IntroProg Thomas Jensen

1 Ramsey model with housing

Household: Households supply labor exogenously, $N_t = 1$, and earns a wage w_t . The return on saving is r_{t+1} . Utility is derived from housing and consumption

$$U = \max_{\{C_t, H_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} + \frac{H_t^{1-\sigma}}{1-\sigma} \right), \beta \in (0, 1), \sigma > 0$$

$$A_t + C_t + q_t H_t = (1 + r_t)A_{t-1} + w_t N_t + q_t H_{t-1} 3344$$

where H_t is housing consumption and q_t is housing prices in terms of consumption.

Firms: Firms rent capital K_{t-1} at the rental rate r_t^K and hires labor L_t at the wage rate w_t .; br ξ Firms have access to the production function

$$Y_{t} = F(K_{t-1}, L_{t})$$

$$= \Gamma_{t} (\alpha K_{t-1}^{-\theta} + (1 - \alpha) L_{t}^{-\theta})^{\frac{1}{-\theta}}, \quad \theta > -1, \alpha \in (0, 1), \Gamma_{t} > 0$$

Profits are

$$\Pi_t = Y_t - w_t L_t - r_t^K K_{t-1}$$

Equilibrium:

- 1. Households maximize utility
- 2. Firms maximize profits
- 3. Labor market clear: $L_t = N_t = 1$
- 4. Goods market clear: $Y_t = C_t + I_t$
- 5. Housing market clear: $\bar{H} = H_t$
- 6. Asset market clear: $A_t = K_t$ and $r_t = r_t^k \delta$
- 7. Capital follows its law of motion: $K_t = (1 \delta)K_{t-1} + I_t$

Implication of profit maximization: From FOCs

$$r_t^k = F_K(K_{t-1}, L_t) = A_t \alpha K_{t-1}^{-\theta - 1} Y_t^{-1}$$

$$w_t = F_L(K_{t-1}, L_t) = A_t (1 - \alpha) L_t^{-\theta - 1} Y_t^{-1}$$

Implication of utility maximization: From FOC for consumption/saving:

$$C_t^{-\sigma} = \beta (1 + r_{t+1}) C_{t+1}^{-\sigma}$$

= \beta (1 + F_K(K_t, 1) - \delta) C_{t+1}^{-\sigma}

For housing:

$$C_t^{-\sigma} q_t = H_t^{-\sigma} + \beta C_{t+1}^{-\sigma} q_{t+1}$$

Simpler capital accumulation equation:

$$K_t = (1 - \delta)K_{t-1} + I_t$$

= $(1 - \delta)K_{t-1} + Y_t - C_t$
= $(1 - \delta)K_{t-1} + F(K_{t-1}, 1) - C_t$

System to solve:

$$\boldsymbol{H}(\boldsymbol{K},\boldsymbol{C},\boldsymbol{q},K_{-1}) = \begin{bmatrix} C_t^{-\sigma} - \beta(1+F_K(K_t,1))C_{t+1}^{-\sigma} \\ K_t - [(1-\delta)K_{t-1} + F(K_{t-1},1) - C_t] \\ \bar{H}^{-\sigma} + \beta C_{t+1}^{-\sigma}q_{t+1} - C_t^{-\sigma}q_t \end{bmatrix}$$

Spring 2024 Page 1 of 1