Review!

- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- i.e., no such a Y
 - Y is a super-pattern of X
 - The support of Y is greater than minSup
 - The support of Y can be smaller than that of X
- MaxMiner is based on the Apriori algorithm
- R. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98

- 1st scan: find frequent items and sort them (ascending order)
 - A, B, C, D, E (E is most frequently occurring)
- 2nd scan: find support for 2-itemsets with max-patterns

AB, AC, AD, AE, AE	BCDE ←
■ BC, BD, BE, BCDE	
■ CD, CE, CDE ←	Dotontial may nattorno
DE	Potential max-patterns

Tid	Items
10	A,B,C,D,E
20	B,C,D,E,
30	A,C,D,F,E

- Reduce a lot of candidates in later stages
 - Since BCDE is a max-pattern, no need to check BCD, BDE, CDE in later scan
 - If AC is infrequent, no need to check ABC in later scans

Complete *set-enumeration tree* over four items

- 1st scan: find frequent items and sort them (ascending order)
 - A, B, C, D, E (E is most frequently occurring)
- 2nd scan: find support for 2-itemsets with max-patterns

AB, AC, AD, AE, AB	CDE -
■ BC, BD, BE, BCDE ◀	
■ CD, CE, CDE	Dotontial may nattorno
DE	Potential max-patterns

Tid	Items
10	A,B,C,D,E
20	B,C,D,E,
30	A,C,D,F,E

- Reduce a lot of candidates in later stages
 - Since BCDE is a max-pattern, no need to check BCD, BDE, CDE in later scan
 - If AC is infrequent, no need to check ABC in later scans

Mining Closed Patterns: CLOSET

Review

- An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X
- i.e., no such a Y
 - Y is a super-pattern of X
 - The support of Y is should be the same as that of X

Mining Closed Patterns: CLOSET

- Use the FP-tree for finding frequent patterns
- Flist: list of all frequent items in a support descending order
 - Flist: c-e-f-a-d
- Divide search space
 - Patterns having d
 - Patterns having a but no d
 - Patterns having f but no d and a
 - Patterns having e but no d, a, and f
 - Patterns having c but no d, a, f, and e

Min_sup=2

_	
TID	Items
10	a, c, d, e, f
20	a, b, e
30	c, e, f
40	a, c, d, f
50	c, e, f

Mining Closed Patterns: CLOSET

- Naïve approach: Quite costly!
 - To mine a complete set of all frequent itemsets
 - To remove every frequent itemset whose support is the same as that of its superset
- Find only the closed itemsets recursively in an efficient way during the mining process using the FP-tree
 - Key idea: every transaction having d also has cfa => cfad is a frequent closed pattern
 - You can consider details by referring to FP-Growth
- J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets", DMKD'00

- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Algorithm
 - Transform a horizontally formatted data to a vertically format by scanning the dataset once
 - Easy: # of items is much smaller than that of transactions
 - Starting with k=1, construct candidate (k+1)-itemsets from frequent k-itemsets
 - Using the TID-sets intersection and Apriori property
 - Repeat this process with k incremented by 1 until no frequent itemsets can be found

able 5.3 The vertical data format of the transaction data set D of Table 5.1.

itemset	TID_set
I1	{T100, T400, T500, T700, T800, T900}
I2	{T100, T200, T300, T400, T600, T800, T900}
I3	{T300, T500, T600, T700, T800, T900}
I4	{T200, T400}
I5	{T100, T800}

- No need to scan a database to find the support of (k+1) itemsets
 - TID set of each k-itemset carries sufficient information including a support value
 - But, it is quite long and requires large space for intersection

Visualization of Association Rules: Plane Graph

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Mining Various Kinds of Association Rules

- Mining multilevel association
- Miming multidimensional association
- Mining quantitative association
- Mining interesting correlation patterns

Mining Multiple-Level Association Rules

- Items often form hierarchies
- Flexible support settings
 - Items at the lower level are expected to have lower support
- Exploration of shared multi-level mining (Agrawal & Srikant@VLDB'95, Han & Fu@VLDB'95)

uniform support

reduced support

Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
 - milk ⇒ wheat bread [support = 8%, confidence = 70%]
 - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]
- We say the first rule is an ancestor of the second rule.
- A (descendent) rule is redundant if
 - Its support is close to the "expected" value, based on the rule's ancestor
 - Its confidence is close to that of the rule's ancestor

Mining Multi-Dimensional Association

Single-dimensional rules: (having a dimension or a predicate)

```
buys(X, "milk") \Rightarrow buys(X, "bread"): milk \Rightarrow bread
```

- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - Inter-dimension assoc. rules (no repeated predicates)

```
age(X,"19-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")
```

hybrid-dimension assoc. rules (repeated predicates)

$$age(X,"19-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")$$

Attribute Types

■ age(X,"19-25") \land occupation(X, "student") \Rightarrow buys(X, "coke") attributes

- Categorical Attributes
 - Finite number of possible values, no ordering among values
- Quantitative Attributes
 - Numeric, implicit ordering among values
 - Discretization and clustering approaches required (why?)

Mining Quantitative Associations

- Techniques can be categorized by how numerical attributes, such as age or salary are treated
- Static discretization based on predefined concept hierarchies (data cube methods)
- Dynamic discretization based on data distribution (quantitative rules, e.g., Agrawal & Srikant@SIGMOD96)
- 3. Clustering: Distance-based association (e.g., Yang & Miller@SIGMOD97)

Static Discretization of Quantitative Attributes

- Discretized prior to mining using a concept hierarchy
 - age(X,"19-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")
 - Numeric values are replaced by ranges (as a categorical value)
- In a relational database, finding all frequent k-predicate sets will require k or k+1 table scans.

Quantitative Association Rules

<20K

- Proposed by Lent, Swami and Widom ICDE'97
- Numeric attributes are dynamically discretized
- 2-D quantitative association rules: $A_{quan1} \wedge A_{quan2} \Rightarrow A_{cat}$
 - The confidence is higher than threshold
 - The support is higher than threshold
- Cluster adjacent association rules to form general rules using a 60-70K 2-D grid 50-60K
- Example

```
age(X,"34-35") \land income(X,"30-50K")
\Rightarrow buys(X,"high resolution TV")
```

Note: simplified!

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Interestingness Measure: Correlations (Lift)

- play basketball \Rightarrow eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more meaningful, although it has lower support and confidence
- Measure of dependent/correlated events: lift

Contingency table

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89 \qquad lift(B,\neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Constraint-based (Query-Directed) Mining

- Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined
 - She/he uses a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - System optimization: explores such constraints for efficient mining—constraint-based mining

Constraints in Data Mining

- Knowledge type constraint:
 - classification, association, clustering etc.
- Data constraint using SQL-like queries
 - find product pairs sold together in stores in Chicago in Dec. '21
- Dimension/level constraint
 - in relevance to region, price, brand, customer category
- Interestingness constraint
 - strong rules: min_support ≥ 3%, min_confidence ≥ 60%

Constrained Mining vs. Other Operations

- Constrained mining vs. constraint-based search
 - Both are aimed at reducing search space
 - Constrained mining: finding all patterns satisfying constraints
 - Constraint-based search: finding some (or one) answer in constraint-based search in AI

Constrained Mining vs. Other Operations

- Constrained mining vs. query processing in DBMS
 - Both are aimed at finding all answers
 - Query processing: finding tuples in a database
 - Constrained mining: discovering patterns hidden in a database
 - Constrained mining shares a similar philosophy as pushing selections deeply in query processing

Anti-Monotonicity in Constraint Pushing

- Anti-monotonicity on a constraint
 - When an intemset S violates the constraint, so does any of its superset
 - sum(S.Price) ≤ v is anti-monotone
 - sum(S.Price) ≥ v is not anti-monotone
- Example. C: range(S.profit) ≤ 15 is antimonotone
 - Itemset ab violates C
 - So does every superset of ab

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Profit
40
0
-20
10
-30
30
20
-10

Monotonicity for Constraint Pushing

TDB (min_sup=2)

- Monotonicity on a constraint
 - When an intemset S satisfies the constraint, so does any of its superset
 - sum(S.Price) ≥ v is monotone
 - min(S.Price) ≤ v is monotone
- Example. C: range(S.profit) ≥ 15
 - Itemset ab satisfies C
 - So does every superset of ab

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Succinctness

- Succinctness on a constraint
 - When a set of items (say A_1) satisfies a constraint C_n any set S satisfying C is 'simply computed' based on A_1 (In this case, S contains a subset belonging to A_1)
 - $min(S.Price) \le v$ is succinct
 - $sum(S.Price) \ge v$ is not succinct
- Good thing
 - Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
- Optimization: If C is succinct, C is pre-counting pushable

The Apriori Algorithm — Example

Naïve Algorithm: Apriori + Constraint

March 28, 2022

Data Mining: Concepts and Techniques

The Constrained Apriori Algorithm: Push an Anti-monotone Constraint Deep

The Constrained Apriori Algorithm: Push a Succinct Constraint Deep

Converting "Tough" Constraints

- Convert tough constraints into antimonotone or monotone by properly ordering items
- Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - So does afbh
 - It becomes anti-monotone!

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
a	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Frequent-Pattern Mining: Summary

- Frequent pattern mining—an important task in data mining
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
 - Vertical format approach (CHARM, ...)
- Mining a variety of rules and interesting patterns
- Constraint-based mining
- Extensions and applications

