Assignment 6: GLMs (Linear Regressios, ANOVA, & t-tests)

Kallie Davis

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on generalized linear models.

Directions

- 1. Rename this file <FirstLast>_A06_GLMs.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, creating code and output that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file.

Set up your session

- 1. Set up your session. Check your working directory. Load the tidyverse, agricolae and other needed packages. Import the *raw* NTL-LTER raw data file for chemistry/physics (NTL-LTER_Lake_ChemistryPhysics_Raw.csv). Set date columns to date objects.
- 2. Build a ggplot theme and set it as your default theme.

```
# 1
getwd()
```

[1] "C:/Users/kalli/OneDrive/Desktop/Grad_School/Environmental Data Analytics_ENV_872/EDA-Fall2022/A

```
library(tidyverse)
## -- Attaching packages -----
                                 ----- tidyverse 1.3.2 --
## v ggplot2 3.3.6
                   v purrr
                           0.3.4
## v tibble 3.1.8
                   v dplyr
                          1.0.10
## v tidyr
         1.2.1
                   v stringr 1.4.1
## v readr
         2.1.3
                   v forcats 0.5.2
                                    ## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                masks stats::lag()
library(agricolae)
library(lubridate)
```

Simple regression

Our first research question is: Does mean lake temperature recorded during July change with depth across all lakes?

- 3. State the null and alternative hypotheses for this question: > Answer: H0: Lake mean temperature in July does not change with depth across all lakes; regression coefficient = 0. Ha: Lake mean temperature in July does change with depth across all lakes; regression coefficient does not equal 0.
- 4. Wrangle your NTL-LTER dataset with a pipe function so that the records meet the following criteria:
- Only dates in July.
- Only the columns: lakename, year4, daynum, depth, temperature_C
- Only complete cases (i.e., remove NAs)
- 5. Visualize the relationship among the two continuous variables with a scatter plot of temperature by depth. Add a smoothed line showing the linear model, and limit temperature values from 0 to 35 °C. Make this plot look pretty and easy to read.

```
color = "black") + labs(title = "Temperature by Depth Across Lakes", x = "Depth (m)",
    y = "Temperature (°C)")
print(NTL_LTER_temp_depth)
```

```
## 'geom_smooth()' using formula 'y ~ x'
```

Warning: Removed 24 rows containing missing values (geom_smooth).

Temperature by Depth Across Lakes

6. Interpret the figure. What does it suggest with regards to the response of temperature to depth? Do the distribution of points suggest about anything about the linearity of this trend?

Answer: The figure, if considering the line of best fit alone, suggests a negative association between the two variables; however, if you also consider the distribution of points, it appears that this trend is nonlinear. Overall, as depth increases, the temperature appears to decrease.

7. Perform a linear regression to test the relationship and display the results

```
# 7
linear_regression_depth_temp <- lm(data = NTL_LTER_Lake_ChemistryPhysics_wrangled,
    temperature_C ~ depth)
summary(linear_regression_depth_temp)</pre>
```

```
##
## Call:
## lm(formula = temperature C ~ depth, data = NTL LTER Lake ChemistryPhysics wrangled)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
   -9.5173 -3.0192 0.0633 2.9365 13.5834
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) 21.95597
                           0.06792
                                     323.3
                                              <2e-16 ***
               -1.94621
                           0.01174
                                    -165.8
                                              <2e-16 ***
## depth
## ---
                   0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 3.835 on 9726 degrees of freedom
## Multiple R-squared: 0.7387, Adjusted R-squared: 0.7387
## F-statistic: 2.75e+04 on 1 and 9726 DF, p-value: < 2.2e-16
```

8. Interpret your model results in words. Include how much of the variability in temperature is explained by changes in depth, the degrees of freedom on which this finding is based, and the statistical significance of the result. Also mention how much temperature is predicted to change for every 1m change in depth.

Answer: As depth increases by one meter there is an associated decrease in temperature of 1.95 degrees celsius. 73.9% of variation in temperature is explained by depth. The F-statistic is 2.75e4 with a degree of freedom of 9726. The p-value is 2.2e-16 which is well below the significance value of 0.001, suggesting that there is a highly significant relationship between temperature and depth and we can reject the null hypothesis.

Multiple regression

##

Let's tackle a similar question from a different approach. Here, we want to explore what might the best set of predictors for lake temperature in July across the monitoring period at the North Temperate Lakes LTER.

- 9. Run an AIC to determine what set of explanatory variables (year4, daynum, depth) is best suited to predict temperature.
- 10. Run a multiple regression on the recommended set of variables.

```
AIC
##
            Df Sum of Sq
                            RSS
                         141687 26066
## <none>
                     101 141788 26070
## - year4
             1
## - daynum
                    1237 142924 26148
            1
## - depth
                  404475 546161 39189
##
## Call:
## lm(formula = temperature_C ~ year4 + daynum + depth, data = NTL_LTER_Lake_ChemistryPhysics_wrangled)
## Coefficients:
## (Intercept)
                      year4
                                  daynum
                                                 depth
      -8.57556
                                  0.03978
##
                    0.01134
                                              -1.94644
multiple_linear_temp <- lm(data = NTL_LTER_Lake_ChemistryPhysics_wrangled, temperature_C ~
    daynum + depth + year4)
summary(multiple_linear_temp)
##
## Call:
## lm(formula = temperature_C ~ daynum + depth + year4, data = NTL_LTER_Lake_ChemistryPhysics_wrangled)
## Residuals:
##
                1Q Median
                                3Q
       Min
                                        Max
   -9.6536 -3.0000 0.0902 2.9658 13.6123
##
## Coefficients:
##
                                     t value Pr(>|t|)
                Estimate Std. Error
## (Intercept) -8.575564
                           8.630715
                                       -0.994
                                              0.32044
## daynum
                0.039780
                           0.004317
                                        9.215
                                               < 2e-16 ***
## depth
               -1.946437
                           0.011683 -166.611
                                               < 2e-16 ***
## year4
                0.011345
                           0.004299
                                        2.639
                                               0.00833 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.817 on 9724 degrees of freedom
## Multiple R-squared: 0.7412, Adjusted R-squared: 0.7411
## F-statistic: 9283 on 3 and 9724 DF, p-value: < 2.2e-16
```

11. What is the final set of explanatory variables that the AIC method suggests we use to predict temperature in our multiple regression? How much of the observed variance does this model explain? Is this an improvement over the model using only depth as the explanatory variable?

Answer: AIC values increase when removing year4, daynum, and depth. This increase in AIC suggests that the removal of these variables made the model worse. In result, I included all three explanatory variables. This model explains a variance of 74.1% which is an improvement on the previous model which only uses depth to explain change in temperature.

Analysis of Variance

12. Now we want to see whether the different lakes have, on average, different temperatures in the month of July. Run an ANOVA test to complete this analysis. (No need to test assumptions of normality or similar variances.) Create two sets of models: one expressed as an ANOVA models and another expressed as a linear model (as done in our lessons).

```
temperature_lakename_anova <- aov(data = NTL_LTER_Lake_ChemistryPhysics_wrangled,
   temperature_C ~ lakename)
summary(temperature_lakename_anova)
##
                 Df Sum Sq Mean Sq F value Pr(>F)
## lakename
                  8 21642
                            2705.2
                                        50 <2e-16
               9719 525813
## Residuals
                              54.1
                  0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
temperature_lakename_anova_lm <- lm(data = NTL_LTER_Lake_ChemistryPhysics_wrangled,
    temperature_C ~ lakename)
summary(temperature_lakename_anova_lm)
##
## Call:
## lm(formula = temperature_C ~ lakename, data = NTL_LTER_Lake_ChemistryPhysics_wrangled)
## Residuals:
       Min
                10 Median
                                30
                                       Max
## -10.769
           -6.614 - 2.679
                             7.684
                                    23.832
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
                                         0.6501 27.174 < 2e-16 ***
## (Intercept)
                             17.6664
## lakenameCrampton Lake
                             -2.3145
                                         0.7699
                                                 -3.006 0.002653 **
## lakenameEast Long Lake
                             -7.3987
                                         0.6918 -10.695 < 2e-16 ***
## lakenameHummingbird Lake
                             -6.8931
                                         0.9429
                                                 -7.311 2.87e-13 ***
## lakenamePaul Lake
                             -3.8522
                                         0.6656
                                                 -5.788 7.36e-09 ***
## lakenamePeter Lake
                             -4.3501
                                         0.6645
                                                 -6.547 6.17e-11 ***
## lakenameTuesday Lake
                             -6.5972
                                         0.6769
                                                 -9.746 < 2e-16 ***
                             -3.2078
                                                 -3.402 0.000672 ***
## lakenameWard Lake
                                         0.9429
## lakenameWest Long Lake
                             -6.0878
                                         0.6895
                                                 -8.829
                                                        < 2e-16 ***
## ---
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 7.355 on 9719 degrees of freedom
                                    Adjusted R-squared:
## Multiple R-squared: 0.03953,
## F-statistic:
                   50 on 8 and 9719 DF, p-value: < 2.2e-16
```

13. Is there a significant difference in mean temperature among the lakes? Report your findings.

Answer: A p-value of 2e-16 was achieved when running an anova test for temperature data among different lakes, meaning that there is significant difference in mean temperature among the different lakes. We do not know, however, which lakes differ in mean temperature value.

14. Create a graph that depicts temperature by depth, with a separate color for each lake. Add a geom_smooth (method = "lm", se = FALSE) for each lake. Make your points 50 % transparent. Adjust your y axis limits to go from 0 to 35 degrees. Clean up your graph to make it pretty.

```
## 'geom_smooth()' using formula 'y ~ x'
```

Warning: Removed 73 rows containing missing values (geom_smooth).

Temperature by Depth in Different Lakes

15. Use the Tukey's HSD test to determine which lakes have different means.

```
# 15
TukeyHSD(temperature_lakename_anova)
```

```
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = temperature_C ~ lakename, data = NTL_LTER_Lake_ChemistryPhysics_wrangled)
```

```
##
## $lakename
##
                                                        lwr
                                                                    upr
## Crampton Lake-Central Long Lake
                                      -2.3145195 -4.7031913 0.0741524 0.0661566
## East Long Lake-Central Long Lake
                                      -7.3987410 -9.5449411 -5.2525408 0.0000000
## Hummingbird Lake-Central Long Lake -6.8931304 -9.8184178 -3.9678430 0.0000000
## Paul Lake-Central Long Lake
                                      -3.8521506 -5.9170942 -1.7872070 0.0000003
## Peter Lake-Central Long Lake
                                      -4.3501458 -6.4115874 -2.2887042 0.0000000
## Tuesday Lake-Central Long Lake
                                      -6.5971805 -8.6971605 -4.4972005 0.0000000
## Ward Lake-Central Long Lake
                                      -3.2077856 -6.1330730 -0.2824982 0.0193405
## West Long Lake-Central Long Lake
                                      -6.0877513 -8.2268550 -3.9486475 0.0000000
## East Long Lake-Crampton Lake
                                      -5.0842215 -6.5591700 -3.6092730 0.0000000
## Hummingbird Lake-Crampton Lake
                                      -4.5786109 -7.0538088 -2.1034131 0.0000004
                                      -1.5376312 -2.8916215 -0.1836408 0.0127491
## Paul Lake-Crampton Lake
## Peter Lake-Crampton Lake
                                      -2.0356263 -3.3842699 -0.6869828 0.0000999
## Tuesday Lake-Crampton Lake
                                      -4.2826611 -5.6895065 -2.8758157 0.0000000
## Ward Lake-Crampton Lake
                                      -0.8932661 -3.3684639 1.5819317 0.9714459
## West Long Lake-Crampton Lake
                                      -3.7732318 -5.2378351 -2.3086285 0.0000000
## Hummingbird Lake-East Long Lake
                                       0.5056106 -1.7364925
                                                            2.7477137 0.9988050
## Paul Lake-East Long Lake
                                       3.5465903 2.6900206 4.4031601 0.0000000
## Peter Lake-East Long Lake
                                       3.0485952 2.2005025
                                                             3.8966879 0.0000000
## Tuesday Lake-East Long Lake
                                       0.8015604 -0.1363286
                                                             1.7394495 0.1657485
                                                 1.9488523 6.4330585 0.0000002
## Ward Lake-East Long Lake
                                       4.1909554
## West Long Lake-East Long Lake
                                       1.3109897
                                                  0.2885003
                                                             2.3334791 0.0022805
## Paul Lake-Hummingbird Lake
                                       3.0409798 0.8765299 5.2054296 0.0004495
## Peter Lake-Hummingbird Lake
                                       2.5429846 0.3818755
                                                             4.7040937 0.0080666
## Tuesday Lake-Hummingbird Lake
                                       0.2959499 -1.9019508
                                                             2.4938505 0.9999752
## Ward Lake-Hummingbird Lake
                                       3.6853448 0.6889874
                                                             6.6817022 0.0043297
## West Long Lake-Hummingbird Lake
                                       0.8053791 -1.4299320
                                                             3.0406903 0.9717297
## Peter Lake-Paul Lake
                                      -0.4979952 -1.1120620 0.1160717 0.2241586
## Tuesday Lake-Paul Lake
                                      -2.7450299 -3.4781416 -2.0119182 0.0000000
## Ward Lake-Paul Lake
                                       0.6443651 -1.5200848 2.8088149 0.9916978
## West Long Lake-Paul Lake
                                      -2.2356007 -3.0742314 -1.3969699 0.0000000
## Tuesday Lake-Peter Lake
                                      -2.2470347 -2.9702236 -1.5238458 0.0000000
## Ward Lake-Peter Lake
                                       1.1423602 -1.0187489
                                                             3.3034693 0.7827037
                                      -1.7376055 -2.5675759 -0.9076350 0.0000000
## West Long Lake-Peter Lake
## Ward Lake-Tuesday Lake
                                       3.3893950 1.1914943 5.5872956 0.0000609
## West Long Lake-Tuesday Lake
                                      0.5094292 -0.4121051 1.4309636 0.7374387
## West Long Lake-Ward Lake
                                      -2.8799657 -5.1152769 -0.6446546 0.0021080
temp_lakename.groups <- HSD.test(temperature_lakename_anova, "lakename", group = TRUE)
temp_lakename.groups
## $statistics
##
               Df
                                 CV
                      Mean
     54.1016 9719 12.72087 57.82135
##
##
##
  $parameters
             name.t ntr StudentizedRange alpha
                                4.387504 0.05
##
     Tukey lakename
                      9
##
##
  $means
##
                     temperature C
                                        std
                                               r Min Max
                                                              Q25
                          17.66641 4.196292 128 8.9 26.8 14.400 18.40 21.000
## Central Long Lake
```

```
## Crampton Lake
                          15.35189 7.244773 318 5.0 27.5 7.525 16.90 22.300
## East Long Lake
                          10.26767 6.766804 968 4.2 34.1
                                                           4.975 6.50 15.925
## Hummingbird Lake
                          10.77328 7.017845 116 4.0 31.5
                                                           5.200 7.00 15.625
## Paul Lake
                          13.81426 7.296928 2660 4.7 27.7
                                                           6.500 12.40 21.400
## Peter Lake
                          13.31626 7.669758 2872 4.0 27.0
                                                           5.600 11.40 21.500
                          11.06923 7.698687 1524 0.3 27.7
                                                           4.400 6.80 19.400
## Tuesday Lake
## Ward Lake
                          14.45862 7.409079 116 5.7 27.6 7.200 12.55 23.200
                          11.57865 6.980789 1026 4.0 25.7 5.400 8.00 18.800
## West Long Lake
##
## $comparison
## NULL
##
## $groups
##
                     temperature_C groups
                          17.66641
## Central Long Lake
## Crampton Lake
                          15.35189
                                       ab
## Ward Lake
                          14.45862
                                       bc
## Paul Lake
                          13.81426
                                        С
## Peter Lake
                          13.31626
                                        С
## West Long Lake
                          11.57865
                                        d
## Tuesday Lake
                          11.06923
                                       de
## Hummingbird Lake
                          10.77328
                                       de
## East Long Lake
                          10.26767
                                        е
## attr(,"class")
## [1] "group"
```

16. From the findings above, which lakes have the same mean temperature, statistically speaking, as Peter Lake? Does any lake have a mean temperature that is statistically distinct from all the other lakes?

Answer: Paul and Ward lakes have the same mean temperature as Peter Lake, statistically speaking. There is not a single lake which has a mean temperature which is statistically distinct from all other lakes evaluated with this model.

17. If we were just looking at Peter Lake and Paul Lake. What's another test we might explore to see whether they have distinct mean temperatures?

Answer: To compare the means of Peter and Paul lakes we could run a two-sample t-test.

18. Wrangle the July data to include only records for Crampton Lake and Ward Lake. Run the two-sample T-test on these data to determine whether their July temperature are same or different. What does the test say? Are the mean temperatures for the lakes equal? Does that match you answer for part 16?

```
NTL_LTER_Lake_ChemistryPhysics_Crampton.Ward <- NTL_LTER_Lake_ChemistryPhysics_wrangled %>%
    filter(lakename == "Crampton Lake" | lakename == "Ward Lake")

twosample.t.test_Crampton.Ward <- t.test(NTL_LTER_Lake_ChemistryPhysics_Crampton.Ward$temperature_C ~
    NTL_LTER_Lake_ChemistryPhysics_Crampton.Ward$lakename)

twosample.t.test_Crampton.Ward</pre>
```

Answer: With a p-value of 0.265 there is not a statistically significant difference between the mean temperature values for Crampton and Ward lakes; we fail to reject the null hypothesis. This result matches the mean groupings generated in part 16 when running the HSD test.