Slovak University of Technology in Bratislava Institute of Information Engineering, Automation, and Mathematics

Application of Machine Learning in Accelerating MPC for Chemical Processes

Martin Klaučo, Patrik Valábek

martin.klauco@stuba.sk

Speakers

- Lecture & overview: Martin Klaučo, martin.klauco@stuba.sk
- Hands-on exercises: Patrik Valábek, patrik.valabek@stuba.sk

Notation

- u control input or manipulated variable
- u^* optimal control input
- \tilde{u} approximated control input
- x, θ, \hat{x} state variables, and if not measured, then estimated
- y output variable
- r reference

Why Accelerating the MPC?

Comparison - MPC

How to Accelerate the MPC?

Holy Grail of Control

- Multiple-input Multiple-output Controllers
- Optimal control action (s.t. performance, contraints, etc.)
- Fast evaluation
- Low memory footprint
- $u^* = f(\theta)$, where $f(\theta)$ is explicit function

MPC

Sidenote – Pros/Cons of MPC-based Control

Sidenote – Accelerating MPC with ML-based warmstarting

- Directly providing constraints to the ASM solver.
- Drastic reduction of the number of iterations.
- Guaranteed convergence.
- Increased memory footprint.

 M. Klaučo – M. Kalúz – M. Kvasnica: Machine learning-based warm starting of active set methods in embedded model predictive control. Engineering Applications of Artificial Intelligence, vol. 77, page. 1-8, 2019.

Training of Neural Network Control Law

Repeatedly solve MPC for large pool of initial conditions

Train neural network in offline mode

 $\min |u_{\mathsf{NN}} - u^{\star}|$

Closed-loop Arrangement with Neural Network

Closed-loop Arrangement with Neural Network

Single Neuron

Neural Networks as Controllers

Is it a feasible approach? Can we do that?

Martin Klaučo

Closed-loop Arrangement with Neural Network

Activation Functions

Туре	Expression	
Linear function	$f_{A}(\gamma) = \gamma$	
Sigmoid function	$f_{A}(\gamma) = rac{1}{1 + \mathrm{e}^{-\gamma}}$	
Hyperbolic Tangent	$f_{A}(\gamma) = rac{e^{2\gamma-1}}{e^{2\gamma+1}}$	
Rectified Linear Unit	$f_{A}(\gamma) = max(0,\gamma)$	

$$\gamma = \sum_{i=1}^{n_{\mathsf{v}}} w_i \cdot v_i + b$$

Activation Functions

Non-linear MPC

min
$$\sum_{k=0}^{N-1} (y_k - y_{ref})^{\mathsf{T}} Q_{\mathsf{y}}(y_k - y_{ref}) + \sum_{k=0}^{N-1} \Delta u_k^{\mathsf{T}} Q_{\mathsf{du}} \Delta u_k$$
s.t.
$$x_{k+1} = f(x_k, u_k), \ k \in \mathbb{N}_0^{N-1}$$

$$y_k = g(x_k, u_k), \ k \in \mathbb{N}_0^{N-1}$$

$$u_k \in \mathcal{U}, \ \Delta u_k \in \mathcal{U}_\Delta, \ x_k \in \mathcal{X}, \ y_k \in \mathcal{Y}, \ k \in \mathbb{N}_0^{N-1}$$

$$\Delta u_k = u_k - u_{k-1}, \ k \in \mathbb{N}_0^{N-1}$$

$$x_0 = x(t), \ y_{ref} = r(t), \ u_{-1} = u(t - T_s)$$

set of initial conditions

$$x_0 \in \mathcal{X}$$

$$r \in \mathcal{R}$$

$$u_{-1} \in \mathcal{U}$$

optimization

set of initial conditions

 $x_0 \in \mathcal{X}$ $r \in \mathcal{R}$ $u_{-1} \in \mathcal{U}$

set of optimal trajectories

x_0	r	$ u_{-1} $	u^{\star}
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
	•		•

Pros/Cons of the Approximation with Neural Networks

- Replacing the optimization
- Reducing the evaluation to a single function call
- LTI-based MPC & non-linear MPC can be approximated
- Data generation NN can interpolate not extrapolate
- Structure of the NN is important and only some rules of thumb are available

Choice of the Structure of NN-based Controller #1

K. Kiš – M. Klaučo – A. Mészáros: Neural Network Controllers in Chemical Technologies. In 2020 IEEE 15th International Conference of Systems Engineering, IEEE, pp. 397–402, 2020.

Martin Klaučo Intro to ML in Process Control 2024-07-14

Choice of the Structure of NN-based Controller #1

K. Kiš – M. Klaučo – A. Mészáros: Neural Network Controllers in Chemical Technologies. In 2020 IEEE 15th International Conference of Systems

Engineering, IEEE, pp. 397–402, 2020.

Training of the Neural Network – NLP

$$egin{aligned} \min_{w_i,bi} & \sum_{j=1}^M |u_{\mathsf{NN},j} - u_j^\star| \ & ext{s.t.} & u_{\mathsf{NN},j} = F(heta_j), & orall j \in \mathbb{N}_1^M \end{aligned}$$

where

$$F(\theta) = f_{\mathsf{A},1}\Big(f_{\mathsf{A},2}(\ldots),\ldots\Big)$$

objective function alternatives

$$\ell(\theta, u^{\star}) = \frac{1}{n} \left(u_{\mathsf{NN},j} - u_{j}^{\star} \right)^{2}$$

solved usually by Stochastic Gradient Descent Method

Further Reading

- K. Kiš P. Bakaráč M. Klaučo: Nearly Optimal Tunable MPC Strategies on Embedded Platforms. In 18th IFAC Workshop on Control Applications of Optimization, IFAC-PapersOnline, pp. 326-331, 2022, LINK
- Y. Lohr M. Klaučo M. Fikar M. Mönnigmann: Machine Learning Assisted Solutions of Mixed Integer MPC on Embedded Platforms. IFAC World Congress 2020, LINK
- Sergio Lucia Benjamin Karg: A deep learning-based approach to robust nonlinear model predictive control, 6th IFAC Conference on Nonlinear Model Predictive Control NMPC 2018, LINK

Software to Install

- Matlab
- tbxManager https://www.tbxmanager.com/
- YALMIP tbxmanager install yalmip
- (optional) MPT3 tbxmanager install mpt mptdoc cddmex fourier glpkmex hysdel lcp yalmip sedumi espresso
- Statistics and Machine Learning Toolbox, Deep Learning Toolbox, Control Toolbox, Optimization Toolbox

Hands-on exercise

- Concept of neural networks
- Role of neural networks as controllers.
- Data generation and NN training in MATLAB
- Deployment of NN-based control laws in MATLAB

Neural Networks as Controllers

Enjoy, learn, and keep in touch

martin.klauco@stuba.sk & patrik.valabek@stuba.sk

www.uiam.sk