Laboratorium 9 Układy równań – metody bezpośrednie

Krzysztof Solecki

12 Maja 2023

1 Treści zadań

- 1. Korzystając z przykładu napisz program, który:
 - (a) Jako parametr pobiera rozmiar układu równań n
 - (b) Generuje macierz układu A(nxn) i wektor wyrazów wolnych b(n)
 - (c) Rozwiązuje układ równań na trzy sposoby:
 - i. poprzez dekompozycję LU macierzy A: A=LU, posługując się funkcjami GSL: gsl_linalg_LU_decomp () i gsl_linalg_LU_solve (); wydrukować na ekran wyjściową macierz (parametr pierwszy) i wektor (parametr drugi)
 - ii. poprzez odwrócenie macierzy A: x=A-1 b, posługując się funkcją GSL: gsl_linalg_LU_invert (); sprawdzić czy AA-1=I i A-1A=I (macierz jednostkowa)
 - iii. poprzez dekompozycję QR macierzy A: A=QR, posługując się funkcjami GSL: gsl_linalg_QR_decomp () i gsl_linalg_QR_solve (); wydrukować na ekran wyjściową macierz (parametr pierwszy) i wektor (parametr drugi)
 - (d) Sprawdzić poprawność rozwiązania (tj., czy $\mathbf{A}\mathbf{x}{=}\mathbf{b})$
 - (e) Zmierzyć całkowity czas rozwiązania układu do mierzenia czasu można skorzystać z przykładowego programu dokonującego pomiaru czasu procesora spędzonego w danym fragmencie programu.
 - (f) Porównać czasy z trzech sposobów: poprzez dekompozycję LU, poprzez odwrócenie macierzy i poprzez dekompozycję QR.
- 2. **Zadanie domowe:** Narysuj wykres zależności całkowitego czasu rozwiązywania układu (LU, QR, odwrócenie macierzy) od rozmiaru układu równań. Wykonaj pomiary dla 5 wartości z przedziału od 10 do 100.

2 Rozwiązania zadań

Program został napisany w języku C i zamieszczony razem z niniejszym dokumentem. Do rozwiązania zostały wykorzystane odpowiednie funkcje z biblioteki gsl. Poniżej zmieściłem tabelkę obrazującą czasy wykonania dla każdej z metod przy 5 różnych wielkości macierzy n (10, 25, 50, 75, 100).

n	LU	Macierz odwrotna	QR
10	0.000403	0.000197	0.000230
25	0.000107	0.000095	0.000072
50	0.000202	0.000403	0.000301
75	0.000629	0.001402	0.001350
100	0.001028	0.001730	0.001630

Table 1: Wyniki pomiarów czasowych dla trzech metod: dekompozycji LU, metody macierzy odwrotnych i metody QR

Rozkład danych można zaobserwować na wykresie wygenerowanym poniżej za pomocą następujących poleceń:

```
plot "LU.txt" with lines title "Metoda LU", "inv_matrix.txt" with lines title "Metoda macierzy odwrotnej", "QR.txt" with lines title "Metoda QR"
```


Rys. 1: Wykres zależności czasu od wielkości danych wejściowych dla metod: LU, QR i macierzy odwrotnej

Wniosek: Można zauważyć, że najszybszą metodą jest dekompozycja LU. Czas jej działania jest nawet około dwukrotnie mniejszy od pozostałych metod. Metody odwróconej macierzy i QR mają porównywalnie podobne czasy działania z uwzględnieniem przewagi metody QR dla większych danych wejściowych.

3 Bibliografia

- 1. Katarzyna Rycerz: Materiały wykładowe z przedmiotu Metody Obliczeniowe w Nauce i Technice
- 2. https://www.wolframalpha.com/
- 3. https://www.desmos.com/calculator?lang=pl
- 4. https://www.gnu.org/software/gsl/gsl.html
- 5. https://pl.wikipedia.org/wiki/Metoda_LU
- 6. https://pl.wikipedia.org/wiki/Rozk%C5%82ad QR
- 7. https://pl.wikipedia.org/wiki/Macierz odwrotna
- 8. Włodzimierz Funika: Materiały ze strony