Title

D. Zack Garza

January 15, 2020

Contents

1	Fall 2018	1
	.1 1	1
	.2 2	1
	.3 3	1
	.4 4	2
	.5 5	2
	.6 6	2

1 Fall 2018

1.1 1

Let $f(x) = \frac{1}{x}$. Show that f is uniformly continuous on $(1, \infty)$ but not on $(0, \infty)$.

1.2 2

Let $E \subset \mathbb{R}$ be a Lebesgue measurable set. Show that there is a Borel set $B \subset E$ such that $m(E \setminus B) = 0$.

1.3 3

Suppose f(x) and xf(x) are integrable on \mathbb{R} . Define F by

$$F(t) := \int_{-\infty}^{\infty} f(x) \cos(xt) dx$$

Show that

$$F'(t) = -\int_{-\infty}^{\infty} x f(x) \sin(xt) dx.$$

1.4 4

Let $f \in L^1([0,1])$. Prove that

$$\lim_{n\to\infty} \int_0^1 f(x) |\sin nx| dx = \frac{2}{\pi} \int_0^1 f(x) dx$$

Hint: Begin with the case that f is the characteristic function of an interval.

1.5 5

Let $f \geq 0$ be a measurable function on \mathbb{R} . Show that

$$\int_{\mathbb{R}} f = \int_0^\infty m(\{x: f(x) > t\}) dt$$

1.6 6

Compute the following limit and justify your calculations:

$$\lim_{n \to \infty} \int_1^n \frac{dx}{\left(1 + \frac{x}{n}\right)^n \sqrt[n]{x}}$$