Cours

C. LACOUTURE

Année scolaire 2024-2025, MPSI2, Lycée Carnot

Table des matières

Ι	Arithmétique								
1	Récurrences, sommations								
	1.1	Récur	rences	7					
		1.1.1	Principe général	7					
		1.1.2	Utilisation la plus fréquente	8					
		1.1.3	Variantes	8					
		1.1.4	Originalités	8					
	1.2	Somm	nations	8					
		1.2.1	Somme simple	8					
		1.2.2	Sommes doubles	8					
2	Coefficients binomiaux 9								
	2.1	Défini	itions	9					
		2.1.1	Factorielle	9					
		2.1.2	Coefficient binomial	9					
	2.2								
		2.2.1	Énoncé	9					
		2.2.2	Pratique	10					
		2.2.3	Expression des coefficients binomiaux	10					
	2.3	.3 Applications							
		2.3.1	Symétrie des coefficients binomiaux	10					
		2.3.2	Formule du binôme de Newton	10					
		2.3.3	Linéarisation	10					
		2.3.4	Inversement	10					
		2.3.5	Nombre de parties d'un ensemble	11					
3	PGCD, PPCM, nombres premiers								
	3.1 PPCM : Plus Petit Commun Multiple								
		3.1.1	Définition	14					
		3.1.2	Propriétés	14					
		3.1.3	Cas particulier	14					

		D 0 0 0 E	
	3.2		Elus Grand Commun Diviseur
		3.2.1	Définition
		3.2.2	Propriétés
		3.2.3	Cas particulier
		3.2.4	Pratique
	3.3	Nomb	res premiers entre eux
		3.3.1	Définition
		3.3.2	Caractérisation : théorème de Bézout
		3.3.3	Propriétés
	3.4	Génér	alisation
		3.4.1	pgcd,ppcm de n entiers
		3.4.2	Pratique
	3.5	Nomb	res premiers
		3.5.1	Définition
		3.5.2	Premières propriétés
		3.5.3	Infinité
		3.5.4	Crible d'Eratosthène
		3.5.5	Décomposition en facteurs premiers
	3.6		uences
		3.6.1	Définition de la relation
		3.6.2	Opérations sur $\mathbb{Z}/n\mathbb{Z}$
		3.6.3	Structures
		0.0.0	
4	Dén	ombre	ements 15
	4.1	Cardin	nal d'un ensemble fini
		4.1.1	Définitions
		4.1.2	Propriétés
	4.2	Applio	eations entre deux ensembles finis
		4.2.1	Remarque préliminaire
		4.2.2	Dénombrement
		4.2.3	Quand E et F sont de même cardinal (fini) 16
	4.3		s d'un ensemble fini
		4.3.1	p-liste d'éléments distincts
		4.3.2	Autre démonstration de $\operatorname{card}(\mathcal{P}(E)) = 2^{\operatorname{card}(E)}$ 16
		1.0.4	$\binom{n}{n}$
		4.3.3	Retrouvons que $\binom{n}{p} = \frac{n!}{p!(n-p)!}$
			$\langle P \rangle$

Première partie Arithmétique

Récurrences, sommations

1.1 Récurrences

1.1.1 Principe général

Axiome

(si)
$$A$$
 est une partie de $\mathbb N$ tq $\left\{ \begin{array}{l} 0 \in A \\ \forall n \in A, n+1 \in A \end{array} \right.$ (alors) $A = \mathbb N$

Énoncé

Soit
$$\mathcal{P}(n)$$
 une propriété dépendante de $n \in N$. Si
$$\begin{cases} \mathcal{P}(0) \text{vraie} \\ \forall n \in \mathbb{N}, \mathcal{P}(n) \Rightarrow \mathcal{P}(n+1) \end{cases}$$
 alors $\mathcal{P}(n)$ est vraie $\forall n \in \mathbb{N}$

Applications à des expressions de sommes usuelles

— Somme d'entiers consécutifs :

$$\sum_{k=0}^{n} k = 0 + 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

— Somme des carrés :

$$\sum_{k=0}^{n} k^2 = 0^2 + 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Démonstration : soit $\mathcal{P}(n)$ l'égalité ci-dessus.

—
$$\mathcal{P}(0)$$
 est vraie car $\sum_{k=0}^{0} k^2 = 0 = \frac{0(0+1)(2\cdot 0+1)}{6}$

— si pour un certain $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie alors montrons que $\mathcal{P}(n+1)$ est vraie. En effet :

$$\sum_{k=0}^{n+1} k^2 = \sum_{k=0}^{n} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2 \text{ par hypothèse de récurrence}$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$= \frac{(n+1)(n(2n+1) + 6(n+1))}{6}$$

$$= \frac{(n+1)(2n^2 + 7n + 6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

$$= \frac{(n+1)((n+1) + 1)(2(n+1) + 1)}{6}$$
(1.1)

donc $\mathcal{P}(n+1)$ est bien vraie.

— Sommes des cubes :

$$\sum_{k=0}^{n} k^3 = 0^3 + 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 = \left(\sum_{k=0}^{n} k\right)^2$$

— Somme géométrique : soit $a \in \mathbb{R}$

$$\sum_{k=0}^{n} a^{k} = 1 + a^{1} + a^{2} + \dots + a^{n} = \begin{cases} \frac{1 - a^{n+1}}{1 - a} & \text{si } a \neq 1\\ n + 1 & \text{si } a = 1 \end{cases}$$

1.1.2 Utilisation la plus fréquente

- 1.1.3 Variantes
- 1.1.4 Originalités
- 1.2 Sommations
- 1.2.1 Somme simple
- 1.2.2 Sommes doubles

Coefficients binomiaux

2.1 Définitions

2.1.1 Factorielle

$$\begin{array}{ll} -- & \forall n \in \mathbb{N}^*, n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1 = \prod_{k=1}^n k \\ -- & 0! = 1 \end{array}$$

2.1.2 Coefficient binomial

Générale

Soient $p, n \in \mathbb{N}$ tel que $p \leq n$.

 $\binom{n}{p}$ (p
 parmi n) est le nombre de parties à p éléments d'un ensemble à
 n éléments.

Cas particulier

Si
$$p, n \in \mathbb{N}$$
 avec $p > n$, $\binom{n}{p} = 0$

2.2 Formules du triangle de Pascal

2.2.1 Énoncé

Soient $p, n \in \mathbb{N}$ tel que $1 \leqslant p \leqslant n - 1$.

$$\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$$

2.2.2 Pratique

Cette formule permet de calculer de proche en proche tous les coefficients binomiaux.

2.2.3 Expression des coefficients binomiaux

 $\forall n \in \mathbb{N}, \forall p \in \llbracket 0, n \rrbracket$

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}$$

2.3 Applications

2.3.1 Symétrie des coefficients binomiaux

 $\forall n \in \mathbb{N}, \forall p \in \llbracket 0, n \rrbracket$

$$\binom{n}{p} = \binom{n}{n-p}$$

2.3.2 Formule du binôme de Newton

 $\forall a, b \in \mathbb{C}, \forall n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

2.3.3 Linéarisation

But : écrire des puissances de cos et sin comme combinaison de termes de la forme $\sin(ax)$, $\cos(bx)$.

Principe:

- 1. on utilise les formules d'Euler.
- 2. on développe selon le binôme de Newton.
- 3. on regroupe deux à deux les termes extrêmes.
- 4. on réutilise les formules d'Euler.

2.3.4 Inversement

Comment écrire $\sin(ax)$, $\cos(bx)$ en fonction de puissances de cos, sin? Méthode :

2.3. APPLICATIONS

11

- 1. on utilise la formule de Moivre
- 2. on développe selon la formule du binôme.

2.3.5 Nombre de parties d'un ensemble

Soit E un ensemble à n éléments. Alors E a 2^n parties car :

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n}$$

PGCD, PPCM, nombres premiers

	3.1	PPCM	: Plus	Petit	Commun	Multi	ple
--	-----	------	--------	-------	--------	-------	-----

- 3.1.1 Définition
- 3.1.2 Propriétés
- 3.1.3 Cas particulier

3.2 PGCD: Plus Grand Commun Diviseur

- 3.2.1 Définition
- 3.2.2 Propriétés
- 3.2.3 Cas particulier
- 3.2.4 Pratique

Résultat préliminaire

Algorithme

Notations

Concrètement

Exemple: pgcd(56,23)

Remarque

3.3 Nombres premiers entre eux

- 3.3.1 Définition
- 3.3.2 Caractérisation : théorème de Bézout
- 3.3.3 Propriétés

Dénombrements

- 4.1 Cardinal d'un ensemble fini
- 4.1.1 Définitions
- 4.1.2 Propriétés

Réunion disjointe

Sous-ensemble

Réunion quelconque

Produit cartésien

- 4.2 Applications entre deux ensembles finis
- 4.2.1 Remarque préliminaire
- 4.2.2 Dénombrement
- 4.2.3 Quand E et F sont de même cardinal (fini)
- 4.3 Parties d'un ensemble fini
- 4.3.1 p-liste d'éléments distincts
- 4.3.2 Autre démonstration de $card(P(E)) = 2^{card(E)}$
- **4.3.3** Retrouvons que $\binom{n}{p} = \frac{n!}{p!(n-p)!}$