

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

長寿命の低分子赤色発光材料を開発
—フルカラー化へ躍進—

2002年4月10日
出光興産株式会社 中央研究所
細川 地潮

出光

目次

1. はじめに
2. 最近の有機EL材料の性能
3. 新規赤色材料の性能
 - 3.0 従来の赤色材料の問題点
 - 3.1 新規赤色材料
 - 3.2 橙色材料
 - 3.3 白色材料
4. まとめ

出光

1. はじめに

3

有機EL材料の開発経緯

1985年 研究開発を開始、青色発光材料(スチリル誘導体)の発見

1987年 Kodak社 Tang博士らによる積層型素子構成の報告

1997年 青色材料の実用性能領域に到達

1999年 エリアカラー用として青色発光材料が採用

2001年 フルカラー用の青色発光材料を上市

2002年 フルカラー用の赤色発光材料を開発

2. 最近の発光材料の性能 青色

4

発光色	研究機関	効率(cd/A)	視感効率 (lm/W)	初期輝度(nit)	寿命 (hr)	色度座標X	色度座標Y
純青	バイオニア	3.9	2.2	100	1万	0.143	0.118
青	出光	4.7	3.0	200	1万	0.145	0.166
	出光	10	6.0	500	1万	0.174	0.334
	プリンストン大・ UDC・南カリフォルニア大・ 千歳科技大学(りん光)	$\phi_{ex}=5.7\%$	6.3	—	—	0.16	0.29

2. 最近の発光材料の性能 緑色～橙色

5

発光色	研究機関	効率 (cd/A)	視感効率 (lm/W)	初期輝度 (nit)	寿命(hr)	色度座標X	色度座標Y
緑	バイオニア	16	10	300	1万	0.282	0.672
	NEC	~20	—	300	1万	0.32	0.62
	九大/バイオニア	59	38	500	数百	0.30	0.635
	バイオニア(りん光)	25	—	818	3300	0.303	0.629
黄	三菱化学	7.9	3.5	1060	<2000	0.48	0.51
	出光	9.3	5.3	1000	>15000	0.459	0.518
橙	出光	11	6.9 (231)	1000	16000	0.56	0.43

SID01

2. 最近の発光材料の性能 赤色

6

発光色	研究機関	効率 (cd/A)	視感効率 (lm/W)	初期輝度(nit)	寿命 (hr)	色度座標X	色度座標Y
赤	バイオニア	2.6	1.4	250	1万	0.620	0.377
	NEC	7	—	200	1万	0.61	0.38
	出光	3.5	3.1(35)	500	1万	0.64	0.36
	三洋・コダック	2.8	1.0(560)	560	8000	0.65	0.35
	東レ	4.5	—	200	12000	0.65	0.34
	バイオニア(りん光)	3.2	1.0(135)	135	30000	0.66	0.32
	UDC(りん光)	8.2	3.3(20)	300	5000	0.65	0.34

EL98

EL00

IDW 01

IDW 01

2. 最近の発光材料の性能 白色

7

発光色	研究機関	効率 (cd/A)	視感効率 (lm/W)	初期輝度(nit)	寿命 (hr)	色度座標X	色度座標Y
白	TDK	—	4(1000)	500	>1万	0.32	0.35
	松下電工/山形大	10	10.8(10)	—	—	0.30	0.38
	COVION	~7	~4.3(100)	—	—	0.34	0.40
	出光	11	6.5(114)	1000	1万	0.31	0.34

IDW 01

3.0 従来の赤色材料の問題点

8

- (1) ホスト材料から赤色ドーパントへのエネルギー移動効率が小さい。
- (2) 高濃度にドーパントを添加すると消光する。
- (3) ドーパントのエネルギーギャップが小さいのでトラップとなる。

●女文

3.0 従来の赤色材料の問題点 9

従来の赤色材料の問題点

- (1) ホスト材料から赤色ドーパントへのエネルギー移動効率が小さい。

対策例:

三洋・コダックグループ

アシストドーピングによるエネルギー移動改善

・色純度の向上

・効率 2.8cd/A

・寿命 8000時間以上(初期輝度560 nit)

© 三洋

3.0 従来の赤色材料の問題点 10

従来の赤色材料の問題点

- (2) 高濃度にドーパント添加すると消光する。

対策例

東レグループ

立体障害性置換基をドーパントに導入

新ホストの採用

・色純度の向上

・効率 4.5 cd/A

・寿命 1万時間以上(初期輝度200 nit)

© 東レ

3.1 新規赤色材料

11

従来の赤色材料の問題点

- (1) ホスト材料から赤色ドーパントへのエネルギー移動効率が小さい。
- (2) 高濃度にドーパントを添加すると消光する。
- (3) ドーパントのエネルギーギャップが小さいのでトラップとなる。

今回、新規赤色ドーパントを開発し、高効率、長寿命の赤色発光に成功

- ・効率 3.5 cd/A
- ・視感効率 3 lm/W
- ・寿命 1万時間以上(初期輝度 500nit)

3.1 新規赤色材料

12

赤色系ドーパント P1(縮合芳香環系)

高濃度に添加することが可能

- 1.アシストドーピングなしで赤色発光
- 2.ドーパント間で電荷輸送が可能

3.1 新規赤色材料

13

出文

3.1 新規赤色材料

14

出文

3.1 新規赤色材料

15

出文

3.1 新規赤色材料

16

P1を用いた赤色EL素子の性能

Conc. wt%	Vol. V	Lumi nance nit	CIE		L/J cd/A	Lumi Eff. lm/W	EXQ %	Peak nm
			X	Y				
2.7	4.35	60	0.61	0.39	6.0	4.3	3.5	602
9.1	4.52	38	0.64	0.36	3.8	2.6	2.7	610
21	3.56	35	0.64	0.36	3.5	3.1	2.7	614
51	2.89	35	0.63	0.37	3.5	3.8	2.5	610
100	2.71	26	0.60	0.40	2.6	3.0	1.4	593

The value of current density is constant, 1mA/cm². Luminous efficiency is denoted as Lumi. Effi. External quantum efficiency is denoted as EXQ.

出文

3.1 新規赤色材料

17

DC
定電流

3.2 橙色材料

18

橙色素子

白色

色度x,y = (0.56,0.43)

高効率

L/J = 11 cd/A

長寿命

輝度半減寿命 16,000hr
(@L₀=1000nit)

3.2 橙色材料

(出文)

3.3 白色材料

2波長白色方式

$$\text{白色発光} = 102 \text{ ライトブルー} + \text{P1 橙色}$$

発光層 積層型白色

(出文)

3.3 白色材料

21

出文

3.3 白色有機EL

22

白色素子

白色

色度x,y = (0.31,0.34)

高効率

L/J = 11 cd/A

長寿命

輝度半減寿命 推定10,000hr
($L_0=1000$ nit)

出文

出光有機EL材料の開発状況

23

host	dopant	color	L/J (cd/A)	L ₀ (nit)	lifetime (hr)
IDE120	IDE102	blue	10	500	10,000
IDE120	IDE105	deep blue	4.7	200	10,000
IDE120	IDE103	yellow	9.3	1000	>15,000
IDE120	P1	orange	11	1000	>16,000
New	P1&102	white	11	1000	10,000
Alq	P1	red	3.5	500	10,000

L₀:初期輝度

☆

4.まとめ

24

(1) 新規ドーパント P1

長寿命、高効率、低電圧な赤色有機ELを実現

高濃度添加により、低電圧化する新機構

(2) 橙色発光: IDE120+P1

長寿命、高効率を実現

(3) 白色

長寿命、高効率を実現、経時の色変化なし

☆

Development of low molecular red light-emitting materials with long life time
- Breakthrough for full-colorization -

*April.10, 2002

*Idemitsu Kosan Co.,Ltd. / Central Research Laboratory

*Chishio Hosokawa

出文

Contents

2

1.Introduction

2.Performance of recent organic EL materials

3.Performance of new red materials

3.0 Problem of conventional red materials

3.1 New red materials

3.2 Orange materials

3.3 White materials

4.Summary

出文

1. Introduction

3

*Details of the development of organic EL materials

- 1985 Beginning of research and development, Discovery of blue light-emitting materials (styryl derivative)
- 1987 Report on a multiplayer device structure by Dr. Tang, Kodak
- 1997 Reaching the region of practical performance of blue materials
- 1999 Adoption of blue light-emitting materials for an area-color
- 2001 Placing on the market of blue light-emitting materials for a full-color
- 2002 Development of red light-emitting materials for a full-color

2. Performance of recent organic EL materials—Blue

4

Light-Emitting Color 発光色	Research Organization	Spectral Luminous Efficiency (lm/W)		Initial Luminance (nit)		Chromaticity coordinate X chromaticity coordinate Y	
		Efficiency (cd/A)	視感効率 (lm/W)	初期輝度(nit)	Life Time (hr)	色度座標X	色度座標Y
Pure Blue 純青	Pioneer	3.9	2.2	100	10,000	0.143	0.118
Blue 青	Idemitsu	4.7	3.0	200	10,000	0.145	0.166
Blue 青	Idemitsu	10	6.0	500	10,000	0.174	0.334
Blue 青	プリンストン大・ UDC・南カリフォルニア大・ 千歳科技大(りん光)	$\phi_{ex} = 5.7\%$	6.3	—	—	0.16	0.29

Princeton University, UDC,
University of South California,
Chitose Institute of Science and Technology,
(phosphorescence)

2. Performance of recent organic EL materials—Green to Orange

Light-Emitting Color 発光色	Research Organization 研究組織	Spectral Luminous Efficiency (lm/W) 視感効率 (lm/W)		Initial Luminance (nit) 初期輝度 (nit)		Chromaticity coordinate X 色度座標 X		chromaticity coordinate Y 色度座標 Y
		Efficiency (cd/A)	Life Time (hr)	Initial Luminance (nit)	Chromaticity coordinate X 色度座標 X	Chromaticity coordinate Y 色度座標 Y		
Green 緑	Pioneer	16	10	300	10,000	0.282	0.672	SID01 シドウ
	NEC	~20	—	300	10,000	0.32	0.62	
	Kyushu University Pioneer	59	38	500	several hundred	0.30	0.635	
	Pioneer (phosphorescence)	25	—	818	3300	0.303	0.629	
	Mitsubishi Kagaku	7.9	3.5	1060	<2000	0.48	0.51	
	Idemitsu	9.3	5.3	1000	>15000	0.459	0.518	
Yellow 黄	Idemitsu	11	6.9 (231)	1000	16000	0.56	0.43	IDW 01 イドウ
Orange オレンジ	Idemitsu	11	6.9 (231)	1000	16000	0.56	0.43	
Red 赤	Pioneer	2.6	1.4	250	10,000	0.620	0.377	
	NEC	7	—	200	10,000	0.61	0.38	
	Idemitsu	3.5	3.1(35)	500	10,000	0.64	0.36	
	Sanyo-Kodak	2.8	1.0(580)	560	8000	0.65	0.35	
	Toray	4.5	—	200	12000	0.65	0.34	
	Pioneer (phosphorescence)	3.2	1.0(135)	135	30000	0.66	0.32	
UDC (phosphorescence)	UDC (phosphorescence)	8.2	3.3(20)	300	5000	0.65	0.34	IDW 01 イドウ

2. Performance of recent organic EL materials—Red

Light-Emitting Color 発光色	Research Organization 研究組織	Spectral Luminous Efficiency (lm/W) 視感効率 (lm/W)		Initial Luminance (nit) 初期輝度 (nit)		Chromaticity coordinate X 色度座標 X		chromaticity coordinate Y 色度座標 Y
		Efficiency (cd/A)	Life Time (hr)	Initial Luminance (nit)	Chromaticity coordinate X 色度座標 X	Chromaticity coordinate Y 色度座標 Y		
Red 赤	Pioneer	2.6	1.4	250	10,000	0.620	0.377	EL98 エル98
	NEC	7	—	200	10,000	0.61	0.38	
	Idemitsu	3.5	3.1(35)	500	10,000	0.64	0.36	
	Sanyo-Kodak	2.8	1.0(580)	560	8000	0.65	0.35	
	Toray	4.5	—	200	12000	0.65	0.34	
	Pioneer (phosphorescence)	3.2	1.0(135)	135	30000	0.66	0.32	
	UDC (phosphorescence)	8.2	3.3(20)	300	5000	0.65	0.34	

2. Performance of recent organic EL materials—White

7

Light-Emitting Color 発光色	Research Organization 組織	Spectral Luminous Efficiency (lm/W)		Initial Luminance (nit)		Chromaticity coordinate X		
		Efficiency (cd/A)	視感効率 (lm/W)	初期輝度(nit)	Life Time (hrs)	色度座標X 色度座標X	色度座標Y 色度座標Y	chromaticity coordinate Y
White	TDK	—	4(1000)	500	>10,000	0.32	0.35	
	松下電工/山形大	10	10.8(10)	—	—	0.30	0.38	IDW 01
	COVION	~7	~4.3 (100)	—	—	0.34	0.40	
	Idemitsu	11	6.5(114)	1000	10,000	0.31	0.34	

Matsushita Electric Works
 Yamagata University

3.0 Problem of conventional red materials

8

- 1) Energy transfer efficiency from a host material to red dopant is small.
- 2) Light fades when dopant is added in high concentrations.
- 3) Energy gap of dopant is small, so trap is generated.

出文

3.0 Problem of conventional red materials 9

Problem of conventional red materials

- 1) Energy transfer efficiency from a host material to red dopant is small.

*Example of countermeasures

SANYO-Kodak Group

Improves energy transfer by assist doping

- Enhancement of color purity
- Luminous efficiency 2.8 cd/A
- Life time more than 8000 hours (initial luminance 560 nit)

3.0 Problem of conventional red materials 10

Problem of conventional red materials

- 2) Light fades when dopant is added in high concentrations.

*Example of countermeasures

Toray Group

Introduces steric constraint substituent to dopant

Adoption of new host

- Enhancement of color purity
- Luminous efficiency 4.5 cd/A
- Life time more than 10 thousand hours (initial luminance 200 nit)

3.1 New red materials

11

Problem of conventional red materials

- 1) Energy transfer efficiency from a host material to red dopant is small.
- 2) Light fades when dopant is added in high concentrations.
- 3) Energy gap of dopant is small, so trap is generated.

- * This time, success in red light emission having high efficiency and long life time by developing new red dopant
- Luminous efficiency 3.5 cd/A
 - Spectral luminous efficiency 3 lm/W
 - Life time more than 10 thousand hours (initial luminance 500 nit)

3.1 New red materials

12

Red dopant P1 (condensed aromatic ring system)

Adding in high concentrations is possible.

1. Red light emission without assist doping is possible.
2. Electric charge transportation among dopant is possible.

3.1 New red materials

13

New mechanism in P1 system Conventional system (Alq:DCM)

3.1 New red materials

14

3-7

Concentration quenching is controlled.

Lowerization of voltage by electric charge transport among dopant

3.1 New red materials

15

© 壹文

3.1 New red materials

16

Performance of red EL device using P1

Conc.	Vol.	Lumi nance	CIE		L/J	Lumi Eff.	EXQ	Peak		
			wt%	V	nit	X	Y	cd/A	lm/W	%
2.7	4.35	60	0.61	0.39	6.0	4.3	3.5	6.02		
9.1	4.52	38	0.64	0.36	3.8	2.6	2.7	6.10		
21	3.56	35	0.64	0.36	3.5	3.1	2.7	6.14		
51	2.89	35	0.63	0.37	3.5	3.8	2.5	6.10		
100	2.71	26	0.60	0.40	2.6	3.0	1.4	5.93		

The value of current density is constant, 1mA/cm^2 . Luminous efficiency is denoted as Lumi. Effi. External quantum efficiency is denoted as EXQ.

© 壹文

3.1 New red materials

17

DC
庄電通

3.2 Orange materials

18

Orange device

White Chromaticity x,y = (0.56,0.43)

High efficiency $L/J = 11 \text{ cd/A}$

Long life time Luminance half life time 16,000hr
(@ $L_0=1000\text{nit}$)

◎ 大

3.2 Orange materials

19

(回参考)

3.3 White materials

20

2 wavelength white method

White light emission = 102 light blue + P1 Orange

Light emitting layer Laminating-type white color

Identical host layer

Blue light emission Yellow light emission

(回参考)

3.3 White materials

21

3.3 White organic EL

22

White device

White

Chromaticity x,y = (0.31,0.34)

High efficiency

$L/J = 11 \text{ cd/A}$

Long life time

Luminance half life time estimated 10,000hr
($L_0=1000 \text{ nit}$)

Status of development of organic EL materials by Idemitsu Co.,Ltd.

host	dopant	color	L/J (cd/A)	L ₀ (nit)	lifetime (hr)
IDE120	IDE102	blue	10	500	10,000
IDE120	IDE105	deep blue	4.7	200	10,000
IDE120	IDE103	yellow	9.3	1000	>15,000
IDE120	P1	orange	11	1000	>16,000
New	P1&102	white	11	1000	10,000
Alq	P1	red	3.5	500	10,000

L₀: Initial luminance

4. Summary

24

- 1) New dopant P1
 - *Realize red organic EL with long life, high efficiency, and low voltage
 - *With new mechanism, reduce voltage by being added in high concentrations
- 2) Orange light emission: IDE120+P1
 - *Realize of long life and high efficiency
- 3) White
 - *Realize of long life time and high efficiency, no change in color with time