MATH 180A (Lecture A00)

mathweb.ucsd.edu/~ynemish/teaching/180a

Today: Gaussian (Normal) distribution Normal approximation Next: ASV 4.1

Week 6:

Homework 4 due Friday, February 17

Suppose
$$X \sim N(0|1)$$
. What is $P(|X| \le 1)$?
$$P(-1 \le X \le 1) \qquad P(t) = \frac{1}{2\pi} e^{-\frac{t^2}{2}}$$

$$=\int_{-1}^{1} \varphi(t) dt = \frac{1}{2\pi} \int_{-1}^{1} e^{-t^{2}/2} dt$$

Cannot use the polar coordinate trick.

$$P(x) := \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dt - CDF \text{ of } X \sim N(0,1)$$

- no simple explicit formula
- table of values of P(x) (for x 20)

Normal table of values (Appendix E in textbook)

z 0.00 0.01 0.02 0.03 0.04) 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

This table gives $P(Z \le z)$ where $Z \sim N(0,1)$, $Z = x_i + y_j$ Example $P(0.91) = P(Z \le 0.91) = P(Z \le 0.9 + 0.01) \approx 0.8186$

0.8289

0.8315

0.8340

0.8264

Fact:
$$P(-x) = (-P(x))$$

0.8186

0.8159

Fact:
$$P(-x) = 1 - P(x)$$

 $P(Z > 0.24) = 1 - P(Z \le 0.24) = 1 - P(0.24) = 1 - 0.5948 = 0.4052$

$$P(-0.28 \angle Z \angle 0.59) = P(0.59) - P(-0.28) = P(0.59) - (1-P(0.28))$$

$$= P(0.59) + P(0.28) - 1$$

0.8212

0.8238

$$0.8106$$
 0.8133
 0.8365
 0.8389

Normal table of values

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6 103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389

Find
$$x_0 \in \mathbb{R}$$
 such that $P(|Z| > x_0) \approx 0.704$
 $P(|Z| > x_0) = P(|Z| > x_0) + P(|Z| < -x_0) =$
 $= 1 - P(x_0) + (1 - P(x_0)) = 2 - (1 - P(x_0)) \approx 0.704$
 $1 - P(x_0) \approx 0.352$, $P(x_0) \approx 1 - 0.352 = 0.648$

 $\mathcal{X}_{\bullet} \approx 0.38$

Mean and variance of
$$X \sim N(0,1)$$

$$E(X) = \int_{-\infty}^{+\infty} t f_{x}(t) dt = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} t \cdot e^{-\frac{t^{2}}{2}} dt = \frac{1}{(2\pi)^{2}} e^{-\frac{t^{2}}{2}} \int_{-\infty}^{+\infty} e^{-\frac{t^{2}}{2}} dt$$

$$\frac{d}{dt}\left(-\frac{t^{2}}{2}\right) = te^{-\frac{t^{2}}{2}}$$

$$\frac{d}{dt}\left(-\frac{t^{2}}{2}\right$$

normal (Gaussian) distribution with mean u and variance 62 if the PDF of X is given by $f_{X}(x) = \frac{\left(x - \mu\right)^{2}}{\left(2\pi 6\right)}$ We write X~N(µ, 52) Using the density we can compute $E(X) = \mu \quad Var(X) = 6^2$ "Gaussian distribution" = family of distributions

General normal distribution N(µ,6°)

Def Let MER and 6>0. Random variable X has

Relation between X~N(µ,6) and Z~N(0,1) Proposition Let X~N(µ,62), a≠0, b∈ R. Then the random variable a X+b has normal distribution, ax+b~ N(aprb, a262) Using this proposition any Gaussian random variable can be written as a shifted and rescaled standart normal. E.g., if 6>0, µ ∈ R and Z~N(0,1), then 62+µ~N(µ, 62) If X~ N(µ, 62), then E(X) = ; Var (X) = If X~N(1,62), then X-1 ~N(0,1)

Find
$$P(X < 0.91)$$
; $P(X > 0.82)$; $P(-0.24 < X < 0.88)$

If $X \sim N(-3.4)$, then $\frac{X+3}{2} \sim N(0.1)$, so

If
$$X \sim N(-3, 4)$$
, then $\frac{X+3}{2} \sim N(0,1)$, so
$$P(X<0.91) = P(\frac{X+3}{2} < \frac{0.91+3}{2}) = P(\frac{X+3}{2} < 1.955)$$

$$= P(1.955)$$

$$= \mathcal{P}(1.34) - \mathcal{P}(1.38)$$

The message:

If we have independent and identically distributed random variables $X_1, X_2, ..., X_n$ with $E(X_1) = \mu$, $Var(X_1) = \delta^2$, then for any a < b

$$\lim_{n\to\infty} P\left(a < \frac{x_1 + x_2 + \dots + x_n - \mu \cdot n}{\ln 6} < b\right) = \int_{a}^{b} \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} dt$$

CENTRAL LIMIT THEOREM

Today: X, ~ Ber (p): Last lecture: general case