

Region System - # of pickups.

Time interval

Neighboring regions

t=0 9:00pm region A

t=1 q:15 pm region B → demand

of pickups

Task 1 - Breaking NYL into regions 30 ryions

Task 2 -> Calculating historical data.

for every region.

15 min intervals -> # of pickups

Region Time interval # of pickups

S:15 pm 100

Each row = 1 scharate ride.

lickup time, lat, long instance

Time - Binning.

3 pickups

5:03 pm. 5:05 pm. 5:05 pm.

5: 20 pm.
5: 17 pm] -> 5:15 pm - 5:30 pm

intervals - (ount the # of pickups

data (an fluctuate. Irend a

We cannot predict with high accuracy for the next time interval.

Delhi

Variations - Trenda

	Day	Temperature	(°C)
0	1		32.2
1	2		23.4
2	3		21.3
3	4		39.0
4	5		39.3
5	6		36.2
6	7		26.1
7	8		22.0
8	9		33.7
9	10		28.8

less variations. Constant trend

Day 11 - Trend - Predictions more accurate

Smoothing -- more accurate prediction

Trend --

MA -> Moving average

EWMA -> Exponentially weighted MA.

Moving Averages (MA)

smooth out the data

avg along this window

window ? -> smoothing factor ?

	Day	Temperature (°C)	Rolling Mean (°C)	EWMA (α=0.9)	EWMA (α=0.5)
0	1	32.2	NaN	32.200000	32.200000
1	2	23.4	NaN NaN	24.280000	27.800000
2	3	21.3	25.633333	21.598000	24.550000
3	4	39.0	27.900000	37.259800	31.775000
4	5	39.3	33.200000	39.095980	35.537500
5	6	36.2	38.166667	36.489598	35.868750
6	7	26.1	33.866667	27.138960	30.984375
7	8	22.0	28.100000	22.513896	26.492188
8	9	33.7	27.266667	32.581390	30.096094
9	10	28.8	28.166667	29.178139	29.448047

$$\begin{array}{l} s_t = \underbrace{\alpha x_t + (1-\alpha) s_{t-1}}_{\boldsymbol{\alpha} x_t + \alpha (1-\alpha) x_{t-1} + (1-\alpha)^2} \mathbf{x}_{t-2} \\ = \underbrace{\alpha \left[x_t + (1-\alpha) x_{t-1} + (1-\alpha)^2 x_{t-2} + \underline{(1-\alpha)^3} x_{t-3} + \dots + (1-\alpha)^{t-1} x_1 \right] + (1-\alpha)^t x_0. \end{array}$$

Weighted moving average.

$$Day 3 \rightarrow \frac{(Day 1) + Day 2 + (Day 3)}{3}$$

Equal weight.

Weighing my urvent observation T past observation 1.

Exponentially decaying in nature.

Day
$$t-1 = x$$

 $+-\lambda = x^{2}$
 $+-\delta = x^{3} - \cdots$

$$S_t = \propto x_t + (1 - \alpha) S_{t-1}$$

$$7^{t-7} = q x^{t-7} + (1-x)^{2t-3}$$

$$\alpha = 0.0$$

$$S_{t} = 0.9 \times_{t} + 0.1 \left(0.9 \times_{t-1} + 0.1 S_{t-1}\right)$$

$$= 0.9 \times_{t} + \left(0.1 \times 0.9 \times_{t-1}\right) + \left(0.1\right)^{2} S_{t-1}$$

at - focus is more on current observations

more weightage to current observations

d 1 -> Some more weightege to past observations

d towards 1 -> less smoothing factor
d towards 0 -> More smoothing factor

- 1) Dividing our data into time intervals 15 min
- a) Smooth out the # of pickups for each interval.

Region ids --- Resumple -- Smin intervals.

Trequency /

time hinning # of pickups.

For each region and for each 15 min time interval

of pichups.

Smooth out the data -> MA - window -