

Home Gameboard Chemistry Inorganic Bonding What Type of Bonding?

What Type of Bonding?

Part A Covalent and ionic chlorides

Which of the following sets contain two covalent chlorides and two ionic chlorides?

1	NaCl	BaCl_2	CCl_4	ICl
2	BeCl_2	SiCl_{4}	PbCl_4	SCl_2
3	CaCl_2	SiCl_4	PCl_3	SCl_2

)	1, 2 and 3 are correct
)	1 and 2 only are correct
)	2 and 3 only are correct

1 only is correct

3 only is correct

Part B Calcium chloride

Which of ionic, metallic, purely covalent or polar covalent best describes the type of bonding present in $CaCl_2$?

Phosphorus trichloride Part C Which of ionic, metallic, purely covalent or polar covalent best describes the type of bonding present in PCl_3 ? Part D Chlorine Which of ionic, metallic, purely covalent or polar covalent best describes the type of bonding present in Cl_2 ? Part E Sodium Which of ionic, metallic, purely covalent or polar covalent best describes the type of bonding present in Na?

Part F Silicon dioxide

Which of ionic, metallic, purely covalent or polar covalent best describes the type of bonding present in SiO_2 ?

Part A adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 1, Question 31; Parts B-F created for isaacphysics.org by R. Less

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Lattice Enthalpy Definition

Lattice Enthalpy Definition

Part A Lattice enthalpy definition
Fill in the missing words:
Lattice enthalpy of formation $\Delta_{LE}H$ is the energy change when one $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Lattice formation enthalpies are always The magnitude of the lattice enthalpy is affected by both the ionic and the on the ions.
Items:
charge mole negative radii positive ions gaseous atoms
Part B Lattice energy
For which compound is the lattice energy likely to have the greatest numerical value (i.e. the greatest magnitude, disregarding sign)?
lithium fluoride
rubidium chloride
sodium chloride
lithium iodide

Home Gameboard Chemistry Inorganic Bonding Lattice Enthalpy Estimation

Lattice Enthalpy Estimation

Within the ionic model, lattice enthalpies in $kJ \, mol^{-1}$ may be estimated using the equation:

$$\Delta_{
m L} H^{\scriptscriptstyle \oplus} = rac{C \!\cdot\! z^+ \!\cdot\! z^- \!\cdot\!
u}{(r^+\,+\,r^-)} - 2.5
u$$

Where:

- C is a constant approximately equal to $105\,000$ units;
- ullet z^+ and z^- are the *signed* charges on the cation and anion respectively in units of e;
- ullet u is the number of ions in the formula (e.g. 3 for MgI_2);
- r^+ and r^- are the radii of the ions in pm;
- ullet The -2.5
 u term corrects for the difference between internal energy and enthalpy.

The table below shows the radii for certain ions.

lon	Li^+	Na^+	Ca^{2+}	${ m Cr}^{3+}$	Hg^+	O^{2-}	\mathbf{F}^-	Cl^-	${\rm Br}^-$
Radius / pm	74	102	100	62	158	140	133	180	195

Estimate the values of $\Delta_{\rm L} H^{\scriptscriptstyle \oplus}$ for the following compounds, using the equation given. Give your answers to 3 significant figures.

Part A LiBr

 $\Delta_{\mathrm{L}} H^{\scriptscriptstyle \oplus}$ for LiBr

Part B Na_2O

 $\Delta_{
m L} H^{\scriptscriptstyle \oplus}$ for ${
m Na}_2{
m O}$

Part C CaF_2

 $\Delta_{\mathrm{L}} H^{\scriptscriptstyle \oplus}$ for CaF_2

$\begin{array}{cc} \textbf{Part D} & Cr_2O_3 \end{array}$

 $\Delta_{
m L} H^{\scriptscriptstyle \oplus}$ for ${
m Cr}_2{
m O}_3$

$\begin{array}{ll} \textbf{Part E} & Hg_2Cl_2 \end{array}$

 $\Delta_{
m L} H^{\scriptscriptstyle \oplus}$ for ${
m Hg}_2{
m Cl}_2$

Part F Poor approximation

Experimentally found lattice enthalpies are:

Lattice	LiBr	$\mathrm{Na_{2}O}$	CaF_2	$\mathrm{Cr_2O_3}$	$\mathrm{Hg_{2}Cl_{2}}$
$\Delta_{ m L} H^{\scriptscriptstyle \oplus}$ / ${ m kJmol^{-1}}$	-800	-2530	-2635	-15115	-1950

For which compound is the ionic model a poor approximation?

Based on question F4.4 from the Physical Chemistry book

Gameboard:

STEM SMART Chemistry Week 6

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Lattice Energy

Lattice Energy

Part A Lattice energy definition

Which equation defines the lattice energy of the ionic compound XY?

$$igg(X^+(g) + Y^-(g) \longrightarrow XY(s)$$

Part B Lattice energies

The radius and charge of each of six ions are shown in the table.

ion	${ m J}^+$	\mathbf{L}^{+}	M^{2+}	\mathbf{X}^{-}	Y^{-}	${f Z}^{2-}$
radius/nm	0.14	0.18	0.15	0.14	0.18	0.15

The ionic solids JX, LY and MZ are of the same lattice type.

What is the correct order of their lattice energies placing the one with the highest **magnitude** (most exothermic lattice formation enthalpy) first?

- MZ > LY > JX
- LY > MZ > JX
- $\int JX > LY > MZ$
- \bigcirc MZ > JX > LY

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996 Paper 3, Question 6; Part B adapted with permission from UCLES, A-Level Chemistry, November 1990, Paper 1, Question 8

Gameboard:

STEM SMART Chemistry Week 6

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Covalent Bonding

Covalent Bonding

Part A	Number of bonding electrons
Wł	nich of the following molecules contains six bonding electrons?
	igcirc SiCl ₄
	$\bigcirc \mathrm{H_2S}$
	\bigcirc CO ₂
	$\bigcirc \mathrm{C_2H_4}$
	\bigcirc NCl $_3$

Part B P-H and Cl-H bonds

The P-H bond energy is the mean (average) of the H-H and P-P values. Which of the statements are relevant to explaining why the H-Cl bond energy is **not** the mean of the H-H and Cl-Cl values?

Some bond energy values are given in the table below:

bond	bond energy $/\mathrm{kJ}\mathrm{mol}^{-1}$	bond	bond energy $/\mathrm{kJ}\mathrm{mol}^{-1}$
H-H	436	$\mathrm{H}\mathrm{-H}$	436
P-P	208	Cl-Cl	244
Р-Н	322	H-Cl	431

- **1** The Cl-H bond is more polar than the P-H bond.
- **2** Cl has a smaller covalent radius than P.
- **3** P has five valence electrons whereas Cl has seven.

1, 2 and 3 are relevant
1 and 2 only are relevant
2 and 3 only are relevant
1 only is relevant
3 only is relevant

Part A adapted with permission from UCLES, A-Level Chemistry, November 1992, Paper 4, Question 5; Part B adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 2, Question 2

Gameboard:

STEM SMART Chemistry Week 6

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Dipoles

Dipoles

Part A	Dipoles 1
W	hich of the following molecules has no permanent dipole?
	\bigcirc CHCl $_3$
	$igcup \operatorname{CCl}_2\mathrm{F}_2$
	$igcup_2 ext{H}_5 ext{Cl}$
	$igcup_2\mathrm{Cl}_4$

Part B Dipoles 2

In which pair of molecules is the permanent dipole in molecule I greater than that in molecule II?

Figure 1: Dipoles.

The hexagonal structures are *benzene rings*. Benzene has formula C_6H_6 and can be viewed as having alternating single and double bonds, although in actual fact all C-C bonds are the same length and are somewhere between single and double bonds, hence is a circle is drawn to represent this.

The hydrogen atoms are not usually drawn on. Substituted benzenes have different groups attached in place of hydrogen which are indicated.

Figure 2: Representations of benzene, C_6H_6 and chlorobenzene, $C_6H_5Cl.$

() A

B

Part A adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 9; Part B adapted with permission from UCLES, A-Level Chemistry, June 1999, Paper 3, Question 18

Gameboard:

STEM SMART Chemistry Week 6

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Van der Waals and Paraffin wax

Van der Waals and Paraffin wax

Part A Van der Waals forces
Which of the following compounds in their solid states consist of atoms or molecules held together only by van der Waals forces (due to some form of dipole-dipole interaction)?
$\bigcirc \mathrm{H_2O}$
\bigcirc MgO
$igcup ext{SiO}_2$
\bigcirc Cu
$igcup_{\mathrm{CO_2}}$
Part B Melting point of paraffin wax
The melting point of paraffin wax (a mixture of saturated hydrocarbons which have high relative molar mass) is determined by
covalent bonds within hydrocarbon molecules
covalent bonds between hydrogen carbon molecules
ionic bonds between molecules
hydrogen bonds between molecules
van der Waals (London dispersion) forces between the molecules

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Hydrogen Bonding and Methane

Hydrogen Bonding and Methane

Part A Chects of intermotecutal hydrogen boliums	
Which of the following statements describes a phenomenon which can be explained by intermolecular hydrogen-bonding?	
The boiling points of the alkanes increase with increasing relative molecular mass.	
Hydrogen chloride forms an acidic solution when dissolved in water.	
The melting points of the Group 1 hydroxides decrease with increasing relative formula mass (M_r)	
$igcap$ lce has a lower density than water at $0^{\circ}\mathrm{C}$.	
$ m CH_3OCH_3$ (M_r = 46) has a higher boiling point than $ m CH_3CH_2CH_3$ (M_r = 44).	
Part B Condensed methane	
Part B Condensed methane The Voyager 2 probe has shown that the surface of Triton, a moon of the planet Neptune, contain condensed methane which flows rapidly.	าร
The Voyager 2 probe has shown that the surface of Triton, a moon of the planet Neptune, contain	ns
The Voyager 2 probe has shown that the surface of Triton, a moon of the planet Neptune, contain condensed methane which flows rapidly.	ns
The Voyager 2 probe has shown that the surface of Triton, a moon of the planet Neptune, contain condensed methane which flows rapidly. Which statement explains the flow within the condensed methane?	าร
The Voyager 2 probe has shown that the surface of Triton, a moon of the planet Neptune, contain condensed methane which flows rapidly. Which statement explains the flow within the condensed methane? Methane molecules have a tetrahedral structure.	ns
The Voyager 2 probe has shown that the surface of Triton, a moon of the planet Neptune, contain condensed methane which flows rapidly. Which statement explains the flow within the condensed methane? Methane molecules have a tetrahedral structure. Condensed methane has a metallic structure.	ns
The Voyager 2 probe has shown that the surface of Triton, a moon of the planet Neptune, contain condensed methane which flows rapidly. Which statement explains the flow within the condensed methane? Methane molecules have a tetrahedral structure. Condensed methane has a metallic structure. Methane molecules contain strong C-H bonds.	ns

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Bonding Diamond and Graphite

Diamond and Graphite

delocalised electrons	
a carbon-carbon bond length equal to that in ethane	
each carbon atom bonded to four others	
covalent bonds between carbon atoms	
van der Waals forces	

Adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 17