

tf-idf: combine two factors

tf: term frequency. frequency count (usually log-transformed):

$$\mathsf{tf}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{count}(t,d) & \text{if } \mathsf{count}(t,d) > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

ldf: inverse document frequency: tf-

Words like "the" or "good" have very low idf

$$\mathrm{id}f_i = \log\left(rac{N}{\mathrm{d}f_i}
ight)$$

of docs that have word i

tf-idf value for word t in document d:

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Summary: tf-idf

Compare two words using tf-idf cosine to see if they are similar

Compare two documents

- Take the centroid of vectors of all the words in the document
- Centroid document vector is:

$$d = \frac{w_1 + w_2 + \dots + w_k}{k}$$

Pointwise Mutual Information

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

$$PMI(X,Y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

PMI between two words: (Church & Hanks 1989)

Do words x and y co-occur more than if they were independent?

$$\mathsf{PMI}(word_1, word_2) = \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

Positive Pointwise Mutual Information

- PMI ranges from -∞ to +∞
- But the negative values are problematic
- Things are co-occurring less than we expect by chance
- Unreliable without enormous corpora
 - Imagine w1 and w2 whose probability is each 10⁻⁶
- Hard to be sure p(w1,w2) is significantly different than 10⁻¹²
- Plus it's not clear people are good at "unrelatedness"
- So we just replace negative PMI values by 0
- Positive PMI (PPMI) between word1 and word2:

$$\mathsf{PPMI}(word_1, word_2) = \max \left(\log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}, 0 \right)$$

Example:

		Count(w,context)				
f.,		computer	data	pinch	result	
$p_{ij} = \frac{J_{ij}}{W C}$	apricot	0	0	1	0	
77	pineapple	0	0	1	0	
$\sum \sum J_{ij}$	digital	2	1	0	1	
i=1 $j=1$	information	1	6	0	4	
			0		117	

0

	illolliation	_	0	0	-
		C		1	V
p(w=information,c=data) =	6/19 = .32	\sum_{\cdot}			$\sum f_{ij}$
p(w=information) = 11/19	= .58	$p(w_i) = \frac{j=1}{N}$	-	$p(c_j) = \frac{i}{2}$	N N

	7/19 = .37		(w,con	tovt)			p(w)	
p(c=data) =					result	sugar	P(w)	
	apricot	0.00	0.00	0.05	0.00	0.05	0.11	
	pineapple	0.00	0.00	0.05	0.00	0.05	0.11	
	digital	0.11	0.05	0.00	0.05	0.00	0.21	
	information	0.05	0.32	0.00	0.21	0.00	0.58	

p(context)	0.16	0.37	0.11	0.26	0.11

		p(w,context)					
		computer	data	pinch	result	sugar	
. , P _{ii}	apricot	0.00	0.00	0.05	0.00	0.05	0.11
$pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i*}p_{*j}}$	pineapple	0.00	0.00	0.05	0.00	0.05	0.11
$P_{i*}P*_{j}$	digital	0.11	0.05	0.00	0.05	0.00	0.21
	information	0.05	0.32	0.00	0.21	0.00	0.58
	p(context)	0.16	0.37	0.11	0.26	0.11	

pmi(information,data) =
$$\log_2$$
 (.32 / (.37*.58)) = .58

		r r 1411(44,C	Uniterti		
	computer	data	pinch	result	sugar
apricot	-	-	2.25	-	2.25
pineapple	-	-	2.25	-	2.25
digital	1.66	0.00	-	0.00	-
information	0.00	0.57	-	0.47	-

1- Give higher prob

Weighting PMI: Giving rare context words slightly higher probability

Raise the context probabilities to $\alpha = 0.75$:

$$PPMI_{\alpha}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)}, 0)$$

$$P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_{c} count(c)^{\alpha}}$$

This helps because $P_{\alpha}(c) > P(c)$ for rare c

Consider two events, P(a) = .99 and P(b)=.01

$$P_{\alpha}(a) = \frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97 \ P_{\alpha}(b) = \frac{.01^{.75}}{.01^{.75} + .01^{.75}} = .03$$

