第一次习题课讨论题目

- 1. 第1、2次作业部分题目.
- 2. 盒子里装有 5 枚外观一样的硬币,投掷硬币时每枚硬币正面向上的概率分别为 p_1, \dots, p_5 . 假设 $p_1 = \frac{1}{10}, p_2 = \frac{1}{4}, p_3 = \frac{1}{2}, p_4 = \frac{3}{4}, p_5 = \frac{9}{10}$.
 - (1) 随机选一枚硬币投掷,假设正面出现了,求选中的是第i($i=1,\cdots,5$) 枚硬币的概率:
 - (2) 再一次投掷这枚硬币,又出现正面的概率为多少?
 - (3) 随机选一枚硬币投掷直到正面出现,若已知第 4 次才掷得正面,求选中的是第 i ($i=1,\dots,5$) 枚硬币的概率.
- 3. 概率的连续性.
 - (1) 设 A_1, A_2, \cdots 为单调递增的事件序列,即 $A_n \subset A_{n+1}$ ($n = 1, 2, \cdots$),令

$$A = \sum_{n=1}^{\infty} A_n$$
,证明 $P(A) = \lim_{n \to \infty} P(A_n)$.

(2) 设 A_1,A_2,Λ 为单调递减的事件序列,即 $A_n \supset A_{n+1}$ ($n=1,2,\cdots$),令

$$A = \prod_{n=1}^{\infty} A_n$$
,证明 $P(A) = \lim_{n \to \infty} P(A_n)$.

- 4. $\Diamond A_1, A_2, A_3, A_4$ 为相互独立的事件, $P(A_3A_4) > 0$.
 - (1) 证明: $P(A_3) > 0$.
 - (2) 证明: A_1, A_2 关于事件 A_3 条件独立.
 - (3) 证明: $P(A_1 + A_2 | A_3 A_4) = P(A_1 + A_2)$.
- 5. *考虑有两个孩子的全部家庭,假定生男孩和女孩是等可能的.分别在以下情况考虑家里另外一个孩子也是女儿的概率.
 - (1) 从这些家庭中随机选择一个家庭,发现其中一个孩子是女孩.
 - (2) 从这些家庭中随机选择一个孩子发现其为女孩.

- (3) 从这些家庭中随机选择一个家庭,发现较大的那个孩子是女孩.
- (4) 从这些家庭中随机选择一个家庭,某天遇到母亲带着一个女儿在散步.
- 6. **警方从案发现场罪犯的身体遗留物中提取了 DNA, 法医研究后注意到能够辨认的只有5对染色体,而且每个无罪的人与这5对染色体相匹配的概率为 10^{-5} , 警方认为罪犯就是该城镇 100 万居民之一. 在过去 10 年内,该城镇有 1 万人曾坐过牢,他们的 DNA 资料都记录在案. 在检查这些 DNA 文档之前,警方认为这 1 万有前科的人每人犯此罪的概率为 α ,而其余 99 万居民每人犯此罪的概率为 β ,其中 α = $c\beta$.将 DNA 分析结果与这 1 万有前科的人的数据文档对比之后,发现只有甲的 DNA 符合. 假设警方关于 α 和 β 之间的关系是准确的,那么以此判断甲作案的可能性有多大?对比c分别取值 100, 10 和 1 这三种情

形的结果.