# PadhAI Week 3: Probability Theory & Information Theory

by Manick Vennimalai

| 3.4: Probability Theory                        | 1  |
|------------------------------------------------|----|
| 3.4.1: Basics of Probability Theory            | 1  |
| 3.4.2: Random Variable Intuition               | 3  |
| 3.4.3: Random Variable Formal Definition       | 4  |
| 3.4.4: Random Variable Continuous and Discrete | 5  |
| 3.4.5: Probability Distribution                | 5  |
| 3.4.6: True and Predicted Distribution         | 5  |
| 3.4.7: Certain Events                          | 6  |
| 3.4.8: Why do we care about Distributions      | 6  |
| 3.5: Information Theory                        | 7  |
| 3.5.1: Expectation                             | 7  |
| 3.5.2: Information Content                     | 7  |
| 3.5.3: Entropy                                 | 8  |
| 3.5.4: Relation to Number of Bits              | 8  |
| 3.5.5: KL- Divergence and Cross Entropy        | 10 |

## 3.4: Probability Theory

## 3.4.1: Basics of Probability Theory

What are the axioms of Probability

1. Consider the following sample space

 ${f \Omega}$ 



- 2. For any event A,
  - a.  $0 \le P(A) \le 1$
- 3. If  $A_1, A_2,...A_n$  are disjoint events, ie  $A_i \cap A_j = \emptyset \quad \forall (!i) = j$ 
  - a.  $P(\cup A_i) = \sum_i P(A_i)$
  - b. The probability of the union of all the events is equal to the sum of the individual probabilities of those events
  - c.  $P(\cup A_i) = P(A_1) + P(A_2) + P(A_3) + P(A_4) + P(A_5)$
- 4. If  $\Omega$  is the universal set containing all the events, then
  - a.  $P(\Omega) = 1$

#### 3.4.2: Random Variable Intuition

What is a Random Variable (intuition)

- 1. Suppose a student gets one of 3 possible grades in a course: A, B, C
- 2. One way of interpreting this is that there are 3 possible events here.
  - a. For eg, to find P(A) we take  $\frac{No. of students with A grade}{Total No. of students}$
- 3. Another way of looking at this is that there is a random variable G which maps each student to one of the 3 possible values



- 4. Here, the random variable G is treated more like a function that serves to map a student to a grade
- 5. And we are interested in P(G = g) where  $g \in \{A, B, C\}$
- 6. The benefit of this is that we can use multiple random variables on the same set to map to different outcomes



### 3.4.3: Random Variable Formal Definition

What is a random variable (formal definition)

- 1. A random variable is a function which maps each outcome in  $\Omega$  to a value
- 2. In the previous example, G (or  $f_{grade}$  ) maps each student in  $\,\Omega\,$  to a value: A, B or C
- 3. The event Grade=A is a shorthand for the event
  - a.  $\{\omega \in \Omega : f_{grade} = A\}$
  - b. In other words, All the elements such that when you apply  $\,f_{\it grade}\,$  the answer is A
  - c. Grade is a random variable
  - d. P(grade = A) =  $\frac{\{\omega \in \Omega: f_{grade} = A\}}{Total \ number \ of \ students}$
  - e. In the context of our example



- 4. This also applies to multiclass classification
  - a. Mapping one Letter to its respecting vowel, and consonant.



5. Here, it would be P(Consonant=स) and P(Vowel = ी)

#### 3.4.4: Random Variable Continuous and Discrete

What are continuous and discrete random variables

- 1. A random variable can either take a continuous values/Real values (ie, weight, height)
- 2. Or discrete values(ie, Grade, Nationality)
- 3. For the scope of this course, we will mostly be dealing with discrete random variables. le, P(Vowels), P(Consonants) which all draw from a fixed set of discrete values

## 3.4.5: Probability Distribution

What is a marginal distribution?

1. Consider a random variable G for grades

| G | P(G=g) |
|---|--------|
| Α | 0.1    |
| В | 0.2    |
| С | 0.7    |

2. The above table represents the marginal distribution over G

a. 
$$(G = g) \forall g \in A, B, C$$

- 3. i.e. The probability of every possible value that the random variable can take (sums to 1)
- 4. We denote this marginal distribution compactly by P(G)

#### 3.4.6: True and Predicted Distribution

What are true and predicted distributions

1. Consider the above example

| G | P(G=g)<br>(y) | (ŷ) |
|---|---------------|-----|
| Α | 0.1           | 0.2 |
| В | 0.2           | 0.3 |
| С | 0.7           | 0.5 |

- 2. Here, y refers to the true distribution, or the actual probabilities for each value of G
- 3. And ŷ is the predicted distribution, or what we estimate the probabilities to be based on our observations
- 4. To measure the degree of correctness of our predictions, we can use a loss function.
- 5. However, Squared-error function might not be appropriate as it doesn't factor in some of the basic assumption of probability theory, ie  $P(G) \ge 0$  and  $\le 0$ , etc
- 6. So, we must select a different loss function that is more rooted in probability theory (Cross Entropy)

#### 3.4.7: Certain Events

Events with 100% probability

- 1. We need something better than the squared error loss
- 2. Consider the scenario of a random variable X that maps to the winner in a tournament of 4 teams: A, B, C, D
- 3. We stop watching after the semi-finals, so we are unaware of the outcome, but in truth, team A has won, thus it is a certain event, with probabilities (P(A) = 1, P(B) = 0, P(C) = 0, P(D) = 0).

| Х | P(X=x) True distribution, unknown to us. | ŷ<br>Predicted by us |
|---|------------------------------------------|----------------------|
| А | 1 (Certain event)                        | 0.6                  |
| В | 0                                        | 0.2                  |
| С | 0                                        | 0.15                 |
| D | 0                                        | 0.15                 |

4. Before the tournament's completion, based on the point we have watched till(Semi-finals), we can predict the probabilities of each team's chance at victory (P(A) = 0.6, P(B) = 0.2, P(C) = 0.15, P(D) = 0.15)

## 3.4.8: Why do we care about Distributions

Let us put it into the context of our final project

- 1. Consider the signboard with the text '**Mumbai**'. Now our classifier is analysing the text character by character, and a random variable <u>char</u> maps the character to one of the 26 possible characters in the english language
- 2. For the first character **M**, we know the True distribution intuitively.

| char | Y = P(char=c) The certain event/True distribution | ŷ<br>Obtained from model |
|------|---------------------------------------------------|--------------------------|
| а    | 0                                                 | 0.01                     |
| b    | 0                                                 | 0.01                     |
|      | 0                                                 | 0.01                     |
| m    | 1                                                 | 0.7                      |
|      | 0                                                 | 0.01                     |
| Z    | 0                                                 | 0.01                     |

3. We compute the difference between the True and Predicted distributions using squared-error loss or some other loss function. From this, it is clear why we use distributions in the scope of our learning.

## 3.5: Information Theory

## 3.5.1: Expectation

What is the expectation of a distribution

- 1. Let us consider the random variable X that maps to the winning team amongst the 4 teams: A, B, C, D
- 2. P(X = x) represents the probability of team x winning where  $x \in \{A, B, C, D\}$
- 3. Consider G(X=x), the gain associated with each of the teams if they win, where  $x \in \{A, B, C, D\}$
- 4. Now, the expectation E(x) is given by  $\sum_{i \in \{A,B,C,D\}} P(X=i) * G(X=i)$
- 5. Consider the following data

| Х | P(X = x) | G(X = x) |
|---|----------|----------|
| Α | 0.4      | 10000    |
| В | 0.2      | 2000     |
| С | 0.1      | -8000    |
| D | 0.3      | 5000     |

6. Therefore, E(X) = (0.4 \* 10000) + (0.2 \* 2000) + (0.1 \* -8000) + (0.3 \* 5000) = 5100

#### 3.5.2: Information Content

What is Information content?

- 1. Consider the Random variable SR which maps to the direction in which the sun rises: East, West, North & South.
  - a. Now, we are told that P(SR=East) is 1.
  - b. Here, this is almost a blatantly obvious truth, thus we can say that the Information Gained here is very low.
- 2. Consider another Random variable ST, which maps to whether there is going to be a storm today: Yes, No.
  - a. Now, we are told that P(ST=Yes) = 1
  - b. Here, the information gained is very high as this is a rather surprising(low probability) event
  - c. We can almost say that Information Content  $\propto$  Surprise
  - d. Or in other words Information Content  $\propto \frac{1}{P(X=Surprise)}$
  - e. Thus, it can be inferred that the information content is a function of the probability of the event
  - f. IC(P(X = S)) Where IC is information content
- 3. Now, consider two separate events
  - a. X maps to which cricket team won the match: A, B, C, D
  - b. Y maps to the state of a light switch: On, Off
  - c. Now we are told that Team B won the match AND the light switch is On
  - d. The total Information gained is  $IC(X = B \cap Y = On) = IC(X = B) + IC(Y = On)$

- 4. Combining the points from above, we have
  - a. IC(P(X = S))

(Information Content is a function of probability)

b.  $IC(P(X \cap Y)) = IC(P(X)) + IC(P(Y))$ 

(From the previous example)

- c. From probability theory, if P(X) and P(Y) are disjoint, then  $(P(X \cap Y)) = P(X) \cdot P(Y)$
- d. Therefore IC(P(X).P(Y)) = IC(P(X)) + IC(P(Y))
- e. Therefore we need a family of function that satisfy f(a.b) = f(a) + f(b)
- f. The log functions satisfy this log(a.b) = log(a) + log(b)
- 5. Now we can write the IC function as follows
  - a.  $IC(X = A) = log(\frac{1}{P(X = A)})$
  - b. IC(X = A) = log(1) log(P(X = A))
  - c.  $IC(X = A) = -log_2 P(X = A)$  (All the logs use base 2)

## 3.5.3: Entropy

What is Entropy

1. First, a quick recap of the concepts we've studied so far

| Random Variable: | Probability Distribution: P(X=?) | Information Content: IC(X=?) | Expectation<br>E(Gain)                        |
|------------------|----------------------------------|------------------------------|-----------------------------------------------|
| Α                | P(X=A)                           | -log <sub>2</sub> P(X=A)     |                                               |
| В                | P(X=B)                           | -log <sub>2</sub> P(X=B)     | $\sum_{i \in \{A,B,C,D\}} P(X=i) * Gain(X=i)$ |
| С                | P(X=C)                           | -log <sub>2</sub> P(X=C)     | $I = \{A, B, C, D\}$                          |
| D                | P(X=D)                           | -log <sub>2</sub> P(X=D)     |                                               |

- 2. Based on these four concepts, we can talk about Entropy
- 3. Entropy H(X) is the Expected Information Content of a Random Variable
- 4.  $H(X) = -\sum_{i \in \{A,B,C,D\}} P(X=i) * log_2 P(X=i)$
- 5. Basically, substitute Gain for Information Content in the Expectation Equation

#### 3.5.4: Relation to Number of Bits

Relation between number of bits and entropy

- 1. Consider the Entropy equation from the previous section using shorthand P<sub>i</sub> for P(X=i)
- 2.  $H(X) = -\sum_{i \in \{A,B,C,D\}} P_i * log P_i$
- 3. Suppose there is a message X that you want to transfer that can take 4 values: A, B, C, D

4. For 4 values, we would use 2 Bits to transfer each message

| Random Variable: X | 2 Bit version | Probability Distribution: P(X=?) | Information Content: IC(X=?)             |
|--------------------|---------------|----------------------------------|------------------------------------------|
| А                  | 00            | 1/4                              | $-\log_2 2^2 = 2$ (ie $\log_a a^n = n$ ) |
| В                  | 01            | 1/4                              | $-\log_2 2^2 = 2$                        |
| С                  | 10            | 1/4                              | $-\log_2 2^2 = 2$                        |
| D                  | 11            | 1/4                              | $-\log_2 2^2 = 2$                        |

- 5. Now we can make the connection that the number of bits required to transfer a message is equal to the information content of that message
- 6. Consider another message X with 8 values: A, B, C, D, E, F, G, H

| Random Variable: X | 3 Bit version | Probability Distribution: P(X=?) | Information Content: IC(X=?)             |
|--------------------|---------------|----------------------------------|------------------------------------------|
| A                  | 000           | 1/8                              | $-\log_2 2^3 = 3$ (ie $\log_a a^n = n$ ) |
| В                  | 001           | 1/8                              | $-\log_2 2^3 = 3$                        |
| С                  | 010           | 1/8                              | $-\log_2 2^3 = 3$                        |
| D                  | 100           | 1/8                              | $-\log_2 2^3 = 3$                        |
| Е                  | 011           | 1/8                              | $-\log_2 2^3 = 3$                        |
| F                  | 101           | 1/8                              | $-\log_2 2^3 = 3$                        |
| G                  | 110           | 1/8                              | $-\log_2 2^3 = 3$                        |
| Н                  | 111           | 1/8                              | $-\log_2 2^3 = 3$                        |

- 7. While sending a continuous stream of messages, we would be interested in minimizing the stream of bits that we send
- 8. Consider the same 4 valued example but with a different distribution

| Random Variable: X | Probability Distribution: P(X=?) | Information Content: IC(X=?)             |
|--------------------|----------------------------------|------------------------------------------|
| А                  | 1/2 (High prob)                  | $-\log_2 2^1 = 1$ (ie $\log_a a^n = n$ ) |
| В                  | 1/4 (Medium prob)                | $-\log_2 2^2 = 2$                        |
| С                  | 1/8 (Low prob)                   | $-\log_2 2^3 = 3$                        |
| D                  | 1/8 (Low prob)                   | $-\log_2 2^3 = 3$                        |

- 9. This situation is considered favourable only if the average number of bits is less that the value it takes for an equally distributed set of values
- 10. The average is calculated using Entropy  $H(X) = -\sum_{i \in \{A,B,C,D\}} P_i * log P_i$
- 11. Average/Entropy =  $\frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{8}(3) + \frac{1}{8}(3) = 1.75$  which is < 2
- 12. Thus, the Entropy gives us the ideal number of bits that should be used to transmit the message

## 3.5.5: KL- Divergence and Cross Entropy

How we deal with true and predicted distributions

1. Consider the following data:

| Х | True Distribution: y  | True IC(X)         | Predicted Distribution: y | Predicted IC(X)    |
|---|-----------------------|--------------------|---------------------------|--------------------|
| Α | <b>y</b> <sub>1</sub> | -logy <sub>1</sub> | $\hat{\mathbf{y}}_1$      | -logŷ <sub>1</sub> |
| В | y <sub>2</sub>        | -logy <sub>2</sub> | $\hat{y}_2$               | -logŷ <sub>2</sub> |
| С | <b>y</b> <sub>3</sub> | -logy <sub>3</sub> | $\hat{\mathbf{y}}_3$      | -logŷ <sub>3</sub> |
| D | У <sub>4</sub>        | -logy <sub>4</sub> | ŷ <sub>4</sub>            | -logŷ <sub>4</sub> |

- Initially, we do not know the values of the True distribution and thereby the True Information Content
- 3. Hence, we generate a Predicted distribution and use that to compute the predicted information content.
- 4. But, the actual message will come from the True distribution y.
- 5. So therefore, the No. of bits will **not be**  $-\Sigma \hat{y}_i log \hat{y}_i$  but **instead**  $-\Sigma y_i log \hat{y}_i$
- 6. This is because the value associated with each of these messages comes from the predicted distribution  $-log\hat{y}_i$  but the messages themselves comes from the True distribution y
- 7. Now, we have formed to the basis to talk about KL-Divergence:
  - a.  $H_y = -\sum y_i log y_i$  is called the entropy
  - b.  $H_{v,\hat{v}} = -\sum y_i \log \hat{y}_i$  is called the cross entropy
  - c. Now we want to find the difference/distance between the predicted case and the true case, using something more efficient than the squared error
  - d. So y|| $\hat{y} = H_{y,\hat{y}} H_y$
  - e.  $\mathbf{y}||\hat{\mathbf{y}} = -\sum y_i \log \hat{\mathbf{y}}_i + \sum y_i \log y_i$
  - f. This is called the KL-Divergence
- 8. Thus, we now have **KLD(y||ŷ) =**  $-\Sigma y_i log \hat{y}_i + \Sigma y_i log y_i$
- 9. Now, we have a way of computing the difference between two distributions.