-D Sequential Digital Circuits

- Circuito combinatorio evolve i segnali di ingresso (temporal mente)
- Dimenticano gli eventi passati.
- No Memony elements

- Circuiti digitali sequenziali operano come una funzione di
 - segnali input (time evalution) X
 - · actual / present State (Sn)
- Output:

Actual State, output function (four)
Next-State function (f_{NS})

-D Memory Elements

Set-Reset Latch (5 RL)

no lo stato

PQt-1

s —	2	. Qv
R —	20	- ල
	D NOR	

INPUT			OUTE	SOT
5	R	Qt-1	Qe	Qnt
0	0	0	0	4
0	0	1	1	0
O	1	0	0	1
0	1	1	0	1
1	0		1	0
エ	0	1	1	0
_	4	o l	Und	WO
1	1	1	OV Q	Md

Set-Reset Latch can Enable

INPUT			OUTE	-VT
E S	R	Qt-1	Qe	Qnt
o ×	×	0	0	1
0 ×	×	1	1	0
10	0	0	0	1
10	0	1	4	0
10	1	0	٥	Ŧ
40	4	1	0	1
11	0	0	1	0
4 4	0	1	1_	0
1 1	1	0	Sec.	cv9
1 1	1	1	Cond	Swal

Dlatch Symbol con Enable

_	INPUT		OUTP	<u>υ</u> τ
	E	Ø	Qe	Qnt
	0	×	Qt-1	Qut-1
	0	0	0	1
	0	1	1	0
	1	0	0	1
it	1	1	1	0

Data Latch (DL) memorizza un bi specifico e opera sotto l'enable.

se éco D se é a 1 posso combiore lo stato non combia.

RESET = not(D)

1 Con il diagramma tempo Q é uguale D quando Enable é alto (=1)

Edge-Trippered D-Flip-Flop

DFF puó essera attivato dal fronte di solita o il fronte di discesa

INPUT			OUTPUT
۵	Qt-1	CIK	Qnt
0	0	4	0
0	0	Ą	\Diamond
0	1	4	0
0	1	₽	1
1	0	4	1
1	0	Ţ	0
1	1	4	1
1	1	$\stackrel{\iota}{\nabla}$	\mathcal{O}

Master-Slave Edge-Triggered D-Flip-Flop

	INPUT		OUT	7097
	۵	Eರಲ್ಲ	छ⊭	Qnc
NO	0	4	0	4
TOGGLE	H	4	1	0

Il master al segnole clock invertito DQuando il master
lovara lo slove tiene
l'output, quando lo
slove lavoa il master
é spento.

JK-Flip-Flop

no toggle

INPUT			OUTF	シント
3	K	Q6-2	Q۴	Qne
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
<u></u> ユ	0	0	1	<u>1</u>
1	0	1	৵	O
1	1	0	1	O
1	1	1	0	1

reset

JK Flip-Flop (JK-FF)

può essere attivato set

dal fronte di salital

discesa. togle

J fail set K fail reset

Se J=K=1 allowa Qt=not(Qt-1)

T-Flip-Flop - Truth Table

Toggle Flip-Flop

(TFF) puó essere

attivato con il fronte
di salita o discesa

Se
$$T=1$$
 allowa
 $Qt = not(Q_{b-1})$
Se $T=0$ allowa
 $Qt = Q_{b-1}$

QUAN

ουῖ

Esercizi

	ے	'`	46-1	ש	Ų⁄n+	7
undefinal	(<u>0</u>	0	0	×	X	
	_			×	×	
veset.	0	1	0	1	B	
reset	0	1	1	1	0	
set	1	0	0	G	1	
350	_ 1	- C	0 1	O	1.	
hold	িব	. 1	- 0	0	1	
	lı	. 1	- 1	1	0	

O quado	entrambi	Ö
sono a		1
		1
S <u>o</u>	-D-	0-0

NANO port é

- la candizione (5=0 e R=0) porta a due modalitá operative contraditaie

Design un circuito logico che ha l'obietuvo di elimi nave lo stato indefinito (U) nel NOR-SRL

INPUT	007	PUT	
S R PRI	si	Ri	
0001	00	0	3 hold
01 0	0	1	3 veset
100	<u>র</u> র	0	3 set
111	0 1	٥ ٦	g unde.