```
In [1]:
        import os
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classif
        ier
        # import the regressor
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.model selection import train test split # Import train test split
        function
        from sklearn import metrics #Import scikit-learn metrics module for accuracy c
        alculation
        from sklearn import tree
        from scipy.stats import norm, skew
        from scipy.special import boxcox1p
        from sklearn.linear model import LinearRegression
         import statsmodels.api as sm
In [2]: os.chdir('E:')
        #file = pd.read excel('E:\\eval.xlsx')
        file = pd.read excel('E:\\file.xlsx')
In [3]: | file.shape
Out[3]: (191, 17)
In [4]: | file.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 191 entries, 0 to 190
        Data columns (total 17 columns):
        State
                                  191 non-null object
        District
                                  191 non-null object
                                  191 non-null int64
        Population
        calcu mmr
                                  187 non-null float64
                                  191 non-null float64
        calcu IMR 12
        pnc 48 per
                                  191 non-null float64
        pnc per live birth
                                  191 non-null float64
        per capita health exp
                                  191 non-null int64
                                  191 non-null float64
        health per of gdp
        phc per 100000
                                  173 non-null float64
                                  191 non-null float64
        female pop per
        literacy
                                  191 non-null float64
                                  191 non-null float64
        anc
        anc check
                                  191 non-null float64
        per home skill
                                  182 non-null float64
                                  191 non-null float64
        percent insti
                                  191 non-null float64
        haemo
        dtypes: float64(13), int64(2), object(2)
        memory usage: 25.5+ KB
```

In [5]: file.describe()

Out[5]:

	Population	calcu mmr	calcu IMR 12	pnc 48 per	pnc per live birth	per capita health exp	health per of gdp	
count	1.910000e+02	187.000000	191.000000	191.000000	191.000000	191.000000	191.000000	-
mean	1.976512e+06	116.236033	16.929357	11.717047	0.721601	1011.460733	0.867958	
std	1.476784e+06	96.986826	10.985973	15.895449	0.445789	339.496527	0.223881	
min	2.552300e+05	5.020080	1.055528	0.000000	0.004433	716.000000	0.600000	
25%	1.127692e+06	55.742187	8.479796	0.486583	0.333550	716.000000	0.630000	
50%	1.563715e+06	99.037917	15.195694	3.324870	0.756028	1011.000000	0.820000	
75%	2.374760e+06	148.612299	22.905693	20.460703	1.025323	1119.000000	1.040000	
max	1.106015e+07	639.836546	50.547538	81.630170	1.819892	3643.000000	1.340000	
4								

In [6]: file.head(10)

Out[6]:

	State	District	Population	calcu mmr	calcu IMR 12	pnc 48 per	pnc per live birth	per capita health exp	healt per c gd
0	Andhra Pradesh	Anantapur	4081148	87.204323	14.513291	6.905952	0.719763	1013	0.8
1	Andhra Pradesh	Chittoor	4174064	106.414208	11.522090	38.204631	0.916868	1013	0.8
2	Andhra Pradesh	East Godavari	5154296	115.647356	16.755419	2.223678	1.355212	1013	0.8
3	Andhra Pradesh	Guntur	4887813	133.824021	17.245050	6.171856	1.011953	1013	0.8
4	Andhra Pradesh	Krishna	4517398	84.362760	10.756252	1.952910	0.191308	1013	0.8
5	Andhra Pradesh	Kurnool	4053463	148.166830	19.498124	11.125496	0.974039	1013	0.8
6	Andhra Pradesh	Nellore	2963557	43.552953	3.871374	0.844179	0.963053	1013	0.8
7	Andhra Pradesh	Prakasam	3397448	38.599057	6.094588	0.290818	1.180562	1013	8.0
8	Andhra Pradesh	Srikakulam	2703114	62.293484	10.752397	6.345035	1.205866	1013	0.8
9	Andhra Pradesh	Vishakapatnam	4290589	244.482730	22.430060	6.982224	0.640610	1013	0.8
4									•

```
In [7]: #handLing missing data
    all_data_na = (file.isnull().sum() / len(file)) * 100
    all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index).sort_value
    s(ascending=False)[:30]
    missing_data = pd.DataFrame({'Missing Ratio' :all_data_na})
    missing_data.head()
```

Out[7]:

Missing Ratio

```
phc per 100000 9.424084

per home skill 4.712042

calcu mmr 2.094241
```

```
In [9]: #handling missing data
all_data_na = (file.isnull().sum() / len(file)) * 100
all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index).sort_value
s(ascending=False)[:30]
missing_data = pd.DataFrame({'Missing Ratio' :all_data_na})
missing_data.head()
```

Out[9]:

Missing Ratio

```
In [10]: cols = ['calcu mmr', 'calcu IMR 12', 'literacy', 'phc per 100000', 'percent in
    sti', 'per home skill', 'per capita health exp', 'anc', 'anc check', 'pnc per
    live birth', 'haemo']
    data = file.loc[:, cols]
    data.info()

    <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 191 entries, 0 to 190
        Data columns (total 11 columns):
```

```
calcu mmr
                         191 non-null float64
calcu IMR 12
                         191 non-null float64
literacy
                         191 non-null float64
phc per 100000
                         191 non-null float64
percent insti
                         191 non-null float64
per home skill
                         191 non-null float64
                         191 non-null int64
per capita health exp
                         191 non-null float64
anc
                         191 non-null float64
anc check
pnc per live birth
                         191 non-null float64
haemo
                         191 non-null float64
dtypes: float64(10), int64(1)
```

memory usage: 16.5 KB

```
In [11]: data.head()
```

Out[11]:

	calcu mmr	calcu IMR 12	literacy	phc per 100000	percent insti	per home skill	per capita health exp	anc	anc check	ı
0	87.204323	14.513291	63.57	1.960233	99.482275	69.418960	1013	3.993238	3.905973	(
1	106.414208	11.522090	71.53	2.252002	99.947186	53.571429	1013	3.567691	4.161339	(
2	115.647356	16.755419	70.99	2.308754	99.552218	78.048780	1013	3.299216	3.521318	1
3	133.824021	17.245050	67.40	1.677642	99.929149	64.583333	1013	3.199218	3.997480	
4	84.362760	10.756252	73.74	1.793068	99.986234	77.777778	1013	3.333573	3.315837	(
4										

```
In [12]:    numeric_feats = data.dtypes[data.dtypes != "object"].index

# Check the skew of all numerical features
    skewed_feats = data[numeric_feats].apply(lambda x: skew(x.dropna())).sort_valu
    es(ascending=False)
    print("\nSkew in numerical features: \n")
    skewness = pd.DataFrame({'Skew' :skewed_feats})
    skewness.head(10)
```

Skew in numerical features:

Out[12]:

	Skew
anc check	11.332658
anc	10.485773
per capita health exp	4.922015
calcu mmr	2.797309
haemo	1.794508
phc per 100000	1.336422
calcu IMR 12	0.947322
per home skill	0.682056
pnc per live birth	0.131436
literacy	-0.454455

```
In [13]: #box-cox transformation
    skewness = skewness[abs(skewness) > 0.75]
    print("There are {} skewed numerical features to Box Cox transform".format(ske wness.shape[0]))

from scipy.special import boxcox1p
    skewed_features = skewness.index
    lam = 0
    for feat in skewed_features:
        #data[feat] += 1
        data[feat] = boxcox1p(data[feat], lam)

#data[skewed_features] = np.log1p(data[skewed_features])
```

There are 11 skewed numerical features to Box Cox transform

In [14]: data.describe()

Out[14]:

	calcu mmr	calcu IMR 12	literacy	phc per 100000	percent insti	per home skill	per capita health exp	
count	191.000000	191.000000	191.000000	191.000000	191.000000	191.000000	191.000000	191.
mean	4.476621	2.679011	4.303420	1.217615	4.586634	3.146472	6.884695	1.
std	0.802962	0.689933	0.161916	0.329786	0.054521	1.099575	0.247782	0.
min	1.795101	0.720533	3.613617	0.321777	4.246262	0.160429	6.575076	1.
25%	4.038518	2.249120	4.232656	1.004658	4.586280	2.684448	6.575076	1.
50%	4.610115	2.784745	4.322277	1.179271	4.609294	3.433987	6.919684	1.
75%	5.006536	3.174116	4.410064	1.435571	4.613923	3.984476	7.021084	1.
max	6.462774	3.942504	4.587108	2.187049	4.615121	4.615121	8.200837	3.
4								•

```
In [15]: corrmat = data.corr()
    f, ax = plt.subplots(figsize=(12, 9))
    sns.heatmap(corrmat, vmax=.8, square=True)
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x1a47608e248>


```
In [16]: sns.set()
    sns.pairplot(data[cols], size=2.5)
    plt.show()
```

E:\Anaconda3\lib\site-packages\seaborn\axisgrid.py:2065: UserWarning: The `si
ze` parameter has been renamed to `height`; pleaes update your code.
 warnings.warn(msg, UserWarning)


```
In [17]: fig, ax = plt.subplots()
    ax.scatter(data['calcu mmr'], data['calcu IMR 12'])
    plt.ylabel('Infant Mortality Ratio', fontsize=13)
    plt.xlabel('Maternal Mortality ratio', fontsize=13)
    plt.show()
```



```
In [34]: fig, ax = plt.subplots()
    ax.scatter(data['percent insti'], data['calcu mmr'])
    plt.ylabel('Maternal Mortality Rate', fontsize=13)
    plt.xlabel('Percent Institutional Deliveries', fontsize=13)
    plt.show()
```



```
In [35]: fig, ax = plt.subplots()
    ax.scatter(data['per capita health exp'], data['calcu mmr'])
    plt.ylabel('Maternal Mortality Rate', fontsize=13)
    plt.xlabel('Per Capita Health Expenditure', fontsize=13)
    plt.show()
```



```
In [18]: fig, ax = plt.subplots()
    ax.scatter(data['literacy'], data['calcu mmr'])
    plt.ylabel('Maternal Mortality Rate', fontsize=13)
    plt.xlabel('literacy rate', fontsize=13)
    plt.show()
```



```
In [19]: | feature cols = ['literacy', 'percent insti', 'per home skill', 'pnc per live b
         irth', 'per capita health exp']
         x = data[feature cols]
         y = data['calcu mmr']
         # create a regressor object
         reg = DecisionTreeRegressor(random state = 0, max depth = 3)
         # fit the regressor with X and Y data
         model = reg.fit(x, y)
         fig = plt.figure(figsize=(50,10))
         tree.plot_tree(reg, feature_names = feature_cols, class_names = 'calcu mmr',
         filled=True)
Out[19]: [Text(1395.0, 475.65000000000000, 'percent insti <= 4.608\nmse = 0.641\nsampl</pre>
         es = 191\nvalue = 4.477'),
          Text(697.5, 339.75, 'per home skill <= 4.191 \rangle = 0.295 \rangle = 91 \rangle
         ue = 4.921'),
          Text(348.75, 203.85000000000002, 'per home skill <= 0.524\nmse = 0.235\nsamp
         les = 83\nvalue = 4.976'),
          Text(174.375, 67.9499999999999, 'mse = 0.306\nsamples = 7\nvalue = 4.578'),
          Text(523.125, 67.949999999999, 'mse = 0.212\nsamples = 76\nvalue = 5.01
         3'),
          Text(1046.25, 203.85000000000000, 'per home skill <= 4.317\nmse = 0.561\nsam
         ples = 8\nvalue = 4.349'),
          Text(871.875, 67.9499999999999, 'mse = 0.257\nsamples = 4\nvalue = 3.737'),
          Text(1220.625, 67.949999999999, 'mse = 0.117\nsamples = 4\nvalue = 4.96'),
          Text(2092.5, 339.75, 'per capita health exp <= 7.157\nmse = 0.613\nsamples =
         100 \setminus \text{nvalue} = 4.072'),
          Text(1743.75, 203.850000000000002, 'literacy <= 4.475 \times = 0.456 \times = 0.456
         84\nvalue = 4.237'),
          Text(1569.375, 67.9499999999999, 'mse = 0.387\nsamples = 79\nvalue = 4.16
         8'),
          Text(1918.125, 67.949999999999, 'mse = 0.265\nsamples = 5\nvalue = 5.34'),
          Text(2441.25, 203.8500000000000, 'pnc per live birth <= 0.873\nmse = 0.541
         \nsamples = 16\nvalue = 3.205'),
          Text(2266.875, 67.949999999999, 'mse = 0.502\nsamples = 10\nvalue = 3.48
         9'),
          Text(2615.625, 67.949999999999, 'mse = 0.247\nsamples = 6\nvalue = 2.73')]
```

```
In [20]:
         feature cols = ['percent insti', 'per home skill']
          x = data[feature cols]
          y = data['calcu mmr']
          # create a regressor object
          reg = DecisionTreeRegressor(random state = 0, max depth = 3)
          # fit the regressor with X and Y data
          model = reg.fit(x, y)
          fig = plt.figure(figsize=(50,10))
          tree.plot tree(reg, feature names = feature cols, class names = 'calcu mmr',
          filled=True)
Out[20]: [Text(1395.0, 475.65000000000000, 'percent insti <= 4.608\nmse = 0.641\nsampl</pre>
          es = 191\nvalue = 4.477'),
          Text(697.5, 339.75, 'per home skill <= 4.191 \rangle = 0.295 \rangle = 91 \rangle
          ue = 4.921'),
          Text(348.75, 203.85000000000002, 'per home skill <= 0.524\nmse = 0.235\nsamp
          les = 83\nvalue = 4.976'),
          Text(174.375, 67.9499999999999, 'mse = 0.306 \setminus 1.375'),
           Text(523.125, 67.949999999999, 'mse = 0.212\nsamples = 76\nvalue = 5.01
          3'),
           Text(1046.25, 203.85000000000002, 'per home skill <= 4.317\nmse = 0.561\nsam
          ples = 8\nvalue = 4.349'),
          Text(871.875, 67.9499999999999, 'mse = 0.257\nsamples = 4\nvalue = 3.737'),
          Text(1220.625, 67.949999999999, 'mse = 0.117\nsamples = 4\nvalue = 4.96'),
          Text(2092.5, 339.75, 'percent insti <= 4.613\nmse = 0.613\nsamples = 100\nva
          lue = 4.072'),
           Text(1743.75, 203.85000000000002, 'percent insti <= 4.613\nmse = 0.399\nsamp
          les = 39\nvalue = 4.337'),
          7'),
          Text(1918.125, 67.949999999999, 'mse = 0.214\nsamples = 8\nvalue = 4.88
          1'),
          Text(2441.25, 203.85000000000000, 'percent insti <= 4.614\nmse = 0.677\nsamp
          les = 61 \cdot nvalue = 3.903'),
          Text(2266.875, 67.9499999999999, 'mse = 0.705\nsamples = 22\nvalue = 3.49
          3'),
          Text(2615.625, 67.9499999999999, 'mse = 0.513\nsamples = 39\nvalue = 4.13
          4')]
                                                                    percent insti <= 4.613
mse = 0.613
samples = 100
value = 4.072
                                    per home skill <= 4.317
                                                         percent insti <= 4.613
                                                                              percent insti <= 4.614
                                        se = 0.561
                                                             = 0.399
                                                                                mse = 0.677
                                       samples
                                                           samples
                                                                                     mse = 0.513
samples = 39
value = 4.134
                                  mse = 0.257
                                                                           nse = 0.705
```

```
In [21]:
       feature cols = ['pnc per live birth', 'per capita health exp']
        x = data[feature cols]
        y = data['calcu mmr']
        # create a regressor object
        reg = DecisionTreeRegressor(random_state = 0, max_depth = 3)
        # fit the regressor with X and Y data
        model = reg.fit(x, y)
        fig = plt.figure(figsize=(50,10))
        tree.plot_tree(reg, feature_names = feature_cols, class_names = 'calcu mmr',
        filled=True)
Out[21]: [Text(1395.0, 475.65000000000003, 'per capita health exp <= 7.157\nmse = 0.64</pre>
       1 \times 1 = 191 \times 1 = 4.477'
        Text(697.5, 339.75, 'per capita health exp \leq 6.876\nmse = 0.489\nsamples =
        175 \cdot nvalue = 4.593'
        Text(348.75, 203.85000000000002, 'pnc per live birth <= 0.449\nmse = 0.353\n
        samples = 79\nvalue = 4.904'),
        Text(174.375, 67.949999999999, 'mse = 0.343\nsamples = 51\nvalue = 5.0'),
        Text(523.125, 67.9499999999999, 'mse = 0.325\nsamples = 28\nvalue = 4.73'),
        Text(1046.25, 203.85000000000000, 'per capita health exp <= 6.921\nmse = 0.4
        55\nsamples = 96\nvalue = 4.337'),
        Text(871.875, 67.949999999999, 'mse = 0.708\nsamples = 33\nvalue = 4.11
        5'),
        3'),
        Text(2092.5, 339.75, 'pnc per live birth \leq 0.873 \times = 0.541 \times = 16
        \nvalue = 3.205'),
        Text(1743.75, 203.85000000000002, 'pnc per live birth <= 0.584\nmse = 0.502
        \nsamples = 10\nvalue = 3.489'),
        9'),
        Text(2441.25, 203.8500000000000, 'pnc per live birth <= 0.876\nmse = 0.247
        \n in samples = 6\n in value = 2.73'),
        Text(2266.875, 67.9499999999999, 'mse = 0.13\nsamples = 2\nvalue = 2.156'),
        7')]
```

```
In [24]: fig, ax = plt.subplots()
    ax.scatter(data['haemo'], data['calcu mmr'])
    plt.ylabel('Maternal Mortality Ratio', fontsize=13)
    plt.xlabel('Percent women with haemoglobin less than 7', fontsize=13)
    plt.show()
```



```
In [25]: haemo = data['haemo'].values.reshape(-1, 1)
    mmr = data['calcu mmr'].values.reshape(-1, 1)
    regressor = LinearRegression()
    regressor.fit(haemo, mmr)
```

```
In [26]: #To retrieve the intercept:
    print(regressor.intercept_)
    #For retrieving the slope:
    print(regressor.coef_)
```

[3.83009803] [[0.43799844]]

```
In [27]:
                      feature cols = ['literacy', 'per capita health exp', 'phc per 100000']
                        x = data[feature cols]
                        y = data['haemo']
                        # create a regressor object
                        reg = DecisionTreeRegressor(random state = 0, max depth = 3)
                        # fit the regressor with X and Y data
                        model = reg.fit(x, y)
                        fig = plt.figure(figsize=(50,10))
                        tree.plot tree(reg, feature names = feature cols, class names = 'haemo', fill
                        ed=True)
Out[27]: [Text(1395.0, 475.65000000000003, 'literacy <= 4.45\nmse = 0.366\nsamples = 1</pre>
                       91\nvalue = 1.476'),
                         Text(697.5, 339.75, 'phc per 100000 \le 1.323 \le 0.297 \le 159 
                       lue = 1.596'),
                         Text(348.75, 203.85000000000002, 'per capita health exp \leq 6.971\nmse = 0.21
                       6\nsamples = 104\nvalue = 1.718'),
                         Text(174.375, 67.949999999999, 'mse = 0.168\nsamples = 83\nvalue = 1.64
                       1'),
                         Text(523.125, 67.9499999999999, 'mse = 0.289\nsamples = 21\nvalue = 2.02
                       2'),
                         Text(1046.25, 203.85000000000000, 'literacy <= 4.324\nmse = 0.37\nsamples =
                       55\nvalue = 1.366'),
                         Text(871.875, 67.949999999999, 'mse = 0.292\nsamples = 35\nvalue = 1.55
                       2'),
                         Text(1220.625, 67.949999999999, 'mse = 0.341\nsamples = 20\nvalue = 1.04
                       1'),
                         Text(2092.5, 339.75, 'phc per 100000 <= 1.241 \nmse = 0.278 \nsamples = 32 \nva
                       lue = 0.878'),
                         Text(1743.75, 203.85000000000000, 'per capita health exp <= 7.157 \setminus mse = 0.2
                       58\nsamples = 14\nvalue = 1.229'),
                         Text(1569.375, 67.949999999999, 'mse = 0.169\nsamples = 7\nvalue = 1.56'),
                          8'),
                         Text(2441.25, 203.85000000000000, 'phc per 100000 <= 1.633\nmse = 0.123\nsam
                       ples = 18\nvalue = 0.606'),
                         Text(2266.875, 67.949999999999, 'mse = 0.067\nsamples = 16\nvalue = 0.51
                       7'),
                         Text(2615.625, 67.9499999999999, 'mse = 0.005\nsamples = 2\nvalue = 1.31
                       4')]
                                                                                                                                                                 phc per 100000 <= 1.241
mse = 0.278
```

```
feature_cols = ['calcu mmr', 'pnc per live birth']
In [28]:
         x = data[feature cols]
         y = data['calcu IMR 12']
         # create a regressor object
         reg = DecisionTreeRegressor(random_state = 0, max_depth = 3)
         # fit the regressor with X and Y data
         model = reg.fit(x, y)
         fig = plt.figure(figsize=(50,10))
         tree.plot_tree(reg, feature_names = feature_cols, class_names = 'calcu IMR 1
         2', filled=True)
Out[28]: [Text(1395.0, 475.65000000000003, 'calcu mmr <= 3.897\nmse = 0.474\nsamples =</pre>
         191\nvalue = 2.679'),
         Text(697.5, 339.75, 'pnc per live birth \leq 0.871 \times = 0.302 \times = 42
         \nvalue = 1.817'),
         Text(348.75, 203.85000000000000, 'calcu mmr <= 2.503\nmse = 0.238\nsamples =
         33\nvalue = 1.946'),
         Text(174.375, 67.9499999999999, 'mse = 0.0 \times 10^{-1} = 1\nvalue = 1.066'),
         Text(523.125, 67.9499999999999, 'mse = 0.221\nsamples = 32\nvalue = 1.97
         3'),
         Text(1046.25, 203.85000000000000, 'calcu mmr <= 3.601\nmse = 0.249\nsamples
         = 9 \cdot value = 1.342'),
         Text(871.875, 67.9499999999999, 'mse = 0.077\nsamples = 7\nvalue = 1.113'),
         4'),
         Text(2092.5, 339.75, 'calcu mmr \leq 4.774\nmse = 0.253\nsamples = 149\nvalue
         = 2.922'),
         Text(1743.75, 203.8500000000000, 'pnc per live birth <= 0.307\nmse = 0.229
         \n \nsamples = 73\nvalue = 2.681'),
         Text(1569.375, 67.949999999999, 'mse = 0.154\nsamples = 19\nvalue = 3.02
         5'),
         Text(1918.125, 67.949999999999, 'mse = 0.2\nsamples = 54\nvalue = 2.561'),
         Text(2441.25, 203.8500000000000, 'calcu mmr <= 5.217\nmse = 0.167\nsamples
         = 76 \setminus value = 3.153'),
         Text(2266.875, 67.949999999999, 'mse = 0.106\nsamples = 50\nvalue = 3.06
         3'),
         6')]
                       pnc per live birth <= 0.871
mse = 0.302
                                  calcu mmr <= 3.601
mse = 0.249
```

```
In [29]: imr = data['calcu IMR 12'].values.reshape(-1, 1)
    mmr = data['calcu mmr'].values.reshape(-1, 1)
    regressor = LinearRegression()
    regressor.fit(mmr, imr)

Out[29]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

In [30]: #To retrieve the intercept:
    print(regressor.intercept_)
    #For retrieving the slope:
    print(regressor.coef_)

[-0.0906748]
    [[0.61870019]]
```

Out[32]:

OLS Regression Results

```
Dep. Variable:
                                           R-squared:
                                                           0.518
                                  У
                               OLS
          Model:
                                       Adj. R-squared:
                                                           0.516
         Method:
                      Least Squares
                                           F-statistic:
                                                           203.5
            Date: Tue, 18 Aug 2020 Prob (F-statistic): 8.13e-32
           Time:
                           20:43:21
                                       Log-Likelihood:
                                                         -129.83
No. Observations:
                                                  AIC:
                                                           263.7
                                191
    Df Residuals:
                                189
                                                  BIC:
                                                           270.2
        Df Model:
                                  1
Covariance Type:
                          nonrobust
          coef std err
                                 P>|t|
                                        [0.025 0.975]
const -0.0907
                 0.197
                         -0.460 0.646
                                        -0.480
                                                0.298
   х1
       0.6187
                 0.043 14.266 0.000
                                        0.533
                                                0.704
```

Omnibus: 0.610 Durbin-Watson: 1.620

Prob(Omnibus): 0.737 Jarque-Bera (JB): 0.601

Skew: -0.134 **Prob(JB):** 0.740

Kurtosis: 2.937 **Cond. No.** 27.0

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [36]: #x = daata["RM"] ## X usually means our input variables (or independent variables)
    #y = target["MEDV"] ## Y usually means our output/dependent variable
    yy = data['calcu mmr'].values.reshape(-1, 1)
    xx = data['haemo'].values.reshape(-1, 1)
    xx = sm.add_constant(xx) ## let's add an intercept (beta_0) to our model

# Note the difference in argument order
    model = sm.OLS(yy, xx).fit() ## sm.OLS(output, input)

# Print out the statistics
    model.summary()
```

Out[36]:

OLS Regression Results

Dep. Variable: R-squared: 0.109 У Model: OLS Adj. R-squared: 0.105 Method: **Least Squares** F-statistic: 23.23 **Date:** Wed, 19 Aug 2020 Prob (F-statistic): 2.95e-06 Time: 00:15:04 Log-Likelihood: -217.53 No. Observations: 191 AIC: 439.1 **Df Residuals:** BIC: 445.6 189 Df Model: **Covariance Type:** nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 3.8301
 0.145
 26.418
 0.000
 3.544
 4.116

 x1
 0.4380
 0.091
 4.819
 0.000
 0.259
 0.617

 Omnibus:
 3.886
 Durbin-Watson:
 1.337

 Prob(Omnibus):
 0.143
 Jarque-Bera (JB):
 3.573

 Skew:
 -0.329
 Prob(JB):
 0.168

 Kurtosis:
 3.122
 Cond. No.
 5.68

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.