Linguagens Formais e Autômatos

Gramáticas Regulares

Felipe Cunha

Gramáticas Regulares

- Até agora foram vistas três formas de se especificar uma linguagem regular
 - Usando notação de conjuntos
 - Aplicação: desenvolvimento da teoria
 - Desenhando um diagrama de estados em forma de grafo
 - Aplicação: processo de concepção de um reconhecedor
 - Usando expressões regulares
 - Aplicação: para manipulações formais e para referência compacta a conjunto de palavras
- Uma nova forma é através de gramáticas regulares, mediante a um conjunto de regras que a gera
 - Aplicação: mérito teórico de prover um lugar para as linguagens regulares na Hierarquia de Chomsky

Gramáticas Regulares

- Como linguagens regulares podem ser especificadas?
 - Automâtos finitos via um reconhecedor para ela
 - Expressões regulares via uma expressão que a denota
 - Gramáticas regulares via um gerador para ela
- Uma gramática regular permite mostrar como gerar todas, e apenas, as palavras de uma linguagem

Gramáticas Regulares

- Uma gramática regular (GR) é uma gramática (V, Σ, R, P), em que cada regra tem uma das formas:
 - $-X \rightarrow a$
 - $-X \rightarrow aY$
 - $X \rightarrow \lambda$
 - , onde X, Y ∈ V e a ∈ Σ
- Formato das formas sentenciais wA, onde $w \in \Sigma + e A \in V$

Exemplo

Seja L = {w∈{a,b,c}* | w não contém abc}, uma GR que gera L seria ({A,B,C}, {a,b,c}, R, A), onde R contém as regras

- $-A \rightarrow aB \mid bA \mid cA \mid \lambda$
- $B \rightarrow aB \mid bC \mid cA \mid \lambda$
- $C \rightarrow aB \mid bA \mid \lambda$

Linguagem regular

Toda gramática regular gera uma linguagem regular

Seja uma GR $G = (V, \Sigma, R, P)$.

Constrói-se um AFN $M = (E, \Sigma, \delta, \{P\}, F)$ tal que L(M) = L(G). Seja algum $Z \notin V$.

- $E = \left\{ egin{array}{ll} V \cup \{Z\} & ext{se } R ext{ cont\'em regra da forma } X
 ightarrow a \ V & ext{caso contr\'ario.} \end{array}
 ight.$
- Para toda regra da forma:
 - $X \to aY$ faça $Y \in \delta(X, a)$,
 - $X \to a$ faça $Z \in \delta(X, a)$.
- $F = \left\{ \begin{array}{ll} \{X|X \to \lambda \in R\} \cup \{Z\} & \text{se } Z \in E \\ \{X|X \to \lambda \in R\} & \text{caso contrário.} \end{array} \right.$

Exemplo

- Seja $L(G) = 0^*(0 + 1^+)$. A gramática regular que a reconhece é GR $G = (\{A,B\}, \{0,1\}, R, A)$, onde R é dado por
 - $-A \rightarrow 0A \mid 1B \mid 0$
 - $-B \rightarrow 1B \mid \lambda$

Regras	Transições	Observações
$A \rightarrow oA$	$A \subseteq \delta(A, o)$	
$A \rightarrow 1B$	$B \subseteq \delta(A, 1)$	
$A \rightarrow 0$	$Z \subseteq \delta(A, o)$	Z é estado final
$B \rightarrow 1B$	$B \subseteq \delta(B, 1)$	
$B \rightarrow \lambda$		B é estado final

Gramática Regular

- Toda linguagem regular é gerada por gramática regular
- Seja um AFN $M = (E, \Sigma, \delta, \{i\}, F)$. Uma GR que gera L(M) seria $G = (E, \Sigma, R, i)$, onde

$$R = \{e \to ae' \mid e' \in \delta(e,a)\} \cup \{e \to \lambda \mid e \in F\}$$

 Deve-se construir gramática regular para L(M) = L(G) de forma que:

$$i \Rightarrow w^*$$
 se, e somente se, $\hat{\delta}(\{i\}, w\} \cap F \neq \emptyset$

Exemplo

Seja o AFN dado por:

- A GR gerada para essa automâto é dada por
 G = ({A,B,Z}, {0,1}, R, A), onde R é dado por:
 - A → oA | oZ | 1B
 - B \rightarrow 1B | λ
 - $Z \rightarrow \lambda$

Exercícios

Obtenha a GR correspondente ao AF

Obtenha o AFN para a seguinte GR

$$P \rightarrow aP \mid bP \mid aA$$

 $A \rightarrow a \mid bB$
 $B \rightarrow bA$

Síntese

 AF's, ER's e GR's são formalismos alternativos para linguagens regulares

Transformações entre formalismos