STATS 2107 Statistical Modelling and Inference II STATS 7107 Statistical Modelling and Inference

Semester 2, 2020 Sharon Lee

1 Introduction

1.1 Preamble

Suppose y_1, y_2, \ldots, y_n are independent observations drawn from the $N(\mu, \sigma^2)$ distribution. If σ^2 is known, then the following calculations are usually performed.

- 1. Use the sample mean \bar{y} to estimate μ .
- 2. The standard error of \bar{Y} is σ/\sqrt{n} .
- 3. To test H_0 : $\mu = \mu_0$, we calculate the value of the test statistic

$$z = \frac{\bar{y} - \mu_0}{\sigma / \sqrt{n}}$$

and reject H_0 at the 5% level of significance if and only if $|z| \ge 1.96$, i.e., if and only if

P-value =
$$2P(Z \ge |z|) < 0.05$$
,

where $Z \sim N(0, 1)$.

4. A 95% confidence interval for μ is

$$(\bar{y} - 1.96\sigma/\sqrt{n}, \ \bar{y} + 1.96\sigma/\sqrt{n}).$$

If σ^2 is not known, the procedures are modified as follows.

1. We use the sample standard deviation

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

in place of σ .

2. We use $t_{n-1}(0.025)$ in place of 1.96. More precisely, to test H_0 : $\mu = \mu_0$, we calculate the value of the test statistic

$$t = \frac{\bar{y} - \mu_0}{s / \sqrt{n}}$$

and reject H_0 at the 5% level of significance if and only if $|t| \ge t_{n-1}(0.025)$, where $t_{n-1}(0.025)$ is the number such that $P(T > t_{n-1}(0.025)) = 0.025$, for $T \sim t_{n-1}$.

1.2 Course aims

In this course, we will elaborate on the concepts and techniques discussed above from the following perspective:

- Formulate the underlying statistical concepts.
- Formulate the principles from which hypothesis tests and confidence intervals may be derived as "good procedures".
- Explore the use of probability theory in the derivation of the distributional results needed for statistical inference.
- Develop a framework in which hypothesis tests, regression, analysis of variance and analysis of covariance can be seen as instances of the same theory.
- Apply these methods to data analysis, using the statistical package R.
- Consider the theory of statistical estimation and hypothesis testing in a more general framework.

1.3 Notation and general remarks

- We use uppercase letters, X, Y, Z to denote random variables (RVs).
- ullet We use lowercase letters, $x,\ y,\ z$ to represent real numbers.
- The probability function of a discrete random variable X is denoted:

$$p(x) = P(\{X = x\}).$$

Some important examples are:

Bernoulli Distribution

$$p(x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0. \end{cases}$$

Binomial Distribution

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
, for $x = 0, 1, \dots, n$.

Geometric Distribution

$$p(x) = p(1-p)^{x-1}$$
, for $x = 1, 2, \dots$

Poisson Distribution

$$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
, for $x = 0, 1, 2, \dots$

• The probability density function (PDF) for a continuous random variable X is denoted by f(x). It uses area to represent probability.

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Some important examples are:

Uniform Distribution

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise.} \end{cases}$$

Exponential Distribution

$$f(x) = \lambda e^{-\lambda x}$$
, for $x > 0$.

Standard Normal N(0,1)

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$

Normal $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• The *cumulative distribution function* (CDF) is defined for both discrete and continuous random variables by

$$F(x) = P(\{X \le x\}).$$

Probability: In probability theory, we use probability distributions to describe the behaviour of random variables. That is, we take the probability distribution as given and make predictions about a (yet to be observed) random variable.

Statistical Inference: Statistical inference is concerned with the inverse problem.

• We begin with data (numbers)

$$y_1, y_2, \ldots, y_n$$

• We assume the data to be *realizations* of random variables

$$Y_1, Y_2, \ldots, Y_n$$

with some unknown CDF F.

- We use the data to make conclusions about F.
- Usually, it is assumed that F belongs to a given family of distributions, indexed by an unknown parameter θ .

 θ may be a *vector* parameter.

For example, there is a different normal distribution for each pair (μ, σ^2) . In this case, we would take θ to be the vector $\boldsymbol{\theta} = (\mu, \sigma^2)$.

Within this framework, the problem of statistical inference can be stated as using the observed data y_1, y_2, \ldots, y_n to draw conclusions about the unknown parameter θ .