Cálculo I

A definição de Função

mome
$$f_1g_1h$$

 $hecebe \rightarrow devolve$
 $f(2) = 4$
 $hecebe devolve$
 $f(1) = d_1 + 0$

Domínio de uma função

$$f:\{1,2\} \rightarrow \mathbb{R}$$
 $g:\{1\} \rightarrow \mathbb{R}$ $f(x)=2x \rightarrow \text{ lei de formorion} \rightarrow g(x)=2x$ Pade oplicar $2 \text{ em } f$ Não $g(2)$ mão existe $f(2)=4$ $g(3)=4$

$$E_{x}$$
: $f(x) = \sqrt{x}$

dom
$$(f) = R$$
 folso

dom $(f) = R^* = \{ x \in R, x > 0 \}$ folso

dom $(f) = R + = \{ x \in R, x > 0 \}$ verdonde

moion som.

Possivel.

Revisando: Taxa de Variação

DEFINIÇÃO A **taxa de variação média** de y = f(x) com relação a x ao longo do intervalo $[x_1, x_2]$ é

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0.$$

$$\Delta : fimol - Jaical$$

$$h quodo vonou o x$$

$$x_1 \longrightarrow X_2 = X_1 + h$$

$$h = X_2 - X_1$$

Revisando: A reta tangente

A reta tangente ao gráfico de uma função

Estipulando valores de funções

$$f(x) = \frac{x^2 - 1}{x - 1} = \frac{\left(x - 1\right)\left(x + 1\right)}{x - 1} = x + 1 = g(x) \quad \boxed{x \neq 1}$$

TABELA 2.2 Quanto mais x se aproxima de 1, mais perto $f(x) = (x^2 - 1)/(x - 1)$ parece se aproximar de 2

Valores de x abaixo e acima de 1	$f(x) = \frac{x^2 - 1}{x - 1} = x + 1, \qquad x \neq 1$
0,9	1,9
1,1	2,1
0,99	1,99
1,01	2,01
0,999	1,999
1,001	2,001
0,999999	1,999999
1,000001	2,000001

Se f(x) está arbitrariamente próxima a L (tão próxima de L quanto queiramos) para todo x próximo o suficiente de x_0 , dizemos que f se aproxima do **limite** L quando x se aproxima de x_0 , e escrevemos

$$\lim_{x \to x_0} f(x) = L,$$

que lemos como "o limite de f(x) quando x tende a $x_0 \notin L$ ".

A importância da definição de limite

Se f é a **função identidade** f(x) = x, então, para qualquer valor de x_0 (Figura 2.9a),

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x = x_0.$$

(a) Função identidade

Se f é a **função constante** f(x) = k (função com o valor k constante), então, para qualquer valor de x_0 (Figura 2.9b),

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} k = k.$$

(b) Função constante

EXEMPLO

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3)$$

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3)$$
 (b) $\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5}$ (c) $\lim_{x \to -2} \sqrt{4x^2 - 3}$

(c)
$$\lim_{x \to -2} \sqrt{4x^2 - 3}$$

TEOREMA — Leis do limite Se L, M, c e k são números reais e

$$\lim_{x \to c} f(x) = L \qquad \text{e} \qquad \lim_{x \to c} g(x) = M, \quad \text{então}$$

1. Regra da soma:
$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

2. Regra da diferença:
$$\lim_{x \to c} (f(x) - g(x)) = L - M$$

3. Regra da multiplicação
$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$
por constante:

4. Regra do produto:
$$\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$$

5. Regra do quociente:
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$$

6. Regra da potenciação:
$$\lim_{x\to c} [f(x)]^n = L^n$$
, n é um número inteiro positivo

7. Regra da raiz:
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{1/n}, n \text{ \'e um n\'umero}$$
 inteiro positivo

(Se *n* for um número par, suporemos que $\lim_{x\to c} f(x) = L > 0$.)