Stochastic Financial Models

1 Utility and Mean-Variance analysis

- contingent claims —— r.v. X
- utility function —— non-decreasing

Fact. Y is preferred to X iff $\mathbb{E}(U(X)) \leq \mathbb{E}(U(Y))$

- indifferent
- risk neutral
- risk averse
- concave
- strictly concave

Proposition 1.1. risk averse iff U concave

- CARA with parameter γ —— $\gamma \in (0, \infty), U(X) = CARA_{\gamma}(x) = -\exp(-\gamma x)$
- CRRA with parameter R $R \in (0,1) \bigcup (1,\infty), U(X) = CRRA_R(x) = \begin{cases} \frac{x^{1-R}}{1-R} & \text{if } x > 0 \\ -\infty & \text{otherwise} \end{cases}$
- CRRA with parameter 1 —— $U(X) = CRRA_1(x) = \begin{cases} \log x & \text{if } x > 0 \\ -\infty & \text{otherwise} \end{cases}$
- constant absolute risk aversion —— CARA
- constant relative risk aversion —— CRRA

Fact (Arrow-Pratt coefficient of absolute risk aversion). $\omega + X$ preferred to ω iff $\frac{2\mathbb{E}(X)}{\mathbb{E}(X^2)} \geq -\frac{U''(\omega)}{U'(\omega)}$

Fact (Arrow-Pratt coefficient of relative risk aversion). $\omega(1+X)$ preferred to ω iff $\frac{2\mathbb{E}(X)}{\mathbb{E}(X^2)} \geq -\frac{\omega U''(\omega)}{U'(\omega)}$

- available claim \mathcal{A}
- reservation bid price $\pi_b(Y)$ ------ sup π st $\mathbb{E}(U(X+Y-\pi)) > \mathbb{E}(U(X^*))$
- reservation ask price $\pi_a(Y)$ —— inf π st $\mathbb{E}(U(X-Y+\pi)) > \mathbb{E}(U(X^*))$

Proposition 1.2 (Ask above, bid below). A convex, then $\pi_b(Y) \leq \pi_a(Y)$

Setting 1. A affine space, U differentiable, strictly concave

- marginal price $\pi_m(Y)$ $\pi_m(Y) = \frac{\mathbb{E}(U'(X^*)Y)}{\mathbb{E}(U'(X^*))}$
- single-period asset price model
- numeraire
- riskless bond
- interest rate ---- r > -1
- state-price density ρ —— $S_0^i = \mathbb{E}(S_1^i \rho)$
- wealth ω_0
- portfolio θ

Example. no bond

given
$$\mathbb{E}(\theta \cdot S_1) = \theta \cdot \mu, var(\theta \cdot S_1) = \theta^T V \theta$$
minimize
$$var(\theta \cdot S_1)$$
subject to
$$\theta \cdot S_0 = \omega_0, \mathbb{E}(\theta \cdot S_1) = \omega_1$$

- mean-variance-efficient frontier —— $\{\theta^*(\omega_1)\}$
- minimum variance portfolio θ_{\min^*} —— minimise var over ω_1

Example. with bond

minimise
$$\theta^{T}V\theta$$
subject to
$$\theta^{0} + \theta S_{0} = \omega_{0}, \theta^{0}(1+r) + \theta \mu = \omega_{1}$$

Then, $\theta^* = \lambda \theta_m^*$

– market portfolio
$$\theta_m^*$$
 —— $A(\mu - (1+r)S_0), A = V^{-1}$

Setting 2. S_1 Gaussian, U CARA

Example. no bond

maximise
$$\mathbb{E}(U(\theta S_1))$$
 subject to $\theta S_0 = \omega_0$

Example. with bond

maximise
$$\mathbb{E}(U(\bar{\theta}\bar{S}_1))$$
 subject to $\bar{\theta}\bar{S}_0 = \omega_0$

then, $\theta^* = \gamma^{-1}\theta_m^*$

- beta/sensitivity
$$\beta^i$$
 — $\beta^i = \frac{cov(S_1^i, \theta_m^* S_1)}{var(\theta_m^* S_1)}$

$$-\mu^m - \theta_m^* \mu$$

$$- S_0^m - \theta_m^* S_0$$

Proposition 1.3. $\mu^i - (1+r)S_0^i = \beta^i(\mu^m - (1+r)S_0^m)$

- capitalization-weights of the relevant market index

Setting 3.

$$S_1 = (1+R)S_0, S_1^m = (1+R^m)S_0^m, \tilde{\beta}^i = \frac{cov(R^i, R^m)}{var(R^m)}$$

Fact.
$$\mathbb{E}(R^i) = r + \tilde{\beta}^i(\mathbb{E}(R^m) - r)$$

2 Martingales

- conditional probability
- conditional expectation given event
- conditional expectation given \mathcal{G} , $\mathbb{E}(X|\mathcal{G})$

Theorem 2.1. $\mathcal{G} \subset \mathcal{F}$ sub- σ -algebra, X integrable, then \exists unique Y (up to a.s.) st

- (i) Y integrable
- (ii) Y G-measurable

(iii)
$$\mathbb{E}(Y\mathbb{1}_A) = \mathbb{E}(X\mathbb{1}_A)$$
 for all $A \in \mathcal{G}$

Fact. also true if replace integrable by non-negative

–
$$\mathbb{E}(X|Z)$$
 —— $\mathcal{G} = \sigma(Z)$ for r.v. Z

$$- \mathbb{P}(A|\mathcal{G}) - X = \mathbb{1}_A$$

Fact. $\mathcal{G} = \sigma(B_n)$ discrete, then $\mathbb{E}(X|\mathcal{G}) = \sum \mathbb{E}(X|B_n)\mathbb{1}_{B_n}$ a.s.

Proposition 2.2. $\mathcal{G} \subset \mathcal{F}$, X, W integrable, then

(i)
$$\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$$

(ii)
$$X$$
 \mathcal{G} -measurable, then $\mathbb{E}(X|\mathcal{G}) = X$ a.s.

(iii) X independent of
$$\mathcal{G}$$
, then $\mathbb{E}(X|\mathcal{G}) = E(X)$ a.s.

(iv)
$$X \ge 0$$
 a.s., then $\mathbb{E}(X|\mathcal{G}) \ge 0$ a.s.

(v)
$$\mathbb{E}(\alpha X + \beta W | \mathcal{G}) = \alpha \mathbb{E}(X | \mathcal{G}) + \beta \mathbb{E}(W | \mathcal{G})$$
 a.s.

Proposition 2.3 (Tower property). $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$ sub- σ -algebra, X integrable, then $\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) = \mathbb{E}(X|\mathcal{H})$ a.s.

Proposition 2.4 (Taking out what is known). $\mathcal{G} \subset \mathcal{F}$ sub- σ -algebra, X integrable, Z \mathcal{G} -measurable, ZX integrable, then $\mathbb{E}(ZX|\mathcal{G}) = Z\mathbb{E}(X|\mathcal{G})$ a.s.

Proposition 2.5 (Averaging over independent variables). X_1, X_2 r.v. in $(E_1, \mathcal{E}_1), (E_2, \mathcal{E}_2),$ $\mathcal{G} \subset \mathcal{F}, X_1$ \mathcal{G} -measurable, X_2 independent of \mathcal{G}, F non-negative, let $f = \mathbb{E}(F(\cdot, X_2)),$ then $\mathbb{E}(F(X_1, X_2)|\mathcal{G}) = f(X_1)$ a.s.

- filtration (\mathcal{F}_n)
- random process
- (X_n) adapted to (\mathcal{F}_n)
- martingale ----
 - (Adapted) X_n F_n -measurable
 - (Intergrable) $\mathbb{E}(|X_n|) < \infty$
 - (Martingale property) $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = X_n$ a.s.
- supermartingale ---- $\mathbb{E}(X_{n+1}|\mathcal{F}_n) \leq X_n$
- submartingale $\mathbb{E}(X_{n+1}|\mathcal{F}_n) \geq X_n$

Fact. Any martingale also martingale in natural filtration (natural filtration smalllest)

- martingale (continuous-time) —— adapted, integrable, $\mathbb{E}(X_t|\mathcal{F}_s) = X_s$ for all $s \leq t$
- (X_t) continuous $t \mapsto X_t(\omega)$ continuous for all ω

Example. X_n i.i.d., $\mathcal{F}_0 = \{\varnothing, \Omega\}$, (\mathcal{F}_n) natural filtration

- (additive martingale) X_1 inegrable, $E(X_1) = 0$, $S_0 = 0$, $S_n = \sum^n X_k$
- (multiplicative martingale) X_1 non-negative, $\mathbb{E}(X_1) = 1$, $Z_0 = 1$, $Z_n = \prod^n Z_k$

Example. (X_n) Markov chain, countable state space S, transition matrix P, natural filtration (\mathcal{F}_n) , bounded/non-negative f on S, let

$$Pf(x) = \sum p_{xy}f(y)$$

then if f subharmonic

$$\mathbb{E}(f(X_{n+1})|\mathcal{F}_n) = Pf(X_n) \ge f(X_n)$$

then, $(f(X_n))$ submartingale

- subharmonic $f(x) \leq Pf(x)$ for all x
- random time $T: \Omega \to \{0, 1, \dots\} \bigcup \{\infty\}$
- stopping time $--- \{T \leq n\} \in \mathcal{F}_n$

Theorem 2.6 (Optional stopping). (M_n) martingale, T bounded, stopping time, then $\mathbb{E}(M_T) = \mathbb{E}(M_0)$

Fact. Doob's optional sampling theorem basic form

Theorem 2.7. (M_n) martingale, T almost surely finite, stopping time, suppose one of the following holds:

- (i) $|M_n| \leq C$ for all $n \leq T$, C constant
- (ii) $\mathbb{E}(T) \leq \infty$, $|M_n M_{n-1}| \leq C$ for all $n \leq T$

Fact. T stopping time $\Rightarrow T \land n$ bounded stopping time

Counter Example. additive martingale, simple random walk, $T = \min\{n : S_n = 1\}$, then almost sure finite as recurrent, but $\mathbb{E}(T) = \infty$, $\mathbb{E}(S_T) = 1 \neq 0 = S_0$

Counter Example. multiplicative martingale, (X_k) i.i.d. $\mathbb{P}(X_1 = 0) = \mathbb{P}(X_1 = 2) = 1/2$, $T = \min\{n : Z_n = 0\}$, then $\mathbb{E}(T) = 2$, but $\mathbb{E}(Z_T) = 0 \neq 1 = Z_0$

Theorem 2.8. (M_n) martingale, T stopping time, then $(M_{T \wedge n})$ martingale

- previsible $H_n \mathcal{F}_{n-1}$ -measurable
- martingale transform of (M_n) by (H_n) $Y_0 = 0$, $Y_n = \sum_{1}^n H_k(M_k M_{k-1})$

Theorem 2.9 (Martingale transform). (M_n) martingale, (H_n) bounded, previsible, (Y_n) martingale transform, then (Y_n) martingale

Fact. model stock price as (M_n) , then

- (i) optional stopping \Rightarrow expected return $\mathbb{E}(M_T)$ the same no matter what stopping time
- (ii) (H_k) amount held between time k-1 and k, no bounded previsible strategy gives expected gain or loss

3 Pricing contingent claims

- asset price model $(\bar{S}_n)_{0 \leq n \leq T}$ with numeraire
- numeraire (S_n^0) —— $S_n^0 > 0$
- discounted prices $X_n^i X_n^i = S_n^i / S_n^0$
- $\bar{X}_n = (1, X_n)$
- interest rate $r_n S_n^0 = (1 + r_n)S_{n-1}^0$
- risky assets (S_n)
- portfolio $\bar{\theta}_n$
- self-financing —— $\bar{\theta}_n \bar{S}_n = \bar{\theta}_{n+1} \bar{S}_n$
- value process (V_n) $V_0 = \bar{\theta}_1 \bar{X}_0, V_n = \bar{\theta}_n \bar{X}_n$
- total (discounted) value
- previsible —— if $\bar{\theta}_n$ \mathcal{F}_{n-1} -measurable

Setting 4.

- (i) (\mathcal{F}_n) filtration generated by (\bar{S}_n) , $\mathcal{F} = \mathcal{F}_T$
- (ii) (S_n) takes countable values
- (iii) (S_n^0) deterministic process

Proposition 3.1. (θ_n) preivisible process, then \exists (θ_n^0) st

- (i) (θ_n^0) previsible
- (ii) $(\bar{\theta}_n^0)$ self-financing with initial value V_0
- (iii) $V_T = V_0 + \sum_{1}^{T} \theta_n (X_n X_{n-1})$
- contingent claim of maturity T —— non-negative \mathcal{F}_T -measurable r.v.
- European option
- call with strike price $K (S_T K)^+$
- put with strike price K —— $(S_T K)^-$
- options
- exotic options —— depending on entire path (S_n)
- barrier options ——
 - knocked out

- knocked in
- up-and-out call —— $C = \begin{cases} (S_T K)^+ & \text{if } \max S_n < B \\ 0 & \text{otherwise} \end{cases}$
- down-and-in put $C = \begin{cases} (S_T K)^- & \text{if } \min S_n \leq B \\ 0 & \text{ptherwise} \end{cases}$
- $\tilde{\mathbb{P}}$ equivalent to $\mathbb{P},\,\tilde{\mathbb{P}}\sim\mathbb{P}$ —— $\exists\rho,\,\mathrm{st}$
 - $\mathbb{P}(\rho > 0) = 1$
 - $\tilde{\mathbb{P}}(A) = \mathbb{E}(\rho \mathbb{1}_A)$
- density $\rho = d\tilde{\mathbb{P}}/d\mathbb{P}$ for $\tilde{\mathbb{P}}$ wrt \mathbb{P}

Fact. $\tilde{\mathbb{E}}(X) = \mathbb{E}(\rho X)$

Fact. $\tilde{\mathbb{P}} \sim \mathbb{P}$ symmetric and transitive

Fact. $d\mathbb{P}/d\tilde{\mathbb{P}} = 1/\rho \ a.s.$

- arbitrage for $(\bar{S}_n)_{0 \leq n \leq T}$ ——
 - (i) $(\bar{\theta}_n)_{1 \le n \le T}$ previsible, self-financing
 - (ii) $V_0 = 0$
 - (iii) $V_T \geq 0$ a.s.
 - (iv) $V_T > 0$ with positive probability
- (\bar{S}_n) arbitrage free

Proposition 3.2. (X_n) martingale $\Rightarrow (X_n)$ arbitrage free

Fact. proof can be simpler when (θ_n) bounded

Setting 5. single period model, $\mathcal{F}_0 = \varnothing, \Omega$

Proposition 3.3. Y r.v., following equivalent:

- (i) arbitrage free (i.e. no θ st $\theta Y \geq 0$ a.s. with $\theta Y > 0$ with positive prob)
- (ii) \exists equivalent probability measure $\tilde{\mathbb{P}}$ st Y integrable with $\mathbb{E}(Y) = 0$
- equivalent martingale measure $\tilde{\mathbb{P}}$ (risk neutral measure) —— $\tilde{\mathbb{P}} \sim \mathbb{P}$, (X_n) martingale under $\tilde{\mathbb{P}}$

Theorem 3.4 ((1st) Fundamental theorem of asset pricing). following equivalent:

- (i) (\bar{S}_n) arbitrage free
- (ii) (\bar{S}_n) has equivalent martingale measure

Setting 6. C time-T contigent claim, $D = C/S_T^0$ discounted value

- attainable/replicable — \exists previsible, self-financing $\bar{\theta}_n$ st $C = \bar{\theta}_n \bar{S}_T$

Fact. Alternative def: $\exists V_0 \ \mathcal{F}_0$ -measurable, θ_n previsible st $D = V_0 + \sum^T \theta_n (X_n - X_{n-1})$

- fair price V_0
- replicating portfolio/hedging portfolio $\bar{\theta}_n$
- $-(\bar{S}_n)$ complete —— all contingent claims attainable

Proposition 3.5. $\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \sigma(\bar{S}_1)$

- (i) C non-negative, attainable, time-T contingent claim, \mathbb{P} equivalent martingale measure, fair price $V_0 = \tilde{\mathbb{E}}(D), D = C/S_T^0$
- (ii) (\bar{S}_n) complete, numeraire non-random, then at most one equivalent martingale measure
- binomial model (Cox-Ross-Rubinstein model) interest rate r, parameters $a < b, R_i$ i.i.d. with parameter p
 - $S_n^0 = (1+r)^n$

 - $S_n = S_0 \prod (1 + R_k)$ $\begin{cases} \mathbb{P}(R_1 = a) = 1 p \\ \mathbb{P}(R_1 = b) = p \end{cases}$

Proposition 3.6. binomial model has arbitrage unless $r \in (a, b)$

Proposition 3.7. (\bar{S}_n) binamial model, $r \in (a,b)$, define

- (i) $p^* = \frac{r-a}{b-a}$
- (ii) equivalent prob measure $\frac{d\mathbb{P}^*}{d\mathbb{P}} = \left(\frac{p^*}{p}\right)^{U_T} \left(\frac{1-p^*}{1-p}\right)^{D_T}$ where $U_T = (T+S_T)/2, D_T = (T-T)/2$

8

Then under \mathbb{P}^* ,

(i)
$$R_1, \dots, R_T$$
 i.i.d.,
$$\begin{cases} \mathbb{P}^*(R_1 = a) = 1 - p^* \\ \mathbb{P}^*(R_1 = b) = p^* \end{cases}$$

(ii) (X_n) martingale under \mathbb{P}^*

Fact. $r = \mathbb{E}^*(R_1)$

Fact. Binomial model arbitrage free when $r \in (a, b)$

Setting 7. if $C = f(S_0, \ldots, S_T)$, then

$$V(C) = \frac{\mathbb{E}^*(C)}{(1+r)^T} = (1+r)^{-T} \sum f(s_0, s_1, \dots, s_T) \mathbb{P}^*(S_1 = s_1, \dots, S_T = s_T)$$

Define recursive relation:

$$f_T(s_0, \dots, s_T) = f(s_0, \dots, s_T)$$

$$f_n(s_0, \dots, s_n) = (1 - p^*) f_{n+1}(s_0, \dots, s_n, (1+a)s_n) + p^* f_{n+1}(s_0, \dots, s_n, (1+b)s_n)$$

Proposition 3.8.
$$\mathbb{E}^*(f(S_0, ..., S_T) | \mathcal{F}_n) = f_n(S_0, ..., S_n), \ \mathbb{E}^*(C) = f_0(S_0)$$

Proposition 3.9. Define

$$\Delta_n(s_0,\ldots,s_{n-1}) = \frac{f_n(s_0,\ldots,s_{n-1},(1+b)s_{n-1}) - f_n(s_0,\ldots,s_{n-1},(1+a)s_{n-1})}{(1+r)^{T-n}(b-a)s_{n-1}}$$

then $\theta_n = \Delta_n(S_0, \dots, S_{n-1})$ replicating portfolio for C

Fact. Binomial model complete when $r \in (a, b)$

Proposition 3.10. (W_n) simple random walk with $\mathbb{P}(W_1 = 1) = p$, let $M_T = \max W_n$, then with $k \leq T$, $2k - T \leq m \leq k$

$$\mathbb{P}(M_T = m, W_T = 2k - T) = \left(\binom{T}{k - m} - \binom{T}{k - m - 1} \right) p^k (1 - p)^{T - k}$$

Example. if (1+a)(1+b) = 1, then $S_n = S_0(1+b)^{W_n}$, so can give fair price of $C = F(S_T, \max S_n)$

4 Dynamic Programming

- state-space E
- action-space A

Setting 8.
$$F: \{0, \ldots, T-1\} \times E \times A \times [0,1] \to E, (\epsilon_n) \text{ i.i.d. }, \mathcal{F}_n = \sigma(\epsilon_1, \ldots, \epsilon_n)$$

- adapted control $u = (u_n)_{k \le n \le T-1}$ — initial time $k, u_n \mathcal{F}_n$ -measurable

Setting 9. initial state $x \in E$, adapted control u, define $X_k = x, X_{n+1} = F(n, X_n, u_n, \epsilon_{n+1})$ Write $X_n = X_n^u(k, x)$

– expected reward —
$$V^u(k,x) = \mathbb{E}\left(\left(\sum_{k=1}^{T-1} r(n,X_n^u(k,x),u_n)\right) + R(X_T^u(k,x))\right)$$

- reward function r, R non-negative measurable function
- value function V —— $V(k, x) = \sup_{u} V^{u}(k, x)$
- u optimal control from (k, x) ------ $V(k, x) = V^u(k, x)$

Proposition 4.1 (Bellman equation). Let $Pv(n, x, a) = \mathbb{E}(v(n+1, F(n, x, a, \epsilon_{n+1})))$

$$v(T,x) = R(x)$$

 $v(n,x) = \sup_{a \in A} \{r(n,x,a) + Pv(n,x,a)\}$ $n = 0,..., T-1$

 $Suppose \exists a \ st$

$$v(n,x) = r(n,x,a(n,x)) + Pv(n,x,a(n,x))$$
 $n = 0,...,T-1$

Then,

- (i) V = v
- (ii) optimal control $u_n^* = a(n, X_n^{u*}(k, x))$

Fact. Possible variations:

- (i) r, R as costs
- (ii) mixture of costs and rewards
- (iii) time-dependent state-space E_n
- (iv) time-and-state-dependent action-space $A_{n,x}$
 - American call family of time-T contingent claim $(1+r)^{T-\tau}(S_{\tau}-K)^{+}$
 - American put family of time-T contingent claim $(1+r)^{T-\tau}(S_{\tau}-K)^{-\tau}$

Setting 10. (S_n) binomial model, $r \in (a,b)$

Fact. complete \Rightarrow can hedge all C with $\mathbb{E}^*(C) = 0$

Example (American call). $\tau = T$ always optimal, American and European calls equivalent

Fact. fair price can be founded using Bellman equation

5 Brownian motion

- Brownian motion ----
 - $B_0 = 0$
 - $(B_{s+t} B_s) \sim N(0, t)$, independent of $\sigma(B_r : r \leq s)$
 - $t \mapsto B_t(\omega)$ continuous
- Brownian motion starting from $x B_0 = x$
- Gaussian process $\forall (t_1, \ldots, t_n), (X_{t_1}, \ldots, X_{t_n})$ multivariate normal

Proposition 5.1. (B_t) continuous process starting from 0, then following equivalent:

- (i) (B_t) Brownian motion
- (ii) (B_t) zero mean Gaussian process, $\mathbb{E}(B_sB_t) = s \wedge t$

Proposition 5.2 (Scaling property). (B_t) Brownian motion, set $\tilde{B}_t = c^{-1}B_{c^2t}$, then (\tilde{B}_t) Brownian motion

Proposition 5.3. (B_t) Brownian motion, (B_t) exit every finite interval a.s.

- $\mathcal{F}_t = \sigma(B_s : s \in [0, t])$
- stopping time —— $\{T \leq t\} \in \mathcal{F}_t$ for all t
- \mathcal{F}_T ---- $A \in \mathcal{F}_\infty$ st $A \cap \{T \le t\} \in \mathcal{F}_t$

Proposition 5.4 (Strong Markov property). (B_t) Brownian motion, T a.s. finite stopping time. Define $\tilde{B}_t = B_{T+t} - B_T$, then

- (i) (\tilde{B}_t) Brownian motion
- (ii) independent of \mathcal{F}_T

Proposition 5.5. (B_t) Brownian motion, define $T_a = \inf\{t \geq 0 : B_t = a\}$, then

- (i) T_a stopping time
- (ii) T_a almost surely finite

Theorem 5.6. $(\Omega, \mathcal{F}, \mathbb{P})$ not discrete, m prob measure on \mathbb{R} , mean 0, variance 1, then $\exists (B_t), (W_t^{(k)})$ for all $k \in \mathbb{N}$ st

- (i) (B_t) Brownian motion
- (ii) $(W_{\frac{n}{k}}^{(k)})$ random walk with distribution m, $(W_{t}^{(k)})$ linear interpolation of values $\{\frac{n}{k}\}$
- (iii) $\frac{W_t^{(k)}}{\sqrt{k}} \to B_t$ uniformly on compacts in t a.s.

Fact. combination of Wiener's Theorem and Donsker's Invariance Principle

- Wiener measure

Proposition 5.7. let $T \geq 0$, $c \in \mathbb{R}$, $B = (B_t)_{\{0 \leq t \leq T\}}$ brownian motion, $\tilde{B}_t = B_t + ct$, then \forall measurable set $A \subset C[0,T]$, $\mathbb{P}(\tilde{B} \in A) = \mathbb{E}(\mathbb{1}_{\{B \in A\}}e^{cB_T - \frac{c^2T}{2}})$

Fact. special case of Cameron-Martin theorem

Proposition 5.8 (Reflection principle). (B_t) Brownian motion, $a \ge 0$, set $T_a = \inf\{t \ge 0 : B_t = a\}$, define $\tilde{B}_t = \begin{cases} B_t & \text{if } t \le T_a \\ 2a - B_t & \text{if } t > T_a \end{cases}$, then (\tilde{B}_t) Brownian motion

– maximum process —— $M_t = \sup_{\{0 \le s \le t\}} B_s$

Fact. M_t same distribution as $|B_t|$

Proposition 5.9. T_a has density $h_a(t) = \frac{a}{\sqrt{2\pi t^3}}e^{-\frac{a^2}{2t}}$

- $p_t(x,y)$ —— density of B_t starting at x
- $p_t^a(x,y) = p_t(x,y) p_t(x,2a-y)$

Proposition 5.10. $x \leq a$, (B_t) Brownian motion with density starting from x, then \forall non-negative measurable f, $\mathbb{E}_x(f(B_t)\mathbb{1}_{\{T_a>t\}}) = \int_{\infty}^a f(y)p_t^a(x,y)dy$

6 Black-Scholes model

- Black-Scholes model —
— $S_t^0 = e^{rt}, S_t = S_0 e^{\sigma B_t + \mu t}$
- price of riskless bond S_t^0
- interest rate r
- price of risky asset S_t
- drift μ
- volatility σ

Fact. $(e^{\sigma B_t - \sigma^2 t/2})$ martingale

Fact. with $\mu^* = r - \sigma/2$, discounted asset price $(e^{rt}S_t)$ martingale

Proposition 6.1. (S_t^0, S_t) Black-Scholes, fix T, consider $\frac{d\mathbb{P}^*}{d\mathbb{P}} = e^{\lambda B_T - \lambda^2 T/2}$ where $\sigma \lambda = \mu^* - \mu$, then under \mathbb{P}^* , discounted seet price $(e^{-rt}S_t)$ martingale

Fact. abuse notation in writing \mathbb{P}^* instead of \mathbb{P}

- time-T contingent claim C —— \mathcal{F}_T -measurable r.v.
- Black-Scholes price $V_0 V_0 = e^{-rT} \mathbb{E}^*(C)$

Fact. fair price unique

Example.

- (i) $C = S_T$
- (ii) C = K
 - simple replicable claim —— constant C_0 , $0=t_0\leq\cdots\leq t_n=T$, θ_k bounded $\mathcal{F}_{t_{k-1}}$ -measurable

$$e^{rT}C = C_0 + \sum_{1}^{n} \theta_k (X_{t_k} - X_{t_{k-1}})$$

(Replicating strategy) at time t_{k-1} , buy θ_k , then sell θ_k at time t_k , then buy θ_k bond

Fact. any simple replicable claim can be replicated for cost C_0 at time θ , $V_0 = C_0$

Fact (Brownian martingale representation theorem). every integrable \mathcal{F}_T -measurable contingent claim is limit in probability of simple replicable claims

Setting 11. $S_0 = s$

Fact. $\log S_t = \log s + \sigma B_t + \mu t$

- $p(t, x, z) = \frac{1}{\sqrt{2\pi t}} e^{\frac{|x-z|^2}{2t}}$
- $-p(\sigma^2 t, x(t), \cdot)$ —— density of $\log S_t, x(t) = \log s + \mu t$
- $\rho(t, s, \cdot)$ —— density of S_t
- $\dot{\rho}$ derivative in first argument
- $-\rho'$ —— derivative in second argument

Fact. $y\rho(t, s, y) = p(\sigma^2 t, x(t), z), z = \log y$

Fact. $\dot{\rho} = \frac{1}{2}\sigma^2 s^2 \rho'' + rs\rho'$

Proposition 6.2. F on $(0, \infty)$ continuous, polynomial growth, $t \in [0, T], s \in (0, \infty)$ V(t, s) time-t value of time-T contingent claim $F(S_T)$, conditional on $S_t = s$ $V(t, s) = e^{-r(T-t)} \mathbb{E}^*(F(S_T)|S_t = s) = e^{-r(T-t)} \mathbb{E}(F(se^{\sigma B_{T-t} + \mu^*(T-t)}))$, then

- (i) V continous on $(0,T) \times (0,\infty)$
- (ii) $V \in C^{1,2}$ on $(0,T) \times (0,\infty)$
- (iii) (Black Scholes PDE) $\mathcal{L}V = \dot{V} + \frac{1}{2}\sigma^2 s^2 V'' + rsV' rV$ with $V(\cdot, T) = F$

Setting 12 (Binomial approximation to BS). Consider convergence of random walk to Brownian motion, special case $(W_{n/k}^{(k)})$ simple symmetric random walk on $\{-1,1\}$

$$-1 + a_k = \exp\left(-\frac{\sigma}{\sqrt{k}} + \frac{\mu}{k}\right)$$

$$-1 + b_k = \exp\left(\frac{\sigma}{\sqrt{k}} + \frac{\mu}{k}\right)$$

$$-1 + r_k = \exp\left(\frac{r}{k}\right)$$

$$-S_t^{(k)} = S_0 \exp\left(\frac{\sigma W_t^{(k)}}{\sqrt{k}} + \mu t\right)$$

$$-S_t = S_0 \exp\left(\sigma B_t + \mu t\right)$$

$$- S_t^{(k)0} = S_t^0 = \exp(rt)$$

Fact.

- (i) (S_t^0, S_t) Black-Scholes of drift μ , volatility σ , interest rate r
- (ii) $(S_{n/k}^{(k)0}, S_{n/k}^{(k)})$ binomial model of parameters $a_k < r_k < b_k$, $p = \frac{1}{2}$
- (iii) $S_t^{(k)} \to S_t$ uniformly on compacts in t a.s.
 - $\mathbb{P}^{(k)*}$ martingale measures for binomial model
 - \mathbb{P}^* —— martingale measures for Black-Scholes model

Fact. $\mathbb{E}^{(k)*}(G(S^{(k)})) \to \mathbb{E}^*(G(S))$, so can approximate fair price using Binomial model

Setting 13. $\mu = \mu^* = r - \frac{\sigma^2}{2}$ for convenience

– expression
$$C = F(B)$$
 — F on $C[0,T]$

– terminal-value option $C = f(B_T)$

Fact. for
$$C = f(B_T)$$
, $V_0 = e^{-rT} \int f(\sqrt{T}y) \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$

Fact. May not be efficient way:

(i) multiple assets —— exponentially growth computational cost

- (ii) want to compute pricing surface
 - pricing surface $V(t,s) = e^{-r(T-t)}\mathbb{E}^*(C|S_t=s)$

Setting 14. terminal-value option $C = g(S_T)$, g continuous, no more than linear growth

$$- f(x) = g(e^{\sigma x})$$

$$-u(t,x) = \mathbb{E}_x(f(B_t))$$

Fact.
$$V(t,s) = e^{-r(T-t)} \mathbb{E}(g(se^{\sigma B_{T-t} + \mu(T-t)})) = e^{-r(T-t)} u\left(T - t, \frac{\log s + \mu(T-t)}{\sigma}\right)$$

$$- p_t(x,y) = \frac{1}{\sqrt{2\pi t}} e^{\frac{-(y-x)^2}{2t}}$$

Fact. $u(t,x) = \int p_t(x,y)f(y)dy$

Fact.
$$\frac{\partial p}{\partial t} = \frac{1}{2} \frac{\partial^2 p}{\partial x^2} \Rightarrow \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$$

Setting 15. assume can accurately approximate $u(t, \pm L)$ for all t

- grid
$$\{(ik, jh)\} \subset [0, T] \times [-L, L] \longrightarrow k = \frac{T}{N}, h = \frac{L}{M}$$

- grid points U_j^i —— idea $U_j^i \approx u(ik, jh)$
- FTCS (forward-in-time, central-in-space) $\frac{U_j^{i+1}-U_j^i}{k} = \frac{U_{j-1}^i-2U_j^i+U_{j+1}^i}{2h^2}$
 - explicit
 - first-order in time
- BTCS (backward-in-time, central-in-space) $\frac{U_{j}^{i+1}-U_{j}^{i}}{k} = \frac{U_{j-1}^{i+1}-2U_{j}^{i+1}+U_{j+1}^{i+1}}{2h^{2}}$
 - require to solve $2M \times 2M$ matrix inversion
 - better stability
 - first-order in time

$$- \text{ Crack-Nicolson} - \frac{U_j^{i+1} - U_j^i}{k} = \frac{1}{2} \left(\frac{U_{j-1}^i - 2U_j^i + U_{j+1}^i}{2h^2} + \frac{U_{j-1}^{i+1} - 2U_j^{i+1} + U_{j+1}^{i+1}}{2h^2} \right)$$

- require to solve $2M \times 2M$ matrix inversion
- better stability
- second-order in time
- Monte Carlo ----
 - time-step $k = \frac{T}{N}$
 - (i) $(B_t^{(N)}: t = ik)$ linear interpolation of random walk with step distribution N(0, k) (ii) $(X_t: t = ik)$ simple symmetric random walk with step-size $h = \sqrt{k}$
 - generate sample $(B^{(N),i})$
 - (Idea) $\frac{1}{n} \sum F(B^{(N),i}) \approx \mathbb{E}(F(B^{(N)})) \to \mathbb{E}(F(B))$

- fair price for European call $EC(x, K, \sigma, r, T) = \mathbb{E}^*(e^{-rT}(S_T - K)^+)$

$$-\phi(y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}$$

$$-\Phi(a) = \int_{\infty}^{a} \phi(y) dy$$

$$- \bar{\Phi}(a) = 1 - \Phi(a)$$

$$- d^{\pm} = \frac{\log(\frac{x}{K}) + rT}{\sigma\sqrt{T}} \pm \frac{\sigma\sqrt{T}}{2}$$

Proposition 6.3 (Black-Scholes formula). $EC(x, K, \sigma, r, T) = x\Phi(d^+) - e^{-rT}K\Phi(d^-)$

- put-call parity ---- $(S_T K)^+ (S_T K)^- = S_T K$
- fair price for forward contract $\mathbb{E}^*(e^{-rT}(S_T K)) = x e^{-rT}K$
- fair price for European put $EP(x, K, \sigma, r, T) = e^{-rT}K\bar{\Phi}(d^-) x\bar{\Phi}(d^+)$

Setting 16. $v(x) = v(x, C, \sigma, r, T) = \mathbb{E}^*(e^{-rT}C)$

- Sensitivities
- Delta $\Delta = \frac{\partial v}{\partial x}$
- Gamma $\Gamma = \frac{\partial^2 v}{\partial x^2}$
- Vega $\mathcal{V} = \frac{\partial v}{\partial \sigma}$
- Rho $\rho = \frac{\partial v}{\partial r}$

Example. C European call, $\Delta = \Phi(d^+), \mathcal{V} = x\phi(d^+)\sqrt{T}$

Proposition 6.4.

- (i) $\sigma \mapsto EC(x, K, \sigma, r, T)$ increasing bijection
- (ii) $\lim_{\sigma \to 0} EC(x, K, \sigma, r, T) = (x e^{-rT})^+$
- (iii) $\lim_{\sigma\to\infty} EC(x,K,\sigma,r,T) = x$
- implied volatility $\sigma_{implied}(K,T)$ —— $EC(S_0,K,\sigma_{implied}(K,T),r,T) = EC_{market}(K,T)$

Example. up-and-out call $C = h(S_T) \mathbb{1}_{\{\sup_{0 \le t \le T} S_t \le A\}}, \ h(s) = (s - K)^+, \ A \ge \max\{S_0, K\}$