General Chemistry C, Fall 2023 Problem Set 2

•	Due date: 2023/10/11 10:00 AM. Write down how you calculate the answer step-by-step (don't forget about the units). Please upload a PDF file containing your answers to NTU COOL.
1.	(3 pt) Explain why the third ionization energy of manganese is much higher than three times its first ionization energy (IE $_1$ = 717.4 kJ/mol, IE $_2$ = 1509 kJ/mol, IE $_3$ = 3248 kJ/mol).
2.	(3 pt) The electron affinity of an iodine atom is 295 kJ/mol. Calculate the longest photon wavelength (in nm) required to eject an electron from an iodine anion in the gas phase.
3.	(8 pt) Determine the <i>molecular shapes</i> and <i>hybridization types of the central atom</i> for the following molecules: (a) NO ₂ ⁻ , (b) COCl ₂ , (c) H ₃ O ⁺ , and (d) ICl ₄ ⁻ .

4. (4 pt) Draw resonance structures of HSO_4^- ion.

- 5. (6 pt) Use valence bond theory and the hybridization concept to describe the chemical bonding in a carbon dioxide (CO₂) molecule.
 6. (6 pt) (a) Compare the relative bond energies of O₂, O₂⁺, O₂⁻, and O₂²⁻ using MO theory. (b) Which of these molecules are diamagnetic?
 7. (8 pt) Caffeine (C₈H₁₀N₄O₂) can be found in many beverages and food. (a) Draw the Lewis structure of caffeine, including lone electron pairs (you may use your Google
- Lewis structure of caffeine, including lone electron pairs (you may use your Google friend). (b) How many σ bonds and π bonds exist in a caffeine molecule? (c) Label the hybridization types of the four nitrogen atoms in caffeine.

8. (4 pt) Draw the skeleton chemical structure of cholesterol (C₂₇H₄₆O, and yes, you may use your Google friend again). Label all the chiral centers in this molecule.

9. (4 pt) Does this molecule have a non-zero dipole moment?

10. (4 pt) Arrange all the isomers of trichlorobenzene in the order of decreasing dipole moment.