Machine Listening for Music and Sound Analysis

Lecture 1 – Audio Representations

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de

Learning Objectives

- Sound categories
- Music representations
- Audio representations
- Audio signal decomposition
- Audio features

Sound Categories Environmental Sounds

- Sound sources
 - Animals, climate, humans, machines
- Sound characteristics
 - Structured or unstructured, stationary or non-stationary, repetitive or without any predictable nature
- Sound duration
 - From very short (gun shot, door knock, shouts) to very long and almost stationary (running machines, wind, rain)

AUD-1

Fig. 2

Fig. 3

Sound Categories Music Signals

- Sound sources
 - Music instruments
 - Sound production mechanisms (brass, wind, string, percussive)
 - Singing Voice
- Sound characteristics
 - Mostly well structured along
 - Frequency (pitch, overtone relationships, harmony)
 - Time (onset, rhythm, structure)

AUD-2

Fig. 4

Fig. 5

Fig. 6

Music Representations Recording & Notation

Music recording (waveform)

Music notation (score)

Music Representations MIDI

Sequence of note events (MIDI)

Time (Ticks)	Message	Channel	Note Number	Velocity	71/B4		7
60	NOTE ON	1	67	100			
0	NOTE ON	1	55	100	67/G4		_
0	NOTE ON	2	43	100	01/04		
55	NOTE OFF	1	67	0			4
0	NOTE OFF	1	55	0			
0	NOTE OFF	2	43	0			
5	NOTE ON	1	67	100	60/C4		₹
0	NOTE ON	1	55	100			of a service of the
0	NOTE ON	2	43	100			Grang - 233 555 555 555 555 655 655 655 655 655 6
55	NOTE OFF	1	67	0			Fundamentals of Music Processing
0	NOTE OFF	1	55	0	55/ G 3		Using Python and Jayyier Balvabooks Somed Edition
0	NOTE OFF	2	43	0			
5	NOTE ON	1	67	100			© Springer
0	NOTE ON	1	55	100			_
0	NOTE ON	2	43	100	40/00		FMP Notebooks
55	NOTE OFF	1	67	0	48/C3		
0	NOTE OFF	1	55	0			_1
0	NOTE OFF	2	43	0			_
5	NOTE ON	1	63	100	43/G2		-
0	NOTE ON	2	51	100			4
0	NOTE ON	2	39	100			-
240	NOTE OFF	1	63	0			
0	NOTE OFF	2	51	0			_
0	NOTE OFF	2	39	0	36/C2		3
						ticks)	Fig. 8

Music Representations MusicXML

Textual description of note events (MusicXML)

Fig. 9

Audio Representations Short-term Fourier Transform (STFT)

Discrete Short-Term Fourier Transform (STFT)

$$X(m,k) = \sum_{n=0}^{N-1} x(n+mH)w(n)e^{-2\pi i k n/N}$$

- Instead of full signal, short (overlapping) windowed segments are used
- Fixed frequency resolution & linearly-spaced frequency axis
- Trade-off between
 - Frequency resolution
 - Time resolution

Audio Representations Short-term Fourier Transform (STFT)

Example: Sinusoid signal, two frequencies

Audio Representations Short-term Fourier Transform (STFT)

Example: C major scale, fundamental frequencies (f0) & overtones

Audio Representations Constant-Q Transform (CQT)

Bank of filters with geometrically spaced center frequencies

$$f_k = f_0 \cdot 2^{k/b}$$

k - Filter index

b - Number of filters per octave

Filter bandwidth (for adjacent filters)

$$\Delta_k = f_{k+1} - f_k = f_k \left(2^{\frac{1}{b}} - 1 \right)$$

- Increasing time resolution towards higher frequencies
- Resembles human auditory perception

Audio Representations Constant-Q Transform (CQT)

Constant frequency-to-resolution ratio

$$Q = \frac{f_k}{\Delta_k} = \frac{1}{2^{\frac{1}{b} - 1}}$$

Correspondence to musical note frequencies

$$f_m[\text{Hz}] = 440 \cdot 2^{\frac{m-69}{12}}$$

m: MIDI pitch

A4 (440 Hz): reference pitch

Audio Representations Constant-Q Transform (CQT)

- Example signal (speech)
 - CQT (top)
 - STFT (bottom)

Audio Representations Mel Spectrogram

Mel frequency scale (Stevens et al., 1937)

$$f[\text{Mel}] = 2595 \cdot \log_{10}(1 + \frac{f[\text{Hz}]}{700})$$

- Describes perceived pitch of sinusoidal frequencies
- Mel spectrogram
 - Time-frequency representation sampled around
 - Equally spaced times
 - Frequency points along the mel-scale

- Instrument mixture (spectrogram)
 - Bass + melody (saxophone) + drums

Bass

Harmonic structure, stable tones

- Melody (saxophone)
 - Harmonic components (melody)

- Drums
- Percussive components (noise-like, inharmonic spectra)

- Instrument mixture (magnitude STFT)
 - All components add up

Audio Features Motivation

- Compact representation of audio signal for machine learning applications
- Capture different properties at different semantic levels
 - Timbre perceived sound, instrumentation
 - Rhythm tempo, meter
 - Melody/Tonality pitches, harmonies
 - Structure repetitions, novelty, homogeneous segments

Audio Features

Categorization

	Timbre	Rhythm	Tonality
Low-Level (Q~10 ms)	 Zero Crossing Rate (ZCR) Linear Predictive Coding (LPC) Spectral Centroid / Spectral Flatness 		
Mid-Level (Q ~ 2.5s)	 Mel-Frequency Cepstral Coefficients (MFCC) Octave-Based Spectral Contrast (OSC) Loudness 	TempogramLog-LagAutocorrelation(ACF)	ChromagramEnhancedPitch ClassProfiles (EPCP)
High-Level	- Instrumentation	TempoTime SignatureRhythmPatterns	KeyScalesChords

Audio Features Timbre

- Timbre
 - Timbre distinguishes musical sounds that have the same pitch (fundamental frequency) and loudness
 - Affected by different acoustic phenomena such as
 - Spectral structure / envelope of overtones
 - Noise-like components
 - Formants (speech)
 - Inharmonicity (non-integer relationship between partials)
 - Variations over time: frequency (vibrato) or loudness (tremolo)

FMP Notebooks

Audio Features Timbre

- Timbre
 - When looking at musical instruments, we need to consider
 - Instrument's construction
 - Sound production principles
 - Membranophones, chordophones, aerophones, electrophones
 - Human performance
 - Playing techniques, expressivity, dynamics, style
- How to design features to quantify these acoustic phenomena?

Audio FeaturesTimbre Low-level Audio Features

- Spectral Centroid (SC):
 - Center of mass in the magnitude spectrogram
 - Low-pitched vs. highpitched sounds
- Spectral Flatness Measure (SFM)
 - Harmonic sounds (sparse energy distribution)
 - Percussive sounds (wideband energy distribution)

Audio FeaturesTimbre Mid-level Audio Features: MFCC

- Convolutive excitation * filter model
 - Excitation: vibration of vocal folds
 - Filter: resonance of the vocal tract
- FFT magnitude spectrum
 - Multiplicative excitation · filter model
- Logarithm of magnitude spectrum
 - Additive excitation + filter model
- Discrete Cosine Transform (DCT)
 - First coefficients allow for a compact description of the spectral envelope shape

Audio FeaturesRhythmic Mid-level Audio Features

- Rhythmic properties are important for audio classification
- Audio Spectral Energy (ASE)
 - Analyze energy slopes in different frequency bands
 - Find periodicities via auto-correlation function (ACF)

Audio FeaturesTonal Mid-level Audio Features: Chromagram

Summary

- Sound categories
- Music representations
- Audio representations
- Audio signal decomposition
- Audio features

References

Müller, M. (2021). Fundamentals of Music Processing - Using Python and Jupyter Notebooks (2nd ed.). Springer.

Shi, Z., Lin, H., Liu, L., Liu, R., & Han, J. (2019). Is CQT More Suitable for Monaural Speech Separation than STFT? An Empirical Study. *ArXiv Preprint ArXiv:1902.00631*.

Images

```
Fig. 1: https://ccsearch-dev.creativecommons.org/photos/39451123-ee45-4ec3-ad8d-b42d856bca06
Fig. 2: https://ccsearch-dev.creativecommons.org/photos/c69d3b07-76bd-43e2-a44e-8742edc8447a
Fig. 3: https://ccsearch-dev.creativecommons.org/photos/ab3062ab-fe0f-420d-b93d-7451db166b4e
Fig. 4: https://ccsearch-dev.creativecommons.org/photos/a27a7541-45f5-4176-91a4-e2cb70eea266
Fig. 5: https://ccsearch-dev.creativecommons.org/photos/79d466c1-cfa6-417e-9832-34438678bf5d
Fig. 6: https://ccsearch-dev.creativecommons.org/photos/269394a4-5803-47fd-abaa-57ef92735e24
Fig. 7: [Müller, 2021], p. 2, Fig. 1.1
Fig. 8: [Müller, 2021], p. 14, Fig. 1.13
Fig. 9: [Müller, 2021], p. 17, Fig. 1.15
Fig. 10: [Müller, 2021], p. 56, Fig. 2.9
Fig. 11: [Müller, 2021], p. 57, Fig. 2.10
Fig. 12: [Shi, 2019], p. 3, Fig. 2
Fig. 13: https://newt.phys.unsw.edu.au/jw/graphics/notes.GIF
```


Sounds

AUD-1: Medley: https://freesound.org/people/InspectorJ/sounds/416529, https://freesound.org/people/prometheus888/sounds/458461, https://freesound.org/people/MrAuralization/sounds/317361

AUD-2: Medley: https://freesound.org/people/whatsanickname4u/sounds/127337, https://freesound.org/people/jcveliz/sounds/92002, https://freesound.org/people/klankbeeld/sounds/192691

Thank you!

Any questions?

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de

