MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN NOCIONES SOBRE CONJUNTOS

NOCIONES SOBRE CONJUNTOS

Un **conjunto** es una colección de objetos, llamados **elementos** del conjunto.

Un conjunto puede describirse:

- Por extensión: haciendo una lista explícita de sus elementos, separados por comas y encerrados entre llaves, o
- Por comprensión: dando la condición o condiciones que cumplen los elementos del conjunto.

 $A = \{x/x \text{ es una vocal de la palabra eucalipto}\}$ es un conjunto descrito por comprensión, y su respectiva descripción por extensión es $A = \{a,e,i,o,u\}$.

Si un conjunto no tiene elementos se llama **conjunto vacío** y se denota por \emptyset ó $\{\ \}$.

Si un conjunto es vacío o su número de elementos es un número natural , se dice que el conjunto es ${f finito}$.

Si un conjunto no es finito, se dice que es infinito.

Ejemplos:

- Sea $A = \{x/x \text{ es una vocal cerrada en la palabra espejo}\}$. Como no hay ninguna vocal cerrada en la palabra "espejo", entonces tenemos que $A = \emptyset$.
- Sea $A = \{1, 2, 3\}$. Luego, A es finito, ya que posee 3 elementos.
- Sea $A = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots\}$. A es infinito ya que no podemos asignar un número natural para su número de elementos.

Si A es un conjunto, decimos que a **pertenece a** A y escribimos $a \in A$ si a es un elemento de A. En caso contrario decimos que a **no pertenece a** A y escribimos $a \notin A$. En el último ejemplo, $\frac{1}{2} \in A$ y $5 \notin A$.

Si A y B son conjuntos, decimos que A es subconjunto de B y escribimos $A \subseteq B$, si todo elemento de A es también elemento de B. En caso de que haya al menos un elemento en el conjunto A que no pertenece al conjunto B, decimos que A no es subconjunto de B, y escribimos $A \nsubseteq B$. Usando diagramas de Venn, podemos representar gráficamente los conjuntos. Por ejemplo:

Figure 1: $A \subseteq B$

Ejemplo:

Sean $A = \{a, e, i, o, u\}$ y $B = \{x/x \text{ es una letra del abecedario}\}$. Entonces $A \subseteq B$, pero $B \not\subseteq A$.

Propiedades:

Si A, B y C son conjuntos,

- a) $\emptyset \subseteq A$.
- b) $A \subseteq A$.
- c) Si $A \subseteq B$ y $B \subseteq C$ entonces $A \subseteq C$.

Dos conjuntos A y B son iguales si y sólo si $A \subseteq B$ y $B \subseteq A$. Es decir, A = B si y sólo si todo elemento de A está en B y todo elemento de B está en A.

Ejemplo:

Sean $A = \{ \text{vocales de la palabra mundo} \}$ y $B = \{ \text{u, o} \},$ entonces A = B.

Sean $A = \{1, 3, 7\}$ y $B = \{1, 3, 7, 1\}$, entonces A = B.

OPERACIONES ENTRE CONJUNTOS

1. Unión

Sean A y B dos conjuntos. Definimos la **unión de** A y B, denotada $A \cup B$, como el conjunto

$$A \cup B = \{x/x \in A \text{ \'o } x \in B\}.$$

Figure 2: $A \cup B$

Ejemplo:

Sean $A = \{1, 3, 5, 7, 9\}$ y $B = \{0, 3, 6, 9, 12\}$. Entonces, $A \cup B = \{0, 1, 3, 5, 6, 7, 9, 12\}$.

2. Intersección

Sean A y B dos conjuntos. Definimos la **intersección de** A y B, denotada $A \cap B$, como el conjunto

$$A \cap B = \{x/x \in A \text{ y } x \in B\}.$$

Figure 3: $A \cap B$

Ejemplo:

Sean $A = \{1, 3, 5, 7, 9\}$ y $B = \{0, 3, 6, 9, 12\}$. Entonces, $A \cap B = \{3, 9\}$.

Propiedades de la Unión y de la Intersección

Sean A, B y C conjuntos. Entonces

 $A \cap (B \cup C)$

$$\begin{array}{lll} A \cup A = A & A \cap A = A \\ A \cup \emptyset = A & A \cap \emptyset = \emptyset \\ A \subseteq (A \cup B) & (A \cap B) \subseteq A \\ B \subseteq (A \cup B) & (A \cap B) \subseteq B \\ A \cup B = B \cup A & A \cap B = B \cap A \\ A \cup (B \cup C) = & A \cap (B \cap C) = \\ & (A \cup B) \cup C & (A \cap B) \cap C \\ A \cup (B \cap C) = & (A \cap B) \cup (A \cap C) \end{array}$$

Tarea

Sombree las regiones correspondientes a los conjuntos dados para ilustrar las últimas dos propiedades:

3. Complemento

Si U es un conjunto universal y A es un subconjunto de U, definimos el **complemento de** A, denotado A', como el conjunto $A' = \{x \in U/x \notin A\}$.

Figure 4: $A' = \{x \in U / x \notin A\}$

Ejemplo:

Si $U=\{a,b,c,d,e,f,g,h\}$ y $A=\{c,f,h\},$ entonces $A'=\{a,b,d,e,g\}.$

Propiedades del Complemento

Sean A y B conjuntos. Entonces

- a) (A')' = A
- b) $A \cup A' = U$
- c) $A \cap A' = \emptyset$
- d) $(A \cup B)' = A' \cap B'$
- e) $(A \cap B)' = A' \cup B'$

Nota: Las dos últimas propiedades son conocidas como las "Leyes de De Morgan".

Tarea

Sombree las regiones correspondientes a los conjuntos dados para ilustrar las Leyes de De Morgan:

4. Diferencia

Sean A y B dos conjuntos. Definimos la **diferencia de** A y B, denotada A-B, como

$$A - B = \{x/x \in A \text{ y } x \notin B\}.$$

 $(A \cap B) \cup (A \cap C)$

Figure 5: A - B

Ejemplo:

Sean $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$ y $B = \{1, 4, 6, 7, 8, 9\}$. Entonces $A - B = \{0, 2, 3, 5\}$.

Propiedades de la Diferencia

Sean A y B conjuntos. Entonces

- a) $A B = A \cap B'$
- b) si $A \neq B$, se cumple que $A B \neq B A$
- c) $A A = \emptyset$
- $d) A \emptyset = A$
- e) U A = A'

5. Diferencia Simétrica

Sean A y B dos conjuntos. Definimos la **diferencia** simétrica de A y B, denotada A Δ B, como

$$A \Delta B = (A \cup B) - (A \cap B)$$
,

o equivalentemente

$$A \Delta B = (A - B) \cup (B - A).$$

Figure 6: $A \Delta B$

Ejemplo:

Considermos los conjuntos

$$A = \{0, 1, 2, 3, 4, 5, 6, 7\} \text{ y } B = \{1, 4, 6, 7, 8, 9\}.$$

Por lo tanto

$$A \Delta B = \{0, 2, 3, 5, 8, 9\}.$$

SISTEMAS NUMÉRICOS

• Los **números naturales** son: 1, 2, 3, 4, ...Representamos por $\mathbb N$ al conjunto de todos lo números naturales, es decir, $\mathbb N = \{1, 2, 3, 4, ...\}.$ • Los **números enteros** están formados por los números naturales junto con los números negativos y el 0. Denotamos por \mathbb{Z} al conjunto de los números enteros: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$.

Algunas veces, se acostumbra escribir $\mathbb{Z}^+ = \mathbb{N}$.

• El conjunto de los **números racionales** se obtiene al formar cocientes de números enteros. Este conjunto lo denotamos por \mathbb{Q} . Luego, $r \in \mathbb{Q}$ si y sólo si $r = \frac{p}{q}$, con $p, q \in \mathbb{Z}$, $q \neq 0$.

Números como $\frac{3}{5}$, $\frac{-7}{4}$, $0=\frac{0}{1}$, $2=\frac{2}{1}$, $0.1=\frac{1}{10}$ son ejemplos de números racionales.

¡Recordar que no es posible dividir por cero, por tanto, expresiones como $\frac{3}{0}$ ó $\frac{0}{0}$ no están definidas!

- Existen números que no pueden expresarse en la forma $\frac{p}{q}$ con $p, q \in \mathbb{Z}, q \neq 0$. Estos números se denominan **irracionales**, denotados por \mathbb{I} . Es posible probar que números como $\sqrt{2}, \sqrt{3}, \sqrt{5}, e, \pi$ pertenecen a \mathbb{I} .
- El conjunto de lo **números reales** se representa por \mathbb{R} y consta de la unión de los racionales y los irracionales, es decir, $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$.

Todos los números reales tienen una **represenación decimal**. Si el número es racional, entonces, su parte decimal correspondiente es periódica. Por ejemplo $\frac{1}{2} = 0.5000... = 0.5\overline{0}, \frac{1}{3} = 0.3333... = 0.\overline{3}, \frac{157}{495} = 0.3171717... = 0.3\overline{17}, \frac{9}{7} = 1.285714285714... = 1.285714.$

La barra significa que la sucesión de cifras se repite indefinidamente. Si el número es irracional, la representación decimal no es periódica, por ejemplo $\sqrt{2}=1.414213562373095...$, e=2.7182818284590452354....

En la práctica, se acostumbra aproximar un número irracional por medio de uno racional, por ejemplo $\sqrt{2}\approx 1.4142,\, e\approx 2.71828,\, \pi\approx 3.1416.$

 Dada la representación decimal periódica de un número x, podemos hallar una fracción equivalente multiplicando éste por potencias adecuadas de 10, y luego restando para eliminar la parte que se repite.

Ejemplo:

Sea x=5.4383838... Para convertirlo en un cociente de dos enteros, debemos multiplicarlo por dos potencias adecuadas de 10, de tal forma que al restarlos se cancelen las partes decimales. En este caso

$$\begin{array}{rcl}
1000x & = & 5438.3838... \\
-10x & = & -54.3838... \\
\hline
990x & = & 5384.
\end{array}$$

Por consiguiente, $x = \frac{5384}{990}$