Lay 4.3 Math 2210Q

Question 1	True/False:	Any	set	that	is	a b	oasis	for	a	vector	space	V	is	also	a
linearly independent set.															

- (a) True ✓
- (b) False

Question 2 True/False: Any linearly independent set that is a subset of V is a basis for V.

Multiple Choice:

- (a) True
- (b) False ✓

Question 3 True/False: If the Span $\{\vec{b}_1,\ldots,\vec{b}_p\}$ is equal to some vector space V, then $\{\vec{b}_1,\ldots,\vec{b}_p\}$ is a basis for V.

Multiple Choice:

- (a) True
- (b) False ✓

Question 4 True/False: The pivot columns of A form a basis for $\operatorname{Col} A$.

Multiple Choice:

- (a) True ✓
- (b) False

Lay 4.3

Math 2210Q

Question 5 True/False: Suppose the matrix A below is row equivalent to the matrices U_1 and U_2 below. Which of the following statements is true?

$$A = \begin{bmatrix} 2 & 6 & 4 & 7 \\ -2 & 3 & -4 & 2 \\ -6 & 0 & -12 & -8 \end{bmatrix} \qquad U_1 = \begin{bmatrix} 2 & 0 & 4 & 3 \\ 0 & 3 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad U_2 = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$U_1 = \begin{bmatrix} 2 & 0 & 4 & 3 \\ 0 & 3 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$U_2 = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Multiple Choice:

(a)
$$\left\{ \begin{bmatrix} 2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\3\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}$$
 forms a basis for Col A.

(b)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
 forms a basis for $\operatorname{Col} A$.

(c)
$$\left\{ \begin{bmatrix} 2\\-2\\-6 \end{bmatrix}, \begin{bmatrix} 6\\3\\0 \end{bmatrix}, \begin{bmatrix} 7\\2\\-8 \end{bmatrix} \right\}$$
 forms a basis for Col A . \checkmark