DSC 1408 Representation Learning

Lecture 24 | Part 1

Autoencoders

Generalizing PCA

- We started the quarter with PCA.
- ► PCA is a **linear** method.

We can generalize upon PCA to derive nonlinear representation learners.

Representation Learning

- At a high level, representation learning finds an encoding function encode(\vec{x}): $\mathbb{R}^d \to \mathbb{R}^k$.
- ► Ideally, this function captures useful aspects of the data distribution.

Example: PCA

In PCA, we encode a point \vec{x} by projecting it onto the top k eigenvectors of data covariance matrix:

encode(\vec{x}) = $U^T \vec{x}$

Decoding

- Encoding can decrease dimensionality.
- Intuitively, we may want to preserve as much "information" about \vec{x} as possible.
- We should be able to decode the encoding and reconstruct the original point, approximately.

 $\vec{x} \approx \text{decode}(\text{encode}(\vec{x}))$

Example: PCA

In PCA, given a point $\vec{z} \in \mathbb{R}^k$ in the new representation, the reconstruction is:

 $decode(\vec{z}) = U\vec{z}$

Representation Learning

Goal: find an encoder (and decoder) such that

encode(decode(\vec{x})) $\approx \vec{x}$

Reconstruction Error

- In general, decode(encode(\vec{x})) will not be exactly equal to \vec{x} .
- ▶ One way of quantifying the difference w.r.t. data is the (ℓ_2) reconstruction error:

$$\sum_{i=1}^{n} \|\vec{x}^{(i)} - \text{decode}(\text{encode}(\vec{x}^{(i)}))\|^2$$

Note

Of course, it is trivial to find an encoder/decoder with zero reconstruction error:

$$encode(\vec{x}) = \vec{x} = decode(\vec{x})$$

- Such an encoder is not useful.
- Instead, we constrain the form of the encoder so that it cannot simply copy the input.

Example: PCA

- Assume encode(\vec{x}) = $U\vec{x}$, for some matrix U whose $k \le d$ columns are orthonormal.
 - ► That is, the encoding is an orthogonal projection.
- ▶ **Goal:** find *U* to minimize reconstruction error on a dataset $\vec{x}^{(1)}, ..., \vec{x}^{(d)}$.
- ► **Solution:** pick columns of *U* to be top *k* eigenvectors of data covariance matrix.

Now

- encode(\vec{x}) = $U\vec{x}$ is a linear encoding function.
- ▶ What if we let encode be nonlinear?
- ► That is, let's generalize PCA.

Encoder as a Neural Network

- Assume encode(\vec{x}) is a (deep) **neural network**.
- Output is not a single number, but k numbers.

 I.e., a vector in \mathbb{R}^k

Can use nonlinear activations, have more than one laver.

Encoder as a Neural Network

Encoder as a Neural Network

- ► The output of the encoder is the new representation.
- ► To train the encoder, we'll need a **decoder**.

Decoder as a Neural Network

- Assume $decode(\vec{z})$ is a (deep) **neural network**.
- Output is not a single number, but d numbers.
 - \triangleright Same dimensionality as original input, \vec{x} .
 - ▶ I.e., a vector in \mathbb{R}^d

Can use nonlinear activations, have more than one layer.

Decoder as a Neural Network

decode(encode(\vec{x})) as a NN

Together, decode(encode(\vec{x})) is a neural network $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^d$.

$decode(encode(\vec{x}))$ as a NN

Training

- ► We want $H(\vec{x}) \approx \vec{x}$
- One approach: train network to minimize reconstruction error.

$$\sum_{i=1}^{n} \|\vec{x}^{(i)} - H(\vec{x}^{(i)})\|^{2} = \sum_{i=1}^{n} \sum_{j=1}^{d} (\vec{x}_{j}^{(i)} - (H(\vec{x}^{(i)}))_{j})^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} (\vec{x}_{j}^{(i)} - a_{j}^{(2)}(\vec{x}^{(i)}))^{2}$$

Training

- The network can be trained using gradient-based methods.
 - E.g., stochastic gradient descent.
- Note: this is an unsupervised learning problem.

Autoencoders

When the encoder/decoder are NNs, $H(\vec{x}) = \text{decode}(\text{encode}(\vec{x}))$ is an autoencoder.

Generalizing PCA

We can view autoencoders as generalizations of PCA.

Consider again the encoder that performs an orthogonal projection:

encode(
$$\vec{x}$$
) = $U^T \vec{x}$

$$decode(\vec{z}) = U\vec{z}$$

encode/decode are neural networks (with linear activations).

Exercise

True/False: training an autoencoder to minimize reconstruction error will result in the same $encode(\vec{x})$ function as PCA.

Answer: False

► PCA minimizes reconstruction error **subject to** the constraint that the columns of *U* are orthonormal.

- Without the orthonormality constraint, the autoencoder learns a different encoding.
- However, the autoencoder learns a (non-orthogonal) projection into the same space as PCA.

In other words...

- PCA is an autoencoder trained with an additional orthonormality constraint.
- Cannot easily be learned by gradient descent; find eigenvectors instead.

Uses of Autoencoders

- Like PCA, autoencoders can be used for dimensionality reduction.
- Unlike PCA, autoencoders can learn nonlinear maps.
- Encoded data can be used as input to predictive model, etc.

Dimensionality Reduction

If the dimensionality of the encoder is the same as the dimensionality of \vec{x} , the autoencoder can learn to simply reproduce the input.

Dimensionality Reduction

 \triangleright As such, we choose number of hidden nodes < d.

Called an undercomplete autoencoder.

Example

¹By Michela Massi - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=80176900

Other Uses

However, sometimes it is useful for hidden layer to have greater dimensionality.

Denoising Autoencoders

- One such case is in denoising autoencoders.
- ldea: train an autoencoder to remove noise.
- Add random noise to each $\vec{x}^{(i)}$ to get $\tilde{x}^{(i)}$.
- Train network so that $H(\tilde{x}^{(i)}) \approx \vec{x}$.

DSC 1408 Representation Learning

Lecture 24 | Part 2

Conclusion of DSC 140B

Recap

- DSC 140B was about representation learning.
- We saw PCA, Laplacian Eigenmaps, RBF Networks, neural networks and deep learning
- Learned ML methods, but also theoretical tools for understanding why other ML methods work

More Deep Learning

- We have only scratched the surface of deep learning.
 - LSTMs, transformer models, graph neural networks, deep RL, GANs, etc.
- In this class, we focused on the fundamental principles behind NNs.
- You might consider taking CSE 151B.

Thanks!