

INF 302 : Langages & Automates

Chapitre 9 : Expressions régulières

Yliès Falcone

ylies.falcone@univ-grenoble-alpes.fr — www.ylies.fr

Univ. Grenoble-Alpes, Inria

Laboratoire d'Informatique de Grenoble - www.liglab.fr Équipe de recherche LIG-Inria, CORSE - team.inria.fr/corse/

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

1/2

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Plan Chap. 9 - Expressions Régulières

- Motivations
- 2 Expressions régulières : définition (syntaxe et sémantique) et quelques propriétés
- 3 Applications en informatique : commandes UNIX
- 4 Résumé

Y. Falcone (UGA - Inria) INF 302 : Langages & Automates

Plan Chap. 9 - Expressions Régulières

- Motivations
- 2 Expressions régulières : définition (syntaxe et sémantique) et quelques propriétés
- 3 Applications en informatique : commandes UNIX
- 4 Résumé

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

3/2

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Motivations

On cherche une notation plus **concise** que les automates pour décrire des langages à états.

Exemple (Unix - grep)

Écrire un automate pour faire un grep sur Unix ou Linux est inconcevable.

Exemple (Logiciels d'analyse lexicale)

Pour utiliser des logiciels d'analyse lexicale comme Lex ou Flex on doit spécifier les lexemes (token).

Exemple (Vérification de chaînes de caractères)

Vérifier les addresses emails, dates de naissance, etc dans les formulaires.

Y. Falcone (UGA - Inria) INF 302 : Langages & Automates 4/26

Motivations (suite)

Exemple (Expression régulière décrivant un email valide)

```
Selon la RFC 5322<sup>a</sup>
```

a. www.regular-expressions.info/email.html

- Les automates offrent la possibilité de décrire des langages de manières opérationnelle : par une sorte de machine (l'automate).
- Les expressions régulières permettent de le faire de manière déclarative/algébrique.

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

5/26

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Plan Chap. 9 - Expressions Régulières

- Motivations
- 2 Expressions régulières : définition (syntaxe et sémantique) et quelques propriétés
 - Syntaxe
 - Sémantique
 - Quelques propriétés : équivalence et simplification
- 3 Applications en informatique : commandes UNIX
- 4 Résumé

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

Plan Chap. 9 - Expressions Régulières

- Motivations
- 2 Expressions régulières : définition (syntaxe et sémantique) et quelques propriétés
 - Syntaxe
 - Sémantique
 - Quelques propriétés : équivalence et simplification
- 3 Applications en informatique : commandes UNIX
- 4 Résumé

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

7 / 26

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Expressions régulières : syntaxe

Soit Σ un alphabet.

Définition (Expressions régulières : syntaxe)

Les expressions régulières sur Σ sont définies inductivement (par les règles suivantes) :

- ϵ et \emptyset sont des expressions régulières sur Σ .
- Si $a \in \Sigma$ alors a est une expression régulière sur Σ .
- Si e et e' sont des expressions régulières sur Σ alors e+e' est une expression régulière sur Σ .
- Si e et e' sont des expressions régulières sur Σ alors $e \cdot e'$ est une expression régulière sur Σ .
- ullet Si e est une expression régulière sur Σ alors $e^{\underline{*}}$ est une expression régulière sur Σ .

Notation

L'ensemble des expressions régulières est dénoté par ER.

Exemple (Expressions régulières sur $\Sigma = \{a, b\}$)

- Ø
- b ⋅ a
- (Ø)*
- a + b
- a + b

- b
- a·∅
- a*
- $a \cdot (b + a)^*$
- (b⋅a⋅b)* · b

Plan Chap. 9 - Expressions Régulières

- Motivations
- 2 Expressions régulières : définition (syntaxe et sémantique) et quelques propriétés
 - Svntaxe
 - Sémantique
 - Quelques propriétés : équivalence et simplification
- 3 Applications en informatique : commandes UNIX
- 4 Résumé

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

9/26

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Expressions régulières : sémantique

Les expressions régulières décrivent des langages.

Définition (Expressions régulières : sémantique)

- La sémantique est donnée par l'application $L: ER \to \mathcal{P}(\Sigma^*)$ qui associe un langage (unique) L(e) à (toute expression régulière) e.
- L'application L est définie inductivement :
 - $L(\epsilon) = \{\epsilon\}$,

• $L(e + e') = L(e) \cup L(e')$,

• $L(\emptyset) = \emptyset$,

• $L(e \cdot e') = L(e) \cdot L(e')$,

• $L(a) = \{a\},$

• $L(e^*) = L(e)^*$.

Vocabulaire

Un langage L est régulier ssi il existe un expression régulière e telle que L(e) = L.

Exemple (Langage régulier)

Les langages sur $\{a,b\}$ dénotés par les expressions régulières suivantes sont réguliers

- $(a)^{*}$ langage des mots contenant que des a
- $(a \cdot b)^*$ langage des mots formés par une répétition finie du facteur $a \cdot b$.

Convention et notation

- Nous ne ferons plus la distinction explicitement entre
 - et ·, d'une part ;
 - $\frac{}{\underline{*}}$ et *, d'autre part.
- Nous voulons aussi pouvoir écrire des expressions comme
 - a + b + c à la place de (a + b) + c, et
 - $a + b^*$ à la place de $(a + (b^*))$.
- Pour éviter les ambiguïtés nous permettons l'utilisation des parenthèses et admettons les priorités suivantes dans un ordre décroissant :
 - **1** *
 - 2 .
 - 6 +
- Nous écrivons aussi ee' à la place de $e \cdot e'$.

Exemple (Convention et notation)

Les expressions

- $e_1 + e_2^*$ et $e_1 + (e_2)^*$, d'une part,
- $e_1 + e_2 \cdot e_3$ et $e_1 + (e_2 \cdot e_3)$, d'autre part,

dénotent les mêmes ensembles.

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

11/2

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Exemples d'expressions régulières

Soit $\Sigma = \{a, b\}$.

Exemple (Mots ne contenant que des a)

Exemple (Mots constitués de répétitions du facteur *ab*)

Exemple (Mots avec nombre pair de a)

Exemple (Mots avec nombre impair de b)

Exemple (Mots avec nombre pair de a ou nombre impair de b)

Notation - Opérateur + (en exposant)

Opérateur + (en exposant)

Soit e une expression régulière, nous notons e^+ pour $e \cdot e^*$.

L'expression régulière e⁺ dénote le langage des mots qui sont formés par la concaténation d'au moins un mot dans le langage dénoté par l'expression régulière e.

Exemple (Expression régulière avec opérateur + (en exposant))

Soit $\Sigma = \{a, b, c, d\}$, considérons l'expression régulière e = ab + cd. Alors l'expression régulière e^+ dénote le langage

{ ab, cd, abab, abcd, cdab, cdcd, . . . }

Propriété

Soit e une expression régulière telle que $\epsilon \in L(e)$, alors $L(e^+) = L(e^*)$.

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

13 / 26

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Plan Chap. 9 - Expressions Régulières

- Motivations
- Expressions régulières : définition (syntaxe et sémantique) et quelques propriétés
 - Syntaxe
 - Sémantique
 - Quelques propriétés : équivalence et simplification
- 3 Applications en informatique : commandes UNIX
- 4 Résumé

Équivalence entre expressions régulières

Définition (Équivalence entre deux expressions régulières)

Les expressions régulières e_1 et e_2 sont dites équivalentes lorsque :

$$L(e_1)=L(e_2).$$

(C'est-à-dire lorsque ces expressions régulières dénotent les mêmes langages.)

Notation

Lorsque e_1 et e_2 sont équivalentes, nous le notons $e_1 \equiv e_2$.

Remarque La relation ≡ entre expressions régulières est effectivement une relation d'équivalence car la relation d'égalité est une relation d'équivalence sur les langages.

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

15 / 26

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Équivalence entre expressions régulières : identités classiques

Identités classiques

Expression régulière	Expression régulière équivalente	Remarque
$e+\emptyset$	е	trivial
$e \cdot \epsilon$	е	trivial
e · ∅	Ø	trivial
(e+f)+g	e+(f+g)	associativité
$(e \cdot f) \cdot g$	$e \cdot (f \cdot g)$	associativité
$e \cdot (f + g)$	$(e \cdot f) + (e \cdot g)$	distributivité
$(e+f)\cdot g$	$(e \cdot g) + (f \cdot g)$	distributivité
e+f	f + e	commutativité

Y. Falcone (UGA - Inria) INF 302 : Langages & Automates

Équivalence entre expressions régulières : identités classiques

Identités classiques

Expression régulière	Expression régulière équivalente	Remarque
e*	$\epsilon + \mathbf{e} \cdot \mathbf{e}^*$	apériodicité
e*	$\epsilon + e^* \cdot e$	apériodicité
(Ø)*	ϵ	définition de
		l'opérateur de Kleene
e + e	е	idempotence
(e*)*	e^*	idempotence

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

17 / 2

18 / 26

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Équivalence entre expressions régulières

Soit Σ un alphabet tel que $a \in \Sigma$ et e une expression régulière sur Σ .

Exemple (Expressions régulières équivalentes)

- Les expressions $(a + \epsilon)^*$ et a^* sont équivalentes.
 - $L((a+\epsilon)^*)\subseteq L(a^*)$. Soit $w\in L((a+\epsilon)^*)$, d'après la sémantique des expressions régulières, soit i) w est ϵ soit ii) s'écrit $w_1\cdot w_2\cdots w_n$ avec $w_i\in L(a+\epsilon)$. Premier cas : $w=\epsilon$ et dans ce cas $w\in L(a^*)$ d'après la sémantique de a^* (fermeture de Kleene de L(a)). Deuxième cas : w est formé par la concaténation des mots a et ϵ et peut donc s'écrire $w=w_1'\cdots w_m'$ avec $m\leq n$ et $w_i=w_i'$ pour. Donc $w\in\{a\}^*=L(a^*)$.
 - $L((a+\epsilon)^*) \supseteq L(a^*)$. On a $L(a^*) = L(a)^* = (\{a\})^* \subseteq (\{a\} \cup X)^*$, pour n'importe quel langage X et en particulier lorsque $X = \{\epsilon\}$.
- Les expressions $(e + \epsilon)^*$ et e^* sont équivalentes. La preuve suit un principe similaire au précédent en raisonnant sur L(e) au lieu de $L(a) = \{a\}$.
- Les expressions $\epsilon + e + ee^*e$ et e^* sont équivalentes, pour n'importe quelle expression régulière e. La preuve suit un principe similaire au précédent.

Est-ce que l'équivalence entre expressions régulières est décidable?

Y. Falcone (UGA - Inria) INF 302 : Langages & Automates

Simplification d'expressions régulières

Principe de simplification d'expressions régulières

Si e et e' sont deux expressions régulières équivalentes (cad $e \equiv e'$, L(e) = L(e')), alors on peut substituer e par e' dans une expression régulière r sans changer le langage que r dénote.

Exemple (Simplification d'expressions régulières)

Considérons l'expression régulière $r = (a + \epsilon)^* + b^* + c \cdot d^*$. Comme $L((a + \epsilon)^*) = L(a^*)$, r peut se simplifier en $a^* + b^* + c \cdot d^*$.

Quelques faits utiles pour la simplification

Soient e_1 et e_2 deux expressions régulières.

- Si $L(e_1) \subseteq L(e_2)$, alors $L(e_1 + e_2) = L(e_2)$. Donc $e_1 + e_2$ peut être remplacée par e_2 dans une expression régulière sans changer le langage qu'elle dénote.
- $L(e \cdot \epsilon) = L(\epsilon \cdot e) = L(e)$.

Est-ce qu'on sait déterminer automatiquement si $e_1 + e_2$ peut être remplacée par e_2 ? C'est-à-dire, est-ce que $L(e_1) \subseteq L(e_2)$ est décidable?

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

19 / 2

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Simplification d'expressions régulières : exemples

Exemple (Simplification d'expressions régulières)

Expression régulière	Expression régulière simplifiée
$e^* + e$	e*
$e^+ + e$	e^+
$e^+ + \epsilon$	e*
$(e+\epsilon)^*$	e*
$a + ab^*$	ab*
$e + ee^*e$	e^+
$\epsilon + e + ee^*e$	e*

Remarque Voir TD pour plus d'exemples de simplification, et les preuves d'équivalence entre ces expressions régulières.

Plan Chap. 9 - Expressions Régulières

- Motivations
- 2 Expressions régulières : définition (syntaxe et sémantique) et quelques propriétés
- 3 Applications en informatique : commandes UNIX
- 4 Résumé

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

21 / 26

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Commandes UNIX

Beaucoup de commandes UNIX permettent de spécifier les chaînes de caractères à utiliser avec des expressions régulières.

• Editeurs de textes : vi(m), emacs, nano

Commandes UNIX

• Recherche d'une chaîne dans un texte : grep

```
grep *exam* /Users/prof/teaching/*.*
```

Affiche les lignes contenant *exam* dans tous les fichiers (avec extension) du répertoire /Users/prof/teaching/.

Transformation de chaîne dans un texte/fichier : sed

```
sed s/2017/2018/ <old.tex >new.tex
```

Remplace les occurrences de 2017 dans old.tex par 2018 et met le résultat dans new.tex.

Recherche de fichiers : find

```
find . -name *examen* -print
```

Recherche dans le répertoire courant et dans les sous répertoire (.) les fichiers compatibles avec l'expression *examen*.

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

23 / 2

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Commandes UNIX (suite)

Evaluation d'expressions : expr

```
$chaine : expression_reguliere
```

Comparaison de \$chaine avec expression_reguliere

• Filtre et traitement de données en ligne : awk

```
pattern { action }
```

Ajoute 1 ligne avec START au début et 1 ligne avec END à la fin d'un fichier.

```
BEGIN { print "File\t0wner"}
{ print $8, "\t", $3}
END { print " - DONE -" }
```

Script fileOwner qui affiche le propriétaire d'un fichier.

ls -1 | FileOwner

Utilisation du script FileOwner en ligne de commande.

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automate

Plan Chap. 9 - Expressions Régulières

- Motivations
- 2 Expressions régulières : définition (syntaxe et sémantique) et quelques propriétés
- 3 Applications en informatique : commandes UNIX
- 4 Résumé

Y. Falcone (UGA - Inria)

INF 302 : Langages & Automates

25 / 26

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Résumé

Résumé

- Définition des expressions régulières :
 - syntaxe,
 - sémantique.
- Équivalence entre expressions régulières.
- Simplification d'expressions régulières
- Commandes UNIX utilisant les expressions régulières.