Reinforcement Learning

Shusen Wang

A little bit probability theory...

Random Variable

- Random variable: a variable whose values depend on outcomes of a random event.
- Uppercase letter X for random variable.

Random Variable

- Random variable: a variable whose values depend on outcomes of a random event.
- Uppercase letter X for random variable.
- Lowercase letter x for an observed value.
- For example, I flipped a coin 4 times and observed:
 - $x_1 = 1$,
 - $x_2 = 1$,
 - $x_3 = 0$,
 - $x_4 = 1$.

• PDF provides a relative likelihood that the value of the random variable would equal that sample.

 PDF provides a relative likelihood that the value of the random variable would equal that sample.

Example: Gaussian distribution

- It is a continuous distribution.
- PDF:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

 PDF provides a relative likelihood that the value of the random variable would equal that sample.

Example: Discrete distribution

- Discrete random variable: $X \in \{1, 3, 7\}$.
- PDF:

$$p(1) = 0.2,$$

 $p(3) = 0.5,$
 $p(7) = 0.3.$

- Random variable X is in the domain \mathcal{X} .
- For continuous distribution,

$$\int_{\mathcal{X}} p(x) dx = 1.$$

• For discrete distribution,

$$\sum_{x \in \mathcal{X}} p(x) = 1.$$

Expectation

- Random variable X is in the domain X.
- For continuous distribution, the expectation of f(X) is:

$$\mathbb{E}[f(X)] = \int_{\mathcal{X}} p(x) \cdot f(x) dx.$$

• For discrete distribution, the expectation of f(X) is:

$$\mathbb{E}[f(X)] = \sum_{x \in \mathcal{X}} p(x) \cdot f(x).$$

Random Sampling

- There are 10 balls in the bin: 2 are red, 5 are green, and 3 are blue.
- Randomly sample a ball.
- What will be the outcome?

Random Sampling

- Sample red ball w.p. 0.2, green ball w.p. 0.5, and blue ball w.p. 0.3.
- Randomly sample a ball.
- What will be the outcome?

Random Sampling

- Sample red ball w.p. 0.2, green ball w.p. 0.5, and blue ball w.p. 0.3.
- Randomly sample a ball.
- What will be the outcome?

Terminologies

Terminology: state and action

state s (this frame)

Action $\alpha \in \{\text{left, right, up}\}\$

Terminology: state and action

state s (this frame)

Action $a \in \{left, right, up\}$

- Policy function π : $(s, a) \mapsto [0,1]$: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$
- It is the probability of taking action A = a given state s, e.g.,
 - $\pi(\text{left} \mid s) = 0.2$,
 - $\pi(\text{right}|s) = 0.1$,
 - $\pi(\text{up} \mid s) = 0.7$.
- Upon observing state S = s, the agent's action A can be random.

- Policy function π : $(s, a) \mapsto [0,1]$: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$
- It is the probability of taking action A = a given state s, e.g.,
 - $\pi(\text{left} \mid s) = 0.2$,
 - $\pi(\text{right}|s) = 0.1$,
 - $\pi(\text{up} \mid s) = 0.7$.
- Upon observing state S = s, the agent's action A can be random.

- Policy function π : $(s, a) \mapsto [0,1]$: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$
- It is the probability of taking action A = a given state s, e.g.,
 - $\pi(\text{left} \mid s) = 0.2$,
 - $\pi(\text{right}|s) = 0.1$,
 - $\pi(\text{up} \mid s) = 0.7$.
- Upon observing state S = s, the agent's action A can be random.

- Policy function π : $(s, a) \mapsto [0,1]$: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$
- It is the probability of taking action A = a given state s, e.g.,
 - $\pi(\text{left} \mid s) = 0.2$,
 - $\pi(\text{right}|s) = 0.1$,
 - $\pi(\text{up} \mid s) = 0.7$.
- Upon observing state S = s, the agent's action A can be random.

reward R

• Collect a coin: R = +1

reward R

• Collect a coin: R = +1

• Win the game: R = +10000

reward R

• Collect a coin: R = +1

• Win the game: R = +10000

• Touch a Goomba: R = -10000 (game over).

reward R

• Collect a coin: R = +1

• Win the game: R = +10000

• Touch a Goomba: R = -10000 (game over).

• Nothing happens: R = 0

state transition

state transition

• E.g., "up" action leads to a new state.

state transition

• E.g., "up" action leads to a new state.

- State transition can be random.
- Randomness is from the environment.

state transition

• E.g., "up" action leads to a new state.

- State transition can be random.
- Randomness is from the environment.
- $p(s'|s, a) = \mathbb{P}(S' = s'|S = s, A = a)$.

Terminology: agent environment interaction

Terminology: agent environment interaction

Terminology: agent environment interaction

Randomness in Reinforcement Learning

Actions have randomness.

- Given state *s*, the action can be random, e.g., .
 - $\pi(\text{``left''}|s) = 0.2$,
 - $\pi(\text{"right"}|s) = 0.1$,
 - $\pi(\text{"up"}|s) = 0.7.$

Randomness in Reinforcement Learning

Actions have randomness.

- Given state *s*, the action can be random, e.g., .
 - $\pi(\text{``left''}|s) = 0.2$,
 - $\pi(\text{"right"}|s) = 0.1$,
 - $\pi(\text{"up"}|s) = 0.7.$

State transitions have randomness.

• Given state S = s and action A = a, the environment randomly generates a new state S'.

Randomness in Reinforcement Learning

Actions have randomness.

- Given state *s*, the action can be random, e.g., .
 - $\pi(\text{"left"}|s) = 0.2$,
 - $\pi(\text{"right"}|s) = 0.1$,
 - $\pi(\text{"up"}|s) = 0.7.$

State transitions have randomness.

• Given state S = s and action A = a, the environment randomly generates a new state S'.

Play the game using AI

- Observe a frame (state s_1)
- \rightarrow Make action a_1 (left, right, or up)
- \rightarrow Observe a new frame (state s_2) and reward r_1
- \rightarrow Make action a_2
- · **→** ...

Play the game using AI

- Observe a frame (state s_1)
- \rightarrow Make action a_1 (left, right, or up)
- \rightarrow Observe a new frame (state s_2) and reward r_1
- \rightarrow Make action a_2
- → ...

• (state, action, reward) trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_T, a_T, r_T$$

Rewards and Returns

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Question: Are R_t and R_{t+1} equally important?

- Which of the followings do you prefer?
 - I give you \$100 right now.
 - I will give you \$100 one year later.

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Question: Are R_t and R_{t+1} equally important?

- Which of the followings do you prefer?
 - I give you \$100 right now.
 - I will give you \$100 one year later.
- Future reward is less valuable than present reward.
- R_{t+1} should be given less weight than R_t .

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Definition: Discounted return (aka cumulative discounted future reward).

- γ : discount rate (tuning hyper-parameter).
- $U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$

Randomness in Returns

Definition: Discounted return (at time step t).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

At time step t, the return U_t is random.

- Two sources of randomness:
 - 1. Action can be random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$.
 - 2. New state can be random: $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$.

Randomness in Returns

Definition: Discounted return (at time step t).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

At time step t, the return U_t is random.

- Two sources of randomness:
 - 1. Action can be random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$.
 - 2. New state can be random: $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$.
- For any $i \ge t$, the reward R_i depends on S_i and A_i .
- Thus, given s_t , the return U_t depends on the random variables:
 - $A_t, A_{t+1}, A_{t+2}, \cdots$ and S_{t+1}, S_{t+2}, \cdots .

Value Functions

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = \mathbf{a}_t\right].$$

• Return U_t depends on states $S_t, S_{t+1}, S_{t+2}, \cdots$ and actions $A_t, A_{t+1}, A_{t+2}, \cdots$.

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

- Return U_t depends on states $S_t, S_{t+1}, S_{t+2}, \cdots$ and actions $A_t, A_{t+1}, A_{t+2}, \cdots$.
- Actions are random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$. (Policy function.)
- States are random: $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$. (State transition.)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, \mathbf{A}_t = \mathbf{a}_t\right].$$

Definition: Optimal action-value function.

•
$$Q^*(s_t, \mathbf{a}_t) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a}_t).$$

State-Value Function V(s)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}\left[U_t | S_t = s_t, \mathbf{A_t} = \mathbf{a_t}\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}[Q_{\pi}(s_t, \mathbf{A})]$$

State-Value Function *V*(*s*)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}\left[U_t | S_t = s_t, \mathbf{A_t} = \mathbf{a_t}\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{A}[Q_{\pi}(s_t, A)] = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$
. (Actions are discrete.)

State-Value Function V(s)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}\left[U_t | S_t = s_t, A_t = \mathbf{a_t}\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{A}[Q_{\pi}(s_t, A)] = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$
. (Actions are discrete.)

•
$$V_{\pi}(s_t) = \mathbb{E}_{A}[Q_{\pi}(s_t, A)] = \int \pi(a|s_t) \cdot Q_{\pi}(s_t, a) da$$
. (Actions are continuous.)

Understanding the Value Functions

- Action-value function: $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t].$
- Given policy π , $Q_{\pi}(s, a)$ evaluates how good it is for an agent to pick action a while being in state s.

Understanding the Value Functions

- Action-value function: $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t].$
- Given policy π , $Q_{\pi}(s, \mathbf{a})$ evaluates how good it is for an agent to pick action \mathbf{a} while being in state s.

- State-value function: $V_{\pi}(s) = \mathbb{E}_{A} \left[Q_{\pi}(s, A) \right]$
- For fixed policy π , $V_{\pi}(s)$ evaluates how good the situation is in state s.
- $\mathbb{E}_{S}[V_{\pi}(S)]$ evaluates how good the policy π is.

Play games using reinforcement learning

How does AI control the agent?

Suppose we have a good policy $\pi(a|s)$.

- Upon observing the state s_t ,
- random sampling: $a_t \sim \pi(\cdot | s_t)$.

How does AI control the agent?

Suppose we have a good policy $\pi(a|s)$.

- Upon observing the state s_t ,
- random sampling: $a_t \sim \pi(\cdot | s_t)$.

Suppose we know the optimal action-value function $Q^*(s, a)$.

- Upon observe the state s_t ,
- choose the action that maximizes the value: $a_t = \operatorname{argmax}_a Q^*(s_t, a)$.

- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/

Classical control problems

Cart Pole

Pendulum

- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/

Atari Games

- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/

MuJoCo (Continuous control tasks.)

Play CartPole Game

```
import gym
env = gym.make('CartPole-v0')
```

- Get the environment of CartPole from Gym.
- "env" provides states and reward.

Play CartPole Game

```
state = env.reset()
for t in range(100); A window pops up rendering CartPole.
    env.render()
                                    A random action.
    print(state)
    action = env.action space.sample()
    state, reward, done, info = env.step(action)
    if done: "done=1" means finished (win or lose the game)
         print('Finished')
         break
env.close()
```

Summary

Summary

Terminologies

- Agent
- Environment
- State s.
- Action a.
- Reward *r*.
- Policy $\pi(a|s)$
- State transition p(s'|s, a).

Summary

Terminologies

- Agent
- Environment
- State s.
- Action a.
- Reward r.
- Policy $\pi(a|s)$
- State transition p(s'|s,a).

Return and Value

• Return:

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$$

Action-value function:

$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}\left[U_t | s_t, \mathbf{a_t}\right].$$

Optimal action-value function:

$$Q^*(s_t, \mathbf{a_t}) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a_t}).$$

State-value function:

$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}[Q_{\pi}(s_t, \mathbf{A})].$$

Play game using reinforcement learning

• Observe state s_t , make action a_t , environment gives s_{t+1} and reward r_t .

Play game using reinforcement learning

• Observe state s_t , make action a_t , environment gives s_{t+1} and reward r_t .

• The agent can be controlled by either $\pi(a|s)$ or $Q^*(s,a)$.

We are going to study...

- 2. Value-based learning.
 - Deep Q network (DQN) for approximating $Q^*(s, a)$.
 - Learn the network parameters using temporal different (TD).
- 3. Policy-based learning.
 - Policy network for approximating $\pi(a|s)$.
 - Learn the network parameters using policy gradient.
- 4. Actor-critic method. (Policy network + value network.)
- 5. Example: AlphaGo

Thank you!