COMMUNITY DETECTION

Community detection

- What is a community?
- Types of communities?
 - Political networks?
 - Facebook?
 - Twitter?
- How do we find them?
 - GN not covered
 - Hierarchical clustering
 - Modularity
 - Flow

Community detection in graphs
Santo Fortunato*

Community detection in networks: A user guide

Santo Fortunato a,b,*, Darko Hric b

Community detection in networks: Structural communities versus ground truth

Darko Hric, Richard K. Darst, and Santo Fortunato

Girvan-Newman

Based on shortest path length

Lagrangian betweenness as a measure of bottlenecks in dynamical systems with oceanographic examples

- Similarity based
 - Shared average cluster similarity
 - Aggregated using a linkage function

- Similarity based
 - Shared average cluster similarity

DETECTING OPINION-BASED GROUPS AND POLARISATION IN SURVEY-BASED ATTITUDE NETWORKS AND ESTIMATING QUESTION RELEVANCE

- Current application
 - Fantasy sports

Slightly different network...

- One type of node
- Weighted
- Temporal

RESEARCH ARTICLE

Identification of skill in an online game: The case of Fantasy Premier League

Joseph D. O'Brien *, James P. Gleeson, David J. P. O'Sullivan

Modularity, briefly

- 'more density connected internally than externally'
- Null model of a random graph to quantify quality of a community:

$$Q = \frac{1}{2m} \sum_{ij} (A_{ij} - \frac{k_i k_j}{2m}) \delta(c_i, c_j)$$

Optimizing this is NP-hard!

Modularity, briefly

Louvain Algorithm

Markov stability, again, briefly

Flow based methods

Again, another little break with R

So what did this analysis actually look like...

4_community_dectection.r

Community Detection

- Markov stability on mentions and follower networks
- Mentions
 - Partition into 2 communities
- Follower
 - Partition into 6 communities
- How could we combine information from both networks?
- Like a unique partition that reflects both previous partitions
 - Refine both then cluster back together

Mention Network Partition

Follower Network Partition

Finding Yes & No Supporters

Community Detection

- Markov stability on mentions and follower networks
- Mentions
 - Partition into 2 communities
- Follower
 - Partition into 6 communities
- How could we combine information from both networks?
- Like a unique partition that reflects both previous partitions
 - Refine both then cluster back together

Mention Network Partition

Follower Network Partition

Finding Yes & No Supporters

Use sentiment and community detection

What does makes up these three groups?

Community Detection and Sentiment

- What about yes and no voters?
 - From each CC select random sample (20%) and classify
 - Hand classify as yes, no leaning or unaligned
- How do we classify
 - Look at the tweets the user has sent
 - Profile description

		Comn			
		CC_1	CC_2	CC_3	Total
Alignment	Yes	183	114	6	303
	No	1	2	23	26
	Unaligned	21	5	3	29
	Total	205	121	32	358

Again, another little break with R

So what did this analysis actually look like...

5_community_aggregation.r

HOW DID THE COMMUNITIES TALK?

Community Detection and Sentiment

- What about yes and no voters?
 - From each CC select random sample (20%) and classify
 - Hand classify as yes, no leaning or unaligned
- How do we classify
 - Look at the tweets the user has sent
 - Profile description

		Comn			
		CC_1	CC_2	CC_3	Total
Alignment	Yes	183	114	6	303
	No	1	2	23	26
	Unaligned	21	5	3	29
	Total	205	121	32	358

- Redefine CC's
 - Accuracy 89%
 - Balanced Accuracy 81%
- How do these groups interact?

Activity between community clusters

Activity between community clusters

		Mention tweets			Proportion of cluster's tweets			
From	То	Original	Reply	Retweet	Original	Reply	Retweet	
Passive Yes	Passive Yes	5302	1755	21740	0.16	0.06	0.68	
Passive Yes	Active Yes	206	306	2152	0.01	0.01	0.07	
Passive Yes	Active No	139	168	308	0.00	0.00	0.01	
Active Yes	Passive Yes	1200	1205	10130	0.05	0.05	0.45	
Active Yes	Active Yes	380	1935	4648	0.02	0.09	0.21	
Active Yes	Active No	286	1948	601	0.01	0.09	0.03	
Active No	Passive Yes	361	458	753	0.04	0.06	0.09	
Active No	Active Yes	47	939	257	0.01	0.12	0.03	
Active No	Active No	310	649	4345	0.04	0.08	0.54	

Activity between community clusters

- Any thought?
 - How would you extend this work?

SPREADING PROCESS ON NETWORKS