ARBORI

BINAR

Mihai Scorparu

Problema determinării sumei elementelor unei subsecvențe a unui °ir ale cărui valori se modifică în timp real apare destul de des în diferite aplicații. Ea a apărut, sub diverse forme °i la anumite concursuri de programare. În cadrul acestui articol vom prezenta o structură de date care poate fi folosită pentru rezolvarea eficientă a acestei probleme.

Introducere

Prin *subsecvență* înțelegem un sub°ir ale cărui elemente se

Operapie	Matrice/Rezultat		
Iniþializare	0	0	0
	0	0	0
	0	0	0
Adunã(2, 2, 3)	0	0	0
	0	3	0
	0	0	0
Adunã (1, 3, 5)	0	0	5
	0	3	0
	0	0	0
Sumã (2, 1, 3, 3)	3		
Adunã(2, 1, 1)	0	0	5
	1	3	0
	0	0	0
Sum ã(1, 2, 2, 3)	8		
Adunã (2, 2, -1)	0	0	5
	1	2	0
	0	0	0
Sum ã(1, 2, 2, 3)	7		
Adunã (2, 2, 5)	0	0	5
	1	7	0
	0	0	0
Adunã (2, 2, -5)	0	0	5
	1	2	0
	0	0	0
Adunã (3, 2, 4)	0	0	5
	1	2	0
	0	4	0
Sumã(1, 1, 3, 3)	12	2	

Primul algoritm descris pentru cazul unidimensional poate fi adaptat foarte u°or pentru a rezolva cazul bidimensional al problemei. Vom pāstra valorile matricei, le vom modifica dacā este necesar °i vom calcula sumele cerute de interogāri.

Versiunea în pseudocod este prezentată în continuare:

```
//iniþializãri
scrie Introduceții dimensiunile matricei:
cite°te M, N
pentru i ↑ 1, M executã
  pentru j ↑ 1, N executã
               //valorile iniþiale sunt nule
     a<sub>ij</sub> 10
  sfâr°it pentru
sfâr°it pentru
scrie Introduceții codul operației:
citeote cod
cât timp cod ∏ 3 executã
  daca cod = 1 //modificare
     atunci
       scrie Introduceții indicii elementului care va fi
              modificat:
       citeote indx, indy
        scrie Introduceții valoarea care va fi adunată
               (valoare negativă pentru scăderi):
```


Aºadar, în acest caz, interogările se referă la suma valorilor dintr-o "zonă paralelipipedică" a tabloului. Evident, pentru reprezentarea datelor vom folosi tablouri tridimensionale.

^ai acest enunþ poate fi reformulat în diferite moduri. O variantã ar putea fi:

O zonă a spațiului este reprezentată de un paralelipiped format din cuburi cu latura egală cu unitatea. Dimensiunile paralelipipedului sunt M, N °i P. În fiecare sector (cub) pot sosi sau pleca nave spațiale. De asemenea, în fiecare moment amiralul flotei poate cere informații referitoare la numărul total de nave spațiale dintr-o regiune paralelipipedică din această zonă a spațiului.