Improving Carter & Winn likelihood In progress

Bekki Dawson

- Carter & Winn likelihood assumes a combination of white noise and I/f noise
- Carter: If there's another type of noise, the likelihood model will try to absorb it, potentially making the uncertainties in the parameters too large
- Carter advised me to detrend before fitting because wavelet likelihood is not good for certain noise

Example: KOI 1474

- Start by detrending with median filter and linear fit (masking the transit); linear fit becomes part of light curve model (fit via MCMC)
- Red and white noise amplitude are also part of model (use different for short and long cadence data)
- After getting transit times from light curve fit, separately fit dynamical model

KOI 1474 light curve residuals long cadence

long cadence residuals

KOI 1474 light curve residuals short cadence

short cadence residuals

Auto-correlation

FFT

Wavelet

Wavelet

Medium filtered wavelet

Medium filtered wavelet OOT

PDC

Medium PDC

OOT Medium SAP

OOT Medium PDC

I/f noise

Residuals from transit timing dynamical model are too small

Residuals from transit timing dynamical model are too small

