NOMBRE: Vicente Espinosa

SECCIÓN: 2

Nº LISTA: 36

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 4 – Respuesta Pregunta 1

1

Demostrar que \sim es refleja y simétrica.

La relación es refleja, pues se cumple que $\forall a \in A.(a, a) \in R$.

Esto se puede demostrar de la siguiente forma:

$$\forall a \in \Sigma^*, (a,a) \in R: \exists i>0. \exists j>0. \ a^i=a^j$$
 evaluamos en $i=1, j=1$ $a^1=a^1$ $a=a$

* También se cumple para cualquier caso en que i=j, pero con la demostración anterior es suficiente.

La relación es simétrica, pues se cumple $\forall a,b \in A.(a,b) \in R \rightarrow (b,a) \in R$.

Esto significa que $\forall (a,b) \in \Sigma^* . \exists i > 0 . \exists j > 0s. \ a^i = b^j$

 $(a,b) \in \Sigma^* \to a^i = b^j$, esto se cumple para algún $i \neq j$, que denotaremos como $q \neq w$.

Por lo tanto, sabemos que: $a^q = b^w \cdot q > 0 \cdot w > 0$.

Luego, hay que demostrar que (b, a) pertenece a Σ^* .

 $(b,a) \in \Sigma^* \to b^i = a^j. \qquad \qquad \text{Para alg\'un } i,j > 0.$

Podemos asumir que $b^w = a^q$

Pues $a^q = b^w \rightarrow b^w = a^q$ Esto pues la relación '=' es para ambos lados.

Con esto queda demostrado que la relación \sim es refleja y simétrica.

$\mathbf{2}$

```
Demostrar que \sim es transitiva.
```

Esto significa que $\forall a, b, c \in \Sigma^*.(a, b) \land (b, c) \rightarrow (a, c).$

Esto se traduce en:

$$(a^{i} = b^{j}) \wedge (b^{l} = c^{p}) \rightarrow (a^{q} = c^{w})$$

$$b^{l} = (b^{j})^{\frac{l}{j}}$$

$$b^{l} = (b^{j})^{\frac{l}{3}}$$

$$\therefore (b^j)^{\frac{1}{j}} = c^p$$

$$(a^i)^{\frac{1}{j}} = c^p$$

$$a^{\frac{il}{j}} = c^p$$

$$(a^i)^{\frac{l}{j}} = c^p$$

$$a^{\frac{il}{j}} = c^p$$

Por lo tanto, el q y w que buscamos son $\frac{il}{j}$ y p respectivamente. Dado que i,j,p>0, podemos asegurar que q,w>0