

本科生实验报告

课程名称: 电路分析基础

实验名	称:		课	<u>内实</u>	验	
任课教师:	张峰			实验	验教师:	张峰、方芸
实验日期:	7周-12局	国		实验	〕地点:	工训楼 502、503
实验类型:	√ 原理	验证		综合	合设 计	□自主创新
学生姓名:	曾泇睷	班级:	630322	01	学号:	1820221053
学 院:	计算机学	院		专	业:	计算机科学与技术
组 号:	10					
成绩:						

实验 1 基本元件伏安特性的测绘

一、实验目的

- 1. 掌握线性、非线性电阻及理想、实际电压源的概念。
- 2. 掌握测试电压、电流的基本方法。
- 3. 掌握电阻元件及理想、实际电压源的伏安特性测试方法,学习利用逐点测试法绘制 伏安特性曲线。
 - 4. 掌握直流稳压电源、直流电流表、直流电压表的使用方法。

二、实验设备

- 1.电路分析综合实验箱
- 2.直流稳压电源
- 3.万用表
- 4.变阻箱

三、实验内容

1. 测绘线性电阻的伏安特性曲线

图 1.1

- 1) 测试电路如图 1.1 所示,图中 $U_{\rm S}$ 为直流稳压电源,R 为被测电阻,阻值 $R=200\Omega$ 。
- 2)调节直流稳压电源 $U_{\rm S}$ 的输出电压,当伏特表的读数依次为表 1.1 中所列电压值时,读毫安表的读数,将相应的电流值记录在表格中。

表 1.1

V(V)	0.0	2.0	4.0	6.0	8.0	10.0
I(mA)	0.0	10.3	20.1	29.8	39.5	49.3

- 3) 在图 1.3 上绘制线性电阻的伏安特性曲线,并将测算电阻阻值标记在图上。
- 2. 测绘非线性电阻的伏安特性曲线

图 1.2

1)测试电路如图 1.2 所示,图中 D 为二极管,型号为 1N4007, R_W 为可调电位器。

2)缓慢调节 R_W ,使伏特表的读数依次为表 1.2 中所列电压值时,读毫安表的读数,将相应的电流值记录在表格中。

表 1.2

V(V)	0.1	0.2	0.3	0.4	0.5	0.55	0.6	0.65	0.7	0.71
I(mA)	0.0	0.0	0.0	0.0	0.1	0.3	1.1	3.5	11.9	16.4

3) 在图 1.4 上绘制非线性电阻的伏安特性曲线。

图 1.3

图 1.4

3. 测绘理想电压源的伏安特性曲线

图 1.5

- 1)首先,连接电路如图 1.5(a)所示,不加负载电路,直接用伏特表测试直流稳压电源的输出电压,将其设置为 10V。
 - 2) 然后,测试电路如图 1.5 (b) 所示,其中 R_L 为变阻箱,R 为限流保护电阻。
- 3)调节变阻箱 R_L ,使毫安表的读数依次为表 1.3 中所列电流值时,读伏特表的读数,将相应的电压值记录在表格中。

表 1.3

I(mA)	0.0	10.0	20.0	30.0	40.0
V(V)	10.0	9.97	9.97	9.97	9.97

- 4) 在图 1.7 上绘制理想电压源的伏安特性曲线。
- 4. 测绘实际电压源的伏安特性曲线

1) 首先,连接电路如图 1.6(a)所示,不加负载电路,直接用伏特表测试实际电压源的输出电压,将其设置为 10V。其中 R_S 为实际电压源的内阻,阻值 $R_S = 51\Omega$ 。

图 1.6

- 2) 然后,测试电路如图 1.6 (b) 所示,其中 RL为变阻箱。
- 3)调节变阻箱 R_L ,使毫安表的读数依次为表 1.4 中所列电流值时,读伏特表的读数,将相应的电压值记录在表格中。

表 1.4

I(mA)	0.0	10.0	20.0	30.0	40.0
V(V)	10.0	9.15	8.34	7.53	6.75

4) 在图 1.7 上绘制实际电压源的伏安特性曲线,**要求:** 理想电压源和实际电压源的伏安特性曲线画在同一坐标轴中。

图 1.7

原始数据

实验 2 含源线性单口网络等效电路及其参数测定

一、实验目的

- 1. 验证戴维南定理和诺顿定理,加深对两个定理的理解。
- 2. 通过对含源线性单口网络外特性及其两种等效电路外特性的测试、比较,加深对等效电路概念的理解。
 - 3. 学习测量等效电路参数的一些基本方法。

二、实验设备

- 1.电路分析综合实验箱
- 2.直流稳压电源
- 3.万用表
- 4.变阻箱

三、实验内容

1.含源线性单口网络端口外特性测定

- 1)测量电路如图 2.1 所示, R_L 为变阻箱,直流稳压电源的输出电压为 10V。
- 2)调节变阻箱 R_L ,使其阻值依次为表 2.1 中所列电阻值时,读伏特表的读数,将相应的电压值记录在表格中,并计算通过负载 R_L 的电流值填写在表格中。

表 2.1

$R_L(K\Omega)$	1.0	2.0	3.0	4.0	5.0
$V_{AB}(V)$	1.69	2.32	2.64	2.84	2.98
$I_{AB}(mA)$	1.69	1.16	0.88	0.71	0.596

- 3) 在图 2.7 上绘制含源线性单口网络的外特性曲线。
- 2. 等效电路参数测定
- 1) 测量含源线性单口网络开路电压 Uoc

- (1) 测量电路如图 2.2 所示,直流稳压电源的输出电压为 10V。
- (2) 用伏特表测量含源线性单口网络两个端口 A、B 间的电压,即为开路电压 U_{OC} 。

$$U_{\rm OC} = 3.69 \text{ V}$$

2) 测量含源线性单口网络短路电流 Isc

图 2.3

- (1) 测量电路如图 2.3 所示,直流稳压电源电压为 10V。
- (2)用毫安表测量通过含源线性单口网络两个端口 $A \setminus B$ 间的电流,即为短路电流 I_{SC} 。

$$I_{SC} = 3.1 \text{mA}$$

- 3) 测量含源线性单口网络等效内阻 Ro
 - (1) 半压法

图 2.4

- a. 测量电路如图 2.4 所示,直流稳压电源的输出电压为 10V。
- b. 调节变阻箱 R_L , 当 $U_{AB} = 0.5 U_{OC}$ 时,记录变阻箱的阻值。

$$R_0 = 1200 \Omega$$

(2) 开路电压、短路电流法

$$R_0 = \frac{U_{\rm OC}}{I_{\rm SC}} = \underline{1190 \,\Omega}$$

3. 验证戴维南等效电路

1)测量电路如图 2.5 所示, R_L 为变阻箱,**注意:** $U_{\rm oc}$ 和 R_0 分别为前面测得的开路电压和等效内阻。

2)调节变阻箱 R_L ,使其阻值依次为表 2.2 中所列电阻值时,读伏特表的读数,将相应的电压值记录在表格中,并计算通过负载 R_L 的电流值填写在表格中。

表 2.2

$R_L(K\Omega)$	1.0	2.0	3.0	4.0	5.0
$V_{AB}(V)$	1.67	2.3	2.63	2.83	2.97
I _{AB} (mA)	1.67	1.15	0.877	0.708	0.594

- 3) 在图 2.7 上绘制戴维南等效电路的外特性曲线。
- 4. 验证诺顿等效电路

- 1)测量电路如图 2.6 所示, R_L 为变阻箱,**注意**: I_{SC} 和 R_0 分别为前面测得的短路电流和等效内阻。
- 2)调节变阻箱 R_L ,使其阻值依次为表 2.3 中所列电阻值时,读伏特表的读数,将相应的电压值记录在表格中,并计算通过负载 R_L 的电流值填写在表格中。

表 2.3

$R_L(K\Omega)$	1.0	2.0	3.0	4.0	5.0
$V_{AB}(V)$	1.70	2.34	2.68	2.89	3.02
$I_{AB}(mA)$	1.70	1.17	0.893	0.722	0.604

3)在图 2.7上绘制诺顿等效电路的外特性曲线。**要求:**将本实验 1、3、4部分要求的含源线性单口网络、戴维南等效、诺顿等效三条外特性曲线画在同一坐标轴中。

图 2.7

原始数据

实验 2 含源线性单口网络等效电路及其参数测定

原始数据

班级: 6503771 學号: 1870271055 姓名: 170 红 组号: 10

1. 含源线性单口网络端口外特性测定

$R_L(K\Omega)$	1.0	2.0	3.0	4.0	5.0
VAB(F)	1.69	2.32	2.64	2.84	2.98
$I_{AB}(mA)$	1.69	1.16	0.88	0.71	0.596

2. 等效电路参数测定

3) (1) 半压法

(2) 开路电压、短路电流法

$$R_{\rm B} = \frac{U_{\rm OC}}{I_{\rm SC}} = \frac{1190\,\mathrm{S}}{1}$$

3. 验证戴维南等效电路

$R_L(K\Omega)$	1.0	2.0	3.0	4.0	5.0
$V_{AB}(V)$	1-67	230	2.63	2.83	297
I _{AB} (mA)	1.67	1.15	0.877	0.708	0.594

4. 验证诺顿等效电路

$R_L(K\Omega)$	1.0	2.0	3.0	4.0	5.0
$V_{AB}(V)$	1.70	2.34	2.68	2.89	302
$I_{AB}(mA)$	1.7	1.17	0.893	0.722	0.604

实验 3 一阶电路响应的研究

一、实验目的

- 1. 掌握 RC 一阶电路零状态响应、零输入响应的概念和基本规律。
- 2. 掌握 RC 一阶电路时间常数的测量方法。
- 3. 熟悉示波器的基本操作,初步掌握利用示波器监测电信号参数的方法。

二、实验设备

- 1.电路分析综合实验箱
- 2.双踪示波器

三、实验内容

1.RC 一阶电路的零状态响应

- 1) 测试电路如图 3.1 所示,电阻 $R = 2k\Omega$,电容 C = 0.01μF。
- 2) 零状态响应的输入信号如图 3.2 所示,幅度为 5V,周期为 1ms,脉宽为 0.5ms。
- 3)将观测到的输入、输出波形(求 τ 值放大图)存储到U盘,课后粘贴在图 3.3 上相应方框处。**要求:**在图上标记相关测量数据。
 - 4)测量响应波形的稳态值 $uc(\infty)$ 和时间常数 τ 。

$$u_c(\infty) = \underline{5.12 \text{ V}}$$

$$\tau = \underline{22.00 \text{ } \mu \text{ s}}$$

图 3.3

2.RC 一阶电路的零输入响应

- 1)测试电路如图 3.4 所示, 电阻 $R = 2k\Omega$, 电容 $C = 0.01\mu F$ 。
- 2) 零输入响应的输入信号如图 3.5 所示,幅度为 5V,周期为 1ms,脉宽为 3μs。
- 3)将观测到的输入、输出波形(求 τ 值放大图)存储到U盘,课后粘贴在图 3.6 上相应方框处。要求:在图上标记相关测量数据。
 - 4)测量响应波形的初始值 $u_C(0)$ 和时间常数 τ 。

$$u_c(0) = \frac{712\text{mV}}{\tau = 22.4 \,\mu \,\text{s}}$$

图 3.6

原始数据

实验3 一阶电路响应的研究

原始数据

班级: 6303.2201 学号: 1820221053 姓名: 曾加睫 组号: 10

1. RC一阶电路的零状态响应

$$u_c(\infty) = 5.12 \text{ V}$$

2. RC一阶电路的零输入响应

892-66.8

实验 4 二阶电路响应的研究

一、实验目的

- 1. 观测二阶电路在过阻尼、临界阻尼和欠阻尼三种状态下的响应波形,加深对二阶电路响应的认识和理解。
 - 2. 掌握振荡角频率和衰减系数的概念。
 - 3. 进一步熟悉示波器的操作。

二、实验设备

- 1.电路分析综合实验箱
- 2.双踪示波器
- 3. 变阻箱

三、实验内容

1. RLC 二阶电路的零状态响应

- 1) 测试电路如图 4.1 所示,R 为变阻箱,电容 $C = 0.01 \mu F$,电感 L = 2.7 mH。
- 2) 零状态响应的输入信号如图 4.2 所示,幅度为 5V,周期为 1ms,脉宽为 0.5ms。
- 3)调节变阻箱 R,观察 RLC 二阶电路零状态响应的三种状态波形(欠阻尼、临界阻尼和过阻尼),将波形存储到 U 盘,课后粘贴在图 4.3 上相应方框处。**要求:**记录临近阻尼状态下的临界阻值:

$$R_{\text{ hg}} = 470 \Omega$$

图 4.3

2. RLC 二阶电路的零输入响应

图 4.5

- 1) 测试电路如图 4.4 所示,R 为变阻箱,电容 $C = 0.01 \mu F$,电感 L = 2.7 mH。
- 2) 零输入响应的输入信号如图 4.5 所示,幅度为 5V,周期为 1ms,脉宽为 3μs。
- 3)调节变阻箱 R,观察 RLC 二阶电路零输入响应的三种状态波形(欠阻尼、临界阻尼和过阻尼),将波形存储到 U 盘,课后粘贴在图 4.6 上相应方框处。**要求:**记录临近阻尼状态下的临界阻值:

$$R_{\text{ hp}} = \underline{\qquad 640 \,\Omega}$$

4) 取 $R=100\Omega$,观测波形相邻两个波峰或波谷的电压值 u_{1m} 、 u_{2m} 和振荡周期 T_d ,计算振荡角频率 ω_d 和衰减系数 α 。

$$\omega_d = \frac{2\pi}{T_d} = \underline{1.94 \times 10^5 \text{ V}}$$

$$\alpha = \frac{1}{T_d} \ln \frac{u_{1m}}{u_{2m}} = \frac{4.97 \times 10^4 \text{ V}}{10^4 \text{ V}}$$

图 4.6

原始数据

实验 4 二阶电路响应的研究

原始数据

班级: 63032201 学号: 1820221053 姓名: 曾加健 组号: 10

1. RLC 二阶电路的零状态响应

R mp = 470 SL

2. RLC二阶电路的零输入响应

R = = 640 BE 640 JL

uim = 1.00 V

 $u_{2m} = _200 \text{ mV}$

Ta = 32.40 MS

34 9/5

实验 5 R、L、C单个元件阻抗频率特性测试

一、实验目的

- 1. 掌握交流电路中 R、L、C 单个元件阻抗与频率间的关系,测绘 R-f、 X_L -f、 X_C -f 特性曲线。
 - 2. 掌握交流电路中 R、L、C 元件各自的端电压和电流间的相位关系。
 - 3. 观察在正弦激励下, R、L、C 三元件各自的伏安关系。

二、实验设备

- 1. 电路分析综合实验箱
- 2. 低频信号发生器
- 3. 双踪示波器

三、实验内容

测试电路如图 5.1 所示,R、L、C 三个元件分别作为被测元件与 10Ω 采样电阻相串联,其中电阻 R = $2k\Omega$,电感 L =2.7mH,电容 C = 0.1 μ F,信号源输出电压的有效值为 2V。

1. 测绘 R、L、C 单个元件阻抗频率特性曲线

- 1)按照图 5.1 接好线路。**注意:** 信号源输出电压的幅度须始终保持 2V 有效值,即每改变一次输出电压的频率,均须监测其幅度是否为 2V 有效值。
- 2)改变信号源的输出频率 f 如表 5.1 所示,利用示波器的自动测量功能监测 2 通道信号的电压有效值,并将测量数据填入表中相应位置。
 - 3) 计算通过被测元件的电流值 I_{AB} 以及阻抗的模|Z|,并填入表 5.1 中相应位置。

$$I_{AB} = I_{BC} = \frac{U_{BC}}{10}$$
$$|Z| = \frac{U_{S}}{I_{AB}} = \frac{2}{I_{AB}}$$

4)在图 5.2 上绘制 R、L、C 单个元件阻抗频率特性曲线,**要求**:将三条曲线画在同一 坐标轴中。

表 5.1

f(KHz)		10	20	30	40	50		
$U_{\rm S}(V)$		2						
$U_{\mathrm{BC}}(mV)$	R	9.76	9.76	9.76	9.76	9.76		
	L	122	60.1	43.6	32.3	26.4		
	C	131	343	357	554	648		
I _{AB} (mA)	R	0.976	0.976	0.976	0.976	0.976		
	L	12.2	6.01	4.36	3.23	2.64		
	C	13.1	34.3	35.7	55.4	64.8		
$ Z $ ($K\Omega$)	R	2.049	2.049	2.049	2.049	2.049		
	L	0.164	0.333	0.459	0.619	0.758		
	С	0.153	0.058	0.056	0.036	0.031		

图 5.2

2. R、L、C 单个元件的相位测量

- 1)测试电路不变,信号源的输出电压有效值为2V,输出频率为10kHz。
- 2)在示波器上观察 R、L、C 三个元件各自端电压和电流的相位关系,将波形存储到 U 盘,课后粘贴在图 5.3 上相应方框处。
- 3)计算 R、L、C 三个元件各自的相位差 $\Delta \phi$,并用文字描述 R、L、C 三个元件各自电压、电流的相位关系。

$$R: \Delta \Phi = \frac{CD}{AB} \times 360^{\circ} = \underline{0}$$

结论: 电压与电流同相

$$L: \Delta \Phi = \frac{CD}{AB} \times 360^{\circ} = \underline{79.37^{\circ}}$$

结论: <u>电压超前于电流 79.37°</u>

$$C: \Delta \Phi = \frac{CD}{AB} \times 360^{\circ} = \underline{270^{\circ}}$$

结论: 电压滞后于电流 90°

图 5.3

3. R、L、C 单个元件的伏安关系轨迹线

- 1)测试电路不变,信号源的输出电压有效值为2V,输出频率为10kHz。
- 2)将示波器置于 X-Y 工作方式下,直接观察 R、L、C 单个元件的伏安关系轨迹线,将波形存储到 U 盘,课后粘贴在图 5.5 上相应方框处。
 - 3) 记录图 5.4 中标记的 $a \times b$ 的数值,并将数据标记在图 5.5 上相应位置。

图 5.5

原始数据

实验 5 R、L、C单个元件阻抗频率特性测试

原始数据

班級: 63032201 学号: 1820221053 姓名: 曾加健 组号: 10

1. 测绘 R、L、C单个元件阻抗频率特性曲线

f(KHz)		10	20	30	40	50		
Us(V)		2						
Unc(mV)	R	9.76	9.76	9.76	9.76	9.76		
	L	122	60-1	43.6	32.3	26.4		
	C	131	343	357	554	648		

DØ = U

2. R、L、C单个元件的相位测量

结论: 电压与电流同相

$$\Delta \phi = \frac{CD}{AB} \times 360^{\circ} = 79.37^{\circ}$$

结论: 电压超前于电流 79.37°

结论: 老兔 电压滞后于电流 90°

3. R、L、C单个元件的伏安关系轨迹线

3/ 14/5