第八, 九周作业参考解答及补充

作业

1. (习题 3.1.1)

设 K 是特征零的域, $f(x) \in K[x]$ 是次数大于零的首项系数为 1 的多项式, d(x) = (f(x), f'(x)) 是 f(x) 与 f'(x) 的最大公因子. 令

$$f(x) = d(x) \cdot g(x).$$

证明: g(x) 与 f(x) 有相同的根且 g(x) 没有重根.

proof

由 2.4.3 可知, a 是 f(x) 和 f'(x) 的公共根当且仅当 a 是 f(x) 的重根. 而 f(x) 和 f'(x) 的公共根当且仅当是 d(x) 的根.

2. (习题 3.1.2)

设 $K \subseteq L$ 是域扩张, $\alpha \in L$ 是域 K 上的代数元. 令 $K[x] \xrightarrow{\psi_{\alpha}} L$, $f(x) \mapsto f(\alpha)$, 表示多项式在 $x = \alpha$ 的取值映射. 试证明:

- (1) $\ker(\psi_{\alpha})$ 由极小多项式 $\mu_{\alpha}(x)$ 生成;
- (2) ψ_{α} 诱导了域同构 $\mathbb{K}[x]/(\mu_{\alpha}(x)) \cong K[\alpha]$.

proof

(1) 回忆 2.2.6 和 2.3.2,

$$\ker(\psi_{\alpha}) = \{ f \in K[x] \mid f(\alpha) = 0 \}$$

是一个理想. 类似 2.2.6, 有 $(\mu_{\alpha}(x)) \subseteq \ker(\psi_{\alpha})$ 且 $(\mu_{\alpha}(x))$ 是极大理想 (由 K[x] 是 PID, 2.3.2), 且 $\ker(\psi_{\alpha}) \neq K[x]$, 因此只能是 $\ker(\psi_{\alpha}) = (\mu_{\alpha}(x))$.

(2) 由 2.3.2, \bar{x} 为 μ_{α} 在扩域 $K[x]/(\mu_{\alpha}(x))$ 中的一个根. 那么映射

$$\varphi: K[x]/(\mu_{\alpha}(x)) \to K[\alpha], \quad \overline{x} \mapsto \alpha$$

是同构, 这是因为 $\psi_{\alpha}(K[x]) = K[\alpha] = K(\alpha)$ (见注记), 那么由同态基本定理就得到同构.

注:

教材出现了有限生成扩张 (p7-8) 但并未单独列出这个的定义, 这里需要用一下 所以先把这个定义提一下.

定义 设 $K \subseteq L$ 是一个域扩张, $S \subseteq L$ 是一个子集, K(S) 称为由 F 和 S 生成的子域, 即包含 F 和 S 的最小域:

$$K(S) := \bigcap \{ E \subseteq L \mid F \cup S \subseteq E \}$$

若 $T \subseteq L$ 是另一个子集, 则定义 $K(S)(T) := K(S \cup T)$.

若存在有限子集 S 使得 L = K(S), 即存在有限个 $u_1, u_2, \dots, u_n \in L$ 使得 $L = K(u_1, u_2, \dots, u_n)$, 则称该扩张是有限生成的 (finitely generated).

$$K(u_1, u_2, \cdots, u_n) := \bigcap \{ E \subseteq L \mid K \subseteq E, u_1, u_2, \cdots, u_n \in E \}$$

n=1 时称为单扩张 (simple extension).

下面要验证的事实是, 当 u_1, u_2, \cdots, u_n 都是 K 上代数元的时候,

 $K(u_1, u_2, \dots, u_n) = K[u_1, u_2, \dots, u_n]$, 且此时该扩张是有限扩张, 否则是无限扩张. 即对域扩张而言:

algebraic + finitely generated = finite

反过来是非常简单的,有限扩张 \Longrightarrow 代数扩张,利用 $1,\alpha,\dots,\alpha^n$ 线性相关即可, $n=\dim_K L$. 有限扩张 \Longrightarrow 有限生成,取一组基就行.

对任意的单扩张 $K \subseteq K(\alpha)$, 很自然的想法就是用 2.3.7 的赋值映射来讨论. 对包含 $K \stackrel{i}{\hookrightarrow} K(\alpha)$ 用泛性质, 存在唯一的同态

$$\psi_{\alpha}: K[x] \to K(\alpha), \quad f(x) \mapsto f(\alpha).$$

由同态基本定理, $K[x]/\ker(\psi_{\alpha}) \cong \psi_{\alpha}(K[x]) = K[\alpha] \subseteq K(\alpha)$. 由于 $K(\alpha)$ 按定义是域, 因此是整环. 而 $K[\alpha]$ 是子环, 从而也是整环, 因此 $\ker(\psi_{\alpha})$ 是素理想. 而 K[x] 是一个 PID, 因此只有两种情况.

Case 1 $\ker(\psi_{\alpha}) = \{0\}$, 此时 ψ_{α} 是单射. 这意味着 $\{f(x) \in K[x] \mid f(\alpha) = 0\} = \{0\}$, 即零多项式是唯一使得 $f(\alpha) = 0$ 的多项式, 换言之 α 是 K 上的超越元. 注意 K(x) 是 K[x] 的分式域, 由分式域 (或者说 localization) 的泛性质 (单独放在后面), 存在唯一的同态使得图表交换:

即

$$\varphi_{\alpha}: K(x) \to K(\alpha), \quad \frac{p(x)}{q(x)} \mapsto \frac{p(\alpha)}{q(\alpha)}$$

这是一个单射 (因为 K(x) 是域). 考虑 φ_{α} 的像,它一定是一个域,且包含 K 和 α ,因此按定义就有 $K(\alpha) \cong \varphi_{\alpha}(K(x)) \cong K(x)$,那么 $K \subseteq K(\alpha)$ 扩张次数为无穷 $(1,\alpha,\alpha^2,\cdots$ 线性无关).如 $\mathbb{Q}(\pi) \cong \mathbb{Q}(x)$.

Case 2 $\ker(\psi_{\alpha}) = (p(x)), p(x)$ 是一个不可约多项式. 注意到 $\alpha = \psi_{\alpha}(x)$, 此 时 $K[\alpha] = \psi_{\alpha}(K[x]) \cong K[x]/(p(x))$ 是包含 α 的域, 而根据 ψ_{α} 的构造, $K[\alpha] \subseteq K(\alpha)$, 由 $K(\alpha)$ 的定义, 只能是 $K[\alpha] = K(\alpha) \cong K[x]/(p(x))$. 此时是有限扩张, 扩张次数为 $\deg(p(x))$, 且 p(x) 和 α 的极小多项式 $\mu_{\alpha}(x)$ 是相伴的 $((p(x)) = (\mu_{\alpha}(x)),$ 即就差一个常数, p(x) 除掉首项系数就是 $\mu_{\alpha}(x)$). 在这个域同构下 $x \in K[x]/(p(x))$ 的像就是 $x \in K[x]/(p(x))$ 的像就是 $x \in K[x]/(p(x))$ 上的根.

多元的情形由归纳法即可,

$$K(u_1, u_2, \dots, u_n) = K(u_1, u_2, \dots, u_{n-1})(u_n) = K[u_1, u_2, \dots, u_{n-1}](u_n)$$
$$= K[u_1, u_2, \dots, u_{n-1}][u_n] = K[u_1, u_2, \dots, u_n]$$

,且

$$[K[u_1, u_2, \cdots, u_n] : K]$$

$$= [K[u_1, u_2, \cdots, u_n] : K[u_1, u_2, \cdots, u_{n-1}]] \cdot [K[u_1, u_2, \cdots, u_{n-1}] : K] < \infty.$$

值得注意的是多元的时候, 这里只是说明可以由 u_1, u_2, \dots, u_n 通过多项式生成, 但仍有可能由更少的代数元生成, 如 1.1.3, $\mathbb Q$ 加上 $\sqrt{2}$ 和 $\sqrt{3}$ 后仍是一个单扩张. 又比如 $\mathbb Q[\sqrt{2}, \sqrt[4]{2}] = \mathbb Q[\sqrt[4]{2}]$.

上面提到的 localization 可以理解成分式域的推广. 设 A 是交换环, $S \subseteq A$ 是一个乘法封闭子集 (multiplicatively closed subset), 即 $\forall s, t \in S \implies st \in S$ 并要求 $1 \in S$. 换句话说, S 是 (A, \cdot) 的一个子幺半群. 则 $A \times S$ 上有一个等价关系:

$$(a,s) \sim (a',s') \iff \exists u \in S, (as'-a's)u = 0$$

记商集 $A \times S/\sim$ 为 $S^{-1}A$, 可以验证这是一个环, A 是它的子环, 称为 A 对 S 的分式环. 它是包含 A 的并使得 S 中元素都可逆的"最小"的环. 这个构造通常称为环的局部化 (localization). 当 A 是整环且取 $S=A\setminus\{0\}$ 时就是分式域, 如 \mathbb{Q} , K(x). 若 $0\in S$ 则得到零环, 因此一般尽量排除这种平凡的情况. 当 $\mathfrak{p}\subseteq A$ 是素理想时, 按素理想的定义可以验证 $S=A\setminus\mathfrak{p}$ 是乘法封闭的 (事实上反过来也是对的). 此时 $S^{-1}A$ 一般记作 $A_{\mathfrak{p}}$, 这是一个局部环 (2.3.1), 如 $\mathbb{Z}_p(p\text{-adic integers})$.

上述的"最小"对应它的泛性质: $S^{-1}A$ 的元素记为 $\frac{a}{s}$, 我们有一个自然的同态

$$f_S: A \to S^{-1}A, \quad a \mapsto \frac{a}{1}$$

 $f(s) = \frac{s}{1}$ 在 $S^{-1}A$ 中都是可逆的, 逆是 $\frac{1}{s}$. 若环同态 $\varphi: A \to B$ 满足对任意的 $s \in S$, $\varphi(s)$ 在 B 中可逆, 那么存在唯一的环同态 $\varphi_S: S^{-1}A \to B$ 使得图表交换:

$$S^{-1}A \xrightarrow{\varphi_S} B$$

$$A$$

$$A$$

 $\varphi_S(\frac{a}{s}) = \varphi(a)\varphi(s)^{-1}$. 注意一般情况下 f_S 不一定是单的, 事实上是非整环的情形有零因子导致的, 因此 A 是整环的时候且不考虑 $0 \in S$, 等价关系 \sim 简化为和分式域的情况一样, 即

$$(a,s) \sim (a',s') \iff as' = a's$$

3. (习题 3.1.3)

设 $E = \mathbb{Q}[u], u^3 - u^2 + u + 2 = 0$. 试将 $(u^2 + u + 1)(u^2 - u)$ 和 $(u - 1)^{-1}$ 表示成 $au^2 + bu + c(a, b, c \in \mathbb{Q})$ 的形式.

proof

利用 $u^3 = u^2 - u - 2$ 消去次数大于 2 的项.

$$(u^2+u+1)(u^2-u) = (u^3-1)u = (u^2-u-3)u = u^2-u-2-u^2-3u = -4u-2.$$

第二个可以用形式级数处理

$$(u-1)^{-1} = \frac{1}{u-1} = -(1+u+u^2+u^3(1+u+u^2+\cdots))$$
$$= -(1+u+u^2+\frac{u^2-u-2}{1-u})$$
$$= -(1+u^2-\frac{2}{1-u})$$

因此
$$\frac{1}{u-1} = -\frac{1}{3}(1+u^2)$$
.

4. (习题 3.1.4)

求 $\left[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}\right]$ (提示: 证明 $\left[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}[\sqrt{3}]\right]=2$).

proof

参考 1.4.8, $\sqrt{3} \notin \mathbb{Q}[\sqrt{2}]$, 即不存在 $\mathbb{Q}[\sqrt{2}]$ 上的一次多项式使得 $\sqrt{3}$ 是根, 因此 x^2-3 是 $\mathbb{Q}[\sqrt{2}]$ 上的不可约多项式, 且 $\sqrt{3}$ 是它的根, 因此是 $\sqrt{3}$ 对于

 $\mathbb{Q}[\sqrt{2}]$ 的极小多项式. 从而有

$$\left[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}[\sqrt{2}]\right] = \left[\mathbb{Q}[\sqrt{2}][\sqrt{3}]:\mathbb{Q}[\sqrt{2}]\right] = \deg(x^2 - 3) = 2.$$

故

$$\left[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}\right] = \left[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}[\sqrt{2}]\right] \cdot \left[\mathbb{Q}[\sqrt{2}]:\mathbb{Q}\right] = 4$$

5. (习题 3.1.5)

设 p 是一个素数, $z \in \mathbb{C}$ 满足 $z^p = 1$ 且 $z \neq 1$, 试证明 $[\mathbb{Q}[z] : \mathbb{Q}] = p - 1$.

proof

注意到 $x^p - 1 = (x - 1)(x^{p-1} + \dots + x + 1)$. 由于 $z \neq 1$, 因此 z 是多项式 $\Phi_p(x) = x^{p-1} + \dots + x + 1$ 的根, 这是一个不可约多项式 (教材例 2.3.4), 从 而是 z 的极小多项式. 因此 $[\mathbb{Q}[z]:\mathbb{Q}] = \deg(\Phi_p) = p - 1$.

注:

这是分圆多项式中 n 为素数的情况.

6. (习题 3.1.6)

证明:

- (1) $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ 是一个循环群;
- (2) $z = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$ 是 U_{12} 的一个生成元, 但 $[\mathbb{Q}[z]:\mathbb{Q}] = 4$;
- (3) 求 $z = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$ 在 Q 上的极小多项式.

proof

- (1) $\zeta_n = e^{\frac{2\pi i}{n}}$ 是 U_n 的生成元.
- (2) $z = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} = e^{\frac{2\pi i}{12}} = \zeta_{12}$, 即 (1) 中提到的生成元. 而

$$x^{12} - 1 = (x^4 - 1)(x^8 + x^4 + 1)$$

$$= (x^2 - 1)(x^2 + 1)(x^4 + x^2 + 1)(x^4 - x^2 + 1)$$

$$= (x - 1)(x + 1)(x^2 + 1)(x^2 - x + 1)(x^2 + x + 1)(x^4 - x^2 + 1)$$

是不可约分解, 其中 $x^4 - x^2 + 1$ 是 $\Phi_{12}(x)$, 它的根是 12 次本原单位根 $\zeta_{12}, \zeta_{12}^5, \zeta_{12}^7, \zeta_{12}^{11}, x - 1$ 为 $\Phi_1(x)$, 根是 $1 = \zeta_{12}^0$; x + 1 为 $\Phi_2(x)$, 根是

 $-1 = \zeta_{12}^6$; $x^2 + 1$ 为 $\Phi_4(x)$, 根是 $i = \zeta_{12}^3$, $-i = \zeta_{12}^9$; $x^2 + x + 1$ 为 $\Phi_3(x)$, 根是 ζ_{12}^4 , ζ_{12}^8 ; $x^2 - x + 1$ 为 $\Phi_6(x)$, 根是 ζ_{12}^2 , ζ_{12}^{10} . 故 $x^4 - x^2 + 1$ 是 ζ_{12} 的极 小多项式, $[\mathbb{Q}[z]:\mathbb{Q}] = \deg(\Phi_{12}(x)) = 4$.

(3) 见(2).

注:

1. 教材循环群的定义为由一个元素生成的 (自由) 群 $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$, 等价的说就是和 $\mathbb{Z}/n\mathbb{Z}$ 同构的群 (n=0 时为 \mathbb{Z} 本身). 对于 $\mathbb{Z}/n\mathbb{Z}$ 有一个和初等数论有关的结论就是 Euler 函数 $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$, 其中 $(\mathbb{Z}/n\mathbb{Z})^{\times}$ 是单位群 $U(\mathbb{Z}/n\mathbb{Z}) = \{\overline{m} \in \mathbb{Z}/n\mathbb{Z} \mid (m,n) = 1\}$. 即 $\phi(n)$ 是 0 到 n-1 中和 n 互素的元素个数. Fermat 小定理的推广便是

$$(a,n) = 1 \implies a^{\phi(n)} \equiv 1 \pmod{n}$$

且有恒等式

$$n = \sum_{\substack{d|n\\d>0}} \phi(d)$$

2. 易见 $U_n \cong \mathbb{Z}/n\mathbb{Z}$, U_n 中的 1 对应 $\mathbb{Z}/n\mathbb{Z}$ 中的 0, ζ_n 对应 1, 若 (k,n) = 1, k 就是生成元, 对应 U_n 中的 $\zeta_n^k = e^{\frac{2k\pi i}{n}}$. U_n 的生成元称为 n 次本原单位根. 分圆多项式 $\Phi_n(x)$ 是 ζ_n 的极小多项式, 事实上

$$\Phi_n(x) = \prod_{0 \le k < n, (n,k) = 1} (x - \zeta_n^k)$$

且有恒等式

$$x^n - 1 = \prod_{\substack{d \mid n \\ d > 0}} \Phi_d(x)$$

因此可以递归的计算出 $\Phi_n(x)$,

$$\Phi_n(x) = \frac{x^n - 1}{\prod_{\substack{d \mid n \\ 0 < d < n}} \Phi_d(x)}$$

7. (习题 3.1.7)

设 E = K[u] 是一个代数扩张, 且 u 的极小多项式的次数是奇数. 证明: $E = K[u^2]$.

proof

由于 $K[u^2] \subseteq K[u]$, 即 $K[u^2]$ 是中间域, 设 $\mu_u(x) \in K[x]$ 是 u 的极小多项式,则

$$\deg(\mu_u(x)) = [K[u] : K] = [K[u] : K[u^2]] \cdot [K[u^2] : K]$$

是奇数. 而 u 是多项式 $x^2 - u^2 \in K[u^2][x]$ 的根, 因此 $\left[K[u] : K[u^2]\right] \leqslant 2$. 但由于奇数不可能有因子 2, 故 $\left[K[u] : K[u^2]\right] = 1$, 即 $K[u^2] = K[u]$.

8. (习题 3.1.8)

设 E_1, E_2 是域扩张 $K \subseteq L$ 的中间域 (即: $K \subseteq E_i \subseteq L$), 且 $[E_i : K] < +\infty$. 令 $E = K(E_1, E_2) \subseteq L$ 是由 E_1, E_2 生成的子域. 证明:

$$[E:K] \leq [E_1:K] \cdot [E_2:K].$$

注:

按正确的记号应该是用圆括号表示生成, 见 3.1.2 的注记.

proof

设 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ 是 E_1 的一组 K-基, $\{\beta_1, \beta_2, \cdots, \beta_m\}$ 是 E_2 的一组 K-基,并要求 $\alpha_1 = \beta_1 = 1$ (总是可以乘上一个 α_1^{-1} 或 β_1^{-1} ,而这一组元素仍是基). 只需说明 $S = \{\alpha_i\beta_j\}$ 可以生成 $E = K(E_1, E_2) = K(E_1 \cup E_2)$. 按定义,若 $e_1 \in E_1, e_2 \in E_2, \ e_1 = \sum_{i=1}^n k_i\alpha_i, \ e_2 = \sum_{j=1}^m l_j\beta_j$. 由于取 $\alpha_1 = \beta_1 = 1$,因此 $\alpha_i, \beta_j \in S$,那么 $e_1 \pm e_2, e_1e_2, e_i^{-1}$ (若不为零)都可以由 S 生成.

9. (习题 3.1.9)

设 $K \subseteq L$ 是代数扩张, $E \subseteq L$ 是中间子环 (即: $K \subseteq E \subseteq L$). 证明: $E \subseteq L$ 必为子域 (所以任何有限扩张 $K \subseteq L$ 的中间子环必为域).

proof

按定义说明 E 中非零元可逆即可. 设 $0 \neq u \in E \subseteq L$, 则 u 在 L 上代数, 那 么 $K(u) = K[u] \subseteq E$ 是域 (包含关系由泛性质得到, 2.3.7), 则 $u \in K[u]$ 可 逆.

10. (习题 3.1.10)

设 L = K(u), $u \in K$ 上的超越元, $E \neq K$ 是 $K \subseteq L$ 的中间域. 证明: $u \in E$ 上的代数元.

proof

任取 $v \in E \setminus K$, 那么按定义 $v = \frac{p(u)}{q(u)}$, 则 p(u) - vq(u) = 0, 即 u 是多项式 $p(x) - vq(x) \in E[x]$ 的根.

11. (习题 3.1.11)

设 p 是素数, $K \subseteq L$ 是 p 次扩张. 证明: $K \subseteq L$ 必为<mark>单扩张</mark>(即: 存在 $u \in L$, 使 L = K[u]).

注:

单扩张见 3.1.2 的注记,由于 3.3.14 又写成单扩张了,干脆把这里的"单纯"也改成"单".

proof

任取 $u \in L \setminus K$, 和 3.1.7 的讨论类似,

$$p = [L : K] = [L : K[u]] \cdot [K[u] : K]$$

由 p 是素数, 且 $[K[u]:K] \neq 1$ (因为 $u \notin K$), 可知 [L:K[u]] = 1, [k[u]:K] = p, 即 L = K[u].

12. (习题 3.1.12)

设域扩张 $K \subset L$ 满足条件:

- (1) $[L:K] < +\infty$;
- (2) 对任意两个中间域 $K \subseteq E_1 \subseteq L$, $K \subseteq E_2 \subseteq L$, 必有 $E_1 \subseteq E_2$ 或者 $E_2 \subseteq E_1$.

证明: $K \subseteq L$ 必为<mark>单扩张</mark>(即: 存在 $u \in L$, 使 L = K[u]).

proof

由 3.1.2 的注记, 有限扩张是有限生成代数扩张, 故存在代数元 u_1, u_2, \cdots, u_n , $L = K[u_1, \cdots, u_n]$, 那么 $K[u_i]$ 都是中间域, 若 $K[u_i] \subseteq K[u_j]$, 则 $K[u_i, u_j] = K[u_j][u_i] = K[u_j]$. 那么存在某个 $u \in \{u_1, \cdots, u_n\}$ 使得 $K[u] = \bigcup_{i=1}^n K[u_i] = K[u_1, \cdots, u_n] = L$.

13. (习题 3.1.14)

设 $K = \mathbb{Q}[\sqrt[3]{3}]$, 证明: $x^5 - 5$ 在 K[x] 中不可约.

proof

只需说明 $x^5 - 5$ 是 $\sqrt[3]{5}$ 在 K 上的极小多项式. 我们证明 $\left[\mathbb{Q}[\sqrt[3]{3},\sqrt[5]{5}]:\mathbb{Q}[\sqrt[3]{3}]\right] = 5$ 即可.

由 Eisenstein 判别法容易说明 x^3-3 和 x^5-5 在 $\mathbb Q$ 上不可约,从而有 $\left[\mathbb Q[\sqrt[3]{3}]:\mathbb Q\right]=3,\, \left[\mathbb Q[\sqrt[5]{5}]:\mathbb Q\right]=5.$ 由于

$$\left[\mathbb{Q}[\sqrt[3]{3},\sqrt[5]{5}]:\mathbb{Q}\right] = \left[\mathbb{Q}[\sqrt[3]{3},\sqrt[5]{5}]:\mathbb{Q}[\sqrt[3]{3}]\right] \cdot \left[\mathbb{Q}[\sqrt[3]{3}]:\mathbb{Q}\right]$$

那么只需说明 $\left[\mathbb{Q}\left[\sqrt[3]{3},\sqrt[5]{5}\right]:\mathbb{Q}\right]=15$. 记 $\alpha=\sqrt[3]{3}$, $\beta=\sqrt[5]{5}$. 则 $\mathbb{Q}[\alpha]$ 的基为 $\{1,\alpha,\alpha^2\}$, $\mathbb{Q}[\beta]$ 的基为 $\{1,\beta,\beta^2,\beta^3,\beta^4\}$. 由 3.1.8, 说明 $\{\alpha^i\beta^j\mid 0\leqslant i\leqslant 2,0\leqslant j\leqslant 4\}$ 是 \mathbb{Q} -线性无关的即可, 这是比较容易看出来的 (虽然很明显但是没想到优雅的证明先挖个坑).

注:

3.1.4 是直接证不可约得到扩张次数,这里是用扩张次数来得到不可约.

14. (习题 3.1.15)

设 k 是特征 p > 0 的域, x, y 是 k 上的代数无关元. 令 $K = k(x^p, y^p)$, L = k(x, y). 试证明 $[L:K] = p^2$.

注:

代数无关是多元的超越, a_1, a_2, \dots, a_n 代数无关指不存在满足它们的代数方程, 即不存在多项式 $f(x_1, x_2, \dots, x_n) \in k[x_1, x_2, \dots, x_n]$ 使得 $f(a_1, a_2, \dots, a_n) = 0$.

proof

x,y 代数无关, 按定义 x,y 就是超越元, 根据 3.1.2 的注记, K 和 L 视为有理 函数域处理即可. 考虑中间域 $k(x,y^p)$, 由 Eisenstein 判别法, x^p 是 $k[x^p,y^p]$ 的不可约元, 则 $t^p-x^p\in k[x^p,y^p][t]$ 是不可约多项式, 而 K 是 $k[x^p,y^p]$ 的分式域, 从而在 K[t] 内也不可约 (教材推论 2.3.1). 那么 t^p-x^p 是 $x\in k(x,y^p)$ 在 K 上的极小多项式. $[k(x,y^p):K]=\deg(t^p-x^p)=p$. 同理 $[L:k(x,y^p)]=p$. 因此 $[L:K]=[L:k(x,y^p)]\cdot [k(x,y^p):K]=p^2$.

课上的补充内容

基本上都在 3.1.2 里.