

This presentation explores customer segmentation using supervised learning techniques. It covers the project's background, objectives, methodology, and results. We aim to provide a clear understanding of how AI can enhance marketing strategies.

Submitted by

Kunal Prajapati (202410116100108) Doulat Biswal (202410116100070) Krishna (2024101161000103) Harsh Aggarwal (202410116100081)

Submitted to

Mr. Apoorv Jain
Assistant Professor
MCA Department
KIET Group of Institutions

Introduction to Customer Segmentation

- Customer segmentation divides customers into groups by shared traits.
- Enhances understanding of customer needs and targeting.
- Uses Unsupervised Learning: KMeans Clustering to find patterns automatically.

Background & Motivation

- Limitations of Manual Segmentation
 Inefficient for large datasets
- Value of Al
 Discovers hidden patterns in big data
- Clustering Benefits

 Groups customers without predefined labels
- Business Impact

 Personalised marketing and services

Project Objectives

Segment Customers

Using KMeans Clustering

Group on Key Features

Income, Age, Spending behaviour

Visualize Clusters

Via Principal Component Analysis (PCA)

Business Insights

Analyse cluster profiles

Dataset Overview

- Source: Kaggle Marketing Campaign
- Demographics: Age, Education, Marital Status
- Spending on Wine, Fruits, Meat, etc.
- Total_Spend engineered by summing expenditures

Data Science

Methodology

Preprocessing

• Drop unneeded columns

• Handle missing values

• Encode categorical data

Feature Selection

Choose Income, Recency, Education, Total Spend

KMeans Clustering

Apply 3 clusters, assign labels

Visualization

3

PCA to 2D, plot clusters

Code Highlights

- **Label Encoding**
- For categorical variables
- **StandardScaler**
 - **Data scaling for clustering**
- KMeans Model
 - n_clusters set to 3
 - PCA
 - **Two-dimensional visualization**
- Cluster Analysis
 - **Grouped data to profile clusters**

```
# Step 1: Import libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification
# Step 2: Load the dataset
df = pd.read_csv('/content/marketing_campaign.csv', sep=
print("First 5 rows:\n", df.head())
# Step 3: Drop unnecessary columns (like ID, date fields
df.drop(['ID', 'Dt Customer', 'Z CostContact', 'Z Revenue
# Step 4: Handle missing values
df.dropna(inplace=True)
# Step 5: Encode categorical variables
categorical_cols = ['Education', 'Marital_Status']
le = LabelEncoder()
for col in categorical cols:
    df[col] = le.fit transform(df[col])
# Step 6: Create a target variable
# Let's define 'High-Value Customers' based on total spe
df['Total_Spend'] = df[['MntWines', 'MntFruits', 'MntMea'
```

Output Visualization


```
Cluster Summary:
                         Recency Education Marital_Status Kidhome \
Cluster
         34438.377551 48.788776
                                  2.222449
                                                 3.702041 0.910204
         77690.590994 49.814259
                                  2.454034
                                                 3.776735 0.041276
         57782.665718 48.716927
                                 2.587482
                                                 3.721195 0.092461
         Teenhome Total_Spend
Cluster
         0.362245
                   137.813265
                  1387.679174
                   669.401138
         1.061166
```

Conclusion and Future Work

Successful Segmentation

Three distinct clusters identified

PCA Visualization

Clear cluster separation observed

Improvement Ideas

Explore hierarchical clustering & DBSCAN

Thank You!