P425/1

PURE MATHEMATICS

PAPER 1 3 HOURS

UGANDA ADVANCED CERTIFICATE OF EDUCATION PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

- Attempt ALL the EIGHT questions in section A and any FIVE from section B.
- All working must be clearly shown.
- Mathematical tables with list of formulae and squared paper are provided.
- Silent, non-programmable calculators should be used.
- State the degree of accuracy at the end of each answer using CAL for calculator and TAB for tables.
- Clearly indicate the questions you have attempted in a grid on your answer scripts.

Question		Mark
Section A		
Section B		
Total		

SECTION A: (40 MARKS)

Attempt ALL questions in this section

- 1. Without using tables or calculator, solve $5^{\log_{25} x} = 3^{\log_{27} 2x}$ (05 marks)
- 2. Given that $ye^x = sinx + cosx$, show that $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$. (05 marks)
- 3. Solve the equation $\cos(\theta + 60^\circ) = 1 + \cos\theta$ for $-180^\circ < \theta < 360^\circ$.

(05 marks)

- 4. Find the acute angle between the line $r = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$ and the plane 4x 7y 4z = 20. (05 marks)
- Find the volume of the solid of revolution formed by rotating the area enclosed by the curve $y = 4x x^2$ and the line y = 2x through one revolution about the x -axis.
- 6. A line 2x y + 3 = 0 is a tangent to the circle whose centre is (-4, 5).

 Determine the equation of the circle. (05 marks)
- 7. The roots of the equation $x^2 + px + (p + 9) = 0$ differ by 3. Find the possible values of p.
- 8. Given that $\int_0^a (3x^2 4x 1) dx = 6$. Find the value of a. (05 marks)

SECTION B: (60 MARKS)

Attempt FIVE questions in this section

9. (a) Find and sketch the locus $Arg(iz + 1) = \frac{\pi}{4}$ on the argand diagram.

(04 marks)

- (b) Given that $z_1 = 6\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$ and $z_2 = 3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$. Find $\frac{z_1}{z_2}$ in the form a + bi.
- (c) Solve the equation: $z^3 i 1 = 0$. (04 marks)
- 10. (a) Prove that in any triangle ABC, then $\frac{a+c}{a-c} \tan \frac{B}{2} = \cot \left(\frac{A-C}{2}\right)$, where A, B and C are angles of a triangle. (06 marks)

- (b) Solve the equation: sinx sin4x = sin2x sin3x for $0^o < \theta < 360^o$.

 (06 marks)
- 11. Expand $\sqrt{\frac{1+5x}{1-5x}}$ as far as the term in x^3 . Raking the first three terms of the expansion and putting $x = \frac{1}{9}$, evaluate $\sqrt{14}$ correct to 4 significant figures.
- 12. (a) A container in the shape of a hollow cone of semi vertical angle 30° is held with its vertex pointing down wards. Water is poured into the cone at a rate of $5cm^3s^{-1}$. Find the rate at which the depth of the water is increasing when the depth is 10cm.
 - (b) Given that $y = a(1 cos\theta)$ and $y = a(\theta sin\theta)$. Show that $\frac{d^2y}{dx^2} = -\frac{1}{4}cosec^4\frac{\theta}{2}$. (06 marks)
- 13. (a) A point P moves such that its distance from the points A(-2,0) and B(8,6) are in the ratio AP: PB = 3:2. Find the locus of the P and describe it fully.

 (07 marks)
 - (b) Find the perpendicular distance of the line 3x = 4(y + 1) and the point (0.5 marks)
- **14.** (a) Integrate and find the value of $\int_0^{\frac{\pi}{2}} \left(\frac{1+\sqrt{x}}{\sqrt{x}} + \cot x \right) dx$. (06 marks)
 - (b) Find the area enclosed by the curve y = x(x 4) and x axis.

(06 marks)

- **15.** Line **P** is given by $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z-5}{3}$ and line **R** is given by $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$ Find:
 - (a) The point of intersection of P and R
 - (b) Angle between \mathbf{P} and \mathbf{R} . (12 marks)
- 16. A curve is such that $\frac{dy}{dx} = 6x + \frac{k}{x^2}$ and passess through a point P(1, 9). The gradient of the curve at P is 2. Find the
 - (a) Value of \boldsymbol{k} .
 - (b) Equation of the curve. (12 marks)

END

FOR MORE DETAILS CALL 0703-684687 OR WATSUP ON 0787762458 FOR ORDERS OF:

NEW LOWER CURRICULUM MATHS CLINIC S.1&S.2

NEW LOWER CURRICULUM MATHS CLINIC S.3&S.4

SUBSIDIARY MATHS CLINIC 2024 EDITION.

PURE MATHS CLINIC 2024 EDITION

(PHANEROO-MAKE MANIFEST)