Pizzaseminar zu konstruktiver Mathematik

13. August 2013

in Entstehung befindlich, nur grobe Zusammenfassung

Inhaltsverzeichnis

1	vvas	ist konstruktive Mathematik?	T			
	1.1	Widerspruchsbeweise vs. Beweise von Negationen	2			
	1.2	Informale Bedeutung logischer Aussagen	3			
2	Beispiele					
	2.1	Diskretheit der natürlichen Zahlen	4			
	2.2	Minima von Teilmengen der natürlichen Zahlen	5			
	2.3	Potenzmengen	6			
3	Nut	zen konstruktiver Mathematik	6			
4	Bezi	ehung zu klassischer Logik	8			
1 Was ist konstruktive Mathematik?						
Pr	opos	sition 1.1. Es gibt irrationale Zahlen x, y , sodass x^y rational ist.				
		1. Die Zahl $\sqrt{2}^{\sqrt{2}}$ ist rational oder nicht rational. Setze im ersten Fall $x := \sqrt{2}$	$\sqrt{2}$,			
y:	$=\sqrt{2}$	Setze im zweiten Fall $x := \sqrt{2}^{\sqrt{2}}, y := \sqrt{2}$.				
$B\epsilon$	weis	2. Setze $x := \sqrt{2}$ und $y := \log_{\sqrt{2}} 3$. Dann ist die Potenz $x^y = 3$ sicher rational	al.			
Di	e Irra	tionalität von y lässt sich sogar einfacher als die von $\sqrt{2}$ beweisen: Gelte $y=p_y$	/q			
$_{ m mi}$	t p, q	$\in \mathbb{Z}$. Dann folgt $3^2 = 2^p/2^q$, also $2^q \cdot 3^2 = 2^p$. Das ist ein Widerspruch zu	m			
Sa	tz üb	er die eindeutige Primfaktorzerlegung, denn auf der linken Seite kommt de	er			
Pr	Primfaktor 3 vor, auf der rechten aber nicht. \Box					

Der erste Beweis war *unkonstruktiv*: Einem interessierten Gegenüber kann man immer noch nicht ein Zahlenpaar mit den gewünschten Eigenschaften nennen. Der zweite Beweis dagegen war konstruktiv: Die Existenzbehauptung wurde durch explizite Konstruktion eines Beispiels nachgewiesen.

Es stellt sich heraus, dass von den vielen Schlussregeln klassischer Logik genau ein Axiom für die Zulässigkeit unkonstruktiver Argumente verantwortlich ist, nämlich das *Prinzip vom ausgeschlossenen Dritten*:

Axiom 1.2 (vom ausgeschlossenen Dritten, LEM). Für jede Aussage φ gilt: $\varphi \vee \neg \varphi$.

Unter konstruktiver Mathematik im engeren Sinn, genauer intuitionistischer Logik, versteht man daher klassische Logik ohne LEM. Das Prinzip der Doppelnegationselimination, demnach man für jede Aussage φ voraussetzen darf, dass $\neg\neg\varphi\Rightarrow\varphi$ gilt, ist zu LEM äquivalent (Übungsaufgabe) und kann daher ebenfalls nicht verwendet werden.

In konstruktiver Mathematik behauptet man nicht, dass das Prinzip vom ausgeschlossenen Dritten falsch wäre: Intuitionistische Logik ist abwärtskompatibel zu klassischer Logik – jede konstruktiv nachweisbare Aussage gilt auch klassisch – und manche konkrete Instanzen des Prinzips lassen sich sogar konstruktiv zeigen (siehe Proposition 2.1 für ein Beispiel). Stattdessen verwendet man das Prinzip einfach nur nicht. (Tatsächlich kann man leicht zeigen, dass es keine Gegenbeispiele des Prinzips geben kann: Für jede Aussage φ gilt $\neg(\neg\varphi\wedge\neg\neg\varphi)$.)

Bemerkung 1.3. Manche Dozenten erzählen Erstsemestern folgende Lüge: Eine Aussage erkennt man daran, dass sie einen eindeutigen Wahrheitswert hat. Diese Charakterisierung mag bei klassischer Logik noch vertretbar sein, ist aber in einem konstruktiven Kontext offensichtlich unsinnig. Stattdessen erkennt man eine Aussage daran, dass sie rein von ihrer grammatikalischen Struktur her ein Aussagesatz ist (und natürlich dass alle vorkommenden Begriffe eine klare Bedeutung haben).

Bemerkung 1.4. In konstruktiver Mengenlehre muss man auf das Auswahlaxiom verzichten, denn in Gegenwart des restlichen Axiome impliziert dieses das Prinzip vom ausgeschlossenen Dritten.

1.1 Widerspruchsbeweise vs. Beweise von Negationen

Ein übliches Gerücht über konstruktive Mathematik besagt, dass der Begriff Widerspruch konstruktiv generell verboten ist. Dem ist nicht so. Man muss zwischen zwei für das klassische Auge sehr ähnlich aussehenden Beweisfiguren unterscheiden:

- 1. "Angenommen, es gilt $\neg \varphi$. Dann ..., Widerspruch; also gilt $\neg (\neg \varphi)$ und somit φ ."
- 2. "Angenommen, es gilt ψ . Dann ..., Widerspruch; also gilt $\neg \psi$."

Argumente der ersten Form sind tatsächlich Widerspruchsbeweise und daher konstruktiv nicht pauschal zulässig – wenn man nicht anderweitig für die untersuchte Aussage φ

begründen kann, dass aus ihrer Doppelnegation schon sie selbst folgt, beweist ein solches Argument nur die Gültigkeit von $\neg\neg\varphi$; das ist konstruktiv schwächer als φ .

Argumente der zweiten Form sind dagegen konstruktiv völlig einwandfrei: Sie sind Beweise negierter Aussagen und nicht Widerspruchsbeweise im eigentlichen Sinn. Die Zulässigkeit erklärt sich direkt nach Definition: Die Negation wird (übrigens auch in klassischer Logik) als

$$\neg \psi :\equiv (\psi \Rightarrow \bot)$$

festgelegt. Dabei steht "
 "" für Falschheit, eine kanonische falsche Aussage. Wer mag, kan
n1=0oder ${\it f}$ denken.

1.2 Informale Bedeutung logischer Aussagen

... über Belege

Die Ablehnung des Prinzips vom ausgeschlossenen Dritten erscheint uns durch unsere klassische Ausbildung als völlig verrückt: Offensichtlich ist doch jede Aussage entweder wahr oder falsch! Die Verwunderung löst sich auf, wenn man akzeptiert, dass konstruktiver Mathematiker zwar dieselbe logische Sprache verwenden $(\land, \lor, \Rightarrow, \neg, \lor, \exists)$, aber eine andere Bedeutung im Sinn haben:

	klassische Logik	intuitionistische Logik
Aussage φ	Die Aussage φ gilt.	Wir haben Beleg für φ .
	Es stimmt Falschheit.	Wir haben Beleg für Falschheit.
$\varphi \wedge \psi$	φ und ψ stimmen.	Wir haben Beleg für φ und für ψ .
$\varphi \vee \psi$	φ oder ψ stimmt.	Wir haben Beleg für φ oder für ψ .
$\varphi \Rightarrow \psi$	Sollte φ stimmen, dann auch ψ .	Aus Belegen für φ können wir (gleichmäßig) Belege für ψ konstruieren.
$\neg \varphi$	φ stimmt nicht.	Es kann keinen Beleg für φ geben.
$\forall x \in X \colon \varphi(x)$	Für alle $x \in X$ stimmt jeweils $\varphi(x)$.	Wir können (gleichmäßig) für alle $x \in X$ Belege für $\varphi(x)$ konstruieren.
$\exists x \in X \colon \varphi(x)$	Es gibt mindestens ein $x \in X$, für das $\varphi(x)$ stimmt.	Wir haben ein $x \in X$ zusammen mit Beleg für $\varphi(x)$.
$\varphi \vee \neg \varphi$	φ stimmt oder stimmt nicht.	Wir haben Beleg für φ oder für $\neg \varphi$.

Unter dieser Interpretation (die übrigens auf Brouwer, Heyting und Kolmogorov zurückgeht) meint das Prinzip vom ausgeschlossenen Dritten, dass wir für jede Aussage Beleg für sie oder ihre Negation haben. Das ist aber offensichtlich nicht der Fall.

Die Interpretation von $\neg\neg\varphi$ ist, dass es keinen Beleg für $\neg\varphi$ gibt. Daraus folgt natürlich noch nicht, dass wir tatsächlich Beleg für φ haben; gewissermaßen ist eine solche Aussage φ nur "potenziell wahr".

Beispiel 1.5. Wenn wir wissen, dass sich unser Haustürschlüssel irgendwo in der Wohnung befinden muss (da wir ihn letzte Nacht verwendet haben, um die Tür aufzusperren), wir ihn momentan aber nicht finden, so können wir konstruktiv nur die doppelt negierte Aussage

 $\neg\neg(\exists x: \text{der Schlüssel befindet sich an Position } x)$

vertreten.

... über Berechenbarkeit

Es gibt noch eine zweite Interpretation, die beim Verständnis konstruktiver Mathematik sehr hilfreich ist:

Motto 1.6. Eine Aussage gilt konstruktiv genau dann, wenn es ein Computerprogramm gibt, welches sie in endlicher Zeit bezeugt.

Etwa ist mit dieser Interpretation klar, dass die formale Aussage

$$\forall n \in \mathbb{N}: \exists p \geq n: p \text{ ist eine Primzahl},$$

eine Formulierung der Unendlichkeit der Primzahlen, auch konstruktiv stimmt: Denn man kann leicht ein Computerprogramm angeben, das eine natürliche Zahl n als Eingabe erwartet und dann, etwa über die Sieb-Methode von Eratosthenes, eine Primzahl $p \geq n$ produziert (zusammen mit einem Nachweis, dass p tatsächlich prim ist).

Bemerkung 1.7. Das Motto kann man tatsächlich zu einem formalen Theorem präzisieren, das ist Gegenstand der gefeierten Curry-Howard-Korrespondenz.

2 Beispiele

2.1 Diskretheit der natürlichen Zahlen

Manche konkrete Instanzen des Prinzips vom ausgeschlossenen Dritten lassen sich konstruktiv nachweisen:

Proposition 2.1. Für beliebige natürlichen Zahlen $x, y \in \mathbb{N}$ gilt: $x = y \vee \neg (x = y)$.

Beweis. Das ist konstruktiv nicht klar, aber beweisbar durch eine Doppelinduktion. \Box

Diese Eigenschaft wird auch als Diskretheit der Menge der natürlichen Zahlen bezeichnet: Allgemein heißt eine Menge X genau dann diskret, wenn für alle $x, y \in X$ die Aussage $x = y \vee \neg (x = y)$ gilt. Klassisch ist jede Menge diskret.

Die reellen Zahlen sind in diesem Sinne nicht diskret. Das macht man sich am einfachsten über die algorithmische Interpretation klar: Es kann kein Computerprogramm geben,

dass in endlicher Zeit zwei reelle Zahlen auf Gleichheit testet. Denn in endlicher Zeit kann ein Programm nur endlich viele Nachkommaziffern (besser: endlich viele rationale Approximationen) abfragen; haben die beiden zu vergleichenden Zahlen dieselben Nachkommaziffern, so kann sich das Programm in endlicher Zeit nie sicher sein, ob irgendwann doch noch eine Abweichung auftreten wird.

Für algebraische Zahlen gilt die analoge Aussage aber übrigens schon: Man kann ein Programm angeben, dass zwei algebraische Zahlen x, y zusammen mit Zeugen ihrer Algebraizität, also Polynomgleichungen mit rationalen Koeffizienten und x bzw. y als Lösung, als Eingabe erwartet und dann entscheidet, ob x und y gleich sind oder nicht. Der Beweis ist nicht trivial, aber auch nicht fürchterlich kompliziert; siehe etwa Proposition 1.6 in [5].

2.2 Minima von Teilmengen der natürlichen Zahlen

In klassischer Logik gilt folgendes Minimumsprinzip:

Proposition 2.2 (in klassischer Logik). Sei $U \subseteq \mathbb{N}$ eine bewohnte Teilmenge. Dann enthält U ein kleinstes Element.

In konstruktiver Mathematik kann man diese Aussage nicht zeigen – wegen der Abwärtskompatibilität kann man zwar auch nicht ihr Gegenteil nachweisen, aber man kann folgendes sog. brouwersches Gegenbeispiel anführen:

Proposition 2.3. Besitze jede bewohnte Teilmenge der natürlichen Zahlen ein Minimum. Dann gilt das Prinzip vom ausgeschlossenen Dritten.

Beweis. Sei φ eine beliebige Aussage. Wir müssen zeigen, dass φ oder $\neg \varphi$ gilt. Dazu definieren wir die Teilmenge

$$U := \{ n \in \mathbb{N} \mid n = 1 \vee \varphi \}.$$

Die Zugehörigkeitsbedingung ist etwas komisch, da die Aussage φ ja nicht von der frischen Variable n abhängt, aber völlig okay. Da U sicherlich bewohnt ist (durch $1 \in U$), besitzt U nach Voraussetzung ein Minimum $z \in U$.

Wegen der diskutierten Diskretheit der natürlichen Zahlen gilt z=0 oder $z\neq 0$. Im ersten Fall folgt φ (denn $0\in U$ ist gleichbedeutend mit $0=1\vee \varphi$), im zweiten Fall folgt $\neg \varphi$ (denn wenn φ gälte, wäre $U=\mathbb{N}$ und somit z=0 im Widerspruch zu $z\neq 0$). \square

Unter einer klassisch trivialerweise erfüllten Zusatzbedingung lässt sich das Prinzip retten:

Definition 2.4. Eine Teilmenge $U \subseteq X$ heißt genau dann herauslösbar, wenn für alle $x \in X$ gilt: $x \in U \vee \neg (x \in U)$.

Proposition 2.5. Sei $U \subseteq \mathbb{N}$ eine bewohnte und herauslösbare Teilmenge. Dann enthält U ein kleinstes Element.

Beweis. Da U bewohnt ist, liegt eine Zahl n in U. Da ferner U diskret ist, gilt für jede Zahl $0 \le m \le n$: $m \in U$ oder $m \notin U$. Daher können wir diese Zahlen der Reihe nach durchgehen; die erste Zahl mit $m \in U$ ist das gesuchte Minimum.

Weg mag, kann diesen Beweis auch präzisieren und einen formalen Induktionsbeweis führen. Gut erkennbar ist, wie im Beweis ein expliziter Algorithmus zur Findung des Minimums enthalten ist.

2.3 Potenzmengen

Klassisch ist die Potenzmenge der einelementigen Menge $\{\star\}$ völlig langweilig: Sie enthält genau zwei Elemente, nämlich die leere Teilmenge und $\{\star\}$ selbst. Konstruktiv lässt sich das nicht zeigen, die Potenzmenge hat (potenziell!) viel mehr Struktur. Das ist Gegenstand einer Übungsaufgabe.

3 Nutzen konstruktiver Mathematik

Spaß. Konstruktive Mathematik macht Spaß!

Philosophie. Konstruktive Logik ist philosophisch einfacher zu rechtfertigen als klassische Logik.

Eleganzassistenz. Konstruktive Mathematik kann einen dabei unterstützen, Aussagen, Beweise und ganze Theoriegebäude eleganter zu formulieren. Etwa hat man klassisch oft Angst vor Spezialfällen wie etwa der leeren Menge, einem nulldimensionalen Vektorraum oder einer leeren Mannigfaltigkeit. Aussagen formuliert dann nur für nichtleere Mengen, nichttriviale Vektorräume und so weiter. Tatsächlich sind diese Einschränkungen aber oftmals gar nicht notwendig – in konstruktiver Mathematik wird man insofern darauf aufmerksam gemacht, als dass der Nachweis, dass diese Einschränkungen in bestimmten Fällen erfüllt sind, nicht mehr trivial ist, sondern Nachdenken erfordert.

Ein anderes Beispiel liefert folgende Proposition, die oft als Übungsaufgabe in einer Anfängervorlesung gestellt wird:

Proposition 3.1. Sei $f: X \to Y$ eine Abbildung und $f^{-1}[_]: \mathcal{P}(Y) \to \mathcal{P}(X)$ die Urbildoperation (welche eine Teilmenge $U \in \mathcal{P}(Y)$ auf $\{x \in X \mid f(x) \in U\}$ schickt). Dann gilt: Genau dann ist f surjektiv, wenn $f^{-1}[_]$ injektiv ist.

Beweis der Rückrichtung (umständlich, nur klassisch zulässig). Angenommen, die Abbildung f ist nicht surjektiv. Dann gibt es Element $y \in Y$, welches nicht im Bild von f liegt. Wenn wir die spezielle Teilmenge $\{y\} \in \mathcal{P}(Y)$ betrachten, sehen wir

$$f^{-1}[\{y\}] = \emptyset = f^{-1}[\emptyset].$$

Wegen der vorausgesetzten Injektivität folgt $\{y\} = \emptyset$; das ist ein Widerspruch.

Beweis der Rückrichtung (elegant, auch konstruktiv zulässig). Bezeichne im f die Bildmenge von f. Dann gilt $f^{-1}[\operatorname{im} f] = f^{-1}[X]$ und damit im f = X, also ist f surjektiv. \square

Mentale Hygiene. Arbeit in konstruktiver Logik ist gut für die mentale Hygiene: Man lernt, genauer auf die Formulierungen von Aussagen zu achten, nicht unnötigerweise Verneinungen einzuführen und darauf zu achten, an welchen bestimmten Stellen klassische Axiome nötig sind. Bei passenden Formulierungen ist das nämlich viel seltener, als man auf den ersten Blick vielleicht vermutet.

Wertschätzung. Klassische Mathematik kann man besser wertschätzen, wenn man verstanden hat, wie anders sich konstruktive Mathematik anfühlt. Die Frage, *inwieweit genau* ein konstruktiver Beweis einer Aussage mehr Inhalt als ein klassischer Beweis hat, kann in Einzelfällen sehr diffizil und interessant sein. Wir werden zu diesem Thema noch einen mathematischen Zaubertrick kennenlernen.

Programmextraktion. Aus jedem konstruktiven Beweis einer Behauptung kann man maschinell, ohne manuelles Zutun, ein Computerprogramm extrahieren, welches die untersuchte Behauptung bezeugt (und bewiesenermaßen korrekt arbeitet). Etwa ist in jedem konstruktiven Beweis der Behauptung

Sei S eine endliche Menge von Primzahlen. Dann gibt es eine weitere Primzahl, welche nicht in S liegt.

ein Algorithmus versteckt, welcher zu endlich vielen gegebenen Primzahlen ganz konkret eine weitere Primzahl berechnet. Solch maschinelle Programmextraktion ist wichtig in der Informatik: Anstatt in einem ersten Schritt ein Programm selbsthändig zu entwickeln und dann in einem zweiten Schritt umständlich seine Korrektheit bezüglich einer vorgegebenen Spezifikation zu zeigen, kann man auch direkt einen konstruktiven Beweis der Erfüllbarkeit der Spezifikation führen und dann automatisch ein entsprechendes Programm extrahieren lassen. In der akademischen Praxis wird dieses Vorgehen tatsächlich angewendet.

Traummathematik. Nur in einem konstruktiven Kontext ist die Arbeit mit sog. *Traumaxiomen*, wie etwa

Jede Abbildung $\mathbb{R} \to \mathbb{R}$ ist stetig.

oder

Es gibt infinitesimale reelle Zahlen ε mit $\varepsilon^2 = 0$, aber $\varepsilon \neq 0$.

möglich: Denn in klassischer Logik sind diese Axiome schlichtweg offensichtlich falsch. Diese Axiome sind aber durchaus interessant: Sie können die Arbeit rechnerisch und konzeptionell vereinfachen (man muss nur einen Blick zu den Physikern werfen), und

es gibt Metatheoreme, die garantieren, dass Folgerungen aus diesen Axiomen, welche nur mit konstruktiven Schlussregeln getroffen wurden und eine bestimmte logische Form aufweisen, auch im üblichen klassischen Sinn gelten.

Alternative Mathematik-Universen. Wenn man ganz normal Mathematik betreibt, arbeitet man tatsächlich *intern im Topos der Mengen*. Es gibt aber auch andere interessante Topoi; deren interne Sprache ist aber fast immer nicht klassisch. Eine genauere Diskussion würde an dieser Stelle zu weit führen, aber zwei Beispiele seien erwähnt:

- Aus dem recht einfach nachweisbaren Faktum konstruktiver linearer Algebra, dass jeder endlich erzeugte Vektorraum nicht nicht eine endliche Basis besitzt, folgt ohne weitere Arbeit sofort folgende offensichtlich kompliziertere Aussage, wenn man das Faktum intern im Garbentopos eines reduzierten Schemas X interpretiert: Jeder \mathcal{O}_X -Modul, der lokal von endlichem Typ ist, ist auf einer dichten Teilmenge sogar lokal frei.
- ullet Zu quantenmechanischen Systemen kann man eine C^* -Algebra assoziieren. Wichtiges Merkmal ist, dass diese in allen interessanten Fällen nichtkommutativ sein wird. Nun gibt es aber ein alternatives Universum, den sog. Bohr-Topos, aus dessen Sicht diese Algebra kommutativ ist; auf diese Weise vereinfacht sich manches. (Was genau, werden wir noch gemeinsam herausfinden.)

4 Beziehung zu klassischer Logik

Doppelnegationsübersetzung, Continuation-Passing-Style Transformation, historische Einordnung: Hilberts Programm, . . .

Literatur

- [1] A. Bauer. *Mathematics and computation (blog)*. URL: http://math.andrej.com/category/constructive-math/.
- T. Coquand. "Computational content of classical logic". In: Semantics and Logics of Computation. Hrsg. von A. Pitts und P. Dybjer. Cambridge University Press, 1997, S. 33–78.
- [3] D. van Dalen. "Intuitionistic logic". In: *The Blackwell Guide to Philosophical Logic*. Hrsg. von L. Goble. Blackwell Publishers, 2011, S. 224–257.
- [4] R. Mines, F. Richman und W. Ruitenburg. A Course in Constructive Algebra. Universitext. Springer-Verlag, 1988.
- [5] M. Nieper-Wißkirchen. Galoissche Theorie. 2013. URL: http://alg.math.uni-augsburg.de/lehre/vorlesungsskripte/einfuhrung-in-die-algebra/at_download/file.

[6] A. S. Troelstra und D. van Dalen. Constructivism in Mathematics: An Introduction. North-Holland Publishing, 1988.