CSC373 Worksheet 5 Solution

August 8, 2020

1. Rough Works:

Assume that a flow network G = (V, E) violates the assumption that the network contains a path $s \rightsquigarrow v \rightsquigarrow t$ for all vertices $v \in V$. Let u be a vertex for which there is no path $s \rightsquigarrow u \rightsquigarrow t$.

I must show such that there exists a maximum flow f in G such that f(u,v)=f(v,u)=0 for all vertices $v\in V$

I will do so in cases

- 1. Case 1: When u only has flow going in
- 2. Case 2: When u only has flow going out
- 3. Case 3: When u only has no flow going in and out

Notes

• Maximum Flow:

- Finds a flow of maximum value $^{[1]}$

Example

Here, the maximum flow is 10 + 5 + 13 = 28

• Flow Network:

- -G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$.
- Two vertices must exist: **source** s and **sink** t
- path from source s to vertax v to sink t is represented by $s \leadsto v \leadsto t$

• Capacity:

- Is a non-negative function $f: V \times V \to \mathbb{R}_{>0}$
- Has capacity constraint where for all $u, v \in V$ $0 \le f(u, v) \le c(u, v)$
 - * Means flow cannot be above capacity constraint

• Flow:

- Is a real valued function $f: V \times V \to \mathbb{R}$ in G
- Satisfies capacity constraint (i.e for all $u, v \in V$, $0 \le f(u, v) \le c(u, v)$)
- Satisfies flow conservation

For all $u \in V - \{s, t\}$, we require

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \tag{1}$$

Means flow into vertex u is the same as flow going out of vertex u. [1]

Example:

References

1) Princeton University, Network Flow 1, link