Chapter 8 - NP-Completeness

Lenny Wu Professor Cho-Jui Hsieh

May 2021

NP-Completeness

How do you compare the difficulties of problems?

Given problems X and Y, we say $X \leq_P Y$ if Y can be solved in polynomial time implies X can be solved in polynomial time.

Polynomial time reduction: X can be polynomial time reduced to Y if any instance of X can be solved by:

- polynomial time computations
- \bullet + polynomial numbers of calls to solver of Y

Example:

Independent set:

 $A \leq_P B$. $A \equiv_P B$.

- A. Given G = (V, E), find the maximum size of node subset $S \subseteq V$ such that no two nodes in S are adjacent.
- B. Given G = (V, E) and input k, is there any independent set of size at least k? (decision version of the independent set)

```
// solver of B:
     // given G, k for instance of B
         pass G to solver of A -> obtain k*
         if k \leq k*:
              return yes
         if k > k*:
              return no
     // solver of A (binary search):
     // given G, independent set size [1, n]
         l = 1, r = n
         k = (1 + r) / 2
         if B(G, k) = yes:
              l = k
         else:
             r = k
B \leq_P A.
```

Vertex Cover

Given G = (V, E), is there a subset of $\leq k$ nodes such that each edge is incident to at least one node in the set?

Lemma. Node set S is an independent set if and only if V - S is a vertex cover.

Proof.

 (\Rightarrow)

For every edge $(u, v) \in E$, S is an independent set implies at least one of u, v is not in S. Then at least one of u, v is in V - S.

Thus, V - S is a vertex cover.

 (\Leftarrow)

For any $(u, v) \in E$, S V - S is a vertex cover implies at least one of u, v is in V - S.

Then at least one of u, v is not in S.

Thus, S is an independent set.

Vertex cover $\leq k \iff$ Independent set $\geq n - k$.

Vertex over \leq_P independent set.

Independent set \leq_P vertex set.

Set Cover

Given a set of elements U and m subsets $S_1, ..., S_m \subseteq U$, can we find $\leq k$ subsets to cover all the elements in U?

Vertex cover \leq_P set cover.

Proof.

Given a vertex cover problem G = (V, E), k, create a set cover problem:

$$U = \{e \in E\}$$

For each node $v \in V$, create a subset $S_v = \{e : e \text{ incident to } v\}$.

$$G$$
 has vertex cover $\leq k \iff V, S$ has set cover $\leq k$.

Independent set \equiv_P vertex cover \leq_P set cover.

3-Satisfiability (3-SAT)

$$\Phi = (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4).$$

Determine whether there exists true / false assignment of x_1, \ldots, x_n such that $\Phi = \text{true}$.

$$\Phi = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x}_1 \vee \overline{x}_2 \vee x_3).$$

Theorem. 3-SAT \leq_P independent set.

Proof.

Given an instance of 3-SAT problem $\Phi = C_1 \wedge \ldots \wedge C_m$, construct an independent set problem:

For each C_i , construct 3 nodes.

Connect all edges within each C_i .

Connect x_i with \overline{x}_i for all i.

 Φ is satisfiable \iff G has an independent set of size m.

Proof.

 (\Leftarrow)

S is an independent set of size m such that:

- one node in each triangle,
- no $(x_i, \overline{x}_i \text{ selected together.})$

Set the true / false values according to the selected nodes.

Then, $\Phi = \text{true}$.

 (\Rightarrow)

Suppose Φ is satisfiable.

There exists a satisfying true / false assignment of x_1, \ldots, x_n .

There is at least one true in each triangle.

 C_i selects a true literal (node) in each triangle.

S with m nodes has no conflict, so there is no link between those nodes.

3-SAT \leq_P independent set \equiv_P vertex cover \equiv_P set cover.