Problem Set 2 Solution

8. **Answer:** Let $2^x + 2^{-x} = y$. Then we get $y^2 = 4^x + 4^{-x} + 2$. We can rewrite the given equation using the change of variable to

$$8(y^{2} - 2) - 54y + 101 = 0$$

$$8y^{2} - 54y + 85 = 0$$

$$(2y - 5)(4y - 17) = 0$$

$$y = \frac{2}{5} \text{ or } \frac{17}{4}$$

First let's look at the case where $y = \frac{2}{5}$. Let $z = 2^x$. Then we have

$$z + \frac{1}{z} = \frac{2}{5}$$
$$2z^2 - 5z + 2 = 0$$
$$(2z - 1)(z - 2) = 0$$

, which means x=-1,1. If we go through the same steps when $y=\frac{17}{4},$ then we can show x=-2,2.

- 9. **Answer:** Let's consider a sequence $\{x_n\}$ which converges to x. By the definition of a sequence's being convergent, given $\epsilon > 0$, $\exists N$ s.t. $\forall n \geq N$, $d(x_n, x) < \epsilon$. In addition, for n < N, we can define $d_M = \max_{i=1,2,\ldots,N-1} \{d(x_1,x),d(x_2,x),\ldots,d(x_{N-1},x)\}$. Note that such maximum exsits because N-1 is finite. Then for all n, $d(x_n,x) \leq \max(\epsilon,d_M)$. We're done. (To be nicer, $d(x_n,0) \leq d(x_n,x) + d(x,0) \leq \max(\epsilon,d_M) + d(x,0)$, and $\max(\epsilon,d_M) + d(x,0)$ is finite.)
- 10. **Answer:** Based on the intuition $a_n b_n \to ab$, let's start with $|a_n b_n ab|$.

$$|a_n b_n - ab| = |a_n b_n - ab_n + ab_n - ab|$$

$$\leq |a_n b_n - ab_n| + |ab_n - ab|$$

$$= |(a_n - a)b_n| + |a(b_n - b)|$$

$$\leq |a_n - a||b_n| + |a||b_n - b|$$

where the first inequality holds by the triangle inequality. From the previous question, we know that the convergent sequence b_n is bounded. Let's say $|b_n| < M$ by a sufficiently

large M. For a given $\epsilon > 0$, we can fine a N_a s.t. $\forall n \geq N_a$, $|a_n - a| \leq \frac{0.5\epsilon}{M}$ and N_b s.t. $\forall n \geq N_b$, $|b_n - b| \leq \frac{0.5\epsilon}{|a|}$, $|a| \neq 0$. Then if we let $N = \max(N_a, N_b)$, we can get $|a_n - a||b_n| + |a||b_n - b| \leq \frac{0.5\epsilon}{M}M + |a|\frac{0.5\epsilon}{|a|} = \epsilon, \forall n \geq N, |a| \neq 0$. If |a| = 0, then $|a_n - a||b_n| + |a||b_n - b| = |a_n - a||b_n|$ so we only have to fine a N_a .

- 11. **Answer:** We can show that $\{a_n\} \to a$ using proof by contradiction. Let's assume that a_n does not converge to a, i.e. $\exists \epsilon$ s.t. $\forall N$, $\exists n \geq N$ s.t. $d(a_n, a) > \epsilon$. Then for N = 1, we can choose n_1 s.t. $d(a_{n_1}, a) > \epsilon$. Similarly, for $N = n_1 + 1$, $\exists n_2$ s.t. $d(a_{n_2}, a) > \epsilon$. By repeating this, we can construct a subsequence $\{a_{n_k}\}, k = 1, 2, 3, ...$ whose elements are all out of ϵ distance from a. Also, as the original sequence is bounded, this subsequence is bounded as well. Then by the Bolzano-Weierstrass theorem, there exists a convergent subsequence. But by the construction of this sequence $\{a_{n_k}\}$, this convergent subsequence does not converge to a. Contradiction.
- 12. **Answer:** As $x_n \to 1$, given $\epsilon > 0$, we can find a N_x s.t. $|x_n 1| < \epsilon \, \forall n > N_x$, which means $-\epsilon < x_n 1 < \epsilon$ holds. By the same logic, for a large N_z , we can say $-\epsilon < z_n 1 < \epsilon$ for all $n > N_z$. Then if we define N to be the maximum of N_x , N_z and combine to equations into $1 \epsilon < x_n < y_n < z_n < 1 + \epsilon$, then we have $|y_n 1| < \epsilon$, i.e. $y_n \to 1$.
- 13. **Answer:** If we set $x_0 \in \mathbb{N}$ to be the initial number of coconuts then we have $x_0 = 5x_1 + 1$ for some $x_1 \in \mathbb{N}$. As the first man took his portion x_1 , we have $4x_1$ of remaining coconuts and $4x_1 = 5x_1 + 1$. Repeating this,

$$4x_2 = 5x_3 + 1$$

$$4x_3 = 5x_4 + 1$$

$$4x_4 = 5x_5 + 1$$

$$4x_5 = 5x_6$$

where all $x_i \in N$. Solving backward gives us $x_5 = \frac{4}{5}x_6$, $x_4 = \frac{5^2}{4^2}x_6 + \frac{1}{4}$,...., $x_0 = \frac{5^6}{4^5}x_6 + \frac{5^4}{4^4} + \frac{5^3}{4^3} + \frac{5^2}{4^2} + \frac{5}{4} + 1$, where the last equation can be simplified to $4^5(x_0 + 4) = 5^5(5x_6 + 4)$. As 5 and 4 have no common factor, $5x_6 + 4 = 4^5k$ should hold for some $k \in \mathbb{N}$. And this can be rewritten as $5x_6 + 4 = (5 * 204 + 4)k$, which implies k = 5n + 1, n = 1, 2, 3, ... With this, the smallest number x_0 can take is 3121 when n = 0.

14. **Answer:** For a given $\epsilon > 0$, we can find a N s.t. if $n \geq N$, then $d(x_n, x) < 0.5\epsilon$. Then for all $n, m \geq N$, we have $d(x_n, x_m) \leq d(x_n, x) + d(x, x_m) = 0.5\epsilon + 0.5\epsilon = \epsilon$, which means $\{x_n\}$ is a Cauchy sequence.

15. **Answer:** \Leftarrow) $[a,b] \subset (a-\frac{1}{n},b+\frac{1}{n})$ regardless of n. Therefore, $[a,b] \cap_{n=1}^{\infty} (a-\frac{1}{n},b+\frac{1}{n})$ \Rightarrow) I will show this using proof by contrapositive. Suppose $x \notin [a,b]$, which implies either x < a or x > b. In the first case, 0 < a - x holds so we can find a $\epsilon > 0$ s.t. $a-x=\epsilon, x=a-\epsilon$. As we already know that $\frac{1}{n} \to 0$, we can find a N s.t. $\frac{1}{n} < \epsilon$. Then for all $n \geq N$, $x=a-\epsilon < x-\frac{1}{n}$, which means x is too small to be an element of $(a-\frac{1}{n},b+\frac{1}{n})$. $x \notin \cap_{n=1}^{\infty} (a-\frac{1}{n},b+\frac{1}{n})$. For the case where x > b, by the same token, we can find a $\delta > 0$ s.t. $x=b+\delta$. Then there exists a M s.t. $\frac{1}{n} < M$, so x is too big to be an element of $(a-\frac{1}{n},b+\frac{1}{n})$ for n > M. So $x \notin \cap_{n=1}^{\infty} (a-\frac{1}{n},b+\frac{1}{n})$.