T: tempo até ocorrência de um evento, origem bem definida

- T: tempo até ocorrência de um evento, origem bem definida
- Censura à direita

- ► T: tempo até ocorrência de um evento, origem bem definida
- Censura à direita
- Amostra: $Y_i = \min(T_i, C_i)$ e $\delta_i = I(T_i < C_i)$, i = 1, ..., n

- T: tempo até ocorrência de um evento, origem bem definida
- Censura à direita
- Amostra: $Y_i = \min(T_i, C_i)$ e $\delta_i = I(T_i < C_i)$, i = 1, ..., n
- ▶ com $r \le n$ tempos distintos, $t_1 < t_2 < \cdots < t_r$

- T: tempo até ocorrência de um evento, origem bem definida
- Censura à direita
- Amostra: $Y_i = \min(T_i, C_i)$ e $\delta_i = I(T_i < C_i)$, i = 1, ..., n
- ▶ com $r \le n$ tempos distintos, $t_1 < t_2 < \cdots < t_r$
- ightharpoonup com d_i falhas no tempo t_i

- T: tempo até ocorrência de um evento, origem bem definida
- Censura à direita
- Amostra: $Y_i = \min(T_i, C_i)$ e $\delta_i = I(T_i < C_i)$, i = 1, ..., n
- ▶ com $r \le n$ tempos distintos, $t_1 < t_2 < \cdots < t_r$
- com d_i falhas no tempo t_i
- ightharpoonup e n_i indivíduos em risco no tempo t_i^-

- T: tempo até ocorrência de um evento, origem bem definida
- Censura à direita
- Amostra: $Y_i = \min(T_i, C_i)$ e $\delta_i = \mathbf{I}(T_i < C_i)$, i = 1, ..., n
- ightharpoonup com $r \le n$ tempos distintos, $t_1 < t_2 < \cdots < t_r$
- com d_i falhas no tempo t_i
- ightharpoonup e n_i indivíduos em risco no tempo t_i^-
- ▶ Encontrar um estimador para S(t) = P(T > t)

Particionar o tempo em $\xi_0, \xi_1, ..., \xi_p$

$$S(\xi_2)$$

▶ Particionar o tempo em $\xi_0, \xi_1, ..., \xi_p$

$$S(\xi_2) = P(T > \xi_2)$$

Particionar o tempo em $\xi_0, \xi_1, ..., \xi_p$

$$S(\xi_2) = P(T > \xi_2)$$

= $P(T > \xi_2 \mid T > \xi_1)P(T > \xi_1)$

Particionar o tempo em $\xi_0, \xi_1, ..., \xi_p$

$$S(\xi_2) = P(T > \xi_2)$$

$$= P(T > \xi_2 \mid T > \xi_1)P(T > \xi_1)$$

$$= P(T > \xi_2 \mid T > \xi_1)P(T > \xi_1 \mid T > \xi_0) \cdot 1$$

Particionar o tempo em $\xi_0, \xi_1, ..., \xi_p$

$$S(\xi_2) = P(T > \xi_2)$$

$$= P(T > \xi_2 \mid T > \xi_1)P(T > \xi_1)$$

$$= P(T > \xi_2 \mid T > \xi_1)P(T > \xi_1 \mid T > \xi_0) \cdot 1$$

• Seja $p_i = P(T > \xi_i \mid T > \xi_{i-1}), i = 1, ..., r e t_0 = 0$

Particionar o tempo em $\xi_0, \xi_1, ..., \xi_p$

$$S(\xi_2) = P(T > \xi_2)$$

$$= P(T > \xi_2 \mid T > \xi_1)P(T > \xi_1)$$

$$= P(T > \xi_2 \mid T > \xi_1)P(T > \xi_1 \mid T > \xi_0) \cdot 1$$

- Seja $p_i = P(T > \xi_i \mid T > \xi_{i-1}), i = 1, ..., r e t_0 = 0$
- Podemos escrever

$$S(\xi_i) = p_i p_{i-1} p_{i-2} \dots p_1 = \prod_{k=1}^{r} p_k$$

► Seja
$$q_i = 1 - p_i = P(T < \xi_i \mid T > \xi_{i-1})$$

- ▶ Seja $q_i = 1 p_i = P(T < \xi_i \mid T > \xi_{i-1})$
- ► Estimativa para *q_i*

$$\hat{q}_i = \hat{P}(T \le \xi_i \mid T > \xi_{i-1})$$

- Seja $q_i = 1 p_i = P(T < \xi_i \mid T > \xi_{i-1})$
- Estimativa para q_i

$$\hat{q}_i = \hat{P}(T \le \xi_i \mid T > \xi_{i-1})$$

$$= \frac{\text{eventos em } (\xi_{i-1}, \xi_i]}{\text{indivíduos vivos até } \xi_{i-1}}$$

- ► Seja $q_i = 1 p_i = P(T < \xi_i \mid T > \xi_{i-1})$
- ► Estimativa para q_i

$$\hat{q}_i = \hat{P}(T \le \xi_i \mid T > \xi_{i-1})$$

$$= \frac{\text{eventos em } (\xi_{i-1}, \xi_i]}{\text{indivíduos vivos até } \xi_{i-1}}$$

$$= \frac{d_i}{n_i - w_i/2}$$

► Seja
$$q_i = 1 - p_i = P(T < \xi_i \mid T > \xi_{i-1})$$

 \triangleright Estimativa para q_i

$$\hat{q}_i = \hat{P}(T \le \xi_i \mid T > \xi_{i-1})$$

$$= \frac{\text{eventos em } (\xi_{i-1}, \xi_i]}{\text{indivíduos vivos até } \xi_{i-1}}$$

$$= \frac{d_i}{n_i - w_i/2}$$

- Estimativa para p_i

$$\Rightarrow \hat{p_i} = 1 - \frac{d_i}{n_i - w_i/2}$$

$$\hat{S}(\xi_i) = \prod_{i:t_i < arepsilon_i} \hat{p}_j = \prod_{i:t_i < arepsilon_i} \left[1 - rac{d_j}{n_j - w_j/2}
ight], \,\, \hat{S}(\xi_0) = 1$$

Estimador de Kaplan-Meier

Estimador de Kaplan-Meier

$$\hat{S}(t) = egin{cases} 1 & ext{se } t < t_1 \ \prod_{t_i \leq t} \left\lceil 1 - rac{d_i}{n_i}
ight
ceil & ext{se } t \geq t_1 \end{cases}$$

Estudo com pacientes com câncer de mama (Liu, 2012), que foram acompanhadas por um período de 7 anos, até o óbito ou fim do estudo:

$$5, 17, 20+, 24, 32, 35+, 40, 46, 47, 50, 59, 74+$$

j	tj	d_j	Wj	nj	\hat{q}_j	ρ̂j	$\hat{S}(t_j)$
0	0	0	0	12	0/12	12/12	1.00

j	tj	d_j	Wj	nj	\hat{q}_j	ρ̂j	$\hat{S}(t_j)$
0	0	0	0	12	0/12	12/12	1.00
1	5	1	0	12	1/12	11/12	0.92

j	tj	d_j	Wj	nj	\hat{q}_j	$\hat{p_j}$	$\hat{S}(t_j)$
0	0	0	0	12	0/12	12/12	1.00
1	5	1	0	12	1/12	11/12	0.92
2	17	1	0	11	1/11	10/11	0.83

j	tj	d_j	w _j	nj	\hat{q}_j	ρ̂j	$\hat{S}(t_j)$
0	0	0	0	12	0/12	12/12	1.00
1	5	1	0	12	1/12	11/12	0.92
2	17	1	0	11	1/11	10/11	0.83
3	24	1	1	9	1/9	8/9	0.74

j	tj	d_j	Wj	nj	\hat{q}_j	ρ̂j	$\hat{S}(t_j)$
0	0	0	0	12	0/12	12/12	1.00
1	5	1	0	12	1/12	11/12	0.92
2	17	1	0	11	1/11	10/11	0.83
3	24	1	1	9	1/9	8/9	0.74
4	32	1	0	8	1/8	7/8	0.65

j	t_j	d_j	Wj	nj	\hat{q}_j	$\hat{ ho_j}$	$\hat{S}(t_j)$
0	0	0	0	12	0/12	12/12	1.00
1	5	1	0	12	1/12	11/12	0.92
2	17	1	0	11	1/11	10/11	0.83
3	24		1	9	1/9	8/9	0.74
4	32	1	0	8	1/8	7/8	0.65
5	40	1	1	6	1/6	5/6	0.54

j	t_j	d_j	Wj	nj	\hat{q}_j	$\hat{ ho_j}$	$\hat{S}(t_j)$
0	0	0	0	12	0/12	12/12	1.00
1	5	1	0	12	1/12	11/12	0.92
2	17	1	0	11	1/11	10/11	0.83
3	24	1	1	9	1/9	8/9	0.74
4	32	1	0	8	1/8	7/8	0.65
5	40	1	1	6	1/6	5/6	0.54
6	46	1	0	5	1/5	4/5	0.43

j	tj	d_j	Wj	nj	\hat{q}_j	$\hat{p_j}$	$\hat{S}(t_j)$
0	0	0	0	12	0/12	12/12	1.00
1	5	1	0	12	1/12	11/12	0.92
2	17	1	0	11	1/11	10/11	0.83
3	24	1	1	9	1/9	8/9	0.74
4	32	1	0	8	1/8	7/8	0.65
5	40	1	1	6	1/6	5/6	0.54
6	46	1	0	5	1/5	4/5	0.43
7	47	1	0	4	1/4	3/4	0.32

j	t_j	d_j	Wj	nj	\hat{q}_j	$\hat{ ho_j}$	$\hat{S}(t_j)$
0	0	0	0	12	0/12	12/12	1.00
1	5	1	0	12	1/12	11/12	0.92
2	17	1	0	11	1/11	10/11	0.83
3	24	1	1	9	1/9	8/9	0.74
4	32	1	0	8	1/8	7/8	0.65
5	40	1	1	6	1/6	5/6	0.54
6	46	1	0	5	1/5	4/5	0.43
7	47	1	0	4	1/4	3/4	0.32
8	50	1	0	3	1/3	2/3	0.22

j	t_j	d_j	Wj	nj	\hat{q}_j	$\hat{ ho_j}$	$\hat{S}(t_j)$
0	0	0	0	12	0/12	12/12	1.00
1	5	1	0	12	1/12	11/12	0.92
2	17	1	0	11	1/11	10/11	0.83
3	24	1	1	9	1/9	8/9	0.74
4	32	1	0	8	1/8	7/8	0.65
5	40	1	1	6	1/6	5/6	0.54
6	46	1	0	5	1/5	4/5	0.43
7	47	1	0	4	1/4	3/4	0.32
8	50	1	0	3	1/3	2/3	0.22
9	59	1	0	2	1/2	1/2	0.11

Variância

Formula de Greenwood

$$\widehat{\mathsf{Var}}[\hat{S}(t)] = \hat{S}(t)^2 \sum_{t_i < t} rac{d_i}{n_i (n_i - d_i)}$$

Intervalo de confiança

$$\frac{\hat{S}(t) - S(t)}{\sqrt{\widehat{\mathsf{Var}}[\hat{S}(t)]}} \to \mathsf{N}(0,1)$$

$$IC(S(t); \gamma) = \left[\hat{S}(t) - z_{\gamma/2} \sqrt{\widehat{\mathsf{Var}}[\hat{S}(t)]}; \quad \hat{S}(t) + z_{\gamma/2} \sqrt{\widehat{\mathit{Var}}[\hat{S}(t)]}\right]$$

Intervalo de confiança

$$\frac{\hat{S}(t) - S(t)}{\sqrt{\widehat{\mathsf{Var}}[\hat{S}(t)]}} \to \mathsf{N}(0,1)$$

$$IC(S(t); \gamma) = \left[\hat{S}(t) - z_{\gamma/2} \sqrt{\widehat{\mathsf{Var}}[\hat{S}(t)]}; \quad \hat{S}(t) + z_{\gamma/2} \sqrt{\widehat{\mathit{Var}}[\hat{S}(t)]}\right]$$

Intervalo de confiança

- Transformações
 - Kalbfleisch-Prentice

$$\hat{U}(t) = \log(-\log \hat{S}(t))$$
 $\widehat{\mathsf{Var}}(\hat{U}(t)) = \frac{1}{(\log \hat{S}(t))^2} \sum_{j: t_{(j)} < t} q_i / (n_j (1 - q_i))$

$$IC(S(t);\gamma) = \left[(\hat{S}(t))^{- heta}; (\hat{S}(t))^{ heta}
ight]$$
 com $heta = \exp\left\{ z_{\gamma/2} \sqrt{\widehat{Var}[\hat{U}(t)]}
ight\}$