

ICS3213 – Gestión de Operaciones

Sección 3 Primer Semestre 2025

Profesor: Rodrigo A. Carrasco

Avisos

• La lectura complementaria de esta parte es el Capítulo 18 del libro "Administración de Operaciones" por R. Chase, F. Jacobs y N. Aquilano.

• El martes tendremos control de esta materia durante la clase.

Resumen clase anterior

- Aprendimos que la Planificación Agregada es un insumo importante para el largo plazo, pero necesitamos algo más para bajar a la planificación táctica y operativa.
- MRP es la herramienta que nos permite hacer esto, generando un plan basado en:
 - Lista de Materiales (BOM)
 - Plan agregado de producción
 - Registro de inventarios
 - Matriz de MRP por componente.

Resumen clase anterior

- Los costos entran en el cálculo del tamaño del lote de producción, con varios algoritmos para resolverlo:
 - Wagner-Whitin
 - L4L
 - Silver-Meal o Costo Total Mínimo
 - Least Unit Cost o Costo Unitario Mínimo
 - Part Period Balancing o Costo Total

Algoritmo de Silver – Meal

- Al usar EOQ en el ejemplo anterior, ¿cuál sería el problema?
- Entonces es lógico que tratemos de ordenar en forma balanceada para no cubrir períodos parciales.
- Idea: Debemos ordenar para cubrir justo *k* períodos minimizando el costo promedio por período: Silver-Meal o Costo Total Mínimo.
- ¿Cuántos k períodos debemos cubrir?
 - k = 1: $Q_1 \cdot d_1$ $C_1 = 5$ • k = 2: $Q_2 = d_1 + d_2$ $C_2 = (5 + d_2 H)/2$ • k = 3: $Q_3 = d_1 + d_2 + d_3$ $C_3 = (5 + d_2 H + d_3 \cdot 2H)/3$
- Paramos cuando el costo unitario comienza a aumentar nuevamente: $C_{t+1} > C_t$.

Least Unit Cost

- El algoritmo de Silver-Meal determina el tamaño del lote con base en el costo promedio por período.
- Otra forma de hacerlo es usando el costo promedio por unidad: LUC o Costo Unitario Mínimo
- En este caso, el costo que calcularemos en cada iteración será:

• Al igual que en el caso de Silver – Meal, detenemos el algoritmo cuando $C_{t+1} > C_t$ y volvemos a calcular con las demandas restantes.

Part Period Balancing (PPB)

- Otra heurística es determinar el número de períodos balanceando el costo de ordenar con el costo de inventario, también llamado Costo Total.
- El costo de mantener inventario desde el período t al período t+k está dado por

$$C_{t,n} = \sum_{j=t}^{k-1} j + d_{j+1}$$

- Elegimos k de forma que $C_{t,k}$ esté lo más cerca posible de S, el costo de hacer una orden.
- Comenzamos nuevamente con las demandas restantes.
- Vean la planilla "Modelo MRP" en Canvas para ver algunos ejemplos.

Ciclo de MRP Cerrado

• El MRP se basa en un ciclo de producción:

Sales and Operations Planning (S&OP)

S&OP

- ¿Qué es S & OP?
- Es un aspecto fundamental de la planificación de la cadena de suministro.
- Es un proceso para desarrollar planes tácticos que proveen a la gestión la habilidad para dirigir el negocio y lograr ventajas competitivas en un proceso continuo.
- Integra los planes de marketing, enfocados en el cliente para productos nuevos y existentes con la Gestión de Cadena de Suministro (SCM).
- El proceso agrupa todos los planes para el negocio: ventas, marketing, desarrollo, producción, abastecimiento y finanzas.

S&OP

S&OP

Evaluación de la producción

- ¿Cómo evaluamos nuestra línea de producción?
- Clave: Total Productive Maintenance (TMP) y OEE (Overall Equipment Effectiveness).
- OEE es la mezcla de disponibilidad, eficiencia y tasa de calidad en un único indicador.

OEE

• Overall Equipment Effectiveness

OEE

Disponibilidad

- Tiempo Total Paradas programadas (setup y mantenimiento) –
 Parada No Programadas (Fallas)
- Mide el tiempo disponible para producción.

• Eficiencia

- Tiempo Disponible Fallas menores ineficiencias (Lentitud).
- Mide el tiempo en que estuvo en funcionamiento la línea.

Calidad

- Tiempo Funcionamiento tiempo en unidades defectuosas.
- Mide el tiempo efectivo disponible para producir.

KPI para identificar mejoras

• El elemento clave del OEE no es el valor final solamente: el cálculo entrega mucha información crucial para mejoramiento continuo

Qué se espera

- El OEE es un excelente indicador para identificar en forma agregada un proceso productivo.
- Valores de OEE:
 - <65%: no es bueno.
 - 85%: aceptable.
 - >95: excelencia.
- Factores OEE "World Class":
 - Disponibilidad: > 90%
 - Eficiencia: > 95%
 - Calidad: > 99%

Resumen

- La planificación agregada es un insumo que nos permite entender la planificación de largo plazo.
- En este módulo aterrizamos ese plan de largo plazo para conectarlo con el corto plazo vía MRP.
- Además, revisamos varias heurísticas y modelos que nos permiten conectar la planificación con los costos para hacer operaciones eficientes.
- Pero hay otro mundo complejo:
 - ¿Qué pasa cuando tenemos un proyecto único que posee muchas partes y piezas que coordinar?
 - ¿Cómo lo hacemos en ese caso?

