Amendments To The Claims

This Listing Of Claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claim 1 (Currently Amended): A process for the preparation of salt of a carboxylic acid with an aminoalcohol of formula:

$$R^1$$
 R^2
 R^2

wherein R^1 is selected from the group consisting of 2-thienyl, 2-furanyl, phenyl, 2-thienyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, 2-furanyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and phenyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and wherein R^2 is selected from the group consisting of C_{1-4} -alkyl, phenyl, C_{1-4} -alkyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and phenyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and phenyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy,

comprising asymmetrically hydrogenating a salt of a carboxylic acid with an aminoketone of formula:

wherein R¹ and R² are as defined above,

in the presence of a catalyst comprising a transition metal complex of a diphosphine

ligand.

Claim 2 (Previously Presented): The process of claim 1, wherein the carboxylic acid is selected from the group consisting of substituted C₁₋₁₈-alkanoic acids, substituted monocyclic aromatic acids and substituted bicyclic aromatic acids.

Claim 3 (Currently Amended): The process of claim 2, wherein R¹ is 2-thienyl, or thienyl 2-thienyl with at least one halogen, and R² is methyl or ethyl.

Claim 4 (Original): The process of claim 3, wherein the compound of formula II is selected from the group consisting of (S)-(-)-3-N-methylamino-1-(2-thienyl)-1-propanol, (S)-(-)-3-N-methyl-amino-1-(3-chloro-2-thienyl)-1-propanol, (R)-(+)-3-N-methylamino-1-(2-thienyl)-1-propanol and (R)-(+)-3-N-methylamino-1-(3-chloro-2-thienyl)-1-propanol.

Claim 5 (Previously Presented): The process of claim 4, wherein the transition metal is selected from the group consisting of rhodium, ruthenium or iridium.

Claim 6 (Previously Presented): The process of claim 5, wherein the diphosphine ligand is selected from the group consisting of:

$$P$$
—t-Bu P —PPh₂ P — P Ph₂ P — P Ph₂ P Ph₂ P Ph₂ P Ph₂ P Ph₃ P Ph₄ P Ph₅ P Ph₅ P Ph₆ P Ph₇ P Ph₇ P Ph₈ P Ph₉ P Ph₉

(S,S,S,S)-"Me-KetalPhos", (S)- and (R)-"MeO-BiPhep", and " $(R_{P_i}R_{P_i}S_{C_i}S_C)$ -DuanPhos".

Claim 7 (Currently Amended): The process of claim 6, wherein the compound of formulae Ia and/or Ib is obtained from it's corresponding salt with a carboxylic acid by hydrolysis in the presence of an alkali metal hydroxide or an alkaline earth metal hydroxide.

Claim 8 (Withdrawn): A salt of a carboxylic acid with an aminoketone of the formula:

$$O = \begin{pmatrix} R^1 \\ N \\ H \end{pmatrix}$$

wherein R^1 is 2-thienyl or 2-furanyl, each optionally substituted with one or more halogen atoms and/or one or more C_{1-4} -alkyl or C_{1-4} -alkoxy groups, and wherein R^2 is C_{1-4} -alkyl or phenyl, each optionally substituted with one or more halogen atoms and/or one or more C_{1-4} -alkyl or C_{1-4} -alkoxy groups.

Claim 9 (Withdrawn): The salt of claim 8, wherein the acid is selected from the group consisting of C_{1-18} -alkanoic acids,

(-)-2,3:4,6-di-O-isopropylidene-2-keto-L-gulonic acid,

(+)-2,3:4,6-di-*O*-isopropylidene-2-keto-D-gulonic acid, 2-keto-L-gulonic acid, 2-keto-D-gulonic acid, L-aspartic acid, D-aspartic acid, DL-aspartic acid, benzoic acid, 3-methyl-benzoic acid, salicylic acid, 1-naphthalene carboxylic acid and 2-naphthalenecarboxylic acid.

Currently 10 (Withdrawn): A salt of a carboxylic acid with an aminoalkohol of the formula:

$$R^{1}$$
 R^{2}
 R^{2}
 R^{2}

wherein R^1 is 2-furanyl or phenyl, each optionally substituted with one or more halogen atoms and/or one or more C_{1-4} -alkyl or C_{1-4} -alkoxy groups, and wherein R^2 is C_{1-4} -alkyl or phenyl, each optionally substituted with one or more halogen atoms and/or one or more C_{1-4} -alkyl or C_{1-4} -alkoxy groups, with the exception of salts, wherein the acid is (-)-2,3:4,6-di-O-isopropylidene-2-keto-L-gulonic acid or (+)-2,3:4,6-di-O-isopropylidene-2-keto-D-gulonic acid.

Claim 11 (Previously Presented): The process of claim 1, wherein the transitional metal complex of a diphosphine ligand is a transitional metal complex of an aryldiphosphine ligand or a biaryldiphosphine ligand.

Claim 12 (Previously Presented): The process of claim 1, wherein R¹ is 2-thienyl or optionally substituted with at least one halogen, and R² is methyl or ethyl.

Claim 13 (Previously Presented): The process of claim 1, wherein the transition metal is rhodium.

Claim 14 (Previously Presented): The process of claim 1, wherein the diphosphine ligand is selected from the group consisting of:

(S, S, S, S)-"Me-KetalPhos", (S)- and (R)-"MeO-BiPhep", and " $(R_{P_i}R_{P_i}S_{C_i}S_{C_i})$ -DuanPhos".

Claim 15 (Previously Presented): The process of claim 1, wherein the compound of formulae la and/or lb is obtained from its corresponding salt with a carboxylic acid by hydrolysis in the presence of an alkali metal hydroxide or an alkaline earth metal hydroxide.

Claim 16 (Previously Presented): The process of claim 2, wherein the substituted C₁₋₁₈-alkanoic acid is substituted with at least one C₁₋₆-alkyl, C₁₋₆-alkoxy, aryl, amino, protected carbonyl, halogen, hydroxyl or further carboxylic.

Claim 17 (Previously Presented): The process of claim 2, wherein the substituted monocyclic aromatic acid is substituted with at least one C₁₋₆-alkyl, C₁₋₆-alkoxy, halogen

or hydroxyl.

Claim 18 (Previously Presented): The process of claim 2, wherein the substituted bicyclic aromatic acid is substituted with at least one C_{1-6} -alkyl, C_{1-6} -alkoxy, halogen and hydroxyl.

Claim 19 (New): The process of Claim 1, wherein the catalyst is present in a catalytic amount.

Claim 20 (New): The process of Claim 1, wherein the carboxylic acid is a monocarboxylic acid.