

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2023

PRÁCTICA 2 - Números reales

- 1. Sean $a, b, c, d \in \mathbb{R}$. Utilizando los axiomas de cuerpo, demostrar las siguientes propiedades de los números reales.
 - (a) $-a = (-1) \cdot a$.
 - (b) El número 0 no tiene recíproco, y $1^{-1} = 1$.
 - (c) $\frac{a}{1} = a$; y si $a \neq 0$, $\frac{1}{a} = a^{-1}$.
 - (d) Si $b \neq 0$ y $d \neq 0$ entonces:
 - (i) $(b \ d)^{-1} = b^{-1}d^{-1}$.
 - (II) $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{b d}$. (III) $\frac{a}{b} \cdot \frac{c}{d} = \frac{a}{b} \frac{c}{d}$.
 - Si $a \neq 0$ y $b \neq 0$, entonces $\left(\frac{a}{b}\right)^{-1} = \frac{a^{-1}}{b^{-1}}$.
 - (f) Si ab = 0, entonces a = 0 o b = 0.
- 2. Sean $a, b, c, d \in \mathbb{R}$. Utilizando los axiomas de orden, demostrar las siguientes propiedades de los números reales.
 - (a) Si a < b, entonces a + c < b + c.
 - (b) Si a < b y c < d entonces a + c < b + d.
 - (c) Si a < b y c > 0, entonces ac < bc.
 - (d) Si a < b y c < 0, entonces ac > bc.
 - (e) Si $a \neq 0$, entonces $a^2 > 0$ (a^2 indica el producto aa).
 - (f) 1 > 0. Es decir, $1 \in \mathbb{R}^+$.
 - (g) Si a < b, entonces -b < -a.
 - (h) Si a < 0 entonces -a > 0.
 - (i) ab > 0 si y solo si a y b son los dos positivos o los dos negativos.
 - (j) a > 0 si y solo si $\frac{1}{a} > 0$.
 - (k) Si 0 < a < b, entonces $0 < \frac{1}{b} < \frac{1}{a}$.
 - (I) Si ab < 0, entonces o bien a es positivo y b negativo o bien a es negativo y b positivo.
- 3. Probar que $\mathbb{Z} \subseteq \mathbb{Q}$.
- 4. Probar que dados $a,b\in\mathbb{R}$ y $c,d\in\mathbb{R}-\{0\}$, vale: $\frac{a}{c}=\frac{b}{d}$ si y solo si ad=bc.

5. Resolver cada una de las siguientes inecuaciones o sistema de inecuaciones. Proporcionar el conjunto solución tanto en forma de intervalo como gráficamente.

(a)
$$4x > 8$$

(j)
$$-19 \le 3x - 5 \le -9$$

(b)
$$6y < 18$$

(k)
$$-16 < 3t + 2 < -11$$

(p)
$$\begin{cases} 5x + \frac{1}{4} \ge 0, \\ 2x - 10 < 0, \\ 7x - 14 < 0. \end{cases}$$

(c)
$$2m \le -6$$

(k)
$$-16 < 3t + 2 < -11$$

(l) $-4 \le \frac{2x - 5}{6} \le 5$

$$\begin{cases} 2x & 10 < 0, \\ 7x - 14 \le 0. \end{cases}$$

(d)
$$-r \leq -7$$

(m)
$$(x-3)\sqrt{x+1} \ge 0$$

(q)
$$\frac{5}{x+3} + \frac{3}{x-1} < 0$$

(e)
$$3r + 1 > 16$$

(f) $2m - 5 \ge 15$

(n)
$$3x < \frac{1+6x}{2} < \frac{1}{2}$$

(n)
$$3x < \frac{1+6x}{2} < \frac{9x-8}{3}$$

(r)
$$\frac{4x-3}{3-x} > 0$$

(g)
$$-3(z-6) > 2z-5$$

(h) $-2(y+4) < 6y+8$

(i) -3 < x - 5 < 6

(ñ)
$$x \le x + 1 \le x + 5$$

($4x - 8 > -6$.

$$\int_{0}^{\infty} \frac{4x-8}{x} > -$$

(o)
$$\begin{cases} 4x - 8 > -6, \\ \frac{x}{2} + 2 > 0. \end{cases}$$
 (s)
$$\frac{4 - 9x}{5x + 7} \le 3$$

$$(s) \quad \frac{4-9x}{5x+7} \le 3$$

- 6. Sean $x,y \in \mathbb{R}$. Demostrar analíticamente los siguientes enunciados a partir de la definición de valor absoluto.
 - (a) $|x| \ge 0$. Además, |x| = 0 si y solo si x = 0.
 - (b) |x| = |-x|.
 - (c) $-|x| \le x \le |x|$.
 - (d) Dado a > 0, se tiene:
 - (I) |x| < a si y solo si -a < x < a.
 - (II) |x| > a si y solo si x < -a o bien x > a.
 - (e) Designaldad triangular: $|x + y| \le |x| + |y|$.
 - (f) $|x \cdot y| = |x| \cdot |y|$.
 - (g) Si $y \neq 0$, $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$.
- 7. Interpretar geométricamente los ítems (a)-(d) del ejercicio anterior.
- 8. (a) ¿A qué distancia está 7 de 4? ¿Y -3 de -19? ¿Y -24 de 49?
 - (b) Encontrar gráfica y analíticamente los puntos que distan al 3 en menos de 2.
 - (c) Encontrar gráfica y analíticamente los puntos que distan al -1 en menos de 4.
 - (d) Encontrar gráfica y analíticamente los puntos que distan al 0 en más de 1.
- 9. Representar en la recta numérica el conjunto solución de las siguientes ecuaciones e inecuaciones. Decidir si cada uno está acotado inferior y/o superiormente. Indicar en cada caso (si es posible) el ínfimo, supremo, mínimo y/o máximo.

(a)
$$|x| = 4$$
.

(e)
$$|x+2| \ge 1$$
.

(h)
$$\frac{3}{|3x+1|} \le 2$$
.

(b)
$$|x-1| < 1$$
.

(f)
$$|x-3| < 7$$
.

(i)
$$\frac{|5x-5|}{|x+1|} \le 0.$$

(c)
$$|x+1| > 1$$
.
(d) $|x-4| < 1$.

(g)
$$|x^2 - 3x - 2| \le 2$$
.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2023

10. Dados los siguientes conjuntos.

- (a) Decidir si cada uno de los conjuntos está acotado, acotado superiormente o acotado inferiormente.
- (b) En los casos en que los conjuntos están acotados superior y/o inferiormente, determinar el supremo y/o ínfimo;
- (c) Establecer si los supremos e ínfimos obtenidos en el ítem anterior son máximos y mínimos, respectivamente, del conjunto considerado.
- 11. Sea A un conjunto no vacío de números reales. Probar que A está acotado si y sólo si existe un número real positivo L tal que |x| < L para todo $x \in A$.
- 12. Demostrar que si α y β son dos números reales tales que ambos son mínimo del mismo conjunto A, entonces $\alpha = \beta$.
- 13. Sea A un conjunto no vacío de números reales. Se define el conjunto siguiente

$$-A = \{x \in \mathbb{R} : -x \in A\}.$$

- (a) Siendo A_1 , A_2 y A_3 los conjuntos encontrados en los ejercicios 9(a), 9(b) y 9(c), hallar los conjuntos $-A_1$, $-A_2$ y $-A_3$.
- (b) Mostrar que -A es un conjunto no vacío y que -(-A) = A.
- (c) Hallar las condiciones bajo las cuales se tiene que -A = A.
- (d) Mostrar que si A es un conjunto acotado superiormente (inferiormente) entonces -A es un conjunto acotado inferiormente (superiormente).
- (e) Mostrar que si A posee supremo entonces -A posee ínfimo y se verifica que $\inf(-A) = -\sup(A)$, y análogamente, si A posee ínfimo entonces -A posee supremo y se verifica que $\sup(-A) = -\inf(A)$.
- (f) Utilizar los resultados de los ítems anteriores para mostrar que todo conjunto no vacío de números reales acotado inferiormente posee ínfimo.
- 14. Si A y B son dos conjuntos no vacíos de números reales, se define el conjunto siguiente

$$A + B = \{a + b : a \in A, b \in B\}.$$

- (a) Siendo A_4 , A_5 y A_6 los conjuntos encontrados en los ejercicios 9(d), 9(e) y 9(f), obtener los conjuntos $A_4 + A_5$ y $A_4 + A_6$.
- (b) Indicar, cuando sea posible, las cotas superiores e inferiores, supremo, ínfimo, máximo y mínimo de los conjuntos hallados en el ítem (a).
- (c) En el caso de que existan $\sup(A)$, $\inf(A)$, $\sup(B)$, $\inf(B)$, conjeturar y demostrar sus relaciones con $\sup(A+B)$ e $\inf(A+B)$.

- (d) Demostrar que el conjunto A+B posee máximo (mínimo) si y sólo si los conjuntos A y Bposeen máximo (mínimo).
- (e) Analizar si A + B coincide con B + A.
- 15. Si A es un conjunto no vacío de números reales y c es un número real, se define el conjunto

$$cA = \{cx : x \in A\}.$$

- (a) Si $A = \{x \in \mathbb{R} : x \ge 2\}$ y B = [-1, 2), determinar 2A y -3B. Analizar las cotas superiores e inferiores de estos conjuntos.
- (b) Conjeturar las relaciones entre $\sup(A)$, $\inf(A)$, $\sup(c|A)$ e $\inf(c|A)$.
- 16. Si A y B son dos conjuntos no vacíos de números reales tales que

$$a \in A \land b \in B \Rightarrow a \leq b$$
.

- (a) Demostrar que el conjunto A es acotado superiormente y el conjunto B es acotado inferiormente.
- (b) ¿Existe alguna relación entre el $\sup(A)$ y el $\inf(B)$? Hacer una conjetura sobre tal relación.
- (c) Demostrar lo conjeturado en el ítem anterior.
- 17. Probar que:
 - (a) si $|x| < \frac{1}{n}$, $\forall n \in \mathbb{N}$ entonces x = 0.
 - (b) si $|x| < \varepsilon$, $\forall \varepsilon > 0$ entonces x = 0.
- 18. Deducir a partir de la Propiedad Arquimediana de los números reales las siguientes afirmaciones.
 - (a) Para todo $y \in \mathbb{R}$, existe $n \in \mathbb{N}$ tal que y < n.
 - (b) N no está acotado superiormente.
 - (c) Si x > 0, entonces existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < x$.
 - (d) Sean $x, y, z \in \mathbb{R}$, con z > 0. Si se verifica:

$$x \le y < x + \frac{z}{n}$$
 para todo $n \in \mathbb{N}$

entonces x = y.