VIF (variance in Hatjon Factor)

Independent variable showd not depend on each other

V/F = 1-R2

* Regularisation

Li Lasso

Le Ridge

Elastionet Regularisation

(i) Li Lasso

when we have multiple features in data and want to reduce some unrelated fetures from data. While training algorithms.

X, X2 X3 X4 X5 X6 X7 X8 Y

 $\Rightarrow \frac{1}{N} \sum_{i=1}^{N} \left[h_{o}(x)^{i} - \gamma^{i} \right] + \lambda |s|_{op}|$

 $h_{6}(x) = O_{0} + O_{1}x_{1} + O_{2}x_{2} + O_{3}x_{3} + O_{4}x_{4}$ $= O_{0} + 6.54x_{1} + 0.25x_{2} + 0.01x_{3} + 0.10x_{4}$

A L2 Ridge Regularisation

To maintain overfitting and under fitting of model

The maintain overfitting and which is a second of the model of the mo

 $L_2 = \frac{1}{n} \sum_{i=1}^{n} \left[h_0(x_i) - y_i \right] + \lambda \left(slop \right)^2$

Relationship of I and slop is inversely propostion.

AT Slop LO YL Slop TO # Elastic net Regusalisation

Combination of Li and Le

EN = \[\langle \langl

overfitting = low bias High variance

under litting = High vorane /low veriane

= High boas

thre

Binary dussification

 $Z = h_{\theta}(x) = O_0 + O_1 x,$

Signoid Function = 1/1+eZ

Cost Function (convax function)
$$J(0_0,0_1) = \frac{1}{n} \sum_{i=1}^{n} (h(x)^i - y^i)^2$$

$$h_0(x) = \sigma \left(\theta_6 + \theta_{1x} \right)$$

$$\sigma = \frac{1}{14e}$$

$$\frac{1}{1+e^{-2}} = \frac{1}{1+e^{-(0_0+0_7)}}$$

Repeat conversion theorem
$$\begin{cases}
J=0 & \text{and } J \\
0j=0j-\alpha + j & \text{(Oo, O,)}\\
0j=\log y & \text{vote}
\end{cases}$$

$$\alpha = \text{learning rate}$$

A logistic Regression - Brown class-
A Sigmoid function
$$c = \frac{1}{1+e^{Z}}$$