Ejercicio 1

Para cada uno de los siguientes pares de tipos S y T indicar si están en relación de subtipado, es decir, si S \leq T o T \leq S, o no están relacionados.

a)

```
S = !int.end
T = !float.end

------ [S-End]
int ≤ float end ≤ end
----- [S-OutS]
!float.end ≤ !int.end
T ≤ S
```

b)

c)

```
S = !(?int.end).end
T = !(?float.end).end

inciso b)
------ [S-End]
?int.end ≤ ?float.end end ≤ end
----- [S-OutS]
!(?float.end).end ≤ !(?int.end).end
T ≤ S
```

d)

!float.end ≤ !int.end

 $end \le end$

```
S = !(!int.end).end
T = !(!float.end).end
inciso a)
----- [S-End]
```

```
----- [S-OutS]
!(!int.end).end \le !(!float.end).end

S \le T
```

e)

f)

g)

```
S = ⊕[l1:!int.end, l2:end]
T = ⊕[l1:!int.end]

------ [S-End]
int ≤ int end ≤ end
------ [S-OutS]
!int.end ≤ !int.end
----- [S-Choice]
⊕[l1:!int.end, l2:end] ≤ ⊕[l1:!int.end]
S ≤ T
```

h)

```
S = @[l1:!int.end]
T = @[l1:!float.end]
```

```
------ [S-End]

int ≤ float end ≤ end
------ [S-OutS]

!float.end ≤ !int.end
------ [S-Choice]

⊕[l1:!float.end] ≤ ⊕[l1:!int.end]

T ≤ S
```

i)

j)

T ≤ S

k)

```
S = &[l1:?int.end]
T = &[l1:?float.end]
----- [S-End]
```

```
------- [S-End]
int ≤ float end ≤ end
------ [S-InS]
?int.end ≤ ?float.end
-------- [S-Branch]
&[l1:?int.end] ≤ &[l1:?float.end]
```

```
S \le T
```

Ejercicio 2

Asumir que S = !nat.end y T = !float.end y que $\Gamma \vdash -1:$ int y $\Gamma \vdash 5,0:$ float.

Indicar si los siguientes términos están bien tipados.

a)

No está bien tipado porque no vale $| int \le nat |$.

b)

No está bien tipado porque no vale $|float| \le |int|$.

c)

No está bien tipado porque no vale $| float \le nat |$.

d)

```
----- [T-Res]

Ø ⊢ (vx:T)(x+!(5,0).0 | x-?(y:int).0)
```

No está bien tipado porque no vale float ≤ int .

e)

```
\varnothing \vdash (vx:S)(x+!(-1).0 \mid x-?(y:float).0)
```

No está bien tipado por la misma razón que el inciso a).

f)

```
 \begin{array}{l} \chi \\ \{l1,l2\} \subseteq \{l1\} \\ -------- [T-Branch] \\ x+:\&[l1:end, l2:end] \vdash x+>[l1:0] \\ -------- [T-Par] \\ x+:&[l1:end, l2:end], x-:&[l1:end, l2:end] \vdash x+>[l1:0] | x-\lhd l2.0 \\ -------- [T-Res] \\ \varnothing \vdash (\nu x : \&[l1:end, l2:end])(x+>[l1:0] | x-\lhd l2.0) \\ \end{array}
```

No está bien tipado porque el proceso de la izquierda no ofrece todas las etiquetas definidas en el canal x+.

g)

```
\varnothing \vdash (vx:\&[l1:end, l2:end])(x+>[l1:0] \mid x-\triangleleft l1.0)
```

No está bien tipado por la misma razón que el inciso f).

h)

Bien tipado.

i)

No está bien tipado porque el proceso de la derecha selecciona la etiqueta 12 que no es una etiqueta disponible en el canal x-.

Ejercicio 3

Mostrar si los siguientes pares de tipos infinitos están en relación de subtipado.

Para probar que S y T están en relación de subtipado: S ≤ T , tenemos que encontrar un "type simulation" R tal que (S,T) ∈ R .

a)

```
S = \mu X.!int.!float.X
T = \mu X \cdot \mu Y \cdot ! int \cdot X
R = \{(S,T)\}
 (S,T) \in R
 unfold(S) = !int.!float.S
 unfold(T) = unfold(\mu Y.!int.T) = !int.T
 \Rightarrow (!float.S,T) \in R, (int,int) \in R
R = \{(S,T), (int,int), (!float.S,T)\}
 (int, int) \in R
 ⇒ int < int
 (!float.S,T) ∈ R
 unfold(T) = !int.T
 \Rightarrow (S,T) \in R, (int,float) \in R
R = \{(S,T), (int,int), (!float.S,T), (int,float)\}
 (int,float) ∈ R
 ⇒ int < float
: (S,T) \in R \Rightarrow S \leq T
b)
 S = \mu X.!(?float.end).!(?int.end).X
T = \mu X.!(?float.end).X
```

```
R = \{(T,S)\}
```

```
(T,S) \in R
unfold(T) = !(?float.end).T
unfold(S) = !(?float.end).!(?int.end).S
⇒ (?float.end,?float.end) ∈ R, (T,!(?int.end).S) ∈ R
```

```
R = \{(T,S), (?float.end,?float.end), (T,!(?int.end).S)\}
```

```
(?float.end,?float.end) ∈ R
⇒ (float,float) ∈ R, (end,end) ∈ R
```

```
R = \{(T,S), (?float.end,?float.end), (T,!(?int.end).S), (float,float), (end,end)\}
```

```
(T,!(?int.end).S) \in R
 unfold(T) = !(?float.end).T
 \Rightarrow (?int.end,?float.end) ∈ R, (T,S) ∈ R
R = \{(T,S), (?float.end,?float.end), (T,!(?int.end).S), (float,float), (end,end), (?int.end,?float.end)\}
 (float, float) ∈ R
 ⇒ float < float
 (end,end) \in R
 ⇒ end < end
 (?int.end,?float.end) \in R
 ⇒ (int,float) ∈ R, (end,end) ∈ R
R = {(T,S), (?float.end,?float.end), (T,!(?int.end).S), (float,float), (end,end), (?int.end,?float.end),
(int,float)}
 (int,float) \in R
 ⇒ int < float
: (T,S) \in R \Rightarrow T \leq S
c)
 S = \mu X.!(?float.end).!(?int.end).X
T = \mu X.!(?int.end).X
R = \{(S,T)\}
 (S,T) \in R
 unfold(S) = !(?float.end).!(?int.end).S
 unfold(T) = !(?int.end).T
 ⇒ (?int.end,?float.end) ∈ R, (!(?int.end).S,T) ∈ R
R = \{(S,T), (?int.end,?float.end), (!(?int.end).S,T)\}
 (?int.end,?float.end) \in R
 ⇒ (int,float) ∈ R, (end,end) ∈ R
R = \{(S,T), (?int.end,?float.end), (!(?int.end).S,T), (int,float), (end,end)\}
 (!(?int.end).S,T) \in R
 unfold(T) = !(?int.end).T
 ⇒ (?int.end,?int.end) ∈ R, (S,T) ∈ R
R = \{(S,T), (?int.end,?float.end), (!(?int.end).S,T), (int,float), (end,end), (?int.end,?int.end)\}
 (int,float) \in R
 ⇒ int < float
 (end,end) ∈ R
 ⇒ end < end
```

```
(?int.end,?int.end) ∈ R

⇒ (int,int) ∈ R, (end,end) ∈ R

R = {(S,T), (?int.end,?float.end), (!(?int.end).S,T), (int,float), (end,end), (?int.end,?int.end), (int,int)}

(int,int) ∈ R

⇒ int < int

∴ (S,T) ∈ R ⇒ S ≤ T</pre>
```

Ejercicio 4

Para los siguientes términos, indicar si están bien tipados. En caso afirmativo, mostrar sus posibles reducciones.

a)

```
let s = create () in
    let a = fork (\lambda x. close (send x true)) (fst s) in
    let b = receive (snd s) in
    close (snd b)
(va)(
    let s = (c+, c-) in
    let a = fork (\lambda x. close (send x true)) (fst s) in
    let b = receive (snd s) in
    close (snd b)
>
→ [r-new][r-thread][r-let]
(va)(
    let a = fork (\lambda x. close (send x true)) (fst (c+, c-)) in
    let b = receive (snd (c+, c-)) in
    close (snd b)
>
\rightarrow [r-new][r-fork]
(va)((
    let a = () in
    let b = receive (snd (c+, c-)) in
    close (snd b)
    (\lambda x. close (send x true)) (fst (c+, c-))
))
→ [r-new][r-par][r-thread][r-let]
    let b = receive (snd (c+, c-)) in
    close (snd b)
```

```
) || (
     (\lambda x. close (send x true)) (fst (c+, c-))
→ [r-new][r-par][r-thread][r-snd]
(va)((
    let b = receive c- in
    close (snd b)
    (\lambda x. close (send x true)) (fst (c+, c-))
))
→ [r-new][r-par][r-thread][r-fst]
(va)((
    let b = receive c- in
    close (snd b)
) || (
    (\lambda x. close (send x true)) c+
))
→ [r-new][r-par][r-thread][r-beta]
(va)(\langle let b = receive c - in close (snd b)) | | \langle close (send c + true) \rangle)
→ [r-new][r-struct][r-comm]
(va)(( let b = (true, c-) in close (snd b) ) || ( close c+ ))
→ [r-new][r-par][r-thread][r-let]
(va)(⟨ close (snd (true, c-)) ⟩ || ⟨ close c+ ⟩)
\rightarrow [r-new][r-par][r-thread][r-snd]
(va)(( close c- ) || ( close c+ ))
→ [r-new][r-close]
(va)(\langle () \rangle \mid | \langle () \rangle) \equiv \langle () \rangle
```