

National University of Sciences and Technology College of Electrical and Mechanical Engineering Department of Basic Sciences & Humanities 2nd OHT – Spring Semester 2019

Subject Code: MATH-352
Date: 06 May 2019

Subject: Numerical Methods
1200-1300 Hrs

Max Marks : 50 Max Time : 1 Hrs

Instructor : <u>Dr. Syed Tayyab Hussain</u> Degree : <u>38 Mts A&B</u>

Note: This is an **OPEN BOOK and Notes** exam. Attempt all Questions. Marks are given against each question. The answer should be logically developed, relevant and to the point.

No queries will be entertained.

S/No		Marks
Q. 1	a) The velocity-time graph for a two-stage rocket is shown below. Use the graph and your understanding of slope calculations to determine the acceleration of the rocket at t=2.0 sec using at least three data points	[8+7]
	Yelocity vs. Time	
	80 60 40	
	Time (s) 8.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 10	
	-60 -80	
	b) Using the provided data in part (a) calculate the acceleration at $t = 2.5 \ sec$ by using central difference scheme.	
Q. 2 CLO 3 PLO 1	The area under the curve in a velocity time graph (see graph Q.1) gives you the displacement. <i>Apply</i> numerical technique to calculate the displacement of the rocket in the time interval [1-5] sec.	[10]
Q. 3 CLO 3 PLO 1	If 0.05-liter paint is required to cover unit square meter area, <i>Construct</i> the integral and estimate the total paint required to cover the shaded region. $y = 5x - x^{2}$ $y = x$	[12]

Q.4 CLO 4 PLO 1	a) Write down a 4×4 general matrix such that it's Cholesky's decomposition is possible and choose suitable conditions on matrix elements so that it satisfy the conditions to be a positive definite matrix. (no particular values of matrix elements should be taken)	[6+7]
	b) <i>Convert</i> the matrix A into LU decomposition form $A = \begin{bmatrix} 3 & 1 \\ -6 & -4 \end{bmatrix}$	

****Good luck****