V=8000***convert**(cm^3, m^3) x_1=0.05 T_1=140[C] {Part A}

SV=volume(Steam, T=T_1, x=x_1) {Specific Volume: SV = 0.02645 m^3/kg} P_1=pressure(Steam,T=T_1,v=SV) {Pressure: P_1 = 361.5 kPa} TEST=quality(Steam,T=T_1, v=SV)

{Part B}

{Question 2.A-3}

m_total=V/SV {Total Mass: m_total = 0.3024 kg}
m_water=m_total*(1-x_1) {Water Mass: m_water = 0.2873 kg}
m_vapor=m_total*x_1 {Vapor Mass: m_vapor = 0.01512 kg}

{Part C}

V_water=SV*m_water {Water Volume: V_water = 0.0076 m^3} V_vapor=SV*m_vapor {Vapor Volume: V_vapor = 0.0004 m^3}

T_2=200[C]

{Part D}

P_2=pressure(Steam, T=T_2, v=SV) {Pressure: P_1 = 1,555 kPa} x_2=quality(Steam, T=T_2, v=SV) {Quality: x_2 = 20.07 %}

{Part E}

m water 2=V/SV*(1-x 2) {Water Mass: m water 2 = 0.2418 kg}

SOLUTION

Unit Settings: SI C kPa kJ mass deg

m_{vapor} = 0.01512 [kg] P₁ = 361.5 [kPa] TEST = 0.05 V = 0.008 [m³] x₁ = 0.05 mwater = 0.2873 [kg]
P2 = 1555 [kPa]
T1 = 140 [C]
Vvapor = 0.0004 [m³]
x2 = 0.2007

No unit problems were detected.