CSC263 Week 2

If you feel rusty with probabilities, please read the Appendix C of the textbook. It is only about 20 pages, and is highly relevant to what we need for CSC263.

Appendix A and B are also worth reading.

This week topic

→ ADT: **Priority Queue**

→ Data structure: **Heap**

An ADT we already know

First in first serve

Queue:

- → a collection of elements
- supported operations
 - lack Enqueue(Q, x)
 - Dequeue(Q)
 - PeekFront(Q)

The new ADT

Max-Priority Queue:

- → a collection of elements with priorities, i.e., each element x has x.priority
 - supported operations
 - **♦ Insert**(Q, x)
 - like enqueue(Q, x)
 - ExtractMax(Q)
 - like dequeue(Q)
 - **▶ Max**(Q)
 - like PeekFront(Q)
 - IncreasePriority(Q, x, k)
 - increase x.priority to k

Oldest person first

Applications of Priority Queues

- → Job scheduling in an operating system
 - Processes have different priorities (Normal, high...)
- → Bandwidth management in a router
 - Delay sensitive traffic has higher priority
- → Find minimum spanning tree of a graph
- \rightarrow etc.

Now, let's implement a (Max)-Priority Queue

Use an unsorted linked list

- \rightarrow INSERT(Q, x) # x is a node
 - lack Just insert x at the head, which takes $\Theta(1)$
- → IncreasePriority(Q, x, k)
 - ◆ Just change x.priority to k, which takes **Θ(1)**
- \rightarrow Max(Q)
 - ◆ Have to go through the whole list, takes O(n)
- → ExtractMax(Q)
 - Go through the whole list to find x with max priority (O(n)), then delete it (O(1)) if doubly linked) and return it, so overall $\Theta(n)$.

Use a reversely sorted linked list

- \rightarrow Max(Q)
 - lack Just return the head of the list, $\Theta(1)$
- → ExtractMax(Q)
 - ◆ Just delete and return the head, **Θ(1)**
- \rightarrow INSERT(Q, x)
 - igoplus Have to linearly search the correct location of insertion which takes $\Theta(n)$ in worst case.
- → IncreasePriority(Q, x, k)
 - After increase, need to move element to a new location in the list, takes Θ(n) in worst case.

 $\Theta(1)$ is fine, but $\Theta(n)$ is kind-of bad...

unsorted linked list sorted linked list

• • •

Can we link these elements in a smarter way, so that we never need to do Θ(n)?

Yes, we can!

Worst case running times

	unsorted list	sorted list	Неар	
Insert(Q, x)	Θ(1)	Θ(n)	Θ(log n)	
Max(Q)	Θ(n)	Θ(1)	Θ(1)	
ExtractMax(Q)	Θ(n)	Θ(1)	Θ(log n)	
IncreasePriority (Q, x, k)	Θ(1)	Θ(n)	Θ(log n)	

Binary Max-Heap

A binary max-heap is a nearly-complete binary tree that has the max-heap property.

It's a binary tree

Each node has at most 2 children

It's a nearly-complete binary tree

Each level is **completely filled**, except the bottom level where nodes are filled to as **far left** as possible

Why is it important to be a nearly-complete binary tree?

Because then we can **store** the tree in an **array**, and each node knows which **index** has the its parent or left/right child.

	Α	В	С	D	E	F
inde	x: 1	2	3	4	5	6

$$Left(i) = 2i$$

$$Right(i) = 2i + 1$$

Why is it important to be a nearly-complete binary tree?

Another reason:

The **height** of a complete binary tree with n nodes is $\Theta(\log n)$.

This is essentially why those operations would have $\Theta(\log n)$ worst-case running time.

A thing to remember...

A heap is stored in an array.

Binary Max-Heap

A binary max-heap is a nearly-complete binary tree that has the max-heap property.

The max-heap property

Every node has key (priority) greater than or equal to keys of its **immediate** children.

The max-heap property

Every node has key (priority) greater than or equal to keys of its **immediate** children.

Implication: every node is larger than or equal to all its descendants, i.e., every subtree of a heap is also a heap.

We have a binary max-heap defined, now let's do operations on it.

- \rightarrow Max(Q)
- \rightarrow Insert(Q, x)
- → ExtractMax(Q)
- → IncreasePriority(Q, x, k)

Max(Q)

Return the largest key in Q, in O(1) time

Max(Q): return the maximum element

Return the **root** of the heap, i.e.,

just return Q[1]

Q 65 40 25 33 24 18

(index starts from 1)

worst case $\Theta(1)$

Insert(Q, x)

Insert node x into heap Q, in O(logn) time

First thing to note:

Which spot to add the new node?

The only spot that keeps it a **complete** binary tree.

Increment heap size

Second thing to note:

Heap property might be broken, how to fix it and maintain the heap property?

"Bubble-up" the new node to a proper position, by swapping with parent.

Second thing to note:

Heap property might be broken, how to fix it and maintain the heap property.

"Bubble-up" the new node to a proper position, by swapping with parent.

Second thing to note:

Heap property might be broken, how to fix it and maintain the heap property.

"Bubble-up" the new node to a proper position, by swapping with parent.

Worst-case: $\Theta(\text{height}) = \Theta(\log n)$

ExtractMax(Q)

Delete and return the largest key in Q, in O(logn) time

First thing to note:

Which **spot** to remove?

The only **spot** that keeps it a **complete** binary tree.

Decrement heap size

First thing to note:

Which **spot** to remove?

The only **spot** that keeps it a **complete** binary tree.

But the last guy's key should NOT be deleted.

Overwrite root with the **last guy**'s key, then **delete** the last guy (decrement heap size).

Now the **heap property** is broken again..., need to fix it.

"Bubble-down" by swapping with...

a child...

Which child to swap with?

so that, after the swap, **max-heap property** is satisfied

Now the **heap property** is broken again..., need to fix it.

"Bubble-down" by swapping with

the elder child

Now the **heap property** is broken again..., need to fix it.

"Bubble-down" by swapping with...

the elder child

Now the **heap property** is broken again..., need to fix it.

"Bubble-down" by swapping with

the elder child

Worst case running time: $\Theta(\text{height})$ + some constant work $\Theta(\text{log n})$

Quick summary

Insert(Q, x):

→ Bubble-up, swapping with parent

ExtractMax(Q)

→ Bubble-down, swapping elder child

Bubble up/down is also called **percolate** up/down, or **sift** up down, or **tickle** up/down, or **heapify** up/down, or **cascade** up/down.

CSC263 Week 2

Thursday

Announcements

Problem Set 2 is out

→ due next Tuesday 5:59pm

Additional office hours on Mondays

→ 4 - 5:30pm (or by appointment)

A quick review of Monday

- → Max-Priority Queue implementations
 - unsorted and sorted linked list -- O(1), O(n)
 - binary max-heap -- O(1), O(log n)
 - Max(Q)
 - Insert(Q, x)
 - bubble up swapping with parent
 - ExtractMax(Q)
 - o bubble down swapping with elder child
 - IncreasePriority(Q, x, k)

IncreasePriority(Q, x, k)

Increases the key of node x to k, in O(logn) time

IncreasePriority(Q, x, k): increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with parents, to proper location.

IncreasePriority(Q, x, k): increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with parents, to proper location.

Worst case running time: $\Theta(\text{height})$ + some constant work $\Theta(\text{log n})$

Now we have learned how implement a priority queue using a heap

- \rightarrow Max(Q)
- \rightarrow Insert(Q, x)
- → ExtractMax(Q)
- → IncreasePriority(Q, x, k)

Next:

- → How to use heap for sorting
- → How to **build a heap** from an unsorted array

HeapSort

Sorts an array, in O(n logn) time

The idea

Worst-case running time: each ExtractMax is **O(log n)**, we do it **n** times, so overall it's... **O(n logn)** How to get a sorted list out of a heap with n nodes?

Keep extracting max for n times, the keys extracted will be sorted in non-ascending order.

Now let's be more precise

What's needed: modify a max-heap-ordered array into a non-descendingly sorted array

We want to do this "in-place" without using any extra array space, i.e., just by **swapping** things around.

Step 1: swap first (65) and last (24), since the tail is where 65 (max) belongs to.

Step 2: decrement heap size

This node is like deleted from the tree, not touched any more.

Step 3: fix the heap by **bubbling down** 24

Repeat Step 1-3 until the array is fully sorted (at most n iterations).

HeapSort, the pseudo-code

```
HeapSort(A)

"sort any array A into non-descending order"

BuildMaxHeap(A) # convert any array A into a heap-ordered one

for i ← A.size downto 2:

swap A[1] and A[i] # Step 1: swap the first and the last

A.size ← A.size - 1 # Step 2: decrement size of heap

BubbleDown(A, 1) # Step 3: bubble down the 1st element in A
```


Does it work?

It works for an array A that is initially heap-ordered, it does work NOT for any array!

BuildMaxHeap(A)

Converts an array into a max-heap ordered array, in O(n) time

Convert any array into a heap ordered one

 any array
 heap ordered array

 18
 33
 25
 65
 24
 40
 65
 40
 25
 33
 18
 24

In other words...


```
BuildMaxHeap(A):

B ← empty array # empty heap
for x in A:
    Insert(B, x) # heap insert
A ← B # overwrite A with B
```

Running time:

Each Insert takes **O(log n)**, there are **n** inserts... so it's **O(n log n)**, not very exciting. Not **in-place**, needs a second array.

Fix heap order, from bottom up.

NOT a heap **only because root** is out of order, so fix
it by **bubble-down** the root

Idea #2: The starting index

Idea #2: The starting index

Idea #2: Pseudo-code!

```
BuildMaxHeap(A):
    for i ← floor(n/2) downto 1:
        BubbleDown(A, i)
```


Advantages of Idea #2:

- → It's in-place, no need for extra array (we did nothing but bubble-down, which is basically swappings).
- → It's worst-case running time is O(n), instead of O(n log n) of Idea #1.

Analysis: Worst-case running time of BuildMaxHeap(A)

A complete binary tree with **n** nodes...

n/16 nodes, and # of swaps per bubble-down: ≤3

How many levels? ~ log n

n/8 nodes, and # of swaps per bubble-down: ≤2

of swaps per bubble-down: ≤1

~ n/4 nodes

~ n/2 nodes, and **no** work done at this level.

So, total number of swaps

$$T(n) = 1 \cdot \frac{n}{4} + 2 \cdot \frac{n}{8} + 3 \cdot \frac{n}{16} + \dots$$

$$= \sum_{i=1}^{\log n} i \cdot \frac{n}{2^{i+1}} \le \sum_{i=1}^{+\infty} i \cdot \frac{n}{2^{i+1}}$$

$$= n \sum_{i=1}^{+\infty} \frac{i}{2^{i+1}}$$

same trick as Week 1's sum

Summary

HeapSort(A):

- → Sort an unsorted array in-place
- → O(n log n) worst-case running time

BuildMaxHeap(A):

- → Convert an unsorted array into a heap, inplace
- → Fix heap property from bottom up, do bubbling down on each sub-root
- → O(n) worst-case running time

Algorithm visualizer

http://visualgo.net/heap.html

Next week

→ ADT: Dictionary

→ Data structure: Binary Search Tree