Physics-informed reduced order model with conditional neural fields

NEURAL INFORMATION PROCESSING SYSTEMS

Minji Kim, Tianshu Wen, Kookjin Lee, Youngsoo Choi

Summary: We introduce **CNF-ROM structure** and its **physics-informed learning objective** to produce approximate solutions of spatio-temporal governing PDEs parametrized by μ .

Proposed Method

CNF-ROM structure

• Learn coordinate-based NN to approximate parametrized PDE solution.

- The coordinate-based solution (decoder output) is conditionally defined based on the low-dimensional latent state $\alpha \in \mathbb{R}^{d_{\alpha}}$. ([3])
- The parametrized neural ODE (PNODE) learns different velocities (trajectories) of latent states for each μ . ([1])

PINNs objective

• PDE residual loss is available for CNF-ROM: automatic differentiation for spatial derivatives and the chain rule for time derivatives!

$$\frac{\partial D_{\psi}(x,\alpha_{t,\mu})}{\partial t} = \frac{\partial D_{\psi}(x,\alpha_{t,\mu})}{\partial \alpha_{t,\mu}} f_{\theta}(\alpha_{t,\mu},t,\mu) \quad \text{Chain Rule for time derivatives!}$$

Trade-offs in imposing exact IC/BC ([2])

Limitation of Physics-informed Neural Networks (PINNs)

- Initial and boundary conditions (IC, BC) are not strictly met when added as loss terms.
- → We introduce an approximate distance function to impose hard constraints.

Limitation of R-function-based approximate distance function (ADF, ϕ)

- The second and higher-order derivatives of ϕ explode at the joining points of boundaries.
- \rightarrow We introduce an auxiliary CNF-ROM $v(x, t, \mu)$ to learn the first derivatives of \hat{u} .
- ightharpoonup Any second or higher-order derivatives of \hat{u} are approximated using the derivatives of v.

How to train?

We propose simultaneous learning objectives for both decoder and PNODE parameters.

1. Data matching Loss
$$L_{\mathsf{data}}(\psi, \theta) = \frac{1}{N_d} \sum_{(x,t,\mu) \in C_d} \|\hat{u}(x,t,\mu;\psi,\theta) - u(x,t,\mu)\|^2$$

2. PINN Loss $L_{\mathsf{PDE}}(\psi,\theta) = \frac{1}{N_o} \sum_{(x,t,\mu) \in C_o} \|\mathcal{F}(\hat{u}(x,t,\mu;\psi,\theta), v(x,t,\mu))\|^2$

- For data loss, solution data $u(x, t, \mu)$ on collocation points are given.
- For PINN loss, $\mathcal F$ is PDE residual function and v is used for second or larger order derivatives.

$\begin{array}{c} \textbf{MODEL} \\ \\ \textbf{DECODER} \quad D_{\psi}(x,\alpha_{t,\mu}) = \displaystyle\sum_{k=1}^{K} c_{\psi_{1,k}} \big(\alpha_{t,\mu}\,\big) s_{\psi_{2,k}}(x) + \text{bias} \\ \\ \textbf{PNODE} \quad \frac{d\alpha_{t,\mu}}{dt} = f_{\theta}(\alpha_{t,\mu}\,,t,\mu) \end{array}$

Imposing exact initial and boundary conditions

$$\hat{u}(x,t,\mu;\psi,\theta) = \phi(x,t)D_{\psi}(x,\alpha_{t,\mu}(\theta)) + u_0(x)$$

- $\phi(x,t) = 0$ holds on initial and boundary sets
- ψ, θ : parameters for decoder and PNODE, respectively
- C_d : collocation points C_o : inner collocation points
- N_d : # collocation points N_o : # inner collocation points

Train
$$v(x, t, \mu) = D_{\xi}(x, \beta_{t,\mu})$$
 via
$$L_{\operatorname{deriv}}(\xi, \theta) = \frac{1}{N_o} \sum_{(x,t,\mu) \in C_o} \left\| D_{\xi}(x, \beta_{t,\mu}(\theta)) - \partial_x \hat{u} \right\|^2$$

 \blacktriangleright Derivatives of v(x,t) do not suffer from ADF issue anymore.

PINN as fine-tuning objective; to learn without data

Scenario (a) Pre-training with data: $L_{\rm data}(\psi,\theta) + L_{\rm deriv}(\xi,\theta)$ Scenario (b) Fine-tuning with PINN: $L_{\rm PDE}(\theta) + L_{\rm deriv}(\theta)$

• Only update PNODEs parameter for fine-tuning, with the ROM perspective

Results

Loss trajectory for (a) → (b)

--- Exact Rel. Loss --- Exact Loss --- PINN Loss --- PINN starts at 4500 --- PINN starts at 4500 --- Exact Rel. Loss --- PINN starts at 4500 --- PINN starts at 4500 --- Exact Rel. Loss --- PINN best at 4500 --- PINN starts at 4500 --- PINN starts at 4500 --- PINN starts at 4500

Fine-tuning performance: parameter inter/extrapolation, time extrapolation

Heatmaps for the loss for (a, left) and (b, right) when μ = 15 (bottom), 20 (top)

• time > 1 corresponds to the time extrapolation region

References

[1] K. Lee and E. J. Parish. Parameterized neural ordinary differential equations: applications to computational physics problems. Proceedings of the Royal Society A, 477(2251):20210162, 2021.

[2] N. Sukumar and A. Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and Engineering, 389:114333, 2022.
[3] Y. Yin, M. Kirchmeyer, J. Franceschi, A. Rakotomamonjy, and P. Gallinari. Continuous PDE dynamics forecasting with implicit neural representations. In The Eleventh International Conference on Learning Representations, 2023.

K. Lee was supported by NSF under grant IIS #2338909. Y. Choi was supported by the U.S. Department of Energy, Office of Science, Office of Science