

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A

Aula 4 - Matrizes

Matriz Elementar, Posto e Nulidade

Determinante

Professora: Isamara Alves

11/03/2021

Posto e Nulidade - Definição

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A.

Posto e Nulidade - Definição

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{P}(A)$ e denominamos POSTO de A "o número de linhas não-nulas da matriz B".

Posto e Nulidade - Definição

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{P}(A)$ e denominamos POSTO de A "o número de linhas não-nulas da matriz B".

Definição.2(NULIDADE): Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A.

Posto e Nulidade - Definição

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{P}(A)$ e denominamos POSTO de A "o número de linhas não-nulas da matriz B".

Definição.2(NULIDADE): Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{N}(A)$ e denominamos NULIDADE de A "o escalar $(n - \mathcal{P}(A))$ "; n é o número de colunas da matriz A.

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{P}(A)$ e denominamos Posto de A "o número de linhas não-nulas da matriz B".

Definição.2(NULIDADE): Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{N}(A)$ e denominamos NULIDADE de A "o escalar $(n - \mathcal{P}(A))$ "; n é o número de colunas da matriz A. EXEMPLOS:

1.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$

Posto e Nulidade - Definição

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{P}(A)$ e denominamos POSTO de A "o número de linhas não-nulas da matriz B".

Definição.2(NULIDADE): Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{N}(A)$ e denominamos NULIDADE de A "o escalar $(n - \mathcal{P}(A))$ "; n é o número de colunas da matriz A. EXEMPLOS:

1.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix} \underbrace{\cdots \cdots}_{\text{ops. elementares}}$$

Posto e Nulidade - Definição

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{P}(A)$ e denominamos POSTO de A "o número de linhas não-nulas da matriz B".

Definição.2(NULIDADE): Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{N}(A)$ e denominamos NULIDADE de A "o escalar $(n - \mathcal{P}(A))$ "; n é o número de colunas da matriz A. EXEMPLOS:

1.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 one elementares $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Posto e Nulidade - Definição

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{P}(A)$ e denominamos POSTO de A "o número de linhas não-nulas da matriz B".

Definição.2(NULIDADE): Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{N}(A)$ e denominamos NULIDADE de A "o escalar $(n - \mathcal{P}(A))$ "; n é o número de colunas da matriz A. EXEMPLOS:

1.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix} \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B$$
.

Posto e Nulidade - Definição

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{P}(A)$ e denominamos POSTO de A "o número de linhas não-nulas da matriz B".

Definição.2(NULIDADE): Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{N}(A)$ e denominamos NULIDADE de A "o escalar $(n - \mathcal{P}(A))$ "; n é o número de colunas da matriz A. EXEMPLOS:

EXEMPLOS:

1.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 ops. elementares $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B$.

Posto e Nulidade - Definição

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{P}(A)$ e denominamos Posto de A "o número de linhas não-nulas da matriz B".

Definição.2(NULIDADE): Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{N}(A)$ e denominamos NULIDADE de A "o escalar $(n - \mathcal{P}(A))$ "; n é o número de colunas da matriz A. EXEMPLOS:

1.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 ops. elementares $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B$.
 $\mathcal{P}(A) = 3 \in \mathcal{N}(A) = 3 - 3 = 0$.

Posto e Nulidade - Definição

Definição.1(Posto):

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{P}(A)$ e denominamos Posto de A "o número de linhas não-nulas da matriz B".

Definição.2(NULIDADE): Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que B é uma Matriz na Forma Escada e linha equivalente à matriz A. Indicamos por $\mathcal{N}(A)$ e denominamos NULIDADE de A "o escalar $(n - \mathcal{P}(A))$ "; n é o número de colunas da matriz A. EXEMPLOS:

1.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 ops. elementares $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B$.
 $\mathcal{P}(A) = 3 \in \mathcal{N}(A) = 3 - 3 = 0$.

2.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$
 ops. elementares

2.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$
 ops. elementares
$$\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$
 ops. elementares $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B$

2.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$
 ops. elementares $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B$

$$P(A) = 2$$

2.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$
 ops. elementares $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B$

$$\mathcal{P}(A) = 2 \text{ e } \mathcal{N}(A) = 3 - 2 = 1.$$

2.
$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$
 ops. elementares $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B$

$$\mathcal{P}(A) = 2 \text{ e } \mathcal{N}(A) = 3 - 2 = 1.$$

Posto e Nulidade - Exercícios

Determine o Posto e a Nulidade das matrizes abaixo, efetuando operações elementares sobre as linhas das matrizes.

(a)
$$A = \begin{bmatrix} 2 & 0 & -4 & 6 \\ 3 & 1 & 2 & 4 \\ 1 & 1 & 6 & -2 \end{bmatrix}$$

Posto e Nulidade - Exercícios

Determine o Posto e a Nulidade das matrizes abaixo, efetuando operações elementares sobre as linhas das matrizes.

(a)
$$A = \begin{bmatrix} 2 & 0 & -4 & 6 \\ 3 & 1 & 2 & 4 \\ 1 & 1 & 6 & -2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & -4 \\ 1 & 3 & 1 \end{bmatrix}$$

Posto e Nulidade - Exercícios

Determine o Posto e a Nulidade das matrizes abaixo, efetuando operações elementares sobre as linhas das matrizes.

(a)
$$A = \begin{bmatrix} 2 & 0 & -4 & 6 \\ 3 & 1 & 2 & 4 \\ 1 & 1 & 6 & -2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & -4 \\ 1 & 3 & 1 \end{bmatrix}$$

Posto e Nulidade - Exercícios(Respostas)

(a) $A \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}}$

(a)
$$A \xrightarrow{\cdots \sim \cdots} \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 8 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(a)
$$A \xrightarrow{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 8 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\mathcal{P}(A) = 2$

(a)
$$A \xrightarrow{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 8 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\mathcal{P}(A) = 2 \text{ e } \mathcal{N}(A) = 4 - 2 = 2.$

(a)
$$A \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 8 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\mathcal{P}(A) = 2 \text{ e } \mathcal{N}(A) = 4 - 2 = 2.$

(b)
$$A \quad \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}}$$

(a)
$$A \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 8 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = 2 \text{ e } \mathcal{N}(A) = 4 - 2 = 2.$$
(b) $A \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

(a)
$$A \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 8 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = 2 \text{ e } \mathcal{N}(A) = 4 - 2 = 2.$$
(b) $A \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\mathcal{P}(A) = 3$$

(a)
$$A \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 8 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = 2 \text{ e } \mathcal{N}(A) = 4 - 2 = 2.$$
(b) $A \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\mathcal{P}(A) = 3 \text{ e } \mathcal{N}(A) = 3 - 3 = 0.$$

(a)
$$A \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 8 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{P}(A) = 2 \text{ e } \mathcal{N}(A) = 4 - 2 = 2.$$
(b) $A \underbrace{\cdots \sim \cdots}_{\text{ops. elementares}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\mathcal{P}(A) = 3 \text{ e } \mathcal{N}(A) = 3 - 3 = 0.$$

Matriz Elementar - Definição

Seja $E \in \mathcal{M}_n(\mathbb{K})$.

Matriz Elementar - Definição

Seja $E \in \mathcal{M}_n(\mathbb{K})$. Dizemos que a matriz E_n é uma "MATRIZ ELEMENTAR"

Matriz Elementar - Definição

Seja $E \in \mathcal{M}_n(\mathbb{K})$. Dizemos que a matriz E_n é uma "MATRIZ ELEMENTAR" se, e somente se, E_n é obtida a partir de uma úNICA operação elementar efetuada sobre as linhas da matriz identidade de mesma ordem, I_n .

Matriz Elementar - Definição

Seja $E \in \mathcal{M}_n(\mathbb{K})$. Dizemos que a matriz E_n é uma "MATRIZ ELEMENTAR" se, e somente se, E_n é obtida a partir de uma ÚNICA operação elementar efetuada sobre as linhas da matriz identidade de mesma ordem, I_n . EXEMPLOS:

1.
$$E_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; pois,

Matriz Elementar - Definição

Seja $E \in \mathcal{M}_n(\mathbb{K})$. Dizemos que a matriz E_n é uma "MATRIZ ELEMENTAR" se, e somente se, E_n é obtida a partir de uma ÚNICA operação elementar efetuada sobre as linhas da matriz identidade de mesma ordem, I_n .

EXEMPLOS:

1.
$$E_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; pois, $I_3 \xrightarrow{op} E_3$; $op : L_1 \leftrightarrow L_3$

Matriz Elementar - Definição

Seja $E \in \mathcal{M}_n(\mathbb{K})$. Dizemos que a matriz E_n é uma "MATRIZ ELEMENTAR" se, e somente se, E_n é obtida a partir de uma ÚNICA operação elementar efetuada sobre as linhas da matriz identidade de mesma ordem, I_n .

1.
$$E_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; pois, $I_3 \xrightarrow{op} E_3$; $op : L_1 \leftrightarrow L_3$

2. $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$; pois,

Matriz Elementar - Definição

Seja $E \in \mathcal{M}_n(\mathbb{K})$. Dizemos que a matriz E_n é uma "MATRIZ ELEMENTAR" se, e somente se, E_n é obtida a partir de uma ÚNICA operação elementar efetuada sobre as linhas da matriz identidade de mesma ordem, I_n .

1.
$$E_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; pois, $I_3 \xrightarrow{op} E_3$; $op : L_1 \leftrightarrow L_3$
2. $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$; pois, $I_3 \xrightarrow{op} E_3$; $op : L_2 \leftarrow L_2 + 2L_1$

Matriz Elementar - Definição

Seja $E \in \mathcal{M}_n(\mathbb{K})$. Dizemos que a matriz E_n é uma "MATRIZ ELEMENTAR" se, e somente se, E_n é obtida a partir de uma ÚNICA operação elementar efetuada sobre as linhas da matriz identidade de mesma ordem, I_n .

1.
$$E_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; pois, $I_3 \xrightarrow{op} E_3$; $op : L_1 \leftrightarrow L_3$

2.
$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
; pois, $I_3 \xrightarrow{op} E_3$; $op: L_2 \leftarrow L_2 + 2L_1$

3.
$$E_2 = \begin{bmatrix} -\frac{1}{4} & 0 \\ 0 & 1 \end{bmatrix}$$
; pois,

Seja $E \in \mathcal{M}_n(\mathbb{K})$. Dizemos que a matriz E_n é uma "MATRIZ ELEMENTAR" se, e somente se, E_n é obtida a partir de uma ÚNICA operação elementar efetuada sobre as linhas da matriz identidade de mesma ordem, I_n . EXEMPLOS:

1.
$$E_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; pois, $I_3 \xrightarrow{op} E_3$; $op : L_1 \leftrightarrow L_3$

2.
$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
; pois, $I_3 \xrightarrow{op} E_3$; $op: L_2 \leftarrow L_2 + 2L_1$

3.
$$E_2 = \begin{bmatrix} -\frac{1}{4} & 0 \\ 0 & 1 \end{bmatrix}$$
; pois, $I_2 \xrightarrow{op} E_2$; $op: L_1 \leftarrow -\frac{1}{4}L_1$

Seja $E \in \mathcal{M}_n(\mathbb{K})$. Dizemos que a matriz E_n é uma "MATRIZ ELEMENTAR" se, e somente se, E_n é obtida a partir de uma ÚNICA operação elementar efetuada sobre as linhas da matriz identidade de mesma ordem, I_n . EXEMPLOS:

1.
$$E_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; pois, $I_3 \xrightarrow{op} E_3$; $op : L_1 \leftrightarrow L_3$

2.
$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
; pois, $I_3 \xrightarrow{op} E_3$; $op: L_2 \leftarrow L_2 + 2L_1$

3.
$$E_2 = \begin{bmatrix} -\frac{1}{4} & 0 \\ 0 & 1 \end{bmatrix}$$
; pois, $I_2 \xrightarrow{op} E_2$; $op: L_1 \leftarrow -\frac{1}{4}L_1$

Matriz Elementar - Proposição.1

Sejam $A \in \mathcal{M}_{n \times m}(\mathbb{K})$ e E_n uma matriz elementar.

Matriz Elementar - Proposição.1

Sejam $A \in \mathcal{M}_{n \times m}(\mathbb{K})$ e E_n uma matriz elementar. Se aplicarmos sobre as linhas de $A_{n \times m}$ a MESMA OPERAÇÃO ELEMENTAR que transforma I_n em E_n

Matriz Elementar - Proposição.1

Sejam $A \in \mathcal{M}_{n \times m}(\mathbb{K})$ e E_n uma matriz elementar. Se aplicarmos sobre as linhas de $A_{n \times m}$ a MESMA OPERAÇÃO ELEMENTAR que transforma I_n em E_n obteremos a matriz $E_n.A_{n \times m}$.

Matriz Elementar - Proposição.1

Sejam $A \in \mathcal{M}_{n \times m}(\mathbb{K})$ e E_n uma matriz elementar. Se aplicarmos sobre as linhas de $A_{n \times m}$ a MESMA OPERAÇÃO ELEMENTAR que transforma I_n em E_n obteremos a matriz $E_n.A_{n \times m}$. Ou seja,

Matriz Elementar - Proposição.1

Sejam $A \in \mathcal{M}_{n \times m}(\mathbb{K})$ e E_n uma matriz elementar. Se aplicarmos sobre as linhas de $A_{n \times m}$ a MESMA OPERAÇÃO ELEMENTAR que transforma I_n em E_n obteremos a matriz $E_n.A_{n \times m}$. Ou seja, Se $I_n \xrightarrow{op} E_n$

Matriz Elementar - Proposição.1

Matriz Elementar - Proposição.1

Sejam $A \in \mathcal{M}_{n \times m}(\mathbb{K})$ e E_n uma matriz elementar. Se aplicarmos sobre as linhas de $A_{n \times m}$ a MESMA OPERAÇÃO ELEMENTAR que transforma I_n em E_n obteremos a matriz $E_n.A_{n \times m}$. Ou seja, Se $I_n \xrightarrow{op} E_n$ então $A_{n \times m} \xrightarrow{op} E_n.A_{n \times m}$.

EXEMPLOS: Sejam as matrizes: $l_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$;

Matriz Elementar - Proposição.1

Sejam $A \in \mathcal{M}_{n \times m}(\mathbb{K})$ e E_n uma matriz elementar. Se aplicarmos sobre as linhas de $A_{n \times m}$ a MESMA OPERAÇÃO ELEMENTAR que transforma I_n em E_n obteremos a matriz $E_n.A_{n \times m}$. Ou seja, Se $I_n \stackrel{op}{\longrightarrow} E_n$ então $A_{n \times m} \stackrel{op}{\longrightarrow} E_n.A_{n \times m}$. EXEMPLOS: Sejam as matrizes: $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$; $A_{2 \times 3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

Matriz Elementar - Proposição.1

Sejam $A \in \mathcal{M}_{n \times m}(\mathbb{K})$ e E_n uma matriz elementar. Se aplicarmos sobre as linhas de $A_{n \times m}$ a MESMA OPERAÇÃO ELEMENTAR que transforma I_n em E_n obteremos a matriz $E_n.A_{n \times m}$. Ou seja, Se $I_n \xrightarrow{op} E_n$ então $A_{n \times m} \xrightarrow{op} E_n.A_{n \times m}$.

EXEMPLOS: Sejam as matrizes:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $A_{2\times3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

1. Se $op : L_1 \leftrightarrow L_2$ então

Matriz Elementar - Proposição.1

EXEMPLOS: Sejam as matrizes:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $A_{2\times 3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

1. Se
$$op: L_1 \leftrightarrow L_2$$
 então $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e;

Matriz Elementar - Proposição.1

EXEMPLOS: Sejam as matrizes:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $A_{2\times3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

1. Se
$$op: L_1 \leftrightarrow L_2$$
 então $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 5 & -4i & -\frac{1}{2} \\ 2 & 1+i & 3 \end{bmatrix}$

Matriz Elementar - Proposição.1

Sejam $A \in \mathcal{M}_{n \times m}(\mathbb{K})$ e E_n uma matriz elementar. Se aplicarmos sobre as linhas de $A_{n \times m}$ a MESMA OPERAÇÃO ELEMENTAR que transforma I_n em E_n obteremos a matriz $E_n.A_{n \times m}$. Ou seja, Se $I_n \xrightarrow{op} E_n$ então $A_{n \times m} \xrightarrow{op} E_n.A_{n \times m}$.

EXEMPLOS: Sejam as matrizes:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $A_{2\times 3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

1. Se
$$op: L_1 \leftrightarrow L_2$$
 então $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 5 & -4i & -\frac{1}{2} \\ 2 & 1+i & 3 \end{bmatrix}$

2. Se op: $L_2 \leftarrow L_2 + 2L_1$ então

Matriz Elementar - Proposição.1

EXEMPLOS: Sejam as matrizes:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $A_{2\times3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

1. Se
$$op: L_1 \leftrightarrow L_2$$
 então $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 5 & -4i & -\frac{1}{2} \\ 2 & 1+i & 3 \end{bmatrix}$

2. Se
$$op: L_2 \leftarrow L_2 + 2L_1$$
 então $E_2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ e;

Matriz Elementar - Proposição.1

EXEMPLOS: Sejam as matrizes:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $A_{2\times3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

1. Se
$$op: L_1 \leftrightarrow L_2$$
 então $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 5 & -4i & -\frac{1}{2} \\ 2 & 1+i & 3 \end{bmatrix}$

2. Se
$$op: L_2 \leftarrow L_2 + 2L_1$$
 então $E_2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 2 & 1+i & 3 \\ 9 & 2-2i & -\frac{11}{2} \end{bmatrix}$

Matriz Elementar - Proposição.1

EXEMPLOS: Sejam as matrizes:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $A_{2\times 3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

1. Se
$$op: L_1 \leftrightarrow L_2$$
 então $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 5 & -4i & -\frac{1}{2} \\ 2 & 1+i & 3 \end{bmatrix}$

2. Se
$$op: L_2 \leftarrow L_2 + 2L_1$$
 então $E_2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 2 & 1+i & 3 \\ 9 & 2-2i & -\frac{11}{2} \end{bmatrix}$

3. Se
$$op: L_1 \leftarrow -\frac{1}{4}L_1$$
 então

Matriz Elementar - Proposição.1

EXEMPLOS: Sejam as matrizes:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $A_{2\times 3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

1. Se
$$op: L_1 \leftrightarrow L_2$$
 então $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 5 & -4i & -\frac{1}{2} \\ 2 & 1+i & 3 \end{bmatrix}$

2. Se
$$op: L_2 \leftarrow L_2 + 2L_1$$
 então $E_2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 2 & 1+i & 3 \\ 9 & 2-2i & -\frac{11}{2} \end{bmatrix}$

3. Se
$$op: L_1 \leftarrow -\frac{1}{4}L_1$$
 então $E_2 = \begin{bmatrix} -\frac{1}{4} & 0 \\ 0 & 1 \end{bmatrix}$ e;

Matriz Elementar - Proposição.1

EXEMPLOS: Sejam as matrizes:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $A_{2\times3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

1. Se
$$op: L_1 \leftrightarrow L_2$$
 então $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 5 & -4i & -\frac{1}{2} \\ 2 & 1+i & 3 \end{bmatrix}$

2. Se
$$op: L_2 \leftarrow L_2 + 2L_1$$
 então $E_2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 2 & 1+i & 3 \\ 9 & 2-2i & -\frac{11}{2} \end{bmatrix}$

3. Se
$$op: L_1 \leftarrow -\frac{1}{4}L_1$$
 então $E_2 = \begin{bmatrix} -\frac{1}{4} & 0 \\ 0 & 1 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{4}(1+i) & -\frac{3}{4} \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

Matriz Elementar - Proposição.1

EXEMPLOS: Sejam as matrizes:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; $A_{2\times3} = \begin{bmatrix} 2 & 1+i & 3 \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

1. Se
$$op: L_1 \leftrightarrow L_2$$
 então $E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 5 & -4i & -\frac{1}{2} \\ 2 & 1+i & 3 \end{bmatrix}$

2. Se
$$op: L_2 \leftarrow L_2 + 2L_1$$
 então $E_2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} 2 & 1+i & 3 \\ 9 & 2-2i & -\frac{11}{2} \end{bmatrix}$

3. Se
$$op: L_1 \leftarrow -\frac{1}{4}L_1$$
 então $E_2 = \begin{bmatrix} -\frac{1}{4} & 0 \\ 0 & 1 \end{bmatrix}$ e; $E_2.A_{2\times 3} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{4}(1+i) & -\frac{3}{4} \\ 5 & -4i & -\frac{1}{2} \end{bmatrix}$

Matriz Elementar - Teorema

Sejam $A, B \in \mathcal{M}_{n \times m}(\mathbb{K})$. Então, a matriz B é **linha equivalente à matriz** A se, e somente se,

Matriz Elementar - Teorema

Sejam $A, B \in \mathcal{M}_{n \times m}(\mathbb{K})$. Então, a matriz B é **linha equivalente à matriz** A se, e somente se, existe uma matriz $P \in \mathcal{M}_n(\mathbb{K})$ tal que B = PA; onde,

Matriz Elementar - Teorema

Sejam $A, B \in \mathcal{M}_{n \times m}(\mathbb{K})$. Então, a matriz B é **linha equivalente à matriz** A se, e somente se, existe uma matriz $P \in \mathcal{M}_n(\mathbb{K})$ tal que B = PA; onde, para t operações elementares: $P = E_n^{(t)} \dots E_n^{(k)} \dots E_n^{(3)} E_n^{(2)} E_n^{(1)}$;

Matriz Elementar - Teorema

Sejam $A, B \in \mathcal{M}_{n \times m}(\mathbb{K})$. Então, a matriz B é **linha equivalente à matriz** A se, e somente se, existe uma matriz $P \in \mathcal{M}_n(\mathbb{K})$ tal que B = PA; onde, para t operações elementares: $P = E_n^{(t)} \dots E_n^{(k)} \dots E_n^{(3)} E_n^{(2)} E_n^{(1)}$; e $E_n^{(k)}$ é a k-ésima matriz elementar de ordem n; $\forall k = 1, 2, \dots, t-1, t$.

Matriz Elementar - Teorema

Sejam $A, B \in \mathcal{M}_{n \times m}(\mathbb{K})$. Então, a matriz B é **linha equivalente à matriz** A se, e somente se, existe uma matriz $P \in \mathcal{M}_n(\mathbb{K})$ tal que B = PA; onde, para t operações elementares: $P = E_n^{(t)} \dots E_n^{(k)} \dots E_n^{(3)} E_n^{(2)} E_n^{(1)}$; e $E_n^{(k)}$ é a k-ésima matriz elementar de ordem n; $\forall k = 1, 2, \dots, t-1, t$. Observe que

$$A \sim B \Leftrightarrow$$

Matriz Elementar - Teorema

Sejam $A, B \in \mathcal{M}_{n \times m}(\mathbb{K})$. Então, a matriz B é **linha equivalente à matriz** A se, e somente se, existe uma matriz $P \in \mathcal{M}_n(\mathbb{K})$ tal que B = PA; onde, para t operações elementares: $P = E_n^{(t)} \dots E_n^{(k)} \dots E_n^{(3)} E_n^{(2)} E_n^{(1)}$; e $E_n^{(k)}$ é a k-ésima matriz elementar de ordem n; $\forall k = 1, 2, \dots, t-1, t$. Observe que

$$A \sim B \Leftrightarrow A \sim {}^{op_1, \dots, op_t}$$
t-ops.elements.

Matriz Elementar - Teorema

Sejam $A, B \in \mathcal{M}_{n \times m}(\mathbb{K})$. Então, a matriz B é **linha equivalente à matriz** A se, e somente se, existe uma matriz $P \in \mathcal{M}_n(\mathbb{K})$ tal que B = PA; onde, para t operações elementares: $P = E_n^{(t)} \dots E_n^{(k)} \dots E_n^{(3)} E_n^{(2)} E_n^{(1)}$; e $E_n^{(k)}$ é a k-ésima matriz elementar de ordem n; $\forall k = 1, 2, \dots, t-1, t$. Observe que

$$A \sim B \Leftrightarrow A \sim {}^{op_1, \dots, op_k, \dots, op_t} \sim B.$$
t-ops.elements.

Matriz Elementar - Teorema

Sejam $A, B \in \mathcal{M}_{n \times m}(\mathbb{K})$. Então, a matriz B é **linha equivalente à matriz** A se, e somente se, existe uma matriz $P \in \mathcal{M}_n(\mathbb{K})$ tal que B = PA; onde, para t operações elementares: $P = E_n^{(t)} \dots E_n^{(k)} \dots E_n^{(3)} E_n^{(2)} E_n^{(1)}$; e $E_n^{(k)}$ é a k-ésima matriz elementar de ordem n; $\forall k = 1, 2, \dots, t-1, t$. Observe que

$$A \sim B \Leftrightarrow A \sim {}^{op_1, \dots, op_k, \dots, op_t} \sim B.$$
t-ops.elements.

Assim,

$$(E_n^{(t)}...(E_n^{(k)}...(E_n^{(3)}(E_n^{(2)}(E_n^{(1)}A))))) = B$$

Matriz Elementar - Teorema

Sejam $A, B \in \mathcal{M}_{n \times m}(\mathbb{K})$. Então, a matriz B é **linha equivalente à matriz** A se, e somente se, existe uma matriz $P \in \mathcal{M}_n(\mathbb{K})$ tal que B = PA; onde, para t operações elementares: $P = E_n^{(t)} \dots E_n^{(k)} \dots E_n^{(3)} E_n^{(2)} E_n^{(1)}$; e $E_n^{(k)}$ é a k-ésima matriz elementar de ordem n; $\forall k = 1, 2, \dots, t-1, t$. Observe que

$$A \sim B \Leftrightarrow A \sim {}^{op_1,\dots,op_k,\dots,op_t} \sim B.$$
t-ops.elements.

Assim,

$$(E_n^{(t)} \dots (E_n^{(k)} \dots (E_n^{(3)} \underbrace{(E_n^{(2)} \underbrace{(E_n^{(1)} A)}_{op1})}_{op1}))) = B$$

$$\underbrace{(E_n^{(t)} \dots E_n^{(k)} \dots E_n^{(3)} E_n^{(2)} E_n^{(1)})}_{B} A = B$$

Matriz Elementar - Teorema

Sejam $A, B \in \mathcal{M}_{n \times m}(\mathbb{K})$. Então, a matriz B é **linha equivalente à matriz** A se, e somente se, existe uma matriz $P \in \mathcal{M}_n(\mathbb{K})$ tal que B = PA; onde, para t operações elementares: $P = E_n^{(t)} \dots E_n^{(k)} \dots E_n^{(3)} E_n^{(2)} E_n^{(1)}$; e $E_n^{(k)}$ é a k-ésima matriz elementar de ordem n; $\forall k = 1, 2, \dots, t-1, t$. Observe que

$$A \sim B \Leftrightarrow A \sim {}^{op_1,\dots,op_k,\dots,op_t} \sim B.$$
t-ops.elements.

Assim,

$$(E_n^{(t)} \dots (E_n^{(k)} \dots (E_n^{(3)} \underbrace{(E_n^{(2)} \underbrace{(E_n^{(1)} A)}_{op1})}_{op1}))) = B$$

$$\underbrace{(E_n^{(t)} \dots E_n^{(k)} \dots E_n^{(3)} E_n^{(2)} E_n^{(1)})}_{B} A = B$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim {}^{op_1 \cdots op_5} \sim$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \stackrel{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A = B;$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

pelo teorema temos,

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A = B;$$

$$op_1: L_1 \leftarrow (\frac{1}{2})L_1$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

pelo teorema temos,

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A = B;$$

$$op_1: L_1 \leftarrow (\frac{1}{2})L_1 \Rightarrow I_3 \xrightarrow{op_1} E_3^{(1)}$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

pelo teorema temos,

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A=B;$$

$$op_1: L_1 \leftarrow (\frac{1}{2})L_1 \Rightarrow I_3 \xrightarrow{op_1} E_3^{(1)}$$

$$op_2: L_2 \leftarrow L_2 + L_1$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

pelo teorema temos,

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A=B;$$

$$\begin{array}{l}
op_1: L_1 \leftarrow (\frac{1}{2})L_1 \Rightarrow I_3 \xrightarrow{op_1} E_3^{(1)} \\
op_2: L_2 \leftarrow L_2 + L_1 \Rightarrow I_3 \xrightarrow{op_2} E_3^{(2)}
\end{array}$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

pelo teorema temos,

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A = B;$$

$$op_1: L_1 \leftarrow (\frac{1}{2})L_1 \Rightarrow I_3 \xrightarrow{op_1} E_3^{(1)}$$

$$op_2: L_2 \leftarrow L_2 + L_1 \Rightarrow I_3 \xrightarrow{op_2} E_3^{(2)}$$

$$op_3: L_2 \leftarrow (\frac{1}{3-3i})L_2$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

pelo teorema temos,

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A = B;$$

$$\begin{array}{c} op_1: L_1 \leftarrow (\frac{1}{2})L_1 \Rightarrow I_3 \xrightarrow{op_1} E_3^{(1)} \\ op_2: L_2 \leftarrow L_2 + L_1 \Rightarrow I_3 \xrightarrow{op_2} E_3^{(2)} \\ op_3: L_2 \leftarrow (\frac{1}{3-3i})L_2 \Rightarrow I_3 \xrightarrow{op_3} E_3^{(3)} \end{array}$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

pelo teorema temos,

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A = B;$$

$$op_1: L_1 \leftarrow \left(\frac{1}{2}\right)L_1 \Rightarrow I_3 \xrightarrow{op_1} E_3^{(1)}$$

$$op_2: L_2 \leftarrow L_2 + L_1 \Rightarrow I_3 \xrightarrow{op_2} E_3^{(2)}$$

$$op_3: L_2 \leftarrow \left(\frac{1}{3-3i}\right)L_2 \Rightarrow I_3 \xrightarrow{op_3} E_3^{(3)}$$

$$op_4: L_1 \leftarrow L_1 - 5L_2$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

pelo teorema temos,

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A=B;$$

$$op_1: L_1 \leftarrow \left(\frac{1}{2}\right)L_1 \Rightarrow I_3 \xrightarrow{op_1} E_3^{(1)}$$

$$op_2: L_2 \leftarrow L_2 + L_1 \Rightarrow I_3 \xrightarrow{op_2} E_3^{(2)}$$

$$op_3: L_2 \leftarrow \left(\frac{1}{3-3i}\right)L_2 \Rightarrow I_3 \xrightarrow{op_3} E_3^{(3)}$$

$$op_4: L_1 \leftarrow L_1 - 5L_2 \Rightarrow I_3 \xrightarrow{op_4} E_3^{(4)}$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A = B;$$

com,

$$\begin{array}{c} \mathsf{op_1} : L_1 \leftarrow (\frac{1}{2})L_1 \Rightarrow I_3 \xrightarrow{\mathsf{op_1}} E_3^{(1)} \\ \mathsf{op_2} : L_2 \leftarrow L_2 + L_1 \Rightarrow I_3 \xrightarrow{\mathsf{op_2}} E_3^{(2)} \\ \mathsf{op_3} : L_2 \leftarrow (\frac{1}{3-3i})L_2 \Rightarrow I_3 \xrightarrow{\mathsf{op_3}} E_3^{(3)} \end{array}$$

$$op_4: L_1 \leftarrow L_1 - 5L_2 \Rightarrow I_3 \xrightarrow{op_4} E_3^{(4)}$$

$$op_5$$
: L_3 ← L_3 − $(6-6i)L_2$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A = B;$$

com,

$$op_1: L_1 \leftarrow \left(\frac{1}{2}\right)L_1 \Rightarrow I_3 \xrightarrow{op_1} E_3^{(1)}$$

$$op_2: L_2 \leftarrow L_2 + L_1 \Rightarrow I_3 \xrightarrow{op_2} E_3^{(2)}$$

$$op_3: L_2 \leftarrow \left(\frac{1}{3-3i}\right)L_2 \Rightarrow I_3 \xrightarrow{op_3} E_3^{(3)}$$

$$op_4: L_1 \leftarrow L_1 - 5L_2 \Rightarrow I_3 \xrightarrow{op_4} E_3^{(4)}$$

$$op_5: L_3 \leftarrow L_3 - (6-6i)L_2 \Rightarrow I_3 \xrightarrow{op_5} E_2^{(5)}$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A = B;$$

com,

$$op_1: L_1 \leftarrow \left(\frac{1}{2}\right)L_1 \Rightarrow I_3 \xrightarrow{op_1} E_3^{(1)}$$

$$op_2: L_2 \leftarrow L_2 + L_1 \Rightarrow I_3 \xrightarrow{op_2} E_3^{(2)}$$

$$op_3: L_2 \leftarrow \left(\frac{1}{3-3i}\right)L_2 \Rightarrow I_3 \xrightarrow{op_3} E_3^{(3)}$$

$$op_4: L_1 \leftarrow L_1 - 5L_2 \Rightarrow I_3 \xrightarrow{op_4} E_3^{(4)}$$

$$op_5: L_3 \leftarrow L_3 - (6-6i)L_2 \Rightarrow I_3 \xrightarrow{op_5} E_2^{(5)}$$

Matriz Elementar - Teorema - Exemplos

$$A = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \sim \frac{op_1 \cdots op_5}{\cdots} \sim \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B;$$

$$(E_3^{(5)}E_3^{(4)}E_3^{(3)}E_3^{(2)}E_3^{(1)})A = B;$$

com,

$$op_1: L_1 \leftarrow (\frac{1}{2})L_1 \Rightarrow I_3 \xrightarrow{op_1} E_3^{(1)}$$

 $op_2: L_2 \leftarrow L_2 + L_1 \Rightarrow I_3 \xrightarrow{op_2} E_3^{(2)}$
 $op_3: L_2 \leftarrow (\frac{1}{3-3i})L_2 \Rightarrow I_3 \xrightarrow{op_3} E_3^{(3)}$
 $op_4: L_1 \leftarrow L_1 - 5L_2 \Rightarrow I_3 \xrightarrow{op_4} E_3^{(4)}$
 $op_5: L_3 \leftarrow L_3 - (6-6i)L_2 \Rightarrow I_3 \xrightarrow{op_5} E_2^{(5)}$

Seja $A \in \mathcal{M}_{\mathbf{2}}(\mathbb{K})$.

Seja $A \in \mathcal{M}_2(\mathbb{K})$. Denotamos por det(A) ou

$$det(A) = |A| =$$

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} =$$

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22}$$

Definição

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Definição

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

EXEMPLO: Seja a matriz
$$A_2 = \begin{bmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{bmatrix}$$
.

Definição

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

EXEMPLO: Seja a matriz
$$A_2 = \begin{bmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{bmatrix}$$
.

$$det(A) = |A| =$$

Definição

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

EXEMPLO: Seja a matriz
$$A_2 = \begin{bmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{bmatrix}$$
. $det(A) = |A| = \begin{vmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{vmatrix} =$

Definição

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

EXEMPLO: Seja a matriz
$$A_2 = \begin{bmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{bmatrix}$$
. $det(A) = |A| = \begin{vmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{vmatrix} = (2).(-\frac{1}{2})$

Definição

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

EXEMPLO: Seja a matriz
$$A_2 = \begin{bmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{bmatrix}$$
.
$$det(A) = |A| = \begin{vmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{vmatrix} = (2).(-\frac{1}{2}) - (1+i).(5) =$$

Definição

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

EXEMPLO: Seja a matriz
$$A_2 = \begin{bmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{bmatrix}$$
.

$$det(A) = |A| = \begin{vmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{vmatrix} = (2) \cdot (-\frac{1}{2}) - (1+i) \cdot (5) = -1 - 5 - 5i$$

Definição

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

EXEMPLO: Seja a matriz
$$A_2 = \begin{bmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{bmatrix}$$
.
$$det(A) = |A| = \begin{vmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{vmatrix} = (2).(-\frac{1}{2}) - (1+i).(5) = -1 - 5 - 5i$$
$$det(A)$$

Definição

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

EXEMPLO: Seja a matriz
$$A_2 = \begin{bmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{bmatrix}$$
.

$$det(A) = |A| = \begin{vmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{vmatrix} = (2).(-\frac{1}{2}) - (1+i).(5) = -1 - 5 - 5i$$

$$\boxed{\det(A) = -6-5i}.$$

Definição

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

EXEMPLO: Seja a matriz
$$A_2 = \begin{bmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{bmatrix}$$
.

$$det(A) = |A| = \begin{vmatrix} 2 & 1+i \\ 5 & -\frac{1}{2} \end{vmatrix} = (2).(-\frac{1}{2}) - (1+i).(5) = -1 - 5 - 5i$$

$$\boxed{\det(A) = -6-5i}.$$

Seja $A \in \mathcal{M}_3(\mathbb{K})$.

Seja $A \in \mathcal{M}_3(\mathbb{K})$. Denotamos por det(A) ou

$$det(A) = \left| egin{array}{cccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right| =$$

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$a_{11} \cdot \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} -$$

$$A_{11}$$

Definição

$$det(A) = \begin{vmatrix} 311 & 312 & 313 \\ a_{21} & 322 & a_{23} \\ a_{31} & 332 & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}. \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + A_{12}$$

Definição

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} - a_{12}. \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}. \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{13} & a_{13} \\ a_{14} & a_{15} \end{vmatrix}$$

Definição

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{13} & a_{13} \\ a_{11} & a_{12} & a_{13} \end{vmatrix}$$

$$a_{11}.det(A_{11})$$

Definição

Seja $A \in \mathcal{M}_3(\mathbb{K})$. Denotamos por det(A) ou |A|, e denominamos DETERMINANTE DA

MATRIZ A o escalar obtido do seguinte modo;
$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}. \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}. \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{13} & a_{13} \\ a_{11} & a_{12} & a_{13} \end{vmatrix}$$

$$a_{11}.det(A_{11}) - a_{12}.det(A_{12})$$

Definição

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{$$

$$a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + a_{13}.det(A_{13}) =$$

Definição

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \end{vmatrix} = \begin{vmatrix} a_{$$

$$a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + a_{13}.det(A_{13}) = \sum_{j=1}^{3}$$

Definição

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{13} & a_{13} \\ a_{14} & a_{15} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{14} & a_{15} \end{vmatrix} + a_{15} \cdot \begin{vmatrix} a_{15} & a_{15} \\ a_{15} & a_{15} \end{vmatrix} = \begin{vmatrix} a_{15} & a_{15} \\ a_{15} & a_{15} \end{vmatrix}$$

$$a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + a_{13}.det(A_{13}) = \sum_{i=1}^{3} (-1)^{1+i}$$

Definição

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{13} & a_{13} \\ a_{12} & a_{13} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{13} & a_{13} \\ a_{12} & a_{13} \end{vmatrix}$$

$$a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + a_{13}.det(A_{13}) = \sum_{i=1}^{3} (-1)^{1+i} a_{1j}.det(A_{1j}).$$

Definição

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{13} & a_{13} \\ a_{12} & a_{13} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{13} & a_{13} \\ a_{12} & a_{13} \end{vmatrix}$$

$$a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + a_{13}.det(A_{13}) = \sum_{i=1}^{3} (-1)^{1+i} a_{1j}.det(A_{1j}).$$

$$det(A_3) = \sum_{j=1}^3$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j}$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j}.det(A_{1j}).$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j}.det(A_{1j}).$$

EXEMPLO: Seja a matriz
$$A_3 = \begin{bmatrix} 5 & -3 & 0 \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}$$
.

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j}.det(A_{1j}).$$

EXEMPLO: Seja a matriz
$$A_3 = \begin{bmatrix} 5 & -3 & 0 \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}$$
.

$$det(A) =$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j}.det(A_{1j}).$$
EXEMPLO: Seja a matriz $A_3 = \begin{bmatrix} 5 & 3 & \emptyset \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}.$

$$det(A) = 5. \underbrace{\begin{vmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{vmatrix}}_{A_{11}} - \underbrace{\begin{vmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{vmatrix}}_{A_{11}}.$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j}. det(A_{1j}).$$
EXEMPLO: Seja a matriz $A_3 = \begin{bmatrix} 5 & -3 & \emptyset \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}.$

$$det(A) = 5. \underbrace{\begin{bmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{bmatrix}}_{A_{1j}} - (-3). \underbrace{\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}}_{A_{12}} +$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j} \cdot det(A_{1j}).$$
EXEMPLO: Seja a matriz $A_3 = \begin{bmatrix} 5 & 3 & \emptyset \\ 1 & -\frac{1}{2} & 4 \\ -1 & -3 & 4 \end{bmatrix}.$

$$det(A) = 5. \underbrace{\begin{bmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{bmatrix}}_{A_{11}} - (-3). \underbrace{\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}}_{A_{12}} + 0. \underbrace{\begin{bmatrix} 1 & -\frac{1}{2} \\ -1 & -3 \end{bmatrix}}_{A_{13}} =$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j}.det(A_{1j}).$$
EXEMPLO: Seja a matriz $A_3 = \begin{bmatrix} 5 & -3 & 0 \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}.$

$$det(A) = 5. \underbrace{\begin{vmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{vmatrix}}_{A_{11}} - (-3). \underbrace{\begin{vmatrix} 1 & 2 \\ -1 & 4 \end{vmatrix}}_{A_{12}} + 0. \underbrace{\begin{vmatrix} 1 & -\frac{1}{2} \\ -1 & -3 \end{vmatrix}}_{A_{13}} = 5[(-\frac{1}{2}.4) - (-3.2)]$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j} \cdot det(A_{1j}).$$
EXEMPLO: Seja a matriz $A_3 = \begin{bmatrix} 5 & -3 & 0 \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}.$

$$det(A) = 5. \underbrace{ \begin{bmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{bmatrix}}_{A_{11}} - (-3). \underbrace{ \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}}_{A_{12}} + 0. \underbrace{ \begin{bmatrix} 1 & -\frac{1}{2} \\ -1 & -3 \end{bmatrix}}_{A_{13}} = 5[(-\frac{1}{2}.4) - (-3.2)] + 3[(1.4) - (-1.2)]$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j} \cdot det(A_{1j}).$$
EXEMPLO: Seja a matriz $A_3 = \begin{bmatrix} 5 & -3 & 0 \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}.$

$$det(A) = 5. \underbrace{\begin{vmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{vmatrix}}_{A_{11}} - (-3). \underbrace{\begin{vmatrix} 1 & 2 \\ -1 & 4 \end{vmatrix}}_{A_{12}} + 0. \underbrace{\begin{vmatrix} 1 & -\frac{1}{2} \\ -1 & -3 \end{vmatrix}}_{A_{13}} = 5[(-\frac{1}{2}.4) - (-3.2)] + 3[(1.4) - (-1.2)] + 0 =$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j}. det(A_{1j}).$$
EXEMPLO: Seja a matriz $A_3 = \begin{bmatrix} 5 & -3 & 0 \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}.$

$$det(A) = 5. \underbrace{\begin{bmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{bmatrix}}_{A_{11}} - (-3). \underbrace{\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}}_{A_{12}} + 0. \underbrace{\begin{bmatrix} 1 & -\frac{1}{2} \\ -1 & -3 \end{bmatrix}}_{A_{13}} = 5[(-\frac{1}{2}.4) - (-3.2)] + 3[(1.4) - (-1.2)] + 0 = 5(-2+6) + 3(4+2) \Rightarrow$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j}.det(A_{1j}).$$
EXEMPLO: Seja a matriz $A_3 = \begin{bmatrix} 5 & -3 & 0 \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}.$

$$det(A) = 5. \underbrace{\begin{bmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{bmatrix}}_{A_{11}} - (-3). \underbrace{\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}}_{A_{12}} + 0. \underbrace{\begin{bmatrix} 1 & -\frac{1}{2} \\ -1 & -3 \end{bmatrix}}_{A_{13}} = 5[(-\frac{1}{2}.4) - (-3.2)] + 3[(1.4) - (-1.2)] + 0 = 5(-2+6) + 3(4+2) \Rightarrow det(A)$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j} . det(A_{1j}).$$

EXEMPLO: Seja a matriz $A_3 = \begin{bmatrix} 5 & -3 & 0 \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}.$

$$det(A) = 5. \underbrace{\begin{bmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{bmatrix}}_{A_{11}} - (-3). \underbrace{\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}}_{A_{12}} + 0. \underbrace{\begin{bmatrix} 1 & -\frac{1}{2} \\ -1 & -3 \end{bmatrix}}_{A_{13}} =$$

$$5[(-\frac{1}{2}.4)-(-3.2)]+3[(1.4)-(-1.2)]+0=5(-2+6)+3(4+2)\Rightarrow \boxed{\det(A)=38}.$$

$$det(A_3) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j} . det(A_{1j}).$$

EXEMPLO: Seja a matriz $A_3 = \begin{bmatrix} 5 & -3 & 0 \\ 1 & -\frac{1}{2} & 2 \\ -1 & -3 & 4 \end{bmatrix}.$

$$det(A) = 5. \underbrace{\begin{bmatrix} -\frac{1}{2} & 2 \\ -3 & 4 \end{bmatrix}}_{A_{11}} - (-3). \underbrace{\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}}_{A_{12}} + 0. \underbrace{\begin{bmatrix} 1 & -\frac{1}{2} \\ -1 & -3 \end{bmatrix}}_{A_{13}} =$$

$$5[(-\frac{1}{2}.4)-(-3.2)]+3[(1.4)-(-1.2)]+0=5(-2+6)+3(4+2)\Rightarrow \boxed{\det(A)=38}.$$

Seja $A \in \mathcal{M}_{\mathbf{n}}(\mathbb{K})$; $n \geq 2$.

Seja $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$. Denotamos por det(A) ou

$$det(A) = a_{11}.det(A_{11})$$

$$det(A) = a_{11}.det(A_{11}) - a_{12}.det(A_{12})$$

$$det(A) = a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + \ldots + (-1)^{1+n}a_{1n}.det(A_{1n})$$

$$det(A) = a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + ... + (-1)^{1+n}a_{1n}.det(A_{1n})$$

$$det(A) = \sum_{j=1}^{n}$$

$$det(A) = a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + ... + (-1)^{1+n}a_{1n}.det(A_{1n})$$

$$det(A) = \sum_{j=1}^{n} (-1)^{1+j}$$

$$det(A) = a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + ... + (-1)^{1+n}a_{1n}.det(A_{1n})$$

$$det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} . det(A_{1j}) = \sum_{j=1}^{n}$$

$$det(A) = a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + ... + (-1)^{1+n}a_{1n}.det(A_{1n})$$

$$det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} . det(A_{1j}) = \sum_{j=1}^{n} a_{1j} . (C_{1j})$$

Definição

$$det(A) = a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + ... + (-1)^{1+n}a_{1n}.det(A_{1n})$$

$$det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j}.det(A_{1j}) = \sum_{j=1}^{n} a_{1j}.(C_{1j})$$

onde,
$$C_{1j} = (-1)^{1+j} det(A_{1j})$$

Seja $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$. Denotamos por det(A) ou |A|, e denominamos DETERMINANTE DA MATRIZ A o escalar obtido do seguinte modo;

$$det(A) = a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + ... + (-1)^{1+n}a_{1n}.det(A_{1n})$$

$$det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} . det(A_{1j}) = \sum_{j=1}^{n} a_{1j} . (C_{1j})$$

onde, $C_{1,i} = (-1)^{1+j} \det(A_{1,i})$ é denomidado COFATOR(1,j) de A_n .

Seja $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$. Denotamos por det(A) ou |A|, e denominamos DETERMINANTE DA MATRIZ A o escalar obtido do seguinte modo;

$$det(A) = a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + ... + (-1)^{1+n}a_{1n}.det(A_{1n})$$

$$det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} . det(A_{1j}) = \sum_{j=1}^{n} a_{1j} . (C_{1j})$$

onde, $C_{1j} = (-1)^{1+j} det(A_{1j})$ é denomidado COFATOR(1,j) de A_n . OBSERVAÇÃO: O cálculo do determinante de A

Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$. Denotamos por det(A) ou |A|, e denominamos DETERMINANTE DA MATRIZ A o escalar obtido do seguinte modo:

$$det(A) = a_{11}.det(A_{11}) - a_{12}.det(A_{12}) + ... + (-1)^{1+n}a_{1n}.det(A_{1n})$$

$$det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j}.det(A_{1j}) = \sum_{j=1}^{n} a_{1j}.(C_{1j})$$

onde, $C_{1i} = (-1)^{1+j} det(A_{1i})$ é denomidado COFATOR(1, i) de A_n . OBSERVAÇÃO: O cálculo do determinante de A pela expansão de cofatores pode ser feita em relação à qualquer linha (ou coluna) pois o det(A) não altera.

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$,

Teorema da Expansão de Laplace

Teorema da Expansão de Laplace

$$det(A) = a_{i1}.C_{i1}$$

Teorema da Expansão de Laplace

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2}$$

Teorema da Expansão de Laplace

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + ... + a_{in}.C_{in} =$$

Teorema da Expansão de Laplace

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n}$$

Teorema da Expansão de Laplace

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$, pode ser calculado pela expansão de cofatores pela *i*-ésima linha;

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

e também pode ser calculado pela expansão de cofatores pela j-ésima coluna;

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$, pode ser calculado pela expansão de cofatores pela *i*-ésima linha;

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

e também pode ser calculado pela expansão de cofatores pela j-ésima coluna;

$$det(A) = a_{1j}.C_{1j}$$

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$, pode ser calculado pela expansão de cofatores pela *i*-ésima linha;

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

e também pode ser calculado pela expansão de cofatores pela *i*-ésima coluna;

$$det(A) = a_{1j}.C_{1j} + a_{2j}.C_{2j}$$

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$, pode ser calculado pela expansão de cofatores pela *i*-ésima linha;

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

e também pode ser calculado pela expansão de cofatores pela *i*-ésima coluna:

$$det(A) = a_{1j}.C_{1j} + a_{2j}.C_{2j} + ... + a_{nj}.C_{nj} =$$

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$, pode ser calculado pela expansão de cofatores pela *i*-ésima linha;

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

e também pode ser calculado pela expansão de cofatores pela *i*-ésima coluna:

$$det(A) = a_{1j}.C_{1j} + a_{2j}.C_{2j} + ... + a_{nj}.C_{nj} = \sum_{i=1}^{n}$$

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$, pode ser calculado pela expansão de cofatores pela *i*-ésima linha;

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

e também pode ser calculado pela expansão de cofatores pela j-ésima coluna;

$$det(A) = a_{1j}.C_{1j} + a_{2j}.C_{2j} + \ldots + a_{nj}.C_{nj} = \sum_{i=1}^{n} a_{ij}.(C_{ij})$$

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$, pode ser calculado pela expansão de cofatores pela *i*-ésima linha;

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

e também pode ser calculado pela expansão de cofatores pela *j*-ésima coluna;

$$det(A) = a_{1j}.C_{1j} + a_{2j}.C_{2j} + \ldots + a_{nj}.C_{nj} = \sum_{i=1}^{n} a_{ij}.(C_{ij})$$

onde,
$$C_{ij} = (-1)^{i+j} \det(A_{ij})$$

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$, pode ser calculado pela expansão de cofatores pela *i*-ésima linha;

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

e também pode ser calculado pela expansão de cofatores pela j-ésima coluna;

$$det(A) = a_{1j}.C_{1j} + a_{2j}.C_{2j} + \ldots + a_{nj}.C_{nj} = \sum_{i=1}^{n} a_{ij}.(C_{ij})$$

onde, $C_{ij} = (-1)^{i+j} det(A_{ij})$ é denomidado COFATOR(i,j) ou

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$, pode ser calculado pela expansão de cofatores pela *i*-ésima linha;

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

e também pode ser calculado pela expansão de cofatores pela j-ésima coluna;

$$det(A) = a_{1j}.C_{1j} + a_{2j}.C_{2j} + \ldots + a_{nj}.C_{nj} = \sum_{i=1}^{n} a_{ij}.(C_{ij})$$

onde, $C_{ij} = (-1)^{i+j} det(A_{ij})$ é denomidado COFATOR(i,j) ou COMPLEMENTO ALGÉBRICO do elemento a_{ij} de A_n .

Teorema da Expansão de Laplace

O determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$, pode ser calculado pela expansão de cofatores pela *i*-ésima linha;

$$det(A) = a_{i1}.C_{i1} + a_{i2}.C_{i2} + \ldots + a_{in}.C_{in} = \sum_{j=1}^{n} a_{ij}.(C_{ij})$$

e também pode ser calculado pela expansão de cofatores pela j-ésima coluna;

$$det(A) = a_{1j}.C_{1j} + a_{2j}.C_{2j} + \ldots + a_{nj}.C_{nj} = \sum_{i=1}^{n} a_{ij}.(C_{ij})$$

onde, $C_{ij} = (-1)^{i+j} det(A_{ij})$ é denomidado COFATOR(i,j) ou COMPLEMENTO ALGÉBRICO do elemento a_{ij} de A_n .

Teorema da Expansão de Laplace

OBSERVAÇÃO: O sinal é dado pelo termo $(-1)^{i+j}$ alternando os sinais em + ou -;

Teorema da Expansão de Laplace

OBSERVAÇÃO: O sinal é dado pelo termo $(-1)^{i+j}$ alternando os sinais em + ou -;

"tabuleiro de xadrez"

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

$$det(A_4) =$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & \emptyset & \emptyset \\ \emptyset & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2).$$

$$\begin{vmatrix}
3 & 2 & -1 \\
0 & 1 & 0 \\
0 & 4 & 2
\end{vmatrix} +$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & \emptyset & \emptyset \\ 0 & 3 & 2 & -1 \\ -1 & \emptyset & 1 & 0 \\ 3 & \emptyset & 4 & 2 \end{bmatrix}$$
.

Cálculo do
$$det(A_4)$$
 pela expansão de cofatores com linha $i = 1$:
$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} =$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} =$$

$$(2).(-1)^{1+1}(3).$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

Cálculo do
$$det(A_4)$$
 pela expansão de cofatores com linha $i = 1$:
$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} +$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

Cálculo do $det(A_4)$ pela expansão de cofatores com linha $\underbrace{i=1}$:

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1).$$

$$(2).(-1)^{1+1}(3).$$
 $\begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1).$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 2 & -1 \\ 2 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} +$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{3+1}(3).$$

$$(2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{3+1}(3).$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 2 & -1 \\ 1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{3+1}(3).$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

Calculo do
$$det(A_4)$$
 pela expansao de cofatores com linha $7 = 1$:
$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{3+1}(3).$$

$$\begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} = 2.(3.2)$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

Cálculo do $det(A_4)$ pela expansão de cofatores com linha i = 1:

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{3+1}(3).$$
$$\begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} = 2.(3.2) + 2.(8)$$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2021.1

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{3+1}(3).$$
$$\begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} = 2.(3.2) + 2.(8) + 2.(3)$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

Cálculo do $det(A_4)$ pela expansão de cofatores com linha i = 1:

calculo do
$$det(A_4)$$
 pela expansao de conatores com mina $\begin{vmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{3+1}(3). \end{vmatrix}$

$$\begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} = 2.(3.2) + 2.(8) + 2.(3) \Rightarrow$$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2021.1

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{3+1}(3).$$
$$\begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} = 2.(3.2) + 2.(8) + 2.(3) \Rightarrow det(A)$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{3+1}(3).$$
$$\begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} = 2.(3.2) + 2.(8) + 2.(3) \Rightarrow \det(A) = 34.$$

Teorema da Expansão de Laplace

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ -1 & 0 & 1 & 0 \\ 3 & 0 & 4 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ -1 & 1 & 0 \\ 3 & 4 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3). \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{2+1}(-1). \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + (2).(-1)^{3+1}(3).$$
$$\begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} = 2.(3.2) + 2.(8) + 2.(3) \Rightarrow \det(A) = 34.$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

$$det(A_4) =$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & 2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} +$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & 2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} \overline{0} & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} =$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

Cálculo do $det(A_4)$ pela expansão de cofatores com linha i=1:

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} +$$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2021.1

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

Cálculo do $det(A_4)$ pela expansão de cofatores com linha i=1:

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0).$$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2021.1

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

Cálculo do
$$det(A_4)$$
 pela expansão de cofatores com linha $f = 1$:
$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 2 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0). \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} +$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0). \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{3+1}(0).$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0). \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{3+1}(0). \begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} =$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

Cálculo do $det(A_4)$ pela expansão de cofatores com linha i=1:

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0). \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{3+1}(0). \begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} =$$
2.(3.2)

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2021.1

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0). \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{3+1}(0). \begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} =$$

$$2.(3.2) + 2.(0)$$

$$2.(3.2) + 2.(0)$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0). \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{3+1}(0). \begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} =$$

$$2 \cdot (3 \cdot 2) + 2 \cdot (0) + 2 \cdot (0)$$

$$2.(3.2) + 2.(0) + 2.(0)$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0). \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{3+1}(0). \begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} =$$

$$2.(3.2) + 2.(0) + 2.(0) = 2.3.2 \Rightarrow$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0). \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{3+1}(0). \begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} =$$

$$2(32) + 2(0) + 2(0) = 232 \Rightarrow det(A)$$

$$2.(3.2) + 2.(0) + 2.(0) = 2.3.2 \Rightarrow \det(A)$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

Cálculo do $det(A_4)$ pela expansão de cofatores com linha $i = 1$:

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0). \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{3+1}(0). \begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} =$$

$$2.(3,2) + 2.(0) + 2.(0) = 2.3.2 \Rightarrow \det(A) = 12.$$

$$2.(3.2) + 2.(0) + 2.(0) = 2.3.2 \Rightarrow \boxed{\det(A) = 12}$$

Matriz Triangular

EXEMPLO: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

Cálculo do $det(A_4)$ pela expansão de cofatores com linha $i = 1$:
$$det(A_4) = (-1)^{1+1}(2) \quad 0 \quad 1 \quad 0 \quad + (-1)^{1+2}(-2) \quad 0 \quad 1$$

$$det(A_4) = (-1)^{1+1}(2). \begin{vmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} + (-1)^{1+2}(-2). \begin{vmatrix} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = (2).(-1)^{1+1}(3).$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{2+1}(0). \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} + (2).(-1)^{3+1}(0). \begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} =$$

$$2.(3.2) + 2.(0) + 2.(0) = 2.3.2 \Rightarrow \boxed{\det(A) = 12}.$$

$$2.(3.2) + 2.(0) + 2.(0) \equiv 2.3.2 \Rightarrow \det(A) = 12$$

Matriz Triangular

Teorema: Seja $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$ uma MATRIZ TRIANGULAR.

Matriz Triangular

Teorema: Seja $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$ uma MATRIZ TRIANGULAR. Então,

$$det(A) = a_{11}.a_{22}. \ldots .a_{nn}.$$

Matriz Triangular

Teorema: Seja $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$ uma MATRIZ TRIANGULAR. Então,

$$det(A) = a_{11}.a_{22}.a_{nn}.$$

Ou seja, o determinante de uma MATRIZ TRIANGULAR é o produto dos elementos da sua diagonal principal;

Matriz Triangular

Teorema: Seja $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$ uma MATRIZ TRIANGULAR. Então.

$$det(A) = a_{11}.a_{22}.a_{nn}.$$

Ou seja, o determinante de uma MATRIZ TRIANGULAR é o produto dos elementos da sua diagonal principal;

$$det(A) = \prod_{i=1}^{n} a_{ii}.$$

Matriz Triangular

Teorema: Seja $A \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$ uma MATRIZ TRIANGULAR. Então.

$$det(A) = a_{11}.a_{22}.a_{nn}.$$

Ou seja, o determinante de uma MATRIZ TRIANGULAR é o produto dos elementos da sua diagonal principal:

$$det(A) = \prod_{i=1}^{n} a_{ii}.$$

OBSERVAÇÃO: Note que o resultado deste teorema é válido também para uma matriz DIAGONAL.

Matriz Triangular

Teorema: Seja $A \in \mathcal{M}_n(\mathbb{K})$; n > 2 uma MATRIZ TRIANGULAR. Então.

$$det(A) = a_{11}.a_{22}.a_{nn}.$$

Ou seja, o determinante de uma MATRIZ TRIANGULAR é o produto dos elementos da sua diagonal principal:

$$det(A) = \prod_{i=1}^{n} a_{ii}.$$

OBSERVAÇÃO: Note que o resultado deste teorema é válido também para uma matriz DIAGONAL. EXEMPLO:

$$det(I_4) = \prod_{i=1}^4 a_{ii} = 1.1.1.1 = 1.$$

Matriz Triangular

Teorema: Seja $A \in \mathcal{M}_n(\mathbb{K})$; n > 2 uma MATRIZ TRIANGULAR. Então.

$$det(A) = a_{11}.a_{22}.a_{nn}.$$

Ou seja, o determinante de uma MATRIZ TRIANGULAR é o produto dos elementos da sua diagonal principal:

$$det(A) = \prod_{i=1}^{n} a_{ii}.$$

OBSERVAÇÃO: Note que o resultado deste teorema é válido também para uma matriz DIAGONAL. EXEMPLO:

$$det(I_4) = \prod_{i=1}^4 a_{ii} = 1.1.1.1 = 1.$$

Propriedades

Sejam $A, B, C \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

Propriedades

Sejam $A, B, C \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

Propriedades:

1. Se A tem, pelo menos, uma linha (ou coluna) nula então det(A) = 0

Propriedades

Sejam $A, B, C \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

- 1. Se A tem, pelo menos, uma linha (ou coluna) nula então det(A) = 0
- 2. Se A tem, pelo menos, duas linhas (ou colunas) iguais então det(A) = 0

Propriedades

Sejam A, B, $C \in \mathcal{M}_n(\mathbb{K})$; n > 2.

- 1. Se A tem, pelo menos, uma linha (ou coluna) nula então det(A) = 0
- 2. Se A tem, pelo menos, duas linhas (ou colunas) iguais então det(A) = 0
- 3. Se A tem, pelo menos, uma linha (ou coluna) sendo combinação de outras linhas (ou colunas) então det(A) = 0

Propriedades

Sejam A, B, $C \in \mathcal{M}_n(\mathbb{K})$; n > 2.

- 1. Se A tem, pelo menos, uma linha (ou coluna) nula então det(A) = 0
- 2. Se A tem, pelo menos, duas linhas (ou colunas) iguais então det(A) = 0
- 3. Se A tem, pelo menos, uma linha (ou coluna) sendo combinação de outras linhas (ou colunas) então det(A) = 0
- 4. O determinante do produto entre matrizes de mesma ordem é igual ao produto dos seus determinantes.

Propriedades

Sejam A, B, $C \in \mathcal{M}_n(\mathbb{K})$; n > 2.

- 1. Se A tem, pelo menos, uma linha (ou coluna) nula então det(A) = 0
- 2. Se A tem, pelo menos, duas linhas (ou colunas) iguais então det(A) = 0
- 3. Se A tem, pelo menos, uma linha (ou coluna) sendo combinação de outras linhas (ou colunas) então det(A) = 0
- 4. O determinante do produto entre matrizes de mesma ordem é igual ao produto dos seus determinantes.

$$det(A.B) = det(B.A) = det(A).det(B).$$

Propriedades

Sejam A, B, $C \in \mathcal{M}_n(\mathbb{K})$; n > 2.

- 1. Se A tem, pelo menos, uma linha (ou coluna) nula então det(A) = 0
- 2. Se A tem, pelo menos, duas linhas (ou colunas) iguais então det(A) = 0
- 3. Se A tem, pelo menos, uma linha (ou coluna) sendo combinação de outras linhas (ou colunas) então det(A) = 0
- 4. O determinante do produto entre matrizes de mesma ordem é igual ao produto dos seus determinantes.
 - det(A.B) = det(B.A) = det(A).det(B).
- 5. O determinante da transposta da matriz A é igual ao seu determinante: $det(A^t) = det(A)$.

Propriedades

Sejam $A, B, C \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$.

PROPRIEDADES:

- 1. Se A tem, pelo menos, uma linha (ou coluna) nula então det(A) = 0
- 2. Se A tem, pelo menos, duas linhas (ou colunas) iguais então det(A) = 0
- 3. Se A tem, pelo menos, uma linha (ou coluna) sendo combinação de outras linhas (ou colunas) então det(A) = 0
- 4. O determinante do produto entre matrizes de mesma ordem é igual ao produto dos seus determinantes:

$$det(A.B) = det(B.A) = det(A).det(B).$$

- 5. O determinante da transposta da matriz A é igual ao seu determinante: $det(A^t) = det(A)$.
- 6. Se A, B, C são idênticas, a menos pelo fato de que a i-ésima linha (ou j-ésima coluna) de C é a soma das i-ésimas linhas (ou j-ésimas colunas) das matrizes A e B, então det(C) = det(A) + det(B).

Propriedades

Sejam $A, B, C \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$.

PROPRIEDADES:

- 1. Se A tem, pelo menos, uma linha (ou coluna) nula então det(A) = 0
- 2. Se A tem, pelo menos, duas linhas (ou colunas) iguais então det(A) = 0
- 3. Se A tem, pelo menos, uma linha (ou coluna) sendo combinação de outras linhas (ou colunas) então det(A) = 0
- 4. O determinante do produto entre matrizes de mesma ordem é igual ao produto dos seus determinantes:

$$det(A.B) = det(B.A) = det(A).det(B).$$

- 5. O determinante da transposta da matriz A é igual ao seu determinante: $det(A^t) = det(A)$.
- 6. Se A, B, C são idênticas, a menos pelo fato de que a i-ésima linha (ou j-ésima coluna) de C é a soma das i-ésimas linhas (ou j-ésimas colunas) das matrizes A e B, então det(C) = det(A) + det(B).

Propriedades

EXEMPLO:

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
;

Propriedades

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e

Propriedades

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e $C_2 = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$.

Propriedades

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e $C_2 = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$. $det(A) =$

Propriedades

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e $C_2 = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$. $det(A) = 10$;

Propriedades

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e $C_2 = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$. $det(A) = 10$; $det(B) = 10$

Propriedades

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e $C_2 = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$. $det(A) = 10$; $det(B) = 0$;

Propriedades

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e $C_2 = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$.
$$det(A) = 10; det(B) = 0; det(C) = 0$$

Propriedades

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e $C_2 = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$.
$$det(A) = 10; det(B) = 0; det(C) = 10.$$

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e $C_2 = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$.
$$det(A) = 10; det(B) = 0; det(C) = 10.$$

$$det(C) = det(A) + det(B)$$

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e $C_2 = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$.
$$det(A) = 10; det(B) = 0; det(C) = 10.$$

$$det(C) = det(A) + det(B) = 10 + 0 = 10.$$

Sejam as matrizes
$$A_2 = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$
; $B_2 = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$ e $C_2 = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$.
$$det(A) = 10; det(B) = 0; det(C) = 10.$$

$$det(C) = det(A) + det(B) = 10 + 0 = 10.$$

Matrizes Elementares

Sejam $E \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$ uma matriz Elementar.

Matrizes Elementares

Sejam $E \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$ uma matriz Elementar.

PROPRIEDADES:

1. Se E é obtida pela permuta de duas linhas da matriz I_n então

Matrizes Elementares

Sejam $E \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$ uma matriz Elementar.

Propriedades:

1. Se E é obtida pela permuta de duas linhas da matriz I_n então $det(E) = (-1)det(I_n)$

Matrizes Elementares

Sejam $E \in \mathcal{M}_n(\mathbb{K})$; $n \geq 2$ uma matriz Elementar.

Propriedades:

1. Se E é obtida pela permuta de duas linhas da matriz I_n então $det(E) = (-1)det(I_n) = -1$

- 1. Se E é obtida pela permuta de duas linhas da matriz I_n então $det(E) = (-1)det(I_n) = -1$
- 2. Se E é obtida pela multiplicação da i-ésima linha da matriz I_n pelo escalar $\alpha \neq 0$ então

- 1. Se E é obtida pela permuta de duas linhas da matriz I_n então $det(E) = (-1)det(I_n) = -1$
- 2. Se E é obtida pela multiplicação da i-ésima linha da matriz I_n pelo escalar $\alpha \neq 0$ então $det(E) = \alpha det(I_n)$

- 1. Se E é obtida pela permuta de duas linhas da matriz I_n então $det(E) = (-1)det(I_n) = -1$
- 2. Se E é obtida pela multiplicação da i-ésima linha da matriz I_n pelo escalar $\alpha \neq 0$ então $det(E) = \alpha det(I_n) = \alpha$

- 1. Se E é obtida pela permuta de duas linhas da matriz I_n então $det(E) = (-1)det(I_n) = -1$
- 2. Se E é obtida pela multiplicação da i-ésima linha da matriz I_n pelo escalar $\alpha \neq 0$ então $det(E) = \alpha det(I_n) = \alpha$
- 3. Se E é obtida pela substituição da i-ésima linha da matriz I_n pela i-ésima linha mais α vezes a k-ésima linha então

- 1. Se E é obtida pela permuta de duas linhas da matriz I_n então $det(E) = (-1)det(I_n) = -1$
- 2. Se E é obtida pela multiplicação da i-ésima linha da matriz I_n pelo escalar $\alpha \neq 0$ então $det(E) = \alpha det(I_n) = \alpha$
- 3. Se E é obtida pela substituição da i-ésima linha da matriz I_n pela i-ésima linha mais α vezes a k-ésima linha então $det(E) = det(I_n)$

- 1. Se E é obtida pela permuta de duas linhas da matriz I_n então $det(E) = (-1)det(I_n) = -1$
- 2. Se E é obtida pela multiplicação da i-ésima linha da matriz I_n pelo escalar $\alpha \neq 0$ então $det(E) = \alpha det(I_n) = \alpha$
- 3. Se E é obtida pela substituição da i-ésima linha da matriz I_n pela i-ésima linha mais α vezes a k-ésima linha então $det(E) = det(I_n) = 1$

Propriedades:

- 1. Se E é obtida pela permuta de duas linhas da matriz I_n então $det(E) = (-1)det(I_n) = -1$
- 2. Se E é obtida pela multiplicação da i-ésima linha da matriz I_n pelo escalar $\alpha \neq 0$ então $det(E) = \alpha det(I_n) = \alpha$
- 3. Se E é obtida pela substituição da i-ésima linha da matriz la pela i-ésima linha mais α vezes a k-ésima linha então $det(E) = det(I_n) = 1$

OBSERVAÇÃO: Note que podemos utilizar as propriedades dos determinantes aplicados sobre as matrizes elementares para generalizar o cálculo dos determinantes de qualquer matriz A_n ao efetuarmos operações elementares sobre as suas linhas.

Propriedades:

- 1. Se E é obtida pela permuta de duas linhas da matriz I_n então $det(E) = (-1)det(I_n) = -1$
- 2. Se E é obtida pela multiplicação da i-ésima linha da matriz I_n pelo escalar $\alpha \neq 0$ então $det(E) = \alpha det(I_n) = \alpha$
- 3. Se E é obtida pela substituição da i-ésima linha da matriz la pela i-ésima linha mais α vezes a k-ésima linha então $det(E) = det(I_n) = 1$

OBSERVAÇÃO: Note que podemos utilizar as propriedades dos determinantes aplicados sobre as matrizes elementares para generalizar o cálculo dos determinantes de qualquer matriz A_n ao efetuarmos operações elementares sobre as suas linhas.

Operações Elementares

Sejam $A, B \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

Operações Elementares

Sejam $A, B \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

Propriedades:

1. Se B é obtida pela permuta de duas linhas da matriz A então

Operações Elementares

Sejam $A, B \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

Propriedades:

1. Se B é obtida pela permuta de duas linhas da matriz A então

$$det(B) = (-1)det(A).$$

Operações Elementares

Sejam $A, B \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

Propriedades:

1. Se B é obtida pela permuta de duas linhas da matriz A então

$$det(B) = (-1)det(A).$$

2. Se B é obtida pela multiplicação da i-ésima linha da matriz A pelo escalar $\alpha \neq 0$ então

Operações Elementares

Sejam $A, B \in \mathcal{M}_n(\mathbb{K})$; n > 2.

Propriedades:

1. Se B é obtida pela permuta de duas linhas da matriz A então

$$det(B) = (-1)det(A).$$

2. Se B é obtida pela multiplicação da i-ésima linha da matriz A pelo escalar $\alpha \neq 0$ então

$$det(B) = (\alpha)det(A).$$

Operações Elementares

Sejam $A, B \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

Propriedades:

1. Se B é obtida pela permuta de duas linhas da matriz A então

$$det(B) = (-1)det(A).$$

2. Se B é obtida pela multiplicação da i-ésima linha da matriz A pelo escalar $\alpha \neq 0$ então

$$det(B) = (\alpha)det(A).$$

OBSERVAÇÃO: Note que podemos generalizar o cálculo do determinante da matriz $B = \alpha A$

Operações Elementares

Sejam $A, B \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

Propriedades:

1. Se B é obtida pela permuta de duas linhas da matriz A então

$$det(B) = (-1)det(A).$$

2. Se B é obtida pela multiplicação da i-ésima linha da matriz A pelo escalar $\alpha \neq 0$ então

$$det(B) = (\alpha)det(A).$$

OBSERVAÇÃO: Note que podemos generalizar o cálculo do determinante da matriz $B = \alpha A \Rightarrow det(B) = (\alpha^n) det(A)$.

Operações Elementares

Sejam $A, B \in \mathcal{M}_n(\mathbb{K}); n > 2.$

Propriedades:

1. Se B é obtida pela permuta de duas linhas da matriz A então

$$det(B) = (-1)det(A).$$

2. Se B é obtida pela multiplicação da i-ésima linha da matriz A pelo escalar $\alpha \neq 0$ então

$$det(B) = (\alpha)det(A).$$

- OBSERVAÇÃO: Note que podemos generalizar o cálculo do determinante da matriz $B = \alpha A \Rightarrow det(B) = (\alpha^n) det(A)$.
- 3. Se B é obtida pela substituição da i-ésima linha da matriz A pela i-ésima linha mais α vezes a k-ésima linha então

Operações Elementares

Sejam $A, B \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

Propriedades:

1. Se B é obtida pela permuta de duas linhas da matriz A então

$$det(B) = (-1)det(A).$$

2. Se B é obtida pela multiplicação da i-ésima linha da matriz A pelo escalar $\alpha \neq 0$ então

$$det(B) = (\alpha)det(A).$$

OBSERVAÇÃO: Note que podemos generalizar o cálculo do determinante da matriz $B = \alpha A \Rightarrow det(B) = (\alpha^n) det(A)$.

3. Se B é obtida pela substituição da i-ésima linha da matriz A pela i-ésima linha mais α vezes a k-ésima linha então

$$det(B) = det(A)$$
.

Operações Elementares

Sejam $A, B \in \mathcal{M}_n(\mathbb{K}); n \geq 2.$

Propriedades:

1. Se B é obtida pela permuta de duas linhas da matriz A então

$$det(B) = (-1)det(A).$$

2. Se B é obtida pela multiplicação da i-ésima linha da matriz A pelo escalar $\alpha \neq 0$ então

$$det(B) = (\alpha)det(A).$$

OBSERVAÇÃO: Note que podemos generalizar o cálculo do determinante da matriz $B = \alpha A \Rightarrow det(B) = (\alpha^n) det(A)$.

3. Se B é obtida pela substituição da i-ésima linha da matriz A pela i-ésima linha mais α vezes a k-ésima linha então

$$det(B) = det(A)$$
.

Operações Elementares

Operações Elementares

EXEMPLO:

$$det(A_4) = \begin{vmatrix} 0 & 2 & -4 & 5 \\ 3 & 0 & -3 & 6 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2$$

Operações Elementares

EXEMPLO:
$$det(A_4) = \begin{vmatrix} 0 & 2 & -4 & 5 \\ 3 & 0 & -3 & 6 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 \ (-1) \begin{vmatrix} 3 & 0 & -3 & 6 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix}$$

EXEMPLO:
$$det(A_4) = \begin{vmatrix} 0 & 2 & -4 & 5 \\ 3 & 0 & -3 & 6 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 (-1) \begin{vmatrix} 3 & 0 & -3 & 6 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow (\frac{1}{3})L_1$$

EXEMPLO:

$$det(A_4) = \begin{vmatrix} 0 & 2 & -4 & 5 \\ 3 & 0 & -3 & 6 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 (-1) \begin{vmatrix} 3 & 0 & -3 & 6 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow (\frac{1}{3})L_1$$

$$(-1).(3) \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_3 \longleftrightarrow L_3 \longleftrightarrow L_3 - (2)L_1$$

$$L_4 \longleftrightarrow L_4 \longleftrightarrow L_4 - (5)L_1$$

EXEMPLO:

$$det(A_4) = \begin{vmatrix} 0 & 2 & -4 & 5 \\ 3 & 0 & -3 & 6 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 (-1) \begin{vmatrix} 3 & 0 & -3 & 6 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow (\frac{1}{3})L_1$$

$$(-1).(3) \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_3 \longleftrightarrow L_3 \longleftrightarrow L_3 - (2)L_1$$

$$L_4 \longleftrightarrow L_4 \longleftrightarrow L_4 - (5)L_1$$

EXEMPLO:
$$\begin{aligned}
det(A_4) &= \begin{vmatrix} 0 & 2 & -4 & 5 \\ 3 & 0 & -3 & 6 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 (-1) \begin{vmatrix} 3 & 0 & -3 & 6 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 (-1) \begin{vmatrix} 3 & 0 & -3 & 6 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow (\frac{1}{3})L_1 \longleftrightarrow (-1).(3) \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix}$$

EXEMPLO:
$$\begin{aligned}
det(A_4) &= \begin{vmatrix} 0 & 2 & -4 & 5 \\ 3 & 0 & -3 & 6 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 (-1) \begin{vmatrix} 3 & 0 & -3 & 6 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 (-1) \begin{vmatrix} 3 & 0 & -3 & 6 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 (-1) \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_2 \longleftrightarrow L_4 \longleftrightarrow L_4 - (5)L_1 (-1).(3) \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 2 & -4 & 5 \\ 0 & 4 & 7 & 3 \\ 0 & -1 & 2 & -9 \end{vmatrix} L_2 \longleftrightarrow L_4 \end{aligned}$$

EXEMPLO:
$$det(A_4) = \begin{vmatrix} 0 & 2 & -4 & 5 \\ 3 & 0 & -3 & 6 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 (-1) \begin{vmatrix} 3 & 0 & -3 & 6 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow L_2 (-1) \begin{vmatrix} 3 & 0 & -3 & 6 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_1 \longleftrightarrow (\frac{1}{3})L_1$$

$$(-1).(3) \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 2 & -4 & 5 \\ 2 & 4 & 5 & 7 \\ 5 & -1 & -3 & 1 \end{vmatrix} L_3 \longleftrightarrow L_3 \longleftrightarrow L_3 - (2)L_1 (-1).(3) \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 2 & -4 & 5 \\ 0 & 4 & 7 & 3 \\ 0 & -1 & 2 & -9 \end{vmatrix} L_4 \longleftrightarrow L_4 + (5)L_1 (-1).(3) \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 4 & 7 & 3 \\ 0 & -1 & 2 & -9 \\ 0 & 0 & 15 & -33 \\ 0 & 0 & 0 & -13 \end{vmatrix}$$

Exercícios

1. Calcule o determinante da seguinte matriz: $det(A_4) = \begin{vmatrix} -1 & 0 & -\frac{1}{2} & 3 \\ 0 & -1 & -1 & 0 \\ 2 & 4 & 2 & 0 \\ -1 & 0 & -3 & 0 \end{vmatrix}$

Exercícios

1. Calcule o determinante da seguinte matriz:
$$det(A_4) = \begin{vmatrix} -1 & 0 & -\frac{1}{2} & 3 \\ 0 & -1 & -1 & 0 \\ 2 & 4 & 2 & 0 \\ -1 & 0 & -3 & 0 \end{vmatrix}$$

(a)
$$det(A_2) = \begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix}$$

Exercícios

1. Calcule o determinante da seguinte matriz:
$$det(A_4) = \begin{vmatrix} -1 & 0 & -\frac{1}{2} & 3 \\ 0 & -1 & -1 & 0 \\ 2 & 4 & 2 & 0 \\ -1 & 0 & -3 & 0 \end{vmatrix}$$

(a)
$$det(A_2) = \begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix}$$
 (b) $det(A_3) = \begin{vmatrix} 2-\lambda & 0 & -2\\ 1 & 1-\lambda & 1\\ 0 & 0 & 2-\lambda \end{vmatrix}$

Exercícios

1. Calcule o determinante da seguinte matriz:
$$det(A_4) = \begin{vmatrix} -1 & 0 & -\frac{1}{2} & 3 \\ 0 & -1 & -1 & 0 \\ 2 & 4 & 2 & 0 \\ -1 & 0 & -3 & 0 \end{vmatrix}$$

(a)
$$det(A_2) = \begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix}$$
 (b) $det(A_3) = \begin{vmatrix} 2-\lambda & 0 & -2\\ 1 & 1-\lambda & 1\\ 0 & 0 & 2-\lambda \end{vmatrix}$

3. Seja
$$A_3 = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 1 & 2 \\ 0 & 0 & 2 \end{vmatrix}$$

Exercícios

1. Calcule o determinante da seguinte matriz:
$$det(A_4) = \begin{vmatrix} -1 & 0 & -\frac{1}{2} & 3 \\ 0 & -1 & -1 & 0 \\ 2 & 4 & 2 & 0 \\ -1 & 0 & -3 & 0 \end{vmatrix}$$

(a)
$$det(A_2) = \begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix}$$
 (b) $det(A_3) = \begin{vmatrix} 2-\lambda & 0 & -2\\ 1 & 1-\lambda & 1\\ 0 & 0 & 2-\lambda \end{vmatrix}$

3. Seja
$$A_3 = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 1 & 2 \\ 0 & 0 & 2 \end{vmatrix}$$
Calcule o $\det(A_3 - \lambda I_3)$

Exercícios

1. Calcule o determinante da seguinte matriz:
$$det(A_4) = \begin{vmatrix} -1 & 0 & -\frac{1}{2} & 3 \\ 0 & -1 & -1 & 0 \\ 2 & 4 & 2 & 0 \\ -1 & 0 & -3 & 0 \end{vmatrix}$$

2. Calcule o determinante das matrizes abaixo, com $\lambda \in \mathbb{R}$.

(a)
$$det(A_2) = \begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix}$$
 (b) $det(A_3) = \begin{vmatrix} 2-\lambda & 0 & -2\\ 1 & 1-\lambda & 1\\ 0 & 0 & 2-\lambda \end{vmatrix}$

3. Seja
$$A_3 = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 1 & 2 \\ 0 & 0 & 2 \end{vmatrix}$$

Calcule o $det(A_3 - \lambda I_3)$.

Em seguida, substitua λ por A e obtenha uma nova matriz.

Exercícios

1. Calcule o determinante da seguinte matriz:
$$det(A_4) = \begin{vmatrix} -1 & 0 & -\frac{1}{2} & 3 \\ 0 & -1 & -1 & 0 \\ 2 & 4 & 2 & 0 \\ -1 & 0 & -3 & 0 \end{vmatrix}$$

2. Calcule o determinante das matrizes abaixo, com $\lambda \in \mathbb{R}$.

(a)
$$det(A_2) = \begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix}$$
 (b) $det(A_3) = \begin{vmatrix} 2-\lambda & 0 & -2\\ 1 & 1-\lambda & 1\\ 0 & 0 & 2-\lambda \end{vmatrix}$

3. Seja
$$A_3 = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 1 & 2 \\ 0 & 0 & 2 \end{vmatrix}$$

Calcule o $det(A_3 - \lambda I_3)$.

Em seguida, substitua λ por A e obtenha uma nova matriz.

Qual é a matriz resultante?

Exercícios

1. Calcule o determinante da seguinte matriz:
$$det(A_4) = \begin{vmatrix} -1 & 0 & -\frac{1}{2} & 3 \\ 0 & -1 & -1 & 0 \\ 2 & 4 & 2 & 0 \\ -1 & 0 & -3 & 0 \end{vmatrix}$$

2. Calcule o determinante das matrizes abaixo, com $\lambda \in \mathbb{R}$.

(a)
$$det(A_2) = \begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix}$$
 (b) $det(A_3) = \begin{vmatrix} 2-\lambda & 0 & -2\\ 1 & 1-\lambda & 1\\ 0 & 0 & 2-\lambda \end{vmatrix}$

3. Seja
$$A_3 = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 1 & 2 \\ 0 & 0 & 2 \end{vmatrix}$$

Calcule o $det(A_3 - \lambda I_3)$.

Em seguida, substitua λ por A e obtenha uma nova matriz.

Qual é a matriz resultante?