

UNIVERSIDADE FEDERAL DO ABC CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

MATERIAIS E SUAS PROPRIEDADES

✓ Caracterização de estruturas cristalinas

Prof. Dr. Renata Ayres Rocha

PONTOS CRISTALOGRÁFICOS – ÍNDICES DE MILLER

Coordenada dos Pontos:

$$P = qa rb sc$$

 $P = qrs$

Exemplo: 1/4 1 1/2

onde a=0,48nm; b=0,46nm; c=0,40nm

PONTOS CRISTALOGRÁFICOS – ÍNDICES DE MILLER

Coordenada dos <u>pontos</u> (átomos) estrutura CCC:

Point Number	Fractional Lengths			Point
	x axis	y axis	z axis	Coordinates
1	0	0	0	0 0 0
2	1	0	0	100
3	1	1	0	110
4	0	1	0	0 1 0
5	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}\frac{1}{2}\frac{1}{2}$
6	0	Ō	1	0 0 1
7	1	0	1	101
8	1	1	1	111
9	0	1	1	0 1 1

DIREÇÕES E PLANOS CRISTALOGRÁFICOS – ÍNDICES DE MILLER

✓ <u>Direções Cristalográficas</u>

- √As direções são vetores que unem dois pontos da rede cristalina.
- ✓ Procedimento para determinação dos índices de Miller de uma direção cristalográfica:
 - ✓ transladar o "vetor direção" de maneira que ele passe pela origem do sistema de coordenadas.
 - ✓ determinar a projeção do vetor em cada um dos três eixos de coordenadas. Essas projeções devem ser medidas em termos dos parâmetros de rede (a,b,c)

y Aatane Rf or F

DIREÇÕES E PLANOS CRISTALOGRÁFICOS – ÍNDICES DE MILLER

✓ <u>Direções Cristalográficas</u>

- ✓ Procedimento para determinação dos índices de Miller de uma direção cristalográfica:
 - ✓ multiplicar ou dividir esses três números por um fator comum, tal que os três números resultantes sejam os menores inteiros possíveis.
 - ✓ representar a direção escrevendo os três números entre colchetes e sem vírgulas: [u v w].
 - ✓ coloca-se uma barra sobre o número caso ele seja negativo:

 $[0\overline{1}2].$

DIREÇÕES E PLANOS CRISTALOGRÁFICOS – ÍNDICES DE MILLER

✓ <u>Direções Cristalográficas</u>

Como representar as direções dos átomos?

- 1- Posicionar o vetor passando pela origem;
- 2- Determinar os comprimentos das projeções (coordenada de pontos)

(Ex.:
$$P = 1 \frac{1}{2} 0 = a = 1, b = \frac{1}{2} e c = 0$$
)

- 3- Dividir ou multiplicar os três números por um fator comum (3 números resultantes sejam os menores inteiros possíveis). Ex.: x 2;
- 4- Representação direção cristalográfica: [210]

	X	у	Z
projeções	$\frac{1}{2}a$	1 b	0 c
projeções em termos de a,b e c	$\frac{1}{2}$	1	0
redução a mínimos inteiros	1	2	0
notação		[120]	

DIREÇÕES CRISTALOGRÁFICAS - ÍNDICES DE MILLER

Indique a direção cristalográfica [110]

		у	Z
notação		[110]	
projeção	1a	-1b	0c
	Z Å		

[110]

[100]

DIREÇÕES CRISTALOGRÁFICAS - ÍNDICES DE MILLER

• [100]

DIREÇÕES CRISTALOGRÁFICAS - ÍNDICES DE MILLER

yAdaneRforl

- [110]
- [111]
- [021]

DIREÇÕES CRISTALOGRÁFICAS – ÍNDICES DE MILLER

[011]

DIREÇÕES CRISTALOGRÁFICAS - ÍNDICES DE MILLER

[111]

DIREÇÕES CRISTALOGRÁFICAS - ÍNDICES DE MILLER

 $[1\bar{1}1]$

[100]

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

MATERIAIS E SUAS PROPRIEDADES

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

MATERIAIS E SUAS PROPRIEDADES

 \mathcal{R}

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

MATERIAIS E SUAS PROPRIEDADES

- [100]
- [011]
- [011]

DIREÇÕES CRISTALOGRÁFICAS - ÍNDICES DE MILLER

Direções equivalentes, mesmo que não paralelas!!!

Espaçamento entre os átomos ao longo de cada direção é o mesmo

Representação: <u v w>

< 100>:

DIREÇÕES CRISTALOGRÁFICAS - ÍNDICES DE MILLER

Direções equivalentes, mesmo que não paralelas!!!

Espaçamento entre os átomos ao longo de cada direção é o mesmo

Representação: <u v w>

< 100>:

DIREÇÕES CRISTALOGRÁFICAS - ÍNDICES DE MILLER

Família de direções

- <100>
- [100]
- [010]
- [001]

Uma <família de direções> inclui todas as direções possíveis com as mesmas coordenadas básicas

DIREÇÕES CRISTALOGRÁFICAS - ÍNDICES DE MILLER

Família de direções

- <100>
- [100]
- [010]
- [001]
- [100]
- [010]
- [001]

Sistema cúbico

Uma <família de direções> inclui todas as direções possíveis com as mesmas coordenadas básicas

DIREÇÕES CRISTALOGRÁFICAS – Família de direções

As direções sempre precisam ser equivalentes para pertencerem à mesma família. Para sistemas com parâmetros de rede diferentes, as famílias podem diferir do sistema cúbico.

Ex.: sistema tetragonal (a=b≠c):

DIREÇÕES CRISTALOGRÁFICAS – Família de direções

As direções sempre precisam ser equivalentes para pertencerem à mesma família. Para sistemas com parâmetros de rede diferentes, as famílias podem diferir do sistema cúbico.

Ex.: sistema tetragonal (a=b≠c):

As famílias <100> e <001> não são equivalentes!!

DIREÇÕES CRISTALOGRÁFICAS

Direções Cristalográficas para sistema CCC

- No sistema CCC os átomos se tocam ao longo da diagonal do cubo, que corresponde a família de direções <111>.
- Então, a direção <111> é a de maior empacotamento atômico para o sistema CCC.

DIREÇÕES CRISTALOGRÁFICAS

Direções Cristalográficas para o sistema CFC

- No sistema CFC os átomos se tocam ao longo da diagonal da face, que corresponde a família de direções <110>.
- Então, a direção <110> é a de maior empacotamento atômico para o sistema CFC.

DIREÇÕES E PLANOS CRISTALOGRÁFICOS – Planos cristalográficos

- 1- Desenhe a origem e a célula unitária
- 2- O plano x, y, z interceptará os eixos em 1/x, 1/y e 1/z.

(Ex: 1,1,1)

3- Dividir ou multiplicar os três números por um fator comum

(Ex: 1,1,1)

4- Representação por meio dos índices de Miller, entre parênteses: (h k l)

Plano (111):

PLANOS CRISTALOGRÁFICOS – Planos cristalográficos

Determine os índices de miller para o plano cristalográfico indicado na figura

Como o plano passa pela origem, deve ser transladado ou nova origem escolhida

		у	Z
intercepto	∞ a	-b	c/2
	000	-1	1/2
inverso	0	-1	2
notação	(012)		

PLANOS CRISTALOGRÁFICOS – Planos cristalográficos

- (hkl):
- (100)
- (110)

PLANOS CRISTALOGRÁFICOS – Planos cristalográficos

- (hkl):
- (100)
- (110)
- (111)
- (100)
- (020)
- (040)

No sistema cúbico, uma direção com os mesmos índices de Miller de um plano representa a direção normal a esse plano!

PLANOS CRISTALOGRÁFICOS – Planos cristalográficos

PLANOS CRISTALOGRÁFICOS – Planos cristalográficos

Notação: {hkl}

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

MATERIAIS E SUAS PROPRIEDADES

PLANOS CRISTALOGRÁFICOS – Família de planos

Notação: {hkl}

- {100}
- {110}

PLANOS CRISTALOGRÁFICOS - Família de planos

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS Z

MATERIAIS E SUAS PROPRIEDADES

PLANOS CRISTALOGRÁFICOS – Família de planos

Notação: {hkl}

- {100}
- {110}
- (100)

PLANOS CRISTALOGRÁFICOS – Família de planos

DIFRAÇÃO DE RAIOS X (X-RAY DIFFRACTION)

$$n\lambda = \overline{SQT}$$
 Para interferência construtiva

$$n\lambda = d_{hkl}sen\theta + d_{hkl}sen\theta = 2d_{hkl}sen\theta$$

$$n\lambda = 2d_{nkl} sen\theta$$
 (Lei de Bragg)

DENSIDADE – MASSA ESPECÍFICA

$$\rho = \frac{nA}{V_c N_A}$$

 ρ = densidade

n = número de átomos associados a célula unitária

Vc = volume da célula unitária

NA = número de Avogadro (6,023 x10²³ átomos/mol)

A = massa atômica do elemento

DENSIDADE ATÔMICA LINEAR (DL)

Apenas átomos que tiverem o centro na direção analisada.

$$D_L = \frac{L_{\acute{a}tomos}}{L_{linha}} = \frac{L_A}{L_L}$$

$$L_L = aresta = \frac{4R}{\sqrt{3}}$$

$$L_A = 2R$$

Assim:

$$D_L = \frac{L_A}{L_C} = \frac{\sqrt{3}R}{2R} = 0,866$$

CCC – direção [100]

DENSIDADE ATÔMICA LINEAR (DL)

DENSIDADE ATÔMICA LINEAR (DL)

Calcule a densidade atómica linear ρ_l na direcção [110] da rede cristalina do cobre, em átomos por milímetro. O cobre é CFC e o parâmetro de rede é 0,361 nm.

Resolução:

Os átomos cujos centros são intersectados pela direcção [110] estão indicados na fig. 3.23. Seleccionemos, como comprimento de referência, o comprimento da diagonal da face da célula unitária CFC, que é $\sqrt{2} a$. O número de diâmetros atómicos intersectados por este comprimento de referência é $\frac{1}{2} + 1 + \frac{1}{2} = 2$ átomos. Assim, usando a equação (3.7), a densidade atómica linear é

$$\rho_l = \frac{2 \text{ átomos}}{\sqrt{2}} = \frac{2 \text{ átomos}}{\sqrt{2} (0,361 \text{ nm})} = \frac{3,92 \text{ átomos}}{\text{nm}}$$

$$= \frac{3,92 \text{ átomos}}{\text{nm}} \times \frac{10^6 \text{ nm}}{\text{nm}}$$

$$= 3,92 \times 10^6 \text{ átomos/mm} \triangleleft$$

DENSIDADE ATÔMICA PLANAR (DP)

$$DP = \frac{\acute{A}rea_{\acute{a}tomos\ no\ plano}}{\acute{A}rea_{plano}} = \frac{A_A}{A_P}$$

$$A_P = \left(\overline{AC}\right)\left(\overline{AD}\right) = (4R)\left(2R\sqrt{2}\right) = 8R^2\sqrt{2}$$

cela unitária - CFC

CFC - plano (110)

DENSIDADE ATÔMICA PLANAR (DP)

$$DP = \frac{\acute{A}rea_{\acute{a}tomos\ no\ plano}}{\acute{A}rea_{plano}} = \frac{A_A}{A_P}$$

$$A_P = \left(\overline{AC}\right)\left(\overline{AD}\right) = (4R)\left(2R\sqrt{2}\right) = 8R^2\sqrt{2}$$

$$A_{\rm C} = (2)\pi R^2$$

Assim:

$$DP = \frac{A_C}{A_P} = \frac{2\pi R^2}{8R^2 \sqrt{2}} = 0,555$$

CFC – plano (110)

DENSIDADE ATÔMICA PLANAR (DP)

FIGURA 3.22 (a)
Célula unitária CCC
com as posições
atómicas, indicandose, a sombreado, um
plano (110). (b) Áreas
dos átomos cortados
pelo plano (110) numa
célula unitária CCC.

DENSIDADE ATÔMICA PLANAR (DP)

(a)

(b)

FIGURA 3.22A (a)
Célula unitária CFC
com as posições
atómicas, mostrandose, a sombreado, um
plano (111). (b) Áreas
dos átomos cortados
pelo plano (111) numa
célula unitária CFC.

DENSIDADE ATÔMICA PLANAR (DP)

Calcule a densidade atómica planar ρ_p , em átomos por milímetro quadrado, no plano (110) do ferro-α, cuja rede é CCC. O parâmetro de rede do ferro-α é 0,287 nm.

Resolução:

$$\rho_{p} = \frac{\text{n.}^{\circ} \text{ efectivo de átomos cujos centros são intersectados pela área seleccionada}}{\text{área seleccionada}}$$
 (3.6)

O número efectivo de átomos intersectados pelo plano (110), em termos da área interior à célula unitária CCC, está representado na fig. 3.22, e é

1 átomo no centro + 4 \times ½ átomos nos quatro vértices do plano = 2 átomos

A área do plano (110) interior à célula unitária (área seleccionada) é

$$(\sqrt{2}a)(a) = \sqrt{2}a^2$$

Assim, a densidade atómica planar é

$$\rho_{p} = \frac{2 \text{ átomos}}{\sqrt{2} (0,287 \text{ nm})^{2}} = \frac{17,2 \text{ átomos}}{\text{nm}^{2}}$$

$$= \frac{17,2 \text{ átomos}}{\text{nm}^{2}} \times \frac{10^{12} \text{ nm}^{2}}{\text{nm}^{2}}$$

$$= 1,72 \times 10^{13} \text{ átomos/mm}^{2} \triangleleft$$