TP4 Aprendizaje No Supervisado

72.27 - Sistemas de Inteligencia Artificial

1.1

1.1 Red de Kohonen

Variables

- Área
- PBI
- Inflación
- Expectativa de vida (en años)
- Presupuesto militar
- Tasa de crecimiento poblacional
- Tasa de desempleo

Asociación de países


```
{
    "k": 3,
    "radius" : 1,
    "limit" : 14000
}
learning_rate(e): 1/(1+e)
```

Distancias promedio entre neuronas vecinas


```
{
    "k": 3,
    "radius" : 1,
    "limit" : 14000
}
learning_rate(e): 1/(1+e)
```

Asociación de países


```
{
    "k": 4,
    "radius" : 1,
    "limit" : 14000
}
learning_rate(e): 1/(1+e)
```

Distancias promedio entre neuronas vecinas


```
{
    "k": 4,
    "radius" : 1,
    "limit" : 14000
}
learning_rate(e): 1/(1+e)
```

Variable GDP

Variable Population Growth


```
{
    "k": 3,
    "radius" : 1,
    "limit" : 14000
}
learning_rate(e): 1/(1+e)
```

Variable Life Expectancy


```
{
    "k": 3,
    "radius" : 1,
    "limit" : 14000
}
learning_rate(e): 1/(1+e)
```

Variable Inflation

{
 "k": 3,
 "radius" : 1,
 "limit" : 14000
}
learning_rate(e): 1/(1+e)

Variable Area


```
{
    "k": 3,
    "radius" : 1,
    "limit" : 14000
}
learning_rate(e): 1/(1+e)
```

Variable Unemployment


```
{
  "k": 3,
  "radius" : 1,
  "limit" : 14000
}
learning_rate(e): 1/(1+e)
```

Variable Military


```
{
    "k": 3,
    "radius" : 1,
    "limit" : 14000
}
learning_rate(e): 1/(1+e)
```

1.2

1.2 Analisis PCA

Estandarización de variables

Con OJA

y1 =

Area * 0.134

+ GDP * -0.5

+ Inflation * 0.415

+ Life.expect * -0.485

+ Military * 0.181

+ Pop.growth * -0.474

+ Unemployment * 0.267

Con librería

Biplot

2

Modelo de Hopfield

Elección de patrones almacenados

	Α	Q	Т	V
Α	0	3	-1	-1
Q	3	0	1	1
Т	-1	-1	o	1
V	-1	1	1	o

- Producto interno medio: 1.33 (de los valores absolutos)
- Hay muchas otras combinaciones igual de buenas (ej. L M O X)
- Todas esas combinaciones tienen máximo producto interno = 3 (en este caso sólo lo cumple A con Q)

Ruido: 0.1 Letra elegida: A

Ruido: 0.1 Letra elegida: Q

Ruido: 0.1 Letra elegida: T

Ruido: 0.1 Letra elegida: V

Ruido: 0.1 Letra elegida: X

¿Se entiende ahora la elección de colores distintos al blanco y negro?

Ruido: 0.1 Letra elegida: X

Ruido: 0.5 Letra elegida: M (pero hay tanto ruido que no importa)

Ruido: 0.5

Letra elegida: T (pero hay tanto ruido que no importa)

Estado espurio desconocido

Ruido: 0.5 Letra elegida: T (pero hay tanto ruido que no importa)

Otra combinación

	В	D	L	X
В	O	17	7	-13
D	17	o	11	-13
L	7	11	o	1
x	-13	-13	1	o

Producto interno medio: 10.33

Otra combinación

Ruido: 0.15 Letra elegida: B

Estado espurio cíclico

Otra combinación

Ruido: 0.15 Letra elegida: B

Mismo gráfico de energía

Patrón complementario

Si le consultamos con el patrón complementario, todos los pasos son los complementos del proceso original

CB

$$S_{\zeta}(0) = \zeta$$

$$S_{-\zeta}(0) = -\zeta = -S_{\zeta}(0)$$

$$HI) S_{-\zeta}(n) = -S_{\zeta}(n)$$
 $TI) S_{-\zeta}(n+1) = -S_{\zeta}(n+1)$

$$\begin{split} S_{\zeta}(n+1) &= Sign(W\ S_{\zeta}(n)) \\ S_{-\zeta}(n+1) &= Sign(W\ S_{-\zeta}(n)) = Sign(W\ (-S_{\zeta}(n))) = -Sign(W\ S_{\zeta}(n)) = -S_{\zeta}(n+1) \end{split}$$

Patrón complementario

La función de energía es la misma

$$H_{\zeta}(W) = -\frac{1}{2} \sum_{i,j} W_{ij} S_i^{\zeta} S_j^{\zeta}$$

$$H_{-\zeta}(W) = -\frac{1}{2} \sum_{i,j} W_{ij} S_i^{-\zeta} S_j^{-\zeta} = -\frac{1}{2} \sum_{i,j} W_{ij} (-S_i^{\zeta}) (-S_j^{\zeta}) = -\frac{1}{2} \sum_{i,j} W_{ij} S_i^{\zeta} S_j^{\zeta} = H_{\zeta}(W)$$

	E	G	0	S
E	0	21	15	21
G	21	0	19	21
O	15	19	o	15
S	21	21	15	o

- Producto interno medio: 18.67
- Es la única tan mala: única con máx avg
- Tiene 3 combinaciones con producto interno máximo (21)
 - O Hay otras que cumplen eso, ej. C E G S, B E G S

E:

G:

E:

O:

S

Patrón muy ruidoso:

Patrón muy ruidoso:

E Complemento:

G Complemento:

Conclusiones

- Kohonen puede agrupar las distintas variables de manera muy parecida a la componente PC1 obtenida por Oja.
- Los estados espurios muchas veces parecen estar relacionados con los patrones de entrada (ej. inverso), pero otras veces no es tan fácil de ver.
- Si todos los patrones tienen productos internos muy elevados, es muy difícil que Hopfield pueda llegar a un resultado razonable.

Gracias!

Preguntas?

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>