DS203-2021 Project

New Section

Installing required libraries

- 1 !pip install yfinance
- 2 !pip install yahoofinancials
- 3 !pip install fastai
- 4 !pip install pmdarima

Requirement already satisfied: yfinance in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.7/dist-packag Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.7/dist-packa Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: lxml>=4.5.1 in /usr/local/lib/python3.7/dist-packag Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dis Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/ Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packa Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packa Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/loc Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-Requirement already satisfied: yahoofinancials in /usr/local/lib/python3.7/dist-pa Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-packages (fro Requirement already satisfied: fastai in /usr/local/lib/python3.7/dist-packages (1 Requirement already satisfied: spacy>=2.0.18 in /usr/local/lib/python3.7/dist-pack Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: fastprogress>=0.2.1 in /usr/local/lib/python3.7/dis Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.7/dist-packag Requirement already satisfied: bottleneck in /usr/local/lib/python3.7/dist-package Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-package Requirement already satisfied: nvidia-ml-py3 in /usr/local/lib/python3.7/dist-pack Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (fr Requirement already satisfied: Pillow in /usr/local/lib/python3.7/dist-packages (f Requirement already satisfied: numexpr in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (f Requirement already satisfied: torch>=1.0.0 in /usr/local/lib/python3.7/dist-packa Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (f Requirement already satisfied: torchvision in /usr/local/lib/python3.7/dist-packag Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.7/dis Requirement already satisfied: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.7/di Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3 Requirement already satisfied: thinc==7.4.0 in /usr/local/lib/python3.7/dist-packa Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-package Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.7/d Requirement already satisfied: srsly<1.1.0,>=1.0.2 in /usr/local/lib/python3.7/dis

```
Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /usr/local/lib/python3.7/dis
Requirement already satisfied: catalogue<1.1.0,>=0.0.7 in /usr/local/lib/python3.7
Requirement already satisfied: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.7/dist
Requirement already satisfied: blis<0.5.0,>=0.4.0 in /usr/local/lib/python3.7/dist
Requirement already satisfied: importlib-metadata>=0.20 in /usr/local/lib/python3.
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/loc
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/lc
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/di
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages ▼
```

Importing Basic Libraries

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as pt
4 import yfinance as yf
5 from yahoofinancials import YahooFinancials
6 %matplotlib inline
```

7 from fastai.tabular import add_datepart

creating dataframe for stock and EDA

```
1 # stock for TATAMOTORS
2 stock = "TATAMOTORS.NS"

1 # accessing data
2 df = yf.download(stock, start='2012-01-01', end='2021-11-24', progress=False)
3 df.tail()
```

		0pen	High	Low	Close	Adj Close	Volume
	Date						
20	21-11-16	506.899994	526.849976	506.200012	519.049988	519.049988	55897781
20	21-11-17	520.250000	536.700012	520.250000	530.150024	530.150024	48463415
20	21-11-18	531.450012	534.200012	501.299988	509.700012	509.700012	47197742
20	21-11-22	512.250000	512.250000	478.399994	486.100006	486.100006	40044849
20	21-11-23	484.399994	499.350006	477.000000	495.500000	495.500000	27553684

```
1 df.shape
   (2434, 6)
1 df = df.reset_index()
1 # dropping features as they are highly correalted with the closing price
2 df = df.drop(['Open', 'High', 'Low', 'Adj Close'], axis=1)
1 df.shape
   (2434, 3)
1 # checking for repeated rows
2 dates = df['Date']
3 df[dates.isin(dates[dates.duplicated()])].sort_index()
      Date Close Volume
1 df = df.drop_duplicates()
1 # plotting price movement
2 df['Date'] = pd.to_datetime(df.Date, format='%Y-%m-%d')
3 df.set_index('Date', inplace=True)
4 # plotting
5 pt.figure(figsize=(20,10))
6 pt.plot(df['Close'], label='Close Price movement')
```

[<matplotlib.lines.Line2D at 0x7f46bdf66c90>]

creating new features and understanding their nature

```
1 stock_price = df['Close'].to_frame()
2 stock_price['simple_MA_60'] = stock_price['Close'].rolling(60).mean()
3 stock_price['cumulative_MA'] = stock_price['Close'].expanding().mean()
4 stock_price['exponential_MA_60'] = stock_price['Close'].ewm(span=60).mean()
5 stock_price.dropna(inplace=True)
```

plots for Mean Averages for a roll back period for 60 days

```
1 stock_price[['Close', 'simple_MA_60','cumulative_MA','exponential_MA_60']].plot(label='
```

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f46bde72610>
```

the exponential MA provides major thresholds and reverting points while simple and cumulative MA traces the price

adding features-

- Moving Averages (MA)
- Bollinger Bands (region enclosing +- std about MA)

```
1\ \
 1 df['simple_MA_60'] = df['Close'].rolling(60).mean()
                                                                        Jan Jan
     100
 1 df['BollingerBand_Up_60_1'] = df['Close'].rolling(60).mean() + df['Close'].rolling(60).
 2 df['BollingerBand_Down_60_1'] = df['Close'].rolling(60).mean() - df['Close'].rolling(60
 3 df['BollingerBand_Up_60_2'] = df['Close'].rolling(60).mean() + 2*df['Close'].rolling(60)
 4 df['BollingerBand_Down_60_2'] = df['Close'].rolling(60).mean() - 2*df['Close'].rolling(
 5 df['BollingerBand_Up_20_2'] = df['Close'].rolling(20).mean() + 2*df['Close'].rolling(20)
 6 df['BollingerBand_Down_20_2'] = df['Close'].rolling(20).mean() - 2*df['Close'].rolling(
 7 df['BollingerBand_Up_20_1'] = df['Close'].rolling(20).mean() + df['Close'].rolling(20).
 8 df['BollingerBand_Down_20_1'] = df['Close'].rolling(20).mean() - df['Close'].rolling(20
 9 df['BollingerBand Up 10 1'] = df['Close'].rolling(10).mean() + df['Close'].rolling(10).
10 df['BollingerBand_Down_10_1'] = df['Close'].rolling(10).mean() - df['Close'].rolling(10
11 df['BollingerBand_Up_10_2'] = df['Close'].rolling(10).mean() + 2*df['Close'].rolling(10
12 df['BollingerBand_Down_10_2'] = df['Close'].rolling(10).mean() - 2*df['Close'].rolling(
13 df = df.dropna()
```

Bollinger Bands Visualisation

```
1 df[['Close', 'simple_MA_60', 'BollingerBand_Up_60_2', 'BollingerBand_Down_60_2']].plot(
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f46bde74750>

	Close	Volume	simple_MA_60	BollingerBand_Up_60_1	BollingerBand_Down_
Date					
2012- 03-28	268.272522	7597363	247.003970	276.459411	217.54
2012- 03-29	269.064026	9912451	248.455072	276.776553	220.13
2012- 03-30	272.329010	6411121	249.795693	277.285905	222.30
2012- 04-02	273.862549	8010959	251.042322	277.881245	224.20
2012- 04-03	278.265320	8305886	252.347489	278.556667	226.13
2021- 11-16	519.049988	55897781	382.536667	475.340635	289.73
2021- 11-17	530.150024	48463415	386.483334	480.457986	292.50
2021- 11-18	509.700012	47197742	390.260001	484.562195	295.95
2021- 11-22	486.100006	40044849	393.745834	487.653327	299.83
2021- 11-23	495.500000	27553684	397.340835	490.940525	303.74

2375 rows × 15 columns

Analyzing different Models

without using added features and history

```
1 data_without_history = df['Close'].to_frame()
2 display(data_without_history)
```

Close

Date	
2012-03-28	268.272522
2012-03-29	269.064026
2012-03-30	272.329010
2012-04-02	273.862549
2012-04-03	278.265320
2021-11-16	519.049988
2021-11-17	530.150024
2021-11-18	509.700012
2021-11-22	486.100006
2021-11-23	495.500000

- 1 data_without_history = data_without_history.reset_index()
- 2 display(data_without_history)

	Date	Close
0	2012-03-28	268.272522
1	2012-03-29	269.064026
2	2012-03-30	272.329010
3	2012-04-02	273.862549
4	2012-04-03	278.265320
2370	2021-11-16	519.049988
2371	2021-11-17	530.150024
2372	2021-11-18	509.700012
2373	2021-11-22	486.100006
2374	2021-11-23	495.500000

2375 rows × 2 columns

```
1 date = data_without_history['Date'].to_frame()
```

adding date related features

```
1 add_datepart(data_without_history, 'Date')
2 data_without_history.drop('Elapsed', axis=1, inplace=True)

/usr/local/lib/python3.7/dist-packages/fastai/tabular/transform.py:63: FutureWarning
for n in attr: df[prefix + n] = getattr(field.dt, n.lower())
```

creating new feature which will represent first and the last day of the week

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWarnir A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us after removing the cwd from sys.path.

```
1 new_data = pd.concat((data_without_history,date),axis=1)
2 display(new_data)
```

```
Close Year Month Week Day Dayofweek Dayofyear Is_month_end Is_mont
       0
           268.272522 2012
                                  3
                                       13
                                            28
                                                        2
                                                                  88
                                                                              False
 1 train_size = int(0.7*new_data.shape[0])
 2 test_size = int(0.3*new_data.shape[0])
 3 print(train_size)
 4 print(test_size)
    1662
    712
                                       14
                                             3
           278.265320 2012
                                                        1
                                                                  94
                                                                              False
 1 train_data = new_data[:train_size]
 2 train_data = train_data.drop(['Date'], axis=1)
 3 test_data = new_data[train_size:]
 4 test_data = test_data.drop(['Date'], axis=1)
 5 X_train = train_data.drop(['Close'], axis=1)
 6 Y_train = train_data['Close']
 7 X_test = test_data.drop(['Close'], axis = 1)
 8 Y_test = test_data['Close']
 9 print(X_train.shape)
10 print(Y_train.shape)
11 print(X_test.shape)
12 print(Y_test.shape)
     (1662, 13)
     (1662,)
     (713, 13)
     (713,)
```

Linear Regression

```
1 from sklearn.linear_model import LinearRegression
2 model = LinearRegression()
3 model.fit(X_train,Y_train)
    LinearRegression()

1 price_prediction_wh = model.predict(X_test)
2 rms=np.sqrt(np.mean(np.power((np.array(Y_test)-np.array(price_prediction_wh)),2)))
3 print(rms)
4 print(price_prediction_wh)
    246.60354869944692
    [394.563913 441.737074 446.614788 439.556011 ... 430.357968 430.838367 427.471709 429
```

1 new_data.set_index('Date', inplace=True)

Visualizing Prediction

```
1 test_data['Predictions'] = 0
2 test_data['Predictions'] = price_prediction_wh
3
4 test_data.index = new_data[train_size:].index
5 train_data.index = new_data[:train_size].index
6
7 pt.figure(figsize=(20,10))
8 pt.plot(train_data['Close'])
9 pt.plot(test_data[['Close', 'Predictions']])
10 pt.legend(['Train_close', 'Actual_close', 'Predicted_close'])
```

<matplotlib.legend.Legend at 0x7f46bac32c50>

KNN

```
1 from sklearn import neighbors
```

- 2 from sklearn.model_selection import GridSearchCV
- ${\tt 3}$ from sklearn.preprocessing import MinMaxScaler
- 4 scaler = MinMaxScaler(feature_range=(0, 1))

```
1 X train scaled = scaler.fit transform(X train)
 2 X train = pd.DataFrame(X train scaled)
 3 X_test_scaled = scaler.fit_transform(X_test)
 4 X_test = pd.DataFrame(X_test_scaled)
 6 #using gridsearch to find the best parameter
 7 params = {'n_neighbors':[4,5,6,7,8,9,10,11]}
 8 knn = neighbors.KNeighborsRegressor()
 9 model = GridSearchCV(knn, params, cv=5)
10
11 #fit the model and make predictions
12 model.fit(X train,Y train)
13 price_prediction_KNN_wh = model.predict(X_test)
 1 rms_KNN=np.sqrt(np.mean(np.power((np.array(Y_test)-np.array(price_prediction_KNN)),2)))
 2 rms
     246.60354869944692
 1 test_data['Predictions'] = 0
 2 test_data['Predictions'] = price_prediction_KNN_wh
 4 test_data.index = new_data[train_size:].index
 5 train_data.index = new_data[:train_size].index
 7 pt.figure(figsize=(20,10))
 8 pt.plot(train_data['Close'])
 9 pt.plot(test_data[['Close', 'Predictions']])
10 pt.legend(['Train_close', 'Actual_close', 'Predicted_close'])
```

<matplotlib.legend.Legend at 0x7f46bab737d0>

using features for past/ historical data

```
I A.A. I AM
```

creating new historical features by shifting tha rows by 20, 40 and 60 days

```
1 data = df['Close'].to_frame()
2 for lag in [20,40,60]:
3    shift = lag
4    shifted = df.shift(shift)
5    shifted.columns = [str.format("%s_shifted_by_%d" % (column ,shift)) for column in s
6    data = pd.concat((data,shifted),axis=1)

1 data = data.dropna()
2 display(data)
```

Close Close_shifted_by_20 Volume_shifted_by_20 simple_MA_60_shifted_by

```
Date
    2012-
           243.587280
                                                      8186826.0
                               273.664673
                                                                                 282.237
    06-25
1 data = data.reset_index()
1 data.shape
    (2315, 47)
    06-28
1 # data = data.reset_index()
2 # data['Date'] = pd.to_datetime(data.Date,format='%Y-%m-%d')
3 # data.index = data['Date']
4 # data = data.sort_index(ascending=True, axis=0)
5 # new_data = pd.DataFrame(index=range(0,len(df)),columns=['Date', 'Close'])
6 # for i in range(0,len(data)):
      new_data['Date'][i] = data['Date'][i]
       new_data['Close'][i] = data['Close'][i]
1 display(data)
```

		Date	Close	Close_shifted_by_20	Volume_shifted_by_20	simple_MA_60_shif	
	n	2012-	2 <u>4</u> 3 587280	273 664673	8186826 N		
1 da	te = c	data['Da	ate'].to_fra	me()			
	1	۷ ۱۷ -	244 081970	272 823700	12691931 0	:	
	<pre>1 2 add_datepart(data, 'Date') 3 data.drop('Elapsed', axis=1, inplace=True)</pre>						
	<pre>/usr/local/lib/python3.7/dist-packages/fastai/tabular/transform.py:63: FutureWarning for n in attr: df[prefix + n] = getattr(field.dt, n.lower())</pre>						

1 display(data)

UU-25

	Close	Close_shifted_by_20	Volume_shifted_by_20	simple_MA_60_shifted_by
0	243.587280	273.664673	8186826.0	282.237
1	244.081970	272.823700	12691931.0	282.316
2	236.661575	240.470718	40931062.0	281.918
3	237.799362	230.527359	37837266.0	281.347:
4	239.877075	222.167038	24109675.0	280.529
2310	519.049988	497.600006	103630901.0	316.090
2311	530.150024	509.600006	72322623.0	319.547
2312	509.700012	481.899994	57428637.0	322.536
2313	486.100006	486.899994	55444814.0	325.725
2314	495.500000	508.000000	52608672.0	329.306

Introducing features for Date

2315 rows × 58 columns

```
1 data['mon_fri'] = 0
2 for i in range(0,len(data)):
3    if (data['Dayofweek'][i] == 0 or data['Dayofweek'][i] == 4):
4         data['mon_fri'][i] = 1
5    else:
6    data['mon_fri'][i] = 0
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWarnir A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us

after removing the cwd from sys.path.

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarnir A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us

→

1 display(data)

	Close	Close_shifted_by_20	Volume_shifted_by_20	<pre>simple_MA_60_shifted_by_</pre>
0	243.587280	273.664673	8186826.0	282.237
1	244.081970	272.823700	12691931.0	282.316
2	236.661575	240.470718	40931062.0	281.918
3	237.799362	230.527359	37837266.0	281.347
4	239.877075	222.167038	24109675.0	280.529
2310	519.049988	497.600006	103630901.0	316.090
2311	530.150024	509.600006	72322623.0	319.547
2312	509.700012	481.899994	57428637.0	322.536
2313	486.100006	486.899994	55444814.0	325.725
2314	495.500000	508.000000	52608672.0	329.306

2315 rows × 59 columns

¹ new_data = pd.concat((data,date),axis=1)

² new_data

³ display(new_data)

694

		Close	Close_shifted_by_20	Volume_shifted_by_20	simple_MA_60_shifted_by
	0	243.587280	273.664673	8186826.0	282.237
	1	244.081970	272.823700	12691931.0	282.316
	2	236.661575	240.470718	40931062.0	281.918
	3	237.799362	230.527359	37837266.0	281.347
	4	239.877075	222.167038	24109675.0	280.529
2 te: 3 pr:	st_siz int(tr	•	7*new_data.shape[0]) *new_data.shape[0])		
	1620				

Linear Regression and KNN will be able to predict data for 20 days in future atmost

```
1 train_data = new_data[:train_size]
 2 train_data = train_data.drop(['Date'], axis=1)
 3 test_data = new_data[train_size:]
 4 test_data = test_data.drop(['Date'], axis=1)
 5 X_train = train_data.drop(['Close'], axis=1)
 6 Y_train = train_data['Close']
 7 X_test = test_data.drop(['Close'], axis = 1)
 8 Y_test = test_data['Close']
 9 print(X_train.shape)
10 print(Y_train.shape)
11 print(X_test.shape)
12 print(Y_test.shape)
     (1620, 58)
     (1620,)
     (695, 58)
     (695,)
```

Linear Regression

```
1 model = LinearRegression()
2 model.fit(X_train,Y_train)
    LinearRegression()
```

```
1 price prediction = model.predict(X test)
 2 rms=np.sqrt(np.mean(np.power((np.array(Y test)-np.array(price prediction)),2)))
 3 print(rms)
 4 print(type(price_prediction))
 5 print(price_prediction)
    63.89653090586305
     <class 'numpy.ndarray'>
     [163.666481 161.637592 162.261637 163.2093 ... 539.53674 522.08177 530.489868 539
 1 new_data.set_index('Date', inplace=True)
 1 #new_data.set_index('Date', inplace=True)
 2 test_data['Predictions'] = 0
 3 test_data['Predictions'] = price_prediction
 5 test_data.index = new_data[train_size:].index
 6 train_data.index = new_data[:train_size].index
 7
 8 pt.figure(figsize=(20,10))
 9 pt.plot(train_data['Close'])
10 pt.plot(test_data[['Close', 'Predictions']])
11 pt.legend(['Train_close', 'Actual_close', 'Predicted_close'])
```

<matplotlib.legend.Legend at 0x7f46bab85450>

```
Train_close

    Actual close

                                              L
 1
                           . . //
                                               AL NAMAN I
                                                                                        Ш
KNN
                                     W W
                                                          ٧W
                                                                                  M. M.
 1 # from sklearn import neighbors
 2 # from sklearn.model_selection import GridSearchCV
 3 # from sklearn.preprocessing import MinMaxScaler
 4 # scaler = MinMaxScaler(feature range=(0, 1))
                                                                      "May I" \\ My inter
 1 X_train_scaled = scaler.fit_transform(X_train)
 2 X_train = pd.DataFrame(X_train_scaled)
 3 X_test_scaled = scaler.fit_transform(X_test)
 4 X_test = pd.DataFrame(X_test_scaled)
 6 #using gridsearch to find the best parameter
 7 params = {'n_neighbors':[4,5,6,7,8,9,10,11]}
 8 knn = neighbors.KNeighborsRegressor()
 9 model = GridSearchCV(knn, params, cv=5)
10
11 #fit the model and make predictions
12 model.fit(X_train,Y_train)
13 price_prediction_KNN = model.predict(X_test)
 1 rms_KNN=np.sqrt(np.mean(np.power((np.array(Y_test)-np.array(price_prediction_KNN)),2)))
 2 rms
     63.89653090586305
 1 test data['Predictions'] = 0
 2 test_data['Predictions'] = price_prediction_KNN
 3
 4 test_data.index = new_data[train_size:].index
 5 train data.index = new data[:train size].index
 6
 7 pt.figure(figsize=(20,10))
 8 pt.plot(train data['Close'])
 9 pt.plot(test_data[['Close', 'Predictions']])
10 pt.legend(['Train_close', 'Actual_close', 'Predicted_close'])
```


KNN is only able to capture the basic flow of price as with increased dimensions the performance of KNN model decreases

1

Using models which take in account for historical prices but does not require seperate features

Auto-Arima

```
1 from pmdarima import auto_arima
1 data = df.sort_index(ascending=True, axis=0)
2 #display(data)

1 train_size = int(0.7*data.shape[0])
2 test_size = int(0.3*data.shape[0])
3 print(train_size)
4 print(test_size)

1662
712
```

```
1 train data = data[:train size]
2 test data = data[train size:]
3 # only CLose Price is provided as data no other features
4 train = train_data['Close']
5 test = test_data['Close']
6 model = auto_arima(train, start_p=5, start_q=5,max_p=25, max_q=15, m=12,start_P=0, seas
7 model.fit(train)
8
    Performing stepwise search to minimize aic
                                          : AIC=inf, Time=44.62 sec
     ARIMA(5,1,5)(0,1,1)[12]
     ARIMA(0,1,0)(0,1,0)[12]
                                          : AIC=12809.178, Time=0.12 sec
     ARIMA(1,1,0)(1,1,0)[12]
                                          : AIC=12309.961, Time=0.78 sec
                                          : AIC=inf, Time=5.35 sec
     ARIMA(0,1,1)(0,1,1)[12]
     ARIMA(1,1,0)(0,1,0)[12]
                                          : AIC=12808.648, Time=0.10 sec
                                           : AIC=12174.142, Time=1.69 sec
     ARIMA(1,1,0)(2,1,0)[12]
                                          : AIC=inf, Time=20.21 sec
     ARIMA(1,1,0)(2,1,1)[12]
     ARIMA(1,1,0)(1,1,1)[12]
                                          : AIC=inf, Time=6.93 sec
     ARIMA(0,1,0)(2,1,0)[12]
                                         : AIC=12173.264, Time=1.33 sec
                                       : AIC=12173.204, Time=1.33 sec

: AIC=12309.009, Time=0.50 sec

: AIC=inf, Time=14.23 sec

: AIC=inf, Time=4.30 sec
     ARIMA(0,1,0)(1,1,0)[12]
     ARIMA(0,1,0)(2,1,1)[12]
     ARIMA(0,1,0)(1,1,1)[12]
                                  : AIC=12174.014, Time=2.23 sec
: AIC=inf, Time=17.76 sec
     ARIMA(0,1,1)(2,1,0)[12]
     ARIMA(1,1,1)(2,1,0)[12]
     ARIMA(0,1,0)(2,1,0)[12] intercept : AIC=12175.259, Time=4.30 sec
    Best model: ARIMA(0,1,0)(2,1,0)[12]
    Total fit time: 124.465 seconds
    ARIMA(order=(0, 1, 0), scoring_args={}, seasonal_order=(2, 1, 0, 12),
          suppress warnings=True, with intercept=False)
1 predictions = model.predict(n_periods=test_size+1)
2 prediction_arima = pd.DataFrame(predictions,index = test_data.index,columns=['Predictio
3
1 rms=np.sqrt(np.mean(np.power((np.array(test_data['Close'])-np.array(prediction_arima['P
2 rms
    226.27290877544834
```

The model prdicted initial downfall correctly which provided a good bound

```
1 pt.figure(figsize=(20,10))
2 pt.plot(train_data['Close'])
3 pt.plot(test_data['Close'])
4 pt.plot(prediction_arima['Prediction'])
5 pt.legend(['Train_close', 'Actual_close', 'Predicted_close'])
```

<matplotlib.legend.Legend at 0x7f46baa99390>

LSTM

The LSTM model is Recurrent Neural Network which considers the data from past and works through a loop. Neural Network induces non-linearity.

```
1 from keras.models import Sequential
2 from keras.layers import Dense, Dropout, LSTM

1 data = df.sort_index(ascending=True, axis=0)

1 #display(data)

1 data=data.reset_index()
2 new_data = pd.DataFrame(index=range(0,len(df)),columns=['Date', 'Close'])
3 for i in range(0,len(data)):
4     new_data['Date'][i] = data['Date'][i]
5     new_data['Close'][i] = data['Close'][i]
6
7 new_data.index = new_data.Date
8 new_data.drop('Date', axis=1, inplace=True)
9 display(new_data)
```

7

Close

Date

```
2012-03-28 268.273
      2012-03-29 269.064
      2012-03-30 272.329
      2012-04-02 273.863
      2012-04-03 278.265
      2021-11-16
                  519.05
      2021-11-17
                  530.15
      2021-11-18
                   509.7
      2021-11-22
                   486.1
      2021-11-23
                   495.5
 1 train_size = int(0.7*new_data.shape[0])
 2 test_size = int(0.3*new_data.shape[0])
 3 print(train_size)
 4 print(test_size)
    1662
    712
 1 dataset = new_data.values
 2 dataset
     array([[268.27252197265625],
            [269.06402587890625],
            [272.3290100097656],
            [273.862548828125],
            [530.1500244140625],
            [509.70001220703125],
            [486.1000061035156],
            [495.5]], dtype=object)
 1 train = dataset[0:train_size,:]
 2 test = dataset[train_size:,:]
 4 #converting dataset into x_train and y_train
 5 scaler = MinMaxScaler(feature_range=(0, 1))
 6 scaled_data = scaler.fit_transform(dataset)
 8 # Training intances are lagged by 100 days here thus providing the hitorical element
 9 x_train, y_train = [], []
10 for i in range(100,len(train)):
       x_train.append(scaled_data[i-100:i,0])
```

```
y train.append(scaled data[i,0])
12
13 x train, y train = np.array(x train), np.array(y train)
15 x_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[1],1))
16
17 # create and fit the LSTM network
18 model = Sequential()
19 model.add(LSTM(units=100,activation = 'tanh', return_sequences=True, input_shape=(x_tra
20 model.add(LSTM(units=100))
21 # model.add(LSTM(50, activation='tanh',))
22 # model.add(LSTM(units=50))
23 model.add(Dense(1))
24
25 model.compile(loss='mean_squared_error', optimizer='adam')
26 model.fit(x_train, y_train, epochs=1, batch_size=1, verbose=2)
27
28 #predicting 246 values, using past 60 from the train data
29 inputs = new_data[len(new_data) - len(test) - 100:].values
30 inputs = inputs.reshape(-1,1)
31 inputs = scaler.transform(inputs)
32
33 X_test = []
34 for i in range(100,inputs.shape[0]):
       X_test.append(inputs[i-100:i,0])
36 X_test = np.array(X_test)
38 X_test = np.reshape(X_test, (X_test.shape[0],X_test.shape[1],1))
39 closing_price = model.predict(X_test)
40 closing_price = scaler.inverse_transform(closing_price)
     1562/1562 - 68s - loss: 0.0025 - 68s/epoch - 43ms/step
 1 rms=np.sqrt(np.mean(np.power((test-closing_price),2)))
 2 rms
     17.04918868275994
 1 train = new_data[:train_size]
 2 test = new_data[train_size:]
 3 test['Predictions'] = closing price
 4 pt.figure(figsize = (20,10))
 5 pt.plot(train['Close'])
 6 pt.plot(test[['Close', 'Predictions']])
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarnir A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
This is separate from the ipykernel package so we can avoid doing imports until [<matplotlib.lines.Line2D at 0x7f46bf491d90>, <matplotlib.lines.Line2D at 0x7f46bf491750>]

1