Reinforcement Learning: An Introduction notebook

黎雷蕾

2018年1月3日

目录

12 Eligibility Traces													2															
12.1 Th	ne λ -return																											2

Chapter 12

Eligibility Traces

12.1 The λ -return

首先给出 n-step 回报公式:

$$G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n \hat{v}(S_{t+n}, \mathbf{w}_{t+n-1}),$$
 (12.1)

在这里,平均回报可以由一半两步回报和一半四步回报构成,即 $G = \frac{1}{2}G_{t:t+2} + \frac{1}{2}G_{t:t+4}$ 。这种更新方式称为复合更新 (compound update),由此引出的算法 称为 $TD(\lambda)$ 算法,这个平均包含 n 步回报,权重比例为 $\lambda^{n-1}, \lambda \in [0,1]$,加上系数 $(1-\lambda)$ 保证和为 1(极限求和)。其公式可以写作:

$$G_t^{\lambda} \doteq (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n}$$
 (12.2)

对其进行一定的分步计算:

$$G_t^{\lambda} \doteq (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t$$
 (12.3)

由此我们可以引出离线 λ 回报算法 (off-line λ -return algorithm),在该算法进行中,它不会对权重向量进行改变,根据半梯度 (semi-gradient) 思想,有:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[G_t^{\lambda s} - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t), \tag{12.4}$$