學號:B04902099 系級: 資工三 姓名:黃嵩仁

請實做以下兩種不同 feature 的模型,回答第(1)~(3)題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

	Public score	Private score	Loss
(1)所有汙染源	7.59856	5.40484	6.59357
(2)pm2.5	7.68747	5.77560	6.79907

註:(1)
$$loss = \sqrt{\frac{public^2 + private^2}{2}}$$
,以下同

(2)訓練停止條件: training loss 兩次之間誤差小於 1e-6,以下同

由上表可知,只取 pm2.5 來 training 的 loss 會比取所有汙染物來 train 的高,表示在 18 種汙染物中,有其他的汙染物也會影響第 10 小時的 pm2.5 數值(結果),須列入考慮。但是,有些修課同學所測出得 Loss 與我所得到的結果相反,我覺得有可能在 18 種汙染物中,有些汙染物會對第 10 小時 pm2.5 的預測結果產生嚴重誤差,而他們得訓練方法(or 停止條件)與我不同,導致所訓練出的 model 對於那些"不好的"汙染物有明顯的反應,故得到該結果。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

	Public score	Private score	Loss
所有汙染源前9小時	7.59856	5.40484	6.59357
所有汙染源前5小時	7.81637	5.39328	6.71502
Pm2.5 前 9 小時	7.68747	5.77560	6.79907
Pm2.5 前 5 小時	7.88416	5.92986	6.97578

由上表可知,不論是取所有汙染物或是只取 pm2.5 來做 training, 抽取前 9 小時所得的成績都比僅抽取前 5 小時來得好,可以推論**頭 4 個小時得汙染物對於預測結果得正確** 率有一定程度的影響。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

(1)	Public score	Private score	Loss(testing)	Loss(training)
所有汙染源, λ = 0.1	8.24109	5.63575	7.05964	6.47886
所有汙染源, λ = 0.01	7.64711	5.41515	6.62578	5.81649
所有汙染源, λ = 0.001	7.60284	5.40563	6.59636	5.72150
所有汙染源, λ = 0.0001	7.59899	5.40492	6.59385	5.71166
所有汙染源,λ=0	7.59856	5.40484	6.59357	5.71057
(2)	Public score	Private score	Loss	Loss(training)

pm2.5, $\lambda = 0.1$	13.09160	8.73473	11.12846	9.97156
pm2.5, $\lambda = 0.01$	8.71389	6.36224	7.62921	7.35181
pm2.5, $\lambda = 0.001$	7.77711	5.83199	6.87370	6.35304
pm2.5, $\lambda = 0.0001$	7.69568	5.78081	6.80592	6.19207
$pm2.5, \lambda = 0$	7.68747	5.77560	6.79907	6.17309

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一純量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (y^n-x^n\cdot w)^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X}=[\mathbf{x}^1\ \mathbf{x}^2\ ...\ \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y}=[\mathbf{y}^1\ \mathbf{y}^2\ ...\ \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^TX)^{-1}X^Ty$
- (d) $(X^TX)^{-2}X^Ty$

Ans:

$$\begin{split} \sum_{n=1}^{N} (y^n - x^n \cdot w)^2 &= \sum_{n=1}^{N} (x^n \cdot w - y^n)^2 = (w \cdot x^1 - y^1 \dots w \cdot x^N - y^N) \begin{pmatrix} w \cdot x^1 - y^1 \\ \dots \\ w \cdot x^N - y^N \end{pmatrix} \\ &= (w \cdot X - Y)^T (w \cdot x - Y) \\ \frac{\partial}{\partial w} (w \cdot X - Y)^T (w \cdot x - Y) &= \frac{\partial}{\partial w} (w^T X^T X w - w^T X^T Y - Y^T X w + Y^T Y) = X^T X w - 2X^T Y \\ (上式結果由 \frac{\partial}{\partial M} M^T M = 2M \ \Bar{\mathcal{D}} \frac{\partial}{\partial M} A M = A^T) \\ \Leftrightarrow X^T X w - 2X^T Y &= 0 \quad \ \ \,$$
 得到 $w = (X^T X)^{-1} X^T Y \quad \ \,$ 故答案為(c)