Course Name: Digital Hardware Design

Course Code: 17B1NEC741

Finite State Machine-4

Dr. Arti Noor
Dean, Academic Affairs
Electronics and Communication Engineering,
Jaypee Institute of Information Technology, Noida

Sequential Storage Units

FSM Design Example-2

A vending machine will open the door to let out a pack of gum if it receives 15 cents or more in denominations of 5 (Dime) and 10 (Nickel) cents. Consider one input at a time. No return.

Input Sequence:

- 1. 3 Dimes(15)
- 2. 2 Dimes & Nickel(20)
- 3. Dime, Nickle(15)
- 4. Nickle, Dime(15)
- 5. 2 Nickles (20)

FSM Design Example-2

Presen	t State	Inp	out	Next	State	Output	Signal to Trigger FFs									
Q1(t)	Q0(t)	N	D	Q1(t+1)	Q0(t+1)	Out	S1	R1	S0	R0	J1	K1	10	K0	T1	T2
0	0	0	0	0	0	0	0	X	0	X	0	X	0	X	0	0
0	0	0	1	0	1	0	0	X	1	0	0	X	1	X	0	1
0	0	1	0	1	0	0	1	0	0	X	1	X	0	X	1	0
0	0	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X
0	1	0	0	0	1	0	0	X	X	0	0	X	X	0	0	0
0	1	0	1	1	0	0	1	0	0	1	1	X	X	1	1	1
0	1	1	0	1	1	1	1	0	X	0	1	X	X	0	1	0
0	1	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X
1	0	0	0	1	0	0	X	0	0	X	X	0	0	X	0	0
1	0	0	1	1	1	1	Х	0	1	0	X	0	1	X	0	1
1	0	1	0	1	1	1	X	0	1	0	X	0	1	X	0	1
1	0	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X
1	1	0	0	0	0	0	0	1	0	1	X	1	X	1	1	1
1	1	0	1	0	1	0	0	1	X	0	X	1	X	0	1	0
1	1	1	0	1	0	0	X	0	0	1	X	0	X	1	0	1
1	1	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X

State Assignment

- Some state assignments are better than others.
- The state assignment influences the complexity of the state machine.
 - The combinational logic required in the state machine design is dependent on the state assignment.
- Types of state assignment
- Binary encoding
- Gray-code encoding
- One-hot encoding

Example

Design a FSM that detects a sequence of two or more consecutive ones on an input bit stream.

The FSM should output a 1 when the sequence is detected, and a 0 otherwise.

Input: 011101011011101...

Output: 001100001001100...

Example

Pr	esent Sta	ate		Output					
			$\mathbf{w} = 0$						
	Q _A	Q_{B}		Q_A^+	Q_{B}^{+}		Q_A^+	Q_{B}^{+}	z
S_0	0	9/	S_0	0	0	S_1	0	1	0
S_1	0	1	S_0	0	0	S_2	1	0	0
S_2	1	0	S_0	0	0	S_2	1	0	1
	1	1		d	d		d	d	d

Using <u>Binary</u> Encoding for the State Assignment

Pr	esent Sta	ate		Next	State		FF Inputs					
		$\mathbf{w} = 0$		w = 1		w =	= 0	w = 1				
	Q_A	Q_{B}	Q_A^+	Q_{B}^{+}	Q_A^+	Q_{B}^{+}	D_A	D_{B}	D_A	D_{B}		
S_0	0	0	0	0	0	1	0	0	0	1		
S ₁	0	1	0	0	1	0	0	0	1	0		
S ₂	1	0	0	0	1	0	0	0	1	0		
	1	1	d	d	d	d	d	d	d	d		

Characteristic Equation: $D = Q^+$

$$D_A = W \cdot Q_B + W \cdot Q_A$$

$$D_A = W \cdot (Q_A + Q_B)$$

Gray code consists of a sequence where only one bit changes between one value and the next. In addition to also using the minimum number of bits, this encoding minimizes dynamic power consumption if the sequence of states is followed optimally.

Present State				Output					
				$\mathbf{w} = 0$			w = 1		
	Q _A	Q_{B}		Q_A^+	Q_{B}^{+}		Q_A^+	Q_{B}^{+}	z
S_0	0	9/	S ₀	0	0	S ₁	0	1	0
S ₁	0	1	S_0	0	0	S ₂	1	1	0
S ₂	1	1	S_0	0	0	S ₂	1	1	1
	1	0/		d	d		d	d	d

Using <u>Gray-code</u> Encoding for the State Assignment

Pr	esent St	ate		Next	State		FF Inputs					
		w = 0		w = 1		w =	= 0	w = 1				
	Q_A	Q_{B}	Q_A^+	Q_{B}^{+}	Q_A^+	$Q_{B}^{^{+}}$	D _A	D_{B}	D_A	D_{B}		
S_0	0	0	0	0	0	1	0	0	0	1		
S ₁	0	1	0	0	1	1	0	0	1	1		
S ₂	1	1	0	0	1	1	0	0	1	1		
	1	0	d	d	d	d	d	d	d	d		

Characteristic Equation: $D = Q^+$

Binary Code

One-Hot coding

- Encode n states using n flip-flops.
- Assign a single "1" for each state. Example: 0001 0010 0100 1000.
- Propagate a single "1" from one flip-flop to the next .All other flip-flop outputs are "0"

Present State				Next State									
					w =	= 0		w = 1					
	Q_A	Q_{B}	$Q_{\rm C}$		Q_A^+	Q_{B}^{+}	Q_{C}^{+}		Q_A^{+}	Q_{B}^{+}	Q_{C}^{+}		
S_0	0	0		S_0	0	0	1	S ₁	0	1	0		
S_1	0	1	0	S_0	0	0	1	S ₂	1	0	0		
S_2	1	0	0	S_0	0	0	1	S_2	1	0	0		

For each state only one flip-flop is set to 1.

The remaining combination of state variables are not used.

Using One-hot Encoding for the State Assignment

Characteristic Equation: $D = Q^+$

- This may not seem very efficient at first because of the number of bits used, and the excessive number of invalid states.
- However, one-hot encoding is very good at simplifying the stimulus logic for the flip flops because there's no need to decode the states. The bits are the states.