UHR3

Die neue Uhr Baugruppe für den NDR-Klein-Computer

Inhalt

Einführung	3
Funktionsbeschreibung	4
Adress- und Dekodierlogik	
Der Uhren-Chip	
Aufbauanleitung	
Stückliste	6
Bestückungsanleitung	7
Adressierung	
Schaltplan	
Bestückungsplan	
Layout der Lötseite	

Einführung

Die UHR3 Baugruppe ist entstanden, da es heutzutage praktisch unmöglich geworden ist die originalen Uhren-Chips des NKCs (E050, Smart-Watch) zu bekommen. Es kam daher die Idee auf, einen Standart-Chip zu verwenden. Der hier eingesetzte Dallas DS12887 war der Uhrenchip, der älteren PCs. Es gibt mehrere Varianten hiervon, die allerdings untereinander kompatibel sind. Durch die fest integrierte Batterie hat das IC zwar nur eine begrenzte Lebensdauer, aber die durchschnittlichen 10 Jahre die sie hält, dürften (erstmal) ausreichend sein.

Ein weiterer großer Vorteil dieser ICs ist das integrierte batteriegepufferte RAM (NVRAM). Hierin lassen sich wichtige Systemeinstellungen abspeichern, die auch nach ausschalten des Computers erhalten bleiben. Die neue Version des 68000-Grundprogramm (ab V7.0) macht hiervon gebrauch.

Um die Herstellung der Platine zu vereinfachen, habe ich sie einseitig erstellt. Dies machte allerdings zwei Drahtbrücken erforderlich. Des weiteren ist die Pinbelegung bei machen ICs etwas "durcheinander", doch hierdurch vereinfachte sich das Layout der Platine.

Funktionsbeschreibung

Die UHR3 gliedert sich in 2 Funktionsblöcke:

- Die Adress- und Dekodierlogik
- Der Uhren-Chip

Adress- und Dekodierlogik

Das Ausgangssignal des Vergleichers IC5 bildet das Select-Signal für den Buspuffer IC4 sowie den Uhren-Chip IC1. Mit Hilfe der NAND- und NOR-Gatter IC2 und IC3 wird aus dem Read-, dem Write- und dem Select-Signal, sowie der Adresse A0, die Signale AS und DS für den Uhren-Chip gebildet.

Der Uhren-Chip

Wie Eingangs erwähnt, gibt es den Uhren-Chip in mehreren Varianten. Die A-Typen DS12887A und DS12C887A verfügen über einen Anschluss zum löschen des NVRAMs, dieser ist bei diesem Layout allerdings nicht belegt. Die C-Typen DS12C887 und DS12C887A verfügen über ein Register für das Jahrhundert, dieses liegt auf der Adresse \$32. Bei den restlichen Typen befindet sich hier ein Byte des NVRAMs!

Die nachfolgende Tabelle zeigt die Belegung der Adressen:

Table 2A. Time, Calendar, and Alarm Data Modes—BCD Mode (DM = 0)

ADDRESS	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	FUNCTION	RANGE
00H	0		10 Seconds		Seconds				Seconds	00–59
01H	0	10 Seconds		Seconds				Seconds Alarm	00–59	
02H	0	10 Minutes				Minutes			Minutes	00-59
03H	0	10 Minutes			Minutes			Minutes Alarm	00–59	
04H	AM/PM	0	0	10 Hours	Hours		Hours	1-12 +AMPM		
0411	0	Ů	10	Hours		1100			riodia	00-23
05H	AM/PM	0	0	10 Hours	Hours		Hours Alarm	1-12 +AMPM		
USH	0		10 Hours			nours		nours Alarm	00–23	
06H	0	0	0	0	0		Day		Day	01–07
07H	0	0	10	Date	Date		Date	01–31		
08H	0	0	0	10 Months	Month		Month	01–12		
09H		10 Years Year		0 Years		Year	00-99			
0AH	UIP	DV2	DV1	DVo	RS3	RS2	RS1	RS0	Control	-
0BH	SET	PIE	AIE	UIE	SQWE	DM	24/12	DSE	Control	_
0CH	IRQF	PF	AF	UF	0	0	0	0	Control	-
ODH	VRT	0	0	0	0	0	0	0	Control	-
0EH-31H	Х	Х	Х	Х	Х	Х	Х	Х	RAM	_
32H		10 0	entury		Century				Century*	00-99
33H-7FH	Х	Х	Х	Х	Х	Х	Х	Х	RAM	_

X = Read/Write Bit.

^{*}DS12C887, DS12C887A only. General-purpose RAM on DS12885, DS12887, and DS12887A.

Die obige Tabelle zeigt die Belegung der Zeit- und Datumsregister in der BCD Belegung, die wohl die am häufigsten benutzte ist. Man kann allerdings auch auf einen binär Modus umschalten, auf den ich hier aber nicht näher eingehen will. Eine besondere Beachtung muss man den Adressen \$0A bis \$0D schenken, da es sich hierbei um die Register zur Steuerung des Uhren-Chips handelt. Die genaue Bedeutung der einzelnen Bits kann man aus dem Datenblatt entnehmen.

Hier ein wichtiger Hinweis:

Bei neuen ICs ist der interne Oszillator abgeschaltet, um die Batterie zu schonen. Zum aktivieren der Uhr muss man auf Adresse \$0A die Bits DV0 bis DV2 auf %010 setzten. Dies erreicht man z.B. durch schreiben von \$20 auf die Adresse \$0A.

Das Schreiben und Lesen von Bytes erfordert zwei Schritte. Im ersten Schritt muss die Adresse des gewünschten Bytes geschrieben werden, dass geschieht auf der niedrigeren Adresse der Uhren-Baugruppe, diese liegt normalerweise auf \$FFFFFFFA beim 68000 bzw. \$FA beim Z80. Im zweiten Schritt wird das selektierte Byte ausgelesen bzw. beschrieben, das erfolgt durch lesen bzw. schreiben eines Bytes auf der hohen Uhren-Baugruppen Adresse (\$FFFFFFB / \$FB).

Man sollte allerdings beachten, dass die Zugriffszeiten des Uhren-Bausteins relativ gering sind und von daher evtl. eine Warteroutine zwischen zwei Zugriffen benutzt werden sollte.

Aufbauanleitung

sowie die UHR3 r2 Platine

Stückliste

C1 C2	100n 100n	Kerko Kerko				
RN1	Widerstandsnetzwerk $8x3,3k\Omega$ oder $7x3,3k\Omega$					
IC1 IC2 IC3 IC4 IC5	DS12887 74LS00N 74LS02N 74LS245N 74LS688N					
JP2	Stiftleiste 2x7pol. gerade	Adresskodierung (kann entfallen)				
X1	Stiftleiste 1x30pol. gewinkelt	NKC-IO-Bus				
SO1 SO2 SO3 SO4 SO5	14pol. DIL-Sockel					

Bestückungsanleitung

Beim einlöten von Bauteilen sollte man sich immer von den Flachsten zu den Höchsten vorarbeiten.

In diesem Falle bedeutet das, dass man mit den beiden Drahtbrücken beginnen sollte. Diese sind im Bestückungsplan rot eingezeichnet.

Als nächstes ist die gewinkelte Stiftleiste X1 dran. Bei dieser sollte man bei einem der mittleren Pins mit dem löten beginnen und sich dann nach außen vorarbeiten. Es könnte sich ansonsten eine Delle in der Stiftleiste bilden.

Nun folgen die Kerkos (100nF Blockkondensatoren) und die IC-Fassungen, bei denen man auf die korrekte Ausrichtung achten sollte.

Bei der IC-Fassung für den Uhren-Baustein (24 polig) muss man schauen, ob im System genug Platz vorhanden ist (Abstand zur Nachbarplatine), da der DS12887 recht hoch ist. Im Notfall muss man die Fassung weglassen und das IC direkt einlöten. Dies sollte aber nur von jemanden mit ausreichender Löterfahrung gemacht werden.

Dann kommt das Widerstandsnetzwerk. Bei diesem ist auf die Polung zu achten, der gemeinsame Anschluss zeigt zur Platinenmitte. Wenn ein Widerstandsnetzwerk mit 8 Anschlüssen (7 Widerstände) benutzt wird, ist das Bohrloch das der Platinenmitte am nächsten ist, freizulassen, sprich das Bauteil wird zum Platinenrand ausgerichtet. Zum Schluss kommt die 14 polige Stiffleiste für die Adresskodierung. Diese kann auch entfallen, da auf der Platine die Standardadresse schon voreingestellt ist.

Adressierung

Die UHR3 belegt 2 I/O-Adressen. Die Basisadresse wird mit der Stiftleiste JP2 eingestellt. Die Standardadresse ist die \$FFFFFFA/FB bzw. \$FA/\$FB, diese ist auf der Platine auch fest voreingestellt. Wenn man die Baugruppe auf einer anderen Adresse betreiben will, muss man die Leiterbahn zwischen den gegenüberliegenden Pins unterhalb der Stiftleiste durchtrennen. Die Ausrichtung der Stiftleiste ist so, dass am Platinenrand die Leitung A1, und zur Platinenmitte die Adressleitung A7 liegt. Ein offener Jumper bedeutet hier eine logische 1 ein geschlossener eine logische 0.

Schaltplan

Bestückungsplan

Layout der Lötseite

