

Lecture 16: Kalman Filter

ENAE 380 Flight Software Systems November 16, 2024

Kinda/sorta related but not really...

Moving Average

Altitude data from an aircraft

$$egin{aligned} \overline{p}_{ ext{SM}} &= rac{p_M + p_{M-1} + \dots + p_{M-(n-1)}}{n} \ &= rac{1}{n} \sum_{i=0}^{n-1} p_{M-i} \end{aligned}$$

```
1 import numpy as np
 2 import matplotlib pyplot as plt
 4 \ arr = []
   inp = open('altitude.txt', 'r')
 7 for line in inp.readlines():
       for i in line.split():
           arr.append(float(i))
10
11 x = range(len(arr))
12
  fig, ax = plt.subplots()
   ax.plot(x,arr, label = "Original")
15
16 #Moving Average with variable window size
   window_lst = [3,6,10,20,40]
   arr_avg = np.zeros((len(window_lst),len(arr)))
   for i,window in enumerate(window_lst):
20
       avg_mask = np.ones(window)/window
       arr_avg[i, :] = np.convolve(arr,avg_mask, 'same')
22
       ax.plot(x, arr_avg[i,:] + (i+1)*10, label=window)
23
24
   ax.legend()
26 plt.ylabel('Altitude (ft)')
27 plt.xlabel('Time Step')
28 plt.xlim([100,3100])
29 plt.ylim([680,760])
30 plt.show()
```


Kalman Filter

A New Approach to Linear Filtering and Prediction Problems¹

The classical filtering and prediction problem is re-examined using the Bode-Shannon representation of random processes and the "state transition" method of analysis of dynamic systems. New results are:

- (1) The formulation and methods of solution of the problem apply without modification to stationary and nonstationary statistics and to growing-memory and infinite-
- (2) A nonlinear difference (or differential) equation is derived for the covariance matrix of the optimal estimation error. From the solution of this equation the coefficients of the difference (or differential) equation of the optimal linear filter are obtained without further calculations.
- (3) The filtering problem is shown to be the dual of the noise-free regulator problem. The new method developed here is applied to two well-known problems, confirming and extending earlier results.

The discussion is largely self-contained and proceeds from first principles; basic concepts of the theory of random processes are reviewed in the Appendix.

An important class of theoretical and practical problems in communication and control is of a statistical nature. Such problems are: (i) Prediction of random signals; (ii) separation of random signals from random noise; (iii) detection of signals of known form (pulses, sinusoids) in the presence of

In his pioneering work, Wiener [1]3 showed that problems (i) and (ii) lead to the so-called Wiener-Hopf integral equation; he

Present methods for solving the Wiener problem are subject to a number of limitations which seriously curtail their practical

- (1) The optimal filter is specified by its impulse response. It is not a simple task to synthesize the filter from such data.
- (2) Numerical determination of the optimal impulse response is often quite involved and poorly suited to machine computation. The situation gets rapidly worse with increasing complexity of the problem.
- (3) Important generalizations (e.g., growing-memory filters

https://qz.com/726338/the-code-that-took-america-to-the-moon-was-just-published-to-github-and-its-like-a-1960s-time-capsule/

https://github.com/chrislgarry/Apollo-11

AGC_BLOCK_TWO_SELF_CHECK.agc
AGS_INITIALIZATION.agc
ALARM_AND_ABORT.agc
AOSTASK_AND_AOSJOB.agc
AOTMARK.agc
ASCENT_GUIDANCE.agc
ASSEMBLY_AND_OPERATION_INFORMATION.agc
ATTITUDE_MANEUVER_ROUTINE.agc
BURN_BABY_BURNMASTER_IGNITION_ROUTINE.agc
CONIC_SUBROUTINES.agc
CONTROLLED_CONSTANTS.agc
DAPIDLER_PROGRAM.agc
DAP_INTERFACE_SUBROUTINES.agc
DISPLAY_INTERFACE_ROUTINES.agc
DOWNLINK_LISTS.agc

239	P63SP0T3	CA	BIT6	# IS THE LR AN	ITENNA IN POSITION 1 YET
240		EXTEND			
241		RAND	CHAN33		
242		EXTEND			
243		BZF	P63SP0T4	# BRANCH IF AN	ITENNA ALREADY IN POSITION 1
244					
245		CAF	CODE500	# ASTRONAUT:	PLEASE CRANK THE
246		TC	BANKCALL	#	SILLY THING AROUND
247		CADR	GOPERF1		
248		TCF	G0T0P00H	# TERMINATE	
249		TCF	P63SP0T3	# PROCEED	SEE IF HE'S LYING
250					
251	P63SP0T4	TC	BANKCALL	# ENTER	INITIALIZE LANDING RADAR
252		CADR	SETP0S1		
253					
254	TC		POSTJUMP	# OFF TO SEE T	HE WIZARD
255		CADR	BURNBABY		
256					

```
LUNAR_LANDING_GUIDANCE_EQUATIONS.agc ×
              EXIT
169
170
              CAF ZERO
              TS FCOLD
171
                   FWEIGHT
172
                  FWEIGHT +1
173
174 VRTSTART
                   TS WCHVERT
     # Page 801
                             # WCHPHASE = 2 ---> VERTICAL: P65, P66, P67
176
              CAF TWO
                   WCHPHOLD
177
                   WCHPHASE
178
              TC BANKCALL
                                 # TEMPORARY, I HOPE HOPE HOPE
179
                        STOPRATE
                                      # TEMPORARY, I HOPE HOPE
              CADR
180
                                 # PERMIT X-AXIS OVERRIDE
              TC DOWNFLAG
181
              ADRES
                        XOVINFLG
182
              TC DOWNFLAG
183
                      REDFLAG
184
              ADRES
                                                              TOO
              TCF VERTGUID
185
                                                              181 #
                                                                          "IT WILL BE PROVED TO THY FACE THAT THOU HAST MEN ABOUT THEE THAT
106
                                                              182
                                                                  # Page 310
                                                              183
                                                                          USUALLY TALK OF A NOUN AND A VERB, AND SUCH ABOMINABLE WORDS AS NO
                                                                          CHRISTIAN EAR CAN ENDURE TO HEAR."
                                                             184
                                                             185
                                                                                                      HENRY 6, ACT 2, SCENE 4
                                                             186
                                                                   # THE FOLLOWING ASSIGNMENTS FOR PINBALL ARE MADE ELSEWHERE
                                                             188
                                                                   # RESERVED FOR PINBALL EXECUTIVE ACTION
                                                             190
                                                                  #DSPC0UNT
                                                                                 ERASE
                                                                                                      # DISPLAY POSITION INDICATOR
                                                                  #DECBRNCH
                                                                                 ERASE
                                                                                                      # +DEC, -DEC, OCT INDICATOR
                                                             192
                                                                  #VERBREG
                                                                                 ERASE
                                                                                                      # VERB CODE
                                                              193
                                                                                                      # NOUN CODE
                                                                  #NOUNREG
                                                                                 ERASE
                                                              194
```


RATELOOP	CA	TWO	
	TS	DAPTEMP6	
	DOUBLE		
	TS	Q	
	INDEX	DAPTEMP6	
	CCS	TJP	
	TCF	+2	
	TCF	LOOPRATE	
	AD	-100MST6	
	EXTEND		
	BZMF	SMALLTJU	
	INDEX	DAPTEMP6	
	CCS	TJP	
	CA	-100MST6	
	TCF	+2	
	CS	-100MST6	
	INDEX	DAPTEMP6	
	ADS	TJP	
	INDEX	DAPTEMP6	
	CCS	TJP	
	CS	-100MS	
	TCF	+2	

CA

-100MS

0.1 AT 1

1. A Simple Example

altitude_{current_time} = 0.98*altitude_{previous_time}

2. Dealing With Noise

obs_altitudecurrent_time = altitudecurrent_time + noisecurrent_time

3. Putting it Together

altitude_{current_time} = 0.98*altitude_{previous_time}

obs_altitudecurrent_time = altitudecurrent_time + noisecurrent_time

$$x_k = ax_{k-1}$$

$$z_k = x_k + v_k$$

 x_k is current state of system a is some constant z_k is our current observation v_k is the current noise measurement

3. Putting it Together

 $altitude_{current_time} = 0.98*altitude_{previous_time} + \frac{turbulence_{current_time}}{turbulence_{current_time}}$

obs_altitudecurrent_time = altitudecurrent_time + noisecurrent_time

$$x_k = ax_{k-1} + w_k$$

$$z_k = x_k + v_k$$

 x_k is current state of system a is some constant z_k is our current observation v_k is the current noise measurement w_k is the process noise

4. State Estimation

 x_k is current state of system a is some constant z_k is our current observation v_k is the current noise measurement w_k is the process noise

$$x_k = ax_{k-1} + w_k$$

$$z_k = x_k + v_k \longrightarrow x_k = z_k - v_k$$

$$\hat{x}_k = \hat{x}_{k-1} + g_k(z_k - \hat{x}_{k-1})$$

Kalman's insight

g is a "gain"

g=0

$$\hat{x}_k = \hat{x}_{k-1}$$

g=1

$$\hat{x}_k = z_k$$

$$\hat{x}_k = \hat{x}_{k-1} + g_k(z_k - \hat{x}_{k-1})$$

$$\hat{x}_k = \hat{x}_{k-1} + g_k(z_k - \hat{x}_{k-1})$$

$$z_k = x_k + v_k$$

$$\hat{x}_k = \hat{x}_{k-1} + g_k(z_k - \hat{x}_{k-1})$$

$$z_k = x_k + v_k$$

$$g_k = \frac{p_{k-1}}{p_{k-1} + r}$$

r is how noisy the output is pk is a prediction error

$$p_k = (1 - g_k)p_{k-1}$$

$$\hat{x}_k = \hat{x}_{k-1} + g_k(z_k - \hat{x}_{k-1})$$

$$z_k = x_k + v_k$$

$$g_k = \frac{p_{k-1}}{p_{k-1} + r}$$

r is how noisy the output is p_k is a prediction error

$$p_k = (1 - g_k)p_{k-1}$$

$$p_{k-1} = 0$$
, then $g_k = 0$

$$p_{k-1} = 1$$
, then $g_k = 1/(1+r)$

$$\hat{x}_k = \hat{x}_{k-1} + g_k(z_k - \hat{x}_{k-1})$$

$$z_k = x_k + v_k$$

$$g_k = \frac{p_{k-1}}{p_{k-1} + r}$$

r is how noisy the output is p_k is a prediction error

$$p_k = (1 - g_k)p_{k-1}$$

$$p_{k-1} = 0$$
, then $g_k = 0$

$$p_{k-1} = 1$$
, then $g_k = 1/(1+r)$

$$g_k = 0$$
, then $p_k = p_{k-1}$

$$g_k = 1$$
, then $p_k = 0$

6. Prediction and Update

$$x_k = ax_{k-1}$$

what happened to a?

$$\hat{x}_k = \hat{x}_{k-1} + g_k(z_k - \hat{x}_{k-1})$$

prediction phase of Kalman Filter

$$\hat{x}_k = a\hat{x}_{k-1}$$

$$p_k = ap_{k-1}a$$

7. Running the Filter

PREDICT

$$\hat{x}_k = a\hat{x}_{k-1}$$

$$p_k = ap_{k-1}a$$

$$g_k = \frac{p_{k-1}}{p_{k-1} + r}$$

UPDATE

$$\hat{x}_k \leftarrow \hat{x}_k + g_k(z_k - \hat{x}_k)$$
$$p_k \leftarrow (1 - g_k)p_k$$

7. Running the Filter

```
1 import numpy as np
                                                                           \hat{x}_k = a\hat{x}_{k-1}
 2 import matplotlib.pyplot as plt
                                                                           p_k = ap_{k-1}a
 4 k = np.linspace(0,9,10)
 5 x = [1000, 750, 563, 422, 316, 237, 178, 133, 100, 75]
                                                                         g_k = \frac{p_{k-1}}{p_{k-1} + r}
 6 z = [927,870,567,271,132,47,92,79,99,123]
 8 r = 200
 9 a = 0.75
10 x_{est} = [z[0]]
                                                                    \hat{x}_k \leftarrow \hat{x}_k + g_k(z_k - \hat{x}_k)
11 p_{est} = [1]
12 g_est = [0]
13
                                                                        p_k \leftarrow (1 - g_k)p_k
14 x_hat = z[0]
15 p = 1
16
17 for i in range(len(k)-1):
18
        x_{at} = a*x_{at}
19
        p = a*p*a
                                                800
20
        g = p/(p+r)
21
        x_hat = x_hat + g*(z[i]-x_hat)
                                                600
        p = (1-g)*p
23
24
25
        p_est_append(p)
                                                400
        x_{est_append}(x_{hat})
        g_est_append(g)
                                                200
29 fig, ax = plt.subplots()
30 ax.plot(k,x,'b',k,z,'r', k, x_est, 'g')
31 plt.show()
```

8. A More Realistic Model

$$x_k = ax_{k-1}$$

$$z_k = x_k + v_k$$

$$x_k = ax_{k-1} + bu_k$$

$$z_k = cx_k + v_k$$

9. Modifying the Estimates

$$x_k = ax_{k-1} + bu_k$$
$$z_k = cx_k + v_k$$

PREDICT

$$\hat{x}_k = a\hat{x}_{k-1} + bu_k$$
$$p_k = ap_{k-1}a$$

UPDATE

$$g_k = \frac{p_k c}{cp_k c + r}$$

$$\hat{x}_k \leftarrow \hat{x}_k + g_k (z_k - c\hat{x}_k)$$

$$p_k \leftarrow (1 - g_k c) p_k$$

9. Modifying the Estimates

10. Adding Velocity to the System

altitudecurrent_time = 0.98*altitudeprevious_time

$$x_k = ax_{k-1}$$

distance = velocity * time

distance_{current} = distance_{previous} + velocity_{previous}*(time_{current}-time_{previous})

$$x_k = ax_{k-1}$$

$$x_k \equiv \begin{bmatrix} distance_k \\ velocity_k \end{bmatrix}$$

$$x_k = ax_{k-1}$$

$$x_k \equiv \begin{bmatrix} distance_k \\ velocity_k \end{bmatrix} \quad A = \begin{bmatrix} 1 & timestep \\ 0 & 1 \end{bmatrix} \qquad x_k = Ax_{k-1}$$

$$x_k = ax_{k-1}$$

$$x_k \equiv \begin{bmatrix} distance_k \\ velocity_k \end{bmatrix} \quad A = \begin{bmatrix} 1 & timestep \\ 0 & 1 \end{bmatrix} \qquad x_k = Ax_{k-1}$$

$$\begin{bmatrix} distance_k \\ velocity_k \end{bmatrix} = \begin{bmatrix} 1 & timestep \\ 0 & 1 \end{bmatrix} \begin{bmatrix} distance_{k-1} \\ velocity_{k-1} \end{bmatrix}$$

$$x_k = ax_{k-1}$$

$$x_k \equiv \begin{bmatrix} distance_k \\ velocity_k \end{bmatrix} \quad A = \begin{bmatrix} 1 & timestep \\ 0 & 1 \end{bmatrix} \qquad x_k = Ax_{k-1}$$

$$\begin{bmatrix} distance_k \\ velocity_k \end{bmatrix} = \begin{bmatrix} 1 & timestep \\ 0 & 1 \end{bmatrix} \begin{bmatrix} distance_{k-1} \\ velocity_{k-1} \end{bmatrix}$$

$$\begin{bmatrix} distance_k \\ velocity_k \\ acceleration_k \end{bmatrix} = \begin{bmatrix} 1 & timestep & 0 \\ 0 & 1 & timestep \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} distance_{k-1} \\ velocity_{k-1} \\ acceleration_{k-1} \end{bmatrix}$$

12. Prediction and Update Revisited

MODEL

$$x_k = Ax_{k-1} + Bu_k$$
$$z_k = Cx_k + v_k$$

PREDICT

UPDATE

12. Prediction and Update Revisited

MODEL

$$x_k = Ax_{k-1} + Bu_k$$
$$z_k = Cx_k + v_k$$

PREDICT

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_k$$

$$P_k = AP_{k-1}A^T$$

UPDATE

$$G_k = P_k C^T (C P_k C^T + R)^{-1}$$

$$\hat{x}_k \leftarrow \hat{x}_k + G_k (z_k - C \hat{x}_k)$$

$$P_k \leftarrow (I - C_k C) P_k$$

13. Sensor Fusion Intro

$$z_k = Cx_k + v_k$$

$$\begin{bmatrix} barometer_k \\ compass_k \\ pitot_k \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} altitude_{k-1} \\ heading_{k-1} \\ airspeed_{k-1} \end{bmatrix}$$

$$\begin{bmatrix} barometer_k \\ compass_k \\ pitot_k \\ gps_k \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} altitude_{k-1} \\ heading_{k-1} \\ airspeed_{k-1} \end{bmatrix}$$

14. Sensor Fusion Example

$$\hat{x}_k = A\hat{x}_{k-1} = 1 * \hat{x}_{k-1} = \hat{x}_{k-1}$$

$$z_k = Cx_k + v_k = \begin{bmatrix} 1 \\ 1 \end{bmatrix} x_k + v_k$$

14. Sensor Fusion Example

$$\hat{x}_k = A\hat{x}_{k-1} = 1 * \hat{x}_{k-1} = \hat{x}_{k-1}$$

$$z_k = Cx_k + v_k = \begin{bmatrix} 1\\1 \end{bmatrix} x_k + v_k$$

Now have A, C. What is R? Covariance matrix

$$R = \begin{bmatrix} 0.64 & 0\\ 0 & 0.64 \end{bmatrix}$$

12. Prediction and Update Revisited

MODEL

$$x_k = Ax_{k-1} + Bu_k$$
$$z_k = Cx_k + v_k$$

PREDICT

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_k$$

$$P_k = AP_{k-1}A^T$$

UPDATE

$$G_k = P_k C^T (C P_k C^T + R)^{-1}$$

$$\hat{x}_k \leftarrow \hat{x}_k + G_k (z_k - C \hat{x}_k)$$

$$P_k \leftarrow (I - C_k C) P_k$$

14. Sensor Fusion Example

MODEL

$$x_k = Ax_{k-1} + Bu_k$$
$$z_k = Cx_k + v_k$$

PREDICT

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_k$$
$$P_k = AP_{k-1}A^T$$

$$x_k = Ax_{k-1} + Bu_k + w_k$$

 $P_k = AP_{k-1}A^T + Q$

14. Sensor Fusion Example

