1 **VZORCE**

1.1 Rovnomerný pohyb priamočiary

rýchlosť rovnomerného pohybu

$$v = \frac{s}{t}$$

čas rovnomerného pohybu

$$t = \frac{s}{v}$$

dráha rovnomerného pohybu

$$s = v.t$$

(3)

Rovnomerne zrýchlený pohyb 1.2

dráha zrýchleného pohybu (s,a,t)

$$s = \frac{a t^2}{2} \tag{4}$$

rýchlosť zrýchleného pohybu (v,a,t)

$$v = a t$$

(1)

(2)

rýchlosť zrýchleného pohybu (v,a,s)

$$v = \sqrt{2 a s}$$

Rovnomerný pohyb po kružnici 1.3

stredový uhol

$$\varphi = \frac{s}{r}[rad]$$

uhlová (kruhová) rýchlosť

$$\omega = \frac{\varphi}{t}$$

(7)

frekvencia

$$f = \frac{1}{T}$$

(9)

obvodová rýchlosť

$$v = r \omega$$

(10)

uhlová (kruhová) rýchlosť

$$\omega = \frac{2\pi}{T} = 2\pi f$$

Zrýchlenie pri rovnomernom pohybe po kružnici 1.4

dostredivé zrýchlenie

$$a_d = \frac{v^2}{r}$$

(12)

$$a_d = r \,\omega^2 \tag{13}$$

1.5 Dynamika

zrýchlenie hmotného bodu

$$a = \frac{F}{m} \tag{14}$$

1.6 Hybnost'

hybnost' p = m v (15)

impulz sily I = F t (16)

zmena hybnosti zmenou rýchlosti $F\Delta t = m \Delta v$ (17)

1.7 Trenie

trecia sila $F_t = f F_n$ (18)

1.8 Mechanická práca

mechanická práca $W = F \cdot s$ (19)

výkon $P = \frac{W}{t} \tag{20}$

účinnosť $\eta = \frac{\stackrel{\iota}{P}}{P_0} \tag{21}$

1.9 Mechanická energia

kinetická energia posuvného pohybu $E_k = \frac{1}{2}m \cdot v^2$ (22)

potenciálna energia v homogénnom gravitačnom poli $E_p = m \cdot g \cdot h$ (23)

1.10 Newtonov gravitačný zákon:

gravitačná sila v radiálnom poli

$$F_g = \kappa \frac{m_1 m_1}{r^2} \tag{24}$$

1.11 Moment sily

moment sily ak je rameno kolmé na vektor sily

$$M = F.d (25)$$

moment sily ak je rameno zviera s vektorom sily uhol α

$$M = F. d. \sin(\alpha) \tag{26}$$

1.12 Skladanie rovnobežných síl:

rovnakého smeru

$$F = F_1 + F_2$$

$$\frac{d_1}{d_2} = \frac{F_2}{F_1}$$
(27)

opačného smeru

$$F = F_1 - F_2$$

$$\frac{d_1}{d_2} = \frac{F_2}{F_1}$$
(28)

1.13 Kinetická energia otáčavého pohybu:

kinetická energia otáčavého pohybu

$$E_k = \frac{1}{2}J\omega^2 \tag{29}$$

1.14 Hydrostatika, Hydrodynamika, Aerodynamika:

Tlak v kvapaline vyvolaný vonkajšou silou

$$p = \frac{F}{S} \tag{30}$$

V hydraulickom lise platí

$$\frac{F_1}{S_1} = \frac{F_2}{S_2} \tag{31}$$

Hydrostatický tlak
$$p_h = h \rho g$$
 (32)

Hydrostatická vztlaková sila
$$F_v = V_{ponoreny} \rho_k g$$
 (33)

Rovnica spojitosti toku (rovnica kontinuity) $S_1. v_1 = S_2. v_2$ (34)

$$p_{1} + h_{1} \cdot \rho \cdot g + \frac{1}{2} \rho \cdot v_{1}^{2}$$
Bernoulliho rovnica
$$= p_{2} + h_{2} \cdot \rho \cdot g + \frac{1}{2} \rho \cdot v_{2}^{2}$$
(35)

Odporová sila pôsobiaca na teleso v prúdiacej tekutine
$$F = C.S. \frac{1}{2} \rho v^2$$
 (36)

1.15 Kinetická teória látok:

Relatívna atómová hmotnosť. $(m_a - pokojová atómová hmotnosť, <math>m_u - A_r = \frac{m_a}{m_u}$ (37) atómová hmotnostná jednotka)

Relatívna molekulová hmotnosť.
$$(m_{\rm m}-{\rm pokojová~molekulová} \qquad \qquad M_r=\frac{m_m}{m_u} \qquad \qquad (38)$$
 hmotnosť)

Látkové množstvo (počet mólov).
$$N_{A} - \text{Avogadrova konštanta} \qquad \qquad n = \frac{N}{N_{A}}$$
 (39)

Mólová hmotnosť (hmotnosť jedného mólu)
$$M_m = \frac{m}{n}$$
 (40)

$$M_m = M_r. 10^{-3} kg \ mol^{-1} (41)$$

$$M_m = A_r. 10^{-3} kg \ mol^{-1} \tag{42}$$

Mólový objem (objem jedného mólu)

$$V_m = \frac{V}{n} \tag{43}$$

Prepočet teploty z Kelvin na °C.

$$t = T - 273,15$$
 °C (44)

Prepočet teploty z °C na Kelvin.

$$T = t + 273,15 \text{ K}$$
 (45)

1.16 Vnútorná energia sústavy:

Tepelná kapacita telesa

$$C = \frac{Q}{\Lambda t} = \frac{Q}{\Lambda T} \tag{46}$$

Merná tepelná kapacita (hmotnostná tepelná kapacita)

$$c = \frac{C}{m} = \frac{Q}{m\Delta t} = \frac{Q}{m\Delta T} \tag{47}$$

Teplo, ktoré prijme (vydá)teleso

$$Q = c \, m\Delta t = c \, m\Delta T \tag{48}$$

1.17 Deje v plynoch:

Stredná kinetická energia pohybu molekúl.

$$E_{ks} = \frac{3}{2}kT \tag{49}$$

Stredná kvadratická rýchlosť pohybu molekúl

$$v_{s} = \sqrt{\frac{3kT}{m_{0}}} = \sqrt{\frac{3kTN_{A}}{M_{m}}} = \sqrt{\frac{3R_{m}T}{M_{m}}} = \sqrt{\frac{3p}{\rho}}$$
(50)

Teplo, ktoré prijme (vydá)teleso

$$Q = c \, m\Delta t = c \, m\Delta T \tag{51}$$

1.18 Zmeny skupenstva látok:

Merné skupenské tepla topenia (tuhnutia) l_t . L_t - skupenské teplo topenia(tuhnutia) (odpovedá dodanému teplu – Q)

$$l_t = \frac{L_t}{m} \tag{52}$$

Merné skupenské tepla sublimácie (desublimácie) l_s . L_s - skupenské teplo sublimácie (desublimácie) (odpovedá dodanému teplu – Q)

$$l_s = \frac{L_s}{m} \tag{53}$$

Merné skupenské tepla vyparovania (kondenzácie) l_t . L_t - skupenské teplo vyparovania (kondenzácie) (odpovedá dodanému teplu - Q)

$$l_v = \frac{L_v}{m} \tag{54}$$

1.19 Porovnanie analogických veličín pre posuvný a otáčavý pohyb:

Posuvný pohyb		Otáčavý pohyb	
dráha	S	uhol otočenia	$\boldsymbol{\varphi}$
rýchlosť	$v = \frac{s}{t}$	uhlová rýchlosť	$\omega = \frac{\varphi}{t}$
sila	F	moment sily	М
hmotnosť	m	moment zotrvačnosti	J
kinetická energia	$\frac{1}{2}m \cdot v^2$	kinetická energia	$\frac{1}{2}J\cdot\omega^2$
hybnosť	p = m v	moment hybnosti	$b = J \omega$
zrýchlenie	$a=\frac{v}{t}$	uhlové zrýchlenie	$\varepsilon = \frac{\omega}{t}$
sila	F = m a	moment sily	$M = J \varepsilon$

2 DEFINÍCIE

2.1 Kinematika

- (1) Množina bodov, ktorými hmotný bod počas svojho pohybu prechádza je geometrická čiara, ktorú nazývame **trajektória**.
- (2) Keď hmotný bod prejde za rovnaký čas vždy rovnakú dráhu, veľkosť jeho okamžitej rýchlosti je konštantná, pohyb je **rovnomerný**.
- (3) Pri **nerovnomernom pohybe** sa v priebehu času mení **okamžitá rýchlosť**. Veličina, ktorou charakterizujeme časovú zmenu rýchlosti nazývame **zrýchlenie**.
- (4) Ak je zmena veľkosti rýchlosti Δv za rovnaké časové intervaly Δt vždy rovnaká, môžeme konštatovať, že ide o pohyb so stálym zrýchlením, teda o **rovnomerne zrýchlený**, alebo **rovnomerne spomalený pohyb.**
- (5) Všetky telesá padajú v blízkosti Zeme vo vákuu s rovnakým a konštantným tiažovým zrýchlením g. Pohyb voľne padajúcich telies je preto priamočiary rovnomerne zrýchlený, a nazývame ho **voľný pád**. Smerom tiažového zrýchlenia kdekoľvek na zemskom povrchu je určený zvislý smer.
- (6) Pohyb po kružnici je zvláštnym prípadom krivočiareho pohybu. Všetky body trajektórie sú v tomto prípade rovnako vzdialené od jedného bodu, umiestneného v jej strede.

2.2 Dynamika

- (7) **Sila** je vektorová fyzikálna veličina, ktorá vyjadruje mieru vzájomného pôsobenia telies alebo polí. Označuje sa písmenom F. Jej základnou jednotkou v sústave SI je Newton so skratkou N. Sila sa meria silomerom.
- (8) **Výslednica síl** pôsobiacich na hmotný bod súčasne v spoločnom pôsobisku sa rovná ich vektorovému súčtu.

Prvý Newtonov zákon - zákon zotrvačnosti :

(9) Teleso zotrváva v pokoji, alebo priamočiarom rovnomernom pohybe, pokiaľ je výslednica vonkajších síl nulová.

Tretí Newtonov zákon - zákon akcie a reakcie

(10) Ak na seba pôsobia dve telesá, tak rovnakými silami, opačného smeru, pričom pôsobia v jednej priamke

2.3 Hybnost'

Zákon zachovania hybnosti:

(11) Ak na sústavu nepôsobia žiadne vonkajšie sily, jej celková hybnosť (súčet hybností všetkých jej častí) sa v čase nemení, zachováva sa.

2.4 Energia

Zákon zachovania energie

(12) Celková energia izolovanej sústavy sa nemení (iba sa premieňa z jednej formy na druhú)

2.5 Tuhé teleso

Moment sily

- (13) **Moment sily** je vektorová fyzikálna veličina, ktorá vyjadruje mieru otáčavého účinku sily. Symbol veličiny: **M** Základná jednotka SI: **newton meter**, značka jednotky: **Nm**
- (14) Ak priložíme dlaň pravej ruky k osi otáčania telesa tak, aby prsty boli v smere otáčania, **vektor M momentu** sily smeruje na stranu palca.

Rameno sily

(15) Kolmá vzdialenosť **vektorovej priamky** sily od jej osi k bodu je tzv. **rameno** sily - d.

Momentová veta:

(16) Otáčavý účinok síl na tuhé teleso otáčavé okolo nehybnej osi sa ruší, keď vektorový súčet momentov všetkých síl vzhľadom na os otáčania je nulový:

Ťažisko:

(17) Ťažisko telesa je bod, vzhľadom na ktorý sa celkový moment tiažových síl pôsobiacich na časti telesa rovná nule.

Rovnovážna poloha:

(18) **Rovnovážna poloha** je taká, v ktorej teleso zostáva v pokoji. Stabilita telesa je schopnosť zachovať si rovnovážnu polohu. Vzhľadom na stabilitu existujú polohy:

stála (stabilná) - po vychýlení sa teleso vráti do pôvodnej polohy

vratká (labilná) - po vychýlení sa výchylka ďalej zväčšuje

voľná - po vychýlení ostáva teleso v novej polohe

2.6 Hydrostatika, Hydrodynamika, Aerodynamika:

(19) Pascalov zákon

Tlak v kvapaline, ktorý vznikne pôsobením vonkajšej sily na povrch kvapaliny v uzavretej nádobe, je v každom mieste kvapaliny rovnaký:

(20) Archimedov zákon

Teleso ponorené do kvapaliny je nadľahčované hydrostatickou vztlakovou silou, ktorej veľkosť sa rovná veľkosti tiaže kvapaliny vytlačenej ponorenou časťou telesa:

2.7 Kinetická teória látok:

(21) mol

1 mol je také látkové množstvo chemicky rovnorodej látky, ktoré obsahuje práve toľko častíc, koľko je atómov uhlíka 6 l2C v množstve uhlíka s hmotnosťou 12 g.

(22) Skupenstvá látky

- a. Pevná látka:
 - i. Pravidelné usporiadanie kryštalické (opak amorfné)
 - ii. Stredná vzdialenosť medzi časticami: 0,2 ... 0,3 nm (NaCl 0,281 nm)
 - iii. Kmitavé pohyby okolo rovnovážnej polohy veľké príťažlivé sily
 - iv. Stály objem, tvar

b. Kvapalina:

- i. Silové polia sú menšie ako u pevnej látky (gravitačné pôsobenie je silnejšie (pre hmotnosť zhluku častíc) usporiadanosť iba na krátku vzdialenosť
- ii. Stredná vzdialenosť medzi časticami: 0,2 nm (voda 0,3 nm)
- iii. Kmitanie okolo rovnovážnej polohy náhodné preskoky
- iv. Ak pôsobia vonkajšie sily preskoky sa dejú v smere ich pôsobenia nemajú stály tvar

c. Plyn:

i. Vzdialenosť častíc je veľká v porovnaní s veľkosťou častíc (H2 asi 3 nm, hoci veľkosť molekuly je asi 0,07 nm

ii. Ideálny plyn – okrem veľmi blízkej vzdialenosti nepôsobia silové polia.– molekuly sú voľné

(23) Izolovaná sústava

sústava, v ktorej neprebieha výmena energie s okolím a ktorej chemické zloženie a hmotnosť zostávajú konštantné g.

(24) Rovnovážny stav

Každá sústava, ktorá je od istého okamihu v nemenných vonkajších podmienkach, prejde po istom čase samovoľne do rovnovážneho stavu. V tomto stave zotrvá, kým sa podmienky nezmenia.

(25) Rovnovážny dej

prebieha tak, že sústava pri tomto deji prechádza niekoľkými na seba nadväzujúcimi rovnovážnymi stavmi. (prebiehajú veľmi pomaly.

(26) Definícia teploty

Telesám, ktoré sú pri vzájomnom styku v rovnovážnom stave, priraďujeme rovnakú teplotu.

(27) Termodynamická teplota -

teplota vyjadrená v termodynamickej stupnici. Má jednu základnú teplotu – trojný bod vody – rovnovážny stav ľad + voda + nasýtená para.

2.8 Vnútorná energia sústavy:

(28) Vnútorná energia

Vnútornou energiou U telesa (sústavy) nazývame súčet celkovej kinetickej energie neusporiadane sa pohybujúcich častíc telesa (molekúl), atómov a iónov) a celkovej potenciálnej energie vzájomnej polohy týchto častíc.

(29) Teplo Q

Teplo Q – je určené energiou, ktorú pri tepelnej výmene odovzdá teplejšie telesio studenšiemu. Jednotka – joule J.

(30) Prvý termodynamický zákon

Zmena vnútornej energie sústavy ΔU sa rovná súčtu práce W vykonanej okolitými telesami, ktoré pôsobia na sústavu silami a tepla Q odovzdaného okolitými telesami sústave.

$$\Delta U = W + O$$

- a. ak plyn koná prácu (rozpína sa stráca energiu) je W < 0
- b. ak konáme prácu my (stláčame plyn plyn získava energiu) je W > 0

- c. ak plynu dodávame teplo ohrievame (nie zohrievame) plyn získava energiu $\mathbf{Q}>\mathbf{0}$
- d. ak plynu odoberáme teplo ochladzujeme ho plyn stráca energiu Q < 0

2.9 Zmeny skupenstva látok:

(31) Merne skupenské teplo

Merne skupenské teplo je teplo, ktoré ak prijme teleso s m = 1kg pri teplote topenia (sublimácie, varu), premení sa na kvapalinu (paru) s tou istou teplotou.

(32) Trojný bod

Znázorňuje rovnovážny stav pevnej, kvapalnej a plynnej fázy tej istej látky. Teplota trojného bodu vody (T_A =273,16 K) je základnou teplotou termodynamickej teplotnej stupnice.