Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЁТ ПО КУРСОВОЙ РАБОТЕ ПО ДИСЦИПЛИНЕ «ВЫЧИСЛИТЕЛЬНЫЕ КОМПЛЕКСЫ»

Выполнил студент группы 3630102/70201

Крупкина Дарья

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1	Пос	тановка задачи	2
2	Pea	лизация	2
3	Рез	ультаты	2
4	При	ложения	30
C	пис	сок иллюстраций	
	1 2	Радиус 0.5: положение объекта "Юг"	3 4
	3 4	Радиус 0.5: положение объекта "Север"	5 6
	5 6	Радиус 0.5: модельное решение "Юг"	7 8
	7 8	Радиус 0.5: модельное решение "Север"	9 10
	9	Радиус 1.5: положение объекта "Юг"	11
	10 11	Радиус 1.5: положение объекта "Восток"	12 13
	12 13	Радиус 1.5: положение объекта "Запад"	14 15
	14 15	Радиус 1.5: модельное решение "Восток"	16 17
	16 17	Радиус 1.5: модельное решение "Запад"	18 19
	18	Радиус 2: положение объекта "Восток"	20
	19 20	Радиус 2: положение объекта "Север"	21 22
	21 22	Радиус 2: модельное решение "Юг"	23 24
	23	Радиус 2: модельное решение "Север"	25
	2425	Радиус 2: модельное решение "Запад"	26 27
	26 27	Радиус 1: сумма всех положений	28 29
	28	Радиус 2: сумма всех положений	30

1 Постановка задачи

Необходимо провести подготовительную работу для по полодидальному вращению в 3D-геометрии, построенной с разбиением по углу на 6 частей с использованием пиксельного детектора 16х16.

Требуется провести исследование вращения с различными радиусами и наработать правые части для полученных задач.

2 Реализация

Лабораторная выполнена с помощью средств языка matlab.

Предварительно преобразован файл с данными с детектора из формата .mat в формат .txt.

3 Результаты

В качестве исследуемого объекта выбран светящийся объект, занимающий один пространственный элемент разбиения рабочей области.

Пусть светящаяся точка вращается вокруг центра с координатами (n_z, n_r) , где $n_z = 3$, $n_r = 3$. Радиус вращения будет меняться от 0.5 до 2 с шагом 0.5. Генерация данных для нецелого(именно половинного) радиуса происходит следующим образом:

- 1. Для радиуса 0.5 генерируются номера вокселей для радиусов 0 и 1, для радиуса 1.5 используются воксели от 1 и 2 соответственно.
- 2. Сегментам с этими номерами устанавливается значение 0.5 для попадания половинный радиус.

Этот объект находится на первом слое под экваториальной плоскостью токамака и примерно на середине его объема по радиусу R, немного ближе к центру.

Найдем проекции светимости на детектор при последовательном прохождении положений «Юг-Восток-Север-Запад» для различных радиусов.

Положениям будут соответствовать:

- " Γ ": $(n_z R, n_r)$;
- "Восток": $(n_z, n_r + R)$;
- "Ceвер": $(n_z + R, n_r)$;
- "Запад": $(n_z, n_r R)$.
- 1. Для радиуса 0.5:

Проекция положения "Юг" смещена на север.

Рис. 1: Радиус 0.5: положение объекта "Юг"

Проекция положения "Восток" смещена на запад.

Рис. 2: Радиус 0.5: положение объекта "Восток"

Проекция положения "Север" смещена на юг.

Рис. 3: Радиус 0.5: положение объекта "Север"

Проекция положения "Запад" смещена на восток.

Рис. 4: Радиус 0.5: положение объекта "Запад"

Также рассмотрим зависимость переменной модельного решения от номера переменной:

Рис. 5: Радиус 0.5: модельное решение "Юг"

Рис. 6: Радиус 0.5: модельное решение "Восток"

Рис. 7: Радиус 0.5: модельное решение "Север"

Рис. 8: Радиус 0.5: модельное решение "Запад"

2. Для радиуса 1.5: Проекция положения "Юг" обращается в 0 (т.е., южная часть не проецируется при данном радиусе).

Рис. 9: Радиус 1.5: положение объекта "Юг"

Проекция положения "Восток" смещена на запад.

Рис. 10: Радиус 1.5: положение объекта "Восток"

Проекция положения "Север" смещена на юг.

Рис. 11: Радиус 1.5: положение объекта "Север"

Проекция положения "Запад" смещена на восток.

Рис. 12: Радиус 1.5: положение объекта "Запад"

Также рассмотрим зависимость переменной модельного решения от номера переменной:

Рис. 13: Радиус 1.5: модельное решение "Юг"

Рис. 14: Радиус 1.5: модельное решение "Восток"

Рис. 15: Радиус 1.5: модельное решение "Север"

Рис. 16: Радиус 1.5: модельное решение "Запад"

3. Для радиуса 2: Проекция положения "Юг" обращается в 0 (т.е., южная часть не проецируется при данном радиусе).

Рис. 17: Радиус 2: положение объекта "Юг"

Проекция положения "Восток" смещена на запад.

Рис. 18: Радиус 2: положение объекта "Восток"

Проекция положения "Север" смещена на юг.

Рис. 19: Радиус 2: положение объекта "Север"

Проекция положения "Запад" смещена на восток.

Рис. 20: Радиус 2: положение объекта "Запад"

Также рассмотрим зависимость переменной модельного решения от номера переменной:

Рис. 21: Радиус 2: модельное решение "Юг"

Рис. 22: Радиус 2: модельное решение "Восток"

Рис. 23: Радиус 2: модельное решение "Север"

Рис. 24: Радиус 2: модельное решение "Запад"

4. Сумма всех положений для различных радиусов.

Рис. 25: Радиус 0.5: сумма всех положений

Рис. 26: Радиус 1: сумма всех положений

Рис. 27: Радиус 1.5: сумма всех положений

Рис. 28: Радиус 2: сумма всех положений

Любопытно, что до радиуса, равному 2, суммарная проекция является связной, а начиная с 1.5 заметна некоторая "размазанность".

Также стоит отметить, что "Юг"быстрее других направлений перестает проецироваться. Центр вращения nz=3 смещен на юг и проекция Юга — наиболее удалена от экватора.

Правые части задачи и модельные решения сгенерированы и представлены в приложении в виде ссылки на диск.

4 Приложения

Kog программы на GitHub, URL: https://github.com/DariaKrup/Computational_complexes

Правые части задачи, модельные решения и пр. URL: https://drive.google.com/drive/folders/1TsuOHzxIllVMS_Z1xftbw8R32kr8YoNc?usp=sharing

Список литературы

[1] А.Н.Баженов. Малоракурсная томография. Геометрические и алгебраические аспекты. Применение интервального анализа.