

How Important is Narrative? Using Machine Learning to Predict NBA MVP

Jake Reichel

Motivation

- Every season, the National Basketball Association (NBA) has a panel of voters determine who will be awarded the Most Valuable Player (MVP) award.
 - ❖ Award given to player with highest number of "vote shares"
- Voters change yearly, and process is not very clear
 - How important is the player's "narrative"?
 - Does a team's record play a role in determining MVP?
 - **Can statistics, alone, predict who will win MVP?**
- Predict 2019 NBA MVP

Process / Datasets Used for Training

Iterative process used to continually retrain the models. Listed in order

- 1. Full Dataset All players, all statistics. This was a baseline test. Found winning percentage was very important to model prediction.
- 2. Reduced Dataset Limited to players who received votes for MVP. Attempt to limit the "noise." Did not improve the non-linear models.
- 3. Redundancy Reduced Dataset Eliminated columns with high collinearity. Helped focus the models on different features.
- **4. Scaled Dataset** Each row was scaled based on all player's performances *for that season*. This allowed for much better interpretation of performance.
- **5. Yearly Dataset** This is the scaled model, without the "test" holdout. Instead, models were trained on all years, and tested on a single holdout.

Performance and Evaluation Metrics AdaBoost (Yearly Model) Performance Random Forest (Yearly Model) Performance Mean Squared Error of Yearly Models 0.001 0.0009 0.0008 0.5 0.0007 0.4 0.3 0.0006 0.0005 Since 2007 Since 2012 Top 2 Accuracy Top 2 Accuracy Top 5 Accuracy Top 5 Accuracy ----RandomForest Since 1995 ■ Since 2007 Since 2012 ■ Since 2007 Since 2012

- Overall, both performed pretty well in predicting MVP: Random Forest 58%, AdaBoost 63%
- Both of the models have continually improved in performance in recent years.
 - Random Forest: *Since 2007* 73% MVP, 82% Top 2; *Since 2012* 86% MVP, 93% Top 2
 - AdaBoost: Since 2007 82% MVP, 82% Top 2; Since 2012 86% MVP, 93% Top 2

- Important feature differences account for difference in model performance, including some outliers.
- Nearly all important features (with exception of DWS) are offensive statistics.

2019 Predictions

	Ada-Player	Ada-Share	RF-Player	RF-Share
1	Giannis Antetokounmpo	0.808	James Harden	0.660281
2	James Harden	0.720	Giannis Antetokounmpo	0.623163
3	Nikola Jokic	0.148	Nikola Jokic	0.256289
4	Kevin Durant	0.093	Paul George	0.248621
5	Damian Lillard	0.091	Kevin Durant	0.248159

Outliers & Sources of Error

Error Sources:

- Lack of variable to account for popularity and narrative
- No available statistics to capture defensive performance Outliers:
- 1999 entirely wrong predictions. Lockout shortened season
- 2005 Steve Nash MVP. "7 seconds or less" narrative
- 2017 Russell Westbrook MVP. "Triple-Double" narrative

Conclusion(s)

- Statistics, alone, are mostly (86%) sufficient to predicting NBA MVP
- Voters choose MVP and runner-up based on statistics
 - ❖ Their other votes heavily factor in popularity of the players
- 2019 NBA MVP race is very close. Giannis Antetokoumnpo has the edge