CME 2003 Digital Logic

Number Systems, Operations & Codes

Şerife SUNGUN

Outline

- Decimal Numbers
- Binary Numbers
- Decimal-to-Binary Conversion
- Binary Arithmetic
- 1's and 2's Complements of Binary Numbers
- Signed Numbers
- Arithmetic Operations with Signed Numbers
- Hexadecimal Numbers
- Octal Numbers
- Binary Coded Decimal (BCD)
- Digital Codes
- Error Detection and Correction Codes

Decimal Numbers

The position of each digit in a weighted number system is assigned a weight based on the **base** or **radix** of the system. The radix of decimal numbers is ten, because only ten symbols (0 through 9) are used to represent any number.

... Decimal Numbers

$$568.23 = (5 \times 10^{2}) + (6 \times 10^{1}) + (8 \times 10^{0}) + (2 \times 10^{-1}) + (3 \times 10^{-2})$$
$$= (5 \times 100) + (6 \times 10) + (8 \times 1) + (2 \times 0.1) + (3 \times 0.01)$$
$$= 500 + 60 + 8 + 0.2 + 0.03$$

Binary Numbers

Binary has a radix of two and uses the digits 0 and 1 to represent quantities.

Decimal Number	Binary Number		Decimal Number	Binary Number
0	0000		8	1000
1	0001		9	1001
2	0010		10	1010
3	0011		11	1011
4	0100		12	1100
5	0101		13	1101
6	0110		14	1110
7	0111		15	1111

Decimal Number	Binary Number
0	0000
1	0001
2	0010
3	0011
2 3 4 5 6	
5	0 1 0 0 0 1 0 1 0 1 1 0
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1 1 0 1
14	1110
15	1 1 1 1

Counting in Binary

- with n bits you can count up to a number equal to 2ⁿ - 1.
- Largest decimal number = 2ⁿ 1

Example:

n=4

largest decimal number : $2^4 - 1 = 15$

A Simple Binary Counting Application

Structure of Binary Numbers

LSB (least significant bit): The right-most bit

MSB (most significant bit): The left-most bit

Binary Weights

POSITIVE POWERS OF TWO (WHOLE NUMBERS)						NEGATIVE POWERS OF TWO (FRACTIONAL NUMBER)								
2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	21	2 ⁰	2-1	2-2	2 ⁻³	2-4	2 ⁻⁵	2 ⁻⁶
256	128	64	32	16	8	4	2	1	1/2	1/4	1/8	1/16	1/32	1/64
									0.5	0.25	0.125	0.0625	0.03125	0.015625

Binary-to-Decimal Conversion

■ The decimal value of any binary number can be found by adding the weights of all bits that are 1 and discarding the weights of all bits that are 0s.

EXAMPLE

Convert the binary whole number 1101101 to decimal.

$$1101101 = 2^6 + 2^5 + 2^3 + 2^2 + 2^0$$

= 64 + 32 + 8 + 4 + 1 = **109**

ĸ,

... Binary-to-Decimal Conversion

EXAMPLE

Convert the binary whole number 0.1011 to decimal.

Weight:
$$2^{-1}$$
 2^{-2} 2^{-3} 2^{-4} Binary number: 0.1 0 1 1

$$0.1011 = 2^{-1} + 2^{-3} + 2^{-4}$$

= $0.5 + 0.125 + 0.0625 = 0.6875$

Decimal-to-Binary Conversion

Repeated Division-by-2 Method

Converting Decimal Fractions to Binary

Repeated Multiplication by 2

Continue to the desired number of decimal places or stop when the fractional part is all zeros.

Binary Arithmetic

- Addition
- Subtraction
- Multiplication
- Division

Binary Addition

```
0 + 0 = 0 Sum of 0 with a carry of 0

0 + 1 = 1 Sum of 1 with a carry of 0

1 + 0 = 1 Sum of 1 with a carry of 0

1 + 1 = \mathbf{1}0 Sum of 0 with a carry of \mathbf{1}
```

... Binary Addition

```
1 + 0 + 0 = 01 Sum of 1 with a carry of 0
1 + 0 + 1 = 10 Sum of 0 with a carry of 1
1 + 1 + 0 = 10 Sum of 0 with a carry of 1
1 + 1 + 1 = 11 Sum of 0 with a carry of 1
```

carry

Binary Subtraction

$$0 - 0 = 0$$

$$1 - 1 = 0$$

$$1 - 0 = 1$$

$$10 - 1 = 1 (0 - 1 \text{ with a borrow of } 1)$$

Binary Multiplication

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

M

Binary Division

 Division in binary follows the same procedure as division in decimal.

Example:

Perform the following binary division: 110 / 10 = ?

Finding the 1's Complement

The 1's complement of a binary number is found by changing all 1s to 0s and all 0s to 1s,

... Finding the 1's Complement

The simplest way to obtain the 1's complement of a binary number with a digital circuit is to use parallel inverters (NOT circuits).

Finding the 2's Complement

The 2's complement of a binary number is found by adding 1 to the LSB of the 1's complement.

2's complement = (1's complement) + 1

An alternative method of finding the 2's complement of a binary number

- Start at the right with the LSB and write the bits as they are up to and including the first 1.
- Take the 1's complements of the remaining bits.

Change all bits to the left of the least significant 1 to get 2's complement.

Example

Find the 2's complement of 10111000 using the alternative method.

v.

Signed Numbers

- A signed binary number consists of both sign and magnitude information.
- The sign indicates whether a number is positive or negative, and the magnitude is the value of the number.
 - 1. sign-magnitude
 - 2. 1's complement
 - 3. 2's complement.

The Sign Bit

- The left-most bit in a signed binary number is the sign bit, which tells you whether the number is positive or negative:
 - 0 > a positive number
 - 1 ➤ a negative number.

Sign-Magnitude Form

A negative number has the same magnitude bits as the corresponding positive number but the sign bit is a 1 rather than a zero.

1's Complement Form

A negative number is the 1's complement of the corresponding positive number.

2's Complement Form

A negative number is the 2's complement of the corresponding positive number.

10

The Decimal Value of Signed Numbers

Example

Determine the decimal value of this signed binary number expressed in **sign-magnitude**: 10010101.

M

The Decimal Value of Signed Numbers

Example

Determine the decimal value of this signed binary number expressed in **sign-magnitude**: 10010101.

Solution

The seven magnitude bits and their powers-of-two weights:

Summing the weights where there are 1s,

$$16 + 4 + 1 = 21$$

The sign bit is 1; therefore, the decimal number is -21.

- Determine the decimal values of the signed binary numbers expressed in 1's complement:
 - a) 00010111
 - b) 11101000

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:

Summing the weights where there are 1s,

$$16 + 4 + 2 + 1 = +23$$

(b) The bits and their powers-of-two weights for the negative number are as follows. Notice that the negative sign bit has a weight of -2^7 or -128.

$$-2^{7}$$
 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 1 1 0 0 0

Summing the weights where there are 1s,

$$-128 + 64 + 32 + 8 = -24$$

Adding I to the result, the final decimal number is

$$-24+1=-23$$

- Determine the decimal values of the signed binary numbers expressed in 2's complement:
 - a) 01010110
 - b) 10101010

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:

Summing the weights where there are 1s,

$$64 + 16 + 4 + 2 = +86$$

(b) The bits and their powers-of-two weights for the negative number are as follows. Notice that the negative sign bit has a weight of $-2^7 = -128$.

Summing the weights where there are 1s,

$$-128 + 32 + 8 + 2 = -86$$

r.

Range of Signed Integer Numbers

For 2's complement signed numbers, the range of values for n-bit numbers

-
$$(2^{n-1})$$
 to + $(2^{n-1}-1)$

n:8 => range =
$$-(2^7)$$
 to $+(2^7 - 1)$
- 128 to +127

м

Floating-Point Numbers

- is capable of representing very large and very small numbers without an increase in the number of bits
- for representing numbers that have both integer and fractional components.
- known as a real number
- consists of two parts plus a sign:
 - mantissa : magnitude of the number.
 - exponent : number of places that the decimal point (or binary point) is to be moved.

... Floating-Point Numbers

Example 241,506,800

mantissa: 0.2415068

exponent: 9

0.2415068 x 10 ⁹

ANSI/IEEE Standard 754-1985

- Single-precision (32 bits)
- Double-precision (64 bits)
- Extended-precision. (80 bits)

Single-Precision Floating-Point

Number =
$$(-1)^{S}(1 + F)(2^{E-127})$$

S	E	F
1	10010001	1000111000100000000000

r.

Example Single-Precision Floating-Point

S	E	F
1	10010001	10001110001000000000000

Exponent: 10010001 = 145

Number =
$$(-1)^{1}$$
 (1+0.10001110001)2⁽¹⁴⁵⁻¹²⁷⁾
= (-1) (1.1 0001110001)2⁽¹⁸⁾
= -110001110001000000

This floating-point binary number is equivalent to -407,688 in decimal.

ĸ,

Example Single-Precision Floating-Point

Convert the decimal number 3.248 x 10 ⁴ to a single-precision floating-point binary number.

Solution

Convert the decimal number to binary:

$$3.248 \times 10^{4} = 32480 = 11111110111100000_{2}$$

= 1.11111011100000 X 2 ¹⁴

(the MSB will not occupy a bit position because it is always a 1)

- Exponent : $14 + 127 = 141 = 10001101_2$

The complete floating-point number is

0	10001101	111110111000000000000000000000000000000
---	----------	---