Cada questão vale 2,0 pontos.

- 1. a) Mostre que a bola $B = \{x \in \mathbb{R}^n; |x| \leq 1\}$ é um conjunto compacto, mostrando que é um conjunto fechado e limitado.
- **b)** Mostre que a função $f(x) = e^{-|x|} sen x_1$, $x = (x_1, \dots, x_n)$, tem um máximo (global) em \mathbb{R}^n .
- **2.** Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ dada pela equação $f(x) = |x|^2 x$.
- a) Mostre que f é uma aplicação de classe C^{∞} e que leva a bola aberta $B = \{x \in \mathbb{R}^n; |x| < 1\}$ na mesma de forma bijetiva.
- **b)** Calcule a matriz jacobiana Jf(x) e a transformação derivada $f'(x) \cdot h$, para quaisquer $x, h \in \mathbb{R}^n$.
- c) Mostre que f leva uma bola aberta centrada em $e_1 = (1, 0, \dots, 0)$ em um conjunto aberto.
 - d) Mostre que a inversa de f não é diferenciável na origem.
- **3.** Seja $c \in \mathbb{R}$ um valor regular de uma aplicação $f : \mathbb{R}^n \to \mathbb{R}$ de classe C^1 $(\nabla f(x) \neq 0, \ \forall x; f(x) = c)$. Mostre que $M = f^{-1}([c, \infty))$ é uma variedade com bordo orientável e descreva os espaços tangentes em um ponto em ∂M e em um ponto em $M \partial M$.
- **4. a)** Seja M uma k + l + 1 variedade (de classe C^{∞}) em \mathbb{R}^n orientada e com bordo. Sejam ω uma k-forma e η uma l-forma, ambas (de classe C^{∞}) definidas em um aberto do \mathbb{R}^n contendo M. Mostre a "fórmula de integração por partes"

$$\int_{M} \omega \wedge d\eta = \int_{\partial M} \omega \wedge \eta \, - \, (-1)^k \int_{M} d\omega \wedge \eta.$$

b) Usando o item a), mostre que se M é uma n variedade (de classe C^{∞}) em \mathbb{R}^n orientada com bordo (não vazio) e conexa, e f é uma função de classe C^{∞} em um aberto do \mathbb{R}^n contendo M, tal que $\Delta f | M = 0$ ($\Delta f := \sum_{i=1}^n \partial^2 f / \partial x_i^2$) e $f | \partial M = 0$, então f | M = 0.

Sugestão: mostre que $\Delta f = d(\sum_{i=1}^{n} (-1)^{i+1} \frac{\partial f}{\partial x_i} dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n)$, onde $\widehat{dx_i}$ significa que dx_i é omitido, e tome $\omega = f$ e $d\eta = \Delta f$.

5. Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função contínua, z um vetor do \mathbb{R}^n e B a bola fechada $\{x \in \mathbb{R}^n; |x| \leq 1\}$. Mostre que

$$\int_{B} f(x \cdot z) \, dx = \int_{B} f(x_{n}|z|) \, dx$$

onde $x \cdot z$ denota o produto interno usual do \mathbb{R}^n $(x \cdot z = \sum_{j=1}^n x_j z_j; \ x = (x_1, \dots, x_n), \ z = (z_1, \dots, z_n)).$

Exame de Qualificação 2:2014 - Topologia Geral

NOME	:				RA:
	11	 . ~	,		

Escolha 5 questões das seguintes:

- 1. Calcular o grupo fundamental de $\mathbb{R}^2 \{(0,0),(0,1)\}.$
- 2. Provar que $\pi_1(\mathbb{RP}^n) = \mathbb{Z}_2$ se $n \geq 2$.
- 3. Sejam X um espaço de Tychonoff, Y um espaço Hausdorff compacto e $h: X \to Y$ uma função continua. Provar que existe uma $\tilde{h}: \beta X \to Y$ continua tal que $\varepsilon_X \circ \tilde{h} = h$. Onde $(\beta X, \varepsilon_X)$ é a compactificação de Stone-Cech de X.
- 4. Seja X um espaço topologico normal e T_1 e $\{U_1,\cdots,U_n\}$ uma cobertura por abertos para X. Mostrar que existem funções continuas $f_1,\cdots,f_n:X\to [0,1]$ tais que $f_1+\cdots+f_n=1$ e para cada $i=1,\cdots,n,\overline{\{x:f_i(x)\neq 0\}}\subset U_i$.
- 5. Seja X um espaço topologico não vazio e \mathcal{U} um ultrafiltro de X. Provar que se $x \in X$ é um ponto de acumulação de \mathcal{U} então \mathcal{U} converge a x.
- 6. Seja X um espaço topologico Hausdorff e K um subconjunto compacto de X. Sejam U e V abertos tais que $K \subset U \cup V$ Provar que existem dois compactos disjuntos K_1 e K_2 de X tais que $K = K_1 \cup K_2$, $K_1 \subset U$ e $K_2 \subset V$.
- 7. Prove que o produto arbitrario de espaços compactos é compacto.
- 8. Prove que o produto arbitrario de espaços conexos é conexo.