

What are leptons?

- · leptons are tundamental particles and they DO NOT feel the strong nuclear force Lunlike baryons).
- · They interact via the weak interaction and the electromagnetic force if they are charged.
- · leptons, like quarks, come in 3 generations/Plavours. (tau third generation is not in the spec)

lepton collisions produce hadrons

- . The universe would be very dull if all its particles were leptons, because:
 - > Neutrinos interact very little.
 - -> Tows and muons are very smort-lived and decays back to electron.
 - > Electrons repel each other.
- · HOWEVER, leptons and antileptons can interact to produce hadrons.
- for example, an electron-position annihilation event produces a guark and a corresponding antiquark, producing a shower of hadrons in each direction.

	Generation	1	_	Electron	Q	electron	neutrino
--	------------	---	---	----------	---	----------	----------

- · Flectrons (e) are stable leptons.
- · Electrons, like other leptons, come with their own neutrino: Ve.

Symbol	Relative Charge	Le	L
e ¯	- 1	† 1	٥
Ve	0	+1	0
þ	-1	٥	+1
٧μ	0	0	11

Generation 2 - Muon & muon neutrino

· Muons (p^{-}) are like heavy electrons but they are unstable, and decay eventually interordinary electrons.

Neutrinos

- · Neutrinos travel almost as fast as light, billions of them sweeping through the Earth from space every second with almost no interaction.
 - . Neutrinos have zero electric charge and almost zero mass. (they have some mass)
 - · 3 generations of neutrinos: Ve, V, Vt

Strange Particles

- · Strange particles are so called because they have a property called strangeness.
- · Strange particles are created via the strong interaction.
- · Strangeness is only conserved in the strong interaction.
- · Strange particles decay through the weak interaction.
- · Strangeness is NOT conserved through the weak interaction.

Quark	Strangeness		
S	-1		
ŝ	+1		
U	0		