2. Научиться выполнять: приводить пример алгебраической системы, на которой истинна данная формила: приводить пример алгебраической системы, на которой данная формила не явлется истинной: приводить пример алгебраической системы, на которой выполнима данная формула; приводить пример алгебраической системы, на которой невыполнима данная формула.

Теоретические сведения

Определение. Алгебраическую систему $\langle M, S \rangle$, на которой истинна формула A называют моделью этой формулы. Алгебраическая система называется моделью множества формил Э, если она является моделью каждой формулы из Ғ.

Упражнения для самостоятельного решения

1. Даны несколько "миров":

$$(1) \quad \bullet \quad \Box \quad \circ \quad \bullet \quad \bullet$$

Для каждой из следующих формул выясните какой из данных "миров" является моделью этой формулы:

- (a) $\forall x (\mathsf{Больш}^1 x \vee \mathsf{Черh}^1 x)$: (6) $\forall x (\mathsf{Tpevr}^1 x \vee \neg \mathsf{Черh}^1 x)$:
- (в) $\forall x (\neg \text{Черн}^1 x \vee \neg \text{Круг}^1 x);$ (г) $\forall x (\text{Малый}^1 x \to \text{Черн}^1 x);$
- (д) $\forall x \text{ (Tpeyr}^1 x \to \text{Черн}^1 x);$ (e) $\forall x \text{ (}\neg \text{Tpeyr}^1 x \to \text{Бел}^1 x\text{)};$
- (ж) $\forall x (\text{Треуг}^1 x \to \neg \text{Больш}^1 x);$ (3) $\forall x (\neg \text{Квадр}^1 x \to \neg \text{Треуг}^1 x).$

2. Рассмотрим алгебраические системы сигнатуры $S = \{ \stackrel{\wedge}{=}, P_1^2 \}$, носителями которых служт множества натуральных чисел

$$M_1 = \{2, 4, 8\}, \quad M_2 = \{1, 2, 3\}, \quad M_3 = \{2, 3, 6\}, \quad M_4 = \{2, 3, 4\}.$$

Известно, что $P_1^2(m_1, m_2) = H \Leftrightarrow m_2$ делится на m_1 . Найдите те из алгебраических систем $\langle M_1, S \rangle$, $\langle M_2, S \rangle$, $\langle M_3, S \rangle$, $\langle M_4, S \rangle$ которые являются моделью формулы:

- (a) $\exists x_0 \forall x_1 P_1^2 x_0 x_1;$ (6) $\exists x_0 \forall x_1 P_1^2 x_1 x_0;$
- (B) $\forall x_0 \exists x_1 P_1^2 x_1 x_0;$ (C) $\forall x_0 \forall x_1 (P_1^2 x_0 x_1 \vee P_1^2 x_1 x_0);$
- $(\pi) \exists x_0 \exists x_1 \exists x_2 (P_1^2 x_0 x_1 \& \neg x_0 \Rightarrow x_1 \& P_1^2 x_1 x_2 \& \neg x_1 \Rightarrow x_2).$

- 3. Придумайте "мир", состоящий из шести фигур (треугольников, квадратов или кругов) двух цветов и двух размеров, чтобы следующая формула была на нем:
 - (1) истинной:
- (2) не истинной.
- (a) $\neg \exists x (\mathsf{Kpvr}^1 x \& \mathsf{Чeph}^1 x)$:
- (б) $\exists x (\Pi pab^2 xy \& Man^1 y);$
- (B) $(\forall x (\text{KBapp}^1 x \vee \text{Bep}^1 x) \& \exists x \text{Tpev}_1^1 x)$:
- (p) $(\exists x \mathsf{K} \mathsf{D} \mathsf{V} \mathsf{P}^1 x \& \forall y (\mathsf{Y} \mathsf{e} \mathsf{D} \mathsf{H}^1 y \vee \mathsf{M} \mathsf{a} \pi^1 y))$.
- 4. Для каждой из следующих формул задайте алгебраическую систему с носителем $\{a; b; c\}$, на которой данная формула, если возможно, была бы
 - истинной:

- (2) не истинной.
- (a) $\exists x_1 \neg P_1^1 x_1 \& \exists x_1 P_1^1 x_1$; (b) $\exists x_1 = x_0 x_1$; (e) $\exists x_1 \forall x_0 = x_0 x_1$.
- 5. Для каждой из следующих пар формул задайте алгебраическую систему, на которой первая из формул пары истинна, а вторая — истинной не является.

 - (a) $P_1^2 x_0 x_0, P_1^2 x_0 x_1;$ (6) $P_1^2 x_0 f_1^1 x_1, P_1^2 x_0 x_1;$

 - (B) $\exists x_0 P_1^2 x_0 x_1$. $\forall x_0 P_1^2 x_0 x_1$; (C) $\forall x_0 \exists x_1 P_1^2 x_0 x_1$, $\exists x_0 \forall x_1 P_1^2 x_0 x_1$.
- 6^* . Для каждой из пар формул, перечисленных в предыдущем задании, докажите, что не существует алгебраической системы, на которой вторая формула пары истинна, а первая — истинной на этой системе не является.
- 7. Приведите пример моделей каждой из следующих совокупностей формул:
 - (a) $\mathcal{F}_1 = \{ \forall x_0 \neg P_1^2 x_0 c_0, \forall x_0 P_1^2 c_0 x_0 \}$:
 - (6) $\mathcal{F}_2 = \{ \forall x_0 \neg P_1^2 x_0 x_0, \ \forall x_0 \exists x_1 P_1^2 x_0 x_1 \};$
 - (B) $\mathcal{F}_3 = \{P_1^2 c_0 x_0, \forall x_1 \forall x_2 (P_1^2 x_1 x_2 \vee P_1^2 x_2 x_1)\};$
 - $(\Gamma) \ \mathcal{F}_4 = \{ \forall x_1 \forall x_2 \ (P_1^2 x_1 x_2 \to \neg P_1^2 x_2 x_1), \ \forall x_1 \exists x_2 \ P_1^2 x_1 x_2 \};$
 - $(\pi^*) \ \mathcal{F}_5 = \{ \forall x_1 \forall x_2 \exists x_3 \ P_2^3 x_1 x_2 x_3, \ \forall x_1 \forall x_2 \exists x_3 \ P_2^3 x_1 x_3 x_2, \$
 - (e*) $\mathcal{F}_6 = \{ \forall x_0 \exists x_1 \ P_1^2 x_0 x_1, \ \forall x_1 \forall x_2 \neg (P_1^2 x_1 x_2 \& P_1^2 x_2 x_1),$ $\forall x_1 \forall x_2 \forall x_3 (P_1^2 x_1 x_2 \& P_1^2 x_2 x_3 \rightarrow P_1^2 x_1 x_3) \}$.
- **8***. Докажите, что множества формул $\mathcal{F}_1 \cup \mathcal{F}_3$ и $\mathcal{F}_2 \cup \mathcal{F}_3$ из предыдущей задачи не имеют моделей.
- 9^* . Докажите, что всякая модель множества формул \mathcal{F}_6 из задачи 7бесконечна.