DECODER

- •A decoder is a logic circuit that accepts a set of inputs that represents a binary number and activates only the output that corresponds to the input number.
- •In other words, a decoder circuit looks at its inputs, determines which binary number is present there, and activates the one output that corresponds to that number; all other outputs remain inactive

In its general form, a decoder has N input lines to handle N bits and form one to 2^N output lines to indicate the presence of one or more N-bit combinations.

The basic binary function

 An AND gate can be used as the basic decoding element because it produces a HIGH output only when all inputs are HIGH

Decoding logic for the binary code 1001 with an active-HIGH output.

General decoder diagram

There are 2^N possible input combinations, from A_0 to A_{N-1} . For each of these input combinations only one of the M outputs will be active HIGH (1), all the other outputs are LOW (0).

* > * * * * 4 * * / / / * . . . * * * * * *

2-to-4-Line Decoder (with Enable input)-Active LOW output (1)...

E	A	B	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

(b) Truth table

2-to-4-Line Decoder (with Enable input)-Active LOW output (2)

- The circuit operates with complemented outputs and a complement enable input. The decoder is enabled when E is equal to 0.
- Only one output can be equal to 0 at any given time, all other outputs are equal to 1.
- The output whose value is equal to 0 represents the minterm selected by inputs A and B
- The circuit is disabled when E is equal to 1.

2-to-4-Line Decoder (with Enable input)-Active LOW output (1)...

E	A	B	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

(a) Logic diagram

(b) Truth table

3-8 line decoder (active-HIGH)

* * * * * 4 11 / / / · · · 11 8 11

- •This decoder can be referred to in several ways. It can be called a 3-line-to- 8-line decoder, because it has three input lines and eight output lines.
- •It could also be called a binary-octal decoder or converters because it takes a three bit binary input code and activates the one of the eight outputs corresponding to that code. It is also referred to as a 1-of-8 decoder, because only 1 of the 8 outputs is activated at one time.

Logic diagram of 74138 (Example of a 3-Bit Decoder)

Truth table of 74138 (Example of a 3–8 Bit Decoder) active-LOW

Inputs						Outputs							
Enables 2 ²			2 ¹	2°	Active-LOW								
E_3	\overline{E}_1	\overline{E}_2	A_2	A_I	Ao	07	\overline{O}_6	\bar{O}_5	\overline{O}_4	\overline{O}_3	\bar{O}_2	\bar{O}_1	\overline{O}_0
X	X	Н	X	X	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	H	X	X	X	X	Н	H	Н	H	Н	Н	Н	Н
L	X	X	X	X	X	Н	H	H	H	H	H	H	H
H	L	L	L	L	L	Н	H	Н	H	Н	Н	Н	L
H	L	L	L	L	H	H	H	H	H	Н	H	L	H
H	L	L	L	Н	L	Н	H	Н	H	Н	L	H	H
H	L	L	L	Н	H	Н	H	Н	H	L	H	H	H
H	L	L	H	L	L	Н	H	Н	L	Н	H	H	H
Н	L	L	H	L	Н	Н	Н	L	Н	Н	Н	Н	Н
H	L	L	H	Н	L	Н	L	Н	Н	H	Н	Н	Н
H	L	L	H	Н	H	L	H	Н	H	H	H	H	Н

* > > > > 4 = 4 = 4 / 10 × 10 0 = 0 = 0

74138 (Example of a 3-8 Bit Decoder)

- There is an enable function on this device, a LOW level on each input E'_1 , and E'_2 , and a HIGH level on input E_3 , is required in order to make the enable gate output HIGH.
- The enable is connected to an input of each NAND gate in the decoder, so it must be HIGH for the NAND gate to be enabled.
- If the enable gate is not activated then all eight decoder outputs will be HIGH regardless of the states of the three input variables A_0 , A_1 , and A_2 .

Example of a 5 to 32 Bit Decoder

Example of a 5 to 32 Bit Decoder

4-line-to-16 line Decoder constructed with two 3-line-to-8 line decoders (2)

- When w=0, the top decoder is enabled and the other is disabled. The bottom decoder outputs are all 0's, and the top eight outputs generate min-terms 0000 to 0111.
- When w=1, the enable conditions are reversed. The bottom decoder outputs generate min-terms 1000 to 1111, while the outputs of the top decoder are all 0's.

Combinational logic implementation

$$S(x, y, z) = \Sigma(1, 2, 4, 7)$$

$$C(x, y, z) = \Sigma(3, 5, 6, 7)$$

