Blackhole & TT-Metalium

The Standalone Al Computer and its Programming Model

Jasmina Vasiljevic, Senior Fellow Davor Capalija, Senior Fellow

Agenda

Architecture

Micro-architecture

Scale-out

Software

Al Silicon Roadmap

2021

High Perf Al ASIC

Grayskull

Al Processor

- 120 Tensix Cores
- 12nm
- 276 TOPS (FP8)
- 100 GB/s LPDDR4
- Gen4x16

GEN 1

2022

Scalability

Wormhole

Networked Al Processor

- 80 Tensix+ Cores
- 12nm
- 328 TOPS (FP8)
- 336 GB/s GDDR6
- Gen4x16
- 16x100 Gbps Ethernet

GEN 1

2023

Heterogeny

Blackhole

Standalone Al Computer

- 140 Tensix++ Cores
- 6nm
- 745 TOPS (FP8)
- 512 GB/s GDDR6
- Gen5x16
- 10x400 Gbps Ethernet
- 16 RISC-V CPU cores

GEN 2

Blackhole - A Standalone Al Computer

- C RISC-V CPUs
- T Tensix cores
- D DRAM cores
- E ETH cores
- P PCIe core
- A ARC core

Blackhole - A Standalone Al Computer

Feature	Spec	
Tensix	745 TFLOPs (8-bit) 372 TFLOPs (16-bit)	
SRAM	241 MBs	
Ethernet	10x 400 Gbps	
DRAM	512 GB/s BW 32 GBs capacity	
Baby RISC-Vs	752	
Big RISC-Vs	16	
PCle	Gen5x16, 64 GB/s	
NoC	2 NOCs 2D Torus 256 B per core	

Big RISC-V & Baby RISC-V

Baby RISC-V

Feature	Spec
Total Baby RISC-Vs	752
Compute	32-bit Int multiplier / divider Floating point (FP32 / BFLOAT16) 128-bit vector (1 per Tensix)
I-cache	4 KB
D-scratch	8 KB

T Tensix cores

D DRAM cores

E ETH cores

Big RISC-V

Feature	Spec
RISC-V CPUs	x16 (4 clusters of 4)
Compute	64-bit, dual-issue, in-order
L3 cache	2 MB / CPU
L2 cache	128 KB / CPU
L1 I-cache	32 KB / CPU (2 way associative)
L1 D-cache	32 KB / CPU (4 way associative)

16 Big RISC-Vs

- Runs Linux
- On-device host for the Al accelerator
 - C RISC-V CPUs

Micro-Architecture:

All RISC-V Programmable

All RISC-V Programmable Baby RISC-Vs

Feature	Spec
Total Baby RISC-Vs	752
Compute	32-bit Int multiplier / divider Floating point (FP32 / BFLOAT16) 128-bit vector (1 per Tensix)
I-cache	4 KB
D-scratch	8 KB

All RISC-V Programmable Within the Tensix Core

- 5 baby RISC-Vs
- 32-bit RISC-V ISA

All RISC-V Programmable Within the Tensix Core

- 5 baby RISC-Vs
- 32-bit RISC-V ISA

All RISC-V Programmable Within the Tensix Core

- 3 user C kernels program a single Tensix core
 - 1 compute kernel
 - 2 data movement kernels

Tensix Core – Data Movement

- 2 data movement kernels
- Asynchronous reads & writes
- Access to all SRAM & DRAM banks
- Memory barriers
- Atomic semaphores

Feature	Spec
Independent NoCs	2
NoC type	2-dimensional torus
NoC link width	64 Bytes
NoC link BW	83 GB/s
Tensix -> NoC I/O BW	665 GB/s
SRAM <-> NoCs	333 GB/s
SRAM <-> NoC aggregate BW	47 TB/s

Blackhole: Built for Al Data Movement Patterns

- Data patterns in MatMuls, Convolutions, and Sharded Data Layouts are regular.
- They have a great mapping to Mesh Architecture

Memory & I/O	Data Movement Pattern	Bandwidth
SRAM	Local / Sharded	94 TB/s
SRAM	Neighbor (Halo)	47 TB/s
SRAM	Row / Column / Mesh Multicast	24 TB/s
SRAM	Gather / Scatter (3 hops)	16 TB/s
SRAM	Gather / Scatter (10 hops)	5 TB/s
DRAM	Row	512 GB/s
Ethernet	Column	1 TB/s

Powerful tile-based math engine

Rich Matrix ISA: Mat Mul, dot product, elementwise, transpose

Engine	Data Format	Accumulator	TFLOPs
Matrix	Block FP2	FP32	745
Matrix	Block FP4	FP32	745
Matrix	Block FP8	FP32	745
Matrix	FP8	FP32	745
Matrix	BFLOAT16	FP32	373
Matrix	TF32	FP32	186
Matrix	INT8	INT32	186

Engine	Data Format	Accumulator	TFLOPs
Vector	FP32	FP32	12
Vector	INT16	INT32	6
Vector	INT32	INT32	6

General Purpose Vector ISA: elementwise, sort, re-shuffle, LUT

+ - *, sort, reshuffle, LUT

- 1 user compute kernel
- Automatically compiled to 3 RISC-V threads

Library of Low-Level APIs

- Open source library of low-level kernels
- 1 API per math function
- 100s of tile & vector math LLKs

Kernel Synchronization

- Circular Buffer (CB)
- SRAM memory object with hardwareenabled flow control

POWER FAULT

GALAXY

Kernels for asynchronous pre-load / spill to DRAM

Scale-out

Blackhole: Ethernet-Based Scale out

- 1 TB/s of Blackhole Ethernet
- Can be connected into any topology
- Mesh topology is great for Al
 - Locality and regularity of data movement
 - Sharded data
 - 200 GB/s in N/S/W/E/Z
 - 2D / 3D torus

Blackhole Galaxy: 32 chips in a 4x8 Mesh

11.2 TB/s Galaxy I/O

1

X dim I/O: 8 x 200 GB/s

Y dim I/O: 16 x 200 GB/s

Z dim I/O: 32 x 200 GB/s

Blackhole Galaxy: Scale-out "Lego" building block

Software

TT-Metalium: Built for Al and Scale-out

- Kernels are plain C++ with APIs
- Dedicated data movement & compute kernels
 - Optimize data movement and compute overlap directly
- Any core can read/write/sync to any core or chip directly
- Full control of data layout and persistency in SRAM and DRAM
- Different cores can run different kernels and flow data directly between them
- Native multi-device kernels
 - Fused and overlapped compute and inter-chip communication within the kernels

Tenstorrent Open Source Software

- **TT-Forge** Integrated into various frameworks for native model ingest
- TT-MLIR new MLIR-based compiler
- TT-NN a library of optimized operators
 - o ATen coverage
 - PyTorch-like API
- TT-Metalium low level programming model & entry point

Software Ecosystem & Integrations

https://github.com/tenstorrent

https://github.com/tenstorrent/tt-metal

https://github.com/tenstorrent/tt-mlir

Thank you

