A Deep Neural Network Approach to Splice Site Prediction

Tilman Hinnerichs

Knowledge Mining Lab - KAUST

October 27, 2019

Outline

- 1. Problem Description
- 2. Dataset description
- 3. Simple classifiers
- DiProDB database Application of CNN
- 5. Improvements on simple approach
- 6. repDNA
- 7. Application of ensemble methods
- 8. Influence of nucleotide position

Figure: RNA splicing reaction (en.wikipedia.org)

- ► Acceptor site:
 - ... CGTATCTAGATGAGCA...
- Donor site:
 - ... ATGATTTGTGCAGTCA...

- Acceptor site:
 - ...CGTATCT AG ATGAGCA...
- Donor site:
 - ...ATGATTT GT GCAGTCA...

- ► Acceptor site:
 - ... CGTATCT <mark>AG</mark> ATG <mark>AG</mark> CA...
- Donor site:
 - ...ATGATTT<mark>GT</mark>GCA<mark>GT</mark>CA...

Dataset description

Example file, e.g., acceptor site

Simple non-convolutional NN

- Models built on one-hot-encoded data
- Dense networks with dropout

Approach	Samples	Depth	Acceptor acc.	Donor acc.
DNN	20,000	7	92.38	93.43
DNN	200,000	7	93.34	93.34

Figure: Binary classification results

Application of CNN

Application of CNN to the DiProDB data

- DiProDB is database for the physicochemical properties of dinucleotides (127 entries)
- Applied PCA yielding 15 dimensions

Application of CNN to the DiProDB data

- DiProDB is database for the physicochemical properties of dinucleotides (127 entries)
- ► Applied PCA yielding 15 dimensions

Approach	La	yers		Accepto	•	Donor			
	Conv.	Others	Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
CNN DPDB	4	5	94.4	95.4	94.6	94.9	94.4	94.7	
CNN DPDB	4	7	93.5	93.3	94.5	94.0	94.0	93.3	
CNN DPDB	6	5	94.0	93.9	94.9	94.2	95.4	91.6	
CNN DPDB	6	5	94.4	97.0	93.8	95.2	96.5	93.7	
CNN DPDB	2	4	94.3	95.6	94.3	95.3	96.9	94.4	
SpliceRover	4	2	96.1	93.9	97.4	95.4	95.6	96.7	
Splice2Deep	-	-	95.2	_	94.9	95.6	_	98.8	

SpliceRover[Zuallaert et al., 2018] Splice2Deep[Albaradei et al., 2019] DiProDB database
Application of CNN

Improvements on simple approach

Applying convolutional models to one hot encoding of

single nucleotides

Approach	Samples		Acceptor		Donor			
		Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
Simple	200000	94.5	95.6	93.3	95.3	96.7	94.5	

trinucleotides

Approach	Samples		Acceptor	-	Donor			
		Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
Simple	40000	94.6	93.3	96.7	95.0	92.5	96.3	
Simple	200000	95.6	96.6	94.6	95.8	96.7	95.0	

Single nucleotides model

Figure: Convolutional model with filter sizes (2x4), ..., (7x4)

Trinucleotides model

Figure: Convolutional model with filter sizes $(2 \times 64), \ldots, (8 \times 64)$

11 / 28

repDNA (Liu, 2014)

A "Python package to generate various modes of feature vectors for DNA sequences":

repDNA content

- ► Nucleic acid composition
 - kmer
 - Increment of diversity (ID)
- Autocorrelation
 - Dinucleotide-based auto covariance (DAC)
 - Dinucleotide-based cross covariance (DCC)
 - Dinucleotide-based auto-cross covariance (DACC)
 - Trinucleotide-based auto covariance (TAC)
 - Trinucleotide-based cross covariance (TCC)
 - Trinucleotide-based auto-cross covariance (TACC)

repDNA (Liu, 2014)

repDNA content

- Pseudo nucleotide composition
 - Pseudo dinucleotide composition (PseDNC)
 - Pseudo k-tupler nucleotide composition (PseKNC)
 - Parallel correlation pseudo dinucleotide composition (PC-PseDNC)
 - Parallel correlation pseudo trinucleotide composition (PC-PseTNC)
 - Series correlation pseudo dinucleotide composition (SC-PseDNC)
 - Series correlation pseudo trinucleotide composition (SC-PseTNC)

repDNA (Liu, 2014)

repDNA content

- Pseudo nucleotide composition
 - Pseudo dinucleotide composition (PseDNC)
 - Pseudo k-tupler nucleotide composition (PseKNC)
 - Parallel correlation pseudo dinucleotide composition (PC-PseDNC)
 - Parallel correlation pseudo trinucleotide composition (PC-PseTNC)
 - Series correlation pseudo dinucleotide composition (SC-PseDNC)
 - Series correlation pseudo trinucleotide composition (SC-PseTNC)
- ▶ Build model for each encoding and reuse filters for overall model

Classifier model on repDNA features: Results

Approach	Samples		Acceptor	•	Donor			
		Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
IDkmer	200000	75.2	72.3	76.7	72.7	77.05	75.6	
DAC	200000	75.5	72.8	77.0	75.2	68.9	78.8	
DCC	200000	75.1	80.0	77.7	74.5	75.2	80.0	
TAC	200000	68.0	58.3	72.4	68.2	57.1	73.3	
TCC	200000	73.6	75.5	72.7	75.3	65.0	82.0	
PseKNC	200000	78.1	76.0	79.4	75.84	71.3	78.4	
PC-PseDNC	200000	78.0	76.5	80.1	76.4	75.1	77.9	
PC-PseTNC	200000	80.5	76.1	84.2	78.8	76.9	81.6	
SC-PseDNC	200000	79.2	74.5	82.4	77.5	77.0	78.8	
SC-PseTNC	200000	80.6	76.3	84.8	78.7	77.3	81.5	

Classifier model on repDNA features: IDkmer

Classifier model on repDNA features: DAC/DCC/TAC/TCC

Classifier model on repDNA features: PseNAC

Additional models

- ► XGBoost: Library for gradient boosting algorithms
- ▶ Random Forest

Additional models

- ► XGBoost: Library for gradient boosting algorithms
- ▶ Random Forest

Approach		Acceptor	•	Donor			
	Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
XGBoost	90.8	89.5	92.0	92.0	90.6	93.3	
Random Forest	83.5	83.0	83.8	86.0	86.3	85.8	

Ensemble method: Model

Ensemble method: Results

See this as another classification problem:

Approach		Acceptor	•	Donor			
	Acc.	Prec.	Rec.	Acc.	Prec.	Rec.	
Naive Bayes	83.5	83.0	83.8	85.9	86.3	85.8	
Grad boost	83.5	83.0	83.8	86.0	86.3	85.8	
Random Forest	93.7	94.2	93.3	94.1	94.9	93.4	
NN	83.5	83.0	83.8	87.0	85.5	87.4	

Ensemble method: Results

Minimization techniques over weights over training data:

- ► Nalder-Mead
- Powell

Ensemble method: Results

Minimization techniques over weights over training data:

- ► Nalder-Mead
- Powell

Approach		Acceptor	-	Donor				
	Acc.	Prec.	Rec.	Acc.	Prec.	Rec.		
Soft Min.	83.8	83.5	83.0	86.0	86.3	85.8		
Hard Min.	83.5	83.0	84.1	86.5	86.7	86.3		

Ensemble methods: Results

Minimization over validation data:

- ► Random search
- ► Genetic algorithm

Ensemble methods: Results

Minimization over validation data:

- ► Random search
- Genetic algorithm

Acceptor:

					Weigh	its				Results	
Mode	S	D	Т	PseSC	Acc.	Prec.	Rec.				
S	52	54	98	4	40	6	30	4	95.8	95.5	95.9
H	20	81	98	3	50	3	13	4	95.7	95.8	95.4

Donor:

							Results				
Mode	S D T R X dc PsePC PseSC								Acc.	Prec.	Rec.
S	31	69	97	7	60	6	10	5	96.2	96.3	96.1
H	71	91	95	12	77	5	8	8	96.0	96.6	95.6

Influence of nucleotide position

- 1. Divide upstream and downstream sequences in $\{6,3,2\}$ parts
- 2. Stitch data back together
- 3. Apply classification

Dividing sequences into chunks

Example file, e.g., acceptor site

Influence of nucleotide position: Results

Accuracy for chunk pair:

Simple classifier:

			Acce	eptor			Donor					
	1	2	3	4	5	6	1	2	3	4	5	6
1	77.1	68.9	65.8	65.7	65.3	64.7	85.2	74.	66.4	64.9	64.5	64.7
2	77.4	69.3	66.1	66.3	65.8	65.2	85.2	74.2	66.6	65.5	65.	64.9
3	77.3	69.5	66.6	66.6	66.3	65.8	85.3	74.4	67.	65.5	65.	65.1
4	77.3	69.5	66.8	66.4	66.	65.6	85.7	75.1	67.9	66.3	65.9	66.1
5	83.5	77.9	0.	75.4	75.2	74.8	87.5	78.3	0.	69.9	69.7	70.
6	93.9	91.6	90.5	90.4	90.3	90.3	94.6	87.5	83.9	83.6	83.6	83.5

DiProDB classifier:

			Acce	eptor			Donor					
	1	2	3	4	5	6	1	2	3	4	5	6
1	77.5	70.	66.2	66.4	66.	65.5	85.1	75.2	66.9	65.7	65.	65.2
2	77.7	70.3	66.7	66.8	66.4	66.1	85.2	75.4	67.3	66.2	65.7	65.7
3	77.7	70.4	67.1	67.	66.6	66.4	85.3	75.5	67.5	66.1	65.8	66.
4	77.8	70.5	67.1	67.	66.5	66.3	85.6	76.4	68.3	66.7	66.6	66.9
5	84.5	79.7	0.	77.1	76.8	76.6	87.6	79.3	0.	70.6	70.4	70.6
6	94.3	92.1	91.1	90.8	90.8	90.8	94.7	87.8	84.1	83.7	83.7	_83. 7

Trinucleotide classifier:

	Acceptor							Donor						
	1	2	3	4	5	6	1	2	3	4	5	6		
1	78.2	71.3	67.4	67.1	66.8	66.3	85.4	76.1	67.7	66.4	65.8	65.7		
2	78.6	71.6	67.7	67.5	67.	66.7	85.6	76.3	67.8	66.9	66.2	66.2		
3	78.5	71.6	67.8	67.6	67.3	66.9	85.6	76.4	68.3	67.1	66.5	66.6		
4	78.6	72.	68.4	68.1	67.6	67.4	85.9	77.2	69.1	67.8	67.4	0.		
5	85.2	81.1	0.	77.9	77.9	77.6	88.	80.2	0.	71.7	71.6	71.6		
6	94.4	92.2	91.2	91.	90.9	90.8	94.8	88.5	84.6	84.4	84.5	84.4		

Gradient Boosting classifier:

	Acceptor							Donor						
	1	2	3	4	5	6	1	2	3	4	5	6		
1	68.6	60.5	58.5	58.6	57.9	57.7	77.4	64.9	58.	57.	57.3	57.2		
2	68.6	60.7	58.6	58.6	58.1	58.	77.4	64.9	58.	57.	57.4	57.4		
3	68.6	60.4	58.5	58.4	57.9	57.8	77.4	64.9	57.7	57.1	57.6	57.6		
4	68.6	60.1	58.1	58.1	57.7	57.4	77.4	64.9	57.9	57.6	58.	58.1		
5	69.4	0.	0.	65.	65.	65.1	77.4	0.	0.	61.4	61.6	61.2		
6	82.6	81.5	81.5	81.5	81.5	81.5	87.9	78.5	78.6	78.6	78.6	78.6		

Random Forest classifier:

	Acceptor							Donor						
	1	2	3	4	5	6	1	2	3	4	5	6		
1	69.2	58.6	56.8	57.1	56.6	56.2	78.9	64.3	55.3	54.8	55.5	55.4		
2	69.4	58.9	57.3	57.3	56.9	56.5	78.9	64.3	55.6	55.	55.5	55.7		
3	69.4	58.6	57.1	57.	56.3	56.2	79.	64.5	55.8	55.5	56.	55.9		
4	69.4	58.4	56.7	56.5	55.8	55.7	79.2	64.7	56.4	56.5	56.7	56.6		
5	72.2	0.	0.	64.9	64.7	64.5	79.5	0.	0.	59.4	59.4	59.3		
6	86.8	84.6	84.4	84.4	84.2	84.2	90.2	79.8	78.4	78.4	78.4	78.3		

Citations

- Liu B, Liu F, Fang L, Wang X, Chou K-C.repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics 2015;31(8):1307-1309.
- Jasper Zuallaert, Fréderic Godin, Mijung Kim, Arne Soete, Yvan Saeys, Wesley De Neve, SpliceRover: interpretable convolutional neural networks for improved splice site prediction, Bioinformatics, Volume 34, Issue 24, 15 December 2018, Pages 4180–4188, https://doi.org/10.1093/bioinformatics/bty497

28 / 28