PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-085585

(43)Date of publication of application: 31.03.1997

(51)Int.CI.

B23Q 17/09 B23B 49/00

(21)Application number: 07-242716

(71)Applicant:

NISSIN KOGYO KK

(22)Date of filing:

21.09.1995

(72)Inventor:

SEKI YOICHI

(54) MONITORING METHOD AND DEVICE FOR STATE OF MACHINING CUTTER FOR MACHINE TOOL

(57)Abstract:

PROBLEM TO BE SOLVED: To detect abnormalities of a machining cutter by starting a warning means when a discriminating means judges that a value corresponds to either peak value upper and lower discriminated values or a cutter break discriminated value.

SOLUTION: Either command that the rotation of an electric motor 4 for driving a machining cutter 9 is stopped or that an annunciation means 3 is started is performed according to the wear level of the machining cutter 9 output from a discriminating means 11. The judging values of the absolute value measurement and the relative value measurement and the machining load rise judging value are input in this discriminating means 11, abnormalities such as break of the machining cutter 9, the poor cutting edge, overload, abrasion, etc., are discriminated on the basis of the judging values of the absolute value measurement and the relative value measurement, and the using limit of the machining cutter 9 is discriminated on the basis of the machining load rise judging value.

LEGAL STATUS

[Date of request for examination]

03.10.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3291677

[Date of registration]

29.03.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平 9 - 8 5 5 8 5

(43)公開日 平成9年(1997)3月31日

(51) Int. C1.6

識別記号

庁内整理番号

FΙ

B 2 3 Q 17/09

D

技術表示箇所

17/09 B 2 3 Q B 2 3 B 49/00

B 2 3 B 49/00 Z

審査請求 未請求 請求項の数4

OL

(全12頁)

(21) 出願番号

特願平7-242716

(22) 出願日

平成7年(1995)9月21日

(71) 出願人 000226677

日信工業株式会社

長野県上田市大字国分840番地

(72) 発明者 関 陽一

長野県上田市大字国分840番地 日信工業

株式会社内

(74)代理人 弁理士 木戸 一彦 (外1名)

(54) 【発明の名称】工作機械用加工刃の状態監視方法とその装置

(57) 【要約】

【課題】 加工刃の折損や、折損前の構成刃先,刃こぼ れ,傷や、切粉等の異物の巻き込み,切削油の濃度低下 による過負荷等の異常や、使用限界を精度よく検出加工 刃の異常な状態を検出できるようにする。加工への時間 的影響をなくし、加工サイクルの短縮を図る。検出装置 としての摩耗部品を省略して、作動不良をなくす。水溶 性の切削油との併用を可能とする。加工中の微震動の影 響をなくす。繰返しの測定を可能とする。

【解決手段】 加工刃 9 が動力として使用する有効電力 の加工負荷の波形変化を実測グラフG2として測定する 有効電力測定手段10と、ピーク値上限判定値A及びピ ーク値下限判定値B及び刃折れ判定値Cとが入力されて いて、有効電力測定手段10から受けた実測グラフG2 中の実測ピーク値P2が、ピーク値上限判定値Aとピー ク値下限判定値Bと刃折れ判定値Cのいずれかに該当し たことを判定する判定手段11と、判定手段11の判定 を受けて、報知手段3の作動や工作機械1の作動停止を 行なう制御手段とを備える。

【特許請求の範囲】 被加工物の加工を行なう工作機械用加工

【請求項1】

刃の状態を監視する方法において、前記被加工物の加工 開始から加工終了までの1工程に、正常な加工刃(9) が動力として使用する有効電力の加工負荷の波形変化を 基準グラフ(G1)として測定し、該基準グラフ(G 1) の基準ピーク値(P1)を挟んだ上下に、前記加工 刃(9)の過負荷を示すピーク値上限判定値(A)と、 加工刃(9)の刃先不良を示すピーク値下限判定値 (B) とを設定して、これらピーク値上限判定値(A) とピーク値下限判定値(B)との間を前記加工刃(9) の正常域(D)となすと共に、前記ピーク値下限判定値 (B) の下位に、前記加工刃 (9) の折損を示す刃折れ 判定値(C)を設定して、該刃折れ判定値(C)と前記 ピーク値上限判定値(A)及びピーク値下限判定値 (B) とを判定手段(11)に入力し、前記加工刃 (9) が1工程中に使用する有効電力の加工負荷の波形 変化を実測グラフ(G2)として測定し、該実測グラフ (G2)を前記判定手段(11)に入力して、実測グラ フ(G2)中の実測ピーク値(P2)が前記加工刃 (9) の正常域 (D) を外れて、前記ピーク値上限判定 値(A)とピーク値下限判定値(B)と刃折れ判定値 (C) のいずれかに該当したことを判定手段(11)が 判定した場合に、警報音や警告灯等の報知手段の起動や

工作機械の作動停止を行なうことを特徴とする工作機械

用加工刃の状態監視方法。 【請求項2】 被加工物の加工を行なう工作機械用加工 刃の状態を監視する方法において、前記加工刃(9)が 前記被加工物の加工開始から加工終了までの1工程を行 なう前に、前記加工刃(9)が動力として使用する有効 電力の空転負荷(E)を一定時間測定して空転負荷平均 値(F)を算出し、該空転負荷平均値(F)に、予め設 定された前記加工刃(9)の過負荷を示すピーク値上限 判定値(A)と、加工刃(9)の刃先不良を示すピーク 値下限判定値(B)と、該ピーク値下限判定値(B)の 下位で加工刃 (9) の折損を示す刃折れ判定値 (C) の 各定数をそれぞれ乗じて、ピーク値上限判定値(A)と ピーク値下限判定値(B)と刃折れ判定値(C)とを決 定すると共に、これらピーク値上限判定値(A)とピー ク値下限判定値(B)と刃折れ判定値(C)とを判定手 40 段(11)に入力し、前記加工刃(9)が前記被加工物 の加工開始から加工終了までの1工程に使用する有効電 力の加工負荷の波形変化を実測グラフ(G2)として測 定し、該実測グラフ(G2)を前記判定手段(11)に 入力して、実測グラフ (G2)中の実測ピーク値(P 2) が、前記ピーク値上限判定値(A)とピーク値下限 判定値(B)との間の加工刃(9)の正常域(D)を外 れて、ピーク値上限判定値(A)とピーク値下限判定値 (B) と刃折れ判定値 (C) のいずれかに該当したこと を判定手段(11)が判定した場合に、警報音や警告灯

等の報知手段の起動や工作機械の作動停止を行なうこと を特徴とする工作機械用加工刃の状態監視方法。

前記判定手段(11)に、前記加工刃 【請求項3】 (9) の加工負荷上昇判断値 (J) を入力しておき、前 記1工程毎の実測グラフ(G2)中の実測ピーク値(P 2) を加算して、所定数の実測ピーク値(P2)から実 測ピーク平均値(P3)を算出し、該実測ピーク平均値 (P3)を前記判定手段(11)の加工負荷上昇判断値 (H) と比較して、該判定手段(11)が実測ピーク平 均値(P3)を前記判定手段(11)の加工負荷上昇判 断値(H)を越えたことを判定した場合に、前記警報音 や警告灯等の報知手段の起動や工作機械の作動停止を行 なうことを特徴とする請求項1または2に記載の工作機 械用加工刃の状態監視方法。

【請求項4】 加工刃(9)の作動によって被加工物の 加工を行なう工作機械用加工刃の状態を監視する装置に おいて、前記被加工物の加工開始から加工終了までの 1 工程に、前記加工刃(9) が動力として使用する有効電 力の加工負荷の波形変化を実測グラフ(G2)として測 20 定する有効電力測定手段(10)と、前記加工刃(9) の過負荷を示すピーク値上限判定値(A)及び、加工刃 (9) の刃先不良を示すピーク値下限判定値(B)及 び、該ピーク値下限判定値(B)の下位で、前記加工刃 (9) の折損を示す刃折れ判定値(C)とが入力されて いて、前記有効電力測定手段(10)から受けた実測グ ラフ(G2)中の実測ピーク値(P2)が、前記ピーク 値上限判定値(A)とピーク値下限判定値(B)との間 の加工刃(9)の正常域(D)から外れて、前記ピーク 値上限判定値(A)とピーク値下限判定値(B)と刃折 れ判定値(C)のいずれかに該当したことを判定する判 定手段(11)と、該判定手段(11)の判定を受け て、報知手段の作動や工作機械の作動停止を行なう制御 手段とを備えたことを特徴とする工作機械用加工刃の状 態監視装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、旋盤のバイトやボ ール盤のドリル、フライス盤のフライスカッタ等の加工 刃を電動モータで駆動する各種工作機械にあって、切削 や穴開けの加工を行なう前記加工刃の状態を常時監視し て、加工刃の正常な状態或いは折損や刃先不良, 過負 荷、摩耗等の異常や、使用限界による交換時期を検出す るようにした工作機械用加工刃の状態監視方法とその装 置に関する。

[0002]

50

【従来の技術】旋盤に用いるバイト等の工作機械用の加 工刃にあっては、加工中に構成刃先や刃こぼれ, 切粉等 の巻き込きみによる過負荷や折損等の異常を生じたり、 使用限界に到達した場合に、作業者が刃物異常に気付か ずに加工を継続して不良品を出してしまうことがある。

3

特に、作業者が加工状態や加工済み品を目視できない状態にあったり、工作機械が大量数を連続加工する自動機であった場合には、大量の不良品を発生することとなるため、加工刃の状態を常時監視できるようにした監視装置が提案されている。

【0003】この監視装置には、①センサバーを加工刃に取付けるタッチセンサ方式や、②加工刃と被加工物との間に微弱電流を流す漏電方式、③加工刃の折損時に発生する振動を検出する振動方式、④光や赤外線等を用いたリング状のセンサに加工刃を接近させたり内部に挿通 10させるリングセンサ方式等がある。

[0004]

【発明が解決しようとする課題】このうち、①のタッチセンサ方式では、a. センサバーが加工刃へタッチ動作を行なう分、加工サイクルが長くなる。b. タッチ動作を加工毎に行なうため、センサバーが著しく摩耗したり作動不良になることが多い。c. センサバーの動作タイミングの調整がむずかしい。d. 被加工物と接触する刃先にはセンサバーをタッチさせることができないので、刃先折れは検出できない。e. 加工刃の治具にガイドブ 20ッシュがあると、センサバーを取付けできない。という不具合がある。

【0005】また②の漏電方式では、a.加工刃と被加工物とに通電するため、水溶性の切削油との併用は好ましくない。③の振動方式では、a.正常な加工中での微震動と区別することがむずかしい。b.加工刃の折損しか検出できない。c.振動測定物である刃物が折損する際に発生する振動を監視するため、折損の検出が一度しか行なえない。④のリングセンサ方式では、a.精度が悪い。b.加工刃の中間が折損した場合には検出できない。等の不具合がある。

【0006】更に、これら方式の殆どが、加工刃の折損を検出するのみの折損監視装置であって、折損前の構成刃先、刃こぼれや傷、切粉等の異物の巻き込み、切削油の濃度低下による過負荷等の異常や、使用限界を検出することは殆どできず、不良品の大量発生を未然に回避する有効な手段とはなり得なかった。しかも、高価な加工刃を折損の度に交換しているとコストアップにつながるため、不要な交換は極力避けたい。

【0007】そこで本発明者は、加工刃が被加工物を加工する際に、電動モータからの有効電力が、被加工物の加工開始から加工終了までの1工程の間に変化し、更にこの有効電力が、被加工物の切削等で加工刃にかかる負荷に対しての変化率が高い点に着目し、この有効電力の変化を監視して、加工刃に対する加工負荷の僅かな変化を知ることにより、加工刃の折損はもとより、折損前の加工刃の異常な状態をも検出することのできる経済性に優れた工作機械用加工刃の状態監視方法とその装置を提供しようとするものである。

[0008]

【課題を解決するための手段】上述の目的に従い、本発 明の工作機械用加工刃の状態を監視する第1の方法とし て、被加工物の加工を行なう工作機械用加工刃の状態を 監視する方法において、前記被加工物の加工開始から加 工終了までの 1 工程に、正常な加工刃が動力として使用 する有効電力の加工負荷の波形変化を基準グラフとして 測定し、該基準グラフの基準ピーク値を挟んだ上下に、 前記加工刃の過負荷を示すピーク値上限判定値と、加工 刃の刃先不良を示すピーク値下限判定値とを設定して、 これらピーク値上限判定値とピーク値下限判定値との間 を前記加工刃の正常域となすと共に、前記ピーク値下限 判定値の下位に、前記加工刃の折損を示す刃折れ判定値 を設定して、該刃折れ判定値と前記ピーク値上限判定値 及びピーク値下限判定値とを判定手段に入力し、前記加 工刃が 1 工程中に使用する有効電力の加工負荷の波形変 化を実測グラフとして測定し、該実測グラフを前記判定 手段に入力して、実測グラフ中の実測ピーク値が前記加 工刃の正常域を外れて、前記ピーク値上限判定値とピー ク値下限判定値と刃折れ判定値のいずれかに該当したこ とを判定手段が判定した場合に、警報音や警告灯等の報 知手段の起動や工作機械の作動停止を行なう。

【0009】また、本発明の第2の方法として、被加工 物の加工を行なう工作機械用加工刃の状態を監視する方 法において、前記加工刃が前記被加工物の加工開始から 加工終了までの1工程を行なう前に、前記加工刃が動力 として使用する有効電力の空転負荷を一定時間測定して 空転負荷平均値を算出し、該空転負荷平均値に、予め設 定された前記加工刃の過負荷を示すピーク値上限判定値 と、加工刃の刃先不良を示すピーク値下限判定値と、該 ピーク値下限判定値の下位で加工刃の折損を示す刃折れ 判定値の各定数をそれぞれ乗じて、ピーク値上限判定値 とピーク値下限判定値と刃折れ判定値とを決定すると共 に、これらピーク値上限判定値とピーク値下限判定値と 刃折れ判定値とを判定手段に入力し、前記加工刃が前記 被加工物の加工開始から加工終了までの1工程に使用す る有効電力の加工負荷の波形変化を実測グラフとして測 定し、該実測グラフを前記判定手段に入力して、実測グ ラフ中の実測ピーク値が、前記ピーク値上限判定値とピ ーク値下限判定値との間の加工刃の正常域を外れて、ピ ーク値上限判定値とピーク値下限判定値と刃折れ判定値 のいずれかに該当したことを判定手段が判定した場合 に、警報音や警告灯等の報知手段の起動や工作機械の作 動停止を行なう。

【0010】上記第1または第2の方法の判定手段に、加工刃の加工負荷上昇判断値を入力しておき、1工程毎の実測グラフ中の実測ピーク値を加算して、所定数の実測ピーク値から実測ピーク平均値を算出し、該実測ピーク平均値を前記判定手段の加工負荷上昇判断値と比較して、該判定手段が実測ピーク平均値を前記判定手段の加工負荷上昇判断値を越えたことを判定した場合に、前記

20

30

警報音や警告灯等の報知手段の起動や工作機械の作動停止を行なうこともできる。

【0011】更に、本発明の工作機械用加工刃の状態監 視装置として、加工刃の作動によって被加工物の加工を 行なう工作機械用加工刃の状態を監視する装置におい て、前記被加工物の加工開始から加工終了までの1工程 に、前記加工刃が動力として使用する有効電力の加工負 荷の波形変化を実測グラフとして測定する有効電力測定 手段と、前記加工刃の過負荷を示すピーク値上限判定値 及び、加工刃の刃先不良を示すピーク値下限判定値及 び、該ピーク値下限判定値の下位で、前記加工刃の折損 を示す刃折れ判定値とが入力されていて、前記有効電力 測定手段から受けた実測グラフ中の実測ピーク値が、前 記ピーク値上限判定値とピーク値下限判定値との間の加 工刃の正常域から外れて、前記ピーク値上限判定値とピ ーク値下限判定値と刃折れ判定値のいずれかに該当した ことを判定する判定手段と、該判定手段の判定を受け て、報知手段の作動や工作機械の作動停止を行なう制御 手段とを備えている。

[0012]

【発明の実施の形態】以下、本発明の一形態を図面に基づいて説明する。図中、図1は工作機械と加工刃状態監視装置の説明図、図2及び図3は、それぞれ加工刃が動力として使用する有効電力の波形変化を示すもので、図2は絶対値測定の場合の有効電力の波形図、図3は相対値測定の場合の有効電力の波形図、図4は実測ピーク値が正常域とピーク値上限判定値以上とピーク値下限判定値以下に位置した場合の説明図、図5は実測ピーク値が刃折れ判定値以下に位置した場合の説明図、図5は実測ピーク値が刃折れ判定値以下に位置した場合の説明図、図6は加工回数と有効電力の関係図、図7及び図8は、被加工物の加工工程を示すフローチャートで、図7は絶対値測定に基づくフローチャートで、図8は相対値測定に基づくフローチャートである。

【0013】図1に示す工作機械1には、加工刃の状態 監視装置2と報知手段3が、オペレータの作業位置から 確認し易い適宜箇所に付設されている。工作機械1は、 旋盤やボール盤、フライス盤等であって、内部には電動 モータ4が制御部5の電磁開閉器6と電源部7とに三相 配線8にて接続されており、被加工物の切削や穴開け加 工を行なうバイトやドリル、フライスカッタ等の加工刃 40 9を、電動モータ4によって駆動するようになってい る。

【0014】加工刃状態監視装置2は、加工刃9の情報を電動モータ4から取り込んで測定する有効電力測定手段10と、該有効電力測定手段10からの有効電力情報を受けて、加工刃9の摩耗レベルを判定する判定手段11と、該判定手段11内に一体に組み込まれ、且つ判定手段11の判定に基づいて、報知手段3の起動または工作機械1の作動停止を指令する図示しない制御手段とからなっており、上記加工刃9の折損や刃先不良,過負

荷,摩耗等の異常や、使用限界による交換時期等の良否を常時監視している。また報知手段3は、例えばパトライト等の警告灯やアラーム等の警報音であって、加工刃9の過負荷や刃先異常,刃折れ等が異常内容毎に設定される。

【0015】有効電力測定手段10は、三相配線8,12を用いて電動モータ4と接続され、また配線13にて判定手段11と接続されており、電動モータ4が加工刃9を作動する際の有効電力の変化、即ち加工刃9が被加工物の加工に動力として使用する有効電力情報を電動モータ4から有効電力測定手段10に取り込んで、常時判定手段11へ入力するようになっている。判定手段11は、工作機械1の制御部5と配線14にて接続されており、加工刃9による加工時には、制御部5から配線13を通してトリガ信号を判定手段11へ取り込み、該判定手段11で加工刃9の摩耗レベルを判定する。

【0016】また判定手段11と一体の制御手段は、工作機械1の制御部5と報知手段3のそれぞれと配線15,16にて接続されており、判定手段11で出された加工刃9の摩耗レベルに応じて、加工刃9を駆動する電動モータ4の回転を停止するか、或いは報知手段3を起動するかのいずれかの指令を行なうようになっている。この判定手段11には、図2の絶対値測定及び図3の相対値測定と、図6の加工負荷上昇判断値Hとが入力され、絶対値測定と相対値測定の判断値A~Cに基づいて、加工刃9の折損や刃先不良,過負荷,摩耗等の異常が判定され、また加工負荷上昇判断値Hに基づいて、加工刃9の使用限界が判定される。

【0017】図2及び図3の測定図は、加工刃9が被加工物の加工に用いる有効電力の加工負荷を、有効電力測定手段10で波形変化として測定したもので、有効電力の波形変化は、トリガポイントの検出から加工刃9が加工を開始するまでの待機期間T1と、該加工刃9が被加工物の加工開始から加工を終えるまでの1工程分の加工負荷測定期間T2とを持っている。

【0018】このうち、図2の絶対値測定では、加工負荷測定期間T2として、1工程終了後の電動モータ4のアイドリング運転状態である有効電力の空転負荷Eと電動モータ4の電源OFFまでが含まれている。そして、まず加工刃9の判定値を決めるための基準ピーク値P1の測定が、正常な加工刃9を用いて有効電力測定手段10によって行なわれる。この測定は、加工負荷測定期間T2での正常な加工刃9を用いた有効電力の加工負荷を基準グラフG1として測定し、加工負荷測定期間T2での1工程終了後に、基準グラフG1から最大有効電力値である基準ピーク値P1を取り出す。

【0019】次に、上述の測定に基づいて、基準ピーク値P1を挟んだ上下に、加工刃9の過負荷を示すピーク値上限判定値Aと、加工刃9の刃先不良を示すピーク値 下限判定値Bとを設定して、これらピーク値上限判定値 10

Aとピーク値下限判定値Bとの間を、加工刃9の使用許 容範囲である正常域Dとなし、更にピーク値下限判定値 Bの下位に、加工刃 9 の折損を示す刃折れ判定値 Cを設 定する。判定値A~Cのレベルと正常域Dの範囲は、加 工刃9の耐久性能を基に設定され、これらを絶対値測定 プログラムの基本データとして判定手段11に入力す

【0020】上述の絶対値プログラムを用いて加工刃9 の状態を監視する場合に、加工負荷測定期間T 2 におい て加工刃9が1工程中に使用する有効電力の加工負荷の 波形変化を、実測グラフG2として有効電力測定手段Ⅰ 0で測定し、この実測グラフG2を判定手段11に入力 する。そして、加工負荷測定期間T2ののち、判定手段 11で実測グラフG2中の実測ピーク値P2が、基本デ ータの判定値A~Cと比較され、判定手段11にて加工 刃9の異常が検出された場合には、制御手段を作動して 報知手段3の起動や工作機械1の作動停止を行なう。

【0021】図3に示す相対値測定では、前回の加工負 荷測定期間T2後から次の加工負荷測定期間T2までの 間、即ち加工刃 9 が、加工負荷測定期間T 2 で被加工物 の加工開始から加工終了までの1工程を行なう直前に、 加工刃 9 の判定値を決めるための空転負荷測定期間T 3 が設定される。この空転負荷測定期間T3では、電動モ ータ4のアイドリング運転状態である有効電力の空転負 荷Eを有効電力測定手段 10で測定して、判定手段 11 で空転負荷平均値Fを算出し、該判定手段丨丨におい て、予め設定された加工刃9の過負荷を示すピーク値上 限判定値Aと、加工刃9の刃先不良を示すピーク値下限 判定値Bと、該ピーク値下限判定値Bの下位で加工刃9 の折損を示す刃折れ判定値Cの各係数X,Y,Zを空転 負荷平均値Fにそれぞれ乗じて、ピーク値上限判定値A とピーク値下限判定値Bと刃折れ判定値Cを決定する。

【0022】ピーク値上限判定値Aとピーク値下限判定 値Bとの間には、上述の絶対値測定の場合と同様に、加 工刃 9 の使用許容範囲である正常域 D が決められ、空転 負荷平均値Fと相対して求めた判定値A~Cと正常域D の範囲とが、絶対値プログラムとして判定手段11に入 力される。

【0023】上述の相対値プログラムを用いて加工刃9 の状態を監視する場合には、加工刃9が被加工物の1工 程を行なう加工負荷測定期間T2直前の空転負荷測定期 間T3に、有効電力の空転負荷Eを有効電力測定手段Ⅰ 0 で測定し、更に判定手段11でこの空転負荷Eから空 転負荷平均値Fを算出して、空転負荷平均値Fに判定値 A~Cの係数を乗じて判定値A~Cと正常域Dの範囲を 決定する。そして、加工負荷測定期間T2で実測グラフ G2を測定し、加工負荷測定期間T2の後に実測グラフ G2中の実測ピーク値P2を判定値A~Cと比較され、 判定手段11にて加工刃9の異常が検出された場合に は、制御手段を作動して報知手段3の起動や工作機械1

の作動停止を行なう。

【0024】次に、図2及び図3の測定図による判定 を、図4と図5に基づいて説明する。先ず図4では、加 工負荷測定期間T2での1加工で、加工刃9が実際に被 加工物を加工した時の有効電力の加工負荷を、3種類の 実測グラフG2-1, G2-2, P2-3で示してお り、加工負荷測定期間T2での1加工終了後に、それぞ れの実測グラフG2-1~3からピーク値P2-1,P 2-2, P2-3が測定される。

8

【0025】このうち、実線で示す実測グラフG2-1 では、ピーク値P2ーlがピーク値上限判定値Aとピー ク値下限判定値Bとの間の正常域Dに位置しており、判 定手段11が加工刃9が正常であると判断する。またピ ーク値P2-2が、ピーク値上限判定値Aよりも上位に 位置する破線の実測グラフG2-2では、判定手段11 が加工刃 9 に切粉の巻き込きみや切削油の濃度異常等に よる過負荷を検出する。更に、ピーク値P2-3がピー ク値下限判定値Bよりも下位に位置する一点鎖線の実測 グラフG2-3では、判定手段11が加工刃9に刃こぼ れや刃先傷,構成刃先等を起因とする刃先不良の発生を 検出する。

【0026】図5では、先の1工程で加工刃9が過負荷 によって折損した場合を (A) の実測グラフG2-4 に、また次の工程でこの折損を測定する場合を(B)の 実測グラフG2-4にそれぞれ示している。図5(A) の先の1工程では、加工刃9が過負荷によってピーク値 P2-4で折損すると、有効電力は加工負荷を失って刃 折れ判定値C以下の空転負荷Eのままとなり、1工程を 終える。次に、図5 (B) の次工程に入ると、加工刃9 が折損状態であるため、有効電力は空転負荷Eのまま刃 折れ判定値Cへ到達しないから、次工程終了後に判定手 段11が加工刃9に折損を生じたと判定する。

【0027】また、加工刃9の使用限界の判定には、前 述の如く図6に示す加工負荷上昇判断値Hが用いられ る。この加工負荷上昇判断値Hは、加工刃9の性能や加 工内容を基に、加工刃9の耐久性を、有効電力の加工負 荷の値に置き換えて判定手段11に入力しておく。そし て、有効電力測定手段 10 から送られる加工毎の実測ピ ーク値P2を判定手段llに記録して、所定数nの実測 ピーク値P2から実測ピーク平均値P3を算出し、該実 40 測ピーク平均値P3を加工負荷上昇判断値Hと比較す

【0028】実測ピーク平均値P3に用いる各実測ピー ク値P2は、上述の絶対値測定や相対値測定プログラム の正常域Dにあり、実測ピーク値P2が正常域Dを上下 に外れた場合には、上述の如く判定手段11と制御手段 とによって異常が報知される。また実測ピーク平均値P 3は、加工数を増す毎に、所定数の実測ピーク値P2の 中から最も古い値を捨てながら、常に新しい値を取り込 50 んで算出される。従って、新品交換時の加工刃9も、加 工数を重ねるに従って次第に摩耗して行くから、常に新しい実測ピーク値P2を取り込んで算出される実測ピーク平均値P3は、徐々に加工負荷上昇判断値Hへ近づいて行く。そして、実測ピーク平均値P3が加工負荷上昇判断値Hを越えたことを判定手段11が判定した場合には、制御手段を作動して報知手段3を起動したり、或いは工作機械1の作動を停止して、加工刃9が使用限界に到達したことを報知する。

【0029】加工刃9の判定には、判定手段11に入力した上述の2つのプログラムのうちのいずれか一方が選 10 択される。例えば、図2の絶対値測定は、有効電力の空転負荷Eと、有効電力の加工負荷を実測した実測グラフG2の実測ピーク値P2との開きが、空転負荷Eのバラ付きを無視できるほど大きい場合に用いられ、また図3の相対値測定は、有効電力の空転負荷Eと実測ピーク値P2との開きがさほどなく、有効電力の空転負荷Eにバラ付きがあったり、或いは空転負荷Eの変動に伴って加工負荷が上下へ変動するなどの原因で、実測ピーク値P2が測定しにくい場合に用いられる。従って、図3の相対値測定では、有効電力の空転負荷Eから空転負荷平均値Fを求めて、この空転負荷平均値Fに基づく判定値A~Cと正常域Dの範囲の設定が、加工負荷測定期間T2で被加工物の1工程を行なう直前毎に行なわれる。

【0030】次に、上述のように構成される加工刃状態監視装置2の更に具体的な2つの作動例を、図7及び図8のフローチャートを用いて説明する。図7のフローチャートには、図2の絶対値測定による基本データと、図6で設定した加工負荷上昇判断値Hとを組合わせた絶対値測定プログラムが入力され、また図8のフローチャートには、図3の相対値測定による基本データと、図6で30設定した加工負荷上昇判断値Hとを組合わせた相対値測定プログラムが入力されている。前述の如く加工刃9の判定には、判定手段11に入力した上述の2つのプログラムのうちのいずれか一方が選択される。尚、これらのフローチャートを説明するに当たり、図1~図6を適宜参酌するものとする。

【0031】絶対値測定プログラムを用いた図7のフローチャートは、ステップS1でプログラムがスタートすると電動モータ4が立ち上がり、ステップS2でトリガポイントを検出してステップS3で待機期間T1を待機 40したのちステップS4に入り、加工刃9が被加工物の1加工で使用する有効電力の加工負荷を、有効電力測定手段10が実測グラフG2として測定を開始する。そして、ステップS5で加工負荷測定期間T2の間実測グラフG2を測定し、ステップS6に入って測定を終了したのち、ステップS7で実測グラフG2から最大有効電力である実測ピーク値P2が取り出される。

【0032】ステップS8の刃物折れ判定では、判定手 2を待機する。そして、ステップS4から空転負荷E0段11で実測ピーク値P2と刃折れ判定値Cとを比較 測定を開始し、ステップS5でトリガポイントを検出し、実測ピーク値P2が刃折れ判定値Cと同じか小さい 50 て、ステップS6に入って待機期間T1を待機したの

場合、即ちP2≦Cの場合には、ステップS9に入って報知手段11である刃折れランプを点灯する。また、実測ピーク値P2が刃折れ判定値Cよりも大きい場合、即ちP2>Cの場合には、ステップS10の刃先異常判定に入って、判定手段11で実測ピーク値P2とピーク値下限判定値Bとを比較し、実測ピーク値P2がピーク値下限判定値Bと同じか小さい場合、即ちP2≦Bの場合には、ステップS11に入って報知手段11である刃先異常ランプを点灯する。

10

【0033】また、実測ピーク値P2がピーク値下限判定値Bよりも大きい場合、即ちP2>Bの場合には、ステップS12の過負荷判定に入って、判定手段11で実測ピーク値P2とピーク値上限判定値Aとを比較する。そして、実測ピーク値P2がピーク値上限判定値Aと同じか大きい場合、即ちP2 \leq Aの場合には、ステップS13に入って報知手段11である過負荷ランプを点灯し、また実測ピーク値P2がピーク値上限判定値Aよりも小さい場合、即ちP2<Aの場合には、そのままステップS16の加算処理へ移行する。また、上述のステップS9,S11,S13で各ランプが点灯すると、次にステップS14に入って報知手段11であるアラーム1を出力作動し、更にステップS15に入って工作機械1の作動を停止する。

【0034】ステップS16の加算処理では、加工刃9の摩耗度を測定して平均値を出すための実測ピーク値P2が加算され、ステップS17の加算回数で実測ピーク値P2の加算回数が所定数nに満たない場合には、そのまま1加工分のプログラムを終了する。また、ステップS17での加算回数が所定数nに足りている場合には、前述のように実測ピーク値P2の中から最も古い値を捨てながら新しい値を取り込んで、所定数nの実測ピーク値P2から実測ピーク平均値P3をステップS18の加工負荷判定で加工負荷上昇判断値Hと比較して、加工刃9の摩耗レベルの判定が行なわれる。

【0035】そして、実測ピーク平均値P3が加工負荷上昇判断値Hと同じか大きい場合、即ちP3 \ge Hの場合には、ステップS19に入って報知手段3である摩耗ランプを点灯すると共に、ステップS20で報知手段3のアラーム2を作動し、実測ピーク平均値P3が加工負荷上昇判断値Hよりも小さい場合、即ちP3<Hの場合には、そのまま1加工分のプログラムを終了する。

【0036】相対値測定プログラムを用いた図8のフローチャートは、ステップS1でプログラムがスタートすると電動モータ4が立ち上がり、トリガポイントの検出が外部信号の場合に、ステップS2で外部信号を検出して、ステップS3で待機期間T1と加工負荷測定期間T2を待機する。そして、ステップS4から空転負荷Eの測定を開始し、ステップS5でトリガポイントを検出して、ステップS6に入って待機期間T1を待機したの

ち、ステップS7で空転負荷Eの測定を終了し、ステップS8で空転負荷Eに基づく空転負荷平均値Fが算出される。

【0037】ステップS9では、電動モータ4やベアリング、駆動伝達部等の異常が空転負荷Eの異常として判定され、空転負荷異常と判定された場合には、ステップS10で報知手段3である空転負荷異常ランプが点灯し、更にステップS11で、同じく報知手段3であるアラーム2を出力作動する。

【0038】また、ステップS9で空転負荷Eの異常判定がない場合には、そのままステップS12に進み、加工刃9が被加工物の1加工で使用する有効電力の加工負荷を、有効電力測定手段10が実測グラフG2として測定を開始する。ステップS13では加工負荷測定期間T2の間、有効電力測定手段10による実測グラフG2の測定を継続し、ステップS14に入って測定を終了したのち、ステップS15で実測グラフG2から最大有効電力である実測ピーク値P2が取り出される。

【0039】ステップS16の刃物折れ判定では、実測ピーク値P2と空転負荷平均値F×刃折れ判定値Cの係数X=刃折れ判定値Cとを比較し、実測ピーク値P2が刃折れ判定値Cと同じか小さい場合、即ちP2 \le F \times X=Cの場合には、ステップS17に入って報知手段3である刃折れランプを点灯し、また実測ピーク値P2が刃折れ判定値Cよりも大きい場合、即ちP2>F \times X=Cには、そのままステップS18の刃先異常判定へ進行する。

【0040】ステップS18の刃先異常判定では、判定手段11で実測ピーク値P2と空転負荷平均値 $F\times$ ピーク値下限判定値Bの係数Y=ピーク値下限判定値Bとを比較し、実測ピーク値P2がピーク値下限判定値Bと同じか小さい場合、即ち $P2 \le F \times Y = B$ の場合には、ステップS19に入って報知手段3である刃先異常ランプを点灯し、また実測ピーク値P2がピーク値下限判定値Bよりも大きい場合、即ち $P2 > F \times Y = B$ の場合には、そのままステップS20の過負荷判定へ進行する。

【0041】ステップS20の過負荷判定では、判定手段11で実測ピーク値P2と空転負荷平均値F×ピーク値上限判定値Aの係数Y=ピーク値下限判定値Aとを比較し、実測ピーク値P2がピーク値上限判定値Aと同じか大きい場合、即ちP2 $\stackrel{>}{=}$ F×Y=Aの場合には、ステップS21に入って報知手段3である過負荷ランプを点灯し、また実測ピーク値P2がピーク値下限判定値Bよりも小さい場合、即ちP2 $\stackrel{>}{=}$ F×Y=Aの場合には、そのままステップS24の加算処理へ進行する。また、上述のステップS17.S19,S21で各ランプが点灯すると、次にステップS22に入って報知手段3であるアラーム1を出力作動し、更にステップS23に入って工作機械1の作動を停止する。

【0042】次に、ステップS24の加算処理で実測ピ 50

12

ーク値P 2 が加算され、ステップS 2 5 の加算回数で実 測ピーク値P 2 の加算回数が所定数 n に満たない場合に は、そのまま 1 加工分のプログラムを終了する。また、 ステップS 2 5 での加算回数が所定数 n に足りている場 合には、実測ピーク値P 2 の中から最も古い値を捨てな がら新しい値を取り込んで、所定数 n の実測ピーク値P 2 から実測ピーク平均値P 3 算出し、この実測ピーク平 均値P 3 をステップS 2 6 の加工負荷判定で加工負荷上 昇判断値H と比較して、加工刃 9 の摩耗レベルの判定が 10 行なわれる。

【0043】そして、実測ピーク平均値P3が加工負荷上昇判断値Hと同じか大きい場合、即ちP3 \ge Hの場合には、ステップS27に入って報知手段3である摩耗ランプを点灯し、ステップS28で報知手段3のアラーム2を作動し、実測ピーク平均値P3が加工負荷上昇判断値Hよりも小さい場合、即ちP3<Hの場合には、そのまま1加工分のプログラムを終了する。

[0044]

【発明の効果】以上説明したように、本発明に係る工作機械用加工刃の状態監視方法とその装置によれば、a.センサバーを加工刃へタッチ動作させる必要がないので、加工への時間的影響が殆どなく、加工サイクルの短縮が図れる。b.タッチ動作を行なわないので摩耗する部品がなく、作動不良にならない。c.動作タイミングをとる必要がない。d.水溶性の切削油との併用が可能となる。e.加工中の微震動の影響を受けない。f.測定回数に限度がなく、繰返しの測定が可能である。等の効果がある。

【0045】更に、加工刃の折損はもとより、折損前の構成刃先や刃こぼれ,傷、切粉等の異物の巻き込みや切削油の濃度低下による過負荷等の異常や、使用限界を精度よく検出することができるので、高価な加工刃を長期間有効に使用することができる。また、不良品の大量発生を未然に回避できるので、低コスト化を図りながら高い製品化率が得られる。

【図面の簡単な説明】

【図1】本発明の一形態例を示す工作機械と加工刃状態 監視装置の説明図

【図2】本発明の一形態例を示す絶対値測定の場合の有) 効電力の波形図

【図3】本発明の一形態例を示す相対値測定の場合の有 効電力の波形図

【図4】本発明の一形態例を示す実測ピーク値が正常域とピーク値上限判定値以上とピーク値下限判定値以下に位置した場合の説明図

【図5】本発明の一形態例を示す実測ピーク値が刃折れ 判定値以下に位置した場合の本発明の一形態例説明図

【図6】本発明の一形態例を示す空転負荷平均値と加工 負荷上昇判断値との関係図

【図7】本発明の一形態例を示す絶対値測定に基づくフ

ローチャート

【図8】本発明の一形態例を示す相対値測定に基づくフ ローチャート

【符号の説明】

1…旋盤やボール盤等の工作機械

2…加工刃の状態監視装置

3…パトライト等の警告灯やアラーム等の警報音による 報知手段

4 …電動モータ

5…制御部

6 …電磁開閉器

7…電源部

9 …バイトやドリル,フライスカッタ等の加工刃

10…有効電力測定手段

11…判定手段

A…ピーク値上限判定値

- 有効電力

【図1】

【図3】

空転負費測定期間

E空転負荷

空転負荷平均值

B…ピーク値下限判定値

C…刃折れ判定値

D…ピーク値上限判定値Aとピーク値下限判定値Bとの 間の正常域

14

E…有効電力の空転負荷

F…空転負荷平均值

G1…基準グラフ

G 2, G 2-1, G 2-2, P 2-3…実測グラフ

H…加工負荷上昇判断值

10 T1…待機期間

T 2 …加工負荷測定期間

T 3 ···空転負荷測定期間

P1…基準ピーク値

C刃折れ利定値

時間-

P 2, P 2 - 1, P 2 - 2, P 2 - 3…実測ピーク値

【図4】

P 3…実測ピーク平均値

[図2]

【図5】

(B)

【図6】

【図7】

【図8】

