TikTok: Claims Classification Project

Preparing Data for Predictive Model Development

Project Overview

Our objective is to support TikTok's effort in reducing the backlog of reported videos by preparing the claims classification dataset for analysis. This work is foundational for building a predictive model that will help distinguish between content that contains claims and content that offers opinions.

Details

Key Insights

- The dataset contains 19,382 rows and 12 columns, with 298 missing values.
- Of the 19,382 records, 9,608 (just under 50%) are claims and 9,476 (just over 49%) are opinions, with 298 missing claim status entries.
- There are 298 missing values in critical fields such as claim_status and engagement metrics, which must be handled before analysis.
- Claim videos consistently outperform opinion videos in engagement per view (*likes*, comments, shares), especially when posted by banned or underreview authors, who also generate the highest absolute engagement.
- Descriptive Statistics reveal notable outliers in video engagement, suggesting a skewed distribution that may require transformation or filtering during analysis.
- Video_duration_sec and video_view_count were identified as key predictors for the claim classification model

- Variables like video_view_count, video_like_count and video_share_count, display extremely high maximum values compared to their means and medians.
- Banned authors, despite being a minority, show the highest average engagement per view, indicating their content may be more attention-grabbing or controversial.
- The structure of the dataset and the consistency of the column types confirm that the data is prepared for cleaning and EDA.

Claims:

Mean view count claims: 501029.4527477102 Median view count claims: 501555.0

Opinions:

Mean view count opinions: 4956.43224989447 Median view count opinions: 4953.0

Next Steps

- Address missing values in key columns and validate how to handle them.
- Investigate and possibly transform outliers in engagement metrics to avoid skewed model predictions.
- Conduct EDA to explore relationships between claim status and engagement.
- Begin feature engineering for predictive modelling using variables like video_duration, author_ban_status, and per-view engagement metrics.