DIALOG(R) File 351:Derwent WPI (c) 2004 Thomson Derwent. All rts. reserv.

009492083 **Image available**
WPI Acc No: 1993-185618/ 199323

XRAM Acc No: C93-082485 XRPX Acc No: N93-142442

Stable developer for electrostatic image - contains negatively charging toner consisting of resin powder and two inorganic fine powders of different BET specific surface areas

Patent Assignee: CANON KK (CANO)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 5113688 A 19930507 JP 91302650 A 19911023 199323 B

Priority Applications (No Type Date): JP 91302650 A 19911023 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes JP 5113688 A 18 G03G-009/08

Abstract (Basic): JP 5113688 A

Developer contains (i) a negatively charging toner consisting of a resin powder contg. charge-controlling agent(s) and colourant(s) in a polyester resin of an acid number of at least 30 mgKOH/g. The powder being mixed with two inorganic fine powders of different BET specific surface areas measured by the nitrogen adsorption method and (ii) a resin-coating carrier of a specific resistance of 10power7 to 10power14 ohm.cm.

Pref. one of the inorganic powders has a BET specific surface area of 1-150 m2/g and is treated with coupling agent(s) having a 5C or higher satd./unsatd. cyclic/acyclic organic gp.; and the other has a BET specific surface area of 160-400 m2/g and is treated hydrophobically so as to show a hydrophobicity measured by the methanol titration test of at least 30. Another developer uses a negatively charging toner consisting of a resin powder contg. charge-controlling agent(s) and colourant(s) in the polyester resin and added with a silica fine powder of a hydrophobicity of at least 60.

USE/ADVANTAGE - The developer has high fixing performance and environmental stability and offers full-colour images of uniform depth under any condtions.

Dwg.1/2

Title Terms: STABILISED; DEVELOP; ELECTROSTATIC; IMAGE; CONTAIN; NEGATIVE; CHARGE; TONER; CONSIST; RESIN; POWDER; TWO; INORGANIC; FINE; POWDER; BET; SPECIFIC; SURFACE; AREA

Derwent Class: A89; G08; P84; S06

International Patent Class (Main): G03G-009/08

International Patent Class (Additional): G03G-009/087; G03G-009/113

File Segment: CPI; EPI; EngPI

Manual Codes (CPI/A-N): A05-E01D; A12-L05C2; G06-G05

Manual Codes (EPI/S-X): S06-A04C1; S06-A11A

Plasdoc Codes (KS): 0231 1288 2808

Polymer Fragment Codes (PF):

001 014 04- 143 658 659 725

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-113688

(43)公開日 平成5年(1993)5月7日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 3 G 9/08

9/087

9/113

G 0 3 G 9/08

374

3 3 1

審査請求 未請求 請求項の数7(全 18 頁) 最終頁に続く

(21)出願番号

(22)出願日

特願平3-302650

平成3年(1991)10月23日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 田中 勝彦

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 土井 理可

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 ▼瀧▲口 剛

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 豊田 善雄 (外1名)

(54) 【発明の名称】 静電荷像現像用現像剤

(57)【要約】

【目的】 定着性に優れ、環境安定性が良好で、濃度均 一性に優れたフルカラー画像の得られる静電荷像現像用 現像剤を提供することにある。

【構成】 ①酸価30mgKOH/g以上のポリエステ ル樹脂に電荷制御剤と着色剤を含有する樹脂粉体に、窒 素吸着によるBET比表面積が異なる二種類の無機微粉 体を添加した負帯電性トナーと、②比抵抗が10'Ω・ cm~1014Ω・cmの樹脂被覆キャリアとを有するこ とを特徴とする静電荷像現像用現像剤である。

【特許請求の範囲】

【請求項1】 ①酸価30mgKOH/g以上のポリエ ステル樹脂に電荷制御剤と着色剤を含有する樹脂粉体 に、窒素吸着によるBET比表面積が異なる二種類の無 機微粉体を添加した負帯電性トナーと、②比抵抗が10 ⁷ Ω・cm~10¹⁴Ω・cmの樹脂被覆キャリアとを有 することを特徴とする静電荷像現像用現像剤。

【請求項2】 該無機微粉体の一方のBET比表面積が 1~150m³/gであり、かつ炭素原子数が5以上の ップリング剤で処理されており、他方の無機微粉体のB ET比表面積が160~400m² /gであり、メタノ ール滴定試験によって測定された疎水化度が30以上の 値を示す様に疎水化処理したものであることを特徴とす る請求項1に記載の静電荷像現像用現像剤。

【請求項3】 該無機微粉体が、BET比表面積が1~ 150m²/g又は160~400m²/gの二酸化ケ イ素粒子であることを特徴とする請求項1又は2に記載 の静電荷像現像用現像剤。

【請求項4】 前記カップリング剤がシランカップリン 20 荷を有する必要がある。 グ剤であることを特徴とする請求項1乃至3に記載の静 電荷像現像用現像剤。

【請求項5】 ①酸価30mgKOH/g以上のポリエ ステル樹脂に電荷制御剤と着色剤を含有する樹脂粉体 に、疎水率60以上のシリカ微粉体を添加した負帯電性 トナーと、②比抵抗が10⁷ Ω·cm~10¹⁴Ω·cm の樹脂被覆キャリアとを有することを特徴とする静電荷 像現像用現像剤。

【請求項6】 ①酸価30mgK0H/g以上のポリエ ステル樹脂に電荷制御剤と着色剤を含有する樹脂粉体 30 に、無機微粉体を添加したトナーであって、該無機微粉 体がBET比表面積20m²/g以上の無機微粉体の表 面をカップリング剤により疎水化したものであり、この 疎水化処理工程が湿式処理からなり、かつカップリング 反応終了後、溶液中の未反応カップリング剤を、表面に 活性水素を有する材料に吸着させ処理反応槽中から回収 する工程を含むものである負帯電性トナーと、②比抵抗 が10⁷ Ω·cm~10¹¹Ω·cmの樹脂被覆キャリア とを有することを特徴とする静電荷像現像用現像剤。

【請求項7】 上記疎水化処理工程において用いられる 40 表面に活性水素を有する材料が、陽イオン交換樹脂ある いはシリカゲルであることを特徴とする請求項6に記載 の静電荷像現像用現像剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電子写真、静電記録及 び静電印刷等における静電荷像を鮮明に現像させるため の静電荷像現像用現像剤に関する。

[0002]

【従来の技術】従来、電子写真法としては米国特許2,

297,691号明細書、特公昭42-23910号公 報、及び特公昭43-24748号公報等に種々の方法 が記載されている。

2

【0003】これらの電子写真法等に適用される現像方 法としては、大別して乾式現像法と湿式現像法がある。 前者には更にトナーを搬送するキャリアを混合した二成 分系現像剤を用いる方法と一成分系現像剤を用いる方法 とに分けられる。

【0004】これら乾式現像剤に適用するトナーとして 飽和もしくは不飽和の環状又は非環状有機基を有するカ 10 は、従来、天然あるいは合成結着樹脂中に、染料、顔料 等からなる着色剤を分散させた微粉体が使用されてい る。例えば、ポリスチレン等の結着樹脂中に着色剤を分 散させたものを、1~30μm程度に微粉砕した粒子を 含有させたものが用いられている。なお、二成分系現像 剤を用いる方式の場合には、これらのトナーは通常、ガ ラスピーズ、鉄粉等のキャリア粒子と混合して用いられ

> 【0005】上記のようなトナーはいずれも、現像され る静電荷潜像の極性に応じて、トナーが正または負に電

【0006】トナーに電荷を保有させるためには、トナ ーの成分である結着樹脂の摩擦帯電量を利用できるが、 この方法ではトナーの帯電量が低すぎたり、一定の値を 保持し続けられないために、現像により得られる画像は カプリ易かったり、濃度変化が起こる。また、トナー飛 散も発生しやすくなる。

【0007】そこで、適切な摩擦帯電量をトナーに付与 するために、帯電量を付与する染料、顔料、さらには電 荷制御剤を添加することが行われている。今日、当該技 術分野で知られている電荷制御剤としては、例えば、モ ノアゾ染料の金属錯塩、サリチル酸、ナフトエ酸、ダイ カルボン酸の金属鎖塩、銅フタロシアニン顔料等が知ら

【0008】また、さらに現像性の向上や定着性の改良 のために、種々の添加剤を加えている。

【0009】特に、解像性、濃度均一性あるいはカブリ などの現像特性に起因する画像特性を改良するために、 種々の微粉体がトナー表面に添加されている。

[0010]

【発明が解決しようとする課題】従来より、当該技術分 野の課題の一つに画像の環境安定化がある。これには、 温度や湿度の環境変動に左右されない摩擦帯電量の環境 安定性と、一定の帯電量を保持し続ける帯電維持が、基 本特性として重要である。トナーの帯電量を適正値に散 計する目的で添加されるのが電荷制御剤であるから、こ の環境安定化のためには、電荷制御剤を改良するのが一 般的方法として検討されている。確かに、トナーの環境 安定性は電荷制御剤の改良でかなり改善され、比較的良 好な画像を得ることができるが、常に、より安定した良 50 好な画像の供給を望むならば、トナーの電荷制御剤以外

の材料の環境安定性も必要になってくる。

【0011】一方、ポリエステル樹脂は、その定着特性から優れたトナー用バインダーの一つとして、広く用いられている。しかし、ポリエステルバインダーは吸水性が高く、高温高湿、低温低湿の環境安定性に欠けることが大きな欠点として指摘されている。そこで、酸価を低くして、ポリエステルの環境変動を低く押える工夫が提案されている。しかし、そのようなポリエステルを用いても、ポリエステルの環境変動を著しく改善することはできない。また、ポリエステルの吸水量を減らすことで 10環境変動を改善する場合には、電荷制御剤も吸水性の低いものを用いなければならない。しかし、従来公知の電荷制御剤の多くは吸着水分量が多く、酸価の低いポリエステル樹脂と組み合わせて環境変動の少ないトナーを得るには不適当である。

【0012】また、画質の向上のためには、トナーの摩擦帯電量の安定性の他に、トナーの流動性の向上が必要である。

【0013】従来、流動性付与剤としてシランカップリング剤で処理されたシリカが知られているが、前述の環 20 境安定性という点では満足し得るレベルではない。そして、いまだ、流動性と環境安定性を両立し得る添加剤は見い出されていないのが現状である。

【0014】本発明の目的は、上記の問題点を解決した 負帯電性の静電荷像現像用現像剤を提供することにある。

【0015】さらに本発明の目的は、定着性に優れ、環境安定性の良好なフルカラー現像剤を提供することにある。

【0016】さらに本発明の目的は、濃度均一性に優れ 30 たフルカラー現像剤を提供することにある。

[0017]

【課題を解決するための手段及び作用】本発明は、①酸価30mgKOH/g以上のポリエステル樹脂に電荷制御剤と着色剤を含有する樹脂粉体に、窒素吸着によるBET比表面積が異なる二種類の無機微粉体を添加した負帯電性トナーと、②比抵抗が10°Ω・cm~10¹⁴Ω・cmの樹脂被覆キャリアとを有する静電荷像現像用現像剤(以下、この現像剤を「現像剤A」と称呼する。)である。

【0018】また、本発明は、①酸価30mgKOH/g以上のポリエステル樹脂に電荷制御剤と着色剤を含有する樹脂粉体に、疎水率60以上のシリカ微粉体を添加した負帯電性トナーと、②比抵抗が10°Ω・cm~10¹⁴Ω・cmの樹脂被覆キャリアとを有する静電荷像現像用現像剤(以下、この現像剤を「現像剤B」と称呼する。)である。

【0019】また、本発明は、①酸価30mgK0H/ 樹脂が広くれ g以上のポリエステル樹脂に電荷制御剤と着色剤を含有 もポリエスを する樹脂粉体に、無機微粉体を添加したトナーであっ 50 されている。

て、該無機微粉体がBET比表面積20m²/g以上の無機微粉体の表面をカップリング剤により疎水化したものであり、この疎水化処理工程が湿式処理からなり、かつカップリング反応終了後、溶液中の未反応カップリング剤を、表面に活性水素を有する材料に吸着させ処理反応槽中から回収する工程を含むものである負帯電性トナーと、②比抵抗が10°Ω・cm~10¹⁴Ω・cmの樹脂被覆キャリアとを有する静電荷像現像用現像剤(以下、この現像剤を「現像剤C」と称呼する。)である。

【0020】本発明の目的の一つは現像剤の環境安定化のために摩擦帯電量の環境変動を抑制することである。 摩擦帯電量は勿論、トナー組成に依存するが、トナーの 摩擦帯電の相手であるキャリアにも依存する。

【0021】本発明の目的である環境安定化のためには、キャリアの抵抗は低くすることが好ましい。しかしながら、抵抗を低くするとキャリアが感光体表面に付着するいわゆるキャリア付着の現象が起こる。また、さらにキャリアの抵抗が低くなると現像電界が漏洩し、トナーが現像されにくくなり、良好な画像が得られない。本発明ではこれらの現象を避けるために、10°Ω・cm~10¹⁴Ω・cmの比抵抗を有するキャリアを用いた。

【0022】このようなキャリアは、フェライトや鉄粉などの磁性を有する粉体に種々の樹脂を被覆することで容易に得られる。キャリア表面を被覆する樹脂としては、スチレンーアクリル酸エステル共重合体、スチレンーメタクリル酸エステル共重合体、アクリル酸エステル共重合体、シリコーン樹脂、フッ素含有樹脂、ポリアミド樹脂、アイオノマー樹脂、ポリフェニレンサルファイド樹脂など或いは、これらの混合物を用いることができる。また、キャリアの比抵抗は以下のように測定できる。

【0023】図1に示したセルAにキャリアを充填し、これに接するように電極1および2を接続し、この電極間に電圧を印加する。その際流れる電流を測定し、比抵抗を求める。この方法はキャリアが粉体であるために充填率に変化を生じ、それが原因で比抵抗が変化することがあるので注意を要する。本発明における比抵抗の測定条件は充填キャリアと電極との接触面積S=約2.3cm²、厚さ=約1mm、上部電極2の荷重275g、印加電圧100Vとした。

【0024】前述したように高抵抗のキャリアを用いると現像剤の環境変動としては広がり易い傾向になる。そこで、これらのキャリアと組み合わせた際に環境安定化の良好な現像剤をトナーを工夫することで達成した。

【0025】一方、定着特性の点からポリエステルがトナー用パインダーとして利用されている。特にフルカラー用トナーには、優れた混色性のために、ポリエステル樹脂が広く利用されている。そのため、当該技術分野でもポリエステルの特許は多数出願されており、種々工夫されている。

【0026】ポリエステルの出願のほとんどは二つに大 別できる。一つは、定着特性に関するもので、ポリエス テルの出願の多くはこれに分類される。そのような出願 の例としては、特開昭63-56659号公報、特開昭 62-295068号公報,特開昭62-195676 号公報、特開昭58-198049号公報、特開昭58 -179848号公報,特開昭56-116041号公 報などがある。これらは、モノマーである多価のカルボ ン酸や多価アルコールの化学構造および組成あるいは分 子量あるいはガラス転移点や軟化点を規定したものが多 10 い。酸価や水酸基価に関する規定も多いが、その内容は カルボン酸との反応を利用し、定着性を改良するもので ある。例えば、特開昭63-56659号公報は酸価1 1~120mgKOH/gのポリエステルを開示してい るが、これは、酸価がこの範囲でエステル交換が起こり にくく、分子量分布がプロードになり定着性が良好にな るとしている。また、特開昭58-179848号公報 は酸価20mgKOH/g以上のポリエステルを開示し ている。しかし、これもカルポン酸と磁性体表面の多価 金属との反応を利用して、定着性を改良する技術に関す るものである。これらには、ポリエステルの酸価と摩擦 帯電量の環境安定性に関する技術の開示はない。むし ろ、特開昭62-195676号公報には、ポリエステ ルの酸価が高くなると、摩擦帯電量は高くなり、環境変 動が大きくなると記載されている。

【0027】ポリエステルの出願の第二の分類はポジトナーに関する出願である。例えば、特開昭62-291668号公報、特開昭63-220173号公報、特開昭63-220174号公報などがある。これらの出願の特徴は、酸価を低くしたことであり、ポリエステルの酸価が高くなると負摩擦帯電性が強くなるので正摩擦帯電性のトナーが得られなくなるという点で共通している。しかも、特開昭63-220173号公報、特開昭63-220174号公報では、酸価が10mgKOH/gあるいは30mgKOH/g以上では、摩擦帯電量の環境変動が広がると述べている。

【0028】ポリエステルの摩擦帯電量の環境変動が大きいにも関わらず、ポリエステルの環境変動の改善のみを目的とした出願は少ない。例えば、特開昭61-284771号公報では、ポリエステルの環境安定化を目的40として、水分吸湿量5000ppm以下のポリエステルを提案している。ポリエステルの吸水量はポリエステルの酸価が大きくなると増加するので、この出願でも、ポリエステルの環境変動を改善するには、ポリエステルの酸価を低くする方が有利であることを指摘していることになる。

【0029】このようにポリエステルの摩擦帯電量の環境変動はポリエステルが有する水分量に起因するので、 従来公知のすべての資料は酸価を低くすることでこれを 達成しようと試みている。 【0030】本発明者らは、前述したような理由から、 比抵抗が $10^7\Omega \cdot cm \sim 10^{14}\Omega \cdot cm$ の樹脂被覆キャリアを用いた場合、ポリエステル樹脂を用いた現像剤 の環境安定化の方法は二通りの可能性があることを見い 出した。

6

【0031】その一つは、従来公知の資料で述べられているように、ポリエステルの酸価を出来るだけ低くして、水分量を減らす方法である。この場合、このようなポリエステルに組み合わせる電荷制御剤も吸着水分量の少ないものを使用しなければ、環境安定性の良好な現像剤は得られない。しかし、従来公知の制御剤の多くは、吸着水分量が少なくとも1000ppm以上であり、このような電荷制御剤ではポリエステルの酸価を低下させても環境安定性の良好な現像剤は得られない。

【0032】もう一つの方法は、ポリエステルの酸価を30mgKOH/g以上に増加させる方法である。この方法は従来公知の資料で開示されている技術とは正反対であり、本発明者らが新たに見い出したものである。

【0033】本発明者らは、樹脂で被覆したキャリアを 20 用いた場合、ポリエステル樹脂の酸価を高くすると、従 来述べられているように帯電量は高くならず、むしろ低 下していくことを見い出した。これは、酸価を高くする ことで、水分量が増加したことに起因しており、摩擦帯 電機構の分離過程における、電荷緩和量が増加したため と考えられる。しかも、水分量がある閾値を越えると摩 擦帯電量は下限値で一定になることを見い出した。すな わち、ポリエステル樹脂の酸価を高くすることで、水分 量が閾値をこえると、摩擦帯電量は下限値で一定になる ため、水分量の変動に伴う摩擦帯電量の環境変動は著し く小さくなることを新たに見い出し本発明に到達した。 本発明の特徴のひとつは酸価が30mgKOH/g以 上、好ましくは40mgKOH/g以上のポリエステル 樹脂を用いたトナーと比抵抗が10′Ω・cm~10¼ Q·cmの樹脂被覆キャリアを組み合わせて用いること である。ポリエステル樹脂の酸価が30mgKOH/g 以下になると、ポリエステル樹脂の摩擦帯電量の環境変 動は徐々に広がり、外添剤の工夫だけでは現像剤の環境 安定化の達成は困難になる。

【0034】ここで言う酸価とは一般的に用いられているものであり、樹脂中のカルボン酸を中和するのに要する水酸化カリウムの樹脂1gに対するmg数である。

【0035】本発明のポリエステル樹脂を構成するアルコール成分としては、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、2-エチル-1,3-ヘキサンジオール、水素化ビスフェノールA、また、(A)式で表されるビスフェ50ノール誘導体;

-1848-

[0036]

【化1】

$$H - (OR)_{\overline{x}} - O - (OR)_{\overline{y}} + O - (RO)_{\overline{y}} + O - (RO)_{$$

(式中Rはエチレンまたはプロピレン基であり、X、Y *類; はそれぞれ1以上の整数であり、かつX+Yの平均値は [0037] 2~10である。) 又、(B) 式で示されるジオール* 【化2】

等のジオール類、グリセリン、ソルビット、ソルビタン 等の多価アルコール類が挙げられる。

【0038】又、酸成分としては2価のカルポン酸とし ては、フタル酸、テレフタル酸、イソフタル酸、無水フ タル酸などのベンゼンジカルボン酸類またはその無水 物;コハク酸、アジピン酸、セパシン酸、アゼライン酸 などのアルキルジカルポン酸類またはその無水物;また さらに炭素数6~18のアルキル基で置換されたコハク 酸もしくはその無水物:フマル酸、マレイン酸、シトラ コン酸、イタコン酸などの不飽和ジカルポン酸又は、そ の無水物等が挙げられ、又、3価以上のカルポン酸とし てはトリメリット酸、ピロメリット酸、ペンゾフェノン 30 テトラカルボン酸やその無水物等が挙げられる。

【0039】好ましいアルコール成分としては、前記 (A) 式のピスフェノール誘導体であり、酸成分として はフタル酸、テレフタル酸、イソフタル酸、又はその無 水物、コハク酸、n-ドデセニルコハク酸又はその無水 物、フマル酸、マレイン酸、無水マレイン酸等のジカル ポン酸類、トリメリット酸又はそのトリカルポン酸類が 挙げられる。

【0040】このようなポリエステル樹脂と組み合わせ る電荷制御剤としては、水分量が高くても帯電能力のあ るものであれば良く、制御剤自体の水分量の多少は問わ ない。そのような電荷制御剤としては、従来公知の制御 剤があり、特に、サリチル酸誘導体の金属化合物や芳香 族ジカルポン酸誘導体の金属化合物あるいは芳香族ヒド ロキシカルポン酸誘導体の金属化合物などが、好適に使 用される。電荷制御剤を添加する方法としては、トナー 内部に添加する方法と外添する方法とがある。これらの 化合物の使用量は、結着樹脂の種類、必要に応じて使用 される添加剤の有無、分散方法を含めたトナー製造方法 によって決定されるもので、一銭的に限定されるもので 50 る外添剤を表面疎水化処理によりその疎水性をあげる方

はないが、内添する場合は、好ましくは結着樹脂100 重量部に対して0. 1~10重量部、より好ましくは 0.5~5 重量部の範囲で用いられる。また外添する場 合は、樹脂100重量部に対し0.01~10重量部が 好ましい。外添する場合は特に、結着樹脂、着色剤より なる微粒子の表面近傍に機械的衝撃により固着または埋 没させるのが好ましい。

(B)

【0041】本発明の現像剤Aの特徴は、トナーにBE T比表面積の違う2種類の無機微粉体を外添して使用す ることである。

【0042】環境安定性の良好なトナーを得るために は、外添剤の粒子表面を疎水化処理して外添剤の吸水性 を抑制し、外添剤自身の摩擦帯電量の安定化を図るのが 一般的な方法である。具体的な例としては、外添剤とし てシリカをシリコンオイルで処理するものとして特開昭 49-42354号公報、あるいは疎水性シリカをトナ ーに外添するものとして特公昭54-16219号公報 等が有る。また、シランカップリング剤処理したシリカ をトナーに外添するものとしては、特開昭46-578 2号公報、特開昭56-64351号公報、特開昭56 -128956号公報などが有る。この様に、外添剤の 疎水性を向上させるために様々な技法が開発されてきて いる。これらに加え、本発明者等の研究では、これらの 報告に記載されている技法を用いる場合、外添剤の粒径 が大きい程、外添剤自身の摩擦帯電量の安定性が向上 し、トナーの摩擦帯電量の安定にもつながることがわか った。特に、炭素原子数が5以上の飽和もしくは不飽和 の環状または非環状有機基を有するカップリング剤で処 理された場合に効果が顕著であった。

【0043】一方、現像剤に高い流動性を付与する手段 として、一般に前述したような方法、すなわち、添加す

法がとられている。本発明者等の研究では、この方法に よる流動性付与効果は外添剤の粒径が小さい程大きく、 この粒径依存性は特に外添剤の疎水化度が30以上の場 合に著しいことが明らかとなった。ここでいう疎水化度 とは表面を疎水化処理された外添剤の疎水化の程度を表 す値であり、以下に示すような"メタノール滴定試験" により得られるものである。

【0044】まず、疎水化処理された外添剤0.2gを 容量250m1の三角フラスコ中に入れた水50m1の 中に添加する。メタノールをピューレットで滴下し、外 10 添剤の全量が湿潤されるまで滴定する。滴定の際、フラ スコ内の溶液はマグネチックスターラーで常時撹拌す る。又、その終点は外添剤の全量が液体中に懸濁される ことにより観察され、その疎水化度は、終点に達した際 のメタノールと水との液状混合物中のメタノールの百分 率として表される。

【0045】なお、特開昭60-32060号公報およ び特開平2-93658号公報においてBET比表面積 の異なる2種の無機微粉体を含有する静電像現像用トナ 一が開示されている。

【0046】しかしながら、これらの報告では、BET 比表面積の小さい無機微粉体は表面が疎水化処理されて おらず、したがってこれらの無機微粉体を外添して得ら れる現像剤の帯電特性は使用環境に大きく左右されてし まう。すなわちこれらに開示された技術では、帯電量の 環境安定性および高い流動性の両方を合わせ持つ現像剤 は得られない。

【0047】本発明者らは、BET比表面積の異なる2 種類の無機微粉体を着色微粒子に外添した場合、トナー の摩擦帯電量の環境変動はBET比表面積の小さな方の 30 粒子に大きく依存し、トナーの流動性はBET比表面積*

Na₂ O·XSiO₂ +HCl+H₂ O \rightarrow SiO₂ ·nH₂ O+NaCl

その他、ケイ酸ナトリウムのアンモニア塩類又はアルカ リ塩類による分解、ケイ酸ナトリウムよりアルカリ土類 金属ケイ酸塩を生成せしめた後、酸で分解しケイ酸とす る方法、ケイ酸ナトリウム溶液をイオン交換樹脂により ケイ酸とする方法、天然ケイ酸又はケイ酸塩を利用する 方法などがある。

【0051】ここでいうシリカ微粉体には、無水二酸化 ケイ素(シリカ)、その他、ケイ酸アルミニウム、ケイ 40 酸ナトリウム、ケイ酸カリウム、ケイ酸マグネシウム、 ケイ酸亜鉛などのケイ酸塩をいずれも適用できる。

【0052】本発明においてBET比表面積1~150 m²/gの無機微粉体の表面疎水化処理剤として用いら れる炭素原子数が5以上の飽和若しくは不飽和の環状又 は非環状有機基を有するカップリング剤としては、例え ば、アリルジメチルクロルシラン、アリルフェニルジク ロルシラン、ペンジルジメチルクロルシラン、ペンジル メチルジクロルシラン、ジーtertプチルジクロルシ ラン、ジフェニルジクロルシラン、トリーnープチルク 50 る。

*の大きな方に大きく依存することを新たに見い出した。 すなわち、外添剤として、BET比表面積の異なる無機 微粉体を2種類用いることで、環境特性と流動特性を機 能分離し得ることを新たに見い出し本発明に到達したも

10

【0048】本発明の現像剤AにおけるBET比表面積 1~150m²/gおよびBET比表面積160~40 0 m² /gの無機微粉体としては、例えば表面を疎水化 処理した酸化アルミニウム、チタン酸ストロンチウム、 酸化チタン、シリカ微粉体などがあり、特にシリカ微粉 体が好ましい。斯かるシリカ微粉体としては、シランカ ップリング剤で処理する前のシリカ微粉体として、乾式 法シリカ、湿式法シリカいずれも使用することができる が、シリカ本来の流動性付与のためには乾式法シリカの 方が好ましい。ここで言う乾式法とは、ケイ素ハロゲン 誘導体の蒸気相酸化により生じるシリカ微粉体の製造法 である。例えば、四塩化ケイ素ガスの酸素水素中におけ る熱分解酸化反応を利用する方法で、基礎となる反応式 は次の様なものである。

[0049] 20

のである。

 $SiC1_4 + 2H_2 + O_2 \rightarrow SiO_2 + 4HC1$ 又、この製造工程において例えば、塩化アルミニウム又 は、塩化チタンなど他の金属ハロゲン誘導体をケイ素ハ ロゲン誘導体と共に用いる事によってシリカと他の金属 酸化物の複合微粉体を得る事も可能であり、これらも包 含する。

【0050】一方、本発明に用いられるシリカ微粉体を 湿式法で製造する方法は、従来公知である種々の方法が 適用できる。例えば、ケイ酸ナトリウムの酸による分 解、一般反応式で示せば(以下反応式は略す)、

ロルシラン、プチルメチルジエトキシシラン、ラウリル メチルジエトキシシラン、ステアリルトリクロルシラ ン、ジフェニルジエトキシシラン、ラウリルメチルジエ トキシシランなどがある。

【0053】本発明の現像剤Aに用いられる、BET比 表面積160~400m2 / gの無機微粉体の疎水化度 を30以上の値にするための疎水化処理としては、カッ プリング処理、オイル処理、脂肪酸又はその金属塩によ る処理などの有機処理を単独あるいは併用して用いるこ とが好ましい。

【0054】又、本発明の現像剤AにおけるBET比表 面積1~150m² /gおよびBET比表面積160~ 400m²/gの無機微粉体の添加量は、トナー全量に 対していずれも0.01~5%であり、好ましくは0. 05~3%が良い結果をもたらす。

【0055】本発明の現像剤Bの特徴は、トナーに疎水 率60以上のシリカ微粉体を外添して使用することであ 【0056】トナーの摩擦帯電量はトナー母体のみならず、外添するシリカの摩擦帯電量に依存する。特に、トナーの摩擦帯電量の環境変動はシリカの摩擦帯電量の環境変動に大きく依存する。本発明のポリエステルトナーに外添するシリカの摩擦帯電量の環境変定化について検討したところ、本発明の摩擦帯電量の環境変動の少ないポリエステル樹脂の場合、外添するシリカの疎水率が60以上になると現像剤の環境変動を著しく小さくできることを見い出した。シリカの疎水率が低くなると、ポリエステルの帯電量の環境変動を改善した効果が徐々にな10くなり、親水性のシリカを使用するとポリエステルの環境変動を改善した効果が徐々にな第変動を改善した効果が徐々になる。

【0057】シリカ微粉体としては、乾式法及び湿式法で製造したシリカ微粉体が使用できる。ここで育う乾式法及び湿式法は、既に上述した製造法と同様である。また上記シリカ微粉体のうちで、BET法で測定した窒素吸着による比表面積が30m²/g以上(特に50~400m²/g)の範囲内のものが良い。

【0058】本発明の現像剤Bに用いられるシリカ微粉体は、必要に応じてシランカップリング剤、有機ケイ素化合物などの処理剤で処理されていても良く、その方法も公知の方法が用いられ、シリカ微粉体と反応或いは物理吸着する上記処理剤で処理される。その様な処理剤としては、既に列挙したシランカップリング剤の他に、トリオルガノシリルメルカプタン、トリオルガノシリルアクリレート、ピニルジメチルアセトキシシラン、1,3-ジビニルテトラメチルジシロキサン、1,3-ジフェニルテトラメチルジシロキサン、1,3-ジフェニルテトラメチルジシロキサン、1,3-ジフェニルテトラメチルジシロキサン、及び1分子当り2から12個のシロキサン単位を有し未端に位置する単位にそれぞれ1個宛のSiに結合した水酸基を含有するジメチルポリシロキサン等がある。

【0059】最終的に、疎水率60%以上、好ましくは80%以上にシリカが処理されたこのシリカ微粉体を含有することにより、本発明のトナーの摩擦帯電量は環境、特に湿度に対して安定であるので、常に良好な画像を維持でき、高温下でのトナー飛散防止にもなる。

【0060】処理されたシリカ微粉体の疎水率を評価するために、本明細書において規定される"疎水率"は以下のように測定する。

【0061】供試シリカ微粉体1gと純水100gを分液ロートにいれ、振とう機YS-LD型((株)ヤヨイ製)で10分間撹拌し、10分静置した後、500nmの透過率を測定し、この値を疎水率とする。

【0062】なお、本発明の現像剤Bにおけるシリカ微粉体の添加量は、トナー全量に対して $0.01\sim5$ %が好ましい。

【0063】本発明の現像剤Cの特徴は、表面に活性水 により加水分解され、ただちに陽イオン交換樹脂が再生 索を有する材料に未反応のカップリング剤を吸着させ、 するため何度でも再利用できる点で好ましい。これらの 反応槽から回収する工程を含む湿式の疎水化処理を施さ 50 材料は、反応溶液との濾別分離を簡易化するために粒径

12 れたBET比表面積20m²/g以上の無機微粉体を、

上述の樹脂粉体に外添使用することである。

【0064】本発明者らは、上述の少なくとも酸価30 mgKOH/g以上のポリエステル樹脂と電荷制御剤お よび着色剤よりなる樹脂微粉体に、画質向上のための外 添剤を検討したところ、カップリング剤による無機微粉 体表面の疎水化処理によって外添時のトナーの流動性お よび帯電性にある程度の向上は見られるものの、未だ改 善の余地のあることがわかった。これは主に、無機微粉 体表面に存在する未反応疎水化処理剤によるものである ことをつきとめた。一般に、無機微粉体表面の疎水化処 理は過剰な処理剤の存在下で行われる。特に、無機微粉 体表面に存在する活性水素をカップリング剤により処理 する場合、存在する活性水素量をはるかに凌ぐ処理剤量 が用いられる。この場合、未反応の処理剤は無機微粉体 表面に残ったままであり、この無機微粉体を高湿下に放 置した場合残存する未反応処理剤が徐々に加水分解さ れ、表面特性が吸湿性へと経時変化するため帯電性が徐 々に悪化する。また、過剰な処理剤の存在により無機微 粉体表面が濡れた状態であるため、外添時のトナーの流 動性の向上が妨げられるだけでなく、静電潜像担持体、 いわゆる感光体の表面に固着しやすく、感光体融着とい った問題も引き起こす。一方、無機微粉体表面上に残存 する未反応カップリング剤を減らすために疎水化処理時 におけるカップリング剤の使用量を減らした場合疎水化 処理が不十分となり、この無機微粉体をトナーに外添し た場合十分な帯電性および流動性が得られない。

【0065】そこで、本発明者らが新しい無機粉体の疎水化処理法として、湿式法による無機微粉体表面のカップリング処理反応工程を検討した結果、反応終了後反応槽より未反応のカップリング剤を除去することにより前述の課題が解決できることを見いだした。すなわち、無機微粉体の表面をカップリング剤により疎水化処理する湿式処理工程において、カップリング反応終了後、溶液中の未反応のカップリング剤を表面に活性水素を持つ材料に吸着させ処理反応槽中から回収する工程を新たに設けることにより違成される。

【0066】すなわち、過剰なカップリング剤により無機微粉体表面の括性水素を十分疎水化した後、未反応のカップリング剤を除去し、その後反応溶剤を蒸留除去することにより、トナーに外添した場合高い流動性および環境安定性を与える無機微粉体を得ることができる。

【0067】ここで、未反応のカップリング剤を吸着させるための表面に活性水素をもつ材料としては、シリカゲルあるいは陽イオン交換樹脂などがあげられる。特に陽イオン交換樹脂の場合、カップリング剤との反応によりエステル化合物が生成するが、水溶液で処理することにより加水分解され、ただちに陽イオン交換樹脂が再生するため何度でも再利用できる点で好ましい。これらの材料は、反応溶液との濾別分離を簡易化するために粒径

13

が大きい方が良く、O. 5mm以上のものが好ましい。 表面カップリング処理される無機微粉体としては、表面 に活性水素をもつ無機微粉体であれば何でも構わない が、帯電性の制御という点から酸化アルミニウム、酸化 チタンあるいは酸化ケイ素、いわゆるシリカ化合物が好 ましい。さらに、流動性付与という点から窒素吸着法に よるBET比表面積が20m²/g以上のものが良い。 窒素吸着法によるBET比表面積が20m²/g未満の ものはトナーに外添しても十分な流動性が得られない。

【0068】本発明の現像剤Cにおいて用いることので 10 きるカップリング剤で処理する前のシリカ微粉体として は、既に上述した乾式法シリカ、湿式法シリカいずれも 使用することができる。

【0069】本発明の現像剤Cに用いられる疎水化用力 ップリング剤としては種々のものが挙げられるが、シラ ンカップリング剤、チタネートカップリング剤などが好 ましい。なお、この場合、Si原子あるいはTi原子に 結合しているオルガノ基の炭素数が多いほど疎水化の効 果が大きく、好ましくは炭素数が3以上のものが好まし

【0070】本発明の現像剤Cに用いられる疎水化処理 無機微粉体の適用量は、トナー重量に対して0.01~ 5%であり、好ましくは0.05~2%である。また、 本発明に用いられる疎水化処理無機微粉体どうしあるい は公知の無機微粉体をいくつか組み合わせて用いること もできる。

【0071】本発明に使用される着色剤としては、環境 特性を損なわない範囲でカーボンブラック、ランプブラ ック、鉄黒、群青、ニグロシン染料、アニリンプルー、 フタロシアニンブルー、フタロシアニングリーン、ハン 30 ザイエローG、ローダミン6G、カルコオイルプルー、 クロムイエロー、キナクリドン、ペンジジンイエロー、 ローズベンガル、トリアリールメタン系染料、モノアゾ 系、ジスアゾ系染顔料等従来公知の染顔料を単独或いは 混合して使用し得る。

【0072】また、本発明のトナーは必要に応じて磁性 材料を含有させて用いることも出来る。用いられる磁性 材料としては、マグネタイト、ァー酸化鉄、フェライ ト、鉄過剰型フェライト等の酸化鉄;鉄、コパルト、ニ ッケルなどの金属或いはこれらの金属とアルミニウム、 コパルト、銅、鉛、マグネシウム、スズ、亜鉛、アンチ モン、ベリリウム、ピスマス、カドミウム、カルシウ ム、マンガン、セレン、チタン、タングステン、パナジ ウムの様な金属との合金およびその混合物等が挙げられ

【0073】本発明のトナーにおいては、重量平均粒径 が3~15 μ mのトナーが使用可能である。特に、5 μ m以下の粒径を有するトナー粒子が12~60個数%含 有され、8~12. 7μmの粒径を有するトナー粒子が $1\sim33$ 個数%含有され、 16μ m以上の粒径を有する 50 後、噴霧乾燥することによりトナーを得る方法等の方法

14 トナー粒子が2.0重量%以下含有され、トナーの重量

より好ましい。

【0074】トナーの粒度分布は種々の方法によって測 定できるが、本発明においてはコールターカウンターを 用いて行うのが適当である。

平均粒径が4~10μmであることが現像特性の上から

【0075】すなわち、測定装置としてはコールターカ ウンターTA- I I型 (コールター社製) を用い、個数 分布、体積分布を出力するインターフェイス(日科機 製) 及びCX-1パーソナルコンピュータ (キヤノン 製)を接続し、電解液は、1級塩化ナトリウムを用いて 約1%NaCl水溶液を調整する。例えば、ISOTO N(R)-II(コールターサイエンティフィックジャ パン社製)が使用できる。測定法としては前記電解水溶 液100~150m1中に分散剤として界面活性剤、好 ましくはアルキルベンゼンスルホン酸塩を0.1~5m 1加え、さらに測定試料を2~20mg加える。試料を 懸濁した電解液は、超音波分散器で約1~3分間分散処 理を行ない、前記コールターカウンターTA-II型に より、アパチャーとして100 µmアパーチャーを用い て、トナーの体積、個数を測定して2~40μmの粒子 の体積分布と個数分布とを算出した。それから、本発明 に係るところの体積分布から求めた重量基準の重量平均 径(D₄) (各チャンネルの中央値をチャンネルごとの 代表値とする)、体積分布から求めた重量基準の粗分量 (20.2 µm以上)、個数分布から求めた個数基準の 微粉個数 (6.35 μm以下) を求めた。

【0076】本発明のトナーは、必要に応じて環境特性 を損なわない範囲で、添加剤を混合してもよい。添加剤 としては、例えばステアリン酸亜鉛の如き滑剤、或いは 酸化セリウム、炭化ケイ素の如き研磨剤或いは例えば酸 化アルミニウムの如き流動性付与剤、ケーキング防止 剤、或いは例えばカーボンプラック、酸化スズ等の導電 性付与剤がある。

【0077】また、ポリピニリデンフルオライド微粉末 などの弗素含有重合体微粉末も流動性、研磨性、帯電安 定性などの点から好ましい添加剤である。

【0078】また、熱ロール定着時の離型性を良くする 目的で低分子量ポリエチレン、低分子量ポリプロピレ ン、マイクロクリスタリンワックス、カルナパワック ス、サゾールワックス、パラフィンワックス等のワック ス状物質を0.5~5重量%程度トナーに加えることも 本発明の好ましい形態の一つである。

【0079】本発明に係るトナーを製造するにあたって は、上述した様なトナー構成材料をボールミルその他の 混合機により充分混合した後、熱ロールニーダー、エク ストルーダーの熱混練機を用いて良く混練し、冷却固化 後、機械的な粉砕、分級によってトナーを得る方法が好 ましい。他には、結着樹脂溶液中に構成材料を分散した

 I_{i}^{\prime}

が応用できる。

【0080】さらに必要に応じ所望の添加剤をヘンシェルミキサー等の混合機により充分に混合し、本発明に係るトナーを製造することができる。

【0081】本発明の現像剤は、従来公知の手段で、電子写真、静電記録及び静電印刷等における静電荷像を顕像化する為の現像には全て使用可能なものである。

【0082】本発明の現像剤は、摩擦帯電量の環境変動を著しく小さくすることによって、機械ハード部分での工夫をすることなしに、常に、画質の良好な画像を安定 10して提供することができる。

・【0083】ここで、本発明におけるトナーのキャリア に対する摩擦帯電量の測定法を図2を用いて説明する。

【0084】底に500メッシュ(キャリア粒子の通過しない大きさに適宜変更可能)の導電性スクリーン21のある金属製の測定容器22に試料(トナーとキャリア粒子を一定時間振とうした混合物)を入れ金属製のフタ23をする。この時の測定容器22全体の重量を秤量しWi(g)とする。次に、吸引機24(測定容器22と接する部分は少なくとも絶縁体)において、吸引口25から吸引し、風量調節弁26を調整して真空計27の圧力を70mmHgとする。この状態で充分(約1分間)吸引を行ない、トナーを吸引除去する。この時の電位計28の電位をV(ポルト)とする。ここで29はコンデンサーであり、容量をC(μ F)とする。また、吸引後の測定容器全体の重量を秤量し、Wz(g)とする。摩擦帶電量は次式により計算される。

[0085]

 $Q (\mu c/g) = C \cdot V / (W_1 - W_2)$

また、本発明における現像剤またはトナーの凝集度は以下のように測定される。

16

【0086】パウダーテスター、(ホソカワミクロン株式会社製)に、下から200メッシュ、100メッシュ、60メッシュのふるいを重ねてセットする。約5gのトナーを秤量(Wg)し、重ねたふるいの最上段の60メッシュのふるいの上にのせ、パウダーテスターに18Vの電圧を印加し、15秒間振動させる。その後、60、100、200メッシュのふるい上に残存したトナーの重量をそれぞれag、bg、cgと秤量し、次式によって、凝集度を算出する。

[0087]

凝集度(%) = (a+0.6b+0.2c)/W [0088]

【実施例】以下、本発明を実施例により具体的に説明するが、これは本発明を何ら限定するものではない。実施例1~7は本発明の現像剤A、実施例8~15は本発明の現像剤B、実施例16~22は本発明の現像剤Cに係る実施例である。尚、以下の配合における部数は全て重量部である。

【0089】以下の実施例1~7及び比較例1~6において用いられる無機微粉体の組成を示す。

[0090]

【表1】

無機 微粉体	原体(BET比表面積)	処 理 剤	疎水化 度
A	酸化チタン (70m²/g)	テトラデシルトリクロルシラン	59
В	チタン酸ストロンチウム (50)	テトラデシルトリクロルシラン	73
С	チタン酸ストロンチウム (50)	未処理	親水性
D	シリカ (130)	ジフェニルジクロルシラン	82
E	シリカ (130)	ジー tert ープチルジクロルシラン	55
F	シリカ (130)	テトラデシルトリクロルシラン	55
G	シリカ (130)	N,N -ヘキサメチルジシラザン	37
Н	シリカ (300)	シリコンオイル処理	80
I	シリカ (300)	ジフェニルジクロルシラン	72
J	シリカ (300)	N,N – ヘキサメチルジシラザン	48
K	シリカ (300)	未 処 理	親水性

*処理剤量は、原体100部に対し20部とした。

実施例1

ポリエステルA (酸価40mgKOH/g)

100部

(プロピレンオキサイド変性ピスフェノールA/フマル酸)

カーポンプラック

5部 4部

3,5-ジーtert.プチルサリチル酸のCr化合物

上記材料をプレンダーでよく混合した後、150℃に設 定した2軸混練押出機にて混練した。得られた混練物を 冷却し、カッターミルにて粗粉砕した後、ジェット気流 を用いた微粉砕機を用いて微粉砕し、得られた微粉砕粉 を固定壁型風力分級機で分級した。

【0091】さらに、得られた分級粉をコアンダ効果を 利用した多分割分級装置(日鉄鉱業社製エルボジェット 分級機) で超微粉を同時に厳密に分級除去して重量平均 粒径8. 4 µmの黒色樹脂粉体を得た。

【0092】この黒色樹脂粉体に無機微粉体DおよびI を 0. 5% プロ加え、ヘンシェルミキサーで混合してト ナーとした。

【0093】次いで平均粒径65 mmのアクリル樹脂コ ートフェライトキャリア (比抵抗1012Ω・cm) 10 0 部に対して、得られたトナー5 部を混合して現像剤と した。この現像剤を市販のカラー電子写真複写機CLC -500 (キヤノン(株) 製)で複写試験を行った。

【0094】その結果、温度15℃/温度10%の環境 条件下で、初期から画像濃度1.55の鮮やかな黒色画 50 【0097】この現像剤を実施例1と同じ方法で複写試

像が得られ、2万枚複写後も1.58の安定した濃度が 得られた。また、帯電量をプローオフ法により測定した ところ初期-30μc/gであったのが、耐久後も-2 6 µ c/gと安定した帯電量であった。次に、30℃/ 85%の環境条件下で同様に複写試験したところ、初期 から1.58 (帯電量-25μc/g) の高濃度の画像 が得られ、耐久2万枚複写後も1.59 (帯電量-24 μc/g)の高濃度の画像が維持されていた。また、ペ 夕画像の濃度均一性およびハーフトーン画像の再現性に も優れ、環境変化に伴う画質の大きな変化もなかった。 【0095】<u>実施例2</u>

実施例1におけるカーボンプラック5部を銅フタロシア ニン顔料 (C. I. ピグメントプルー15) 4部に変え る以外は実施例1と同様に重量平均粒径8.1 µmの樹 脂粉体を得、さらに同じシリカ微粉体D及びIを混合し てトナーを得た。

【0096】次いで実施例1と同じキャリア100部に 対して、得られたトナー5部を混合して現像剤とした。

験を行なった。その結果、温度15℃/温度10%では 初期濃度1.57、帯電量-31 µ c/gであった。そ して複写2万枚後も濃度1.60、帯電量-28 µ c/ gの高濃度な画像が得られた。30℃/85%では初期 濃度1.61の濃度の高い画像が得られ、耐久後も同様 に良好な画像が得られた。また、ペタ画像の濃度均一性 およびハーフトーン画像の再現性にも優れ、環境変化に 伴う画質の大きな変化もなかった。

【0098】 実施例3

実施例1におけるカーポンプラック5部をキナクリドン 10 系顔料 (C. I. ピグメントレッド122) 3. 5部に 変える以外は実施例1と同様に重量平均粒径8.2 μm の樹脂粉体を得、さらに実施例1と同じシリカ微粉体D 及びIを混合してトナーを得た。

【0099】次いで実施例1と同一のキャリア100部 に対して、得られたトナー5部を混合して現像剤とし た。この現像剤を実施例1と同じ方法で複写試験を行な った。その結果、温度15℃/湿度10%では初期か ら、濃度1.57でカブリのない良好なマゼンタ画像が 得られた。2万枚複写後も画像の劣化は認められなかっ 20 実施例1~4で用いたブラック、シアン、マゼンタ、イ た。また、30℃/85%の環境条件下でも複写試験を 行なったが、15℃/10%の場合と同様に濃度1.6 0の良好な画像が得られた。また、ベタ画像の濃度均一 性およびハーフトーン画像の再現性にも優れ、環境変化 に伴う画質の大きな変化もなかった。

*【0100】実施例4

実施例1におけるカーボンブラック5部を黄色顔料 (C. I. ピグメントイエロー17) 5 部に変える以外 は実施例1と同様に重量平均粒径8. 4 µmの樹脂粉体 を得、さらに実施例1と同じシリカ微粉体D及びIを混 合してトナーを得た。

20

【0101】次いで実施例1と同一のキャリア100部 に対して、得られたトナー5部を混合して現像剤とし

【0102】この現像剤を実施例1と同じ方法で複写試 験を行なった。その結果、温度15℃/温度10%の環 境条件下で、初期から、濃度1.56のカプリのない良 好な黄色画像が得られた。2万枚複写後も画質の劣化は 認められなかった。また、30℃/85%の環境条件下 では、初期で濃度1.61、2万枚耐久後、濃度1.5 9であった。耐久後の画像の劣化はなかった。また、ペ 夕画像の濃度均一性およびハーフトーン画像の再現性に も優れ、環境変化に伴う画質の大きな変化もなかった。

【0103】 実施例5

エローの現像剤を用いて、フルカラー画像を得た所、混 色性、階調性に優れた鮮やかなフルカラー画像が得られ

【0104】 実施例6

ポリエステルB (酸価30mgKOH/g)

100部

(プロピレンオキサイド変性ピスフェノールA/フマル酸)

銅フタロシアニン顔料

5部

3, 5-ジーtert. プチルサリチル酸のZn化合物

5部

上記材料をブレンダーでよく混合した後、140℃に設 30%対して、得られたトナー5部を混合して現像剤とした。 定した2軸混練押出機にて混練した。得られた混練物を 冷却し、カッターミルにて粗粉砕した後、ジェット気流 を用いた微粉砕機を用いて微粉砕し、得られた微粉砕粉 を固定壁型風力分級機で分級した。

【0105】さらに、得られた分級粉をコアンダ効果を 利用した多分割分級装置(日鉄鉱業社製エルボジェット 分級機)で超微粉を同時に厳密に分級除去して重量平均 粒径8.1 µmの樹脂粉体を得た。

【0106】得られた樹脂粉体100部に無機微粉体A およびHを0.5%づつ加え、ヘンシェルミキサーで混 40 よびハーフトーン画像の再現性にも優れ、環境変化に伴 合してトナーとした。

【0107】次いで平均粒径65μmのアクリル樹脂コ ートフェライトキャリア (10¹² Q・cm) 100部に※

【0108】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン(株) 製)で複写試験を行っ

【0109】その結果、温度15℃/湿度10%では初 期濃度1. 55、帯電量-33μc/gであった。そし て複写2万枚後も濃度1.57、帯電量-30μc/g の高濃度な画像が得られた。30℃/85%では初期濃 度1. 59の濃度の高い画像が得られ、耐久後も同様に 良好な画像が得られた。また、ベタ画像の濃度均一性お う画質の大きな変化もなかった。

【0110】 実施例7

ポリエステルC (酸価70mgKOH/g)

100部

(プロピレンオキサイド変性ピスフェノールA/フマル酸)

銅フタロシアニン顔料

5部

3, 5-ジーtert. プチルサリチル酸のZn化合物

5部

上記材料をプレンダーでよく混合した後、140℃に設 定した 2 軸混練押出機にて混練した。得られた混練物を 冷却し、カッターミルにて粗粉砕した後、ジェット気流 50 【0111】さらに、得られた分級粉をコアンダ効果を

を用いた微粉砕機を用いて微粉砕し、得られた微粉砕粉 を固定壁型風力分級機で分級した。

利用した多分割分級装置(日鉄鉱業社製エルボジェット 分級機) で超微粉を同時に厳密に分級除去して重量平均 粒径8.3 µmの樹脂粉体を得た。

【0112】得られた樹脂粉体100部に無機微粉体E およびHを0.5%プつ加え、ヘンシェルミキサーで混 合してトナーとした。

【0113】次いで平均粒径65μmのアクリル樹脂コ ートフェライトキャリア (10¹³Ω・cm) 100部に 対して、得られたトナー5部を混合して現像剤とした。

【0114】この現像剤を市販のカラー電子写真複写機 10 【0116】比較例1 CLC-500 (キヤノン (株) 製) で複写試験を行っ*

* *

【0115】その結果、温度15℃/湿度10%では初 期濃度1. 58、帯電量-31 µ c/gであった。そし て複写2万枚後も濃度1.60、帯電量-28μc/g の高濃度な画像が得られた。30℃/85%では初期濃 度1. 63の濃度の高い画像が得られ、耐久後も同様に 良好な画像が得られた。また、ベタ画像の濃度均一性お よびハーフトーン画像の再現性にも優れ、環境変化に伴 う画質の大きな変化もなかった。

22

ポリエステルD(酸価20mgK0H/g)

100部

(プロピレンオキサイド変性ピスフェノールA/フマル酸) カーポンプラック

5部

3, 5-ジ-tert. プチルサリチル酸のCr化合物

4部

上記材料をプレンダーでよく混合した後、150℃に設 定した2軸混練押出機にて混練した。得られた混練物を 冷却し、カッターミルにて粗粉砕した後、ジェット気流 を用いた微粉砕機を用いて微粉砕し、得られた微粉砕粉 を固定壁型風力分級機で分級した。

【0117】さらに、得られた分級粉をコアンダ効果を 利用した多分割分級装置(日鉄鉱業社製エルボジェット 分級機) で超微粉を同時に厳密に分級除去して重量平均 粒径8. 0 μmの樹脂粉体を得た。

【0118】この黒色樹脂粉体に無機微粉体DおよびI を0.5%プつ加え、ヘンシェルミキサーで混合してト ナーとした。

【0119】次いで実施例1のキャリア100部に対し て、得られたトナー5部を混合して現像剤とした。

【0120】この現像剤を市販のカラー電子写真複写機 30 CLC-500 (キヤノン (株) 製) で複写試験を行っ た。

【0121】その結果、温度15℃/温度10%の環境 条件下では、画像濃度が1.21と低く、2万枚複写後 も1.15と十分な濃度の画像は得られなかった。プロ ーオフ法により摩擦帯電量を測定したところ初期-46 μ c/gであり、耐久後は -42μ c/gといずれも帯 電量過多であった。次に、30℃/85%の環境条件下 で同様に複写試験したところ、初期は1.55(帯電量 -27μc/g)、耐久2万枚複写後は1.52 (帯電 40 量-28μc/g)であり、画像濃度の環境変動差が大 きかった。

【0122】比較例2

実施例1の黒色分級樹脂粉体100部に、モノメチルト リメトキシシランで実施例1と同様な方法で処理したシ リカ微粉体(疎水率20%)0.6部を加え、ヘンシェ ルミキサーで混合してトナーとした。次いで実施例1の キャリア100部に対して、得られたトナー5部を混合 して現像剤とした。

【0123】この現像剤を市販のカラー電子写真複写機 50 Jをそれぞれ0.5%づつ外添してトナーを得た。

CLC-500 (キヤノン (株) 製) で複写試験を行っ た。

【0124】その結果、温度15℃/温度10%の環境 条件下では、初期の画像濃度が1.42であったが、2 20 万枚複写後は1.60であり、十分な濃度の画像が得ら れたものの、複写枚数の増加に伴う画像濃度の変動が大 きかった。プローオフ法により摩擦帯電量を測定したと ころ、初期-40μc/gであったものが、耐久後は-22 µ c/gと低下していた。次に、30℃/85%の 環境条件下で同様に複写試験したところ、初期は1.6 5 (帯電量-18 μ c / g) であったが、耐久 2 万枚複 写後は1. 23 (帯電量-13μc/g) に低下し、ト ナー飛散が生じた。

【0125】比較例3

実施例1で作製した黒色樹脂粉体に無機微粉体Fを0. 5%外添してトナーを得た。

【0126】実施例1と同じキャリアを、実施例1と同 一比率で混合し、現像剤を作製した。この現像剤を実施 例1と全く同じ方法で複写テストを行なった。

【0127】温度15℃/温度10%および30℃/8 5%のいずれの環境下でもベタ画像の濃度は不均一とな り、ハーフトーン画像の部分はややガサツキが見られ た。

【0128】比較例4

実施例1で作製した黒色樹脂粉体に無機微粉体 J を 0. 5%外添してトナーを得た。

【0129】実施例1と同じキャリアを、実施例1と同 一比率で混合し、現像剤を作製した。この現像剤を実施 例1と全く同じ方法で複写テストを行なった。

【0130】30℃/85%の環境下では濃度1.42 の良好な画像が得られたが、15℃/10%の環境下で は画像濃度1.11に下がってしまった。

【0131】比較例5

実施例1で作製した黒色樹脂粉体に無機微粉体Gおよび

【0132】実施例1と同じキャリアを、実施例1と同一比率で混合し、現像剤を作製した。この現像剤を実施例1と全く同じ方法で複写テストを行なった。

【0133】温度15℃/温度10%の環境下では濃度 1.54の良好な画像が得られたが、30℃/85%の 環境下では画像濃度1.20に下がり、複写機内でのトナー飛散が発生した。

【0134】比較例6

実施例1で作製した黒色樹脂粉体に無機微粉体Eおよび Kをそれぞれ0.5%ずつ外添してトナーを得た。

【0135】実施例1と同じキャリアを、実施例1と同一比率で混合し、現像剤を作製した。この現像剤を実施例1と全く同じ方法で複写テストを行なった。

【0136】温度15℃/温度10%および30℃/85%のいずれの環境下でも、ベタ画像の濃度は不均一となり、ハーフトーン画像の部分にはガサツキが見られた。

【0137】実施例8

実施例1と同様の重量平均粒径8. 4 μmの樹脂粉体を 用意した。

【0138】アエロジル (BET200 m^2 /g) 50 0gをフラスコに入れ、 $100\sim120$ rpmで撹拌しながら、ジフェニルジクロルシラン10gをスプレーする。この時フラスコ内は窒素雰囲気下で還流しておく。その後、150℃で窒素で還流しながら2時間加熱して乾燥させる。そして放冷後、得られたシリカ微粉体(疎水率78%)0. 5部を前記の樹脂粉体に加え、ヘンシェルミキサーで混合してトナーとした。

【0139】次いで平均粒径 65μ mのアクリル樹脂コートフェライトキャリア(比抵抗 $10^{12}\Omega$ ・cm)10300部に対して、得られたトナー5部を混合して現像剤とした。

【0140】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン (株) 製) で複写試験を行った。

【0141】その結果、温度15℃/湿度10%の環境条件下で、初期から画像濃度1.52の鮮やかな黒色画像が得られ、2万枚複写後も1.56の安定した濃度が得られた。また、帯電量をプローオフ法により測定したところ初期 -31μ c/gであったのが、耐久後も-2407 μ c/gと安定した帯電量であった。次に、30℃/85%の環境条件下で同様に複写試験したところ、初期から1.57(帯電量 -25μ c/g)の高濃度の画像が得られ、耐久2万枚複写後も1.58(帯電量 -23μ c/g)の高濃度の画像が維持されていた。

【0142】 実施例9

実施例1におけるカーポンプラック5部を銅フタロシアニン顔料(C. I. ピグメントプルー15)4部に変える以外は実施例1と同様に重量平均粒径8.1μmの樹脂粉体を得、さらに実施例8と同じシリカ微粉体を混合

してトナーを得た。

【0143】次いで実施例8と同じキャリア100部に対して、得られたトナー5部を混合して現像剤とした。

24

【0144】この現像剤を実施例8と同じ方法で複写試験を行なった。その結果、温度15℃/湿度10%では初期濃度1.54、帯電量-35μc/gであった。そして複写2万枚後も濃度1.58、帯電量-30μc/gの高濃度な画像が得られた。30℃/85%では初期濃度1.57の濃度の高い画像が得られ、耐久後も同様10に良好な画像が得られた。

【0145】実施例10

実施例1におけるカーポンプラック5部をキナクリドン 系質料(C. I. ピグメントレッド122)3.5部に 変える以外は実施例1と同様に重量平均粒径8.2μm の樹脂粉体を得、さらに実施例8と同じシリカ微粉体を 混合してトナーを得た。

【0146】次いで実施例8と同一のキャリア100部に対して、得られたトナー5部を混合して現像剤とした。この現像剤を実施例8と同じ方法で複写試験を行なった。その結果、温度15℃/温度10%では初期から、濃度1.51でカブリのない良好なマゼンタ画像が帯られた。2万枚複写後も画像の劣化は認められなかった。また、30℃/85%の環境条件下でも複写試験を行なったが、15℃/10%の場合と同様に濃度1.55の良好な画像が得られた。

【0147】 実施例11

実施例 1 におけるカーボンプラック 5 部を黄色顔料 (C. I. ピグメントイエロー 1 7) 5 部に変える以外 は実施例 1 と同様に重量平均粒径 8 . 4 μ mの樹脂粉体 を得、さらに実施例 8 と同じシリカ微粉体を混合してトナーを得た。

【0148】次いで実施例8と同一のキャリア100部に対して、得られたトナー5部を混合して現像剤とした。

【0149】この現像剤を実施例8と同じ方法で複写試験を行なった。その結果、温度15 $^{\circ}$ ピー温度10 $^{\circ}$ の環境条件下で、初期から、濃度1.5 $^{\circ}$ 3のカプリのない良好な黄色画像が得られた。2万枚複写後も画質の劣化は認められなかった。また、 30° 2万枚耐久後、濃度1.5 $^{\circ}$ 4であった。耐久後の画像の劣化はなかった。

【0150】実施例12

実施例8~11で用いたブラック、シアン、マゼンタ、 イエローの現像剤を用いて、フルカラー画像を得た所、 混色性、階調性に優れた鮮やかなフルカラー画像が得ら れた。

【0151】 実施例13

実施例6と同じ重量平均粒径8. 1 μmの樹脂粉体を用意した。

脂粉体を得、さらに実施例8と同じシリカ微粉体を混合 50 【0152】この樹脂粉体100部に、ステアリルメチ

ルジクロルシランで実施例8と同様に処理したシリカ微 粉体(疎水率92%) 0.6部を加え、ヘンシェルミキ サーで混合してトナーとした。

【0153】次いで平均粒径65μmのアクリル樹脂コ ートフェライトキャリア (1012Ω·cm) 100部に 対して、得られたトナー5部を混合して現像剤とした。

【0154】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン (株) 製) で複写試験を行っ た。

【0155】その結果、温度15℃/温度10%では初 10 期濃度1.50、帯電量-38 µ c/gであった。そし て複写2万枚後も濃度1.53、帯電量-32μc/g の高濃度な画像が得られた。30℃/85%では初期濃 度1.56の濃度の高い画像が得られ、耐久後も同様に 良好な画像が得られた。

【0156】実施例14

実施例7と同じ重量平均粒径8.3 μmの樹脂粉体を用 意した。

【0157】この樹脂粉体100部にジフェニルジメト キシシランで実施例8と同様に処理したシリカ微粉体 20 (疎水率88%) 0. 6部を加え、ヘンシェルミキサー で混合してトナーとした。

【0158】次いで平均粒径65μmのアクリル樹脂コ ートフェライトキャリア (10¹³Ω·cm) 100部に 対して、得られたトナー5部を混合して現像剤とした。

【0159】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン (株) 製) で複写試験を行っ

【0160】その結果、温度15℃/湿度10%では初 期濃度1. 57、帯電量-31μc/gであった。そし 30 て複写2万枚後も濃度1.60、帯電量-28μc/g の高濃度な画像が得られた。30℃/85%では初期濃 度1. 61の濃度の高い画像が得られ、耐久後も同様に 良好な画像が得られた。

【0161】 実施例15

実施例7の分級樹脂粉体100部に、トリメチルメトキ シシランで実施例8と同様な方法で処理したシリカ微粉 体(疎水率62%)0.6部を加え、ヘンシェルミキサ ーで混合してトナーとした。次いで実施例14のキャリ ア100部に対して、得られたトナー5部を混合して現 40 写後は1.23 (帯電量 -13μ c/g) に低下し、ト 像剤とした。

【0162】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン(株) 製)で複写試験を行っ た。

【0163】その結果、温度15℃/湿度10%では初 期濃度1. 55、帯電量-35μc/gあった。そして 複写2万枚後も濃度1.50、帯電量-30μc/gの 高濃度な画像が得られた。30℃/85%では初期濃度 1. 62の濃度の高い画像が得られ、耐久後も同様に良 好な画像が得られた。

【0164】 比較例7

比較例1と同じ重量平均粒径8.0 µmの樹脂粉体を用

26

【0165】実施例8のシリカ0.5部を前記の樹脂粉 体に加え、ヘンシェルミキサーで混合してトナーとし た。次いで実施例8のキャリア100部に対して、得ら れたトナー5部を混合して現像剤とした。

【0166】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン (株) 製) で複写試験を行っ

【0167】その結果、温度15℃/温度10%の環境 条件下では、画像濃度が1.21と低く、2万枚複写後 も1.15と十分な濃度の画像は得られなかった。プロ ーオフ法により摩擦帯電量を測定したところ初期-46 μ c/gであり、耐久後は -42μ c/gといずれも帯 電量過多であった。次に、30℃/85%の環境条件下 で同様に複写試験したところ、初期は1.55(帯電量 -27μc/g)、耐久2万枚複写後は1.52(帯電 量-28 µ c/g) であり、画像濃度の環境変動差が大 きかった。

【0168】比較例8

実施例1の黒色分級樹脂粉体100部に、モノメチルト リメトキシシランで実施例8と同様な方法で処理したシ リカ微粉体(疎水率20%)0.6部を加え、ヘンシェ ルミキサーで混合してトナーとした。次いで実施例8の キャリア100部に対して、得られたトナー5部を混合 して現像剤とした。

【0169】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン (株) 製) で複写試験を行っ

【0170】その結果、温度15℃/湿度10%の環境 条件下では、初期の画像濃度が1.42であったが、2 万枚複写後は1.60であり、十分な濃度の画像が得ら れたものの、複写枚数の増加に伴う画像濃度の変動が大 きかった。プローオフ法により摩擦帯電量を測定したと ころ、初期-40μc/gであったものが、耐久後は-22 µ c/gと低下していた。次に、30℃/85%の 環境条件下で同様に複写試験したところ、初期は1.6 5 (帯電量-18μc/g) であったが、耐久2万枚複 ナー飛散が生じた。

【0171】以下の実施例16~22及び比較例9~1 1において用いられる無機微粉体の合成例を示す。

【0172】(合成例1) n-ヘキサン500mlの入 った1000ccのナス型フラスコを60℃に加温し、 ジフェニルジクロルシラン2.0gを加え、よく撹拌し ながら予め良く乾燥させたシリカ、AEROSIL 2 00 (BET200m² /g) 20. 0gを加えた。こ のまま5分間撹拌放置後シリカゲル(青色、大粒、3~ 50 6 mesh) 25 gを加え、さらに3分間撹拌放置後2

0meshのフルイで濾過し、シリカゲルとn-ヘキサン中に分散した処理シリカを分離した。濾液中のn-ヘキサンをアスピレーターで蒸留除去後、残った固体をよく乾燥させ、コーヒーミルで解砕して表面カップリング処理無機微粉体を19g得た。

【0173】(合成例2)シリカゲルの代わりに陽イオン交換樹脂(アンパーライト)を20g用い、合成例1と同様の手順で表面カップリング処理無機微粉体を20g得た。

【0174】(合成例3)シリカの代わりに酸化チタン 10 (BET90m³/g)20.0gを用い、合成例1と同様の手順で表面カップリング処理無機微粉体を18.0g得た。

【0175】(比較合成例1)シリカゲルによる未反応カップリング剤除去工程を省略した以外は、合成例1と同様の合成手順で表面カップリング処理無機微粉体を21g得た。

【0176】(比較合成例2)シリカゲルによる未反応 カップリング剤除去工程を省略した以外は、合成例3と 同様の合成手順で表面カップリング処理無機微粉体を2 20 0g得た。

【0177】 実施例16

実施例1と同様にして重量平均粒径8.3μmの黒色樹脂粉体を用意した。

【0178】合成例1のシリカ微粉体(疎水率85%) 0.5部を前記の樹脂粉体に加え、ヘンシェルミキサー で混合してトナーとした。得られたトナーの凝集度を測 定したところ、5%であった。

【0179】次いで平均粒径 65μ mのアクリル樹脂コートフェライトキャリア(比抵抗 $10^{12}\Omega$ ・cm)100部に対して、得られたトナー5部を混合して現像剤とした。

【0180】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン (株) 製) で複写試験を行った。

【0182】次に、15 $\mathbb{C}/10$ %の環境条件下で複写 試験したところ、初期から 1.50 (帯電量 $-35\mu c$ /g) の高濃度の画像が得られた。更に、30 $\mathbb{C}/85$ %の環境条件下においても、濃度 1.60 (帯電量 $-24\mu c$ /g) の良好な画像が得られた。また、濃度の均一性、およびハーフトーン画像のなめらかさも非常に良好であった。

【0183】 <u>実施例17</u>

実施例1におけるカーボンブラック4部を銅フタロシア 50 部を混合して現像剤とした。

28

ニン顔料 (C. I. ピグメントブルー15) 4部に変える以外は実施例1と同様に重量平均粒径8. 0μ mの樹脂粉体を得、さらに合成例1のシリカ微粉体を0.5部混合してトナーを得た。得られたトナーの凝集度を測定したところ、5%であった。

【0184】次いで実施例16のアクリル樹脂コートフェライトキャリア100部に対して、得られたトナー5部を混合して現像剤とした。

【0185】この現像剤を実施例16と同じ方法で複写 試験を行なった。

【0186】その結果、23℃/60%の環境条件下で、初期から、濃度1.55(帯電量 -32μ c/g)のカブリのない良好な青色画像が得られた。2万枚複写後も濃度1.57(帯電量 -30μ c/g)の画像が得られ、画像の劣化は認められなかった。また、30℃/85%では初期濃度1.62、15℃/10%では初期濃度1.52の濃度の高い画像が得られ、耐久後も、23℃/60%の場合と同様に良好な結果が得られた。また、ベタ画像、ハーフトーン画像ともに非常に良好であった。

【0187】 <u>実施例18</u>

実施例 1 におけるカーボンプラック 5 部をキナクリドン 系顔料 (C. I. ピグメントレッド 122) 3.5 部に 変える以外は実施例 1 と同様に重量平均粒径 8.3 μ m の樹脂粉体を得、さらに合成例 1 のシリカ微粉体を 0.5 部混合してトナーを得た。得られたトナーの凝集度を 測定したところ、 4 %であった。

【0188】次いで実施例16のアクリル樹脂コートフェライトキャリア100部に対して、得られたトナー5部を混合して現像剤とした。

【0189】この現像剤を実施例16と同じ方法で複写 試験を行なった。その結果、23 $^{\circ}$ /60%の環境条件下で、初期から、濃度1.56(帯電量 -31μ c/g)でカブリのない良好なマゼンタ画像が得られた。2万枚複写後(帯電量 -28μ c/g)も画像の劣化は認められなかった。

【0190】また、30 $\mathbb{C}/85$ %および $15\mathbb{C}/10$ %の環境条件下で複写試験を行なったが、23 $\mathbb{C}/60$ %の場合と同様に良好な結果が得られた。また、ベタ画像、ハーフトーン画像ともに非常に良好であった。

【0191】 実施例19

実施例 1 におけるカーボンプラック 5 部を黄色顔料 (C. I. ピグメントイエロー 1 7) 5 部に変える以外 は実施例 1 と同様に重量平均粒径 8. 1 μ mの樹脂粉体を得、さらに合成例 1 のシリカ微粉体を 0. 5 部混合してトナーを得た。得られたトナーの凝集度を測定したところ、7 %であった。

【0192】次いで実施例16のアクリル樹脂コートフェライトキャリア100部に対して、得られたトナー5部を混合して現像初とした

【0193】 この現像剤を実施例16と同じ方法で複写 試験を行なった。その結果、23℃/60%の環境条件下で、初期から、濃度1.52(帯電量 -33μ c/g)のカプリのない良好な黄色画像が得られた。2万枚複写後(帯電量 -29μ c/g)も画質の劣化は認められなかった。また、15℃/10%の環境条件下で複写試験を行なったところ、初期で濃度1.48(帯電量 -37μ c/g)、耐久後、濃度1.51(帯電量 -33μ c/g)であった。また、30℃/85%の場合は、初期で1.58(帯電量 -24μ c/g)、耐久後も濃 10度1.59(帯電量 -24μ c/g)であり、23℃/60%と同様な画像が得られた。また、ベタ画像、ハーフトーン画像ともに非常に良好であった。

【0194】 実施例20

実施例16~19で用いたプラック、シアン、マゼンタ、イエローの現像剤を用いて、フルカラー画像を得た所、混色性、階調性に優れた鮮やかなフルカラー画像が得られた。しかも、複写環境の違いによる、画質の変化もほとんど見られなかった。

【0195】実施例21

実施例6と同じ重量平均粒径8.1μmの樹脂粉体を用意した。

【0196】合成例3の酸化チタン微粉体(疎水率80%)0.5部を前記の樹脂粉体に加え、ヘンシェルミキサーで混合してトナーとした。得られたトナーの凝集度を測定したところ、6%であった。

【0197】次いで平均粒径 65μ mのアクリル樹脂コートフェライトキャリア($10^{12}\Omega$ ・cm)100部に対して、得られたトナー5部を混合して現像剤とした。

【0198】この現像剤を市販のカラー電子写真複写機 30 CLC-500 (キヤノン (株) 製) で複写試験を行っ た。

【0199】その結果、温度15℃/温度10%では初期濃度1.50、帯電量 -37μ c/gであった。そして複写2万枚後も濃度1.51、帯電量 -35μ c/gの高濃度な画像が得られた。30℃/85%では初期濃度1.61の濃度の高い画像が得られ、耐久後も同様に良好な画像が得られた。また、ベタ画像の濃度均一性およびハーフトーン画像の再現性にも優れ、環境変化に伴う画質の大きな変化もなかった。

【0200】実施例22

実施例7と同じ重量平均粒径8.3μmの樹脂粉体を用 登した。

【0201】合成例2のシリカ微粉体(疎水率92%) 0.5部を前記の樹脂粉体に加え、ヘンシェルミキサー で混合してトナーとした。得られたトナーの凝集度を測 定したところ、5%であった。

【0202】次いで平均粒径65 μ mのアクリル樹脂コートフェライトキャリア(10 $^{13}\Omega$ ・cm)100部に対して、得られたトナー5部を混合して現像剤とした。

【0203】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン (株) 製)で複写試験を行っ

30

【0204】その結果、温度15 \mathbb{C} / 温度10 %では初期濃度1.55、帯電量 -32μ \mathbb{C} / gであった。そして複写2 万枚後も濃度1.58、帯電量 -28μ \mathbb{C} / g の高濃度な画像が得られた。30 \mathbb{C} / 85 %では初期濃度1.62 の濃度の高い画像が得られ、耐久後も同様に良好な画像が得られた。また、ペタ画像の濃度均一性およびハーフトーン画像の再現性にも優れ、環境変化に伴う画質の大きな変化もなかった。

【0205】比較例9

比較例1と同じ重量平均粒径8. 0μmの樹脂粉体を用意した。

【0206】合成例1のシリカ微粉体(疎水率85%) 0.5部を前配の樹脂粉体に加え、ヘンシェルミキサー で混合してトナーとした。得られたトナーの凝集度を測 定したところ、6%であった。

【0207】次いで実施例1のキャリア100部に対し 20 て、得られたトナー5部を混合して現像剤とした。

【0208】この現像剤を市販のカラー電子写真複写機 CLC-500(キヤノン(株)製)で複写試験を行った。

【0209】その結果、温度15℃/湿度10%の環境条件下では、画像濃度が1.25と低く、2万枚複写後も1.18と十分な濃度の画像は得られなかった。プローオフ法により摩擦帯電量を測定したところ初期-44 μ c/gであり、耐久後は -42μ c/gといずれも帯電量過多であった。次に、30℃/85%の環境条件下で同様に複写試験したところ、初期は1.57(帯電量 -26μ c/g)、耐久2万枚複写後は1.51(帯電量 -31μ c/g)であり、画像濃度の環境変動差が大きかった。

【0210】比較例10

実施例1の黒色分級樹脂粉体100部に比較合成例1のシリカ微粉体(疎水率20%)0.5部を加え、ヘンシェルミキサーで混合してトナーとした。得られたトナーの凝集度を測定したところ、31%であった。

【0211】次いで実施例16のキャリア100部に対 40 して、得られたトナー5部を混合して現像剤とした。

【0212】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン (株) 製) で写試験を行っ た。

【0213】その結果、温度15℃/湿度10%の環境条件下では、初期濃度が1.44の画像が得られ、1万枚複写後も比較的良好な画像が得られた。しかし、30℃/85%の環境条件下で同様に複写試験したところ、初期は1.60(帯電量-21μc/g)であったが、複写500枚めで飛散がひどくなった。その際の帯電量50を測定したところ-13μc/gと低かった。

【0214】比較例11

実施例1の黒色分級樹脂粉体100部に比較合成例2の 酸化チタン微粉体(疎水率15%) 0. 5部を加え、へ ンシェルミキサーで混合してトナーとした。得られたト ナーの凝集度を測定したところ、38%であった。

【0215】次いで実施例16のキャリア100部に対 して、得られたトナー5部を混合して現像剤とした。

【0216】この現像剤を市販のカラー電子写真複写機 CLC-500 (キヤノン (株) 製) で複写試験を行っ

【0217】その結果、温度15℃/温度10%の環境 条件下では、初期濃度が1.47の画像が得られ、1万 枚複写後も比較的良好な画像が得られた。しかし、30 ℃/85%の環境条件下で同様に複写試験したところ、 初期は1.63 (帯電量-19μc/g) であったが、 複写500枚めで飛散がひどくなった。その際の帯電量 を測定したところ-11μc/gと低かった。

[0218]

【発明の効果】上述したように、本発明の現像剤は帯電 性の環境安定性および流動性のいずれも良好で、環境変 20 25 吸引口 化に伴う画質の変動が無く、常に優れた画質を維持し、 供給し続けることができる。特に、カラートナーに適用 した場合、ハーフトーン画像も環境変動することがない ため、いかなる環境下においても常に優れたフルカラー 画像を提供し得る。

【図面の簡単な説明】

【図1】キャリアの比抵抗を測定するための装置を模式 的に示した概略図である。

32

【図2】トナーのキャリアに対する摩擦帯電量を求める ための装置を模式的に示した概略図である。

【符号の説明】

- 1 下部電極
- 2 上部電極
- 3 絶縁物
- 10 4 電流計
 - 5 電圧計
 - 6 定電圧装置
 - 7 試料 (キャリア)
 - 8 ガイドリング
 - A 測定セル
 - 21 導電性スクリーン
 - 22 測定容器
 - 23 金属製の蓋
 - 24 吸引機
- - 26 風量調節弁
 - 27 真空計
 - 28 電位計
 - 29 コンデンサー

【図1】

(18)

特開平5-113688

【図2】

フロントページの続き

(51) Int. Cl. 5

識別記号

庁内整理番号

F I G 0 3 G 9/10 技術表示箇所

351