User Input of Scripts for Article Figures: Version 75

Atanu Giri

$\mathrm{May}\ 24,\ 2023$

Contents

1	Fig	ure 2												
	1.1	Figure 2a:												
	1.2	Figure 2d:												
	1.3	Figure 2e:												
	1.4	Figure 2f:												
	$1.4 \\ 1.5$													
	1.6	Figure 2p:												
2		ure 5												
	2.1	Figure 5a:												
	2.2	Figure 5c:												
	2.3	Figure 5d:												
	2.4	Figure 5e:												
	2.5	Figure 5f:												
	2.6	Figure 5g:												
3	Figure 6													
	3.1	Figure 6b (Left):												
	3.2	Figure 6b (Right):												
	3.3	Figure 6d (Left):												
	3.4	Figure 6d (Right):												
	3.5	Figure 6e:												
	3.6	Figure 6f:												
	3.7	Figure 6g:												
	3.8	Figure 6h:												
	3.9	Figure 6k:												
	a													
4	Supplemental Figure 6													
	4.1	Supplemental Figure 6a:												
	4.2	Supplemental Figure 6b:												
	4.3	Supplemental Figure 6c:												

	4.4	Supplemental	Figure	6d:												9
	4.5	Supplemental	Figure	6e:	٠		•									10
5	Sup	plemental Fig	gure 7													10
	5.1	Supplemental	Figure	7a	$(L_{\epsilon}$	eft)	:									10
	5.2	Supplemental	Figure	7a	(R	igh	t):									10
	5.3	Supplemental	Figure	7b	(L	eft)	:									10
	5.4	Supplemental	Figure	7b	Ŕ	igh	t):									10
	5.5	Supplemental														10
	5.6	Supplemental	Figure	7e:												11
	5.7	Supplemental	_													11
	5.8	Supplemental	_													11
	5.9	Supplemental	_	_												11
	5.10	Supplemental	_													11
		Supplemental	_													11
		Supplemental	_	-												12

1 Figure 2

1.1 Figure 2a:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('approachavoid').

For user inputs please enter the following inputs:

- i) Enter genotype: CRL: Long Evans
- ii) Do you want to analyze only approach trials? (y/n) n
- iii) Enter tasktypedone (or enter "all" for all task types): P2L1
- iv) Which health types do you want to analyze?

(enter multiple values separated by comma and a space or type 'all' for all types): N/A

- v) Start date? 06/16/2022
- vi) End date? 06/23/2022
- vii) Do you want to split the graph by gender? (y/n) y

1.2 Figure 2d:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('entrytime').

For user inputs please enter the following inputs:

- i) Enter genotype: CRL: Long Evans
- ii) Do you want to analyze only approach trials? (y/n) y

For rest of the user inputs please enter the same inputs as in Figure 2a

1.3 Figure 2e:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('distanceaftertoneuntillimitingtimestamp'). For user inputs please enter the same inputs as **Figure 2a**

1.4 Figure 2f:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('stoppingpts_per_unittravel_method6'). For user inputs please enter the same inputs as **Figure 2a**

1.5 Figure 2g:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('bigaccelerationperunittravel'). For user inputs please enter the same inputs as Figure 2a

1.6 Figure 2h:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('passingcentralzonerejectinitialpresence'). For user inputs please enter the same inputs as **Figure 2a**

2 Figure 5

2.1 Figure 5a:

Step 1: Get 'Sans food dep' figure.

For 'Sans food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('approachavoid').

For user inputs please enter the following inputs:

- i) Enter genotype: CRL: Long Evans
- ii) Do you want to analyze only approach trials? (y/n) n
- iii) Enter tasktypedone (or enter "all" for all task types): P2L1
- iv) Which health types do you want to analyze?

(enter multiple values separated by comma and a space or type 'all' for all types): $\mathrm{N/A}$

- v) Start date? 06/16/2022
- vi) End date? 06/23/2022
- vii) Do you want to split the graph by gender? (y/n) n
- viii) Do you want to a graph for specific animal? (y/n) n

Step2: Get 'Food dep' figure.

For 'Food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('approachavoid').

For user inputs please enter the following inputs:

- i) Enter genotype: CRL: Long Evans
- ii) Do you want to analyze only approach trials? (y/n) n
- iii) Enter tasktypedone (or enter "all" for all task types): P2L1
- iv) Which health types do you want to analyze?

(enter multiple values separated by comma and a space or type 'all' for all types): Food Deprivation

- v) Start date? 08/23/2022
- vi) End date? 08/25/2022
- vii) Do you want to split the graph by gender? (y/n) n
- viii) Do you want to a graph for specific animal? (y/n) n

Step3: Overlay 'Sans food dep' and 'Food dep' figures.

- i) Open mergePlots.m from 'Plots' directory
- ii) Paste the figures obtained in step 1 and 2 for 'f1' and 'f2'
- iii) Comment out rest of the figure names since we don't want to overlay more
- iv) Run the script

2.2 Figure 5c:

Step 1: Get 'Sans food dep' figure.

For 'Sans food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('entrytime'). For user inputs please enter the following inputs:

- i) Enter genotype: CRL: Long Evans
- ii) Do you want to analyze only approach trials? (y/n) y

For rest of the user inputs please enter the same inputs as Step1 in Figure 5a

Step2: Get 'Food dep' figure.

For 'Food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('entrytime').

For user inputs please enter the following inputs:

- i) Enter genotype: CRL: Long Evans
- ii) Do you want to analyze only approach trials? (y/n) y

For rest of the user inputs please enter the same inputs as Step2 in Figure 5a

Step3: Overlay 'Sans food dep' and 'Food dep' figures. Please follow the same steps as Step3 in **Figure 5a**

2.3 Figure 5d:

Step 1: Get 'Sans food dep' figure.

For 'Sans food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('distanceaftertoneuntillimitingtimestamp'). For user inputs please enter the same inputs as Step1 in **Figure 5a**

Step2: Get 'Food dep' figure.

For 'Food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('distanceaftertoneuntillimitingtimestamp'). For user inputs please enter the same inputs as Step2 in **Figure 5a**

Step3: Overlay 'Sans food dep' and 'Food dep' figures. Please follow the same steps as Step3 in **Figure 5a**

2.4 Figure 5e:

Step 1: Get 'Sans food dep' figure.

For 'Sans food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('stoppingpts_per_unittravel_method6'). For user inputs please enter the same inputs as Step1 in **Figure 5a**

Step2: Get 'Food dep' figure.

For 'Food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('stoppingpts_per_unittravel_method6'). For user inputs please enter the same inputs as Step2 in **Figure 5a**

Step3: Overlay 'Sans food dep' and 'Food dep' figures. Please follow the same steps as Step3 in **Figure 5a**

2.5 Figure 5f:

Step 1: Get 'Sans food dep' figure.

For 'Sans food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('bigaccelerationperunittravel').

For user inputs please enter the same inputs as Step1 in Figure 5a

Step2: Get 'Food dep' figure.

For 'Food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('bigaccelerationperunittravel').

For user inputs please enter the same inputs as Step2 in Figure 5a

Step3: Overlay 'Sans food dep' and 'Food dep' figures. Please follow the same steps as Step3 in **Figure 5a**

2.6 Figure 5g:

Step 1: Get 'Sans food dep' figure.

For 'Sans food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('passingcentralzonerejectinitialpresence'). For user inputs please enter the same inputs as Step1 in Figure 5a

Step2: Get 'Food dep' figure.

For 'Food dep' From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('passingcentralzonerejectinitialpresence'). For user inputs please enter the same inputs as Step2 in **Figure 5a**

Step3: Overlay 'Sans food dep' and 'Food dep' figures. Please follow the same steps as Step3 in **Figure 5a**

3 Figure 6

3.1 Figure 6b (Left):

From "Data Analysis" directory run the function, alcoholPsychometricFunctionPlot('approachavoid').

For user inputs please enter the following inputs:

- i) Enter genotype: CRL: Long Evans
- ii) Do you want to analyze only approach trials? (y/n) n
- iii) Enter tasktypedone (or enter "all" for all task types): P2A
- iv) Which health types do you want to analyze?

(enter multiple values separated by comma and a space or type 'all' for all types): $\rm N/A$

- v) Start date? 09/16/2022
- vi) End date? 10/03/2022
- vii) Do you want to split the graph by gender? (y/n) y

3.2 Figure 6b (Right):

From "Data Analysis" directory run the function, alcoholPsychometricFunctionPlot('approachavoid').

For user inputs please enter the following inputs:

- i) Enter genotype: lg_boost, lg_etoh
- ii) Do you want to analyze only approach trials? (y/n) n
- iii) Enter tasktypedone (or enter "all" for all task types): P2A
- iv) Which health types do you want to analyze?

(enter multiple values separated by comma and a space or type 'all' for all types): $\mathrm{N/A}$

- v) Start date? 11/02/2022
- vi) End date? 12/01/2022
- vii) Do you want to split the graph by gender? (y/n) y

3.3 Figure 6d (Left):

From "Data Analysis" directory run the function, alcoholPsychometricFunctionPlot('entrytime')

For user inputs please enter the following inputs:

- i) Enter genotype: CRL: Long Evans
- ii) Do you want to analyze only approach trials? (y/n) y

For rest of the user inputs please enter the same inputs as in Figure 6b (Left)

3.4 Figure 6d (Right):

From "Data Analysis" directory run the function, alcoholPsychometricFunctionPlot('entrytime')
For user inputs please enter the following inputs:

- i) Enter genotype: lg_boost, lg_etoh
- ii) Do you want to analyze only approach trials? (y/n) y

For rest of the user inputs please enter the same inputs as in Figure 6b (Right)

3.5 Figure 6e:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('approachavoid'). For user inputs please enter the following inputs:

- i) Which data do you want to analyze? Print "Oxycodon" or "Incubation" Oxycodon
- ii) Do you want to analyze only approach trials? (y/n) n
- iii) Do you want to split the graph by gender? (y/n) y

3.6 Figure 6f:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('stoppingpts_per_unittravel_method6'). For user inputs please enter the same inputs as **Figure 6e**

3.7 Figure 6g:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('approachavoid'). For user inputs please enter the following inputs:

- i) Which data do you want to analyze? Print "Oxycodon" or "Incubation" Incubation
- ii) Do you want to analyze only approach trials? (y/n) n
- iii) Do you want to split the graph by gender? (y/n) y

3.8 Figure 6h:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('stoppingpts_per_unittravel_method6'). For user inputs please enter the same inputs as **Figure 6g**

3.9 Figure 6k:

From "Data Analysis" directory run the function, barPlotOfOxy.m.

4 Supplemental Figure 6

4.1 Supplemental Figure 6a:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('approachavoid'). For user inputs please enter the following inputs:

- i) Enter genotype: CRL: Long Evans
- ii) Do you want to analyze only approach trials? (y/n) n
- iii) Enter tasktypedone (or enter "all" for all task types): P2L1
- iv) Which health types do you want to analyze?

(enter multiple values separated by comma and a space or type 'all' for all types): Food Deprivation

- v) Start date? 08/23/2022
- vi) End date? 08/25/2022
- vii) Do you want to split the graph by gender? (y/n) y

4.2 Supplemental Figure 6b:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('distanceaftertoneuntillimitingtimestamp'). For user inputs please enter the same inputs as **Supplemental Figure 6a**.

4.3 Supplemental Figure 6c:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('stoppingpts_per_unittravel_method6'). For user inputs please enter the same inputs as **Supplemental Figure 6a**.

4.4 Supplemental Figure 6d:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('bigaccelerationperunittravel'). For user inputs please enter the same inputs as **Supplemental Figure 6a**.

4.5 Supplemental Figure 6e:

From "Data Analysis" directory run the function, masterPsychometricFunctionPlot('passingcentralzonerejectinitialpresence'). For user inputs please enter the same inputs as **Supplemental Figure 6a**.

5 Supplemental Figure 7

5.1 Supplemental Figure 7a (Left):

From "Data Analysis" directory run the function, alcoholPsychometricFunctionPlot('bigaccelerationperunittravel'). For user inputs please enter the same inputs as Figure 6b (Left).

5.2 Supplemental Figure 7a (Right):

From "Data Analysis" directory run the function, alcoholPsychometricFunctionPlot('bigaccelerationperunittravel'). For user inputs please enter the same inputs as **Figure 6b** (**Right**).

5.3 Supplemental Figure 7b (Left):

From "Data Analysis" directory run the function, alcoholPsychometricFunctionPlot('distanceaftertoneuntillimitingtimestamp'). For user inputs please enter the same inputs as **Figure 6b** (**Left**).

5.4 Supplemental Figure 7b (Right):

From "Data Analysis" directory run the function, alcoholPsychometricFunctionPlot('distanceaftertoneuntillimitingtimestamp'). For user inputs please enter the same inputs as **Figure 6b** (**Right**).

5.5 Supplemental Figure 7d:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('entrytime').

For user inputs please enter the following inputs:

i) Which data do you want to analyze? Print "Oxyco

- i) Which data do you want to analyze? Print "Oxycodon" or "Incubation" Oxycodon
- ii) Do you want to analyze only approach trials? (y/n) y
- iii) Do you want to split the graph by gender? (y/n) y

5.6 Supplemental Figure 7e:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('passingcentralzonerejectinitialpresence'). For user inputs please enter the same inputs as **Figure 6e**.

5.7 Supplemental Figure 7f:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('bigaccelerationperunittravel'). For user inputs please enter the same inputs as **Figure 6e**.

5.8 Supplemental Figure 7g:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('distanceaftertoneuntillimitingtimestamp'). For user inputs please enter the same inputs as **Figure 6e**.

5.9 Supplemental Figure 7h:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('entrytime').
For user inputs please enter the following inputs:
i) Which data do you want to analyze? Print "Oxycodon" or "Incubation" Incubation

- ii) Do you want to analyze only approach trials? (y/n) y
- iii) Do you want to split the graph by gender? (y/n) y

5.10 Supplemental Figure 7i:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('bigaccelerationperunittravel'). For user inputs please enter the same inputs as **Figure 6g**.

5.11 Supplemental Figure 7j:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('distanceaftertoneuntillimiting timestamp'). For user inputs please enter the same inputs as **Figure 6g**.

5.12 Supplemental Figure 7k:

From "Data Analysis" directory run the function, oxyPsychometricFunctionPlot('passingcentralzonerejectinitialpresence'). For user inputs please enter the same inputs as **Figure 6g**.