ORDINAL LOGISTIC REGRESSION

Dr. Aric LaBarr
Institute for Advanced Analytics

INTRODUCTION

Logistic Regression

- What if there are more than two categories?
 - Ordinal Logistic Regression
 - Multinomial Logistic Regression
- When the outcomes are ordered we can generalize the binary logistic regression model.
- Examples:
 - Disagree, Neutral, Agree
 - Tropical Depression, Tropical Storm, Category 1, 2, 3, 4, 5 Hurricanes

Ordinal Logistic Regression

- Models are used when the response variable is ordinal.
- Models can also be used when the continuous response variable has a restricted range and need to be split into categories.

Logistic Models

Binary Logistic Regression (probability that observation i has the event):

$$= \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

• Ordinal Logistic Regression (probability that observation i has **at most** event j, and j = 1, ..., m):

$$= \beta_{0,j} + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i}$$

"Found a Wallet?" Data Set

- Model the association between various factors and different levels of ethical responses on finding a wallet.
- 195 observations in the data set.

"Found a Wallet?" Data Set

- Model the association between various factors and different levels of ethical responses on finding a wallet.
- Students at Upenn.
- Predictors:
 - male: indicator for a male student
 - business: indicator for student enrolled in business school
 - punish: how often the student was punished as a child
 low (1), moderate (2), high (3)
 - explain: indicator of whether explanation for punishment was given

PROPORTIONAL ODDS MODEL

Methods for Modeling

- There are three methods for modeling ordinal logistic regression models:
 - Cumulative Logit Model
 - Adjacent Categories Model
 - Continuation Ratio Model

Methods for Modeling

- There are three methods for modeling ordinal logistic regression models:
 - Cumulative Logit Model
 - 2. Adjacent Categories Model
 - 3. Continuation Ratio Model

Easy to implement and interpret! Also, most common...

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities $(p_1, p_2, ..., p_m)$, then the cumulative logits are:

$$\log \left(\frac{p_{i,1}}{p_{i,2} + p_{i,3} + \cdots p_{i,m}} \right), \log \left(\frac{p_{i,1} + p_{i,2}}{p_{i,3} + \cdots + p_{i,m}} \right), \dots, \log \left(\frac{p_{i,1} + \cdots + p_{i,m-1}}{p_m} \right)$$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities $(p_1, p_2, ..., p_m)$, then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3} + \cdots p_{i,m}}\right), \log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3} + \cdots + p_{i,m}}\right), \dots, \log\left(\frac{p_{i,1} + \cdots + p_{i,m-1}}{p_{m}}\right)$$

$$p_{i,1} + p_{i,2} + \dots + p_{i,m} = 1$$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities $(p_1, p_2, ..., p_m)$, then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3} + \cdots p_{i,m}}\right), \log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3} + \cdots + p_{i,m}}\right), \dots, \log\left(\frac{p_{i,1} + \cdots + p_{i,m-1}}{p_m}\right)$$

$$p_{i,1} + p_{i,2} + \dots + p_{i,m} = 1$$
 \longrightarrow $p_{i,2} + \dots + p_{i,m} = 1 - p_{i,1}$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities $(p_1, p_2, ..., p_m)$, then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1 - p_{i,1}}\right) \log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3} + \dots + p_{i,m}}\right), \dots, \log\left(\frac{p_{i,1} + \dots + p_{i,m-1}}{p_m}\right)$$

$$p_{i,1} + p_{i,2} + \dots + p_{i,m} = 1$$
 \longrightarrow $p_{i,2} + \dots + p_{i,m} = 1 - p_{i,1}$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities $(p_1, p_2, ..., p_m)$, then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \left[\log\left(\frac{p_{i,1}+p_{i,2}}{p_{i,3}+\cdots+p_{i,m}}\right)\right], \dots, \log\left(\frac{p_{i,1}+\cdots+p_{i,m-1}}{p_m}\right)$$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities $(p_1, p_2, ..., p_m)$, then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \left|\log\left(\frac{p_{i,1}+p_{i,2}}{p_{i,3}+\cdots+p_{i,m}}\right)\right|, \dots, \log\left(\frac{p_{i,1}+\cdots+p_{i,m-1}}{p_m}\right)$$

$$p_{i,1} + p_{i,2} + \dots + p_{i,m} = 1$$
 \longrightarrow $p_{i,3} + \dots + p_{i,m} = 1 - (p_{i,1} - p_{i,2})$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities $(p_1, p_2, ..., p_m)$, then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \log\left(\frac{p_{i,1}+p_{i,2}}{1-\left(p_{i,1}+p_{i,2}\right)}\right), \dots, \log\left(\frac{p_{i,1}+\dots+p_{i,m-1}}{p_m}\right)$$

$$p_{i,1} + p_{i,2} + \dots + p_{i,m} = 1$$
 \longrightarrow $p_{i,3} + \dots + p_{i,m} = 1 - (p_{i,1} - p_{i,2})$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities $(p_1, p_2, ..., p_m)$, then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \log\left(\frac{p_{i,1}+p_{i,2}}{1-\left(p_{i,1}+p_{i,2}\right)}\right), \dots \left|\log\left(\frac{p_{i,1}+\dots+p_{i,m-1}}{1-\left(p_{i,1}+\dots+p_{i,m-1}\right)}\right)\right|$$

- Instead of modeling the typical logit, we will model the cumulative logits.
- If an ordinal variable has m levels with probabilities $(p_1, p_2, ..., p_m)$, then the cumulative logits are:

$$\log\left(\frac{p_{i,1}}{1-p_{i,1}}\right), \log\left(\frac{p_{i,1}+p_{i,2}}{1-\left(p_{i,1}+p_{i,2}\right)}\right), \dots, \log\left(\frac{p_{i,1}+\dots+p_{i,m-1}}{1-\left(p_{i,1}+\dots+p_{i,m-1}\right)}\right)$$

m-1 Binary Logistic Regressions!

• Event now becomes outcome $\leq j$ for categories j = 1, ..., m

Logistic Models

Binary Logistic Regression (probability that observation i has the event):

$$= \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

• Ordinal Logistic Regression (probability that observation i has **at most** event m, and j = 1, ..., m):

$$= \beta_{0,j} + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

$$m - 1 \text{ Equations!}$$

Logistic Models

Binary Logistic Regression (probability that observation i has the event):

$$= \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

• Ordinal Logistic Regression (probability that observation i has **at most** event m, and j = 1, ..., m):

$$= \beta_{0,j} + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i}$$

Intercept changes, but slope parameters stays the same!

"Found a Wallet?" Data Set

 Model the association between various factors and different levels of ethical responses on finding a wallet.

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3}}\right) = \beta_{0,1} + \beta_1 \text{male}_i + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

$$\log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3}}\right) = \beta_{0,2} + \beta_1 \text{male}_i + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

The LOGISTIC Procedure

Model Information			
Data Set	LOGISTIC.WALLET		
Response Variable	wallet		
Number of Response Levels	3		
Model	cumulative logit		
Optimization Technique	Fisher's scoring		

Number of Observations Read	195
Number of Observations Used	195

	Response Profile				
Ordered wallet Total Frequency					
1	1	24			
2	2	50			
3	3	121			

Probabilities modeled are cumulated over the lower Ordered Values.

	Class Level Information				
Class	Class Value Design Variables				
punish	1	0			
	2	1	0		
	3 0 1				

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Score Test for the Proportional Odds Assumption				
Chi-Square DF Pr > ChiSq				
5.2215 5 0.3894				

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	356.140	321.335	
SC	362.686	344.246	
-2 Log L	352.140	307.335	

Testing Global Null Hypothesis: BETA=0					
Test Chi-Square DF Pr > ChiSq					
Likelihood Ratio	44.8047	5	<.0001		
Score	40.9509	5	<.0001		
Wald	38.5978	5	<.0001		

Type 3 Analysis of Effects				
Effect	Effect DF Wald Chi-Square Pr > Chi			
male	1	10.6047	0.0011	
business	1	4.4167	0.0356	
punish	2	9.4185	0.0090	
explain	1	9.4925	0.0021	

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1	-2.5678	0.4169	37.9321	<.0001
Intercept	2	1	-0.7890	0.3675	4.6107	0.0318
male		1	1.0598	0.3254	10.6047	0.0011
business		1	0.7389	0.3516	4.4167	0.0356
punish	2	1	0.6277	0.4005	2.4564	0.1170
punish	3	1	1.4031	0.4721	8.8330	0.0030
explain		1	-1.0518	0.3414	9.4925	0.0021

Association of Predicted Probabilities and Observed Responses					
Percent 69.0 Somers' D 0.465					
Percent Discordant	22.5 Gamma		0.508		
Percent Tied 8.5 Tau-a 0.249					
Pairs	10154	С	0.732		

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals				
Effect	Unit Estimate 95% Confidence Limit			ence Limits
male	1.0000	2.886	1.533	5.557
business	1.0000	2.094	1.039	4.206
punish 2 vs 1	1.0000	1.873	0.838	4.124
punish 3 vs 1	1.0000	4.068	1.583	10.616
explain	1.0000	0.349	0.178	0.681


```
## Coefficients:
    Value Std. Error t value
##
## male -1.0598 0.3274 -3.237
## business -0.7389 0.3556 -2.078
## punish2 -0.6276 0.4048 -1.551
## punish3 -1.4031 0.4823 -2.909
## explain 1.0519 0.3408 3.086
##
## Intercepts:
     Value Std. Error t value
##
## 1 2 -2.5679 0.4190 -6.1287
## 2 3 -0.7890 0.3709 -2.1273
##
## Residual Deviance: 307.3349
## AIC: 321.3349
```

Testing Assumptions

HOW DO WE TEST IF SLOPES ARE THE SAME?

Score Test for Proportional Odds

- Need to test to see if the slopes are statistically different from each other in the proportional odds model.
 - Null: Proportional Odds Correct (Slopes Equal Across Models)
 - Alternative: Proportional Odds Incorrect (Slopes NOT Equal Across Models)

Testing Assumption – SAS Default

Score Test for the Proportional Odds Assumption				
Chi-Square DF Pr > ChiSq				
5.2215 5 0.3894				

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	356.140	321.335		
SC	362.686	344.246		
-2 Log L	352.140	307.335		

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	44.8047	5	<.0001	
Score	40.9509	5	<.0001	
Wald	38.5978	5	<.0001	

Testing Assumption – R

```
brant(clogit.model)
## Test for X2 df probability
## Omnibus 5.46 5 0.36
## male 0.51 1 0.47
## business 0.58 1 0.45
## punish2 0.99 1 0.32
## punish3 2.81 1 0.09
## explain 0.25 1 0.62
##
## H0: Parallel Regression Assumption holds
##
  X2 df probability
## Omnibus 5.4618058 5 0.36215220
## male 0.5123944 1 0.47410417
## business 0.5791753 1 0.44663576
## punish2 0.9871507 1 0.32043977
## punish3 2.8104051 1 0.09365472
## explain 0.2468865 1 0.61927599
```

Testing Assumption – SAS Option

```
proc logistic data=Logistic.Wallet;
   class punish(param=ref ref='1');
   model wallet = male business punish explain /
                  unequalslopes clodds=pl;
   male: test male 1 = male 2;
   business: test business 1 = business 2;
   punish2: test punish2 1 = punish2 2;
   punish3: test punish3 1 = punish3 2;
   explain: test explain 1 = explain 2;
   title 'Ordinal Logistic Regression - Unequal Slopes';
run;
quit;
```

Testing Assumption – SAS Option

Linear Hypotheses Testing Results					
Label	Wald Chi-Square	DF	Pr > ChiSq		
male	0.7582	1	0.3839		
business	0.9922	1	0.3192		
punish2	0.7561	1	0.3845		
punish3	3.0150	1	0.0825		
explain	0.2850	1	0.5935		

What if Assumption Fails?

- The proportional odds assumption may not be met for all variables.
- 2 Approaches:
 - Partial Proportional Odds Model
 - 2. Multinomial Logistic Regression

INTERPRETATION

Model Notation

 With cumulative logits, increasing the right-hand side of the equation leads to an increased log(odds) of lower outcome category:

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3}}\right) = \beta_{0,1} + \beta_1 \text{male}_i + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

$$\log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3}}\right) = \beta_{0,2} + \beta_1 \text{male}_i + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

Model Notation

 With cumulative logits, increasing the right-hand side of the equation leads to an increased log(odds) of lower outcome category:

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3}}\right) = \beta_{0,1} + \beta_1 \text{male} + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

$$\log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3}}\right) = \beta_{0,2} + \beta_1 \text{male} + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

Model Notation – SAS Default

 With cumulative logits, increasing the right-hand side of the equation leads to an increased log(odds) of lower outcome category:

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3}}\right) = \beta_{0,1} + \beta_1 \text{male} + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_4 \text{punishH}_i + \beta_5 \text{explain}_i$$

$$\log \left(\frac{p_{i,1} + p_{i,2}}{p_{i,3}}\right) = \beta_{0,2} + \beta_1 \text{male} + \beta_2 \text{business}_i + \beta_3 \text{punishM}_i + \beta_5 \text{explain}_i$$

Odds Ratio Interpretation – Ascending

• Interpretation is still an odds ratio: $\mathbf{100} * (e^{\widehat{\beta}_j} - \mathbf{1})\%$ higher expected odds of being in a lower category.

Odds Ratio Interpretation – Ascending

- Interpretation is still an odds ratio: $\mathbf{100} * \left(e^{\widehat{\beta}_j} \mathbf{1}\right)\%$ higher expected odds of being in a lower category.
- Proportional odds model:
 - Same increase in odds across all singular jumps in category.
 - Wallet example: OR same comparing 1 to 2,3 and from 1,2 to 3.

Proportional Odds Model – SAS

Association of Predicted Probabilities and Observed Responses						
Percent 69.0 Somers' D 0.465						
Percent Discordant	22.5	Gamma	0.508			
Percent Tied	8.5 Tau-a 0.249					
Pairs	10154	С	0.732			

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals					
Effect	Unit Estimate 95% Confidence Limits			ence Limits	
male	1.0000	2.886	1.533	5.557	
business	1.0000	2.094	1.039	4.206	
punish 2 vs 1	1.0000	1.873	0.838	4.124	
punish 3 vs 1	1.0000	4.068	1.583	10.616	
explain	1.0000	0.349	0.178	0.681	

Model Notation – SAS Option

 With cumulative logits, increasing the right-hand side of the equation leads to an increased log(odds) of higher outcome category:

$$\log \left(\frac{p_{i,1}}{p_{i,2} + p_{i,3}}\right) = \beta_{0,1} - \beta_1 \text{male}_i - \beta_2 \text{business}_i$$
$$-\beta_3 \text{punishM}_i - \beta_4 \text{punishH}_i - \beta_5 \text{explain}_i$$

$$\log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3}}\right) = \beta_{0,2} - \beta_1 \text{male}_i - \beta_2 \text{business}_i$$
$$-\beta_3 \text{punishM}_i - \beta_4 \text{punishH}_i - \beta_5 \text{explain}_i$$

Odds Ratio Interpretation – Descending

• Interpretation is still an odds ratio: $100 * (e^{\hat{\beta}_j} - 1)\%$ higher expected odds of being in a higher category.

PREDICTIONS AND DIAGNOSTICS

Similarities

- Ordinal logistic regression has a lot of the same aspects/issues as a binary logistic regression:
 - Multicollinearity still exists.
 - Non-convergence problems still exist.
 - Confidence intervals need profile likelihoods.
 - Concordance, Discordance, Tied pairs still exist so the c statistic still exists.
 - Generalized R² remains the same.

Differences

- Ordinal logistic regression has a few aspects/issues that differ from a binary logistic regression:
 - A lot of the diagnostics for binary regression cannot be calculated easily since there are actually multiple models – ROC curves for each model?
 - Diagnostics / Influence plots are not available residuals for each model?
 - Predicted probabilities are for each category.

Predicted Probabilities – SAS

```
proc logistic data=Logistic.Wallet;
   class punish(param=ref ref='1');
   model wallet = male business punish explain;
   output out=pred predprobs=I;
   title 'Ordinal Logistic Regression - Ascending';
run;
proc print data=pred;
run;
proc freq data=pred;
   tables from * into / plots=none;
   title 'Cross Table of Observed by Predicted Responses';
run;
```

Predicted Probabilities – SAS

Obs	wallet	male	business	punish	explain	_FROM_	_INTO_	IP_1	IP_2	IP_3
1	2	0	0	2	0	2	3	0.12563	0.33412	0.54026
2	2	0	0	2	1	2	3	0.04779	0.18135	0.77087
3	3	0	0	1	1	3	3	0.02609	0.11086	0.86305
4	3	0	0	2	0	3	3	0.12563	0.33412	0.54026
5	1	1	0	1	1	1	3	0.07177	0.24233	0.68591
6	3	0	0	1	1	3	3	0.02609	0.11086	0.86305
7	3	0	0	1	1	3	3	0.02609	0.11086	0.86305
8	3	1	0	1	1	3	3	0.07177	0.24233	0.68591
9	3	1	0	1	1	3	3	0.07177	0.24233	0.68591
10	3	0	0	2	1	3	3	0.04779	0.18135	0.77087

Predicted Probabilities – R

```
pred_probs <- predict(clogit.model, newdata = train, type = "prob</pre>
print(pred probs)
##
      0.12562481 0.3341195 0.54025570
## 1
## 2
      0.04778463 0.1813420 0.77087342
## 3
      0.02609095 0.1108549 0.86305415
## 4
      0.12562481 0.3341195 0.54025570
      0.07176375 0.2423258 0.68591049
## 5
## 6
      0.02609095 0.1108549 0.86305415
      0.02609095 0.1108549 0.86305415
## 7
## 8
      0.07176375 0.2423258 0.68591049
## 9
      0.07176375 0.2423258 0.68591049
## 10
      0.04778463 0.1813420 0.77087342
```

Confusion Matrix

 A confusion matrix is a matrix of all predicted responses compared to actual responses in terms of correct percentage.

	Predicted			
Actual	4	11	9	
	3	9	38	
	0	12	109	

Confusion Matrix

 A confusion matrix is a matrix of all predicted responses compared to actual responses in terms of correct percentage.

	Predicted			
Actual	16.7%	45.8%	37.5%	
	6.0%	18.0%	76.0%	
	0.0%	9.9%	90.1%	

Good Confusion Matrix

	Predicted			
	100%	0.0%	0.0%	
Actual	0.0%	100%	0.0%	
	0.0%	0.0%	100%	

Confusion Matrix

Weighted accuracy scores are common.

	Predicted			
Actual	1	0.5	0	
	0.5	1	0.5	
	0	0.5	1	

