# Predicting Diabetes Patient Hospital Readmission

Pavel Zimin, PhD Mentor: Ramkumar Hariharan, PhD

#### Problem Statement

- Hospital readmission is a highly preventable cause for high healthcare costs
- The ability to predict hospital readmission will help prioritize patients that will benefit from hospital discharge follow up programs

#### **Business use cases:**

- The outcome of this analysis will be helpful to the hospital healthcare teams with prioritizing patient support program
- This analysis will benefit patients who will receive improved health care, decreased chances of readmission while incurring smaller cost

## Data Wrangling Steps

- Hospital readmission data were downloaded from UCI Machine Learning Repository ( https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008)
- The dataset contains 101,766 observations of unique hospital encounters with 50 variables: 13 columns of integer type, 37 columns of object type
- Medical diagnosis codes with their hierarchical groupings were downloaded from a GitHub repository ( https://github.com/sirrice/icd9.git) and merged with the readmission data set
- For each variable with missing values a separate column was created with values indicating the missing values
- Each categorical variable was encoded with integer values, the code was saved in a dictionary
- No outliers were removed

## **Correlation Clustermap**



- moderate to low correlation between the readmitted variable and other variables
- variables showing largest correlations are:
  - number\_inpatient (the number of inpatient visits in the year preceding the encounter)
  - number\_emergency (the number of emergency visits in the year preceding the encounter)
  - 3) number\_outpatient (the number of outpatient visits in the year preceding the encounter)

## Frequencies of Selected Variables



## Sanity Check of the Data Set





## Age Group Frequencies



## Frequencies of medication dosage changes







## Primary Diagnosis Frequency Distributions



The top primary diagnoses in the group with readmission within 30 days:

- 1) encounter for other and unspecified procedures and aftercare,
- 2) diabetes with renal manifestations,
- 3) peritonitis and retroperitoneal infections.

#### **EDA Conclusions**

- There is moderate to low correlation between the readmitted variable and other variables.
- The variables showing the largest correlations are: number\_inpatient, number\_emergency, and number\_outpatient.
- The most dramatic changes in the frequencies of medication changes were for the following medications for treating diabetes: repaglinide, nateglinide, and acarbose.
- Distribution of the primary diagnoses shows that for some primary diagnoses the frequency of readmission within 30 days is much higher than the median frequency for that group.
- The top primary diagnoses in the group with readmission within 30 days are
  - 1) encounter for other and unspecified procedures and aftercare
  - 2) diabetes with renal manifestations
  - 3) peritonitis and retroperitoneal infections

## Machine Learning

- Data Splitting
  - Data were randomly split into 4 sets: training set (70%), and 3 hold-out sets (10% each). Training set was used for machine learning, hold-out set 1 was used for hyperparameter tuning, hold-out set 2 was used for validating models, hold-out set 3 was used for the final model testing
- Dealing with the Imbalanced Data
  - Positive class represents 11% of the data
  - Random Undersampling, and 2 oversampling methods were tested (SMOTE and ADASYN). Random Unersampling showed the best performance
- F1 score was selected for tuning the model

#### Models fitted

- Dummy classifier
- Random Forest
- Logistic Regression
- Logistic Regression with Stochastic Gradient Descent
- AdaBoost
- Gradient Boosting Classifier
- Gradient Boosting Classifier fitted on principal components

## Best Hyperparameters

| Model                           | Hyperparameters                                                     |  |
|---------------------------------|---------------------------------------------------------------------|--|
| Dummy                           | None                                                                |  |
| Random Forest                   | n_estimators=20, max_depth=5, min_samples_split=5, max_features=25  |  |
| Logistic Regression             | penalty='l2', solver='liblinear', C=1                               |  |
| Logistic Regression, stochastic | alpha=0.001, penalty='elasticnet', l1_ratio=0.3                     |  |
| AdaBoost                        | max_depth=2, min_samples_split=2, n_estimators=10                   |  |
| Gradient Boosting               | n_estimators=100, max_depth=2, min_samples_split=2, max_features=20 |  |

#### **Model Comarison**



Gradient Boosting Classifier was selected based on the F1 score

### Final Model Evaluation

| metric                          | training<br>data | test data |
|---------------------------------|------------------|-----------|
| precision score                 | 0.64             | 0.17      |
| recall score                    | 0.57             | 0.57      |
| F1 score                        | 0.60             | 0.26      |
| Fβ score                        | 0.63             | 0.17      |
| Mattews correlation coefficient | 0.24             | 0.16      |
| accuracy score                  | 0.62             | 0.67      |

### Final Model Evaluation



#### Limitations

- Overfitting. Model performes much better on the training set than on the test set.
- Poor precision. Precision of predictions on the test set is ~17%.

#### Recommendations

- Use the model as is. The model allows to narrow down the number of patients that would benefit from the follow-up program aimed at minimazing the chances of readmission. This might result in significant reduction of the 30-day readmission rates.
- If all patients identified as positive by the model do not return within 30 days of discharge as a result of follow-up program, the 30-day readmission rate would drop by more than half. This is an upper estimate of the benefit of the current model.
- If better precision is required, more data need to be collected. Larger number of features would also be helpful for building the model. This will help with building a model with better precision.