Electromagnetismo 1

S08 - Conductores

Josue Meneses Díaz

Universidad de Santiago de Chile

Conductores

Clasificación de los materiales

Conductores eléctricos

Los conductores eléctricos son materiales en los cuales algunos electrones son libres, es decir, no están unidos a átomos y pueden moverse con relativa libertad a través del material. Cuando muchos átomos se combinan para formar un metal, los electrones exteriores se mueven por el metal de manera similar a las moléculas de gas en un recipiente. Algunos ejemplos son el oro, cobre, plata y aluminio.

Aislantes eléctricos

Los aislantes eléctricos son materiales en los cuales todos los electrones están unidos a átomos y no pueden moverse libremente a través del material. Cuando se frotan estos materiales, solo la zona frotada se carga y las partículas cargadas no pueden moverse hacia otras zonas del material. Algunos ejemplos son el vidrio, el caucho y la madera.

2

Conductores

Un aislante como el vidrio o el papel es un material en el que los electrones están unidos a algunos átomos particulares y no pueden moverse libremente. Por otro lado, dentro de un conductor, los electrones son libres de moverse. Las propiedades básicas de un conductor en equilibrio electrostático son las siguientes:

- (1) El campo eléctrico dentro de un conductor es cero;
- (2) Cualquier carga neta debe residir en la superficie del conductor;
- (3) La componente tangencial del campo eléctrico en la superficie es cero;
- (4) Justo fuera del conductor, el campo eléctrico es normal a la superficie;
- (5) La discontinuidad en el componente normal del campo eléctrico a través de la superficie de un conductor es proporcional a la densidad de carga superficial

A continuación demostramos estas propiedades.

Propiedades de los conductores

(1) El campo eléctrico es cero dentro de un conductor.

Cuando colocamos un conductor esférico sólido en un campo externo constante \vec{E}_0 , las cargas positivas y negativas se desplazarán hacia las regiones polares de la esfera induciendo así un campo eléctrico interno \vec{E}' . En el interior del conductor, \vec{E}' apunta en la dirección opuesta a \vec{E}_0 . Dado que las cargas son móviles, continuarán moviéndose hasta que \vec{E}' cancele completamente \vec{E}_0 dentro del conductor.

Este efecto se cumple tanto para conductores sólidos o huecos.

(2) Cualquier carga neta debe residir en la superficie.

Si hubiera una carga neta en el interior del conductor, entonces, según la ley de Gauss, \vec{E} ya no sería cero allí. Por lo tanto, toda la carga excedente neta debe fluir hacia la superficie del conductor.

(3) La componente tangencial del campo eléctrico en la superficie es cero;

Si en un conductor el campo eléctrico es cero en su interior, entonces cualquier exceso de carga colocada en el conductor debe distribuirse en la superficie. Consideremos la integral de línea $\oint \vec{E} \cdot d\vec{s}$ de la figura. Como \vec{E} es conservativo:

$$\begin{split} \oint_{abcda} \overrightarrow{\mathbf{E}} \cdot d\overrightarrow{\mathbf{s}} &= E_t(\Delta l) - E_n\left(\Delta x'\right) + 0\left(\Delta l'\right) + E_n(\Delta x) \\ 0 &= E_t(\Delta l) \end{split}$$

Donde E_t y E_n son las componentes tangencial y normal del campo eléctrico.

(4) Justo fuera del conductor, el campo eléctrico es normal a la superficie;

Si la componente tangencial de \vec{E} es inicialmente distinta de cero, las cargas se moverán hasta que desaparezca. Por lo tanto, solo sobrevive el componente normal.

Usando la ley de Gauss, obtenemos:

$$\Phi_E = \iint_S \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = E_n A + (0)(A) = \frac{\sigma A}{\varepsilon_0}$$

Por lo tanto, el componente normal del campo eléctrico es proporcional a la densidad de carga superficial

$$E_n = \frac{\sigma}{\varepsilon_0}$$

El resultado anterior es válido para un conductor de forma arbitraria.

(5) La discontinuidad en el componente normal del campo eléctrico a través de la superficie de un conductor es proporcional a la densidad de carga superficial

Al igual que en los ejemplos de un plano no conductor infinitamente grande y una capa esférica, el componente normal del campo eléctrico exhibe una discontinuidad en el límite:

$$\Delta E_n = E_n^{(+)} - E_n^{(-)} = \frac{\sigma}{\varepsilon_0} - 0 = \frac{\sigma}{\varepsilon_0}$$

Ejemplo (Conductor con carga dentro de una cavidad) Considere un conductor hueco que se muestra en la Figura. Supongamos que la carga neta transportada por el conductor es +Q. Además, hay una carga q dentro de la cavidad. ¿Cuál es la carga en la superficie exterior del conductor?

Ejemplo (Dos esferas conectadas)

Supongamos que dos esferas metálicas con radios r_1 y r_2 están conectadas por un cable conductor delgado.

Encuentre la relación de las magnitudes de los campos eléctricos en las superficies de las esferas

Ejemplo (Cascaron conductor) Considere un cascarón esférico metálica de radio a y carga

- (a) Encuentre el potencial eléctrico en todas partes.
- (b) Dibuje el campo eléctrico $ec{E}$ y potencial eléctrico V en el interior y exterior del cascarón.

Ejemplo (Esfera conductora)

Una esfera conductora posee una carga carga positiva total q de radio R. Determinar el campo eléctrico en el interior y en el exterior de la esfera. Realice un esquema del campo eléctrico en ambas zonas.

Ejemplo (Una esfera dentro de un cascarón esférico)

Una esfera aislante sólida, de radio a y carga positiva uniforme Q, es cubierta por un cascarón esférico conductor, con radio interior b y radio exterior c, es concéntrico con la esfera sólida con una carga -2Q.

Encuentre el campo eléctrico en todas las zonas mostradas en la figura.

Resumen

Resumen

Los materiales conductores presentan las siguientes propiedades:

- (1) El campo eléctrico dentro de un conductor es cero;
- (2) Cualquier carga neta debe residir en la superficie del conductor;
- (3) La componente tangencial del campo eléctrico en la superficie es cero;
- (4) Justo fuera del conductor, el campo eléctrico es normal a la superficie;
- (5) La discontinuidad en el componente normal del campo eléctrico a través de la superficie de un conductor es proporcional a la densidad de carga superficial

Referencias ______

Referencias

Freedman, Young, and S. Zemansky. 2009. "22.4 Aplicaciones de La Ley de Gauss. 22.5 Cargas En Conductores. 23.3 Cálculo Del Potencial Eléctrico." In *Física Universitaria*.

Serway, Raymond A., and John W. Jewett. 2005. "24.4 Conductores En Equilibrio Electrostático. 25.6 Potencial Eléctrico a Causa de Un Conductor Con Carga." In *Física Para Ciencias e Ingeniería Con Física Moderna*, 7ma ed. Vol. 2. CENGAGE learning.