AY: 2024-2025 M2-S3: Dept. of Electrical Engineering

MIDTERM | AI-ECUE322 Teacher: A. Mhamdi

Nov. 2024 Time Limit: 1h

This document contains 6 pages numbered from 1/6 to 6/6. As soon as it is handed over to you, make sure it is complete. The 2 tasks are independent and can be treated in the order that suits you.

The following rules apply:

- **1** A handwritten double-sided A4 sheet is permitted.
- 2 Any electronic material, except basic calculator, is prohibited.
- **18** Mysterious or unsupported answers will not receive full credit.
- **9** Round results to the nearest thousandth (i.e., third digit after the decimal point).
- **6** Task №2: Each correct answer will grant a mark with no negative scoring.

Task Nº1

 $25mn \mid (8\frac{1}{2} \text{ points})$

The code that follows is provided for reference.

julia

(a) $(5\frac{1}{2} \text{ points})$ A 320×240 rgb colored image serves as the model's input. If we feed the model a tiny batch of four samples at a time, find the size of the output at each layer.

```
Chain(
  Conv((5, 5), 3 \Rightarrow 32, relu),  # (316, 236, 32, 4)
 MaxPool((2, 2)),
                                      # (158, 118, 32, 4)
 Conv((3, 3), 32 \Rightarrow 32, relu), # (156, 116, 32, 4)
 MaxPool((2, 2)),
                                     # (78, 58, 32, 4)
  Conv((3, 3), 32 \Rightarrow 16, relu), # (76, 56, 16, 4)
                                      # (38, 28, 16, 4)
 MaxPool((2, 2)),
  Flux.flatten,
                                      # (17024, 4)
 Dense(17024 \Rightarrow 32, relu),
                                     # (32, 4)
 Dense(32 \Rightarrow 32, relu),
                                      # (32, 4)
  Dense(32 \Rightarrow 10),
                                      # (10, 4)
  softmax
                                       # (10, 4)
)
```

(b) (3 points) Determine how many parameters each layer is updating.

```
Chain(
  Conv((5, 5), 3 \Rightarrow 32, relu
  MaxPool((2, 2)),
  Conv((3, 3), 32 \Rightarrow 32
  MaxPool((2, 2)),
  Conv((3, 3), 32 \Rightarrow 16, relu),
                                       # 4_624 parameters
  MaxPool((2, 2)),
  Flux.flatten,
  Dense(17024 => 32, relu),
                                     # 544_800 parameters
  Dense(32 \Rightarrow 32, relu),
                                     # 1_056 parameters
  Dense(32 \Rightarrow 10),
                                      # 330 parameters
  softmax,
) # Total: 12 arrays, 562_490 parameters, 2.147 MiB.
```

Class:	
Room:	
Time Limit:	1h
	Room:

INSTITUTE OF TECHNOLOGICAL STUDIES OF BIZERTE

Task Nº2

 $35mn \mid (11\frac{1}{2} \text{ points})$

(a) (1 point) What will be the output of the following code?

julia

```
abstract type Shape end
struct Circle <: Shape</pre>
    radius::Float64
end
struct Rectangle <: Shape
    length::Float64
    width::Float64
end
describe(shape::Shape) = "An unknown shape"
function describe(shape::Circle)
    return "A circle: $(shape.radius)"
end
function describe(shape::Rectangle)
    return "A rectangle: $(shape.length) x $(shape.width)"
end
function describe(shape::Shape, detailed::Bool)
    return detailed ? describe(shape) : "A generic shape"
end
c = Circle(5.0); r = Rectangle(4.0, 6.0)
print(describe(c, true));
print(describe(r, false));
print(describe(Shape))
```

	DO NOT WRITE ANYTHING HERE
~ -∵	
	○ A circle: 5.0 A generic shape An unknown shape
	A circle: 5.0 A generic shape Error
	○ A circle: 5.0 A generic shape An unknown shape
	○ A circle: 5.0 A rectangle: 4.0 x 6.0 An unknown shape
	○ Error A generic shape An unknown shape
	(b) (1 point) How can you define a mutable composite type in Julia?
	Using the struct keyword.
	Using the mutable struct keyword.
	Using the mutable type keyword.
	Using the composite struct keyword.
	(c) $(\frac{1}{2}$ point) What is the primary feature of multiple dispatch in Julia?
	O Functions are selected based on the type of the first argument only.
	O Functions can operate on arguments of different types but ignore their order.
	$\sqrt{}$ Functions are dynamically dispatched based on the types of all arguments.
	 Functions can only be dispatched at compile time.
	(d) ($\frac{1}{2}$ point) One step of "" propagation on a computational graph yields
	derivative of final output variable.
	∫ forward √ backward
	(e) (1 point) Would structured or unstructured data have features such as pixel values or
	individual words?
	 ○ Structured data. √ Unstructured data.
	(f) $(\frac{1}{2}$ point) What is the objective of gradient descent in Machine Learning.
	Maximizing loss function.
	√ Minimizing loss function.
	Imputing missing values.
	(g) $(\frac{1}{2})$ point) What does the learning rate η control in gradient descent?

 $\sqrt{\ }$ Step size of updates.

Dataset size.Feature scaling.Model complexity.

,
×
(h) $(\frac{1}{2}$ point) What is the role of pooling layers (e.g., max pooling, average pooling) in a CNN?
To increase the spatial resolution of the feature maps.
$\sqrt{}$ To reduce the spatial resolution of the feature maps and reduce the number of parameters.
\bigcirc To apply non-linear transformations to the feature maps.
 To concatenate feature maps from different layers.
(i) $(1/_{\!\!2}$ point) What is the primary goal of a variational encoder in a VAE architecture?
 To reconstruct the input data exactly.
$\sqrt{}$ To learn a probabilistic representation of the input data.
\bigcirc To classify the input data into predefined categories.
\bigcirc To generate new samples from the input data distribution.
(j) $(\frac{1}{2}$ point) What is the purpose of the KL-divergence loss function in a VAE?
$\sqrt{}$ To regularize the latent space by encouraging the encoder to produce a distribution that is close to a standard normal distribution.
 To minimize the difference between the input data and the reconstructed output.
 To maximize the similarity between the input data and the reconstructed output.
To optimize the decoder's ability to generate novel samples.
(k) $(1/_{\!\!2}$ point) What is the purpose of visualizing the latent space in a VAE?
To identify the most important features in the input data.
To evaluate the quality of the reconstructed output.
$\sqrt{}$ To understand the structure and relationships between the latent dimensions.
To optimize the hyperparameters of the model.
(I) $(\frac{1}{2}$ point) What is Git?
A centralized version control system.
\checkmark A distributed version control system.
 A cloud-based version control system.

DO NOT WRITE ANYTHING HERE

 $\ \bigcirc$ A local file management system.

○ To manage large-scale projects.

(m) $(\frac{1}{2}$ point) What is the primary purpose of Git?

- ≺~		
		$\sqrt{\ }$ To track changes in code.
		To collaborate with team members.
		○ To backup files.
	(n)	$(\frac{1}{2}$ point) Which command creates an empty Git repository in a specified directory? √ git init \bigcirc git clone \bigcirc git branch \bigcirc git tag
	(0)	($\frac{1}{2}$ point) Which command pulls new changes from a remote repository? ○ git push $\sqrt{\text{git pull}}$ ○ git fetch ○ git merge
	(p)	$(1\!/_{\!2}$ point) What is the purpose of the .git directory?
		○ To store committed files.
		○ To track changes in code.
		○ To manage branches.
		$\sqrt{}$ To store metadata and object database.
	(q)	$(\frac{1}{2}$ point) What are instances of Docker images that can be run using the Docker run command?
		○ Hub
	(r)	$(1/_{\!\!2}$ point) Which command is used to manage running containers?
		○ docker create
		○ docker run
		\sqrt{docker} stop
		○ docker rm
	(s)	$(1/_{\!\!2}$ point) What is used to create a Docker image?
		√ Dockerfile ○ Docker Hub ○ Docker Engine ○ Docker Swarm
	(t)	$(\frac{1}{2}$ point) Which command is used to list all Docker images on the system?
		\sqrt{docker} images
		○ docker ps
		○ docker run

DO NOT WRITE ANYTHING HERE

 \bigcirc docker rm