Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №2 по дисциплине «Методы машинного обучения» на тему

«Изучение библиотек обработки данных»

Выполнил: студент группы ИУ5-21М

Мьоу Зо У

1. Цель лабораторной работы

Изучить библиотеки обработки данных Pandas и PandaSQL.

Часть 1

Требуется выполнить первое демонстрационное задание под названием «Exploratory data analysis with Pandas» со страницы курса mlcourse.ai.

In [1]:	im	mport pandas as pd														
In [2]:	pd	d.set_option("display.width", 70)														
		data = pd.read_csv('adult.data.csv') data.head()														
Out[3]:		age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per-week	native- country	salary
	0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United- States	<=50K
	1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
	2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=50K
	3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
	4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
	<u> </u>															

```
In [4]: data["sex"].value_counts()
Out[4]: Male
                21790
               10771
        Female
        Name: sex, dtype: int64
In [5]: data[data["sex"] == "Female"]["age"].mean()
Out[5]: 36.85823043357163
In [6]: print("{0:%}".format(data[data["native-country"] == "Germany"]
        .shape[0] / data.shape[0]))
        0.420749%
<=50K: = 36.78373786407767 ± 14.020088490824813 years
        >50K: = 44.24984058155847 ± 10.51902771985177 years
In [8]: high_educations = set(["Bachelors", "Prof-school", "Assoc-acdm",
        "Assoc-voc", "Masters", "Doctorate"])
def high_educated(e):
        return e in high_educations
        data[data["salary"] == ">50K"]["education"].map(high_educated).all()
Out[8]: False
```

min 25% 50% count mean 75% max race sex Female | 119.0 37.117647 13.114991 17.0 27.0 36.0 46.00 80.0 Amer-Indian-Eskimo 37.208333 Male 192.0 17.0 28.0 35.0 45.00 82.0 12.049563 **Female** | 346.0 35.089595 12.300845 17.0 25.0 43.75 75.0 33.0 Asian-Pac-Islander Male 693.0 39.073593 12.883944 18.0 29.0 37.0 46.00 90.0 1555.0 37.854019 12.637197 17.0 28.0 37.0 46.00 90.0 Female Black Male 1569.0 37.682600 12.882612 17.0 27.0 36.0 46.00 90.0 Female 109.0 31.678899 11.631599 17.0 23.0 29.0 39.00 74.0 Other 162.0 34.654321 17.0 26.0 77.0 Male 11.355531 32.0 42.00 Female 8642.0 36.811618 14.329093 17.0 25.0 35.0 46.00 90.0 White 19174.0 | 39.652498 | 13.436029 Male 17.0 29.0 38.0 49.00 90.0

```
In [12]: m = data["hours-per-week"].max()
    print("Maximum is {} hours/week.".format(m))
    people = data[data["hours-per-week"] == m]
    c = people.shape[0]
    print("{} people work this time at week.".format(c))
    s = people[people["salary"] == ">50K"].shape[0]
    print("{0:%} get >50K salary.".format(s / c))

Maximum is 99 hours/week.
    85 people work this time at week.
```

29.411765% get >50K salary.

In [13]: p = pd.crosstab(data["native-country"], data["salary"],
 values=data['hours-per-week'], aggfunc="mean")
 p

Out[13]:

salary	<=50K	>50K
native-country		
?	40.164760	45.547945
Cambodia	41.416667	40.000000
Canada	37.914634	45.641026
China	37.381818	38.900000
Columbia	38.684211	50.000000
Cuba	37.985714	42.440000
Dominican-Republic	42.338235	47.000000
Ecuador	38.041667	48.750000
El-Salvador	36.030928	45.000000
England	40.483333	44.533333
France	41.058824	50.750000
Germany	39.139785	44.977273
Greece	41.809524	50.625000
Guatemala	39.360656	36.666667
Haiti	36.325000	42.750000
Holand-Netherlands	40.000000	NaN
Honduras	34.333333	60.000000
Hong	39.142857	45.000000
Hungary	31.300000	50.000000
India	38.233333	46.475000
Iran	41.440000	47.500000

Часть 2

Требуется выполнить следующие запросы с использованием двух различных библио-

тек — Pandas и PandaSQL:

- один произвольный запрос на соединение двух наборов данных,
- один произвольный запрос на группировку набора данных с использованием функций агрегирования.

Также требуется сравнить время выполнения каждого запроса в Pandas и PandaSQL.

In [18]: wind.head()

Out[18]:

	row	UNIX	date	time	speed
(1	1475315718	2016-09-30	23:55:18	7.87
1	2	1475315423	2016-09-30	23:50:23	7.87
2	3	1475315124	2016-09-30	23:45:24	9.00
3	4	1475314821	2016-09-30	23:40:21	13.50
4	5	1475314522	2016-09-30	23:35:22	15.75

In [19]: wind.dtypes

Out[19]: row int64

UNIX int64
date object
time object
speed float64
dtype: object

In [20]: temp.head()

Out[20]:

	row	UNIX	date	time	temperature
0	1	1475315718	2016-09-30	23:55:18	48
1	2	1475315423	2016-09-30	23:50:23	48
2	3	1475315124	2016-09-30	23:45:24	48
3	4	1475314821	2016-09-30	23:40:21	48
4	5	1475314522	2016-09-30	23:35:22	48
4					

In [21]: temp.dtypes

Out[21]: row int64

UNIX int64 object time object temperature int64

dtype: object

In [22]: wind.merge(temp[["UNIX", "temperature"]], on="UNIX").head()

Out[22]:

	row	UNIX	date	time	speed	temperature
0	1	1475315718	2016-09-30	23:55:18	7.87	48
1	2	1475315423	2016-09-30	23:50:23	7.87	48
2	3	1475315124	2016-09-30	23:45:24	9.00	48
3	4	1475314821	2016-09-30	23:40:21	13.50	48
4	5	1475314522	2016-09-30	23:35:22	15.75	48

4

100 loops, best of 5: 10.9 ms per loop

```
In [24]: pysqldf("""SELECT w.row, w.UNIX, w.date, w.time,
    w.speed, t.temperature
    FROM wind AS w JOIN temp AS t
    ON w.UNIX = t.UNIX
    """).head()
```

Out[24]:

	row	UNIX	date	time	speed	temperature
0	1	1475315718	2016-09-30	23:55:18	7.87	48
1	2	1475315423	2016-09-30	23:50:23	7.87	48
2	3	1475315124	2016-09-30	23:45:24	9.00	48
3	4	1475314821	2016-09-30	23:40:21	13.50	48
4	5	1475314522	2016-09-30	23:35:22	15.75	48

1 loop, best of 5: 776 ms per loop

```
In [26]: wind.groupby("date")["speed"].mean().head()
```

Out[26]: date

2016-09-01 6.396560 2016-09-02 5.804086 2016-09-03 4.960248 2016-09-04 5.184571 2016-09-05 5.830676 Name: speed, dtype: float64

100 loops, best of 5: 2.81 ms per loop

```
In [28]: pysqldf("""SELECT date, AVG(speed)
         FROM wind
          GROUP BY date
          """).head()
Out[28]:
                       AVG(speed)
            date
          0 2016-09-01 6.396560
          1 2016-09-02 5.804086
          2 2016-09-03 4.960248
          3 2016-09-04 5.184571
          4 2016-09-05 5.830676
In [29]:
         %%timeit
         pysqldf("""SELECT date, AVG(speed)
          FROM wind
         GROUP BY date
         1 loop, best of 5: 327 ms per loop
```

Список литературы

[1] Гапанюк Ю. Е. Лабораторная работа «Изучение библиотек обработки данных»

[Электронный ресурс] // GitHub. — 2019. — Режим доступа:

https://github.com/

ugapanyuk/ml course/wiki/LAB PANDAS (дата обращения: 20.02.2019).

[2] pandas 0.24.1 documentation [Electronic resource] // PyData. — 2019. — Access mode:

http://pandas.pydata.org/pandas-docs/stable/ (online; accessed: 20.02.2019).

[3] You are my Sunshine [Electronic resource] // Space Apps Challenge. — 2017.

Access mode: https://2017.spaceappschallenge.org/challenges/earth-and-us/you-are-my-sunshine/details (online; accessed: 22.02.2019).

[4] yhat/pandasql: sqldf for pandas [Electronic resource] // GitHub. — 2017. — Access mode:

https://github.com/yhat/pandasql (online; accessed: 22.02.2019).

[5] Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] //

Read the Docs. — 2019. — Access mode: https://ipython.readthedocs.io/en/stable/ (online; accessed: 20.02.2019).