- 8. Un sistema de restricciones de diferencias (SRD) es un sistema S que tiene m inecuaciones y n incógnitas x_1, \ldots, x_n . Cada inecuación es de la forma $x_i x_j \le c_{ij}$ para una constante $c_{ij} \in \mathbb{R}$; por cada par i, j existe a lo sumo una inecuación (por qué?). Para cada SRD S se puede definir un digrafo pesado D(S) que tiene un vértice v_i por cada incógnita x_i de forma tal que $v_j \to v_i$ es una arista de peso c_{ij} cuando $x_i x_j \le c_{ij}$ es una inecuación de S. Asimismo, S tiene un vértice v_0 y una arista $v_0 \to v_i$ de peso 0 para todo $1 \le i \le n$. \longrightarrow V_i in llega a hallo v_i vertice. No oblazzable
 - a. Demostrar que si D(S) tiene un ciclo de peso negativo, entonces S no tiene solución.
 - b. Demostrar que si D(S) no tiene ciclos de peso negativo, entonces $\{x_i = d(v_0, v_i) \mid 1 \le i \le n\}$ es una solución de D(S). Acá $d(v_0, v_i)$ es la distancia desde v_0 a v_i en D(S).
 - c. A partir de los incisos anteriores, proponer un algoritmo que permita resolver cualquier SRD. En caso de no existir solución, el algoritmo debe mostrar un conjunto de inecuaciones contradictorias entre sí.

