Sistema de Partículas

Tarea 5: Torca e inercia rotacional

Fecha de evaluación: 3 de abril de 2025

Instrucciones: Resuelva los siguientes ejercicios de forma clara y ordenada, argumentando todo su procedimiento. Si lo cree pertinente utilice resultados ya vistos en clase.

- 1. Dado que $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ y $\vec{F} = F_x\hat{i} + F_y\hat{j} + F_z\hat{k}$, a) encuentre la torca $\vec{\tau} = \vec{r} \times \vec{F}$. b) Demuestre que si \vec{r} y \vec{F} están en un plano determinado, entonces $\vec{\tau}$ no tiene una componente en ese plano.
- 2. La figura 1 muestra las líneas de acción y los puntos de aplicación de dos fuerzas en torno al origen O. Encuentre la magnitud y dirección de la torca neta resultante si se tiene que $r_1 = 1.30$ m, $r_2 = 2.15$ m, $F_1 = 4.20$ N, $F_2 = 4.90$ N, $\theta_1 = 75^{\circ}$ y $\theta_2 = 58^{\circ}$.

R: $\tau = -3.66$ N m (hacia dentro de la página)

Figura 1: Problema 2

3. Una placa metálica cuadrada de 0.180 m por lado pivotea sobre un eje que pasa por el punto O en su centro y es perpendicular a la placa (figura 2). Calcule la torca neta alrededor de este eje debido a las tres fuerzas mostradas en la figura, si sus magnitudes son $F_1 = 18.0 \text{ N}$, $F_2 = 26.0 \text{ N}$ y $F_3 = 14.0 \text{ N}$. La placa y todas las fuerzas están en el plano de la página.

R: $\tau = 2.5$ N m (hacia fuera de la página)

Figura 2: Problema 3

4. Dos partículas, cada una de masa $m=\frac{1}{5}M$, están unidas entre sí y a un eje de rotación por dos varillas, cada una de longitud L y masa M, como se muestra en la figura 3. La combinación gira alrededor del eje de rotación con una aceleración α . a) Encuentre la expresión algebraica para a) la inercia rotacional en torno a O. b) Calcule la magnitud de la torca del sistema si M=7.5 kg, L=1.37 m y $\alpha=2.0$ rad/s².

$$\mathbf{R} \text{: a)} \ I = \frac{11}{3} M L^2$$
b) $\tau = 103.23 \ \mathrm{N}$ m

Figura 3: Problema 4

5. a) Encuentre la expresión para la inercia rotacional de una regla delgada de madera de longitud L y masa M (densidad homogénea) cuyo eje de rotación se encuentra a una distancia h medida desde la marca inicial (el cero) de la regla. b) Utilice su resultado para calcular el valor de la inercia rotacional en una regla de L = 1.0 m y M = 0.56 kg cuyo eje de rotación se encuentra en la marca de los 20 cm. Sugerencia: Defina con cautela sus límites de integración (en este ejercicio debe integrar).

R: b)
$$I = 0.097 \text{ kg m}^2$$

6. Determine la inercial rotacional de un disco sólido de masa M (densidad homogénea) y radio R en torno a un eje que pasa por su centro y es perpendicular a su superficie. Sugerencia: Considere un elemento de masa dm en forma de aro de radio r y anchura dr como se muestra en la figura 4 de forma exagerada. Exprese la masa dm de este elemento en términos de su densidad σ y el área aproximada del aro (considerando que es muy muy delgado). Utilice este resultado para construir la integral de la inercia rotacional y sustituya la densidad por su valor considerando todo el disco. La integral debería quedar enteramente en términos de r.

R:
$$I = \frac{1}{2}MR^2$$

Figura 4: Problema 6