Tarea 1 Cálculo Estocástico

Iván Irving Rosas Domínguez

29 de agosto de 2023

1. Sean S y T dos tiempos de paro y Z una variable aleatoria integrable. Demostrar que

$$\mathbb{E}\left(\mathbb{E}(Z|\mathcal{F}_T)|\mathcal{F}_S\right) = \mathbb{E}(Z|\mathcal{F}_{T\wedge S})$$
 c.s.

Demostración. Comenzamos con el siguiente par de afirmaciones (demostradas en curso previo): para dos tiempos de paro S y T,

- 1) $\forall A \in \mathcal{F}_T, A \cap \{T \leq S\} \in \mathcal{F}_S,$
- 2) $\mathcal{F}_{S \wedge T} = \mathcal{F}_S \cap \mathcal{F}_T$.

Afirmamos ahora que $\{T \leq S\}$ y $\{S \leq T\}$ son conjuntos que pertenecen a $\mathcal{F}_S \cap \mathcal{F}_T$, la cual es σ -álgebra . Obsérvese que de la primera igualdad se deduce que $\{T \leq S\} \in \mathcal{F}_S$ y por lo tanto $\{T > S\} \in \mathcal{F}_S$. Esto es debido a que, si tomamos $A = \Omega$ en la afirmación 1, entonces en efecto $\{T \leq S\} \in \mathcal{F}_S$ y podemos tomar complemento. Si además en la afirmación 1 cambiamos los roles de S y T, podemos concluir que para cualquier $A \in \mathcal{F}_S$, $A \cap \{S \leq T\} \in \mathcal{F}_T$. Utilizando esta última afirmación, al ser $\{T > S\}$ un elemento de \mathcal{F}_S deducimos que $\{T > S\} \cap \{S \leq T\} = \{T > S\} \in \mathcal{F}_T$ y por lo tanto $\{T \leq S\} \in \mathcal{F}_T$. Concluimos que $\{T \leq S\} \in \mathcal{F}_S \cap \mathcal{F}_T$ y por lo tanto su complemento también. De manera análoga se prueba que $\{S \leq T\} \in \mathcal{F}_T \cap \mathcal{F}_S$, y su complemento también. Con base en estas afirmaciones, procedemos con la igualdad.

Primero, demostramos que la variable $\mathbb{E}(\mathbb{E}(Z|\mathcal{F}_T)|\mathcal{F}_S)$ es $\mathcal{F}_{S\wedge T}$ -medible. En vista de la igualdad de σ -álgebras de la segunda afirmación, basta con ver que es $\mathcal{F}_S \cap \mathcal{F}_T$ -medible. Por definición de esperanza condicional se sabe que $\mathbb{E}(\mathbb{E}(Z|\mathcal{F}_T)|\mathcal{F}_S)$ es \mathcal{F}_S -medible. Veamos que también es \mathcal{F}_T -medible. Descomponemos primero la esperanza condicional:

$$\mathbb{E}\left[\mathbb{E}\left[Z|\mathcal{F}_{T}\right]|\mathcal{F}_{S}\right] = \mathbb{1}_{\left\{S < T\right\}}\mathbb{E}\left[\mathbb{E}\left[Z|\mathcal{F}_{T}\right]|\mathcal{F}_{S}\right] + \mathbb{1}_{\left\{S > T\right\}}\mathbb{E}\left[\mathbb{E}\left[Z|\mathcal{F}_{T}\right]|\mathcal{F}_{S}\right].$$

Ahora bien, aseguramos que si X es una variable aleatoria, entonces para $B \in \mathcal{B}(\mathbb{R})$,

- a) $(\mathbb{1}_A X)^{-1}[B] = A \cap X^{-1}[B]$ si $0 \notin B$
- b) $(\mathbb{1}_A X)^{-1}[B] = (A \cap X^{-1}[B]) \cup A^c$ si $0 \in B$.

Para el primer inciso, notamos que si $\omega \in (\mathbb{1}_A X)^{-1}[B]$, entonces $\mathbb{1}_A(\omega)X(\omega) \in B$, por lo que si $\omega \in A$, tenemos que $\mathbb{1}_A(\omega) = 1$ y así, $X(\omega) = \mathbb{1}_A(\omega)X(\omega) \in B$, es decir, $\omega \in A \cap X^{-1}[B]$. Por otro lado, si $\omega \notin A$, entonces $\mathbb{1}_A(\omega) = 0$ y en consecuencia $0 = \mathbb{1}_A(\omega)X(\omega) \in B$, lo cual no puede suceder ya que $0 \notin B$.

Para la contención contraria, si tenemos que $\omega \in A \cap X^{-1}[B]$, entonces $\mathbb{1}_A(\omega) = 1$ y $X(\omega) \in B$, así que $\mathbb{1}_{(\omega)}X(\omega) = X(\omega) \in B$ y por lo tanto $\omega \in (\mathbb{1}_A X)^{-1}[B]$.

En el segundo caso, para la primera contención tomamos $\omega \in (\mathbbm{1}_A X)^{-1}[B]$, luego, si $\omega \in A$, como en el primer caso, $\omega \in A \cap X^{-1}[B]$, mientras que si $\omega \notin A$, entonces $\omega \in A^c$ y acabamos.

Para la contención contraria, si $\omega \in (A \cap X^{-1}[B]) \cup A^c$, y además $\omega \in A \cap X^{-1}[B]$, como en el primer caso se deduce que $\omega \in (\mathbb{1}_A X)^{-1}[B]$. Sin embargo, si ahora $\omega \in A^c$, entonces $\mathbb{1}_A(\omega) = 0$ y con ello $\mathbb{1}_A(\omega)X(\omega) = 0 \in B$, por lo que $\omega \in (\mathbb{1}_A X)^{-1}[B]$ y concluimos.

Probado lo anterior, notamos que haciendo $X = \mathbb{E}\left[\mathbb{E}\left[Z|\mathcal{F}_T||\mathcal{F}_S\right]\right]$ y $A = \{S \leq T\}$, se tiene, en el caso en que $0 \notin B$,

$$\left[\mathbb{1}_{\{T \le S\}} \mathbb{E}\left[\mathbb{E}\left[Z|\mathcal{F}_T\right]|\mathcal{F}_S\right]\right]^{-1}[B] = A \cap X^{-1}[B] = \{S \le T\} \cap X^{-1}[B],$$

y como $X^{-1}[B] \in \mathcal{F}_S$, por la afirmación 1 cambiando los roles de S y T, se tiene que

$$\left[\mathbb{1}_{\{T\leq S\}}\mathbb{E}\left[\mathbb{E}\left[Z|\mathcal{F}_T\right]|\mathcal{F}_S\right]\right]^{-1}\left[B\right] = \left\{S\leq T\right\}\cap X^{-1}\left[B\right] \in \mathcal{F}_T.$$

Por otro lado, en el caso en el que $0 \in B$, entonces nuevamente

$$\left[\mathbb{1}_{\{T \le S\}} \mathbb{E}\left[\mathbb{E}\left[Z | \mathcal{F}_T\right] | \mathcal{F}_S\right]\right]^{-1}[B] = (\{S \le T\} \cap X^{-1}[B]) \cup \{S > T\},$$

y como se vio antes, $\{S \leq T\} \cap X^{-1}[B] \in \mathcal{F}_T$, y dado que probamos que $\{S > T\} \in \mathcal{F}_T$, tenemos que la unión está en \mathcal{F}_T . Por lo tanto, $\left[\mathbbm{1}_{\{T \leq S\}}\mathbbm{E}\left[\mathbbm{E}\left[Z|\mathcal{F}_T\right]|\mathcal{F}_S\right]\right]^{-1}[B] \in \mathcal{F}_T$ y se concluye que esta parte es \mathcal{F}_T -medible.

De manera similar se prueba que la otra parte: $\mathbb{1}_{\{S>T\}}\mathbb{E}\left[\mathbb{E}\left[Z|\mathcal{F}_{T}\right]|\mathcal{F}_{S}\right]$ también es \mathcal{F}_{T} -medible. Concluimos que toda $\mathbb{E}\left[\mathbb{E}\left[Z|\mathcal{F}_{T}\right]|\mathcal{F}_{S}\right]$ también es \mathcal{F}_{T} -medible y por lo tanto, para $B\in\mathcal{B}(\mathbb{R})$ arbitrario,

$$\left[\mathbb{E}\left(\mathbb{E}\left(Z|\mathcal{F}_{T}\right)|\mathcal{F}_{S}\right)\right]^{-1}\left[B\right] \in \mathcal{F}_{S} \cap \mathcal{F}_{T},$$

lo cual es la definición de que dicha esperanza condicional sea $\mathcal{F}_S \cap \mathcal{F}_T$ -medible. Resta entonces ver que para cualquier $A \in \mathcal{F}_S \cap \mathcal{F}_T$, la integral sobre dicho conjunto de las variables coincide. Nótese que

$$\int_{A} \mathbb{E}\left(\mathbb{E}\left(Z|\mathcal{F}_{T}\right)|\mathcal{F}_{S}\right) d\mathbb{P} = \int_{A} \mathbb{E}\left(Z|\mathcal{F}_{T}\right) d\mathbb{P},$$

ya que A en particular es \mathcal{F}_S -medible, por lo que utilizamos la definición esperanza condicional. Pero como A también es \mathcal{F}_T -medible,

$$\int_{A} \mathbb{E} \left(Z | \mathcal{F}_{T} \right) d\mathbb{P} = \int_{A} Z d\mathbb{P},$$

pues podemos utilizar nuevamente la definición de esperanza condicional. Y utilizando una vez más la definición, la igualdad anterior y el hecho de que $A \in \mathcal{F}_S \cap \mathcal{F}_T = \mathcal{F}_{S \wedge T}$,

$$\int_{A} \mathbb{E}\left(\mathbb{E}\left(Z|\mathcal{F}_{T}\right)|\mathcal{F}_{S}\right) d\mathbb{P} = \int_{A} Zd\mathbb{P} = \int_{A} \mathbb{E}(Z|\mathcal{F}_{S} \cap \mathcal{F}_{T}) d\mathbb{P} = \int_{A} \mathbb{E}(Z|\mathcal{F}_{S \wedge T}) d\mathbb{P},$$

que es la igualdad que buscábamos.

2. Sea $\{X_t, \mathcal{F}_t : 0 \le t < \infty\}$ una supermartingala no negativa y continua a la derecha. Demostrar que existe el límite

$$X_{\infty} = \lim_{t \to \infty} X_t$$
 c.s.

y que $\{X_t, \mathcal{F}_t : 0 \le t \le \infty\}$ es supermartingala.

Demostraci'on. Consideremos a la supermartingala $X=\{X_t:t\geq 0\}$. Obsérvese que -X es una submartingala que también es continua a la derecha. Además, dado que para cualquier $t\geq 0,\, X_t\geq 0$, entonces

$$\sup_{n>0} \mathbb{E}\left(\left(-X_t\right)^+\right) = \sup_{n>0} \mathbb{E}\left(0\right) = 0 < \infty,$$

por lo que por el teorema de convergencia de Doob, se tiene que existe una variable X_{∞} , integrable y tal que $X_t \xrightarrow[n \to \infty]{} X_{\infty}$ casi seguramente.

Resta ver que todo el proceso $\{X_t, \mathcal{F}_t : 0 \leq t \leq \infty\}$ es una supermartingala. Para ello, definimos primero la σ -álgebra \mathcal{F}_{∞} como $\mathcal{F}_{\infty} = \sigma\left(\bigcup_{t\geq 0}\mathcal{F}_t\right)$. Por definición, \mathcal{F}_{∞} es una σ -álgebra. También por definición, $\forall t\geq 0, \ \mathcal{F}_t\subseteq \mathcal{F}_{\infty}$. Así, $(\mathcal{F}_t)_{t=0}^{\infty}$ es una filtración. Además, se tiene que X_{∞} es una variable \mathcal{F}_{∞} -medible, ya que al ser X_{∞} una variable definida a través de un límite, entonces los conjuntos $\{X_{\infty}\leq x\}$ estarán en la σ -álgebra cola $\bigcap_{t\geq 0}\mathcal{F}_t$, la cual claramente estará

contenida en \mathcal{F}_{∞} .

Asimismo, para cualquier $t \geq 0$, se tiene que X_t es \mathcal{F}_{∞} -medible, ya que en particular $\mathcal{F}_t \subseteq \mathcal{F}_{\infty}$. Por lo tanto, el proceso $(X_t)_{t=0}^{\infty}$ es adaptado a la filtración $(\mathcal{F}_t)_{t=0}^{\infty}$. Por otro lado, todas las variables aleatorias X_t , con $0 \leq t \leq \infty$ son integrables, por lo que resta ver la propiedad de supermartingala.

Sea $0 \le s$. Dado que $(X_t)_{t\ge 0}$ es una supermartingala no negativa, utilizando el teorema de Fatou para esperanzas condicionales,

$$\mathbb{E}(X_{\infty}|\mathcal{F}_s) = \mathbb{E}\left(\liminf_{t \to \infty, \ t \ge s} X_t|\mathcal{F}_s\right) \le \liminf_{t \to \infty, \ t \ge s} \mathbb{E}(X_t|\mathcal{F}_s) \le \liminf_{t \to \infty, \ t \ge s} X_s = X_s,$$

de tal forma que $\mathbb{E}(X_{\infty}|\mathcal{F}_s) \leq X_s$. Con ello, se concluye que $(X_t, \mathcal{F}_t)_{t=0}^{\infty}$ es una supermartingala.

3. Demostrar que si $\{X_t : t \geq 0\}$ es submartingala con esperanza constante, es decir, $\mathbb{E}(X_t) = \mathbb{E}(X_0)$ para toda $t \geq 0$, entonces X_t es martingala.

Demostración. Demostraremos esto por definición de esperanza condicional. Sean $0 \le s < t$. Buscamos ver que $X_s = \mathbb{E}(X_t|\mathcal{F}_s)$ Claramente X_s es \mathcal{F}_s -medible, pues por definición el proceso $(X_r)_{r\ge 0}$ es adaptado a la filtración $(\mathcal{F}_r)_{r\ge 0}$. Resta ver que X_s y $\mathbb{E}(X_t|\mathcal{F}_s)$ tienen la misma integral sobre conjuntos de \mathcal{F}_s . Sea pues $A^c \in \mathcal{F}_s$ y nótese que

$$\int_{A^c} X_s d\mathbb{P} = \int_{A^c} X_s d\mathbb{P} + \left(\int_A X_s d\mathbb{P} - \int_A X_s d\mathbb{P} \right) = \int_{\Omega} X_s d\mathbb{P} - \int_A X_s d\mathbb{P},$$

pero recordamos aquí que la submartingala tiene esperanza constante $\mathbb{E}(X_0)$, por lo que

$$\int_{A^c} X_s d\mathbb{P} = \int_{\Omega} X_s d\mathbb{P} - \int_{A} X_s d\mathbb{P} = \mathbb{E}(X_0) - \int_{A} X_s d\mathbb{P}.$$

Mediante un procedimiento análogo, tenemos que

$$\int_{A^c} \mathbb{E}(X_t|\mathcal{F}_s) d\mathbb{P} = \int_{\Omega} \mathbb{E}(X_t|\mathcal{F}_s) d\mathbb{P} - \int_{A} \mathbb{E}(X_t|\mathcal{F}_s) d\mathbb{P}.$$

Usando ahora propiedad de torre y el hecho de que la martingala tiene esperanzas constantes, tenemos que

$$\int_{\Omega} \mathbb{E}(X_t | \mathcal{F}_s) d\mathbb{P} - \int_{A} \mathbb{E}(X_t | \mathcal{F}_s) d\mathbb{P} = \mathbb{E}(X_t) - \int_{A} \mathbb{E}(X_t | \mathcal{F}_s) d\mathbb{P} = \mathbb{E}(X_0) - \int_{A} \mathbb{E}(X_t | \mathcal{F}_s) d\mathbb{P}.$$

Finalmente, utilizando la propiedad de submartingala y las dos igualdades que encontramos antes,

$$\mathbb{E}(X_0) - \int_A X_s d\mathbb{P} = \int_{A_s} X_s d\mathbb{P} \le \int_{A_s} \mathbb{E}(X_t | \mathcal{F}_s) d\mathbb{P} = \mathbb{E}(X_0) - \int_A \mathbb{E}(X_t | \mathcal{F}_s) d\mathbb{P},$$

es decir,

$$\mathbb{E}(X_0) - \int_A X_s d\mathbb{P} \le \mathbb{E}(X_0) - \int_A \mathbb{E}(X_t | \mathcal{F}_s) d\mathbb{P},$$

de donde se deduce que

$$\int_{A} \mathbb{E}(X_{t}|\mathcal{F}_{s})d\mathbb{P} \leq \int_{A} X_{s}d\mathbb{P},$$

o mejor dicho,

$$0 \le \int_A X_s - \mathbb{E}(X_t | \mathcal{F}_s) d\mathbb{P}.$$

Pero esto ocurre para cualquier conjunto $A \in \mathcal{F}_s$, y dado que ambas variables de las integrales son \mathcal{F}_s -medibles, se tiene que la resta es \mathcal{F}_s -medible y por lo tanto, al ser la integral positiva, la resta debe ser una variable aleatoria positiva. Hemos probado así que para cualesquiera $0 \le s < t$,

$$\mathbb{E}(X_t|\mathcal{F}_s) \le X_s,$$

lo cuál nos dice que el proceso $(X_r)_{r\geq 0}$ es una supermartingala. Pero también es una submartingala por hipótesis, por lo que concluimos que el proceso es martingala.

4. Sea $\{B(t): t \geq 0\}$ un movimiento Browniano y $0 \leq s < t$. Demostrar que la distribución condicional de B(s), dado que B(t) = b, es Normal, y calcular su media y su varianza.

Demostración. Primero calculamos la función de densidad conjunta del vector aleatorio (B(s), B(t)), el cual sabemos que tiene distribución normal multivariada:

$$f_{(B(s),B(t))}(x,y) = \frac{1}{(2\pi)^{2/2}|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x,y)\Sigma^{-1} \begin{pmatrix} x \\ y \end{pmatrix}\right\}$$

Notamos que la matriz de covarianza del vector (B(s), B(t))es

$$\Sigma = \begin{pmatrix} s & s \\ s & t \end{pmatrix},$$

pues las entradas de la diagonal de dicha matriz contienen a las varianzas de B(s) y B(t), las cuales son s y t respectivamente, mientras que las demás entradas están dadas por la covarianza de B(s) y B(t) la cual es igual a $s \wedge t = s$, ya que de entrada estamos suponiendo s < t, y B es un movimiento Browniano. Calculando la matriz inversa, obtenemos que

$$\Sigma^{-1} = \frac{1}{s(t-s)} \begin{pmatrix} t & -s \\ -s & s \end{pmatrix},$$

por lo que concluimos que $|\Sigma|^{-1/2} = \sqrt{s(t-s)}$ y además,

$$(x \quad y) \Sigma^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{s(t-s)} (x \quad y) \begin{pmatrix} tx - sy \\ -sx + sy \end{pmatrix} = \frac{1}{s(t-s)} - (tx^2 - 2sxy + sy^2),$$

de tal forma que

$$f_{(B(s),B(t))}(x,y) = \frac{1}{(2\pi)^{2/2}|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x,y)\Sigma^{-1} \begin{pmatrix} x \\ y \end{pmatrix}\right\} = \frac{1}{2\pi\sqrt{s(t-s)}} \exp\left\{-\frac{tx^2 - 2sxy + sy^2}{2s(t-s)}\right\}.$$

Por otro lado, la función de densidad de B(t) está dada por:

$$f_{B(s)}(y) = \frac{1}{\sqrt{2\pi t}} \exp\{-\frac{y^2}{2t}\},$$

por lo que obtenemos ahora la función de densidad condicional que buscamos, la cual está dada por

$$f_{B(s)|B(t)}(x|y) = \frac{f_{(B(s),B(t))}(x,y)}{f_{B(s)}(y)} = \frac{\frac{1}{2\pi\sqrt{s(t-s)}} \exp\left\{-\frac{tx^2 - 2sxy + sy^2}{2s(t-s)}\right\}}{\frac{1}{\sqrt{2\pi t}} \exp\left\{-\frac{y^2}{2t}\right\}}$$

$$= \frac{1}{\sqrt{2\pi \frac{s}{t}(t-s)}} \exp\left\{-\frac{tx^2 - 2sxy + sy^2}{2s(t-s)} + \frac{y^2}{2t}\right\}$$

$$= \frac{1}{\sqrt{2\pi \frac{s}{t}(t-s)}} \exp\left\{-\frac{x^2 - 2\frac{s}{t}xy + \frac{s}{t}y^2}{2\frac{s}{t}(t-s)} + \frac{y^2}{2t}\right\}$$

$$= \frac{1}{\sqrt{2\pi \frac{s}{t}(t-s)}} \exp\left\{-\frac{x^2 - 2\frac{s}{t}xy + (\frac{s}{t}y)^2}{2\frac{s}{t}(t-s)} + \frac{(\frac{s}{t}y)^2 - \frac{s}{t}y^2}{2\frac{s}{t}(t-s)} + \frac{y^2}{2t}\right\}$$

$$= \frac{1}{\sqrt{2\pi \frac{s}{t}(t-s)}} \exp\left\{-\frac{(x - \frac{s}{t}y)^2}{2\frac{s}{t}(t-s)} + \frac{sy^2 - ty^2}{2t(t-s)} + \frac{y^2(t-s)}{2t(t-s)}\right\}$$

$$= \frac{1}{\sqrt{2\pi \frac{s}{t}(t-s)}} \exp\left\{-\frac{(x - \frac{s}{t}y)^2}{2\frac{s}{t}(t-s)}\right\},$$

y esta última es la función de densidad de una variable aleatoria Normal con media $\mu = \frac{s}{t}y$ y varianza $\sigma^2 = \frac{s}{t}(t-s)$ (la densidad condicional es una función del valor que tome B(t)). En particular, condicionado a que B(t) = b, se tiene que B(s) es una variable normal con media $\mu = \frac{s}{t}b$ y varianza dada por $\sigma^2 = \frac{s}{t}(t-s)$.

5. Sea $\{X(t): t \geq 0\}$ un proceso Gaussiano con media 0 y covarianza $\Gamma(s,t) = e^{-\alpha|t-s|}$, donde α es constante. Demostrar que X tiene una versión con trayectorias continuas.

Demostración. Utilizaremos el teorema de Kolmogorov-Chentsov. Buscamos $\gamma > 0$ y $\varepsilon > 0$ tales que para cualesquiera $0 \le s \le t$,

$$\mathbb{E}\left[|X_t - X_s|^{\gamma}\right] \le C|t - s|^{1+\varepsilon}.$$

Aseguramos que $\gamma=4$ y $\varepsilon=1$ funcionan. En efecto, sabemos que el proceso es gaussiano, por lo que en particular para cualquier $r\geq 0$, $X_r\sim \mathrm{Normal}(0,\Gamma(r,r))$. En este caso, como la función de correlación está dada por la expresión dada antes, tenemos que la varianza de la variable X_r es

$$Var(X_r) = \Gamma(r, r) = e^{-\alpha|r-r|} = 1,$$

así que de hecho, el proceso $(X_r)_{r\geq 1}$ es un proceso tal que todas las variables tienen varianza igual a 1. Sabiendo que la suma de variables normales es normal, y que al ser X_s normal, X_s distribuye igual que $-X_s$, entonces

$$\operatorname{Var}(X_t - X_s) = \operatorname{Var}(X_s) + \operatorname{Var}(X_t) - 2\Gamma(s, t) = 2 - 2e^{-\alpha|t-s|},$$

que en particular coincide con el segundo momento de $X_t - X_s$, ya que las variables tienen media 0.

Sabiendo que la varianza de $X_t - X_s$ es $2 - 2e^{-\alpha|t-s|}$, y que el cuarto momento de una variable normal centrada y con varianza σ^2 es $3\sigma^4$, deducimos que

$$\mathbb{E}\left[|X_s - X_t|^4\right] = 3(2 - 2e^{-\alpha|t-s|})^2 = 12(1 - e^{-\alpha|t-s|})^2,$$

y utilizando la desigualdad $1-x \le e^{-x}$,

$$\mathbb{E}\left[|X_t - X_s|^4\right] = 12(1 - e^{-\alpha|t - s|})^2 \le 12(\alpha|t - s|)^2 = 12\alpha^2|t - s|^2 = C|t - s|^{1+1},$$

tal y como buscábamos.