Sistemas Computacionais Distribuídos

Prof. Marcos José Santana SSC-ICMC-USP

São Carlos, 2008

Grupo de Sistemas Distribuídos e Programação Concorrente

Departamento de Sistemas de Computação - SSC

Sistemas Computacionais Distribuídos

2a. Aula

Modelos Arquiteturais

Conteúdo

- Modelos Arquiteturais
 - ⇒ Modelos Arquiteturais Clássicos
 - **⇒ Modelos Arquiteturais Compostos**
 - ⇒ Modelos Avançados

Modelos Arquiteturais

- Sistemas Distribuídos com acoplamento fraco.
- Como organizar um sistema distribuído.
- Aspectos físicos:
 - ⇒ estrutura física;
 - ⇒ organização do hardware;
 - ⇒ elementos básicos;
 - ⇒ interação física; etc.
- Aspectos lógicos:
 - **⇒** estrutura lógica;
 - ⇒ relação usuário/sistema;
 - ⇒ conceito de clientes e servidores;
 - ⇒ sessões de trabalho; etc.

Modelos Arquiteturais

Modelo Arquitetural Estação de Trabalho/Servidor.

Modelos Arquiteturais Clássicos

- Três modelos pioneiros:
 - Modelo de Minicomputadores
 - Modelo Estação de Trabalho / Servidores
 - Modelo de Banco de Processadores

Modelos Arquiteturais Clássicos Modelo de Minicomputadores

- Valor histórico:
 - ⇒ anos 70/80
- Elementos básicos:
 - ⇒ minicomputadores;
 - ⇒ rede local
- Objetivos:
 - ⇒ tornar recursos compartilhados de um minicomputador acessível remotamente.
- Exemplo (clássico):
 - ⇒ "clusters" de Vax

Modelos Arquiteturais Clássicos Modelo Estação de Trabalho/Servidores

- Histórico:
 - ⇒ conceito de estação de trabalho;
 - **⇒** conectividade;
 - ⇒ avanços significativos.
- Elementos básicos:
 - ⇒ estação de trabalho (software cliente);
 - ⇒ servidores (software servidor);
 - ⇒ paradigma cliente-servidor.

Modelos Arquiteturais Clássicos Modelo Estação de Trabalho/Servidores

- Objetivos:
 - ⇒ usuário e sua estação de trabalho (capacidade de processamento local);
 - ⇒ software cliente / software servidor;
 - ⇒ interação cliente-servidor;
 - ⇒ troca de mensagens;
 - ⇒ serviços especializados disponíveis de forma compartilhada;
 - ⇒ conectividade em nível de serviços, máquinas e usuários.

Modelos Arquiteturais Clássicos Modelo Estação de Trabalho/Servidores

- Vantagens:
 - ⇒ adaptação às necessidades dos usuários;
 - ⇒ tempo de resposta previsível (execução local);
 - \Rightarrow servidores remotos \rightarrow mobilidade e flexibilidade.
- Desvantagens:
 - ⇒ baixa utilização das E.T. pode ocorrer;
 - ⇒ servidores compartilhados favorece "hackers";
 - ⇒ servidor centralizado → pontos de falha e gargalos.
- Exemplos:
 - **⇒** Maioria absoluta dos sistemas existentes.
 - ⇒ E.T. (PCs) + Servidores.

- Histórico:
 - ⇒ Grupo de processadores alocados dinamicamente;
 - ⇒ alocação individual / conjunta.
- Elementos básicos:
 - ⇒ conjunto de processadores (microcomputadores);
 - ⇒ servidores;
 - ⇒ conjunto de terminais ("X-terminais").

- Objetivos:
 - ⇒ usuários têm acesso a terminais;
 - ⇒ estabelecem conexão com o banco de processadores;
 - ⇒ aloca o nº de processadores requeridos;
 - ⇒ opera como no modelo E.T./servidores;
 - ⇒ racionalização do uso dos recursos, com nº de terminais > nº de processadores.

- Vantagens:
 - Bom modelo para:
 - **⇒** processamento numérico intenso;
 - **⇒** processamento paralelo;
 - ⇒ melhor aproveitamento de recursos.
- Desvantagens:
 - Não recomendado para:
 - **⇒** processamento interativo;
 - ⇒ demanda por processadores for muito grande.

- Exemplos:
 - ⇒ Cambridge Distributed Computing System (pioneiro);
 - ⇒ Amoeba (não é puramente B.P.);
 - ⇒ Servidor de Processamento Paralelo (SPP) – ICMC/USP 1990/1994

Modelo Arquitetural Banco de Processadores

Modelos Arquiteturais Compostos

 Duas abordagens compostas a partir dos clássicos:

Modelo Híbrido

Modelo Integrado

Modelos Arquiteturais Compostos Modelo Híbrido

- ⇒ E.T / servidores + Banco de Processadores.
- Objetivos:
 - ⇒ explorar as vantagens de ambos E.T./servidor e banco de processadores;
 - ⇒ minimizar as desvantagens;
 - ⇒ melhor adequação do processador ao usuário;
 - **⇒** possibilitar processamento concorrente;
 - ⇒ queda no custo com o uso de "X-terminal".

Modelos Arquiteturais Compostos Modelo Híbrido

- Tendência atual de chamar este modelo de Banco de Processadores simplesmente.
- Exemplos:
 - ⇒ Cambridge Distributed Computing System (não estendido).
 - **⇒** Amoeba.

Modelos Arquiteturais Compostos Modelo Híbrido

Modelo Arquitetural Híbrido

Modelos Arquiteturais Compostos Modelo Integrado

- Histórico
 - ⇒ acoplamento de E.T./servidores e minicomputadores.
- Objetivo:
 - ⇒ uso dos minicomputadores como servidores (arquivo, correio eletrônico, etc.);
 - ⇒ uso de minicomputadores a partir de terminais e das E.T..

Modelos Arquiteturais Compostos Modelo Integrado

- Vantagens:
 - ⇒ aproveitamento dos recurso.
- Desvantagens:
 - ⇒ não é um modelo propriamente dito.

Modelos Arquiteturais Compostos Modelo Integrado

Modelo Arquitetural Integrado

Modelos Arquiteturais Avançados

- Dois modelos mais recentes ainda em desenvolvimento e "assimilação".
 - Modelo Arquitetural Baseado em Estações Inativas
 - Modelo Arquitetural Baseado em Objetos

Modelos Arquiteturais Avançados Modelo Baseado em Estações Inativas

- Histórico:
 - ⇒ pouco uso de algumas E.T. no modelo E.T./servidor.
- Objetivos:
 - ⇒ expandir os aspectos lógicos do modelo E.T./servidores;
 - ⇒ melhorar a relação custo/benefício no modelo E.T./servidores;
 - ⇒ eliminar E.T. ociosas sempre que possível.

Modelos Arquiteturais Avançados Modelo Baseado em Estações Inativas

- Vantagens:
 - ⇒ as mesmas de E.T./servidor;
 - ⇒ adicionalmente usa a capacidade ociosa do sistema.
- Desvantagens:
 - ⇒ as mesmas de E.T./servidor;
 - ⇒ exclui-se as E.T. inativas;
 - ⇒ complexidade no gerenciamento;
 - ⇒ incômodo aos usuários.

Modelos Arquiteturais Avançados Modelo Baseado em Estações Inativas

- Questão Ética:
 - ⇒ roubar os "meus" ciclos de processamento..?
- Exemplos:
 - **⇒** Sprite;
 - **⇒** Amoeba.

Modelos Arquiteturais Avançados Modelo Baseado em Objetos

- Engloba E.T./servidor e (potencialmente) híbridos.
- Objetivos:
 - ⇒ organizar de modo orientado a objetos;
 - ⇒ gerenciador de recursos ⇒ gerenciador de objetos;
 - ⇒ objetos são os elementos do sistema;
 - ⇒ teoria de orientação a objeto totalmente aplicável: herança, encapsulamento, polimorfismo, etc.

Modelos Arquiteturais Avançados Modelo Baseado em Objetos

Vantagens:

- ⇒ 0.0 permite visão uniforme de todo o sistema;
- ⇒ facilita a migração de processos (objetos);
- ⇒ engloba o caso de estações ociosas.

Desvantagens:

- ⇒ difícil implementação;
- ⇒ gerenciador de objetos é complexo;
- ⇒ migração de processos (objetos).

Modelos Arquiteturais Avançados [Modelo Baseado em Objetos]

- Exemplos (acadêmicos):
 - **⇒** Amoeba (sem migração);
 - ⇒ Mach (sem migração);
 - ⇒ Arjuma (com migração);
 - ⇒ Emerald (com migração).

Comentários Finais

- Tipo Preferencial de Modelo :
 - ⇒ Estação de Trabalho / Servidor (três décadas de preferência).
- Tendência Moderna:
 - ⇒ Expansão do modelo E.T./servidor com uso de estações inativas;
 - ⇒ Exploração do uso de B.P. (modelo híbrido) incluindo uso de E.T. ociosas.
- Tendência Futura:
 - ⇒ Sedimentar o Modelo Orientado a Objetos. (mais de uma década...)

Fim