STAT 403 Tutorial · Week 8.

Topics of this tutorial include Latin square designs and BIBDs.

1. Latin square designs

Example. Suppose that we wish to compare four different manufacturing processes in four time slots on each of four days. Design and experiment and then build a model to assess whether the four manufacturing processes have the Same effect.

1. **\frac{1}{2} mes*

1. **\frac{1}{2} mes*

1. **\frac{1}{2} mes*

1. **\frac{1}{2} mes*

2. **\frac{1}{2} mes*

3. **\frac{1}{2} mes*

4. **\frac{1}{2} mes*

4. **\frac{1}{2} mes*

4. **\frac{1}{2} mes*

5. **\frac{1}{2} mes*

6. **\frac{1}{2} mes*

7. **\frac{1}{2} mes*

8. **\frac{1}{2} mes*

9. **\frac{1

Design (Latin square):

	1	2	3	4	
ſ	TT	2	3	4	
I	23	33	18	37	
	2	3	4	i.	
	34	圩	46	N	
	3	4	1	2	
,	20	34	22	40	,
L	4.	1	2	3	1
	56	1-3	0 47	1	_

randomization:

randomly permute columns treatment labels.

Model: Yijk = μ + α i + β j + Yk + εijk , εijk ~ N(0, σ²) . j=1,..., 4.

where. Yijh - observation on day i at time j;

or: - effect of day i;

Bj - effect of time j;

VR - effect of process k.

Eijh - error.

Analysis:

Ho: $Y_1 = Y_2 = Y_3 = Y_4$ v.s. Ha: Yx not the same.

averages		
times	Processes	
1: 33.25	1: 24	_
2.28.3	2: 38	T = 31.125
3: 3275	3: 19.25	
4: 30	ψ : 	
	times 1: 33.85 2: >8.3 3: 32\$5	times processes 1: 33.25 2: 28.3 3: 32.75 3: 19.25

SS olony = $4\frac{3}{12}(\bar{Y}(...-\bar{Y}...)^2 = 4[(27.75-31.125)^2 + ... + (38.55-31.125)^2] = 277.25$, of days = $\frac{1}{12}(\bar{Y}(...-\bar{Y}...)^2 = 4[(33.25-31.125)^2 + ... + (30-31.125)^2] = 61.25$, of times = $\frac{1}{12}(\bar{Y}(...-\bar{Y}...)^2 = 4[(33.25-31.125)^2 + ... + (30-31.125)^2] = 61.25$, of the = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = 4[(24-31.125)^2 + ... + (43.25-31.125)^2] = 1544.25$, of the = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (22-31.125)^2 = 1997.75$, of total = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (22-31.125)^2 = 1997.75$, of total = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (22-31.125)^2 = 1997.75$, of total = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (22-31.125)^2 = 1997.75$, of total = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (23-31.125)^2 = 1997.75$, of total = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (23-31.125)^2 = 1997.75$, of total = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (23-31.125)^2 = 1997.75$, of total = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (23-31.125)^2 = 1997.75$, of total = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (23-31.125)^2 = 1997.75$, of total = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (23-31.125)^2 = 1997.75$, of total = $\frac{1}{12}(\bar{Y}(...-\bar{Y}(...)^2 = (23-31.125)^2 + ... + (23-31.125)^2 = 1997.75$.

ANOVA table :

Source	Sum of squares	degrees of freedom
days	277.55	3
times	61.25	3
processes (trt)	1544.25	3
error	115	15-3-3-3=6
Total.	1997.75	15

p-value = P(F & Fobs) = 0.0007 < 0.05.

Therefore, we reject null hypothesis at 5% level.

2. BIBDs.

Example. Recall the experiment where we compared washing solutions on different clays. (See tutorial notes of week 6) Each washing solution is a treatment and each clay is a block. Now suppose there are I washing solutions to be compared on 5 clays. However, only 4 experimental runs can be carried out on each clay. Design an experiment to assess whether the 5 washing solutions are the same.

Solution: Because the block size is less than the number of treatments, we need to use the BIBD, below is one possibility:

BIBD:

olay 1: 1234

olay 2: 1235

olay 3: 1245

olay 4: 1345

olay 5: 2345

randomization:

tots within blocks

treatment labels.

Model:
$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij} , \quad \epsilon_{ij} \stackrel{iiol}{\sim} N \left(0, 6^2\right)$$
 $j = 1, ..., 4 = b$ where
$$Y_{ij} - obs. \quad of \quad solution \quad i \quad on \quad olony \quad j;$$

$$\mu - grand \quad mean;$$

$$\alpha_i - effect \quad of \quad solution \quad i;$$

$$\beta_j - effect \quad of \quad olony \quad j;$$

$$\epsilon_{ij} - random \quad error$$

Analysis: (See R Script.)

We still use
$$f = \frac{SStrt/olfert}{SSerr/olferr} = \frac{SStrt/(t-1)}{SSerr/olferr} \sim F_{t-1, N-b-t+1}$$
.