MÉTODO CIENTÍFICO

- 1 OBSERVAR
- 2 MEDIR
- 3 LEVANTAR UMA HIPÓTESE
- 4 CONSTRUIR UMA TESE
- 5 CONCLUIR

Exemplo do Galileu utilizando o Método Científico:

- 1 Movimento pontinhos em torno de Júpiter
- 2 Tempo de deslocamento dos pontinhos
- 3 Luas orbitando Júpiter
- 4 A Terra orbita o Sol
- 5 Juntam-se todos os argumentos

MEDIR – SISTEMAS DE UNIDADES

PADRÕES:

EX.: DISTÂNCIA: cúbito, pé, braça, milha, jarda, metro, palmo, nó, polegada...

	C.G.S	M.K.S	S.I.
Distância	Centímetro	Metro	Metro
	(cm)	(m)	(m)
Massa	Grama	Quilograma	Quilograma
	(g)	(kg)	(kg)
Tempo	Segundo	Segundo	Segundo
	(s)	(s)	(s)
Tempo	Segundo	Segundo	Segundo

E TODAS AS OUTRAS COISAS

EXEMPLOS DE GRANDEZAS FÍSICAS

Volume / massa / distância / tempo / temperatura / densidade / velocidade / força / pressão / potência / intensidade de corrente elétrica / área / intensidade luminosa / quantidade de matéria /

Grandezas de base (fundamentais)

Distância	(metro) m	
Massa	(quilograma) kg	
Tempo	(segundo) s	
Temperatura	(kelvin) K	
Intensidade luminosa	(candela) cd	
Quantidade de matéria	(massa molecular) mol	
Intensidade de corrente elétrica	(ampère) A	

GRANDEZAS DERIVADAS

Todas as grandezas que conhecemos e que não são as de base.

$$m^a \times kg^b \times s^c \times K^d \times cd^e \times mol^f \times A^g$$

ESCREVENDO A GRANDEZA DE POTÊNCIA EM TERMOS DAS GRANDEZAS DE BASE

VELOCIDADE: $velocidade = \frac{distância}{tempo} = \frac{m}{s} = m^1 \times s^{-1}$

ACELERAÇÃO: $aceleração = \frac{velocidade}{tempo} = \frac{m}{s} / S = \frac{m}{s} \times \frac{1}{s} = \frac{m}{s^2} = m / S^2 = m^1 \times s^{-2}$

FORÇA: $força = massa \times aceleração = kg \times \frac{\frac{m}{s}}{s} = kg^{1} \times m^{1} \times s^{-2} = N \text{ (newton)}$

TRABALHO: $trabalho = força \times distância = N \times m = \frac{kg^1 \times m^2 \times s^{-2}}{s^{-2}} = J (joule)$

POTÊNCIA: potência = $\frac{trabalho}{tempo}$ = $\frac{I}{s}$ = $kg^1 \times m^2 \times s^{-3}$ = W (watt)