

Numerik 2

Blatt 5 - 27.6.2022

Benötigte Kapitel in 'Numerik 3x9': 1 bis 14. Abgabe: 8.7.2022, 10:00 Uhr

Homepage zur Vorlesung:

https://aam.uni-freiburg.de/agba/lehre/ss22/num

Aufgabe 1 (4 Punkte). Sei $Q: C^0([a,b] \to \mathbb{R}$ eine Quadraturformel mit n+1 Gewichten und Quadraturpunkten $(x_i, w_i)_{i=0,\dots,n}$, die exakt vom Grad n ist. (i) Zeigen Sie, dass

$$w_i = \int_a^b L_i(x) \, \mathrm{d}x$$

für i = 0, 1, ..., n mit den durch die Stützstellen $(x_i)_{i=0,...,n}$ definierten Lagrange-Basispolynomen $(L_i)_{i=0,...,n}$.

(ii) Zeigen Sie, dass im Fall der Exaktheit vom Grad 2n gilt, dass $w_i > 0$ für $i = 0, 1, \ldots, n$.

Aufgabe 2 (6 Punkte). (i) Approximieren Sie das Integral

$$I := \int_{1}^{2} \frac{1}{x^2} \, \mathrm{d}x$$

durch die Trapezregel und die Simpsonregel. Berechnen Sie die Approximationsfehler.

(ii) Approximieren Sie das Integral I durch die zugehörigen summierten Quadraturformeln mit den Teilintervallen $[a_{\ell-1}, a_{\ell}]$ für $\ell=1,2$ und Knoten $a_{\ell}=1+\ell(2-1)/2$ für $\ell=0,1,2$. Berechnen Sie die Approximationsfehler und vergleichen Sie diese mit denen aus Teil (i).

Aufgabe 3 (6 Punkte). (i) Es sei $(f,g) \mapsto \langle f,g \rangle$ ein Skalarprodukt auf dem Raum $C^0([a,b])$. Zeigen Sie, dass mit den Initialisierungen $p_0(x) = 1$ und $p_1(x) = x - \beta_0$ sowie der Rekursionsvorschrift

$$p_{i+1}(x) = (x - \beta_i)p_i(x) - \gamma_i p_{i-1}(x)$$

mit den Koeffizienten $\beta_j = \langle xp_j, p_j \rangle / \langle p_j, p_j \rangle$ und $\gamma_j = \langle p_j, p_j \rangle / \langle p_{j-1}, p_{j-1} \rangle$ eine Folge von paarweise orthogonalen Polynomen $p_j \in \mathcal{P}_j$ definiert wird.

(ii) Es sei $\omega:(a,b)\to\mathbb{R}$ eine nichtnegative Gewichtsfunktion, sodass

$$\langle f, g \rangle_{\omega} = \int_{a}^{b} f(x)g(x)\omega(x) dx$$

ein Skalarprodukt auf $C^0([a,b])$ definiert. Durch Anwenden von (i) mit diesem Skalarprodukt ist ein Orthogonalsystem mit Polynomen $\pi_j \in \mathcal{P}_j$ für $j \in \mathbb{N}_0$ definiert. Zeigen

Sie, dass π_j ein Polynom mit j Nullstellen ist.

Hinweis: Zeigen Sie die Aussage zunächst mit $\omega \equiv 1$ und verallgemeinern Sie ihre Argumente dann für eine beliebige Gewichtsfunktion mit den gewünschten Eigenschaften.

Aufgabe 1 (4 Punkte). Sei $Q: C^0([a,b] \to \mathbb{R}$ eine Quadraturformel mit n+1 Gewichten und Quadraturpunkten $(x_i, w_i)_{i=0,\dots,n}$, die exakt vom Grad n ist. (i) Zeigen Sie, dass

$$w_i = \int_a^b L_i(x) \, \mathrm{d}x$$

für $i=0,1,\dots,n$ mit den durch die Stützstellen $(x_i)_{i=0,\dots,n}$ definierten Lagrange-Basispolynomen $(L_i)_{i=0,\dots,n}$.

Beweis: Es gilt

$$\int_{Q} C_{i}(x) dx = Q(C_{i}(x)) = \sum_{j=0}^{\infty} W_{j} C_{i}(x_{j})$$

$$Q exald com$$
Grad n

$$= \sum_{j=0}^{\infty} W_{j} J_{ij} = W_{i}.$$
Benerlang M.2.

Aufgabe 2 (6 Punkte). (i) Approximieren Sie das Integral

$$I := \int_{1}^{2} \frac{1}{x^2} \, \mathrm{d}x$$

durch die Trapezregel und die Simpsonregel. Berechnen Sie die Approximationsfehler.

Trapezregel:

$$T = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} dx \approx \frac{2-1}{2} \left(f(1) + f(2) \right) = \frac{1}{2} \cdot \left(1 + \frac{1}{4} \right) = \frac{1}{2} \cdot \frac{5}{4} = \frac{5}{9} = 0,625.$$

$$Tehler: \left| T - \frac{5}{8} \right| = \left| \frac{1}{2} - \frac{5}{8} \right| = \frac{1}{8} = 0,125.$$

Simpson-Regel:

$$T = \int_{1}^{3} \frac{1}{x^{2}} dx \approx \frac{2-1}{6} \left(f(1) + 4 \cdot f(\frac{1+2}{2}) + f(2) \right)$$

$$= \frac{1}{6} \cdot \left(1 + 4 \cdot \frac{4}{9} + \frac{1}{4} \right) = \frac{1}{6} \cdot \frac{109}{36} = \frac{109}{216} = 0,504\overline{629}.$$

Fehler:
$$\left| I - \frac{109}{216} \right| = \left| \frac{1}{z} - \frac{109}{216} \right| = 0,004629$$

(ii) Approximieren Sie das Integral I durch die zugehörigen summierten Quadraturformeln mit den Teilintervallen $[a_{\ell-1}, a_{\ell}]$ für $\ell = 1, 2$ und Knoten $a_{\ell} = 1 + \ell(2-1)/2$ für $\ell = 0, 1, 2$. Berechnen Sie die Approximationsfehler und vergleichen Sie diese mit denen aus Teil (i).

Teilintervalle
$$[a_0, a_1]$$
 and $[a_1, a_2]$

$$= 1 + 2 \cdot (2 - 1)/2$$

$$= 1 + 2 \cdot (2 - 1)/2$$

$$= 1 + 1 = 2$$

$$= 1 + 1 = 2$$

$$= 1 + 1 = 2$$

$$= 1 + 1 = 2$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2} \left(x \right) dx + \int_{a_0}^{2} f(x) dx = 1$$

$$= \frac{a_1}{2}$$

Simpson-Ragel:

$$\frac{a_{1}-a_{0}}{6}\left(f\left(a_{0}\right)+4f\left(\frac{a_{0}+a_{1}}{2}\right)+f\left(a_{1}\right)\right)+\frac{a_{2}-a_{1}}{6}\left(f\left(a_{1}\right)+4f\left(\frac{a_{1}+a_{2}}{2}\right)+f\left(a_{2}\right)\right)$$

$$=\frac{\frac{3}{2}-1}{6}\left(1+\frac{16}{25}+\frac{1}{5}\right)+\frac{2-\frac{3}{2}}{6}\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)$$

$$=\frac{1}{12}\left(1+\frac{64}{25}+\frac{1}{5}+\frac{1}{2}+\frac{1}{12}\left(\frac{1}{2}+\frac$$

Die Fehler der summierten Quadraturformeln sind deutlich Weiner als die Fehke aus Anfgabenteil (i),

Dies ergibt Sinn, denn je mehr Teilintervalle mir haben, doto bester mird die gesamte Approximation.