# Introductory Econometrics Heteroskedasticity

Monash Econometrics and Business Statistics

2022

## Recap

#### The multiple regression model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i, i = 1, 2, \dots n.$$

- A1 model is linear in parameters:  $y = X\beta + u$ .
- A2 columns of X are linearly independent.
- A3 conditional mean of errors is zero: E(u|X) = 0.
- A4 homoskedasticity and no serial correlation:  $Var(u|X) = \sigma^2 I_n$ .
- A5 errors are normally distributed:  $u|X \sim N(0, \sigma^2 I_n)$ .

#### What's next?

If all assumptions hold, linear regression can do amazing things.

But what can we do if one of the assumptions does not hold?

# Homoskedasticity

The multiple regression model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i, i = 1, 2, \dots n.$$

A4 homoskedasticity and no serial correlation:  $Var(u|X) = \sigma^2 I_n$ .

$$Var(u|X) = \begin{pmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{pmatrix}$$

#### Lecture Outline

- 1 Definition of heteroskedasticity
- 2 Causes of heteroskedasticity
- 3 Consequences of heteroskedasticity
- 4 Detecting heteroskedasticity
  - 4.1 Informal analysis
  - 4.2 The Breusch-Pagan test for heteroskedasticity
  - 4.3 The White test for heteroskedasticity
- 5 Heteroskedasticity-robust tests
  - 5.1 Heteroskedasticity-robust t tests
  - 5.2 Heteroskedasticity-robust F tests

## 1. Definition of heteroskedasticity

A4 homoskedasticity and no serial correlation:  $Var(u|X) = \sigma^2 I_n$ .

A4(a) homoskedasticity: 
$$Var(u_1|X) = .... = Var(u_n|X) = \sigma^2$$
.

A4(b) no serial correlation:  $Cov(u_i, u_j | X) = 0$  for all  $i \neq j$ .

When A4(a) does not hold, the error terms in u are heteroskedastic:

$$Var(u|X) = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{pmatrix}.$$

# 2. Causes of heteroskedasticity

#### Example:

Study of household expenditure on food: The variation in expenditure on food for the population of high income households may be greater than the variation for the population of low income households.

Var(y|income = low) < Var(y|income = middle) < Var(y|income = high).

► A 3D graphical representation of heteroskedasticity:



 $\blacktriangleright$  In this example, the variance of u is getting larger as x increases

# 2. Causes of heteroskedasticity

#### Other examples:

- Market volatility: The variance of a company's share price may be greater during periods of economic instability than during periods of economic stability.
- ► Information on group level instead of individual data: The variance of crime levels in different districts depends inversely on the population of each district.

# 3. Consequences of heteroskedasticity

- ► Heteroskedasticity does not affect A1-A3:
  - the OLS estimator remains unbiased.

- Heteroskedasticity violates A4:
  - the OLS estimator is no longer BLUE.
  - $Var(\hat{\beta}) \neq \sigma^2(X'X)^{-1}.$ 
    - default standard errors are incorrect.
      - default t and F tests are incorrect.

# 4. Detection heteroskedasticity

4.1 Informal analysis

4.2 The Breusch-Pagan test for heteroskedasticity

4.3 The White test for heteroskedasticity

# 4.1 Informal analysis

#### Example:

Study of household expenditure on food: The variation in expenditure on food for the population of high income households may be greater than the variation for the population of low income households.

$$Var(y|income = low) < Var(y|income = middle) < Var(y|income = high).$$

► Scatter plot of household food expenditure against income:



▶ The variation in expenditure on food does increase with income.

# 4.2 Testing for heteroskedasticity

#### Consider the linear regression equation

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i, i = 1, 2, \dots n.$$

By definition,

$$Var(u_i|x_{i1},...,x_{ik}) = E(u_i^2|x_{i1},...,x_{ik}) - [E(u_i|x_{i1},...,x_{ik})]^2$$
.

▶ Under A3 it holds that  $E(u_i|x_{i1},...,x_{ik})=0$ , so

$$Var(u_i|x_{i1},...,x_{ik}) = E(u_i^2|x_{i1},...,x_{ik}).$$

Under the homoskedasticity assumption,

$$Var(u_i|x_{i1},...,x_{ik}) = E(u_i^2|x_{i1},...,x_{ik}) = \sigma^2, i = 1,2,...,n.$$

# 4.2 Testing for heteroskedasticity

Suppose  $Var(u_i|x_{i1},...,x_{ik})$  depends on a set of variables  $(z_{i1},...,z_{iq})$ :

$$E(u_i^2|x_{i1},x_{i2},....,x_{ik}) = \delta_0 + \delta_1 z_{i1} + \delta_2 z_{i2} + ..... + \delta_q z_{iq}.$$

▶ The  $H_0$  that  $Var(u_i|x_{i1},...,x_{ik})$  is constant, is equivalent to

$$H_0: \delta_1 = \delta_2 = \dots = \delta_q = 0.$$

 $\triangleright$  Because we don't observe  $u_i^2$ , we can't estimate the equation

$$u_i^2 = E(u_i^2 | x_{i1}, x_{i2}, ...., x_{ik}) + \epsilon_i$$
  
=  $\delta_0 + \delta_1 z_{i1} + \delta_2 z_{i2} + .... + \delta_q z_{iq} + \epsilon_i$ .

# 4.2 The Breusch-Pagan test for heteroskedasticity

1. Obtain the OLS residuals  $\hat{u}_i$  for i = 1, ..., n from the model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i, i = 1, \dots, n.$$

2. Obtain the R-squared  $R_{\widehat{u}^2}^2$  from the auxiliary regression:

$$\widehat{u}_i^2 = \gamma_0 + \gamma_1 z_{i1} + \gamma_2 z_{i2} + \cdots + \gamma_q z_{iq} + v_i, \ i = 1, \dots, n.$$

3. Under  $H_0: \delta_1 = \cdots = \delta_q = 0$ , we have the test statistic:

$$BP = nR_{\widehat{u}^2}^2 \overset{asy}{\sim} \chi^2(q).$$

4. Reject  $H_0$  in favor of  $H_1:\delta_j\neq 0$  for some  $j=1,\ldots,q,$  if

$$BP_{calc} > \chi^2_{crit}(q)$$
.

# 4.2 The Breusch-Pagan test for heteroskedasticity

▶ An alternative way to conduct the BP test is to estimate

$$\widehat{u}_i^2=\gamma_0+\gamma_1z_{i1}+\gamma_2z_{i2}+.....+\gamma_qz_{iq}+v_i,\ i=1,\ldots,n,$$
 and perform a standard F test of  $H_0:\gamma_1=\gamma_2=.....=\gamma_q=0.$ 

- ▶ In both versions of the BP test, the variables  $(z_{i1}, z_{i2}, ..., z_{iq})$ :
  - ▶ can be a subset of the regressors  $(x_{i1}, x_{i2}, ..., x_{ik})$ .
  - can include variables that do not predict y.
  - as long as they may affect the variance.

# 4.2 The Breusch-Pagan test for heteroskedasticity Example:

$$nettfa_i = \beta_0 + \beta_1 inc_i + \beta_2 age_i + \beta_3 age_i^2 + u_i, i = 1, ..., n,$$

where *nettfa* is individual net financial assets (wealth) in \$1,000s, age is in years and inc is current income in \$1,000s.

Dependent Variable: NETTFA Method: Least Squares Included observations: 2017

| Variable                                                                                  | Coefficient                                      | Std. Error                                                                              | t-Statistic                             | Prob.                                   |
|-------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| C<br>INC<br>AGE<br>AGE^2                                                                  | -1.2042<br>0.8248<br>-1.3218<br>0.0256           | 15.2807<br>0.0603<br>0.7675<br>0.0090                                                   | -0.0788<br>13.6790<br>-1.7222<br>2.8406 | 0.9372<br>0.0000<br>0.0852<br>0.0045    |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>F-statistic<br>Prob(F-statistic) | 0.1229<br>0.1216<br>44.6045<br>93.9855<br>0.0000 | Mean dependent var<br>S.D. dependent var<br>Akaike info criterion<br>Durbin-Watson stat |                                         | 13.5950<br>47.5906<br>10.4355<br>1.9576 |

ightharpoonup Can save residuals, and run the OLS of  $\hat{u}^2$  on a constant and all the explanatory variables, or we can use Eviews



► Choosing Breusch-Pagan test in Eviews produces:

|  | Heteroskedasticity | Test: | Breusch-Pagan-Godfrey |
|--|--------------------|-------|-----------------------|
|--|--------------------|-------|-----------------------|

| F-statistic         | 4.5195    | Prob. F(3,2013)     | 0.0036 |
|---------------------|-----------|---------------------|--------|
| Obs*R-squared       | 13.4946   | Prob. Chi-Square(3) | 0.0037 |
| Scaled explained SS | 1918.2328 | Prob. Chi-Square(3) | 0.0000 |

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Included observations: 2017

| Variable                                      | Coefficient                                  | Std. Error                                  | t-Statistic                           | Prob.                                |
|-----------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------|--------------------------------------|
| C<br>INC<br>AGE<br>AGE <sup>2</sup> 2         | 7086.6544<br>133.0597<br>-591.6010<br>8.5657 | 11465.1527<br>45.2420<br>575.8554<br>6.7520 | 0.6181<br>2.9411<br>-1.0273<br>1.2686 | 0.5366<br>0.0033<br>0.3044<br>0.2047 |
| R-squared<br>F-statistic<br>Prob(F-statistic) | 0.0067<br>4.5195<br>0.0036                   | Mean dependent var                          |                                       | 1985.6194                            |

▶ When learning, it is better to do the steps yourself rather than to use Eviews options in order to make sure you understand the test.

# 4.3 The White test for heteroskedasticity

▶ The null hypothesis for the White test is the same as in BP:

$$H_0: E(u_i^2 \mid x_{i1}, x_{i2}, \dots, x_{ik}) = \sigma^2 \text{ for } i = 1, \dots, n.$$

However, its alternative hypothesis is different:

 $H_1$ : the variance is a smooth unknown function of  $x_{i1}, \ldots, x_{ik}$ .

▶ Hal White showed that a regression of  $\hat{u}^2$  on a constant,  $x_1$  to  $x_k$ ,  $x_1^2$  to  $x_k^2$  and all pairwise cross products of  $x_1$  to  $x_k$ , has the power to detect this general form of heteroskedasticity in large samples.

## 4.3 The White test for heteroskedasticity

Example with k = 3:

1. Obtain the OLS residuals  $\hat{u}_i$  for i = 1, ..., n from the model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + u_i, i = 1, ..., n.$$

2. Obtain the R-squared  $R_{\widehat{u}^2}^2$  from the auxiliary regression:

$$\widehat{u}_{i}^{2} = \gamma_{0} + \gamma_{1}x_{i1} + \gamma_{2}x_{i2} + \gamma_{3}x_{i3} + \alpha_{1}x_{i1}^{2} + \alpha_{2}x_{i2}^{2} + \alpha_{3}x_{i3}^{2} + \lambda_{1}x_{i1}x_{i2} + \lambda_{2}x_{i1}x_{i3} + \lambda_{3}x_{i2}x_{i3} + v_{i}, \ i = 1, \dots, n.$$

3. Under  $H_0: \gamma_1 = \gamma_2 = \gamma_3 = \alpha_1 = \alpha_2 = \alpha_3 = \lambda_1 = \lambda_2 = \lambda_3 = 0$ :

$$W = nR_{\widehat{u}^2}^2 \stackrel{asy}{\sim} \chi^2(9).$$

4. Reject  $H_0$  in favor of  $H_1$ : conditional heteroskedasticity, if

$$W_{calc} > \chi^2_{crit}(9)$$
.

## 4.3 The White test for heteroskedasticity

The auxiliary regression may have k + k(k+1)/2 regressors.

- Omit the cross-terms from the auxiliary regression.
- Or use a special case of the White test with:
- 2. Estimate the following auxiliary regression in step 2 instead:

$$\hat{u}_i^2 = \gamma_0 + \gamma_1 \hat{y}_i + \gamma_2 \hat{y}_i^2 + v_i, \ i = 1, \dots, n,$$

where  $\hat{y}_i$  is the predicted value of  $y_i$  from the model in step 1.

3. Step 3 and 4 test  $H_0$ :  $\gamma_1=\gamma_2=0$  versus  $H_1$ :  $\gamma_1$  and/or  $\gamma_2\neq 0$ .

The logic behind using  $\hat{y}_i$  at step 2 is that

$$\begin{split} \widehat{y}_{i} &= \widehat{\beta}_{1} x_{i1} + \widehat{\beta}_{2} x_{i2} + \widehat{\beta}_{3} x_{i3}, \\ \widehat{y}_{i}^{2} &= (\widehat{\beta}_{1} x_{i1} + \widehat{\beta}_{2} x_{i2} + \widehat{\beta}_{3} x_{i3})^{2} \\ &= \widehat{\beta}_{1}^{2} x_{i1}^{2} + \widehat{\beta}_{2}^{2} x_{i2}^{2} + \widehat{\beta}_{3}^{2} x_{i3}^{2} + 2\widehat{\beta}_{1} \widehat{\beta}_{2} x_{i2} x_{i1} + 2\widehat{\beta}_{1} \widehat{\beta}_{3} x_{i1} x_{i3} + 2\widehat{\beta}_{2} \widehat{\beta}_{3} x_{i2} x_{i3}. \end{split}$$

► In the financial wealth example, choosing the White test in Eviews produces:

#### Heteroskedasticity Test: White

| F-statistic         | 3.5660    | Prob. F(8,2008)     | 0.0004 |
|---------------------|-----------|---------------------|--------|
| Obs*R-squared       | 28.2544   | Prob. Chi-Square(8) | 0.0004 |
| Scaled explained SS | 4016.2962 | Prob. Chi-Square(8) | 0.0000 |

Test Equation: Dependent Variable: RESID<sup>A</sup>2 Method: Least Squares Included observations: 2017

| Variable          | Coefficient | Std. Error         | t-Statistic | Prob.    |
|-------------------|-------------|--------------------|-------------|----------|
| С                 | 168619.     | 196178.            | 0.8595      | 0.3902   |
| INC^2             | 0.35686     | 1.51943            | 0.2349      | 0.8143   |
| INC*AGE           | -62.1345    | 40.2406            | -1.5441     | 0.1227   |
| INC*AGE^2         | 0.88247     | 0.47739            | 1.8485      | 0.0647   |
| INC               | 1091.73     | 793.845            | 1.3752      | 0.1692   |
| AGE <sup>2</sup>  | 874.156     | 719.881            | 1.2143      | 0.2248   |
| AGE*AGE^2         | -15.5884    | 11.3525            | -1.3731     | 0.1699   |
| AGE               | -20478.0    | 19685.7            | -1.0402     | 0.2984   |
| AGE^2^2           | 0.09812     | 0.06521            | 1.5046      | 0.1326   |
| R-squared         | 0.0140      | Mean dependent var |             | 1985.619 |
| F-statistic       | 3.5660      | •                  |             | 2.779216 |
| Prob(F-statistic) | 0.0004      |                    |             |          |

- ▶ Eviews does not have the alternate form of the White test.
- ► Save the OLS residuals and predictions and run the regression:

Dependent Variable: UHAT\*2 Method: Least Squares Included observations: 2017

| Variable                                      | Coefficient                | Std. Error       | t-Statistic      | Prob.            |
|-----------------------------------------------|----------------------------|------------------|------------------|------------------|
| C<br>NETTFAHAT                                | 277.66<br>29.622           | 1007.7<br>93.166 | 0.2755<br>0.3179 | 0.7829<br>0.7506 |
| NETTFAHAT^2                                   | 2.8195                     | 1.7440           | 1.6167           | 0.1061           |
| R-squared<br>F-statistic<br>Prob(F-statistic) | 0.0078<br>7.8745<br>0.0004 | Mean depen       | dent var         | 1985.6           |

 $ightharpoonup n imes R^2 = 2017 imes 0.0078 = 15.73 > 5.99 = 5\%$  critical value  $\chi^2(2)$ .

## 5 Heteroskedasticity-robust tests

Recall that the two consequences of heteroskedasticity are:

- ▶ The OLS estimator of  $\beta$  is no longer BLUE.
- ▶ The standard t and F tests are no longer valid.

So we cannot conduct reliable hypothesis tests anymore!

► Hal White proposed alternative hypothesis tests which are valid in large samples, even when heteroskedasticity is present.

## 5.1 Heteroskedasticity-robust t tests

In the presence of heteroskedasticity

▶ the standard t test statistic for testing  $H_0$ :  $\beta_j = 0$  is

$$\frac{\widehat{\beta}_j}{se(\widehat{\beta}_j)} \nsim t_{(n-k-1)}.$$

• the White t test statistic for testing  $H_0: \beta_j = 0$  is

$$\frac{\widehat{eta}_j}{\mathsf{se}^w(\widehat{eta}_i)} \stackrel{\mathsf{asy}}{\sim} t_{(n-k-1)}.$$

 $se(\widehat{eta}_j)$  is the OLS standard error and  $se^w(\widehat{eta}_j)$  the White standard error.

## 5.1 Heteroskedasticity-robust t tests

Example: the bivariate linear regression model

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

$$se(\widehat{\beta}_j) = \frac{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2 \widehat{\sigma}^2}}{\sum_{i=1}^n (x_i - \overline{x})^2} \text{ with } \widehat{\sigma}^2 = \frac{SSR}{(n-2)}$$

$$se^{w}(\widehat{\beta}_{j}) = \frac{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \widehat{u}_{i}^{2}}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \text{ with } \widehat{u}_{i}^{2} = (y_{i} - \widehat{\beta}_{0} - \widehat{\beta}_{1}x_{i})^{2}$$

▶ Back to the financial wealth example. The option of robust standard errors is under the Options tab of the equation window:





#### ▶ With this option, we get the following results:

Dependent Variable: NETTFA
Method: Least Squares
Included observations: 2017
White heteroskedasticity-consistent standard errors & covariance

| Variable               | Coefficient | Std. Error t-Statistic |         | Prob.   |
|------------------------|-------------|------------------------|---------|---------|
| С                      | -1.2042     | 19.7337 -0.0610        |         | 0.9513  |
| INC                    | 0.8248      | 0.1039                 | 7.9408  | 0.0000  |
| AGE                    | -1.3218     | 1.1055                 | -1.1956 | 0.2320  |
| AGE^2                  | 0.0256      | 0.0141                 | 1.8066  | 0.0710  |
| R-squared              | 0.1229      | Mean dependent var     |         | 13.5950 |
| F-statistic            | 93.9855     | Durbin-Watson stat     |         | 1.9576  |
| Prob(F-statistic)      | 0.0000      | Wald F-statistic       |         | 40.1225 |
| Prob(Wald F-statistic) | 0.0000      |                        |         |         |

#### ► Compare with the original regression results:

Dependent Variable: NETTFA Method: Least Squares Included observations: 2017

| Coefficient                                      | Std. Error                                                                              | t-Statistic                                                                                                                                                    | Prob.                                                                                                                                                                                                                       |
|--------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -1.2042<br>0.8248<br>-1.3218<br>0.0256           | 15.2807<br>0.0603<br>0.7675<br>0.0090                                                   | -0.0788<br>13.6790<br>-1.7222<br>2.8406                                                                                                                        | 0.9372<br>0.0000<br>0.0852<br>0.0045                                                                                                                                                                                        |
| 0.1229<br>0.1216<br>44.6045<br>93.9855<br>0.0000 | Mean dependent var<br>S.D. dependent var<br>Akaike info criterion<br>Durbin-Watson stat |                                                                                                                                                                | 13.5950<br>47.5906<br>10.4355<br>1.9576                                                                                                                                                                                     |
|                                                  | -1.2042<br>0.8248<br>-1.3218<br>0.0256<br>0.1229<br>0.1216<br>44.6045<br>93.9855        | -1.2042 15.2807<br>0.8248 0.0603<br>-1.3218 0.7675<br>0.0256 0.0090<br>0.1229 Mean depen<br>0.1216 S.D. depend<br>44.6045 Akaike info c<br>93.9855 Durbin-Wats | -1.2042 15.2807 -0.0788<br>0.8248 0.0603 13.6790<br>-1.3218 0.7675 -1.7222<br>0.0256 0.0090 2.8406<br>0.1229 Mean dependent var<br>0.1216 S.D. dependent var<br>44.6045 Akaike info criterion<br>93.9855 Durbin-Watson stat |

### 5.2 Heteroskedasticity-robust F tests

F test for testing multiple linear restrictions on the coefficients.

▶ The heteroskedasticity robust version of the F statistic is a called a

heteroskedasticity-robust Wald statistic.

Eviews reports this statistic if we choose the White option.

Example: value of the statistic is 40.1225 with a p-value of 0.00.

### 5 Heteroskedasticity-robust tests

Why not always use heteroskedastic-robust test statistics?

- ▶ OLS standard errors are only valid under homoskedasticity.
- White's standard errors are valid with homo- or heteroskedasticity.
- We are never certain whether homoskedasticity holds.

#### However,

- ▶ The tests based on OLS standard errors are exact tests.
- Heteroskedasticity-robust tests are asymptotic.
- In small samples, heteroskedasticity-robust tests may be misleading.

## Summary

- ▶ The assumption of homoskedastic errors may not be appropriate.
- ▶ OLS will still be unbiased even if the errors are heteroskedastic.
- ▶ However, the usual OLS standard errors will not be correct.
- We learnt how to test for heteroskedasticity.
- ▶ If heteroskedasticity is found, we can still use OLS.
- ▶ But we use robust standard errors for inference.