Uppgift 1: T. 980311

P	xyz		xyz			xyz	
1	001 √	1,3	0-1 √	=	1,3,5,7	1	b
2	010 √	1,5	-01 √				
3	011 √	2,3	01-	a			
5	101 √	3,7	-11 √	_			
7	111 √	5,7	1-1 √				

Svar: Primimplikatorer: $a = \bar{x}y$; b = z

Uppgift 2: T. 980311

Grundprincipen vid konvertering till Moore-nät är att utsignalsförändringar senareläggs en period för tillstånd som ger olika utsignaler för olika *x*-värden.

Uppgift 3: T. 980311

Med T_{CPS} betecknande clock skew samt $T_p = \max \{T_{pLH}, T_{pHL}\}$ ges villkoret för periodtiden av: $P > T_{CPS(max)} + T_{p(max)} + T_{K(max)} + T_{su(max)} \iff P > 5 + 10 + 25 + 12 = 52 \text{ ns}$

Svar: $P_{min} = 52 \ ns.$

Uppgift 4: T. 980311

Sensibiliseringskravet kräver att (i) felsignalen kan propagera genom F_3 , dvs $\frac{d}{dy}F_3(X, y) = 1$.

Dessutom krävs (ii) att felvärdet kan propagera från q till y genom NOR-grinden, vilket kan uttryckas enligt relationen $F_2(X) = 0$. Aktivering av felet kräver (iii) $F_1(X) = 0$.

Testvektorfunktionen $T_q(X)$ för q s-a-1 erhålls som konjunktionen av relationerna (i) - (iii):

Svar:
$$T_q(X) = \frac{d}{dy} F_3(X, y) \cdot \overline{F_2(X)} \cdot \overline{F_1(X)}$$

4 forts.

Alternativ lösning:

Testvektorfunktionen ges av konjunktionen av aktiveringsvillkoret och sensibiliseringsvillkoret enligt:

$$T_q(X) = \overline{F_1(X)} \cdot \frac{d}{dq} F_3(X, y(q, F_2(X))) \tag{1}$$

där $y(q, F_2(X)) = \overline{q + F_2(X)}$ och $F_2(X)$ är oberoende av q.

Användning av kedjeregeln för Boolesk differens på (1) ger:

$$T_q(\boldsymbol{X}) = \overline{F_1(\boldsymbol{X})} \cdot \frac{d}{dy} F_3(\boldsymbol{X}, y) \cdot \frac{d}{dq} y(q, F_2(\boldsymbol{X})) = \overline{F_1(\boldsymbol{X})} \cdot \frac{d}{dy} F_3(\boldsymbol{X}, y) \cdot \overline{F_2(\boldsymbol{X})}$$

Uppgift 5: T. 980311

$$Y = abcf + acef + \bar{a}\bar{f} + \bar{a}ce + ab\bar{e} + bd\bar{e}\bar{f}$$

TÄCKNINGSTABELL

Täcknings-	Primimplikator -	Termer som skall täckas						
variabel		abcf	acef	$\bar{a}\bar{f}$	āce	abē	$bdar{e}ar{f}$	
x_1	abē	\bar{e}	Ø	Ø	Ø	1	а	
x_2	abcf	1	b	Ø	Ø		Ø	
x_3	āce	Ø	Ø		1	Ø	Ø	
x_4	$\bar{a}\bar{f}$	Ø	Ø	1	\overline{f}	Ø	ā	
<i>x</i> ₅	$bar{e}ar{f}$	Ø	Ø		Ø	\bar{f}	1	
<i>x</i> ₆	cef	e	1	Ø	f	Ø	Ø	

Partiellt täckningsvillkor endast utskrivet då villkoret består av en litteral eller konstanten 1.

$$P = (x_2 + x_1 x_6)(x_6)(x_4)(x_3 + x_4 x_6)(x_1)(x_5 + x_1 x_4)$$

$$= x_1 x_4 x_6(x_2 + x_1 x_6)(x_3 + x_4 x_6) = x_1 x_4 x_6(x_3 + x_4 x_6)$$

$$= x_1 x_4 x_6$$

Svar: Den enda minimala täckningen erhålls av följande primimplikatorer: $ab\bar{e}, \ \bar{a}\bar{f}, \ cef$

Uppgift 6: T. 980311

Studera först ett synkront sekvensnät med $\sigma_x=x_1,\,x_2,\,...\,x_n$ samt $\sigma_u=u_1,\,u_2,\,...\,u_n$

Tillståndstabell och kodning

δ(λ)	$q_1^+ q_2^+ (u)$				
q_1q_2	x=0	x=1			
A = 00	00(0)	01(0)			
B = 01	00(0)	11(1)			
C = 11	10(1)	11(1)			
D = 10	00(0)	11(1)			

q	1+	0	x 1	
00)	0	0	
01 q ₁ q ₂		0	1	
11		1	1	
10)	0	1	
q ₁ ⁺ =	= q	1q ₂ -	+ q ₂ x -	+ q ₁ x

Svar:

$$\begin{split} & \underline{Cell\ i:}\ i{=}1,\ 2,\ ...\ ,n \\ & q_{1,(i{+}1)} = q_{1,i}q_{2,i} + q_{2,i}x_i + q_{1,i}x_i \\ & q_{2,(i{+}1)} = x_i\ ; \\ & u_i = q_{1,(i{+}1)} \end{split}$$

För att få $u_1 = 1$ oberoende av X krävs starttillståndet C, vilket svarar mot $q_{1,1} = q_{1,2} = 1$.

Uppgift 7: T. 980311

2	X				
3	{2,6}; {3,5}	X			
4	{5,6}; {1,6}	{1,6}	{2,5}		
5	X	{3,4}; {2,6}			
6	{3,5}	{3,5}	X	X	{3,5}
	1	2	3	4	5

Relationsgraf

MFM: {1,3,4}; {1,6}, {2,4}, {2,5,6}, {3,5}

C _i	I(C _i)
{1,3,4}	{2,5,6}; {3,5}; {1,6}
{1,6}	{3,5}
{2,4}	{1,6}
{2,5,6}	{3,4}; {3,5}
{3,5}	Ø

{2,4}, {1,6}, {3,5} bildar en sluten och täckande uppsättning förenlighetsmängder.

Tentamensdatum: 980311

7. forts.

	Q ⁺ (u)						
Q	$x_1 x_2$						
	00	01 11		10			
a	a(1)	a(0)	c(1)	a(0)			
b	b(0)	c(1)	c(0)	a(1)			
С	c(0)	b(1)	c(1)	b(1)			

Uppgift 8: T. 980311

 $a = \{1,6\}$ $b = \{2,4\}$ $c = \{3,5\}$

Kodning

Q	q ₁ q ₂
С	0 0
A	0 1
В	1 1
D	10

Kodad tillståndstabell

δ(λ)	$q_1^+ q_2^+ (u_1 u_2)$						
q_1q_2	00	01	11	10			
00	10(01)	01(-1)	00(01)	00(01)			
01	01(11)	01(11)	00(-1)	11(11)			
11	11(11)	01(11)	10(11)	11(11)			
10	11(-1)		00(-1)				
10	11(-1)		00(-1)	-			

di Cilidiis	2		\mathbf{x}_1	\mathbf{x}_2	
	\mathbf{u}_1	00	01	11	10
	00	0		0	0
a a	01	1	1		1
q_1q_2	11	1	1	1	1
$u_1 = q_2$	10				

Alternativ graf med 2 tillst.

för hasardfrihet

Uppgift 9: T. 980311

(a) Nivåstyrd:

Evalueringsordning bestäms av grindarnas topologisk a nivåer

Två möjliga evalueringsordningar finns: $\{G_1,G_3,G_2,G_4\}$ eller $\{G_3,G_1,G_2,G_4\}$

(b) Händelsestyrd:

t = 0	t = 0		<i>t</i> = 1		t = 2		<i>t</i> = 3	
Event	Eval.	Event	Eval.	Event	Eval.	Event	Eval.	
< a, 0 >	G ₂							
< c, 0 >	G ₁	< n ₁ , 0 >	G_2	< n ₂ , 0 >	G_4	< F, 0>		
ζ τ, υ >	G ₃	< n ₃ , 1 >	G_4	< F, 1>				
< <i>e</i> , 1 >	G_4							

Grindevalueringar (totalt 7 st.) och ordning: t=0, $\{G_2,G_1,G_3,G_4\}$; t=1, $\{G_2,G_4\}$; t=2, $\{G_4\}$ Evalueringsordning inom respektive tidssteg är godtycklig.

Uppgift 10: T. 980311

$$\begin{array}{lll} \langle abcde \rangle = \langle \text{X1X1X} \rangle \Rightarrow & n_1 = 1, \, n_2 = 1, \, n_3 = \text{X} & \Rightarrow & F = \text{X} \\ \langle abcde \rangle = \langle 1\text{XX}01 \rangle \Rightarrow & n_1 = \text{X}, \, n_2 = 1, \, n_3 = 1 & \Rightarrow & F = 1 \end{array}$$