Optimizing Your Flowgraphs for Hardware

Presented by Greg Scallon

GNU Radio Conference 2017

Tuesday, September 12th 1:45pm

ATSC PROJECT FLOW GRAPH

ATSC MEASUREMENTS

(Baseline Run 1/19/17)					Derived Measurements							
Blockname Units	Average Runtime [ns]	Total Variance [sec]	Total [sec]	Graph #	ATSC Process Name (from ATSC Flowgraph)	Samples per Run		Period [us]	Load % GPU	Run [us]	Sigma % avg	
file_source0	5941.657	0.03788	10.51	1	File Source	1768948	4823	207	2.87%	5.94	0.36%	1:1
pfb_arb_resampler_ccf0	185146.7	8.70045	361.1	2	ATSC RX Filter	1950357	5318	188	98.45%	185.15	2.41%	1:1
dtv_atsc_fpll0	157430.1	3.1668	275.9	3	ATSC Receiver FPLL	1752745	4779	209	75.23%	157.43	1.15%	1:1
dc_blocker_ff0	73740.83	1.0931	130.2	4	DC Blocker	1766105	4815	208	35.51%	73.74	0.84%	1:1
agc_ff0	19470.3	0.05124	34.54	5	AGC	1774098	4837	207	9.42%	19.47	0.15%	5:6
dtv_atsc_sync0	55546.68	0.76014	117.4	6	ATSC Receiver Sync	2114342	5765	173	32.02%	55.55	0.65%	1:1
dtv_atsc_fs_checker0	1556.729	0.00042	3.395	7	ATSC Field Sync Checker	2180927	5946	168	0.93%	1.56	0.01%	9:2
dtv_atsc_equalizer0	117049.4	0.803	56.35	8	ATSC Equalizer	481400	1313	762	15.36%	117.05	1.43%	3:2
dtv_atsc_viterbi_decoder0	647083.9	5.82213	207.7	9	ATSC Viterbi Decoder	320989	875	1143	56.63%	647.08	2.80%	1:1
atsc_deinterleaver0	13945.68	0.01538	4.477	10	ATSC Deinterleaver	321011	875	1143	1.22%	13.95	0.34%	1:1
dtv_atsc_rs_decoder0	235631.4	1.96019	75.63	11	ATSC Reed-Solomon Decoder	320987	875	1143	20.62%	235.63	2.59%	1:1
dtv_atsc_derandomizer0	14310.8	0.00624	4.594	12	ATSC Derandomizer	320998	875	1143	1.25%	14.31	0.14%	1:1
atsc_depad0	916.2316	3.5E-05	0.294	13	ATSC Depad	321006	875	1143	0.08%	0.92	0.01%	1:1
file_sink0	2855.984	0.00384	0.917	14	File Sync	320992	875	1143	0.25%	2.86	0.42%	1:1
								Total				
(366.772 second run)								Load	349.8%			
								Per GPU	29.15%			

ATSC BLOCK HYPER-THREAD LOADING BASELINE

ATSC BASELINE TRADES

ATSC SYSTEM DESIGN EXPERIMENTS

Reduce system output jitter to improve the display by adjusting block priorities

Priority strategies included ordering by:

- Block execution order & reverse
- Individual execution duration & reverse
- Total resource consumption & reverse
- Different random assignments

Reduce Rx Filter block execution runtime to improve overall system throughput by:

- Overlapping / Parallelizing Rx Filter execution
- Exploiting Intel i7 architectural characteristics

INTEL HYPER-THREAD DEFINITION

MEASURED WORK TIMES PER BLOCK

* Report received from Marcus Mueller February 14, 2017

INTEL 17 MEMORY HIERARCHY

An L2 Cache access costs ~ 3 nanoseconds
An L3 Cache access is about 5 times longer than L2
RAM accesses are about 6 times longer than L3

L2 SIBLING COMMUNICATION

EXPLOITING L2 SIBLING ALLOCATION

Result: 18.1% performance improvement measured

EFFECTIVE CORE ALLOCATION FOR an i7 MACHINE

Configuration:

4 cores

Buffer size 48 KB

Virtual Processors

CPU CLOCK TRADE

Questions?

Please join me Thursday, September 14th 10am

Presenting:

A Case Study in Optimizing GNU Radio's ATSC Flowgraphs

Contact: greg@simpleXecutive.com

