Data sparse nonparametric regression with ϵ -insensitive losses: supplementary material

Maxime Sangnier

MAXIME.SANGNIER@UPMC.FR

Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France

Olivier Fercoq

 ${\tt OLIVIER.FERCOQ@TELECOM\text{-}PARISTECH.FR}$

Université Paris-Saclay, Télécom ParisTech, LTCI, Paris, France

Florence d'Alché-Buc

FLORENCE.DALCHE@TELECOM-PARISTECH.FR

Université Paris-Saclay, Télécom ParisTech, LTCI, Paris, France

Editors: Yung-Kyun Noh and Min-Ling Zhang

Appendix A. Remarks

Remark 1 It is easy to see that, for a unidimensional loss ℓ , ℓ_{ϵ} is obtained in the following manner:

$$\begin{aligned} \forall \xi \in \mathbb{R} \colon \quad \ell_{\epsilon}(\xi) &= \ell \left(\xi - \min(|\xi|, \epsilon) \operatorname{sign}(\xi) \right) \\ &= \begin{cases} 0 & \text{if } |\xi| \leq \epsilon \\ \ell \left(\xi \left(1 - \frac{\epsilon}{|\xi|} \right) \right) & \text{otherwise.} \end{cases} \end{aligned}$$

Consequently, when a multivariate loss ℓ is separable, that is $\ell(\xi) = \sum_{j=1}^{p} \ell^{(j)}(\xi_j)$ (for some unidimensional losses $\ell^{(j)}$), it is tempting to consider each component separately and to define $\ell_{\epsilon} = \sum_{j=1}^{p} \ell_{\epsilon}^{(j)}$. Basically, this boils down to replacing $\|\cdot\|_{\ell_2}$ by $\|\cdot\|_{\infty}$ in the general ϵ -loss introduced in this paper.

However, this is not a good idea since this definition would result in adding an ℓ_1 -norm $\sum_{i=1}^{n} \|\boldsymbol{\alpha}_i\|_{\ell_1}$ instead of an ℓ_1/ℓ_2 -norm in the dual. As a consequence, we would obtain sparse vectors $\boldsymbol{\alpha}_i$, which is not the data sparsity we pursue since $\boldsymbol{\alpha}_i$ could have null components but could be different from 0, forcing us to keep the points \mathbf{x}_i for prediction.

Remark 2 In the body of the text, omitting the intercept **b** in Problem (P2) comes down to removing the linear constraint in Problem (P3). This practice is common for support vector regression (SVR) with a Gaussian kernel, but is excluded for quantile regression (QR) (Takeuchi et al., 2006; Sangnier et al., 2016).

Example 1 Examples of scalar and matrix kernels are:

$$k(\mathbf{x}, \mathbf{x}') = (1 + \langle \mathbf{x}, \mathbf{x}' \rangle_{\ell_2})^d$$
 (polynomial),

where d > 0 is the degree (Mohri et al., 2012), and

$$K(\mathbf{x}, \mathbf{x}') = \left[\left(1 + \left\langle T_i(\mathbf{x}), T_j(\mathbf{x}') \right\rangle_{\ell_2} \right)^d \right]_{1 \le i, j \le p}$$
 (transformable),

where $T_i: \mathbb{R}^p \to \mathbb{R}^p$ are any transformations (Alvarez et al., 2012).

Remark 3 As it is standard for coordinate descent methods, our implementation uses efficient updates for the computation of both $\sum_{j=1}^{n} K(\mathbf{x}_i, \mathbf{x}_j) \alpha_j$ and $\overline{\theta}^l$. In addition, convergence of Algorithm 1 can be assessed by duality gap (objective of (P2) minus objective of (P3) in the body of the text). Yet, even though we do not have closed-form expressions for the primal loss ℓ_{ϵ} , the duality gap can be over-estimated by upper-bounding ℓ_{ϵ} in the following manner:

$$orall oldsymbol{\xi} \in \mathbb{R}^p \colon \quad \ell_{\epsilon}(oldsymbol{\xi}) \leq \ell \left(oldsymbol{\xi} \left(1 - rac{\min(\epsilon, \|oldsymbol{\xi}\|_{\ell_2})}{\|oldsymbol{\xi}\|_{\ell_2}}
ight)
ight).$$

This is true since $\left\|\frac{\min(\epsilon, \|\xi\|_{\ell_2})}{\|\xi\|_{\ell_2}} \xi \right\|_{\ell_2} \le \epsilon$.

Remark 4 Contrarily to QR, expectile regression involves a differentiable mapping ℓ^* . Consequently, it can be easily incorporated to the quadratic contribution of (P7) (see body of the text). Nevertheless, it can also be considered jointly with $\|\cdot\|_{\ell_2}$, in the same manner as for QR. In this case, the differentiable part remains the same for expectile and quantile regression, only the non-differentiable part changes. The proximal operator needed is given in the following proposition.

Proposition 5 Let $\psi : \boldsymbol{y} \in \mathbb{R}^p \mapsto \frac{1}{2} \sum_{i=1}^p \left| \tau_j - I_{y_j < 0} \right|^{-1} y_j^2$. Then

$$\forall \boldsymbol{y} \in \mathbb{R}^p, \forall j \in [p]$$

$$\left[\operatorname{prox}_{\lambda\left(\|\cdot\|_{\ell_{2}}+\psi\right)}(\boldsymbol{y})\right]_{j} = \left(1 + \frac{\lambda}{\mu} + \lambda \left|\tau_{j} - I_{y_{j} < 0}\right|^{-1}\right)^{-1} y_{j},$$

if $\|\boldsymbol{y}\|_{\ell_2} > \lambda$, where $\mu > 0$ is solution to:

$$\sum_{j=1}^{p} \frac{y_j^2}{\left(\mu \left(1 + \lambda \left| \tau_j - I_{y_j < 0} \right|^{-1} \right) + \lambda\right)^2} = 1,$$
(1)

(such a solution exists) and $\operatorname{prox}_{\lambda\left(\|\cdot\|_{\ell_2} + \psi\right)}(\boldsymbol{y}) = 0$ if $\|\boldsymbol{y}\|_{\ell_2} \leq \lambda$,.

Similarly to Equation 1 in the body of the text, the scaling factor μ in Proposition 5 can be easily obtained by a bisection of a Newton-Raphson method.

Appendix B. Technical details

B.1. Convexity and redefinition of ℓ_{ϵ}

For the sake of simplicity, let us first define:

$$\forall \boldsymbol{\xi} \in \mathbb{R}^p \colon \quad \tilde{\ell}_{\epsilon}(\boldsymbol{\xi}) = \inf_{\boldsymbol{u} \in \mathbb{R}^p \colon ||\boldsymbol{u}||_{\ell_0} \le \epsilon} \ell(\boldsymbol{\xi} - \boldsymbol{u}). \tag{2}$$

Since ℓ is convex, $(\boldsymbol{\xi}, \boldsymbol{u}) \mapsto \ell(\boldsymbol{\xi} - \boldsymbol{u}) + \chi_{\|\boldsymbol{u}\|_{\ell_2} \leq \epsilon}$ is jointly convex with respect to $\boldsymbol{\xi}$ and \boldsymbol{u} . Therefore, $\tilde{\ell}_{\epsilon}$ is convex as the coordinate infimum of a jointly convex function (Boyd and Vandenberghe, 2004).

Let us now show that $\ell_{\epsilon} = \ell_{\epsilon}$. First, since for any ξ , Slater's constraint qualification are satisfied for (2), strong duality holds, that is,

$$orall oldsymbol{\xi} \in \mathbb{R}^p, \exists \lambda \geq 0: \quad ilde{\ell}_{\epsilon}(oldsymbol{\xi}) = \inf_{oldsymbol{u} \in \mathbb{R}^p} \ell(oldsymbol{\xi} - oldsymbol{u}) + \lambda \left\| oldsymbol{u}
ight\|_{\ell_2} - \lambda \epsilon,$$

and thanks to the lower semi-continuity of the objective, the infimum is attained at, let us say, $\hat{\boldsymbol{u}}$. Then, when $\|\boldsymbol{\xi}\|_{\ell_2} \leq \epsilon$, we can chose $\hat{\boldsymbol{u}} = \boldsymbol{\xi}$ and we get $\tilde{\ell}_{\epsilon}(\boldsymbol{\xi}) = 0$, which is the infimum of ℓ . On the other hand, when $\|\boldsymbol{\xi}\|_{\ell_2} > \epsilon$, let us consider the Karush-Kuhn-Tucker (KKT) conditions. By complementary slackness, either $\lambda = 0$ and $\|\hat{\boldsymbol{u}}\|_{\ell_2} \leq \epsilon$, or $\|\hat{\boldsymbol{u}}\|_{\ell_2} = \epsilon$. In the first situation $(\lambda = 0 \text{ and } \|\hat{\boldsymbol{u}}\|_{\ell_2} \leq \epsilon)$, $\tilde{\ell}_{\epsilon}(\boldsymbol{\xi}) = \inf_{\boldsymbol{u} \in \mathbb{R}^p} \ell(\boldsymbol{\xi} - \boldsymbol{u}) = \ell(\boldsymbol{\xi} - \hat{\boldsymbol{u}}) = \ell(0) = 0$ and $\hat{\boldsymbol{u}} = \boldsymbol{\xi}$ (by uniqueness of the minimizer of ℓ). Thus, $\|\boldsymbol{\xi}\|_{\ell_2} \leq \epsilon$, which is contradictory. Consequently, we have necessarily, $\|\hat{\boldsymbol{u}}\|_{\ell_2} = \epsilon$. To summarize:

$$\forall \boldsymbol{\xi} \in \mathbb{R}^{p} \colon \quad \tilde{\ell}_{\epsilon}(\boldsymbol{\xi}) = \left\{ \begin{array}{ll} 0 & \text{if } \|\boldsymbol{\xi}\|_{\ell_{2}} \leq \epsilon \\ \inf & u \in \mathbb{R}^{p} \colon \|u\|_{\ell_{2}} = \epsilon \end{array} \right. \ell\left(\boldsymbol{\xi} - \boldsymbol{u}\right) & \text{otherwise,}$$

which is exactly the definition of ℓ_{ϵ} .

B.2. Dual and representer theorem

Since ℓ_{ϵ} is convex and can be replaced by (2), Problem (P2) from the body of the text can be reformulated in (Lagrange multipliers are indicated on the right):

$$\underset{\substack{h \in \mathcal{H}, \mathbf{b} \in \mathbb{R}^{p}, \\ \forall i \in [n], \, \boldsymbol{\xi}_{i} \in \mathbb{R}^{p}, \, \boldsymbol{r}_{i} \in \mathbb{R}^{p}}}}{\underset{\substack{h \in \mathcal{H}, \, \boldsymbol{\xi} \in \mathbb{R}^{p}, \, \boldsymbol{r}_{i} \in \mathbb{R}^{p}}}}{\frac{\lambda}{2} \|h\|_{\mathcal{H}}^{2} + \frac{1}{n} \sum_{i=1}^{n} \ell \left(\boldsymbol{\xi}_{i}\right)}$$
s. t.
$$\begin{cases}
\frac{\boldsymbol{y}_{i} = (h(\mathbf{x}_{i}) + \boldsymbol{b})}{n} = \frac{\boldsymbol{r}_{i} + \boldsymbol{\xi}_{i}}{n} : \boldsymbol{\alpha}_{i} \in \mathbb{R}^{p} \\
\frac{\|\boldsymbol{r}_{i}\|_{\ell_{2}}^{2}}{2\epsilon n} \leq \frac{\epsilon}{2n} : \mu_{i} \in \mathbb{R}_{+}.
\end{cases}$$
(P1)

Let us compute a dual to Problem (P1). The Lagrangian reads:

$$\begin{split} & \mathcal{L}(h, \boldsymbol{b}, (\boldsymbol{\xi}_i)_{1 \leq i \leq n}, (\boldsymbol{r}_i)_{1 \leq i \leq n}, (\boldsymbol{\alpha}_i)_{1 \leq i \leq n}, (\mu_i)_{1 \leq i \leq n}) \\ & = \frac{\lambda}{2} \left\| h \right\|_{\mathcal{H}}^2 + \frac{1}{n} \sum_{i=1}^n \ell\left(\boldsymbol{\xi}_i\right) + \frac{1}{n} \sum_{i=1}^n \left\langle \boldsymbol{\alpha}_i, \boldsymbol{y}_i - (h(\mathbf{x}_i) + \boldsymbol{b}) - \boldsymbol{r}_i - \boldsymbol{\xi}_i \right\rangle_{\ell_2} \\ & + \frac{1}{2\epsilon n} \sum_{i=1}^n \mu_i \left\| \boldsymbol{r}_i \right\|_{\ell_2}^2 - \frac{\epsilon}{2n} \sum_{i=1}^n \mu_i \\ & = \frac{1}{n} \sum_{i=1}^n \left(\ell\left(\boldsymbol{\xi}_i\right) - \left\langle \boldsymbol{\alpha}_i, \boldsymbol{\xi}_i \right\rangle_{\ell_2} \right) + \frac{\lambda}{2} \left\| h \right\|_{\mathcal{H}}^2 - \left\langle \frac{1}{n} \sum_{i=1}^n E_{\mathbf{x}_i}^* \boldsymbol{\alpha}_i, h \right\rangle_{\mathcal{H}} \\ & - \left\langle \frac{1}{n} \sum_{i=1}^n \boldsymbol{\alpha}_i, \boldsymbol{b} \right\rangle_{\ell_2} + \frac{1}{n} \sum_{i=1}^n \left(\frac{\mu_i}{2\epsilon} \left\| \boldsymbol{r}_i \right\|_{\ell_2}^2 - \left\langle \boldsymbol{\alpha}_i, \boldsymbol{r}_i \right\rangle_{\ell_2} \right) + \frac{1}{n} \sum_{i=1}^n \left\langle \boldsymbol{\alpha}_i, \boldsymbol{y}_i \right\rangle_{\ell_2} \\ & - \frac{\epsilon}{2n} \sum_{i=1}^n \mu_i. \end{split}$$

The objective function of the dual problem to (P1) is obtained by minimizing the Lagrangian with respect to the primal variables h, b, $(\xi_i)_{1 \leq i \leq n}$ and $(r_i)_{1 \leq i \leq n}$. For this purpose, let us remark that minimizing on ξ_i boils down to introducing the Fenchel-Legendre transform of ℓ : ℓ^* : $\alpha \in \mathbb{R}^p \mapsto \sup_{\xi \in \mathbb{R}^p} \langle \alpha, \xi \rangle_{\ell_2} - \ell(\xi)$. Thus, it remains to compute:

$$\mathcal{L}_{D}\left((\boldsymbol{\alpha}_{i})_{1\leq i\leq n}, (\mu_{i})_{1\leq i\leq n}\right) \\
= \inf_{\substack{h\in\mathcal{H}, \, \mathbf{b}\in\mathbb{R}^{p}, \\ \forall i\in[n], \, \mathbf{r}_{i}\in\mathbb{R}^{p}}} \left\{-\frac{1}{n}\sum_{i=1}^{n}\ell^{\star}(\boldsymbol{\alpha}_{i}) + \frac{\lambda}{2}\|h\|_{\mathcal{H}}^{2} - \left\langle\frac{1}{n}\sum_{i=1}^{n}E_{\mathbf{x}_{i}}^{\star}\boldsymbol{\alpha}_{i}, h\right\rangle_{\mathcal{H}} \\
-\left\langle\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{\alpha}_{i}, \mathbf{b}\right\rangle_{\ell_{2}} + \frac{1}{n}\sum_{i=1}^{n}\left(\frac{\mu_{i}}{2\epsilon}\|\mathbf{r}_{i}\|_{\ell_{2}}^{2} - \langle\boldsymbol{\alpha}_{i}, \mathbf{r}_{i}\rangle_{\ell_{2}}\right) + \frac{1}{n}\sum_{i=1}^{n}\langle\boldsymbol{\alpha}_{i}, \mathbf{y}_{i}\rangle_{\ell_{2}} \\
-\frac{\epsilon}{2n}\sum_{i=1}^{n}\mu_{i}\right\}.$$

Since \mathcal{H} is unbounded in all directions, the minimum of \mathfrak{L} with respect to h, b and $(r_i)_{i=1}^n$ is obtained by setting the gradients to 0, which leads to $h = \frac{1}{\lambda n} \sum_{i=1}^n E_{\mathbf{x}_i}^* \boldsymbol{\alpha}_i$, $\sum_{i=1}^n \boldsymbol{\alpha}_i = 0$ and $r_i = \frac{\epsilon}{\mu_i} \boldsymbol{\alpha}_i$, $\forall i \in [n]$. Thus, the dual objective reads:

$$\begin{split} & \mathfrak{L}_{D}\left((\boldsymbol{\alpha}_{i})_{1 \leq i \leq n}, (\mu_{i})_{1 \leq i \leq n}\right) \\ & = -\frac{1}{n} \sum_{i=1}^{n} \ell^{\star}(\boldsymbol{\alpha}_{i}) - \frac{1}{2\lambda n^{2}} \sum_{i,j=1}^{n} \left\langle \boldsymbol{\alpha}_{i}, E_{\mathbf{x}_{i}} E_{\mathbf{x}_{j}}^{*} \boldsymbol{\alpha}_{j} \right\rangle_{\ell_{2}} + \frac{1}{n} \sum_{i=1}^{n} \left\langle \boldsymbol{\alpha}_{i}, \boldsymbol{y}_{i} \right\rangle_{\ell_{2}} \\ & - \frac{\epsilon}{2n} \sum_{i=1}^{n} \left(\frac{1}{\mu_{i}} \left\| \boldsymbol{\alpha}_{i} \right\|_{\ell_{2}}^{2} + \mu_{i} \right). \end{split}$$

Then, the dual optimization problem consists in maximizing \mathfrak{L}_D subject to the constraints $\sum_{i=1}^n \alpha_i = 0$ and $\mu_i \geq 0$, $\forall i \in [n]$. Remarking that $\inf_{\forall i \in [n], \, \mu_i \in \mathbb{R}_+} \frac{1}{2} \sum_{i=1}^n \left(\frac{1}{\mu_i} \|\alpha_i\|_{\ell_2}^2 + \mu_i \right) =$

 $\sum_{i=1}^{n} \|\boldsymbol{\alpha}_i\|_{\ell_2}$ (Bach et al., 2012), a dual to Problem (P1) is:

$$\underset{\forall i \in [n], \boldsymbol{\alpha}_{i} \in \mathbb{R}^{p}}{\text{minimize}} \frac{1}{n} \sum_{i=1}^{n} \ell^{\star}(\boldsymbol{\alpha}_{i}) + \frac{1}{2\lambda n^{2}} \sum_{i,j=1}^{n} \left\langle \boldsymbol{\alpha}_{i}, E_{\mathbf{x}_{i}} E_{\mathbf{x}_{j}}^{\star} \boldsymbol{\alpha}_{j} \right\rangle_{\ell_{2}} \\
- \frac{1}{n} \sum_{i=1}^{n} \left\langle \boldsymbol{\alpha}_{i}, \boldsymbol{y}_{i} \right\rangle_{\ell_{2}} + \frac{\epsilon}{n} \sum_{i=1}^{n} \|\boldsymbol{\alpha}_{i}\|_{\ell_{2}} \\
\text{s. t.} \qquad \sum_{i=1}^{n} \boldsymbol{\alpha}_{i} = 0.$$
(P2)

B.3. Generalization

Let $P: f \in \mathcal{F} \mapsto \mathbb{E}\left[\ell\left(Y - f(X)\right)\right]$ and $P_n: f \in \mathcal{F} \mapsto \frac{1}{n}\sum_{i=1}^n \ell_{\epsilon}\left(Y - f(X)\right)$, as well as respective twins P_{ϵ} and $P_{n,\epsilon}$ obtained by substituting ℓ_{ϵ} to ℓ . Let us decompose $P\hat{f}_{\epsilon} - Pf^{\dagger}$:

$$P\hat{f}_{\epsilon} - Pf^{\dagger} = \left(P\hat{f}_{\epsilon} - P_n\hat{f}_{\epsilon}\right) + \left(P_n\hat{f}_{\epsilon} - P_nf^{\dagger}\right) + \left(P_nf^{\dagger} - Pf^{\dagger}\right).$$

First, by concentration inequalities (Bartlett and Mendelson, 2002; Maurer, 2016; Sangnier et al., 2016), we have, with probability greater that $1 - \delta$:

$$P\hat{f}_{\epsilon} - P_n\hat{f}_{\epsilon} \le \sup_{f \in \mathcal{F}} (Pf - P_nf) \le 2\sqrt{2}L\mathcal{R}_n(\mathcal{F}) + LM\sqrt{\frac{\log(1/\delta)}{2n}}.$$

Second, let us decompose $P_n \hat{f}_{\epsilon} - P_n f^{\dagger}$:

$$P_n \hat{f}_{\epsilon} - P_n f^{\dagger} = \left(P_n \hat{f}_{\epsilon} - P_{n,\epsilon} \hat{f}_{\epsilon} \right) + \left(P_{n,\epsilon} \hat{f}_{\epsilon} - P_{n,\epsilon} f^{\dagger} \right) + \left(P_{n,\epsilon} f^{\dagger} - P_n f^{\dagger} \right)$$

By Lipschitz continuity, we have:

$$\forall \boldsymbol{\xi}, \boldsymbol{u} \in \mathbb{R}^p, \|\boldsymbol{u}\|_{\ell_2} \le \epsilon \colon \ell(\boldsymbol{\xi}) - \ell(\boldsymbol{\xi} - \boldsymbol{u}) \le L \|\boldsymbol{\xi} - (\boldsymbol{\xi} - \boldsymbol{u})\|_{\ell_2} \le L\epsilon.$$

Consequently, $\ell(\boldsymbol{\xi}) - \ell_{\epsilon}(\boldsymbol{\xi}) \leq L\epsilon$ and $P_n\hat{f}_{\epsilon} - P_{n,\epsilon}\hat{f}_{\epsilon} \leq L\epsilon$. In addition $P_{n,\epsilon}\hat{f}_{\epsilon} - P_{n,\epsilon}f^{\dagger} \leq 0$ since \hat{f}_{ϵ} is a minimizer of $P_{n,\epsilon}$ over \mathcal{F} , and $f^{\dagger} \in \mathcal{F}$. Finally, $P_{n,\epsilon}f^{\dagger} - P_nf^{\dagger} \leq 0$ since ℓ upper bounds ℓ_{ϵ} . To summarize the second point, $P_n\hat{f}_{\epsilon} - P_nf^{\dagger} \leq L\epsilon$.

Third and last, by Hoeffding's inequality (Boucheron et al., 2013), with probability at least $1-\delta$:

$$P_n f^{\dagger} - P f^{\dagger} \le LM \sqrt{\frac{\log(1/\delta)}{2n}}.$$

Gathering these three points with a union bound concludes the proof.

B.4. Algorithms

Proof (Lemma 3, body of the text) Let $\phi \colon \mu \in [0,1] \mapsto \left(1 + \frac{\lambda}{\|[\mu y]_{-a}^b\|_{\ell_2}}\right) \mu$. First, $\phi(1) = 1 + \frac{\lambda}{\|[y]_{-a}^b\|_{\ell_2}} \ge 1$. Second, for $\mu \ge 0$ sufficiently close to 0, $[\mu y]_{-a}^b = \mu y$ (since entries of a and b are positive). Therefore $\phi(0) = \lim_{\mu \downarrow 0} \left(\mu + \frac{\lambda \mu}{\mu \|y\|_{\ell_2}}\right) = \frac{\lambda}{\|y\|_{\ell_2}} \le 1$. Finally, since ϕ is a continuous mapping on [0,1] and $1 \in [\phi(0), \phi(1)]$, then the equation $\phi(\mu) = 1$ has a solution in [0,1].

Proof (Proposition 4, body of the text) The proof is in two part. First, we write optimality conditions for the proximal operator of interest, then we show that $[\mu y]_{-a}^{b}$ satisfies these optimality conditions when μ is appropriately defined. From now on, let $y \in \mathbb{R}^{p}$.

Optimality conditions Let $\mathbf{x}^* = \operatorname{prox}_{\lambda \| \cdot \|_{\ell_2} + \chi_{-\boldsymbol{a} \preccurlyeq \cdot \preccurlyeq \boldsymbol{b}}}(\boldsymbol{y}) = \operatorname{arg\,min}_{-\boldsymbol{a} \preccurlyeq \mathbf{x} \preccurlyeq \boldsymbol{b}} \lambda \| \mathbf{x} \|_{\ell_2} + \frac{1}{2} \| \boldsymbol{y} - \mathbf{x} \|_{\ell_2}^2$

1. Assume that $\mathbf{x}^* \neq 0$. Then, $\lambda \|\cdot\|_{\ell_2} + \frac{1}{2} \|\boldsymbol{y} - \cdot\|_{\ell_2}^2$ is differentiable at \mathbf{x}^* and for each coordinate $j \in [p]$, either:

(a)
$$-a_j < x_j^* < b_j \text{ and } \left(1 + \frac{\lambda}{\|\mathbf{x}^*\|_{\ell_2}}\right) x_j^* = y_j;$$

(b) or
$$x_j^* = b_j$$
 and $\left(1 + \frac{\lambda}{\|\mathbf{x}^*\|_{\ell_2}}\right) x_j^* \le y_j$;

(c) or
$$x_j^* = -a_j$$
 and $\left(1 + \frac{\lambda}{\|\mathbf{x}^*\|_{\ell_2}}\right) x_j^* \ge y_j$.

Gathering Conditions 1a-1c gives $\|\mathbf{x}^{\star}\|_{\ell_2} + \lambda \leq \|\mathbf{y}\|_{\ell_2}$. Since $\mathbf{x}^{\star} \neq 0$, we get $\lambda < \|\mathbf{y}\|_{\ell_2}$. Conversely, if $\|\mathbf{y}\|_{\ell_2} \leq \lambda$, then $\mathbf{x}^{\star} = 0$.

2. If $\mathbf{x}^{\star} = 0$, then $\forall \delta > 0$ such that $-\mathbf{a} \leq \delta \mathbf{y} \leq \mathbf{b}$, $\lambda \|\delta \mathbf{y}\|_{\ell_2} + \frac{1}{2} \|\mathbf{y} - \delta \mathbf{y}\|_{\ell_2}^2 \geq \frac{1}{2} \|\mathbf{y}\|_{\ell_2}^2$, that is $\lambda \|\mathbf{y}\|_{\ell_2} \geq (1 - \frac{\delta}{2}) \|\mathbf{y}\|_{\ell_2}^2$. Thus, by continuity when $\delta \downarrow 0$, we have $\lambda \geq \|\mathbf{y}\|_{\ell_2}$. To sum up, $\mathbf{x}^{\star} = 0$ if and only if $\|\mathbf{y}\|_{\ell_2} \leq \lambda$.

Proximal solution Let $\mathbf{x} = [\mu \boldsymbol{y}]_{-\boldsymbol{a}}^{\boldsymbol{b}}$, where μ is defined in Proposition 4 from the body of the text. Assume that $\|\boldsymbol{y}\|_{\ell_2} \leq \lambda$, then $\mu = 0$ and $\mathbf{x} = 0$ satisfies the optimality conditions. On the other hand, if $\|\boldsymbol{y}\|_{\ell_2} > \lambda$, then $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right)\mu = 1$. As a result, either:

1. $-a_j < x_j < b_j$, so necessarily $x_j = \mu y_j$ (otherwise it would be clipped to b_j or $-a_j$). Therefore $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) x_j = \left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) (\mu y_j) = y_j$;

2. or
$$x_j = b_j$$
, meaning that $\mu y_j \ge b_j$. So $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) (\mu y_j) \ge \left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) b_j$, that is $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) x_j \le y_j$;

3. or
$$x_j = -a_j$$
, meaning that $\mu y_j \leq -a_j$. So $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) (\mu y_j) \leq \left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) (-a_j)$, that is $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) x_j \geq y_j$.

Thus, when $\|y\|_{\ell_2} > \lambda$, **x** satisfies the optimality conditions. This concludes the proof.

Corollary 6 Let two n-tuples $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ and $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of vectors from \mathbb{R}^p with positive entries. For any n-tuple $\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$ of vectors from \mathbb{R}^p , let:

$$(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \operatorname{prox}_{\lambda \|\cdot\|_{\ell_1/\ell_2} + \chi_{-\mathbf{A} \preccurlyeq \cdot \preccurlyeq \mathbf{B}}}(\mathbf{Y}),$$

where $\|\mathbf{Y}\|_{\ell_1/\ell_2} = \sum_{i=1}^n \|\mathbf{y}_i\|_{\ell_2}$. Then, $\forall i \in [n]$:

$$\mathbf{x}_i = \operatorname{prox}_{\lambda \| \cdot \|_{\ell_2} + \chi_{-\boldsymbol{a}_i \preccurlyeq \cdot \preccurlyeq \boldsymbol{b}_i}}(\boldsymbol{y}_i).$$

Proof This is a direct consequence of the separability of $\lambda \|\cdot\|_{\ell_1/\ell_2} + \chi_{-\mathbf{A} \preccurlyeq \cdot \preccurlyeq \mathbf{B}}$.

Proof (Proposition 5) The proof is similar to the one for Proposition 4 (see body of the text). Let $y \in \mathbb{R}^p$.

Optimality conditions Let $\mathbf{x}^* = \operatorname{prox}_{\lambda\left(\|\cdot\|_{\ell_2} + \psi\right)}(\mathbf{y}) = \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^p} \lambda \|\mathbf{x}\|_{\ell_2} + \lambda \psi(\mathbf{x}) + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_{\ell_2}^2$.

1. Assume that $\mathbf{x}^* \neq 0$. Then, $\lambda \|\cdot\|_{\ell_2} + \lambda \psi + \frac{1}{2} \|\mathbf{y} - \cdot\|_{\ell_2}^2$ is differentiable at \mathbf{x}^* and for each coordinate $j \in [p]$:

$$y_j = \left(\frac{\lambda}{\|\mathbf{x}^{\star}\|_{\ell_2}} + \lambda \left| \tau_j - \mathbf{I}_{x_j^{\star} < 0} \right|^{-1} + 1 \right) x_j^{\star}.$$

It appears that x_j^* and y_j have same sign. Therefore, $I_{x_j^*<0}=I_{y_j<0}$ and

$$x_j^{\star} = \left(\frac{\lambda}{\|\mathbf{x}^{\star}\|_{\ell_2}} + \lambda \left|\tau_j - \mathbf{I}_{y_j < 0}\right|^{-1} + 1\right)^{-1} y_j.$$

Now, the previous relation implies:

$$\|\mathbf{x}^{\star}\|_{\ell_{2}}^{2} = \sum_{j=1}^{p} \frac{y_{j}^{2}}{\left(\frac{\lambda}{\|\mathbf{x}^{\star}\|_{\ell_{2}}} + \lambda \left|\tau_{j} - \mathbf{I}_{y_{j} < 0}\right|^{-1} + 1\right)^{2}}.$$

Since $\mathbf{x}^* \neq 0$, we get:

$$1 = \sum_{j=1}^{p} \frac{y_j^2}{\left(\lambda + \|\mathbf{x}^*\|_{\ell_2} \left(\lambda \left| \tau_j - \mathbf{I}_{y_j < 0} \right|^{-1} + 1\right)\right)^2}.$$

But $\|\mathbf{x}^{\star}\|_{\ell_2} > 0$, so:

$$1 = \sum_{j=1}^{p} \frac{y_j^2}{\left(\lambda + \|\mathbf{x}^*\|_{\ell_2} \left(\lambda \left|\tau_j - \mathbf{I}_{y_j < 0}\right|^{-1} + 1\right)\right)^2} < \sum_{j=1}^{p} \frac{y_j^2}{\lambda^2},$$

that is $\lambda < \|\boldsymbol{y}\|_{\ell_2}$. Conversely, if $\|\boldsymbol{y}\|_{\ell_2} \le \lambda$, then $\mathbf{x}^* = 0$.

2. If $\mathbf{x}^{\star} = 0$, then $\forall \delta > 0$, $\lambda \|\delta \boldsymbol{y}\|_{\ell_2} + \lambda \psi(\delta \boldsymbol{y}) + \frac{1}{2} \|\boldsymbol{y} - \delta \boldsymbol{y}\|_{\ell_2}^2 \ge \frac{1}{2} \|\boldsymbol{y}\|_{\ell_2}^2$, that is $\lambda (\|\boldsymbol{y}\|_{\ell_2} + \delta \psi(\boldsymbol{y})) \ge (1 - \frac{\delta}{2}) \|\boldsymbol{y}\|_{\ell_2}^2$. Thus, by continuity when $\delta \downarrow 0$, we have $\lambda \ge \|\boldsymbol{y}\|_{\ell_2}$. To sum up, $\mathbf{x}^{\star} = 0$ if and only if $\|\boldsymbol{y}\|_{\ell_2} \le \lambda$.

Proximal solution If $\|\boldsymbol{y}\|_{\ell_2} \leq \lambda$, then $\mathbf{x} = 0$ is satisfies trivially the optimality conditions.

On the other hand, if
$$\|\boldsymbol{y}\|_{\ell_2} > \lambda$$
, then $\sum_{j=1}^{p} \frac{y_j^2}{\lambda^2} > 1$ and $\lim_{\mu \to +\infty} \sum_{j=1}^{p} \frac{y_j^2}{\left(\mu\left(1+\lambda\left|\tau_j - \mathbf{I}_{y_j < 0}\right|^{-1}\right) + \lambda\right)^2} = 1$

0. Thus, by continuity, Equation 1 has a solution $\mu > 0$. Let μ be such a solution and let $\mathbf{x} \in \mathbb{R}^p$ such that for each coordinate $j \in [p]$,

$$x_j = \left(1 + \frac{\lambda}{\mu} + \lambda \left| \tau_j - I_{y_j < 0} \right|^{-1} \right)^{-1} y_j.$$

Then:

$$\frac{\|\mathbf{x}\|_{\ell_2}^2}{\mu^2} = \sum_{j=1}^p \frac{y_j^2}{\mu^2 \left(1 + \frac{\lambda}{\mu} + \lambda \left| \tau_j - \mathbf{I}_{y_j < 0} \right|^{-1} \right)^2} = 1.$$

Consequently

$$x_{j} = \left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_{2}}} + \lambda |\tau_{j} - I_{y_{j} < 0}|^{-1}\right)^{-1} y_{j}.$$

and x satisfies the optimality conditions. This concludes the proof.

Appendix C. Numerical experiments

Table 1 reports the average empirical loss (scaled by 100) along with the standard deviations. It completes Talbe 2 from the body of the text. For each dataset, the bold-face numbers are the two lowest losses. These values should be compared to the loss for $\epsilon = 0$.

References

- M.A. Alvarez, L. Rosasco, and N.D. Lawrence. Kernels for Vector-Valued Functions: a Review. Foundations and Trends in Machine Learning, 4(3):195–266, 2012.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with Sparsity-Inducing Penalties. Foundations and Trends in Machine Learning, 4(1):1–106, January 2012.

Table 1: Empirical pinball loss $\times 100$ along with percentage of support vectors (the less, the better).

Data set	$\epsilon = 0$	$\epsilon = 0.05$	$\epsilon = 0.1$	$\epsilon = 0.2$	$\epsilon = 0.5$	$\epsilon = 0.75$	$\epsilon = 1$	$\epsilon = 1.5$	$\epsilon = 2$	$\epsilon = 3$
caution	67.50 ± 12.96	67.40 ± 13.12	67.17 \pm 12.68	67.54 ± 13.00	69.93 ± 12.51	73.24 ± 13.10	76.80 ± 12.51	83.42 ± 14.97	100.22 ± 16.63	142.19 ± 16.11
ftcollinssnow	109.07 ± 5.88	109.12 ± 5.95	109.14 ± 6.00	109.15 ± 6.00	109.11 ± 6.30	110.39 ± 7.10	109.05 ± 6.72	110.90 ± 6.87	109.81 ± 6.22	113.50 ± 9.29
highway	79.29 ± 17.06	78.10 ± 16.15	76.75 ± 15.42	76.66 ± 19.11	$\textbf{75.09}\pm18.82$	70.94 ± 21.58	75.10 ± 21.02	97.67 ± 22.91	112.30 ± 20.10	112.09 ± 20.12
heights	91.05 ± 1.12	91.00 ± 1.20	90.98 ± 1.19	90.98 ± 1.21	91.18 ± 1.09	91.21 ± 1.27	90.98 ± 1.13	91.09 ± 1.02	91.51 ± 1.20	93.34 ± 1.84
sniffer	32.34 ± 5.14	31.40 ± 4.81	32.31 ± 5.19	31.40 ± 2.98	34.64 ± 3.85	39.84 ± 5.03	41.82 ± 4.14	52.06 ± 5.88	62.21 ± 11.77	103.76 ± 16.42
snowgeese	49.62 ± 19.38	50.51 ± 18.23	51.25 ± 18.64	51.08 ± 17.69	52.88 ± 15.11	53.81 ± 13.97	62.81 ± 19.66	90.15 ± 23.97	107.53 ± 23.13	94.25 ± 24.65
ufc	57.87 ± 3.09	57.90 ± 3.07	57.78 ± 2.99	57.84 ± 3.01	57.67 ± 2.84	57.84 ± 2.76	58.19 ± 2.92	61.04 ± 3.68	66.81 ± 4.00	86.23 ± 4.79
birthwt	99.93 ± 8.51	99.95 ± 8.53	99.93 ± 8.63	99.70 ± 8.64	99.25 ± 8.66	100.50 ± 10.31	99.80 ± 11.29	98.71 ± 10.04	99.56 ± 9.43	103.39 ± 8.83
crabs	8.59 ± 0.66	8.52 ± 0.68	8.49 ± 0.73	9.44 ± 0.57	19.94 ± 1.38	23.08 ± 1.59	31.44 ± 3.75	44.08 ± 4.64	53.45 ± 5.65	86.91 ± 9.48
GAGurine	44.30 ± 5.85	44.26 ± 5.79	44.25 ± 5.76	44.86 ± 6.04	46.20 ± 5.35	49.87 ± 4.88	52.88 ± 3.94	57.06 ± 3.47	65.89 ± 3.88	103.32 ± 24.62
geyser	77.81 ± 5.36	78.15 ± 5.39	78.12 ± 5.38	78.45 ± 5.35	78.40 ± 5.77	78.28 ± 5.88	78.54 ± 5.82	80.55 ± 6.34	85.15 ± 6.18	99.92 ± 8.65
gilgais	32.96 ± 4.09	33.12 ± 3.99	33.27 ± 4.11	33.42 ± 3.88	35.08 ± 3.35	36.62 ± 3.59	37.94 ± 3.68	48.17 ± 9.44	94.65 ± 4.98	104.12 ± 5.92
topo	47.49 ± 7.93	48.93 ± 7.43	48.74 ± 7.10	48.17 ± 7.01	41.65 ± 5.60	45.24 ± 3.53	51.19 ± 7.92	53.68 ± 8.39	58.21 ± 13.35	80.57 ± 15.18
BostonHousing	34.54 ± 3.34	34.68 ± 3.46	34.70 ± 3.39	34.09 ± 3.37	35.27 ± 3.02	37.65 ± 3.18	41.31 ± 3.41	55.04 ± 5.61	73.39 ± 12.35	112.22 ± 12.91
CobarOre	0.50 ± 0.38	5.05 ± 1.90	8.75 ± 3.44	12.47 ± 4.27	23.84 ± 6.03	35.82 ± 8.20	47.35 ± 10.94	66.15 ± 14.56	84.51 ± 17.70	106.89 ± 15.52
engel	43.57 ± 6.05	43.50 ± 6.02	43.47 ± 6.08	43.44 ± 5.99	57.36 ± 46.14	43.98 ± 5.37	46.31 ± 6.29	53.15 ± 5.45	69.43 ± 9.22	100.48 ± 11.63
mcycle	63.95 ± 5.25	63.88 ± 5.20	64.26 ± 5.99	64.90 ± 6.68	65.89 ± 5.89	67.29 ± 6.13	70.11 ± 7.65	74.78 ± 6.43		109.79 ± 12.67
BigMac2003	49.94 ± 12.85	49.97 ± 12.84	50.00 ± 12.83		51.16 ± 13.37	51.44 ± 10.57	53.63 ± 14.29	77.40 ± 24.48		136.76 ± 61.70
UN3	71.27 ± 4.69	70.94 ± 4.57	71.03 ± 4.68	71.49 ± 5.06	71.37 ± 5.01	71.53 ± 5.90	72.68 ± 6.17	76.72 ± 6.13	84.50 ± 7.00	109.59 ± 4.71
cpus	11.31 ± 9.32	13.32 ± 8.95	15.57 ± 9.16	20.16 ± 8.06	25.88 ± 8.93	35.66 ± 11.61	55.27 ± 14.69	65.05 ± 9.70	65.05 ± 9.70	65.02 ± 9.65

- P.L. Bartlett and S. Mendelson. Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.
- S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford, New York, 2013.
- S.P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
- A. Maurer. A vector-contraction inequality for Rademacher complexities. In *Proceedings of The 27th International Conference on Algorithmic Learning Theory*, 2016.
- M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. The MIT Press, 2012.
- M. Sangnier, O. Fercoq, and F. d'Alché Buc. Joint quantile regression in vector-valued RKHSs. In *Advances in Neural Information Processing Systems* 29, 2016.
- I. Takeuchi, Q.V. Le, T.D. Sears, and A.J. Smola. Nonparametric Quantile Estimation. Journal of Machine Learning Research, 7:1231–1264, 2006.