Econ.720 Recitation-6

Yanran Guo UNC-Chapel Hill

Define CE 1

Model

Solve the model using sequential language =Lagrangian

$$L = \sum_{t=0}^{\infty} \beta^t u(c_t) + \lambda_t(BC)$$
 FOC, EE

Solve the model using recursive language =Dynamic Programming (DP)

$$V(k) = \max_{c,k'} u(c) + \beta V(k') + \lambda(BC)$$

FOC, Envelope Condition (EC), EE

 $\begin{array}{c} \nwarrow & \nearrow \\ \text{Define } \overset{\nearrow}{\text{CE}} \end{array}$ as before

Define Recursive CE $\mathbf{2}$

Model

Solve the model using DP with aggregate state variable

Define recursive CE

3 Example

Model setup:

• Household

$$\max \sum_{t=0}^{\infty} \beta^t u(c_t)$$
s.t. $c_t + k_{t+1} = (1 - \delta + q_t)k_t + w_t$

No population growth, k_0 is given

• Firm

$$\max F(K_t, L_t) - w_t L_t - q_t K_t$$

(1). Define CE

• Household

Sequential language:

$$L = \sum_{t=0}^{\infty} \{ \beta^t u(c_t) + \lambda_t [(1 - \delta + q_t)k_t + w_t - c_t - k_{t+1}] \}$$
FOC
$$[c_t] : \quad \beta^t u'(c_t) = \lambda_t$$

$$[k_{t+1}] : \quad \lambda_{t+1} (1 - \delta + q_{t+1}) = \lambda_t$$
EE
$$u'(c_t) = \beta u'(c_{t+1}) (1 - \delta + q_{t+1})$$

The solution to the HH problem is a sequence $\{c_t, k_{t+1}\}$ that satisfy

$$-$$
 BC

- EE

 $-k_0$ is given

- TVC

Recursive language:

$$V(k) = \max u(c) + \beta V(k')$$

s.t. $c + k' = (1 - \delta + q)k + w$

Bellman equation

$$V(k) = \max u((1 - \delta + q)k + w - k') + \beta V(k')$$

FOC
$$[k']$$
: $\beta V'(k') = u'(c)$
EC $[k]$: $V'(k) = u'(c)(1 - \delta + q)$
EE $\beta u'(c')(1 - \delta + q') = u'(c)$

The solution to the HH problem is

policy functions: $c = \phi(k), \ k' = h(k)$ value function: V

s.t.

- The policy functions solve the "max" part of Bellman equation, given V
- The value function is a fixed point of Bellman equation, given c and k'

\bullet Firm

$$\max F(K_t, L_t) - w_t L_t - q_t K_t$$

FOC

$$[K_t]: F_K(K_t, L_t) = q_t$$

$$[L_t]: F_L(K_t, L_t) = w_t$$

• CE

Allocations $\{c_t, k_t, K_t, L_t\}$ and prices $\{w_t, q_t\}$, s.t.

Household: BC, EE

Firm: FOCs

Market Clearing condition

- Good market: $F(K_t, L_t) = c_t + K_{t+1} - (1 - \delta)K_t$

– Capital market: $K_t = k_t$

– Labor market: $L_t = 1$

(2). Define Recursive CE

- Household
 - Cannot use sequential language any more!
 - DP + key feature (aggregate state variable)
 - Aggregate state variables enter value function $V(k, \kappa)$. Prices are functions of state variables $q(\kappa)$ and $w(\kappa)$
 - Households take aggregate state variables as exogenously given

Bellman equation:

$$V(k, \kappa) = \max u((1 - \delta + q(\kappa))k + w(\kappa) - k') + \beta V(k', \kappa')$$

FOC [k']: $\beta V_1(k', \kappa') = u'(c)$

EC [k]: $V_1(k,\kappa) = u'(c)(1-\delta+q(\kappa))$

EE: $\beta u'(c')(1 - \delta + q(\kappa')) = u'(c)$

The solution to the HH problem is

policy functions: $c = \phi(k, \kappa), k' = h(k, \kappa)$

value function: V

s.t.

- The policy functions solve the "max" part of Bellman equation, given V
- The value function is a fixed point of Bellman equation, given c and k'

• Firm

$$\max F(K, L) - w(\kappa)L - q(\kappa)K$$

FOC

$$[K]: F_K(K,L) = q(\kappa)$$

$$[L]: F_L(K,L) = w(\kappa)$$

Solution: $K(\kappa)$ and $L(\kappa)$

• Recursive CE

Objects

- Household: policy functions $c=\phi(k,\kappa),\ k'=h(k,\kappa)$ and value function V
- Firm: $K(\kappa)$ and $L(\kappa)$
- Price functions: $w(\kappa)$ and $q(\kappa)$
- Law of motion for aggregate state variable: $\kappa' = G(\kappa)$

that satisfy

- Solution to HH problem
- Firm FOC
- Market Clearing condition
 - * Good market: $F(K(\kappa), L(\kappa)) = \phi(k, \kappa) + h(k, \kappa) (1 \delta)K(\kappa)$
 - * Capital market: $K(\kappa) = k$
 - * Labor market: $L(\kappa) = 1$
- Consistency: $G(\kappa) = h(\kappa, \kappa)$

- 1. Please solve the household problem
 - \rightarrow Be careful with how to define the solution
- 2. Please solve the household problem using sequential language
 - $\rightarrow Lagrangian$
- 3. Please solve the household problem using recursive/ functional language
 - \rightarrow DP, Bellman equation
- 4. State the household's dynamic program \rightarrow DP, Bellman equation
- 5. Write down the Bellman equation for the household
- 6. Define a competitive equilibrium
- 7. Define a recursive competitive equilibrium