#### Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

#### САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

# Лабораторная работа №11 "Исследование математической модели пьезоэлектрического исполнительного устройства" Вариант - 02

| Выполнил     |                 |                  | (подпись) |
|--------------|-----------------|------------------|-----------|
|              |                 | (фамилия, и.о.)  | ( ,,,     |
| Проверил     |                 | (фамилия, и.о.)  | (подпись) |
|              |                 |                  |           |
|              |                 |                  |           |
|              | 20г.            | Санкт-Петербург, | 20г.      |
| Работа выпол | тнена с оценкой |                  |           |
| Дата защиты  | 20_             | _r.              |           |

#### Цель работы

Целью работы является изучение математических моделей и исследование характеристик исполнительного устройства, построенного на основе пьезоэлектрического двигателя микроперемещений.

#### Исходные данные

На рисунке 1 приведена структурная схема пьезоэлектрического двигателя, параметры двигателя - таблица 1

Таблица 1 – Исходные данные

| $C_p$ ,           | m,  | $K_0$ , | $K_d$ ,         | $T_u$ , | $F_B$ , |
|-------------------|-----|---------|-----------------|---------|---------|
| Н/м               | ΚΓ  | H/B     | Н∙с/м           | MC      | Н       |
| $0, 5 \cdot 10^8$ | 0,3 | 8,2     | $0,9\cdot 10^3$ | 0,06    | 80      |



Рисунок 1 – Структурная схема пьезоэлектрического исполнительного устройства

Коэффициенты передачи измерительных устройств  $K_u^{-1}, K_F, K_V$  и  $K_x$  выбираются таким образом, чтобы обеспечить соответствие максимального значения измеряемого сигнала уровню  $10~\mathrm{B}$  на выходе измерительного устройства. В итоге получим следующие значения коэффициентов:

$$K_u = 30 \tag{1}$$

$$K_F = 0.0081$$
 (2)

$$K_V = 22.9382$$
 (3)

$$K_x = 2.03267 * 10^5 \tag{4}$$

#### 1 Вывод передаточных функций

Рассмотрим пьезоэлектрическое устройство как упругую для составления передаточной функции, из уравнения баланса сил в пьезодвигателе:

$$m\ddot{x} + K_d \dot{x} + C_p x = K_0 U_p + F_B \tag{5}$$

Из уравнения 5, при нулевом внешнем воздействии можно составить передаточную функцию для пьезодвигателя:

$$W_{pz}(s) = \frac{K_0}{ms^2 + K_d s + C_n}. (6)$$

Управление ПД осуществляется с вольтного усилителя, который, в нашем случае, описывается апериодическим звеном первого порядка:

$$W_v(s) = \frac{K_u}{T_u s + 1},\tag{7}$$

Так как  $W_{pz}$  и  $W_v$  соединены последовательно, получаем итоговую передаточную функцию:

$$W(s) = \frac{K_0 \cdot K_u}{(T_u s + 1)(ms^2 + K_d s + C_p)}.$$
 (8)

## 2 Исследование исполнительного устройства

Составим математическую модель в относительно исходных данных и получившихся значений коэффициентов. Модель представлена на рисунке 2, а на рисунке 3 графики переходных процессов при нулевом внешнем воздействии.



Рисунок 2 - Функциональная схема пьезоэлектрического исполнительного устройства



Рисунок 3 – Переходные процессы при  $F_b = 0 \; {\rm H} \; U = 10 \; {\rm B}$ 

## 3 Исследование влияния массы нагрузки на вид переходных процессов

На рисунках 4 - 7 показаны переходные процессы при различных значениях массы нагрузки. В таблице 2 приведена зависимость характеристик системы от массы нагрузки.



Рисунок 4 - Переходные процессы при изменении массы



Рисунок 5 - Переходные процессы при изменении массы



Рисунок 6 - Переходные процессы при изменении массы



Рисунок 7 – Переходные процессы при изменении массы

Таблица 2 – Данные переходных процессов при изменяющейся массе нагрузки

| m, кг | $t_{\scriptscriptstyle \Pi}, c$ | $\sigma,\%$ | $x_{y}$ |
|-------|---------------------------------|-------------|---------|
| 0,15  | 0,8                             | 35,9        | 10      |
| 0,3   | 1,81                            | 53,2        | 10      |
| 0,375 | 2,29                            | 58,1        | 10      |
| 0,45  | 2,79                            | 61,9        | 10      |

## 4 Исследование влияния постоянной времени на вид переходных процессов

Передаточная функция системы:

$$W(s) = \frac{K_U K_0}{T_U m s^3 + (m + K_d T_U) s^2 + (K_d + C_p T_U) s + C_p}$$
(9)

В таблице приведена зависимость характеристик системы от постоянной времени и расчитанные корни передаточной функции 9.

Таблица 3 – Данные переходных процессов при изменяющейся постоянной времени

| $T_u$ , MC | $t_{\scriptscriptstyle \Pi},\;{ m Mc}$ | $\sigma,\%$ | $x_y$ | $s_1$     | $s_2$            | $s_3$            |
|------------|----------------------------------------|-------------|-------|-----------|------------------|------------------|
| 0,06       | 1,8                                    | 53,2        | 10    | -16666,67 | -1500 + j12822,5 | -1500 - j12822,5 |
| 0,12       | 1,6                                    | 30,1        | 10    | -8333,33  | -1500 + j12822,5 | -1500 - j12822,5 |
| 0,24       | 1,2                                    | 6,1         | 10    | -4166,67  | -1500 + j12822,5 | -1500 - j12822,5 |
| 0,36       | 1,1                                    | 0,7         | 10    | -2777,78  | -1500 + j12822,5 | -1500 - j12822,5 |

На рисунках 8 - 11 показаны переходные процессы при различных значениях массы нагрузки.



Рисунок 8 - Переходные процессы при изменении постоянной времени



Рисунок 9 - Переходные процессы при изменении постоянной времени



Рисунок 10 - Переходные процессы при изменении постоянной времени



Рисунок 11 - Переходные процессы при изменении постоянной времени

## 5 Исследование влияния коэффициентов упругости на вид переходных процессов

На рисунках 12 и 13 показаны переходные процессы по скорости и положению, относительно коэффициента упругости.



Рисунок 12 - Переходные процессы при изменении коэффициента упругости



Рисунок 13 – Переходные процессы при изменении коэффициента упругости

## 6 Построение ЛАЧХ исполнительного устройства

Представим асипмтотическую логарифмическую характеристику для нашей системы в виже колебательного звена:

$$W(s) = \frac{\frac{K_0}{C_p}}{\frac{m}{C_p}s^2 + \frac{K_d}{C_p}s + 1}.$$
 (10)

Асимптотическая логарифмическая амплитудная характеристика будет иметь нулевой наклон на уровне

$$20\log_{10}\frac{K_0}{C_p} = 20\log_{10}\frac{8,2}{0,5\cdot 10^8} = -135,7\tag{11}$$

до сопрягающей частоты

$$\omega_c = \sqrt{\frac{C_p}{m}} = \sqrt{\frac{0.5 \cdot 10^8}{0.3}} = 1.29 \cdot 10^4 \text{рад/c}.$$
 (12)

На рисунке 14 видно где асимптотическая ЛАЧХ имеет нулевой наклон и после какой частоты ее наклон составляет -40 дБ/дек.



Рисунок 14 - Асимптотическая ЛАЧХ

#### Вывод

В лабораторной работе было исследовано пьезоэлектрическое устройство, которое можно представить в виде колебательного звена.

При исследовании влияния массы нагрузки на пьезоэлектрическое устройство, было выявлено, что при ее увеличении, увеличивается время переходного процесса

При изменении постоянной времени изменяется время переходного процесса и перерегулирование. При увеличении  $T_u$ , растет  $t_{\scriptscriptstyle \Pi}$  и убывает  $\sigma$ , установившееся значение остается неизменным.

При исследовании коэффициента упругости было выявлено, что, при увеличении  $C_p$ , увеличивается колебательность системы без изменения времени переходного процесса.