Semantic Parsing for Question Answering

Stefano Melacci Nantes ML Meetup

Overview

I will introduce **Semantic Parsing for Question Answering** in a generic ("customized") way + I will explore **two existing approaches**

- (1) Semantic Parsing
- (2) Question Answering
 - Knowledge Bases (KBs)
- (1+2) Semantic Parsing for Question Answering with Structured KBs
 - Learning a Semantic Parser from Examples
- (Approach 1) Compositional Semantics
- (Approach 2) Query Graph Generation
- Discussion

Semantic Parsing

"Semantic parsing is the process of mapping a natural-language sentence into a formal representation of its meaning" 1

^{1. &}lt;a href="http://www.cs.utexas.edu/~ml/publications/area///learning_for_semantic_parsing">http://www.cs.utexas.edu/~ml/publications/area///learning_for_semantic_parsing

^{2.} Today is November 7, 2016... tomorrow is the Election Day

Semantic Parsing: Why?

Representing the Meaning of a Sentence

"Semantic parsing is the process of mapping a natural-language sentence into a formal representation of its meaning"

Natural Language

o Ambiguous, redundant, ...

Formal language

- o Unambiguous, concise, ...
- We have to define the symbols, the rules, and all the features of the formal language we want to use to model the meaning of a sentence
- Several possible choices

Example: First-Order Logic

"A man is driving a car"

 \exists x,y. man(x) \land driving(x,y) \land car(y)

... that's not enough for building a Semantic Parser!

- Here we have an uninterpreted logical form
- Predicate symbols (man, driving, car) do NOT have meaning in themselves

Semantic Parsers

A Semantic Parser includes three main components¹

1. Formal Language

a. Recall the previous example of FOL

2. Ontology

- a. Predicate symbols are from a given ontology
- b. That's where they get their meaning!

3. Inferential Mechanism

 a. It is what takes a problem represented in the formal language and the ontology and performs the target task (e.g. Question Answering on a given Knowledge Base, etc.)

Question Answering

- We are given an input question "q"
- We also have the use of a Knowledge Base "KB" (source of knowledge)
 - Collection of documents (Unstructured KB)
 - Structured KB
- Goal: provide an answer "a" using the information in "KB"

Question Types (Most Common)

What are the types of question that are commonly considered?

0	Factoid:	What is the capital of France?
	27 /21	

Yes/No: Does a penguin fly?

• **List:** What are the presidents of the U.S. of the last two decades?

• **Definition:** What is a cat?

• **How:** How do birds fly?

• Why: Why does a rainbow form?

Question Answering + Unstructured KB

The KB is a collection of documents, the Web, any batch of data that is not deeply structured accordingly to a given ontology, ...

- Search engine-like procedure
- "Retrieve and rank" (see IBM Watson)
- The answer is a text passage

Question Answering + Unstructured KB

Features

- Expected answer type (Person, Date, Location, Value, ...)
- Keywords
- o ...

Search

- o Identify candidate elements of the knowledge base by matching keywords, filtering, ...
- Find a "nearby" answer of the expected type

Structured KB: The Freebase Example

Freebase is a good example of triple-based Structured KB (Knowledge Graph)

- It's a graph: Node-Edge-Node connections
 - o "Triples" or Binary Relations between Entities
- Stats
 - > 56,000,000 nodes
 - > 3,000,000,000 triples
 - Several edge-types
- Collaborative project
 - Metaweb, then Google, then public...
 - ...then shut down (May 2, 2016)

Question Answering + Structured KB

The KB organizes factual knowledge in a structured manner

- Activate and navigate portions of the graph
 - Exploiting information on the graph structure
- The answer is an entity of the KB
 - A node of the graph

Question Answering + Structured KB

What are the features/search procedure?

- Features: "formal representation of the meaning of the question"
- Search: "navigate" the graph given the representation of the meaning

Semantic Parsing...for QA

Semantic Parsing for QA with (Struct.) KB

Alignment (Multiple Hypotheses)

Composition (Multiple Results)

- Given multiple hypotheses of alignment, we have to compose them
 - Associate entities to the arguments of the relations
 - Connect arguments of multiple relations
 - Introduce new relations (Bridging)
 - Exploit the question/answer type

What is the capital of the state in which Hollywood is located?

We are building a subgraph of the KB + free variables!

Logical Form

- Sometimes we also need to introduce aggregation operators
 - o argmax, argmin, ...
- Finally, we can represent the composed meaning of the sentence with a selected formalism, generating a Logical Form

"Executing" the Logical Form returns the answer - what is associated to the free variable *x* in the KB

Semantic Parsing for QA with (Struct.) KB

Semantic Parsing for QA with (Struct.) KB

Different ways of Aligning text to KB

Semantic Parsing for QA with (Struct.) KB

Details on the Composition stage

Define composition rules, to generate a set of candidates "meanings" (Logical Forms)

• Rules are applied in function of the KB contents

Example

Join

From: drinks(x,y), Beer To: drinks(x, Beer)

Intersect

From: friendOf (x,y), bornIn(z, Paris)To: friendOf(x,y) bornIn(y, Paris)

• Bridge, Aggregate, ...

Learning a Semantic Parser from Examples

- What supervision signal can we use?
 - (1) Pairs of question + logical form ("meaning")
 - Expensive but precise
 - Logical forms are observed variables
 - (2) Pairs of question + answer
 - Cheaper (weaker)
 - Logical forms are latent variables

The research community essentially went from (1) to (2), but we are also recently observing some approaches that follow the opposite tendency (seq-to-seq)

Learning from QA pairs: Criterion

We can learn the parameters (3) of a Semantic Parser model by maximizing the probability of returning the right answer (y) for the estimated Logical Form (z) of the question (x), given a structured KB (w)

Objective:
$$\max_{\pmb{\theta}} \sum_{\pmb{z}} p(y \mid \pmb{z}, w) \, p(\pmb{z} \mid x, \pmb{\theta})$$
 Interpretation Semantic parsing

Liang, Jordan, Klein - Learning Dependency-Based Compositional Semantics - Computational Linguistics 2013

Learning from QA pairs: What do we learn?

- The supervision signal is back-propagated
 - Some methods do not learn the alignment stage (Lexical Rules)
 - Other works decouple the learning process of the alignment and composition stages (assumptions!)
- Several assumptions on the type of questions that can be handled
 - "Simple Questions"
 - The composition stage can become extremely trivial

Approach 1. Compositional Semantics (DCS)

Liang, Jordan, Klein. Learning dependency-based compositional semantics. ACL 2011 / Computational Linguistics 2013

- Logical forms are represented by a "new semantic representation"
 - Dependency-based Compositional Semantics (DCS)
 - The logical forms (in this framework) can be represented as special trees
 - Closer to the syntax (with some exceptions)
 - Easier to "visualize"

Approach 1. Knowledge Base

- We are in the setting described so far
 - But the KB is not Freebase!

- The authors focus on a database of "geography"-related facts
 - Each table models a predicate
 - It does not look like a graph...
 - o ... but we could represent it as a graph

Approach 1. Representation of "Meaning"

Example of questions and Logical forms represented as DCS trees

Approach 1. Trees and Logical Forms

- Don't be confused by the trees, we are still talking about logical forms!
 - The DCS tree is just a convenient way of representing the logical form

Approach 1. Alignment and Composition

Alignment

- Lexical triggers for entities and relations
- They can be task-specific

Composition

- Recursive DCS tree building
- Large number of results...
- ...Scoring (log-linear) + Beam Search

Approach 1. Global View

* Indicator feature templates: total number of predicates, statistics on words triggering predicates, ...

Approach 1. Experiments

- Experimental Results
 - With specific Lexical Triggers
 - With "more generic" triggers

Graph traken from: https://cs.stanford.edu/~pliang/papers/dcs-acl2011-talk.pdf

Approach 2. Query Graph Generation

Yih, Chang, He, Gao. Semantic parsing via staged query graph generation: Question answering with knowledge base. Int. Conf. of the Association for Computational Linguistics 2015

- Logical forms are represented as small graphs
 - Query Graph
- Deep Neural Networks to align relations
- "Simple Questions"

Figure 2: Query graph that represents the question "Who first voiced Meg on Family Guy?"

Approach 2. Knowledge Base

Freebase

Approach 2. Representation of "Meaning"

- The structure of the Query Graph is due to the structure of Freebase
 - y = EventX nodes

Approach 2. Alignment and Composition

Iterative procedure to build the Query Graph Similarity Measure Who first voiced Family Guy Semantic laver: v Semantic laver: v 300 300 Meg in Family Semantic projection matrix: W, Semantic projection matrix: W_r Meg Griffin Max pooling layer: v Max pooling layer: v Guy? Max pooling operation Max pooling operation 1. Align the main entity Convolutional laver: h. 1000 Convolutional laver: h. Convolution matrix: W Convolution matrix: W. Word hashing layer: fr 15K 15K 15K Word hashing layer: ft ... 15K Word hashing matrix: W. Word hashing matrix: W Word sequence: x, Word sequence: x_r Family Guy Who first voiced Meg in <e>? cast-actor ... 3. Generate query graphs using the aligned 2. Align relations entity/relations (+ add other fancy stuff)

Approach 2. Global View

Approach 2. Experiments

- WebQuestions dataset
 - o 6K QA pairs
 - o "Simple Questions"
 - Single fact involved

- They authors of Approach 2 also need the relation labels to train the CNNs!
 - They artificially create them

Method	Prec.	Rec.	F ₁
(Berant et al., 2013)	48.0	41.3	35.7
(Bordes et al., 2014b)	-	-	29.7
(Yao and Van Durme, 2014)	-	1-	33.0
(Berant and Liang, 2014)	40.5	46.6	39.9
(Bao et al., 2014)	-	-	37.5
(Bordes et al., 2014a)	-	-	39.2
(Yang et al., 2014)	-		41.3
(Wang et al., 2014)	-	-	45.3
Our approach – STAGG	52.8	60.7	52.5

Discussion

Semantic Parsers for QA

- Explicit representation of the "meaning" of a question
- Structured Knowledge Bases
- Learnable using QA pairs

On the other hand...

- The KB is given, not "learned"
- The compositionality is really stressed only in small datasets

Thank you!

