2.2 – Definitions of Limits MATH 2554 – Calculus I

Fall 2019

Definition (Limit of a Function)

Suppose the function f is defined for all x near a except possibly at a. If f(x) is arbitrarily close to L (that is, as close to L as we like) for all x sufficiently close (but not equal) to a, we write

$$\lim_{x\to a} f(x) = L$$

and say the limit of f(x) as x approaches a equals L.

Question: is it always true that $\lim_{x\to a} f(x) = f(a)$?

Finding limits from a graph

Find $f(1)$	$\lim_{x\to 1} f(x)$
f(2)	$\lim_{x\to 2} f(x)$
f(3)	$\lim_{x \to 3} f(x)$
f(4)	$\lim_{x \to 4} f(x)$

Definition (One-Sided Limits)

1. Right-sided limit. Suppose that f is defined for all x near a with x > a. If f(x) is arbitrarily close to L for all x sufficiently close to a with x > a, we write

$$\lim_{x\to a^+} f(x) = L.$$

2. Left-sided limit. Suppose that f is defined for all x near a with x < a. If f(x) is arbitrarily close to L for all x sufficiently close to a with x < a, we write

$$\lim_{x \to a^{-}} f(x) = L.$$

Examining limits graphically and numerically

Find
$$\lim_{x\to -3} \frac{x^2-9}{x+3}$$
 and $\lim_{x\to 1} \frac{x^2-9}{x+3}$.

Theorem (Relationship between One-Sided and Two-Sided Limits)

Assume that f is defined for all x near a except possibly at a. Then $\lim_{x\to a^+} f(x) = L$ if and only if $\lim_{x\to a^+} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$.

A function with a jump

$$g(x) = \begin{cases} x - 2 & x \neq 1 \\ 3 & x = 1 \end{cases}$$

Compute g(1) and $\lim_{x\to 1} g(x)$.

Homework Problems: Section 2.2 (pp.67-69): #1-6,17,18,27,33,35,46,48,