Apostila de Geometria Analítica Notas de Aula com Exercícios Resolvidos Diego Sebastián Ledesma Atualizado 22/03 /2022

The structure of the book is a modification of the "Legrange Orange Book"wich is a Latex template model obtained at LaTeXTemplates.com as and licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0).

	Apreseriação	
-1	Álgebra Matricial	
2	Matrizes	11
2.1	Matrizes	11
2.2	Produto de matrizes e transposta de uma matriz	15
3	Operações elementares	21
3.1	Multiplicação de uma linha por um escalar $\lambda \neq 0$.	21
3.2	Substituir uma linha pela soma desta linha mais um multiplo escalar de out	ra linha22
3.3	Troca de posição de duas linhas de uma matriz	24
3.4	Matriz escalonada Reduzida	25
4	Matrizes Quadradas	29
4.1	Matrizes Quadradas	29
5	Determinante de uma matriz quadrada	35
5.1	Determinantes	35
5.2	Determinante via permutações	41
5.3	Adjunta de uma matriz quadrada	47
6	Sistema de equações linerares	5
6.1	Estudo de sistemas lineares	55
6.2	Sistemas com número de incógnitas igual ao número de equações	58

Ш	Vetores	
7	Vetores no plano e no espaço	
7.1	O plano e o espaço	63
7.2	Vetores	65
	Dresdute entre veteres	71
8.1	Produte generalizade	. 71 71
8.2	Produto generalizado Produto escalar	72
8.3	Produto vetorial	76
Ш	Objetos Geométricos	
9	Retas	. 81
9.1	Retas	81
9.2	Ângulo entre retas	84
9.3	Posição Relativa de retas	84
9.4	Distâncias	86
10	Planos	89
10.1	Planos	89
10.2	Ângulo	92
10.3	Posição relativa de dois planos	93
10.4	Posição relativa entre uma reta e um plano	93
10.5	Distâncias	94
11	Cônicas	97
11.1	Cônicas	97
11.2	Elipse	98
11.3	Hipérbole	100
11.4	Parábola	102
12	Translação de sistema de coordenadas	. 105
12.1	Sistemas de Coordenadas	106
12.2	Translação de coordenadas	107
13	Rotação do sistema de coordenadas	111
13.1	Rotação de coordenadas	111
14	Identificação de cônicas	
14.1	Um exemplo	115
14.2	Procurando a mudança de coordenadas	116
14.2.1	Apêndice	. 123

15	Como saber se uma cônica é degenerada	125
16	Coordenadas polares	129
16.1	Coordenadas Polares	129
16.2	Relação entre coordenadas polares e cartesianas	131
16.3	A reta em coordenadas polares.	132
16.4	Circunferência em coordenadas polares	133
16.5 16.5.1	Cônicas em coordenadas polares Parábola	134 136
16.5.2	Elipse	
16.5.3	Hipérbole	141
17	Parametrização de curvas	145
17.1	Paramerização de curvas	145
17.1.1	Elipse	
17.1.2 17.1.3	Hipérbole	
17.2	Parametrização em coordenadas polares	149
IV	Quádricas e Superfícies	
10	Outfallia na	1.50
18 10 1	Quádricas	
18.1 18.2	Quádricas Superfícies	153 155
18.2.1	Superfícies Cilíndricas	
18.2.2	Superfícies de revolução	
18.2.3	Superfícies Cônicas	159
19	Coordenadas Clindricas e esféricas	161
	Coordenadas Cilíndricas	161
19.2	Coordenadas Esféricas	162
20	Parametrização de Superfícies	165
20.1	Parametrização de Superfícies	165
V	Exercícios resolvidos	
21	Markeina	171
4 I	Matrizes	1/1
22	Operações elementares	181
23	Matrizes Quadradas	183
24	Determinante de uma matriz quadrada	189
25	Sistema de equações linerares	211

	Vetores no plano e no espaço	7
27	Produto entre vetores	
	Retas	9
29	Planos	3
30	Translação de sistema de coordenadas	3
31	Identificação de cônicas	5
32	Coordenadas polares 31	
33	Parametrização de curvas 32	9
34	Quádricas 33	
35	Coordenadas Cilíndricas e esféricas	1
36	Parametrização de Superfícies 34	7

Este texto é uma apostila resultado do compilado das notas de aula que utilizei para ministrar a disciplina Geometria Analítica ao longo dos anos. Ela está escrita na forma mais simples e sintétizada que me foi possível. O objetivo da mesma é fornecer material teórico e prático aos estudantes que façam uso delas para seus estudos. É por isto que não há nada proposto para ser feito como exercicio e tudo está completamente resolvido na quantidade de detalhes que me foi possível. Com isto quero dizer que não pretende para nada ser um livro texto de disciplina mas sim um material de suporte para o estudo da mesma.

O material teórico que faz parte do texto está fortemente inspirado nos livros

- R. J. Santos, Matrizes, Vetores e Geometria Analítica, Imprensa Universitária da UFMG.
- K. Hoffman e R. Kunze, Álgebra Linear, Prentice Hall, Second edition, 1971.
- P. Boulos e I. C. Oliveira, Geometria Analítica-um tratamento vetorial, McGraw-Hill, São Paulo, 2a edição-2000.
- L. Leithold, O Cálculo com geometria analítica, Vol. 1, Harbra, São Paulo, 2a edição 1977.

Os exercícios resolvidos que aparecem massivamente no final do trabalho são parte das listas de exercícios e provas aplicadas na disciplina MA141 - Geometria Analítica da UNICAMP.

Finalmente faço o destaque de que grande parte da escrita do texto contou com apoio do Serviço de Apoio ao Estudante (SAE) da Pró-reitoria de Graduação (PRG) da UNICAMP e foi feita pela estudante - bolsista Ysabella Visinho dos Reis.

Esta apostila ainda contém muitos erros. Teria ainda mais se não fosse pelas correções aportadas por Daniel Paulo Garcia e Helena Pivoto Paiva enquanto cursaram Geometria Analítica comigo. A eles o meu agradecimento.

Find eligibles are actions.

Álgebra Matricial

2	Matrizes
2.1	Matrizes
2.2	Produto de matrizes e transposta de uma matriz
3	Operações elementares
3.1	Multiplicação de uma linha por um escalar $\lambda \neq 0$.
3.2	Substituir uma linha pela soma desta linha mais um multiplo escalar de outra linha
3.3	Troca de posição de duas linhas de uma matriz
3.4	Matriz escalonada Reduzida
A	Marking a Overdender
4	Matrizes Quadradas
4.1	Matrizes Quadradas
5	Determinante de uma matriz quadrada
	35
5.1	Determinantes
5.2	Determinante via permutações
5.3	Adjunta de uma matriz quadrada
_	
6	Sistema de equações linerares 51
5.1	Estudo de sistemas lineares
5 . 2	Sistemas com número de incógnitas igual ao número de equações

Find eligibles are actions.

2. Matrizes

Neste capítulo começaremos estudando as noções básicas sobre matrizes. Começaremos com a definição e logo passaremos a estudar as propriedades destes objetos.

2.1 Matrizes

Definição 2.1 Uma matriz real de tamanho $m \times n$ é um arranjo bidimensional de números

$${a_{ij} \in \mathbb{R}, i = 1 \dots m, j = 1 \dots n},$$

que escrevemos na forma

$$A = \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}\right).$$

Dada A uma matriz de tamanho $m \times n$ como acima, chamamos de entrada A_{ij} ao número a_{ij} que encontrase na interseção da linha i com a coluna j (isto é na posição i, j da tabela) de A.

A matriz nula, que denotamos por 0, é a matriz cujas entradas são todas iguais a zero.

Denotamos por $\mathbb{M}(m \times n)$ ao conjunto de todas as matrizes de tamanho $m \times n$ com entradas em \mathbb{R} .

- Em particular uma matriz de tamanho $1 \times n$ é chamada de matriz linha e uma matriz $m \times 1$ é chamada de matriz coluna.
- No caso em que m = n então dizemos que A é uma matriz quadrada de ordem n.
- As matrizes de tamanho 1×1 podem ser naturalmente identificadas com os números reais.

A k-ésima linha de A é a matriz linha $[A]_k$ dada por

$$[A]_k = (a_{k1}, a_{k2}, \dots, a_{kn}).$$

A j-ésima coluna da matriz A é a matriz coluna $[A]^j$ dada por

$$[A]^j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}.$$

A seguinte definição estabelece quando duas matrizes são iguais.

Definição 2.2 Duas matrizes $A \in \mathbb{M}(m \times n)$ e $B \in \mathbb{M}(k \times l)$ são iguais se m = k, n = l e

$$A_{ij} = B_{ij}$$
 $\forall i = 1, \ldots, m, j = 1, \ldots, n.$

A seguir vemos alguns exemplos de matrizes.

■ Exemplo 2.1 1. Seja $A \in \mathbb{M}(4 \times 3)$ definida por

$$A = \left(\begin{array}{rrr} 1 & 0 & 21 \\ 3 & -2 & \pi \\ -3 & 41 & 9 \\ 5 & 5 & 5 \end{array}\right).$$

temos que

$$[A]^2 = \begin{pmatrix} 0 \\ -2 \\ 41 \\ 5 \end{pmatrix} \in \mathbb{M}(4 \times 1), \qquad e \qquad [A]_3 = \begin{pmatrix} -3 & 41 & 9 \end{pmatrix} \in \mathbb{M}(1 \times 3).$$

2. Seja $B \in (3 \times 6)$ dada por

$$B = \left(\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 2 \\ 1 & 2 & 4 & 4 & 4 & 3 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right).$$

Então,

$$[B]^1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{M}(3 \times 1), \qquad e \qquad [B]_1 = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 \end{pmatrix} \in \mathbb{M}(1 \times 6).$$

Assim como acontece nos números reais, podemos definir as operações soma e produto por escalar no conjunto das matrizes, porém impondo algumas restrições.

Definição 2.3 • A soma de duas matrizes A e B em $\mathbb{M}(m \times n)$ é uma matriz em $\mathbb{M}(m \times n)$, que denotamos por A + B, cujas entradas são dadas por

$$(A+B)_{ij} = A_{ij} + B_{ij}, \quad \forall i = 1, ..., m, j = 1, ..., n,$$

isto é, se

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad e \quad B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix},$$

2.1 Matrizes

então

$$A+B=\begin{pmatrix} a_{11}+b_{11} & a_{12}+b_{12} & \dots & a_{1n}+b_{1n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \dots & a_{2n}+b_{2n} \\ a_{31}+b_{31} & a_{32}+b_{32} & \ddots & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \dots & a_{mn}+b_{mn} \end{pmatrix}.$$

A multiplicação de uma matriz $A \in \mathbb{M}(m \times n)$ por um escalar $\lambda \in \mathbb{R}$ é uma matriz em $\mathbb{M}(m \times n)$, que denotamos por $\lambda \cdot A$, cujas entradas são dadas por

$$(\lambda \cdot A)_{ij} = \lambda A_{ij} \quad \forall_i = 1 \dots m, j = 1 \dots n,$$

isto é, se

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

então

$$\lambda \cdot A = \left(egin{array}{cccc} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \ dots & dots & \ddots & dots \ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{array}
ight).$$

■ Exemplo 2.2

1. Seja

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 3 & 2 & 2 \end{pmatrix} \quad e \quad B = \begin{pmatrix} 1 & 0 & 7 \\ 0 & 1 & 1 \\ 0 & 2 & 4 \end{pmatrix},$$

vemos que

$$A+B = \begin{pmatrix} 1+1 & 2+0 & 1+7 \\ 0+0 & 1+1 & 3+1 \\ 3+0 & 2+2 & 2=4 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 8 \\ 0 & 2 & 4 \\ 3 & 4 & 6 \end{pmatrix},$$

e

$$2 \cdot A = \begin{pmatrix} 2.1 & 2.2 & 2.1 \\ 2.0 & 2.1 & 2.3 \\ 2.3 & 2.2 & 2.2 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 2 \\ 0 & 2 & 6 \\ 6 & 4 & 4 \end{pmatrix}.$$

Teorema 2.1 O conjunto $\mathbb{M}(n \times m)$ com as operações soma e produto por escalar definidas acima é um espaço vetorial sobre os números reais, isto é, a soma e o produto por escalar satisfazem as seguintes propriedades:

- i- Comutatividade da soma: A + B = B + A.
- ii- Associatividade da soma: (A + B) + C = A + (B + C).
- iii- Existe um único elemento 0 em $\mathbb{M}(m \times n)$ tal que A + 0 = A.
- iv- Para cada elemento A existe um único elemento, que denotamos por -A, tal que A + (-A) = 0.
- v- $1 \cdot A = A$.
- vi- $(\lambda_1 \lambda_2) \cdot A = \lambda_1 \cdot (\lambda_2 \cdot A)$.

vii-
$$(\lambda_1 + \lambda_2) \cdot A = \lambda_1 \cdot A + \lambda_2 \cdot A$$
.
viii- $\lambda \cdot (A + B) = \lambda \cdot A + \lambda \cdot B$.

Demonstração: Para demonstrar esses fatos vamos utilizar a definição 2.2, isto é, vamos mostrar que as entradas das matrizes de um e outro lado de cada identidade coincidem em cada caso.

i- Para cada
$$i=1\cdots m,\ j=1\cdots n,$$
 temos
$$(A+B)_{ij} = A_{ij}+B_{ij}$$

$$= B_{ij}+A_{ij}$$

$$= (B+A)_{ij}$$
ii- Para cada $i = 1 \cdots m$, $j = 1 \cdots n$, temos
$$((A+B)+C)_{ij} = (A+B)_{ij} + C_{ij}$$

$$= (A_{ij}+B_{ij}) + C_{ij}$$

$$= A_{ij} + (B_{ij}+C_{ij})$$

$$= A_{ij} + (B+C)_{ij}$$

$$= (A+(B+C))_{ii}.$$

iii- Sabemos que a matriz nula

$$0=\left(egin{array}{ccc} 0 & \dots & 0 \ dots & \ddots & dots \ 0 & \dots & 0 \end{array}
ight)\in \mathbb{M}(m imes n).$$

satisfaz A+0=A. Vamos mostrar que é a única matriz com esta propriedade, isto é, com a propriedade de que A+B=A para todo $A\in \mathbb{M}(m\times n)$. Em particular, consideramos a matriz A(i,j) cujas entradas são todas nulas exceto a entrada A_{ij} que é 1. Portanto, como A(i,j)+B=A(i,j) temos que $1+B_{ij}=1$ donde $B_{ij}=0$. Da arbitrariedade na escolha de i,j segue que todas as entradas $B_{ij}=0$. De onde segue que B=0.

iv- Dada a matriz A considere a matriz $(-1) \cdot A$ então é facil ver que $A + (-1) \cdot A = 0$. Defina $-A = (-1) \cdot A$. Vamos mostrar que se B é tal que A + B = 0 então B = -A e portanto -A é única. Observamos que caso tal B exista, da identidade A + B = 0 tiramos que para todo $i = 1 \cdots m$, $j = 1, \cdots n$.

$$A_{ij} + B_{ij} = 0 \Rightarrow B_{ij} = -A_{ij} = (-1)A_{ij} = (-A)_{ij}.$$

Então
$$B = -A$$
.

v- Trivial.

vi- Para cada
$$i = 1 \cdots m, j = 1 \cdots n$$
, temos

$$((\lambda_1 \lambda_2) \cdot A)_{ij} = (\lambda_1 \lambda_2)_{ij}$$

$$= \lambda_1 (\lambda_2 \cdot A_{ij})$$

$$= \lambda_1 (\lambda_2 \cdot A)_{ij}$$

$$= (\lambda_1 \cdot (\lambda_2 \cdot A)_{ij})$$

vii- Para cada $i = 1 \cdots m, j = 1 \cdots n$, temos

$$((\lambda_1 + \lambda_2) \cdot A)_{ij} = (\lambda_1 + \lambda_2)A_{ij}$$

$$= \lambda_1 \cdot A_{ij} + \lambda_2 \cdot A_{ij}$$

$$= (\lambda_1 \cdot A)_{ij} + (\lambda_2 \cdot A)_{ij}$$

$$= (\lambda_1 \cdot A + \lambda_2 \cdot A)_{ij}.$$

viii- Para cada $i = 1 \cdots m, j = 1 \cdots n$, temos

$$(\lambda \cdot (A+B))_{ij} = \lambda (A+B)_{ij}$$

$$= \lambda (A_{ij} + B_{ij})$$

$$= \lambda A_{ij} + \lambda B_{ij}$$

$$= (\lambda \cdot A + \lambda \cdot B)_{ij}.$$

i- Embora os símbolos sejam iguais, não devemos confundir o produto e a soma definidos acima com os canônicos de \mathbb{R} . Por exemplo a identidade

$$(\lambda_1 + \lambda_2) \cdot A = \lambda_1 \cdot A + \lambda_2 \cdot A,$$

envolve duas operações soma: do lado esquerdo a soma canônica de \mathbb{R} e do lado direito a soma definida para matrizes. Nesse sentido o que diz a propriedade é que existe uma relação entre as duas operações.

ii- A partir da definição de -A podemos definir no conjunto das matrizes, e em forma análoga ao que acontece para os números reais, a operação diferença: Dadas A e B duas matrizes em $\mathbb{M}(m \times n)$ a diferença entre A e B é uma matriz $A - B \in \mathbb{M}(m \times n)$ dada por

$$A - B = A + (-B).$$

2.2 Produto de matrizes e transposta de uma matriz

Até aqui temos definido operações entre matrizes que preservam o tamanho. Nesta seção vamos a estudar outros tipos de operações sobre as matrizes onde esta propriedade já não é necessáriamente preservada.

Definição 2.4 O produto de uma matriz $A \in \mathbb{M}(m \times n)$ e uma matriz $B \in \mathbb{M}(n \times k)$ é uma matriz $AB \in \mathbb{M}(m \times k)$ cujas entradas são obtidas da seguinte forma

$$(AB)_{ij} = \sum_{r=1}^{n} A_{ir} B_{rj} = A_{i1} B_{1j} + A_{i2} B_{2j} + \dots + A_{in} B_{nj},$$

para todo $i = 1, \dots, m$ e $j = 1, \dots, k$.

■ Exemplo 2.3

1. Seja

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \in \mathbb{M}(1 \times 4) \quad \text{e} \quad B = \begin{pmatrix} 0 \\ 1 \\ 2 \\ -1 \end{pmatrix} \in \mathbb{M}(4 \times 1).$$

Então $A \cdot B \in \mathbb{M}(1 \times 1)$ e

$$A \cdot B = (1.0 + 2.1 + 3.2 + 4.(-1)) = (0 + 2 + 6 - 4) = (4).$$

2. Seja

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix} \in \mathbb{M}(3 \times 3) \quad \text{e} \quad B = \begin{pmatrix} 2 & 0 \\ 2 & 1 \\ 1 & 1 \end{pmatrix} \in \mathbb{M}(3 \times 2).$$

Então $A \cdot B \in \mathbb{M}(3 \times 2)$ e

$$A \cdot B = \begin{pmatrix} 2.1 + 2.1 + 1.1 & 1.0 + 1.1 + 1.1 \\ 1.2 + 2.2 + 3.1 & 1.0 + 2.1 + 3.1 \\ 1.2 + 1.2 + 0.1 & 1.0 + 1.1 + 0.1 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 9 & 5 \\ 4 & 1 \end{pmatrix}.$$

Obs.

i- A entrada *i*, *j* do produto de *A* com *B* é obtido ao multiplicar as entradas da linha *i* de *A* com as da coluna *j* de *B* em forma ordenada, isto é

$$(AB)_{ij} = [A]_i [B]^j.$$

- ii- Se $A \in \mathbb{M}(m \times n)$ e $B \in \mathbb{M}(n \times k)$ então AB está definida. Porém não necessáriamente ocorre o mesmo para o produto de B com A. De fato, só vai ser possivel fazer o produto de B com A quando k = m.
- iii- Sobre o conjunto das matrizes quadradas $\mathbb{M}(n \times n)$ temos que AB e BA são definidas e dão como resultado matrizes em $\mathbb{M}(n \times n)$. No entanto temos que geralmente $AB \neq BA$. Por exemplo se

$$A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \qquad B = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right),$$

então $A \cdot B$ será

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$$

Por outro lado $B \cdot A$ será

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right).$$

Segue então que $A \cdot B \neq B \cdot A$.

O produto de matrizes possui as seguintes propriedades.

Proposição 2.1 Sejam A, B, C matrizes de tamanhos apropriados e $\lambda \in \mathbb{R}$. Então

i-
$$A(B+C) = AB+AC$$
.

ii-
$$\lambda \cdot (AB) = (\lambda \cdot A)B = A(\lambda \cdot B)$$
.

iii- Se I_k é a matriz quadrada de tamanho $k \times k$ definida por

$$I_k = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{array} \right),$$

e chamada de matriz identidade em $\mathbb{M}(k \times k)$ então, para toda matriz $A \in \mathbb{M}(m \times n)$, temos

$$I_m A = A = AI_n.$$

iv-
$$A(BC) = (AB)C$$
.

Demonstração: Para demonstrar as propriedades comparamos as entradas das matrizes aos dois lados da igualdade.

i-

$$[A(B+C)]_{ij} = \sum_{k} A_{ik}(B+C)_{kj}$$

$$= \sum_{k} A_{ik}(B_{kj}+C)_{kj}$$

$$= \sum_{k} A_{ik}B_{kj} + \sum_{k} A_{ik}C_{kj}$$

$$= (AB)_{ij} + (AC)_{ij} \quad \forall_{ij}.$$

Portanto A(B+C) = AB + AC.

ii-

$$[(\lambda(AB)]_{ij} = \lambda(AB)_{ij}$$

$$\Rightarrow \lambda\left(\sum A_{ik}B_{kj}\right)$$

$$= \sum (\lambda A_{ik})(B_{kj})$$

$$= ((\lambda A) \cdot B)_{ij} \quad \forall_{ij}.$$

O outro caso é análogo.

iii- Seja $A \in \mathbb{M}(k \times n)$ e I_r a matriz em $\mathbb{M}(r \times r)$ cujas entradas são definidas por

$$I_{lj} = \begin{cases} 0, & \text{se} \quad l \neq j \\ 1, & \text{se} \quad l = i \end{cases}$$

Então, temos que

$$(I_k \cdot A)_{li} = \sum (I_k)_{lj} \cdot A_{ji} = I_{ll}A_{li} = A_{li}.$$

Portanto $I_k \cdot A = A$ analogamente se prova $A \cdot I_n = A$.

iv-

$$(A(BC))_{ij} = \sum_{l} A_{il} (BC)_{lj}$$

$$= \sum_{l} A_{il} \sum_{k} B_{lk} C_{kj}$$

$$= \sum_{l} \sum_{k} A_{il} B_{lk} C_{kj}$$

$$= \sum_{k} \left(\sum_{l} A_{il} B_{lk} \right) C_{kj}$$

$$= \sum_{k} (AB)_{ik} C_{kj} = ((AB) \cdot C)_{ij}.$$

Definição 2.5 Seja A uma matriz de tamanho $m \times n$. A transposta de A é uma matriz A^{t} de tamanho $n \times m$ cujas entradas são dadas por

$$(A^t)_{ij} = A_{ji}.$$

Para todo $i = 1 \cdots n$ e $j = 1 \cdots m$.

■ Exemplo 2.4

1. Se

$$A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \Rightarrow A^t = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

2. Se

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 1 & 1 \end{array}\right) \Rightarrow A^t = \left(\begin{array}{ccc} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{array}\right).$$

3. Se

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 3 & 3 & 3 \\ 1 & 4 & 4 & 4 \end{pmatrix} \Rightarrow A^{t} = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}.$$

Proposição 2.2 Sejam $A, B \in C$ matrizes de tamanhos apropriados e $\lambda \in \mathbb{R}$. Então

i-
$$(A^t)^t = A$$
.

ii-
$$(\lambda \cdot A)^t = \lambda \cdot A^t$$
.

iii-
$$(A+B)^t = A^t + B^t$$
.
iv- $(AB)^t = B^t A^t$.

Demonstração: Fazemos a demonstração comparando as entradas das matrizes de ambos os lados da igualdade.

i- Para todo i, j temos

$$((A^t)^t)_{ij} = (A^t)_{ji}$$

= A_{ij} . $\forall ij$.

Portanto $(A^t)^t = A$.

ii- Para todo i, j temos

$$[(\lambda A)^{t}]_{ij} = (\lambda A)_{ji}$$

$$= \lambda A_{ji}$$

$$= \lambda (A^{t})_{ij}. \quad \forall ij.$$

Portando $(\lambda A)^t = \lambda A^t$.

iii- Para todo i, j temos

$$[(A+B)^{t}]_{ij} = (A+B)_{ji}$$

$$= A_{ji} + B_{ji}$$

$$= (A^{t})_{ij} + (B^{t})_{ij}. \quad \forall ij.$$

Então $(A+B)^t = A^t + B^t$.

iv- Para todo i, j temos

$$((AB)^{t})_{ij} = (AB)_{ji}$$

$$= \sum_{k} A_{jk} B_{ki}$$

$$= \sum_{k} B_{ki} A_{jk}$$

$$= \sum_{k} (B^{t})_{ik} (A^{t})_{kj}$$

$$= (B^{t}A^{t})_{ij}. \quad \forall ij.$$

Então $(AB)^t = B^t A^t$.

O espaço das matrizes quadradas $\mathbb{M}(n \times n)$ com as operações soma, produto por escalar e produto formam uma estrutura conhecida com o nome de Álgebra Linear, isto é, é um espaço vetorial munido de um produto com as seguintes propriedades

i-
$$A(BC) = (AB)C$$
.

ii-
$$A(B+C) = AB+AC$$

ii-
$$A(B+C) = AB+AC$$
.
iii- $\lambda . (AB) = (\lambda . A)B = A(\lambda . B)$.

iv- Existe o elemento $I_n \in \mathbb{M}(n \times m)$ tal que $I_n A = A = AI_n$.

Definição 2.6 Uma matriz quadrada $A \in \mathbb{M}(n \times n)$ é dita

- simétrica se $A^t = A$,
- antissimétrica se $A^t = -A$.

Proposição 2.3 Seja $A \in \mathbb{M}(m \times n)$ então existe uma matriz simétrica A_1 e uma antissimétrica A_2 tais que $A = A_1 + A_2$.

Proof. Seja

$$A_1 = \frac{1}{2}(A + A^t)$$
 e $A_2 = \frac{1}{2}(A - A^t)$.

Claramente

$$A_1^t = \frac{1}{2}(A + A^t)^t = \frac{1}{2}(A^t + A) = A_1.$$

$$A_2^t = \frac{1}{2}(A - A^t)^t = \frac{1}{2}(A^t - A) = -A_2.$$

e

$$A_1 + A_2 = \frac{1}{2}(A + A^t) + \frac{1}{2}(A - A^t) = A.$$

Find eligibles are actions.

3. Operações elementares

Dada uma matriz $A \in \mathbb{M}(m \times n)$ vamos considerar operações sobre as linhas desta de forma tal que a nova matriz obtida B esteja em $\mathbb{M}(m \times n)$. Em particular vamos nos concentrar em três tipos de operações:

- 1. Multiplicação de uma linha por um escalra $\lambda \neq 0$.
- 2. Substituir uma linha pela soma desta linha mais um multiplo de outra linha.
- 3. Troca de duas linhas de uma matriz.

Procedimentos análogos podem ser feitos com as colunas de uma matriz. Nestas notas não estudaremos esse caso.

3.1 Multiplicação de uma linha por um escalar $\lambda \neq 0$.

Por exemplo, multiplicar a linha i da matriz $A \in \mathbb{M}(m \times n)$ por $\lambda \neq 0$ (que denotamos por $\lambda \ell_i \to \ell_i$) dá origem a uma nova matriz $B \in \mathbb{M}(m \times n)$ com a seguinte forma:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad \underbrace{\lambda \ell_i \to \ell_i}_{A \ell_i} \quad B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ \lambda a_{i1} & \lambda a_{i2} & \dots & \lambda a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Em particular, ao fazer esta operação elementar sobre a identidade obtemos:

$$I_{m} = \left(egin{array}{ccccc} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{array}
ight) \quad rac{\lambda \ell_{i}
ightarrow \ell_{i}}{
ightarrow} \quad E_{i}^{m}(\lambda) = \left(egin{array}{cccccccc} 1 & 0 & \ddots & \ddots & \ddots & dots \ 0 & \dots & 1 & 0 & 0 & \ddots & dots \ 0 & \dots & 0 & \lambda & 0 & \ddots & dots \ 0 & \dots & 0 & 0 & 1 & \ddots & dots \ dots & dots & \ddots & \ddots & \ddots & dots \ 0 & \dots & 0 & 0 & 1 & \ddots & dots \ 0 & 0 & \ddots & \ddots & \ddots & dots \ \end{array}
ight) \leftarrow i$$

Observamos que a operação $(\lambda \ell_i \to \ell_i)$ sobre a matriz A é igual a multiplicar A a esquerda por $E_i^m(\lambda)$, isto é:

Se
$$A \xrightarrow{\lambda \ell_i \to \ell_i} B$$
 então $B = E_i^m(\lambda) \cdot A$.

Esta operação elementar pode ser revertida. De fato, ao multiplicar a linha i de B por $\frac{1}{\lambda}$ temos novamente A. Isto garante que

$$E_i^m(\frac{1}{\lambda})E_i^m(\lambda)=I_m.$$

■ Exemplo 3.1 Seja

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right),$$

e considerere a operação elementar $2\ell_2 \to \ell_2$, isto é

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \quad \underbrace{2\ell_2 \to \ell_2}_{} \quad B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Em particular sobre a identidade

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \underbrace{2\ell_2 \to \ell_2}_{} \quad E_2(2) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Observamos que $E_2(2)A = B$. Mais ainda

$$E_2\left(\frac{1}{2}\right) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \frac{1}{2} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$E_2\left(\frac{1}{2}\right)E_2(2) = I \quad \text{e} \quad E_2\left(\frac{1}{2}\right)B = A.$$

$$E_2(\frac{1}{2})E_2(2) = I$$
 e $E_2(\frac{1}{2})B = A$.

3.2 Substituir uma linha pela soma desta linha mais um multiplo escalar de outra linha

Por exemplo, substituir a linha i por multiplo escalar λ da linha j mais a linha i (que denotamos por $\ell_i + \lambda \ell_j \rightarrow \ell_i$) dá origem a uma nova matriz $B \in \mathbb{M}(m \times n)$ a seguinte forma:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad \underbrace{\ell_i + \lambda \ell_j \to \ell_i}_{\ell_i \to \ell_i} \quad B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} + \lambda a_{j1} & a_{i2} + \lambda a_{j2} & \dots & a_{in} + \lambda a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Em particular, ao fazer esta operação elementar sobre a identidade obtemos, por exemplo para o caso i > j:

Fazer esta operação $\ell_i + \lambda \ell_j \to \ell_i$ sobre a matriz A é igual a multiplicar A a esquerda por $E_{ij}^m(\lambda)$, isto é:

Se
$$A \to B$$
 ao fazer a operação elementar $\lambda \ell_j + \ell_i \to \ell_i$ temos que $B = E_{ij}^m(\lambda) \cdot A$.

Esta operação elementar pode ser revertida. De fato, ao substituir a linha i por um multiplo $(-\lambda)$ da linha j mais a linha i temos novamente A. Isto garante que

$$E_{ij}^m(-\lambda)E_{ij}^m(\lambda)=I_m.$$

■ Exemplo 3.2 Seja

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right),$$

e considerere a operação elementar $\ell_1 + 2\ell_2 \rightarrow \ell_1$, isto é

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \quad \underbrace{\ell_1 + 2\ell_2 \to \ell_1}_{l} \quad B = \begin{pmatrix} 3 & 0 & 5 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Em particular sobre a identidade

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \underbrace{\ell_1 + 2\ell_2 \to \ell_1}_{\ell_1 \to \ell_2} \quad E_{12}(2) = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Observamos que $E_{12}(2)A = B$. Mais ainda

$$E_{12}(-2) = \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

e

$$E_{12}(-2)E_{12}(2) = I$$
 e $E_{12}(-2)B = A$.

3.3 Troca de posição de duas linhas de uma matriz

Por exemplo, trocar a posição da linha i da matriz A com a posição da linha j (que denotamos por $\ell_i \leftrightarrow \ell_j$) dá origem a uma nova matriz $B \in \mathbb{M}(m \times n)$ da seguinte forma:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad \stackrel{\ell_i \leftrightarrow \ell_j}{\longrightarrow} \quad B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \leftarrow j$$

Em particular ao fazer esta operação sobre a identidade obtemos:

$$I_{m} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \quad \underbrace{\ell_{i} \leftrightarrow \ell_{j}}_{i} \\ \begin{pmatrix} 1 & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 1 & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 & 0 & \ddots & 0 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & 1 \end{pmatrix} \leftarrow j$$

Fazer esta operação $(\ell_i \leftrightarrow \ell_j)$ sobre a matriz A é igual a multiplicar A por E_{ij}^m , isto é:

Se
$$A \to B$$
 ao fazer a operação $\ell_i \leftrightarrow \ell_j$ temos que $B = E_{ij}A$.

Esta operação elementar pode ser revertida. De fato ao trocar novamente a posição das linhas i e j da matriz B temos novamente A. Isto garante

$$E_{ij}^m E_{ij}^m = I_m$$
.

■ Exemplo 3.3 Seja

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right),$$

e considerere a operação elementar $\ell_3 \leftrightarrow \ell_4$, isto é

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \quad \underbrace{\ell_3 \leftrightarrow \ell_4}_{A} \quad B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

Em particular sobre a identidade

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \underbrace{\ell_3 \leftrightarrow \ell_4}_{} \quad E_{34} = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Observamos que $E_{34}A = B$. Mais ainda

$$E_{34}E_{34} = I$$
 e $E_{34}B = A$.

3.4 Matriz escalonada Reduzida

Na discussão das operações elementares temos provado o seguinte resultado.

Proposição 3.1 Fazer uma operação elementar sobre as linhas de uma matriz A de tamanho $m \times n$ é equivalente a multiplicar A a esquerda por uma matriz quadrada E de tamanho $m \times m$ que é obtida ao se fazer a operação elementar sobre a identidade I_m . Isto é, a matriz obtida B de fazer a operação elementar sobre A é igual a B = EA.

As operações elementares permitem definir uma relação no matrizes de tamanho $m \times n$ da seguinte forma :

Dadas duas matrizes $A, B \in \mathbb{M}(m \times n)$ dizemos que A está relacionada com B (e o denotamos $A \sim B$) se B pode ser obtida de A ao fazer um número finito de operações elementares.

■ Exemplo 3.4 Fazemos

$$A = \begin{pmatrix} -1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \underbrace{\ell_1 + \ell_2 \to \ell_1}_{\ell_1 + \ell_2 \to \ell_1} \begin{pmatrix} 0 & 2 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \underbrace{\ell_3 + \ell_2 \to \ell_3}_{\ell_3 \to \ell_3} \begin{pmatrix} 0 & 2 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \underbrace{\frac{1}{2}\ell_1 \to \ell_1}_{\ell_1 \to \ell_2 \to \ell_3} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \underbrace{\ell_1 \leftrightarrow \ell_2}_{\ell_2 \to \ell_3} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = B$$

Então $A \sim B$.

Vamos mostrar que esta é uma relação de equivalência, isto é, vamos mostrar que relação é

- reflexiva: $A \sim A$,
- simétrica: Se $A \sim B$ então $B \sim A$
- transitiva: Se $A \sim B$ e $B \sim C$ então $A \sim C$

Mostramos agora estas propriedades:

Demonstração.

 $A \sim A$: Toda $A \in \mathbb{M}(m \times n)$ está relacionada com ela propria, isto é $A \sim A$. De fato, por exemplo, fazendo duas vezes a operação elementar troca de uma linha por outra vemos que A é obtida de A por um número finito de operações elementares e, portanto, $A \sim A$.

Se $A \sim B$ **então** $B \sim A$: Sejam A, B duas matrizes em $\mathbb{M}(m \times n)$ tais que A está relacionada com B, isto é $A \sim B$. Então B é obtida de A por meio de um número finito de operações elementares. Então existem matrizes elementares E_1, \dots, E_k tais que

$$B = E_1 \cdots E_k \cdot A$$
.

Como toda operação elementar pode ser revertida, para cada matriz E_j existe uma matriz elementar E'_j tal que $E'_i E_j = I_m$, de onde

$$E'_k \cdots E'_1 \cdot B = E'_k \cdots E'_1 \cdot E_1 \cdots E_k \cdot A = I_m A = A.$$

Dito de outra forma, A é obtida de B fazendo um número finito de operações elementares sobre suas linhas. De onde segue que $B \sim A$.

Se $A \sim B$ e $B \sim C$ então $A \sim C$: Sejam A, B e C matrizes em $\mathbb{M}(m \times n)$ tais que A está relacionada com B e B está relacionada com C então existem matrizes elementares $E_1 \cdots E_k$ e $D_1 \cdots D_k$ tais que $B = E_1 \cdots E_k$. A e $C = D_1 \cdots D_k$. B donde

$$C = D_1 \cdots D_k \cdot B = D_1 \cdots D_k \cdot E_1 \cdots E_k \cdot A$$
.

Portanto C é obtida de A ao fazer um número finito de operações elementares sobre suas linhas, isto é, $A \sim C$.

Consideremos então uma matriz $A \in \mathbb{M}(m \times n)$ e todas as matrizes B que estão relacionadas com A. Estas matrizes estão contidas em um conjunto $[A] \subset \mathbb{M}(m \times n)$ que é o conjunto de sua classe de equivalencia, isto é, o conjunto

$$[A] = \{B \in \mathbb{M}(m \times n), B \sim A\}.$$

Se B é uma matriz contida em [A] dizemos então que A e B são equivalentes por linhas. É facil mostrar as seguintes propriedades.

Proposição 3.2

- a) $A \in [A]$,
- b) $A \sim B$ se e somente se [A] = [B],
- c) $[A] \cap [B] \neq \emptyset$ então [A] = [B],
- d) $B \in [A]$ então [A] = [B],
- e) $\mathbb{M}(m \times n) = \bigcup_{A \in \mathbb{M}(m \times n)} [A]$

Demonstração:

- a) Utilizando que $A \sim A$ temos que $A \in [A] = \{B, B \sim A\} \subset \mathbb{M}(m \times n)$.
- b) Assuma $A \sim B$. Como \sim é de equivalência, se

$$C \sim A \Rightarrow C \sim B \Rightarrow C \in [B].$$

Portanto $[A] \subseteq [B]$. Similarmente se mostra que $[B] \subseteq [A]$ de onde [A] = [B]. Por outro lado, se $[A] = [B] \Rightarrow B \in [A] \Rightarrow B \sim A$.

- c) Se $C \in [A] \cap [B] \Rightarrow C \sim A$ e $C \sim B$ então $A \sim C$ e $C \sim B \Rightarrow A \sim B$, pois \sim é de equivalência, assim [A] = [B] pelo item b)
- d) Segue do item b).
- e) Se $M \in \mathbb{M}(m \times n)$ então $M \in [M]$ portanto

$$\mathbb{M}(m \times n) \subset \bigcup_{A \in \mathbb{M}(m \times n)} [A].$$

Como

$$igcup_{A\in \mathbb{M}(m imes n)}[A]\subset \mathbb{M}(m imes n), \quad ext{ então } \quad igcup_{A\in \mathbb{M}(m imes n)}[A].$$

Observamos que em particular os itens b), c) e d) nos dizem que se duas matrizes A e B não são equivalentes então $[A] \cap [B] = \emptyset$.

Vemos então que para descrever uma classe de equivalencia só precisamos de uma matriz na classe pois todas as outras vão ser obtidas ao fazer operações elementares sobre esta. Assim dada uma classe, escolhemos um representante da classe que tenha a maior quantidade de 0 e 1 possíveis. Esse é motivo da seguinte definição.

Definição 3.1 Uma matriz $A \in \mathbb{M}(m \times n)$ é dita escalonada reduzida por linhas, ou simplesmente escalonada reduzida, se

- 1- O pivô de cada linha de A, isto é, a primeira entrada não nula de cada linha, é 1
- 2- Cada coluna que contém o pivô de alguma linha tem todas as outras entradas nulas.
- 3- O pivô de cada linha ocorre a direita do pivô da linha anterior.
- 4- As linhas nulas ocorrem abaixo de todas as linhas não nulas.

Obs. O item 3- nos diz que as matrizes escalonadas reduzidas tem zeros abaixo da diagonal, isto é, tem a forma

$$\begin{pmatrix} * & * & \dots & * & * \\ 0 & * & \dots & * & * \\ 0 & 0 & \ddots & * & * \\ 0 & 0 & \dots & 0 & * \end{pmatrix}$$

■ Exemplo 3.5

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right),$$

é escalonada reduzida.

2. A matriz

$$A = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 4 \end{array}\right).$$

não é escalonada reduzida. De fato, observamos que

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 4 \end{pmatrix} \xrightarrow{\ell_3 - 2\ell_2 \to \ell_3} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \xrightarrow{\frac{1}{2}\ell_3 \to \ell_3} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\underbrace{\ell_2 - \ell_3 \to \ell_2}_{\begin{subarray}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{subarray}}_{\begin{subarray}{c} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{subarray}},$$

que é escalonada reduzida.

3. A matriz

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right),$$

é escalonada reduzida.

4. A matriz

$$\left(\begin{array}{ccc} 0 & \dots & 0 \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{array}\right),$$

é escalonada reduzida.

Teorema 3.1 Toda matriz $A \in \mathbb{M}(m \times n)$ é equivalente por linhas a uma única matriz escalonada reduzida.

Demonstração: Seja $A \in M(m \times n)$ uma matriz. Considere o seguinte jogo.

- 1 Começamos pela primeira linha.
- 2 Se ela for nula, fazemos uma operação elementar que a coloque na parte de baixo da matriz. Se não for, procuramos a primeira entrada não nula e fazemos uma operação elementar para tornar esta entrada igual a 1. O mesmo fazemos com todas as linhas não nulas.
- 3 Fazendo novamente operações elementares colocamos as linhas de forma tal que os pivôs apareçam conforme descemos nas linhas, a direita do pivô da linha anterior.
- 4 Se na linha de baixo tivermos pivôs abaixo do pivô da primeira linha, fazemos operações elementares entre cada uma destas linhass e a primeira linha para trasladas estes pivôs para outra coluna.
- 5 Fixamos a primeira linha e recomeçamos o processo a partir da segunda linha, e assim sucessivamente. Por este método obtemos uma matriz onde todas as linhas nulas estão abaixo e, na parte de cima, os pivôs ocorrem de forma adequada. Agora, só resta zerar as entradas acima de cada pivõ, o que é feito novamente via operações elementares, obtendo uma matriz escalonada reduzida. Observamos que o processo é finito pois a matriz tem finitas entradas.

Para ver a unicidade, assuma que A é equivalente por linhas a duas matrizes escalonadas reduzidas B_1 e B_2 . Então B_1 e B_2 são equivalentes por linhas e portanto B_2 é obtido de B_1 fazendo operações elementares. Mas estas operações devem ser identidade pois caso contrario B_2 não pode estar na sua forma escalonada reduzida. Donde $B_1 = B_2$.

O teorema anterior garante que toda matriz é equivalente por linhas a uma matriz escalonada reduzida. Por exemplo vemos que se A é uma matriz de 3×2 então ela é equivalente por linhas a alguma das matrizes abaixo:

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \quad A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \quad A_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \quad A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \quad A_5 = \begin{pmatrix} 1 & k \\ 0 & 0 \\ 0 & 0 \end{pmatrix},$$

 $com k \in \mathbb{R}$.

Obs.

No caso das matrizes quadradas de tamanho $n \times n$, a matriz escalonada reduzida é a identidade I_n ou possui pelo menos uma linha nula. De fato se B é uma matriz escalonada reduzida quadrada que não é a identidade então temos que para alguma linha o pivô está a direita da diagonal. Por exemplo:

Segue disto que os pivos correspondentes as linhas inferiores estão a direita da diagonal. Pelo fato da matriz ser quadrada temos que na linha n não haverá termos não nulos.