```
import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
!pip install yfinance
!pip install pandas_datareader
import yfinance as yf
import pandas_datareader as web
import math
```

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pub</a>.
Requirement already satisfied: yfinance in /usr/local/lib/python3.7/dist-packages (0.1.7
Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: appdirs>=1.4.4 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.7/dist-packages (fr
Requirement already satisfied: lxml>=4.5.1 in /usr/local/lib/python3.7/dist-packages (fr
Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: requests>=2.26 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-r
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (1
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: charset-normalizer<3,>=2 in /usr/local/lib/python3.7/dist
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (1
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-page 1.21.1 in /usr/local
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packa
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pub</a>.
Requirement already satisfied: pandas datareader in /usr/local/lib/python3.7/dist-packas
Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: lxml in /usr/local/lib/python3.7/dist-packages (from panc
Requirement already satisfied: pandas>=0.23 in /usr/local/lib/python3.7/dist-packages (1
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-r
Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (+
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: charset-normalizer<3,>=2 in /usr/local/lib/python3.7/dist
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (1
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-page 1.21.1 in /usr/local
```

```
# Annualized Volatility (Using trailing 3 months)
stock_data_three_m = yf.download('TSLA, AAPL, MSFT, NVDA, AMZN, AMD, GME', start = "2022-07-0
end = "2022-10-01")
stock data three m.dropna(inplace = True)
stock_data_three_m
stock close = stock data three m["Adj Close"]
Annual_volatility = stock_close.pct_change().std() * np.sqrt(252) * 100
Annual_volatility
    [******** 7 of 7 completed
    AAPL
           30.637832
           50.077006
    AMD
    AMZN
           43.809199
    GME
           77.382340
    MSFT
          29.388622
    NVDA
           55.231329
    TSLA
           49.097381
    dtype: float64
# Beta against SPY
Trailing_12_months_SPY = yf.download('TSLA, AAPL, MSFT, NVDA, AMZN, AMD, GME, SPY', start = '
end = '2022-10-01')
beta_1 = Trailing_12_months_SPY['Adj Close']
returns = np.log(beta 1/beta 1.shift())
cov = returns.cov()
var = returns['SPY'].var()
    b_TSLA_a_SPY = cov.loc['TSLA', 'SPY'] / var
b_AAPL_a_SPY = cov.loc['AAPL', 'SPY'] / var
b MSFT a SPY = cov.loc['MSFT','SPY'] / var
b NVDA a SPY = cov.loc['NVDA','SPY'] / var
b AMZN a SPY = cov.loc['AMZN','SPY'] / var
b AMD a SPY = cov.loc['AMD','SPY'] / var
b_GME_a_SPY = cov.loc['GME','SPY'] / var
print(b TSLA a SPY)
print(b AAPL a SPY)
print(b MSFT a SPY)
print(b_NVDA_a_SPY)
print(b AMZN a SPY)
print(b AMD a SPY)
print(b GME a SPY)
```

1.9094098874271694 1.2439007302686227 1.2121471080793855 2.276934482385174

```
1,6403531635107793
    2.092113535503107
    1.96821457512569
#Beta against IWM
Trailing 12 months IWM = yf.download('TSLA, AAPL, MSFT, NVDA, AMZN, AMD, GME, IWM', start = '
end = '2022-10-01')
beta 2 = Trailing 12 months IWM['Adj Close']
returns_2 = np.log(beta_2/beta_2.shift())
cov_2 = returns_2.cov()
var_2 = returns_2['IWM'].var()
     b TSLA a IWM = cov 2.loc['TSLA', 'IWM'] / var 2
b_AAPL_a_IWM = cov_2.loc['AAPL', 'IWM'] / var_2
b_MSFT_a_IWM = cov_2.loc['MSFT', 'IWM'] / var_2
b_NVDA_a_IWM = cov_2.loc['NVDA', 'IWM'] / var 2
b_AMZN_a_IWM = cov_2.loc['AMZN', 'IWM'] / var_2
b AMD a IWM = cov 2.loc['AMD', 'IWM'] / var 2
b_GME_a_IWM = cov_2.loc['GME', 'IWM'] / var_2
print(b TSLA a IWM)
print(b_AAPL_a_IWM)
print(b MSFT a IWM)
print(b_NVDA_a_IWM)
print(b_AMZN_a_IWM)
print(b AMD a IWM)
print(b_GME_a_IWM)
    1.5930956672002419
    0.8898966066669668
    0.8342875975890516
    1.8077307078840192
    1.2143762165247858
    1,7054697415319096
    1.9940127685706825
#Beta against DIA
Trailing 12 months DIA = yf.download('TSLA, AAPL, MSFT, NVDA, AMZN, AMD, GME, DIA', start = '
end = '2022-10-01')
```

```
beta 3 = Trailing 12 months DIA['Adj Close']
returns_3 = np.log(beta_3/beta_3.shift())
cov_3 = returns_3.cov()
var 3 = returns 3['DIA'].var()
     [******** 8 of 8 completed
b TSLA a DIA = cov 3.loc['TSLA', 'DIA'] / var 3
b_AAPL_a_DIA = cov_3.loc['AAPL', 'DIA'] / var_3
b MSFT a DIA = cov 3.loc['MSFT', 'DIA'] / var 3
b NVDA a DIA = cov 3.loc['NVDA', 'DIA'] / var 3
b_AMZN_a_DIA = cov_3.loc['AMZN', 'DIA'] / var_3
b AMD a DIA = cov 3.loc['AMD', 'DIA'] / var 3
b_GME_a_DIA = cov_3.loc['GME', 'DIA'] / var_3
print(b TSLA a DIA)
print(b AAPL a DIA)
print(b MSFT a DIA)
print(b_NVDA_a_DIA)
print(b_AMZN_a_DIA)
print(b AMD a DIA)
print(b GME a DIA)
     1.918815573397074
     1.3892295882266594
     1.3227133894500074
     2.373845926243097
     1.7724447405815038
     2.2122203014692015
     2.001151931686538
Annual stock = Trailing 12 months SPY['Adj Close']
# Maximum Weekly Drawdown
TSLASUM = Annual stock['TSLA'].sum()
TSLAMIN = Annual stock['TSLA'].min()
TSLAMAX = Annual_stock['TSLA'].max()
tsla max drawdown = ((TSLAMIN - TSLAMAX) / TSLAMAX) * 100
print(tsla max drawdown)
AAPLMIN = Annual stock['AAPL'].min()
AAPLMAX = Annual stock['AAPL'].max()
AAPL max drawdown = ((AAPLMIN - AAPLMAX) / AAPLMAX) * 100
print(AAPL max drawdown)
```

```
MSFTMIN = Annual stock['MSFT'].min()
MSFTMAX = Annual stock['MSFT'].max()
MSFT_max_drawdown = ((MSFTMIN - MSFTMAX) * 100
print(MSFT_max_drawdown)
NVDAMIN = Annual stock['NVDA'].min()
NVDAMAX = Annual stock['NVDA'].max()
NVDA max drawdown = ((NVDAMIN - NVDAMAX) / NVDAMAX) * 100
print(NVDA max drawdown)
AMZNMIN = Annual stock['AMZN'].min()
AMZNMAX = Annual_stock['AMZN'].max()
AMZN_max_drawdown = ((AMZNMIN - AMZNMAX ) / AMZNMAX) * 100
print(AMZN max drawdown)
AMDMIN = Annual_stock['AMD'].min()
AMDMAX = Annual stock['AMD'].max()
AMD max drawdown = ((AMDMIN - AMDMAX) / AMDMAX) * 100
print(AMD max drawdown)
GMEMIN = Annual stock['GME'].min()
GMEMAX = Annual stock['GME'].max()
GME_max_drawdown = ((GMEMIN - GMEMAX) / GMEMAX) * 100
print(GME max drawdown)
     -48.926342817724446
     -28.346214554194148
     -31.67739580683949
     -63.600400187117586
     -44.63834407169731
     -60.86714892393073
     -68.4467785710266
#Average weekly drawdowns
Avg weekly TSLA = (Annual stock['TSLA'].min() - Annual stock['TSLA'].max()) / Annual stock['T
Avg_weekly_AAPL = (Annual_stock['AAPL'].min() - Annual_stock['AAPL'].max()) / Annual_stock['A
Avg_weekly_MSFT = (Annual_stock['MSFT'].min() - Annual_stock['MSFT'].max()) / Annual_stock['M
Avg weekly NVDA = (Annual stock['NVDA'].min() - Annual stock['NVDA'].max()) / Annual stock['N'
Avg weekly AMZN = (Annual stock['AMZN'].min() - Annual stock['AMZN'].max()) / Annual stock['A
Avg_weekly_AMD = (Annual_stock['AMD'].min() - Annual_stock['AMD'].max()) / Annual_stock['AMD'
Avg_weekly_GME = (Annual_stock['GME'].min() - Annual_stock['GME'].max()) / Annual_stock['GME'
print(Avg weekly TSLA)
print(Avg weekly AAPL)
print(Avg weekly MSFT)
print(Avg_weekly_NVDA)
print(Avg weekly AMZN)
print(Avg weekly AMD)
print(Avg weekly GME)
```

```
-0.4892634281772445
     -0.2834621455419415
     -0.31677395806839487
     -0.6360040018711759
     -0.4463834407169731
     -0.6086714892393073
     -0.684467785710266
#weekly drawdown redo
tickerSymbols = ['TSLA', 'AAPL', 'MSFT', 'NVDA', 'AMZN', 'AMD', 'GME']
TSLA = yf.Ticker(tickerSymbols[0])
AAPL = yf.Ticker(tickerSymbols[1])
MSFT = yf.Ticker(tickerSymbols[2])
NVDA = yf.Ticker(tickerSymbols[3])
AMZN = vf.Ticker(tickerSymbols[4])
AMD = yf.Ticker(tickerSymbols[5])
GME = yf.Ticker(tickerSymbols[6])
TSLA_df = TSLA.history(period='1y', start='2021-10-01', end='2022-10-01')
AAPL_df = AAPL.history(period='1y', start='2021-10-01', end='2022-10-01')
MSFT_df = MSFT.history(period='1y', start='2021-10-01', end='2022-10-01')
NVDA df = NVDA.history(period='1y', start='2021-10-01', end='2022-10-01')
AMZN_df = AMZN.history(period='1y', start='2021-10-01', end='2022-10-01')
AMD_df = AMD.history(period='1y', start='2021-10-01', end='2022-10-01')
GME df = GME.history(period='1v', start='2021-10-01', end='2022-10-01')
TSLA low = TSLA df['Low']
AAPL low = AAPL df['Low']
MSFT low = MSFT df['Low']
NVDA low = NVDA df['Low']
AMZN low = AMZN df['Low']
AMD low = AMD df['Low']
GME low = GME df['Low']
TSLA_high = TSLA_df['High']
AAPL high = AAPL df['High']
MSFT high = MSFT df['High']
NVDA high = NVDA df['High']
AMZN high = AMZN_df['High']
AMD high = AMD df['High']
GME high = GME df['High']
TSLA weekly return = ( TSLA low.mean() + TSLA high.mean()) / TSLA high.mean()
AAPL_weekly_return = ( AAPL_low.mean() + AAPL_high.mean()) / AAPL_high.mean()
MSFT weekly return = ( MSFT low.mean() + MSFT_high.mean()) / MSFT_high.mean()
NVDA_weekly_return = ( NVDA_low.mean() + NVDA_high.mean()) / NVDA_high.mean()
```

```
AMZN_weekly_return = ( AMZN_low.mean() + AMZN_high.mean()) / AMZN_high.mean()
AMD_weekly_return = ( AMD_low.mean() + AMD_high.mean()) / AMD_high.mean()
GME_weekly_return = ( GME_low.mean() + GME_high.mean()) / GME_high.mean()
```

weekly = [TSLA_weekly_return, AAPL_weekly_return, MSFT_weekly_return, NVDA_weekly_return, AMZ
weeklydf = pd.DataFrame(weekly, index =['TSLA', 'AAPL', 'MSFT', 'NVDA', 'AMZN', 'AMD', 'GME']
weeklydf

	Average Weekly Ret	urns
TSLA	1.94	9835
AAPL	1.97	5268
MSFT	1.97	6026
NVDA	1.95	1334
AMZN	1.96	8939
AMD	1.95	2577
GME	1.91	7347

Total returns 10 years

```
total_returns_10_yrs = stock_data['Adj Close'].resample('D').ffill().pct_change()
total_return = total_returns_10_yrs.sum()
total_return
```

```
AAPL 2.342539

AMD 4.648745

AMZN 2.703305

GME 6.677241

MSFT 2.616051

NVDA 4.637565

TSLA 6.492387

dtype: float64
```

Annualized total return
annualized_return = total_returns_10_yrs.mean()
print(annualized_return)

AAPL 0.000642 AMD 0.001273 AMZN 0.000740 GME 0.001829 MSFT 0.000717 NVDA 0.001270 TSLA 0.001778 dtype: float64

table1

	Ticker	Weight	Annual Vol	BetaSPY	BetaIWM	BetaDIA	AvgWeeklyDrawdown	MaxWeekDraı
0	TSLA	0.142857	49.097381	1.90940	1.59309	1.91881	1.949835	-0.4
1	AAPL	0.142857	30.637832	1.24390	0.88989	1.38922	1.975268	-0.1
2	MSFT	0.142857	29.388622	1.21214	0.83428	1.32271	1.976026	-0.:
3	NVDA	0.142857	55.231329	2.27693	1.80773	2.37384	1.951334	-0.6
4	AMZN	0.142857	43.809199	1.64035	1.21437	1.77244	1.968939	-0.4
5	AMD	0.142857	50.077006	2.09211	1.70546	2.21222	1.952577	-0.6
6	GME	0.142857	77.382340	1.96821	1.99401	2.00115	1.917347	-0.6

```
# P
stocks = ['TSLA', 'AAPL', 'MSFT', 'NVDA', 'AMZN', 'AMD', 'GME']
```

Double-click (or enter) to edit

```
# Correlation Against ETF
# # https://medium.com/analytics-vidhya/how-to-create-a-stock-correlation-matrix-in-python-4f
from datetime import datetime
import seaborn

start = dt.datetime(2021, 10, 1)
end = dt.datetime(2022, 10, 1)
symbols_list = ['TSLA', 'AAPL', 'MSFT', 'NVDA', 'AMZN', 'AMD', 'GME', 'SPY', 'IWM', 'DIA']
```

```
#array to store prices
symbols=[]
#array to store prices
!pip install --upgrade pandas
!pip install --upgrade pandas-datareader
symbols=[]
for ticker in symbols_list:
    r = web.DataReader(ticker, 'yahoo', start, end)
    # add a symbol column
    r['Symbol'] = ticker
    symbols.append(r)
# concatenate into df
df = pd.concat(symbols)
df = df.reset_index()
df = df[['Date', 'Adj Close', 'Symbol']]
df.head()
df_pivot=df.pivot('Date','Symbol','Adj Close').reset_index()
df pivot.head()
df pivot['the portfolio'] = df pivot[stocks].mean(axis=1)
df_pivot = df_pivot.set_index('Date')
df_pivot = df_pivot.pct_change()
df_pivot
```

Looking in indexes: https://us-python.pkg.dev/colab-wheels/publications Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (1.3.5) Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-r Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (1 Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from Looking in indexes: https://us-python.pkg.dev/colab-wheels/publications Requirement already satisfied: pandas-datareader in /usr/local/lib/python3.7/dist-packas Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: lxml in /usr/local/lib/python3.7/dist-packages (from panc Requirement already satisfied: pandas>=0.23 in /usr/local/lib/python3.7/dist-packages (4 Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-r Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (1 Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-page 1.21.1 in /usr/local Requirement already satisfied: charset-normalizer<3,>=2 in /usr/local/lib/python3.7/dist Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (1 Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packa Symbol **AAPL** AMD **AMZN** DIA **GME** IWM **MSFT** NVD

corr_df = df_pivot.corr(method='pearson')
#reset symbol as index (rather than 0-X)
corr_df.head().reset_index()
#del corr_df.index.name
corr df.head(10)

Symbol	AAPL	AMD	AMZN	DIA	GME	IWM	MSFT	NVDA	
Symbol									
AAPL	1.000000	0.666582	0.694926	0.784407	0.411661	0.733798	0.782726	0.719279	8.0
AMD	0.666582	1.000000	0.631191	0.673519	0.438288	0.758699	0.677954	0.866123	0.7
AMZN	0.694926	0.631191	1.000000	0.698595	0.389356	0.702093	0.718726	0.687315	0.7
DIA	0.784407	0.673519	0.698595	1.000000	0.365957	0.859255	0.768873	0.688803	0.9
GME	0.411661	0.438288	0.389356	0.365957	1.000000	0.530527	0.366122	0.455927	0.4
IWM	0.733798	0.758699	0.702093	0.859255	0.530527	1.000000	0.708530	0.766755	0.9
MSFT	0.782726	0.677954	0.718726	0.768873	0.366122	0.708530	1.000000	0.747579	8.0
NVDA	0.719279	0.866123	0.687315	0.688803	0.455927	0.766755	0.747579	1.000000	8.0
SPY	0.851766	0.772184	0.784683	0.962344	0.435882	0.903508	0.854463	0.801879	1.0
TSLA	0.643037	0.637821	0.549189	0.537551	0.517511	0.650603	0.586673	0.642247	0.6

```
plt.figure(figsize=(13, 8))
seaborn.heatmap(corr_df, annot=True)
plt.figure()
```

<Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

```
#Covariance of Portfolio against ETF
cov_df_SPY = df_pivot['SPY'].cov(df_pivot['the_portfolio'])
cov_df_IWM = df_pivot['IWM'].cov(df_pivot['the_portfolio'])
cov_df_DIA = df_pivot['DIA'].cov(df_pivot['the_portfolio'])

new_cov_SPY = cov_df_SPY * 10000
new_cov_IWM = cov_df_IWM * 10000
new_cov_DIA = cov_df_DIA * 10000
print(new_cov_SPY)
print(new_cov_SPY)
print(new_cov_IWM)
print(cov_df_SPY)
#print(cov_df_SPY)
#print(cov_df_IWM)
#print(cov_df_IWM)
#print(cov_df_DIA)
```

from numpy.ma.core import true_divide

3.6923404884129476 2.323092185090982

```
# Tracking Error
# Tracking Error = standard deviation (stock return - benchmark return)
closeddata = web.DataReader(['TSLA', 'AAPL', 'MSFT', 'NVDA', 'AMZN', 'AMD', 'GME', 'SPY', 'IW
closeddata['stock return'] = closeddata['TSLA'].pct change() + closeddata['AAPL'].pct change(
closeddata['bench return'] = closeddata['SPY'].pct change() + closeddata['IWM'].pct change()
closeddata['Tracking_Error'] = closeddata['stock_return'] - closeddata['bench_return']
closeddata['SPY_ERROR_pct'] = closeddata['SPY'].pct_change()
closeddata['IWM_ERROR_pct'] = closeddata['IWM'].pct_change()
closeddata['DIA ERROR pct'] = closeddata['DIA'].pct change()
closeddata['Tracking Error SPY'] = closeddata['stock return'] - closeddata['SPY ERROR pct']
closeddata['Tracking_Error_IWM'] = closeddata['stock_return'] - closeddata['IWM_ERROR_pct']
closeddata['Tracking Error DIA'] = closeddata['stock return'] - closeddata['DIA ERROR pct']
TE_SPY = closeddata['Tracking_Error_SPY'].std()*100
TE IWM = closeddata['Tracking Error IWM'].std()*100
TE DIA = closeddata['Tracking Error DIA'].std()*100
print(TE SPY)
print(TE IWM)
print(TE DIA)
TE = closeddata['Tracking Error'].std()*100
closeddata.tail()
```

```
13.23747411191036
     13.124680129961716
#Sharpe Ratio (using current risk-free rate)
# https://www.codearmo.com/blog/sharpe-sortino-and-calmar-ratios-python
def sharpe_ratio(return_series, N, rf):
    mean = return series.mean() * N -rf
    sigma = return_series.std() * np.sqrt(N)
    return mean / sigma
N = 255 \# 255 trading days in a year
rf =0.03 #3% risk free rate as of 2022
sharpes = df pivot.apply(sharpe ratio, args=(N,rf,),axis=0)
sharpes
     Symbol
                     -0.015054
     AAPL
     AMD
                     -0.569866
     AMZN
                     -0.667581
     DIA
                     -0.962204
     GME
                     -0.120758
     IWM
                     -1.071019
                     -0.616208
     MSFT
     NVDA
                     -0.605076
     SPY
                     -0.857424
     TSLA
                      0.318793
     the portfolio
                     -0.401212
     dtype: float64
#Annualized Volatility(252 days)
tickerSymbols = ['SPY', 'IWM', 'DIA']
stocks = ['TSLA', 'AAPL', 'MSFT', 'NVDA', 'AMZN', 'AMD', 'GME']
SPY = yf.Ticker(tickerSymbols[0])
IWM = yf.Ticker(tickerSymbols[1])
DIA = yf.Ticker(tickerSymbols[2])
SPY df = SPY.history(period='1y', start='2021-10-01', end='2022-10-01')
IWM_df = IWM.history(period='1y', start='2021-10-01', end='2022-10-01')
DIA df = DIA.history(period='1y', start='2021-10-01', end='2022-10-01')
SPY = SPY df['Close']
IWM = IWM df['Close']
DIA = DIA_df['Close']
# stocks
TSLA df = TSLA.history(period='1y', start='2021-10-01', end='2022-10-01')
AAPL_df = AAPL.history(period='1y', start='2021-10-01', end='2022-10-01')
MSFT df = MSFT.history(period='1y', start='2021-10-01', end='2022-10-01')
NVDA_df = NVDA.history(period='1y', start='2021-10-01', end='2022-10-01')
```

```
AMZN_dt = AMZN.history(period='1y', start='2021-10-01', end='2022-10-01')
AMD df = AMD.history(period='1y', start='2021-10-01', end='2022-10-01')
GME df = GME.history(period='1y', start='2021-10-01', end='2022-10-01')
TSLA = TSLA df['Close']
AAPL = AAPL df['Close']
MSFT = MSFT df['Close']
NVDA = NVDA df['Close']
AMZN = AMZN df['Close']
AMD = AMD df['Close']
GME = GME df['Close']
stocks df = pd.concat([TSLA, AAPL, MSFT, NVDA, AMZN, AMD, GME], axis='columns', join='inner')
new stocks = stocks df.mean(axis=1)
new_stocks = new_stocks.pct_change()
#Annualized Volatility of Each Stock
etfs df = pd.concat([SPY, IWM, DIA], axis='columns', join='inner')
etfs df = etfs df.pct change()
ETFVolatility = etfs_df.std() * np.sqrt(252)
stockVolatility = new stocks.std() * np.sqrt(252)
new spread = stockVolatility - ETFVolatility
print(new spread)

    Close

              0.204480
     Close
              0.159151
     Close
              0.242671
     dtvpe: float64
ETFVolatility
     Close
              0.218993
     Close
              0.264321
     Close
              0.180801
     dtype: float64
# Table 2
df_table_2 = {'Ticker':['SPY', 'IWM', 'DIA'],
              'Correlation':[0.88, 0.83, 0.76],
              'Covariance':[3.24358, 3.69234, 2.32309],
              'Tracking Error':[13.23718, 13.12440, 13.32778],
              'Sharpe Ratio':[-0.857424, -1.071019, -0.962204],
              'Spread':[0.204480, 0.159151, 0.242671]}
table2 = pd.DataFrame(df table 2)
```

#Correlation Matrix

```
df_corr_matrix = pd.DataFrame(df_pivot, columns = ['TSLA', 'AAPL', 'MSFT', 'NVDA', 'AMZN', 'A
corrMatrix = df_corr_matrix.corr()
plt.figure(figsize=(13, 8))
sns.heatmap(corrMatrix,annot=True)
plt.show()
```

TSLA -	1	0.64	0.59	0.64	0.55	0.64	0.52	0.65	0.65	0.54	0.86
AAPL -	0.64	1	0.78	0.72	0.69	0.67	0.41	0.85	0.73	0.78	0.84
MSFT -	0.59	0.78	1	0.75	0.72	0.68	0.37	0.85	0.71	0.77	0.84
NVDA -	0.64	0.72	0.75	1	0.69	0.87	0.46	0.8	0.77	0.69	0.9
AMZN -	0.55	0.69	0.72	0.69	1	0.63	0.39	0.78	0.7	0.7	0.78
AMD -	0.64	0.67	0.68	0.87	0.63	1	0.44	0.77	0.76	0.67	0.86
GME -	0.52	0.41	0.37	0.46	0.39	0.44	1	0.44	0.53	0.37	0.56
SPY -	0.65	0.85	0.85	0.8	0.78	0.77	0.44	1	0.9	0.96	0.88
IWM -	0.65	0.73	0.71	0.77	0.7	0.76	0.53	0.9	1	0.86	0.83
DIA -	0.54	0.78	0.77	0.69	0.7	0.67	0.37	0.96	0.86	1	0.76
the_portfolio -	0.86	0.84	0.84	0.9	0.78	0.86	0.56	0.88	0.83	0.76	1
	TSLA	AAPL	MSFT	NVDA	AMZN	АМD	GME	SPY	IWM	DİA	the_portfolio

table1

Ticker Weight Annual BetaSPY BetaIWM BetaDIA AvgWeeklyDrawdown MaxWeekDraw

table2

	Ticker	Correlation	Covariance	Tracking Error	Sharpe Ratio	Spread	1
0	SPY	0.88	3.24358	13.23718	-0.857424	0.204480	
1	IWM	0.83	3.69234	13.12440	-1.071019	0.159151	
2	DIA	0.76	2.32309	13.32778	-0.962204	0.242671	

#sources

#https://medium.com/analytics-vidhya/how-to-create-a-stock-correlation-matrix-in-python-4f32f
#https://www.codearmo.com/blog/sharpe-sortino-and-calmar-ratios-python

#https://r-shuo-wang.medium.com/portfolio-analysis-basics-returns-and-drawdowns-70c5f7a0eb3d
#

Colab paid products - Cancel contracts here

Os completed at 10:20 PM

×