CO2015

Operational Amplifier (Op-Amp)

Contents

- Operation
- Feedback Circuit
- Characteristics
- Practical Applications

Basic Op-Amp

- Op-Amp = Operational Amplifier
- An Op-Amp consist
 - Inverting input
 - Noninverting input
 - Output
- Two power supply pins (V+ and V-)

Op-Amp Gain

- Op-Amps have a very high gain. They can be connected open-loop or close-loop.
 - Open-loop refers a configuration where there is no feedback from output back to the input. In the open-loop configuration, the gain can exceed 10⁵.
 - Closed-loop configuration reduces the gain. In order to control the gain of an op-amp it must have feedback. This feedback is a negative feedback. A negative feedback reduces the gain and improves many characteristics of the op-amp.

Op-amp

Op-Amp Models

Practical Model

- Z_{in} is very large
- Z_{out} is small
- The gain $A_v = \frac{V_{out}}{V_{in}}$ in open-loop configuration is very high.

- Ideal Model (used for analysis)
 - $Z_{in} = \infty \rightarrow I_{in+} = I_{in-} = 0; V_{in+} = V_{in}$
 - $Z_{out} = 0$
 - The open-loop gain: $A_v = \frac{V_{out}}{V_{in}} = \infty$

Operation of Op-Amp

• The amplitude of V_{out} is higher than amplitude of V_{in} .

Operation of Op-Amp (cont)

The <u>differential signal</u> of 2 inputs is amplified.

 V_{i_1} V_{i_2} V_{i_2}

 When 2 inputs use common signal, the output is zero.

Non Feedback Circuits (Open Loop)

- For the circuits without feedback (i.e. no connection between output and input), the open-loop gain is very large (>10⁵).
- The output voltage will easily reach the saturation and the amplitude will be trimmed.

Negative Feedback Circuits (Close Loop)

• In order to control the gain of an op-amp it must have feedback. This feedback is a negative feedback. A negative feedback reduces the gain and improves many characteristics of the op-amp.

Negative Feedback

$$V_f = \left(\frac{R_i}{R_i + R_f}\right) V_{out} \quad B = \frac{R_i}{R_i + R_f}$$

$$V_{out} = A_{ol}(V_{in} - V_f)$$

$$V_{out} = A_{ol}(V_{in} - BV_{out})$$

$$V_{out} + A_{ol}BV_{out} = A_{ol}V_{in}$$

$$A_{cl(NI)} = 1 + \frac{R_f}{R_i}$$

$$\frac{V_{out}}{V_{in}} = \frac{A_{ol}}{1 + A_{ol}B}$$

$$A_{cl(\text{NI})} = \frac{V_{out}}{V_{in}} \cong \frac{1}{B} = \frac{R_i + R_f}{R_i}$$

Exercise

 Calculate the output gain of the circuit if R1 = 100(Ohm) and Rf = 1(KOhm)

Answer

11

- Refer to the given figure. A dc input signal of -50 mV is applied. You would measure _____ from the inverting input to ground.
 - 50mV
 - 1.05V
 - -1.05∨
 - -50mV

Exercise

Compute the output voltage in the following circuits using ideal op-amp

Solution

Exercise

 Characteristics of an Op-Amp is given in the following table. The power supply is ±15V.

Parameter	Minimum	Typical	Maximum
Output Voltage	±12V	±13.5V	
Input Voltage	±11V	±12.5V	
Output current of shorted-circuit	±12mA	±20mA	

Determine V_X

Solution

Op-Amp Datasheet

• IC LM358

Op-Amp Datasheet (IC LM358)

- Maximum power supply: ±22V
- Maximum input voltage: ±15V
- Maximum differential input voltage: ±30V

Absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	uA741	UNIT
Supply voltage V_{CC+}	22	V
Supply voltage V_{CC-}	-22	V
Differential input voltage	± 30	v
Input voltage any input	± 15	V
Voltage between either offset null terminal (N1/N2) and V_{CC-}	± 0.5	V
Duration of output short-circuit	unlimited	
Continuous total power dissipation at (or below) 25°C free-air temperature	500	mW
Operating free-air temperature range	-40 to 85	°C
Storage temperature range	- 65 to 150	°C
Lead temperature 1,6 mm (1/16 in.) from case for 60 seconds	300	°C
Lead temperature 1,6 mm (1/16 in.) from case for 10 seconds	260	°C

Op-Amp Datasheet

IC 741

Op-Amp Datasheet (µA741)

 μ A741 Electrical Characteristics: $V_{CC} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$

Characteristic	Minimum	Typical	Maximum	Unit
$V_{\rm IO}$ Input offset voltage		1	6	mV
I _{IO} Input offset current		20	200	nA
I _{IB} Input bias current		80	500	nA
$V_{\rm ICR}$ Common-mode input voltage range	±12	±13		V
$V_{\rm OM}$ Maximum peak output voltage swing	±12	±14		V
$A_{ m VD}$ Large-signal differential voltage amplification	20	200		V/mV
r_i Input resistance	0.3	2		$M\Omega$
r_o Output resistance		75		Ω
C _i Input capacitance		1.4		pF
CMRR Common-mode rejection ratio	70	90		dB
I _{CC} Supply current		1.7	2.8	mA
P_D Total power dissipation		50	85	mW

- A_{VD} Large-signal differential voltage amplification
 - -200V/mV = 200.000
- r_i input resistance: $2M\Omega$
- r_0 output resistance: 75Ω

Output Voltage Threshold

Practical Op-Amp Circuits

- Unity Follower
- Summing Amplifier
- Integrator
- Differentiator
- Comparator

Summing Amplifier

Because the op-amp has a high input impedance, the multiple inputs are treated as separate inputs.

$$V_0 = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$$

Integrator

The output is the integral of the input. Integration is the operation of summing the area under a waveform or curve over a period of time. This circuit is useful in low-pass filter circuits and sensor conditioning circuits.

$$v_0(t) = -\frac{1}{RC} \int v_1(t) dt$$

Differentiator

The differentiator takes the derivative of the input. This circuit is useful in high-pass filter circuits.

$$v_0(t) = -RC \frac{dv_1(t)}{dt}$$

Comparator

- $V_{out} = +V_{out(max)}$ when $V+ > V_{-}$
 - $V_{in} > V_{REF}$
- $V_{out} = -V_{out(max)}$ when V+ < V-
 - $V_{in} < V_{REF}$

Noisy Comparator

Unexpected pulses

Noiseless Comparator

- Hysteresis
 - $+V_{\text{out(max)}} \rightarrow -V_{\text{out(max)}}$ if V_{in} is greater than V_{UTP} threshold
 - $-V_{\text{out(max)}} \rightarrow +V_{\text{out(max)}}$ if V_{in} is smaller than V_{LTP} threshold

Application (1)

Protection Circuit using Op-Amp Comparator

Application (2)

Analog to Digital Conversion

IC 555

IC555 – Clock Pulse Generator

Duty cycle =
$$\left(\frac{t_{\rm H}}{T}\right)100\% = \left(\frac{t_{\rm H}}{t_{\rm H} + t_{\rm L}}\right)100\%$$

IC555 – Delay Circuit

- Calculate the input voltage if the final output is 10.08 V
 - <u>0.168V</u>

