$$\pi_1(X, x) = \{ [\gamma] \mid \text{loops } \gamma \text{ in } X \text{ based at } x \}$$

$$= [(g \circ f) \circ \gamma]$$
$$= (g \circ f)_*([\gamma]) \square$$

 $(g * \circ f *)([\gamma]) = [g \circ (f \circ \gamma)]$

for any pointed cts map f: (X, x) to (Y, y), have a

homomorphism
$$f_* : \pi_1(X, x)$$
 to $\pi_1(Y, y)$

defined by
$$f_*([\gamma]) = [f \circ \gamma]$$

$$\frac{\text{Thm}}{\text{for any}} \quad \text{f: } (X, x) \text{ to } (Y, y), \\ g: (Y, y) \text{ to } (Z, z), \\$$

we have

$$(g \circ f)_* = g_* \circ f_* : \pi_1(X, x) \text{ to } \pi_1(Z, z)$$

[why "thm" if so easy? more useful than it seems]

<u>Cor</u> if f is a (pointed) homeomorphism then f_* is a group isomorphism

Pf if
$$g = f^{-1}$$
, then $g_* = f_*^{-1}$

today:
$$\pi_1(R^n, x), \pi_1(S^n, x)$$

for any $n \ge 0$

hard case: S^1

<u>Pf</u>

[some details will be left till much later]

(Munkres ≈ §52, 54) [but I am skipping around]

 \underline{Df} we say X is simply connected iff X is path connected and $\pi_1(X, x)$ is trivial for some/any x

Thm for all $n \ge 0$, every <u>convex</u> subspace A sub R^n is simply connected

in fact, generalizes to star-convex A

convex: for all a, b in A, the segment

between a and b stays in A

star-convex: there is some a in A s.t., for all b in A, the segment between a and b stays in A [note: line segments given by (1 - t)a + tb] the claim for star-convex A will be PS7, #4 part (2)

<u>Idea of Pf</u> path-connectedness easy

use the "straight-line nulhomotopy" from any γ to the constant loop

formally, the n-sphere is

$$S^n = \{(x_0, x_1, ..., x_n) \mid sum_i x_i^2 = 1\}$$

in the subspace top from analytic $R^{n + 1}$

note that S^n is path connected, but not star-convex, let alone convex

Thm for any $n \ge 2$, the n-sphere is simply connected

Naïve Pf Idea [Munkres 370, #2]

pick a basepoint x pick a loop γ : [0, 1] to S^n based at x pick a point p in S^n not in im(γ)

there is a homeomorphism S^n – {p} to R^n: namely, stereographic projection [how to finish?] R^n is simply-connected so $[\gamma] = [e_x]$ [i.e., γ nulhomotopic] in S^n – {p} hence $[\gamma] = [e_x]$ in S^n

[but where did we use $n \ge 2$?]

Problem how do we know p exists? there are awful things called space-filling curves...

Claim if $n \ge 2$, then any loop based at x is path-homotopic to a non-surjective loop

fix the loop γ based at x fix open hemispheres B and C s.t.

B cup C = S^n B cap C is homeo to an open annulus $S^{n-1} \times (-\epsilon, \epsilon)$ x in B cap C

note that C – B is nonempty [draw this]

we will path-homotope γ to a loop avoiding C – B [idea: look at where γ crosses between B and C]

for all s in [0, 1], pick $\delta_s > 0$ small enough that if $U_s = (s - \delta_s, s + \delta_s)$, then either $\gamma(U_s)$ sub B or $\gamma(U_s)$ sub C [possible bc B, C are open]

then $\{U_s\}_s$ is an open cover of [0, 1]so it has a finite subcover $\{U_{s_j}\}_{0 \le j \le N}$

after removing elts, can assume no U_{s_j} contains another

after merging elts, can assume that if $\gamma(U_{s_j})$ sub B, then $\gamma(U_{s_j})$ sub C, and vice versa

let t_j in U_{s_j} cap U_{s_{j} + 1}} for $0 \le j \le N - 1$ now we have [draw]

$$0 = t_0 < t_1 < t_2 < ... < t_{N-1} < t_N = 1$$

s.t. for all j, $\gamma(t_j)$ in B cap C and either $\gamma([t_j, t_\{j+1\}])$ sub B or $\gamma([t_j, t_\{j+1\}])$ sub C

for j s.t. $\gamma([t_j, t_j + 1])$ sub C, we path-homotope that restriction of γ to a path between t_j and t_{j + 1} inside B cap C [as B cap C = S^{n - 1} × (-\epsilon, \epsilon), this uses $n \ge 2$] after gluing, get the desired loop avoiding C – B \square

first part of this argument adapts to a proof of:

<u>Thm</u>	if i : B to X and j : C to X are
	inclusions of open subsets s.t.
	X = B cup C
	Dean Ciamath campactae

B cap C is path-connected, then for all x in B cap C,

every elt of $\pi_1(X, x)$ is a (finite) iterated composition of elts of the images of

$$i_* : \pi_1(B, x) \text{ to } \pi_1(X, x),$$

 $j_* : \pi_1(C, x) \text{ to } \pi_1(X, x)$

that is: $im(i_*)$, $im(j_*)$ jointly generate $\pi_1(X, x)$

Cor if B and C are simply connected above, then X is simply connected

Rem PS7, #8 asks for a setup where X is simply connected but B, C are not

Rem turns out: if B, C sub S^1 are open s.t. $S^1 = B \text{ cup } C$, B cap C is path-connected, then either $B = S^1 \text{ or } C = S^1 \text{ so thm does not give insight for } X = S^1$

Thm $\pi_1(S^1, x)$ is [what?] isomphe to (Z, +) for any x in S^1

say x = (1, 0) in S^1 sub R^2

[what map Z to $\pi_1(S^1, x)$ gives the iso?]

for all n in Z, let ω_n : [0, 1] to S^1 be def by

$$\omega_n(s) = (\cos(2\pi ns), \sin(2\pi ns))$$

then take $\Phi(n) = [\omega_n]$

Claim 1
$$\Phi$$
 is a homomorphism Z to $\pi_1(S^1, x)$ Claim 2 Φ is bijective

Pf of Claim 1 want $[\omega_m] * [\omega_n] = [\omega_{m+n}]$

let p : R to S^1 be
$$p(x) = (cos(2\pi x), sin(2\pi x))$$
 [draw]

for any a, b in Z, let ω_{a} , b} : [0, 1] to R be

$$\dot{\omega}_{a}$$
 (a, b)(s) = (1 – s)a + sb

if b - a = n, then $\omega_n = p \circ \omega_{a, b}$ so it remains to show

$$[\dot{\omega}_{a, b}] * [\dot{\omega}_{b, c}] = [\dot{\omega}_{a, c}]$$

this is eas(ier)