University of Barisal Department of Computer Science and Engineering

I" Year 1" Semester B. Sc. (Hon's) Final Examination – 2021 Session: 2020-2021

Course Code: PHY-1105 Course Title: Physics

Time: 3:00 Hours

Marks: 60

[Answer any 5 (five) from the following questions]

T,	a)	Describe thermo-electic thermometer.	4
	b)	Derive and discuss the Van der Waals equation of state of a gas.	5
	c)	Calculate the root mean square velocity of a molecule of mercury (molecular weight 221) vapour at 300K.	3
2.	a)	Write down the postulates of kinetic theory of gases.	3
	b)	Derive Maxwell's Thermodynamic Relations.	6
	c)	If the temperature of a sink is 20°C and that if the source 250°C, calculate the efficiency of the Carnot engine.	3
3.	a)	How can we explain uniform circular motion as a SHM?	- 5
	6)	Describe an expression for energy in simple harmonic motion with graphical interpretation	4
	c)	After landing on an unfamiliar planet, a space explorer constructs a simple pendulum oflength 50.0 cm. She finds that the pendulum makes 100 complete swings in 136s. What is thevalue of g on this planet?	3
4	: (a)	Explain the principle of superposition of two waves.	3
Ī	b)	Derive an expression of stationary waves and also discuss the conditions for nodes and antinodes.	6
	c)	The amplitude of a wave is 0.5 cm. Find the displacement of the point at a distance $x=\lambda/6$ from the source at time $t=T/3$.	2
5.	a)	Define single crystal and polycrystalline solids.	1
	b)	What are the three-dimension crystal systems? Mention the characteristics of their unit cells.	(
	c)	Find the d-spacing of d ₁₀₀ of a cubic crystal of lattice constant 4.12 Å.	3
6.	a)	Explain Miller indices of a plane of a crystal.	3
Т	b)	Prove that the direction [hkl] is normal to the plane (hkl) for a cubic lattice.	6
	c)	Visible light of wavelength 5000A undergoes scattering from a crystal of refractive index 1.5. Calculate the maximum frequency of incident radiation when the velocity of sound is 500 ms ⁻¹ .	3
7.	a)	Explain Huygens principle.	3
-	b)	Briefly describe the condition of bright and dark fringe from Young's double slit experiment.	5
-	c)	In Young's double slit experiment the distance between the two slits is 0.8mm and the distance of the sereon favorable slits is 1 m. Calculate the width of the bright hand when the slits are Onebyzero Edu - Organized Learning, Smooth Career	4

Ī			illuminated by a monochromatic light of wavelength of 5890×10 ⁻¹⁸ m.	C
	8.	a)	What do you mean by diffraction? Write down the condition of diffraction.	mean by diffraction? Write down the condition of diffraction.
		6	Explain the method for determination of wavelength of monochromatic light by a plane transmission grating.	6
- 4		c)	A grating containing 4000 slits per centimeter is illuminated with a monochromatic light and produces the second-order bright line at a 30° angle. What is the wavelength of the light used?	