Multiple-Choice Test

Chapter 07.03 Simpson's 1/3 Rule

- 1. The highest order of polynomial integrand for which Simpson's 1/3 rule of integration is exact is
 - (A) first
 - (B) second
 - (C) third
 - (D) fourth
- 2. The value of $\int_{0.2}^{2.2} e^x dx$ by using 2-segment Simpson's 1/3 rule most nearly is
 - (A) 7.8036
 - (B) 7.8423
 - (C) 8.4433
 - (D) 10.246
- 3. The value of $\int_{0.2}^{2.2} e^x dx$ by using 4-segment Simpson's 1/3 rule most nearly is
 - (A) 7.8036
 - (B) 7.8062
 - (C) 7.8423
 - (D) 7.9655
- 4. The velocity of a body is given by

$$v(t) = 2t,$$
 $1 \le t \le 5$
= $5t^2 + 3, 5 < t \le 14$

where t is given in seconds, and v is given in m/s. Using two-segment Simpson's 1/3 rule, the distance in meters covered by the body from t = 2 to t = 9 seconds most nearly is

- (A) 949.33
- (B) 1039.7
- (C) 1200.5
- (D) 1442.0

5. The value of $\int_{3}^{19} f(x)dx$ by using 2-segment Simpson's 1/3 rule is estimated as

702.039. The estimate of the same integral using 4-segment Simpson's 1/3 rule most nearly is

(A)
$$702.039 + \frac{8}{3} [2f(7) - f(11) + 2f(15)]$$

(B)
$$\frac{702.039}{2} + \frac{8}{3} [2f(7) - f(11) + 2f(15)]$$

(C)
$$702.039 + \frac{8}{3} [2f(7) + 2f(15)]$$

(D)
$$\frac{702.039}{2} + \frac{8}{3} [2f(7) + 2f(15)]$$

6. The following data of the velocity of a body is given as a function of time.

Time (s)	4	7	10	15
Velocity (m/s)	22	24	37	46

The best estimate of the distance in meters covered by the body from t = 4 to t = 15 using combined Simpson's 1/3 rule and the trapezoidal rule would be

- (A) 354.70
- (B) 362.50
- (C) 368.00
- (D) 378.80

For a complete solution, refer to the links at the end of the book.