Konvexní funkce

Zadání

- 1. Ukažte, že $f(x, y, z) = 2x^2 + y^2 + z^2 + xy 2xz$ je ryze konvexní.
- 2. Ukažte, že funkce $f(x,y,z)=2xy+2x^2+y^2+2z^3-5xz$ je konvexní na množině $C=\left\{(x,y,z)\in\mathbb{R}^3\ \middle|\ z\geq \frac{25}{24}\right\}$. Může být f konvexní na nějaké otevřené množině obsahující C?
- 3. Ukažte, že množina M je konvexní, jestliže

(a)
$$M = \{(x,y)^T \in \mathbb{R}^2 \mid x+y^2 \le 5, x^2 - y \le 10, x \ge 0, y \ge 0\};$$

(b)
$$M = \left\{ (x, y)^T \in \mathbb{R}^2 \,\middle|\, 2e^{-x+y^2} \le 4, -x^2 + 3xy - 3y^2 \ge -1 \right\}.$$

- 4. Nalezněte největší množinu C, na které je funkce $f(x,y) = \frac{x^2}{y}$
 - (a) ryze konvexní;
 - (b) ryze konkávní.
- 5. Je dána funkce $f(x) = \langle Ax, x \rangle$, kde $A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 3 & 1 \\ 1 & 2 & \alpha \end{pmatrix}$ a $\alpha \in \mathbb{R}$ je parametr. Nalezněte všechny hodnoty parametru α tak, aby f byla konvexní.
- 6. Pro jaké všechny hodnoty parametru $\alpha \in \mathbb{R}$ je funkce

$$f(x, y, z) = 2xz - x^2 - y^2 - 5z^2 - 2\alpha xy - 4yz$$

konkávní?

7. Ukažte, že

$$f(x_1, \dots, x_n) = \sum_{i=1}^n x_i \ln(x_i) - \left(\sum_{i=1}^n x_i\right) \ln\left(\sum_{i=1}^n x_i\right)$$

je konvexní.

8. Epigraf funkce $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$, je množina

$$\operatorname{epi}(f) := \{(x, \mu) \in D \times \mathbb{R} \mid f(x) \le \mu\}.$$

- (a) Ať $C \subseteq D$ je neprázdná množina. Ukažte, že f je konvexní na C právě tehdy, když epi $(f|_C)$ je konvexní množina.
- (b) Ať $(f_i)_{i\in I}$ je neprázdný systém funkcí konvexních na neprázdné množině $C\subseteq \mathbb{R}^n$. Využitím (a) ukažte, že je-li $\{f_i(x)\,|\,i\in I\}$ shora omezená pro každé $x\in C$, pak funkce definovaná předpisem

$$f(x) = \sup_{i \in I} f_i(x)$$

je konvexní na C. (Nápověda: ukažte, že epi $(f|_C) = \bigcap_{i \in I} \operatorname{epi}{(f_i|_C)}.)$

(c) Ukažte, že $f(x) = \max\{x_1, \dots, x_n\}, x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$, je konvexní.

Výsledky

- 2. Nemůže být konvexní na otevřené množině obsahující C, protože Hessova matice nebude ve všech bodech takové množiny pozitivně semidefinitní.
- 4. (a) $C = \{(x, y) \in \mathbb{R}^2 \mid y > 0\};$

(b)
$$C = \{(x, y) \in \mathbb{R}^2 \mid y < 0\}.$$

- 5. $\alpha \geq 2$.
- 6. $-\frac{4}{5} \le \alpha \le 0$.