부호 기반 양자 내성 암호 ROLLO multiplication 구현 및 양자 프로젝트

2020.3.15

최승주

https://youtu.be/YN1C7oDCoVc

ROLLO

3.3 Parameters

The submission of ROLLO-I allows three different levels of security achieving 128, 192 and 256 bits of security according respectively to NIST's security strength categories 1, 3 and 5 [21], we recall them in Table 3. As described in Section 3, the parameters n and m correspond respectively to the degrees of irreducible polynomials P and P_m used to construct the field $\mathbb{F}_{q^m}^n$ and the parameters d and r correspond respectively to the private key and the error's rank.

Algo. Param.	n	m	d	r	P	P_m	Security level (bits)
ROLLO-I-128						$X^{79} + X^9 + 1$	
					$X^{53} + X^6 + X^2 + X + 1$		
ROLLO-I-256	67	113	8	7	$X^{67} + X^5 + X^2 + X + 1$	$X^{113} + X^9 + 1$	256

Table 3. ROLLO-I parameters for each security level

ROLLO / RQC

Algo. Param.	n	m	d	r	P	P_m	Security level (bits)
ROLLO-I-128						$X^{79} + X^9 + 1$	128
					$X^{53} + X^6 + X^2 + X + 1$		
ROLLO-I-256	67	113	8	7	$X^{67} + X^5 + X^2 + X + 1$	$X^{113} + X^9 + 1$	256

Table 3. ROLLO-I parameters for each security level

Instance	P	П
RQC-II RQC-III	$X^{67} + X^5 + X^2 + X + 1$ $X^{101} + X^7 + X^6 + X + 1$ $X^{131} + X^8 + X^3 + X^2 + 1$	$X^{97} + X^6 + 1$ $X^{107} + X^9 + X^7 + X^4 + 1$ $X^{137} + X^{21} + 1$

Table 2: Polynomials considered for RQC. P is the polynomial used to define $\mathbb{F}_{q^m}^n$ as $\mathbb{F}_{q^m}[X]/\langle P \rangle$ and Π is the polynomial used to define \mathbb{F}_{q^m} as $\mathbb{F}_q[X]/\langle \Pi \rangle$.

Classic McEliece / NTS-KEM

```
1 from projectq import MainEngine
 2 from projectq.ops import H. CNOT, Swap, Measure, Toffoli
 3 from projectq.backends import CircuitDrawer, ResourceCounter
 6#
 8 def mul_con(eng):
          aO = eng.allocate_qubit()
          a1 = eng.allocate_qubit()
          a2 = eng.allocate_qubit()
12
          a3 = eng.allocate_qubit()
13
14
          a4 = eng.allocate_qubit()
15
          a5 = eng.allocate_qubit()
          a6 = eng.allocate_qubit()
17
          a7 = eng.allocate_qubit()
18
19
          a8 = eng.allocate_qubit()
20
          a9 = eng.allocate_qubit()
21
          a10 = eng.allocate_qubit()
          all = eng.allocate_qubit()
24
25
26
          b0 = eng.allocate_qubit()
          b1 = eng.allocate_qubit()
          b2 = eng.allocate_qubit()
27
          b3 = eng.allocate_qubit()
29
          b4 = eng.allocate_qubit()
30
          b5 = eng.allocate_qubit()
31
32
33
34
35
          b6 = eng.allocate_qubit()
          b7 = eng.allocate_qubit()
          b8 = eng.allocate_qubit()
          b9 = eng.allocate_qubit()
36
37
          b10 = eng.allocate_qubit()
          b11 = eng.allocate_qubit()
          c0 = eng.allocate_qubit()
          c1 = eng.allocate_qubit()
41
          c2 = eng.allocate_qubit()
          c3 = eng.allocate_qubit()
```

```
#include <stdio.h>
void Toffoli(int entity1, int entity2, int *result);
void CNOT(int left, int *right);
pint main() {
    int a[12];
    int b[12];
    int c[12];
    a[0] = 0;
    a[1] = 0;
    a[2] = 0;
    a[3] = 0;
    a[4] = 0;
    a[5] = 0;
    a[6] = 0;
    a[7] = 0;
    a[8] = 0;
    a[9] = 0;
    a[10] = 0;
    a[11] = 1;
    b[0] = 0;
    b[1] = 1;
    b[2] = 0;
    b[3] = 0;
    b[4] = 0:
    b[5] = 0;
```


3.3 Parameters

The submission of ROLLO-I allows three different levels of security achieving 128, 192 and 256 bits of security according respectively to NIST's security strength categories 1, 3 and 5 [21], we recall them in Table 3. As described in Section 3, the parameters n and m correspond respectively to the degrees of irreducible polynomials P and P_m used to construct the field $\mathbb{F}_{q^m}^n$ and the parameters d and r correspond respectively to the private key and the error's rank.

Param. Algo.	n	m	d	r	P	P_m	Security level (bits)
1		l .			•	$X^{79} + X^9 + 1$	
			_		$X^{53} + X^6 + X^2 + X + 1$		
ROLLO-I-256	67	113	8	7	$X^{67} + X^5 + X^2 + X + 1$	$X^{113} + X^9 + 1$	256

Table 3. ROLLO-I parameters for each security level

ROLLO x47 + x5 + 1

_	
e0	e0 + e42
e1	e1 + e43
e2	e2 + e44
e3	e3 + e45
e4	e4
e5	e0 + e5 + e42
e6	e1 + e6 + e43
e7	e2 + e7 + e44
e8	e3 + e8 + e45
e9	e4 + e9
e10	e5 + e10
e11	e6 + e11
e12	e7 + e12
e13	e8 + e13
e14	e9 + e14
e15	e10 + e15
e16	e11 + e16
e17	e12 + e17
e18	e13 + e18
e19	e14 + e19
e20	e15 + e20
e21	e16 + e21
e22	e17 + e22
e23	e18 + e23
e24	e19 + e24
e25	e20 + e25
e26	e21 + e26
e27	e22 + e27
e28	e23 + e28
e29	e24 + e29
e30	e25 + e30
e31	e26 + e31
e32	e27 + e32
e33	e28 + e33
e34	e29 + e34
e35	e30 + e35
e36	e31 + e36
e37	e32 + e37
e38	e33 + e38
e39	e34 + e39
e40	e35 + e40
e41	e36 + e41
e42	e37 + e42
e43	e38 + e43
e44	e39 + e44
e45	e40 + e45
e46	e41

e0	e0	e47	e51							1
e1	e1	e0	e47	e48	e51					2
e2	e2	e0	e1	e47		~10	oE1			3
e3	e3	e1	e2			e50			50+(1+48)+(2+49)	_
e4	e4	e2	e3		e50			_	51+(2+49)+(3+50)	
e5	e5	e3	e4	e50		E21			(3+50)+(4+51)	
e6	e6	e0	e4	e5					e0 + 47	
e6 e7	e0 e7	e1	e5	e6	e48				e1 + 48	
e/ e8	e/ e8	e2	e6	e0 e7	e49				e2 + 49	
e9	e9	e3	e7	e8	e50				e3 + 50	
	e10	e4	e8	e9	e51				e4 + e51	
	e11	_	e9	_	52T				64 + 621	
	e11	e6	e10							
	e13									
		e7 e8	e11 e12							
	e14	eo e9		e14				dO	e47	
	e15									
	e16		e14					d1	e48	
	e17		e15					d2	e49	
	e18		e16					d3	e50	
		e13						d4	e51	
	e20		e18							
	e21		e19							
		e16								
	e23		e21							
		e18								
	e25		e23							
	e26		e24							
	e27		e25							
	e28		e26							
	e29		e27							
	e30		e28							
	e31		e29							
	e32									
		e27								
	e34		e32							
		e29								
	e36		e34							
	e37		e35							
	e38		e36							
	e39		e37							
	e40		e38							
	e41		e39							
	e42		e40							
	e43		e41							
		e38								
	e45		e43							
	e46		e44							
	e47		e45							
	e48		e46							
	e49		e47							
	e50		e48							
	e51		e49							
e52		e46	e50	e51						

e52 → e11

```
• 만약 e11 → e52 순으로 하는 경우
ex)
e11 = e5 + e9 + e10
e12 = e6 + e10 + e11
e12 = e6 + e10 + (e5 + e9 + e10) X
```


연산 횟수 최적화 가능 부분

e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	e3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

- e4 = e2 + e3 + e49 + e50 + e51
- e4 = + e51
- e10 = e4

$$e10 = e4 + e51$$

$$e10 = e4 + e51 + e8 + e9$$

e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	e3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

- e6, e7, e8, e9, e10
 - 전부 다 적용 가능
 - 연산 횟수 4회 → 3회

e0	e0	e47	۵51				
e1	e1	e0	e4/	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	e3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

- e6, e7, e8, e9, e10
 - 전부 다 적용 가능
 - 연산 횟수 4회 → 3회
- e6, e7, e8, e9, e10

$$e6 = e0(e0+e47)$$

$$e6 = e0 + e47 + e4 + e5$$

무조건 안쪽 값부터 연산

. . .

$$e8 = e2(e2 + e49) + e6 + e7$$

$$e8 = e2 + e49 + (e0 + e47 + e4 + e5) + e7$$
 X

e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	e3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

•
$$e10 = e9 + e8$$

•
$$e 9 = e8 + e7$$

•
$$e8 = e7 + e6$$

•
$$e7 = e6 + e5$$

•
$$e6 = e5 + e4$$

•
$$e0 = e0 + e47$$

•
$$e1 = e1 + e48$$

•
$$e2 = e2 + e49$$

•
$$e3 = e3 + e50$$

•
$$e4 = e4 + e51$$

		4.7					
e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	e3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

•
$$e10 = e9 + e8$$

•
$$e 9 = e8 + e7$$

•
$$e8 = e7 + e6$$

•
$$e7 = e6 + e5$$

•
$$e6 = e5 + e4$$

•
$$e0 = e0 + e47$$

•
$$e1 = e1 + e48$$

•
$$e2 = e2 + e49$$

•
$$e3 = e3 + e50$$

•
$$e4 = e4 + e51$$

•
$$e10 = e10 + e4(e4 + e51)$$

•
$$e 9 = e9 + e3(e3 + e50)$$

•
$$e8 = e8 + e2(e2 + e49)$$

•
$$e7 = e7 + e1(e1 + e48)$$

•
$$e6 = e6 + e0(e0 + e47)$$

e6, e7, e8, e9, e10 완료

e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	e3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	e3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	е3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	е3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

			1	1			
e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	e3	e1	e2	e48	e49	e50	
e4	e4	e2	е3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

- 1. e0 = e0 + e51 → e0 완성
- 2. e1 = e1 + e0(e0 + e47 + e51) = e1 + e0 + e47 + e48 + e51 → e1 완성

e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	е3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

- 1. e0 = e0 + e51 → e0 완성
- 2. e1 = e1 + e0(e0 + e47 + e51) = e1 + e0 + e47 + e48 + e51 → e1 완성
- 3. e2 = e2 + e1(e0 + e1 + e47 + e48 + e51) = e2 + e0 + e1 + e47 + e48 + e49 + e51

 → e2 완성

전부 완성

e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	e3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		
e11	e11	e5	e9	e10			
e12	e12	e6	e10	e11			
e13	e13	e7	e11	e12			
e14	e14	e8	e12	e13			
e15	e15	e9	e13	e14			
e16	e16	e10	e14	e15			
e17	e17	e11	e15	e16			
e18	e18	e12	e16	e17			
e19	e19	e13	e17				
e20	e20	e14	e18	e19			
e21	e21	e15	e19	e20			
e22	e22	e16	e20	e21			
e23	e23	e17	e21	e22			
	e24			e23			
e25	e25	e19	e23	e24			
e26	e26	e20	e24	e25			
e27	e27	e21	e25	e26			
e28	e28	e22	e26	e27			
e29	e29	e23	e27	e28			
e30	e30		e28	e29			
e31	e31	e25	e29	e30			
e32	e32		e30				
e33	e33	e27	e31	e32			
	e34	e28	e32	e33			
e35		e29		e34			
e36			e34				
e37		e31		e36			
e38	e38	e32	e36	e37			
e39		e33	e37	e38			
e40	e40	e34	e38	e39			
	e41	e35	e39				
e42		e36					
	e43	e37	e41	e42			
e44		e38	e42	e43			
e45			e43				
	e46	e40					
e47	e47	e41		e46			
e48		e42		e47			
	e49	e43					
e50			e48				
e51	e51		e49				
e52	232		e50				

e0	e0	e47	e51				
e1	e1	e0	e47	e48	e51		
e2	e2	e0	e1	e47	e48	e49	e51
e3	е3	e1	e2	e48	e49	e50	
e4	e4	e2	e3	e49	e50	e51	
e5	e5	e3	e4	e50	e51		
e6	e6	e0	e4	e5	e47		
e7	e7	e1	e5	e6	e48		
e8	e8	e2	e6	e7	e49		
e9	e9	e3	e7	e8	e50		
e10	e10	e4	e8	e9	e51		

연산 되기 전의 e47~e51 값을 저장할 공간 따로 필요_(5개)

e47~e51 값들이 변경

ex) e47 = e41 + e45 + e46

ROLLO x67 + x5 + x2 + x1 + 1


```
קint main() {
    int a[12];
    a[1] = 0;
    a[2] = 0;
    a[4] = 0;
    a[5] = 0;
    a[7] = 0;
    a[8] = 0;
    a[10] = 0;
    b[0] = 0;
    b[2] = 0;
    b[4] = 0;
    b[7] = 0;
    b[9] = 0;
    b[10] = 0;
    b[11] = 0;
    c[1] = 0;
    c[4] = 0;
    c[6] = 0;
```

변수 선언 및 초기화

```
Toffoli(a[11], b[1], &c[0]);
Toffoli(a[10], b[2], &c[0]);
Toffoli(a[9], b[3], &c[0]);
Toffoli(a[8], b[4], &c[0]);
Toffoli(a[7], b[5], &c[0]);
Toffoli(a[6], b[6], &c[0]);
Toffoli(a[5], b[7], &c[0]);
Toffoli(a[4], b[8], &c[0]);
Toffoli(a[3], b[9], &c[0]);
Toffoli(a[2], b[10], &c[0]);
Toffoli(a[1], b[11], &c[0]);//1
Toffoli(a[11], b[2], &c[1]);
Toffoli(a[10], b[3], &c[1]);
Toffoli(a[9], b[4], &c[1]);
Toffoli(a[8], b[5], &c[1]);
Toffoli(a[7], b[6], &c[1]);
Toffoli(a[6], b[7], &c[1]);
Toffoli(a[5], b[8], &c[1]);
Toffoli(a[4], b[9], &c[1]);
Toffoli(a[3], b[10], &c[1]);
Toffoli(a[2], b[11], &c[1]);//16
Toffoli(a[11], b[3], &c[2]);
Toffoli(a[10], b[4], &c[2]);
Toffoli(a[9], b[5], &c[2]);
Toffoli(a[8], b[6], &c[2]);
Toffoli(a[7], b[7], &c[2]);
Toffoli(a[6], b[8], &c[2]);
Toffoli(a[5], b[9], &c[2]);
Toffoli(a[4], b[10], &c[2]);
Toffoli(a[3], b[11], &c[2]);
Toffoli(a[11], b[4], &c[3]);
Toffoli(a[10], b[5], &c[3]);
```

Reduction이 필요한 곱셈 연산

앞 곱셈 연산에 대한 Reduction

```
Toffoli(a[0], b[0], &c[0])
Toffoli(a[1], b[0], &c[1])
Toffoli(a[0], b[1], &c[1]);
Toffoli(a[2], b[0], &c[2])
Toffoli(a[1], b[1], &c[2]);
Toffoli(a[0], b[2], &c[2]);
Toffoli(a[3], b[0], &c[3])
Toffoli(a[2], b[1], &c[3]);
Toffoli(a[1], b[2], &c[3])
Toffoli(a[0], b[3], &c[3])
Toffoli(a[4], b[0], &c[4])
Toffoli(a[3], b[1], &c[4])
Toffoli(a[2], b[2], &c[4])
Toffoli(a[1], b[3], &c[4])
Toffoli(a[0], b[4], &c[4])
Toffoli(a[5], b[0], &c[5])
Toffoli(a[4], b[1], &c[5])
Toffoli(a[3], b[2], &c[5])
Toffoli(a[2], b[3], &c[5])
Toffoli(a[1], b[4], &c[5])
Toffoli(a[0], b[5], &c[5])
Toffoli(a[6], b[0], &c[6])
Toffoli(a[5], b[1], &c[6])
Toffoli(a[4], b[2], &c[6])
Toffoli(a[3], b[3], &c[6])
Toffoli(a[2], b[4], &c[6])
Toffoli(a[1], b[5], &c[6])
Toffoli(a[0], b[6], &c[6])
Toffoli(a[7], b[0], &c[7])
Toffoli(a[6], b[1], &c[7]);
```

Reduction이 필요 없는 곱셈 연산

Toffoli(a[7], b[5], &c[0]); Toffoli(a[6], b[6], &c[0]); Toffoli(a[5], b[7], &c[0]); Toffoli(a[4], b[8], &c[0]); Toffoli(a[3], b[9], &c[0]); Toffoli(a[2], b[10], &c[0]); Toffoli(a[1], b[11], &c[0]);//1 Toffoli(a[11], b[2], &c[1]); Toffoli(a[10], b[3], &c[1]); Toffoli(a[9], b[4], &c[1]); Toffoli(a[8], b[5], &c[1]); Toffoli(a[7], b[6], &c[1]); Toffoli(a[6], b[7], &c[1]); Toffoli(a[5], b[8], &c[1]); Toffoli(a[4], b[9], &c[1]); Toffoli(a[3], b[10], &c[1]); Toffoli(a[2], b[11], &c[1]);//1 Toffoli(a[10], b[4], &c[2]); Toffoli(a[9], b[5], &c[2]); Toffoli(a[8], b[6], &c[2]);
Toffoli(a[7], b[7], &c[2]);
Toffoli(a[6], b[8], &c[2]);
Toffoli(a[5], b[9], &c[2]); Toffoli(a[4], b[10], &c[2]); Toffoli(a[3], b[11], &c[2]); Toffoli(a[11], b[4], &c[3]); Toffoli(a[10], b[5], &c[3]);

Toffoli(a[11], b[1], &c[0]); Toffoli(a[10], b[2], &c[0]);

Toffoli(a[9], b[3], &c[0]); Toffoli(a[8], b[4], &c[0]);

변수 선언 및 초기화

Reduction이 필요한 곱셈 연산

앞 곱셈 연산에 대한 Reduction

Reduction이 필요 없는 곱셈 연산

Example x12 + x3 + 1

 $x12 \sim x24$

1 ~ x11

변수 선언 및 초기화

```
int main() {
     int b[12];
     int c[12];
     a[0] = 0;
a[1] = 0;
     a[2] = 0;
     a[3] = 0;
     a[3] - 0,
a[4] = 0;
a[5] = 0;
a[6] = 0;
a[7] = 0;
a[8] = 0;
    a[9] = 0;
a[10] = 0;
     a[11] = 1;
     b[0] = 0;
    b[1] = 1;
    b[2] = 0;
     b[3] = 0;
     b[4] = 0;
     b[5] = 0;
    b[6] = 0;
b[7] = 0;
b[8] = 0;
    b[9] = 0;
b[10] = 0;
    b[11] = 0;
     c[1] = 0;
     c[3] = 0;
    c[4] = 0;
     c[5] = 0;
     c[6] = 0;
     c[7] = 0;
```

```
int main() {
   int a[53];
   int b[53];
   int c[53];
   int d[5];
   int mulNum = 53;
   for (int i = mulNum - 1; i > -1; i--) {
       a[i] = 0;
      b[i] = 0;
       c[i] = 0;
   // mul 13 때와 마찬가지로 변하지 않은 값을 따로 저장할 공간이 필요함
   d[0] = 0; //c[47]
   d[1] = 0; //c[48]
   d[2] = 0; //c[49]
   d[3] = 0; //c[50]
   d[4] = 0; //c[51]
   // 입력하고 싶은 값 입력하는 곳
   a[52] = 1;
   b[52] = 1; // (1) * (x)
```

Reduction이 필요한 곱셈 연산

Example x12 + x3 + 1

```
Toffoli(a[11], b[1], &c[0]);
Toffoli(a[10], b[2], &c[0]);
Toffoli(a[9], b[3], &c[0]);
Toffoli(a[8], b[4], &c[0]);
Toffoli(a[7], b[5], &c[0]);
Toffoli(a[6], b[6], &c[0]);
Toffoli(a[5], b[7], &c[0]);
Toffoli(a[4], b[8], &c[0]);
Toffoli(a[3], b[9], &c[0]);
Toffoli(a[2], b[10], &c[0]);
Toffoli(a[1], b[11], &c[0]);//11
Toffoli(a[11], b[2], &c[1]);
Toffoli(a[10], b[3], &c[1]);
Toffoli(a[9], b[4], &c[1]);
Toffoli(a[8], b[5], &c[1]);
Toffoli(a[7], b[6], &c[1]);
Toffoli(a[6], b[7], &c[1]);
Toffoli(a[5], b[8], &c[1]);
Toffoli(a[4], b[9], &c[1]);
Toffoli(a[3], b[10], &c[1]);
Toffoli(a[2], b[11], &c[1]);//10
Toffoli(a[11], b[3], &c[2]);
Toffoli(a[10], b[4], &c[2]);
Toffoli(a[9], b[5], &c[2]);
Toffoli(a[8], b[6], &c[2]);
Toffoli(a[7], b[7], &c[2]);
Toffoli(a[6], b[8], &c[2]);
Toffoli(a[5], b[9], &c[2]);
Toffoli(a[4], b[10], &c[2]);
Toffoli(a[3], b[11], &c[2]);
Toffoli(a[11], b[4], &c[3]);
Toffoli(a[10], b[5], &c[3]);
```

11 번

10번

9번

. . .

1번

• X67 + x5 + x2 + x + 1

66번

65번

64번

63번

. . .

3번

2번

1번

Reduction이 필요한 곱셈 연산

Example x12 + x3 + 1

```
Toffoli(a[11], b[1], &c[0]);
Toffoli(a[10], b[2], &c[0]);
Toffoli(a[9], b[3], &c[0]);
Toffoli(a[8], b[4], &c[0]);
Toffoli(a[7], b[5], &c[0]);
Toffoli(a[6], b[6], &c[0]);
Toffoli(a[5], b[7], &c[0]);
Toffoli(a[4], b[8], &c[0]);
Toffoli(a[3], b[9], &c[0]);
Toffoli(a[2], b[10], &c[0]);
Toffoli(a[1], b[11], &c[0]);//11
Toffoli(a[11], b[2], &c[1]);
Toffoli(a[10], b[3], &c[1]);
Toffoli(a[9], b[4], &c[1]);
Toffoli(a[8], b[5], &c[1]);
Toffoli(a[7], b[6], &c[1]);
Toffoli(a[6], b[7], &c[1]);
Toffoli(a[5], b[8], &c[1]);
Toffoli(a[4], b[9], &c[1]);
Toffoli(a[3], b[10], &c[1]);
Toffoli(a[2], b[11], &c[1]);//10
Toffoli(a[11], b[3], &c[2]);
Toffoli(a[10], b[4], &c[2]);
Toffoli(a[9], b[5], &c[2]);
Toffoli(a[8], b[6], &c[2]);
Toffoli(a[7], b[7], &c[2]);
Toffoli(a[6], b[8], &c[2]);
Toffoli(a[5], b[9], &c[2]);
Toffoli(a[4], b[10], &c[2]);
Toffoli(a[3], b[11], &c[2]);
Toffoli(a[11], b[4], &c[3]);
Toffoli(a[10], b[5], &c[3]);
```

```
• X67 + x5 + x2 + x + 1
```

```
66번
11번
         65번
         64번
         63번
10번
         3번
         2번
9번
          1번
```

1번

```
int targetNumber = 67;
int calcNum = targetNumber - 1;
int startAdjust = targetNumber - 2;
int adjust = startAdjust;
int limit = 0;
 for (int i = 0; i < calcNum; i++) {</pre>
   for (int z = calcNum; z > limit; z--) {
      Toffoli(a[z], b[calcNum - adjust], &c[i]);
      adjust = adjust - 1;
 limit = limit + 1;
  startAdjust = startAdjust - 1;
  adjust = startAdjust;
```

앞 곱셈 연산에 대한 Reduction

• x53 + x6 + x2 + x1 + 1

184	///MIXING
185	
186	
187	CNOT(c[8], &c[11]);
188	CNOT(c[5], &c[8]);
189	
190	CNOT(c[9], &c[0]);
191	CNOT(c[10], &c[1]);
192	
193	CNOT(c[6], &c[9]);
194	CNOT(c[7], &c[10]);
195	
196	CNOT(c[2], &c[5]);
197	CNOT(c[3], &c[6]);
198	CNOT(c[4], &c[7]);
199	
200	CNOT(c[0], &c[3]);
201	CNOT(c[1], &c[4]);
202	

앞 곱셈 연산에 대한 Reduction

• x53 + x6 + x2 + x1 + 1


```
//e52 ~ e11, 즉 C[52]~C[11]까지 52->11 순으로 연산된 값으로 채워짐

for (int j = 52; j > 10; j--) {
    CNOT(c[j-1], &c[j]);
    CNOT(c[j-2], &c[j]);
    CNOT(c[j-6], &c[j]);
}
```


연산 횟수 최적화 가능 부분

```
Toffoli(a[0], b[0], &c[0])
                                    1회
Toffoli(a[1], b[0], &c[1]);
Toffoli(a[0], b[1], &c[1]);
                                    2회
Toffoli(a[2], b[0], &c[2]);
Toffoli(a[1], b[1], &c[2]);
Toffoli(a[0], b[2], &c[2]);
                                    3회
Toffoli(a[3], b[0], &c[3]);
Toffoli(a[2], b[1], &c[3]);
Toffoli(a[1], b[2], &c[3])
Toffoli(a[0], b[3], &c[3]);
                                    . . .
Toffoli(a[4], b[0], &c[4])
Toffoli(a[3], b[1], &c[4]);
                                    11회
Toffoli(a[2], b[2], &c[4])
Toffoli(a[1], b[3], &c[4])
Toffoli(a[0], b[4], &c[4]);
Toffoli(a[5], b[0], &c[5])
Toffoli(a[4], b[1], &c[5]);
Toffoli(a[3], b[2], &c[5]);
Toffoli(a[2], b[3], &c[5])
Toffoli(a[1], b[4], &c[5])
Toffoli(a[0], b[5], &c[5]);
Toffoli(a[6], b[0], &c[6]);
Toffoli(a[5], b[1], &c[6]);
Toffoli(a[4], b[2], &c[6])
Toffoli(a[3], b[3], &c[6])
Toffoli(a[2], b[4], &c[6]);
Toffoli(a[1], b[5], &c[6]);
Toffoli(a[0], b[6], &c[6]);
Toffoli(a[7], b[0], &c[7]);
Toffoli(a[6], b[1], &c[7]);
```

```
///MULTIPLICATION

for (int i = 0; i < targetNumber; i++) {
    for (int z = i; z >= 0; z--) {
        Toffoli(a[z], b[i - z], &c[i]);
    }
}
```

Reduction이 필요 없는 곱셈 연산

ROLLO / RQC

Algo. Param.	n	m	d	r	P	P_m	Security level (bits)
ROLLO-I-128						$X^{79} + X^9 + 1$	128
					$X^{53} + X^6 + X^2 + X + 1$		
ROLLO-I-256	67	113	8	7	$X^{67} + X^5 + X^2 + X + 1$	$X^{113} + X^9 + 1$	256

Table 3. ROLLO-I parameters for each security level

Instance	P	П
RQC-II RQC-III	$X^{67} + X^5 + X^2 + X + 1$ $X^{101} + X^7 + X^6 + X + 1$ $X^{131} + X^8 + X^3 + X^2 + 1$	$X^{97} + X^6 + 1$ $X^{107} + X^9 + X^7 + X^4 + 1$ $X^{137} + X^{21} + 1$

Table 2: Polynomials considered for RQC. P is the polynomial used to define $\mathbb{F}_{q^m}^n$ as $\mathbb{F}_{q^m}[X]/\langle P \rangle$ and Π is the polynomial used to define \mathbb{F}_{q^m} as $\mathbb{F}_q[X]/\langle \Pi \rangle$.

$$Toffoli = egin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

https://www.nature.com/articles/s41534-018-0072-4#Sec8

• Toffoli gate 내부의 연산 게이트 수를 줄일 수 있는 것이 가능한가

e**XP() 함수**는 Euler 의 상수 e (약 2.71828) 값을 입력 받은 인자 값만큼 거듭제곱 하는 함수 입니다 즉, 입력 인자 값은 double 형이며 이 인자 값이 e 의 승수를 나타냅니다.

Syntax

public static double exp (double a)

Example

1 System.out.println(Math.exp(2)); cs

$$\begin{pmatrix} 1 & 0 \\ 0 & \exp\left(\frac{i\pi}{4}\right) \end{pmatrix}$$

위 코드는 2.71828... 의 2승을 한 값을 리턴 합니다. <mark>결과 값은 7.38905609893065</mark> 입니다.

• Toffoli gate 내부의 연산 게이트 수를 줄일 수 있는 것이 가능한가

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 &$$

- Toffoli gate 내부의 연산 게이트 수를 줄일 수 있는 것이 가능한가
- Karatsuba 등등

감사합니다

