

Soundness and Completeness of System F

용어정리

ullet \mathcal{F}_{T}

 $\neg, \land, \lor, \rightarrow, \leftrightarrow, \bot$ Intro/Elim 규칙으로 구성된 추론 시스템.

• $P_1, ..., P_n \mid_T S$

뜻: 전제 P₁, ..., Pⁿ 에서 결론 S를 얻는 乔증명이 있다.

System 뛰의 안전성 Soundness of System FT

- 추론시스템 季로 증명한 게 타당하다고 할 수 있을까?
- 증명 규칙에 결점이 없다고 할 수 있을까?
- 안전성 정리Soundness Theorem: P₁, ..., P_n + _T Q 이면, 문장 Q는 P₁, ..., P_n 의 항진 결과이다.
- 증명:
 - 추론시스템 査로 구축한 증명을 p라고 하자.
 - <증명해야할 것> 증명 p 상에서 어떤 단계의 "문장"도 그 단계에서 사용 가능한 "가정(전제포함)"의 "항진 결과"이다.
 - 그렇다면, Q가 맨 바깥 수준에서 사용 가능한 가정은 전제인 P₁, ..., P_n 뿐이므로, Q가 P₁, ..., P_n의 항진 결과라고 할 수 있게 된다.

- (증명계속) <모순유도 증명 Proof by contradiction>
 - 증명 p 상에서 어떤 단계의 문장이 그 단계에서 사용 가능한 가정의 항진 결과가 아닌 단계가 있다고 가정한다.
 (이를 타당하지 않은 단계invalid step이라고 함)
 - 증명 p의 첫 번째 타당하지 않은 단계를 찾은 뒤, 乔의 12개 규칙 중에서
 어떤 규칙을 적용해도 정당화할 수 없어서 모순이 됨을 보인다.
 - 그러면 乔 증명에서 타당하지 않은 단계가 없다고 결론 지을 수 있게 된다.

• (증명 계속) <경우별 증명 Proof by case>

\rightarrow Elim:

- Q→R과 Q에 →Elim 규칙을 적용하여 R 문장을 유추해 낸 단계를 첫 번째
 타당하지 않은 단계라고 하자.
- R에서 사용 가능한 가정을 A₁, ..., A₂ 이라고 하자.
- 만약 이 단계가 타당하지 않다면, R은 $A_1, ..., A_k$ 의 항진 결과가 아닐 것이다.
- R을 타당하지 않은 첫 번째 단계라고 했으므로 그 전 단계인 Q→R과 Q는 둘 다 타당한 단계, 즉, 그 단계에서 사용 가능한 가정의 항진 결과임에 틀림없다.
- [관찰] Q→R과 Q에서 사용 가능한 가정은 R에서도 사용 가능하다.
- 그런데 R이 타당하지 않은 단계이므로 진리표에 다음과 같은 행이 존재한다.

A ₁	•••	A _k	Q→ R	Q	R
T	Τ	Т	T	Τ	F

– 이는 모순!

• (증명 계속) <경우별 증명 Proof by case>

\rightarrow Intro:

- 가정이 Q이고 결론이 R인 부분증명subproof에 →Intro 규칙을 적용하여
 Q→R 문장을 유추해 낸 단계를 첫 번째 타당하지 않은 단계라고 하자.
- Q→R에서 사용 가능한 가정을 A₁, ..., Ak 이라고 하자.
- R에서 사용 가능한 가정은 A₁, ..., A₂과 Q가 될 것 이다.
- Q→R을 타당하지 않은 첫 번째 단계라고 했으므로 그 전 단계인 R은 그 단계에서 사용 가능한 가정의 항진 결과임에 틀림없다.
- 그런데 Q→R이 타당하지 않은 단계이므로 진리표에 다음과 같은 행이 존재한다.

A_1	•••	A_k	Q	Q→R	R
Т	Τ	Η	Т	F	\vdash

- 이는 모순!

• (증명 계속) <경우별 증명 Proof by case>

⊥ Elim:

- ⊥에 ⊥ Elim 규칙을 적용하여 Q 문장을 유추해 낸 단계를 첫 번째 타당하지 않은 단계라고 하자.
- [관찰] ⊥에서 사용 가능한 가정은 Q에서도 사용 가능하다.
- Q 단계를 타당하지 않은 첫 번째 단계라고 했으므로 그 전 단계인 ⊥은 그 단계에서 사용 가능한 가정의 항진 결과임에 틀림없다.
- 그런데 Q가 타당하지 않은 단계이므로 진리표에 다음과 같은 행이 존재한다.

A_1	•••	A_k	긔	Q
Т	H	Т	Τ	F

- 이는 모순!
- 이런 식으로 12개의 규칙 모두에 대해서 모순을 유도하면 된다...
- 증명 그만...

Soundness of \mathcal{F}_T

System 꽃의 완전성 Completeness of System 옷

- 증명 가능한 모든 걸 추론시스템 ♣으로 증명할 수 있을까?
- 임의의 전제 P_1 , ..., P_n 와 이 전제로 얻을 수 있는 모든 항진 결과tautological consequence S에 대해서, 추론 시스템 \mathcal{F}_T 로 P_1 , ..., P_n 에서 S를 도출해내는 증명을 할 수 있을까?
- 추론 시스템 季로 증명할 수 없는 임의의 전제에 대한 항진 결과가 있을까?
- (완전성 정리Completeness Theorem) 문장 S가 P₁, ..., P_n의 항진 결과이면,
 P₁, ..., P_n ト_T S

(증명) 교재 17장 참조

Completeness and Soundness of \mathcal{F}_{T}

 \mathcal{F}_T 로 증명 불가능 한 것 Dodec(b) \land b = c \vdash Dodec(c) Larger(b,c) \vdash \neg Larger(c,b)

완전성 정리 Completeness Theorem 는 어디에 써먹나?

- 증명을 찾을 필요 없이 증명의 존재 여부 판별 가능
- 어떻게? 전제를 가지고 항진 결과를 얻어내기만 하면 된다.
- 예: A → (B → A)는 항진이므로 증명이 확실히 존재한다.
- 예: 결론 B ∧ ¬D는 전제 ¬((A ∧ B) → (C ∨ D))의 항진 결과이므로 증명 이 확실히 존재한다.
- 잠깐: 항진 결과인지는 어떻게 알 수 있을까?
 Boole로 진리표를 그려 보든지, Fitch에서 Taut Con을 사용하든지...

안전성 정리 Soundness Theorem 는 어디에 써먹나?

- 季에서 증명이 없음을 알아내기가 가능
- 어떻게? 결론이 전제의 항진적 결과가 아님을 보여주면 된다.
- 예: A → (A → B)는 항진이 아니므로 아무리 용을 써봐도 乔로 증명을 구축하기가 불가능하다.
- 예: 결론 B ∧ ¬D는 전제 ¬((A ∨ B) → (C ∧ D))의 항진 결과가 아니므로,
 아무리 용을 써봐도 乔로 증명을 구축하기가 불가능하다.
- 예: 결론 ¬Happy(carl)은 전제 ¬(Happy(carl) ∧ Happy(scruffy))의 항진 결과가 아니므로 아무리 용을 써봐도 ﷺ로 증명을 구축하기가 불가능하다.

따라서..

- Fitch 에서
- Taut Con으로 따져본 후
- 항진이면 열심히 증명을 찾아보고
- 항진이 아니면 바로 포기하면 됨

• 그러나... Fitch가 없는 세상에서는 진리표를 그려볼 수 밖에 없음.