#### Lecture 7: Decision Trees

Instructor: Saravanan Thirumuruganathan

#### Outline

- Geometric Perspective of Classification
- Oecision Trees

# Geometric Perspective of Classification

#### Perspective of Classification

- Algorithmic
- Geometric
- Probabilistic
- . . .

#### Geometric Perspective of Classification

- Gives some intuition for model selection
- Understand the distribution of data
- Understand the expressiveness and limitations of various classifiers

#### Feature Space<sup>1</sup>



• **Feature Vector:** *d*-dimensional vector of features describing the object

 Feature Space: The vector space associated with feature vectors

<sup>&</sup>lt;sup>1</sup>DMA Book

#### Feature Space in Classification



#### Geometric Perspective of Classification

- Decision Region: A partition of feature space such that all feature vectors in it are assigned to same class.
- Decision Boundary: Boundaries between neighboring decision regions

#### Geometric Perspective of Classification

- Objective of a classifier is to approximate the "real" decision boundary as much as possible
- Most classification algorithm has specific expressiveness and limitations
- If they align, then classifier does a good approximation

#### Linear Decision Boundary



# Piecewise Linear Decision Boundary<sup>2</sup>



<sup>&</sup>lt;sup>2</sup>ISLR Book

#### Quadratic Decision Boundary<sup>3</sup>



<sup>&</sup>lt;sup>3</sup>Figshare.com

# Non-linear Decision Boundary<sup>4</sup>



<sup>&</sup>lt;sup>4</sup>ISLR Book

# Complex Decision Boundary<sup>5</sup>



 $X_1$ 

#### Classifier Selection Tips

- If decision boundary is linear, most linear classifiers will do well
- If decision boundary is non-linear, we sometimes have to use kernels
- If decision boundary is piece-wise, decision trees can do well
- If decision boundary is too complex, k-NN might be a good choice

### k-NN Decision Boundary<sup>6</sup>



- Asymptotically Consistent: With infinite training data and large enough k, k-NN approaches the best possible classifier (Bayes Optimal)
- With infinite training data and large enough k, k-NN could approximate most possible decision boundaries

<sup>&</sup>lt;sup>6</sup>ISLR Book

# **Decision Trees**

#### Strategies for Classifiers

- Parametric Models: Makes some assumption about data distribution such as density and often use explicit probability models
- Non-parametric Models: No prior assumption of data and determine decision boundaries directly.
  - k-NN
  - Decision tree

# Tree<sup>7</sup>



7http:

# Binary Decision Tree<sup>8</sup>



<sup>8</sup>http:

#### 20 Question Intuition<sup>9</sup>



<sup>9</sup>http://www.idiap.ch/~fleuret/files/EE613/EE613-slides-6.pdf

#### Decision Tree for Selfie Stick<sup>10</sup>



<sup>&</sup>lt;sup>10</sup>The Oatmeal Comics

#### Decision Trees and Rules<sup>11</sup>



<sup>11</sup>http://artint.info/slides/ch07/lect3.pdf

#### Decision Trees and Rules<sup>12</sup>

- ullet long o skips
- short  $\land$  new  $\rightarrow$  reads
- short  $\land$  follow Up  $\land$  known  $\rightarrow$  reads
- short ∧ follow Up ∧ unknown → skips



<sup>12</sup>http://artint.info/slides/ch07/lect3.pdf

#### Building Decision Trees Intuition<sup>13</sup>

| Horsepower | Weight | Mileage |
|------------|--------|---------|
| 95         | low    | low     |
| 90         | low    | low     |
| 70         | low    | high    |
| 86         | low    | high    |
| 76         | high   | low     |
| 88         | high   | low     |

Table: Car Mileage Prediction from 1971

<sup>13</sup>http://spark-summit.org/wp-content/uploads/2014/07/
Scalable-Distributed-Decision-Trees-in-Spark-Made-Das-Sparks-Talwalkar
pdf

| Horsepower | Weight | Mileage |
|------------|--------|---------|
| 95         | low    | low     |
| 90         | low    | low     |
| 70         | low    | high    |
| 86         | low    | high    |
| 76         | high   | low     |
| 88         | high   | low     |

Table: Car Mileage Prediction from 1971



| Horsepower | Weight | Mileage |
|------------|--------|---------|
| 95         | low    | low     |
| 90         | low    | low     |
| 70         | low    | high    |
| 86         | low    | high    |

Table: Car Mileage Prediction from 1971





#### **Prediction:**

| horsepower | weight | mileage prediction |
|------------|--------|--------------------|
| 90         | high   |                    |
| 80         | low    |                    |
| 70         | high   |                    |

#### **Prediction:**

| horsepower | weight | mileage prediction |          |
|------------|--------|--------------------|----------|
| 90         | high   | low                | Correct! |
| 80         | low    | low                | Correct! |
| 70         | high   | high               | Wrong!   |

# Learning Decision Trees

#### **Decision Trees**

• Defined by a **hierarchy** of rules (in form of a tree)



- Rules form the internal nodes of the tree (topmost internal node = root)
- Each rule (internal node) tests the value of some property the data
- Leaf nodes make the prediction

#### Decision Tree Learning

#### **Objective:**

- Use the training data to construct a good decision tree
- Use the constructed Decision tree to predict labels for test inputs

#### Decision Tree Learning

- Identifying the region (blue or green) a point lies in
  - A classification problem (blue vs green)
  - Each input has 2 features: co-ordinates  $\{x_1, x_2\}$  in the 2D plane
- Once learned, the decision tree can be used to predict the region (blue/green) of a new test point

# Decision Tree Learning







- Decision tree divides feature space into axis-parallel rectangles
- Each rectangle is labelled with one of the C classes
- Any partition of feature space by recursive binary splitting can be simulated by Decision Trees





Feature space on left can be simulated by Decision tree but not the one on right.

- Can express any logical function on input attributes
- Can express any boolean function
- For boolean functions, path to leaf gives truth table row
- Could require exponentially many nodes
- $cyl = 3 \lor (cyl = 4 \land (maker = asia \lor maker = europe)) \lor \dots$



# Hypothesis Space

- Exponential search space wrt set of attributes
- If there are d boolean attributes, then the search space has  $2^{2^d}$  trees
  - If d = 6, then it is approximately  $2 \times 10^{18}$
  - If there are d boolean attributes, each truth table has  $2^d$  rows
  - Hence there must be 2<sup>2<sup>d</sup></sup> truth tables that can take all possible variations
- NP-Complete to find optimal decision tree
- Idea: Use greedy approach to find a locally optimal tree

# Decision Tree Learning Algorithms

- 1966: Hunt and colleagues from Psychology developed first known algorithm for human concept learning
- 1977: Breiman, Friedman and others from Statistics developed CART
- 1979: Quinlan developed proto-ID3
- 1986: Quinlan published ID3 paper
- 1993: Quinlan's updated algorithm C4.5
- 1980's and 90's: Improvements for handling noise, continuous attributes, missing data, non-axis parallel DTs, better heuristics for pruning, overfitting, combining DTs

# Decision Tree Learning Algorithms

#### Main Loop:

- 1 Let A be the "best" decision attribute for next node
- 2 Assign A as decision attribute for node
- For each value of A, create a new descendent of node
- Sort training examples to leaf nodes
- If training examples are perfectly classified, then STOP else iterate over leaf nodes

### Decision Tree Learning

- Greedy Approach: Build tree, top-down by choosing one attribute at a time
- Choices are locally optimal and may or may not be globally optimal
- Major issues
  - Selecting the next attribute
  - Determining termination condition

### **Termination Condition**

Stop expanding a node further when:

#### **Termination Condition**

Stop expanding a node further when:

- It consist of examples all having the same label
- Or we run out of features to test!

### Recursive Algorithm for Learning Decision Trees

#### DT(Examples, Labels, Features):

- If all examples are positive, return a single node tree Root with label = +
- If all examples are negative, return a single node tree Root with label = -
- If all features exhausted, return a single node tree Root with majority label
- Otherwise, let F be the feature having the highest information gain
- Root ← F
- For each possible value f of F
  - Add a tree branch below *Root* corresponding to the test F = f
  - Let Examples be the set of examples with feature F having value f
  - Let Labels<sub>f</sub> be the corresponding labels
  - If Examples<sub>f</sub> is empty, add a leaf node below this branch with label = most common label in Examples
  - Otherwise, add the following subtree below this branch:

```
DT(Examples_f, Labels_f, Features - \{F\})
```

Note: Features - {F} removes feature F from the feature set Features

# Summary

# Major Concepts:

- Geometric interpretation of Classification
- Decision trees

#### Slide Material References

- Slides from ISLR book
- Slides by Piyush Rai
- Slides for Chapter 4 from "Introduction to Data Mining" book by Tan, Steinbach, Kumar
- See also the footnotes