# Crowdfunding Public Projects with Provision Point: A Prediction Market Approach

Praphul Chandra, Sujit Gujar, Y. Narahari

Indian Institute of Science, Bangalore, India.

#### **Motivation**

Crowdfunding | Private Provisioning of Public Goods



# St Georges redevelopment alternative

**♥** Islington The St Georges church in Tufnell Park is under threat of demolition to make way for a housing development. The local community want to present a redevelopment alternative to Save St George.





#### South Norwood Lake Playground

 ♥ Croydon We want to update, regenerate and vastly improve the much-loved but tired children's playground at South Norwood Lake and Grounds

| 18%     |         |                          |  |
|---------|---------|--------------------------|--|
| £1,784  | £10,078 | 58                       |  |
| pledged | goal    | days le <mark>f</mark> t |  |

# **Crowdfunding Process**

- 1. Requester posts public project (non-excludable)
- 2. Agents arrive & observe :
  - a) target amount (provision point),
  - deadline
  - c) pending amount.
- Agents contribute (or not)
- 4. Requester executes project or refunds.

#### **Mechanism Design Motivation**

Agent's true value for the project is private info. Strategic agents can freeride (No/Low contribution). Strategic agents can delay contribution. Project may not be funded even if everyone values it!

Mechanism Design: Induce a game s.t. agents contribute

#### **Related Work**

- 1. [Bagnoli & Lipman '89]: Provision Point Mechanism
  - a) Simultaneous move game
  - Project not funded at multiple equilibria.
- 2. [Zubrickas '14]: PPM with Refund bonus
  - a) Simultaneous move game
  - b) Project funded at equilibria.
- 3. [Our work] : PPM with Securities
  - a) Sequential game
  - b) Subgame perfect equilibria: project funded.
  - c) Agents contribute in proportion to value
  - d) Agents contribute as soon as they arrive
- 4. [Hanson'03], [Chen & Pennock '10]: Prediction Mkt a) Software agents: securities for prediction.
  - b) Scoring Rule ← → Cost Function.
  - c) Specially suited for thin markets.

#### **Mechanism Design**

How to incentivize private citizens to contribute to public projects? The Freeriding problem.

| Table 1: Key Notation        |                                           |  |
|------------------------------|-------------------------------------------|--|
| Symbol                       | Definition                                |  |
| T                            | Time at which fund collection ends        |  |
| $h^t$                        | Amount that remains to be funded at $t$ ; |  |
|                              | $h^0$ is the target amount                |  |
| $i \in \{0, 1, \dots, n\}$   | Agent id; $i = 0$ refers to the requester |  |
| $\theta_i \in \mathbb{R}_+$  | Agent i's value for the project           |  |
| $x_i \in \mathbb{R}_+$       | Agent i's contribution to the project     |  |
| $a_i \in [0, T]$             | Time at which agent $i$ arrives at the    |  |
|                              | platform                                  |  |
| $t_i \in [a_i, T]$           | Time at which agent i makes a contri-     |  |
|                              | bution towards the project                |  |
| $\psi_i = (x_i, t_i)$        | Strategy of agent i                       |  |
| $\vartheta \in \mathbb{R}_+$ | Net value for the project                 |  |
| $\chi \in \mathbb{R}_+$      | Net contribution for the project          |  |
| $k \in \{0, 1\}$             | Project provisioning decision             |  |

$$u_i(\psi; \theta_i) = \mathcal{I}_{\chi > h^0} \times (\theta_i - x_i) + \mathcal{I}_{\chi < h^0} \times (r_i^{t_i} - x_i)$$

### **Intuitive Explanation**

- Incentivizes agents to contribute by offering them a bonus greater than their contribution.
- Bonus paid out *iff* the project is not funded.
- Ensures that project is funded at equilibrium.

Novel Idea: Use prediction markets for bonus!

#### **Provision Point with Securities**

Binary Event: At deadline, project funded or not? Positive securities pay \$1 if project funded. Negative securities pay \$1 if project is not funded. Software agent always accepts trades. Price as first order derivative of cost function.

 $C_{LMSR}(\mathbf{q}) = b \ln(\exp(q_{\omega_0}/b) + \exp(q_{\omega_1}/b))$ 

Prediction Market issues only Negative securities

$$C_0(q^t) = b \ln(1 + \exp(q^t/b))$$

Number of securities issued to an agent depend on

- a) Quantum of his contribution
- b) Timing of his contribution

$$r_i^{t_i} = b \ln \left( \exp \left( \frac{x_i}{b} + \ln(1 + \exp(\frac{q^{t_i}}{b})) \right) - 1 \right) - q^{t_i}$$

Software agent (sponsor) pays out only if project is not funded.

#### **PPS Equilibrium**

- Net value of the project > Cost of the project
- b  $\varepsilon$  (0,  $(\vartheta h^0)$ / ln 2)

#### Then

- Project is funded at Equilibrium
- Equilibrium is subgame perfect (sequential game)
- Each agent contributes in proportion to his value
- Each agent contributes as soon as he arrives
- Agents have an incentive to contribute early.

$$x_i^* \le C_0(\theta_i + q^{a_i}) - C_0(q^{a_i}) = b \ln \left( \frac{1 + \exp\left(\frac{\theta_i + q^{a_i}}{b}\right)}{1 + \exp\left(\frac{q^{a_i}}{b}\right)} \right)$$

**Equilibria are subgame perfect (Sequential Game)** 

#### **LMSR-PPS**

Leverage infinite liquidity of LMSR to create a prediction market where each agent has an incentive to contribute.



$$u_i(\psi; \theta_i) = \mathcal{I}_{\chi \geq h^0} \times (\theta_i - x_i) + \mathcal{I}_{\chi < h^0} \times (r_i^{t_i} - x_i)$$

#### Funded Utility

a) Monotonically decreases with contribution <u>Unfunded Utility</u>

- a) Monotonically increases with contribution
- b) Monotonically decreases with outstanding securities (time)

#### **QSR-PPS**

Other cost functions can be used if parameterized correctly.



#### **Necessary conditions on Cost Function**

- . Path Independence
- $Cost(\mathbf{r}|\mathbf{q}) = C(\mathbf{q} + \mathbf{r}) C(\mathbf{q})$
- 2. Continuous & Differentiable  $p_{\omega_j} = \partial C(\mathbf{q})/\partial(q_{\omega_j}) \geq 0 \quad \forall \omega_j \in \Omega$
- 3. Information Incorporation  $C(\mathbf{q} + 2\mathbf{r}) C(\mathbf{q} + \mathbf{r}) \ge C(\mathbf{q} + \mathbf{r}) C(\mathbf{q})$
- 4. No Arbitrage

 $\exists \omega_j \in \Omega \text{ such that } C(\mathbf{q} + \mathbf{r}) - C(\mathbf{q}) > \mathbf{r} \cdot \pi_{\omega_j}$  $\forall \mathbf{p} \in \Delta_{|\Omega|}, \exists \mathbf{q} \in \mathbb{R}^{|\Omega|} \text{ s.t. } \nabla C(\mathbf{q}) = \mathbb{E}_{\omega \sim \mathbf{p}}[\pi(\omega)]$ 

6. Bounded Loss

7. Sufficient Liquidity

5. Expressiveness

 $\forall q^{t_i}, \forall x_i < h^0, \quad \frac{\partial}{\partial x_i} (r_i^{t_i} - x_i) > 0 \Rightarrow \frac{\partial r_i^{t_i}}{\partial x_i} > 1.$ 

 $\sup_{\mathbf{q}} [\max_{\omega_j} (q_{\omega_j}) - C(\mathbf{q})] < \infty.$ 

## References

[Bagnoli and Lipman, 1989] Mark Bagnoli and Barton Lipman. Provision of public goods: Fully implementing the core through private contributions. The Review of Eco-nomic Studies, 56(4):583-601, 1989.

[Hanson, 2003] Robin Hanson. Combinatorial informationmarket design. Information

Systems Frontiers, 5(1):107-119, 2003. [Chen and Vaughan, 2010] Yiling Chen and Jennifer Wortman Vaughan. A new understanding of prediction mar-kets via no-regret learning. In Proceedings of the

11th ACM conference on Electronic commerce, pages 189-198. ACM, 2010. [Othman et al., 2013] Abraham Othman, David M Pennock, Daniel M Reeves, and Tuomas Sandholm. A practical liquidity-sensitive automated market maker. ACM

Trans-actions on Economics and Computation, 1(3):14, 2013. [Zubrickas, 2014] Robertas Zubrickas. The provision point mechanism with refund

bonuses. Journal of Public Eco-nomics, 120:231-234, 2014.