ELOCKING BEHAVIOUR

DEMO OVERVIEW

Basic flocking implementation

Obstacle avoidance

Modelling food sources

WHAT DO BOIDS DO?

Boids react to local flockmates

- Limited sight radius
- Limited field of view

SELECT A BOID TO VIEW IT'S LOCAL FLOCKMATES

QUERYING FLOCKMATES

Every boid is aware of its neighbours

Naive solution runs in $O(n^2)$

Use 2D fixed grid spatial partition for fast neighbour queries

BOIDS FOLLOW RULES

Each rule produces a vector

Sum rule vectors to create a target

Boids move towards their targets

ALIGNMENT RULE

Steer towards the average heading of local flockmates

COHESION RULE

Steer towards the average location of local flockmates

SEPARATION RULE

If local flockmates get too close, steer away from their average position

OBSTACLE AVOIDANCE

Create obstacles with implicit surface polygonizer

Field function values and normals aid boids in avoiding obstacles

FOOD RESOURCES

Negate field function to draw boids into food source

Shrink radius of primitives as boids feast

EXTRA FUN STUFF

Neighbour graph of a flock

EXTRA FUN STUFF

Flocking cubes

EXTRA FUN STUFF

Boid emitters

