CS F364: Design & Analysis of Algorithm

Dynamic Programming 0/1 Knapsack Problem

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Feb 08, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Fibonacci Number

Solution of
$$F(n) = F(n-1) + F(n-2)$$

$$F_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt{5}}$$

where $\phi = \frac{1+\sqrt{5}}{2}$ and $\hat{\phi} = \frac{1-\sqrt{5}}{2}$

• Time needed T(n) = T(n-1) + T(n-2) + 1 $T(0) = T(1) = \hat{1}$

$$T(n) = \theta(\phi^n)$$

0-1 Knapsack Problem

Let knapsack can have 50kg

3 items of wt 10, 20, 30 of price Rs 60, 100 and 120 respectively

Which number next?

1, 1, 2, 3, 5, 8, 13, 21, ...?...

$$F(n) = F(n-1) + F(n-2)$$

Algorithm 1: Fib (n)

- If $n \in \{0, 1\}$ Then return 1
- 2 Else return Fib(n) + Fib(n-1)

 To find the value of f(5) one need to compute

Value	Times
f(4)	1
f(3)	2
f(2)	3
<i>f</i> (1)	5
f(0)	3

Using Memory

Algorithm 2: Fib2 (n)

- 1 If $(n \in \{0,1\})$ Then $\{F[n] = 1; \text{ return } 1\}$
- 2 If (F[n-1] > 0) Then a = F[n-1]; 3 Else $\{a = Fib2(n-1); F[n-1] = a\}$
- 4 If (F[n-2] > 0) Then b = F[n-2] = b5 Else $\{b = Fib2(n-2); F[n-2] = b\}$ 6 return a + b

- Bottom-up approach
- Time complexity O(n)
- Called dynamic programming

Problem Setting

- Item I_1 , I_2 ,, I_3 , ...
- Weight w₁, w₂, w₃, ...
- Profit $p_1, p_2, p_3,$
- Knapsack with capacity W
- Selected? $x_i = 1$ if i^{th} item is selected

One have to maximize

subject to

$$\sum_{i=1}^n p_i \times x_i$$

$$\sum_{i=1}^n w_i \times x_i \leq W$$

Exponential number of possibilities arises for evaluation

Solution Sketch

$M(i, w) = max(M(i-1, w), M(i-1, w-w_i) + p_i)$

i	pi	Wi	00	01	02	03	04	05	06	07	08	09	10
0	9	3											
1	3	2											
2	6	1											
3	4	4											
4	2	3											
5	5	4											
6	4	2											

esign & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-10(Feb 08, 2021) 7/9

Thank You!

Thank you very much for your attention! (Reference¹)

Queries ?

1 [1] Book - Introduction to Algorithm, By THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST, CLIFFORD STEIN Design & Analysis of Algo. (BITS F364) M.W.F (3-4PM) online@BITS-Pilani Lecture-10(Feb 08, 2021) 9/9

Algorithm

```
Algorithm 3: 0/1-Knapsack ( n, W)

Initialize M[ 0...n, 0...W] to zeros

for i from 1 to n do

for w from 0 to w do

if w < w_i then

M[i, w] = M[i - 1, w]

else

M[i, w] = max(M[i - 1, w], p_i + M[i - 1, w - w_i])

return M[n, w]

Complexity? O(n \times w)
```

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-10(Feb 08, 2021) 8/9