

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

TECHNICAL MATHEMATICS P2/TEGNIESE WISKUNDE V2

NOVEMBER 2024

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

CODE/	EXPLANATION/VERDUIDELIKING
KODE	
A	Accuracy/Akkuraatheid
AO	Answer only/Slegs antwoord
CA	Consistent accuracy/Volgehoue akkuraatheid
I	Identity/Identiteit
M	Method/ <i>Metode</i>
NPR	No penalty for rounding/Geen penalisering vir afronding nie
NPU	No penalty for omitting units/Geen penalisering vir eenhede weggelaat nie
R	Rounding/Afronding
RE	Reason/Rede
S	Simplification/Vereenvoudiging
F	Formula/Formule
SF	Substitution in correct formula/Vervanging in korrekte formule
ST	Statement/Bewering
ST/RE	Statement with reason/Bewering met rede

These marking guidelines consist of 27 pages. *Hierdie nasienriglyne bestaan uit 27 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- The method of consistent accuracy marking must be applied in all aspects of the marking guidelines where applicable as indicated by the marking code CA.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Die metode van volgehoue akkuraatheid-nasien moet waar moontlik op alle aspekte van die nasienriglyne toegepas word, soos aangedui deur die nasienkode CA.

r		
1.3	$BC = \sqrt{(x_{\rm B} - x_{\rm C})^2 + (y_{\rm B} - y_{\rm C})^2}$	
	$=\sqrt{(3-4)^2+(-1-(-4))^2}$	✓SF A
	$=\sqrt{10}\approx 3{,}16$	✓ length/ lengte BC CA (2)
		AO: Full marks
1.4	$M\left(\frac{x_A + x_C}{2}; \frac{y_A + y_C}{2}\right)$	
	$M\left(\frac{6+4}{2};\frac{0+(-4)}{2}\right)$ $M(5;-2)$	✓ x-coordinate/koördinaat ✓ y-coordinate/koördinaat A (2)
1.5	$m_{perp. \text{bisector}} = -\frac{1}{2}$	✓ m of perp bisect/ van loodregte Middellyn CA
	$y - (-2) = -\frac{1}{2}(x - 5) \text{ OR/OF} -2 = -\frac{1}{2}(5) + c$ $y = -\frac{1}{2}x + \frac{5}{2} - 2 \qquad c = \frac{5}{2} - 2$	✓ substitution/ vervang m CA ✓ substitution/ vervang(5; -2) CA
	$\therefore y = -\frac{1}{2}x + \frac{1}{2}$	✓ equation in form $y = / vergelyking in vorm y = CA$
		(4)
		[12]

2.1.3	$m_{\rm OP} = -\frac{3}{4}$	✓ gradient/gradįënt of/van OP A
	$m_{\rm PR} = \frac{4}{3}$	✓ gradient/gradįënt of/van PR CA
	$y - (-3) = \frac{4}{3}(x - 4)$ OR /OF $-3 = \frac{4}{3}(4) + c$	✓ subst / vervang $(4;-3)$ A
	$y = \frac{4}{3}x - \frac{16}{3} - 3$ $c = -\frac{16}{3} - 3$	
	$\therefore y = \frac{4}{3}x - \frac{25}{3}$	✓ equation/ vergelyking CA
	OR/OF	OR/OF
		OR/OF A
	$x \cdot x_1 + y \cdot y_1 = r^2$	
		✓ F
	$x \cdot x_1 + y \cdot y_1 = r^2$ $4x - 3y = 25$	✓ \mathbf{F} ✓ subst / vervang $(4;-3)$ A

2.2.1	$\frac{x^2}{1^2} + \frac{y^2}{3^2} = 1$	✓ standard form / std vorm (1)
2.2.2		✓ x- and y-intercepts/afsnitte CA ✓ elliptical shape/elliptiese vorm CA (2)

[12]

NSC/NSS – Marking Guidelines/Nasienriglyne

3.1.1	$A = \frac{17}{60}\pi = 51^{\circ}$	✓ A in degrees / grade	A (1)
3.1.2	$\sqrt{\operatorname{cosec} B}$		
	$= \sqrt{\operatorname{cosec} \ 34^{\circ}} \qquad \operatorname{OR}/OF \qquad = \sqrt{\operatorname{cosec} \left(34^{\circ} \times \frac{\pi}{180}\right)}$	✓ substitution / vervanging	A
	$= \sqrt{\frac{1}{\sin 34^{\circ}}} $ $\approx 1,34$ $= \sqrt{\csc \frac{17}{90}\pi}$	✓ S	CA (2)
3.1.3	tan(A + B)		
	$= \tan(51^{\circ} + 34^{\circ}) \qquad OR / OF = \tan\left(85^{\circ} \times \frac{\pi}{180^{\circ}}\right)$	✓ substitution / vervanging	CA
	≈ 11,43	✓ S	CA (2)

3.2.1	$\sec \theta = -\frac{13}{5} \mathbf{OR} / \mathbf{OF} \frac{1}{\cos \theta} = \frac{1}{\frac{-5}{13}}$	✓ ratio / verhouding	A (1)
3.2.2	$x^{2} + y^{2} = r^{2}$ $(-5)^{2} + n^{2} = (13)^{2}$ $n^{2} = 144$	✓ SF	A
	$n^{2} = 144$ $n = 12$ $1 + \sin^{2} \theta$	✓ value of/waarde van n	CA
	$=1+\left(\frac{12}{13}\right)^2$	✓ sin ratio / verh	CA
	$=\frac{313}{169}$	✓ S	CA
	OR/OF	OR/OF	
	$1 + \sin^2 \theta = 1 + 1 - \cos^2 \theta$	✓ I	A
	$=2-\cos^2\theta$	$\checkmark 2 - \cos^2 \theta$	CA
	$=2-\left(\frac{-5}{13}\right)^2$	$\checkmark \mathbf{I}$ $\checkmark 2 - \cos^2 \theta$ $\checkmark \frac{-5}{13}$	CA
	$=\frac{313}{169}$	✓ S	CA (4)

3.2.2	$x^2 + y^2 = r^2$		
	$(-5)^2 + n^2 = (13)^2$	✓ SF	A
	$(-5)^2 + n^2 = (13)^2$ $n^2 = 144$		
	n = 12	✓ value of/waarde van n	CA
	$1 + \sin^2 \theta$	· value of waarde van 'n	CA
	$=1+\left(\frac{12}{13}\right)^2$	✓ sin ratio / verh	CA
	$=1+\left(\frac{1}{13}\right)$	V Sin rado i vern	CA
	$=\frac{313}{169}$		
	169	✓ S	CA
	OR/OF	OR/OF	
	$1 + \sin^2 \theta = 1 + 1 - \cos^2 \theta$	✓ I	A
	$=2-\cos^2\theta$	$\checkmark \mathbf{I}$ $\checkmark 2 - \cos^2 \theta$ $\checkmark \frac{-5}{13}$	CA
	$(-5)^2$	5	
	$=2-\left(\frac{-5}{13}\right)^2$	$\sqrt[4]{13}$	CA
	$=\frac{313}{169}$		
	$-\frac{1}{169}$	✓ S	CA
			(4)
3.3	$2\sin x = 3\cos x$		
	$\frac{2\sin x}{2\cos x} = \frac{3\cos x}{2\cos x} \qquad \mathbf{OR} / \mathbf{OF} \frac{2\sin x}{3\sin x} = \frac{3\cos x}{3\sin x}$	✓ dividing by / deel deur	
	_	$\cos x$ or $\sin x$	A
	$\tan x = \frac{3}{2} \qquad \cot x = \frac{2}{3}$	✓ tan/cot ratio / verh	CA
	Ref. angle /verw hoek = $56,31^{\circ}$	✓ Ref. angle /verw hoek	CA
	$x = 180^{\circ} + 56,31^{\circ}$	doing of lang-th-	CA
	$x = 236,31^{\circ}$	✓ size of / grootte van x	CA (4)
			[14]
			[14]

4.1.1	$-\sin x$	✓ reduction /reduksie A
4.1.2	$-\cos x$	(1) ✓ reduction /reduksie A
	(1000)	(1)
4.1.3	$\cot(180^{\circ} + x) \cdot \sin(2\pi - x)$	
	$\cos(180^{\circ} - x) \cdot \cos(360^{\circ} - x) + 2\cos^{2}(180^{\circ} + x)$	
	$= \frac{\cot x \cdot -\sin x}{-\cos x \cdot \cos x + 2(-\cos x)^2}$	$\checkmark \cot x$ A
		$\checkmark \cos x$ A
	$= \left(\frac{\cos x}{\sin x} \cdot - \frac{\sin x}{1}\right) \div \left(-\cos^2 x + 2\cos^2 x\right)$	$\checkmark (-\cos x)^2/\cos^2 x$ A
	$-\cos x$	✓ cot quotient identity/
	$=\frac{-\cos x}{\cos^2 x}$	kwosiënt identiteit A
	$=-\frac{1}{\mathbf{OR}/\mathbf{OF}}-\sec x$	✓ S CA
	$\cos x$	✓ S CA
		(6)
4.2.1	$\cos^2 \theta$	✓ identity/identiteit A (1)
4.2.2	$\frac{1}{\sin \theta} - \frac{\sin \theta}{1 + \cos \theta} = \cot \theta$	
	L.H.S /LK. = $\frac{1 + \cos \theta - \sin^2 \theta}{\sin \theta (1 + \cos \theta)}$	
	$\cos\theta + \cos^2\theta$	\checkmark I $\cos^2\theta$ A
	$\equiv \frac{1}{\sin\theta(1+\cos\theta)}$	✓ LCD/KGV A
	$\cos\theta(1+\cos\theta)$	
	$-\frac{1}{\sin\theta(1+\cos\theta)}$	✓ common factor /
	$= \frac{\cos \theta}{\sin \theta} = \cot \theta = RHS/RK$	gemene faktor A
	$\sin \theta = \cot \theta = \text{KHS/KK}$	\checkmark S $\left(\frac{\cos\theta}{\cos\theta}\right)$ A
	OR/OF	$\left(\sin\theta\right)$
		OR/OF
	L.H.S /LK. = $\frac{1 + \cos \theta - \sin^2 \theta}{\sin \theta (1 + \cos \theta)}$	
	$=\frac{1+\cos\theta-(1-\cos^2\theta)}{}$	\checkmark I $1-\cos^2\theta$ A
	$= \frac{1}{\sin\theta(1+\cos\theta)}$	✓ LCD/KGV A
	$=\frac{1+\cos\theta-1+\cos^2\theta}{\sin\theta(1+\cos\theta)}$	
	$\sin\theta(1+\cos\theta)$	
	$=\frac{\cos\theta+\cos^2\theta}{\sin\theta(1+\cos\theta)}$	
	$=\frac{\cos\theta(1+\cos\theta)}{}$	/ gamman fastan /
	$=\frac{\cos\theta(1+\cos\theta)}{\sin\theta(1+\cos\theta)}$	✓ common factor / gemene faktor A
	$=\frac{\cos\theta}{\sin\theta}=\cot\theta=RHS/RK$	$\checkmark \mathbf{S} \left(\frac{\cos \theta}{\sin \theta} \right)$ A
	$\sin \theta$	$(\sin \theta)$
	OR/OF	OR/OF

$LHS/LK = \frac{(1 + \cos\theta) - \sin^2\theta}{\sin\theta(1 + \cos\theta)}$		
$=\frac{\left(1+\cos\theta\right)-\left(1-\cos^2\theta\right)}{\sin\theta\left(1+\cos\theta\right)}$	\checkmark I $1-\cos^2\theta$	A
$=\frac{\left(1+\cos\theta\right)-\left[\left(1+\cos\theta\right)\left(1-\cos\theta\right)\right]}{\sin\theta\left(1+\cos\theta\right)}$	✓ factors/faktore	A
$=\frac{(1+\cos\theta)\left[1-(1-\cos\theta)\right]}{\sin\theta(1+\cos\theta)}$		
$=\frac{1-1+\cos\theta}{\sin\theta}$	✓ S	A
$=\frac{\cos\theta}{\sin\theta}$	$\checkmark \mathbf{S} \left(\frac{\cos \theta}{\sin \theta} \right)$	A
$= \cot \theta = \text{RHS}/RK$	(Sino)	(4)
		[13]

6.1	$\hat{N} = 12^{\circ}$	✓ angle size/hoek grootte A (1)
6.2	$\frac{\text{TR}}{\sin N} = \frac{\text{TN}}{\sin T \hat{R} N} \qquad \mathbf{OR} / \mathbf{OF} \frac{n}{\sin N} = \frac{r}{\sin T \hat{R} N}$	✓ sine rule /sinus reël A
	$\frac{TR}{\sin 12^{\circ}} = \frac{18}{\sin 142^{\circ}}$ $TR = \frac{18\sin 12^{\circ}}{\sin 142^{\circ}}$	✓ substitution in sine rule / vervanging in sine reël CA
	≈ 6,08 units/eenhede	✓ length of / lengte van TR CA (3)
6.3	$\tan 52^\circ = \frac{PT}{6,08}$	✓ tan ratio /verh CA
	$PT = 6,08 \tan 52^{\circ}$ $\approx 7,78 \text{ units/eenhede}$ OR/OF	✓ length of / lengte van PT CA OR/OF
	$ \hat{P} = 38^{\circ} $ $ \tan 38^{\circ} = \frac{6,08}{PT} $ $ PT = \frac{6,08}{\tan 38^{\circ}} $	✓ tan ratio /verh CA
	$\tan 38^{\circ}$ $\approx 7,78 \text{ units}$ OR/OF	✓ length of / lengte van PT CA OR/OF

	$\frac{PR}{=} = \frac{6,08}{}$		
	$\frac{110}{\sin 90^{\circ}} = \frac{0,00}{\sin 38^{\circ}}$		
	$PR = \frac{6.08 \cdot \sin 90^{\circ}}{\sin 38^{\circ}}$	✓ length of PR	CA
	≈ 9,88 units	✓ length of / lengte van PT	CA
	$PT = \sqrt{(9,88)^2 - (6,08)^2}$		(2)
	≈ 7,79 units		(2)
6.4	Area of/van Δ TRN = $\frac{1}{2} \times 18 \times 6,08 \times \sin 26^{\circ}$	✓ substitution /vervanging	CA
	≈ 23,99	✓ Area of/van ∆TRN	CA
	Area of/van $\Delta PTR = \frac{1}{2} \times 7,78 \times 6,08$	✓ substitution /vervanging	CA
	≈ 23,65	✓ Area of/van △PTR	CA
	$\frac{\text{Area of/}van \ \Delta \text{TRN}}{\text{Area of/}van \ \Delta \text{PTR}} \approx \frac{23,99}{23,65} \approx 1,01$	✓ ratio / verhouding	CA
	ODIOE	OR/OF	
	OR/OF		
	Area of/van $\Delta TRN = \frac{1}{2} \times 18 \times 6,08 \times \sin 26^{\circ}$	✓ substitution /vervanging	CA
	≈ 23,99	✓ Area of/van ∆TRN	CA
	Area of/van $\triangle PTR = \frac{1}{2} \times 6,08 \times 9,87$	✓ substitution /vervanging	CA
	≈ 23,64	✓ Area of/van ΔPTR	CA
	$\frac{\text{Area of/}van \ \Delta \text{TRN}}{\text{Area of/}van \ \Delta \text{PTR}} \approx \frac{23,99}{23,64} \approx 1,01$	✓ ratio / verhouding	CA
	OR/OF	OR/OF	
	Area of/van $\Delta TRN = \frac{1}{2} \times 18 \times 6,08 \times \sin 26^{\circ}$	✓ substitution /vervanging	CA
	≈ 23,99	✓ Area of/van ∆TRN	CA
	Area of/van $\Delta PTR = \frac{1}{2} \times 6,08 \times 7,78 \sin 90^{\circ}$	✓ substitution /vervanging	CA
	≈ 23,65	✓ Area of/van ΔPTR	CA
	$\frac{\text{Area of/}van \ \Delta \text{TRN}}{\text{Area of/}van \ \Delta \text{PTR}} \approx \frac{23,99}{23,65} \approx 1,01$	✓ ratio / verhouding	CA
	Αιτα 01/ van Δ1 1 R 25,05		(5)
			[11]

	D 65° 1 2 3 B				
7.1		to midpoint of chord/ mamdpt vankoord	✓ RE	A (1)	
7.2	(opp ∠'s supplem supplementêr)	nentary / teenoorst ∠'e is	✓ RE	A	
		OR/OF	OR/OF		
	$ext \angle = opp interior$	$ior \angle / buite \angle = teenoort binne \angle$	✓ RE	A (1)	
7.3	Statement/ Bewering	Reason / Rede			
	$\hat{O}_1 = 115^{\circ}$	Opp ∠s of cyclic quad / Teenoorst ∠e van kdvh	✓ ST	A	
	B = 115 °	Opp ∠s of cyclic quad / Teenoorst ∠e van kdvh	✓ ST	A	
	DN = NA OR/OF	Line from centre \perp to chord Lyn vanaf midpt \perp op koord	✓ ST ✓ RE	A A	
	$DN = \frac{1}{2}DA$	J J I I I I I I I I I I I I I I I I I I		(4)	

AD = AC

A

A

DM = MC(given / gegee) ✓ **RE** (conclusion) A $\therefore \Delta ADM \equiv \Delta ACM$ $(S \angle S)$

OR/OF OR/OF

In $\triangle ADM \& \triangle ACM$: line from cent. \perp to chord/ ✓ ST A $M_1 = M_2 = 90^{\circ}$ lyn vanuit mdtp \perp op koord

✓ ST A AM is common/ gemeenskaplik

✓RE A $\therefore \Delta ADM \equiv \Delta ACM$ (RHS/RSS)

(3) 7.5 \angle at centre = 2 × \angle at circum / ✓ ST A $O_3 = 130^{\circ}$ midpts $\angle = 2 \times \text{omtreks } \angle$ ✓ RE A

 $O_3 + B = 130^{\circ} + 115^{\circ} \neq 180^{\circ}$ ✓ RE A ∴ ABCO is not cyclic quad. $(opp \angle s not suppl) /$

OR/OF \therefore ABCO is nie 'n kvhk nie (teenoorst $\angle e$ is nie sup pl)

✓ ST A ✓ RE A OR/OF ✓ RE

Since three points A, B and C of the quadrilateral lie on the existing circle \(\sigma \) and point O lies within the circle \(\sigma \), therefore AOCB cannot be a cyclic quadrilateral ✓.

(Pyth. theorem/ *stelling*)

Aangesien drie punte A, B en C van die vierhoek op die (3) bestaande sirkel lê√ en punt O binne die sirkel lê√, kan AOCB dus nie 'n koordevierhoek wees nie✓.

8.1		S 2 48° 1 136° 1 N 2 R M	1 T	
8.1.1	$\stackrel{\wedge}{\mathrm{PST}} = 68^{\circ}$		✓ ST ✓ RE	A A
	$\hat{S}_1 = 20^{\circ}$		✓ ST	CA (3)
8.1.2	$\stackrel{\wedge}{R}_2 = 48^{\circ}$	$\begin{pmatrix} \text{ext} \angle \text{ of cyclic quad } / \\ \text{buite} \angle \text{van kdvk} \end{pmatrix}$	✓ ST ✓ RE	CA A
	∴ M = 48°	$ \begin{pmatrix} \angle s \text{ opp } = \text{ sides } / \\ \angle e \text{ teenoor } = \text{ sye} \end{pmatrix} $	✓ ST ✓ RE	CA A
	$\dot{N}_2 = 84^{\circ}$	$ \begin{pmatrix} Int \angle s & of \Delta / \\ Binne \angle e van \Delta \end{pmatrix} $	✓ ST ✓ RE	CA A
		OR/OF		OR/OF
	$\hat{R}_1 = 132^{\circ}$	$ \begin{pmatrix} \text{opp.} \angle \text{s of cyclic quad suppl.}/\\ teenst \angle^e van \ kvhk \ \text{sup } pl \end{pmatrix} $	✓ ST ✓ RE	CA A
	$\hat{R}_2 = 48^{\circ}$	$(\angle s \text{ on a str. line}/\angle^e op'n reguitlyn)$	✓ ST ✓ RE	CA A
	$\hat{\mathbf{M}} = 48^{\circ}$	$(\angle s \text{ opp.} = \text{sides}/\angle^e teenoor = sye)$	✓ ST	CA
	$\hat{N}_2 = 84^{\circ}$	$\left(\angle s \text{ of a } \Delta / \angle^e van \Delta\right)$	✓ ST	A (6)

8.2.2	$\therefore \hat{SRP} = 72^{\circ}$	$\begin{pmatrix} \angle s \text{ on a str. line/} \\ \angle e \text{ op reguitlyn} \end{pmatrix}$	✓ST	CA
	$\stackrel{\wedge}{\mathbf{P}_3} = 72^{\circ}$	$ \begin{pmatrix} \text{co-int.} \angle; \text{RS} \parallel \text{PT} \\ ko-binne} \angle e; \text{RS} \parallel PT \end{pmatrix} $	✓ ST ✓ RE	CA A
	Q =72°	$ \begin{pmatrix} tan-chord & th / \\ raaklyn-koord & st \end{pmatrix} $	✓ ST	CA

	OR/OF		
$\hat{P}_2 + 57^\circ = 108^\circ =$	51° $\left(\begin{array}{c} \text{alt } \angle s; RS \parallel PT / \\ \textit{verw. } \angle e; \textit{RS } \parallel \textit{PT} \end{array}\right)$	OR/OF	
∴ Q = 72°	$\begin{pmatrix} \text{Int } \angle s \text{ of } \Delta / \\ Binne \ \angle e \ van \ \Delta \end{pmatrix}$	✓ ST/RE	A
$\hat{R}_3 = 15^{\circ}$	$ \begin{pmatrix} \angle s \text{ on str line } / \\ \angle e \text{ op '} n \text{ reguit lyn} \end{pmatrix} $	✓ ST	CA
$\stackrel{\circ}{SRP} = 15^{\circ} + 57^{\circ} =$	= 72°	✓ ST	CA
$\therefore \hat{SRP} = \hat{Q}$	OR/OF	✓ ST	CA
$\hat{\mathbf{P}}_3 = 72^{\circ}$ $\hat{\mathbf{P}}_2 = 51^{\circ}$	(co-int./ ko - $binne \angle$ s; SR TP) (\angle s on a str.line/ op ' n reguitly n)	OR/OF	
$\hat{Q} = 72^{\circ}$	$\left(\operatorname{int}.\angle\operatorname{s} \text{ of } \Delta / \operatorname{binne}\angle^{\operatorname{e}} \operatorname{van} \Delta\right)$	✓ ST/RE	A
$\stackrel{\circ}{SR}P = 72^{\circ}$	$(int.\angle s \text{ of } \Delta / binne\angle^e van \Delta)$	✓ ST	CA
$\therefore \hat{SR} P = \hat{Q}$		✓ ST	CA
		✓ ST	CA
			(4)
			[15]

9.4	In Δs RPV and RSW:		
	\hat{R} is common / gemeen	✓ ST	A
	$\hat{P}_{1} = \hat{S}_{2}$ $\begin{pmatrix} corresp. \angle s; PV \parallel SW / \\ ooreenkst \angle e; PV \parallel SW \end{pmatrix}$	✓ ST	A
	$\hat{\mathbf{V}}_{2} = \hat{\mathbf{W}}_{1} \qquad \begin{pmatrix} \text{corrsp. } \angle \mathbf{s}; \mathbf{PV} \parallel \mathbf{SW} / \\ \text{ooreenkst } \angle \mathbf{e}; \mathbf{PV} \parallel \mathbf{SW} \end{pmatrix}$	✓ RE/3rd statement/3de	
	$\therefore \Delta RPV \parallel \Delta RSW \qquad (\angle\angle\angle)$	stelling	A
	OR/OF	OR/OF	
	$\hat{R} = \hat{V}_2$ $(\angle s \text{ opp.} = \text{sides}/\angle^e \text{ teenoor} = \text{sye})$	✓ ST	A
	$\hat{\mathbf{V}}_2 = \hat{\mathbf{W}}_1 \qquad \left(\text{corr./ooreenk} \angle \mathbf{s}; \mathbf{PV} \parallel \mathbf{SW} \right)$		
	RS = SW (sides opp. = \angle s/ sye teenoor = \angle ^e) RV 2 1 PR 3 1 PV 3 1		
	$\frac{RV}{RW} = \frac{2}{8} = \frac{1}{4} \frac{PR}{RS} = \frac{3}{12} = \frac{1}{4} \frac{PV}{SW} = \frac{3}{12} = \frac{1}{4}$	✓ ST	A
	$\therefore \Delta RPV \Delta RSW$ (corr.sides are in prop./ooreenst sye in verh)	✓ RE	A (3)
9.5	$\therefore \frac{SW}{RS} = \frac{PV}{RP} \qquad (\parallel \Delta s)$	✓ ST	CA
	$\therefore \frac{SW}{12} = \frac{3}{2}$		
	$12 3$ $\therefore SW = 12$	✓ ST	CA
	OR / OF	OR / OF	
	$\therefore \frac{SW}{RW} = \frac{PV}{RV} \qquad (\parallel \Delta s)$	✓ ST	CA
	$\therefore \frac{SW}{8} = \frac{3}{2}$		
	∴ SW = 12	✓ ST	CA
	OR/OF	OR/OF	

$\frac{RP}{RS} = \frac{PV}{SW}$			
$\frac{3}{12} = \frac{3}{SW}$		✓ ST	CA
SW = 12		✓ ST	CA
	OR/OF		
$\frac{PV}{SW} = \frac{RV}{RW}$		OF/OF	
$\frac{3}{\text{SW}} = \frac{2}{8}$ $\text{SW} = 12$		✓ ST	CA
	OR/OF	✓ ST	CA
$\hat{\mathbf{V}}_2 = \hat{\mathbf{W}}_1$	(corr./ooreenk∠;PV SW)	OR/OF	
$\hat{V}_2 = \hat{R}$			
$\hat{\mathbf{R}} = \hat{\mathbf{W}}_1$			
SR = SW		✓ ST	CA
∴ SR = 12			
		✓ ST	CA
		AO: Full marks/volpunte	(2)
			[11]

10.1	A 40 cm	В	
10.1.1	$\frac{48}{60} = \frac{4}{5} = 0.8 \text{ rev/s}$	$\checkmark \frac{4}{5}$ or/of 0,8	A
10.1.2	0,4 m	√ 0,4	(1) A
10.1.3	0,8 m	√ 0,8	(1) CA
10.1.4	$v = \pi D n$	✓ F	(1) A
10.1.4	$v = \pi D h$ $= \pi \times (0,8) \times (0,8)$	✓ SF	CA CA
	$= \frac{16}{25} \pi \mathbf{OR/OF} \approx 2,01 \text{ m/s}$	✓ circm vel /omtreksnld	CA
	$\mathbf{OR/OF}$ $\omega = 2 \pi n$ $= 2 \pi \times (0,8) = \frac{8}{5} \pi \approx 5,03$	OR/OF ✓ F	A
	$v = \omega r$ $= \frac{8}{5}\pi \times 0.4$	✓ SF	CA
	$= \frac{16}{25} \pi \mathbf{OR/OF} \approx 2,01 \text{ m/s}$	✓ circm vel /omtreksnld	CA (3)
10.1.5	$4h^2 - 4dh + x^2 = 0$	✓ F	A
	$4(8)^2 - 4(80)(8) + x^2 = 0$	✓ SF	CA
	$x^2 = 2304$ $x = 48 \text{ cm}$ OR/OF	✓ S ✓ value of / waarde van x OR/OF	CA CA

OD = $40 - 8 = 32$ AD = $\sqrt{40^2 - 32^2}$ AD = 24 AD = 24 Very length of/lengte van OD substitution/vervanging CA				
$AD = \sqrt{40^{\circ} - 32}$ $AD = 24$ $\sqrt{\text{substitution/ vervanging}}$ CA	OD = 40 - 8 = 32			
AD = 24	$AD = \sqrt{40^2 - 32^2}$		✓ length of/lengte van OD	A
	,	40	• substitution/ vervanging	CA
$DB = 24$ \checkmark length of/lengte van AD \checkmark length of/length of/length van AD \checkmark length of	DB = 24	40 cm	✓ length of/lengte van AD	CA
AB = 48 cm ✓ length of/lengte van AB CA	AB = 48 cm	A B	✓ length of/lengte van AB	CA
$\overline{}$				(4)

10.2

10.2.1	$75^{\circ} = 75^{\circ} \times \frac{\pi}{180^{\circ}} = \frac{5\pi}{12}$ OR/OF $\approx 1,31$ rad	✓ angle/hoek in rad	A (1)
10.2.2	Area of sector/ Area van sektor = $\frac{r^2 \theta}{2}$	✓ F	A
	$=\frac{\left(8\right)^{2}\times\left(\frac{5\pi}{12}\right)}{2} \mathbf{OR/OF} \frac{\left(8\right)^{2}\times\left(1,31\right)}{2}$	✓ SF	CA
	$=\frac{40\pi}{3} \approx 41,89 \text{ cm}^2$ OR/OF $\approx 41,92 \text{ cm}^2$		CA
	OR/OF	OR/OF	
	$\frac{\text{Area of sector/}}{\text{Area van sektor}} = \frac{rs}{2}$	✓ F	A
	$= \frac{(8) \times \left(8 \times \frac{5\pi}{12}\right)}{2} \mathbf{OR/OF} \frac{(8) \times (8 \times 1,31)}{2}$	✓ SF	A
	$=\frac{40\pi}{3} \approx 41,89 \text{ cm}^2$ OR/OF $\approx 41,92 \text{ cm}^2$	✓ area	CA
	OR/OF	OR/OF	

	Area of sector/ $\frac{\theta}{360^{\circ}} \pi r^2$		
	Area van sektor $-\frac{1}{360}$ °		
	$=\frac{75^{\circ}}{360^{\circ}}\times\pi\times\left(8\right)^{2}$	✓ F	A
	$= \frac{40\pi}{3} \text{ cm}^2 \text{ OR/OF} \approx 41,89 \text{ cm}^2$	✓ SF	A
		✓ area	CA (3)
10.2.3	16 cm	✓length / lengte	A (1)
10.2.4	In Δ ABC		(1)
	$\cos \theta = \frac{16^2 + 18^2 - 14^2}{2(16)(18)}$	✓use Cosine rule / gebruik van kosinusreël	A
	$\theta = \cos^{-1}\left(\frac{16^2 + 18^2 - 14^2}{2(16)(18)}\right)$		
	$0 = \cos \left(\frac{1}{2(16)(18)}\right)$	✓ SF \checkmark value of / waarde van θ	CA CA
	$\theta = 48,19^{\circ}$	value of / waarae van o	011
	Arc length /Booglengte DF:		
	$s = r \times \theta$	✓ F	A
	$s = (10) \times \left(48,19^{\circ} \times \frac{\pi}{180^{\circ}}\right)$		
	$= \frac{4819}{1800} \pi \text{ cm } \mathbf{OR/OF} \approx 8,41 \text{ cm}$	✓ arc length / booglengte	CA
	OR/OF	OR/OF	
	In Δ ABC		
	$\cos \theta = \frac{16^2 + 18^2 - 14^2}{2(16)(18)}$	✓ use Cosine rule / gebruik van kosinusreël	A
	$\theta = \cos^{-1}\left(\frac{16^2 + 18^2 - 14^2}{2(16)(18)}\right)$	✓ SF	CA
	$\theta = 48,19^{\circ}$	✓ value of / waarde van θ	CA
	$\frac{48,19^{\circ}}{360^{\circ}} = \frac{s}{20\pi}$	✓ M proportion / eweredigheid	A
	$\therefore s = \frac{48,19^{\circ} \times 20\pi}{360^{\circ}}$		
	≈ 8,41 cm	✓ arc length / booglengte	CA (5)
			[20]

TOTAL/TOTAAL: 150