

Deep Learning

NASTARAN SHAHPARIAN | SHARCNET | COMPUTE ONTARIO | COMPUTE CANADA | YORK UNIVERSITY

Difference between ML, DL, AI, and Data science

- Artificial Intelligence
 - Any techniques that enables computers to mimic human behaviour
- Machine Learning
 - Ability to learn without explicitly being perf
- Deep learning
 - Extract pattern from data using neural netv

Machine Learning in simple ARGNET words

- Training a machine learning algorithm on a set of data, allowing it to identify patterns and make predictions or decisions based on that data.
- A type of artificial intelligence that enables machines to learn from experience without being explicitly programmed.
- Has many practical applications, including image and speech recognition, natural language processing, fraud detection, and recommendation systems.

Data is in different forms

- Numerical data (Marketing Analytics)
- Image data (Face recognition)
- Video data (Object recognition)
- Sound data (Music generation)
- Text data (Sentiment analysis)

ML Workflow

What is Deep Learning?

- Deep Learning (DL) is a subset of machine learning
- Multiple layers of nonlinear processing units are used for feature extraction and transformation.
- A computational approach that involves the use of multiple layers of artificial neural networks to model and solve complex problems.

https://medium.com/swlh/ill-tell-you-why-deep-learning-is-so-popular-and-in-demand-5aca72628780

https://sourcemeridian.com/machine-learning-as-a-tool-to-grow-sales-in-telemarketing-operations/

What is Al?

What is Data Science

- Data Driven Decision making
- Making sense out of data
- Uncovering the hidden insights and patterns in data
- Using machine learning models, data visualizations and intelligent reports

Neural Network

http://cs231n.github.io/neural-networks-1/

https://www.atrainceu.com/content/3-normal-brain-functions-and-normal-aging

https://bouzouitina-hamdi.medium.com/activation-functions-in-neural-networks-1c1de2c866a

The Perceptron: Forward Propagation

https://medium.com/analytics-vidhya/neural-network-part1-inside-a-single-neuron-fee5e44f1e

Inputs Weights Sum Non-Linearity Output

$$\hat{y} = g (w_0 + X^T W)$$
where: $X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$ and $W = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Common Activation Functions

Sigmoid Function

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

© Alexander Amini and Ava Amini MIT Introduction to Deep Learning IntroToDeepLearning.com

DL Frameworks

Caffe

DL Frameworks trends

Popularity of PyTorch, TensorFlow, and Keras

https://www.rapidops.com/blog/tensorflow-pytorch-keras/

DL Frameworks Comparison

TensorFlow vs PyTorch vs Keras

Features	TensorFlow	C PyTorch	K Keras
Written In	C++, CUDA, Python	Lua	Python
Architecture	Not easy to use	Complex, less readable	Simple, concise, readable
API Level	High and Low	Low	High
Datasets	Large datasets, high-performance	Large datasets, high-performance	Smaller datasets
Debugging	Difficult to conduct debugging	Good debugging capabilities	Simple network, so debugging is not often needed
Does It Have Trained Models?	Yes	Yes	Yes
Popularity	Second most popular	Third most popular	Most Popular
Speed	Fast, high-performance	Fast, high-performance	Slow, low performance

https://www.rapidops.com/blog/tensorflow-pytorch-keras/

ML problems

Types of Machine learning

	Supervised	Unsupervi sed	Reinforcement
Discrete	Classification	Clustering	Rewarding/ punishing behaviour
Continuo us	Regression	Dimension ality reduction	Rewarding/ punishing behavio ur

Supervised learning

The algorithm is trained on a labeled datasets to predict unseen data

- Regression
 - Predict a continuous output variable. (The price of a house)
- Classification
 - The algorithm learns to predict a categorical output variable (classifying an email as spam or not spam)

https://www.projectpro.io/article/classificat regression-in-machine-learning/545

Unsupervised learning

- The algorithm is trained on unlabelled data
- Tasked with finding patterns on its own, without any feedback
 - Clustering
 - Dimensionality reduction
 - Anomaly detection

https://data-flair.training/blogs/clustering-in-machine-

Reinforcement learning

- Rewarding desired/ punishing undesired behaviours
- Able to perceive and interpret its environment, take actions and learn through trial and error

https://medium.com/analytics-vidhya/abeginners-guide-to-reinforcement-learning-andits-basic-implementation-from-scratch-2c0b5444cc49

Regression Problem

- Find the best-fitting mathematical function that describes the relationship between the variables.
- This line best fits the data and minimizes the sum of the squared differences between the actual values of y and the predicted values of y.

https://data-science-blog.com/blog/2022/05/02/ understanding-linear-regression-with-all-statistical-terms/

Input (X,y)

X	У
9.62	5.94
8.74	3.33
2.76	11.5
6.38	8.76
9.95	2.32
5.58	8.25
1.59	7.69
0.32	8.18
4.94	5.64
6.83	8.16
2.23	4.83
0.32	5.41

Cost Function

$$H(x) = Wx+b$$

Which line fits better? H(x) -V

Predicted True

Cost Function

Model

$$H(x) = Wx + b$$

Mean Square Error

Cost =
$$\frac{1}{m} \sum_{i=1}^{m} (H(x_i) - y_i)^2$$

M: number of data

Cost(W, b) =
$$\frac{1}{m} \sum_{i=1}^{m} ((Wx_i + b) - y_i)^2$$
 We want to minimize this equation

Gradient descent algorithm

$$\cos t(W) = \frac{1}{2m} \sum_{i=1}^{m} ((Wx_i - y_i))^2$$

$$\frac{d}{dW} \cos t(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx_i - y_i) x_i$$

$$W \coloneqq W - \alpha \frac{d}{dW} \cos t(W)$$

Υ

New learning rate

Learning rate

$$W \coloneqq W - \alpha \frac{d}{dW} \cos t(W)$$

A small learning rate requires time to diverge

An optimal learning rate

Too large learning rate cause divergence

cause divergence https://medium.com/swlh/cyclical-learning-rates-functional https://medium.com/swlh

Regression with different Learning rates

