МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Лабораторная работа №3.4.1 Измерение магнитной восприимчивости диа- и парамагнетиков

> Работу выполнил Лохматов Арсений Игоревич Козярский Алексей Сергеевич Б03-303

1 Теоретическая часть

Цель работы: измерить магнитную восприимчивость диа- и парамагнетиков.

Оборудование: электромагнит, весы, милливеберметр, регулируемый источник постоянного тока, образцы диа- и парамагнетиков.

1.1 Экспериментальная установка

Схема установки приведена на рисунке 1. Магнитное поле с максимальной индукцией $\simeq 1$ T создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр полюсов существенно превосходит ширину зазора, поэтому поле в средней части зазора достаточно однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником питания и измеряется амперметром, встроенным в источник питания. Градуировка электромагнита производится при помощи милливеберметра.

Рис. 1: Схема установки

При измерениях образцы поочердно подвешиваются к весам так, что один конеч образца оказывается в зазоре электромагнита, а другой - вне зазора, где индукцией магнитного поля можно пренебречь. При помощи весов определяется перегрузка $\Delta P = F$ – сила, действующая на образец со стороны магнитного поля.

Силы, действующие на диа- парамагнитные образцы, очень малы.

2 Практическая часть

В работе предлагается исследовать зависимость силы, действующей на образец, размещённый в зазор элетромагнита, от величины поля в зазоре и по результатам измерений рассчитать магнитную восприимчивость меди и аллюминия.

2.1 Подготовка приборов к работе

- 1. Включим в сеть весы для прогрева.
- 2. Ознакомимся с экспериментальной установкой, изображённой на рисунке 1, и техническим описанием источника питания.
- 3. Проверим работу цепи питания магнита: для этого пере включением источника питания убедимся в том, что
 - (а) все регулировочные ручки источника питания установлены на минимум;
 - (b) включим источник питания в сеть и установим обе ручки регулировки **напряжения** на максимум;
 - (c) для увеличения тока через магнит сначала выведем ручку плавной регулировки **тока** "**fine**" до максимума, потом ручку грубой регулировки "**coarse**", уменьшение тока производится в обратном порядке.

Определим максимально возможный ток через магнит I_{max} и уберм ток до нуля.

$$I_{max} = (1.17 \pm 0.02) \text{ A } (\varepsilon = 1.7\%)$$

2.2 Калибровка магнита [B = f(I)]

- 1. Ознакомились с описанием милливеберметра.
- 2. Определим зависимость индукции *B* в зазоре от тока, протекающего через обмотку электромагнита. Для этого устанавливаем силу тока в электромагните, вносим пробную катушку милливеберметра в магнитное поле катушки, устаноавливаем начальное значение милливеберметра, быстро вынимаем датчик и записываем разность показаний милливеберметра до и после вынимания катушки. Чтобы данное значение перевести в величину магнитной индукции, пользуемся соотношением:

$$dW = B \cdot SN \iff B = \frac{dW}{SN}, \ SN = 72 \text{ cm}^2.$$

Результаты измерений занесём в таблицу 1.

I, A	<i>W</i> , мВб	В, Тл	I, A	<i>W</i> , мВб	В, Тл
0.2	1.5	0.208	0.7	5.05	0.701
0.3	2.2	0.306	0.8	5.65	0.785
0.4	2.9	0.403	0.9	6.3	0.875
0.5	3.6	0.5	1.0	6.85	0.951
0.6	4.4	0.611	1.1	7.3	1.014

Таблица 1: Градуировка электромагнита

По полученным данным построим график зависимости B = f(I).

Рис. 2: График зависимости B(I)

Видим, что при небольших значениях тока зависимость пропорциональная. При больших значениях тока зависимоть выход на "плато". Далее нам нужно будет сопоставить значению силы тока значение индукции магнитного поля. Для этого мы можем умножать значения тока на угловой коэффициент

$$\alpha = (913.72 \pm 19.86) \frac{\text{MT} \pi}{\text{A}}, (\varepsilon = 2.2\%).$$

А можем далее устанавливать такое значение тока, при котором мы уже измерили индукцию магнитного поля. Мы воспользуемся вторым способом.

2.3 Измерение сил, действующих на образец в магнитном поле

- 1. Ознакомились с техническим описанием весов.
- 2. При нулевом токе через электромагнит осторожно подвесим к весам один из образцов так, чтобы он не касался наконечников электромагнита. Обнулим показания весов, чтобы измерять непосредственно перегрузки $\Delta P = F$ силы, действующие на образец при различных токах в обмотках электромагнита.
- 3. Установим минимальное из выбранных пр калибровке магнита значение тока I_{min} и проведм измерение перегрузки.

Повторим измерения $\Delta P = f(I)$ для 6-8 значений тока в диапазоне от I_{min} до I_{max} . Проведём серию измерений, уменьшая ток через магнит.

Проделаем эти измерения для всех образцов, результаты занесём в таблицу 4.

4. Построим на одном листе графики $|\Delta P| = f(B^2)$ для всех образцов.

Рис. 3: График зависимости B(I)

По наклонам полученных прямых рассчитаем величину χ по формуле

$$\Delta P = \alpha \cdot B^2$$
, где $\alpha = \frac{\chi s}{2\mu_0}$, где $\mu_0 = 4\pi \cdot 10^{-7} \frac{\Gamma_{\rm H}}{M}$

$$\Longrightarrow \chi = \frac{2\alpha\mu_0}{s}, \ \sigma_{\chi} = \chi \sqrt{\left(\frac{\sigma_{\alpha}}{\alpha}\right)^2 + \left(\frac{\sigma_s}{s}\right)^2}$$

Результаты вычислений занесём в таблицу 3.

Результаты, полученные нами, соизмеримы с табличными значениями. Так же совпадает знак, по которому можем определить, к какому типу магнетиков относится образец. Если магнитная восприимчивость со знаком минус, то перед нами диамагнетики, которые в нашем опыте выталкивались полем. Если же, наоборот, магнитная восприимчивость со знаком плюс, то перед нами парамагнетики - втягивались полем.

$W, d = (1.0 \pm 0.01) \text{ cm}$							
	$\alpha, \cdot 10^{-4} \frac{H}{T_{\pi}^2}$	$\sigma_{\alpha}, \cdot 10^{-4} \frac{\mathrm{H}}{\mathrm{Tr}^2}$	$\varepsilon_{\alpha},\%$	χ , $\cdot 10^{-6}$	σ_{χ} , $\cdot 10^{-6}$	$\varepsilon_\chi,\%$	$\chi_{tab}, \cdot 10^{-6}$
-	23.867	0.156	0.7	76.375	1.607	2.1	68
	24.159	0.364	1.5	77.31	1.935	2.5	68
		Cu , α	d = (1.0	± 0.01) ci	M		
	$\alpha, \cdot 10^{-4} \frac{H}{T\pi^2}$	$\sigma_{\alpha}, \cdot 10^{-4} \frac{\mathrm{H}}{\mathrm{T}^{2}}$	$\varepsilon_{\alpha},\%$	$\chi, \cdot 10^{-6}$	σ_{χ} , $\cdot 10^{-6}$	$\varepsilon_\chi,\%$	$\chi_{tab}, \cdot 10^{-6}$
-	-2.964	0.026	-0.9	-9.485	-0.208	2.2	-9.8
	-2.904	0.035	-1.2	-9.292	-0.216	2.3	-9.8
		C1, d	l = (0.86)	6 ± 0.01) c	M		
	$\alpha, \cdot 10^{-4} \frac{H}{T_{\pi^2}}$	$\sigma_{\alpha}, \cdot 10^{-4} \frac{H}{T_{\pi}^2}$	$\varepsilon_{\alpha},\%$	χ , $\cdot 10^{-6}$	σ_{χ} , $\cdot 10^{-6}$	$\varepsilon_{\chi},\%$	$\chi_{tab}, \cdot 10^{-6}$
-	-32.25	0.187	-0.6	-139.533	-3.344	2.4	-
	-32.691	0.322	-1.0	-141.445	-3.572	2.5	-
$Al, d = (1.0 \pm 0.01) \text{ cm}$							
	$\alpha, \cdot 10^{-4} \frac{H}{T_{\pi}^2}$	$\sigma_{\alpha}, \cdot 10^{-4} \frac{\mathrm{H}}{\mathrm{Tr}^2}$	$arepsilon_{lpha}, \%$	$\chi, \cdot 10^{-6}$	σ_{χ} , $\cdot 10^{-6}$	$arepsilon_\chi,\%$	$\chi_{tab}, \cdot 10^{-6}$
_	6.363	0.055	0.9	20.363	0.444	2.2	23
	6.307	0.121	1.9	20.183	0.559	2.8	23

Таблица 2: Результаты вычислений

3 Подведение результатов и выводы

В этой работе мы измерили магнитную восприимчивость образцов, оценили погрешность измерений. Мы получили значения, близкие к табличным. Исходя из результатов, можно сказать, что ${\bf W}$ и ${\bf Al}$ – парамагнетики, а ${\bf Cu}$ и ${\bf C1}$ – диамагнетики.

	W	Cu	C1	Al
χ	$(76.4 \pm 1.6) \cdot 10^{-6}$	$(-9.5 \pm 0.2) \cdot 10^{-6}$	$(-139.5 \pm -3.3) \cdot 10^{-6}$	$(20.4 \pm 0.4) \cdot 10^{-6}$
χ_{tab}	$68 \cdot 10^{-6}$	$-9.8 \cdot 10^{-6}$	-	$23 \cdot 10^{-6}$

Таблица 3: Итоговая таблица

W,	$W, d = (1.0 \pm 0.01) \text{ см}$ $I, A \mid B, \text{Тл} \mid \Delta P, \cdot 10^{-6} \text{ H}$		$Cu, d = (1.0 \pm 0.01) \text{ cm}$			
I, A	В, Тл	$\Delta P, \cdot 10^{-6} \text{ H}$	I, A	В, Тл	$\Delta P, \cdot 10^{-6} \text{ H}$	
0.2	0.208	98.0	0.2	0.208	-9.8	
0.3	0.306	225.4	0.3	0.306	-19.6	
0.4	0.403	401.8	0.4	0.403	-39.2	
0.5	0.5	617.4	0.5	0.5	-68.6	
0.6	0.611	911.4	0.6	0.611	-98.0	
0.7	0.701	1166.2	0.7	0.701	-137.2	
0.8	0.785	1479.8	0.8	0.785	-176.4	
0.9	0.875	1793.4	0.9	0.875	-215.6	
1.0	0.951	2136.4	1.0	0.951	-254.8	
1.1	1.014	2410.8	1.1	1.014	-294.0	
1.0	0.951	2195.2	1.0	0.951	-264.6	
0.9	0.875	1901.2	0.9	0.875	-225.4	
0.8	0.785	1558.2	0.8	0.785	-186.2	
0.7	0.701	1225.0	0.7	0.701	-147.0	
0.6	0.611	940.8	0.6	0.611	-117.6	
0.5	0.5	646.8	0.5	0.5	-78.4	
0.4	0.403	431.2	0.4	0.403	-49.0	
0.3	0.306	254.8	0.3	0.306	-29.4	
0.2	0.208	117.6	0.2	0.208	-19.6	
$C1, d = (0.86 \pm 0.01) \text{ cm}$						
				•	± 0.01) см	
I, A	В, Тл	$\Delta P, \cdot 10^{-6} \text{ H}$	<i>I</i> , A	В, Тл	$\Delta P, \cdot 10^{-6} \text{ H}$	
I, A 0.2	B, Тл 0.208	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2	I, A 0.2	B, Тл 0.208	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4	
I, A 0.2 0.3	B, Тл 0.208 0.306	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2	I, A 0.2 0.3	B, Тл 0.208 0.306	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8	
I, A 0.2 0.3 0.4	B, Тл 0.208 0.306 0.403	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4	I, A 0.2 0.3 0.4	В, Тл 0.208 0.306 0.403	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8	
I, A 0.2 0.3 0.4 0.5	В, Тл 0.208 0.306 0.403 0.5	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8	I, A 0.2 0.3 0.4 0.5	В, Тл 0.208 0.306 0.403 0.5	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6	
I, A 0.2 0.3 0.4 0.5 0.6	В, Тл 0.208 0.306 0.403 0.5 0.611	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6	I, A 0.2 0.3 0.4 0.5 0.6	В, Тл 0.208 0.306 0.403 0.5 0.611	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2	
I, A 0.2 0.3 0.4 0.5 0.6 0.7	В, Тл 0.208 0.306 0.403 0.5 0.611 0.701	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6 -1538.6	I, A 0.2 0.3 0.4 0.5 0.6 0.7	В, Тл 0.208 0.306 0.403 0.5 0.611 0.701	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6 -1538.6 -1960.0	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8	В, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875	$\begin{array}{c c} \Delta P, \cdot 10^{-6} \text{ H} \\ -137.2 \\ -284.2 \\ -519.4 \\ -793.8 \\ -1146.6 \\ -1538.6 \\ -1960.0 \\ -2381.4 \end{array}$	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	В, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6 -1538.6 -1960.0 -2381.4 -2851.8	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2 578.2	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014	$\begin{array}{c} \Delta P, \cdot 10^{-6} \text{ H} \\ -137.2 \\ -284.2 \\ -519.4 \\ -793.8 \\ -1146.6 \\ -1538.6 \\ -1960.0 \\ -2381.4 \\ -2851.8 \\ -3263.4 \end{array}$	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2 578.2 637.0	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951	$\begin{array}{c} \Delta P, \cdot 10^{-6} \text{ H} \\ -137.2 \\ -284.2 \\ -519.4 \\ -793.8 \\ -1146.6 \\ -1538.6 \\ -1960.0 \\ -2381.4 \\ -2851.8 \\ -3263.4 \\ -2940.0 \\ \end{array}$	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2 578.2 637.0 578.2	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.0 0.9	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6 -1538.6 -1960.0 -2381.4 -2851.8 -3263.4 -2940.0 -2508.8	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.0 0.9	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2 578.2 637.0 578.2 499.8	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.0 0.9 0.8	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6 -1538.6 -1960.0 -2381.4 -2851.8 -3263.4 -2940.0 -2508.8 -2048.2	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.9 0.8	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2 578.2 637.0 578.2 499.8 421.4	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785 0.785	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6 -1538.6 -1960.0 -2381.4 -2851.8 -3263.4 -2940.0 -2508.8 -2048.2 -1607.2	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785 0.785	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2 578.2 637.0 578.2 499.8 421.4 333.2	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.9 0.8 0.7 0.6	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785 0.701 0.611	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6 -1538.6 -1960.0 -2381.4 -2851.8 -3263.4 -2940.0 -2508.8 -2048.2 -1607.2 -1205.4	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.0 0.9 0.8 0.7 0.6	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.705 0.701 0.611	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2 578.2 637.0 578.2 499.8 421.4 333.2 245.0	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.6 0.5	B, T _л 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785 0.701 0.611 0.5	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6 -1538.6 -1960.0 -2381.4 -2851.8 -3263.4 -2940.0 -2508.8 -2048.2 -1607.2 -1205.4 -852.6	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.6 0.5	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785 0.785 0.701 0.611 0.5	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2 578.2 637.0 578.2 499.8 421.4 333.2 245.0 186.2	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785 0.701 0.611 0.5 0.403	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6 -1538.6 -1960.0 -2381.4 -2851.8 -3263.4 -2940.0 -2508.8 -2048.2 -1607.2 -1205.4 -852.6 -558.6	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.6 0.5 0.4	B, T _л 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785 0.701 0.611 0.5 0.403	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2 578.2 637.0 578.2 499.8 421.4 333.2 245.0 186.2 117.6	
I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.6 0.5	B, T _л 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785 0.701 0.611 0.5	$\Delta P, \cdot 10^{-6} \text{ H}$ -137.2 -284.2 -519.4 -793.8 -1146.6 -1538.6 -1960.0 -2381.4 -2851.8 -3263.4 -2940.0 -2508.8 -2048.2 -1607.2 -1205.4 -852.6	I, A 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.6 0.5	B, Тл 0.208 0.306 0.403 0.5 0.611 0.701 0.785 0.875 0.951 1.014 0.951 0.875 0.785 0.785 0.701 0.611 0.5	$\Delta P, \cdot 10^{-6} \text{ H}$ 29.4 58.8 107.8 166.6 235.2 313.6 392.0 480.2 578.2 637.0 578.2 499.8 421.4 333.2 245.0 186.2	

Таблица 4: Результаты измерений