Exercícios à mão:

- 1. Escreva um programa que lê uma matriz 4 x 4, conte e escreva quantos valores maiores que 10 ela possui.
- 2. Escreva um programa que lê uma matriz 3 x 2, e retorne a localização (linha e a coluna) do maior valor.
- 3. Escreva um programa que lê uma matriz 5 x 5 e lê também um valor X. O programa deverá fazer uma busca desse valor na matriz e, ao final, escrever a localização (linha e coluna) da primeira aparição de X ou uma mensagem de "não encontrado".
- 4. Escreva um programa que leia uma matriz 2 x 2 com valores inteiros. Ofereça ao usuário um menu de opções:
 - a. somar todos os elementos da matriz
 - b. somar os elementos pares da matriz
 - c. somar os elementos ímpares da matriz
- 5. Escreva um programa que leia uma matriz 6 x 6 com valores reais.
 - a. Imprima a soma dos elementos da diagonal principal
 - b. Imprima a média aritmética dos elementos da matriz

-

Exercícios no computador:

6. Declare uma matriz 5 x 5. Preencha com 1 a diagonal principal e com 0 os demais elementos. Ao final do programa, imprima na tela a matriz.

- 7. Leia uma matriz de 3 x 3 de números reais. Calcule a soma dos elementos que estão na diagonal principal e imprima na tela o resultados com duas casas decimais após a vírgula.
- 8. Leia uma matriz 5 x 3 com as notas de 5 alunos em 3 provas. Em seguida, escreva o número de alunos cuja pior nota foi na prova 1, o número de alunos cuja pior nota foi na prova 2, e o número de alunos cuja pior nota foi na prova 3. Em caso de empate das piores notas de um aluno, o critério de desempate é arbitrário, mas o aluno deve ser contabilizado apenas uma vez.

Exemplo 1

Entrada 15 7 5 6 4 12 8 9 5 8 4 8 6 Saída

Prova 1: 3 aluno(s) Prova 2: 1 aluno(s) Prova 3: 1 aluno(s) 9. Escreva um algoritmo que lê uma matriz A 4 x 5 onde os elementos são algarismos (0, 1, ..., 9). Verifique, a seguir, quais os elementos de A que estão repetidos e quantas vezes cada um está repetido. Escreva cada elemento repetido com uma mensagem dizendo que o elemento aparece X vezes em A.

Exemplo 1

Entrada	
45625 35854 85231 01426	
Saída	
1 aparece 2 vezes em A 2 aparece 3 vezes em A 3 aparece 2 vezes em A 4 aparece 3 vezes em A 5 aparece 5 vezes em A 6 aparece 2 vezes em A 8 aparece 2 vezes em A	

10. Escreva um algoritmo que lê uma matriz M 5 x 5. Substitua, a seguir, todos os valores negativos da matriz por 0 e imprima a matriz modificada.

Entrada			
9 4 -1 3 94 4 2 -9 -1 3 -2 4 5 2 1 2 -3 4 2 12 4 -2 3 5 42			
Saída			
9 4 0 3 94 4 2 0 0 3 0 4 5 2 1 2 0 4 2 12 4 0 3 5 42			

11. Escreva um algoritmo para armazenar valores inteiros em uma matriz 5 x 6. A seguir, calcule a média dos valores pares contidos na matriz e escreva seu resultado (de o resultado com duas casas decimais após a vírgula).

Exemplo 1

Entrada

3 23 138 12 3 5

5 31 23 45 90 76

2 12 32 456 1 2

190 8 765 14 53

2431283

Saída

62.93

- 12. Escreva um algoritmo que lê uma matriz M 5 x 5 e calcule as somas:
 - a. da linha 4 de M.
 - b. da coluna 2 de M.
 - c. da diagonal principal.
 - d. da diagonal secundária.
 - e. de todos os elementos da matriz

Exemplo 1

Entrada 4 21315 2 43621 167214 5 4 23 5 7 3 9 89 7 6 Saída 44 83 65 21 285

13. Escreva um programa que leia um número \mathbf{n} (3 <= n < 50), que é a ordem de uma matriz M quadrada. Logo depois, leia M, com dimensões n x n. Ao final, o seu programa deverá imprimir na tela a soma dos elementos que estão **abaixo** da diagonal principal.

1	5	3	2
3	5	4	7
4	1	3	4
12	34	0	3

Exemplo de uma matriz 4x4. Os elementos de verde estão abaixo da diagonal principal.

Exemplo 1

Entrada	
4	
1532	
3547	
4134	
12 34 0 3	
Saída	
54	

Entrada	
5 5 8 0 0 4 9 10 5 2 2 0 6 1 2 7 4 4 15 8 33 5 2 8 10 12	
Saida	
63	

14. Escreva um programa que leia um número \mathbf{n} (3 <= n < 50), que é a ordem de uma matriz M quadrada. Logo depois, leia M, com dimensões n x n. Ao final, o seu programa deverá imprimir na tela a soma dos elementos que estão **acima** da diagonal principal.

1	5	3	2
3	5	4	7
4	1	3	4
12	34	0	3

Exemplo de uma matriz 4x4. Os elementos de verde estão acima da diagonal principal.

Exemplo 1

Entrada	
4	
1532	
3547	
3547 4134	
12 34 0 3	
Saída	
25	

Entrada
5
58004
9 10 5 2 2
06127
4 4 15 8 33
5 2 8 10 12
Saída
63

Desafio

15. Escreva um programa que leia um número **n** (3 <= n < 50), que é a ordem de uma matriz M quadrada. Logo depois, leia M, com dimensões n x n. Ao final, o seu programa deverá imprimir na tela a soma dos elementos que estão no quadrado interno da matriz. As figuras abaixo indicam o que é o quadrado interno de uma matriz:

5	9	0
6	5	0
1	2	3

1	6	63	12
2	7	9	9
3	8	7	5
8	0	0	10

12	5	13	2	2
3	2	4	7	9
9	1	3	15	4
12	3	0	2	3
6	2	0	23	9

Os elementos em verde pertecem ao quadrado interno de cada matriz.

Exemplo 1

Entrada	
3 590 650 123	
Saída	
5	

Entrada			
4			
1 6 63 12			
2799			
3875			
8 0 0 10			
Saída			
31			