平面解析几何

- 两点距离 $d(A,B) = |AB| = \sqrt{\left(x_2 x_1\right)^2 + \left(y_2 y_1\right)^2}$
- 中点公式 $x = \frac{x_1 + x_2}{2}, y = \frac{y_1 + y_2}{2}$

直线

- 直线 $y = kx + b(k \neq 0)$ 的斜率是k。垂直于x轴的直线斜率不存在
- 直线的一般式方程 Ax + By + C = 0 $(A^2 + B^2 \neq 0)$
- 过 $A(x_1,y_1)$, $B(x_2,y_2)$ 两点的直线方程 $k= an heta=rac{y_2-y_1}{x_2-x_1}(x_1
 eq x_2)=rac{\Delta y}{\Delta x}(\Delta x
 eq 0)$
- $l_1//l_2 \Leftrightarrow k_1 = k_2 \operatorname{\mathbb{E}} b_1 \neq b_2$ $l_1 \ni l_2 \operatorname{\mathbb{E}} h \Leftrightarrow k_1 = k_2 \operatorname{\mathbb{E}} b_1 = b_2$
- $l_1 \perp l_2 \Leftrightarrow A_1 A_2 + B_1 B_2 = 0 \Leftrightarrow k_1 k_2 = -1$
- 点 (x_1,y_1) 到直线的距离 $d=rac{|Ax_1+By_1+C|}{\sqrt{A^2+B^2}}$

圆

- 圆的方程 $(x-a)^2 + (y-b)^2 = r^2$
- 圆的一般方程 $x^2 + y^2 + Dx + Ey + F = 0$ $(D^2 + E^2 4F > 0)$

椭圆

- 椭圆标准方程 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ (a>b>0) 两个焦点在x轴上,坐标分别为 $F_1(-c,0),F_2(c,0)$,这里 $c^2=a^2-b^2$ 如果焦点在y轴上,则有(b>a>0)
- 离心率 $e = \frac{c}{a} = \sqrt{1 + \frac{b^2}{a^2}}$

双曲线

- 在平面內到两个定点 F_1, F_2 的距离之差的绝对值等于定值 $2a(0 < 2a < |F_1F_2|)$ 的点的轨迹叫做双曲线. 这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距
- 双曲线标准方程 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$
- 离心率 $e=\frac{c}{a}$ (c为半焦距)

抛物线

- ullet 平面内到一个定点F和一条定直线了 $l(F
 ot\in l)$ 的距离相等的点的轨迹叫做抛物线。 点F叫做抛物线的焦点,直线l叫做抛物线的准线,焦点到准线的距离(定长p)叫做抛物线的焦参数
- 抛物线的标准方程

$$y^2 = 2px(p > 0)$$

标准方程	$y^2=2px$	$egin{aligned} y^2 &= -2px \ (p>0) \end{aligned}$	$x^2 = 2py$	$x^2 = -2py$
	(p>0)	(p>0)	(p > 0)	(p > 0)
对称轴	x $=$	x $=$	y $\stackrel{.}{ ext{ }}$	y $\stackrel{\cdot}{=}$
开口	向右	向左	向上	向下
顶点	原点	原点	原点	原点
焦点坐标	$\left(\frac{p}{2},0\right)$	$\left(-rac{p}{2},0 ight)$	$\left(0,\frac{p}{2}\right)$	$\left(0,-rac{p}{2} ight)$
准线方程	$x = -rac{p}{2}$	$x-rac{p}{2}$	$y = -rac{p}{2}$	$y = \frac{p}{2}$