Mówimy, że ciąg zmiennych losowych X_n zbiega według rozkładu do zmiennej losowej X, jeśli dla dowolnej funkcji ciągłej ograniczonej f, $\mathbf{E}f(X_n) \to \mathbf{E}f(X)$.

- 1. Udowodnij, że dla dowolnych punktów x_n, x w przestrzeni metrycznej E $\delta_{x_n} \Rightarrow \delta_x$ wtedy i tylko wtedy gdy $x_n \to x$.
- 2. Wykaż, że $\frac{1}{n}\sum_{k=1}^{n}\delta_{k/n}\Rightarrow\lambda$, gdzie λ jest miarą Lebesgue'a na [0,1].
- 3. Wykaż, że:
 - a) jeśli $X_n \to X$ p.n., to $X_n \Rightarrow X$;
 - b) jeśli $X_n \to X$ według prawdopodobieństwa, to $X_n \Rightarrow X$;
 - c) jeśli $X_n \Rightarrow c$ gdzie c jest stałą to $X_n \rightarrow c$ według prawdopodobieństwa.
- 4. Zmienne losowe X_n, X przyjmują tylko wartości całkowite.
 - a) Wykaż, że $X_n \Rightarrow X$ wtedy i tylko wtedy gdy $\mathbf{P}(X_n = k) \to \mathbf{P}(X = k)$ dla wszystkich liczb całkowitych k.
 - b) Czy z istnienia granic $\lim_{n\to\infty} \mathbf{P}(X_n=k)$ dla k całkowitych wynika zbieżność X_n wg rozkładu?
- 5. Niech X będzie rzeczywistą zmienną losową. Wykaż, że istnieje ciąg zmiennych X_n zbieżny według rozkładu do X taki, że
 - a) każde X_n przyjmuje tylko skończenie wiele wartości,
 - b) zmienne X_n mają gęstość.
- 6. Udowodnij, że $\mathcal{N}(a_n, \sigma_n^2) \Rightarrow \mathcal{N}(a, \sigma^2)$ wtedy i tylko wtedy gdy $a_n \to a$, $\sigma_n^2 \to \sigma^2$.
- 7* Niech g_{X_n},g_X będą gęstościami rzeczywistych zmiennych losowych. Wykaż, że jeśli $g_{X_n}(t)\to g_X(t)$ dla p.w. t to $X_n\Rightarrow X$.
- 8. Udowodnij, że jeśli $X_n \Rightarrow X$, p > 0 oraz $\sup_n \mathbf{E}|X_n|^p < \infty$ to $\mathbf{E}|X|^p < \infty$, ale niekoniecznie $\mathbf{E}|X_n|^p \to \mathbf{E}|X|^p$. Jest to jednak prawdą gdy dla pewnego $\varepsilon > 0$, $\sup_n \mathbf{E}|X_n|^{p+\varepsilon} < \infty$.
- 9* Niech $x \in (0,1)$ będzie liczbą niewymierną. Wykaż,
że

$$\frac{1}{n} \sum_{k=1}^{n} \delta_{\{kx \bmod 1\}} \Rightarrow \lambda,$$

gdzie λ jest miarą Lebesgue'a na [0,1]. Co się dzieje, gdy xjest wymierne?

- 10* Wykazać, że dla rzeczywistych zmiennych losowych $X_n \Rightarrow X$ wtedy i tylko wtedu gdy istnieją zmienne losowe $\tilde{X}_n \sim X_n$ i $\tilde{X} \sim X$ takie, że X_n jest zbieżny do X według prawdopodobieństwa.
- 11. Udowodnij, że jeśli dla wszystkich n, X_n jest niezależne od Y_n, X niezależne od Y oraz $X_n \Rightarrow X$ i $Y_n \Rightarrow Y$ to $(X_n, Y_n) \Rightarrow (X, Y)$.

- 1. Załóżmy, że X jest niezdegenerowaną zmienną losową. Wykaż, że zmienne a_nX+b_n zbiegają według rozkładu do zmiennej aX+b wtedy i tylko wtedy gdy $a_n\to a$ i $b_n\to b$.
- 2. Podaj przykład ciągu dystrybuant F_{X_n} , zbieżnego punktowo do funkcji, która nie jest dystrybuantą. Czy może się zdarzyć, że zmienne X_n są zbieżne według rozkładu?
- 3* Wykaż, że

$$d(\mu, \nu) = \inf\{\varepsilon > 0: \ \forall_t \ F_{\mu}(t - \varepsilon) - \varepsilon < F_{\nu}(t) < F_{\mu}(t + \varepsilon) + \varepsilon\}$$

definiuje metrykę na wszystkich rozkładach probabilstycznych na \mathbb{R} zgodną ze słabą zbieżnością (tzn. $\mu_n \Rightarrow \mu \Leftrightarrow d(\mu_n, \mu) \to 0$).

- 4** Zmienne losowe X_n są niezależne. Wykaż, że $\sum_{n=1}^{\infty} X_n$ jest zbieżny według rozkładu wtedy i tylko wtedy gdy jest zbieżny według prawdopodobieństwa.
- 5* Załóżmy, że dla dowolnej liczby naturalnej k, $\lim_{n\to\infty} \mathbf{E} X_n^k = \frac{1}{k+1}$. Czy z tego wynika, że X_n jest zbieżny według rozkładu? Jeśli tak, to do jakiej granicy?
- 6* Wykaż, że jeśli $X_n \Rightarrow X$ oraz dystrybuanta F_X jest ciągła, to F_{X_n} zbiega jednostajnie do F_X .
- 7. Niech X_n będzie pierwszą współrzędną rozkładu jednostajnego na kuli jednostkowej w \mathbb{R}^n . Udowodnij, że $\sqrt{n}X_n \Rightarrow \mathcal{N}(0,1)$.
- 8. Wykaż, że rodzina zmiennych $\mathcal{N}(a_{\alpha}, \sigma_{\alpha}^2)$ jest ciasna wtedy i tylko wtedy gdy $\sup_{\alpha} |a_{\alpha}| < \infty, \sup_{\alpha} \sigma_{\alpha}^2 < \infty.$
- 9** Udowodnij, że twierdzenie Prochorowa zachodzi na przestrzeni polskiej tzn. metrycznej, zupełnej, ośrodkowej.

- 1. Oblicz funkcje charakterystyczne podstawowych rozkładów tzn.
 - a) geometrycznego z parametrem p,
 - b) Poissona z parametrem λ ,
 - c) dwumianowego z parametrami n, p,
 - d) jednostajnego na przedziale [a, b],
 - e) normalnego $\mathcal{N}(a, \sigma^2)$,
 - f) wykładniczego z parametrem λ ,
 - g) Cauchy'ego z parametrem h.
- 2. Które z następujących funkcji są funkcjami charakterystycznymi: $\cos t$, $\cos^2 t$, $\frac{1}{4}(1+e^{it})^2$, $\frac{1+\cos t}{2}$, $\frac{1}{2-e^{it}}$?
- 3* Udowodnij, że jeśli $\varphi_X''(0)$ istnieje to $\mathbf{E}X^2 < \infty$
- 4. Wykaż, że dla zmiennych \boldsymbol{X} przyjmujących tylko wartości całkowite zachodzi

$$\mathbf{P}(X=k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikt} \varphi_X(t) dt.$$

- 5* Udowodnij, że jeśli X ma rozkład ciągły z gęstością g to $\varphi_X(t)\to 0$ dla $|t|\to \infty.$
- 6. Funkcja φ jest funkcją charakterystyczną pewnej zmiennej losowej. Czy funkcje
 - a) φ^2 ,
 - b) $Re(\varphi)$,
 - c) $|\varphi|^2$,
 - d) $|\varphi|$

muszą być funkcjami charakterystycznymi?

- 7. Udowodnij, że zmienna losowa X jest symetryczna wtedy i tylko wtedy gdy $\varphi_X(t) \in \mathbb{R}$ dla wszystkich t.
- 8. Udowodnij, że splot rozkładów Cauchy'ego ma rozkład Cauchy'ego.
- 9* a) Udowodnij, że $\varphi(x)=(1-|x|)I_{(-1,1)}(x)$ jest funkcją charakterystyczną b) Udowodnij, że jeśli $\varphi\colon\mathbb{R}\to\mathbb{R}_+$ jest parzysta, wypukła i malejąca na $[0,\infty)$, kawałkami liniowa oraz $\varphi(0)=1$ to φ jest funkcją charakterystyczna.
 - c) Udowodnij, że jeśli $\varphi \colon \mathbb{R} \to \mathbb{R}_+$ jest parzysta, wypukła i malejąca na $[0,\infty)$ oraz $\varphi(0)=1$, to φ jest funkcją charakterystyczną.
- 10. Wykaż, że funkcja $e^{-|t|^{\alpha}}$
 - a*) jest funkcją charakterystyczną dla 0 < $\alpha \leqslant 1,$
 - b*) nie jest funkcją charakterystyczną dla $\alpha > 2$,
 - c**) jest funkcją charakterystyczną dla $1 < \alpha \le 2$.

- 1. Udowodnij, że jeśli $\varepsilon_1, \varepsilon_2, \ldots$ są niezależnymi zmiennymi losowymi takimi, że $\mathbf{P}(\varepsilon_i = \pm 1) = 1/2$ to zmienna $\sum_{n=1}^{\infty} 2^{-n} \varepsilon_n$ ma rozkład jednostajny na [-1,1].
- 2. Znajdź zmienne losowe X,Y takie, że $\varphi_{X+Y}=\varphi_X\varphi_Y$ oraz zmienne X,Y są zależne.
- 3* Wykaż, że jeśli $\mathbf{E}X^k=\mathbf{E}Y^k$ dla $k=1,2,\ldots$ i Y ma rozkład normalny, to X i Y mają ten sam rozkład.
- 4** Znajdź przykład zmiennych X i Y o różnych rozkładach i skończonych wszystkich momentach, takich, że $\mathbf{E}X^k=\mathbf{E}Y^k$ dla $k=1,2,\ldots$
 - 5. Podaj przykład zmiennych losowych X_n takich, że $\varphi_{X_n} \to \varphi$ punktowo, ale φ nie jest funkcją charakterystyczna żadnego rozkładu na prostej.
 - 6. Zmienna X ma funkcję charakterystyczną $\varphi_X(t)=e^{-|t|^{\alpha}}$ dla pewnego $\alpha\in(0,2]$. Co można powiedzieć o rozkładzie zmiennej aX+bY, gdzie $a,b\in\mathbb{R}$, a Y jest niezależną kopią X?
- 7* Czy z równości dwu funkcji charakterystycznych na pewnym otoczeniu zera wynika równość rozkładów?
- 8* Znajdź wszystkie zmienne losowe X takie, że $aX + bY \sim (|a|^{\alpha} + |b|^{\alpha})^{1/\alpha}X$ dla dowolnych $a, b \in \mathbb{R}$ (Y oznacza niezależną kopię X).

1. Wykaż, że warunek Lyapunowa

$$\exists_{\delta>0} \lim_{n\to\infty} \sum_{k\leq k_n} \mathbf{E} |X_{n,k} - EX_{n,k}|^{2+\delta} = 0$$

implikuje warunek Lindeberga (zakładamy, że $\sigma_n^2 \to \sigma^2 > 0$).

2. Zmienne X_{λ} mają rozkład Poissona z parametrem λ . Wykaż, że

$$\frac{X_{\lambda}-\lambda}{\sqrt{\lambda}} \to \mathcal{N}(0,1) \text{ według rozkładu gdy } \lambda \to \infty.$$

3* Udowodnii, że

$$\lim_{n \to \infty} e^{-n} \sum_{k \le n} \frac{n^k}{k!} = \frac{1}{2}.$$

- 4. Rzucamy 1000 razy kostką. Oszacuj prawdopodobieństwo, że suma wyrzuconych oczek będzie między 3400 a 3600.
- 5. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{P}(X_i = a) = \mathbf{P}(X_i = 1/a) = 1/2$ dla pewnego a > 1. Wykaż, że zmienne $Z_n = (X_1 X_2 \cdots X_n)^{1/\sqrt{n}}$ są zbieżne według rozkładu i znajdź rozkład graniczny.
- 6. Zmienne X_1, X_2, \dots są niezależne przy czym $\mathbf{P}(X_k = k) = \mathbf{P}(X_k = -k) = 1/2$ Niech $\sigma_n = \sum_{k=1}^n \text{Var}(X_k)$ Zbadać zbieżność według rozkładu ciągu

$$\frac{X_1+\ldots+X_n}{\sigma_n}.$$

7. Niech X_1, X_2, \ldots będą niezależnym zmiennymi losowymi takimi, że

$$\mathbf{P}(X_n = \pm 1) = \frac{1}{2}(1 - \frac{1}{n^2}), \ \mathbf{P}(X_n = \pm n) = \frac{1}{2n^2}.$$

Udowodnij, że $Var(X_n) \to 2$ oraz

$$\frac{X_1 + X_2 + \ldots + X_n}{\sqrt{n}} \to \mathcal{N}(0, 1)$$
 według rozkładu.

- 8* Dana jest zmienna losowa X taka, że $\mathbf{E}X^2<\infty$ oraz $X\sim\frac{1}{\sqrt{2}}(Y+Z)$, gdzie Y,Z są niezależnymi kopiami X. Wykaż, że $X\sim\mathcal{N}(0,\sigma^2)$ dla pewnego $\sigma\geqslant 0$.
- 9** Wykaż, że teza poprzedniego zadania jest prawdziwa bez założenia $\mathbf{E}X^2<\infty.$
- 11** Wykaż, że jeśli zmienne X i Y są niezależne oraz X+Y ma rozkład normalny to obie zmienne X i Y są normalne.

1. Zmienne losowe X_1,X_2,\ldots są niezależne, mają ten sam rozkład taki, że $\mathbf{E}X_1=0,\,\mathrm{Var}(X)=\sigma^2\in(0,\infty).$ Zbadać zbieżność względem rozkładu ciągów

$$U_n = \frac{\sqrt{n}(X_1 + \dots, X_n)}{X_1^2 + \dots + X_n^2}, \quad V_n = \frac{X_1 + \dots + X_n}{\sqrt{X_1^2 + \dots + X_n^2}}.$$

- 2. Podaj przykład zależnych zmiennych losowych X,Y o rozkładzie $\mathcal{N}(0,1)$ takich, że $\mathrm{Cov}(X,Y)=0.$
- 3. Udowodnij, że zmienna $X \sim \mathcal{N}(a, B)$ ma gęstość wtedy i tylko wtedy gdy B jest odwracalne oraz, że w tym ostatnim przypadku wynosi ona

$$g_X(x) = \frac{\sqrt{\det C}}{(2\pi)^{d/2}} \exp\Big(\frac{\langle C(x-a), x-a\rangle}{2}\Big), \text{ gdzie } C = B^{-1}.$$

4. Niech X_1,X_2,\ldots będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie takim, że $\mathbf{E}X_i=0,\,\mathbf{E}X_i^2=1$ oraz

$$S_n(t) = \frac{1}{\sqrt{n}} \sum_{i \le [nt]} X_i \text{ dla } t \ge 0, n = 1, 2, \dots$$

Udowodnij, że dla dowolnych $0 \le t_1 < t_2 < \ldots < t_k$ ciąg wektorów losowych $(S_n(t_1), S_n(t_2), \ldots, S_n(t_k))$ jest zbieżny według rozkładu. Jak wygląda rozkład graniczny?

5** Dla $n=1,2,\ldots$ i $t\in[0,1]$ określ
my zmienną $T_n(t)$ wzorem

$$T_n(t) := (nt - \lfloor nt \rfloor) S_n(\frac{\lfloor nt \rfloor + 1}{n}) + (\lfloor nt \rfloor + 1 - nt) S_n(\frac{\lfloor nt \rfloor}{n}),$$

gdzie S_n są takie jak w poprzednim zadaniu. Wówczas T_n można traktować jako zmienną o wartościach w C[0,1]. Wykaż, że T_n są zbieżne według rozkładu. Co można powiedzieć o rozkładzie granicznym?

- 1. Zmienne τ i σ są momentami zatrzymania. Wykaż, że $\tau \vee \sigma$, $\tau \wedge \sigma$, $\tau + \sigma$ są momentami zatrzymania. Czy $\tau 1$, $\tau + 1$ też są momentami zatrzymania (przyjąć $T = \mathbb{N}$)?
- 2. Zmienne losowe (X_n) są adaptowalne względem filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Udowodnij, że następujące zmienne losowe są momentami zatrzymania dla dowolnego zbioru borelowskiego B:
 - a) $\tau_1 = \inf\{n: X_n \in B\}$ pierwsza wizyta w zbiorze B,
 - b) $\tau_k = \inf\{n > \tau_{k-1} : X_n \in B\}, k = 2, 3, \dots k$ -ta wizyta w zbiorze B.
- 3. Wykaż, że jeśli τ, σ są momentami zatrzymania $(T = \mathbb{N})$, to
 - a) jeśli $\tau \equiv t$, to $\mathcal{F}_{\tau} = \mathcal{F}_{t}$,
 - b) jeśli $\tau < \sigma$, to $\mathcal{F}_{\tau} \subset \mathcal{F}_{\sigma}$,
 - c) $A \in \mathcal{F}_{\tau}$ wtedy i tylko wtedy gdy $A \in \mathcal{F}$ oraz $A \cap \{\tau = t\} \in \mathcal{F}_{t}$ dla wszystkich t.
- 4. Zmienne τ i σ są momentami zatrzymania względem filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Udowodnij, że $\{\tau < \sigma\}, \{\tau \leqslant \sigma\}, \{\tau = \sigma\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$ oraz $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma} = \mathcal{F}_{\tau \wedge \sigma}$.
- 5* Niech X_1, X_2, \ldots będą niezależnymi zmienymi losowymi takimi, że $P(X_i = \pm 1) = 1/2, \ S_n = X_1 + X_2 + \ldots + X_n \text{ oraz } \tau = \inf\{n : S_n = 1\}.$ Wykaż, że $\mathbf{E}\tau = \infty$.
- 6. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{E}|X_i| < \infty$ dla wszystkich i. Udowodnij, że $M_n = X_1 X_2 \cdots X_n$ jest martyngałem względem $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ wtedy i tylko wtedy gdy $\mathbf{E} X_i = 1$ dla wszystkich i lub $X_1 = 0$ p.n..
- 7. Niech $S_n = X_1 + X_2 + \ldots + X_n$ oraz $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, gdzie X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o jednakowym rozkładzie takim, że $\mathbf{E}X_i^2 < \infty$. Znajdź liczby a_n, b_n dla których $S_n^2 + a_n S_n + b_n$ jest martyngałem względem \mathcal{F}_n .
- 8. Zmienne X_1, X_2, \ldots są niezależne o wspólnym rozkładzie $\mathcal{N}(0,1), S_n = X_1 + X_2 + \ldots + X_n$ oraz $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Dla $\lambda > 0$ znajdź liczby a_n takie, że $(e^{\lambda S_n a_n}, \mathcal{F}_n)$ jest martyngałem.
- 9* Niech $(M_k)_{k=1}^n$ będzie martyngałem względem pewnej filtracji,
ap>1spełnia $\mathbf{E}|M_1|^p<\infty$. Wykaż, że
 $\mathbf{E}|M_1|^p\leqslant\mathbf{E}|M_n|^p$ oraz równość zachodzi wtedy i tylko wtedy gd
y $M_1=M_2=\ldots=M_n$ p.n..

- 1. Niech (X_n, \mathcal{F}_n) będzie adaptowalnym ciągiem całkowalnym. Udowodnij, że jest on martyngałem wtedy i tylko wtedy gdy dla dowolnego ograniczonego momentu zatrzymania τ , $\mathbf{E}X_{\tau} = \mathbf{E}X_0$.
- 2. Niech (X_n, \mathcal{F}_n) będzie adaptowalnym ciągiem całkowalnym. Udowodnij, że $X_n = Y_n + Z_n$, gdzie Y_n jest martyngałem, a Z_n ciągiem prognozowalnym. Wykaż, że X_n jest nadmartyngałem wtedy i tylko wtedy gdy Z_n jest niemalejący.
- 3. Egzaminator przygotował na egzamin 20 zestawów pytań. Każdy z 15 zdających studentów losuje 1 zestaw, który później nie jest już używany. Student S zna odpowiedź na dokładnie 10 z 20 zestawów. Od wychodzących z egzaminu dowiaduje się jakie pytania są już wylosowane. Jaka jest optymalna strategia (wybór momentu wejścia na egzamin) maksymalizująca szanse zdania egzaminu przez S?
- 4. X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o wspólnym rozkładzie takim, że $EX_i^2 < \infty$. Udowodnij, że $\mathbf{E}(S_\tau \tau \mathbf{E} X_1)^2 = \mathbf{E} \tau \mathrm{Var}(X_1)$, o ile $Ex\tau < \infty$. Czy wzór musi być prawdziwy gdy $\mathbf{E}\tau = \infty$?
- 5. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{P}(X_i = 1) = p = 1 \mathbf{P}(X_i = -1)$. Przyjmując $S_0 = 0$ $S_n = \sum_{i=1}^n X_i$ znajdź wszystkie liczby rzeczywiste λ dla których λ^{S_n} jest martyngałem względem filtracji generowanej przez (X_n) .
- 6. Oblicz prawdopodobieństwo wygrania (przy skończonym kapitale obu graczy) w grze orła i reszkę monetą niesymetryczną.
- 7^{\ast} Oblicz średni czas oczekiwania na ruinę któregoś z graczy w grze orła i reszkę
 - a) monetą symetryczną
 - b) monetę niesymetryczną.
- 8* Gracz A dysponuje nieskończonym kapitałem. Ile wynosi średni czas oczekiwania na wygranie 1 zł. przez A w grze orła i reszkę
 - a) monetą symetryczną
 - b) monetę niesymetryczną.
- 9* Udowodnij, że dla podmartyngału $(X_n, \mathcal{F}_n)_{n=0}^{\infty}$

$$\forall_{t>0} \ \mathbf{P}(\max_{1\leqslant k\leqslant n}|X_k|>t)\leqslant 3\frac{\max_{1\leqslant k\leqslant n}\mathbf{E}|X_k|}{t}$$

oraz w przypadku $X_n \geqslant 0$ lub $X_n \leqslant 0$ dla wszystkich n, stałą 3 można zamienić na 1.

10* Udowodnij, że istnieje stała $C<\infty$ taka, że dla dowolnego martyngału $(X_n,\mathcal{F}_n)_{n=0}^\infty$ zachodzi

8

$$\mathbf{E}\sup_{n}|X_{n}| \leqslant C(1 + \sup_{n} \mathbf{E}|X_{n}|\ln^{+}|X_{n}|).$$

- 1 Podaj przykład martyngału X_n takiego, że $X_n \to 0$ p.n. oraz $\mathbf{E}|X_n| \to \infty$.
- 2* Niech $(X_n, \mathcal{F}_n)_{n=-\infty}^0$ będzie martyngałem (z tzw. czasem odwróconym). Udowodnij, że granica $X = \lim_{n \to -\infty} X_n$ istnieje. Co można powiedzieć o X?
- 3* Czy ze zbieżności martyngału według prawdopodobieństwa wynika zbieżność prawie na pewno?
- 4. Podaj przykład martyngału takiego, że $\sup_n \mathbf{E}|X_n| < \infty,$ który nie jest zbieżny w $L^1.$
- 5. Udowodnij, że jeśli zmienne losowe X_n są zbieżne w L^p , $p \ge 1$ to $|X_n|^p$ jest jednostajnie całkowalny (zatem $X_n \to X$ w L^p wtedy i tylko wtedy gdy $X_n \to X$ według prawdopodobieństwa oraz $|X_n|^p$ jest jednostajnie całkowalny).
- 6. Wykaż, że jeśli X_t i Y_t są jednostajnie całkowalne to dla dowolnych $a,b\in\mathbb{R},\ aX_t+bY_t$ jest jednostajnie całkowalny.
- 7. Znajdź jednostajnie całkowalny ciąg X_n taki, że $\mathbf{E}\sup_n |X_n| = \infty$.
- 8. Niech $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ spełnia warunek $\lim_{x \to \infty} \frac{\varphi(x)}{x} = \infty$. Wykaż, że jeśli $\sup_t \mathbf{E} \varphi(|X_t|) < \infty$ to (X_t) jest jednostajnie całkowalny.
- 9* Niech Y_n będzie niezależnym ciągiem nieujemnych zmiennych losowych o jednakowym rozkładzie takich, że $\mathbf{E}Y_1=1$ i $\mathbf{P}(Y_1=1)<1$. Wykaż, że $(Y_1Y_2\cdots Y_n,\sigma(Y_1,\ldots,Y_n))_{n\geqslant 1}$ jest martyngałem zbieżnym p.n., ale nie w I^1
- 10* Dany jest ciąg niezależnych zmiennych losowych X_1, X_2, \ldots o jednakowym rozkładzie taki, że $\mathbf{E}|X_i| < \infty$, niech $S_n = X_1 + \ldots + X_n$, $\mathcal{F}_n = \sigma(S_n, S_{n+1}, \ldots)$.
 - a) Udowodnij, że $(\frac{S_n}{n}, \mathcal{F}_n)$ jest martyngałem z czasem odwróconym.
 - b) Wywnioskuj stąd silne prawo wielkich liczb Kołmogorowa $\frac{S_n}{n} \to \mathbf{E} X_i$ p.n. i w L^1 .

- 1 Dany jest zbiór przeliczalny E i funkcje borelowskie $\varphi_n: E \times \mathbb{R} \to E$, $n=1,2,\ldots$ (przyjmujemy, że wszystkie podzbiory E są mierzalne). Zmienne losowe X_0 o wartościach w E i U_1,U_2,\ldots o wartościach rzeczywistych są niezależne. Udowodnij, że ciąg $(X_n)_{n=0}^{\infty}$ zdefiniowany rekurencyjnie wzorem $X_{n+1}=\varphi_n(X_n,U_n)$ jest łańcuchem Markowa.
- 2. Dwa łańcuchy Markowa $(X_n), (Y_n)$ z macierzą przejścia P są niezależne. Udowodnij, że $Z_n = (X_n, Y_n)$ też jest łańcuchem Markowa i znajdź jego macierz przejścia.
- 3. Zmienne $\varepsilon_0, \varepsilon_1, \ldots$ są niezależne oraz $\mathbf{P}(\varepsilon_i = \pm 1) = 1/2$. Czy ciągi $X_n = \varepsilon_n \varepsilon_{n+1}, Y_n = \varepsilon_n + \varepsilon_{n+1}$ są łańcuchami Markowa?
- 4. (X_n) jest łańcuchem Markowa o wartościach w E. Czy dla dowolnej funkcji $f: E \to E$, $(f(X_n))$ musi być łańcuchem Markowa?
- 5. Zmienne X_0, X_1, \ldots są niezależne oraz $\mathbf{P}(X_i = 1) = 1 \mathbf{P}(X_i = -1) = p \in (0,1), S_n = X_1 + X_2 + \ldots + X_n, M_n = \max(S_1, S_2, \ldots, S_n)$. Które z ciągów $|S_n|, M_n, M_n S_n$ są łańcuchami Markowa? Znajdź odpowiednie macierze przejścia.
- 6. Udowodnij, że łańcuch Markowa jest nieprzywiedlny wtedy i tylko wtedy gdy nie ma właściwych podzbiorów zamkniętych.
- 7* Prawdopodobieństwo, że bakteria ma n potomków wynosi p_n dla $n=0,1,\ldots$ Zakładając, że bakterie w ntym pokoleniu rozmnażają się równocześnie i niezależnie udowodnij, że populacja bakterii (licząca w chwili 0, N>0 bakterii) nigdy nie wyginie z prawdopodobieństwem dodatnim wtedy i tylko wtedy gdy $\sum_{k=0}^{\infty} kp_k > 1$ lub $p_1=1$.
- 8. Wykaż, że skończony łańcuch Markowa ma przynajmniej jeden stan powracający.
- 9* Rozpatrzmy błądzenie w \mathbb{Z}^k z macierzą przejścia $p_{x,y}=\frac{1}{2k}$ gdy $\sum_{i=1}^k|x_i-y_i|=1$ oraz $p_{x,y}=0$ dla pozostałych x,y. Dla jakich k jest to błądzenie powracalne?
- 10. Wykaż, że jeśli y jest stanem chwilowym to $\sum_{n=0}^{\infty} p_{x,y}(n) < \infty$ dla wszystkich x, w szczególności $\lim_{n\to\infty} p_{x,y}(n) = 0$.
- 11* Udowodnij, że łańcuch Markowa jest powracający wtedy i tylko wtedy gdy $F_{x,y} = 1$ dla wszystkich x, y.

- 1* Dane są dwa niezależne błądzenia symetryczne X_n, Y_n w w \mathbb{Z}^d . Wyznacz wszystkie d dla których $\mathbf{P}(\exists n \geqslant 1 \ X_n = Y_n) = 1$, tzn. z prawdopodobieństwem 1 błądzenia się przecinają?
- 2 Niech (X_n) będzie nieprzywiedlnym okresowym łańcuchem Markowa na E z macierzą przejścia P i okresem d>1. Udowodnij, że istnieje rozkład $E=S_1\cup S_2\cup\ldots\cup S_d$ taki, że zbiory S_i spełniają warunki:
 - a) $p_{xy} > 0 \Rightarrow x \in S_i, y \in S_{i+1}$ dla pewnego i = 1, 2, ..., d (przyjmujemy $S_{d+1} = S_1$).
 - b) na każdym S_i macierz $(p_{xy}(d))_{x,y\in S_i}$ definiuje nieprzywiedlny, nieokresowy łańcuch Markowa.
- 3 Wykaż, że w powracalnym i nieprzywiedlnym łańcuchu Markowa z prawdopodobieństwem 1 każdy stan jest odwiedzany nieskończenie wiele razy (niezależnie od rozkładu początkowego).
- 4. W dwu urnach znajduje się łącznie n kul. W każdej chwili wybieramy losowo kulę i przenosimy ją do innej urny. Znajdź rozkład stacjonarny liczby kul w pierwszej urnie.
- 5. Ciąg niezależnych zmiennych losowych Y_1, Y_2, \ldots ma wspólny rozkład taki, że $\mathbf{P}(Y_i=1)=1-\mathbf{P}(Y_i=-1)=p$. Definiujemy rekurencyjnie ciąg X_n wzorami $X_0=1, X_{n+1}=\max(X_n,1)+Y_n$. Wykaż, że ciąg ten jest łańcuchem Markowa. Znajdź rozkład stacjonarny, o ile istnieje.
- 6. W powiecie N. syn piekarza zostaje piekarzem z prawdopodobieństwem 3/4, a syn niepiekarza z prawdopodobieństwem 1/100. Jakie jest prawdopodobieństwo, że wnuk piekarza jest piekarzem? A potomek w n-tym pokoleniu? Jaki procent ludzi w N. jest piekarzem?
- 7* Udowodnij twierdzenie o istnieniu rozkładu stacjonarnego dla łańcuchów z przeliczalną przestrzenią stanów bez używania twierdzenia Brouwera.
- 8^{\ast} Stan xłańcucha Markowa xnazywamy niezerowym, jeśli średni czas powrotu do xjest skończony, zaś zerowym w przeciwnym przypadku. Wykaż, że w nieprzywiedlnym powracalnym łańcuchu Markowa wszystkie stany są niezerowe lub wszystkie są zerowe.
- 9* Wykaż, że w nieprzywiedlnym powracającym łańcuchu Markowa stan y jest zerowy wtedy i tylko wtedy gdy $\lim_{n\to\infty} p_{xy}(n)=0$ dla wszystkich stanów x.

1 Udowodnij, że dla łańcuchów Markowa ze skończoną przestrzenią stanów E i dowolnego niepustego podzbioru $F \subset E$ układy równań

$$\begin{cases} p_F(x) = 1 & \text{dla } x \in F \\ p_F(x) = \sum_{y \in E} p_{xy} p_F(y) & \text{dla } x \notin F \\ p_F(x) = 0 & \text{jesli } \forall_n \forall_{y \in F} p_{xy}(n) = 0 \end{cases}$$

$$\begin{cases} m_F(x) = 0 & \text{dla } x \in F \\ \text{dla } x \in F \end{cases}$$

$$\begin{cases} m_F(x) = 0 & \text{dla } x \in F \\ m_F(x) = 1 + \sum_{y \in E} p_{xy} m_F(y) & \text{dla } x \notin F \\ m_F(x) = \infty & \text{jeśli } p_F(x) < 1 \end{cases}$$

mają dokładnie jedno rozwiązanie

2. Po wierzchołkach sześcianu porusza się w sposób losowy mucha - w każdym kroku z prawdopodobieństwem 1/3 przenosi się do jednego z sąsiednich wierzchołków. Oblicz prawdopodobieństwo, że mucha powróci do punktu wyjścia nie odwiedzając wcześniej przeciwległego wierzchołka oraz średnią liczbę kroków jakie zajmie jej powrót do punktu wyjścia.

W zadaniach 4–8
$$W=(W_t)_{t\in[0,\infty)}$$
 jest procesem Wienera

- 4. Udowodnij, że następujące procesy też są procesami Wienera

 - a) $X_t = -W_t$ (odbicie) b) $Y_t = c^{-1/2} X_{ct}, c > 0$ (przeskalowanie czasu)
 - c) $Z_t = tX_{1/t}$ dla t > 0 oraz $Z_0 = 0$ (inwersja czasu)

 - d) $U_t = X_{T+t} X_T, T \ge 0$ e) $V_t = X_t$ dla $t \le T$, $V_t = 2X_T X t$ dla t > T, gdzie $T \ge 0$.
- 5. Udowodnij, że W_t i $W_t^2 t$ są martyngałami względem filtracji $\mathcal{F}_t = \sigma(W_s)$: $s \leqslant t$), $t \geqslant 0$.
- 6. Udowodnij, że $\lim_{t\to\infty} \frac{W_t}{t} = 0$ p.n.p.
- 7 Niech $\pi_n = \{t_0^{(n)}, t_1^{(n)}, \dots, t_{k_n}^{(n)}\}$, gdzie $a = t_0^{(n)} < t_1^{(n)} < \dots < t_{k_n}^{(n)} = b$ będzie ciągiem podziałów odcinka [a, b] oraz $\|\pi_n\| = \max_k |t_k^{(n)} t_{k-1}^{(n)}|$ oznacza średnicę π_n . Udowodnij, że

$$S_n = \sum_{k=1}^{k_n} |W_{t_k^{(n)}} - W_{t_{k-1}^{(n)}}|^2 \to b - a, n \to \infty \le L^2(\Omega, \mathcal{F}, P),$$

jeśli
$$\|\pi_n\| \to 0$$
oraz $S_n \to b-a$ p.n.p., jeśli $\sum_n \|\pi_n\| < \infty.$

8 Udowodnij, że prawie wszystkie trajektorie procesu Wienera mają nieskończone wahanie na każdym przedziale.

12