Basics of Neural Networks

Linear Regression

- What is the hypothesis function of linear regression?
 - $h_{\theta}=\theta^Tx$, where $\theta=[\theta_0,\theta_1,...,\theta_m]^T$, $x=[x_0,x_1,...,x_m]^T$, and $x_0=1$

Logistic Regression

- What is the hypothesis function of logistic regression?
 - $h_{\theta}=\sigma(\theta^Tx)$, where $\theta=[\theta_0,\theta_1,...,\theta_m]$, $x=[x_0,x_1,...,x_m]$, $x_0=1$, and $\sigma(z)=\frac{1}{1+e^{-z}}$

Towards Neural Networks

Logistic regression can be considered as neural network with only 1 neuron

Towards Neural Networks

Logistic regression can be considered as neural network with only 1 neuron

Neuron

Using the notations in the neural network literature, where $\theta = w = [w_1, w_2, w_3]$ (w_0) is not part of this vector here), $h_{\theta} = \hat{y}$, and $\theta_0 = w_0 = b$

Towards Neural Networks

Logistic regression can be considered as neural network with only 1 neuron

$$\widehat{y} = a = \sigma(z) = \sigma(w^{T}x + b) = \sigma([w_{1} \ w_{2}w_{3}] \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + b)$$

$$= \sigma(w_{1}x_{1} + w_{2}x_{2} + w_{3}x_{3} + b)$$

$$= \frac{1}{1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + w_{3}x_{3} + b)}}$$

• We can construct a network of neurons (i.e., a neural network) with as many *layers*, and neurons within layers, as needed

• We can construct a network of neurons (i.e., a neural network) with as many *layers*, and neurons in any layer, as needed

• We can construct a network of neurons (i.e., a neural network) with as many *layers*, and neurons in any layer, as needed

• We can construct a network of neurons (i.e., a neural network) with as many *layers*, and neurons in any layer, as needed

 We can construct a network of neurons (i.e., a neural network) with as many layers, and neurons in any layer, as needed

 We can construct a network of neurons (i.e., a neural network) with as many layers, and neurons in any layer, as needed

 We can construct a network of neurons (i.e., a neural network) with as many layers, and neurons in any layer, as needed

• We can construct a network of neurons (i.e., a neural network) with as many *layers*, and neurons in any layer, as needed

By convention, this neural network is said to have 2 layers (and not 3) since the input layer is typically not counted!

• We can construct a network of neurons (i.e., a neural network) with as many *layers*, and neurons in any layer, as needed

Also, the more layers we add, the *deeper* the neural network becomes, giving rise to the concept of *deep learning*!

• We can construct a network of neurons (i.e., a neural network) with as many *layers*, and neurons in any layer, as needed

Interestingly, neural networks *learn* their own features!

• We can construct a network of neurons (i.e., a neural network) with as many *layers*, and neurons in any layer, as needed

This looks like logistic regression, but with features that were learnt (i.e., $a_1^{[1]}$, $a_2^{[1]}$, $a_3^{[1]}$, $a_4^{[1]}$) and NOT engineered by us (i.e., x_1 , x_2 , and x_3)

To help develop an efficient learning algorithm, let us vectorize
 (represent in vectors & matrices) the input and the variables involved

$$\boldsymbol{w^{[1]}} = \begin{bmatrix} w_{11}^{[1]} & w_{12}^{[1]} & w_{13}^{[1]} & w_{14}^{[1]} \\ w_{21}^{[1]} & w_{22}^{[1]} & w_{23}^{[1]} & w_{24}^{[1]} \\ w_{31}^{[1]} & w_{32}^{[1]} & w_{33}^{[1]} & w_{34}^{[1]} \end{bmatrix}$$

Dimension of $w^{[1]} = (3, 4)$

• To help develop an efficient learning algorithm, let us *vectorize* (represent in vectors & matrices) the input and the variables involved

$$\boldsymbol{w}^{[\mathbf{1}]^T} = \begin{bmatrix} w_{11}^{[1]} & w_{21}^{[1]} & w_{31}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} & w_{32}^{[1]} \\ w_{13}^{[1]} & w_{23}^{[1]} & w_{33}^{[1]} \\ w_{14}^{[1]} & w_{24}^{[1]} & w_{34}^{[1]} \end{bmatrix}$$

Dimension of $w^{[1]^T} = (4, 3)$

$$\mathbf{z}^{[1]} = \mathbf{w}^{[1]^T} \mathbf{x} + \mathbf{b}^{[1]}$$

$$= \begin{bmatrix} w_{11}^{[1]} & w_{21}^{[1]} & w_{31}^{[1]} \\ w_{11}^{[1]} & w_{21}^{[1]} & w_{31}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} & w_{32}^{[1]} \\ w_{13}^{[1]} & w_{23}^{[1]} & w_{33}^{[1]} \\ w_{14}^{[1]} & w_{24}^{[1]} & w_{34}^{[1]} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_{11}^{[1]} \\ \mathbf{b}_{2}^{[1]} \\ \mathbf{b}_{3}^{[1]} \\ \mathbf{b}_{4}^{[1]} \end{bmatrix}$$

$$\mathbf{z}^{[1]} = \mathbf{w}^{[1]^T} \mathbf{x} + \mathbf{b}^{[1]}$$

$$= \begin{bmatrix} w_{11}^{[1]} x_1 + w_{21}^{[1]} x_2 + w_{31}^{[1]} x_3 \\ w_{12}^{[1]} x_1 + w_{22}^{[1]} x_2 + w_{32}^{[1]} x_3 \\ w_{13}^{[1]} x_1 + w_{23}^{[1]} x_2 + w_{33}^{[1]} x_3 \\ w_{14}^{[1]} x_1 + w_{24}^{[1]} x_2 + w_{34}^{[1]} x_3 \end{bmatrix} + \begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ b_3^{[1]} \\ b_4^{[1]} \end{bmatrix}$$

$$z^{[1]} = w^{[1]^T} x + b^{[1]}$$

$$= \begin{bmatrix} w_{11}^{[1]} x_1 + w_{21}^{[1]} x_2 + w_{31}^{[1]} x_3 + b_1^{[1]} \\ w_{12}^{[1]} x_1 + w_{22}^{[1]} x_2 + w_{32}^{[1]} x_3 + b_2^{[1]} \\ w_{13}^{[1]} x_1 + w_{23}^{[1]} x_2 + w_{33}^{[1]} x_3 + b_3^{[1]} \\ w_{14}^{[1]} x_1 + w_{24}^{[1]} x_2 + w_{34}^{[1]} x_3 + b_4^{[1]} \end{bmatrix}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$\mathbf{z}^{[1]} = \mathbf{w}^{[1]^{T}} \mathbf{x} + \mathbf{b}^{[1]}$$

$$= \begin{bmatrix} w_{11}^{[1]} x_1 + w_{21}^{[1]} x_2 + w_{31}^{[1]} x_3 + b_1^{[1]} \\ w_{12}^{[1]} x_1 + w_{22}^{[1]} x_2 + w_{32}^{[1]} x_3 + b_2^{[1]} \\ w_{13}^{[1]} x_1 + w_{23}^{[1]} x_2 + w_{33}^{[1]} x_3 + b_3^{[1]} \\ w_{14}^{[1]} x_1 + w_{24}^{[1]} x_2 + w_{34}^{[1]} x_3 + b_4^{[1]} \end{bmatrix}$$

$$a^{[1]} = \sigma(z^{[1]})$$
 $z_1^{[1]}$

$$z^{[1]} = w^{[1]^T} x + b^{[1]}$$

$$= \begin{bmatrix} w_{11}^{[1]} x_1 + w_{21}^{[1]} x_2 + w_{31}^{[1]} x_3 + b_1^{[1]} \\ w_{12}^{[1]} x_1 + w_{22}^{[1]} x_2 + w_{32}^{[1]} x_3 + b_2^{[1]} \\ w_{13}^{[1]} x_1 + w_{23}^{[1]} x_2 + w_{33}^{[1]} x_3 + b_3^{[1]} \\ w_{14}^{[1]} x_1 + w_{24}^{[1]} x_2 + w_{34}^{[1]} x_3 + b_4^{[1]} \end{bmatrix}$$

$$a^{[1]} = \sigma(z^{[1]})$$
 $z_2^{[1]}$

$$z^{[1]} = w^{[1]^{T}} x + b^{[1]}$$

$$= \begin{bmatrix} w_{11}^{[1]} x_1 + w_{21}^{[1]} x_2 + w_{31}^{[1]} x_3 + b_1^{[1]} \\ w_{12}^{[1]} x_1 + w_{22}^{[1]} x_2 + w_{32}^{[1]} x_3 + b_2^{[1]} \\ w_{13}^{[1]} x_1 + w_{23}^{[1]} x_2 + w_{33}^{[1]} x_3 + b_3^{[1]} \\ w_{14}^{[1]} x_1 + w_{24}^{[1]} x_2 + w_{34}^{[1]} x_3 + b_4^{[1]} \end{bmatrix}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[1]} = w^{[1]^T} x + b^{[1]}$$

$$= \begin{bmatrix} w_{11}^{[1]} x_1 + w_{21}^{[1]} x_2 + w_{31}^{[1]} x_3 + b_1^{[1]} \\ w_{12}^{[1]} x_1 + w_{22}^{[1]} x_2 + w_{32}^{[1]} x_3 + b_2^{[1]} \\ w_{13}^{[1]} x_1 + w_{23}^{[1]} x_2 + w_{33}^{[1]} x_3 + b_3^{[1]} \\ w_{14}^{[1]} x_1 + w_{24}^{[1]} x_2 + w_{34}^{[1]} x_3 + b_4^{[1]} \end{bmatrix}$$

$$a^{[1]} = \sigma(z^{[1]})$$
 $z_3^{[1]}$

$$z^{[1]} = w^{[1]^T} x + b^{[1]}$$

$$= \begin{bmatrix} w_{11}^{[1]} x_1 + w_{21}^{[1]} x_2 + w_{31}^{[1]} x_3 + b_1^{[1]} \\ w_{12}^{[1]} x_1 + w_{22}^{[1]} x_2 + w_{32}^{[1]} x_3 + b_2^{[1]} \\ w_{13}^{[1]} x_1 + w_{23}^{[1]} x_2 + w_{33}^{[1]} x_3 + b_3^{[1]} \\ w_{14}^{[1]} x_1 + w_{24}^{[1]} x_2 + w_{34}^{[1]} x_3 + b_4^{[1]} \end{bmatrix}$$

$$a^{[1]} = \sigma(z^{[1]})$$
 $a_3^{[1]} = \sigma(z_3^{[1]})$

$$\mathbf{z}^{[1]} = \mathbf{w}^{[1]^T} \mathbf{x} + \mathbf{b}^{[1]}$$

$$= \begin{bmatrix} w_{11}^{[1]} x_1 + w_{21}^{[1]} x_2 + w_{31}^{[1]} x_3 + b_1^{[1]} \\ w_{12}^{[1]} x_1 + w_{22}^{[1]} x_2 + w_{32}^{[1]} x_3 + b_2^{[1]} \\ w_{13}^{[1]} x_1 + w_{23}^{[1]} x_2 + w_{33}^{[1]} x_3 + b_3^{[1]} \\ w_{14}^{[1]} x_1 + w_{24}^{[1]} x_2 + w_{34}^{[1]} x_3 + b_4^{[1]} \end{bmatrix}$$

$$a^{[1]} = \sigma(z^{[1]})$$
 $z_4^{[1]}$

$$\mathbf{z}^{[1]} = \mathbf{w}^{[1]^T} \mathbf{x} + \mathbf{b}^{[1]}$$

$$= \begin{bmatrix} w_{11}^{[1]} x_1 + w_{21}^{[1]} x_2 + w_{31}^{[1]} x_3 + b_1^{[1]} \\ w_{12}^{[1]} x_1 + w_{22}^{[1]} x_2 + w_{32}^{[1]} x_3 + b_2^{[1]} \\ w_{13}^{[1]} x_1 + w_{23}^{[1]} x_2 + w_{33}^{[1]} x_3 + b_3^{[1]} \\ w_{14}^{[1]} x_1 + w_{24}^{[1]} x_2 + w_{34}^{[1]} x_3 + b_4^{[1]} \end{bmatrix}$$

$$a^{[1]} = \sigma(z^{[1]})$$
 $a_4^{[1]} = \sigma(z_4^{[1]})$

$$z^{[2]} = w^{[2]^T} x + b^{[2]}$$

$$= w^{[2]^T} a^{[1]} + b^{[2]}$$

$$= \left[w_{11}^{[2]} w_{21}^{[2]} w_{31}^{[2]} w_{41}^{[2]} \right] \begin{bmatrix} a_1^{[1]} \\ a_2^{[1]} \\ a_3^{[1]} \\ a_4^{[1]} \end{bmatrix} + \begin{bmatrix} b_1^{[2]} \end{bmatrix}$$

$$z^{[2]} = w^{[2]^T} x + b^{[2]}$$

$$= w^{[2]^T} a^{[1]} + b^{[2]}$$

$$= \left[w_{11}^{[2]} a_1^{[1]} + w_{21}^{[2]} a_2^{[1]} + w_{31}^{[2]} a_3^{[1]} + w_{41}^{[2]} a_4^{[1]} \right] + \left[b_1^{[2]} \right]$$

• To help develop an efficient learning algorithm, let us *vectorize* (represent in vectors & matrices) the input and the variables involved

 $a^{[2]} = \sigma(z^{[2]})$

$$z^{[2]} = w^{[2]^T} x + b^{[2]}$$

$$= w^{[2]^T} a^{[1]} + b^{[2]}$$

$$= \left[w_{11}^{[2]} a_1^{[1]} + w_{21}^{[2]} a_2^{[1]} + w_{31}^{[2]} a_3^{[1]} + w_{41}^{[2]} a_4^{[1]} + b_1^{[2]} \right]$$

$$z^{[2]} = w^{[2]^T} x + b^{[2]}$$

$$= w^{[2]^T} a^{[1]} + b^{[2]}$$

$$= w^{[2]} a_1^{[1]} + w_{21}^{[2]} a_2^{[1]} + w_{31}^{[2]} a_3^{[1]} + w_{41}^{[2]} a_4^{[1]} + b_1^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$
 $z_1^{[2]}$

$$z^{[2]} = w^{[2]^T} x + b^{[2]}$$

$$= w^{[2]^T} a^{[1]} + b^{[2]}$$

$$= w_{11}^{[2]} a_1^{[1]} + w_{21}^{[2]} a_2^{[1]} + w_{31}^{[2]} a_3^{[1]} + w_{41}^{[2]} a_4^{[1]} + b_1^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$
 $a_1^{[2]} = \sigma(z_1^{[2]})$

To help develop an efficient learning algorithm, let us vectorize
 (represent in vectors & matrices) the input and the variables involved

$$z^{[1]} = w^{[1]^T} a^{[0]} + b^{[1]}$$
 $a^{[1]} = \sigma(z^{[1]})$
 $z^{[2]} = w^{[2]^T} a^{[1]} + b^{[2]}$
 $a^{[2]} = \sigma(z^{[2]})$

But, this assumes only 1 training example!

To help develop an efficient learning algorithm, let us vectorize
 (represent in vectors & matrices) the input and the variables involved

$$z^{[1]} = w^{[1]^T} a^{[0]} + b^{[1]}$$
 $a^{[1]} = \sigma(z^{[1]})$
 $z^{[2]} = w^{[2]^T} a^{[1]} + b^{[2]}$
 $a^{[2]} = \sigma(z^{[2]})$

How can we account for all the training examples?

Assuming
$$n$$
 examples $z^{[1](i)} = w^{[1]^T(i)}a^{[0](i)} + b^{[1]}$ $a^{[1](i)} = \sigma(z^{[1](i)})$ $z^{[2](i)} = w^{[2]^{T(i)}}a^{[1](i)} + b^{[2]}$ $a^{[2](i)} = \sigma(z^{[2](i)})$ Refers to the i^{th} example in the training dataset

• To help develop an efficient learning algorithm, let us *vectorize* (represent in vectors & matrices) the input and the variables involved

But, loops in general slow down programs; hence, it is better to further *vectorize* the implementation in order to avoid any loop, whenever possible

• To help develop an efficient learning algorithm, let us *vectorize* (represent in vectors & matrices) the input and the variables involved

To this end, we can simply stack all \boldsymbol{x} vectors (or $\boldsymbol{a}^{[0]}$ vectors), \boldsymbol{z} vectors, and \boldsymbol{a} vectors in different matrices of every layer!

To help develop an efficient learning algorithm, let us vectorize
 (represent in vectors & matrices) the input and the variables involved

Assuming

n examples

To help develop an efficient learning algorithm, let us vectorize
 (represent in vectors & matrices) the input and the variables involved

$$X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & x_1^{(n)} \\ x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(n)} \\ x_3^{(1)} & x_3^{(2)} & \dots & x_3^{(n)} \end{bmatrix}$$
Assuming *n* examples

This vector represents the *second* example in the training dataset

To help develop an efficient learning algorithm, let us vectorize
 (represent in vectors & matrices) the input and the variables involved

Assuming

n examples

To help develop an efficient learning algorithm, let us vectorize
 (represent in vectors & matrices) the input and the variables involved

Layer 1

To help develop an efficient learning algorithm, let us vectorize
 (represent in vectors & matrices) the input and the variables involved

for
$$i = 1$$
 to n :
$$z^{[1](i)} = w^{[1]^T(i)} a^{[0](i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = w^{[2]^{T(i)}} a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

Before Vectorization

To help develop an efficient learning algorithm, let us vectorize
 (represent in vectors & matrices) the input and the variables involved

No Explicit Loop!

$$Z^{[1]} = w^{[1]^T} A^{[0]} + b^{[1]}$$
 $A^{[1]} = \sigma(Z^{[1]})$
 $Z^{[2]} = w^{[2]^T} A^{[1]} + b^{[2]}$
 $A^{[2]} = \sigma(Z^{[2]})$

After Vectorization

Epitome: A Neuron

A neuron is a computational unit in the neural network that exchanges messages with each other.

Epitome: A simple neural network

Ignoring bias...

$$a1^{(1)} = f(w1 * x1 + w2 * x2 + w3 * x3 + w4 * x4)$$

Number of parameters: 4*4 + 4 + 1

f() is activation function: Relu or sigmoid

$$Relu: \max(0, x)$$

$$a1^{(1)} = \max(0, w1 * x1 + w2 * x2 + w3 * x3 + w4 * x4)$$

Epitome: Example of Neural Network

Epitome: A case study

: denotes neuron

$$f: \mathbb{R}^{256} \to \mathbb{R}^{10}$$

Deep learning (DL) means many hidden layers. DL represents the function f by neural network

Softmax

- Softmax layer as the output layer, to provide probabilistic interpretation.
- Output of network can be any value, which is difficult to interpret

Softmax Layer

WHY Neural Network works?

Visualizing as Constraint Satisfaction Networks without activation function

Each neuron in the hidden layer computes a nonlinear transform of inputs it receives. Hidden layer neurons act as "features" for final layer (a linear model) to produce output. The overall effect is a nonlinear mapping from inputs to outputs.

WHY Neural Network works?

It is related to kernel learning where kernels are learnt implicitly.
What happen if we use linear mapping as an activation function?
MLP or NN with a single, sufficiently wide hidden layer can approximate any function.

Preliminaries

A visual proof that neural nets can approximate any function

http://neuralnetworksa nddeeplearning.com/c hap4.html

Why non-linearity is required?

- 1) Example of fitting non-linear data without non-linearities
- 2) Example of fiiting non-linear data with non-linearities

Feed forward/Backpropagation Neural Network

Feed forward algorithm

Backpropagation:

- Initialize the parameters
- Compute total error
- Then calculate gradient w.r.t each weight and eventually modify the weights to get better results.

Learning network parameters

Orange \rightarrow 1 Black \rightarrow 0

How can the neural network achieve this?

Computing cost of a sample

Cost can be Euclidean distance or cross entropy between network output and target Given a set of network parameters, each example has a cost value.

How to evaluate that how bad the network parameters performs on this task?

Total Cost:
$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

Find the network parameters that minimize total cost

The Flow of Computations in Neural Networks

- The flow of computations in a neural network goes in two ways:
 - 1. Left-to-right: This is referred to as *forward propagation*, which results in computing the output of the network
 - 2. Right-to-left: This is referred to as *back propagation*, which results in computing the gradients (or derivatives) of the parameters in the network
- The intuition behind this 2-way flow of computations can be explained through the concept of "computation graphs"
 - What is a computation graph?

What is a Computation Graph?

$$J(a,b,c) = 3(a+\underline{bc})$$

$$v = a + u$$

$$J = 3v$$

$$J(a,b,c) = 3(a+bc)$$

$$v = a + u$$

$$J = 3v$$

$$J(a,b,c) = 3(a+bc)$$

$$v = a + u$$

$$J = 3v$$

$$J(a,b,c) = 3(a+bc)$$

$$v = a + u$$

$$J = 3v$$

$$J(a,b,c) = 3(a + bc)$$

$$v = a + u$$

$$J = 3v$$

$$\frac{dJ}{dv}$$
 = Derivative of J with respect to v

 Let us now compute the derivatives of the variables through the computation graph as follows:

 $\frac{dJ}{dv}$ = If we change v a little bit, how would J change?

 Let us now compute the derivatives of the variables through the computation graph as follows:

To compute the derivative of J with respect to v, we went back to v, nudged it, and measured the corresponding resultant increase on J

$$\frac{dJ}{da}$$
 = Derivative of J with respect to a

• Let us now compute the derivatives of the variables through the computation graph as follows:

 $\frac{aJ}{da}$ = If we change a a little bit, how would J change?

• Let us now compute the derivatives of the variables through the computation graph as follows:

In essence, to compute the derivative of J with respect to a, we had to go back to v, nudge it a little bit, and measure the corresponding resultant increase on J

 Let us now compute the derivatives of the variables through the computation graph as follows:

Then, we had to go back to a, nudge it a little bit, and measure the corresponding resultant increase on v

 Let us now compute the derivatives of the variables through the computation graph as follows:

Then, we multiplied the changes together (i.e., we applied the chain rule!)

$$\frac{dJ}{du}$$
 = Derivative of J with respect to u

• Let us now compute the derivatives of the variables through the computation graph as follows:

 $\frac{dJ}{du}$ = If we change u a little bit, how would J change?

 Let us now compute the derivatives of the variables through the computation graph as follows:

Same as before, we had to go back to $oldsymbol{v}$ then to $oldsymbol{u}$ in order to compute the derivative of $oldsymbol{J}$

$$\frac{dJ}{db} = \text{Derivative of } J \text{ with respect to } b$$

• Let us now compute the derivatives of the variables through the computation graph as follows:

 $\frac{dJ}{db}$ = If we change **b** a little bit, how would **J** change?

$$\frac{dJ}{dc}$$
 = Derivative of J with respect to c

• Let us now compute the derivatives of the variables through the computation graph as follows:

 $\frac{dJ}{dc}$ = If we change c a little bit, how would J change?

The Computation Graph of Logistic Regression

• Let us translate logistic regression (which is a neural network with only 1 neuron) into a computation graph

Where b = 1, $w = [w_1, w_2, w_3]$, $x = [x_1, x_2, x_3]$, and $\mathcal{L}(a, y)$ is the cost (or *loss*) function

Forward Propagation

• The loss function can be computed by moving from left to right

Recap: Using Linear Regression for Binary Classification

Example

- Using linear regression, fit a polynomial (line in this case) through the training data of type {tumor size, tumor type}.
- Malignant tumors means 1 and non-malignant means 0.
- Intuition: All tumors larger certain threshold are malignant
- Green line is the model h(x).
- Prediction Rule: If h(x) > 0.5, for any given tumor size x, predict malignant tumor and benign otherwise.

Linear regression gives a raw number but logistic regression tells probability that x belongs to the "positive" class. Hence, it is a regression algorithm but, by setting a rule on the probability, we can perform classification.

Using Linear Regression for Binary Classification

Turning scores of input \mathbf{x} , $\mathbf{w}^T\mathbf{x}$ into probabilities using sigmoid function

$$p(y = 1|\mathbf{x}, \mathbf{w}) = a = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{e^{\mathbf{w}^T \mathbf{x}}}{1 + e^{\mathbf{w}^T \mathbf{x}}} = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$
$$p(y = 0|\mathbf{x}, \mathbf{w}) = 1 - a = 1 - \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}}$$

• The derivatives can be computed by moving from right to left

 $\frac{\partial \mathcal{L}}{\partial a}$ = Partial derivative of \mathcal{L} with respect to a

$$\frac{\partial \mathcal{L}}{\partial a} = \frac{\partial}{\partial a} \left(-y \log(a) - (1 - y) \log(1 - a) \right)$$

$$\frac{\partial \mathcal{L}}{\partial a} = \frac{-y}{a} + \frac{(1-y)}{(1-a)}$$

$$\frac{\partial \mathcal{L}}{\partial z}$$
 = Partial derivative of \mathcal{L} with respect to z

$$\frac{\partial \mathcal{L}}{\partial z} = \frac{\partial \mathcal{L}}{\partial a} \times \frac{\partial a}{\partial z} = \left(\frac{-y}{a} + \frac{(1-y)}{(1-a)}\right) \times \frac{\partial a}{\partial z} = \left(\frac{-y}{a} + \frac{(1-y)}{(1-a)}\right) \times a(1-a)$$

$$\frac{\partial \mathcal{L}}{\partial z} = a - y$$

• The derivatives can be computed by moving from right to left

 $\frac{\partial \mathcal{L}}{\partial b}$ = Partial derivative of \mathcal{L} with respect to \mathbf{b}

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial a} \times \frac{\partial a}{\partial z} \times \frac{\partial z}{\partial b} = (a - y) \times \frac{\partial z}{\partial b} = (a - y) \times 1 = (a - y)$$

• The derivatives can be computed by moving from right to left

 $\frac{\partial \mathcal{L}}{\partial w}$ = Partial derivative of \mathcal{L} with respect to w

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial \mathcal{L}}{\partial a} \times \frac{\partial a}{\partial z} \times \frac{\partial z}{\partial w} = (a - y) \times \frac{\partial z}{\partial w} = (a - y)x$$

Backward Propagation: Summary

• Here is the summary of the gradients in logistic regression:

$$\frac{dz}{dz} = \frac{\partial \mathcal{L}}{\partial z} = a - y$$

We will denote this as dz for simplicity

Backward Propagation: Summary

• Here is the summary of the gradients in logistic regression:

$$\frac{d\mathbf{z}}{d\mathbf{z}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}} = \mathbf{a} - \mathbf{y}$$

$$\frac{db}{db} = \frac{\partial \mathcal{L}}{\partial b} = a - y$$

$$\frac{dw}{dw} = \frac{\partial \mathcal{L}}{\partial w} = (a - y)x$$

Gradient Descent For Logistic Regression

Outline:

- Have a loss function $\mathcal{L}(w, b)$, where $w = [w_1, ..., w_m]$ and $b = w_0$
- Start off with some guesses for $w_1, ..., w_m$
 - It does not really matter what values you start off with for w_1, \dots, w_m , but a common choice is to set them all initially to zero
- Repeat until convergence{

Ergence
$$w_j = w_j - \alpha \frac{\partial \mathcal{L}(w, b)}{\partial w_j}$$
 Let us focus on this part $b = b - \alpha \frac{\partial \mathcal{L}(w, b)}{\partial b}$

Gradient Descent For Logistic Regression

• Outline:

Assuming *n* examples

Repeat until convergence{

Forward propagation
$$\begin{bmatrix} z^{(i)} = w^T x^{(i)} + b \\ a^{(i)} = \sigma(z^{(i)}) \end{bmatrix}$$
 Backward propagation
$$\begin{bmatrix} dz^{(i)} = a^{(i)} - y^{(i)} \\ dw = dw + dz^{(i)} x^{(i)} \\ db = db + dz^{(i)} \end{bmatrix}$$
 Outside the loop
$$\begin{bmatrix} dw = dw/n \\ db = db/n \\ w = w - \alpha dw \\ b = b - \alpha db \end{bmatrix}$$

$$Z = w^{T}X + b$$

$$A = \sigma(Z)$$

$$dZ = A - Y$$

$$dw = \frac{1}{n}XdZ^{T}$$

$$db = \frac{1}{n}\sum_{i=1}^{n}dz^{(i)}$$

$$w = w - \alpha dw$$

$$b = b - \alpha db$$

Vectorized version

Gradient Descent For Logistic Regression

• Outline:

Repeat until convergence{ $Z = w^T X + b$ $A = \sigma(Z)$ dZ = A - Y $dw = \frac{1}{n}XdZ^{T}$ $db = \frac{1}{n}\sum_{i=1}^{n}dz^{(i)}$ $w = w - \alpha dw$

 $b = b - \alpha db$

The Computation Graph of A Neural Network

 Akin to logistic regression, we can represent any neural network in terms of a computation graph

A neural network with 2 layers

The Computation Graph of A Neural Network

 Akin to logistic regression, we can represent any neural network in terms of a computation graph

The corresponding computation graph

Forward Propagation

• The loss function can be computed by moving from left to right

$$\frac{\partial \mathcal{L}}{\partial a^{[2]}}$$
 = Partial derivative of \mathcal{L} with respect to $a^{[2]}$

$$\frac{\partial \mathcal{L}}{\partial a^{[2]}} = \frac{-y}{a^{[2]}} + \frac{(1-y)}{(1-a^{[2]})}$$

$$\frac{\partial \mathcal{L}}{\partial z^{[2]}}$$
 = Partial derivative of \mathcal{L} with respect to $z^{[2]}$

$$\frac{\partial \mathcal{L}}{\partial z^{[2]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} = a^{[2]} - y$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{h}^{[2]}}$$
 = Partial derivative of \mathcal{L} with respect to $\boldsymbol{b}^{[2]}$

$$\frac{\partial \mathcal{L}}{\partial b^{[2]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial b^{[2]}} = a^{[2]} - y$$

$$\frac{\partial \mathcal{L}}{\partial w^{[2]}}$$
 = Partial derivative of \mathcal{L} with respect to $W^{[2]}$

$$\frac{\partial \mathcal{L}}{\partial W^{[2]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial W^{[2]}} = (a^{[2]} - y)a^{[1]T}$$

$$\frac{\partial \mathcal{L}}{\partial a^{[1]}}$$
 = Partial derivative of \mathcal{L} with respect to $a^{[1]}$

$$\frac{\partial \mathcal{L}}{\partial a^{[1]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial a^{[1]}} = (a^{[2]} - y)w^{[2]T}$$

$$\frac{\partial \mathcal{L}}{\partial z^{[1]}}$$
 = Partial derivative of \mathcal{L} with respect to $z^{[1]}$

• The derivatives can be computed by moving from right to left

$$\frac{\partial \mathcal{L}}{\partial z^{[1]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial a^{[1]}} \times \frac{\partial a^{[1]}}{\partial z^{[1]}} = (a^{[2]} - y)w^{[2]T} * a^{[1]}(1 - a^{[1]})$$

Element-wise product

$$\frac{\partial \mathcal{L}}{\partial b^{[1]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial a^{[1]}} \times \frac{\partial a^{[1]}}{\partial z^{[1]}} \times \frac{\partial z^{[1]}}{\partial b^{[1]}}$$

$$\frac{\partial \mathcal{L}}{\partial h^{[1]}} = (a^{[2]} - y)w^{[2]T} * a^{[1]}(1 - a^{[1]})$$

$$\frac{\partial \mathcal{L}}{\partial W^{[1]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial a^{[1]}} \times \frac{\partial a^{[1]}}{\partial z^{[1]}} \times \frac{\partial z^{[1]}}{\partial W^{[1]}}$$

$$\frac{\partial \mathcal{L}}{\partial W^{[1]}} = \left((a^{[2]} - y) w^{[2]T} * a^{[1]} (1 - a^{[1]}) \right) x^{T}$$

Backward Propagation: Summary

• Here is the summary of the gradients in our given neural network:

$$dz^{[2]} = \frac{\partial \mathcal{L}}{\partial z^{[2]}} = a^{[2]} - y \qquad dz^{[1]} = \frac{\partial \mathcal{L}}{\partial z^{[1]}} = dz^{[2]} w^{[2]T} * a^{[1]} (1 - a^{[1]})$$

$$db^{[2]} = \frac{\partial \mathcal{L}}{\partial b^{[2]}} = a^{[2]} - y \qquad db^{[1]} = \frac{\partial \mathcal{L}}{\partial b^{[1]}} = dz^{[2]} w^{[2]T} * a^{[1]} (1 - a^{[1]})$$

$$dW^{[2]} = \frac{\partial \mathcal{L}}{\partial W^{[2]}} = (a^{[2]} - y) a^{[1]T} \qquad dW^{[1]} = \frac{\partial \mathcal{L}}{\partial W^{[1]}} = \left(dz^{[2]} w^{[2]T} * a^{[1]} (1 - a^{[1]})\right) x^{T}$$