Mestint 2. előadás

PJT

2020. február 18.

Példán keresztüli magyarázat:

$$A = \left\{ \begin{bmatrix} A_{11} \\ A_{33} \end{bmatrix} \subseteq VALAMI \right\}$$

$$C \subseteq A$$

$$\sigma = \left\{ f : fel, l : le, b : balra, j : jobbra \right\}$$

$$le : dom(le) \rightarrow A$$

$$dom(le) = \left(\begin{bmatrix} A_{11} \\ A_{33} \end{bmatrix} \subseteq A | A_{31}, A_{32}, A_{33} \neq 0 \right\}$$

$$le\left(\begin{bmatrix} A_{11} \\ A_{33} \end{bmatrix} \right) = \begin{bmatrix} A_{11} \\ A_{33} \end{bmatrix}$$

Fogalmak:

- Közvetlen elérhetőség: Legyen $a \in A, b \in A$. Az a állapotból a b állapot közvetlenül elérhető, ha van olyan operátort tudunk alkalmazni az a állapotra és célállapota a b állapot. Jelölés: $a \Rightarrow b$
- Elérhetőség: Legyen $a, b \in A$. Az a állapotból b állapot elérhető, ha ezek
 - -a=b
 - Van olyan $o_1, o_2, ..., o_k$ operátorsorozat, $o_n \in o, i = 1, 2, ..., k, i > 1$, amelyre $a_i \Rightarrow a_{i+1} \Rightarrow ... \Rightarrow b$ Jelölés: $a \Rightarrow^* b$

< A, kezdo, C, o>megoldható, ha a kezdőállapotból elérhető valamely célállapot. $C\neq\emptyset$

Ágensszemlélet

Ágens: Bármi lehet, aminek van

- Érzékelője/Szenzora: információt nyerhetnek a környezetről
- Beavatkozója/Aktuátor: valamilyen módosítást hajtanak végre a környezeten

Érzékelés → cselekvés?

Ágensffüggvény érzékeléssorozathoz 1 darab cselekvést rendel.

Determinisztikus regresszió: Determinisztikus környezet ben a környezet állapota meghatározható a környezet előzetes állapotából és az ágens által végrehajtott cselekvésből.

epizodikus(sorozatszerű) környezetek: Egy adott cselekvéssorozat a következő cselekvéssorozatra nincs hatással. Diszkrét/folytonos környezetek:

- Diszkrét: Véges kiértékelés, véges cselekvés
- Folytonos: Robot taxi példa

Egy-, vagy többágenses környezet:

- Egyágenses környezet: pl. kirakó kirakása
- Többágenses: pl. robotporszívó
 - Kooperatív környezet: pl. automata járművek
 - Kompetetív környezet: pl. parkolási "harc"