Tarea Dos Teoría de números uno.

Contreras Mendoza Ximena de la Luz

25 de marzo de 2020

Ejercicio 1.

Demostración. P.d. $\mathcal{P} \cap [n+1, n!+1] \neq \emptyset$.

Pruebe que para todo natural n > 1, el conjunto $\{n + 1, n + 2, \dots, n! + 1\}$ contiene un primo, i.e. $\mathcal{P} \cap [n+1, n!+1] \neq \emptyset$ para toda n > 1. Use este hecho para dar otra prueba de la infinitud de los primos.

Recordemos la definición de $\pi(x): \mathbb{R} \longrightarrow \mathbb{N}$ $\pi(x) = \#\mathcal{P} \cap [0, x].$ Observaciones: 1) $0 < n+1 < n!+1 \ \forall \ n > 1$ 2) Para toda n > 1, el intervalo $[n+1, n!+1] \subset [0, n!+1] \Longrightarrow \mathcal{P} \cap [n+1, n!+1] \subset \mathcal{P} \cap [0, n!+1]$ 3) Para toda n > 1, el intervalo $[0, n+1] \subset [0, n!+1] \Longrightarrow \mathcal{P} \cap [0, n+1] \subset \mathcal{P} \cap [0, n!+1]$

Afirmación: $\mathcal{P} \cap [n+1, n!+1] = (\mathcal{P} \cap [0, n!+1] - \mathcal{P} \cap [0, n+1]) \cup \mathcal{P} \cap \{n+1\}.$

 $\text{Prueba:} \subseteq \text{)} \text{ Sea } x \in \mathcal{P} \cap [n+1, n!+1] \Longrightarrow x \in \mathcal{P} \text{ y } x \in [n+1, n!+1] \subset [0, n!+1] \Longrightarrow x \in \mathcal{P} \text{ y } x \in [0, n!+1]$ entonces $x \in (\mathcal{P} \cap [0, n! + 1] - \mathcal{P} \cap [0, n + 1]) \cup \mathcal{P} \cap \{n + 1\}.$

 \supseteq) Sea $x \in (\mathcal{P} \cap [0, n! + 1] - \mathcal{P} \cap [0, n + 1]) \cup \mathcal{P} \cap \{n + 1\} \Longrightarrow x \in (\mathcal{P} \cap [0, n! + 1] - \mathcal{P} \cap [0, n + 1])$ ó $x \in \mathcal{P} \cap \{n+1\}$. Si $x \in \mathcal{P} \cap \{n+1\} \Longrightarrow n+1$ es primo $\Longrightarrow x \in \mathcal{P} \cap [n+1,n!+1]$. Si $x \in (\mathcal{P} \cap [0, n! + 1] - \mathcal{P} \cap [0, n + 1]) \Longrightarrow x \in \mathcal{P} \cap [0, n! + 1]$ y $x \notin \mathcal{P} \cap [0, n + 1]) \Longrightarrow x \in \mathcal{P}$ y $x \in [0, n! + 1]$ y $x \notin [0, n+1] \Longrightarrow x \in (n+1, n!+1]$. Aquí aparece un problema pues me quedó $\mathcal{P} \cap (n+1, n!+1]$ y yo quiero $\mathcal{P} \cap [n+1,n!+1]$. En realidad no es un problema. Pues solo abría que fijarse si n+1 es primo o no. 1. Si es primo, n+1 está en $\mathcal{P} \cap [0, n!+1] - \mathcal{P} \cap [0, n+1]$ y está en $\mathcal{P} \cap \{n+1\}$ entonces lo quito y lo agrego, por lo tanto $\mathcal{P} \cap (n+1, n!+1]$ en realidad si queda $\mathcal{P} \cap [n+1, n!+1]$. 2. Si n+1 no es primo entonces no está en $\mathcal{P} \cap [0, n!+1] - \mathcal{P} \cap [0, n+1]$ y no está en $\mathcal{P} \cap \{n+1\}$ entonces no le estoy quitando nada i.e. $\mathcal{P} \cap [0, n+1) = \mathcal{P} \cap [0, n+1] \Longrightarrow \mathcal{P} \cap (n+1, n!+1) = \mathcal{P} \cap [n+1, n!+1]$. $\therefore \quad \text{si } x \in (\mathcal{P} \cap [0, n! + 1] - \mathcal{P} \cap [0, n + 1]) \cup \mathcal{P} \cap \{n + 1\} \Longrightarrow x \in \mathcal{P} \cap [n + 1, n! + 1].$

Por otro lado $\pi(x)$ es no decreciente, entonces si $n+1 \le n!+1, \ \forall \ n>1 \Longrightarrow \pi(n+1) \le \pi(n!+1) \Longrightarrow$ $0 \le \pi(n!+1) - \pi(n+1)$ P.d. $\pi(n!+1) - \pi(n+1) > 0$.

Es decir para que $\mathcal{P} \cap [n+1, n!+1] = (\mathcal{P} \cap [0, n!+1] - \mathcal{P} \cap [0, n+1]) \cup \mathcal{P} \cap \{n+1\} \neq \emptyset$ basta ver que $\exists p_i \in \mathcal{P} \cap [0, n! + 1]$ tal que $p_i \notin \mathcal{P} \cap [0, n + 1]$. Tenemos que:

 $\#\mathcal{P} \cap [n+1, n!+1] = \pi(n!+1) - \pi(n+1) + 1$, si $n+1 \in \mathcal{P}$ ó

 $\#\mathcal{P} \cap [n+1, n!+1] = \pi(n!+1) - \pi(n+1), \text{ si } n+1 \notin \mathcal{P}.$

Estoy tomando valores de $\pi(x)$ (enteros positivos) saltados en uno i.e. $\pi(n+1), \pi(n+2), ..., \pi(n!+1)$ y por la observación 1) $0 < n+1 \le n! + 1 \ \forall n > 1$, se da la igualdad solamente cuando n=2, por lo tanto si n>2 la desigualdad es estricta i.e. $n+1< n!+1 \Longrightarrow \pi(n+1)<\pi(n!+1)$: $\pi(n!+1)-\pi(n+1)>0$. Así $\#\mathcal{P} \cap [n+1, n!+1] > 0$. Por lo tanto $\mathcal{P} \cap [n+1, n!+1] \neq \emptyset$

Faltaría ver que pasa cuando n=2 en este caso nuestro intervalo [n+1,n!+1] es simplemente un punto el 3, por lo tanto $\mathcal{P} \cap 3 = 3 \neq \emptyset$.

Para dar otra prueba de la infinitud de los primos. Como $\mathcal{P} \cap [n+1, n!+1] \neq \emptyset$ para todo natural n > 1, tenemos que el intervalo [n+1, n!+1] tiende a infinito cuando n tiende a infinito, pero como $n+1 < n!+1 \ \forall \ n > 2$ siempre tendremos un intervalo que también crece en longitud. Por lo tanto siempre que "nos acercamos" a infinito encontramos primos, pues $\mathcal{P} \cap [n+1, n!+1] \neq \emptyset$.

Ejercicio 2.

Pruebe que existen intervalos arbitrariamente grandes donde no aparece un número primo, i.e. pruebe que para toda n > 0 existen reales x, y tales que |x - y| > n y que $\mathcal{P} \cap [x, y] = \emptyset$

Demostración. Supongamos que no. Es decir que $\exists n_0 \in \mathbb{N}$ tal que para todo $x, y \in \mathbb{R}$ tales que $|x - y| > n_0$, $\mathcal{P} \cap [x,y] \neq \emptyset$. Entonces dos primos consecutivos no pueden distar más que n_0 . Entre 1 y N hay por lo menos $\frac{N}{n_0}$ primos, entonces $\pi(x)$ siempre es al menos $\frac{x}{n_0}$. Entonces tenemos esta designaldad $\frac{\pi(x)}{x} \geq \frac{1}{n_0} \ \forall \ x \dashrightarrow (1)$. Por otro lado sabemos que $\frac{\pi(x)}{x} \approx \frac{1}{ln(x)} \Longrightarrow \frac{\pi(x)}{x} \leqslant \frac{2}{ln(x)} \ \forall \ x \dashrightarrow (2)$ Juntando (1) y (2) tenemos $\frac{1}{n_0} \leqslant \frac{\pi(x)}{x} \leqslant \frac{2}{ln(x)} \ \forall \ x \Longrightarrow n_0 \geq \frac{ln(x)}{2} \ \forall \ x \longrightarrow (1)$

Pues $\frac{ln(x)}{2}$ tiende a infinito cuando x tiende a infinito. La contradicción surge de suponer intervalos más grandes que un tamaño fijo. Por lo tanto para todo n>0 existen intervalos de tamaño mayor que n que no contienen primos.

Ejercicio 3.

1. Sea $a=p_1^{\alpha_1}\cdots p_s^{\alpha_s}$ la factorización de a en primos. Pruebe que a es una n-ésima potencia de otro entero si y solo si $n \mid \alpha_i \ \forall \ i \in \{1, ..., s\}.$

Demostración. \Rightarrow) $a = b^n$ para algún $b \in \mathbb{Z}$. P.d. $n \mid \alpha_i \, \forall i \in \{1, ..., s\}$

 $a=p_1^{\alpha_1}\cdots p_s^{\alpha_s}$. Como $b\in\mathbb{Z}$ entonces b tiene una factorización en primos, sea $b=p_1^{\beta_1}\cdots p_t^{\beta_t}$ dicha factorización. Luego tenemos que

$$b=p_1^{\beta_1}\cdots p_t^{\beta_t}\Longrightarrow b^n=(p_1^{\beta_1}\cdots p_t^{\beta_t})^n=p_1^{n\beta_1}\cdots p_t^{n\beta_t}$$

Por otro lado $a=b^n$ entonces $p_1^{\alpha_1}\cdots p_s^{\alpha_s}=p_1^{n\beta_1}\cdots p_t^{n\beta_t}$ como \mathbb{Z} es DFU entonces debe pasar que s = t y para toda i, $\alpha_i = n\beta_i$ por lo tanto $n \mid \alpha_i \, \forall \, i$

2. Pruebe que $\sqrt[n]{a} \in \mathbb{Q}$ si y solo si a es una n-ésima potencia, es decir que $a = b^n$ para alguna $b \in \mathbb{Z}$.

 $Demostración. \Rightarrow$) Si $a = b^n$ p.a. $b \in \mathbb{Z} \Longrightarrow \sqrt[n]{a} = b$ por lo tanto $\sqrt[n]{a} \in \mathbb{Z}$ $\therefore \sqrt[n]{a} \in \mathbb{Q}$

 $\Leftarrow) \text{ Si } \sqrt[p]{a} \in \mathbb{Q} \text{ entonces } \sqrt[p]{a} = \tfrac{p}{a} \text{ donde } p,q \in \mathbb{Z} \text{ y } q \neq 0.$

Entonces $a = \left(\frac{p}{q}\right)^n$, como $a \in \mathbb{Z}$ esto forza a que $\frac{p}{q} \in \mathbb{Z} \Longrightarrow q \mid p \Longrightarrow p = qk$ p.a. $k \in \mathbb{Z}$ entonces $\left(\frac{p}{q}\right)^n = \left(\frac{qk}{q}\right)^n = \frac{q^nk^n}{q^n} = k^n$ por lo tanto $a = \left(\frac{p}{q}\right)^n = k^n$ con $k \in \mathbb{Z}$.

∴ a es una n-ésima potencia.

Otra prueba, usando el ejercicio 4.

Prueba. Supongamos $\sqrt[n]{a}$, raíz de f(x) polinomio mónico en $\mathbb{Z}[x]$. Por el ejercicio 4. tenemos que $\sqrt[n]{a} \in \mathbb{Z} \text{ ó } \sqrt[n]{a} \in \mathbb{R} \setminus \mathbb{Q}.$

Si $\sqrt[n]{a} \in \mathbb{R} \setminus \mathbb{Q}$. No hay nada que hacer.

Si $\sqrt[n]{a} \in \mathbb{Z} \subset \mathbb{Q} \Longrightarrow \sqrt[n]{a} = k \Longrightarrow a = k^n$ por lo tanto a es una n-ésima potencia.

Ejercicio 4.

Sea $f(x) = x^n + \cdots + a_1x + a_0$ un polinomio mónico con coeficientes en enteros. Supongamos que $\alpha \in \mathbb{R}$ es una raíz de f(x). Pruebe que $\alpha \in \mathbb{Z}$ ó $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Si quitamos la hipótesis de que f(x) sea mónico, el ejercicio deja de ser cierto. Da un ejemplo de un polinomio f(x) no mónico, con una raíz α que no es ni entero ni irracional.

Demostración. Sea $\alpha \in \mathbb{R}$ raíz de $f(x) = x^n + ... + a_1x + a_0$, polinomio mónico con coeficientes enteros. Si α es irracional, no hay nada que hacer.

Supongamos α racional. Entonces podemos ver a $\alpha = \frac{p}{q}$, con $p,q \in \mathbb{Z}, q \neq 0$ y podemos pedir que (p,q) = 1. Como α es raíz de $f(x) \Longrightarrow \alpha^n + a_{n-1}\alpha^{n-1} + \ldots + a_1\alpha + a_0 = 0 \Longrightarrow \alpha^n = -(a_{n-1}\alpha^{n-1} + \ldots + a_1\alpha + a_0) \dashrightarrow$ (1). Multiplicamos a (1) por q^n , entonces $q^n\alpha^n = -q^n(a_{n-1}\alpha^{n-1} + \ldots + a_1\alpha + a_0) \Longrightarrow$ $q^n\alpha^n = q^n\left(\frac{p}{q}\right)^n = p^n = -q^n(a_{n-1}\alpha^{n-1} + \ldots + a_1\alpha + a_0) = -(a_{n-1}q^n\left(\frac{p}{q}\right)^{n-1} + \ldots + a_1q^n\left(\frac{p}{q}\right) + a_0q^n) = -(a_{n-1}qp^{n-1} + \ldots + a_1q^{n-1}p + a_0q^n)$ Por lo tanto $p^n = -(a_{n-1}qp^{n-1} + \ldots + a_1q^{n-1}p + a_0q^n)$.

Si q > 1 el lado derecho es un multiplo de q pero p^n no es multiplo de q pues (p,q) = 1. Por lo tanto esto obliga a que q = 1. Por lo tanto α es entero.

Ejemplo: $g(x)=3x+1, \quad \alpha=-\frac{1}{3}$ es raíz de $g(x). \alpha \notin \mathbb{Z}$ y $\alpha \notin \mathbb{R} \setminus \mathbb{Q}$