Procesamiento de la señal de voz

Leandro Vignolo

Procesamiento Digital de Señales Ingeniería Informática FICH-UNL

29 de mayo de 2014

Organización de la clase

- Producción y percepción de la voz
 - Generalidades del aparato fonador
 - Fuentes y modificadores del sonido de la voz
 - Generalidades del oído y la percepción
- 2 Análisis por tramos
 - Niveles estructurales del habla
 - Análisis por tramos
- Procesamiento homomórfico
 - Definición de los coeficientes cepstrales
 - Procesamiento homomórfico de la voz
- Estimación de la F0
 - Estimación de F0 por cepstrum
 - Estimación de F0 por autocorrelación

Organización de la clase

- Producción y percepción de la voz
 - Generalidades del aparato fonador
 - Fuentes y modificadores del sonido de la voz
 - Generalidades del oído y la percepción
- 2 Análisis por tramos
 - Niveles estructurales del habla
 - Análisis por tramos
- Procesamiento homomórfico
 - Definición de los coeficientes cepstrales
 - Procesamiento homomórfico de la voz
- Estimación de la F0
 - Estimación de F0 por cepstrum
 - Estimación de F0 por autocorrelación

Modelo lineal de producción de la voz

Diagrama esquemático del aparato fonador

Modelo lineal de producción de la voz

- Se supone que la señal es la salida de un sistema lineal
- La señal de voz es el resultado de la convolución entre una señal de excitación y la respuesta al impulso del tracto vocal

$$y(t) = x(t) * h(t)$$

- Sólo se conoce y(t) y es de interés analizarla para estimar las características de la respuesta al impulso del tracto vocal h(t).
- En el dominio frecuencial,

$$Y(f) = X(f)H(f)$$

donde X(f) es el espectro de la excitación y H(f) es la respuesta en frecuencias del tracto vocal.

4 D > 4 D > 4 D > 4 D > 4 D > 9 Q O

Procesamiento homomórfico

Estructura anatómica del tracto vocal

Fuentes principales del sonido

Tipos de entrada

- Tren de pulsos cuasiperiódicos (sonidos sonoros)
 Frecuencia fundamental (F0)
- Ruido de banda ancha (sonidos sordos)

Modificadores del sonido

- Morfología del tracto vocal
- Circuito nasa
- Restricciones en el flujo de aire
- Radiación en los labios
- Posición de la lengua
- Posición de la mandíbula
- Sistema variante en el tiempo

Fuentes principales del sonido

Tipos de entrada

- Tren de pulsos cuasiperiódicos (sonidos sonoros)
 Frecuencia fundamental (F0)
- Ruido de banda ancha (sonidos sordos)

Modificadores del sonido

- Morfología del tracto vocal
- Circuito nasal
- Restricciones en el flujo de aire
- Radiación en los labios
- Posición de la lengua
- Posición de la mandíbula
- Sistema variante en el tiempo

Procesamiento homomórfico

Análisis de la señal de voz

Período y Frecuencia fundamental (F_0) - Formantes

- La frecuencia fundamental F_0 corresponde a la frecuencia glótica, presente en los fonemas sonoros, y es una componente importante de la entonación en el habla.
- Período fundamental: $T_0=rac{1}{F_0}$
- Las frecuencias formantes (F_1, F_2, F_3, \cdots) permiten discriminar entre las vocales.

Análisis de la señal de voz

Sonograma y espectrograma

Espectro de una vocal

Espectro de una vocal

Triángulo de las vocales

Percepción de la voz...

Procesamiento homomórfico

Partes del oído

Cóclea

Producción y percepción de la voz

Onda viajera

Principio de tonotopía

Frecuencia y Pitch

F0 y Pitch

- A menudo confundidos en la literatura, el pitch no es igual a la frecuencia fundamental.
- La frecuencia, intensidad y las propiedades espectrales de un sonido interactúan en formas muy complejas para dar una percepción de pitch que puede ser un reflejo muy pobre de la F_0 . El pitch percibido cambia con la intensidad.
- El pitch se refiere a un atributo perceptual del sonido, mientras que a frecuencia es un atributo físico de las señales.

Escala de mel

Mel

La unidad del pitch percibido de un tono puro es el mel.

No se corresponde linealmente con la frecuencia física del tono.

Stevens y Volkman (1940) establecieron: 1000 Hz = 1000 mel.

Escala de mel

$$F_{mel} = \frac{1000}{\log(2)} \log\left(1 + \frac{F_{Hz}}{1000}\right)$$
 (Fant, 1973)

Es una aproximación y existen otras variantes

- O'Shaugnessy (1987)
 - Umesh (1999)

Banco de filtros en escala de mel

Banco de filtros en escala de mel

Banco de filtros en escala de mel

Organización de la clase

- Producción y percepción de la voz
 - Generalidades del aparato fonador
 - Fuentes y modificadores del sonido de la voz
 - Generalidades del oído y la percepción
- 2 Análisis por tramos
 - Niveles estructurales del habla
 - Análisis por tramos
- Procesamiento homomórfico
 - Definición de los coeficientes cepstrales
 - Procesamiento homomórfico de la voz
- 4 Estimación de la FO
 - Estimación de F0 por cepstrum
 - Estimación de F0 por autocorrelación

Primeros niveles estructurales del habla

- Necesidad: señal no estacionaria
- Estacionariedad por tramos
- Tipos de ventanas (cuadrada, Hamming, etc.)
- Técnicas de ventaneo
- Solapado en el tiempo
- Análisis de las ventanas independientes

Producción y percepción de la voz

Ventaneo

$$v(t,n) = \omega(n, N_{\omega})x(tN_d + n), \quad 0 < n \le N_{\omega}$$

Procesamiento homomórfico

t: índice de la ventana

n: índice de la muestra

$$\omega_H(m, N_\omega) = \frac{27}{50} - \frac{23}{50} \cos(2\pi m/N_\omega)$$

$$V(t,k) = \mathcal{T}(k) \left\{ v(t,n) \right\}, \quad 0 < k \le N_x$$

Ventaneo

$$v(t,n) = \omega(n, N_{\omega})x(tN_d + n), \quad 0 < n \le N_{\omega}$$

Procesamiento homomórfico

t: índice de la ventana

n: índice de la muestra

Hamming

$$\omega_H(m, N_\omega) = \frac{27}{50} - \frac{23}{50} \cos(2\pi m/N_\omega)$$

$$V(t,k) = \mathcal{T}(k) \left\{ v(t,n) \right\}, \quad 0 < k \le N_x$$

Ventaneo

$$v(t,n) = \omega(n, N_{\omega})x(tN_d + n), \quad 0 < n \le N_{\omega}$$

Procesamiento homomórfico

t: índice de la ventana

n: índice de la muestra

Hamming

$$\omega_H(m, N_\omega) = \frac{27}{50} - \frac{23}{50} \cos(2\pi m/N_\omega)$$

Transformaciones de dominio sobre tramos individuales

$$V(t,k) = \mathcal{T}(k) \left\{ v(t,n) \right\}, \quad 0 < k \le N_x$$

- CE: $\mathbf{u}_t \leftarrow u(t,k) = \mathcal{T}_F(k) \{v(t,n)\}$
- CPL: $\mathbf{a}_t \leftarrow a(t,k) = \mathcal{T}_L(k) \{ v(t,n) \}$

Procesamiento homomórfico

Energía y entonación (F0) por tramos

Organización de la clase

- Producción y percepción de la voz
 - Generalidades del aparato fonador
 - Fuentes y modificadores del sonido de la voz
 - Generalidades del oído y la percepción
- 2 Análisis por tramos
 - Niveles estructurales del habla
 - Análisis por tramos
- Procesamiento homomórfico
 - Definición de los coeficientes cepstrales
 - Procesamiento homomórfico de la voz
- 4 Estimación de la F0
 - Estimación de F0 por cepstrum
 - Estimación de F0 por autocorrelación

Espectro de una vocal

Otra elocución de la misma vocal

Procesamiento homomórfico

•000000000000

Coeficientes cepstrales

$$c(m) = \mathcal{T}_F^{-1} \left\{ \log |\mathcal{T}_F \left\{ v(m) \right\}| \right\}$$

Espectral → Cepstra

Espectro \rightarrow Cepstro

Frcuencias → Cuefrencias

Filtro, filtrado → Liftro, liftrado

Armónicas → Ramónicas

Procesamiento homomórfico

•000000000000

Producción y percepción de la voz

$c(m) = \mathcal{T}_F^{-1} \left\{ \log |\mathcal{T}_F \left\{ v(m) \right\}| \right\}$

 $\mathsf{Espectral} \to \mathsf{Cepstral}$

 $\mathsf{Espectro} \to \mathsf{Cepstro}$

 $\mathsf{Frcuencias} \to \mathsf{Cuefrencias}$

Filtro, filtrado \rightarrow Liftro, liftrado

Armónicas → Ramónicas

$$\hat{v}(n) = g(n) * h(n)$$

$$\hat{V}(k) = G(k) \times H(k)$$

$$\hat{\log}|V(k)| = \log|G(k) \times H(k)|$$

$$\hat{\log}|V(k)| = \log|G(k)| + \log|H(k)|$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

$$\hat{v}(n) = g(n) * h(n)$$

$$\hat{V}(k) = G(k) \times H(k)$$

$$\hat{\log}|V(k)| = \log|G(k) \times H(k)|$$

$$\hat{\log}|V(k)| = \log|G(k)| + \log|H(k)|$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

$$\hat{v}(n) = g(n) * h(n)$$

$$\hat{V}(k) = G(k) \times H(k)$$

$$\hat{\log}|V(k)| = \log|G(k) \times H(k)|$$

$$\hat{\log}|V(k)| = \log|G(k)| + \log|H(k)|$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

$$\hat{v}(n) = g(n) * h(n)$$

$$\hat{V}(k) = G(k) \times H(k)$$

$$\hat{\log}|V(k)| = \log|G(k) \times H(k)|$$

$$\hat{\log}|V(k)| = \log|G(k)| + \log|H(k)|$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

$$\hat{v}(n) = g(n) * h(n)$$

$$\hat{V}(k) = G(k) \times H(k)$$

$$\hat{\log}|V(k)| = \log|G(k) \times H(k)|$$

$$\hat{\log}|V(k)| = \log|G(k)| + \log|H(k)|$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

G y H ocupan partes diferentes del eje de cuefrencias. Podemos separar la parte que varía rápidamente (correspondiente a la excitación del tracto vocal) de la que varía lentamente (la respuesta en frecuencia del tracto).

Fuentes y modificadores de sonido en el espectro

Fuentes y modificadores de sonido en el espectro

(esquema representativo)

- Detección del pico que determina el período findamental T_0
- ullet Rango de posible de F_0 (100 300 Hz) ightarrow rango posible de T_0

Permiten obtener una representación de la señal de voz emulando el análsis frecuencial que realiza el sistema auditivo.

- Banco de filtros en escala de mel
- Integración por bandas del espectro
- Coeficientes de energía por cada banda
- Transformación inversa

Permiten obtener una representación de la señal de voz emulando el análsis frecuencial que realiza el sistema auditivo.

- Banco de filtros en escala de mel
- Integración por bandas del espectro
- Coeficientes de energía por cada banda
- Transformación inversa

Escala de mel

Producción y percepción de la voz

$$F_{mel} = \frac{1000}{\log(2)} \log\left(1 + \frac{F_{Hz}}{1000}\right)$$

El espectro de magnitud logarítmico

$$X[k] = \log_e |TDF\{x[n]\}|,$$

es integrado en bandas usando filtros W_i , i = 1...I

$$U[i] = \sum_{k} W_i[k]X[k]$$
,

y luego se calcula la transformada inversa

$$C = TDFI\{U\}.$$

Integración por bandas

Organización de la clase

- Producción y percepción de la voz
 - Generalidades del aparato fonador
 - Fuentes y modificadores del sonido de la voz
 - Generalidades del oído y la percepción
- 2 Análisis por tramos
 - Niveles estructurales del habla
 - Análisis por tramos
- Procesamiento homomórfico
 - Definición de los coeficientes cepstrales
 - Procesamiento homomórfico de la voz
- Estimación de la F0
 - Estimación de F0 por cepstrum
 - Estimación de F0 por autocorrelación

Estimación de F0 por cepstrum

Estimación de F0 por autocorrelación

$$AC_x[j] = \sum_n x_n x_{n-j}$$

Estimación de F0 por autocorrelación

Estimación de F0 por autocorrelación

Bibliografía básica

- L. R. Rabiner y B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall, 1975.

 Secciones: 12.1, 12.2, 12.3 y 12.13.
- J. R. Deller, J. G. Proakis, J. H. Hansen, Discrete-Time Processing of Speech Signals, Prentice Hall, 1993.
 Secciones: 4.1, 4.2.1, 4.2.2, 6.1 y 6.2.
 - \rightarrow Error en la figura 6.3 (c), pp 361.
- H.L. Rufiner, "Análisis y modelado digital de la voz: Técnicas recientes y aplicaciones", Editorial UNL, 2009. (Capítulo 3).
- J. Makhoul, "Linear Prediction: A Tuturial Review," Proc. IEEE, vol 63, no. 4, páginas 561-580, 1975.

Bibliografía básica

FIGURE 6.3. The motivation behind the RC, and some of the accompanying

Bibliografía básica

