Departement Informatik Sommersession 2024 Prof. Ueli Maurer

Exam Diskrete Mathematik

26. August 2024

Hinweise:

- 1.) Erlaubte Hilfsmittel: Selbstverfasste, handgeschriebene Notizen auf 6 A4-Seiten. Es ist erlaubt ein Wörterbuch zu benutzen. Es sind keine weiteren Hilfsmittel erlaubt.
- 2.) Falls nicht explizit ausgeschlossen dürfen Resultate (z.B. Lemmas oder Theoreme) aus dem Skript mit entsprechendem Verweis (z.B. "Lemma Skript"; die Nummer ist nicht notwending falls klar ist welches Resultat gemeint ist) ohne Beweis verwendet werden. Resultate aus der Übung dürfen nicht ohne Beweis verwendet werden.
- 3.) Die Aufgaben sind in drei Schwierigkeitsstufen von (\star) bis $(\star \star \star)$ eingeteilt.
- 4.) Die Aufgaben sind direkt auf dem Prüfungsblatt zu lösen. Bei Platzmangel befinden sich am Ende der Prüfung vier Zusatzblätter. Weitere Zusatzblätter können während der Prüfung bei uns bezogen werden. Nur von uns verteilte Zusatzblätter sind erlaubt.
- 5.) Die Antwortfelder unter den Aufgaben sind jeweils grosszügig bemessen. Es ist oft nicht die Erwartung, dass eine Antwort das ganze Feld füllt.
- 6.) Bitte verwenden Sie einen dokumentenechten Stift (also keinen Bleistift) und nicht die Farben Rot oder Grün.
- 7.) Bitte legen Sie die Legi für die Ausweiskontrolle auf den Tisch.
- 8.) Sie dürfen bis 15 Minuten vor Ende der Prüfung vorzeitig abgeben und den Raum still verlassen.
- 9.) Mobiltelefone und Smartwatches müssen komplett ausgeschaltet sein (kein Standby) und dürfen nicht am Körper getragen werden.

Prüfungs-Nr.
Stud.-Nr.:

Task	Points
1	41
2	22
3	37
4	39
Total	139

 2.) List all elements of (A ∩ {Ø}) × {A}. (2 Points) 3.) Compute the number of subsets of the set P(P(A) \ A). (2 Points) 4.) Consider the relation ρ = {(Ø, {Ø}), ({Ø}, A), (A, {{Ø}})} on P(A). Write the matrix representation of the transitive closure ρ* of ρ. (3 Points) 5.) Find a non-empty set S and a relation ρ on S which is both an equivalence relation and partial order relation. (2 Points) 6.) Give an explicit expression for an injective function f: Z → N such that f(0) = 11. (2 Points) 		diffication is required. In the following subtasks, let $A = \{\emptyset, \{\emptyset\}\}$.	(1 Point
 3.) Compute the number of subsets of the set P(P(A) \ A). (2 Points) 4.) Consider the relation ρ = {(Ø, {Ø}), ({Ø}, A), (A, {{Ø}})} on P(A). Write the matrix representation of the transitive closure ρ* of ρ. (3 Points) 5.) Find a non-empty set S and a relation ρ on S which is both an equivalence relation and partial order relation. (2 Points) 6.) Give an explicit expression for an injective function f: Z → N such that f(0) = 11. (2 Points) 	L. <i>)</i>	List all subsets of A which are elements of A.	(1 1 01110
 4.) Consider the relation ρ = {(∅, {∅}), ({∅}, A), (A, {{∅}})} on P(A). Write the matrix representation of the transitive closure ρ* of ρ. (3 Points) 5.) Find a non-empty set S and a relation ρ on S which is both an equivalence relation and partial order relation. (2 Points) 6.) Give an explicit expression for an injective function f : Z → N such that f(0) = 11. (2 Points) 	2.)	List all elements of $(A \cap \{\emptyset\}) \times \{A\}$.	(2 Points
sentation of the transitive closure ρ^* of ρ . (3 Points 5.) Find a non-empty set S and a relation ρ on S which is both an equivalence relation and partial order relation. (2 Points 6.) Give an explicit expression for an injective function $f: \mathbb{Z} \to \mathbb{N}$ such that $f(0) = 11$. (2 Points 6.)	3.)	Compute the number of subsets of the set $\mathcal{P}(\mathcal{P}(A) \setminus A)$.	(2 Points
partial order relation. (2 Points 6.) Give an explicit expression for an injective function $f: \mathbb{Z} \to \mathbb{N}$ such that $f(0) = 11$. (2 Points 6.)	1.)		e matrix repre
7.) Draw the Hasse Diagram of the poset $(\{1,2,3,4,6,8,12,24\};)$. (2 Points	5.)		
		partial order relation.	(2 Points
	3.)	give an explicit expression for an injective function $f:\mathbb{Z}\to\mathbb{N}$ such that $f(0)=$	(2 Points
	3.)	give an explicit expression for an injective function $f:\mathbb{Z}\to\mathbb{N}$ such that $f(0)=$	(2 Points 11. (2 Points
	3.)	give an explicit expression for an injective function $f:\mathbb{Z}\to\mathbb{N}$ such that $f(0)=$	(2 Points

Prove or dispro	ve that ρ is a	partial order re	elation.		
					(3 Point
() T + TZ 1		11.	1 1	X D 41 C1	1
\star) Let X be a no	n-empty set a	nd let $ ho$ and $ au$	be relations on .	X. Prove the fol	lowing statemer
	(au	$\circ \rho) \circ \tau \subseteq \tau =$	$\Rightarrow \rho \circ \tau$ is transi	tive.	
Explicitly justify e	each sten in vo	our solution			(6 Point

$(\star \star)$ Consider the following relation \leq on the set of integers \mathbb{Z} :	
$a \preccurlyeq b \iff a < b \text{ or } a = b \text{ and } a \le b.$	
Prove that (\mathbb{Z}, \preceq) is a poset and that it is well-ordered.	(8 Points)

	$A = \Big\{ f \in \mathbb{N}^{\mathbb{N}} \mid \text{ for all } i, j \in \mathbb{N} \text{ if } i \mid j \text{ then } f(i) \\$	$\mid f(j) $.
Prove or dispre	ove that the set A is countable.	(10 Point

Task 2. Number Theory	22 Points
a) Short Questions. Each correct answer gives 1.5 points. No justi	fication is required. (6 Points)
1.) Compute R_{13} (7 ²⁰²⁴).	
2.) Compute $R_{77}(100000^{60})$.	
3.) Compute $\varphi(\gcd(126,72)\cdot 3^2)$.	
4.) Compute $R_{100}(99^{99} + 99^{98} + 99^{97} \dots + 99^{0})$.	
b) (\star **) The servers of the bank <i>Debit Bliss</i> have been hacked. spective RSA-encrypted passwords are leaked online. The enconalddump@potus.com is 2. Knowing that the public-key is (N , Dump's password. Show your work.	crypted password of a certain
Hint: $1 = 151 \cdot 7 - 4 \cdot 264$.	(6 Points)

	$x \equiv_3 2,$ $x \equiv_{10} 4,$	
	$x \equiv_{7} 6.$	
Show your work.		(4 Poin
$(\star \star)$ Let $a,b,c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a,b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin$
$(\star \star)$ Let $a,b,c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a,b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x, y) \in \mathbb{Z}^2$ if a (6 Poin
$(\star \star)$ Let $a,b,c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a,b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a (6 Poin
$(\star \star)$ Let $a,b,c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a,b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin$
$(\star \star)$ Let $a,b,c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a,b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin$
$(\star \star)$ Let $a,b,c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a,b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin$
$(\star \star)$ Let $a,b,c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a,b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin$
$(\star \star)$ Let $a, b, c \in \mathbb{Z} \setminus \{0\}$. Prove only if $gcd(a, b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin$
$(\star \star)$ Let $a, b, c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a, b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin$
$(\star \star)$ Let $a, b, c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a, b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin$
$(\star \star)$ Let $a, b, c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a, b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin)$
$(\star \star)$ Let $a,b,c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a,b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin)$
$(\star \star)$ Let $a, b, c \in \mathbb{Z} \setminus \{0\}$. Prove only if $\gcd(a, b) \mid c$.	e that the equation $ax + by = c$ has	s solutions $(x,y) \in \mathbb{Z}^2$ if a $(6 \ Poin)$

c) (*) Find all solutions in $\mathbb Z$ of the following system of equations:

-	List all elements of the group $\langle \mathbb{Z}_{26}; \oplus_{26} \rangle$ which are <i>not</i> generators.	(2 Points
,		
2.)	Consider the ring $\mathbb{Z}_{11}[x]$. Write $x^2 + 5x + 8$ as a product of irreducible elements.	(2 Points
3.)	Find a polynomial $m(x) \in \mathbb{Z}_7[x]$ such that $\mathbb{Z}_7[x]_{m(x)}$ is a field with 49 elements.	(2 Points
1.)	What is the number of non-isomorphic groups of order 37?	(1 Poin
5.)	Consider the $(5,2)$ -code $\{(0,0,0,0,0),(1,1,1,0,0),(0,0,1,1,1),(1,1,0,1,1)\}$ over t $\{0,1\}$. What is its minimum distance?	the alphabe
6.)	Let G be a group and let $x \in G$ be an element of order 8. What is the order of the direct product $G \times G$?	(x^{10}, x^{12}) i
*)		(2 Point
*)	the direct product $G \times G$? Consider a group $\langle G; \star, \hat{\ }, e_G \rangle$. Prove that $\widehat{(a)} = a$. Each step in your solution must	(2 Point
*)	the direct product $G \times G$? Consider a group $\langle G; \star, \hat{\ }, e_G \rangle$. Prove that $\widehat{(a)} = a$. Each step in your solution must	(2 Point
*)	the direct product $G \times G$? Consider a group $\langle G; \star, \hat{\ }, e_G \rangle$. Prove that $\widehat{(a)} = a$. Each step in your solution must	(2 Points
*)	the direct product $G \times G$? Consider a group $\langle G; \star, \hat{\ }, e_G \rangle$. Prove that $\widehat{(a)} = a$. Each step in your solution must	(2 Points
*)	the direct product $G \times G$? Consider a group $\langle G; \star, \hat{\ }, e_G \rangle$. Prove that $\widehat{(a)} = a$. Each step in your solution must	(2 Point

				$\operatorname{ord}(\phi(g)).$	
,	,	group $\langle G; \star, \hat{\ }, e_G \rangle$. Let $T = \{ g \in \mathcal{G} \}$	$G \mid g \star h \star \widehat{g} \in H\}$		
$\mathbf{s} \mathbf{a} \mathbf{s}$	ubgroup of G .				
Hint:	use without proo	of that any injective	function from a fini	ite set to itself is al	so surjecti (8 Poin

nd $b(x)$ have no common root,	(8 Point

Ta	\mathbf{sk} 4	4. Logic	39 Points
a)		ort Questions. Each correct answer gives the indicated number of points. No just quired.	ification is
	1.)	Circle all symbols that occur free in the formula	
		$\forall x \big(P(x) \land Q(x, g(y)) \big) \land \exists y \ Q(y, x).$	
			(2 Points)
	2.)	Find a formula in disjunctive normal form which is equivalent to	
		$(A \to B) \land \neg (A \land \neg C)$	
		in which each atomic formula appears at most once.	(2 Points)
	3.)	Circle all the correct derivation rules among the following.	
		$\{F, \neg F\} \vdash_{R1} G \qquad F \to G \vdash_{R2} G \qquad \vdash_{R3} (F \to G) \lor (G \to F) \qquad \{F \lor G, \neg G\} \vdash_{R3} (F \to G) \lor (G \to F)$	$_{R4} F \vee H$
			(2 Points)
	4.)	Find a formula in prenex normal form equivalent to	
		$\exists x \big((\forall y P(x,y)) \to Q(z) \big) \land P(y,x).$	
			(2 Points)
b)		Let F, G and H be formulas in propositional logic. Prove or disprove the following G is satisfiable, and $\neg H$ is a tautology, then $(F \to H) \to G$ is satisfiable.	statement: (5 Points)

$\neg (A \land B) \land (\neg B \to \neg D) \land (A \to D) \models \neg (C \to A) \lor (\neg A \land \neg C)$		
	(10 Points)

c) (* *) Use the resolution calculus to \mathbf{prove} the statement

d)	(\star) Consider the proof systems						
	$\Sigma_1 = (\mathcal{S}_1, \mathcal{P}_1, \tau_1, \phi_1),$						
	$\Sigma_2 = (\mathcal{S}_2, \mathcal{P}_2, au_2, \phi_2).$						
	Consider the new proof system derived from Σ_1 and Σ_2 as follows:						
	$\Sigma = (\mathcal{S}_1 \times \mathcal{S}_2, \mathcal{P}_1 \times \mathcal{P}_2, \tau, \phi)$						
	where $\tau(s_1, s_2) = 1 \iff \text{ at least one of } \tau_1(s_1) \text{ and } \tau_2(s_2) \text{ equals } 1.$						
	and $r(s_1, s_2) = 1 \text{are least one of } r_1(s_1) \text{ and } r_2(s_2) \text{ equals 1.}$						
	$\phi((s_1, s_2), (p_1, p_2)) = 1 \iff \text{ exactly one of } \phi_1(s_1, p_1) \text{ and } \phi_2(s_2, p_2) \text{ equals } 1.$						
	Prove or disprove the following statement: if both Σ_1 and Σ_2 are sound, then Σ is sound. (4 Points)						
	Prove or disprove the following statement: if both Σ_1 and Σ_2 are complete, then Σ is complete. (4 Points)						

$(\exists x F) \land \forall x (F \to G) \models \exists x (F \land G).$							
Do not use any theorems or semantics of predicate logic.	· lemmas fron	n the lecture r	notes. Us	se the d	efinition of	= and the (8 Points)	

e) (* *) Prove that for all formulas F and G