Devoir surveillé n° 07

– Version 1 –

Durée: 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Montrer que, dans $\mathscr{C}([-1,1],\mathbb{C})$, $F = \left\{ f \in \mathscr{C}([-1,1],\mathbb{C}) \mid \int_{-1}^{1} f(t) dt = 0 \right\}$ et $G = \{ f \in \mathscr{C}([-1,1],\mathbb{C}) \mid f \text{ constante} \}$ sont des sous-espaces vectoriels supplémentaires.

II. Étude asymptotique d'une fonction (petites mines 2003, épreuve commune).

Partie I.

Notons $f: t \in \mathbb{R} \mapsto \frac{e^t}{1+t^2}$. Il est clair que f est définie sur \mathbb{R} tout entier, et que cette fonction est de classe \mathscr{C}^{∞} . Nous noterons \mathscr{C}_f la courbe représentative de f.

- 1) Quelle est la limite de f(t) lorsque t tend vers $-\infty$?
- 2) Qu'en déduisez-vous au sujet de \mathscr{C}_f ?
- 3) Complétez chacune des phrases suivantes au moyen de l'une des locutions « est équivalent à », « est négligeable devant » et « est dominé par ».

$$f(t)$$
 e^t lorsque t tend vers $+\infty$

$$f(t)$$
 $\frac{e^t}{t}$ lorsque t tend vers $+\infty$

$$f(t)$$
 $\frac{e^t}{t^2}$ lorsque t tend vers $+\infty$

Lorsque plusieurs réponses sont acceptables, vous donnerez la plus précise. Bien entendu, vous justifierez votre réponse.

- 4) Quelle est la limite de f(t) lorsque t tend vers $+\infty$?
- **5)** Soit $t \in \mathbb{R}$, expliciter f'(t).
- 6) Dressez le tableau des variations de f.
- 7) Soit $t \in \mathbb{R}$, expliciter f''(t).

- 8) Montrer que l'équation f''(t) = 0 possède deux solutions réelles : l'une est évidente, l'autre sera notée α . Vous ne chercherez pas à calculer α .
- 9) Prouver l'encadrement $-\frac{1}{5} < \alpha < 0$.
- 10) Expliciter le développement limité de f à l'ordre 3 au voisinage de 0. Que pouvez-vous en déduire concernant \mathscr{C}_f ?
- 11) Tracez la courbe représentative de f. Vous préciserez son allure au voisinage du point d'abscisse 1.

Partie II.

Au vu des expressions de f(t), f'(t) et f''(t), nous nous proposons d'établir que l'assertion $\mathscr{A}(n)$ suivante est vraie pour tout $n \in \mathbb{N}$:

Il existe un polynôme
$$P_n$$
 tel que $\forall t \in \mathbb{R}, \ f^{(n)}(t) = \frac{P_n(t)e^t}{(1+t^2)^{n+1}}$.

Vous allez raisonner par récurrence sur n.

- 12) Il est clair que $\mathscr{A}(n)$ est vraie pour $n \in \{0, 1, 2\}$; Vous dresserez simplement un tableau donnant l'expression de P_n pour ces valeurs de n.
- 13) Fixons $n \in \mathbb{N}$, et supposons l'assertion $\mathscr{A}(n)$ acquise. Etablissez l'assertion $\mathscr{A}(n+1)$;

Vous déterminerez l'expression de P_{n+1} en fonction de P_n et P'_n .

Il résulte donc des questions 12) et 13) que l'assertion $\mathcal{A}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- 14) Montrer que, pour tout $n \in \mathbb{N}$, P_n a tous ses coefficients dans \mathbb{Z} .
- 15) Préciser, pour tout $n \in \mathbb{N}$, le degré et le coefficient dominant de P_n .
- **16)** Donner, pour tout $n \in \mathbb{N}$, une expression simple de $c_n = P_n(i)$, où i est le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

Partie III.

Notons $F: \mathbb{R} \to \mathbb{R}, \ x \mapsto \int_0^x f(t) \, \mathrm{d}t$. Ainsi F est la primitive de f qui s'annule en 0.

- 17) Quel est le sens de variation de F?
- 18) Montrer que F(x) possède une limite ℓ finie lorsque x tend vers $-\infty$. Vous ne chercherez pas à expliciter cette limite.
- 19) Prouver l'encadrement $-1 \le \ell \le 0$.

- **20)** Donner une équation de la tangente à la courbe représentative de F, au point d'abscisse 0.
- **21)** Expliciter le développement limité de F à l'ordre 4 au voisinage de 0.

Nous nous proposons d'étudier le comportement de F(x) lorsque x tend vers $+\infty$. Nous noterons, pour tout $x \in \mathbb{R}$,

$$J(x) = \int_1^x \frac{te^t}{(1+t^2)^2} dt$$
, $K(x) = \int_1^x \frac{e^t}{t^3} dt$ et $L(x) = \int_1^x \frac{e^t}{t^4} dt$.

- 22) Prouver l'existence d'une constante A telle que F(x) = f(x) + A + 2J(x) pour tout réel x.
- **23)** Pour $x \ge 1$, placer les uns par rapport aux autres les réels 0, J(x) et K(x).
- **24)** Avec une intégration par parties soigneusement justifiée, montrer que K(x)-3L(x) est négligeable devant $\frac{e^x}{x^2}$ lorsque x tend vers $+\infty$.
- **25)** En découpant l'intervalle [1, x] sous la forme $[1, x^{3/4}] \cup [x^{3/4}, x]$, montrer que L(x) est négligeable devant $\frac{e^x}{x^2}$ lorsque x tend vers $+\infty$.
- **26)** En déduire un équivalent simple de F(x) lorsque x tend vers $+\infty$.
- 27) Exploiter les résultats des questions 17), 19), 20) et 26) pour donner l'allure de la courbe représentative de F.

Devoir surveillé n° 07

- Version 2 -

Durée : 3 heures, calculatrices et documents interdits

Pour chaque réel x, on considère la fonction

$$f_x: \mathbb{R} \to \mathbb{R}, \ t \longmapsto \begin{cases} \frac{t e^{tx}}{e^t - 1} & \text{si} \quad t \neq 0, \\ 1 & \text{si} \quad t = 0. \end{cases}$$

Dans ce problème, on identifiera systématiquement un polynôme à la fonction polynomiale qui lui est associée.

Chaque partie utilise des résultats des parties précédentes, que l'on pourra librement admettre.

I - Questions préliminaires.

On se donne un réel x.

- 1) Montrer que f_x est de classe \mathscr{C}^1 sur \mathbb{R}^* , déterminer $f'_x(t)$ pour tout $t \in \mathbb{R}^*$.
- 2) Montrer que f_x est de classe \mathscr{C}^1 sur \mathbb{R} et préciser $f'_x(0)$.

II - Définitions des polynômes et nombres de Bernoulli.

On se donne un réel x.

- 3) Soit $n \in \mathbb{N}$, déterminer un développement limité à l'ordre n et au voisinage de 0 de $t \mapsto \frac{e^t 1}{t}$.
- 4) En déduire (sans le calculer) que f_x admet un développement limité à tout ordre, au voisinage de 0.

Ainsi, on écrit, pour chaque $n \in \mathbb{N}$,

$$f_x(t) = \sum_{k=0}^{n} \frac{B_k(x)}{k!} t^k + o(t^n)$$

et l'on définit le $n^{\rm e}$ nombre de Bernoulli : $b_n=B_n(0)$. Notamment,

$$f_0(t) = \frac{t}{e^t - 1} \underset{t \to 0}{=} \sum_{k=0}^n \frac{b_k}{k!} t^k + o(t^n).$$

- 5) Déterminer b_0 , b_1 , b_2 et b_3 .

 Indication: on pourra établir une relation fonctionnelle faisant intervenir f_0 .
- **6)** Déterminer $B_0(x)$, $B_1(x)$ et $B_2(x)$.
- 7) À partir du développement de f_0 écrit ci-dessus ainsi que de celui de $t \mapsto e^{xt}$, montrer que pour tout $n \in \mathbb{N}$,

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} b_{n-k} x^k.$$

Ainsi, pour tout $n \in \mathbb{N}$, B_n est un polynôme de degré n : c'est le n^e polynôme de Bernoulli.

III - Quelques propriétés.

On se donne un réel x.

- 8) Soit $n \in \mathbb{N}$ impair et supérieur ou égal à 2. Montrer que $b_n = 0$. Indication: on pourra considérer la fonction $t \mapsto f_0(t) + \frac{t}{2}$.
- 9) Montrer que pour tout $n \in \mathbb{N}$, $B_n(1-x) = (-1)^n B_n(x)$.
- **10)** Montrer que pour tout $n \in \mathbb{N}^*$, $B_n(x+1) B_n(x) = nx^{n-1}$.
- 11) En déduire une expression permettant calculer les b_n par récurrence.
- 12) Montrer que pour tout $n \in \mathbb{N}^*$, $B'_n = nB_{n-1}$.
- **13)** Montrer que pour tout $n \in \mathbb{N}^*$, $\int_0^1 B_n = 0$.
- 14) Montrer que, pour tout $n \in \mathbb{N}$, B_n est l'unique polynôme vérifiant :

$$\forall y \in \mathbb{R}, \ \int_{y}^{y+1} B_n = y^n.$$

IV - Formule de Faulbaher.

Pour $n, m \in \mathbb{N}$, notons S_n^m la somme des puissances n^{es} des m premiers entiers naturels non nuls, i.e.

$$S_n^m = \sum_{k=0}^m k^n.$$

15) Montrer la formule de Faulbaher : pour tout $n \in \mathbb{N}$, $m \in \mathbb{N}^*$,

$$S_n^{m-1} = \frac{1}{n+1} \sum_{k=0}^n \binom{n+1}{k} b_k m^{n+1-k}.$$

V - Relation de distribution.

On dit qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ vérifie la relation de distribution d'ordre $n \in \mathbb{N}$ si

$$\forall m \in \mathbb{N}^*, \ \forall t \in \mathbb{R}, \ \sum_{k=0}^{m-1} f\left(\frac{t+k}{m}\right) = \frac{1}{m^{n-1}} f(t).$$

16) Montrer que, pour tout $n \in \mathbb{N}$, B_n vérifie la relation de distribution d'ordre n.

VI - Formule d'Euler-Maclaurin.

On définit les polynômes réduits de Bernoulli par : pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, $\overline{B_n}(x) = B_n(x - \lfloor x \rfloor)$

On souhaite montrer la formule d'Euler-Maclaurin : pour tout $a, b \in \mathbb{Z}$ tel que a < b, pour tout $r \in \mathbb{N}$, si f est de classe \mathscr{C}^{r+1} sur [a, b], alors

$$\sum_{k=a+1}^{b} f(k) - \int_{a}^{b} f = \sum_{k=0}^{r} (-1)^{k+1} \frac{b_{k+1}}{(k+1)!} \left(f^{k}(b) - f^{(k)}(a) \right) + \frac{(-1)^{r}}{(r+1)!} \int_{a}^{b} \overline{B_{r+1}} f^{r+1}.$$

- 17) Démontrer la formule d'Euler-Maclaurin dans le cas r = 0.
- 18) Conclure par récurrence.

— FIN —