Assignment 2

Topics: Limit, Continuity, Differentiability.

Definition: Let $f: \mathbb{C} \to \mathbb{C}$ be defined around a point z_0 (not necessarily at z_0) in \mathbb{C} . We say that the limit of f(z) at z_0 exists and equal to number $\ell \in \mathbb{C}$, denoted by

$$\lim_{z \to z_0} f(z) = \ell$$

 $\text{if for each } \epsilon \text{ there is a } \delta > 0 \text{ such that } |f(z) - f(z_0)| < \epsilon \quad \text{whenever} \quad |z - z_0| < \delta.$

- 1. Use $\epsilon \delta$ definition to show that $\lim_{z \to z_0} \alpha = \alpha$. and $\lim_{z \to z_0} z = z_0$. (Here $\alpha \in \mathbb{C}$ is a given constant.)
- 2. By producing two paths, show that limit of the following functions at a given point z_0 do not exists.

(a)
$$f(z) = \left(\frac{z}{\overline{z}}\right)^2$$
 at $z_0 = 0$

- (b) $f(z) = z^{1/2}$ at $z_0 = -1$. Here f(z) is taken to be the principal branch.
- 3. Let $\lim_{z \to z_0} f_1(z) = \ell_1$ and $\lim_{z \to z_0} f_2(z) = \ell_2$. Then prove (by using $\epsilon \delta$ definition) any two of the following facts:

(a)
$$\lim_{z \to z_0} (f_1(z) + f_2(z)) = \ell_1 + \ell_2$$
.

(b)
$$\lim_{z \to z_0} (f_1(z) \cdot f_2(z)) = \ell_1 \cdot \ell_2.$$

(c)
$$\lim_{z \to z_0} \left(\frac{f_1(z)}{f_2(z)} \right) = \frac{\ell_1}{\ell_2}$$
 provided $\ell_2 \neq 0$.

(d) For a given
$$\alpha \in \mathbb{C}$$
, $\lim_{z \to z_0} (\alpha \cdot f_1(z)) = \alpha \cdot \ell_1$.

(e) Suppose
$$f(z) = u(x,y) + \iota v(x,y)$$
 for $z = x + \iota y \in \mathbb{C}$. Then at $z_0 = x_0 + \iota y_0$ in \mathbb{C}

$$\lim_{z \to z_0} f(z) = a + \iota b \iff \lim_{(x,y) \to (x_0,y_0)} u(x,y) = a \& \lim_{(x,y) \to (x_0,y_0)} v(x,y) = b.$$

- 4. Define the continuity of f(z) at a point z_0 . Use the above facts to prove the following:
 - (a) All polynomials are continuous on entire complex plane $\mathbb C.$
 - (b) All rationals functions $R(z) = \frac{f(z)}{g(z)}$ are continuous on whole complex plane except where g(z) = 0.