Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?

 $a^{[3]\{8\}(7)}$

Correct

$$a^{[8]\{3\}(7)}$$

$$a^{[3]}\{7\}(8)$$

1/1 points

2.

Which of these statements about mini-batch gradient descent do you agree with?

- You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).
- One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.

Correct

Optimization	on algorithms	10/10 points (100%)
Quiz, 10 questions	Training one epoch (one pass through the training set) using minibatch gradient descent is faster than training one epoch using batch gradient descent.	
	1/1 points 3.	
	Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.	
	Un-selected is correct	
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent. Un-selected is correct	
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	
	Correct	
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.	
	Correct	

1/1 points 4.

Suppose your learning algorithm's cost J Optimization of the number of iterations, looks like this:

10/10 points (100%)

Quiz, 10 questions

Which of the following do you agree with?

	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.		
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.		
Correct			
COIT			
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.		
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.		

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Jan 1st:
$$\theta_1 = 10^{o}C$$

Jan 2nd: $\theta_2 10^{\circ} C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$

,
$$v_t = \beta v_{t-1} + (1-\beta)\theta_t$$
 . If v_2

is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 10$$

$$v_2^{corrected} = 10$$

$$v_2 = 7.5$$

$$v_2^{corrected} = 7.5$$

$$v_2 = 10$$

$$v_2^{corrected} = 7.5$$

$$v_2 = 7.5$$

$$v_2^{corrected} = 10$$

Correct

1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = 0.95^t \alpha_0$$

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Correct

$$\alpha = \frac{1}{1+2*t}\alpha_0$$

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$

- . The red line below was computed using $\beta = 0.9$
- . What would happen to your red curve as you vary β
- ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Increasing β will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta = 0.9$

. In lecture we had a green line \$\$\beta = 0.98) that is slightly shifted to the right.

Decreasing β will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta = 0.9$

. In lecture we had a yellow line $\$\$ beta = 0.98 that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

1/1 points

8

Consider this figure:

10/10 points (100%)

Quiz, 10 questions

These plots were generated with gradient descent; with gradient descent with momentum (β

[Math Processing Error] = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

)

- (1) is gradient descent. (2) is gradient descent with momentum (large β
) . (3) is gradient descent with momentum (small β
)
 (1) is gradient descent with momentum (small β
). (2) is gradient descent. (3) is gradient descent with momentum (large β
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

1/1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long

to find a value of the parameters that achieves a small value for the cost	
Optimization algorithms $1, \dots, W^{[L]}, b^{[L]}$	10/10 points (100%)

Quiz, 10 questions

. Which of the following techniques could help find parameter values that attain a small value forJ ? (Check all that apply)

Corre	Try mini-batch gradient descent			
	Try tuning the learning rate α			
Correct				
	Try using Adam			
Correct				
	Try initializing all the weights to zero			
Un-selected is correct				
Corre	Try better random initialization for the weights			
~	1 / 1 points			
l 0 . Vhich	of the following statements about Adam is False?			
	Adam combines the advantages of RMSProp and momentum			
	The learning rate hyperparameter α			