第五章 特征值与特征向量

5.1 特征值与特征向量的概念与计算

何军华

电子科技大学

一. 特征值和特征向量的定义

例1. 矩阵

$$A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}, \qquad \alpha = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \beta = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \gamma = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$A\alpha = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2\alpha, \quad A\beta = \begin{pmatrix} 4 \\ -4 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 4\beta,$$

$$A\gamma = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \neq k\gamma, \ \forall k$$

定义: 设 A 是 n 阶方阵, $0 \neq \alpha \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$ 使得

$$A\alpha = \lambda \alpha$$

- (1) 称 λ 是矩阵 A 的一个特征值;
- (2) 称 α 是矩阵 A 相应于特征值 λ 的一个特征向量.

给定矩阵 A:

 λ 是 A 的特征值 $\Leftrightarrow \exists \alpha \neq 0, s.t. A\alpha = \lambda \alpha$

 α 是A 的特征向量 $\Leftrightarrow \alpha \neq 0$ 且 $A\alpha = \lambda \alpha$

对某个数 2 成立

例2. (1) 任一非零向量都是单位矩阵 I 的特征向量, 对应特征值为1;

$$\alpha \neq 0 \Rightarrow I\alpha = \alpha = 1 \bullet \alpha$$

(2) 单位矩阵 I 的特征值必为1;

$$I\beta = k\beta, \beta \neq 0 \Rightarrow (k-1)\beta = 0, \beta \neq 0 \Rightarrow k = 1$$

(3) 对数量矩阵 A=kI, 结论如何?

给定矩阵A:

- (1) A的每个特征向量相应的特征值惟一;
- (2) A的每个特征值相应的特征向量不惟一.