Introduction to Cryptography Solution to Maman 15

Yehuda Lindell

November 11, 2007

Solution 1: Let the public-key for El-Gamal be (p, α, β) where $\beta = \alpha^a$. Then, an encryption of x is a pair (y_1, y_2) where $y_1 = \alpha^k$ and $y_2 = \beta^k \cdot x$. (All computations here are of course modulo p.) Now, given (y_1, y_2) it holds that $(y_1, 2y_2)$ is an encryption of 2x. This is because $2y_2 = 2\beta^k \cdot x = \beta^k \cdot 2x$. Thus, $y_2/y_1^a = 2x$ as required.

Solution 2: Diffie-Hellman is only secure for an eavesdropping adversary. If there is an active adversary \mathcal{A} who can carry out a man-in-the-middle attack, then it can do the following. When Alice sends $\alpha = g^a$ it intercepts this, chooses its own a' and sends Bob the value $\alpha' = g^{a'}$. (As usual, all computations are modulo p.) When Bob receives α' he chooses a value b and sends $\beta = g^b$ to Alice. However, once again, the adversary \mathcal{A} intercepts β , chooses its own b', computes $\beta' = g^{b'}$ and sends β' to Alice.

Now, Alice computes $K_A = \beta'^a = g^{ab'}$ and Bob computes $K_B = g^{a'b}$. However, the adversary \mathcal{A} can compute $\alpha^{b'} = g^{ab'} = K_A$ and $\beta^{a'} = g^{a'b} = K_B$. Therefore, the adversary knows both keys that Alice and Bob generate. If Alice sends $E_{K_A}(m)$ for Bob, then \mathcal{A} can decrypt it (learning m) and if it wishes, it can re-encrypt it under K_B so that Alice and Bob will not even know that anything happened.

Solution 3: Let $y = x^{\alpha} \mod p$. Then, given α , y and p, the first thing to do is to compute the inverse of $\alpha \mod p - 1$. We know that such an inverse exists because $\alpha \in \mathsf{Z}_{p-1}^*$ (see page 163 of the course book at the bottom). Let β denote this inverse of α . Then, just like in the RSA cryptosystem, it holds that

$$(x^{\alpha})^{\beta} \mod p = x^{\alpha \cdot \beta \mod \phi(p)} \mod p = x^{\alpha \cdot \beta \mod p - 1} \mod p = x^1 \mod p = x$$

Since finding the inverse of α can be done efficiently, and raising y to the power of β can be done efficiently, we have that this problem is not at all hard.

Solution 4:

1. Let OracleDDH be an oracle that solves the DDH problem. Let (α, β) be the public-key. Given an El-Gamal ciphertext $y = (y_1, y_2)$, we wish to know if y is an encryption of x_1 or x_2 . In order to do this, we give OracleDDH the tuple $(\beta, y_1, y_2/x_1)$. (We assume that α and G are known and fixed to the oracle.) If the oracle returns YES (meaning that this is Diffie-Hellman tuple), then we return x_1 . Otherwise we return x_2 .

In order to see that this is correct, notice that $y_1 = \alpha^k$ and $y_2 = \beta^k \cdot x_i$ for i = 1 or i = 2, where $\beta = \alpha^a$ for some value a. Thus, when i = 1 (and so y is an encryption of x_1 , we have

given OracleDDH a tuple of the form $(\alpha^a, \alpha^k, \alpha^{ak})$ which is a Diffie-Hellman tuple. We therefore reply with x_1 which is correct. In contrast, when i = 2 (and so y is an encryption of x_2 , we have given OracleDDH a tuple of the form $(\alpha^a, \alpha^k, \alpha^{ak} \cdot x_1/x_2)$ which is not a Diffie-Hellman tuple (the last value equals α^b for some b that is not equal to ak). We therefore reply with x_2 which is also correct. We conclude that given OracleDDH we can distinguish an encryption of x_1 with an encryption of x_2 .

2. We now show that we can solve the Decisional Diffie-Hellman problem using OracleDistinguish that distinguishes encryptions of x_1 from encryptions of x_2 . Given a generator α and an input (β, γ, δ) for the Decisional Diffie-Hellman problem, we define the public-key to be $pk = (\alpha, \beta)$. Next, we compute a ciphertext $y = (\gamma, \delta \cdot x_1)$ and hand OracleDistinguish the public-key pk and the ciphertext y. If OracleDistinguish replies x_1 we answer YES; if OracleDistinguish replies x_2 or that the ciphertext is not an encryption of x_1 or x_2 , we answer NO.

In order to see that this is correct, notice that if the input (β, γ, δ) is a Diffie-Hellman tuple, it holds that OracleDistinguish receives a correct encryption of x_1 . Therefore, the oracle returns x_1 (because it correctly distinguishes), and we answer YES. In contrast, if the input is not a Diffie-Hellman tuple, we have that the ciphertext is not a valid encryption of x_1 . Thus it is either an encryption of x_2 or not a valid encryption of either value. Thus, we answer NO as required.