

Unicore Performance Has Hit a Wall!

Some Reasons

- Lack of additional ILP
 (Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed

Unicore Performance: No Additional ILP

"Everything that can be invented has been invented."

— Charles H. Duell Commissioner, U.S. patent office, 1899

Exhausted all ideas to exploit hidden parallelism?

- Multiple simultaneous instructions
- Instruction Pipelining
- Out-of-order instructions
- Speculative execution
- Branch prediction
- Register renaming, etc.

Unicore Performance: High Power Density

- Dynamic power, $P_d \propto V^2 f C$
 - V = supply voltage
 - f = clock frequency
 - C = capacitance
- But $V \propto f$
- Thus P_d ∝ f^3

Unicore Performance: Manufacturing Issues

- − Frequency, $f \propto 1/s$
 - s = feature size (transistor dimension)
- Transistors / unit area $\propto 1/s^2$
- Typically, die size $\propto 1/s$
- So, what happens if feature size goes down by a factor of x?
 - Raw computing power goes up by a factor of x^4 !
 - Typically most programs run faster by a factor of x^3 without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Manufacturing Issues

- Manufacturing cost goes up as feature size decreases
 - Cost of a semiconductor fabrication plant doubles every 4 years (Rock's Law)
- CMOS feature size is limited to 5 nm (at least 10 atoms)

Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for
$$(i = 0; i < 10^{12}; ++i)$$

 $z[i] = x[i] + y[i];$

- We will have to access 3×10¹² data items in one second
- Speed of light is, $c \approx 3 \times 10^8$ m/s
- So each data item must be within c / 3×10¹² ≈ 0.1 mm from the CPU on the average
- All data must be put inside a 0.2 mm × 0.2 mm square
- Each data item (≥ 8 bytes) can occupy only 1 Ų space! (size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Memory Wall

Unicore Performance Has Hit a Wall!

Some Reasons

- Lack of additional ILP (Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed

"Oh Sinnerman, where you gonna run to?"

— Sinnerman (recorded by Nina Simone)

Where You Gonna Run To?

- Changing f by 20% changes performance by 13%
- $-\,$ So what happens if we overclock by 20%?
- And underclock by 20%?

Some Useful Classifications of Parallel Computers

Parallel Computer Memory Architecture (Distributed Memory) - Each processor has its own local memory — no global address space - Changes in local memory by one processor have no effect on memory of other processors - Communication network to connect inter-processor memory - Programming - Message Passing Interface (MPI) - Many once available: PVM, Chameleon, MPL, NX, etc.

Analyzing Parallel Algorithms

Speedup

Let T_p = running time using p identical processing elements

Speedup,
$$S_p = \frac{T_1}{T_p}$$

Theoretically, $S_p \leq p$

Perfect or linear or ideal speedup if $S_p = p$

Speedup

Consider adding n numbers using n identical processing elements.

Serial runtime, $T = \Theta(n)$

Parallel runtime, $T_n = \Theta(\log n)$

Superlinear Speedup

Theoretically, $S_p \leq p$

But in practice superlinear speedup is sometimes observed, that is, $S_p > p$ (why?)

Reasons for superlinear speedup

- Cache effects
- Exploratory decomposition

Parallelism & Span Law

We defined, T_p = runtime on p identical processing elements

Then span, T_{∞} = runtime on an infinite number of identical processing elements

Parallelism,
$$P = \frac{T_1}{T_{\infty}}$$

Parallelism is an upper bound on speedup, i.e., $S_p \leq P$

 $\frac{\mathsf{Span}\,\mathsf{Law}}{T_n \geq T_\infty}$

Work Law

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by T_1

On a Parallel Computer: is given by pT_p

Work Law

$$T_p \ge \frac{T_1}{p}$$

Bounding Parallel Running Time (T_p)

A *runtime/online scheduler* maps tasks to processing elements dynamically at runtime.

A *greedy scheduler* never leaves a processing element idle if it can map a task to it.

Theorem [Graham'68, Brent'74]: For any greedy scheduler,

$$T_p \le \frac{T_1}{p} + T_{\infty}$$

Corollary: For any greedy scheduler,

$$T_p \leq 2T_p^*$$
,

where $T_p^{\,*}$ is the running time due to optimal scheduling on p processing elements.

Work Optimality

Let $T_{\mathcal{S}}$ = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is ${\it cost-optimal}$ or ${\it work-optimal}$ provided

$$pT_p = \Theta(T_s)$$

Our algorithm for adding n numbers using n identical processing elements is clearly not work optimal.

Adding n Numbers Work-Optimality

We reduce the number of processing elements which in turn increases the granularity of the subproblem assigned to each processing element.

Suppose we use p processing elements.

First each processing element locally

adds its $\frac{n}{p}$ numbers in time $\Theta\left(\frac{n}{p}\right)$.

Then p processing elements adds these p partial sums in time $\Theta(\log p)$.

Thus
$$T_p = \Theta\left(\frac{n}{p} + \log p\right)$$
, and $T_s = \Theta(n)$.

So the algorithm is work-optimal provided $n = \Omega(p \log p)$.

Scaling Law

Scaling of Parallel Algorithms (Amdahl's Law)

Suppose only a fraction \boldsymbol{f} of a computation can be parallelized.

Then parallel running time, $T_p \geq (1-f)T_1 + f\frac{T_1}{p}$

Speedup, $S_p = \frac{T_1}{T_p} \le \frac{p}{f + (1 - f)p} = \frac{1}{(1 - f) + \frac{f}{p}} \le \frac{1}{1 - f}$

Scaling of Parallel Algorithms (Amdahl's Law)

Suppose only a fraction \boldsymbol{f} of a computation can be parallelized.

Speedup,
$$S_p = \frac{T_1}{T_p} \le \frac{1}{(1-f) + \frac{f}{p}} \le \frac{1}{1-f}$$

Step 1: Find $x=T[q_1]$, where q_1 is the midpoint of $T[p_1..\,r_1]$

Step 2: Use binary search to find the index q_2 in subarray $T[p_2..r_2]$ so that the subarray would still be sorted if we insert x between $T[q_2-1]$ and $T[q_2]$

Step 3: Copy x to $A[q_3]$, where $q_3 = p_3 + (q_1 - p_1) + (q_2 - p_2)$

Perform the following two steps in parallel.

Step 4(a): Recursively merge $T[p_1..q_1-1]$ with $T[p_2..q_2-1]$, and place the result into $A[p_3..q_3-1]$

Perform the following two steps in parallel.

Step 4(a): Recursively merge $T[p_1..q_1-1]$ with $T[p_2..q_2-1]$, and place the result into $A[p_3..q_3-1]$

Step 4(b): Recursively merge $T[q_1+1..r_1]$ with $T[q_2+1..r_2]$, and place the result into $A[q_3+1..r_3]$

Parallel Merge

Par-Merge (T, p₁, r₁, p₂, r₂, A, p₃)

1. $n_1 \leftarrow r_1 - p_1 + 1$, $n_2 \leftarrow r_2 - p_2 + 1$

2. if n₁ < n₂ then

3. $p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$

4. if n. = 0 then return

5. else

6. $q_1 \leftarrow \lfloor (p_1 + r_1) / 2 \rfloor$

7. $q_2 \leftarrow Binary-Search (T[q_1], T, p_2, r_2)$

8. $q_3 \leftarrow p_3 + (q_1 - p_1) + (q_2 - p_2)$

9. $A[q_3] \leftarrow T[q_1]$

10. $spawn Par-Merge (T, p_1, q_1-1, p_2, q_2-1, A, p_3)$

11. Par-Merge (T, q₁+1, r₁, q₂+1, r₂, A, q₃+1)

12. sync

We have,

$$n_2 \le n_1 \Rightarrow 2n_2 \le n_1 + n_2 = n$$

In the worst case, a recursive call in lines 9-10 merges half the elements of $T[p_1...r_1]$ with all elements of $T[p_2...r_2]$.

Hence, #elements involved in such a call:

$$\left\lfloor \frac{n_1}{2} \right\rfloor + n_2 \le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n_2}{2} = \frac{n_1 + n_2}{2} + \frac{2n_2}{4} \le \frac{n}{2} + \frac{n}{4} = \frac{3n}{4}$$

Parallel Merge

Par-Merge (T, p_1 , r_1 , p_2 , r_2 , A, p_3)

1. $n_1 \leftarrow r_1 - p_1 + 1$, $n_2 \leftarrow r_2 - p_2 + 1$

2. if $n_1 < n_2$ then

3. $p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$

4. if $n_1 = 0$ then return

5. else

6. $q_1 \leftarrow \lfloor (p_1 + r_1) / 2 \rfloor$

7. $q_2 \leftarrow Binary-Search (T[q_1], T, p_2, r_2)$

3. $q_3 \leftarrow p_3 + (q_1 - p_1) + (q_2 - p_2)$

9. $A[q_3] \leftarrow T[q_1]$

10. spawn Par-Merge (T, p₁, q₁-1, p₂, q₂-1, A, p₃)

11. Par-Merge (T, q₁+1, r₁, q₂+1, r₂, A, q₃+1)

12. sync

Parallel Merge

Par-Merge (T, p_1 , r_1 , p_2 , r_2 , A, p_3)

1. $n_1 \leftarrow r_1 - p_1 + 1$, $n_2 \leftarrow r_2 - p_2 + 1$

2. if $n_1 < n_2$ then

3. $p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$

4. if n₁ = 0 then return

else

5. else

5. $q_1 \leftarrow \lfloor (p_1 + r_1) / 2 \rfloor$

7. $q_2 \leftarrow Binary-Search (T[q_1], T, p_2, r_2)$

3. $q_3 \leftarrow p_3 + (q_1 - p_1) + (q_2 - p_2)$

9. $A[q_3] \leftarrow T[q_1]$

spawn Par-Merge (T, p₁, q₁-1, p₂, q₂-1, A, p₃)

11. Par-Merge (T, q₁+1, r₁, q₂+1, r₂, A, q₃+1)

12. *sync*

Span:

 $T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_{\infty}\left(\frac{3n}{4}\right) + \Theta(\log n), & \text{otherwise.} \end{cases}$

 $= \Theta(\log^2 n)$ [MT Case 2]

Work:

Clearly, $T_1(n) = \Omega(n)$

We show below that, $T_1(n) = O(n)$

For some $\alpha \in \left[\frac{1}{4}, \frac{3}{4}\right]$, we have the following recurrence.

$$T_1(n) = T_1(\alpha n) + T_1((1-\alpha)n) + O(\log n)$$

Assuming $T_1(n) \le c_1 n - c_2 \log n$ for positive constants c_1 and c_2 , and substituting on the right hand side of the above recurrence gives us: $T_1(n) \le c_1 n - c_2 \log n = \mathrm{O}(n)$.

Hence, $T_1(n) = \Theta(n)$.

Parallel Merge Sort with Parallel Merge

Par-Merge-Sort
$$(A, p, r)$$
 { sort the elements in $A[p...r]$ }

1. if $p < r$ then

2. $q \leftarrow \lfloor (p+r)/2 \rfloor$

3. spawn Merge-Sort (A, p, q)

4. Merge-Sort $(A, q+1, r)$

5. sync

6. Par-Merge (A, p, q, r)

$$\begin{aligned} \text{Work: } T_1(n) &= \begin{cases} \Theta(1), & \text{if } n = 1, \\ 2T_1\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise}. \end{cases} \\ &= \Theta(n\log n) \qquad [\text{ MT Case 2 }] \\ \text{Span: } T_\infty(n) &= \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_\infty\left(\frac{n}{2}\right) + \Theta(\log^2 n), & \text{otherwise}. \end{cases} \\ &= \Theta(\log^3 n) \qquad [\text{ MT Case 2 }] \\ \text{Parallelism: } \frac{T_1(n)}{T_{\infty}(n)} &= \Theta\left(\frac{n}{\log^2 n}\right) \end{aligned}$$

Parallel Prefix Sums

Parallel Prefix Sums

Input: A sequence of n elements $\{x_1, x_2, ..., x_n\}$ drawn from a set S with a binary associative operation, denoted by \oplus .

Output: A sequence of n partial sums $\{s_1, s_2, ..., s_n\}$, where $s_i = x_1 \oplus x_2 \oplus ... \oplus x_i$ for $1 \le i \le n$.

⊕ = binary addition

1. if n = 1 then 2. $s_1 \leftarrow x_1$

4. parallel for $i \leftarrow 1$ to n/2 do

 $5. y_i \leftarrow x_{2i-1} \oplus x_{2i}$

6. $\langle z_1, z_2, \dots, z_{n/2} \rangle \leftarrow Prefix-Sum(\langle y_1, y_2, \dots, y_{n/2} \rangle, \oplus)$

Parallel Prefix Sums

7. parallel for $i \leftarrow 1$ to n do

8. if i = 1 then $s_1 \leftarrow x_1$

9. else if $i = even then s_i \leftarrow z_{i/2}$ 0. else $s_i \leftarrow z_{(i-1)/2} \oplus x_i$

11. $return \langle s_1, s_2, ..., s_n \rangle$

 $Prefix\text{-Sum}\left(\langle x_1,x_2,...,x_n\rangle,\oplus\right) \quad \begin{cases} n=2^k \text{ for some } k\geq 0. \\ \text{Return prefix sums} \end{cases}$ 1. if n=1 then $2. \quad s_1\leftarrow x_1$ 3. else $4. \quad \text{parallel for } i\leftarrow 1 \text{ to } n/2 \text{ do}$ $5. \quad y_i\leftarrow x_{2i-1}\oplus x_{2i}$ $6. \quad \langle z_1,z_2,...,z_{n/2}\rangle\leftarrow Prefix\text{-Sum}(\langle y_1,y_2,...,y_{n/2}\rangle,\oplus)$ $7. \quad \text{parallel for } i\leftarrow 1 \text{ to } n \text{ do}$ $8. \quad \text{if } i=1 \text{ then } s_1\leftarrow x_1$ $9. \quad \text{else } if i=even \text{ then } s_i\leftarrow z_{i/2}$ $10. \quad \text{else } s_i\leftarrow z_{(i-1)/2}\oplus x_i$

11. return $\langle s_1, s_2, ..., s_n \rangle$

 $\begin{aligned} & \textbf{Work:} \\ & T_1(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_1\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases} \\ & = \Theta(n) \\ & \textbf{Span:} \\ & T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_{\infty}\left(\frac{n}{2}\right) + \Theta(1), & \text{otherwise.} \end{cases} \\ & = \Theta(\log n) \\ & \textbf{Parallelism:} \quad \frac{T_1(n)}{T_{\infty}(n)} = \Theta\left(\frac{n}{\log n}\right) \end{aligned}$

Observe that we have assumed here that a parallel for loop can be executed in $\Theta(1)$ time. But recall that $cilk_for$ is implemented using divide-and-conquer, and so in practice, it will take $\Theta(\log n)$ time. In that case, we will have $T_{\infty}(n) = \Theta(\log^2 n)$, and parallelism $= \Theta(n/\log^2 n)$.

Parallel Partition

Input: An array A[q:r] of distinct elements, and an element x from A[q:r]. Output: Rearrange the elements of A[q:r], and return an index $k \in [q,r]$, such that all elements in A[q:k-1] are smaller than x, all elements in A[k+1:r] are larger than x, and A[k] = x. Par-Partition (A[q:r], x)1. $n \leftarrow r - q + 1$ 2. if n = 1 then return q3. array B[0:n-1], tt[0:n-1], gt[0:n-1]4. parallel for $i \leftarrow 0$ to n-1 do

Parallel Partition A: 9 5 7 11 1 3 8 14 4 21 x=8

Parallel Partition: Analysis

```
Par-Partition (A[q:r], x)
 1. n \leftarrow r - q + 1
 2. if n = 1 then return q
 3. array B[0: n-1], lt[0: n-1], gt[0: n-1]
 4. parallel for i \leftarrow 0 to n-1 do
 5. B[i] \leftarrow A[q+i]
 6. if B[i] < x then lt[i] \leftarrow 1 else lt[i] \leftarrow 0
 7. if B[i] > x then gt[i] \leftarrow 1 else gt[i] \leftarrow 0
 8. lt[0: n-1] \leftarrow Par-Prefix-Sum(lt[0: n-1], +)
9. gt[0: n-1] \leftarrow Par-Prefix-Sum(gt[0: n-1], +)
10. k \leftarrow q + lt [n-1], A[k] \leftarrow x
11. parallel for i \leftarrow 0 to n-1 do
12. if B[i] < x then A[q + lt[i] - 1] \leftarrow B[i]
13. else if B[i] > x then A[k + gt[i]] \leftarrow B[i]
14. return k
```

Work:

$$\begin{split} T_1(n) &= \Theta(n) \quad \text{[lines 1-7]} \\ &+ \Theta(n) \quad \text{[lines 8-9]} \\ &+ \Theta(n) \quad \text{[lines 10-14]} \\ &= \Theta(n) \end{split}$$

Span:

Assuming $\log n$ depth for parallel for loops:

$$\begin{split} T_{\infty}(n) &= \Theta(\log n) \quad \text{[lines } 1-7 \text{]} \\ &+ \Theta(\log^2 n) \quad \text{[lines } 8-9 \text{]} \\ &+ \Theta(\log n) \quad \text{[lines } 10-14 \text{]} \\ &= \Theta(\log^2 n) \end{split}$$

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta\left(\frac{n}{\log^2 n}\right)$$

Parallel Quicksort

Randomized Parallel QuickSort

Input: An array A[q:r] of distinct elements.

Output: Elements of A[q:r] sorted in increasing order of value.

```
Par-Randomized-QuickSort ( A[q:r] )
1. n \leftarrow r - q + 1

 if n ≤ 30 then

       sort A[q:r] using any sorting algorithm
4. else
      select a random element x from A[q:r]
      k \leftarrow Par-Partition (A[q:r], x)
      spawn Par-Randomized-QuickSort (A[q:k-1])
      Par-Randomized-QuickSort ( A[ k + 1 : r ] )
```


Randomized Parallel QuickSort: Analysis

Par-Randomized-QuickSort(A[q:r])1. $n \leftarrow r - q + 1$ 2. if $n \le 30$ then sort A[q:r] using any sorting algorithm select a random element x from A[q:r] $k \leftarrow Par-Partition (A[q:r], x)$ spawn Par-Randomized-QuickSort (A[q:k-1]) Par-Randomized-QuickSort(A[k+1:r])

Lines 1—6 take $\Theta(\log^2 n)$ parallel time and perform $\Theta(n)$ work.

Also the recursive spawns in lines 7—8 work on disjoint parts of A[q:r]. So the upper bounds on the parallel time and the total work in each level of recursion are $\Theta(\log^2 n)$ and $\Theta(n)$, respectively.

Hence, if *D* is the *recursion depth* of the algorithm, then

$$T_1(n) = \mathrm{O}(nD)$$
 and $T_{\infty}(n) = \mathrm{O}(D\log^2 n)$

