А. В. ЕРОШЕНКО, О. А. ШЕНДАЛЕВА

СИСТЕМЫ СЧИСЛЕНИЯ

Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Омский государственный университет путей сообщения

А. В. Ерошенко, О. А. Шендалева

СИСТЕМЫ СЧИСЛЕНИЯ

Утверждено методическим советом университета в качестве учебно-методического пособия к выполнению самостоятельной работы по дисциплине «Информатика»

УДК 511.11(075.8) ББК 22.131я73 Е76

Системы счисления: Учебно-методическое пособие к выполнению самостоятельной работы по дисциплине «Информатика» / А. В. Ерошенко, О. А. Шендалева; Омский гос. ун-т путей сообщения. Омск, 2017. 27 с.

Учебно-методическое пособие содержит основные теоретические положения, связанные с системами счисления, правила перевода чисел из одной системы счисления в другую, приведены примеры решения задач различной сложности на системы счисления.

Предназначено для студентов первого курса всех специальностей очной и заочной форм обучения при выполнении лабораторных и самостоятельных работ по дисциплине «Информатика».

Библиогр.: 3 назв. Табл. 6.

Рецензенты: канд. физ.-мат. наук, доцент А. А. Романова; канд. техн. наук, доцент А. Г. Малютин.

ОГЛАВЛЕНИЕ

Введение	5
1. Теоретические сведения	6
1.1. Понятие о системах счисления	6
1.2. Представление чисел с помощью позиционных систем счисления	7
1.2.1. Десятичная система счисления	7
1.2.2. Системы счисления с произвольным основанием	8
1.3. Системы счисления, применяемые в компьютере	9
1.3.1. Двоичная система счисления и двоичное кодирование информации	9
1.3.2. Восьмеричная и шестнадцатеричная системы счисления	10
1.4. Перевод чисел из системы с произвольным основанием в десятичную	
систему счисления	12
1.5. Перевод чисел из десятичной системы счисления в систему с произ-	
вольным основанием	12
1.5.1. Перевод целых десятичных чисел	12
1.5.2. Перевод правильных десятичных дробей	13
1.5.3. Перевод десятичных чисел, содержащих целую и дробную части	14
1.6. Перевод чисел из системы с основанием p в систему с основанием q	14
1.6.1. Общий случай	14
1.6.2. Поразрядные способы перевода чисел для систем с кратными основа-	
ниями	14
1.7. Двоичная арифметика	16
2. Примеры решения задач	18
3. Контрольные вопросы	20
4. Задания	21
5. Примеры тестовых вопросов	25
Библиографический список	26

ВВЕДЕНИЕ

Работа всей цифровой техники основана на двоичной системе счисления. В ней применяются всего два символа: 1 и 0. При определенных расчетах применяются троичная и восьмеричная системы счисления. Известен также так называемый счет дюжинами, или двенадцатеричная система счисления. В информатике и программировании очень распространенной является шестнадцатеричная система счисления, так как она позволяет записать данные в более компактном виде.

Учебно-методическое пособие содержит теоретические сведения и практические рекомендации по работе с различными системами счисления, применяемыми в информатике и смежных науках. Рассматриваются различные способы перевода чисел из одной системы счисления в другую, приведены примеры арифметических вычислений в системах счисления с различными основаниями.

Материал пособия содержит примеры решения задач и практические задания, обеспечивающие приобретение и развитие у студентов навыков вычислений в различных системах счисления.

Библиографический список, представленный в конце учебно-методического пособия, содержит литературу для углубленного изучения материала по рассматриваемой тематике.

Материал данного учебного издания предназначен для более глубокого освоения дисциплины «Информатика», способствует выработке навыков самостоятельной работы с новым материалом.

1. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1.1. Понятие о системах счисления

Совокупность названий и знаков, позволяющая записать любое число и дать ему имя, называется *системой счисления*, или *нумерацией*. Алфавит систем счисления состоит из символов, которые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Различают непозиционные и позиционные системы счисления.

До настоящего времени сохранилась и применяется (при нумерации века, тома в собрании сочинений, главы книги) непозиционная римская система записи чисел. В этой системе в качестве цифр используются заглавные латинские буквы:

Значение цифры не зависит от ее положения в числе. Величина числа в римской системе счисления определяется как сумма или разность цифр в числе. Цифры записываются слева направо в порядке убывания, при этом их значения складываются; если слева записана меньшая цифра, а справа большая, то из большей цифры вычитается меньшая, например: VI = 5 + 1 = 6, IV = 5 - 1 = 4, MCMXCVI = 1000 + (-100 + 1000) + (-10 + 100) + 5 + 1 = 1996.

Часто, в том числе и в компьютерах, применяются позиционные системы счисления, которые характеризуются наглядностью записи чисел и простотой выполнения арифметических операций. (Далее везде будут иметься в виду только такие системы.) В позиционных системах величина, обозначаемая цифрой в записи числа, зависит от ее позиции (положения) в числе, т. е. одна и та же цифра имеет различное значение, определяемое ее местом в числе.

Основанием позиционной системы счисления называется количество p различных цифр, применяемых ею для изображения чисел. Например, в привычной для всех десятичной системе счисления основание p=10, так как используются 10 арабских цифр от 0 до 9 включительно. Вес каждой цифры в числе изменяется в p раз при перемещении ее в числе на соседнее место. Например, в десятичном числе 222 все цифры одинаковые, но правая цифра 2 означает две единицы, вторая справа — два десятка и, наконец, третья справа — две сотни.

1.2. Представление чисел с помощью позиционных систем счисления

1.2.1. Десятичная система счисления

Позиция цифры в числе называется *разрядом*. Разряд числа возрастает справа налево, от младших разрядов к старшим. Разряды имеют названия и номера: разряд единиц, или нулевой разряд; разряд десятков, или первый разряд; разряд сотен, или второй разряд, и т. д. Количественный эквивалент цифры в записи числа равен произведению значения цифры на вес разряда, где она записана.

Для записи первых девяти натуральных чисел используются одноразрядные числа, т. е. числа, состоящие из одной цифры от 0 до 9. Для записи числа, большего на единицу старшей цифры 9 десятичной системы счисления, т. е. числа десять, уже нет цифры, поэтому число десять записывается в виде комбинации из двух цифр -10, т. е. одного десятка и нуля единиц. Десять десятков образуют одну сотню, десять сотен - одну тысячу. В общем, десять единиц любого разряда образуют единицу следующего (более старшего) разряда.

Число 222_{10} записано в *свернутой форме*. В *развернутой форме* (явной, где указывается вес отдельных разрядов) запись этого числа имеет вид:

$$222_{10} = 2 \cdot 10^2 + 2 \cdot 10^1 + 2 \cdot 10^0$$
.

Эту запись называют еще разложением числа по степеням основания. Очевидно, что такая запись числа является полиномом от основания p, т. е. суммой числового ряда степеней основания (в данном случае -10).

Для записи десятичных дробей используются отрицательные значения степеней основания. Например, число $222,22_{10}$ в развернутой форме можно представить так:

$$222,22_{10} = 2 \cdot 10^2 + 2 \cdot 10^1 + 2 \cdot 10^0 + 2 \cdot 10^{-1} + 2 \cdot 10^{-2}.$$

Следует отметить, что номера разрядов числа совпадают с показателями степени основания.

В общем случае краткая (свернутая) запись смешанной десятичной дроби, имеющей n разрядов в целой части числа и m разрядов в дробной части числа, имеет вид:

$$A_{10} = a_{n-1}a_{n-2} \dots a_0, a_{-1}a_{-2} \dots a_{-m}. \tag{1}$$

Формула разложения числа, представленного выражением (1), по степеням основания 10 (развернутая форма записи числа) имеет вид:

$$A_{10} = a_{n-1} \cdot 10^{n-1} + a_{n-2} \cdot 10^{n-2} + \dots + a_0 \cdot 10^0 + a_{-1} \cdot 10^{-1} + a_{-2} \cdot 10^{-2} + \dots + a_{-m} \cdot 10^{-m}.$$
 (2)

Основание 10 системы счисления обозначено подстрочным индексом к числу А.

1.2.2. Системы счисления с произвольным основанием

Основанием позиционной системы счисления может быть любое натуральное число p, большее единицы. Для записи чисел в такой системе счисления необходимо иметь алфавит из p цифр от 0 до (p-1) включительно. При $p \le 10$ используются p первых арабских цифр, а при p > 10 к десяти арабским цифрам добавляют латинские буквы.

Примеры алфавитов некоторых систем счисления приведены в табл. 1.

Таблица 1 Алфавиты некоторых систем счисления

Основание	Система счисления	Алфавит
p=2	Двоичная	0, 1
p=3	Троичная	0, 1, 2
p = 4	Четверичная	0, 1, 2, 3
p = 8	Восьмеричная	0, 1, 2, 3, 4, 5, 6, 7
<i>p</i> = 16	Шестнадцатеричная	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (10), B (11), C (12), D (13), E (14), F (15)

Для записи первых (p-1) натуральных чисел используются одноразрядные числа, т. е. числа, состоящие из одной цифры от 0 до (p-1). Для записи числа, большего на единицу старшей цифры (p-1) системы счисления с основанием p, уже нет цифры, поэтому число p записывается в виде комбинации из двух цифр -10, т. е. одной единицы старшего разряда (с весом p^1) и нуля единиц младшего разряда (с весом p^0 , т. е. 1). Всегда p единиц любого разряда образуют единицу следующего (более старшего) разряда.

В общем случае краткая (свернутая) запись смешанной дроби в системе с основанием p, содержащей n разрядов в целой части числа и m разрядов в дробной части числа, имеет вид:

$$A_p = a_{n-1}a_{n-2}...a_0, a_{-1}a_{-2}...a_{-m}.$$
(3)

Формула разложения числа, представленного выражением (3), по степеням основания p имеет вид:

$$\mathbf{A}_{p} = \mathbf{a}_{n-1} \cdot p^{n-1} + \mathbf{a}_{n-2} \cdot p^{n-2} + \ldots + \mathbf{a}_{0} \cdot p^{0} + \mathbf{a}_{-1} \cdot p^{-1} + \mathbf{a}_{-2} \cdot p^{-2} + \ldots + \mathbf{a}_{-m} \cdot p^{-m}. \tag{4}$$

Основание p системы обозначено подстрочным индексом к числу. Например:

$$222,22_3 = 2 \cdot 3^2 + 2 \cdot 3^1 + 2 \cdot 3^0 + 2 \cdot 3^{-1} + 2 \cdot 3^{-2};$$

$$222,22_{16} = 2 \cdot 16^2 + 2 \cdot 16^1 + 2 \cdot 16^0 + 2 \cdot 16^{-1} + 2 \cdot 16^{-2}.$$

1.3. Системы счисления, применяемые в компьютере

Представление информации может осуществляться с помощью языков. Каждый язык имеет свой алфавит, т. е. набор используемых символов. Любую систему счисления можно рассматривать как язык для записи чисел, а ее цифры – как алфавит этого языка.

1.3.1. Двоичная система счисления и двоичное кодирование информации

В информатике и вычислительной технике используется двоичный алфавит, имеющий два знака (две цифры): 0 и 1. Базовая единица компьютерных данных (наименьшая и основная) — 6um. Слово «бит» является сокращением английского выражения «binary digit», т. е. «двоичная цифра».

Двоичные цифры, или биты, имеют очевидные числовые значения: ноль и единица. Кроме того, биты 0 и 1 могут обозначать «выключено» и «включено», «ложь» и «истина», «нет» и «да». Бит — это наименьшая единица измерения количества информации. Чаще используют более крупную единицу — байт, один байт равен восьми битам.

Каждая цифра двоичного машинного кода несет информацию в один бит. С помощью одной двоичной цифры можно закодировать одну из двух возможных альтернатив. Для кодирования трех альтернатив надо уже не менее двух битов. Например, для кодирования трех сигналов светофора (зеленого, желтого

и красного) можно выбрать коды 00, 01 и 10. Еще один вариант двухбитового кода (11) в этом случае не используется.

Для кодирования от пяти до восьми состояний, объектов, альтернатив, сообщений, событий требуется уже трехбитовый код, который имеет следующие наборы битов: 000, 001, 010, 011, 100, 101, 110, 111, которые называют машинными словами.

С помощью машинных слов из n битов можно закодировать 2^n альтернатив.

В двоичной системе счисления основание равно 2, а алфавит состоит из двух цифр, следовательно, числа в двоичной системе в развернутой форме записываются в виде суммы степеней основания 2 с коэффициентами, в качестве которых выступают цифры 0 или 1. Например, двоичное число $A_2 = 110,101_2$ в развернутой записи имеет вид:

$$A_2 = 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3}.$$

В общем случае запись двоичного числа, которое содержит n целых разрядов числа и m дробных разрядов числа, можно представить в виде:

$$A_2 = a_{n-1}a_{n-2}...a_0, a_{-1}a_{-2}...a_{-m},$$
(5)

в развернутой записи

$$A_2 = a_{n-1} \cdot 2^{n-1} + a_{n-2} \cdot 2^{n-2} + \ldots + a_0 \cdot 2^0 + a_{-1} \cdot 2^{-1} + a_{-2} \cdot 2^{-2} + \ldots + a_{-m} \cdot 2^{-m}.$$
 (6)

1.3.2. Восьмеричная и шестнадцатеричная системы счисления

Запись числа в двоичной системе громоздка, поэтому, как говорилось выше, для внешнего представления данных, адресации памяти используют восьмеричную и шестнадцатеричную системы счисления, например:

$$\begin{split} A_8 &= 23,71_8 = 2 \cdot 8^1 + 3 \cdot 8^0 + 7 \cdot 8^{-1} + 1 \cdot 8^{-2}; \\ A_{16} &= 23,71_{16} = 2 \cdot 16^1 + 3 \cdot 16^0 + 7 \cdot 16^{-1} + 1 \cdot 16^{-2}; \\ A_{16} &= AF,EC_{16} = A \cdot 16^1 + F \cdot 16^0 + E \cdot 16^{-1} + C \cdot 16^{-2} = \\ &= 10 \cdot 16^1 + 15 \cdot 16^0 + 14 \cdot 16^{-1} + 12 \cdot 16^{-2}. \end{split}$$

Соответствие между десятичными, двоичными, восьмеричными и шестнадцатеричными числами иллюстрирует табл. 2, в которой приведены первые 17 целых чисел каждой из представленных систем счисления, начиная с 0.

Таблица 2 Десятичные числа от 0 до 16 и равные им двоичные, восьмеричные и шестнадцатеричные числа

p = 10	p=2	<i>p</i> = 8	<i>p</i> = 16
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Для получения таблицы двоичных чисел можно воспользоваться следующим способом: в младшем разряде каждого двоичного числа цифры 0 и 1 сменяют друг друга через одно число (начиная с 0), во втором разряде — через два числа, в третьем — через четыре числа.

1.4. Перевод чисел из системы с произвольным основанием в десятичную систему счисления

Перевод числа из системы с произвольным основанием p в десятичную систему счисления выполняется с помощью формулы разложения этого числа по степеням основания p, т. е. с помощью развернутой формы записи числа (4).

Для перевода числа из системы счисления с произвольным основанием в десятичную систему счисления следует вычислить сумму полученного числового ряда, например:

$$110,101_2 = 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} = 6,675;$$

$$222,22_3 = 2 \cdot 3^2 + 2 \cdot 3^1 + 2 \cdot 3^0 + 2 \cdot 3^{-1} + 2 \cdot 3^{-2} \approx 26,889;$$

$$222,22_{16} = 2 \cdot 16^2 + 2 \cdot 16^1 + 2 \cdot 16^0 + 2 \cdot 16^{-1} + 2 \cdot 16^{-2} \approx 546,133.$$

1.5. Перевод чисел из десятичной системы счисления в систему с произвольным основанием

1.5.1. Перевод целых десятичных чисел

Алгоритм перевода следующий. Сначала исходное число делится на основание новой системы p, затем получающиеся целые частные снова делятся на p. Действия выполняются в десятичной системе счисления. Деление проводится до получения в частном числа меньше основания системы счисления. Выписываются последнее частное и все остатки, полученные в результате деления, по первый включительно. Полученное число является записью заданного числа в новой системе счисления.

 Π р и м е р 1. Рассмотрим перевод целого числа 36_{10} из десятичной системы счисления в двоичную систему. Выполняется последовательное деление:

Ответ: $A_2 = 100100_2$.

 Π р и м е р 2. Переведем целое десятичное число 94_{10} из десятичной системы счисления в восьмеричную и шестнадцатеричную системы:

При переводе в шестнадцатеричную систему счисления получили остаток 14, который в соответствии с табл. 2 должен быть представлен в числе шестнадцатеричной цифрой Е.

Otbet: $A_{16} = 5E_{16}$, $A_8 = 136_8$.

1.5.2. Перевод правильных десятичных дробей

Алгоритм перевода следующий. Последовательно умножаем сначала исходное число, затем *дробные части* получаемых произведений на основание новой системы. При этом целые части получаемых произведений будут являться цифрами записи искомого числа в новой системе (начиная со старшей цифры). Процесс умножения выполняется до получения в дробной части нуля или до получения необходимого количества цифр.

Рассмотрим пример перевода правильной дроби 0.36_{10} из десятичной системы счисления в двоичную систему с точностью до пяти цифр после запятой. Выполним последовательное умножение:

0	36
	$\times 2$
0	72
	$\times 2$
1	44
	$\times 2$
	1
0	88
0	
0	88
	88 ×2
	88 ×2 76

Ответ: $A_2 \approx 0,01011_2$. Действительно, выполнив перевод полученного результата в десятичную систему, имеем: $0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 1 \cdot 2^{-4} + 1 \cdot 2^{-5} = 0,34375$.

Получили число, отличающееся от исходного числа 0.36_{10} . Причина расхождения заключается в том, что при переводе было взято пять цифр после запятой. При увеличении количества значащих цифр сумма числового ряда была бы ближе к 0.36_{10} .

Следует отметить, что в двоичную систему счисления точно (без ошибки) переводятся только те числа, которые являются конечной суммой степеней числа 2, т. е. целые числа, а также числа 0,5 (2^{-1}); 0,25 (2^{-2}); 0,75 (2^{-1} + 2^{-2}); 0,125 (2^{-3}); 0,625 (2^{-1} + 2^{-3}) и т. д.

1.5.3. Перевод десятичных чисел, содержащих целую и дробную части

Перевод десятичных чисел, содержащих целую и дробную части, из десятичной системы счисления в систему с произвольным основанием p выполняется отдельно для целой и дробной частей числа.

1.6. Перевод чисел из системы с основанием p в систему с основанием q

В общем случае перевод чисел из системы с основанием p в систему с основанием q легче всего выполнять по схеме:

$$A_p \rightarrow A_{10} \rightarrow A_q$$

т. е. сначала число из системы с основанием p следует перевести в привычную десятичную систему, а затем полученное число необходимо из десятичной системы перевести в систему с основанием q. Например, переведем число $A_7 = 35_7$ в двоичную систему счисления.

Десятичное число $A_{10} = 3 \cdot 7^1 + 5 \cdot 7^0 = 26_{10}$.

Делением получим число 26₁₀ в двоичной системе:

Ответ: $A_2 = 11010_2$.

1.6.2. Поразрядные способы перевода чисел для систем с кратными основаниями

Перевод числа из восьмеричной системы счисления в двоичную систему можно выполнить проще, если использовать поразрядные способы перевода

для систем с кратными основаниями. Системы счисления называют системами с кратными основаниями, если для оснований систем счисления p и q справедливо соотношение $p=q^k$, где k — натуральное число.

Примером систем с кратными основаниями являются двоичная, восьмеричная и шестнадцатеричная системы $(2^3 = 8; 2^4 = 16)$.

Перевод чисел в системах с кратными основаниями прост и не требует выполнения арифметических действий.

Перевод из восьмеричной системы счисления в двоичную систему и обратно основан на замене каждой восьмеричной цифры тремя двоичными разрядами — триадой, и наоборот — замене каждой группы из трех двоичных разрядов одной восьмеричной цифрой.

Перевод из шестнадцатеричной системы счисления в двоичную систему основан на замене каждой шестнадцатеричной цифры четырьмя двоичными разрядами — тетрадой, и наоборот — замене каждой группы из четырех двоичных разрядов одной шестнадцатеричной цифрой.

При переводе чисел в системах с кратными основаниями, для которых справедливы соотношения $p=2^k$ и $q=2^m$, удобно воспользоваться данными табл. 2.

Если двоичное число содержит меньшее количество разрядов, чем это необходимо, то допускается дополнять его нулями слева в целых и справа в дробных частях числа.

Рассмотрим на примерах перевод чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную и обратно.

Пример 1.

Дано: $A_8 = 205_8$. Найти: A_2 .

Для получения результата каждую двоичную цифру заменим триадой:

$$A_8 = \ 2 \qquad 0 \qquad 5; \\ A_2 = 010 \quad 000 \quad 101.$$

Ответ: $A_2 = 10000101_2$.

Пример 2.

Дано: $A_{16} = 2E5_{16}$. Найти: A_2 .

Для получения результата каждую двоичную цифру заменим тетрадой:

$$A_{16} = 2$$
 E 5;
 $A_2 = 0010$ 1110 0101.

Ответ: $A_2 = 1011100101_2$.

Пример 3.

Дано: $A_{16} = ABBA_{16}$. Найти: A_8 .

Для упрощения перевода из восьмеричной системы счисления в шестнадцатеричную и обратно в качестве промежуточной системы удобно использовать двоичную систему:

$$A_{16} = A$$
 B B A;
 $A_2 = 1010 \ 1011 \ 1011 \ 1010;$
 $A_2 = 001 \ 010 \ 101 \ 110 \ 111 \ 010;$
 $A_8 = 1 \ 2 \ 5 \ 6 \ 7 \ 2.$

Ответ: $A_8 = 125672_8$.

1.7. Двоичная арифметика

Правила выполнения арифметических операций для позиционных систем счисления с любым основанием p одинаковы и задаются таблицами сложения и умножения одноразрядных чисел.

Таблица двоичного сложения имеет вид:

$$0+0=0$$
; $0+1=1$; $1+0=1$; $1+1=10$.

Для двоичной системы счисления при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной основанию системы счисления или больше него, для двоичной системы счисления – больше двух или равной двум.

Для примера сложим в столбик двоичные числа 1001012 и 11112:

$$+\frac{100101_2}{1111_2}\\ -\frac{1111_2}{110100_2}.$$

Вычитание можно выполнять по таблицам сложения. При вычитании из меньшей цифры большей производится заем из старшего разряда, при этом следует учесть, что в двоичной системе счисления одна единица старшего разряда равна двум единицам младшего разряда.

Для примера вычтем двоичные числа 1001012 и 11112:

$$-\frac{100101_2}{\underbrace{1111_2}_{10110_2}}.$$

Если вычитаемое больше уменьшаемого, то необходимо поменять их местами, а разность записать со знаком минус. Например, разность чисел 1111_2 и 100101_2 равна -10110_2 .

Таблица двоичного умножения имеет вид:

$$0 \cdot 0 = 0$$
; $0 \cdot 1 = 0$; $1 \cdot 0 = 0$; $1 \times 1 = 1$.

Умножение многоразрядных двоичных чисел производится столбиком, т. е. путем образования частичных произведений и последующего их суммирования. Для примера умножим двоичные числа 1101₂ и 101₂:

$$\begin{array}{c}
 1101_{2} \\
 \times \\
 101_{2} \\
 \hline
 1101 \\
 + \\
 \hline
 10000001_{2}.
\end{array}$$

Следует отметить, что умножение любого целого двоичного числа на 10_2 (т. е. на 2) эквивалентно добавлению нуля справа, а дробного — переносу запятой вправо на один разряд, например: $1101 \times 10 = 11010$; $11,01 \times 10 = 110,1$.

Деление многоразрядных чисел производится уголком, аналогично делению десятичных чисел, например, разделим натуральное число 1001_2 на натуральное число 11_2 :

$$\begin{array}{c|c}
 & 1001_2 & 11_2 \\
 & 11 & 11_2 \\
 & 110 \\
 & 11 \\
\hline
 & 0 \\
\end{array}$$

Следует отметить, что деление любого двоичного числа на 10_2 (т. е. на 2) эквивалентно переносу запятой влево на один разряд, например, 1101_2 : $10_2 = 110,1_2$; $11,01_2$: $10_2 = 1,101_2$.

Таблицы сложения и умножения в восьмеричной и шестнадцатеричной системах счисления сложнее для понимания. Арифметические действия обычно выполняют так: все числа переводят в двоичную или десятичную системы счисления, выполняют действия, а затем результат переводят в нужную систему счисления.

2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1.

Один преподаватель на вопрос, много ли у него студентов в группе, ответил: «У меня в группе 100 студентов, из них 24 девушки и 21 юноша». В какой системе счисления дал ответ преподаватель?

Решение этой задачи несложное. Пусть p — основание системы счисления, о которой идет речь. Тогда в группе студентов $1 \cdot p^2 + 0 \cdot p^1 + 0 \cdot p^0$, из них $2 \cdot p^1 + 4 \cdot p^0$ девушек и $2 \cdot p^1 + 1 \cdot p^0$ юношей. Таким образом,

$$p^2 = 2p + 4 + 2p + 1,$$

или

$$p^2 - 4p - 5 = 0$$

отсюда $p = 2 \pm \sqrt{4+5}$, т. е. p1 = 5; p2 = -1.

Так как -1 не может быть основанием системы счисления, то единственное решение этой задачи — основание системы счисления p=5.

Таким образом, в группе 25 человек, из них 14 девушек и 11 юношей.

Решить эту задачу можно гораздо проще, если записать:

$$24_p + 21_p = 100_p$$
.

При сложении цифр 4 и 1 в разряде единиц получился ноль, значит, сумма $4_p + 1_p = 10_p$ в этой системе счисления дала переполнение и перенос единицы в старший разряд. Составим уравнение: $4 \cdot p^0 + 1 \cdot p^0 = 1 \cdot p^1 + 0 \cdot p^0$, из которого следует, что $p = 5_{10}$.

Ответ: основание системы счисления p = 5.

Пример 2.

Найти первое слагаемое, сумму и основание системы счисления, в которой справедливо соотношение

$$_p + 1_p = ****_p.$$

Решение задачи очевидно. В любой системе счисления с основанием p прибавление единицы к трехзначному числу дает в результате четырехзначное число только тогда, когда все цифры трехзначного числа одинаковы и равны максимальному значению (p-1). Если хотя бы одна из цифр трехзначного числа меньше (p-1), то суммой будет трехзначное число, например:

$$111_2 + 1_2 = 1000_2$$
; $222_3 + 1_3 = 1000_3$; $777_8 + 1_8 = 1000_8$ и т. д.

Ответ: p – любое натуральное число, большее единицы; первое слагаемое состоит из трех одинаковых цифр, равных (p-1); сумма двух слагаемых $1000_p = p_{10}^3$.

Пример 3.

Найти сумму:

$$10101,11_2 + 123,3_8 + A0,8_{16}$$
.

Результат представить в десятичной системе счисления.

Дать два способа решения:

- 1) найти сумму в двоичной системе счисления, перевести ее в шестнадцатеричную систему, а затем в десятичную;
- 2) сначала все слагаемые перевести в десятичную систему счисления, а потом уже провести суммирование.

1-й способ. Переведем слагаемые $123,3_8$ и $A0,8_{16}$ в двоичную систему счисления, заменив каждую восьмеричную цифру триадой двоичных цифр, а каждую шестнадцатеричную – тетрадой (см. табл. 2):

$$123,3_8 = 001 \ 010 \ 011, \ 011_2;$$

 $A0,8_{16} = 1010 \ 0000, \ 1000_2.$

Проще сложить сначала первые два слагаемых, а потом к результату прибавить третье:

Переведем окончательный результат в десятичную систему счисления:

$$100001001, 101_2 = 1 \cdot 2^8 + 1 \cdot 2^3 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-3} = 265, 625_{10}.$$

2-й способ. Переведем все слагаемые в десятичную систему счисления:

$$\begin{aligned} &10101, 11_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = 21, 75_{10}; \\ &123, 3_8 = 1 \cdot 8^2 + 2 \cdot 8^1 + 3 \cdot 8^0 + 3 \cdot 8^{-1} = 83, 375_{10}; \\ &A0, 8_{16} = 10 \cdot 16^1 + 0 \cdot 16^0 + 8 \cdot 16^{-1} = 160, 5_{10}; \\ &21, 75 + 83, 375 + 160, 5 = 265, 625. \end{aligned}$$

Результаты вычислений с использованием первого и второго способов совпали. Ответ: $265,625_{10}$.

Пример 4.

Значения длин сторон треугольника заданы числами 11110_2 , 50_8 , 32_{16} . Определить радиус описанной окружности.

Переведем длину каждой стороны в десятичную систему счисления:

$$11110_2 = 30_{10}$$
; $50_8 = 40_{10}$; $32_{16} = 50_{10}$.

Заметив, что $30^2 + 40^2 = 50^2$, делаем вывод о том, что треугольник с такими сторонами является прямоугольным с катетами 30, 40 и гипотенузой 50. Тогда диаметр описанной окружности равен гипотенузе прямоугольного треугольника (по школьному курсу математики), а радиус — половине диаметра.

Ответ: радиус описанной окружности равен 25.

3. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1) Что называется системой счисления?
- 2) На какие два типа можно разделить все системы счисления?
- 3) Какие системы счисления называются непозиционными? Почему?
- 4) Какие системы счисления называются позиционными?
- 5) Какие системы счисления применяются в вычислительной технике: позиционные или непозиционные? Почему?
 - 6) Как изображается число в позиционной системе счисления?
 - 7) Что называется основанием системы счисления?
 - 8) Что называется разрядом в изображении числа?
- 9) Как можно представить целое положительное число в позиционной системе счисления?
- 10) Какие числа можно использовать в качестве основания системы счисления?
- 11) Какие системы счисления применяются в компьютере для представления информации?
- 12) Существует ли система счисления, в которой десятичное число 15 будет оканчиваться цифрой 0, двумя нулями?
- 13) Какое число больше: aaa_p или aaa_q , если известно, что a какая-то арабская цифра, а натуральное число p меньше натурального числа q?

4. ЗАДАНИЯ

Задание 1. Числа в непозиционных системах счисления. Данные для выполнения этого задания приведены по вариантам в табл. 3.

- а) Записать число А с помощью римских цифр.
- б) Записать число В в десятичной системе счисления.

Таблица 3

		тиолициз
Номер варианта	Число А	Число В
1	205	DCXXVII
2	129	CCXCI
3	342	CLIX
4	911	CCCXXXV
5	627	CCCXLIV
6	335	DCXII
7	621	CDXXVII
8	291	CLXIX
9	344	CCV
10	612	CCCLXI
11	318	CXXIX
12	765	CCCXCI
13	159	CMXI
14	361	DCXXI
15	427	CCCXLII

Задание 2. Числа в позиционных системах счисления.

а) Записать алфавит троичной, семеричной и двенадцатеричной систем счисления.

б) Записать первые 20 чисел натурального числового ряда в троичной и двенадцатеричной системах счисления.

При выполнении задания для получения очередного числа следует прибавлять к предыдущему числу единицу.

в) Записать числа натурального числового ряда, принадлежащие следующим числовым отрезкам, в заданных системах счисления:

$$[110_2; 1001_2], [10_3; 22_3], [12_4; 21_4], [12_5; 20_5], [67_8; 71_8], [AFF_{16}; B02_{16}].$$

Задание 3. Перевод чисел в заданную систему счисления. Данные для выполнения этого задания приведены по вариантам в табл. 4.

а) Выбрать десятичное число А и выполнить преобразования по схеме:

$$A_{10} \to A_2$$
; $A_{10} \to A_8$; $A_{10} \to A_{16}$.

б) Выбрать двоичное число В и выполнить преобразования по схеме:

$$B_2 \rightarrow B_{10}; \quad B_2 \rightarrow B_{16}; \quad B_2 \rightarrow B_8.$$

в) Выбрать шестнадцатеричное число С и выполнить преобразования по схеме:

$$C_{16} \rightarrow C_2 \rightarrow C_8 \rightarrow C_{10}.$$

Таблица 4

Номер варианта	Число А	Число В	Число С
1	2	3	4
1	291	101010011	AB4
2	344	100000101	AF8
3	412	110000111	BBC
4	318	101010001	BA4
5	265	100100100	AD7
6	159	101000100	B44
7	361	111100100	BBC
8	427	110011010	ACC
9	205	110111100	BA8

Окончание табл. 4

1	2	3	4
10	192	100000110	BB8
11	342	101101100	1F2
12	411	101000001	978
13	227	111100010	9F4
14	335	101110001	AEC
15	421	101011100	BE4

Задание 4. Сравнить числа в различных системах счисления. Данные для выполнения задания приведены по вариантам в табл. 5.

Таблица 5

Номер варианта	Часть 1	Часть 2
1, 6, 11		$ \begin{array}{c} 140_8 ? 34_{15} \\ 101101100_2 ? 11000_3 \\ 284_9 ? 2441_5 \end{array} $
2, 7, 12	$ \begin{array}{c} 1000100110_2 \ ? \ 226_{16} \\ 222_{10} \ ? \ 11111111_2 \\ 201_8 \ ? \ 201_{16} \end{array} $	$C2_{17}$? 11010_2 2023_6 ? 502_{16} 11110_4 ? 4101_7
3, 8, 13	$121_8 ? 101001_2$ $1110_8 ? 17_{10}$ $315_{10} ? 315_8$	210_{16} ? 33220_4 111001_2 ? 32_6 100021_3 ? 250_9
4, 9, 14	133_{16} ? 100011011_2 11100011_2 ? 56_{10} 10010_{10} ? 10010_2	7G ₂₃ ? FF ₁₆ 356 ₈ ? 1402 ₅ 100A ₁₁ ? 631 ₇
5, 10, 15	$\begin{array}{c} 1111001_2 \ ? \ 173_8 \\ 240_{10} \ ? \ 170_{16} \\ 111000_2 \ ? \ 11100_{16} \end{array}$	291 ₁₂ ? 11010 ₈ 1602 ₇ ? 1A8 ₁₆ 22110 ₅ ? 41B ₁₃

Задание 5. В двоичной системе счисления вычислить сумму, разность и произведение двоичных чисел А и В, представленных в табл. 6.

Таблица 6

Номер варианта	Число А	Число В
1	111011	10010
2	110110	10100
3	101011	10010
4	101011	10001
5	100011	10010
6	101010	10001
7	110101	11000
8	100111	10001
9	110111	10100
10	110001	10010
11	111100	10001
12	111111	11000
13	110100	10100
14	100110	10010
15	101101	10001

З а д а н и е 6. Вычислить значение выражения в любой системе счисления:

a)
$$67_8 + 23_{10} * AF_{16} + 97_{16}$$
;

$$6)\ 67_8 - 23_8 + A_{16} - 7_{16};$$

- $\Gamma)\ 10010110_2+1100100_2+110010_2;$
- д) $(11111101_2 + AF_{16}) * 14_8;$
- e) $125_8 + 101_2 * A2_{16} 1417_{8.}$

Ответ представить в десятичной системе счисления.

в) $AF_{16} - 75_{10}$;

5. ПРИМЕРЫ ТЕСТОВЫХ ВОПРОСОВ

Вопрос № 1 (один верный).

Количество цифр в двоичной записи десятичного числа, представленного в виде 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 равно ...

Варианты ответов:

- 1) 11.
- 2) 4.
- 3) 22.
- 4) 1024.
- 5) 23.

Вопрос № 2.

Существует ли число 16 в шестнадцатеричной системе счисления? Варианты ответов:

- 1) Да.
- 2) Нет.

Вопрос № 3 (один верный).

Укажите основание x системы счисления, если выполняется равенство $110001_x = 31_{16}$.

Варианты ответов:

- 1) 2.
- 2) 8.
- 3) 10.
- 4) 3.
- 5) 9.

Вопрос № 4 (один верный).

Сколько позиций (разрядов) в числе X, если выполняется равенство $DA_{16} = X_8$?

Варианты ответов:

- 1) 3.
- 2) 16.
- 3) 2.
- 4) 8.
- 5) 4.

Библиографический список

- 1. Информатика. Базовый курс / Под ред. С. В. Симоновича. СПб: Питер, 2011. 640 с.
- 2. Информатика [Электронный ресурс] / Под ред. В. В. Трофимова. М.: Юрайт, 2011.
- 3. Новожилов О. П. Информатика: Учебник [Электронный ресурс] / О. П. Новожилов. М.: Юрайт, 2015. Режим доступа: http://www.biblio-online.ru

Учебное издание

ЕРОШЕНКО Александра Викторовна, ШЕНДАЛЕВА Ольга Анатольевна

СИСТЕМЫ СЧИСЛЕНИЯ

Учебно-методическое пособие

Редактор Н. А. Майорова Корректор А. А. Булдакова

Подписано в печать 19.09.2017. Формат $60 \times 84^{-1}/_{16}$. Офсетная печать. Бумага офсетная. Усл. печ. л. 1,7. Уч.-изд. л. 1,9. Тираж 200 экз. Заказ .

**

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

*

644046, г. Омск, пр. Маркса, 35