# Samenvatting

#### BASIS 1

#### **GENOTYPE EN FENOTYPE**

### 3.1.1 Je kunt omschrijven wat een genotype, wat een fenotype en wat een gen is.

- Genotype: de informatie voor alle erfelijke eigenschappen van een organisme.
  - Deze informatie ligt in de chromosomen in de kern van elke lichaamscel.
  - Het genotype bestaat uit alle genen in een celkern.
- Fenotype: alle eigenschappen van een organisme.
  - Het fenotype komt tot stand door het genotype en door invloeden uit het milieu.
- Gen: de stukjes DNA die samen de informatie bevatten voor één eigenschap.
  - Een chromosoom bestaat uit veel genen.
  - In lichaamscellen komen chromosomen in paren voor.
  - In lichaamscellen bestaat een gen uit twee allelen (varianten van een gen).
  - De allelen van een gen kunnen gelijk of ongelijk zijn.

# 3.1.2 Je kunt beschrijven hoe organismen informatie over erfelijke eigenschappen overdragen aan hun nakomelingen via chromosomen.

- Het genotype van een organisme wordt bepaald op het moment van bevruchting.
  - In geslachtscellen komen chromosomen enkelvoudig voor.
  - In geslachtscellen komen allelen enkelvoudig voor.
  - Bij de bevruchting vormen de chromosomen uit de zaadcel en de chromosomen uit de eicel weer chromosomenparen.
  - In een bevruchte eicel bestaat een gen weer uit twee allelen.

# **BEGRIPPEN**

#### allel

Variant van een gen; elk gen bestaat uit twee allelen.

## fenotype

Alle eigenschappen van een organisme.

#### ger

De stukjes DNA die samen de informatie voor een erfelijke eigenschap bevatten.

#### genotype

De informatie voor alle erfelijke eigenschappen van een organisme; alle genen in een celkern samen.

# BASIS 2

#### **GENEN**

# 3.2.1 Je kunt omschrijven wat homozygoot, heterozygoot, dominant, recessief en intermediair fenotype betekenen.

- Homozygoot: het gen voor een eigenschap bestaat uit twee gelijke allelen (AA of aa).
- Heterozygoot: het gen voor een eigenschap bestaat uit twee ongelijke allelen (Aa).
- Dominant allel: een allel dat altijd tot uiting komt in het uiterlijk.
  - Een dominant allel wordt aangegeven met een hoofdletter.
  - Organismen waarbij een dominant allel in het uiterlijk tot uiting komt, kunnen homozygoot of heterozygoot voor deze eigenschap zijn.
- Recessief allel: een allel dat alleen tot uiting komt in het uiterlijk als er geen dominant allel aanwezig is.
  - Een recessief allel wordt aangegeven met een kleine letter.
  - Organismen waarbij een recessief allel in het fenotype tot uiting komt, zijn homozygoot voor deze eigenschap.

- Wanneer geen van beide allelen van een gen dominant is, heeft het organisme een intermediair fenotype voor deze eigenschap.
  - Beide allelen van het genenpaar komen even sterk tot uiting in het fenotype.
  - Een intermediair fenotype noteer je met vier letters, bijv.:  $A_rA_r = rood$ ,  $A_wA_w = wit$ ,  $A_rA_w = roze$ .

#### **BEGRIPPEN**

#### dominant allel

Allel dat altijd tot uiting komt in het uiterlijk.

#### heterozygoot

Twee verschillende allelen voor een bepaalde eigenschap.

#### homozygoot

Twee gelijke allelen voor een bepaalde eigenschap.

# intermediair fenotype

Fenotype waarin beide allelen even sterk tot uiting komen.

### recessief allel

Allel dat alleen tot uiting komt als er geen dominant allel is.

#### BASIS 3

#### **KRUISINGEN**

# 3.3.1 Je kunt een kruisingsschema opstellen.

- In een kruisingsschema worden de generaties aangegeven met letters.
  - P: de ouders
  - F<sub>1</sub>: de eerste generatie nakomelingen
  - F<sub>2</sub>: de generatie nakomelingen die ontstaat door onderling voortplanten van F<sub>1</sub>-individuen
- Het opstellen van een kruisingsschema.
  - Bedenk wat de fenotypen en genotypen van de ouders zijn.
  - Bedenk welke allelen in de geslachtscellen van de ouders kunnen voorkomen.
  - Stel vast welke genotypen en fenotypen de nakomelingen kunnen hebben.
  - Stel vast welke genotypen en fenotypen de organismen in de F<sub>2</sub> kunnen hebben.
- Stappenplan en kruisingsschema bij een kruising van homozygoot dominant met homozygoot recessief:

P AA × aa
geslachtscellen A a
F<sub>1</sub> Aa
Aa × Aa
geslachtscellen A of a A of a



- Verhouding van genotypen in de  $F_2$ : AA: Aa: aa = 1:2:1.
- Verhouding van fenotypen in de F<sub>2</sub>: fenotype waarbij het dominante allel tot uiting komt : fenotype waarbij het recessieve allel tot uiting komt = 3 : 1.
- Stappenplan en kruisingsschema bij een intermediair fenotype:



- Verhouding van genotypen in de  $F_2$ :  $A_rA_r$ :  $A_rA_w$ :  $A_wA_w = 1:2:1$ .
- Verhouding van fenotypen in de  $F_2$ , bijv.  $A_rA_r = rood$ ,  $A_rA_w = roze$ ,  $A_wA_w = wit: rood: roze: wit = 1:2:1.$

# 3.3.2 Je kunt bij een gegeven kruising genotypen en fenotypen van ouders en/of nakomelingen afleiden.

- P: Aa × aa
  - Verhouding van genotypen in de F<sub>1</sub>: Aa : aa = 1 : 1.
  - Verhouding van fenotypen in de F<sub>1</sub>: fenotype waarbij het dominante allel tot uiting komt : fenotype waarbij het recessieve allel tot uiting komt = 1 : 1.
- P: Aa × Aa
  - Verhouding van genotypen in de  $F_1$ : AA : Aa : aa = 1 : 2 : 1.
  - Verhouding van fenotypen in de F<sub>1</sub>: fenotype waarbij het dominante allel tot uiting komt : fenotype waarbij het recessieve allel tot uiting komt = 3 : 1.
- P: A,A, × A,A,
  - Verhouding van genotypen in de  $F_1$ :  $A_xA_w : A_wA_w = 1 : 1$ .
  - Verhouding van fenotypen in de F<sub>1</sub>: fenotype waarbij beide allelen tot uiting komen: fenotype waarbij een van de allelen tot uiting komt = 1:1.
- P:  $A_rA_w \times A_rA_w$ 
  - Verhouding van genotypen in de  $F_1$ :  $A_1A_2$ :  $A_2A_3$ :  $A_3A_4$ :  $A_4A_4$ :  $A_4A_5$ :  $A_5A_5$ :  $A_5A$
  - Verhouding van fenotypen in de F<sub>1</sub>: fenotype waarbij beide allelen tot uiting komen: fenotype waarbij een van de allelen tot uiting komt = 1:1.

### **BEGRIPPEN**

#### generatie

De nakomelingen van hetzelfde ouderpaar.

#### kruisen

Twee organismen die met elkaar nakomelingen krijgen.

# kruisingsschema

Tabel met alle mogelijke combinaties van allelen bij een kruising.

#### BASIS 4

#### **STAMBOMEN**

# 3.4.1 Je kunt uit een gegeven stamboom afleiden welke genotypen de ouders en/of nakomelingen hebben, welk allel dominant is en welk allel recessief.

- In een stamboom geef je een vrouw weer met een rondje en een man met een vierkantje.
- Als twee ouders met gelijk fenotype een nakomeling krijgen met een afwijkend fenotype, zijn beide ouders heterozygoot voor deze eigenschap (Aa).
  - De nakomeling is dan homozygoot recessief voor deze eigenschap (aa).

# **BEGRIP**

#### stamboom

Schematisch overzicht van een erfelijke eigenschap binnen een familie.

### BASIS 5

### **VARIATIE IN GENOTYPEN**

# 3.5.1 Je kunt beschrijven hoe door geslachtelijke voortplanting variatie in genotypen ontstaat.

- Bij geslachtelijke voortplanting versmelten twee geslachtscellen.
  - Door reductiedeling (meiose) ontstaan geslachtscellen met veel verschillende genotypen.
  - Welke geslachtscellen bij bevruchting versmelten, is afhankelijk van het toeval. Hierdoor ontstaan telkens nieuwe genotypen.
  - Bij geslachtelijke voortplanting verschilt het genotype van de nakomeling(en) van dat van de ouder(s).

- Bij ongeslachtelijke voortplanting groeit een deel van een individu uit tot een nieuw individu.
  - Deze groei vindt plaats door gewone celdeling (mitose). Hierbij hebben de dochtercellen hetzelfde genotype als de moedercel.
  - Bij ongeslachtelijke voortplanting is het genotype van de nakomeling(en) gelijk aan dat van de ouder(s).

# 3.5.2 Je kunt omschrijven wat een mutatie is en je kunt omschrijven hoe kanker ontstaat.

- Mutatie: een plotselinge verandering van het DNA.
  - Mutant: een individu waarbij een gemuteerd allel tot uiting komt in het fenotype.
- Als een mutatie in een lichaamscel optreedt, heeft dit meestal geen gevolgen. Het genotype van de andere lichaamscellen blijft ongewijzigd.
- Als een mutatie in een geslachtscel optreedt, kan dit wel een grote uitwerking hebben.
  - Deze geslachtscel moet dan betrokken zijn bij de bevruchting. Elke lichaamscel van de nakomeling bevat dan het gemuteerde allel.
- Mutagene invloeden verhogen het aantal mutaties:
  - straling (bijv. radioactieve straling, röntgenstraling of ultraviolette straling in zonlicht)
  - bepaalde chemische stoffen (bijv. stoffen in sigarettenrook, asbest)
- Ontstaan van kanker: ergens in het lichaam gaat een cel zich ongeremd delen.
- Uitzaaiing: cellen van het eerste gezwel komen elders in het lichaam terecht en kunnen op andere plaatsen in het lichaam nieuwe gezwellen vormen.

# **BEGRIPPEN**

### mutagene invloeden

Invloed uit de omgeving die de kans op een mutatie vergroot.

#### mutant

Individu met een gemuteerd allel in het fenotype.

# mutatie

Plotselinge verandering van het DNA.

# variatie in genotypen

Verschillen in de erfelijke informatie van organismen binnen een soort.

#### BASIS 6

#### **EVOLUTIE**

# 3.6.1 Je kunt omschrijven wanneer organismen tot één soort behoren.

- Organismen behoren tot één soort als ze samen vruchtbare nakomelingen kunnen voortbrengen.
- Individuen van één soort kunnen tot verschillende rassen behoren.
  - De rassen kunnen sterk in uiterlijk verschillen.
  - Organismen die tot verschillende rassen van dezelfde soort behoren, kunnen zich samen voortplanten.

# 3.6.2 Je kunt beschrijven wat de evolutietheorie inhoudt en hoe geslachtelijke voortplanting, mutatie en natuurlijke selectie bijdragen aan het ontstaan van nieuwe rassen en soorten.

- Evolutie is de ontwikkeling van het leven op aarde, waarbij soorten ontstaan, veranderen en/of verdwijnen.
- De evolutietheorie is een verklaring voor het ontstaan, veranderen en/of verdwijnen van soorten.
- In een populatie komen voortdurend andere genotypen (en fenotypen) voor.
  - Door mutaties en geslachtelijke voortplanting ontstaat variatie in genotypen (en fenotypen).

- Natuurlijke selectie: individuen met bepaalde gunstige erfelijke eigenschappen zijn goed aangepast aan hun milieu. Daardoor krijgen ze meer nakomelingen dan individuen zonder deze erfelijke eigenschappen.
  - Individuen met een betere aanpassing aan het milieu hebben een grotere overlevingskans. Bijv.: dieren met een goede schutkleur worden minder snel opgemerkt door roofdieren dan dieren met een opvallende kleur.
  - Van individuen met een gunstig genotype zullen veel nakomelingen in leven blijven en zich voortplanten.
- Een soort evolueert (verandert) als door natuurlijke selectie een groep blijft voortbestaan en de oorspronkelijke vorm uitsterft.
  - Bijv.: als het milieu verandert, kan een andere vachtkleur de beste schutkleur blijken te zijn.
- Een nieuwe soort kan ontstaan als individuen die oorspronkelijk tot dezelfde populatie behoorden, zich niet meer met elkaar voortplanten.
  - Bijv.: een deel van een populatie kan langdurig geïsoleerd (gescheiden)
     raken van de rest van de populatie. Dit deel vormt een nieuwe populatie.
  - Beide populaties ontwikkelen zich langdurig gescheiden in verschillende milieus.
  - Na verloop van lange tijd zijn er zoveel verschillen ontstaan, dat individuen van de twee populaties zich niet meer met elkaar kunnen voortplanten. Er zijn twee soorten ontstaan.

#### **BEGRIPPEN**

#### evolutietheorie

Verklaring voor het ontstaan, veranderen en verdwijnen van levensvormen op aarde.

#### milieu

Alle omstandigheden die invloed kunnen hebben op een organisme.

#### natuurlijke selectie

Individuen met gunstige erfelijke eigenschappen krijgen meer nakomelingen.

#### ras

Groep organismen binnen een soort die verschilt van de rest van de soort.

#### soort

Organismen die samen vruchtbare nakomelingen kunnen krijgen.

#### BASIS 7

#### **VERWANTSCHAP**

### 3.7.1 Je kunt toelichten wat fossielen hebben bijgedragen aan de evolutietheorie.

- Fossielen: versteende overblijfselen van organismen of afdrukken van organismen in gesteenten.
  - Uit gevonden fossielen blijkt dat in de loop van de evolutie soorten zijn ontstaan, veranderd en/of verdwenen.

# 3.7.2 Je kunt toelichten dat overeenkomsten in de bouw van organen, de bouw van cellen en de samenstelling van stoffen in cellen duiden op verwantschap.

- Overeenkomst in de bouw van organen.
  - Organen met een verschillende functie kunnen veel overeenkomst in bouw vertonen. Bijv.: de vleugel van een vogel, de voorvin van een walrus, de voorpoot van een mol en de arm van een mens.
  - Deze organen zijn waarschijnlijk uit dezelfde grondvorm ontstaan. De organismen hebben een gemeenschappelijke voorouder gehad. De verschillen zijn ontstaan door aanpassing aan het milieu.
- Overeenkomst in de functie van organen.
  - Organen met eenzelfde functie kunnen weinig overeenkomst in bouw vertonen. Bijv.: de vleugel van een vogel en de vleugel van een vlinder.
  - Deze organen zijn waarschijnlijk niet uit dezelfde grondvorm ontstaan.
     De organismen zijn dus niet nauw verwant aan elkaar.

- Rudimentaire organen: organen die geen functie meer hebben en nauwelijks tot ontwikkeling komen.
  - Bijv.: het bekken bij een walvis, de pootresten bij reuzenslangen, de staartwervels bij de mens. Bij verwante soorten komen deze organen wel volledig tot ontwikkeling.
  - Door rudimentaire organen wordt het aannemelijk dat verschillende soorten organismen een gemeenschappelijke voorouder hebben.
- Overeenkomst in de bouw van cellen en de samenstelling van stoffen in de cellen.
  - Elk organisme bestaat uit een of meer cellen. De cellen vertonen overeenkomsten in bouw.
  - Cellen van verschillende organismen vertonen overeenkomsten in processen. Bijv.: celdeling en verbranding verlopen bij vrijwel alle organismen op dezelfde manier.
  - Cellen van verschillende organismen tonen overeenkomsten in de samenstelling van stoffen. Bijv.: DNA en eiwitten.

#### **BEGRIPPEN**

#### evolutionaire stamboom

Schematisch overzicht van de verwantschap tussen soorten.

#### verwant(schap)

Soorten met een gemeenschappelijke voorouder.

#### BASIS 8

#### **DNA-TECHNIEKEN**

# 3.8.1 Je kunt enkele DNA-technieken in de biotechnologie beschrijven. (SE)

- Biotechnologie is een verzamelnaam voor technieken waarbij organismen worden gebruikt om producten te vervaardigen voor de mens.
  - De veranderde organismen kunnen bijv. geneesmiddelen of hormonen produceren.
- Genetische modificatie: de mens verandert de erfelijke eigenschappen van andere soorten organismen.
  - Een genetisch gemodificeerd organisme noem je transgeen.
- Met recombinant-DNA-technieken wordt DNA van de ene soort overgebracht naar het DNA van een andere soort.
  - Bijv. crispr-cas: een techniek om nauwkeurig in het DNA te 'knippen en plakken'.
- Gene editing (gen-aanpassing): genen repareren, verwijderen of toevoegen in het DNA van een organisme.
  - Gentherapie is het gebruik van gene editing om kapotte genen te repareren.
- Andere DNA-technieken:
  - leder mens heeft zijn eigen, unieke DNA. Met een DNA-test maak je een beeld van het DNA.
  - Als op de plaats van een misdrijf DNA wordt aangetroffen, wordt dit DNA vergeleken met het DNA van verdachte personen.
  - Met een DNA-test kun je verwantschapsonderzoek doen. Daaruit blijkt of mensen familie zijn van elkaar.

#### **BEGRIPPEN**

# biotechnologie

Alle technieken waarbij organismen worden gebruikt om producten voor mensen te maken.

# genetische modificatie

Aanpassen van erfelijke eigenschappen van organismen door de mens.

#### EXTRA 9

#### KLEUR BIJ KATTEN (VERDIEPING)



- 3.9.1 Je kunt beschrijven dat katten informatie over de vachtkleur doorgeven via de geslachtschromosomen.
  - Een kat kent drie basiskleuren: zwart, rood of zwartrood.
  - Het gen voor de kleur ligt op het X-chromosoom.
  - Er zijn vijf verschillende genotypen en fenotypen mogelijk.
    - Genotype X<sup>b</sup>X<sup>b</sup> heeft als fenotype een zwarte poes.
    - Genotype X<sup>B</sup>X<sup>B</sup> heeft als fenotype een rode poes.
    - Genotype X<sup>B</sup>X<sup>b</sup> heeft als fenotype een zwartrode poes (schildpadpoes).
    - Genotype X<sup>b</sup>Y heeft als fenotype een zwarte kater.
    - Genotype X<sup>B</sup>Y heeft als fenotype een rode kater.
  - · Een zwartrode kater bestaat niet.
  - De andere vachtkleuren van een kat worden bepaald door andere genen.

#### EXTRA 10

#### KLONEN (VERBREDING)



- 3.10.1 Je kunt methoden beschrijven om organismen te klonen en uitleggen wat de functie van klonen is.
  - Bij stekken neem je een deel van een plant en dit deel laat je uitgroeien tot een nieuwe plant. Deze nieuwe plant is een kloon van de ouderplant.
  - Een kloon is genetisch identiek aan de ouderplant.
  - Dieren kun je ook klonen, bijv. door embryosplitsing en celkerntransplantatie.
    - Embryosplitsing: een klompje cellen, ontstaan uit een bevruchte eicel, wordt uit elkaar gehaald en teruggeplaatst. Elk gesplitst klompje cellen wordt een nakomeling.
  - Celkerntransplantatie: een celkern wordt in een lege eicel geplaatst.
  - Klonen van cellen kunnen worden gebruikt als geneesmiddel.

# ONDERZOEK

# LEREN ONDERZOEKEN & PRACTICA

3.0.1 Je kunt een biologisch onderzoek voorbereiden, uitvoeren en presenteren.

(E) Ga naar de Flitskaarten en de Diagnostische toets.