InGaAs/GaAs 应变量子阱的发光特性研究

戴 银 1 李 林 1 苑汇帛 1 乔忠良 1 孔令沂 2 谷 雷 1 刘 洋 1 李 特 1 曲 轶 1 刘国军 1

(1 长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 1300222) 2 艾强(上海)贸易有限公司, 上海 200052

摘要 利用低压金属有机化学气相沉积技术(LP-MOCVD)生长 InGaAs/GaAs 单量子阱(SQW),通过改变生长速率、优化生长温度和 V/III 比改善了量子阱样品的室温光致发光(PL)特性。测试结果表明,当生长温度为 600 ℃、生长速率为 1.15 μ m/h 时,生长的量子阱 PL 谱较好,增加 V/III 比能够提高量子阱的发光强度。实验分析了在不同的 In 气相比条件下,生长速率对量子阱质量的影响,利用模型解释了高 In 气相比时,随着生长速率增加 PL 谱蓝移现象消失的原因。

关键词 薄膜;金属有机化学气相沉积;InGaAs/GaAs 单量子阱;生长速率;生长温度;光致发光

中图分类号 O472+.3

文献标识码 A

doi: 10.3788/AOS201434.1131001

Research on Photoluminescence Properties of InGaAs/GaAs Strained Quantum Well

Dai Yin¹ Li Lin¹ Yuan Huibo¹ Qiao Zhongliang¹ Kong Lingyi² Gu Lei¹ Liu Yang¹ Li Te¹ Qu Yi¹ Liu Guojun¹

¹ National Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and technology, Changchun, Jilin 130022, China

² AIXTRON China Ltd. Company, Shanghai 200052, China

Abstract Strained InGaAs/GaAs single quantum wells (SQWs) are grown by the low pressure metal-organic chemical vapor deposition (LP-MOCVD). The experimental results show that the photoluminescence (PL) emission of InGaAs/GaAs SQW can be greatly improved by optimizing the growth rate, V/III ratio and temperature. It is found that the QW structures grown at the growth temperature of 600 °C and the growth rate of 1.15 μ m/h exhibit better PL emission, stronger PL intensity with higher V/III ratio. The reason why the blue shift phenomenon of PL spectrum disappear when the InGas ratio is higher is explained by a model.

Key words thin films; metal-organic chemical vapor deposition; InGaAs/GaAs single quantum well; growth rate; growth temperature; photoluminescence

OCIS codes 310.1860; 120.6780; 300.6470

1 引 言

InGaAs/GaAs 量子阱(QW)拓展了 GaAs 的发光波长(0.85 \sim 1.1 μ m),被广泛应用于各种光电子器件和工业生产活动,因而受到普遍关注。一般情况下,通过改变生长过程中的 V/III 比、生长速率、生

长温度来优化量子阱生长质量,到目前为止,国内外很多文献都有报道。 Tan 等[1] 利用金属有机化学气相沉积(MOCVD) 技术在 $0.1~\mu m$ /h 的生长速率下得到高质量的大应变 $In_{0.5}Ga_{0.5}As/GaAs$ 单量子阱(SQW),样品表面光滑;俞波等[2] 通过优化生长温

收稿日期: 2014-04-01; 收到修改稿日期: 2014-06-24

基金项目: 国家自然科学基金(60976038,61107054,61308051,61370043)、国家自然科学基金委员会和中国工程物理研究院联合基金(U1330136)、吉林省科技发展计划(20100419)、高功率半导体激光国家重点实验室基金(C1301)

作者简介: 戴 银(1990-),男,硕士研究生,主要从事半导体激光器方面的研究。E-mail: daiyingaal1@163.com

导师简介: 李 林(1972—),男,博士,研究员,博士生导师,主要从事光电子材料与器件等方面的研究。

E-mail: licust@126.com(通信联系人)

度和生长速率,利用低压 MOCVD(LP-MOCVD)生长出高质量的应变 InGaAs/GaAs 980 nm 量子阱;祝进田等^[3-4]研究了 InGaAs 材料在不同温度条件下的光学特性,贾国治等^[5]研究了生长温度对InGaAs 应变量子阱发光波长的影响,同时还分析了生长温度对 In偏析、解析和 In-Ga 互混的影响。除此以外,采用中断生长、生长应变缓冲层(SBL)可以提高 InGaAs/GaAs 量子阱的光致发光(PL)质量^[6],快速热退火^[7-8]和衬底偏向角^[9]对量子阱的发光质量也有显著的影响。

生长 InGaAs/GaAs 量子阱,由于 In 原子体积较大,在晶体内部晶格容易发生应变,而表面缺陷较多、原子密度低,使得 In 原子将沿着生长方向向上迁移,导致 InGaAs 层上表面的 In 原子浓度大于下表面和晶体内部^[10]。表面 In 原子的富集,不仅使样品表面变得粗糙不平,而且容易使生长从二维层层生长模式向三维层岛生长模式(SK 模式)转变^[11]。为了得到高质量的 InGaAs 材料,需要尽量抑制生长模式向三维转变。生长速率、生长温度和V/III 比对量子阱生长模式有重要影响,生长条件改变会引起量子阱生长模式的改变。本文将利用MOCVD研究生长速率、生长温度以及 V/III 比对InGaAs/GaAs量子阱发光质量的影响。

2 实 验

实验用德国 AIXTRON 公司生产的 LP-MOCVD设备,反应室压力为 1×10^4 Pa。实验中以 H₂ 为载气, III 族源为 TMGa、TMIn, V 族源为 AsH₃。衬底为 n型 GaAs(100)偏〈111〉2°衬底。生长前先进行 5 min 的高温烘烤,以清洁衬底、降低衬底表面缺陷,然后再开始外延生长,即在 GaAs 衬底上依次生长 500 nm 的 GaAs 缓冲层,10 nm 的 InGaAs 单量子阱,500 nm 的 GaAs 盖层。

实验一共生长了 4 组样品,通过改变某一生长条件,分别研究 In 的气相比、生长速率、生长温度以及 V/III 比在不同情况下对量子阱发光质量的影响。设定 In 的气相比为 38.87%,通过样品 M01、M02 研究在 In 气相比较高的条件下生长速率对量子阱发光质量的影响;降低 In 的气相比为 33.71%,生长 M03、M04 两个样品,研究不同生长速率对量子阱发光特性的影响;M05、M06、M07 改变了生长温度,分别为 650 \mathbb{C} 、600 \mathbb{C} 、550 \mathbb{C} ; M08、M09、M10 则改变了样品的 V/III 比,分别为 35、45、55。生长条件如表 1、表 2 所示。

表 1 各组样品的生长条件

Table 1	Technological	parameters of	InGa As/	GaAs O	W samples

Samples	Growth rate $v/(\mu m/h)$	Growth temperature $T \ / \ \mathbb{C}$	In /(Ga+In) $X_{\rm v}/\%$	V / III
M01	1.15	650	38. 87	50
M02	0.75	650	38.87	50
M03	1.15	650	33.71	50
M04	0.95	650	33.71	50
M05	1.15	650	38.87	65
M06	1.15	600	38.87	65
M07	1.15	550	38.87	65
M08	1.06	600	33.71	35
M09	1.06	600	33.71	45
M10	1.06	600	33.71	55

表 2 InGaAs/GaAs 量子阱 III、V 族源的物质的量流量

Table 2 Groups III and V gas mole flow of InGaAs/GaAs QW

Sample Gas flow	M01	M02	M03	M04	M05/M06/M07	M08	M09	M10
$AsH_3/(10^{-3} mol/min)$	1.93	1.26	1.93	1.59	2.50	1.24	1.60	1.96
$TMGa / (10^{-5} mol/min)$	2.36	1.54	2.56	2.11	2.36	2.36	2.36	2.36
$TMIn / (10^{-5} mol/min)$	1.50	0.98	1.31	1.07	1.50	1.20	1.20	1.20

利用光致发光测试样品的发光质量、PL 谱的半峰全宽(FWHM)和相对发光强度主要由界面的粗

糙度和合金原子组分的微观波动决定,通过样品 PL 谱可以知道样品的生长质量。PL 谱测量仪器为美

国 QUATEK 快速图谱仪(RPM2000),在室温下进行测量。

3 结果与讨论

3.1 生长速率对 InGaAs/GaAs 单量子阱发光特性 的影响

图 1 为 M01、M02 样品的 PL 测试谱,横坐标为 样品的发光波长 λ,纵坐标为相对发光强度。两个 样品的生长速率不同,分别为 1.15 μ m /h、0.75 μ m /h。从图 1 中可以看到 M01 样品相对发光峰值强 度是 M02 样品的 7.75 倍,半峰全宽比 M02 号样品 小 6 nm。由此可见,生长速率提高,增加了量子阱 的发光峰值强度,降低了半峰全宽,提高了 InGaAs 量子阱的生长质量。由图 1 中还发现两个样品的中 心发射波长均为 1060 nm, Jasik 等[1,12] 都报道了随 着生长速率增加而中心发射波长发生蓝移的现象, 这与实验结果不同。图 1 所示 PL 谱表明在实验条 件中 In 原子的并入达到饱和状态,其并入不随生长 速率变化。同时可以看到,即便 M01 号样品的半峰 全宽也达到 39 nm,这说明样品生长质量总体较差。 一方面这是由于实验中 In 的组分过高引起的,实验 中 In 的气相比达到 $X_v = 38.87\%$, In 原子百分数 大,生长速率对 In 的并入没有影响,生长时极易达 到饱和状态,同时过量的 In 增加了应变,提高了缺 陷浓度,在生长过程中触发了层岛生长模式;另一方 面,较高的生长温度加剧了 In 和 Ga 的相互扩散,导 致生长质量变差。

图 1 M01、 $M02(X_v = 38.87\%)$ 样品在不同生长 速率条件下的 PL 谱

Fig. 1 PL spectra of M01 and M02 ($X_v = 38.87\%$) samples at different growth rates

对此,通过优化实验条件,降低 In 的气相比 $(X_v \text{ 从 } 38.87\%$ 降至 33.71%),生长了 M03、M04两个样品,与第一组实验相似,改变样品的生长速率

分别为 1. 15 μ m/h、0. 95 μ m/h。图 2 为两样品的 常温 PL 谱。

图 2 M03、M04(X_v=33.71%)样品在不同生长 速率条件下的 PL 谱

Fig. 2 PL spectra of M03 and M04 samples at different growth rates

由图 2 可以发现样品半峰全宽大大减小,中心 发光波长随生长速率增加出现蓝移现象,改变条件 后的生长样品晶体质量大大改善,此时 In 的并入受 生长速率影响。与图 1 相同,生长速率大的样品生 长质量更好。

上述两组实验表明,增加生长速率可以增加样品的相对发光强度、降低 FWHM,提高生长质量。对比图 1 和图 2 发现, In 的并入与生长速率有关,会随着生长速率增加而降低,即发生蓝移现象,但当In 的气相比高时(图 1),这一现象消失。

通过一个模型可以更好地解释上述现象:量子 阱生长时,在正在生长的 InGaAs 层表面上会形成一层由迁移 II 族金属原子或其有机物 (MMGa、MMIn)构成的叠加层,叠加层中 In、Ga 原子没有和 As 原子成键,这层叠加层可以看作液态状态。叠加层中的 In原子一方面会向下扩散并入正在生长的 InGaAs 层中,另一方面会发生解析。正在生长的 InGaAs 层的组分将由叠加层的组分决定。当 In 的气相比较低时, $X_v=33.71\%$,叠加层中 In 原子百分数较低,In 的并入不会达到饱和状态,提高生长速率时,In 的扩散和表面迁移距离降低,从而导致 In 并入减少,抑制了富 In 小岛形成,提高了材料生长质量。

应变层和弛豫层对 In 的并入有不同影响^[13]。 对应变 InGaAs 层而言,随着应变的增加,会形成额 外的势垒抑制 In 原子的并入,这会导致叠加层 In 浓度的增加。高温下,In 的有机物不稳定,易分解, 可能从叠加层解析。弛豫层对 In 的并入与 In 的浓 度成线性关系:即随着 In 原子百分数的增加,弛豫 层中 In 的组分也呈线性增加。

当 In 的气相比高时, $X_v = 38.87\%$,叠加层中 In 原子百分数较高,In 的并人在很短时间内达到饱和,此时生长速率提高对 In 并人无明显影响。多余的 In 容易在 InGaAs 层上表面形成 InAs 应变层,由于 InAs 临界厚度很小,很快 InAs 应变层转变为 InAs 弛豫层,导致 In 持续并入 InAs 内,形成大量缺陷和富 In 小岛,进一步降低生长表面质量,引起生长模式从二维转向三维 SK 模式,这就是 M01、M02 质量差的原因。

3.2 生长温度对 InGaAs/GaAs 单量子阱发光特性 的影响

温度对晶体的生长质量有重要的影响。原子的 迁移长度与温度成指数关系,随着温度的下降,吸附 原子的扩散距离会迅速降低,有助于阻止二维向三 维生长模式的转变,所以在较低的温度范围内(550

℃、600 ℃、650 ℃)生长了三个样品,讨论温度对 InGaAs 应变量子阱的发光影响。由于增加生长速率有助于提高量子阱生长质量,所以实验中样品的生长速率均调整到 $1.15~\mu m$ /h。图 3~ 为三个样品 PL 测试数据对比,其中图 3(a) 为不同生长温度下各样品的发光波长变化,图 3(b) 是不同生长温度下样品 M05、M06、M07 的相对发光强度和半峰全宽变化。

如图 3(a) 所示,随着生长温度的逐渐降低,量子阱发光中心波长不断增加,InGaAs 中 In 组分不断上升,量子阱中心发光波长发生明显的红移现象;如图 3(b) 所示,发光强度随生长温度的降低先增大再减小,其中 M06 样品发光最强,强度超过 M05 样品的 2 倍;对于 FWHM, M05、M07 样品都接近40 nm, M06 样品 FWHM 为 29 nm,比另外两个样品小 10 nm。

图 3 M05、M06、M07 样品在不同的生长温度条件下的 PL 测试结果对比。(a)中心发光波长随生长温度变化对比图; (b)相对发光强度和半峰全宽随生长温度变化对比图

Fig. 3 PL result contrast of M05, M06 and M07 at different growth temperatures. (a) Variation in center wavelength for InGaAs/GaAs SQW with growth temperature in the range of 550 °C ~ 650 °C; (b) variation in PL intensity and FWHM for InGaAs/GaAs SQW with growth temperature in the range of 550 °C ~ 650 °C

实验中保证通入的源流量不变,因为 TMGa 和 TMIn 的完全裂解温度 $^{[14]}$ 为 470 $^{\circ}$ C 和 340 $^{\circ}$ C,远远低于实际生长温度,所以认为到达衬底表面的 Ga 原子的百分数和 In 原子的百分数不随生长温度变化,In 的组分改变与偏析和解析有关。

随着温度的上升 In 的偏析和解析效应不断增强^[15], In 的偏析对发光强度有明显影响^[10], In 偏析降低有利于提高样品发光强度。温度从 650 ℃降低到 600 ℃的过程中, In 原子偏析降低, 并入增加, 使得衬底表面的 In 原子百分数降低, 从而降低了 In 原子脱附的几率, 抑制了表面富 In 小岛的形成, 提高了晶体生长质量。当温度低于 600 ℃时, 虽然此时 In 原子并入持续增加, 但样品的发光强度反而下降, 这是由于 AsH。的裂解温度较高, 生长温度低于

600℃时 AsH_3 裂解不完全 $^{[16]}$,同时 $In_xGa_{1-x}As$ 中 In 的组分大大提高,增加了量子阱的应变,也容易降低阱的生长质量。

3.3 V/III 比对 InGaAs/GaAs 单量子阱发光特性 的影响

由上述结果可知,在 In 的气相比较低、生长温度为 600 $^{\circ}$ C、生长速率较高时,量子阱的生长质量较好。在 In 气相比为 33. 71%、生长温度为 600 $^{\circ}$ C、生长速率为 1. 06 μ m /h 条件下,研究 V/III 比对 InGaAs/GaAs 量子阱发光特性的影响。

图 4 为样品 M08、M09、M10 的 PL 测试谱。从图中可以看出,随着 V/III 比的增加,样品的相对发光强度峰值不断增加,同时其中心发光波长发生红移现象。样品 M08、M09、M10 的中心发光波长分

图 4 M08、M09、M10 样品在不同 V/III 比条件下的 PL 谱 Fig. 4 PL spectra of M08, M09 and M10 samples with different V/III ratios

别为 1032. 3、1034. 4、1057. 5 nm,相对应地,样品半峰全宽为 22. 4、19. 1、24. 2 nm。提高样品的 V/III 比,即增加反应室中 AsH。的浓度,将会导致:1) 外延层表面的 As 原子逐渐增多,这不仅会增加 In 原子的并入,而且降低了 In 原子的迁移距离,抑制了富 In 小岛的形成,维持了二维层层生长模式[17];2) 反应室中 H 原子浓度上升,与反应室中的甲基复合形成易挥发的有机物,使并入外延层中的甲基化合物杂质浓度降低,从而提高了 PL 发光强度[12]。但是当 V/III 比从 45 增加到 55 时,样品 M10 的半峰全宽却比 M09 大了约 5 nm,这可能是由于生长过程中生成的易挥发有机物解析作用加强,使生长表面变得粗糙引起的[18]。

4 结 论

利用 LP-MOCVD,研究了生长速率、生长温度和 V/III 比对大应变 InGaAs/GaAs 量子阱生长质量的影响。在实验中的生长条件下,生长速率对生长质量有明显影响,提高生长速率可以提高 InGaAs/GaAs 量子阱的生长质量,提高 V/III 比可以增加量子阱的 PL 发光强度。In 的并入随着生长速率增加而降低,但是当 In 的气相比高时,In 的并入与生长速率无关,过量 In 会引起并入饱和,降低生长质量。实验表明 In 的气相比不同时,生长速率对 InGaAs/GaAs 量子阱的生长影响不同,在优化生长温度和速率的同时,还需要严格控制 In 的气相比。

参考文献

1 H H Tan, P Lever, C Jagadish. Growth of highly strained InGaAs quantum wells on GaAs substrates-effect of growth rate [J]. Journal of Crystal Growth, 2005, 274(1): 85-89.

2 Yu Bo, Gai Hongxin, Han Jun, et al.. Strain InGaAs/GaAs quantum well MOCVD growth optimization and its application in 980 nm semiconductor laser [J]. Chinese J Quantum Electronics, 2005, 22(1): 81-84.

俞 波,盖红星,韩 军,等. 应变 InGaAs/GaAs 量子阱 MOCVD 生长优化及其在 980 nm 半导体激光器中的应用 [J]. 量子电子学报,2005,22(1):81-84.

3 Zhu Jingtian, Hu Lizhong, Liu shiyong. Study on InGaAs materials grown by LP-MOCVD [J]. Semiconductor Optoelectronics, 1993, 14 (4): 367—370.

祝进田,胡礼中,刘式墉. 生长 InGaAs 材料的 MOCVD 技术 [J]. 半导体光电,1993,14(4):367-370.

4 Liao Guoqing, Jin Yixing. The influence of growth temperature for In_{0,53} Ga_{0,47} As/InP grown by LP-MOCVD [J]. Chinese J Luminescence, 2002, 23(5): 465-468.

缪国庆,金亿鑫. 生长温度对 In_{0.53}Ga_{0.47} As/InP 的 LP-MOCVD 生长影响[J]. 发光学报,2002,23(5):465-468.

5 Jia Guozhi, Yao Jianghong, Shu Yongchun, et al.. The influence of growth temperature and structure parameters of InGaAs/GaAs quantum well on the optical properties [J]. Journal of Luminescence, 2008, 29(2): 325-329.

贾国治,姚江宏,舒永春,等. 生长温度和结构参数对 InGaAs/GaAs 量子阱光学特性的影响 [J]. 发光学报,2008,29(2):325-329.

- 6 Pan Jiaoqin, Huang Baibiao, Zhang Xiaoyang, et al.. MOCVD growth of InGaAs/GaAs quantum well for 1064 nm LDs [J]. Journal of Photoelectron·Laser, 2003, 14(6): 590—593. 潘教青, 黄柏标, 张晓阳, 等. MOCVD 生长 1.06 μm InGaAs/GaAs 量子阱 LDs [J]. 光电子·激光, 2003, 14(6): 590—593.
- 7 Miao Zhenhua, Xu Yingqiang, Zhang Shiyong, et al.. The effects of rapid thermal annealing for high strain InGaAs/GaAs quantum well [J]. Chinese J Semiconductor, 2005, 26 (9): 1749—1752.

苗振华, 徐应强, 张石勇, 等. 快速热退火对高应变 InGaAs/GaAs 量子阱的影响 [J]. 半导体学报, 2005, 26(9): 1749-1752.

- 8 Wei Quanxiang, Wu Bingpeng, Ren Zhengwei, et al.. Photoluminescence study of two layer stacked InAs/GaAs quantum dots [J]. Acta Optica Sinica, 2012, 32(1): 0125001. 魏全香,吴兵朋,任正伟,等. 双层堆垛长波长 InAs/GaAs 量子点发光性质研究 [J]. 光学学报, 2012, 32(1): 0125001.
- 9 Yuan Huibo, Li Lin, Qiao Zhongliang, et al.. Optical characteristics of GaAsP/GaInP quantum well grown by metal organic chemical vapor deposition [J]. Chinese J Lasers, 2014, 41(5): 0506002.

苑汇帛,李 林, 乔忠良,等. MOCVD生长 GaAsP/GaInP量子 阱材料的发光特性 [J]. 中国激光, 2014, 41(5): 0506002.

- 10 A A Marmalyuk, O I Govorkov, A V Petrovsky, et al.. Investigation of indium segregation in InGaAs/(Al) GaAs quantum wells grown by MOCVD [J]. Journal of Crystal Growth, 2002, 237(1): 264—268.
- 11 Lu Dacheng, Duan Shukung. The Basis and Application of Metal Organic Compound Gas Phase Epitaxial [M]. Beijin: Science Press, 2009. 125—132.

陆大成,段树坤,金属有机化合物气相外延基础及应用[M],北京;科学出版社,2009,125-132,

- 12 A Jasik, A Wnuk, J Gaca, et al.. The influence of the growth rate and V/III ratio on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods [J]. Journal of Crystal Growth, 2009, 311(19): 4423-4432.
- 13 F Bugge, U Zeimer, M Sato, et al.. MOVPE growth of highly strained InGaAs/GaAs quantum wells [J]. Journal of Crystal Growth, 1998, 183(4): 511-518.
- 14 Liu Baolin, Yang Shureng, Chen Baijun, et al.. The influence of growth temperature on the properties of InGaAs grown by LP-

- MOCVD [J]. Journal of Luminescence, 1993, 14(4): 387-390. 刘宝林,杨树人,陈佰军,等. LP-MOCVD 生长温度对 InGaAs 性能的影响 [J]. 发光学报, 1993, 14(4): 387-390.
- 15 A S Sozykin, S S Strelchenko, E V Prokolkin, et al.. Thermodynamics and kinetics of indium segregation in InGaAs/GaAs heterostructures grown by MOCVD [J]. Journal of Crystal Growth, 2013, 363; 253-257.
- 16 Zhou Yong, Sun Yingbo, Zhou Xun, et al.. Growth of high strained InGaAs/GaAs/AlGaAs mini-band supper-lattices for middle wavelength infrared QWIP detectors [J]. Semiconductor Optoelectronic, 2013, 34(2): 221-225.
- 周 勇, 孙迎波, 周 勋, 等. 大应变 InGaAs/GaAs/AlGaAs 微 带超晶格中波红外 QWIP 的 MOCVD 生长 [J]. 半导体光电, 2013, 34(2): 221-225.
- 17 D Schlenker, T Miyamoto, Z Chen, et al.. Growth of highly strained GaInAs/GaAs quantum wells for 1. 2 μm wavelength lasers [J]. Journal of Crystal Growth, 2000, 209(1): 27-36.
- 18 J Hellara, F Hassen, H Maaref, et al.. Alloy broadening effect on optical properties of InGaAs grown by MOCVD with TMAs precursor [J]. Microelectronics Journal, 2004, 35(2): 207 — 212.

栏目编辑: 张浩佳