TP 10 - variables à densité

1 Manipulations simples de variables à densité

Exercice 1 (Fonction de répartition de la loi normale)

- 1. Que retourne la commande : [p,q] = cdfnor("PQ",2,0,1)?
- **2.** Que retourne la commande : x = cdfnor("X", 0, 1, .975, .025)?
- 3. Représenter graphiquement et interpréter le résultat des instructions suivantes :

```
1 x = linspace(-5,5)
2 [p,q] = cdfnor("PQ",x,zeros(x),ones(x))
```

4. Vérifier, pour $N \hookrightarrow \mathcal{N}(0,1)$, et x > 0, l'inégalité : $\mathbb{P}(X \ge x) \le \frac{1}{\sqrt{2\pi} \cdot x} \cdot e^{-\frac{x^2}{2}}$.

Exercice 2 (Le théorème central limite binomial)

Vérifier empiriquement que pour n suffisamment grand, la loi binomiale $\mathcal{B}(n,p)$ est proche de la loi normale $\mathcal{N}(\mu,\sigma^2)$, avec : $\mu = n \cdot p$, $\sigma^2 = n \cdot n \cdot (1-p)$.

Exercice 3 (Lois d'Erlang)

- 1. Obtenir un échantillon suffisant de loi exponentielle $\mathcal{E}(1)$. Faire son histogramme, et le confronter avec la densité $x \mapsto e^{-x}$.
- 2. Vérifier empiriquement les valeurs connues pour l'espérance et la variance.

(Avec les commandes: mean, variance et stdev).

3. Vérifier empiriquement le résultat suivant :

Proposition 1

Si $X, Y \hookrightarrow \mathcal{E}(1)$, sont indépendantes, alors une densité de X + Y sur \mathbb{R}_+ est : $x \mapsto x \cdot e^{-x}$.

4. Par exemple en utilisant une boucle, on peut aussi vérifier empiriquement le résultat :

Proposition 2

```
Soient X_0, ... X_n telles que : Les v.a. (X_k) sont mut<sup>nt</sup> indépendantes, \forall k \in [\![1,n]\!], on a : X_k \hookrightarrow \mathcal{E}(1). Alors, la somme S = \sum_{k=0}^n X_k admet sur \mathbb{R}_+ pour densité : x \mapsto \frac{x^n}{n!} \cdot \mathrm{e}^{-x}.
```

Exercice 4 (Un transfert de loi)

Qu'obtient-t-on à l'exécution du script suivant? Interpréter.

```
N = 10^5
ech = grand(1,N,"exp",1)
histplot(100,exp(-ech))
```

2 Simulation de lois discrètes

Exercice 5 (Simulation de la loi géométrique)

- 1. Que retourne rand()<0.5?
- **2.** Dans une fonction compteur = premierSucces(p), écrire une boucle pour compter le nombre d'essais nécessaires pour retourner le rang d'apparition du premier succès de probabilité p.
- 3. Dans une fonction echGeom = echantillonGeometrique(n, p), écrire une deuxième boucle pour pour obtenir un échantillon de n valeurs de la loi géométrique.
- 4. Comparer les performances avec le programme echantillonGeom.sce

Exercice 6 (Simulation de la loi binomiale)

- 1. Écrire une fonction nombre De Succes (n,p) qui simule la loi binomiale $\mathcal{B}(n,p)$.
- **2.** Vérifier que pour n grand et $Np = \lambda$ pas trop grand, on a $\mathcal{B}(n,p) \sim \mathcal{P}(\lambda)$.

3 Rappels sur les lois usuelles

3.1 Rappels sur la loi exponentielle

Densité

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

► Fonction de répartition

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

▶ Fonction d'anti-répartition

C'est la fonction $A(x) = \mathbb{P}(X > x)$. Elle vérifie :

$$A(x) = 1 - F(x) = \begin{cases} e^{-\lambda x}, & x \ge 0 \\ 1, & x < 0 \end{cases}$$

Moments

(espérance)	(variance)	(écart-type)			
$\mathbb{E}[X]$	Var(X)	$\sigma(X)$			
$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{1}{\lambda}$			

3.2 Rappels sur la loi normale

Densité

$$\forall x \in \mathbb{R}, \ f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad \text{pour } \mathcal{N}(0, 1)$$
$$\forall x \in \mathbb{R}, \ f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad \text{pour } \mathcal{N}(\mu, \sigma^2)$$

▶ Fonction de répartition

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt \quad \text{pour } \mathcal{N}(0, 1),$$

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right) \quad \text{pour } \mathcal{N}(\mu, \sigma^2).$$

▶ Fonction d'anti-répartition

Par symétrie : $1 - \Phi(x) = \Phi(-x)$.

Repères sur les probabilités associées

Moments

(espérance) $\mathbb{E}[X]$	(variance) $Var(X)$	(écart-type) $\sigma(X)$			
μ	σ^2	σ			

4 Quantiles d'une loi continue

4.1 Fonction de répartition

La fonction de répartition d'une distribution X est définie par : $x \mapsto F(x) = \mathbb{P}(X \le x)$.

Il s'agit donc d'une représentation : valeur → probabilité

Pour *X va* continue (p. ex : X à densité) la foncⁿ de répartitⁿ est « typiquement » **bijective**.

À chaque niveau de probabilité $p \in [0;1]$ est associée valeur x telle que F(x) = p.

Cette valeur *x* est appelée le **quantile** de la distribution **associé au niveau** de probabilité *p*.

La **bijection réciproque** de la fonctⁿ de répartitⁿ est donc « **l'application quantile** » de la distribution.

4.2 Vocabulaire des quantiles

Quartiles

Il y a 5 quartiles Q_k avec $k \in [0,4]$, correspondant aux niveaux $\frac{k}{4}$.

Pour $k \in [0,3]$, un quart de la distribution est située entre les valeurs Q_k et Q_{k+1} .

Les quartiles extrémaux Q_0 et Q_4 correspondent respectivement au **minimum** et au **maximum** de la distribution. Le quartile Q_2 est la **médiane** de la distribution : elle sépare la distribution en « deux parties de masse égale ».

p	0%	25%	50%	75%	100%
quartile	min	Q_1	M	Q_3	max

Déciles

C'est le même principe que pour les quartiles, mais en décomposant la distribution en 10 parties contenant chacune 10% de la masse.

Il y a donc 11 déciles D_k avec $k \in [0,10]$, correspondant aux niveaux $\frac{k}{10}$.

Les déciles extrémaux D_0 et D_{10} correspondent respectivement au minimum et au maximum, et le décile D_5 à la **médiane** de la distribution.

p	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
décile	min	D_1	D_2	D_3	D_4	M	D_6	D_7	D_8	D_9	max

▶ Centiles (ou percentiles)

Encore le même principe, mais on subdivise cette fois la distribution en 100 parties $[C_k; C_{k+1}]$ où $k \in [0,99]$

▶ Implémentation Scilab

Les conventions implémentées pour les commandes quart et perctl sont contradictoires :

*) quartiles : la distribution est subdivisée en 4 parties

(comme ci-dessus)

*) centiles : la distribution est subdivisée en 99 parties

(au lieu de 100...!)

et l'on obtient donc des aberrations liées à cette incompatibilité :

4.3 Représentation des déciles, lois normale et exponentielle

On calcule les déciles des lois exponentielles et normale par Scilab :

```
3 // p = 10\% \ 20\% \dots \ q = 1 - p
4 p = .1*(1:9) , q = ones \ (p) - p
5 // La fonction quantiles
6 x = -log \ (q) ,
7
13 // p = 10\% \ 20\% \dots \ q = 1 - p
14 p = .1*(1:9) , q = ones \ (p) - p
15 // loi normale centrée réduite
16 Mean = zeros \ (p) \, Std = ones \ (p);
17 // On calcule les déciles
18 x = cdfnor("X", Mean, Std, p, q)
```

On représente les déciles sur les fonctions de répartition et sur les fonctions densité :

Soit la table de déciles suivante :

décile	D_1	D_2	D_3	D_4	M	D_6	D_7	D_8	D_9
$\mathcal{E}(\lambda)$	$0,10\sigma$	$0,22\sigma$	$0,35\sigma$	$0,\!51\sigma$	$0,69\sigma$	$0,91\sigma$	$1,20\sigma$	$1,60\sigma$	$2,30\sigma$
$\mathcal{N}(\mu,\sigma)$ ($\mu\pm$)	$-1,28\sigma$	$-0,\!84\sigma$	$-0,52\sigma$	$-0,25\sigma$	$0 (\mu)$	$0,25\sigma$	$0,52\sigma$	0,84 σ	1,28 σ

5 Simulations de lois à densité (Tp)

Exercice 7 (Manipulations sur la loi exponentielle)

- 1. Simuler un échantillon de 100 valeurs de loi $\mathcal{E}(1)$ en utilisant la commande grand
- 2. Obtenir sa moyenne et son écart-type avec les commandes mean et stdev.
- 3. Obtenir son histogramme. Est-il satisfaisant?
- 4. Tracer la fonction densité au dessus de l'histogramme.
- **5.** Vérifier empiriquement que le segment $[0;3\sigma]$ est un intervalle de fluctuation à $\simeq 95\%$.

Exercice 8 (Avec des quantiles)

- 1. Tester la commande quart (les trois quartiles) sur des progressions arithmétiques.
- 2. Que doit retourner la commande quart (rand(1, 100))?
- **3.** a) Que retourne quart(grand(1, 100, "exp", 1))?
 - b) Comment le résultat de quart (grand (1, 100, "exp", sigma)) dépend-il de sigma?
 - c) Faire la confrontation graphique.

5.1 Simulation par la méthode d'inversion

Proposition 3 (Méthode d'inversion pour la loi exponentielle)

Pour une v.a. uniforme $U \hookrightarrow \mathcal{U}[0;1[$, la variable $X = -\ln(U)$ suit la loi exponentielle $\mathcal{E}(1)$.

Variantes

- **1.** En général, pour simuler $\mathcal{E}(\lambda)$, on multiplie donc par $\sigma = \frac{1}{\lambda}$, soit : $-\frac{1}{\lambda} \ln(U) \hookrightarrow \mathcal{E}(\lambda)$
- 2. Cette formule vient de la **méthode d'inversion** pour la fonction d'**anti**-répartition. L'application à la fonction de répartition donne la formule : $-\frac{1}{\lambda}\ln(1-U) \hookrightarrow \mathcal{E}(\lambda)$ (celle au programme!)

Exercice 9 (Simulation par inversion)

- 1. Faire un histogramme de la distribution -log(rand(1, N)).
- **2.** Tracer la fonction densité de la loi $\mathcal{E}(1)$.
- 3. Confronter graphiquement les quantiles avec une loi exponentielle.

5.2 La loi normale et la commande cdfnor

La commande cdfnor implémente la fonction de répartition (cumulated distribution function) de la loi **nor**male, soit pour la distribution $\mathcal{N}(\mu, \sigma^2)$ la formule

$$p = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx$$

Scilab pense à cette fonction de répartition comme à une relation entre tous les paramètres y intervenant; soit p, x, μ, σ et la commande cdfnor se propose de calculer l'un quelconque de ces paramètres, les trois autres étant entrés par l'utilisateur.

On s'en servira sous les deux aspects suivants, où Mean $(= \mu)$ et Std $(= \sigma)$ sont fixés.

► Calcul de probabilités avec la syntaxe

qui retourne deux réels P, \mathbb{Q} représentant respectivement les valeurs respectives des fonction de répartition et d'anti-répartition (on a donc $\mathbb{Q} = 1 - P$).

▶ Calcul de quantiles avec la syntaxe

qui retourne le quantile X associé à la probabilité P = 1 - Q.