力学1 中間試験 間短用紙 (平成30年5月29日)

- 1. M点 O を中心としてx 軸上で単振動する質点がある。単振動の振幅を5 cm 、振動散を2 Hz 、時刻 t=0 秒の時に位置 $x=\frac{5}{2}$,初期位相を60 として次の問いに答えよ。円周率 π は π のままでよい。
 - (1) この質点の時刻 における位置 x を表す式を示せ、
 - (2) 時刻 t=2 秒のときの質点の位置、速度、加速度を求めよ.
- 2. xy 平面上で原点を中心とした半径 r[m]の円屑上を反時計回りに一定の速さで 1 秒間に 20 回転している質点がある、次の問いに答えよ、円屑率 π は π のままでよい.
 - (1) 次の物理量を示せ、単位も記すこと、
 - ① 円運動の周期、② 角速度、③ 質点の速さ、④ 質点の加速度の大きさ
 - (2) t=0 で仮点の位置ベクトル $\vec{r}=(r,0)$ とするとき、時刻 t における仮点の位置 ベクトル \vec{r} の x 成分 x(t) および y 成分 y(t) を時刻 t の関数として表せ.
 - (3) 質点に働いている力 F のx 成分 $F_x(t)$ および y 成分 $F_y(t)$ を時刻 t の関数として 表せ. 質点の質量は m とする.
- 3. 時刻 t=0 に初速度 v_0 、水平面とのなす角(仰角) θ ($0<\theta<\pi/2$) で座標原点(x=y=z=0)から下図のように質点を投げ上げた、水平面内で質点の進む方向にx 軸の正方向、鉛直上向きにy 軸の正方向をとり、質点はxy 面内を移動するものとする。空気の抵抗力は無視する。重力加速度をg として以下の問いに答えよ。
 - (1) 質点の運動方程式をx、y、z方向のそれぞれについて示せ.
 - (2) 質点が最高点に到途したときの質点の x座標および y座標を求めよ.

4. 次の図のように半径rの円板が中心からaだけ離れた点Pを中心として一定の角速度 ω で xy面内を回転している($\theta=\omega t$)。また、板ABは円板と接していてy軸方向で上下運動を行う。座標原点を点Pにとり、水平方向右にx軸の正方向、鉛直上向きをy軸正方向とする。以下の問いに答えよ。

(裏に続く)

- (1) 円板と板 AB が接する点を Q とする. ベクトル \overline{PQ} (= \overline{PO} + \overline{OQ}) を時間の関数として表せ.
- (2) 板 AB の上下運動の速さと加速度を求めよ.
- 5. 質量m のある物体が重力と空気の抵抗力を受けながら運動している。空気の抵抗力 \vec{F}_R の大きさは、物体の速さに比例($|\vec{F}_R|=\gamma$ $|\vec{v}|$)しているとする(γ は正の定数)。鉛直方向に x 軸をとり上向きを正として、物体は x 軸上を運動しているとする。 重力加速度は g とする。
 - (1) 物体の運動方程式を、物体のx 軸方向の速さ v(t) (= $\dot{x}(t)$) の時間 t に関する 1 階 微分方程式として表せ.
 - (2) (1) の微分方程式の一般解を求めることにより、v(t) を時間 t の関数として表せ.
 - (3) 物体の終端速度を求めよ.
- 6. 下図のように質量 m の質点が半径 r の円周上を滑り降りている場合を考える. 円周上はなめらかで、質点の移動に伴う瞭擦力は働かないものとする. 時刻 t において、質点の速度ベクトルを \vec{v} , y 軸正方向と動径方向(円周の中心から質点の位置を向く方向)との間の角度を θ , 質点の進行方向を向いた単位ベクトルを \vec{t} , 質点の位置から円周の中心を向く単位ベクトルを \vec{n} とする. 質点には重力 (大きさ mg) と、円周上から動径方向外向きの垂直抗力 \vec{N} (大きさN) が働いている. 重力加速度はgとする.
 - (1) 質点の速度ベクトル \vec{v} および加速度ベクトル \vec{a} を, \vec{t} , \vec{n} , v (= $|\vec{v}|$) , \dot{v} , r を 用いて表せ (これらの全てを用いなくてもよい).
 - (2) 質点の \pmb{i} 方向及び \pmb{n} 方向の運動方程式をm, g, θ , N, v, \dot{v} , r を用いてそれぞれ表せ(これらの全てを用いなくてもよい).

