

ATLAS Note

Search for flavor-changing neutral currents tHq interactions with $H \to \tau^+\tau^-$ in proton-proton collisions at $\sqrt{s} = 13$ TeV

The ATLAS Collaboration

17th August 2020

A search is presented for flavor-changing neutral currents tHq interactions with $H \to \tau^+\tau^-$ using a data set collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 fb⁻¹ of proton-proton collisions at a center-of-mass energy of 13 TeV. The search is performed in the decay chain $t\bar{t} \to Wb + Hq$ or $qg \to tH \to Wb + H$ (q = c/u), where the W boson decays inclusively and H decays to $\tau^+\tau^-$. Upper limits at 95 % confidence level for the coupling coefficient are measured to be XXX and XXX, while the expected limits are XXX_{-XXX}^{+XXX} % and XXX_{-XXX}^{+XXX} %, respectively.

To be done:

10

15

- 1) Theory systematics
- 2) Systematics for lepton channels

© 2020 CERN for the benefit of the ATLAS Collaboration.

17 Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

18 Contents

19	1	Intr	roduction	4
20	2	Dete	ector, data set and Monte Carlo simulation	5
21		2.1	ATLAS detector	5
22		2.2	Data set	6
23		2.3	Signal and background simulation	7
24	3	Obj	ject reconstruction	9
25		3.1	Jets	9
26		3.2	b-tagging	9
27		3.3	Electrons	9
28		3.4	Muons	10
29		3.5	Hadronic tau decays	10
30		3.6	Missing transverse energy	10
31		3.7	Overlap removal	10
32	4	Rec	construction of event topology	12
33	5	Sele	ection of events	17
34		5.1	Trigger	17
35		5.2	Event cuts and regions	19
36	6	FC	NC signal samples	35
37	7	Bac	kground estimation	35
38		7.1	Origin of fake $ au_{ m had}$	36
39		7.2	MC fake τ_{had} estimation	36
40		7.3	QCD fake τ_{had} estimate in $\tau_{\text{had}}\tau_{\text{had}}$	37
41		7.4	Fake lepton background	38
42		7.5	Summary of signal and background events	38
43	8	MV	'A analysis	46
44	9	Syst	tematic uncertainties	54
45		9.1	Luminosity	54
46		9.2	Detector-related uncertainties	54
47		9.3	Uncertainties on fake background estimations	56
48		9.4	Theoretical uncertainties on the background	56
49		9.5	Uncertainties on the signal modelling	57

	_
DRAFT	

50	10 Fit model and signal extraction	58
51	11 Results	62
52	Appendix	63

3 1 Introduction

Since the discovery of the Higgs boson in 2012, great efforts are made to study its properties. As the mass of the Higgs boson is about 125 GeV [1], it is kinematically allowed that a top quark decays to a Higgs boson and an up-type quark via the flavour-changing neutral current (FCNC). In the Standard Model (SM), the FCNC interaction is forbidden at tree level and suppressed at higher orders due to the Glashow-Iliopoulos-Maiani (GIM) mechanism [2]. The $t \rightarrow u/c + H$ branching fraction in the SM is calculated to be around 10^{-15} [3]. It would be enhanced in many models beyond the SM (BSM). Examples are the quark-singlet model [4, 5], the two-Higgs doublet model with or without the flavour violation [6, 7], the minimal supersymmetric standard model (MSSM) [8], supersymmetry with R-parity violation [9], the Topcolour-assisted Technicolour model [10] or models with warped extra dimensions [11], the little Higgs model with T-parity conservation [12] and the composite Higgs models [13]. Especially, the ansatz of Cheng and Sher [14] allows a branching fraction of about 10^{-3} [15]. Therefore, an observation of this decay would be a clear evidence for new physics.

On the other hand, if the tHq interaction exists, the single-top, Higgs associated production through this interaction should also be enhanced. The tH associated production in the SM prediction is expected to be small at LHC[16]. So the study on this process will also contribute to the FCNC interaction searches.

Upper 95% CL limits on BR($t \to Hq$) have been obtained by ATLAS based on the data from 2015 and 2016, in the $H \to \gamma \gamma$ [17], $H \to WW/\tau_{\rm lep}\tau_{\rm lep}$ multilepton [18] and $H \to \tau \tau$, $H \to b\bar{b}$ [19] channels. The combined expected (observed) limits are 0.083% (0.11%) and 0.083% (0.12%) for $t \to Hc$ and $t \to Hu$, respectively.

The $t \to Hq$ decay and $gq \to tH$ production are also searched by CMS based on the data from 2015 and 2016[20].

The FCNC coupling is parametrised using dim-6 operators [21]. The effective Lagrangian regarding tqH interaction before spontaneously symmetry breaking is:

$$\mathcal{L}_{EFT} = \frac{C_{u\phi}^{i3}}{\Lambda^2} (\phi^{\dagger} \phi) (\bar{q}_i t) \tilde{\phi} + \frac{C_{u\phi}^{3i}}{\Lambda^2} (\phi^{\dagger} \phi) (\bar{Q} u_i) \tilde{\phi} + H.c \tag{1}$$

Where the operator notation is consistent with [21]. C^{i3} is the Wilson coefficient of the 6-dim operator with i=1,2 denoting the flavor of upper type quark. Λ is the scale of the new physics where the UV cut off happens which is set as 1 TeV as benchmark. ϕ is the SM higgs doublet. $\tilde{\phi} = \epsilon \phi^*$ where ϵ is the antisymmetric matrix with $\epsilon_{12} = -\epsilon_{21} = 1$.

The Wilson coefficient $C_{u\phi}$'s can be extracted as

$$(C_{u\phi}^{i3})^{2} + (C_{u\phi}^{3i})^{2} = 1946.6 \text{ BR}(t \to qH)$$

$$(C_{u\phi}^{13})^{2} + (C_{u\phi}^{31})^{2} = \sigma(ug \to tH)/365.2 \text{ fb}$$

$$(C_{u\phi}^{23})^{2} + (C_{u\phi}^{32})^{2} = \sigma(cg \to tH)/52.9 \text{ fb}$$
(2)

To give a better impression on the numbers, we use BR($t \to qH$) = 1(0.2)% as benchmark, which is corresponding to $(C_{u\phi}^{13})^2 + (C_{u\phi}^{31})^2 = 19.47(3.89)$, $\sigma(ug \to tH) = 7109.0(1421.8)$ pb, $\sigma(cg \to tH) = 1029.8(206.0)$ pb.

In this article, a search for the decay $t \to qH$ in the $t\bar{t}$ production (TT) and single-top, Higgs associated production (ST) with $H \to \tau\tau$ as shown in Fig 1 using 140 fb⁻¹ of proton-proton collision data at 13 TeV, taken with the ATLAS detector at the Large Hadron Collider (LHC), is presented. The final state is characterized by one top and one Higgs. In TT, there is an additional u/c quark forming a top resonance with Higgs.

Figure 1: Diagrams of FCNC TT(left) and ST(right) process.

90 2 Detector, data set and Monte Carlo simulation

91 2.1 ATLAS detector

The ATLAS detector [22] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroid magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged particle tracking in the range $|\eta| < 2.5$. A high-granularity silicon pixel detector covers the vertex region and typically provides three measurements per track. It is followed by a silicon microstrip tracker, which usually provides four two-dimensional measurement points per track. These silicon detectors are complemented by a transition radiation tracker, which enables radially extended track reconstruction up to $|\eta| < 2.0$. The transition radiation tracker also provides electron identification information based on the fraction of hits above a higher energy-deposit threshold corresponding to transition radiation. Compared to Run-1, an Insertable B-Layer [23] (IBL) is inserted as the innermost pixel layer during LS1 for Run-2, which significantly improves the tracking performance.

- The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. Within the region $|\eta| < 3.2$, electromagnetic calorimetry is provided by barrel and endcap high-granularity liquid-argon (LAr) electromagnetic calorimeters, with an additional thin LAr presampler covering $|\eta| < 1.8$, to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided by a scintillator-tile calorimeter, segmented into three barrel structures within $|\eta| < 1.7$, and two LAr hadronic endcap calorimeters.
- A muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field generated by superconducting air-core toroids. The precision chamber system covers the region $|\eta| < 2.7$ with three layers of monitored drift tubes, complemented by cathode strip chambers in the forward region, where the background is highest. The muon trigger system covers the range $|\eta| < 2.4$ with resistive-plate chambers in the barrel, and thin-gap chambers in the endcap regions.

16 2.2 Data set

- This analysis is based on the full proton-proton data at a center-of-mass energy $\sqrt{s} = 13$ TeV with a bunch spacing of 25 ns collected by ATLAS in Run-2. The following good run list (GRL) was used for the 2015 dataset:
- data15_13TeV.periodAllYear_DetStatus-v89-pro21-02_Unknown_PHYS_StandardGRL_All_Good_25ns.xml
- which corresponds to an integrated luminosity of 3.22 fb^{-1} .
- The GRL used for the 2016 dataset:
- data16_13TeV.periodAllYear_DetStatus-v89-pro21-01_DQDefects-00-02-04_PHYS_StandardGRL_All_Good_25ns.x
- corresponds to an integrated luminosity of 32.88 fb⁻¹.
- These GRLs exclude data where the IBL was not fully operational. The uncertainty in the combined
- 2015+2016 integrated luminosity, 36.1 fb⁻¹, is 2.1%. It is derived, following a methodology similar to
- that detailed in Ref. [24], from a calibration of the luminosity scale using x-y beam-separation scans
- performed in August 2015 and May 2016.
- The GRL used for the 2017 dataset:
- data17_13TeV.periodAllYear_DetStatus-v99-pro22-01_Unknown_PHYS_StandardGRL_All_Good_25ns_Triggerno17
- corresponds to an integrated luminosity of 44.307 fb⁻¹.
- The GRL used for the 2018 dataset:
- data18_13TeV.periodAllYear_DetStatus-v102-pro22-04_Unknown_PHYS_StandardGRL_All_Good_25ns_Triggerno1

corresponds to an integrated luminosity of 59.937 fb^{-1} . The final luminosity used for the analysis is 140.45 fb^{-1} .

2.3 Signal and background simulation

- The overview of the major samples generated is summarized in table 1.
- The TopFCNC UFO model [25, 26] with 5-flavour scheme is used for signal simulation.
- The FCNC ST signal is simulated using MadGraph5_aMC@NLO v2.6.2 [27] interfaced with Pythia 8 [28] with the A14 tune [29] for the generation of parton showers, hadronisation and multiple interactions and the NNPDF30NLO [30] parton distribution functions (PDF) is used to generate *qg* events at next-to-leading order (NLO) in QCD. Depending on either up quark or charm quark involved in the FCNC decay and either the *W* bosons decaying hadronically or leptonically, 4 samples are generated for each term of effective Lagrangian, so eight samples in total.
- The FCNC TT signal is simulated using Powheg-Box [31] V2 interfaced with Pythia8 [28] with the A14 tune [29] for the generation of parton showers, hadronisation and multiple interactions and the NNPDF30NLO [30] parton distribution functions (PDF) is used to generate $t\bar{t}$ events at next-to-leading order (NLO) in QCD. Depending on either the top or the anti-top quark decaying to bW, either up quark or charm quark involved in the FCNC decay and either the W bosons decaying hadronically or leptonically, eight samples are produced with the Higgs going to a τ -lepton pair.
- The dominant background is the $t\bar{t}$ production. The $t\bar{t}$ process and the single top process are generated with Powheg-Box [31] V2, and Pythia8 is used for the parton shower. NNPDF30NLO [30] and A14 tune [29] are used for $t\bar{t}$ (single top). The $t\bar{t}$ sample is also generated with different generators and parton showers models, as well as different amount of radiations, for systematics as detailed in Sec. 9.
- The $t\bar{t}X$, where X=W, ee, $\mu\mu$, $\tau\tau$ or $Z(qq, \nu\nu)$ ($\tau\tau$ has the Higgs resonance excluded), are generated with MadGraph5_aMC@NLO and inferfaced with Pythia8 for the parton shower. The NNPDF30NLO [30] is used for the matrix element PDF. The $t\bar{t}$, single top and $t\bar{t}X$ are combined into a single process named top background in the analysis.
- The W+jets, Z+jets and diboson backgrounds are simulated using Sherpa 2.2.1 [32] with NNPDF30NNLO PDF [30].
- The τ decay in the single top samples is handled by Tauola [33]. All samples showered by Pythia8 (Sherpa) have the τ decays also handled by Pythia8 (Sherpa). All the decay modes of the τ lepton are allowed in the event generators (but may be subject to generator filters). The summary of used generators for matrix element and parton shower is given in Tab. 1.

Process	Generator		PDF	set	Tune	Ondon	
FIOCESS	ME	PS	ME	PS	Tune	Order	
TT Signal	Powheg	Pythia8	NNPDF30NLO	NNPDF23LO	A14	NLO	
ST Signal	MadGraph5_aMC@NLO	Pythia8	NNPDF30NLO	NNPDF23LO	A14	NLO	
W/Z+jets	Sherpa 2.2.1		NNPDF3	0NNLO	Sherpa	NLO/LO	
$t\bar{t}$	Powheg	Pythia8	NNPDF30NLO	NNPDF23LO	A14	NLO	
Single top	Powheg	Pythia6	CT10(NLO)	CTEQ6L1[44]	Perugia2012	NLO	
$t\bar{t}X$	MadGraph5_aMC@NLO	Pythia8	NNPDF30NLO	NNPDF23LO	A14	NLO	
Diboson	Sherpa 2.2.1		NNPDF3	0NNLO	Sherpa	NLO/LO	

Table 1: Overview of the MC generators used for the main signal and background samples

The SM higgs background includes ggH, VH, VBF and $t\bar{t}H$, generated from Powheg-Box [31] V2 interfaced with Pythia8. The overall contribution is pretty small. Various PDF and tune options are use for those samples depending on the decay modes.

The *tH* associated production is negligible but we still considered it. The sample is generated using MadGraph5 and interfaced with pythia8 for parton shower. CT10 PDF and A14 tune are used. It is treated as part of SM higgs background explained in above.

All Monte-Carlo (MC) samples were passed through the full GEANT4 [34] simulation of the ATLAS detector, except for two extra $t\bar{t}$ samples with Pythia8 and Herwig7 [35] parton showering which are simulated with ATLFAST-II [36] for systematics (Sec. 9). In the analysis, the simulated events were reweighted based on their pile-up to match the pile-up profile observed in data.

The full list of MC samples and their corresponding cross sections are given in App. ??. The single boson and diboson cross sections are calculated to NNLO [37]. The $t\bar{t}$ cross section is calculated at NNLO in QCD including resummation of NNLL soft gluon terms for a top-quark mass of 172.5 GeV [38]. The $t\bar{t}H$ and $t\bar{t}V$ are normalized to NLO cross sections according to [39] and [40]. The t-channel and s-channel single top cross sections are calculated at NLO with Hathor v2.1 [41, 42], while the Wt channel is calculated at NLO+NNLL [43].

3 Object reconstruction

In this section, various objects used in this analysis are defined, namely jets, electrons, muons, hadronically decaying taus and missing transverse energy.

184 3.1 Jets

Jets are reconstructed using the anti- k_t algorithm [45] with a distance parameter R=0.4 applied to the particle flow candidates. Only jets with $p_T>25$ GeV and $|\eta|<4.5$ are considered by the analysis. To suppress jets produced in additional pile-up interactions, jets with $p_T<60$ GeV and $|\eta|<2.4$ are required to have a Jet Vertex Tagger (JVT [46]) parameter larger than 0.2 (Medium working point). The JVT is the output of the jet vertex tagger algorithm used to identify and select jets originating from the hard-scatter interaction through the use of tracking and vertexing information. About 10% of selected jets in the signal are in the forward detector region. Figure $\ref{eq:parameter}$ shows the η of the 4th leading jet in the analysis. After the above selection and overlap removal, a "jet cleaning" cut is applied on all the jets, and the events with jets not passing this cut are discarded.

194 3.2 b-tagging

The DL1r [47] algorithm is used to identify the jets initiated by b-quarks. A working point corresponding to an average efficiency of 70% for jets containing b-quarks is chosen.

197 3.3 Electrons

Electron candidates are identified by tracks reconstructed in the inner detector and the matched cluster of energy deposited in the electromagnetic calorimeter. Electrons candidates are required to have $E_T > 15$ GeV and $|\eta| < 2.47$. The transition region, $1.37 < |\eta| < 1.52$, between the barrel and end-cap calorimeters is excluded. They are further required to pass a loose + b-layer likelihood-based identification point [48] and a FCLoose isolation working point [49]. The electrions are further removed if its cluster is affected by the presence of a dead frontend board in the first or second sampling or by the presence of a dead high voltage region affecting the three samplings or by the presence of a masked cell in the core.

205 **3.4 Muons**

Muon reconstruction begins with tracks reconstructed in the MS and is matched to tracks reconstructed in the inner detector. Muon candidates are required to have $p_T > 10$ GeV and $|\eta| < 2.5$. A Loose identification selection [50] based on the requirements on the number of hits in the ID and the MS is satisfied. A Gradient isolation [49] criterion is also required.

3.5 Hadronic tau decays

The hadronic tau candidates [51] are seeded by jets reconstructed by the anti- k_t algorithm [45], which is applied on calibrated topo clusters [52] with a distance parameter of R=0.4. They are required to have $p_T > 20$ GeV and $|\eta| < 2.5$. The transition region between the barrel and end-cap calorimeters 213 $(1.37 < |\eta| < 1.52)$ is excluded. An identification algorithm based on Recursive Neural Network [53] 214 is applied to discriminate the visible decay products of hadronically decaying tau lepton τ_{had} from jets 215 initiated by quarks or gluons. Different RNN working points are provided and required at different levels depending on the analysis channel. The Loose ID taus are used for the overlap removal and missing 217 transverse energy calculation. In the analysis event selection, the hadronic tau candidates are required to 218 have one or three charged tracks and an absolute charge of one, and pass the Medium tau ID to reject the 219 jets. For the Medium ID, the tau efficiency is about 75% (60%) for 1-prong (3-prong) candidates. The ID 220 efficiencies are optimized to be flat versus the tau p_T and pileup. The tau candidates are required to not overlap with a very loose electron candidate, and a dedicated BDT variable is also used to veto the taus which are actually electrons. If the τ_{had} candidate is also tagged as a b-jet, then this tau object is also not 223 used. Efficiency scale factors for tau reconstruction, ID and electron BDT rejection [54] are applied on 224 tau candidates in MC.

226 3.6 Missing transverse energy

The missing transverse energy $E_{\rm T}^{\rm miss}$ is computed using the fully calibrated and reconstructed physics objects as described above. The TrackSoftTerm (TST) algorithm is used to compute the SoftTerm of the $E_{\rm T}^{\rm miss}$ [55].

230 3.7 Overlap removal

For the objects passing the selection above, a geometric overlap removal is applied to eliminate the ambiguity in the object identification. When two objects are close geometrically with ΔR less than a certain threshold, or satisfy some certain requirements, one of them will be removed. The overlap removal is done by the official overlap removal tool provided by ASG group. The "Standard" working point is used. The rules are discribed as follows in sequence:

- If two electrons have overlapped second-layer cluser, or shared tracks, the electron with lower p_T is removed.
- τ_{had} within a $\Delta R = 0.2$ cone of an electron or muon are removed.

236

237

- If a muon sharing an ID track with an electron and the muon is calo-tagged, the muon is removed.

 Otherwise the electron is removed.
- Jets within a $\Delta R = 0.2$ cone of an electron are removed.
- Electrons within a $\Delta R = 0.4$ cone of a jet are removed.
- When a muon ID track is ghost associated to a jet or within a $\Delta R = 0.2$ cone of a jet, the jet is removed if it has less than 3 tracks with $p_{\rm T} > 500$ MeV or has a relative small $p_{\rm T}$ ($p_{\rm T}^{\mu} > 0.5p_{\rm T}^{\rm jet}$ and $p_{\rm T}^{\mu} > 0.7$ [the scalar sum of the $p_{\rm T}$'s of the jet tracks with $p_{\rm T} > 500$ MeV]).
- Muons within a $\Delta R = 0.4$ cone of a jet are removed.
- Jets within a $\Delta R = 0.2$ cone of the leading τ_{had} ($\tau_{lep}\tau_{had}$), or with the two leading τ_{had} 's ($\tau_{had}\tau_{had}$), are excluded. The overlap also works for the reverted tau ID regions used in the analysis, since the tau ID information is not used.
- If a tau object is also tagged as a b-jet, then this tau object is removed.
- Note that the $E_{\rm T}^{\rm miss}$ calculation package has its own overlap removal procedure. Taus that fail Loose ID are also passed to the package. Only two leading taus are considered in the calculation.

Table 2: Overview of the final states of signal events

# of particles		alias	b-jet	jets	lepton	taus
ST	$W \rightarrow l \nu$	STL	1	1	1	2
31	$W \rightarrow q\bar{q}$	STH	1	3	0	2
TT	$W \rightarrow l \nu$	TTL	1	2	1	2
11	$W \rightarrow q\bar{q}$	TTH	1	4	0	2

Table 3: Overview of the signal regions

# of particles	b-jet	jets	lepton	hadronic taus
$2lSS\tau_{ m had}$	1	≥ 1	2	1
$l au_{ m had} au_{ m had}$	1	≥ 1	1	2
STH $ au_{ m had} au_{ m had}$	1	3	0	2
TTH $ au_{ m had} au_{ m had}$	1	≥ 4	0	2
STH $\tau_{\rm lep} \tau_{\rm had}$	1	3	1	1
TTH $\tau_{\rm lep} \tau_{\rm had}$	1	≥ 4	1	1

4 Reconstruction of event topology

Depending on the production modes and the decay of the W boson from top quark, the analysis is split into 4 categories as shown in table 3. All of the 8 decay modes are considered in the analyses. The selection requirement dedicated for each decay mode is also listed in talbe 3. Due to the low statistics when STL cuts are applied, the ST and TTL are included in a single region ($l\tau_{had}$ for $H \to \tau_{had}\tau_{had}$ and $2lSS\tau_{had}$ for $H \to \tau_{lep}\tau_{had}$) where there is no light jet multiplicity requirement. In order to reduce the background, the $2lSS\tau_{had}$ region requires the the leptonic tau and the lepton from W decay to be of the same charge, where the "2lSS" comes from.

For the future convenience, STH $\tau_{lep}\tau_{had}$ and TTH $\tau_{lep}\tau_{had}$ are indicated by $\tau_{lep}\tau_{had}$; STH $\tau_{had}\tau_{had}$ and TTH $\tau_{had}\tau_{had}$ are indicated by $\tau_{had}\tau_{had}$; All the channels involving leptons (including τ_{lep}) are indicated by leptonic channels.

To comply with the signal topology, in each channel, exactly one jet should be tagged as a b-jet.

In TTH channel, all jets from the top hadronic decay and the jet from $t \to Hq$, denoted as the FCNC jet, pass the jet selection, there should be at least four jets among which the one with smallest $\Delta R(p_{\rm jet}^{\mu}, p_{\tau 1}^{\mu} + p_{\tau 2}^{\mu})$ is considered as FCNC jet. If there are more than 2 jets beside FCNC jet and *b*-jet, the jets from *W* boson decay are chosen based on *W* boson resonance. There is the chance that one of the jets fails the $p_{\rm T}$ requirement and not reconstructed. This kind of events will fall into STH channel. The FCNC top resonance is still reconstructed given the big chance that the jet which is missing is from *W* decay.

In STH events, there are 3 jets coming from top decay including the b-jet. So a Higgs resonance formed by the taus and a top resonance formed by the jets are expected.

In STH and TTH channels, the method introduced in [56] is used to recontruct the ditau mass and momentum by taking the τ decay kinematics into account. To determine the 4-momenta of the invisible decay products of the tau decays, the following χ^2 in Eq. 3, based on the probability functions above and the constraints from the tau mass, the Higgs mass and the measured $E_{\rm T}^{\rm miss}$, is defined,

$$\chi^{2} = -2 \ln \mathcal{P}_{1} - 2 \ln \mathcal{P}_{2} + \left(\frac{m_{\tau_{1}}^{\text{fit}} - 1.78}{\sigma_{\tau}}\right)^{2} + \left(\frac{m_{\tau_{2}}^{\text{fit}} - 1.78}{\sigma_{\tau}}\right)^{2} + \left(\frac{m_{H}^{\text{fit}} - 125}{\sigma_{\text{Higgs}}}\right)^{2} + \left(\frac{E_{x,\text{miss}}^{\text{fit}} - E_{x,\text{miss}}}{\sigma_{\text{miss}}}\right)^{2} + \left(\frac{E_{y,\text{miss}}^{\text{fit}} - E_{y,\text{miss}}}{\sigma_{\text{miss}}}\right)^{2},$$
(3)

where $\mathcal{P}_i(\Delta R)$ are the probability distributions of the angular distance of the visible and invisible decay products in the tau decay, parametrized as a function of the momentum of the tau lepton. In the τ_{lep} mode where two neutrinos are present, it is extended to be the joint probability distribution of ΔR and m_{mis} with m_{mis} being the invariant mass of the neutrinos, denoted by $\mathcal{P}(\Delta R, m_{mis})$. These probability density functions are obtained from the MC simulation. Figure 2 illustrates the distributions of $\mathcal{P}(\Delta R, m_{mis})$ for τ_{lep} , and $\mathcal{P}(\Delta R)$ for τ_{had} , with the original tau's momentum in the range 60 GeV< p < 80 GeV. Figures ??-?? in App. ?? show the distributions for each term in Eq. 3.

Figure 2: The distributions of (a) $\mathcal{P}(\Delta R, m_{\text{mis}})$ for τ_{lep} , and (b) $\mathcal{P}(\Delta R)$ for τ_{had} , with the original tau's momentum in the range 60 GeV < p < 80 GeV.

In Eq. 3, the free parameters scanned are the 4-momentum components of the invisible decay products for each tau decay. In the $\tau_{\rm had}$ mode, only three momentum components are scanned since a single neutrino is massless. $m_{\tau_{1,2}}^{\rm fit}$, $m_H^{\rm fit}$ and $E_{xy,{\rm miss}}^{\rm fit}$ are the calculated tau mass, Higgs mass, and missing transverse energy with the scanned parameters. The corresponding mass resolutions, σ_{τ} and $\sigma_{\rm Higgs}$, are set to 1.8 GeV and 20 GeV respectively. The $E_{\rm T}^{\rm miss}$ resolution is parametrized as

$$\sigma_{\text{miss}} = 13.1 + 0.50\sqrt{\Sigma E_{\text{T}}},\tag{4}$$

where $\Sigma E_{\rm T}$ (in GeV) is the scalar sum of transverse energy depositions of all objects and clusters. The

277

278

280

281

282

invisible 4-momenta are obtained by minimizing the combined χ^2 for each event¹. By adding the Higgs mass constraint term in the kinematic fit, not only is the Higgs mass resolution improved, but also the resolutions of the Higgs boson's four-momentum, and the mass of the top from which the Higgs comes. Figure 3 shows the distributions of χ^2 in different regions. Good agreement between data and background predictions are achieved.

Figure 3: The distributions of χ^2 in Eq. 3 in the hadronic channels.

In $l\tau_{\rm had}\tau_{\rm had}$ channels, a Higgs resonance formed by the taus is expected. Additionally for TTL $\tau_{\rm had}\tau_{\rm had}$ events, a top resonance formed by the c/u jet and Higgs is expected. Thus the invariant mass of the hadronic tau candidates and the FCNC-jet is required to be less than 125GeV. Due to the large amount of neutrinos produced in leptonic channels with a huge degree of freedom. The kinematic fit to reconstruct the neutrinos is given up in $l\tau_{\rm had}\tau_{\rm had}$ channels. The kinematics calculated directly from visible particles and $E_{\rm T}^{\rm miss}$ are used as BDT input.

291

292

293

296

297

298

¹ The coarse global minimum of the χ^2 in Eq. 3 is first obtained by scanning the (η, ϕ) of the netrino(s) from one tau, and repeating for the other tau. Then a final minimum is obtained around it with the MINUIT packge [57].

- With the event topology reconstructed, a number of variables are defined for signal and background separation. Their distributions can be found in Sec. 7, and some of their explanations are as follows. In the following explanations, tau candidates or di-tau point to the visible decay product of both τ_{had} and τ_{lep} .
- 1. E_{miss}^{T} is the missing transverse momentum.
- 2. $p_{T,\tau}$ is the transverse momentum of the leading tau candidate.
- 30. $p_{T,sub-\tau}$ is the transverse momentum of the sub-leading tau candidate.
- 4. $p_{T,l}$ is the transverse momentum of the leading lepton.
- 5. $p_{T,sub-l}$ is the transverse momentum of the sub-leading lepton.
- 6. χ^2 is derived from kinematic fitting for the neutrinos.
- 7. $m_{t,SM}$ is the invariant mass of the b-jet and the two jets from the W decay, and reflects the top mass in the decay $t \to Wb \to j_1j_2b$. This variable is only defined for the 4-jet STH and TTH events.
- 8. m_W^T is the transverse mass calculated from the lepton and $E_T^{\rm miss}$ in the leptonic channels, defined as

$$m_W^T = \sqrt{2p_{\text{T,lep}}E_{\text{T}}^{\text{miss}} \left(1 - \cos \Delta \phi_{\text{lep,miss}}\right)}.$$
 (5)

- 9. $m_{\tau,\tau}$ is the invariant mass of the tau candidates and reconstructed neutrinos in STH and TTH channels.
- m_W is the reconstructed invariant mass of the hadronic W boson from SM top quark.
- 11. $m_{t,FCNC}$ is the visible invariant mass of the FCNC-decaying top quark reconstructed from di-tau candidates, FCNC-jet and reconstructed neutrinos.
- 12. $m_{\tau\tau,vis}$ is the visible invariant mass of the two tau candidates
- 13. $p_{T,\tau\tau,vis}$ is the p_T of the di-tau candidates.
- 14. $m_{t,FCNC,vis}$ is the reconstructed invariant mass of the FCNC-decaying top quark.
- 15. $m_{t,SM,vis}$ is the invariant mass of the lepton (the lepton far-away from tau candidate in the 2ISS channel) and the b-jet, which reflects the visible SM top mass.
- 16. $M(\tau \tau light jet, min)$ is the invariant mass of the two tau candidates (include leptonic tau) and the light-flavor jet, minimized by choosing different jet.
- 17. M(light jet, light jet, min) is the invariant mass of two light-flavor jet, minimized by choosing different jets.

18. E_{miss}^{T} centrality is a measure of how central the E_{T}^{miss} lies between the two tau candidates in the transverse plane, and is defined as

$$E_{\rm T}^{\rm miss} \ {\rm centrality} = (x+y)/\sqrt{x^2+y^2}, \\ {\rm with} \ x = \frac{\sin(\phi_{\rm miss}-\phi_{\tau_1})}{\sin(\phi_{\tau_2}-\phi_{\tau_1})}, \ y = \frac{\sin(\phi_{\tau_2}-\phi_{\rm miss})}{\sin(\phi_{\tau_2}-\phi_{\tau_1})},$$
 (6)

- 19. $E_{\nu,i}/E_{\tau,i}$, i=1,2 is the momentum fraction carried by the visible decay products from the tau mother. It is based on the best-fit 4-momentum of the neutrino(s) according to the event reconstruction algorithm in this section. For the τ_{had} decay mode, the visible decay products carry most of the tau energy since there is only a single neutrino in the final state, which is evident in the excess around 1 in Fig. 4.
- 20. $\Delta R(l+b-jet,\tau+\tau)$ is the angular distance between the lepton+b-jet and di-tau candidates.
- 21. $\Delta R(l, b jet)$ is the angular distance between the lepton and b-jet.
- 22. $\Delta R(\tau, b jet)$ is the angular distance between the tau and b-jet.
- 23. $\eta_{\tau,max}$ is the larger polar angle among the tau candidates.
- 24. $\Delta R(l, \tau)$ is the angular distance between the lepton and the closest tau candidate in the leptonic channels.
- 25. $\Delta R(\tau, fcnc j)$ is the angular distance between the tau and the reconstructed fcnc jet.
- 26. $\Delta R(\tau, \tau)$ is the angular distance between two tau candidates.
- 27. $\Delta R(\tau, light jet, min)$ is the angular distance between the closest tau candidate and light-flavor jet.
- 28. $\Delta \phi(\tau \tau, P_{miss}^T)$ is the azimuthal angle between the $E_{\rm T}^{\rm miss}$ and di-tau $p_{\rm T}$.

5 Selection of events

- In the leptonic channels, the $p_{\rm T}$ of the lepton is required to be 1 GeV above the trigger threshold. The leptons are required to have Tight ID as defined in Sec. 3.
- In the hadronic channels, no leptons (as defined in Sec. 3) should be present in the event, and the two tau
- candidates with the highest p_T are chosen. They should also pass the Medium tau ID and overlap removal.
- To account for the trigger thresholds, the two hadronic taus are required to pass the $p_{\rm T} > 40$ GeV and
- $p_{\rm T} > 30 \text{ GeV cuts.}$

5.1 Trigger

- In the leptonic channels, the single-lepton triggers and di-lepton triggers are required to select the candidate events. In general, the lowest unprescaled triggers are used in every data-taking periods:
- To be updated:
- 357 Single election:
- 358 2016,2017,2018:
- HLT_e26_lhtight_nod0_ivarloose
- HLT_e60_lhmedium_nod0
- HLT_e140_lhloose_nod0
- 362 2015:
- HLT_e24_lhmedium_L1EM20VH
- HLT_e60_lhmedium
- HLT_e120_lhloose
- 366 Single muon:
- 367 2016,2017,2018:
- HLT_mu26_ivarmedium
- HLT_mu50
- 370 2015,2017,2018:
- HLT_mu60_0eta105_msonly

```
2015:
372
       • HLT_mu20_iloose_L1MU15
373
       • HLT_mu40
374
   Di-electron:
   2018:
376
       • HLT_2e17_lhvloose_nod0_L12EM15VHI
377
   2017,2018:
       • HLT_2e24_lhvloose_nod0
379
   2016:
380
       • HLT_2e17_lhvloose_nod0
381
   2015:
382
       • HLT_2e12_lhloose_L12EM10VH
383
   Di-muon:
   2016,2017,2018:
       • HLT_2mu14
386
       • HLT_mu22_mu8noL1
387
   2015:
388
       • HLT_2mu10
389
       • HLT_mu18_mu8noL1
390
   Election+Muon:
   2016,2017,2018:
392
       • HLT_e17_lhloose_nod0_mu14
393
       • HLT_e7_lhmedium_nod0_mu24
       • HLT_e26_lhmedium_nod0(_L1EM20VHI in 2016)_mu8noL1
395
   2015:
396
       • HLT_e17_lhloose_mu14
397
```

• HLT_e7_lhmedium_mu24

398

407

421

422

423

424

425

The trigger matching between the offline and trigger level lepton objects is also required for the corresponding leptons selected for the analysis. The minimum offline lepton p_T should be 1 GeV above the trigger threshold. For the $\tau_{\mu}\tau_{had}$ channel in 2016, the offline muon p_T is 2 GeV above the trigger threshold due to the trigger scale factors' binning².

The trigger used for hadronic channels in each year are listed as follow:

- 2015: HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo_L1TAU20IM_2TAU12IM
- 2016: HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo
- 2017: HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo_03dR30_L1DR_TAU20ITAU12I_J25
 - 2018: HLT_tau35_medium1_tracktwoEF_tau25_medium1_tracktwoEF_03dR30_L1DR_TAU20ITAU12I_J2

The two $\tau_{\rm had}$ candidates are matched to the respective legs of the di-tau trigger using the individual single tau trigger objects. The $p_{\rm T}$ thresholds are chosen such that the selected $\tau_{\rm had}$ candidate $p_{\rm T}$ already lies in the plateau of the respective trigger efficiency curve. Due to the rising instantaneous luminosity, the trigger used in the 2016 data taking includes a requirement for an additional level-1 calorimeter trigger jet with $p_{\rm T} > 25$ GeV and $|\eta| < 3.2$. The leading jet in the 2016 events is required to be matched within $\Delta R < 0.4$ with the jet ROI that fulfilled the jet part of the trigger criteria (trigger jet). Figure ?? shows the turn-on curves of the additional jet as in [58], and the leading jet $p_{\rm T}$ in the $\tau_{\rm had}\tau_{\rm had}$ channel. A cut of $p_{\rm T}^{\rm Lljet} > 50$ GeV is required on the trigger jet, and a leading-jet $p_{\rm T} > 60$ GeV cut is applied to remove the effect of turn on curve.

5.2 Event cuts and regions

A number of event cuts are applied before getting to the signal enhanced regions with the background suppressed. Then the DAOD_HIGG8D1 (DAOD_HIGG4D3) derivation is feed to ttHMultiAna (xTauFramework) to produce n-tuples for analysis. The list of event-level selection criteria is as follows:

- 1. DAOD_HIGG8D1 (leptonic channels) and DAOD_HIGG4D3 ($\tau_{had}\tau_{had}$) derivations are used for this analysis. At the derivation level, the following cuts are applied:
 - In DAOD_HIGG8D1, trigger skimming: all election, muon, tau triggers; Offline skimming: at least 2 light leptons or at least 1 lepton plus 1 tau.
 - In DAOD_HIGG4D3, no trigger skimming. Offline skimming: 2taus

² The trigger p_T cuts on the leptons are independent of and additional to the other p_T cuts introduced previously. For example, the p_T cuts used in the overlap removal are still as those in Sec. 3. It is also the case for the cuts introduced in the AOD derivations (Sec. 5.2).

2. At the xTauFramework level, skim cuts are applied to reduce the ntuple size:

427

428

429

431

442

443

- No leptons, at least 1 medium tau and 1 loose tau, at least 3 jets with $p_T > 30$ GeV, $|\eta| < 4.5$ and passing either central or forward JVT cuts and with at least 1 b-tagged, pass di-tau trigger, LooseBad Event Cleaning, leading tau $p_T > 40$ GeV, sub-leading tau $p_T > 30$ GeV, two taus comes from a single vertex, leading jet $p_T > 60$ GeV, leading jet $|\eta| < 3.2$, $E_T^{miss} > 15$ GeV. In the case of data, GRL cut as defined in Sec. 2.2 is also applied.
- 3. At the ttHMultiAna level, skim cuts [59] are applied to reduce the ntuple size.
- 4. A least one primary vertex exists in the event. The primary vertex is defined as the vertex that has the largest sum of track p_T^2 associated to it, and has at least 4 tracks with $|z_0| < 100$ mm.
- 5. The tau candidtes expected from Higgs decay should pass the Medium ID and the other quality cuts in Sec. 3.
- 6. It is required that the tau objects are not b-tagged, otherwise the event is rejected.
- 7. Exactly one *b*-tagged jets with $p_T > 30$ GeV and $|\eta| < 2.5$.
- 8. Considering the di-tau are from the Higgs decay, their invariant mass should satisfy 50 GeV < $m_{\tau\tau, \rm vis} < 130$ GeV and $\Delta R(\tau, \tau) < 3.4$ in the $\tau_{\rm had}\tau_{\rm had}$ channel and 25 GeV $< m_{\tau\tau, \rm vis} < 125$ GeV in leptonic channels.
 - 9. In $l\tau_{\rm had}\tau_{\rm had}$ channels, the lepton and b-jet are from SM top decay, so their invarian mass is expected to be smaller or around top mass: $m_{t,{\rm SM,vis}} < 190$ GeV.
- The cutflow for the preselection and each channel are given in Table 4 15.
- The summery of the yields and signal significance are shown in table 25 and 27.
- For the TT channel tcH coupling search, the FCNC jet is from a c-quark. Regarding the similarity between the b-jet and c-jet, the very loose b-tagging is attempted on the FCNC jet in order to further select the tcH signal. However, the dominating background is $t\bar{t}$ where there are 2 b-jets. This resort does not help with the significance as shown in the Table 20. The corresponding yield is shown in the Table 21. So it is not adopted.

Figure 4: The distributions of $x_{1,2}^{\rm fit}$ in the TTH $\tau_{\rm lep}\tau_{\rm had}$ (top) and $\tau_{\rm had}\tau_{\rm had}$ (bottom) channels.

Table 4: The expected event yields (corresponds to 36.1 fb⁻¹) for different MC processes and data after each cut in the $\tau_{\rm lep}\tau_{\rm had}$ channel. The signal yields are obtained by assuming BR($t \to Hq$)=1%, and BR($t \to Hc$)=BR($t \to Hu$)=0.5%. The uncertainties are statistical only.

	Тор		diboson	$Z \to \ell \ell$	
	real $ au_{ ext{had}}$	fake $ au_{ m had}$	diboson	$L \to \iota\iota$	
AOD	AOD $(3.1881 \pm 0.0004) \times 10^7$		$(2.801 \pm 0.001) \times 10^6$	$(1.5049 \pm 0.0005) \times 10^8$	
DAOD	(1.1555 ± 0.00)	$0.0002) \times 10^7$	$(7.186 \pm 0.004) \times 10^5$	$(5.723 \pm 0.003) \times 10^7$	
skim	76041.7 ± 145.9	1380820.6 ± 625.1	3735.5 ± 25.0	26761.2 ± 144.6	
vertex	71579.4 ± 141.6	1299919.6 ± 606.6	3515.5 ± 24.2	25208.0 ± 140.3	
trigger	58457.1 ± 127.9	1116757.0 ± 561.3	3094.6 ± 22.8	21913.8 ± 118.7	
tau sel.	26798.8 ± 99.8	23601.1 ± 97.7	119.0 ± 6.5	579.2 ± 24.8	
3jet veto	24427.2 ± 95.5	20198.7 ± 90.4	106.7 ± 6.2	518.4 ± 23.5	
tau not b-tagged	23818.9 ± 94.3	17991.9 ± 84.5	103.3 ± 6.2	493.3 ± 23.2	
$x_{1,2}^{\text{fit}}$	12833.8 ± 69.0	11784.7 ± 68.4	62.9 ± 3.9	357.0 ± 22.3	
N _{bjet} =1	7094.9 ± 50.7	7027.7 ± 52.3	53.7 ± 3.6	316.3 ± 22.0	
	Z o au au	$W \rightarrow l \nu$	$t \rightarrow qH$	data	
AOD	$(4.491 \pm 0.006) \times 10^6$	$(2.152 \pm 0.001) \times 10^9$	12126.9 ± 19.6	$(6.32610 \pm 0.00008) \times 10^9$	
DAOD	$(2.951 \pm 0.005) \times 10^6$	$(3.945 \pm 0.009) \times 10^8$	5691.6 ± 13.5	$(8.0089 \pm 0.0003) \times 10^8$	
skim	4251.9 ± 38.3	94984.2 ± 628.6	984.8 ± 5.7	1427385.0 ± 1194.7	
vertex	3997.5 ± 36.8	89554.7 ± 615.6	926.0 ± 5.5	1419052.0 ± 1191.2	
trigger	2471.5 ± 26.4	77051.1 ± 535.5	610.4 ± 4.5	1272074.0 ± 1127.9	
tau sel.	998.5 ± 25.6	1851.4 ± 146.2	197.0 ± 2.9	55068.0 ± 234.7	
3jet veto	910.9 ± 23.4	1672.9 ± 143.3	169.8 ± 2.8	48681.0 ± 220.6	
tau not b-tagged	901.1 ± 23.0	1597.1 ± 142.7	166.8 ± 2.7	45319.0 ± 212.9	
$x_{1,2}^{\text{fit}}$	875.4 ± 22.8	1073.8 ± 137.0	163.8 ± 2.7	27633.0 ± 166.2	
N _{bjet} =1	757.3 ± 20.8	1019.7 ± 136.8	147.9 ± 2.5	16882.0 ± 129.9	

Table 5: The expected event yields (corresponds to $140~{\rm fb^{-1}}$) for different MC processes and data after the cuts applied before the n-tuples produced by the xTauFramework. The signal yields are obtained by assuming BR($t \to Hq$)=1%. The uncertainties are statistical only.

cut	diboson	fene prod ch	fene uh qq	wjet	data
Total Events	$(2.45 \pm 0.00) \times 10^7$	1060.00 ± 0.00	25588.00 ± 0.00	$(1.24 \pm 0.00) \times 10^{11}$	$(6.35 \pm 0.00) \times 10^9$
DAOD	$(3.46 \pm 0.00) \times 10^6$	668.25 ± 0.00	14215.19 ± 0.00	$(3.46 \pm 0.00) \times 10^9$	$(5.29 \pm 0.00) \times 10^8$
skim	69.04 ± 1.68	39.23 ± 0.35	611.11 ± 5.42	451.31 ± 14.31	$(1.32 \pm 0.00) \times 10^5$
LooseBad Event Cleaning	68.60 ± 1.67	39.05 ± 0.35	608.35 ± 5.40	448.09 ± 14.28	$(1.30 \pm 0.00) \times 10^5$
Tau pT cut	48.63 ± 1.34	30.88 ± 0.31	455.46 ± 4.68	284.66 ± 12.34	65257.00 ± 255.45
Di-tau common Vx cut	48.19 ± 1.33	30.81 ± 0.31	454.06 ± 4.67	276.79 ± 12.20	60090.00 ± 245.13
Leading jet cut	46.22 ± 1.29	30.27 ± 0.31	446.86 ± 4.63	261.00 ± 11.85	55873.00 ± 236.37
MET cut	43.76 ± 1.25	27.92 ± 0.30	399.92 ± 4.38	238.83 ± 7.65	46107.00 ± 214.73
trigger matching	39.19 ± 2.04	25.24 ± 0.43	368.62 ± 4.27	201.55 ± 20.53	46107.00 ± 214.73
n tracks = 1,3	30.98 ± 1.73	22.38 ± 0.41	319.22 ± 3.97	144.95 ± 18.69	26148.00 ± 161.70

cut	fenc ch lv	fene prod uh	smhiggs	zll
Total Events	12299.39 ± 0.00	5271.38 ± 0.00	$(1.32 \pm 0.00) \times 10^6$	$(5.56 \pm 0.00) \times 10^9$
DAOD	5590.81 ± 0.00	3291.00 ± 0.00	$(4.56 \pm 0.00) \times 10^5$	$(2.77 \pm 0.00) \times 10^8$
skim	149.90 ± 2.15	185.92 ± 1.70	110.18 ± 1.42	9.36 ± 0.95
LooseBad Event Cleaning	149.26 ± 2.14	183.98 ± 1.69	109.70 ± 1.42	9.36 ± 0.95
Tau pT cut	113.67 ± 1.87	150.17 ± 1.52	84.64 ± 1.26	7.07 ± 0.90
Di-tau common Vx cut	113.49 ± 1.87	149.92 ± 1.52	84.35 ± 1.26	6.73 ± 0.88
Leading jet cut	109.12 ± 1.83	147.59 ± 1.51	80.68 ± 1.22	5.56 ± 0.65
MET cut	104.39 ± 1.79	137.01 ± 1.46	75.62 ± 1.18	4.50 ± 0.62
trigger matching	101.25 ± 1.80	128.57 ± 2.13	72.23 ± 1.97	3.11 ± 1.47
n tracks = 1,3	88.17 ± 1.68	111.65 ± 1.98	63.44 ± 1.87	1.35 ± 0.23
cut	fene ch qq	fene uh lv	top	ztautau
Total Events	25591.91 ± 0.00	12297.07 ± 0.00	$(4.29 \pm 0.00) \times 10^8$	$(1.92 \pm 0.00) \times 10^9$
DAOD	14182.99 ± 0.00	5645.15 ± 0.00	$(9.61 \pm 0.00) \times 10^7$	$(2.13 \pm 0.00) \times 10^7$
skim	623.70 ± 6.32	140.81 ± 2.08	16614.80 ± 58.13	2275.01 ± 26.63
LooseBad Event Cleaning	620.68 ± 6.30	139.89 ± 2.07	16533.76 ± 57.98	2261.00 ± 26.60
Tau pT cut	463.75 ± 5.45	105.99 ± 1.81	10632.17 ± 45.97	1439.59 ± 12.62
Di-tau common Vx cut	461.83 ± 5.44	105.54 ± 1.80	10447.76 ± 45.53	1431.03 ± 12.58
Leading jet cut	454.54 ± 5.39	101.89 ± 1.77	10200.06 ± 45.03	1339.92 ± 10.98
MET cut	408.09 ± 5.11	97.18 ± 1.73	9428.60 ± 42.74	1196.00 ± 10.04
trigger matching	382.68 ± 5.03	92.98 ± 1.72	5118.07 ± 28.24	1478.04 ± 25.18
n tracks = 1,3	333.62 ± 4.70	81.22 ± 1.60	3733.69 ± 23.89	1293.72 ± 23.13

Table 6: The expected event yields (corresponds to 140 fb⁻¹) for different MC processes and data after each cut in the STH $\tau_{had}\tau_{had}$ channel. The signal yields are obtained by assuming BR($t \to Hq$)=1%. The uncertainties are statistical only.

cut	diboson	fene prod ch	fene uh qq	wjet	data
2 medium OS tau 2 light-j	9.15 ± 1.15	9.38 ± 0.29	75.31 ± 2.21	26.15 ± 8.94	3491.00 ± 59.08
true taus	8.10 ± 1.01	9.33 ± 0.29	71.85 ± 2.17	0.23 ± 0.17	3491.00 ± 59.08
jet pt cut	8.10 ± 1.01	9.33 ± 0.29	71.85 ± 2.17	0.23 ± 0.17	3491.00 ± 59.08
bjet pt eta cut	7.95 ± 1.00	8.90 ± 0.28	69.01 ± 2.14	0.23 ± 0.17	3121.00 ± 55.87
tautau vis mass > 50	7.26 ± 0.97	8.75 ± 0.28	68.67 ± 2.13	0.23 ± 0.17	2710.00 ± 52.06
tautau vis mass < 130	6.64 ± 0.96	8.54 ± 0.28	68.60 ± 2.13	0.23 ± 0.17	1875.00 ± 43.30
drtautau > 3.4	6.64 ± 0.96	8.54 ± 0.28	68.50 ± 2.13	0.23 ± 0.17	1856.00 ± 43.08

cut	fenc ch lv	fene prod uh	smhiggs	zll
2 medium OS tau 2 light-j	25.43 ± 1.03	43.13 ± 1.41	19.73 ± 0.97	0.35 ± 0.22
true taus	24.68 ± 1.01	42.58 ± 1.41	19.63 ± 0.97	0.23 ± 0.17
jet pt cut	24.68 ± 1.01	42.58 ± 1.41	19.63 ± 0.97	0.23 ± 0.17
bjet pt eta cut	23.51 ± 0.99	41.29 ± 1.39	18.20 ± 0.94	0.23 ± 0.17
tautau vis mass > 50	23.11 ± 0.98	39.87 ± 1.37	17.73 ± 0.94	0.23 ± 0.17
tautau vis mass < 130	20.07 ± 0.92	38.57 ± 1.36	17.61 ± 0.94	0.23 ± 0.17
drtautau > 3.4	20.00 ± 0.92	38.56 ± 1.36	17.60 ± 0.94	0.23 ± 0.17

cut	fene ch qq	fene uh lv	top	ztautau
2 medium OS tau 2 light-j	74.20 ± 2.39	25.65 ± 0.98	723.83 ± 11.95	579.17 ± 18.36
true taus	71.97 ± 2.36	25.04 ± 0.97	432.75 ± 9.36	572.12 ± 18.28
jet pt cut	71.97 ± 2.36	25.04 ± 0.97	432.75 ± 9.36	572.12 ± 18.28
bjet pt eta cut	69.38 ± 2.32	24.06 ± 0.95	412.98 ± 9.18	529.87 ± 16.43
tautau vis mass > 50	69.01 ± 2.31	23.66 ± 0.94	390.94 ± 8.96	471.80 ± 15.97
tautau vis mass < 130	68.94 ± 2.31	20.40 ± 0.87	239.37 ± 6.90	459.53 ± 15.77
drtautau > 3.4	68.94 ± 2.31	20.33 ± 0.87	237.10 ± 6.87	459.50 ± 15.77

Table 7: The expected event yields (corresponds to 36.1 fb⁻¹) for different MC processes and data after each cut in the TTH $\tau_{had}\tau_{had}$ channel. The signal yields are obtained by assuming BR($t \to Hq$)=1%. The uncertainties are statistical only.

cut	diboson	fene prod ch	fene uh qq	wjet	data
2 medium OS tau 3light-j 1b-j	14.69 ± 1.15	9.49 ± 0.31	180.65 ± 3.34	21.49 ± 3.76	2897.00 ± 53.82
true taus	12.44 ± 0.81	9.40 ± 0.31	174.68 ± 3.29	0.30 ± 0.18	2897.00 ± 53.82
jet pt cut	12.44 ± 0.81	9.40 ± 0.31	174.68 ± 3.29	0.30 ± 0.18	2897.00 ± 53.82
bjet pt eta cut	11.52 ± 0.77	8.85 ± 0.29	166.93 ± 3.23	0.30 ± 0.18	2653.00 ± 51.51
tautau vis mass > 50	10.08 ± 0.73	8.61 ± 0.29	165.48 ± 3.21	0.30 ± 0.18	2307.00 ± 48.03
tautau vis mass < 130	9.25 ± 0.72	8.44 ± 0.29	165.15 ± 3.21	0.30 ± 0.18	1558.00 ± 39.47
drtautau > 3.4	9.25 ± 0.72	8.44 ± 0.29	164.89 ± 3.21	0.30 ± 0.18	1542.00 ± 39.27

cut	fene ch lv	fene prod uh	smhiggs	zll
2 medium OS tau 3light-j 1b-j	28.65 ± 1.03	47.83 ± 1.54	23.97 ± 1.39	0.32 ± 0.13
true taus	28.19 ± 1.02	47.13 ± 1.53	22.88 ± 1.29	0.30 ± 0.18
jet pt cut	28.19 ± 1.02	47.13 ± 1.53	22.88 ± 1.29	0.30 ± 0.18
bjet pt eta cut	27.08 ± 1.00	45.07 ± 1.51	20.63 ± 1.22	0.30 ± 0.18
tautau vis mass > 50	26.30 ± 0.98	43.52 ± 1.48	20.18 ± 1.22	0.30 ± 0.18
tautau vis mass < 130	22.29 ± 0.90	42.81 ± 1.47	19.86 ± 1.22	0.30 ± 0.18
drtautau > 3.4	22.22 ± 0.90	42.75 ± 1.47	19.85 ± 1.22	0.30 ± 0.18

cut	fene ch qq	fenc uh lv	top	ztautau
2 medium OS tau 3light-j 1b-j	181.51 ± 3.91	29.03 ± 1.06	790.24 ± 12.43	436.60 ± 13.11
true taus	176.21 ± 3.86	28.37 ± 1.05	414.73 ± 9.02	429.82 ± 13.01
jet pt cut	176.21 ± 3.86	28.37 ± 1.05	414.73 ± 9.02	429.82 ± 13.01
bjet pt eta cut	167.96 ± 3.72	26.92 ± 1.03	395.17 ± 8.84	389.90 ± 11.79
tautau vis mass > 50	165.44 ± 3.69	26.14 ± 1.01	367.07 ± 8.38	336.68 ± 11.46
tautau vis mass < 130	165.44 ± 3.69	22.19 ± 0.94	215.20 ± 6.62	328.07 ± 11.38
drtautau > 3.4	165.44 ± 3.69	22.14 ± 0.94	213.75 ± 6.60	328.36 ± 11.38

Table 8: cutflow all

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
n-tuple	14625.17 ± 91.16	1566592.64 ± 7205.54	213685.40 ± 271.88	4636927.85 ± 8294.8
pass trigger	14059.18 ± 89.56	1537607.58 ± 7134.23	204530.24 ± 270.49	4337263.09 ± 8032.8
leadtauOLR	13770.96 ± 88.56	1474191.23 ± 7053.96	198325.54 ± 263.74	4119951.21 ± 7854.7
subtauOLR	13765.38 ± 88.55	1473902.97 ± 7053.56	198238.94 ± 263.64	4119317.61 ± 7854.4
trigger match	10066.09 ± 78.89	1416071.50 ± 6889.57	141324.18 ± 254.07	1764362.61 ± 3671.2
tight lepton	9778.48 ± 77.69	1385510.60 ± 6832.02	138686.48 ± 251.46	1745898.27 ± 3644.1
PLV for lephad	8844.03 ± 73.28	1250614.63 ± 6515.61	131408.54 ± 241.20	1712357.61 ± 3577.9
Medium,25GeV leadtau	7660.49 ± 67.72	633723.78 ± 4498.68	98361.94 ± 178.46	1487970.81 ± 3111.2
Medium,25GeV subtau	7610.88 ± 67.53	630850.71 ± 4490.34	97817.83 ± 177.88	1486370.34 ± 3108.4
21SS chargeBDT	7166.21 ± 66.53	630692.53 ± 4490.24	87682.63 ± 176.61	1461585.31 ± 3096.7
SR+CR	323.56 ± 7.05	4764.44 ± 100.85	846.90 ± 18.69	2154.49 ± 49.74
	$Z \rightarrow \tau \tau$	Rare	$t\bar{t}$	$t\bar{t}V$
		Ttuic	1	1 t V
n-tuple	410982.57 ± 2106.28		3293743.11 ± 663.22	
n-tuple pass trigger		8 255371.58 ± 177.72		$2 18389.75 \pm 14.50$
-	410982.57 ± 2106.23	$\begin{array}{c} 8 & 255371.58 \pm 177.72 \\ 2 & 244821.58 \pm 174.20 \end{array}$	3293743.11 ± 663.22	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
pass trigger	410982.57 ± 2106.23 402257.51 ± 2088.23	$ 255371.58 \pm 177.72 $ $ 244821.58 \pm 174.20 $ $ 1 240316.57 \pm 172.64 $	3293743.11 ± 663.22 3137296.70 ± 647.98	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
pass trigger leadtauOLR	410982.57 ± 2106.29 402257.51 ± 2088.29 393589.53 ± 2067.1	8 255371.58 ± 177.72 2 244821.58 ± 174.20 1 240316.57 ± 172.64 6 240263.37 ± 172.62	3293743.11 ± 663.22 3137296.70 ± 647.98 3081743.40 ± 642.32	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
pass trigger leadtauOLR subtauOLR	410982.57 ± 2106.29 402257.51 ± 2088.29 393589.53 ± 2067.1 393502.11 ± 2066.99	$\begin{array}{c} 8 & 255371.58 \pm 177.72 \\ 2 & 244821.58 \pm 174.20 \\ 1 & 240316.57 \pm 172.64 \\ 6 & 240263.37 \pm 172.62 \\ 9 & 116744.43 \pm 119.18 \\ \end{array}$	3293743.11 ± 663.22 3137296.70 ± 647.98 3081743.40 ± 642.32 3080893.54 ± 642.23	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
pass trigger leadtauOLR subtauOLR trigger match	410982.57 ± 2106.23 402257.51 ± 2088.22 393589.53 ± 2067.1 393502.11 ± 2066.90 374969.55 ± 2034.80	8 255371.58 ± 177.72 2 244821.58 ± 174.20 1 240316.57 ± 172.64 6 240263.37 ± 172.62 9 116744.43 ± 119.18 0 114193.25 ± 117.84	3293743.11 ± 663.22 3137296.70 ± 647.98 3081743.40 ± 642.32 3080893.54 ± 642.23 1469290.95 ± 440.35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
pass trigger leadtauOLR subtauOLR trigger match tight lepton	410982.57 ± 2106.29 402257.51 ± 2088.29 393589.53 ± 2067.1 393502.11 ± 2066.90 374969.55 ± 2034.89 361398.61 ± 1999.80	$\begin{array}{c} 8 & 255371.58 \pm 177.72 \\ 2 & 244821.58 \pm 174.20 \\ 1 & 240316.57 \pm 172.64 \\ 6 & 240263.37 \pm 172.62 \\ 9 & 116744.43 \pm 119.18 \\ 0 & 114193.25 \pm 117.84 \\ 5 & 109983.64 \pm 115.63 \\ \end{array}$	3293743.11 ± 663.22 3137296.70 ± 647.98 3081743.40 ± 642.32 3080893.54 ± 642.23 1469290.95 ± 440.35 1430989.55 ± 434.42	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
pass trigger leadtauOLR subtauOLR trigger match tight lepton PLV for lephad	410982.57 ± 2106.23 402257.51 ± 2088.22 393589.53 ± 2067.1 393502.11 ± 2066.90 374969.55 ± 2034.89 361398.61 ± 1999.80 306130.84 ± 1841.39	$\begin{array}{c} 8 & 255371.58 \pm 177.72 \\ 2 & 244821.58 \pm 174.20 \\ 1 & 240316.57 \pm 172.64 \\ 6 & 240263.37 \pm 172.62 \\ 9 & 116744.43 \pm 119.18 \\ 0 & 114193.25 \pm 117.84 \\ 5 & 109983.64 \pm 115.63 \\ 3 & 95472.31 \pm 107.69 \\ \end{array}$	3293743.11 ± 663.22 3137296.70 ± 647.98 3081743.40 ± 642.32 3080893.54 ± 642.23 1469290.95 ± 440.35 1430989.55 ± 434.42 1377988.50 ± 426.23	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
pass trigger leadtauOLR subtauOLR trigger match tight lepton PLV for lephad Medium,25GeV leadtau	410982.57 ± 2106.23 402257.51 ± 2088.22 393589.53 ± 2067.1 393502.11 ± 2066.90 374969.55 ± 2034.80 361398.61 ± 1999.80 306130.84 ± 1841.33 260261.36 ± 1701.23	8 255371.58 ± 177.72 2 244821.58 ± 174.20 1 240316.57 ± 172.64 6 240263.37 ± 172.62 9 116744.43 ± 119.18 10 114193.25 ± 117.84 5 109983.64 ± 115.63 3 95472.31 ± 107.69 4 95269.59 ± 107.58	3293743.11 ± 663.22 3137296.70 ± 647.98 3081743.40 ± 642.32 3080893.54 ± 642.23 1469290.95 ± 440.35 1430989.55 ± 434.42 1377988.50 ± 426.23 1209179.49 ± 399.24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

	$\bar{t}t \rightarrow bWcH$	$cg \rightarrow tH$	tcH merged signal	$\bar{t}t \rightarrow bWuH$
n-tuple	2697.69 ± 4.51	124.01 ± 0.33	2821.70 ± 4.53	2697.40 ± 4.47
pass trigger	2591.28 ± 4.43	119.06 ± 0.33	2710.34 ± 4.44	2592.75 ± 4.38
leadtauOLR	2561.17 ± 4.40	117.83 ± 0.32	2678.99 ± 4.42	2565.50 ± 4.36
subtauOLR	2554.93 ± 4.40	117.50 ± 0.32	2672.43 ± 4.41	2560.52 ± 4.36
trigger match	1905.99 ± 3.84	87.85 ± 0.28	1993.85 ± 3.85	1911.71 ± 3.80
tight lepton	1830.03 ± 3.75	84.22 ± 0.28	1914.25 ± 3.76	1835.41 ± 3.71
PLV for lephad	1674.71 ± 3.56	77.45 ± 0.26	1752.16 ± 3.57	1677.64 ± 3.52
Medium,25GeV leadtau	1452.96 ± 3.31	68.38 ± 0.25	1521.34 ± 3.32	1456.47 ± 3.28
Medium,25GeV subtau	1391.67 ± 3.25	64.96 ± 0.24	1456.64 ± 3.26	1391.88 ± 3.21
21SS chargeBDT	1330.55 ± 3.19	62.02 ± 0.24	1392.57 ± 3.19	1336.84 ± 3.15
SR+CR	520.04 ± 2.04	21.52 ± 0.14	541.56 ± 2.04	496.34 ± 1.96

		$ug \rightarrow tH$	tuH merged signal	Data
	n-tuple	631.43 ± 1.70	3328.82 ± 4.78	11704069.00 ± 3421.12
17th /	pass trigger August 2020 – 10:48	608.67 ± 1.67	3201.42 ± 4.69	11025193.00 ± 3320.42
1 / u1 F	leadtauOLR	601.45 ± 1.66	3166.96 ± 4.67	10611339.00 ± 3257.51
	subtauOLR	599.85 ± 1.66	3160.37 ± 4.66	10609326.00 ± 3257.20
	trigger match	450.14 ± 1.45	2361.85 ± 4.06	6138248.00 ± 2477.55
	tight lepton	431.10 ± 1.42	2266.51 ± 3.97	5936612.00 ± 2436.52

Table 9: cutflow STH $\tau_{lep}\tau_{had}$ os

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	42.23 ± 4.06	1546.04 ± 72.45	261.45 ± 9.62	683.61 ± 28.69
tau b-veto	40.66 ± 3.96	1500.11 ± 72.24	252.69 ± 9.51	675.63 ± 28.63
MET > 20	36.14 ± 3.63	1324.40 ± 65.48	223.02 ± 8.90	455.90 ± 23.79

	$Z \rightarrow \tau \tau$	Rare	$t \bar{t}$	$t\bar{t}V$
this region	1531.36 ± 32.17	3390.38 ± 20.40	51954.64 ± 82.91	143.35 ± 1.33
tau b-veto	1496.12 ± 31.36	3266.23 ± 20.03	49638.21 ± 81.08	137.44 ± 1.30
MET > 20	1260.39 ± 28.13	3027.77 ± 19.29	46213.66 ± 78.23	130.85 ± 1.27

	$\bar{t}t \rightarrow bWcH$	$cg \rightarrow tH$	tcH merged signal	$\bar{t}t \rightarrow bWuH$
this region	111.45 ± 0.99	6.06 ± 0.08	117.51 ± 0.99	114.44 ± 0.98
tau b-veto	108.09 ± 0.97	5.91 ± 0.08	114.01 ± 0.98	110.93 ± 0.96
MET > 20	96.35 ± 0.91	5.27 ± 0.07	101.62 ± 0.92	98.84 ± 0.90

	$ug \rightarrow tH$	tuH merged signal	Data
this region	30.89 ± 0.41	145.33 ± 1.06	57506.00 ± 239.80
tau b-veto	29.91 ± 0.40	140.84 ± 1.04	54969.00 ± 234.45
MET > 20	27.00 ± 0.38	125.84 ± 0.98	50560.00 ± 224.86

Table 10: cutflow STH $\tau_{\text{lep}}\tau_{\text{had}}$ ss

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	14.01 ± 2.12	908.46 ± 44.90	98.10 ± 8.06	227.84 ± 20.27
tau b-veto	13.31 ± 2.09	873.18 ± 44.57	95.87 ± 8.05	222.30 ± 20.23
MET > 20	12.91 ± 2.09	739.05 ± 39.22	$2 \mid 87.60 \pm 7.87 \mid$	170.82 ± 18.23
	$Z \rightarrow \tau \tau$	Rare	$t\overline{t}$	$t\bar{t}V$
this region	24.42 ± 3.44	339.72 ± 6.31	5144.83 ± 26.08	53.78 ± 0.68
tau b-veto	23.33 ± 3.41	303.12 ± 5.97	4268.68 ± 23.85	$5 50.78 \pm 0.66$
MET > 20	20.68 ± 2.56	274.49 ± 5.68	3886.87 ± 22.76	$6 \mid 47.57 \pm 0.64$
	$\bar{t}t \rightarrow bWcH$	$cg \rightarrow tH$	tcH merged signal	$\bar{t}t \rightarrow bWuH$
this region	56.23 ± 0.59	1.44 ± 0.03	57.68 ± 0.59	58.58 ± 0.60
tau b-veto	54.46 ± 0.58	1.41 ± 0.03	55.87 ± 0.58	56.79 ± 0.59
MET > 20	49.84 ± 0.55	1.31 ± 0.03	51.15 ± 0.55	52.11 ± 0.56

	$ug \rightarrow tH$	tuH merged signal	Data
this region	7.95 ± 0.17	66.53 ± 0.62	7105.00 ± 84.29
tau b-veto	7.74 ± 0.17	64.53 ± 0.61	6176.00 ± 78.59
MET > 20	7.14 ± 0.17	59.25 ± 0.59	5434.00 ± 73.72

Table 11: cutflow TTH $\tau_{lep}\tau_{had}$ os

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	74.66 ± 3.47	915.11 ± 23.28	249.68 ± 10.29	353.12 ± 12.08
tau b-veto	71.16 ± 3.34	889.44 ± 23.20	242.24 ± 10.22	348.66 ± 12.05
MET > 20	67.65 ± 3.31	794.96 ± 22.17	225.27 ± 10.04	260.70 ± 10.75

	$Z \to \tau \tau$	Rare	$t\bar{t}$	$t\bar{t}V$
this region	925.53 ± 13.61	1663.66 ± 14.18	38147.40 ± 70.73	280.98 ± 2.22
tau b-veto	890.47 ± 13.41	1597.53 ± 13.90	36357.61 ± 69.09	269.13 ± 2.17
MET > 20	790.93 ± 12.29	1505.94 ± 13.51	34106.16 ± 66.92	255.26 ± 2.12

	$\bar{t}t \rightarrow bWcH$	$cg \rightarrow tH$	tcH merged signal	$\bar{t}t \rightarrow bWuH$
this region	143.63 ± 1.20	4.69 ± 0.07	148.32 ± 1.21	150.75 ± 1.19
tau b-veto	138.88 ± 1.18	4.55 ± 0.07	143.44 ± 1.19	145.97 ± 1.18
MET > 20	124.63 ± 1.12	4.19 ± 0.07	128.82 ± 1.12	130.45 ± 1.11

	$ug \rightarrow tH$	tuH merged signal	Data
this region	25.91 ± 0.40	176.67 ± 1.26	40510.00 ± 201.27
tau b-veto	25.18 ± 0.39	171.15 ± 1.24	38568.00 ± 196.39
MET > 20	23.45 ± 0.38	153.90 ± 1.17	36026.00 ± 189.81

Table 12: cutflow TTH $\tau_{lep}\tau_{had}$ ss

	SM Higgs W+jets Diboson		$Z \rightarrow ll$	
this region	26.72 ± 0.90	567.04 ± 19.02	88.17 ± 7.79	106.42 ± 7.41
tau b-veto	25.39 ± 0.90	550.88 ± 18.75	84.88 ± 7.70	103.57 ± 7.40
MET > 20	24.20 ± 0.90	487.57 ± 17.44	77.40 ± 7.39	79.88 ± 6.82

	$Z \to \tau \tau$	Rare	$t\bar{t}$	$t\bar{t}V$
this region	20.68 ± 3.52	255.43 ± 5.42	5900.93 ± 27.81	120.64 ± 1.21
tau b-veto	19.80 ± 3.51	231.52 ± 5.16	5074.96 ± 25.86	114.68 ± 1.17
MET > 20	17.28 ± 3.29	210.21 ± 4.90	4659.55 ± 24.78	108.49 ± 1.14

	$\bar{t}t \rightarrow bWcH$	$cg \rightarrow tH$	tcH merged signal	$\bar{t}t \rightarrow bWuH$
this region	45.49 ± 0.53	0.77 ± 0.03	46.26 ± 0.53	49.55 ± 0.55
tau b-veto	44.09 ± 0.52	0.75 ± 0.02	44.84 ± 0.52	48.05 ± 0.54
MET > 20	41.16 ± 0.50	0.70 ± 0.02	41.86 ± 0.50	44.55 ± 0.52

	$ug \rightarrow tH$	tuH merged signal	Data
this region	4.72 ± 0.14	54.26 ± 0.57	7284.00 ± 85.35
tau b-veto	4.57 ± 0.14	52.62 ± 0.56	6467.00 ± 80.42
MET > 20	4.33 ± 0.14	48.89 ± 0.54	5783.00 ± 76.05

Table 13: cutflow $l\tau_{\rm had}\tau_{\rm had}$ os

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	10.67 ± 0.52	36.63 ± 13.92	$2 16.76 \pm 1.31 $	15.46 ± 6.68
tau b-veto	9.99 ± 0.52	35.74 ± 13.91	1 15.70 ± 1.30	14.14 ± 6.58
	$Z \rightarrow \tau \tau$	Rare	$t\bar{t}$	$t\bar{t}V$
this region	19.37 ± 4.62	24.60 ± 1.49	341.34 ± 6.68	18.99 ± 0.42
tau b-veto	18.06 ± 4.58	22.45 ± 1.42	269.52 ± 5.97	17.59 ± 0.40
	$\bar{t}t \rightarrow bWcH$	$cg \rightarrow tH$ 1	tcH merged signal	$\bar{t}t \rightarrow bWuH$

	$\bar{t}t \rightarrow bWcH$	$cg \rightarrow tH$	tcH merged signal	$\bar{t}t \rightarrow bWuH$
this region	66.70 ± 0.63	5.10 ± 0.06	71.80 ± 0.64	68.95 ± 0.65
tau b-veto	62.40 ± 0.61	4.79 ± 0.06	67.19 ± 0.62	64.88 ± 0.63

	$ug \rightarrow tH$	tuH merged signal	Data
this region	23.74 ± 0.30	92.69 ± 0.71	441.00 ± 21.00
tau b-veto	22.46 ± 0.29	87.34 ± 0.69	350.00 ± 18.71

Table 14: cutflow $l\tau_{\rm had}\tau_{\rm had}$ ss

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	1.66 ± 0.04	-0.90 ± 14.73	3.55 ± 0.70	13.57 ± 4.40
tau b-veto	1.53 ± 0.04	-1.05 ± 14.73	3.30 ± 0.70	13.29 ± 4.39
	$Z \rightarrow \tau \tau$	Rare	$tar{t}$	$t\bar{t}V$
this region	15.91 ± 3.36	28.71 ± 1.84	382.91 ± 7.07	5.11 ± 0.23
tau b-veto	14.46 ± 3.32	24.90 ± 1.71	300.95 ± 6.29	4.62 ± 0.22
	7. 1337 77	.77	rT 1 '	1 7. 1117 1

	$\bar{t}t \rightarrow bWcH$	$cg \rightarrow tH$	tcH merged signal	$\bar{t}t \to bWuH$
this region	4.91 ± 0.19	0.31 ± 0.02	5.22 ± 0.19	5.89 ± 0.21
tau b-veto	4.58 ± 0.18	0.28 ± 0.02	4.86 ± 0.18	5.50 ± 0.20

	$ug \rightarrow tH$	tuH merged signal	Data
this region	1.69 ± 0.09	7.58 ± 0.22	352.00 ± 18.76
tau b-veto	1.57 ± 0.08	7.08 ± 0.22	289.00 ± 17.00

Table 15: cutflow 2ISS τ_{had} os

	SM Higgs	W+jets	Diboson	$Z \rightarrow ll$
this region	1.91 ± 0.05	0.28 ± 0.28	2.08 ± 0.20	0.01 ± 0.01
tau b-veto	1.85 ± 0.05	0.28 ± 0.28	2.05 ± 0.19	0.01 ± 0.01
	$Z \rightarrow \tau \tau$	Rare	$tar{t}$	tīV
this region	0.22 ± 0.13	1.97 ± 0.26	11.04 ± 1.17	7.33 ± 0.23
tau b-veto	0.22 ± 0.13	1.93 ± 0.26	10.81 ± 1.16	7.08 ± 0.23

	$\bar{t}t \rightarrow bWcH$	$cg \rightarrow tH$	tcH merged signal	$\bar{t}t \rightarrow bWuH$
this region	8.89 ± 0.23	0.62 ± 0.02	9.51 ± 0.23	9.01 ± 0.23
tau b-veto	8.67 ± 0.22	0.61 ± 0.02	9.28 ± 0.23	8.72 ± 0.23

	$ug \rightarrow tH$	tuH merged signal	Data
this region	3.11 ± 0.11	12.12 ± 0.25	26.00 ± 5.10
tau b-veto	3.02 ± 0.11	11.75 ± 0.25	23.00 ± 4.80

Table 16: The sample and data yield before the fit.

	$l au_{ m had} au_{ m had}$ ss	$l au_{ m had} au_{ m had}$ os	ST	H $ au_{\mathrm{lep}} au_{\mathrm{had}}$ ss	,	STH $ au_{ m lep} au_{ m had}$ os
data	289.00 ± 17.00	350.00 ± 18.71	543	34.00 ± 73.72	50	560.00 ± 224.86
background	359.83 ± 17.03	401.07 ± 16.83	520	94.37 ± 45.86	52	2663.38 ± 99.84
$\bar{t}t \rightarrow bWcH$	3.89 ± 0.16	61.83 ± 0.61	49	9.15 ± 0.54		95.69 ± 0.91
$cg \rightarrow tH$	0.23 ± 0.01	4.76 ± 0.06	1	$.28 \pm 0.03$		5.25 ± 0.07
tcH merged signal	4.12 ± 0.16	66.58 ± 0.61	50	0.44 ± 0.54		100.95 ± 0.91
$\bar{t}t \rightarrow bWuH$	4.89 ± 0.18	64.09 ± 0.62	5	1.44 ± 0.56		98.32 ± 0.90
$ug \rightarrow tH$	1.27 ± 0.07	22.23 ± 0.29	7	0.06 ± 0.16		26.89 ± 0.38
tuH merged signal	6.16 ± 0.19	86.32 ± 0.69	58	8.51 ± 0.58		125.21 ± 0.98
	TTH $ au_{\rm lep} au_{\rm had}$ ss	TTH $ au_{\mathrm{lep}} au_{\mathrm{had}}$	os	$l au_{ m had} au_{ m had}$ 2b s	SS	$l au_{ m had} au_{ m had}$ 2b os
data	5783.00 ± 76.05	36026.00 ± 189	0.81	114.00 ± 10.0	68	151.00 ± 12.29
background	5664.91 ± 32.48	38004.97 ± 74	.38	138.65 ± 4.1	6	129.13 ± 3.87
$\bar{t}t \rightarrow bWcH$	40.49 ± 0.49	123.79 ± 1.1	1	0.34 ± 0.05	5	5.30 ± 0.18
$cg \rightarrow tH$	0.69 ± 0.02	4.17 ± 0.07		0.01 ± 0.00)	0.13 ± 0.01
tcH merged signal	41.18 ± 0.49	127.96 ± 1.1	1	0.35 ± 0.05	5	5.43 ± 0.18
$\bar{t}t \rightarrow bWuH$	43.74 ± 0.51	129.80 ± 1.1	0	0.06 ± 0.02	2	1.28 ± 0.09
$ug \rightarrow tH$	4.27 ± 0.13	23.39 ± 0.38	3	0.02 ± 0.01		0.36 ± 0.04
tuH merged signal	48.01 ± 0.53	153.20 ± 1.1	7	0.08 ± 0.02	2	1.64 ± 0.10

	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os
data	1872.00 ± 43.27	19549.00 ± 139.82	1783.00 ± 42.23	11708.00 ± 108.20
background	1892.90 ± 15.47	20701.91 ± 51.56	1738.33 ± 14.61	12418.20 ± 39.52
$\bar{t}t \rightarrow bWcH$	4.19 ± 0.16	10.37 ± 0.32	3.13 ± 0.14	10.19 ± 0.32
$cg \rightarrow tH$	0.05 ± 0.01	0.28 ± 0.02	0.04 ± 0.01	0.16 ± 0.01
tcH merged signal	4.24 ± 0.16	10.64 ± 0.32	3.17 ± 0.14	10.36 ± 0.32
$\bar{t}t \to bWuH$	1.94 ± 0.11	4.96 ± 0.21	1.69 ± 0.10	5.47 ± 0.23
$ug \rightarrow tH$	0.26 ± 0.03	1.22 ± 0.08	0.17 ± 0.03	0.87 ± 0.08
tuH merged signal	2.21 ± 0.11	6.18 ± 0.22	1.86 ± 0.10	6.34 ± 0.24

Table 17: The sample and data yield before the fit.

	$2lSS\tau_{\rm had}$ os	$2lSS\tau_{\rm had}$ os antiiso	$2lSS\tau_{\rm had}$ os antiisolead
data	23.00 ± 4.80	66.00 ± 8.12	19.00 ± 4.36
background	23.22 ± 1.19	70.63 ± 2.99	23.24 ± 1.76
$\bar{t}t \rightarrow bWcH$	8.66 ± 0.22	2.17 ± 0.11	0.82 ± 0.07
$cg \rightarrow tH$	0.61 ± 0.02	0.15 ± 0.01	0.04 ± 0.01
tcH merged signal	9.27 ± 0.23	2.32 ± 0.11	0.86 ± 0.07
$\bar{t}t \rightarrow bWuH$	8.71 ± 0.23	2.33 ± 0.12	0.81 ± 0.07
$ug \rightarrow tH$	3.02 ± 0.11	0.78 ± 0.05	0.27 ± 0.03
tuH merged signal	11.72 ± 0.25	3.11 ± 0.13	1.07 ± 0.08

Table 18: The stat. only significance of the signal in each regions with the benchmark μ value.

	$l au_{ m had} au_{ m had}$ ss	$l au_{ m had} au_{ m had}$ os	STH $\tau_{\rm lep} \tau_{\rm had}$ ss	STH $\tau_{\rm lep} \tau_{\rm had}$ os
$\bar{t}t \rightarrow bWcH$	0.22	5.83	0.80	0.84
$cg \rightarrow tH$	0.01	0.55	0.02	0.09
tcH merged signal	0.23	6.23	0.82	0.92
$\bar{t}t \rightarrow bWuH$	0.28	6.21	0.84	0.84
$ug \rightarrow tH$	0.07	2.37	0.11	0.55
tuH merged signal	0.34	7.99	0.96	1.34

	TTH $ au_{\text{lep}} au_{\text{had}}$ ss	TTH $\tau_{\rm lep} \tau_{\rm had}$ os	$l\tau_{\rm had}\tau_{\rm had}$ 2b ss	$l\tau_{\rm had}\tau_{\rm had}$ 2b os
$\bar{t}t \rightarrow bWcH$	0.59	1.89	0.03	0.99
$cg \rightarrow tH$	0.01	0.08	0.00	0.02
tcH merged signal	0.60	1.97	0.03	1.01
$\bar{t}t \rightarrow bWuH$	0.64	1.98	0.01	0.25
$ug \rightarrow tH$	0.07	0.47	0.00	0.07
tuH merged signal	0.71	2.43	0.01	0.32

	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	STH $\tau_{lep}\tau_{had}$ 2b os	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os
$\bar{t}t \rightarrow bWcH$	0.12	0.20	0.08	0.27
$cg \rightarrow tH$	0.00	0.01	0.00	0.00
tcH merged signal	0.12	0.20	0.09	0.27
$\bar{t}t \rightarrow bWuH$	0.05	0.09	0.05	0.13
$ug \rightarrow tH$	0.01	0.05	0.01	0.03
tuH merged signal	0.06	0.13	0.05	0.16

Table 19: The stat. only significance of the signal in each regions with the benchmark μ value.

	$2lSS\tau_{\rm had}$ os	$2lSS\tau_{\rm had}$ os antiiso	$2lSS\tau_{\rm had}$ os antiisolead
$\bar{t}t \rightarrow bWcH$	1.74	0.26	0.19
$cg \rightarrow tH$	0.21	0.04	0.04
tcH merged signal	1.85	0.28	0.21
$\bar{t}t \rightarrow bWuH$	1.90	0.35	0.28
$ug \rightarrow tH$	1.05	0.19	0.15
tuH merged signal	2.70	0.52	0.41

Table 20: The stat. only significance of the signal in each regions with the benchmark μ value.

	$l au_{ m had} au_{ m had}$ ss	$l au_{ m had} au_{ m had}$ os	STH $ au_{\mathrm{lep}} au_{\mathrm{had}}$ ss	STH $\tau_{\rm lep} \tau_{\rm had}$ os
$\bar{t}t \rightarrow bWcH$	0.07	3.04	0.41	0.33
$cg \rightarrow tH$	0.00	0.08	0.01	0.02
tcH merged signal	0.07	3.08	0.41	0.34
$\bar{t}t \rightarrow bWuH$	0.02	0.38	0.14	0.09
$ug \rightarrow tH$	0.01	0.12	0.05	0.10
tuH merged signal	0.03	0.48	0.19	0.18

	TTH $ au_{\text{lep}} au_{\text{had}}$ ss	TTH $ au_{\text{lep}} au_{\text{had}}$ os	$l\tau_{\rm had}\tau_{\rm had}$ 2b ss	$l\tau_{\rm had}\tau_{\rm had}$ 2b os
$\bar{t}t \rightarrow bWcH$	0.23	0.79	0.03	1.09
$cg \rightarrow tH$	0.00	0.01	0.00	0.02
tcH merged signal	0.23	0.81	0.03	1.11
$\bar{t}t \rightarrow bWuH$	0.09	0.13	0.01	0.08
$ug \rightarrow tH$	0.02	0.06	0.00	0.06
tuH merged signal	0.11	0.19	0.01	0.14

	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os
$\bar{t}t \rightarrow bWcH$	0.08	0.17	0.06	0.22
$cg \rightarrow tH$	0.00	0.01	0.00	0.00
tcH merged signal	0.08	0.17	0.06	0.22
$\bar{t}t \to bWuH$	0.03	0.03	0.02	0.03
$ug \rightarrow tH$	0.01	0.02	0.00	0.01
tuH merged signal	0.04	0.05	0.02	0.04

Table 21: The sample and data yield before the fit.

	$l au_{ m had} au_{ m had}$ ss	$l au_{ m had} au_{ m had}$ os	STH $\tau_{\rm lep} \tau_{\rm had}$ ss	STH $\tau_{\rm lep} \tau_{\rm had}$ os
data	24.00 ± 4.90	28.00 ± 5.29	468.00 ± 21.63	6787.00 ± 82.38
background	28.34 ± 1.91	22.52 ± 1.73	459.96 ± 8.96	7004.75 ± 32.28
$\bar{t}t \rightarrow bWcH$	0.29 ± 0.04	7.13 ± 0.21	7.05 ± 0.20	12.49 ± 0.32
$cg \rightarrow tH$	0.01 ± 0.00	0.14 ± 0.01	0.15 ± 0.01	0.40 ± 0.02
tcH merged signal	0.30 ± 0.04	7.27 ± 0.21	7.20 ± 0.20	12.89 ± 0.32
$\bar{t}t \rightarrow bWuH$	0.10 ± 0.03	0.84 ± 0.07	2.37 ± 0.12	3.92 ± 0.17
$ug \rightarrow tH$	0.01 ± 0.01	0.23 ± 0.03	0.79 ± 0.05	1.79 ± 0.09
tuH merged signal	0.12 ± 0.03	1.07 ± 0.08	3.16 ± 0.13	5.72 ± 0.20

	TTH $\tau_{\rm lep} \tau_{\rm had}$ ss	TTH $\tau_{\rm lep} \tau_{\rm had}$ os	$l au_{ m had} au_{ m had}$ 2b ss	$l\tau_{\rm had}\tau_{\rm had}$ 2b os
data	556.00 ± 23.58	4147.00 ± 64.40	75.00 ± 8.66	92.00 ± 9.59
background	511.26 ± 9.76	4342.91 ± 24.01	89.79 ± 3.36	79.48 ± 3.09
$\bar{t}t \rightarrow bWcH$	4.61 ± 0.17	14.86 ± 0.38	0.22 ± 0.04	4.17 ± 0.16
$cg \rightarrow tH$	0.06 ± 0.01	0.25 ± 0.02	0.00 ± 0.00	0.09 ± 0.01
tcH merged signal	4.68 ± 0.17	15.11 ± 0.38	0.23 ± 0.04	4.26 ± 0.16
$\bar{t}t \rightarrow bWuH$	1.94 ± 0.11	3.97 ± 0.18	0.04 ± 0.02	0.44 ± 0.05
$ug \rightarrow tH$	0.28 ± 0.04	1.11 ± 0.08	0.00 ± 0.01	0.23 ± 0.03
tuH merged signal	2.22 ± 0.11	5.08 ± 0.20	0.04 ± 0.02	0.67 ± 0.06

	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	STH $\tau_{lep}\tau_{had}$ 2b os	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os
data	739.00 ± 27.18	9247.00 ± 96.16	622.00 ± 24.94	4689.00 ± 68.48
background	815.62 ± 10.25	9649.40 ± 35.13	575.99 ± 8.45	4865.38 ± 24.75
$\bar{t}t \rightarrow bWcH$	1.88 ± 0.10	5.36 ± 0.23	1.21 ± 0.08	4.30 ± 0.21
$cg \rightarrow tH$	0.02 ± 0.00	0.12 ± 0.01	0.02 ± 0.00	0.04 ± 0.01
tcH merged signal	1.90 ± 0.10	5.47 ± 0.23	1.23 ± 0.08	4.34 ± 0.21
$\bar{t}t \to bWuH$	0.70 ± 0.06	1.28 ± 0.10	0.36 ± 0.05	1.09 ± 0.10
$ug \rightarrow tH$	0.12 ± 0.02	0.50 ± 0.05	0.06 ± 0.01	0.27 ± 0.04
tuH merged signal	0.81 ± 0.07	1.78 ± 0.11	0.43 ± 0.05	1.36 ± 0.10

6 FCNC signal samples

The targeted signal in this analysis is tqH/tH with $H \to \tau\tau$ (samples 411170-411177 and 412098-412105) in App. ??). However, if the FCNC processes exists, the other decays of the Higgs can be part of the signal. Therefore, samples xxxxxxxxxxxx (App. ??) with inclusive W and Higgs decays are also included. These sample have a one-lepton (electron or muon) filter at truth level (either coming from W or Higgs decays). Events overlapping with 410818-410839 are removed based on truth information.

It is checked that after the final selection, there are 110 overlapped signal events caused by different overlap removal and object definition in xTauFramework and ttHMultiAna (27140 in total for hadhad channel and 95253 in total for lepton channels) but there is no overlap in the signal enriched region (BDT > 0.5).

The total FCNC signal with fake taus in this analysis is not used in the MVA training, but is regarded as part of the total signal in the fit. The normalization factor of the other components is common with the signal, so that their yields are fully correlated in the fit. In Sec. ??, this signal is summed with the nominal signal in the control plots. The signal fake tau shares the same normalisation and systematics as described in ??.

5 7 Background estimation

The background events with real tau leptons are represented by Monte Carlo (MC) samples. These include $t\bar{t}$, $t\bar{t}+H/V$ and single top events with real taus, and $Z\to \tau\tau+{\rm jets}$. The $Z\to ee$, $\mu\mu$ processes are included 467 for lepton faking tau background, and the contribution from jet faking tau. The fake background with 468 one or more taus faked by jets consists of the top fake (with at least one fake tau from jets in the top 469 events), QCD multijet, W+jets and diboson events. Since a jet can be reconstructed as a fake tau with equal probability charge being positive or negative at the first order, the fake taus in the opposite-sign 471 di-tau events could be estimated using the same-sign events after correction of the truth tau contributions. 472 However, the charge of two taus candidates might be correlated in the $t\bar{t}$ events when one of taus is a 473 real tau from the $W \to \tau \nu$ decay while the other tau is a fake from a jet from other $W \to jj$ decay. They are likely to carry the opposite charges to each other. Because of this charge asymmetry we have to calibrate the fake-tau modeling using a Data-Driven (DD) Scale Factor (SF) method by comparing the 476 normalization of fake-tau events in MC to data in the dilepton + jets control regions. This SF is then 477 applied to correct the normalization of tau fakes in the MC yields. The excess of the SS events over these 478 MC background in $\tau_{had}\tau_{had}$ is dominated by the fake-tau background from multi-jets (QCD). However, for the leptonic events, the fake-tau contribution is dominated by the $t\bar{t}$ events and we simply estimate the fake-tau background by correcting the normalization of tau fakes in the MC yields.

7.1 Origin of fake $\tau_{\rm had}$

491

- Top fake is the largest fake background in the total fake in the leptonic channels. Within the top fake events, fake taus can come from different origins, i.e., from jets (heavy/light flavor quark or gluon initiated) or leptons (electron or muon). Different fake origins in SS and OS can induce additional systematics. To 485 this end, the tau fake origins are checked with the top MC. Three dedicated top pair production control 486 regions are define for: 487
- W-jet faking tau: exactly 1 lepton, exactly 1 tau candidate, at least 4 jets with exactly 2 b-tagged. Tau candidate and lepton have the same charge. 489
- B-jet faking tau: 2 leptons with different flavors or away from Z pole ($M_{ll} > 100$ GeV or $M_{ll} < 100$ 490 90GeV), exactly 1 tau candidate, exactly 1 b-tagged jet.
- Radiation faking tau: 2 leptons with different flavors or away from Z pole, exactly 1 tau candidate, 492 at least two jets with exactly 2 b-tagged jets. 493

Figure 5 shows the fractions of fake taus from different origins in top control regions and SS, OS signal 494 regions. The matching between tau candidates and truth particles or partons are based on $\Delta R < 0.4$. Most of the fake taus come from quark initiated jets, but the flavor distributions in OS are similar to those in SS. 497

7.2 MC fake τ_{had} estimation

- As presented in the Sec. 7.1, the fake taus should be calibrated based on the three origins. The following top control regions are defined. A simulteneous fit is done in these region by floating the normalisation of the three kinds of fake taus. The fit result is shown in the Table 22. 501
- 211tau1bnj: 2 leptons with different flavors or away from Z pole, exactly 1 tau candidate, exactly 502 1 b-tagged jets. 503
- 211tau2bnj: 2 leptons with different flavors or away from Z pole, exactly 1 tau candidate, exactly 2 b-tagged jets. 505
- 111tau2b2jSS: Exactly 1 lepton, exactly 1 tau candidate, exactly 4 jets with exactly 2 b-tagged. 506 Tau candidate and lepton have the same charge. 507
- 111tau2b2jOS: Exactly 1 lepton, exactly 1 tau candidate, exactly 4 jets with exactly 2 b-tagged. 508 Tau candidate and lepton have the opposite charge. 509
- 111tau2b3 iSS: Exactly 1 lepton, exactly 1 tau candidate, at least 5 jets with exactly 2 b-tagged. 510 Tau candidate and lepton have the same charge. 511

Figure 5: The origins of fake τ 's in the top fake MC for W-jet fake control region (a,b), b-jet fake control region (c), radiation control region (d)The flavor distributions are quite similar between OS and SS.

• 111tau2b3jOS: Exactly 1 lepton, exactly 1 tau candidate, at least 5 jets with exactly 2 b-tagged. Tau candidate and lepton have the opposite charge.

$_{ ext{\tiny 4}}$ 7.3 QCD fake $au_{ ext{\scriptsize had}}$ estimate in $au_{ ext{\scriptsize had}} au_{ ext{\scriptsize had}}$

Figure 11 shows the τ_{had} p_T spectra in the $\tau_{had}\tau_{had}$ SS and OS. The fake tau background events from QCD multi-jets is not added yet so the data have more than the background prediction. The top fake are dominated by fakes with one real tau. It is found, based on the MC prediction, that the QCD fake is the dominant fake process in the $\tau_{had}\tau_{had}$ channel.

512

Table 22: The fitted scale factors for each fake tau composition and pt range.

	25 – 35 GeV	35 – 45 GeV	45- GeV
$ au_b$	0.91 ± 0.06	1.37 ± 0.07	1.06 ± 0.06
$ au_{other}$	1.26 ± 0.02	0.92 ± 0.02	0.92 ± 0.03
$ au_W$	0.83 ± 0.01	0.82 ± 0.02	0.56 ± 0.02

The excess of the SS events over MC with truth taus are used to estimate the fake tau background in OS from QCD multi-jets in the $\tau_{had}\tau_{had}$ + jets channel:

$$N_{\text{QCD fake}}^{\text{OS}} = f_{\text{norm}} \cdot (N_{\text{data}}^{\text{SS}} - N_{\text{MC}}^{\text{SS}}), \tag{7}$$

where f_{norm} is a ratio of OS and SS from multi-jets QCD, $N_{\text{data}}^{\text{SS}}$, and $N_{\text{MC}}^{\text{SS}}$ are observed data and estimated MC predictions in the SS regions.

The $f_{\rm norm}$ is measured separately to be 1.32 ± 0.03 in the signal-depleted one b-tag events with BDT < 0.5 and 1.6 ± 0.1 in the double b-tagged $\tau_{\rm had}\tau_{\rm had} + \geq 3$ jets events, which provides a good closure test of QCD fake tau estimation. We take the difference between these two values as a systematics for the method and assign $f_{\rm norm} = 1.3\pm0.3$ for the analysis.

527 7.4 Fake lepton background

The fake lepton background in $\tau_{lep}\tau_{had}$ and lepton+ $\tau_{had}\tau_{had}$, which is estimated from MC³, is about 0.3-0.5% of the total background. It constitutes such a negligible fraction because a very high lepton p_T threshold is already required at the trigger level. This background is varied by 100% as a conservative systematics.

7.5 Summary of signal and background events

We estimate the expected signal and background events in different regions, which are summarized in Table 25.

Figure 12 shows the leading τ_{had} p_T distribution from the OS events in the τ_{had} signal regions where the points are data and the histograms as the expected various backgrounds.

³ This includes fake lepton + real tau events from all MC samples, namely, top, W/Z+jets, diboson

Figure 6: The data-MC comparison of τ p_T in the signal and SS control regions.

Figure 7: The distributions of τ p_T in the signal and SS control regions.

Figure 8: The distributions of τ $p_{\rm T}$ in the control regions used to calibrate the fake taus.

Figure 9: The post-fit distributions of τ $p_{\rm T}$ in the control regions after the fake tau correction.

Figure 10: The data-MC comparison of τ $p_{\rm T}$ in the signal and SS control regions after the fake tau correction.

Figure 11: The distributions of τ p_T in the STH $\tau_{had}\tau_{had}$ (SS)(a), STH $\tau_{had}\tau_{had}$ (OS) (b), TTH $\tau_{had}\tau_{had}$ (SS) (c) and TTH $\tau_{had}\tau_{had}$ (OS) (d), to illustrate the background composition. Data is more than the prediction because the fake tau backgrounds are missing.

Figure 12: The distributions of leading τ p_T in the $\tau_{had}\tau_{had}$ + 3 jets (a), and 4 jets OS (b)

7 8 MVA analysis

In this section, we investigate the sensitivity of probing signal using one of the Multi-Variate Analysis (MVA) methods, the Gradient Boosted Decision Trees (BDT) method [60, 61], with the TMVA software package. The BDT output score is in the range between -1 and 1. The most signal-like events have scores near 1 while the most background-like events have scores near -1.

The signal topology and kinematics are different across all the channels. To maximize the overall sensitivity, separated BDTG trainings are applied to each the signal region. A number of variables as the BDT inputs are used to train and test events in each signal region for maximal signal acceptance and background rejection. They are listed in Tab. 23.

The signal and background samples are randomly divided into two equal parts (denoted as even and odd parity events). The BDT is trained with one part, and tested on the other part. It is always ensured that the BDT derived from the training events is not applied to the same events, but only to the independent test ones. The sum of all background processes, corrected normalized, are used in the training and testing. The Gradient BDT parameters used are listed in Tab. ??. With the IgnoreNegWeightsInTraining option, only MC events with positive MC weights are used in the training. The comparison of BDT performances in test-odd and test-even samples is given in Fig. 15 and 16. The BDT parameters NTrees and nCuts are tuned such that the test-odd and test-even agrees, and the signal sensitivity is optimised.

The importance factors⁴ of different variables used in the training is listed in Tab. 23. The two numbers in each block represent the importance factor of the two models trained from even and odd parts. The consistency of these factors implies that the training models are stable.

As a cross check, the comparisons between BDT distributions in testing samples, as well as the test even and test odd ROC curves, are shown in Fig. 15 and 16.

The final yield and stat. only significance is shown in Table 25 and Table 27

⁴ The importance is evaluated as the total separation gain that this variable had in the decision trees (weighted by the number of events). It is normalized to all variables together, which have an importance of 1.

Table 23

	1401	le 23		
	STH $\tau_{\rm lep} \tau_{\rm had}$ os	TTH $\tau_{\rm lep} \tau_{\rm had}$ os	$l au_{ m had} au_{ m had}$ os	21SS $\tau_{\rm had}$ os
$p_{T, au}$	9.46 / 9.32	9.80 / 8.54	6.02 / 9.02	4.78 / 5.29
$\Delta R(au, au)$	6.38 / 6.17	6.28 / 6.77	9.12 / 9.13	8.86 / 7.95
E_{miss}^{T}	6.56 / 5.72	5.62 / 6.08	5.62 / 5.24	6.87 / 7.39
$m_{ au au,vis}$	6.25 / 7.32	7.26 / 7.29	14.16 / 13.01	8.65 / 8.37
$\Delta R(\tau, light jet, min)$	7.57 / 7.79	6.82 / 6.48	7.94 / 8.26	7.27 / 8.94
$\Delta R(l, b \ jet)$	7.53 / 7.31	6.99 / 6.01	7.05 / 7.39	6.36 / 7.38
$\Delta\phi(au au, P_{miss}^T)$	5.72 / 6.44	5.06 / 5.94	/	/
$E_{miss}^{T} centrality$	5.82 / 5.06	4.73 / 4.49	/	/
$m_{ au, au}$	10.01 / 10.80	11.45 / 11.39	/	/
$m_{t,FCNC}$	3.46 / 3.98	4.94 / 4.60	/	/
$E_{\nu,1}/E_{\tau,1}$	6.46 / 4.76	5.74 / 6.08	/	/
$E_{\nu,2}/E_{\tau,2}$	7.09 / 6.99	5.79 / 5.91	/	/
$m_{t,SM}$	5.94 / 6.40	6.02 / 5.27	/	/
$\Delta R(\tau, b \ jet)$	7.54 / 7.37	6.08 / 6.69	/	/
M(light jet, light jet, min)	4.19 / 4.58	4.89 / 5.40	/	/
m_W	/	2.54 / 3.07	/	/
$m_{t,SM,vis}$	/	/	9.89 / 8.19	8.93 / 6.54
M(ττlight jet, min)	/	/	3.74 / 3.13	4.51 / 4.89
$\Delta R(l, au)$	/	/	4.07 / 3.67	5.48 / 7.14
$\eta_{ au,max}$	/	/	7.58 / 6.67	8.52 / 7.39
m_W^T	/	/	5.83 / 6.13	5.83 / 4.39
$\Delta R(l+b\ jet, \tau+\tau)$	/	/	6.52 / 8.00	7.69 / 7.21
$P_{t,\tau\tau,vis}$	/	/	5.71 / 5.19	3.90 / 5.01
$m_{t,FCNC,vis}$	/	/	6.75 / 6.96	5.95 / 7.37
PT,l	/	/	/	6.37 / 4.74

Table 24: The sample and data yield before the fit.

	$l au_{ m had} au_{ m had}$ ss	$l au_{ m had} au_{ m had}$ os	ST	H $ au_{\mathrm{lep}} au_{\mathrm{had}}$ ss	5	STH $ au_{ m lep} au_{ m had}$ os
data	289.00 ± 17.00	350.00 ± 18.71	543	4.00 ± 73.72	50	560.00 ± 224.86
background	339.04 ± 21.91	409.73 ± 22.50	517	5.69 ± 50.68	50	0228.35 ± 99.94
$\bar{t}t \rightarrow bWcH$	3.96 ± 0.16	61.96 ± 0.61	49	9.18 ± 0.54		95.74 ± 0.91
$cg \rightarrow tH$	0.24 ± 0.01	4.76 ± 0.06	1	$.28 \pm 0.03$		5.25 ± 0.07
tcH merged signal	4.20 ± 0.16	66.72 ± 0.61	50	0.46 ± 0.54		100.99 ± 0.91
$\bar{t}t \rightarrow bWuH$	5.06 ± 0.19	64.25 ± 0.63	5	1.49 ± 0.56		98.39 ± 0.90
$ug \rightarrow tH$	1.28 ± 0.07	22.24 ± 0.29	7	0.06 ± 0.16		26.89 ± 0.38
tuH merged signal	6.34 ± 0.20	86.49 ± 0.69	58	8.55 ± 0.58		125.28 ± 0.98
	TTH $ au_{\rm lep} au_{\rm had}$ ss	TTH $ au_{ m lep} au_{ m had}$	os	$l au_{ m had} au_{ m had}$ 2b s	ss	$l\tau_{\rm had}\tau_{\rm had}$ 2b os
data	5783.00 ± 76.05	36026.00 ± 189	0.81	114.00 ± 10.0	68	151.00 ± 12.29
background	5731.98 ± 34.13	36049.34 ± 71	.95	125.35 ± 3.9	3	128.60 ± 3.98
74 . I.W II	40.57 . 0.50	100 00 1 1	_	0.25 0.05	,	5.20 . 0.10
$\bar{t}t \rightarrow bWcH$	40.57 ± 0.50	123.88 ± 1.1	1	0.35 ± 0.05	'	5.30 ± 0.18
$cg \to tH$	40.57 ± 0.50 0.69 ± 0.02	123.88 ± 1.1 4.17 ± 0.07		0.35 ± 0.05 0.01 ± 0.00		5.30 ± 0.18 0.13 ± 0.01
)	
$cg \rightarrow tH$	0.69 ± 0.02	4.17 ± 0.07	2	0.01 ± 0.00)	0.13 ± 0.01
$cg \to tH$ tcH merged signal	0.69 ± 0.02 41.25 ± 0.50	4.17 ± 0.07 128.05 ± 1.11	2	0.01 ± 0.00 0.36 ± 0.05) ;	0.13 ± 0.01 5.43 ± 0.18

	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os
data	1872.00 ± 43.27	19549.00 ± 139.82	1783.00 ± 42.23	11708.00 ± 108.20
background	1845.32 ± 15.44	19500.03 ± 49.14	1748.95 ± 14.99	11705.94 ± 37.76
$\bar{t}t \rightarrow bWcH$	4.19 ± 0.16	10.37 ± 0.32	3.13 ± 0.14	10.19 ± 0.32
$cg \rightarrow tH$	0.05 ± 0.01	0.28 ± 0.02	0.04 ± 0.01	0.16 ± 0.01
tcH merged signal	4.24 ± 0.16	10.64 ± 0.32	3.17 ± 0.14	10.36 ± 0.32
$\bar{t}t \rightarrow bWuH$	1.95 ± 0.11	4.96 ± 0.21	1.69 ± 0.10	5.47 ± 0.23
$ug \rightarrow tH$	0.26 ± 0.03	1.22 ± 0.08	0.17 ± 0.03	0.87 ± 0.08
tuH merged signal	2.21 ± 0.11	6.18 ± 0.22	1.86 ± 0.10	6.34 ± 0.24

Table 25: The sample and data yield before the fit.

	$2lSS\tau_{\mathrm{had}}$ os	$2lSS\tau_{\rm had}$ os antiiso	$2lSS\tau_{\rm had}$ os antiisolead
data	23.00 ± 4.80	66.00 ± 8.12	19.00 ± 4.36
background	22.28 ± 1.13	68.23 ± 2.90	22.28 ± 1.70
$\bar{t}t \rightarrow bWcH$	8.67 ± 0.22	2.17 ± 0.11	0.82 ± 0.07
$cg \rightarrow tH$	0.61 ± 0.02	0.15 ± 0.01	0.04 ± 0.01
tcH merged signal	9.28 ± 0.23	2.32 ± 0.11	0.86 ± 0.07
$\bar{t}t \rightarrow bWuH$	8.71 ± 0.23	2.34 ± 0.12	0.81 ± 0.07
$ug \rightarrow tH$	3.02 ± 0.11	0.78 ± 0.05	0.27 ± 0.03
tuH merged signal	11.73 ± 0.25	3.11 ± 0.13	1.07 ± 0.08

Table 26: The stat. only significance of the signal in each regions with the benchmark μ value.

	$l au_{ m had} au_{ m had}$ ss	$l au_{ m had} au_{ m had}$ os	STH $\tau_{\rm lep} \tau_{\rm had}$ ss	STH $\tau_{\rm lep} \tau_{\rm had}$ os
$\bar{t}t \rightarrow bWcH$	0.24	5.90	0.81	0.86
$cg \rightarrow tH$	0.01	0.56	0.02	0.09
tcH merged signal	0.25	6.30	0.83	0.94
$\bar{t}t \rightarrow bWuH$	0.30	6.28	0.86	0.85
$ug \rightarrow tH$	0.08	2.40	0.12	0.56
tuH merged signal	0.37	8.09	0.97	1.37

	TTH $\tau_{\rm lep} \tau_{\rm had}$ ss	TTH $\tau_{\rm lep} \tau_{\rm had}$ os	$l\tau_{\rm had}\tau_{\rm had}$ 2b ss	$l\tau_{\rm had}\tau_{\rm had}$ 2b os
$\bar{t}t \rightarrow bWcH$	0.59	1.94	0.04	1.01
$cg \rightarrow tH$	0.01	0.09	0.00	0.02
tcH merged signal	0.60	2.02	0.04	1.03
$\bar{t}t \rightarrow bWuH$	0.64	2.03	0.01	0.26
$ug \rightarrow tH$	0.07	0.48	0.00	0.07
tuH merged signal	0.71	2.49	0.01	0.32

	STH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	STH $\tau_{lep}\tau_{had}$ 2b os	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b ss	TTH $\tau_{\text{lep}}\tau_{\text{had}}$ 2b os
$\bar{t}t \rightarrow bWcH$	0.12	0.20	0.08	0.28
$cg \rightarrow tH$	0.00	0.01	0.00	0.01
tcH merged signal	0.13	0.21	0.09	0.28
$\bar{t}t \rightarrow bWuH$	0.06	0.09	0.05	0.14
$ug \rightarrow tH$	0.01	0.05	0.01	0.03
tuH merged signal	0.07	0.13	0.05	0.17

Figure 13: The BDT input distributions for the background and merged signal in the STH $\tau_{had}\tau_{had}$ (a1-3), TTH $\tau_{had}\tau_{had}$ (b1-3), $l\tau_{had}\tau_{had}$ (c1-3) channels.

Figure 14: The BDT input distributions for the background and merged signal in the STH $\tau_{lep}\tau_{had}$ (a1-3), TTH $\tau_{lep}\tau_{had}$ (b1-3), $2lSS\tau_{had}$ (c1-3) channels.

Table 27: The stat. only significance of the signal in each regions with the benchmark μ value.

	$2lSS\tau_{\rm had}$ os	$2lSS\tau_{\rm had}$ os antiiso	$2lSS\tau_{\rm had}$ os antiisolead
$\bar{t}t \rightarrow bWcH$	1.77	0.27	0.19
$cg \rightarrow tH$	0.23	0.04	0.04
tcH merged signal	1.88	0.29	0.22
$\bar{t}t \rightarrow bWuH$	1.94	0.36	0.28
$ug \rightarrow tH$	1.09	0.20	0.15
tuH merged signal	2.76	0.53	0.41

Figure 15: The BDT output distributions for the background and TT signal (a1, b1, c1), background and ST signal (a2, b2, c2) and ROC curves (a3, b3, c3) in the STH $\tau_{had}\tau_{had}$ (a1-3), TTH $\tau_{had}\tau_{had}$ (b1-3), $l\tau_{had}\tau_{had}$ (c1-3) channels.

Figure 16: The BDT output distributions for the background and TT signal (a1, b1, c1), background and ST signal (a2, b2, c2) and ROC curves (a3, b3, c3) in the STH $\tau_{lep}\tau_{had}$ (a1-3), TTH $\tau_{lep}\tau_{had}$ (b1-3), $2lSS\tau_{had}$ (c1-3) channels.

9 Systematic uncertainties

- The signal efficiency and the background estimations are affected by uncertainties associated with the detector simulation, the signal modelling and the data-driven background determination. In the combined fit, these uncertainties are called Nuisance Parameters (NP), as opposed to the parameter of interest, the signal strength, which is a scaling factor applied on the total signal events.
- Any systematic effect on the the overall normalisation or shape of the final BDT distribution in the signal region is considered. In TRExFitter [62], the NP pruning is applied, which means that NPs whose impact are less than a certain threshold are discarded. The lower thresholds to remove a shape systematic and a normalisation systematic from the fit are both 1% in the fit.
- Table ?? gives the QCD fake estimation for $\tau_{\text{had}}\tau_{\text{had}}$ channel in 7.3 and six fake normalization factor NPs for fake method mentioned in 7.2. The lists of systematic NPs that survive the pruning are in Tab. ?? and ??, and their meanings are given below. All the NPs in Tab. ?? and the fakeSF* in ?? are fully correlated in all signal regions.

573 9.1 Luminosity

The integrated luminosity measurement has an uncertainty of 1.7% for the combined Run-2 data, and it is applied to all simulated event samples.

9.2 Detector-related uncertainties

- Uncertainties related to the detector are included for the signal and backgrounds that are estimated using simulation. These uncertainties are also taken into account for the simulated events that enter the data-driven background estimations. All instrumental systematic uncertainties arising from the reconstruction, identification and energy scale of electrons, muons, (b-)jets and the soft term of the $E_{\rm T}^{\rm miss}$ measurement are considered. The effect of the energy scale uncertainties on the objects is propagated to the $E_{\rm T}^{\rm miss}$ calculation. These systematics include uncertainty associated with:
- The electron and muon trigger, reconstruction, identification and isolation efficiencies. These are estimated with the tag-and-probe method on the $Z \to ll$, $J/\psi \to ll$ and $W \to l\nu$ events [63].
 - Electron and muon momentum scales. They are estimated from the early 13 TeV $Z \rightarrow ll$ events.

- Jet energy scale (JES) and resolution (JER). The JES uncertainty is estimated by varying the jet energies according to the uncertainties derived from simulation and in-situ calibration measurements using a model with a reduced set of 38 orthogonal NPs [64] which has up to 30% correlation losses, which are assumed to be uncorrelated, and the induced changes can be added in quadrature. The individual scale variations on the jets are parameterised in *p*_T and *η*. The total JES uncertianty is below 5% for most jets and below 1% for central jets with pT between 300 GeV and 2 TeV. The difference between the JER in data and MC is represented by one NP. It is applied on the MC by smearing the jet *p*_T within the prescribed uncertainty. JVT is applied in the analysis to select jets from hard-scattered vertices. It was found that different MC generators (and different fragmentation models) lead to efficiency differences of up to 1%, and the uncertainty on the efficiency measurement was found to be around 0.5%. Two NPs are assigned for the JVT efficiency, one for the central and the other for the forward jets.
- Calibration of the $E_{\rm T}^{\rm miss}$. The uncertainties on $E_{\rm T}^{\rm miss}$ due to systematic shifts in the corrections for leptons and jets are accounted for in a fully correlated way in their evaluation for those physics objects, and are therefore not considered independently here. The systematic uncertainty assigned to the track-based soft term used in the $E_{\rm T}^{\rm miss}$ definition quantifies the resolution and scale of the soft term measurement by using the balance between hard and soft contributions in $Z \to \mu\mu$ events. The uncertainties are studied using the differences between Monte Carlo generators, using Powheg+Pythia8 as the nominal generator [65]. One NP is assigned for the soft-track scale, and two NPs for the soft-track resolution.
- Jet flavour tagging systematics. The uncertainties on the *b*-tagging are assessed independently for *b*, *c* and light-flavour quark jets, with extrapolation factors [66]. The efficiencies and mis-tag rates are measured in data using the methods described in [67]-[68] with the 2015, 2016 and 2017 data set. There are 19 NPs assigned for the flavour tagging systematics (so-called "Loose" reduced set, with 5 NPs for light flavor, 4 for *c*, 9 for *b*, and 1 for extrapolation).
- Pileup. The uncertainty on the pileup reweighting is evaluated by varying the pileup scale factors by 1σ based on the reweighting of the average interactions per bunch crossing. However, this uncertainty is highly correlated with the luminosity uncertainty and may be an overestimate.
- Tau object systematics. These include the τ_{had} reconstruction, identification and trigger efficiencies, the efficiency for tau-electron overlap removal of true τ_{had} , the one for tau-electron overlap removal of true electrons faking τ_{had} , and the one for a "medium" BDT electron rejection. There are also three NPs that cover the tau energy scale (TES) systematics due to the modeling of the detector geometry (TAU_TES_DETECTOR), the measurement in the tag-and-probe analysis (TAU_TES_INSITU) and the Geant4 shower model (TAU_TES_MODEL). The systematics are based on detailed MC variation study, as well as the Run-2 $Z \to \tau \tau$ data for insitu calibrations of the tau TES and trigger efficiencies, as documented in [51] and the dedicated software tools [53] recommended by the Tau CP Woking Group [54].

9.3 Uncertainties on fake background estimations

Systematic uncertainties resulting from the data-driven background estimation and usage of SS events as described in Sec. 7. They are named fakeSF*prong*Ptbin and norm_factor_hh in Tab. ??.

9.4 Theoretical uncertainties on the background

Theoretical uncertainties have been applied to the MC background in this analysis. The NNPDF3.0 systematic set (which has 100 variations) is used to get the variation envelope around the nominal PDF, and the renormalization and factorization scales are varied by a factor of 0.5 and 2.0 around the nominal values. There are eight such variations. In the final BDT distributions, the largest variations of the eight per bin are taken.

The default $t\bar{t}$ sample is generated with Powheg. A separate full-sim $t\bar{t}$ sample generated with Sherpa (0 and 1-jet at NLO, and ≥ 2 jets at LO) is compared with the Powheg sample, and the difference in final results is treated as the hard scattering systematics [69].

The default $t\bar{t}$ MC events are showered with Pythia8. A separate sample showered with Herwig7 is compared with the Pythia8 sample, and the difference is treated as fragmentation and hadronization systematics [69]. These two samples are both generated with ATLFAST-II [36], and their difference is then applied to the default full-simulation $t\bar{t}$ sample.

The Powheg+Pythia8 $t\bar{t}$ MC is also generated with different shower radiations (initial and final-state radiation modelling). For a sample with increased radiation, the factorisation and renormalization scales are scaled by 0.5 with respect to their nominal values, the hdamp parameter (which controls the amount of radiation produced by the parton shower in POWHEG-BOX v2) is set to $3m_{\text{top}}$ and the A14var3cUp tune is used. Conversely, for a sample with decreased radiation, the two scales are scaled by 2 with respect to their nominal values, the hdamp is kept at the nominal value of $1.5m_{\text{top}}$ and the A14var3cDown tune is used [69].

Uncertainty affecting the normalisation of the V+jets background is estimated to be about 30% according to the study done in the FCNC $H \to b\bar{b}$ channel [70]. The uncertainty on the diboson cross section is 5% [71], on single top +5%/-4% [43][72, 73], on $t\bar{t}V$ 15% [74, 75], and on $t\bar{t}H$ +10%/-13% [76].

9.5 Uncertainties on the signal modelling

Since the signal samples share the same production as the $t\bar{t}$ process, the systematics listed above for $t\bar{t}$ also apply to the signal. However, because the systematics variation samples are only generated for the

- SM decays of $t\bar{t}$, only the integral change of the yields observed for the $t\bar{t}$ background with real taus in the FR is used, and applied on the signal in the same region in a fully correlated way. An additional 1.6% uncertainty on BR($H \to \tau \tau$) is also assigned [39].
- The fake calibration is also applied to the fake tau part of the signal the same way as the background. The 656 NPs are also applied to the signal and fully correlated with the background.

₅₇ 10 Fit model and signal extraction

The parameter of interest in this search is the signal strength of the FCNC interactions, $BR(t \to Hq)$ and corresponding production mode cross section. The statistical analysis of the data employs a binned likelihood function constructed as the product of Poisson probability terms, in bins of the BDT output.

To take into account the systematic uncertianties associated with the MC estimation from different sources for both the signal and background samples, the fit model incorporates these systematics as extra Gaussian or Log-Normal constraint terms multiplied with the combined likelihood. The fitted central values and errors of the systematics parameters, or NPs, are expected to follow a normal distribution centered around 0 with unit width, when the Asimov data is used. The fit model construction is obtained with the RooFit and RooStats software, and the model configuration and persistence files (as input to RooStats) are produced by TRExFitter [62], which is a software package interface with HistFactory. The TRExFitter includes additional features such as histogram smoothing, NP pruning and error symmetrization before the fits.

The correlated bin-by-bin histogram variation corresponds to the up and down variation of each NP. The independent bin-by-bin fluctuations in the combined MC templates are also treated as NPs. They are incorporated in the model as extra Poisson constraint terms, and are expected to have a fitted value of 1 and a fitted error reflecting the relative statistical error in each particular bin. There is one parameter if interest (POI) freely floating in the fit without any constraints, namely, the signal strength μ (SigXsecOverSM) which is a multiplicative factor on a presumed branching ratio of BR($t \rightarrow Hq$)=1% in this analysis. The errors associated with the different systematics will be properly propogated to the fitted error of μ in a simultaneous fit of multiple regions via a profiled likelihood scan by the minimization program MINUIT.

The one-sided NPs in the analysis, namely, fakeSFXprongXPtbin, ttbar fragmentation, ttbar
hard scattering, JET_BJES_Response, JET_JER_DataVsMC_MC16, JET_SingleParticle_HighPt,
JET_TILECORR_Uncertainty, MET_SoftTrk_ResoPara, MET_SoftTrk_ResoPerp are symmetrized.
This is done manually on the MC components of the background. By default, all the kinematic NPs (shape
NPs due to, e.g., energy scales) are smoothed using the default smoothing parameters in TRExFitter.
This helps removing the artificial NP constraints due to statistical fluctuations in the systematic variations,
and makes the fit well behaved. The NPs pull distributions before the smoothing for each SR are given in
App. ??.

Figure 20 shows the ranking of the 25 top NPs along with their pull distributions, produced also with TRExFitter. The highest ranked NP is defined to have the largest impact on μ . The impact is evalated by varying the NP under consideration by one σ (either pre or post-fit error) up and down, and afterwards looking at the relative change in μ under the conditional fit where the NP under consideration is fixed to its varied new value. Figure ?? shows the pull distributions of all NPs in asimov fit. Normalization and

- shape systematics whose impact is less than 1% are removed from the fit. The list of removed NPs are given in App. ??.
- The NP ranking and constraints can be qualitatively understood from the variations of the BDT distributions due to the relevant NPs. Figures ??-?? show the systematic variations due to the top ranked NPs.
- Figure 21 shows the correlation matrix for diffrent NPs. Except for self-correlations, and the correlations between the normalization factors (including POI) and the others, all the NPs have relatively small correlations with each other, which justifies the fit models for independent systematics.

Figure 17: The asimov prefit (left) and postfit (right) BDT distributions in the STH $\tau_{lep}\tau_{had}$ (a1-2) and TTH $\tau_{lep}\tau_{had}$ (b1-2), $l\tau_{had}\tau_{had}$ (c1-2)

Figure 18: The asimov prefit (left) and postfit (right) BDT distributions in the TTH $\tau_{had}\tau_{had}$ (a1-2) and STH $\tau_{had}\tau_{had}$ (b1-2)

Figure 19: The asimov fit pull distributions of different NPs for $\tau_{had}\tau_{had}$ channels (left) combined and lepton channels combined (right).

\mathbf{r}		\mathbf{T}
I IK	Δ	H
DIX	$\overline{}$	

Figure 20: The asimov fit ranking of the top 25 NPs for $\tau_{had}\tau_{had}$ channels (left) combined and lepton channels combined (right). The scale of the relative impact on μ (the pull) of the NPs is shown on the top (bottom) axis.

Figure 21: The asimov fit correlation matrix (%) of different NPs, with a threshold of 20% for $\tau_{had}\tau_{had}$ channels (left) combined and lepton channels combined (right).

11 Results

The significance of any small observed excess in data is evaluated by quoting the p-values to quantify the

level of consistency of the data with the BR=0 hypothesis. The asymptotic approximation in [77] is used.

The test statistic used for the exclusion limits derivation is the \tilde{q}_{μ} test statistic and for the *p*-values the q_0 test statistic⁵ [77].

The 95% CL upper limits on tqH interaction with BR $(t \to Hq) = 0.2\%$ as reference are given in Tab. 29.

The best asimov fit values with S+B hypothesis are given in Tab. ??

Table 28: The expected 95% CL exclusion upper limits on BR($t \to Hc$) and BR($t \to Hu$) (0.2%) with the Asimov (B-only).

	tcH	tuH
$ au_{ m had} au_{ m had}$	$0.80^{+0.41}_{-0.22}$	$0.64^{+0.33}_{-0.18}$
leptonic channels	$0.77^{+0.33}_{-0.21}$	$0.60^{+0.26}_{-0.17}$

Table 29: The best asimov fit values with S+B hypothesis.

	tcH	tuH
$ au_{ m had} au_{ m had}$	$1.00^{+0.23+0.51}_{-0.22-0.38}$	$1.00^{+0.18+0.44}_{-0.18-0.33}$
leptonic channels	$1.00^{+0.56+X.XX}_{-0.54-X.XX}$	$1.00^{+0.47+X.XX}_{-0.46-X.XX}$

The search for the FCNC decay $t \to Hq$, $H \to \tau\tau$ with the ATLAS detector at the LHC using 13 TeV data was presented in this note. The best-fit values for BR($t \to Hc$) and BR($t \to Hu$) are found to be $-X.XX_{-X.XX}^{+X.XX}\%$ and $-X.XX_{-X.XX}^{+X.XX}\%$ respectively, based on 140 fb⁻¹ of data collected from 2015 to 2018. The observed (expected) 95% CL upper limits on BR($t \to Hc$) and BR($t \to Hu$) are found to be X.XX% ($X.XX_{-X.XX}^{+X.XX}\%$) and X.XX% ($X.XX_{-X.XX}^{+X.XX}\%$), respectively.

$$\tilde{q}_{\mu} = \left\{ \begin{array}{ll} -2\ln(\mathcal{L}(\mu,\hat{\hat{\theta}})/\mathcal{L}(0,\hat{\hat{\theta}})) & \quad \text{if } \hat{\mu} < 0 \\ -2\ln(\mathcal{L}(\mu,\hat{\hat{\theta}})/\mathcal{L}(\hat{\mu},\hat{\theta})) & \quad \text{if } 0 \leq \hat{\mu} \leq \mu \\ 0 & \quad \text{if } \hat{\mu} > \mu \end{array} \right.$$

and

$$q_0 = \begin{cases} -2\ln(\mathcal{L}(0,\hat{\theta})/\mathcal{L}(\hat{\mu},\hat{\theta})) & \text{if } \hat{\mu} \ge 0\\ 0 & \text{if } \hat{\mu} < 0 \end{cases}$$

where $\mathcal{L}(\mu, \theta)$ denotes the binned likelihood function, μ is the parameter of interest (i.e. the signal strength parameter), and θ denotes the nuisance parameters. The pair $(\hat{\mu}, \hat{\theta})$ corresponds to the global maximum of the likelihood, whereas $(x, \hat{\theta})$ corresponds to a conditional maximum in which μ is fixed to a given value x.

⁵ The definition of the test statistics used in this search is the following:

710 Appendix

References

- 712 [1] ATLAS Collaboration, Combined Measurement of the Higgs Boson Mass in pp Collisions at 713 \sqrt{s} =7 and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. **114** (2015) 191803, 714 arXiv: 1503.07589 [hep-ex].
- S. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry,
 Phys. Rev. D 2 (1970) 1285.
- J. Aguilar-Saavedra,

 Top flavor-changing neutral interactions: Theoretical expectations and experimental detection,

 Acta Phys. Polon. B **35** (2004) 2695, arXiv: 0409342 [hep-ph].
- F. del Aguila, J. A. Aguilar-Saavedra, and R. Miquel,

 Constraints on top couplings in models with exotic quarks, Phys. Rev. Lett. 82 (1999) 1628,

 arXiv: 9808400 [hep-ph].
- J. Aguilar-Saavedra, Effects of mixing with quark singlets, Phys. Rev. D 67 (2003) 035003,
 arXiv: 0210112 [hep-ph].
- S. Bejar, J. Guasch and J. Sola, *Loop induced flavor changing neutral decays of the top quark in a general two Higgs doublet model*, Nucl. Phys. B **600** (2001) 21, arXiv: **0011091** [hep-ph].
- I. Baum, G. Eilam and S. Bar-Shalom, Scalar flavor changing neutral currents and rare top quark decays in a two Higgs doublet model 'for the top quark', Phys. Rev. D 77 (2008) 113008, arXiv: 0802.2622 [hep-ph].
- J. J. Cao et al., SUSY-induced FCNC top-quark processes at the large hadron collider, Phys. Rev. D **75** (2007) 075021, arXiv: **0702264** [hep-ph].
- G. Eilam et al., *Top quark rare decay t* \rightarrow *ch in R-parity violating SUSY*, Phys. Lett. B **510** (2001) 227, arXiv: **0102037** [hep-ph].
- G. Lu et al., The rare top quark decays $t \to cV$ in the topcolor-assisted technicolor model, Phys. Rev. D **68** (2003) 015002, arXiv: **0303122** [hep-ph].
- [11] K. Agashe, G. Perez and A. Soni,
 Collider signals of top quark flavor violation from a warped extra dimension,
 Phys. Rev. D 75 (2007) 015002, arXiv: 0606293 [hep-ph].
- B. Yang, N. Liu and J. Han, *Top quark flavor-changing neutral-current decay to a 125 GeV Higgs boson in the littlest Higgs model with T parity*, Phys. Rev. D **89** (2014) 034020, arXiv: 1308.4852 [hep-ph].
- K. Agashe and R. Contino, *Composite Higgs-mediated flavor-changing neutral current*, Phys. Rev. D **80** (2009) 075016, arXiv: 0906.1542 [hep-ph].

```
DRAFT
    [14] T. P. Cheng and Marc Sher,
          Mass Matrix Ansatz and Flavor Nonconservation in Models with Multiple Higgs Doublets,
745
          Phys. Rev. D 35 (1987) 3484.
746
         Wei-Shu Hou, Tree level t \to ch or h \to t\bar{c} decays, Phys. Lett. B 296 (1992) 179.
747
          Federico Demartin, Fabio Maltoni, Kentarou Mawatari, Marco Zaro,
          Higgs production in association with a single top quark at the LHC, (2015),
749
          arXiv: 1504.00611 [hep-ph].
750
         ATLAS Collaboration, Search for top quark decays t \to qH, with H \to \gamma \gamma, in \sqrt{s} = 13 TeV pp
    [17]
          collisions using the ATLAS detector, JHEP (2017) 129, arXiv: 1707.01404 [hep-ex].
752
    [18]
          ATLAS Collaboration,
          Search for flavor-changing neutral currents in top quark decays t \to Hc and t \to Hu in
754
          multilepton final states in proton-proton collisions at sqrts = 13 TeV with the ATLAS detector,
755
          Phys. Rev. D (2018) 36, arXiv: 1805.03483 [hep-ex].
756
          ATLAS Collaboration, Search for top-quark decays t \to qH with 36 fb-1 of pp collision data at
757
          \sqrt{s}=13 TeV with the ATLAS detector, (), arXiv: 1812.11568 [hep-ex].
758
          CMS Collaboration, Search for the flavor-changing neutral current interactions of the top quark
759
          and the Higgs boson which decays into a pair of b quarks at \sqrt{s} = 13 TeV, JHEP 06 (2018) 102,
760
          arXiv: 1712.02399 [hep-ex].
761
          Celine Degrande, Fabio Maltoni, Jian Wang, Cen Zhang, Automatic computations at
762
          next-to-leading order in QCD for top-quark flavor-changing neutral processes,
763
          Phys. Rev. D (2015) 6, arXiv: 1412.5594 [hep-ex].
764
          ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
    [22]
765
```

- JINST 3 (2008) S08003. 766
- [23] ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report, 767 CERN-LHCC-2010-013; ATLAS-TDR-19, 2010, 768 URL: https://cds.cern.ch/record/1291633. 769
- ATLAS Collaboration, 770 Luminosity determination in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector at the LHC, 771 (2016), arXiv: 1608.03953 [hep-ex].
- Celine Degrande et al., Automatic computations at next-to-leading order in QCD for top-quark 773 flavor-changing neutral processes, Phys. Rev. D 91 (2015) 034024, arXiv: 1412.5594 [hep-ph]. 774
- Celine Degrande et al., Effective theory for top flavor changing interactions, 2016, 775 URL: https://feynrules.irmp.ucl.ac.be/wiki/TopFCNC. 776
- J. Alwall et al., The automated computation of tree-level and next-to-leading order differential 777 cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, 778 arXiv: 1405.0301 [hep-ph].

- [28] T. Sjostrand et al., An introduction to PYTHIA 8.2, Comp. Phys. Commun. 191 (2015) 159,
 arXiv: 1410.3012 [hep-ph].
- 782 [29] ATLAS Collaboration, *ATLAS Pythia 8 tunes to 7 TeV data*, ATL-PHYS-PUB-2014-021, 2014, 783 URL: https://cdsweb.cern.ch/record/196641.
- ⁷⁸⁴ [30] R. D. Ball et al., *Parton distributions for the LHC Run II*, JHEP **04** (2015) 040, arXiv: 1410.8849 [hep-ph].
- [31] C. Oleari, *The POWHEG-BOX*, Nucl. Phys. Proc. Suppl. **205-206** (2010) 36–41,
 arXiv: 1007.3893 [hep-ph].
- T. Gleisberg et al., *Event generation with Sherpa 1.1*, JHEP **02** (2009) 007, arXiv: **0811.4622** [hep-ph].
- N. Davidson et al., *Universal interface of TAUOLA: Technical and physics documentation*, Comp. Phys. Commun. **183** (2012) 821.
- ⁷⁹² [34] S. Agostinelli et al., GEANT4 A simulation toolkit, Nucl. Instrum. Meth. A **506** (2003) 250.
- ⁷⁹³ [35] J. Bellm et al., *Herwig 7.0/Herwig++ 3.0 release note*, Eur. Phys. J. C **76** (2016) 196.
- 794 [36] ATLAS Collaboration,
 795 The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim,
 796 ATL-PHYS-PUB-2010-013, 2010, URL: http://cds.cern.ch/record/1300517.
- J Butterworth et al.,
 Single Boson and Diboson Production Cross Sections in pp Collisions at √s=7 TeV,
 ATL-COM-PHYS-2010-695, 2010, URL: http://cds.cern.ch/record/1287902.
- M. Czakon and A. Mitov,

 Top++: a program for the calculation of the top-pair cross-section at hadron colliders,

 Comput. Phys. Commun **185** (2014) 2930, arXiv: 1112.5675 [hep-ph].
- D. de Florian et al.,

 Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,

 CERN-2017-002-M (2017), arXiv: 1610.07922 [hep-ph],

 URL: https://cds.cern.ch/record/2227475.
- J. Alwall et al., *The automated computation of tree-level and next-to-leading order differential* cross sections, and their matching to parton shower simulations, JHEP **07** (2014) 079, arXiv: 1405.0301 [hep-ph].
- M. Aliev et al., *HATHOR HAdronic Top and Heavy quarks crOss section calculatoR*, Comput. Phys. Commun **182** (2011) 1034, arXiv: 1007.1327 [hep-ph].
- P. Kant et al., *HATHOR for single top-quark production: Updated predictions and uncertainty*estimates for single top-quark production in hadronic collisions,

 Comput. Phys. Commun **191** (2015) 74, arXiv: **1406.4403** [hep-ph].

```
[43] N. Kidonakis,
          Two-loop soft anomalous dimensions for single top quark associated production with a W^- or H^-,
816
          Phys. Rev. D 82 (2010) 054018, arXiv: 1005.4451 [hep-ph].
817
   [44]
         J. Pumplin et al.,
818
         New Generation of Parton Distributions with Uncertainties from Global QCD Analysis,
819
          JHEP 07 (2002) 012, arXiv: 0201195 [hep-ph].
820
   [45] M. Cacciari, G. P. Salam, and G. Soyez, The Anti-k(t) jet clustering algorithm,
          JHEP 04 (2008) 063, arXiv: 0802.1189 [hep-ph].
822
         ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector,
          ATLAS-CONF-2014-018, 2014, URL: http://cds.cern.ch/record/1700870.
824
         ATLAS Collaboration, Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run,
825
          ATL-PHYS-PUB-2016-012, 2016, URL: https://cds.cern.ch/record/2160731.
   [48] Electron and Photon Selection and Identification for Run2, Accessible on 2017-11-24,
827
          URL: https:
828
          //twiki.cern.ch/twiki/bin/view/AtlasProtected/EGammaIdentificationRun2.
         Official Isolation Working Points, Accessible on 2017-11-24, URL: https://twiki.cern.ch/
830
          twiki/bin/viewauth/AtlasProtected/IsolationSelectionTool#Leptons.
831
         MuonSelectionTool, Accessible on 2017-11-24.
   [50]
832
          URL: https://twiki.cern.ch/twiki/bin/view/Atlas/MuonSelectionTool.
833
         ATLAS Collaboration, Reconstruction, Energy Calibration, and Identification of Hadronically
834
          Decaying Tau Leptons in the ATLAS Experiment for Run-2 of the LHC,
835
          ATL-PHYS-PUB-2015-045, 2015, URL: https://cds.cern.ch/record/2064383.
836
        ATLAS Collaboration,
   [52]
837
          Jet energy measurement with the ATLAS detector in proton-proton collisions at \sqrt{s} = 7 TeV,
838
          Eur. Phys. J. C 73 (2013) 2304, arXiv: 1112.6426 [hep-ex].
839
         TauAnalysisTools, Accessible on 2017-11-24,
   [53]
840
          URL: https://svnweb.cern.ch/trac/atlasoff/browser/PhysicsAnalysis/TauID/
841
          TauAnalysisTools/tags/TauAnalysisTools-00-02-62/README.rst.
842
   [54] 2017 Tau Recommendations, Accessible on 2017-11-24, URL: https://twiki.cern.ch/
843
          twiki/bin/view/AtlasProtected/TauRecommendationsMoriond2017.
844
         Usage of Missing ET in analyses: rebuilding and systematics, Accessible on 2017-11-24,
   [55]
845
          URL: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/METUtilities.
846
         X. Chen and L. Xia,
   [56]
847
          Search for Flavor Changing Neutral Current in t \to Hc, H \to \tau\tau Decay at the LHC,
848
          Phys. Rev. D 93 (2016) 113010, arXiv: 1509.08149 [hep-ph].
849
```

- James, F. and Roos, M., Minuit: A System for Function Minimization and Analysis of the
 Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343,
 URL: http://lcgapp.cern.ch/project/cls/work-packages/mathlibs/minuit.
- 853 [58] ATLAS Collaboration, 854 *Measurement of the H* $\rightarrow \tau^+\tau^-$ *cross-section in 13TeV Collisions with the ATLAS Detector*, 855 ATL-COM-PHYS-2017-446, 2017, URL: https://cds.cern.ch/record/2261605.
- ATLAS Collaboration, Search for the Associated Production of a Higgs Boson and a Top Quark

 Pair in multilepton final states in 80 fb⁻¹ pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector,

 ATL-COM-PHYS-2018-410, 2018, URL: https://cds.cern.ch/record/2314122.
- 859 [60] J. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal. 38 (2002) 367.
- A. Hoecker et al., *TMVA Toolkit for Multivariate Data Analysis*, PoS A CAT **040** (2007), arXiv: **0703039** [physics].
- TRExFitter, Accessible on 2017-11-24,
 URL: https://gitlab.cern.ch/TRExStats/TRExFitter.
- ATLAS Collaboration, Electron efficiency measurements with the ATLAS detector using the 2015

 LHC proton-proton collision data, ATLAS-CONF-2016-024, 2016,

 URL: https://cds.cern.ch/record/2157687.
- ATLAS Collaboration, Jet Calibration and Systematic Uncertainties for Jets Reconstructed in the
 ATLAS Detector at $\sqrt{s} = 13$ TeV, ATL-PHYS-PUB-2015-015, 2015,
 URL: https://cds.cern.ch/record/2037613.
- ATLAS Collaboration, Performance of missing transverse momentum reconstruction for the
 ATLAS detector in the first proton-proton collisions at $\sqrt{s} = 13$ TeV, ATL-PHYS-PUB-2015-027,
 2015, URL: https://cds.cern.ch/record/2037904.
- ATLAS Collaboration, *Expected performance of the ATLAS b-tagging algorithms in Run-2*, ATL-PHYS-PUB-2015-022, 2015, URL: https://cds.cern.ch/record/2037697.
- ATLAS Collaboration,

 Calibration of the performance of b-tagging for c and light-flavour jets in the 2012 ATLAS data,

 ATLAS-CONF-2014-046, 2014, URL: https://cds.cern.ch/record/1741020.
- ATLAS Collaboration, *Calibration of b-tagging using dileptonic top pair events in a*combinatorial likelihood approach with the ATLAS experiment, ATLAS-CONF-2014-004, 2014,

 URL: https://cds.cern.ch/record/1664335.
- 881 [69] ATLAS Collaboration,

 882 Studies on top-quark Monte Carlo modelling with Sherpa and MG5_aMC@NLO,

 883 ATL-PHYS-PUB-2017-007, 2017, URL: https://cds.cern.ch/record/2261938.

- ATLAS Collaboration, Search for flavor-changing neutral current $t \to Hq$ (q=u,c) decays, with $H \to b\bar{b}$, in the lepton+jets final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, ATL-COM-PHYS-2017-346, 2017, URL: https://cds.cern.ch/record/2257631.
- J. M. Campbell and R. K. Ellis, *An Update on vector boson pair production at hadron colliders*, Phys. Rev. D **60** (1999) 113006, arXiv: 9905386 [hep-ph].
- N. Kidonakis, *Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production*, Phys. Rev. D **83** (2011) 091503, arXiv: 1103.2792 [hep-ph].
- N. Kidonakis, NNLL resummation for s-channel single top quark production, Phys. Rev. D **81** (2010) 054028, arXiv: 1001.5034 [hep-ph].
- 893 [74] M. V. Garzelli et al., $t\bar{t}W^{\pm}$ and $t\bar{t}Z$ Hadroproduction at NLO accuracy in QCD with Parton 894 Shower and Hadronization effects, JHEP **1211** (2012) 056, arXiv: **1208.2665** [hep-ph].
- ⁸⁹⁵ [75] J. M. Campbell and R. K. Ellis, $t\bar{t}W^{\pm}$ production and decay at NLO, JHEP **1207** (2012) 052, arXiv: 1204.5678 [hep-ph].
- [76] LHC Higgs Cross Section Working Group,
 Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, (2011),
 arXiv: 1101.0593 [hep-ph].
- G. Cowan, K. Cranmer, E. Gross and O. Vitells,
 Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554,
 arXiv: 1007.1727 [physics.data-an].

List of contributions

904

905

906

- Boyang Li: main analyser, signal generation; ntuple production; fake tau estimation; BDT analysis; systematics; fit; support note.
- Weiming Yao: main analyser, ttHML ntuple skimming and support; fake tau estimation; BDT analysis; cross check; support note.
 - MingMing Xia: main analyser, xTauFramework n-tuple production; production validation.
- Xin Chen: Supervisor of Boyang Li and MingMing Xia