Fractions: inverse, multiplication et division

Distinguer « signifie » et « est égal à ». Par exemple 3×4 , 4+4+4 et 10+2 sont des écritures différentes du nombre 12.

 $3 \times 4 = 10 + 2$. Mais 3×4 ne signifie pas 10 + 2. En effet 3×4 signifie 4 + 4 + 4.

■ Exemple 4.1 — un b-ième.

- a) $\frac{1}{7}$ est **un septième**: il en faut 7 pour faire 1. C'est le nombre qui multiplié par 7 donne 1, donc $7 \times \frac{1}{7} = 1$
- b) $\frac{1}{100}$ est **un centième** : il en faut 100 pour faire 1. C'est le nombre qui multiplié par 100 donne 1, donc

$$100 \times \frac{1}{100} = 1$$

c) $\frac{1}{1000}$ est un millième. Il en faut 1000 pour faire 1.

$$1000 \times \frac{1}{1000} = 1$$

L'écriture $\frac{1}{h}$ s'étend au cas ou b n'est pas un entier.

$$\boxed{ \text{Aire} = a \times \frac{1}{a} = 1 } \qquad \boxed{a}$$

Figure 4.1 – Pour a nombre positif : $a\geqslant 0$. L'inverse de a s'interprète comme « la hauteur d'un rectangle de largeur a et d'aire totale 1 »

4.1 Inverse et propriétés

Définition 4.1 — Inverse d'un nombre. Deux nombres a et b sont inverses l'un de l'autre si leur produit vaut 1.

$$ab=1$$

$$a=\text{inverse de}\,b=\frac{1}{b} \qquad b=\text{inverse de}\,a=\frac{1}{a}$$

■ Exemple 4.2

a) $1 \times 1 = 1$.

1 est l'inverse de 1 : $1 = \frac{1}{1}$

- b) $(-1) \times (-1) = 1$. -1 est l'inverse de -1: $-1 = \frac{1}{-1}$
- c) $0, 1 \times 10 = 1$. 0, 1 est l'inverse de $10: 0, 1 = \frac{1}{10}$ 10 est l'inverse de $0, 1: 10 = \frac{1}{0.1}$
- d) $4 \times 0.25 = 1$ 0.25 est l'inverse de $4:0.25 = \frac{1}{4}$ 4 est l'inverse $0.25:4 = \frac{1}{0.25}$
- e) $(-4) \times (-0.25) = 1$. -0.25 est l'inverse de $-4: -\frac{1}{4} = -0.25 = \frac{1}{-4}$ 4 est l'inverse $-0.25: -4 = \frac{1}{-0.25}$
- R L'inverse de l'inverse est le nombre lui même : $\frac{1}{\left(\frac{1}{a}\right)} = a$.
- Un nombre et son inverse sont de même signe car leur produit est positif.
- R L'inverse de certains nombres n'ont pas une écriture décimale finie. Par exemple $3 \times 0{,}333$ 333 333 333 $= 0{,}999$ 999 999, et $7 \times 0{,}142$ 857 $= 0{,}999$ 999.

 On garde l'écriture fractionnaire $\frac{1}{3}$ et $\frac{1}{7}$ pour désigner les inverses de 3 et 7.
- $0 \times ? = 1$. L'inverse de 0 n'est pas défini, et l'écriture $\frac{1}{0}$ n'a pas de sens.

4.1.1 Exercices inverses

Exercice 1

Compléter les espaces par un nombre décimal.

a)
$$1 \times \frac{1}{2} = 1$$
,

« l'inverse de 1 » =
$$\frac{1}{1}$$
 =

b)
$$0.1 \times \frac{1}{2} = 1$$
,

« l'inverse de
$$0,1$$
 » = $\frac{1}{0,1}$ = $\frac{1}{10,1}$

De plus
$$\frac{1}{|----|} = 0.1$$

c)
$$0.01 \times \begin{bmatrix} 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 \end{bmatrix} = 1$$
,

« l'inverse de 0,01 » =
$$\frac{1}{0,01}$$
 = $\frac{1}{0,01}$

De plus
$$\frac{1}{1} = 0.01$$

d)
$$0.5 \times \frac{1}{2} = 1$$
,

« l'inverse de
$$0.5$$
 » = $\frac{1}{0.5}$ = $\frac{1}{0.5}$

De plus
$$\frac{1}{1} = 0.5$$

e)
$$0.05 \times \frac{1}{2} = 1$$
,

« l'inverse de 0,05 » =
$$\frac{1}{0,05}$$
 = $\frac{1}{0.05}$

De plus
$$\frac{1}{\frac{1}{1-1-1}} = 0.5$$

f)
$$0.2 \times \frac{1}{2} = 1$$
,

« l'inverse de
$$0,2$$
 » = $\frac{1}{0,2}$ = $\frac{1}{0,2}$

De plus
$$\frac{1}{|----|} = 0.2$$

g)
$$0.02 \times \frac{1}{2} = 1$$
,

« l'inverse de 0,02 » =
$$\frac{1}{0,02}$$
 =

De plus
$$\frac{1}{1} = 0.02$$

h)
$$0.25 \times \frac{1}{1} = 1$$
,

« l'inverse de 0,25 » =
$$\frac{1}{0,25}$$
 = $\frac{1}{0,25}$

De plus
$$\frac{1}{|----|} = 0.25$$

i)
$$0.025 \times \frac{1}{2} = 1$$
,

« l'inverse de 0,025 » =
$$\frac{1}{0,025}$$
 =

De plus
$$\frac{1}{| - - - - |} = 0.025$$

j)
$$0.125 \times \frac{1}{2} = 1$$
,

« l'inverse de 0,125 » =
$$\frac{1}{0,125} = \frac{1}{0.125}$$

De plus
$$\frac{1}{1} = 0.125$$

k)
$$2.5 \times \frac{1}{2} = 1$$
,

« l'inverse de 2,5 » =
$$\frac{1}{2,5}$$
 = $\frac{1}{2,5}$

De plus
$$\frac{1}{1} = 2.5$$

1)
$$25 \times \frac{1}{2} = 1$$
,

« l'inverse de 25 » =
$$\frac{1}{25}$$
 = $\frac{1}{25}$

De plus
$$\frac{1}{\left| \frac{1}{1 - \frac{1}{2}} \right|} = 25$$

m)
$$20 \times \frac{1}{20} = 1$$
,

« l'inverse de 20 » =
$$\frac{1}{20}$$
 =

De plus
$$\frac{1}{|\cdot|} = 20$$

Exercice 2

Compléter les cadres par les mots « opposés » ou « inverses » et justifier la réponse.

- a) -2 et 2 sont $\boxed{}$ car
- c) -4 et 4 sont car

d)	-0.4 et -2.5 sont	car
e)	0,44 et 2,25 ne sont pas	nverses car
f)	12 et 0,833 333 ne sont pas	inverses car
g)	12 et sont opposés	car

■ Exemple 4.3 — rappels. Écrire les nombres décimaux ci-dessous sous forme d'une fraction décimale, puis comme somme d'un entier + fraction décimale inférieure à 1.

Partie entière

Partie décimale

centaines de milliers	dizaines de milliers	unités de milliers	centaines	dizaines	unités	dixièmes	centièmes	millièmes
					0	, 3		
					0	, 0	7	
					2	, 3	1	
				1	5	, 9	8	7
			2	5	0			

Exercice 3 Mêmes consignes

a) 0,71

b) -0.7

- c) 2,03 d) 15,821 e) 6,11 f) -0,029

 $\frac{1}{4}$ du rectangle

 $\frac{1}{4}$ de $\frac{1}{3}$ du rectangle

 $\frac{1}{3}$ de $\frac{1}{5}$ du rectangle

 $\frac{1}{4}$ et $\frac{1}{3}$ du rectangle

 $\frac{1}{3}$ et $\frac{1}{5}$ du rectangle

En mathématique, le mot « de » se traduit par ×. Compléter les égalités suivantes :

$$\frac{1}{4} \times \frac{1}{3} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \qquad \frac{1}{3} \times \frac{1}{5} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \qquad \frac{1}{3} + \frac{1}{5} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\frac{1}{3} \times \frac{1}{5} = \frac{1}{1 - \frac{1}{2}}$$

$$\frac{1}{4} + \frac{1}{3} = \frac{1}{1 - \frac{1}{3}}$$

$$\frac{1}{3} + \frac{1}{5} = \frac{1}{5}$$

4.2 Écriture fractionnaire

Définition 4.2 L'écriture fractionnaire $\frac{a}{b}$ (a b-ième) signifie « le résultat de la **multiplication** de a par l'inverse de b » :

¹ fraction décimale, fraction d'entiers, écriture fractionnaire

$$a \times \frac{1}{b} = \frac{a}{b}$$

On parle de fraction, si a et b sont des nombres entiers.

■ Exemple 4.4

a)
$$\frac{37}{100} = 37 \times \frac{1}{100} = 37 \text{ centièmes} = 0.37$$

b)
$$\frac{3.5}{10} = 3.5 \times \frac{1}{10} = 3.5 \text{ dixièmes} = 0.35$$

c)
$$\frac{5}{3} = 5 \times \frac{1}{3}$$
.

d)
$$\frac{5}{4} = 5 \times \frac{1}{4} = 5 \times 0.25 = 1.25$$
.

e) Pour tout nombre a la fraction
$$\frac{a}{1} = a \times \frac{1}{1} = a$$

f) Pour tout nombre non nul
$$\frac{b}{b} = b \times \frac{1}{b} = 1$$

g) Pour tout
$$a$$
, la fraction $\frac{a}{0} = a \times \frac{1}{0}$ n'est pas définie

h) Pour tout b non nul,
$$\frac{0}{b} = 0 \times \frac{1}{b} = 0$$
.

héorème 4.5 — Inverse d'une écriture fractionnaire. Pour tous a et b non nuls, $\frac{a}{b}$ et $\frac{b}{a}$ sont inverses l'un de l'autre :

$$\frac{a}{b} \times \frac{b}{a} = 1$$

Démonstration. $\frac{a}{b} \times \frac{b}{a} = a \times \frac{1}{b} \times b \times \frac{1}{a} = a \times \frac{1}{a} \times b \times \frac{1}{b} = 1$

■ Exemple 4.6

a)
$$\frac{1}{\frac{3}{5}} = \frac{5}{3}$$

a)
$$\frac{1}{\frac{3}{5}} = \frac{5}{3}$$

b) $\frac{1}{\frac{12}{7}} = \frac{7}{12}$

c)
$$\frac{1}{0.8} = \frac{1}{\left(\frac{4}{5}\right)} = \frac{5}{4} = 1.25$$

d)
$$\frac{1}{1,25} = \frac{1}{\frac{5}{4}} = \frac{4}{5} = 0.8$$

d)
$$\frac{1}{1,25} = \frac{1}{\frac{5}{4}} = \frac{4}{5} = 0.8$$

e) $\frac{1}{0,1} = \frac{1}{\frac{1}{10}} = \frac{10}{1} = 10$

4.2.1 Exercices écritures fractionnaires, ratios

Exercice 1 Donner les inverses des fractions suivantes.

Exercice 2 Compléter par des entiers pour rendre les égalités vraies.

Un ratio est une paire de deux nombres qui fait une comparaison, ou décrit un quotient. On peut l'écrire $\frac{a}{b}$ ou « a: b » ou encore « a pour b ». a est le premier terme du ratio, et b est le second terme.

■ Exemple 4.7

a) Le ratio du nombre de côtés d'un triangle pour le nombre de côtés d'un carré est de $\frac{3}{4}$, ou 3: 4.

b) Le ratio du nombre d'externes pour le nombre de demi-pensionnaire parmi les élèves de 44B est de $18:10=\ldots$

c) le ratio de 25 g pour 1 kg est de

Exercice 3 Écrire un ratio qui décrit chacune des situations suivantes. Simplifier le ratio.

a) Lire 3 livres en 4 semaines.

d) 1 centimes pour 1€.

b) parcourir 60 km en 3 h

e) 12 filles pour 30 élèves.

c) 5 ordinateurs pour 20 élèves.

f) 5 cm pour 1 m

■ Exemple 4.8 Simplifier les ratios suivants sous la forme d'un ratio d'entiers.

 9: 12
 9: 15
 3,5: 15
 14: 21: 35

Exercice 4 Mêmes consignes.

■ Exemple 4.9 — Problèmes de partage.

Cindy et Mindy se partagent une somme d'argent avec un ratio de 3:4.

c est l'argent reçu par Cindy, et m celui reçu par Mindy.

On interprète ceci : Cindy a reçu 3 parts, alors que Mindy en a reçu 4.

montant d'une part = $\frac{c}{3} = \frac{m}{4} = \frac{\text{total}}{7}$

a) Dans cette question Mindy a reçu 30€.

Cindy a reçu

$_{\perp}$	
1 part est [] de	

b) Dans cette question on connait le total partagé : 66,5 €.

1 part est $\frac{1}{1}$ de	 	
1 1		
1 1		
C: 1		

Exercice 5

Pour chacune des situations suivantes déterminer les montants manquants.

- a) Mork et Cindy se partagent une somme d'argent dans un ratio 5: 2. Mork reçoit 30€.
- b) Mork et Cindy partagent une somme d'argent dans un ratio 3: 2. Mork reçoit 18€.
- c) Mork et Cindy partagent une somme d'argent dans un ratio 6: 4. Mork reçoit 18€.
- d) Cara, Lara et Tara partagent des bonbons dans un ratio 7: 8: 9. Cara recoit 14 bonbons.

Exercice 6

Pour chaque question, préciser les parts :

- a) On partage 30g dans le ratio 1: 2
- b) On partage 30g dans le ratio 2: 4
- c) On partage 60g dans le ratio 4: 1
- d) On partage 60g dans le ratio 0:8
- e) On partage 60g dans le ratio 1:1
- f) On partage 60g dans le ratio 8:8
- g) On partage 4g dans le ratio 3: 5
- h) On partage 4g dans le ratio 4: 10: 2

Exercice 7

3 angles sont dans un ratio 63: 126: 105. Le plus grand vaut 72°.

- a) Simplifier le ratio des 3 angles au maximum.
- b) Déterminer la mesure des 3 angles.
- c) S'agit-il de 3 angles d'un triangle?

Exercice 8

Les trois angles d'un triangle sont dans le ratio 36: 36: 90.

- a) Simplifier le ratio des 3 angles.
- b) Quelle est la mesure de chaque angle?

4.3 Multiplication de fractions

Théorème 4.10 Pour tous nombres a b, c et d **non nuls** on a :

$$\frac{a}{b} \times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$

Démonstration.

$$a \times \frac{1}{b} \times c = \left(a \times \frac{1}{b}\right) \times c = a \times \left(\frac{1}{b} \times c\right) = (a \times c) \times \frac{1}{b}$$

Théorème 4.11 — Le produit des inverses est l'inverse du produit.

$$\frac{1}{b} \times \frac{1}{d} = \frac{1}{b \times d}$$

 $D\acute{e}monstration.$ $\frac{1}{b} \times \frac{1}{d}$ est l'inverse de ab car :

$$(bd) \times \left(\frac{1}{b} \times \frac{1}{d}\right) = b \times \frac{1}{b} \times d \times \frac{1}{d} = 1$$

Théorème 4.12 — Multiplication de fractions.

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

Proposition 4.13 — Règle des signes. On a :

$$\frac{1}{1} = \frac{-1}{-1} \qquad -1 = \frac{-1}{1} = \frac{1}{-1}$$

Pour tout nombres a et b (b non nul):

$$\frac{a}{b} = \frac{-a}{-b} \qquad -\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$$

Théorème 4.14 — Simplification/Amplification par un facteur commun. Pour tout nombres x, a et b (x et b non nuls) :

$$\frac{a}{b} = \frac{a \times c}{b \times c} \qquad \frac{a}{b} = \frac{a \div c}{b \div c}$$

cas particulier.

$$\frac{a}{b} = \frac{a}{b} \times 1 = \frac{a}{b} \times \frac{c}{c} = \frac{a \times c}{b \times c}$$

4.3.1 Exercices multiplications, simplifications, amplifications

■ Exemple 4.15

$$\frac{5}{7} \times 7 =$$

$$\frac{60}{3} =$$

$$\frac{3}{5} \times 20 =$$

Exercice 1 Écrire les expressions suivantes sous forme d'un entier.

$$a) \ \frac{-3}{3}$$

d)
$$5 \times \frac{18}{3}$$

g)
$$\frac{45}{1}$$

j)
$$-8 \times \frac{11}{-8}$$

b)
$$-3 \times \frac{15}{3}$$

e)
$$\frac{-15}{15}$$

h)
$$\frac{45}{3}$$

a)
$$\frac{-3}{3}$$
 d) $5 \times \frac{18}{3}$ g) $\frac{45}{1}$ j) $-8 \times \frac{11}{-8}$ b) $-3 \times \frac{15}{3}$ e) $\frac{-15}{15}$ h) $\frac{45}{3}$ k) $22 \times \frac{-4}{11}$ c) $-6 \times \frac{15}{3}$ f) $\frac{15}{3}$ i) $5 \times \frac{-5}{25}$ l) $-25 \times \frac{8}{5}$

c)
$$-6 \times \frac{15}{3}$$

f)
$$\frac{15}{3}$$

i)
$$5 \times \frac{-5}{25}$$

1)
$$-25 \times \frac{8}{5}$$

■ Exemple 4.16

$$\frac{4}{24} = \frac{4}{4 \times \dots} = \frac{4}{4} \times \frac{\dots}{\dots}$$

$$\frac{9}{54} =$$

$$\frac{3}{54} =$$

Exercice 2 — fractions de l'unité. Simplifier les expressions suivantes sous forme d'une fraction de numérateur égal à 1. a et b désignent des nombres non nuls.

$$A = \frac{5}{10}$$

$$E = \frac{25}{75}$$

$$I = \frac{10}{100}$$

$$M = \frac{a}{4a}$$

$$B = \frac{5}{15}$$

$$F = \frac{25}{100}$$

$$J = \frac{-9}{0 \times 0}$$

$$N = \frac{b}{2b}$$

$$C = \frac{5}{25}$$

$$G = \frac{25}{125}$$

$$K = \frac{7}{72}$$

$$O = \frac{b}{b}$$

$$D = \frac{5}{5^2}$$

$$H = \frac{20}{100}$$

$$L = \frac{7^2}{3 \times 7^2}$$

$$P = \frac{3b}{12b}$$

Défi. Simplifier $\frac{5a}{10a^2b}$ en une fraction de l'unité.

Exercice 3 En utilisant les critères de divisibilité indiquer si l'on peut simplifier chaque fraction par 2, 3, 4, 5, 9 ou 10:

	2	3	4	5	9	10
$1/\frac{45}{30}$						
$2/\frac{54}{81}$						
$3/\frac{1557}{1341}$						

	2	3	4	5	9	10
$4/\frac{4962}{11334}$						
$5/\frac{2034}{6066}$						
$6/\frac{1460}{2180}$						

■ Exemple 4.17 Simplifier au maximum les fractions suivantes. Présenter le résultat sous la frome de fraction d'entiers, avec un dénominateur positif. Montrer les étapes.

$$\frac{90}{120} = \frac{90 \div \dots}{120 \div \dots}$$

$$\frac{11}{-15} =$$

$$\frac{-12}{-15} =$$

Exercice 4 — fractions irréductibles. Mêmes consignes.

$$A = \frac{12}{24}$$
 $C = \frac{28}{35}$ $E = \frac{-18}{-39}$ $C = \frac{48}{66}$ $C = \frac{25}{40}$ $C = \frac{-105}{245}$ $C = \frac{23}{115}$ $C = \frac{42}{63}$ $C = \frac{48}{66}$ $C = \frac{48}{66}$ $C = \frac{25}{40}$ $C = \frac{-105}{245}$ $C = \frac{64}{80}$ $C = \frac{64}{80}$ $C = \frac{64}{80}$ $C = \frac{64}{80}$ $C = \frac{15}{40}$ $C =$

$$C = \frac{28}{35}$$

$$E = \frac{-18}{-39}$$

$$G = \frac{48}{66}$$

$$I = -\frac{25}{40}$$

$$K = \frac{-105}{245}$$

$$B = -\frac{15}{21}$$

$$D = \frac{23}{115}$$

$$F = \frac{42}{63}$$

$$H = \frac{20}{64}$$

$$J = \frac{70}{92}$$

$$L = \frac{64}{80}$$

Sam simplifie $\frac{105}{120}$ en divisant par 15 par ce que c'est le plus grand facteurs commun à 105 et 120. À votre avis, peut-on simplifier cette fraction plus facilement? Explique ta réponse.

Exercice 5

Simplifier les ratios suivants sous la forme d'un ratio de nombres entiers.

- a) 10:16

- b) 16:10

- c) 8: 10
 e) 4,5: 5
 g) 64: 96
 i) 84: 96: 20

 d) 4: 5
 f) 32: 48
 h) 60: 80: 100
 j) 128: 96: 40

Exercice 6 Rendre les égalités vraies en complétant les pointillés par des entiers ou des fraction de numérateur unité.

a)
$$\frac{1}{3} \times \frac{1}{4} = \dots$$

$$g) \ \frac{1}{2} \times \frac{1}{4} = \dots$$

$$m) \ \frac{1}{9} \times \frac{1}{9} = \dots$$

b)
$$\frac{1}{3} \times \frac{1}{8} = \dots$$

h)
$$\frac{1}{1} \times \frac{1}{8} = \dots$$

$$n) \left(\frac{1}{9}\right)^2 = \dots$$

c)
$$\frac{1}{2} \times \frac{1}{5} = \dots$$

i)
$$\frac{1}{3} \times \dots = \frac{1}{12}$$

$$o) \left(\frac{1}{\dots}\right)^2 = \frac{1}{25}$$

$$d) \frac{1}{5} \times \frac{1}{2} = \dots$$

$$j) \ \frac{1}{6} \times \ldots = \frac{1}{12}$$

p)
$$\frac{1}{3} \times \frac{1}{4} \times \frac{1}{5} = \dots$$

$$e) \ \frac{1}{5} \times \frac{1}{3} = \dots$$

$$k) \ \frac{1}{3} \times \ldots = \frac{1}{6}$$

q)
$$\frac{1}{3} \times \dots \times \frac{1}{5} = \frac{1}{90}$$

$$f) \ \frac{1}{5} \times \frac{1}{4} = \dots$$

1)
$$\ldots \times \ldots = \frac{1}{9}$$

$$r) \frac{1}{3} \times \left(\frac{1}{5}\right)^2 = \dots$$

Vrai ou faux? $\left(\frac{1}{a}\right)^2 = \frac{2}{a}$. Si faux proposer une correction.

■ Exemple 4.18 Exprimer les expressions suivants comme fractions d'entiers : $A = \frac{2}{3} \times \frac{5}{8}$ $B = \frac{2}{3} \times \frac{7}{10}$ $B = \frac{-2}{3} \times \frac{7}{10}$

$$A = \frac{2}{3} \times \frac{5}{8}$$

$$B = \frac{2}{3} \times \frac{7}{10}$$

$$B = \frac{-2}{3} \times \frac{-5}{-6}$$

Exercice 7 — Simplifier avant de multiplier.

Écrire les expressions suivantres sous forme de fractions irréductibles.

$$\frac{2}{3} \times \frac{1}{10} = \dots \qquad \qquad \frac{2}{5} \times \frac{1}{4} = \dots \qquad \qquad \frac{4}{3} \times \frac{2}{2} = \dots \\
\frac{1}{2} \times \frac{2}{5} = \dots \qquad \qquad \frac{2}{5} \times \frac{3}{4} = \dots \qquad \qquad \frac{4}{3} \times \frac{2}{1} = \dots \\
\frac{2}{5} \times \frac{1}{2} = \dots \qquad \qquad \frac{4}{3} \times \frac{1}{10} = \dots \qquad \qquad \frac{4}{3} \times \frac{3}{1} = \dots \\
\frac{2}{5} \times \frac{1}{3} = \dots \qquad \qquad \frac{4}{3} \times \frac{3}{10} = \dots \qquad \qquad \frac{4}{3} \times \frac{3}{4} = \dots$$

Exercice 8 — Multiplier des fractions. Guider le coureur de mine à travers le labyrinthe. Il ne peut traverser des cellules que si le calcul est juste. Les déplacements en diagonale ne sont pas autorisés.

		Départ		
$\frac{3}{4} \times \frac{2}{3} = \frac{1}{2}$	$\frac{2}{3} \times \frac{3}{5} = \frac{3}{5}$	$\frac{2}{7} \times \frac{3}{4} = \frac{5}{14}$	$\frac{3}{4} \times \frac{5}{6} = \frac{7}{8}$	$\frac{3}{5} \times \frac{3}{4} = \frac{9}{20}$
$\frac{2}{3} \times \frac{5}{7} = \frac{10}{21}$	$\frac{5}{6} \times \frac{4}{5} = \frac{2}{3}$	$\frac{3}{4} \times \frac{5}{7} = \frac{17}{28}$	$\frac{2}{6} \times \frac{4}{7} = \frac{4}{21}$	$\frac{5}{6} \times \frac{3}{8} = \frac{5}{16}$
$\frac{5}{7} \times \frac{2}{3} = \frac{11}{21}$	$\frac{5}{6} \times \frac{3}{4} = \frac{7}{8}$	$\frac{6}{7} \times \frac{3}{4} = \frac{9}{14}$	$\frac{4}{5} \times \frac{7}{8} = \frac{9}{10}$	$\frac{7}{8} \times \frac{4}{5} = \frac{7}{10}$
$\frac{7}{8} \times \frac{5}{6} = \frac{35}{48}$	$\frac{5}{7} \times \frac{7}{10} = \frac{1}{2}$	$\frac{7}{9} \times \frac{3}{4} = \frac{7}{12}$	$\frac{5}{8} \times \frac{10}{11} = \frac{25}{44}$	$\frac{7}{12} \times \frac{5}{9} = \frac{35}{108}$
$\frac{7}{9} \times \frac{7}{11} = \frac{49}{99}$	$\frac{6}{7} \times \frac{7}{8} = \frac{23}{28}$	$\frac{6}{13} \times \frac{5}{7} = \frac{31}{91}$	$\frac{5}{8} \times \frac{5}{13} = \frac{27}{104}$	$\frac{9}{11} \times \frac{5}{7} = \frac{47}{77}$
		Arrivée		

Exercice 9 — pensez aux signes. Écrire les expressions suivantres sous forme d'une fraction irréductible à dénominateur positif.

Exercice 10 Compléter les pointillés par des entiers pour rendre vraies les égalités.

$$\frac{2}{3} \times \frac{5}{\dots} = \frac{10}{12}$$
 $\frac{2}{-3} \times \frac{5}{\dots} = \frac{10}{12}$ $\frac{2}{3} \times \dots = \frac{5}{6}$ $\frac{2}{\dots} \times \frac{5}{\dots} = -\frac{2}{6}$

Exercice 11 Éva a $21 \in$. Elle dépense $\frac{4}{7}$ de son argent pour un cadeau. Combien coûte le cadeau? Exercice 12 Les sept vingt-cinquièmes de 15000 participants à un sondage sont mineures. Combien de mineurs ont participé?

Exercice 13 Donner la durée en minutes des expressions suivantes. Montrer les simplifications.

a)
$$\frac{7}{10}$$
 d'une heure $\frac{1}{10}$ b) $\frac{5}{6}$ d'une heure $\frac{2}{5}$ d'une heure $\frac{4}{15}$ d'une heure

Exercice 14

Un collège compte 660 garçons et 840 filles. La probabilité qu'un garçon choisi au hasard fasse partie du club de théatre est de $\frac{2}{5}$. La probabilité qu'une fille choisie au hasard fasse partie du club de théatre est de $\frac{3}{7}$.

- a) Donner le nombre de filles et de garcons qui font partie du club de théatre.
- b) Quelle est la probabilité qu'un élève (garçon ou fille) choisi au hasard fasse du théatre?

Exercice 15

Une balle est lachée d'une hauteur de $15\,\mathrm{m}$. La hauteur du premier rebond est a, et celle du second rebond est b. a est trois quart de la hauteur de départ.

- a) Tom pense que b vaut les trois quarts de a. Calculer la valeur de b comme fraction.
- b) En réalité, b vaut les deux tiers de a. Comparer la valeur réelle avec celle obtenue à la question précédente.

Exercice 16 Écrire les expressions suivantes sous forme d'entiers. Montrer les simplifications.

solution de l'exercice 4.

$$A = \frac{1}{2} B = -\frac{5}{7}$$

$$C = -\frac{4}{5} D = \frac{1}{5}$$

$$E = \frac{6}{13} F = \frac{2}{3}$$

$$G = \frac{8}{11} H = -\frac{5}{8}$$

$$J = \frac{35}{46}$$

$$L = \frac{4}{5}$$

CLG Jeanne d'Arc, 4e

4.4 Quotient et écritures fractionnaires

Définition 4.3 — Quotient. Pour a et b non nuls. $\frac{a}{b}$ est le nombre qui multiplié par b donne a.

$$\frac{a}{b} \times b = a$$

 $\frac{a}{b}$ est égal au quotient (division) de a par b:

$$a \div b = \frac{a}{b} = a \times \frac{1}{b}$$

« diviser c'est multiplier par l'inverse »

■ Exemple 4.19

$$3 \div 7 = \frac{3}{7}$$

$$5 \div \frac{9}{13} = \frac{5}{\left(\frac{9}{13}\right)} = 5 \times \frac{13}{9} = \frac{65}{9}$$

$$3 \div \frac{1}{7} = 3 \times 7 = 21$$

$$\frac{-1}{7} \div \frac{-5}{3} = \frac{-1}{7} \times \frac{3}{-5} = \frac{3}{7 \times 5}$$

$$\frac{3}{4} \div \frac{-5}{8} = \frac{3}{4} \times \frac{8}{-5} = \frac{3}{4} \times \frac{2 \times 4}{-5} = -\frac{3 \times 2}{5} = -\frac{6}{5}$$

4.4.1 Exercices inverses et quotients

■ Exemple 4.20 Écrire l'inverse des nombres suivants sous forme d'une fractions irréductible.

Exercice 1 Mêmes consignes. Montrer les étapes.

$$a = \frac{1}{0,15}$$
 $b = \frac{1}{0,35}$ $c = \frac{1}{2,05}$ $d = \frac{1}{3,45}$ $e = \frac{1}{0,02}$ $f = \frac{1}{4,08}$

■ Exemple 4.21 Écrire sous forme d'une fraction. Simplifier au maximum.

$$A = \frac{\left(\frac{3}{4}\right)}{\left(\frac{5}{2}\right)}$$

$$B = \frac{\left(\frac{14}{3}\right)}{7}$$

Exercice 2 — Fraction de fractions. Écrire sous forme d'une fraction (simplifiée au maximum) les expressions suivantes. Montrer les calculs.

$$a = \frac{\left(\frac{26}{3}\right)}{52} \qquad \left| \begin{array}{c} b = \frac{\left(\frac{7}{2}\right)}{\left(\frac{14}{5}\right)} \\ \end{array} \right| c = \frac{\left(\frac{-3}{8}\right)}{\left(\frac{9}{16}\right)} \qquad \left| \begin{array}{c} d = \frac{\left(\frac{7}{-11}\right)}{\left(\frac{49}{44}\right)} \\ \end{array} \right| e = \frac{\left(\frac{-9}{14}\right)}{\left(\frac{-45}{98}\right)}$$

Exercice 3 — **Quotient.** Écrire sous forme d'une fraction irréductible les expressions suivantes. Montrer les étapes.

$$a = 2 \div \frac{1}{2}$$

$$b = \frac{1}{2} \div \frac{1}{4}$$

$$c = \frac{5}{6} \div \frac{1}{6}$$

$$d = \frac{13}{20} \div \frac{4}{5}$$

$$d = \frac{19}{4} \div \frac{12}{5}$$

$$d = \frac{4}{5} \div \left(\frac{13}{20} \div \frac{8}{25}\right)$$

$$h = \left(\frac{4}{5} \div \frac{13}{20}\right) \div \frac{8}{25}$$

■ Exemple 4.22 Écrire sous forme d'une fraction. Simplifier au maximum.

1. Convertir les nombres décimaux suivants en fractions d'entiers :

2. Donner l'écriture en fraction d'entiers irréductibles des expressions suivantes.

Exercice 5

1. En utilisant un seul chiffre (de 0 à 9) par case, complète l'expression suivante pour la rendre vraie. Peux-tu simplifier le résultat?

2. Trouve des solutions en utilisant les chiffres de 0 à 9 pas plus qu'une fois. Combien de solutions différentes trouves-tu?

indications. Il y a un grand nombre de solutions.

4.5 AP Problèmes ratios, fractions, multiplications.....

Exercice 1

- 1) Trouver deux nombres dans le ratio 5: 3 dont la somme est 320,4.
- 2) Trouver deux nombres dans le ratio 7: 5 dont la différence est 320,4.

So	olut	ion										\mathbf{F}	P	\mathbf{J}

Exercice 2

Jadzia, Naomi et Tasha se partagent de l'argent au ratio 2: 3: 7.

Tasha a recu 80€ de plus que Jadzia. Combien ont reçu chacune d'elles?

Solution		$\mathbf{F} \mathbf{P} \mathbf{J}$

Exercice 3

Dans un mélange de jetons rouges et bleus, le ratio de jetons rouges pour les bleus est de 12: 18.

- 1) Écrire le ratio sous forme la plus simplifiée possible.
- 2) On tire au hasard un jeton du panier. Quelle est la probabilité de tirer un jeton bleu?

Solution F P J

CLG Jeanne d'Arc, 4^e Année 2021/2022

Le prix d'un paquet de chocolat est 9.60 \in . Billy a 13 \in .

Durant la semaine de Pâques, le magasin offre une remise de $\frac{1}{3}$ du prix normal sur tous les chocolats. Pourra-t-il acheter deux boites de chocolats lors des offres spéciales? Montre tes calculs.

Solution F P J

Exercice 5

Jadzia achète 10 packs de 12 cannettes de boissons gazeuses. Chaque pack coute $5 \in$. Jadzia vend $\frac{2}{3}$ des cannettes à 60 centimes pièce. Elle vend le reste à 30 centimes pièce. Calcule le profit de Jadzia.

Solution F P J

Sarah veut faire 420 cookies : au chocolat, aux raisins secs, au caramel et aux amandes.

 $\frac{2}{7}$ des cookies sont aux chocolat. 35% des cookies sont aux raisins secs. Le ratio nombre de cookies au caramel pour le nombre de cookies aux amandes est de 4: 5.

Trouve le nombre de cookies au caramel.

Solution	$\boxed{\mathbf{F}} \boxed{\mathbf{P}} \boxed{\mathbf{J}}$

Exercice 7

Un avion transporte 500 passagers : hommes, femmes et des enfants.

40% des passagers sont des femmes. Le ratio nombre d'hommes pour nombre de femmes est de 7: 8. Quel est le nombre d'enfants?

Solution $\mathbf{F}||\mathbf{P}||\mathbf{J}|$

Le public d'un cinéma est composé aux $\frac{3}{5}$ de mineurs.

Parmi les mineurs, le ratio nombre de filles pour nombre de garcons est de 2: 7.

Il y a 170 filles dans ce cinémas. Trouver le nombre d'adultes.

Solution F D J

Exercice 9

Pour le match de foot du village, $\frac{3}{7}$ du public est composé d'adultes.

Parmi les mineurs, le ratio nombre de supporters de l'équipe locale pour le nombre de supporters de l'équipe en déplacement est de 5: 3.

Il y a 140 supporters de plus pour l'équipe locale qu'il n'y a de supporters pour l'équipe en déplacement. Trouvez le nombre d'adultes.

Solution F P J

AP Corrections

Exercice 1

- 1) Trouver deux nombres dans le ratio 5: 3 dont la somme est 325.
- 2) Trouver deux nombres dans le ratio 7: 5 dont la différence est 325.

Exercice 2

Dans un mélange de jetons rouges et bleus, le ratio de jetons rouges pour les bleus est de 12: 18.

- 1) Écrire le ratio sous forme la plus simplifiée possible.
- 2) On tire au hasard un jeton du panier. Quelle est la probabilité de tirer un jeton bleu?

Exercice 3

Le prix d'un paquet de chocolat est $9.60 \in$. Billy a $13 \in$.

Durant la semaine de Pâques, le magasin offre une remise de $\frac{1}{3}$ du prix normal sur tous les chocolats. Pourra-t-il acheter deux boites de chocolats lors des offres spéciales? Montre tes calculs.

Exercice 4

Dans un mélange de jetons rouges et bleus, le ratio de jetons rouges pour les bleus est de 12: 18.

CLG Jeanne d'Arc, 4^e Année 2021/2022

- 1) Écrire le ratio sous forme la plus simplifiée possible.
- 2) On tire au hasard un jeton du panier. Quelle est la probabilité de tirer un jeton bleu?

$|\mathbf{P}||\mathbf{J}$

- 1) 12: 18 = 6: 9 = 2: 32) Les jetons bleus constituent $\frac{3}{2+3} = \frac{3}{5}$ du total de jetons. La probabilité d'obtenir un jeton bleu est de $\frac{3}{5}$.

Exercice 5

Jadzia achète 10 packs de 12 cannettes de boissons gazeuses. Chaque pack coute 5€. Jadzia vend $\frac{2}{3}$ des cannettes à 60 centimes pièce. Elle vend le reste à 30 centimes pièce. Calcule le profit de Jadzia.

Solution $\mathbf{F}||\mathbf{P}||\mathbf{J}|$

$$10 imes 5 = 50$$
 $igodiag$ de dépenses.

$$10 \times 12 = 120$$
 cannelles au total.

Solution
$$10 \times 5 = 50 \in \text{de dépenses.}$$

$$10 \times 12 = 120 \text{ cannelles au lotal.}$$

$$\frac{2}{3} \times 120 = 80 \text{ canneles sont vendues à 60 centimes. Les 40 restantes à 30 centimes.}$$
 Recette: $80 \times 0.6 + 40 \times 0.3 = 48 + 12 = 60 \in \mathbb{C}$. Dépense: $5 \times 10 = 50 \in \mathbb{C}$ Profits: $60 \in -50 \in \mathbb{C} = 10 \in \mathbb{C}$

Recelle:
$$80 \times 0.6 + 40 \times 0.3 = 48 + 12 = 60$$

Dépense :
$$5 \times 10 = 50 \in$$

Profits:
$$60 \in -50 \in =10 \in$$

Exercice 6

Sarah veut faire 420 cookies: au chocolat, aux raisins secs, au caramel et aux amandes.

des cookies sont aux chocolat. 35% des cookies sont aux raisins secs.

Le ratio nombre de cookies au caramel pour le nombre de cookies aux amandes est de 4: 5.

Trouve le nombre de cookies au caramel.

$|\mathbf{P}||\mathbf{J}$ Solution

Cookies au chocolat =
$$\frac{2}{7} \times 420 = 20 \times \frac{42}{7} = 20 \times 6 = 120$$

Cookies aux raisins = $\frac{35}{100} \times 420 = 147$
Cookies au caramel et cookies aux amandes : $420 - 120 - 147 = 153$
caramel : amandes = 4: 5, total de 153 en 9 parts.
1 part = $\frac{153}{9} = 17$, Cookies au caramel = 4 parts, donc $4 \times 17 = 68$.

Cookies aux raisins
$$=\frac{35}{100}\times420=147$$

1 part
$$=rac{153}{9}=17$$
, Cookies au caramel $=4$ parts, donc $4 imes17=68$

Un avion transporte 500 passagers : hommes, femmes et des enfants.

40% des passagers sont des femmes. Le ratio nombre d'hommes pour nombre de femmes est de 7: 8. Quel est le nombre d'enfants?

Exercice 8

Le public d'un cinéma est composé aux $\frac{3}{5}$ de mineurs.

Parmi les mineurs, le ratio nombre de filles pour nombre de garcons est de 2:7.

Il y a 170 filles dans ce cinémas. Trouver le nombre d'adultes.

Exercice 9

Pour le match de foot du village, $\frac{3}{7}$ du public est composé d'adultes.

Parmi les mineurs, le ratio nombre de supporters de l'équipe locale pour le nombre de supporters de

l'équipe en déplacement est de 5: 3.

Il y a 140 supporters de plus pour l'équipe locale qu'il n'y a de supporters pour l'équipe en déplacement. Trouvez le nombre d'adultes.

supporter locaux: supporters en déplacement =5: 3, total de 9 parts, et 2 parts de différence. 140

$$1_{\text{part}} = \frac{140}{2} = 70$$

Fotal de mineurs : 8 parts $= 8 \times 70 = 560$. public complet

 $\frac{3}{7}$ de l'ensemble du public sont des mineurs. $\frac{4}{7}$ sont des adultes. Le ratio mineurs : adultes =3:4. Pdultes $=3\times(560\div4)=420.$