2.10 INTERNAL DAC OF LPC1768

The LPC1768 microcontroller, based on the ARM Cortex-M3 core, features an Internal Digitalto-Analog Converter (DAC). This DAC allows you to convert digital values (binary data) to analog voltage signals, which is useful for audio output, waveform generation, or other analog applications.

2.10.1 FEATURES

- **Resolution:** 10-bit resolution (values from 0 to 1023).
- Output Voltage Range: From 0V to VREF (reference voltage).
- Update Rate: Up to 1 MHz.
- Single-channel output: One output channel only (through PIN AOUT P0.26).
- Selectable reference voltage: Usually powered by VREF or internal supply voltage.

2.10.2 PIN DESCRIPTION

Pin	Туре	Description
AOUT	Output	Analog Output. After the selected settling time after the DACR is written with a new value, the voltage on this pin (with respect to V_{SSA}) is VALUE × ((V_{REFP} - V_{REFN})/1024) + V_{REFN} .
V_{REFP} , V_{REFN}	Voltage References. These pins provide a voltage reference level for the ADC and Note: V _{REFP} should be tied to VDD(3V3) and V _{REFN} should be tied to V _{SS} if the ADC are not used.	
V_{DDA} , V_{SSA}	Power	Analog Power and Ground. These should typically be the same voltages as V_{DD} and V_{SS} , but should be isolated to minimize noise and error. Note: VDDA should be tied to VDD(3V3) and VSSA should be tied to VSS if the ADC and DAC are not used.

- LPC 1768 has 10-bit internal DAC whose output is connected to P0.26
- V_{REFN} is connected to 0 V and V_{REFP} is connected to 3.3V.

2.10.3 PIN SELECT REGISTER 1 (PINSEL1)

PINSEL1	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0	P0.16	GPIO Port 0.16	RXD1	SSEL0	SSEL	00
3:2	P0.17	GPIO Port 0.17	CTS1	MISO0	MISO	00
5:4	P0.18	GPIO Port 0.18	DCD1	MOSI0	MOSI	00
7:6	P0.19[1]	GPIO Port 0.19	DSR1	Reserved	SDA1	00
9:8	P0.20[1]	GPIO Port 0.20	DTR1	Reserved	SCL1	00
11:10	P0.21[1]	GPIO Port 0.21	RI1	Reserved	RD1	00
13:12	P0.22	GPIO Port 0.22	RTS1	Reserved	TD1	00
15:14	P0.23[1]	GPIO Port 0.23	AD0.0	I2SRX_CLK	CAP3.0	00
17:16	P0.24[1]	GPIO Port 0.24	AD0.1	I2SRX_WS	CAP3.1	00
19:18	P0.25	GPIO Port 0.25	AD0.2	I2SRX_SDA	TXD3	00
21:20	P0.26	GPIO Port 0.26	AD0.3	AOUT	RXD3	00
23:22	P0.27[1][2]	GPIO Port 0.27	SDA0	USB_SDA	Reserved	00
25:24	P0.28[1][2]	GPIO Port 0.28	SCL0	USB SCL	Reserved	00

By default the pins are configured as GPIO pins. To select P0.26 for AOUT functionality write "10" to bits 21:20 of PINSEL1 register.

2.10.4 D/A CONVERTER REGISTER (DACR REGISTER)

This read/write register includes the digital value to be converted to analog, and a bit that trades off performance vs. power. Bits 5:0 are reserved for future, higher-resolution D/A converters.

Bits	Name	Description	
[15:6]	VALUE	10-bit value (0-1023) for output.	
[16]	BIAS	Set to 1 for lower power (default).	
[31:17]	(5.5)5	Reserved	

DAC Output Voltage Formula:

$$V_{\text{ref}}$$
 $V_{\text{out}} = \text{DACValue x } 2 \underline{\hspace{1cm}}_{10} - 1$

Where:

DACValue: 10-bit value from 0 to 1023

V_{REF}: Reference voltage (typically 3.3V)

Example:

```
a) DAC_Value = 1023 V_{out} = 3.3 \text{ V}
b) DAC Value = 512 V_{out} = 1.65 \text{ V}
```

- DACR[16] controls the BIAS of DAC \circ If DACR[16] = 0 then DAC output settles within 1 μ s consuming a maximum current of 700 μ A.
 - \circ If DACR[16] = 1 the DAC output settles within 2.5 μ s consuming a maximum current of 300 μ A Low Power (Default)

2.10.5 EXAMPLE CODE 01 - SQUARE WAVE GENERATION

Write a C program for the LPC17xx microcontroller that generates a square wave of desired amplitude using internal DAC.

```
#include <lpc17xx.h>
#define AMPLITUDE 3.3
void delay (unsigned int
ms)
{
    unsigned int i,j;
    for(i=0; i<ms; i++)
    for (j=0; j<1275; j++);
int main(void)
{
    unsigned long int dacrValue = 0;
    unsigned long int dac value = 0;
     SystemInit();
     //Configure P0.26 for DAC Analog Output
    LPC PINCON->PINSEL1 \mid= (1 << 21);
                                              LPC PINCON-
>PINSEL1 &= ~(1 << 20); //Select low power
     LPC DAC->DACR \mid = (1 << 16);
    //DAC Value
                         dac value =
AMPLITUDE * 1023 / 3.3;
```

```
while (1)
     {
         //Active High Pulse
         dacrValue &= \sim (0x3FF << 6); //clear DAC bits
    dacrValue |= (dac value << 6); //write from bit position 6</pre>
         delay(100);
         //Active Low Pulse
                                     dacrValue &= ~(0x3FF <<
                      LPC DAC->DACR = dacrValue;
6); //clear DAC bits
//write to DAC register
                                delay(100);
    }
}
2.10.6 EXAMPLE CODE 02 – TRIANGULAR WAVE GENERATION
Write a C program for the LPC17xx microcontroller that generates a
triangular waveform using internal DAC.
#include <1pc17xx.h>
int
main (void)
{
    short int i = 0;
    unsigned long int dacrValue = 0;
    SystemInit();
    //Configure P0.26 as DAC output pin LPC PINCON-
>PINSEL1 |= (1 << 21);
    LPC PINCON->PINSEL1 &= \sim (1 << 20);
    // Low Power
    LPC DAC->DACR \mid = (1 << 16);
```

```
{
        for(i = 0; i < 1024; i++)
            dacrValue &= \sim (0x3FF << 6); //clear bits
   dacrValue |= (i << 6); //write from bit position 6</pre>
            }
        for (i = 1023; i > 0; i--)
        {
            dacrValue &= \sim (0x3FF << 6); //clear bits
   dacrValue |= (i << 6); //write from bit position 6</pre>
            }
    }
}
2.10.7 EXAMPLE CODE 03 – SINE WAVE GENERATION
Write a C program for the LPC17xx microcontroller that generates a sine
waveform using internal DAC.
#include <lpc17xx.h>
#include <math.h>
#define PI
                3.14159265
#define SAMPLES
               1024
int
main(void)
{ short int i = 0; unsigned
angle = 0;
    SystemInit();
    //Configure P0.26 as DAC output pin
    LPC PINCON->PINSEL1 \mid= (1 << 21);
```

LPC PINCON->PINSEL1 &= $\sim (1 << 20)$;

while (1)

```
//low power configuration
LPC_DAC->DACR |= (1 << 16);

while(1)
{
    for(i = 0; i < SAMPLES; i++)
        {
             // Generate sine wave value from 0 to 1023
            angle = (2 * PI * i) / SAMPLES;

            // Scale to 0-1023 range
            dacrValue = (unsigned long int)((sin(angle) + 1) * 511.5);

            // Write to DAC register
            LPC_DAC->DACR = (dacrValue << 6);
        }
}</pre>
```

Further exploration:

1) Generate the following waveforms using internal DAC

2) Do you know how to use timers of LPC1768?. If yes, generate waveforms for specific frequency using timers.