Which Functions have Inverses?

Recall that a function of has an inverse of it there exists a function, I', such that for every x in the domain of f,

and for every y in the range of f, $f \circ f^{-1}(y) = y.$

E.g.: Not every function has an inverse. Take the function $f(x) = x^2$, defined on all the real numbers.

Recall: $y=x^2$ determines y as a function of x but does not determine x as a function of y because if we solve for x, then

X=± \X

The choice of value for x: either Ty or - Ty says this is not a function.

To be an inverse, we would need to have a function which takes, in a coordinate pair (x,y) on the graph of f(x) and outputs the x-value.

If the graph of my function of information a horizontal line in two points, say (x,y) and (x2,y), then we know $f(x_1) = f(x_2) = g$.

So there cannot be an inverse function because any rule assigning an x value to the value y involves a choice:

Fither $f^{-1}(g) = x_1$ or $f^{-1}(g) = x_2$.

So we at least must require that the any horizontal line interceds the graph of fin at most one point.

This is also sufficient: if any horizontal line intersects the graph in at most one point, then

we can define an inverse function. If (x, or) is (3)
or can define an inverse function. If (x,y) is any coordinate pair on the graph of f , then $y = f(x)$
then $Y = f(x)$
and we define $f^{-1}(y) = X$.
Def! We say a function, is one-to-one
Def! We say a function, is one-to-one if for every value of x and x' in the domain
of f , $f(x) \neq f(x)$, when $x \neq x'$.
Horizontal Line Test
If any horizontal line passes through at most one point on the graph of f
then f is one-to-one.
Every one-to-one function has an inverse.
4.1
Graphs of Logarithms
Consider $f(x) = 2^{x}$, $f'(x) = \log_{2}(x)$
Flix (2,4) (2,4) (4,2) Know the domain of files
Consider $f(x) = 2x$, $f'(x) = \log_2(x)$ $f(x) = (2,1)$ Fixed $f'(x) = \log_2(x)$ Know the domain of $f'(x) = (2,1)$ the range of $f'(x) = x$ and $f' \circ f(x) = x$
$+\circ f(x)-x$

9.2 Laws of Logarithms 1. log *a (AB) = loga (A) + loga (B) 2. loga (AB) = loga (A) - loga (B) 3. loga (A') = Cloga (A)