Universidad Autónoma de Madrid

Curso Avanzado de Análisis

Convexidad y Desigualdades en Espacios Normados

2024-2025.

Autor: Gonzalo Ortega Carpintero

Resumen

Palabras clave

Índice

1. Desigualdades de Clarkson

2

1. Desigualdades de Clarkson

Vamos a empezar probando un par de lemas auxiliares.

Lema 1.1. Sea $x \in [0,1]$ y $p \ge 2$. Se verifica la designaldad

$$\left(\frac{1+x}{2}\right)^p + \left(\frac{1-x}{2}\right)^p \le \frac{1}{2}(1+x^p).$$

Demostración. Definiendo la función

$$F(x) := \left(\frac{1+x}{2}\right)^p + \left(\frac{1-x}{2}\right)^p - \frac{1}{2}(1+x^p),$$

sería suficiente probar que $F(x) \ge 0$ para todo $x \in [0,1]$. Para x=0, como $p \ge 2$, se tiene

$$F(0) = \frac{1}{2^p} + \frac{1}{2^p} - \frac{1}{2} \le 0.$$

Para $0 < x \le 1$ definimos

$$\Phi(x) := \frac{2^p}{x^p} F(x) = \left(\frac{1}{x} + 1\right)^p + \left(\frac{1}{x} - 1\right)^p - 2^{p-1} \left(\frac{1}{x^p} + 1\right).$$

Para $x=1,\,\phi(1)=0,$ luego veamos que ϕ es creciente en el intervalo (0,1). La derivada de ϕ es

$$\Phi'(x) = -\frac{p}{x^{p+1}} \left((1+x)^{p-1} + (1-x)^{p-1} - 2^{p-1} \right).$$

Definiendo ahora la función $\Psi(x)$ como la parte entre paréntesis de Phi, y calculando su derivada tenemos

$$\Psi(x) := \left((1+x)^{p-1} + (1-x)^{p-1} - 2^{p-1} \right),$$

$$\Psi'(x) = (p-1)(1+x)^{p-2} - (p-1)(1-x)^{p-2}.$$

Luego $\Psi'(x) \geq 0$ para $x \in (0,1)$. Como $\Psi(1) = 0$, por el teorema del valor medio $\Psi(x) \leq 0$ para $x \in (0,1)$. Por tanto $\Phi'(x) \geq 0$ para $x \in (0,1)$ y como $\Phi(1) = 0$, $\Phi(x)$ es no positiva para $x \in (0,1)$. Esto implica finalmente que $F(x) \leq 0$ para todo $x \in (0,1)$.

Lema 1.2. Sean $z, w \in \mathbb{C}$ dos números complejos, donde si z = a+bi, denotamos su módulo complejo como $|z| = \sqrt{a^2 + b^2}$. Dado $p \ge 2$ se verifica la desigualdad

$$\left|\frac{1}{2}(z+w)\right|^p + \left|\frac{1}{2}(z-w)\right|^p \le \frac{1}{2}|z|^p + \frac{1}{2}|w|^p.$$

Demostración. Para el caso w=0 es inmediato que se verifica la desigualdad ya que se tendría

$$\left|\frac{z}{2}\right|^p + \left|\frac{z}{2}\right|^p = 2\left|\frac{z}{2}\right|^p = \frac{2}{2^p}|z|^p = \frac{1}{2^{p-1}}|z|^p \le \frac{1}{2}|z|^p.$$

Por tanto, y gracias a la simetría de los dos sumandos del lado derecho, podemos asumir sin pérdida de generalidad $|z| \ge |w| > 0$. Es decir, la desigualdad que queremos probar equivale, al dividir a ambos lados entre $|z|^p$, a

$$\left|\frac{1}{2}(1+\frac{w}{z})\right|^p + \left|\frac{1}{2}(1-\frac{w}{z})\right|^p \le \frac{1}{2}\left(1+\left|\frac{w}{z}\right|^p\right).$$

Por tanto, tomando exponenciales, para $0 < r \le 1$ y $0 \le \theta \le 2\pi$ tenemos

$$\left|\frac{1+r\exp(i\theta)}{2}\right|^p + \left|\frac{1-r\exp(i\theta)}{2}\right|^p \le \frac{1}{2}\left(1+\frac{1+r\exp(i\theta)}{2}^p\right).$$

Para $\theta=0$ la desigualdad se reduce a la probada en el Lema 1.1. Veamos por tanto que dado un r fijo, se tiene un máximo en $\theta=0$. Por la simetría del lado derecho de nuevo, podemos asumir que $0 \le \theta \le \frac{\pi}{2}$. Queremos por tanto probar que la función g definida por

$$g(\theta) = |1 + re^{i\theta}|^p + |1 - re^{i\theta}|^p$$

tiene un máximo en el intervalo $[0, \frac{\pi}{2}]$ en el punto $\theta = 0$. Desarrollando la fórmula de Euler, $e^{i\theta} = \cos(\theta) + i \sin(\theta)$, y los módulos complejos tenemos

$$g(\theta) = \left| \sqrt{(1 + r\cos(\theta))^2 + (r\sin(\theta))^2} \right|^p + \left| \sqrt{(1 - r\cos(\theta))^2 + (-r\sin(\theta))^2} \right|^p$$
$$= (1 + r^2 + 2r\cos(\theta))^{\frac{p}{2}} + (1 + r^2 - 2r\cos(\theta))^{\frac{p}{2}}$$

Tomamos ahora la derivada g' de g respecto a θ y observamos

$$g'(\theta) = \frac{p}{2} (1 + r^2 + 2r\cos(\theta))^{\frac{p}{2} - 1} (-2r\sin(\theta)) + \frac{p}{2} (1 + r^2 - 2r\cos(\theta))^{\frac{p}{2} - 1} (2r\sin(\theta))$$
$$= -pr\sin(\theta) \left((1 + r^2 + 2r\cos(\theta))^{\frac{p}{2} - 1} - (1 + r^2 - 2r\cos(\theta))^{\frac{p}{2} - 1} \right).$$

Como $p \geq 2$ entonces $g'(\theta) \leq 0$. Es decir, la derivada de g no es creciente en todo $\theta \in \left[0, \frac{\pi}{2}\right]$ y por tanto tiene un máximo en $\theta = 0$.

Teorema 1.3. Dado $p \ge q$, sean $f, g \in L^p$, se verifica entonces la designaldad

$$\left\| \frac{1}{2}f + g \right\|_{p}^{p} + \left\| \frac{1}{2}f - g \right\|_{p}^{p} \le \frac{1}{2} \left\| f \right\|_{p}^{p} + \frac{1}{2} \left\| g \right\|_{p}^{p}.$$

Teorema 1.4. Sea 1 , <math>y sea $q = \frac{p-1}{p}$. Para $f, g \in L^p$ se tiene

$$\left\|\frac{1}{2}f+g\right\|_{p}^{q}+\left\|\frac{1}{2}f-g\right\|_{p}^{q}\leq$$

Referencias