Нижегородский государственный университет имени Н.И. Лобачевского
Радиофизический факультет. Кафедра Радиотехники.
Отчет по лабораторной работе №1
Исследование рабочих характеристик оптимального обнаружителя сложных радиолокационных сигналов.
Выполнил студент группы 0420ДМР1Г Шиков А.П.

1. Введение

2. Практическая часть

2.1. Задание 1

В начале отчета привести блок- схемы оптимального приемника радиолокационного сигнала с использованием корреляторов и согласованного фильтра, объяснить назначение их элементов. Привести теоретические формулы для РХП в случае обнаружения известного сигнала и сигнала со случайной фазой и амплитудой.

Согласованный фильтр — это линейный оптимальный фильтр, построенный исходя из известных спектральных характеристик полезного сигнала и шума. Согласованные фильтры предназначены для выделения сигналов известной формы на фоне шумов. Под оптимальностью понимается максимальное отношение сигнал/шум на выходе фильтра, и так как фильтр линейный форма сигнала на выходе остается неизменной.

По определению детектор огибающей должен осуществлять измерение огибающей входного сигнала, т.е. формировать выходной сигнал вида $u_{\text{вых}}(t) = K_{\text{дет}}A(t)$.

Пороговое устройство фильтрует сигнал в зависимости от амплитуды выходного сигнала

Устройство синхронизации запускает генерацию сигнала и интегрирование, а по окончании этого процесса подключает к выходу интегратора пороговое устройство.

Для обнаружителя детерминированного сигнала на фоне белого гауссова шума РХП получается только в параметрическом виде, где параметром выступает порог обнаружения l_0 :

$$P_{\text{IIO}} = F\left(\frac{\ln(l_0)}{d} - d/2\right), \quad P_{\text{JIT}} = 1 - F\left(\frac{\ln(l_0)}{d} + d/2\right),$$
 (1)

где $P_{\Pi {\rm O}}$ - вероятность правильного обнаружения, $P_{\Pi {\rm T}}$ - вероятность ложной тревоги, $F(x)=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^x \exp(-y^2/2){\rm d}y$ - интеграл Лапласа, $d^2=2E/N_0$ - отношение энергии сигнала к спектральной плотности мощности (СПМ) шума.

При неизвестной фазе выражение для РХП имеет вид

$$P_{\text{IIO}} = Q(d, \sqrt{2\ln(1/P_{\text{JIT}})}). \tag{2}$$

Здесь $Q(v,u)=\int\limits_u^\infty xI_0(vx)\exp\left(-\frac{x^2+y^2}{2}\right)\mathrm{d}x$ - фунцкия Маркума.

Если случайными являются фаза и амплитуда, выражение для РХП примет следующий вид (при условии что распределение амплитуды имеет вид Рэлеевского):

$$P_{\Pi O} = P_{\Pi T}^{\frac{1}{1+d^2/2}}.$$
 (3)

Для обнаружителя сигнала со случаной фазой нужно использовать два идентичных коррелятора на которые в качестве опорных подается излучаемый сигнал и его квадратура. На выходах корреляторов формируются действительная I и мнимая Q составляющие некоторого аналитического сигнала.

Рис. 1: Блок-схема оптимального обнаружителя известного сигнала на фоне белого гауссова шума

Рис. 2: Блок-схема обнаружителя сигнала со случайной фазой и амплитудой на фоне белого гауссова шума с использованием двух корреляторов (устройство синхронизации на данной схеме отсутствует, т.к. интегрирование ведется в скользящем окне)

Рис. 3: Блок-схема обнаружителя сигнала со случайной фазой и амплитудой на фоне белого гауссова шума с использованием согласованного фильтра и детектора огибающей

2.2. Задание 2

Было проведено сравнение спектра и корреляционной функции ЛЧМ-сигнала для окна с плоской вершиной при различных значениях разности начальной чатсоты f_s и конечной частоты f_e . Полученные графики приведены на рис. 4-7

Рис. 4: Разница частот 0.5 ($f_s=0, f_e=0.5$). Разница фаз = 0

Рис. 5: Разница частот 0.3 ($f_s=0.1, f_e=0.4$). Разница фаз = 0

Рис. 6: Разница частот 0.1 ($f_s=0.2, f_e=0.3$). Разница фаз = 0

Рис. 7: Разница частот 0.01 ($f_s=0.25, f_e=0.26$). Разница фаз = 0

Из полученных результатов видно, что при уменьшении разницы между начальной и конечной частотой ширина корреляционной функции увеличивается, ширина спектра уменьшается, а значение базы сигнала уменьшается.

Очевидно, что при изменении частотной полосы ЛЧМ-сигнала его спектр пропорционально увеличивается. Исследуемый сигнал является стационарным в широком смысле случайным процессом, а значит его спектр связан с корреляционной функцией обратным преобразованием Фурье:

$$K(\tau) = \int_{-\infty}^{\infty} S(\omega) \exp\{+j\omega\tau\} d\omega$$
 (4)

А для пары преобразований Фурье мы можем написать соотношение неопределенности в виде:

$$\Delta \tau \Delta \omega > 2\pi$$
, где (5)

 $\Delta\omega$ – характерная ширина спектра, $\Delta\tau$ – характерное время корреляции.

Уменьшенеие ширины спектра объясняется уменьшением количества частотных компонент, использованных в сигнале. Таким образм, при устремлении разницы частот к нулю, вид спектра будет приближаться к δ -функции.

2.3. Задание 3

Построить на одном графике зависимости вероятности правильного обнаружения от вероятности ложной тревоги для трех значений отношения сигнал/шум при известном сигнале. Сделать то же для сигнала со случайной фазой и случайной фазой и амплитудой.

Рис. 9: Графики зависимости РХП для различных сигналов и различных значений СКО. Также на графике отмечены одинаковые значения порога: $\Delta - 3$, $\Box - 10$, $\bigcirc - 20$

2.4. Задание 4

На графиках указать несколько одинаковых значений порога. Объяснить различия между графиками. Используя формулы для РХП, сравнить экспериментальные результаты с теоретическими.

3. Вывод