第一节 模糊集及其集运算

1.模糊集合的定义

设X是论域, $A: X \rightarrow [0,1]$,则称A是X上模糊集.

 $\forall x \in X, A(x) \in [0,1]$ 称为x属于A的隶属度.

X上全体模糊集记为F(X), $F(X) = \{A \mid A: X \rightarrow [0,1]\}$.

$$A(x) = 1$$
 x 完全属于 A

$$A(x) = 0$$
 x完全不属于A

$$0 < A(x) < 1$$
 x部分属于A

x变化时,A(x)称为隶属函数

例1 O =年老,X = [0, 100], $O: X \to [0,1]$ 规定为:

$$O(x) = \begin{cases} 0 & 0 \le x \le 50\\ 1 + \left(\frac{x - 50}{5}\right)^{-2} \end{cases}^{-1} \quad 50 < x \le 100$$

随着x增加,O(x)增大

$$O(50) = 0$$
, $O(60) = 0.8$

$$O(90) = 0.985$$

$$0 \le x \le 50$$

$$50 < x \le 100$$

类似, Y =年轻, $Y: X \rightarrow [0,1]$ 规定为:

$$Y(x) = \begin{cases} 1 & x \le 25 \\ 1 + \left(\frac{x - 25}{5}\right)^2 \end{cases}^{-1} \quad 25 < x \le 100$$

随着x增加,Y(x)减小

$$Y(25) = 1$$
,

$$Y(30) = 0.5$$

$$Y(60) = 0.02$$

注记:

- 普通集合是模糊集的特例,特征函数即为隶属函数
- 空集 ϕ 的隶属函数为 $\phi(x) \equiv 0$
- 全集 X的隶属函数为 $X(x) \equiv 1$
- 模糊集的定义与上下文有关
- 表示法
 - (i) 论域无限时由隶属函数表出;
 - (ii) 论域有限时表出方法如下:

离散的模糊集表示法

假设给定有限论域 $U = \{a_1, a_2, \dots, a_n\}$,它的模糊子集A可以用查德给出的表示法:

$$\tilde{A} = \frac{\mu_{\tilde{A}}(a_1)}{a_1} + \frac{\mu_{\tilde{A}}(a_2)}{a_2} + \dots + \frac{\mu_{\tilde{A}}(a_i)}{a_i} + \dots + \frac{\mu_{\tilde{A}}(a_n)}{a_n}$$

其中 $a_i \in U$ ($i=1,2,\dots,n$) 为论域里的元素, $\mu_{\underline{A}}(a_i)$ 是 a_i 对 \underline{A} 的隶属函数,

 $0 \le \mu_A(a_i) \le 1$ 。上式表示一个有 n 个元素的模糊子集。"+"叫做查德记号,不是求和

$$X = \{x_1, x_2, ..., x_n\}, A: X \to [0,1]$$
可表示为:

$$A = A(x_1)/x_1 + A(x_2)/x_2 + \dots + A(x_n)/x_n$$

例如:
$$S = \mathbb{L}$$
个, $X = \{1, 2, \dots, 10\}$

$$S = 0.2/1 + 0.6/2 + 1/3 + 1/4 + 1/5 + 0.9/6 + 0.8/7 + 0.7/8 + 0.6/9 + 0/10$$

$$S = 0.2/1 + 0.6/2 + 1/3 + 1/4 + 1/5 + 0.9/6 + 0.8/7 + 0.7/8 + 0.6/9$$

连续的模糊集的表示法

当U时有限连续域时,Zadeh 给出如下记法

$$A = \int_{U} \frac{\mu_{A}(u)}{u}$$

同样, $\frac{\mu_A(u)}{u}$ 并不表示"分数"而表示论域上的元素u与隶属度 $\mu_A(u)$ 之间的对应关系;" \int "既不表示"积分",也不表示"求和"记号,而是表示论域U上的元素u与隶属度 $\mu_A(u)$ 对应关系的一个总括。

2. 模糊集的集运算

设A,B ∈ F(X),它们的并 $A \cup B$ 、交 $A \cap B$ 分别定义为:

$$(A \cup B)(x) = \max(A(x), B(x)) = A(x) \lor B(x)$$

 $A \cup B$ 表示A或B

$$(A \cap B)(x) = \min(A(x), B(x)) = A(x) \land B(x)$$

 $A \cap B$ 表示A且B

A的余定义为: $A^{c}(x) = 1 - A(x)$ A^{c} 表示非A

模糊集合运算

- (a) 模糊集合 A 与 B; (b) 模糊集合 A 的补集;
- (c) 模糊集合 A与 B的交集; (d) 模糊集合 A与 B的并集

例子
$$A =$$
小, $B =$ 大, $X = \{1,2,\dots,10\}$

$$A = 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5$$

$$B = 0.2/4 + 0.4/5 + 0.6/6 + 0.8/7 + 1/8 + 1/9 + 1/10$$

不小 =
$$A^c$$
,不大 = B^c ,不小也不大 = $A^c \cap B^c$

$$A^{c}(1) = 1 - A(1) = 0$$
, $A^{c}(2) = 0.2$, $A^{c}(3) = 0.4$, $A^{c}(4) = 0.6$

$$A^{c}(5) = 0.8, A^{c}(6) = A^{c}(7) = A^{c}(8) = A^{c}(9) = A^{c}(10) = 1$$

$$A^{c} = 0.2/2 + 0.4/3 + 0.6/4 + 0.8/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10$$

$$B^c = 1/1 + 1/2 + 1/3 + 0.8/4 + 0.6/5 + 0.4/6 + 0.2/7$$

$$A^{c} \cap B^{c} = 0.2/2 + 0.4/3 + 0.6/4 + 0.6/5 + 0.4/6 + 0.2/7$$

$$A \subseteq B \iff \forall x \in X, A(x) \leq B(x)$$

 $A = B \iff \forall x \in X, A(x) = B(x)$
显然 $A = B \Leftrightarrow A \subseteq B$ 且 $B \subseteq A$

$$A \subset B \Leftrightarrow \forall x \in X, A(x) \leq B(x)$$
 1
$$\exists x \in X, A(x) < B(x).$$

隶属函数的确定

一、统计法

例如: 确定 S="几个"的隶属函数, 论域 $X = \{1,2,\dots,10\}$ 有人在**大学调查126人,统计数据如下:

1	2	3	4	5	6	7	8	9	10
26	78	124	125	124	112	108	102	99	13

1隶属"几个"的隶属频率为:
$$\frac{26}{126} = 0.2063$$

将0.2063视为1隶属 S="几个"的隶属度,S(1)=0.2063

计算出所有的隶属频率即得S的隶属函数近似为:

$$S = 0.2/1 + 0.62/2 + 0.98/3 + 0.99/4 + 0.98/5$$
$$0.89/6 + 0.86/7 + 0.81/8 + 0.78/9 + 0.1/10$$

对连续论域,适当选取一些分割点,用统计方法求得这些分点的隶属度,用光滑曲线连接,即得隶属函数.

例如: X=[0,100], 求Y="年轻人"的隶属函数.

将X进行分割,假定27是一个分点;

调查106人,每人给出一个自己确定的年轻人区间; 其中81个区间包含27岁,因而27岁对年轻人的隶属 频率为81/106=0.76;将其作为Y(27).

对每个分点同样处理,并用光滑曲线连接即得Y的 隶属函数

二、 利用已知隶属函数,确定其中的参数

常见的隶属函数如下:

偏小型
$$A(x) = \begin{cases} 1 & x < a \\ \frac{b-x}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$$

偏大型
$$A(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

中间型
$$A(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & b \le x < c \\ \frac{d-x}{d-c} & c \le x < d \\ 0 & x \ge d \end{cases}$$

梯形的一种特殊情形是三角形

2. 正态形

偏小型
$$A(x) = \begin{cases} 1 & x \le a \\ e^{-\left(\frac{x-a}{\sigma}\right)^2} & x > a \end{cases}$$

偏大型
$$A(x) = \begin{cases} 1 & x > a \\ -\left(\frac{x-a}{\sigma}\right)^2 & x \le a \end{cases}$$

中间型
$$A(x) = e^{-\left(\frac{x-a}{\sigma}\right)^2}$$

3. 抛物形

偏大型
$$A(x) = \begin{cases} 0 & x < a \\ \left(\frac{x-a}{b-a}\right)^k & a \le x \le b \\ 1 & x > b \end{cases}$$
中间型
$$A(x) = \begin{cases} 0 & x < a \\ \left(\frac{x-a}{b-a}\right)^k & a \le x < b \\ 1 & b \le x < c \\ \left(\frac{d-x}{d-c}\right)^k & c \le x < d \\ 0 & x \ge d \end{cases}$$

$$(k > 0)$$

•模糊综合评价模型

对方案、人才、成果的评价,人们的考虑的因素很多,而且有些描述很难给出确切的表达,这时可采用模糊评价方法。它可对人、事、物进行比较全面而又定量化的评价,是提高领导决策能力和管理水平的一种有效方法。

•模糊综合评价的基本步骤:

(1) 首先要求出模糊评价矩阵P,其中P_{i j}表示方案X在第i个目标处于第j级评语的隶属度,当对多个目标进行综合评价时,还要对各个目标分别加权,设第i个目标权系数为W_i,则可得权系数向量:

$$A = (W_1, W_2, \dots W_n)$$

(2) 综合评判

利用矩阵的模糊乘法得到综合模糊评价向量B B=A⊙P(其中⊙为模糊乘法),根据运算 ⊙的不同定义,可得到不同的模型

模型1 M(A, V)——主因素决定型

$$b_i = \max\{(a_i \land p_{ij}) | 1 \le i \le n\} (j = 1, 2, \dots, n)$$

模型2 M(·, v)——主因素突出型

$$b_j = \max\{(a_i \cdot p_{ij}) | 1 \le i \le n\} (j = 1, 2, \dots, m)$$

模型3 M(·,+)——加权平均型

$$b_{j} = \sum (a_{i} \cdot p_{ij})(j = 1, 2 \cdot \cdot \cdot m)$$

例1: 对某品牌电视机进行综合模糊评价

• 设评价指标集合:

U={图像,声音,价格};

评语集合:

V= {很好,较好,一般,不好};

假设有30%的人认为很好,50%的人认为较好,20%的人认为一般,没有人认为不好,这样得到图像的评价结果为

(0.3, 0.5, 0.2, 0)

同样对声音有: (0.4, 0.3, 0.2, 0.1)

对价格为: (0.1, 0.1, 0.3, 0.5)

所以有模糊评价矩阵:

$$P = \begin{pmatrix} 0.3 & 0.5 & 0.2 & 0 \\ 0.4 & 0.3 & 0.2 & 0.1 \\ 0.1 & 0.1 & 0.3 & 0.5 \end{pmatrix}$$

设三个指标的权系数向量:

A = {图像评价,声音评价,价格评价} = (0.5, 0.3, 0.2)

应用模型1, $b_j = max\{(a_i \land r_{ij})$ 有综合评价结果为

 $B = A \odot P$

= (0.3, 0.5, 0.2, 0.2)

归一化处理:

B = (0.25, 0.42, 0.17, 0.17)

所以综合而言, 电视机还是比较好的比重大。

例2: 对科技成果项目的综合评价

• 有甲、乙、丙三项科研成果,现要从中评选出优秀项目。

三个科研成果的有关情况表

指标 项目	科技水平	实现可能性	经济效益
甲	接近国际先进	70%	>100万
乙	国内先进	100%	> 200万
丙	一般	100%	>20万

设评价指标集合:

U= {科技水平,实现可能性,经济效益} 评语集合:

V= {高,中,低}

评价指标权系数向量:

A = (0.2, 0.3, 0.5)

专家评价结果表

指标	科	技业	〈平	实现	见可	能性	经	济文	大 益
项目	高	中	低	高	中	低	高	中	低
甲	0.7	0.2	0.1	0.1	0.2	0.7	0.3	0.6	0.1
乙	0.3	0.6	0.1	1	0	0	0.7	0.3	0
丙	0.1	0.4	0.5	1	0	0	0.1	0.3	0.6

由上表,可得甲、乙、丙三个项目各自的评价矩阵P、Q、R:

$$P = \begin{pmatrix} 0.7 & 0.2 & 0.1 \\ 0.1 & 0.2 & 0.7 \\ 0.3 & 0.6 & 0.1 \end{pmatrix} \qquad Q = \begin{pmatrix} 0.3 & 0.6 & 0.1 \\ 1 & 0 & 0 \\ 0.7 & 0.3 & 0 \end{pmatrix}$$

$$R = \begin{pmatrix} 0.1 & 0.4 & 0.5 \\ 1 & 0 & 0 \\ 0.1 & 0.3 & 0.6 \end{pmatrix}$$

求得:

$$B_1 = AP = (0.3, 0.5, 0.3)$$
 $B_2 = AQ = (0.5, 0.3, 0.1)$

$$B_3 = AR = (0.3, 0.3, 0.5)$$

归一化后得:

$$B_1' = (0.27, 0.46, 0.27)$$
 $B_2' = (0.56, 0.33, 0.11)$

$$B_3' = (0.27, 0.27, 0.46)$$

所以项目乙可推荐为优秀项目

例3: "晋升"的数学模型,以高校教师晋 升教授为例

因素集:

 $U=\{$ 政治表现及工作态度,教学水平,科研水平,外语水平 $\}$;

评判集:

 $V=\{$ 好,较好,一般,较差,差 $\};$

(1) 建立模糊综合评判矩阵

当学科评审组的每个成员对评判的对象进行评价,假定学科评审组由7人组成,用打分或投票的方法表明各自的评价

例如对王,学科评审组中有4人认为政治表现及工作态度好,2人认为较好,1人认为一般,对其他因素作类似评价。

评判集 因素集	好	较好	一般	生	交差	差
政治表现及	Ż					
工作态度	4	2	1	0	0	
教学水平	6	1	0	0	0	
科研水平	0	0	5	1	1	
外语水平	2	2	1	1	1	

设 c_{ij} (i=1,2,3,4; j=1,2,3,4,5)表示赞成第i项因素为第j种评价的票数,令

$$r_{ij} = \frac{c_{ij}}{\sum_{k=1}^{5} c_{ik}} (i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5)$$

^{k=1} 得到模糊综合评价矩阵:

$$R = \begin{pmatrix} 0.57 & 0.14 & 0.14 & 0 & 0 \\ 0.86 & 0.14 & 0 & 0 & 0 \\ 0 & 0 & 0.71 & 0.14 & 0.14 \\ 0.29 & 0.29 & 0.14 & 0.14 & 0.14 \end{pmatrix}$$

(2) 综合评判

以教学为主的教师,权重 A_1 =(0.2,0.5,0.1,0.2) 以科研为主的教师,权重 A_2 =(0.2,0.1,0.5,0.2)

用模型 $M(\land,\lor)$ 计算得

 $B_1 = (0.5, 0.2, 0.14, 0.14, 0.14)$

 $B_2 = (0.2, 0.2, 0.5, 0.14, 0.14)$

归一化(即将每分量除以分量总和),得

 $B_1 = (0.46, 0.18, 0.12, 0.12, 0.12)$

 $B_2 = (0.17, 0.17, 0.42, 0.12, 0.12)$

若规定评价"好""较好"要占50%以上才可晋升,则此教师晋升为教学型教授,不可晋升为科研型教授

例4: 利用模糊综合评判对20家制药厂经济效益的好坏进行排序 因素集:

 $U=\{u_{1,}u_{2},u_{3},u_{4}\}$ 为反映企业经济效益的主要指标

其中 u_1 : 总产值/消耗; u_2 : 净产值; u_3 : 盈利/资金占有; u_4 : 销售收入/成本, 评判集:

 $V=\{v_1,v_2,...,v_{20}\}$ 为20家制药厂

1	1.611	10.59	0.69	1.67
2	1.429	9.44	0.61	1.50
3	1.447	5.97	0.24	1.25
4	1.572	10.78	0.75	1.71
5	1.483	10.99	0.75	1.44
6	1.371	6.46	0.41	1.31
7	1.665	10.51	0.53	1.52
8	1.403	6.11	0.17	1.32
9	2.620	21.51	1.40	2.59
10	2.033	24.15	1.80	1.89
11	2.015	26.86	1.93	2.02
12	1.501	9.74	0.87	1.48
13	1.578	14.52	1.12	1.47
14	1.735	14.64	1.21	1.91
15	1.453	12.88	0.87	1.52
16	1.765	17.94	0.89	1.40
17	1.532	29.42	2.52	1.80
18	1.488	9.23	0.81	1.45
19	2.586	16.07	0.82	1.83
20	1.992	21.63	1.01	1.89

(1) 建立模糊综合评判矩阵

设 c_{ij} ($i=1,2,3,4; j=1,2,\cdots,20$)表示第j个制药厂的第i个因素的值,令

$$r_{ij} = \frac{c_{ij}}{\sum_{k=1}^{20} c_{ik}} (i = 1, 2, 3, 4; j = 1, 2, \dots, 20)$$

即 r_{ij} 表示第j个制药厂的第i个因素的值在20家制药厂的同样因素值的总和中所占的比例,得到模糊综合评判矩阵 $R=(r_{ij})_{4\times 20}$

(2) 综合评判

设各因素的权重分配为A=(0.15,0.15,0.20,0.50) 模型 $M(\cdot,\vee)$: $b_j=\max\{(a_i\cdot r_{ij})1\leq i\leq 4\}(j=1,2,\cdots,20)$ 计算,得

B = (0.0253, 0.0227, 0.0190, 0.0252, 0.0218, 0.0199, 0.0231, 0.02000, 0.0393, 0.0287, 0.0306, 0.0224, 0.0223 0.0290, 0.0231, 0.0212, 0.0273, 0.0220, 0.0278, 0.0287)

接从小到大的次序排序,这20家制药厂的经济效益的好坏顺序为:9,11,14,10,20,19,17,4,1,15,7,2,12,13,18,5,16,8,6,3

模型 $M(\cdot,+):b_i=\sum (a_i\cdot r_{i,i})(j=1,2,\cdots,20)$,计算,得 B = (0.0450, 0.0402, 0.0309, 0.0461, 0.418, 0.0334, 0.0412,0.0311,0.0763,0.0686,0.0733,0.0430,0.0483,0.0566, 0.0451,0.0474,0.0752,0.0416,0.0559,0.0590) 得到的排序为: 9, 17, 11, 10, 20, 14, 19, 13, 16, 4, 15, 1, 12, 5, 18, 7, 2, 6, 8,

若用模型 $M(\land,\lor):b_j=\max\{a_i\land r_{ij}\}1\le i\le 4\}$