Fórmulas complementarias

Coeficiente de dilatación

$$\alpha = \frac{1}{V} (\frac{\partial V}{\partial T})$$

 α = Coeficiente de dilatación térmica

 $\frac{\partial V}{\partial T}$ = Derivada parcial del volumen con respecto a la temperatura

V = Volumen

Sólidos

$$\alpha_L = \frac{dInV}{dT} \approx \frac{1}{L} (\frac{\Delta L}{\Delta T})$$
 $\alpha_V \approx 3\alpha_L$

$$\alpha_{V} = \frac{dInV}{dT} \approx \frac{1}{V} (\frac{\Delta V}{\Delta T})$$

 α_{V} = Coeficiente de dilatación volumétrico

V = Volumen

T = Temperatura

 ΔV = Variación en el volumen

 ΔT = Variación en la temperatura

 α_I = Coeficiente de dilatación lineal

Procesos térmicos

Adiabático

$$\Delta U + W = 0$$

Isocórico

$$Q = \Delta U$$

Isotérmico

$$dU = 0 = Q - W \longrightarrow W = Q$$
 (Para gas ideal)

W = Trabajo realizado por el sistema

 ΔU = Cambio en la energía interna

Q = Calor

dU= Cambio de la energía interna