Predict Length of Stay (LoS) in ICU unit (regression)

predict LoS for ca 15k stays and train on ca 45k information ICU stays

data from https://mimic.physionet.org/gettingstarted/access/)

Data merging

some datasets are quite big so pyspark and koalas were used initially for data merging (4 tables were used)

```
In [ ]: import findspark
findspark.init()
from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local[*]").setAppName("LoS_ICU")
sc = SparkContext(conf = conf)
import databricks.koalas as ks
ks.set_option('compute.default_index_type','distributed') #use paralell computing
```

```
In [ ]: events = ks.read csv('EVENTS/EVENTS.csv.gz') # read events table number of row ca. 330M
        events['CHARTTIME'] = ks.to datetime(events['CHARTTIME']) #transform date information
        events['STORETIME'] = ks.to datetime(events['STORETIME'])
        events['Date'] = events['CHARTTIME'].dt.date # select only the date part
        #query the events table: take the averaged test results for each day and each patient
        Avg24Hours ITEMIDPerICUStayID = ks.sql('''
            SELECT ITEMID, avg(VALUENUM), VALUEUOM, SUBJECT ID, ICUSTAY ID, HADM ID, Date
            FROM {table1}
            GROUP BY ITEMID, ICUSTAY ID, VALUEUOM, Date, HADM ID, SUBJECT ID
            ORDER BY SUBJECT ID ''', table1=events)
        # Len(Avg24Hours ITEMIDPerICUStayID) # ca. 60M droped ca. 6x +/-
        #query the previous + current total ICU stays for each single patient
        nrICU StaysPerSUBJ ID=ks.sql('''
            SELECT SUBJECT ID, COUNT(DISTINCT(ICUSTAY ID)) as Total ICU Stays
            FROM {table1}
            GROUP BY SUBJECT ID
            ORDER BY SUBJECT ID ''', table1=events)
        #merge the tw queries
        EventsAvgAndMerged=Avg24Hours ITEMIDPerICUStayID.merge(nrICU StaysPerSUBJ ID, on='SUBJECT ID')
        #read the admissions table (demographic information)
        admissions = ks.read csv('EVENTS/admissions.csv')
        #query insurance plan, diagnosis at adimission, marital status, ethnicity, etc...
        DemographicsPerSUBJ ID=ks.sql('''
            SELECT HADM ID, ADMISSION TYPE, ADMISSION LOCATION, INSURANCE, LANGUAGE, RELIGION, MARITAL STATUS, ETHNICITY, DIAG
        NOSIS as DiagnosisAtAdmission
            FROM {table1} ''', table1=admissions)
        #merge on the previous dataset
        EventsAvgAndDemographMerged=EventsAvgAndMerged.merge(DemographicsPerSUBJ ID, on='HADM ID')
        #read patients table
        patients= ks.read_csv('EVENTS/PATIENTS.csv')
```

```
patients['DOB'] = ks.to datetime(patients['DOB']).dt.date #transform data information and select only the date part
#query the table regarding gender and Date of Birth
DOBirthPerSUBJ ID=ks.sql('''
    SELECT SUBJECT ID, DOB as DateOfBirth, GENDER
   FROM {table1} ''', table1=patients)
#merge with the previous table on SUBJECT ID
EventsAvgAndDemographMerged2=EventsAvgAndDemographMerged.merge(DOBirthPerSUBJ ID, on='SUBJECT ID')
#read the d items table # information about the lables of the analysis performed on a patient
d items= ks.read csv('EVENTS/D ITEMS.csv')
#query analysis labels
LabelPerITEM ID=ks.sql('''
    SELECT ITEMID, LABEL as AnalysisType
    FROM {table1} ''', table1=d items)
#merge with previous information
EventsAvgAndDemographMerged3=EventsAvgAndDemographMerged2.merge(LabelPerITEM ID, on='ITEMID')
#read the icu stays table to gather information on how long the patient stayed in ICU (our response variable to predic
t)
icu stays = ks.read csv('EVENTS/ICUSTAYS.csv')
#query the table
LoSPerICUSTAY ID=ks.sql('''
   SELECT ICUSTAY ID, LOS as Lenght Stay
   FROM {table1} ''', table1=icu stays)
#merge with previous information
data Saved=EventsAvgAndDemographMerged3.merge(LoSPerICUSTAY ID, on='ICUSTAY ID')
data Saved.to csv('EVENTS/final', num files=1) # save the results for further ananlysis
#sc.stop()
#ks.reset option('compute.default index type')
```

```
In [2]: data Saved = ks.read csv('EVENTS/final/final.csv')
In [4]: data Saved.columns
Out[4]: Index(['ITEMID', 'avg(VALUENUM)', 'VALUEUOM', 'SUBJECT ID', 'ICUSTAY ID',
                'HADM ID', 'Date', 'Total ICU Stays', 'ADMISSION TYPE',
                'ADMISSION LOCATION', 'INSURANCE', 'LANGUAGE', 'RELIGION',
                'MARITAL STATUS', 'ETHNICITY', 'DiagnosisAtAdmission', 'DateOfBirth',
                'GENDER', 'AnalysisType', 'Lenght Stay'],
              dtvpe='object')
In [5]: data Saved.isna().sum()
Out[5]: ITEMID
                                        0
        avg(VALUENUM)
                                 35187052
        VALUEUOM
                                45360401
        SUBJECT ID
        ICUSTAY ID
        HADM ID
        Date
        Total ICU Stays
        ADMISSION TYPE
        ADMISSION LOCATION
        INSURANCE
        LANGUAGE
                                25536623
        RELIGION
                                   520413
        MARITAL STATUS
                                10038379
        ETHNICITY
                                        0
        DiagnosisAtAdmission
                                      814
        DateOfBirth
        GENDER
        AnalysisType
        Lenght Stay
        dtype: int64
In [6]: len(data Saved) #60 million rows! #chart events has 330 million rows!
Out[6]: 59319892
```

In [3]: data_Saved.head(50)

Out[3]:

	ITEMID	avg(VALUENUM)	VALUEUOM	SUBJECT_ID	ICUSTAY_ID	HADM_ID	Date	Total_ICU_Stays	ADMISSION_TYPE	ADMISSION_LOCATION
0	85	NaN	None	148	227964	199488	2107- 09-10	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
1	128	NaN	None	148	227964	199488	2107- 09-21	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
2	184	1.000000	None	148	227964	199488	2107- 09-11	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
3	202	NaN	None	148	227964	199488	2107- 09-17	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
4	207	NaN	None	148	227964	199488	2107- 09-18	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
5	478	NaN	None	148	227964	199488	2107- 09-21	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
6	617	NaN	None	148	227964	199488	2107- 09-16	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
7	640	NaN	None	148	227964	199488	2107- 09-21	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
8	677	35.879634	Deg. C	148	227964	199488	2107- 09-22	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
9	779	144.000000	mmHg	148	227964	199488	2107- 09-08	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
10	798	1.000000	None	148	227964	199488	2107- 09-10	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
11	824	14.550000	None	148	227964	199488	2107- 09-10	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
12	833	2.645000	/mic I	148	227964	199488	2107- 09-19	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
13	1517	NaN	None	148	227964	199488	2107- 09-08	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
14	1530	1.400000	None	148	227964	199488	2107- 09-15	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
15	1535	4.600000	None	148	227964	199488	2107- 09-10	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN

	ITEMID	avg(VALUENUM)	VALUEUOM	SUBJECT_ID	ICUSTAY_ID	HADM_ID	Date	Total_ICU_Stays	ADMISSION_TYPE	ADMISSION_LOCATION
16	8547	155.000000	mmHg	148	227964	199488	2107- 09-22	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
17	32	NaN	None	148	227964	199488	2107- 09-15	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
18	136	NaN	None	148	227964	199488	2107- 09-09	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
19	200	NaN	None	148	227964	199488	2107- 09-13	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
20	425	NaN	None	148	227964	199488	2107- 09-08	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
21	674	NaN	None	148	227964	199488	2107- 09-21	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
22	677	37.137040	Deg. C	148	227964	199488	2107- 09-19	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
23	722	NaN	None	148	227964	199488	2107- 09-17	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
24	1523	108.000000	None	148	227964	199488	2107- 09-13	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
25	5817	85.000000	mmHg	148	227964	199488	2107- 09-14	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
26	8377	NaN	None	148	227964	199488	2107- 09-22	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
27	8480	NaN	None	148	227964	199488	2107- 09-21	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
28	8488	NaN	None	148	227964	199488	2107- 09-20	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
29	39	NaN	None	148	227964	199488	2107- 09-16	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
30	40	NaN	None	148	227964	199488	2107- 09-08	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
31	199	NaN	None	148	227964	199488	2107- 09-21	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
32	210	NaN	None	148	227964	199488	2107- 09-21	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM

	ITEMID	avg(VALUENUM)	VALUEUOM	SUBJECT_ID	ICUSTAY_ID	HADM_ID	Date	Total_ICU_Stays	ADMISSION_TYPE	ADMISSION_LOCATION
33	218	46.000000	cmH2O	148	227964	199488	2107- 09-09	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
34	283	NaN	None	148	227964	199488	2107- 09-18	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
35	284	NaN	None	148	227964	199488	2107- 09-17	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
36	294	NaN	None	148	227964	199488	2107- 09-17	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAN
37	444	10.166667	cmH2O	148	227964	199488	2107- 09-17	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
38	547	NaN	None	148	227964	199488	2107- 09-22	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
39	617	NaN	None	148	227964	199488	2107- 09-23	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
40	645	NaN	None	148	227964	199488	2107- 09-11	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
41	646	93.807692	%	148	227964	199488	2107- 09-09	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
42	680	NaN	None	148	227964	199488	2107- 09-08	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
43	706	NaN	None	148	227964	199488	2107- 09-11	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
44	779	85.000000	mmHg	148	227964	199488	2107- 09-14	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
45	787	29.000000	None	148	227964	199488	2107- 09-22	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
46	791	1.000000	None	148	227964	199488	2107- 09-10	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
47	837	149.000000	None	148	227964	199488	2107- 09-21	1	EMERGENCY	TRANSFER FROM HOSP/EXTRAM
48	1427	NaN	None	148	227964	199488	2107- 09-17	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN
49	1532	2.000000	None	148	227964	199488	2107- 09-21	1	EMERGENCY	TRANSFER FRON HOSP/EXTRAN

```
In [5]: analysis=data Saved.AnalysisType.unique()
 In [7]: len(analysis) #6200 analysis types aka kind of 6000 columns!
 Out[7]: 6196
In [26]: | data Saved=data Saved.rename(columns={"avg(VALUENUM)": "DailyAverage"})
In [35]: #SELECT ONLY information for the first day in ICU
         #we want to predict LoS at nearly the begining of patient admission in ICU...
         #MIN(DATE) allows only information of the first day of information
         DataPerICU Stay First24h = ks.sql('''SELECT MIN(Date), avg(DailyAverage), SUBJECT ID, ICUSTAY ID,
                                              HADM ID, first(Total ICU Stays), first(ADMISSION TYPE), first(ADMISSION LOCATIO
         N),
                                              first(INSURANCE), first(LANGUAGE), first(RELIGION),
                                              first(MARITAL STATUS), first(ETHNICITY), first(DiagnosisAtAdmission), first(DateO
         fBirth),
                                              first(GENDER), AnalysisType, first(Lenght Stay)
                                              FROM {table1}
                                              GROUP BY ICUSTAY ID, SUBJECT ID, HADM ID, AnalysisType''', table1=data Saved)
In [36]: len(DataPerICU Stay First24h) # 14 million rows!
Out[36]: 14051986
In [37]: len(DataPerICU Stay First24h.SUBJECT ID.unique()) #46 000 patients
Out[37]: 46438
In [12]: len(DataPerICU Stay First24h.ICUSTAY ID.unique()) #61 000 icu admissions # alot with more than 1 admission ca. 20k
Out[12]: 60840
In [34]: len(DataPerICU_Stay_First24h[DataPerICU_Stay_First24h['first(Total ICU Stays)'] > 1])
Out[34]: 22961
```

In [39]: DataPerICU_Stay_First24h.head()

Out[39]:

	min(Date)	avg(DailyAverage)	SUBJECT_ID	ICUSTAY_ID	HADM_ID	first(Total_ICU_Stays)	first(ADMISSION_TYPE)	first(ADMISSION_LOCATION)
0	2181-11- 26	NaN	55973	200001	152234	14	EMERGENCY	CLINIC REFERRAL/PREMATURE
1	2181-11- 26	98.666667	55973	200001	152234	14	EMERGENCY	CLINIC REFERRAL/PREMATURE
2	2181-11- 25	NaN	55973	200001	152234	14	EMERGENCY	CLINIC REFERRAL/PREMATURE
3	2199-08- 07	NaN	27513	200003	163557	1	EMERGENCY	PHYS REFERRAL/NORMAL DELI
4	2199-08- 03	4.570000	27513	200003	163557	1	EMERGENCY	PHYS REFERRAL/NORMAL DELI
4								>

In [42]: # convert DOB to data first

DataPerICU_Stay_First24h['first(DateOfBirth)']=ks.to_datetime(DataPerICU_Stay_First24h['first(DateOfBirth)']).dt.date #calculate age of patient at admission (just using years...)

DataPerICU_Stay_First24h['Age']=DataPerICU_Stay_First24h['min(Date)'].dt.year - DataPerICU_Stay_First24h['first(DateOfBirth)']

DataPerICU_Stay_First24h['Age']=DataPerICU_Stay_First24h['min(Date)'].dt.year - DataPerICU_Stay_First24h['first(DateOf Birth)'].dt.year

c:\spark\python\pyspark\sql\pandas\functions.py:383: UserWarning: In Python 3.6+ and Spark 3.0+, it is preferred to s
pecify type hints for pandas UDF instead of specifying pandas UDF type which will be deprecated in the future release
s. See SPARK-28264 for more details.
 warnings.warn(

```
In [44]: DataPerICU Stay First24h['Age'].describe() #people older than 89 are stated as 300 years old at admission due to claim
         ed ethics issues
Out[44]: count
                  1.405199e+07
         mean
                  6.893595e+01
         std
                  5.360414e+01
                  0.000000e+00
         min
         25%
                  5.000000e+01
         50%
                  6.400000e+01
         75%
                  7.700000e+01
                  3.110000e+02
         max
         Name: Age, dtype: float64
In [48]: #dataset holders provided the median information for the 89 and older population
         DataPerICU Stay First24h['Age'].loc[DataPerICU Stay First24h['Age'] > 89] = 91.4 #replace with the median age
In [49]: DataPerICU_Stay_First24h['Age'].describe() #OK
Out[49]: count
                  1.405199e+07
                  6.000129e+01
         mean
         std
                  2.287624e+01
         min
                  0.000000e+00
         25%
                  5.000000e+01
         50%
                  6.400000e+01
         75%
                  7.700000e+01
         max
                  9.140000e+01
         Name: Age, dtype: float64
In [59]: DataPerICU Stay First24h['AnalysisType'] = DataPerICU Stay First24h['AnalysisType'].str.lower() #all to lower case
         DataPerICU Stay First24h['AnalysisType'] = DataPerICU Stay First24h['AnalysisType'].str.replace(" "," ") #replace spac
         e for ''
```

```
In [62]: DataPerICU Stay First24h['avg(DailyAverage)'].describe()
Out[62]: count
                  6.124011e+06
                  6.934117e+01
         mean
         std
                  2.020131e+03
         min
                 -6.000000e+02
         25%
                  1.919080e+00
         50%
                 1.200000e+01
         75%
                  6.900000e+01
                  4.154509e+06
         max
         Name: avg(DailyAverage), dtype: float64
 In [ ]: #pivot the table to have information about analysis results per ICUSTAY ID
         PivotTable= DataPerICU Stay First24h.pivot(index='ICUSTAY ID', columns='AnalysisType', values='avg(DailyAverage)')
         PivotTable=PivotTable.reset index()
         # we wont need this information: Analysis and dau«ily average has been pivoted
         PivotTable=PivotTable.drop(['AnalysisType', 'avg(DailyAverage)', 'min(Date)', 'first(DateOfBirth)'])
         PivotTable=PivotTable.drop duplicates()
         #save for further analysis
         DataPerICU Stay First24h.to csv('EVENTS/DataPerICU Stay First24h 2', num files=1)
         PivotTable.to csv('EVENTS/pivot 2', num files=1)
 In [ ]: #sc.stop()
```

Use Pandas once file sizes are now much smaller

```
In [4]: import pandas as pd
In [44]: PivotTable = pd.read_csv('EVENTS/pivot_2/pivot_2.csv')
```

In [13]: PivotTable.isna().sum()

Out[13]:	<pre>#1_chest_tube_irrig.</pre>	60840
	%_inspirtime	60840
	%cool_mist	60839
	(1)_fem_art	60840
	(r)_fem_art	60840
	<pre>(r)_femoral_sheath</pre>	60839
	<pre>(r)_nephrostomy</pre>	60840
	.45%ns	60840
	02_analyzed	60839
	02_tubing_present	60840
	1-10_ml_20%_mucomyst	60840
	<pre>1nausea_and_vomit.</pre>	60839
	<pre>1.nausea_&vomitting</pre>	60839
	10%_alcohol/_cc/hr	60839
	10%_alcohol_cc/hr	60839
	10%_etoh_cc/hr	60839
	10%alcohl	60839
	10_min	60840
	<pre>14_g_infiltration_scale</pre>	60840
	<pre>14_g_phlebitis_scale</pre>	60840
	<pre>14_gauge_dressing_occlusive</pre>	60411
	<pre>14_gauge_placed_in_outside_facility</pre>	60420
	<pre>14_gauge_placed_in_the_field</pre>	60630
	<pre>14_gauge_reason_discontinued</pre>	60840
	14_gauge_site_appear	60840
	<pre>16_g_infiltration_scale</pre>	60840
	<pre>16_g_phlebitis_scale</pre>	60840
	<pre>16_gauge_dressing_occlusive</pre>	56284
	<pre>16_gauge_placed_in_outside_facility</pre>	56331
	16_gauge_placed_in_the_field	58044
		• • •
	xigrismg/hour	60839
	xigris_cc/hr	60838
	xigris_mcg/kg/hr	60833
	xigris_mg/hr	60835
	xygris	60837
	xylocaine_2%_jelly	60840
	yawning	60702
	yi_mv	60839
	zantac	60840
	<pre>zantac(ranitidine)</pre>	60840
	,	

```
60840
zantac_pg
                                       60840
zantc
zidovudine/azt
                                       60840
                                       60840
zosyn
zygris
                                       60839
zz equip functioning
                                       60840
zz tubing present
                                       60840
                                       60840
zzg_and_mask_present
zzo2av
                                       57651
zzo2avi
                                       57669
zzz_stim_thresh_ma_[unit]
                                       60840
zzz_stim_thresh_ma_[value]
                                       60830
zzzgth calc (cm)
                                       60813
                                       60840
zzzly wake up
zzzn_management
                                       60840
zzzph
                                       60840
zzzt stim thresh ma [unit]
                                       60840
zzzt_stim_thresh_ma_[value]
                                       60833
zzzzth in centimeter
                                       60813
zzzzuent press mmhg
                                       60839
Length: 5342, dtype: int64
```

In [7]: PivotTable.shape

Out[7]: (60840, 2395)

In [50]: PivotTable.isna().sum()

Out[50]:	14_gauge_dressing_occlusive	61364
	14_gauge_placed_in_outside_facility	61373
	14_gauge_placed_in_the_field	61584
	16_gauge_dressing_occlusive	57193
	16_gauge_placed_in_outside_facility	57242
	16_gauge_placed_in_the_field	58977
	18_gauge_dressing_occlusive	48478
	18_gauge_placed_in_outside_facility	48574
	18_gauge_placed_in_the_field	53661
	<pre>20_gauge_dressing_occlusive</pre>	46054
	<pre>20_gauge_placed_in_outside_facility</pre>	46150
	<pre>20_gauge_placed_in_the_field</pre>	52258
	<pre>22_gauge_dressing_occlusive</pre>	56835
	22_gauge_placed_in_outside_facility	56901
	22_gauge_placed_in_the_field	58773
	3%_ns	61794
	aado2	60554
	aado2apacheiivalue	61788
	abd_girth	61793
	abdominal_changes:_observation	61657
	abdominal_girth	61769
	abdominal_girth_(cm)	58249
	abg_chloirde	61742
	abg_chloride	61748
	abg_hct	61584
	abg_potassium	61711
	abg_sodium	61758
	abi_(1)	61650
	abi_(r)	61647
	abi_ankle_bp_[left]	61650
	whoseono anachoiv	 61787
	<pre>wbcscore_apacheiv weight_change</pre>	46779
	weight_change(gms)	57768
	weight kg	60793
	whitebloodc_4.0-11.0	55807
	working_pressure	60611
	xigris	61775
	xigris_cc/hr	61793
	xigris mcg/kg/hr	61789
	xigris mg/hr	61791
	V+0: +2=0/ ;;;	01,01

vvanic	61793
xygris	
yawning	61657
zzo2av	58535
zzo2avi	58556
zzz_stim_thresh_ma_[value]	61786
zzzgthcalc(cm)	61762
zzzt_stim_thresh_ma_[value]	61789
zzzzth_in_centimeter	61762
first(Total_ICU_Stays)	0
first(ADMISSION_TYPE)	0
first(ADMISSION_LOCATION)	0
first(INSURANCE)	0
first(LANGUAGE)	26228
first(RELIGION)	482
first(MARITAL_STATUS)	10456
first(ETHNICITY)	0
first(DiagnosisAtAdmission)	2
first(GENDER)	0
first(Lenght_Stay)	0
Age	0
Length: 1594, dtype: int64	

In [45]: PivotTable=PivotTable.dropna(axis=1, thresh=2) # keep columns that have at least 2 non-NANs

In [6]: PivotTable.head()

Out[6]:

	ICUSTAY_ID	14_gauge_dressing_occlusive	14_gauge_placed_in_outside_facility	14_gauge_placed_in_the_field	16_gauge_dressing_occlusive	16_
0	200166	NaN	NaN	NaN	NaN	
1	200379	NaN	NaN	NaN	NaN	
2	200625	NaN	NaN	NaN	NaN	
3	200718	NaN	NaN	NaN	NaN	
4	201031	NaN	NaN	NaN	NaN	

5 rows × 1583 columns

4

```
In [9]:
          PivotTable.shape
 Out[9]: (60840, 1583)
In [46]: ICU Stay Info = pd.read csv('EVENTS/DataPerICU Stay First24h 2/24h 2.csv')
In [11]: ICU Stay Info.shape
Out[11]: (61796, 15)
 In [9]: ICU Stay Info.head()
 Out[9]:
             SUBJECT ID ICUSTAY ID HADM ID first(Total ICU Stays) first(ADMISSION TYPE) first(ADMISSION LOCATION) first(INSURANCE) first(LANGU
                     491
                             235261
                                      157083
           0
                                                              1
                                                                         EMERGENCY
                                                                                      EMERGENCY ROOM ADMIT
                                                                                                                     Medicare
                                                                                       PHYS REFERRAL/NORMAL
                                                                           ELECTIVE
                     507
                             264188
                                       136251
                                                              2
                                                                                                                     Medicare
           1
                                                                                                        DELI
           2
                                                              9
                     518
                             232791
                                       153168
                                                                         EMERGENCY
                                                                                      EMERGENCY ROOM ADMIT
                                                                                                                       Private
           3
                     975
                             299931
                                       165225
                                                              6
                                                                         EMERGENCY
                                                                                      EMERGENCY ROOM ADMIT
                                                                                                                     Medicare
                    1162
                             278191
                                       100147
                                                                         EMERGENCY
                                                                                      EMERGENCY ROOM ADMIT
                                                                                                                       Private
          #merae with addition information on the the first 24h previously saved
          PivotTable=PivotTable.merge(ICU Stay Info, left on=PivotTable['ICUSTAY ID'], right on= ICU Stay Info['ICUSTAY ID'])
```

```
In [19]: | PivotTable.head()
Out[19]:
             14_gauge_dressing_occlusive 14_gauge_placed_in_outside_facility 14_gauge_placed_in_the_field 16_gauge_dressing_occlusive 16_gauge_placed_
                                  NaN
                                                                NaN
                                                                                          NaN
                                                                                                                   NaN
           0
                                  NaN
                                                                NaN
                                                                                          NaN
                                                                                                                   NaN
           1
           2
                                  NaN
                                                                 NaN
                                                                                          NaN
                                                                                                                   NaN
                                  NaN
                                                                NaN
                                                                                          NaN
                                                                                                                   NaN
           3
                                  NaN
                                                                NaN
                                                                                                                   NaN
           4
                                                                                          NaN
          5 rows × 1595 columns
In [48]:
          #drop non-relevant columns
          PivotTable=PivotTable.drop(['key 0', 'ICUSTAY ID x', 'ICUSTAY ID y', 'HADM ID', 'SUBJECT ID'], axis=1)
In [14]: PivotTable.shape # king of 1600 features!!
Out[14]: (61796, 1595)
```

In [20]: PivotTable.isna().sum(axis=1)

Out[20]:	0	1467
	1	1494
	2	1477
	3	1519
	4	1515
	5	1434
	6	1495
	7	1443
	8	1490
	9	1415
	10	1430
	11	1521
	12	1439
	13	1478
	14	1442
	15	1437
	16	1487
	17	1479
	18	1492
	19	1470
	20	1482
	21	1517
	22	1508
	23	1431
	24	1512
	25	1445
	26	1454
	27	1507
	28	1417
	29	1540
	61766	1470
	61767	1518
	61768	1437
	61769	1548
	61770	1460
	61771	1441
	61772	1556
	61773	1475
	61774	1525
	61775	1537

```
61777
                  1530
         61778
                  1439
         61779
                  1557
         61780
                  1561
         61781
                  1513
         61782
                  1480
         61783
                  1567
         61784
                  1562
         61785
                  1518
         61786
                  1528
         61787
                  1564
         61788
                  1562
         61789
                  1552
         61790
                  1567
         61791
                  1572
         61792
                  1584
         61793
                  1570
         61794
                  1563
         61795
                  1584
         Length: 61796, dtype: int64
In [22]: # replace special charcters on columns names that might mess with modeling
         PivotTable.columns = PivotTable.columns.str.replace('[.,%,#,@,&,[,],/,-]', '')
In [49]: PivotTable.columns
Out[49]: Index(['14 gauge dressing occlusive', '14 gauge placed in outside facility',
                 '14 gauge placed in the field', '16 gauge dressing occlusive',
                 '16 gauge placed in outside facility', '16 gauge placed in the field',
                 '18 gauge dressing occlusive', '18 gauge placed in outside facility',
                 '18 gauge placed in the field', '20 gauge dressing occlusive',
                 'first(ADMISSION LOCATION)', 'first(INSURANCE)', 'first(LANGUAGE)',
                 'first(RELIGION)', 'first(MARITAL STATUS)', 'first(ETHNICITY)',
                 'first(DiagnosisAtAdmission)', 'first(GENDER)', 'first(Lenght Stay)',
                 'Age'],
               dtype='object', length=1594)
```

LightGBM Model

```
In [51]: #split in train and test sets
    from sklearn.model_selection import train_test_split
    LoS, LoS_test = train_test_split(PivotTable, test_size=0.30, random_state=42) # 30% for test
```

In [39]: LoS.dtypes

Out[39]:		float64
	14_gauge_placed_in_outside_facility	float64
	14_gauge_placed_in_the_field	float64
	16_gauge_dressing_occlusive	float64
	16_gauge_placed_in_outside_facility	float64
	16_gauge_placed_in_the_field	float64
	18_gauge_dressing_occlusive	float64
	18_gauge_placed_in_outside_facility	float64
	18_gauge_placed_in_the_field	float64
	20_gauge_dressing_occlusive	float64
	20_gauge_placed_in_outside_facility	float64
	20_gauge_placed_in_the_field	float64
	22_gauge_dressing_occlusive	float64
	22_gauge_placed_in_outside_facility	float64
	<pre>22_gauge_placed_in_the_field</pre>	float64
	3_ns	float64
	aado2	float64
	aado2apacheiivalue	float64
	abd_girth	float64
	abdominal_changes:_observation	float64
	abdominal_girth	float64
	abdominal_girth_(cm)	float64
	abg_chloirde	float64
	abg_chloride	float64
	abg_hct	float64
	abg_potassium	float64
	abg_sodium	float64
	abi_(1)	float64
	abi_(r)	float64
	abi_ankle_bp_[left]	float64
	weight_change	float64
	<pre>weight_change(gms)</pre>	float64
	weight_kg	float64
	whitebloodc_40110	float64
	working_pressure	float64
	xigris	float64
	xigris_cchr	float64
	xigris_mcgkghr	float64
	xigris_mghr	float64
	xygris	float64
	, ,	

```
float64
yawning
                                       float64
zzo2av
                                       float64
zzo2avi
zzz_stim_thresh_ma_[value]
                                       float64
zzzgth calc (cm)
                                       float64
zzzt stim thresh ma [value]
                                       float64
zzzzth in centimeter
                                       float64
ICUSTAY ID y
                                         int64
                                         int64
first(Total ICU Stays)
first(ADMISSION TYPE)
                                        object
first(ADMISSION LOCATION)
                                        object
first(INSURANCE)
                                        object
                                        object
first(LANGUAGE)
first(RELIGION)
                                        object
first(MARITAL STATUS)
                                        object
first(ETHNICITY)
                                        object
first(DiagnosisAtAdmission)
                                        object
first(GENDER)
                                        object
first(Lenght Stay)
                                       float64
Age
                                       float64
Length: 1595, dtype: object
```

In [53]: LoS.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 43257 entries, 5647 to 56422

Columns: 1594 entries, 14_gauge_dressing_occlusive to Age

dtypes: category(9), float64(1584), int64(1)

memory usage: 524.2 MB

```
In [52]: #transform object variables into category type for LGBM
          for c in LoS.columns:
              col type = LoS[c].dtypes
              if (col_type == object):
                  LoS[c] = LoS[c].astype('category')
          for c in LoS test.columns:
              col type = LoS test[c].dtypes
              if (col type == object):
                  LoS test[c] = LoS test[c].astype('category')
          C:\Users\lucia\Anaconda3\lib\site-packages\ipykernel launcher.py:5: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row indexer,col indexer] = value instead
          See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-
          сору
            ....
          C:\Users\lucia\Anaconda3\lib\site-packages\ipykernel launcher.py:10: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row indexer,col indexer] = value instead
          See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-
          copy
            # Remove the CWD from sys.path while we load stuff.
In [165]: # spli feature and response variables for train and test sets
          y train=LoS['first(Lenght Stay)']
          X train=LoS.drop('first(Lenght Stay)', axis=1 )
          y test=LoS test['first(Lenght Stay)']
```

X test=LoS test.drop('first(Lenght Stay)', axis=1)

```
In [166]: #transform object variables into category type for LGBM
                       for c in X train.columns:
                               col type = X train[c].dtype
                               if col type == 'object':
                                        X train[c] = X train[c].astype('category')
                       for c in X test.columns:
                               col type = X test[c].dtype
                               if col type == 'object':
                                        X test[c] = X test[c].astype('category')
In [167]: #it requires further repalcement of special charcters on columns names that might mess with LGBM
                       X train.columns = X train.columns.str.replace('(', '').str.replace(',', '').str.replace(',', '').str.replace('#', '').
                       str.replace('%', '').str.replace('[', '').str.replace(']', '').str.replace('-', '').str.replace('/', '').str.repla
                       '>', '').str.replace('.', '')
                       X test.columns = X test.columns.str.replace('(', '').str.replace(')', '').str.replace('<', '').str.replace('#', '').st</pre>
                       r.replace('%', '').str.replace('[', '').str.replace(']', '').str.replace('-', '').str.replace('/', '').str.replace('>'
                       , '').str.replace('.', '')
In [168]: import re # transform from ison to not cause problems in lightbam due to special ison characters in column names
                       X train = X train.rename(columns = lambda x:re.sub('[^A-Za-z0-9]+', '', x))
                       X test = X test.rename(columns = lambda \times re.sub('[^A-Za-z0-9]+', '', x))
In [132]: #according to dataset manager some analysis may contain misspelling and not uniform information about analysis but it
                        is a open
                       # free character introduction describing the analysis performed
                       # string match was performed in order to merge columns that most probably refer to the same analysis type
                       import difflib
                       matches=dict()
                       for c in X train.columns:
                               matches[c] = difflib.get close matches(c, X train.columns, cutoff = 0.70, n = 15)
```

```
In [134]: matches['22 gauge placed in outside facility']
Out[134]: ['22 gauge placed in outside facility',
            '20 gauge placed in outside facility',
            '18 gauge placed in outside facility',
            '16 gauge placed in outside facility',
            '14 gauge placed in outside facility',
            'iabp placed in outside facility',
            'cco pac placed in outside facility',
           'ric placed in outside facility',
            'icp line placed in outside facility',
            'ava line placed in outside facility',
            'sheath placed in outside facility',
            'trauma line placed in outside facility',
            'picc line placed in outside facility',
            'midline placed in outside facility',
            'pa catheter placed in outside facility']
 In [1]: #replace values for the mean in the most similar analysis type # this will replace a lot of NaN
          for similars in matches.values():
              average1=X train[similars].mean(axis=1)
              average2=X test[similars].mean(axis=1)
              X train[similars] = X train[similars].T.fillna(average1).T
              X test[similars]= X test[similars].T.fillna(average2).T
```

```
In [170]: X train.head()
Out[170]:
                                                           14 gauge dressing occlusive 14 gauge placed in outside facility 14 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge dressing occlusive 16 gauge placed in the field 16 gauge placed in th
                                          5647
                                                                                                                                 1.0
                                                                                                                                                                                                                                    0.0
                                                                                                                                                                                                                                                                                                        0.000000
                                                                                                                                                                                                                                                                                                                                                                                                         1.0
                                        49026
                                                                                                                              NaN
                                                                                                                                                                                                                                 NaN
                                                                                                                                                                                                                                                                                                                                                                                                      NaN
                                                                                                                                                                                                                                                                                                                    NaN
                                                                                                                                 1.0
                                                                                                                                                                                                                                                                                                        0.833333
                                                                                                                                                                                                                                                                                                                                                                                                         1.0
                                          6112
                                                                                                                                                                                                                                    1.0
                                       45879
                                                                                                                              NaN
                                                                                                                                                                                                                                                                                                                                                                                                      NaN
                                                                                                                                                                                                                                 NaN
                                                                                                                                                                                                                                                                                                                   NaN
                                       60640
                                                                                                                                 1.0
                                                                                                                                                                                                                                    0.0
                                                                                                                                                                                                                                                                                                                                                                                                         1.0
                                                                                                                                                                                                                                                                                                        0.000000
                                    5 rows × 1593 columns
In [172]: X train.shape
Out[172]: (43257, 1593)
In [181]: #drop duplicated columns
                                    X train = X train.loc[:,~X train.columns.duplicated()]
                                    X test = X test.loc[:,~X test.columns.duplicated()]
In [182]: X_train.shape
Out[182]: (43257, 1560)
   In [20]: import lightgbm as lgb #pip install lightqbm
                                    clf = lgb.LGBMRegressor(boosting_type='gbdt', objective='regression', n_jobs=-1,
                                                                                                                                              metric= '12', subsample = 0.8 , force_col_wise = True,
                                                                                                                                           learning_rate= 0.1, colsample_bytree= 0.2, reg_alpha= 3, reg_lambda= 1,
                                                                                                                                          n estimators=5000, max depth=-1, num leaves=100 )
```

```
In [183]: #fit the Lghbm model
          clf.fit(X train, y train, early stopping rounds= 30, eval metric= '12', #mean squared error
                                      eval set= [(X test,y test)], eval names= ['test'], verbose= 100, feature name= 'auto', cat
          egorical feature= 'auto')
          C:\Users\lucia\Anaconda3\lib\site-packages\lightgbm\basic.py:1286: UserWarning: Overriding the parameters from Refere
          nce Dataset.
            warnings.warn('Overriding the parameters from Reference Dataset.')
          C:\Users\lucia\Anaconda3\lib\site-packages\lightgbm\basic.py:1098: UserWarning: categorical column in param dict is o
          verridden.
            warnings.warn('{} in param dict is overridden.'.format(cat alias))
          Training until validation scores don't improve for 30 rounds
          [100]
                  test's 12: 8.2747
                  test's 12: 7.72796
          [200]
                  test's 12: 7.56052
          [300]
          [400]
                  test's 12: 7.50668
          [500]
                  test's 12: 7.4783
          [600]
                  test's 12: 7.45319
                  test's 12: 7.44262
          [700]
                  test's 12: 7.43858
          [800]
          [900]
                  test's 12: 7.43164
          [1000] test's 12: 7.42564
                 test's 12: 7.42306
          [1100]
          [1200] test's 12: 7.42138
          Early stopping, best iteration is:
          [1265] test's l2: 7.41953
Out[183]: LGBMRegressor(colsample bytree=0.2, force col wise=True, metric='12',
                        n estimators=5000, num leaves=100, objective='regression',
                        reg alpha=3, reg lambda=1, subsample=0.8)
In [184]: #predict LoS for test
          LoS hat=clf.predict(X test) #LoS is in days
```

In [186]: from matplotlib import pyplot as plt
plt.scatter(y_test, LoS_hat) # not bad! it is quite a linear diagonal centered line as expected

Out[186]: <matplotlib.collections.PathCollection at 0x1aea10ec4c8>

In [190]: y_test.median()

Out[190]: 2.0881

```
In [197]: clf 2 = lgb.LGBMRegressor(boosting type='gbdt', objective='regression', n jobs=-1,
                                         metric= '12 root', subsample = 0.8, force col wise = True,
                                        learning rate= 0.01, colsample bytree= 0.2, reg alpha= 3, reg lambda= 1,
                                        n estimators=20000, max depth=-1, num leaves=100 )
          #fit the Lahbm model
          clf 2.fit(X train, y train, early stopping rounds= 30, eval metric= '12 root', #root mean squared error
                                      eval set= [(X test, v test)], eval names= ['test'], verbose= 1000, feature name= 'auto', ca
          tegorical feature= 'auto')
          Training until validation scores don't improve for 30 rounds
          [1000] test's rmse: 2.79971
          [2000] test's rmse: 2.68856
          [3000] test's rmse: 2.6562
          [4000] test's rmse: 2.642
          [5000] test's rmse: 2.63493
          [6000] test's rmse: 2.63045
          [7000] test's rmse: 2.6272
          [8000] test's rmse: 2.62522
          [9000] test's rmse: 2.62397
          [10000] test's rmse: 2.62304
          Early stopping, best iteration is:
          [10005] test's rmse: 2.62304
Out[197]: LGBMRegressor(colsample bytree=0.2, force col wise=True, learning rate=0.01,
                        metric='12 root', n estimators=20000, num leaves=100,
                        objective='regression', reg alpha=3, reg lambda=1, subsample=0.8)
In [195]: y test.mean() #5.18, average error on prediction with a 2.63 rmse gives ca. 50% error on predicton on average!
Out[195]: 5.187222050811799
```

In [198]: LoS_hat_2=clf_2.predict(X_test_2) #LoS is in days
plt.scatter(y_test, LoS_hat_2) # better it could be improved maybe with hyperopr hyperparameter optimization

Out[198]: <matplotlib.collections.PathCollection at 0x1aec74249c8>


```
In [206]: plt.rcParams['ytick.labelsize'] = 25
    lgb.plot_importance(clf_2, max_num_features=50, figsize = (25,40))
    plt.show()
    # most relevant feature is diagnosis at admitance
    #although diagnosis at admitance might contain some error,
    #if some one is admitted to ICU they must be much strongely sure about the problem of the patient!!
```


In []: