

Week 3

Relational Databases: Where Big Data is Typically Stored

Applied Data Science

Columbia University - Columbia Engineering

Course Agenda

- Week 1: Python Basics: How to Translate
 Procedures into Codes
- Week 2: Intermediate Python Data Structures for Your Analysis
- Week 3: Relational Databases Where Big
 Data is Typically Stored
- Week 4: SQL Ubiquitous Database
 Format/Language
- Week 5: Statistical Distributions The Shape of Data
- Week 6: Sampling When You Can't or Won't
 Have ALL the Data

- Week 7: Hypothesis Testing Answering Questions
 About Your Data
- Week 8: Data Analysis and Visualization Using Python's NumPy for Analysis
- Week 9: Data Analysis and Visualization Using Python's Pandas for Data Wrangling
- Week 10: Text Mining Automatic Understanding of Text
- Week 11: Machine Learning Basic Regression and Classification
- Week 12: Machine Learning Decision Trees and Clustering

Transient vs. Persistent data

- Program data is transient
- ➡When the program ends, data is lost
- If we rerun the program, the data will need to regenerated

Organized collections of data (that reside on a computer)

Digital organization methods: Relational databases NoSQL databases

Who uses databases?

Almost every application today uses some sort of database!

If you go on the web, you're almost certainly interacting with a database

Relational databases

- →Data is stored in 2-dimensional tables
- ➡Tables (relations) are logically connected sets of data
- Table rows (records/tuples) are information about one entity
- ➡Table columns are attribute values
- Uses SQL for information retrieval
- ➡Goal: Minimize redundancy and maximize consistency

NoSQL Databases

- ➡Low latency
- ⇒Scalability
- Redundancy
- Typically stored on the cloud
- →Does not (necessarily) use SQL (hence NoSQL)
- ➡Examples: MongoDB, Google BigTable, Sparksee, Amazon DynamoDB

Relational databases

Data Model: the abstract structure of the database. entities and their relationships

Relational model: the database represented as a set of tables (relations)

Normalization: the process of reorganizing a relational database to decrease data redundancy and increase data consistency

The Entity-Relationship Model

Components of the Entity Relationship Model

- ➡Entities: Real world objects
 - student, course, professor, room
- Relationships: Association between entities
 - student enrolled-in course
 - professor teaches course
 - professor advises student
 - professor has-office room
- Attributes: Properties of entities or relationships
 - student: name, id_number, major
 - professor: name, office, department
 - professor teaches course: rating

- → Conceptual data model
- Models entities and relationships in the data
- Captures semantic information about the world being modeled

The Entity Relationship Diagram

- Types of relationships:
 - one-one: professor has-office room
 - one-many/many-one: professor (1) advises student (many)
 - many-many: student enrolls-in course
 - one student enrolls in many courses
 - one course has many students enrolled in it

- Schematic view of the data model
- Diagrams a connected network of entities and relationships

Relational model

- ➡ER Model: An abstract representation of the data
- Relational model: The database schema
 - the physical structure of the database
- ➡ER Model to Relational model:
 - Create tables for each entity and each relationship
 - Keys: Keys link records across tables

Relational Model Part 2

Student

ssn	f name	Iname	emails	phone	phone2	city	zip
111-22-3333	John	Childs	john@gmail.com, jc123@columbia.edu	646.123.1212		New York	10025
123-12-1234	Mary	Arias	m.a@columbia.edu, ma222@hotmail.com		347.766.7689	New York	10011
555-111-7777	Roberto	Perez	perezr@gmail.com, rp1@columbia.edu	917.333.5479	415.348.4789	San Francisco	94110
222-33-4455	Lila	Pennington	ilap@gmail.com, ila@mail.com	425.123.1212		Seattle	98105

Course

numb	name	room	seats
01	Data	1127	60
c2	Python	303	100
c3	coro fin	331	55
c4 prod. mamt		1127	60
c5 Ethics		303	100
c6 leadership		303	100
c7	bus analytics	1127	60

Enrolls-in

ssn	class	f name	I name	grade
111-22-3333	c1	John	Childs	А
123-12-1234	c 1	Mary	Arias	В
111-22-3333	c2	John	Childs	А
222-33-4455	c3	Lila	Pennington	F

- → The process of reorganizing a database to reduce redundancies and increase integrity in the data
- Normalization makes querying more efficient and consistent
- →Normalization typically addresses three types of anomalies that give rise to redundancies and inconsistencies
 - insertion anomalies
 - update anomalies
 - deletion anomalies

Insertion Anomalies: Definition and Example

An insertion anomaly occurs when something needs to be added to the database but there is no place to add it

Professor

name	offi	dept
Prof.	A7	al Engineering and Operations Re
Prof.	А3	al Engineering and Operations Re
Prof. Lee	A6	Computer Science
Prof. Wu	A2	Mechanical Engineering

➡Example:

- The university decides to add a physics department
- ➡Initially, there are no faculty members
- ➡There is no way to add the department

Professor			Departm	nent
name	office	dept	Code	Name
Prof. Micha	A702	IEOR	IEOR MECH	al Engineering and Operations Re Mechanical Engineering
Prof. Robyn	A301	IEOR	CS	Computer Science
Prof. Lee	A673	cs	PHYS	Physics
Prof. Wu	A244	MECH		

Make Department into a separate entity and create a new Department —->
Professor relationship

Update Anomalies: Definition and Example

- →An update anomaly occurs when there is a change to the value of an attribute of an entity (or relationship) but that change needs to be made in multiple places
- →A database with the potential for update anomalies can have redundant data and can therefore be inconsistent

Course

numb	name	room	seats
c1	Data	1127	60
c2	Pvthon	303	100
c3	corp fin	331	55
c4	prod.	1127	60
c5	Ethics	303	100
с6	leadership	303	100
c7	bus	1127	60

→Example:

- →Room 1127 is restructured and the number of seats increased to 70
- →The change needs to be made for every course that is being taught in room 1127

Course

number	name	room
c1	Data analytics	1127
c2	Python	303
с3	corp fin	331
с4	prod. mgmt	1127
c5	Ethics	303
с6	leadership	303
c7	bus analytics	1127

Room

numb	seats	
1127	69 70	
303	100	
331	55	

⇒Solution:

■ Make Room into a separate table

Deletion Anomalies: Definition and Example

- →A deletion anomaly occurs when deleting something from the database results in some other, possibly important, fact being deleted as well
- →A database with the potential for deletion anomalies can lose data

Course

numbe	name	room	enrollment
c1	Data	1127	6
c2	Python	303	30
сЗ	corp fin	331	25
c4	prod.	1127	45
с5	Ethics	303	32
с6	leadership	303	17
с7	bus	1127	31

- →Because of insufficient enrollment, course c1 Data Analytics is dropped for the semester
- Our database no longer has a record of the course
- And we lose useful information like course description, teacher ratings, past enrollments, etc.

Offered courses

number	room	enrollment
c1	1127	6
c2	303	30
с3	331	25
c4	1127	45
c5	303	32
c6	303	17
с7	1127	31

Courses

number	name Data analytics		
c1			
c2	Pvthon		
c3	corp fin		
c4	prod. mamt		
c5	Ethics		
c6	leadership		
с7	bus analytics		

⇒Solution:

Remove course number and title and put them into a separate table

Normalized Database

- Database normalization is the process of removing anomalies
- →Any relational database can be said to be in one of several normal forms: 1NF, 2NF, 3NF, Boyce-Codd NF and 4NF
- →A database in 3NF is generally free of insertion, update, and deletion anomalies
- We won't study these normal forms but you should be aware they exist

www.emeritus.org