	_	
1-1	1 . 2	1 . 1 1
_10/	Than	dataset
		The second second second

F	label
	100
	0
2	0
3	1
è	1 1 1
6	
7 -	0
16	0
11	0 *

→ Divide the set queatly for training 4 testing data.

F. i) We need to train set using Knn For K=3

Lets use Euclidean Distance between the dates points:

formula => 0 = 1(x2-x1)2

→ Using Eucledian Form	Ja	for d	ala po	ict to	
find out the predicte	do	out put			
→ () d = V(x2-x1)2					
	ain				
O data point = 6					
train point = 6	F	label			
1(6-6) = 0	1	0			
	3	1			
adata point = 6	6				
train point = 3					3 4 5
d= V(6-3)2 = 93	1	1		Predicted	0
		F	label	label	. ,
3 data point = 6		6	0	1	
train Point = 2 $d = \sqrt{(6-2)^2} = 4$		10	0		
d= V(6-2) = 4		11	0		
@ data point = 6					•
train point=1					
d= \(\langle (6-1)^2 = 5					
				7.0	

	=> Take	- rear	rest val	ver i.e	(1,1,	0)
	-> Predict					
	2 ieu 1/c	iny to	(17.10	9,11 (5	(1, 1	11)
	F	Label	Prec	licked 1		
	6	1		1		
	1	0		1		
	10	0				
	11					
10.6				+ acres	1 when	actual val
10.6			I:(91			ortual val
10.6			I : (91		dicted	value is
10.6	True Pos	sitive ((a): I	nd pre	dicted	value is
10.6		sitive ((a): I	nd pre	dicted	value is
10.6	True Pos	sitive (ro): I a p	nd pre ositive (dicted i). (Tp	value is
10.6	True Post	sitive (ro): I a p	nd pre ositive (dicted i). (Tp	value is). TelTN/Fp/
10.6	True Pos	sitive (ro): I a p	nd pre ositive (dicted i). (Tp	value is). TelTN/Fe/e
10.6	True Pos	sitive (rp): I a p rix: label	nd pre ositive (dicted i). (Tp	value is). TelTN/Fp/

We have IP=1 TN=0 Fp=3 FN=0 Accuracy = TP+IN 140 18+TN4664CM 1+3+0+0 Sensitivity = TP+FN 140 Specificity = To 0 = 0. FP+TN 3+0