

Information Management II

CS3041 – CS4D2a – 4CSLL1 Introduction

Prof. Vincent Wade Vincent.Wade@scss.tcd.ie

Course Overview

- 12 Week Course
 - Thursday 16:00-18:00
 - Wednesday 14:00-15:00

Approx. 28 Lectures and 5 Tutorials

Course Overview

- Online Course
 - SQL
- Assessment
 - Exam
 - Continuous Assessment
 - Project Work
 - Online Course

Course Outline

- System Engineering:
 - State of the Art in Database Technology;
 Transaction Processing; Concurrency Control;
 Metadata Representation; Recovery; Database
 Security; Web Databases and Emerging Database
 Technologies.
- Information Design:
 - Relational Modelling; Functional Dependency Modelling; Normalisation; Implementation of Databases and Database Applications.

Course Layout (week 1 – 5)

- 1. Introduction to Databases
- 2. Database Architectures
- 3. Database Models
- 4. Relational Algebra for Data Manipulation
- 5. Designing Databases: Functional Dependency
- Designing Databases: The Entity Relationship (ER) approach
- 7. Designing Databases: Mapping from ER to Relations

Recommended Reading

- Database Systems: Models, Languages, Design and Application Programming
 - Elmasri & Navathe
 - ISBN-10: 0132144980 | ISBN-13:
 9780132144988 | Edition: 6th edition

Information Management II

1. Introduction to Databases

CS4D2a – 4CSLL1 – CS3041 Vincent Wade Vincent.wade@scss.tcd.ie

What is Data?

- Data is any information that you want to store and refer to again. Data can be:
 - Text
 - Numbers
 - Dates
 - Images
 - Videos
 - Files
 - Any other types of information.
- For example, if you sell cakes, you can store the names, pictures, and recipes of your cakes, the prices and quantities of boxes and the dates of sales.....

What is a Database?

- An organised collection of Information, or Data...
 - "A database is a persistent collection of related data supporting several different applications within an organisation"
- Organised to:
 - model aspects of reality
 - in a way that supports processes that require this information
 - A collection of medical records in a Hospital
 - Finding records by a specific Doctor or Patient
 - mostly, to make the data more useful!

Metadata

Metadata adds Context to Data

Metadata Data

Student Number: 89041258

Name: John Patrick Smith

Account Balance: 132.56

- Metadata can include:
 - data type, name of element, size, restrictions etc.
- Can be used at any level of aggregation

Database Management Systems

- Database Management System (DBMS)
- Goal of a DBMS is to simplify the storage of, and access to, data
- DBMS support:
 - Definition
 - Manipulation
 - Querying
- A DBMS can manage a single, or set of, DBs

DBMSs Provide...

- <u>Efficient</u>, <u>reliable</u> and <u>secure</u> management of large amounts of <u>persistent</u> data.
- Language(s) for defining the DB
 - data definition language
 - This data about data (e.g. student number is a seven digit number plus one check digit) is called *metadata*
- Languages for <u>storing</u>, <u>retrieving</u> and <u>updating</u>
 data in the DB
 - data manipulation languages

DBMS

- Well known DBMS:
 - Proprietary:

- Open Source:

Database Systems

- Database System (DBS)
 - DBMS
 - DB
 - application data
 - associated metadata
 - Application programs
- Metadata and data are stored separately

Why should I care?

- Ubiquity
- Software Market
 - roughly same size as OS market approx. \$20B annually.
- The majority of large corporations, web sites, scientific projects... all manage both day to day operations as well as business intelligence and data mining using databases

Why should I care?

Why use a Database?

- Pre-DB era (up to end of 1960's) was characterised by file processing systems
- File systems offered
 - efficient, direct access to individual records
 - fast sequential processing
- Choice of file organisation technique was based on the needs of a particular application
- However, if multiple applications want to share data, this can give rise to wasteful duplication
 - Patient record application and Accounting application
 - Patient names, addresses, visit charges etc.

Why use a Database?

- Duplication of data
 - Wasteful of storage
 - Inefficient
 - Most importantly, leads to inconsistencies
- DB approach aims to eliminate such redundancy (data duplication)
- Data from all applications is integrated and stored once in the DB
- All applications access the same physical copy of the data

File-Based Approach

Database Approach

Disadvantages of File System

List five disadvantages of using a file system rather than a database
1.
2.
3.
4.
5.

How do Databases and DBMS address these problems?

Data Independence

- File-based systems are data dependent
 - as the way in which data is viewed by an application and the way in which it is physically stored are built into the logic of the application program
- DBMS support *logical data independence*
 - by allowing the view of the data to be changed and data added without affecting it's underlying organisation
- DBMS support *physical data independence*
 - as they *insulate* the way in which data is viewed by the applications/users from the way in which it is physically stored

Data Integrity

- Data Integrity is concerned with the consistency and accuracy of the data in the Database
- Data Redundancy is a major threat to Data Integrity
- Support for Data Integrity is a key feature of any DBMS

Data Integrity

- Databases model parts of the real world in which many rules apply
 - "A student has only one address"
 - "A student must take 5 courses in the final year or 4 courses plus a project"
- DBMS express such rules by means of "integrity constraints"
- Validation of data values being entered into the DB is another aspect of Data Integrity
- Many users/applications simultaneously updating the Database can threaten Data Integrity
 - This requires "concurrency control"

Backup and Recovery

- The only facility available to file processing systems to restore data following failure is if a back-up was scheduled/manually taken
 - Time Machine on MacOSx
 - Backup and Recovery in Windows
- Insufficient in many on-line environments and organisations where data is a strategic resource
- DBMS provide very sophisticated recovery mechanisms

Query Language Support

- File systems are basically tools for physical storage of data
- They make data much less accessible to users than Database systems
 - If a GP wanted to examine all records for a single patient, this would be very difficult
 - Even if they were meticulous in where they stored them
 - Potentially would need an application to process and combine the data
- DBMS provide a variety of interfaces to suit the needs of a wide range of users

Metadata Management

- In applications which process data from a file system, metadata is often part of the application program
- This can lead to duplication of metadata across applications
 - leading to integrity problems
- Imagine a patient record

1234 Sheldon Cooper 2311 N. Los Roblos Ave., Pasadena 290846 Penicillin

Metadata Management

 To interpret the data in this record, we would need to look at an application program:

```
public class Patient {
 private int patient_ID;
 private String patient_name;
 private String patient_address;
 private int patient_phone;
 private String patient_allergy;
 ......
```


Metadata Management

- With the Database approach:
 - Metadata is stored centrally in the catalog
 - Database catalog entry for patient record
 - Patient_record contains basic details on patient

Patient_ID	int(4)	Unique
Patient_Name	varchar(255)	Firstname followed by Surname
Patient_Address	varchar(255)	Truncate if necessary
Patient_Phone	int(10)	Home phone
Patient_Allergies	varchar(255)	Drug name or None

Advantages of Databases

- Search and Retrieval Capabilites
 - Filtered according to specific needs
- Reduced Data Redundancy
 - Ease of Update
- Greater Data Integrity
- Independence from Applications, Concurrent Access
- Improved Data Security
- Reduced Costs for Data Entry, Storage and Retrieval

Disadvantages of the DB Approach

- Training required for management and querying
- Database systems are complex and timeconsuming to design
- Cost
 - Software
 - Hardware
 - Training
- Loss of autonomy brought about by centralised control of the data
- Inflexibility due to complexity

Database Languages

- Programming languages which are used to:
 - Define a database
 - its entities and the relationships between them
 - Manipulate its content
 - insert new data and update or delete existing data
 - Conduct queries
 - request information based upon defined criteria
- The Structured Query Language (SQL) is the most commonly used language for Relational Databases
 - Supported by all relational DBMS and is a standard.

SQL

- SQL is split into four sets of commands which are divided based upon the tasks they are used for:
 - Data Definition Language
 - Data Modification Language
 - Data Query Language
 - Data Control Language

Data Definition Language

- SQL uses a collection of imperative verbs whose effect is to modify the schema of the database
- Can be used to add, change or delete definitions of tables or other objects.
- These statements can be freely mixed with other SQL statements
 - so the DDL is not truly a separate language.

Data Manipulation Language

- The data manipulation language comprises the SQL data change statements
 - Modifies stored data
 - Does NOT modify the schema or database objects
 - This is always the responsibility of the Data Definition Language
- Used for inserting, deleting and updating data in the tables of a database

Data Query Language

- The data query language allows users of a database to formulate requests and generate reports
- There is one primary command used in SQL to query the database - the SELECT Statement
 - This statement is used to query or retrieve data from a table in the database.
 - A query may retrieve information from specified columns or from all of the columns in the table
 - A query may have specified criteria that must be met in order for data to be returned

Transactions

- A way to group actions that must happen atomically
 - all or nothing
- Guarantees to move the DB content from one consistent state to another
- Isolates these actions from parallel execution of other actions/transactions
- Ensures the DB is recoverable in case of failure
 - e.g. the power goes out

Backup and Recovery

- Ensures that the DB can be returned to a stable state in case of errors, such as:
 - Transaction failure
 - System errors
 - System crash
 - Data Corruption
 - Disk failure

Users

- DBMS implementer
 - Builds the DBMS System
- Database designer
 - Designs the Database, Establishes the Schema
- Database application developer
 - Develops programs that operate upon the DB
- Database administrator
 - has overall responsibility for the DB including specifying access constraints, selection of appropriate backup and recovery measures, monitoring performance etc.

Emergent Databases

- XML Databases
 - Document-Oriented
- NoSQL Databases
 - Web Scale, Non-Relational, Open Source
- In Memory Databases
 - Stores data in main memory rather than on disk
- Others
 - Massively parallel processing (MPP) databases
 - Online analytical processing (OLAP) databases

