Ima

L3 RI

Table des matières

1	Intr	roduction 2		
	1.1	Histogramme		
	1.2	Transformations géométriques		
2	Dérivées, opérateurs, discrétisation			
	2.1	Dérivées partielles		
	2.2	Opérateurs usuels		
	2.3	Équation aux dérivées partielles		
	2.4	Discrétisation		
	2.5	Stabilité d'un schéma numérique		
3	Restauration d'images			
	3.1	Régularisation		
	3.2	Minimisation de fonctionnelle		
	3.3	Débruitage		
	3.4	Défloutage		
	3.5	Inpainting		
4	Seg	Segmentation 4		
	4.1	Seuillage d'histogramme		
	4.2	Algo K-means		
	4.3	Limites algos globaux		
	4.4	Region growing		
	4.5	Split and merge		
	4.6	Méthode markovienne		
	4.7	Graph-Cuts		
	4.8	Détecteur de Canny		
	4.9	Segmentation par contours actifs		
5	Transformée de Fourier			
	5.1	Transformée 1D		
	5.2	Transformée 2D et 2D discrète		
	5.3	Transformée sur des images 4		

1 Introduction

On considère des images en niveaux de gris. À chaque pixel d'une image on associe donc une valeur dans $0\dots 255$

1.1 Histogramme

L'histogramme d'une image donne des informations que la densité de chaque valeur.

Définition L'histogramme d'une image I est une fonction discrète qui associe à chaque valeur d'intensité le nombre de pixels prenant cette valeur.

$$\begin{array}{ccc} h_t: & 0\dots 255 & \to & \mathbb{N} \\ & n & \mapsto & \operatorname{Card}\left\{(x,y)|I(x,y)=n\right\} \end{array}$$

Remarque Si on a une image de taille $p \times q$ alors $\sum_{n=0}^{255} = p * q$

Propriété L'histogramme d'une image et de sa translation sont les mêmes. Ce n'est donc pas une caractéristique de l'image.

Interprétation Si l'histogramme est condensé sur les valeurs faibles (resp. sur les fortes) alors l'image est sous-exposé (resp. surexposé).

Égalisation On peut normaliser un histogramme condensé en étalant ces valeurs sur toute la plage [0, 255]. Cela améliore le contraste.

Si l'image occupe déjà toute la plage on utilise un autre algorithme basé sur l'histograme cumulé :

$$h_c: 0...255 \rightarrow \mathbb{N}$$

 $n \mapsto \operatorname{Card} \{(x,y) | I(x,y) < n\}$

On répartit pour obtenir un histogramme linéaire.

1.2 Transformations géométriques

Le résultat d'une transformation géométrique (rotation, transformations affines, etc.) aboutit généralement à ce que les pixels de l'image d'origine n'aient plus des coordonnées entières.

Inteprolation d'intensité L'interpolation permet de déduire la couleur des positions entières à partir des positions non entières connues.

Exemple : Plus proches voisins, bilinéaire, bicubique, par convolution.

Convolution 1D

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(x - t)g(t)dt$$

 $\label{eq:Figure 1-Resultat} Figure \ 1-Résultat \ de l'Algorithme d'égalisation \ de l'histogramme \ (Source : Wikipédia)$

Convolution 2D Soit g une fonction telle que $\int_{\mathbb{R}^2} g(x,y) dx dy = 1$. On définit l'image traitée par convolution :

$$I_{\text{convol}} = I(x, y) * g(x, y) = \int_{\Omega} g(x - a, y - b)I(a, b)dadb$$

L'influence des voisins sur le résultat en une position donnée va donc dépendre du noyau de convolution g utilisé. Cela permet de lisser mais peut aussi induire du flou.

Ex : Noyau moyenneur, gaussienne, floude bougé, etc.

 $\bf Remarque\,$ Pour débruiter, un filtre médian est plus efficace qu'un filtre moyenneur.

2 Dérivées, opérateurs, discrétisation

- 2.1 Dérivées partielles
- 2.2 Opérateurs usuels
- 2.3 Équation aux dérivées partielles
- 2.4 Discrétisation
- 2.5 Stabilité d'un schéma numérique

3 Restauration d'images

- 3.1 Régularisation
- 3.2 Minimisation de fonctionnelle
- 3.3 Débruitage
- 3.4 Défloutage
- 3.5 Inpainting

4 Segmentation

- 4.1 Seuillage d'histogramme
- 4.2 Algo K-means
- 4.3 Limites algos globaux
- 4.4 Region growing
- 4.5 Split and merge
- 4.6 Méthode markovienne
- 4.7 Graph-Cuts
- 4.8 Détecteur de Canny
- 4.9 Segmentation par contours actifs

5 Transformée de Fourier

- 5.1 Transformée 1D
- 5.2 Transformée 2D et 2D discrète
- 5.3 Transformée sur des images