

Machine Learning techniques for malicious PDF detection

Ning techniques for malicious PDF detection
Mattia Rosso, Lorenzo Ippolito, Martino Picasso

Introduction

- Classifying PDF files: malicious and benign
- ML: supervised binary classification
- Malware analysis: static keyword-based
- Benchmark: Contagio dataset
- Evasion attacks and countermeasures

Contagio Benchmark

- 11100 Malicious and 9109 Benign PDFs
- Broadly adopted dataset

The PDFiD Tool

- Features vector: 21 keywords extracted
- Discriminative features for malware analysis

Features analysis

Model validation and metrics

- Accuracy and FNR (malicious PDFs classified benign)
- Static Train and Test split, k-fold Cross-Validation on Train

Model's Accuracy and False Negative Rate

Performances achieved by the Random Forests (100 trees) on Training

Model	Hyperparameters	Accuracy (%)	FNR (%)
Random Forests	depth=16	99.90	0.13
Decision Trees	depth=15	99.75	0.22
RBF SVM	C=5.56 γ=0.11	99.73	0.36
Linear SVM	C=6.67	99.06	1.58
KNN	k=1	99.68	0.36

Results on the Test set

ROC curves

PDFiD 0.2.1 CLEAN_PDF_9000_1

23

PDF Header: %PDF-1.4

endobj

endstream

trailer

/Page

/JS

startxref

/Encrypt

/ObjStm

/JavaScript

/OpenAction

/AcroForm

/RichMedia

/Colors > 2^24

/Launch /EmbeddedFile

Evasion attack on RBF SVM

Gradient Descent based evasion attack on RBF SVM

Adversarial Learning on Decision Trees

Adversarial Learning against evasion attack of the Decision Trees

