# Simulation and PCB Designing of Boost Converter

Name: Paturi Venkatadri Roll No.: 234102111

### 1. Objective:

The objective of this experiment is to study the continuous conduction mode of basic Boost and Buck- Boost DC-DC converter using MATLAB/SIMULINK.

#### 2. Parameters of the DC-DC Converter:

| Parameters                 | Boost  | Buck - Boost      |
|----------------------------|--------|-------------------|
| Input Voltage              | 24 V   | 24 V              |
| Duty Ratio                 | 0.5    | Buck Mode = 0.35  |
|                            |        | Boost Mode = 0.75 |
| Switching Frequency        | 100kHz | 100kHz            |
| Output Power               | 100 W  | 100 W             |
| Ripple in Inductor Current | 25%    | 25%               |
| Ripple in Output Voltage   | 0.1%   | 0.1%              |

#### 3. Boost Converter:

### 3.1 Circuit Diagram and Theoretical waveforms of boost converter:



#### 3.2 Design procedure and final design parameter obtained:

❖ The value of inductance can be calculated by below expression

$$L = \frac{DV_{in}}{\Delta I_{L} f_{sw}}$$

The inductance value comes out to be 115.2  $\mu$ H.

❖ The value of capacitance can be calculated by

$$C = \frac{DI_o}{f_{sw} \Delta V_c}$$

The value of capacitance comes out to be 217  $\mu$ F.

For continuous conduction mode output voltage can be found out by

$$Vo = \frac{DV_{in}}{1 - D}$$

$$R = \frac{Vo}{Io}$$

The value of output voltage and load resistance comes out to be 48 V and 23.04  $\Omega$  respectively.

Using blocks from simscape/electrical/specialized power system/power electronics Boost converter is simulated with a discrete solver setting.

### 3.3 MatLab/Simulink Simulation:



### Fig. Boost Converter

### 3.4 Simulated Waveforms:

### I. Input Voltage:



### II. Output Voltage:



#### **III.** Inductor Current



# IV. Voltage across inductor



## V. Voltage across Diode:



## VI. Voltage across switch:



# 3.5 Simulation Configuration Parameters:



#### 3.6 MatLab Code for Boost Converter:

```
vin=24:
D=0.5;
d=(1-D);
Vo=vin/d
I_L=Vo/(R*d)
R=10;
fs=50e3;
C=200e-6;
L=0.0625e-3;
H=tf([d*Vo,-L*I_L],[L*C,L/R,d^2]);
display(H);
[Gm,Pm,Wcg,Wcp] = margin(H)
figure(1)
bode(H)
margin(H);
[p,z] = pzmap(H);grid
G=tf(d',[L*C,L/R,d^2]);
display(G);
[Gm,Pm,Wcg,Wcp] = margin(G)
figure(2)
bode(G)
margin(G);
[p,z] = pzmap(G);grid
```

### 3.7 Bode Plots of Boost converter:





# 3.8 PCB Schematic:



### 3.9 PCB Board:



# 3.10: Manufacturing Board of PCB



# **Conclusion:**

Thus the Boost converter is simulated and designed.