Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (**Currently amended**) A process for producing 2-0- α -glucopyranosyl-L-ascorbic acid, comprising the steps of:

allowing α -isomaltosyl glucosaccharide-forming enzyme together with or without cyclomaltodextrin glucanotransferase (EC 2.4.1.19) to act on a solution comprising L-ascorbic acid and liquefied starch having a dextrose equivalent (DE) of less than 10 to obtain a reaction mixture containing 2-O- α -glucopyranosyl-L-ascorbic acid in an amount of 10% (w/w) or higher wherein the reaction mixture also contains and each of 5-O- α -glucopyranosyl-L-ascorbic acid and 6-O- α -glucopyranosyl-L-ascorbic acid in an amount of less than 0.1% (w/w), on a dry solid basis; and

collecting the 2-O- $\alpha\text{-glucopyranosyl-L-ascorbic}$ acid from the reaction mixture;

wherein said α -isomaltosyl glucosaccharide-forming enzyme has an activity of forming a saccharide with a glucose polymerization degree of 3 or higher and bearing both the α -1,6 glucosidic linkage as a linkage at the non-reducing end and the α -1,4 glucosidic linkage other than the linkage at the non-reducing end from

Appln. No. 10/523,920

Amd. dated September 9, 2010

Reply to Office Action of January 27, 2010

and Advisory Action of April 29, 2010

a saccharide with a glucose polymerization degree of 2 or higher and bearing the α -

1,4 glucosidic linkage as a linkage at the non-reducing end by α -glucosyl-transferring

reaction without increasing the reducing power of the reaction mixture; wherein

said α-isomaltosyl glucosaccharide-forming enzyme is obtained from the genus

Arthrobacter globiformis.

2. **(Previously presented)** The process of claim 1, wherein

glucoamylase (EC 3.2.1.3) is allowed to act on the reaction mixture after the action of

α-isomaltosyl glucosaccharide-forming enzyme on said solution together with or

without cyclomalodextrin glucanotransferase.

Claims 3-5. (Cancelled)

6. **(Previously presented)** The process of claim 1, wherein the

step of collecting 2-0- α -glucopyranosyl-L-ascorbic acid comprises a step of using a

strongly-acidic cation exchange resin.

7. **(Previously presented)** The process of claim 1, wherein the

formed 2-0- α -glucopyranosyl-L-ascorbic acid is collected in the form of a syrup, a

powder, or a crystal.

Claims 8-20. (Cancelled)

- 4 -

Appln. No. 10/523,920 Amd. dated September 9, 2010 Reply to Office Action of January 27, 2010 and Advisory Action of April 29, 2010

21. (**Previously presented**) The process of claim 6, further comprising pulverizing or crystallizing the $2-0-\alpha$ -glucopyranosyl-L-ascorbic acid.

Claims 22-23. (Cancelled)

24. (New) A process for producing 2-O- α -glucopyranosyl-L-ascorbic acid, comprising the steps of:

allowing α -isomaltosyl glucosaccharide-forming enzyme together with or without cyclomaltodextrin glucanotransferase (EC 2.4.1.19) to act on a solution comprising L-ascorbic acid and liquefied starch with a dextrose equivalent (DE) of about 6 or lower to obtain a reaction mixture containing 2-O- α -glucopyranosyl-L-ascorbic acid in an amount of 10% (w/w) or higher and each of 5-O- α -glucopyranosyl-L-ascorbic acid and 6-O- α , α -glucopyranosyl-L-ascorbic acid in an amount of less than 0.1% (w/w), on a dry solid basis; and

collecting the 2-O- α -glucopyranosyl-L-ascorbic acid from the reaction mixture;

wherein said α -isomaltosyl glucosaccharide- forming enzyme has an activity of forming a saccharide with a glucose polymerization degree of 3 or higher and bearing both the α -1,6 glucosidic linkage as a linkage at the non-reducing end and the α -1,4 glucosidic linkage other than the linkage at the non-reducing end from a saccharide with a glucose polymerization degree of 2 or higher and bearing the α -

Appln. No. 10/523,920 Amd. dated September 9, 2010 Reply to Office Action of January 27, 2010 and Advisory Action of April 29, 2010

1,4 glucosidic linkage as a linkage at the non-reducing end by α -glucosyl-transferring reaction without increasing the reducing power of the reaction mixture; wherein said α -isomaltosyl glucosaccharide-forming enzyme is obtained from *Arthrobacter globiformis*.

- 25. (New) The process of claim 24, wherein glucoamylase (EC 3.2.1.3) is allowed to act on the reaction mixture after the action of α -isomaltosyl glucosaccharide-forming enzyme on said solution together with or without cyclomalodextrin glucanotransferase.
- 26. (New) The process of claim 24, wherein the step of collecting 2- $O-\alpha$ -glucopyranosyl-L-ascorbic acid comprises a step of using a strongly-acidic cation exchange resin.
- 27. **(New)**The process of claim 24, wherein the formed 2-0- α -glucopyranosyl-L-ascorbic acid is collected in the form of a syrup, a powder, or a crystal.
- 28. (New) The process of claim 26, further comprising pulverizing or crystallizing the 2-0- α -glucopyranosyl-L-ascorbic acid.