МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4
по дисциплине «Искусственные нейронные сети»
Тема: Распознавание рукописных символов

Студентка гр. 8383	 Максимова А.А.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2021

Цель работы

Реализовать классификацию черно-белых изображений рукописных цифр (28x28) по 10 категориям (от 0 до 9).

Набор данных содержит 60,000 изображений для обучения и 10,000 для тестирования.

Задачи

- Ознакомиться с представлением графических данных
- Ознакомиться с простейшим способом передачи графических данных нейронной сети
- Создать модель
- Настроить параметры обучения
- Написать функцию, позволяющую загружать изображение пользователю и классифицировать его

Требования

- **1.** Найти архитектуру сети, при которой точность классификации будет не менее 95%
- **2.** Исследовать влияние различных оптимизаторов, а также их параметров, на процесс обучения
- **3.** Написать функцию, которая позволит загружать пользовательское изображение не из датасета

Основные теоретические положения

Представление графических данных

Каждое изображение из базы данных MNIST имеет размер 28 на 28 пикселей и представлено в градациях серого, где 0 - черный цвет, 255 - белый, а все, что между, это и есть градации серого. Для более глубокого понимания рассмотрим как хранится первое изображение из этой базы данных.

Одно изображение представляет из себя тензор 2 ранга, форма имеет значение (28, 28). Как видно из рисунка, предоставленного ниже, матрица хранит в себе целочисленные значения (от 0 до 255).

Для вывода двумерного массива в виде изображения можно воспользоваться командой imshow(), назначение которой состоит в представлении 2D-растров.

Задача классификации

Задача, в которой имеется множество объектов, где каждый объект, исходя из его свойств и параметров, можно отнести к конкретному классу. Таким образом, нейронная сеть, получая на вход объект, возвращает на выход вероятность (дискретную величину) его принадлежности к каждому из классов. В процессе обучения ИНС стремимся достигнуть результата, когда вероятность принадлежности к правильному классу имеет значение единицы, к другим классам - нуля.

Выполнение работы

1. Были импортированы все необходимые для работы классы и функции.

```
import tensorflow as tf
import matplotlib.pyplot as plt
import tensorflow.keras.optimizers as opt

from tensorflow.keras.layers import Dense, Flatten #полносвязанный слой
from tensorflow.keras.models import Sequential #сеть прямого распространения
from tensorflow.keras.utils import to_categorical
```

2. Загрузка данных была выполнена с помощью функции load_data(), которая возвращает кортеж из 4 массивов NumPy: данные для обучения и тестирования.

```
mnist = tf.keras.datasets.mnist
#загрузка обучающих и тестовых данных - 4 массива NumPy
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
```

Для проверки успешности сравнили тестовой изображение с его меткой.

3. Была выполнена нормализация входных данных - массивов изображений, так как предпочтительно подавать нейронной сети стандартизированные данные, изменяющиеся в диапазоне от нуля до единицы.

```
#нормализация данных
train_images = train_images / 255.0
test_images = test_images / 255.0
print(train_images[0])
```

Как видно, нормализация выполнена успешно.

4. Кроме того, необходимо было подготовить правильный формат выходных значений. Правильные ответы находятся в диапазоне от 0 до 9, а нейронная сеть будет возвращать вектор из 10 элементов значения которых должны изменяться в диапазоне от 0 до 1. Таким образом, нужно было заменить исходные метки на вектора с нулевыми значениями и 1 в элементе, индекс которого соответствует значению, хранимому прежде в метке.

train_images[0] =
$$5$$

train_labels[0] = 5 train_labels[0] = $[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]$

```
#изменение формата правильных ответов
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
print(train_labels)
```

Как можно заметить, преобразование из вектора в матрицу было выполнено успешно.

```
[[0. 0. 0. ... 0. 0. 0.]
[1. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
```

5. После была определена функция для создания модели ИНС прямого распространения, состоящей из 3 слоев: первый (входной) содержит $28^2 = 784$ (пикселя) нейрона, второй (скрытый) - 256 нейронов, функция активации - Relu: $\max(0, x)$; выходной слой - 10 нейронов (10 классов), функция активации -

Softmax: $\frac{e^{x_i}}{\sum_{i=0}^k e^{x_i}}$, чтобы интерпретировать полученные результаты в терминах вероятности.

6. Передача графических данных нейронной сети

Так как на входной слой необходимо передавать вектор из 784 элементов, а не имеющуюся матрицу 28 на 28, то по этой причине используется специальный слой Flatten, выравнивающий входные данные (преобразующий формат изображения из 2D-массива в 1D-массив).

7. Были определены следующие параметры обучения сети: в качестве функции потерь используется "categorical_crossentropy", которую предпочтительно использовать в задачах классификации, когда количество классов больше двух, метрика - точность, оптимизатор - "adam".

```
def build_model():
    model = Sequential()
    model.add(Flatten())
    model.add(Dense(256, activation='relu'))
    model.add(Dense(10, activation='softmax'))
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    return model
```

8. После было запущено обучение сети с помощью метода fit(адаптирует модель под обучающие данные).

```
model = build_model()
hist = model.fit(train_images, train_labels, epochs=5, batch_size=128)
```

9. Для проверки работоспособности программы она была запущена. В процессе обучения нейронной сети отображаются две величины: loss - потери сети и ассигасу - точность на обучающих данных. Как видно, сеть уже показывает хорошие результаты.

10. Была выполнена проверка модели на распознавание контрольного набора. Как и ожидалось, величина точности на тестовых данных оказалась ниже примерно на 1% по сравнению с точностью на обучающих данных. Так как выбранная архитектура сети достигает заданной по условию точности 95%, то не будем вносить в нее изменения.

```
#проверка работы сети на контрольных данных test_loss, test_acc = model.evaluate(test_images, test_labels) print("test_loss: ", test_loss, "\n test_acc: ", test_acc)
```

test_loss: 0.07180648297071457 test_acc: 0.9782999753952026

Исследование влияния различных оптимизаторов, а также их параметров на процесс обучения

Рассматриваем задачу минимизации целевой функции (функции потерь), имеющей форму суммы: $Q(w) = \frac{1}{n} \sum_{i=1}^{n} Q_i(w)$,

где параметр w, минимизирующий Q(w), следует оценить. Каждый член суммы Q_i обычно ассоциируется с i —ым наблюдением (объектом) в обучающем наборе данных.

Когда для минимизации вышеприведенной функции используется стандартный метод градиентного спуска, то итерации можно представить в виде следующей формулы:

$$w := w - \eta
abla Q(w) = w - \eta \sum_{i=1}^n
abla Q_i(w)/n$$

где η — размер шага (скорость обучения).

Эксперимент 1

Название: SDG - Стохастический градиентный метод

$$w := w - \eta \nabla Q_i(w)$$

Формула:

Суть: в отличие от классического градиентного спуска, вычисляющего градиент по всей обучающей выборке, берет случайным образом один объект из выборки и вычисляет по нему градиент, что позволяет сократить вычислительные ресурсы, достигая более быстрые итерации в обмен на более низкую сходимость. Кроме того, для повышения точности, можно использовать mini-batch, то есть вычислять градиент не по всему множеству обучающей выборки, но и не по одному объекту, что приводит к более гладкой сходимости. Недостатки: огромная дисперсия оценки градиента.

Параметры:

learning_rate: float >= 0. Скорость обучения.

momentum: float >= 0. Параметр, ускоряющий SGD в соответствующем направлении

и гасящий колебания.

nesterov: boolean. Применять ли импульс Нестерова?

Результаты применения:

№ опыта	learning_rate	momentum	nesterov	Точность
1	0.9	0.0	False	97.9%
2	0.5	0.0	False	97.3%
3	0.1	0.0	False	96.2%
4	0.01	0.0	False	90.9%
5	0.001	0.0	False	81.4%
6	0.9	0.0	True	98.0%
7	0.1	0.0	True	95.9%
8	0.001	0.0	True	91.1%
9	0.9	0.1	False	91.4%
10	0.9	0.5	False	92.4%
11	0.9	0.9	False	95.9%
12	0.9	0.9	True	95.9%

Выводы:

Как видно из первых 5 опытов, точность работу нейронной сети при использовании оптимизатора SDG увеличивается пропорционально увеличению параметра learning_rate, отвечающего за скорость обучения.

Применение импульса Нестерова, как видно из опытов 6-8 в сравнении с опытами 1, 3 и 5, не дало явного увеличения или уменьшения точности сети.

Как можно заметить из значений точности на опытах 9-11, увеличение значение параметра momentum приводит к увеличению точности работы сети, но в сравнение с опытом 1, значение точности стало меньше.

Эксперимент 2

<u>Название:</u> AdaGrad - Адаптивный градиентный алгоритм Формула:

$$G_t = G_t + g_t^2$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} g_t$$

где G_t — сумма квадратов обновлений параметра, ϵ — сглаживающий параметр, необходимый чтобы избежать деление на 0.

<u>Суть:</u> является модификацией стохастического алгоритма градиентного спуска с отдельной для каждого параметра скоростью обучения. Чем больше обновлений получает параметр, тем меньше скорость обучения.

<u>Недостатки:</u> G_t может увеличиваться сколько угодно, что через некоторое время приводит к слишком маленьким обновлениям и параличу алгоритма.

Параметры:

learning rate: float >= 0. Уровень начального обучения.

Результаты применения:

№ опыта	learning_rate	Точность	
1	0.9	90.4%	
2	0.5	96.8%	
3	0.1	97.4%	
4	0.01	93.4%	
5	0.001	87.5%	

Выводы:

Как видно из результатов опытов, наилучшее значение точности достигается при некотором среднем значении скорости обучения.

Эксперимент 3

<u>Название:</u> RMSprop - Среднеквадратичное распространение

Формула:

$$E[g^2]_t = \gamma E[g^2]_{t-1} + (1 - \gamma)g_t^2$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t$$

Суть: скорость обучения настраивается для каждого параметра. Модификация идеи Adagrad: также обновляет меньше веса, которые слишком часто обновляются, но вместо полной суммы обновлений использует усредненный по истории квадрат градиента. Проще говоря, идея заключается в делении скорости обучения для весов на сгруппированные средние значения недавних градиентов этого веса.

Параметры:

learning_rate: float >= 0. Скорость обучения

rho: float >= 0.

Результаты применения:

№ опыта	learning_rate	rho	Точность
1	0.9	0.9	18.2%
2	0.5	0.9	38.5%
3	0.1	0.9	84.7%
4	0.01	0.9	97.6%
5	0.001	0.9	98%
6	0.001	0.5	97.5%
7	0.001	0.1	97.3%

Выводы:

Как видно из опытов 1-5, уменьшение скорости обучения увеличивает точность работы сети. Изменение второго параметра не дало улучшения.

Эксперимент 4

Название: Adam

Формула:

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t + \epsilon}} \hat{m}_t$$

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \ \hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Суть: Представляет из себя объединение преимуществ двух других расширений стохастического градиентного спуска (AdaGrad и RMSProp), то есть сочетает идею накопления движения и идею более слабого обновления весов для типичных признаков.

Параметры:

learning_rate: float >= 0. Скорость обучения.

beta_1: float, 0 < beta < 1. Обычно близко к 1.

beta_2: float, 0 < beta < 1. Обычно близко к 1.

amsgrad: boolean. Применять ли AMSGrad вариант этого алгоритма из статьи «О

конвергенции Adam и не только».

Результаты применения:

№ опыта	learning_rate	beta_1	beta_2	amsgrad	Точность
1	0.9	0.9	0.999	False	8.9%
2	0.5	0.9	0.999	False	9.9%
3	0.1	0.9	0.999	False	81.6%
4	0.01	0.9	0.999	False	97.1%
5	0.001	0.9	0.999	False	97.7%
6	0.001	0.9	0.999	True	97.8%
7	0.001	0.5	0.999	True	97.8%

8	0.001	0.9	0.5	True	96.5%
9	0.001	0.5	0.5	True	96.5%
10	0.001	0.1	0.999	True	97.7%
11	0.001	0.9	0.1	True	96.2%
12	0.001	0.1	0.1	True	95.9%

Выводы:

Как видно из опытов 1-5, увеличение скорости обучения влечет к потери точности нейронной сети.

Из опыта 6 видно, что применение AMSgrad незначительно увеличивает точности ИНС.

Как видно из опытов 6-8, уменьшение значений beta_1, beta_2 привело к несущественной потери точности сети, еще большее уменьшение данных параметров в опытах 10-12 влечет немного большие потери. Кроме того, видно, что уменьшение параметра beta_2 сильнее сказывается на точности сети.

Сравнение оптимизаторов

Наибольшие значения точности 97.8-98% были достигнуты при использовании оптимизаторов Adam и RMSprop при одинаковой скорости обучения равной 0.001, SDG при скорости обучения равной 0.9. С учетом того, что оптимизатор Adam является расширением стохастического градиентного спуска и RMSprop, то такое результат вполне логичен. Оставим оптимизатор Adam в качестве используемого, в силу его преимуществ - маленькие требования к памяти, вычислительно эффективен, хорошо подходит для задач, которые являются большими с точки зрения данных и параметров.

Ниже представлены графики точности и потерь сети на обучающих данных и значения данных показателей на контрольных данных для выбранной конфигурации сети.

test_loss: 0.07213353365659714 test_acc: 0.9771999716758728

Написание программы, позволяющей загружать изображение пользователю и классифицировать его

Выполнение работы

1. Были импортированы все необходимые для работы классы и функции.

```
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from tensorflow.keras.models import load_model
```

2. Загрузка изображения была выполнена с помощью функции load_usr_img(usr_path), принимающей путь к изображению, считываемый в функции work_with_usr().

```
| def load_usr_img(usr_path):
    img = Image.open(usr_path).convert('L') #преобразовать в черно-белый

| img = img.resize((28, 28)) #изменить размер
    img = np.array(img) #конвертируем в массив питру
    img = 1 - img / 255 #нормализация и инверсия
    return np.expand_dims(img, axis=0) #predict ожидает трехмерный тензон
```

```
def work_with_usr():
    print("Enter the path to the image")
    path = input()
    while not path:
        print("Try it again")
        path = input()
    img = load_usr_img(path)
    model = load_model("ins.h5") #загрузка инс из файла
    prediction = model.predict(img) #применение сети для распознавания

plt.imshow(img[0], cmap=plt.cm.binary)
    plt.show()
    print("Network prediction: ", np.argmax(prediction))
```

Тестирование

Производилось на картинках разных размеров, в различных цветах и толщине линий.

<u>Тест 1</u>

Входной изображение:

Обработанное изображение:

Предсказание сети:

```
Network prediction: 3
Want to upload your own image? Enter: y or n.
```

<u>Тест 2</u>

Входной изображение:

Обработанное изображение:

Предсказание сети:

tests/img2.png
Network prediction: 7
Want to upload your own image? Enter: y or n.

<u>Тест 3</u>

Входной изображение:

Обработанное изображение:

Предсказание сети:

Network prediction: 3

<u>Тест 4</u>

Входной изображение:

Обработанное изображение:

Предсказание сети:

Network prediction: 3

<u>Тест 5</u>

Входной изображение:

Обработанное изображение:

Предсказание сети:

```
Enter the path to the image

tests/img5.png

Network prediction: 5

Want to upload your own image? Enter: y or n.
```

Выводы

В результате выполнения лабораторной работы был реализован механизм распознавания рукописных цифр из базы данных MNIST. Была построена модель, решающая задачу классификации. Было изучено влияние различных оптимизаторов и их параметров на процесс обучения нейронной сети. Были построены графики точности и потерь сети для выбранной конфигурации. Получилось достигнуть достаточно высокого значения точности сети - 98%.

Была написана и протестирована программа, реализующая загрузку пользовательского изображения и его классификации. В результате тестирования на пользовательских изображения ИНС дала правильный прогноз в 4 из 5 случаях.