Machine Learning and Artificial Intelligence (ML/AI)

Core Principles and Applications

Sanjay Dorairaj
CIS Faculty, San Jose City College
Software Development Manager, AWS/Amazon

Agenda

The Fundamentals

Predictions

- As humans, we make numerous predictions on a daily basis
- Our ability to make these predictions allow us to be functional and productive
- Historical learnings and experiences allow us to identify and recognize patterns, which in turn allow us to make predictions

Traditional approaches to Prediction

- For a long time, Linear Regression (OLS) has been the primary tool for prediction.
- It typically involves finding a line of best fit using the method of least squares
- This method suffers from several problems
 - It breaks down when multiple independent variables exist
 - It is computationally intractable as the number of independent variables increase or as the data points increase resulting in sampling smaller sets of data and parameters.
 - Valid solutions do not always exist in all cases.

https://en.wikipedia.org/wiki/Linear_regression

Mathematical Models

The Machine Learning Approach

- The machine learning approach to prediction is based on incremental problem solving
- Rather than attempt to solve for the all the unknown coefficients with all known data, we strive to close in on the most optimal solution in an incremental manner

Visualizing Convergence and Validation

Cost Functions and Gradients

Source:

https://towardsdatascience.com/machine-learn ing-fundamentals-via-linear-regression-41a5d1 1f5220

Training and Validation

Source:

https://stats.stackexchange.com/questions/292283/general-question-regarding-over-fitting-vs-complexity-of-models

Linear Regression to Neural Nets

Linear Regression Algorithm

- Linear Regression algorithms generate a model that makes predictions for continuous output values
- This is similar to the types of predictions made by traditional mathematical models based on Ordinary Least Squares (OLS), although the algorithm uses the machine learning approach.
- Uses of Linear Regression

House Prices

Stock Prices

Product Prices

Logistic Regression

- Logistic Regression is a modification to the Linear Regression algorithm that allows for the prediction of categorical values
- Example:
 - Single Class Classification: True or False
 - Multiple Class Classification: Dog,
 Cat, Lion etc

Source:

https://www.saedsayad.com/logistic_regression.htm

On to simple neural networks

Neural Networks attempt to model the behavior of the human nervous system

The Human Brain

Source:

https://www.123rf.com/photo_90941320_stock-illust ration-human-brain-and-neuron-cells-on-abstract-bl ue-background-3d-illustration.html

A Neural Network

Source:

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6

Neural Network as an aggregation of Logistic

Regression blocks

Each block is Logistic
 Regression block

- Intermediate blocks are called hidden units
- Multiple layers make this a deep net
- Fewer layers form a shallow net
- Together, the blocks can learn complex patterns
 - https://en.wikipedia.org/wiki/Universal_ap proximation_theorem

ML/Al Applications

Document Intelligence

Fault Prediction

<u>Algorithms</u>

 Prediction: Distributed Random Forest, Logistic Regression, SVM, Neural Nets

Recommendations Systems

- Movie Recommendations

Source: https://data-flair.training/blogs/data-science-r-movie-recommendation/

Recommendations

- Item-Item & User-User Similarity

		Mathise Learning Paradigms		park	and the second	Total
P ₃	4	3			5	
8	5		4		4	
8	4		5	3	4	
		3				5
B		4				4
			2	4		5

		8			B	
	1.00	0.75	0.63	0.22	0.30	0.00
8	0.75	1.00	0.91	0.00	0.00	0.16
8	0.63	0.91	1.00	0.00	0.00	0.40
	0.22	0.00	0.00	1.00	0.97	0.64
B	0.30	0.00	0.00	0.97	1.00	0.53
	0.00	0.16	0.40	0.64	0.53	1.00
						1/1

Source: https://buildingrecommenders.wordpress.com/2015/11/18/overview-of-recommender-algorithms-part-2/

Recommendation Systems Pipeline

Algorithms

Collaborative Filtering, Cosine Similarity

Machine Translation Algorithm

Source: https://towardsdatascience.com/seg2seg-model-in-tensorflow-ec0c557e560f

Demo

Typical Machine Learning Pipeline

Conceptual Flow

Equivalent methods in sklearn/pandas

If the training does not yield an optimal solution

- Get additional data
- 2. Use a different machine learning algorithm
- 3. Fine tune machine learning algorithm parameters

About this demo

- Data obtained from US census bureau based on the 1994 census
- Prediction task is to determine whether a person makes over 50k USD/year
- https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
- Total data points 32,561
- Predictors
 - a. Age, workclass, education, education-num,

 Marital-status, occupation, relationship, race, sex, capital-gain,capital-loss: hours-per-week,
 native-country
- Predicted value, also known as the response value
 - a. <50k
 - b. >=50k

Demo using Sklearn

Wrap-Up

Questions?

Thanks!

LinkedIn: https://www.linkedin.com/in/dsanjay/

Twitter handle: @sanjayd_