

Compte Rendu

Ecole Nationale Supérieure de l'Electronique et de ses Applications

Electronique RF

TP3 - Mesure et adaptation d'une antenne PIFA

2^{eme} Année

Année : 2023 - 2024

Camille Lanfredi Rémi Weidle

1. Mesure de l'impédance d'entrée de l'antenne

Lors de ce travail pratique, nous allons mesurer, simuler et adapter une antenne PIFA (Planar Inverted F Antenna). Après insertion de la carte d'adaptation, nous mesurons le résultat obtenu.

L'antenne qui nous est fournie est la GSM 900. Elle fonctionne à une fréquence de 933MHz.

Dans un premier temps, nous calibrons la GSM avec un plan de référence du kit de calibration SMA. Nous effectuons une déportation de masse en utilisant une carte de référence.

La première mesure nous permet de générer un fichier de paramètre S (.s1p) que nous importerons sur le *ADS*. Nous observons l'abaque à partir du circuit qui teste les paramètres de l'antenne GSM 933.

Circuit de test

Abaque de Smith GSM900

En outre, nous pouvons observer que l'allure de l'abaque de Smith change lorsque nous approchons notre main de l'antenne. Ce qui est bien une caractéristique de l'antenne.

2. Synthèse de l'adaptation à l'aide d'ADS

Dans un premier temps, nous réalisons la synthèse d'adaptation de l'antenne et déterminons, le ou les montage(s) adéquat(s). Dans notre cas, 2 montages sont possibles (pour cela nous utilisons l'outil « smith chart » du logiciel ADS. En se plaçant à la fréquence de l'antenne (933 MHz)) :

Le premier est constitué de 2 selfs, l'une en série et l'autre en parallèle.

Le second est composé d'une capacité en série et d'une self en parallèle :

A partir de la simulation d'ADS, pour adapter l'antenne, il y a 2 circuits possibles :

Nous prenons donc en compte le schéma réel d'une inductance :

Nous reprenons les 2 circuits avec le modèle réel de l'inductance :

Cependant nous utiliserons uniquement le second circuit car, dans le premier montage, la seconde inductance va résonner à une fréquence supérieure à 1GHz et parasiter fortement le montage. De plus, les composants ne sont pas « parfaits », le défaut majeur des composants disponibles étant la fréquence de résonance propre des inductances.

Nous déterminons les valeurs des composants à partir des relations suivantes :

$$Q = \frac{L\omega}{R} = \frac{L \cdot 2\pi \cdot f_q}{R} \iff R = \frac{L \cdot 2\pi \cdot f_q}{Q} = \frac{8.2 \cdot 10^{-9} \cdot 2\pi \cdot 1000 \cdot 10^6}{50} = 1.03\Omega$$
$$f_{res} = \frac{1}{2\pi \cdot \sqrt{LC}} \iff C = \frac{\frac{1}{4\pi^2 \cdot f_{res}^2}}{L} = 123fF$$

Puis nous réalisons le nouveau circuit sur ADS

Schéma équivalent avec l'inductance réelle

Nous pouvons ici que nous obtenons une erreur d'environ $S^2=(0.120)^2$; ce qui est très respectable.

3. Montage des composants choisis sur le circuit imprimé

Une fois le circuit déterminé, nous devons vérifier si les composants sont disponibles au sein de l'école.

Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)													
0.1 pF	CONTRACTOR OF THE PARTY OF	108*	108*	108*	108*	108	108	108*	42000		PER BUT		No. of the last	30 1183	
0.2 pF	A = ±0.05 pF B = ±0.1 pF	208	208	208	208	208	208	208					No.		SOLE
0.3 pF		308	308	308	308	308	308	308	308	308	308	308	308	308	308
0.4 pF		408	408	408	408	408	408	408	408	408	408	408	408	408	408
0.5 pF		508	508	508	508	508	508	508	508	508	508	508	508	508	508
0.6 pF		608	608	608	608	608	608	608	608	608	608	608	608	608	608
0.7 pF		708	708	708	708	708	708	708	708	708	708	708	708	708	708
0.8 pF		808	808	808	808	808	808	808	808	808	808	808	808	808	808
0.9 pF		908	908	908	908	908	908	908	908	908	908	908	908	908	908
1.0 pF		109	109	109	109	109	109	109	109	109	109	109	109	109	109
1.1 pF		119	119	119	119	119	119	119	119	119	119	119	119	119	119
1.2 pF		129	129	129	129	129	129	129	129	129	129	129	129	129	129
1.3 pF		139	139	139	139	139	139	139	139	139	139	139	139	139	139
1.4 pF		149	149	149	149	149	149	149	149	149	149	149	149	149	149
1.5 pF		159	159	159	159	159	159	159	159	159	159	159	159	159	159
1.6 pF		169	169	169	169	169	169	169	169	169	169	169	169	169	169
1.7 pF		179	179	179	179	179	179	179	179	179	179	179	179	179	179
1.8 pF		189	189	189	189	189	189	189	189	189	189	189	189	189	189
1.9 pF		199	199	199	199	199	199	199	199	199	199	199	199	199	199
2.0 pF		209	209	209	209	209	209	209	209	209	209	209	209	209	209
4.v pr		200	200	200	200	200		-	747		010	010	010	040	040

SMT Inductors – SIMID 0805-F											
L _R	nH	2.7	5.6	6.8	8.2	10	12	15	18		
Q _{min}		50	50	50	50	50	50	50	60		
fL	MHz	250	250	250	250	250	250	250	250		
fo	MHz	1500	1000	1000	1000	500	500	500	500		
I _R	mA	1000	900	800	700	700	700	650	700		
R _{max}	Ω	0.03	0.04	0.05	0.09	0.09	0.09	0.13	0.08		
f _{res. min}	MHz	9000	7000	6000	5000	5000	4000	3300	3300		
Ord. code	B82498	F3279K000	F3569K000	F3689K000	F3829K000	F3100J000	F3120J000	F3150J000	F3180J000		

Nous utiliserons donc

- C₁ = 3pF (C3 sur « Schéma équivalent avec l'inductance réelle »)
- $L_1 = 8,2nH$
- $C_2 = 123fF$
- $R_1 = 1.03\Omega$

Une fois la valeur des composants déterminés pour le montage adapté, nous pouvons aller souder les composants et vérifier les ajustements.

Schéma du GSM900 pour être soudé

Et voici l'abaque de Smith avec adaptation.

