	Parameter	Estimation	Methods	200
(1) (a) pro	bability of	pag 1	probability of	
	entical male :	θ. p	identical temp	e: 0(1-p)
/	twing	Manager 1	twins	•
	ability of . ((1-0).q ²	probability of	: (1-6)(1-9) Je
	twins	100.00	twing	and one square
- Fr	stability of atemal opposite: atemal opposite:	(1_6).29	(1-9)	
Likelihoo	m; d = (θ.ρ) . ((+ (1-p)) f:	((1_0)q2) mp. ((1	_+)(1-4)2)ff
	= (m;+ f;)	(mf + ff + b -0)	(1-0)29 . p . (1-p). q	(1-9))b 2mf. (1-9) . (29. (1-9))b

Scanned with CamScanner

(b)
$$\frac{\partial \log (likelihood)}{\partial \theta} = \frac{mi+fi}{\theta} = \frac{mp+fp+b}{1-\theta} = 0 \rightarrow \theta = \frac{mi+fi}{mi+fi+mp+fp+b}$$

$$\frac{\partial \log (likelihood)}{\partial p} = \frac{mi}{p} = \frac{mi+fi}{1-p} = 0 \rightarrow p = \frac{mi}{mi+fi}$$

$$\frac{\partial \log (likelihood)}{\partial q} = \frac{2mp+b}{q} = \frac{2fp+b}{1-q} = 0 \rightarrow q = \frac{2mp+b}{2mp+2fp+2b}$$

(2) @ likelihood =
$$p(x=4).p(x=2).p(x=7).p(x=9)$$

= $(1-\theta)^3\theta (1-\theta)\theta (1-\theta)^6\theta (1-\theta)^8\theta = (1-\theta)^{18}.\theta^4$

leg (likelihood) = 18 log (1-0) + 4 log 0

$$\frac{\partial \log (\text{likelihood})}{\partial \theta} = \frac{18}{1-\theta} + \frac{4}{\theta} = 0 \longrightarrow \theta = \frac{4}{22}$$
if $\theta = \frac{4}{22} \text{ max}? \longrightarrow \frac{3^2 \log (\text{likelihood})}{3\theta^2} = \frac{-18}{(1-\theta)^2} - \frac{4}{\theta^2} < 0$

Naive Bayes

(b)
$$p(y=+1) = \frac{4}{6}$$
 $p(m=1|y=+1) = \frac{2}{4}$
 $p(y=-1) = \frac{2}{6}$ $p(m=1|y=-1) = \frac{2}{2}$

$$P(b=1|y=+1)=\frac{2}{4}$$
 $P(h=1|y=+1)=\frac{1}{4}$
 $P(b=1|y=-1)=\frac{1}{2}$ $P(h=1|y=-1)=\frac{2}{2}$

© data:
$$(0,0,1)$$

class +1 = $p(y=+1).p(m=0|y=+1).p(b=0|y=+1).p(h=1|y=+1)$
= $4/6.2/4.2/4.1/4 = 1/24$ our prediction
class -1 = $p(y=-1).p(m=0|y=-1).p(b=0|y=-1).p(h=1|y=-1)$
= 0

(a)
$$P(y=+1) = \frac{5}{16}$$
 $P(m=1|y=+1) = \frac{3}{16}$ $P(b=1|y=+1) = \frac{3}{16}$ $P(y=-1) = \frac{3}{1$

Second $f_1 < 1$ plot: Yes, No $f_2 > 1.5$ Dot

Yes, No

Overfitting

both adding & removing features can help remove noise

collecting more data

Increase K

Logistic Regression:

- 0
- 2) True
- 3) False: Ly Regularization: max likelihood (0,D) \ \|\theta||
- 4 + +/->
- @ Logistic Regression, We need a classifier not a regressor!
- (b) yes, shown in the graph
 if we change that example -> linear Logistic
 Regression cannot
 darify it correctly
- © $P = \frac{q}{q+1} = 0.9$ $R^{+} = \frac{q}{9+9} = 0.5$