Лекция 18 от 29.01.2016

Матрица перехода и переход к новому базису

Пусть V — векторное пространство, $\dim V = n$, вектора e_1, \ldots, e_n — базис, а e'_1, \ldots, e'_n — некий набор из n векторов. Тогда каждый вектор из этого набора линейно выражается через базис.

$$e'_{j} = \sum_{i=1}^{n} c_{ij} e_{i}, \quad c_{ij} \in F$$

$$(e'_{1}, \dots, e'_{n}) = (e_{1}, \dots, e_{n}) \cdot C, \quad C = (c_{ij})$$

То есть мы получили матрицу, где в j-ом столбце стоят коэффициенты линейного разложения вектора e'_j в базисе (e_1, \ldots, e_n) .

Теперь пусть e_1',\dots,e_n' — тоже базис в V. Вспомним, что на прошлой лекции уже было сказано, что в этом случае $\det C \neq 0$.

Определение. Матрица C называется матрицей перехода от базиса (e_1, \ldots, e_n) κ базису (e'_1, \ldots, e'_n) .

Замечание. Матрица перехода от (e'_1,\ldots,e'_n) κ (e_1,\ldots,e_n) есть C^{-1} .

И небольшое замечание касательно записи: когда базис записан в скобках, то есть (e_1, \ldots, e_n) , то нам важен порядок векторов в нем, в противном случае, при записи e_1, \ldots, e_n , порядок не важен.

Итого, имеем два базиса пространства V, (e_1, \ldots, e_n) и (e'_1, \ldots, e'_n) , и матрицу перехода C такую, что $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C$. Возьмем некий вектор v и разложим его по обоим базисам.

$$v \in V \Rightarrow \begin{cases} v = x_1 e_1 + \dots + x_n e_n, & x_i \in F \\ v = x_1' e_1' + \dots + x_n' e_n', & x_i' \in F \end{cases}$$

Предложение. Формула преобразования координат при переходе к другому базису:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} \qquad u \wedge u \qquad x_i = \sum_{j=1}^n c_{ij} x'_j$$

Доказательство. С одной стороны:

$$v = x_1'e_1' + \ldots + x_n'e_n' = \begin{pmatrix} e_1' & \ldots & e_n' \end{pmatrix} \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = \begin{pmatrix} e_1 & \ldots & e_n \end{pmatrix} C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Однако с другой стороны:

$$v = x_1 e_1 + \ldots + x_n e_n = \begin{pmatrix} e_1 & \ldots & e_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Сравнивая одно с другим, получаем, что:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Линейные отображения

Пусть V и W — два векторных пространства над полем F.

Определение. Отображение $f:V\to W$ называется линейным, если:

1.
$$f(u_1 + u_2) = f(u_1) + f(u_2), \quad \forall u_1, u_2 \in V;$$

2.
$$f(\alpha u) = \alpha f(u), \quad \forall u \in V, \forall \alpha \in F.$$

Замечание. Свойства 1-2 эквивалентны тому, что

$$f(\alpha_1 u_1 + \alpha_2 u_2) = \alpha_1 f(u_1) + \alpha_2 f(u_2), \quad \forall u_1, u_2 \in V, \ \forall \alpha_1, \alpha_2 \in F.$$

Здесь важно понимать, что сначала сложение векторов и умножение на скаляр происходит в пространстве V, а потом в пространстве W.

Простейшие свойства.

1. $f(\vec{0}_V) = \vec{0}_W$

Доказательство.
$$f(\vec{0}_V) = f(0 \cdot \vec{0}_V) = 0 f(\vec{0}_V) = \vec{0}_W$$

2. $\varphi(-u) = -\varphi(u)$, где (-u) — обратный элемент к u.

Доказательство.
$$\varphi(-u) + \varphi(u) = \varphi(-u+u) = \varphi(\vec{0}_V) = \vec{0}_W \Rightarrow \varphi(-u) = -\varphi(u)$$

Примеры

(0) $V \to V : v \mapsto v$ — тождественное отображение.

(1)
$$f: \mathbb{R} \to \mathbb{R}$$
 линейно $\Leftrightarrow \exists k \in \mathbb{R} : f(x) = kx, \quad \forall x \in \mathbb{R}$

Доказательство.

$$\Rightarrow f(x) = f(x \cdot 1) = xf(1) = kx$$
, где $k = f(1)$

← Проверим необходимые условия линейности.

1.
$$f(x) = kx \Rightarrow f(x_1 + x_2) = k(x_1 + x_2) = kx_1 + kx_2 = f(x_1) + f(x_2)$$

2.
$$f(\alpha x) = k\alpha x = \alpha kx = \alpha f(x)$$

(2) $f: \mathbb{R}^2 \to \mathbb{R}^2$ — декартова система координат.

- 2.1 Поворот вокруг 0 на угол α линеен.
- 2.2 Проекция на прямую, проходящую через 0, линейна.
- (3) $P_n = R[x]_{\leq n}$ пространство всех многочленов от x степени не больше n.

$$\Delta:f\mapsto f'$$
 (производная)

$$(f+g)'=f'+g' \ | \Rightarrow \Delta$$
 — линейное отображение из P_n в P_{n-1}

(4) Векторное пространство V, dim $V = n, e_1, \dots, e_n$ — базис.

$$V\mapsto \mathbb{R}^n$$
 $x_1e_1+\ldots+x_ne_n\mapsto \begin{pmatrix} x_1\ dots\\ x_n \end{pmatrix}$ — тоже линейное отображение.

(5) $A \in \operatorname{Mat}_{m \times n}, k \geqslant 1$ — любое, $\varphi : \operatorname{Mat}_{n \times k} \to \operatorname{Mat}_{m \times k}$.

$$\varphi(X) = A \cdot X$$

$$A(X_1 + X_2) = AX_1 + AX_2$$

$$A(\alpha X) = \alpha(AX)$$

Частный случай, при $k=1-\varphi:F^n\to F^m.$

Изоморфизм

Определение. Отображение $\varphi:V\to W$ называется изоморфизмом, если φ линейно и биективно. Обозначение: $\varphi:V\stackrel{\sim}{\to} W$.

Рассмотрим те же примеры:

- (0) Изоморфизм.
- (1) Изоморфизм, при $k \neq 0$.
- (2) 2.1 Изоморфизм.2.2 Не изоморфизм.
- (3) Не изоморфизм.
- (4) Изоморфизм.
- (5) Задача: доказать, что φ изоморфизм тогда и только тогда, когда n=m и $\det A \neq 0$.

Предложение. Пусть $\varphi: V \to W - u$ зоморфизм. Тогда $\varphi^{-1}: W \to V - m$ оже изоморфизм.

Доказательство. Так как φ — биекция, то φ^{-1} — тоже биекция.

$$w_1, w_2 \in W \Rightarrow \exists v_1, v_2 \in V : \begin{cases} \varphi(v_1) = w_1 & v_1 = \varphi^{-1}(w_1) \\ \varphi(v_2) = w_2 & v_2 = \varphi^{-1}(w_2) \end{cases}$$

Тогда осталось только доказать линейность обратного отображения. Для этого проверим выполнение необходимых условий линейности.

1.
$$\varphi^{-1}(w_1 + w_2) = \varphi^{-1}(\varphi(v_1) + \varphi(v_2)) = \varphi^{-1}(\varphi(v_1 + v_2)) = id(v_1 + v_2) = v_1 + v_2$$

2.
$$\alpha \in F$$
, $\varphi^{-1}(\alpha w_1) = \varphi^{-1}(\alpha \varphi(v_1)) = \varphi^{-1}(\varphi(\alpha v_1)) = \mathrm{id}(\alpha v_1) = \alpha v_1$.

Определение. Два векторных пространства V и W называются изоморфными, если существует изоморфизм $\varphi: V \xrightarrow{\sim} W$ (и тогда существует изоморфизм $V \xleftarrow{\sim} W$ по предположению). Обозначение: $V \simeq W$ или $V \cong W$.

Отображения можно соединять в композиции:

$$\begin{vmatrix} \varphi : U \to V \\ \psi : V \to W \end{vmatrix} \Rightarrow \psi \circ \varphi : U \to W \quad \psi \circ \varphi(u) = \psi(\varphi(u))$$

Предложение.

- 1. Если φ и ψ линейны, то $\psi \circ \varphi$ тоже линейно.
- 2. Если φ и ψ изоморфизмы, то $\psi \circ \varphi$ тоже изоморфизм.

Доказательство.

1. Опять-таки, просто проверим необходимые условия линейности.

(a)
$$(\psi \circ \varphi)(u_1 + u_2) = \psi(\varphi(u_1 + u_2)) = \psi(\varphi(u_1) + \varphi(u_2)) = \psi(\varphi(u_1)) + \psi(\varphi(u_2)) = (\psi \circ \varphi)(u_1) + (\psi \circ \varphi)(u_2)$$

- (b) $(\psi \circ \varphi)(\alpha u) = \psi(\varphi(\alpha u)) = \psi(\alpha \varphi(u)) = \alpha \psi(\varphi(u)) = \alpha(\psi \circ \varphi)(u)$
- 2. Следует из сохранения линейности и того, что композиция биекций тоже биекция.

Следствие. Изоморфизм это отношение эквивалентности на множестве всех векторных пространств над фиксированным полем F.

Доказательство.

Рефлексивность $V \simeq V$.

Симметричность $V \simeq W \Rightarrow W \simeq V$.

Транзитивность $(V \simeq U) \land (U \simeq W) \Rightarrow V \simeq W.$

То есть множество всех векторных пространств над фиксированным полем F разбивается на попарно непересекающиеся классы, причем внутри одного класса любые два пространства изоморфны. Такие классы называются κ лассами эквивалентности.

Теорема. Если два конечномерных векторных пространства V и W над полем F изоморфны, то $\dim V = \dim W$.

Но для начала докажем следующую лемму.

Лемма (1). Для векторного пространства V над полем F размерности n верно, что $V \simeq F^n$.

Доказательство. Рассмотрим отображение $\varphi: V \to F^n$ из примера 4. Пусть (e_1, \dots, e_n) — базис пространства V. Тогда:

$$x_1e_1 + \ldots + x_ne_n \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad x_i \in F.$$

Отображение φ линейно и биективно, следовательно φ — изоморфизм. А раз существует изоморфное отображение между пространствами V и F^n , то они изоморфны.