Pipeline Combinators for Gradual AutoML

Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, Avraham Shinnar, and Jason Tsay

IBM Research

Presentation at NeurIPS on 9 December 2021

https://github.com/IBM/lale

Manual Machine Learning

Pipeline = dataflow graph composed of multiple ML operations

Automated Machine Learning (AutoML)

Automated Machine Learning (AutoML)

Programming Model for Gradual AutoML

Progressive disclosure

 Start with a small subset of constructs, learn more as required for higher levels of control

Orthogonality

- Minimize the number of independent constructs
- Maximize compositionality for expressiveness

• Principle of least surprise

 Make each construct look and behave the way most users would expect

Total Automation

```
plan pipeline from scratch
                                                                                                        inspect returned pipeline
In [2]:
              from lale.lib.lale import AutoPipeline
             trainable = AutoPipeline(prediction_type='classification',
                                           scoring='accuracy', max_opt_time=90)
In [3]:
           1 trained = trainable.fit(train_X, train_y)
In [4]:
           1 predicted = trained.predict(test_X)
```

- Four lines of code to run AutoML and find the best pipeline for a given task
- The set of operators and the graph topology is pre-defined

Inspect Pipelines

• Visualize pipelines and inspect the hyperparameter values

Inspect Pipelines

```
pipeline.pretty_print(ipython_display=True)
from lale.lib.lale import Project
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from lale.lib.lale import ConcatFeatures
from sklearn.decomposition import PCA
from xgboost import XGBClassifier
import lale
lale.wrap_imported_operators()
project_0 = Project(
    columns={"type": "number"},
    drop_columns=lale.lib.lale.categorical(max_values=5),
project_1 = Project(columns=lale.lib.lale.categorical(max_values=5))
simple_imputer_1 = SimpleImputer(strategy="most_frequent")
one_hot_encoder = OneHotEncoder(handle_unknown="ignore")
pca = PCA(svd_solver="full", whiten=True)
xgb_classifier = XGBClassifier(
    gamma=0.7252268818575686,
    learning_rate=0.33784436456432215,
    max depth=1,
    min_child_weight=18,
    n estimators=636,
    reg_alpha=0.5579288754696737,
    reg_lambda=0.8441549814615695,
    subsample=0.9845567405170191,
pipeline = (
        (project 0 >> SimpleImputer())
        & (project_1 >> simple_imputer_1 >> one_hot_encoder)
    >> ConcatFeatures()
    >> xgb_classifier
```


Get Python code as output by calling `pretty_print` on a pipeline object

Create a Pipeline from Scratch: Combinators

- Functions that compose machine learning operators
- Imported from functional programming
- Enable a tacit programming style with function compositions independent of data
- Three main combinators in Lale:

Combinator	Description
op3 = op1 >> op2	pipe (add dataflow edge)
op3 = op1 & op2	union (no added edge)
op3 = op1 op2	choice (AutoML picks one)

Create a Pipeline from Scratch: Combinators

```
control search space details
                                                                                                                                                                   inspect returned pipeline
                                                                                                                                                                use total automation
                  pre_n = (Project(columns={"type":"number"})
In [2]:
```

write pipeline grammars

Execution Modes

write pipeline grammars
add new operators
control search space details
refine returned pipeline

plan pipeline from scratch
inspect returned pipeline
use total automation

- Fit and predict similar to Scikit-learn
- Third execution mode for AutoML search:

Refine a Pipeline

- Functions which decompose a pipeline
- Can be used with the combinators to refine pipelines

Search Spaces and Optimizers

```
plan pipeline from scratch
                                                                                                               inspect returned pipeline
                                                                                                             use total automation
In [6]:
                best_found = pipeline.auto_configure(
                      train_X, train_y, optimizer=Hyperopt, cv=3,
                      scoring='accuracy', max opt time=300)
                                 Planned pipeline
                                                                              Search space
                                                           generate
                 edit
                                                                        (optimizers: Hyperopt, SMAC,
                               (some choices of operations
                                                                        Hyperband, GridSearchCV, ...)
                              and hyperparameters are free)
                                                                                       acquire
                                                                                    Point in
                                                              decode
    Dataset
                                 Trainable pipeline
                                                                                    search
                              (all choices of operations and
                               hyperparameters are bound)
                                                                                     space
 Optimization
                                                                     loop
                                                                                                             A ranked list
                                            train
     Metric
                                                                                                          of trained pipelines
                                                                        evaluate
                                  Trained pipeline
                                                                                    Metrics
  Constraints
                            (learnable coefficients are bound)
```

write pipeline grammars

add new operators

Pipeline -> Search Space

mastery

add new optimizers
write pipeline grammars

add new operators
control search space details
refine returned pipeline

inspect returned pipeline use total automation

Pipeline -> Search Space: Combinators

```
add new optimizers
write pipeline grammars
add new operators
control search space details
refine returned pipeline
plan pipeline from scratch
inspect returned pipeline
use total automation
```

- Combinators "glue" together operators.
- We automatically "glue" together individual search spaces appropriately.

Combinator	Description		
op3 = op1 >> op2	pipe (add dataflow edge)		
op3 = op1 & op2	union (no added edge)		
op3 = op1 op2	choice (AutoML picks one)		

More details in the paper

Hyperparameter (JSON) Schemas

```
PCA: {"type": "object",
"properties"
  "n components": {
    "anyOf": [
      { "enum": [None, ["mle"]] },
        "type": "number",
         "minimum": 0.0,
         "exclusiveMinimum":
True,
         "maximum": 1.0,
         "exclusiveMaximum":
True,
      { "type": "integer",
         "minimum": 1
       },
    "default": None,
```


We also support:

- Description fields
- Validation only specifications
- Inter-parameter constraints
- Data dependent specifications
- Lists, tuples, and arrays
- Nested operators
- "Any"
- . ..

Operator Libraries

make_operator(implementation, schemas)

- Lale currently has 216 operators from sklearn, imblearn, aif360, lightgbm, xgboost etc.
- The operators can also be deep neural networks.
- Papers at AutoML@ICML'20 and SecML@ICLR'21 on inferring schemas from documentation and static analysis of code.

Operator Grammars

- Extends combinators to allow for recursion.
- Enables pipeline topology search with a simple compact representation

Combinator	Description
op3 = op1 >> op2	pipe (add dataflow edge)
op3 = op1 & op2	union (no added edge)
op3 = op1 op2	choice (AutoML picks one)
g.op3 = g.op3	Recursive reference

Experiments

• Does the translation scheme work for diverse planned pipelines?

Î	Absolute accuracy mean (and stddev) over 5 runs						100 * (LALE/AUTOSKL - 1)			
DATASET	AUTOSKL	LALE-AUTO	LALE-TPOT	LALE-AD3M	LALE-ADB	ASKL-ADB	AUTO	TPOT	AD3M	ADB
australian	85.1(0.4)	86.2 (0.0)	85.9 (0.6)	86.8 (0.0)	86.0 (1.6)	84.7 (3.1)	1.3	0.9	2.0	1.1
blood	77.9(1.4)	75.3 (0.0)	77.5 (2.5)	74.7 (0.7)	77.1 (0.7)	74.7 (0.8)	-3.3	-0.5	-4.0	-1.0
breast-cancer	73.0(0.6)	73.0 (0.0)	71.4 (1.1)	69.5 (3.3)	70.9 (2.0)	72.4 (0.5)	0.0	-2.3	-4.9	-2.9
car	99.4(0.1)	97.7 (0.0)	99.1 (0.1)	92.7 (0.6)	98.3 (0.3)	98.2 (0.2)	-1.6	-0.2	-6.7	-1.1
credit-g	76.6(1.2)	75.7 (0.0)	74.1 (0.5)	74.8 (0.4)	76.1 (1.3)	76.2 (1.0)	-1.1	-3.2	-2.4	-0.7
diabetes	77.0(1.3)	76.3 (0.0)	76.4 (1.1)	77.9 (0.2)	76.0 (0.5)	75.0 (1.0)	-0.9	-0.8	1.1	-1.3
jungle-chess	88.1(0.2)	92.4 (0.0)	88.9 (2.0)	74.1 (2.0)	89.4 (2.3)	86.9 (0.2)	4.9	0.9	-15.8	1.5
kc1	83.8(0.3)	83.4 (0.0)	83.5 (0.5)	83.6 (0.2)	83.3 (0.4)	84.0 (0.3)	-0.5	-0.4	-0.2	-0.6
kr-vs-kp	99.7(0.0)	99.5 (0.0)	99.4 (0.0)	96.8 (0.1)	99.5 (0.1)	99.5 (0.2)	-0.2	-0.3	-2.9	-0.2
mfeat-factors	98.7(0.1)	97.1 (0.0)	97.9 (0.5)	97.5 (0.1)	97.5 (0.4)	97.9 (0.1)	-1.6	-1.5	-1.2	-1.2
phoneme	90.3(0.4)	89.5 (0.0)	89.6 (0.4)	76.6 (0.0)	90.1 (0.4)	91.4 (0.2)	-0.8	-0.8	-15.2	-0.2
shuttle	87.3(11.6)	100.0 (0.0)	99.9 (0.0)	99.9 (0.0)	100.0 (0.0)	100.0 (0.0)	14.5	14.5	14.4	14.6
spectf	87.9(0.9)	87.7 (0.0)	88.4 (2.2)	83.6 (6.9)	88.4 (2.6)	89.7 (2.9)	-0.2	0.6	-4.9	0.6
sylvine	95.4(0.2)	95.0 (0.0)	94.4 (0.7)	91.3 (0.1)	95.1 (0.2)	95.1 (0.1)	-0.4	-1.1	-4.3	-0.3

• Does the translation scheme work for diverse optimizer backends?

TPE	Hyperopt Anneal	Rand	Hyperband	RND	ADMM BOBa	GPRND	GridSearchCV	Halving- GridSearchCV
88.75 (0.2)	88.94 (0.3)	88.75 (0.5)	87.94 (0.2)	89.00 (0.2)	89.14 (0.2)	88.61 (0.3)	Timed out	Timed out

User Study

- Between-subjects user study with 18 participants
- Four tasks to compare Lale to Scikit-learn
- The tasks covered basics of manual ML and AutoML

VERSION	COUNT	T1 CORRECT	T4 CORRECT	T4 LoC median (ALL)	TOTAL TIME MEAN (STDDEV)
Lale	9	89%	100%	10 (7, 8, 9, 9, 10, 10, 10, 14, 75)	17:36 (5:03)
Sklearn	9	56%	78%	23 (12, 15, 16, 22, 24, 43, 100, 100)	19:26 (6:34)
Total	18	72%	89%	14	18:54 (5:45)

LALE

Library for semi-automated data science

https://github.com/IBM/lale