A Book of Abstract Algobra Jon

SOOK Of Abstract Algebra (2nd Edition)		
Chapter AA, Problem 9E	Bookmark	Show all steps: ON
	Problem	
Prove the following:		
$A \cup (A \cap B) = A.$		
Step-b	y-step solution	
Sto	ep 1 of 2	
Objective:-		
The objective is to prove $A \cup (A \cap B) = A$.		
Comment		
Sto	ep 2 of 2	
Proof:-		
Let A and B are two sets.		
The union of two sets A and B is:-		
$A \cup B = \{x : x \in A \text{ or } x \in B\}$		
The intersection of two sets A and B is:-		
$A \cap B = \{x : x \in A \text{ and } x \in B\}$		
Let $x \in A \cup (A \cap B)$.		
$x \in A \cup (B \cap C)$		

$$\Rightarrow x \in A \text{ or } x \in B \text{ and } x \in C$$

$$\Rightarrow (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C)$$

$$\Rightarrow (x \in A \cup B) \text{ and } (x \in A \cup C)$$

$$\Rightarrow x \in (A \cup B) \cap (A \cup C)$$
So,
$$A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \qquad(1)$$
Let $x \in A \cup (B \cap C)$.
$$x \in (A \cup B) \cap (A \cup C)$$

$$\Rightarrow (x \in A \cup B) \text{ and } (x \in A \cup C)$$

$$\Rightarrow (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C)$$

$$\Rightarrow x \in A \text{ or } x \in B \text{ and } x \in C$$

$$\Rightarrow x \in A \cup (B \cap C)$$
So,
$$(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C) \qquad(2)$$
Let us consider the equation (1) and (2).
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$
According to this theorem:-
$$A \cup (A \cap B) = (A \cup A) \cap (A \cup B)$$

$$A \cup (A \cap B) = (A \cup A) \cap (A \cup B)$$
$$A \cup (A \cap B) = A \cap (A \cup B)$$
$$A \cup (A \cap B) = A$$

Since the common elements in set A and B are also elements of set A.

Proved

Comment