An approach to camera calibration in industrial robotics using HexSight

Facoltà di Ingegneria dell'informazione, informatica e statistica Corso di Laurea Magistrale in Artificial Intelligence and Robotics

Candidate:
Michele Maria Ciciolla
1869990

Thesis Advisor:
Prof. Alessandro De Luca

Hosting Company: ICAPGROUP

Company Advisors:

- Ing. Claudio Marrichi
- Ing. Piero Bullio
- Ing. Massimiliano Lenci

How the presentation is organized

- I. Vision systems in industrial robotics
- II. Camera calibration in industrial robotics
- III. Proposed solution
- IV. Results

. Vision systems in industrial robotics

Common applications:

Measurement

Localization

Counting

Decoding

Vision systems in industrial robotics

Estimate 3D information

Common applications:

Measurement

Localization

Counting

Decoding

Vision systems in industrial robotics

Estimate 2D information

Common applications

Measurement

Localization

Counting

Decoding

II Camera calibration in industrial robotics

- 01100 10110 11110
- 2. Parameters Estimation

Coordinates Acquisition

3. Reprojection Tests

$$\sum_{i} d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2$$

 x_i estimation

→ calibration algorithm (Zhang, **Tsai**..)

 $\widehat{\chi}_i$ ground truth

Camera calibration in industrial robotics

1. Fixed calibration support

$$\begin{bmatrix} u_1 & u_2 & u_3 & u_n \\ v_1 & v_2 & v_3 & v_n \end{bmatrix} = IP$$

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_n \\ y_1, y_2, y_3, y_n \\ z_1 & z_2 & z_3 & z_n \end{bmatrix} = WP$$

2. Robot-held support

3. Robot-generated support

Camera calibration in industrial robotics

- Manual approach
- It needs specialized operator
- Single-point acquisition

- Automatic approach
- Needs accuracy
- Multi-point acquisition

- Automatic approach
- Flexible
- Single-point acquisition

III Proposed Solution

List of ingredients

Goal of the **project**

Develop a flexible and accurate automatic calibration process

ABB IRB4600

- 6 axis
- 2.5m reach

Mako G-503

- 2592 x 1944 resolution
- 5 megapixel
- 14 frames/second
- Gigabit Ethernet

III Proposed Solution

Goal of the robotics branch

Move the calibration target along a grid path decided by the user

Goal of the **vision branch**

Acquire the target coordinates and compute the calibration

III Proposed Solution Result

III Proposed Solution More details

1. Model of the target to find

2. Calibration method to execute

Tsai calibration[1]

- Planar control points
- 2 Stage optimization
- Lens correction

Proposed Solution

HMI: Visual Basic HexSight

Display

Result dashboard

Action buttons

Testing interface

Performance evaluation:

Image-To-World estimation

$$\sum_i d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2$$
 $\qquad \qquad \mathcal{X}_i \qquad ext{World estimation}$ $\qquad \qquad \widehat{\mathcal{X}}_i \qquad ext{World ground truth}$

Estimate 3D information

Measurement

Localization

$$\mathbf{e} = [e_1, e_2, e_3, e_4, e_i, \dots e_n]$$

 $i = 1 \dots N$

1. Performance trend according to **number of points** N

1. Performance trend according to **number of points** N

1. Performance trend according to **number of points** N

Procedure robustness to noise: World coordinates

2. Procedure robustness to noise: Pixel coordinates

2. Procedure robustness to noise: Pixel-World coordinates

% Points	%Disturb	Average I2W	Max I2W
10	1	2.24	12.55
10	0.5	1.22	6.16
10	0.1	0.45	2.59
50	1	7.48	42.41
50	0.5	3.73	21.62
50	0.1	0.81	2.28
100	1	10.04	36.72
100	0.5	4.57	19.53
100	0.1	1.02	4.41
100	0.01	0.36	1.05

3. Procedure repeatability

N attempts	Average I2W	Max I2W
5	0.41862	0.78688
10	0.41236	0.76257
15	0.42344	0.76535

5x5 grid

4. **Robustness** to **light** exposure

Exposure Type	Average I2W	Max I2W
Gain +15db	0,47105	1,06852
Gain +20db	/	/
Gain -15db	$0,\!47169$	1,0577
Gain -20db	0,454242	1,04193

9x9 grid

V Conclusions

What has been done

Robot movement algorithm

Ready to be commercialized/employed

Plug-and-play vision application

Flexible procedure

Comprehensive tests

Desired accuracy performance

An approach to camera calibration in industrial robotics using HexSight

Facoltà di Ingegneria dell'informazione, informatica e statistica Corso di Laurea Magistrale in Artificial Intelligence and Robotics

Candidate:
Michele Maria Ciciolla

1869990

Thesis Advisor:
Prof. Alessandro De Luca

Hosting Company: ICAPGROUP

Company Advisors:

- Ing. Claudio Marrichi
- Ing. Piero Bullio
- Ing. Massimiliano Lenci