$1 \quad Integral rechnung \ {}_{\bf \underline{8492}}$

1.1 Integrationsmethoden $_{S495ff}$

Linearität	$\int f(\alpha x + \beta) dx = \frac{1}{\alpha} \cdot F(\alpha x + \beta) + C$		
Partielle Integration	$\int_{a}^{b} u'(x) \cdot v(x) dx = \left[u(x) \cdot v(x) \right]_{a}^{b} - \int_{a}^{b} u(x) \cdot v'(x) dx$		
Weierstrass-Substitution	$t = \tan \frac{x}{2}$, $dx = \frac{2dt}{1+t^2}$ $\sin x = \frac{2t}{1+t^2}$ $\cos x = \frac{1-t^2}{1+t^2}$ $\int R(\sin(x), \cos(x)) dx$		
Allgemeine Substitution	$\int_{a}^{b} f(x)dx = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(t)) \cdot g'(t)dt \qquad t = g^{-1}(x) \qquad \boxed{\mathbf{x} = \mathbf{g}(\mathbf{t})} \Leftrightarrow^{d(\dots)} dx = g'(t) \cdot dt$		
Logarithmische Integration	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C \qquad (f(x) \neq 1) \qquad y'(x) \cdot dx = dy \to \text{allg. gültig}$		
Potenzregel	$\int f'(x) \cdot (f(x))^{\alpha} dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + C \qquad (\alpha \neq -1)$		
Differentiation	$\int_{a}^{b} f'(t)dt = f(b) - f(a) \qquad \frac{d}{dx} \int_{1}^{x} f(t)dt = f(x)$		
Mittelwerte	linear: $\frac{1}{b-a} \int_{a}^{b} f(x)dx$ quadratisch: $\sqrt{\frac{1}{b-a} \int_{a}^{b} f(x) ^{2} dx}$		

$1.1.1 \quad \hbox{Einige unbestimmte Integrale $\underline{\sf S1081ff}$}$

$1. \int \mathrm{d}x = x + C$	22. $\int \frac{dx}{\sqrt{h^2 - a^2 y^2}} = \frac{1}{a} \arcsin \frac{a}{b} x + C, a \neq 0, b \neq 0, a^2 x^2 < b^2$
2. $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, x \in \mathbb{R}^+, \alpha \in \mathbb{R} \setminus \{-1\}$	23. Die Integrale $\left(\frac{dx}{X}, \int \sqrt{X} dx, \int \frac{dx}{\sqrt{X}} mit \ X = ax^2 + 2bx + c, \ a \neq 0 \right)$ werden durch die
$3. \int_{-\pi}^{1} \mathrm{d}x = \ln x + C, x \neq 0$	Umformung $X = a\left(x + \frac{b}{a}\right)^2 + \left(c - \frac{b^2}{a}\right)$ und die Substitution $t = x + \frac{b}{a}$ in die Integrale 15. bis 22. transformiert.
$4. \int e^x dx = e^x + C$	15. bis 22. transformiert.
5. $\int a^x dx = \frac{a^x}{\ln a} + C$, $a \in \mathbb{R}^+ \setminus \{1\}$	24. $\int \frac{x dx}{X} = \frac{1}{2a} \ln X - \frac{b}{a} \int \frac{dx}{X}, a \neq 0, X = ax^2 + 2bx + c$
$6. \int \sin x \mathrm{d}x = -\cos x + C$	25. $\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \cdot \sin 2ax + C, a \neq 0$
$7. \int \cos x \mathrm{d}x = \sin x + C$	
$8. \int \frac{\mathrm{d}x}{\sin^2 x} = -\cot x + C, x \neq k\pi \text{ mit } k \in \mathbb{Z}$	26. $\int \cos^2 ax dx = \frac{x}{2} + \frac{1}{4a} \cdot \sin 2ax + C, a \neq 0$
9. $\int \frac{\mathrm{d}x}{\cos^2 x} = \tan x + C, x \neq \frac{\pi}{2} + k\pi \text{ mit } k \in \mathbb{Z}$	$27. \int \sin^n ax dx = -\frac{\sin^{n-1} ax \cdot \cos ax}{na} + \frac{n-1}{n} \int \sin^{n-2} ax dx, n \in \mathbb{N}, a \neq 0$
$10. \int \sinh x \mathrm{d}x = \cosh x + C$	28. $\int \cos^n ax dx = \frac{\cos^{n-1} ax \cdot \sin ax}{na} + \frac{n-1}{n} \int \cos^{n-2} ax dx, n \in \mathbb{N}, a \neq 0$
11. $\int \cosh x \mathrm{d}x = \sinh x + C$	29. $ \left \frac{\mathrm{d}x}{\sin ax} = \frac{1}{a} \ln \left \tan \frac{ax}{2} \right + C, a \neq 0, x \neq k \frac{\pi}{a} \text{ mit } k \in \mathbb{Z} \right $
$12. \int \frac{\mathrm{d}x}{\sinh^2 x} = -\coth x + C, x \neq 0$	
13. $\int \frac{\mathrm{d}x}{\cosh^2 x} = \tanh x + C$	30. $ \int \frac{\mathrm{d}x}{\cos ax} = \frac{1}{a} \ln \left \tan \left(\frac{ax}{2} + \frac{\pi}{4} \right) \right + C, a \neq 0, x \neq \frac{\pi}{2a} + k \frac{\pi}{a} \text{ mit } k \in \mathbb{Z} $
14. $\left(\frac{dx}{ax+b} = \frac{1}{a} \ln ax+b + C, a \neq 0, x \neq -\frac{b}{a}\right)$	31. $\int \tan ax dx = -\frac{1}{a} \ln \cos ax + C, a \neq 0, x \neq \frac{\pi}{2a} + k\frac{\pi}{a} \operatorname{mit} k \in \mathbb{Z}$
$\int \frac{dx}{a^2 x^2 + b^2} = \frac{1}{ab} \arctan \frac{a}{b} x + C, a \neq 0, b \neq 0$	32. $\int \cot ax dx = \frac{1}{a} \ln \sin ax + C, a \neq 0, x \neq k - \frac{\pi}{a} \text{mit } k \in \mathbb{Z}$
	33. $\int x^n \sin ax dx = -\frac{x^n}{a} \cos ax + \frac{n}{a} \int x^{n-1} \cos ax dx, n \in \mathbb{N}, a \neq 0$
16. $\int \frac{dx}{a^2 x^2 - b^2} = \frac{1}{2ab} \ln \left \frac{ax - b}{ax + b} \right + C, a \neq 0, b \neq 0, x \neq \frac{b}{a}, x \neq -\frac{b}{a}$	34. $\int x^n \cos ax dx = \frac{x^n}{a} \sin ax - \frac{n}{a} \int x^{n-1} \sin ax dx, n \in \mathbb{N}, a \neq 0$
17. $\int \sqrt{a^2 x^2 + b^2} dx = \frac{x}{2} \sqrt{a^2 x^2 + b^2} + \frac{b^2}{2a} \ln(ax + \sqrt{a^2 x^2 + b^2}) + C, a \neq 0, b \neq 0$	35. $\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx, n \in \mathbb{N}, a \neq 0$
$18. \int \sqrt{a^2 x^2 - b^2} \mathrm{d}x = \frac{x}{2} \sqrt{a^2 x^2 - b^2} - \frac{b^2}{2a} \ln ax + \sqrt{a^2 x^2 - b^2} + C, a \neq 0, b \neq 0, \ a^2 x^2 \geqq b^2$	$a^{a} = a^{a}$ $36. \int e^{ax} \sin bx dx = \frac{e^{ax}}{a^{2} + h^{2}} (a \sin bx - b \cos bx) + C, a \neq 0, b \neq 0$
19. $\int \sqrt{b^2 - a^2 x^2} dx = \frac{x}{2} \sqrt{b^2 - a^2 x^2} + \frac{b^2}{2a} \arcsin \frac{a}{b} x + C, a \neq 0, b \neq 0, a^2 x^2 \le b^2$	
20. $\int \frac{dx}{\sqrt{a^2x^2 + b^2}} = \frac{1}{a} \ln(ax + \sqrt{a^2x^2 + b^2}) + C, a \neq 0, b \neq 0$	37. $\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C, a \neq 0, b \neq 0$ 38. $\int \ln x dx = x(\ln x - 1) + C, x \in \mathbb{R}^+$
21. $\int \frac{\mathrm{d}x}{\sqrt{a^2x^2 - b^2}} = \frac{1}{a} \ln ax + \sqrt{a^2x^2 - b^2} + C, a \neq 0, b \neq 0 a^2x^2 > b^2$	39. $\int x^{\alpha} \cdot \ln x dx = \frac{x^{\alpha+1}}{(\alpha+1)^2} \left[(\alpha+1) \ln x - 1 \right] + C, x \in \mathbb{R}^+, \alpha \in \mathbb{R} \setminus \{-1\}$

1.2 Uneigentliche Integrales 518

Uneigentliches Integral heisst, dass entweder eine unbeschränkte Funktion integriert wird, oder eine Funktion über einen unbeschränkten Integrationsberech integriert wird.

Für unbeschränkte Funktionen:

$$I = \int\limits_a^c f(x) dx = \lim_{t \uparrow b} \int\limits_a^t f(x) dx + \lim_{t \downarrow b} \int\limits_t^c f(x) dx$$

Für die unbeschränkte Integration:

Further three dimensionalized integration:
$$I = \int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx;$$

$$I = \int_{-\infty}^{a} f(x)dx = \lim_{t \to -\infty} \int_{t}^{a} f(x)dx;$$

$$I = \int_{-\infty}^{\infty} f(x)dx = \lim_{t \to -\infty} \lim_{t \to \infty} \int_{t_{1}}^{a} f(x)dx + \int_{a}^{t_{2}} f(x)dx$$

unbeschränkte Funktion

1.2.1 Prinzip der Restfläche

Wenn $\lim_{t\to\infty} \int\limits_{-\infty}^{\infty} f(x)dx = 0$, dann konvergiert $\int\limits_{-\infty}^{\infty} f(x)dx$ und umgekehrt.

1.2.2Majorantenprinzip

Um nachzuweisen, ob eine Funktion $|f(x)| \ge 0$ absolut konvergiert, wird eine zweite Funktion $g(x) \ge |f(x)|$ (Majorante) gesucht. Konvergiert $\int\limits_a^\infty g(x)dx$, dann konvergiert auch $\int\limits_a^\infty |f(x)|dx$ und somit konvergiert auch $\int\limits_a^\infty f(x)dx$. $x\in [a,\infty[$

1.2.3 Minorantenprinzip

Um nachzuweisen, ob eine Funktion f(x) divergiert, wird eine zweite Funktion $0 \le g(x) \le f(x)$ (Minorante) gesucht. Divergiert $\int_{a}^{\infty} g(x)dx$, dann divergiert auch $\int_{a}^{\infty} f(x)dx$. $x \in [a, \infty[$

2 Anwendung der Differential- und Integralrechnung

Beschreibungungsvarianten

Funktion (explizit) Koordinatengleichung (implizit) Parameterford
$$y = f(x)$$
 $F(x,y) = 0$ $(Bronstein S.49, 147)$ $(Bronstein S.49)$ $(x(t)) = (x(t))$

Parameterform(Cartesisch)
$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \Psi(t) \\ \varphi(t) \end{pmatrix}$$
(Bronstein S.49)

Polarform x
$$r = f(\varphi)$$

 \rightarrow Ordnung immer ohne $\sqrt{}$

2.2Umrechnen diverser Systeme S49

Parameter	\Rightarrow explizit	$t = f(x); \ y = g(f(x))$
Explizit	\Rightarrow Parameter	$\left(\begin{array}{c} x(t) \\ y(t) \end{array}\right) = \left(\begin{array}{c} t \\ g(t) \end{array}\right)$
Ex- bzw. implizit	\Rightarrow Polar	Ersetze $x = r\cos(\varphi)$; $y = r\sin(\varphi)$; $x^2 + y^2 = r^2$
Polar	\Rightarrow implizit	Ersetze $r\sin(\varphi) = y$; $r\cos(\varphi) = x$; $r = \sqrt{x^2 + y^2}$
Polar	\Rightarrow Parameterform	$ \begin{pmatrix} x(\varphi) \\ y(\varphi) \end{pmatrix} = \begin{pmatrix} r(\varphi)\cos(\varphi) \\ r(\varphi)\sin(\varphi) \end{pmatrix} $
Einzelner Punkt	\Rightarrow Polar	$r = \sqrt{x^2 + y^2}; \ \varphi = \begin{cases} \arctan(\frac{y}{x}) + \pi & x < 0 \\ \arctan(\frac{y}{x}) & x > 0 \end{cases}$ $\frac{\pi}{2} \qquad x = 0; \ y > 0$ $-\frac{\pi}{2} \qquad x = 0; \ y < 0$ $\text{unbestimmt} \qquad x = y = 0$

2.3 $Kurvenarten_{S203ff}$

bei '+', Kurve auf linke Seite geöffnet bei '-', Kurve auf rechte Seite geöffnet bei bei Polarform

Kreis_{S203} Implizit: $(x - x_0)^2 + (y - y_0)^2 = r^2$ Bemerkung: Mittelpunkt (x_0, y_0) ; Radius r

 $r = \frac{p}{1 + \epsilon \cos(\varphi)}; \epsilon = 0$ Polarform:

Parameterform: $x = x_0 + R\cos(t), y = y_0 + R\sin(t)$

 p, ϵ :

Polarform:

Implizit:

Bemerkung:

 $\begin{array}{ll} \textbf{Hyperbel_{S206}} & \textbf{Parabel_{S209}} \\ (\frac{x}{a})^2 - (\frac{y}{b})^2 = 1; -(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1 \\ \textbf{Achsenkreuz in } P(0,0) & \textbf{Parabeln mit Scheit} \\ r = \frac{p}{1 - \epsilon \cos(\varphi)}; \epsilon > 1_{(rechterHyperbelast)} & r = \frac{p}{1 - \epsilon \cos(\varphi)}; \epsilon = 1 \\ r = \frac{p}{1 + \epsilon \cos(\varphi)} \underset{(linkerHyperbelast)}{(linkerHyperbelast)} & x = \frac{t^2}{2p}, y = t \\ r = \frac{t^2}{2p}; y = t \\ r$ Polarform: Parameterform:

 $Ellipse_{S204}$

 $\frac{(x-x_0)^2}{(x-x_0)^2} + (\frac{y-y_0}{b})^2 = 1$ Mittelpunkt (x_0, y_0) ; Halbachsen a, b

 $r = \frac{p}{1+\epsilon\cos(\varphi)}; 0 < \epsilon < 1$ (rechter Brennpunkt) $x = a\cos(t), y = b\sin(t)$ um P(0,0)

 $y^2 = 2p(x - x_0)$ Parabeln mit Scheitelpunkt auf der vertikaler Achse

Kardioide/Herzk. S99

 $r = a(1 + \cos(\varphi))$

Lemniskate " ∞ " S101 $r = a\sqrt{2\cos(2\varphi)}$

Strophoide/harm. K. S96 $r = -a \frac{\cos(2\varphi)}{\cos(\varphi)}, (a > 0)$

2.4 Gleichungen, Mittelwertes 19ff, 509

Tangentengleichung Linearer Mittelwert Quadratischer Mittelwert Normalengleichung

$$y - y_0 = f'(x_0)(x - x_0) y - y_0 = -\frac{1}{f'(x_0)}(x - x_0) \bar{f} = \frac{1}{b-a} \int_a^b f(x) dx \bar{f} = \sqrt{\frac{1}{b-a} \int_a^b f(x)^2 dx}$$
$$\dot{x}_0(y - y_0) = \dot{y}_0(x - x_0)$$

2.5 Tangenten- & Normalenabschnitt, Subtangente & Subnormale S251ff

2.6 Abstandsformeln

Hessesche Normalform_{S200f. 224}

 $x \cdot \cos \varphi_0 + y \cdot \sin \varphi_0 = r_0$

Geradengleichung

 $y - y_0 = m(x - x_0)$

Abstand zum Ursprung

Berührung in n-ter Ordnung

Zwei explizit gegebene Kurven y = f(x) und y = g(x) berühren einander im Punkt P x_0, y_0 von der Ordnung n, wenn die Funktionswerte und die ersten n Ableitungen existieren und übereinstimmen.

$$f(x_0) = g(x_0); \ f'(x_0) = g'(x_0); \ f''(x_0) = g''(x_0); \ \dots; \ f^{(n)}(x_0) = g^{(n)}(x_0) \qquad f^{(n+1)}(x_0) \neq g^{(n+1)}(x_0)$$

2.8 Scheitel S256

Scheitelpunte sind Extremalwerte der Krümmungs- bzw. Krümmungsradiusfunktion. Falls bei $\kappa'(x)$ an der Stelle x_0 ein Vorzeichenwechsel besteht, existiert dort eine Extremalstelle. $\kappa'(x) = 0; \kappa''(x) \neq 0$

2.9 Wichtige Formeln_{S249ff}

Cartesisch		Parameter	Polar	
	Anstieg einer Kurve, Ableitun	ng, 2. Ableitung		
	$y' = f'(x_0)$ $y'' = f''(x_0)$	$y' = \frac{\dot{y}}{\dot{z}} y'' = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{z}^3}$	$y' = \frac{r'(\varphi)\sin(\varphi) + r(\varphi) \cdot \cos(\varphi)}{r'(\varphi)\cos(\varphi) \cdot r'(\varphi)\sin(\varphi)}$	

Bogenlänge grid

0 0 0014		
b	t_2	$arphi_2$
$s = \int \sqrt{1 + (f'(x))^2} dx$	$ s = \int \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt$	$ s = \int \sqrt{(r'(\varphi))^2 + (r(\varphi))^2} d\varphi$
$b = f \vee f + (f (\omega)) \omega \omega$	$ g = \int \int u (v) + g (v) dv$	$\int \nabla (r(\varphi)) + (r(\varphi)) \omega \varphi$
a	t_1	$arphi_1$

Krümmung ebener Kurven S253

|--|

Konvex (Linkskurve): $\kappa \geq 0$ Streng konvex: $\kappa > 0$ Wendepunkt: $\kappa = 0$ Analog für konkav

Krümmungskreisradius S253 $r = \left| \frac{1}{\kappa} \right|$

Flächeninhalt S513 um x-Achse y-Achse: Umkerhfunktion
$$f^{-1}(x)$$
 von y_0 bis y_1 integrieren
$$A = \int_a^b f(x) dx \qquad \qquad A = \frac{1}{2} \int_{t_1}^{t_2} [x(t)\dot{y}(t) - \dot{x}(t)y(t)] dt \qquad \qquad A = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} (r(\varphi))^2 d\varphi$$

Volumen S514 Symmertire! nur 1.Hälfte der Kurve integrieren (pos. Meridian)

$$V = \pi \int_{a}^{b} (f(x))^{2} dx \qquad V = \pi \left| \int_{t_{1}}^{t_{2}} (y(t))^{2} \dot{x}(t) dt \right| \qquad V = \pi \left| \int_{\varphi_{1}}^{\varphi_{2}} r^{2}(\varphi) \sin^{2} \varphi [r'(\varphi) \cos(\varphi) - r(\varphi) \sin(\varphi)] d\varphi \right|$$

Oberflächeninhalt S514 Symmertire! nur 1. Hälfte der Kurve integrieren (pos. Meridian)
$$O = 2\pi \int_{a}^{b} |f(x)| \sqrt{1 + (f'(x))^2} dx \qquad O = 2\pi \int_{t_1}^{t_2} |y(t)| \sqrt{\dot{x}^2(t) + (\dot{y}^2(t))} dt \qquad O = 2\pi \int_{\varphi_1}^{\varphi_2} |r(\varphi) \sin \varphi| \sqrt{(r'(\varphi))^2 + (r(\varphi))^2} d\varphi$$

 $\sin\varphi=$ Drehung um Polgerade $\qquad \cos y=$ Drehung um y-Achse $(f=\frac{\pi}{2})\qquad \rightarrow$ siehe Fläche Polar:

Krümmungskreismittelpunkt

$$x_c = x - \frac{\frac{dy}{dx}[1 + (\frac{dy}{dx})^2]}{\frac{d^2y}{dx^2}}$$

$$x_c = x - \frac{\dot{y}(\dot{x}^2 + \dot{y}^2)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$$

$$x_c = x - \frac{\dot{y}(\dot{x}^2 + \dot{y}^2)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$$

$$x_c = r \cdot \cos\varphi - \frac{(r^2 + r'^2)(r \cdot \cos\varphi + r' \cdot \sin\varphi)}{r^2 + 2r'^2 - r \cdot r''}$$

$$y_c = y + \frac{\dot{x}(\dot{x}^2 + \dot{y}^2)}{\frac{d^2y}{dx^2}}$$

$$y_c = y + \frac{\dot{x}(\dot{x}^2 + \dot{y}^2)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$$

$$y_c = r \cdot \sin\varphi - \frac{(r^2 + r'^2)(r \cdot \sin\varphi - r' \cdot \cos\varphi)}{r^2 + 2r'^2 - r \cdot r''}$$

2.10 Evolute

Evolute = Σ Krümmungskreiszentren $\begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \frac{1}{\kappa} \overrightarrow{n}$

Orthogonaltrajektorien

Die orthogonalen Trajektorien schneiden alle Kurven der gegebenen Kurvenschar y = f(x, c) (c bestimmen) im rechten Winkel. Die DGL F(x, y, y') der Kurve bestimmen(y') ableiten, c einsetzen, wenn möglich für f(x,c)=y), anschliessend y' durch $-\frac{1}{y'}$ ersetzen. \Rightarrow ergibt die DGL der orthogonalen Trajektorien. Die Kreise sind Orthogonaltrajektorien der Hyperbeln und umgekehrt. $\frac{r'}{r} = f(\varphi, r)$ orthogonal $\frac{r'}{r} = -\frac{1}{f(\varphi, r)}$

$$\frac{r'}{r} = f(\varphi, r)$$
 orthogonal $\frac{r'}{r} = -\frac{1}{f(\varphi, r)}$

3 Reihen_{S469, 1073}

3.1 Zahlenreihen_{S470}

 $s_n = \sum_{k=1}^n a_k$ ist eine (unendliche) Reihe. Sie ist die Folge von Partialsummen einer bestehenden Folge a_n .

3.1.1 Konvergenz, Divergenz_{S471}

Konvergiert die Reihe $\langle s_n \rangle$ gegen die Summe $s = \sum_{k=1}^{\infty} a_k$ so ist sie konvergent. Existiert der GW nicht, so ist sie divergent.

3.1.2 Konvergenzkriterien_{S462}

3.1.2.1 Cauchy-Kriterium

Wenn zu jedem $\varepsilon > 0$ ein Index n_0 existiert, so dass für alle $m > n > n_0$ gilt: $\left| \sum_{k=n}^{m} a_k \right| < \varepsilon$, dann konvergiert die Reihe, ansonsten divergiert sie.

$3.1.2.2 \quad \lim = 0$

Wenn die Reihe $\sum_{n=1}^{\infty} a_n$ konvergent ist, so ist $\lim_{n\to\infty} a_n = 0$.

Aber NICHT UMGEKEHRT!

3.1.2.3 Divergenz

Ist $< a_n >$ divergent oder ist $\lim_{n \to \infty} a_n \neq 0$, so ist die Reihe $\sum_{n=1}^{\infty} a_n$ divergent.

3.1.2.4 Majorantenkriterium_{S478}

Ist die Reihe $\sum\limits_{n=1}^{\infty}c_n$ konvergent, so konvergiert auch die Reihe $\sum\limits_{n=1}^{\infty}|a_n|$ und somit auch $\sum\limits_{n=1}^{\infty}a_n$ für $|a_n|\leq c_n$ (absolut). Dies gilt auch für $|a_n|\leq c_n$ erst ab einer Stelle $n_0\in\mathbb{N}$. $\sum\limits_{n=1}^{m}a_k\leq |\sum\limits_{n=1}^{m}a_k|\leq \sum\limits_{n=1}^{m}|a_k|\leq \sum\limits_{n=1}^{m}c_n$

3.1.2.5 Minorantenkriterium

Ist die Reihe $\sum_{n=1}^{\infty} d_n$ gegen $+\infty$ divergent, so gilt dies auch für die Reihe $\sum_{n=1}^{\infty} a_n$ bei $a_n \ge d_n$. Dies gilt auch für $a_n \ge d_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$.

Reziprokkriterium	$s = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ ist konvergent für $\alpha > 1$ und divergent für $\alpha \le 1$.			
${\bf Quotientenkriterium_{S473}}$	$\left \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = \alpha \text{ der Reihe } \sum_{\substack{n=1 \\ \infty}}^{\infty} a_n \right $ $\alpha < 1 \text{ (aboslut) konvergent}$			
$ m Wurzelkriterium_{S473}$	$\lim_{n \to \infty} \sqrt[n]{ a_n } = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n$ $\alpha = 1 \text{ keine Aussage!}$			
		$\alpha > 1$ divergent		
Integralkriterium _{S474}	$\int_{1}^{\infty} f(x)dx \text{ konvergent} \Leftrightarrow \sum_{n=1}^{\infty} f(n) \text{ konvergent.}$			
	Gilt nur, wenn f auf $[1, \infty)$ definiert und monoton fallend $(f'(x) \leq 0)$ ist.			
	Zudem muss $f(x) \ge 0$ für alle $x \in [1, \infty)$ sein.			
${\bf Leibniz\text{-}Kriterium}_{{\bf S475}}$	Die alternierende Reihe $\sum_{n=1}^{\infty} a_n$ ist konvergent, wenn die Folge $< a_n >$ eine monoton			
	fallende Nullfolge $(\lim_{n\to\infty} a_n = 0)$ ist. Monotonie mittels Verhältnis $(\left \frac{a_{n+1}}{a_n}\right)$, Differenz			
	$(a_{n+1} - a_n)$ oder vollständiger Induktion beweisen.			

3.1.2.6 Abschätzung Restglied einer alternierenden konvergenten Reihes426,430

$$|R_n| = |s - s_n| \le |a_{n+1}|$$

Bedingte und Absolute Konvergenzs₄₇₄

Eine Reihe $\sum_{n=1}^{\infty} a_n$ heisst **absolut konvergent**, wenn die Reihe $\sum_{n=1}^{\infty} |a_n|$ konvergent ist.

Bedingt Konvergent: Eine Reihe hat durch Umordnen einen anderen Grenzwert oder wird divergent (somit

nicht absolut konvergent).

Unbedingt Konvergent: Durch Umordnen ändert sich der Grenzwert nicht.

3.1.4 Produkt von absolut konvergenten Reihens475

Gegeben sei:
$$\sum a_n = a$$
, $\sum b_n = b$, $\sum c_n = (\sum a_n) \cdot (\sum b_n) = c$ so ist $c_n = \sum a_k b_{n-k+1}$ und $c = a \cdot b$

Potenzreihens₄₈₁

3.2.0.1 Definition_{S432}

Die Reihe $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ heisst Potenzreihe mit Entwicklungspunkt x_0 und Koeffizienten a_n .

Geometrische Reihe_{S19}
$$a \cdot \sum_{n=0}^{\infty} q^n = \frac{a}{1-q}$$
 $(|q| < 1)$ Beidseitiges $\int \Rightarrow a \cdot \sum_{n=1}^{\infty} \frac{q^n}{n} = -a \cdot \ln|1-q|$

Binominalreihe_{S12} $\sum_{n=0}^{\infty} \binom{\alpha}{n} x^n = (1+x)^{\alpha}$ $x \in (-1,1)$ Binominalkoeff. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

Taylor-Reihe_{S483} $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \cdot (x-x_0)^n$ Taylor-Reihe von f bezüglich der Stelle x_0

E-Funktion $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \cdots$
 $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot x^n$ für $x_0 = 0$

3.2.1Konvergenz_{S481}

Gegeben sei die Potenzreihe $\sum\limits_{n=0}^{\infty}a_nx^n$ mit $\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=a$ oder $\lim\limits_{n\to\infty}|\frac{a_{n+1}}{a_n}|=a$ Für a=0 ist die Potenzreihe für alle $x\in\mathbb{R}$ absolut konvergent.

Für a > 0 ist die Potenzreihe für alle x mit $\begin{cases} |x| < \frac{1}{a} = r \Rightarrow \text{ absolut konvergent.} \\ |x| > \frac{1}{a} = r \Rightarrow \text{ divergent.} \end{cases}$

Ist die Folge $\langle \sqrt[n]{|a_n|} \rangle$ nicht beschränkt, so ist die Potenzreihe nur für x=0 konvergent.

3.2.2 Abel's Theorem

$$\sum_{n=0}^{\infty} a_n \cdot r^n \text{ konvergent} = \lim_{x \uparrow r} f(x) \text{ (= Summe der Reihe)}$$

Konvergenzradius_{S481}

Jeder Potenzreihe kann ein Konvergenzradius r zugeordnet werden. Wobei gilt $r = \frac{1}{a}$ mit $a = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.

Für a=0 gilt $r=\infty$. Wenn a nicht exisitiert (Folge divergent) ist r=0.

Berechnung mittels Quotientenkriterium: $r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$

3.2.4 Differentiation

Alle Potenzreihen mit einem $\rho > 0$ sind für alle $x \in (-\rho, \rho)$ beliebig oft (gliedweise) differenzierbar. Der Potenzradius ρ ist bei allen Ableitungen gleich demjenigen der Ursprungsfunktion. $\rho_f = \rho_{f(i)}$.

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \qquad f'(x) = \sum_{n=1}^{\infty} n \cdot a_n x^{n-1} \qquad f''(x) = \sum_{n=2}^{\infty} n(n-1) \cdot a_n x^{n-2} \qquad f^{(i)}(x) = \sum_{n=i}^{\infty} n(n-1) \cdot \dots \cdot (n-i+1) \cdot a_n x^{n-i}$$

Bemerkung: Startwert (n=0) nur erhöhen, wenn bei x^n , n negativ werden würde!

3.2.5 Integration

3.2.5.1 Unbestimmtes Integral

$$\textstyle \int \sum_{n=0}^{\infty} a_n x^n dx = \sum_{n=0}^{\infty} a_n \int x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} \cdot x^{n+1} \qquad \text{ für alle } x \in (-\rho,\rho).$$

3.2.5.2 Bestimmtes Integral

$$\int\limits_0^x \sum\limits_{n=0}^\infty a_n t^n dt = \sum\limits_{n=0}^\infty \tfrac{a_n}{n+1} \cdot x^{n+1} \qquad \text{ für alle } x \in (-\rho,\rho).$$

3.3 einige Reihen

Funktion	Potenzreihenentwicklung	Konvergenzbereich
$(1+x)^{\alpha}$ mit $\alpha \in \mathbb{R}^1$)	$\sum_{n=0}^{\infty} {\alpha \choose n} x^n = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \cdots$	x < 1
sin x	$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - + \cdots$	$ x < \infty$
cos x	$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - + \cdots$	x < ∞
tan x	$x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \frac{62}{2835}x^9 + \cdots$	$ x < \frac{\pi}{2}$
arcsin x	$\sum_{n=0}^{\infty} (-1)^n \binom{-\frac{1}{2}}{n} \frac{x^{2n+1}}{2n+1} = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \cdots$	$ x \leq 1$
arccos x	$\frac{\pi}{2} - \sum_{n=0}^{\infty} (-1)^n \binom{-\frac{1}{2}}{n} \frac{x^{2n+1}}{2n+1} = \frac{\pi}{2} - \left(x + \frac{1}{2} \cdot \frac{x^3}{3} + \cdots\right)$	$ x \leq 1$
arctan x	$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - + \cdots$	$ x \leq 1$
e ^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$	$ x < \infty$
ln(1+x)	$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - + \cdots$	$-1 < x \le 1$
$\ln \frac{1+x}{1-x}$	$2 \cdot \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots\right)$	x < 1
sinh x	$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$	$ x < \infty$
$\cosh x$	$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$	x < ∞
arsinh x	$\sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} \frac{x^{2n+1}}{2n+1} = x - \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} - + \cdots$	x < 1
artanh x	$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} = x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots$	x < 1

⁼⁰ für alle $k \in \mathbb{N}$ ist. 1) Ist $\alpha \in \mathbb{N}_0$, so hat die Reihe nur endlich viele (nämlich $\alpha + 1$) Glieder, da dann $\begin{pmatrix} \alpha \\ \alpha + k \end{pmatrix}$

$$\sum_{n=1}^{\infty} \frac{1}{n} \to \text{ist divergen}$$

 $\sum_{n=1}^{\infty}\frac{1}{n}\to \mathrm{ist}$ divergent $\sum_{n=1}^{\infty}\frac{1}{n^2}\to \mathrm{absolut} \ \mathrm{konvergent} \ \mathrm{gegen} \ 1 \ \mathrm{(beweisen} \ \mathrm{mit} \ \mathrm{Integralkriterium)}$

Grenzwerte von Reihen

$\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$	$\lim_{n \to \infty} (\sqrt[n]{a}) = 1 \ (a > 0 \ \text{und const.})$	$\lim_{n \to \infty} (\sqrt[n]{n}) = 1$	$\lim_{n \to \infty} (\sqrt[n]{n^a}) = 1 \ (a \text{ const.})$
$\lim_{n \to \infty} (\sqrt[n]{ p(n) }) = 1 \ (p(n) \neq 0)$	$\lim_{n \to \infty} \left(\frac{K}{n!} \right) = 0 \ (K \text{ const.})$	$\lim_{n \to \infty} (\sqrt[n]{n!}) = +\infty$	$\lim_{n \to \infty} \left(\sqrt[n]{\frac{K^n}{n!}} \right) = 0 \ (K > 0 \text{ und const.})$
$\lim_{n \to \infty} \left(\frac{n}{\sqrt[n]{n!}} \right) = e$			

4 Differentialgleichungen_{S552}

4.1 Lösen von Differentialgleichungen 1.Ordnung

4.1.1 Piccard-Lindelöf

Die Funktion $f(x, u, u_1, ..., u_{n-1})$ sei in einer Umgebung der Stelle $(x_0, y_0, y_1, ..., y_{n-1}) \in \mathbf{R}^{n+1}$ stetig und besitzt dort stetige partielle Ableitungen nach $u, u_1, ..., u_{n-1}$ dann existiert in einer geeigneten Umgebung des Anfangspunktes x_0 genau eine Lösung des Anfangswertproblems

$$y^{(n)} = f(x, y, y', ..., y^{(n-1)})$$
 mit $y(x_0) = y_0, y'(x_0) = y_1, ..., y^{(n-1)}(x_0) = y_{n-1}$

 $\frac{\partial f}{\partial y}$... $\frac{\partial f}{\partial f^{(n-1)}}$ endlich beschränkt \Rightarrow eindeutige Lösbarkeit

4.1.2 Trennung von Variabeln / Separation S554

Form: y' = f(x)g(y) Vorgehen: $\frac{y'}{g(y)} = f(x)$, nun ist die DGL beidseitig nach x integrierbar (dy = y'(x)dx): $\int \frac{1}{g(y)}dy = \int f(x)dx$

4.1.3 Lineartermsubstitution/separierte Lösungs554

Form: y' = f(ax + by + c) Vorgehen: 1. Substitution: z = ax + by + c z' = a + by' = a + bf(z) $\int_{x_0}^x \frac{z'}{a + bf(z)} d\tilde{x} = \int 1 d\tilde{x} \Rightarrow \int_{z_0}^z \frac{1}{a + bf(\tilde{z})} d\tilde{z} = \int_{x_0}^x 1 d\tilde{x} \qquad [d\tilde{z} = \underbrace{(a + by')}_{z'} d\tilde{x}]$

4.1.4 Gleichgradigkeit_{S554}

Form: $y' = f(\frac{y}{x})$ Vorgehen: 1. Substitution: $z = \frac{y}{x}$ $z' = \frac{1}{x}(f(z) - z)$ y' = f(z) dz = y'(x)dx

4.1.5 Lineare Differentialgleichungen 1. Ordnung S555

Form: $y' + f(x)y = \underbrace{g(x)}_{\text{Störglied}}$ Vorgehen: $y = e^{-\int f(x)dx}(k + \int g(x)e^{\int f(x)dx}dx)$ $(k \in \mathbf{R})$

4.2 Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten S573

Form: $y'' + a_1 \cdot y' + a_0 \cdot y = f(x)$ Störglied: f(x) Homogene Differentialgleichung: f(x) = 0 Inhomogene Differentialgleichung: $f(x) \neq 0$

4.2.1 Allgemeine Lösung einer homogenen DGL: Y_I

Charakteristisches Polynom $\underline{\lambda^2 + a_1 \cdot \lambda + a_0 = 0}$ von $\underline{y'' + a_1 \cdot y' + a_0 \cdot y = 0}$ $(\lambda_{1,2} = -\frac{a_1}{2} \pm \frac{\sqrt{a_1^2 - 4a_0}}{2})$

$$\begin{array}{ll} (D>0) & \text{Falls } \lambda_1 \neq \lambda_2 \text{ und } \lambda_{1,2} \in R: \\ (D=0) & \text{Falls } \lambda_1 = \lambda_2 \text{ und } \lambda_{1,2} \in R: \\ (D<0) & \text{Falls } \lambda_{1} = \lambda_2 \text{ und } \lambda_{1,2} \in R: \\ (D<0) & \text{Falls } \lambda_{1,2} = -\frac{a_1}{2} \pm j\alpha: \\ \end{array} \qquad \begin{array}{ll} Y_H = Ae^{\lambda_1 x} + Be^{\lambda_2 x} \\ Y_H = e^{\lambda_1 x} (A + B \cdot x) \\ Y_H = e^{-\frac{1}{2}a_1 x} (A\cos(\alpha x) + B\sin(\alpha x)) \\ \end{array} \qquad \begin{array}{ll} \text{Starke D\"{a}mpfung} \\ \text{Schwache D\"{a}mpfung} \\ \text{Schwingfall} \end{array}$$

Eigenfrequenz: $\omega = \alpha = \frac{\sqrt{|a_1^2 - 4a_0|}}{2}$ Dämpfung: $|\delta| = |\lambda|$

4.2.2 Allgemeine Lösung einer inhomogenen DGL: $y = Y_H + y_P$

4.2.3 Grundlöseverfahren einer inhomogenen DGL: y_I

Homogene DGL: $g(x) = Y_H$ mit den Anfangsbedingungen $g(x_0) = 0$; $g'(x_0) = 1$. Wenn möglich $x_0 = 0$.

$$y_P(x) = \int_{x_o}^{x} g(x + x_0 - t) \cdot f(t)dt$$

4.2.4 Der Ansatz einer inh. DGL in Form des Störgliedes: y_P

$\mathbf{f}(\mathbf{x}) = \mathbf{p_n}(\mathbf{x})$	$(p_n(x) \text{ und } q_n(x) \text{ sind Polynome vom gleichen Grad})$
Fall a: $a_0 \neq 0$:	$y_P = q_n(x)$
Fall b: $a_0 = 0, a_1 \neq 0$:	$y_P = x \cdot q_n(x)$
Fall c: $a_0 = a_1 = 0$:	$y_P = x^2 \cdot q_n(x)$
a_0 und a_1 beziehen sich auf die linke Seite der DGL	
$\mathbf{f}(\mathbf{x}) = \mathbf{e}^{\mathbf{b}\mathbf{x}} \cdot \mathbf{p_n}(\mathbf{x})$	
Fall a: b nicht Nullstelle des char. Polynoms:	$y_P = e^{bx} \cdot q_n(x)$
Fall b: b einfache Nullstelle des char. Polynoms:	$y_P = e^{bx} \cdot x \cdot q_n(x)$
Fall c: b zweifache Nullstelle des char. Polynoms:	$y_P = e^{bx} \cdot x^2 \cdot q_n(x)$
$f(\mathbf{x}) = e^{\alpha \mathbf{x}} (\mathbf{p_n}(\mathbf{x}) \cos \beta \mathbf{x} + \mathbf{q_n}(\mathbf{x}) \sin \beta \mathbf{x})$	
Fall a: $\alpha + j\beta$ nicht Lösung der charakteristischen Gleichung:	$y_p = e^{\alpha x} (r_n(x) \cos \beta x + s_n(x) \sin \beta x)$

 $y_n = e^{\alpha x} \mathbf{x} (r_n(x) \cos \beta x + s_n(x) \sin \beta x)$

4.2.5 Vorgehen bei einer inh. DGL in Form des Störgliedes:

Fall b: $\alpha + j\beta$ Lösung der charakteristischen Gleichung:

- 1. Y_H mit λ_1 und λ_2 berechnen
- 2. Ordnung n anhand der r.h.s der DGL bestimmen Koeffizient b anhand der r.h.s der DGL bestimmen (Achtung kann aus mehreren Elementen bestehen z.B. $x^2e^x + x$; Superposition)
- 3. Anhand der Störglied Tabellen y_p bestimmen
- 4. $q_n = ax^n + bx^{n-1} + \dots + cx + d$
- 5. y_p ableiten und in die **l.h.s** der DGL einsetzen. $y_p'' + a_1 y_p' + a_0 y_p = f(x)$
- 6. Koeffizienten bestimmen: $x^2e^x \cdot 18a + xe^x(6a + 12b) + e^x(2b + 6c) = x^2e^x$ $18a = 1 \qquad 18a \text{ kommt 1mal in der r.h.s vor}$ $(6a + 12b) = 0 \qquad (6a + 12b) \text{ kommt 0mal vor auf der r.h.s}$ $(2b + 6c) = 0 \qquad (2b + 6c) \text{ kommt 0mal vor auf der r.h.s}$
- 7. Koeffizienten in y_p einsetzen
- 8. Wenn das Störglied f(x) aus mehreren Teilen besteht (z.B. $x^2e^x + x$), Störglied auseinander nehmen und in zwei Teile x^2e^x und x unterteilen und Schritt 3 6 wiederholen
- 9. $y = Y_H + y_{p1} + y_{p2} + \dots$

4.2.6 Superpositionsprinzip

$$f(x) = c_1 f_1(x) + c_2 f_2(x)$$

$$y_1 \text{ ist spezielle L\"osung der DGL} \qquad \qquad y_1'' + a_1 \cdot y_1' + a_0 \cdot y_1 = c_1 f_1(x)$$

$$y_2 \text{ ist spezielle L\"osung der DGL} \qquad \qquad y_2'' + a_1 \cdot y_2' + a_0 \cdot y_2 = c_2 f_2(x)$$

$$\text{dann ist:} \qquad \qquad y_P = c_1 y_1 + c_2 y_2$$

4.3 Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten S554

Form:
$$\sum_{k=0}^{n} a_k y^{(k)} = y^{(n)} + a_{n-1} \cdot y^{(n-1)} + \ldots + a_0 \cdot y = f(x)$$

4.3.1 n-verschiedene Homogene Lösungen

```
Fall a: r reelle Lösungen \lambda_1: y_1 = e^{\lambda_1 x}, \ y_2 = x e^{\lambda_1 x}, \dots, y_r = x^{r-1} e^{\lambda_1 x} Starke Dämpfung / Kriechfall Fall b: k komplexe Lösungen \lambda_2 = \alpha + j\beta: y_1 = e^{\alpha x} \cos(\beta x), \dots, \ y_k = e^{\alpha x} x^{k-1} \cos(\beta x) Schwache Dämpfung / y_{k+1} = e^{\alpha x} \sin(\beta x), \dots, \ y_{2k} = e^{\alpha x} x^{k-1} \sin(\beta x) Schwingfall Y_H = Ay_1 + By_2 + Cy_3 + \dots + Ny_n
```

Allgemeinste Lösung des partikulären Teils: 4.3.2

$$\sum_{k=0}^{n} a_k y^{(k)} = \underbrace{e^{\alpha x} (p_{m1}(x) \cos(\beta x) + q_{m2}(x) \sin(\beta x))}_{\text{Störglied}} \qquad \lambda \text{ aus Homogenlösung}$$

Unterscheide die Lösungen des charakteristischen Polynoms (λ):

mit m = max(m1, m2)

Fall a: $\alpha + j\beta \neq \lambda$, so ist

 $y_P = e^{\alpha x} (r_m(x)\cos(\beta x) + s_m(x)\sin(\beta x))$

Fall b: $\alpha + j\beta$ ist u-fache Lösung von λ , so ist

 $y_P = e^{\alpha x} x^u (r_m(x) \cos(\beta x) + s_m(x) \sin(\beta x))$

u-fache Resonanz

4.3.3 Grundlöseverfahren

$$\begin{pmatrix} g(x_0) = & 0 & = & Ay_1(x_0) + By_2(x_0) + \dots + Ny_n(x_0) \\ g'(x_0) = & 0 & = & Ay'_1(x_0) + By'_2(x_0) + \dots + Ny'_n(x_0) \\ \vdots & \vdots & \vdots & & & & \\ g^{(n-1)}(x_0) = & 1 & = & Ay_1^{(n-1)}(x_0) + By_2^{(n-1)}(x_0) + \dots + Ny_n^{(n-1)}(x_0) \end{pmatrix} \qquad \text{ergibt } c_1, \dots, c_n \text{ für } \\ y_P(x) = \int_{x_0}^x g(x + x_0 - t) f(t) dt$$

4.3.4 Anfangswertproblem

$$y(x_0) = y_0$$
 $y'(x_0) = y_1$ $y''(x_0) = y_2$... $y^{(n-1)}(x_0) = y_{n-1}$

Lineare Differentialgleichungssysteme erster Ordnung mit konstanten Koeffizienten

 $\dot{x} = ax + by + f(t) \\ \dot{y} = cx + dy + g(t) = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} f(t) \\ g(t) \end{pmatrix} \\ \ddot{x} - (a+d)\dot{x} + (ad-bc)x = \dot{f}(t) - df(t) + bg(t) \\ \hline \text{normale DGL 2.Ordnung} \rightarrow \text{nach } x \text{ auflösen} \\ y = \frac{1}{b}(\dot{x} - ax - f(t))) \\ x_0(t_0) = x_0, \dot{x}_0(t_0) = ax_0 + by_0 + f(t_0)$ Form:

Die allgem. Lösung ergibt sich aus der DGL:

Anfangsbedinung:

Anordnung beachten! Gesuchte Grösse immer zu oberst (in diesem Fall ist die gesuchte Grösse x)

Faltung S802

$$f(x) = \int_{0}^{x} f_1(x-t)f_2(t)dt$$
 Schreibweise $f = f_1 * f_2$

Formeln + Theorie aus An1E 5

5.1Differential rechnung S443

 $f'(x_0) = \frac{df}{dx}|_{x=x_0} = (\frac{d}{dx}f)_{x=x_0} = Df(x_0) = \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} = \lim_{h \to 0} \frac{\Delta f}{\Delta x} \text{ und } (f^{-1})' = \frac{1}{f' \circ f^{-1}}$ $f^{-1} \text{ ist differenzierbar wenn: } f \text{ differenzierbar und umkehrbar ist und wenn } f'(x) \neq 0 \text{ ist.}$

Rechtsseitige $f'_r(x_0)$ bzw. linksseitige $f'_l(x_0)$ Ableitung.

Falls $f'_r(x_0) = f'_l(x_0)$ und f an der Stelle x_0 stetig, dann ist f an der Stelle x_0 differenzierbar.

5.1.1 Ableitungsregeln S449

5.1.2 Einige Ableitungen $_{S445}$

$$(|x|)' = sgn(x) = \frac{|x|}{x} = \frac{x}{|x|}, x \neq 0 \qquad (\tan x)' = 1 + \tan^2 x, x \in \mathbb{R} \setminus \left\{ \frac{2k+1}{2}\pi \right\} \qquad (\cot x)' = -(1 + \cot^2 x), x \in \mathbb{R} \setminus \left\{ k\pi \right\}$$

$$(\cot x)' = \frac{1}{x} + \cot^2 x \qquad (\cot x)' = 1 - \coth^2 x$$

5.1.3 Höhere Ableitungen S451

$$(\sin x)^{(2k+1)} = (-1)^k \cos x, k \in \mathbb{N}_0$$

$$(\cos x)^{(2k-1)} = (-1)^k \cos x, k \in \mathbb{N}$$

$$(\cos x)^{(2k-1)} = (-1)^k \cos x, k \in \mathbb{N}$$

$$(\cos x)^{(2k)} = (-1)^k \sin x, k \in \mathbb{N}$$

$$(\cos x)^{(2k)} = (-1)^k \cos x, k \in \mathbb{N}$$

$$(\frac{1+x}{1-x})^{(n)} = \frac{2 \cdot n!}{(1-x)^{n+1}}$$

$$(\sqrt{x})^{(n)} = (-1)^{n+1} \cdot \frac{1 \cdot 3 \cdot \dots \cdot (2n-3)}{2^n x^{n-1} \sqrt{x}}$$

$$(\ln \frac{1+x}{1-x})^{(n)} = (-1)^{n+1} \cdot \frac{(n-1)!}{(1+x)^n} + \frac{(n-1)!}{(1-x)^n}$$

$$(x \cdot e^x)^{(n)} = n \cdot e^x + x \cdot e^x = e^x (n+x)$$

5.1.4 Tangentengleichung

$$\hat{f}(x) = \underbrace{(x - x_0) \cdot f'(x_0)}_{dy} + f(x_0) \qquad (x_0 = \text{Entwicklungspunkt})$$

5.1.5Differential, Fehlerrechnung S865

absoluter Fehler: $|\Delta y| \approx |dy| = |f'(\bar{x})| \cdot |dx| \le |f'(\bar{x})| \cdot |\delta|$ relativer Fehler: $|\Delta y| \approx \left|\frac{dy}{y}\right| = \left|\frac{f'(x)}{y}\right| \cdot |dx| \leq \left|\frac{f'(x)}{y}\right| \cdot |\delta| = \left|\frac{f'(x)}{f(x)} \cdot |\delta|$ | $\left|\frac{dx}{x}\right| = \text{relative Fehler Input}$ | $\left|\frac{dy}{y}\right| = \text{relative Fehler Output}$ | Einheit=[1] Auf n-Stellen nach dem Komma genau \Rightarrow absoluter Fehler: $\delta = \pm 0.5 \cdot 10^{-n}$

5.1.6 Mittelwertsatz S453

$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a} = f'(\xi)$$

$$\xi = a + \delta(b - a)$$

$$\frac{f(x+h) - f(x)}{h} = f'(x + \delta h)$$

$$f(x+h) = h \cdot f'f(x + \delta h) + f(x)$$

$$\xi = x + \delta h \qquad 0 < \delta < 1$$

Taylor Polynom S454,483

$$(x_0 = \text{Entwicklungspunkt}) \quad f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + \frac{f'''(x_0)}{3!}h^3 + \ldots + \frac{f^{(n)}(x_0)}{n!}h^n + R_n(x_0, h) \\ h = x - x_0 \\ R_n(\text{Lagrange}): \quad R_n(x_0, h) = \frac{f^{(n+1)}(x_0 + \delta h)}{(n+1)!}h^{n+1}, (0 < \delta < 1); \qquad \lim_{n \to \infty} R_n(x_0, h) = 0 \Longrightarrow f(x_0 + h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}h^n + R_n(x_0, h)$$

MacLaurinsche-Form (gilt für
$$x_0 = 0, h = x$$
): $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \cdot x^k + R_n$; $R_n = \frac{f^{(n+1)}(\delta x)}{(n+1)!} \cdot x^{n+1}, (0 < \delta < 1)$;

5.1.7.1 Einige Reihen $_{S19,476,1073}$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots + (-1)^{n-1} \cdot \frac{x^{2n-1}}{(2n-1)!} + \underbrace{(-1)^n \cdot \frac{\cos(\vartheta x)}{(2n+1)!} \cdot x^{2n+1}}_{(2n+1)!} e^x = 1 + \frac{x}{1} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^{\vartheta x}}{(n+1)!} \cdot x^{n+1}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} \mp \dots + (-1)^{n-1} \cdot \frac{x^n}{n} + \frac{(-1)^n}{(1+\vartheta x)^{n+1}} \cdot \frac{x^{n+1}}{n+1}$$

5.1.8 Bernoulli-de l'Hospital $_{S56}$

 $\lim_{x\downarrow x_0} \frac{f_1(x)}{f_2(x)} = \lim_{x\downarrow x_0} \frac{f_1'(x)}{f_2'(x)}$, dies gilt für: " $\frac{0}{0}$ " 1. Regel, oder " $\frac{\pm\infty}{\pm\infty}$ " 2. Regel; Zähler und Nenner separat ableiten!

5.1.8.1 Spezialfälle

$$0 \cdot \pm \infty \Rightarrow \frac{f_1}{\frac{1}{f_2}} = \frac{0}{0} \text{ oder } \frac{f_2}{\frac{1}{f_1}} = \frac{\pm \infty}{\pm \infty}$$

$$\infty - \infty \Rightarrow \frac{\frac{1}{f_2} - \frac{1}{f_1}}{\frac{1}{f_1 \cdot f_2}}$$

$$f^g : \left\{ \begin{array}{c} 1^{\infty} \\ 0^0 \\ \infty^0 \end{array} \right\} = e^{g \cdot ln(f)} = \left\{ \begin{array}{c} e^{\infty \cdot 0} \\ e^{0 \cdot -\infty} \\ e^{0 \cdot \infty} \end{array} \right\}$$

5.1.9 Kurvenuntersuchungen S260

- 1. Definitionsbereich S_{48} D_f und Abschätzung des Wertebereichs W_f , wenn möglich anhand der Extremalstellen
- 2. Symmetrie und Periodizität_{S52}
- 3. Nullstellen
- 4. Stetigkeit_{S59} und Differenzierbarkeit_{S443} (Berechnung der Ableitungen)
- 5. Extremwerte, Wendepunkte und Wendetangenten, Monotonie, Krümmungsverhaltens51
- 6. Grenzwertaussagen (Asymptote, Pole, Verhalten von f am Rande des Definitionsbereichs)

5.1.9.1 Monotonie_{S452}

f'(x)	f''(x)	f'''(x)	$f^{(n-1)}(x)$	$f^{(n)}$	Funktion f
≥ 0					monoton wachsend
> 0					streng monoton wachsend
≤ 0					monoton fallend
< 0					streng monoton fallend
=0	=0	=0	$\cdots = 0$	> 0	streng monoton wachsend (falls n ungerade)
=0	= 0	= 0	$\cdots = 0$	< 0	streng monoton falls (falls n ungerade)

5.1.9.2 Extremstelle_{S455}

f'(x)	f''(x)	f'''(x)	$f^{(n-1)}(x)$	$f^{(n)}$	Funktion f		
=0	> 0				relatives Minimum, Randstellen beachten		
=0	< 0				relatives Maximum, Randstellen beachten		
=0	=0	=0	$\cdots = 0$	> 0	relatives Minimum (falls n gerade), Randstellen beachten		
=0	=0	=0	$\cdots = 0$	< 0	relatives Maximum (falls n gerade), Randstellen beachten		
Zweit	Zweite Variante Falls bei $f'(x)$ an der Stelle x_0 ein Vorzeichenwechsel besteht, existiert dort eine Extremstelle						

5.1.9.3 Konvexität - Krümmungsverhaltens 253

f'(x)	f''(x)	f'''(x)	$f^{(n-1)}(x)$	$\int f^{(n)}$	Funktion f	
	≥ 0		konvex (linksgekrümmt)			
	> 0	streng konvex (linksgekr		streng konvex (linksgekrümmt)		
	≤ 0				konkav (rechtsgekrümmt)	
	< 0				streng konkav (rechtsgekrümmt)	

5.1.9.4 Wendepunkte (Terassenpunkt)_{S255}

	f'(x)	f''(x)	f'''(x)	$\int f^{(n-1)}(x)$	$f^{(n)}$	Funktion f	
		=0	$\neq 0$			Wendepunkt	
	=0	= 0	$\neq 0$			Terassen- oder Sattelpunkt	
Ī	Zweite Variante Falls bei $f''(x)$ an der Stelle x_0 ein Vorzeichenwechsel besteht, existiert dort ein Wendepunkt						

5.1.9.5Asymptotes 250

Die Asymptote existiert nur wenn alle drei eigentlichen Grenzwerte existieren. Für Funktionen, die nicht gebrochenrational sind, kann die Asymptote wie folgt bestimmt werden.

Asymptote $g: y = ax + b \Rightarrow \lim_{x \to \infty} (f(x) - ax - b) = 0$

 $a=\lim_{x\to\infty}rac{f(x)}{x}$ oder $a=\lim_{x\to\infty}f'(x)$ gilt jedoch nur wenn in der ersten Formel die Bedingung für Bernoulli-de l'Hospital erfüllt sind.

 $b = \lim_{x \to \infty} (f(x) - ax)$

Dies alles gilt sinngemäss auch für $x \to -\infty$

Spezialfall: Wenn $\lim_{x\to\infty} f(x)$ existiert, so ist a=0 und $b=\lim_{x\to\infty} f(x)$.

5.1.10 Schnittwinkel

- 1. Bei einem Schnittpunkt gilt: f(x) = g(x)
- 2. Schnittpunkt $S(x_0, y_0)$ berechnen
- 3. Falls dies eine kubische Gleichung ist, den Wert durch ausprobieren herausfinden (Bereich von -3...3)
- 4. Funktionen ableiten: f'(x) und g'(x)
- 5. Steigungen berechnen: $f'(x_0) = m_1$ und $g'(x_0) = m_2$
- 6. Schnittwinkel mit Hilfe dieser Gleichung berechnen: $tan(\sigma) = \frac{m_2 m_1}{1 + m_1 m_2}$

5.2 Trigonometrie

$$\sin^2(b) + \cos^2(b) = 1 \qquad \tan(b) = \frac{\sin(b)}{\cos(b)}$$

5.2.1 Funktionswerte für Winkelargumente

deg	rad	sin	cos	tan	
0 °	0	0	1	0	
30 °	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	
45 °	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	
60 °	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	

\deg	rad	sin	cos
90 °	$\frac{\pi}{2}$	1	0
120 °	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
135 °	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
150 °	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$

deg	rad	sin	cos	deg	rad	sin	cos
180 °	π	0	-1	270 °	$\frac{3\pi}{2}$	-1	0
210 °	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	300 °	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
225 °	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	315 °	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
240 °	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	330 °	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

5.2.2 Periodizität

$$\cos(a + k \cdot 2\pi) = \cos(a) \qquad \sin(a + k \cdot 2\pi) = \sin(a) \qquad (k \in \mathbb{Z})$$

Quadrantenbeziehungen 5.2.3

$$\begin{array}{ll} \sin(-a) = -\sin(a) & \cos(-a) = \cos(a) \\ \sin(\pi - a) = \sin(a) & \cos(\pi - a) = -\cos(a) \\ \sin(\pi + a) = -\sin(a) & \cos(\pi + a) = -\cos(a) \\ \sin\left(\frac{\pi}{2} - a\right) = \sin\left(\frac{\pi}{2} + a\right) = \cos(a) & \cos\left(\frac{\pi}{2} - a\right) = -\cos\left(\frac{\pi}{2} + a\right) = \sin(a) \end{array}$$

5.2.4 Additions theoreme

$$\begin{aligned} \sin(a \pm b) &= \sin(a) \cdot \cos(b) \pm \cos(a) \cdot \sin(b) \\ \cos(a \pm b) &= \cos(a) \cdot \cos(b) \mp \sin(a) \cdot \sin(b) \\ \tan(a \pm b) &= \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \cdot \tan(b)} \end{aligned}$$

5.2.5 Doppel- und Halbwinkel

$$\sin(2a) = 2\sin(a)\cos(a) \cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a) \cos^2(\frac{a}{2}) = \frac{1+\cos(a)}{2} \qquad \sin^2(\frac{a}{2}) = \frac{1-\cos(a)}{2}$$

5.2.6 Produkte

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a-b) + \sin(a+b))$$

5.2.7 Summe und Differenz

$$\begin{aligned} \sin(a) + \sin(b) &= 2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right) \\ \sin(a) - \sin(b) &= 2 \cdot \sin\left(\frac{a-b}{2}\right) \cdot \cos\left(\frac{a+b}{2}\right) \\ \cos(a) + \cos(b) &= 2 \cdot \cos\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right) \\ \cos(a) - \cos(b) &= -2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right) \\ \tan(a) &\pm \tan(b) &= \frac{\sin(a \pm b)}{\cos(a)\cos(b)} \end{aligned}$$