Reporte de laboratorio 4

Laura Rincón Riveros - B55863 Esteban Vargas Vargas - B16998 Grupo 3

5 de octubre de 2016

Índice

1.	Intr	oducci	ión	1
2.	Desarrollo			
	2.1.	Conceptos de complejidad de problemas		
			Problemas NP	
		2.1.2.	Problemas NP-duros	2
		2.1.3.	Problemas NP-completos	2
	2.2.	Proble	emas clásicos	3
		2.2.1.	Problemas NP	3
		2.2.2.	Problemas NP-duros	3
		2.2.3.	Problemas NP-completos	3
	2.3.	Progra	ama TicTacToe	4
		2.3.1.	Explicación	4
		2.3.2.	Función de tiempo de ejecución	6
		2.3.3.	Función de complejidad O	9
3.	Con	clusio	nes	9

1. Introducción

En el presente laboratorio se realizó una revisión bibliográfica para poder sintetizar los conceptos de problemas con complejidad NP, NP-duros y NP-completos. Asimimso se realizó una búsqueda sobre problemas clásicos de las complejidades mencionadas.

En la segunda parte del laboratorio se analizó un código fuente proporcionado por el profesor y se obtuvo su función de tiempo de ejecución y su complejidad O; adicionalmente se elaboraron gráficas para representar con facilidad los datos.

2. Desarrollo

2.1. Conceptos de complejidad de problemas

2.1.1. Problemas NP

Un problema NP se define como un problema que se puede resolver mediante un algoritmo con una función de tiempo de ejecución no polinomial en una máquina determinista.

2.1.2. Problemas NP-duros

Si se tiene un conjunto de problemas NP, un problema es NP-duro si la duración de todos esos problemas NP se puede transformar mediante un factor polinomial en la duración del problema NP-duro.

2.1.3. Problemas NP-completos

Un problema es NP-completo si se puede reducir con una función polinomial en una función polinomial también; y además la verificación de su instancia también es polinomial.

2.2. Problemas clásicos

2.2.1. Problemas NP

- El problema de factorizar números en una multiplicación de números primos: cuando la cifra es grande el problema es intratable.
- El problema de isomorfismo de grafos: consiste en la determinación de si dos grafos con el mismo número de vértices y aristas son isomorfos o no. No se conoce si es resoluble en tiempo polinómico o si es NP-completo.

2.2.2. Problemas NP-duros

- Problema de la suma de subconjuntos: dado un conjunto de enteros, la pregunta es si existe algún subconjunto en él cuya suma sea cero. (Problema también es NP-completo).
- El problema del agente viajero: dado un viajero y un conjunto de ciudades, el problema es encontrar cuál es la distancia más corta posible en la que el viajero puede visitar todas y volver a su punto de origen.

2.2.3. Problemas NP-completos

- El problema SAT de la satisfactibilidad de la lógica proposicional. (Fue el primer problema demostrado ser NP-completo, por S.A. Cook en 1971).
- El problema de *Clique*: es un problema de decisión de si un grafo contiene un *clique* de al menos un tamaño k. (Un clique se le dice a un subgrafo con todos los vértices conectados entre ellos).

2.3. Programa TicTacToe

2.3.1. Explicación

El programa en **ttt.src** contiene el algoritmo de un juego de TicTacToe para dos jugadores. El cuál se basa en una matriz cuadrada, cada jugador ingresa una posición y el programa verifica si el valor asignado para ese jugador está en una columna, fila o digonal completa. Si se cumple lo anterior se determina el ganador o se continúa hasta que alguno gane.

2.3.2. Función de tiempo de ejecución

```
public class TicTacToe {
    int[][] matrix;
    /** Initialize your data structure here. */
    public TicTacToe(int n) {
        matrix = new int[n][n]; //(1) asignación
    /** Player {player} makes a move at ({row}, {col}).
        @param row The row of the board.
        @param col The column of the board.
        @param player The player, can be either 1 or -1.
        @return The current winning condition, can be either:
                0: No one wins.
                1: Player 1 wins.
                -1: Player 2 wins. */
    int move(int row, int col, int player) {
        matrix[row][col]=player; //(1) asignacion, (1) acceso a memoria
        //check row
        boolean win=true; //(1) asignacion
        for(int i=0; i<matrix.length; i++){ // [(1) asignación, (1) comparación, (1) incremento] se ejecuta n veces
            if(matrix[row][i]!=player){ // (1) acceso a memoria, (1) comparación
                win=false; //(1) asignación
                break; // (1) intrucción
        if(win) return player; // (1) comparación, (1) instrucción
```

(a) Función move

```
int main()
{
  int player = -1; //(1) asignación
  boolean end = false; //(1) asignación
  int n = 3; //(1) asignación
  int r, c, result; //(1) asignación

  TicTacToe ttt = new TicTacToe(n); //(1) declaración
  while(!end) //se ejecuta n^2
  {
    player *= -1 //(1) asignación, (1) multiplicación
    r = randomInt(0, 3); //(1) función randomInt, (1) asignación
    c = randomInt(0, 3); //(1) función randomInt, (1) asignación
    result = move(player, r, c); // función move, (1) asignación
    if(result != 0) //(1) comparación
    {
        print("player " + result + " won."); //(1) función print
        end = true; //(1) asignación
    }
}
return 0; //(1) instrucción
}
```

Figura 1: Conteo para obtener función del tiempo

¹ Se procedió a contar cada intrucctivo para cuantificar el tiempo de ejecución de todo el programa.

Por lo que, se puede observar en la Figura 1.a se encuentra la declaración de las variables y la función de move. Para el caso de la función del progama, las verificaciones como se repiten se obtiene lo siguiente:

$$T_1(n) = 1 + 1 + 4 * (1 + [(1+1+1)n * (1+1+1+1)]) + 1 + 1 + 1 + 1 = 48n + 10$$
 (1)

Si agregamos los intrucctivos del main y la inicialización de las variables a (1), de la Figura 1.b:

La función de tiempo dada por (2) pertenece a todo el programa. Y se puede observar en la Figura 2, la segunda gráfica.

¹Revisar el archivo **ttt.src** comentado y contado

Figura 2: Conteo para obtener función del tiempo

2.3.3. Función de complejidad O

Si se simplifica la función de tiempo, se puede obtiene la función de complejidad $O(n^3)$, que se puede representar en la Figura 2, la primera gráfica. También se puede ver que O(n) acota inferiormente a T(n), en la tercera gráfica de la Figura 2

3. Conclusiones

- Se describieron y explicaron los conceptos de complejidades NP, NP-dura y NP-completos.
- Se estudiaron los problemas clásicos de las distintas complejidades NP.
- Se obtuvo la función de tiempo y comlejidad del programa **ttt.src**
- Se graficaron las funciones de tiempo y complejidad del programa proporcionado.

Referencias

- [1] Pérez, M.Sancho, F. (2003). *Máquinas moleculares basadas en ADN*. Sevilla, España: Secretariado de Publicaciones de la Universidad de Sevilla.
- [2] Complejidad-ProblemasNP-Completos. Algoritmos y estructuras de datos III. Recuperado de $https: //www.dc.uba.ar/materias/aed3/2014/2c/teorica/handout_compl.pdf$.