CLASS 29, NOVEMBER 19: SMIRNOFF'S METRIZATION THEOREM

The idea of paracompactness has already produced far reaching consequences. Today, we will prove one residual theorem about paracompact spaces and complement Nagata-Smirnoff with an additional set of conditions to ensure a space is metrizable.

Theorem 29.1. Let X be a paracompact Hausdorff space, and \mathfrak{B} be a collection of subsets of X. For each $B \in \mathfrak{B}$, choose $\epsilon_B > 0$. If \mathfrak{B} is locally finite, then there exists a continuous function $f: X \to (0, \infty)$ such that $f(x) \leq \epsilon_B$ for $x \in B$.

You can think of this theorem as giving a nice continuous function with boundable values on any locally finite collection.

Proof. As usual, let U_x be an open neighborhood of x intersecting only finitely many elements of \mathfrak{B} . For a given U_x , choose $\epsilon_x = \min_{B \cap U_x \neq \emptyset} \{\epsilon_B\}$. This results in a positive number, since it is a minimum of finitely many positive numbers.

Also, choose $\varphi_x: X \to [0,1]$ a partition of unity subordinate to the cover U_x . Then I claim the desired function is

$$f: X \to (0, \infty): y \mapsto \sum_{x} \epsilon_x \cdot \varphi_x(y)$$

As usual, the sum on the right is finite for any choice of y and thus continuous. If $y \in B$

$$f(y) = \sum_{x} \epsilon_x \cdot \varphi_x(y) \le \epsilon_B \sum_{x} \varphi_x(y) = \epsilon_B$$

Theorem 29.2 (Smirnoff Metrization Theorem). A space X is metrizable if and only if it is paracompact, Hausdorff, and locally metrizable.

Recall the following definition which came up on Exam 2:

Definition 29.3. A space X is called **locally metrizable** if every point $x \in X$ has a neighborhood which is metrizable.

On the exam, it was demonstrated that a compact Hausdorff space which is locally metrizable is metrizable. Theorem 29.2 generalizes this result naturally.

Example 29.4. We have brought up the existence of this 'long line' when speaking of the importance of second-countability in the definition of a manifold. Here we can see it also yields a nice example of a space which is locally metrizable but not metrizable.

Recall $S_{\omega^{\omega}}$ or S_{Ω} is the set of ordinals less than ω_1 , the first uncountable ordinal. It consists of

Because it was asked, each of these are countable ordinals by induction: It is clear that $\{1, 2, \ldots\}$ is countable, which is the collection $\leq \omega$. But this shows that the collection less than ω^2 is countable, since

$$[0,\omega^2) = \bigcup_{i=0}^{\infty} [i\omega, (i+1)\omega]$$

and $[i\omega,(i+1)\omega]\leftrightarrow [0,\omega]$. Similarly,

$$[0,\omega^3) = \bigcup_{i=0}^{\infty} [i\omega^2, (i+1)\omega^2]$$

$$[0,\omega^\omega) = \bigcup_{i=0}^{\infty} [0,\omega^i]$$

$$[0,\epsilon_0) = \bigcup_{i=0}^{\infty} [0,\omega^{\cdot^{i}\cdot^{\omega}}]$$

and since a countable union of countable sets is countable, we see each is countable inductively.

Let $X = S_{\Omega} \times [0, 1)$, equipped with the dictionary topology. Then X is called the long line, because it is intuitively obtained by adjoining an uncountable collection of intervals together. I claim that X is locally metrizable, and in fact every point (a, x) has a neighborhood homeomorphic to an open subset of \mathbb{R} .

For a given ordinal, there exist only countably many occurring before it (by definition of ω_1). As a result, we can see that

$$((1,0),(a,0)) \cong \mathbb{R} \cong (0,1)$$

But as a result, we can adjoint ((a,0),(a,1)) to obtain a space homeomorphic to (0,2) with the dictionary topology.

Lastly, note that X is non-metrizable. This is because it is not second-countable, which in the case of connected locally Euclidean spaces is equivalent to paracompactness. Therefore, it violates Theorem 29.2.

Now I will prove the metrization theorem. First, recall the Nagata-Smirnoff Metrization Theorem:

Theorem (Nagata-Smirnoff Metrization Theorem). A topological space X is metrizable if and only if it is regular and has a countably locally finite basis.

This will be used in the proof.

Proof. (of Theorem 29.2) (\Rightarrow): If X is metrizable, then it is paracompact, Hausdorff, and locally metrizable. The first 2 have been proved, and the last statement is immediate from the definition.

 (\Leftarrow) : Assume X is paracompact, locally metrizable, and Hausdorff. Since a paracompact Hausdorff space is T4, it is also regular, so by Nagata-Smirnoff we only need to check that there is a countably locally finite basis.

Choose U_x metrizable neighborhoods of each point $x \in X$. U_x cover X, and since X is paracompact we can refine this to a locally finite collection with the same property. Call it V_α , and let d_α be the metric on V_α . Since V_α is an open set, we note that $B_\alpha(x,r) \subseteq V_\alpha$ is also open in X.

Define

$$\mathfrak{B}_n = \{ B_{\alpha}(x, \frac{1}{n}) \mid x \in V_{\alpha} \text{ and any } \alpha \}$$

and let \mathfrak{B}'_n be a locally finite refinement of this collection which covers X. Of course, this implies that $\mathfrak{B} = \bigcup_{i \in \mathbb{N}} \mathfrak{B}'_i$ is a countably locally finite set.

It suffices to check \mathfrak{B} is a basis for the topology of X. Given $x \in X$ and a neighborhood U which intersects only finitely many V_{α} , say $V_{\alpha_1}, \ldots, V_{\alpha_n}$ (WLOG, by shrinking). For each of these, $U \cap V_{\alpha_i}$ is open so contains some $B_{\alpha_i}(x, \epsilon_i)$. Therefore, we can choose $0 < \frac{2}{n} < \min\{\epsilon_1, \ldots, \epsilon_n\}$. Since \mathfrak{B}'_n is a cover, there exists y such that $x \in B(y, \frac{1}{n}) \in \mathfrak{B}'_n$. But note that for $z \in B_{\alpha}(y, \frac{1}{n})$

$$d_{\alpha}(x,z) \le d_{\alpha}(y,x) + d_{\alpha}(y,z) \le \frac{2}{n} < \min\{\epsilon_1,\dots,\epsilon_n\}$$

So $B_{\alpha}(y, \frac{1}{n}) \subseteq B_{\alpha_i}(x, \epsilon_i)$. But this implies $\alpha = \alpha_i$, and furthermore, $x \in B_{\alpha}(y, \frac{1}{n}) \subseteq B_{\alpha_i}(x, \epsilon_i)$, as desired

Now suppose that $x \in B_{\alpha}(x, \frac{1}{n}) \cap B_{\alpha'}(x', \frac{1}{n'})$. We can take $n'' = 2 \cdot \max\{n, n'\}$ as before. Then since $\mathfrak{B}_{n''}$ is again a covering, there exists $x'' \in X$ such that $x \in B_{\alpha''}(x'', \frac{1}{n''})$. Therefore, \mathfrak{B} is a basis. \square