Calcolo integrale

Leonardo Ganzaroli

Indice

	Inti	roduzione	1	
1	Serie numeriche			
	1.1	Criteri	4	
	1.2	Serie di potenze	5	
2	Integrali			
	2.1	Proprietà	7	
	2.2	Teorema fondamentale del Calcolo integrale	7	
	2.3	Integrali impropri	9	
		2.3.1 Convergenza	10	
3	Equazioni differenziali 1			
	3.1	EDO	11	
		3.1.1 EDO lineari	12	

Introduzione

Questi appunti del corso *Calcolo integrale* sono stati creati durante la laurea Triennale di informatica all'università "La Sapienza".

N.B. Questo corso è il naturale proseguimento di $Calcolo\ differenziale$, quindi molte cose saranno date per scontate.

1 Serie numeriche

Definizione Una successione di elementi è un elenco ordinato dei valori assunti dalla funzione $a: S \subseteq \mathbb{N} \to A: k \to a_k$, essa associa dei valori ad un sottoinsieme dei numeri naturali presenti in A che solitamente $\subset \mathbb{R} \lor \subset \mathbb{C}$.

Alcune successioni:

- $3k = 3, 6, 9, 12, \dots$
- $k^2 = 1, 4, 9, 16, \dots$
- k+1=2,3,4,...

Definizione Si definisce S_n come la sommatoria dei primi n numeri di una successione.

Definizione Si definisce serie numerica il limite per $n \to +\infty$ di S_n :

$$\lim_{n \to +\infty} \sum_{k=1}^{n} a_k$$

Da qui in poi si assuma che $k \in \mathbb{N}^+$.

Definizione Se una serie numerica equivale ad un valore finito l allora è convergente ad l.

Definizione Se una serie numerica equivale a $\pm \infty$ allora è divergente.

Teorema 1 (Serie a termini di segno costante)

- $\forall k \in \mathbf{N}^+ \ a_k \ge 0 \Rightarrow \sum_{k=0}^{+\infty} a_k$ converge ad un valore positivo o diverge $a + \infty$
- $\forall k \in \mathbf{N}^+ \ a_k \leq 0 \Rightarrow \sum_{k=0}^{+\infty} a_k$ converge ad un valore negativo o diverge a $-\infty$

Teorema 2 (Condizione necessaria per la convergenza)

$$\sum_{k=0}^{+\infty} a_k \ converge \ \Rightarrow \lim_{n \to +\infty} a_n = 0$$

1.1 Criteri

Teorema 3 (Criterio del confronto diretto)

Date 2 successioni $a_n, b_n \mid \exists N \in \mathbb{N} \mid \forall n \geq N \quad 0 \leq a_n \leq b_n \text{ si ha:}$

$$\sum_{k=0}^{+\infty} b_k \ converge \ \Rightarrow \sum_{k=0}^{+\infty} a_k \ converge$$

Teorema 4 (Criterio del confronto asintotico)

Date 2 successioni $a_n, b_n \mid \lim_{n \to +\infty} \frac{a_n}{b_n} = \delta \text{ con } 0 < \delta < +\infty \text{ si ha:}$

$$\sum_{k=0}^{+\infty} a_k \ converge \iff \sum_{k=0}^{+\infty} b_k \ converge$$

Teorema 5 (Criterio del rapporto)

Data la successione a termini positivi $a_n \mid \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \delta \ con \ 0 \le \delta < +\infty$ si ha:

- $\delta < 1$ converge
- $\delta > 1$ diverge

Teorema 6 (Criterio della radice)

Data la successione a termini positivi $a_n \mid \lim_{n \to +\infty} \sqrt[n]{a_n} = \delta \ con \ 0 \le \delta < +\infty$ si ha:

- $\delta < 1$ converge
- $\delta > 1$ diverge

Teorema 7 (Criterio di Leibniz)

Data la successione a segno alterno $a_n = (-1)^k * b_k$, se:

- \bullet b_k ha termini di segno non negativo
- $\forall k \in \mathbf{N}^+ \ b_{k+1} \le b_k$
- $\lim_{n\to+\infty} b_n = 0$

Allora $\sum_{k=0}^{+\infty} a_k$ converge.

Teorema 8 (Criterio di convergenza assoluta)

$$\sum_{k=0}^{\infty} |a_k| \ converge \ \Rightarrow \sum_{k=0}^{\infty} a_k \ converge$$

1.2 Serie di potenze

Definizione Una serie di potenze di centro x_0 associata ad una successione è:

$$\sum_{k=0}^{\infty} a_k * (x - x_0)^k$$

Definizione Un insieme di convergenza è l'intervallo $X \subseteq \mathbf{R}$ per cui:

$$\forall x \in X \ \exists l \in \mathbf{R} \mid l = \sum_{k=0}^{\infty} a_k * (x - x_0)^k$$

Definizione Il raggio di convergenza di una serie di potenze è:

$$p = \sup\{x \ge 0 \mid \sum_{k=0}^{\infty} a_k * (p - x_0)^k \text{ converge}\}$$

Teorema 9 (Calcolo del raggio di convergenza)

$$p = \lim_{k \to +\infty} \frac{1}{\sqrt[n]{|a_n|}}$$

Definizione La serie di Taylor di f di centro x_0 è il polinomio di Taylor di ordine $+\infty$.

2 Integrali

Per poter trovare l'area sottostante ad una funzione in un certo intervallo è possibile scomporre quell'area in una serie di rettangoli e sommarne le aree, per evitare approssimazioni il metodo migliore è usare la più grande quantità di rettangoli possibile con la stessa larghezza.

Ci sono 2 possibilità per ricoprire l'area:

- 1. Rettangoli maggiori, la somma delle loro aree si indica con \bar{S}_n
- 2. Rettangoli minori, la somma delle loro aree si indica con S_n

Considerando un numero di rettangoli infiniti si ottiene:

$$\lim_{n \to +\infty} \bar{S}_n = \bar{S} = \text{Area} = \underline{S} = \lim_{n \to +\infty} \underline{S}_n$$

Definizione Data una funzione $f : [a, b] \subset \mathbf{R} \to \mathbf{R}$. f è integrabile secondo Riemann se è vera l'equazione vista sopra, si definisce integrale di f nell'intervallo [a, b]:

$$\int_a^b f(x) \ dx$$

Inoltre per risultare integrabile la funzione deve essere continua e limitata.

In particolare risulta:

• limite di \bar{S}_n

$$\lim_{n \to +\infty} \frac{b-a}{2^n} * \sum_{k=0}^{2^n - 1} \max_{[x_k, x_{k+1}]} f(x)$$

 $\bullet \,$ limite di $S_{\underline{n}}$

$$\lim_{n \to +\infty} \frac{b-a}{2^n} * \sum_{k=0}^{2^n - 1} \min_{[x_k, x_{k+1}]} f(x)$$

2.1 Proprietà

Teorema 10 (Linearità) Date f, g integrabili nell'intervallo [a, b]. La funzione $h(x) = \alpha f(x) + \beta g(x)$ è integrabile in [a, b] ed il suo integrale equivale alla somma dei 2 integrali:

$$\alpha \int_a^b f(x) \ dx + \beta \int_a^b g(x) \ dx$$

Teorema 11 (Additività) Se f è integrabile in $[a, c] = [a, b] \cup [b, c]$ allora l'integrale di [a, c] è la somma degli integrali dei sottointervalli.

Teorema 12 (Differenza) Se f è integrabile in [a,b] allora l'integrale in [c,b] con $c \in [a,b]$ è la differenza tra l'integrale di [a,b] e quello di [a,c].

Teorema 13 (Inversione dell'intervallo) Se f è integrabile in [a,b] e a < b vale:

$$\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx$$

2.2 Teorema fondamentale del Calcolo integrale

Teorema 14 (Teorema fondamentale del Calcolo integrale) $Data \ f: [a,b] \to \mathbf{R} \ continua, \ limitata \ e \ integrabile:$

$$\left(F(t) = \int_a^t f(x) \ dx \ con \ a \le t \le b \right) \Rightarrow \forall t \in [a, b] \ F'(t) = f(t)$$

In breve F è l'antiderivata di f.

Definizione Una funzione $G(x) \mid G'(x) = f(x)$ è detta primitiva di f(x), inoltre tutte le sue primitive hanno forma $F(x) + c \ \forall c \in \mathbf{R}$.

Definizione Si definiscono 2 tipi di integrali:

• Definito

$$\int_{a}^{b} f(x) = F(x) \mid_{a}^{b} = F(b) - F(a)$$

• Indefinito

$$\int f(x) = F(x) + c$$

Calcolo $\int_2^8 x^2 + 5x \ dx$:

- L'antiderivata è $\frac{x^3}{3} + \frac{5x^2}{2}$
- L'integrale sarà quindi $\frac{8^3}{3}+\frac{5*8^2}{2}-\frac{2^3}{3}+\frac{5*2^2}{2}=318$

Teorema 15 (Pari e dispari)

Dato un integrale su [0,t]:

$$f(x) \stackrel{.}{e} pari \Rightarrow F(t) \stackrel{.}{e} dispari$$
 (o viceversa)

Teorema 16 (Pari e dispari 2)

Dato un integrale su [-t, t]:

• f(x) dispari

$$\int_{-t}^{t} f(x) = 0$$

• f(x) pari

$$\int_{-t}^{t} f(x) = 2 \int_{0}^{t} f(x)$$

2.3 Integrali impropri

Definizione Un integrale improprio è il limite di un integrale definito al tendere di almeno un estremo di integrazione ad un numero reale oppure all'infinito, quel numero reale può rappresentare un punto di discontinuità.

Possono avere 4 possibili forme (il limite si omette solitamente):

- 1. $\int_a^\infty f(x) \ dx$
- $2. \int_{-\infty}^{b} f(x) \ dx$
- 3. $\int_{-\infty}^{\infty} f(x) \ dx$
- 4. $\int_a^b f(x) \ dx$ con f(x) indefinita o discontinua da qualche parte in [a,b]

Definizione Data f divergente in un certo punto in [a, b].

f si dice integrabile in senso improprio su [a, b] se:

- Il punto in cui diverge è a e $\lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x) \ dx = l$
- Il punto in cui diverge è b e $\lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) \ dx = l$
- Diverge sia in a che in b e $\lim_{\epsilon\to 0^+,\delta\to 0^+}\int_{a+\epsilon}^{b-\delta}f(x)\ dx=l$

Similmente se l'intervallo presenta almeno un infinito:

- $[a, +\infty)$ e $\lim_{z \to +\infty} \int_a^z f(x) \ dx = l$
- $(-\infty, b]$ e $\lim_{z \to -\infty} \int_z^b f(x) \ dx = l$
- $(-\infty, +\infty)$ e $\int_{-\infty}^{c} f(x) \ dx + \int_{c}^{+\infty} f(x) \ dx = l$ per qualche c

2.3.1 Convergenza

Si considerino tutte le funzioni prese in considerazione in questa sezione aventi x_0 come punto di discontinuità.

Teorema 17 (Criterio del confronto asintotico)

$$Se \left(\lim_{x \to x_0} \frac{f(x)}{g(x)} = l \Rightarrow \int_a^{x_0} f(x) \ dx \approx \int_a^{x_0} g(x) \ dx \right)$$

allora (l'integrale di g(x) converge \iff l'integrale di f(x) converge)

Teorema 18 (Criterio del confronto diretto)

Se
$$\left(0 \le \int_a^{x_0} f(x) \ dx \le \int_a^{x_0} g(x) \ dx\right)$$

allora (l'integrale di g(x) converge \Rightarrow l'integrale di f(x) converge)

Teorema 19 (Criterio di convergenza assoluta)

$$\int_{a}^{x_0} |f(x)| \ dx < +\infty \Rightarrow \int_{a}^{x_0} f(x) \ dx < +\infty$$

3 Equazioni differenziali

Definizione Un'equazione differenziale è un'equazione che lega una funzione incognita alle sue derivate.

3.1 EDO

Definizione Un'equazione differenziale ordinaria coinvolge una funzione di una variabile e le sue derivate di ordine qualsiasi.

Definizione L'ordine di una EDO è il più alto ordine tra le derivate che contiene.

Per esempio l'accelerazione istantanea di un corpo è data dalla derivata della velocità istantanea che a sua volta è la derivata della funzione dello spostamento del corpo:

$$a(t) = v'(t) = s''(t)$$

Ipotizzando che l'accelerazione abbia valore $a\frac{m}{s^2}$ riscrivo:

$$a(t) = s''(t) = a\frac{m}{s^2}$$

Posso ricavare la funzione integrando 2 volte s''(t):

$$\int \int s''(t) dt dt = \int \int a dt dt$$
$$= \int (at + c_1) dt$$
$$= \frac{at^2}{2} + c_1 t + c_2$$

Definizione Il problema di Cauchy consiste nel trovare la soluzione di un'equazione differenziale di ordine $n: f(x, y(x), y''(x), \dots, y^n(x)) = 0$ tale che soddisfi le condizioni iniziali:

$$y(a) = y_0$$

$$y'(a) = y_1$$

$$y''(a) = y_2$$

$$\dots$$

$$y^{n-1}(a) = y_{n-1}$$

3.1.1 EDO lineari

Definizione Una EDO è definita lineare se:

- 1. è lineare (y(t)e $y^{\prime}(t)$ hanno grado 0 o 1)
- 2. è omogenea (non ci sono termini costanti aggiuntivi indipendenti da $\boldsymbol{y}(t))$

In questo caso se ho un'equazione della forma:

$$\begin{cases} y'(t) = a(t)y(t) + b(t) \\ y(t_0) = y_0 \end{cases}$$

posso riscrivere il problema di Cauchy come:

$$y(t) = \mathbf{e}^{A(t)} \left[y_0 + \int_{t_0}^t b(t) \mathbf{e}^{-A(t)} dt \right]$$