

#### **N-Ch 20V Fast Switching MOSFETs**

### **General Description**

The 06N02 is N-channel MOSFET device that features a low on-state resistance and excellent switching characteristics, and designed for low voltage high current applications such as DC/DC converter with synchronous rectifier.

#### **Features**

- Simple Drive Requirement
- Low Gate Charge
- Fast Switching
- Ultra-Low RDS(on)
- Green Device Available

## **Product Summery**

| BVDSS | RDSON | ID  |  |  |
|-------|-------|-----|--|--|
| 20V   | 6mΩ   | 60A |  |  |

# **Applications**

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- DC/DC converter
- Motor drives

# TO252 / TO251 Pin Configuration



#### **Absolute Maximum Ratings**

| Symbol                                | Parameter                                       | Rating     | Units |  |
|---------------------------------------|-------------------------------------------------|------------|-------|--|
| $V_{DS}$                              | Drain-Source Voltage                            | 20         | V     |  |
| $V_{GS}$                              | Gate-Source Voltage                             | ±20        | V     |  |
| I <sub>D</sub> @T <sub>C</sub> =25°C  | Continuous Drain Current <sup>1</sup>           | 60         | Α     |  |
| I <sub>D</sub> @T <sub>C</sub> =100°C | Continuous Drain Current 1                      | 50         | А     |  |
| I <sub>DM</sub>                       | Pulsed Drain Current <sup>2</sup>               | 180        | А     |  |
| EAS                                   | Single Pulse Avalanche Energy <sup>3</sup>      | 140        | mJ    |  |
| I <sub>AS</sub>                       | Avalanche Current                               | 50         | А     |  |
| P <sub>D</sub> @T <sub>C</sub> =25°C  | Total Power Dissipation                         | 60         | W     |  |
| T <sub>STG</sub>                      | Storage Temperature Range                       | -55 to 175 | °C    |  |
| $T_J$                                 | Operating Junction Temperature Range -55 to 175 |            | °C    |  |

# **Thermal Data**

| Symbol            | Parameter                                        | Тур. | Max. | Unit |  |
|-------------------|--------------------------------------------------|------|------|------|--|
| $R_{	heta JA}$    | Thermal Resistance Junction-ambient <sup>1</sup> |      | 50   | °C/W |  |
| R <sub>0</sub> JC | Thermal Resistance Junction -Case <sup>1</sup>   |      | 2.5  | °C/W |  |

# CMD06N02N/CMU06N02N



# **N-Ch 20V Fast Switching MOSFETs**

# Electrical Characteristics ( $T_J$ =25 $\,^{\circ}\mathbb{C}$ , unless otherwise noted)

| Symbol                               | Parameter                                      | Conditions                                                         | Min. | Тур.  | Max. | Unit |
|--------------------------------------|------------------------------------------------|--------------------------------------------------------------------|------|-------|------|------|
| BV <sub>DSS</sub>                    | Drain-Source Breakdown Voltage                 | V <sub>GS</sub> =0V , I <sub>D</sub> =250uA                        | 20   |       |      | V    |
| $\triangle BV_{DSS}/\triangle T_{J}$ | BVDSS Temperature Coefficient                  | Reference to 25℃ , I <sub>D</sub> =250uA                           |      | 0.015 |      | V/°C |
| Rds(on)                              | Static Drain-Source On-Resistance <sup>2</sup> | V <sub>GS</sub> =10V , I <sub>D</sub> =15A                         |      | 5.5   | 6    | mΩ   |
|                                      |                                                | V <sub>GS</sub> =4.5V , I <sub>D</sub> =12A                        |      | 7.8   | 9    |      |
| VGS(th)                              | Gate Threshold Voltage                         | $V_{GS}=V_{DS}$ , $I_D=250uA$                                      |      |       | 2    | V    |
| I <sub>DSS</sub>                     | Drain-Source Leakage Current                   | $V_{DS}$ =20V , $V_{GS}$ =0V , $T_J$ =25 $^{\circ}\mathrm{C}$      |      |       | 1    | uA   |
|                                      |                                                | $V_{DS}$ =20V , $V_{GS}$ =0V , $T_J$ =150 $^{\circ}\mathrm{C}$     |      |       | 10   |      |
| I <sub>GSS</sub>                     | Gate-Source Leakage Current                    | $V_{GS}$ = $\pm 20V$ , $V_{DS}$ = $0V$                             |      |       | ±100 | nA   |
| gfs                                  | Forward Transconductance                       | V <sub>DS</sub> =10 V , I <sub>D</sub> =15A                        |      | 25    |      | S    |
| $R_g$                                | Gate Resistance                                | V <sub>DS</sub> =0V , V <sub>GS</sub> =0V , f=1MHz                 |      | 1.7   |      | Ω    |
| Qg                                   | Total Gate Charge                              | V <sub>DS</sub> =10V , V <sub>GS</sub> =4.5V , I <sub>D</sub> =30A |      | 22    |      |      |
| Q <sub>gs</sub>                      | Gate-Source Charge                             |                                                                    |      | 11    |      | nC   |
| $Q_{gd}$                             | Gate-Drain Charge                              |                                                                    |      | 7.0   |      |      |
| $T_{d(on)}$                          | Turn-On Delay Time                             |                                                                    |      | 15    |      |      |
| Tr                                   | Rise Time                                      | $V_{DD}$ =10V , $V_{GS}$ =10V , $R_{G}$ =3.3 $\Omega$              |      | 35    |      | 20   |
| $T_{d(off)}$                         | Turn-Off Delay Time                            | I <sub>D</sub> =30A                                                |      | 28    |      | ns   |
| T <sub>f</sub>                       | Fall Time                                      |                                                                    |      | 20    |      |      |
| Ciss                                 | Input Capacitance                              |                                                                    |      | 1200  |      |      |
| Coss                                 | Output Capacitance                             | V <sub>DS</sub> =15V , V <sub>GS</sub> =0V , f=1MHz                |      | 500   |      | pF   |
| C <sub>rss</sub>                     | Reverse Transfer Capacitance                   |                                                                    |      | 250   |      |      |

## **Diode Characteristics**

| Symbol          | Parameter                              | Conditions                                            | Min. | Тур. | Max. | Unit |
|-----------------|----------------------------------------|-------------------------------------------------------|------|------|------|------|
| Is              | Continuous Source Current <sup>1</sup> | V <sub>G</sub> =V <sub>D</sub> =0V , Force Current    |      |      | 60   | Α    |
| I <sub>SM</sub> | Pulsed Source Current <sup>2</sup>     | VG-VD-OV, Force Current                               |      |      | 180  | Α    |
| $V_{SD}$        | Diode Forward Voltage <sup>2</sup>     | $V_{GS}$ =0V , $I_{S}$ =20A, $T_{J}$ =25 $^{\circ}$ C |      |      | 1.2  | V    |

<sup>1.</sup> The data tested by surface mounted on a 1 inch<sup>2</sup> FR-4 board with 2OZ copper.

<sup>2.</sup>The data tested by pulsed , pulse width  $\leq$  300us , duty cycle  $\leq$  2% 3.The EAS data shows Max. rating . The test condition is V<sub>DD</sub>=20V, L=0.5mH , Ias=15A