# MACHIVE LEARNING

# What is Machine Learning?

- A study of algorithms that gives the computers the ability to learn without being explicitly programmed.
- Reduces human/machine efforts required to perform a task (time optimization).
- ☐ Increases the performance of a task (efficiency optimization).

# Classical machine learning







# Challenges in ML



- Considerable variability in each class.
- Euclidean distances are meaningless.
- Need to find Informative Invariants.

High dimension

Representation An Art



$$\xrightarrow{\Phi}$$

- MFCC (audio)
- SIFT (images)
- Gauss. Mixt. Mod.
- Clustering
- Histograms
- Bag of words (parts)
- Deep Neural Networks

Statistical Decision Theory

Classifier

 $\|\Phi(x) - \Phi(x')\|$ 

similarity measure

**----**

# Steps in Machine Learning

- Collecting data
- Preparing the data
- Training a model
- ☐ Evaluating the model
- Improving the performance

## Types of ML ...

Machine Learning

Supervised Learning Unsupervis ed Learning

Semi-super vised Learning

Reinforce ment learning

## **Supervised Learning**



## Regression and Classification



# **Unsupervised Learning**



# Clustering



Fig.(a) Supervised learning Clustering

Fig.(b)

# **Dimensionality Reduction**



# Semi-supervised Learning & Reinforcement Learning



**Semi-supervised Learning** 

► Reinforcement learning deals with Decision making (robot, chess machine)

## Supervised Learning Techniques

#### **LINEAR REGRESSION**

- ➤ The core idea is to obtain a line/plane that best fits the data (continuous data).
- Linear regression models a linear relationship between input and output.
- The best fit line/plane is the one for which total prediction errors of all data points are as small as possible.
- > Error is the distance between the point to the regression line.



#### **LOGISTIC REGRESSION**

- ➤ It's a classification algorithm, that is used where the response variable is *categorical* (discrete).
- The idea of Logistic Regression is to find a relationship between features and probability of particular outcome.





https://sebastianraschka.com/images/faq/logisticregr-neuralnet/sigmoid.png

source: solutions4statistics.com

#### **SUPPORT VECTOR MACHINES (SVM)**

Discriminative classifier formally defined by a separating hyperplane



source: https://www.linkedin.com/pulse/support-vector-machine-srinivas-kulkarni/



#### **How SVM works?**





Left: low regularization value, right: high regularization value

#### **DECISION TREES**

- > A decision tree is a binary tree.
- Each node partitions data according to a splitting rule.
- > Leaf node returns a label for the classification.



#### **RANDOM FOREST TREES**

Random forest builds multiple decision trees and merges them together to get a more accurate and stable prediction.



#### NAÏVE BAYES

Simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independent assumptions between the features.



$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

#### **K Nearest Neighbors (KNN)**







## **Unsupervised Learning Techniques**

#### **K-Means Clustering**



## **Model Evaluation Techniques**

☐ Fitting of Data



#### **□** Performance Metrics

|           |          | Actual         |                |
|-----------|----------|----------------|----------------|
|           |          | Positive       | Negative       |
| Predicted | Positive | True Positive  | False Positive |
|           | Negative | False Negative | True Negative  |

Recall = 
$$\frac{\text{True Positive}}{\text{Predicted Results}}$$
 or  $\frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}}$ 

F1 Score = 
$$2 * \frac{Precision * Recall}{Precision + Recall}$$



Receiver Operating Characteristics

#### Performance Enhancement

Cross Validation



Thank