SEQUENCE LISTING

```
<110> SOLOMON, Beka
      FRENKEL, Dan
<120> IMMUNIZATION AGAINST AMYLOID PLAQUES USING DISPLAY TECHNOLOGY
<130> SOLOMON=2A
<140> US 09/473,653
<141> 1999-12-29
<150> US 60/152,417
<151> 1999-09-03
<160> 26
<170> PatentIn version 3.0
<210> 1
<211> 4
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 1
Glu Phe Arg His
<210> 2
<211> 15
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 2
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
<210> 3
<211> 43
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 3
Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys
               5
                                  10
```

Gly Leu Met Val Gly Gly Val Val Ile Ala Thr <210> 4 <211> 4 <212> PRT <213> Artificial <220> <223> synthetic peptide <400> 4 Trp Val Leu Asp <210> 5 <211> 717 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(717) cag gtc aaa ctg cag gag tca ggg gct gag ctg gtg agg cct ggg gtc 48 Gln Val Lys Leu Gln Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Val tca gtg aag att tcc tgc aag ggt tct ggc tac aca ttc act gat tat 96 Ser Val Lys Ile Ser Cys Lys Gly Ser Gly Tyr Thr Phe Thr Asp Tyr gct atg cac tgg gtg aag cag agt cat gca aag agt cta gag tgg att 144 Ala Met His Trp Val Lys Gln Ser His Ala Lys Ser Leu Glu Trp Ile gga gtt att agt act tac tat ggt gat gct agc tac aac cag aag ttc 192 Gly Val Ile Ser Thr Tyr Tyr Gly Asp Ala Ser Tyr Asn Gln Lys Phe aag ggc aag gcc aca atg act gta gac aaa tcc tcc agc aca gcc tat 240 Lys Gly Lys Ala Thr Met Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr atg gaa ctt gcc aga ctg aca tct gag gat tct gcc atc tat tac tgt 288 Met Glu Leu Ala Arg Leu Thr Ser Glu Asp Ser Ala Ile Tyr Tyr Cys gca aga ggg gct act atg tcc tac ttt gac tac tgg ggc caa gtg acc 336 Ala Arg Gly Ala Thr Met Ser Tyr Phe Asp Tyr Trp Gly Gln Val Thr 105

Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile

acg gtc acc Thr Val Thr 115	Val Ser	tca ggt Ser Gly	gga gg Gly Gl 120	c ggt y Gly	tca g Ser G	gc gga ly Gly 125	gtt Val	ggc Gly	tct Ser	384
ggc ggt ggc Gly Gly Gly 130	gga tcg Gly Ser	gac ato Asp Ile 135	Glu Le	c act u Thr	Gln S	ct cca er Pro 40	gca Ala	atc Ile	atg Met	432
tct gca tct Ser Ala Ser 145	cca ggg Pro Gly	gag aag Glu Lys 150	gtc ac Val Th	c atg r Met	acc to Thr C	gc agt ys Ser	gcc Ala	agc Ser	tca Ser 160	480
agt ata agt Ser Ile Ser	tac atg Tyr Met 165	His Trp	tat cag Tyr Gl	g cag n Gln 170	aag co Lys Pi	ca ggc ro Gly	acc Thr	tcc Ser 175	ccc Pro	528
aaa aga tgg Lys Arg Trp	att tat Ile Tyr 180	gac aca Asp Thr	tcc aaa Ser Lys 18!	Leu	gct to Ala Se	ct gga er Gly	gtc Val 190	cct Pro	gct Ala	576
cgc ttc agt Arg Phe Ser 195	Gly Ser	ggg tct Gly Ser	ggg acc Gly Thi 200	tct Ser	tat to Tyr Se	ct ctc er Leu 205	aca Thr	atc Ile	agc Ser	624
agc atg gag Ser Met Glu 210	gct gaa Ala Glu	gat gct Asp Ala 215	gcc act Ala Thi	tat Tyr	Tyr Cy	gc cat ys His 20	cag Gln	cgg Arg	agt Ser	672
agt tac cca Ser Tyr Pro 225	ttc acg Phe Thr	ttc gga Phe Gly 230	Glà Glà aaa aaa	gcc Ala	aag ct Lys Le 235	tg gaa eu Glu	ata Ile	aaa Lys		717
<210> 6 <211> 239 <212> PRT <213> Homo	sapiens									
<400> 6										
Gln Val Lys 1	Leu Gln 5	Glu Ser	Gly Ala	Glu 10	Leu Va	al Arg		Gly 15	Val	
Ser Val Lys	Ile Ser 20	Cys Lys	Gly Ser 25	Gly	Tyr Th	ır Phe	Thr .	Asp	Tyr	
Ala Met His 35	Trp Val	Lys Gln	Ser His	Ala	Lys Se	er Leu 45	Glu '	Trp	Ile	
Gly Val Ile 50	Ser Thr	Tyr Tyr 55	Gly Asp	Ala	Ser Ty 60		Gln 1	Lys	Phe	
Lys Gly Lys	Ala Thr	Met Thr	Val Asp	Lvs :	Ser Se	r Ser	Thr A	Δla	ጥ _ህ ዮ	

Met Glu Leu Ala Arg Leu Thr Ser Glu Asp Ser Ala Ile Tyr Tyr Cys 85 90 95

Ala Arg Gly Ala Thr Met Ser Tyr Phe Asp Tyr Trp Gly Gln Val Thr 100 \$105\$ 110

Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Val Gly Ser 115 120 125

Gly Gly Gly Ser Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met 130 140

Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser 145 150 155 160

Ser Ile Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Thr Ser Pro 165 170 175

Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala 180 185 190

Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser 195 200 205

Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys His Gln Arg Ser 210 215 220

Ser Tyr Pro Phe Thr Phe Gly Gly Gly Ala Lys Leu Glu Ile Lys 225 230 235

<210> 7

<211> 6

<212> PRT

<213> Artificial

<220>

<223> synthetic peptide

<400> 7

Tyr Tyr Glu Phe Arg His

<210> 8

<211> 15

<212> PRT

```
<213> Artificial
<220>
<223> synthetic peptide
<400> 8
Val His Glu Pro His Glu Phe Arg His Val Ala Leu Asn Pro Val
                                   10
<210> 9
<211> 3
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 9
Lys Leu His
<210> 10
<211> 45
<212> DNA
<213> Artificial
<220>
<223> primer
<220>
<221> misc_feature
<223> "n" at position 17 is unknown
<400> 10
ccccctccg aacgtsnatg ggtaactcga tcgctgatgg cagta
                                                                    45
<210> 11
<211> 24
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 11
atctatgcgg cccagccggc catg
                                                                    24
<210> 12
<211> 38
<212> DNA
<213> Artificial
```

<220>

```
<223> primer
<400> 12
gtggtgctga gtggatccta tactacactg ccaccggg
                                                                    38
<210> 13
<211> 58
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 13
agetecgatg etgaattegg tgatagegge taegaagtge atcateagaa acetgeag
                                                                    58
<210> 14
<211> 52
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 14
ggtttctgat gatgcacttc gtagccgcta tcatgacgaa attcagcatc gg
                                                                    52
<210> 15
<211> 9
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 15
His Gln Arg Ser Ser Tyr Pro Cys Thr
<210> 16
<211> 9
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 16
His Gln Arg Ser Ser Tyr Pro Cys Thr
<210> 17
<211> 9
```

```
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 17
His Gln Arg Ser Ser Tyr Pro Phe Thr
<210> 18
<211> 9
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 18
His Gln Arg Ser Ser Tyr Pro Tyr Thr
               5
<210> 19
<211> 9
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 19
His Gln Arg Ser Ser Tyr Pro Phe Thr
<210> 20
<211> 9
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 20
His Gln Arg Ser Ser Tyr Pro Ser Thr
              5
<210> 21
<211> 15
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
```

```
<400> 21
Asp Thr Glu Phe Arg His Ser Ser Asn Asn Phe Ser Ala Val Arg
<210> 22
<211> 15
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 22
Ser Thr Glu Phe Arg His Gln Thr Thr Pro Leu His Pro Asn Ser
                                   10
<210> 23
<211> 15
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 23
Lys Glu Pro Arg His His Ile Gln His His Glu Arg Val Ile Arg
<210> 24
<211> 15
<212> PRT
<213> Artificial
<220>
<223> synthetic peptide
<400> 24
Ser Ala Ala Asp Phe Arg His Gly Ser Pro Pro Ile Ser Ala Phe
<210> 25
<211> 357
<212> DNA
<213> synthetic construct
<220>
<221> CDS
<222> (1)..(357)
<400> 25
ggc ggt tca ggc gga gtt ggc tct ggc ggt ggc gga tcg gac atc gag
                                                                     48
Gly Gly Ser Gly Gly Val Gly Ser Gly Gly Gly Ser Asp Ile Glu
```

Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val 20 25 30	96
acc atg acc tgc agt gcc agc tca agt ata agt tac atg cac tgg tat Thr Met Thr Cys Ser Ala Ser Ser Ser Ile Ser Tyr Met His Trp Tyr 35 40 45	144
cag cag aag cca ggc acc tcc ccc aaa aga tgg att tat gac aca tcc Gln Gln Lys Pro Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser 50 55 60	192
aaa ctg gct tct gga gtc cct gct cgc ttc agt ggc agt ggg tct ggg Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly 65 70 75 80	240
acc tct tat tct ctc aca atc agc agc atg gag gct gaa gat gct gcc Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala 85 90 95	288
act tat tac tgc cat cag cgg agt agt tac cca ttc acg ttc gga ggg Thr Tyr Tyr Cys His Gln Arg Ser Ser Tyr Pro Phe Thr Phe Gly Gly 100 105 110	336
ggg gcc aag ctg gaa ata aaa Gly Ala Lys Leu Glu Ile Lys 115	357
<210> 26 <211> 119	
<212> PRT <213> synthetic construct	
<212> PRT	
<212> PRT <213> synthetic construct	
<212> PRT <213> synthetic construct <400> 26 Gly Gly Ser Gly Gly Val Gly Ser Gly Gly Gly Gly Ser Asp Ile Glu	
<212> PRT <213> synthetic construct <400> 26 Gly Gly Ser Gly Gly Val Gly Ser Gly Gly Gly Gly Ser Asp Ile Glu 1 5 10 15 Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val	
<pre><212> PRT <213> synthetic construct <400> 26 Gly Gly Ser Gly Gly Val Gly Ser Gly Gly Gly Gly Ser Asp Ile Glu 1</pre>	
<pre><212> PRT <213> synthetic construct <400> 26 Gly Gly Ser Gly Gly Val Gly Ser Gly Gly Gly Gly Ser Asp Ile Glu 1</pre>	
<pre><212> PRT <213> synthetic construct <400> 26 Gly Gly Ser Gly Gly Val Gly Ser Gly Gly Gly Gly Ser Asp Ile Glu 1</pre>	
<pre><212> PRT <213> synthetic construct <400> 26 Gly Gly Ser Gly Gly Val Gly Ser Gly Gly Gly Gly Ser Asp Ile Glu 1</pre>	