Generalising Calabi-Yau for flux backgrounds

Anthony Ashmore

with D. Waldram, M. Petrini, M. Gabella, M. Graña 1510.00022; 1602.02158; 1605.05730

The question

What is the geometry of a generic $\mathcal{N}=2$ flux background?

- No fluxes \rightarrow complex/symplectic geometry.
- NS-NS fluxes → generalised complex geometry.
- All fluxes → exceptional generalised geometry.

Outline

- Introduction
- 2 Generalised geometry
- H and V structures
- Marginal deformations for AdS/CFT

Backgrounds with no fluxes

$$abla \epsilon = 0 \implies \text{special holonomy}$$

e.g. type II on Calabi-Yau

$$\omega_{mn} \sim \epsilon^{\dagger} \gamma_{mn} \epsilon, \qquad \Omega_{mnp} \sim \epsilon^{T} \gamma_{mnp} \epsilon$$

Integrable SU(3) structure if

$$\mathrm{d}\Omega = \mathrm{d}\omega = 0 \quad \Leftrightarrow \quad \nabla\epsilon = 0$$

Calabi–Yau \Leftrightarrow integrable SU(3) structure \Leftrightarrow $\mathcal{N}=2$ in 4d

Backgrounds with fluxes

With fluxes, Levi-Civita \rightarrow supergravity connection, e.g. type II

$$\begin{split} (\nabla_m \mp \frac{1}{8} H_{mnp} \gamma^{np}) \epsilon^{\pm} + \frac{1}{16} \mathrm{e}^{\phi} \sum_i \not F_i \gamma_m \epsilon^{\mp} &= 0 \\ \gamma^m (\nabla_m \mp \frac{1}{24} H_{mnp} \gamma^{np} - \partial_m \phi) \epsilon^{\pm} &= 0 \end{split}$$

Any underlying geometry?

- Special holonomy?
- Analogues of ω and Ω ? Integrability?
- Deformations and moduli spaces?

One approach: G-structures

Killing spinors stabilised by

$$G \subset SO(6) \subset GL(6)$$

and define a G-structure, but not integrable

$$d\Omega \sim flux$$
, $d\omega \sim flux$

Good for classification and new solutions, but

- Global issues: "type changing".
- Moduli are difficult, $d\delta\Omega$, $d\delta\omega \neq 0$.

[Gauntlett, Martelli, Waldram; Gauntlett, Pakis; Martelli, Sparks; Lüst, Tsimpis;...]

Generalised Calabi-Yau

Killing spinors stabilised by

$$SU(3) \times SU(3) \subset SO(6) \times SO(6) \subset O(6,6) \times \mathbb{R}^+$$

and define a G-structure, integrable for NS-NS backgrounds

$$d\Phi^+ = 0, \qquad d\Phi^- = 0$$

Each $\Phi^{\pm} \in \Gamma(\wedge^{\pm} T^*M)$ defines SU(3,3) structure.

$$\Phi^+ = e^{-\phi} e^{-B-i\omega}, \qquad \quad \Phi^- = e^{-\phi} e^{-B} (\Omega_1 + \Omega_3 + \Omega_5)$$

[Hitchin; Gualtieri; Graña, Minasian, Petrini, Tomasiello]

Generic $\mathcal{N} = 2$ backgrounds

Keep all fluxes, warped compactification

$$\mathrm{d}s^2 = \mathrm{e}^{2\Delta}\mathrm{d}s^2(\mathbb{R}^{3,1}) + \mathrm{d}s^2(M)$$

where M is 6d for type II and 7d for M-theory.

In sugra, spinors transform as ${\bf 8}$ of SU(8): pair of Killing spinors stabilised by

$$SU(6) \subset SU(8) \subset E_{7(7)} \times \mathbb{R}^+$$

and define a generalised SU(6) structure.

The question

What is the geometry of a generic $\mathcal{N}=2$ flux background?

- Generalisations of ω and Ω ? Define generalised SU(6) structure.
- Integrability?
- Moduli space?

Structures in generalised geometry

[Graña, Louis, Sim, Waldram; Graña, Orsi; Graña, Triendl]

Outline

- Introduction
- 2 Generalised geometry
- 3 H and V structures
- Marginal deformations for AdS/CFT

$\mathsf{E}_{d(d)} imes \mathbb{R}^+$ generalised geometry

Unifies all symmetries, restricted to M_{d-1} in type II or M_d in M-theory What do we need?

- Generalised tangent bundle whose sections parametrise the symmetries.
- Generalised Lie derivative by which the symmetries act.

Focus on type II

• Fields $\{g, \phi, B, \tilde{B}, C^{\pm}, \Delta\}$ on M_{d-1} .

```
[Coimbra, Strickland-Constable, Waldram; Hull; Pacheco, Waldram; Berman, Perry;...] cf. [Hitchin; Gualtieri; Baraglia; Cremmer, Julia; de Wit, Nicolai; Siegel; Hohm, Kwak, Zweibach; Jeon, Lee, Park;...]
```

Generalised tangent bundle

$$E \simeq TM \oplus T^*M \oplus \bigwedge^5 T^*M \oplus \bigwedge^{\pm} T^*M \oplus (T^*M \otimes \bigwedge^6 T^*M)$$
$$V^M = (v^m, \lambda_m, \tilde{\lambda}_{m_1...m_5}, \lambda^{\pm}, \tau_{m,n_1...n_7})$$

E encodes diffeomorphisms and gauge transformations, e.g.

$$\delta B = \mathcal{L}_{\mathbf{v}} B + d\lambda, \qquad \delta C^{\pm} = \mathcal{L}_{\mathbf{v}} C^{\pm} + d\lambda^{\pm}$$

Generalised Lie derivative

$$L_V = diffeos + gauge$$
 "Leibniz algebroid"

[Hull; Pacheco, Waldram; Coimbra, Strickland-Constable, Waldram]

Adjoint bundle

Tensors transform as $\mathsf{E}_{d(d)} \times \mathbb{R}^+$ representations

ad
$$\tilde{F} \simeq \mathbb{R} \oplus (TM \otimes T^*M) \oplus \wedge^2 TM \oplus \wedge^2 T^*M \oplus \wedge^6 TM \oplus \wedge^6 T^*M$$

$$\oplus \wedge^{\pm} TM \oplus \wedge^{\pm} T^*M$$

$$R^{M}_{N} = (\dots, B_{mn}, \dots, C^{\pm})$$

Potentials give isomorphism between E and $TM \oplus T^*M \oplus ...$

$$V = e^{B+C^{\pm}} \tilde{V}$$

"Supergravity = generalised geometry"

Neatly describes supergravity on M_{d-1}

• Generalised metric G_{MN} equivalent to $\{g, \phi, B, \tilde{B}, C^{\pm}, \Delta\}$.

Analogue of Levi-Civita connection

• Gen. torsion-free connection D, compatible with gen. metric: DG = 0.

Gen. Ricci tensor gives bosonic action

$$S_{\rm B} = \int_{M} |{\rm vol}_{G}| R \implies {\rm eq. \, of \, motion} = {\rm gen. \, Ricci \, flat}$$

[Coimbra, Strickland-Constable, Waldram]

Outline

- Introduction
- 2 Generalised geometry
- H and V structures
- Marginal deformations for AdS/CFT

Conventional G-structures

G-structure defined by invariant tensors.

symplectic
$$\omega$$
: $G = \operatorname{Sp}(3; \mathbb{R})$

complex
$$\Omega$$
: $G = SL(3; \mathbb{C})$

$$\{\omega,\Omega\}: \quad G=SU(3)$$

Analogues with flux?

Generalised structures

Generalised G-structures, defined by invariant generalised tensors.

H structure
$$J_{\alpha}: G = \mathrm{SO}^*(12)$$

V structure $K: G = \mathrm{E}_{6(2)}$
HV structure $\{J_{\alpha}, K\}: G = \mathrm{SU}(6)$

- J_{α} and K associated with hyper- and vector-multiplets.
- Interpolate between symplectic, complex, product and hyper-Kähler.

[Graña, Louis, Sim, Waldram]

Hypermultiplet structures

H structure: SO*(12)

Weighted tensor in 133_1 of $\mathsf{E}_{7(7)}\times\mathbb{R}^+$

$$J_{\alpha} \in \Gamma(\operatorname{\mathsf{ad}} ilde{F} \otimes (\operatorname{\mathsf{det}} T^*M)^{1/2})$$

giving highest weight su2 algebra

$$[J_{\alpha},J_{\beta}]=2\kappa\epsilon_{lphaeta\gamma}J_{\gamma}, \qquad {
m tr}(J_{lpha}J_{eta})=-\kappa^2\delta_{lphaeta} \quad \in \Gamma(\det T^*M)$$

Constructed from spinor bilinears: $J_{\alpha} = e^{B+C^{\pm}+...}(\sigma_{\alpha}^{ij} \epsilon_i \otimes \bar{\epsilon}_j)$

Generalises Ω in IIA and ω in IIB

Vector-multiplet structures

V structure: $E_{6(2)}$

Generalised vector in $\mathbf{56}_1$ of $\mathsf{E}_{7(7)}\times\mathbb{R}^+$

$$K \in \Gamma(E)$$
 satisfying $q(K) > 0$

where q is the $E_{7(7)}$ quartic invariant

• q(K) as "Hitchin functional" defines second vector \hat{K} .

Constructed from spinor bilinears: $K = e^{B+C^{\pm}+\cdots}(\epsilon^{ij} \epsilon_i \otimes \epsilon_j^{\mathsf{T}})$

Generalises ω in IIA and Ω in IIB

Compatibility and SU(6)

HV structure

The structures are compatible if

$$J_{\alpha} \cdot K = 0,$$
 $\operatorname{tr}(J_{\alpha}J_{\beta}) = -2\sqrt{q(K)}\delta_{\alpha\beta}$

analogues of $\omega \wedge \Omega = 0$ and $\frac{1}{6}\omega^3 = \frac{i}{8}\Omega \wedge \bar{\Omega}$.

Structures intersect on $SO^*(12) \cap E_{6(2)} = SU(6)$.

A compatible pair $\{J_{\alpha}, K\} \implies SU(6)$ structure

Example: CY in IIA

H structure

$$J_{+} = \frac{1}{2}\kappa(\Omega - \Omega^{\sharp})$$

$$J_{3} = \frac{1}{2}\kappa(I - \text{vol}_{6} - \text{vol}_{6}^{\sharp})$$

where $\kappa^2={\rm vol}_6=\frac{{\rm i}}{8}\Omega\wedge\bar\Omega$ and I is complex structure.

V structure

$$K + i\hat{K} = e^{-i\omega}$$

Example: CY in IIB

H structure

$$\begin{split} J_{+} &= \tfrac{1}{2}\kappa(\mathrm{e}^{-\mathrm{i}\omega} - \mathrm{e}^{-\mathrm{i}\omega^{\sharp}}) \\ J_{3} &= \tfrac{1}{2}\kappa(\omega + \omega^{\sharp} - \mathrm{vol}_{6} - \mathrm{vol}_{6}^{\sharp}) \end{split}$$

where $\kappa^2 = \text{vol}_6 = \frac{1}{6}\omega^3$.

V structure

$$K + i\hat{K} = \Omega$$

Many examples

Minkowski

- Generalised Calabi–Yau (pure spinors)
- D3-branes on $HK \times \mathbb{R}^2$ in IIB
- ullet Wrapped M5-branes on HK $imes \mathbb{R}^3$ in M-theory

AdS

- Sasaki–Einstein in 5d (IIB) and 7d (M-theory)
- ullet Most general AdS $_5$ solutions in IIB and M-theory

Integrability

Differential conditions

Spaces of H and V structures admit action of generalised diffeomorphisms

$$GDiff = Diff \ltimes gauge$$

and can define moment maps.

integrability \iff vanishing moment map

Integrability for H structures

Consider space of H structures, coordinates $J_{lpha} \in \mathcal{A}_{\mathsf{H}}$

 \bullet \mathcal{A}_{H} has hyper-Kähler metric, inherited fibrewise from

$$J_{\alpha}(x) \in W = \frac{\mathsf{E}_{7(7)} \times \mathbb{R}^+}{\mathsf{Spin}^*(12)}$$

where W is HK cone over symmetric quaternionic-Kähler (Wolf) space.

• A_H is also a HK cone, global $\mathbb{H}^+ = SU(2) \times \mathbb{R}^+$.

Integrability for H structures

Hyper-Kähler structure on \mathcal{A}_{H} preserved by diffeos and gauge transformations, parametrised by $V \in \Gamma(E) \simeq \mathfrak{gdiff}$

$$\delta J_{\alpha} = L_{V} J_{\alpha} \in T_{J} A_{H}$$

Moment maps

$$\mu_{\alpha}(V) = -\frac{1}{2} \epsilon_{\alpha\beta\gamma} \int_{M} \operatorname{tr}(J_{\beta} L_{V} J_{\gamma})$$

where $\mu_{\alpha} \colon \mathcal{A}_{\mathsf{H}} \to \mathfrak{gdiff}^*$.

Integrability for H structures

Integrability

$$\mu_{\alpha}(V) = 0$$
 for all $V \in \Gamma(E)$

For CY in IIA or IIB, gives $d\Omega = 0$ or $d\omega = 0$.

Moduli space

Structures related by GDiff are equivalent, moduli space is a hyper-Kähler quotient

$$\mathcal{M}_{\mathsf{H}} = \mathcal{A}_{\mathsf{H}} /\!\!/\!/ \mathsf{GDiff} = \mu_1^{-1}(0) \cap \mu_2^{-1}(0) \cap \mu_3^{-1}(0) / \mathsf{GDiff}$$

HK cone over usual QK moduli space of hypermultiplets.

Integrability for V structures

Consider space of V structures, coordinates $K \in \mathcal{A}_V$

 \bullet \mathcal{A}_{H} has special-Kähler metric, inherited fibrewise from

$$K \in P = \frac{\mathsf{E}_{7(7)} \times \mathbb{R}^+}{\mathsf{E}_{6(2)}}$$

where P is special-Kähler.

Moment maps

Again, \mathfrak{goiff} acts as $\delta K = L_V K \in T_K A_V$ and preserves SK structure, giving $\mu \colon A_V \to \mathfrak{goiff}^*$

$$\mu(V) = \frac{1}{2} \int_{M} s(K, L_{V}K)$$

where $s(\cdot, \cdot)$ is $E_{7(7)}$ symplectic invariant.

Integrability for V structures

Integrability

$$\mu(V) = 0$$
 for all $V \in \Gamma(E)$

For CY in IIA or IIB, gives $(d\Omega)_{3,1} = 0$ or $\omega \wedge d\omega = 0$.

Moduli space

Structures related by GDiff are equivalent, moduli space is a symplectic quotient

$$\mathcal{M}_V = \mathcal{A}_V /\!\!/ \mathsf{GDiff} = \mu^{-1}(0)/\mathsf{GDiff}$$

SK cone over the usual SK moduli space of vector-multiplets.

Integrability for HV structures

$\mathcal{N}=2$ backgrounds

H and V structures that are individually integrable are not sufficient. Need extra condition that couples them (unlike CY!)

$$\mu_{\alpha}(V) = \mu(V) = 0$$
 plus $L_K J_{\alpha} = L_{\hat{K}} J_{\alpha} = 0$

For CY, recover $d\omega = d\Omega = 0$.

"Exceptional Calabi–Yau" $\Leftrightarrow \mathcal{N} = 2$ with flux

Why these conditions?

Intrinsic torsion

SUSY equivalent to existence of generalised torsion-free connection D that is compatible with the structures

$$DJ_{\alpha}=DK=0, \qquad T(D)=\{0\}$$

Integrability constrains same representations that appear in torsion.

[Coimbra, Strickland-Constable, Waldram]

Gauged $\mathcal{N}=2$ supergravity

Rewrite 10d theory as D=4, $\mathcal{N}=2$ but keep all KK modes.

- Gauged 4d supergravity with infinite number of hypers and vectors.
- Integrability just $\mathcal{N}=2$ vacuum conditions.

[Louis, Smyth, Triendl; Hristov, Looyestijin, Vandoren]

Outline

- Introduction
- 3 H and V structures
- Marginal deformations for AdS/CFT

AdS₅ in type IIB

Sasaki-Einstein

 $\mathcal{N}=1$ AdS backgrounds in type IIB with $\emph{F}_{5}
eq0$

$$ds_{10}^2 = ds^2(AdS_5) + ds^2(SE_5),$$
 $F_5 = dC_4 = 4 \text{ vol}_5$

Cone over SE₅ is Calabi-Yau.

• Contact form $\sigma = \mathrm{d}\psi + \eta$, dual to Reeb vector ξ – nowhere-vanishing Killing vector.

$$\imath_{\xi}\sigma=1, \qquad \imath_{\xi}\omega=\imath_{\xi}\Omega=0, \qquad \omega\wedge\Omega=0,$$

$$d\sigma=2\omega, \qquad d\Omega=3i\sigma\wedge\Omega, \qquad \mathcal{L}_{\xi}\Omega=3i\Omega$$

$AdS_5 \times SE_5$ in type IIB

HV structure

$$\left. egin{aligned} J_{lpha}, & G &= \mathsf{SU}^*(6) \\ \mathcal{K}, & G &= \mathsf{F}_{4(4)} \end{aligned}
ight. \qquad G &= \mathsf{USp}(6)$$

where $K \sim e^{C_4}(\xi + \sigma \wedge \omega)$, $J_+ \sim e^{C_4}(\Omega + \Omega^{\sharp})$.

Integrability for AdS

$$\mu_{\alpha}(V) = \lambda_{\alpha} \int_{M} c(K, K, V), \qquad L_{K}K = 0, \qquad L_{K}J_{\alpha} = \epsilon_{\alpha\beta\gamma}\lambda_{\beta}J_{\gamma}$$

where $c(\cdot, \cdot, \cdot)$ is $E_{6(6)}$ cubic invariant.

• Implies K is "generalised Killing vector".

Marginal deformations

"Superpotential" deformations:
$$\delta J_{\alpha} = [R,J_{\alpha}] \neq 0, \quad \delta K = 0$$

Dual to marginal deformations of $\mathcal{N}=1$ SCFT

- R contains two-form and bivector components
- R generates flux

$$F_3 + iH \propto f \sigma \wedge \bar{\Omega} + \dots, \qquad \mathcal{L}_{\xi} f = 3if$$

where *f* is holomorphic on CY cone.

Marginal deformations

Which deformations can be extended to all orders? Higher-order calculations constrain f – long and difficult! [Aharony, Kol, Yankielowicz]

Moment map: no obstructions unless there are additional symmetries at f = 0.

Further quotient by

$$\mathfrak{g} = \{ V \in \mathfrak{gdiff} : L_V J_\alpha = L_V K = 0 \}$$

Supergravity version of [Green, Komargodski, Seiberg, Tachikawa, Wecht]

Marginal deformations

Example: S⁵

Cone over S⁵ is \mathbb{C}^3 with coordinates z_i : $\mathcal{L}_{\xi}z_i = iz_i$

$$f = f^{ijk} z_i z_j z_k$$

 $SU(3) \subset GDiff leaves \{J_{\alpha}, K\}$ fixed, obstruction is SU(3) moment map

$$\gamma^{i}_{j} = f^{ikl}\bar{f}_{jkl} - \frac{1}{3}\delta^{i}_{j}f^{klm}\bar{f}_{klm} = 0$$

Only 10 - 8 = 2 complex degrees of freedom in f.

AdS/CFT: $\gamma^i_{\ j}=0$ just one-loop beta-function conditions, 2 exactly marginal deformations of $\mathcal{N}=4$ SYM.

Summary

Summary

- Combines symplectic, complex, HK structures.
- Moduli space c.f. hyper-Kähler quotient.
- Reductions of type II and 11d supergravity to 4, 5 and 6 dimensions,
 Minkowski or AdS.
- AdS/CFT: deformations plus obstructions from symmetries.
 - \bullet Also works for 3d $\mathcal{N}=2$ theories with M-theory duals.

Outlook

Questions

- $\mathcal{N} = 1$ backgrounds? Heterotic?
- Exponentiate deformations?
- Deformations are part of complex. Underlying DGLA?
- AdS: volume minimisation, calibrations?
- Links to topological string?