МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) Кафедра ИИСТ

ЛАБОРАТОРНАЯ РАБОТА По дисциплине «Метрология» Тема: ИССЛЕДОВАНИЕ ОСНОВНЫХ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Студент гр. 9309	 Юшин Е.В.
Преподаватель	 Орлова Н.В.

Цель работы:

Ознакомление с методикой поверки электромеханических приборов и определение некоторых метрологических характеристик.

Схема установки.

Спецификация применяемых средств измерения.

Спецификация применяемых средств измерения.									
Сертификация применяемых средств измерений									
Наименование	Диапазоны	Характеристики	Рабочий	Параметры					
Средств	измерений	точности,	диапазон	входа					
измерений		классы	частот	(выхода)					
		точности							
Вольтметр	0-20B	0,001U	-	R _B x≥10 MO _M					
универсальный									
цифровой									
GDM-8135									
Универсальный	0-10B	5%	1 Гц -30 кГц						
Электро-									
механический									
Прибор ҮХ-									
360TR									
Генератор	1 Гц -30 кГц		1 Гц -20 гГц	50 Ом					
низкочастотный									
SFG-2120									

Поверка электромеханического миллиамперметра.

f(Гц)	21	30	40	50	1000	10000	20000	30000	40000	50000	60000	70000
U(B)	6	6	6	6	5,95	5,8	5,2	4,6	4	3,6	3,4	3
K(f)	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1	0,9	0,8	0,7	0,6

$$\Delta x_{y_B} = x - x_{0y_B}; \qquad \Delta x_{y_M} = x - \ x_{0y_M}; \qquad \delta = 100 \Delta x/x; \qquad \Upsilon = 100 \Delta x/x_N; \qquad x_N = 5 \text{mA}; \qquad B = 100 | x_{y_B} - x_{y_M} \ |/x_N$$

Показания	Показания		Абсолютная		Относит.	Приведен ная	
проверяемо	образцового СИ		погрешность Δ				Вариация
го прибора,	x ₀ , мA		X, 1	мА	погрешно	погрешно	Вариация В, %
х, мА	Увелич	Умень	Увелич	Умень	сть δ, %	сть у, %	D , 70
71, 1,11 1	•	ш.	•	Ш.		CIB /, 70	
2,0	1,9700	1,9500	0,0300	0,0500	1,5	2,5	2,50
4,0	3,9600	3,9200	0,0400	0,0800	1	2	2,00
6,0	5,9700	6,0000	0,0300	0,0000	0,5	0	0,50
8,0	8,0000	7,9800	0,0000	0,0200	0	0,25	0,25
10,0	9,9400	9,9200	0,0600	0,0800	0,6	0,8	0,80

Зависимость относительной и приведенной погрешностей миллиамперметра в зависимости от его показаний

Выводы:

Поверка электромеханического миллиамперметра показала, что прибор соответствует своему классу точности, равному 0.5, т.к. приведенная погрешность на всей шкале его не превосходит.