UNIVERSITY OF BRISTOL

School of Mathematics

Algebraic Geometry MATHM0036 (Paper code MATHM-0036)

Summer 2025 2 hour(s) 30 minutes

The exam contains FOUR questions All Four answers will be used for assessment.

Any calculator permitted.

Candidates may bring ONE hand-written sheet of A4 notes, written double-sided into the examination. Candidates must insert this sheet into their answer booklet(s) for collection at the end of the examination.

Do not turn over until instructed.

Cont... AG-Summer 2025

Q1. (a) (5 marks) Show that any polynomial $f \in \mathbb{C}[x,y,z]$ can be expressed as

$$f = r_1(x^2 - y) + r_2(x^3 - z) + g,$$

for $r_1, r_2 \in \mathbb{C}[x, y, z]$ and $g \in \mathbb{C}[x]$.

(b) (5 marks) Recall that the *twisted cubic* is defined as $V = \mathbb{V}(x^2 - z, x^3 - y)$. Consider the parametrisation:

$$\varphi: \mathbb{A}^1 \to \mathbb{A}^3,$$

 $t \mapsto (t, t^2, t^3).$

Prove that the pullback map

$$\varphi^*: \mathbb{C}[x,y,z] \to \mathbb{C}[t]$$

induces an isomorphism of \mathbb{C} -algebras $\mathbb{C}[V] \simeq \mathbb{C}[t]$.

- (c) (5 marks) Explain why the result from part (b) implies that V is irreducible.
- (d) (5 marks) We know that the closure of V in \mathbb{P}^3 is given by $\overline{V} = \Phi(\mathbb{P}^1)$ where

$$\Phi: \mathbb{P}^1 \to \mathbb{P}^3$$
$$[t:s] \mapsto [s^3:ts^2:t^2s:t^3].$$

Prove that $\overline{V} = \mathbb{V}(xz - y^2, yw - z^2, xw - yz) \subseteq \mathbb{P}^3$.

- (e) (5 marks) Explain why the irreducibility of V implies that \overline{V} is also irreducible.
- Q2. (a) (15 marks) Recall the following definition:

Let X, Y be two algebraic varieties (*i.e.*, affine, quasi-affine, projective or quasi-projective). A morphism $\varphi: X \longrightarrow Y$, is a map such that

- φ is continuous;
- For any for every open set $V \subseteq Y$, and for every regular function $f \in \mathcal{O}_Y(V)$, $\varphi^*(f) = f \circ \varphi \in \mathcal{O}_X(\varphi^{-1}(V))$.

Prove the following theorem:

Let X be an algebraic variety, $Y \subseteq \mathbb{A}^n$ a closed affine algebraic variety, and $\varphi : X \longrightarrow Y$ a map of sets. Then, $\varphi = (\varphi_1, \dots, \varphi_n)$ is a morphism, if and only if, for all i, the coordinate function $\varphi_i \in \mathcal{O}_X(X)$.

(b) (10 marks) Let $V \subseteq \mathbb{A}^n$ and $W \subseteq \mathbb{A}^m$ be two closed affine algebraic varieties and

$$\varphi:V\longrightarrow W$$

a morphism. Prove that the pullback $\varphi^* : \mathbb{C}[W] \longrightarrow \mathbb{C}[V]$ is surjective if and only if φ defines an isomorphism between V and some algebraic subvariety of W.

- Cont... AG-Summer 2025
 - (i) Sketch $V \cap \mathbb{R}^2$ in \mathbb{R}^2 .
 - (ii) Find all the singular points of V.
 - (b) (10 marks) Identify the irreducible components of $\mathbb{V}(y^2 x^3, xz y) \subseteq \mathbb{A}^3$.
 - (c) (5 marks) Show that $\mathbb{V}(xz-y)\subseteq\mathbb{A}^3$ is isomorphic to \mathbb{A}^2 .
- Q4. Consider the cone $\sigma = \text{cone}(\{e_1, e_1 + 3e_2\}) \subseteq \mathbb{R}^2$. (If you wish, you can use the following grids for calculations.)

- (a) (5 marks) Explain why the affine toric variety X_{σ} is not smooth. Subdivide σ into a union of smooth two-dimensional cones.
- (b) (10 marks) Select two of the two-dimensional cones from your subdivision and denote them by σ_1 and σ_2 . Let $\tau = \sigma_1 \cap \sigma_2$. Describe the toric varieties X_{σ_1} , X_{σ_2} , X_{τ} and their coordinate rings.
- (c) (2 marks) Justify why we have the inclusions

$$\mathbb{C}[X_{\sigma_1}] \subseteq \mathbb{C}[X_{\tau}], \quad \mathbb{C}[X_{\sigma_2}] \subseteq \mathbb{C}[X_{\tau}].$$

(d) (8 marks) Explain why X_{σ_1} and X_{σ_2} contain X_{τ} as an open set and describe the glueing of X_{σ_1} and X_{σ_2} along X_{τ} .