Volume 31, Number 1

February 1999

CONTENTS

Minireview Series: Vacoular ATPases: Structure, Function, Assembly, and Biosynthesis

Series Editor: Patricia M. Kane

Introduction: V-ATPases 1992–1998	3
Patricia M. Kane	
Structure and Function of Vacuolar Na ⁺ -Translocating ATPase in Enterococcus hirae Yoshimi Kakinuma, Ichiro Yamato, and Takeshi Murata	7
Structure and Function of the A ₁ A ₀ -ATPases from Methanogenic Archaea Volker Müller, Claudia Ruppert, and Thorsten Lemker	15
The Structure of the Vacuolar ATPase in Neurospora crassa Emilio Margolles-Clark, Karen Tenney, Emma Jean Bowman, and Barry J. Bowman	29
Assembly of the Yeast Vacuolar Proton-Translocating ATPase Laurie A. Graham and Tom H. Stevens	39
Biosynthesis and Regulation of the Yeast Vacuolar H ⁺ -ATPase Patricia M. Kane	49
Structure and Properties of the Clathrin-Coated Vesicle and Yeast Vacuolar V-ATPases Michael Forgac	57
The Plasma Membrane H ⁺ -V-ATPase from Tobacco Hornworm Midgut Helmut Wieczorek, Gerhard Grüber, William R. Harvey, Markus Huss, and Hans Merzendorfer	67
The Multifunctional <i>Drosophila melanogaster</i> V-ATPase Is Encoded by a Multigene Family <i>Julian A. T. Dow</i>	75

Front outside cover: Space filling representation of the quaternary structure of the V ATPase from the tobacco hornworm, Manduca sexta (see Svergnon *et al.*, Biochemistry 37, 17659–17663, 1998 and Wieczorek *et al.*, p. 67). The figure was prepared using MOLSCRIPT (Kraulis *et al.*, J. Appl. Crystallog. 24, 946–950, 1991).

Volume 31, Number 2 April 1999

CONTENTS	
Subunit f of the Yeast Mitochondrial ATP Synthase: Topological and Functional Studies Stéphane Roudeau, Christelle Spannagel, Jacques Vaillier, Geneviève Arselin, Pierre-Vincent Graves, and Jean Velours	85
The Role of the Amino-Terminal β -Barrel Domain of the α and β Subunits in the Yeast F_1 -ATPase Bingyi Yao and David M. Mueller	95
Activation and Deactivation of F ₀ F ₁ -ATPase in Yeast Mitochondria Christelle Schouppe, Jacques Vaillier, Renée Venard, Michel Rigoulet, Jean Velours, and Francis Haraux	105
A Novel Rieske Iron-Sulfur Protein from the Hyperthermophilic Crenarchaeon <i>Pyrobaculum</i> aerophilum: Sequencing of the Gene, Expression in <i>E. coli</i> and Characterization of the Protein	119
T. Henninger, S. Anemüller, S. Fitz-Gibbon, J. H. Miller, G. Schäfer, and C. L. Schmidt On the Role of the General Transcription Factor Sp1 in the Activation and Repression of Diverse	
Mammalian Oxidative Phosphorylation Genes Ahmed Zaid, Ronggui Li, Katarina Luciakova, Peter Barath, Susana Nery, and B. Dean Nelson	129
Mutation of K234 and K236 in the Voltage-Dependant Anion Channel 1 Impairs Its Insertion into the Mitochondrial Outer Membrane Rowena Angeles, Janet Devine, Kenneth Barton, Mitchell Smith, and Roy McCauley	137
Mutations in the Voltage-Dependant Anion Channel of the Mitochondrial Outer Membrane Cause a Dominant Nonlethal Growth Impairment Rowena Angeles, Janet Devine, Ron Barret, Dennis Goebel, Elizabeth Blachly-Dyson, Michael Forte,	143
and Roy McCauley Permeability Transition Pore Closure Promoted by Quinine	153
Rosana Catisti and Anibal E. Vercesi	133
Reconstitution of the Mitochondrial ATP-Dependent Potassium Channel into Bilayer Lipid Membrane Galina D. Mironova, Yuri Yu. Skarga, Serguei M. Grigoriev, Alexander E. Negoda, Oleg V. Kolomytkin, and Benjamen S. Marinov	159

Front outside cover: The cover figure is a snapshot model depicting the SDS-polyacrylamide gel electrophoresis pattern of yeast ATP synthase. Tricine-SDS-PAGE according to Schägger and Von Jagow (1987). Lanes 1 and 2: 16 and 23 µg protein, respectively. The slab gel was silver-stained. From the article entitled 'Subunit f of the Yeast Mitochondrial ATP Synthase: Topological and Functional Studies,' Roudeau et al, pp. 85–94)

Volume 31, Number 3

June 1999

CONTENTS

Minireview Seri	es: The Cyto	chrome bc_1 (Complex:	Structure and	Function
-----------------	--------------	-----------------	----------	---------------	----------

Introduction: Study of Cytochrome bc_1 Complex Entering a New Phase Chang-An Yu	167
Conformational Change of Rieske [2Fe-2S] Protein in Cytochrome bc ₁ Complex Momi Iwata, Joakim Björkman, and So Iwata	169
Structure of the Avian Mitochondrial Cytochrome bc_1 Complex Edward A. Berry, Li-Shar Huang, Zhaolei Zhang, and Sung-Hou Kim	177
Structural Basis of Multifunctional Bovine Mitochondrial Cytochrome bc ₁ Complex Chang-An Yu, Hua Tian, Li Zhang, Kai-Ping Deng, Sudha K. Shenoy, Linda Yu, Di Xia, Hoeon Kim, and Johann Deisenhofel	191
Comparisons of the Cytochrome bc_1 Complex with the Anticipated Structure of the Cytochrome $b_6 f$ Complex: De Plus Ça Change de Plus C'est la Même Chose G.M. Soriano, M.V. Ponamarev, C.J. Carrell, D. Xia, J.L. Smith, and W.A. Cramer	201
The Role of Various Domains of the Iron-Sulfur Protein in the Assembly and Activity of the Cytochrome bc_1 Complex of Yeast Mitochondria Diana S. Beattie, Yudong Wang, and Victor H. Obungu	215
Primary Steps in the Energy Conversion Reaction of the Cytochrome bc_1 Complex Q_0 Site R. Eryl Sharp, Christopher C. Moser, Brian R. Gibney, and P. Leslie Dutton	225
Role of the Rieske Iron-Sulfur Protein Midpoint Potential in the Protonmotive Q-Cycle Mechanism of the Cytochrome bc_1 Complex Christopher H. Snyder, Torsten Merbitz-Zahradnik, Thomas A. Link, and Bernard L. Trumpower	235
Control of Ubiquinol Oxidation at Center P (Q_0) of the Cytochrome bc_1 Complex <i>Ulrich Brandt</i>	243
The Role of the Supernumerary Subunit of Rhodobacter sphaeroides Cytochrome bc ₁ Complex Linda Yu, Shih-Chia Tso, Sudha K. Shenoy, Byron N. Quinn, and Di Xia	251
Integration of the Mitochondrial-Processing Peptidase into the Cytochrome bc_1 Complex In Plants Elzbieta Glaser and Patrick Dessi	259
Structure and Function of the Bacterial bc_1 Complex: Domain Movement, Subunit Interactions, and Emerging Rationale Engineering Attempts Elisabeth Darrouzet, Maria Valkova-Valchanova, Tomoko Ohnishi, and Fevzi Daldal	275

Front outside cover: The cover figure is a ribbon diagram of dimeric bovine heart mitochondrial cytochrome bc_1 complex. The color code for each subunit is: subunit I (light blue), subunit II (orange), cytochrome b (light green), cytochrome c1 (blue), iron-sulfur protein (yellow), subunit 6 (green), subunit 7 (pink), subunit 8 (red), subunit 9 (gray), subunit 10 (magenta), and subunit 11 (brown). (From the article entitled 'Structural Basis of Multifunctional Bovine Mitochondrial Cytochrome bc_1 Complex,' Yu et al, p. 191–199)

Volume 31, Number 4 August 1999

CONTENTS

Minireview Series: Role of Mitochondria in Cell Death and Aging

Mitochondrial Events in the Life and Death of Animal Cells: A Brief Overview Peter L. Pedersen	291
Mitochondrial Dysfunction in the Pathogenesis of Necrotic and Apoptotic Cell Death John J. Lemasters, Ting Qian, Cynthia A. Bradham, David A. Brenner, Wayne E. Cascio, Lawrence C. Trost, Yoshiya Nishimura, Anna-Liisa Nieminen, and Brian Herman	305
Mitochondria at the Crossroad of Apoptotic Cell Death Kenneth Thress, Sally Kornbluth, and Jesse J. Smith	321
Mitochondrial Redox Signaling During Apoptosis Jiyang Cai and Dean P. Jones	327
Progress on the Mitochondrial Permeability Transition Pore: Regulation by Complex I and Ubiquinone Analogs Eric Fontaine and Paolo Bernardi	335
Mitochondrial Oxygen Radical Generation and Leak: Sites of Production in States 4 and 3, Organ Specificity, and Relation to Aging and Longevity Gustavo Barja	347
Cooperation of a "Reactive Oxygen Cycle" with The Q Cycle and The Proton Cycle in the Respiratory Chain—Superoxide Generating and Cycling Mechanisms in Mitochondria Shu-sen Liu	367
Mitochondrial Genome Mutation in Cell Death and Aging Takayuki Ozawa	377
Mitochondrial DNA Repair Pathways Vilhelm A. Bohr and R. Michael Anson	391

Front outside cover: The figure shows in simplified form some of the proposed differences at the mitochondrial level in the two types of cell death pathways, i.e., those involving necrosis and those involving apoptosis, that are frequently discussed in the literature today. Pathways involving necrosis frequently result from severe cell injury such as that following a stroke, heart attack, or cyanide poisoning. They result in depletion of cell ATP via the action of the F_0F_1 ATP synthase/ATPase complex acting as an active ATPase, and eventually lead to rupture of the plasma membrane. In contrast, pathways involving apoptosis are initiated by a death stimulus, and via signaling pathways frequently solicit a mitochondrial involvement. This results in many cases in the release of cytochrome c and apoptosis inducing factor (AIF), both of which are necessary to complete the cell death program. Here, ATP is required, F_0F_1 is most likely down regulated, and the final events in the pathway involve engulfment by other cells. Significantly, pathways involving apoptosis are known to be involved in a number of biological processes, and are believed to be involved also in aging. Here, reactive oxygen species (ROS) generated by the mitochondrial electron transport chain, and acting on mitochondrial DNA are thought to play a key role. (Figure 3 from the introductory article entitled 'Mitochondrial Events in the Life and Death of Animal Cells: A Brief Overview,' Pedersen, P. L., p. 291–304.)

Volume 31, Number 5

October 1999

CONTENTS

Minireview Series: Mitochondrial Uncoupling: Role of Anion Carriers and Relationship to Thermogenesis and Weight Control Series Editor: Peter L. Pedersen

A History of the First Uncoupling Protein, UCP1	399
David G. Nicholls and Eduardo Rial	
Contribution to the Identification and Analysis of the Mitochondrial Uncoupling Proteins Daniel Ricquier, Bruno Miroux, Anne-Marie Cassard-Doulcier, Corinne Lévi-Meyrueis, Chantal Gelly, Serge Raimbault, and Frédéric Bouillaud	407
Uncoupling Protein—A Useful Energy Dissipator Martin Klingenberg	419
Anion Carriers in Fatty Acid-Mediated Physiological Uncoupling Vladimir P. Skulachev	431
The Mechanisms of Fatty Acid-Induced Proton Permeability of the Inner Mitochondrial Membrane Lech Wojtczak and Mariusz R. Więckowski	447
Fatty Acid Interaction with Mitochondrial Uncoupling Proteins Petr Ježek	457
Uncoupling Protein 3: Its Possible Biological Role and Mode of Regulation in Rodents and Humans Patrick Muzzin, Olivier Boss, and Jean-Paul Giacobino	467
UCP1: The Original Uncoupling Protein—and Perhaps the Only One?	
New Perspectives on UCP1, UCP2, and UCP3 in the Light of the Bioenergetics of the UCP1-Ablated Mice Jan Nedergaard, Anita Matthias, Valeria Golozoubova, Anders Jacobsson, and Barbara Cannon	475
Mitochondrial Uncoupling: Role of Uncoupling Protein Anion Carriers and Relationship to Thermogenesis and Weight Control "The Benefits of Losing Control" Anna Mae Diehl and Jan B. Hoek	493
Brown Adipose Tissue Thermogenesis During Aging and Senescence Roger B. McDonald and Barbara A. Horwitz	507
Mitochondrial Proton Leak and the Uncoupling Proteins Jeff A. Stuart, Kevin M. Brindle, James A. Harper, and Martin D. Brand	517
ORIGINAL ARTICLE	
Plant Uncoupling Mitochondrial Protein Activity in Mitochondria Isolated from Tomatoes at Different	
Stages of Ripening	527
Alexandre D. T. Costa, Iseli L. Nantes, Petr Ježek, Adílson Leite, Paulo Arruda, and Anibal E. Vercesi	

Front outside cover: The cover Figure is a model of the mechanism of H⁺ transport by UCP1 and the role of fatty acids. A cut through a structural model of UCP1 exposes four transmembrane helices and the hydrophilic loops of the cytosol and matrix side. The H⁺ transport path is proposed to consist of a wider (exaggerated) aqueous pore and a narrow path, lined with the matrix sided loops. Nucleotides are visualized to induce closure of this narrow path. Fatty acids are penetrating with their carboxyl groups into the aqueous pore and facilitate H⁺ translocation in concert with resident carboxyl and histidine groups. (From the article entitled 'Uncoupling Protein—A Useful Energy Disipator,' Klingenberg, pp. 419–430)

Volume 31, Number 6

December 1999

CONTENTS	
Inactivation of the Reconstituted Oxoglutarate Carrier from Bovine Heart Mitochondria by Pyridoxal 5'-Phosphate Dorotea Natuzzi, Lucia Daddabbo, Valentina Stipani, Anna R. Cappello, Daniela V. Miniero, Loredana Capobianco, and Italo Stipani	535
Oligomeric State of Wild-Type and Cysteine-Less Yeast Mitochondrial Citrate Transport Proteins Rusudan Kotaria, June A. Mayor, D. Eric Walters, and Ronald S. Kaplan	543
Inhibitory Properties of Ruthenium Amine Complexes on Mitochondrial Calcium Uptake Cecilia Zazueta, Martha E. Sosa-Torres, Francisco Correa, and Ariadna Garza-Ortiz	551
Stimulation of Mitochondrial Gene Expression and Proliferation of Mitochondria Following Impairment of Cellular Energy Transfer by Inhibition of the Phosphocreatine Circuit in Rat Hearts Rudolf J. Wiesner, Till V. Hornung, J. David Garman, David A. Clayton, Eddie O'Gorman, and Theo Wallimann	559
Binding of Rat Brain Hexokinase to Recombinant Yeast Mitochondria: Identification of Necessary Molecular Determinants Heftsi Azoulay-Zohar and Claude Aflalo	569
Mitochondrial Effects of Triarylmethane Dyes Alicia J. Kowaltowski, Jussiani Turin, Guilherme L. Indig, and Anibal E. Vercesi	581
Myopathic Mutations Affect Differently the Inactivation of the Two Gating Modes of Sodium Channels Oscar Moran, Mario Nizzari, and Franco Conti	591
Role of Pinoline and Melatonin in Stabilizing Hepatic Microsomal Membranes against Oxidative Stress	609

Front outside cover: Stick Figure Model of The Dimer of the Mitochondrial Citrate Transporter Arranged Clockwise to Form Two 7-Helix Pores. Only α-carbons, polar residues, and charged residues are shown, for clarity. View is from the top (outside) looking down through the CTP into the inner membrane as it projects towards the matrix (inside). Green denotes carbon atoms, white denotes hydrogen, blue denotes nitrogen, red denotes oxygen. A molecule of citrate (to scale; shaded in yellow) and isocitrate (cyan) are placed in each translocation pathway. (From the article entitled 'Oligomeric State of Wild-Type and Cysteine-Less Yeast Mitochondrial Citrate Transport Proteins,' Kotaria et al., pp. 543-549).

J. J. García, R. J. Reiter, J. Pié, G. G. Ortiz, J. Cabrera, R. M. Sáinz, and D. Acuña-Castroviejo