SOLUTIONS

$$24 = 3 \times 2^3$$

$$35 = 5 \times 7$$

$$54 = 2 \times 3^3$$

$$= 2^3 \times 3^3 \times 5 \times 7$$

Let, the number be 3x and 4x

ATQ,

$$3x \times 4x = HCF \times LCM$$

$$\Rightarrow 12x^2 = 2700$$

$$\Rightarrow x^2 = 9 \times 25$$

$$\Rightarrow x = 15$$

$$\therefore$$
 Difference = $x = 15$

(c) $A \times B = 726$

$$HCF = 11$$

$$LCM = \frac{A \times B}{HCF}$$

then, LCM =
$$\frac{726}{11}$$
 = 66

(b) Let, the number are 5x and 7x

$$5x \times 7x = 5 \times 175$$

$$x^2 = 25$$

$$x = 5$$

:. Larger number = 7 × 5

5. (c) LCM $\left(\frac{3}{2}, \frac{81}{16}, \frac{9}{8}\right)$

$$=\frac{LCM(3,81,9)}{HCF(2,16,8)}=\frac{81}{2}$$

6. (c) LCM $\left(\frac{1}{3}, \frac{3}{5}, \frac{4}{7}, \frac{9}{16}\right)$

$$= \frac{\text{LCM}(1,3,4,9)}{\text{HCF}(3,5,7,16)} = \frac{36}{1} = 36$$

(d) $210 = 2 \times 3 \times 5 \times 7$ 7.

$$336 = 2^4 \times 3 \times 7$$

$$504 = 2^3 \times 3^2 \times 7$$

LCM (210, 336, 504)

$$\Rightarrow LCM = 2^4 \times 3^2 \times 5 \times 7$$

= 5040

(d) HCF (6, 5.25, 12.50)

HCF
$$\left(\frac{600}{100}, \frac{525}{100}, \frac{1250}{100}\right)$$

$$\Rightarrow \frac{\text{HCF}(600,525,1250)}{\text{LCM}(100,100,100)}$$

$$600 = 25 \times 24$$

$$525 = 25 \times 21$$

 $1250 = 25 \times 50$

$$\therefore HCF = \frac{25}{100} = 0.25$$

(d) HCF (12, 18, 42) = 6

10. (a) LCM (x, y) = 533

since, HCF (x, y) = 1

$$x \times y = 533 = 13 \times 41$$

$$x = 41, y = 13$$

$$\Rightarrow$$
 4y - x = 13 × 4 - 41

$$= 52 - 41$$

11. (c) $I \times II = HCF \times LCM = 20000$

$$HCF = \frac{20000}{800} = 25$$

12. (c) HCF (m, n) = a

n = ab

Let, m = ac

$$LCM = (m, n) = (ab, ac)$$

$$=$$
 abc $=$ (ac)b $=$ bm

13. (c) Let, the numbers are 12x & 7xHCF = x = 25

:. Number are =
$$12 \times 25 = 300$$

$$7 \times 25 = 175$$

14. (d) LCM = 1105, HCF = 5

Also, $1105 = 17A \Rightarrow A = 65$

$$1105 \times 5 = 65 \times B$$

$$B = \frac{1105 \times 5}{65} = 85$$

Hence, Numbers are 65 and 85

15. (a)
$$240 = 2^4 \times 3 \times 5$$

$$280 = 2^3 \times 5 \times 7$$

$$560 = 2^4 \times 5 \times 7$$

HCF (240, 280, 560)

: HCF =
$$2^3 \times 5 = 40$$

16. (b) $96 = 2^5 \times 3$

$$108 = 2^2 \times 3^3$$

$$144 = 2^4 \times 3^2$$

LCM (96, 108, 144) = 864

.: Required number = (25 × 33)

 $= 32 \times 27 = 864$

17. (a) HCF (3888, 3969)

$$3969 = 3^4 \times 7^2$$

18. (a) HCF (20, 30, 40) = 10

total number of such bars

$$= \frac{20}{10} + \frac{30}{10} + \frac{40}{10}$$

$$= 2 + 3 + 4 = 9$$

19. (d) LCM = (660), HCF = 5

$$A \times B = HCF \times LCM$$

$$55 \times B = 5 \times 660$$

B = 60

20. (d) Let, the numbers are 13x and

$$HCF = x = 12$$

$$\therefore$$
 LCM = 13 × 15 × x = 13 × 15 × 12 = 2340

21. (d) LCM (12, 18, 27)

$$12 = 3 \times 2^2$$

$$18 = 2 \times 3^2$$

$$27 = 3^3$$

$$\therefore LCM = 2^2 \times 3^3$$

$$= 4 \times 27 = 108$$

22. (d) $78 = 2 \times 3 \times 13$

$$84 = 2 \times 2 \times 3 \times 7$$

$$90 = 2 \times 3 \times 3 \times 5$$

$$112 = 2 \times 2 \times 2 \times 2 \times 7$$

23. (c) LCM (20, 28, 34, 60, 75)

$$= 2^2 \times 5 \times 7 \times 17 \times 3 \times 5$$

= 35700

24. (b) LCM (73, 657) = 657 $[657 = 73 \times 9]$

25. (a) HCF $[(x^6 + 1), (x^4 - 1)]$

$$x^6 + 1 = (x^2 + 1) [x^4 + 1 - x^2]$$

 $x^4 - 1 = (x^2 - 1) (x^2 + 1)$

26. (a) Let, the numbers are 5x, 7x & 9x

$$\therefore HCF = (x^2 + 1)$$

LCM = 34650

$$5 \times 7 \times 9 \times x = 34650$$

$$x = 110$$

: HCF = 110

27. (a) By difference method-

1036, 1813, 2072 ∴ HCF = 259

28. (d) Consider,
HCF (315, 500, 685)

$$315 = 3^2 \times 5 \times 7$$

 $500 = 2^2 \times 5^3$
 $685 = 5 \times 137$
 \therefore HCF = 5 cm
29. (c) LCM (96, 132, 438)
 $96 = 2^5 \times 3$

$$132 = 2^{2} \times 3 \times 11$$

$$438 = 2 \times 3 \times 73$$

$$\Rightarrow LCM = 2^{5} \times 3 \times 11 \times 73$$

$$= 77088$$
30. (b) LCM $(x^{2} - 8x + 15, x^{2} - 5x + 6)$

$$= ?$$

$$x^{2} - 8x + 15 = x^{2} - 3x - 5x + 15$$

$$= x(x - 3) - 5(x - 3)$$

$$= (x - 5) (x - 3)$$

$$x^{2} - 5x + 6 = x^{2} - 3x - 2x + 6$$

$$x(x - 3) - 2 (x - 3)$$

$$= (x - 2) (x - 3)$$

$$\therefore LCM = (x - 3) (x - 2) (x - 5)$$
31. (b) 0.15, 0.18 and 0.45

$$LCM \left(\frac{15}{100}, \frac{18}{100}, \frac{45}{100} \right)$$

$$\Rightarrow LCM = \frac{3 \times 5 \times 2 \times 3}{100}$$

$$= \frac{90}{100} = 0.9$$

32. (d) LCM (20, 30, 45, 65)
=
$$2^2 \times 5 \times 3 \times 3 \times 13$$

= 2340
33. (d) $125 = 5^3$
 $250 = 5^3 \times 2$
 $750 = 2 \times 3 \times 5^3$

$$A \times B = 20480 = LCM \times HCF$$

 $20480 = 5 \times (HCF)^2$
 $4096 = HCF^2$
 $\therefore HCF = 64$

LCM = 60

$$\therefore$$
 A × B = 5 × 60 = 300(ii)
From equation (i) and (ii)

$$\therefore \frac{1}{A} + \frac{1}{B} = \frac{B+A}{AB} = \frac{60}{300} = \frac{1}{5}$$

- 36. (a) Let, the numbers are 2x & 7xHCF = 9, LCM = 126ATO. $2x \times 7x = 9 \times 126$ x = 9∴ Large number = 9 × 7 = 63
- \Rightarrow 8 × 3² = 72 38. (c) Since 36 and 17 are co-prime numbers

37. (b) LCM (8, 12, 18)

- \therefore LCM (17, 36) = 36 × 17 = 612 Largest number of four digits = 9999 and 9999 = 612 × 16 + 207 :. Required number is 9999 - 207
- = 9792 39. (c) Consider, HCF (261 - 5, 853 - 5, 1221 - 5) = HCF (256, 848, 1216) $256 = 2^8$
- 848 = 24 × 53 $1216 = 2^6 \times 19$ \therefore HCF (256, 848, 1216) = 2^4 = 16 40. (d) Consider, LCM(2, 4, 6, 8) = 24
 - $1351 = 24 \times 57 17$.. Required number that should be added to 1351 to make it exactly divisible by 24 is '17'. (b) HCF (45, 55) = 5
- $5 = 55 \times 5 + 45m$ 5 = 275 + 45m45m = -270m = -642. (b) Consider,

ATO,

- LCM(4, 9, 12, 15) = 180.: Least such number is 183.
- 43. (a) Consider, LCM (4, 6, 9, 12, 15) = 180
 - \therefore 180 × 5 = 900 is smallest perfect square number
- 44. (d) HCF (6, 8, 9) = 1LCM (6, 8, 9) = 72
 - .. Required number is of the form:-72k + 1
 - for k = 6 \Rightarrow 72 × 6 + 1 = 433

from given options:-

- 45. (d) Consider, LCM (12, 14, 16, 18) = 1008
 - $\therefore \text{ required number} = \frac{1008}{2} = 504$

LCM (15, 25, 40, 75) = 600.: greatest such 4 digit number (from options, a multiple of 600)

46. (b) Consider,

- = 9600 47. (b) Consider, LCM $(9, 12, 15, 25, 27) = 675 \times 4$
- Least number of 5 digit = 10000 also, $10000 = 2700 \times 4 - 800$.: required number = 10800
- 48. (d) LCM of 15 and 18 = 90 Required Number = 90 + 3 = 9349. (c) LCM of numbers = HCF × [product of ratio] $= 3 \times 4 \times 5 = 60$
- 50. (a) Given that, LCM of a and b is Hence LCM of 11a and 5b = 11 × 5 × (LCM of a and b)
- 51. (a) Let the two numbers be Ha and Hb and their HCF is H. Given, sum of Numbers = 1224 and HCF = 68 Therefore, Ha + Hb = 1224 \Rightarrow H(a + b) = 1224

 $= 55 \times 42 = 2310$

- $\Rightarrow a+b=\frac{1224}{68}$ \Rightarrow a + b = 18 Now, Assume the such value of a and b whose sum is 18 and HCF
 - a = 1 and b = 17
 - a = 5 and b = 13a = 7 and b = 11
- There are 3 pairs. 52. (a) LCM of numbers = HCF × [product of ratio] \Rightarrow 336 = HCF × [1 × 3 × 7]
 - \Rightarrow HCF = $\frac{336}{21}$
- ⇒ HCF = 16 53. (c) Prime Factorization of 960
 - $=2^6\times 3\times 5$ Prime Factorization of 1020 $= 2^2 \times 3 \times 5 \times 17$
- $HCF = 2^2 \times 3 \times 5 = 60$ (d) We know, Product of numbers = LCM × HCF
 - $\Rightarrow x \times y = 441 \times 7$ \Rightarrow 49 × y = 3087
 - $\Rightarrow y = \frac{3087}{49}$
 - \Rightarrow y = 63

- (b) Smallest number which is divisible by 12, 16 and 24 = LCM (12, 16 and 24) = 48 When we divide 550 by 48 we get
 - quotient = 11 remainder = 22 Thus, The first number greater than 550 which is divisible by 48 = 550 + (48 - remainder)
 - = 550 + 26 = 576Hence, the number which are divisible by 48 and leave remainder 5,
 - 1^{st} number = 576 + 5 = 581 2^{nd} number = 576 + 48 = 624 + 5
 - 3rd number = (576 + 48) + 48 =672 + 5 = 677Sum = 581 + 629 + 677 = 1887
- 56. (a) LCM of 15, 24 and 40 = 120 Largest 4 digit number = 9999 On dividing 9999 by 120, We get quotient = 83 and remainder = 39 Hence, Required number = 9999 - 39

SMART APPROACH:-You can direct check which larger option is completely divisible by 120

= 9960

57. (c) HCF of the 24, 56 and 96 = 858. (c) Factor of $238 = 2 \times 7 \times 17$

> Factor of $832 = 2 \times 2 \times 2 \times 2 \times 2$ × 2 × 13

Therefore, HCF = 2 59. (a) We know that,

- First no. × second no = LCM × HCF
 - \Rightarrow 18 × second no = 126 × 9
 - \Rightarrow Second no = $\frac{126 \times 9}{19}$
 - ⇒ Second no = 63
- 60. (b) LCM of 48 and 64 = 192 HCF of 12 and 18 = 6

LCM of 48 and 64 = m × HCF of 12 and 18

 \Rightarrow 192 = m × 6

⇒ m =

 \Rightarrow m = 32

61. (d) 108 = 72 × 1 + 36 $72 = 36 \times 2 + 0$

Hence, $5a = 5 \times 36 = 180$ Now,

 $108 = 2 \times 2 \times 3 \times 3 \times 3$ $72 = 2 \times 2 \times 2 \times 3 \times 3$

 $36 = 2 \times 2 \times 3 \times 3$ $LCM = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

= 216

- 62. (d) 554 43 = 511 714 - 57 = 657213 - 67 = 146
 - Now, Prime Factorisation of

 $511 = 7 \times 73$ $657 = 3 \times 3 \times 73$ $146 = 2 \times 73$

Hence, HCF = 73

Therefore, The greatest positive integer that divides 554, 714 and 213 and leaves the remainder 43, 57, and 67 respectively is 73.

- 63. (b) Factor of $25 = 5 \times 5$ Factor of $30 = 2 \times 3 \times 5$ Factor of $50 = 2 \times 5 \times 5$ Factor of $75 = 3 \times 5 \times 5$
- $LCM = 5 \times 5 \times 3 \times 2 = 150$ 64. (a) Factor of $364 = 2 \times 2 \times 7 \times 13$ Factor of $724 = 2 \times 2 \times 181$
- HCF = 4 65. (b) LCM of 13, 15, 18 & 21 = 8190 Greatest 5 digit number = 99999 When we divide 99999 by 8190, we get,

quotient = 12 and remainder

= 1719 Required number = 99999 - 1719

divisibilty 5 and 9 together only option (b) is correct. (c) $15 = 3 \times 5$ 66.

 $30 = 2 \times 3 \times 5$ $40 = 2 \times 2 \times 2 \times 5$

HCF = 5

(b) LCM of 16, 24, 72 & 84 = 1008 When we divide largest 6 digit number - 999999 by 1008 we getremainder = 63 Largest 6 digit number which is

divisible by 1008 = 999999 - 63 = 999936

Hence, Required Number = 999936 + 15 = 999951

SMART APPROACH:-

We can direct result by divisibility 4, 8 and 9 : 999951 - 15 = 999936 Only option (b) is correct.

- 68. (b) LCM = HCF × product of ratios $= 3 \times 5 \times 7$
 - = 105
- 69. (b) HCF of fraction

HCF of Numerator LCM of Denominator

HCF (3,7,13) = LCM (4, 8, 14) 70. (a) Product = LCM × HCF \Rightarrow ab = 60 × 15

Mean proportion = √ab

- $=\sqrt{60\times15}=30$
- 71. (a) HCF of fraction **HCF** of Numerator
 - LCM of Denominator HCF(11, 9, 16, 10) LCM(25, 20, 15, 33) 3300
- (a) Factor of $69 = 3 \times 23$ Factor of 96 $=2\times2\times2\times2\times2\times3$ Factor of $99 = 3 \times 3 \times 11$ HCF = 3
- (b) Factor of $28 = 2 \times 2 \times 7$ Factor of $92 = 2 \times 2 \times 23$ $LCM = 2 \times 2 \times 7 \times 23$ = 644

- (b) $a^3b ab^3 = ab(a^2 b^2)$ $a^3b^2 - a^2b^3 = a^2b^2(a - b)$ ab(a - b) = ab(a - b) $LCM = a^2b^2(a^2 - b^2)$
- 75. (c) First number × second number =LCM × HCF = $56 \times \text{ second number} = 840 \times 7$
 - ⇒ Second number = ⇒ Second number = 105
 - (c) Let the numbers be 3x, 7xand 11x.

Hence, HCF = x⇒ LCM = HCF × product of ratios \Rightarrow 1386 = x (3 × 7 × 11)

$$\Rightarrow x = \frac{1386}{3 \times 7 \times 11}, x = 1$$
Least Number = 3x

Greatest Number = 11x

Sum of least and greatest ratio = 3 + 11 = 14 units Check which option is multiple of 14 if there is only one multiple this will be the best approach

- 77. (b) $120 = 2 \times 2 \times 2 \times 3 \times 5$ $360 = 2 \times 2 \times 2 \times 3 \times 3 \times 5$ $210 = 2 \times 3 \times 5 \times 7$ $HCF = 2 \times 3 \times 5 = 30$
- 78. (c) Ratio = 7:11, HCF = 28 Difference = $(11 - 7) \times 28$ $= 4 \times 28 = 112$

79. (b) (I) LCM of 15, 18, 36 = 180
Number
$$\Rightarrow$$
 180 × k + 9

Number
$$\Rightarrow$$
 180 × k + \therefore k \Rightarrow 6

85. (b) The sum of two number =
$$(7 + 11) \times 28 = 18 \times 28 = 504$$

SMART APPROACH:-Divisibility Rule by 9 86. (b) HCF = 29

SMART APPROACH:-Divisibility Rule by 13 87. (d) LCM [3, 5, 8, 9, 10]

> ⇒ 6 minutes After 6 minutes all the five bells

ring together.

88. (a) HCF of
$$\frac{4}{5}$$
, $\frac{6}{8}$, $\frac{8}{25}$
HCF of Numerator

⇒ 360 seconds

LCM of Denomenator
$$= \frac{\text{HCF of } (4,6,8)}{\text{LCM of } (5,8,25)} = \frac{2}{200} = \frac{1}{100}$$

Three digit number is = 113 When we divide 2388, 4309, 8151 by 113 we find remainder 15 in each case Remainder = 15

(b) LCM of (2, 3, 4, 5, 6, 7) = 420= 420 n + 1Put n = 7(Because the x lies between 2800 and 3000) $= 420 \times 7 + 1$ \Rightarrow 2940 + 1 = 2941

The sum of digit =
$$(2+9+4+1) = 16$$
(a)

4749, 5601, 7092,

852 1491

639

213 × 3

d = 213

=
$$420 \times 5 + 1$$

= $2100 + 1 = 2101$
Sum of digit = $(2 + 1 + 0 + 1) = 4$
(b) LCM of $(4, 5, 6, 7, 8, 12) = 840$

=
$$840n + 2$$

put n = 3
= $840 \times 3 + 2 = 2522$
2522 is least number which is

= 420n + 1

divisible by 13 Sum of digit = (2 + 5 + 2 + 2) = 11

1995 + 1785 = 3780

H.C.F of 1921, 3842 and 5763 When 3738, 5659 and 9501 are divided by 1921

Remainder (y) = 1817

$$\Rightarrow x + y = 1921 + 1817 = 3738$$

96. (a) Product = HCF × LCM

$$\Rightarrow 2x \times 3x = 8 \times 48$$
$$\Rightarrow x^2 = 4 \times 16$$

$$\Rightarrow x = 8$$

Hence, Largest number

which is divisible by 23

So, the greatest 3-digit number

When 1000 is divided by 23, the remainder is 11 So, the smallest 4-digit number

which is divisible by 23 = 1000 + (23 - 11) = 1012Hence, Sum of both the numbers

= 55440 HCF of the number = 11

So,
$$P = \frac{55440}{11} = 5040$$

0. (d) LCM of (8, 9, 12, 14, 36) = 1008

x be the least number and also divisible by 11 $=\frac{1008x+4}{11}$ put x=1

Sum of digit = (1 + 0 + 1 + 2) = 4100. (a) Number be 81x and 81y

$$x + y = \frac{1215}{81}$$

81x + 81y = 1215

$$x + y = 15$$

Possible value of x and y for which 81x and 81y lies between 500 and

Hence, sum of reciprocal of the number is

$$\frac{1}{81x} + \frac{1}{81y} = \frac{1}{81} \left(\frac{1}{x} + \frac{1}{y} \right)$$

$$=\frac{1}{81}\left(\frac{1}{7}+\frac{1}{8}\right)$$