

Overview of an Advanced Hypersonic Structural Concept Test Program

Craig A. Stephens, Larry D. Hudson, and Anthony Piazza NASA Dryden Flight Research Center

Outline

• Hypersonics M&S Advanced Structural Concepts Development

- C/SiC Ruddervator Subcomponent Test Article (RSTA)
 - Background
 - Task Objectives
 - Test Plan
 - Current Status

• Hypersonics M&S Experimental Methods

- Extreme Environment Sensors
 - Instrumentation Needs
 - Sensors of Interest
 - Examples of ongoing efforts

Conclusions

C/SiC Ruddervator Subcomponent Test Article Background

- One of the key technology efforts during the X-37 program was the development and validation testing of hot-structure control surfaces
 - Part of the risk mitigation effort was the parallel development of X-37 control surfaces using both carbon-carbon (C/C) and carbon-silicon carbide (C/SiC)
- Two separate design and manufacturing teams developed <u>subcomponent</u> test articles
 - C/C Flaperon subcomponent (built and tested)
 - C/C Ruddervator subcomponent (built and tested)
 - C/SiC Flaperon subcomponent (built and tested)
 - C/SiC Ruddervator subcomponent (built but not tested)
- The X-37 program down selected to C/C and proceeded with the development and testing of both ruddervator and flaperon <u>qualification units</u>
 - Flaperon thermally / mechanically tested at NASA Dryden
 - Ruddervator mechanically tested at Wright-Patterson, AFB

C/SiC Ruddervator Subcomponent Test Article Background (Continued)

- NASA proposed the C/SiC RSTA as a testbed to support ARMD research objectives and worked to formulate a multi-partner program
 - Lockheed Martin (LM) is evaluating C/C and C/SiC control surface technology for hypersonic programs and expressed interest in collaborating

• The X-37 C/SiC RSTA provides an opportunity to

- Apply both re-entry and trans-atmospheric derived thermal / structural loads to a hot-structure
- Evaluate the thermal / structural performance of a C/SiC hot-structure control surface
- Compare the thermal / structural performance of a C/SiC and C/C hot-structure control surface
- Provide a testbed to evaluate the performance of advanced high-temperature instrumentation

C/SiC Ruddervator Subcomponent Test Article Team Roles and Responsibilities

Materials Research & Design Wayne, PA

- Overall task management and test requirements definition
- Thermal, structural, and ground-vibration testing
- Non-destructive evaluation
- High-temperature instrumentation
- Acoustic, vibration, and modal testing
- Thermal / acoustic testing
- C/SiC RSTA designer
- Test requirements support (X-37 & LM loads)
- RSTA thermal / structural / dynamic analysis
- C/SiC RSTA manufacturer
- RSTA modifications and assembly
- Non-destructive evaluation support
- LM derived loads definition
- Oversight of LM related testing

C/SiC Ruddervator Subcomponent Test Article Test Objectives

- Evaluate the thermal, structural, and dynamic performance of the C/SiC RSTA through the application of relevant hypersonic thermal, structural, acoustic and vibration loads
 - Maintains and extends NASA's core knowledge in testing hypersonic structures
 - Obtain unique data through the development of test techniques
 - Application and evaluation of unique high-temperature instrumentation
 - Multi-mission simulation
 - Perform NDE throughout RSTA testing to identify defects and track potential damage propagation
- Pre- and post-test structural analysis to support test operations and development of test database
 - Provides an extensive database for the evaluation of design and analysis methods for hypersonic structures
 - Provides data to validate advanced analysis techniques
 - High-temperature vibration analysis
 - Using test data, non-linear material properties, and contact elements at fasteners to determine force levels at interfaces and fastener stresses (linear versus non-linear analysis comparison)

IR Pulsed Thermography NDE

C/SiC Ruddervator Subcomponent Test Article Test Plan

• Evaluate RSTA performance under two different hypersonic flight conditions

- X-37: Re-entry conditions
 - Higher heating rates (i.e. higher surface temperatures) over shorter time periods
 - Mechanical loads over short time periods
 - Vibration / acoustic loads maximum at lift-off (i.e. low temperature conditions)
- LM: Trans-atmospheric conditions
 - Lower heating rates (i.e. lower surface temperatures) over longer time periods
 - Mechanical loads over repeated cycles
 - Combined thermal / acoustic loads of interest

• Developed a four-phase test program for the RSTA

- Phase 1: Acoustic and vibration loads to X-37 load conditions
- Phase 2: Thermal and thermal / structural loading to X-37 and LM load conditions
- Phase 3: Room-temperature mechanical loading to X-37 and LM load conditions
- Phase 4: Vibration and thermal / acoustic testing to LM load conditions

C/SiC Ruddervator Subcomponent Test Article

Phase 1 Tests (NASA Langley, Completed)

• Objective:

 Evaluate RSTA dynamic performance under X-37 vibration and acoustic loads

• Test Sequence:

- Modal survey
 - Free-free / fixed boundary condition
- Pre-acoustic sine sweep
- Acoustic testing
- Vibration testing
 - Post-acoustic sine sweep
 - Random vibration testing
 - Post-random sine sweep

• Data Acquired

- Accelerations
- Strains

• Database Elements

- Test requirements document and test plan
- Instrumentation drawings and test data
- Test correlation report

Acoustic Test Setup At LaRC Reverb Chamber

C/SiC Ruddervator Subcomponent Test Article Phase 2 Tests (NASA Dryden, In Progress)

• Objective:

- Evaluate RSTA performance under X-37 re-entry and LM thermal / mechanical load conditions

• Test Sequence:

- Modal Survey (completed)
 - Free-free boundary condition
- Room-temperature ground vibration test (GVT)
- Elevated-temperature GVT
- X-37 thermal loading (3 cycles)
- X-37 thermal / mechanical loading (3 cycles)
- LM thermal / mechanical loading (3 cycles)
- Elevated-temperature GVT

• Status:

- Pre-test predictions
 - LM thermal / mechanical test conditions (completed)
 - X-37 thermal / mechanical test conditions (in progress)
- High-temperature sensor installations (in progress)
- Thermal test hardware design (completed)
- Thermal test hardware fabrication (in progress)

Free-Free Modal Survey

Thermography

IR Thermography NDE of the RSTA

Transient RSTA Leeward Temps from Pre-Test Analysis of LM Trajectory

FAP Annual Meeting - Hypersonics Project

C/SiC Ruddervator Subcomponent Test Article Phase 3 & 4 Tests

• Phase 3 Objective: (NASA Dryden)

 Evaluate RSTA performance under X-37 derived 100% DLL loads

• Test Sequence:

- Multi-cycle loading to 100% DLL condition
 - Reverse loading

Data To Be Acquired

- Deflections (control surface and freeplay)
- Strains
- Input and reaction loads

• Phase 4 Objective: (NASA Langley, TBD)

 Evaluate RSTA performance under LM derived vibration and thermal / acoustic loads

• Test Sequence:

- Modal survey (free-free boundary condition)
- Pre-acoustic sine sweep
- Thermal / Acoustic testing
- Vibration testing
 - Post-acoustic sine sweep
 - Random vibration testing
 - Post-random sine sweep

• Data To Be Acquired

- Temperatures
- Accelerations
- Strains

Phase 4 Test Facility

Extreme Environment Structural SensorsHigh-Temperature Instrumentation Needs

- Hypersonic structures are utilizing advanced materials that operate at temperatures that exceed current ability to measure structural performance
- Robust structural sensors that operate accurately and reliably in hypersonic environments do not exist

• Implications

- Hinders ability to validate analysis and modeling techniques
- Hinders ability to optimize structural designs

Extreme Environment Structural Sensors Instrumentation Attachment Needs

- Hypersonic structural test or flight articles are usually one-of-a-kind, expensive, and time consuming to manufacture
 - Metallics
 - Metal matrix composites
 - Superalloys
 - High-temperature composites (i.e. C/C, C/SiC, SiC/SiC)

• Issues

- Integrating structural sensors that do not compromise structural integrity
 - Drilling holes, mechanical fastening, etc. are typically not allowed
- Developing sensor attachment methods that provide valid measurements for all environmental loading conditions without adversely affecting the substrate
 - Thermal conditions
 - Mechanical loading
 - Vibration and acoustic loads
 - Exposure to chemically reacting flows

Extreme Environment Structural Sensors High-Temperature Structural Measurements of Interest

Strain

- Sapphire fiber-optic sensors
- High-temperature Bragg Gratings
- Temperature
- Heat Flux
 - Calibration methods
- Acceleration
- Deformation

Sensors and Sensory Materials

Bonding / attachment method development throughout structural component operating range

Current Efforts:

- SOA structural sensor assessment to coordinate NASA, NRA and SBIR opportunities
- Evaluate sensor / systems under laboratory, ground test, and flight test opportunities

Extreme Environment Structural Sensors Example of Strain Sensing Technology Progression

Extreme Environment Structural Sensors Examples of Strain and Temperature Sensors

Challenge

- Advance strain sensing technology beyond 2000°F
- Develop durable high-temperature fiber-optic sensors
- Advance temperature sensing methods
- Develop sensor attachment techniques suitable for hypersonic environments (ground and flight testing)

Plasma/Rokide thermal sprayed basecoat

Extreme Environmental Sensors

Examples of Acceleration, Heat Flux, Network Sensors

Accelerometers

- COTS sensors
- NASA GRC

NASA GRC High-Temperature SiC High-g sensor (1000°F)

COTS
High-Temperature Accelerometer
(900°F)

Heat Flux Sensors

- Low profile
- Rapid response

Heat Flux Array ARMD ExCap NRA Effort (Tao Systems and Virginia Tech)

• Distributed Bragg Grating System

- Simultaneous measurements of strain, temperature, and deformation
- Increase operating temperature

Pressure Loading

Thermal Loading

Extreme Environmental Sensors Validation of Sensor Outputs and Attachment Methods

- Goal: Provide valid sensor data to structural analysts
 - Validate sensor output through characterization testing
 - Compare sensor outputs to available standards
 - Validate and assess attachment techniques

Typical Systems for Sensor Validation Testing

Conclusions

Hypersonics M&S is developing

- Advanced structural concepts for hypersonic vehicle applications
- Ground test techniques to obtain data that validates structural performance and analysis techniques for design optimization
- Sensor technology to acquire structural data subjected to hypersonic conditions for analysis validation and design optimization
- A knowledge base for the technical community

