Dexuan Hu

Ithaca, NY 14850 | dexuan.hu0928@gmail.com | link233zr.github.io

Research Interests

My research focuses on mathematical logic, particularly descriptive set theory. I am interested in understanding descriptive set-theoretic structures in objects from other areas of mathematics, such as model theory and commutative algebra.

Education

Cornell University, Ph.D. in Mathematics

2019 - 2025(expected)

Supervisor: Sławomir Solecki.

Thesis title: Polish module, topological complexity and singletons

University of Oxford, MMath 2018 - 2019

Dissertation topic: The Morley Categoricity Theorem

University of Oxford, BA Mathematics 2015 - 2018

Selected Awards and Honors

Robert J. Bättig Graduate Prize

2022-2023

Awarded by Cornell University's Department of Mathematics in recognition of notable research contributions and academic impact.

Cornell Graduate School Recruiting Fellowship

2019-2020

Awarded by the graduate school to first-year graduate students based on scholastic ability.

Lady Margaret Hall Undergraduate Scholarship

2016-2019

Presented termly by Lady Margaret Hall, University of Oxford, to students demonstrating strong academic performance in mathematics.

Singapore Ministry of Education SM1 Scholarship for Chinese Students

2010-2014

Full scholarship awarded based on academic merit through a competitive national selection process.

Publications

Polish Modules over subrings of \mathbb{Q} , [arXiv]

Israel Journal of Mathematics, accepted (2024), joint with Sławomir Solecki

We give a method of producing a Polish module over an arbitrary subring of \mathbb{Q} from an ideal of subsets of \mathbb{N} and a sequence in \mathbb{N} . This allows us to construct Polish \mathbb{Q} -vector spaces that answer a question of Frisch and Shinko.

Invited and Contributed Talks

Logic Seminar, Cornell University, USA

Fall 2024

Title: Borel equivalence relations and the complexity of Lascar strong types.

2024 North American Annual Meeting of ASL, Iowa State University, USA

Spring 2024

Title: Polish Modules over subrings of \mathbb{Q} .

Caltech Logic Seminar, USA Fall 2022

Title: Polish Modules over subrings of \mathbb{Q} .

Logic Seminar, Cornell University, USA Fall 2022

Title: *Incomparable Polish vector spaces over* \mathbb{Q} .

Seminar Talks

2024

Student Logic Seminar, Cornell University, one talk on *Contractible type and contractible maps*. Logic Seminar, Cornell University, two talks on *Effective Descriptive Set Theory*.

2023

Logic Seminar, Cornell University, one talk on Shelah's solution to Whitehead's problem.

2022

Logic Seminar, Cornell University, two talks on *On homomorphism graphs*.

Logic Seminar, Cornell University, two talks on Borel actions of Polish groups come from continuous actions.

2021

Logic Seminar, Cornell University, two talks on *The Lodha-Moore group*.

2020

Logic Seminar, Cornell University, one talk on *Introduction to the Lascar Galois group*. Logic Seminar, Cornell University, one talk on *Analytic P-ideals and Tukey reducibility*.

Teaching Experiences

- Cornell University

Instructor, Calculus I(MATH 1110).	Fall 2024
Teaching Assistant, Linear Algebra for Engineers (MATH 2940).	Spring 2025
Teaching Assistant, Linear Algebra (MATH 4310).	Spring 2024
Teaching Assistant, Linear Algebra for Engineers (MATH 2940).	Fall 2023
Teaching Assistant, Prove it! (MATH 3040).	spring 2023
Teaching Assistant, Linear Algebra (MATH 2210).	Fall 2022
Teaching Assistant, Linear Algebra (MATH 2210).	Spring 2022
Teaching Assistant, Introduction to Topology(MATH 4530).	Fall 2021
Teaching Assistant, Prove it! (MATH 3040).	Spring 2021
Teaching Assistant, for Mathematical Logic (MATH 4810).	Fall 2020

Preprints and Research in Progress

Topological complexity of Lascar strong types, joint with Bilge Koksal and Sławomir Solecki.

We introduce a new topological notion to compare the complexities of K_{σ} -equivalence relations on compact zero-dimensional spaces. This comparison arises naturally in the study of Lascar strong types. We provide examples of theories that gives Lascar strong types of distinct complexities.

Skills

Programming: Python, C, TensorFlow, Scikit-learn Tools: LaTex
Languages: English (fluent), Chinese (native)