演算法與程式解題實務

Mong-Jen Kao (高孟駿)

Monday 18:30 – 21:20

Sorting (排序問題)

■ 給定 n 個數字 $a_1, a_2, ..., a_n$, 將它們排序,並以非遞減的順序輸出.

■ Ex.

輸入的數字為

3, 2, 8, 6, 10, 12, 2, 1,

則你的程式需依序輸出

1, 2, 2, 3, 6, 8, 10, 12.

Insertion Sort 演算法

- InsertionSort(A[1,2,...,n],n)
 - A. For $j \leftarrow 2$ to n, do the following.
 - a) $key \leftarrow A[j]$.
 - b) $i \leftarrow j 1$.
 - c) While i > 0 and A[i] > key, do the following.
 - 1) $A[i+1] \leftarrow A[i]$.
 - 2) $i \leftarrow i 1$.
 - d) $A[i+1] \leftarrow key$.

較直覺且友善的描述方式

- InsertionSort(A[1,2,...,n],n)
 - A. For $j \leftarrow 2$ to n, do the following.
 - a) Find the largest index $i \in [1,2,...,j-1]$ such that A[i] < A[j]. Set $i \leftarrow 0$ if no such index exists.
 - b) Insert A[j] at position i + 1by moving A[i + 1, ..., j - 1] to A[i + 2, ..., j].

■ InsertionSort(A[1,2,...,n],n)

A. For $j \leftarrow 2$ to n, do the following.

- a) Find the largest index $i \in [1,2,...,j-1]$ such that A[i] < A[j]. Set $i \leftarrow 0$ if no such index exists.
- b) Insert A[j] at position i + 1by moving A[i + 1, ..., j - 1] to A[i + 2, ..., j].

Lemma. (The Invariant condition of the algorithm)

At the end of each for-loop in step A., the numbers in A[1,2,...,j] are always sorted in order.

Time Complexity (Efficiency) of an Algorithm

■ 我們以一個演算法執行過程中, 所使用到的「運算步驟」數目,來衡量此演算法的效率。 我們將此定義為此演算法的「時間複雜度 (Time Complexity)」/執行時間。

- 由於演算法執行過程中,實際的步驟數會因 input 不同而異, 我們通常會考慮演算法的 *Worst-cast running time*.

亦即,最差情況下的執行時間.

Running Time of Insertion Sort

- InsertionSort(A[1,2,...,n],n)
 - A. For $j \leftarrow 2$ to n, do the following.
 - a) Find the largest index $i \in [1,2,...,j-1]$ such that A[i] < A[j]. Set $i \leftarrow 0$ if no such index exists.
 - b) Insert A[j] at position i+1by moving A[i+1,...,j-1] to A[i+2,...,j].

Running Time of Insertion Sort

■ The <u>worst-case running time</u> of insertion sort on n input numbers is

$$\sum_{2 \le i \le n} (j-1) = n(n-1)/2 = O(n^2).$$

This says, "roughly at most n^2 ".

We will define what this means next lecture.

The analysis is tight, as there is indeed an instance that makes
 InsertionSort to take this number of steps.

Algorithms

What are algorithms?

Why do we need Algorithms?

為什麼我們需要 (更好的) 演算法?

- -- 做為可更有效率解決龐大計算問題的工具
 - 考慮以下的計算問題.

以字母順序 (Alphabetical order) 排序台灣所有居民的身份證字號.

- 台灣的人口約 2.3 × 10⁷ (二千三百萬).
- 若我們使用 InsertionSort 或是 BubbleSort 演算法, 那麼排序這些身份證字號所需的計算時間將會「超過一週」.
- 然而,若我們使用更聰明的排序方法,所需的時間可以降低至「5秒以內」.

為什麼我們需要 (更好的) 演算法?

-- 做為可更有效率解決龐大計算問題的工具

- 若我們使用 InsertionSort 或是 BubbleSort 演算法, 那麼排序這些身份證字號所需的計算時間將會「超過一週」.
- 然而,若我們使用更聰明的排序方法,所需的時間可以降低至「5秒以內」.

■ 因此,

好的演算法在有嚴格時限 (Time-Critical) 的大型計算應用中,是不可或缺的。

- 例如:google map, 導航系統, 火車、航班排程系統等.

The Merge-Sort Algorithm

The Merge-Sort (合併排序) Algorithm

- Let $a_1, a_2, ..., a_n$ be the input numbers.
- The merge-sort algorithm works as follows.
 - 1. 將 input 約略切為兩等份

$$L = \{a_1, \dots, a_{\lfloor n/2 \rfloor}\}$$
 and $R = \{a_{\lfloor n/2 \rfloor + 1}, \dots, a_n\}$.

- 2. 分別使用「合併排序法」 排序 L 與 R.
- 3. 將 L 與 R 合併為一個排序好的序列.

The Merge-Sort Algorithm

A more detailed pseudo-code for this algorithm.

Algorithm MergeSort(A[1,2,...,n], left, right)

- 1. If left = right, then return.
- 2. Let mid $\leftarrow \lfloor (\text{left} + \text{right})/2 \rfloor$.
- 3. Call MergeSort(A, left, mid) and MergeSort(A, mid+1, right).
- 4. Merge A[left, ..., mid] and A[mid + 1, ..., right] with the procedure Merge(A, left, mid, right).

The Procedure Merge(A, left, mid, right)

■ The procedure takes two sorted lists

$$L \coloneqq A[\text{left}, ..., \text{mid}]$$
 and $R \coloneqq A[\text{mid} + 1, ..., \text{right}]$ and merge them into one sorted list $A[\text{left}, ..., \text{right}]$.

■ The procedure uses two pointers p and q to iterate over L and R.

In each iteration, it picks the smaller between p and q
 to the new sequence and advances it.

- Repeats until *L* and *R* are scanned.

The idea is simple.

Have to be careful about the boundary cases.

■ The procedure Merge(·) uses an extra array temp[1, ..., n].

Procedure Merge (A[1,2,...,n], left, mid, right)

- 1. Copy A[left, ..., right] to temp[left, ..., right]. $p \leftarrow left$, $q \leftarrow mid + 1$, pos $\leftarrow left$.
- 2. While $p \le \min$ and $q \le \text{right}$, do the following.
 - If temp[p] < temp[q], then set $A[pos + +] \leftarrow temp[p + +]$.

 Otherwise, set $A[pos + +] \leftarrow temp[q + +]$.
- 3. While $p \le \min$, set $A[pos + +] \leftarrow temp[p + +]$.
- 4. While $q \le \text{right}$, set $A[\text{pos} + +] \leftarrow \text{temp}[q + +]$.

Analysis of the Procedure Merge(·)

- 正確性 為什麼此程序可正確合併 L 與 R?
 - Provided that L and R are already sorted,
 the smaller of temp[p] and temp[q] must be the smallest element
 among temp[p, ..., mid] and temp[q, ..., right].
- The time complexity of this procedure is

$$2 \cdot (right - left + 1) = O(right - left + 1),$$

i.e., linear in the number of elements.

Analysis of the Algorithm MergeSort(·)

- MergeSort (合併排序法) 的正確性
 - Proved by induction on m := right left + 1.
 - When m=1, the procedure MergeSort(A, left, right) clearly sorts A[left] correctly.
 - When m > 1,
 by induction hypothesis, MergeSort sorts L and R correctly.
 Then, we have shown that the procedure Merge(·) merges L and R into a sorted list.

Analysis of the Algorithm MergeSort(·)

- Time complexity of Merge-Sort.
 - For any n ≥ 1,
 let T(n) be the number of steps required by MergeSort algorithm.
 - Then, we have

$$T(n) = \begin{cases} O(1), & \text{if } n \leq 1, \\ 2 \cdot T\left(\frac{n}{2}\right) + O(n), & \text{otherwise.} \end{cases}$$

In total, it takes $O(n \log n)$ time.

Analysis of the Algorithm MergeSort(·)

- Time complexity of Merge-Sort.
 - For any n ≥ 1,
 let T(n) be the number of steps required by MergeSort algorithm.
 - Then, we have

$$T(n) = \begin{cases} O(1), & \text{if } n \leq 1, \\ 2 \cdot T\left(\frac{n}{2}\right) + O(n), & \text{otherwise.} \end{cases}$$

And $T(n) = O(n \log n)$.