	7		 			
Reg. No.						

B.Tech. DEGREE EXAMINATION, JULY 2022

Second Semester

18MAB102T – ADVANCED CALCULUS AND COMPLEX ANALYSIS
(For the candidates admitted from the academic year 2020 - 2021 and 2021 - 2022)

AT	-4-	
11	ote	•

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

(ii) Part - B should be answered in answer booklet.

Time:	$2\frac{1}{2}$	Hours

Max. Marks: 75

2 1

Marks BL

$PART - A (25 \times 1 = 25 Marks)$

Answer ALL Questions

1. Find $\int_0^1 \int_0^1 dx dy$

(A) 1

(B) 2

(C) 0

(D) 4

2. Name the curve $y^2 = 4x$ is

(A) Parabola

(B) Hyperbola

(C) Straight line

(D) Ellipse

3. Select the formula to find area of the region R using double integral in polar co-ordinates is

(A) $\iint dr d\theta$

(C) $\iint rdrd\theta$

(B) $\iint_{R} r^{2} dr d\theta$ (D) $\iint_{R} (r+1) dr d\theta$

Identify the region of integration for the integral $\int_0^1 \int_0^x f(x,y) dxdy$

(A) Square

(B) Triangle

(C) Rectangle

(D) Circle

5. Select the name of the curve $r = a(1 + \cos \theta)$ from the options given below 1 1 1

(A) Cardioid

(B) Lemniscate

(C) Cycloid

(D) Hemicircle

2 2 1,2 6. Choose the $\nabla \vec{r}$ value, if \vec{r} is the position vector of the point (x,y,z) with respect to the origin.

(A) 2

(B) 3

(C) 0

(D) 1

7. Find the value of $\nabla \phi$, if $\phi = xyz$.

- (A) $zx\vec{i} + xy\vec{j}$
- (B) $zx\vec{i} + xy\vec{j} + yz\vec{k}$
- (C) $xy\vec{i} + yz\vec{j} + zx\vec{k}$
- (D) $yz\vec{i} + zx\vec{j} + xy\vec{k}$

2

2 1,2

		* * * * * * * * * * * * * * * * * * * *						
8.	Fino	I the value of curl (grad ϕ)			1	1	2	1
	(A)			2				
	(C)	0	(D)) 1				
0	Wh	at does $\nabla \times \vec{F} = 0$ mean?			1	1	2	1
9.		Irrotational vector	(B)	Flux				-
	(C)			Circulation				
	` '				1	,		
10.		ne the theorem which connects the	ie lin	e integral and surface integral	1	.1	2	1
		Stoke's theorem Gauss divergence theorem.		Green's theorem Residue theorem				
	(C)	Gauss divergence meorem.	(D)	Residue meorem				
11.	Wha	at is $L\left[e^{3t}\right]$			1	1	3	1,2
			(D)	2				
	(A)	$\frac{1}{s+3}$ $\frac{1}{s-3}$	(B)	$\frac{3}{s+3}$ $\frac{s}{s-3}$				
	(C)	<i>s</i> + <i>3</i>	(D)	s+3				
	(C)	$\frac{1}{s-2}$	(D)	3 2				
		3-3		S-3				
12.	Find	$L[\cos 2t].$			1	2	3	2
			(B)	S				
		$\frac{s}{s^2 + 2}$ $\frac{2}{s^2 + 2}$		$\frac{s}{s^2 + 4}$ $\frac{4}{s^2 + 4}$				
	(C)	2	(D)	4				
		$\frac{1}{s^2+2}$		$\overline{s^2+4}$				
						di.		
13.		ose the function $f(t)$ for which the			1	2	3	. 2
		$f(t)=t^2$		$f(t) = \sin t$				
	(C)	$f(t) = e^{-at}$	(D)	$f(t) = \tan t$				
1.4							•	
14.	Inter	pret the value of $L\left[e^{-at}f(t)\right]$, v	where	$e L \lfloor f(t) \rfloor = F(s)$	1	1	3	1
	(A)	F(s-a)	(B)	F(s)				
	(C)	F(s+a)	(D)	$\frac{1}{a}F(s/a)$				
				$a^{1}(3/a)$				
15				2			•	
15.	Find	the inverse Laplace transform of	<u> </u>	$\frac{s+3}{2}$	1	1	3	1
			•	,				
		$e^{-3t}\cos 3t$		$e^{-3t}\cos 9t$				
	(C)	$e^{-3t}\cosh 3t$	(D)	$e^{3t}\cos 3t$				
16.	Nam	e the function $u(x,y) = 1 = 1$	-۳					,
		e the function $u(x, y)$ which sati Analytic			1	1	4	. 1
	(C)	Differential	(B) (D)	Harmonic				
	` '		. ,	Discontinuous				
17.	Inter	pret the transformation $\omega = cz$ w	here (c is a real constant	1	2	4	1,2
	(A) (C)	Rotation Magnification	(B)	Reflection				
		141aginii Canon	(D)	Magnification and rotation				

18	Find the points at which the function $f(z) = \frac{1}{z^2 + 1}$ fails to be analytic	1	2	4	1,2
	(A) $z = \pm 1$ (B) $z = \pm i$ (C) $z = 0$ (D) $z = \pm 2$				
19.	What is the critical point of the transformation $\omega = z^2$?	1	2	4	2
	(A) $z=2$ (C) $z=1$ (B) $z=0$ (D) $z=-2$				
20.	State the property that "An analytic function with constant modulus is	1	1	4	1
	(A) Zero (B) Analytic (C) Constant (D) Harmonic				
21.	Name the curve which does not cross itself	1	1	5	1
	(A) Curve (B) Closed curve (C) Simple closed curve (D) Multiple curve				
22.	What is the value of $\int \frac{zdz}{z-2}$ where 'c' is the circle $ z =1$	1	2	5	2
	(A) 0 (B) $\frac{\pi}{2}i$ (C) $\frac{\pi}{2}$ (D) 2				
	(C) $\frac{\pi}{2}$ (D) 2				
23.	What is the value of $\int_{c}^{c} \frac{f(z)}{z-a} dz$ if $f(z)$ is analytic inside and on c, where c is	1	1	5	1
	the simple closed curve and a is any point within c.	¥.			
	(A) $f(a)$ (B) $2\pi i f(a)$ (C) $\pi i f(a)$ (D) 0				
24.	Define the annular region between two concentric circles $C_1 = Z - a = R_1$ and $C_2 = Z - a = R_2$ where $R_2 < R_1$	1	2	5	1
	 (A) Within C₁ (B) Within C₂ (C) Within C₂ and outside C₁ (D) Within C₁ and outside C₂ 				
25.	Identify the pole of $f(z)$ if $f(z) = \frac{\sin z}{z}$.	1	2	5	1,2
	(A) z=0 is a simple pole (B) z=0 is a pole of order 2 (C) z=0 is a removable singularity (D) z=0 is a zero of f(z)				
	$PART - B (5 \times 10 = 50 \text{ Marks})$	Marks	BL	cọ	РО
26. a.	Answer ALL Questions Change the order of integration and hence find the value of				1,2
	$I = \int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} xy dy dx.$				

(OR)

- b. Apply triple integration to find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ without transformation.
- 27. a.i. Compute the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 z = 3$ at the point (2,-1,2).
 - ii. Compute the divergence and curl of the vector $\vec{v} = xyz\vec{i} + 3x^2y\vec{j} + \left(xz^2 y^2z\right)\vec{k}$ at the point (2,-1,1).

b. Verify Gauss divergence theorem for $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ over the cube bounded by x=0, x=1, y=0, y=1, z=0, z=1.

28. a. Compute Laplace transform of the square wave f(t) given by $t = \begin{cases} E & \text{for } 0 \le t \le \pi/2 \\ -E & \text{for } \pi/2 \le t \le \pi \end{cases}$ where $f(t+\pi) = f(t)$.

b. Solve the differential equation $\frac{dy}{dt} - y(t) = 1 - 2t$ given that y = -1 when t = 0, using Laplace transform.

29. a. Construct the analytic function f(z) = u + iv, if $u = \frac{\sin 2x}{\cosh 2y + \cos 2x}$ by Milne-Thomson method.

(OR)

- b. Find the bilinear transformation which maps the points 1, i, -1 onto the points 0, 1, ∞ .
- 30. a. Apply Cauchy's integral formula to evaluate $\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz$, where c is |z|=3.

b. Apply contour integration to evaluate the integral $\int_0^{2\pi} \frac{d\theta}{13 + 5\sin\theta}$.

* * * * *

Page 4 of 4