Tema VII: Определители

§ 1. Определение и основные теоремы

М.В.Волков

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Соглашение и обозначение

До особого указания слово «матрица» будет означать *квадратную* матрицу над некоторым — произвольным, но фиксированным — полем F. Множество всех $n \times n$ -матриц над F будем обозначать через $M_n(F)$.

Нам будет удобно мыслить матрицу $A\in M_n(F)$ как строку столбцов, т.е. если A_i-i -й столбец матрицы A, записываем её как $A=\begin{pmatrix}A_1&A_2&\dots&A_n\end{pmatrix}$.

Определение

Отображение $\det\colon M_n(F)\to F$ называется *определителем*, если оно удовлетворяет следующим трем аксиомам:

 Δ I: если $A_i = A_{i+1}$, то $\det \left(A_1 \dots A_i \, A_{i+1} \dots A_n \right) = 0$ (кососимметричность);

 Δ II: если $A_i = A_i' + A_i''$, то $\det \left(A_1 \ldots A_i \ldots A_n \right) = \det \left(A_1 \ldots A_i' \ldots A_n \right) + \det \left(A_1 \ldots A_i'' \ldots A_n \right)$, если $A_i = \alpha A_i'$, то $\det \left(A_1 \ldots A_i \ldots A_n \right) = \alpha \det \left(A_1 \ldots A_i' \ldots A_n \right)$ (полилинейность);

 Δ III: det E=1 (μορμιροβκα).

Аксиомы определителя (2)

Мы записали аксиомы ΔI – ΔIII формулами; дадим ещё и словесные формулировки.

ΔI

Если два соседних столбца матрицы равны, то ее определитель равен 0.

ΔII

- 1. Если i-й столбец матрицы есть сумма двух столбцов, то ее определитель равен сумме определителей двух матриц, у первой из которых i-й столбец заменен на первое слагаемое, а у второй на второе.
- 2. Если i-й столбец матрицы умножить на $\alpha \in F$, то ее определитель умножится на $\alpha.$

ΔIII

Определитель единичной матрицы равен 1.

Вопросы

Итак, определитель – это кососимметричное полилинейное нормированное отображение из $M_n(F)$ в F.

Возникает три естественных и неочевидных вопроса:

- 1. Существуют ли такие отображения для каждого натурального n?
- 2. Если существуют, то сколько таких отображений может быть при каждом n?
- 3. Зачем нужны такие отображения?

Сегодня мы ответим сначала на второй вопрос, а потом на первый. Что касается третьего, постепенно станет видно, что определители служат полезным и удобным техническим средством линейной алгебры, без которого во многих случаях просто невозможно обойтись.

Отметим ещё, что важность определителей была осознана очень давно (на рубеже XVII и XVIII веков). Парадоксально, но понятие определителя матрицы появилось намного раньше, чем понятие матрицы!

Некоторые свойства определителей

D1

Если какой-то столбец матрицы A состоит из нулей, то $\det A=0.$

Доказательство. Следует из ΔII : выносим общий множитель 0 из столбца, состоящего из нулей.

D2

Если переставить соседние столбцы матрицы, определитель сменит знак.

Доказательство. Пусть
$$A = \begin{pmatrix} A_1 \dots A_i \ A_{i+1} \dots A_n \end{pmatrix}$$
. Хотим доказать, что $\det \begin{pmatrix} A_1 \dots A_i \ A_{i+1} \dots A_n \end{pmatrix} = -\det \begin{pmatrix} A_1 \dots A_{i+1} \ A_i \dots A_n \end{pmatrix}$. Имеем
$$0 \overset{\Delta \mathrm{I}}{=} \det (A_1 \dots A_i + A_{i+1} \ A_i + A_{i+1} \dots A_n) =$$

$$\overset{i}{=} \det (A_1 \dots A_i \ A_i \ \dots A_n) + \det (A_1 \dots A_i \ A_{i+1} \dots A_n) +$$

$$\overset{i}{=} \det (A_1 \dots A_{i+1} \ A_i \dots A_n) + \det (A_1 \dots A_{i+1} \ A_{i+1} \dots A_n) +$$

$$\overset{i}{=} \det (A_1 \dots A_{i+1} \ A_i \dots A_n) + \det (A_1 \dots A_{i+1} \ A_{i+1} \dots A_n).$$

Некоторые свойства определителей (2)

В равной нулю сумме

$$det(A_1 \dots A_i \quad A_i \quad \dots A_n) + det(A_1 \dots A_i \quad A_{i+1} \dots A_n) + \\ i \quad i+1 \qquad \qquad i \quad i+1 \\ + det(A_1 \dots A_{i+1} \quad A_i \quad \dots A_n) + det(A_1 \dots A_{i+1} \quad A_{i+1} \dots A_n)$$

первое и последнее слагаемые равны 0 в силу аксиомы ΔI . Значит, сумма второго и третьего слагаемых есть 0, откуда $\det \left(A_1 \ldots A_i \, A_{i+1} \ldots A_n\right) = -\det \left(A_1 \ldots A_{i+1} \, A_i \ldots A_n\right)$.

D3

Если переставить два столбца матрицы, определитель сменит знак.

Доказательство. Пусть $A=\begin{pmatrix} A_1 \dots A_i \dots A_j \dots A_n \end{pmatrix}$. Хотим доказать, что $\det \begin{pmatrix} A_1 \dots A_i \dots A_j \dots A_n \end{pmatrix} = -\det \begin{pmatrix} A_1 \dots A_j \dots A_i \dots A_n \end{pmatrix}$. Проведем индукцию по j-i. База индукции j-i=1 обеспечивается свойством D2.

Некоторые свойства определителей (3)

Шаг индукции. Пусть j-i>1. Имеем

D4

Если два столбца матрицы равны, то ее определитель равен 0.

Доказательство. Переставим столбцы так, что равные столбцы стали соседними. По аксиоме ΔI определитель полученной матрицы равен 0, а по D3 он противоположен определителю исходной матрицы.

Некоторые свойства определителей (4)

D5

Если два столбца матрицы пропорциональны, то ее определитель равен 0.

Доказательство. Если два столбца пропорциональны, один из них получается из другого умножением на некоторый множитель $\alpha \in F$. Вынесем α за знак определителя по аксиоме ΔII . Под знаком определителя получится матрица с двумя равными столбцами, определитель которой равен 0 по свойству D4.

D6

Если к элементам одного столбца матрицы прибавить соответствующие элементы другого столбца, умноженные на какой-то элемент поля, то ее определитель не изменится.

Доказательство. Пусть
$$A = \begin{pmatrix} A_1 \dots A_i \dots A_j \dots A_n \end{pmatrix}$$
. Хотим доказать, что $\det \begin{pmatrix} A_1 \dots A_i \dots A_j \dots A_n \end{pmatrix} = \det \begin{pmatrix} A_1 \dots A_i + \lambda A_j \dots A_j \dots A_n \end{pmatrix}$. Имеем
$$\det \begin{pmatrix} A_1 \dots A_i + \lambda A_j \dots A_j \dots A_n \end{pmatrix} \stackrel{\Delta \text{II}}{=} \det \begin{pmatrix} A_1 \dots A_i \dots A_j \dots A_n \end{pmatrix} + \det \begin{pmatrix} A_1 \dots \lambda A_j \dots A_j \dots A_n \end{pmatrix} = \stackrel{D5}{=} \det \begin{pmatrix} A_1 \dots A_i \dots A_j \dots A_n \end{pmatrix}$$
. \square

Важные замечания

Замечание 1

Доказательства свойств D1–D6 использовали только аксиомы ΔI и ΔII . Поэтому эти свойства выполняются для *любого* кососимметричного полилинейного отображения из $M_n(F)$ в F.

Замечание 2

Свойства D3 и D6 показывают, как ведет себя определитель (и более общо, любое кососимметричное полилинейное отображение из $M_n(F)$ в F) при элементарных преобразованиях I-го и II-го родов над $\mathit{столбцами}$. А именно, при каждом преобразовании I-го рода определитель меняет знак, а преобразования II-го рода не изменяют определитель. Поэтому, если матрица B получается из матрицы A применением некоторой последовательности элементарных преобразований I-го и II-го родов над столбцами, то для любого кососимметричного полилинейного отображения $D\colon M_n(F)\to F$ (в частности, для определителя) $D(A)=\pm D(B)$, причем знак зависит только от четности числа проделанных преобразований I-го рода.

Определитель верхнетреугольной матрицы

Предложение

Определитель верхнетреугольной матрицы равен произведению ее диагональных элементов.

Доказательство. Пусть
$$A=\begin{pmatrix} a_{11}\ a_{12}\ a_{13}\ \dots\ a_{1n} \\ 0\ a_{22}\ a_{23}\ \dots\ a_{2n} \\ 0\ 0\ a_{33}\ \dots\ a_{3n} \\ \vdots\ \vdots\ \vdots\ \ddots\ \vdots \\ 0\ 0\ 0\ \dots\ a_{nn} \end{pmatrix}.$$

Хотим доказать, что $\det A = a_{11}a_{22}a_{33}\cdots a_{nn}$ (*).

Если $a_{11}=0$, то $\det A=0$ по свойству D1. Но и $a_{11}a_{22}a_{33}\cdots a_{nn}=0$, т.е. равенство (\star) в этом случае выполняется.

Если $a_{11}\neq 0$, то прибавим ко 2-му столбцу 1-й, умноженный на $-\frac{a_{12}}{a_{11}}$, к 3-му столбцу - 1-й, умноженный на $-\frac{a_{13}}{a_{11}}$, . . . , к n-му столбцу - 1-й, умноженный на $-\frac{a_{1n}}{a_{11}}$. По D6 определитель от этого не изменится.

Определитель верхнетреугольной матрицы (2)

Итак,
$$\det A = \det A'$$
, где $A' = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$

Если $a_{22}=0$, то $\det A'=0$ по свойству D1. Но и $a_{11}a_{22}a_{33}\cdots a_{nn}=0$, т.е. равенство (\star) и в этом случае выполняется.

Если $a_{22} \neq 0$, то аналогичными преобразованиями обнулим элементы 2-й строки справа от a_{22} , не изменяя определитель.

Получим
$$\det A = \det A''$$
, где $A'' = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$

Определитель верхнетреугольной матрицы (3)

Повторяя те же аргументы, заключаем, что либо среди диагональных элементов матрицы A есть 0, и тогда $\det A=0=a_{11}a_{22}a_{33}\cdots a_{nn}$, либо все диагональные элементы отличны от 0, и тогда $\det A=$

$$= \det \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix} \stackrel{\Delta II}{=} a_{11} a_{22} a_{33} \cdots a_{nn} \det \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \stackrel{\Delta III}{=} a_{11} a_{22} a_{33} \cdots a_{nn} \det \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Замечание

Аксиома $\Delta {
m III}$ использована только на заключительном шаге. Поэтому для любого кососимметричного полилинейного отображения $D\colon M_n(F) o F$ и любой верхнетреугольной матрицы

$$A = \begin{pmatrix} a_{11} \ a_{12} \dots \ a_{1n} \\ 0 \ a_{22} \dots \ a_{2n} \\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ \dots \ a_{nn} \end{pmatrix} \text{ имеем } D(A) = a_{11}a_{22} \cdots a_{nn}D(E) = \det A \cdot D(E).$$

Теорема единственности

Теорема

Для каждого натурального n существует не более одного отображения $\det\colon M_n(F) \to F$, удовлетворяющего аксиомам $\Delta \mathrm{I-}\Delta \mathrm{III}.$

Доказательство. Пусть отображения $\det_1\colon M_n(F)\to F$ и $\det_2\colon M_n(F)\to F$ удовлетворяют аксиомам $\Delta \mathrm{I-}\Delta \mathrm{III}$. Докажем, что для

любой матрицы
$$A=\begin{pmatrix} a_{11}&a_{12}&\dots&a_{1\,n-1}&a_{1n}\\a_{21}&a_{22}&\dots&a_{2\,n-1}&a_{2n}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\a_{n-1\,1}\,a_{n-1\,2}&\dots&a_{n\,1-1}\,a_{n-1\,n}\\a_{n1}&a_{n2}&\dots&a_{n\,n-1}&a_{nn} \end{pmatrix}$$
 верно равенство

 $\det_1 A = \det_2 A.$

Элементарными преобразованиями І-го и ІІ-го родов над столбцами приведем матрицу A к верхнетреугольной матрице

$$B = egin{pmatrix} b_{11} & b_{12} & b_{13} \dots & b_{1n} \\ 0 & b_{22} & b_{23} \dots & b_{2n} \\ 0 & 0 & b_{33} \dots & b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & b_{nn} \end{pmatrix}$$
 . Подсказка: начинаем с правого нижнего угла.

Теорема единственности (2)

Тогда $\det_1 A = \pm \det_1 B = \pm b_{11}b_{22}\cdots b_{nn}$ и $\det_2 A = \pm \det_2 B = \pm b_{11}b_{22}\cdots b_{nn}$, причем знаки совпадают, так как знак зависит только от четности числа проделанных преобразований І-го рода. Отсюда $\det_1 A = \det_2 A$.

Из доказательства теоремы единственности и замечания о значении кососимметричного полилинейного отображения от верхнетреугольной матрицы получаем важное следствие:

Следствие

Для любого кососимметричного полилинейного отображения $D\colon M_n(F) \to F$ и любой матрицы A верно равенство $D(A) = \det A \cdot D(E)$.

Доказательство. Приведя матрицу A к верхнетреугольной матрице B, получим $D(A)=\pm D(B)=\pm \det B\cdot D(E)=\det A\cdot D(E).$

Отметим еще, что доказательство теоремы единственности указывает практический путь к вычислений определителей (по существу – снова метод Гаусса).

Теорема существования

Все предшествующие результаты были условными — строго говоря, их следовало бы формулировать как импликации «Если определитель существует, то \dots ». Докажем, что определитель существует.

Теорема

Для каждого натурального n существует отображение $D_n\colon M_n(F)\to F$, удовлетворяющее аксиомам $\Delta \mathrm{I-}\Delta \mathrm{III}$.

Доказательство. Индукция по n.

База индукции. При n=1 положим $D_1(a):=a$. Справедливость аксиом $\Delta \Pi$ и $\Delta \Pi$ очевидна, а аксиома $\Delta \Pi$ тривиализируется.

Шаг индукции. Пусть n>1 и пусть

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1\,n-1} & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2\,n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1\,1} \, a_{n-1\,2} & \dots & a_{n-1\,n-1} \, a_{n-1\,n} \\ a_{n1} & a_{n2} & \dots & a_{n\,n-1} & a_{nn} \end{pmatrix} - \text{произвольная } n \times n\text{-матрица}.$$

Теорема существования (2)

Зафиксируем какое-то число $i,\ 1\leq i\leq n$, и для каждого $j=1,2,\dots,n$ рассмотрим $(n-1)\times (n-1)$ -матрицу, которая получается если вычеркнуть i-ю строку и j-й столбец из матрицы A:

$$\begin{pmatrix} a_{11} & \dots & a_{1\,j-1} & a_{1\,j} & a_{1\,j+1} & \dots & a_{1\,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1\,1} & \dots & a_{i-1\,j-1} & a_{i-1\,j} & a_{i-1\,j+1} & \dots & a_{i-1\,n} \\ a_{i1} & \dots & a_{i\,j-1} & a_{i\,j} & a_{i\,j+1} & \dots & a_{in} \\ a_{i+1\,1} & \dots & a_{i+1\,j-1} & a_{i+1\,j} & a_{i+1\,j+1} & \dots & a_{i+1\,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{n\,j-1} & a_{n\,j} & a_{n\,j+1} & \dots & a_{nn} \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} a_{11} & \dots & a_{1\,j-1} & a_{1\,j+1} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i-1\,1} & \dots & a_{i-1\,j-1} & a_{i-1\,j+1} & \dots & a_{i-1\,n} \\ a_{i+1\,1} & \dots & a_{i+1\,j-1} & a_{i+1\,j+1} & \dots & a_{i+1\,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{n\,j-1} & a_{n\,j+1} & \dots & a_{nn} \end{pmatrix}$$

Теорема существования (3)

По предположению индукции отображение $D_{n-1}\colon M_{n-1}(F) o F$, удовлетворяющее аксиомам $\Delta \mathrm{I-}\Delta \mathrm{III}$, существует.

В частности, у каждой из n получившихся $(n-1) \times (n-1)$ -матриц есть определитель. Положим

$$M_{ij} := \det \begin{pmatrix} a_{11} & \dots & a_{1\,j-1} & a_{1\,j+1} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1\,1} & \dots & a_{i-1\,j-1} & a_{i-1\,j+1} & \dots & a_{i-1\,n} \\ a_{i+1\,1} & \dots & a_{i+1\,j-1} & a_{i+1\,j+1} & \dots & a_{i+1\,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{n\,j-1} & a_{n\,j+1} & \dots & a_{nn} \end{pmatrix}$$

и назовем $A_{ij}:=(-1)^{i+j}M_{ij}$ алгебраическим дополнением элемента a_{ij} . Теперь положим $D_n(A):=a_{i1}A_{i1}+\cdots+a_{ij}A_{ij}+\cdots+a_{in}A_{in}$, т.е. $D_n(A)$ есть сумма произведений элементов i-й строки матрицы A на их алгебраические дополнения. Проверим, что так определенное отображение удовлетворяет аксиомам ΔI - ΔIII .

Теорема существования (4)

Начнем с $\Delta \text{III.}$ Если A есть единичная $n \times n$ -матрица, то $a_{ij} = 0$ при всех $i \neq j$ и $a_{ii} = 1$. Поэтому сумма $a_{i1}A_{i1} + \cdots + a_{ij}A_{ij} + \cdots + a_{in}A_{in}$ сводится к одному слагаемому $A_{ii} = (-1)^{i+i}M_{ii} = M_{ii}$. По определению M_{ii} есть определитель $(n-1) \times (n-1)$ -матрицы, полученной при вычеркивании из единичной $n \times n$ -матрицы i-й строки и i-го столбца:

$$\begin{pmatrix} 1 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 1 \end{pmatrix}$$

Понятно, что при вычеркивании получится единичная (n-1) imes (n-1)-матрица, определитель которой равен 1. Итак, $M_{ii}=1$, и мы доказали, что $D_n(E)=1$.

Теорема существования (5)

Проверим ΔI . Пусть в матрице A равны j-й и (j+1)-й столбцы:

$$\begin{pmatrix} a_{11} & \dots & a_{1j} & a_{1j+1} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & \dots & a_{i-1\,j} & a_{i-1\,j+1} & \dots & a_{i-1\,n} \\ a_{i1} & \dots & a_{ij} & a_{ij+1} & \dots & a_{in} \\ a_{i+1\,1} & \dots & a_{i+1\,j} & a_{i+1\,j+1} & \dots & a_{i+1\,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nj} & a_{n\,j+1} & \dots & a_{nn} \end{pmatrix}, \ a_{kj} = a_{k\,j+1} \text{ при всех } k = 1, 2, \dots, n.$$

В сумме $a_{i1}A_{i1} + \cdots + a_{ij}A_{ij} + a_{ij+1}A_{ij+1} + \cdots + a_{in}A_{in}$ все слагаемые, кроме j-го и (j+1)-го, равны 0, так как $M_{i\ell}$ при $\ell \neq j, j+1$ – это определитель $(n-1) \times (n-1)$ -матрицы с двумя соседними равными столбцами.

Итак, $D_n(A) = a_{ij}A_{ij} + a_{ij+1}A_{ij+1}$. По условию $a_{ij} = a_{ij+1}$, кроме того, $M_{ij} = M_{ij+1}$, так как при вычеркивании i-й строки и j-го или (j+1)-го столбцов получается одна и та же матрица. Поэтому

$$A_{i\,j+1} = (-1)^{i+j+1} M_{i\,j+1} = -(-1)^{i+j} M_{i\,j+1} = -(-1)^{i+j} M_{ij} = -A_{ij}$$

и слагаемые $a_{ij}A_{ij}$ и $a_{i\,j+1}A_{i\,j+1}$ уничтожаются. Отсюда $D_n(A)=0$, и мы доказали, что аксиома ΔI выполняется.

Теорема существования (6)

Наконец, проверим ΔII . Пусть j-й столбец матрицы A представлен в виде

наконец, проверим
$$\Delta\Pi$$
. Пусть j -и столоец матрицы A представлен в виде $\begin{pmatrix} a_{11} \dots a'_{1j} + a''_{1j} \dots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{i1} \dots a'_{ij} + a''_{ij} \dots a_{in} \\ \vdots & \ddots & \vdots \\ a_{n1} \dots a'_{nj} + a''_{nj} \dots a_{nn} \end{pmatrix}$. Рассмотрим матрицы

A' и A'', у которых элементы j-го столбца суть a'_{kj} и соответственно a''_{kj} , $k=1,2,\ldots,n$, а остальные столбцы те же, что у A.

В сумме $a_{i1}A_{i1}+\cdots+a_{ij}A_{ij}+\cdots+a_{in}A_{in}$ каждое слагаемое $a_{i\ell}A_{i\ell}$ при $\ell \neq j$ можно, применяя к определителю $M_{i\ell}$ аксиому $\Delta \Pi$, представить как $a_{i\ell}A'_{i\ell} + a_{i\ell}A''_{i\ell}$. Слагаемое $a_{ij}A_{ij}$ есть $(a'_{ij} + a''_{ij})A_{ij} = a'_{ij}A'_{ij} + a''_{ij}A''_{ij}$, поскольку $M_{ij} = M'_{ij} = M''_{ij}$ – ведь при вычеркивании i-й строки и j-го столбца из матриц A, A' и A'' получается одна и та же матрица. Получаем, что

$$D_n(A) = a_{i1}A_{i1} + \dots + a_{ij}A_{ij} + \dots + a_{in}A_{in} =$$

$$= (a_{i1}A'_{i1} + a_{i1}A''_{i1}) + \dots + (a'_{ij}A'_{ij} + a''_{ij}A''_{ij}) + \dots + (a_{in}A'_{in} + a_{in}A''_{in}) =$$

$$= (a_{i1}A'_{i1} + \dots + a'_{ij}A'_{ij} + \dots + a_{in}A'_{in}) + (a_{i1}A''_{i1} + \dots + a''_{ij}A''_{ij} + \dots + a_{in}A''_{in}) =$$

$$= D_n(A') + D_n(A'').$$

Теорема существования (7)

Мы проверили первую часть ΔII . Понятно, что вторая часть проверяется вполне аналогично (и менее громоздко).

В конструкции из доказательства теоремы существования использовалась некоторая фиксированная, но произвольная строка.

В силу теоремы единственности не важно, какую строку брать, – все выражения вида $a_{i1}A_{i1}+\cdots+a_{ij}A_{ij}+\cdots+a_{in}A_{in}$ дадут один и тот же результат при любом i. (Отметим, что априори это далеко не очевидно).

Итак, определитель матрицы равен сумме произведений элементов любой ее строки на их алгебраические дополнения (разложение по строке).