Title: METHOD OF REDUCING CARBON MONOXIDE CONCENTRATION Inventor(s): Maki HOSHINO DOCKET NO.: 040302-0379

1/2



Title: METHOD OF REDUCING

CARBON MONOXIDE

CONCENTRATION

Inventor(s): Maki HOSHINO

DOCKET NO.: 040302-0379

2/2

FIG.2

| <del> </del> | · · · · · · · · · · · · · · · · · · · |           |                     |                              | <del></del>                                                      |                   |
|--------------|---------------------------------------|-----------|---------------------|------------------------------|------------------------------------------------------------------|-------------------|
|              |                                       |           | SECOND              | CATALYST                     |                                                                  | CO                |
|              | FIRST                                 | SECOND    | OMPONENT<br>CONTENT | APPLICATIO                   | N .                                                              | ADSORPTION        |
|              |                                       | COMPONENT |                     | AMOUNT <sup>.</sup><br>(g/L) | CARRIER                                                          | AMOUNT (mL/cat.g) |
| Ex.1         | Fe                                    | Pt        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0.232             |
| Ex.1<br>Ex.2 | Co                                    | Pt        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0.232             |
| Ex.3         | Ni<br>Ni                              | Pt        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 1.009             |
| Ex.4         | Mn                                    | Pt        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub> Al <sub>2</sub> O <sub>3</sub>    | 0.514             |
| Ex.5         | Cu                                    | Pt        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 1.100             |
| Ex.6         | Fe                                    | Rh        | 1                   | 200                          |                                                                  | 0.354             |
| Ex.7         | Co                                    | Rh        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0.334             |
| Ex.7<br>Ex.8 | Ni                                    | Rh        |                     | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0.403<br>2.741    |
| Ex.o<br>Ex.9 | Mn                                    | Rh        | 1<br>1              | 200                          | Al <sub>2</sub> O <sub>3</sub><br>Al <sub>2</sub> O <sub>3</sub> | 2.741             |
| Ex.10        | Cu                                    | Rh        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub> Al <sub>2</sub> O <sub>3</sub>    | 2.362             |
| Ex.11        | Cu                                    | Ru        | 1                   | 200                          | $\frac{\text{Al}_2\text{O}_3}{\text{Al}_2\text{O}_3}$            | 1.836             |
| Ex.11        | Cu                                    | Ru<br>Pd  | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub> Al <sub>2</sub> O <sub>3</sub>    | 0.963             |
| Ex.12        | Cu                                    | La        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub> Al <sub>2</sub> O <sub>3</sub>    | 0.889             |
| Ex.14        | Cu<br>Cu                              | Nd        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub> Al <sub>2</sub> O <sub>3</sub>    | 0.889             |
| Ex.15        | Cu                                    | Ce        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0.954             |
| Ex.16        | Cu                                    | Pr        | 1                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0.902             |
| Ex.17        | Co                                    | Pt        | 0.5                 | 200                          | $\frac{\text{Al}_2\text{O}_3}{\text{Al}_2\text{O}_3}$            | 0.248             |
| Ex.17        | Ni                                    | Pt        | 0.5                 | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0.564             |
| Ex.19        | Cu                                    | Pt        | 0.5                 | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 1.006             |
| Ex.20        | Co                                    | Pt        | 2                   | 100                          | $\frac{\text{Al}_2\text{O}_3}{\text{Al}_2\text{O}_3}$            | 0.856             |
| Ex.20        | Ni                                    | Pt '      | 2                   | 100                          | Al <sub>2</sub> O <sub>3</sub> Al <sub>2</sub> O <sub>3</sub>    | 1.875             |
| Ex.22        | Cu                                    | Pt        | 2                   | 100                          | Al <sub>2</sub> O <sub>3</sub> Al <sub>2</sub> O <sub>3</sub>    | 1.551             |
| Ex.23        | Co                                    | Pt        | 1                   | 200                          | Mordenite                                                        |                   |
| Ex.23        | Co                                    | Pt        | 1                   | 200                          | ZSM-5                                                            | 0.302             |
| Ex.25        |                                       | Pt        | 1                   |                              |                                                                  | 0.287             |
| Ex.25        | Co<br>Co                              | Pt        | 1                   | 200<br>200                   | SiO <sub>2</sub>                                                 | 0.245             |
| Ex.27        | Co                                    | Pt        | 1                   | 200                          | TiO <sub>2</sub><br>ZrO <sub>2</sub>                             | 0.232<br>0.189    |
|              |                                       | - Ft      |                     | <del></del>                  |                                                                  |                   |
| Com. Ex      |                                       | -         | -                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0                 |
| Com. Ex      |                                       | -         | -                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0                 |
| Com. Ex      |                                       | -         | -                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0.003             |
| Com. Ex      |                                       | -         | -                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0                 |
| Com. Ex      | .5 Cu                                 | -         | -                   | 200                          | Al <sub>2</sub> O <sub>3</sub>                                   | 0.631             |