TUTORIAL QUESTIONS DEFORMATION OF SOLIDS

Question 1

Α

Question 2

C

Question 3

```
F = kx

10 = k (40 \times 10^{-3})

k = 250 \text{ Nm}^{-1}
```

Total extension = 40 mm, each spring extension would be 20 mm So total energy stored = $\frac{1}{2}(250)(20 \times 10^{-3})^2 + \frac{1}{2}(250)(20 \times 10^{-3})^2 = 0.10 \text{ J}$

Answer: B

Question 4

```
F = kx

6 = k 0.03

k = 200 Nm<sup>-1</sup>

Additional strain energy = \frac{1}{2} (200)(0.04)<sup>2</sup> – \frac{1}{2} (200)(0.03)<sup>2</sup>

= 0.07 J (Answer: C)
```

Question 5

```
F = (400)(20 \times 10^{-3}) = 8.0 \text{ N (Answer: A)}
```

Question 6

```
E = kL/x, k = Ex/L
So when length is halved, k would be doubled.
K' = 2K
```

Question 7

```
F = ½ kx
F = ma
ma = ½ kx
a is directly proportional to x. (Answer: A)
```

Question 8

a.) F = kx, 50 = k(0.1), k = 500 Nm⁻¹
max. energy stored =
$$\frac{1}{2}$$
 (500)(0.15)² + $\frac{11.25}{2}$ J

Question 9

a.)
$$F = kx$$

 $0.6 = (6)x_1, x_1 = 0.1 \text{ m}$
 $0.6 = (3)x_2, x_2 = 0.2 \text{ m}$

b.)
$$k_{total} = (1/k_1 + 1/k_2)^{-1} = 2 \text{ Nm}^{-1}$$

c.) strain energy =
$$\frac{1}{2}(2)(0.3)^2 = 0.09 J$$

Question 10

a.) mgh =
$$(5 \times 9.81 \times 0.02) = 0.981 \text{ J}$$

b.) energy stored =
$$\frac{1}{2}$$
Fx = $\frac{1}{2}$ (5 x 9.81)(0.02) = **0.491** J

c.) Energy lost as heat during the extension of the rubber cord.

Question 11

b.)
$$k = (4/(17.95 - 13.60) \times 10^{-2}) = 91.95 \text{ Nm}^{-1}$$

 $\Delta k = (2.8/100)(91.95) = \pm 2.57 = \pm 3 (1 \text{ s.f.})$
 $k = 92 \pm 3 \text{ Nm}^{-1}$

Question 12

(i) spring constant =
$$(3.8/2.1) = 1.8 \text{ N cm}^{-1}$$

(ii)

1.
$$\Delta EP = mg\Delta h$$
= (3.8) × (1.5 × 10⁻²)
= 0.057 J

2. $ES = \frac{1}{2} kx^2$
 $\Delta ES = \frac{1}{2} \times 1.8 \times 10^{-2} (0.036^2 - 0.021^2)$
= 0.077 J

= 0.020 J

3. work done = 0.077 - 0.057

Question 13

Material	E / Pa	Breaking stress /	Cross-sectional	Breaking force / N
		Pa	area / $10^{-4} \mathrm{m}^2$	
Steel	2.0 x 10 ¹¹	9 x 10 ⁸	1.0	9 x 10 ⁴
Nylon	7.0 x 10 ⁷	0.6 x 10 ⁸	5.0	3 x 10 ⁴
Х	1.1 x 10 ¹¹	5 x 10 ⁸	0.2	1 x 10 ⁴
Υ	5.5 x 10 ¹⁰	1 x 10 ⁹	0.2	2 x 10 ⁴

- A.) Refer table
- B.) Steel, X, Y, nylon
- C.) Nylon, X, steel, Y
- D.) X, 1 x 10⁴
- E.) Steel , 9 x 10⁴
- F.) Refer diagram
- G.) Refer diagram

Stress

