ООО «Эндресс+Хаузер»

117105, г. Москва, Варшавское шоссе, д. 35, стр.

1. ком.42

Тел.: +7 (495) 783-28-50; Факс: +7 (495) 783-28-

55;

e-mail: info@ru.endress.com; http://www.ru.endress.com

Contact person

Dmitry Konstantinov Phone: +7 495 740 5400 EXT. 122 dmitry.konstantinov@endress.com

Moscow. July 21, 2022

Gazpromneft-ONPZ 644040 Omsk, Gubkin ave., 1 Chief metrologist Dmitry An

Test Report and Results for Laboratory Raman Spectrometers from Endress+Hauser Optical Analysis, Inc.

From March 22 to April 8, 2022, the quality control laboratory (QCL) of Gazpromneft-ONPZ tested Raman Rxn2 spectrometers manufactured by Endress+Hauser Optical Analysis, Inc. The objectives of the tests were to determine the possibility of using Raman spectrometers to measure the fractional composition, cetane number, cold filter plugging point, and density of commercial diesel products, as well as the accuracy of the Raman spectrometer compared to the reference methods used by QCL.

Test progress

From March 22 to March 25, the spectra of working and control samples were taken by two analyzers with lasers of different wavelengths (785 and 993 nm) to determine the effect of fluorescence and the type of laser best suited for building a model. As a result of the analysis of the collected spectra, the manufacturer recommended the spectrometer with a laser wavelength of 993 nm. Settings for the analysis time and the number of collected spectra of one sample were recommended that simulate closely the actual operating conditions of spectrometers in technological processes.

From April 4 to 8, analyzer with a wavelength of 993 nm was used for the second stage of spectra collection with the settings recommended by the manufacturer. As a result, 99 spectra were obtained (79 working samples and 20 control samples). Spectra and laboratory data on working samples was transferred to a specialized organization for processing the results and building chemometric models.

Test results

After processing the spectra, control samples data (measurement values determined by the model) was obtained for all parameters. The data is presented in the table:

Sample	cetane	Density at	Cold	D10 –	E250 –	D90 –	D95 –
number	number	,		temperature			
		kg/m3	Plugging	(°C) at which	distillat	(^{0}C) at	(^{0}C) at
			Point	10% of the	e	which 90%	which 95%

000 «Эндресс+Хаузер»

117105, г. Москва, Варшавское шоссе, д. 35, стр.

1, ком.42

Тел.: +7 (495) 783-28-50; Факс: +7 (495) 783-28-

55;

e-mail: info@ru.endress.com; http://www.ru.endress.com

				volume is	volume	of the	of the
				distilled	up to	volume is	volume is
					250 °C	distilled	distilled
79	49,785	841,6069	-	207,3017	39,129	338,2451	353,5529
00	1 116	026 6722	11,0200	225 4020	1	227 4126	250 1017
80	54,116 4	836,6732	-9,9731	225,4020	25,051 4	337,4126	350,1917
81	48,495	830,5036	_	188,4868	46,916	321,5093	335,6534
	3	030,3030	39,4325	100,1000	1	321,3033	333,033 .
82	57,698	829,1295	-	252,1458	14,141	334,9538	342,5605
	6		19,6714		8		
83	51,137	850,3545	-7,7238	227,8799	22,558	342,3252	357,3050
0.4	9	040 2055	-3,1154	220 5007	21,751	247.0042	250.0522
84	51,642 4	849,2955	-3,1134	230,5907	21,/31 4	347,0043	359,8522
85	51,679	853,1775	-1,1140	236,9127	15,118	343,4223	356,2612
	4	033,1773	1,11.0	230,3127	5	3 13,1223	330,2012
86	49,999	842,1646	-6,8878	203,1992	35,114	339,2855	354,5928
	1				4		
87	55,572	836,4842	-9,1848	230,3672	22,133	339,3215	351,8050
	4	000 4061		100 0057	0	224 2721	227 7072
88	50,995	830,4861	- 26 2420	198,9657	42,149	324,2721	337,7972
89	52,326	820,3328	36,2420	214,5408	5 46,871	280,7012	292,3983
69	32,320	020,3320	45,3933	214,5400	8	200,7012	292,3963
90	52,433	848,4438	-5,1571	238,5995	21,460	334,6944	353,5954
	1		,,,,,,,,,		8		
91	52,488	852,1068	-1,3737	235,2729	18,435	347,3273	361,9575
	4				3		
92	52,279	851,6299	-1,0169	219,4573	14,585	348,4065	362,9823
0.2	/ F1 410	052.4405	1 4040	241 0712	3	240 2601	260 0525
93	51,418	852,4485	1,4040	241,0713	11,842	349,2681	360,8535
94	51,193	842,4369	-7,6863	213,6830	30,065	341,6367	356,6580
	2	042,4303	7,0005	213,0030	5	341,0307	330,0300
95	51,565	833,9535	-	207,4002	39,012	326,1322	339,2892
	1		36,3098		0		
97	51,245	844,5458	-5,6920	216,7552	29,324	341,7606	356,8873
	0				8		
98	51,887	831,4878	-	202,2772	38,708	325,3905	338,7482
99	52,849	851,0853	38,4195	227 6005	16.007	247 0207	262 5752
99	0	031,0033	-1,9614	237,6995	16,007 3	347,9387	362,5752
			<u> </u>	1			

The obtained results were processed in accordance with the results verification procedure for in-line analyzers of Gazpromneft-ONPZ (ASTM D6122-19). Verification data yields positive results, the necessary correlation with the laboratory has been achieved.

Notes and restrictions

With a good correlation of data with the results of laboratory measurements, there are deviations at some points. Therefore, during the

ООО «Эндресс+Хаузер»

117105, г. Москва, Варшавское шоссе, д. 35, стр.

1. ком.42

Тел.: +7 (495) 783-28-50; Факс: +7 (495) 783-28-

55;

e-mail: info@ru.endress.com; http://www.ru.endress.com

verification process, the procedure for eliminating questionable results (in accordance with ASTM D6122-19) was applied.

In the process of data analysis and model building, it was determined that the model has a wide range, but the filling of the entire range is uneven (primarily for the minimum and maximum values). As the model continues to operate, range adjustments may be required, as more data is acquired and compared with laboratory measurements.

However, the results analysis Committee noted that none of the previous analysis methods used at the plant had given such accurate and reliable results on such a small number of samples.

Conclusions

The tests indicate that Raman spectroscopy is suited for use in the process of continuous (in-line) analysis for measuring the fractional composition, cetane number, Cold Filter Plugging Point, and density of commercial diesel products.

The results obtained make it possible to apply this chemometric model for in-line measurements with the required accuracy.

During the tests, the time of one measurement was determined to be 2 minutes 30 seconds. The objectives of controlling and managing the process of mixing diesel products is achieved when the rate at which values are obtained for each stream is ones every 15 minutes. Thus, a four-channel analyzer can be used for the process application.

Dmitry Konstantinov Group Manager Solutions Business Development Endress+Hauser LLC