HILBERT'S NULLSTELLENSATZ

Reference: Section 1.7 "Algebraic currer" Fulton.

In the previous classes we have seen that we have a correspondence between algebraic sets $V \subseteq A^{M}(K)$ and ideals $T \subseteq K[X_1,...,X_M]$.

[Alaxbraic sets]

| V C IA" (K) | T C K[X, XN]

| V (I) | T T

Neverthless this correspondence is not one-to-one: in particular the map V-o I(V) is not surjective, since we have seen that it covers only radical ideals of K[X1,--, Xn]

We will see that for K an algebraically closed field, if we replace the set of ideals of K[X1,..., Xn] with the set of radical ideals of K[X1,..., xn], then the map I - V(I) becomes injective and we get a one-to-on correspondence.

The Hilbert's Nullstellensatz or Zeros-theorem represents the basis of algebraic geometry, because it tell us this exact relationship between ideals and algebraic sets.

HILBERT'S NULLSTELLENSATE

Let K be an algebraically closed field.

If I is an ideal of K[X1,..., Xn], then.

I(V(I)) = Rad(I).

The reason of the name "nullstellensate" (from German literally "zero-locus-theorem") is clearer when we look at a somewhat weaker form of the praises theorem:

STAZINETIZION NAEW

Let K be an algebraically closed field. If $I \subseteq K[X_1,...,X_n]$ is a proper ideal, then $V(I) \neq \emptyset$.

We will deduce	" the	to+	prove	the n the	Weak	Jour	tellensat it.	z and	, then
We w	ill w	eed	the	followin	g re	soft:			
² ourisk i ¹ s	s lemm	<u>ء</u> : الح لا- د	K is a	a fiel a, then	d and for	i A all n	s a fiv uaxinal	itely a	enerates M = A
			is a						
D _ 0	(11)		1	loss k					
Me co	•					Indi	era lor	everu	ow tex
ideal	I	ς κίχ	([x,,	F [nx.	here h the	exist.	SM =	axino	5 N(W)
ડું ; ∀(z) ઋ	we ø.	علاء	w th	ot V((M) 7 x	, 4	ed, for s a w s a w sen we	have	alsò '
							zi [rù		
Horeo!	er,	the	wap.			7			
			K _		K[x,,	[nx			
			α (>	ā= 0	Z + Z			
is in	jech:	re:	ō &;	=0=	=) a	E Z	<u>=</u>) a=	o, sin	ce a
							L is a		
				iski's	Cenua	ue,	X[x,,)	kn] is	a finite
exten:		U							
Sina		ے کر	0				implie	20	
			, No	X(,,Xw	73 % K				
Let o	e be	an	(SOW	orphism	u bel	tween	Ι ([×,	_Xn] a	ud K.
			e :	K[x.,	[nx,	~	K		
						4	Q,		
					, ,				
				ā			a		

So $\forall i \varphi(\overline{x}i) = \varphi(\overline{a}i) \stackrel{\text{e injective}}{=} \forall i \quad \overline{x}i = \overline{a}i = \forall i \quad x_i - a_i \in I$ => (x,-0,..., xn-an) = I => I= (x,-a,,..., xn-an)=) => V(I) = { (a,..., an) } = (x,-a, xn-en) maximal ideal Remark: Note that in the Weak Nullstellensatz the hypothesis for k to be algebraically closed can not be removed: If in IR[X] we consider the ideal $\overline{I}=(X^2+1)$, we have $V(\overline{I})=\emptyset$ and $\overline{I}\subsetneq IR[X]$. Proof (Hilbert's Nullstellensatz) We want to show that if $I \subseteq K[X_1,...,X_n]$ then Rod(I) = I(V(I))(≤) We have (I2)V) $I \supseteq I$ $Rad(I) \subseteq Rad(I(V(I))) = I(V(I))$ I(V(II) is a radical ideal For this part of the proof we will used the so called "Rabinowitsch trick" Since $K[X_1,...,X_N]$ is Noetherian, then there exist $F_{i_1,...,F_r} \in K[X_1,...,X_N]$ such that: $I = (F_1, \dots, F_r)$ Let $G \in T(V(I))$. We want to show that $G \in Rod(I)$, i.e. $\exists N > 0$ such that $G^n \in I$. Let us consider the following ideal. 5= (F1,..., Fr, Xn+16-1) = K[X1,..., Xn, Xn+1].

Note that $\Lambda(2) = \Lambda(I) \cup \Lambda(X^{M+1} Q - I) \stackrel{*}{=} Q \subset W_{M-1}(K)$

Then, by the Weak Nullstellensatz, we get J= K[X1,..., Xnx1], i.e. I & J. So $\exists A: (X_1, ..., X_{n+1}), B(X_1, ..., X_{n+1}) \in K[X_1, ..., X_{n+1}]$ such that : 1 = \(\sigma \) Ai (Xi,..., \(\text{Xn+1} \) Fi + B(Xi, ..., \(\text{Xn+1} \) (\(\text{Xn+1} \) G-1) In particular, if we replace Xn+1 = 1 and we clear the denominators by multiplying by a suitable power of 6, we get: GN - 1 = \(\frac{1}{5} \) A: \(\(\text{X}', \ldots, \frac{1}{6} \) \(\frac{1}{6} \) G - 1) \(\frac{1}{6} \) $G' = \sum_{i=1}^r \widetilde{A}_i(X_i, \dots, X_n) \cdot F_i + O.$ $G^{N} = \sum_{i=1}^{r} \widetilde{A}_{i}(X_{i},...,X_{N}) \cdot F_{i} \in (F_{i},...,F_{r}) = \mathcal{I}.$ We can easily deduce some corollaries from the Hilbert's Nullstellensatz, which hold if and only if K is alg. absed. Corollary 1: If I = K[x, ..., xn] is radical, then I(V(I))= I There is a one-to-one correspondence between radical ideals of K[XI,..., XN] and alayeloroxic sets of M"(K). Corollary 2: If $I \subseteq K[X_1, ..., X_n]$ is a prime ideal then V(I) is irreducible. There is a one-to-one correspondence between prime ideals of $K[X_1,...,X_N]$ and irreducible algebraic sets of $|A^h(K)|$. The maximal ideals correspond to points. Proof (Corollery 2) Note, first, that if I is prime, then I is radical. Indeed, if FEK[X,..., Xn] is such that FnE I, n>0 => Prime FEI

Recall that V(I) is irreducible if and only if I(V(I)) is prime. We have: I(V(I)) = Road(I) = I, which is prime by hypothesis.

Hilbert's Null. I is radical Combony 3: Let F be a non constant polynomial in K[X,..., Xn] with a decomposition into irreducible factors given by: $F = F_1^{N_1} \cdots F_r^{N_r}$, F_i irreducible. Then V(F) = V(F,) U... UV (F,) is the decomposition into irrobacible components I(V(F))= (F,... Fr) From corollony 3 we get that any hypersurface in IA" (K) is uniquely defined by a polynomial whose factorization into irreducible components has no nultiple factors (up to a constant multiple). Remours: We had already proved this result in the particular case of algebraic plane curves. K algebraically closed Company [] Algebraic sets = An (K)] => fradical ideals = K[X, ..., Xn] } [I traducible algebraic $f \leftrightarrow f$ prime ideals $\subseteq K[X_1,...,X_N]$]

Sets $\subseteq M^n(K)$ $f \leftrightarrow f$ maximal ideals $\subseteq K[X_1,...,X_N]$ $f \leftrightarrow f$ 3 fireducible hypersorfaces ? <> (ireducible polynomials €) (K[X1,..., Xn] up to constant)
Coolory (nultiple)

														_											
														+											
\vdash	-	_		\dashv	-	-								+	\dashv					-					
				_																					
														-											
				_																					
														_						_					
				_	_	_																			
														+											
														4	_										
		_		\dashv	-	-								+	+					-					
														+											
	_			_														_							
					\dashv	_								_						_					
\vdash	\dashv																	\dashv							
				_										+											
	-													_				_		_			_		
					\dashv	_								+						_					
	\dashv																								
					_																				