Progetto di Sistemi Complessi: Modelli e Simulazione Supermarket Simulation

Tonelli Lidia Lucrezia (m. 813114) Grassi Marco (m. 830694) Giudice Gianluca (m. 829664)

University of Milano Bicocca

Settembre 2021

- Introduzione
- Stato dell'arte
- Descrizione del modello
 - Overview
 - Agenti del modello
- 4 Implementazione dei comportamenti e delle strategie
- Simulazione
- Conclusioni

Introduzione

Il nostro progetto è un modello basato su agenti che **simula** il comportamento dei clienti in un supermercato durante le fasi di scelta della coda relativa a diversi tipi di casse.

Prenderemo in considerazione 3 tipi di casse diverse (standard, self-service e self-scan) e 2 tipi di scelte fatte dai clienti (scelta della coda, jockeying). L'utilizzo di code è fondamentale per gestire le grandi quantità di clienti.

Obiettivo

Sperimentare diverse configurazioni di casse e strategie di scelta della coda per gestire in modo ottimale il flusso di clienti e ridurre al minimo il tempo d'attesa passato in coda.

Un supermercato è un **sistema complesso** in cui agiscono diverse entità, come clienti e casse.

Si verificano aspetti emergenti difficilmente prevedibili dovuti a diversi aspetti:

- Flusso di clienti in ingresso variabile
- Numero di prodotti che un cliente acquista
- Numero di casse aperte contemporaneamente
- Strategia di scelta della coda dei clienti
- Strategia di cambio della coda dei clienti

Stato dell'arte

Il principale spunto per il modello è stato l'articolo *Data-driven simulation* modeling of the checkout process in supermarkets: Insights for decision support in retail operations ¹, che utilizza 5 strategie di scelta della coda confrontando i **tempi d'attesa medi** dei clienti.

 $^{^{1}}$ Antczak, Tomasz and Weron, Rafał and Zabawa, Jacek, 2020

Estensioni

Abbiamo voluto estendere il modello introducendo nuovi concetti:

- Jockeying²: quando un cliente sta attendendo in coda, confronta i tempi d'attesa della propria coda con quelli delle code vicine e può decidere di spostarsi di conseguenza.
- Code parallele e N-Fork ³: vogliamo indagare sull'effetto della disposizione delle code sui tempi di attesa medi, questa può essere parallela, se ogni cassa ha una coda dedicata, oppure N-Fork, se c'è un'unica coda condivisa.

²On jockeying in queues, E. Koenigsberg, 1966

³Methods for improving efficiency of queuing systems, Yanagisawa, D and Suma, Y and Tanaka, Y and Tomoeda, A and Ohtsuka, K and Nishinari, K, 2011

Estensioni

- Casse self-scan: l'articolo sopra citato prende in considerazione solo 2 tipi di casse, le casse standard e le casse self-service. Nel modello sono presenti le casse self-scan, presenti attualmente in molti supermercati, che permettono di scannerizzare i prodotti in fase di spesa e rendere la fase di pagamento molto più veloce.
- Simulazione non deterministica: per far emergere comportamenti non banali nel supermercato e rendere più realistiche le simulazioni sono state aggiunte alcune variabili probabilistiche.

Approccio ad agenti

- Sistema multiagente sviluppato in Python con il framework Mesa
 - Ambiente: supermercato
 - Il supermercato è una struttura divisa in zone, composta da code e casse
 - I clienti entrano nel supermercato per fare la spesa minimizzando il tempo impiegato
 - Agenti: clienti e casse
- I clienti sono agenti intelligenti (pianificano e decidono) con una componente impredicibile che fa emergere un comportamento complesso interagendo con gli altri agenti

Ambiente

Figure: Stuttura del supermercato diviso in zone.

Ambiente

Figure: Interazione tra agenti e ambiente.

Descrizione del modello

Cose teoriche su ambiente, agenti, interazione #TODO: Marco

Agente Cliente

- I clienti sono gli agenti principali, si muovono nel supermercato con hanno l'obiettivo di fare la spesa e attendere il minimo tempo possibile in coda.
- Per minimizzare il tempo in coda il cliente usa strategie di scelta della coda e di jockeying, quindi ha bisogno di una pianificazione
- Il cliente è un agente di tipo *utility-based* perchè per la pianificazione e la valutazione dei tempi d'attesa utilizza una utility function.

Agente Cliente - workflow

- Attesa all'entrata del supermercato: l'agente è in attesa fino a che non può mettersi nella zona d'entrata.
- Fase di shopping: si muove nella zona di shopping e inizia a raccogliere elementi fino a raggiungere il basket-size desiderato; questa fase dipende dalla velocità di shopping, un parametro del modello.
- **③** Scelta della coda: finita la spesa, deve scegliere la cassa in base alla utility function; viene scelta la coda q^* tale che

$$q^* = \operatorname*{argmin}_{q \in Q} f(q)$$

dove Q è l'insieme delle code dedicate e f varia con la strategia.

Agente Cliente - workflow

- Attesa in coda e jockeying: mentre il cliente è in coda può decidere di lasciarla per una coda migliore. Considera le 2 code adiacenti (parametro del modello) alla propria e per ognuna calcola la coda migliore secondo la sua strategia di jockeying. Se il "guadagno" risulta maggiore di un certo threshold, allora il cliente può decidere di cambiare coda. Si estrae quindi un numero casuale che determina se cambiare coda o no (perchè non tutte le persone fanno jockeying).
- Attesa alla cassa: il cliente viene servito dalla cassa e deve attendere la fine del pagamento per uscire dal supermercato.

Agente Cassa

- I clienti, una volta conclusa la fase si di spesa, scelgono una coda in attesa di essere serviti in cassa per il pagamento.
- Ogni cassa ha al più una coda associata.
- La cassa è un'agente di tipo model-based reflex, in cui lo stato è il cliente che si sta processando in un determinato momento.
- Il comportamento di una cassa è piuttosto semplice:
 - Prendi un cliente dalla coda (se disponibile)
 - Processa il cliente
 - Ripeti
- Le code (FIFO) ammissibili per ogni cassa sono di 2 tipi:
 - 1 Coda dedicata: ogni cassa ha una coda dedicata
 - Coda condivisa: una coda è associata a più casse, tutte le casse serviranno i clienti che si sono accodati alla coda condivisa
- Nel modello sono state modellate 4 tipi di casse diverse.

Agente Cassa - Tipo 1: Standard

- Rappresenta la classica cassa di un supermercato.
- Questa cassa può avere una coda dedicata o condivisa, in entrambi i casi:
 - Il cliente si accoda
 - 2 La cassa prende il primo cliente dalla coda
 - 3 Il cassiere processa gradualmente tutti gli articoli del cliente
 - Ripeti

Agente Cassa - Tipo 2: Self-service

- Cassa in cui non è presente un cassiere ma è il cliente stesso a dover passare uno alla volta gli articoli acquistati.
- Tutte le casse self-service hanno una coda condivisa
 - Il cliente si accoda alla coda condivisa
 - 2 La cassa prende il primo cliente dalla coda
 - 3 Il cliente processa ogni articolo
 - Il cliente lascia il supermercato

Agente Cassa - Tipo 3: Self-scan

- Il cliente scannerizza gli articoli durante la spesa mediante un dispositivo fornito dal supermercato
- Avendo già scanerizzato gli articoli a priori non è necessario farlo in cassa
- Vengono effettuati controlli a campione per verificare il corretto comportamento dei clienti (tutti gli articoli devono essere stati effettivamente scannerizzati durante la spesa)
- Tutte le casse hanno una coda condivisa
 - 1 Il cliente si accoda alla coda condivisa
 - 2 La cassa prende il primo cliente dalla coda
 - 3 Nel caso in cui il cliente è stato estratto per una rilettura della spesa si reca ad una cassa riservata, altrimenti paga ed esce dal supermercato

Agente Cassa - Tipo 4: Riservata

- Comportamento analogo alla cassa standard.
- Ha una coda dedicata
- Nel caso di rilettura alla cassa "self-scan", il cliente viene normalmente processato in questa nuova cassa
- La rilettura può essere **parziale** (vengono controllati solo 10 elementi), o **totale** (viene controllata tutta la spesa)
- Nessun cliente può venire processato nella cassa riservata a meno di una rilettura

Considerazioni

Il nostro modello è stra flessibile per le strategie e per gli stati e anche per i parametri che mo descriviamo #TODO: Marco

Parametri

- Configurazione del supermercato:
 - Dimensione delle zone (entering zone, shopping zone)
 - ullet Numero di casse (standard, self-service o self-scan $+\ 1$ riservata obbligatoria)
 - Code N-fork o parallele per le casse standard
- Jockeying:
 - Numero di code adiacenti considerate
 - Threshold
 - Probabilità di fare jockeying
- Distribuzione dei clienti in entrata (presa dai dati di Antczak e altri⁴)
 # TODO: qui manca la spiegazione come nel caso del basket-size,
 che però manca anche nella relazione
- Distribuzione dei basket-size (presa dai dati di Antczak e altri⁴)

⁴Data-driven simulation modeling of the checkout process in supermarkets: Insights for decision support in retail operations, Antczak, Tomasz and Weron, Rafał and Zabawa, Jacek, 2020

Parametri - distribuzione dei clienti

Parametri - distribuzione dei basket size

Nella figura viene mostrata la distribuzione reale dei dati e la distribuzione esponenziale derivata aggregandoli, la quale viene usata nel modello per generare il basket size di ogni cliente.

Parametri

- Parametri di tempo:
 - Durata di uno step (attualmente 30 secondi)
 - Velocità di shopping del cliente: numero di articoli messi nel carrello ad ogni step
 - Tempo di elaborazione della spesa da parte delle casse: per le self-scan è 1 step, per le standard e le self-service è governato dai parametri $a,b,\alpha,\beta\in\mathbb{R}$, presi dall'articolo di Antozak e altri sopra citato.

Implementazione dei comportamenti e delle strategie

- Il cliente una volta presi tutti gli articoli si reca alla coda.
- La cassa self-scan deve essere scelta prima di fare la spesa e non è possibile cambiare.
- Il cliente vuole minimizzare il tempo speso all'interno del supermercato tramite:
 - Scelta iniziale della coda: il cliente sceglie la coda ottima rispetto ad una determinata strategia
 - Fase di jockeying: una volta in coda il cliente può scegliere di cambiarla se ne esiste una migliore

Scelta della coda

definizione di strategia (con formula argmin) - 4 strategie - formule delle strategie $\#\mathsf{TODO}$: Marco

Jockeying

adiacenza - threshold - probabilità di non fare jockeying - 2 strategie e formule per il calcolo del guadagno #TODO: Lucrezia

Simulazione

definizioni di densità di clienti e flusso di clienti

Validazione

Stessa simulazione dei polacchi con le 4 strategie

Simulazione con jockey

Uguale a sopra aggiungendo il jockey (4 strategie + 2 strategie di jockey)

Simulazione con coda condivisa

Uguale a sopra ma con coda condivisa (quindi senza scelta della coda e senza jockey)

Simulazione con casse self-scan

Non importa che sia uguale a sopra perchè tanto è come se fosse una simulazione a parte, si può fare anche con 0 standard e 0 self-service, giusto per non avere mille robe in mezzo

Simulazione non deterministica

Uguale con tutto (quindi a sx abbiamo i self scan e a dx le casse normali con coda condivisa o meno, 4 strategie di scelta della coda, 2 strategie di jockey) però accendiamo i parametri probabilistici

Conclusioni

DAJE RAGA