Senac - Desenvolver Banco de Dados - UC10 - 2024 A2-1/1

Introdução ao Modelo de Entidade-Relacionamento (MER)

Objetivo da Aula

Apresentar de forma detalhada o **Modelo de Entidade-Relacionamento (MER)**, uma ferramenta essencial na modelagem de bancos de dados. A aula abordará conceitos fundamentais como entidades, atributos, relacionamentos e as diferentes representações gráficas do MER. Os alunos entenderão como o MER é utilizado para representar a estrutura lógica de um banco de dados, além de aprenderem a criar diagramas de entidade-relacionamento (ER) para modelagem de dados.

1. Conceitos Fundamentais do MER

1.1 O que é o Modelo de Entidade-Relacionamento (MER)?

O **Modelo de Entidade-Relacionamento (MER)** é uma técnica de modelagem de dados usada para descrever e representar a estrutura de um banco de dados de forma lógica. Ele utiliza conceitos gráficos para representar as entidades do sistema e como elas se relacionam, permitindo uma compreensão clara das informações e da estrutura que será usada para armazenar os dados.

Objetivos do MER:

- Representar graficamente as entidades e seus relacionamentos.
- Facilitar a visualização da estrutura de um banco de dados, antes de ser implementado.
- Promover uma visão de alto nível do sistema de informações, para garantir que todos os requisitos sejam atendidos.
- Documentar a modelagem de dados para ser usada como referência durante o desenvolvimento do banco de dados.

1.2 Definição de Entidade

Uma **entidade** no contexto do MER é um **objeto ou conceito** sobre o qual informações precisam ser armazenadas. As entidades podem ser coisas tangíveis, como **pessoas** ou **produtos**, ou coisas abstratas, como **pedidos** ou **contratos**.

Exemplos de Entidades:

- Cliente: Representa uma pessoa que compra produtos de uma loja.
- **Produto**: Representa um item disponível para venda.
- **Pedido**: Representa uma transação de compra realizada por um cliente.

Cada entidade é representada por um **retângulo** no diagrama de entidade-relacionamento (DER).

1.3 Atributos das Entidades

Um **atributo** é uma **característica** ou **propriedade** de uma entidade. Cada entidade possui um conjunto de atributos que define suas propriedades. Esses atributos podem ser simples, compostos ou derivados.

Tipos de Atributos:

- Atributo Simples: Não pode ser subdividido. Exemplo: nome_cliente, idade_cliente.
- **Atributo Composto**: Pode ser subdividido em outros atributos menores. Exemplo: endereco_cliente pode ser subdividido em rua, cidade e CEP.
- Atributo Derivado: Pode ser calculado a partir de outros atributos. Exemplo: idade_cliente pode ser derivada da data_nascimento.

Os atributos são representados por **elipses** no diagrama, conectados às entidades que descrevem.

1.4 Chave Primária

A chave primária é um atributo (ou conjunto de atributos) que identifica unicamente cada instância de uma entidade. É fundamental para garantir que não existam registros duplicados em uma tabela.

Exemplos:

- A entidade Cliente pode ter o atributo id_cliente como chave primária.
- A entidade Produto pode ter o atributo id_produto como chave primária.

A chave primária é sublinhada no diagrama de entidade-relacionamento.

2. Relacionamentos entre Entidades

2.1 Definição de Relacionamento

Um **relacionamento** é uma **associação** entre duas ou mais entidades. No modelo MER, os relacionamentos indicam como as entidades interagem entre si. Eles são representados por **losangos** no diagrama ER e conectam as entidades envolvidas.

Exemplo:

 Um cliente faz um pedido: há um relacionamento entre a entidade Cliente e a entidade Pedido.

2.2 Cardinalidade dos Relacionamentos

A **cardinalidade** de um relacionamento descreve **quantas instâncias** de uma entidade podem estar associadas a instâncias de outra entidade. As cardinalidades mais comuns são:

- 1. **1:1 (Um para Um)**: Uma instância de uma entidade está associada a, no máximo, uma instância de outra entidade. e vice-versa.
 - Exemplo: Um cliente tem um único cartão de fidelidade, e cada cartão de fidelidade pertence a um único cliente.
- 2. **1:N (Um para Muitos)**: Uma instância de uma entidade está associada a várias instâncias de outra entidade.
 - Exemplo: Um cliente pode fazer vários pedidos, mas cada pedido pertence a apenas um cliente.
- 3. **N:N (Muitos para Muitos)**: Múltiplas instâncias de uma entidade podem estar associadas a múltiplas instâncias de outra entidade.
 - Exemplo: Um aluno pode se matricular em vários cursos, e cada curso pode ter vários alunos.

2.3 Grau de Relacionamentos

O **grau de um relacionamento** define o número de entidades envolvidas em um relacionamento. Os mais comuns são:

- Relacionamento Binário: Envolve duas entidades. Exemplo: Um cliente faz um pedido.
- Relacionamento Ternário: Envolve três entidades. Exemplo: Um cliente compra um produto de um fornecedor.

2.4 Atributos de Relacionamento

Assim como as entidades, os relacionamentos também podem ter atributos. Esses atributos descrevem propriedades do relacionamento em si.

Exemplo:

• Um relacionamento **pedido** entre **Cliente** e **Produto** pode ter o atributo data_pedido, que descreve a data em que o pedido foi feito.

3. Diagramas de Entidade-Relacionamento (DER)

3.1 Representação Gráfica

Um **Diagrama de Entidade-Relacionamento (DER)** é a representação gráfica do modelo de entidade-relacionamento. Ele é composto por entidades, atributos e relacionamentos, todos representados de maneira visual. O DER é uma das ferramentas mais importantes para o **projeto lógico** de um banco de dados.

Elementos do DER:

- Entidades: Representadas por retângulos.
- Atributos: Representados por elipses conectadas às entidades.
- Relacionamentos: Representados por losangos que conectam as entidades envolvidas.
- **Cardinalidades**: Indicadas nos diagramas como "1" ou "N" nas extremidades dos relacionamentos para indicar as associações entre as entidades.

3.2 Exemplo de Diagrama ER

Imagine um cenário de uma loja, com as seguintes entidades:

- Cliente: id_cliente, nome_cliente, email_cliente.
- **Produto**: id_produto, nome_produto, preco_produto.
- Pedido: id_pedido, data_pedido.

Relacionamentos:

- Um cliente pode fazer vários pedidos (relação 1).
- Um **pedido** pode conter vários **produtos**, e um **produto** pode ser incluído em vários **pedidos** (relação N).

3.3 Notações:

Existem algumas formas de criar um DER. Dois modelos muito conhecidos são:

Notação Peter Chen

Consiste em uma notação que utiliza entidades (retângulos),
relacionamentos (losangos), atributos (elipses) e linhas de conexão (linhas)
que indicam a cardinalidade de uma entidade em um relacionamento.

Notação James Martin

 Sua notação consiste na utilização de entidades (caixas), com seus atributos representados diretamente dentro da Entidade, e os relacionamentos são feitos através de linhas que representam a cardinalidade.

4. Regras e Considerações para a Modelagem ER

4.1 Normalização e Otimização do Modelo ER

Ao criar um diagrama de entidade-relacionamento, é importante seguir algumas **boas práticas** de normalização para evitar a redundância e garantir a integridade dos dados:

- Remover redundâncias: Garantir que os dados não sejam duplicados em várias entidades.
- **Dividir atributos compostos**: Sempre que possível, dividir atributos compostos em atributos simples (por exemplo, dividir endereco_cliente em rua, cidade, CEP).

4.2 Uso Correto de Chaves Primárias e Estrangeiras

Ao projetar o modelo ER, é importante identificar corretamente as **chaves primárias** e as **chaves estrangeiras** para garantir a integridade referencial do banco de dados.

Chaves Primárias:

- Devem ser únicas para identificar cada registro de forma individual.
- Não podem ser nulas.

Chaves Estrangeiras:

• Utilizadas para **relacionar** duas ou mais tabelas, garantindo que os dados permaneçam consistentes entre as tabelas relacionadas.

4.3 Implementação no Banco de Dados Relacional

Depois de projetado o modelo ER, ele é transformado em um **esquema físico de banco de dados relacional**, onde cada entidade se torna uma **tabela** e cada relacionamento é implementado através de **chaves estrangeiras** ou tabelas intermediárias (no caso de relacionamentos N:N).

Conclusão

O **Modelo de Entidade-Relacionamento (MER)** é uma ferramenta essencial para modelar dados de maneira lógica e organizada. Ele ajuda a visualizar a estrutura de um banco de dados e a entender como as informações estão conectadas. Dominar o MER é um passo fundamental para criar sistemas robustos e escaláveis, além de garantir a consistência e a integridade dos dados