

UNIVERSIDADE FEDERAL DE MINAS GERAIS CENTER OF WHAT DEPARTAMENTO DE ENGENHARIA ELETRÔNICA UNDERGRADUATE COURSE IN ELECTRICAL ENGINEERING

GABRIEL TEIXEIRA LARA CHAVES

PROCESSAMENTO E REPRESENTAÇÃO DE SÉRIES TEMPORAIS MULTIVARIADAS E NÃO ESTACIONÁRIAS

GABRIEL TEIXEIRA LARA CHAVES

PROCESSAMENTO E REPRESENTAÇÃO DE SÉRIES TEMPORAIS MULTIVARIADAS E NÃO ESTACIONÁRIAS

Undergraduate Thesis submitted to the Electrical Engineering Course of the Center of What of the Universidade Federal de Minas Gerais, as a partial requirement for obtaining the Bachelors Degree in Electrical Engineering.

Advisor: Prof. Dr. Frederico Gualberto

Coelho

Co-advisor: Prof. Dr. ?

GABRIEL TEIXEIRA LARA CHAVES

PROCESSAMENTO E REPRESENTAÇÃO DE SÉRIES TEMPORAIS MULTIVARIADAS E NÃO ESTACIONÁRIAS

Undergraduate Thesis submitted to the Electrical Engineering Course of the Center of What of the Universidade Federal de Minas Gerais, as a partial requirement for obtaining the Bachelors Degree in Electrical Engineering.

Approved on: 31th August 2023

EXAMINATION BOARD

Prof. Dr. Frederico Gualberto Coelho (Advisor) Universidade Federal de Minas Gerais

> Prof. Dr. ? (Co-advisor) Universidade Federal de Minas Gerais

Prof. Dr. Antônio de Pádua Braga

ACKNOWLEDGEMENTS

Obrigado!

"Alice sighed wearily. 'I think you might do something better with the time,' she said, 'than waste it in asking riddles that have no answers.' 'If you knew time as well as I do,' said the Hatter, 'you wouldn't talk about wasting it. It's him.' 'I don't know what you mean,' said Alice. 'Of course you don't!' the Hatter said, tossing his head contemptuously. 'I dare say you never even spoke to Time!' 'Perhaps not,' Alice cautiously replied, 'but I know I have to beat time when I learn music.' 'Ah! That accounts for it,' said the Hatter. 'He won't stand beating.'

,,

ABSTRACT

Abstract here.

Keywords: Time series analysis, Discrete-time signal processing, Machine learning, Frequency analysis.

RESUMO

Resumo

Palavras-chave: Análise de Séries Temporais, Processamento de Sinais de Tempo Discreto, Aprendizado de Máquina, Análise em Frequência

LIST OF FIGURES

LIST OF TABLES

LIST OF SYMBOLS

- ω Frequência angular
- ρ Autocorrelação

CONTENTS

1 INTRODUÇÃO

INTRODUÇÃO

2 DEFINIÇÕES E PROPRIEDADES

2.1 Processo Estocástico

Dado um conjunto arbitrário $\mathscr T$ um processo estocástico é uma família $X(t,\omega)$, $t\in \mathscr T$ e $\omega\in \Omega$ de forma que para cada $t\in T$, $\omega\in \Omega$ $X(t,\Omega)$ é uma variável aleatória. As variáveis aleatórias podem ser reais ou complexas. Esse trabalho aborda apenas processos estocásticos reais exceto quando explicitamente mencionado.

Supõe-se que a família de variáveis aleatórias seja definida em um mesmo espaço de probabilidades (Ω, \mathcal{A}, P) com Ω representando um espaço amostral, \mathcal{A} uma σ -álgebra e P uma medida de probabilidade. Para propósitos desse trabalho podemos tomar o conjunto \mathcal{T} como \mathbb{R} , resultando em processos de tempo contínuo, e \mathbb{Z} , resultando em processos de tempo discreto.

Para cada $t \in \mathscr{T}$ temos uma função de densidade de probabilidade associada à variável aleatória $X(t_k, \omega)$ (assumindo que essa função exista). Na prática um processo aleatório no mundo real é observado ao longo de t, tal que ω seja fixado ao universo em que a observação ocorre. Sob essa condição $X(t, \omega_k)$ é considerada uma realização do processo estocástico. Realizações também são chamadas de *sample record* em alguns livros de engenharia e séries temporais na literatura estatística.

Para ilustrar os conceitos acima podemos pensar em um exemplo proposto por (??) em que um gerador de ruído térmico é construído e sua tensão ao longo de um intervalo do tempo é medida. Se um outro gerador fosse construído sob condições e com propriedades idênticas sua tensão medida no mesmo intervalo de tempo não seria idêntica, assim como a tensão medida sob qualquer outro gerador idêntico. De fato cada registro de tensão é um exemplo de infinitos registros que poderiam ter ocorrido. Nessa situação os registros ou séries temporais de tensão são as realizações de um processo estocástico representativo de todas as possíveis realizações.

O adequado estudo de séries temporais é consequência de um primeiro adequado estudo sobre processos estocásticos, geradores dessas séries temporais. Essa não é a intenção desse trabalho. Como em grande parte da teoria de séries temporais estamos preocupados com o que podemos compreender ou inferir sobre o processo estocástico gerador de uma realização a partir apenas de seu único registro. Essa abordagem é essencial e de fato mais aplicável que um estudo que se preocupa excessivamente com os processos geradores devido ao fato de dados do mundo real frequentemente representarem realizações únicas. Não é possível realizar novamente o índice Ibovespa entre 1970 e 2020 e muito menos ter acesso à realização desses índices em

universos paralelos.

Ao longo desse trabalho a distinção e referência ao processo gerador de uma série temporal será feita quando necessário.

2.2 Série Temporal

Uma série temporal é um conjunto de observações realizadas sequencialmente no tempo, indexadas de acordo com o momento em que foram observadas. As observações representam a realização de um processo estocástico. Em alguns contextos, como análise de processos industriai, a natureza do processo subjacente é relevante para análise e modelagem de qualquer série temporal. Em outros, como análise de séries financeiras, o sistema gerador das séries é tão complexo que dificilmente conhecimento sobre sua dinâmica seja útil.

Assume-me, na linguagem de (??), que um conjunto de amostras $\mathbf{y}_t = (y_1, y_2, y_3 \dots y_T)$ pode ser interpretado como um segmento finito de uma sequência duplamente infinita:

$$\mathbf{y}_{t=-\infty}^{\infty} = (\dots, y_{-1}, y_0, \overbrace{y_1, y_2, y_3, \dots, y_T}, y_{T+1}, y_{T+2} \dots)$$

Apesar de parecer pouco tangível, de fato qualquer série observada é satisfatoriamente descrita dessa forma. Em um contexto industrial, por exemplo, o valor de uma variável de processo é zero até a planta ser construída e entrar em operação, assume valores representativos ou não da dinâmica de interesse (assumindo valores irrelevantes quando a planta não está em operação plena), e tendendo ao infinito retorna a zero quando a planta for desativada.

Essa interpretação de uma série temporal é importante ao implicitamente insinuar que o processo existe em um intervalo temporal mais abrangente do que o observado. É portanto necessário se questionar sobre quanto os dados representam o processo analisado e em quais intervalos de tempo.

Séries temporais são inerentemente diferentes de dados tabulares por representarem amostras de um mesmo processo estocástico ao invés de amostras aleatórias de uma população. Não faz sequer sentido discutir uma população no contexto de séries temporais uma vez que estamos restritos à realizações observadas de um processo estocástico. Essa relevante diferença impede propriedades estatísticas agradáveis consequentes da independência amostral associada

à dados tabulares apropriadamente amostrados como a lei do grandes números e o teorema do limite central.

A forma mais natural de analisar uma série temporal é visualizar seus valores no tempo, como ilustra a imagem ??.

Figure 1 – Visualização no tempo de ruído branco

2.3 Operador de Atraso(Lag)

É importante introduzir o operador de atraso ou lag.

Dadas as séries $\mathbf{y}_t = (y_1, y_2, y_3 \dots y_T)$ e $\mathbf{x}_t = (x_0, x_1, x_2 \dots x_{T-1})$ tal que

$$\mathbf{y}_t = \mathbf{x}_{t-1}$$

isso é,

$$y_1 = x_0$$

$$y_2 = x_1$$

:

$$y_T = x_{T-1}$$

Podemos definir \mathbf{x}_t em função de \mathbf{y}_t como:

$$\mathbf{x}_t = L\mathbf{y}_t$$

tal que

$$\mathbf{y}_{t-1} = L\mathbf{y}_t$$

Observamos que o operador de atraso atrasa uma série temporal em uma unidade de tempo. Uma breve divagação matemática (??) permite definir o operador com propriedades muito semelhantes às de multiplicação dos números reais, como associatividade, comutatividade e distribuição. Para atrasar múltiplas unidades de tempo temos que:

$$L(L(\mathbf{y_t})) = L(\mathbf{y}_{t-1}) = \mathbf{y}_{t-2} = L^2 \mathbf{y}_t$$

de forma que

$$L^n\mathbf{y}=\mathbf{y}_{t-n}$$

Um uso importante do operador, decorrente de suas propriedades algébricas, é exemplificado na seguinte expansão

$$(aL^2 + bL^3)\mathbf{y}_t = a\mathbf{y}_{t-2} + b\mathbf{y}_{t-3}$$

Conhecimento do operador de atraso é importante para compreender a literatura de séries temporais e facilita comunicação objetiva de análises cotidianas. O presente trabalho usa do operador para descrever uma série de modelos.

Como nota final é importante mencionar que alguns livros (??) (??) usam a letra *B* para denotar o operador de atraso e que na maior parte dos recursos *online* o operador é referido por seu nome em inglês, *lag*.

A analogia entre o operador de atraso e a variável complexa $e^{-j\omega}=z^{-1}$ é clara, com a relevante diferença que z^{-1} atrasa um sinal em uma unidade de tempo se a operação for realizada no domínio z enquanto o operador de atraso atua diretamente no domínio do tempo. Essa característica permite que filtros com equações de recorrência complexas sejam representados de forma compacta no domínio do tempo por meio de polinômios de atraso.

Uma propriedade interessante decorrente da equivalência entre z^{-1} e L é que pode se pensar em um plano L cuja análise é igualmente informativa à do plano z, notando que o espaço é de certa forma invertido. Uma análise da posição dos polos de um sistema representado por meio de um polinômio em L conclui que o sistema é instável se tais polos estiverem fora do círculo unitário, contrário do que conhecemos do plano z.

Por fim vale mencionar que alguns autores como ($\ref{eq:composition}$) usam a notação q^{-1} para esse operador.

2.4 Operador de Diferença

O operador de diferenças ∇ ou Δ é o equivalente discreto da operação contínua de derivação e opera sob uma série temporal \mathbf{y}_t da seguinte forma:

$$\nabla \mathbf{y}_t = (1 - L)\mathbf{y}_t = \mathbf{y}_t - L\mathbf{y}_t = \mathbf{y}_t - \mathbf{y}_{t-1}$$

O operador possui propriedades de associatividade e distribuição, tal que

$$\nabla^2 \mathbf{y}_t = \nabla(\nabla(\mathbf{y}_t)) = \nabla(\mathbf{y}_t - \mathbf{y}_{t-1}) = \nabla \mathbf{y}_t - \nabla \mathbf{y}_{t-1} = \mathbf{y}_t - 2\mathbf{y}_{t-1} + \mathbf{y}_{t-2}$$

2.5 Tendência(Trend)

A variação do valor esperado de um processo estocástico é denominado tendência. A partir de uma série temporal definimos tendência como a variação de sua média amostral. A imagem ?? ilustra uma série com tendência linear. Observa-se que ao longo do tempo a média das observações cresce linearmente. Tendências de séries reais frequentemente seguem um perfil

logarítmico (??), como na figura ??. Nesse caso uma transformação exponencial da série, isso é, a aplicação de uma função exponencial a cada observação, tornaria a tendência linear.

Figure 2 – Série temporal com tendência linear

Figure 3 – Série temporal com tendência logarítmica

2.6 Sazonalidade

A variação periódica de média móvel das observações de uma série temporal é denominada sazonalidade. Em séries no contexto de finanças sazonalidade frequentemente segue ciclos de calendário como anual, mensal, semestral, etc. No contexto mais amplo de séries temporais sazonalidade apresenta período arbitrário, apesar da linguagem em torno dessa

propriedade estar muito associada aos períodos anteriormente mencionados.

Um exemplo de série temporal com sazonalidade é ilustrado na figura ??.

Figure 4 – Série temporal com sazonalidade senoidal de período arbitrário

Na presença de tendência sazonalidade pode ser considerada aditiva, se sua variação for constante em torno da tendência, e multiplicativa, se sua variação depender o valor da tendência. Exemplos de sazonalidade aditiva e multiplicativa são dados pelas figures ?? e ??, respectivamente. Discernir entre os dois tipos de sazonalidade é importante para modelagem.

Figure 5 – Série temporal com sazonalidade multiplicativa

2.7 Autocorrelação

TODO: later analogy with convolution would be cool TODO: list properties of autocorrelation function!

A função de autocorrelação é definida para processos estocásticos como a correlação de Pearson entre valores do processo em instantes de tempo diferentes. A função de autocovariância entre os instantes de tempo t_1 e t_2 é dada pela seguinte equação

$$gamma_{xx}(t_1, t_2) = E[(X_{t_1} - \mu_{t_1})(X_{t_2} - \mu_{t_2})]$$
(2.1)

Normalizando a autocovariância obtemos a autocorrelação

$$\rho_{xx}(t_1,t_2) = \frac{K_{xx}(t_1,t_2)}{\sigma_{t_1}\sigma_{t_2}}$$

Para processos estacionários (seção ??) a autocovariância, e consequentemente a autocorrelação, é função apenas do atraso $\tau = |t_1 - t_2|$. Temos então que

$$ho_{\scriptscriptstyle XX}(au) = rac{K_{\scriptscriptstyle XX}(au)}{\sigma_{t_1}\sigma_{t_2}}$$

Para uma série temporal, isso é, uma única realização de um processo estocástico, a função de autocorrelação estacionária (tipicamente chamada apenas de função de autocorrelação) pode ser definida diretamente a partir da definição de correlação amostral sob as seguintes premissas

- 1. O processo estocástico gerador da série temporal é estacionário
- 2. O número de observações N de y_t é suficientemente grande ($N \approx 100$)

resultando na equação $\ref{eq:control}$, onde o subscrito duplo é omitido. Note que o atraso é discreto, indicado por k.

$$\rho_{y}(k) = \frac{\sum_{t=1}^{N-k} (y_{t} - \bar{y})(y_{t+k} - \bar{y})}{\sum_{t=1}^{N} (y_{t} - \bar{y})^{2}}, \qquad k = 0, 1, 2, \dots$$
 (2.2)

Alguns comentários sobre a nomenclatura da função são apropriados. A literatura de engenharia tende a usar os termos autocovariância e autocorrelação de forma intercambiável para

designar a definição de autocovariância apresentada. A literatura estatística assume as definições abordadas acima, que serão usada no restante desse trabalho.

Além disso, a função de autocorrelação como apresentada pela equação ?? é definida para um processo estocástico não necessariamente estacionário, apesar do termo ser usado para descrever a equação ??. A aplicação da equação que assume estacionariedade em uma série não estacionária resulta em correlações informativas praticamente apenas disso. Uma modificação estratégica da função dada por ?? resulta na chamada função de autocorrelação instantânea (seção ??), que é usada para representar séries temporais não estacionárias.

2.7.1 Autocorrelação Parcial

É interessante mencionar a existência de autocorrelação parcial nessa seção juntamente de uma descrição em alto nível do que esse valor representa. Sua definição formal será apresentada na seção ??.

Autocorrelação parcial foi introduzida por Box e Jenkins em (??) como uma ferramenta auxiliar na identificação de modelos. O valor ϕ_{kk} é definido como a correlação parcial entre \mathbf{y}_t e \mathbf{y}_{t-k} , isso é, a correlação restante entre \mathbf{y}_t e \mathbf{y}_{t-k} após levar em consideração a contribuição de \mathbf{y}_t , \mathbf{y}_{t-1} ... \mathbf{y}_{t-k+1} .

2.7.2 Correlalograma

Um correlalograma é um gráfico de barras representativo da autocorrelação ou autocovariância em k amostras de uma série temporal (k = 0, 1, 2, ...), de forma que a primeira barra represente a autocorrelação entre y_t e si mesmo (sempre igual à 1), a segunda entre y_t e y_{t-1} , a terceira entre y_t e y_{t-2} , e assim por diante. O correlalograma da série visualizada pela figura ?? é ilustrado na figura ??.

A figura ?? informa um intervalo de relevância dado por um sombreamento vermelho. Qualquer valor de autocorrelação dentro desse intervalo é estatisticamente insignificante e pode ser considerado igual a zero.

O correlalograma é uma ferramenta indispensável em análise de séries temporais para tarefas como detecção de estacionariedade, identificação de sazonalidade, análise de resíduo, engenharia de características, escolha de modelo e identificação de ruído branco(seção ??), entre

Figure 6 – Visualização de correlalograma de série com tendência linear. Observe que as autocorrelações decaem lentamente ao decorrer dos atrasos, comportamento típico de tendências determinísticas.

Figure 7 – Visualização de correlalograma de série com sazonalidade. Observe que o padrão senoidal da série é reproduzido nas autocorrelações.

outros. No contexto de identificação de sistemas autocovariância e autocorrelação e portanto o correlalograma desempenham um importante papel na identificação de propriedades de sinais e sistemas imersos em ruído devido à robustez ao ruído da operação de correlação cruzada (??). A figura ?? apresenta um sinal imerso em ruído cuja natureza periódica subjacente se torna mais visível por meio de seu correlalograma.

É importante mencionar que o correlalograma de uma série com tendência determinística, como a da figura ??, apresenta o comportamento observado de autocorrelações altas com pouca atenuação ao longo dos atrasos. De forma análoga o correlalograma de uma série com sazonalidade apresenta periodicidade que reproduz seu padrão temporal, como ilustra a figura ??, correlalograma da série da figura ??. O primeiro correlalograma é informativo até certo ponto: informa simplesmente que a série apresenta tendência. Para analisar tais séries de forma mais

Figure 8 – Sinal periódico imerso em ruído e sua correspondente autocorrelação.

produtiva, a fim de elaborar um possível modelo, por exemplo, é importante que a série seja estacionária (seção ??). É inclusive afirmado em alguns textos da literatura estatística (??), que um correlalograma só faz que sentido se a série associada for estacionária, observação mais geral e rigorosa das restrições de uso da equação ??.

Na engenharia a análise do correlalograma de sinais não estacionários é utilizada para investigação da adequação de tempo de amostragem, onde uma autocovariância com valores lentamente decrescentes e um mínimo local indica que o sinal pode estar superamostrado, propriedade indesejável que pode resultar em problemas computacionais além de desperdício de memória.

TODO: add sampling analysis of silica series? later maybe

2.8 Estacionariedade

Um processo estocástico $\mathbf{X}(t)$ é considerado estacionário no sentido amplo se atender às seguintes três condições:

- 1. $E(\mathbf{X}(t)) = \mu$
- 2. $Var(\mathbf{X}(t)) = \sigma^2$
- 3. $Cov[\mathbf{X}(t), \mathbf{X}(t+\tau)] = \gamma(\tau)$

e estacionário no sentido restrito se sua distribuição de probabilidade P(x) for

idêntica para todos os instantes de tempo, isso é, $P(x)_{t_i} = P(x)_{t_j} \ \forall i, j \in \mathcal{T}$. Essa restrição é frequentemente comunicada como a necessidade de todos os momentos da distribuição P(x) serem idênticos e invariantes ao tempo. Nesse trabalho, assim como em grande parte da literatura estatística e de engenharia, o termo estacionário se refere a estacionariedade no sentido amplo. Isso é parcialmente justificado pelo fato de verificação de estacionariedade no sentido amplo tipicamente ser condição suficiente para assumir estacionariedade no sentido restrito, segundo (??).

A definição de estacionariedade apresentada descreve a família de sinais representada por um processo estocástico. Uma definição de estacionariedade para realizações únicas de um processo estocástico, isso é, séries temporais, demanda o estabelecimento de resquisitos amostrais. Podemos dizer que uma série temporal é estacionária se suas propriedades amostrais de esperança, variância e covariância sejam apropriadamente invariantes de forma que flutuações em seu valor sob diferentes janelas de tempo sejam explicáveis por variações resultantes de amostragem. Sob essa perspectiva podemos traduzir os requisitos de estacionariedade para uma série \mathbf{x}_t como a seguir

- 1. A média da série \mathbf{x}_t é constante ao longo do tempo
- 2. A variância da série \mathbf{x}_t é constante ao longo do tempo
- 3. A autocorrelação de \mathbf{x}_t depende apenas do atraso

Um bom exemplo de graus de estacionariedade em séries temporais dado por Athanasopoulos e Hyndman (??) é ilustrado pela figura ??. As séries das figures ??.a, ??.e e ??.i demonstram clara tendência, sendo portanto não estacionárias. As séries das figures ??.d, ??.h, ??.i são igualmente não estacionárias por apresentarem clara sazonalidade, enquanto a série da figura ??.g aparenta ser sazonal mas apresenta picos aperiódicos de intensidade muito distinta, sendo considerada estacionária pelos autores. O caso da série da figura ??.g é um complicado por aparentar também violar o requisito de variância constante. Para concluir assim como os autores que a série é estacionária é necessário mais do que uma investigação visual; o texto que discute a série leva em conta seu processo gerador (??).

As séries das figures ??.c e ??.f são aparentemente não estacionárias no intervalo observado por demonstrarem variação em sua média móvel mas podem ser um caso de raízes unitárias.

Por eliminação temos que apenas as séries ilustradas pelas figures ??.b e ??.g são estacionárias, o caso de ??.b contendo uma clara anomalia.

Figure 9 – Conjunto de séries demonstrando diferentes níveis de estacionariedade.

O exemplo de análise de estacionariedade da figura ?? demonstra a imprecisão da abordagem visual para essa tarefa. Torna-se necessário o estabelecimento de procedimentos mais objetivos para detecção de estacionariedade (seção ??).

2.8.1 Importância de Estacionariedade

Estacionariedade é uma propriedade desejável de se observar em uma série temporal para fins analíticos e de modelagem.

Há algumas formas de compreender como estacionariedade colabora para a modelagem bem sucedida de uma série temporal.

Podemos pensar na propriedade de estacionariedade como um tipo de estrutura de dependência. Se as amostras X_1, X_2, \dots, X_N de um conjunto \mathbf{X} forem independentes entre si temos formas interessantes de modelar a função geradora de \mathbf{X} como o teorema do limite central, lei dos grandes números, etc. Há apenas uma forma de um conjunto amostral ser independente mas muitas formas de ser dependente, tornando difícil o estabelecimento de recursos eficientes para modelagem geral de processes dependentes. Séries temporais sendo naturalmente observações de

processos dependentes (seção ??) é interessante definir estruturas de dependência que permitam o uso de tais recursos. Estacionariedade é uma estrutura de dependência que permite aplicar propriedades úteis de independência em séries temporais. Abordando a mesma ideia mais intuitivamente podemos pensar no seguinte exemplo: se um processo possui valor esperado, variância constante e autocorrelação invariante ao tempo podemos por meio da lei dos grandes números estimar seu valor esperado e variância com cada vez mais confiança a partir da média e variância amostral, respectivamente. O mesmo argumento intuitivo se estende analogamente para o caso de aprendizado de máquina, no qual por meio de teoria de aprendizado estatístico é possível argumentar que uma série estacionária é "mais fácil" de aprender.

De forma mais quantitativa o teorema de decomposição de Wold (??) conclui que qualquer série temporal estacionária pode ser representada pela seguinte combinação linear

$$\mathbf{y}_t = \sum_{j=0}^{\infty} b_j Z_{t-j} + \eta_t$$

No qual η representa uma série determinística e Z_t um processo puramente aleatório (seção \ref{seq}). O leitor reconhecerá parte da expressão acima como um processo $MA(\infty)$ (seção \ref{seq}). Esse resultado tem como consequência a importante conclusão que qualquer série estacionária é possivelmente aproximável por um modelo MA e portanto, via invertibilidade, modelos AR e ARMA (seção \ref{seq}).

Por fim estacionariedade permite o uso de uma série de modelos que serão discutidos na seção sobre modelos estacionários. Esses métodos são bem compreendidos e implementados, facilitando sua interpretação, uso e sustentação.

2.8.2 Categorias Básicas de Não Estacionariedade

Como extensão do argumento sobre estruturas de dependência na seção anterior podemos afirmar que, sendo estacionariedade um padrão de dependência, temos infinitas formas de não estacionariedade, retornando ao caso de dependência generalizada. É interessante identificar nesse universo de dependência padrões de séries não estacionárias que são facilmente transformadas em séries estacionárias.

Uma série temporal com presença de tendência determinística, como ilustrada na figura ??, pode ser representada pela seguinte expressão:

$$y_t = e_t + f(t) + \varepsilon_t$$
 onde $\varepsilon_t \sim \text{ i.i.d. } \mathcal{N}(0, \sigma^2)$

Na qual e_t representa uma série estacionária, f(t) uma função determinística do tempo e ε_t ruído branco(seção $\ref{f(t)}$). Nota-se que f(t) é uma função monotônica arbitrária tal que y_t seja uma série não estacionária. No caso da figura $\ref{f(t)}$ temos f(t) linear e na figura $\ref{f(t)}$ logarítmica. Uma série temporal demonstrando esse tipo de não estacionariedade é considerada **tendência-estacionária**, uma vez que simplesmente removendo a tendência f(t) temos estacionariedade. Isso pode ser feito de várias formas, talvez com maior simplicidade diferenciando a série. Métodos mais sofisticados incluem decomposição ETS (seção $\ref{f(t)}$) e regressão com finalidade de modelar f(t) de forma que o resíduo represente uma a série estacionária $e_t + \varepsilon_t$.

Figure 10 – Visualização de caminhada aleatória com $y_0 = 5$

Uma série com presença de tendência estocástica pode ser classificada de maneira semelhante. O exemplo mais simples de tal série é gerada por um passeio aleatório, definido pelo seguinte processo, visualizado pela figura ??:

$$y_t = y_{t-1} + \varepsilon_t$$
 onde $\varepsilon_t \sim \text{ i.i.d. } \mathcal{N}(0, \sigma^2)$

Por meio de um desenvolvimento recursivo do processo podemos escrever:

$$y_t = (y_{t-2} + \varepsilon_{t-1}) + \varepsilon_t$$

$$y_t = ((y_{t-3} + \varepsilon_{t-2}) + \varepsilon_{t-1}) + \varepsilon_t$$

:

$$y_t = \sum_{j=0}^{N-1} \varepsilon_{t-j} + y_0$$

Resultado a partir do qual a não estacionariedade de y_t se torna evidente, uma vez que

$$var(y_t) = \sigma^2 t$$

Além da covariância ser dependente do tempo.

Uma forma simples de tornar a série estacionária é diferenciá-la em primeira ordem, isso é, aplicar o operador de diferença primeira:

$$\nabla y_t = y_t - y_{t-1}$$

$$y_t - y_{t-1} = \varepsilon_t$$

$$\nabla y_t = \varepsilon_t$$

Sabemos pela seção ?? que ruído branco é um processo estacionário.

A caminhada aleatória é denominada uma série **diferença-estacionária** pelo fato da operação de diferença introduzir estacionariedade. Essa é uma forma tão comum de não estacionariedade que a ideia de "diferenciar uma série antes de fazer qualquer coisa" é proeminente entre profissionais de dados, apesar de que geralmente necessita-se apenas de estacionariedade Essa prática é parcialmente justificada considerando que a maior parte das séries temporais "reais" são não estacionárias e frequentemente diferencialmente estacionárias.

É igualmente possível que uma série diferença-estacionária seja estacionária em sua n-ésima diferença, tal que estacionariedade seja observada por uma operação de diferenças de ordem n. A ideia de tirar sucessivas diferenças até atingir estacionariedade é fundamental no método de Box-Jenkins, por exemplo.

Séries diferença-estacionárias apresentam raízes unitárias e os dois termos são frequentemente usados nos mesmos contextos.

Podemos resumir as definições das categorias de não estacionariedade abordadas nessa seção assim como suas implicações como segue:

- 1. Estacionariedade em Tendência: Uma série é considerada tendência-estacionária se apresentar uma tendência determinística. No caso de anomalias ou eventos de perturbação séries com esse tipo de tendência retornam ao valor da tendência ao longo do tempo, "esquecendo" o evento perturbador. Esse tipo de série se torna estacionária pela remoção da tendência determinística, processo realizado por meio de regressão da tendência, por diferenciação, por decomposição, etc.
- 2. **Estacionariedade Diferenciável**: Uma série é considerada diferença-estacionária se apresentar uma tendência estocástica. No caso de anomalias ou eventos de perturbação séries com esse tipo de tendência são irreversivelmente afetadas, "lembrando" do evento perturbador. Esse tipo de série se torna estacionária por diferenciação em ordem *n*. Possui raízes unitárias e é frequentemente discutida nessa linguagem.

2.9 Ruído Branco

TODO: inserir propriedades de ruído branco

Uma série temporal \mathbf{x}_t gerada por um processo $\mathbf{X}(t)$ é considerada ruído branco ou um processo puramente aleatório se atender às seguintes três condições:

- 1. $E(\mathbf{X}(t)) = 0$
- 2. $Var(\mathbf{X}(t)) = \sigma^2$
- 3. $Cov[\mathbf{X}(t), \mathbf{X}(t+\tau)] = 0$

Que podem ser interpretadas da seguinte forma

- 1. A média da série \mathbf{x}_t é nula ao longo do tempo
- 2. A variância da série \mathbf{x}_t é constante ao longo do tempo
- 3. Não há correlação entre as amostras de \mathbf{x}_t

Observa-se que ruído branco é um caso específico de estacionariedade, se diferenciando pela especificação do valor esperado e autocorrelação entre quaisquer amostras em zero. A compreensão da definição e capacidade de identificação de ruído branco é importante para

análise de resíduos, detalhado na seção ??.

3 TEORIA UNIVARIADA

Introdução

O seguinte capítulo tem por objetivo introduzir uma parte pequena mas representativa do corpo clássico de análise de séries temporais univariadas usando uma base de vocabulário e terminologia desenvolvida no capítulo 2.

3.1 Decomposição de Séries Temporais

Decomposição em séries temporais tipicamente descreve o processo de representação de uma série por uma combinação linear de três componentes: tendência, sazonalidade e resíduos. A decomposição de uma série y_t pode ser aditiva ou multiplicativa como expressada pelas equações $\ref{eq:total_t$

$$y_t = S_t + T_t + R_t \tag{3.1}$$

$$y_t = S_t \cdot T_t \cdot R_t \tag{3.2}$$

A escolha de decomposição aditiva ou multiplicativa deve ser feita de acordo com o tipo de sazonalidade (seção ??).

Como herança de econometria grande parte dos algoritmos clássicos de decomposição (X11 (??), SEATS (??, capítulo 5.2) e derivados) são baseados em período de sazonalidade anuais, semestrais, trimestrais e mensais (??). A incapacidade desses algoritmos de processar dados com período menor os torna pouco utilizáveis no contexto de sinais elétricos, por exemplo, cujas séries tipicamente são de período inferior a um dia, apresentando padrões sazonais com período semelhante.

Antes de prosseguir é interessante comentar sobre os principais objetivos de decomposição:

- 1. Análise: O processo de pensar sobre, elaborar, ajustar e observar resultados de decomposição são altamente informativos da natureza da série sob análise. A operação é frequentemente usada para fins de análise exploratória.
- 2. Indução de estacionariedade: Como tendência sempre é e sazonalidade pode ser um padrão cuja presença qualifica não estacionariedade ?? sua remoção pode tornar uma série "mais estacionária" ou pelo menos mais apropriada para modelagem por meio de modelos não estacionários.
- Detecção de Anomalias: Eventos anômalos são tipicamente dissociados de e ocultados por estruturas de tendência e sazonalidade. A remoção dessas estruturas tende a expor anomalias de forma mais detectável.

4. Modelagem e Previsão: A representação de uma série por meio de três componentes distintas é interessante para problemas de previsão pela possibilidade de desenvolver modelos e previsões para cada componente de acordo com suas propriedades. Os modelos independentes tendem a ser menos complexos, mais generalizáveis e mais robustos do que um modelo adequado para a série original, se existir.

A imagem ?? ilustra o resultado do processo de decomposição aditiva de uma serie temporal sintética da forma que é tipicamente apresentado: quatro linhas contendo a série original, componente de tendência, componente sazonal e componente residual em aparição decrescente. A operação descrita pela equação ?? equivale à constatação que a imagem da primeira linha corresponde à soma das imagens das três linhas inferiores.

TODO put add figure here

3.1.1 Modelagem de Tendência

Uma operação essencial em decomposição de séries temporais é a determinação de uma tendência subjacente dos dados. Os principais procedimentos para tal são abordados a seguir.

3.1.1.1 Média Móvel

Um filtro de média móvel de ordem *m* é tipicamente expressado como:

$$MA_{t_m} = \frac{1}{m} \sum_{i=-k}^{i=k} y_{t+i}$$
 (3.3)

A operação é visualizada pela figura ??.

Figure 11 – Visualização de aplicação de filtro média móvel com m=15

TODO: talk (and research about !) the use of kalman filter for moving average

3.1.1.2 Regressão Localizada/Filtro de Savitzky-Golay

Uma forma mais robusta e granular de modelagem de tendência é o algoritmo LOESS, baseado em regressão localizada e conhecido em linguagem de processamento de sinais como o filtro de Savitzky-Golay. Apesar do algoritmo ser simples seu desenvolvimento será omitido por ser matematicamente verboso. É importante que o leitor conheça a existência do método LOESS, sabendo que ele oferece uma alternativa mais precisa para modelagem de tendência do que média móvel, apesar de ser potencialmente mais computacionalmente complexo. Uma breve intuição sobre seu funcionamento é apresentada a seguir.

A ideia fundamental do algoritmo é repartir a série temporal em grupos de pontos menores, calculando uma regressão (tipicamente mas não necessariamente linear) nesses grupos menores de forma a construir uma curva linear por partes que aproxima a tendência da curva original. O tamanho dos grupos é arbitrário e tipicamente informado como uma fração do tamanho da série completa e os grupos em si são determinados pelos n pontos mais próximos a um elemento chamado de "ponto focal" que é incrementado a cada iteração. O valor dos incrementos dos pontos focais também é um parâmetro.

A figura ?? ilustra o resultado do algoritmo LOESS para a mesma série analisada pela figura ??. A figura ilustra curvas de tendência modeladas via LOESS para diferentes tamanhos de grupos. Os tamanhos são informados como porcentagem do comprimento total

do sinal. Observa-se que o uso de uma porcentagem menor do sinal aumenta a localidade da regressão tornando o ajuste da tendência mais sinuosa.

Figure 12 – Visualização de algoritmo LOESS

3.1.2 Modelagem de Sazonalidade(Ajuste de Sazonalidade)

A operação fundamental de decomposição é a modelagem ou ajuste de sazonalidade. Esse processo se preocupa em identificar estruturas fortemente periódicas em uma série temporal.

TODO: como fazer isso?

3.1.3 Decomposição Clássica (Aditiva)

TODO: ver se isso entra mesmo

O algoritmo de decomposição clássica é simples e capaz de identificar períodos arbitrários de sazonalidade. O procedimento é apresentado passo a passo acompanhando a decomposição de uma série temporal de corrente elétrica.

TODO: colocar a decomposição da corrente elétrica aqui ou na seção de aplicações

3.1.3.1 Passo 1

Identificar o período de sazonalidade que se deseja modelar.

O período *m* de sazonalidade corresponde à duração de um ciclo de um padrão periódico observável nos dados. A determinação da duração desse ciclo não é necessariamente trivial, especialmente tratando de séries de alta frequência, sendo interessante inclusive usar

métodos automáticos para determinação da distância entre amostras iniciais dos períodos de sazonalidade.

TODO: incluir algum método de detecção de período? seria bom!

3.1.3.2 Passo 2

Modelar tendência T_t por meio de média móvel

A tendência T_t é modelada calculando a média móvel de ordem m da série.

3.1.3.3 Passo 3

Remover tendência da série

A componente sem tendência é dada por $y_t - T_t$. A série resultante deve possuir média aproximadamente nula.

3.1.3.4 Passo 4

Estimar componente sazonal

A estimativa da componente sazonal é realizada calculando o "padrão sazonal médio" da série sem tendência. A série de tamanho n sem tendência é divida em s segmentos de m amostras, no qual $s=\frac{n}{m}$. Usando livremente a vírgula como símbolo para concatenação podemos enumerar os segmentos como

$$\chi_1, \chi_2, ... \chi_s$$

onde um segmento arbitrário

$$\chi_i = \chi_{i_1}, \chi_{i_1}...\chi_{i_m}$$

O padrão sazonal modelado S'_t corresponde ao segmento médio, isso é,

$$S'_t = \left(\frac{1}{s} \sum_{k=1}^{k=capcas} \chi_{1_k}\right), \left(\frac{1}{s} \sum_{k=1}^{k=s} \chi_{2_k}\right), \left(\frac{1}{s} \sum_{k=1}^{k=s} \chi_{3_k}\right) \dots \left(\frac{1}{s} \sum_{k=1}^{k=s} \chi_{m_k}\right)$$

A componente sazonal S_t é então dada pela concatenação de m cópias de S_t'

$$S_t = \overbrace{S'_t, S'_t, \dots, S'_t}^{s \text{ vezes}}$$

e posterior remoção de sua tendência.

3.1.3.5 Passo 5

Calcular a componente residual

Por fim calcula-se a componente residual R_t como

$$R_t = y_t - T_t - S_t$$

A série está enfim descomposta

$$y_t = R_t + T_t + S_t$$

3.1.4 Decomposição STL

TODO: será que isso entra?

3.1.5 Qualificação de tendência e sazonalidade

A presenta de tendência ou sazonalidade é tipicamente visível imediatamente. Dúvida sobre a presença ou não dessas propriedades pode surgir se o sinal estiver imerso em ruído. Se houver presença de raízes unitárias curtos intervalos de tempo podem ser ambíguos quanto ao determinismo de sua tendência, isso é, uma tendência estocástica pode ser confundida com tendência determinística. A figura ?? exemplifica um sinal com esse tipo de ambiguidade.

Nesses cenários é interessante detectar a presença desses componentes. TODO: como? testes estatisticos, análise de correlalograma

3.1.6 Quantificação de tendência e sazonalidade

3.1.6.1 Força

A decomposição de uma série temporal em componentes isolados de tendência, sazonalidade e resíduos permite que a intensidade de tendência e sazonalidade sejam quantificáveis de forma elegante. Essa intensidade de tendência ou sazonalidade é tipicamente chamada de força.

Para séries com forte tendência é esperado que a componente de tendência contenha considerável variância. Uma forma interessante de quantificar a força da tendência de uma série, proposta por Hyndman et. al. (??), parte da observação da variância adicional introduzida pela adição do termo de tendência ao residual:

$$\frac{Var(R_t)}{Var(T_t + R_t)}$$

Espera-se que essa razão seja pequena para séries com alta tendência, isso é, haja introdução de considerável variância pela adição da componente de tendência no denominador. Podemos então definir a força F_T da tendência de uma série como

$$F_T = max\left(0, 1 - \frac{Var(R_t)}{Var(T_t + R_t)}\right)$$

TODO: Formalize F_T é um número real limitado entre 0 e 1. TODO: Observe que $F_T \in real$ limitado entre 0 e 1.

De forma identicamente análoga podemos definir a força da sazonalidade de uma série como

$$F_S = max\left(0, 1 - \frac{Var(R_t)}{Var(S_t + R_t)}\right)$$

Essas medidas são úteis ao oferecer uma interface quantitativa aos atributos tipicamente qualitativos de tendência e sazonalidade. É importante deixar claro que essas medidas necessitam que a série seja decomposta em suas componentes de tendência e sazonalidade, possivelmente dificultando sua aplicação.

3.2 Modelos Estacionários

3.2.1 O Modelo Estacionário como um Filtro Linear

Segundo Box e Jenkins (??, capítulo 1.2.1) os modelos estacionários que serão abordados nas seguinte seções foram idealizados por (YULE, 1927) como filtros lineares que modelam a série temporal de interesse por meio do processamento de ruído branco. A modelagem apropriada do sinal em questão se resume então ao apropriado ajuste da função de transferência

 ψ desse filtro a partir dos dados observados, isso é, o apropriado posicionamento de zeros e/ou polos.

A função de transferência ψ é definida no domínio do tempo por meio do operador de atraso L ao invés de z^{-1} . Como no contexto de filtros digitais podemos pensar em um plano L, em analogia com o plano Z, e chegar às exatas mesmas conclusões sobre o efeito do posicionamento de polos e zeros na estabilidade (inclusive marginal), invertibilidade e resposta em frequência do filtro. A diferença relevante é que o operador de atraso no domínio Z, z^{-1} é definido de forma inversa à referência do plano. Essa inversão não acontece no plano L, levando a uma inversão das propriedades conhecidas.

É possível também descrever certos tipos de modelos-filtros como *Finite Impulse Response*(FIR) ou *Infinite Impulse Response*(IIR) dependendo a equação de recorrência, levando às propriedades conhecidas desses tipos de filtros.

A figura TODO torna clara a interpretação traçada. Para tornar o paralelo mais claro podemos inicialmente pensar em um sinal de entrada $\varepsilon[n]$ (ruído branco) transformado por uma resposta ao impulso h[n], causal de tamanho m, no sinal y[n] pela seguinte soma de convolução

$$y[n] = \sum_{k=0}^{m} h[n-k]\varepsilon[k] = \sum_{k=0}^{m} \varepsilon[n-k]h[k]$$

Introduzindo o operador de atraso L no somatório

$$y[n] = \sum_{k=0}^{m} L^{k} h[k] \varepsilon[n]$$

observamos que temos um polinômio em L cujos coeficientes correspondem aos da resposta ao impulso do filtro. Podemos então, chaveando para notação de séries temporais, reescrever a convolução como

$$\sum_{k=0}^{m} \psi(k) L^{k} \varepsilon_{t} = \sum_{k=0}^{m} \psi(k) \varepsilon_{t-k}$$

Expandindo as somas temos

$$y_t = \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + ... + \psi_m \varepsilon_{t-m}$$

$$y_t = \varepsilon_t + \psi_1 L \varepsilon_t + \psi_2 L^2 \varepsilon_t + ... + \psi_m L^m \varepsilon_t$$

$$y_t = \varepsilon_t (1 + \psi_1 L + \psi_2 L^2 + \dots + \psi L^m)$$

$$y_t = \psi(L)\varepsilon_t \tag{3.4}$$

onde $\psi(L)$ é um polinômio mônico em L.

Tikz Here

A interpretação de modelos estacionários como filtros tem suas limitações no que diz respeito às possibilidades de herança de conhecimento da área de processamento de sinais. Inicialmente podemos constatar que filtros lineares no sentido tradicional se propõem em alterar as propriedades de um sinal arbitrário que por si já contém informação. Isso leva à importância imediata da função de impulso unitário como base natural de sinais em tempo discreto e a uma enorme preocupação com a fase da resposta ao impulso do filtro devido à facilidade de distorção de fase indesejada do sinal processado. Para o modelo-filtro a função de impulso unitário não é tão importante porque esse filtro é sempre excitado pelo mesmo tipo de sinal que não possui nenhum tipo de estrutura a se preservar: ruído branco. A estrutura de fase desse sinal é menos relevante ainda por ser aleatória. Essas diferenças tornam muita da teoria de filtros inaplicável no contexto de séries temporais. Não há sentido de projetar um modelo filtro de fase linear generalizada, por exemplo, se não há o que preservar na fase do sinal de entrada e nenhuma preocupação com atraso de grupo.

Não obstante a interpretação de modelos estacionários como filtros lineares facilita a assimilação de propriedades desses modelos por meio da linguagem de processamento de sinais e nos leva a interessantes explorações de parte da teoria de filtros aplicada à modelagem de séries temporais.

Por fim podemos notar que nesse contexto o filtro tradicional representa uma função linear do processo estocástico de ruído branco $\varepsilon(t)$ para a saída Y(t), qualificando a saída em si como um processo estocástico. Conforme discutido na seção $\ref{eq:total_section}$ abordaremos as propriedades de realizações específicas do processo Y(t).

3.2.2 Modelo Linear Generalizado

É interessante expandir a discussão anterior para a definição de um modelo linear generalizado (GLM).

Tomando a equação ?? com $m \to \infty$ temos um modelo linear generalizado que corresponde ao processamento de ruído branco por um filtro linear com resposta ao impulso de duração infinita:

$$y_t = \psi(L)\varepsilon_t = \sum_{0}^{\infty} \psi_m \varepsilon_t \tag{3.5}$$

onde
$$\psi(L) = 1 + L + L^2 + L^3 ...$$

A literatura estatística frequentemente se refere ao vetor de ruído branco ε_t como "choques" ou "inovações". O teorema de Wold (??) estabelece que qualquer série estacionária tem uma representação dada pela equação ?? tal que $\sum_0^\infty \psi_k^2 > \infty$. Esse resultado é equivalente à constatação que qualquer sinal estacionário pode ser representado pelo processamento de ruído branco por um filtro com resposta ao impulso quadrado somável. Outro ponto de vista do teorema do Wold pode ser obtido analisando a variância do GLM.

$$\sigma_{GLM}^2 = E\left[\left(\sum_{k=0}^{\infty} \psi_k \varepsilon_{t-k}\right)^2\right] = E\left[\sum_{k=0}^{\infty} \psi_k^2 \varepsilon_{t-k}^2\right]$$

$$\sigma_{GLM}^2 = \sum_{k=0}^{\infty} \psi_k^2 E[\varepsilon_{t-k}^2]$$

$$\sigma_{GLM}^2 = \sigma_{\mathcal{E}_t}^2 \sum_{k=0}^\infty \psi_k^2$$

Que implica a necessidade de finitude de σ^2_{GLM} . Construindo um vetor ψ formado pelos coeficientes temos a variância representada pelo quadrado da norma desse vetor $\|\psi\|^2 = \sigma^2_{GLM}$.

3.2.2.1 Autocorrelação

A fim de definir a função de $\rho_{GLM}(\tau)$ de autocorrelação de um modelo linear generalizado definimos inicialmente sua covariância

$$\gamma_{GLM}(au) = E\left[\left(\sum_{k=0}^{\infty} \psi_k \varepsilon_{t-k}\right) \left(\sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i- au}\right)\right]$$

$$\gamma_{GLM}(au) = E\left[\sum_{k=0}^{\infty}\sum_{i=0}^{\infty}\psi_{k}arepsilon_{t-k}\psi_{i}arepsilon_{t-i- au}
ight]$$

onde temos que a esperança entre quaisquer $\varepsilon_t - a$ e $\varepsilon_t - b$ nula exceto para a = b, já que por definição ε_t é composto de variáveis aleatórias independentes. Estamos então interessados nos casos em que $t - k = t - i - \tau$ tal que $i = k - \tau$. Substituindo as variáveis temos

$$\gamma_{GLM}(au) = E\left[\sum_{k=0}^{\infty} \psi_k \varepsilon_{t-k} \psi_{k- au} \varepsilon_{t-k}\right]$$

$$\gamma_{GLM}(\tau) = E\left[\sum_{k=0}^{\infty} \psi_k \psi_{k-\tau} \varepsilon_{t-k}^2\right] = \sigma_{\varepsilon_t}^2 \sum_{k=0}^{\infty} \psi_k \psi_{k-\tau}$$

A autocorrelação é então dada por

$$\rho_{GLM}(\tau) = \sum_{k=0}^{\infty} \psi_k \psi_{k-\tau}$$

3.2.3 Modelo Média Móvel

Um processo $\mathbf{Y}(t,q)$ é considerado de média móvel de ordem q se uma realização y_t for definida pela equação $\ref{eq:total_t$

$$y_t = \varepsilon_t + \sum_{i=1}^{i=q} \beta_i \varepsilon_{t-i}$$
 (3.6)

Pela definição acima observamos que o modelo média móvel corresponde a um filtro FIR excitado por ruído branco.

Um processo de média móvel, como sugerido pelo nome, é análogo a uma média móvel de de observações anteriores de uma série temporal de ruído branco. Não é de fato uma média móvel porque os coeficientes não necessariamente se somam a um.

Podemos escrever a equação $\ref{eq:podemos}$ usando o operador de atraso por meio da equação $\ref{eq:podemos}$. Nessa equação observamos claramente como o modelo MA(q) é um caso particular do GLM.

$$y_t = \varepsilon_t (1 + \sum_{i=1}^{i=q} \beta_{t-i} L^i) = \varepsilon_t \phi(L)$$
(3.7)

A figura ?? ilustra o comportamento temporal de modelos MA para diferentes ordens.

Figure 13 – Visualização no tempo de processos média móvel de ordens diferentes.

Observamos que não temos clara identidade visual dos processos de média móvel representados devido à natureza estocástica do sinal.

3.2.3.1 Autocorrelação

Definimos inicialmente a função de autocorrelação para o processo média móvel

$$\gamma_{MA(q)}(au) = E\left[\left(arepsilon_t + \sum_{k=1}^m eta_k arepsilon_{t-k}
ight) \left(arepsilon_{t- au} + \sum_{i=1}^m eta_i arepsilon_{t-i- au}
ight)
ight]$$

observando que para $\tau>q$ temos $\gamma_{MA(q)}(\tau)=0$, concluímos de forma análoga à dedução da autocorrelação do processo linear generalizado a seguinte forma

TODO: make case

$$\gamma_{MA(q)}(au) = \sigma_{\mathcal{E}_t}^2 \sum_{k=1}^m eta_k eta_{k- au}$$

A variância é dada por $\gamma(0)$ tal que

$$\sigma_{MA(q)}^2 = \sigma_{\mathcal{E}_t}^2 \sum_{k=1}^m \beta k^2$$

Se definirmos o vetor θ a partir dos coeficientes do polinômio $\theta(L)$ temos $\sigma^2_{MA(q)}=\sigma^2_{\mathcal{E}_{\!\scriptscriptstyle k}}\|\theta\|^2.$

Temos autocorrelação definida então como

$$\rho_{MA(q)}(\tau) = \frac{\sum_{k=1}^{m} \beta_k \beta_{k-\tau}}{\|\boldsymbol{\theta}\|}$$

A função de autocorrelação de um processo média móvel exibe a interessante propriedade de "cortar" após o atraso q, isso é, demonstrar autocorrelação igual a zero após um atraso de número correspondente à ordem do processo. A autocorrelação amostral de uma série temporal gerada por um processo de média móvel tende a apresentar a mesma propriedade, apesar de ser perfeitamente possível da autocorrelação amostral de um processo MA(q) cair para zero *antes* do lag q (??).

A imagem $\ref{eq:continuous}$ demonstra a visualização dos correlalogramas correspondentes aos modelos ilustrados no tempo pela figura $\ref{eq:continuous}$. Observe que as autocorrelações são distintas de zero apenas para atrasos iguais ou inferiores à ordem q do processo.

Figure 14 – Visualização do correlalograma de processos média móvel de ordens diferentes.

Essa propriedade da função de autocorrelação possui consequências diretas para modelagem de séries temporais: é possível que uma série temporal estacionária com autocorrelações iguais a zero após atraso k seja satisfatoriamente aproximada por um modelo MA(k). A função de autocorrelação amostral é usada então como ferramenta de identificação da aplicabilidade e ordem de modelos MA(q).

3.2.4 Modelo Autoregressivo

Um processo $\mathbf{Y}(t,p)$ é considerado autoregressivo de ordem p se uma realização y_t ele for definido pela equação $\mathbf{??}$, onde ε_t representa um processo puramente aleatório. O processo é frequentemente chamado de AR(p).

$$y_t = \sum_{i=1}^{i=p} y_{t-i} \alpha_i + \varepsilon_t \tag{3.8}$$

Um processo autoregressivo de ordem p é caraterizado por uma dependência entre uma amostra de instante de tempo t e as amostras de instantes de tempo t-1, t-2, ..., t-p. Como sugerido pelo nome a equação de diferenças estabelece uma relação de regressão entre uma série temporal e suas versões atrasadas no tempo.

Podemos reescrever a equação $\ref{eq:continuous}$ por meio do operador de atraso resultando na equação. $\ref{eq:continuous}$. O polinômio $\alpha(L)$ é chamado de polinômio autoregressivo ou equação característica.

$$y_t = \frac{\varepsilon_t}{1 - \sum_{i=1}^{i=p} L^i \alpha_i}$$
 (3.9)

Como exemplo temos que um processo autoregressivo de segunda ordem, isso é, AR(1), é definido pela expressão a seguir.

$$y_t = \frac{\varepsilon_t}{(1 - L\alpha_1)} \tag{3.10}$$

O polinômio de operadores de atraso $1-L\alpha_1$ recebe o nome de equação característica. Ao expandir essa equação por divisão polinomial encontramos o conhecido desenvolvimento de um filtro IIR.

$$y_t = \sum_{k=0}^{\infty} \alpha^k \varepsilon_{t-k} \tag{3.11}$$

Observamos primeiramente que o parâmetro α deve ser tal que a soma do lado direito da equação $\ref{eq:convergente}$ seja convergente. Sabemos que essa condição corresponde à estabilidade do filtro e veremos que corresponde também à estacionariedade do sinal produzido pela filtragem. Concluímos que um sinal produzido por um processo autoregressivo estacionário pode ser

modelado pelo processamento de ruído branco por um filtro IIR estável. Essa forma da equação autoregressiva é claramente um caso específico do GLM.

A divisão polinomial entre a equação $\ref{eq:continuous}$ é generalizada como uma inversão do polinômio $\alpha(L)$, de forma que

$$y_t \alpha(L) = \varepsilon_t = y_t = \alpha^{-1}(L)\varepsilon_t$$

 $\alpha^{-1}(L)$ é bem definido sobre certas condições que serão discutidas na seção ??.

Uma visualização do comportamento temporal de processos autoregressivos é dada pela figura $\ref{eq:comportant}$. Observa-se que as séries temporais não exibem comportamento visivelmente distinguível no domínio do tempo, como no caso das séries MA(q).

Figure 15 – Visualização de processos autoregressivos de diferentes ordens no domínio do tempo.

3.2.4.1 Autocorrelação

Assumindo estacionariedade e multiplicando ambos os lados da equação $\ref{eq:porteq}$ podemos então calcular a esperança da expressão para obter a autocovariância do processo para $au \neq 0$

$$\gamma_{AR(p)}(\tau) = E\left[\left(\sum_{k=1}^{i=p} y_{t-k}y_{t-\tau}\alpha_k\right) + (y_{t-\tau}\varepsilon_t)\right]$$

$$\gamma_{AR(p)}(au) = E\left[\left(\sum_{k=1}^{i=p} y_{t-k}y_{t- au}\alpha_k\right)\right]$$

$$\gamma_{AR(p)}(au) = \sum_{k=1}^{i=p} \alpha_k \gamma_{AR(p)}(au - k)$$

Equação que igualmente satisfaz a autocorrelação ho(au) pela divisão de cada um dos termos acima por $\gamma_{AR(P)}(0)=\sigma_{AR(p)}^2.$

$$\rho_{AR(p)}(\tau) = \sum_{k=1}^{i=p} \alpha_k \rho_{AR(p)}(\tau - k), \tau > 0$$
(3.12)

Obtemos então uma autoregressão de ordem p nas autocovariâncas também. Para calcular a variância do processo multiplicamos os termos da equação $\ref{eq:processo}$ por $\ref{eq:proce$

$$\sigma_{AR(p)}^2 = \sigma_{\mathcal{E}_t}^2 + \sum_{k=1}^{i=p} \gamma_{AR(p)}(k)$$

$$\sigma_{AR(p)}^2 = \sigma_{arepsilon_t}^2 + \sigma_{AR(p)}^2 \sum_{k=1}^{i=p}
ho_{AR(p)}(k)$$

$$\sigma_{AR(p)}^2 - \left(\sigma_{AR(p)}^2 \sum_{k=1}^{i=p}
ho_{AR(p)}(k)
ight) = \sigma_{arepsilon_t}^2$$

$$\sigma_{AR(p)}^2 = rac{\sigma_{arepsilon_t}^2}{1 - \sum_{k=1}^{i=p}
ho_{AR(p)}(k)}$$

A variância é também uma função autoregressiva da autocorrelação.

Podemos reescrever a equação $\ref{eq:total_tota$

$$\alpha(L)\rho_{AR(p)}(\tau) = 0 \tag{3.13}$$

Expressando o polinômio em função de suas raízes G_i temos que

$$\alpha(L) = \prod_{k=1}^{p} (1 - G_i L)$$

É demonstrado em (??, capítulo 4) que a solução geral para a equação de ?? é dada por

$$\rho_{AR(p)}(\tau) = \sum_{k=1}^{p} A_k G_k^{\tau}$$
 (3.14)

Essa é a expressão conclusiva da autocorrelação de um processo autoregressivo de ordem p.

Denotemos as raízes reais de $\alpha(L)$ por R_h e as complexas conjugadas por C_j , C_k . Observamos que sob a forma $\ref{eq:contributed}$ as raízes reais R_h , assumindo que $|R_h| < 1$, contribuem para a autocorrelação como exponenciais amortecidas $A_h^{\tau}R_h$. Raízes complexas conjugadas C_j , C_k contribuem com UM SENOIDE AMORTECIDO. DEDUZIR COMO! TODO

$$A_i^{\tau}C_j + A_k^{\tau}C_k$$

Concluímos então que a autocorrelação de um processo AR(p) é uma combinação de N exponenciais e senóides amortecidos tal que $N \leq p$.

Para o caso específico de um processo estacionário AR(1) temos pela equação $\ref{eq:Relation}$ a seguinte relação de autocorrelação

$$\rho_{AR(1)}(\tau) = \alpha \rho_{AR(1)}(\tau - 1)$$

$$\rho_{AR(1)}(au) = lpha^{ au}$$

TODO: add AR figures here !!

3.2.4.2 Equações de Yule Walker

É possível estimar os coeficientes autoregressivos α desenvolvendo as equações $\ref{eq:comp}$. Com $\rho(-k)=\rho(k)$ e $\rho(0)=1$ temos

$$\rho(1) = \alpha_1 + \alpha_2 \rho(1) + \alpha_3 \rho(2) ... + \alpha_p \rho(p-1)$$

$$\rho(2) = \alpha_1 \rho(1) + \alpha_1 \rho(1) + \alpha_2 \rho(2) ... + \alpha_p \rho(p)$$

:

$$\rho(p) = \alpha_1 \rho(p-1) + \alpha_1 \rho(-1) + \alpha_2 \rho(-2) \dots + \alpha_p$$

Em forma matricial

$$\begin{bmatrix}
\rho(1) \\
\rho(2) \\
\vdots \\
\rho(p)
\end{bmatrix} = \begin{bmatrix}
1 & \rho(1) & \dots & \rho(p-1) \\
\rho(1) & 1 & \dots & \rho(p) \\
\vdots & \vdots & \ddots & \vdots \\
\rho(p-1) & \rho(p-2) & \dots & 1
\end{bmatrix} \begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_p
\end{bmatrix}$$
(3.15)

As equações $\ref{eq:content}$ são conhecidas como equações de Yule Walker, que permitem uma estimativa de coeficientes autoregressivos por meio de uma estimativa de coeficientes de autocorrelação. A forma mais intuitiva de estimar o vetor α é por meio da inversão da matriz de autocorrelações defasadas, mas outros algoritmos como o de Durbin-Levinson podem ser utilizados.

3.2.4.3 Autocorrelação Parcial

Como mencionado na seção $\ref{eq:total_to$

Autocorrelação parcial é formalmente definida para um processo autoregressivo partindo da equação $\ref{eq:partindo}$, onde tomando p=1 para um processo autoregressivo de ordem 1 temos que

$$\rho(\tau) = \alpha_1 \rho(\tau - 1)$$

Tomando au=p=1 e adicionando um subscrito adicional em lpha para indicar a ordem do processo autoregressivo temos

$$\alpha_{11} = \rho(1)$$

Para p = 2 temos

$$\rho(\tau) = \alpha_1 \rho(\tau - 1) + \alpha_2 \rho(\tau - 2)$$

Novamente tomando $\tau = p = 2$ obtemos

$$\rho(2) = \alpha_1, \rho(1) + \alpha_2, \rho(0)$$

Estamos como no caso de p=1 interessados no valor de α_{2_2} , isso é, $\alpha_{\tau_{\tau}}$ com $\tau=2$. Uma solução para esse valor em função das autocorrelações ρ , obtida por meio das equações de Yule Walker, é

$$\alpha_{2_2} = \frac{\rho(2) - \rho^2(1)}{1 - \rho^2(1)}$$

As autocorrelações parciais em função de τ são então dadas por sucessivos $\alpha_{\tau_{\tau}}$ para $\tau=1,2,3...$, isso é, o último coeficiente autoregressivo α_p de processos autoregressivos de ordem p crescentes.

A solução desses valores em função das autocorrelações de cada processo de ordem crescente, dada por (??), é generalizada como

$$lpha_{ au_{ au}} = rac{\|\mathbf{P}_{ au}^*\|}{\|\mathbf{P}_{ au}\|}$$

Onde a matriz ${\bf P}$ é a matriz de autocorrelações de ordem $p=\tau$ como definida na equação ${\bf ??}$ e a matriz ${\bf P}^*$ é obtida pela substituição da última coluna de ${\bf P}$ pelo vetor de autocorrelações ρ .

Essa definição de autocorrelação parcial é bem definida para processos autoregressivos e para esse tipo de processo seu valor claramente se torna igual a zero a partir do atraso $\tau = p$. Esse fato será retomado com mais atenção no capítulo sobre modelagem de processos estacionários.

A autocorrelação parcial amostral é calculada da mesma forma partindo da autocorrelação amostral como definida pela equação $\ref{eq:constraint}$. A autocorrelação parcial amostral por sua vez é definida para séries temporais arbitrárias. Nesse caso sucessivos modelos autoregressivos de ordem $p=\tau=1,2,3...$ são ajustados à série em questão e o último coeficiente de cada regressão é armazenado como a autocorrelação parcial amostral para o atraso τ .

Como estamos interessados em trabalhar com séries temporais a definição acima de autocorrelação parcial amostral é o suficiente para generalizar o conceito definido sobre processos autoregressivos para realizações únicas (séries temporais) de processos estocásticos arbitrários. Autocorrelação parcial de processos MA e ARMA serão abordadas em seções apropriadas.

3.2.5 ARMA

Processos ARMA, como sugerido pelo nome, são gerados pela sobreposição de processos AR e MA. Um processo $\mathbf{Y}(t)$ é considerado ARMA(p,q) se for dado pela equação ??

$$y_t = \varepsilon_t + \sum_{i=1}^{i=q} \beta_i \varepsilon_{t-i} + \sum_{i=1}^{i=p} y_{t-i} \alpha_i$$
(3.16)

Um processo ARMA(2,1) é portanto dado pela seguinte equação de recorrência.

$$y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \varepsilon_t + \beta_1 \varepsilon_{t-1}$$

Em analogia aos casos anteriores o processo pode ser escrito por meio do operador de atraso.

$$y_t(1-\alpha_1L-\alpha_2L^2)=\varepsilon_t(\beta_0+\beta_1L)$$

Podemos introduzir $\phi(L) = 1 - \alpha_1 L - \alpha_2 L$ e $\theta(L) = \beta_0 + \beta_1 L$ tal que:

$$y_t = \varepsilon_t \frac{\phi(L)}{\theta(L)} \tag{3.17}$$

A equação ?? é prontamente generalizada para corresponder à equação ?? estabelecendo:

$$\phi(L) = 1 - \alpha_1 L - \alpha_2 L^2 \dots - \alpha_p L^p$$

$$\theta(L) = 1 - \beta_1 L^1 \dots - \beta_q L^q$$

Observamos que a forma da equação $\ref{equation}$ é idêntica à de uma função de transferência, sendo definida no domínio do tempo sobre polinômios de L ao invés de no domínio Z sobre polinômios em z. As implicações do posicionamento das raízes dos polinômios numerador e denominador decorrem de maneira análoga.

Uma propriedade interessante de modelos ARMA é que processos estacionários frequentemente podem ser modelados por modelos ARMA com menos parâmetros que modelos AR ou MA.

3.2.6 Estabilidade e Invertibilidade

3.3 Raízes Unitárias

Como um processo ARMA é essencialmente resultante do processamento de ruído branco por um filtro linear com função de transferência $\frac{\theta(L)}{\phi(L)}$ sabemos que a posição das raízes dos polinômios $\theta(L)$ e $\phi(L)$ determina suas propriedades.

O posicionamento de raízes no círculo unitário é um caso interessante de analisar. Se algum dos polos função de transferência de um processo ARMA estiverem posicionados no círculo unitário diz-se que esse processo possui raízes unitárias. Esse termo tipicamente descreve o posicionamento dos polos e não dos zeros pelo maior efeito dessas raízes na dinâmica do sistema, mas essa seção inclui uma breve discussão sobre o efeito de zeros unitários também.

Antes de prosseguir um processo y_t ARMA(2,1) será estabelecido para exemplificar as seguintes discussões.

Diante da recorrência

$$y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \varepsilon_t + \beta_1 \varepsilon_{t-1}$$

temos

$$y_t = \frac{1 + \beta_1 L}{1 - \alpha_1 L - \alpha_2 L^2} \varepsilon_t$$

Uma realização desse processo para os parâmetros

$$\alpha_1 = -0.5, \alpha_2 = 0.25, \beta_1 = 0.8$$

é ilustrada pela figura $\ref{eq:continuous}$ e seu diagrama de polos e zeros no plano L pela figura $\ref{eq:continuous}$.

Figure 16 – Visualização de realização de processo ARMA(2, 1) no tempo

Figure 17 – Visualização de posicionamento de polos e zeros de processo ARMA(2, 1) em relação ao círculo unitário no plano L

3.3.1 Raízes Unitárias no Polinômio Autoregressivo

Inspecionemos qualitativamente a inserção presença de uma raiz unitária no polinômio autoregressivo do processo ARMA(2, 1) apresentado. Tomando z_t como o processo

$$z_t = \frac{y_t}{(1-L)} = \frac{1 + 0.8L}{(1 + 0.5L - 0.25L^2)(1-L)} \varepsilon_t$$

Temos a seguinte relação entre z_t e y_t

$$(1-L)z_t = y_t$$

$$z_t - z_{t-1} = y_t$$

$$\nabla z_t = y_t$$

Tal que z_t represente uma integração de y_t .

$$z_t = \nabla^{-1} y_t$$

Dizemos que nesse caso o processo z_t é integrado de ordem um, ou I(1), já que o diferenciando uma vez temos em um processo estacionário. Observamos imediatamente que o processo z_t não é estacionário.

Podemos definir um processo integrado de ordem d, I(d), como um processo cuja diferenciação em d vezes resulta em estacionariedade. Tal processo seria gerado a partir de y_t por meio de d integrações. Essa definição implica corretamente que um processo I(d), d>0, não é estacionário, já que a condição de estacionariadade para processos ARMA é pontualmente violada.

Analisando uma realização do processo z_t , por meio da figura $\ref{thm:processo}$, observamos um típico processo de raiz unitária, cuja não estacionariedade não é tão óbvia quanto nos casos de um filtro ARMA instável ou presença de tendência determinística. Processos com raíz unitária são diferença estacionários e possuem tendência determinística, como discutido na seção $\ref{thm:processo}$. Como esperado o diagrama de polos e zeros desse modelo inclui um polo adicional correspondente à raiz unitária.

Figure 18 – Visualização de realização de processo ARMA(2, 1) com introdução de raiz unitária no tempo

Figure 19 – Visualização de posicionamento de polos e zeros de processo ARMA(2, 1) com introdução de raiz unitária em relação ao círculo unitário no plano L

Processos de raízes unitárias são especialmente interessantes por sua capacidade de representar fenômenos do mundo real de forma eficiente. Logo serão reconhecimentos como processos da classe ARIMA.

No processamento de sinais determinísticos sistemas lineares com raiz unitária levam ao caso de estabilidade marginal, onde a resposta ao impulso do sistema é um sinal de potência ao invés de um sinal de energia. A ideia de uma resposta ao impulso de energia infinita sob presença de polos integradores manifesta-se no contexto de sinais aleatórios quando é dito que

processos de tendência estocástica (de estacionariedade diferenciável, como discutido na seção ??) são afetados irreversivelmente por eventos perturbadores. A "lembrança" desses eventos é justamente a resposta de duração infinita do evento perturbador, apropriadamente modelado por funções impulso ou degrau. Essa interpretação é importante no campo de análise de intervenção, que procura incorporar efeitos de eventos perturbadores reais em modelos de séries temporais.

3.3.2 Raízes Unitárias no Polinômio Média Móvel

A presença de uma raiz unitária no polinômio de média móvel de um filtro ARMA gera efeitos menos dramáticos em sua dinâmica. Antes de tudo nota-se que a introdução de raízes unitárias de médias móveis tornam um sistema não inversível, já que sua inversão tornaria essa raiz um polo.

As figuras $\ref{eq:thm.1}$ e $\ref{eq:thm.2}$ ilustram uma realização do processo y_t com adição de raiz unitária de média móvel e o diagrama de polos e zeros resultante, respectivamente.

TODO: check this @ later time !!

Observamos que a série com raiz de média móvel adicional aparenta ter uma distribuição de potência mais enviesada para altas frequências, de forma recíproca ao de raiz unitária autoregressiva, em que há introdução de componentes de baixa frequência. Isso será discutido apropriadamente no capítulo ??.

Figure 20 – Visualização de realização de processo ARMA(2, 1) derivado no tempo

Diagrama de Polos e Zeros em L de Processo ARMA(2, 1)

Figure 21 – Visualização de posicionamento de polos e zeros de processo ARMA(2, 1) derivado em relação ao círculo unitário no plano L

Tomando o processo w_t como

$$w_t = (1 - L)y_t = \frac{1 - 0.2L + L^2}{1 + 0.5L - 0.25L^2} \varepsilon_t$$

Temos $w_t = y_t - y_{t-1} = \nabla y_t$ tal que w_t seja a derivada de y_t . Vemos que ato de diferenciar uma série, em uma tentativa de introduzir estacionariedade por exemplo, corresponde à introdução de uma raiz unitária no polinômio de média móvel. Conseguimos dessa forma compreender a indução de estacionariedade em uma série não estacionária com raiz unitária autoregressiva por meio de sua derivação como a sobreposição de d zeros aos d polos integradores do processo original. Isso é ilustrado por uma comparação das figuras ?? e ??, onde vemos que a diferenciação da série z_t introduziria um zero unitário de forma a "cancelar" seu polo unitário.

A presença de raízes unitárias de média móvel podem indicar que a série foi diferenciada mais vezes que necessário ou que diferenciação é a operação inadequada para indução de estacionariedade, isso é, a série não é diferença estacionária.

Um exemplo é a série tendência estacionária m_t a seguir:

$$m_t = \mu + \eta t + \varepsilon_t$$

$$\nabla m_t = \varepsilon_t - \varepsilon_{t-1} + \eta$$

$$\nabla m_t = (1 - L)\varepsilon_t + \eta$$

Em ∇m_t temos uma raiz unitária no polinômio autoregressivo, resultando em uma série não inversível. A tendência determinística poderia ter sido removida por regressão resultando em um processo estacionário e inversível.

3.4 Modelo ARIMA

Também chamados de modelos ARMA Integrados modelos ARIMA são essencialmente modelos ARMA com tentativas de remoção de não estacionariedade. Assumindo que a série em questão seja diferença-estacionária o modelo ARIMA induz estacionariedade ajustando um modelo ARMA com raízes unitárias adicionais. A expectativa é que o processo original contenha d polos unitários que serão então sobrepostos por d zeros unitários, resultando em processo estacionário.

A distinção entre o modelo ARMA e ARIMA é a substituição de y_t por $\nabla^d y_t$.

Definindo $w_t = \nabla^d y_t$ para d = 0, 1, 2, ... temos a definição de um processo ARIMA(p, d, q) dada pela equação ??. Observe que a equação é idêntica à equação ?? com w_t ao invés de y_t e que a saída é w_t , demandando uma integração para previsão de y_t . O nome do modelo referencia essa operação de reconstrução de y_t .

$$w_t = \varepsilon_t + \sum_{i=1}^{i=q} \beta_i \varepsilon_{t-i} + \sum_{i=1}^{i=p} w_{t-i} \alpha_i$$
(3.18)

Podemos escrever um modelo ARIMA(p,d,q) por meio do operador de atrasos por meio da equação $\ref{eq:podemode}$, onde:

$$\phi(L) = 1 - \alpha_1 L - \alpha_2 L^2 \dots - \alpha_p L^p$$

$$\theta(L) = 1 - \beta_0 - \beta_1 L^1 \dots - \beta_q L^q$$

Nessa forma o paralelo entre modelos ARMA e ARIMA se torna mais claro.

$$y_t = \varepsilon_t \frac{\theta(L)}{\phi(L)} \frac{1}{(1-L)^d}$$
(3.19)

O modelo ARIMA segue a metologia Box-Jenkins de modelagem, assumindo diferença-estacionariedade e tentando induzir estacionariedade por meio de sucessivas operações de diferenças. Pela discussão acima é claro que um modelo ARIMA(p,0,q) corresponde a um modelo ARMA(p,q).

O leitar agora reconhece o sistema da figura ?? como ARIMA(2, 1, 1).

3.5 Modelos de Sazonalidade

3.5.1 Diferenciação Sazonal

O operador de diferença sazonal ∇_s estende o operador de diferenças para subtração entre elementos não adjacentes e age sob uma série temporal \mathbf{y}_t da seguinte forma:

$$\nabla \mathbf{y}_t = (1 - L^s)\mathbf{y}_t = \mathbf{y}_t - L^s\mathbf{y}_t = \mathbf{y}_t - \mathbf{y}_{t-s}$$

O operador mantém as propriedades da diferença simples e pode ser empregado em ordens elevadas da mesma forma:

$$\nabla_4^2 y_t = \nabla_4 \nabla_4 y_t = \nabla_4 (y_t - y_{t-4}) = y_t - 2y_{t-4} + y_{t-8}$$

3.5.2 SARIMA

O modelo ARIMA pode ser estendido de forma natural para acomodar padrões de sazonalidade. O modelo SARIMA (Seasonal ARIMA) parte da observação que saídas de sinais com alta sazonalidade podem possuem alta correlação com saídas anteriores em uma distância corresponde ao padrão de sazonalidade, como constatado no capítulo 1.

O modelo SARIMA então estabelece, em adição à operação de diferenciação do modelo ARIMA, uma operação de diferenciação sazonal ao definir a componente w_t da seguinte forma:

$$w_t = \nabla_s^D \nabla^d y_t$$

Como na definição de w_t para o modelo ARIMA temos uma diferenciação tradicional de ordem d seguida de uma diferenciação sazonal de período s e ordem D.

Como exemplo um w_t definido em função de d=1, D=1 e s=24 assume a seguinte forma.

$$w_t = \nabla^1_{12} \nabla^1 y_t = \nabla^1_2 (y_t - y_{t-1})$$

$$w_t = (y_t - y_{t-24}) - (y_{t-1} - y_{t-25})$$

Em seguida componentes autoregressivos e de média móvel são introduzidos com atrasos em múltiplos de s. O modelo final é descrito como $SARIMA(p,d,q)(P,D,Q)_s$, com P e D referenciando os componentes AR e MA sazonais. Para ilustrar melhor essa notação podemos analisar a expressão de um modelo específico para depois generalizar.

Um modelo $SARIMA(1,0,1)(2,1,1)_{12}$ é dado pela seguinte expressão.

$$w_t = \varepsilon_t + \overbrace{\alpha_1 w_{t-1}}^{p=1} + \overbrace{\alpha_2 w_{t-12}}^{p=1} + \overbrace{\alpha_3 w_{t-24}}^{p=2} + \overbrace{\beta_1 \varepsilon_{t-1}}^{q=1} + \overbrace{\beta_2 \varepsilon_{t-12}}^{Q=1}$$

A escrita desse modelo por meio do operador de atraso é mais clara.

$$w_t = \varepsilon_t \frac{\beta_1 L^1 + \beta_2 L^{12}}{(1 - \alpha_1 L^1 + \alpha_2 L^{12} + \alpha_3 L^{24})}$$

Podemos então generalizar o modelo na forma do operador de atraso por meio da equação ??.

$$w_t = \varepsilon_t \frac{\theta_q(L)\theta_Q(L)}{\phi_p(L)\phi_P(L^s)}$$
(3.20)

Com os polinômios de atraso definidos como nos casos anteriores.

A diferenciação sazonal inicial do modelo SARIMA é um dos exemplos mais simples de um passo essencial no processamento de séries com padrões sazonais: a modelagem do padrão

de sazonalidade em si, que de fato é um campo próprio com livros como (??). Diferenciação sazonal é limitada em sua capacidade de expressar múltiplos padrões de sazonalidade. Outra forma mais flexível de modelagem de sazonalidade será abordada na subseção seguinte.

3.5.3 Variáveis de Fourier

Versões sazonais de modelos ARIMA, como SARIMA, são pouco eficientes para modelar padrões sazonais com as seguintes características:

- Múltiplas periodicidades (??)
- Períodos múltiplos fracionários do tempo de amostragem (??).
- Curto tempo de amostragem (de um dia ou inferior) (??)
- Períodos maiores que algumas centenas do tempo de amostragem (??).

Sinais elétricos quase sempre possuem as duas últimas propriedades, tornando a exploração de métodos alternativos indispensável para este trabalho.

A inclusão de variáveis de Fourier como regressores é capaz de modelar padrões sazonais como esses de forma mais flexível. Essas variáveis exógenas aos ao modelo são somas de senos e cossenos, ambos reais, que oscilam em múltiplos de uma frequência fundamental definida como a frequência do padrão sazonal que se deseja modelar.

Para modelar um padrão de período m tomamos as variáveis dadas pela série F_t

$$F_{t} = \sum_{k=1}^{K} \left(\alpha_{k} \frac{sen(2\pi kt)}{m} + \beta_{k} \frac{cos(2\pi kt)}{m} \right)$$

onde harmônicos do período sazonal m são incluídos pelo incremento de k. Para incluir múltiplos períodos sazonais as variáveis são generalizadas para diferentes valores de m como a seguir:

$$F_t = \sum_{i=1}^{M} \sum_{k=1}^{K} \left(\alpha_k \frac{sen(2\pi kt)}{m_i} + \beta_k \frac{cos(2\pi kt)}{m_i} \right)$$

Temos alguns parâmetros não regressores: K, a ordem dos harmônicos, m_i , os períodos dos padrões que se deseja modelar. M é simplesmente o número de padrões. A determinação de m_i pode ser realizada por conhecimento a priori do fenômeno em questão ou métodos quantitativos como análise espectral dos dados amostrais. Já K é melhor determinado por métodos de seleção de modelo como AIC e BIC, discutidos na seção $\ref{eq:model}$?

A série exógena pode então ser incluída como informação auxiliar em um modelo ARIMA resultando em um modelo sazonal y_t em função de (p,d,q,m_i,k) :

$$y_t = \varepsilon_t \frac{\theta(L)}{\phi(L)} \frac{1}{(1-L)^d} + F_t$$

$$y_t = \varepsilon_t \frac{\theta(L)}{\phi(L)} \frac{1}{(1-L)^d} + \sum_{i=1}^M \sum_{k=1}^K \left(\alpha_k \frac{sen(2\pi kt)}{m_i} + \beta_k \frac{cos(2\pi kt)}{m_i} \right)$$

- 4 TEORIA DE VOLATILIDADE
- 4.1 Definições Adicionais
- 4.2 Modelo de Heterocedacidade Condicional Autoregressiva Generalizada
- 4.3 Modelo de Volatilidade Estocástica
- 4.4 Modelos Adicionais

5 TEORIA MULTIVARIADA

5.1 Definições Adicionais

Adicionar medidas de similaridade? Possivelmente em capitulo de analise moderna

- 5.1.1 Correlação Cruzada
- 5.2 Cointegração
- 5.3 Modelos em Espaço de Estados
- 5.4 Modelos Multivariados
- 5.5 Modelos de Função de Transferência
- 5.5.1 Modelos de Variáveis Exógenas

6 UNIVARIATE SPECTRAL THEORY

Introduction

The following chapter discusses the spectral representation of univariate time series, stationary and non-stationary, linear and non-linear. Some important aspects of multivariate spectral analysis are developed in chapter ??.

The development of a spectral representation for the theoretical infinite realization of a stationary stochastic process begins at the recognition of the impossibility of a Fourier for this type of signal followed by the introduction of the Wiener Khinchin theorem. After an interpretation of the resulting spectral representation (the power spectral density) some deterministic linear system theory leads to the idea of a shaping filter, which finally allows us to deduce a general expression for the power spectral density of ARMA processes.

We then proceed to linear but non-stationary analysis, in which the short time Fourier transform and its shortcomings are presented as motivation for the S-transform. Wavelet analysis is then introduced motivated by the demand for a mathematically cleaner version of the S-transform, leading to the concepts of continuous and discrete wavelet transforms. On the topic of resolution the possibility of an optimized time-frequency resolution is suggested.

Non-linear analysis is constructed by the introduction of the instantaneous autocorrelation function and subsequent Cohen's class of distributions. Some main distributions from Cohens class are discussed along with their limitations, concluding our univariate spectral exploration.

6.1 Stationary Analysis

Wide sense stationary signals are, by definition (section ??), power signals. Since the Fourier transform of a signal is well defined only if is has finite energy stationary signals do not have a Fourier representation in the traditional sense, the exception being quasi-periodic signals which can be represented by a Fourier series. In order to develop a spectral representation of stationary time series we must define the concept of a power spectral density and conclude that this function is proportional to the square magnitude of a hypothetical Fourier transform.

6.1.0.1 Power Spectral Density

We begin by stating Parseval's theorem, in which $F\{\}$ represents the Fourier transform.

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F\{x(t)\}(\omega)|^2 d\omega$$

Extending this definition to signal power gives us

$$P = \lim_{T \to \infty} \frac{1}{2T} \frac{1}{2\pi} \int_{-T}^{T} |F\{x(t)\}(\omega)|^2 d\omega$$

Note that even though $F\{x(t)\}$ is not well defined here the above relations still hold if $|F\{x(t)\}|^2$ is defined in a different manner, which will be done shortly.

The signal power can be rewritten denoting the Fourier transform of x(t) by $X(\omega)$ as

$$P = \lim_{T \to \infty} \frac{1}{2T} \frac{1}{2\pi} \int_{-T}^{T} |X(\omega)|^2 d\omega$$

Where $\lim_{T\to\infty} \frac{1}{2\pi} \frac{1}{2T} |X(\omega)|$ is recognized as a density function. The power spectral density function is finally defined as

$$S_{x}(\boldsymbol{\omega}) = \lim_{T \to \infty} \frac{1}{2\pi} \frac{1}{2T} |X(\boldsymbol{\omega})|$$

This function's name is pretty explanatory of its interpretation: $S_x(\omega)$ represents the contribution of x(t)s frequency components in $\omega + d\omega$ to the overall signal power. As mentioned, for this function to make any sense we must define $|X(\omega)|^2$, which will be done presently

6.1.1 Wiener-Khinchin Theorem

The Wiener-Khinchin theorem can be developed as follows.

$$|X(\omega)^{2}| = X(\omega)X^{*}(\omega) = F(F^{-1}(X(\omega)) * (F^{-1}(X^{*}(\omega))) = F(x(t) * x^{*}(-t)) = F(x(t) * x(-t))$$

Examining the right-most part of this equality we observe that the function which is being Fourier-transformed corresponds to the convolution of x(t) with a mirrored version

of itself. This is precisely the definition of autocorrelation. Assuming ergodicity we can now express the squared magnitude of the Fourier transform of x(t) as the Fourier transform of is autocorrelation function.

$$|X(\boldsymbol{\omega})_T|^2 = \frac{1}{2\pi} \int_{-T}^T \boldsymbol{\rho}(t) e^{-j\omega t} dt$$

This results is known as the Wiener-Khinchin theorem and it allows for a well-defined power density spectrum for stochastic signals.

Note that since the autocorrelation of a signal is even its Fourier transform is real-valued, which is consistent with our notion of a squared magnitude.

6.1.2 Spectrum of ARMA processes

By taking the square magnitude Z transform of the general ARMA recurrence relationship (??) we obtain the transfer function

$$H(z) = \frac{1 + \sum_{i}^{q} b_{k} z^{-k}}{1 + \sum_{i}^{q} a_{k} z^{-k}}$$

which is excited by white noise to generate a realization of and ARMA process. We can now express the power spectral density of an ARMA process as follows

$$S_{ARMA}(\omega) = |H(z)|^2 S_{\varepsilon}$$

$$S_{ARMA}(\omega) = \frac{\sigma^2 |1 + \sum_{k=1}^q b_k e^{-j\omega k}|^2}{2\pi |1 + \sum_{k=1}^p a_k e^{-j\omega k}|^2}$$

This definition can be used as a means of parametric spectral estimation: the parameters are estimated in the time domain and used by the relationship above to estimate the spectrum.

We will now visualize the spectra of some ARMA processes.

Figure 22 – Spectrum of an MA(1) process with $\beta_1 = -0.5$

6.1.2.2 AR(1)

Figure 23 – Spectrum of an AR(1) process with $\alpha_1=0.8\,$

Figure 24 – Spectrum of an AR(1) process with $\alpha_{\rm l}=-0.8$

6.1.2.3 AR(2)

Figure 25 – Spectrum of an AR(1) process with $\alpha_1=0.5$ and $\alpha_2=-0.25$

Figure 26 – Spectrum of an ARMA(4, 3) process

6.1.3 Effect of Unit Roots on ARMA Spectra

6.2 Linear Non-Stationary Analysis

From the previous section we can conclude that if a time series is stationary its spectral representation via power spectral density is uniquely determined by the Fourier transform of its autocorrelation function. The natural extension for a spectral representation of non-stationary processes is a time-varying power spectral density since its autocorrelation function is also time-varying.

The idea of a time-varying spectral representation gives rise to the so called time-frequency analysis methods. We initially explore methods that maintain linearity.

6.2.1 Short Time Fourier Transform

The short time Fourier transform is the most intuitive approach to a proposal of time frequency representation.

6.2.2 Wavelet Transform

6.2.2.1 Continuous

6.2.2.2 *Discrete*

6.3 Non-Linear Representations

There is, indeed, a way to maximize the time-frequency resolution trade-off inherent to time-frequency representations (TFR)(??). This is done by the introduction of non linearity through the Fourier transform of the instantaneous autocorrelation function. As will be seen presence of non linearity results in cross terms that limit the quality of the representation. Attempts to dampen these cross terms lead to the more general Cohen's class of distributions.

6.3.1 Instantaneous autocorrelation function

The instantaneous autocorrelation function is actually just the autocorrelation function of a non stationary signal written in a specific format. Interestingly the term autocorrelation function has become strongly understood as a function of sample lag τ , which is the case for stationary signals, instead of a function of t_1 and t_2 . We initially rewrite the general autocorrelation function R_{xx} of a signal x(t)

$$R_{xx}(t_1,t_2) = E[x(t_1)x(t_2)]$$

We can also write $R_x x$ as a function of a single moment t and a lag τ

$$R_x(t,\tau) = E[x(t)x(t-\tau)]$$

Which is slightly more natural for computations. Note that if x(t) is stationary the dependence on time is removed because R_{xx} has the same value for all t.

A small adjustment in notation leads to

$$\mathscr{R}_{x}(t,\tau) = E\left[x\left(t - \frac{\tau}{2}\right)x\left(t + \frac{\tau}{2}\right)\right]$$

With a new symbol to indicate that we have finally arrived at the instantaneous autocorrelation function \mathcal{R}_{xx} .

A non stationary TFR is now natural. Since the Wiener-Khinchin theorem states that the spectrum of a stationary signal is the Fourier transform of its autocorrelation function we can in an analogous manner assume that a spectral representation of a non stationary process will be given by the Fourier transform along the τ axis of the instantaneous autocorrelation function. This leads to the Wigner-Ville distribution.

6.3.2 Wigner-Ville Distribution

We define the Wigner-Ville distribution (WVD) as

$$\mathscr{W}_{\scriptscriptstyle X}(t,f) = \int_{-\infty}^{\infty} \mathscr{R}_{\scriptscriptstyle X}(t, au) e^{-j\omega au} d au$$

$$\mathscr{W}_{x}(t,f) = \int_{-\infty}^{\infty} x\left(t - \frac{\tau}{2}\right) x\left(t + \frac{\tau}{2}\right) e^{-j\omega\tau} d\tau$$

This natural representation can be thought of as an instantaneous power density spectrum. It is known that the WVD optimizes the time-frequency resolution trade-off(??) which is exactly our goal in the development of more elaborated TFRs. We will now see that this is not without its problems.

6.3.2.1 Cross-terms

By construction the Wigner-Ville distribution is a quadratic representation. By the quadratic superposition principle (??) we know that if $x(t) = \mu x_1(t) + \lambda x_2(t)$ the WVD representation of x(t) will be given by

$$W_x = \mu^2 W_{x_1} + \lambda^2 W_{x_2} + 2(\lambda \mu)^2 (W_{x_1, x_2})$$

Where $\mathcal{W}_{z,y}$ represents the cross-WVD from z to y. Since any real signal of relevant complexity is a linear combination of the cos(t) sin(t) basis we can expect a considerable introduction of unwanted information from the cross-WVD components, referred to as cross-terms. This is the infamous cross-terms problem attributed to the WVD and is one of the reasons

that despite its precision in time and frequency resolution it is not an ideal choice for the TFR for most signals.

The cross-terms are known to exhibit high frequency patterns (??), leading to the idea that the WVD could be filtered in order to be more representative of its auto-terms. The different ways in which it is possible and useful to filter the WVD generates what is known as the Cohen's class of distributions.

6.3.3 Smoothed Pseudo Wigner Ville Distributions

Most members of Cohen's class of distributions are essentially filtered versions of the WVD (). A particularly useful case is known as the Smoothed Pseudo Wigner Ville Distribution (SPWVD)

$$SPWVD(t,f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_t(t-\tau)h_f(f-\phi)d\tau d\phi$$

in which h_t denotes the filter applied along time and h_f along frequency.

If the filters are well designed, which is a data-driven process in some cases (), cross-term suppression is sufficiently successful such that the use of the SPWVD over simpler non-stationary TFR is justified.

7 TESTES ESTATÍSTICOS

7.1 Considerações sobre testes em séries temporais

7.2 Teste de *Dickey-Fuller*

Os testes de *Dickey-Fuller* testam a hipótese nula de presença de raízes unitárias no processo gerador de uma série temporal com a hipótese alternativa de estacionariedade.

O teste mais simples de *Dickey-Fuller* assume que o processo gerador da série temporal em questão é dado pela equação $\ref{eq:control}$, na qual ε é ruído branco.

$$y_t = \phi y_{t-1} + \varepsilon_t \tag{7.1}$$

A hipótese nula do teste é a presença de raízes unitárias em \mathbf{y}_t , isso é, $\phi = 1$, e a hipótese alternativa é $\phi < 1$, correspondente à estacionariedade.

$$\begin{cases} H_0: \phi=1, \text{não estacionariedade (raízes unitárias, possível diferença-estacionariedade)} \\ H_1: \phi<1, \text{estacionariedade} \end{cases}$$

Em seguida Ly_t é subtraído de ambos os lados da equação $\ref{eq:control}$, resultando no desenvolvimento a seguir:

$$y_t - y_{t-1} = \phi y_{t-1} - y_{t-1} + \varepsilon$$

$$\nabla y_t = (\phi - 1)y_{t-1} + \varepsilon$$

$$\nabla y_t = \delta y_t + \varepsilon$$

As hipóteses do teste são agora reformuladas para as seguintes

$$\begin{cases} H_0: \delta=0, \text{n\~ao} \text{ estacionariedade (ra\'izes unit\'arias, diferença-estacionariedade)} \\ H_1: \delta<0, \text{estacionariedade} \end{cases}$$

TODO: definir estatística de teste

A estatística de teste é computada e comparada com um valor crítico proveniente da distribuição de *Dickey-Fuller* (geralmente sob p=0.5) para rejeição ou não da hipótese nula.

O modelo da série temporal, dado explicitamente pela equação $\ref{eq:constante}$, pode ser alterado para testar raízes unitárias com constante e com constante e tendência determinística no tempo por meio das equações $\ref{eq:constante}$ e $\ref{eq:constante}$, respectivamente. Note que ambas as equações são apresentadas em função de δ . É mais comum testar por apenas raízes unitárias, uma vez que uma análise subjetiva visual, por correlalograma ou decomposição juntamente de remoção de tendência ou sazonalidade é tipicamente realizada antes de um teste estatístico de estacionariedade.

$$\nabla y_t = \delta y_{t-1} + u_t + a_0 \tag{7.2}$$

$$\nabla y_t = \delta y_{t-1} + u_t + a_0 + a_1 t \tag{7.3}$$

O teste aumentado de *Dickey-Fuller*(ADF) modela o processo de forma mais geral, incluindo na equação ?? termos representativos de processos estacionários arbitrários. O teste aumentado é projetado para remover autocorrelação do processo de validação de hipótese. De forma identicamente análoga ao teste de DF temos expansões do ADF para incluir constantes e tendências como nas equações ?? e ?? apesar de que, como no teste de DF, essas variações são pouco usadas. A estatística de teste do ADF é negativa, isso é, quanto menor seu valor maior a rejeição da hipótese nula de não estacionariedade (maior certeza de estacionariedade).

Como em qualquer teste de hipótese um valor p maior que 0.05 indica falha em rejeitar a hipótese nula, nesse caso correspondendo à impossibilidade de constatar estacionariedade. Um valor p menor ou igual a 0.05 indica rejeição da hipótese nula, correspondendo à conclusão que a série sob análise é estacionária.

Na prática o teste mais usado é o ADF que é uma simples extensão mais robusta do teste de *Dickey-Fuller*. Implementações eficiente e populares existem para R e Python.

7.2.1 Teste Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

TODO: check this

O teste KPSS desempenha uma função semelhante ao ADF com a relevante diferença de inerentemente modelar uma tendência linear no tempo por meio da equação ??. Seu desen-

volvimento matemático é análogo porém mais trabalhoso que o caso do ADF e será portanto omitido.

$$y_t = \phi y_{t-1} + \varepsilon_t + \beta t \tag{7.4}$$

Com ε_t representando ruído branco. O teste em seguida define as seguintes hipóteses:

 $\begin{cases} H_0: \text{a série apresenta tendência-estacionariedade} \\ H_1: \text{a série apresenta raízes unitárias} \end{cases}$

Como em qualquer teste de hipótese um valor p maior que 0.05 indica falha em rejeitar a hipótese nula, nesse caso correspondendo à impossibilidade de constatar que a série não apresenta tendência estacionariedade, boa evidência de que a série é tendência-estacionária. Um valor p menor ou igual a 0.05 indica rejeição da hipótese nula, correspondendo à conclusão que a série sob análise possui raízes unitárias e é portanto não estacionária.

Observe que há uma diferença crítica: a alternativa nula não postula não estacionariedade, como no caso do ADF, mas sim tendência-estacionariedade (seção ??) decorrente diretamente da inclusão de tendência linear no modelo da equação ??. A diferença principal da alteração da hipótese nula é que o KPSS é usado para investigar presença de estacionariedade sob uma tendência determinística (tendência-estacionariedade) e o ADF (tipicamente) de estacionariedade propriamente dita. O KPSS é bem implementado em R e Python.

- 7.3 Causalidade de Granger
- 7.4 Box-Pierce
- 7.5 Ljung-Box-Pierce
- 7.6 Convergence Cross Mapping
- 7.7 Johansen
- 7.8 Considerações sobre testes em séries temporais
- 7.9 Teste de Dickey-Fuller

Os testes de *Dickey-Fuller* testam a hipótese nula de presença de raízes unitárias no processo gerador de uma série temporal com a hipótese alternativa de estacionariedade.

O teste mais simples de *Dickey-Fuller* assume que o processo gerador da série temporal em questão é dado pela equação $\ref{eq:control}$, na qual ε é ruído branco.

$$y_t = \phi y_{t-1} + \varepsilon_t \tag{7.5}$$

A hipótese nula do teste é a presença de raízes unitárias em \mathbf{y}_t , isso é, $\phi = 1$, e a hipótese alternativa é $\phi < 1$, correspondente à estacionariedade.

$$\begin{cases} H_0: \phi=1, \text{n\~ao} \text{ estacionariedade (ra\'izes unit\'arias, poss\'ivel diferença-estacionariedade)} \\ H_1: \phi<1, \text{estacionariedade} \end{cases}$$

Em seguida Ly_t é subtraído de ambos os lados da equação $\ref{eq:control}$, resultando no desenvolvimento a seguir:

$$y_t - y_{t-1} = \phi y_{t-1} - y_{t-1} + \varepsilon$$

$$\nabla y_t = (\phi - 1)y_{t-1} + \varepsilon$$

$$\nabla y_t = \delta y_t + \varepsilon$$

As hipóteses do teste são agora reformuladas para as seguintes

$$\begin{cases} H_0: \delta=0, \text{n\~ao} \text{ estacionariedade (ra\'izes unit\'arias, diferença-estacionariedade)} \\ H_1: \delta<0, \text{estacionariedade} \end{cases}$$

TODO: definir estatística de teste

A estatística de teste é computada e comparada com um valor crítico proveniente da distribuição de *Dickey-Fuller* (geralmente sob p=0.5) para rejeição ou não da hipótese nula.

O modelo da série temporal, dado explicitamente pela equação $\ref{eq:constante}$, pode ser alterado para testar raízes unitárias com constante e com constante e tendência determinística no tempo por meio das equações $\ref{eq:constante}$ e $\ref{eq:constante}$, respectivamente. Note que ambas as equações são apresentadas em função de δ . É mais comum testar por apenas raízes unitárias, uma vez que uma análise subjetiva visual, por correlalograma ou decomposição juntamente de remoção de tendência ou sazonalidade é tipicamente realizada antes de um teste estatístico de estacionariedade.

$$\nabla y_t = \delta y_{t-1} + u_t + a_0 \tag{7.6}$$

$$\nabla y_t = \delta y_{t-1} + u_t + a_0 + a_1 t \tag{7.7}$$

O teste aumentado de *Dickey-Fuller*(ADF) modela o processo de forma mais geral, incluindo na equação ?? termos representativos de processos estacionários arbitrários. O teste aumentado é projetado para remover autocorrelação do processo de validação de hipótese. De forma identicamente análoga ao teste de DF temos expansões do ADF para incluir constantes e tendências como nas equações ?? e ?? apesar de que, como no teste de DF, essas variações são pouco usadas. A estatística de teste do ADF é negativa, isso é, quanto menor seu valor maior a rejeição da hipótese nula de não estacionariedade (maior certeza de estacionariedade).

Como em qualquer teste de hipótese um valor p maior que 0.05 indica falha em rejeitar a hipótese nula, nesse caso correspondendo à impossibilidade de constatar estacionariedade. Um valor p menor ou igual a 0.05 indica rejeição da hipótese nula, correspondendo à conclusão que a série sob análise é estacionária.

Na prática o teste mais usado é o ADF que é uma simples extensão mais robusta do teste de *Dickey-Fuller*. Implementações eficiente e populares existem para R e Python.

7.9.1 Teste Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

TODO: check this

O teste KPSS desempenha uma função semelhante ao ADF com a relevante diferença de inerentemente modelar uma tendência linear no tempo por meio da equação ??. Seu desenvolvimento matemático é análogo porém mais trabalhoso que o caso do ADF e será portanto omitido.

$$y_t = \phi y_{t-1} + \varepsilon_t + \beta t \tag{7.8}$$

Com ε_t representando ruído branco. O teste em seguida define as seguintes hipóteses:

 $\begin{cases} H_0: \text{a série apresenta tendência-estacionariedade} \\ H_1: \text{a série apresenta raízes unitárias} \end{cases}$

Como em qualquer teste de hipótese um valor p maior que 0.05 indica falha em rejeitar a hipótese nula, nesse caso correspondendo à impossibilidade de constatar que a série não apresenta tendência estacionariedade, boa evidência de que a série é tendência-estacionária. Um valor p menor ou igual a 0.05 indica rejeição da hipótese nula, correspondendo à conclusão que a série sob análise possui raízes unitárias e é portanto não estacionária.

Observe que há uma diferença crítica: a alternativa nula não postula não estacionariedade, como no caso do ADF, mas sim tendência-estacionariedade (seção ??) decorrente diretamente da inclusão de tendência linear no modelo da equação ??. A diferença principal da alteração da hipótese nula é que o KPSS é usado para investigar presença de estacionariedade sob uma tendência determinística (tendência-estacionariedade) e o ADF (tipicamente) de estacionariedade propriamente dita. O KPSS é bem implementado em R e Python.

- 7.10 Causalidade de Granger
- 7.11 Box-Pierce
- 7.12 Ljung-Box-Pierce
- 7.13 Convergence Cross Mapping
- 7.14 Johansen

- 8 MODELAGEM
- 8.1 Identificação
- 8.2 Determinação de Parâmetros
- 8.3 Validação
- 8.3.1 Análise de Resíduos
- 8.3.2 Validação Cruzada
- 8.4 Operacionalização

9 MODELOS NÃO LINEARES

10 ANÁLISE DE SÉRIES NÃO ESTACIONÁRIAS

- 10.1 Definições Adicionais
- 10.1.1 Autocorrelação Instantânea
- 10.2 Indução de Estacionariedade

11 TÓPICOS ADICIONAIS

12 APLICAÇÕES

13 CONCLUSÕES E TRABALHOS FUTUROS

Conclusao

- 13.1 Contribuições do Trabalho
- 13.2 Limitações
- 13.3 Trabalhos Futuros

APPENDIX A – EXEMPLO DE APÊNDICE

Um apêndice é um documento elaborado pelo autor, diferentemente do anexo. Geralmente, se coloca como apêndice, questionários, códigos de programação, tabelas que tomariam muito espaço no meio do trabalho. Artigos, resumos ou qualquer publicação relacionada ao trabalho podem ser utilizados como apêndice.

ANNEX A - EXEMPLO DE UM ANEXO

Um anexo é um documento que não foi elaborado pelo autor, ou seja, o autor apenas anexa. Anexos podem ser tabelas, mapas, diagramas, *datasheets*, manuais e etc.