Fall 2020

California State University, Northridge Department of Electrical and Computer Engineering Computer Assignment 5: FSM Design - Digital Lock

Figure 2: Digital lock controller state diagram

1. Complete the state diagram that is given to you in Figure 2 and specify all the transitions and conditions on your diagram. (15 points)

2. Provide the complete source code for your controller design. (40 points)

My combination for this design is 546.

```
Digital Lock FSM Design (VHDL Code)
         _____
         -- Engineer: Jose Luis Martinez
         -- Create Date: 11/21/2020 09:52:00 PM
         :-- Module Name: DigitalLock - Behavioral
         -- Project Name: FSM Digital Lock
 6 A
 7
 8 1
 9
         library IEEE;
10
        use IEEE.STD LOGIC 1164.ALL;
11 !
         use IEEE.NUMERIC STD.ALL;
12
13 🖯
         entity DigitalLock is
           Port ( newV: in std logic;
14 :
15 1
                   value: in std logic vector(3 downto 0);
                   reset: in std logic;
16 :
17 :
                  clock: in std logic;
18 5
                   isOpen: out std logic);
        end DigitalLock;
19 🖯
20 !
21 🖯
         architecture Behavioral of DigitalLock is
22
         type StateType is (SO, S1, S2, S3, ERR);
         signal CState, NState: StateType;
23
24
25 !
       |constant FIRSTNUM: std logic vector(3 downto 0):= "0101";
         constant SECONDNUM: std logic vector(3 downto 0):= "0100";
26 1
27 !
        constant THIRDNUM: std logic vector(3 downto 0):= "0110";
28
        begin
29
 30 □
         nextStateLogic: process(newV, CState)
31
32 - Case CState is
33 ⊖
           when SO =>
34 ⊝ ○
              if newV='1' and value=FIRSTNUM then
35 ! 0 !
                   NState <= S1:
36 0
               elsif newV='1' and value/=FIRSTNUM then
37 ; O
                    NState <= ERR;
38
                else
39 0
                    NState <= S0;
40 🖨
                end if;
41 🗇
            when S1 =>
42 - O
              if newV='1' and value=SECONDNUM then
43
                  NState <= S2;
```

```
44 O
45 O
              elsif newV='1' and value/=SECONDNUM then
                   NState <= ERR;
46
47 O
              else
                 Nstate <= S1;
48 🖨
               end if;
            when S2 =>
49 □
50 Ø O
51 O
52 O
53 O
              if newV='l' and value=THIRDNUM then
            NState <= S3;
elsif newV='1' and value/=THIRDNUM then
    NState <= ERR;
else</pre>
55 0
                   Nstate <= S2;
             end if;
56 🖨
58 A O
            when S3 =>
             NState <= S3;
59 ⊖
60 ⊝ O
             when ERR =>
             NState <= ERR;
61 end case;
62 end process;
63 :
64 currentStateLogic: process(clock,reset)
65 ;
       begin
if rising edge (clock) then
67 O
             CState <= NState;
68 O elsif reset='1' then
69 0
              Cstate <= S0;
70 else
71 O CSta
72 end if;
             CState <= CState;
73 end process;
74 ;
75 ⊖
         -- Moore output logic
76 🖨
          -- Concurrent section of the code deciding what to output
77 O with CState select
78 O isOpen <= 'l' when S3,
'0' when oth
              '0' when others;
79 ;
80 end Behavioral;
81 ¦
```

3. Write a VHDL testbench to simulate your design and verify its functionality. Show different combinations on your simulation and critical input combinations to prove your design works. **This is very critical point in your report. (45 points)**

Digital Lock FSM Design (VHDL Testbench Code)

```
1 🖨
         -- Engineer: Jose Luis Martinez
 3
         -- Create Date: 11/21/2020 09:52:00 PM
         -- Module Name: DigitalLock - Behavioral
 5
         -- Project Name: FSM Digital Lock
 60
 8
        library IEEE;
       use IEEE.STD_LOGIC_1164.ALL;
10
11 :
        use IEEE.NUMERIC STD.ALL;
12
13 🖨
        entity DigitalLock_tb is
14
         -- Port ();
15 🖨
         end DigitalLock_tb;
17 🖨
         architecture Behavioral of DigitalLock_tb is
18
19 🗇
        component DigitalLock is
          Port ( newV: in std_logic;
20 :
21 :
                   value: in std logic vector(3 downto 0);
                  reset: in std_logic;
22
         clock: in std logic;
23 ;
24
                  isOpen: out std logic);
25 🖨
       end component DigitalLock;
26
27
        signal newV_tb, reset_tb, clock_tb, isOpen_tb: std_logic;
28
        signal value_tb: std logic vector(3 downto 0);
29
30
31
32
        DigitalLockSim: DigitalLock port map(newV => newV_tb, value => value_tb, reset => reset_tb, clock => clock_tb, isOpen => isOpen_tb);
33
34 🖯
        process
35
         begin
    O clock_tb <= 'l';
36
37 | O | wait for 10 ns;
38
    O clock_tb <= '0';
39
    O wait for 10 ns;
40 🖨
        end process;
41
42 □
        process
43
         begin
44 | O | reset_tb <= '1';
    newV_tb <= '0';</pre>
45
     value_tb <= "1010";</pre>
   O wait for 20ns;
47
O newV tb <= '1';
49
    O value_tb <= "1010";
50
51 : O wait for 20ns;
52 O newV_tb <= '0';
53 O value_tb <= "1100";
```

Jose Luis Martinez Prof: Shahnam Mirzaei, Ph.D. November 21, 2020 ECE 420

```
54 O wait for 20ns;
55 | newV tb <= '1';
56 value tb <= "1100";
57 \ wait for 20ns;
58 | O newV_tb <= '0';
59
    value_tb <= "0011";</pre>
    O wait for 20ns;
60
    newV_tb <= '1';
value_tb <= "0011";</pre>
61
62
    O wait for 20ns;
63
    newV_tb <= '0';</pre>
64
65 value_tb <= "0111";
66 O wait for 20ns;
67 | O newV tb <= '1';
68 value tb <= "0111";
69 Wait for 20ns;
    newV_tb <= '0';</pre>
70
71
    value_tb <= "0000";</pre>
    O wait for 20ns;
72 :
    O newV tb <= '1';
73
    O value_tb <= "0000";
74
75 Wait for 20ns;
76 | O | newV_tb <= '0';
78 | O | reset_tb <= '1';
79 wait for 20ns;
82
    O reset_tb <= '1';
    O wait for 20ns;
83 ;
    oreset_tb <= '0';</pre>
84
    O newV_tb <= '0';
85
    O value_tb <= "0101";
86
    O wait for 20ns;
87
88 | O newV_tb <= '1';
90 Wait for 20ns;
92 | O |value_tb <= "0100";
93
    O wait for 20ns;
94
    O newV_tb <= '1';
    value_tb <= "0100";</pre>
95
    O wait for 20ns;
96
97 | O | newV_tb <= '0';
99 Wait for 20ns;
100 | O newV_tb <= '1';
101 | value tb <= "0110";
102 | O | wait for 40ns;
103 end process;
104
105 🖨
      end Behavioral;
106
```

Jose Luis Martinez Prof: Shahnam Mirzaei, Ph.D. November 21, 2020 ECE 420

Digital Lock FSM Design (Waveforms)

