SAR Test Report

Report No.:AGC20P120401S1

TEST NAME : P005

FCC ID : Y7WPLUMP005

PRODUCT

DESIGNATION : GSM Mobile Phone

BRAND NAME : plum

MODEL NAME : P005

CLIENT: CLC Hong Kong Limited

DATE OF ISSUE : May 10,2012

STANDARD(S) FCC Oet65 Supplement C June 2001

IEEE Std. 1528-2003,47CFR § 2.1093

REPORT VERSION: V1.0

Attestation of Global Compliance Co., Ltd.

CAUTION: This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

	Test Report Certification				
Applicant Name	:	CLC Hong Kong Limited			
Applicant Address :		907 Hart Avenue Plaza, 5-9 Hart Avenue, Tsim Sha Tsui, Kowloon, Hong Kong			
Manufacturer Name :		SHENZHEN WANLIHANG ELECTRONICS CO.,LTD			
Manufacturer Address :		4 Floor C Building, Fuxinlin Industrial Park, Hangcheng Ingustrial Area, District, Shenzhen			
Product Designation :		GSM mobile phone			
Brand Name	:	plum			
Model Name : P005		P005			
EUT Voltage	:	DC3.7V(Supply by battery)			
Applicable Standard : FCC Oet65 Supplement C June 2001 IEEE Std. 1528-2003,47CFR § 2.1093		• •			
Test Date	:	May 9,2012			
		MAX SAR MEASUREMENT(1g)			
Test Results	:	Head: 0.524 W/Kg (Scaling SAR = 0.584 W/Kg)			
		Body: 0.327 W/Kg			
		Attestation of Global Compliance (Shenzhen) Co., Ltd.			
Performed Location	:	2F, No.2 Building, Huafeng No.1 Technical Industrial Park, Sanwei, Xixiang, Bao'an District, Shenzhen, China			

Tested By

Angela Li

Angela Li

May 10,2012

Forrest Lei

May 10,2012

Authorized By

Solger Zhang

May 10,2012

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1. EUT DESCRIPTION	3
GMSK FOR GSM/GPRS	3
1.2. TEST PROCEDURE 1.3. TEST ENVIRONMENT	
2. SAR MEASUREMENT SYSTEM	5
2.1. COMOSAR SYSTEM DESCRIPTION 2.2. COMOSAR E-FIELD PROBE 2.3 ROBOT 2.4. VIDEO POSITIONING SYSTERM 2.5. DEVICE HOLDER 2.6. SAM TWIN PHANTOM	
3. TISSUE SIMULATING LIQUID	10
3.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID 3.2. TISSUE CALIBRATION RESULT 3.3. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	10
4. SAR MEASUREMENT PROCEDURE	12
4.1. SAR SYSTEM VALIDATION	
5. SAR EXPOSURE LIMITS	15
6. TEST EQUIPMENT LIST	16
7. MEASUREMENT UNCERTAINTY	17
8. CONDUCTED POWER MEASUREMENT	18
9. TEST RESULTS	19
9.1. SAR TEST RESULTS SUMMARY	19
APPENDIX A. SAR SYSTEM VALIDATION DATA	24
APPENDIX B. SAR MEASUREMENT DATA	26
APPENDIX C. TEST SETUP PHOTOGRAPHS &EUT PHOTOGRAPS	62
APPENDIX D. PROBE CALIBRATION DATA	69
ADDENDIVE DIDOLE CALIDDATION DATA	95

Report No.:AGC20P120401S1 Page 3 of 103

1. General Information

1.1. EUT Description

General Information			
Product Designation	GSM mobile phone		
Test Model	P005		
Hardware Version	7268-MB-V0.2		
Software Version	N/A		
Device Category	Portable		
RF Exposure Environment	Uncontrolled		
Antenna Type	Internal		
GSM and GPRS			
Support Band	☐GSM 850 ☐PCS 1900 (U.S. Bands) ☐GSM 900 ☐DCS 1800 (Non-U.S. Bands)		
GPRS Type	Class B		
GPRS Class	Class 8,10 (1Tx+4Rx, 2Tx+3Rx)		
TX Frequency Range	GSM 850: 824.2~848.8MHz PCS 1900: 1850.2~1909.8MHz		
RX Frequency Range	GSM 850: 869~894MHz PCS 1900: 1930~1990MHz		
Release Version	R99		
Type of modulation	GMSK for GSM/GPRS		
Antenna Gain	1.0dBi		
Max. Output Power (Avg. Burst Power)	GSM850: 31.47dBm (32.53 dBm Peak Power) PCS1900:29.08 dBm (29.31 dBm Peak Power)		
Max. Output Power (Radiated)	GSM850: 30.54dBm- ERP PCS1900: 28.47dBm- EIRP		
Bluetooth			
Bluetooth Frequency	2402~2480MHz		
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK		

Page 4 of 103

Data Rate	⊠1Mbps ⊠2Mbps ⊠3Mbps		
Antenna Gain	0.8dBi		
Accessories			
Battery	Brand name: plum Model No.: P005 Voltage and Capacitance: 3.7V/8500mAh		
Adapter	Brand name: plum Model No.: P005 Input &Output: AC100V-240V 50-60Hz.0.15A&DC5.0V-500mA		
Earphone	Brand name: plum Model No. : P005		

Note: The sample used for testing is end product.

1.2. Test Procedure

1	Setup the EUT and simulators as shown on above.
2	Turn on the power of all equipment.
3	EUT communicate with CMU 200, and test them respectively at GSM 850 & PCS1900 bands

1.3. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21± 2
Humidity (%RH)	30-70	55±2

2. SAR Measurement System

2.1. COMOSAR System Description

The COMOSAR system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot with controller, teach pendant and software.

An arm extension for accommodating the data acquisition electronics (DAE).

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection,

collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.

The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.

A computer running WinXP and the Opensar software.

Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.

The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21.5mm

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Post processor, COMOSAR allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dissymmetric probe manufactured by SPEAG.

The probe is specially designed and calibrated for use in liquid with high permittivity. The dissymmetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN62209-1, IEC 62209, etc.) Under ISO17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	SSE5
Manufacture	Satimo
frequency	0.3 GHz-3 GHz
	Linearity:±0.2dB(300 MHz-3 GHz)
Dynamic	0.01W/Kg-100W/Kg
Range	Linearity:±0.2dB
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maxmum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precision of better 30%.

2.3 Robot

The COMOSAR system uses the high precision robots TX90 XL type out of the newer series from Satimo SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from Satimo is used.

The XL robot series have many features that are important for our application:

High precision (repeatability 0.02 mm)

High reliability (industrial design)

Jerk-free straight movements

Low ELF interference (the closed metallic

construction shields against motor control fields)

6-axis controller

2.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.

During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

Left head Right head Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

Ingredient	835MHz	835MHz	1900MHz	1900MHz
(% Weight)	Head	Body	Head	Body
Water	40.45	52.4	54.90	40.5
Salt	1.45	1.42	0.18	0.50
Sugar	57.6	45.0	0.00	58.0
HEC	0.40	1.00	0.00	0.50
Preventol	0.10	0.20	0.00	0.50
DGBE	0.00	0.00	44.92	0.00

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using COMOSAR Dielectric Probe Kit and R&S Network Analyzer ZVL6 .

Head Tissue Stimulant Measurement					
Frequency (MHz)	Description	Dielectric F	Tissue Temp [°C]		
835MHz	Reference result ±5% window	εr 41.50 39.43-43.58	δ[s/m] 0.90 0.86-0.95	N/A	
	May 9,2012	41.51	0.89	21	

Body Tissue Stimulant Measurement					
Frequency (MHz)	Description	Dielectric	Tissue Temp [°C]		
835MHz	Reference result ±5% window	εr 55.20 52.44-57.96	δ[s/m] 0.97 0.89-1.02	N/A	
	May 9,2012	54.06	0.97	21	

Frequency (MHz)	Description	Dielectric I	Parameters	Tissue Temp [°C]
1900MHz	Reference result ±5% window	εr 40.00 38.00-42.00	δ[s/m] 1.40 1.33-1.47	N/A
	May 9,2012	40.46	1.42	21

Body Tissue Stimulant Measurement						
Frequency (MHz)	Description	Dielectric Parameters		Tissue Temp [°C]		
1900MHz	Reference result ±5% window	εr 53.30 50.64-55.97	δ[s/m] 1.52 1.44-1.60	N/A		
	May 9,2012	52.45	1.47	21		

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	ı	nead	body		
(MHz)	εr	σ (S/m)	εr	σ (S/m)	
300	45.3	0.87	0.87 58.2		
450	43.5	0.87	56.7	0.97	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	610 40.3 1.29 53.8		53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

(ε r = relative permittivity, σ = conductivity and ρ = 1000 kg/m₃)

4. **SAR Measurement Procedure**

4.1. SAR System Validation 4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
900 MHz	149.0	83.3	3.6
1900MHz	68	39.5	3.6

4.1.2. Validation Result

System Performance Check at 835 MHz &1900MHz for Head										
Validation Kit: SN 46/11DIP 0G900-185										
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp.[°C]						
835 MHz	Reference result ± 10% window	9.56 8.604 to 10.516	6.22 5.598 to 6.842	N/A						
	May 9,2012	9.398	5.86	21.0						
Validation Ki	t: SN 46/11DIP 1G900-	187								
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp.[°C						
1900 MHz	Reference result ± 10% window	39.7 35.73 to 43.67	20.5 18.45 to 22.55	N/A						
	May 9,2012 43.038		20.68	21.0						

Page 14 of 103

4.2. SAR Measurement Procedure

The COMOSAR calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

When multiple peak SAR locations were found during the same configuration or test mode, Zoom scan shall performed on each peak SAR location, only the peak point with maximum SAR value will be reported for the configuration or test mode.

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Equipment description	Manufacturer/Mo del	Identification No.	Current calibration date	Next calibration date	
SAR Probe	Satimo	SN_3511_EP132	SN_3511_EP132 12/09/2011 12/08/2		
Phantom	Satimo	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	Satimo	-	Validated. No cal required.	Validated. No cal required.	
Comm Tester	R&S - CMU200	069Y7-158-13-712	12/09/2011	12/08/2012	
Multimeter	Keithley 2000	1188656	12/09/2011	12/08/2012	
Dipole	Satimo SID900	SN46/11 DIP 0G900-185	12/09/2011	12/08/2014	
Dipole	Satimo SID1900	SN46/11 DIP 1G900-187	12/09/2011	12/08/2014	
Amplifier	Aethercomm	SN 046	12/09/2011	12/08/2012	
Power Meter	HP E4418A	US38261498	03/30/2012	03/29/2013	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/07/2012	02/06/2013	

Note: Per KDB 50824 Dipole SAR Validation Verification, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within $5\,\Omega$ of calibrated measurement.

7. Measurement Uncertainty

7. Woddardiid			timo Ur	ncer	taintv				
Measuremen ⁻	t uncertai				-	over 1 gra	am / 10 gra	m.	
Error Description	Sec	Tol	Prob.	Div	(Ci)	(Ci)	Std.	Std.	(Vi)
		(±%	Dist.		1g	10g	Unc.	Unc.	Veff
)					(1g)	(10g) (\pm	
							(±%)	%)	
Measurement System	F 0 4		l	1 4	T 4	1 4			ı
Probe Calibration	E. 2. 1	6	N	1	1	1	6	6	00
Axial Isotropy	E. 2. 2	3	R	√3	$(1-c_p)^{1/2}$	$(1-c_p)^{1/2}$	1. 22474	1. 22474	00
Hemispherical Isotropy	E. 2. 2	5	R	√3	√Cp	√Cp	2. 04124	2. 04124	00
Boundary Effects	E. 2. 3	1	R	√3	1	1	0. 57735	0. 57735	00
Linearity	E. 2. 4	5	R	√3	1	1	2. 88675	2. 88675	00
System Detection	E. 2. 5	1	R	√3	1	1	0. 57735	0. 57735	00
Limits									
Readout Electronics	E. 2. 6	0. 5	N	1	1	1	0. 5	0. 5	00
Response Time	E. 2. 7	0. 2	R	√3	1	1	0. 11547	0. 11547	00
Integration Time	E. 2. 8	2	R	√3	1	1	1. 1547	1. 1547	00
RF Ambient Noise	E. 6. 1	3	R	√3	1	1	1. 73205	1. 73205	00
Probe Positioner	E. 6. 2	2	R	√3	1	1	1. 1547	1. 1547	00
Mechanical Tolerance									
Probe Positioning with Respect to Phantom Shell	E. 6 3	1	R	√3	1	1	0. 57735	0. 57735	00
Extrapolation, interpolatio	E. 5. 2	1. 5	R	√3	1	1	0. 86603	0. 86603	00
n and Integration									
Algorithms for Max. SAR									
Evaluation									
Dipole									
Device Positioning	8, E. 4. 2	1	N	√3	1	1	0. 57735	0. 57735	N-1
Power Drift	8. 6. 6. 2	2	R	√3	1	1	1. 1547	1. 1547	00
Phantom and Tissue Parameters									
Phantom Uncertainty	E. 3. 1	4	R	√3	1	1	2. 3094	2. 3094	00
Liquid Conductivity	E. 3. 2	5	R	√3	0. 64	0. 43	1. 84752	1. 2413	00
(target)				·					
Liquid Conductivity (meas.)	E. 3. 3	2. 5	N	1	0. 64	0. 43	1.6	1. 075	00
Liquid Permittivity (target)	E. 3. 2	3	R	√3	0. 6	0. 49	1. 03923	0. 8487	00
Liquid Permittivity (meas.)	E. 3. 3	2. 5	N	1	0. 6	0. 49	1.5	1. 225	М
Combined Standard			RSS				8. 09272	7. 9296	
Uncertainty									
Expanded Uncertainty (95%CONFIDENCE INTERVAL)			k				16. 18544	15. 8594	

8. Conducted Power Measurement

	Francisco (MILE)	Peak	Avg. Burst	Duty cycle	Frame
Mode	Frequency(MHz)	Power	Power	Factor(dB)	Power(dBm)
Maximum Power	r				
	824.2	32.53	31.47	-9	22.47
GSM 850	836.6	32.49	31.43	-9	22.43
	848.8	32.47	31.4	-9	22.4
GPRS850	824.2	32.51	31.42	-9	22.42
(1 Slot)	836.6	32.47	31.39	-9	22.39
(1 3101)	848.8	32.44	31.35	-9	22.35
CDDC050	824.2	29.45	28.43	-6	22.43
GPRS850	836.6	29.41	28.4	-6	22.4
(2 Slot)	848.8	29.37	28.37	-6	22.37
	1850.2	29.31	29.08	-9	20.14
PCS1900	1880	29.27	29.01	-9	20.06
PCS1900	1909.8	29.25	28.83	-9	19.97
GPRS1900	1850.2	29.28	28.71	-9	19.79
	1880	29.25	28.67	-9	19.75
(1 Slot)	1909.8	29.21	28.64	-9	19.71
GPRS1900	1850.2	26.47	25.51	-6	19.51
(2 Slot)	1880	26.44	25.47	-6	19.47
(2 3101)	1909.8	26.41	25.44	-6	19.44
OCM OFO	824.2				
GSM 850 <sim 2=""></sim>	836.6	32.51	31.43	-9	22.43
\SIIVI 2>	848.8				
PCS1900	1850.2				
<sim 2=""></sim>	1880	29.29	29.05	-9	20.05
SIIVI Z	1909.8				

The Frame Power (Souce-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) – 9 dB Frame Power = Max burst power (2 Up Slot) – 6 dB

9. Test Results

9.1. SAR Test Results Summary

9.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528, and Body SAR was performed with the device 15mm from the phantom. Body SAR was also performed with the headset attached and without.

9.1.2. Body SAR with Headset

Testing with the headset was performed at the position and channels that resulted in the highest body SAR. This testing was performed with GPRS transmitting with 2 uplink timeslots. This operation mode represents the maximum SAR situation, when downloading data via GPRS and listening to music by headset. SAR without the headset attached was significantly higher than with the headset, and also was verified several times and confirmed, so the final test data shown were the worst case without headset. In the Body SAR test result table, body-worn means display of device down, body-front means display of device up.

9.1.3. Operation Mode

This is a multi-slot class 10 device capable of 2 uplink timeslots. During the head SAR test, the device was transmitting with maximum 1 uplink timeslot; during the body SAR test, it was transmitting with maximum 2 uplink timeslots. Additionally, this device doesn't support dual transfer mode (DTM), and SIM <1> can't transmit with SIM <2> simultaneously.

9.1.4. Co-located SAR

According to KDB 447498 and KDB 648474, due to the Max peak power for Bluetooth is less than Pref and the Maximum SAR for GSM part<1.2W/Kg, thus, regardless the closest separation distance between the GSM antenna and Bluetooth Antenna, stand-alone SAR and simultaneous transmission SAR is not required.

Other reference document: KDB 941225.

9.1.5. Test Result

SAR MEASUREMENT	
Ambient Temperature (°C) : 21 ± 2	Relative Humidity (%): 55
Liquid Temperature (°C) : 21 ± 2	Depth of Liquid (cm):>15
Draduati COM MODII E DIJONE	

Product: GSM MOBILE PHONE

Test Mode: GSM850 with GMSK modulation

Configuration		Antenna Frequency Position		Frame Power	Power Drift	SAR (1g)	Limit (W/kg)		
SIM	Position	Status	FUSILIOIT	channel	MHz	(dBm)	(<±0.2 dB)	(W/kg)	(W/Kg)
				128	824.2	22.47			1.6
		Cheek	Fixed	190	836.6	22.43	-0.02	0.414	1.6
	Left			251	848.8	22.4			1.6
	Head			128	824.2	22.47			1.6
		Tilted	Fixed	190	836.6	22.43	-0.04	0.394	1.6
<1>				251	848.8	22.4			1.6
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Cheek	Fixed	128	824.2	22.47			1.6
				190	836.6	22.43	-0.01	0.524	1.6
	Right			251	848.8	22.4			1.6
	Head			128	824.2	22.47			1.6
		Tilted F	Fixed	190	836.6	22.43	-0.03	0.398	1.6
				251	848.8	22.4			1.6
<2>	Right	Cheek	Fixed	190	836.6	22.43	-0.02	0.414	1.6

SAR MEASUREMENT	
Ambient Temperature (°C) : 21 ± 2	Relative Humidity (%): 55
Liquid Temperature (°C) : 21 ± 2	Depth of Liquid (cm):>15

Product: GSM MOBILE PHONE

Test Mode: GSM850 with GMSK modulation

Configuration		Antenna	Freq	uency	Frame Power	Power Drift	SAR (1g)	Limit	
SIM	Position	Status	Position	chann el	MHz	(dBm)	(<±0.2 dB)	(W/kg)	(W/kg)
				128	824.2	22.47			1.6
		MS	Fixed	190	836.6	22.43	-0.01	0.327	1.6
	Body			251	848.8	22.4			1.6
	Back	GPRS 2 TS		128	824.2	22.43			1.6
			Fixed	190	836.6	22.4	-0.04	0.189	1.6
<1>	445			251	848.8	22.37			1.6
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				128	824.2	22.47			1.6
	Body Front	MS	Fixed	190	836.6	22.43	-0.03	0.263	1.6
	Tronc			251	848.8	22.4			1.6
		MS		128	824.2	22.47			1.6
	Body Back	oay with	with Fixed	190	836.6	22.43	-0.02	0.288	1.6
	Baok			251	848.8	22.4			1.6
<2>									

Ambient Temperature (°C): 21 ± 2

Liquid Temperature (°C): 21 ± 2

Product: GSM MOBILE PHONE

Relative Humidity (%): 55

Depth of Liquid (cm):>15

Test Mode: PCS1900 with GMSK modulation

Configuration		Antenna			Frame Power	Power Drift	SAR (1g)	Limit	
SIM	Position	Status	Position	channel	MHz	(dBm)	(<±0.2 dB)	(W/kg)	(W/kg)
				512	1850.2	20.14			1.6
		Cheek	Fixed	661	1880.0	20.06	-0.05	0.309	1.6
	Left			810	1909.8	19.97	-	-	1.6
	Head			512	1850.2	20.14			1.6
		Tilted	Fixed	661	1880.0	20.06	-0.03	0.362	1.6
<1>				810	1909.8	19.97			1.6
\1/			eek Fixed	512	1850.2	20.14			1.6
		Cheek		661	1880.0	20.06	0.01	0.399	1.6
	Right			810	1909.8	19.97	1	1	1.6
	Head			512	1850.2	20.14	1	1	1.6
		Tilted	Fixed	661	1880.0	20.06	-0.04	0.356	1.6
				810	1909.8	19.97			1.6
<2>	Right	Cheek	Fixed	661	1880.0	20.05	-0.02	0.373	1.6

SAR MEASUREMENT	
Ambient Temperature (°C) : 21 ± 2	Relative Humidity (%): 55
Liquid Temperature (°C) : 21 ± 2	Depth of Liquid (cm):>15

Product: GSM MOBILE PHONE

Test Mode: PCS1900 with GMSK modulation

Configuration		Antenna	Frequency		Frame Power	Power Drift	SAR (1g)	Limit	
SIM	Position	Status	Position	chann el	MHz	(dBm)	(<±0.2 dB)	(W/kg)	(W/kg)
				512	1850.2	20.14			1.6
		MS	Fixed	661	1880.0	20.06	-0.01	0.226	1.6
	Body			810	1909.8	19.97			1.6
	Back	Back GPRS 2 TS	Fixed	512	1850.2	19.51			1.6
				661	1880.0	19.47	-0.03	0.131	1.6
<1>				810	1909.8	19.44			1.6
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				512	1850.2	20.14			1.6
	Body Front	MS	Fixed	661	1880.0	20.06	-0.03	0.131	1.6
	Tiont	Ont		810	1909.8	19.97			1.6
		Body MS with Farphone		512	1850.2	20.14			1.6
	-		Fixed	661	1880.0	20.06	-0.02	0.220	1.6
	Baok			810	1909.8	19.97			1.6
<2>									

Report No.:AGC20P120401S1

Page 24 of 103

Appendix A. SAR System Validation Data

Test Laboratory: AGC Lab Date:MAY 9,2012

System Check Head 900 MHz

DUT: Dipole 900 MHz Type: SID 900

Communication System: CW; Communication System Band: D850(850.0 MHz); Duty Cycle: 1:1; ConvF=6.79 Frequency: 850 MHz; Medium parameters used: f = 850 MHz; σ =0.89 mho/m; ϵ r =41.51; ρ = 1000 kg/m

;

Phantom section: Flat Section; Input Power=17dBm

Ambient temperature ($^{\circ}$ C): 21, Liquid temperature ($^{\circ}$ C): 21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/System Check GSM850 Head/Area Scan: Measurement grid: dx=8mm,

dv=8mm

Configuration/System Check GSM850 Head/Zoom Scan: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Maximum location: X=-1.00, Y=0.00

SAR 10g (W/Kg)	0.293322
SAR 1g (W/Kg)	0.454705

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.4699	0.3189	0.2243	0.1646

Report No.:AGC20P120401S1

Page 26 of 103

Test Laboratory: AGC Lab Date: MAY 9,2012

System Check Head 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1;ConvF=6.42 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; σ =1.42 mho/m; ϵ r =40.46; ρ = 1000 kg/m

;

Phantom section: Flat Section ; Input Power=17dBm

Ambient temperature ($^{\circ}$ C): 21, Liquid temperature ($^{\circ}$ C): 21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

· Measurement SW: OpenSAR V4 02 01

Configuration/System Check PCS1900 Head/Area Scan: Measurement grid: dx=8mm,

dy=8mm

Configuration/System Check PCS1900 Head/Zoom Scan: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	1.034410
SAR 1g (W/Kg)	1.990501

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	2.1519	1.2097	0.6880	0.4149

Appendix B. SAR measurement Data

Test Laboratory: AGC Lab Date:MAY 9,2012

GSM 850 Middle-touch-Left <SIM 1>

DUT:GSM MOBILE PHONE; Type: P005

Communication System: Generic GSM; Communication System Band: GSM 850; DutyCycle:1: 8; Conv.F=6.79

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.89 mho/m; ϵ r =41.51;

 ρ = 1000 kg/m ; Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21, Liquid temperature ($^{\circ}$): 21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Touch-Left/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm

Configuration/GSM850 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=-10.00, Y=6.00

SAR 10g (W/Kg)	0.265178	
SAR 1g (W/Kg)	0.403060	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.4143	0.2803	0.1925	0.1357
	SAR, Z	Axis Scan	(X = -10,	Y = 6)	
0	0. 41 –				
c). 35 –				
). 30 –	$+\lambda +$			_
), 30 -	++			
SAR). 20 -		\longrightarrow		-
C). 15-		+	+	-
C	0.0 2.5 5	5.0 7.5 10.0	12.5 15.0 17.	5 20.0 22.5 25	5,0
			Z (mm)		

Date:MAY 9,2012

Page 30 of 103

Test Laboratory: AGC Lab GSM 850 Mid Tilt-left <SIM 1>

DUT:GSM MOBILE PHONE; Type: P005

Communication System: Generic GSM; Communication System Band: GSM 850; DutyCycle:1: 8; Conv.F=6.79

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.89 mho/m; ϵ r =41.51;

 ρ = 1000 kg/m ; Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21, Liquid temperature ($^{\circ}$): 21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Tilt-Left/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm

Configuration/GSM850 Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Left head		
Device Position	Tilt		
Band	GSM850		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=-9.00, Y=5.00

SAR 10g (W/Kg)	0.257441
SAR 1g (W/Kg)	0.375754

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3942	0.2912	0.2137	0.1553

Page 32 of 103

Test Laboratory: AGC Lab

Date:MAY 9,2012

GSM 850 Middle touch-Right <SIM 1> **DUT:GSM MOBILE PHONE**; **Type: P005**

Communication System: Generic GSM; Communication System Band: GSM 850; DutyCycle:1: 8; Conv.F=6.79

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.89 mho/m; ϵ r =41.51;

 ρ = 1000 kg/m ; Phantom section: Right Section

Ambient temperature ($^{\circ}$): 21, Liquid temperature ($^{\circ}$): 21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Touch-Right/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/GSM850 Mid Touch-Right/Zoom Scan: Measurement grid: dx=8mm,

dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Right head		
Device Position	Cheek GSM850		
Band			
Channels	Middle		
Signal	Signal TDMA (Crest factor: 8.0)		

Maximum location: X=-16.00, Y=-2.00

SAR 10g (W/Kg)	0.348608	
SAR 1g (W/Kg)	0.500918	

Z (mm)	0.00	4.00	9.00	14.00	19.00

Date:MAY 9,2012

Page 34 of 103

Test Laboratory: AGC Lab GSM 850 Mid-tilt-Right <SIM 1>

DUT:GSM MOBILE PHONE; Type: P005

Communication System: Generic GSM; Communication System Band: GSM 850; DutyCycle:1: 8; Conv.F=6.79

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.89 mho/m; ϵ r =41.51;

 ρ = 1000 kg/m ; Phantom section:Right Section

Ambient temperature ($^{\circ}$): 21, Liquid temperature ($^{\circ}$): 21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Tilt-Right/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/GSM850 Mid Tilt-Right/Zoom Scan: Measurement grid: dx=8mm,

dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Right head Tilt GSM850		
Device Position			
Band			
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=-7.00, Y=-1.00

SAR 10g (W/Kg)	0.261204	
SAR 1g (W/Kg)	0.380174	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3981	0.2969	0.2224	0.1673

Page 36 of 103

Test Laboratory: AGC Lab

GSM 850 Middle touch-Right<SIM 2>

Date:MAY 9,2012

DUT:GSM MOBILE PHONE; Type: P005

Communication System: Generic GSM; Communication System Band: GSM 850; DutyCycle:1: 8; Conv.F=6.79

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.89 mho/m; ϵ r =41.51;

 ρ = 1000 kg/m ; Phantom section: Left Section

Ambient temperature ($^{\circ}$): 21, Liquid temperature ($^{\circ}$): 21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Touch- Right /Area Scan: Measurement grid: dx=20mm, dy=20mm

 $\textbf{Configuration/GSM850 Mid Touch-} \ L \ Right \textit{/} \textbf{Zoom Scan:} \ \textit{Measurement grid: dx=8mm},$

Area Scan	sam_direct_droit2_surf8mm.txt			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast			
Phantom	Right head			
Device Position	Cheek			
Band	GSM850			
Channels	Middle			
Signal	TDMA (Crest factor: 8.0)			

Maximum location: X=-32.00, Y=-9.00

SAR 10g (W/Kg)	0.305196
SAR 1g (W/Kg)	0.406555

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.4136	0.3430	0.2750	0.2117

Page 38 of 103

Test Laboratory: AGC Lab GSM 850 Mid-Body-Worn Back(MS)<SIM 1>

DUT:GSM MOBILE PHONE; Type:P005

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8; Conv. F=6.79 Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.97 mho/m; ϵ r =54.06; ρ = 1000 kg/m

Phantom section: Flat Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/GSM850 Mid Body- Back /Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm

Configuration/GSM850 Mid Body- Back /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM850		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=3.00, Y=9.00

SAR 10g (W/Kg)	0.244566
SAR 1g (W/Kg)	0.326965

Z (mm) 0.00 4.00 9.00 14.00 19.00

Page 40 of 103

Test Laboratory: AGC Lab

GPRS 850 Mid-body- Worn- Back (2up) <SIM 1>

DUT:GSM MOBILE PHONE; Type:P005

Communication System: GPRS-2 Slot; Communication System Band: GSM850; Duty Cycle:1:4.2; Conv. F=6.79 Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\epsilon r = 54.06$; $\rho = 1000$

kg/m ; Phantom section: Flat Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/GPRS850 Mid Body- Back /Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm

Configuration/GPRS850 Mid Body- Back /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast	
Phantom	Validation plane	
Device Position	Body Back	
Band	GSM850	
Channels	Middle	
Signal	TDMA (Crest factor: 4.0)	

Maximum location: X=0.00, Y=16.00

SAR 10g (W/Kg)	0.143028
SAR 1g (W/Kg)	0.188901

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1758	0.1441	0.1156	0.0903

Page 42 of 103

Test Laboratory: AGC Lab

GPRS 850 Mid-body- Worn- Front (MS) <SIM 1>

DUT:GSM MOBILE PHONE; Type:P005

Communication System: Generic GSM; Communication System Band: GSM850; Duty Cycle:1:8; Conv. F=6.79

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.97 mho/m; ϵ r =54.06; ρ = 1000

kg/m ; Phantom section: Flat Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/GPRS850 Mid Body- Front /Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm

Configuration/GPRS850 Mid Body- Front /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast	
Phantom	Validation plane	
Device Position	Body Front	
Band	GSM850	
Channels	Middle	
Signal	TDMA (Crest factor: 8.0)	

Maximum location: X=1.00, Y=-19.00

SAR 10g (W/Kg)	0.201570
SAR 1g (W/Kg)	0.258798

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.2634	0.2220	0.1824	0.1454

Page 44 of 103

Test Laboratory: AGC Lab Date:MAY 9,2012

GPRS 850 Mid-body- Worn- Front (MS) -with earphone<SIM 1>

DUT:GSM MOBILE PHONE; Type:P005

Communication System: Generic GSM; Communication System Band: GSM850; Duty Cycle:1:8; Conv. F=6.79

Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ =0.97 mho/m; ϵ r =54.06; ρ = 1000

kg/m ; Phantom section: Flat Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/GPRS850 Mid Body- Back /Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm

Configuration/GPRS850 Mid Body- Back /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM850		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	0.200707
SAR 1g (W/Kg)	0.287563

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.2713	0.1862	0.1355	0.1069

Page 46 of 103

Test Laboratory: AGC Lab
PCS 1900 Mid-Touch Left <SIM 1>

Date:MAY 9,2012

DUT:GSM MOBILE PHONE; Type:P005

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle:1:8; ConvF=6.42

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 40.46$;

 ρ = 1000 kg/m ; Phantom section: Left Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Touch-Left/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Touch-Left/Zoom Scan: Measurement grid: dx=8mm,

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Left head		
Device Position	Cheek		
Band	GSM1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=-13.00, Y=2.00

SAR 10g (W/Kg)	0.163146
SAR 1g (W/Kg)	0.290887

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3091	0.1857	0.1085	0.0615

Test Laboratory: AGC Lab PCS 1900 Mid-Tilt-Left <SIM 1>

DUT:GSM MOBILE PHONE; Type:P005

Date:MAY 9,2012

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8; ConvF=6.42 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 40.46$; $\rho = 1000$ kg/m

; Phantom section: Left Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Tilt-Left/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Tilt-Left/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Left head		
Device Position	Tilt		
Band	GSM1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=-1.00, Y=14.00

SAR 10g (W/Kg)	0.160612
SAR 1g (W/Kg)	0.333112

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3617	0.1807	0.0883	0.0445

Page 50 of 103

Test Laboratory: AGC Lab PCS 1900 Mid-Touch Right <SIM 1>

DUT:GSM MOBILE PHONE; Type:P005

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8; ConvF=6.42 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ r =40.46; ρ = 1000 kg/m

; Phantom section: Right Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Touch-Right/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Touch-Right/Zoom Scan: Measurement grid: dx=8mm,

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Right head		
Device Position	Cheek		
Band	GSM1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=-12.00, Y=0.00

SAR 10g (W/Kg)	0.222865
SAR 1g (W/Kg)	0.372129

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3994	0.2784	0.1884	0.1223

Page 52 of 103

Test Laboratory: AGC Lab PCS 1900 Mid-Tilt Right <SIM 1>

DUT:GSM MOBILE PHONE; Type:P005

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8; ConvF=6.42 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon r = 40.46$; $\rho = 1000 \text{ kg/m}$

; Phantom section: Right Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Tilt-Right/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Tilt-Right/Zoom Scan: Measurement grid: dx=8mm,

Area Scan	sam_direct_droit2_surf8mm.txt			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast			
Phantom	Right head			
Device Position	Tilt			
Band	GSM1900			
Channels	Middle			
Signal	TDMA (Crest factor: 8.0)			

Maximum location: X=9.00, Y=-1.00

SAR 10g (W/Kg)	0.177489
SAR 1g (W/Kg)	0.331009

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3564	0.2014	0.1159	0.0709

Test Laboratory: AGC Lab Date:MAY 9,2012

PCS 1900 Mid- Cheek -Right<SIM 2> DUT:GSM MOBILE PHONE; Type:P005

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8; ConvF=6.42 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon r = 40.46$; $\rho = 1000 \text{ kg/m}$

; Phantom section: Right Section

Ambient temperature ($^{\circ}$ C):21, Liquid temperature ($^{\circ}$ C):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Cheek -Right/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Cheek -Right/Zoom Scan: Measurement grid: dx=8mm,

dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast			
Phantom	Right head			
Device Position	Cheek			
Band	GSM1900			
Channels	Middle			
Signal	TDMA (Crest factor: 8.0)			

Maximum location: X=-10.00, Y=0.00

SAR 10g (W/Kg)	0.216490	
SAR 1g (W/Kg)	0.349147	

Z (mm)	0.00	4.00	9.00	14.00	19.00

Page 56 of 103

Test Laboratory: AGC Lab PCS 1900 Mid-Body-worn- Back <SIM 1>

DUT:GSM MOBILE PHONE; Type:P005

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8; ConvF=6.42 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon r = 52.45$; $\rho = 1000 \text{ kg/m}$

; Phantom section: Flat Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

· Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/PCS1900 Mid Body- Back /Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS1900 Mid Body- Back /Zoom Scan: Measurement grid: dx=8mm,

Area Scan	surf_sam_plan.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=-1.00, Y=-1.00

SAR 10g (W/Kg)	0.152752
SAR 1g (W/Kg)	0.226321

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.2173	0.1474	0.1052	0.0809

Page 58 of 103

Test Laboratory: AGC Lab

GPRS 1900 Mid-Body- worn- Back (2up) <SIM1>

DUT:GSM MOBILE PHONE; Type:P005

Communication System: GPRS-2 Slot; Communication System Band: PCS1900; Duty Cycle: 1:4.2; convF=6.42 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ =1.47 mho/m; ϵ r =52.45; ρ = 1000 kg/m

;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe:SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/GPRS1900 Mid Body- Back /Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/GPRS1900 Mid Body- Back /Zoom Scan: Measurement grid: dx=8mm,

Area Scan	surf_sam_plan.txt			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast			
Phantom	Validation plane			
Device Position	Body Back			
Band	GSM1900			
Channels	Middle			
Signal	TDMA (Crest factor: 4.0)			

Maximum location: X=2.00, Y=-13.00

SAR 10g (W/Kg)	0.089714
SAR 1g (W/Kg)	0.127308

Z (mm)	0.00	4.00	9.00	14.00	19.00

Page 60 of 103

Test Laboratory: AGC Lab PCS 1900 Mid-Body-worn-Front (MS) <SIM 1>

DUT:GSM MOBILE PHONE; Type:P005

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle:1:8; convF=6.42

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\epsilon r = 52.45$;

 $\rho = 1000 \text{kg/m}$; Phantom section: Flat Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/PCS 1900 Mid Body-Front/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS 1900 Mid Body-Front/Zoom Scan: Measurement grid: dx=8mm,

Area Scan	surf_sam_plan.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Validation plane		
Device Position	Body Front		
Band	GSM1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8)		

Maximum location: X=1.00, Y=-7.00

SAR 10g (W/Kg)	0.085510
SAR 1g (W/Kg)	0.125971

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1313	0.0902	0.0646	0.0491

Page 62 of 103

Test Laboratory: AGC Lab Date:MAY 9,2012

PCS 1900 Mid-Body-worn-Back (MS) with earphone <SIM 1>

DUT:GSM MOBILE PHONE; Type:P005

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8; ConvF=6.42

Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\epsilon r = 52.45$;

 $\rho = 1000 \text{kg/m}$; Phantom section: Flat Section

Ambient temperature ($^{\circ}$):21, Liquid temperature ($^{\circ}$):21

Satimo Configuration:

Probe: SSE5; Calibrated: 12/09/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM1; Type: SAM

• Measurement SW: OpenSAR V4_02_01

Configuration/PCS 1900 Mid Body-Back/Area Scan: Measurement grid: dx=20mm, dy=20mm

Configuration/PCS 1900 Mid Body-Back/Zoom Scan: Measurement grid: dx=8mm,

Area Scan	surf_sam_plan.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	0.154431
SAR 1g (W/Kg)	0.220173

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.2114	0.1516	0.1120	0.0860

