Data structure - Graph

Learning Objectives

In this session, we will learn:

- What are graphs?
- Representation of graphs.
- Implement adjacency list representation of a graph.

What is a Graph

- A graph can be defined as collection of finite number of vertices and edges.
- Graph is a non linear data structure.

Vertex

- A vertex, a.k.a node in a graph.
- It represents information such as name or identifier of a node in a graph.

Edge

 An edge is a line connecting two adjacent vertices.

Graph

Figure: G

$$G = (V, E)$$

 $V(G) = \{A, B, C, D, E, F\}$
 $E(G) = \{(A, B), (B, D), (B, E), (A, F), (F, E), (C, F)\}$

◆□▶◆□▶◆□▶◆□▶ □ り

Complete graph

Figure: G

In a given graph G, $\exists (n-1)$ adjacent vertices $\forall G_v$, where n in number of vertices in G.

Adjacency Matrix

- G can be represented as square Matrix M of values 0^s and 1^s.
- $M_{ij} = 1$, $\exists E_{(v_i,v_i)}$, else $M_{ij} = 0$.
- $M_i \& M_j$ represents V(G).

M						
	Α	В	C	D	Ε	F
Α	0	1	0	0	0	1
В	1	0	0	1	1	0
C	0	0	0	0	0	1
D	0	1	0	0	1	0
Е	0	1	0	1	0	1
F	1	0	1	0	1	0

Adjacency List

Graph G can be represented as array of lists where A_i is list of adjacent vertices of V_i from G(V).

Figure: Adjacency list representation of a graph.

Implementation

Implementing functions

- node *newNode(int vertex), returns a new node with vertex in it.
- adjacencyList *createGraph(int n), returns an array which represents G with n vertices.
- void displayGraph(int n), prints G of n vertices.
- void addAdjacentVertex(int vertex, int adjVertex), adds adjVertex as adjacent vertex to vertex.

Considering the following graph.

Summary

- Graph definition.
- Graph representation as a data structure.
- Implementing adjacency list for a graph.

Questions

