COMPUTER NETWORKS

- Chapter 1.2: Architecture

王昊翔 WANG Haoxiang hxwang@scut.edu.cn

School of Computer Science & Engineering,
Communication & Computer Network key-Lab of GD
"国家双语教学试点项目"

Contents

How to design

- Layered Model
 - OSI
 - TCP/IP of Internet

Standardization

• IMS/SMS

Design Issues for the Networks

Addressing

Error control

flow control

routing

multiplexing and de-multiplexing

Network Architecture

Layered Network Model

- What is the Protocol
- What is the Service, Service Primitives
- Relationship of Services and Protocols

Software, Soften and Programmable

Layered Network Model (OSI)

- Application Presentation Session 5 Transport 3 Network **Data Link Physical**
- Reduces complexity
- Standardizes interfaces
- Facilitates modular engineering
- Ensures interoperable technology
- Accelerates evolution
- Simplifies teaching and learning

Support varieties

OSI Model Application Layer

Network processes to applications

 Provides network services to application processes (such as electronic mail, file transfer, and terminal emulation)

OSI Model Presentation Layer

Data representation

- Insure data is readable by receiving system
- Format of data
- Data structures
- Negotiates data transfer syntax for application layer

OSI Model Session Layer

OSI Model Transport Layer

OSI Model Network Layer

OSI Model Data Link Layer

OSI Model Physical Layer

Peer-to-Peer Communications

Protocol is the most important!

Service Primitives

Primitive	Meaning
LISTEN	Block waiting for an incoming connection
CONNECT	Establish a connection with a waiting peer
RECEIVE	Block waiting for an incoming message
SEND	Send a message to the peer
DISCONNECT	Terminate a connection

Relationship of Services & Protocols

- Services: interface between two layers
- Protocols: packets sent between peer entities on different machines

Information Encapsulation Exp.

OSI: XNS, Novell-IPX, MS-NetBEUI

The TCP/IP Model

Physical + DataLink Layers : Ethernet

Protocol Graph: TCP/IP

You can add more and more applications

Comparing TCP/IP with OSI

Example: Client/Server

They operate at all 7 layers of the OSI model. They perform the entire process of encapsulation and decapsulation to do their job of sending e-mails, printing reports, scanning pictures, or accessing database.

Example: NIC

A network interface card (NIC card or NIC) is a small printed circuit board that fits into the expansion slot of a bus on a computer's motherboard or peripheral device network adapter.

Example: Switch

It switches packets from incoming ports (interfaces) to outgoing ports, while providing each port with full bandwidth

Example: Router

The symbol for a router is suggestive of its two primary purposes path selection, and switching of router routes, and packets.

TCP/IP protocols' friend

LAN Specification

The IEEE 802 working groups

Number	Topic
802.1	Overview and architecture of LANs
802.2 ↓	Logical link control
802.3 *	Ethernet
802.4 ↓	Token bus (was briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6 ↓	Dual queue dual bus (early metropolitan area network)
802.7 ↓	Technical advisory group on broadband technologies
802.8 †	Technical advisory group on fiber optic technologies
802.9 ↓	Isochronous LANs (for real-time applications)
802.10↓	Virtual LANs and security
802.11 *	Wireless LANs
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)
802.13	Unlucky number. Nobody wanted it
802.14↓	Cable modems (defunct: an industry consortium got there first)
802.15 *	Personal area networks (Bluetooth)
802.16 *	Broadband wireless
802.17	Resilient packet ring

Network Standardization

- ITU (International Telecommunication Union)
- ISO (International Standards Organization)
- ANSI (American National Standards Institute)
- NIST (National Institute of Standards and Technology)
- IEEE (Institute of Electrical and Electronics Engineers)
- RFCs (Request For Comments).
- IRTF (Internet Research Task Force)

Next generation network/society

Many thanks:

Layered Structure?

Cisco Academy.

