--35. A method of treating polycystic kidney disease comprising administration of a composition comprising an effective amount of a compound of any of claims 1-7 and 10-21.--

Amend Claims 1, 6, 22 and 24-27 as follows:

1. A compound having the formula:

wherein,

B2

Each R¹ and R² is independently R³; R⁸; NHR³; NHR⁵; NHR⁶; NR⁵R⁵; NR⁵R⁶; heterocyclyl optionally substituted with 1-4 independent R⁴ on each ring; or C1-C10 alkyl substituted with 1-4 independent R⁴;

Each R^3 is independently aryl; phenyl optionally substituted with 1-5 independent R^4 on each ring; or heteroaryl optionally substituted with 1-4 independent R^4 on each ring;

Each n is independently 1 or 2;

Each m is independently 0, 1, 2, 3, or 4;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; haloalkyl; SR^5 ; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^5R^{16} ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nR^5R^5$; $NR^5C(O)NR^5R^5$; $NR^5C(O)C(O)R^5$; $NR^5C(O)R^5$; $NR^5C(O)C(O)NR^5R^5$; $NR^5C(O)R^5$; $NR^5C(O)C(O)NR^5R^5$; $NR^5C(O)R^5$; NR^5

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹;

B2

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=N R^5) NR^5R^5$, or $S(O)_n R^5$;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})C(O)$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁶R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)R^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R^{14} is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl; Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; haloalkyl; COOR⁵; C(O)R⁵; C(O)R⁵; C(O)R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; haloalkyl; SR^5 ; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $C(O)NR^5$; $C(O)NR^$

Each haloalkyl is independently a C1-C10 alkyl substituted with one or more halogen atoms, selected from F, Cl, Br, or I, including perhaloalkyl;

Each aryl is independently a 6-carbon monocyclic, 10-carbon bicyclic or 14-carbon tricyclic aromatic ring system optionally substituted with 1-3 independent C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; R⁹; halo; haloalkyl; OR¹⁰; SR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; C(O)C(O)R¹⁰; C(O)NR¹⁰R¹⁰; N(R¹⁰)C(O)NR¹⁰R¹⁰; N(R¹⁰)C(O)R¹⁰; N(R¹⁰)C(O)R¹⁰; N(R¹⁰)C(O)C(O)R¹⁰;

 $NR^{10}C(O)R^9; NR^{10}S(O)_nNR^{10}R^{10}; NR^{10}S(O)_nR^9; NR^{12}C(O)C(O)NR^{12}R^{12}; S(O)_nR^{10}; \\ S(O)_nNR^{10}R^{10}; OC(O)R^{10}; C1-C10 \ alkyl \ substituted \ with 1-3 \ independent \ R^9, halo, CF_3, OR^{10}, \\ SR^{10}, OC(O)R^{10}, NR^{11}R^{11}, NR^{10}R^{10}, NR^{10}R^{11}, COOR^{10}, NO_2, CN, C(O)R^{10}, OC(O)NR^{10}R^{10}, \\ C(O)NR^{10}R^{10}, N(R^{10})C(O)R^{10}, N(R^{10}) \ (COOR^{10}), S(O)_nNR^{10}R^{10}; R^{10}; or \ C2-C10 \ alkenyl \\ substituted \ with 1-3 \ independent \ R^9, halo, CF_3, OR^{10}, SR^{10}, OC(O)R^{10}, NR^{11}R^{11}, NR^{10}R^{10}, \\ NR^{10}R^{11}, COOR^{10}, NO_2, CN, C(O)R^{10}, OC(O)NR^{10}R^{10}, C(O)NR^{10}R^{10}, N(R^{10})C(O)R^{10}, N(R^{10}) \\ (COOR^{10}), S(O)_nNR^{10}R^{10}; \\ \\$

Each heterocyclyl is independently a 3-8 membered nonaromatic monocyclic, 8-12 membered nonaromatic bicyclic, or 11-14 membered nonaromatic tricyclic, ring system having 1-4 heteroatoms if monocyclic, 1-8 heteroatoms if bicyclic, or 1-10 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S;

Each heteroaryl is independently a 5-8 membered aromatic monocyclic, 8-12 membered aromatic bicyclic, or 11-14 membered aromatic tricyclic ring system having 1-4 heteroatoms if monocyclic, 1-8 heteroatoms if bicyclic, or 1-10 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S;

provided R^1 and R^2 are not both 1-alkylpyridinium, <u>or</u> both 4-pyridyl; further provided neither R^1 or R^2 is morpholino or NH_2 ;

6. The compound of claim 1 wherein,

R¹ is independently NHR⁵;

R² is independently NHR³;

Each R^3 is independently aryl; phenyl optionally substituted with 1-5 independent R^4 on each ring; or heteroaryl optionally substituted with 1-4 independent R^4 on each ring;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R¹⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

B3

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 ;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ ($COOR^{10}$), $S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nR^{10}$; or $P(O)(OR^5)_2$;

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁶R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰:

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3

$$\label{eq:condition} \begin{split} &\text{independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10}\\ &\text{cycloalkenyl, halo, CF_3, OR^{12}, SR^{12}, NR^{12}R^{12}, COOR^{12}, NO_2, CN, C(O)R^{12}, C(O)NR^{12}R^{12},\\ &NR^{12}C(O)R^{12}, N(R^{12})(COOR^{12}), S(O)_nNR^{12}R^{12}, \text{ or OC(O)R}^{12}; \end{split}$$

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵· S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

provided neither R¹ nor R² is NH₂.

- 22. A composition comprising a compound of any of claims 1-7 and 10-21 and a pharmaceutically acceptable carrier.
 - 24. A method of treating kinase-mediated disease or disease symptoms in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-7 and 10-21.
 - 25. A method of inhibiting kinase activity in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-7 and 10-21.
 - 26. A method of treating disease or disease symptoms in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-7 and 10-21.
 - 27. A method of inhibiting angiogenesis or vasculogenesis activity in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-7 and 10-21.