

IPv6基础

主讲人: 鲍婷婷 ○- -

目录

- 1 IPv6概述
 - · IPv6背景及定义

IPv6地址分类

- 2 IPv6地址配置
- 3 IPv6典型配置举例

IPv4现状

• 2011年2月3日,IANA(Internet Assigned Numbers Authority,因特网地址分配组织)宣布将其最后的468万个 IPv4地址平均分配到全球5个RIR(Regional Internet Registry,区域互联网注册管理机构),此后IANA再没有可分配的IPv4地址。

Why IPv6?

IPv4

公网地址枯竭

包头设计不合理

路由表过大,查表效率低

对ARP的依赖,导致广播泛滥

•••••

IPv6

"无限"地址

地址层次化分配

即插即用

VS

简化的报文头部

IPv6安全特性

保证端到端通信完整性

对移动性的支持

增强的QoS特性

IPv6优势

"无限"地址空间

地址长度为128 bit,海量的地址空间,满足物联网等新兴业务、有利于业务演进及扩展。

层次化的地址结构

相较于IPv4地址,IPv6地址的分配更加规范,利于路由聚合(缩减IPv6路由表规模)、路由快速查询。

即插即用

IPv6支持无状态地址自动配置(SLAAC),终端接入更简单。

简化的报文头部

简化报文头,提高效率;通过扩展包头支持新应用,利于路由器等网络设备的转发处理,降低投资成本。

安全特性

IPsec、真实源地址认证等保证端到端安全;避免NAT破坏端到端通信的完整性。

移动性

对移动网络实时通信有较大改进,整个移动网络性能有比较大的提升。

增强的QoS特性

额外定义了流标签字段,可为应用程序或者终端所用,针对特殊的服务和数据流,分配特定的资源。

IPv6基本包头

- IPv6包头由一个IPv6基本包头(必须存在)和多个扩展包头(可能不存在)组成。
- 基本包头提供报文转发的基本信息,会被转发路径上的所有设备解析。

IPv4包头 (20 Byte ~ 60 Byte)

Version	HHL	ToS	Total Length		
Identification			Flags	Fragment Offset	
TTL Protocol		Head Checksum			
	Source Address				
Destination Address					
Options				Padding	

IPv6基本包头(40 Byte)

\	/ersion	Traffic Class	Flow Label		
	Payload Length			Next Header	Hop Limit
	Source Address Destination Address				

删除的字段

保留的字段

名字/位置变化

新增的字段

IPv6拓展包头

- Extension Header Length:扩展包头长度,长度为8 bit。表示扩展包头的长度(不包含Next Header字段)。
- Extension Header Data:扩展包头数据,长度可变。扩展包头的内容,为一系列选项字段和填充字段的组合。

IPv6基本包头 Next Header=0(逐跳选项包头) IPv6逐跳选项包头 Next Header=51(认证包头) IPv6认证包头 Next Header=6(TCP) TCP数据段

IPv6报文示例

IPv6报文处理机制

- · 基本包头长度固定,**提升转发效率!**
- 扩展头部实现其他需求,**术业有专攻!**

IPv6地址

• IPv6地址的长度为128 bit。一般用冒号分割为8段,每一段16 bit,每一段内用十六进制表示。

IPv6地址中的字母大小写不敏感,例如A等同于a。

- 与IPv4地址类似,IPv6也用"IPv6地址/掩码长度"的方式来表示IPv6地址。
 - □ 例如2001:0DB8:2345:CD30:1230:4567:89AB:CDEF/64

IPv6地址: 2001:0DB8:2345:CD30:1230:4567:89AB:CDEF

子网号: 2001:0DB8:2345:CD30::/64

IPv6地址缩写规范

• 为了书写方便,IPv6可采用以下规则进行缩写。

IPv6地址缩写规范

2001 |: | 0DB8 |: | 0000 |: | 0000 |: | 0800 |: | 200C |: | 417A

每组16 bit的单元中的前导0可以省略,但是如果16 bit单元的所有比特都为0,那么至少要保留一个"0"字符;拖尾的0不能被省略。

2001 : DB8 : 0 : 0 : 8 : 800 : 200C : 417A

一个或多个连续的16 bit字符为0时,可用"::"表示,但整个IPv6地址缩写中只允许有一个"::"。

若缩写后的IPv6地址出现两个"::",会导致无法还原为原始IPv6地址。

IPv6地址缩写示例

缩写后::1

417A

缩写前 2001:0DB8:0000:0000:FB00:1400:5000:45FF

缩写后 2001:DB8::FB00:1400:5000:45FF

宿写前 2001:0DB8:0000:0000:0000:2A2A:0000:0001

缩写后 2001:DB8::2A2A:0:1

缩写前 2001:<mark>0</mark>DB8:0000:1234:FB00:0000:5000:45FF

缩写后 2001:DB8::1234:FB00:0:5000:45FF

或 2001:DB8:0:1234:FB00::5000:45FF

DB8

2001

目录

- 1 IPv6概述
 - · IPv6背景及定义
 - · IPv6地址分类
- 2 IPV6地址配置
- 3 IPv6典型配置举例

IPv6地址分类

• 根据IPv6地址前缀,可将IPv6地址分为为单播地址、组播地址和任播地址。

IPv6单播地址结构

- 一个IPv6单播地址可以分为如下两部分:
 - □ 网络前缀(Network Prefix): n bit,相当于IPv4地址中的网络ID。
 - □ 接口标识(Interface Identify):(128-n)bit ,相当于IPv4地址中的主机ID。
- 常见的IPv6单播地址如全球单播地址、链路本地地址等,要求网络前缀和接口标识必须为64 bit。

IPv6单播地址接口标识

- 接口标识可通过三种方法生成:
 - 。 手工配置
 - 。 系统自动生成
 - □ 通过IEEE EUI-64规范生成
- 其中EUI-64规范最为常用,此规范将接口的MAC地址转换为IPv6接口标识。

IPv6常见单播地址 - GUA

• GUA(Global Unicast Address,全球单播地址),也被称为可聚合全球单播地址。该类地址全球唯一,用于需要有互联网访问需求的主机,相当于IPv4的公网地址。

3 bit	45 bit	16 bit	64 bit
001	全局路由前缀	子网ID	接口标识
	网络部分		主机部分

- 通常GUA的网络部分长度为64 bit,接口标识也为64 bit。
- 全局路由前缀: 由提供商指定给一个组织机构,一般至少为45 bit。
- 子网ID: 组织机构根据自身网络需求划分子网。
- 接口标识: 用来标识一个设备(的接口)。

IPv6常见单播地址 - ULA

ULA(Unique Local Address,唯一本地地址)是IPv6私网地址,只能够在内网中使用。该地址 空间在IPv6公网中不可被路由,因此不能直接访问公网。

	8 bit	40 bit	16 bit	64 bit
11	11 1101	Global ID	子网ID	接口标识
		伪随机产生		

- 唯一本地地址使用FC00::/7地址块,目前仅使用了 FD00::/8地址段。FC00::/8预留为以后拓展用。
- ULA虽然只在有限范围内有效,但也具有全球唯一的前 缀(虽然随机方式产生,但是冲突概率很低)。

FD00:1AC0:872E::1/64

IPv6常见单播地址 - LLA

• LLA(Link-Local Address,链路本地地址)是IPv6中另一种应用范围受限制的地址类型。LLA的

10 bit	54 bit	64 bit
1111 1110 10	0	接口标识
	固定为0	

- LLA用于一条单一链路层面的通信,例如IPv6地址无状态自动配置、IPv6邻居发现等。
- 源或目的IPv6地址为链路本地地址的数据包将不会被转 发到始发的链路之外,换句话说,链路本地地址的有效 范围为本地链路。
- 每一个IPv6接口都必须具备一个链路本地地址。华为设备支持自动生成和手工指定两种配置方式。

IPv6组播地址

• IPv6组播地址标识多个接口,一般用于"一对多"的通信场景。

· IPv6组播地址只可以作为IPv6报文的目的地址。

8 bit 4 bit 4 bit 80 bit 32 bit

11111111 Flags Scope Reserved(必须为0) Group ID

• Flags: 用来表示永久或临时组播组。

· Scope:表示组播组的范围。

• Group ID: 组播组ID。

被请求节点组播地址

当一个节点具有了单播或任播地址,就会对应生成一个被请求节点组播地址,并且加入这个组播组。该地址主要用于邻居发现机制和地址重复检测功能。被请求节点组播地址的有效范围为本地链路范围。

IPv6任播地址

任播地址标识一组网络接口(通常属于不同的节点)。任播地址可以作为IPv6报文的源地址,也可以作为目的地址。

目录

- 1 IPv6概述
- 2 IPv6地址配置
 - · IPv6地址配置
- 3 IPv6典型配置举例

主机和路由器的IPv6地址

• 一般情况下,主机和路由器的单播IPv6地址以及加入的组播地址如下所示:

网卡的链路本地地址	FE80::2E0:FCFF:FE35:7287
管理员分配的全球单播地址	2001::1
环回地址	::1
"所有节点"组播地址	FF01::1 及 FF02::1
网卡的每个单播地址对应的 被请求节点组播地址	FF02::1:FF35:7287 FF02::1:FF00:1

网卡的链路本地地址	FE80::2E0:FCFF:FE99:1285	
管理员分配的全球单播地址	2001::2	
环回地址	::1	
"所有节点"组播地址	FF01::1 及 FF02::1	
"所有路由器"组播地址	FF01::2 及 FF02::2	
网卡的每个单播地址对应的 被请求节点组播地址	FF02::1:FF99:1285 FF02::1:FF00:2	

IPv6单播地址业务流程

• 一个接口在发送IPv6报文之前要经历地址配置、DAD、地址解析这三个阶段,NDP(Neighbor Discovery Protocol,邻居发现协议)扮演了重要角色。

NDP

- RFC2461定义了NDP,该RFC后来被RFC4861替代。
- NDP使用ICMPv6报文实现其功能。

NDP使用的ICMPv6报文

ICMPv6 Type	报文名称
133	路由器请求(RS)
134	路由器通告(RA)
135	邻居请求(NS)
136	邻居通告(NA)

机制	RS 133	RA 134	NS 135	NA 136
地址解析			√	√
前缀公告	√	√		
DAD			√	√

IPv6动态地址配置

• 通过DHCPv6报文交互,DHCPv6服务器端自动配置IPv6地址/前缀及其他网络配置参数(DNS、NIS、 SNTP服务器地址等参数)。

我的接口地址前缀是2000::/64)

- •主机根据RA中的地址前缀,并结合本地生成的64 bit接口标识(例如EUI-64),生成单播地址。
- •仅可以获得IPv6地址信息,无法获得NIS、SNTP服务器等参数,需要配合DHCPv6或者手工配置来获 取其他配置信息。

DAD

- 无论通过何种方式配置了IPv6单播地址,主机或路由器都会:
 - □ 通过ICMPv6报文进行DAD
 - · 仅当DAD通过之后才会使用该单播地址

地址解析

• IPv6使用ICMPv6的NS和NA报文来取代ARP在IPv4中的地址解析功能。

目录

- 1 IPv6概述
- 2 IPv6地址配置
- 3 IPv6典型配置举例
 - · IPv6典型配置举例

IPv6基本配置 (1)

1. 使能IPv6

[Huawei] **ipv6**

使能设备转发IPv6单播报文,包括本地IPv6报文的发送与接收。

[Huawei-GigabitEthernet0/0/0] ipv6 enable

在接口视图下,在接口上使能该接口的IPv6功能。

2. 配置接口的链路本地地址

[Huawei-GigabitEthernet0/0/0] ipv6 address ipv6-address link-local

[Huawei-GigabitEthernet0/0/0] ipv6 address auto link-local

在接口视图下,通过手工或者自动的方式,配置接口的链路本地地址。

3. 配置接口的全球单播地址

[Huawei-GigabitEthernet0/0/0] **ipv6 address** { *ipv6-address prefix-length* | *ipv6-address*| *prefix-length* }

[Huawei-GigabitEthernet0/0/0] ipv6 address auto { global | dhcp }

在接口视图下,通过手工或者自动(有状态或无状态)的方式,配置接口的全球单播地址。

IPv6基本配置 (2)

4. 配置IPv6静态路由

[Huawei] **ipv6 route-static** *dest-ipv6-address prefix-length* { *interface-type interface-number* [*nexthop-ipv6-address*] | *nexthop-ipv6-address* } [**preference** preference]

5. 查看接口的IPv6信息

[Huawei] display ipv6 interface [interface-type interface-number | brief]

6. 查看邻居表项信息

[Huawei] display ipv6 neighbors

7. 使能系统发布RA报文功能

[Huawei-GigabitEthernet0/0/0] undo ipv6 nd ra halt

默认情况下,华为路由器接口不发送ICMPv6 RA报文,则该接口所连链路上的其他设备无法进行无状态地址自动配置。若想进行IPv6无状态地址配置,需要手工开启发送RA报文。

案例:配置一个小型IPv6网络(1)

• 配置需求:

- □ R1和R2之间使用静态IPv6地址互联。
- R2作为DHCPv6服务器给R3的GE0/0/0分配全球单播地址。
- 。 R4的GE0/0/0接口通过R2的RA进行无状态地址自动配置。
- 配置静态路由,实现各设备之间互访。

1.在R1、R2、R3、R4全局和相关接口使能IPv6功能,同时自动生成链路本地地址(以R1配置为例)

[R1]ipv6

[R1]interface GigabitEthernet 0/0/0

[R1-GigabitEthernet0/0/0]ipv6 enable

[R1-GigabitEthernet0/0/0]ipv6 address auto link-local

2.在R1、R2相应接口配置静态IPv6全球单播地址

[R1]interface GigabitEthernet 0/0/0

[R1-GigabitEthernet0/0/0]ipv6 address 2001::1 64

[R2]interface GigabitEthernet 1/0/0

[R2-GigabitEthernet1/0/0]ipv6 address 2001::2 64

[R2-GigabitEthernet1/0/0]interface GigabitEthernet 0/0/0

[R2-GigabitEthernet0/0/0]ipv6 address 2002::1 64

[R2-GigabitEthernet0/0/0]interface GigabitEthernet 0/0/1

[R2-GigabitEthernet0/0/1]ipv6 address 2003::1 64

案例:配置一个小型IPv6网络(2)

• 配置需求:

- □ R1和R2之间使用静态IPv6地址互联。
- □ R2作为DHCPv6服务器给R3的GE0/0/0分配全球单播地址。
- R4的GE0/0/0接口通过R2的RA进行无状态地址自动配置。
- 。 配置静态路由,实现各设备之间互访。

3.在R2上配置DHCPv6服务器功能,R3接口通过DHCPv6方式 获取全球单播地址

[R2]dhcp enable

[R2]dhcpv6 pool pool1

[R2-dhcpv6-pool-pool1]address prefix 2002::/64

[R2]interface GigabitEthernet 0/0/0

[R2-GigabitEthernet0/0/0]dhcpv6 server pool1

[R3]dhcp enable

[R3]interface GigabitEthernet 0/0/0

[R3-GigabitEthernet0/0/0]ipv6 address auto dhcp

案例:配置一个小型IPv6网络(3)

配置需求:

- 。 R1和R2之间使用静态IPv6地址互联。
- R2作为DHCPv6服务器给R3的GE0/0/0分配全球单播地址。
- 。 R4的GE0/0/0接口通过R2的RA进行无状态地址自动配置。
- 。 配置静态路由,实现各设备之间互访。

4.在R2使能发布RA报文的功能,R4通过无状态地址配置的方式获取地址

[R2]interface GigabitEthernet 0/0/1

[R2-GigabitEthernet0/0/1]undo ipv6 nd ra halt

[R4]interface GigabitEthernet 0/0/0

[R4-GigabitEthernet0/0/0]ipv6 address auto global

案例:配置一个小型IPv6网络(4)

• 配置需求:

- R1和R2之间使用静态IPv6地址互联。
- R2作为DHCPv6服务器给R3的GE0/0/0分配全球单播地址。
- 。 R4的GE0/0/0接口通过R2的RA进行无状态地址自动配置。
- 。 配置静态路由,实现各设备之间互访。

5.在R4上配置静态路由

[R4]ipv6 route-static 2001:: 64 2003::1 [R4]ipv6 route-static 2002:: 64 2003::1

6.在R1上配置聚合后的静态路由

[R1]ipv6 route-static 2002:: 15 2001::2

7.在R3上配置默认路由

[R3]ipv6 route-static :: 0 2002::1

本章总结

对比项	IPv6	IPv4
地址长度	128 bit	32 bit
报文格式	固定40 Byte的基本包头,变长的拓展字段来 实现一些IPv6的特性	通过在基本头部上增加option字段的方式支持 拓展特性
地址类型	单播、组播、任播	单播、组播、广播
地址配置	静态、DHCP、SLAAC	静态、DHCP
重复地址检测	通过ICMPv6实现	通过免费ARP实现
地址解析	通过ICMPv6实现	通过ARP实现

