РЕКОМЕНДАТЕЛЬНЫЕ СИСТЕМЫ

ЧТО МЫ ХОТИМ НАУЧИТЬСЯ ДЕЛАТЬ

<u> МФТИ</u>

- Есть база пользователей и база объектов (фильмов, музыки, товаров в интернет-магазине)
- Есть обратная связь от пользователей: оценки, просмотры, покупки
- Нужно научиться рекомендовать пользователю то, что ему понравится

РЕКОМЕНДАЦИИ ФИЛЬМОВ: ВОЗМОЖНАЯ ПОСТАНОВКА ЗАДАЧИ

<u>МФТИ</u>

 Есть известные оценки, которые пользователи поставили уже просмотренным фильмам

Нужно:

- Спрогнозировать оценки, которые поставили бы пользователи другим фильмам
- Порекомендовать пользователям то, что им больше понравится

РЕКОМЕНДАЦИИ ФИЛЬМОВ

Λ	МФТИ	

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля		5	2	
Вова			3	5
Коля	3		4	5
Петя				4
Ваня		5	3	3

РЕКОМЕНДАЦИИ ФИЛЬМОВ

Λ	МФТИ

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля		5	2	?
Вова			3	5
Коля	3		4	5
Петя				4
Ваня		5	3	3

	Платье	Туфли	Кожаная куртка	Лабутены
Маша	1	1	1	1
Юля		1	1	?
Вова			1	1
Коля			1	1
Петя				1
Ваня		1	1	1

USER 2 ITEM

<u>МФТИ</u>.

$$\mathsf{PMI} = \mathsf{log} rac{p(x,y)}{p(x)p(y)}$$

- p(x) вероятность встретить объект (в пользовательской сессии/среди купленных/среди понравившихся)
- $m{p}(y)$ вероятность встретить объект y

ДОПОЛНИТЕЛЬНЫЕ ОГРАНИЧЕНИЯ

\<u>МФТИ</u>,

- 🕨 Хиты
- Из той же категории
- > Смотрят/слушают/покупают вместе

РЕЗЮМЕ

<u>\МФТИ</u>,

- Рекомендации
- User 2 item и item 2 item
- Дополнительные ограничения

KNN И МАТРИЧНЫЕ РАЗЛОЖЕНИЯ

USER-BASED kNN

Λ	МФТИ

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля		5	2	
Вова			3	5
Коля	3		4	5
Петя				4
Ваня		5	3	3

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4		2
Юля		5		?
Вова			3	5
Коля	3		4	5
Петя				4
Ваня		5	3	3

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля		5	2	?
Вова			3	5
Коля	3		4	5
Петя				4
Ваня		5	3	3

ITEM-BASED kNN

Λ	МФТИ	
	v——	

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля		5	2	?
Вова			3	5
Коля	3		4	5
Петя				4
Ваня		5	3	3

МАТРИЧНЫЕ РАЗЛОЖЕНИЯ

<u> МФТИ</u>

j

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля		5	2	
Вова			3	5
Коля	3	?	4	5
Петя				4
Ваня		5	3	3

i

<u>\мфти</u>,

- u_i «интересы пользователей»
- v_j «параметры фильмов»

$$\langle x_{ij}pprox \langle u_i,v_j
angle =\sum_{k=1}u_{ik}v_{jk}$$

$$x_{ij} = \langle u_i, v_j \rangle$$

$$\sum_{i,j} (\langle u_i,v_j
angle - x_{ij})^2 o \mathsf{min}$$

РЕЗЮМЕ

<u>\МФТИ</u>

- Mатрица user-item
- kNN
 - User-based
 - Item-based
- Матричные разложения

ПОДХОДЫ К ПОСТРОЕНИЮ РЕКОМЕНДАТЕЛЬНЫХ СИСТЕМ

ПОДХОДЫ К ПОСТРОЕНИЮ РЕКОМЕНДАЦИЙ

∖<u>мфти</u>.

- Collaborative filtering
- Content-based
- Demographic
- Utility-based
- Knowledge-based

COLLABORATIVE FILTERING

<u>\МФТИ</u>

 Рекомендации для пользователя строятся на основе оценок похожих пользователей

CONTENT-BASED

<u> МФТИ</u>

- Рассчитываются признаки для пользователей и объектов
- Строится модель классификации/регрессии, приближающая оценки пользователей

DEMOGRAPHIC

<u> МФТИ</u>

- > Производится сегментация пользователей на группы
- Рекомендации строятся на основе предпочтений группы

UTILITY-BASED

<u>\МФТИ</u>,

- ▶ Для каждого пользователя строится utility function
- > Как построить user based utility function?

KNOWLEDGE-BASED

<u>МФТИ</u>

 Строится база знаний о том, как объекты I соотносятся с интересами и предпочтениями пользователя

ПОДХОДЫ К ПОСТРОЕНИЮ РЕКОМЕНДАЦИЙ

/<u>\МФТИ</u>

- Collaborative filtering
- Content-based
- Demographic
- Utility-based
- Knowledge-based

- Advantages:
 - Cross-genre interests
 - Implicit feedback
 - Quality improving over time
- Problems:
 - "Cold-start" problem for users
 - "Cold-start" problem for items
 - "Gray sheep" problem
 - "Everybody likes bananas"

<u> МФТИ</u>

- Advantages:
 - Cross-genre interests
 - Implicit feedback
 - Quality improving over time
- Problems:
 - "Cold-start" problem for users
 - "Cold-start" problem for items
 - "Gray sheep" problem
 - "Everybody likes bananas"

- Advantages:
 - Cross-genre interests
 - Implicit feedback
 - Quality improving over time
- Problems:
 - "Cold-start" problem for users
 - "Cold-start" problem for items
 - "Gray sheep" problem
 - "Everybody likes bananas"

- Доступно достаточно информации о пользователях и их предпочтениях?
- Доступно достаточно информации об объектах?
- Хочется получить преимущества обоих подходов?
- Давайте их объединять!

ГИБРИДНЫЕ РЕКОМЕНДАТЕЛЬНЫЕ СИСТЕМЫ

ЗАЧЕМ СТРОИТЬ ГИБРИДЫ

\<u>МФТИ</u>,

- Разные имеют свои недостатки и преимущества
- Вместо выбора гибко используем всё

КАКИЕ БЫВАЮТ ВИДЫ ГИБРИДИЗАЦИИ

<u> ∫МФТИ</u>

- Weighted
- Switching
- Mixed
- Feature combination
- Cascade
- Feature augmentation

WEIGHTED

<u>\МФТИ</u>,

- Рекомендации строятся на основе комбинирования оценок от разных систем с весами
- Например:
 - Линейная комбинация
 - Голосование

 Рекомендации строятся путем переключения между системами, работающими независимо, на основании критериев для переключения Список рекомендаций состоит из «смеси» рекомендаций от разных систем

FEATURE COMBINATION

\<u>МФТИ</u>.

- ▶ Подход основан на content-based
- Признаки от разных систем объединяются в одну выборку для построения единой модели

CASCADE

\<u>МФТИ</u>.

- Поэтапное применение нескольких моделей для уточнений рекомендаций
- Candidate selection

FEATURE AUGMENTATION

<u>\МФТИ</u>

Выход от одной или нескольких рекомендательных систем используется как входные признаки для другой системы

ГИБРИДИЗАЦИЯ

<u>\МФТИ</u>

- > Часто улучшает качество рекомендаций
- Иногда положительно сказывается на разнообразии
- Не гарантирует решения всех проблем, связанных с тем или иным подходом

ОФФЛАЙН ОЦЕНКА КАЧЕСТВА

КАК ИЗМЕРИТЬ КАЧЕСТВО?

<u>\МФТИ</u>.

- Качество модели = качество прогноза оценок?
 - Среднеквадратичное отклонение (RMSE)
 - Среднее абсолютное отклонение (МАЕ)

ПРАВИЛЬНО ЛИ МЫ ЖИВЁМ?

<u>\МФТИ.</u>

- > Что мы оцениваем: качество прогноза оценок
- > Что нужно оценивать: качество рекомендаций

TOЧНОСТЬ (Precision@k)

<u>МФТИ</u>.

Рекомендованные товары	Купленные товары
Синяя футболка	Красная футболка
Красная футболка	Кеды
Кроссовки	Кепка
Кепка	h KORMIOSTRO POKOMOLIROLIM
Зелёная футболка	$m{k}$ — количество рекомендаци $m{k}$
Precision@ $k=rac{}{}$ купленное из	рекомендованного
Trecision@n —	_

 $lacksymbol{
ho}$ AveragePrecision@ $m{k}$ — усреднённый по сессиям Precision@ $m{k}$

ПОЛНОТА (Recall@k)

Recall@ $k = rac{ ext{купленное из рекомендованного}}{ ext{количество покупок}}$

igwedge AverageRecall@ $oldsymbol{k}$ — усреднённый по сессиям Recall@ $oldsymbol{k}$

<u>МФТИ</u>

ВЗВЕШЕННЫЙ ЦЕНАМИ Recall@k

Рекомендованные товары		Купленные товары
Синяя футболка — 1000р		Красная футболка — 1200р
Красная футболка — 1200р		Кеды — 3000р
Кроссовки — 3500р		Кепка — 900р
Кепка — 900р	K'	
Зелёная футболка — 800р		

Взвешенный ценами Recall@k= $= \frac{\mathsf{стоимость}\;\mathsf{купленногo}\;\mathsf{us}\;\mathsf{рекомендованногo}}{\mathsf{стоимость}\;\mathsf{покупок}}$

РЕЗЮМЕ

\<u>МФТИ</u>.

- Проблема оценки качества по MSE и MAE
- ▶ Precision@k
- ightharpoonup Recall@ $oldsymbol{k}$
- ight
 angle Учёт цен товаров в Recall@ $m{k}$

ОНЛАЙНОВАЯ ОЦЕНКА КАЧЕСТВА

ОНЛАЙНОВАЯ ОЦЕНКА КАЧЕСТВА

<u>\МФТИ</u>

Допустим, на исторических данных качество алгоритма высокое, а будет ли оно высоким в реальности?

ОНЛАЙНОВАЯ ОЦЕНКА КАЧЕСТВА

∖<u>мфти</u>,

- Допустим, на исторических данных качество алгоритма высокое, а будет ли оно высоким в реальности?
- Идеи:
 - A/В тест
 - Оценка статзначимости результата

- Случайным образом делим пользователей на равные группы
- Измеряем целевые метрики (например, количество заказов или доход) в каждой группе за длительный период времени
- Получаем какое-то число для каждой группы
- Что дальше?

Одна кривая отличается от других на 10%
 Но разбиение на самом деле — случайное

ЧАСТО ПРИМЕНЯЮТСЯ НА ПРАКТИКЕ

<u>∫\МФТИ</u>

- > Приближение нормальным распределением
- Тест Стьюдента
- Бутстреп

НА КАКИЕ МЕТРИКИ СМОТРЯТ В ОНЛАЙНЕ

<u>МФТИ</u>.

- Доход в группе
- Доход с пользовательской сессии
- > Средняя стоимость купленного товара
- > Средний чек
- Конверсия в покупку
- Клики
- > Различные модели атрибуции: last click, first click

РЕЗЮМЕ

<u> МФТИ.</u>

- A/В тест
- Статзначимость
- Метрики

<u> МФТИ</u>

МАКСИМИЗАЦИЯ ПРИБЫЛИ МАГАЗИНА

РЕКОМЕНДАЦИИ ТОВАРОВ

<u> МФТИ</u>

 $oldsymbol{j}$

	Вечернее платье	Кеды	Джинсы	Футболка
Маша	1		1	
Юля	1	1		1
Вова		1	1	
Коля	1	?	1	
Петя		1	1	
Ваня			1	1

 $oldsymbol{i}$

ОТЛИЧИЯ ОТ РЕКОМЕНДАЦИЙ ФИЛЬМОВ И МУЗЫКИ

<u>МФТИ</u>

- Нет негативных примеров
- Понятней связь с прибылью

ЧТО МОЖЕМ ДЕЛАТЬ

<u>\МФТИ</u>

- Прогнозировать, какие товары будут куплены
- Максимизировать прибыль

МАКСИМИЗАЦИЯ ДОХОДА

<u>МФТИ</u>.

Товар 1	Товар 2	Товар 3	Товар 4
---------	---------	---------	---------

МАКСИМИЗАЦИЯ ДОХОДА

Λ	ИФТ	7
	/	

Вероятность	p_1	p_2	p_3	p_4
Цена	c_1	c_2	c_3	c_4

Товар 1	Товар 2	Товар 3	Товар 4
---------	---------	---------	---------

Вероятность	0.05	0.02	0.015	0.009
Цена	3490	1990	1590	1970

МАКСИМИЗАЦИЯ ПРИБЫЛИ

Λ	МФТИ
	$\overline{}$

Вероятность	0.05	0.02	0.015	0.009
Цена	3490	1990	1590	1970
Маржинальность	0.1	0.4	0.4	0.2

ПРОГНОЗИРОВАНИЕ ВЕРОЯТНОСТИ

∖<u>мфти</u>,

- Объекты: тройки (пользователь, товар, момент времени)
- Классы: 1 товар будет куплен, 0 товар не будет куплен
- Признаки: параметры пользователя, товара, момента времени и их «взаимодействие»

ОТБОР КАНДИДАТОВ

<u> МФТИ</u>

- Популярные
- Из тех же категорий
- С высоким PMI с уже просмотренными/ понравившимися
- Из заранее подготовленных списков похожих товаров

- Добавить к каждому позитивному примеру весь каталог как негативный (не реально)
- Случайные с равномерным распределением
- Случайные, с вероятностями, пропорциональными популярности объекта
- Самые популярные примеры
- Те объекты, которые рекомендовал бы какой-то алгоритм, но они не были куплены

РЕЗЮМЕ

<u>\МФТИ</u>.

- Построение рекомендаций с учетом желаемого экономического эффекта
- Прогнозирование вероятности покупки товара
- Отбор кандидатов
- Генерация негативных примеров