
LIN150117

TSINGHUA UNIVERSITY.

linzj23@mails.tsinghua.edu.cn

November 3, 2024

Contents

List of Theorems 5

Theorem 0.1. If $B \in \mathbb{R}^{n \times n}$ satisfying ||B|| < 1, then I + B invertible and

$$||(I+B)^{-1}||_2 \le \frac{1}{1-||B||}$$

Cholesky transformation

Doolottle Decomposition

Condition number

$$\mathcal{K}_2(A)^2 = \operatorname{cond}(A^TA)$$
 if A full of column rank $\operatorname{cond}(A) \geqslant \frac{|\lambda_1|}{|\lambda_n|}$ equality holds if A is symmetric matrix $||A||_2^2 = \rho(A^TA) = ||A^TA||_2$

Theorem 0.2. *If* $\det A \neq 0$, then

$$\min_{|A+\delta A|=0} \frac{||\delta A||_2}{||A||_2} = \frac{1}{\text{cond}(A)_2}$$

Moore-Penrose pseudoinverse

Theorem 0.3. For the least squrare equation of Ax = b,

$$\frac{||\delta x||_2}{||x||_2} \leqslant \mathcal{K}_x(A) \cdot \frac{||A\delta x||_2}{||Ax||_2}$$

Hauseholder transiformation

Givens transoformation

$$R_k(B) = -\ln||B^k||^{\frac{1}{k}}$$

$$R(B) = -\ln \rho(B)$$

Jacobian iteration

Gauss-Seidel iteration

Theorem 0.4.

Theorem 0.5. By Steepest Descent Algorithm,

$$||x^k - x^*||_A \le \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^k ||x^0 - x^*||_A$$

Theorem 0.6. In conjugated gradient method,

$$P^{(k)} = r^{(k)} + \beta_{k-1} P^{(k-1)}$$

with

$$\beta_{k-1} = -\frac{(r^{(k)}, AP^{(k-1)})}{(P^{(k-1)}, AP^{(k-1)})}, r^{(k)} = b - Ax^{(k)}$$

And the iteration

$$x^{(k+1)} = x^{(k)} + \alpha_k P^{(k)}$$

where

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}} \varphi(x^{(k)} + \alpha P^{(k)}) = \frac{(r^{(k)}, P^{(k)})}{(P^{(k)}, AP^{(k)})}$$

This iteration satsifies

$$x^{(k)} = \arg\min_{x-x^{(0)} \in \operatorname{Span}\{P^{(0)}, \cdots, P^{(k-1)}\}} \varphi(x)$$

Theorem 0.7.
$$(r^{(i)}, r^{(j)}) = 0, i \neq j$$

$$(AP^{(i)}, P^{(j)}) = 0, i \neq j$$

$$(r^{(j)}, P^{(i)}) = 0, i < j$$

$$\mathrm{Span}\{r^0,\cdots,r^{(k)}\}=\mathrm{Span}\{P^{(0)},\cdots,P^{(k)}\}=\mathrm{Span}\{r^{(0)},Ar^{(0)},\cdots,A^kr^{(0)}\}$$

List of Theorems

0.1	Theorem		•	 •	•	•	•	•	•			•	•	•		•		•	•	•	•	•	•		•			•	2	2
0.2	Theorem																•							•	•	•	•		2	2
0.3	Theorem																												2	2
0.4	Theorem																												3	3
0.5	Theorem																												3	3
0.6	Theorem																												3	3
0.7	Theorem																												3	3