Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

1	\mathbf{OT}	\mathbf{A}	2
	1.1	Первое доказательство (не было доведено)	2
	1.2	Второе доказательство	2

1 OTA

Эту часть конспекта для вас затеха: Иван Бирюков

Теорема 1.1.

1) $\forall n > 1$ $\exists !$ его представление в виде

$$n = p_1 p_2 \dots p_s$$

Комментарий: p_1, p_2, \ldots, p_s - простые числа, единственность с точностью до порядка множителей

2) p_i - i-ое простое число Тогда $\forall n \exists ! (\alpha_1, \alpha_2, \dots, \alpha_n)$:

$$n = \prod_{i=1}^{\infty} p_i^{\alpha_i}$$

Следствие. $\nu_p(n)$ - тах степень вхождения p в $n \Longrightarrow n \not p^{\nu_p(n)+1}$

Сейчас мы приведем несколько доказательств этой теоремы

1.1 Первое доказательство (не было доведено)

Доказательство. Найдем существование разложения по индукции по n:

База:
$$n=2$$
. Переход: $n=ab \to \left(p_{a_1}^{\alpha_{a_1}}p_{a_2}^{\alpha_{a_2}}\dots p_{a_s}^{\alpha_{a_s}}\right)\cdot \left(p_{b_1}^{\alpha_{b_1}}p_{b_2}^{\alpha_{b_2}}\dots p_{b_k}^{\alpha_{b_k}}\right)$ или n - простое

Осталось понять единственность.

Пойдем от противного: пусть $\exists \min n = p_1 p_2 \dots p_s = q_1 q_2 \dots q_k$

Для простоты упорядочим простые числа в обоих разложениях.

Если $p_1=q_1$, то у числа $\frac{n}{p_1}$ есть 2 разложения. Значит, $p_1\neq q_1\to n\geqslant p_1p_2\geqslant p_1^2$

Аналогично получается $n \geqslant q_1^2 \to n \geqslant max(p_1^2, q_1^2) \geqslant q_1(p_1 + 2) > q_1p_1 + 1$

Рассмотрим число $x = n - p_1 q_1$. Оно меньше n и больше 1, а тогда у него есть единственное разложение на простые сомножители $\tau_1, \tau_2, \ldots, \tau_m$:

$$x=p_1(p_2\dots p_s-q_1)=q_1(q_2\dots q_k-p_1)= au_1\dots au_m$$
, в наборе $au: au_1\leqslant \dots\leqslant p_1\leqslant q_1\leqslant au_m$

1.2 Второе доказательство

Лемма 1.1 (Евклида). p - npocmoe. $Tor\partial a \ mn:p \to m:p$ uли n:p

Лемма 1.2 (Евклида 2.0). $(m,k) = 1, mn:k \rightarrow n:k$

$$2 \Longrightarrow 1:. \ k=p, m \not \mid p \to (m,p) = 1 \to n \dot{:} k \qquad \Box$$

Доказательство. Докажем единственность по лемме Евклида:

$$n = p_1 \underbrace{\dots p_s}_{m} = q_1 \dots q_l$$

По лемме Евклида $p_1=q_1$ или $m:q_1$. Повторяя процедуру, получим, что $p_i=q_1$, сократим на него и повторим алгоритм.

Докажем теперь лемму Евклида 2.0

Доказательство. По линейному представлению НОДа $\exists x \; \exists y: \; mx+ky=1$

$$mx + ny = 1 \rightarrow \underbrace{mn}_{k} x + \underbrace{k}_{k} ny = n \rightarrow n \dot{k}$$

 $\vdots_{k} \vdots_{k}$

Доказательство этой же леммы через идеалы:

Определение 1.1. I - идеал в \mathbb{Z} , если:

- 1. $\forall a, b \in I : a + b = I$
- 2. $\forall a \in I \ \forall b \in \mathbb{Z} : ab \in I$

Доказательство. Зафиксируем m и определим $I_m = \{a \mid ma : p\} \to n, p$ лежат в идеале **Лемма 1.3.** Пусть d - минимальное положительное число в I Тогда $I = \{cd \mid c \in \mathbb{Z}\}$

Следует из деления элемента с остатком

А тогда d=1 или d=p. Во втором случае n:p, в первом - m:p

 $\overline{\Phi\Pi M M \Phi T M}$, весна 2025