

ORGANISASI ARSITEKTUR KOMPUTER **CENTRAL PROCESSING UNIT**

STT TERPADU NURUL FIKRI **TEKNIK INFORMATIKA**

2017

20. Thaahaa

25. Berkata Musa: "Ya Tuhanku, lapangkanlah untukku dadaku^[915],

وَيَسِّرُ لِيَّ أَمُرِي ﴿

dan mudahkanlah untukku urusanku,

وَٱحُلُلُ عُقُدَةً مِّن لِّسَانِي ٣

dan lepaskanlah kekakuan dari lidahku,

CPU DI VON NEUMANN ARCHITECTURE

BAGAN INTERKONEKSI CPU KE SISTEM BUS

BAGAN STRUKTUR INTERNAL CPU & INTERKONEKSI

BAGIAN-BAGIAN CPU

- Control Unit
 Bagian yang mengatur tahapan eksekusi instruksi dan mengirimkan sinyal kontrol ke bagian-bagian lain terkait
- ALU (Arithmetic and Logic Unit)
 Bagian yang melakukan pengolahan aritmatika dan logika
- IR (Instruction Registers)
 Tempat menyimpan instruksi yang akan dieksekusi
- PC (Program Counter)
 Tempat menyimpan alamat dari instruksi berikutnya
- GPR (General Purpose Registers): R0, R1, R2 ...
 Tempat-tempat penyimpanan untuk membantu pengolahan data
- MAR (Memory Address Register)
 Tempat menyimpan alamat memori untuk operasi READ / WRITE
- MBR (Memory Buffer Register)
 - Berisi data untuk operasi WRITE memori
 - Berisi data hasil operasi READ memori

- Pemrograman
 Adalah pembuatan/penyusunan kode program sebagai
 representasi instruksi-instruksi yang harus dilakukan komputer,
 agar komputer dapat melakukan sesuatu sesuai tujuan
 program.
- Compile / Kompilasi
 Adalah proses mengubah kode program ke kode mesin
 instruksi agar dapat dipahami komputer dan dilaksanakan /
 dieksekusi.

JENIS BAHASA PEMROGRAMAN (1)

Bahasa Tingkat Tinggi

Adalah bahasa pemrograman yang lebih memudahkan manusia untuk memprogram, lebih mendekati bahasa manusia, namun mengurangi efisiensi ketika harus diterjemahkan ke kode mesin untuk dieksekusi.

Misal: Bahasa C, Basic, Java. Contoh:

If X=Y then X=X+2

2. Bahasa Tingkat Rendah

Adalah bahasa pemrograman yang lebih dekat ke kode mesin, sehingga sangat efisien ketika diterjemahkan ke kode mesin untuk dieksekusi komputer. Misal: Bahasa Assembly. Contoh:

MOV A,X

MOV B,Y

CJNE A,B,NEXT

ADD A,#2

MOV X,A

NEXT:

JENIS BAHASA PEMROGRAMAN (2)

Bahasa Tingkat Tinggi			Bahasa Tingkat Rendah		
+	Lebih mudah digunakan manusia	-	Lebih mendekati kode mesin, banyak		
	dalam memprogram		baris harus ditulis untuk suatu kerja		
+	Lebih mudah dipahami dan	-	Semakin besar program, semakin sulit		
	didokumentasikan		dipahami dan didokumentasikan		
+	Lebih mudah dikembangkan dan	-	Ketika program kompleks, jumlah baris		
	diteruskan dari waktu ke waktu,		sangat banyak, tidak mudah diteruskan		
	dari programmer yang satu ke		dari waktu ke waktu atau dilanjutkan		
	programmer yang lain		dari programmer yang satu ke yang lain		
-	Lebih banyak pemakaian memori	+	Sangat efisien dalam pemakaian memori		
-	Lebih besar ukuran file program	+	Lebih kecil ukuran file program hasil		
	hasil kompilasi		kompilasi		
-	Lebih lambat ketika dieksekusi	+	Sangat cepat ketika dieksekusi		

CONTOH INSTRUKSI (BAHASA ASSEMBLY) NURUL FIRE

ADD A,R0

adalah instruksi untuk menjumlahkan isi register A dengan register R0 dimana hasilnya penjumlahannya nanti disimpan di register A.

Misal sebelum instruksi, nilai di A=1 R0=2

Maka sesudah eksekusi instruksi, nilai di A=3 R0=2

Pekerjaan	Contoh	Penjelasan	
Pengisian data	MOV B,#8	B <- 8	
Penjumlahan	ADD A,#4	A <- A + 4	
Pengurangan	SUBB A,#3	A <- A - 3	
Perkalian	MUL AB	A <- A * B	
Logika AND	ANL A,#01010101B	A <- A AND 01010101B	
Logika OR	ORL A,#00110011B	A <- A OR 00110011B	
Logika NOT	CPL A	A <- <u>A</u>	
Percabangan	CJNE A,#0,MULAI	IF A≠0 GOTO LABEL MULAI	

TAHAPAN PROSES INSTRUKSI DI CPU

1. Fetch	2. Decode	3. Calculate	4. Fetch	5. Execute	6. Store
Instruction	Instruction	Operand	Operand	Instruction	Result
yaitu proses mengambil instruksi yang harus dieksekusi, dari memori ke IR	yaitu proses menerjemah kan isi instruksi untuk diketahui apa yang harus dilakukan oleh prosesor	yaitu proses menghitung / mengidentifi kasi letak operand yang harus disiapkan untuk operasi instruksi	yaitu proses mengambil operand yang diperlukan untuk siap dioperasikan	yaitu proses melaksanakan operasi instruksi (biasanya di ALU)	yaitu proses menyimpan hasil operasi instruksi

CONTOH PROSES INSTRUKSI: ADD A, ROT

Fetch Instruction

- Isi alamat instruksi yang akan dieksekusi, disalurkan dari di PC ke MAR dan dari MAR ke jalur alamat memori melalui address bus.
- Control Unit mengirimkan sinyal READ ke memori melalui control bus.
- Memori menyalurkan instruksi yang ada di alamat (yang diberitahukan MAR) ke MBR melalui data bus.
- Instruksi dibawa dari MBR ke IR.

Decode Instuction

- Instruksi di IR diterjemahkan sebagai operasi penjumlahan dengan 2 operand <u>Calculate Operand</u>
- 6. Operand instruksi diidentifikasi, yaitu register A dan R0.

Fetch Operand

7. Isi register A dan R0 dibawa ke ALU.

Execute Instruction

8. ALU mengeksekusi operasi penjumlahan isi A dengan isi R0.

Store Result

9. Hasil penjumlahan dibawa dan disimpan ke register A.

BAYANGKAN TAHAPAN PROSES DI BAGAN

QUIZ

- Konversikan tiap angka-angka berikut ke format biner (8 bit), Okta (2 digit), dan hexa (2 digit).
 - a. 212 (10)
 - b. 121 (10)
 - c. 192 (10)
- Konversikan tiap angkat hexa berikut ke format biner, octal dan desimal
 - CA (16)
 - F4 (16)
 - 99 (16)
- Sederhanakan dan Buktikan
 - $Y = ABC + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$

TERIMA KASIH

Thank you very much for your kind attention