Lecture 1 Notes for STT861

Kenyon Cavender

2019-08-28

1 Lecture One

Ex 1 Toss a fair coin; what is the probability of obtaining heads? $P(H) = \frac{1}{2}$

Ex 2 Throw a fair die; what is the probability of obtaining 6? What about obtaining an even number?

$$P(6) = \frac{1}{6}$$

 $P(n = 2, 4, 6) = \frac{1}{2}$

The probability is not the realized result, but the convergence of results as the number of iterations approaches infinity. Review the Weak Law of Large Numbers.

Def A random experiment is an action which will result in one of the many possible outcomes.

Def A **sample space** is the collection of all possible outcomes of a random experiment. We shall denote by **S**.

<u>Def</u> A **set** is a collection of some <u>well defined</u> objects.

<u>Def</u> Outcomes are also called sample points.

 $\underline{\mathbf{Def}}$ An **Event** is a subset of sample space \mathbf{S} for which we can define probability.

<u>Def</u> Suppose A and B are two sets. $A \subset B$ (A is a **subset** of B) if $x \in A$ implies $x \in B$. If $A \subset B$ and $B \subset A$ then A = B.

<u>Def</u> A set is called an empty set (or **null set**) if it contains no elements.

Notation: $\{\emptyset\}$

Convention: $\emptyset \subset A$, for any set A

Corrolary: $\forall A, \emptyset \subset A \subset \mathbf{S}$

<u>Def</u> Complement A^c is the set such that $x \in A^c \Rightarrow x \notin A$.

In other words, $A^c = \{x : x \notin A\}$

Notation: A^c or A' or \overline{A}

Results

- $i) (A^c)^c = A$
- ii) $\mathbf{S}^c = \emptyset$
- iii) $\emptyset^c = \mathbf{S}$
- iv) if $A \subset B$, then $B^c \subset A^c$

<u>Def</u> Intersection A, B are two events.

$$A \cap B = \{x : x \in Aandx \in B\}$$

Def Union A, B are two events.

$$A \cup B = \{x : x \in Aorx \in Borboth\}$$

<u>Def</u> A and B are **disjoint** if $A \cap B = \emptyset$

Properties of set theory

Commutative

$$A \cup B = B \cup A$$
 and $A \cap B = B \cap A$

Associative

$$(A \cup B) \cup C = A \cup (B \cup C) =: A \cup B \cup C$$
$$(A \cap B) \cap C = A \cap (B \cap C) =: A \cap B \cap C$$

Distributive

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C) \\ (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

De Morgan's Law

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

Def Set Difference

$$A \setminus B = \{x : x \in A, \text{ but } x \notin B\}$$

Def Symmetric Difference

$$A \triangle B = \{x : x \in A \setminus B, \text{ or } x \in B \setminus A\}$$

<u>Def</u> A set A is **finite** if there exists a 1-1 fn $A \mapsto \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$

 $\underline{\mathbf{Def}}$ A set with only one outcome from $\mathbf S$ is called a **simple event**.

<u>Def</u> A set with more than one outcome is known as a **composite event**.

<u>Def</u> A set function is a function defined on a set.

<u>Def</u> Probability is a set function which takes a real value.