

Unraveling Multicollinearity between Predictors with PCLR and PLSLR Techniques

Bindubritta Acharjee

PROBLEM STATEMENT

THE ISSUES

- The usual dimension reduction techniques avoid multicollinearity
- They undermine the statistical significance of independent variables

PROBLEM

THE RESOLUTIONS

Need to follow Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR) to solve this kind of situation

Better prediction model with fewer components for regression analysis

SOLUTION

RESULT

Tumor Dataset for Analysis

PCLR Method

PCLR vs PLSLR ⇒ **PCA vs PLS**

$$y_{n X 1} = X_{n X (p+1)} . \beta_{(p+1) X 1} + \varepsilon_{n X 1}$$

Analysis and Results

Findings and Future Scopes

Criterial	PCLR	PLSLR
Total components for 91% explained variance	50	32
1st component explains	13.58%	8.31%
2 nd component explains	7.96%	7.17%
3 rd component explains	6.15%	5.45%
Cut-off bandwidth for 100% accuracy	0.1-0.5	0.1-0.9

Based on the results from the analysis, we can conclude that PLSLR performs better over PCLR.

FUTURE SCOPES:

Overfit Model

01

To further analyse the model for overfitting

PLS-DA

02

Partial least squares discriminant analysis

THANK YOU!