

<u>cloh@mit.edu</u> | +1 (617)-230-8897

Github: https://github.com/clott3

RESEARCH INTERESTS

My main research interests are in the intersection of machine learning and science: I am interested to improve state-of-the-art machine learning techniques by using insights from Physics and I am also interested in improving the applicability of machine learning tools to a wide range of problems in science and engineering. Currently, I am focused in the area of self-supervised learning, where I explore conditions necessary for state-of-the-art methods like SimCLR, BYOL, SimSiam to work well and why. While these techniques are often applied to problems in computer vision, I also explore how to improve their applicability and functionality to problems in science and engineering.

EDUCATION

Massachusetts Institute of Technology

PhD, Electrical Engineering and Computer Science

Thesis Advisor: Prof. Marin Soljačić

Master of Science, Electrical Engineering and Computer Science 2019 – 2021

Thesis Advisor: Prof. Marin Soljačić

University of Cambridge

Master of Advanced Studies, Physics 2014 – 2016

Thesis Advisor: Dr. Akshay Rao, Dr. Aditya Sadhanala

Imperial College London

Bachelor of Science, Physics with Theoretical Physics 2011 – 2014

Thesis Advisor: Prof. Stefan Maier

PROFESSIONAL EXPERIENCE

DSO National Laboratories, Singapore

Member of Technical Staff, Functional and Smart Materials Lab

Research Areas: Meta-surfaces for tailoring wavefronts on complex geometries; Origami & Kirigami architectures for volumetric electromagnetic tunability

2016 - 2019

2019 - present

PUBLICATIONS AND PREPRINTS

- 1. Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science. (2021) **Charlotte Loh**, Thomas Christensen, Rumen Dangovski, Samuel Kim and Marin Soljačić. 2021. Under Review. arXiv preprint at arXiv:2110.08406
- 2. Scalable and Flexible Deep Bayesian Optimization with Auxiliary Information for Scientific Problems. (2021) Samuel Kim, Peter Lu, **Charlotte Loh**, Jamie Smith, Japser Snoek and Marin Soljačić. Under Review. arXiv preprint arXiv:2104.11667
- 3. Predictive and generative machine learning models for photonic crystals. (2020) Thomas Christensen, **Charlotte Loh**, Stjepan Picek, Domagoj Jakobović, Li Jing, Sophie Fisher, Vladimir Ceperic, John D. Joannopoulos and Marin Soljačić. Nanophotonics 9 (13), 4183-4192

AWARDS		
DSO Postgraduate Scholarship	2018	
DSO National Laboratories, Singapore	2018	
DSO Innovation Award	2018	
DSO National Laboratories, Singapore		
Corpus Christi Postgraduate Prize in Physics	2016	
Corpus Christi College, Cambridge University, UK		
Runner-up Prize in Second Year Physics Essay	2013	
Physics Department, Imperial College London, UK		
Defence Science & Technology Agency Undergraduate Scholarship	2011	

PROFICIENCY

Coding/Software: Python, C++, MATLAB, PyTorch, TensorFlow, LaTeX, Adobe Illustrator, Inkscape

Spoken: English, Mandarin Chinese

Defence Science & Technology Agency, Singapore