Package 'PKPDsim'

August 20, 2024

```
Type Package
Title Tools for Performing Pharmacokinetic-Pharmacodynamic Simulations
Version 1.4.0
Date 2024-08-19
Depends R (>= 4.0.0)
Imports Rcpp (>= 0.12.9), BH, data.table, stringr, MASS, randtoolbox,
     jsonlite, stats, parallel, magrittr
Suggests httr, testthat (>= 3.0.0), mockery, knitr, rmarkdown
LinkingTo BH, Rcpp (>= 1.0.13)
Description Simulate dose regimens for pharmacokinetic-pharmacodynamic (PK-PD)
     models described by differential equation (DE) systems. Simulation using
     ADVAN-style analytical equations is also supported (Abuhelwa et al. (2015)
     <doi:10.1016/j.vascn.2015.03.004>).
License MIT + file LICENSE
URL https://github.com/InsightRX/PKPDsim,
     https://insightrx.github.io/PKPDsim/
LazyData TRUE
RoxygenNote 7.3.1
Config/testthat/edition 3
Config/Needs/website tidyverse, nlmixr2
Encoding UTF-8
VignetteBuilder knitr
NeedsCompilation yes
Author Ron Keizer [aut, cre],
     Jasmine Hughes [aut],
     Dominic Tong [aut],
     Kara Woo [aut],
     Jordan Brooks [aut],
     InsightRX [cph, fnd]
Maintainer Ron Keizer < ron@insight - rx.com>
```

2 Contents

Repository CRAN

Date/Publication 2024-08-19 23:20:12 UTC

Contents

add_quotes
add_ruv
add_ruv_to_quantile
adherence_binomial
adherence_markov
advan
advan_create_data
advan_parse_output
advan_process_infusion_doses
apply_duration_scale
apply_lagtime
available_default_literature_models
calculate_parameters
calc_auc_analytic
calc_dydP
calc_ss_analytic
check_obs_input
compile_sim_cpp
covariates_table_to_list
covariate_last_obs_only
cv_to_omega
detect_ode_syntax
f_cov
get_fixed_parameters
get_model_info
get_ode_model_size
get_parameters_from_code
get_var_y
ifelse0
install_default_literature_model
is_positive_definite
join_cov_and_par
join_regimen
lower_triangle_mat_size
merge_regimen
model_from_api
model_library
mvrnorm2
na_locf
new_adherence
new_covariate
new_covariate_model

add_quotes 3

dex		48
	triangle_to_full	47
	translate_ode	
	test_pointer	
	test_model	
	table_to_list	
	sim_ode_shiny	
	sim_ode	
	sim_core	
	sim	
	shift_regimen	40
	search_replace_in_file	39
	reparametrize	39
	regimen_to_nm	38
	read_model_json	38
	print_list	37
	pop_regimen	37
	pkpdsim_to_nlmixr	36
	pkdata	35
	nm_to_regimen	35
	nlmixr_parse_parameters	34
	new_regimen	33
	new_ode_model	30

 $\mathsf{add}_\mathsf{quotes}$

Put vector values in quotes

Description

Put vector values in quotes

Usage

```
add_quotes(x, quote = "double")
```

Arguments

x vector of string / numericquote what type of quotes (double or single)

Value

Character vector of input with quotation marks around each value

ad	d	ruv
au	u_	ıuν

Add residual variability to the dependent variable

Description

Add residual variability to the dependent variable

Usage

```
add_ruv(x, ruv = list(), obs_type = 1)
```

Arguments

x dependent value without residual variability

ruv list specifying proportional, additive and/or exponential errors (prop, add, exp)

obs_type vector of observation types

Value

Input vector with residual variability added

Description

Calculate the increase in a specific quantile for a distribution on y when residual variability is added

Usage

```
add_ruv_to_quantile(y, sd_y, log_scale = FALSE, q = NULL, ruv = list(), ...)
```

Arguments

y y with

sd_y standard deviation of y without residual variability added. Will add normally

distributed variability (potentially on log-scale).

log_scale add variability on log scale (FALSE by default, DEPRECATED!).

q quantile

ruv list of residual variability (prop and add)

... passed arguments

Value

Numeric vector of y values with residual variability

adherence_binomial 5

adherence	binomial	Bi

Binomial adherence

Description

Model adherence as a binomial probability at the time of each occasion.

Usage

```
adherence_binomial(n = 100, prob)
```

Arguments

n number of occasions prob binomial probability

Value

Returns a vector of length n containing values 0 (non-adherent) or 1 (adherent).

Numeric vector of length n

adherence_markov

Markov adherence model

Description

Model adherence as a markov chain model, based on the probability of staying adherent and of becoming adherent once non-adherent. Assumes all patients start adherent.

Usage

```
adherence_markov(n = 100, p11 = 0.9, p01 = 0.7)
```

Arguments

n	number of	occasions

p11 probability of staying adherent

p01 probability of going from non-adherent to adherent state

Value

Returns a vector of length n containing values 0 (non-adherent) or 1 (adherent).

Numeric vector of length n

6 advan_create_data

advan

ADVAN-style functions to calculate linear PK systems

Description

ADVAN-style functions to calculate linear PK systems

Usage

```
advan(model, cpp = TRUE)
```

Arguments

model Standard linear PK model, e.g. 1cmt_iv_bolus.

cpp use C++-versions of model (~50x faster than R implementations)

Value

Model function

advan_create_data

Create ADVAN-style dataset

Description

Create ADVAN-style dataset

Usage

```
advan_create_data(
  regimen,
  parameters,
  cmts = 5,
  t_obs = NULL,
  covariates = NULL,
  covariate_model = NULL)
```

Arguments

regimen PKPDsim regimen parameters list of parameters

cmts number of compartments, minimum is 1. Default is 5, which is enough for

most linear PK models. It is OK to have more compartments available than are

actually being used.

advan_parse_output 7

t_obs add observation timepoints to dataset

covariates covariate list

covariate_model

covariate model equations, written in C

Value

Data frame of ADVAN-style data

advan_parse_output

Internal function to parse the raw output from ADVAN-style functions

Description

Internal function to parse the raw output from ADVAN-style functions

Usage

```
advan_parse_output(data, cmts = 1, t_obs, extra_t_obs = TRUE, regimen)
```

Arguments

data simulation output data cmts number of compartments

t_obs observation times

extra_t_obs leave extra added dose times in dataset?

regimen PKPDsim regimen

Value

Data frame containing parsed simulation data

```
advan_process_infusion_doses
```

Add column RATEALL to ADVAN-style dataset to handle infusions

Description

Function adapted from code from Abuhelwa, Foster, Upton JPET 2015. cleaned up and somewhat optimized. Can potentially be optimized more.

Usage

```
advan_process_infusion_doses(data)
```

Arguments

data ADVAN-style dataset, e.g. created using advan_create_data.

Value

Data frame containing additional RATEALL column.

References

Abuhelwa, A. Y., Foster, D. J. R., Upton, R. N. (2015) ADVAN-style analytical solutions for common pharmacokinetic models. J Pharmacol Toxicol Methods 73:42-8. DOI: 10.1016/j.vascn.2015.03.004

Description

E.g. see Centanni et al. Clin Pharmacokinet 2024. An estimated scaling factor for the length of the infusion was applied there in a model for vincristine. This is likely most relevant for very short infusions.

Usage

```
apply_duration_scale(
  regimen,
  duration_scale = NULL,
  parameters = NULL,
  cmt_mapping = NULL
)
```

Arguments

regimen PKPDsim regimen duration_scale infusion length scale.

parameters parameter list, required if the duration scale is specified as a parameter.

cmt_mapping map of administration types to compartments, e.g. list("oral" = 1, "infusion"

= 2, "bolus" = 2).

Details

Implementation is similar to handling of lagtime, i.e. the regimen that is the input for the simulation function is updated.

Value

Original regimen with infusion lengths scaled by a factor

apply_lagtime 9

en	
----	--

Description

Apply lagtime to a regimen

Usage

```
apply_lagtime(regimen, lagtime, parameters, cmt_mapping = NULL)
```

Arguments

regimen	PKPDsim regimen
lagtime	lagtime object, either single value / parameter name or vector of values/parameter names for all compartments.
parameters	parameter list, required if parameters are specified.
cmt_mapping	map of administration types to compartments, e.g. list("oral" = 1, "infusion" = 2, "bolus" = 2).

Value

Original regimen with lagtime added to dose times

```
available_default_literature_models

See models from the literature available for installation
```

Description

See models from the literature available for installation

Usage

```
available_default_literature_models()
```

Value

Returns a character vector of models available for installation

Examples

```
available_default_literature_models()
```

10 calculate_parameters

calculate_parameters Calculate model-specific variables using a dummy call to sim_ode()

Description

This is a convenience function for PKPDsim users, it is not used inside the $sim_ode()$ function in any way. This function = CL * (WT/70) * (1/CR) it can be used to calculateCLi without having to write that function a second time in R.

Usage

```
calculate_parameters(
  ode = NULL,
  parameters = NULL,
  covariates = NULL,
  include_parameters = TRUE,
  include_variables = TRUE,
  regimen = NULL,
  t_obs = NULL,
  ...
)
```

Arguments

ode PKPDsim model object

parameters parameter list

covariates covariate list. Make sure to include covariates at the right time point, since only

last observed covariate values are used.

include_parameters

boolean, include parameters?

include_variables

boolean, include variables?

regimen optional, provide a regimen object for the computation of the effective parame-

ters. This is only relevant for models for which parameters depend on the dose

or administration type, which is rare.

t_obs optional, provide timepoint(s) at which to computate effective parameters. This

is only relevant for models with time-varying fixed-effects. If unspecified, will

evaluate parameters at t=0.

... arguments to pass on to simulation function

Value

List of model-specific variables

calc_auc_analytic 11

calc_auc_analytic	Convenience function to calculate the AUC based on PK model pa-
	rameters at any given moment, for linear iv models.

Description

Convenience function to calculate the AUC based on PK model parameters at any given moment, for linear iv models.

Usage

```
calc_auc_analytic(
  f = c("1cmt_iv_infusion", "2cmt_iv_infusion", "3cmt_iv_infusion", "1cmt_iv_bolus",
        "2cmt_iv_bolus", "3cmt_iv_bolus"),
  parameters,
  regimen = NULL,
  dose = NULL,
  interval = NULL,
  t_inf = NULL,
  t_obs = c(0, 24, 48, 72),
  ...
)
```

Arguments

f	analytic model to use, show available models using advan()
parameters	list of parameter estimates. Requires CL/V for 1-compartment models, CL/V/Q/V2 for 2-compartment models, and CL/V/Q/V2/Q2/V3 for 3-compartment models.
regimen	PKPDsim regimen created using new_regimen. Not required, regimen can also be specified using dose, interval, and t_inf.
dose	dosing amount for regimen (single value). Only used if no regimen supplied.
interval	dosing interval for regimen (single value). Only used if no . regimen supplied.
t_inf	infusion length for regimen (single value). Only used if no regimen supplied.
t_obs	vector of observation times for AUC
	optional arguments passed to advanc_create_data()

Value

```
a data.frame with t and auc
```

Examples

```
dat <- calc_auc_analytic(
   f = "2cmt_iv_infusion",
   regimen = new_regimen(</pre>
```

12 calc_ss_analytic

```
amt = 1000, n = 10, type = "infusion",
    t_inf = 1, interval = 24
),
parameters = list(CL = 5, V = 50, Q = 8, V2 = 150)
)
```

calc_dydP

Calculate derivative

Description

Calculate derivative

Usage

```
calc_dydP(dy, y, rel_delta, log_y)
```

Arguments

dy dy

y dependent value rel_delta relative delta

log_y logical indicating if the dependent variable is log transformed

calc_ss_analytic

Returns the state of a linear PK system at steady state (trough) using analytics equations (so for linear PK systems only).

Description

Basically it performs a PK simulation using analytic equations instead of ODEs to steady state (n=45 days, increased if needed).

Usage

```
calc_ss_analytic(
   f = "1cmt_oral",
   dose,
   interval,
   t_inf = NULL,
   model,
   parameters,
   covariates = NULL,
   map = NULL,
```

check_obs_input 13

```
n_days = 45,
n_transit_compartments = 0,
auc = FALSE
)
```

Arguments

f analytic equation to use, must be one of names(advan_funcs)

dose dose
interval interval
t_inf infusion time
model PKPDsim model
parameters parameters list
covariates covariates list

map list for remapping parameters, ex: list(CL = "CL", V = "V")

n_days number of days at which to assume steady state. Default is 45.

n_transit_compartments

number of transit compartments, will insert n compartments between the first

(dose) compartment and the second (central) compartment.

auc add (empty) AUC compartment at end of state vector?

Details

It can also be used for models with transit compartments, however, the assumption is made that at the end of the dosing interval the amount in the transit compartments is negligible (0).

Value

State vector of a linear pharmacokinetic system at steady state

check_obs_input Checks obs input for valid combinations of cmt, var, scale

Description

Checks obs input for valid combinations of cmt, var, scale

Usage

```
check_obs_input(obs)
```

Arguments

obs

specified observation object including at least a description of which variable(s) are associated with a particular compartment, e.g. list(variable="CONC", scale="1").

14 compile_sim_cpp

compile_sim_cpp

Compile ODE model to c++ function

Description

Compile ODE model to c++ function

Usage

```
compile_sim_cpp(
  code,
  dose_code,
 pk_code,
  size,
  cpp_show_code,
  code_init = NULL,
  state_init = NULL,
  declare_variables = NULL,
  variables = NULL,
  covariates = NULL,
  obs = NULL,
  dose = NULL,
  iov = NULL,
  compile = TRUE,
 verbose = FALSE,
  as_is = FALSE
)
```

Arguments

```
code
                  C++ code ODE system
dose_code
                  C++ code per dose event
                  C++ code per any event (similar to $PK)
pk_code
                  size of ODE system
size
                  parameters (list)
cpp_show_code
                  show output c++ function?
code_init
                  code for initialization of state
state_init
                  state init vector
declare_variables
                  variable declaration for all required variables (including user-specified)
variables
                  only the user-specified variables
                  covariates specification
covariates
                  observation specification
obs
```

covariates_table_to_list 15

dose	dose specification
iov	iov specification
compile	compile or not?
verbose	show more output
as is	use C-code as-is, don't substitute line-endings or shift indices

Value

List containing ODE definition in C++ code and simulation function

```
covariates_table_to_list
```

Convert covariate table specified as data.frame

Description

Can handle time-varying data too, if t or time is specified as column

Usage

```
covariates_table_to_list(covariates_table, covariates_implementation = list())
```

Arguments

```
covariates_table
```

data.frame`` with covariates in columns. Potentially with idandt'

columns

covariates_implementation

list with implementation method per covariate

Value

List of covariates

16 cv_to_omega

```
covariate_last_obs_only
```

Use only last observed covariate values

Description

Use only last observed covariate values

Usage

```
covariate_last_obs_only(covariates)
```

Arguments

covariates

covariates object

Value

List containing same elements as input covariate object but including only the last value for each covariate

cv_to_omega

Create lower-diagonal omega matrix from CV for parameter estimates

Description

Create lower-diagonal omega matrix from CV for parameter estimates

Usage

```
cv_to_omega(par_cv = NULL, parameters = NULL)
```

Arguments

par_cv list of parameter CVs parameters list of parameters

Value

a vector describing the lower triangle of the omega (between-subject variability) matrix

See Also

sim_ode

detect_ode_syntax 17

detect_ode_syntax

Auto-detect the syntax for the ODE code

Description

Either PKPDsim or RxODE

Usage

```
detect_ode_syntax(code)
```

Arguments

code

character string with ODE code

Value

List with elements from and to indicating the syntax for the ODE code

f_cov

covariate function builder

Description

covariate function builder

Usage

```
f_cov(...)
```

Arguments

... parameters to pass to cov

Value

Covariate function

18 get_model_info

```
get_fixed_parameters Get fixed parameters from model definition.
```

Description

Get fixed parameters listed in model definition. This function is used when parsing model specifications before the model has been compiled. Please see [get_model_fixed_parameters] for accessing fixed parameters from a model that has already been built.

Usage

```
get_fixed_parameters(def)
```

Arguments

def

Model definition as output by read_model_json()

get_model_info

Functions for getting information about a model

Description

PKPDsim models encode information about using the model that can be helpful for working with the model. This family of functions provides an easier API for accessing useful information. See also attributes(model) for less commonly used model metadata. Functions will return NULL if the requested field is not available.

Usage

```
get_model_parameters(model)
get_model_covariates(model)
get_model_fixed_parameters(model)
get_model_structure(model)
get_model_linearity(model)
get_model_auc_compartment(model)
get_model_iov(model)
```

Arguments

model

PKPDsim model

get_ode_model_size 19

Value

get_model_parameters: returns a vector of PK parameter names

get_model_covariates: returns a vector of covariate names

get_model_fixed_parameters: returns a vector of names of parameters that are not associated with inter-individual or inter-occasion variability.

get_model_structure: returns a single string indicating model structure. E.g.,: "1cmt_iv", "2cmt_oral".

get_model_linearity: returns a single string indicating model linearity. E.g., "linear" or "nonlinear".

get_model_auc_compartment: returns the index of the final compartment, which is conventionally the AUC compartment. Note: will not detect if the final compartment is actually encoded to describe AUC.

get_model_iov: returns information about the IOV structure. For models without IOV, returns a single field (list(n_bins = 1)). Models with IOV will return additional fields: n_bins, bin durations, and CV associated with each PK parameter.

get_ode_model_size

Get the number of states in the ODE from the code code C++ code for model

Description

Get the number of states in the ODE from the code code C++ code for model

Usage

```
get_ode_model_size(code)
```

Arguments

code

C++ code

Value

Number of states in the ODE model

get_var_y

```
{\tt get\_parameters\_from\_code}
```

Get model parameters from code

Description

Get model parameters from code

Usage

```
get_parameters_from_code(code, state_init, declare_variables = NULL)
```

Arguments

```
code code
state_init state init vector
declare_variables
declared variables
```

Value

Vector of parameter names

get_var_y

Get expected variance/sd/ci of dependent variable based on PKPDsim model, parameters, and regimen

Description

Get expected variance/sd/ci of dependent variable based on PKPDsim model, parameters, and regimen

Usage

```
get_var_y(
  model = NULL,
  parameters = list(),
  regimen = list(),
  t_obs = c(1:48),
  obs_comp = NULL,
  obs_variable = NULL,
  omega = c(0.1, 0.05, 0.1),
  omega_full = NULL,
  ruv = NULL,
```

get_var_y 21

```
y = NULL,
rel_delta = 1e-04,
method = "delta",
sequence = NULL,
auc = FALSE,
sd = TRUE,
q = NULL,
in_parallel = FALSE,
n_cores = 3,
return_all = FALSE,
...
)
```

Arguments

model model, created using PKPDsim::new_ode_model()

parameters parameters list

regimen, as created using PKPDsim::new_regimen()

t_obs vector of observation times

obs_comp observation compartment. If NULL will be "obs" (default)

obs_variable observation variable. If NULL, will be ignored, otherwise will override obs_comp.

omega triangle omega block omega_full full omega block

n_ind number of individuals to simulate with sim method

ruv residual variability, supplied as a named list, ex: list(prop = 0, add = 0, exp

= 0)

y vector of observations. If NULL, then a new simulation will be performed.

rel_delta rel delta

method, delta or sim

sequence for simulations, if not NULL the pseudo-random sequence to use, e.g. "halton"

or "sobol". See myrnorm2 for more details.

auc is AUC?

sd return as standard deviation (TRUE) or variance (FALSE)

q return vector of quantiles instead of sd/var. Will return parametric quantiles

when delta-method is used, non-parametric for simulation-based methods.

in_parallel run simulations in parallel?

n_cores if run in parallel, on how many cores?
return_all return object with all relevant information?

... passed on to sim_ode()

Value

Vector of standard deviations or variances (or quantiles thereof) for dependent value variable

ifelse0

ifelse function but then based on whether value is NULL or not

Description

ifelse function but then based on whether value is NULL or not

Usage

```
ifelse0(value = NULL, alternative = NULL, allow_null = FALSE)
```

Arguments

value metadata list object alternative alternative value

allow_null can the alternative be NULL?

Value

value if non-NULL; alternative otherwise

Description

A very lightweight wrapper for model_from_api that installs previously published models packaged within PKPDsim.

Usage

```
install_default_literature_model(model, ...)
```

Arguments

Mame of model, e.g., "pk_busulfan_mccune". See available_default_literature_models()
arguments passed onto model_from_api. For fine-grain control, it is better to
install models directly from model_from_api() or new_ode_model().

Examples

```
## Not run:
install_default_literature_model("pk_busulfan_mccune")
## End(Not run)
```

is_positive_definite 23

Description

Is matrix positive definite

Usage

```
is_positive_definite(x)
```

Arguments

x matrix, specified either as vector of lower triangle, or full matrix (as matrix class)

Value

TRUE if x is positive definite; FALSE otherwise.

join_cov_and_par Combines covariates and parameters into a single list, useful for reparametrization of the model.

Description

Combines covariates and parameters into a single list, useful for reparametrization of the model.

Usage

```
join_cov_and_par(covs, pars)
```

Arguments

covs covariates object

pars model parameters, such as the output of the parameters() call frmo a model

library.

Value

List containing covariates and parameters

join_regimen

Join two dosing regimens

Description

Join two dosing regimens

Usage

```
join_regimen(
  regimen1 = NULL,
  regimen2 = NULL,
  interval = NULL,
  dose_update = NULL,
  t_dose_update = NULL,
  continuous = FALSE
)
```

Arguments

regimen1 first regimen
regimen2 second regimen

interval interval between regimen1 and regimen2 (if dose_update not specified)

dose_update dose_number at which to override regimen1 with regimen 2 (if interval not spec-

ified)

t_dose_update dose time from which to update regimen

continuous for joining continuous infusions

Value

Joined regimen

```
lower_triangle_mat_size
```

Size of the lower triangle of the matrix

Description

Size of the lower triangle of the matrix

Usage

```
lower_triangle_mat_size(mat)
```

merge_regimen 25

Arguments

mat

omega matrix as a vector

merge_regimen

Merge two regimens together.

Description

In contrast to join_regimen, which joins two consecutive regimens together, merge_regimen merges two or more regimens given at the same time. This can e.g. be used to define regimens for multi-drug models.

Usage

```
merge_regimen(regimens)
```

Arguments

regimens

List of PKPDsim regimens created with new_regimen.

Value

Merged regimens

model_from_api

Load model definition from API, and compile to R library

Description

Load model definition from API, and compile to R library

Usage

```
model_from_api(
    url,
    model = NULL,
    nonmem = NULL,
    verbose = TRUE,
    get_definition = FALSE,
    to_package = FALSE,
    force = FALSE,
    install_all = FALSE,
    ...
)
```

26 model_library

Arguments

url URL or file path to JSON representation of model

model id (used in messages)

nonmem URL or file path to NONMEM file

verbose verbosity (T/F)

get_definition return only the model definition, do not compile

to_package compile to package?

force force install even if same version number of model already installed.

install_all force install all, even if model inactive

... arguments passed to new_ode_model() function

Value

Model object created with new_ode_model()

Description

Model library

Usage

```
model_library(name = NULL)
```

Arguments

name of model in library. If none specified, will show list of available models.

Value

List containing information about the named model

mvrnorm2 27

mvrnorm2

More powerful multivariate normal sampling function

Description

Besides standard multivariate normal sampling (mvrnorm), allows exponential multivariate normal and quasi-random multivariate normal (using the randtoolbox) all using the same interface.

Usage

```
mvrnorm2(n, mu, Sigma, exponential = FALSE, sequence = NULL, ...)
```

Arguments

n number of samples

mu mean

Sigma covariance matrix

exponential exponential distribution (i.e. multiply mu by exponential of sampled numbers)

sequence any sequence available in the randtoolbox, e.g. halton, or sobol ... parameters passed to myrnorm or randtoolbox sequence generator

Value

Multivariate normal samples

na_locf

Fill in NAs with the previous non-missing value

Description

Inspired by zoo::na.locf0

Usage

```
na_locf(object, fromLast = FALSE)
```

Arguments

object an object

fromLast logical. Causes observations to be carried backward rather than forward. Default

is FALSE.

Value

Original object with NAs filled in

28 new_covariate

new_adherence

Probabilistically model adherence

Description

Model the drug adherence using either a binomial probability distribution or a markov chain model based on the probability of staying adherent and of becoming adherent once non-adherent.

Usage

```
new_adherence(
  n = 100,
  type = c("markov", "binomial"),
  p_markov_remain_ad = 0.75,
  p_markov_become_ad = 0.75,
  p_binom = 0.7
)
```

Arguments

```
n number of occasions to simulate

type type of adherence simulation, either "markov" or "binomial"

p_markov_remain_ad

markov probability of staying adherent

p_markov_become_ad

markov probability of going from non-adherent to adherent state

p_binom binomial probability of being adherent
```

Value

Returns a vector of length n containing values 0 (non-adherent) or 1 (adherent).

Numeric vector of length n

new_covariate

New covariate

Description

Describe data for a covariate, either fixed or time-variant

new_covariate_model 29

Usage

```
new_covariate(
  value = NULL,
  times = NULL,
  implementation = c("interpolate", "locf"),
  unit = NULL,
  interpolation_join_limit = 1,
  remove_negative_times = TRUE,
  round_times = NULL,
  comments = NULL,
  verbose = TRUE
)
```

Arguments

value a numeric vector

times NULL for time-invariant covariate or a numeric vector specifying the update

times for the covariate

implementation for time-varying covariates either 'locf' (last observation carried forward) or

'interpolate' (default). Non-numeric covariate values are assumed to be locf.

unit specify covariate unit (optional, for documentation purposes only)

interpolation_join_limit

for interpolate option, if covariate timepoints are spaced too close together, the ODE solver sometimes chokes. This argument sets a lower limit on the space between timepoints. It will create average values on joint timepoints instead. If

undesired set to NULL or 0.

remove_negative_times

should times before zero be discarded (with value at time zero determined based

on implementation argument), TRUE or FALSE.

round_times round times to specified number of digits. If NULL, will not round.

comments NULL, or vector of length equal to value specifying comments to each observa-

tion (optional, for documentation only)

verbose verbosity

Value

Object of class "covariate"

new_covariate_model

covariate model function

Description

covariate model function

new_ode_model

Usage

```
new_covariate_model(model = list())
```

Arguments

model

covariate model specified as list

Value

List containing model function(s)

new_ode_model

Create new ODE model

Description

Create new ODE model

Usage

```
new_ode_model(
 model = NULL,
  code = NULL,
  pk\_code = NULL,
  dose_code = NULL,
  file = NULL,
  func = NULL,
  state_init = NULL,
 parameters = NULL,
  reparametrization = NULL,
 mixture = NULL,
 units = NULL,
  size = NULL,
 lagtime = NULL,
 obs = list(cmt = 1, scale = 1),
  dose = list(cmt = 1),
  covariates = NULL,
  declare_variables = NULL,
  iiv = NULL,
  iov = NULL,
  development = NULL,
  omega_matrix = NULL,
  ruv = NULL,
  1tbs = NULL,
 misc = NULL,
  cmt_mapping = NULL,
  int_step_size = NULL,
```

new_ode_model 31

```
default_parameters = NULL,
  fixed = NULL,
  cpp_show_code = FALSE,
  package = NULL,
  test_file = NULL,
  install = TRUE,
  folder = NULL,
 lib_location = NULL,
 verbose = FALSE,
  as_is = FALSE,
  nonmem = NULL,
 comments = NULL,
  version = "0.1.0",
  quiet = "",
  definition = NULL
)
```

Arguments

model model name from model library

code C++ code specifying ODE system

pk_code C++ code called at any event

dose_code C++ code called at dose event only

file file containing C++ code

func R function to be used with deSolve library

state_init vector of state init

parameters list or vector of parameter values

reparametrization

list of parameters with definitions that reparametrize the linear PK model to a

1-, 2- o4 3-compartment PK with standardized parametrization.

mixture for mixture models, provide a list of the parameter associated with the mixture

and it's possible values and probabilities (of the first value), e.g. list(CL = list(value = c(10, 20), p))

units list or vector of parameter units

size size of state vector for model. Size will be extracted automatically from supplied

code, use this argument to override.

lagtime lag time

obs list with "scale": character string with definition for scale, e.g. "V" or "V*(WT/70)".

If NULL, scale defaults to 1., and "cmt" the observation compartment

dose specify default dose compartment, e.g. list(cmt = 1)

covariates specify covariates, either as a character vector or a list. if specified as list, it

allows use of timevarying covariates (see new_covariate() function for more

info)

declare_variables

declare variables

32 new_ode_model

iiv inter-individual variability, can optionally be added to libraryiov inter-occasion variability, can optionally be added to library

development Information about the model development population, can optionally be added

to library

omega_matrix variance-covariance matrix for inter-individual variability, can optionally be added

to library

ruv residual variability, can optionally be added to library

1tbs log-transform both sides. Not used in simulations, only for fitting (sets attribute

1tbs).

misc a list of miscellaneous model metadata

cmt_mapping list indicating which administration routes apply to which compartments. Ex-

ample: list("oral" = 1, "infusion" = 2)

int_step_size step size for integrator. Can be pre-specified for model, to override default for

sim_ode()

default_parameters

population or specific patient values, can optionally be added to library

fixed parameters that should not have iiv added.

cpp_show_code show generated C++ code

package name when saving as package

test_file optional test file to be included with package

install install package after compilation?

folder base folder name to create package in

lib_location install into folder (--library argument)

verbose show more output

as_is use C-code as-is, don't substitute line-endings or shift indices

nonmem add NONMEM code as attribute to model object

comments comments for model version number of library

quiet passed on to system2 as setting for stderr and stdout; how to output cmd line

output. Default ("") is R console, NULL or FALSE discards. TRUE captures

the output and saves as a file.

definition optional, filename for the JSON file the full definition for the model. The defi-

nition file will be stored as definition. json in the resulting package.

Value

If package name is NULL, returns the model object. Otherwise has no return value.

new_regimen 33

new_regimen	Dose regimen for sim_ode

Description

Create a dosing regimen for use with sim_ode

Usage

```
new_regimen(
  amt = 100,
  interval = NULL,
  n = 3,
  times = NULL,
  type = NULL,
  t_inf = NULL,
  rate = NULL,
  t_lag = NULL,
  cmt = NULL,
  checks = TRUE,
  ss = FALSE,
  n_ss = NULL,
  first_dose_time = now_utc()
)
```

Arguments

amt	dosing amount, either a single value (which will repeated for multiple doses), or a vector with doses for each administration
interval	dosing interval (requires n as argument)
n	number of doses (requires interval as argument)
times	vector describing dosing times. Overrides specified times using interval and \boldsymbol{n} arguments
type	either "infusion", "bolus", "oral", "sc" (subcutaneous), or "im" (intramuscular).
t_inf	infusion time (if type==infusion)
rate	infusion rate (if type==infusion). NULL by default. If specified, overrides $\verb"t_inf"$
t_lag	lag time (can be applied to any dose type, not only oral). Will just be added to times $% \left(1\right) =\left(1\right) \left(1\right) \left$
cmt	vector of dosing compartments (optional, if NULL will dosing compartment defined in model will be used)
checks	input checks. Remove to increase speed (e.g. for population-level estimation or optimal design) $ \\$

ss steady state? boolean value whether to simulate out to steady state first (steady state will be based on specified amt and interval, times will be ignored).

n_ss how many doses to simulate before assumed steady state. Default is 4 * 24 / interval.

first_dose_time datetime stamp of first dose (of class POSIXct). Default is current date time.

a list containing calculated VPC information, and a ggplot2 object

See Also

Value

sim ode

Examples

```
r1 <- new_regimen(amt=50, interval=12, n=20) # dose 50mg, q12hrs for 10 days r2 <- new_regimen(amt=50, times=c(0:19)*12) # same, but using explicit times r3 <- new_regimen(amt=c(rep(100,4), rep(50,16)), times=c(0:19)*12) # first 4 doses higher dose
```

nlmixr_parse_parameters

Function to parse parameters for a model into a structure used by nlmixr

Description

Function to parse parameters for a model into a structure used by nlmixr

Usage

```
nlmixr_parse_parameters(
  parameters = list(CL = 5, V = 50),
  omega = c(0.1, 0.05, 0.1),
  res_var = list(prop = 0.1, add = 1),
  fixed = c(),
  log_transform = TRUE,
  ...
)
```

Arguments

parameters list of parameters

omega vector describing the lower-diagonal of the between-subject variability matrix

res_var residual variability. Expected a list with arguments prop, add, and/or exp.

NULL by default.

nm_to_regimen 35

fixed vector of fixed parameters

log_transform log-transform estimated parameters in nlmixr?

... passed on

Value

List of parameters that can be used by nlmixr

nm_to_regimen

Create a regimen from NONMEM data

Description

Create a regimen based on a NONMEM, or NONMEM-like dataset

Usage

```
nm_to_regimen(data, reset_time = TRUE, first_only = FALSE)
```

Arguments

data NONMEM-type dataset

 $reset_time$ start time for each simulated patient at 0, irrespective of design in dataset

first_only use only design from first individual in dataset

Value

Regimen object

pkdata *PK dataset*

Description

Example PK dataset

Usage

pkdata

Format

A data frame with 624 rows and 12 variables in NONMEM format

36 pkpdsim_to_nlmixr

pkpdsim_to_nlmixr

Convert a model generated with PKPDsim to an object for nlmixr

Description

Convert a model generated with PKPDsim to an object for nlmixr

Usage

```
pkpdsim_to_nlmixr(
  model = NULL,
  parameters = NULL,
  omega = NULL,
  res_var = NULL,
  fixed = c(),
  ini_code = NULL,
  model_code = NULL,
  model_par_code = NULL,
  verbose = FALSE,
  ...
)
```

Arguments

model	PKPDsim model
parameters	list of parameters
omega	vector describing the lower-diagonal of the between-subject variability matrix
res_var	residual variability. Expected a list with arguments prop, add, and/or exp. NULL by default.
fixed	vector of fixed (not estimated) parameter names
ini_code	manually specify the ini block for nlmixr
model_code	manually specify the model block for nlmixr
model_par_code	manually specify the parameters section inside the model block for nlmixr
verbose	verbose, TRUE or FALSE
	passed on

Value

nlmixr function

pop_regimen 37

pop_regimen

Remove n doses (from tail) of PKPDsim regimen

Description

Opposite of shift_regimen()

Usage

```
pop_regimen(regimen, n = 1)
```

Arguments

regimen PKPDsim regimen created using new_regimen()

n number of doses to pop from regimen

Value

Input regiment minus selected number of doses

See Also

shift_regimen

print_list

Return a list in R syntax

Description

Return a list in R syntax

Usage

```
print_list(x, wrapper = TRUE)
```

Arguments

x list to be printed wrapper wrap in list object?

Value

Original list in R syntax

38 regimen_to_nm

read_model_json

Read model definition from JSON

Description

Does some substitution of escaped characters in strings in the JSON file, then converts to a list with jsonlite::fromJSON()

Usage

```
read_model_json(path)
```

Arguments

path

Path to JSON file

Value

List containing contents of original JSON file

regimen_to_nm

Convert PKPDsim regimen to NONMEM table (doses only)

Description

Convert PKPDsim regimen to NONMEM table (doses only)

Usage

```
regimen_to_nm(
  reg = NULL,
  dose_cmt = 1,
  n_ind = 1,
  t_obs = NULL,
  obs_cmt = 1,
  bioav = NULL
)
```

Arguments

reg	PKPDsim regimen, created using new_regimen() function
dose_cmt	dosing compartment, if not specified in reg object
n_ind	repeat for n_ind subjects
t_obs	add observation time(s)
obs_cmt	observation compartment for added observation time(s)
bioav	bioavailability (numeric vector, can not be a parameter)

reparametrize 39

Value

Data frame containing doses

reparametrize Reparametrize model parameters using a reparametrization defined

within the model.

Description

Mostly useful for reparametrizing models into standard parametrizations, e.g. to NONMEM TRANS or clinPK parametrizations.

Usage

```
reparametrize(model, parameters, covariates)
```

Arguments

model PKPDsim model, compiled using reparametrization argument or in metadata

object.

parameters list of model parameters

covariates covariates list, specified as PKPDsim covariates

Value

Reparameterized model parameters

```
search_replace_in_file
```

Find string and replace in file

Description

Find string and replace in file

Usage

```
search_replace_in_file(files = c(), find = NULL, replacement = NULL)
```

Arguments

files vector of files

find find what string, vector of character

replacement replace with what, vector of character, should be equal in length to find

Value

Function does not return a value but edits files on disk

shift_regimen

Remove n doses (from start) of PKPDsim regimen

Description

```
Opposite of pop_regimen()
```

Usage

```
shift_regimen(regimen, n = 1, reset_time = TRUE)
```

Arguments

regimen PKPDsim regimen created using new_regimen()

n number of doses to shift regimen

reset_time reset the remaining doses to start at t=0?

Value

Regimen with selected number of doses removed from start

See Also

pop_regimen

sim

Simulate ODE or analytical equation

Description

Simulates a specified regimen using ODE system or analytical equation

Usage

```
sim(
  ode = NULL,
  analytical = NULL,
  parameters = NULL,
  parameters_table = NULL,
  mixture_group = NULL,
  omega = NULL,
  omega_type = "exponential",
  res_var = NULL,
  iov_bins = NULL,
  seed = NULL,
```

```
sequence = NULL,
  n_{ind} = 1,
  event_table = NULL,
  regimen = NULL,
  lagtime = NULL,
  covariates = NULL,
  covariates_table = NULL,
  covariates_implementation = list(),
  covariate_model = NULL,
  A_init = NULL,
  only_obs = FALSE,
  obs_step_size = NULL,
  int_step_size = 0.01,
  t_max = NULL,
  t_{obs} = NULL,
  t_tte = NULL,
  t_{init} = 0,
  obs_{type} = NULL,
  duplicate_t_obs = FALSE,
  extra_t_obs = TRUE,
  rtte = FALSE,
  checks = TRUE,
  verbose = FALSE,
  return_event_table = FALSE,
  return_design = FALSE,
  output_include = list(parameters = FALSE, covariates = FALSE),
)
```

Arguments

ode function describing the ODE system

analytical string specifying analytical equation model to use (similar to ADVAN1-5 in

NONMEM). If specified, will not use ODEs.

parameters model parameters

parameters_table

dataframe of parameters (with parameters as columns) containing parameter estimates for individuals to simulate. Formats accepted: data.frame, data.table, or

list of lists.

mixture_group mixture group for models containing mixtures. Should be either 1 or 2, since

only two groups are currently allowed.

omega vector describing the lower-diagonal of the between-subject variability matrix

omega_type exponential or normal, specified as vector

res_var residual variability. Expected a list with arguments prop, add, and/or exp.

NULL by default.

iov_bins allow override of the default IOV bins for a model. Specified as a vector of time-

points specifying the bin separators, e.g. iov_bins = c(0, 24, 48, 72, 9999).

seed set seed for reproducible results

sequence if not NULL specifies the pseudo-random sequence to use, e.g. "halton" or

"sobol". See mvrnorm2 for more details.

n_ind number of individuals to simulate

event_table use a previously created design object used for ODE simulation instead of call-

ing create_event_table() to create a new one. Especially useful for repeated calling of sim(), such as in optimizations or optimal design analysis. Also see sim_core() for even faster simulations using precalculated design objects.

regimen a regimen object created using the regimen() function

lagtime either a value (numeric) or a parameter (character) or NULL.

covariates list of covariates (for single individual) created using new_covariate() func-

tion

covariates_table

data.frame (or unnamed list of named lists per individual) with covariate values

covariates_implementation

used only for covariates_table, a named list of covariate implementation

methods per covariate, e.g. list(WT = "interpolate", BIN = "locf")

covariate_model

R code used to pre-calculate effective parameters for use in ADVAN-style ana-

lytical equations. Not used in ODE simulations.

A_init vector with the initial state of the ODE system

only_obs only return the observations

obs_step_size the step size between the observations int_step_size the step size for the numerical integrator

t_max maximum simulation time, if not specified will pick the end of the regimen as

maximum

t_obs vector of observation times, only output these values (only used when t_obs==NULL)

t_tte vector of observation times for time-to-event simulation

t_init initialization time before first dose, default 0.

obs_type vector of observation types. Only valid in combination with equal length vector

t_obs.

duplicate_t_obs

allow duplicate t_obs in output? E.g. for optimal design calculations when t_obs

= c(0,1,2,2,3). Default is FALSE.

extra_t_obs include extra t_obs in output for bolus doses? This is only activated when t_obs

is not specified manually. E.g. for a bolus dose at t=24, if FALSE, PKPDsim will output only the trough, so for bolus doses you might want to switch this setting to TRUE. When set to "auto" (default), it will be TRUE by default, but

will switch to FALSE whenever t_obs is specified manually.

rtte should repeated events be allowed (FALSE by default)

checks perform input checks? Default is TRUE. For calculations where sim_ode is

invoked many times (e.g. population estimation, optimal design) it makes sense to switch this to FALSE (after confirming the input is correct) to improve speed.

```
verbose show more output

return_event_table

return the event table for the simulation only, does not run the actual simulation.

Useful for iterative use of sim().

return_design

returns the design (event table and several other details) for the simulation, does not run the actual simulation. Useful for iterative functions like estimation in combination with sim_core(), e.g. for estimation and optimal design.

output_include

list specifying what to include in output table, with keys parameters and covariates.

Both are FALSE by default.

extra parameters
```

Value

a data frame of compartments with associated concentrations at requested times Simulated regimen

See Also

```
sim_ode_shiny
```

Examples

```
p <- list(
 CL = 38.48,
 V = 7.4,
 Q = 7.844
 V2 = 5.19,
 Q2 = 9.324
 V3 = 111
)
omega <- c(0.3,
                  # IIV CL
           0.1, 0.3) # IIV V
r1 <- new_regimen(</pre>
 amt = 100,
 times = c(0, 24, 36),
 type = "infusion"
)
mod <- new_ode_model("pk_3cmt_iv")</pre>
dat <- sim(</pre>
 ode = mod,
 parameters = p,
 omega = omega,
 n_{ind} = 20,
 regimen = r1
)
```

sim_ode

sim_core	Only core function of the simulation function, always just returns observations. Mostly useful for estimations / optimal design. Has no checks (for speed)!
	checks (for speed)!

Description

Only core function of the simulation function, always just returns observations. Mostly useful for estimations / optimal design. Has no checks (for speed)!

Usage

```
sim_core(sim_object = NULL, ode, duplicate_t_obs = FALSE, t_init = 0)
```

Arguments

 $\begin{tabular}{ll} sim_object & list with design and simulation parameters \\ ode & ode \\ duplicate_t_obs & \\ & allow duplicate t_obs in output? E.g. for optimal design calculations when t_obs \\ & = c(0,1,2,2,3). \begin{tabular}{ll} Default is FALSE. \\ t_init & time of initialization of the ODE system. Usually 0. \\ \end{tabular}$

Value

Data frame with simulation results

sim_ode

Deprecated function, renamed to sim()

Description

Deprecated function, renamed to sim()

Usage

```
sim_ode(...)
```

Arguments

... parameters passed to sim() function

Value

Output from sim()

sim_ode_shiny 45

See Also

sim

sim_ode_shiny

Simulate ODE and create a Shiny app

Description

This function has been deprecated and moved to a separate package at https://github.com/ronkeizer/PKPDsimshiny.

Usage

```
sim_ode_shiny(...)
```

Arguments

... arguments passed to PKPDsimShiny::sim_ode_shiny()

Value

No return value

See Also

sim_ode

table_to_list

Convert a table to a list

Description

Convert a table to a list

Usage

```
table_to_list(table)
```

Arguments

table

data.frame

Value

List containing original table contents

46 test_pointer

test_model

Test a model

Description

Test a model

Usage

```
test_model(url, test_file, package, force = FALSE)
```

Arguments

url URL or file path to JSON representation of model

test_file Path to a .R file containing tests to run

package Package name

force Run tests even if model is not flagged for building? Defaults to FALSE

Value

Runs test file for a model but does not return a value

test_pointer

Test if model still in memory

Description

Test if model still in memory

Usage

```
test_pointer(model)
```

Arguments

model

pointer to model

Value

No return value

translate_ode 47

translate_ode

Translate a model from/to various PKPD simulators

Description

Currently only supports PKDPsim <-> RxODE

Usage

```
translate_ode(code, auto = TRUE, from = NULL, to = NULL, verbose = TRUE)
```

Arguments

code character string with ODE code auto is auto-detect syntax (from)

from from syntax to to syntax

verbose verbose, TRUE or FALSE

Value

Translated PKPDsim or RxODE model

triangle_to_full

Convert triangle omega matrix to full omega matrix

Description

Convert triangle omega matrix to full omega matrix

Usage

```
triangle_to_full(vect)
```

Arguments

vect

vector specifying triangle omega matrix

Value

Omega matrix

Index

```
* datasets
                                                get_model_linearity (get_model_info), 18
    pkdata, 35
                                                get_model_parameters (get_model_info),
add_quotes, 3
                                                get_model_structure (get_model_info), 18
add_ruv, 4
                                                get_ode_model_size, 19
add_ruv_to_quantile, 4
                                                get_parameters_from_code, 20
adherence_binomial, 5
                                                get_var_y, 20
adherence_markov, 5
advan, 6
                                                ifelse0, 22
advan_create_data, 6
                                                install_default_literature_model, 22
advan_parse_output, 7
                                                is_positive_definite, 23
advan_process_infusion_doses, 7
                                                join_cov_and_par, 23
apply_duration_scale, 8
                                                join_regimen, 24
apply_lagtime, 9
                                                jsonlite::fromJSON(), 38
available_default_literature_models, 9
available_default_literature_models(),
                                                lower_triangle_mat_size, 24
        22
                                                merge_regimen, 25
calc_auc_analytic, 11
                                                model_from_api, 25
calc_dydP, 12
                                                model_from_api(), 22
calc_ss_analytic, 12
                                                model_library, 26
calculate_parameters, 10
                                                mvrnorm2, 27
check_obs_input, 13
compile_sim_cpp, 14
                                                na_locf, 27
covariate_last_obs_only, 16
                                                new_adherence, 28
covariates_table_to_list, 15
                                                new_covariate, 28
cv_to_omega, 16
                                                new_covariate_model, 29
                                                new_ode_model, 30
detect_ode_syntax, 17
                                                new_ode_model(), 22, 26
f_cov, 17
                                                new_regimen, 33
                                                nlmixr_parse_parameters, 34
get_fixed_parameters, 18
                                                nm_to_regimen, 35
get_model_auc_compartment
        (get_model_info), 18
                                                pkdata, 35
get_model_covariates (get_model_info),
                                                pkpdsim_to_nlmixr, 36
        18
                                                pop_regimen, 37
get_model_fixed_parameters
                                                print_list, 37
        (get_model_info), 18
get_model_info, 18
                                                read_model_json, 38
get_model_iov (get_model_info), 18
                                                read_model_json(), 18
```

INDEX 49

```
regimen_to_nm, 38
reparametrize, 39

search_replace_in_file, 39
shift_regimen, 40
sim, 40
sim(), 44
sim_core, 44
sim_ode, 16, 34, 44, 45
sim_ode_shiny, 43, 45

table_to_list, 45
test_model, 46
test_pointer, 46
translate_ode, 47
triangle_to_full, 47
```