

### **Bangladesh University of Engineering and Technology**

Course: CSE 206

#### **Digital Logic Design Sessional**

## **Experiment 2**

**Truth Tables and Simplification Using Boolean Algebra** 

**Group No: 05** 

**Section: B2** 

**Department: CSE** 

**Group Members: 1805111** 

1805112

1805113

1805114

1805115

1405040

Submission Date: 13/03/2021

### **Problem Specification:**

In this problem, we have to simplify the following equation using Boolean algebra and implement it.

### **Required Instruments:**

- 1. Logisim software
- 2.1 IC 7408
- 3.1 IC 7432
- 4. 1 IC 7404
- 5. 4 input pins and 1 output pin
- 6. Electric wires

| A | В | C | D | Y |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |

| 0 | 1 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

# **Simplification of Function:**

F(A,B,C,D)

= A'B'C'D' + ABCD + ABC'D + A'B'CD' + A'BC'D + AB'C'D' + AB'CD' + A'BCD

$$=BD\{A(C+C')+A'(C+C')\}+B'D'\{A(C+C')+A'(C+C')\}$$

$$=BD(A+A')(C+C') + B'D'(A+A')(C+C')$$

$$=(B \oplus D)'$$

This is the simplest form of the given expression.

### **Circuit Diagram:**



Figure: Problem-1

### **Observation:**

Here, we can observe that the output does not depend on the input signal of A and C. The output signal is basically the XNOR operation of the B and D input signal.

**Problem Specification**: We have to create Boolean functions from the truth table of gray code and binary code and then implement the gray to the binary converter from the Boolean functions using basic gates.

## **Required Instruments:**

| No | Name                    | Quantity |
|----|-------------------------|----------|
| 1  | IC(Quad 2 input<br>AND) | 1 piece  |
| 2  | IC(Quad 2 input OR)     | 1 piece  |
| 3  | IC(Hex - Inverter)      | 1 piece  |
| 4  | Wires                   | A lot    |
| 5  | Input Pins              | 3        |
| 6  | Output Pins             | 3        |

| Gray Code |    |    | Binary Code |    |    |
|-----------|----|----|-------------|----|----|
| G2        | G1 | G0 | B2          | B1 | В0 |
| 0         | 0  | 0  | 0           | 0  | 0  |
| 0         | 0  | 1  | 0           | 0  | 1  |
| 0         | 1  | 1  | 0           | 1  | 0  |
| 0         | 1  | 0  | 0           | 1  | 1  |
| 1         | 1  | 0  | 1           | 0  | 0  |
| 1         | 1  | 1  | 1           | 0  | 1  |
| 1         | 0  | 1  | 1           | 1  | 0  |
| 1         | 0  | 0  | 1           | 1  | 1  |

B0 =G2'G1'G0 + G2'G1G0' + G2G1G0 + G2G1'G0'  
=G2'(G1'G0 + G1G0') + G2(G1G0 + G1'G0')  
=G2'(G1 
$$\oplus$$
 G0) + G2((G1  $\oplus$  G0)')  
=G2  $\oplus$  G1  $\oplus$  G0

### **Circuit Diagram:**



Figure: Problem 2(Gray to Binary Converter)

Observations: If we observe the Boolean function for each binary bit, we see that while converting Gray code to binary, the MSB is the same as the Gray code's MSB and other binary bits are the result of the XOR operation with the previous output bit.

### **Problem Statement:**

In this problem, we need to derive the truth table and corresponding output equations for the given condition and implement those with the required gates.

Condition: There are 3 inputs into a system. The system will glow LED1 and LED0 in such a way that the pattern represents the number of set bits in the input.

# **Required Instruments:**

| Item          | Quantity |  |
|---------------|----------|--|
| Trainer Board | 1 piece  |  |
| 7404 IC chip  | 1 piece  |  |
| 7408 IC chip  | 2 pieces |  |
| 7432 IC chip  | 1 piece  |  |
| Input pins    | 3 pieces |  |
| LED           | 2 pieces |  |
| Wires         | A lot    |  |

In this problem we need to represent the number of set bits of three inputs: A, B, C by two LEDs: LED0 and LED1. LED0 represents the least significant bit here. The truth table for the problem:

| Input |   |   | Output |      |
|-------|---|---|--------|------|
| A     | В | C | LED1   | LED0 |
| 0     | 0 | 0 | 0      | 0    |
| 0     | 0 | 1 | 0      | 1    |
| 0     | 1 | 0 | 0      | 1    |
| 0     | 1 | 1 | 1      | 0    |
| 1     | 0 | 0 | 0      | 1    |
| 1     | 0 | 1 | 1      | 0    |
| 1     | 1 | 0 | 1      | 0    |
| 1     | 1 | 1 | 1      | 1    |

#### **Derived Equation:**

From the truth table, we can derive equations for LED0 and LED1.

### **Circuit Diagram:**



Figure: Circuit diagram for problem 3

### **Observations:**

From the truth table, we can see that LED1 will glow if the number of set bits is at least two and LED0 will glow if there are odd numbers (1 or 3) of set bits in the inputs.

### **Problem Specification:**

In this problem, we have to find out the truth table for the following logic function:  $F(A, B, C, D) = \sum (6, 9, 12, 15)$ , write down the logic expression associated with it. We also need to simplify the logic expression as far as possible using Boolean Algebra and then implement it.

### **Required Instruments:**

| Serial No. | Item Name                   | Quantity Required |
|------------|-----------------------------|-------------------|
| 1          | Trainer Board               | 1 piece           |
| 2          | Hex Inverter (7404 IC chip) | 1 piece           |
| 3          | Quad 2 Input 7408 IC chip   | 4 pieces          |
| 4          | Quad 2 Input 7432 IC chip   | 1 piece           |
| 5          | Input Pins                  | 4 pieces          |
| 6          | Output Pins                 | 1 piece           |
| 7          | Electric Wires              | Sufficient        |

| A | В | C | D | Result |
|---|---|---|---|--------|
| 0 | 0 | 0 | 0 | 0      |
| 0 | 0 | 0 | 1 | 0      |
| 0 | 0 | 1 | 0 | 0      |
| 0 | 0 | 1 | 1 | 0      |
| 0 | 1 | 0 | 0 | 0      |
| 0 | 1 | 0 | 1 | 0      |
| 0 | 1 | 1 | 0 | 1      |
| 0 | 1 | 1 | 1 | 0      |
| 1 | 0 | 0 | 0 | 0      |
| 1 | 0 | 0 | 1 | 1      |

| 1 | 0 | 1 | 0 | 0 |
|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

## **Required Equation:**

From the rightmost column we can see that input combinations from row (starting with 0 index) 6, 9, 12, 15 produces the desired output. The equation we get is:

A'BCD'+AB'C'D+ABC'D'+ABCD

### **Circuit Diagram:**



Figure: Circuit Diagram: Problem 4

### **Observations:**

From the truth table and equation we got, it is clear that the input combinations from row number 6, 9, 12 and 15 produce the output. Surprisingly, this is the simplified form itself to be implemented with IC.