A few important PDEs

 $constant \ coefficients = 1$

(one of several possible examples of) $variable\ coefficients = c(\mathbf{x})$

Poisson's equation:

$$\nabla^2 u = f$$

$$\nabla \cdot (c\nabla u) = f$$

example: f = charge density,

11.y,

u = -electric potential

 $c = \text{permittivity } \epsilon$

example: f = heat source/sink rate u = steady-state temperature

c =thermal conductivity

example: f = solute source/sink rate,

c = diffusion coefficient

u = steady-state concentration

example: $f \sim$ force on stretched string/drum u = steady-state displacement

 $c \sim$ "springy-ness"

Laplace's equation:

$$\nabla^2 u = 0$$

$$\nabla \cdot (c \nabla u) = 0$$

examples: as for Poisson, but no sources

Heat/diffusion equation:

$$\frac{\partial u}{\partial t} = \nabla^2 u$$

 $\frac{\partial u}{\partial t} = \nabla \cdot \left(c \nabla u \right)$

examples: u =temperature

u =solute concentration

c = thermal conductivity c = diffusion coefficient

Scalar wave equation:

$$\frac{\partial^2 u}{\partial t^2} = \nabla^2 u$$

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (c \nabla u)$$

examples: u = displacement of stretched string/drumu = density of gas/fluid

 $c^2 = 1$ / wave speed

+ many, many others...

Maxwell (electromagnetism)

Schrödinger (quantum mechanics)

Navier-Stokes / Stokes / Euler (fluids)

Black-Scholes (options pricing)

Lamé–Navier (linear elastic solids)

beam equation (bending thin solid strips)

advection-diffusion (diffusion in flows)

reaction-diffusion (diffusion+chemistry)

minimal-surface equation (soap films)

nonlinear wave equation (e.g. solitary ocean waves)

18.303

linear algebra w/ functions & derivatives

unknowns:	vector space of column vectors \mathbf{x} (or $\overline{\mathbf{x}}$) in \mathbb{R}^n (or \mathbb{C}^n), or possibly \mathbf{x} (t) [time-dependent] vector space: we can add, subtract, & multiply by constants without leaving the space	vector space of real-valued (or complex) functions $u(\mathbf{x})$ [for \mathbf{x} in some domain Ω], or possibly $u(\mathbf{x},t)$ [time-dependent], possibly restricted by some boundary conditions at the boundary $\partial\Omega$ [e.g. $u(\mathbf{x}) = 0$ on $\partial\Omega$]
linear operators:	matrices A $\begin{array}{c} \text{linearity:} \\ A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y} \\ \hat{A}(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \hat{A} \mathbf{u} + \beta \hat{A} \mathbf{v} \end{array}$	possibly with vector-valued $\mathbf{u}(\mathbf{x})$ [vector fields] linear operators on functions \hat{A} , [$\hat{A}u = function$] using partial derivatives. examples: $\hat{A}_1 u = \nabla^2 u$ [Laplacian operator] $\hat{A}_2 u = 3u$ [mult. by constant] $\hat{A}_3 u _{\mathbf{x}} = a(\mathbf{x}) u(\mathbf{x})$ [mult. by function]
dot product and transpose:	$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^* \mathbf{y} = \Sigma_i x_i y_i \qquad \text{complex } \mathbf{x}:$ $\mathbf{x} \cdot A \mathbf{y} = \mathbf{x}^* A \mathbf{y} = (A \mathbf{x})^* \mathbf{y} \qquad \mathbf{x}^T \to \mathbf{x}^T = \mathbf{x}^* \qquad \left(\frac{\partial}{\partial x}\right)^* = ???$ $\Leftrightarrow (A)^*_{ij} = \overline{A_{ji}} [\text{conjugate & swap rows/cols}]$	$\hat{A} = 4\hat{A}_1 + \hat{A}_2 + 7\hat{A}_3$ [linear comb. of ops.]
basis:	set of vectors \mathbf{b}_i with span = whole space \Leftrightarrow any $\mathbf{x} = \sum_i c_i \mathbf{b}_i$ for some coefficients c_i if orthonormal basis, then $c_i = \mathbf{b}_i^* \mathbf{x}$	∞ set of functions $b_i(\mathbf{x})$ with span = whole space \Rightarrow any $u(\mathbf{x}) = \Sigma_i \ c_i \ b_i(\mathbf{x})$ for some coefficients c_i if <i>orthonormal basis</i> , then $c_i = \langle b_i, u \rangle$
linear equations:	solve $A\mathbf{x} = \mathbf{b}$ for \mathbf{x}	solve $\hat{A}u = f$ for $u(\mathbf{x})$
existence & uniqueness:	$A\mathbf{x} = \mathbf{b}$ solvable if \mathbf{b} in column space of A . Solution unique if null space of $A = \{0\}$, or equivalently if eigenvalues of A are $\neq 0$.	$\hat{A}u = f$ solvable if $f(\mathbf{x})$ in col. space (<i>image</i>) of \hat{A} . Solution unique if null space (<i>kernel</i>) of $\hat{A} = \{0\}$, or equivalently if eigenvalues of \hat{A} are $\neq 0$.
eigenvalues/vectors:	solve $A\mathbf{x} = \lambda \mathbf{x}$ for \mathbf{x} and λ . For this \mathbf{x} , A acts just like a number (λ) . [e.g. $A^n\mathbf{x} = \lambda^n\mathbf{x}$, $e^A\mathbf{x} = e^\lambda\mathbf{x}$.]	solve $\hat{A}u = \lambda u$ for $u(\mathbf{x})$ [eigenfunction] and λ . For this u , \hat{A} acts just like a number (λ) . [e.g. $\hat{A}^n u = \lambda^n u$, $e^{\hat{A}}u = e^{\lambda}u$.] $\frac{\partial^2}{\partial x^2} \sin(kx) = (-k^2)\sin(kx)$
time-evolution initial-value problem:	solve $d\mathbf{x}/dt = A\mathbf{x}$ for $\mathbf{x}(0) = \mathbf{b}$ [system of $ODEs$] $\Rightarrow \mathbf{x} = e^{At} \mathbf{b}$ [if A constant] expand \mathbf{b} in eigenvectors, mult. each by $e^{\lambda t}$	solve $\partial u/\partial t = \hat{A}u$ for $u(\mathbf{x},0)=f(\mathbf{x})$ $\Rightarrow u(\mathbf{x},t) = e^{\hat{A}t} f(\mathbf{x})$ [if \hat{A} constant] expand f in eigenfunctions, mult. each by $e^{\lambda t}$
real-symmetric or Hermitian:	$A = A^*$ \Rightarrow real λ , orthogonal eigenvectors, diagonalizable	$\hat{A} = \hat{A}^*$ [??????] \Rightarrow real λ , orthogonal eigenvectors (???) diagonalizable (???)
positive definite / semi-definite:	$A = A^*, \mathbf{x}^* A \mathbf{x} > 0$ for any $\mathbf{x} \neq 0$ / $\mathbf{x}^* A \mathbf{x} \geq 0$ \Rightarrow real $\lambda > 0 / \geq 0$, $A = B^* B$ for some B important fact: $-\nabla^2$ is symmetric positive de	$\hat{A} = \hat{A}^*, \langle u, \hat{A}u \rangle > 0 / \ge 0 \text{ for } u \ne 0 (???)$ $\Leftrightarrow \text{ real } \lambda > 0 / \ge 0, \hat{A} = \hat{B}^* \hat{B} \text{ for some } \hat{B} (???)$ Similar or semi-definite!
inverses:	$A^{-1} A = A A^{-1} = 1$ [if it exists] $\left(\frac{\partial}{\partial x}\right)^{-1} = ???$ $\Rightarrow A\mathbf{x} = \mathbf{b}$ solved by $\mathbf{x} = A^{-1}\mathbf{b}$ some kind of integral?	$\hat{A}^{-1} = ???????$ $\Rightarrow \hat{A}u = f \text{ solved by } f = \hat{A}^{-1}u ???$ [delta functions & Green's functions]
(real) orthogonal or unitary:	$A^{-1} = A^* \Leftrightarrow (A\mathbf{x}) \cdot (A\mathbf{x}) = \mathbf{x} \cdot \mathbf{x}$ for any \mathbf{x} $\Rightarrow \lambda = 1$, orthogonal eigenvectors, diagonalizable	$\hat{A}^{-1} = \hat{A}^* \Leftrightarrow \langle \hat{A}u, \hat{A}u \rangle = \langle u, u \rangle$ for any $u \Rightarrow \lambda = 1$, orthogonal eigenvectors (???) diagonalizable (???)