

EL PLANO TANGENTE

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 15) 09.MARZO.2023

Definición

Sea $S \subseteq \mathbb{R}^3$ una superficie regular. Diremos que el vector $\mathbf{v} \in \mathbb{R}^3$ es **tangente** a S en el punto $\mathbf{p} \in S$ si existe una curva parametrizada $\alpha: (-\varepsilon, \varepsilon) \to S$ tal que $\alpha(o) = \mathbf{p}$ y $\alpha'(o) = \mathbf{v}$.

Denotamos el conjunto de todos los vectores tangentes a S en el punto \mathbf{p} por $T_{\mathbf{p}}S$.

Propiedad

Sea $\mathbf{x}: U \subseteq \mathbb{R}^2 \to V \subseteq S$ una parametrización de la superficie regular S, en el punto $\mathbf{p} \in V \cap S$, con $\mathbf{x}(\mathbf{q}) = \mathbf{p}$. Entonces, el conjunto $D\mathbf{x}(\mathbf{q}) \cdot \mathbb{R}^2 = \operatorname{Im} D\mathbf{x}(\mathbf{q})$ coincide con el conjunto de los vectores tangentes a S en \mathbf{p} .

<u>Prueba</u>: Sea $T_pS = \{ \mathbf{v} \in \mathbb{R}^3 : \mathbf{v} \text{ es tangente a } S \text{ en } \mathbf{p} \}$. Mostramos que $D\mathbf{x}(\mathbf{q}) \cdot \mathbb{R}^2 = T_pS$.

[\subseteq] Sea $\mathbf{w} \in \mathbb{R}^2$ y sea $\alpha(t) = \mathbf{q} + t\mathbf{w}$ la recta en dirección de \mathbf{w} pasando por \mathbf{q} , dentro del dominio U. Luego, $\alpha(0) = \mathbf{q}$ y $\alpha'(0) = \mathbf{w}$. Definamos la curva $\beta = \mathbf{x} \circ \alpha$ sobre S

Entonces, $\beta(o) = \mathbf{x} \circ \alpha(o) = \mathbf{x}(\mathbf{q}) = \mathbf{p}$, y por la regla de la cadena tenemos

$$\beta'(0) = \frac{d}{dt}(\mathbf{x} \circ \alpha)(0) = D\mathbf{x}(\alpha(0)) \cdot \alpha'(0) = D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w},$$

de modo que $D\mathbf{x}(q) \cdot \mathbf{w} \in T_{\mathbf{p}}S$. Como \mathbf{w} es arbitrario, esto muestra que $D\mathbf{x}(q) \cdot \mathbb{R}^2 \subseteq T_{\mathbf{p}}S$.

[\supseteq] Sea $\mathbf{v} \in T_{\mathbf{p}}S$. Entonces, existe una curva $\beta : (-\varepsilon, \varepsilon) \to V \subseteq S$ tal que $\beta(\mathbf{o}) = \mathbf{p}$ y $\beta'(\mathbf{o}) = \mathbf{v}$.

Definamos $\alpha = \mathbf{x}^{-1} \circ \beta : (-\varepsilon, \varepsilon) \to U \subseteq \mathbb{R}^2$. Observe que siendo \mathbf{x}^{-1} y β diferenciables (en una vecidad de **q**), entonces α es también diferenciable. Luego, $\alpha(\mathbf{o}) = \mathbf{x}^{-1} \circ \beta(\mathbf{o}) = \mathbf{x}^{-1}(\mathbf{p}) = \mathbf{q}$ y $\alpha'(\mathbf{o}) = \mathbf{w} \in \mathbb{R}^2$.

Como $\mathbf{x} \circ \alpha = \beta$, entonces de la regla de la cadena

$$\mathbf{v} = \beta'(\mathbf{o}) = D\mathbf{x}(\alpha(\mathbf{o})) \cdot \alpha'(\mathbf{o}) = D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w} \in D\mathbf{x}(\mathbf{q}) \cdot \mathbb{R}^2.$$

Siendo **v** arbitrario en T_pS , esto muestra que $T_pS\subseteq D\mathbf{x}(\mathbf{q})\cdot\mathbb{R}^2$. \square

Corolario

Para todo punto **p** de una superficie regular S, el plano tangente T_pS es un espacio vectorial de dimensión 2. Una base para este espacio es $\{\frac{\partial \mathbf{x}}{\partial u}(\mathbf{p}), \frac{\partial \mathbf{x}}{\partial v}(\mathbf{p})\}$, donde

$$\frac{\partial \mathbf{x}}{\partial u}(\mathbf{p}) = D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_1, \quad \frac{\partial \mathbf{x}}{\partial v}(\mathbf{p}) = D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_2.$$

Prueba:

- Como S es superficie regular y $\mathbf{x}:U\subseteq\mathbb{R}^2\to V\cap S$ es una parametrización, la derivada $D\mathbf{x}(\mathbf{q})$ es un mapa lineal inyectivo $\Rightarrow T_{\mathbf{p}}S=\operatorname{Im}D\mathbf{x}(\mathbf{q})$ es un espacio vectorial y $\dim T_{\mathbf{p}}S\geq \dim \mathbb{R}^2=2$.
- Por el Teorema de la Dimensión, dim $T_pS = \dim \mathbb{R}^2 = 2$. Portanto, dim $T_pS = 2$.

• Como $\{\mathbf{e}_1,\mathbf{e}_2\}$ es una base de \mathbb{R}^2 y $D\mathbf{x}(\mathbf{q}):\mathbb{R}^2\to T_\mathbf{p}S$ es un isomorfismo lineal, entonces $\left\{\frac{\partial\mathbf{x}}{\partial u}(\mathbf{p}),\frac{\partial\mathbf{x}}{\partial v}(\mathbf{p})\right\}$ es una base para $T_\mathbf{p}S$.

Definición

A T_pS se le llama el **plano tangente** a la superficie S en **p**.

Observaciones:

- La base $\left\{ \frac{\partial \mathbf{x}}{\partial u}(\mathbf{p}), \frac{\partial \mathbf{x}}{\partial v}(\mathbf{p}) \right\}$ se llama la **base canónica** o la base de $T_{\mathbf{p}}S$ asociada a la parametrización \mathbf{x} .
- Usualmente escribiremos

$$\frac{\partial \mathbf{x}}{\partial u}(\mathbf{p}) = \mathbf{x}_u(\mathbf{q}), \quad \frac{\partial \mathbf{x}}{\partial v}(\mathbf{p}) = \mathbf{x}_v(\mathbf{q}).$$

 El plano tangente T_pS no depende de la elección de la parametrización x, ni de la curva α.
 (Verificarlo!)

Definición

Sean S_1 , S_2 superficies regulares, y sea $f: S_1 \to S_2$ una aplicación diferenciable. Dados, $\mathbf{p} \in S_1$, $\mathbf{v} \in T_\mathbf{p}S_1$, entonces existe una curva parametrizada $\alpha: (-\varepsilon, \varepsilon) \to V \subseteq S_1$, con $\alpha(\mathbf{0}) = \mathbf{p} \ y \ \alpha'(\mathbf{0}) = \mathbf{v}$.

La **derivada** de f en \mathbf{p} es la aplicación lineal $Df(\mathbf{p}): T_{\mathbf{p}}S_1 \to T_{f(\mathbf{p})}S_2$ dada por

$$Df(\mathbf{p}) \cdot \mathbf{v} = (f \circ \alpha)'(\mathbf{0}).$$

Observaciones:

- La regla de la cadena implica que $(f \circ \alpha)'(o) = Df(\alpha(o)) \cdot \alpha'(o) = Df(\mathbf{p}) \cdot \mathbf{v}$.
- La derivada $Df(\mathbf{p})$ no depende de la curva α .
- Si $\mathbf{x}: U_1 \subseteq \mathbb{R}^2 \to S_1$ es una parametrización , y $\mathbf{p} \in \mathbf{x}(U_1)$, definamos $\alpha = \mathbf{x} \circ \beta$, donde $\beta: (-\varepsilon, \varepsilon) \to U_1$ es una curva diferenciable. Suponga que $\beta(t) = (u(t), v(t))$. Entonces,

$$\mathbf{v} = \alpha'(0) = (\mathbf{x} \circ \beta)'(0) = D\mathbf{x}(\beta(0)) \cdot \beta'(0) = D\mathbf{x}(\mathbf{q}) \cdot (u'(0), v'(0))$$

$$= u'(0)D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_1 + v'(0)D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_2 = u'(0)\frac{\partial \mathbf{x}}{\partial u}(\mathbf{q}) + v'(0)\frac{\partial \mathbf{x}}{\partial v}(\mathbf{q})$$

$$= v_1 \mathbf{x}_u(\mathbf{q}) + v_2 \mathbf{x}_v(\mathbf{q}).$$

Sea $S \subseteq \mathbb{R}^3$ una superficie regular sea $\mathbf{x} : U \subseteq \mathbb{R}^2 \to S$, con U abierto, una carta local de S. Sea $\mathbf{p} \in S$, y sea $T_{\mathbf{p}}S$ el plano tangente a S en \mathbf{p} .

Definición

El **fibrado tangente** TS de la superficie S es la unión disjunta de los espacios tangentes T_pS sobre los diferentes puntos p de la superficie:

$$TS = \bigsqcup_{\mathbf{p} \in S} T_{\mathbf{p}}S = \bigcup_{\mathbf{p} \in S} (\{\mathbf{p}\} \times T_{\mathbf{p}}S).$$

Así, un elemento de TS se puede pensar como un par ordenado (\mathbf{p}, \mathbf{v}) , donde \mathbf{p} es un punto de S y \mathbf{v} es un vector tangente a S en el punto \mathbf{p} . Existe una proyección

$$\pi: TS \twoheadrightarrow S$$
,

definida por $\pi(\mathbf{p}, \mathbf{v}) = \mathbf{p}$. Esta proyección colapsa cada espacio tangente $T_{\mathbf{p}}S$ en un único punto \mathbf{p} .

El fibrado tangente TS^1 al círculo S^1 .

Observaciones:

- Para una curva C (variedad 1-dimensional), el fibrado tangente TC tiene dimensión 2.
- Mientras que un espacio tangente T_pS tiene dimensión 2, el fibrado tangente TS tiene dimensión 4.
- En general, para una variedad n-dimensional M, su espacio tangente $T_{\mathbf{p}}M$ tiene dimensión n, y su fibrado tangente TM tiene dimensión 2n.
- Si *M* es una variedad diferenciable de dimensión *n*, el fibrado tangente *TM* tiene también la estructura de una variedad diferenciable, de dimensión 2*n*.

Definición

Un **fibrado vectorial** real consiste de un espacio topológico X (espacio base), un espacio total E, y un mapa continuo y sobreyectivo $\pi: E \to X$, tal que para todo $\mathbf{x} \in X$, la preimagen o **fibra** $\pi^{-1}(\mathbf{x})$ posee la estructura de un \mathbb{R} -espacio vectorial finito dimensional; y en donde se cumplen las siguientes condiciones de compatibilidad:

Para todo punto $\mathbf{p} \in X$, existe una vecindad $U \subseteq X$ de \mathbf{p} , un número natural $k \in Y$, un homeomorfismo $\varphi : U \times \mathbb{R}^k \to U$, tales que

- $(\pi \circ \varphi)(\mathbf{x}, \mathbf{v}) = \mathbf{x}$, para todo $\mathbf{v} \in \mathbb{R}^k$
- el mapa v $\to \varphi(\mathbf{x}, \mathbf{v})$ es un isomorfismo lineal entre los espacios \mathbb{R}^k y $\pi^{-1}(\mathbf{x})$.

U junto con el homeomorfismo φ se llama una **trivialización local** del fibrado vectorial. La trivialización local muestra que localmente el mapa π "parece" la proyección de $U \times \mathbb{R}^k$ en U.

Cada fibra $\pi^{-1}(\mathbf{x})$ es un espacio vectorial real, y portanto, tiene una dimensión $k_{\mathbf{x}}$. Las trivializaciones locales muestran que la función $\mathbf{x} \to k_{\mathbf{x}}$ es localmente constante, \Rightarrow es constante en cada componente conexa de X. Cuando $k_{\mathbf{x}}$ es constante, se llama el **rango** del fibrado E.

Un ejemplo de un fibrado vectorial sobre la banda de Möbius.

El fibrado tangente *TM* de una variedad *M n*-dimensional viene acompañado de un mapa de **proyección** (natural) de *TM* a *M*, dado por

$$\pi: TM \to M, \qquad \pi(\mathbf{p}, \mathbf{v}) = \mathbf{p}.$$

Sea $U \subseteq M$ un abierto. Una **sección** de π en U es cualquier función continua $s: U \to TM$ tal que $\pi \circ s =$. (Esto es, una inversa derecha continua para π).

Un fibrado vectorial, y una sección para ese fibrado.

Ejemplo de secciones tangentes (campos vectoriales tangentes) a S.

Ejemplo de una sección normal (campo vectorial normal) a S.