Software Design & Analysis

Engr. Abdul-Rahman Mahmood

DPM, MCP, QMR(ISO9001:2000)

- 🔀 armahmood786@yahoo.com
- alphapeeler.sf.net/pubkeys/pkey.htm
- in pk.linkedin.com/in/armahmood
- www.twitter.com/alphapeeler
- www.facebook.com/alphapeeler
- abdulmahmood-sss **S** alphasecure
 - armahmood786@hotmail.com
- http://alphapeeler.sf.net/me

- alphasecure@gmail.com
- http://alphapeeler.sourceforge.net
- t http://alphapeeler.tumblr.com
- 🗑 armahmood786@jabber.org
- 🙎 alphapeeler@aim.com
- S mahmood_cubix 🖇 48660186
- **a**lphapeeler@icloud.com
- http://alphapeeler.sf.net/acms/

Sequence Diagrams

The Requirements Model, and The Dynamic Analysis Model

Outline

- The Requirements Model and the Analysis model
- Importance of Sequence Diagrams
- Rules of sequence diagrams
- Use Cases and Sequence Diagrams
- The System Sequence Diagrams
- The Vending Machine Example
- Other Examples

The Requirements Model and the Analysis Model

The Requirements
Elicitation
Process

The Object-Oriented Analysis Process

Functional/ Nonfunctional Requirements

Use Case Diagrams/ Sequence Diagrams (the system level)

Static Analysis

Dynamic Analysis

- Class Diagrams
- State Diagrams/
 Refined Sequence
 Diagrams (The object level)

Importance of Sequence Diagrams

- Depict object interactions in a given scenario identified for a given Use Case
- Specify the messages passed between objects using horizontal arrows including messages to/from external actors
- Time increases from Top to bottom

Sequence Initiation

- <u>Identify objects</u> needed to support use case, determine sequence of <u>internal events</u> following the <u>external initiating</u> event
- Diagrams that are not initiated with an external actor represent only a <u>partial sequence</u>
- Partial sequence diagrams should clearly identify the <u>actor initiated sequence diagrams</u> from which they are launched

Messages specified on interactions can be synchronous or asynchronous

Rules of Sequence Diagrams Asynchronous call

Display operation names on call arrows

Compound and Simple Iteration

'included' sequence diagrams

Showing alternate behavior in a

sequence diagram

Showing Extension Point

Specifying Timing Requirements

Requirements Elicitation Process Refining Use Cases using System Sequence Diagrams

- System sequence diagrams establish the dynamic behavior in terms of key scenarios of the system for each use case
- The system sequence diagram models a scenario of the system interactions with the environment for a given use case
- Input/output events are clearly identified in each sequence diagram,
- The <u>State of the system</u> before and after each event are also depicted
- Different diagrams model scenarios with the <u>normal</u> flow of events and the <u>abnormal flow</u> of events

Sequence Diagrams and Use Cases
System Sequence Diagram

Actor₂

Uc₁

Actor₂

Uc₂

The use case diagram
Of system S

The sequence diagram of use case UC1 for system S

System Sequence Diagram

Example: Use Case Diagram of the Vending Machine

Requirements Elicitation Process Identify Initial Analysis Objects- The Initial Object-Model

System Sequence Diagram for Deposit Money Use Case

System Sequence Diagram for Make Selection Use Case

System Sequence Diagram for Cancellation Use Case

System Sequence Diagram for Update Database Use Case

Other Examples of Sequence Diagrams

A Simple Example of Using UML2

• EXAMPLE: SATELLITE CONTROL SYSTEM

A Simple Example Using UML2

• SATELLITE CONTROL - Architectural behavior

