1 Wizualizacja danych - wykresy 2D

Funkcje sterujące tworzeniem wykresów

$\frac{\text{plot}(x,y,'KSL')}{\text{plot}(x,y,'KSL')}$	tworzy wykres 2D wraz z specyfikatorem lini K - kolor, S -			
	symbol, L - linia			
figure(nr)	tworzy okno graficzne, w którym możemy rysować			
subplot(m,n,active)	tworzy wiele wykresów, ułożonych w tablicę o wymiarach m			
	na n, aktywny wykres (ten w którym odbędzie się rysowanie)			
	określony jest przez zmienną 'active'			
hold on/off	wstrzymuje rysowanie w danym oknie, na jednym wykresie			
	możemy nanieść wiele lini			
clf	czyści okno graficzne			
legend(str1,str2,)	tworzy legende do wykresu			
ezplot('wyr')	pozwala na podanie wyrażenia na funkcję w formie łańcucha			
	znaków, tworzy wykres dla funkcji postaci $f(x, y) = 0$ np.			
	ezplot('x^2+y-4')			
hist(x, n)	Wykreśla histogram dla n przedziałów, x-zawiera dane, które			
	będą umieszczone w n 'przegródkach'			
stairs(x)	wykres schodkowy			
bar(x)	wykres słupkowy			
stem(x)	wykres dla lini pionowych			
line(x,y)	rysuje linię łamaną, wyznaczaoną przez elementy wektorów			
	x,y			
fill(x,y,c')	rysuje wielokąt w punktach wyznaczonych przez elementy			
	wektorów x,y, wyełnienie określa ostatni parametr			

1.1 Specyfikatory koloru, symbolu i rodzaju lini

-	Kolor		Symbol		Rodzaj lini
У	yellow		punkt	-	ciągła
\mathbf{m}	magneta	О	kółko	:	kropkowana
\mathbf{c}	cyan	x	X	–.	kropka-kreska
r	red	+	plus		kreskowana
g	green	*	gwiazdka		
b	blue	\mathbf{s}	kwadrat		
W	white	d	romb		
k	black	v	trójkąt w dół		
		\wedge	trójkąt w górę		
		<	trójkąt w lewo		
		>	trójkąt w prawo		
		p	pięciokąt		
		h	sześciokąt		

1.2 Ćwiczenie

Utwórz na jednym wykresie ciąg funkcji $f_n(x)$ gdzie $n \in \{1, 2, 4, 8\}$, dla każdego n wybierz inny kolor, symbol oraz rodzaj linii, tak aby można było je łatwo odróżnić, ustaw także legendę wykresów.

1.
$$f_n(x) = \frac{1}{x^n}, \ x \in [1, 5]$$

```
2. f_n(x) = \sin(nx), x \in [-\pi, \pi]
```

3.
$$f_n(x) = \frac{nx}{1+n^5x^2}, x \in [-2,2]$$

Aby na jednym wykresie umieścić kilka wykresów użyj konstrukcji:

```
figure(1)
hold on
plot(x,y1,'...');
plot(x,y2,'...');
hold off
```

1.3 Ćwiczenie

Dla przykładu 2 z powyższego ćwiczenia zmień właściwości wykresu,w oknie z wykresem wybierz opcję 'Edit→Axes Properties' i zmień

- 1. zakresy dla osi x od -4 do 4 a dla osi -2 do 2
- 2. wstaw tytuł wykresu 'wykresy sinusa'
- 3. podpisz poszczególne osie jako 'x' oraz 'sin(x)'
- 4. pokaż linie siatki na wykresie dla osi x określ linie co 0.5 a dla osi y co 0.2
- 5. wstaw strzałkę z tekstem wskazującą funkcje 'sin(x)'
- 6. zapisz obraz w formacie .fig (nazwa pliku dowolna)
- 7. zapisz obraz w formacie .png
- 8. zamknij wykres i następnie otwórz uprzednio zapisany obraz w formacie .fig

1.4 Ćwiczenie

Używając funkcji ezplot narysuj wykresy:

- 1. $x^2 + y^2 4 = 0$
- 2. Okrąg o środku w punkcie P(2,3) i promieniu 3, dodatkowo zaznacz na wykresie środek okręgu i narysuj promień
- 3. Narysuj elipsę o osiach a=6, b=4, zaznacz punktami ogniska elipsy F1, F2

1.5 Ćwiczenie

W jednym oknie graficznym utwórz 6 wykresów funkcji rozmieszczonych w trzech wierszach i dwóch kolumnach. W pierwszej kolumnie mają znaleźć się funkcje:

$$f(x) = n * cos(x) \ x \in [-2\pi, 2\pi], \ n \in \{1, 2, 3\}$$
 (1)

w drugiej natomiast funkcje:

$$f(x) = \cos(n * x) \ x \in [-2\pi, 2\pi], \ n \in \{1, 2, 3\}$$

Funkcje w pierwszej kolumnie powinny być narysowane kolorem niebieskim a w drugiej zielonym. Do stworzenia tablicy wykresów użyj funkcji subplot(...)

1.6 Ćwiczenie

Wygeneruj 1000 losowych wartości danej cechy o rozkładzie normalnym, gdzie średnia m=4 a odchylenie standardowe s=2, narysuj histogram rozkładu wartości tej cechy dla ilości przedziałów n=5,10,20,100.

Dane o rozkładzie normalnym o średniej m i odchyleniu s można wygenerować następująco:

```
r = m+ s*randn(nrPoints,1);
```

1.7 Ćwiczenie

Narysuj trójkąt o wierzchołkach w punktach (1,1), (2,2), (3,1) z wypełnieniem w kolorze niebieskim.

1.8 Ćwiczenie*

Utwórz na jednym wykresie funkcje okresowe g(x) oraz $f_n(x)$ o okresie 2T = 2, gdzie $n \in \{1, 2, 3, 4, 5\}$ $x \in [-4, 4]$, dla każdego n wybierz inny kolor, symbol oraz rodzaj lini tak aby można było łatwo je odróżnić.

$$g(x) = (-1)^{floor(x)}; (3)$$

$$f_n(x) = \frac{4}{\pi} \sum_{k=1}^n \frac{1}{2k-1} \sin\left(\frac{(2k-1) * \pi x}{T}\right)$$
 (4)

Podpowiedź:

- 1. Rozpisz na kartce jak wygląda funkcja $f_n(x)$ dla n=1
- 2. Rozpisz na kartce jak wygląda funkcja $f_n(x)$ dla n=2
- 3. Dla danego n > 1, będzisz potrzebował wektora z obliczonymi wartościami funkcji dla 1...n-1, po to abyś mógł je zsumować. Do sumowania można użyć funkcji sum(X,dim) (help sum).

2 Wizualizacja danych - wykresy 3D

Funkcje sterujące tworzeniem wykresów

[X,Y]=meshgrid $(r1,r2)$	tworzy macierze tworzące dwu-wymiarową siatkę, nakła-
	dając na siebie X oraz Y otrzymamy wszystkie możliwe
	kombinacje punktów
$\operatorname{mesh}(x,y,z)$	funkcja rysuje trzy wymiarową powierzchnię opisaną
	równaniem $z = f(x, y)$, x,y-stworzone przy pomocy
	funkcji meshgrid, z - obliczone wartości funkcji
$\operatorname{mesh}(x,y,z,c)$	funkcja rysuje trzy wymiarową powierzchnię opisaną
	równaniem $z = f(x, y)$, dodatkowo określone zostają in-
	deksy kolorów w aktualnej mapie kolorów
$\operatorname{meshc}(x,y,z)$	wykres podobny do mesh dodane są poziomice
contour3(x,y,z)	wykres konturowy
surf(x,y,z)	wykres 3D powierzchniowy
surfc(x,y,z)	działa taka jak funkcja surf lecz dodatkowo zaznaczone
	są poziomice
sufrl	surf + cieniowanie
ezsurf('wyr')	rysuje powierzchnie podaną przy pomocy wyrażenia ma-
	tematycznego np. ezsurf('x^2+y^2')
ezsurfc('wyr')	działa jak ezsurf + kontury
plot3	linia w trzech wymiarach
bar3	wykres słupkowy w 3D
TT7 . 1 . 1 . / . 1 .	

Warto odwiedzić stronę http://mathworks.com/discovery/gallery.html

2.1 Ćwiczenie

Wykonaj poniższy kod, prześledź jak wyglądają macierze 'x' oraz 'y'. Jaka jest zależność pomiędzy zmiennymi x,y? Gdy nałozymi x i y na siebie jakie pary punktów otrzymamy?

```
% generujemy siatkę [-2,2] co 1 dla x i y
[x,y]=meshgrid(-2:1:2);
```

Wykonaj poniższy kod, prześledź jak wyglądają macierze 'x' oraz 'y' po wykonaniu pierwszej instrukcji, zbadaj jak wygląda macierz 'z'

```
% generujemy siatkę [-3,3] co 0.1 dla x i y
[x,y]=meshgrid(-3:.1:3);
% obliczamy wartość funkcji
z=x.^2+y.^2;
% rysujemy funkcję
mesh(x,y,z);
```

2.2 Ćwiczenie

Zmień właściwości powyższego wykresu, ustal opisy osi x,y,z, ustaw tytuł wykresu zmień zakresy dla poszczególnych osi. (podobnie jak dla wykresów 2D)

2.3 Ćwiczenie

Narysuj wykresy funkcji

1.
$$f(x,y) = \sin(x) * \sin(y) * \exp(-x^2 - y^2) , x, y \in [-\pi, \pi]$$

2.
$$f(x,y) = \sqrt{x^2 + y^2}, \ x, y \in [-8, 8]$$

3.
$$f(x,y) = \sin(\sqrt{x^2 + y^2}), x, y \in [-8, 8]$$

4.
$$f(x,y) = \sin(\sqrt{x^2 + y^2})/x$$
, $x, y \in [-8, 8]$

5.
$$f(x,y) = \cos(x * y), x, y \in [-2\pi, 2\pi]$$

6.
$$f(x,y) = \exp(\sin(x^2 + y^2)), x, y \in [-8, 8]$$

7.
$$f(x,y) = \sin(x) + \cos(y), \ x, y \in [-8, 8]$$

Użyj funkcji mesh(x,y,z,c), za c spróbuj kolejno podstawić x,y,z. Na powyższych wykresach wypróbuj działanie funkcji surf, surfc oraz surfl.

2.4 Ćwiczenie

Narysuj wykres funkcji dany równaniem parametrycznym dla $t \in [0, 10 * \pi]$, użyj funkcji plot3

$$\begin{cases} x = \sin(t) \\ y = \cos(t) \\ z = t \end{cases}$$
 (5)

2.5 Ćwiczenie

Używając funkcji ezsurf, ezsurfc narysuj wykresy funkcji:

$$f(x,y) = Re(\operatorname{arctg}(x+iy)), \ x,y \in [-2\pi, 2pi]$$
(6)

Re - część całkowita liczby zespolonej, w matlabie realizuje to funkcja 'real'

$$f(x,y) = \frac{y}{1+x^2+y^2} \ x \in [-4,4], y \in [-2\pi, 2pi]$$
 (7)

3 Ciekawostka animowane wykresy

W tej sekcji wykorzystamy proste skrypty w matlabie (o tworzeniu skryptów więcej na przyszłych ćwiczeniach). Z menu matlaba wybierz File→New→Script, wklej poniższy kod, zapisz plik i uruchom kod naciskająć F5.

```
close all;
x=linspace(0,4*pi,100);
for a=linspace(0,8*pi,400)
plot(x,sin(x-a));
xlim([min(x) max(x)]);
drawnow; % rysuj teraz
pause(1/40); %wstrzymaj program
end
```