University of Asia Pacific

Computer Science and Engineering

Course Title: Database Systems Lab

Course Code: CSE 212

Project Title: Bank Management System

Submitted by:

1. Name: Md. Sakib Hossaine

ID: 22201185

2. Name: Md Tabiur Rahman

ID: 22201171

3. Name: Mehedi Hasan Khan Riyad

ID: 22201172

4. Name: Jannat Ara Simi

ID: 22201178

Submitted to:

Alif Ruslan Lecturer

University of Asia Pacific

Contents

Topic	Pages
1. Introduction	3
2. Entities	3
3. Relationship Sets	4
4. Attributes	4
5. ER Diagram	6
6. Schema Diagram	7
7. Queries	8
8. CEP Mapping	11

Bank Management System

This project is a **Bank Management System** implemented using **MySQL**. It efficiently organizes and manages various aspects of a banking institution, such as customer details, accounts, loans, transactions, and credit cards. The system is designed to handle complex banking operations with well-structured entities and relationships, ensuring data consistency and integrity through the use of foreign keys and constraints. This solution facilitates seamless integration of banking operations like account management, loan tracking, transactions, and credit card services.

Description

The **Bank Management System** consists of several interconnected tables that represent core entities and their relationships. The system enables functionalities such as maintaining customer records, managing accounts, issuing loans, processing transactions, and administering credit cards. Additionally, the system supports queries to retrieve important data insights, such as total loan balances per branch, customer transactions, and high-balance accounts. The structured schema and relationships ensure data consistency and provide an accurate representation of a bank's operational data.

Entities:

- 1. **Branch** Represents the physical location of the bank. Each branch offers services such as account creation, loan issuance, and credit card handling.
- 2. **Banker** Employees assigned to manage customer relationships and oversee operations for specific branches.
- 3. **Customer** Individuals who interact with the bank to open accounts, apply for loans, and manage their finances.
- 4. **Account** Represents the financial account of a customer, which could be of various types (savings, student, etc.).
- 5. **Loan** Financial service provided to customers with a repayment plan. Loans are tied to accounts and branches.
- 6. **Loan Payment** Represents the payments made by customers toward their loans.
- 7. **Transaction** Details the flow of money in or out of an account (e.g., deposits, withdrawals).
- 8. **Credit Card** Issued to customers with a set limit, allowing them to make purchases on credit.

Relationship Sets:

1. Branch-Account

A branch can have multiple accounts, but each account belongs to one branch. **Relationship:** One-to-Many (1:M).

2. Branch-Banker

A branch can have multiple bankers, but each banker works at one branch. **Relationship:** One-to-Many (1:M).

3. Account-Customer

Each account is linked to one customer, but a customer can have multiple accounts. **Relationship:** One-to-Many (1:M).

4. Branch-Loan

A branch can issue multiple loans, but each loan is managed by one branch. **Relationship:** One-to-Many (1:M).

5. Account-Loan

Each loan is associated with one account, but an account can have multiple loans. **Relationship:** One-to-Many (1:M).

6. Loan-Loan Payment

A loan can have multiple payments, but each payment is tied to one loan. **Relationship:** One-to-Many (1:M).

7. Account-Transaction

An account can have multiple transactions, but each transaction belongs to one account. **Relationship:** One-to-Many (1:M).

8. Customer-Credit Card

A customer can have multiple credit cards, and each credit card is linked to a specific account. **Relationship:** One-to-Many (1:M).

Attributes:

Branch

- branch_id (Primary Key)
- branch name
- address

Banker

- banker_id (Primary Key)
- branch_id (Foreign Key referencing branch)
- banker name

Account

- account_id (Primary Key)
- balance
- account_type (e.g., 'savings', 'student')
- branch_id (Foreign Key referencing branch)

Customer

- customer_id (Primary Key)
- customer name
- mobileno
- dob
- account_id (Foreign Key referencing account)

Loan

- loan_id (Primary Key)
- issue_date
- remaining_balance
- amount
- loan limit
- branch_id (Foreign Key referencing branch)
- account_id (Foreign Key referencing account)

Loan Payment

- payment_id (Primary Key)
- loan_id (Foreign Key referencing loan)
- amount

Transaction

- transaction_id (Primary Key)
- account_id (Foreign Key referencing account)
- customer_id (Foreign Key referencing customer)
- amount

Customer Credit Card

- credit_card_id (Primary Key)
- expiry_date
- card_limit
- customer_id (Foreign Key referencing customer)
- account_id (Foreign Key referencing account)

ER Diagram:

Schema Diagram:

Banking System Schema Diagram

MY SQL QUERYS:

1. Finding Branch table data.

SELECT * FROM branch;

branch_id	branch_name	address
1	Farmgate Branch Green-road Branch Dhanmondi Branch Gulshan Branch	123 Dhanmondi 456 Farmgate 789 Dhanmondi 101 Gulshan

2. Find all customers with a savings account.

SELECT customer_name, mobileno, dob FROM customer INNER JOIN account ON customer.account_id = account.account_id WHERE account_type = 'savings';

customer_name	mobileno	dob
Sakib	01555555 01333333333	2000-03-15 2002-10-01

3. Count the number of accounts per account type (student or savings).

SELECT account_type, COUNT(account_id) AS number_of_accounts FROM account GROUP BY account_type;

	number_of_accounts
savings student	2 2

4. Show all bankers working at a specific branch

SELECT banker.banker_name

FROM banker

INNER JOIN branch ON banker.branch_id = branch.branch_id
WHERE branch.branch_name = 'Main Branch';

Output:

Program did not output anything!

5. List all branches with the number of bankers working in each

SELECT branch_name, COUNT(banker.banker_id) AS number_of_bankers FROM branch

LEFT JOIN banker ON branch.branch_id = banker.branch_id GROUP BY branch.branch_name;

	 number_of_bankers
+	++
Farmgate Branch	1
Green-road Branch	1
Dhanmondi Branch	1
Gulshan Branch	1
+	++

6. Calculate the average balance of accounts for each branch

 $SELECT\ branch_name,\ AVG(account.balance)\ AS\ average_balance\\ FROM\ branch$

INNER JOIN account ON branch.branch_id = account.branch_id GROUP BY branch.branch name;

L+
average_balance
1000.000000
1500.000000
2000.0000000
2500.0000000
++

7. Retrieve the highest loan amount issued at each branch

SELECT branch.branch_name, MAX(loan.amount) AS highest_loan_amount FROM loan

INNER JOIN branch ON loan.branch_id = branch.branch_id GROUP BY branch.branch_name;

4	
branch_name	 highest_loan_amount
Farmgate Branch Green-road Branch Dhanmondi Branch Gulshan Branch	1000.00 1500.00

8. Find all credit card holders with their account balances and credit limits

SELECT customer_name, account.balance, customer_credit_card.card_limit FROM customer

INNER JOIN account ON customer.account_id = account.account_id INNER JOIN customer_credit_card ON customer.customer_id = customer_credit_card.customer_id;

customer_name	balance	card_limit
+	1000.00 1500.00 2000.00 2500.00	5000 6000 7000

9. Retrieve the balances of all accounts with a balance greater than 5000. If no such accounts exist, display 'No Related Data

```
SELECT CAST(balance AS CHAR) AS balance
FROM account WHERE balance > 5000
UNION
SELECT 'No Related Data' WHERE NOT EXISTS (
SELECT 1 FROM account
WHERE balance > 5000 );
```

İ	ba]	lance	İ
İ	No	Related Data	İ

10. Find all transactions for a specific customer

SELECT

 $transaction.transaction_id, transaction.amount, transaction.account_id\\ FROM\ transaction$

INNER JOIN customer ON transaction.customer_id = customer.customer_id WHERE customer.customer_name = 'nonexistent_customer'

UNION

SELECT NULL, 'No Related Data', NULL WHERE NOT EXISTS (SELECT 1

FROM transaction

INNER JOIN customer ON transaction.customer_id = customer.customer_id WHERE customer.customer_name = 'nonexistent_customer'

);

+	+	·+
transaction_id	amount	account_id
+	++	++
NULL	No Related Data	NULL
+	+	+

CEP Mapping:

Ks	Attribute	How Ks are addressed through the project	
К2	Mathematics	Used mathematical models for financial projections and optimization of account balances and loan calculations.	
К3	Engineering fundamentals	Leveraged database design and SQL query fundamentals to create and manage the banking system.	
K4	Specialist knowledge	Integrated advanced database indexing techniques and relational database theory to optimize data retrieval and storage.	
К5	Engineering design	Designed a comprehensive schema to meet functional requirements like scalability and consistency in managing banking data.	
К6	Engineering practice	Used MySQL on an online compiler website to test, debug, and execute SQL queries, ensuring functionality and correctness.	
К7	Comprehension	Demonstrated understanding by solving complex queries such as transactions and loan details with fallback mechanisms.	
К8	Research literature	Researched database normalization, data integrity constraints, and best practices for modern financial systems.	

How Complex Engineering Problems (Ps) are addressed through the project and mapping among Ps, COs, POs:

Ps	Attribute	How Ps are addressed through the	COs	POs
		project		
P1	Donth of knowledge	The project requires in-depth knowledge	CO1,	PO1,
	Depth of knowledge	of database fundamentals (K3), E-R	CO2,	PO3,
	required	diagram & schema design (K5), and SQL to	CO3,	PO5,
		implement the system while considering	CO4	PO7
		societal impact.		
P3	Depth of analysis required	Extensive analysis ensures effective	CO3,	PO6,
		handling of relational data, implementing	CO4,	PO7,
		normalization, and managing multiple	CO5	PO8
		stakeholders' data.		
Ps	Extent of stakeholder	The system supports diverse stakeholders	CO6	PO6,
		by accommodating roles like donors,		PO8
		administrators, and beneficiaries for		
		robust interaction.		
Ps	Interdependence	The project involves interconnected	CO7,	PO11,
		modules such as donation tracking, user	CO8	PO12
		management, and event scheduling for		
		seamless operations.		

How Complex Engineering Activities (As) are addressed through the project and mapping among As, COs, POs:

As	Attribute	How As are addressed through the Banking System	COs	POs
		project		
A1	Range of	The Banking System integrates database	CO8,	PO11
	resources	management tools (MySQL), hardware (personal	CO9	
		computer), and human resources to handle		
		transactions and data efficiently.		
A4	C	The Banking System improves financial	CO6	PO6,
	Consequences for society and environment	transparency, ensures secure online transactions, and reduces manual errors, benefiting society at large.		PO12
A5	Familiarity	The Banking System provides a user-friendly interface for customers and bank employees, ensuring smooth interactions for tasks like fund transfers and account management	CO9	PO11, PO12