北京化工大学 **2011**——**2012** 年 《化工设备机械基础》期末考试试卷及参考答案

北京化工大学 2011—2012 学年第一学期 《化工机械基础》期末考试试卷

		课程代码		М	Е	E	1	6	4	0	0	1	
班级:						学号:							
	. E	题号 -		_		=			=			总分	
	1	身分			,								

-、按照要求画图(毎題5分,共20分)

1. 画出杆 AB 和 CD 的受力图 (忽略杆的重量)

2. 画出轴力图。

thim

SAm

二、计算题(65分)

1. 铸铁梁的载荷及横截面尺寸如图所示。已知许用拉应力 $[\sigma_t]$ =35MPa,许用压应力 $[\sigma_c]$ =120MPa,截面对形心轴 z 的惯性矩 I_z =10200cm⁴,且 $|y_1|$ =96.4mm,截面总高为250mm。校核梁的弯曲正应力强度。(15 分)

2. 已知一球形容器的公称直径 DN=1000mm,设计压力为 12.8MPa。装有安全阀。材质为低碳钢 Q235-B,介质无大腐蚀性,双面对界焊,局部探伤,φ=0.85,材料在设计温度下的许用应力为 104MPa,试设计该容器的名义厚度、有效厚度和设计厚度,并验证是否满足最小厚度要求。(10 分)

钢板厚度 26-30 32-34 36-40 42-50 52-60 65-80
负偏差
$$C_1$$
 0.9 1.0 1.1 12 1.3 1.8
 $P(D_1 + Se) = [\sigma]^{t_1} P P c = 12.8 Mpa$ $Pw = 1$ $Pw =$

d= 6108 mm

(/000+379) 27.9x4 4.DN2000 的低碳钢外压圆筒,许用应力[σ]′=60 MP_a,简体长 4500mm,名义壁10mm,两侧封头凸面高度 500mm,封头直边高 25mm,介质无腐蚀。试计算筒化能承受的许可外压,并判断发生侧向失稳后筒体横截面上产生的波形数是等于 2 i 是大于 2? (15 分)。

T	钢板厚度	8-25	26-30	32-34	36-40	42-50	52-60	65-80	
\vdash	负偏差 CI	0.8	0.9	1.0	1.1	1.2	1.3	1.8	

$$p_{cr} = 2.2E \left(\frac{\delta_e}{D_0}\right)^3 \qquad p_{cr} = 2.59E \frac{\left(\delta_e/D_0\right)^{2.5}}{L/D_0},$$

$$E = 2 \times 10^{5} MPa, \qquad L_{cr} = 1.17 Do \sqrt{\frac{Do}{\delta e}} \qquad L'_{cr} = \frac{1.3 E' \delta_{e}}{[\sigma]' \sqrt{\frac{D_{o}}{\delta_{e}}}}$$

$$\begin{cases} C = S - C_{1} C_{2} = 1000 \\ C = 2000 + 2 Se = 2016 + 1000 \end{cases}$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{1} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} = 1000 + 2 Se = 2016 + 1000$$

$$C = 10 C_{2} C_{2} =$$

5.如图所示阶梯圆轴,已知外力偶矩 T_1 =6.5KN.m, T_2 =3KN.m,材料的许用切应 $[\tau]$ =110MPa,G=80GPa,单位长度扭转角 $[\theta]$ =1.2°/m。试校核该圆轴的强度和刚度

三、概念题 (15分)

- 2. 写出 A 点和 B 点的第一曲率半径 R₁、第二曲率半径 R₂。
- 3. 标准椭圆封头和碟形封头加直边的原因是 下流 拉角基义

- 6. 试计算图中的剪切面面积与挤压面面积

7. 图中所画剪应力分布图是否正确,说明原因?其中 Mx 为截面扭矩。

