

द्धुत का आधुनिक समाज में एक महत्त्वपूर्ण स्थान है। यह घरों, विद्यालयों, अस्पतालों, उद्योगों तथा ऐसे ही अन्य संस्थानों के विविध उपयोगों के लिए एक नियंत्रित कर सकने योग्य और सुविधाजनक ऊर्जा का रूप है। वह क्या है जिससे विद्युत बनती है? किसी विद्युत परिपथ में यह कैसे प्रवाहित होती है? वह कौन से कारक हैं जो किसी विद्युत परिपथ की विद्युत धारा को नियंत्रित अथवा नियमित करते हैं। इस अध्याय में हम इस प्रकार के प्रश्नों के उत्तर देने का प्रयास करेंगे। हम विद्युत धारा के ऊष्मीय प्रभाव तथा इसके अनुप्रयोगों पर भी चर्चा करेंगे।

# 12.1 विद्युत धारा और परिपथ

हम वायु धारा तथा जल धारा से परिचित हैं। हम जानते हैं कि बहते हुए जल से निदयों में जल धारा बनती है। इसी प्रकार यदि विद्युत आवेश किसी चालक में से प्रवाहित होता है (उदाहरण के लिए किसी धातु के तार में से) तब हम यह कहते हैं कि चालक में विद्युत धारा है। हम जानते हैं कि किसी टॉर्च में सेल (अथवा बैटरी, जब उचित क्रम में रखे जाते हैं) टॉर्च बल्ब को दीप्ति के लिए आवेश का प्रवाह अथवा विद्युत धारा प्रदान करते हैं। हमने यह भी देखा है कि टॉर्च तभी प्रकाश देती है जब उसके स्विच को 'ऑन' करते हैं। स्विच क्या कार्य करता है? स्विच सेल तथा बल्ब के बीच चालक संबंध जोड़ता है। किसी विद्युत धारा के सतत तथा बंद पथ को विद्युत परिपथ कहते हैं। अब, यदि परिपथ कहीं से टूट जाए (अथवा टॉर्च के स्विच को 'ऑफ' कर दें) तो विद्युत धारा का प्रवाह समाप्त हो जाता है तथा बल्ब दीप्ति नहीं करता।

हम विद्युत धारा को कैसे व्यक्त करें? विद्युत धारा को एकांक समय में किसी विशेष क्षेत्र से प्रवाहित आवेश के परिमाण द्वारा व्यक्त किया जाता है। दूसरे शब्दों में, विद्युत आवेश के प्रवाह की दर को विद्युत धारा कहते हैं। उन परिपथों में जिनमें धातु के तार उपयोग होते हैं, आवेशों के प्रवाह की रचना इलेक्ट्रॉन करते हैं। तथापि, जिस समय विद्युत की परिघटना का सर्वप्रथम प्रेक्षण किया गया था, इलेक्ट्रॉनों के बारे में कोई जानकारी नहीं थी। अत: विद्युत धारा को धनावेशों का प्रवाह माना गया तथा धनावेश के प्रवाह की दिशा को ही विद्युत धारा की दिशा माना गया। परिपाटी के अनुसार किसी विद्युत परिपथ में इलेक्ट्रॉनों जो ऋणावेश हैं, के प्रवाह की दिशा के विपरीत दिशा को विद्युत धारा की दिशा माना जाता है।

यदि किसी चालक की किसी भी अनुप्रस्थ काट से समय t में नेट आवेश Q प्रवाहित होता है तब उस अनुप्रस्थ काट से प्रवाहित विद्युत धारा I को इस प्रकार व्यक्त करते हैं:

$$I = \frac{Q}{t} \tag{12.1}$$

विद्युत आवेश का SI मात्रक कूलॉम (C) है, जो लगभग  $6 \times 10^{18}$  इलेक्ट्रॉनों में समाए आवेश के तुल्य होता है (हम जानते हैं कि एक इलेक्ट्रॉन पर  $1.6 \times 10^{-19}$ C आवेश होता है)। विद्युत धारा को एक मात्रक जिसे ऐम्पियर (A) कहते हैं, में व्यक्त किया जाता है, इस मात्रक का नाम आंद्रे-मेरी ऐम्पियर (1775-1836) नाम के फ्रांसीसी वैज्ञानिक के नाम पर रखा गया है। एक ऐम्पियर विद्युत धारा की रचना प्रति सेकंड एक



चित्र 12.1 एक सेल, एक विद्युत बल, एक ऐमीटर तथा एक प्लग कुंजी से मिलकर बने विद्युत परिपथ का व्यवस्था आरेख

कूलॉम आवेश के प्रवाह से होती है, अर्थात  $1\,A=1\,C/1\,s$  अल्प परिमाण की विद्युत धारा को मिलिऐम्पियर ( $1\,mA=10^{-3}\,A$ ) अथवा माइक्रोऐम्पियर ( $1\,\mu A=10^{-6}\,A$ ) में व्यक्त करते हैं। परिपथों की विद्युत धारा मापने के लिए जिस यंत्र का उपयोग करते हैं उसे ऐमीटर कहते हैं। इसे सदैव जिस परिपथ में विद्युत धारा मापनी होती है, उसके श्रेणीक्रम में संयोजित करते हैं। चित्र 12.1 में एक प्रतीकात्मक विद्युत परिपथ का व्यवस्था आरेख दिखाया गया है जिसमें एक सेल, एक विद्युत बल्ब, एक ऐमीटर तथा प्लग कुंजी जुड़े हैं। ध्यान दीजिए परिपथ में विद्युत धारा, सेल के धन टर्मिनल से सेल के ऋण टर्मिनल तक बल्ब और ऐमीटर से होकर प्रवाहित होती है।

#### उदाहरण 12.1

किसी विद्युत बल्ब के तंतु में से 0.5 A विद्युत धारा 10 मिनट तक प्रवाहित होती है। विद्युत परिपथ से प्रवाहित विद्युत आवेश का परिमाण ज्ञात कीजिए।

#### हल

हमें दिया गया है, I = 0.5 A; t = 10 min = 600 s समीकरण (12.1), से

Q = It

 $= 0.5 \,\mathrm{A} \times 600 \,\mathrm{s}$ 

 $= 300 \, \mathrm{C}$ 

### प्रश्न

- 1. विद्युत परिपथ का क्या अर्थ है?
- 2. विद्युत धारा के मात्रक की परिभाषा लिखए।
- 3. एक कूलॉम आवेश की रचना करने वाले इलेक्ट्रॉनों की संख्या परिकलित कीजिए।

# <del>^^^^^^</del>

### तार के भीतर आवेशों का प्रवाह

कोई धातु विद्युत चालन कैसे करती है? आप सोचते होंगे कि निम्न ऊर्जा के इलेक्ट्रॉनों को किसी ठोस चालक से गुज़रने में बहुत किठनाई होती है। ठोस के भीतर परमाणु एक-दूसरे के साथ संकुलित होते हैं और इनके बीच बहुत कम स्थान होता है। परंतु यह पाया गया है कि इलेक्ट्रॉन किसी आदर्श ठोस क्रिस्टल से बिना रुकावट ठीक वैसे ही आसानी से यात्रा कर लेते हैं जैसे कि वे निर्वात में हों। तथापि किसी चालक में इलेक्ट्रॉन की गित रिक्त स्थान में आवेशों की गित से बहुत भिन्न होती है। जब किसी चालक से कोई स्थायी धारा प्रवाहित होती है तब उसके भीतर इलेक्ट्रॉन एक निश्चित औसत 'अपवाह चाल' से गित करते हैं। किसी प्ररूपी कॉपर के तार के लिए जिससे कोई लघु विद्युत धारा प्रवाहित हो रही है, इस अपवाह चाल का परिकलन किया जा सकता है और यह वास्तव में अत्यंत अल्प, 1 mm s-1 कोटि की पाई गई है। फिर ऐसा क्यों है कि हमारे स्विच 'ऑन' करते ही विद्युत बल्ब प्रकाश देने लगता है? ऐसा नहीं हो सकता कि विद्युत धारा केवल तब आरंभ हो जब कोई इलेक्ट्रॉन विद्युत आपूर्ति के एक टिर्मिनल से स्वयं चलकर बल्ब से होते हुए दूसरे टिर्मिनल तक पहुँचे, क्योंकि किसी चालक तार में इलेक्ट्रॉनों का भौतिक अपवाह एक अत्यंत धीमी प्रक्रिया है। विद्युत धारा प्रवाहित होने की यथार्थ प्रक्रिया जो प्रकाश की चाल के लगभग समान चाल से होती है, मंत्रमुग्ध करने वाली है, परंतु इस पुस्तक के कार्यक्षेत्र से बाहर है। क्या आप उच्च स्तर पर इस प्रश्न की गहराई तक पहुँचना चाहते हैं?

# 12.2 विद्युत विभव और विभवांतर

वह क्या है जो विद्युत आवेश को प्रवाहित कराता है? आइए जल के प्रवाह से सदृश के आधार पर इसका विचार करते हैं। किसी कॉपर के तार से आवेश स्वयं प्रवाहित नहीं होते, ठीक वैसे ही जैसे किसी आदर्श क्षेतिज नली से जल प्रवाहित नहीं होता। यदि नली के एक सिरे को किसी उच्च तल पर रखे जल-टैंक से जोड़ दें जिससे नली के दो सिरों के बीच कोई दाबांतर बन जाए, तो नली के मुक्त सिरे से जल बाहर की ओर प्रवाहित होता है। किसी चालक तार में आवेशों के प्रवाह के लिए, वास्तव में, गुरुत्व बल की कोई भूमिका नहीं होती; इलेक्ट्रॉन केवल तभी गित करते हैं जब चालक के अनुदिश वैद्युत दाब में कोई अंतर होता है, जिसे विभवांतर कहते हैं। विभव में यह अंतर एक या अधिक विद्युत सेलों से बनी बैटरी द्वारा उत्पन्न किया जा सकता है। किसी सेल के भीतर होने वाली रासायनिक अभिक्रिया सेल के टीर्मनलों के बीच विभवांतर उत्पन्न कर देती है, ऐसा उस समय भी होता है जब सेल से कोई विद्युत धारा नहीं ली जाती। जब सेल को किसी चालक परिपथ अवयव से संयोजित करते हैं तो विभवांतर उस चालक के आवेशों में गित ला देता है और विद्युत धारा उत्पन्न हो जाती है। किसी विद्युत परिपथ में विद्युत धारा बनाए रखने के लिए सेल अपनी संचित रासायनिक ऊर्जा खर्च करता है।

किसी धारावाही विद्युत परिपथ के दो बिंदुओं के बीच विद्युत विभवांतर को हम उस कार्य द्वारा परिभाषित करते हैं जो एकांक आवेश को एक बिंदु से दूसरे बिंदु तक लाने में किया जाता है।

दो बिंदुओं के बीच विभवांतर (
$$V$$
) =  $\frac{$ किया गया कार्य ( $W$ ) आवेश ( $Q$ )

$$V = W/Q \tag{12.2}$$

विद्युत विभवांतर का SI मात्रक वोल्ट (V) है जिसे इटली के भौतिकविज्ञानी अलेसान्द्रो वोल्टा के नाम पर रखा गया है। यदि किसी विद्युत धारावाही चालक के दो बिंदुओं के बीच एक कूलॉम आवेश को एक बिंदु से दूसरे बिंदु तक ले जाने में 1 जूल कार्य किया जाता है तो उन दो बिंदुओं के बीच विभवांतर 1 वोल्ट होता है। अत:

$$_{1}$$
 ਕੀਦਟ =  $\frac{1}{\eta} \frac{\eta}{\eta}$  ਗੁੰਦਰ  $\frac{1}{\eta} \frac{\eta}{\eta}$  (12.3)

विभवांतर की माप एक यंत्र द्वारा की जाती है जिसे **वोल्टमीटर** कहते हैं। वोल्टमीटर को सदैव उन बिंदुओं से पार्श्वक्रम में संयोजित करते हैं जिनके बीच विभवांतर मापना होता है।

#### उदाहरण 12.2

12 V विभवांतर के दो बिंदुओं के बीच 2 C आवेश को ले जाने में कितना कार्य किया जाता है?

#### हल

विभवांतर V (=12 airc) के दो बिंदुओं के बीच प्रवाहित आवेश का परिमाण Q (=2 कूलॉम) है। इस प्रकार आवेश को स्थानांतरित करने में किया गया कार्य (समीकरण 12.2 के अनुसार) है :

W = VQ

 $= 12 \text{ V} \times 2 \text{ C} = 24 \text{ J}$ 

## प्रश्न

- उस युक्ति का नाम लिखिए जो किसी चालक के सिरों पर विभवांतर बनाए रखने में सहायता करती है।
- 2. यह कहने का क्या तात्पर्य है कि दो बिंदुओं के बीच विभवांतर 1V है?
- 3. 6 V बैटरी से गुजरने वाले हर एक कूलॉम आवेश को कितनी ऊर्जा दी जाती है?

# 12.3 विद्युत परिपथ आरेख

हम जानते हैं कि कोई विद्युत परिपथ, जैसा चित्र 12.1 में दिखाया गया है, एक सेल (अथवा एक बैटरी), एक प्लग कुंजी, वैद्युत अवयव (अथवा अवयवों) तथा संयोजी तारों से मिलकर बनता है। विद्युत परिपथों का प्राय: ऐसा व्यवस्था आरेख खींचना सुविधाजनक होता है जिसमें परिपथ के विभिन्न अवयवों को सुविधाजनक प्रतीकों द्वारा निरूपित किया जाता है। सारणी 12.1 में सामान्य उपयोग में आने वाले कुछ वैद्युत अवयवों को निरूपित करने वाले रूढ़ प्रतीक दिए गए हैं।

सारणी 12.1 : विद्युत परिपथों में सामान्यत: उपयोग होने वाले कुछ अवयवों के प्रतीक

| क्रम<br>संख्या | अवयव                                  | प्रतीक                            |
|----------------|---------------------------------------|-----------------------------------|
| 1              | विद्युत सेल                           | — <sup>+</sup>   F—               |
| 2              | बैटरी अथवा सेलों का संयोजन            | <del></del>                       |
| 3              | (खुली) प्लग कुंजी अथवा स्विच          | —( )—                             |
| 4              | (बंद) प्लग कुंजी अथवा स्विच           | <b>─</b> (•) <u></u>              |
| 5              | तार संधि                              |                                   |
| 6              | (बिना संधि के) तार क्रॉसिंग           | <del></del>                       |
| 7              | विद्युत बल्ब                          | ्या 🚅                             |
| 8              | प्रतिरोधक                             |                                   |
| 9              | परिवर्ती प्रतिरोधक अथवा धारा नियंत्रक | — <b>०००</b> या — <b>०००</b> — या |
| 10             | ऐमीटर                                 | + A -                             |
| 11             | वोल्टमीटर                             |                                   |

### 12.4 ओम का नियम

क्या किसी चालक के सिरों के बीच विभवांतर और उससे प्रवाहित विद्युतधारा के बीच कोई संबंध है? आइए एक क्रियाकलाप द्वारा इसकी छानबीन करते हैं।

### क्रियाकलाप 12.1

■ चित्र 12.3 में दिखाए अनुसार एक परिपथ तैयार कीजिए। इस परिपथ में लगभग 0.5 m लंबा निक्रोम का तार XY, एक ऐमीटर, एक वोल्टमीटर तथा चार सेल जिनमें प्रत्येक 1.5 V का हो, जोड़िए (निक्रोम निकैल, क्रोमियम, मैंगनीज तथा आयरन की एक मिश्रधातु है)।



चित्र 12.2 ओम के नियम के अध्ययन के लिए विद्युत परिपथ

- सबसे पहले परिपथ में विद्युत धारा के स्रोत के रूप में केवल एक सेल का उपयोग कीजिए। परिपथ में निक्रोम-तार
   XY से प्रवाहित होने वाली विद्युत धारा के लिए ऐमीटर का पाठ्यांक I, तार के सिरों के बीच विभवांतर के लिए वोल्टमीटर का पाठ्यांक V लीजिए। इन्हें दी गयी सारणी में लिखिए।
- इसके पश्चात परिपथ में दो सेल जोड़िए और निक्रोम तार में प्रवाहित होने वाली विद्युत धारा तथा इसके सिरों के बीच विभवांतर का मान ज्ञात करने के ऐमीटर तथा वोल्टमीटर के पाठ्यांक नोट कीजिए।
- उपरोक्त चरणों को, पहले तीन सेल और फिर चार सेलों को परिपथ में पृथक-पृथक लगाकर दोहराइए।
- विभवांतर V तथा विद्युत धारा I के प्रत्येक युगल के लिए अनुपात V/I परिकलित कीजिए।
- V तथा I के बीच ग्राफ खींचिए तथा इस ग्राफ की प्रकृति का प्रेक्षण कीजिए।

| क्रम<br>संख्या | परिपथ में<br>जुड़े सेलों<br>की संख्या | निक्रोम-तार<br>से प्रवाहित<br>विद्युत धारा I (A) | निक्रोम-तार<br>के सिरों पर<br>विभवांतर <i>V</i> (V) | V/I<br>( वोल्ट/ऐम्पियर) |
|----------------|---------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------|
| 1              | 1                                     |                                                  |                                                     |                         |
| 2              | 2                                     |                                                  |                                                     |                         |
| 3              | 3                                     |                                                  |                                                     |                         |
| 4              | 4                                     |                                                  |                                                     |                         |

इस क्रियाकलाप में आप यह देखेंगे कि प्रत्येक प्रकरण में V/I का लगभग एक ही मान प्राप्त होता है। इस प्रकार V-I ग्राफ चित्र 12.3 में दिखाए अनुसार मूल बिंदु से गुज़रने वाली एक सरल रेखा होती है। इस प्रकार, V/I एक नियत अनुपात है।

1827 में जर्मन भौतिकविज्ञानी जार्ज साईमन ओम ने, किसी धातु के तार में प्रवाहित विद्युत धारा *I* तथा उसके सिरों के बीच विभवांतर में परस्पर संबंध का पता लगाया। एक विद्युत परिपथ में धातु के तार के दो सिरों के बीच विभवान्तर उसमें प्रवाहित होने वाली विद्युत धारा के समानुपाती होता है, परंतु तार का ताप समान रहना चाहिए। इसे ओम का नियम कहते हैं। दूसरे शब्दों में-

$$V \propto I$$
 (12.4)  
अथवा  $V/I =$  नियतांक  $= R$   
अथवा  $V = IR$  (12.5)



चित्र 12.3 निक्रोम तार के लिए V-I ग्राफ। सरल रेखीय ग्राफ यह दर्शाता है कि जैसे-जैसे तार में प्रवाहित विद्युत धारा बढ़ती है विभवांतर रैखिकत: बढ़ता है। यही ओम का नियम है।

समीकरण (12.5) में किसी दिए गए धातु के लिए, दिए गए ताप पर, R एक नियतांक है जिसे तार का प्रतिरोध कहते हैं। किसी चालक का यह गुण है कि वह अपने में प्रवाहित होने वाले आवेश के प्रवाह का विरोध करता हैं। प्रतिरोध का SI मात्रक ओम है, इसे ग्रीक भाषा के शब्द Ω से निरूपित करते हैं। ओम के नियम के अनुसार

$$R = V/I \tag{12.6}$$

यदि किसी चालक के दोनों सिरों के बीच विभवांतर 1 V है तथा उससे 1 A विद्युत धारा प्रवाहित होती है, तब उस चालक का प्रतिरोध R, 1 Ω होता है।

1 ओम = 
$$\frac{1 \text{ वोल्ट}}{1 \text{ ऐम्प्यर}}$$

समीकरण (12.5) से हमें यह संबंध भी प्राप्त होता है:

$$I = V/R \tag{12.7}$$

समीकरण (12.7) से स्पष्ट है कि किसी प्रतिरोधक से प्रवाहित होने वाली विद्युत धारा उसके प्रतिरोध के व्युत्क्रमानुपाती होती है। यदि प्रतिरोध दोगुना हो जाए तो विद्युत धारा आधी रह जाती है। व्यवहार में कई बार किसी विद्युत परिपथ में विद्युत धारा को घटाना अथवा बढ़ाना आवश्यक हो जाता है। स्रोत की वोल्टता में बिना कोई परिवर्तन किए परिपथ की विद्युत धारा को नियंत्रित करने के लिए उपयोग किए जाने वाले अवयव को परिवर्ती प्रतिरोध कहते हैं। किसी विद्युत परिपथ में परिपथ के प्रतिरोध को परिवर्तित करने के लिए प्राय: एक युक्ति का उपयोग करते हैं जिसे धारा नियंत्रक कहते हैं। अब हम नीचे दिए गए क्रियाकलाप की सहायता से किसी चालक के विद्युत प्रतिरोध के विषय में अध्ययन करेंगे।

### क्रियाकलाप 12.2

- एक निक्रोम तार, एक टॉर्च बल्ब, एक 10 W का बल्ब तथा एक ऐमीटर (0 5 A पिरसर), एक प्लग कुंजी तथा कुछ संयोजी तार लीजिए।
- चार शुष्क सेलों (प्रत्येक 1.5 V का) को श्रेणीक्रम में ऐमीटर से संयोजित करके चित्र 12.4 में दिखाए अनुसार परिपथ में एक अंतराल XY छोड़कर एक परिपथ बनाइए।



चित्र 12.4

- अंतराल XY में निक्रोम तार को जोड़कर परिपथ को पूरा कीजिए। कुंजी लगाइए। ऐमीटर का पाठ्यांक नोट कीजिए।
   प्लग से कुंजी बाहर निकालिए (ध्यान दीजिए: परिपथ की धारा मापने के पश्चात सदैव ही प्लग से कुंजी बाहर निकालिए)।
- निक्रोम तार के स्थान पर अंतराल XY में टार्च बल्ब को पिरपथ में जोड़िए तथा ऐमीटर का पाठ्यांक लेकर बल्ब से प्रवाहित विद्युत धारा मापिए।
- अंतराल XY में विभिन्न अवयवों को जोड़ने पर ऐमीटर के पाठ्यांक भिन्न-भिन्न हैं? उपरोक्त प्रेक्षण क्या संकेत देते हैं?
- आप अंतराल XY में किसी भी पदार्थ का अवयव जोड़कर इस क्रियाकलाप को दोहरा सकते हैं। प्रत्येक स्थिति में ऐमीटर के पाठ्यांक का प्रेक्षण कीजिए। इन प्रेक्षणों का विश्लेषण कीजिए।

इस क्रियाकलाप में हम यह अवलोकन करते हैं कि विभिन्न अवयवों के लिए विद्युत धारा भिन्न है। यह भिन्न क्यों है? कुछ अवयव विद्युत धारा के प्रवाह के लिए सरल पथ प्रदान करते हैं जबिक अन्य इस प्रवाह का विरोध करते हैं। हम यह जानते हैं कि इलेक्ट्रॉनों की किसी परिपथ में गित के कारण ही परिपथ में कोई विद्युत धारा बनती है। तथापि, चालक के भीतर इलेक्ट्रॉन गित करने के लिए पूर्णत: स्वतंत्र नहीं होते। जिन परमाणुओं के बीच ये गित करते हैं उन्हीं के आकर्षण द्वारा इनकी गित नियंत्रित हो जाती है। इस प्रकार किसी चालक से होकर इलेक्ट्रॉनों की गित उसके प्रतिरोध द्वारा मंद हो जाती है। एक ही साइज के चालकों में वह चालक जिसका प्रतिरोध कम होता है, अधिक अच्छा चालक होता है। वह चालक जो पर्याप्त प्रतिरोध लगाता है, प्रतिरोधक कहलाता है। सर्वसम साइज का वह अवयव जो उच्च प्रतिरोध लगाता है, हीन चालक कहलाता है। समान साइज का कोई विद्युतरोधी इससे भी अधिक प्रतिरोध लगाता है।

### 12.5 वह कारक जिन पर किसी चालक का प्रतिरोध निर्भर करता है

### क्रियाकलाप 12.3

 एक सेल, एक ऐमीटर, ! लंबाई का एक निक्रोम तार [जैसे (1) द्वारा चिह्नित] तथा एक प्लग कुंजी चित्र 12.5 में दिखाए अनुसार जोड़कर एक विद्युत परिपथ पूरा कीजिए।



चित्र 12.5 उन कारकों जिन पर किसी चालक तार का प्रतिरोध निर्भर करता है, का अध्ययन करने के लिए विद्युत परिपथ

- अब प्लग में कुंजी लगाइए। ऐमीटर में विद्युत धारा नोट कीजिए।
- इस निक्रोम तार को अन्य निक्रोम तार से प्रतिस्थापित कीजिए, जिसकी मोटाई समान परंतु लंबाई दोगुनी हो, अर्थात
   था लंबाई का तार लीजिए जिसे चित्र 12.5 में (2) से चिह्नित किया गया है।
- ऐमीटर का पाठ्यांक नोट कीजिए।
- अब इस तार को समान लंबाई । के निक्रोम के मोटे तार [(3) से चिह्नित] से प्रतिस्थापित कीजिए। मोटे तार की अनुप्रस्थ काट का क्षेत्रफल अधिक होता है। परिपथ में प्रवाहित विद्युत धारा फिर नोट कीजिए।
- निक्रोम तार के स्थान पर ताँबे का तार [चित्र 12.5 में जिस पर चिह्न (4) बना है] परिपथ में जोड़िए। मान लीजिए यह तार निक्रोम के तार जिस पर (1) चिह्नित है, के बराबर लंबा तथा समान अनुप्रस्थ काट के क्षेत्रफल का है। विद्युत धारा का मान नोट कीजिए।
- प्रत्येक प्रकरण में विद्युत धारा के मानों में अंतर को ध्यान से देखिए।
- क्या विद्युत धारा चालक की लंबाई पर निर्भर करती है?
- क्या विद्युत धारा उपयोग किए जाने वाले तार के अनुप्रस्थ काट के क्षेत्रफल पर निर्भर करती है?

यह पाया गया है कि जब तार की लंबाई दोगुनी कर देते हैं तो ऐमीटर का पाठ्यांक आधा हो जाता है। परिपथ में समान पदार्थ तथा समान लंबाई का मोटा तार जोड़ने पर ऐमीटर का पाठ्यांक बढ़ जाता है। ऐमीटर के पाठ्यांक में तब भी अंतर आता है जब परिपथ में भिन्न पदार्थ परंतु समान लंबाई तथा समान अनुप्रस्थ काट के क्षेत्रफल के तार को जोड़ते हैं। ओम के नियम [समीकरण (12.5) – (12.7)] को अनुप्रयोग करने पर हम यह पाते हैं कि किसी चालक का प्रतिरोध (i) चालक की लंबाई (ii) उसकी अनुप्रस्थ काट के क्षेत्रफल तथा (iii) उसके पदार्थ की प्रकृति पर निर्भर करता है। परिशुद्ध माप यह दर्शाते हैं कि किसी धातु के एकसमान चालक का प्रतिरोध उसकी लंबाई (l) के अनुक्रमानुपाती तथा उसकी अनुप्रस्थ काट के क्षेत्रफल (A) के व्युत्क्रमानुपाती होता है। अर्थात्

$$R \propto l \tag{12.8}$$

तथा  $R \approx 1/A$  (12.9)

समीकरणों (12.8) तथा (12.9) को संयोजित करने पर हमें प्राप्त होता है

$$R \propto \frac{l}{A}$$
 अथवा  $R = \rho \frac{l}{A}$  (12.10)

यहाँ  $\rho$  (रो) आनुपातिकता स्थिरांक है जिसे चालक के पदार्थ की वैद्युत प्रतिरोधकता कहते हैं। प्रतिरोधकता का SI मात्रक  $\Omega$  m है। यह किसी पदार्थ का अभिलाक्षणिक गुणधर्म है। धातुओं तथा मिश्रातुओं की प्रतिरोधकता अत्यंत कम होती है जिसका परिसर  $10^{-8}$   $\Omega$ m से  $10^{-6}$   $\Omega$ m है। ये विद्युत की अच्छी चालक हैं। रबड़ तथा काँच जैसे विद्युतरोधी पदार्थों की प्रतिरोधकता  $10^{12}$  से  $10^{17}$   $\Omega$  m कोटि की होती है। किसी पदार्थ का प्रतिरोध तथा प्रतिरोधकता दोनों ही ताप में परिवर्तन के साथ परिवर्तित हो जाते हैं।

सारणी 12.2 में हम यह देखते हैं कि व्यापक रूप में मिश्रातुओं की प्रतिरोधकता उनकी अवयवी धातुओं की अपेक्षा अधिक होती है। मिश्रातुओं का उच्च ताप पर शीघ्र ही उपचयन (दहन) नहीं होता। यही कारण है कि मिश्रातुओं का उपयोग विद्युत-इस्तरी, टोस्टर आदि सामान्य वैद्युत तापन युक्तियों के निर्माण में किया जाता है। विद्युत बल्बों के तंतुओं के निर्माण में तो एकमात्र टंगस्टन का ही उपयोग किया जाता है, जबिक कॉपर तथा ऐलुमिनियम का उपयोग विद्युत संचरण के लिए उपयोग होने वाले तारों के निर्माण में किया जाता है।

सारणी 12.2 20 °C पर कुछ पदार्थों की वैद्युत प्रतिरोधकता\*

|             | पदार्थ                          | प्रतिरोध (Ω m)          |
|-------------|---------------------------------|-------------------------|
| चालक        | सिल्वर                          | 1.60 × 10 <sup>-8</sup> |
|             | कॉपर                            | $1.62 \times 10^{-8}$   |
|             | ऐलुमिनियम                       | $2.63 \times 10^{-8}$   |
|             | . उ<br>टंगस्टन                  | $5.20 \times 10^{-8}$   |
|             | निकैल                           | $6.84 \times 10^{-8}$   |
|             | आयरन                            | $10.0 \times 10^{-8}$   |
|             | क्रोमियम                        | $12.9 \times 10^{-8}$   |
|             | मर्करी                          | $94.0 \times 10^{-8}$   |
|             | मैगनीज्                         | $1.84 \times 10^{-6}$   |
| मिश्रातुएँ  | कांस्टेंटन                      | $49 \times 10^{-6}$     |
|             | (Cu तथा Ni की मिश्रातु)         |                         |
|             | मैंगनीज                         | $44 \times 10^{-6}$     |
|             | (Cu, Mn तथा Ni की मिश्रातु)     |                         |
|             | निक्रोम                         | $100 \times 10^{-6}$    |
|             | (Ni, Cr, Mn तथा Fe की मिश्रातु) |                         |
| विद्युतरोधी | काँच                            | $10^{10} - 10^{14}$     |
|             | कठोर                            | $10^{13} - 10^{16}$     |
|             | ऐबोनाइट                         | $10^{15} - 10^{17}$     |
|             | डायमंड                          | $10^{12} - 10^{13}$     |
|             | कागज (शुष्क)                    | $10^{12}$               |

<sup>\*</sup> आपको इन मानों को याद करने की कोई आवश्यकता नहीं है। इन मानों का उपयोग आप आंकिक प्रश्नों को हल करने के लिए कर सकते हैं।

#### उदाहरण 12.3

(a) यदि किसी विद्युत बल्ब के तंतु का प्रितरोध 1200Ω है तो यह बल्ब 220V स्रोत से कितनी विद्युत धारा लेगा? (b) यदि किसी विद्युत हीटर की कुंडली का प्रितरोध 100Ω है तो यह विद्युत हीटर 220V स्रोत से कितनी धारा लेगा?

#### हल

- (a) हमें दिया गया है  $V = 220 \mathrm{V}; R = 1200 \, \Omega$ समीकरण (12.6) से विद्युत धारा  $I = 220 \, \mathrm{V}/1200 \, \Omega$ =  $0.18 \, \mathrm{A}$
- (b) हमें दिया गया है  $V = 220 \text{ V}; R = 100 \Omega$  समीकरण (12.6) से विद्युत धारा  $I = 220 \text{ V}/100 \Omega$  = 2.2 A

220 V के समान विद्युत स्रोत से विद्युत बल्ब तथा विद्युत हीटर द्वारा ली जाने वाली विद्युत धाराओं के अंतर पर ध्यान दीजिए!

#### उदाहरण 12.4

जब कोई विद्युत हीटर विद्युत स्रोत से 4 A विद्युत धारा लेता है तब उसके टर्मिनलों के बीच विभवांतर 60 V है। उस समय विद्युत हीटर कितनी विद्युत धारा लेगा जब विभवांतर को 120 V तक बढ़ा दिया जाएगा?

#### हल

हमें दिया गया है, विभवांतर V = 60 V, विद्युत धारा I = 4 A

ओम के नियम के अनुसार,  $R = \frac{V}{I} = \frac{60 \text{ V}}{4 \text{ A}} = 15 \Omega$ 

जब विभवांतर बढ़ाकर 120 V किया जाता है, तब

विद्युतधारा 
$$I = \frac{V}{R} = \frac{120 \text{ V}}{15 \Omega} = 8 \text{ A}$$

अर्थात, तब विद्युत हीटर से प्रवाहित विद्युत धारा का मान 8 A हो जाता है।

#### उदाहरण 12.5

किसी धातु के  $1~\mathrm{m}$  लंबे तार का  $20~\mathrm{^{\circ}C}$  पर वैद्युत प्रतिरोध  $26~\Omega$  है। यदि तार का व्यास  $0.3~\mathrm{mm}$  है, तो इस ताप पर धातु की वैद्युत प्रतिरोधकता क्या है? सारणी  $12.2~\mathrm{an}$  उपयोग करके तार के पदार्थ की भविष्यवाणी कीजिए।

#### हल

हमें दिया गया है तार का प्रतिरोध  $R=26\Omega$ , व्यास  $d=0.3~{\rm mm}=3\times 10^{-4}~{\rm m}$ , तथा तार की लंबाई  $l=1~{\rm m}$  अतः, समीकरण (12.10) से, दिए गए धातु के तार की वैद्युत प्रतिरोधकता  $\rho=(RA/l)=(R\pi d^2/4l)$ 

मानों को प्रतिस्थापित करने पर हमें प्राप्त होता है

$$\rho$$
 = 1.84 × 10<sup>-6</sup>  $\Omega$  m,

इस प्रकार दिए गए तार की धातु की 20 °C पर वैद्युत प्रतिरोधकता  $1.84 \times 10^{-6}$  Ω m है। सारणी 12.2 में हम देखते हैं कि मैंगनीज़ की वैद्युत प्रतिरोधकता का मान यही है।

#### उदाहरण 12.6

दिए गए पदार्थ के किसी l लंबाई तथा A मोटाई के तार का प्रतिरोध  $4\Omega$  है। इसी पदार्थ के किसी अन्य तार का प्रतिरोध क्या होगा जिसकी लंबाई  $\frac{l}{2}$  तथा मोटाई 2A है?

### हल

प्रथम तार के लिए

$$R_1 = \rho \, \frac{l}{A}$$
$$= 4 \, \Omega$$

द्वितीय तार के लिए

$$R_2 = \rho \frac{l/2}{2 A}$$

$$= \frac{1}{4} \cdot \rho \frac{l}{A}$$

$$=\frac{1}{4}R$$

$$= \frac{1}{4} \times 4\Omega$$

 $= 1\Omega$ 

अत: तार का नया प्रतिरोध 1 Ω है।

### प्रश्न

- 1. किसी चालक का प्रतिरोध किन कारकों पर निर्भर करता है?
- 2. समान पदार्थ के दो तारों में यदि एक पतला तथा दूसरा मोटा हो तो इनमें से किसमें विद्युत धारा आसानी से प्रवाहित होगी जबकि उन्हें समान विद्युत स्रोत से संयोजित किया जाता है? क्यों?
- 3. मान लीजिए किसी वैद्युत अवयव के दो सिरों के बीच विभवांतर को उसके पूर्व के विभवांतर की तुलना में घटाकर आधा कर देने पर भी उसका प्रतिरोध नियत रहता है। तब उस अवयव से प्रवाहित होने वाली विद्युत धारा में क्या परिवर्तन होगा?
- 4. विद्युत टोस्टरों तथा विद्युत इस्तिरयों के तापन अवयव शुद्ध धातु के न बनाकर किसी मिश्रातु के क्यों बनाए जाते हैं?
- 5. निम्नलिखित प्रश्नों के उत्तर तालिका 12.2 में दिए गए आँकड़ों के आधार पर दीजिए:
  - (a) आयरन (Fe) तथा मर्करी (Hg) में कौन अच्छा विद्युत चालक है?
  - (b) कौन-सा पदार्थ सर्वश्रेष्ठ चालक है?

### 12.6 प्रतिरोधकों के निकाय का प्रतिरोध

पिछले अनुभाग में हमने कुछ सरल विद्युत परिपथों के बारे में सीखा था। हमने यह देखा कि किसी चालक से प्रवाहित होने वाली विद्युत धारा का मान किस प्रकार उसके प्रतिरोध तथा उसके सिरों के बीच विभवांतर पर निर्भर करता है। विविध प्रकार के विद्युत उपकरणों तथा युक्तियों में हम प्राय: प्रतिरोधकों के विविध संयोजन देखते हैं। इसलिए अब हमें यह विचार करना है कि प्रतिरोधकों के संयोजनों पर ओम के नियम को किस प्रकार अनुप्रयुक्त किया जा सकता है?

प्रतिरोधकों को परस्पर संयोजित करने की दो विधियाँ हैं। चित्र 12.6 में एक विद्युत परिपथ दिखाया गया है जिसमें  $R_1$ ,  $R_2$  तथा  $R_3$  प्रतिरोध के तीन प्रतिरोधकों को एक सिरे से दूसरा सिरा मिलाकर जोड़ा गया है। प्रतिरोधकों के इस संयोजन को श्रेणीक्रम संयोजन कहा जाता है।



चित्र 12.6 श्रेणीक्रम में संयोजित प्रतिरोधक

चित्र 12.7 में प्रतिरोधकों का एक ऐसा संयोजन दिखाया गया है जिसमें तीन प्रतिरोधक एक साथ बिंदुओं X तथा Y के बीच संयोजित हैं। प्रतिरोधकों के इस प्रकार के संयोजन को **पार्श्वक्रम संयोजन** कहा जाता है।



चित्र 12.7 पार्श्वक्रम में संयोजित प्रतिरोधक

### 12.6.1 श्रेणीक्रम में संयोजित प्रतिरोधक

जब कई प्रतिरोधकों को श्रेणीक्रम में संयोजित करते हैं तो परिपथ में प्रवाहित विद्युत धारा का क्या होता है? उनका तुल्य प्रतिरोध क्या होता है? आइए इसे निम्नलिखित क्रियाकलापों की सहायता से समझने का प्रयास करते हैं।

### क्रियाकलाप 12.4

- विभिन्न मानों के तीन प्रतिरोधकों को श्रेणीक्रम में जोड़िए। चित्र 12.6 में दिखाए अनुसार इन्हें एक बैटरी, एक ऐमीटर तथा एक प्लग कुंजी से संयोजित कीजिए। आप 1Ω, 2Ω, 3Ω आदि मानों के प्रतिरोधकों का उपयोग कर सकते हैं तथा इस क्रियाकलाप के लिए 6 V की बैटरी उपयोग में ला सकते हैं।
- कुंजी को प्लग में लगाइए तथा ऐमीटर का पाठ्यांक नोट कीजिए।
- ऐमीटर की स्थिति को दो प्रतिरोधकों के बीच कहीं भी परिवर्तित कर सकते हैं। हर बार ऐमीटर का पाठ्यांक नोट कीजिए।
- क्या आप ऐमीटर के द्वारा विद्युत धारा के मान में कोई अंतर पाते हैं?

आप यह देखेंगे कि ऐमीटर में विद्युत धारा का मान वही रहता है, यह परिपथ में ऐमीटर की स्थिति पर निर्भर नहीं करता। इसका तात्पर्य यह है कि प्रतिरोधकों के श्रेणीक्रम संयोजन में परिपथ के हर भाग में विद्युत धारा समान होती है अर्थात प्रत्येक प्रतिरोध से समान विद्युत धारा प्रवाहित होती है।

### क्रियाकलाप 12.5

 क्रियाकलाप 12.4 में चित्र 12.8 में दिखाए अनुसार तीन प्रतिरोधकों के श्रेणीक्रम संयोजन के सिरों X तथा Y के बीच एक वोल्टमीटर लगाइए।



- पिरपथ में प्लग में कुंजी लगाइए तथा वोल्टमीटर का पाठ्यांक नोट कीजिए। इससे हमें श्रेणीक्रम संयोजन के सिरों के बीच विभवांतर ज्ञात होता है। मान लीजिए यह V है। अब बैटरी के दोनों टर्मिनलों के बीच विभवांतर नोट कीजिए। इन दोनों मानों की तुलना कीजिए।
- प्लग से कुंजी निकालिए तथा वोल्टमीटर को भी परिपथ से हटा दीजिए। अब वोल्टमीटर को चित्र 12.8 में दिखाए अनुसार पहले प्रतिरोधक के सिरों X तथा P के बीच जोडिए।
- प्लग में कुंजी लगाइए तथा पहले प्रतिरोधक के सिरों के बीच विभवांतर मापिए। मान लीजिए यह V, है।
- इसी प्रकार अन्य दो प्रतिरोधकों के सिरों के बीच पृथक-पृथक विभवांतर मापिए। मान लीजिए ये मान क्रमश: V<sub>2</sub> तथा V<sub>3</sub> हैं।
- ullet  $V,\ V_{_1},\ V_{_2}$  तथा  $V_{_3}$  के बींच संबंध व्युत्पन्न कीजिए।

आप यह देखेंगे कि विभवांतर V अन्य तीन विभवांतरों,  $V_1$ ,  $V_2$  तथा  $V_3$  के योग के बराबर है। अर्थात प्रतिरोधक के श्रेणीक्रम संयोजन के सिरों के बीच कुल विभवांतर व्यष्टिगत प्रतिरोधकों के विभवांतरों के योग के बराबर है। अर्थात

$$V = V_1 + V_2 + V_3 \tag{12.11}$$

मान लीजिए, चित्र 12.8 विद्युत में दर्शाये गए परिपथ में प्रवाहित विद्युत धारा I है। तब प्रत्येक प्रतिरोधक से प्रवाहित विद्युत धारा भी I है। श्रेणीक्रम में जुड़े इन तीनों प्रतिरोधकों को एक ऐसे तुल्य एकल प्रतिरोधक जिसका प्रतिरोध R है, के द्वारा प्रतिस्थापित करना संभव है जिसे परिपथ में जोड़ने पर इसके सिरों पर प्रतिरोध V तथा परिपथ में प्रवाहित धारा I वही रहती है। समस्त परिपथ पर ओम का नियम अनुप्रयुक्त करने पर हमें प्राप्त होता है:

$$V = IR \tag{12.12}$$

तीनों प्रतिरोधकों पर पृथक-पृथक ओम का नियम अनुप्रयुक्त करने पर हमें प्राप्त होता है:

$$V_{i} = IR_{i}$$
 [12.13(a)]

$$V_2 = IR_2$$
 [12.13(b)]

तथा 
$$V_3 = IR_3$$
 [12.13(c)]

समीकरण (12.11) से

$$IR = IR_1 + IR_2 + IR_3$$

अथवा

$$R_s = R_1 + R_2 + R_3 \tag{12.14}$$

इस प्रकार हम यह निष्कर्ष निकाल सकते हैं कि जब बहुत से प्रतिरोधक श्रेणीक्रम में संयोजित होते हैं तो संयोजन का कुल प्रतिरोध  $R_1$ ,  $R_2$ ,  $R_3$  के योग के बराबर होता है और इस प्रकार संयोजन का प्रतिरोध किसी भी व्यष्टिगत प्रतिरोधक के प्रतिरोध से अधिक होता है।

#### उदाहरण 12.7

एक विद्युत लैम्प जिसका प्रतिरोध 20 है, तथा एक 4 Ω प्रतिरोध का चालक 6 V की बैटरी से चित्र 12.9 में दिखाए अनुसार संयोजित हैं। (a) परिपथ का कुल प्रतिरोध, (b) परिपथ में प्रवाहित विद्युत धारा तथा (c) विद्युत लैम्प तथा चालक के सिरों के बीच विभवांतर परिकलित कीजिए।



चित्र 12.9 6V की बैटरी से श्रेणीक्रम में संयोजित एक विद्युत लैम्प तथा 4Ω का एक प्रतिरोधक

#### हल

विद्युत लैम्प का प्रतिरोध  $R_1 = 20 \Omega$ 

श्रेणीक्रम में संयोजित चालक का प्रतिरोध  $R_{_2}$  =  $4~\Omega$ 

तब, परिपथ में कुल प्रतिरोध

 $R = R_1 + R_2$ 

 $R_{\rm s} = 20 \Omega + 4 \Omega = 24 \Omega$ 

बैटरी के दो टर्मिनलों के बीच कुल विभवांतर

V = 6 V

अब, ओम के नियम के अनुसार परिपथ में प्रवाहित कुल विद्युत धारा

 $I = V/R_{\circ}$ 

 $= 6 \text{ V}/24 \Omega$ 

 $= 0.25 \,\mathrm{A}$ 

विद्युत लैम्प तथा चालक पर ओम का नियम पृथक-पृथक अनुप्रयुक्त करने पर हमें विद्युत लैम्प के सिरों के बीच विभवांतर प्राप्त होता है:

 $V_t = 20 \Omega \times 0.25 A$ 

= 5 V;

तथा, चालक के सिरों के बीच विभवांतर प्राप्त होता है;

 $V_2 = 4 \Omega \times 0.25 A = 1 V$ 

अब मान लीजिए हम विद्युत लैम्प तथा चालक के श्रेणीक्रम संयोजन को किसी एकल तथा तुल्य प्रतिरोधक से प्रतिस्थापित करना चाहते हैं। इस तुल्य प्रतिरोधक का प्रतिरोध इतना होना चाहिए कि इसे 6 V बैटरी के दो टर्मिनलों से संयोजित करने पर परिपथ में 0.25 A विद्युत धारा प्रवाहित हो। तब इस तुल्य प्रतिरोधक का प्रतिरोध R होगा

R = V/I

= 6 V / 0.25 A

 $= 24 \Omega$ 

यह श्रेणीक्रम परिपथ का कुल प्रतिरोध है; यह दोनों प्रतिरोधों के योग के बराबर है।

# प्रश्न

- 1. किसी विद्युत परिपथ का व्यवस्था आरेख खींचिए जिसमें  $2\ V$  के तीन सेलों की बैटरी, एक  $5\ \Omega$  प्रतिरोधक, एक  $8\ \Omega$  प्रतिरोधक, एक  $12\ \Omega$  प्रतिरोधक तथा एक प्लग कुंजी सभी श्रेणीक्रम में संयोजित हों।
- 2. प्रश्न 1 का परिपथ दुबारा खींचिए तथा इसमें प्रतिरोधकों से प्रवाहित विद्युत धारा को मापने के लिए ऐमीटर तथा 12 Ω के प्रतिरोधक के सिरों के बीच विभवांतर मापने के लिए वोल्टमीटर लगाइए। ऐमीटर तथा वोल्टमीटर के क्या पाठ्यांक होंगे?

### 12.6.2 पार्श्वक्रम में संयोजित प्रतिरोधक

आइए अब चित्र 12.7 में दिखाए अनुसार, जोड़े गये सेलों के एक संयोजन (अथवा बैटरी) से पार्श्वक्रम में संयोजित तीन प्रतिरोधकों की व्यवस्था पर विचार करते हैं।

### क्रियाकलाप 12.6

- तीन प्रतिरोधकों जिनके प्रतिरोध क्रमश: R<sub>1</sub>, R<sub>2</sub> तथा R<sub>3</sub> हैं, का पार्श्व संयोजन XY बनाइए। चित्र 12.10 में दिखाए अनुसार इस संयोजन को एक बैटरी, एक प्लग कुंजी तथा एक ऐमीटर से संयोजित कीजिए। प्रतिरोधकों के संयोजन के पार्श्वक्रम में एक वोल्टमीटर भी संयोजित कीजिए।
- प्लग में कुंजी लगाइए तथा ऐमीटर का पाठ्यांक नोट कीजिए। मान लीजिए विद्युत धारा का मान I है। वोल्टमीटर का पाठ्यांक भी नोट कीजिए। इससे पार्श्व संयोजन के सिरों के बीच विभवांतर V प्राप्त होता है। प्रत्येक प्रतिरोधक के सिरों के बीच विभवांतर भी V है। इसकी जाँच प्रत्येक प्रतिरोधक के सिरों पर पृथक-पृथक वोल्टमीटर संयोजित करके की जा सकती है (चित्र 12.11 देखिए)।





चित्र 12.11

- कुंजी से प्लग बाहर निकालिए। परिपथ से ऐमीटर तथा वोल्टमीटर निकाल लीजिए। चित्र 12.11 में दिखाए अनुसार ऐमीटर को प्रतिरोध  $R_{_{\mathrm{I}}}$  से श्रेणीक्रम में संयोजित कीजिए। ऐमीटर का पाठ्यांक I, नोट कीजिए।
- इसी प्रकार, R<sub>1</sub> एवं R<sub>2</sub> में प्रवाहित होने वाली धारा भी मापिए। माना इनका मान क्रमश:  $I_1$  एवं  $I_2$  है। I,  $I_1$ ,  $I_2$  एवं  $I_3$  में क्या संबंध है?

यह पाया जाता है कि कुल विद्युत धारा I, संयोजन की प्रत्येक शाखा में प्रवाहित होने वाली पृथक धाराओं के योग के बराबर है।

$$I = I_1 + I_2 + I_3 \tag{12.15}$$

मान लीजिए प्रतिरोधकों के पार्श्व संयोजन का तुल्य प्रतिरोध  $R_{_{\! 2}}$  है। प्रतिरोधकों के पार्श्व संयोजन पर ओम का नियम लागू करने पर हमें प्राप्त होता है

$$I = V/R_{\rm o} \tag{12.16}$$

प्रत्येक प्रतिरोधक पर ओम का नियम लागू करने पर हमें प्राप्त होता है

$$I_1 = V/R_1; \quad I_2 = V/R_2; \text{ show } I_3 = V/R_3$$
 (12.17)

समीकरणों (12.15) तथा (12.17) से हमें प्राप्त होता है

$$V/R_{_{1}} = V/R_{_{1}} + V/R_{_{2}} + V/R_{_{3}}$$

$$V/R_p = V/R_1 + V/R_2 + V/R_3$$
 अथवा 
$$1/R_p = 1/R_1 + 1/R_2 + 1/R_3 \tag{12.18}$$

इस प्रकार हम यह निष्कर्ष निकाल सकते हैं कि पार्श्वक्रम से संयोजित प्रतिरोधों के समूह के तुल्य प्रतिरोध का व्युत्क्रम पृथक प्रतिरोधों के व्युत्क्रमों के योग के बराबर होता है।

#### उदाहरण 12.8

चित्र 12.10 के परिपथ आरेख में मान लीजिए प्रतिरोधकों  $R_1$ ,  $R_2$  तथा  $R_3$  के मान क्रमश:  $5 \Omega$ ,  $10 \Omega$ ,  $30 \Omega$  हैं तथा इन्हें 12 V की बैटरी से संयोजित किया गया है। (a) प्रत्येक प्रतिरोधक से प्रवाहित विद्युत धारा (b) परिपथ में प्रवाहित कुल विद्युत धारा तथा (c) परिपथ का कुल प्रतिरोध परिकलित कीजिए।

 $R_{_{1}}$  = 5  $\Omega$ ,  $R_{_{2}}$  = 10  $\Omega$ , तथा  $R_{_{3}}$  = 30  $\Omega$ बैटरी के सिरों पर विभवांतर, V = 12 V

प्रत्येक व्यष्टिगत प्रतिरोधक के सिरों पर भी विभवांतर इतना ही है, अत: प्रतिरोधकों से प्रवाहित विद्युत धारा का परिकलन करने के लिए हम ओम के नियम का उपयोग करते हैं।

$$R_{_{1}}$$
 से प्रवाहित विद्युत धारा  $I_{_{1}}$  =  $V/R_{_{1}}$ 

$$I_1 = 12 \text{ V}/5 \Omega = 2.4 \text{ A}$$

$$R_2$$
 से प्रवाहित विद्युत धारा  $I_2$  =  $V/R_2$ 

$$I_2 = 12 \text{ V}/10 \Omega = 1.2 \text{ A}$$

$$R_3$$
 से प्रवाहित विद्युत धारा  $I_3 = V/R_3$ 

$$I_3 = 12 \text{ V}/30 \Omega = 0.4 \text{ A}$$

परिपथ से प्रवाहित कुल धारा

$$I = I_1 + I_2 + I_3$$
  
= (2.4 + 1.2 + 0.4) A  
= 4 A

समीकरण (12.18) से कुल प्रतिरोध  $R_{_{\! p}}$ , का मान इस प्रकार प्राप्त किया जा सकता है।

$$\frac{1}{R_p} = \frac{1}{5} + \frac{1}{10} + \frac{1}{30} = \frac{1}{3}$$

इस प्रकार  $R_p = 3 \Omega$ 

#### उदाहरण 12.9

चित्र 12.12, में  $R_{_{I}}=10~\Omega,~R_{_{2}}=40~\Omega,~R_{_{3}}=30~\Omega,~R_{_{4}}=20~\Omega,~R_{_{5}}=60~\Omega,~$  है तथा प्रतिरोधकों के इस विन्यास को 12 V से संयोजित किया जाता है। (a) परिपथ में कुल प्रतिरोध तथा (b) परिपथ में प्रवाहित कुल विद्युत धारा परिकलित कीजिए।

#### हल

मान लीजिए इन पार्श्वक्रम में संयोजित दो प्रतिरोधकों  $R_1$  तथा  $R_2$  को  $\bar{\mathbf{L}}$  किसी तुल्य प्रतिरोधक जिसका प्रतिरोध R'. है, द्वारा प्रतिस्थापित करते हैं। इस प्रकार हम पार्श्वक्रम में संयोजित तीन प्रतिरोधकों  $R_3$ ,  $R_4$  तथा  $R_5$  को किसी अन्य तुल्य प्रतिरोधक जिसका प्रतिरोध R''द्वारा प्रतिस्थापित करते हैं। तब समीकरण (12.19) का उपयोग करने पर हमें प्राप्त होता है

इस प्रकार, कुल प्रतिरोध,  $R=R'+R''=18~\Omega$ 

विद्युत धारा का मान परिकलित करने के लिए ओम का नियम उपयोग करने पर हमें प्राप्त होता है

$$I = V/R = 12 \text{ V}/18 \Omega = 0.67 \text{ A}$$



चित्र 12.12 श्रेणीक्रम तथा पार्श्वक्रम में संयोजित प्रतिरोधकों के संयोजन को दर्शाता विद्युत परिपथ

हमने देखा है कि किसी श्रेणीबद्ध विद्युत परिपथ में शुरू से अंत तक विद्युत धारा नियत रहती है। इस प्रकार स्पष्ट रूप से यह व्यावहारिक नहीं है कि हम किसी विद्युत परिपथ में विद्युत बल्ब तथा विद्युत हीटर को श्रेणीक्रम में संयोजित करें। इसका कारण यह है कि इन्हें उचित प्रकार से कार्य करने के लिए अत्यधिक भिन्न मानों की विद्युत धाराओं की आवश्यकता होती है (उदाहरण 12.3 देखिए)। श्रेणीबद्ध परिपथ से एक प्रमुख हानि यह होती है कि जब परिपथ का एक अवयव कार्य करना बंद कर देता है तो परिपथ टूट जाता है और परिपथ का अन्य कोई अवयव कार्य नहीं कर पाता। यदि आपने त्योहारों, विवाहोत्सवों आदि पर भवनों की सजावट में बल्बों की सजावटी लिड्यों का उपयोग होते देखा है तो आपने बिजली-मिस्तरी को परिपथ में खराबी वाले स्थान को ढूँढ़ने में काफी समय खर्च करते हुए यह देखा होगा कि कैसे वह फ्यूज़ बल्बों को ढूँढ़ने में सभी बल्बों की जाँच करता है, खराब बल्बों को बदलता है। इसके विपरीत पाश्वक्रम परिपथ में विद्युत धारा विभिन्न वैद्युत साधित्रों में विभाजित हो जाती है। पार्श्व परिपथ में कुल प्रतिरोध समीकरण (12.18) के अनुसार घटता है। यह विशेष रूप से तब अधिक सहायक होता है जब साधित्रों के प्रतिरोध भिन्न-भिन्न होते हैं तथा उन्हें उचित रूप से कार्य करने के लिए भिन्न विद्युत धारा की आवश्यकता होती है।

# प्रश्न

- 1. जब (a) 1  $\Omega$  तथा  $10^6 \Omega$  (b) 1  $\Omega$ ,  $10^3 \Omega$  तथा  $10^6 \Omega$  के प्रतिसेध पार्श्वक्रम में संयोजित किए जाते हैं तो इनके तुल्य प्रतिरोध के संबंध में आप क्या निर्णय करेंगे।
- 2.  $100~\Omega$  का एक विद्युत लैम्प,  $50~\Omega$  का एक विद्युत टोस्टर तथा  $500~\Omega$  का एक जल फिल्टर 220~V के विद्युत स्रोत से पार्श्वक्रम में संयोजित हैं। उस विद्युत इस्तरी का प्रतिरोध क्या है जिसे यदि समान स्रोत के साथ संयोजित कर दें तो वह उतनी ही विद्युत धारा लेती हैं जितनी तीनों युक्तियाँ लेती हैं। यह भी ज्ञात कीजिए कि इस विद्युत इस्तरी से कितनी विद्युत धारा प्रवाहित होती हैं?
- 3. श्रेणीक्रम में संयोजित करने के स्थान पर वैद्युत युक्तियों को पार्श्वक्रम में संयोजित करने के क्या लाभ हैं?
- 4.  $2 \Omega$ ,  $3 \Omega$  तथा  $6 \Omega$  के तीन प्रतिरोधकों को किस प्रकार संयोजित करेंगे कि संयोजन का कुल प्रतिरोध (a)  $4 \Omega$ , (b)  $1 \Omega$  हो?
- 4 Ω, 8 Ω, 12 Ω तथा 24 Ω प्रतिरोध की चार कुंडलियों को किस प्रकार संयोजित करें कि संयोजन से (a) अधिकतम (b) निम्नतम प्रतिरोध प्राप्त हो सके?

## 12.7 विद्युत धारा का तापीय प्रभाव

हम जानते हैं कि बैटरी अथवा सेल विद्युत ऊर्जा के म्रोत हैं। सेल के भीतर होने वाली रासायनिक अभिक्रिया सेल के दो टर्मिनलों के बीच विभवांतर उत्पन्न करती है, जो बैटरी से संयोजित किसी प्रतिरोधक अथवा प्रतिरोधकों के किसी निकाय में विद्युत धारा प्रवाहित करने के लिए इलेक्ट्रॉनों में गित स्थापित करता है। हमने अनुभाग 12.2 में यह अध्ययन किया है कि परिपथ में विद्युत धारा बनाए रखने के लिए म्रोत को अपनी ऊर्जा खर्च करते रहना पड़ता है। यह ऊर्जा कहाँ चली जाती है? विद्युत धारा

बनाए रखने में, खर्च हुई स्रोत की ऊर्जा का कुछ भाग उपयोगी कार्य करने (जैसे पंखे की पंखुड़ियों को घुमाना) में उपयोग हो जाता है। स्रोत की ऊर्जा का शेष भाग उस ऊष्मा को उत्पन्न करने में खर्च होता है। जो साधित्रों के ताप में वृद्धि करती है। इसका प्रेक्षण प्राय: हम अपने दैनिक जीवन में करते हैं। उदाहरण के लिए, हम किसी विद्युत पंखे को निरंतर काफी समय तक चलाते हैं तो वह गर्म हो जाता है। इसके विपरीत यदि विद्युत परिपथ विशुद्ध रूप से प्रतिरोधक है, अर्थात बैटरी से केवल प्रतिरोधकों का एक समूह ही संयोजित है तो स्रोत की ऊर्जा निरंतर पूर्ण रूप से ऊष्मा के रूप में क्षयित होती रहती है। इसे विद्युत धारा का तापीय प्रभाव कहते हैं। इस प्रभाव का उपयोग विद्युत हीटर, विद्युत इस्तरी जैसी युक्तियों में किया जाता है।

प्रतिरोध R के किसी प्रतिरोधक पर विचार कीजिए जिससे विद्युत धारा I प्रवाहित हो रही है। मान लीजिए इसके सिरों के बीच विभवांतर V है (चित्र 12.13)। मान लीजिए इससे समय t में Q आवेश प्रवाहित होता है। Q आवेश विभवांतर V से प्रवाहित होने में किया गया कार्य VQ है। अतः स्रोत को समय t में VQ ऊर्जा की आपूर्ति करनी चाहिए। अतः स्रोत द्वारा परिपथ में निवेशित शक्ति

$$P = V \frac{Q}{t} = VI \tag{12.19}$$

अर्थात समय t में स्रोत द्वारा परिपथ को प्रदान की गयी ऊर्जा  $P \times t$  है जो VIt के बराबर है। स्रोत द्वारा खर्च की जाने वाली इस ऊर्जा का क्या होता है? यह ऊर्जा ऊष्मा के रूप में प्रतिरोधक में क्षयित हो जाती है। इस प्रकार किसी स्थायी विद्युत धारा I द्वारा समय t में उत्पन्न ऊष्मा की मात्रा

$$H = VIt (12.20)$$

ओम का नियम [समीकरण (12.5)] लागू करने पर हमें प्राप्त होता है

$$H = I^2 Rt \tag{12.21}$$

इसे जूल का तापन नियम कहते हैं। इस नियम से यह स्पष्ट है कि किसी प्रतिरोधक में उत्पन्न होने वाली ऊष्मा (i) दिए गए प्रतिरोधक में प्रवाहित होने वाली विद्युत धारा के वर्ग के अनुक्रमानुपाती, (ii) दी गयी विद्युत धारा के लिए प्रतिरोध के अनुक्रमानुपाती तथा (iii) उस समय के अनुक्रमानुपाती होती है जिसके लिए दिए गए प्रतिरोध से विद्युत धारा प्रवाहित होती है। व्यावहारिक परिस्थितियों में जब एक वैद्युत सांधित्र को किसी ज्ञात वोल्टता स्रोत से संयोजित करते हैं तो संबंध I = V/R के द्वारा उस साधित्र से प्रवाहित विद्युत धारा परिकलित करने के पश्चात समीकरण (12.21) का उपयोग करते हैं।



चित्र 12.13 विशुद्ध प्रतिरोधक विद्युत परिपथ में अपरिवर्तनशील विद्युत धारा

#### उदाहरण 12.10

किसी विद्युत इस्तरी में अधिकतम तापन दर के लिए 840 W की दर से ऊर्जा उपभुक्त होती है तथा 360 W की दर से उस समय उपभुक्त होती है जब तापन की दर निम्नतम है। यदि विद्युत स्रोत की वोल्टता 220 V है तो दोनों प्रकरणों में विद्युत धारा तथा प्रतिरोध के मान परिकलित कीजिए।

#### हल

समीकरण (12.19) से हम यह जानते हैं कि निवेशी शक्ति P = VI

इस प्रकार विद्युत धारा I = P/V

- (a) जब तापन की दर अधिकतम है, तब I = 840 W/220 V = 3.82 A; तथा विद्युत इस्तरी का प्रतिरोध  $R = V/I = 220 \text{ V}/3.82 \text{ A} = 57.60 \Omega$
- (b) जब तापन की दर निम्नतम है, तब  $I = 360 \, \mathrm{W}/220 \, \mathrm{V} = 1.64 \, \mathrm{A};$  तथा विद्युत इस्तरी का प्रतिरोध  $R = V/I = 220 \, \mathrm{V}/1.64 \, \mathrm{A} = 134.15 \, \Omega$

#### उदाहरण 12.11

किसी  $4~\Omega$  प्रतिरोधक से प्रति सेकंड 100~J ऊष्मा उत्पन्न हो रही है। प्रतिरोधक के सिरों पर विभवांतर ज्ञात कीजिए।

#### हल

 $H = 100 \text{ J}, R = 4 \Omega, t = 1 \text{ s}, V = ?$ 

समीकरण (12.21) से हमें प्रतिरोध से प्रवाहित विद्युत धारा I प्राप्त होती है

 $I = \sqrt{(H/Rt)}$ 

 $= \sqrt{100} \text{ J/(4 } \Omega \times 1 \text{ s)}$ 

= 5 A

समीकरण (12.5) से प्रतिरोधक के सिरों पर विभवांतर V प्राप्त होता है

V = IR

= 5 A  $\times$  4  $\Omega$ 

= 20 V

### प्रश्न

- 1. किसी विद्युत हीटर की डोरी क्यों उत्तप्त नहीं होती जबिक उसका तापन अवयव उत्तप्त हो जाता है?
- 2. एक घंटे में 50 w विभवांतर से 96000 कूलॉम आवेश को स्थानांतरित करने में उत्पन्न ऊष्मा परिकलित कीजिए।
- 3. 20 Ω प्रतिरोध को कोई विद्युत इस्तरी 5 A विद्युत धारा लेती है। 30 s में उत्पन्न ऊष्मा परिकलित कीजिए।



### 12.7.1 विद्युत धारा के तापीय प्रभाव के व्यावहारिक अनुप्रयोग

किसी चालक में ऊष्मा उत्पन्न होना विद्युत धारा का अवश्यंभावी परिणाम है। बहुत-सी स्थितियों में यह अवांछनीय होता है क्योंकि वह उपयोगी विद्युत ऊर्जा को ऊष्मा में रूपांतरित कर देता है। विद्युत परिपथों में अपरिहार्य तापन, परिपथ के अवयवों के ताप में वृद्धि कर सकता है जिससे उनके गुणों में परिवर्तन हो सकता है। विद्युत इस्तरी, विद्युत टोस्टर, विद्युत तंदूर, विद्युत केतली तथा विद्युत हीटर जूल के तापन पर आधारित कुछ सुपरिचित युक्तियाँ हैं।

विद्युत तापन का उपयोग प्रकाश उत्पन्न करने में भी होता है जैसा कि हम विद्युत बल्ब में देखते हैं। यहाँ पर बल्ब के तंतु को उत्पन्न ऊष्मा को जितना संभव हो सके रोके रखना चाहिए ताकि वह अत्यंत तप्त होकर प्रकाश उत्पन्न करे। इसे इतने उच्च ताप पर पिघलना नहीं चाहिए। बल्ब के तंतुओं को बनाने के लिए टंगस्टन (गलनांक 3380 °C) का उपयोग किया जाता है जो उच्च गलनांक की एक प्रबल धातु है। विद्युतरोधी टेक का उपयोग करके तंतु को यथासंभव ताप विलगित बनाना चाहिए। प्राय: बल्बों में रासायनिक दृष्टि से अक्रिय नाइट्रोजन तथा आर्गन गैस भरी जाती है जिससे उसके तंतु की आयु में वृद्धि हो जाती है। तंतु द्वारा उपभुक्त ऊर्जा का अधिकांश भाग ऊष्मा के रूप में प्रकट होता है, परंतु इसका एक अल्प भाग विकरित प्रकाश के रूप में भी दृष्टिगोचर होता है।

जूल तापन का एक और सामान्य उपयोग विद्युत परिपथों में उपयोग होने वाला फ्यूज है। यह परिपथों तथा साधित्रों की सुरक्षा, िकसी भी अनावश्यक रूप से उच्च विद्युत धारा को उनसे प्रवाहित न होने देकर, करता है। फ्यूज़ को युक्ति के साथ श्रेणीक्रम में संयोजित करते हैं। फ्यूज़ किसी ऐसी धातु अथवा मिश्रातु के तार का टुकड़ा होता है जिसका उचित गलनांक हो, उदाहरण के लिए ऐलुमिनियम, कॉपर, आयरन, लैंड आदि। यदि परिपथ में किसी निर्दिष्ट मान से अधिक मान की विद्युत धारा प्रवाहित होती है तो फ्यूज़ तार के ताप में वृद्धि होती है। इससे फ्यूज़ तार पिघल जाता है और परिपथ टूट जाता है। फ्यूज़ तार प्राय: धातु के सिरे वाले पोर्सेलेन अथवा इसी प्रकार के विद्युतरोधी पदार्थ के कार्ट्रिज में रखा जाता है। घरेलू परिपथों में उपयोग होने वाली फ्यूज़ की अनुमत विद्युत धारा 1 A, 2 A, 3 A, 5 A, 10 A आदि होती है। उस विद्युत इस्तरी के परिपथ में जो 1 kW की विद्युत शिक्त उस समय उपभुक्त करती है, जब उसे 220 V पर प्रचालित करते हैं, 1000 W/220 V = 4.54 A की विद्युत धारा प्रवाहित होती है। इस प्रकरण में 5 A अनुमतांक का फ्यूज़ उपयोग किया जाना चाहिए।

# 12.8 विद्युत शक्ति

आपने अपनी पिछली कक्षाओं में यह अध्ययन किया था कि कार्य करने की दर को शक्ति कहते हैं। ऊर्जा के उपभुक्त होने की दर को भी शक्ति कहते हैं।

$$P = VI$$

अथवा 
$$P = I^2R = V^2/R$$
 (12.22)

विद्युत शक्ति का SI मात्रक वाट (W) है। यह उस युक्ति द्वारा उपभुक्त शक्ति है जिससे उस समय 1 A विद्युत धारा प्रवाहित होती है जब उसे 1 V विभवांतर पर प्रचालित कराया जाता है। इस प्रकार

$$1 \text{ W} = 1 \text{ वोल्ट} \times 1 \text{ ऐम्पियर} = 1 \text{ V A}$$
 (12.23)

'वाट' शिक्त का छोटा मात्रक है। अत: वास्तिवक व्यवहार में हम इसके काफी बड़े मात्रक (िकलोवाट) का उपयोग करते हैं। एक किलोवाट, 1000 वाट के बराबर होता है। चूँकि विद्युत ऊर्जा शिक्त तथा समय का गुणनफल होती है इसिलए विद्युत ऊर्जा का मात्रक वाट घंटा (Wh) है। जब एक वाट शिक्त का उपयोग 1 घंटे तक होता है तो उपभुक्त ऊर्जा एक वाट घंटा होती है। विद्युत ऊर्जा का व्यापारिक मात्रक किलोवाट घंटा (kWh) है जिसे सामान्य बोलचाल में 'यूनिट' कहते हैं।

1 kW h = 1000 वाट × 3600 सेकंड

= 3.6 × 10<sup>6</sup> वाट सेंकंड

= 3.6 × 10<sup>6</sup> সুল (J)

बहुत से लोग यह सोचते हैं कि किसी विद्युत परिपथ में इलेक्ट्रॉन उपभुक्त होते हैं। यह गलत है! हम विद्युत बोर्ड अथवा विद्युत कंपनी को विद्युत बल्ब, विद्युत पंखे तथा इंजन आदि जैसे विद्युत साधित्रों से इलेक्ट्रॉनों को गित देने के लिए प्रदान की जाने वाली विद्युत ऊर्जा का भुगतान करते हैं। हम अपने द्वारा उपभुक्त ऊर्जा के लिए भुगतान करते हैं।

#### उदाहरण 12.12

कोई विद्युत बल्ब 220 V के जिनत्र से संयोजित है। यदि बल्ब से 0.50 A विद्युत धारा प्रवाहित होती है तो बल्ब की शक्ति क्या है?

#### हल

P = VI

 $= 220 \text{ V} \times 0.50 \text{ A}$ 

= 110 J/s

= 110 W

यह भी जानिए!

#### उदाहरण 12.13

400 W अनुमत का कोई विद्युत रेफ्रिजरेटर 8 घंट/दिन चलाया जाता है। 3.00 रुपये प्रति kW h की दर से इसे 30 दिन तक चलाने के लिए ऊर्जा का मूल्य क्या है?

#### हल

30 दिन में रेफ्रिजरेटर द्वारा उपभुक्त कुल ऊर्जा  $400~\mathrm{W} \times 8.0~\mathrm{Pi}$ टे/दिन  $\times$  30 दिन =  $96000~\mathrm{W}~\mathrm{h}$  =  $96~\mathrm{kW}~\mathrm{h}$  इस प्रकार 30 दिन तक रेफ्रिजरेटर को चलाने में उपभुक्त कुल ऊर्जा का मूल्य  $96~\mathrm{kW}~\mathrm{h} \times 3.00~\mathrm{kW}~\mathrm{h}~\mathrm{v}$   $= 288.00~\mathrm{v}$   $= 288.00~\mathrm{v}$ 

### प्रश्न

- 1. विद्युत धारा द्वारा प्रदत्त ऊर्जा की दर का निर्धारण कैसे किया जाता है?
- 2. कोई विद्युत मोटर 220 V के विद्युत स्रोत से 5.0 A विद्युत धारा लेता है। मोटर की शक्ति निर्धारित कीजिए तथा 2 घंटे में मोटर द्वारा उपभुक्त ऊर्जा परिकलित कीजिए।

# आपने क्या सीखा

- किसी चालक में गतिशील इलेक्ट्रॉनों की धारा विद्युत धारा की रचना करती है। परिपाटी के अनुसार इलेक्ट्रॉनों के प्रवाह की दिशा के विपरीत दिशा को विद्युत धारा की दिशा माना जाता है।
- विद्युत धारा का SI मात्रक ऐम्पियर (A) है।
- िकसी विद्युत परिपथ में इलेक्ट्रॉनों को गित प्रदान करने के लिए हम किसी सेल अथवा बैटरी का उपयोग करते हैं। सेल अपने सिरों के बीच विभवांतर उत्पन्न करता है। इस विभवांतर को वोल्ट (V) में मापते हैं।
- प्रतिरोध एक ऐसा गुणधर्म है जो किसी चालक में इलेक्ट्रॉनों के प्रवाह का विरोध करता है। यह विद्युत धारा के परिमाण को नियंत्रित करता है। प्रतिरोध का SI मात्रक ओम (Ω) है।
- ओम का नियम: किसी प्रतिरोधक के सिरों के बीच विभवांतर उसमें प्रवाहित विद्युत धारा के अनुक्रमानुपाती होता है परंतु एक शर्त यह है कि प्रतिरोधक का ताप समान रहना चाहिए।
- किसी चालक का प्रतिरोध उसकी लंबाई पर सीधे उसकी अनुप्रस्थ काट के क्षेत्रफल पर प्रतिलोमत:
   निर्भर करता है और उस पदार्थ की प्रकृति पर भी निर्भर करता है जिससे वह बना है।
- श्रेणीक्रम में संयोजित बहुत से प्रतिरोधकों का तुल्य प्रतिरोध उनके व्यष्टिगत प्रतिरोधों के योग के बराबर होता है।

 पार्श्वक्रम में संयोजित प्रतिरोधकों के समुच्चय का तुल्य प्रतिरोध R<sub>p</sub> निम्नलिखित संबंध द्वारा व्यक्त किया जाता है

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

- किसी प्रतिरोधक में क्षयित अथवा उपभुक्त ऊर्जा को इस प्रकार व्यक्त किया जाता है  $W = V \times I \times T$
- विद्युत शक्ति का मात्रक वाट (W) है। जब 1 A विद्युत धारा 1 V विभवांतर पर प्रवाहित होती है तो परिपथ में उपभुक्त शक्ति 1 वाट होती है।
- विद्युत ऊर्जा का व्यापारिक मात्रक किलोवाट घंटा (kW h) है
   1 kW h = 3,600,000 J = 3.6 × 10<sup>6</sup> J

# अभ्यास



- (a) 1/25
- (b) 1/5
- (c) 5
- (d) 25

2. निम्नलिखित में से कौन-सा पद विद्युत परिपथ में विद्युत शक्ति को निरूपित नहीं करता?

(a)  $I^2R$ 

- (b) *IR*<sup>2</sup>
- (c) VI
- (d)  $V^2/R$

3. किसी विद्युत बल्ब का अनुमंताक 220 V; 100 W है। जब इसे 110 V पर प्रचालित करते हैं तब इसके द्वारा उपभुक्त शक्ति कितनी होती है?

- (a) 100 W
- (b) 75 W
- (c) 50 W
- (d) 25 W

4. दो चालक तार जिनके पदार्थ, लंबाई तथा व्यास समान हैं किसी विद्युत परिपथ में पहले श्रेणीक्रम में और फिर पार्श्वक्रम में संयोजित किए जाते हैं। श्रेणीक्रम तथा पार्श्वक्रम संयोजन में उत्पन्न ऊष्माओं का अनुपात क्या होगा?

(a) 1:2

- (b) 2:1
- (c) 1:4
- (d) 4:1
- 5. किसी विद्युत परिपथ में दो बिंदुओं के बीच विभवांतर मापने के लिए वोल्टमीटर को किस प्रकार संयोजित किया जाता है?
- 6. किसी ताँबे के तार का व्यास  $0.5~\mathrm{mm}$  तथा प्रतिरोधकता  $1.6 \times 10^{-8}~\Omega~\mathrm{m}$  है।  $10~\Omega~\mathrm{y}$ ितरोध का प्रतिरोधक बनाने के लिए कितने लंबे तार की आवश्यकता होगी? यदि इससे दोगुने व्यास का तार लें तो प्रतिरोध में क्या अंतर आएगा?

7. किसी प्रतिरोधक के सिरों के बीच विभवांतर V के विभिन्न मानों के लिए उससे प्रवाहित विद्युत धाराओं I के संगत मान आगे दिए गए हैं

*I* (ऐम्पियर) 0.5 1.0 2.0 3.0 4.0

V (बोल्ट) 1.6 3.4 6.7 10.2 13.2

V तथा I के बीच ग्राफ खींचकर इस प्रतिरोधक का प्रतिरोध ज्ञात कीजिए।

- 8. किसी अज्ञात प्रतिरोध के प्रतिरोधक के सिरों से 12 V की बैटरी को संयोजित करने पर परिपथ में 2.5 mA विद्युत धारा प्रवाहित होती है। प्रतिरोधक का प्रतिरोध परिकलित कीजिए।
- 9. 9 V की किसी बैटरी को 0.2  $\Omega$ , 0.3  $\Omega$ , 0.4  $\Omega$  , 0.5  $\Omega$  तथा 12  $\Omega$  के प्रतिरोधकों के साथ श्रेणीक्रम में संयोजित किया गया है। 12  $\Omega$  के प्रतिरोधक से कितनी विद्युत धारा प्रवाहित होगी?
- 10. 176 Ω प्रतिरोध के कितने प्रतिरोधकों को पार्श्वक्रम में संयोजित करें कि 220 V के विद्युत स्रोत से संयोजन से 5 A विद्युत धारा प्रवाहित हो?
- 11. यह दर्शाइए कि आप  $6 \Omega$  प्रतिरोध के तीन प्रतिरोधकों को किस प्रकार संयोजित करेंगे कि प्राप्त संयोजन का प्रतिरोध (i)  $9 \Omega$ , (ii)  $4 \Omega$  हो।
- 12. 220 V की विद्युत लाइन पर उपयोग किए जाने वाले बहुत से बल्बों का अनुमतांक 10 W है। यदि 220 V लाइन से अनुमत अधिकतम विद्युत धारा 5 A है तो इस लाइन के दो तारों के बीच कितने बल्ब पार्श्वक्रम में संयोजित किए जा सकते है?
- 13. किसी विद्युत भट्टी की तप्त प्लेट दो प्रतिरोधक कुंडिलयों A तथा B की बनी हैं जिनमें प्रत्येक का प्रितरोध 24 Ω है तथा इन्हें पृथक-पृथक, श्रेणीक्रम में अथवा पार्श्वक्रम में संयोजित करके उपयोग किया जा सकता है। यदि यह भट्टी 220 V विद्युत स्रोत से संयोजित की जाती है तो तीनों प्रकरणों में प्रवाहित विद्युत धाराएँ क्या हैं?
- 14. निम्ललिखित परिपथों में प्रत्येक में 2 Ω प्रतिरोधक द्वारा उपभुक्त शिक्तयों की तुलना कीजिए:

  (i) 6 V की बैटरी से संयोजित 1 Ω तथा 2 Ω श्रेणीक्रम संयोजन (ii) 4 V बैटरी से संयोजित 12 Ω
  तथा 2 Ω का पार्श्वक्रम संयोजन।
- 15. दो विद्युत लैम्प जिनमें से एक का अनुमतांक 100 W; 220 V तथा दूसरे का 60 W; 220 V है, विद्युत मेंस के साथ पार्श्वक्रम में संयोजित है। यदि विद्युत आपूर्ति की वोल्टता 220 V है तो विद्युत मेंस से कितनी धारा ली जाती है?
- 16. किसमें अधिक विद्युत ऊर्जा उपभुक्त होती है : 250 W का टी.वी. सेट जो एक घंटे तक चलाया जाता है अथवा 120 W का विद्युत हीटर जो 10 मिनट के लिए चलाया जाता है?
- 17. 8 Ω प्रतिरोध का कोई विद्युत हीटर विद्युत मेंस से 2 घंटे तक 15 A विद्युत धारा लेता है। हीटर में उत्पन्न ऊष्मा की दर परिकलित कीजिए।

### 18. निम्नलिखित को स्पष्ट कीजिए

- (a) विद्युत लैम्पों के तंतुओं के निर्माण में प्राय: एकमात्र टंगस्टन का ही उपयोग क्यों किया जाता है?
- (b) विद्युत तापन युक्तियों जैसे ब्रेड-टोस्टर तथा विद्युत इस्तरी के चालक शुद्ध धातुओं के स्थान पर मिश्रातुओं के क्यों बनाए जाते हैं?
- (c) घरेलू विद्युत परिपथों में श्रेणीक्रम संयोजन का उपयोग क्यों नहीं किया जाता है?
- (d) किसी तार का प्रतिरोध उसकी अनुप्रस्थ काट के क्षेत्रफल में परिवर्तन के साथ किस प्रकार परिवर्तित होता है?
- (e) विद्युत संचारण के लिए प्राय: कॉपर तथा ऐलुमिनियम के तारों का उपयोग क्यों किया जाता है?

OBSTBRC BLADBLISHED