Public par	ameter creation	
A trusted party chooses and an integer g having large		
Private	computations	
Alice	Alice Bob	
Choose a secret integer a.	Choose a secret integer b.	
Compute $A \equiv g^a \pmod{p}$	Compute $B \equiv g^b \pmod{p}$.	
Public exc	change of values	
Alice sends A to Bob	\rightarrow A	
B (Bob sends B to Alice	
Further priv	ate computations	
Alice Bob		
Compute the number B^a (mod p	o). Compute the number $A^b \pmod{p}$.	
The shared secret value is B^a	$\equiv (g^b)^a \equiv g^{ab} \equiv (g^a)^b \equiv A^b \pmod{p}.$	

Table 2.2: Diffie-Hellman key exchange

Public paran	neter creation	
A trusted party chooses an	d publishes a large prime p	
and an element g modulo	p of large (prime) order.	
Alice	Bob	
Key c	reation	
Choose private key $1 \le a \le p-1$,		
Compute $A = g^a \pmod{p}$.		
Publish the public key A.		
Encry	ption	
	Choose plaintext m.	
	Choose random element k .	
	Use Alice's public key A	
	to compute $c_1 = g^k \pmod{p}$	
	and $c_2 = mA^k \pmod{p}$.	
	Send ciphertext (c_1, c_2) to Alice.	
Decry	yption	
Compute $(c_1^a)^{-1} \cdot c_2 \pmod{p}$.		
This quantity is equal to m .		

Table 2.3: Elgamal key creation, encryption, and decryption

Bob	Alice	
Key cı	reation	
Choose secret primes p and q .		
Choose encryption exponent e		
with $gcd(e, (p-1)(q-1)) = 1$		
Publish $N = pq$ and e .		
Encry	ption	
	Choose plaintext m .	
	Use Bob's public key (N, e)	
	to compute $c \equiv m^e \pmod{N}$,	
	Send ciphertext c to Bob.	
Decry	ption	
Compute d satisfying		
$ed \equiv 1 \pmod{(p-1)(q-1)}$		
Compute $m' \equiv c^d \pmod{N}$.		
Then m' equals the plaintext m .		

Table 3.1: RSA key creation, encryption, and decryption

Samantha	Victor	
Key c	reation	
Choose secret primes p and q.		
Choose verification exponent e		
with		
gcd(e, (p-1)(q-1)) = 1.		
Publish $N = pq$ and e .		
Sig	ning	
Compute d satisfying		
$de \equiv 1 \pmod{(p-1)(q-1)}.$		
Sign document D by computing		
$S \equiv D^d \pmod{N}$.		
Verif	cation	
	Compute $S^e \mod N$ and verify	
	that it is equal to D .	

Table 4.1: RSA digital signatures

Public paran	eter creation	
A trusted party chooses an	d publishes a large prime p	
and primitive r	oot g modulo p .	
Samantha	nantha Victor	
Key c	reation	
Choose secret signing key		
$1 \le a \le p-1$.		
Compute $A = g^a \pmod{p}$.		
Publish the verification key A .		
Sign	ning	
Choose document $D \mod p$.		
Choose random element $1 < k < p$		
satisfying $gcd(k, p-1) = 1$.		
Compute signature		
$S_1 \equiv g^k \pmod{p}$ and		
$S_2 \equiv (D - aS_1)k^{-1} \pmod{p-1}.$		
Verifi	cation	
	Compute $A^{S_1}S_1^{S_2} \mod p$.	
	Verify that it is equal to $g^D \mod p$	

Table 4.2: The Elgamal digital signature algorithm

Public param	eter creation	
A trusted party chooses and publis	thes large primes p and q satisfying	
$p \equiv 1 \pmod{q}$ and an elem	ent g of order q modulo p .	
Samantha	Victor	
Key cr	eation	
Choose secret signing key		
$1 \le a \le q - 1$.		
Compute $A = g^a \pmod{p}$.		
Publish the verification key A .		
Sign	ning	
Choose document $D \mod q$.		
Choose random element $1 < k < q$		
Compute signature		
$S_1 \equiv (g^k \bmod p) \bmod q$ and		
$S_2 \equiv (D + aS_1)k^{-1} \pmod{q}.$		
Verific	cation	
	Compute $V_1 \equiv DS_2^{-1} \pmod{q}$ and	
	$V_2 \equiv S_1 S_2^{-1} \pmod{q}.$	
	Verify that	
	$(g^{V_1}A^{V_2} \bmod p) \bmod q = S_1.$	

Table 4.3: The digital signature algorithm (DSA)

Public para	meter creation	
A trusted party chooses and p an elliptic curve E over \mathbb{F}_p , ar		
Private co	omputations	
Alice	Bob	
Chooses a secret integer n_A .	Chooses a secret integer n_B .	
Computes the point $Q_A = n_A P$.	s the point $Q_A = n_A P$. Computes the point $Q_B = n_B P$	
Public exch	ange of values	
Alice sends Q_A to Bob	Q_A	
Q_B \longleftarrow Bob sends Q_B to Alice		
Further priva	te computations	
Alice	Bob	
Computes the point $n_A Q_B$.	Computes the point n_BQ_A .	
The shared secret value is n_AQ	$B = n_A(n_B P) = n_B(n_A P) = n_B Q_A$	

Table 6.5: Diffie-Hellman key exchange using elliptic curves

Public paran	neter creation		
	field \mathbb{F}_p , an elliptic curve E/\mathbb{F}_p , of large prime order q .		
Samantha	Victor		
Key c	reation		
Choose secret signing key			
1 < s < q - 1.			
Compute $V = sG \in E(\mathbb{F}_p)$.			
Publish the verification key V_{\bullet}			
Sig	ning		
Choose document $d \mod q$.			
Choose random element $e \mod q$.			
Compute $eG \in E(\mathbb{F}_p)$ and then,			
$s_1 = x(eG) \bmod q$ and			
$s_2 \equiv (d + ss_1)e^{-1} \pmod{q}.$			
Publish the signature (s_1, s_2) .			
Verifi	cation		
	Compute $v_1 \equiv ds_2^{-1} \pmod{q}$ and		
	$v_2 \equiv s_1 s_2^{-1} \pmod{q}.$		
	Compute $v_1G + v_2V \in E(\mathbb{F}_p)$ and ver-		
	ify that		
	$x(v_1G+v_2V) \bmod q = s_1.$		

Table 6.7: The elliptic curve digital signature algorithm (ECDSA)

H	meter Creation	
A trusted party chooses and	publishes a (large) prime p ,	
an elliptic curve E over \mathbb{F}_p , a	nd a point P in $E(\mathbb{F}_p)$.	
Alice	Bob	
Key	Creation	
Chooses a secret multiplier n_A .		
Computes $Q_A = n_A P$.		
Publishes the public key Q_A .		
Enc	ryption	
	Chooses plaintext values m_1 and m_2	
ω,	modulo p .	
	Chooses a random number k .	
	Computes $R = kP$.	
	Computes $S = kQ_A$ and writes it	
	as $S = (x_S, y_S)$.	
	Sets $c_1 \equiv x_S m_1 \pmod{p}$ and	
	$c_2 \equiv y_S m_2 \pmod{p}$.	
	Sends ciphertext (R, c_1, c_2) to Alice.	
Dec	ryption	
Computes $T = n_A R$ and writes		
it as $T=(x_T,y_T)$.		
Sets $m_1' \equiv x_T^{-1}c_1 \pmod{p}$ and		
$m_2^{\hat{r}} \equiv y_T^{-1} c_2 \pmod{p}$.		
Then $m'_1 = m_1$ and $m'_2 = m_2$.		

Table 6.13: Menezes-Vanstone variant of Elgamal (Exercises 6.17, 6.18)

Alice		Bob
Key	Creation	
Choose a large integer modulus q	1.	
Choose secret integers f and g w	ith $f < \sqrt{q/2}$	2,
$\sqrt{q/4} < g < \sqrt{q/2}$, and gcd((f,qq)=1.	
Compute $h \equiv f^{-1}g \pmod{q}$.	, , , , ,	
Publish the public key (q, h) .		
En	cryption	
	Choose plai	ntext m with $m < \sqrt{q/4}$.
Choose a nandom revaled	Use Alice's public key (q, h)	
	to com	$pute \ e \equiv rh + m \ (\bmod \ q).$
	Send cipher	text e to Alice.
De	cryption	
Compute $a \equiv fe \pmod{q}$ with 0		
Compute $b \equiv f^{-1}a \pmod{g}$ with	0 < b < g.	
Then b is the plaintext m .		

Table 7.1: A congruential public key cryptosystem

Table 7.4: NTRUEncryt: the NTRU public key cryptosystem

