Алгоритм для задачи APSP с помощью схемной сложности.

5 мая 2019 г.

1 Abstract

APSP

Дано: граф G на n вершинах и весовая функция $w:[n]\times[n]\to\mathbb{R}_+\cup\infty$

Вычислить: Для всех $i, j \in [n]$ кратчайший путь из i в j.

Определение 1 Тропическое произведение матриц A и B - это матрица $A \odot B$ состоящая из элементов $(A \odot B)[i,j] = \min_k (A[i,k] + B[k,j])$.

Теорема 1 Для решения задачи APSP достаточно вычислить тропическое произведение матриц $A,B \in \mathbb{R}^{n \times n}$.

Теорема 2 $A \odot B$ вычисляется в классе AC_0 , где AC_0 - это схемы константной глубины и полиномиального размера.

Теорема 3 (Разборов-Смоленский) Для любой AC_0 -схемы C на n входах, размера s и глубины d, существует распределение D(C) на полиномах степени $(\log(s))^{O(d)}$ над \mathbb{F}_2 , такое что $Pr_{p \sim D(S)}[p(x) = C(x)] \geq 3/4$

Теорема 4 Даны $A,B \subseteq \{0,1\}^m$, |A| = |B| = n и полином $q(x_1,...,x_m,y_1,...,y_m)$ над \mathbb{F}_2 , $|q| \le n^{0.1}$, полином q можно вычислить на всех $(x,y) \in A \times B$ за $n^2 poly(log(n))$

APSP алгоритм

Даны $A,B \in [m]^{n \times n}$, хотим посчитать $A \odot B[i,j] = \min_k (A[i,k] + B[k,j])$, пусть $d = 2^{(\log(n))^{\delta}}$, $\delta > 0$

- **Шаг 1.** По матрице A строим матрицы $A_1, ..., A_{n/d}$ размера $n \times d$, аналогично для B. Тогда $(A \odot B)[i,j] = \min_{k=1,...,n/d} (A_k \odot B_k)[i,j]$. При известных $(A_k \odot B_k)$ мы можем вычислить $(A \odot B)$ за $O(n^2n/d)$ Далее мы хотим сделать d таким, что все тропические произведения $A_k \odot B_k$ будут вычисляться за $n^2 poly(log(n))$, тогда мы получим решение APSP за $O(n^3 poly(log(n)/d))$
- Шаг 2. Даны A_k и B_k размера $n \times d$ и $d \times n$ соответсвенно. Пусть C AC_0 схема для тропического произведения двух векторов длины d со значениями из $\{0,...,n^k\}$ C сордержит O(d*k*log(n)) входов, O(k*log(n)) выходов и имеет размер $(d*k*log(n))^{O(1)}$.

Для любого выхода j = 1, ..., O(k * log(n))

- а. Случайно выбираем $p_1^j,...,p_{10log(n)}^j\sim D(C)$. Для любой пары i,j мы имеем $deg(p_i^j)\leq (log(d*k*log(n)),$ тогда $|p_i^j|\leq (d*k*log(n))^{(log(d*log(n))^c}$
 - **b.** Оцениваем $p_1^j, ..., p_{10log(n)}^j$ на всех строках A_k и столбцах B_k . **c.**Выводим majority бит.

Шаг **b.** можно сделать за $n^2poly(log(n))$, при условии $(d*k*log(n))^{(log(d*log(n)))^C} \le n^{0.1}$. Поэтому при $d=2^{(log(n))^{1/1+c}/10}$ мы получаем APSP за $n^3/2^{\Omega(log(n))^{1/1+c}}$.