Алгебра. Задачи 1

Арунова Анастасия

Содержание

Операции над матрицами	3
Теория	. 3
Задача 1	. 4
Системы линейных уравнений	6
Теория	. 6
Задача 2	. 8
Задача 3	. 9
Задача 4	. 10
Матричные уравнения	13
Теория	. 13
Задача 5	. 13
Подстановки	15
Теория	. 15
Задача 6	. 16
Задача 7	. 18
Задача 8	. 19
Задача 9	. 20
Определители	21
Теория	. 21
Задача 10	. 22
Задача 11	
Залача 12	24

Задача 13	25
Задача 14	26
Задача 15	27
Задача 16	28
Задача 17	29
Задача 18	30
Задача 19	31
Ранг матрицы	34
Теория	34
Задача 20	34
Интерполяционный многочлен Лагранжа	36
Теория	36
Задача 21	36
Подстановка матрицы в уравнение	38
Задача 22	38
Разложения матриц	39
Теория	39
Задача 23	39
Задача 24	40
Удачи!	42

Операции над матрицами

Теория

Определение. Матрица C называется суммой матриц A и B, если матрицы A, B, C одного типа $m \times n$ с элементами $c_{ij} = a_{ij} + b_{ij}, \ \forall i = \overline{1,m}, j = \overline{1,n}.$

Определение. Произведением матрицы A типа $m \times n$ на число α называют матрицу C типа $m \times n$ с элементами $\left[C\right]_{ij} = \alpha \left[A\right]_{ij}, \ \forall i = \overline{1,m}, j = \overline{1,n}.$

Определение. Для матрицы A типа $m \times n$ её транспонированной матрицей A^T называют матрицу типа $n \times m$ с элементами $\begin{bmatrix} A^T \end{bmatrix}_{ii} = \begin{bmatrix} A \end{bmatrix}_{ii}$.

Пример.

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Определение. Рассмотрим A типа $n \times p$ и B типа $p \times k$. Привидением матриц A и B называют матрицу C типа $n \times k$ с элементами $c_{ij} = \sum_{l=1}^p a_{il} \cdot b_{lj}, \ \forall i = \overline{1,n}, j = \overline{1,k}.$

Пример.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot (-2) \\ 3 \cdot 1 + 4 \cdot (-2) \end{pmatrix} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$$

Определение. Обратной к квадратной матрице $A \in M_n(\mathbb{R})$ называется матрица

$$A^{-1}: A \cdot A^{-1} = E = A^{-1} \cdot A$$

Теорема. $\exists A^{-1} \Leftrightarrow \det A \neq 0$.

Вычисление обратной матрицы:

І. Формула:

$$A^{-1} = \frac{1}{\det A} \cdot \widetilde{A} = \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & & \vdots \\ A_{n1} & \dots & A_{nn} \end{pmatrix}^{T}$$

II. Элементарные преобразования: составить матрицу $(A \mid E)$ и привести её к каноническому виду: $(E \mid B)$ (при условии, что A – невырожденная матрица). Матрица B и будет обратной.

Задача 1

Выполните действия:

$$(3B)^2 - 2(BA^{-1} - E)^T$$

$$A = \begin{pmatrix} 0 & -2 \\ 1 & -3 \end{pmatrix}, B = \begin{pmatrix} 5 & 1 \\ -1 & 0 \end{pmatrix}$$

Решение:

1) Умножим матрицу B на число:

$$3B = 3 \cdot \begin{pmatrix} 5 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 3 \cdot 5 & 3 \cdot 1 \\ 3 \cdot (-1) & 3 \cdot 0 \end{pmatrix} = \begin{pmatrix} 15 & 3 \\ -3 & 0 \end{pmatrix}$$

2) Возведём полученную матрицу в квадрат:

$$(3B)^2 = \begin{pmatrix} 15 & 3 \\ -3 & 0 \end{pmatrix}^2 = \begin{pmatrix} 15 & 3 \\ -3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 15 & 3 \\ -3 & 0 \end{pmatrix} = \begin{pmatrix} 15^2 + 3 \cdot (-3) & 15 \cdot 3 + 3 \cdot 0 \\ -3 \cdot 15 + 0 \cdot (-3) & -3 \cdot 3 + 0 \cdot 0 \end{pmatrix} = \begin{pmatrix} 216 & 45 \\ -45 & -9 \end{pmatrix}$$

- 3) Найдём обратную к A матрицу.
 - Первый способ. Найдём определитель матрицы А:

$$\det A = \begin{vmatrix} 0 & -2 \\ 1 & -3 \end{vmatrix} = 0 \cdot (-3) - (-2) \cdot 1 = 2$$

Определитель матрицы A не равен нулю, значит, для не \ddot{e} существует обратная.

Вычислим алгебраические дополнения каждых элементов:

$$A_{11} = (-1)^{1+1} M_{11} = (-1)^2 \cdot \left| -3 \right| = -3$$

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 \cdot \left| 1 \right| = -1$$

$$A_{21} = (-1)^{2+1} M_{21} = (-1)^3 \cdot \left| -2 \right| = 2$$

$$A_{22} = (-1)^{2+2} M_{22} = (-1)^4 \cdot \left| 0 \right| = 0$$

Составим союзную матрицу:

$$\widetilde{A} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^T = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ -1 & 0 \end{pmatrix}$$

Таким образом, обратная матрица равна:

$$A^{-1} = \frac{1}{\det A} \cdot \widetilde{A} = \frac{1}{2} \begin{pmatrix} -3 & 2 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} & 1 \\ -\frac{1}{2} & 0 \end{pmatrix}$$

ullet Второй способ. Составим матрицу $\left(A\mid E\right)$ и сделаем элементарные преобразования.

$$\left(\begin{array}{c|c|c} 0 & -2 & 1 & 0 \\ 1 & -3 & 0 & 1 \end{array} \right) \xrightarrow{\text{I} \leftrightarrow \text{II}} \left(\begin{array}{c|c|c} 1 & -3 & 0 & 1 \\ 0 & -2 & 1 & 0 \end{array} \right) \xrightarrow{\text{II} \to \frac{\text{II}}{2}} \left(\begin{array}{c|c|c} 1 & -3 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} & 0 \end{array} \right) \xrightarrow{\text{I} + 3\text{II} \to \text{I}} \left(\begin{array}{c|c|c} 1 & 0 & -\frac{3}{2} & 1 \\ 0 & 1 & -\frac{1}{2} & 0 \end{array} \right)$$

Значит, обратная матрица равна

$$A^{-1} = \begin{pmatrix} -\frac{3}{2} & 1\\ -\frac{1}{2} & 0 \end{pmatrix}$$

4) Вычислим произведение матриц

$$BA^{-1} = \begin{pmatrix} 5 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -\frac{3}{2} & 1 \\ -\frac{1}{2} & 0 \end{pmatrix} = \begin{pmatrix} 5 \cdot (-\frac{3}{2}) + 1 \cdot (-\frac{1}{2}) & 5 \cdot 1 + 1 \cdot 0 \\ -1 \cdot (-\frac{3}{2}) + 0 \cdot (-\frac{1}{2}) & (-1) \cdot 1 + 0 \cdot 0 \end{pmatrix} = \begin{pmatrix} -8 & 5 \\ \frac{3}{2} & -1 \end{pmatrix}$$

5) Разность двух матриц:

$$BA^{-1} - E = \begin{pmatrix} -8 & 5\\ \frac{3}{2} & -1 \end{pmatrix} - \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -9 & 5\\ \frac{3}{2} & -2 \end{pmatrix}$$

6) Транспонируем полученную матрицу:

$$(BA^{-1} - E)^{T} = \begin{pmatrix} -9 & 5\\ \frac{3}{2} & -2 \end{pmatrix}^{T} = \begin{pmatrix} -9 & \frac{3}{2}\\ 5 & -2 \end{pmatrix}$$

7) Умножим полученную матрицу на 2:

$$2(BA^{-1} - E)^{T} = 2 \cdot \begin{pmatrix} -9 & \frac{3}{2} \\ 5 & -2 \end{pmatrix} = \begin{pmatrix} -18 & 3 \\ 10 & -4 \end{pmatrix}$$

8) Выполним последнее действие:

$$(3B)^{2} - 2(BA^{-1} - E)^{T} = \begin{pmatrix} 216 & 45 \\ -45 & -9 \end{pmatrix} - \begin{pmatrix} -18 & 3 \\ 10 & -4 \end{pmatrix} = \begin{pmatrix} 234 & 42 \\ -55 & -5 \end{pmatrix}$$

Ответ:
$$\begin{pmatrix} 234 & 42 \\ -55 & -5 \end{pmatrix}$$

Системы линейных уравнений

Теория

Пусть дана СЛАУ с x_1,\dots,x_n – неизвестными, в координатной форме представленная как

$$\begin{cases} a_{11}x_1 + \ldots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \ldots + a_{mn}x_n = b_m \end{cases}$$

Запишем матрицу системы:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{1m} & \dots & a_{mn} \end{pmatrix}$$

Столбец правых частей:

$$b = \begin{pmatrix} b_{11} \\ \vdots \\ b_{m1} \end{pmatrix}$$

Столбец неизвестных:

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Тогда СЛАУ можно записать в следующем виде:

$$A_{m \times n} \cdot x_{n \times 1} = b_{m \times 1}$$

Расширенной матрицей СЛАУ называется матрица:

$$(A \mid b) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \mid b_1 \\ a_{21} & a_{22} & \dots & a_{2n} \mid b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \mid b_m \end{pmatrix}$$

Система линейных уравнений, которая имеет решения, называется совместной, иначе несовместной.

Теорема (Кронекера-Капелли). СЛАУ Ax=b совместна $\Leftrightarrow \operatorname{Rg} A = \operatorname{Rg} \Big(A \mid b \Big)$

Способы решения системы линейных уравнений

- 1) $Memo\partial \Gamma aycca$.
 - Записать расширенную матрицу СЛАУ $(A \mid b)$.
 - ullet Привести $(A \mid b)$ к каноническому (ступенчатому) виду при помощи элементарных преобразований строк.

- ullet Если $\widetilde{b}_{r+1} \neq 0$, то у СЛАУ нет решений.
- Если $\widetilde{b}_{r+1} = 0$, то решение системы выражение главных переменных через свободные:

$$\begin{cases} x_1 = \widetilde{b}_1 - \sum_{1+r}^k \widetilde{a}_{1k} \cdot x_k \\ \vdots \\ x_r = \widetilde{b}_r - \sum_{1+r}^k \widetilde{a}_{rk} \cdot x_k \end{cases}$$

2) Memod Крамера.

Данный метод подходит только тогда, когда A – квадратная матрица.

• Вычислить главный определитель системы – $\det A$.

$$\Delta = \det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix}$$

ullet Вычислить определители $\Delta_i,\ i=\overline{1,n},$ являющиеся определителями матриц, полученных из матрицы A заменой i-го столбца на столбец b:

$$\Delta_{1} = \begin{vmatrix} b_{1} & a_{12} & \dots & a_{1n} \\ b_{2} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & \dots & a_{nn} \end{vmatrix}, \ \Delta_{2} = \begin{vmatrix} a_{11} & b_{1} & \dots & a_{1n} \\ a_{21} & b_{2} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & b_{n} & \dots & a_{nn} \end{vmatrix}, \ \dots, \ \Delta_{n} = \begin{vmatrix} a_{11} & a_{12} & \dots & b_{1} \\ a_{21} & a_{22} & \dots & b_{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{n2} & \dots & b_{n} \end{vmatrix}$$

- Если $\Delta=0$ и есть $\Delta_i\neq 0,\,i=\overline{1,n},$ то система несовместна.
- Если $\Delta = 0$ и $\Delta_i = 0$, $i = \overline{1,n}$, то применить метод Крамера нельзя (систему можно решить методом Гаусса, например).
- Если $\Delta \neq 0$, то решение системы будет:

$$x_i = \frac{\Delta_i}{\Delta} = \frac{\Delta_i}{\det A}, \ i = \overline{1, n}$$

3) С помощью обратной матрицы

Данный метод так же подходит при условии, что A – квадратная матрица.

- Посчитать определитель матрицы A.
- Если $\det A \neq 0$, найти обратную матрицу A^{-1} .
- Найти решение системы:

$$Ax = b \Leftrightarrow x = A^{-1}b$$

Задача 2

Решите систему линейных уравнений с помощью обратной матрицы:

$$\begin{cases} x_1 + x_2 + x_3 = 20 \\ 2x_1 - x_3 = 14 \\ x_2 + 2x_3 = 15 \end{cases}$$

Решение:

Запишем систему уравнений в матричном виде:

$$Ax = b \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 20 \\ 14 \\ 15 \end{pmatrix}$$

То есть

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}, \ b = \begin{pmatrix} 20 \\ 14 \\ 15 \end{pmatrix}$$

Вычислим определитель матрицы A:

по 2-му столбиу

$$\det A = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \\ 0 & 1 & 2 \end{vmatrix} = -1 \cdot \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} + 0 \cdot \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = (-1) \cdot (2 \cdot 2 - (-1) \cdot 0) - 1 \cdot (1 \cdot (-1) - 1 \cdot 2) = -1$$

Определитель не равен нулю, значит, для матрицы A существует обратная. Найдём её с помощью матрицы $A \mid E$:

$$\begin{pmatrix}
1 & 1 & 1 & | & 1 & 0 & 0 \\
2 & 0 & -1 & | & 0 & 1 & 0 \\
0 & 1 & 2 & | & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{\text{II}-2\text{I}\to\text{II}}
\begin{pmatrix}
1 & 1 & 1 & | & 1 & 0 & 0 \\
0 & -2 & -3 & | & -2 & 1 & 0 \\
0 & 1 & 2 & | & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{\text{II}+2\text{III}\to\text{II}}$$

$$\xrightarrow{\text{II}+2\text{III}\to\text{II}}
\begin{pmatrix}
1 & 0 & -1 & | & 1 & 0 & -1 \\
0 & 0 & 1 & | & -2 & 1 & 2 \\
0 & 1 & 2 & | & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{\text{II}\to\text{III}\to\text{II}}
\begin{pmatrix}
1 & 0 & -1 & | & 1 & 0 & -1 \\
0 & 1 & 2 & | & 0 & 0 & 1 \\
0 & 0 & 1 & | & -2 & 1 & 2
\end{pmatrix}
\xrightarrow{\text{II}-2\text{III}\to\text{II}}$$

$$\xrightarrow{\text{II}-2\text{III}\to\text{II}}
\xrightarrow{\text{II}}
\begin{pmatrix}
1 & 0 & 0 & | & -1 & 1 & 1 \\
0 & 1 & 0 & | & 4 & -2 & -3 \\
0 & 0 & 1 & | & -2 & 1 & 2
\end{pmatrix}$$

 $A^{-1} = \begin{pmatrix} -1 & 1 & 1\\ 4 & -2 & -3\\ -2 & 1 & 2 \end{pmatrix}$

Зная обратную матрицу, можно найти решение системы:

$$x = A^{-1}b = \begin{pmatrix} -1 & 1 & 1 \\ 4 & -2 & -3 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 20 \\ 14 \\ 15 \end{pmatrix} = \begin{pmatrix} -20 + 14 + 15 \\ 80 - 28 - 45 \\ -40 + 14 + 30 \end{pmatrix} = \begin{pmatrix} 9 \\ 7 \\ 4 \end{pmatrix}$$

Ответ: $x_1 = 9$, $x_2 = 7$, $x_3 = 4$.

Задача 3

Найдите все решения системы линейных уравнений

$$\begin{cases} x_1 - x_2 + 4x_3 + 3x_4 = 0 \\ 3x_1 - 2x_2 + x_3 + 2x_4 = 1 \\ 2x_1 - x_2 - 3x_3 - 3x_4 + 2x_5 = 1 \end{cases}$$

Решение:

Запишем расширенную матрицу СЛАУ $(A \mid b)$ и приведём её элементарными преобразованиями к каноническому виду.

$$\begin{pmatrix} 1 & -1 & 4 & 3 & 0 & 0 \\ 3 & -2 & 1 & 2 & 0 & 1 \\ 2 & -1 & -3 & -3 & 2 & 1 \end{pmatrix} \xrightarrow{\text{III}-3\text{II} \to \text{III}} \begin{pmatrix} 1 & -1 & 4 & 3 & 0 & 0 \\ 0 & 1 & -11 & -7 & 0 & 1 \\ 0 & 1 & -11 & -9 & 2 & 1 \end{pmatrix} \xrightarrow{\text{III}-II} \to \text{III}$$

$$\begin{pmatrix} 1 & -1 & 4 & 3 & 0 & 0 \\ 0 & 1 & -11 & -7 & 0 & 1 \\ 0 & 0 & 0 & -2 & 2 & 0 \end{pmatrix} \xrightarrow{\text{I} \to -\frac{1}{2} \text{ III}} \begin{pmatrix} 1 & 0 & -7 & -4 & 0 & 1 \\ 0 & 1 & -11 & -7 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{pmatrix} \xrightarrow{\text{III}-II} \xrightarrow{\text{III}} \text{III} \to \text{III}}$$

$$\begin{pmatrix} 1 & 0 & -7 & 0 & -4 & 1 \\ 0 & 1 & -11 & 0 & -7 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & -7 & 0 & -4 & 1 \\ 0 & 1 & -11 & 0 & -7 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{pmatrix}$$

Получаем три главных переменных – x_1 , x_2 , x_4 . И две зависимые переменные – x_3 , x_5 . Запишем решение системы:

$$\begin{cases} x_1 = 1 + 7x_3 + 4x_5 \\ x_2 = 1 + 11x_3 + 7x_5 \\ x_4 = x_5 \\ x_3, x_5 \in \mathbb{R} \end{cases}$$

Otbet:
$$\begin{cases} x_1 = 1 + 7x_3 - 4x_5 \\ x_2 = 1 + 11x_3 - 7x_5 \\ x_4 = x_5 \\ x_3, x_5 \in \mathbb{R} \end{cases}$$

Задача 4

Проверьте совместность системы линейных уравнений. Найдите все её решения (ответ запишите в векторном виде, выделив частное решение):

$$\begin{cases} x_1 - 4x_2 + 2x_3 + 3x_5 = 5\\ 2x_1 - 7x_2 + 4x_3 + x_4 = 9\\ x_1 - 3x_2 + 2x_3 + x_4 - 3x_5 = 4 \end{cases}$$

Решение:

Проверим совместность СЛАУ при помощи теоремы Кронекера-Капелли.

Для этого составим расширенную матрицу системы и найдём её ранг.

$$\begin{pmatrix}
1 & -4 & 2 & 0 & 3 & 5 \\
2 & -7 & 4 & 1 & 0 & 9 \\
1 & -3 & 2 & 1 & -3 & 4
\end{pmatrix}
\xrightarrow{\text{III-I} \to \text{III}}
\begin{pmatrix}
1 & -4 & 2 & 0 & 3 & 5 \\
0 & 1 & 0 & 1 & -6 & -1 \\
0 & 1 & 0 & 1 & -6 & -1
\end{pmatrix}
\xrightarrow{\text{III-III} \to \text{III}}
\begin{pmatrix}
1 & -4 & 2 & 0 & 3 & 5 \\
0 & 1 & 0 & 1 & -6 & -1 \\
0 & 1 & 0 & 1 & -6 & -1
\end{pmatrix}$$

Таким образом, $\operatorname{Rg}\left(A\mid b\right)=2$, так как всего 2 ненулевых строки в ступенчатом виде матрицы, полученной элементарными преобразованиями из данной.

Ранг матрицы A также будет равен 2, так как при её приведении к ступенчатому виду элементарные преобразования будут эквивалентны преобразованиям при приведении матрицы $(A \mid b)$.

$$\left(\begin{array}{cccccc}
1 & -4 & 2 & 0 & 3 \\
2 & -7 & 4 & 1 & 0 \\
1 & -3 & 2 & 1 & -3
\end{array}\right) \leadsto \left(\begin{array}{cccccc}
1 & -4 & 2 & 0 & 3 \\
0 & 1 & 0 & 1 & -6
\end{array}\right)$$

Значит, $\operatorname{Rg} A = \operatorname{Rg} \Big(A \mid b \Big)$, и система совместна и у неё есть решения. Найдём их:

$$\begin{pmatrix} 1 & -4 & 2 & 0 & 3 & 5 \\ 2 & -7 & 4 & 1 & 0 & 9 \\ 1 & -3 & 2 & 1 & -3 & 4 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -4 & 2 & 0 & 3 & 5 \\ 0 & 1 & 0 & 1 & -6 & -1 \end{pmatrix} \xrightarrow{\text{I}+4\text{II}\to\text{I}} \begin{pmatrix} 1 & 0 & 2 & 4 & -21 & 1 \\ 0 & 1 & 0 & 1 & -6 & -1 \end{pmatrix}$$
$$\begin{cases} x_1 = 1 - 2x_3 - 4x_4 + 21x_5 \\ x_2 = -1 - x_4 + 6x_5 \end{cases}$$

Получаем две главные переменные — x_1 , x_2 ; и три зависимые — x_3 , x_4 , x_5 . Запишем решение в векторном виде:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} x_3 + \begin{pmatrix} -4 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} x_4 + \begin{pmatrix} 21 \\ 6 \\ 0 \\ 0 \\ 1 \end{pmatrix} x_5$$

Одно из частных решений системы (при $x_3 = x_4 = x_5 = 0$):

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Ответ: Система линейных уравнений совместна.

Решение в векторном виде:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} x_3 + \begin{pmatrix} -4 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} x_4 + \begin{pmatrix} 21 \\ 6 \\ 0 \\ 0 \\ 1 \end{pmatrix} x_5.$$

Частное решение:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
.

Матричные уравнения

Теория

Операция умножения матриц *не коммутативна*, поэтому домножение выражения на матрицу слева не эквивалентно домножению справа.

Чтобы решить матричное уравнение XA=B с неизвестной матрицей X, нужно домножить его справа на A^{-1} : $XAA^{-1}=BA^{-1} \Leftrightarrow X=BA^{-1}$.

Чтобы решить матричное уравнение AX=B с неизвестной матрицей X, нужно домножить его слева на A^{-1} : $A^{-1}AX=A^{-1}B \Leftrightarrow X=A^{-1}B$.

Задача 5

Решите матричное уравнение

$$X \cdot \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 5 & 2 \\ 5 & 5 & -1 \end{pmatrix}$$

Решение:

Обозначим матрицы:

$$A = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}, B = \begin{pmatrix} 5 & 5 & 2 \\ 5 & 5 & -1 \end{pmatrix}$$

Вычислим обратную к A с помощью союзной матрицы. Вычислим определитель матрицы A, разложив его по первой строке:

$$\det A = \begin{vmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{vmatrix} = 2 \cdot \begin{vmatrix} -1 & 2 \\ 2 & 2 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 2 \\ -1 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = -12 - 12 - 3 = -27$$

Определитель не равен нулю, значит, у A есть обратная. Найдём алгебраические дополнения элементов:

$$A_{11} = (-1)^{1+1} M_{11} = (-1)^2 \cdot \begin{vmatrix} -1 & 2 \\ 2 & 2 \end{vmatrix} = -6$$

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 \cdot \begin{vmatrix} 2 & 2 \\ -1 & 2 \end{vmatrix} = -6$$

$$A_{13} = (-1)^{1+3} M_{13} = (-1)^4 \cdot \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 3$$

$$A_{21} = (-1)^{2+1} M_{21} = (-1)^3 \cdot \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} = -6$$

$$A_{22} = (-1)^{2+2} M_{22} = (-1)^4 \cdot \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 3$$

$$A_{23} = (-1)^{2+3} M_{23} = (-1)^5 \cdot \begin{vmatrix} 2 & 2 \\ -1 & 2 \end{vmatrix} = -6$$

$$A_{31} = (-1)^{3+1} M_{31} = (-1)^4 \cdot \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 3$$

$$A_{32} = (-1)^{3+2} M_{32} = (-1)^5 \cdot \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} = -6$$

$$A_{33} = (-1)^{3+3} M_{33} = (-1)^6 \cdot \begin{vmatrix} 2 & 2 \\ 2 & -1 \end{vmatrix} = -6$$

Составим союзную матрицу:

$$\widetilde{A} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}^{T} = \begin{pmatrix} -6 & -6 & 3 \\ -6 & 3 & -6 \\ 3 & -6 & -6 \end{pmatrix}^{T} = \begin{pmatrix} -6 & -6 & 3 \\ -6 & 3 & -6 \\ 3 & -6 & -6 \end{pmatrix}$$

Обратная матрица будет равна:

$$A^{-1} = \frac{1}{\det A} \cdot \widetilde{A} = -\frac{1}{27} \begin{pmatrix} -6 & -6 & 3 \\ -6 & 3 & -6 \\ 3 & -6 & -6 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}$$

Домножим уравнение XA = B справа на A^{-1} и найдём X:

$$XA = B \iff X = BA^{-1} = \frac{1}{9} \begin{pmatrix} 5 & 5 & 2 \\ 5 & 5 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 18 & 9 & 9 \\ 21 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ \frac{7}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

Ответ:
$$X = \begin{pmatrix} 2 & 1 & 1 \\ \frac{7}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$
.

Подстановки

Теория

Определение. Всякое расположение чисел $1, \ldots, n$ в определённом порядке называют перестановкой $\alpha = (\alpha_1, \ldots, \alpha_2)$.

Пример. $\alpha = (1, 2, 3, 4)$

Определение. α_1 и α_j образуют инверсию в перестановке, $(i-j)(\alpha_i - \alpha_j) < 0$.

Определение. Знак перестановки: $\operatorname{sgn} \alpha = (-1)^n$, где n – число инверсией.

Определение. Подстановкой называется взаимно-однозначное отображение $1, \ldots, n$ в себя:

$$\sigma = \begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix}$$

Здесь $(\sigma(1), \ldots, \sigma(n))$ – перестановка.

Пример.
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 1 \end{pmatrix}, \, \sigma(2) = 1$$

Определение. Умножение подстановок – их последовательное применение (композиция).

Пример.
$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ \hline 3 & 2 & 1 \end{pmatrix}, \ \sigma_1 = \begin{pmatrix} 1 & 2 & \boxed{3} \\ 3 & 1 & \boxed{2} \end{pmatrix}, \ \sigma_1 \circ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Определение. Нейтральный элемент по умножению: $id = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$

Определение.
$$\forall \sigma \; \exists \sigma^{-1}, \; \sigma^{-1} = \begin{pmatrix} \sigma(1) & \dots & \sigma(n) \\ 1 & \dots & n \end{pmatrix}$$

Свойство. При возведении цикла (a_1, \ldots, a_k) подстановки в степень, кратную его длине, будет получаться тождественная подстановка:

$$(a_1, \dots, a_k)^{nk} = id$$

Свойство. При возведении подстановки в степень, кратную НОКу длин всех её циклов, будет получаться тождественная подстановка.

Задача 6

Найти все такие $\sigma \in S_8$, что $\sigma^2 = (123)(456)$.

Решение:

Так как подстановка принадлежит S_8 можно записать её в виде $\sigma^2 = (123)(456)(7)(8)$.

Цикл длины 1 в σ^2 мог получиться либо из цикла длины 1 в σ (т.е. $(a) \leadsto (a)$), либо из цикла длины 2 в σ , который при возведении подстановки во вторую степень распался на циклы длины 1 (т.е. $(ab) \leadsto (a)(b)$).

Значит, либо в σ были два цикла длинной 1-(7) и (8), либо один цикл длинны 2-(78).

Осталось рассмотреть только циклы длинны 3. Цикл данной длины после возведения во вторую степень может получаться из цикла длины 3:

$$(abc)^2 = (acb)$$

Т.е. цикл (123) в σ^2 будет в σ имеет вид (132), а (456) – (465).

Либо цикл длины 3 получается после возведении во вторую степень цикла длины 6:

$$(abcdef)^2 = (ace)(bdf)$$

Все возможные варианты:

- $(ace)(bdf) = (123)(456) \Rightarrow (abcde f) = (142536)$
- $(ace)(bdf) = (123)(645) \Rightarrow (abcdef) = (162435)$
- $(ace)(bdf) = (123)(564) \Rightarrow (abcdef) = (152634)$
- $(ace)(bdf) = (312)(456) \Rightarrow (abcdef) = (341526) = (152634)$
- $(ace)(bdf) = (312)(645) \Rightarrow (abcdef) = (361425) = (142536)$
- $(ace)(bdf) = (312)(564) \Rightarrow (abcdef) = (351624) = (162435)$
- $(ace)(bdf) = (231)(456) \Rightarrow (abcdef) = (243516) = (162435)$
- $(ace)(bdf) = (231)(645) \Rightarrow (abcdef) = (263415) = (152634)$
- $(ace)(bdf) = (231)(564) \Rightarrow (abcdef) = (253614) = (142536)$

Таким образом, всего три цикла длины 6: (142536), (162435), (152634).

Выпишем все возможные подстановки. В σ вместо двух циклов (123)(456) из σ^2 может быть либо два цикла длинами 3 – (132)(465), либо один цикл длины 6 – любой из трёх найденных вариантов (142536), (162435), (152634). Вместо двух циклов длины 1 может быть либо 2 цикла длины 1 – (7)(8), либо 1 цикл длины 2 – (78). Подстановки:

•
$$\sigma = (132)(465)(7)(8) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 2 & 5 & 6 & 4 & 7 & 8 \end{pmatrix}$$

•
$$\sigma = (132)(465)(78) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 2 & 5 & 6 & 4 & 8 & 7 \end{pmatrix}$$

•
$$\sigma = (142536)(7)(8) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 6 & 2 & 3 & 1 & 7 & 8 \end{pmatrix}$$

•
$$\sigma = (142536)(78) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 6 & 2 & 3 & 1 & 8 & 7 \end{pmatrix}$$

•
$$\sigma = (162435)(7)(8) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 4 & 5 & 3 & 1 & 2 & 7 & 8 \end{pmatrix}$$

•
$$\sigma = (162435)(78) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 4 & 5 & 3 & 1 & 2 & 8 & 7 \end{pmatrix}$$

•
$$\sigma = (152634)(7)(8) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 4 & 1 & 2 & 3 & 7 & 8 \end{pmatrix}$$

•
$$\sigma = (152634)(78) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 4 & 1 & 2 & 3 & 8 & 7 \end{pmatrix}$$

Ответ: всего восемь подстановок:

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 1 & 2 & 5 & 6 & 4 & 7 & 8
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 1 & 2 & 5 & 6 & 4 & 7 & 8
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 5 & 6 & 2 & 3 & 1 & 8 & 7
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 5 & 6 & 2 & 3 & 1 & 8 & 7
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 4 & 5 & 3 & 1 & 2 & 7 & 8
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 4 & 5 & 3 & 1 & 2 & 7 & 8
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 4 & 5 & 3 & 1 & 2 & 8 & 7
\end{pmatrix}$$

Задача 7

Найти все подстановки чисел 1, 2, 3, 4, перестановочные с подстановкой

$$S = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

Решение:

Если X – подстановка, перестановочная с S, то $XS = SX \Rightarrow S = XSX^{-1}$.

Пусть X равен

$$X = \begin{pmatrix} 1 & 2 & 3 & 4 \\ x_1 & x_2 & x_3 & x_4 \end{pmatrix}$$

Вычислим произведение (умножение перестановок справа налево):

$$XSX^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ x_1 & x_2 & x_3 & x_4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & 2 & 3 & 4 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ x_1 & x_2 & x_3 & x_4 \end{pmatrix} \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ x_2 & x_1 & x_4 & x_3 \end{pmatrix} = (x_1x_2)(x_3x_4)$$

Так как $S=XSX^{-1}$ и S=(12)(34), выполняется $(12)(34)=(x_1x_2)(x_3x_4)$. Тогда возможны следующие случаи:

$$\begin{cases} (x_1 x_2) = (12) \\ (x_3 x_4) = (34) \end{cases} \quad \text{или} \quad \begin{cases} (x_1 x_2) = (34) \\ (x_3 x_4) = (12) \end{cases}$$

Если $(x_1x_2)=(12)$ и $(x_3x_4)=(34)$, то решения:

$$\begin{bmatrix} x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4 \\ x_1 = 1, x_2 = 2, x_3 = 4, x_4 = 3 \\ x_1 = 2, x_2 = 1, x_3 = 3, x_4 = 4 \\ x_1 = 2, x_2 = 1, x_3 = 4, x_4 = 3 \end{bmatrix}$$

Если $(x_1x_2) = (34)$ и $(x_3x_4) = (12)$, то решения:

$$\begin{bmatrix} x_1 = 3, x_2 = 4, x_3 = 1, x_4 = 2 \\ x_1 = 3, x_2 = 4, x_3 = 2, x_4 = 1 \\ x_1 = 4, x_2 = 3, x_3 = 1, x_4 = 2 \\ x_1 = 4, x_2 = 3, x_3 = 2, x_4 = 1 \end{bmatrix}$$

Получаем 8 подстановок, подставляя полученные x_1, x_2, x_3, x_4 в $X = \begin{pmatrix} 1 & 2 & 3 & 4 \\ x_1 & x_2 & x_3 & x_4 \end{pmatrix}$.

Ответ: всего 8 подстановок:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Задача 8

Найти подстановку X из равенства AXB = C, где

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 2 & 1 & 6 & 5 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 7 & 4 & 5 & 6 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 3 & 6 & 4 & 7 & 2 \end{pmatrix}$$

Решение:

Чтобы найти X домножим выражение справа на B^{-1} и слева на A^{-1} :

$$AXB = C \Leftrightarrow A^{-1}AXBB^{-1} = A^{-1}CB^{-1} \Leftrightarrow X = A^{-1}CB^{-1}$$

Обратную подстановку можно найти перевернув её:

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 2 & 1 & 6 & 5 & 4 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 2 & 7 & 6 & 5 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 7 & 4 & 5 & 6 \end{pmatrix} \Rightarrow B^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4 \end{pmatrix}$$

Вычислим X (умножение подстановок справа налево):

$$X = A^{-1}CB^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 2 & 7 & 6 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 3 & 6 & 4 & 7 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 2 & 7 & 6 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 5 & 4 & 7 & 2 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 6 & 7 & 1 & 3 & 5 \end{pmatrix}$$

Ответ:
$$X = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 6 & 7 & 1 & 3 & 5 \end{pmatrix}$$
.

Задача 9

Найти A^{150} , где

Решение:

Разложи подстановку в произведение независимых циклов:

$$A = (13467)(259810)$$

Оба цикла длины 5. НОК длин циклов равен 5. Значит, при возведении подстановки в степень кратнуюю 5 она будет равна id.

$$A^{150} = A^{5 \cdot 30} = id^{30} = id$$

Ответ: id.

Определители

Теория

Определение. Определителем (детерминантом) порядка n, соответствующим квадратной матрице A называется число, являющееся суммой n! слагаемых:

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn} \sigma \cdot a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)}$$

Свойства определителей:

- 1) $\det A^T = \det A$
- 2) Определитель линеен по строкам (столбцам). Фиксируем i-й столбец, тогда:

a)
$$\det(A_1, \dots, A'_i + A''_i, \dots, A_n) = \det(A_1, \dots, A'_i, \dots, A_n) + \det(A_1, \dots, A''_i, \dots, A_n)$$

b)
$$\det(A_1, \ldots, \alpha A_i', \ldots, A_n) = \alpha \det(A_1, \ldots, A_i', \ldots, A_n)$$

- 3) При перестановке столбцов определитель меняет знак.
- 4) $\det A = 0$, если выполнено хотя бы одно из условий:
 - а) в матрице есть нулевая строка
 - b) в матрице есть 2 одинаковые строки
 - с) одна из строк является линейной комбинацией остальных
- 5) Определитель не меняется, если к любой строке прибавить линейную комбинацию остальных.
- 6) $\det E_n = 1$
- 7) Разложение по строке (столбцу):

Для любого фиксированного j справедливо: $\det A = \sum_{i=1}^n a_{ij} A_{ij}$ – разложение по столбцу.

Для любого фиксированного i справедливо: $\det A = \sum_{j=1}^n a_{ij} A_{ij}$ – разложение по строке.

8) Фальшивое разложение:

$$k \neq i : \sum_{j=1}^{n} a_{ij} A_{kj} = 0$$

 $k \neq j : \sum_{j=1}^{n} a_{ij} A_{ik} = 0$

$$\begin{vmatrix} a_{11} & * & * & \cdots & * \\ 0 & a_{22} & * & \cdots & * \\ 0 & 0 & a_{33} & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \ldots \cdot a_{nn}$$

- 10) Если A и B квадратные матрицы, то для блочной матрицы: $\det \left(\begin{array}{c|c} A & C \\ \hline 0 & B \end{array} \right) = \det A \cdot \det B$
- 11) $\forall A, B \in M_n(\mathbb{R}) \det(A \cdot B) = \det A \cdot \det B$

Задача 10

Подобрать j и i так, чтобы произведение $a_{32}a_{16}a_{2i}a_{53}a_{45}a_{6j}a_{77}$ входило в определитель 7 порядка со знаком минус.

Решение:

Знак слагаемого определяется знаком подстановки, т.е. количеством инверсий в ней. Если оно чётное, то слагаемое входит со знаком +, иначе со знаком -.

Запишем подстановку:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & i & 2 & 5 & 3 & j & 7 \end{pmatrix}$$

Определим какие столбцы ещё не вошли в произведение, учитывая, что каждый из столбцов $1, 2, \ldots, 7$ должен войти в него ровно один раз. Это столбцы 1 и 4.

Рассмотрим случай, когда i = 1, j = 4:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 1 & 2 & 5 & 3 & 4 & 7 \end{pmatrix}$$

Посчитаем количество инверсий:

- Для числа 6: 5 инверсий (числа 1, 2, 3, 4, 5 меньше 6, но стоят правее, чем 6).
- Для числа 1: 0 инверсий.
- Для числа 2: 0 инверсий.
- Для числа 5: 2 инверсии (числа 3, 4 меньше 5, но стоят правее, чем 5).
- Для числа 3: 0 инверсий.
- Для числа 4: 0 инверсий.
- Для числа 7: 0 инверсий.

Итого 5+0+0+2+0+0+0=7 инверсий в подстановке, она нечётная. Тогда слагаемое $a_{32}a_{16}a_{21}a_{53}a_{45}a_{64}a_{77}$ входит в определитель со знаком -.

Осталось рассмотреть случай, когда i = 4, j = 1:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 4 & 2 & 5 & 3 & 1 & 7 \end{pmatrix}$$

Для данной подстановки количество инверсий будет равно:

- Для числа 6: 5 инверсий (числа 1, 2, 3, 4, 5 меньше 6, но стоят правее, чем 6).
- Для числа 4: 3 инверсий (числа 1, 2, 3 меньше 4, но стоят правее, чем 4).
- Для числа 2: 1 инверсия (число 1 меньше 2, но стоит правее, чем 2).
- Для числа 5: 2 инверсии (числа 1, 3 меньше 5, но стоят правее, чем 5).
- Для числа 3: 1 инверсия (число 1 меньше 3, но стоит правее, чем 3).
- Для числа 1: 0 инверсий.
- Для числа 7: 0 инверсий.

Общее количество инверсий будет равно: 5+3+1+2+1+0+0=12 – чётное число. Таким образом, слагаемое при $i=4,\ j=1$ входит в определитель со знаком +.

Ответ: i = 4, j = 1.

Задача 11

Как изменится определитель, если к каждому столбцу, начиная со второго, прибавить предыдущий столбец и в то же время к первому столбцу прибавить последний.

Решение:

Пусть A_1, \ldots, A_n – столбцы матрицы A. Обозначим $\det A = \det(A_1, \ldots, A_n)$. Тогда искомый определитель $\det(A_1 + A_n, A_1 + A_2, \ldots, A_{n-1} + A_n) = \det B$ (обозначим матрицу искомого определителя B). Определитель линеен по столбцам (строкам), поэтому при последовательном вычитании из каждого столбца предыдущего, он не изменится:

$$\det B = \det(A_1 + A_n, A_1 + A_2, A_2 + A_3, \dots, A_{n-2} + A_{n-1}, A_{n-1} + A_n) =$$

$$\stackrel{\text{II}-I}{=} \det(A_1 + A_n, A_2 - A_n, A_2 + A_3, \dots, A_{n-2} + A_{n-1}, A_{n-1} + A_n) =$$

$$\stackrel{\text{III}-III}{=} \det(A_1 + A_n, A_2 - A_n, A_3 + A_n, \dots, A_{n-2} + A_{n-1}, A_{n-1} + A_n) = \dots$$

$$= \det(A_1 + A_n, A_2 - A_n, A_3 + A_n, \dots, A_{n-1} + (-1)^{(n-1)-1}A_n, A_n + (-1)^{n-1}A_n) =$$

$$= \det(A_1 + A_n, \dots, A_n + (-1)^{n-1}A_n)$$

Если n – чётное, то определитель будет равен

$$\det B = \det(A_1 + A_n, \dots, A_n - A_n) = \det(A_1 + A_n, \dots, 0) = 0$$

Если n – нечётное, тогда

$$\det B = \det(A_1 + A_n, \dots, A_n + A_n) = \det(A_1 + A_n, \dots, 2A_n) = 2\det(A_1 + A_n, \dots, A_n)$$

Прибавим к чётным столбцам последний столбец (столбец A_n), а из нечётных вычтем:

$$\det B = 2 \det(A_1 + A_n, A_2 - A_n, A_3 + A_n, \dots, A_{n-1} - A_n, A_n) =$$

$$= 2 \det(A_1, A_2, A_3, \dots, A_{n-1}, A_n) = 2 \det A$$

Ответ: при нечётном n определитель $\det B = 2 \det A$; при чётном n определитель $\det B = 0$.

Задача 12

Как изменится определитель порядка n, если его матрицу повернуть на 90° вокруг «центра».

Решение:

Пусть A – исходная матрица. Пусть $A_{90^{\circ}}$ – повёрнутая на 90° вокруг «центра» матрица A.

При повороте A на 90° вокруг «центра» строки матрицы A перейдёт в следующие столбцы матрицы $A_{90^{\circ}}$:

- 1-я строка из $A \leadsto n$ -й столбец в A_{90°
- ullet 2-я строка из $A \leadsto (n-1)$ -й столбец в A_{90°
- ...
- *n*-я строка

При транспонировании A строки матрицы A перейдёт в следующие столбцы матрицы A^T :

- 1-я строка из $A \leadsto 1$ -й столбец в A^T
- 2-я строка из $A \leadsto (n-1)$ -й столбец в A^T
- ..
- n-я строка из $A \leadsto n$ -й столбец в A^T

Таким образом, матрица $A_{90^{\circ}}$ отличается от A^T только тем, что у неё столбцы расположены в обратном порядке.

Зная, что $\det A = \det A^T$, можем приведением A_{90° к A^T перестановкой столбцов, найти $\det A_{90^\circ}$. Переставим 1-й и n-й, 2-й и (n-1)-й, 3-й и (n-2)-й, . . . столбцы. Всего будет сделано $\left\lfloor \frac{n}{2} \right\rfloor$ перестановок. Значит, искомый определитель будет равен

$$\det A_{90^{\circ}} = (-1)^{\left\lfloor \frac{n}{2} \right\rfloor} \det A^{T} = (-1)^{\left\lfloor \frac{n}{2} \right\rfloor} \det A$$

Ответ: $(-1)^{\left\lfloor \frac{n}{2} \right\rfloor} \det A$.

Задача 13

Решить неравенство

$$\begin{vmatrix} x & 2 & 1 & 1 \\ 4 & 1 & 2 & -2 \\ -1 & 1 & 1 & 2 \\ 3 & 4 & 1 & 2 \end{vmatrix} \leqslant -50$$

Решение:

Преобразуем определитель:

$$\begin{vmatrix} x & 2 & 1 & 1 \\ 4 & 1 & 2 & -2 \\ -1 & 1 & 1 & 2 \\ 3 & 4 & 1 & 2 \end{vmatrix} \xrightarrow{\text{IV} + 3 \text{ III} \to \text{IV}} \begin{vmatrix} x & 2 & 1 & 1 \\ 0 & 5 & 6 & 6 \\ -1 & 1 & 1 & 2 \\ 0 & 7 & 4 & 8 \end{vmatrix}$$

Данные определители равны, так как при прибавлении к строке линейной комбинации других строк, она не изменяется.

Посчитаем определитель, разложив его по первому столбцу:

$$\begin{vmatrix} x & 2 & 1 & 1 \\ 0 & 5 & 6 & 6 \\ -1 & 1 & 1 & 2 \\ 0 & 7 & 4 & 8 \end{vmatrix} = x \cdot \begin{vmatrix} 5 & 6 & 6 \\ 1 & 1 & 2 \\ 7 & 4 & 8 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 1 & 1 \\ 5 & 6 & 6 \\ 7 & 4 & 8 \end{vmatrix} = 18x - 28$$

Промежуточные вычисления:

$$\begin{vmatrix} 5 & 6 & 6 \\ 1 & 1 & 2 \\ 7 & 4 & 8 \end{vmatrix} \xrightarrow{\text{III} - 7 \text{ I} \to \text{III}} \begin{vmatrix} 0 & 1 & -4 \\ 1 & 1 & 2 \\ 0 & -3 & -6 \end{vmatrix} = -1 \cdot \begin{vmatrix} 1 & -4 \\ -3 & -6 \end{vmatrix} = 18$$

по 1-му столбцу

$$\begin{vmatrix} 2 & 1 & 1 \\ 5 & 6 & 6 \\ 7 & 4 & 8 \end{vmatrix} \begin{array}{c} = \begin{vmatrix} 2 & 5 & 7 \\ 1 & 6 & 4 \\ 1 & 6 & 8 \end{vmatrix} \stackrel{\text{III} - 1 \to \text{III}}{\underset{1 - 2\text{II} \to \text{I}}{\text{III}}} \begin{vmatrix} 0 & -7 & -1 \\ 1 & 6 & 4 \\ 0 & 0 & 4 \end{vmatrix} \stackrel{\text{I} \leftrightarrow \text{III}}{=} \begin{vmatrix} 1 & 6 & 4 \\ 0 & -7 & -1 \\ 0 & 0 & 4 \end{vmatrix} = 1 \cdot (-7) \cdot 4 = 28$$

транспонируем

Решим неравенство:

$$18x - 28 \leqslant -50 \iff x \leqslant -\frac{11}{9}$$

Ответ: $x \le -\frac{11}{9}$.

Задача 14

Вычислите определитель матрицы порядка n:

Решение:

Обозначим исходный определитель как Δ_n . Разложим его по первой строке:

$$\Delta_n = \begin{vmatrix} 5 & 2 & 0 & 0 & 0 & \dots & 0 & 0 \\ 3 & 5 & 2 & 0 & 0 & \dots & 0 & 0 \\ 0 & 3 & 5 & 2 & 0 & \dots & 0 & 0 \\ 0 & 0 & 3 & 5 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \dots & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & \dots & 3 & 5 \end{vmatrix} = 5 \cdot \begin{vmatrix} 5 & 2 & 0 & 0 & \dots & 0 & 0 \\ 3 & 5 & 2 & 0 & \dots & 0 & 0 \\ 0 & 3 & 5 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 5 & 2 \\ 0 & 0 & 0 & 0 & \dots & 3 & 5 \end{vmatrix} - 2 \cdot \begin{vmatrix} 3 & 2 & 0 & 0 & \dots & 0 & 0 \\ 0 & 5 & 2 & 0 & \dots & 0 & 0 \\ 0 & 3 & 5 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 5 & 2 \\ 0 & 0 & 0 & 0 & \dots & 3 & 5 \end{vmatrix}$$

Заметим, что первое слагаемое – исходный определитель, но порядка n-1. Обозначим его Δ_{n-1} . Разложим определитель во втором слагаемом по первому столбцу:

$$\Delta_n = 5\Delta_{n-1} - 2 \cdot \begin{vmatrix} 3 & 2 & 0 & 0 & \dots & 0 & 0 \\ 0 & 5 & 2 & 0 & \dots & 0 & 0 \\ 0 & 3 & 5 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 5 & 2 \\ 0 & 0 & 0 & 0 & \dots & 3 & 5 \end{vmatrix} = 5\Delta_{n-1} - 2 \cdot 3 \cdot \begin{vmatrix} 5 & 2 & 0 & \dots & 0 & 0 \\ 3 & 5 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 5 & 2 \\ 0 & 0 & 0 & \dots & 3 & 5 \end{vmatrix}$$

Определитель во втором слагаемом аналогичен исходному, но порядка n-2. Тогда получаем рекуррентное соотношение:

$$\Delta_n = 5\Delta_{n-1} - 6\Delta_{n-2}$$

Найдём такие t, что последовательность t^n удовлетворяет рекуррентному соотношению. Составим и решим характеристическое уравнение этого соотношения:

$$t^{2} - 5t + 6 = 0 \Leftrightarrow (t - 2)(t - 3) = 0 \Leftrightarrow \begin{bmatrix} t_{1} = 2 \\ t_{2} = 3 \end{bmatrix}$$

Первые два члена рекуррентной последовательности:

$$\Delta_1 = |5| = 5, \ \Delta_2 = \begin{vmatrix} 5 & 2 \\ 3 & 5 \end{vmatrix} = 19$$

Найдём такие c_1 и c_2 , что линейная комбинация $2^n c_1 + 3^n c_2 = \Delta_n$. Решим систему:

$$\begin{cases} 2c_1 + 3c_2 = 5 \\ 2^2c_1 + 3^2c_2 = 19 \end{cases} \Leftrightarrow \begin{cases} 2c_1 + 3c_2 = 5 \\ 4c_1 + 9c_2 = 19 \end{cases} \Leftrightarrow \begin{cases} c_1 = -2 \\ c_2 = 3 \end{cases}$$

Таким образом, $\Delta_n = -2 \cdot 2^n + 3 \cdot 3^n = -2^{n+1} + 3^{n+1}$.

Ответ: $\Delta_n = -2^{n+1} + 3^{n+1}$.

Задача 15

Вычислите определитель матрицы:

$$\begin{vmatrix} 2 & 1 & 0 & \dots & 0 \\ 1 & 2 & 1 & \dots & 0 \\ 0 & 1 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 2 \end{vmatrix}$$

Решение:

Обозначим исходный определитель как Δ_n . Разложим его по первой строке:

$$\Delta_{n} = \begin{vmatrix} 2 & 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 & 2 \end{vmatrix} = 2 \cdot \begin{vmatrix} 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 2 \end{vmatrix}$$

Определитель в первом слагаемом аналогичен определителю Δ_n , но только он порадка n-1.

Разложим определитель во втором слагаемом по первому столбцу:

$$\Delta_{n} = 2\Delta_{n-1} - \begin{vmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 2 \end{vmatrix} = 2\Delta_{n-1} - 1 \cdot \begin{vmatrix} 2 & 1 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 2 & 1 \\ 0 & 0 & 0 & \dots & 1 & 2 \end{vmatrix} = 2\Delta_{n-1} - \Delta_{n-2}$$

Найдём явное выражение рекуррентного соотношения, заданного формулой $\Delta_n = 2\Delta_{n-1} - \Delta_{n-2}$, при помощи характеристического уравнения:

$$t^2 - 2t + t = 0 \Leftrightarrow \begin{bmatrix} t_1 = 1 \\ t_2 = 1 \end{bmatrix}$$

Так как корни совпали, последовательность рекуррентных членов задаётся следующей формулой: $\Delta_n = t_1^n c_1 + t_1^n n c_2 = 1^n c_1 + 1^n n c_2 = c_1 + n c_2$.

Первые два члена рекуррентной последовательности:

$$\Delta_1 = \left| 2 \right| = 2, \ \Delta_2 = \left| \begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right| = 3$$

Составив систему, найдём c_1 и c_2 :

$$\begin{cases} 1 \cdot c_1 + 1 \cdot c_2 = 2 \\ 1^2 \cdot c_1 + 1^2 \cdot 2 \cdot c_2 = 3 \end{cases} \Leftrightarrow \begin{cases} c_1 + c_2 = 2 \\ c_1 + 2c_2 = 3 \end{cases} \Leftrightarrow \begin{cases} c_1 = 1 \\ c_2 = 1 \end{cases}$$

Значит, $\Delta_n = 1 \cdot 1^n + 1 \cdot n \cdot 1^n = 1 + n$.

Ответ: $\Delta_n = 1 + n$.

Задача 16

Вычислите определитель матрицы:

$$\begin{vmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{vmatrix}$$

Решение:

Вычтем из строк с номерами от 1 до n-1 последнюю строку:

$$\begin{vmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & \dots & 1 \\ 0 & -1 & 0 & \dots & 1 \\ 0 & 0 & -1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{vmatrix}$$

Теперь к последней строке прибавим все строки с номерами от 1 до n-1. В результате все элементы последней строки станут равны 0, а последний элемент будет равен n-1:

$$\begin{vmatrix} -1 & 0 & 0 & \dots & 1 \\ 0 & -1 & 0 & \dots & 1 \\ 0 & 0 & -1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & \dots & 1 \\ 0 & -1 & 0 & \dots & 1 \\ 0 & 0 & -1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & n-1 \end{vmatrix} = (-1)^{n-1}(n-1)$$

Ответ: $(-1)^{n-1}(n-1)$.

Задача 17

Вычислить определитель приведением к треугольному виду:

$$\begin{vmatrix} 3 & 2 & 2 & \dots & 2 \\ 2 & 3 & 2 & \dots & 2 \\ 2 & 2 & 3 & \dots & 2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2 & 2 & 2 & \dots & 3 \end{vmatrix}$$

Решение:

Из каждой строки с номерами от 1 до n-1 вычтем последнюю строку:

$$\begin{vmatrix} 3 & 2 & 2 & \dots & 2 \\ 2 & 3 & 2 & \dots & 2 \\ 2 & 2 & 3 & \dots & 2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2 & 2 & 2 & \dots & 3 \end{vmatrix} \xrightarrow{I-II\to I} \begin{vmatrix} 1 & 0 & 0 & \dots & -1 \\ 0 & 1 & 0 & \dots & -1 \\ 0 & 0 & 1 & \dots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2 & 2 & 2 & \dots & 3 \end{vmatrix}$$

Из последней строки вычтем удвоенные строки с номерами от 1 до n-1. В правом нижнем углу будет стоять элемент, равный 3+2(n-1)=2n+1, так как из 3 вычтем n-1 раз число $2\cdot (-1)=-2$.

$$\begin{vmatrix} 1 & 0 & 0 & \dots & -1 \\ 0 & 1 & 0 & \dots & -1 \\ 0 & 0 & 1 & \dots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2 & 2 & 2 & \dots & 3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \dots & -1 \\ 0 & 1 & 0 & \dots & -1 \\ 0 & 0 & 1 & \dots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 2n+1 \end{vmatrix} = 1^{n-1} \cdot (2n+1) = 2n+1$$

Ответ: 2n + 1.

Задача 18

Доказать, что n-й член ряда Фибоначчи равен определителю n-го порядка:

$$\begin{vmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & 0 & \dots & -1 & 1 \end{vmatrix}$$

Решение:

Ряд Фибоначчи задаётся следующей рекуррентной формулой:

$$F_n = F_{n-1} + F_{n-2}$$

Его первые члены $F_1 = 1, F_2 = 2.$

Вычислим первые члены определителя. Т.е. определители порядка 1 и 2:

$$\Delta_1 = \left| 1 \right| = 1, \ \Delta_2 = \left| \begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right| = 2$$

Найдем рекуррентную формулу определителя. Разложим его по первой строке:

$$\begin{vmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & 0 & \dots & -1 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 1 & 0 & \dots & 0 & 0 \\ -1 & 1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & \dots & -1 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & \dots & -1 & 1 \end{vmatrix}$$

Обозначим определитель порядка n как Δ_n . Заметим, что первое слагаемое – это такое же как и исходный определитель, но только порядка n-1. Обозначим его Δ_{n-1} . Разложим определитель из второго слагаемого по первому столбцу:

$$\Delta_{n} = \Delta_{n-1} - \begin{vmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & \dots & -1 & 1 \end{vmatrix} = \Delta_{n-1} - (-1) \cdot \begin{vmatrix} 1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & \dots & -1 & 1 \end{vmatrix} = \Delta_{n-1} + \Delta_{n-2}$$

Рекуррентная формула определителя такая же, как и ряда Фибоначчи; первые два члена обоих рядов совпадают. Значит, данный определитель задаёт ряд Фибоначчи.

Задача 19

Вычислить определитель методом представления в виде суммы определителей:

$$\begin{vmatrix} 1 + x_1 & 1 + x_1^2 & \dots & 1 + x_1^n \\ 1 + x_2 & 1 + x_2^2 & \dots & 1 + x_2^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 + x_n & 1 + x_n^2 & \dots & 1 + x_n^n \end{vmatrix}$$

Решение:

Допишем к определителю строчку из единицы и нулей и столбец с единицами.

$$\begin{vmatrix} 1+x_1 & 1+x_1^2 & \dots & 1+x_1^n \\ 1+x_2 & 1+x_2^2 & \dots & 1+x_2^n \\ \vdots & \vdots & \ddots & \vdots \\ 1+x_n & 1+x_n^2 & \dots & 1+x_n^n \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1+x_1 & 1+x_1^2 & \dots & 1+x_1^n \\ 1 & 1+x_2 & 1+x_2^2 & \dots & 1+x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1+x_n & 1+x_n^2 & \dots & 1+x_n^n \end{vmatrix}$$

Так можно сделать, ведь раскладывая по строке, получаем исходный определитель.

Вычтем первый столбец из всех отальных:

$$\begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1+x_1 & 1+x_1^2 & \dots & 1+x_1^n \\ 1 & 1+x_2 & 1+x_2^2 & \dots & 1+x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1+x_n & 1+x_n^2 & \dots & 1+x_n^n \end{vmatrix} = \begin{vmatrix} 1 & -1 & -1 & \dots & -1 \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix}$$

Воспользуемся линейностью определителя по строкам и разложим его по первой строке следующим образом:

$$\begin{vmatrix} 1 & -1 & -1 & \dots & -1 \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} = \begin{vmatrix} 2 & 0 & 0 & \dots & 0 \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} - \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix}$$

Разложим первое слагаемое по строке:

$$\begin{vmatrix} 2 & 0 & 0 & \dots & 0 \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} = 2 \cdot \begin{vmatrix} x_1 & x_1^2 & \dots & x_1^n \\ x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \ddots & \vdots \\ x_n & x_n^2 & \dots & x_n^n \end{vmatrix} = 2 \prod_{1 \le i \le n} x_i \cdot \begin{vmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^{n-1} \end{vmatrix}$$

Получаем определитель Вандермонда, умноженный на $2\prod_{1\leqslant i\leqslant n}x_i$. Таким образом, этот определитель равен $2\prod_{1\leqslant i\leqslant n}x_i\prod_{1\leqslant i\leqslant n}(x_i-x_j)$.

Найдём, чему равен определитель из второго слагаемого. Последовательно вычтем из каждого столбца его предыдущий. Т.е. сначала вычтем из n-го столбца (n-1)-й, из (n-1)-го столбца вычтем (n-2)-й столбец и так далее.

$$\begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & x_1 - 1 & x_1^2 - x_1 & \dots & x_1^n - x_1^{n-1} \\ 1 & x_2 - 1 & x_2^2 - x_2 & \dots & x_2^n - x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n - 1 & x_n^2 - x_n & \dots & x_n^n - x_n^{n-1} \end{vmatrix}$$

Полученный определитель разложим по первой строке и вынесем из каждой строки множитель x_i-1 :

$$\begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & x_1 - 1 & x_1^2 - x_1 & \dots & x_1^n - x_1^{n-1} \\ 1 & x_2 - 1 & x_2^2 - x_2 & \dots & x_2^n - x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n - 1 & x_n^2 - x_n & \dots & x_n^n - x_n^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & x_1 - 1 & (x_1 - 1)x_1 & \dots & (x_1 - 1)x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n - 1 & (x_n - 1)x_1 & \dots & (x_n - 1)x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n - 1 & (x_n - 1)x_n & \dots & (x_n - 1)x_n^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & x_1 - 1 & (x_1 - 1)x_1 & \dots & (x_1 - 1)x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n - 1 & (x_n - 1)x_n & \dots & (x_n - 1)x_n^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^{n-1} \end{vmatrix} =$$

$$= \prod_{1 \le i \le n} (x_i - 1) \prod_{1 \le j < i \le n} (x_i - x_j)$$

Таким образом, исходный определитель будет равен:

$$\begin{vmatrix} 1 & -1 & -1 & \dots & -1 \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} = 2 \prod_{1 \le i \le n} x_i \prod_{1 \le j < i \le n} (x_i - x_j) - \prod_{1 \le i \le n} (x_i - 1) \prod_{1 \le j < i \le n} (x_i - x_j) = \prod_{1 \le j < i \le n} (x_i - x_j) \left(2 \prod_{1 \le i \le n} x_i - \prod_{1 \le i \le n} (x_i - 1) \right)$$

Ответ:
$$\prod_{1 \le i \le i \le n} (x_i - x_j) \left(2 \prod_{1 \le i \le n} x_i - \prod_{1 \le i \le n} (x_i - 1) \right).$$

Ранг матрицы

Теория

Определение. Минором k-го порядка матрицы A называют определитель матрицы, составленной из элементов, стоящих на пересечении произвольных k строк и k столбцов из матрицы A.

Обозначение. $M^{j1...jk}_{i1...ik}$ – номера столбцов — минор k-го порядка.

$$Пример.$$
 Для $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$ минор второго порядка $M_{23}^{12} = \begin{vmatrix} 2 & 3 \\ 6 & 7 \end{vmatrix} = -4$

Определение. Рангом матрицы называют наивысший порядок отличного от 0 минора.

Пример.
$$A = \begin{pmatrix} 5 & 5 & 5 \\ 2 & 2 & 2 \end{pmatrix}$$
, $\operatorname{Rg} A = 1$, $M_2^1 = 2 \neq 0$

Свойства ранга:

- 1) $\operatorname{Rg} A^T = \operatorname{Rg} A$.
- 2) Элементарные преобразования строк не меняют ранг матрицы.

Методы нахождения ранга:

- І. Элементарные преобразования:
 - 1) методом Гаусса приводим к ступенчатому виду: $A \sim A_{\text{ступ}}$.
 - 2) $\operatorname{Rg} A_{\text{ступ.}} =$ число ненулевых стррок
 - 3) $\operatorname{Rg} A = \operatorname{Rg} A_{\text{ступ.}}$
- II. Метод окаймляющих миноров

Определение. N (минор) называют окаймляющим для минора M, если N получается добавлением к M одной новой строки и одного нового столбца матрицы A.

Задача 20

Найти ранг матрицы при всевозможных значениях параметра λ :

$$A = \begin{pmatrix} 3 & 3 & -1 & 5 \\ -1 & -2 & -1 & 3 \\ -4 & -5 & \lambda & -2 \\ -7 & -8 & 1 & \lambda - 7 \end{pmatrix}$$

Решение:

Приведём матрицу к ступенчатому виду:

$$\begin{pmatrix} 3 & 3 & -1 & 5 \\ -1 & -2 & -1 & 3 \\ -4 & -5 & \lambda & -2 \\ -7 & -8 & 1 & \lambda - 7 \end{pmatrix} \xrightarrow{\stackrel{I+3II \to I}{IV - 7II \to IV}} \begin{pmatrix} 0 & -3 & -4 & 14 \\ -1 & -2 & -1 & 3 \\ 0 & 3 & \lambda + 4 & -14 \\ 0 & 6 & 8 & \lambda - 28 \end{pmatrix} \xrightarrow{\stackrel{I \leftrightarrow II}{III - 4II \to III}} \begin{pmatrix} -1 & -2 & -1 & 3 \\ 0 & 3 & \lambda + 4 & -14 \\ 0 & 6 & 8 & \lambda - 28 \end{pmatrix} \xrightarrow{\stackrel{IV+2II \to IV}{III + II \to III}} \begin{pmatrix} -1 & -2 & -1 & 3 \\ 0 & -3 & -4 & 14 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$$

Если $\lambda \neq 0$, то в ступенчатом виде матрицы будет 4 ненулевых строки. Значит, $\operatorname{Rg} A = 4$. При $\lambda = 0$ две последние строки будут нулевыми, и тогда $\operatorname{Rg} A = 2$.

Ответ: при $\lambda \neq 0$ ранг равен $\operatorname{Rg} A = 4$; при $\lambda = 0$ ранг равен $\operatorname{Rg} A = 2$.

Интерполяционный многочлен Лагранжа

Теория

Теорема. Пусть x_1, \ldots, x_n и y_1, \ldots, y_n – какие-то числа. Тогда существует единственный многочлен f степени $\leqslant n-1$ такой, что $f(x_1)=y_1,\ldots,f(x_n)=y_n$.

Задача 21

Найти многочлен 3-й степени f(x), для которого

$$f(-1) = 0, f(1) = 4, f(2) = 3, f(3) = 16$$

Решение:

По теореме при данных четырёх значениях многочлена f существует единственный многочлен степени не большей 4-1=3.

Тогда пусть $f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$, где a_0, a_1, a_2, a_3 – искомые коэффициенты.

Подставим в многочлен точки, которые нам даны:

$$\begin{cases} f(-1) = 0 = a_3 \cdot (-1)^3 + a_2 \cdot (-1)^2 + a_1 \cdot (-1) + a_0 \\ f(1) = 4 = a_3 \cdot 1^3 + a_2 \cdot 1^2 + a_1 \cdot 1 + a_0 \\ f(2) = 3 = a_3 \cdot 2^3 + a_2 \cdot 2^2 + a_1 \cdot 2 + a_0 \\ f(3) = 16 = a_3 \cdot 3^3 + a_2 \cdot 3^2 + a_1 \cdot 3 + a_0 \end{cases} \Leftrightarrow \begin{cases} -a_3 + a_2 - a_1 + a_0 = 0 \\ a_3 + a_2 + a_1 + a_0 = 4 \\ 8a_3 + 4a_2 + 2a_1 + a_0 = 8 \\ 27a_3 + 9a_2 + 3a_1 + a_0 = 16 \end{cases}$$

Решим эту систему методом Гаусса:

Таким образом, решением системы будет:

$$\begin{cases} a_3 = 2 - a_1 \\ a_2 = -5 \\ -2a_1 = 0 \\ a_0 = 7 \end{cases} \Leftrightarrow \begin{cases} a_3 = 2 \\ a_2 = -5 \\ a_1 = 0 \\ a_0 = 7 \end{cases}$$

Получаем многочлен третьей степени $f(x) = 2x^3 - 5x^2 + 7$. **Ответ:** $f(x) = 2x^3 - 5x^2 + 7$.

Подстановка матрицы в уравнение

Задача 22

Доказать, что матрица
$$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 удовлетворяет уравнению
$$x^2-(a+d)x+ad-bc=0$$

Решение:

Подставим матрицу A вместо x.

$$A^{2} - (a+d) \cdot A + ad - bc = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{2} - (a+d) \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} + (ad - bc) \cdot E =$$

$$= \begin{pmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{pmatrix} - \begin{pmatrix} a^{2} + ad & ab + bd \\ ac + cd & ad + d^{2} \end{pmatrix} + \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} =$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

Равенство доказано.

Разложения матриц

Теория

Определение. LU-разложение матрицы A – это представление матрицы A в виде произведения A = LU, где L – нижняя треугольная матрица, U – верхняя треугольная или ступенчатая матрица.

Определение. Скелетное разложение матрицы A порядка $m \times n$ и ранга r – это представление матрицы A в виде произведения двух матриц B и C, где B – $(m \times r)$ -матрица, C – $r \times n$ -матрица, и $\operatorname{Rg} B = r$, $\operatorname{Rg} C = r$.

Задача 23

Можно ли заданную матрицу A представить в виде A = LU, где L – нижнетреугольная матрица с единицами на главной диагонали, а U – верхнетреугольная матрица? Если такое разложение возможно, то предъявите его, если нет, то объясните почему.

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 1 & 0 & 4 \end{pmatrix}$$

Решение:

LU-разложение существует только в том случае, когда матрица A обратима, а все ведущие (угловые) главные миноры матрицы A невырождены. Проверим эти условия.

Главные угловые миноры:

$$\det M_1^1 = \left| 1 \right| = 1 \neq 0$$

$$\det M_{12}^{12} = \left| 1 \quad 2 \right| = -1 \neq 0$$

$$\det M_{132}^{123} = \left| 1 \quad 2 \quad -3 \right| = 11 \neq 0$$

$$\det M_{132}^{123} = \left| 1 \quad 2 \quad -3 \right| = 11 \neq 0$$

Они невырожденые. Так как $A=M_{123}^{123},$ то $\det A=11\neq 0,$ и A обратима. Таким образом, для матрицы A существует LU-разложение.

Найдём матрицу U. Для этого приведём A элементарными преобразованиями к ступенчатому верхнетреугольному виду:

$$\begin{pmatrix} 1 & 2 & -3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 4 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{III - I} \to \text{III}} \begin{pmatrix} 1 & 2 & -3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -2 & 7 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{\text{III + 2II} \to \text{III}} \begin{pmatrix} 1 & 2 & -3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 11 & -1 & 2 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 11 \end{pmatrix}, \ L^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 0 \end{pmatrix}$$

Найдём L с помощью матрицы $(L^{-1}|E)$:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & 2 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{III} + \text{I} \to \text{III}} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix}$$

Проверка:

$$LU = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 11 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 1 & 0 & 4 \end{pmatrix} = A$$

Ответ:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 11 \end{pmatrix}.$$

Задача 24

Построить скелетное разложение (разложение полного ранга) матрицы:

$$A = \begin{pmatrix} 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \\ -2 & -5 & -4 \end{pmatrix}$$

Решение:

Найдём ранг матрицы A методом Гаусса:

$$\begin{pmatrix} 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \\ -2 & -5 & -4 \end{pmatrix} \xrightarrow{\text{IV} + \text{III} \to \text{IV}} \begin{pmatrix} 6 & 3 & 0 \\ 0 & 0 & 0 \\ 2 & 5 & 4 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{I} - 3\text{II} \to \text{III}} \begin{pmatrix} 0 & -12 & -12 \\ 0 & 0 & 0 \\ 2 & 5 & 4 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \text{Rg } A = 2$$

Построим матрицу C из л.н.з. строк матрицы A:

$$C = \begin{pmatrix} 6 & 3 & 0 \\ 2 & 5 & 4 \end{pmatrix}$$

Вычислим псевдообратную C^+ к матрице C:

$$C^{T} = \begin{pmatrix} 6 & 2 \\ 3 & 5 \\ 0 & 4 \end{pmatrix}, \quad CC^{T} = \begin{pmatrix} 6 & 3 & 0 \\ 2 & 5 & 4 \end{pmatrix} \begin{pmatrix} 6 & 2 \\ 3 & 5 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 45 & 27 \\ 27 & 45 \end{pmatrix}$$
$$(CC^{T})^{-1} = \frac{1}{(45^{2} - 27^{2})} \begin{pmatrix} 45 & -27 \\ -27 & 45 \end{pmatrix} = \begin{pmatrix} \frac{5}{144} & -\frac{1}{48} \\ -\frac{1}{48} & \frac{5}{144} \end{pmatrix}$$
$$C^{+} = C^{T}(CC^{T})^{-1} = \begin{pmatrix} 6 & 2 \\ 3 & 5 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} \frac{5}{144} & -\frac{1}{48} \\ -\frac{1}{48} & \frac{5}{144} \end{pmatrix} = \begin{pmatrix} \frac{1}{6} & -\frac{1}{18} \\ 0 & \frac{1}{9} \\ 1 & 5 \end{pmatrix}$$

Тогда матрица B будет:

$$B = AC^{+} = \begin{pmatrix} 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \\ -2 & -5 & -4 \end{pmatrix} \begin{pmatrix} \frac{1}{6} & -\frac{1}{18} \\ 0 & \frac{1}{9} \\ -\frac{1}{12} & \frac{5}{36} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{pmatrix}$$

Проверка:

$$BC = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 6 & 3 & 0 \\ 2 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \\ -2 & -5 & -4 \end{pmatrix} = A$$

Ответ:
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 6 & 3 & 0 \\ 2 & 5 & 4 \end{pmatrix}$$
.

Алгебра. Задачи 1 Арунова Анастасия

Удачи!

Это Ларсик – самый крутой пёсик на $\Phi KHe!$