Ethik in der KI KI soll verantwortlich sein - idealerweise sollten wir wissen, wer oder was von einem KI-modell getroffene Entscheidung verursacht hat. KI soll Fair sein - Frei von Verurteikn. KI soll Mensch-zentriert sein - Sie sollte menschliche Bedürfnisse in sozialen, politischen und emotionalen kontexten beachten und respektieren. -> Wir Können diese Anforderungen zu erfüllen, indem wir KI erklärbar machen. -> Ein miglicher Arsatz ist die Verwendung von symbolischer - Ein besonderer Ansate ist die Verwendung von symbolischen Vektorarchitekturen, auch bekannt als hyperdimensional computing (HDC)

Bundling:

Gegebon - en Mange van HOVs
$$\{v_1, v_2, \dots v_n\}$$

Use majority vate sum to bundle them:

 $S = \sum_{k=1}^{n} V_k$

Then take the sign of S :

Sign $(s) = \{t_1, t_2, \dots t_n\}$

Weinkeller = Rotwein @ Weißwein

Weinkeller = Sign(s) = $\{t_1, t_2, \dots t_n\}$

Weinkeller = Sign(s) = $\{t_1, t_2, \dots t_n\}$

Unbinding					
Problem:	Wir haben rosa Farbe	ein unbe	kanntes schung au	Getrains Rot und	k mit eine
Lösung:	Wir könne abfragen				
Rosa =	Rot & Wei	A			
	T D T - I			1	
			2 =	1	
	[-1] [-1		[-2]	(-1)	
Unbindi Rosa O	ng:		⊗ -		
				'ss #	Wein
Erg	ebniss ist ein	verrausch	te Version	von Wein	
Frage;	Wie Könne von Wein	n wir die wiederherst	urspriing	pliche Re	präsentatio

Beispiel: Wir konnen die Muster von Wein, Rot und

P = 3

N = 3

P_1 =
$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

P_2 = $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

P_3 = $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Wein

Rot

Weiß

Wis = $\frac{1}{3}[(-1)(-1) + (1)(-1) + (-1)(-1)] = \frac{1}{3}(-1) = -\frac{1}{3}$

Was = $\frac{1}{3}[(-1)(-1) + (1)(-1) + (-1)(-1)] = \frac{1}{3}(-3) = -1$

Was = $\frac{1}{3}[(-1)(-1) + (1)(-1) + (-1)(-1)] = \frac{1}{3}(-3) = -1$

Was = $\frac{1}{3}[(-1)(-1) + (-1)(-1) + (-1)(-1)] = \frac{1}{3}(-3) = -1$

Was = $\frac{1}{3}[(-1)(-1) + (-1)(-1) + (-1)(-1)] = \frac{1}{3}(-3) = -1$

Was = $\frac{1}{3}[(-1)(-1) + (-1)(-1) + (-1)(-1)] = \frac{1}{3}(-3) = -1$

Frage; Wie Können wir die ursprüngliche Reprösentation Wein Wein wiederherstellen?

X ausgabe für X'eingabe

X: = Sign (
$$\sum W_{ij} X'_{ij}$$
)

Wein + Noise (Ranschen) = $X' = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 $X_{1} = Sign [W_{12} X'_{2} + W_{13} X'_{2}] = Sign [\frac{1}{3}(1) + (\frac{1}{3})(1)]$

= Sign ($-\frac{1}{3}$) = -1
 $X_{2} = Sign [W_{21} X'_{1} + W_{22} X'_{2}] = Sign [-\frac{1}{3}(1) + (-1)(1)]$

= Sign ($\frac{1}{3}$) = -1
 $X_{3} = Sign [W_{31} X'_{1} + W_{32} X'_{2}] = Sign [(-\frac{1}{3})(1) + (-1)(-1)]$

= Sign ($\frac{1}{3}$) = -1

