CMSC 130

Lecture 4 – Arithmetic Operations, Addition, Subtraction and Overflow

Arithmetic

- Base r Addition
- BCD Addition
- Base r Subtraction
- BCD Subtraction
- Overflow

Arithmetic

- To clearly demonstrate arithmetic on number systems, keep in mind the following,
 - Rules of the arithmetic (addition, subtraction, multiplication, division) on decimal system apply to other number systems
 - other number systems use symbols 0 to (base-1) (e.g. Decimal, 0 to (10-1) or 9)
 - Operate on value, then convert the value to the corresponding number using the symbols of the number system (e.g. $(7)_8 + (3)_8 = 10$ in value = $(12)_8$)

ADDITION

Binary Addition

 Rules on Decimal system addition applies, only that binary has symbols 0 and 1 only

Binary Addition

Example,

BCD Addition

- Binary Addition works well in binary numbers with direct value equivalent
- For binary numbers that represent values in terms of code instead of direct conversion equivalent, this is where BCD Addition comes in
- Remember the difference between coding and conversion of a value into binary

BCD Addition

Same rules apply,

- In addition to the rules: if the resulting binary number does not correctly represent the resulting value***, an adjustment is to be done (just add (6)₁₀ or (**0110**)₂ to the error)
- ***This can be caused by an end carry.

BCD Addition

Examples,

	17		0	0	0	1		0	1	1	1
+	18		0	0	0	1		1	0	0	0
35		0	0	1	0		1	1	1	1	
A	Adjustment of 6 (0110)						0	1	1	0	
Final Answer		0	0	1	1		0	1	0	1	
	17	_	0	0	0	1		0	1	1	1
+	11		0	0	0	1		0	0	0	1
	28		0	0	1	0		1	0	0	0
Final Answer. No need for adjustment.											

Addition on Other Bases

- Octal base 8, symbols 0 to 7
 - Very similar to Decimal system. Use only the symbols 0 to 7
 - Example,

Decimal:		Base 8:	1	1 ←		carry
	54		0	6	6	
+	26		0	3	2	
	80		1	2	0	

Addition on Other Bases

- Hexadecimal base 16, symbols 0 to 9 and A to F
 - Add using values, then convert to symbols for the base
 - Example,

		1 <		carry
	90	5	Α	
+	150	9	6	
	240	F	0	

Addition on Other Bases

- For other bases, similar rules apply
- Just use the values and convert to symbols used for the base of the number system
- Keep in mind that a number system in base r only has the symbols 0 to r-1 for use in its numbers
 - Base 3: 0 to 2
 - Base 5: 0 to 4
 - Base 8: 0 to 7
 - Base 16: 0 to F (A to F in hex represents 10 to 15 in decimal)

SUBTRACTION

Binary Subtraction

- Rules on Decimal system subtraction apply only that binary uses the symbols 0 and 1
 - 0 0 = 0
 - $\cdot 1 1 = 0$
 - $\cdot 1 0 = 1$
 - 0 1 = 1 (borrow 1 from next more significant bit for 0)
- On cases where the resulting value will be negative, use rules on subtraction with complement

Binary Subtraction

Example demonstrating the basic rules,

BCD Subtraction

- Binary Subtraction works well in binary numbers with direct value equivalent
- For binary numbers that represent values in terms of code instead of direct conversion equivalent, this is where BCD Subtraction comes in
- Remember the difference between coding and conversion of a value into binary

BCD Subtraction

- Same rules apply
- In addition to the rules: if the resulting binary number does not correctly represent the resulting value, an adjustment is to be done (just subtract (6)₁₀ or (**0110)**₂ from the result)

OVERFLOW

Overflow

- Occurs when two numbers of n digits each are added and the result occupies n+1 digits
- This is in cases where fixed number of digits are allowed for the representation of the numbers (operands and result)
- This is an effect of having a limited storage width

Overflow

• Examples,

	Value				
	7	0	1	1	1
+	6	0	1	1	0
	13	1	1	0	1

	Value	Using 2's complement				
	-7	1	0	0	1	
+	-6	1	0	1	0	
	-13	0	0	1	1	

Quiz (1/4) Show the necessary solutions.

• Convert the following decimal numbers to binary numbers before computing their sum/difference. Use 2's complement for negative numbers.

```
1. 19+6
```

- 4. Bonus: (-12)+(-9)
- Perform BCD addition or subtraction to the ff.:
 - 1. 36+39, Bonus: 36-39
 - 2. 31+36, Bonus: 31-36

ADDITIONAL RULES

Addition of two negative numbers

- Express the negative numbers in two's complement
- Include their sign bits (e.g. -3 = 1111 1101)
- If there's an end carry, ignore it. Then, express your final answer in two's complement and place a '-' sign.

More Examples

- BCD Subtraction:
- \cdot 1. 39 36
- -2.36 31

First Long Exam

- December 11, 2013
- Wednesday
- 1:00-3:00PM
- Rm. 229 or 224
- Bring YELLOW PAPERS