Fundamentos físicos y	y	electrónicos	de	la	informática
-----------------------	---	--------------	----	----	-------------

Examen Final

Martes 2/02/2016		Tiempo: 120 minutos
Nombre:	D.N.I:	

Instrucciones.

- 1. Escriba su nombre y D.N.I. en cada folio que entregue.
- 2. Conteste de forma concisa y razonadamente. Justifique siempre su respuesta.
- 3. Está totalmente prohibido el uso de calculadoras o móviles durante el examen.
- 4. Al final del examen, grape todas las hojas que vaya a entregar.
- 5. Al final del examen, firme la hoja de asistencia, en caso contrario el examen no tendrá validez.

Cuestiones

C1] [0.5 puntos] Suponga dos bolas, separadas por cierta distancia, portando igual carga y produciendo una fuerza repulsiva cada una sobre la otra. Si una fracción de la carga de una bola es transferida a la segunda, el módulo de la fuerza eléctrica entre ellas ¿ aumentará, disminuirá o seguirá igual?. Justifique su respuesta.

C2] [[0.5 puntos] Si una carga se traslada a una pequeña distancia en la dirección de un campo eléctrico, ¿ aumenta o disminuye su energía potencial electrostática?. Justifique su respuesta.

C3] [0.5 puntos] ¿ Un campo magnético contante puede poner en movimiento un protón en reposo?. Justifique su respuesta.

C4] [0.5 puntos] Si tenemos 3 condensadores iguales y una batería, ¿ cómo se combinarían de manera que almacenaran la máxima energía posible ?. Justifique su respuesta.

C5] [0.5 puntos] Se quiere usar un circuito RLC para sintonizar una emisora AM que emite a una frecuencia de 1.59 MHz $(1,59 \approx \frac{10^7}{2\pi})$, para ello se dispone de un único condensador de 10 nF y una colección de bobinas de cualquier valor. ¿ Qué inductancia elegiría para que el circuito sintonizador funcionara eficientemente?

C6] [0.5 puntos] Si un electrón se traslada a una órbita menor, ¿ aumenta o disminuye su energía cinética según el modelo de Bohr?. Justifique su respuesta.

Problemas

P1][1 punto] Una esfera sólida de radio a tiene una densidad de carga volumétrica uniforme ρ y una carga positiva total Q. Calcule la magnitud del campo eléctrico en un punto fuera de la esfera usando la ley de Gauss

P2][1 punto] Dos raíles conductores paralelos separados de 40 cm, figura 1(a), y una barra también conductora que se desplaza sobre ellos con una velocidad constante de v=0,2 m/s alejándose del extremo origen que está cerrado por una resistencia de 5Ω . Se considera que tanto los raíles y la barra son conductores ideales que carecen de resistencia. Bajo los raíles existe un campo magnético uniforme de 0,5 T perpendicular y saliente del plano del papel. a) Calcular la fem y b) corrientes inducidas en el circuito (indicando su dirección).

P3][1 punto] La diferencia de potencial entre los extremos de un elemento en un circuito son las siguientes: $v(t) = 10 \operatorname{sen}(10t + 5\pi/6) \text{ V y } i(t) = 100 \operatorname{sen}(10t + \pi/3) \text{ A. } i$ De qué elemento se trata?. Justifique su respuesta y calcule su valor.

P4][1 punto] Suponiendo el modelo de diodo ideal en el circuito de la figura 1(b) , calcule a) la caída de potencia en cada diodo y b) la corriente en cada diodo.

P5][1 punto] El 2N700 es un MOSFET con $v_{to} = 2$ V y $R_{DS(ON)} = 10$ Ω . Calcular el voltaje de salida V_{out} , en el circuito de la figura 1(c), cuando a) $V_{in} = 0$ V y b) $V_{in} = 4.5$ V.

Figura 1: a) Figura del problema P2; b) Figura del problema P4; c) Figura del problema P5.

$$F' = k \frac{9^2 - 19^2}{d^2} = \frac{k 9^2}{d^2} - k \frac{19^2}{d^2} = F - k \frac{19^2}{d^2}$$

(2) [0'\$5 puta]

C3] [045 putos]

Fuerza sohe una cenga dentro de un campo anagnetico F = 9 VxB [0'25 punto

For grantes]

Como V=0 -> FB=0

Si FB = 0 => No piede pouer en monumente cer proton. [0'25 puntos]

CY] [0'5 puts]

Eurgia potencial almanada en un cardinador

M = \frac{1}{2} GV^2; como V = cte => Max G [0'25 puntos]

y le capaadad es maxima coando combinamos

la cordenzadores en penallo [0'25 puntes]

Serie -----(> - H-

faralilo The Harmonian Control of the Control

PI] [I puto]

Ley de Gauss

Q
$$\vec{E}$$
 ds = \vec{F} \vec{u} [0/25 putos]

En ds

En \vec{E} ds = \vec{E} \vec{E} ds = \vec{E} 477 \vec{E}

Quet = \vec{Q} \vec{E} $\vec{E$

E = -0'5.0'4.0'2 = -40.10-3 V =-40mV =-0'0YV [0's pulos)

I = \frac{\xi}{R} = \frac{-0'04 \text{ V}}{5 \sigma} = \frac{-0608A}{5 \sigma} = \frac{2068 \text{ WA}}{5 \sigma} \left[025 \text{ puntos} \right]

La corriente serà antihoraria, ya gre asi se opondia al amento de flyo magnetico [025 punto] gre le vien (Leg de Lear)

$$U(t) = 10 \text{ ran } (10t + 577)$$
, $\dot{\lambda}(t) = 100 \text{ ran } (10t + 773)$

$$\int ax_{i}v - \int ax_{i}i = \frac{5\pi}{6} - \frac{7\pi}{3} = \frac{5\pi - 7\pi}{6} = \frac{3\pi}{6} = + \frac{7\pi}{2}$$

La consente esté a hasada respecto al voltage
[o's putes]

se tuto de cu runductor

$$Z_{L} = \frac{V_{\text{max}}}{I_{\text{max}}} = \frac{10}{100} = \omega L \implies L = 001 \text{ H}$$

$$Cos \text{ puntos}$$

$$ADA = ImA > 0$$

$$ID2 = 0$$

$$ImB = 0$$

$$3V - V_{OZ} - 6V = 0$$

$$\Rightarrow V_{OZ} = -3V$$

$$V_{OA} = 0$$
(0\square \text{pulo})

Como 10170 y Voz 20 un seponaon iniaal lo Conecte 2025 puter]

P5] [I puto]
$$V_{co} = 2V$$
; $R_{os}(on) = I_{on}$

2) $V_{in} = 0 \Rightarrow V_{qs} = 0 < V_{to} \Rightarrow R$. de Cate

 $\Rightarrow I_{o} = 0$

Apricamos $I_{os} = I_{os} =$

b) $V_{uu} = 4'SV \implies V_{qs} = 4'SV > V_{bo} \implies No estay un R. Conte$ Sipongamo M. Ohnica

Es un diuna de tennon $V_{ovt} = I_{ov} = I_{ov} = I_{ov} = I_{ov} = I_{ov}$ Co25 puto]

Co25 puto]

VDS = Vont = 011 V

Vos L Vas-Veo
Nunte reponaire de

0'11 < 4'5V-2V
2'5

Correcte