Zoomfft算法的实现

华北电力大学电气与电子工程学院 王 涛 陈邵权 范寒柏 王 磊

【摘要】传统的快速傅里叶(FFI)算法^{II}只能比较粗略的计算频谱,分辨率较低,而我们常常对频域信号中某一局部频段感兴趣,从而只对此频段进行频谱分析就 能在此区域内得到较高的频率分辨率。基于复调制^{II}的ZoomFFT方法是一种有效的方法。此文介绍了复调制ZoomFFT方法基本原理及其应用^{II},用C语言编程实 现,并通过实验进行验证该算法的可行性。

【关键词】傅里叶变换;复调制;ZoomFFT;频率分辨率

1. 引言

传统的FFT方法得到的信号频谱是一 种离散的频谱,其分辨率为Δf=f_s/N,其 中,f_s为采样频率,N为采样点数。由此我 们可以得出,频谱的分辨率是由采样频率 f_s和采样点数N来确定,根据乃奎斯特采样 定理,要使信号的频谱不产生混叠,采样 频率f。应大于信号带宽的两倍。而分辨率 的提高(Δf越小分辨率越高)只能通过降 低采样频率f。或增大采样点数N, 但f。的降 低受到乃奎斯特定律的限制,不能过小, 过小会发生频谱混叠; 而增加取样点数会 增加运算量和存储量, 使得算法的时间增 大,效率降低。由此看来,只有长的时间数 据才有可能得到高的频率分辨力,但是由于 实际测量条件和硬件方面等的限制,这样 做并不总是可能的。而在实际测量中,我 们往往只是对信号的某一频段的频率感兴 趣, 只分析这个频段的信号即可。基于复

图1 基于复调制ZoomFFT的基本原理流程图

图2 实际信号ZoomFFT后未进行频率调整的频谱

图3 测量物体动态时得到的频谱

调制的Z00MFFT可以实现在较窄的频带范围实现较高的频率分辨率。是一种折中的方法^[4]。因此在很多领域得到了广泛的应用。

2. ZoomFFT的基本原理

ZoomFFT方法基本原理是:移频——数字低通滤波——重新抽样——复FFT——频率调整,其原理过程如图1所示。

设模拟信号为x(t),经过A/D采样后,得到离散的序列 $x_0(n)$,($n=0,1\cdots$ N-1), f_s 为采样频率, f_s 为需要细化频带的中心频率,D为细化倍数,N为FFT的点数,X(k)为输出的序列。具体的算法过程可归纳为以下几个步骤:

(1)复调制移频

所谓复调制移频指的是将频域坐标向左或向右移动,使得被观察的频段的起点移动到频域坐标的零频位置。模拟信号x(t)经过A/D转换后,得到离散的信号 $x_0(n)$,假设要观测的频带为 $f_1^{-2}f_2$,则在此频带范围内进行细化分析,观测的中心频率为 f_e = $(f_1+f_2)/2$ 对 $x_0(n)$ 以 $e^{-j2\pi fe/fs}$ 进行复调制,得到的频移信号:

 $x(n) = x_0(n)e^{-j2\pi n f_e/f_s}$

 $= x_0(n)\cos(2\pi n f_e / f_s) - jx_0(n)\sin(2\pi n f_e / f_s)$

 $= x_0(n)\cos(2\pi nL_0\Delta f / N\Delta f) - jx_0(n)\sin(2\pi nL_0\Delta f / N\Delta f)$ = $x_0(n)\cos(2\pi nL_0 / N) - jx_0(n)\sin(2\pi nL_0 / N)$

式中 f_s =N Δ f 为采样频率, Δ f 为谱线间隔, L_0 = f_e / Δ f 为频率的中心移位,也是在全局频谱显示中所对应中心频率 f_e 的谱线序号,则 f_e = L_0 Δ f。由此可得出,复调制使 x_0 (n)的频率成分 f_e 移到x (n)的零频点,也就是说 X_0 (k)中的第 L_0 条谱线移到X (k)中零点频谱的位置。为了得到X (k)零点附近的部分细化频谱,可重新抽样把频率降到 f_s /D,D为细化倍数。为了是抽样后的频率不发生频谱混叠,需要在抽样前进行低通滤波。

(2) 数字低通滤波

为了保证重新采样后的信号在频谱 分析时不发生频谱混叠,需进行抗混叠 滤波,滤出需要分析的频段信号,设细化 倍数为D,则数字低通滤波器的截止频率 fC≤fs/2D。

(3)重新抽样

信号经过移频、低通滤波后,分析信号点数变少,但再以较低的采样频率进行重新采样,在通过补零保证相同的采样点数时,样本的总长度加大,频谱的分辨率也就得到了提高。

设原采样频率为fs,采样点数为N,则频率分辨率为fs/N,现重采样频率为fs/D,当采样点数仍是N是,其分辨率为fs/(D*N),分辨率提高了D倍。这样就在原采样频率不变的情况下得到了更高的频率分辨率。

(4)复数FFT

重新采样后的信号实部和虚部是分开的,需要对信号进行N点复FFT,从而得出N条谱线,此时分辨率为 $\Delta f' = fs'/N = fs/ND = \Delta f/D$,可见分辨率提高了D倍。

(5)频率调整

经过算法运行后的谱线不为实际频率 的谱线,需要将其反向搬移,转换成实际 频率,进而得出细化后的频率。

3. ZOOMFFT的实现

目前我们用的芯片是STM32,在芯片上运行ZoomFFT算法程序,可直接调用STM32固件库,程序简单、稳定可靠、结构性强。STM32固件库有FIR滤波器,只要求出所需滤波器参数的系数,调用固件库的函数即可,计算既快又稳定,效率很高。FFT的实现是通过C语言编的FFT子函数,只要得到输入序列和FFT点数,调用FFT子函数就可求出FFT的输出序列。部分核心ZoomFFT的C语言程序如下:

```
////频谱搬移至零点附近/////
for(i=0;i<1024;i++)
{xr[i]=x0[i]*cos(w*i);}
//// 低通滤波 /////
for(i=0;i<1024;i++)
{br[i]=(short)(xr[i]);}
fir(ar, br);
//// D倍抽样 //////
N1 = 0/D;
for(i=0;i<N1;i++)
{adr[i]=(float)(ar[D*i]/1000.0);}
/////// 复数FFT //////
```

/2012.08/ 电子世界 -105-

整合管理: 开启合并高职院校图书馆管理新篇章

常德职业技术学院图书馆 程慧玲

【摘要】从整合管理的概念出发,介绍合并高职图书馆整合管理的必要性,阐述整合管理体系的基本内容及结构框架。 【关键词】整合管理;图书馆;高职

1. 整合及整合管理

整合,是将两个或两个以上要素通过相同或相异点的有效组合、重组甚至融合、共生,使现存共有资源达到最优化状态。

整合管理,就是创造性地将管理方法 中两个以上方法综合运用于相关系统,在 动态调整与完善中使系统中现有资源充分 发挥出其应有作用,达到资源的合理与优 化配置状态。

而图书馆整合管理,就是将图书馆内 外的软硬件资源,按照用户服务的需求加 以优化重组,从而达到资源利用最优化和 效益最大化的目的。

2. 合并高职院校图书馆实行整合管理 的必要性

2.1 合并前各图书馆存在较大差异是 实行整合管理的必要前提

高职学院多由中专学校合并或升格 而来。其馆藏所涉及的学科领域、办馆条 件、机构设置、人员素质、管理模式等各 不相同,尤其是馆藏结构存在较大差异。 合并升格后,只有将原有的馆藏体系、资源、技术等进行有效整合,才能充分发挥 合并后图书馆的优势。

2.2 整合管理为合并后高职图书馆提供了极大的发展空间

随着办馆规模的扩大,人力、物力、 文献资源及办馆条件会有所改善,图书馆 在教学科研中的作用会愈发明显。对馆藏 各组成要素不断优化、组配、整合,是充 分发挥图书馆服务职能、提升图书馆服务 品位和发挥最佳运营效益的需要。

2.3 整合管理是图书馆面对激烈竞争的必然选择

合并后高职图书馆面临激烈的信息竞争,不做大做强,形成自己的馆藏特色并开展个性化服务将会在竞争中处于不利地位。只有创出特色,树立品牌,真正做到为职业教育服务,为地方经济建设服务,认真分析已形成和潜在的优势,才能使生产出的信息产品与服务实现市场占有的最

大化,满足读者信息需求,增强图书馆核 心竞争力。

2.4 人力资源整合效率将直接决定图 书馆的发展成败

人力资源作为最重要的因素,与图书馆建设与发展息息相关。只有保持人力资源的相对稳定,保证每个馆员都能胜任图书馆业务流程中的每一项工作,才能真正体现"以读者为中心,实行专业对口,不同服务能力、拥有不同专业技能的人科学组织与配置于一体"的原则。

3. 合并高职院校图书馆整合管理体系 的构建

合并高职院校图书馆整合管理涉及 到方方面面的问题,包括人力、物力、财 力、管理、制度等,努力整合好适合于图 书馆发展的各种资源,必将促成图书馆服 务效率的提升和发展。

3.1 办馆理念的整合

办馆理念决定着图书馆的发展方向, 高职院校图书馆与中专院校图书馆有着不

mrelfft(adr,adi,N,-1); //// /求幅频特性/////// for(k=0;k<N;k++)

{p=pow(adr[k], 2)+pow(adi[k], 2);
 fft[k]=sqrt(p);}

//频率调整可通过公式实现f=fe+i* (fs/(D*1024.0));

4. 实验结果

算法的验证通过两种方式进行了验证:函数信号发生器加入实际信号;在工程中实际测量。

(1)加实际信号。通过函数信号发生器加频率为55000Hz、幅值为1V和频率为55030Hz、幅值为0.7V的实际信号,得到的频谱如图2所示。

通过实验得出,未经过Z00MFFT的信号,两个很接近的频率叠加到了一起,而经过ZoomFFT后的频谱在分辨率内可以分别,通过分析可得出ZoomFFT得到的信号频率比直接FFT得到的频率更真实,分辨率高、误差小、稳定性好。

(2) 在工程中实验

将算法应用到测量设备中,测量物体 动作时的返回频率,通过动态测量返回信 号的频谱如图3所示。

由实验我们可以看出,函数信号发生器的信号是理想信号,测得频谱均为一根谱线,而实际测量中,由于有噪声的存在,测量的频谱不是一根谱线,而是一个峰,但峰顶的位置和实际频率一致,稍微的运动就可以从峰顶的位置反应出来。

实际的测量时,STM32通过外部AD进行采样,在其上只运行算法程序,约150毫秒,将移频时的三角函数的计算用数组表示,也就是将三角函数的值算出放在数组里,移频时直接调用数组,省去两次1024点的三角相乘计算的时间,用数组存放三角函数值后,算法程序耗时110毫秒。为降低,我们可测试了调用STM32固件库自带的汇编FFT,此时耗时约30毫秒,但STM32自带的FFT的输入输出都是32位整型,计算的精度没有C语言的浮点型变量FFT精度高。目前我们已经将该算法成功应用到了自己制作的水速测量算法中,并取得了理想的效果。

5. 总结

通过实际的测量分析实现了对某频段 的频谱细化分析,ZoomFFT在不增大FFT点 数N的情况下降低了采样频率,提高了在细化频谱分析中有很重要的作用,可以通过此算法得到欲观测的频段局部频谱特性。由于计算量小,在实际应用中不需要用高速处理芯片,如我们应用的STM32足以满足其应用。可见ZoomFFT是一个行之有效的解决局部频段分析的方法。

参考文献

[1]王世一.数字信号处理[M].北京:北京理工大学出版 社(修订版),1997.

[2] 胡广书.数字信号处理——理论、算法与实现[M]. 北京:清华大学出版社.1997.

[3]高怀钢,王华.一种分析频谱局部特性的快速算法 [J].火控雷达技术,1999(3):14-17.

[4] 江波, 唐普英. 基于复调制的ZoomFFT算法在局部 频谱细化中的研究与实现[J]. 大众科技, 2010(7): 48-49. [5] 徐卓华. 基于MATLAB的ZOOM FFT 在水声测量中 的应用[J]. 声学与电子工程, 2004(4): 13-16.

作者简介:王涛(1986—),男,河北新乐人,华 北电力大学电气与电子工程学院2010级硕士研究 生,主要从事信号检测方向、信号与信息处理方面 的研究。

-106- 电子世界 /2012.08/