ResourSim

_

Evaluating the end-user Device usage

Jens Dede, Anna Förster

University of Bremen Sustainable Communication Networks

7th September 2018

Motivation

Talking about Smart Devices...

- ➤ Restrictions of background services (⇒ Doze etc.)
- Not optimal in all cases

Motivation

Talking about Smart Devices...

- → Restrictions of background services (⇒ Doze etc.)
- Not optimal in all cases
- ⇒ Can we do better: Optimize on the **real** (human) usage?

Beneficial for

- OppNets
- Background Computing
- **→** ...

Motivation

Android App: ResourceMonitor

Collected Information:

- Battery status
- Bluetooth interface status
- WiFi interface status
- Cellular interface status
- Amount of transmitted data
- Status of the screen

Resource Graph for two users

The Event list

```
<event chg_ac="0" chg_usb="0" chg_wireless="0" data_type</pre>
     → ="BatteryStatus" delta_percentage
     \rightarrow ="-0.020000040531158447" is_charging="0"
     → percentage="0.949999988079071" sequential_number
     → ="3"timestamp_s="34201.0">34201.0</event>
<! <event data_type="WiFiStatus" sequential_number="135"</pre>
     \rightarrow timestamp s="37030.0" wifi status="12">37030.0</

→ event>
4 <event data_type="ScreenStatus" screen_status="0"</pre>

→ sequential_number="136" timestamp_s

     \rightarrow ="37032.0">37032.0</event>
```

⇒ Use OMNeT++ for the event simulation

ResourceSim: Replay Scenario

ResourceSim: Inject additional Events

Evaluation Scenarios

Scenario I

Replay scenario, used to evaluate the battery behaviour

Scenario II

Regular WiFi usage, assuming neighborhood scanning frequency: uniform(500s, 700s) duration: truncnormal(2s, 1s)

Scenario III

Scenario I + CPU usage. Data is processed regularly frequency: normal(3600s, 10s) duration: truncnormal (10s, 5s)

Scenario IV

Heavy WiFi usage every 120 s + CPU usage from Scenario III frequency: constant: 120s

duration: truncnormal (10s, 5s)

Evaluation

In OMNeT++:

- Run those scenarios with traces from two different users
- Count the collisions

Collision types:

Background Negative effect on the background service

User Negative effect on the human user

Resources:

- WiFi background vs. WiFi human user
- CPU usage vs. Screen status

Evaluation with user Traces

	Collision Type	User 1	User 2
		$\left[\frac{1}{\text{day}}\right]$	$\left[\frac{1}{\text{day}}\right]$
Scenario II	WiFi: user	0.125	0.069
	WiFi: background	110.366	88.090
Scenario II	usage: user	0.0	0.0
	usage: background	0.0	0.0
Scenario III	WiFi: user	0.062	0.094
	WiFi: background	110.420	88.199
	usage: user	0.187	0.484
	usage: background	1.572	5.163
Scenario IV	WiFi: user	4.179	2.682
	WiFi: background	536.560	437.113
	usage: user	0.241	0.369
	usage: background	1.712	5.104

Results

- Effect on the human user is lower compared to the effect on the background service
- How many conflicts are acceptable?
- How to handle conflicts?

Main challenges:

- ⇒ Effect on the battery?
- ⇒ Model which matches the real battery behaviour?

(⇒ with adequate complexity)

Battery: Methodology

- Extract the battery charging / discharging behaviour from the trace
- Use those to parameterize a battery model

Approaches:

- Mean values
- Median values
- Array of mean values
- Array of median values
- ⇒ Use Scenario I for the evaluation
- ⇒ Use mean difference between recorded and calculated value as metric

Mean and Median Values

		User 1	User 2
		$\left[\frac{\%}{hour}\right]$	$\left[\frac{\%}{\text{hour}}\right]$
Mean Values	Charging	47.85	58.59
	Discharging	-23.95	-17.78
Median Values	Charging	37.50	56.25
	Discharging	-8.2	-7.96

Mean and Median Values

Difference: Model vs. real Values

Setup	Delta to real value	
Setup	Mean (μ)	Standard
		deviation (σ)
User 1, mean values	56.97 %	22.77 %
User 1, median values	44.55 %	20.17 %
User 1, array of mean values	56.06 %	20.97 %
User 1, array of median values	43.92 %	20.00 %
User 2, mean values	42.06 %	26.54 %
User 2, median values	45.76 %	27.50 %
User 2, array of mean values	42.02 %	26.80 %
User 2, array of median values	45.31 %	27.64 %

Difference: Model vs. real Values

Setup	Delta to real value	
Setup	Mean (μ)	Standard
		deviation (σ)
User 1, mean values	56.97 %	22.77 %
User 1, median values	44.55 %	20.17 %
User 1, array of mean values	56.06 %	20.97 %
User 1, array of median values	43.92 %	20.00 %
User 2, mean values	42.06 %	26.54 %
User 2, median values	45.76 %	27.50 %
User 2, array of mean values	42.02 %	26.80 %
User 2, array of median values	45.31 %	27.64 %

⇒ How to do better?

Conclusion

- Introduced ResourceSim to evaluate the effect of background service on the real user
- Real usage traces
- Shown effect in example use cases
- Battery modeling based on real traces requires more investigation

Future Work

- Further analyze battery charging and discharging behaviour
- Implement a more realistic battery model based on real traces
- Evaluate more complex scenarios
- Test and evaluate optimization algorithms

Source Code

ResourSim:

github.com/ComNets-Bremen/Resoursim

ResourceMonitor:

github.com/ComNets-Bremen/ResourceMonitor

ResourceMonitor on Google Play:

```
play.google.com/store/apps/details?
```

→id=de.uni_bremen.comnets.resourcemonitor

Thank You!

