Dark matter and baryogenesis from *SU(2)*-lepton

Bartosz Fornal

UC San Diego

SoCal BSM 2017

UC Riverside, April 2nd, 2017

In collaboration with Yuri Shirman, Tim Tait, Jennifer West

Why do we need new physics?

- Standard Model good description of Nature
- Mysteries and puzzles
 - > dark matter
 - dark energy
 - neutrino masses > origin of flavor

- > baryogenesis
- > hierarchy problem

Motivation for new particle and symmetries

SU(2)-lepton SM extension

$$SU(3)_c \times SU(2)_W \times U(1)_Y \times SU(2)_\ell$$

BF, Shirman, Tait, West, arXiv:1703.00199 [hep-ph]

SU(2), doublets:

$$\hat{l}_L \equiv \begin{pmatrix} l_L \\ \tilde{l}_L \end{pmatrix}, \quad \hat{e}_R \equiv \begin{pmatrix} e_R \\ \tilde{e}_R \end{pmatrix}, \quad \hat{\nu}_R \equiv \begin{pmatrix} \nu_R \\ \tilde{\nu}_R \end{pmatrix}$$

SU(2), singlets:

$$l_R', \quad e_L', \quad
u_L'$$

Particle content

Field	$SU(2)_{\ell}$	$SU(2)_W$	$U(1)_Y$	
$\hat{l}_L = \begin{pmatrix} l_L \\ \tilde{l}_L \end{pmatrix}$	2	2	-1/2	
$\hat{e}_R = \begin{pmatrix} e_R \\ \tilde{e}_R \end{pmatrix}$	2	1	-1	
$\hat{\nu}_R = \begin{pmatrix} \nu_R \\ \tilde{\nu}_R \end{pmatrix}$	2	1	0	
l_R'	1	2	-1/2	
e_L'	1	1	-1	
$ u_L'$	1	1	0	
$\hat{\Phi}_\ell$	2	1	0	
$\hat{\Phi}'_\ell$	2	1	0	

Symmetry breaking

$$SU(3)_c \times SU(2)_W \times U(1)_Y \times SU(2)_\ell$$

$$SU(3)_c \times SU(2)_W \times U(1)_Y$$

SU(2), Higgs

$$\langle \hat{\Phi}_{\ell} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{\ell} \end{pmatrix}$$

Yukawa interactions

Leptonic mass terms

$$\mathcal{L}_{Y} = Y_{l}^{ab} \bar{l}_{L}^{a} \hat{\Phi}_{\ell} l_{R}^{\prime b} + Y_{e}^{ab} \bar{e}_{R}^{a} \hat{\Phi}_{\ell} e_{L}^{\prime b} + Y_{\nu}^{ab} \bar{\nu}_{R}^{a} \hat{\Phi}_{\ell} \nu_{L}^{\prime b}$$

$$+ y_{e}^{ab} \bar{l}_{L}^{a} H \hat{e}_{R}^{b} + y_{\nu}^{ab} \bar{l}_{L}^{a} \tilde{H} \hat{\nu}_{R}^{b}$$

$$+ y_{e}^{\prime ab} \bar{l}_{R}^{\prime a} H e_{L}^{\prime b} + y_{\nu}^{\prime ab} \bar{l}_{R}^{\prime a} \tilde{H} \nu_{L}^{\prime b} + \text{h.c.}$$

$$Y\langle \hat{\Phi} \rangle \gg y \langle H \rangle$$

$$Y\langle \hat{\Phi} \rangle \gg y'\langle H \rangle$$

Lepton partners

After symmetry breaking

$$\frac{1}{\sqrt{2}} \left(\overline{\tilde{\nu}}_{L} \ \overline{\nu}'_{L} \right) \left(\begin{array}{ccc} Y_{l} v_{\ell} & y_{\nu} v \\ {y'_{\nu}}^{\dagger} v & Y_{\nu}^{\dagger} v_{\ell} \end{array} \right) \left(\begin{array}{c} \nu'_{R} \\ \widetilde{\nu}_{R} \end{array} \right) \\
+ \frac{1}{\sqrt{2}} \left(\overline{\tilde{e}}_{L} \ \overline{e}'_{L} \right) \left(\begin{array}{c} Y_{l} v_{\ell} & y_{e} v \\ {y'_{e}}^{\dagger} v & Y_{e}^{\dagger} v_{\ell} \end{array} \right) \left(\begin{array}{c} e'_{R} \\ \widetilde{e}_{R} \end{array} \right) + \text{h.c.}$$

- 6 electrically neutral states
- 6 electrically charged states

Dark matter

Lightest neutral combination

$$\chi_L = \nu_L' + \epsilon \,\tilde{\nu}_L$$
$$\chi_R = \tilde{\nu}_R + \epsilon \,\nu_R'$$

Stable because of a global *U(1)* symmetry

Global symmetries

Field	$U(1)_1$	$U(1)_2$	
$\hat{l}_L = \begin{pmatrix} l_L \\ \tilde{l}_L \end{pmatrix}$	0	1	
$\hat{e}_R = \begin{pmatrix} e_R \\ \tilde{e}_R \end{pmatrix}$	0	1	
$\hat{\nu}_R = \begin{pmatrix} \nu_R \\ \tilde{\nu}_R \end{pmatrix}$	0	1	
l_R'	1	1	
e_L'	1	1	
$ u_L'$	1	1	
$\hat{\Phi}_\ell$	-1	0	
$\hat{\Phi}'_\ell$	-1	0	

$$\mathcal{L}_{Y} = Y_{l}^{ab} \, \bar{l}_{L}^{a} \, \hat{\Phi}_{\ell} \, l_{R}^{\prime b}$$

$$+ Y_{e}^{ab} \, \bar{e}_{R}^{a} \, \hat{\Phi}_{\ell} \, e_{L}^{\prime b} + Y_{\nu}^{ab} \, \bar{\nu}_{R}^{a} \, \hat{\Phi}_{\ell} \, \nu_{L}^{\prime b}$$

$$+ y_{e}^{ab} \, \bar{l}_{L}^{a} \, H \, \hat{e}_{R}^{b} + y_{\nu}^{ab} \, \bar{l}_{L}^{a} \, \tilde{H} \, \hat{\nu}_{R}^{b}$$

$$+ y_{e}^{\prime ab} \, \bar{l}_{L}^{a} \, H \, e_{L}^{\prime b} + y_{\nu}^{\prime ab} \, \bar{l}_{L}^{a} \, \tilde{H} \, \nu_{L}^{\prime b} + \text{h.c.}$$

Global symmetries

Field	$U(1)_1$	$U(1)_2$	$U(1)_1$	$U(1)_L$	$U(1)_{\chi}$
$\hat{l}_L = \begin{pmatrix} l_L \\ \tilde{l}_L \end{pmatrix}$	0	1	0	1	0
$\hat{e}_R = \begin{pmatrix} e_R \\ \tilde{e}_R \end{pmatrix}$	0	1	0	1	0
$\hat{\nu}_R = \begin{pmatrix} \nu_R \\ \tilde{\nu}_R \end{pmatrix}$	0	1	0	0	1
l_R'	1	1	1	1	0
e_L'	1	1	1	1	0
$ u_L'$	1	1	1	0	1
$\hat{\Phi}_\ell$	-1	0	-1	0	0
$\hat{\Phi}'_\ell$	-1	0	-1	0	0

Dark matter

Lightest neutral combination

$$\chi_L = \nu_L' + \epsilon \, \tilde{\nu}_L$$
$$\chi_R = \tilde{\nu}_R + \epsilon \, \nu_R'$$

is stabilized by a residual $U(1)_X$ symmetry

$$\nu_R \to e^{i\theta} \nu_R \;, \quad \tilde{\nu}_R \to e^{i\theta} \tilde{\nu}_R \;, \quad \nu'_L \to e^{i\theta} \nu'_L$$

Dark matter mass

$$m_{\chi} \approx \frac{1}{\sqrt{2}} (Y_{\nu})_{ii} v_{\ell}$$

Baryogenesis from $SU(2)_l$

Dirac leptogenesis

Asymmetric dark matter

Kaplan, Luty, Zurek, PRD 79, 115016 (2009), Petraki, Volkas, IJMP A 28, 1330028 (2013), ...

Baryogenesis from an earlier phase transition

Shu, Tait, Wagner, PRD 75, 063510 (2007)

$SU(2)_{l}$ instantons

General form

$$\epsilon_{ij} \, \hat{l}_L^i \, \hat{l}_L^j \, \bar{\hat{e}}_R \, \bar{\hat{\nu}}_R$$

Explicit calculation yields

$$\mathcal{O}_{\text{eff}} \sim \epsilon_{ij} \left[(l_L^i \cdot \bar{\nu}_R) (l_L^j \cdot \bar{e}_R) - (l_L^i \cdot \bar{\nu}_R) (\tilde{l}_L^j \cdot \tilde{\bar{e}}_R) \right. \\ + (l_L^i \cdot \tilde{l}_L^j) (\bar{\nu}_R \cdot \bar{\bar{e}}_R) - (l_L^i \cdot \tilde{l}_L^j) (\bar{\nu}_R \cdot \bar{e}_R) \\ + (\tilde{l}_L^i \cdot \bar{\bar{\nu}}_R) (\tilde{l}_L^j \cdot \bar{\bar{e}}_R) - (\tilde{l}_L^i \cdot \bar{\bar{\nu}}_R) (l_L^j \cdot \bar{e}_R) \right]$$

(S1) Lepton and DM number violation

Instanton-induced interaction

(S2) CP violation

Two Higgs doublet potential

$$V(\Phi_{1}, \Phi_{2}) = m_{1}^{2} |\Phi_{1}|^{2} + m_{2}^{2} |\Phi_{2}|^{2} + (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.})$$

$$+ \lambda_{1} |\Phi_{1}|^{4} + \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2}$$

$$+ \left[\tilde{\lambda}_{5} \Phi_{1}^{\dagger} \Phi_{2} |\Phi_{1}|^{2} + \tilde{\lambda}_{6} \Phi_{1}^{\dagger} \Phi_{2} |\Phi_{2}|^{2} + \tilde{\lambda}_{7} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.} \right]$$

(S3) First order phase transition

- 1. Finite temperature effective potential
- 2. Bubble nucleation and diffusion equations
- 3. SM lepton and DM asymmetries
- 4. Baryon asymmetry

Finite temperature effective potential

$$V(u,T) = V_{\text{tree}}(u) + V_{1 \text{loop}}(u,v_{\ell}) + V_{\text{temp}}(u,T)$$

Tree level

$$V_{\text{tree}}(u) = -\frac{1}{2}m_{\ell} u^2 + \frac{1}{4}\lambda_{\ell} u^4$$

Coleman-Weinberg

$$V_{1 \text{ loop}}(u) = \frac{9}{64\pi^2} \left(\frac{g_{\ell}}{2}\right)^4 u^2 \left\{ u^2 \left[\log \left(\frac{u^2}{v_{\ell}^2}\right) - \frac{3}{2} \right] + 2v_{\ell}^2 \right\}$$

Nonzero T

$$V_{\text{temp}}(u,T) = \frac{9T^4}{2\pi^2} \int_0^\infty dx \, x^2$$

$$\times \left[\log \left(1 - e^{-\sqrt{x^2 + g_\ell^2 u^2 / (4T^2)}} \right) - \log \left(1 - e^{-x} \right) \right]$$

Finite temperature effective potential

Bubble nucleation

Diffusion equations

Particle number densities

$$l = e_L + \nu_L$$
 $e = e_R$ $\nu = \nu_R$
 $\tilde{l} = \tilde{e}_L + \tilde{\nu}_L$ $\tilde{e} = \tilde{e}_R$ $\tilde{\nu} = \tilde{\nu}_R$
 $l' = e'_R + \nu'_R$ $e' = e'_L$ $\nu' = \nu'_L$
 $h = h^+ + h^0$ $\Phi^u = \Phi^u_\ell$ $\Phi^d = \Phi^d_\ell$

To a good approximation

$$\dot{n}_i = D_i \nabla^2 n_i - \Gamma_{ij} \, \frac{n_j}{k_j} + \gamma_i$$

Cohen, Kaplan, Nelson, PLB 336, 41 (1994)

SM lepton and DM asymmetries

Asymmetric dark matter

Lepton and DM asymmetries

$$\Delta L = 3 \, \Delta \chi$$

Final baryon asymmetry

$$\Delta B = \frac{28}{79} \, \Delta L$$

For ADM relativistic at decoupling temperature

$$m_{\chi} = m_p \frac{\Omega_{\rm DM}}{\Omega_{\rm B}} \left| \frac{\Delta B}{\Delta \chi} \right| \approx 5 \text{ GeV}$$

Dark matter annihilation

Annihilation to second Higgs pseudoscalar

For the correct relic density $Y_{\nu}^{\prime 11} \gtrsim 4 \times 10^{-3}$

$${Y_{\nu}'}^{11} \gtrsim 4 \times 10^{-3}$$

Experimental prospects

$$v_{\ell} = \frac{2 \, m_{Z'}}{g_{\ell}} \gtrsim 1.7 \, \mathrm{TeV}$$

Direct detection

$$\epsilon \lesssim 0.3$$

Hadron colliders

Electron-positron collider

Conclusions

Standard Model extended by *SU(2)*-lepton:

- has a light dark matter candidate the partner of the right-handed neutrino
- baryon asymmetry is generated during SU(2)-lepton breaking by instantons

Can one have gauge coupling unification in such a theory?

