2.

On Macdonald polynomials, following Haglund-Haiman-Loehr and Guo-Ram.

2.1. For any positive integer m, we set $[m] = \{1, ..., m\}$. Fix a positive integer n. For all $u = (i, j) \in [n] \times \mathbb{Z}$, we define the *cylindrical coordinate* of u to be

$$\mathbf{c}(u) = i + nj$$
.

For all $k \in \mathbb{Z}$, we define $u + k \in [n] \times \mathbb{Z}$ by the identity $\mathbf{c}(u + k) = \mathbf{c}(u) + k$.

2.2. Suppose that $S \subset [n] \times \mathbb{Z}$ is a subset uniformly bounded above in the second coordinate. We picture S as a set of lattice points in the xy-plane, bounded in the positive y-direction. For all $u \in S$, let

$$\begin{split} \operatorname{attk}_S(u) &= S \cap (u - [n] + 1), \\ \operatorname{leg}_S(u) &= S \cap (u + n \mathbf{Z}_{>0}), \\ \operatorname{arm}_S(u) &= \{v \in \operatorname{attk}_S(u) \mid \ell_S(v) \leq \ell_S(u)\}, \\ a_S(u) &= |\operatorname{arm}_S(u)|. \end{split}$$

2.3. A *filling* of S is a function $f: S \to [m]$. We say that $u \in S$ is a *descent*, resp. ascent, of such f if and only if

$$u - n \in S$$
 and $f(u) > f(u - n)$, resp., $f(u) < f(u - n)$.

Let Des(f), resp. Asc(f), be the collection of descents, resp. ascents of f. Let

$$\begin{aligned} \operatorname{maj}(f) &= \sum_{u \in \operatorname{Des}(f)} \left(\ell_S(u) + 1 \right), \\ a(f) &= \sum_{u \in \operatorname{Des}(f)} a_S(u). \end{aligned}$$

In the literature, pairs $(u, v) \in S^2$ with $v \in \text{attk}_S(u)$ and f(u) > f(v) are called *inversions* of f. For all $u \in S$, let

$$Inv_f(u) = \{ v \in attk_S(u) \mid f(u) > f(v) \}.$$

2.4. Let $\mathbf{K} = \mathbf{C}(q, t)$. Fix a positive integer N, and let $\mathbf{K}[X] = \mathbf{K}[X_1, \dots, X_N]$. For any finite subset $S \subseteq [n] \times \mathbf{Z}$ and filling $f : S \to [N]$, we set

$$X^f = \prod_i X_i^{|f^{-1}(i)|} \in \mathbf{K}[X].$$

Fix a tuple $\mu = (\mu_1, \dots, \mu_n) \in \mathbf{Z}_{\geq 0}^n$. Let $|\mu| = \sum_i \mu_i$. We write $\tilde{H}_{\mu}^{(N)} \in \mathbf{K}[X]^{S_N}$ for the modified (symmetric) Macdonald polynomial of the underlying partition of μ , after truncation to N variables. In the case where N = n, we write $E_{\mu} \in \mathbf{K}[X]$ for the nonsymmetric Macdonald polynomial of μ . Moreover, for all $z \in S_n$, we write E_{μ}^z for the relative generalization of $E_{\mu} \in \mathbf{K}[X]$ depending on z, so that $E_{\mu}^{\mathrm{id}} = E_{\mu}$.

2.5. Let $dg(\mu) \subset [n] \times \mathbb{Z}$ be defined by

$$dg(\mu) = \{(i, j) \mid 1 \le j \le \mu_i\}.$$

Following Theorem 5.1.1 of [HHL08], the Haglund–Haiman–Loehr (HHL) formula for \tilde{H}_{μ} states:

Theorem 2.1 (HHL). For all μ , we have

$$\tilde{H}_{\mu}^{(N)} = \sum_{\sigma: \deg(\mu) \to [N]} X^{\sigma} q^{\mathrm{maj}(\sigma)} t^{-a(\sigma)} \prod_{u \in \deg(u)} t^{|\mathsf{Inv}_{\sigma}(u)|}.$$

2.6. For a general filling $f: S \to [m]$, we see that $\operatorname{maj}(f), a(f)$ depend only on S and $\operatorname{Des}(f)$, not on f itself. So for a fixed subset $D \subseteq \operatorname{dg}(\mu)$, let

$$\begin{aligned} \mathrm{maj}_{\mu}(D) &= \sum_{u \in D} \left(\ell_{\mathrm{dg}(\mu)}(u) + 1 \right), \\ a_{\mu}(D) &= \sum_{u \in D} a_{\mathrm{dg}(\mu)}(u). \end{aligned}$$

It turns out that the formula

$$F_{\mu,D}^{(N)} := \sum_{\substack{\sigma: \deg(\mu) \to [N] \\ \mathsf{Des}(\sigma) = D}} X^{\sigma} \prod_{u \in \deg(\mu)} t^{|\mathsf{Inv}_{\sigma}(u)|}$$

defines a Lascoux–Leclerc–Thibon (LLT) polynomial, hence an element of $\mathbf{K}[X]^{S_N}$. The HHL formula can be regrouped:

Corollary 2.2. For all μ , we have

$$\tilde{H}_{\mu}^{(N)} = \sum_{D \subseteq \deg(\mu)} q^{\mathrm{maj}_{\mu}(D)} t^{-a_{\mu}(D)} F_{\mu,D}^{(N)}.$$

Remark 2.3. Note that $F_{\mu,D}^{(N)} = 0$ whenever D contains elements of $dg(\mu)$ of the form (i,1): i.e., elements in the first row of $dg(\mu)$.

2.7. Below we consider the examples where n = 2 and $N = |\mu| = 4$.

To describe the possible subsets $D \subseteq dg(\mu)$, we will list the corresponding sets $\mathbf{c}(D) := {\mathbf{c}(u) \mid u \in D}$.

To compute the LLT polynomials, we will first compute their Hall pairings with the homogeneous symmetric functions h_{ν} : that is, their expansions into monomial symmetric functions $\{m_{\nu}\}_{\nu}$. To obtain their expansions into Schur functions, we will use the following table of inverse Kostka numbers:

	s ₄	$s_{3,1}$	s_{2^2}	$s_{2,1^2}$	s_{1^4}
m_4	1	-1		1	-1
$m_{3,1}$		1	-1	-1	2
m_{2^2}			1	-1	1
$m_{2,1^2}$				1	-3
m_{1^4}					1

Example 2.4. Take $\mu = (2, 2)$. There are four subsets $D \subseteq dg(\mu)$ disjoint from the first row of $dg(\mu)$. Below, we list them alongside the expansions of the corresponding LLT polynomials into monomial symmetric functions.

$\mathbf{c}(D)$	m_4	$m_{3,1}$	m_{2^2}	$m_{2,1^2}$	m_{1^4}
Ø	1	1 + t	$1 + t + t^2$	$1 + 2t + t^2$	$1 + 3t + 2t^2$
{3}		t	t	$2t + t^2$	$3t + 3t^2$
{4 }		t	t	$2t + t^2$	$3t + 3t^2$
$\{3, 4\}$			t	$t + t^2$	$2t + 3t^2 + t^3$

Next, the values maj(D), a(D) alongside the Schur expansions of the LLT polynomials:

Thus,
$$\tilde{H}_{2,2}^{(4)} = s_4 + (t + qt + q)s_{3,1} + (t^2 + q^2)s_{2^2} + (qt^2 + qt + q^2t)s_{2,1^2} + q^2t^2s_{1^4}$$
.

Example 2.5. If we instead take $\mu = (1, 3)$, then the D's and m_{ν} -coefficients are:

The values maj(D), a(D) and Schur coefficients are:

Thus,
$$\tilde{H}_{1,3}^{(4)} = s_4 + (t+q+q^2)s_{3,1} + (qt+q^2)s_{2^2} + (qt+q^2t+q^3)s_{2,1^2} + q^3ts_{1^4}$$
.

Example 2.6. If we instead take $\mu = (3, 1)$, then the data is almost the same as for $\mu = (1, 3)$. We just list the final table:

$$\mathbf{c}(D)$$
 maj(D)
 $a(D)$
 s_4
 $s_{3,1}$
 s_{2^2}
 $s_{2,1^2}$
 s_{1^4}
 \emptyset
 0
 0
 1
 t
 t
 t
 $\{5\}$
 1
 0
 1
 t
 t
 t
 $\{3\}$
 2
 1
 t
 t
 t
 t^2
 $\{3,5\}$
 3
 1
 t
 t
 t
 t^2

Thus, $\tilde{H}_{3,1}^{(4)} = \tilde{H}_{1,3}^{(4)}$, as expected.

2.8. For any filling $f: S \to [m]$, we say that f is non-attacking if and only if

$$f(u) \neq f(v)$$
 whenever $u \in S$ and $v \in \mathsf{attk}(u)$.

For all $u \in \mathsf{Des}(f) \cup \mathsf{Asc}(f)$, we set

$$\mathsf{Coinv}_f(u) = \left\{ v \in \mathsf{arm}_S(u) \,\middle|\, \begin{array}{l} f(u) \leq f(v) \text{ or } f(u-n) \geq f(v) & \text{if } u \in \mathsf{Des}(f), \\ f(u) < f(v) < f(u-n) & \text{if } u \in \mathsf{Asc}(f). \end{array} \right\}.$$

Let $dg_0(\mu) \subset [n] \times \mathbf{Z}$ be defined by

$$dg_0(\mu) = \{(i, j) \mid 0 \le j \le \mu_i\}.$$

For any filling $\sigma: dg(\mu) \to [m]$ and $z \in S_n$, let $\sigma^z: dg_0(\mu) \to [m]$ be defined by

$$\sigma^{z}|_{dg(\mu)} = \sigma$$
 and $\sigma^{z}(i, 0) = z(i)$ for all i .

Suppose that N=n in our preceding setup. Following Theorem 3.5.1 of [HHL08] and Theorem 1.1(b) of [GR], Guo–Ram's generalization of the HHL formula for E_{μ} states:

Theorem 2.7 (Guo–Ram–HHL). For all μ and z, we have

$$E^z_{\mu} = \sum_{\substack{\sigma: \deg(\mu) \to [n] \\ \sigma^z \text{ non-attacking}}} X^{\sigma} q^{\mathrm{maj}(\sigma_z)} \prod_{u \in \mathsf{Des}(\sigma^z) \cup \mathsf{Asc}(\sigma^z)} \frac{(1-t)t^{\mathsf{Coinv}_{\sigma^z}(u)}}{1-q^{\ell(u)+1}t^{a(u)+1}},$$

where $\ell(u) = \ell_{\mathrm{dg}_0(\mu)}(u) = \ell_{\mathrm{dg}(\mu)}(u)$ and $a(u) = a_{\mathrm{dg}_0(\mu)}(u)$ in the product.