que c*n operações dominantes (onde c é uma constante). É o limite superior ou a complexidade do pior caso.
 - Um algoritmo $\Omega(n^3)$ nunca vai executar menos do que n^3 operações dominantes. É o limite inferior ou a complexidade do melhor caso.

Comparação entre Algoritmos 1 e 2

Quando n = 1.000.000: $n \log_2 n = 19.931.568 (20 milhões)$ $n^2 = 1.000.000.000.000 (1 trilhão)$

Classes de Complexidade de Algoritmos

- *0*(1)
- $O(\log_2 n)$
- O(n)
- $O(n \log_2 n)$
- $O(n^2)$
- $O(n^3)$
- ullet $O(n^c)$ (assumindo que c é uma constante)
- $O(2^n)$
- O(n!)
- $O(n^n)$

Para entradas grandes, esse é o limite da computação

n	0(1)	$O(\log_2 n)$	O(n)	$O(n \log_2 n)$	$O(n^2)$	$O(n^3)$	$O(2^n)$	O(n!)	$O(n^n)$
1	1	0,0	1,0	0,0	1	1	2	1	1
2	1	1,0	2,0	2,0	4	8	4	2	4
3	1	1,6	3,0	4,8	9	27	8	6	27
4	1	2,0	4,0	8,0	16	64	16	24	256
5	1	2,3	5,0	11,6	25	125	32	120	3125
6	1	2,6	6,0	15,5	36	216	64	720	46656
7	1	2,8	7,0	19,7	49	343	128	5040	823543
8	1	3,0	8,0	24,0	64	512	256	40320	16777216
9	1	3,2	9,0	28,5	81	729	512	362880	387420489
10	1	3,3	10,0	33,2	100	1000	1024	3628800	1000000000
11	1	3,5	11,0	38,1	121	1331	2048	39916800	285311670611
12	1	3,6	12,0	43,0	144	1728	4096	479001600	8916100448256
13	1	3,7	13,0	48,1	169	2197	8192	6227020800	302875106592253
14	1	3,8	14,0	53,3	196	2744	16384	87178291200	11112006825558000
15	1	3,9	15,0	58,6	225	3375	32768	1307674368000	437893890380859000

Complexidade de Algoritmos Iterativos

 Para calcular a complexidade basta identificar as repetições e a operação dominante:

```
Algoritmo 1:
   Entrada: Vetor V com n elementos
1 para i \leftarrow 1 \ldots n faça
                                          Se a lista tem n elementos, vamos repetir n vezes.
       min \leftarrow i
        \mathbf{para} \ j \leftarrow i+1 \ \dots \ n \ \mathbf{faça} Se a lista tem n elementos, vamos repetir no máximo n vezes.
3
            \mathbf{se} \ V[j] < V[min] \ \mathbf{ent\tilde{ao}} Operação Dominante: Comparações
                 min \leftarrow j
5
       aux \leftarrow V[i]
                                          \mathsf{Logo} \colon n \, * \, n \, * \, 1 \Rightarrow O(n^2)
      V[i] \leftarrow V[min]
        V[min] \leftarrow aux
9 retorne V
```

Complexidade de Algoritmos Recursivos

```
Algoritmo 7: Qual é a complexidade?
   Entrada: Vetor V com n posições
   Saída: Vetor V ordenado
   Chamada Inicial: CocktailSort (V, 0, n-1)
 1 Procedimento CocktailSort(V, ini, L)
      se ini < fim então
          menor \leftarrow ini
          maior \leftarrow ini
          para i \leftarrow ini + 1 \dots fim faça
 5
              se V[i] < V[menor] então menor \leftarrow i
 6
             senão se V[i] > V[maior] então maior \leftarrow i
          V[ini] \leftrightarrow V[menor]
          V[fim] \leftrightarrow V[maior]
          CocktailSort (V, ini + 1, fim - 1)
10
```

Complexidade de Algoritmos Recursivos

•
$$T(n) = \begin{cases} \mathbf{0}(n) + T(n-2), & \text{se } n > 1 \\ 0, & \text{caso contrário} \end{cases}$$

- Desenvolvendo a equação:
- T(n) = O(n) + T(n-2) + ...
- $T(n) = O(n) + O(n-2) + T(n-4) + \cdots$
- $n 2k = 0 \Rightarrow k < n$
- $\bullet T(n) = n * O(n)$
- Logo, a complexidade de pior caso do Algoritmo 7 é $O(n^2)$

E qual é a complexidade do Algoritmo 2?

Algoritmo 2:

```
Entrada: Vetor V com n elementos
  Função Ajustar (V, ini, fim)
       se ini < fim então
           meio \leftarrow (ini + fim)/2
\mathbf{2}
                                                     Função Unir (V, ini, meio, fim)
           Ajustar (V, ini, meio)
3
                                                        x \leftarrow fim - ini + 1
           Ajustar (V, meio + 1, fim)
                                                         Criar vetor A \operatorname{com} x \operatorname{posições}
          \mathtt{Unir}(V, ini, meio, fim)
                                                        p_1 \leftarrow ini p_2 \leftarrow fim
5
                                                         para i \leftarrow 1 \ldots x faça
                                                 10
       retorne V
6
                                                             se p_1 \leq meio \land p_2 \leq fim então
                                                  11
                                                                  se V[p_1] < V[p_2] então A[i] \leftarrow V[p_1] p_1 \leftarrow p_1 + 1;
                                                  12
                                                                  senão A[i] \leftarrow V[p_2] p_2 \leftarrow p_2 + 1;
                                                  13
                                                              senão
                                                  14
                                                                  se p_1] \leq meio então A[i] \leftarrow V[p_1] p_1 \leftarrow p_1 + 1;
                                                  15
                                                                  senão A[i] \leftarrow V[p_2] p_2 \leftarrow p_2 + 1;
                                                  16
                                                         para i \leftarrow 1 \dots x faça V[ini+i] \leftarrow A[i];
                                                 17
                                                         retorne V
                                                 18
```

Qual é a complexidade da Função Unir?

```
Algoritmo 2:
   Entrada: Vetor V com n elementos
   Função Ajustar (V, ini, fim)
        se ini < fim então
            meio \leftarrow (ini + fim)/2
            Ajustar (V, ini, meio)
            Ajustar (V, meio + 1, fim)
           Unir(V, ini, meio, fim)
       retorne V
   Função Unir (V, ini, meio, fim)
       x \leftarrow fim - ini + 1
       Criar vetor A \operatorname{com} x \operatorname{posições}
       p_1 \leftarrow ini p_2 \leftarrow fim
       para i \leftarrow 1 \ldots x faça
10
            se p_1 \leq meio \land p_2 \leq fim então
11
                se V[p_1] < V[p_2] então A[i] \leftarrow V[p_1] p_1 \leftarrow p_1 + 1;
12
                senão A[i] \leftarrow V[p_2] p_2 \leftarrow p_2 + 1;
13
            senão
14
                se p_1] \leq meio então A[i] \leftarrow V[p_1] p_1 \leftarrow p_1 + 1;
15
                senão A[i] \leftarrow V[p_2] p_2 \leftarrow p_2 + 1;
16
        para i \leftarrow 1 \dots x faça V[ini+i] \leftarrow A[i];
17
        retorne V
18
```

Qual é a complexidade da Função Unir?

Função Unir (V, ini, meio, fim)

```
7  x \leftarrow fim - ini + 1

8  Criar vetor A com x posições

9  p_1 \leftarrow ini  p_2 \leftarrow fim

10  para \ i \leftarrow 1 \dots x \ faça Se a lista tem n elementos, vamos repetir n vezes.

11  se \ p_1 \leq meio \land p_2 \leq fim \ então

12  se \ V[p_1] < V[p_2] \ então \ A[i] \leftarrow V[p_1]  p_1 \leftarrow p_1 + 1:
```

No pior caso:
3 comparações
para cada item
da lista

```
\begin{array}{l} \mathbf{se} \ p_1 \leq meio \ \land \ p_2 \leq fim \ \mathbf{então} \\ \mid \ \mathbf{se} \ V[p_1] < V[p_2] \ \mathbf{então} \ A[i] \leftarrow V[p_1] \\ \mid \ \mathbf{senão} \ A[i] \leftarrow V[p_2] \\ \mid \ \mathbf{senão} \end{array} \\ \mid \ \mathbf{senão} \\ \mid \ \mathbf{se} \ p_1] \leq meio \ \mathbf{então} \ A[i] \leftarrow V[p_1] \\ \mid \ \mathbf{senão} \ A[i] \leftarrow V[p_2] \\ \mid \ \mathbf{senão} \ A[i] \leftarrow V[p_2] \end{array} \quad p_1 \leftarrow p_1 + 1;
```

para $i \leftarrow 1 \dots x$ faça $V[ini+i] \leftarrow A[i]$; retorne V

Não são comparações, mas observamos que impactam o algoritmo.

- -

17

13

14

15

16

18

Qual é a complexidade da Função Unir?

- Pior caso: 3 comparações para cada item da lista
- São n elementos na lista
- Logo, no pior caso são 3n comparações

• Ou seja: A função unir demanda O(n)

E a função ajustar?

```
Algoritmo 2:
  Entrada: Vetor V \text{ com } n \text{ elementos}
                                               Para cada lista com n elementos:
  Função Ajustar (V, ini, fim)
      se ini < fim então
1
          meio \leftarrow (ini + fim)/2
\mathbf{2}
          Ajustar (V, ini, meio)
                                           Chamada a Ajustar para uma lista com a primeira metade dos elementos
          Ajustar (V, meio + 1, fim)
                                           Chamada a Ajustar para outra lista com a segunda metade dos elementos
4
          Unir(V, ini, meio, fim)
                                           Chamada ao procedimento Unir para a lista com os n elementos
5
      retorne V
6
```

•
$$T(n) = \begin{cases} O(n) + 2T(n/2), & se \ n > 1 \\ 0, & caso \ contrário \end{cases}$$

• Onde:

- O(n) é a complexidade da Função Unir.
- 2T(n/2) é a complexidade da chamada recursiva a função Ajustar, considerando duas listas com n/2 elementos cada.

$$\bullet T(n) = O(n) + 2T(n/2)$$

•
$$T(n) = O(n) + 2O(\frac{n}{2}) + 2T(n/4)$$

•
$$T(n) = O(n) + 2O(\frac{n}{2}) + 2T(n/4)$$

•
$$T(n) = O(n) + 2O(\frac{n}{2}) + 2O(\frac{n}{4}) + 2T(n/8)$$

• Vamos reescrever considerando potências de 2:

•
$$T(n) = O(n) + 2O(\frac{n}{2^1}) + 2O(\frac{n}{2^2}) + 2T(n/2^3)$$

• Quantas vezes podemos continuar dividindo por 2 até atingir listas de tamanho unitário?

•
$$T(n) = O(n) + 2O(\frac{n}{2^1}) + 2O(\frac{n}{2^2}) + 2T(n/2^3)$$

 Quantas vezes podemos continuar dividindo por 2 até atingir listas de tamanho unitário?

$$\bullet \frac{n}{2^k} = 1$$

- $2^k = n$
- $k = log_2 n$

• Isso é, podemos dividir no máximo $log_2 n$ vezes

•
$$T(n) = O(n) + 2O(\frac{n}{2}) + 2O(\frac{n}{4}) + 2T(n/8)$$

• $T(n) = O(n) + O(n) + ... + O(n)$

 $log_2 n$ vezes

•
$$T(n) = log_2 n * O(n)$$

•
$$T(n) = O(n \log_2 n)$$

• Logo: Algoritmo 3 é $O(n \log_2 n)$

Complexidade do Algoritmo 3

• Outra forma de visualizar:

- Cada "andar" gasta no total $\mathcal{O}(n)$ para juntar as partes da lista com n elementos
- Existem no máximo log_2 n andares (até atingir listas de tamanho 1)
- Logo, no total, o algoritmo tem complexidade $O(n \log_2 n)$

Algoritmos Ótimos

- Para o problema de ordenar uma lista com n elementos já observamos algoritmos de complexidade $O(n^2)$ e $O(n \log_2 n)$
- Qual é melhor?
 - Algoritmos de complexidade $O(n \log_2 n)$
- Mas dá para fazer ainda melhor?
- Esses algoritmos de complexidade $O(n \log_2 n)$ são ótimos?

Algoritmos Ótimos

Algoritmos Ótimos

Quando o limite inferior foi provado matematicamente e conhecemos um algoritmo com essa complexidade, podemos dizer que esse algoritmo é ótimo! Ótimo, pois não é possível que nenhum algoritmo seja ainda melhor.

Algoritmos Ótimos: Exemplos

- Ordenação de listas:
 - Complexidade do melhor algoritmo conhecido: $O(n \log_2 n)$
 - Limite inferior para o problema: $O(n \log_2 n)$
 - Logo, um algoritmo de complexidade $O(n \log_2 n)$ é ótimo
- Obter o produto de matrizes:
 - Complexidade do algoritmo "ingênuo": $O(n^3)$
 - Complexidade do melhor algoritmo conhecido: $O(n^{2,37})$
 - Limite inferior para o problema: Desconhecido
 - Como não sabemos o limite inferior, não podemos afirmar se um algoritmo é ótimo ou não...

- Algoritmos de tempo constante:
 - A complexidade não depende do tamanho da entrada.
 - *0*(1)

- Por exemplo:
 - Retornar o elemento central de uma lista
 - Verificar se o primeiro elemento de uma lista é maior do que um determinado valor

- Algoritmos de tempo linear:
 - A complexidade é cresce linearmente com o tamanho da entrada
 - $O(\log_2 n)$
 - O(n)
- Em geral, esses algoritmos são obtidos através da análise da estrutura.
- São algoritmos mais "inteligentes".

- Algoritmos de tempo polinomial:
 - A complexidade é determinada por um polinômio da entrada
 - $O(n \log_2 n)$
 - $O(n^2)$
 - $O(n^3)$
 - $O(n^c)$ (assumindo que c é uma constante)

• Em geral, esses algoritmos são obtidos através da análise da estrutura. São algoritmos mais "inteligentes".

- Algoritmos exponenciais:
 - A complexidade é determinada por uma função exponencial em relação a entrada
 - $O(2^n)$
 - $0(3^n)$
 - O(n!)
 - $O(n^n)$
- Geralmente são algoritmos baseados em força bruta: Testam todas as combinações possíveis de resposta em busca de uma solução viável para o problema (ou da melhor solução possível)
- Determinar se um algoritmo é polinomial ou exponencial é extremamente importante principalmente quando o tamanho da entrada é significativo (grande).

- Algoritmos de tempo constante
- Algoritmos de tempo linear
- Algoritmos de tempo polinomial
- Algoritmos de tempo exponencial

Para entradas grandes, esse é o limite da computação

 Caixeiro viajante é uma profissão bastante antiga, onde o vendedor vende produtos de porta em porta. Antigamente, quando não havia facilidade do transporte entre cidades, os caixeiros-viajantes eram responsáveis por transportar produtos entre diferentes cidades.

• Em termos mais atuais, podemos considerar que transportadoras fazem o papel do caixeiro viajante. Uma das questões mais interessantes nesta área é definir a melhor rota entre as cidades. Até hoje esse problema é conhecido como o problema do caixeiro viajante.

Mapa das Cidades

Custos do transporte

	1	2	3	4	5
1	0	50	60	50	30
2	50	0	30	50	45
3	60	30	0	40	60
4	50	50	40	0	20
5	30	45	60	20	0

- Como podemos encontrar a rota de menor custo que começa na cidade 3, passa por todas as cidades e retorna para a cidade 3?
- Ideia: Vamos escolher sempre o caminho de menor custo que sai da cidade atual e vai para uma cidade ainda não visitada.

Mapa das Cidades

Custos do transporte

	1	2	3	4	5
1	0	50	60	50	30
2	50	0	30	50	45
3	60	30	0	40	60
4	50	50	40	0	20
5	30	45	60	20	0

Custo: 210

• Partindo da cidade: 3

• Solução gulosa: $3 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 1 \rightarrow 3$

• Melhor solução: $3 \rightarrow 2 \rightarrow 1 \rightarrow 5 \rightarrow 4 \rightarrow 3$ Custo: 170

• A ideia inicial não foi boa... E agora?

- Até hoje não se conhece um algoritmo polinomial capaz de resolver o problema do caixeiro viajante.
- Nesse caso temos duas possibilidades:
 - Usamos um algoritmo de força bruta, que vai testar todas as combinações possíveis de respostas... Esse tipo de algoritmo é geralmente exponencial.
 - No caso do Caixeiro Viajante: O(n!)

- Abrimos mão da solução ótima a conseguir uma boa solução em uma quantidade viável de tempo... Nesse caso vamos usar métodos aproximativos
- No caso do Caixeiro Viajante: $O(n^2)$

• Considerando que são 5 cidades (além do ponto de partida):

- A primeira cidade (o ponto de partida) faz parte da entrada
- Partindo da primeira cidade, podemos ir para 4
- Na segunda, podemos ir para 3
- E assim, sucessivamente. Até que na última, precisamos retornar a primeira.
- No total, temos 4 x 3 x 2 x 1 combinações: 4! = 24 rotas possíveis.

• Se existem n cidades, então o algoritmo baseado em força bruta para o problema do caixeiro viajante tem complexidade O(n!)

Cidades	Rotas Possíveis (n!)
10	3628800
20	2432902008176640000
30	26525285981219100000000000000000
40	81591528324789800000000000000000000000000000000000
50	3041409320171340000000000000000000000000000000000
100	Um número com 158 dígitos
200	Um número com 375 dígitos
1000	Um número com 2568 dígitos

Estima-se que todo o Universo* tenha 10^{80} átomos (* apenas a parte visível a partir da Terra) Considerando 60 cidades, existem $60! \cong 8,32 \times 10^{81}$ rotas

Logo existem menos átomos no Universo* do que rotas possíveis entre 60 cidades...

Avaliação dos Problemas

Até agora avaliamos a complexidade dos algoritmos

- Mas como avaliar a dificuldade de um determinado problema?
- É possível resolver um problema computacionalmente em uma quantidade viável de tempo (antes do fim da Terra, por exemplo)?

- Problemas P, NP, NP-Completo, NP-Difícil, co-NP, etc...
- Tema das próximas aulas.

```
void AlgoritmoA(int V[], int n)
    for (int i = 0; i < n; i++)
        for (int j = 0; j < (n - 1) - i; j++)
            if (V[j] > V[j+1])
                Trocar(&V[j],&V[j+1]);
void Trocar(int *a, int* b)
    int aux = *a;
    *a = *b;
    *b = aux;
```

```
void AlgoritmoB(int V[], int tam)
   int trocou = 1;
   while (trocou == 1)
       trocou = 0;
       for (int i = 0; i < tam - 1; i++)
           if (V[i] > V[i+1])
                                             void Trocar(int *a, int* b)
               Trocar(&V[i],&V[i+1]);
                                                  int aux = *a;
                                                  *a = *b;
               trocou = 1;
                                                  *b = aux;
```

```
int AlgoritmoC(int lista[], int n, int chave)
    for (int i = 0; i < n; i++)
        if (lista[i] == chave)
            return i;
    return -1;
```

```
int AlgoritmoD(int listaOrd[], int n, int chave)
    int i = 0;
    while (i < n && listaOrd[i] < chave)
        i++;
    return i;
```

```
void AlgoritmoE(int n, int matA[n][n], int matB[n][n], int matR[n][n])
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            matR[i][j] = 0;
            for (int k = 0; k < n; k++)
                matR[i][j] += matA[i][k] * matB[k][j];
    return 0;
```

```
void AlgoritmoF(int vet[], int tam)
    if (tam > 0)
        int pmax = 0;
        for (int i = 1; i < tam; i++)
            if (vet[i] > vet[pmax])
                pmax = i;
        int aux = vet[tam-1];
        vet[tam-1] = vet[pmax];
        vet[pmax] = aux;
        AlgoritmoF(vet, tam-1);
```

Complexidade de algoritmos recursivos

- Sempre que temos um algoritmo recursivo, precisamos entender como ele divide a entrada.
- O AlgoritmoF pode ser dividido em duas partes:
 - 1. Encontrar o maior elemento do vetor
 - 2. Deslocar o maior elemento para o final do vetor
 - 3. Chamar o AlgoritmoF para um "subvetor" (da posição 0 até tam-1)
 - 4. Se o vetor se tornar vazio (tamanho = 0), o problema foi resolvido

Complexidade de algoritmos recursivos

•
$$T(n) = \begin{cases} O(n) + T(n-1), & se \ n > 0 \\ O(1), & se \ n = 0 \end{cases}$$

- $\bullet T(n) = O(n) + T(n-1)$
- $\bullet T(n) = O(n) + O(n-1) + T(n-2)$
- $T(n) = O(n) + O(n-1) + O(n-2) + \cdots + O(1)$

- Como calcular T(n)?
- Soma dos termos de uma PA

Complexidade de algoritmos recursivos

•
$$T(n) = \begin{cases} O(n) + T(n-1), & se \ n > 0 \\ O(1), & se \ n = 0 \end{cases}$$

•
$$T(n) = O(n) + O(n-1) + O(n-2) + \dots + O(1)$$

•
$$T(n) = O(1) + O(2) + O(3) + \cdots + O(n)$$

•
$$2T(n) = O(n+1) + O(n-1+2) + \cdots + O(n+1)$$

$$\bullet \ 2T(n) = n \ * \ O(n+1)$$

•
$$T(n) = \frac{O(n^2+n)}{2} = O(n^2)$$