Meshes

1. The Euler Formula

The Euler Formula states the following relationship for the elements of a closed and connected surface mesh:

$$V-E+F=2(1-G)$$

V is the number of vertices

E is the number of edges

F is the number of faces

G is the genus of the surface (how holes/handles it has)

Show that for a triangle mesh with no holes we have $F\approx 2V$. Hint: each face has 3 edges and each edge is shared by 2 faces.

2. Memory Requirements

Using the fact that F≈2V, compare the storage requirements for an indexed face mesh and a triangle soup. Assume the mesh has V vertices and a number requires 4 bytes of space. Derive functions for the number of bytes the mesh will require as a function of V.

Laplacian Smoothing

Can be viewed as an iterative averaging process using the following formulation:

$$\mathbf{p}_i \leftarrow \mathbf{p}_i + \lambda L(\mathbf{p}_i)$$

$$L(p_i) = \sum_{n_j} \frac{1}{w_j} (n_{j-} p_i)$$
 and λ is in [0,1]

with n_i being the neighboring vertices of p_i and w_i a weight

3. Laplacian Smoothing

Consider a linear curve of three vertices: (4,2) to (12, 2) to (16, 2)

- a. Assume the endpoints always stay fixed. What is the position of the middle vertex after 2 iterations of Laplacian smoothing using uniform weights and $\lambda = 1/2$?
- b. If you iterate until convergence, what final position will the middle vertex be in?
- c. What weights in the smoothing formula would result in the middle vertex never moving?

4. Mesh Simplification

Simplify the triangle mesh below using the grid to perform vertex clustering. Use cell centers for the vertex placement

