HARDWARE-MANUAL MINICONTROL

Erste Auflage (November 1990) **Herausgeber:** Bernecker und Rainer Industrie-Elektronik GmbH **Best. Nr.** MAHWMINI-0

B&R VERTRIEBS- UND APPLIKATIONSZENTRALEN

KAPITEL 1 ALLGEMEINES

	1	
Inhalt:	Allgemeines	1-3
	Elektromagnetische Störungen	1-4
	Erdung	1-4
	Schutzerdung	1-4
	Erdung gegen Elektromagnetische Störungen	1-5
	Blindfronten	1-6
	Einbaurichtlinien	1-6
	Verdrahtung	1-7
	Leitungsquerschnitte und -ausführungen	1-8
	Module ein-/ausbauen	1-8
	Kabelschirmerdung	1-9
	Externe Schutzbeschaltungen	1-10
	Lagerung und Lagertemperaturen	1-11
	Elektrostatik	1-11
	Bestückung des Baugruppenträgers	1-12

ALLGEMEINES

Alle B&R Automatisierungsgeräte sind für den Einsatz in Industrieumgebungen konzipiert. D.h. die Geräte werden in Umgebungen betrieben, in denen mit Verschmutzung, extremen Temperaturen, starken Temperaturschwankungen, unterschiedlichen Luftfeuchtigkeiten, Vibrationen, Stößen und elektromagnetischen Störungen zu rechnen ist. Der Betrieb von B&R-Geräten unter solchen Bedingungen ist gewährleistet, wenn bestimmte Einbau- und Verdrahtungsrichtlinien eingehalten werden.

Dieses Kapitel befaßt sich mit dem Einbau und der Verdrahtung der speicherprogrammierbaren Steuerung (SPS) MINICONTROL.

ELEKTROMAGNETISCHE STÖRUNGEN

In den meisten Anwendungen werden SPS in Schaltschränke eingebaut, in denen sich auch elektromechanische Schaltelemente (Relais, Schützen), Transformatoren, Motorregler, Frequenzumrichter u.ä. befinden können. In solchen Schaltschränken entstehen zwangsläufig elektromagnetische Störungen unterschiedlicher Art. Diese Störungen können zwar nicht generell verhindert werden, durch geeignete Erdungs-, Schirmungs- und andere Schutzmaßnahmen kann jedoch eine negative Beeinflussung der SPS weitgehend unterbunden werden. Diese Schutzmaßnahmen umfassen:

- Schaltschrank-Erdung
- Modul-Erdung
- Kabelschirm-Erdung
- Schutzbeschaltung von elektromechanischen Schaltelementen
- Richtige Verlegung von Kabeln
- Berücksichtigung von Kabelquerschnitt und -ausführung

In den folgenden Abschnitten dieses Kapitels werden die einzelnen Schutzmaßnahmen näher erläutert. Weiters werden Hinweise bezüglich Einbauarten, Luftzirkulation und Wärmeableitung, Lagerung, Elektrostatik, usw. gegeben.

ERDUNG

Die Erdung hat zwei grundsätzlich unterschiedliche Funktionen:

- Schutzerdung
- Erdung gegen elektromagnetischen Störungen

SCHUTZERDUNG

Die Schutzerdung ist eine Sicherheitsmaßnahme, die für alle Geräte mit leitendem Gehäuse vorgeschrieben ist, wenn innerhalb des Gerätes hohe Spannungen auftreten können. Tritt in dem Gerät durch einen Fehler eine Verbindung zwischen einem spannungführenden Leiter und dem Gehäuse auf, so wird durch die Schutzerdung ein Kurzschluß mit Erde erzeugt und durch eine Sicherung (bzw. einen FI-Schutzschalter) die Spannungsversorgung unterbrochen. Die Schutzerdung ist in den meisten Ländern durch einschlägige gesetzliche Bestimmungen (z.B. ÖVE, VDE) geregelt.

Da das Gehäuse des MINICONTROL SPS-Systemes aus nichtleitendem Kunststoff ist, ist eine Schutzerdung nicht erforderlich.

ERDUNG GEGEN ELEKTROMAGNETISCHE STÖRUNGEN

Um eine Beeinträchtigung der Funktion der SPS durch elektromagnetische Störungen zu verhindern, werden Kabelschirme und die Masseanschlüsse der Module geerdet. Dazu wird unterhalb des Baugruppenträgers eine Bezugserdungsschiene angebracht, die leitend mit der geerdeten Schaltschrankrückwand verschraubt wird. An diese Erdungsschiene werden Kabelschirme und Modulanschlüsse, die geerdet werden müssen (z.B. Analogmodule, Stromversorgungsmodule), angeschlossen:

Der Abstand zwischen der Erdungsschiene und dem SPS-Baugruppenträger darf maximal 15 cm betragen. Dazwischen dürfen keine elektromechanischen Schaltelemente (Relais, Schützen etc.) angebracht werden. Üblicherweise wird unmittelbar unterhalb des Baugruppenträgers ein Kabelkanal montiert.

BLINDFRONTEN

Alle nicht benötigten Steckplätze des Baugruppenträgers sind mit Blindfronten zu verschließen. Bei Auslieferung der MINICONTROL Grundeinheit sind alle Steckplätze mit Blindfronten versehen.

EINBAURICHTLINIEN

Der Baugruppenträger darf nur waagrecht montiert werden. Oberhalb und unterhalb des Baugruppenträgers muß mindestens 10 cm freier Raum sein, die Kühlschlitze dürfen keinesfalls verdeckt sein.

Die für jedes Modul im Abschnitt "Technische Daten" angegebene maximale Betriebstemperatur (meist $60~^{\circ}$ C) ist unterhalb des Baugruppenträgers einzuhalten. Es ist keine Fremdbelüftung des Baugruppenträgers erforderlich.

Bei Geräten, die starke, elektromagnetische Störungen verursachen (z.B. Frequenzumrichter, Transformatoren, Motorregler etc.) ist auf ausreichende räumliche Trennung zu achten. Der Abstand dieser Geräte zur SPS sollte so groß wie möglich sein.

VERDRAHTUNG

Grundsätzlich sind drei Arten von Kabeln zu unterscheiden:

- Schnittstellenkabel und Kabel, die analoge Signale oder Zählsignale führen. Diese Kabel sind unbedingt geschirmt auszuführen.
- Leitungen, die digitale Eingangssignale (24 VDC) führen.
- Anschlußleitungen von digitalen Ausgängen.

Diese drei Kabelarten sollten räumlich getrennt werden. D.h. das Parallelführen von Kabeln unterschiedlicher Gruppen über größere Entfernungen ist zu vermeiden, wenn unterschiedliche Kabel im selben Kabelkanal geführt werden müssen, so sollte dieser über eine metallische, geerdete Zwischenwand verfügen. Im Idealfall stehen für die drei Kabelarten eigene Kabelkanäle zur Verfügung, die räumlich getrennt sind:

LEITUNGSQUERSCHNITTE UND -AUSFÜHRUNGEN

	🛇
	0
	a
	اھا
	0
	$ \circ\rangle$
周	0
	$ \lozenge $

An die Anschlußklemmen dürfen nur Kupferdrähte mit einem Querschnitt von max. 1,5 mm² (AWG14) und mind. 0,14 mm² (AWG26) angeschlossen werden. Aluminiumdrähte dürfen nicht verwendet werden.

Erfolgt der Anschluß über Adernendhülsen, so müssen auch diese aus Kupfer sein.

Anschlußleitungen von digitalen E/A)	typ. 0,75 mm ² max. 1,5 mm ²
Anschlußleitungen von analogen E/A		min. 0,14 mm ² max. 1,5 mm ²
Schnittstellenkabel TTY/RS485		0,5 mm² für DSUB-Verbindungen 0,5 bis 1,5 mm² für Schraubklemmen
Schnittstellenkabel RS232		min 0,14 mm ² max. 0,5 mm ² für DSUB-Verb. max. 1,5 mm ² für Schraubklemmen

MODULE EIN-/AUSBAUEN

Für den Einbau bzw. Ausbau von Modulen gilt:

- Module dürfen grundsätzlich nicht gezogen oder gesteckt werden, wenn die SPS eingeschaltet ist.
- Vor dem Herausnehmen von Modulen sind verdrahtete Anschlußstecker abzustecken
- Die Anschlußstecker dürfen nicht an- oder abgesteckt werden, wenn die Zuleitungen Spannung führen
- Bei manchen Modulen kann aus Sicherheitsgründen eine Wartezeit zwischen dem Abstecken der Anschlüsse und dem Herausnehmen des Modules vorgeschrieben sein. Dies ist in der Beschreibung des jeweiligen Modules gesondert angeführt.

KABELSCHIRMERDUNG

Die folgenden Verbindungen sind mit geschirmten Kabeln auszuführen (mögliche Ausnahmen sind bei der Beschreibung des jeweiligen Modules angegeben):

- analoge E/A
- Schnittstellenkabel
- Impulsgeberkabel
- Anschlüsse von externen Potentiometern bei Zeitmodulen

Der Kabelschirm wird beidseitig geerdet. Auf der SPS-Seite erfolgt die Erdung an der Bezugs-Erdungsschiene unterhalb des Baugruppenträgers:

Sollte es durch etwaige Potentialverschiebungen zwischen der SPS und dem angeschlossenen Element zu Ausgleichströmen über den Kabelschirm (oft verbunden mit einer Erwärmung des Kabels) kommen, so sind geeignete Maßnahmen zu ergreifen:

 Der Kabelschirm wird aufgetrennt und mit einem qualitativ hochwertigen Kondensator überbrückt (Keramik- oder Folienkondensatoren größer oder gleich 47 nF, geringer Widerstand bei hoher Frequenz).

oder

b) Eine Potentialausgleichsleitung wird verlegt (mind. 16 mm²)

EXTERNE SCHUTZBESCHALTUNGEN

Für Relais-Ausgangsmodule ist eine externe Schutzbeschaltung generell vorgeschrieben, für Transistor-Ausgangsmodule ist sie empfehlenswert.

Modul	Externe Schutzbeschaltung
A12A	generell vorgeschrieben
A12B A12C MAEA MAEB	Empfehlung

Die Schutzbeschaltung kann wahlweise an der zu schaltenden Last, am Ausgangsmodul oder an Zwischenklemmen angebracht werden. Für die Dimensionierung der Schutzbeschaltung ist eine genaue Kenntnis über die zu schaltende Last erforderlich (z.B. bei Schützen Innenwiderstand und Induktivität der Spule). Die meisten Hersteller von Schützen und Magnetventilen bieten deshalb Schutzbeschaltungsglieder für das jeweilige Element an.

Man unterscheidet:

- RC-Glied: Wird meist für Wechselspannung eingesetzt. 1)
- Varistor: Wird meist für Wechselspannung eingesetzt. Da Varistoren gewissen Alterungserscheinungen unterliegen, ist die Verwendung von RC-Gliedern dem Einsatz von Varistoren vorzuziehen
- Freilaufdiode: Kann nur für Gleichspannungen eingesetzt werden.
- Dioden/Z-Diodenkombination: Kann nur für Gleichspannungen eingesetzt werden.
 Diese Art der Schutzbeschaltung ermöglicht schnellere Abschaltzeiten. Bei höheren Schaltfrequenzen kommt es jedoch zu einer starken Erwärmung des Bauteiles.

 $^{^{1)}}$ Typische Werte für RC-Glieder für Schützen (ca. 10 W induktive Last) sind: 22 $\Omega/250$ nF bei 24 VDC/AC oder 220 $\Omega/1$ μF bei 220 VAC.

LAGERUNG - LAGERTEMPERATUREN

Bei der Lagerung unterscheidet man:

- Lagerung von einzelnen Modulen
- Lagerung einer SPS mit Modulen

LAGERUNG VON MODULEN

Für Module, die nicht über Pufferbatterien bzw. -akkus und EEPROMs verfügen, gilt eine Lagerungstemperatur von -20 bis $+80\,^{\circ}$ C.

Module mit Pufferbatterien, Akkus oder EEPROMs dürfen unter Temperaturen von 0 bis +60 °C gelagert werden

LAGERUNG EINER SPS MIT MODULEN

Im ausgeschalteten Zustand werden die RAM-Speicher der Zentraleinheit über die Batterie im Stromversorgungsmodul und über einen Pufferkondensator am Modul gepuffert. In diesem Fall beträgt die zulässige Lagerungstemperatur 0 bis +60 °C.

ELEKTROSTATIK

SPS-Module sind mit hochintegrierten CMOS-Bauteilen bestückt, die empfindlich gegen Elektrostatische Entladungen sind. Vor dem Hantieren mit Modulen muß durch Berühren eines metallischen, geerdeten Gegenstandes eine elektrostatische Entladung durchgeführt werden. Das Berühren der Modulunterseite (Lötseite) ist nach Möglichkeit zu vermeiden.

BESTÜCKUNG DES BAUGRUPPENTRÄGERS

Bei der MINICONTROL Grundeinheit MCGE33 sind die Steckplätze 0 und 1 für den Betrieb von P-Modulen (analoge E/A, Zählmodule) geeignet. Digitale E/A-Module und Zeitmodule können auf allen 6 Steckplätzen betrieben werden (mögliche Ausnahmen sind bei der Beschreibung des jeweiligen Modules angeführt.

Üblicherweise werden bei der Bestückung des Baugruppenträgers gewisse Richtlinien eingehalten. So werden digitale Ausgangsmodule, die z.Tl. hohe Leistungen schalten, äußerst rechts im Baugruppenträger betrieben. Empfohlene Reihenfolge von links nach rechts:

- Schnittstellenmodule
- Analoge E/A-Module und Zählmodule
- Zeitmodule
- Digitale Eingangsmodule
- Digitale Ausgangsmodule

Beispiel:

KAPITEL 2 BAUGRUPPENTRÄGER

Inhalt:	Bestellnummern - Bestellbezeichnungen	2-3
	Technische Daten	2-4
	Allgemeines	2-5
	Einbau eines Modules	2-7
	Steckplätze	2-7
	Abmessungen	2-9

BESTELLNUMMERN - BESTELLBEZEICHNUNGEN

Der Baugruppenträger ist Bestandteil der MINICONTROL Grundeinheit.

TECHNISCHE DATEN

	Grundeinheit A	Grundeinheit B
Systemsteckplätze	NT/PS,	, CPU 1)
Anwendersteckplätze	6	6
für digitale E/A-Module	6	6
für P-Module	-	2
Abmessungen (alle Maße in mm)		
Breite gesamt		56
Breite ohne Befestigungswinkel Höhe	22:	s,s 5,5
Tiefe (ohne Modulanschlüsse)		3,5
Abstand der Bohrungen horizontal		40
Abstand der Bohrungen vertikal	_	10
Stärke des Befestigungswinkel		2
Material	?'	??
Gewicht	ca. 0	,9 kg ???
Betriebstemperatur	0 bis	60 °C
Luftfeuchtigkeit	0 bis 95 %, nich	t kondensierend

¹⁾ NT/PS = Steckplatz für Stromversorgungsmodul, CPU = Steckplatz für Zentraleinheit

ALLGEMEINES

Das MINICONTROL-Gehäuse besteht aus der Baugruppenträgereinheit, der Frontabdeckung und den Modul- bzw. Blindfronten.

BAUGRUPPENTRÄGEREINHEIT

Die Baugruppenträgereinheit ist mit Führungsschienen versehen, in die die Module (Baugruppen) gesteckt werden.

An der Rückseite der Baugruppenträgereinheit befindet sich die Busplatine mit den Verbindungssteckern zu den Modulen. Beim Hineinschieben eines Modules in die Baugruppenträgereinheit werden automatisch alle nötigen Verbindungen zur Busplatine hergestellt.

FRONTABDECKUNG

Die Frontabdeckung wird auf die Baugruppenträgereinheit aufgeschraubt, nachdem die Module eingebaut wurden.

Die MINICONTROL darf nur mit aufgeschraubter Frontabdeckung betrieben werden.

MODULFRONTEN

Zu jedem Modul wird eine passende Modulfront mitgeliefert. Diese wird anstelle der Blindfront von vorne in die Frontabdeckung gesteckt. Z.B. für das Eingangsmodul E16A:

Alle nicht benötigten Steckplätze sind mit Blindfronten zu verschließen.

Bei Auslieferung der Grundeinheit sind die 6 Anwendersteckplätze mit Blindfronten versehen. Ersatzblindfronten sind bei B&R unter der Bestellnummer MCBL01-0 erhältlich.

EINBAU EINES MODULES

Beim Einbau eines Modules ist die folgende Reihenfolge einzuhalten:

- Alle Zuleitungen spannungsfrei machen
- Alle Anschlußstecker abstecken
- Anwenderprogrammspeichermodul herausnehmen
- Befestigungsschrauben der Frontabdeckung lösen
- Frontabdeckung abnehmen
- Modul einbauen
- Blindfront aus der Frontabdeckung herausnehmen
- Modulfront in Frontabdeckung einsetzen
- Frontabdeckung aufschrauben
- Anwenderprogrammspeicher einbauen
- Anschlußstecker anstecken
- Versorgungsspannung einschalten

STECKPLÄTZE

Der MINICONTROL Baugruppenträger verfügt über zwei Systemsteckplätze für Stromversorgungsmodul und Zentraleinheit und über 6 Steckplätze für Anwendermodule.

Die Anwendersteckplätze sind von links nach rechts mit Hexadezimalziffern bezeichnet. Diese Steckplatzbezeichnung ist auf der Frontabdeckung oberhalb des Moduleinschubes eingeprägt.

Steckplatz 0 ist zwischen dem Stromversorgungsmodul und der Zentraleinheit, die Steckplätze 1 bis 5 befinden sich rechts von der Zentraleinheit. Aus der folgenden Tabelle ist ersichtlich, auf welchen Steckplätzen die MINICONTROL-Module betrieben werden können:

									Ein	set	zba	r in					_	
Modulbez.	Funktion	Kapitel										einheit B kplatz						
			Ν	0	С	1	2	3	4	5	Ν	0	С	1	2	3	4	5
NT33	Stromversorgungsmodul	3	•								•							
CP30	Zentraleinheitmodul	4			•													
CP31	Zentraleinheitmodul	4											•					
E16A	digitales Eingangsmodul	5		•		•	•	•	•	•		•		•	•	•	•	•
A12A																		
A12B	digitales Ausgangsmodul	5		•		•	•	•	•	•					•	•	•	•
A12C																		
MAEA	digitales Ein-/Ausgangsmodul	5																
MAEB	digitales Elli-/Ausgangsmodul	3		_		•	•	•	•	•		•		•	•			
PEA4																		
PEA6	analoges Ein-/Ausgangsmodul	6										•		•				
PEA8																		
PT41	analoges Eingangsmodul (PT100)	6										•		•				
PRTA	analoges Eingangs-/Echtzeituhrmodul	6										•		1)				
PIFA	Schnittstellenmodul	7										•		•				
PATA	Schnittstellenmodul	7		•		•	•	•	•	•		•		•	•	•	•	•
PRTS	Schnittstellen-/Echtzeituhrmodul	7										•		1)				
PNC4	Zählmodul	8																
PZL2	Zariimouur	°																
MZEA	digitales Eingangs-/Zeitmodul	9																
MZEB	digitales Emgangs-/Zeitmodul																	
P46B	Anzeigemodul	9		•		•	•	•	•	•		•		•	•	•	•	•

¹⁾ Die Module PRTA und PRTS können in der Grundeinheit B auf dem Steckplatz 1 betrieben werden, wenn der Steckplatz 2 nicht verwendet wird.

ABMESSUNGEN

(Alle Maße in mm)

Detail Bohrung:

KAPITEL 3 STROMVERSORGUNGSMODULE

Inhalt:	Bestellnummern - Bestellbezeichnungen	3-3
	Steckplätze	3-3
	Technische Daten	3-4
	Allgemeines	3-4
	Sicherungen	3-5
	DC LED-Anzeige	3-5
	Batterie	3-5

BESTELLNUMMERN - BESTELLBEZEICHNUNGEN

Das Stromversorgungsmodul NT33 ist Bestandteil der MINICONTROL Grundeinheit.

STECKPLÄTZE

Das MINICONTROL Stromversorgungsmodul NT33 darf nur auf dem grau gekennzeichneten Steckplatz betrieben werden:

TECHNISCHE DATEN

	NT42
Eingangsspannung nominal min./max. zulässig	24 VDC 18/32 VDC
Externer Stützkondensator Einphasenbrücke Dreiphasenbrücke	??? ???
Stromaufnahme	???
Eingangskapazität	???
Sicherung	2,5 A 250 V träge
Betriebstemperatur	0 bis 60 °C
Luftfeuchtigkeit	0 bis 95 %, nicht kondensierend

ALLGEMEINES

Das Stromversorgungsmodul generiert aus einer Eingangsspannung von 24 VDC die in der MINICON-TROL benötigten, internen Spannungen. Das Stromversorgungsmodul ist galvanisch getrennt. Es wird auf dem dafür vorgesehenen Steckplatz äußerst links im Baugruppenträger (Bez. "NT/PS") betrieben.

ACHTUNG:

Vor dem Herausnehmen von Modulen aus der SPS sind alle Versorgungs- und Schaltspannungen des Stromversorgungsmodules abzustecken. Beim Anstecken der Versorgungsspannung an das Stromversorgungsmodul dürfen die Zuleitungen noch nicht unter Spannung stehen.

SICHERUNGEN

Der Eingang des Stromversorgungsmodules ist mit einer Sicherung vor Verpolung und Überlastung geschützt:

D FUSE 2.5A Slow	Verwendete Sicherung
INPLIT	2,5 A 250 V träge

ACHTUNG:

Vor dem Wechseln der Sicherung muß die Versorgungsspannung des Stromversorgungsmodules abgesteckt werden.

DC LED-ANZEIGE

Das MINICONTROL Stromversorgungsmodul verfügt über eine DC LED-Anzeige, die anzeigt, ob die 24 VDC Eingangsspannung im zulässigen Bereich ist.

DC Versorgungsspannungs Kontroll-LED. Leuchtet diese LED nicht, so ist eine der internen Versorgungsspannungen nicht im gültigen Bereich. Ursache dafür kann ein Absinken der Eingangsspannung unter den Minimalwert von 18 V sein. Der Ausfall einer internen Versorgungsspannung löst sofort einen Hardware-Reset aus.

BATTERIE

Die Lithium-Batterie versorgt im spannungslosen Zustand der SPS die RAM-Speicher der Zentraleinheit

Die Verwendung einer Batterie ist erforderlich, wenn:

- In der Zentraleinheit Daten gespeichert werden, die auch im spannungslosen Zustand der SPS erhalten bleiben müssen
- Das Anwenderprogramm in einem nicht nullspannungssicheren Anwenderprogrammspeicher gespeichert ist (RAM)

EINBAU DER BATTERIE

WECHSELN DER BATTERIE

- Abdeckkappe mit einem großen Schraubenzieher oder einer Münze herausdrehen
- Alte Batterie herausnehmen
- Neue Batterie einlegen
- Abdeckkappe aufschrauben

Das Wechseln der Batterie kann bei eingeschalteter SPS erfolgen.

ACHTUNG Beim Einlegen der Batterie ist darauf zu achten, daß der Pluspol vorne ist. Falsches Einlegen der Batterie kann zur Beschädigung des Modules und zum Datenverlust führen

KAPITEL 4 ZENTRALEINHEITEN

Inhalt:	Allgemeines	4-3
	Steckplätze	4-3
	Bestellnummern - Bestellbezeichnungen	4-4
	Technische Daten	4-5
	Online-Schnittstelle	4-6
	Anwenderschnittstelle	4-7
	Status-LED	4-10
	Befehlssatz	4-11
	Mathematik-Routinen	4-12
	Speicheraufteilung	4-15
	System-Speicherstellen	4-16
	First Scan-Flag	4-17
	Zeittakte	4-18
	Zeitimpulse	4-18
	Softwareuhr	4-19
	Softwarezeiten	4-20
	Runtime-Überwachung	4-22
	Timerinterrupt-Routinen	4-22
	Fehlermeldungen	4-23
	Anwenderprogrammspeicher	4-26
	EE32 - RAM/EEPROM-Anwenderprogrammspeicher	4-27
	EP05 - EPROM-Anwenderprogrammspeicher	4-28
	Einschaltverhalten	4-29

ALLGEMEINES

Dieses Kapitel beschreibt die MINICONTROL Zentraleinheiten CP30 und CP31. Da manche Funktionen und Bedienelemente nicht bei beiden Zentraleinheiten verfügbar sind, steht am Beginn jedes Abschnitts eine Tabelle, die angibt, welche Zentraleinheit über die beschriebene Funktion verfügt. Z.B.:

Die in der Tabelle mit einem ● gekennzeichneten Zentraleinheiten verfügen über die in dem jeweiligen Abschnitt beschriebene Funktion (in diesem Beispiel: die Zentraleinheit CP31 verfügt über eine Anwenderschnittstelle).

STECKPLÄTZE

Die MINICONTROL Zentraleinheiten CP30 und CP31 dürfen nur auf dem grau gekennzeichneten Steckplatz betrieben werden:

BESTELLNUMMERN - BESTELLBEZEICHNUNGEN

Die Zentraleinheit CP30 ist Bestandteil der MINICONTROL Grundeinheit A (Best.Nr. MCGE31-0). Die Zentraleinheit CP31 ist Bestandteil der MINICONTROL Grundeinheit B (Best.Nr. MCGE33-0).

TECHNISCHE DATEN

	CP30	CP31	
Prozessor	6303		
Bearbeitungszeit	ca. 4 ms / k	Anweisungen	
Anwenderprogrammspeicher Größe Art	16 kByte RAM/EEPROM oder EPROM		
Status-LED	J.	A	
Anzahl E/A digital analog	192 	192 16	
Serielle Schnittstellen Online-Schnittstelle Anwender-Schnittstelle	TTY —	TTY TTY	
Anzahl 8 Bit Speicher remanent nicht remanent	7168 7148 20		
Anzahl 1 Bit Speicher remanent nicht remanent	800 300 500		
Uhrzeit/Datum	Softwareuhr		
Hardware-Timer	24		
Software-Timer	64		
Zeittakte/Zeitimpulse	10 ms, 100 ms, 1 s, 10 s		
Betriebstemperatur	0 bis 60 °C		
Luftfeuchtigkeit	0 bis 95 %, nicht kondensierend		

ONLINE-SCHNITTSTELLE

CP30	CP31
•	•

Zur Kommunikation mit dem Programmiergerät verfügt die Zentraleinheit über eine Online-Schnittstelle. Die Online-Schnittstelle ist eine galvanisch getrennte TTY-Schnittstelle mit 62,5 kBaud, die nur für den Onlinebetrieb mit dem Programmiergerät verwendet werden kann.

Die Online-Schnittstelle ist an der Modulfront mit "PG" gekennzeichnet:

Pinbelegung der Online-Schnittstelle

	Pin	Funktion
6 0 1 2 3 4 5	1 2 3 4 5 6 7 8	TXD RXD RET Reset RET TXD RET RXD Reset + 5 V

Online-Kabel

Online-Kabel Best. Nr.	für Interface/PG
BRKAOL-0	BRIFPC-0 BRIFTO-0 PG1000 1)
BRKAOL2-0	BRIFCO-0

¹⁾ Alle in diesem Handbuch beschriebenen PG-Funktionen beziehen sich auf das B&R-Programmiersystem V 5.0

ANWENDER-SCHNITTSTELLE

Die Zentraleinheit CP31 verfügt über eine TTY-Anwenderschnittstelle.

SOFTWAREMÄSSIGE BEDIENUNG

Die softwaremäßige Bedienung der Anwenderschnittstelle erfolgt über die folgenden Register:

P 103	Programmregister
P 102	Befehlsregister
P 101	Statusregister
P 100	Datenregister

Initialisierung

Bei der Initialisierung werden Programmregister und Befehlsregister mit bestimmten Vorwahlwerten beschrieben. Dadurch werden Baudrate, Datenformat, Parity usw. festgelegt. Die Initialisierung wird nur ein mal unmittelbar nach dem Einschalten der SPS oder nach einem Reset durchgeführt.

Programmregister 0	SB	Anzahl Stopbits	0 1	1 Stopbit wenn DB=5 und kein Parity 1,5 Stopbits wenn DB=8 und Parity 1 Stopbit in allen anderen Fällen 2 Stopbits	
SB DB 1 BAUD P 103	DB	Anzahl Datenbits	00 01	8 Datenbits 10 6 Datenbits 7 Datenbits 11 5 Datenbits	
	BAUD	Baudrate	0001 0010 0011 0100 0101	75 0111 600 11 109,92 1000 1200 11 134,58 1001 1800 11	011 3600 100 4800 101 7200 110 9600 111 19200
Befehlsregister	PAR	Parity	00 01 10 11	Parity ungerade (odd) Parity gerade (even) Parity-Bit beim Senden gesetzt Parity-Bit beim Senden gelöscht	
PAR P _{on} E 1 0 1 1 P 102	\mathbf{P}_{on}	Parity ein/aus	0 1	Kein Parity-Test, Parity-Bit wird Parity-Test aktiv	d nicht generiert
= 102	E	Echo-Mode	0 1	Echo-Mode aus Echo-Mode ein, RT muß 0 sein	

Beispiel:

Initialisierung der Anwenderschnittstelle, Baudrate = 9600, 8 Datenbits, 1 Stopbit, Parity aus, Echo-Mode aus.

LB	# % 00011110	9600 Baud, 8 Datenbits, 1 Stopbit
LAD	# % 00001011	Parity aus, Echo-Mode aus
=D	P 102	Programmregister & Befehlsregister

Statusregister

Das Statusregister liefert Informationen über den Zustand der seriellen Schnittstelle und eventuell aufgetretene Fehler. Der Zustand des Statusregisters muß bei jedem Sende- oder Empfangsvorgang berücksichtigt werden.

Statusregister	TR	Sender bereit	0 1	Sender sendet Zeichen Senderegister leer, Sender bereit, ein Zeichen zu senden
	RF	Zeichen empfangen	0 1	kein Zeichen empfangen Zeichen wurde empfangen
7	ov	Overrun-Fehler	0 1	kein Fehler Fehler. Der Empfänger wurde nicht rechtzeitig gelesen, bevor ein ein neues Zeichen empfangen wurde
	FE	Framing-Fehler	0 1	kein Fehler Fehler. Stop-Bit nicht erkannt.
	PE	Parity-Fehler	0 1	kein Fehler Fehler beim Parity-Test

Datenregister

Das Datenregister hat zwei Funktionen:

- Ankommende Zeichen werden aus dem Datenregister ausgelesen
- Auszugebende Zeichen werden in das Datenregister geschrieben

Zeichen ausgeben

Vor dem Beschreiben des Datenregisters mit dem auszugebenden Zeichen ist zu überprüfen, ob der Sender bereit ist, ein Zeichen zu senden (Bit 4 im Statusregister muß 1 sein).

LB	P 101	Statusregister
BB	# % 00010000	Sender bereit ?
SP0	NO	Sprung, wenn Sender nicht bereit
LAD	x xxx	auszugebendes Zeichen
=	P 100	Datenregister

Zeichen einlesen

Durch Auswerten des Bits 3 im Statusregister wird festgestellt, ob ein Zeichen empfangen wurde. Ist dieses Bit = 1, so wurde ein Zeichen empfangen. Die Bits 0 bis 2 des Statusregisters geben an, ob Übertragungsfehler aufgetreten sind (Parity-Fehler, Overrun-Fehler oder Framing-Fehler). Ist eines dieser Fehlerbits gesetzt, so ist das empfangene Zeichen ungültig. Das Datenregister muß aber auch im Fehlerfall ausgelesen werden, da dadurch die Fehlermeldung quittiert wird.

LB	P 101	Statusregister
BB	# % 00001000	Zeichen empfangen ?
SP0	NO	Sprung, wenn kein Zeichen empfangen
LAD	P 100	Datenregister auslesen
BB	# % 00000111	Übertragungsfehler aufgetreten ?
SN0	FAIL	Sprung, wenn Übertragungsfehler
:		Auswerten des empfangenen Zeichens

FAIL :

STATUS-LED

Beide MINICONTROL Zentraleinheiten sind mit einer Status-LED ausgestattet, die verschiedene Betriebszustände anzeigt.

Die folgenden Betriebszustände werden durch unterschiedliche Blinktakte angezeigt:

Blinktakt	Funktion	
н	Anwenderprogramm läuft im RAM	
LO — L		
н	Zentraleinheit ist im HALT-Zustand	
LO —		
н ПЛ ПЛ	Onlinekabel während PROM-Programmieren abgesteckt	
н ———	Fehler bei der Ausführung des Anwenderprogrammes	
LO		
н	Anwenderprogramm läuft im PROM	
. LO ———	. 0	

BEFEHLSSATZ

In den MINICONTROL Zentraleinheiten wird ein 6303-Prozessor (Hitachi) verwendet. Das ist der selbe Prozessor, der auch in den Zentraleinheiten CP40 (MULTICONTROL), CP41 (MIDICONTROL) und in den PP40 Peripherieprozessoren (MULTICONTROL, MIDICONTROL) zur Anwendung kommt. Dadurch ist volle Software-Kompatibilität zu den anderen SPS-Systemen gegeben.

Eine vollständige Beschreibung des Befehlssatzes des 6303-Prozessors ist im Bedienerhandbuch des B&R-Programmiersystemes zu finden. In der Faltkarte "STL Instruction Set" (Best. Nr. MASTL-E) sind alle Befehle tabellarisch zusammengefaßt.

Diese Faltkarte enthält u.A. folgende Informationen:

- B&R- und MOTOROLA-Mnemonics
- Befehlsbeschreibung
- Mögliche Adressierungsarten
- Mögliche Adreßvorwahlen
- Länge und Dauer der Befehle
- Veränderte Flags

MATHEMATIK-ROUTINEN

Die MINICONTROL-Zentraleinheiten sind standardmäßig mit schnellen Fließkomma Mathematik-Routinen ausgestattet. Diese Routinen sind Bestandteil des Betriebssystemes. Sie werden durch Befehls-Mnemonics aus der Anweisungsliste aufgerufen. Neben den Grundrechenarten Addition, Subtraktion, Multiplikation, Division und Quadratwurzel stehen zahlreiche Umwandlungs- und Hilfsprogramme zur Verfügung (z.B. zum Vergleichen oder Kopieren). Zur Zahlendarstellung wird das genormte 4 Byte IEEE-Format verwendet. Eine detaillierte Beschreibung der Mathematik-Routinen ist in der Kurzbeschreibung MAMATHKB-0 zu finden.

ACHTUNG

MATHEMATIK-ROUTINEN DÜRFEN NICHT IN INTERRUPTPROGRAM-MEN VERWENDET WERDEN.

ZAHLENFORMATE

Format	Zahlenbereich
IEEE-Fließkommaformat 31 24 23 16 15 8 7 0 S EXP S MANTISSE S Vorzeichen EXP 7 Bit Exponent MANTISSE 23 Bit Mantisse	-9,22 * 10 ¹⁸ bis -9,22 * 10 ⁻¹⁸ und 9,22 * 10 ⁻¹⁸ bis 9,22 * 10 ¹⁸
Absolut mit Vorzeichen lang 31	±2,15 * 10°
Absolut mit Vorzeichen kurz 15 14 8 7 0 S ABSOLUTBETRAG	±32767
Integer lang 31	±2,15 * 10 ⁹
Integer kurz 15 14	-32768 bis +32767

Bef.	Funktion	Quelle bzw.	Ziel bzw.	Ausführungszeit in µ s	Mög		Mögliche Fehlermeldungen											
		Operanden	Ergebnis	🚜	1	2	3	4	5	6	7	8	9	10	11	12	13	14
MADD	OP1 := OP1 + OP2	OP1, OP2	OP1	209/690	•	•				•	•					•	П	\neg
MSUB	OP1 := OP1 - OP2	OP1, OP2	OP1	219/700	•	•				•	•					•	П	
MMUL	OP1 := OP1 * OP2	OP1, OP2	OP1	209/803	•	•				•	•					•		
MDIV	OP1 := OP1 / OP2	OP1, OP2	OP1	190/1980	•	•	•			•	•					•	П	
MSQR	OP1 := SQR(OP1)	OP1	OP1	71/8065	•	•				•	•	•				•	П	
MSGN	OP1 := OP1 * (-1)	OP1	OP1	85/85													П	\neg
MCOP	OP2 := OP1	OP1	OP2	46/46													П	$\overline{}$
MEXG	OP1 ↔ OP2	OP1, OP2	OP2, OP1	76/76													П	\neg
LAL1	Lade OP1, abs. mit Vz. 4 Byte	(R)	OP1	190/339					•								П	
LAL2	Lade OP2, abs. mit Vz. 4 Byte	(R)	OP2	190/339					•								П	$\overline{}$
LAW1	Lade OP1, abs. mit Vz. 2 Byte	ERD	OP1	83/250													П	
LAW2	Lade OP2, abs. mit Vz. 2 Byte	ERD	OP2	83/250													П	
LIL1	Lade OP1, int. 4 Byte	(R)	OP1	197/381					•								П	
LIL2	Lade OP2, int. 4 Byte	(R)	OP2	194/378					•								П	
LIW1	Lade OP1, int. 2 Byte	ERD	OP1	87/260													П	\neg
LIW2	Lade OP2, int. 2 Byte	ERD	OP2	84/257													П	
LF1	Lade OP1, IEEE	(R)	OP1	88/125	•					•	•					•	П	\exists
LF2	Lade OP2, IEEE	(R)	OP2	88/125	•					•	•					•	П	-
CAF	ASCII - IEEE	(R)	OP1	280/2140	•					•	•		•				П	$\overline{}$
SAW	Speichere OP1, abs. mit Vz. 2 Byte	OP1	ERD	158/373				•								•	П	
SAL	Speichere OP1, abs. mit Vz. 4 Byte	OP1	(R)	169/408				•								•	П	\neg
SIW	Speichere OP1, int. 2 Byte	OP1	ERD	158/380				•								•	П	\neg
SIL	Speichere OP1, int. 4 Byte	OP1	(R)	172/424				•								•	П	
SFX	Speichere OP1, IEEE	OP1	(R)	43/43			\vdash	Ť								Ė	П	\neg
CFA	OP1 - ASCII	OP1	(R)	352/7310	•			•		•	•					•	П	
CFA0	OP1 - ASCII mit Vomullen	OP1	(R)	310/7190	•			•		•	•					•	П	\neg
CFEA	OP1 - ASCII mit Exp.	OP1	(R)	570/7140	•			Ť		•	•					•	П	
SFM1	Speichere OP1 in Speicher 1	OP1	MEM1	60/60	Ť		\vdash			Ė	Ť					Ė	П	\neg
SFM2	Speichere OP1 in Speicher 2	OP1	MEM2	60/60	1												П	
SFM3	Speichere OP1 in Speicher 3	OP1	MEM3	60/60	1												П	
RFM1	Lade OP2 aus Speicher 1	MEM1	OP2	56/56	1												П	
RFM2	Lade OP2 aus Speicher 2	MEM2	OP2	56/56	1												П	
RFM3	Lade OP2 aus Speicher 3	MEM3	OP2	56/56	1												П	
FM2B	Multiplikation 2 x 2 Byte	(R) int. 2 Byte, ERD	(C1048, 1049) 4 Byte	115/191	1												П	
FM3B	Multiplikation 3 x 2 Byte	(R) int. 3 Byte, ERD	(C1048, 1049) 5 Byte	156/270													П	\neg
FM4B	Multiplikation 4 x 2 Byte	(R) int. 4 Byte, ERD	(C1048, 1049) 6 Byte	192/344													П	\neg
CBCD	Binär - BCD	(ERD) abs. 3 Byte	(R) BCD 3 Byte	192/1180				•									П	\neg
CBIN	BCD - Binär	(ERD) BCD 3 Byte	(R) abs. 3 Byte	112/223													П	\neg
CIA	Binär - ASCII	(C1048, 1049)	(R)	380/2020				•									П	\neg
CIA0	Binär - ASCII mit Vornullen	(C1048, 1049)	(R)	310/1960				•									П	
CBPP	Binär - physikalisch (Parameterber.)	(R)	(C1048, 1049)	2500/6700	•					•	•					•	П	\neg
CBPQ	Binär - physikalisch (schnell)	ERD, (R)	ERD, OP1	780/1700	•					•	•					•	П	\neg
CPBQ	Physikalisch - binär (schnell)	ERD, (R)	ERD, OP1	780/1500	•					•	•					•	П	\exists
CBP	Binär - physikalisch	(C1046, 1047), (R)	(C1048, 1049), ERD, OP1	3400/8300			•	•					•	П	\dashv			
СРВ	Physikalisch - binär	(C1046, 1047), (R)	(C1048, 1049), ERD, OP1	3400/8300	• • •						•	П						
CIM	Inch - metrisch	(C1046, 1047), ERD	(R), ERD	307/472	+-+++++++++++++++++++++++++++++++++++++			•	•									
CMI	Metrisch - Inch	(C1046, 1047), ERD	(R), ERD	307/472	 		\vdash		•	•								
FCOP	Speicherbereich kopieren	(R), ERD	(C1048, 1049)		 			\sqcap	\exists									
FSMB	Speicher mit Byte-Werten laden	(R), ERD, C1052	(R)	48 + L * 12				П	\exists									
FSMW	Speicher mit Wort-Werten laden	(R), ERD, C1052	(R)	48 + L * 14				П	\neg									
FCLR	Speicherbereich löschen	(R), ERD	(R)	48 + L * 12	++++++			П	\neg									
MCMP	OP1 mit OP2 vergleichen	OP1, OP2	(7	201/223	T										\vdash	•	Н	
MHIL	Wenn OP1 > OP2 dann OP1 := OP2	OP1, OP2	OP1	215/271	\vdash	\vdash	\vdash		\vdash	\vdash		\vdash	\vdash			•	\sqcap	-
MLOL	Wenn OP1 < OP2 dann OP1 := OP2	OP1, OP2	OP1	215/271	\vdash											•	\sqcap	\dashv
		1, 5. 2			1						_					_	_	

FEHLERMELDUNGEN

Die in der Tabelle mit ● gekennzeichneten Fehlermeldungen sind für die jeweilige Funktion möglich. Tritt bei der Ausführung einer Routine ein Fehler auf, so wird das Carry-Flag gesetzt und die Speicherstelle C 1024 enthält die Fehlernummer.

Nr	Beschreibung						
1	Bei einer Berechnung wurde der darstellbare Zahlenbereich überschritten						
2	Bei einer Berechnung wurde der darstellbare Zahlenbereich unterschritten						
3	Division durch 0						
4	Bereichsüberschreitung beim Umwandeln von Zahlenformaten						
5	Beschneidung des Lower Significant Byte (LSB) beim Laden von 4 Byte-Mantissen						
6	Bereichsüberschreitung beim Laden von Zahlen						
7	Bereichsunterschreitung beim Laden von Zahlen						
8	Negativer Operand bei Quadratwurzelberechnung						
9	Unzulässiges Zeichen bei Stringumwandlungsroutine						
10	nicht verwendet						
11	Unzulässiges Kommando (TRAP-Fehler wird ausgelöst)						
12	Zahl nicht im Rechenbereich						
13	Exponentfehler bei Inch-Metrisch- bzw. Metrisch-Inch-Umwandlung						
14	Datenüberlauf bei Inch-Metrisch- bzw. Metrisch-Inch-Umwandlung						

OPERANDEN UND SPEICHER

Speicherstelle(n)	Funktion	
C 1024	Fehlernummer	
C 1025	reserviert	
C 1026 bis C 1029	Operand 1 (OP1)	
C 1030 bis C 1033	Operand 2 (OP2)	
C 1034 bis C 1037	Zwischenspeicher 1 (MEM1)	
C 1038 bis C 1041	Zwischenspeicher 2 (MEM2)	
C 1042 bis C 1045	Zwischenspeicher 3 (MEM3)	
C 1046 bis C 1047	Quelladresse	
C 1048 bis C 1049	Zieladresse	
C 1050 bis C 1051	Länge	
C 1052 bis C 1053	Daten	

SPEICHERAUFTEILUNG

\$0000-\$00FF Systemvariablen	\$4000	\$8000	\$C000
\$0000-\$00FF Systemvariablen \$0100-\$01FF System-Stack			
\$0200-\$02FF KOP-Bereich \$0300-\$03FF KOP-Statustest			
\$0300-\$03FF KOP-Statustest			
8 Bit-Datenspeicher (C 0000 bis C 7167)			
\$1FFF		1 Bit-Adressen (Eingänge,	
\$2000	Anwenderprogramm	Ausgänge, Timer, 1 Bit-	Betriebssystem
Reserviert \$2FFF		Speicher)	
\$3000-\$30FF P 000 - P 0FF			1
\$3100 Reserviert			
\$3FFF	\$7EEE	\$REEF	\$EEEE
\$3FFF	\$7FFF	\$BFFF	\$FFFF

SYSTEM-SPEICHERSTELLEN

CP30	CP31
•	•

Einige 8 Bit-Speicher und 1 Bit-Speicher sind für Betriebssystemfunktionen reserviert. Diese dürfen vom Anwenderprogramm nicht bzw. nur eingeschränkt verwendet werden:

8 Bit-Speicher: C 0800 bis C 1499 1 Bit-Speicher: M 800 bis M 999

1 Bit-Speicher mit Adressen ab M 800, die für Betriebssystem-Sonderfunktionen verwendet sind, werden mit Adressen F Dxx bzw. Z Dxx eingegeben:

Adresse	Einzugeben als 1)
M 800	F D00
M 801	F D01
:	:
M 899	F D99
M 900	Z D00
M 901	Z D01
:	:
M 999	Z D99

¹⁾ Das Programmiergerät erlaubt auch die Eingabe der M-Adresse, nach Abschluß der Eingabe mit ENTER wird die Adresse automatisch in die Form F Dxx oder Z Dxx umgewandelt. Z.B.:

Eingabe: M 820
Wird nach ENTER geändert in: F D20
Eingabe: M 980
Wird nach ENTER geändert in: Z D80

Im folgenden Abschnitt sind die System-Speicherstellen beschrieben, die vom Anwenderprogramm nur eingeschränkt verwendet werden dürfen:

Zuläss Lesen	iger Zugriff Schreiben	Adresse(n)	Funktion
		C 0800 bis C 0863	Vorteiler für Softwarezeiten
~		C 0899	First Scan-Flag
		C 0900 bis C 0963	Zähler für Softwarezeiten
		C 0972, C 0973	Timerinterrupt-Vektor
		C 0974, C 0975	Timerinterrupt-Zeit
		C 0978, C 0979	Trap-Vektor
~	✓	C 0980 bis C 0984	Softwareuhr
~	✓	C 0990	Breakpoint-Sonderfunktion
		C 0991 bis C 0993	Zähler/Teiler
		C 0998, C 0999	Runtime-Überwachung
~	✓	C 1024 bis C 1053	Operanden u. Speicher der Mathematik-Routinen
		C 1054 bis C 1499	Reserviert für Standard-Funktionsbausteine
~	~	F D00 bis F D63	Freigaben für Softwarezeiten
~	✓	F D85	Steuerbit für Softwareuhr
V		Z D00 bis Z D63	Softwarezeiten
~		Z D64	First Scan-Flag
1		Z D80 bis Z D83	Zeittakte
~		Z D90 bis Z D93	Zeitimpulse

FIRST SCAN-FLAG

Das First Scan-Flag ist eine 1 Bit-Speicherstelle (Z D64), die vom Betriebssystem automatisch während des ersten Programmzyklus auf 1 gesetzt wird, sonst ist dieses Flag 0. Das First Scan-Flag wird für Programminitialisierungen verwendet. Auch die Speicherstelle C 0899 liefert die First Scan-Funktion:

Z D64	First Scan-Flag (1 = erster Programmzyklus)
C 0899	First Scan-Flag (1 = erster Programmzyklus)

Beispiel: INIT LAD Z D64 First Scan

SPO INIR Sprung, wenn schon init.
:
: Initialisierungen

INIR RET

Im Funktionsplan kann das First Scan-Flag an den Enable-Eingang von Funktionsbausteinen angeschlossen werden, die nur ein mal während des ersten Programmzyklus ausgeführt werden sollen.

ACHTUNG:

Mit dem Kommando XFER des B&R Programmiersystemes können Programme ohne Unterbrechung des laufenden Anwenderprogrammes in den RAM-Speicher der Zentraleinheit übertragen werden. Der Anwender muß nach erfolgter Übertragung manuell mit einem Befehl vom Programmiergerät auf das neue Programm umschalten. In diesem Fall sind die First Scan-Speicherstellen während des ersten Programmzyklus des neuen Programmes nicht gesetzt!

ZEITTAKTE

CP30	CP31
•	•

Zeittakte sind 1 Bit-Adressen, die vom Betriebssystem automatisch mit Blinktakten angesteuert werden:

Adresse	t1	t2	1				
Z D80 Z D81	10 ms 40 ms	10 ms 60 ms	0				t
Z D82 Z D83	0,4 s 4 s	0,6 s 6 s		•	t ₁	t ₂	

ZEITIMPULSE

Zeitimpulse sind 1 Bit-Adressen, die vom Betriebssystem automatisch für die Dauer eines Programmzyklus auf 1 gesetzt werden.

t ... Programmzyklus

SOFTWAREUHR

Die Uhrzeit wird vom Betriebssystem generiert und ist nicht nullspannungssicher. Im spannungslosen Zustand der SPS bleibt zwar der Inhalt der Uhrzeit-Speicherstellen erhalten, die Uhrzeit läuft jedoch nicht weiter. Nach dem Einschalten der SPS muß die Uhr neu gestellt werden.

Uhrzeit-Speicherstellen (alle Angaben außer "Tag" in BCD):

C 0980	1/100 Sekunden (\$00 bis \$99)
C 0981	Sekunden (\$00 bis \$59)
C 0982	Minuten (\$00 bis \$59)
C 0983	Stunden (\$00 bis \$23)
C 0984	Tag (000 bis 255, inkrementiert um 00:00:00 Uhr)

Die Steuerung der Softwareuhr erfolgt über die Speicherstelle FD85. Solange diese Speicherstelle auf 1 gesetzt ist, läuft die Softwareuhr. Stellen der Softwareuhr:

- Uhr abschalten (F D85 löschen)
- Uhrzeit-Speicherstellen C 0980 bis C 0984 mit der Uhrzeit laden
- Uhr einschalten (F D85 setzen)

SOFTWAREZEITEN

Die MINICONTROL-Zentraleinheiten verfügen über 64 Softwarezeiten, die als Anzugsverzögerung arbeiten. Jede Softwarezeit besteht aus folgenden Adressen:

F Dxx Freigabe (Starten) der Softwarezeit. Durch Beschreiben dieser Speicher-

stelle mit 1 wird die Softwarezeit xx (xx = 00 bis 63) gestartet. Diese Speicherstelle kann auch gelesen werden (z.B. um festzustellen, ob eine

Softwarezeit gestartet ist, oder nicht).

Z Dxx Ergebnis. Ist diese Speicherstelle 1, so ist die dazugehörige Softwarezeit

abgelaufen. Diese Speicherstelle kann nur gelesen werden. Das Zurück-

setzen erfolgt durch Löschen der Freigabe F Dxx.

Zxx n"nn Zeitdefinition. Mit der Anweisung Zxx wird die Dauer der Softwarezeit

in Sekunden und 1/100 Sekunden festgelegt. Diese Anweisung muß immer durchlaufen werden, sie steht deshalb meist am Anfang des An-

wenderprogrammes.

Zeitlicher Ablauf:

Nach Start der Softwarezeit xx durch Beschreiben der Freigabeadresse F Dxx mit 1 und Ablauf der mit der Zeitdefinition Zxx eingestellten Zeit t... wird die Zeitadresse Z Dxx ebenfalls 1.

Nach dem Rücksetzen der Freigabeadresse F Dxx wird die Zeitadresse Z Dxx beim nächsten Durchlauf durch die Zeitdefinition Zxx zurückgesetzt. Die Rücksetzzeit t_{res} kann im ungünstigsten Fall ein Programmzyklus lang sein.

Beispiel:

5,5 Sekunden nach Betätigen eines Tasters (E 042) soll ein Motor (A 058) gestartet werden. Mit einem weiteren Taster (E 043) soll der Motor wieder gestoppt werden:

0000 0001	Z10 LAD N	5"50 E 042	Zeitdefinition Taster START
0002	PRS	M 100	Pos. Flanke von E 042
0003	EXO	M 100	Pos. Flanke von E 042
0004	RST	M 100	Pos. Flanke von E 042
0005	PRS	F D10	Start Motorverzögerung
0006	LAD	E 043	Taster STOP
0007	RST	F D10	Start Motorverzögerung
0008	LAD	Z D10	Motorverzögerung
0009	=	A 058	Motor
0010	END		

Das selbe Programmbeispiel kann auch mit einem Kontaktplan gelöst werden:

0000 0001 0002	Z10 SPU END	5"50 KOP1	Zeitdefinition Kontaktplan-Aufruf	
! M START ! ! E 043	+I+I+ FLANKE			M VERZ. F D10
! Z D10 02I I ! MOT.EIN	+	+		A 058 +() MOTOR

Die Zeitdefinition Zxx muß bei jedem Programmdurchlauf genau ein mal durchlaufen werden. Wird sie nicht durchlaufen, so ist die Funktion der Softwarezeit nicht mehr gewährleistet, wird sie mehrmals je Programmzyklus durchlaufen, so ist die angegebene Zeit nicht korrekt.

Jede Softwarezeit belegt eine 8 Bit-Speicherstelle im Bereich von C 0800 bis C 0863, der als Vorteiler verwendet wird und eine weitere 8 Bit-Speicherstelle im Bereich von C 0900 bis C 0963 als Zähler. Die Zeitdefinition Zxx ist ein Softwareinterrupt, der ca. 0,5 ms dauert (bei Verwendung vieler Softwarezeiten Auswirkung auf die Programmzykluszeit beachten!).

RUNTIME-ÜBERWACHUNG

CP30	CP31
•	•

Mit der Runtime-Überwachung wird die maximal zulässige Programmzykluszeit von 100 ms überprüft. Ist ein Programmzyklus nach dieser Zeit noch nicht beendet, so wird das Anwenderprogramm gestoppt, und ein Software-Reset ausgelöst (alle Ausgänge werden zurückgesetzt). Ein Runtimefehler wird im Statustest des Programmiergerätes und durch Einschalten der Status-LED angezeigt.

TIMERINTERRUPT-ROUTINEN

CP30	CP31
•	•

Unabhängig von der Länge des Anwenderprogrammes wird alle 10 ms ein Interrupt ausgelöst und die sogenannte Timerinterrupt-Routine ausgeführt. Diese Betriebssystemfunktion wird für Sicherheits- und Diagnosefunktionen sowie für die Generierung von Softwarezeiten, Uhrzeitfunktionen, Zeittakten und Zeitimpulsen verwendet.

Der Timerinterruptvektor (die Adresse der Timerinterrupt-Routine) steht in C 0972, 0973. Die Timerinterrupt-Zeit ist in C 0974, 0975 gespeichert (Einheit µs). Timerinterrupt-Vektor und Timerinterrupt-Zeit dürfen vom Anwenderprogramm nicht geändert werden.

Zusätzlich zu den Betriebssystem-Funktionen kann der Anwender selbst einen oder zwei Programmteile zeitgesteuert ausführen lassen (User-Timerinterrupt-Routinen). Dazu werden die Timerinterrupt-Handler SUS1 und SUS2 verwendet. Die Parameter:

ERA Gewünschtes Zeitintervall in ms

R Anfangsadresse der User-Timerinterrupt-Routine

Aufruf: SPU \$US1 bzw. SPU \$US2

Die User-Timerinterrupt-Routine wird mit RET abgeschlossen. Unabhängig vom gewählten Zeitintervall für die User-Timerinterrupt-Routine wird die Betriebssystem-Timerinterrupt-Routine alle 10 ms ausgeführt.

ACHTUNG: Timerinterrupt-Routinen werden nicht ausgeführt, wenn die SPS im HALT-Zustand ist

Zu häufiges Aufrufen von langen Timerinterrupt-Routinen kann die Programmzykluszeit wesentlich verlängern und zu Systemstörungen führen. Die Summe der Ausführungszeiten beider Timerinterrruptroutinen darf maximal 300 µs betragen.

In Timerinterrupt-Routinen dürfen keine Betriebssystem-Mathematikroutinen verwendet werden.

Zum Ausschalten einer aktivierten User-Timerinterrupt-Routine wird ERA mit 0 geladen und der Interrupt-Handler (\$US1 oder \$US2) erneut aufgerufen.

Beispiel:

Alle 3 ms soll der Zählerstand eines Abwärtszählers ausgelesen und mit 10000 verglichen werden. Bei Unterschreitung dieses Wertes soll ein Ausgang gesetzt werden. Der Timerinterrupt-Handler \$US1 wird nur ein mal in einer Initialisierungsroutine aufgerufen:

INIT	LAD	Z D64	First Scan
	SP0	INIR	
	LAD	# 003	3 ms
	LRL	TEST	Adresse der IntRoutine
	SPU	\$US1	
INIR	RET		
TEST	SPU	READ	Zählerstand auslesen
	-D	# 10000	Vergleich mit 10000
	JC0	TESR	3
	SET	A 040	Zähler low !
TESR	RET		

FEHLERMELDUNGEN

Alle Zentraleinheiten sind mit umfangreichen Sicherheits- und Diagnosefunktionen ausgestattet (z.B. Programm-Checksumtest bei Power-on). Im Fehlerfall wird das Anwenderprogramm angehalten, die Status-LED eingeschaltet und ein Software-Reset ausgelöst, d.h. alle digitalen Ausgänge werden gelöscht, alle analogen Ausgänge werden auf 0 V bzw. 0 mA zurückgesetzt. Falls ein Programmiergerät angeschlossen ist, wird im Statustest eine Klartext-Fehlermeldung angezeigt (z.B. RUNTIME-FEH-LER).

Die folgende Tabelle ist eine Übersicht über alle bei MINICONTROL Zentraleinheiten möglichen Fehlermeldungen:

Bezeichnung	Beschreibung/Ursachen	Abhilfe
Übertragungsfehler bei Download	Beim Übertragen eines Programmes vom Programmiergerät in die SPS (Download) tritt ein Fehler auf. Mögliche Ursachen: Die Onlineverbindung zwischen PG und SPS wird durch starke, elektromagnetische Störungen beeinträchtigt	Programm erneut in die SPS über- tragen. Im Wiederholungsfall wenn möglich Lichtleiteronlinekabel (FOL) verwenden.
Write Protect	Dieser Fehler tritt nur im Zusammenhang mit EP05 EPROM-Modulen auf. Ursache: Es wurde versucht, ein Programm mit RUN in ein EP05 EPROM-Modul in der Zentraleinheit zu übertragen	RAM-Programmspeichermodul verwenden.
Checksum-Fehler nach RUN	Ein mit RUN übertragenes Programm weist im RAM der SPS eine falsche Prüfsumme (Checksum) auf. Ursache: Programmspeicher defekt.	Programm erneut übertragen, im Wiederholungsfall EE32 tauschen
RAM zu klein	Dieser Fehler tritt nur im Zusammenhang mit RA02 RAM-Modulen auf. Ursache: Es wurde versucht, ein Programm, das auf 4k7 expandiert ist, in ein RA02-Modul zu übertragen.	Anderes Anwenderprogrammspeichermodul verwenden.
Checksum-Fehler	Die Prüfsumme (Checksum) des Anwenderprogrammes ist nach Reset oder Power-on falsch. Mögliche Ursachen: Bei PROM-Programm PROM-Speicher defekt, bei RAM-Programm Batteriepufferung ausgefallen (leer oder defekt) oder Softwarefehler, der das Anwenderprogramm überschreibt.	Programm erneut übertragen. Im Wiederholungsfall Batteriepufferung überprüfen, Anwenderprogramm auf Softwarefehler untersuchen, Pro- grammspeichermodul tauschen.
Runtime-Fehler	Die zulässige Programmzykluszeit von 100 ms wurde überschritten. Mögliche Ursachen: Softwarefehler, zu viele Programmschleifen, Endlos- schleife.	Programmfehler beheben.

Bezeichnung	Beschreibung/Ursachen	Abhilfe
Pointer-Fehler	Beim Checksumtest während Power- on wurde festgestellt, daß Betriebs- systemvektoren nicht stimmen. Mögliche Ursachen: siehe "Check- sum-Fehler".	Siehe "Checksum-Fehler".
Kommunikations- fehler	Bei der Kommunikation zwischen dem Programmiergerät und der Zentraleinheit (RUN, Statustest) tritt ein Fehler auf. Mögliche Ursachen: Die Onlineverbindung zwischen PG und SPS wird durch starke, elektromagnetische Störungen beeinträchtigt. Funktion wiederholen. Im Wiederholen weiten holungsfall wenn möglich Lichtleiteronlinekabel (FOL) verwenden.	
Store-Fehler	Unzulässiger Schreibbefehl auf ge- schützte Speicherbereiche (ab \$C000). Mögliche Ursachen: Fehler im An- wenderprogramm (Schreibbefehl mit indizierter Adressierung).	Programmfehler beheben.
Stapelzeiger-Fehler	Am Programm-Ende (END) steht der Stapelzeiger (Stackpointer) falsch. Mögliche Ursachen: Fehler im Anwenderprogramm (Unterprogramm nicht mit RET abgeschlossen, Fehler bei Verwendung des System-Stacks zur Datenspeicherung).	Programmfehler beheben.
Trap-Fehler	Unbekannter Prozessorbefehl Mögliche Ursachen: Fehler im Anwenderprogramm (z.B. Indizierter Sprung auf Datenbereich).	Programmfehler beheben.
Interrupt-Fehler	Durch unbefugten Zugriff auf Betriebssystem-Speicherbereiche (\$0000 bis \$0020) wurde ein nicht zulässiger Interrupt freigegeben und ausgelöst. Mögliche Ursachen: Fehler im Anwenderprogramm (Schreibbefehl mit indizierter Adressierung).	Programmfehler beheben.

ANWENDERPROGRAMMSPEICHER

Der Anwenderprogrammspeicher wird zur Speicherung des Anwenderprogrammes benötigt. Er wird in den dafür vorgesehenen - grau markierten - Steckplatz der Zentraleinheit gesteckt und mit der Befestigungsschraube arretiert.

BESTELLNUMMERN - BESTELLBEZEICHNUNGEN

Beide MINICONTROL Anwenderprogrammspeichermodule können auch in den Zentraleinheiten CP40 (MULTICONTROL), CP41 (MIDICONTROL), NTCP3# (M264) sowie in den Peripherieprozessoren PP40 eingesetzt werden.

EE32 - RAM/EEPROMANWENDERPROGRAMM-SPEICHERMODUL

Übertragen eines Anwenderprogrammes in die Zentraleinheit (RUN):

Beim Übertragen eines Anwenderprogrammes vom Programmiergerät in die Zentraleinheit wird dieses im RAM des EE32 gespeichert und gestartet, unabhängig davon, ob im EEPROM des EE32 ein anderes Programm gespeichert ist.

Programmieren des EEPROM-Speichers:

Mit einem Befehl aus dem EEPROM-Menü des Programmiergerätes wird die Zentraleinheit veranlaßt, das Programm vom RAM ins EEPROM des EE32 zu programmieren. Das Programmieren des EEPROMs kann auch bei laufendem Anwenderprogramm erfolgen. Ein EEPROM-Programmspeicher muß nicht gelöscht werden, er wird einfach mit dem neuen Programm überschrieben. Während des Programmierens des EE32 darf die SPS nicht ausgeschaltet werden.

Der WE/WP-Schalter des EE32 muß während des Programmierens auf WE (Write Enable) stehen.

Unterbrechungsfreies Übertragen eines Anwenderprogrammes in die Zentraleinheit (XFER):

Mit dem PG-Kommando XFER kann ein Anwenderprogramm in den RAM-Speicher des EE32 übertragen werden, ohne das im EEPROM-Speicher laufende Programm anzuhalten oder zu beeinflussen. Mit einem Befehl vom Programmiergerät kann zwischen den Programmen im RAM- und EEPROM-Speicher des EE32 umgeschaltet werden. Das Umschalten erfolgt synchron zum Programmzyklus, d.h. nach Absetzen des Umschaltbefehles wird der laufende Programmzyklus beendet und beim nächsten END auf den jeweils anderen Speicher umgeschaltet. Es erfolgt jedoch kein Reset, d.h. die Speicherstellen, die bei einem Software-Reset gelöscht werden (C 0000 bis C 0019), werden nicht verändert. Auch die First Scan-Speicherstelle C 0899 wird bei XFER und unterbrechungsfreiem Umschalten nicht gesetzt.

EP05 - EPROMANWENDERPROGRAMM-SPEICHERMODUL

Für die Programmierung des EP05 EPROM-Anwenderprogrammspeichers werden eine EPROM-Programmiergerät (Best.Nr. ECEP01-0) und ein EP05-Programmieradapter (Best.Nr. ECEPAD01-0) benötigt. Das Anwenderprogramm wird mit einem Befehl des B&R PROgrammierSYStemes als S-Record File abgespeichert und mit dem EPROM Programmer-Softwarepaket in den EPROM-Speicher programmiert. Das Softwarepaket ist im Lieferumfang des EPROM-Programmiergerätes enthalten.

EPROM-Speicher müssen vor dem Programmieren mit einer UV-Lampe gelöscht werden. Nach dem Programmieren sind die Löschfenster lichtundurchlässig zu verkleben:

Programm-Upload:

Anwenderprogramme können aus der MINICONTROL Zentraleinheit zurückgeladen werden, unabhängig davon, ob sie in einem EP05- oder EE32-Modul gespeichert sind. Das Zurückladen kann auch bei laufendem Anwenderprogramm erfolgen, in diesem Fall kann der Vorgang jedoch mehrere Minuten dauern

Ein aus der Zentraleinheit zurückgeladenes Programm ist zwar lauffähig, im Programmiergerät stehen jedoch nicht mehr alle Informationen zur Verfügung. Es fehlen:

- Kontaktplanbilder
- Funktionsbausteinbilder
- Kommentare
- Klartextzuweisungen
- Datenformate in Tabellen

EINSCHALTVERHALTEN (POWER-ON)

KAPITEL 5

DIGITALE EIN-/AUSGANGSMODULE

Inhalt:	Allgemeines	5-3
	Adressierung von Eingängen	5-4
	Adressierung von Ausgängen	5-5
	Zeitverhalten von digitalen Eingängen	5-6
	Zeitverhalten von digitalen Ausgängen	5-6
	Schutzbeschaltungen	5-7
	E16A - 16 Eingänge, Eingangsspannung 24 VDC	5-9
	Bestellnummer - Bestellbezeichnung	5-9
	Steckplätze	5-9
	Technische Daten	5-10
	Blockschaltbild	5-11
	Eingangsschaltung	5-11
	Anschlüsse	5-12
	A12A - 12 Relais-Ausgänge	5-13
	Bestellnummer - Bestellbezeichnung	5-13
	Steckplätze	5-13
	Technische Daten	5-14
	Blockschaltbild	5-15
	Anschlüsse	5-16
	A12B/A12C - 12 Transistor-Ausgänge, 24 VDC	5-17
	Bestellnummern - Bestellbezeichnungen	5-17
	Steckplätze	5-17
	Technische Daten	5-18
	Blockschaltbild	5-19
	Ausgangsschaltung	5-19
	Anschlüsse	5-20

MAEA - 8 Eingänge, 6 Ausgänge	5-21
Bestellnummer - Bestellbezeichnung	5-21
Steckplätze	5-21
Technische Daten	5-22
Blockschaltbild	5-23
Ein-/Ausgangsschaltung	5-23
Anschlüsse	5-24
MAEB - 16 Eingänge, 16 Ausgänge	5-25
Bestellnummer - Bestellbezeichnung	5-25
Steckplätze	5-25
Technische Daten	5-26
Blockschaltbild	5-27
Ein-/Ausgangsschaltung	5-27
Anschlüsse	5-28
LED-Statusanzeigen	5-29
Schutzfunktionen	5-29

ALLGEMEINES

Digitale Eingangsmodule dienen zur Umwandlung der binären Signale des Prozesses in die für die SPS benötigten, internen Signalpegel. Der Zustand der Eingänge wird durch grüne Status-LEDs angezeigt ¹⁾.

Digitale Ausgangsmodule dienen zur Ansteuerung von externen Lasten (Relais, Motoren, Magnetventile etc.). Der Zustand der digitalen Ausgänge wird durch orange Status-LEDs angezeigt.

Die folgende Tabelle ist eine Übersicht über alle digitalen Ein- und Ausgangsmodule für das SPS-System MINICONTROL:

Bezeichnung	Funktion	
E16A	16 digitale Eingänge (24 VDC)	
A12A	12 digitale Relais-Ausgänge (220 VAC)	
A12B	12 digitale Transistor-Ausgänge (24 VDC / 0,5 A)	
A12C	12 digitale Transistor-Ausgänge (24 VDC / 2 A)	
MAEA	8 digitale Eingänge (24 VDC) und 6 digitale Transistor-Ausgänge (24 VDC / 0,5 A)	
MAEB	16 digitale Eingänge (24 VDC) und 16 digitale Transistor-Ausgänge (24 VDC / 0,5 A)	

¹⁾ Das Modul MAEB verfügt über 16 orange LEDs für die Anzeige des Status' von Ein- und Ausgängen (umschaltbar mit Taster).

ADRESSIERUNG VON EINGÄNGEN

Die Bezeichnung (Adresse) eines Einganges setzt sich zusammen aus der Adreßvorwahl "E" und einer dreistelligen Ziffern/Buchstabenkombination, die mit 0 beginnt:

E OYZ

ADRESSIERUNG VON AUSGÄNGEN

Die Bezeichnung (Adresse) eines Ausganges setzt sich zusammen aus der Adreßvorwahl "A" und einer dreistelligen Ziffern/Buchstabenkombination, die mit 0 beginnt:

A OYZ

ZEITVERHALTEN VON DIGITALEN EINGÄNGEN

Die Änderung eines Eingangszustandes kann durch Auslesen der dazugehörigen E-Adresse im Anwenderprogramm sofort ausgewertet werden. Der Zustand eines Einganges kann sich auch während eines Programmzyklus ändern (asynchron).

ZEITVERHALTEN VON DIGITALEN AUSGÄNGEN

Ausgangsmodule verfügen nicht über Latch-Zwischenspeicher. Das Setzen bzw. Rücksetzen eines Ausganges im Anwenderprogramm wird sofort nach Ablauf der jeweiligen Anzugs- bzw. Abfallzeit wirksam. Diese Zeiten sind für jedes Modul gesondert im Abschnitt "Technische Daten" angeführt (z.B. für Relaismodule ca. 10 ms, für Transistormodule ca. 100 µs).

SCHUTZBESCHALTUNGEN

Für Relais-Ausgangsmodule ist eine externe Schutzbeschaltung generell vorgeschrieben, für Transistor-Ausgangsmodule ist sie empfehlenswert.

Modul	Externe Schutzbeschaltung
A12A	generell vorgeschrieben
A12B A12C MAEA MAEB	Empfehlung

Die Schutzbeschaltung kann wahlweise an der zu schaltenden Last, am Ausgangsmodul oder an Zwischenklemmen angebracht werden. Für die Dimensionierung der Schutzbeschaltung ist eine genaue Kenntnis über die zu schaltende Last erforderlich (z.B. bei Schützen Innenwiderstand und Induktivität der Spule). Die meisten Hersteller von Schützen und Magnetventilen bieten deshalb Schutzbeschaltungsglieder für das jeweilige Element an.

Man unterscheidet:

- RC-Glied: Wird meist für Wechselspannung eingesetzt 1)
- Varistor: Wird meist für Wechselspannung eingesetzt. Da Varistoren gewissen Alterungserscheinungen unterliegen, ist die Verwendung von RC-Gliedern dem Einsatz von Varistoren vorzuziehen
- Freilaufdiode: Kann nur für Gleichspannungen eingesetzt werden.
- Dioden/Z-Diodenkombination: Kann nur für Gleichspannungen eingesetzt werden. Diese Art der Schutzbeschaltung ermöglicht schnellere Abschaltzeiten. Bei höheren Schaltfrequenzen kommt es jedoch oft zu einer starken Erwärmung des Bauteiles.

 $^{^{1)}}$ Typische Werte für RC-Glieder für Schützen (ca. 10 W induktive Last) sind: 22 $\Omega/250$ nF bei 24 VDC/AC oder 220 $\Omega/1$ μF bei 220 VAC.

E16A

BESTELLNUMMER - BESTELLBEZEICHNUNG

STECKPLÄTZE

Das Eingangsmodul E16A kann in beiden MINICONTROL Grundeinheiten auf den grau gekennzeichneten Steckplätzen betrieben werden.

TECHNISCHE DATEN

	E16A
Anzahl der Eingänge gesamt in Gruppen zu	16
Potentialtrennung Eingang ↔ SPS Eingang ↔ Eingang	JA (Optokoppler) NEIN
Eingangsspannung nominal minimal maximal	24 VDC 16 VDC 30 VDC
Eingangswiderstand	ca. 2,2 kΩ
Schaltschwellen log. 0 ⇔ log. 1 log. 1 ⇔ log. 0	min. 16 VDC max. 12 VDC
Eingangsstrom bei 24 VDC	ca. 10 mA
Schaltverzögerung log. 0 ⇔ log. 1 log. 1 ⇔ log. 0	ca. 10 ms ca. 20 ms
Übernahme der Eingänge durch die Zentraleinheit	automatisch bei Änderung
Maximale Spitzenspannung	500 V für 50 μ s, max. alle 100 ms $^{1)}$
Betriebstemperatur	0 bis 60 °C
Luftfeuchtigkeit	0 bis 95 %, nicht kondensierend

¹⁾ Normimpuls 1,2/50 (IEC 60-2).

BLOCKSCHALTBILD

EINGANGSSCHALTUNG

ANSCHLÜSSE

A12A

BESTELLNUMMER - BESTELLBEZEICHNUNG

STECKPLÄTZE

Das Ausgangsmodul A12A kann in beiden MINICONTROL Grundeinheiten auf den grau gekennzeichneten Steckplätzen betrieben werden.

TECHNISCHE DATEN

	A12A
Anzahl der Ausgänge gesamt in Gruppen zu	12 4
Ausführung	Relais
Schaltspannung AC DC	max. 250 VAC max. 30 VDC
Schaltstrom je Ausgang je Gruppe	max. 2 A max. 5 A
Schaltverzögerung log. 0 ⇔ log. 1 log. 1 ⇔ log. 0	ca. 10 ms ca. 15 ms
Schutzbeschaltung	extern durch Anwender, generell vorgeschrieben
Schaltvorgänge mechanisch elektrisch	> 2 . 10 ⁷ > 1 . 10 ⁵
Spannungsfestigkeit Kontakt ↔ Spule	2000 V _{eff}
Betriebstemperatur	0 bis 60 °C
Luftfeuchtigkeit	0 bis 95 %, nicht kondensierend

BLOCKSCHALTBILD

ANSCHLÜSSE

A12B - A12C

BESTELLNUMMERN - BESTELLBEZEICHNUNGEN

STECKPLÄTZE

Die Ausgangsmodule A12B und A12C können in beiden MINICONTROL Grundeinheiten auf den grau gekennzeichneten Steckplätzen betrieben werden.

TECHNISCHE DATEN

	A12B	A12C
Anzahl der Ausgänge gesamt in Gruppen zu	_	2
Ausführung	Transi	istoren
Galvanische Trennung Ausgang ↔ SPS Ausgang ↔ Ausgang		A EIN
Schaltspannung nominal minimal maximal	18 V	VDC VDC VDC
Schaltstrom je Ausgang je Modul	0,5 A 6 A	2 A 6 A ¹⁾
Schaltverzögerung log. 0 ⇔ log. 1 log. 1 ⇔ log. 0		00 μs 00 μs
Restspannung der Transistoren	< 1 V bei 0,5 A	< 1 V bei 1 A
Schutzbeschaltung	extern durch Anwe	ender (Empfehlung)
Betriebstemperatur	0 bis	60 °C
Luftfeuchtigkeit	0 bis 95 %, nich	nt kondensierend

¹⁾ bei 12 x 0,5 A

BLOCKSCHALTBILD A115

AUSGANGSSCHALTUNG A115

ANSCHLÜSSE A115

MAEA

BESTELLNUMMER - BESTELLBEZEICHNUNG

STECKPLÄTZE

Das Ein-/Ausgangsmodul MAEA kann in beiden MINICONTROL Grundeinheiten auf den grau gekennzeichneten Steckplätzen betrieben werden.

TECHNISCHE DATEN

		MAEA
Eingänge	gesamt in Gruppen zu	8
Ausgänge	Ausführung gesamt in Gruppen zu	Transistoren 6
Potentialtrennung	Eingang \leftrightarrow SPS Eingang \leftrightarrow Eingang Ausgang \leftrightarrow SPS Ausgang \leftrightarrow Ausgang	JA (Optokoppler) NEIN JA NEIN
Eingangsspannung	nominal minimal maximal	24 VDC 16 VDC 30 VDC
Eingangswiderstand		ca. 2,2 kΩ
Eingangsschaltschwellen	log. 0 ⇔ log. 1 log. 1 ⇔ log. 0	min. 16 VDC max. 12 VDC
Eingangsstrom bei 24 VDC		ca. 10 mA
Eingangsschaltverzögerung	log. 0 ⇔ log. 1 log. 1 ⇔ log. 0	ca. 10 ms ca. 20 ms
Übernahme der Eingänge du	rch die Zentraleinheit	automatisch bei Änderung
Maximale Spitzenspannung	an den Eingängen	500 V für 50 μs, max. alle 100 ms ¹⁾
Ausgangsschaltspannung	nominal minimal maximal	24 VDC 18 VDC 30 VDC
Ausgangsschaltstrom	je Ausgang je Modul	0,5 A ???
Ausgangsschaltverzögerung	log. 0 ⇔ log. 1 log. 1 ⇔ log. 0	ca. 100 μs ca. 200 μs
Restspannung der Transistor	ren	< 1 V bei 0,5 A
Schutzbeschaltung		extern durch Anwender (Empfehlung)
Betriebstemperatur		0 bis 60 °C
Luftfeuchtigkeit		0 bis 95 %, nicht kondensierend

¹⁾ Normimpuls 1,2/50 (IEC 60-2).

BLOCKSCHALTBILD

EIN-/AUSGANGSSCHALTUNG

ANSCHLÜSSE FÜR AUSGÄNGE

ANSCHLÜSSE FÜR EINGÄNGE

MAEB

BESTELLNUMMER - BESTELLBEZEICHNUNG

STECKPLÄTZE

Das Ein-/Ausgangsmodul MAEB kann in beiden MINICONTROL Grundeinheiten auf den grau gekennzeichneten Steckplätzen betrieben werden.

TECHNISCHE DATEN

		MAEB
Eingänge	gesamt in Gruppen zu	16
Ausgänge	Ausführung gesamt in Gruppen zu	Transistoren (FET), kurzschluß- und überspannungssicher ¹⁾ 16
Potentialtrennung	$\begin{array}{l} \text{Eingang} \leftrightarrow \text{SPS} \\ \text{Eingang} \leftrightarrow \text{Eingang} \\ \text{Ausgang} \leftrightarrow \text{SPS} \\ \text{Ausgang} \leftrightarrow \text{Ausgang} \end{array}$	JA (Optokoppler) NEIN JA NEIN
Eingangsspannung	nominal minimal maximal	24 VDC ?? VDC 30 VDC
Eingangswiderstand		ca. ??? kΩ
Eingangsschaltschwellen	log. 0 ⇔ log. 1 log. 1 ⇔ log. 0	min. 15 VDC max. 5 VDC
Eingangsstrom bei 24 VDC		ca. 8 mA
Eingangsschaltverzögerung	log. 0 ⇔ log. 1 log. 1 ⇔ log. 0	ca. 10 ms ca. 20 ms
Übernahme der Eingänge du	rch die Zentraleinheit	automatisch bei Änderung
Maximale Spitzenspannung	an den Eingängen	400 V für 100 μs, max. alle 100 ms
Ausgangsschaltspannung	nominal minimal maximal	24 VDC 18 VDC 30 VDC
Ausgangsschaltstrom	je Ausgang je Modul	0,5 A ???
Ausgangsschaltverzögerung	log. 0 ⇔ log. 1 log. 1 ⇔ log. 0	ca. ??? μs ca. ??? μs
Überspannungsschutz		34 bis 40 VDC
Schutzbeschaltung		extern durch Anwender (Empfehlung)
Betriebstemperatur		0 bis 50 °C
Luftfeuchtigkeit		0 bis 95 %, nicht kondensierend

¹⁾ Siehe dazu auch Abschnitt "Schutzfunktionen".

BLOCKSCHALTBILD

EIN-/AUSGANGSSCHALTUNG

ANSCHLÜSSE FÜR AUSGÄNGE

Alle Ein- und Ausgänge sind auf der 37-poligen DSUB-Buchse aufgelegt. Für den Anschluß werden Flachbandleitungen (AWG 28) verwendet. Als Zwischenstück zwischen der DSUB-Buchse und externen Schraubklemmen sind im Handel geeignete Adapterkabel erhältlich (z.B. der Variofacestecker FLKM-D37 SUB/B von Phönix oder das Übergabeelement RS-SD 37B von Weidmüller). Die + Versorgung der Ausgänge ist an der 2-poligen Klemmleiste anzuschließen, da hier Ströme fließen können, die über DSUB-Verbindungen nicht geführt werden dürfen.

LED-STATUSANZEIGEN

Das Modul verfügt über 16 LED-Statusanzeigen, mit denen der Zustand der Ausgänge und Eingänge angezeigt wird.

Solange der Taster T nicht gedrückt ist, wird der Zustand der Ausgänge angezeigt. Wird der Taster betätigt, so zeigen die LEDs den Status der Eingänge an.

SCHUTZFUNKTIONEN

Die Ausgänge der MAEB sind kurzschlußfest und mit einer Übertemperaturabschaltung versehen. Bei Überlast, Überhitzung oder Falschpolung (> 10 VDC) werden die Ausgänge automatisch abgeschaltet und nach erfolgter Abkühlung wieder eingeschaltet.

Bei Überschreitung der zulässigen + Versorgungsspannung der Ausgänge (30 VDC) werden die Ausgänge eingeschaltet. Damit wird eine Beschädigung der Ausgangstransistoren verhindert.

KAPITEL 6

ANALOGE EIN-/AUSGANGSMODULE

Inhalt:	Allgemeines	6-3
	PEA4 - PEA6 - PEA8	6-5
	Bestellnummern - Bestellbezeichnungen	6-5
	Steckplätze	6-5
	Technische Daten	6-6
	Softwaremäßige Bedienung der Eingänge	6-7
	Zusammenhang Analogsignal - Digitalwert	6-8
	Softwaremäßige Bedienung der Ausgänge	6-9
	Zusammenhang Digitalwert - Analogsignal	6-10
	Blockschaltbild	6-11
	Anschluß der Eingänge	6-11
	Anschluß der Ausgänge	6-12
	Register und Bedienung des Wandlers	6-13
	Bedienung der Eingänge	6-13
	Bedienung der Ausgänge	6-14
	PT41	6-15
	Bestellnummern - Bestellbezeichnungen	6-15
	Steckplätze	6-15
	Technische Daten	6-16
	Softwaremäßige Bedienung (Standard-FUB)	6-17
	Blockschaltbild - Eingangsschaltung	6-20
	Anschluß der Eingänge	6-21
	Register und Bedienung des Wandlers	6-22

PRTA	6-23
Bestellnummern - Bestellbezeichnungen	6-23
Steckplätze	6-23
Technische Daten	6-24
Softwaremäßige Bedienung der analogen Eingänge	6-25
Kanalnummern	6-26
Zusammenhang Analogsignal - Digitalwert	6-27
Blockschaltbild	6-28
Anschluß der Eingänge	6-28
Jumper (Strom/Spannung)	6-29
Register und softwaremäßige Bedienung	6-30
Registerbelegung	6-30
Echtzeituhr	6-31
Taster	6-35
Displays	6-36
Analoge Eingänge	6-37

ALLGEMEINES

Mit analogen Eingängen werden Meßwerte (Ströme, Spannungen oder Temperaturen) in Zahlenwerte umgewandelt, die in der SPS verarbeitet werden können. Analoge Ausgänge werden verwendet, um SPS-interne Zahlenwerte in Ströme oder Spannungen zu konvertieren. Die folgende Tabelle ist eine grobe Übersicht über die analogen Ein-/Ausgangsmodule für das SPS-System MINICONTROL:

Modulname	Bezeichnung
PEA4	Analoges Eingangsmodul für Strom oder Spannung (2 Modulversionen), 4 analoge Eingänge (Auflösung 10 Bit)
PEA6	Analoges Ein-/Ausgangsmodul für Strom oder Spannung (2 Modulversionen), 4 analoge Eingänge (Auflösung 10 Bit), 2 analoge Ausgänge (Auflösung 8 Bit)
PEA8	Analoges Ein-/Ausgangsmodul für Strom oder Spannung (2 Modulversionen), 4 analoge Eingänge (Auflösung 10 Bit), 4 analoge Ausgänge (Auflösung 8 Bit)
PT41	Analoges Eingangsmodul für PT100-Temperaturfühler, 4 analoge Eingänge (10 Bit Auflösung)
PRTA	Analoges Eingangsmodul mit Echtzeituhr, 4 analoge Eingänge für Spannung oder Strom (mit Jumper wählbar), Auflösung 10 Bit

Die Module PEA4, PEA6 und PEA8 unterscheiden sich nur in der Anzahl der Kanäle. Die Beschreibung dieser drei Module ist deshalb zu einem Abschnitt zusammengefaßt.

STECKPLÄTZE

Analoge Ein-/Ausgangsmodule können nur in der Grundeinheit B auf den grau gekennzeichneten Steckplätzen betrieben werden.

PEA4 - PEA6 - PEA8

RESTELLNUMMERN - RESTELLBEZEICHNUNGEN

STECKPLÄTZE

TECHNISCHE DATEN

	PEA4-1	PEA6-1	PEA8-1	PEA4-2	PEA6-2	PEA8-
Anzahl Eingänge				4		
Eingangsspannung /-strom nominal max. zulässig	0 bis 10 V ±22 V		0 bis 20 mA 70 mA			
Auflösung der Eingänge			10	Bit		
Umwandlungszeit/Kanal			ca. 1	0 ms		
Differenz-Eingangswiderstand		1 ΜΩ				
Bürde					50 Ω	
Spannungsabfall bei 20 mA					1 V	
Eingangsfilter, Eckfrequenz	640 Hz, 6 dB/Dekade					
Genauigkeit der Eingänge Grundgenauigkeit bei 20°C Offsetdrift Gaindrift Gleichtaktfehler	±0,3 % ±25 ppm / °C ±250 ppm / °C ±250 ppm / °C 0.2 % ±0,3 % ±55 ppm / °C ±300 ppm / °C 0.2 %					
Anzahl Ausgänge		2	4		2	4
Ausgangsspannung /-strom		0 bis	10 V	0 bis 20 mA		
Auflösung der Ausgänge		81	Bit		81	Bit
Genauigkeit der Ausgänge Offset (bei 20 °C) Offsetdrift (0 bis 60 °C) Gainfehler (bei 20 °C) Gaindrift Linearität	0,2 % ±0,5% ±0,2 % ±120 ppm / °C			0,3 0,0 Bürde 0 Ω: Bürde 50 Ω: Bürde 500 Ω 0,05 9	0,2 % 0,5 % 2: 3,5 % 6 / °C	
Zulässige Belastung der Ausgänge je Kanal Summe aller Kanäle	0,2 % ±20 mA -80 mA / +160 mA			0,2	. 70	
Bürde	max 400 Ω		Ω 004			
Betriebstemperatur	0 bis 60 °C					
Luftfeuchtigkeit		0 bis	95 %, keine Ko	ondenswasserbi	ildung	

SOFTWAREMÄSSIGE BEDIENLING DER ANALOGEN EINGÄNGE

Die softwaremäßige Bedienung der analogen Eingänge erfolgt mit dem Standard-Funktionsbaustein "AINA". Für jedes PEA4-, PEA6- oder PEA8-Modul wird ein Funktionsbaustein "AINA" benötigt.

	ANALOG PEA.	INPUT	
1	 ENABLE	AINA	
1	LENGTH	ERROR	1
1	 SLOT	BUSY	1
1	 CHAN	TIME	1 C
[ADR]2	DEST	POINTR	1

Der Funktionsbaustein wandelt die Ströme bzw. Spannungen des Eingangsmodules in Zweibyte-Werte um und speichert sie in den Speicherstellen, deren Anfangsadresse am FUB-Eingang "DEST" angeschlossen ist. Mit den FUB-Eingängen "CHAN" und "LENGTH" definiert der Anwender, bei welchem Kanal die Umwandlung beginnt und wie viele Kanäle eingelesen werden sollen. Pro Programmdurchlauf wird ein Kanal gewandelt.

ENABLE	Solange dieser Eingang 1 ist, wird der Funktionsbaustein abgearbeitet. Wird ENABLE = 0, so erfolgt
	keine Umwandlung mehr und die in den Zieladressen gespeicherten Werte werden nicht mehr
	aktualisiert.

Anzahl der Kanäle, die umgewandelt werden sollen (1 bis 4).

SLOT Steckplatzadresse des Modules (0 oder 1).

CHAN Kanalnummer des ersten zu wandelnden Kanales. Die Summe von CHAN und LENGTH darf 4 nicht

überschreiten.

LENGTH

DEST Zieladresse für die gewandelten Werte. Jeder Analogwert benötigt zwei Bytes. Je nach Anzahl der zu

wandelnden Kanäle werden 2 bis 8 Bytes belegt.

ERROR Ist dieser Ausgang 1, so wurden ein oder mehrere Eingänge falsch angeschlossen. Im Fehlerfall werden

die gewandelten Werte nicht mehr aktualisiert.

BUSY Dieser Ausgang ist 1, solange ein Kanal gewandelt wird. Er muß vom Anwenderprogramm nicht

berücksichtigt werden.

TIME

Mit diesem Ausgang wird die Wandelzeit überwacht. Wenn die Wandelzeit eines bestimmten Kanales innerhalb einer definierten Zeit nicht abgeschlossen ist, wird die Wandlung abgebrochen und der nächste Kanal gewandelt. Beim Laden des Funktionsbausteines muß die Adresse einer 8 Bit-Speicherstelle angegeben werden. Diese Speicherstelle darf vom Anwenderprogramm nicht verwendet werden.

POINTR

Zeigt an, welcher Kanal gerade gewandelt wird. Dieser Ausgang muß vom Anwenderprogramm nicht berücksichtigt werden.

Eine genaue Beschreibung des Funktionsbausteines "AINA" ist im Standardsoftware Anwenderhandbuch, Kapitel 1 "Hardwareunterstützung" zu finden.

Beispiel:

Mit einem analogen Eingangsmodul (PEA4) auf Steckplatz 1 sollen Spannungswerte eingelesen und abgespeichert werden. Es werden die Kanäle 0 bis 2 benötigt, d.h. der erste zu wandelnde Kanal (CHAN) ist 0, die Anzahl (LENGTH) ist 3.

!		+-			-+
01		!	ANALOG	INPUT	!
!		!	PEA.		!
!#00001		I.			- I
02I I		I	ENABLE	AINA	!
!		1!			!
!#00003		!			!
03I I		I	LENGTH	ERROR	I
!		1!			!1
!#\$0001		!			!
04I I		I	SLOT	BUSY	I
!		1!			! 1
!#00000		!			!
05I I		I	CHAN	TIME	!
!		1!			! 1
!	C0200	!			!
06	[ADR I		DEST	-	
!		2+			-+1

Die gewandelten Werte können aus den folgenden Speicherstellen ausgelesen werden:

C 0200, 0201	Kanal 0	C 0204, 0205	Kanal 2
C 0202, 0203	Kanal 1	C 0206, 0207	Kanal 3

ZUSAMMENHANG ZWISCHEN ANALOGEM EINGANGSSIGNAL UND DIGITALWERT

PEA4-1 PEA6-1 PEA8-1	Digitalwert	PEA4-2 PEA6-2 PEA8-2	Digitalwert
0 V	0	0 mA	0
5 V	500	10 mA	500
10 V	1000	20 mA	1000

SOFTWAREMÄSSIGE BEDIENUNG DER ANALOGEN AUSGÄNGE

Die softwaremäßige Bedienung der analogen Ausgänge erfolgt mit dem Standard-Funktionsbaustein "AOTA". Für jedes PEA6- oder PEA8-Modul wird ein Funktionsbaustein "AOTA" benötigt.

Der Funktionsbaustein wandelt Werte von 0 bis 1000 in das analoge Ausgangssignal (0 bis 10 V oder 0 bis 20 mA) um. Mit den FUB-Eingängen "CHAN" und "LENGTH" definiert der Anwender, bei welchem Kanal die Umwandlung beginnt und wie viele Kanäle umgewandelt werden sollen.

ENABLE Solange dieser Eingang 1 ist, wird der Funktionsbaustein abgearbeitet. Wird ENABLE = 0, so erfolgt keine Umwandlung mehr und die zuletzt ausgegebenen Ströme bzw. Spannungen werden nicht mehr geändert.

Anzahl der Kanäle, die umgewandelt werden sollen (bei der PEA6 max. 2, bei der PEA8 max. 4).

SLOT Steckplatzadresse des Modules (0 oder 1).

LENGTH

CHAN Kanalnummer des ersten zu wandelnden Kanales. Die Summe von CHAN und LENGTH darf 2 (bei der PEA6) bzw. 4 (bei der PEA8) nicht überschreiten.

SOURCE Quelladresse der zu wandelnden Daten. Jeder Analogausgang benötigt zwei Bytes. Je nach Anzahl der zu wandelnden Kanäle werden 2 bis 8 Bytes benötigt.

FRROR

Ist dieser Ausgang 1, so wurden ein oder mehrere Eingänge falsch angeschlossen. Im Fehlerfall behalten die Ströme bzw. Spannungen den zuletzt ausgegebenen Wert bei.

CLMP

Dieser Ausgang ist gesetzt (log. 1), wenn die auszugebenden Zahlenwerte nicht im zulässigen Bereich von 0 bis 1023 liegen.

Eine genaue Beschreibung des Funktionsbausteines "AOTA" ist im Standardsoftware Anwenderhandbuch. Kapitel 1 "Hardwareunterstützung" zu finden.

Beispiel:

Mit einem analogen Ein-/Ausgangsmodul (PEA8) auf Steckplatz 0 sollen Spannungswerte ausgegeben werden. Es werden die Kanäle 1 bis 3 benötigt, d.h. der erste zu wandelnde Kanal (CHAN) ist 1. die Anzahl (LENGTH) ist 3.

!		+ -			-+
01		!	ANALOG	OUTPUT	!
!		!	PEA.		!
!#00001		I-			-I
02I I-		I	ENABLE	AOTA	!
!		1!			!
!#00003		!			!
03I I		I	LENGTH	ERROR	I
!		1!			!1
!#\$0000		!			!
04I I		I	SLOT	CLMP	I
!		1!			!1
!#00001		!			!
05I I		I	CHAN		!
!		1!			!
!	C0200	!			!
06	[ADR I	I	SOURCE		!
!		2+-			-+

Die auszugebenden Zahlenwerte werden aus den folgenden Speicherstellen entnommen:

C 0200, 0201	Kanal 1
C 0202, 0203	Kanal 2
C. 0204, 0205	Kanal 3

ZUSAMMENHANG ZWISCHEN DIGITALWERT UND ANALOGEM AUSGANGSSIGNAL

PEA4-1 PEA6-1 PEA8-1	Digitalwert	PEA4-2 PEA6-2 PEA8-2	Digitalwert
0 V	0	0 mA	0
5 V	500	10 mA	500
10 V	1000	20 mA	1000

BLOCKSCHALTBILD

ANSCHLUSS DER EINGÄNGE

Für die Zuleitungen der Analogeingänge müssen geschirmte Leitungen verwendet werden. Die beiden Signalleitungen dürfen auf der Seite des Signalgebers nicht geerdet sein. Der Schirm wird auf beiden Seiten geerdet (z.B. mit Erdungsschellen).

ANSCHLUSS DER AUSGÄNGE

Für die Zuleitungen der Analogausgänge müssen geschirmte Leitungen verwendet werden. Der Schirm wird auf beiden Seiten geerdet (z.B. mit Erdungsschellen).

REGISTER UND BEDIENUNG DES WANDLERS

Der folgende Abschnitt enthält eine detaillierte Beschreibung der internen Register der PEA-Module und des verwendeten A/D-Wandlers. Bei Verwendung des Standard-Funktionsbausteines "AINA" zur Bedienung des Modules sind diese Informationen nicht erforderlich.

REGISTERBELEGUNG:

P 0x0	Kontrollregister	
P 0x1, P 0x2	Datenregister	
P 0x4	Analogausgang 0	(nur bei PEA6 und PEA8)
P 0x5	Analogausgang 1	(nur bei PEA6 und PEA8)
P 0x6	Analogausgang 2	(nur bei PEA8)
P 0x7	Analogausgang 3	(nur bei PEA8)

SOFTWAREMÄSSIGE BEDIENUNG DER ANALOGEN EINGÄNGE

Der Start einer Konvertierung erfolgt durch Beschreiben des Kontrollregisters P 0x0 mit der gewünschten Kanalnummer (x = Steckplatznummer des PEA-Modules; 0 oder 1). Durch Auswerten der Bits 7 (Busy) und 6 (Daten gültig) wird festgestellt, ob die Konvertierung beendet ist. Wenn Bit 7 = 0 und Bit 6 = 1 sind, kann das Wandelergebnis aus den Datenregistern ausgelesen werden.

SOFTWAREMÄSSIGE BEDIENUNG DER ANALOGEN AUSGÄNGE

Das Ausgeben eines Analogwertes erfolgt durch Beschreiben der Analogausgangsregister mit dem gewünschten Wert. Der Zusammenhang zwischen dem Digitalwert und dem Ausgangssignal ist linear:

Digitalwert	Ausgangssignal (mA)	Ausgangssignal (V)
0	0	0
10	0,8	0,4
25	2	1
50	4	2
100	8	4
150	12	6
200	16	8
250	20	10

Beispiel: Ausgeben einer Spannung von 4,0 V an Analogausgang 2 eines PEA8-Modules auf Steckplatz 1:

Beispiel: Ausgeben eines 2 mA-Stromes an Analogausgang 0 eines PEA6-Modules auf Steckplatz 0:

LAD
$$\#$$
 025 = 2 mA
= P 004 Analogausgang 0

PT41

BESTELLNUMMERN - BESTELLBEZEICHNUNGEN

STECKPLÄTZE

Das PT100-Analogeingangsmodul PT41 kann in der Grundeinheit B auf den grau gekennzeichneten Steckplätzen betrieben werden.

TECHNISCHE DATEN

	MCPT41-0	MCPT41-1	MCPT41-2	MCPT41-3
Anzahl Eingänge	4			
Temperaturfühler / Norm	PT100 / DIN 43760			
Anschlußart	3-Leiter	4-Leiter	3-Leiter	4-Leiter
Meßbereiche	-25 bis +225 °C		-25 bis +475 °C	
Auflösung	10 Bit			
Genauigkeit Grundgenauigkeit bei +20°C Offsetdrift Gaindrift	±0,3 % + 110 ppm / R ¹⁾ ±390 ppm / °C + 0,8 ppm / R .°C ¹⁾ ±170 ppm / °C		±0,5 % + 2,2 ppm / R ¹⁾ ±390 ppm / °C + 0,8 ppm / R .°C ¹⁾ ±170 ppm / °C	
Umwandlungszeit/Kanal	ca. 3 ms			
Betriebstemperatur	0 bis 60 °C			
Luftfeuchtigkeit	0 bis 95 %, keine Kondenswasserbildung			

¹⁾ R = Leitungswiderstand

SOFTWAREMÄSSIGE BEDIENLING

Für die softwaremäßige Bedienung der PT41-Module wird der Standard-Funktionsbaustein "TINA" verwendet:

Der Funktionsbaustein liefert die Temperaturwerte wahlweise in Grad Celsius, Grad Fahrenheit oder den Wandlerwert. Mit den FUB-Eingängen "CHAN" und "LENGTH" definiert der Anwender, bei welchem Kanal die Umwandlung beginnt und wie viele Kanäle gewandelt werden.

ENABLE Solange dieser Eingang 1 ist, wird der Funktionsbaustein abgearbeitet. Wird ENABLE = 0, so

erfolgt keine Umwandlung mehr und die in den Zieladressen gespeicherten Werte werden nicht

mehr aktualisiert.

LENGTH Anzahl der Kanäle, die gewandelt werden sollen (1 bis 4).

SLOT Steckplatzadresse des Modules (0 oder 1).

CHAN Kanalnummer des ersten zu wandelnden Kanales. Die Summe von CHAN und LENGTH darf 4

nicht übersteigen.

RANGE Mit dem RANGE-Eingang wird der Meßbereich gewählt (-25 bis +225 °C oder -25 bis +475 °C).

Der Meßbereich ist modulabhängig:

Modul	Meßbereich	RANGE
MCPT41-0 MCPT41-1	-25 bis +225 °C	1
MCPT41-2 MCPT41-3	-25 bis +475 °C	0

C/F Ergebnis in Grad Celsius oder Grad Fahrenheit:

DEST1

C/F = 0 Der eingelesene Wert wird in Grad Celsius umgewandelt und im Zweierkomplementformat in dem Speicherbereich abgelegt, dessen Startadresse am FUB-Eingang DEST2 angegeben wurde. Die Werte sind mit einem Faktor 10 behaftet, d.h. -25 °C entspricht einem Wert von -250, +475 °C entspricht +4750.

C/F = 1 Der eingelesene Wert wird in Grad Fahrenheit umgewandelt und im Zweierkomplementformat in dem Speicherbereich abgelegt, dessen Startadresse am FUB-Eingang DEST2 angegeben wurde. Die Werte sind mit einem Faktor 10 behaftet, d.h. -13 °F entspricht einem Wert von -130, +887 °F entspricht +8870.

Startadresse des Speicherbereiches, in dem die Wandlerwerte abgelegt werden. Die Wandlerwerte liegen zwischen 0 und 1000. Jeder gewandelte Kanal belegt zwei Bytes. Je nach Anzahl der gewandelten Kanäle werden 2 bis 8 Bytes belegt. Es muß entweder an DEST1 oder an DEST2 eine Anfanesadresse für die Wandelergebnisse angeschlossen sein

DEST2 Startadresse des Speicherbereiches, in dem die Temperatur in Grad Celsius oder Grad Fahrenheit abgelegt wird. Es muß entweder an DEST1 oder an DEST2 eine Anfangsadresse für die Wandelergebnisse angeschlossen sein. Die Temperaturwerte sind - unabhängig von dem gewählten Bereich - mit einem Faktor 10 behaftet.

ALARM Startadresse eines Zweibyte-Speicherbereiches, in dem der Alarmstatus abgelegt wird:

Drahtbruchfehler. Die den Kanalnummern entsprechenden Bits 0 bis 3 sind im Fehlerfall gesetzt. Überschreitung des Meßbereiches. Die den Kanalnummern entsprechenden Bits 0 bis 3 sind im Fehlerfall gesetzt.

ERROR Ist dieser Ausgang 1, so wurden ein oder mehrere Eingänge falsch angeschlossen. Es muß entweder an DEST1 oder an DEST2 eine Anfangsadresse für die Wandelergebnisse angeschlossen sein. Im Fehlerfall werden die gewandelten Werte nicht mehr aktualisiert.

BUSY Dieser Ausgang ist 1, solange ein Kanal gewandelt wird. Er muß vom Anwenderprogramm nicht berücksichtigt werden.

POINTR Zeigt an, welcher Kanal gerade gewandelt wird. Dieser Ausgang muß vom Anwenderprogramm nicht berücksichtigt werden.

Eine genaue Beschreibung des Funktionsbausteines TINA ist im Standardsoftware Anwenderhandbuch Kapitel 1 "Hardwareunterstützung" zu finden.

Beispiel:

Mit einem PT41-Modul (MCPT41-0, Meßbereich -25 bis +225 °C) auf Steckplatz 0 sollen Temperaturen gemessen werden (PT100-Temperaturfühler, Dreileiteranschluß). Es werden die Kanäle 1 bis 3 benötigt, d.h. der erste zu wandelnde Kanal (CHAN) ist 1, die Anzahl (LENGTH) ist 3. Die Ergebnisse werden in Grad Celsius in den Speicherstellen C 0200 bis C 205 abgelegt, der Alarmstatus in den Speicherstellen C 0600 und C 0601.

1		+			-+
01		1	TEMPERA	ATURE	!
1		1	INPUT E	PT41	!
!#00001		I.			-I
02I I		I	ENABLE	TINA	!
!		1!			!
!#00003		!			!
03I I		I	LENGTH	ERROR	I
!		1!			!1
!#\$0000		!			!
04I I		I	SLOT	BUSY	I
!		1!			!1
!#00001		!			!
05I I		I	CHAN		!
!		1!			!
!#00001		!			!
06I I		I	RANGE		!
!		1!			!
!#00000		!			!
07I I		I	C/F		!
!		1!			!
!		!			!
08		I	DEST1		!
!		2!			!
!	C0200	!			!
09	[ADR I	I	DEST2		!
!		2!			!
!	C0600				!
10	[ADR I		ALARM		
!		2+-			-+1

Die gewandelten Werte können aus den folgenden Speicherstellen ausgelesen werden:

C 0200, 0201	Kanal 1
C 0202, 0203	Kanal 2
C 0204 0205	Kanal 3

BLOCKSCHALTBILD

EINGANGSSCHALTUNG

ANSCHLUSS DER EINGÄNGE

Für die Anschlußleitungen der Temperaturfühler müssen geschirmte Leitungen verwendet werden. Der Schirm wird auf beiden Seiten geerdet (z.B. mit Erdungsschellen):

REGISTER UND BEDIENUNG DES WANDLERS

Der folgende Abschnitt enthält eine detaillierte Beschreibung der internen Register der PT41-Module und des verwendeten A/D-Wandlers (HD46508). Bei Verwendung des Standard-Funktionsbausteines "TINA" zur Bedienung des Modules sind diese Informationen nicht erforderlich.

Adreßbelegung:	P 0x0	Kontrollregister I
	P 0x1	Kontrollregister II
	P 0x2	Statusregister
	P 0x3	Datenregister

Kontrollregister I (P 0x0)	Dieses Register muß vor dem Start einer neuen Wandlung auf 0 gesetzt werden.				
Kontrollregister II (P 0x1)	7 0 0 0 0 0 0 DB KAN P 0x1	KAN DB	Kanalnummer des zu wandelnden Kanales (0 bis 3) Drahtbruchüberwachung. Wird dieses Bit gesetzt, so gibt KAN die Kanalnummer des zu überwachenden Kanales an.		
Statusregister (P 0x2)	7 0 d _{ss}	B d ₉₋₈	Busy. Zeigt das Ende der Umwandlung an: 0 Nicht busy, Umwandlung beendet 1 Busy, Umwandlung läuft Höherwertige zwei Bit des Wandelergebnisses.		
Datenregister (P 0x3)	7 0 d ₂₀ P 0x3	d ₇₋₀	Niederwertige 8 Bit des Wandelergebnisses.		

Wandeln eines Kanales:

- Beschreiben des Kontrollregisters I (P 0x0) mit 0. Festlegen der gewünschten Kanalnummer im Kontrollregister II (P 0x1). Dadurch wird die Umwandlung automatisch gestartet.
- Mind. 3 ms warten und Wandlung für den selben Kanal erneut starten (Beschreiben von P 0x1 mit der Kanalnummer).
- c) Sobald das Busy-Flag (Bit 6 im Statusregister P 0x2) 0 wird, ist die Umwandlung beendet, und die Daten können ausgelesen werden.

Zusammenhang zwischen ausgelesenem Wandlerwert und Temperatur:

Version -25 bis +225 °C	-25 °C = Wandlerwert 0	+225 °C = Wandlerwert 1000
Version -25 bis +475 °C	-25 °C = Wandlerwert 0	+475 °C = Wandlerwert 1000

PRTA

BESTELLNUMMER - BESTELLBEZEICHNUNG

STECKPLÄTZE

Das PRTA-Modul kann nur in der Grundeinheit B auf dem Steckplatz 0 betrieben werden 1).

¹⁾ Wenn der Steckplatz 2 nicht verwendet wird, kann das PRTA-Modul auch auf dem Steckplatz 1 betrieben werden.

TECHNISCHE DATEN

	PRTA
Anzahl Analogeingänge	4
Eingangssignal	Strom oder Spannung, mit Jumpern für jeden Kanal gesondert wählbar
Eingangsspannung	
nominal	0 bis 10 V
max. zulässig	+15 V, -5 V
Eingangsstrom	
nominal	0 bis 20 mA
max. zulässig	±50 mA
Auflösung	10 Bit
Umwandlungszeit/Kanal	ca. 100 µs
Differenz-Eingangswiderstand	$> 10~\mathrm{M}\Omega$
Bürde	50 Ω
Spannungsabfall bei 20 mA	1 v
Eingangsfilter, Eckfrequenz	ca. 180 Hz
Genauigkeit der Eingänge	
Full Scale Error (20°C)	
Spannung	±3 Bit
Strom	±3 Bit
Offset-Error (20°C)	
Spannung	±1 Bit
Strom Gaindrift	±4 Bit
	200 ppm / °C
Spannung Strom	300 ppm / °C
Offsetdrift	300 ppm / С
Spannung	±1 Bit (0 bis 70 °C)
Strom	±2 Bit (0 bis 70 °C)
Echtzeituhr	Jahr, Monat, Tag, Stunden, Minuten, Sekunden,
	1/10 Sekunden, 1/100 Sekunden, Wochentag
Betriebstemperatur	0 bis 60 °C
Luftfeuchtigkeit	0 bis 95 %, keine Kondenswasserbildung

SOFTWAREMÄSSIGE BEDIENUNG DER ANALOGEN EINGÄNGE

Die softwaremäßige Bedienung der analogen Eingänge erfolgt mit dem Standard-Funktionsbaustein "AINB". Das ist der selbe Funktionsbaustein, der auch für die Module PE42 und PE82 (MULTICONTROL) verwendet wird.

Der Funktionsbaustein "AINB" wandelt die Ströme bzw. Spannungen des Eingangsmodules in Zweibyte-Werte um und speichert sie in den Speicherstellen, deren Anfangsadresse am FUB-Eingang "DEST" angeschlossen ist. Mit den FUB-Eingängen "CHAN" und "LENGTH" definiert der Anwender, bei welchem Kanal die Umwandlung beginnt und wie viele Kanäle eingelesen werden sollen. Pro Programmdurchlauf wird ein Kanal gewandelt.

ENABLE	Solange dieser Eingang 1 ist, wird der Funktionsbaustein abgearbeitet. Wird ENABLE = 0, so erfolgt
	keine Umwandlung mehr und die in den Zieladressen gespeicherten Werte werden nicht mehr
	aktualisiert.

LENGTH	Anzahl der Kanäle.	die umgewandelt werden	sollen (1 bis 8	, siehe Abschnitt Kanalnummern	١.

SLOT	Steckplatzadresse des a	malogen Eingangsmodules	(für das Modul PRTA immer 0).

CHAN Kanalnummer des ersten zu wandelnden Kanales (0 bis 7, siehe Abschnitt Kanalnummern).

DEST Zieladresse für die gewandelten Werte. Jeder Analogwert benötigt zwei Bytes.

ERROR Ist dieser Ausgang 1, so wurden ein oder mehrere Eingänge falsch angeschlossen. Im Fehlerfall werden die gewandelten Werte nicht mehr aktualisiert.

Dieser Ausgang ist 1, solange ein Kanal gewandelt wird. Er muß vom Anwenderprogramm nicht

berücksichtigt werden.

POINTR Zeigt an, welcher Kanal gerade gewandelt wird. Dieser Ausgang muß vom Anwenderprogramm nicht berücksichtigt werden.

BUSY

KANALNUMMERN

Bei der PRTA sind die Analogeingangs-Nummern NICHT identisch mit den Kanalnummern des A/D-Wandlers! Für jeden der vier Analogeingänge (0 bis 3) sind intern zwei Kanäle des A/D-Wandlers belegt:

Analogeingang	Kanalnummer 0 bis 10 V	Kanalnummer 0 bis 20 mA
0	0	1
1	2	3
2	4	5
3	6	7

Die Kanalnummern der zu wandelnden Kanäle sind abhängig davon, ob die dazugehörenden Analogeingänge auf Strom oder Spannung eingestellt sind. Sind z.B. alle Eingänge auf Spannung eingestellt, so werden die Kanäle 0, 2, 4 und 6 benötigt. Da der Funktionsbaustein "AINB" nur eine bestimmte Anzahl AUFEINANDERFOLGENDER A/D-Wandler-Kanäle wandeln kann, ist die einzig sinnvolle Anwendung, immer alle 8 Kanäle zu wandeln (CHAN = 0, LENGTH = 8) und aus den 8 Wandelergebnissen die richtigen Werte zu verwenden.

Hinweis: Vor dem Aufruf des Funktionsbausteines muß durch einen Schreibbefehl auf die Ausgangsadresse A 004 die P-Adressen-Seite des A/D-Wandlers angewählt werden.

Beispiel: Wandeln aller 8 Kanäle und Ablegen in den Speicherstellen C 0200 bis C 0215:

!#00001					A 004
00I I					 ()
!					
!	+-			-+	
01	!	ANALOG	INPUT	!	
!	!	PE82 &	PE42	!	
!#00001	I-			-I	
02I I	I	ENABLE	AINB	!	
!	1!			!	
!#00008	!			!	
03I I	I	LENGTH	ERROR	I	
!	1!			!1	
!#\$0000	!			!	
04I I	I	SLOT	BUSY	I	
!	1!			!1	
!#00000	!			!	
05I I	I	CHAN		!	
!	1!			!	
!	C0200 !			!	
06	[ADR II	DEST	POINTR	I	
!	2+-			-+1	

Die gewandelten Werte können aus den folgenden Speicherstellen ausgelesen werden:

C 0200, 0201	Eingang 0 / 0 - 10 V	C 0208, 0209	Eingang 2 / 0 - 10 V
C 0202, 0203	Eingang 0 / 0 - 20 mA	C 0210, 0211	Eingang 2 / 0 - 20 mA
C 0204, 0205	Eingang 1 / 0 - 10 V	C 0212, 0213	Eingang 3 / 0 - 10 V
C 0206, 0207	Eingang 1 / 0 - 20 mA	C 0214, 0215	Eingang 3 / 0 - 20 mA

Sind z.B. alle Eingänge auf Spannung eingestellt, so sind die Strom-Wandelwerte (C 0202, C 0206, C 0210 und C 0214) undefiniert.

ZUSAMMENHANG ZWISCHEN ANALOGEM EINGANGSSIGNAL UND DIGITALWERT

Der Zusammenhang zwischen dem Analogsignal (Strom oder Spannung) und dem digitalen Wert ist linear:

Digitalwert	Analogsignal 0 bis 10 V	Analogsignal 0 bis 20 mA
0	0 V	0 mA
500	5 V	10 mA
1000	10 V	20 mA

BLOCKSCHALTBILD

ANSCHLUSS DER EINGÄNGE

Für die Zuleitungen der Analogeingänge müssen geschirmte Leitungen verwendet werden. Die beiden Signalleitungen dürfen auf der Seite des Signalgebers nicht geerdet sein. Der Schirm wird auf beiden Seiten geerdet (z.B. mit Erdungsschellen).

JUMPER

Mit vier Jumpern kann für jeden Kanal gesondert zwischen Strom- und Spannungseingang gewählt werden. Lage der Jumper:

Jumper oben: 0

Stromeingang (0 bis 20 mA)

Jumper unten: 0

О

0

Spannungseingang (0 bis 10 V) 1)

¹⁾ Standardeinstellung bei Auslieferung des Modules.

REGISTER UND SOFTWAREMÄSSIGE REDIENUNG

Der folgende Abschnitt enthält eine detaillierte Beschreibung der internen Register des PRTA-Modules und des verwendeten A/D-Wandlers.

REGISTERBELEGUNG:

Da für die softwaremäßige Bedienung der analogen Eingänge, der Echtzeituhr, den Tastern und des Displays mehr als 16 P-Register benötigt werden, verfügt die PRTA über 3 P-Registerseiten (engl. "pages"). Durch Schreibbefehle auf A-Adressen wird zwischen den pages umgeschaltet:

Zugriff auf Ausgang	bewirkt Umschalten auf page für
A 002	Echtzeituhr
A 003	Taster, Display, 1/10 Sekunden und 1/100 Sekunden
A 004	Analogeingänge

Beispiel: Zugriff auf die P-Registerseite der Analogeingänge:

= A 004 Umschalten auf page 4

Die drei pages sind wie folgt belegt:

P-Register	Echtzeituhr (A 002)	Taster, Display, 1/10 s, 1/100 s (A 003)	Analoge Eingänge (A 004)
P 000	Sekunden Einerstelle	Display 1 und Dezimalpunkte	Kontrollregister I
P 001	Sekunden Zehnerstelle	Display 2 und Display 3	Kontrollregister II
P 002	Minuten Einerstelle	Taster	Statusregister
P 003	Minuten Zehnerstelle	1/10 s und 1/100 s	Datenregister
P 004	Stunden Einerstelle		
P 005	Stunden Zehnerstelle		
P 006	Tag Einerstelle		
P 007	Tag Zehnerstelle		
P 008	Monat Einerstelle		
P 009	Monat Zehnerstelle		
P 00A	Jahr Einerstelle		
P 00B	Jahr Zehnerstelle		
P 00C	Wochentag		
P 00D	Kontrollregister I		
P 00E	Kontrollregister II		
P 00F	Kontrollregister III		

ECHTZEITUHR

Die PRTA verfügt über eine nullspannungssichere Echtzeituhr. Der Uhren-IC wird durch eine Lithiumbatterie gepuffert. Die Zehntel- und Hundertstelsekunden werden hardwaremäßig außerhalb des Uhren-IC generiert und sind nicht nullspannungssicher. Die Lebensdauer der Lithiumbatterie beträgt bei Raumtemperatur ca. 8 Jahre. Bei höherer Temperatur verringert sich die Lebensdauer entsprechend.

Durch einen Schreibbefehl auf den Ausgang A 002 wird die P-Registerseite der Echtzeituhr angewählt. Danach sind die P-Register P 000 bis P 00F wie folgt belegt:

Initialisierung

Bei der Initialisierung werden Kontrollregister II (P 00E) und Kontrollregister III (P 00F) mit bestimmten Bitmustern geladen:

P 00E %00000100 Dies bewirkt, daß am IC-Ausgang "STD. (Pin 1) ein 1 s Takt ausgegeben wird. Die wird zur Synchronisierung der extern erzeugten 1/10 und 1/100 Sekunden benö	eser
--	------

P 00F %00000x00 In diesem Register ist nur Bit 2 von Interesse. Hier wird festgelegt, ob die Uhr im 12- oder im 24 Stunden-Modus arbeiten soll (0 = 24 Stunden-Modus).

Für die Initialisierung ist der folgende Vorgang unbedingt einzuhalten:

Auslesen der Uhrzeit

1/10 und 1/100 Sekunden

Die 1/10 und 1/100 Sekunden werden hardwaremäßig außerhalb des Uhren-IC erzeugt, sind aber mit dem Sekundentakt des Uhren-IC synchronisiert. Zum Auslesen der 1/10 und 1/100 Sekunden muß durch einen Schreibzugriff auf die Adresse A 003 eine andere P-Registerseite angewählt werden. Danach können die Daten aus P 003 ausgelesen werden.

Stellen der Uhr

TASTER

Nach dem Umschalten auf P-Registerseite 3 (Schreibbefehl auf Adresse A 003) kann der Zustand der drei Taster aus P 002 ausgelesen werden:

Beispiel: Auslesen der drei Taster und Ablegen in M 100 bis M 102.

=	A 003	Umschalten auf P-Registerseite für Taster
LAD	P 002	
SLA		T1 ins Carry
SLI	м 100	Carry in M 100
SLA		T2 ins Carry
SLI	M 101	Carry in M 101
SLA		T3 ins Carry
SLI	M 102	Carry in M 102

DISPLAYS

Nach dem Umschalten auf P-Registerseite 3 (Schreibbefehl auf Adresse A 003 können durch Beschreiben der P-Register P 000 und P 001 die Anzeigewerte für die drei Displays geändert werden:

Beispiel: Ausgabe von "123", alle Dezimalpunkte ausgeschaltet:

```
A 003
                         Umschalten auf P-Registerseite f. Displays
LAD
      # 002
                         Wert für Display 2
LB
      # 016
A*B
                         4 Bits mach links schieben
                        Wert für Display 3
OB
      # 003
      # 001
                        Wert für Display 1
LAD
=D
      P 000
```

ANALOGE EINGÄNGE

Vor dem Zugriff auf die P-Register der analogen Eingänge muß durch einen Schreibbefehl auf die Adresse A 004 die entsprechende P-Registerseite angewählt werden. Danach sind die P-Register wie folgt belegt:

P 000	Kontrollregister	I
P 001	Kontrollregister	II
P 002	Statusregister	
P 003	Datenregister	

Kontrollregister I (P 000)	Dieses Register muß vor dem Start jeder Wandlung auf 0 gesetzt werden.		
Kontrollregister II (P 001)	7 0 0 0 0 0 0 KAN S P 001	KAN S	Kanalnummer des zu wandelnden Kanales (0 bis 3) Strom/Spannung (0 = Spannung, 1 = Strom)
Statusregister (P 002)	7 0 B D ₃₄	\mathbf{B} $\mathbf{d}_{9.8}$	Busy. Zeigt das Ende der Umwandlung an: 0 Nicht busy, Umwandlung beendet 1 Busy, Umwandlung läuft Höherwertige zwei Bit des Wandelergebnisses.
Datenregister (P 003)	7 0 D ₇₉ P 003	d ₇₋₀	Niederwertige 8 Bit des Wandelergebnisses.

Wandeln eines Kanales:

- a) Beschreiben des Kontrollregisters I (P 000) mit 0
- Festlegen von Kanalnummer und Strom/Spannung im Kontrollregister II (P 001). Dadurch wird die Umwandlung automatisch gestartet.
- c) Sobald das Busy-Flag (Bit 6 im Statusregister P 002) 0 wird, ist die Umwandlung beendet, und die Daten können ausgelesen werden. Die Umwandlung dauert ca. 100 μs.

KAPITEL 7

SCHNITTSTELLENMODULE

Inhalt:	Allgemeines	7-3
	Schnittstellenarten	7-3
	Handshake-Arten	7-4
	Serielle Schnittstellen	7-5
	Startbit, Datenbits, Parity-Bit	7-5
	Stopbits	7-6
	Schnittstellen-Fehlermeldungen	7-6
	B&R Schnittstellenmodule	7-7
	PIFA	7-9
	Bestellnummern - Bestellbezeichnungen	7-9
	Technische Daten	7-10
	Steckplätze	7-10
	Pinbelegungen	7-11
	Anschluß	7-11
	Schirmung und Erdung	7-12
	Softwaremäßige Bedienung	7-12
	Initialisierung	7-13
	Programmregister, Befehlsregister	7-13
	Statusregister, Datenregister	7-14
	Zeichen ausgeben, Zeichen einlesen	7-15
	PATA	7-17
	Bestellnummer - Bestellbezeichnung	7-17
	Allgemeines	7-17
	Technische Daten	7-18
	Steckplätze	7-18
	Pinbelegung	7-19
	Schirmung und Erdung	7-19
	Softwaremäßige Bedienung	7-20

PRTS	7-21
Bestellnummer - Bestellbezeichnung	7-21
Technische Daten	7-22
Steckplätze	7-22
Pinbelegung	7-23
Jumper	7-24
Schirmung und Erdung	7-25
Softwaremäßige Bedienung	7-25
Serielle Schnittstellen und Schieberegister	7-26
P-Register der seriellen Schnittstellen	7-26
Kontrollregister	7-27
Modusregister	7-28
Auxiliary Kontrollregister	7-29
Baudraten	7-30
Sende-/Empfangs-FIFO	7-31
Statusregister	7-31
Sende- und Empfangsregister	7-32
Schieberegister-Status	7-32
Schieberegister-Kontrolle	7-33
RTS-Kontrollregister	7-33
Schnittstelle initialisieren	7-34
Senden ohne Schieberegister	7-36
Empfangen ohne Schieberegister	7-37
Schieberegister	7-38
Senden mit Schieberegister	7-39
Empfangen mit Schieberegister	7-41
Echtzeituhr	7-43
P-Register der Echtzeituhr	7-43
Initialisierung	7-45
Auslesen der Uhrzeit	7-46
1/10 und 1/100 Sekunden	7-46
Stellen der Uhr	7-47
Taster, Display und Stationsnummernschalter	7-47

ALLGEMEINES

Schnittstellenmodule ermöglichen es der SPS, mit anderen Geräten (auch anderen SPS) Daten auszutauschen. Man unterscheidet:

- Parallele Schnittstellen: Die Daten werden byteweise übertragen. Über 8 Datenleitungen wird jeweils ein ganzes Byte gesendet. Da für parallele Schnittstellen vielpolige Kabel verwendet werden, ist der Verkabelungsaufwand für Kommunikationen über größere Entfernungen zu hoch. Die wichtigste, genormte, paralle Schnittstelle ist die CENTRONICS-Schnittstelle, die meist zur Ansteuerung von Druckern verwendet wird.
- Serielle Schnittstellen: Die Daten werden bitweise gesendet und vom Empfänger wieder zu Datenworten zusammengesetzt. Wegen des geringeren Leitungsaufwandes und ausreichender, weltweiter Standardisierung sind serielle Schnittstellen für die Kommunikation von Computersystemen besser geeignet, als parallele Schnittstellen. Die wichtigsten Typen sind:

RS232 (V24): Die Kommunikation erfolgt über mindestens drei Leitungen (Sender, Empfänger und Bezugsmasse). Für die Synchronisierung von Sender und Empfänger (Handshake) können zusätzliche Leitungen verdrahtet werden. Die Reichweite der RS232-Schnittstelle ist in Industrie-Umgebungen wegen des geringen Störabstandes und fehlender galvanischer Trennung eher begrenzt (ca. 10 m).

TTY: Die Kommunikation erfolgt über einen eingeprägten Strom (20 mA). Die TTY-Schnittstelle wird deshalb auch als Stromschleifen-Schnittstelle bezeichnet. Da TTY-Schnittstellen galvanisch getrennt sind, wird eine größere Reichweite erzielt (in Industrie-Umgebungen bis zu 200 m). Die TTY-Schnittstelle benötigt vier Leitungen.

RS422: Bei dieser Schnittstelle sind Sende- und Empfangsleitung und gegebenenfalls Handshakeleitungen doppelt ausgeführt (Differenzsignale). Die erzielbare Reichweite der RS422-Schnittstelle ist größer, als die der RS232-Schnittstelle. Verzichtet man auf Handshake-Leitungen, so kann die RS422-Schnittstelle bei geeigneter Verdrahtung auch als RS485-Schnittstelle verwendet werden. Alle RS422-Schnittstellen von B&R können hochohmig geschaltet werden (Tristate-Zustand) und sind deshalb netzwerkfähig.

RS485: Dieser Schnittstellentyp ist für industrielle Anwendungen am besten geeignet. Wie die RS422-Schnittstelle gibt es auch bei der RS485-Schnittstelle zwei Sende- und zwei Empfangsleitungen (Differenzsignale). Die RS485-Schnittstelle ist im Standardfall galvanisch von der SPS getrennt und netzwerkfähig, d.h. es können mehrere Sender und Empfänger auf einem gemeinsamen Medium (Zwei- oder Vierdrahtleitung) betrieben werden. Mit der RS485-Schnittstelle werden Reichweiten bis 1200 m erzielt.

Synchronisierung von Sender und Empfänger:

In den meisten Fällen asynchroner Datenübertragung kann der Sender die einzelnen Datenbytes schneller senden, als sie vom Empfänger verarbeitet werden können. Deshalb ist für nahezu alle Datenübertragungsstrecken eine Synchronisierung von Sender und Empfänger - auch Handshake genannt - erforderlich Man unterscheidet:

- Hardware-Handshake
- Software-Handshake

Hardware-Handshake:

Beim Hardware-Handshake wird eine zusätzliche Leitung verdrahtet, über die der Empfänger dem Sender mitteilt, ob er bereit ist, weitere Datenbytes zu empfangen. Auch die parallele CENTRONICS-Schnittstelle verfügt über eine sogenannte Busy-Leitung, über die z.B. ein angeschlossener Drucker meldet, daß sein Empfangspuffer voll ist. Bei bidirektionalen Datenübertragungen werden zwei Handshakeleitungen benötigt.

Vorteil: Handshakeleitungen sind softwaremäßig einfach auszuwerten

Nachteil: Höherer Verkabelungsaufwand

Softwarehandshake:

Die Synchronisierung von Sender und Empfänger geschieht mit Steuerzeichen. Das bekannteste und am weitesten verbreitete Verfahren ist das genormte X-ON/X-OFF Protokoll, das auch in den meisten Druckern verfügbar ist. Der Empfänger sendet ein definiertes Stop-Zeichen (X-OFF; \$13) an den Sender, wenn er keine Daten mehr empfangen kann. Sobald sein Empfangspuffer wieder weitere Zeichen aufnehmen kann, sendet er ein Startzeichen (X-ON; \$11). Selbstverständlich sind auch andere Verfahren der softwaremäßigen Synchronisierung möglich.

Vorteil: Geringerer Verkabelungsaufwand

Nachteil: Meist höherer Softwareaufwand erforderlich

Punkt-zu-Punkt Verbindungen / Netzwerke:

Bei der Kommunikation von Automatisierungssystemen unterscheidet man:

Punkt-zu-Punkt Verbindung: Ein System ist mit einem anderen verbunden und tauscht mit diesem

Daten aus, d.h. die Datenübertragung kann auch in beide Richtungen

(auch gleichzeitig) erfolgen.

Netzwerke: Eine Anzahl von Systemen ist über ein gemeinsames Medium (minde-

stens eine Zweidrahtleitung) verbunden. Je nach Netzwerkstruktur kann eine Station nur an bestimmte andere Stationen oder an jede beliebige Station Daten senden. Voraussetzung für den Aufbau von Netzwerken ist eine netzwerfähige, serielle Schnittstelle (z.B. die RS485-Schnittstelle).

SERIELLE SCHNITTSTELLEN

Zeichen, die über eine serielle Schnittstelle gesendet werden, werden vom Schnittstellenmodul automatisch in einzelne Bits "zerlegt". Bei der Initialisierung definiert der Anwender, wie viele Datenbits die zu sendenden Zeichen haben sollen (5 bis 8). In den folgenden Abbildungen wird von 8 Bit-Datenbytes ausgegangen.

Zunächst wird ein *Startbit* gesendet, das dem Empfänger den Beginn eines Zeichens anzeigt. Dann folgen die einzelnen *Datenbits*. Die *Parity-Überprüfung*, die bei der Initialisierung eingeschaltet werden kann, ermöglicht einen einfachen Sicherheitstest. Zusätzlich zu den Datenbits wird ein sogenanntes Parity-Bit generiert:

Dieses Bit wird vom Schnittstellenmodul automatisch generiert, um die Summe der gesendeten Datenbits gerade bzw. ungerade zu machen.

Gerade Parity (EVEN)	Ungerade Parity (ODD)
Das Parity-Bit ist 1, wenn die Summe aller	Das Parity-Bit ist 1, wenn die Summe aller
Datenbits ungerade ist.	Datenbits gerade ist.
Das Parity-Bit ist 0, wenn die Summe aller	Das Parity-Bit ist 0, wenn die Summe aller
Datenbits gerade ist.	Datenbits ungerade ist.

Der Empfänger überprüft nach Empfang eines Zeichens, ob die Summe entsprechend des eingestellten Parity-Tests gerade oder ungerade ist. Ist z.B. bei ungerader Parity die Summe der empfangenen Bits inkl. Parity-Bit gerade, so ist durch einen Übertragungsfehler mindestens ein Bit des Datenwortes invertiert worden. In diesem Fall wird ein Fehlersignal generiert (siehe Statusregister).

Als Abschluß der Bitfolge wird ein *Stopbit* gesendet. Bei der Initialisierung der Schnittstelle legt der Anwender die Länge dieses Stopbits fest. Es kann entweder genau so lang sein, wie ein Datenbit (1 Stopbit; häufigster Fall), es kann 1,5 mal so lange sein, wie ein Datenbit (1,5 Stopbits) oder es kann doppelt so lang sein, wie ein Datenbit (2 Stopbits):

Mögliche Fehlermeldungen

Durch Fehlerstatusbits (siehe Statusregister) werden drei mögliche Fehlerzustände angezeigt:

- Parity-Fehler (s.o.)
- Framing-Fehler
- Overrun-Fehler

Framing-Fehler

Ein Framing-Fehler tritt auf, wenn der Schnittstellenempfänger das Stop-Bit am Ende eines Zeichens nicht erkennt, z.B. weil starke Störungen auf der Leitung das Stop-Bit beeinträchtigt haben.

Overrun-Fehler

Wird ein empfangenes Zeichen nicht aus dem Empfangs-Datenregister ausgelesen, bevor das nächste Zeichen empfangen wird, so wird ein Overrun-Fehlerbit generiert. Das empfangene Zeichen ist ungültig.

¹⁾ Dies ist ein Sonderfall, der nur bei 5 Datenbits und ausgeschaltetem Parity-Test möglich ist.

²⁾ Nicht möglich, wenn Wortlänge = 8 Datenbits und Parity-Test eingeschaltet.

B&R-SCHNITTSTELLENMODULE

B&R bietet für nahezu alle Arten von Kommunikation mit anderen Systemen geeignete Hardware und Software an. Für die Punkt-zu-Punkt Verbindung von B&R SPS mit anderen B&R-Geräten oder Geräten anderer Hersteller sind für die MINICONTROL die folgenden Schnittstellenmodule und Software-Treiber erhältlich:

Best. Nr.	Bezeichnung
MCPIFA-0	Schnittstellenmodul mit einer seriellen TTY-Schnittstelle
MCPIFA-2	Schnittstellenmodul mit einer seriellen RS232-Schnittstelle
MCPIFA-3	Schnittstellenmodul mit einer seriellen RS485-Schnittstelle
MCPATA-0	Schnittstellenmodul zur Ansteuerung der MINICONTROL Bedientableaus
MCPRTS-0	Schnittstellenmodul, eine seriellen RS485-Schnittstelle, eine seriellen RS232-Schnittstelle, Schieberegister, Echtzeituhr, dreistelliges LED-Display, Stationsnummernschalter, Taster zum Stellen der Echtzeituhr

Die serielle TTY-Schnittstelle der Zentraleinheit CP31 ist im Kapitel 4 "Zentraleinheiten" beschrieben.

Für Treiber-Softwarepakete zur Kommunikation mit Fremdsystemen oder für Netzwerke existieren u.U. eigene Dokumentationen. Wenden Sie sich im Zweifelsfall an einen für Ihren Bereich zuständigen B&R Vertriebsberater.

PIFA

BESTELLNUMMERN - BESTELLBEZEICHNUNGEN

TECHNISCHE DATEN

	MCPIFA-0	MCPIFA-2	MCPIFA-3	
Schnittstelle(n)	1 x TTY	1 x RS232	1 x RS485	
Galvanisch getrennt	JA	NEIN	JA	
Anschluß	9-poliger DSUB-Stecker			
Reichweite	max. 200 m	max. 10 m	max. 1200 m	
Handshakeleitungen		DTR, DSR, RTS, DCD	DTR, DSR	
Baudraten	50 bis 19200, softwaremäßig wählbar			
Datenformat	5 bis 8 Datenbits, Parity ja/nein/gerade/ungerade, softwaremäßig wählbar			
Betriebstemperatur	0 bis 60 °C			
Luftfeuchtigkeit	0 bis 95 %, keine Kondenswasserbildung			

STECKPLÄTZE

Die PIFA-Schnittstellenmodule können in der MINICONTROL Grundeinheit B auf den grau gekennzeichneten Steckplätzen betrieben werden:

PINBELEGUNG

	Pin	MCPIFA-0 TTY	MCPIFA-2 RS232	MCPIFA-3 RS485
_1	1	GND	GND	GND
6	2	RXD	RXD	RXD
	3	RXD RET		RXD
	4		DSR	DSR
	5		DCD	DSR
9 5	6	TXD RET		TXD
	7	TXD	TXD	TXD
	8		RTS	DTR
	9		DTR	DTR

ANSCHLUSS

MCPIFA-0 TTY	MCPIFA-2 RS232	MCPIFA-3 RS485
TXD RXD	TXD	TXD RXD 7
TXD RET RXD RET	RXD TXD	TXD RXD O
RXD TXD	DTR DSR	RXD TXD
RXD RET TXD RET	DSR DTR	RXD TXD
	GND GND	

Die TTY-Sendeschleife ist aktiv, die Empfangsschleife ist passiv.

Wegen des hohen Verdrahtungsaufwandes wird bei der RS485-Schnittstelle meist auf die Handshake-Leitungen verzichtet und statt dessen ein Software-Handshake verwendet.

SCHIRMUNG UND ERDUNG

Für Schnittstellenverbindungen müssen geschirmte Kabel verwendet werden. Der Kabelschirm wird auf beiden Seiten geerdet.

SOFTWAREMÄSSIGE BEDIENUNG

Die softwaremäßige Bedienung der seriellen Schnittstelle erfolgt über die folgenden Register:

Register Programm Befehlsre	register Adresse
Programmregi Stertusregi	ster P 0x0
- Datenregi Befehlsregister	ster P 0x1
Statusregister	P 0x2
Datenregister	P 0x3

x ... Steckplatznummer des PIFA-Modules (0 oder 1).

Für das TTY-Schnittstellenmodul MCPIFA-0 sind alle in diesem Abschnitt angeführten Informationen, die Handshake-Leitungen betreffen, nicht relevant.

Initialisierung

Bei der Initialisierung werden Programmregister und Befehlsregister mit bestimmten Vorwahlwerten beschrieben. Dadurch werden Baudrate, Datenformat, Parity usw. festgelegt. Die Initialisierung wird nur ein mal unmittelbar nach dem Einschalten der SPS oder nach einem Reset durchgeführt. Zum Ändern der Zustände der Handshake-Leitungen RTS und DTR kann das Befehlsregister auch nach erfolgter Initialisierung beschrieben werden.

Programmregister	SB	Anzahl Stopbits	0 1	1 Stopbit wenn DB=5 und kein Parity 1,5 Stopbits wenn DB=8 und Parity 1 Stopbit in allen anderen Fällen 2 Stopbits	
7 0 SB DB 1 BAUD P 0x0	DB	Anzahl Datenbits	00 01 10 11	8 Datenbits 7 Datenbits 6 Datenbits 5 Datenbits	
	BAUD	Baudrate	0001 0010 0011 0100 0101	50 0110 300 1011 3600 75 0111 600 1100 4800 109,92 1000 1200 1101 7200 134,58 1001 1800 1110 9600 150 1010 2400 1111 19200	
Befehlsregister	PAR	Parity	00 01 10 11	Parity ungerade (odd) Parity gerade (even) Parity-Bit beim Senden gesetzt Parity-Bit beim Senden gelöscht	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P _{on}	Parity ein/aus	0 1	Kein Parity-Test, Parity-Bit wird nicht generiert Parity-Test aktiv	
	E	Echo-Mode	0 1	Echo-Mode aus Echo-Mode ein, RT muß 0 sein	
	RT	RTS-Leitung 1)	0 1	RTS high, nicht empfangsbereit RTS low, empfangsbereit	
	DT DTR-Leitung 1) 0 DTR high, nicht empfangsbereit 1 DTR low, empfangsbereit		DTR high, nicht empfangsbereit DTR low, empfangsbereit		

¹⁾ Das Umschalten der Handshake-Leitung RTS von low auf high (von 1 auf 0) kann jederzeit erfolgen. Das Umschalten der Handshake-Leitung DTR von low auf high (von 1 auf 0) bewirkt ein sofortiges Abschalten des Schnittstellen-Senders und Abschalten des Schnittstellen-Empfängers nach Empfang des aktuellen Zeichens. Um Datenverluste zu vermeiden, darf das Umschalten nur erfolgen, nachdem ein Zeichen vollständig gesendet wurde (siehe dazu Bit 4 des Statusregisters). Wird das Schnittstellenmodul mit einem nachgeschalteten RS232/RS485-Schnittstellenkonverter zur Ankopplung an einen Zweidrahtbus verwendet, so wird die RTS-Leitung zur An- und Abkopplung des Senders vom Bus verwendet (RTS = low ... Sender aktiv am Bus).

Beispiel:

Initialisierung einer seriellen Schnittstelle, PIFA-Modul auf Steckplatz 1, Baudrate = 9600, 8 Datenbits, 1 Stopbit, Parity aus, Echo-Mode aus, RTS und DTR auf low (empfangsbereit).

LAD	# %00011110	9600 Baud, 8 Datenbits, 1 Stopbit
LB	# %00001011	Parity aus, Echo-Mode aus
=D	P 010	Programmregister & Befehlsregister

Statusregister

Das Statusregister liefert Informationen über den Zustand der seriellen Schnittstelle und eventuell aufgetretene Fehler. Der Zustand des Statusregisters muß bei jedem Sende- oder Empfangsvorgang berücksichtigt werden.

Statusregister	DS	Zustand der DSR-Leitung	0 1	DSR low (Gegenstelle bereit) DSR high (Gegenstelle nicht bereit)
	DC	Zustand der DCD-Leitung	0 1	DCD low (Datenträger erkannt) DCD high (kein Datenträger)
7 0 DS DC TR RF OV FE PE P 0x2	TR	Sender bereit	0 1	Sender sendet Zeichen Senderegister leer, Sender bereit, ein Zeichen zu senden
	RF	Zeichen empfangen	0 1	kein Zeichen empfangen Zeichen wurde empfangen
	ov	Overrun-Fehler	0 1	kein Fehler Fehler. Der Empfänger wurde nicht rechtzeitig gelesen, bevor ein ein neues Zeichen empfangen wurde
	FE	Framing-Fehler	0 1	kein Fehler Fehler. Stop-Bit nicht erkannt.
	PE	Parity-Fehler	0 1	kein Fehler Fehler beim Parity-Test

Datenregister Das Datenregister hat zwei Funktionen:

- Ankommende Zeichen werden aus dem Datenregister ausgelesen
- Auszugebende Zeichen werden in das Datenregister geschrieben

Zeichen ausgeben

Vor dem Beschreiben des Datenregisters mit dem auszugebenden Zeichen ist zu überprüfen, ob der Sender bereit ist, ein Zeichen zu senden (Bit 4 im Statusregister muß 1 sein). Wird zur Synchronisierung von Sender und Empfänger ein Hardware-Handshake verwendet, so muß durch Testen des DSR-Bits im Statusregister auch überprüft werden, ob die Gegenstelle bereit ist, Daten zu empfangen.

ohne Hardware-Handshake

LB	P 0x2	Statusregister
BB	# %00010000	Sender bereit ?
SP0	NO	Sprung, wenn Sender nicht bereit
LAD	x xxx	auszugebendes Zeichen
=	P 0x3	Datenregister

mit Hardware-Handshake

LB	P 0x2	Statusregister
BB	# %01000000	Gegenstelle bereit (DSR-Leitung) ?
SN0	NO	Sprung, wenn Gegenstelle nicht bereit
BB	# %00010000	Sender bereit ?
SP0	NO	Sprung, wenn Sender nicht bereit
LAD	x xxx	auszugebendes Zeichen
=	P 0x3	Datenregister

Zeichen einlesen

Durch Auswerten des Bits 3 im Statusregister wird festgestellt, ob ein Zeichen empfangen wurde. Ist dieses Bit = 1, so wurde ein Zeichen empfangen. Die Bits 0 bis 2 des Statusregisters geben an, ob Übertragungsfehler aufgetreten sind (Parity-Fehler, Overrun-Fehler oder Framing-Fehler). Ist eines dieser Fehlerbits gesetzt, so ist das empfangene Zeichen ungültig. Das Datenregister muß aber auch im Fehlerfall ausgelesen werden, da dadurch die Fehlermeldung quittiert wird.

LB	P 0x2	Statusregister
BB	# %00001000	Zeichen empfangen ?
SP0	NO	Sprung, wenn kein Zeichen empfangen
LAD	P 0x3	Datenregister auslesen
BB	# %00000111	Übertragungsfehler aufgetreten ?
SN0	FAIL	Sprung, wenn Übertragungsfehler
:		Auswerten des empfangenen Zeichens

FAIL :

PATA

BESTELLNUMMER - BESTELLBEZEICHNUNG

ALLGEMEINES

Das Schnittstellenmodul PATA kann nur zur Kommunikation mit den MINICONTROL-Bedientableaus verwendet werden. Die PATA-Schnittstelle ist eine modifizierte RS422-Schnittstelle.

Die softwaremäßige Bedienung der MINICONTROL-Bedientableaus ist im "Bedienterminals Anwenderhandbuch" (Best. Nr. MATERMINAL-0) beschrieben.

TECHNISCHE DATEN

	MCPATA-0
Schnittstelle	RS422
Anschluß	9-polige DSUB-Buchse
Betriebstemperatur	0 bis 60 °C
Luftfeuchtigkeit	0 bis 95 %, keine Kondenswasserbildung

STECKPLÄTZE

Das PATA-Schnittstellenmodul kann in beiden Grundeinheiten auf den grau gekennzeichneten Steckplätzen betrieben werden:

PINBELEGUNG

	Pin	Funktion
.5	1	+24 V
9	2	GND
	3	RESET
	4	DATA IN
	5	DATA IN
6	6	CLK
1	7	CLK
	8	DATA OUT
	9	DATA OUT

SCHIRMUNG UND ERDUNG

Für Schnittstellenverbindungen müssen geschirmte Kabel verwendet werden. Der Kabelschirm wird auf beiden Seiten geerdet.

SOFTWAREMÄSSIGE BEDIENLING

Die softwaremäßige Bedienung der seriellen Schnittstelle erfolgt über E/A-Adressen:

- E 0x0 Tastaturdaten seriell
- A 0x0 Anzeigedaten seriell
- A 0x1 Reset-Ausgang

Dabei ist "x" die Steckplatznummer des PATA-Modules (0 bis 5). Vor dem Senden des ersten Zeichens muß das Bedientableau initialisiert werden. Dazu wird am Reset Ausgang A 0x1 das folgende Signal ausgegeben:

Erst nach Ablauf der 1 ms-Erholzeit darf das erste Zeichen an das Bedientableau gesendet werden. Der folgende Programmteil sendet das Zeichen in ERA an das Bedientableau und liefert den Tastenstatus zurück:

```
OUT
      SEI
      BNS
      MAB
      LAD
             # 001
OUT1
      SLD
            0x0
                         Anzeigedaten seriell
                         Tastencode seriell
      OB
            E 0x0
      JC0
            OUT1
      CLI
      MBA
      BVS
      RET
```

PRTS

BESTELLNUMMER - BESTELLBEZEICHNUNG

Schnittstellenmodul, 1 serielle RS485-Schnittstelle, eine serielle RS232-Schnittstelle, Schieberegister, Echtzeituhr, dreistelliges LED-Display, Stationsnummernschalter, Taster zum Stellen der Echtzeituhr

MCPRTS-0

TECHNISCHE DATEN

		PRTS	
Schnittstelle(n)	1 x RS485, 1 x RS232		
Galvanisch getrennt	RS	6485 ja, RS232 nein	
Anschluß	9-polige DSUB-Buchse, 5-polige Schraubklemme		
Reichweite	RS485: max. 1200 m	RS232: max. 10 m	
Handshakeleitungen	RS485: keine	RS232: RTS, DSR	
Baudraten	50 bis 1152	200, softwaremäßig wählbar	
Datenformat	5 bis 8 Datenbits, 1 oder 2 Stopbits, softwaremäßig wählbar		
Betriebstemperatur	0 bis 60 ℃		
Luftfeuchtigkeit	0 bis 95 %, keine Kondenswasserbildung		

STECKPLÄTZE

Das PRTS-Schnittstellenmodul kann in der MINICONTROL Grundeinheit B auf dem grau gekennzeichneten Steckplatz betrieben werden¹⁾:

¹⁾ Das PRTS-Modul kann auch auf Steckplatz 1 betrieben werden, wenn Steckplatz 2 nicht verwendet wird.

PINBELEGUNG

Die RS485-Schnittstelle kann wahlweise an der 9-poligen DSUB-Buchse oder an der 5-poligen Schraubklemme verdrahtet werden.

JUMPER

Die PRTS verfügt über Jumper für:

- Leitungsabschluß (in einem Zweidrahtbus muß die Leitung an der ersten und an der letzten Station mit einem 120 Ω-Widerstand abgeschlossen werden). Dies geschieht bei der PRTS durch Stecken eines Jumpers.
- Verbindung von RXD mit TXD und RXD mit TXD. Bei einem Zweidrahtbus werden die beiden Senderausgänge miteinander verbunden, ebenso die beiden Empfängereingänge.

Jumper für 120 Ω-		Jumper links 1)	Jumper rechts		
Leitungsabschluß		Leitung nicht abge- schlossen	Leitung mit 120 Ω abgeschlossen		
		Jumper offen 1)	Jumper geschlossen		
Jumper für Zweidrahtbus- Ankopplung		RXD nicht mit TXD verbunden, RXD nicht mit TXD verbunden.	RXD mit TXD verbunden, RXD mit TXD verbunden.		

¹⁾ Standardeinstellung bei Auslieferung des Modules.

SCHIRMUNG UND ERDUNG

Für Schnittstellenverbindungen müssen geschirmte Kabel verwendet werden. Der Kabelschirm wird auf beiden Seiten geerdet.

SOFTWAREMÄSSIGE BEDIENUNG

Da für die softwaremäßige Bedienung der beiden seriellen Schnittstellen, des Schieberegisters, der Echtzeituhr, des Displays, der Taster und des Stationsnummernschalters mehr als 16 P-Register benötigt werden, verfügt das PRTS-Modul über mehrere P-Registerseiten (engl. "pages"). Durch Schreibbefehle auf A-Adressen wird zwischen den P-Registerseiten umgeschaltet:

P-Registerseite	Zugriff auf A-Adresse	bewirkt Umschalten auf P-Registerseite für
page 0	A 000	serielle Schnittstellen
page 1	A 001	Schieberegister
page 2	A 002	Echtzeituhr
page 3	A 003	Display, Taster, Stationsnummernschalter, 1/10 s und 1/100 s
page 4	A 004	nicht verwendet
page 5	A 005	Setzen des Last Byte Flip-Flops
page 6	A 006	Löschen des Last Byte Flip-Flops
page 7	A 007	Schieberegister-Reset

Beispiel: Anwählen der P-Registerseite für die Bedienung der Echtzeituhr:

= A 002

Um Mißverständnisse zu vermeiden, werden in diesem Abschnitt P-Register immer zusammen mit der P-Registerseite genannt, in der sie liegen, z.B.:

... im IF1-Statusregister (P 001/page 0) wird ...

Die Erklärung der softwaremäßigen Bedienung der PRTS ist in die folgenden Abschnitte unterteilt:

- serielle Schnittstellen und Schieberegister
- Echtzeituhr
- Taster, Display und Stationsnummernschalter

I. SERIELLE SCHNITTSTELLEN UND SCHIEBEREGISTER

Die beiden seriellen Schnittstellen werden im Weiteren als IF1 (RS485) und IF2 (RS232) bezeichnet. Die P-Register haben z.Tl. unterschiedliche Funktionen beim Lesen und Schreiben. Hier eine Übersicht über die P-Registerseite der seriellen Schnittstellen (page 0):

P-Register	Funktion beim Lesen	Funktion beim Schreiben
P 000		Modusregister IF1
P 001	Statusregister IF1	Baudratenregister IF1
P 002		Kontrollregister IF1
P 003	Empfangsregister IF1	Senderegister IF1
P 004		Aux. Kontrollregister
P 005		
P 006		
P 007		
P 008		Modusregister IF2
P 009	Statusregister IF2	Baudratenregister IF2
P 00A		Kontrollregister IF2
P 00B	Empfangsregister IF2	Senderegister IF2
P 00C		
P 00D	Schieberegister-Status	Schieberegister-Kontrolle
P 00E		RTS-Kontrollregister (Bits setzen)
P 00F		RTS-Kontrollregister (Bits löschen)

Kontrollregister

Die beiden Schnittstellen verfügen über je ein Kontrollregister, mit dem einige grundlegende Steuerbefehle abgegeben werden können. Die Adressen der Kontrollregister sind:

P 002 / page 0	Kontrollregister	IF1	(RS485)
P 00A / page 0	Kontrollregister	IF2	(RS232)

	EF	registers	Empfänger freigeben. Ist dieses Bit während des Beschreibens des Kontroll- registers gesetzt, so wird der Empfänger freigegeben, es können Zeichen empfangen werden.			
	ES	gisters g	Empfänger sperren. Ist dieses Bit während des Beschreibens des Kontrollregisters gesetzt, so wird der Empfänger gesperrt, es können keine Zeichen mehr empfangen werden. ¹⁾			
70	SF	Sender freigeben. Ist dieses Bit während des Beschreibens des Kontroll- registers gesetzt, so wird der Sender freigegeben, es können Zeichen gesendet werden.				
BEF SS SF ES EF P 002 (IF1) P 00A (IF2)	ss	Sender sperren. Ist dieses Bit während des Beschreibens des Kontrollregisters gesetzt, so wird der Sender gesperrt, es können keine Zeichen mehr gesendet werden. ²⁾				
	BEF	Befehl.	0000	kein Befehl		
			0001	Modusregisterzeiger zurücksetzen		
			0010	Empfänger-Reset		
			0011	Sender-Reset		
			0100	Fehlerstatus-Reset (Fehler quittieren)		
			0101	Interruptstatus-Reset		
			1000	Baudraten-Extendbit für Empfänger setzen		
			1001	Baudraten-Extendbit für Empfänger löschen		
			1010	Baudraten-Extendbit für Sender setzen		
			1011	Baudraten-Extendbit für Sender löschen		

Beispiel: Sender und Empfänger für Schnittstelle IF1 (RS485) freigeben:

```
= A 000 P-Registerseiten für ser. Schnittstellen
LAD # %00000101 Sender und Empfänger freigeben
= P 002 Kontrollregister IF1
```

Beispiel: Empfänger, Sender und Fehlerstatus für Schnittstelle IF2 (RS232) zurücksetzen:

=	A 000	P-Registerseite für ser. Schnittstellen
LAD	# %00100000	Befehl Empfänger-Reset
=	P 00A	Kontrollregister IF2
LAD	# %00110000	Befehl Sender-Reset
=	P 00A	Kontrollregister IF2
LAD	# %01000000	Befehl Fehlerstatus-Reset
=	P 00A	Kontrollregister IF2

¹⁾ Wird gerade ein Zeichen empfangen, so geht dieses verloren.

²⁾ Wird gerade ein Zeichen gesendet, so wird dieses noch vollständig ausgegeben, bevor der Sender abgeschaltet wird.

Modusregister

Die beiden Schnittstellen verfügen über ie ein Modusregister. Im Modusregister wird festgelegt:

- das Datenformat (Anzahl der Datenbits je Zeichen, Stopbits)
- ob die RTS-Handshakeleitung der IF2-Schnittstelle automatisch gesteuert werden soll
- ob die CTS-Handshakeleitung beim Senden automatisch berücksichtigt werden soll oder ob dies manuell durch den Anwender erfolgt

Die Adressen der Modusregister:

P 000 / page 0	Modusregister fü	r IF1	(RS485)
P 008 / page 0	Modusregister fü	r IF2	(RS232)

Das Modusregister besteht aus zwei 8 Bit-Teilen (im Weiteren als MR1 und MR2 bezeichnet), die bei jedem Zugriff abwechselnd angesprochen werden. Bei jedem Schreibzugriff auf das Modusregister wird der Modusregisterzeiger auf den jeweils anderen Modusregisterteil (MR1 oder MR2) umgeschaltet. Um einen definierten Ausgangszustand herzustellen kann mit einem Befehl im Kontrollregister der Modusregisterzeiger definiert auf MR1 zurückgesetzt werden (siehe dazu auch Abschnitt "Kontrollregister").

	DB	Anzahl Datenbits/Zeichen.	00 = 5 Bits 01 = 6 Bits	10 = 7 Bits 11 = 8 Bits
7 0	PAR	Parity gerade/ungerade.	0 = gerade	1 = ungerade
RTS 0 0 P _{mod} PAR DB MR1	$\mathbf{P}_{\mathrm{mod}}$	Parity-Modus.	00 = Parity-Test e 01 = Parity-Bit ko 10 = Parity-Test a	onstant (wie PAR)
	RTS	RTS-Steuerung (IF2).	` '	rd vom Anwender gesteuert rd automatisch gesteuert
	SB	Anzahl Stopbits.	0 = 1 Stopbit	1 = 2 Stopbits
7 0 E 0 CTS SB 1 1 1 1	CTS	CTS-Funktion.		nden nicht beachten sch berücksichtigen (nur IF2)
MR2	E	Echo-Mode ein/aus.	0 = Echo-Mode a 1 = Echo-Mode e	

Beispiel: Schnittstelle IF1 (RS485) initialisieren mit: 8 Datenbits, 1 Stopbit, Parity-Test aus, automatische RTS-Steuerung, manuelle CTS-Berücksichtigung, Echo-Mode aus.

```
A 000
                        P-Registerseite für ser. Schnittstellen
LAD
      # 00010000
                        Befehl Modusregisterzeiger zurücksetzen
      P 002
                        Kontrollregister IF1
      # 10010011
                        8 Datenbits, Parity-Test aus
LAD
      P 000
                        Modusregister IF1 (Zugriff auf MR1)
      # 00000111
                        1 Stopbit, Echo-Mode aus, CTS manuell
LAD
      P 000
                        Modusregister IF1 (Zugriff auf MR2)
```

Auxiliary Kontrollregister

Das Auxiliary Kontrollregister ist ein Hilfsregister für die Baudratenfestlegung. Es wird für die Initialisierung von beiden seriellen Schnittstellen verwendet. Im Bit 7 des Auxiliary Kontrollregisters wird zwischen zwei Baudratengruppen ausgewählt. Die Adresse des Auxiliary Kontrollregisters ist:

P 004 / page 0 für Schnittstelle IF1 (RS485) und IF2 (RS232)

Baudratenregister

Die beiden Schnittstellen verfügen über je ein Baudratenregister. Die Baudrate kann für Sender und Empfänger unterschiedlich sein. Es empfiehlt sich jedoch, die selbe Baudrate für Sender und Empfänger zu wählen. Die Adressen der Baudratenregister sind:

P 001 / page 0 für Schnittstelle IF1 (RS485) P 009 / page 0 für Schnittstelle IF2 (RS232)

Für die Baudratenfestlegung sind zusätzlich zum Baudratenregister zwei weitere Informationen von Bedeutung:

- das Auxiliary Kontrollregister; hier wird die Baudratengruppe festgelegt
- das Baudraten-Extendbit: wird mit einem Befehl im Kontrollregister gesetzt/gelöscht

Für die Baudrateneinstellung ist folgender Vorgang einzuhalten:

- Festlegen des Baudraten-Extendbits durch einen Befehl im Kontrollregister
- Auswahl der Baudratengruppe im Auxiliary-Kontrollregister
- Festlegen der Baudrate im Baudratenregister

Baudraten: Aus der Kombination von Baudratenregister, Baudraten-Extendbit und Baudratengruppe ergeben sich folgende Baudraten:

Bitmuster im	Baudrate	Baudratengruppe 1		ngruppe 2
Baudratenregister	Extendbit = 0	Extendbit = 1	Extendbit = 0	Extendbit = 1
0000	50	75	75	50
0001	110	110	110	110
0010	134,5	134,5	134,5	134,5
0011	200	150	150	200
0100	300	3600	300	3600
0101	600	14400	600	14400
0110	1200	28800	1200	28800
0111	1050	57600	2000	57600
1000	2400	115200	2400	115200
1001	4800	4800	4800	4800
1010	7200	1800	1800	7200
1011	9600	9600	9600	9600
1100	38400	19200	19200	38400

Beispiel: Um für die Schnittstelle IF1 (RS485) eine Baudrate von 19200 einzustellen, gibt es zwei Möglichkeiten:

- Baudratengruppe 1, Baudraten-Extendbit 1
- Baudratengruppe 2, Baudraten-Extendbit 0

= LAD = LAD = LAD = LAD	# %10100000 P 002 # %1000000 P 002	P-Registerseite für ser. Schnittstellen Baudratengruppe 1 Auxiliary Kontrollregister Setze Baudraten-Extendbit für Sender Kontrollregister für IF1 Setze Baudraten-Extendbit für Empfänger Kontrollregister für IF1 Baudrate für Sender und Empfänger = 19200 Baudratenregister für IF1
oder		
= LAD = LAD = LAD = LAD = LAD	A 000 # %10000000 P 004 # %10110000 P 002 # %10010000 P 002 # %11001100 P 001	P-Registerseite für ser. Schnittstellen Baudratengruppe 2 Auxiliary Kontrollregister Lösche Baudraten-Extendbit für Sender Kontrollregister für IF1 Lösche Baudraten-Extendbit für Empfänger Kontrollregister für IF1 Baudrate für Sender und Empfänger = 19200 Baudratenregister für IF1

Sende-/Empfangs-FIFO

Die Sender und Empfänger der beiden Schnittstellen verfügen über je ein 3 Byte-FIFO. Auch, wenn der Empfänger nach Empfang eines Zeichens nicht sofort ausgelesen wird, gehen die nächsten beiden Zeichen nicht verloren; sie werden in das FIFO geschrieben. Auch die zu sendenden Zeichen werden zuerst in einem 3 Byte-FIFO gespeichert. Bis zu drei Zeichen können damit in den Sender geschrieben werden, ohne Rücksichtnahme, ob der Sender die Zeichen bereits ausgegeben hat.

Die Sende-/Empfangs-FIFOs ist nicht mit dem 1 KByte Schieberegister zu verwechseln, das im nächsten Abschnitt erklärt wird.

Statusregister

Die beiden Schnittstellen verfügen über je ein Statusregister, aus dem folgende Informationen ausgelesen werden können:

- ob der Empfänger ein Zeichen empfangen hat
- ob das 3 Byte-FIFO des Empfängers voll ist
- ob der Sender bereit ist, ein Zeichen zu senden
- ob das 3 Byte-FIFO des Senders leer ist
- ob ein empfangenes Zeichen auf Grund eines Übertragungsfehlers ungültig ist (Framing-Fehler, Overrun-Fehler, Parity-Fehler, Break-Fehler)

Die Adressen der Statusregister sind:

P 001 / page 0 für Schnittstelle IF1 (RS485) P 009 / page 0 für Schnittstelle IF2 (RS232)

	RXR	Empfängerstatus.	0 = Empfänger leer 1 = Empfänger hat ein Zeichen empfangen
	RXV	Empfänger-FIFO voll.	0 = Empfänger-FIFO nicht voll 1 = Empfänger-FIFO voll
7 0	TXR	Senderstatus.	0 = Sender nicht bereit 1 = Sender bereit, ein Zeichen zu senden
P 001 (IF1) P 009 (IF2)	TXL	Sender-FIFO leer.	0 = Sender-FIFO nicht leer 1 = Sender-FIFO leer
	OF	Overflow-Fehler.	0 = kein Fehler 1 = Fehler
	PF	Parity-Fehler.	0 = kein Fehler 1 = Fehler
	FF	Framing-Fehler.	0 = kein Fehler 1 = Fehler
	RBR	Break-Fehler.	0 = kein Fehler 1 = Fehler

Sende- und Empfangsregister

Die beiden Schnittstellen IF1 und IF2 verfügen über je ein Senderegister und je ein Empfangsregister. Die zu sendenden Zeichen werden in das Senderegister geschrieben, nachdem durch Auswerten des Statusregisters festgestellt wurde, ob der Sender bereit ist, ein Zeichen zu senden. Durch Auswerten des Statusregisters kann auch festgestellt werden, ob ein Zeichen empfangen wurde und ob dieses gültig ist. In jedem Fall - also auch wenn ein Übertragungsfehler aufgetreten ist - müssen alle empfangenen Zeichen aus dem Empfangsregister ausgelesen werden. Die Adressen der Sende- und Empfangsregister:

P 003 / page 0	Senderegister IF1 (RS485) bei Schreibbefehl (z.B. = P 003) Empfangsregister IF1 (RS485) bei Lesebefehl (z.B. LAD P 003)
P 00B / page 0	Senderegister IF2 (RS232) bei Schreibbefehl (z.B. = P 00B) Empfangsregister IF2 (RS232) bei Lesebefehl (z.B. LAD P 00B)

Schieberegister-Status

Aus dem Register "Schieberegister-Status" können folgende Informationen ausgelesen werden:

- der Zustand der CTS-Handshakeleitung von Schnittstelle IF2 (RS232)
- ob das 1 kByte-Schieberegister leer ist
- ob das 1 kByte-Schieberegister voll ist
- der Zustand des Last Byte Flip-Flops

Die Adresse des Schieberegister-Status ist:

P 00D / page 0 bei Lesebefehl (z.B. LAD P 00D)

Schieberegister-Kontrolle

Mit der Schieberegister-Kontrolle wird die Kommunikation zwischen den Schnittstellen und dem Schieberegister definiert. Hier wird festgelegt, ob das Schieberegister zum Senden oder Empfangen verwendet wird und für welche Schnittstelle. Die Adresse der Schieberegister-Kontrolle ist:

P 00D / page 0 bei Schreibzugriff (z.B. = P 00D)

7 0 TX ₂ TX, RX ₂ RX, 0 0 0 0 0 P 00D	RX ₁ RX ₂ TX ₁ TX ₂	Schieberegister wird zum Empfangen von IF1 (RS485) verwendet. Schieberegister wird zum Empfangen von IF2 (RS232) verwendet. Schieberegister wird zum Senden mit IF1 (RS485) verwendet. Schieberegister wird zum Senden mit IF2 (RS232) verwendet.
---	--	--

RTS-Kontrollregister

Im RTS-Kontrollregister wird festgelegt:

- Der Status der RTS-Handshakeleitung der Schnittstelle IF2 (RS232). Wird dieses Bit gelöscht, so wird der Gegenstelle Empfangsbereitschaft signalisiert. Durch Setzen dieses Bits wird der Gegenstelle Busy-Status angezeigt. Falls im Modusregister das RTS-Hardware-Handshake eingeschaltet wurde, wird die RTS-Leitung der Schnittstelle IF2 automatisch vom Schnittstellenbaustein gesteuert. Das Setzen bzw. Löschen des Bits im RTS-Kontrollregister hat in diesem Fall keine Auswirkung.
- Die Funktion der RTS-Handshakeleitung für IF1. Bei der Schnittstelle IF1 (RS485) wird die RTS-Leitung verwendet, um den Schnittstellensender zu aktivieren oder deaktivieren (in den Tristate-Zustand zu schalten). Diese Funktion wird zur Ankopplung an einen Zweidrahtbus mit mehreren Sendern benötigt.

Das Setzen bzw. Rücksetzen der Bits des RTS-Kontrollregisters erfolgt mit zwei unterschiedlichen Registern:

P 00E / page 0 RTS-Kontrollregisterbits setzen P 00F / page 0 RTS-Kontrollregisterbits löschen

7 0	RT0	0 = keine Funktion	1 = Bit 0 im RTS-Kontrollregister setzen
0 0 0 0 0 RT2 RTS, RT0	RTS ₂	0 = keine Funktion	1 = RTS ₂ -Bit im RTS-Kontrollregister setzen
P 00E	RT2	0 = keine Funktion	1 = Bit 2 im RTS-Kontrollregister setzen
7 0	RT0	0 = keine Funktion	1 = Bit 0 im RTS-Kontrollregister löschen
0 0 0 0 0 RT2 RTS, RT0	RTS ₂	0 = keine Funktion	1 = RTS ₂ -Bit im RTS-Kontrollregister löschen
P 00F	RT2	0 = keine Funktion	1 = Bit 2 im RTS-Kontrollregister löschen

Schnittstelle initialisieren

Für die Initialisierung ist folgender Vorgang einzuhalten:

- P-Registerseite für serielle Schnittstellen anwählen (Schreibbefehl auf A 000)
- Modusregisterzeiger zurücksetzen (Befehl "0001" im Kontrollregister)
- Schnittstellen-Empfänger zurücksetzen (Befehl "0010" im Kontrollregister)
- Schnittstellen-Sender zurücksetzen (Befehl "0011" im Kontrollregister)
- Fehlerstatus zurücksetzen (Befehl "0100" im Kontrollregister)
- Interruptstatus zurücksetzen (Befehl "0101" im Kontrollregister)
- Anzahl der Datenbits und Parity-Modus festlegen (Modusregister 1)
- Anzahl der Stopbits, CTS-Mode und Echo-Mode festlegen (Modusregister 2)
- Baudratengruppe auswählen (Auxiliary Kontrollregister)
- Baudraten-Extendbit festlegen (Befehl "10xx" im Kontrollregister)
- Baudraten für Sender und Empfänger definieren (Baudratenregister)
- Schieberegisterfunktion ein-/ausschalten (Schieberegister-Kontrolle)
- RTS-Funktion festlegen (RTS-Kontrollregister)
- Sender und Empfänger freigeben (Kontrollregister)

Beispiel: Schnittstelle IF1 (RS485) initialisieren mit: 8 Datenbits, kein Parity-Test, 1 Stopbit, Echo-Mode aus, Baudrate 19200 für Sender und Empfänger, Senden mit Schieberegister, automatische RTS-Steuerung (aktiv/Tristate-Schaltung).

INIT	LAD	Z D64	First Scan-Flag
	SP0	INIR	Springe wenn nicht erster Zyklus
	=	A 000	P-Registerseite für serielle Schnittstellen
	LAD	# %00010000	Befehl "Modusregisterzeiger zurücksetzen"
	=	P 002	Kontrollregister IF1
	LAD	# %00100000	Befehl "Empfänger zurücksetzen"
	=	P 002	Kontrollregister IF1
	LAD	# %00110000	Befehl "Sender zurücksetzen"
	=	P 002	Kontrollregister IF1
	LAD	# %01000000	Befehl "Fehlerstatus zurücksetzen"
	=	P 002	Kontrollregister IF1
	LAD	# %01010000	Befehl "Interruptstatus zurücksetzen"
	=	P 002	Kontrollregister IF1
	LAD	# %00010011	8 Datenbits, Parity-Test aus
	=	P 000	Modusregister IF1 (Zugriff auf Modusregister 1)
	LAD	# %00000111	1 Stopbit, Echo-Mode aus
	=	P 000	Modusregister IF1 (Zugriff auf Modusregister 2)
	LAD	# %10000000	Baudratengruppe 2
	=	P 004	Auxiliary Kontrollregister
	LAD	# %10010000	Befehl "Baudraten-Extendbit für Empfänger löschen"
	=	P 002	Kontrollregister IF1
	LAD	# %10110000	Befehl "Baudraten-Extendbit für Sender löschen"
	=	P 002	Kontrollregister IF1
	LAD	# %11001100	Baudrate = 19200 für Sender und Empfänger
	=	P 001	Baudratenregister IF1
	LAD	# %01000000	Schieberegister zum Senden mit IF1 verwendet
	=	P 00D	Schieberegister-Kontrolle
	LAD	# %0000001	Automatische RTS-Steuerung für IF1 ein
	=	P 00E	RTS-Kontrollregisterbits setzen
	LAD	# %00000101	Sender und Empfänger freigeben
	=	P 002	Kontrollregister IF2
INIR	RET		

Senden ohne Verwendung des Schieberegisters

Für das Senden von Zeichen ist folgender Vorgang einzuhalten:

- P-Registerseite der seriellen Schnittstellen anwählen (Schreibbefehl auf A 000)
- Sender aktivieren (RTS-Kontrollregister); dies ist nur bei IF1 (RS485) erforderlich
- Feststellen, ob der Sender bereit ist (Bit 2 im Statusregister). Wenn der Sender nicht bereit ist, muß der Sendeversuch zu einem späteren Zeitpunkt wiederholt werden.
- Eintragen des/der Zeichen(s) in das Sende-FIFO (Senderegister)
- Sobald das/die Zeichen gesendet ist/sind (Bit 3 im Statusregister = 1, Sende-FIFO leer), muß bei der RS485 der Schnittstellensender wieder in den Tristate-Zustand geschaltet werden (RTS-Kontrollregister). Für die IF2 (RS232) ist dies nicht erforderlich.

Beispiel: Ein Zeichen aus der Speicherstelle C 2200 soll über die Schnittstelle IF1 (RS485) gesendet werden:

```
TX1
             000 A
                          P-Registerseite für serielle Schnittstellen
             # %00000000 Schieberegister aus
      T.AD
             P OOD
                         Schieberegister-Kontrolle
      T.AD
             # %00000100 Schnittstellensender aktivieren
             P 00E RTS-Kontrollregisterbits setzen
      LAD
             P 001
                         Statusregister IF1
             # %00000100 Sender bereit ?
      SP0
                         Wenn ja, Senden später versuchen
             TXR
             C 2200
                          auszugebenden Zeichen
      TAD
             P 003
      =
                          Senderegister IF1
TXR
      RET
```

Bitte, beachten Sie, daß das Programmbeispiel den Schnittstellensender nicht wieder in der Tristate-Zustand schaltet. Dazu wäre ein weiterer Programmteil erforderlich, der bei jedem Programmdurchlauf durch Auswerten des Statusregisters überprüft, ob das Zeichen bereits gesendet ist und dann den Sender deaktiviert. Z.B.:

```
TXOF
             A 000
                          P-Registerseite für serielle Schnittstellen
      LAD
             P 001
                          Statusregister IF1
             # %00001000 Sende-FIFO leer ?
                          Wenn nein, später wieder versuchen
      SPO
             TXOR
      LAD
             # %00000101 Sender in Tristate-Zustand schalten
             P 00F
                         RTS-Kontrollregisterbits löschen
TXOR
      RET
```

Empfangen von Zeichen ohne Verwendung des Schieberegisters

Empfangene Zeichen werden im Empfangs-FIFO gespeichert. Auch das Statuswort, das anzeigt ob das empfangene Zeichen gültig ist, wird in einem internen FIFO gespeichert. Für das Empfangen von Zeichen ist folgender Vorgang einzuhalten:

- P-Registerseite für serielle Schnittstellen anwählen (Schreibbefehl auf A 000)
- Feststellen, ob im Empfangs-FIFO Zeichen sind (Statusregister Bit 0)
- Zeichen aus Empfangs-FIFO (Leseregister) auslesen
- Feststellen, ob das Zeichen gültig ist; wenn ja, applikationsspezifisch auswerten; wenn nein, Zeichen nicht auswerten und Fehlerstatus quittieren (mit Befehl "0100" im Kontrollregister).

Beispiel: Empfangen über IF2 (RS232). Gültige Zeichen in der Speicherstelle C 2300 ablegen:

```
RX2
                           P-Registerseite für serielle Schnittstellen
             A 000
      LB
             P 009
                           Statusregister IF2
             # %00000001 Zeichen im Empfangs-FIFO ?
      BB
      SPO
             RXR
                           wenn nein. Empfangen später wieder versuchen
      LAD
             P 00B
                          Empfangsregister IF2
      BB
             # %11110000 Übertragungsfehler?
      SN0
                           wenn ja, weiter bei "Fehlerstatus guittieren"
             RXER
             C 2300
                           Gültiges Zeichen ablegen
RXR
      RET
RXER
      LAD
              # %01000000
                          Befehl "Fehlerstatus quittieren"
             P 00A
                           Kontrollregister IF2
      RET
```

Bitte, beachten Sie, daß das Statusregister immer den Status des Zeichens enthält, das als nächstes aus dem Empfangs-FIFO (Leseregister) ausgelesen wird. Unmittelbar nach dem Auslesen des Zeichens aus dem Leseregister (LAD P 00B) enthält das Statusregister bereits das Statuswort für das nächste Zeichen. Zum Zeitpunkt des Auslesens des Zeichens muß also das dazugehörige Statuswort bereits ausgelesen und zwischengespeichert sein (in unserem Beispiel in ERB).

Schieberegister

Die PRTS verfügt über ein 1 KByte-Schieberegister, das wahlweise zum Senden oder Empfangen von Datenblöcken verwendet werden kann

Wird das Schieberegister zum Senden verwendet, so kann dies wahlweise für Schnittstelle IF1 (RS485) oder IF2 (RS232) erfolgen, jedoch nicht gleichzeitig für beide Schnittstellen. Die auszugebenden Daten werden in das Schieberegister geschrieben und die Übertraggung gestartet. Ein sogenanntes "Last Byte Flip-Flop" wird gesetzt, wenn das letzte Zeichen aus dem Schieberegister ausgelesen und gesendet wurde.

Wird das Schieberegister zum Empfangen verwendet, so kann dies wahlweise für Schnittstelle IF1 (RS485), IF2 (RS232) oder für beide Empfänger erfolgen. Im Schieberegister steht immer abwechselnd ein Byte Status und ein Byte Daten. Das Statusbyte enthält die Information, ob das nachfolgende Datenbyte von Schnittstelle IF1 oder IF2 gekommen ist.

Die Adressen des Schieberegisters:

P 00C / page 1 Schreiben in Schieberegister

P 000 / page 1 Schreiben in Schieberegister (Abschlußzeichen)

Lesen von Schieberegister

Vor dem Start des automatischen Sendens mit Schieberegister muß das Last Byte Flip-Flop gelöscht und das Schieberegister zurückgesetzt werden. Das Löschen des Last Byte Flip-Flops geschieht durch Anwählen von "page 6" und Ansprechen der Adresse P 000 mit einem Schreib- oder Lesebefehl:

```
= A 006 P-Registerseite "Last Byte Flip-Flop löschen"
LAD P 000 Last Byte Flip-Flop wird gelöscht
```

Für manche Anwendungen kann es erforderlich sein, das Last Byte Flip-Flop manuell zu setzen. Dies geschieht durch Anwählen von "page 5" und Ansprechen der Adresse P 000 mit einem Schreib- oder Lesebefehl:

```
= A 005 P-Registerseite "Last Byte Flip-Flop setzen"
LAD P 000 Last Byte Flip-Flop wird gesetzt
```

Das Zurücksetzen des Schieberegisters geschieht durch Anwählen von "page 7" und Ansprechen der Adresse P 000 mit einem Schreib- oder Lesebefehl:

```
= A 007 P-Registerseite "Schieberegister-Reset"
LAD P 000 Schieberegister wird zurückgesetzt
```

Senden mit Schieberegister

Zum Senden mit Schieberegister ist folgender Vorgang einzuhalten:

- Wenn das Schieberegister vorher zum Empfangen verwendet wurde, überprüfen ob es leer ist (Schieberegister-Status). Wenn nein, Sendeversuch zu einem späteren Zeitpunkt wiederholen
- Last Byte Flip-Flop löschen (P 000 / page 6)
- Schieberegister zurücksetzen (P 000 / page 7)
- Daten in Schieberegister schreiben (P 00C / page 1)
- Dummy-Zeichen in Schieberegister schreiben (P 00C / page 1). Dieses Zeichen wird nicht gesendet, ist aber für die interne Synchronisierung der Senderabschaltung erforderlich.
- Abschlußzeichen in Schieberegister schreiben (P 000 / page 1). Diese Zeichen wird nicht gesendet. Durch das Beschreiben von P 000 wird intern ein Zusatzbit gesetzt, das für die Steuerung des Last Byte Flip-Flops benötigt wird.
- Wenn Schnittstelle IF1 (RS485) verwendet wird: Schnittstellensender aktivieren. Dies kann auf zwei Arten erfolgen:
 - a) Schnittstellensender automatisch aktivieren (RTS-Automatik einschalten im RTS-Kontrollregister). Nach dem Senden des letzten Zeichens (Last Byte Flip-Flop = 1) wird der Sender automatisch wieder in den Tristate-Zustand geschaltet.
 - Schnittstellensender manuell aktivieren (Setzen der RTS-Leitung im RTS-Kontrollregister)
- Schieberegister für Senden freigeben (Schieberegister-Kontrolle)
- Auswerten des Last Byte Flip-Flops (Schieberegister-Status). Sobald dieses gesetzt ist, sind alle Zeichen aus dem Schieberegister ausgelesen und gesendet. Wenn der Schnittstellensender manuell aktiviert wurde (b), muß er auch manuell wieder in den Tristate-Zustand geschaltet werden (RTS-Kontrollregister).

ACHTUNG: Beim Senden mit Schieberegister wird ein Byte mehr gesendet, als in das Schieberegister geschrieben wurde. Nach dem letzten, eingetragenen Zeichen wird noch ein \$FF gesendet.

Beispiel:

Senden mit Schnittstelle IF1 (RS485) mit Schieberegister. Die zu sendenden Daten (32 Bytes) kommen aus den Speicherstellen C 2400 bis C 2431). Die Aktivierung/Deaktivierung des Schnittstellensenders soll automatisch erfolgen.

TX1S	LAD	P 00D	Schieberegister-Status
12110	B	# %00001000	Schieberegister leer ?
	SNO	# %00001000	wenn nein, Sendeversuch später wiederholen
	=	A 006	P-Registerseite "Last Byte Flip-Flop" löschen
	LAD	P 000	Last Byte Flip-Flop löschen
	=	A 007	P-Registerseite "Schieberegister-Reset"
	LAD	P 000	Schieberegister zurücksetzen
	=	A 001	P-Registerseite für Schieberegister
	LRK	C 2400	Startadresse der auszugebenden Daten
	LB	# 032	Anzahl auszugebender Zeichen
TXL	LAD	I 000	Zeichen laden
	=	P 00C	Zeichen in Schieberegister schreiben
	IR		Indexregister auf nächstes Zeichen
	DB		Anzahl - 1
	SN0	TXL	wiederhole, bis alle Zeichen gesendet sind
	=	P 00C	Dummy-Zeichen in Schieberegister Schreiben
	=	P 000	Abschlußzeichen in Schieberegister schreiben
	=	A 000	P-Registerseite für serielle Schnittstellen
	LAD	# %0000001	Sender automatisch aktivieren/deaktivieren
	=	P 00E	RTS-Kontrollregisterbits setzen
	LAD	# %01000000	Senden über IF1 mit Schieberegister
	=	P 00D	Schieberegister-Kontrolle
TXR	RET		

Empfangen mit Schieberegister

Beim Empfangen wird aus dem Schieberegister immer abwechselnd ein Statuswort und ein Zeichen ausgelesen. Die Bits 7 bis 1 des Statuswortes sind identisch mit dem Statusregister (P 001 bzw. P 009), im Bit 0 wird angezeigt, ob das nächste Zeichen, das aus dem Schieberegister gelesen wird, von Schnittstelle IF1 (RS485) oder IF2 (RS232) gekommen ist. Dadurch kann das Schieberegister gleichzeitig für den Empfang von beiden Schnittstellen verwendet werden.

Bevor Zeichen mit Verwendung des Schieberegisters empfangen werden können, sind folgende Voreinstellungen erforderlich:

- Falls das Schieberegister vorher zum Senden verwendet wurde, feststellen, ob der Sendevorgang abgeschlossen ist. Dies geschieht durch Auswerten des Schieberegister-Status (Schieberegister leer).
- Schieberegister zurücksetzen (P 000 / page 7)
- Schieberegister für Empfangen freigeben (Schieberegister-Kontrolle)

Beispiel: Das Schieberegister soll für das Einlesen von beiden Schnittstellen verwendet werden:

```
= A 007 P-Registerseite "Schieberegister-Reset"

LAD P 000 Schieberegister zurücksetzen
= A 000 P-Registerseite für serielle Schnittstellen

LAD # %00110000 Schieberegister für Empfangen von IF1
= P 00D Schieberegister-Kontrolle
```

Beim Auslesen der Zeichen aus dem Schieberegister ist folgender Vorgang einzuhalten:

- Überprüfen, ob das Schieberegister leer ist (Schieberegister-Status)
- Auslesen des Statuswortes (Schieberegister-Leseadresse)
- Auslesen des Zeichens (Schieberegister-Leseadresse)
- Überprüfen, ob das Zeichen von IF1 oder IF2 gekommen ist und entsprechende Auswertung

Beispiel: Zeichen von Schnittstelle IF1 (RS485) sollen in der Speicherstelle C 2000 abgelegt werden, Zeichen von IF2 (RS232) in C 2001:

RXSR	=	A 000	P-Registerseite für serielle Schnittstellen
	LAD	P 00D	Schieberegister-Status
	В	# %00001000	Schieberegister leer ?
	SP0	RXR	wenn ja, kein(e) Zeichen empfangen
	=	A 001	P-Registerseite für Schieberegister
	LB	P 000	Schieberegister-Leseadresse (Statuswort auslesen)
	LAD	P 000	Schieberegister-Leseadresse (Zeichen auslesen)
	BB	# %11110000	Übertragungsfehler?
	SN0	RXR	Zeichen üngültig (Übertragungsfehler !)
	BB	# %0000001	Zeichen von IF1 oder IF2 ?
	SP0	IF1	springe, wenn Zeichen von IF1
	=	C 2001	Zeichen von IF2 speichern
RXR	RET		
IF1	=	C 2000	Zeichen von IF1 speichern
	RET		

II ECHTZEITUHR

Die PRTS verfügt über eine nullspannungssichere Echtzeituhr. Die Uhrzeit wird durch einen Uhren-IC generiert, der von einer Lithiumbatterie gepuffert wird. Nur die 1/10 und 1/100 Sekunden sind nicht nullspannungssicher. Sie werden softwaremäßig erzeugt, sind aber mit dem Sekundentakt der Echtzeituhr synchronisiert. Die Lebensdauer der Lithiumbatterie beträgt bei Raumtemperatur ca. 8 Jahre. Bei höherer Temperatur verringert sich die Lebensdauer entsprechend.

Durch einen Schreibbefehl auf den Ausgang A 002 wird die P-Registerseite der Echtzeituhr (page 2) angewählt. Danach sind die P-Register P 000 bis P 00F wie folgt belegt:

P-Register	Echtzeituhr (A 002)
P 000	Sekunden Einerstelle
P 001	Sekunden Zehnerstelle
P 002	Minuten Einerstelle
P 003	Minuten Zehnerstelle
P 004	Stunden Einerstelle
P 005	Stunden Zehnerstelle
P 006	Tag Einerstelle
P 007	Tag Zehnerstelle
P 008	Monat Einerstelle
P 009	Monat Zehnerstelle
P 00A	Jahr Einerstelle
P 00B	Jahr Zehnerstelle
P 00C	Wochentag
P 00D	Kontrollregister I
P 00E	Kontrollregister II
P 00F	Kontrollregister III

7 0 PA STD10	STD10 Stunden, Zehnerstelle (im 24 Stunden-Modus 0 bis 2, im 12 Stunden-Modus 0 bis 1)
P 005	$PA \qquad AM/PM (0 = AM, 1 = PM)$
7 0 DAY1 P 006	DAY1 Tag, Einerstelle (0 bis 9)
7 0 DAY10 P 007	DAY10 Tag, Zehnerstelle (0 bis 3)
7 0 MON1 P 008	MON1 Monat, Einerstelle (0 bis 9)
7 0 P 009	M Monat, Zehnerstelle (0 bis 1)
7 0 YEAR1 P 00A	YEAR1 Jahr, Einerstelle (0 bis 9)
7 0 YEAR10 P 00B	YEAR10 Jahr, Zehnerstelle (0 bis 5)
7 0 WKDAY P 00C	WKDAY Wochentag (0 bis 6)
7	WOMEN OF A DECEMBER A
7 0 30 I B H P 00D	KONTROLLREGISTER I B Busy-Flag 30 30sec ADJ Funktion (immer 0) H Hold-Flag I IRQ-Flag (immer 0)
7 0 L L M P 00E	KONTROLLREGISTER II I ITRPT/STND (immer 0) t _x Zur Synchronisierung von 1/10 M Mask-Flag (immer 0) und 1/100 s verwendet (immer 01)
7 0 T M S R P 00F	KONTROLLREGISTER III T Test-Bit (immer 0) R Reset-Bit. Wird bei der Init. gelöscht S Stop-Bit (immer 0) M 12/24 StdModus (0 = 24 Std.)

24 Stunden-Modus arbeiten soll (0 = 24 Stunden-

Initialisierung

Bei der Initialisierung werden Kontrollregister II (P 00E / page 2) und Kontrollregister III (P 00F / page 2) mit bestimmten Bitmustern geladen:

P 00E	%0000100	Dies bewirkt, daß am IC-Ausgang "STD.P" (Pin 1) ein 1 s Takt ausgegeben wird. Dieser wird zur Synchronisierung der extern erzeugten 1/10 und 1/100 Sekunden benötigt.
P 00F	%00000x00	In diesem Register ist nur Bit 2 von Interesse. Hier wird festgelegt, ob die Uhr im 12- oder im

Modus).

Für die Initialisierung ist der folgende Vorgang unbedingt einzuhalten:

Auslesen der Uhrzeit

1/10 und 1/100 Sekunden

Die 1/10 und 1/100 Sekunden werden hardwaremäßig außerhalb des Uhren-IC erzeugt, sind aber mit dem Sekundentakt des Uhren-IC synchronisiert. Zum Auslesen der 1/10 und 1/100 Sekunden muß durch einen Schreibzugriff auf die Adresse A 003 eine andere P-Registerseite angewählt werden. Danach können die Daten aus P 003 / page 3 ausgelesen werden.

Stellen der Uhr

III. TASTER, DISPLAY UND STATIONSNUMMERNSCHALTER

Nach dem Umschalten auf P-Registerseite 3 (Schreibbefehl auf Adresse A 003) sind die P-Register wie folgt belegt:

P-Register	Funktion
P 000	Display 1 und Dezimalpunkte
P 001	Display 2 und 3
P 002	Taster und Stationsnummernschalter
P 003	1/10 und 1/100 Sekunden

Taster / Stationsnummernschalter

Der Status der Taster (gedrückt oder nicht gedrückt) und die Stellung des Stationsnummernschalters können aus dem P-Register P 002 / page 3 ausgelesen werden:

Beispiel: Auslesen der drei Taster und Ablegen in M 100 bis M 102. Ablegen der Stationsnummer in der Speicherstelle C 0100.

=	A 003	P-Registerseite für Taster
LAD	P 002	
SLA		T1 ins Carry
SLI	M 100	Carry in M 100
SLA		T2 ins Carry
SLI	M 101	Carry in M 101
SLA		T3 ins Carry
SLI	M 102	Carry in M 102
LAD	P 002	
UND	# %00001111	Stationsnummer ausmaskieren
=	C 0100	und abspeichern

DISPLAYS

 $\label{eq:middle} \mbox{Mit der P-Registern P 000 / page 3 und P 001 / page 3 können die Anzeigewerte des Displays geändert werden.}$

	DISP	Anzeigewert für Display 1 (0 bis 9)	
7 0 DISP P 000	D1	Dezimalpunkt Display 1	0 = Dezimalpunkt aus 1 = Dezimalpunkt ein
	D2	Dezimalpunkt Display 2	0 = Dezimalpunkt aus 1 = Dezimalpunkt ein
	D3	Dezimalpunkt Display 3	0 = Dezimalpunkt aus 1 = Dezimalpunkt ein
7 0 DISP2 DISP3 P 001	DISP2 DISP3	Anzeigewert für Display 2 (0 bis 9) Anzeigewert für Display 3 (0 bis 9)	

Beispiel: Die Anzeigewerte stehen in den Speicherstellen C 0100 bis C 0102 (3 BCD-Nibbles). Alle Dezimalpunkte ausgeschaltet:

=	A 003	P-Registerseite für Displays
LAD	C 0101	Wert für Display 2
LB	# 016	
A*B		4 Bits nach links schieben
OB	C 0102	Wert für Display 3
LAD	C 0100	Wert für Display 1
=D	P 000	

KAPITEL 8 ZÄHLMODULE

Inhalt:	Allgemeines	8-3
	Steckplätze	8-3
	Zählmodul für Positionieraufgaben - PNC4	8-5
	Bestellnummer - Bestellbezeichnung	8-5
	Technische Daten	8-6
	Pinbelegung	8-7
	Geberversorgung	8-7
	Geberanschluß, 15 V-Geber	8-8
	Geberanschluß, 5 V-Geber	8-8
	Geberanschluß - Maximale Kabellängen	8-8
	Geberanschluß - Schirmung und Erdung	8-9
	Analogausgang, Anschluß	8-9
	Softwaremäßige Bedienung	8-10
	Standardsoftware	8-10
	P-Adressen	8-10
	Modusregister	8-11
	Modusregister - Zweikanalbetrieb	8-11
	Modusregister - Einkanalbetrieb	8-12
	Moduszahlen	8-13
	Auslesen des Zählers	8-14
	Zähler laden	8-14
	Referenzimpuls	8-15
	Statusregister	8-16
	Analogausgang	8-16
	Zählmodul für Ereigniszählung - PZL2	8-17
	Bestellnummer - Bestellbezeichnung	8-17
	Technische Daten	8-18
	Anschlüsse	8-19
	LED-Anzeigen	8-19
	Eingangsschaltung	8-20
	Softwaremäßige Bedienung	8-20
	P-Register	8-20

Gruppen	8-21
Moduszahl / Modusregister	8-21
Zähler auslesen	8-23
Zähler mit neuem Vorwahlwert laden	8-23
Statusregister	8-24

ALLGEMEINES

Die zwei Hauptanwendungsgebiete für Zählmodule sind:

- Positionieraufgaben
- Ereigniszählung

An Zählmodule für Positionieraufgaben werden andere Anforderungen gestellt, als an Zählmodule für Ereigniszählung. Positioniermodule müssen über schnelle Aufwärts-/Abwärtszähler verfügen und einen Analogausgang für die Ansteuerung von Servomotorreglern haben.

B&R bietet für beide Anwendungsfälle geeignete Zählmodule an:

- Das Zählmodul PNC4 für Positionieraufgaben (eine spezielle Betriebsart erlaubt auch die Verwendung des Zählers zur Ereigniszählung)
- Das Zählmodul PZL2 verfügt über 6 schnelle Zähler zur Ereigniszählung

STECKPLÄTZE

Die in diesem Kapitel beschriebenen Zählmodule können in der MINICONTROL Grundeinheit B auf den grau gekennzeichneten Steckplätzen betrieben werden:

ZÄHLMODUL FÜR POSITIONIERAUFGABEN - PNC4

BESTELLNUMMER - BESTELLBEZEICHNUNG

TECHNISCHE DATEN

	PNC4	l		
Geberanschluß	9 polige DSUF	B-Buchse		
Signalgebereingänge				
galvanisch getrennt	NEIN			
Eingangsspannung nominal	5 - 12 VI			
Eingangsspannung min./max.	2,4 VDC / 1:			
Eingangsstrom	typ. 2 mA bei 5 V / typ	p. 5 mA bei 15 V		
Geberversorgung	intern			
Versorgungsspannung	15 VDC	5 VDC		
Belastbarkeit max.	500 mA	250 mA		
Eingangsfrequenz	max. 50 l	kHz		
Zählfrequenz				
bei Einfachauswertung	max. 50 l			
bei Zweifachauswertung	max. 100 kHz			
bei Vierfachauswertung	max. 200 kHz			
Phasenversatz zwischen Zählkanal				
A und B	90° ±30	0°		
Referenzimpulsdauer	> 50 µs			
Zähler	binär			
Zählbereich	24 Bit			
Analogausgang	110 V/D			
Ausgangssignal Auflösung	±10 VDC 10 Bit + Vorzeichen			
Quantisierungsfehler	10 Bit + Voi.			
Offsetspannung	< 1 mV			
. 0	< 1 m	,		
Störfestigkeit ¹⁾	Schärfegr	ad 3		
Betriebstemperatur	0 bis 60	°C		
Luftfeuchtigkeit	0 bis 95 %, nicht k	condensierend		

¹⁾ Nach DIN VDE 0843-4, Signalgeberanschlüsse beidseitig großflächig geerdet.

PINRELEGUNG

Geberanschluß:

Analogausgang:

GEBERVERSORGUNG

An der 9-poligen DSUB-Buchse des Geberanschlusses stehen zwei Versorgungsspannungen für den Signalgeber zur Verfügung: Auf Pin 3 eine 15 V-Spannung, die mit maximal 300 mA belastet werden darf und auf Pin 9 eine 5 V-Spannung, die mit 500 mA belastet werden darf. Die Maximalströme dürfen keinesfalls überschritten werden

Bei einem Kurzschluß der Geberversorgungsleitungen geht die MINICONTROL in den Reset-Zustand.

GEBERANSCHLUSS (15 V-GEBER)

GEBERANSCHLUSS (5 V-GEBER)

MAXIMALE KABELLÄNGE ZWISCHEN SIGNALGEBER UND PNC4:

SCHIRMUNG UND ERDUNG:

Für den Anschluß des Signalgebers ist ein geschirmtes Kabel zu verwenden. Der Kabelschirm wird auf beiden Seiten geerdet:

ANALOGAUSGANG:

Das Zählmodul PNC4 verfügt über einen analogen Ausgang, der meist zur Ansteuerung eines Servomotorreglers verwendet wird. Der Analogausgang liefert ein ± 10 V-Signal mit einer Auflösung von 10 Bit plus Vorzeichen. Das Verbindungskabel zwischen PNC4 und Motorregler ist geschirmt auszuführen. Der Kabelschirm wird auf beiden Seiten geerdet.

SOFTWAREMÄSSIGE REDIENLING

STANDARDSOFTWARE:

Für die Lösung komplexer Positionierprobleme steht ein leistungsfähiges Standardsoftwarepaket zur Verfügung:

Best.Nr.	Bezeichnung
SWSPSPOS01-0	Standardsoftware für Positionierapplikationen. 3,5" Diskette(n)
SWSPSPOS01-1	Standardsoftware für Positionierapplikationen. 5,25" Diskette(n)

Das Paket enthält Funktionsbausteine für die Module PNC4 (MINICONTROL), PP40 NC2 und PNC3 (MULTICONTROL). Eine ausführliche Beschreibung der Funktionsbausteine ist in der zweiten Auflage des Standardsoftware-Anwenderhandbuches. Kapitel 7 "Positionierung" zu finden.

Bis zum Erscheinen der zweiten Auflage dieses Manuals (voraussichtlich letztes Quartal 1990) ist die "Kurzbeschreibung Positionieren mit PP40 NC2, PNC3 und PNC4", Best. Nr. MAPOSIKB-0, im Lieferumfang des Softwarepaketes enthalten.

P-ADRESSEN:

Adresse	Funktion
P 0x0 bis P 0x2	Laderegister
P 0x3	Leselatchadresse
P 0x4	Ladelatchadresse
P 0x5	Analogausgang MSB
P 0x6	Modusregister
P 0x8 bis P 0xA	Leseregister
P 0xB	Statusregister
P 0xC	Analogausgang LSB

x ... Steckplatzadresse des Zählmodules

MODUSREGISTER:

Vor der Verwendung des Zählers muß im Modusregister die gewünschte Betriebsart festgelegt werden. Das PNC4-Modul ist für Zählaufgaben im Zweikanalbetrieb konzipiert. An die beiden Zählkanäle A und B die Ausgänge eines Inkrementalgebers angeschlossen. Die beiden Zählsignale sind 90° phasenverschoben, daraus erkennt der Zähler die Zählrichtung.

Im Modusregister angegeben:

- ob das Laden des Zählers mit einem externen Referenzsignal erlaubt ist

die Grund-Zählrichtung

positiv: Wird die positive Flanke von Kanal A vor der positiven Flanke von

Kanal B erkannt, so zählt der Zähler aufwärts. Wird die negative Flanke von Kanal B vor der negativen Flanke von Kanal A erkannt, so

zählt der Zähler abwärts.

negativ: Wird die positive Flanke von Kanal B vor der positiven Flanke von

Kanal A erkannt, so zählt der Zähler aufwärts. Wird die negative Flanke von Kanal A vor der negativen Flanke von Kanal B erkannt, so

zählt der Zähler abwärts.

ob der Zähler mit Einfach-, Zweifach- oder Vierfachauswertung betrieben wird

einfach: Zählerinkrement/-dekrement bei positiver Flanke von Kanal A

zweifach: Zählerinkrement/-dekrement bei positiver und negativer Flanke von

Kanal A

vierfach: Zählerinkrement/-dekrement bei positiver und negativer Flanke von

Kanal A und B

b. Einkanalbetrieb:

Diese Betriebsart wird für Ereigniszählung verwendet. Kanal A ist der Zählkanal, Kanal B gibt die Zählrichtung (aufwärts/abwärts) an.

Für die Betriebsart "Einkanalbetrieb" wird im Modusregister angegeben:

- ob das Laden des Zählers mit einem externen Referenzsignal erlaubt ist
- ob der Zähler nur bei positiver Flanke von Kanal A inkrementiert/dekrementiert werden soll, oder bei beiden Flanken
- die Grundzählrichtung

positiv: der Zähler wird bei einer Flanke an Kanal A inkrementiert, wenn Kanal

B 0 ist, er wird dekrementiert, wenn Kanal B 1 ist

negativ: der Zähler wird bei einer Flanke an Kanal A inkrementiert, wenn Kanal

B 1 ist, er wird dekrementiert, wenn Kanal B 0 ist

Z.B.: Zählerinkrement/-dekrement bei beiden Flanken des Zählkanales A, Grundzählrichtung positiv (Inkrement, wenn Kanal B = 0):

Moduszahl:

Für die Auswahl der den entsprechenden Betriebsarten zugehörigen Parameter wird die Moduszahl verwendet. Sie belegt Bit 0 bis Bit 3 im Modusregister:

	EL	Externes Laden
3 0		 Laden des Zählers über Referenzsignal erlaubt Laden des Zählers über Referenzsignal nicht erlaubt
EL ZR AUSW	ZR	Grundzählrichtung
Moduszahl für		0 positiv 1 negativ
Zweikanalbetrieb	AUSW	Auswertung
		00 Einfachauswertung 01 Zweifachauswertung 1x Vierfachauswertung

	EL	Externes Laden
3 0		0 Laden des Zählers über Referenzsignal erlaubt 1 Laden des Zählers über Referenzsignal nicht erlaubt
EL 0 ZR FL	ZR	Grundzählrichtung
Moduszahl für Einkanalbetrieb		0 positiv 1 negativ
	FL	Flanke des Zählkanales A
		0 nur positive Flanke 1 positive und negative Flanke

7 0	В	Betriebsart
0 0 0 B MODUS		0 Zweikanalbetrieb 1 Einkanalbetrieb
P 0x6 Modusregister	MODUS	Moduszahl (siehe oben)

Beispiel:

Zähler für Zweikanalbetrieb initialisieren, Vierfachauswertung, externes Laden erlaubt, Grundzählrichtung positiv, Zählmodul auf Steckplatz 1:

AUSLESEN DES ZÄHLERS:

Zum Auslesen des Zählers wird zunächst der aktuelle Zählerstand in die Leseregister übernommen. Dies kann auf zwei Arten erfolgen:

- Durch Ansprechen der Leselatchadresse (P 0x3) mit einem Schreib- oder Lesebefehl
- Durch ein externes Triggerereignis (siehe Abschnitt "Referenzimpuls")

Danach kann der Zählerstand aus den Leseregistern ausgelesen werden.

Beispiel: Auslesen des Zählers und Ablegen in den Speicherstellen C 0100 bis C 0102, Zählmodul auf Steckplatz 0:

```
= P 003 Leselatchadresse
LD P 008 Auslesen des Zählerstandes
=D C 0100
LAD P 00A
= C 0102
```

ZÄHLER LADEN:

Der Zähler der PNC4 verfügt über Laderegister (P 0x0 bis P 0x2). Beim Laden des Zählers werden zunächst diese Laderegister mit dem gewünschten Wert beschrieben. Durch einen Latchimpuls wird der Inhalt der Laderegister in den Zähler geladen. Der Latchimpuls kann entweder durch Ansprechen der Ladelatchadresse (P 0x4) oder durch ein externes Referenzsignal ausgelöst werden (siehe Abschnitt "Referenzimpuls").

Beispiel: Zähler mit dem Wert aus den Speicherstellen C 0200 bis C 0202 laden, Zählmodul auf Steckplatz 1:

LD	C 0200	Laderegister mit neuem Wert beschreiben
=D	P 010	
LAD	C 0202	
=	P 012	
LAD	P 014	Ladelatchadresse

REFERENZIMPULS:

Inkrementalgeber verfügen zusätzlich zu den Zählsignalen A und B meist über einen Referenzimpulsausgang Z. Dieser Ausgang liefert ein mal pro Umdrehung einen kurzen Impuls. Diese Funktion wird in Positioniersystemen zum genauen Referenzieren verwenden (Referenzieren = Ermitteln des Referenzpunktes der Positionierachse).

Der Referenzimpuls wird verwendet, um einen neuen Zählerstand, der in die Laderegister (P 0x0 bis P 0x2) geschrieben wurde, in den Zähler zu übernehmen. Diese Funktion kann mit Bit 3 im Modusregister ein- bzw. ausgeschaltet werden. Für Zählermodi, bei denen externes Laden des Zählers erlaubt ist, gilt:

- Das Eintreffen des Referenzsignales (und damit das Laden des Zählers) wird durch Löschen des Referenzimpulsbits im Statusregister P 0xB angezeigt.
- Solange das Referenzimpulsbit im Statusregister 0 ist, ist das Referenzsignal gesperrt.
- Soll das Referenzsignal wieder aktiv werden (der Zähler neu geladen werden), so muß das Referenzimpulsbit im Statusregister vom Anwenderprogramm manuell gesetzt werden.
 Dies geschieht durch Beschreiben des Modusregisters mit der gewünschten Betriebsart.

STATUSREGISTER

Das Statusregister (P 0xB) zeigt den Zustand des Referenzimpulsbits und der Zählkanäle A und B an:

ANALOGAUSGANG:

Der Analogausgang wird durch Beschreiben der Adressen P 0x5 und P 0xC verändert.

Beispiel: Ausgeben einer 2 Byte-Zweierkomplementzahl aus C 0100, C 0101, Zählmodul auf Steckplatz 0:

	LD	C 0100	Zweierkomplementzahl
	UND	#%10000011	Nicht benötigte Bits ausmaskieren
	J+	POS	Sprung, wenn Wert positiv
	LD	# 00000	
	-D	C 0100	Wert negativ, Absolutbetrag bilden
	OD	#%00000100	Vorzeichenbit setzen
POS	SLD		
	=	P 005	Wert ausgeben
	=B	P 00C	

ZÄHLMODUL FÜR EREIGNISZÄHLUNG - PZL2

BESTELLNUMMER - BESTELLBEZEICHNUNG

HARDWARE-MANUAL MINICONTROL

TECHNISCHE DATEN

	MCPZL2-0
Anzahl Zähler	6
Zählbereich	16 Bit
Galvanische Trennung	JA (Optokoppler)
Signalgeberversorgung	extern
Eingangsspannung nominal maximal zulässig	24 V 30 V
Eingangsstrom bei 24 VDC	ca. 10 mA
Schaltschwellen LOW - HIGH HIGH - LOW	max. 12,5 V min. 6,5 V
Eingangsfrequenz	max. 20 kHz
Betriebstemperatur	0 bis 60 °C
Luftfeuchtigkeit	0 bis 95 %, nicht kondensierend

ANSCHLÜSSE

		PZL2		
		Anschluß	Front Bez.	Funktion
		1	[Zähleingang 0
		2] <u> </u>	Bezugspotential für Zähler 0
무 튀잉	3 0	3		
	1	4	Į.	Zähleingang 1
5		5]	Bezugspotential für Zähler 1
	2	6		
3		7	2 -	Zähleingang 2
		8	Ĺ	Bezugspotential für Zähler 2
		9		
		10	- {	Zähleingang 3
		11] [Bezugspotential für Zähler 3
		12		
		13	- [Zähleingang 4
		14] [Bezugspotential für Zähler 4
		15		
		16	- 5	Zähleingang 5
	17	Ľ	Bezugspotential für Zähler 5	

LED-ANZEIGEN

Die PZL2 verfügt über zwei LEDs je Kanal:

Die linke (grüne LED) zeigt den Eingangs-Status an. Ist der jeweilige Eingang high (d.h. +24 V), so leuchtet die entsprechende LED.

Die rechte (orange LED) zeigt den Nulldurchgang des Zählers an. Bei jedem Nulldurchgang wird der Status der LED invertiert, d.h. beim ersten Nulldurchgang wird die LED eingeschaltet, beim nächsten Nulldurchgang wieder ausgeschaltet usw. Beim Laden des Zählers mit einem neuen Vorwahlwert wird die LED ausgeschaltet.

EINGANGSSCHALTUNG

SOFTWAREMÄSSIGE BEDIENUNG

ALLGEMEINES:

Die Zähler des PZL2-Modules sind Abwärtszähler. Sie zählen von einem vorgegebenen Vorwahlwert bis 0 und beginnen wieder bei dem Vorwahlwert. Das Erreichen des Zählerstandes 0 wird durch Setzen eines Bits im Statusregister angezeigt. Die sechs Zähler sind in zwei Gruppen mit unterschiedlichen P-Registern eingeteilt.

P-REGISTER:

Adresse	Funktion beim Lesen	Funktion beim Beschreiben
P 0x0		Modusregister I (Gruppe 1)
P 0x1	Statusregister Zähler 0 bis 2	Modusregister II (Gruppe 1)
P 0x2 bis P 0x3	Leseregister Zähler 0	Vorwahlwert Zähler 0
P 0x4 bis P 0x5	Leseregister Zähler 1	Vorwahlwert Zähler 1
P 0x6 bis P 0x7	Leseregister Zähler 2	Vorwahlwert Zähler 2
P 0x8		Modusregister I (Gruppe 2)
P 0x9	Statusregister Zähler 3 bis 5	Modusregister II (Gruppe 2)
P 0xA bis P 0xB	Leseregister Zähler 3	Vorwahlwert Zähler 3
P 0xC bis P 0xD	Leseregister Zähler 4	Vorwahlwert Zähler 4
P 0xE bis P 0xF	Leseregister Zähler 5	Vorwahlwert Zähler 5

x ... Steckplatznummer des Zählmodules (0 oder 1).

GRUPPEN

Die sechs Zähler sind in zwei Gruppen eingeteilt.

Gruppe 1 Zähler 0, Zähler 1 und Zähler 2
Gruppe 2 Zähler 3, Zähler 4 und Zähler 5

Jede Gruppe verfügt über zwei Modusregister, ein Statusregister, drei Vorwahlwert-Register und drei Leseregister.

MODUSZAHL / MODUSREGISTER:

Man unterscheidet zwei Betriebsarten (Modi), die für jeden Zähler gesondert eingestellt werden können:

Modus I Bei der Vorgabe eines neuen Vorwahlwertes wird dieser neue Wert sofort

in den Zähler übernommen.

Modus II Die Vorgabe eines neuen Vorwahlwertes beeinflußt den Zähler nicht. Erst

nach dem nächsten Nulldurchgang wird der neue Vorwahlwert in den

Zähler übernommen.

Für die Auswahl des gewünschten Modus werden die Modusregister (P 0x0 und P 0x1 für Gruppe 1 bzw. P 0x8 und P 0x9 für Gruppe 2) verwendet. Da für die drei Zähler einer Gruppe nur zwei Modusregister zur Verfügung stehen, ist folgender Vorgang einzuhalten:

Gruppe 1 (Zähler 0 bis 2)	Gruppe 2 (Zähler 3 bis 5)			
a) Modus für den Zähler 1 festlegen. Dies geschieht durch Beschreiben des Modusregisters II (P 0x1). Bit 0 der Moduszahl gibt an, ob der nächste Zugriff auf das Modusregister I (P 0x0) den Modus für Zähler 0 oder Zähler 2 festlegt:	a) Modus für den Zähler 4 festlegen. Dies geschieht durch Beschreiben des Modusregisters II (P 0x9). Bit 0 der Moduszahl gibt an, ob der nächste Zugriff auf das Modusregister I (P 0x8) den Modus für Zähler 3 oder Zähler 5 festlegt:			
Bit 0 von P $0x1 = 0$ P $0x0$ für Zähler 2 aktiviert Bit 1 von P $0x1 = 1$ P $0x0$ für Zähler 0 aktiviert	Bit 0 von P 0x9 = 0 P 0x8 für Zähler 5 aktiviert Bit 1 von P 0x9 = 1 P 0x8 für Zähler 3 aktiviert			
b) Modusregister I (P 0x0) mit Moduszahl für Zähler 0 bzw. Zähler 2 beschreiben.	b) Modusregister I (P 0x8) mit Moduszahl für Zähler 3 bzw. Zähler 5 beschreiben.			
Bit 0 im Modusregister I (P 0x0) hat eine Sonderfunktion. Ist dieses Bit gesetzt, so werden alle Zähler gestoppt und mit den Vorwahlwerten geladen. Die Freigabe der Zähler erfolgt durch Löschen des Bit 0 im Modusregister I (P 0x0).	Bit 0 im Modusregister I (P 0x8) hat eine Sonderfunktion. Ist dieses Bit gesetzt, so werden alle Zähler gestoppt und mit den Vorwahlwerten geladen. Die Freigabe der Zähler erfolgt durch Löschen des Bit 0 im Modusregister I (P 0x8).			

Beispiel: Betriebsart für Zähler 1 und 2 = I, Betriebsart für Zähler 0 = II, Zählmodul auf Steckplatz 0:

LAD	# %11000000	Betriebsart I für Zähler 1
=	P 001	Zähler 1, nächster Zugriff auf Zähler 2
=	P 000	Betriebsart I für Zähler 2
LAD	# %11000001	Betriebsart I für Zähler 1
=	P 001	nächster Zugriff auf Zähler 0
LAD	# %11010000	Betriebsart II für Zähler 0
=	P 000	

ZÄHLER AUSLESEN:

Die Werte der Zähler können jederzeit aus den Leseregistern ausgelesen werden:

Beispiel: Auslesen von Zähler 4 und Abspeichern in den Speicherstellen C 0100, C 0101. Zählmodul auf Steckplatz 0:

LD P 00C Leseregister Zähler 4
=D C 0100 Zählerstand abspeichern

ZÄHLER MIT NEUEM VORWAHLWERT LADEN:

Über die Vorwahlwertregister P 0x2 bis P 0x7 können neue Vorwahlwerte für die Zähler vorgegeben werden. Ob der Vorwahlwert gleichzeitig in den entsprechenden Zähler übernommen wird, hängt von dem gewählten Modus ab:

- In Modus I wird beim Beschreiben des Vorwahlwertregisters der neue Vorwahlwert gleichzeitig auch in den Zähler übernommen.
- In Modus II wird der neue Vorwahlwert erst beim nächsten Nulldurchgang in den Zähler übernommen.

Beispiel: Vorwahlwert 10000 für Zähler 5 vorgeben, Zählmodul auf Steckplatz 1:

LD # 10000 Neuer Vorwahlwert
=D P 01E Vorwahlwertregister Zähler 5

STATUSREGISTER:

Im Statusregister wird angezeigt, ob ein Zähler den Wert 0 erreicht hat:

Die Bits des Statusregisters bleiben so lange gesetzt, bis:

- das Statusregister und der entsprechende Zähler ausgelesen werden
- der entsprechende Zähler mit einem neuen Vorwahlwert geladen wird (Modus I)

KAPITEL 9 SONSTIGES

Inhalt:	Allgemeines	9-3
	Eingangs-/Zeitmodule - MZEA / MZEB	9-5
	Bestellnummern - Bestellbezeichnungen	9-5
	Steckplätze	9-5
	Technische Daten	9-6
	Zeitbereiche	9-7
	Feineinstellung MZEA	9-8
	Feineinstellung MZEB	9-8
	LED-Anzeigen	9-8
	Anschlüsse MZEA	9-9
	Anschlüsse MZEB	9-9
	Adressen	9-10
	Softwaremäßige Bedienung der Zeitstufen	9-11
	Generierung von Zeittakten	9-12
	Anzeigemodul - P46B	9-13
	Bestellnummer - Bestellbezeichnung	9-13
	Steckplätze	9-13
	Technische Daten	9-14
	Elementare Anzeigefunktionen	9-15
	Anzeigemodi	9-15
	Erweiterte Anzeigefunktionen	9-16
	CPU-Statusanzeige	9-16
	Taster	9-18
	Schiebeschalter	9-18

ALLGEMEINES

Dieses Kapitel beschreibt Module, die sich nicht in eines der anderen Kapitel einordnen lassen:

Modulbezeichnung	Funktion
MZEA	Eingangs-/Zeitmodul. 8 digitale Eingänge (24 VDC), vier einstellbare Timer (Anzugsverzögerungen), einstellbar mit Jumpern und Potentiometern
MZEB	Eingangs-/Zeitmodul. 8 digitale Eingänge (24 VDC), vier einstellbare Timer (Anzugsverzögerungen), einstellbar mit Jumpern und externen Potentiometern
P46B	Anzeigemodul. sechsstelliges Anzeige, Schiebeschalter, vier Taster, für die Anzeige von SPS-Daten und einfache Dateneingaben

EINGANGS-/ZEITMODULE - MZEA/MZEB

BESTELLNUMMERN - BESTELLBEZEICHNUNGEN

MZEA - Eingangs-/Zeitmodul, 8 digitale Eingänge, Eingangsspannung 24 VDC, LED-Statusanzeigen, galvanisch getrennt, Bezugspotential GND, Einschaltverzögerung ca. 10 ms, vier einstellbare Zeitstufen (Anzugsverzögerungen), vier Zeitbereiche mit Jumpern vorwählbar, Feineinstellung mit Potentiometern, Zeitbereich 20 ms bis 4 min MCMZEA-0

MZEB - Eingangs-/Zeitmodul, 8 digitale Eingänge, Eingangsspannung 24 VDC, LED-Statusanzeigen, galvanisch getrennt, Bezugspotential GND, Einschaltverzögerung ca. 10 ms, vier einstellbare Zeitstufen (Anzugsverzögerungen), vier Zeitbereiche mit Jumpern vorwählbar, Anschlüsse für externe Potentiometer, Zeitbereich 20 ms bis 4 min MCMZEB-0

STECKPLÄTZE

Die Module MZEA und MZEB können auf den grau gekennzeichneten Steckplätzen betrieben werden:

TECHNISCHE DATEN

	MZEA	MZEB		
Anzahl der Eingänge gesamt in Gruppen zu	8			
Potentialtrennung Eingang ↔ SPS Eingang ↔ Eingang	JA (Opto NE			
Eingangsspannung nominal minimal maximal	24 VDC 16 VDC 30 VDC			
Eingangswiderstand	ca. 2,	2 kΩ		
Schaltschwellen log. 0 ⇒ log. 1 log. 1 ⇒ log. 0	min. 16 VDC max. 12 VDC			
Eingangsstrom bei 24 VDC	ca. 10 mA			
Schaltverzögerung log. 0 ⇒ log. 1 log. 1 ⇒ log. 0	ca. 10 ms ca. 20 ms			
Übernahme der Eingänge durch die Zentraleinheit	automatisch	bei Änderung		
Maximale Spitzenspannung	500 V für 50 μs, r	max. alle 100 ms 1)		
Anzahl Zeitstufen	4	1		
Zeiteinstellung grob fein	mit Jumpern Mit Jumpern mit Potentiometern am Modul mit externen Potentiom			
Zeitbereiche	20 ms bis 1 s, 90 ms bis 4 s, 740 ms bis 30 s, 6 s bis 4 min			
Wiederholgenauigkeit	besser als 0,1 % bei konstanter Umgebungstemperatur			
Wiederholbereitschaft	<1	μs		
Betriebstemperatur	0 bis 60 °C			
Luftfeuchtigkeit	0 bis 95 %, nicht kondensierend			

¹⁾ Normimpuls 1,2/50 (IEC 60-2).

ZEITBEREICHE:

Die Einstellung des Zeitbereiches erfolgt mit Jumpern:

Für jeden Kanal stehen zwei Jumper zur Verfügung, die mit A und B bezeichnet werden. Die Jumper können ohne Zuhilfenahme von Werkzeugen geöffnet bzw. geschlossen werden.

	Jumper A	Jumper B	Zeitbereich	
Jumper offen	OFFEN	OFFEN	740 ms bis 30 s	
	OFFEN	GESCHLOSSEN	20 ms bis 1 s	
	GESCHLOSSEN	OFFEN	90 ms bis 4 s	
Jumper geschlossen	GESCHLOSSEN	GESCHLOSSEN	6 s bis 4 min	

FEINEINSTELLUNG BEI DER MZEA

Bei dem Modul MZEA erfolgt die Feineinstellung mit den Potentiometern an der Modulfront:

FEINEINSTELLUNG BEI DER MZEB

Bei der MZEB erfolgt die Feineinstellung mit externen Potentiometern. An die dafür vorgesehenen Anschlüsse werden 1 $M\Omega$ Potentiometer (linear) angeschlossen:

Das Verbindungskabel von der MZEB zum Potentiometer ist geschirmt auszuführen. Es ist für jeden Kanal ein eigenes, geschirmtes Kabel zu verwenden. Die Kabelschirme werden beidseitig geerdet.

LED-ANZEIGEN

Die Module MZEA und MZEB verfügen über jeweils 16 LED-Anzeigen für den Eingangsstatus und den Status der Zeitstufen.

Je zwei LED-Anzeigen zeigen den Status der Zeitstufen an. Leuchtet die linke (orange) LED, so ist die Zeitstufe gestartet. Leuchten beide LEDs, so ist sie abgelaufen.

Mit den grünen LEDs "8" bis "F" wird der Status der digitalen Eingänge 8 bis F angezeigt. Leuchtet die LED, so ist der Eingang log. 1.

ANSCHLÜSSE MZEA

ANSCHLÜSSE MZEB

ADRESSEN

Die E/A-Adressen der MZEA- und MZEB-Module sind wie folgt belegt:

Eingänge	Funktion	Ausgänge	Funktion
E 0x0	Zeitstufe 0 abgelaufen	A 0x0	Zeitstufe 0 Start/Stop
E 0x1	Zeitstufe 1 abgelaufen	A 0x1	Zeitstufe 1 Start/Stop
E 0x2	Zeitstufe 2 abgelaufen	A 0x2	Zeitstufe 2 Start/Stop
E 0x3	Zeitstufe 3 abgelaufen	A 0x3	Zeitstufe 3 Start/Stop
E 0x4		A 0x4	
E 0x5		A 0x5	
E 0x6		A 0x6	
E 0x7		A 0x7	
E 0x8	digitaler Eingang 8	A 0x8	
E 0x9	digitaler Eingang 9	A 0x9	
E 0xA	digitaler Eingang A	A 0xA	
E 0xB	digitaler Eingang B	A 0xB	
E 0xC	digitaler Eingang C	A 0xC	
E 0xD	digitaler Eingang D	A 0xD	
E 0xE	digitaler Eingang E	A 0xE	
E 0xF	digitaler Eingang F	A 0xF	

Dabei ist "x" die Steckplatznummer des Modules (0 bis 5). Für die Steuerung der Zeitstufen werden statt der bei den SPS-Systemen MIDI-/MULTICONTROL und M264 üblichen F/Z-Adressen in der MINI-CONTROL ebenfalls E/A-Adressen verwendet.

SOFTWAREMÄSSIGE BEDIENUNG DER ZEITSTUFEN

Zur softwaremäßigen Bedienung werden E/A-Adressen verwendet. Mit den "A"-Adressen werden die Zeitstufen gestartet. Die "E"-Adresse wird 1, wenn die Zeit abgelaufen ist. Die Adresse einer bestimmten Zeitstufe setzt sich aus Steckplatznummer und Kanalnummer zusammen:

A 0YZ

Y ... Steckplatznummer (0 bis 5)
Z ... Kanalnummer (0 bis 3)

Beispiel: A 012 ist die Start/Stop-Adresse der Zeitstufe 2 eines MZEA (MZEB)-Modules auf

Steckplatz 1.

E 053 ist die Zeitadresse der Zeitstufe 3 eines MZEA (MZEB)-Modules auf

Steckplatz 5.

ZEITLICHER ABLAUF:

Durch Setzen der Start/Stop-Adresse "A" wird die Zeitstufe gestartet. Nach Ablauf der eingestellten Zeit wird die Zeitadresse "E" = 1. Sie bleibt 1, solange die "A"-Adresse gesetzt ist. Durch Zurücksetzen der Start/Stop-Adresse "A" wird die Zeitstufe zurückgesetzt.

Wird die Start/Stop-Adresse "A" vor Ablauf der eingestellten Zeit zurückgesetzt, so beginnt bei einem Neustart die Zeit wieder bei 0

GENERIERUNG VON ZEITTAKTEN:

Die folgende Programmsequenz generiert einen symmetrischen Zeittakt. Z.B.: Zeitmodul auf Steckplatz 3, verwendet wird Kanal 1, der Zeittakt wird in der Speicherstelle M 100 abgelegt:

LAD		E 031	Zeitadresse
=	N	A 031	Start/Stop-Adresse
LAD		E 031	Zeitadresse
EXO		M 100	Zeittakt
=		M 100	Zeittakt

Das selbe Programmbeispiel kann natürlich auch in einem Kontaktplan realisiert werden:

Die Speicherstelle ändert ihren Zustand jeweils nach Ablauf der eingestellten Zeit.

ANZEIGEMODUL - P46B

BESTELLNUMMER - BESTELLBEZEICHNUNG

STECKPLÄTZE

Das Anzeigemodul P46B kann in beiden Grundeinheiten auf den grau gekennzeichneten Steckplätzen betrieben werden:

TECHNISCHE DATEN

	P46B
Display Anzahl Stellen Ausführung Anzeigefunktionen	6 LED Anzeige beliebiger Speicherstellen in dezimal oder hexadezimal
Taster Anzahl Adressierung	4 über E-Adressen (E 0x0 bis E 0x3)
Schiebeschalter Adressierung	über E-Adresse (E 0x4)
Betriebstemperatur	0 bis 60 ℃
Luftfeuchtigkeit	0 bis 95 %, nicht kondensierend

SOFTWAREMÄSSIGE BEDIENUNG DER ANZEIGE

Man unterscheidet:

- Elementare Anzeigefunktionen: Anzeige von Einbytewerten (dezimal oder hexadezimal), Zweibytewerten (dezimal oder hexadezimal) oder Dreibytewerten (hexadezimal).
- Erweiterte Anzeigefunktionen: Zusätzlich zu den elementaren Anzeigefunktionen kann das Display zur Anzeige des CPU-Status verwendet werden. D.h. Anzeige von Fehlernummern (z.B. "907" = RUNTIME-FEHLER).

Die elementaren Anzeigefunktionen stehen immer zur Verfügung - unabhängig vom Steckplatz des Modules. Die erweiterten Anzeigefunktionen können nur verwendet werden, wenn das P46B-Modul auf Steckplatz 0 betrieben wird.

ELEMENTARE ANZEIGEFUNKTIONEN

Die in diesem Abschnitt beschriebenen Anzeigefunktionen können immer verwendet werden - unabhängig davon, auf welchem Steckplatz das P46B-Modul betrieben wird. Das Display zeigt Einbyte-, Zweibyte- oder Dreibytewerte, wahlweise in dezimal oder hexadezimal an. Das Anzeigeformat wird durch den FDIA-Systemaufruf definiert. Die Parameter des FDIA-Systemaufrufes sind:

ERA Anzeigemodus (1 bis 6, siehe Tabelle)

ERB Steckplatz (0 bis 5)

Indexregister Ouelladresse der anzuzeigenden Daten

Anzeigemodi:

Moduszahl 1 Anzeige einer Einbyte-Dezimalzahl (0 bis 255)	Moduszahl 4 Anzeige einer Zweibyte-Hexadezimalzahl (0000 bis FFFF).
Moduszahl 2 Anzeige einer Zweibyte-Dezimalzahl (0 bis 65535).	Moduszahl 5 Anzeige einer Dreibyte-Hexadezimalzahl (000000 bis FFFFFF).
Moduszahl 3 Anzeige einer Einbyte-Hexadezimalzahl (00 bis FF).	Moduszahl 6 Anzeige löschen.

Beispiel: Anzeige einer Zweibyte-Dezimalzahl aus den Speicherstellen C 0100, C 0101. Das P46B-Modul ist auf Steckplatz 5.

LAD # 002 Anzeigemodus 2 Byte dezimal

LB # 005 Steckplatznummer

LRK C 0100 Quelladresse der anzuzeigenden Daten

FDIA

Beispiel: Anzeige einer Dreibyte-Hexadezimalzahl aus den Speicherstellen C 2300 bis C 2302. Modul auf Steckplatz 1.

LAD	# 00)5	Anzeigemodus	3	Byte	hexadezi	mal
LB	# 00)1	Steckplatznu	ımm	er		
LRK	C 23	300	Quelladresse	de	er aus	szugenden	Daten
EDIV							

Beispiel: Anzeige löschen. Modul auf Steckplatz 3.

```
LAD # 006 Moduszahl für "Anzeige löschen"
LB # 003 Steckplatznummer
FDIA
```

ERWEITERTE ANZEIGEFUNKTIONEN

Wird das P46B-Modul auf Steckplatz 0 betrieben, so stehen zusätzlich folgende Funktionen zur Verfügung:

a. CPU-Statusanzeige:

901 902	Übertragungsfehler bei Download (RUN) Write Protect
903	Checksum-Fehler nach Power-on
903	RAM zu klein
905	Checksum-Fehler
907	Runtime-Fehler
910	Pointer-Fehler
912	Kommunikationsfehler
913	Store-Fehler
914	Stapelzeiger-Fehler
915	Trap-Fehler
916	Interrupt-Fehler
ın die SPS im HALT-Z	ustand ist, zeigt das Display "888".

¹⁾ Eine detaillierte Beschreibung der Fehlermeldungen ist in Kapitel 4 ZENTRALEINHEITEN, Abschnitt "Fehlermeldungen" zu finden.

b. Anzeigemodus 0:

Wird das P46B-Modul auf Steckplatz 0 betrieben, so steht auch ein zusätzlicher Anzeigemodus zur Verfügung. Nach einem FDIA-Aufruf mit Moduszahl 0 wird die Anzeige durch die 1 Bit-Speicherstellen Z D86 und Z D87 gesteuert.

Wenn Z D86 = 1 und Z D87 = 0, dann zeigt das Display den Inhalt der Speicherstelle C 0000 als Einbyte-Dezimalzahl.

Wenn Z D86 = 0 und Z D87 = 1, dann zeigt das Display den Inhalt der Speicherstellen C 0000 bis C 0002 als Dreibyte-Hexadezimalzahl.

Die Parameter ERB (Steckplatznummer) und Indexregister (Quelladresse) können bei dieser Moduszahl beim FDIA-Aufruf entfallen.

Beispiel: Anzeige des Inhaltes der Speicherstelle C 0000 als Einbyte-Dezimalzahl:

```
LAD # 000 Moduszahl für C 0000-Anzeige (1 Byte, dezimal)
FDIA
CLR Z D87
SET Z D86
```

TASTER

Die vier Taster sind an der Modulfront mit 0 bis 3 bezeichnet. Sie können über die folgenden Adressen ausgelesen werden (0 = Taster nicht gedrückt, 1 = Taster betätigt):

E 0x0	Taster 0
E 0x1	Taster 1
E 0x2	Taster 2
E 0x3	Taster 3

Dabei ist "x" die Steckplatznummer des Modules (0 bis 5).

SCHIEBESCHALTER

Die Stellung des Schiebeschalters kann aus der Adresse E 0x4 ausgelesen werden (0 = Schiebeschalter in Position 0, 1 = Schiebeschalter in Position 1). "x" ist die Steckplatznummer des Modules (0 bis 5).