Lab 3 Analog IC

Name	ID	Section
Nada Tarek Mowafi	20012094	5
Salma Hamdy Mohamed	20010677	5

> <u>Inverting Schmitt trigger</u>:

• The circuit:

• The output in the lab:

• The output in multisim:

• The frequency response:

- The effect of changing R1 and R2:
 - When lower R1:

The circuit:

The output:

When we increase R2: The circuit:

The output:

• Comment:

In an inverting Schmitt trigger circuit, the resistors R1 and R2 play a crucial role in determining the output behavior. Here's how varying their values affects the output.

■ Lower R1:

Decreases the upper threshold voltage.
Increases the lower threshold voltage.
Net effect: Narrows the hysteresis loop. The output becomes more sensitive to smaller input signal changes.

• Higher R2:

Doesn't directly affect the threshold voltages (UT and LT). However, it affects the overall gain of the inverting Schmitt trigger. A higher R2 increases the gain, amplifying the output voltage swing between positive and negative saturation levels.

➤ Non inverting Schmitt trigger:

• The circuit:

• The output in the lab:

• The output in multisim:

• The frequency response:

➤ Square wave generator:

• The circuit:

• The output from multisim:

• The output in the lab:

