# Composites for the Aerospace Industry

Terry Tsuchiyama

### What are "Typical" Aerospace Composites?

- Fiberglass and Carbon (Graphite) Fiber with resin (matrix)
  - Fiber reinforcement determined by structural performance requirements.
  - Resin determined by usage requirements (usually Temperature) and Fab method
  - Other factors can influence (glass for radomes) but these usually dominate.

## Composite Part Cross-Sectional Photomicrograph White is Fiber, Black is Resin Matrix (Note the various fiber orientations in different plies)





#### Boeing 787 Aft Fuselage Section





Vought Delivers Aft Fuselage for Boeing 787 Dreamliner

#### Laminate Structure Versus Honeycomb Sandwich Structure



#### **Solid Laminate Structure**

- Generally used for primary structure (fuselage, empennage, and wing skins)
- Primarily unidirectional tape
- Maximized tensile/compression
- Superior impact resistance



#### **Honeycomb Sandwich Structure**

- Generally used for secondary structure (control surfaces, engine cowls, other more lightly loaded structure)
- Maximized stiffness to weight

#### Sandwich panels

- -- low density, honeycomb core
- -- benefit: small weight, large bending stiffness



#### **Boeing 787 Material Usage**



## Fibers **Fibers**

- Usually Fiberglass or Carbon (Graphite) sometimes Kevlar
  - Fibers usually dominate composite structural performance
  - Fiberglass is lower cost but less structural performance than Carbon. (FG modulus about 12 X 10<sup>6</sup> psi and Carbon modulus 30 to 100 X 10<sup>6</sup> psi)
  - Uni-directional tape vs. fabric

#### **Material Forms - Unidirectional Tape Versus Woven Fabric**

Unidirectional
Tape
(maximized strength
in fiber direction,
used for primary
structure)



Woven Fabric
(balanced 0/90
strength, more
formable, used
for secondary and
honeycomb
sandwich structure)



## Fiber Angles and Stacking Sequence





"Quasi-Isotropic" – similar strength in all directions Need "balanced and symmetric" to avoid part warpage after cure

## Resins

- Thermoset vs. Thermoplastic
  - Thermoset (A resin that undergoes chemical reactions to polymerize and cure)
    - Epoxy, BMI, Polyester, Polyimide, Phenolic, etc.
  - Thermoplastic (A non-reactive resin that is melted to form parts)
    - PEEK, PPS, etc.
  - Process Issues for TS and TP
  - Prepreg vs. Wet resin (TS)

## Boeing Airplanes – Material Choice

- Epoxy Resin for Exterior Structural Parts
  - Meet strength/toughness/temperature/etc. req'ts

- Phenolic Resin for Interior Parts
  - Meets Fire/Smoke/Toxicity requirements

- Ongoing interest in Thermoplastic Composites
  - "Melt Resin, Form to Shape" fast processing

### Thermoset Mfg Processes (Prepreg)

- Laydown Fiber Placement, Hand Layup
- Vacuum Bagging
- Autoclave Cure
- Press
- Filament Winding
- Braiding

#### Fiber Placement/Autoclave Fabrication Military Aircraft



http://www.vought.com/newsFactGallery/releases/2004/081604.htm

#### **Automated Tape Layup**





#### **Hand Layup – Smaller parts, honeycomb sandwich parts**





#### **Typical Vacuum Bag**



## Autoclave



#### **Large-Capacity Autoclave (typically can withstand 100+ psi pressure)**



#### Typical Basic Composite Part Cure Cycle (sometimes there are variations)



#### **Typical Autoclave Cure:**

- Stage part in bag under full vacuum before cure
- · Connect part in autoclave draw full vacuum
- Apply 45 or 85 psi pressure at start of cure
- Ramp up to 250F or 350F, hold 2 hours, cool
- Some cure cycles vent the vac bag when autoclave pressure reaches 20 psi

#### **Press Consolidation**



#### **Press Consolidation**

Good for flat or almost-flat parts





Not good for sharp curvature





## Thermoset Mfg Processes (Wet)

- Wet Lay-up
- RTM
- VARTM
- Filament Winding
- Pultrusion
- Braiding

Processes done with dry fibers and liquid resin

#### Wet Lay-up



Sometimes used in aerospace for repair

RTM
Resin Transfer Molding



- Matched metal tooling (expensive)
- Precise dimensional control on both sides of part

#### **VARTM**

(Vacuum Assisted Resin Transfer Molding)



#### Filament Winding



## Filament Winding Rocket Motor Cases



http://www.fas.org/nuke/control/mtcr/text/mtcr\_handbook\_item6.pdf



**Used for continuous constant section parts** 



http://www.strongwell.com/pultrusion/



Dry Fiberglass



http://www.creativepultrusions.com/custom.html



http://www.strongwell.com/products/pultr uded\_prod/struc\_shapes/

#### **Braiding Machine**



## 144 Carrier Braiding Machine



## **Questions?**

#### **Example Material Properties – This is not a complete list**

(There will be property requirements for raw fiber, for neat resin, for prepreg, and for cured laminate)

#### **Mechanical Properties**

- Tensile strength/modulus
- Compression strength/modulus
- Fracture toughness (G<sub>IC</sub>, G<sub>IIC</sub>)
- Compression After Impact
- Open Hole Tension
- Open Hole Compression
- In-Plane Shear
- Short Beam Shear (several others)

#### **Physical Properties**

- Resin content
- Fiber tensile strength
- Fiber/resin areal weight
- Resin flow
- Prepreg volatile content
- Fiber orientation

#### **Chemical Evaluations**

- Glass transition temperature
- Chemical fingerprint
- Solvent/chemical resistance
- Viscosity curve
- Degree of cure
- Cured ply thickness

#### **Processibility**

- Tack
- Automated tape layup compatibility
- Formability (drape)
- Tendency to wrinkle
- Tendency for porosity

#### Basic Schematic of Hot Melt Impregnation Process (Usually for Uni Tape)



Creels

#### Basic Schematic of Solvent Dip Impregnation Process (Usually for Woven Fabric)



#### Is Resin Pressure Equal to Applied Autoclave Pressure?

NEVER! - Unless We Are Making Flat Parts (which we aren't)



Flat Part – perfect pressure transfer (There are approximately ZERO structural parts like this)



Hard Caul – won't conform to part Inhibits pressure transfer to part

