

Issued: 2016-9-29

TEST REPORT

Applicant Name & : Foshan Shunde YA-IN Electric Appliance Manufacture Co., Ltd

Address No. 8 Longxiao Road. Longyongkou, Ronggui Town, Shunde, Foshan

Guangdong 528305 China

Same as applicant Manufacturing Site

Sample Description

Product : Induction Cooktop

C96E-AAAAA02, C96E-AAAAA03 Model No.

: AC 240V~ 60Hz, 9600W **Electrical Rating** FCC ID : ZFB-C96E-AAAAA02

Date Received : 7 August 2016

Date Test Conducted : 7 August 2016 – 20 September 2016

: FCC Part 18: 2014 Test standards

Test Result : Pass

Conclusion The submitted samples complied with the above rules/standards.

None. Remark

Prepared and Checked By:

Leo Luo

Engineer

Intertek Guangzhou

Approved By:

Team Leader

Intertek Guangzhou

29 September 2016 Date

Signature

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. The test report only allows to be revised within three years from its original issued date unless further standard or the requirement was noticed.

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China Tel / Fax: 86-20-8213 9688/86-20-3205 7538 © 2016 Intertek

Issued: 2016-9-29

CONTENT

TEST REF	PORT	
CONTENT	Γ	
1 TEST	T RESULTS SUMMARY	
	T RESULTS CONCLUSION	
2 TEST	T RESULTS CONCLUSION	4
3 LAB	ORATORY MEASUREMENTS	5
4 TEST	T CONFIGURATION	6
	T RESULTS	
5.1 Co	ONDUCTED EMISSION TEST	6
5.1.1		
5.1.2	Block Diagram of Test Setup	
5.1.3	Test Setup and Procedure	
5.1.4	Test Data & Curve	8
5.1.5	Measurement Uncertainty	
5.2 RA	ADIATED EMISSION(9KHz - 30 MHz)	14
5.2.1	Used Test Equipment	
5.2.2	Block Diagram of Test Setup	
5.2.3	Test Setup and Procedure	
5.2.4	Test Data & Curve	
5.2.5	Measurement uncertainty	22
5.3 RA	ADIATED EMISSION (30 MHz- 1 GHz)	
5.3.1	Used Test Equipment	
5.3.2	Block Diagram of Test Setup	23
5.3.3	Test Setup and Procedure	23
5.3.4	Test Data & Curve	24
5.3.5	Measurement uncertainty	

Issued: 2016-9-29

TEST RESULTS SUMMARY 1

Test Item	Standard	Result
Conducted Emission (9 kHz-30 MHz)	FCC Part 18: 2014	Pass
Radiated Emission (9 kHz-30 MHz)	FCC Part 18: 2014	Pass
Radiated Emission (30 MHz-1 GHz)	FCC Part 18: 2014	Pass
Radiated Emission (above 1 GHz)	FCC Part 18: 2014	N/A

Remark: 1. The symbol "N/A" in above table means Not Applicable.

2. When determining the test results, measurement uncertainty of tests has been considered.

Issued: 2016-9-29

2 Test Results Conclusion

(with Justification)

RE: EMC Testing Pursuant to FCC Part 18 performed on the Induction Cooktop, Models: C96E-AAAAA02, C96E-AAAAA03.

We tested the Induction Cooktop, Model: C96E-AAAAA02, C96E-AAAAA03, to determine if it was in compliance with the relevant FCC rules as marked on the Test Results Summary. We found that the unit met the requirement of FCC Part 18 when tested as received. The worst case's test data was presented in this test report.

The submitted samples C96E-AAAAA02, C96E-AAAAA03 are Induction Hotplates for household use.

Model C96E-AAAAA02, C96E-AAAAA03 are the same except the model name.

According to above information, all the tests are performed on C96E-AAAAA02,

Conclusion:

The sample as received complied with the FCC Part 18 requirement.

The production units are required to conform to the initial sample as received when the units are placed on the market.

Issued: 2016-9-29

3 LABORATORY MEASUREMENTS

Configuration Information

Equipment Under Test (EUT): Induction Cooktop

Model: C96E-AAAAA02

Serial No.: Not Labeled

Support Equipment: N/A

Rated Voltage: AC 240V~ 60Hz,

Condition of Environment: Temperature : 22~28°C

Relative Humidity: 35~60% Atmosphere Pressure 86~106kPa

Notes:

1. The EMI measurements had been made in the operating mode producing the largest emission in the frequency band being investigated consistent with normal applications.

An attempt had been made to maximize the emission by varying the configuration of the EUT.

2. Test Sites:

All of the tests are performed at:

Guangdong CIQ Technology Center.

No.3, Desheng East Road, Shunde Daliang, Foshan, Guangdong, China.

This test facility and site measurement data have been fully placed on file with the FCC, test firm registration number is 756674.

Issued: 2016-9-29

4 Test Configuration

Cooking Vessel (provided by manufacturer):

Fill container with 80% of water.

Material: stainless steel

Contact surface diameter 18cm, Top surface diameter 23cm

The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the instructions for use.

Test the EUT in the lowest power level, middle level and the highest power level, the worst test data was presented in the report.

5 TEST RESULTS

5.1 Conducted Emission Test

Test Result: Pass

5.1.1 Used Test Equipment

The middle power mode and the lowest power were conducted on below Equipment:

Equipment No.	Equipment No. Equipment		Manufacturer	Last Cal.	Due Date
CQCSC-EMC-001	Shielded Room	TDK	8*6*4	2016/03/17	2019/03/17
CQCSC-EMC-002	EMI Test receiver	R&S	ESU8	2016/03/17	2017/03/17
CQCSC-EMC-007	LISN	R&S	ESH2-Z5	2016/03/17	2017/03/17
CQCSC-EMC-010	Shielded Room	TDK	8*6*4	2016/03/17	2019/03/17
CQCSC-EMC-052	LISN	R&S	ENV216	2015/12/11	2016/12/11

The highest power were conducted on below Equipment:

Equipment No.	Equipment	Model	Manufacturer	Last Cal.	Due Date	
SD00781	EMI receiver	SMR4503	SCHAFNER	2016.8.31	2017.8.30	
201044CK0121	LISN	ESH2-Z5	Rohde & Schwarz	2016.8.31	2017.8.30	
1244BK0003SD	10dB Pulse	PLA-10N	Compliance Direction	2016.8.31	2017.8.30	
	Limiter		Systems Inc.			
201044CK0128-1	shielding room	NP-HJ2	Changzhou Nanping	2016.1.12	2017.1.11	

Issued: 2016-9-29

5.1.2 Block Diagram of Test Setup

5.1.3 Test Setup and Procedure

Test was performed according to FCC OST/ MP-5:1986. The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50Ω linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane(Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

The bandwidth of test receiver was set at 9 kHz. The frequency range from 9 kHz to 30MHz was checked.

Issued: 2016-9-29

5.1.4 Test Data & Curve

At main terminal: Pass

Tested Wire: Live Operation Mode: the highest power

No.	Frequency (MHz)	Factor (dB)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.0810	9.99	39.41	49.40	85.61	-36.21	QP	Р
2	0.1949	10.00	45.80	55.80	63.82	-8.02	QP	Р
3	0.1949	10.00	37.00	47.00	53.82	-6.82	AVG	Р
4	0.2450	10.01	43.89	53.90	61.92	-8.02	QP	Р
5	0.2450	10.01	34.69	44.70	51.92	-7.22	AVG	Р
6	0.3050	10.01	39.89	49.90	60.10	-10.20	QP	Р
7	0.3050	10.01	30.49	40.50	50.10	-9.60	AVG	Р
8	2.0950	10.06	36.64	46.70	56.00	-9.30	QP	Р
9	2.0950	10.06	23.24	33.30	46.00	-12.70	AVG	Р
10	18.9750	10.28	37.62	47.90	60.00	-12.10	QP	Р
11	18.9750	10.28	29.22	39.50	50.00	-10.50	AVG	Р

Issued: 2016-9-29

Tested Wire: Neutral

Operation Mode: the highest power

No.	Frequency (MHz)	Factor (dB)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.0812	9.99	48.11	58.10	85.58	-27.48	QP	Р
2	0.1850	10.00	44.60	54.60	64.25	-9.65	QP	Р
3	0.1850	10.00	35.90	45.90	54.25	-8.35	AVG	Р
4	0.2400	10.01	39.79	49.80	62.09	-12.29	QP	Р
5	0.2400	10.01	29.99	40.00	52.09	-12.09	AVG	Р
6	0.4300	10.02	34.18	44.20	57.25	-13.05	QP	Р
7	0.4300	10.02	27.58	37.60	47.25	-9.65	AVG	Р
8	2.2300	10.06	35.24	45.30	56.00	-10.70	QP	Р
9	2.2300	10.06	21.84	31.90	46.00	-14.10	AVG	Р
10	18.9050	10.28	37.82	48.10	60.00	-11.90	QP	Р
11	18.9050	10.28	28.82	39.10	50.00	-10.90	AVG	Р

Issued: 2016-9-29

Tested Wire: Live Operation Mode: Middle power

Frequency	QuasiPeak	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time (ms)	(kHz)			(dB)	(dB)	(dBµV)
0.150	55.3	1000.	9.000	GN	L1	10.0	-10.7	66.0
0.206	50.8	1000.	9.000	GN	L1	10.0	-12.6	63.4
0.266	45.5	1000.	9.000	GN	L1	10.0	-15.7	61.2
0.682	33.7	1000.	9.000	GN	L1	10.0	-22.3	56.0
2.042	43.2	1000.	9.000	GN	L1	10.0	-12.8	56.0
2.838	35.1	1000.	9.000	GN	L1	10.0	-20.9	56.0
Frequency	CAverage	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit
0.150	48.8	1000.	9.000	GN	L1	10.0	-7.2	56.0
0.206	43.2	1000.	9.000	GN	L1	10.0	-10.1	53.4
0.266	37.6	1000.	9.000	GN	L1	10.0	-13.7	51.2
0.682	29.4	1000.	9.000	GN	L1	10.0	-16.6	46.0
2.042	32.6	1000.	9.000	GN	L1	10.0	-13.4	46.0
2.838	27.4	1000.	9.000	GN	L1	10.0	-18.6	46.0

Issued: 2016-9-29

Tested Wire: Neutral Operation Mode: Middle power

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
		(ms)						
0.150	57.7	1000.	9.000	GN	N	10.0	-8.3	66.0
0.202	50.3	1000.	9.000	GN	N	10.0	-13.2	63.5
0.206	52.9	1000.	9.000	GN	N	10.0	-10.5	63.4
0.266	47.2	1000.	9.000	GN	N	10.0	-14.0	61.2
1.154	30.1	1000.	9.000	GN	N	10.0	-25.9	56.0
2.050	41.7	1000.	9.000	GN	N	10.0	-14.3	56.0
Frequency	CAverage	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit
0.150	50.3	1000.	9.000	GN	N	10.0	-5.7	56.0
0.202	42.9	1000.	9.000	GN	N	10.0	-10.6	53.5
0.206	44.9	1000.	9.000	GN	N	10.0	-8.5	53.4
0.266	40.0	1000.	9.000	GN	N	10.0	-11.2	51.2
1.154	21.6	1000.	9.000	GN	N	10.0	-24.4	46.0
2.050	31.2	1000.	9.000	GN	N	10.0	-14.8	46.0

Issued: 2016-9-29

Tested Wire: Live

Operation Mode: the lowest power

Frequency	QuasiPeak	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.174	49.2	1000.	9.000	GN	L1	10.0	-15.5	64.8
0.250	46.5	1000.	9.000	GN	L1	10.0	-15.2	61.8
1.142	23.4	1000.	9.000	GN	L1	10.0	-32.6	56.0
1.482	29.9	1000.	9.000	GN	L1	10.0	-26.1	56.0
7.678	30.6	1000.	9.000	GN	L1	10.2	-29.4	60.0
18.650	30.3	1000.	9.000	GN	L1	10.3	-29.7	60.0
Frequency	CAverage	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit
0.174	32.0	1000.	9.000	GN	L1	10.0	-22.8	54.8
0.250	35.7	1000.	9.000	GN	L1	10.0	-16.0	51.8
1.142	23.7	1000.	9.000	GN	L1	10.0	-22.3	46.0
1.482	22.8	1000.	9.000	GN	L1	10.0	-23.2	46.0
7.678	11.0	1000.	9.000	GN	L1	10.2	-39.0	50.0
18.650	19.1	1000.	9.000	GN	L1	10.3	-30.9	50.0

Issued: 2016-9-29

Tested Wire: Neutral Operation Mode: the lowest power

Frequency	QuasiPeak	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time (ms)	(kHz)			(dB)	(dB)	(dBµV)
0.202	27.8	1000.	9.000	GN	N	10.0	-35.7	63.5
0.434	39.5	1000.	9.000	GN	N	10.0	-17.7	57.2
1.166	19.1	1000.	9.000	GN	N	10.0	-36.9	56.0
1.970	41.8	1000.	9.000	GN	N	10.0	-14.2	56.0
7.554	17.4	1000.	9.000	GN	N	10.2	-42.6	60.0
19.398	27.6	1000.	9.000	GN	N	10.3	-32.4	60.0
Frequency	CAverage	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit
0.202	27.9	1000.	9.000	GN	N	10.0	-25.6	53.5
0.434	34.3	1000.	9.000	GN	N	10.0	-12.9	47.2
1.166	13.7	1000.	9.000	GN	N	10.0	-32.3	46.0
1.970	15.8	1000.	9.000	GN	N	10.0	-30.2	46.0
7.554	21.6	1000.	9.000	GN	N	10.2	-28.4	50.0
19.398	22.7	1000.	9.000	GN	N	10.3	-27.3	50.0

Issued: 2016-9-29

5.1.5 Measurement Uncertainty

Uncertainty: 2.61 dB for frequency rang 9 kHz-150 kHz and 2.58 dB for frequency rang 150 kHz-30 MHz at a level of confidence of 95%.

5.2 Radiated Emission(9kHz - 30 MHz)

Test Result: PASS

5.2.1 Used Test Equipment

- man and the first and the second se										
Equipment No.	Equipment	Model	Manufacturer	Last Cal.	Due Date					
EE226	EMI Test Receiver	ESR3	Rohde & Schwarz	2016.5.17	2017.5.17					
EE249	EMI Test Receiver	ESR3	Rohde & Schwarz	2016.5.17	2017.5.17					
1029	Loop Antenna	PLA-1030/B	ARA	2016.5.29	2017.5.29					

5.2.2 Block Diagram of Test Setup

Issued: 2016-9-29

5.2.3 Test Setup and Procedure

The measurement was applied in a semi-anechoic chamber. The EUT were placed on a 1 m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna tripod.

Loop antenna was used as receiving antenna. The antenna was supported in the vertical plane and was rotatable about a vertical axis to obtain the maximum emission. The antenna height of was set at 2 m above ground level.

The bandwidth setting on Receiver was 9 kHz. The frequency range from 9 kHz to 30MHz was checked.

An initial pre-scan was performed in the 10m chamber using the spectrum analyzer in peak detection mode. Average measurements were conducted based on the peak sweep graph. The EUT was measured by a 0.6m loop antenna.

Issued: 2016-9-29

5.2.4 Test Data & Curve

Tested Polarization: Vertical

Operation Mode: the highest power

Issued: 2016-9-29

5.2.5 Measurement uncertainty

The measurement uncertainty for magnetic field radiated emission test is under consideration.

5.3 Radiated Emission (30 MHz-1 GHz)

Test Result: Pass

5.3.1 Used Test Equipment

Equip. No.	Equipment	Model	Manufacturer	Last Cal.	Due Date
CQCSC- EMC-001	Shielded Room	TDK	8*6*4	2016/03/17	2019/03/17
CQCSC- EMC-002	EMI Test receiver	R&S	ESU8	2016/03/17	2017/03/17
CQCSC- EMC-003	Biconical Broad Band Antenna	Schwarzbeck	SWB-VULB9163	2016/03/12	2019/03/12
CQCSC- EMC-005	Horn Antenna	R&S	HF907	2016/03/12	2019/03/12
CQCSC- EMC-006	Preamplifier	R&S	SCU-18	2016/03/17	2017/03/17
CQCSC- EMC-010	Shielded Room	TDK	8*6*4	2016/03/17	2019/03/17
CQCSC- EMC-011	Chamber	TDK	9*6*6	2016/03/17	2019/03/17

Issued: 2016-9-29

5.3.2 Block Diagram of Test Setup

5.3.3 Test Setup and Procedure

The measurement was applied in a 3 m semi-anechoic chamber. The EUT and simulators were placed on a 1 m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mask. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

Broadband antenna was used as receiving antenna. Both horizontal and vertical polarization of the antenna was set on measurement. In order to find the maximum emission, all of the interface cables were manipulated according to FCC OST/ MP-5:1986 requirement during radiated test. The bandwidth setting on Test Receiver was 120 kHz. The frequency range from 30 MHz to 1 GHz was checked.

An initial pre-scan was performed in the 3m chamber using the spectrum analyzer in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph.

Issued: 2016-9-29

5.3.4 Test Data & Curve

Tested Polarization: Vertical Operation Mode: the highest power

Frequency (MHz)	CAverage (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
31.989	15.8	1000.0	120.000	99.9	٧	12.7	-67.7	83.5
244.904	15.5	1000.0	120.000	150.1	٧	13.6	-68.0	83.5
340.740	19.0	1000.0	120.000	150.1	٧	16.0	-64.5	83.5
391.083	19.2	1000.0	120.000	150.1	٧	16.9	-64.3	83.5
559.572	20.9	1000.0	120.000	150.1	٧	20.2	-62.6	83.5
973.616	25.8	1000.0	120.000	99.9	V	24.9	-57.7	83.5

Issued: 2016-9-29

Tested Polarization: Horizontal Operation Mode: the highest power

Frequency (MHz)	CAverage (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
145.236	21.7	1000.0	120.000	99.8	Н	9.4	-61.8	83.5
229.578	20.4	1000.0	120.000	150.0	Н	13.1	-63.1	83.5
295.344	20.2	1000.0	120.000	99.8	Н	14.7	-63.3	83.5
365.863	21.0	1000.0	120.000	99.8	Н	16.5	-62.5	83.5
581.542	21.0	1000.0	120.000	150.0	Н	20.7	-62.5	83.5
984.480	25.9	1000.0	120.000	150.0	Н	25.0	-57.6	83.5

Issued: 2016-9-29

Tested Polarization: Vertical

Operation Mode: Middle power

Frequency (MHz)	CAverage (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
32.571	16.0	1000.0	120.000	99.9	٧	12.7	-67.5	83.5
242.770	16.3	1000.0	120.000	150.0	٧	13.6	-67.2	83.5
340.352	20.2	1000.0	120.000	99.9	٧	16.0	-63.3	83.5
410.434	19.3	1000.0	120.000	99.9	٧	17.4	-64.2	83.5
663.216	22.4	1000.0	120.000	99.9	٧	21.4	-61.1	83.5
984.674	25.9	1000.0	120.000	99.9	٧	25.0	-57.6	83.5

Issued: 2016-9-29

Tested Polarization: Horizontal Operation Mode: Middle power

Frequency (MHz)	CAverage (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
145.139	20.3	1000.0	120.000	150.0	Н	9.4	-63.2	83.5
245.534	19.2	1000.0	120.000	99.8	Н	13.6	-64.3	83.5
317.945	19.7	1000.0	120.000	99.8	Н	15.1	-63.8	83.5
361.934	19.8	1000.0	120.000	99.8	Н	16.4	-63.7	83.5
676.457	22.2	1000.0	120.000	150.0	Н	21.4	-61.3	83.5
971.094	25.8	1000.0	120.000	99.8	Н	24.9	-57.7	83.5

Issued: 2016-9-29

Tested Polarization: Vertical

Operation Mode: the lowest power

Frequency (MHz)	CAverage (dBµV/m	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
261.491	16.8	1000.0	120.000	150.0	٧	13.7	-66.7	83.5
321.291	20.6	1000.0	120.000	150.0	٧	15.2	-62.9	83.5
355.144	19.6	1000.0	120.000	150.0	٧	16.3	-63.9	83.5
434.733	18.5	1000.0	120.000	150.0	٧	17.7	-65.0	83.5
615.880	22.0	1000.0	120.000	150.0	٧	21.1	-61.5	83.5
966.341	25.8	1000.0	120.000	150.0	٧	24.9	-57.7	83.5

Issued: 2016-9-29

Tested Polarization: Horizontal

Operation Mode: the lowest power

Frequency (MHz)	CAverage (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
170.456	11.7	1000.0	120.000	150.0	Н	10.3	-71.8	83.5
228.850	20.3	1000.0	120.000	150.0	Н	13.1	-63.2	83.5
255.525	17.3	1000.0	120.000	99.9	Н	13.6	-66.2	83.5
412.180	16.4	1000.0	120.000	99.9	Н	17.4	-67.1	83.5
689.309	22.3	1000.0	120.000	99.9	Н	21.6	-61.2	83.5
953.925	25.7	1000.0	120.000	99.9	Н	24.9	-57.8	83.5

5.3.5 Measurement uncertainty

Uncertainty: 4.54 dB in the frequency range of 30-1000 MHz at a level of confidence of 95%