★ Início / Meus Ambientes / 2023 / ICMC / SME / SME0822-201-2023 / Questionários / Questionário Q2 - até 07/09/2023

SME0822 - Análise Multivariada e Aprendizado Não Supervisionado (2023)

Iniciado em quarta, 6 set 2023, 22:47

Estado Finalizada
Concluída em quinta, 7 set 2023, 23:28

Tempo empregado
Avaliar 7,27 de um máximo de 10,00(72,67%)

Questão **1**Correto
Atingiu 2,00 de 2,00

Marcar questão

Seja $\underline{X} \sim N_3(\underline{\mu}, \Sigma)$ com $\underline{\mu}^\top = [2, -3, 1]$ e $\Sigma = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix}$ Qual a distribuição de $X_1 - 2X_2 + 3X_3$? Escolha uma opção:

a. N(15, 13)b. N(11, 9)c. N(14, 13)d. N(15, 9)e. N(14, 9)

A resposta correta é: N(11,9)

of. N(13,11)

 \circ g. N(11,11)

 \circ h. N(11,12)

Questão **2**Parcialmente correto

Atingiu 0,67 de 2,00

Marcar questão

Assinale todas as alternativas corretas

Seja $\underline{X} = (X_1, \dots, X_n)^\top$ um vetor aleatório com distribuição qualquer. Quando n é suficientemente grande, o Teorema do Limite Central garante que \underline{X} tem distribuição aproximadamente normal. ➤

- Dois vetores aleatórios com distribuição normal multivariada são independentes se e somente se eles são não-correlacionados.
- \square Ao observar a função densidade de probabilidade conjunta de $(X_1,X_2)^{ op}$ e seus contornos de densidade constante, é possível afirmar que X_1 e X_2 tem covariância nula.

- $lacksymbol{\mathbb{Z}}$ Se X_1,\ldots,X_p são variáveis aleatórias com distribuição normal univariada, o vetor $\underline{X}=(X_1,\ldots,X_p)^ op$ tem distribuição normal p-variada.

 $Y \sim N(\underline{a}^{\top}\underline{\mu},\underline{a}^{\top}\Sigma\underline{a})$ (normal univariada). , Dois vetores aleatórios com distribuição normal multivariada são independentes se e somente se eles são não-correlacionados.

As respostas corretas são: Um vetor aleatório é um vetor de variáveis aleatórias, que podem ser independentes ou correlacionadas., Se $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$, com $\Sigma > 0$ e se $Y = \underline{a}^{\top}\underline{X}$, com $\underline{a}_{p \times 1}$ fixo, então

Questão **3**Parcialmente correto

Atingiu 1,60 de 2,00

questão

Escolha uma ou mais: $Cov(\underline{X},\underline{Y}) = E[\underline{XY}^{ op}] - \underline{\mu}_{X}\underline{\mu}_{Y}^{ op}$

Sejam \underline{X} , \underline{Y} , \underline{X}_1 e \underline{X}_2 vetores aleatórios p-dimensionais e A, C, b e d fixos e de dimensão adequada para cada caso. Assinale todas as alternativas corretas.

 $Cov(A\underline{X} + \underline{b}, C\underline{Y} + \underline{d}) = A \ Cov(\underline{X}, \underline{Y})C^{\top}$ $Cov(\underline{X}, \underline{X}) = Var(\underline{X})$ $Cov(\underline{X}, \underline{Y}) = 0$, então \underline{X} e \underline{Y} são independentes.

As respostas corretas são: $Var(\underline{X}) = E[\underline{X}\underline{X}^{\top}] - \underline{\mu}_{\underline{X}}\underline{\mu}_{\underline{X}}^{\top}$, $Cov(\underline{X},\underline{Y}) = E[\underline{X}\underline{Y}^{\top}] - \underline{\mu}_{\underline{X}}\underline{\mu}_{\underline{Y}}^{\top}$, $Cov(\underline{A}\underline{X} + \underline{b}, \underline{C}\underline{Y} + \underline{d}) = A \ Cov(\underline{X},\underline{Y})C^{\top}$, $Cov(\underline{X},\underline{X}) = Var(\underline{X})$, $Cov(\underline{X}_1 + \underline{X}_2,\underline{Y}) = Cov(\underline{X}_1,\underline{Y}) + Cov(\underline{X}_2,\underline{Y})$

Questão **4**Correto
Atingiu 1,00 de 1,00

questão

43621 $\mathrm{Seja}\,\underline{X}=(X_1,X_2,X_3,X_4,X_5,X_6)^\top\sim N_6(\underline{\mu},\Sigma)\ \mathsf{com}\ \Sigma>0.$

A dimensão de $\underline{\mu}$ é $\boxed{6}$ v $\boxed{1}$ e a dimensão de Σ é $\boxed{6}$ v $\boxed{6}$.

A dimensão de $Cov((X_1,X_2,X_3)^\top,X_4)$ é 3 \checkmark x 1 \checkmark e dimensão de $Cov((X_1,X_2)^\top,(X_3,X_4,X_5,X_6)^\top)$ é 2 \checkmark x 4 \checkmark .

Se a matriz A tem dimensão 6x6 e o vetor \underline{b} tem dimensão 6x1, a forma quadrática $\underline{X}^{\top}A\underline{X}$ tem dimensão $\boxed{1}$ \checkmark $\boxed{1}$ e a forma linear $A\underline{X}+\underline{b}$ tem dimensão $\boxed{6}$ \checkmark $\boxed{1}$ \checkmark .

Obs: Para responder a esta questão, você deve clicar e arrastar o número correto a partir das caixinhas brancas até cada uma das lacunas correspondentes. Alternativamente, você pode clicar nos espaços em branco e digitar

o número correto.

Questão **5**Correto
Atingiu 2,00 de 2,00

Marcar questão

$$\sum = \begin{pmatrix} 1 & a & 0 \\ a & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Qual o valor de a para que $\underline{b^\top} \ \underline{X}$ e $\underline{c^\top} \ \underline{X}$ sejam independentes, com $\underline{b^\top} = (1,1,1)$ e $\underline{c^\top} = (1,0,1)$.

Se $\underline{X} \sim N_3(\mu,\Sigma)$ com

Escolha uma opção:

-1/3

O -1

-31/2

-1/21/3

0 0

0 1

2-2

A resposta correta é: -2

Questão **6**Incorreto
Atingiu 0,00 de
1,00

Marcar questão

$$\Sigma = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 Os pares de variáveis (vetores) que possuem independência probabilística são:

Seja $\underline{X} = (X_1, X_2, X_3)^ op \sim N_3(\mu, \Sigma)$ com $\mu^ op = [-3, 1, 4]$ e

 $\bigcirc X_1$ e X_3 ; X_2 e X_3 ; $(X_1,X_2)^{ op}$ e X_3

Escolha uma opção:

- $X_1 \in X_2$; $X_2 \in X_3$; $X_1 \in X_3$; X_1 , X_2 , $\in X_3$
- ullet X_1 e X_3 ; X_2 e X_3 somente
- o e somente

A resposta correta é: X_1 e X_3 ; X_2 e X_3 ; $(X_1, X_2)^ op$ e X_3

SME0822-201-2023

Terminar revisão

Você acessou como <u>Ivan Barbosa Pinheiro</u> (<u>Sair</u>)

\$