SHRINKAGE REGRESSION: RIDGE & LASSO

Anaranya Basu

April 2024

1 Shrinkage Regression: An Overview

One of the most important problems in regression analysis is the selection of predictors in the model. The reason behind this is we are often not satisfied with the least squares estimates. However, all of the methods were containing a subset of the predictors. As an alternative to this, it is possible to fit a model containing all p predictors by constraining or regularizing the coefficient estimates or shrinking the coefficient estimates towards zero.

There are two best-known technique's for shrinking the regression coefficients towards zero are ridge and lasso regression

The Mathematical expression for **RIDGE** regression is

$$\min_{\beta} \left(\sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right)$$

Where:

- λ is the regularization parameter (also known as the ridge penalty parameter).
- The first term $\sum_{i=1}^{n} (y_i \mathbf{x}_i^T \boldsymbol{\beta})^2$ represents the residual sum of squares (RSS), which measures the discrepancy between the observed response and the predicted response.

- The second term $\lambda \sum_{j=1}^p \beta_j^2$ is the penalty term, also known as the ridge penalty, which penalizes large values of coefficients β to prevent overfitting.
- The parameter λ controls the trade-off between fitting the data well and keeping the coefficients small.
- The goal of ridge regression is to find the values of β that minimize this objective function.

2 Data Description

Data has been collected from

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P236.txt

- ACHV: Student achievement index (higher values are better)
- FAM: Faculty credentials index
- PEER: the influence of their peer group in the school
- SCHOOL: School facility/resource index

3 Analysis

The lambda (λ) value(s) must be specified. The following gives the Ridge estimates for the intercept β_0 and the coefficients β_j for FAM, PEER, and SCHOOL for $\lambda = 1, 5$, and 10 respectively.

```
> lm.ridge(ACHV~FAM + PEER + SCHOOL,data=EE0,lambda = c(1,5,10))

FAM PEER SCHOOL

1 -0.04055397 0.3768768 1.3205433 -0.6276745

5 -0.02708020 0.2318348 0.7229545 0.0419616

10 -0.02354968 0.2383780 0.5567732 0.1624044
```

We can try more values of lambda and plot how the coefficients shrink as lambda grows larger:

3.1 Selecting the λ using CV

For each λ , the lm.ridge() function computes the generalized cross-validation (GCV), similar to cross-validation using RMSE based on training data and test data.

The best lambda (among those lambda's specified in EEO.rg) can be selected automatically to be 19.95.

```
> select(EEO.rg)
modified HKB estimator is 0.3785843
modified L-W estimator is 4.081519
smallest value of GCV at 19.95262
```

4 Final Prediction

Setting lambda at the optimal value 19.95 that minimize the GCV, the Ridge estimates for coefficients of the EEO data can be obtained as follows:

```
> lm.ridge(ACHV ~ FAM + PEER + SCHOOL, data=EEO, lambda=19.95)
FAM PEER SCHOOL
-0.02033817 0.24403336 0.44263995 0.21866867
```

The Ridge estimates of the 3 coefficients are all positive, which makes more sense than the OLS estimates below that asserts better SCHOOL facility has a negative impact on students' performance.

```
> lm.ridge(ACHV~FAM + PEER + SCHOOL,data=EE0)$coef
FAM PEER SCHOOL
1.184281 2.132042 -2.317950
```

The 3 Ridge estimates all have smaller magnitudes than corresponding OLS estimates.

5 LASSO REGRESSION

Ridge regression, unlike feature selection methods that explained in this, select models that that involve just a subset of the variables, will include all predictors in the final model. With lambda parameter, it is possible to shrink all of the coefficients towards zero, but it will not set any of them exactly to zero. This is actually not a problem for prediction accuracy, however, it can create a challenge in model interpretation in settings in which number of predictor is quite large.

Lasso Regression is a relatively recent alternative to ridge regression that overcomes this disadvantage. Lasso estimates betas using the values that minimize the following formula:

$$\min_{\beta} \left(\frac{1}{2n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right)$$

Given a dataset with n observations and p predictors, let \mathbf{X} be the $n \times p$ matrix of predictor variables, \mathbf{y} be the $n \times 1$ vector of response variables, and $\boldsymbol{\beta}$ be the $p \times 1$ vector of regression coefficients. In the case of lasso, L1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when lambda is sufficiently large. In other words, just like feature selection methods, lasso select features. Thus, the model generated by lasso is much easier to interpret. Again, to determine lambda, we can use cross validation.

5.1 Data Description

215 samples of finely chopped pure meat sample has been taken.

A Tecator near-infrared spectrometer was used to measure the spectrum of light transmitted through each sample of meat. The spectrum gives the absorbance at 100 wavelengths in the range 850-1050 nm. Since determining the fat content via analytical chemistry is time consuming, we would like to build a model to predict the fat content of new samples using the 100 absorbance which can be measured more easily. The first 100 variables are the 100 absorbances of different wave lengths. The 101th variable fat is the fat content determined via analytical chemistry. We first split the meatspec data into training data and test data.

```
train=meatspec[1:172,]
test=meatspec[173:215,]
```

5.2 Analysis

We compute the Lasso fit for the training data:

```
train=meatspec[1:172,]
test=meatspec[173:215,]
trainy = train$fat
trainx = as.matrix(train[,-101])
library(lars)
lassomod = lars(trainx,trainy)
```

Below is the plot of the estimated coefficients as a function of t

Now using the Cross Validation plot we will try to understand how the coefficients shrinks with the optimal lamda value,

Now we need to knife out the optimal value of lambda,

> cvout\$index[which.min(cvout\$cv)]
[1] 0.01010101

The best t selected by cross-validation is t=0.0101

5.3 Final Prediction

Setting t at the optimal value 0.0101 determined by cross-validation, the Lasso estimates for coefficients of the meat data can be obtained as follows:

_	fficients				
V1	V2	V3	V4	V5	V6
0.00000	-137.11529	0.00000	0.00000	0.00000	0.00000
V7	8V	V9	V10	V11	V12
0.00000	0.00000	0.00000	0.00000	0.00000	249.46803
V13	V14	V15	V16	V17	V18
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
V19	V20	V21	V22	V23	V24
0.00000	0.00000	0.00000	0.00000	0.00000	-266.13292
V25	V26	V27	V28	V29	V30
0.00000	0.00000	0.00000	0.00000	0.00000	1827.77437
V31	V32	V33	V34	V35	V36
0.00000	0.00000	0.00000	-4255.98243	0.00000	0.00000
V37	V38	V39	V40	V41	V42
1931.22334	1384.07825	0.00000	0.00000	0.00000	-1202.83609
V43	V44	V45	V46	V47	V48
0.00000	0.00000	868.02355	323.68648	132.35110	0.00000
V49	V50	V51	V52	V53	V54
-1102.97154	-15.53693	0.00000	0.00000	0.00000	189.47433
V55	V56	V57	V58	V59	V60
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
V61	V62	V63	V64	V65	V66
205.21985	0.00000	0.00000	0.00000	0.00000	0.00000
V67	V68	V69	V70	V71	V72
0.00000	0.00000	0.00000	0.00000	-223.73059	0.00000
V73	V74	V75	V76	V77	V78
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
V79	V80	V81	V82	V83	V84
80.82735	0.00000	0.00000	0.00000	0.00000	0.00000
V85	V86	V87	V88	V89	V90
0.00000	0.00000	0.00000	0.00000	27.26149	0.00000
V91	V92	V93	V94	V95	V96
0.00000	0.00000	0.00000	0.00000	0.00000	-96.96579
V97	V98	V99	V100		
0.00000	0.00000	0.00000	81.72160		

we can see that only 20 coefficients have non zero LASSO estimates.

sum(pred\$coefficients!=0)

[1] 20

Here are the 20 variables with non zero estimates:

> pred\$coefficients[pred\$coefficients != 0]

•	-1	•	_		
V2	V12	V24	V30	V34	V37
137.11529	249.46803	-266.13292	1827.77437	-4255.98243	1931.22334
V38	V42	V45	V46	V47	V49
384.07825	-1202.83609	868.02355	323.68648	132.35110	-1102.97154
V50	V54	V61	V71	V79	V89
-15.53693	189.47433	205.21985	-223.73059	80.82735	27.26149
V96	V100				
-96.96579	81.72160				
	37.11529 V38 884.07825 V50 15.53693 V96	.37.11529 249.46803 V38 V42 .84.07825 -1202.83609 V50 V54 .15.53693 189.47433 V96 V100	.37.11529	.37.11529	.37.11529