

E-commerce:

Brazilian (Olist) Orders Dataset

- Bernard Bernabeo
- King Eluard Camota
- Patrick Salazar
- Trizzia Ellaine Singson

Brazilian E-Commerce Dataset by Olist

- This unstructured dataset focuses on the Brazilian E-Commerce Public Dataset by Olist, from Kaggle, which provides information about approximately 100k+ orders placed from 2016 to 2018.
- It is made to provide various aspects of the customer purchasing experience, from order placement to fulfillment and postdelivery reviews.

olist_orders_dataset				
ukey	order_id	object		
fkey	customer_id	object		
	order_status	object		
	order_purchase_timestamp	dtime		
	order_approved_at	dtime		
	order_delivered_carrier_date	dtime		
	order_delivered_customer_date	dtime		
	order_estimated_delivery_date	dtime		

olist_order_items_dataset				
fkey	product_id	object		
	order_item_id	int		
fkey	order_id	object		
fkey	seller_id	object		
	shipping_limit_date	dtime		
	price	float		
	freight_value	float		

olist_order_reviews_dataset				
ukey	review_id	object		
fkey	order_id	object		
	review_score	int		
	review_comment_title	object		
	review_comment_message	object		
	review_creation_date	dtime		
	review_answer_timestamp	dtime		

olist_order_payments_dataset				
fkey	order_id	object		
	payment_sequential	int		
	payment_type	object		
	payment_installments	int		
	payment_value	float		

olist_products_dataset				
ukey	product_id	object		
	product_category_name	object		
	product_name_lenght	int		
	product_description_lenght	int		
	product_photos_qty	int		
	product_weight_g	int		
	product_length_cm	int		
	product_height_cm	int		
	product_width_cm	int		

olist_customers_dataset				
fkey	customer_id	object		
ukey	customer_unique_id	object		
fkey	customer_zip_code_prefix	int		
	customer_city	object		
	customer_state	object		

olist_seller_dataset						
ukey	key seller_id object					
fkey	seller_zip_code_prefix	int				
	seller_city	object				
	seller_state	object				

olist_gelocation_dataset				
ukey	geolocation_zip_code_prefix	int		
	geolocation_lat	float		
	geolocation_Ing	float		
	geolocation_city	object		
	geolocation_state	object		

product_category_name_translation					
	product_category_name	object			
	product_category_name_english	object			

Entity Relationship Diagram

product_category_name_translation

Objectives

Identify customer distribution and sales performance by location

Analyze performance of products by categories and revenue

How Have Sales and Orders Changed Over Time?

Develop a model that predicts a more robust estimation of delivery date

- Scattered Zip Codes
- Lack of Data Grouping
- Outlier Points Included
- Inconsistent Representation

Customer Distribution

Inconsistency	Solution (How It Was Fixed)
Scattered Zip Codes:	Grouping by zip_code_prefix: Averaged customer locations by zip codes, reducing noise and merging duplicated points.
- Cities like brasilia had hundreds of zip codes scattered over a wide area.	- Grouping points by zip codes provided a cleaner visualization.
Lack of Data Grouping:	Central Point Calculation: Averaged all zip code entries per city to produce a single reliable location.
- Multiple zip codes per city caused overlapping points.	- Creating a central point eliminated scattered points, especially for brasilia.
Outlier Points Included:	Outlier Handling: Averaging entries reduced the impact of irrelevant or incorrect points.
- Incorrect or miscategorized zip codes contributed to cluttered visuals.	- Averaging provided a consistent, accurate representation of each city.
Inconsistent Representation:	Uniform Representation: Using central points ensured fair comparison between cities.

Customer Distribution

Cleaning (How Outliers Were Handled):

Cleaning Step	What We Did	Why This Was Necessary	
Group by zip_code_prefix	Averaged customer points per zip_code_prefix.	Reduced noise and clutter from raw data points.	
Calculate Central Points	Consolidated entries to a single point per city.	Improved consistency and accuracy of city representation.	
Visual Clarity Enhancement	Used pastel colors for better visibility.	Made comparison of top cities easier and more effective.	

Handling Missing Values:

 Dropped rows with missing entries in critical columns (geolocation_lat, geolocation_lng, geolocation_zip_code_prefix, customer_id, payment_value).

Data Transformation:

- Merged datasets (olist_customers, olist_orders, olist_order_payments) to prepare sales_by_location DataFrame.
- Aggregated sales data per city to provide a reliable summary.

Outlier Handling:

 Removed cities with unusually low sales values (payment_value < 1000) - threshold set.

Sales Performance

Objective 2: Product Category Performance Analysis product_category_name_translation product_category_name object **Data Transformation** product_category_name_english object olist_order_reviews_dataset ukey review_id object olist_products_dataset fkey order_id object ukey product_id object review_score int product_category_name object review_comment_title object product_name_lenght review_comment_message object product_description_lenght review_creation_date dtime product_photos_qty int review_answer_timestamp dtime product_weight_g product_length_cm int 3NF (Normalized Schema) product_height_cm int olist_order_payments_dataset product_width_cm fkev order id object → OBT (One Big Table) payment_sequential payment_type object payment_installments olist_order_items_dataset payment_value float fkey product_id object olist_orders_dataset order_item_id object ukey order_id object order_id object object object customer_id object shipping_limit_date dtime order_purchase_timestamp float order_approved_at dtime freight_value float order delivered carrier date dtime olist_customers_dataset order_delivered_customer_date object fkey customer_id order_estimated_delivery_date customer_unique_id object customer_zip_code_prefix olist_seller_dataset object customer_city customer_state object ukey seller_id object seller_zip_code_prefix int seller_city int olist_gelocation_dataset seller state

float

float

object

object

ukey geolocation_zip_code_prefix

geolocation_lat geolocation_lng

geolocation_city

geolocation_state

Objective 2: Product Category Performance Analysis

Data Transformation

	order_id	price	product_category_name	generalized_product_category	review_score	order_status
0	00010242fe8c5a6d1ba2dd792cb16214	58.90	cool_stuff	Travel & Lifestyle	5.0	delivered
1	00018f77f2f0320c557190d7a144bdd3	239.90	pet_shop	Baby & Pet Supplies	4.0	delivered
2	000229ec398224ef6ca0657da4fc703e	199.00	moveis_decoracao	Home & Living	5.0	delivered
3	00024acbcdf0a6daa1e931b038114c75	12.99	perfumaria	Health & Beauty	4.0	delivered
4	00042b26cf59d7ce69dfabb4e55b4fd9	199.90	ferramentas_jardim	Home & Living	5.0	delivered
113309	fffc94f6ce00a00581880bf54a75a037	299.99	utilidades_domesticas	Home & Living	5.0	delivered
113310	fffcd46ef2263f404302a634eb57f7eb	350.00	informatica_acessorios	Electronics & Technology	5.0	delivered
113311	fffce4705a9662cd70adb13d4a31832d	99.90	esporte_lazer	Sports, Leisure & Hobbies	5.0	delivered
113312	fffe18544ffabc95dfada21779c9644f	55.99	informatica_acessorios	Electronics & Technology	5.0	delivered
113313	fffe41c64501cc87c801fd61db3f6244	43.00	cama_mesa_banho	Home & Living	5.0	delivered
110840 rd	ows × 6 columns					

Data Transformation

Generalizing product categories

```
Number of unique product categories: 71
Unique product categories: ['health_beauty' 'computers_accessories' 'auto' 'bed_bath_table'
 'furniture decor' 'sports leisure' 'perfumery' 'housewares' 'telephony'
 'watches gifts' 'food_drink' 'baby' 'stationery' 'tablets_printing_image'
 'toys' 'fixed telephony' 'garden tools' 'fashion bags accessories'
 'small_appliances' 'consoles_games' 'audio' 'fashion_shoes' 'cool_stuff'
 'luggage accessories' 'air conditioning'
 'construction tools construction'
 'kitchen_dining_laundry_garden_furniture' 'costruction_tools_garden'
 'fashion male clothing' 'pet shop' 'office furniture' 'market place'
 'electronics' 'home appliances' 'party supplies' 'home confort'
 'costruction tools tools' 'agro industry and commerce'
 'furniture mattress and upholstery' 'books technical' 'home construction'
 'musical instruments' 'furniture living room' 'construction tools lights'
 'industry commerce and business' 'food' 'art' 'furniture bedroom'
 'books general interest' 'construction tools safety'
 'fashion underwear beach' 'fashion sport' 'signaling and security'
 'computers' 'christmas supplies' 'fashio female clothing'
 'home_appliances_2' 'books_imported' 'drinks' 'cine_photo' 'la cuisine'
 'music' 'home comfort 2' 'small appliances home oven and coffee'
 'cds dvds musicals' 'dvds blu ray' 'flowers' 'arts and craftmanship'
 'diapers_and_hygiene' 'fashion_childrens_clothes' 'security_and_services']
Category counts (original):
product_category_name_english
health beauty
food
fashion sport
fashion underwear beach
construction_tools_safety
luggage accessories
cool stuff
fashion shoes
audio
security and services
Name: count, Length: 71, dtype: int64
```

```
Number of unique generalized categories: 13
Unique generalized categories: ['Health & Beauty' 'Electronics & Technology' 'Uncategorized'
 'Home & Living' 'Sports, Leisure & Hobbies' 'Fashion & Accessories'
 'Food & Beverages' 'Baby & Pet Supplies' 'Travel & Lifestyle'
 'Construction & Tools' 'Industry & Business' 'Party & Seasonal Supplies'
 'Security & Services']
Category counts:
generalized product category
Home & Living
                             15
Sports, Leisure & Hobbies
                             11
Electronics & Technology
Uncategorized
Fashion & Accessories
Construction & Tools
Health & Beauty
Food & Beverages
Industry & Business
Party & Seasonal Supplies
Baby & Pet Supplies
Travel & Lifestyle
Security & Services
Name: count, dtype: int64
```

Generalized Product Categories

Product Categories (from Original dataset)

Data Cleaning

Cleaning Step	What We Did	Justification
Filter data	Only select "delivered" orders in `order_status` column	Only purchases with "delivered" status were considered as successful transaction
Dropping Null Values	Drop null values on columns `review_score`and 'generalized_product_category	Null value means no product rating from the customer. Keeping null values will affect the review score for a specific product. Untraceable product category.

Feature Engineering

How Have Sales and Orders Changed Over Time?

Dataset	Missing Values	Duplicated Rows
reviews	145903	0 _
orders	4908	0
order_items	0	0
customers	0	0

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99224 entries, 0 to 99223
Data columns (total 7 columns):
                             Non-Null Count Dtype
    Column
    review id
                             99224 non-null object
    order_id
                             99224 non-null object
    review score
                             99224 non-null int64
    review comment title
                            11568 non-null object
    review comment message
                            40977 non-null object
    review creation date
                             99224 non-null datetime64[ns]
    review_answer_timestamp 99224 non-null object
dtypes: datetime64[ns](1), int64(1), object(5)
memory usage: 5.3+ MB
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99441 entries, 0 to 99440
Data columns (total 8 columns):
    Column
                                   Non-Null Count Dtype
    order id
                                   99441 non-null object
    customer id
                                   99441 non-null object
    order_status
                                   99441 non-null object
    order purchase timestamp
                                   99441 non-null datetime64[ns]
    order_approved_at
                                   99281 non-null object
    order_delivered_carrier_date 97658 non-null object
    order_delivered_customer_date 96476 non-null object
    order estimated delivery date 99441 non-null object
dtypes: datetime64[ns](1), object(7)
memory usage: 6.1+ MB
```

Dataset	Missing Values	Duplicated Rows
reviews	145903	0
orders	4908	0
order_items	0	0
customers	0	0

```
6 review_answer_timestamp 99224 non-null object
dtypes: datetime64[ns](1), int64(1), object(5)
memory usage: 5.3+ MB
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99441 entries, 0 to 99440
Data columns (total 8 columns):
    Column
                                  Non-Null Count Dtype
    order_id
                                  99441 non-null object
    customer id
                                  99441 non-null object
    order_status
                                  99441 non-null object
    order purchase timestamp
                                  99441 non-null datetime64[ns]
    order_approved_at
                                  99281 non-null object
    order_delivered_carrier_date 97658 non-null object
    order_delivered_customer_date 96476 non-null object
    order_estimated_delivery_date 99441 non-null object
dtypes: datetime64[ns](1), object(7)
memory usage: 6.1+ MB
```

order_status	order_purchase_timestamp	order_approved_at	order_delivered_carrier_date	order_delivered_customer_date	order_estimated_delivery_date
invoiced	2017-04-11 12:22:08	2017-04-13 13:25:17	NaN	NaN	2017-05-09 00:00:00
shipped	2018-06-04 16:44:48	2018-06-05 04:31:18	2018-06-05 14:32:00	NaN	2018-06-28 00:00:00
invoiced	2018-08-03 17:44:42	2018-08-07 06:15:14	NaN	NaN	2018-08-21 00:00:00
processing	2017-09-03 14:22:03	2017-09-03 14:30:09	NaN	NaN	2017-10-03 00:00:00

3	
	fke
DET'S VOLT IN	
DET'S VOLT IN	

olist_order_items_dataset			
fkey	product_id	object	
	order_item_id	int	
fkey	order_id	object	
fkey	seller_id	object	
	shipping_limit_date	dtime	
	price	float	
	freight_value	float	

olist_customers_dataset			
fkey	customer_id	object	
ukey	customer_unique_id	object	
fkey	customer_zip_code_prefix	int	
	customer_city	object	

_	RangeIndex: 110839 entries, 0 to 110838 Data columns (total 10 columns):				
#	Column	Non-Null Count	Dtype		
0	order_id	110839 non-null	object		
1	order_item_id	110839 non-null	int64		
2	product_id	110839 non-null	object		
3	seller_id	110839 non-null	object		
4	shipping_limit_date	110839 non-null	object		
5	price	110839 non-null	float64		
6	freight_value	110839 non-null	float64		
7	customer_id	110839 non-null	object		
8	order_purchase_timestamp	110839 non-null	datetime64[ns]		
9	review_score	110012 non-null	float64		

Cleaning	What We Did	Why This Was Necessary
Drop Null Values	Drop "review_score" null values	To reduce noise and ensure charts reflect real score trend and not missing data dips.

Transformation	What We Did	Why This Was Necessary
Create new column	Quarter/Year	To fit 2016 to 2018 monthly trend into a readable line chart without losing too much insight/s.
Create a subset	Group by Quarter	To get the summation of Price per quarter giving us the total sales.
Transform Datatype	Object to datetime	To get a sequential trend line from 2016 to 2018.

B: -7.59999999999994

UB: 277.4

Potential Drivers of Revenue Decline from 2Q18 Onwards

Objective 4: Develop a model that predicts a more robust estimation of delivery date

Data Transformation

Converting to date time datatype

Data Transformation

Aggregating zip code prefix by the longitude and latitude average

geolocation_zip	o_code_prefix	geolocation_lat	geolocation_lng	geolocation_city	geolocation_state
	1037	-23.545621	-46.639292	sao paulo	SP
	1037	-23.545187	-46.637855	são paulo	SP
	1037	-23.546705	-46.640336	são paulo	SP
	1037	-23.543883	-46.638075	são paulo	SP
	1037	-23.546157	-46.639885	sao paulo	SP
	1037	-23.543883	-46.638075	sao paulo	SP
	1037	-23.545199	-46.637916	sao paulo	SP
	1037	-23.545187	-46.637855	sao paulo	SP
	1037	-23.546723	-46.640281	sao paulo	SP
	1037	-23.546463	-46.640145	sao paulo	SP
	1037	-23.545621	-46.639292	sao paulo	SP

Data Transformation

	seller_customer_distance(km)	product_weight_g	freight_value
count	94273.000000	94273.000000	94273.000000
mean	397.006521	2090.764450	17.895652
std	285.021654	3735.928286	13.002029
min	0.000000	0.000000	0.000000
25%	133.046676	300.000000	12.600000
50%	363.465746	700.000000	15.370000
75 %	581.855713	1800.000000	18.700000
max	1093.313840	40425.000000	375.280000

 Standardization of 'seller_customer_distance(km)', 'freight_value', 'product_weight_g'

Does Olist Store meet delivery commitments?

Data Cleaning

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 112650 entries, 0 to 112649
Data columns (total 13 columns):
    Column
                                   Non-Null Count
                                                    Dtype
    order id
                                   112650 non-null object
     customer id
                                   112650 non-null object
    order status
                                   112650 non-null object
    order purchase timestamp
                                   112650 non-null datetime64[ns]
                                   112635 non-null datetime64[ns]
    order approved at
    order delivered customer date 110196 non-null datetime64[ns]
    order delivered carrier date
                                   111456 non-null datetime64[ns]
    order estimated delivery date 112650 non-null datetime64[ns]
    price
                                   112650 non-null float64
    freight value
                                   112650 non-null float64
    product weight g
                                   112632 non-null float64
    seller zip code prefix
                                   112650 non-null int64
 12 customer zip code prefix
                                   112650 non-null int64
dtypes: datetime64[ns](5), float64(3), int64(2), object(3)
memory usage: 11.2+ MB
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 110170 entries, 0 to 112649
Data columns (total 13 columns):
    Column
                                   Non-Null Count
                                                   Dtype
                                   _____
    order id
                                   110170 non-null object
    customer id
                                   110170 non-null object
    order status
                                   110170 non-null object
    order purchase timestamp
                                   110170 non-null datetime64[ns]
    order approved at
                                   110170 non-null datetime64[ns]
    order delivered customer date 110170 non-null datetime64[ns]
    order delivered carrier date
                                   110170 non-null datetime64[ns]
    order estimated delivery date 110170 non-null datetime64[ns]
                                   110170 non-null float64
    price
    freight value
                                   110170 non-null float64
    product weight g
                                   110170 non-null float64
11 seller zip code prefix
                                   110170 non-null int64
12 customer zip code prefix
                                   110170 non-null int64
dtypes: datetime64[ns](5), float64(3), int64(2), object(3)
memory usage: 11.8+ MB
```

Raw Dataset

Cleaned Dataset

Data Cleaning

Cleaning Step	What We Did	Why This Was Necessary
Filter data	Only select "delivered" orders in `order_status` column	Since only delivered status has data for when order was received by the customer.
Dropping Null Values	Drop null values on columns `order_delivered_customer_date`, `product_weight_g`, and 'order_delivered_carrier_date'	Because each data differs from so many factors.
Imputation	Fill null values in `order_approved_at` by the median time it takes for an order to get approved	Outliers are present within the data

Data Cleaning

	approval_time_seconds
count	1.101550e+05
mean	3.786828e+04
std	7.555498e+04
min	0.000000e+00
25%	7.790000e+02
50%	1.261000e+03
75 %	5.459400e+04
max	2.669197e+06

Does Olist Store meet delivery commitments?

Feature Engineering

```
<class 'pandas.core.frame.DataFrame'>
Index: 110170 entries, 0 to 112649
Data columns (total 13 columns):
     Column
                                   Non-Null Count
                                                    Dtype
     order id
                                   110170 non-null object
    customer id
                                   110170 non-null object
    order status
                                   110170 non-null object
    order purchase timestamp
                                   110170 non-null datetime64[ns]
    order approved at
                                   110170 non-null datetime64[ns]
    order delivered customer date 110170 non-null datetime64[ns]
    order delivered carrier date
                                   110170 non-null datetime64[ns]
    order estimated delivery date 110170 non-null datetime64[ns]
     price
                                   110170 non-null float64
    freight value
                                   110170 non-null float64
     product weight g
                                   110170 non-null float64
     seller zip code prefix
                                   110170 non-null int64
    customer zip code prefix
                                   110170 non-null int64
dtypes: datetime64[ns](5), float64(3), int64(2), object(3)
memory usage: 11.8+ MB
```

Before Feature Engineering

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 109634 entries, 0 to 109633
Data columns (total 24 columns):
     Column
                                          Non-Null Count
                                                           Dtype
     order id
                                          109634 non-null object
    customer id
                                          109634 non-null object
     order status
                                          109634 non-null object
    order purchase timestamp
                                          109634 non-null datetime64[ns]
    order approved at
                                          109634 non-null datetime64[ns]
    order delivered customer date
                                          109634 non-null datetime64[ns]
    order delivered carrier date
                                          109634 non-null datetime64[ns]
    order estimated delivery date
                                                           datetime64[ns]
                                          109634 non-null
     price
                                          109634 non-null float64
                                          109634 non-null float64
    freight value
    product weight g
                                          109634 non-null float64
    seller_zip_code_prefix
                                          109634 non-null int64
12 customer zip code prefix
                                          109634 non-null int64
    geolocation_zip_code_prefix_seller
                                          109634 non-null int64
    geolocation lat seller
                                          109634 non-null float64
    geolocation lng seller
                                          109634 non-null float64
    geolocation zip code prefix customer 109634 non-null int64
    geolocation_lat_customer
                                          109634 non-null float64
19 seller customer distance(km)
                                          109634 non-null float64
20 delivery time days
                                          109634 non-null float64
21 carrier received time days
                                          109634 non-null float64
22 delivery_difference
                                          109634 non-null int64
 23 delivery status
                                          109634 non-null object
```

dtypes: datetime64[ns](5), Tloat64(10), Int64(5), Object(4)

memory usage: 20.1+ MB

After Feature Engineering

Does Olist Store meet delivery commitments?

Feature Engineering

18 geolocation lng customer

Get the distance in kilometers of the seller and customer.

from geopy.distance import geodesic

```
11 seller_zip_code_prefix 109634 non-null int64
12 customer_zip_code_prefix 109634 non-null int64
13 geolocation_zip_code_prefix_seller 109634 non-null int64
14 geolocation_lat_seller 109634 non-null float64
15 geolocation_lng_seller 109634 non-null float64
16 geolocation_zip_code_prefix_customer 109634 non-null int64
17 geolocation_lat_customer 109634 non-null float64
18 geolocation_lat_customer 109634 non-null float64
19 seller_customer_distance(km) 109634 non-null float64
19 seller_customer_distance(km) 109634 non-null float64
```

```
geodesic((lat1, lon1), (lat2, lon2)).kilometers
```

109634 non-null float64

`seller_customer_distance(km)` =

(customer longitude and latitude data) & (seller longitude and latitude data)

Feature Engineering

Calculating the time it took:

- to receive the package by the carrier
- to deliver the package to customer; and
- The difference of the estimated delivery date and delivered date

```
order_purchase_timestamp
                                        109634 non-null datetime64[ns]
                                                                                20 delivery time days
                                                                                                                         109634 non-null float64
4 order approved at
                                        109634 non-null datetime64[ns]
                                                                                21 carrier_received_time_days
                                                                                                                         109634 non-null float64
5 order delivered customer date
                                        109634 non-null datetime64[ns]
                                                                                22 delivery difference
   order delivered carrier date
                                                                                                                         109634 non-null int64
                                        109634 non-null datetime64[ns]
   order estimated delivery date
                                        109634 non-null datetime64[ns]
```

`delivery_time_days` =

`order_delivered_customer_date` - `order_purchase_timestamp`

```
`carrier_received_time_days` =
`order_delivered_carrier_date` - `order_approved_at`
```

```
`delivery_difference` =
```

`order_estimated_delivery_date` - `order_delivered_customer_date`

Feature Engineering

Identify whether the order was received on time or was delayed.

```
22 delivery_difference 109634 non-null int64
23 delivery_status 109634 non-null object
```

If delivery difference is positive, then delivery status is "On Time". While delivery difference is negative, then the order was delivered "Delay".

Exploratory Data Analysis

- On Time: When customer received the order on or before the estimated delivery date
- Delay: When customer received the order after the estimated delivery date

Conclusion:

91% of the order was delivered on time.

Exploratory Data Analysis

Interquratile range (IQR) is somehow small: 10 days difference

Q1 (25th percentile): 6 days difference

Q3 (75th percentile): 16 days difference

Handling Outliers

Handling Outliers


```
OF2 KedLezziou Keznitz
Dep. Variable:
             delivery time days R-squared:
                                                    0.156
Model:
                        OLS Adj. R-squared:
                                                   0.156
                Least Squares F-statistic:
Method:
                                                1.622e+04
Date:
              Thu, 27 Mar 2025 Prob (F-statistic):
                                                    0.00
                    01:29:55 Log-Likelihood:
Time:
                                               -3.1401e+05
No. Observations:
                      87707 AIC:
                                                 6.280e+05
Df Residuals:
                      87705
                            BIC:
                                                 6.280e+05
Df Model:
Covariance Type:
                   nonrobust
______
                                                                0.975]
                       8.6733
                               0.042
                                      207.750
                                                                 8.755
const
seller customer distance(km)
                       0.0064
                                5e-05
                                      127.350
                                               0.000
                                                        0.006
                                                                 0.006
______
                   84846.194 Durbin-Watson:
Omnibus:
                                                    1.992
Prob(Omnibus):
                      0.000 Jarque-Bera (JB):
                                               9991917.839
Skew:
                      4.411 Prob(JB):
                                                    0.00
Kurtosis:
                      54.540 Cond. No.
                                                 1.19e + 03
______
```

Model 2

OLS Regression Results

						==	
Dep. Variable:	delivery_time_day	s R-squ	ared:		0.2	93	
Model:	OL	S Adj. I	R-squar	ed:	0.2	93	
Method:	Least Square	s F-sta	tistic:		781	3.	
Date:	Thu, 27 Mar 202	5 Prob	(F-stat	istic):	0.	00	
Time:	01:30:5	9 Log-L:	ikeliho	od:	-2.5563e+	·05	
No. Observations:	7541	B AIC:			5.113e+	·05	
Df Residuals:	7541	BIC:			5.113e+	·05	
Df Model:		4					
Covariance Type:	nonrobus	t					
	c	pef sto	d err	t	P> t	[0.025	0.975]
const	8.4	817 (0.034	252.532	0.000	8.416	8.548
seller_customer_di	stance(km) 2.7	219 (0.028	97.057	0.000	2.667	2.777
carrier_received_t	ime_days 1.0	146 (0.007	135.903	0.000	1.000	1.029
freight_value	0.3	281 (0.038	8.676	0.000	0.254	0.402
product_weight_g	0.0	467 (0.037	1.272	0.204	-0.025	0.119
=======================================						==	
Omnibus:	86310.37	4 Durbi	n-Watso	n:	1.9	98	
Prob(Omnibus):	0.00	0 Jarque	e-Bera	(JB):	21339152.0	29	
Skew:	5.66	Prob(JB):		0.	00	
Kurtosis:	84.62	5 Cond.	No.		8.	73	
=======================================						==	


```
Log Transformation Model Summary:
                       OLS Regression Results
______
Dep. Variable:
                delivery time days R-squared:
                                                              0.388
Model:
                                 Adj. R-squared:
                                                              0.388
                    Least Squares F-statistic:
Method:
                                                          1.194e+04
                 Thu, 27 Mar 2025 Prob (F-statistic):
Date:
                                                               0.00
                        01:32:48 Log-Likelihood:
Time:
                                                            -48025.
No. Observations:
                           75418 AIC:
                                                          9.606e+04
Df Residuals:
                           75413
                                 BIC:
                                                          9.611e+04
Df Model:
Covariance Type:
                       nonrobust
                              coef
                                    std err
                                                         P>|t|
                                                                   [0.025
                                                                             0.975]
const
                            2.1449
                                      0.002
                                            1001.756
                                                         0.000
                                                                   2.141
                                                                             2.149
seller customer distance(km)
                            0.2561
                                      0.002
                                            143.252
                                                         0.000
                                                                   0.253
                                                                             0.260
carrier received time days
                            0.0685
                                      0.000
                                             144.023
                                                         0.000
                                                                   0.068
                                                                             0.069
freight value
                            0.0313
                                      0.002
                                              12.995
                                                         0.000
                                                                   0.027
                                                                             0.036
product weight g
                            0.0033
                                      0.002
                                                         0.163
                                                                  -0.001
                                                                             0.008
______
Omnibus:
                                 Durbin-Watson:
                       16066.966
                                                              1.999
Prob(Omnibus):
                                 Jarque-Bera (JB):
                                                          169318.019
Skew:
                           0.725 Prob(JB):
                                                               0.00
Kurtosis:
                          10.196
                                 Cond. No.
                                                               8.73
```


Model 4

```
Log Transformation Model Summary:
                           OLS Regression Results
Dep. Variable:
                  delivery time days
                                      R-squared:
                                                                       0.400
Model:
                                 OLS
                                      Adj. R-squared:
                                                                       0.400
Method:
                       Least Squares
                                      F-statistic:
                                                                       8382.
                    Thu, 27 Mar 2025
                                      Prob (F-statistic):
Date:
                                                                        0.00
Time:
                                      Log-Likelihood:
                            02:17:06
                                                                     -47262.
No. Observations:
                               75418
                                      AIC:
                                                                   9.454e+04
Df Residuals:
                               75411
                                      BIC:
                                                                   9.460e+04
Df Model:
Covariance Type:
                           nonrobust
                                          std err
                                                                 P>|t|
                                                                            [0.025
                                                                                       0.9751
                                  coef
const
                                2.1635
                                           0.002
                                                    991.689
                                                                 0.000
                                                                            2.159
                                                                                        2.168
seller_customer_distance(km)
                                0.2468
                                           0.002
                                                    138.201
                                                                 0.000
                                                                            0.243
                                                                                        0.250
carrier received time days
                                0.0688
                                           0.000
                                                    141.823
                                                                 0.000
                                                                            0.068
                                                                                        0.070
freight_value
                                0.0675
                                           0.003
                                                     26.374
                                                                 0.000
                                                                            0.062
                                                                                        0.073
product weight g
                               -0.0074
                                            0.003
                                                     -2.715
                                                                 0.007
                                                                            -0.013
                                                                                       -0.002
inter1
                               -0.0016
                                            0.000
                                                     -5.048
                                                                 0.000
                                                                            -0.002
                                                                                       -0.001
inter3
                               -0.0687
                                            0.002
                                                    -39.078
                                                                 0.000
                                                                            -0.072
                                                                                       -0.065
Omnibus:
                           16836.606
                                      Durbin-Watson:
                                                                       2.000
Prob(Omnibus):
                               0.000
                                      Jarque-Bera (JB):
                                                                  197631.165
Skew:
                               0.741
                                       Prob(JB):
                                                                        0.00
Kurtosis:
                              10.791
                                       Cond. No.
                                                                        14.9
______
```

Interaction terms:

```
inter1 = product_weight_g *
carrier_received_time_days
```

```
inter3 = seller_customer_distance(km)
* freight_value
```

What if you have a big dataset, (10,000 times in size) of your current dataset?

What database, or what software, or what you will do?

Recommended Tool / Stack	Why?		
PostgreSQL/ MySQL (Self-Hosted / Budget-Friendly)	Structured data handling (customer IDs, order IDs, payment details).		
Hadoop (Self-Hosted / Budget-Friendly)	Distributed storage for massive datasets (10,000x).		
MongoDB + BI Tools (PowerBI, Tableau)	Semi-structured data handling (JSON, reviews).		
GCP or AWS S3 + Athena + Pandas (Startup / Prototype)	Cloud solutions for fast prototyping and scalability.		
Google BigQuery (Mid-Scale)	Scalable, serverless solutions for analytical workloads.		
Amazon Redshift (Enterprise)	High-performance data warehousing with cloud integration.		
Apache Spark / Dask (In-Memory Processing)	Fast, distributed computing for large datasets.		

Final Choice: Amazon Redshift

Handling Big Data Efficiently

Distributed & Scalable

Optimized for Complex Queries

Integration with AWS Ecosystem

Cost-Effective

Star Schema Dimension Table: dim_customer object customer_id customer_city object Dimension Table: dim_product Dimension Table: dim seller seller_id object product_category_name seller_city object product_category_english object object seller_state product_length_cm object Fact Table: fact_orders order_id customer_id object product_id object seller_id object payment_value float freight_value price float dim_date Туре review_score Dimension Table: dim_review Dimension Table: dim_date review_id date_id review_score object order_purchase_timestamp

ETL

ELT