A Proof of Doob-Dynkin Lemma

WU Runzhe Student ID : 518030910432 SHANGHAI JIAO TONG UNIVERSITY

April 4, 2020

Doob-Dynkin Lemma. Let $X, Y : S \to \mathbb{R}$ be random variables. Then $\sigma(Y) \subseteq \sigma(X)$ implies there exists a \mathcal{B}/\mathcal{B} -measurable function f such that $f \circ X = Y$.

It seems that there is a common technology to prove the validity of a certain property for some functions that breaks proof to four easier steps as follows

- (1) Prove the property for indicator functions.
- (2) Using linearity, extend the proof to simple functions.¹
- (3) Using monotone approximation, extend the property to non-negative functions.
- (4) Extend the property to some real-valued functions f by writing $f = f^+ f^-$.

It's called *Standard Machine*. Anyway, the following proof will follow this idea. Let's do the first step—show the validity of Doob-Dynkin Lemma for indicator functions.

Lemma 1. Doob-Dynkin Lemma holds when Y is an indicator function.

Proof of Lemma 1. Suppose $Y = \mathbf{1}_A$ where $A \in S$. Then we have $\sigma(Y) = \{\emptyset, S, A, A^C\} \subseteq \sigma(X)$. Clearly, $f = \mathbf{1}_B$ where $X^{-1}(B) = A$ will suffice, and trivially, f is \mathcal{B}/\mathcal{B} -measurable. \square

Then we extend it to some simple functions.

Lemma 2. Doob-Dynkin Lemma holds when Y is a finite linear combination of disjoint indicator functions in \mathbb{R} . Formally,

$$Y = \sum_{i \in I} \lambda_i \mathbf{1}_{A_i}$$

where $\lambda_i \in \mathbb{R}$ and $A_i \cap A_j = \emptyset$ for any $i, j \in I$ with $i \neq j$.

Proof of Lemma 2. Without loss of generality, we assume all λ_i are pairwise distinct. It's easy to see that $\sigma(\mathbf{1}_{A_i}) \subseteq \sigma(Y) \subseteq \sigma(X)$, so by Lemma 1, we can obtain some measurable functions $f_i, i \in I$. And $f = \sum_{i \in I} \lambda_i f(i)$ will suffice.

¹A simple function is a finite linear combination of indicator functions of measurable sets.

Remark 1. Note that Lemma 2 is true only for **finite** combination of indicator functions. Otherwise, the measurability of f won't be guaranteed.

Let's define the dyadic function $d_n \in \mathbb{R}^{\mathbb{R}}$ for $n \in \mathbb{N}$ as follows.

$$d_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathbf{1}_{\left[\frac{k-1}{n^2}, \frac{k}{2^n}\right)} + n \mathbf{1}_{[n, +\infty)}$$

Lemma 3 (Monotone Approximation). Let f be a non-negative measurable function. Then there exists a sequence $\{f_n\}_{n=1}^{\infty}$ of non-negative simple functions such that $f_n \uparrow f$.

Proof of Lemma 3. Let $f_n = d_n \circ f$. The proof of why $f_n \uparrow f$ has been shown in previous work by other students (maybe in folder week 3 in our course website), so I won't repeat it here. \square

By letting $f = f^+ - f^-$, we obtain the following corollary.

Corollary 1 (Approximation). Let f be a measurable function. Then there exists a sequence $\{f_n\}_{n=1}^{\infty}$ of simple functions such that $f_n \to f$.

Now we can prove the Doob-Dynkin Lemma. Let X, Y be random variables, and by corollary 1, there exits a sequence of simple function $\{Y_n\}_{n=1}^{\infty}$ where $Y_n = d_n \circ Y^+ - d_n \circ Y^-$ such that $Y_n \to Y$. Now we should prove $\sigma(Y_n) \subseteq \sigma(Y)$ in order to use Lemma 2. By definition, if $A \in \sigma(Y_n)$, then there exits $B \in \mathcal{B}$ such that $A = Y_n^{-1}B$. As Y_n is a simple function, We can somehow extend B by finite number of subset in \mathbb{R} to B', formally, $B' = B \cup B_1 \cup B_2 \cup \cdots \cup B_k$ such that $A = Y^{-1}B$. That means $\sigma(Y_n) \subseteq \sigma(Y) \subseteq \sigma(X)$. By Lemma 2, each Y_n has one associated f_n to satisfy the Doob-Dynkin Lemma. Then $f = \limsup f_n$ is again measurable by property of measurable functions. And $f \circ X = (\limsup f_n) \circ X = \limsup (f_n \circ X) = \limsup Y_n = \lim Y_n = Y$.