Ćwiczenia z rachunku prawdopodobieństwa

W. Czernous

28 września 2022

Ćwiczenie 1. Podaj przykład trzech zdarzeń, które są parami niezależne, ale nie są niezależne.

Ćwiczenie 2. Podaj przykład dwu zmiennych losowych, które są nieskorelowane (EXY = EXEY), ale nie są niezależne.

Wskazówka: to nie mogą być indykatory zbiorów.

Definicja niezależności zbiorów zdarzeń. (5.8.11, [1]) Niech $\{\Xi_i : i \in I\}$ będzie rodziną zbiorów zdarzeń. Ξ_i są niezależne wtedy i tylko wtedy, gdy dla każdego zbioru skończonego $J: J \subset I$, dla wszystkich $A_j \in \Xi_j$, $j \in J$ zachodzi

$$P\left(\bigcap_{j\in J} A_j\right) = \prod_{j\in J} P(A_j).$$

Twierdzenie o niezależnych π -układach. (5.8.12, [1])

Niech $\{\Xi_i: i \in I\}$ będzie rodziną π -układów (π -układ to rodzina zbiorów zamknięta na przekroje). Wtedy warunkiem dostatecznym (i koniecznym) niezależności σ -ciał $\{\sigma(\Xi_i): i \in I\}$ jest niezależność $\{\Xi_i: i \in I\}$.

Ćwiczenie Ξ_2 . Czy Ξ_i muszą koniecznie być π -układami?

Wskazówka: minimalny kontrprzykład składa się z trzech zbiorów, tworzących dwie rodziny.

Lemat Leviego o zbieżności monotonicznej. Dla nieujemnych zmiennych losowych ξ, ξ_1, ξ_2, \dots zachodzi $\xi_n \uparrow \xi \implies E\xi_n \uparrow E\xi$.

Ćwiczenie ξ_n . Niech ξ_1, ξ_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i wartościach w [0,1]. Pokaż, że $E \prod_n \xi_n = \prod_n E \xi_n$. W szczególności, $P \bigcap_n A_n = \prod_n P A_n$ dla dowolnych zdarzeń niezależnych A_1, A_2, \ldots

Nierówność Czebyszewa. Dla zmiennej losowej $\xi \geq 0,$ takiej że $0 < E \xi < \infty,$ mamy:

$$P\{\xi > rE\xi\} \le \frac{1}{r}, \qquad r > 0.$$

(Np. nie więcej niż połowa pracujących może zarabiać 2 średnie pensje i więcej.)

Definicja zbieżności według prawdopodobieństwa. Dla dowolnych elementów losowych ξ oraz ξ_1, ξ_2, \ldots o wartościach w przestrzeni metrycznej ośrodkowej (S, ρ) , mówimy, że ξ_n zbiega do ξ według prawdopodobieństwa, co zapisujemy $\xi_n \stackrel{P}{\to} \xi$, jeśli

$$\lim_{n \to \infty} P\left\{ \rho(\xi_n, \xi) > \varepsilon \right\} = 0, \qquad \varepsilon > 0.$$

Lemat o zbieżności według prawdopodobieństwa. Dla dowolnych elementów losowych ξ oraz ξ_1, ξ_2, \ldots o wartościach w przestrzeni metrycznej ośrodkowej (S, ρ) , następujące warunki są równoważne:

- (i) $\xi_n \stackrel{P}{\to} \xi$,
- (ii) $E\left\{\rho(\xi_n,\xi)\wedge 1\right\}\to 0$,
- (iii) dowolny podciąg $N'\subset \mathbb{N}$ zawiera dalszy podciąg $N''\subset N'$, wzdłuż którego $\xi_n\to \xi$ p.n.

Ćwiczenie 5. (i) \implies (ii).

Ćwiczenie 6. (ii) \implies (i). Wskazówka: Jeśli $\varepsilon < 1$, to $x > \varepsilon$ implikuje $x \wedge 1 > \varepsilon$. Następnie skorzystać z nierówności Czebyszewa.

Zadanie domowe 1. Wykazać (ii) \iff (iii).

Ćwiczenie 7. Korzystając z powyższego lematu, wykazać, że zbieżność p.n. pociąga za sobą zbieżność według prawdopodobieństwa.

Ćwiczenie 8. (5.6.2, [1]) Niech $X \geq 0$ będzie zmienną losową, \mathcal{F} -mierzalną.

- a) Wykaż, że zbiór $A = \{(t, \omega) : X(\omega) < t\}$ jest mierzalny względem σ -ciała produktowego $\mathcal{B}(\mathbb{R}_+) \otimes \mathcal{F}$.
 - b) Udowodnij, że $EX^p = p \int_0^\infty P\{X \ge t\} t^{p-1} dt dla p > 0.$

Wskazówka: zastosuj tw. Fubiniego; mierzalność funkcji podcałkowej wynika z ćwiczenia a).

c) Wywnioskuj stąd, że $\sum_{n=1}^{\infty} P\{X \geq n\} \leq EX \leq 1 + \sum_{n=1}^{\infty} P\{X \geq n\}$. W szczególności, nieujemna zmienna losowa jest całkowalna wtedy i tylko wtedy, gdy $\sum_{n=1}^{\infty} P\{X \geq n\} < \infty$.

Twierdzenie (nierówność Bernsteina). Jeśli S_n jest liczbą sukcesów w schemacie n prób Bernoulliego z prawdopodobieństwem sukcesu p, to dla każdego $\varepsilon>0$

$$\lim_{n \to \infty} P\left(\left| \frac{S_n}{n} - p \right| > \varepsilon \right) \le 2e^{-2n\varepsilon^2}.$$

Lemat Borela-Cantelliego (przypomnienie). Weźmy ciąg zdarzeń A_1, A_2, \ldots oraz szereg $S = \sum_{n=1}^{\infty} P(A_n)$. Wówczas prawdopodobieństwo zdarzenia $A = \limsup_n A_n$ (czyli $A = \cap_m \cup_{n \geq m} A_n$) wynosi:

- (i) 0, jeśli $S < \infty$.
- (ii) 1, jeśli $S = \infty$, zaś zdarzenia A_1, A_2, \dots są niezależne.

Ćwiczenie 9. Korzystając z nierówności Bernsteina i lematu Borela-Cantelliego, wykazać mocne prawo wielkich liczb Bernoulliego: $S_n/n \to p$ p.n.

Wskazówka: dla ciągu funkcji mierzalnych o wartościach w przestrzeni polskiej (metrycznej, ośrodkowej i zupełnej), zbiór, na którym ciąg ten ma granicę, jest zbiorem mierzalnym. Na przykład, dla ciągu $S_n/n-p$.

Ćwiczenie dla chętnych. (Ex. 5.5 [2]) Weźmy ciąg ξ_1, ξ_2, \ldots zmiennych losowych o jednakowym rozkładzie, z własnością $P\{|\xi_n|>t\}>0$ dla każdego t>0. Wykazać istnienie stałych c_n , takich że $c_n\xi_n\to 0$ według prawdopodobieństwa, ale nie p.n.

Ciąg dalszy: uwaga 7.4.11 [1] z dowodem itd. Zwłaszcza 7.4.A,B,C,D,E.

Bibliografia

- [1] Jacek Jakubowski and Rafał Sztencel. Wstęp do teorii prawdopodobieństwa. SCRIPT, Warszawa, fourth edition, 2010.
- [2] Olav Kallenberg. Foundations of Modern Probability. Springer, third edition, 2021.