Chaos synchronization in three coupled SQUIDs

Joniald Shena*

National University of Science and Technology MISiS, Leninsky prosp. 4, Moscow, 119049, Russia

N. Lazarides and J. Hizanidis

Department of Physics, University of Crete, 71003 Heraklion, Greece

(Dated: April 10, 2021)

I. INTRODUCTION

II.

For three coupled SQUID devices, the set of dimensionless equations is:

$$\begin{bmatrix} \ddot{\Phi}_{1} + \gamma \dot{\Phi}_{1} + \beta \sin(2\pi\Phi_{1}) \\ \ddot{\Phi}_{2} + \gamma \dot{\Phi}_{2} + \beta \sin(2\pi\Phi_{2}) \\ \ddot{\Phi}_{3} + \gamma \dot{\Phi}_{3} + \beta \sin(2\pi\Phi_{3}) \end{bmatrix} = \frac{1}{\det(\Lambda)} \begin{bmatrix} 1 - \lambda^{2} & -\lambda + \frac{\lambda^{2}}{8} & \lambda^{2} - \frac{\lambda}{8} \\ -\lambda + \frac{\lambda^{2}}{8} & 1 - \frac{\lambda^{2}}{64} & -\lambda + \frac{\lambda^{2}}{8} \\ \lambda^{2} - \frac{\lambda}{8} & -\lambda + \frac{\lambda^{2}}{8} & 1 - \lambda^{2} \end{bmatrix} \begin{bmatrix} \Phi_{ext} - \Phi_{1} \\ \Phi_{ext} - \Phi_{2} \\ \Phi_{ext} - \Phi_{3} \end{bmatrix}$$
(1)

where:

$$\det(\Lambda) = 1 - \frac{129\lambda^2}{64} + \frac{\lambda^3}{4} \tag{2}$$

 ϕ_{ac} is the amplitude of an alternating (ac) flux, Ω its relative frequency rescaling by the inductive-capacitive SQUID frequency and γ is the loss coefficient. $\beta = I_c L/2\pi$ where L is the self-inductance of the SQUID ring and I_c is the critical current which characterizes a Josephson junction. Finally, ϕ is the magnetic flux rescaling by the flux quantum and λ is the coupling coefficient between nearest neighboring SQUIDs.

In order to quantify the synchronization between $\phi_1(t)$ and $\phi_3(t)$ we calculate the η measurement [1]:

$$\eta(t) = \sqrt{(\phi_1(t) - \phi_3(t))^2 + (\dot{\phi}_1(t) - \dot{\phi}_3(t))^2}, \quad (3)$$

where for the mean value of η in time close to zero $(\langle \eta \rangle_t \simeq 0)$ we have almost perfect synchronization, for $0 < \langle \eta \rangle_t \leqslant 0.3$ we have intermittent synchronization and finally for $\langle \eta \rangle_t > 0.3$ the two time series $\phi_1(t)$ and $\phi_3(t)$ are unsynchronized.

The phenomena of chaos synchronization has also been observed in a system of three coupled lasers [2].

FIG. 1. Schematic diagram of a SQUID trimer with positive magnetic coupling strength, in a magnetic field where (Mf) is the Magnetic field, (Sr) is the Superconducting ring, (JJ) is the Josephson Junction, and (I_1) , (I_2) and (I_3) are the induced currents.

All the numerical analysis have been obtained using Julia programming language and the DynamicalSystems package [3]. All the code for this paper can be found in https://github.com/Joniald/Squid_Trimer.

^{*} jonialdshena@misis.ru

FIG. 2. (a) The three maxima Lyapunov exponents (the rest are negative), (b) the mean value over time of η and (c) maximum value of the magnetic flux ϕ_1 as a function of the driving frequency. Red line A corresponds to $\Omega=1.233$ and B to $\Omega=1.2375$. We observe two main regions: The first one is between ($\Omega=1.23, \Omega=1.234$) corresponds to meta-stable hyper chaos synchronization where ($\langle \eta \rangle_t \neq 0, L_1 > 0, L_2 > 0$) and the second one lying between ($\Omega=1.234, \Omega=1.244$) corresponds to chaos synchronization where ($\langle \eta \rangle_t = 0, L_1 > 0$). Parameters: $\lambda=0.1075, \phi_{ac}=0.02, \gamma=0.024, \phi_{dc}=0$ and $\beta=0.1369$.

FIG. 3. Unsynchronized chaos for a set of parameters as in Fig. 2 (A red line) where $\Omega=1.233$. (a) Time series for ϕ_1 and ϕ_3 . (c) Projection of the flow onto ϕ_1 - ϕ_2 plane. (e) Projection into the ϕ_1 - ϕ_3 plane. (b), (d) and (f) the same for synchronized chaos where the set of parameters as in Fig. 2 (B red line) where $\Omega=1.2375$.

III. CONCLUSIONS

IV. ACKNOWLEDGEMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation in the framework of the Increase Competitiveness Program of NUST "MISiS" (Grant number K4-2018-049).

G. L. Baker, J. A. Blackburn, and H. J. T. Smith, Phys. Rev. Lett. 81, 554 (1998).

^[2] H. G. Winful and L. Rahman, Phys. Rev. Lett. 65, 1575 (1990).

^[3] G. Datseris, Journal of Open Source Software 3, 598 (2018).

FIG. 4. Map of different dynamical regions in the (a) (λ,Ω) parameter space where $\phi_{ac}=0.02$ and (b) in the (ϕ_{ac},Ω) parameter space where $\lambda=0.02$. Depending on three maxima Lyapunov exponents $(L_1>L_2>L_3)$ and $\langle\eta\rangle_t$ measurement, we observe six different areas. Periodic synchronization (PS) where $L_1=0$ and $\langle\eta\rangle_t<0.01$, Periodic unsynchronized solution (PUn) where $L_1=0$ and $0.3<\langle\eta\rangle_t$, Quasiperiodic unsynchronized solution (QPUn) where $L_1=L_2=0$ and $\langle\eta\rangle_t>0.3$, Chaos synchronization (CS) where $L_1>0, L_2=0$ and $\langle\eta\rangle_t<0.01$, Chaos intermittent synchronization (CI) where $L_1>0, L_2=0$ and $0.01<\langle\eta\rangle_t<0.3$ and finally Hyperchaos intermittent synchronization (HCI) where $L_1>0, L_2>0, L_3=0$ and $0.01<\langle\eta\rangle_t<0.3$.

FIG. 5. (a) Periodic synchronization (PS) where $\Omega=1.21$ and $\lambda=0.16$. (b) Periodic unsynchronized (PUn) solution where $\Omega=1.24$ and $\lambda=0.07$ (c) Quasiperiodic unsynchronized (QPUn) solution where $\Omega=1.255$ and $\lambda=0.118$. In first column the time series of the magnetic flux for the first SQUID, (red line), and the third SQUID, (blue line). In second column η over time. Other parameters: $\phi_{ac}=0.02$, $\gamma=0.024$, $\phi_{dc}=0$ and $\beta=0.1369$.

FIG. 6. (a) Chaos synchronization (CS) where $\Omega=1.235$ and $\lambda=0.1$. (b) Chaos intermittent synchronization (CI) where $\Omega=1.23$ and $\lambda=0.125$. (c) Hyperchaos intermittent synchronization (HCI) where $\Omega=1.23$ and $\lambda=0.11$. First and second column as in Fig.5. Other parameters: $\phi_{ac}=0.02$, $\gamma=0.024$, $\phi_{dc}=0$ and $\beta=0.1369$.