OPERÁCIE S MNOŽINAMI

Ak s dvoma množinami vykonáme množinovú operáciu, výsledkom bude opäť množina. Množinové operácie:

• zjednotenie $\mathcal{A} \cup \mathcal{B}$

- o je množina, ktorá obsahuje prvky, ktoré patria aspoň do jednej z množín \mathcal{A},\mathcal{B}
- $\circ \quad x \in (\mathcal{A} \cup \mathcal{B}) \Leftrightarrow (x \in \mathcal{A} \lor x \in \mathcal{B})$
- $\begin{array}{ccc} \circ & \mathcal{A} = \{1,2,3\} & \mathcal{B} = \{2,3,4,5\} \\ & \mathcal{A} \cup \mathcal{B} = \{ \end{array} \}$

• prienik $\mathcal{A} \cap \mathcal{B}$

- o je množina, ktorá obsahuje prvky, ktoré patria súčasne obom množinám \mathcal{A},\mathcal{B}
- $\circ \quad x \in (\mathcal{A} \cap \mathcal{B}) \Leftrightarrow (x \in \mathcal{A} \land x \in \mathcal{B})$
- $\circ \quad \mathcal{A} = \{1,2,3\}$

$$\mathcal{B} = \{2,3,4,5\}$$

- $\mathcal{A} \cap \mathcal{B} = \{$
- o množiny \mathcal{A} , \mathcal{B} sú **disjunktné**, ak $\mathcal{A} \cap \mathcal{B} = \emptyset$

• rozdiel $\mathcal{A} - \mathcal{B}$

- o je množina, ktorá obsahuje prvky, ktoré patria do množiny $\mathcal A$ ale nepatria do $\mathcal B$
- $\circ \quad x \in (\mathcal{A} \mathcal{B}) \Leftrightarrow (x \in \mathcal{A} \land x \notin \mathcal{B})$

}

}

 \circ $\mathcal{A} = \{1,2,3\}$

 $\mathcal{A} - \mathcal{B} = \{$

$$\mathcal{B} = \{2,3,4,5\}$$

• doplnok množiny ${\mathcal A}$ v množine ${\mathcal U}$ ${\mathcal A'}_{\mathcal U}$

o je množina, ktorá obsahuje prvky, ktoré patria do množiny $\mathcal U$ a nepatria do $\mathcal A$

$$\circ \quad x \in (\mathcal{A}'_{\mathcal{U}}) \Leftrightarrow x \in (\mathcal{U} - \mathcal{A}) \Leftrightarrow (x \in \mathcal{U} \land x \notin \mathcal{A})$$

$$0 \quad \mathcal{A} = \{2,3\}$$
$$\mathcal{A'}_{\mathcal{U}} = \{$$

$$U = \{2,3,4,5\}$$

ullet symetrický rozdiel $\mathcal{A} \div \mathcal{B}$

- o je množina
- $\circ \quad x \in (\mathcal{A} \div \mathcal{B}) \Leftrightarrow$

$$\begin{array}{ccc}
\circ & \mathcal{A} = \{1,2,3\} \\
& \mathcal{A} & \mathcal{B} = \{
\end{array}$$

$$\mathcal{B} = \{2,3,4,5\}$$

Doplňte tabuľku

	komutatívnosť	$\mathcal{A}*\mathcal{B}$	$\mathcal{A}*\emptyset$
$\mathcal{A} \cup \mathcal{B}$			
$\mathcal{A}\cap\mathcal{B}$			
A - B			
$\mathcal{A} \div \mathcal{B}$			

Doplňte tabuľku

$\mathcal{A} \cap \mathcal{A'}_{\mathcal{U}}$	11	
$\boldsymbol{\mathcal{A}} \cup \boldsymbol{\mathcal{A}'}_{\mathcal{U}}$	II	
$(\mathcal{A}'_{\mathcal{U}})'$	=	
U'	=	
Ø´	=	

Úlohy

1. Označme $M = \{1, 2, ..., 20\}$, P – prvočísla z M, N – nepárne čísla z M, T – čísla z M, ktoré sú deliteľné tromi. Vypíšte prvky množín

(B,UM)={1/3/12/

T-()=(3,6,12,18)

m, - () = { 5/4/8/10, 4/4/8/50)

2. Pre množiny M, K platí $M \subset K$. Doplňte Čomu sa rovná

a. $(M \cap K) - M = \emptyset$

b. $(\widehat{M \cup K}) - \widehat{M_{\chi}} = \bigwedge_{\mathcal{N}}$

3. Určte množiny A, B vymenovaním prvkov tak, aby platilo $A \cup B = \{0,1,2,3,4,5\}, A \cap B = \emptyset, B - A = \{1,3,4\}.$ O= (015/2)

- $0_{\Im} = \{ (1, 2, 1) \}$ 4. Pre dve neprázdne množiny U, V platí: $U \cup V$ má 17 prvkov, $U \cap V$ má 9 prvkov a množina V - U je prázdna. Koľko prvkov má množina U - V? U-V=8-LX
- 5. Pomocou Vennových diagramov dokážte, že pre ľubovoľné tri množiny platí

6. Primár vydal nariadenie: "Na oddelení smú operovať iba lekári s druhou atestáciou, prípadne lekári s prvou atestáciou, pokiaľ majú aspoň 15 rokov praxe." Na ktorom z diagramov je správne vyznačená množina všetkých lekárov, ktorí budú môcť podľa nariadenia operovať? (A₁ – lekári s 1. atestáciou, A₂ – lekári s 2. atestáciou, P₁₅ – lekári s 15-ročnou praxou)

- 7. Nech P, Q, R, S sú štyri neprázdne množiny, pre ktoré platí $P \subset Q \subset R, Q \cap S = \emptyset$. Potom určite musí platiť
 - a. $Q \subset S \times$
 - b. $S \subset R$
 - c. $P \cap S = \emptyset$
 - d. $R \cap S \neq \emptyset \ \checkmark$
- 8. Dané sú dve množiny P,Q také, že $P \subset M,Q \subset M$. Ktoré z nasledujúcich tvrdení sú nepravdivé?

- 9. Nech A, B sú neprázdne množiny. Ktoré z nasledujúcich tvrdení je nepravdivé?
 - a. Ak sú množiny A, B konečné, je aj množina $A \cap B$ konečná.
 - b. Ak sú množiny A, B konečné, je aj množina $A \cup B$ konečná.
 - c. Ak je množina A nekonečná a množina B konečná, potom $A \cup B$ je nekonečná.
- 10. Nakreslite kružnicu. Množinu bodov vo vnútri kružnice označte A.

Nakreslite pravouhlý trojuholník, ktorý má vrchol pravého uhla v strede kružnice A a ktorého odvesny sa rovnajú priemeru kružnice. Množinu bodov vo vnútri trojuholníka **označte B.** Ďalej **nakreslite priamku**, ktorá rozpoľuje pravý uhol trojuholníka B. Množinu bodov na priamke **označte C**.

- a. $(A \cap B) \cup C$
- b. $(A \cup C) \cap (B \cup C)$
- c. $(A \cap B) \cup (B \cap C)$
- d. $(A \cup C) \cap B$
- 11. Pokúste sa o množinové vyjadrenie a jednoduché znázornenie Vennovými diagramami tzv.

d. Niektoré a nie sú b

- 12. V triede je 32 študentov, z toho je 12 futbalistov a 15 hokejistov. Obom športom sa venuje 7 študentov. Určte koľko študentov
 - a. hrá futbal alebo hokej ちゃ チャタ ニ 2つ

b. nehrá ani hokej ani futbal.

Domáca úloha

1. Dané sú množiny:

$$A=\{x\in\mathbb{Z};\,x^2<10\},\qquad B=\{x\in\mathbb{N};\,3|x\wedge x<17\},\qquad C=\{x\in\mathbb{Z};x^2=2\}.$$
 Vymenovaním prvkov určte množiny $A,B,C,A\cap B,B\cup C,C'_A.$

2. Pomocou Vennových diagramov rozhodnite, či sa dané množiny rovnajú

$$(X \cup Y) \cap Z' = (X \cap Z') \cup (Y \cap Z')$$