RELATIVIDAD ESPECIAL & SEGUNDA LEY DE NEWTON

A. Blato

Licencia Creative Commons Atribución 3.0 (2016) Buenos Aires

Argentina

En relatividad especial, este artículo demuestra que la segunda ley de Newton puede ser aplicada en cualquier sistema de referencia inercial.

Introducción

En relatividad especial, el momento lineal \mathbf{P} de una partícula con masa en reposo m_o está dado por:

$$\mathbf{P} \doteq \frac{m_o \, \mathbf{v}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

La relación entre la fuerza einsteniana neta **F** que actúa sobre la partícula y el momento lineal **P** de la partícula, está dada por:

$$\mathbf{F} = \frac{d\mathbf{P}}{dt} = m_o \left[\frac{\mathbf{a}}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{(\mathbf{a} \cdot \mathbf{v}) \mathbf{v}}{c^2 (1 - \frac{v^2}{c^2})^{3/2}} \right]$$

Ahora, puesto que $\mathbf{a} = \mathbf{1} \cdot \mathbf{a}$ (tensor unitario) y $(\mathbf{a} \cdot \mathbf{v}) \mathbf{v} = (\mathbf{v} \otimes \mathbf{v}) \cdot \mathbf{a}$ (producto tensorial o diádico) entonces reemplazando se tiene:

$$\mathbf{F} = m_o \left[\frac{\mathbf{1} \cdot \mathbf{a}}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{(\mathbf{v} \otimes \mathbf{v}) \cdot \mathbf{a}}{c^2 (1 - \frac{v^2}{c^2})^{3/2}} \right]$$

que es:

$$\mathbf{F} = m_o \left[\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{(\mathbf{v} \otimes \mathbf{v})}{c^2 \left(1 - \frac{v^2}{c^2}\right)^{3/2}} \right] \cdot \mathbf{a}$$

Pasando el tensor entre corchetes de la ecuación anterior (denominado en este artículo como el tensor de Newton) al primer miembro, se obtiene:

$$\left[\frac{\mathbf{1}}{\sqrt{1-\frac{v^2}{c^2}}} + \frac{(\mathbf{v}\otimes\mathbf{v})}{c^2\left(1-\frac{v^2}{c^2}\right)^{3/2}}\right]^{-1} \cdot \mathbf{F} = m_o \,\mathbf{a}$$

Si identificamos el primer miembro de la ecuación anterior como la fuerza newtoniana neta $\overline{\mathbf{F}}$ que actúa sobre la partícula, entonces finalmente se tiene:

$$\overline{\mathbf{F}} = m_o \mathbf{a}$$

Por lo tanto, la fuerza newtoniana neta $\overline{\mathbf{F}}$ que actúa sobre una partícula siempre tiene igual dirección y sentido que la aceleración \mathbf{a} de la partícula.

Dinámica Newtoniana

En relatividad especial, sea una partícula con masa en reposo m_o entonces el momento lineal ${\bf P}$ de la partícula, la fuerza newtoniana neta $\overline{{\bf F}}$ que actúa sobre la partícula, el trabajo ${\bf W}$ realizado por la fuerza newtoniana neta que actúa sobre la partícula y la energía cinética ${\bf K}$ de la partícula, para un sistema de referencia inercial, están dados por:

$$\mathbf{P} \doteq m_o \mathbf{v}$$

$$\overline{\mathbf{F}} = \frac{d\mathbf{P}}{dt} = m_o \mathbf{a}$$

$$\mathbf{W} \doteq \int_{1}^{2} \overline{\mathbf{F}} \cdot d\mathbf{r} = \Delta \mathbf{K}$$

$$K \doteq 1/2 m_o (\mathbf{v} \cdot \mathbf{v})$$

donde $(\mathbf{r}, \mathbf{v}, \mathbf{a})$ son la posición, la velocidad y la aceleración de la partícula respecto al sistema de referencia inercial. $\overline{\mathbf{F}} = \mathbf{N}^{-1} \cdot \mathbf{F}$, donde \mathbf{N} es el tensor de Newton y \mathbf{F} es la fuerza einsteniana neta que actúa sobre la partícula.