Challenges in Titanium Recycling – Do We Need a Specification for Secondary Alloys?

Background and Motivation

- Due to cost considerations, titanium alloys still play a minor role in mass applications
- Conventional recycling focuses on classified, clean scrap
- Low-grade scrap is downgraded to ferrotitanium alloys

Utilization of the inexpensive low-grade scrap fraction in a recycling process would result in a cost-competitive secondary titanium alloy however, a new challenge arises with this approach

VAR

Refined titanium

electrode

- Removal of lubricants in a 3-step washing process with ethanol to lower carbon contamination
- Briquetting the turnings, enabling inductive coupling and facilitating feedstock charging during VIM
- Removal of remaining volatile impurities by heating up to 400 °C under vacuum
- Homogenization of the feedstock by vacuum induction melting in a CaO crucible
- Deoxidization by introducing $CaAl_2$ into the melt: $[O]_{Ti} + [Ca]_{Ti} = \langle CaO \rangle$ $[O]_{Ti} + \{Ca\} = \langle CaO \rangle$
- Deoxidization compensates for oxygen pick-up from the crucible

Superior solidification structure

Resulting secondary titanium alloy from an examplary scrap mixture and congruency with current titanium specifications (max. concentrations)

Alloy	% in scrap mixture	AI wt%	V wt%	Mo wt%	Cr wt%	Zr wt%	Nb wt%	Fe wt%	Sn wt%	Si wt%	O wt%	H wt%	N wt%	C wt%	Ti wt%
Ti-6Al-4V	50%	6	4					0,30			0,20	0,01	0,05	0,10	Bal.
Titanium grade 4	25%							0,50			0,40	0,02	0,05	0,10	Bal.
Ti-6Al-2Mo-4Zr-2Sn-Si	10%	6		2		4		0,25	2,00	0,10	0,15	0,13	0,05	0,05	Bal.
Ti-15V-3Cr-3Al-3Sn	10%	3	15		3			0,25	3,00		0,13	0,02	0,05	0,05	Bal.
Ti-48Al-2Cr-2Nb	5%	48			2		2				?	?	?	?	Bal.
Exemplary, polluted Ti-alloy scrap mix	100%	6,30	3,50	0,20	0,40	0,40	0,10	0,33	0,50	0,01	0,80	0,10	0,05	2,00	Bal.
Resulting examplary secondary alloy	100%	6,30	3,50	0,20	0,40	0,40	0,10	0,33	0,50	0,01	0,20	0,001	0,05	0,05	Bal.

Conclusions and Outlook

- Substitution of titanium sponge by inexpensive low-grade scrap is possible in the IME recycling process
- Compliant concentrations regarding the crucial oxygen and carbon levels can be achieved, but utilization of low-grade scrap mixtures implies variation in alloy composition, preventing to meet current Ti-specifications

www.ime-aachen.de

