CHAPTER 1: VECTORS IN THE PLANE

1. ANALYSIS OF VECTORS GEOMETRICALLY

A. Basic Vector Concepts

Directed line segment is a line segment with initial and terminal (end) point.

Directed line segment AB is denoted by \overline{AB}

Example: Write all directed line segments whose end points are M, N, P, K

Vector in the plane is a directed line segment.

Equal Vectors:

Two vectors that have the same direction and length are called equal vectors.

$$\overrightarrow{AC} = \overrightarrow{BD}$$

Check Yourself 1 - Page 4 in Zambak

Opposite Vectors:

Two vectors are opposite iff their magnitudes (lengths) are same but directions are different.

$$\overrightarrow{AB} = -\overrightarrow{CD}$$

Zero Vector:

A vector whose initial and terminal points are same is called zero vector, and denoted by $\vec{0}\,$.

B. Vector Operations

Addition of Vectors

Let \overrightarrow{AC} and \overrightarrow{BD} be two vectors.

 $\overrightarrow{AC} + \overrightarrow{BD} \Rightarrow$ sum of the vectors \overrightarrow{AC} and \overrightarrow{BD}

Method 1: The Polygon Method

Place each vectors' initial point to the end of the previous vector

Method 2: The Parallelogram Method

Place initial points of two vectors shown as following figure

Properties of Vector Addition

- 1. Sum of any two vectors is a vector
- $2. \qquad \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$
- 3. $\overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w}) = (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w}$
- 4. $\vec{u} + (-\vec{u}) = \vec{0}$ ($-\vec{u}$ is an additive inverse of \vec{u})

Subtraction of Vectors

 $\vec{u} - \vec{v}$ means $\vec{u} + (-\vec{v})$

Example: Draw the resultant vector by using the followings

 $\overrightarrow{u} + \overrightarrow{v}$

 $\overrightarrow{v} + \overrightarrow{w}$ $\overrightarrow{w} + \overrightarrow{v} + \overrightarrow{u}$

Check Yourself 2 – Page 8 in Zambak

Multiplication of a Vector by a Scalar

Scalar multiplication changes the length and direction of vector.

Properties of the Multiplication of a Vector by a Scalar

- 1. $a \cdot \vec{u}$ is a vector
- 2. $(a \cdot b) \cdot \vec{u} = a \cdot (b \cdot \vec{u})$
- 3. $(a+b) \cdot \vec{u} = a \cdot \vec{u} + b \cdot \vec{u}$
- 4. $a \cdot (\vec{u} + \vec{v}) = a \cdot \vec{u} + a \cdot \vec{v}$
- 5. $1 \cdot \vec{u} = \vec{u}$
- 6. $a \cdot \vec{0} = \vec{0}$

Example: Draw the resultant vector by using the followings

 $\frac{1}{2}$

 $2 \cdot \vec{w}$

 $-\frac{1}{2}\cdot\vec{u}$

 $-2\cdot\vec{v}$

Check Yourself 3 – Page 10 in Zambak

C. Parallel Vectors

Parallel Vectors

 \vec{a} and \vec{b} are parallel vectors iff $\vec{a} = k \cdot \vec{b}$ ($k \neq 0, k \in \mathbb{R}$)

 $\vec{a} \parallel \vec{b} \parallel \vec{c}$

Check Yourself 4 – Page 12 in Zambak

2. ANALYSIS OF VECTORS ANALYTICALLY

A. Basic Concepts of Vectors in the Analytic Plane

Position vector:

A vector \overrightarrow{OP} whose initial point is at the origin of the rectangular coordinate plane and which is parallel to a vector \overrightarrow{AB} is called the position vector of \overrightarrow{AB} .

Example: Find the position vector of \overrightarrow{MN} with end points M(3,1) and N(6,3)

Components of a Vector

Any vector can be represented by the sum of a horizontal $(\overrightarrow{u_x})$ and vertical $(\overrightarrow{u_y})$ vectors.

 $\stackrel{
ightarrow}{u}$ can be represented as an ordered pair of real numbers.

$$\vec{u} = (u_1, u_2) \text{ or } \vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

From above construction, the length of vector $\vec{u} = (u_1, u_2)$ is

$$|\vec{u}| = \sqrt{u_1^2 + u_2^2}$$

Example: Find the length of each vector.

- $\vec{u} = (3, -2)$
- $\vec{v} = (-4,0)$
- $\vec{w} = \left(\frac{5}{13}, -\frac{12}{13}\right)$
- \vec{u} with initial point (1,4) and terminal point (-2,2)

Check Yourself 6 - Page 18 in Zambak

Equal Vectors

$$\vec{u} = (u_1, u_2)$$
 and $\vec{v} = (v_1, v_2)$ are equal iff $u_1 = v_1$ and $u_2 = v_2$

Example: If $\vec{u} = (m-n,5)$ and $\vec{v} = (5,2m-1)$ are equal, then find m and n.

Example: The vector $\vec{w} = (1, -5)$ has end point (-4, 5). What is the initial point?

Check Yourself 7 – Page 19 in Zambak

B. Vector Operations

Addition of Vectors

If $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$, then $\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2)$

Properties of Vector Addition

- 1. Sum of any two vectors is a vector
- $2. \quad \vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 3. $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$
- 4. $\vec{u} + (-\vec{u}) = \vec{0}$ ($-\vec{u}$ is an additive inverse of \vec{u})

Example: $\vec{u} = (-2,5)$ and $\vec{v} = (4,-6)$. Find $\vec{u} + \vec{v}$

Subtraction of Vectors

If $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$, then $\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2)$

Properties of Vector Subtraction

1. Difference of any two vectors is a vector

- 2. $\vec{u} \vec{v} \neq \vec{v} \vec{u}$
- 3. $\vec{u} (\vec{v} \vec{w}) \neq (\vec{u} \vec{v}) \vec{w}$
- 4. $\vec{u} \vec{0} \neq \vec{0} \vec{u}$ ($-\vec{u}$ is an additive inverse of \vec{u})

Example: $\vec{u} = (3,8)$ and $\vec{v} = (-3,10)$. Find $\vec{u} - \vec{v}$

Multiplication of a Vector by a Scalar

If $\vec{v} = (v_1, v_2)$ and $c \in \mathbb{R}$, then $\vec{c} \cdot \vec{v} = (\vec{c} \cdot v_1, \vec{c} \cdot v_2)$

Properties of the Multiplication of a Vector by a Scalar

If $\vec{u} = (u_1, u_2)$, $\vec{v} = (v_1, v_2)$ and $c, d \in \mathbb{R}$, then

- 1. $c \cdot (\vec{u} + \vec{v}) = c \cdot \vec{u} + c \cdot \vec{v}$
- 2. $(c+d) \cdot \vec{u} = c \cdot \vec{u} + d \cdot \vec{u}$
- 3. $(c \cdot d) \cdot \vec{u} = c \cdot (d \cdot \vec{u}) = d \cdot (c \cdot \vec{u})$
- $4. \qquad 1 \cdot \vec{u} = \vec{u}$
- 5. $0 \cdot \vec{u} = \vec{0}$
- 6. $c \cdot \vec{0} = \vec{0}$
- 7. $|c \cdot \vec{u}| = |c| \cdot |\vec{u}|$

Example: If $\vec{u} = (2,-5)$, $\vec{v} = (-1,7)$ then find

 $-2 \cdot \vec{u}$

ctive Note Book

- $4 \cdot \vec{v}$
- $4 \cdot \vec{u} 3 \cdot \vec{v}$

Check Yourself 8 – Page 22 in Zambak

Unit Vector is a vector of length 1. (Example; $\vec{u} = \left(\frac{3}{5}, \frac{4}{5}\right)$)

For any non-zero vector $\vec{u} = (u_1, u_2)$, $\frac{\vec{u}}{|\vec{u}|}$ is a unit vector.

 $\frac{\vec{u}}{|\vec{u}|}$ is also used for direction of $\vec{u} = (u_1, u_2)$.

Standard Base Vectors are $\vec{i} = (1,0)$ and $\vec{j} = (0,1)$

Any vector $\vec{u} = (u_1, u_2)$ can be expressed in terms of \vec{i} and \vec{j} as

 $\vec{u} = (u_1, u_2) = u_1 \cdot \vec{i} + u_2 \cdot \vec{j}$

Example: Write the vector $\vec{v} = (-7,4)$ in terms of \vec{i} and \vec{j}

As observe in the following figure,

$$\vec{v} = (v_1, v_2) = v_1 \cdot \vec{i} + v_2 \cdot \vec{j} = |\vec{v}| \cdot \cos\theta \cdot \vec{i} + |\vec{v}| \cdot \sin\theta \cdot \vec{j}$$

Example:

Check Yourself 9 – Page 24 in Zambak

C. Parallel Vectors

Let $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$ be vectors

$$\vec{u} \parallel \vec{v} \text{ iff } \frac{u_1}{v_1} = \frac{u_2}{v_2} = c$$

Example: Show that $\vec{u} = \left(-3, \frac{1}{2}\right)$ and $\vec{v} = \left(2, -\frac{1}{3}\right)$ are parallel.

Check Yourself 11 - Page 27 in Zambak

D. Linear Combination of Vectors

Let $\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_k}$ be vectors in the plane and let $c_1, c_2, ..., c_k$ be scalars. Then,

 $c_1 \cdot \overrightarrow{u_1} + c_2 \cdot \overrightarrow{u_2}, \dots, c_k \cdot \overrightarrow{u_k}$ is called a linear combination of vectors.

Example: Find the vector \vec{m} if $\vec{m} = 3 \cdot \vec{a} - 2 \cdot \vec{b}$ if $\vec{a} = (3, -5)$ and $\vec{b} = (-4, 10)$

Example: Express $\vec{w} = (16,3)$ as a linear combination of the vectors $\vec{u} = (-2,1)$ and $\vec{v} = (3,4)$

3. THE DOT PRODUCT OF TWO VECTORS

A. Dot Product

Let $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$ be two vectors.

The **dot product** of \vec{u} and \vec{v} , denoted by $\vec{u} \cdot \vec{v}$, is defined by $\vec{u} \cdot \vec{v} = u_1 \cdot v_1 + u_2 \cdot v_2$

Example:

$$\vec{u} = (1, -2)$$
, $\vec{v} = (3, 5) \Rightarrow \vec{u} \cdot \vec{v} =$

$$\vec{u} = \vec{i} - 4 \cdot \vec{j}$$
, $\vec{u} = 2 \cdot \vec{i} + 7 \cdot \vec{j} \Rightarrow \vec{u} \cdot \vec{v} =$

Properties of Dot Product

- 1. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- 2. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} \pm \vec{u} \cdot \vec{w}$
- 3. $c \cdot (\vec{u} \cdot \vec{v}) = (c \cdot \vec{u}) \cdot \vec{v}$
- $4. \quad \vec{u} \cdot \vec{u} = |\vec{u}|^2$
- 5. $\vec{u} \cdot \vec{u} = 0$ iff $\vec{u} = \vec{0}$

Example: Find the length of $\vec{u} = (-5,12)$ by using dot product.

Check Yourself 13 - Page 34 in Zambak

Angle between \vec{u} and \vec{v} is the smaller angle represented by θ

Dot Product Theorem $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos \theta$

Example: Given $\vec{u} = (3,-1)$, $\vec{v} = (4,7)$, and $\vec{w} = (-2,5)$, find

- $\vec{u} \cdot \vec{v} =$
- $(\vec{u} \cdot \vec{v}) \cdot \vec{w} =$
- $\vec{u} \cdot (2 \cdot \vec{w}) =$
- \bullet $|\overrightarrow{w}|^2$

To find the angle between two non-zero vectors $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$

Example: Find the cosine of the angle between the vectors $\vec{u} = (3,4)$ and $\vec{v} = (-2,6)$

Example: Find the angle between the vectors $\vec{u} = (1, \sqrt{2})$ and $\vec{v} = (2, 2\sqrt{2})$

Check Yourself 14 – Page 36 in Zambak

Perpendicular (Orthogonal) Vectors

 \vec{u} and \vec{v} are perpendicular iff $\vec{u} \cdot \vec{v} = 0$

Example: Are the vectors $\vec{u} = (4,2)$ and $\vec{v} = (-3,6)$ perpendicular?

Example: Are the vectors $\vec{u} = (7,-1)$ and $\vec{v} = (-3,3)$ perpendicular?

Example: Find the equation of line passing through A(-2,1) which is perpendicular to m = (2,3).

Parallel Vectors

 \vec{u} and \vec{v} are parallel iff $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}|$ or $\vec{u} \cdot \vec{v} = -|\vec{u}| \cdot |\vec{v}|$

Theorem:

$$|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + 2 \cdot \vec{u} \cdot \vec{v} + |\vec{v}|^2 = |\vec{u}|^2 + 2 \cdot |\vec{u}| \cdot |\vec{v}| \cdot \cos\theta + |\vec{v}|^2$$

$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 - 2 \cdot \vec{u} \cdot \vec{v} + |\vec{v}|^2 = |\vec{u}|^2 - 2 \cdot |\vec{u}| \cdot |\vec{v}| \cdot \cos\theta + |\vec{v}|^2$$

Example: $|\vec{u}| = 2$, $|\vec{v}| = 5$, and the angle between \vec{u} and \vec{v} is 120° . Find $|\vec{3u} - 4\vec{v}|$

Check Yourself 15 – Page 40 in Zambak

B. Component of \vec{u} along \vec{v}

Length of Projection of \vec{u} along $\vec{v} = |\vec{u}| \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|}$

Projection vector of \vec{u} along $\vec{v} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \cdot \vec{v}$

Example: Find the length of projection of $\vec{u} = (4,3)$ along $\vec{v} = (-2,6)$

Example: Find the projection vector of $\vec{u} = (4,3)$ along

$$\vec{v} = (-2,6)$$

Check Yourself 16 – Page 42 in Zambak

Exercises 3 – Page 45 in Zambak

CHAPTER 2: VECTORS IN THE SPACE

1. ANALYSIS OF VECTORS GEOMETRICALLY

A. Basic Vector Concepts

$$\vec{v} = (v_1, v_2, v_3)$$

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

Example: Find the vector with initial point A(3,-1,5) and terminal point B(-1,0,7)

Example: The points A(-5,4,-2), B(0,6,-2) and C(1,7,4) are given. Write the vectors \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{AC} .

Example: The point A(4,-1,5) and the vector $\overrightarrow{AB} = (10,5,-6)$ are given. Find the coordinates of point B

Length (Norm) of Vector

The length (norm) of the vector $\vec{v} = (v_1, v_2, v_3)$ is $|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

Example: Find the length of each vector.

- $\vec{u} = (-3, -4, 5)$
- $\vec{v} = (-4,0,3)$
- \overrightarrow{w} with initial point (1,4,-6) and terminal point (-5,-3,2)

Example: (UN 2005)

Diketahui segitiga ABC dengan koordiat A(2,-3,4) , B(5,0,1) , dan C(4,2,5) . Titik P membagi AB sehingga AP:AB=2:3 . Panjang vektor PC adalah ...

ABC triangle with A(2,-3,4) , B(5,0,1) , and C(4,2,5) is given. P point divides AB in the ratio of AP:AB=2:3 . Length of PC vector is ...

Zero Vector $\vec{0} = (0,0,0)$

Equal Vectors

 $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$ are equal iff $u_1 = v_1$, $u_2 = v_2$, $u_3 = v_3$

Example: If $\vec{u} = (a-1,2,b)$ and $\vec{v} = (b+4,c,3-a)$ are equal, then find a,b and c.

Example: Find the length of

- $\vec{u} = (1, 2, -2)$
- $\vec{v} = (-5, \sqrt{2}, -3)$
- $\overrightarrow{w} = (\sqrt{6}, -\sqrt{3}, 4)$

Example: Given M(2,3,-1) and N(1,3,-1) . Find the length of \overline{MN}

B. Vector Operations

Let $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$ be vectors and $c \in \mathbb{R}$. Then

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

$$\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2, u_3 - v_3)$$

$$c \cdot \vec{u} = c \cdot (u_1, u_2, u_3) = (c \cdot u_1, c \cdot u_2, c \cdot u_3)$$

Example: Given $\vec{u} = (-4,0,3)$ and $\vec{v} = (2,-1,-5)$. Find

- \bullet $|\vec{u}| =$
- \bullet $\vec{u} + \vec{v} =$
- \bullet $\overrightarrow{v} 3 \cdot \overrightarrow{u} =$
- $4 \cdot \vec{u} + 5 \cdot \vec{v} =$

Active Note Book

Example: (UN 2004)

If a=i+2j+3k , b=-3i-2j-k and b=i-2j+3k , then $2a+b-c=\dots$

Unit Vector is a vector with length 1.

Example: Find a if $\vec{u} = \left(a, 0, \frac{\sqrt{3}}{2}\right)$ is a unit vector.

Direction of Non-zero Vector \vec{v} is $\frac{\vec{v}}{|\vec{v}|}$

Standard Basis Vectors are $\vec{i} = (1,0,0)$, $\vec{j} = (0,1,0)$ and $\vec{k} = (0,0,1)$

Example: Write $\vec{v} = (-4,7,3)$ in terms of standard basis vectors

Example: Find the unit vector in the direction of $3\vec{i} + \vec{j} - 4\vec{k}$

C. Parallel Vectors

Let $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$ be vectors

 $\vec{u} \parallel \vec{v}$ iff $\frac{u_1}{v_1} = \frac{u_2}{v_2} = \frac{u_3}{v_2} = c$

D. Dot Product

Let $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$ be two vectors.

The **dot product** of \vec{u} and \vec{v} , denoted by $\vec{u} \cdot \vec{v}$, is defined by $\vec{u} \cdot \vec{v} = u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3$

Example:

$$\vec{u} = (-3,0,2), \ \vec{v} = (2,-3,5) \Rightarrow \vec{u} \cdot \vec{v} =$$

$$\vec{u} = 2\vec{i} + 3\vec{j} - \vec{k}$$
, $\vec{v} = \vec{i} - 7 \cdot \vec{j} - 2\vec{k} \Rightarrow \vec{u} \cdot \vec{v} =$

Properties of Dot Product

- 1. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- 2. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} \pm \vec{u} \cdot \vec{w}$
- 3. $c \cdot (\vec{u} \cdot \vec{v}) = (c \cdot \vec{u}) \cdot \vec{v}$
- 4. $\vec{u} \cdot \vec{u} = |\vec{u}|^2$
- 5. $\vec{u} \cdot \vec{u} = 0$ iff $\vec{u} = \vec{0}$

Example: Find the length of $\vec{v} = (5, -3, 1)$ by using dot product.

Angle between \vec{u} and \vec{v} is the smaller angle represented by θ

Dot Product Theorem $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos \theta$

To find the angle between two non-zero vectors $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$

Example: Find the cosine of the angle between the vectors $\vec{u} = (3, -2, 1)$ and $\vec{v} = (-1, 2, -6)$

Example: (UN 2012/A13)

Diketahui vektor $\vec{a}=4\vec{i}+2\vec{j}+2\vec{k}$ dan $\vec{b}=3\vec{i}+3\vec{j}$. Besar sudut antara vektor \vec{a} dan \vec{b} adalah...

 $\vec{a}=4\vec{i}+2\vec{j}+2\vec{k}$ and $\vec{b}=3\vec{i}+3\vec{j}$ vectors are given. The angle value between \vec{a} and \vec{b} vectors is ...

Example: (UN 2011 PAKET 46)

Diketahui segitiga ABC dengan A(2,1,2), B(6,1,2), dan C(6,5,2). Jika u mewakili \overrightarrow{AB} dan v mewakili \overrightarrow{AC} , maka sudut yang dibentuk oleh vektor u dan v adalah ... ABC triangle with A(2,1,2), B(6,1,2) and C(6,5,2) is given.

The measure of angle between \overrightarrow{AB} and \overrightarrow{AC} is ...

ctive

tive Note Boo

Example: (UN 2009 PAKET A/B)

Diketahui balok ABCD.EFGH dengan AB=2 cm, BC=3 cm, dan AE=4 cm. Jika \overrightarrow{AC} wakil vektor u dan v wakil \overrightarrow{DH} adalah vektor v, maka sudut antara vektor u dan v adalah ...

ABCD.EFGH is rectangular prism with AB=2 cm, BC=3 cm, and AE=4 cm. The measure of angle between \overrightarrow{AC} and \overrightarrow{DH} is

Perpendicular (Orthogonal) Vectors

 \vec{u} and \vec{v} are perpendicular iff $\vec{u} \cdot \vec{v} = 0$

Example: For what value of a are the vectors $\vec{u} = (4, -2, a)$ and $\vec{v} = (-1, a, 6)$ orthogonal?

Example: (UN 2008 PAKET A/B)

Jika vektor a=xi-4j+8k tegak lurus vektor b=2xi+2xj-3k , maka nilai x yang memenuhi adalah...

If a = xi - 4j + 8k vector is perpendicular to b = 2xi + 2xj - 3k , then x value is ...

Example: (UN 2012/A13)

Diketahui vektor
$$\vec{a} = \begin{pmatrix} p \\ 2 \\ -1 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 4 \\ -3 \\ 6 \end{pmatrix}$, dan $\vec{c} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$. Jika \vec{a}

tegak lurus \vec{b} , maka hasil dari $(\vec{a} - 2\vec{b}) \cdot 3\vec{c}$ adalah...

$$\vec{a} = \begin{pmatrix} p \\ 2 \\ -1 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 4 \\ -3 \\ 6 \end{pmatrix}, \ \text{and} \ \vec{c} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 are given. If \vec{a} is

perpendicular to \vec{b} , then $(\vec{a} - 2\vec{b}) \cdot 3\vec{c} = ...$

Theorem:

$$|\vec{u} + \vec{v}|^2 = |\vec{u}|^2 + 2 \cdot \vec{u} \cdot \vec{v} + |\vec{v}|^2 = |\vec{u}|^2 + 2 \cdot |\vec{u}| \cdot |\vec{v}| \cdot \cos\theta + |\vec{v}|^2$$

$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 - 2 \cdot \vec{u} \cdot \vec{v} + |\vec{v}|^2 = |\vec{u}|^2 - 2 \cdot |\vec{u}| \cdot |\vec{v}| \cdot \cos\theta + |\vec{v}|^2$$

Example: \overrightarrow{a} and \overrightarrow{b} are the vectors where $|\overrightarrow{a} + \overrightarrow{b}| = \sqrt{5}$. If

$$\begin{vmatrix} \vec{a} - \vec{b} \end{vmatrix} = \sqrt{3}$$
 then, $\begin{vmatrix} \vec{a} \end{vmatrix}^2 + \begin{vmatrix} \vec{b} \end{vmatrix}^2 = \dots$

C. Component of \vec{u} along \vec{v}

Length of Projection of \vec{u} along $\vec{v} = |\vec{u}|cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|}$

Projection vector of \vec{u} along $\vec{v} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \cdot \vec{v}$

Example: Find the projection of $\vec{u} = (3,4,5)$ along $\vec{v} = (2,1,-1)$

Example: (UN 2008 PAKET A/B)

Jika vektor a=-3i-j+xk dan vektor b=3i-2j+6k . Jika panjang proyeksi vektor a pada b adalah 5, maka nilai x=... Given a=-3i-j+xk and b=3i-2j+6k vectors. If the length of projection of a on b is 5, then x=...

Example: (UN 2012/A13)

Diketahui $\vec{a}=5\vec{i}+6\vec{j}+\vec{k}$ dan $\vec{b}=\vec{i}-2\vec{j}-2\vec{k}$. Proyeksi orthogonal vektor \vec{a} pada \vec{b} adalah...

 $\vec{a} = 5\vec{i} + 6\vec{j} + \vec{k}$ and $\vec{b} = \vec{i} - 2\vec{j} - 2\vec{k}$ are given. Orthogonal projection of \vec{a} on \vec{b} is ...

Example: (UN 2011 PAKET 12)

Diketahui vektor a = 4i - 2j + 2k dan vektor b = 2i - 6j + 4k. Proyeksi vektor orthogonal vektor a pada vektor b adalah ... Given a = 4i - 2j + 2k and b = 2i - 6j + 4k vectors. Orthogonal projection vector of a on b is ...

Example: (UN 2010 PAKET B)

Diketahui segitiga ABC dengan koordinat A(2,-1,-1), B(-1,4,-2), dan C(5,0,-3). Proyeksi vektor \overrightarrow{AB} pada \overrightarrow{AC} ABC triangle with A(2,-1,-1), B(-1,4,-2) and C(5,0,-3) is

given. The projection vector of \overrightarrow{AB} on \overrightarrow{AC} is ...

Review Test

- The vectors $\vec{v} = (-2,1,3)$ and $\vec{u} = (0,-1,2)$ are given. Find $3\vec{u} + 4\vec{v}$.
 - A) (-2,0,5) B) (-6,1,5) C) (-6,-0,17) D) (-2,1,17) E) (-6,-1,17)
- The vectors $\vec{v} = (-2, a-1, 3)$ and $\vec{u} = (b+1, 2, 3)$ are equal vectors. Find a+b.
 - A) -2
- B)-1
- C) 0
- D) 1
- E) 2
- Modulus of vector (1,-2, 3) is.....
- A) $\sqrt{10}$ B) $\sqrt{11}$ C) $\sqrt{12}$ D) $\sqrt{13}$ E) $\sqrt{14}$

- 4. If $\vec{v} = \left(a, 0, \frac{\sqrt{3}}{2}\right)$ is a unit vector, find a.

 - A) -1 B) $-\frac{1}{2}$ C) -2 D) $\frac{3}{2}$
- Find a unit vector with the same direction as $\vec{a} = 8\vec{i} - \vec{j} + 4\vec{k}$
 - A) $\left(\frac{8}{9}, -\frac{1}{9}, \frac{4}{9}\right)$ B) 9.(8,-1,4) C) 81.(8,-1,4) D) $\left(\frac{8}{9}, \frac{1}{9}, -\frac{4}{9}\right)$ E) $\frac{1}{81}(8, -1, 4)$
- 6. If Q(1,2,3), R(0,3,a), and $|\overrightarrow{QR}| = \sqrt{3}$. The value of a is....
 - A) 0 or 1 B) 1 or 2 C) 2 or 4 D) 3 E) 4

- 7. ABCDEF is a regular hexagon of center 0. If each of \overrightarrow{AB} and \overrightarrow{BC} is expressed by vectors \overrightarrow{u} and \overrightarrow{v} then \overrightarrow{DC} is equal to....

- A) u+v B) u-v C) 2v-3u D) 2u-3v E) v-u
- Given that the point M is the center of the square ABCD.

If $\overrightarrow{AC} = \overrightarrow{U}$ and $\overrightarrow{MD} = \overrightarrow{V}$ then $\overrightarrow{CD} = \dots$

- A) $\overrightarrow{V} = \frac{1}{2}\overrightarrow{U}$ B) $\overrightarrow{U} \frac{1}{2}\overrightarrow{V}$ C) $\overrightarrow{V} \frac{1}{2}\overrightarrow{U}$

 - D) $\overrightarrow{V} + \frac{1}{2}\overrightarrow{U}$ E) $\frac{1}{2}(\overrightarrow{U} + \overrightarrow{V})$
- 9. Given that $\begin{vmatrix} \overrightarrow{a} \\ = 3 \end{vmatrix} = 3$ and $\begin{vmatrix} \overrightarrow{b} \\ = 2 \end{vmatrix} = 2$. Cosine of angle between \overrightarrow{a} and \overrightarrow{b} is $\frac{1}{2}$. The value of $\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} \end{vmatrix} = \dots$
- A) $\sqrt{15}$ B) $\sqrt{16}$ C) $\sqrt{17}$ D) $\sqrt{18}$ E) $\sqrt{19}$
- **10.** Given that p=i-+2k and q=2i+2j-k . Cosine of angle between p and q is......

ve Note Boo

- A) $-\frac{1}{2}$ B) $-\frac{1}{2}\sqrt{5}$ C) $\frac{1}{2}\sqrt{5}$ D) $-\frac{1}{9}\sqrt{6}$ E) $\frac{1}{9}\sqrt{6}$
- 11. Given that the point K is on the line segment $\stackrel{\circ}{BC}$ and K is between B and C where BK: KC = 3: 2. If B (1, 3, 2) and C (6, 8, 2), then coordinate of the point K is.......
 - A) (2, 1, 3) B) (1, 3, 2) C) (2, 6, 4) D) (4, 6, 2) E) (5, 10, 5)
- **12.** The vectors $\vec{v} = (p, -2, 5)$ and $\vec{u} = (1, p, -4)$ are orthogonal. Find p.
 - A) -22 B) -20 C) -18 D)-16

- **13.** The angle between $\vec{v} = (1, -\sqrt{3}, 2)$ and $\vec{u} = (-1, \sqrt{3}, t)$ is 600. Find t.
- B) 4 C) -4
- D) 2
- **14.** The vectors $\vec{a} = (4, t, -6)$ and $\vec{b} = (k, -1, 3)$ are parallel. Find $t \cdot k$.
 - A) -9
- B)-4
- C) -1
- D) 1
- E) 4
- **15.** $\vec{u} = (a, 4, -1)$, $\vec{v} = (-3, -4, -1)$ and $\vec{u} \cdot \vec{v} = -9$ are given. Find a .
 - A) -2
- B) -1 C) 0
- D) 1
- E) 2
- **16.** $\vec{u} = (-1,3,0)$ and $\vec{v} = (2,-1,0)$ are given . Find $|\vec{u} 2\vec{v}|$.

- A) $\sqrt{2}$ B) $5\sqrt{2}$ C) $3\sqrt{2}$ D) $4\sqrt{2}$ E) $\sqrt{9}$