Title

D. Zack Garza

Contents

Contents

1	Frid	ay, November 13	3
	1.1	Review	•
	1.2	Reciprocity	•
	1.3	Toward Lifting Conjectures	6
		1.3.1 Donkin's Tilting Module Conjecture	7

Contents 2

1 Friday, November 13

1.1 Review

Review: we're considering G_rT -modules, with several associated modules of interest:

- Simple modules $\widehat{L}_r(\lambda)$ for $\lambda \in X(T)$
- Intermediate modules $\nabla(\lambda) = \hat{Z}'_r(\lambda)$ and $\Delta(\lambda) = \hat{Z}_r(\lambda)$.
- Injective and projective modules $\widehat{Q}_r(\lambda)$

Theorem 1.1.1(?).

Let M be a G_rT -module of finite dimension. Then M has a \widehat{Z}_r filtration $\iff M \downarrow_{B_r}$ is projective.

Remark 1.1.1: From this, the multiplicity $[M:\widehat{Z}_r(\mu)]$ (the number of times $\widehat{Z}_r(\mu)$ appears in a \widehat{Z}_r filtration) is well-defined. Moreover, we have a decomposition

$$M\downarrow_{B_r}=\bigoplus_{\mu}Z_r(\mu)\downarrow_{B_r},$$

where the sum contains as many terms as the number of factors that appear. We have $Z_r(\mu) \downarrow_{B_r} \to \mu$, making is the projective cover of μ and thus indecomposable. We can then apply the Krull-Schmidt theorem.

1.2 Reciprocity

Thus the multiplicity can be computed as

$$\begin{split} [\widehat{Q}_r(\lambda):\widehat{Z}_r(\mu)] &= [\widehat{Q}_r \downarrow B_r T: \widehat{Z}_r(\mu)] \\ &= \dim \operatorname{Hom}_{B_r T} \left(\widehat{Q}_r(\lambda), \mu\right) \\ &= \dim \operatorname{Hom}_{B_r T} \left(\widehat{Q}_r(\lambda), \operatorname{Ind}_{B_r T}^{G_r T} \mu\right) \quad \text{by Frobenius reciprocity} \end{split}$$

Exercise 1.2.1 (?): Show that

$$[M:S] = \dim \operatorname{Hom}_A(P(S), \mu) = [\operatorname{Ind}_{B_rT}^{B_rT} \mu : \widehat{L}_r(\lambda)].$$

Friday, November 13 3

We can thus continue this computation as

$$\cdots = [\widehat{Z}'_r(\mu) : \widehat{L}_r(\mu)]$$
$$= [\widehat{Z}_r(\mu) : \widehat{L}_r(\mu)],$$

since $\operatorname{ch} \widehat{Z}_r(\mu) = \operatorname{ch} \widehat{Z}'_r(\mu)$.

Thus we have the following reciprocity theorem

Theorem 1.2.1(Humphreys).

$$[\widehat{Q}_r(\lambda) : \widehat{Z}_r(\mu)] = [\widehat{Z}_r(\mu) : \widehat{L}_r(\lambda)].$$

Remark 1.2.1: This is hard to prove in the G_r category, need to work in the G_rT category and descend. However, this reciprocity does also work for G_r .

Example 1.2.1 (?): For $G = \operatorname{SL}_2$, consider G_1T or G_1 where $\lambda = 0, 1, 2, \dots, (p-1)$. We have a notion of linkage: λ, μ are in the same G_1 block iff $\lambda + \mu = p - 2$. Note that $\lambda = p - 1$ is in its own block.

We have

$$Z_r(\lambda) = \operatorname{Coind}_{B_1^+}^{G_1} \lambda \twoheadrightarrow L(\lambda).$$

If $\lambda + \mu = p - 2$, then we have the following situation:

Figure 1: Image

Taking $\lambda = p - 1$, we have $Z_r((p - 1)\rho) = L(p - 1) = \operatorname{St}_1$.

Applying reciprocity, we gave

$$[Q_1(0):Q_1(\mu)]=[Q_1(\mu):L(0)].$$

Since $Q_1(0)$ has factors $Z_1(0)$ and $Z_1(p-2)$, we have

1.2 Reciprocity 4

Figure 2: Image

We can identify the two filtrations here:

Figure 3: Image

Similarly, for $Q_1(p-2)$ we have

Figure 4: Image

We have

- dim $\widehat{Q}_1(\lambda) = 2p$ for $\lambda \neq p-1$
- dim $\widehat{Q}_1(p-1) = p$ for $\lambda = p-1$.

1.2 Reciprocity 5

Remark 1.2.2 (Some historical background on reciprocity laws): Some work predated the BGG Category \mathcal{O} . For finite groups, a notion of CDE triangles was worked out.

- 1. Pollack (1967) computed the structure of projectives for G_1 in $G = SL_2$.
- 2. Humphreys (1971) proved reciprocity for G_1 . (They were students together.)
- 3. Bernstein-Gelfand (1976): developed machinery for Category \mathcal{O} , crediting Humphreys.
- 4. Roche-Caridi (1980): Proved reciprocity for generalized Verma modules.
- 5. BGG Algebra, Irving: A more axiomatic approach.
- 6. CPS (1988): Generalized to highest weight categories, also attributed to Humphreys.
- 7. Holmes-Nakano (1987): Proved when there is a triangular decomposition $A = A^- A_0 A^+$, looked at filtrations and reciprocity, applies to Lie algebras of Cartan type.¹

1.3 Toward Lifting Conjectures

Recall that $G_rT \subseteq G$.

Question: Given $\widehat{Q}_r(\lambda)$ for a restricted weight $\lambda \in X_r(T)$, does $\widehat{Q}_r(\lambda)$ lift to G? I.e., does there exist a G-module $M(\lambda)$ such that $M(\lambda) \downarrow_{G_rT} = \widehat{Q}_r(\lambda)$?

Remark 1.3.1: Note that $L_r(\lambda)$ for $\lambda \in X_r(T)$ lifts to G, since $L(\lambda) \downarrow_{G_rT} = \widehat{L}_r(\lambda)$.

Theorem 1.3.1(?).

Let p > 2h - 2 and $\lambda \in X_r(T)$, then $\widehat{Q}_r(\lambda)$ has a lift to a G structure.

Remark 1.3.2 (Some history):

- One can prove that the G structure is unique, since this turns out to be a projective module in an appropriate category (which we won't get into).
- Ballard (1970s) proved the theorem for p > 3h 3.
- Jantzen (late 1970s) lowered the bound to p > 2h 2
- Amazingly, no one has been able to lower this bound! This is currently an open question.
- For $G = SL_2, SL_3$, it is known that $\widehat{Q}_r(\lambda)$ has a G structure for all p.

¹Simple Lie algebras in characteristic p with a triangular decomposition which is highly non-symmetric (negative part is typically smaller).

1.3.1 Donkin's Tilting Module Conjecture

From MSRI, 1990. Some notation first: for $\lambda \in X_r(T)$, define

$$\hat{\lambda} := 2(p-1)\rho + w_0\lambda.$$

Conjecture 1.1(?).

Let G be a semisimple simply connected algebraic group over $k = \overline{F}_p$ for some p. Then

$$T(\widehat{\lambda})\downarrow_{G_rT}\cong \widehat{Q}_r(\lambda).$$

Something about DTilt conjecture being true for p > 2h - 2.

Next time:

- Proof of theorem
- $\widehat{Q}_r(\lambda) \mid \operatorname{St}_r \otimes L(\sigma)$ as G-modules, and is also projective as a G_rT -module.
- Find a G-summand $M(\lambda)$ such that $M(\lambda) \downarrow_{G_rT} = \widehat{Q}_r(\lambda)$.
- More with injective modules.
- Possibly something about cohomology of Frobenius kernels.