

# **COMP1071 - Digital Electronics**

**Boolean Algebra** 

**Ioannis Ivrissimtzis** 

email: ioannis.ivrissimtzis@durham.ac.uk

**Room:** MCS 2023

Slide acknowledgements: Eleni Akrida and Farshad Arvin

### Overview of today's lecture

- Functionally complete sets
- Intro to Combinational Logic and Circuits
- Sum of Products vs Product of Sums
- Boolean Algebra



#### Gates we have seen

AND gate:

OR gate:

NOT gate:

NAND gate:







# **More Boolean operations**

| A | В | Υ |
|---|---|---|
| 0 | 0 | ? |
| 0 | 1 | ? |
| 1 | 0 | ? |
| 1 | 1 | ? |

There are  $2^{2^k}$  possible Boolean operations on k inputs – *i.e.* 16 on 2 inputs.

The trivial operations are: 0, 1, A, B

We have seen  $\overline{A}$ ,  $\overline{B}$ ,  $A \cdot B$ , A + B

What else is there?

How many possible Boolean operations are there on 2 inputs? Adding rule:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

1 + 1 = 0 (with Carry)



# Truth tables: Exclusive OR (XOR)

**XOR** gate:



Algebraic expression:  $Y = A \oplus B$ 

| A | В | Y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Linear truth table



**Rectangular/Coordinate table** 



# **Exclusive OR (XOR)**

We can construct XOR using AND, OR and NOT:

$$A \oplus B = (A + B) \bullet (\overline{A \bullet B})$$

Check:

| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |



# **Exclusive OR (XOR)**

$$A \oplus B = (A + B) \bullet (\overline{A \bullet B})$$

is the same as





### Overview of today's lecture

- Functionally complete sets
- Intro to Combinational Logic and Circuits
- Sum of Products vs Product of Sums
- Boolean Algebra



### **Functionally Complete Sets**

In logic, a **functionally complete set of Boolean operators** is one which can be used to *express all possible truth tables* by combining members of the set into a Boolean expression.



### **Functionally Complete Sets**

Every Boolean expression can be turned into a conjunctive normal form, see PoS!

Any logic circuit can be constructed with just these three operators

- AND, OR, and NOT
- They form a functionally complete set.

Charles Sanders Peirce (1880) showed that **NOR gates alone** form a functionally complete set.

NOR: inverse of OR,  $Y = \overline{A + B}$ 

| A | В | Υ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |



# **NOR** gates

AND: 
$$A \cdot B = \overline{(A + A) + (B + B)}$$

OR: 
$$A + B = (\overline{A + B}) + (\overline{A + B})$$

NOT: 
$$\overline{A} = \overline{A + A}$$



### **Functionally Complete Sets**

Any logic circuit can be constructed with just these three operators

- AND, OR, and NOT
- They form a functionally complete set.

Henry M. Sheffer (1913) showed that the **NAND** gates alone form a functionally complete set.

NAND: inverse of AND,  $Y = \overline{A \cdot B}$ 

| A | В | Υ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |



# **NAND** gates

AND: 
$$A \cdot B = (\overline{A \cdot B}) \cdot (\overline{A \cdot B})$$

OR: 
$$A + B = (\overline{A \cdot A}) \cdot (\overline{B \cdot B})$$

NOT: 
$$\overline{A} = \overline{A \cdot A}$$



### NAND chips

NAND gates are easier to make (use less silicon for same performance) than NOR gates. So often used as universal gates. E.g. the 7400:







# Overview of today's lecture

- Functionally complete sets
- Intro to Combinational Logic and Circuits
- Sum of Products vs Product of Sums
- Boolean Algebra



# Digital design principles

Digital design is all about managing the complexity of huge numbers of interacting elements. Some principles help humans do this:

**Abstraction**: Hiding details when they aren't important.

**Discipline**: Restricting design choices to make things easier to model, design and combine. E.g. the logic families and the digital abstraction.

#### The three -y's:

Hierarchy: dividing a system into modules and submodules

**Modularity**: well-defined functions and interfaces for modules

**Regularity**: encouraging uniformity so modules can be swapped or reused.



#### Circuits

Network that processes discrete-valued variables.

#### A circuit has:

- one or more discrete valued input terminals
- one or more discrete valued output terminals
- a specification of the relationship between inputs and outputs
- a specification of the delay between inputs changing and outputs responding





#### **Circuits**

The circuit is made up of **elements** and **nodes**:

- An element is itself a circuit with inputs, outputs and specs.
- A node is a wire joining elements, whose voltage conveys a discrete valued variable.





### **Combinational logic**

We wish to design very large circuits to perform functions for us.

We will restrict what we allow, for now, firstly to combinational logic\* and circuits.

#### **Combinational logic rules:**

- Individual gates are combinational circuits.
- Every circuit element must be a combinational circuit.
- Every node is either an input to the circuit or connecting to exactly one output of a circuit element
- The circuit has **no cyclic paths** every path through the circuit visits any node at most once.



# **Combinational logic**

Which of these are combinational circuits and why?





### Overview of today's lecture

- Functionally complete sets
- Intro to Combinational Logic and Circuits
- Sum of Products vs Product of Sums
- Boolean Algebra



### **Boolean Algebra**

- •The algebra of 0/1 variables.
- •Used for specifying the function of a combinational circuit
- •Used to analyse and simplify the circuits required to give a specified truth table.





### **Boolean Algebra**

- Variables are represented by letters, e.g. A, B, C...

  The complement or inverse of a variable is written with a bar, e.g.  $\overline{A}$ .
- A variable or its complement is called a **literal**, e.g. A,  $\overline{A}$ , B or  $\overline{B}$ .
- The AND of several literals is called a <u>product</u>, e.g. ABC or AC,
   Products may be written A · B · C, ABC, A ∩ B ∩ C or A\B\C.
   A <u>minterm</u> is a product in which all the inputs to a function appear once each (either in its complemented or uncomplemented form).
- The OR of several literals is called a <u>sum</u> or <u>implicant</u>, e.g. A + B + C or A + C
   Sums may be written A + B + C, A U B U C or AVBVC.
   A <u>maxterm</u> is a sum in which <u>all</u> the inputs to a function appear once each (either in its complemented or uncomplemented form).



# Truth table to Boolean eqn.

| X | Υ | Z | F(X,Y,Z) |
|---|---|---|----------|
| 0 | 0 | 0 | 1        |
| 0 | 0 | 1 | 0        |
| 0 | 1 | 0 | 0        |
| 0 | 1 | 1 | 1        |
| 1 | 0 | 0 | 0        |
| 1 | 0 | 1 | 1        |
| 1 | 1 | 0 | 1        |
| 1 | 1 | 1 | 0        |
|   |   |   |          |



### Truth table to Boolean eqn.

#### "Sum of products (SoP)" form

Every Boolean expression can be written as minterms **ORed together**:

$$(A \cdot B \cdot C) + (A \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot C)$$

#### "Product of sums (PoS)" form

Also every Boolean expression can be written as maxterms ANDed together:

$$(\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (A + \overline{B} + \overline{C})$$



#### Truth table to SoP

| X | Υ | Z F(X,Y,Z) |  |
|---|---|------------|--|
| 0 | 0 | 0 1        |  |
| 0 | 0 | 1 0        |  |
| 0 | 1 | 0 0        |  |
| 0 | 1 | 1 1        |  |
| 1 | 0 | 0 0        |  |
| 1 | 0 | 1 1        |  |
| 1 | 1 | 0 (1)      |  |
| 1 | 1 | 1 0        |  |

Each row can be represented by a minterm that is true:

**OR** together the **1 values** of the function, to give SOP form:

$$F(X,Y,Z) = \overline{X} \cdot \overline{Y} \cdot \overline{Z} + \overline{X} \cdot Y \cdot Z + X \cdot \overline{Y} \cdot Z + X \cdot Y \cdot \overline{Z}$$



# **Example of circuit design:**



This layout can be used for any sum-of-products expression.



#### Truth table to PoS

| Υ | Z                | <b>F(X,Y,Z)</b>             |
|---|------------------|-----------------------------|
| 0 | 0                | 1                           |
| 0 | 1                | 0                           |
| 1 | 0                | 0                           |
| 1 | 1                | 1                           |
| 0 | 0                | 0                           |
| 0 | 1                | 1                           |
| 1 | 0                | 1                           |
| 1 | 1                | 0                           |
|   | 0<br>1<br>1<br>0 | 0 0 1 1 1 0 1 0 0 0 0 0 0 1 |

Each row can be represented by a maxterm that is false:

$$X+Y+Z$$

$$X + \overline{Y} + Z$$

$$\overline{X} + Y + \overline{Z}$$

**AND** together the **0 values** of the function, to give POS for F:

$$F(X,Y,Z) = (X+Y+\overline{Z})(X+\overline{Y}+Z)(\overline{X}+Y+Z)(\overline{X}+\overline{Y}+\overline{Z})$$

Compare to 
$$F(X,Y,Z) = \overline{X} \cdot \overline{Y} \cdot \overline{Z} + \overline{X} \cdot Y \cdot Z + X \cdot \overline{Y} \cdot Z + X \cdot Y \cdot \overline{Z}$$



# Overview of today's lecture

- Functionally complete sets
- Intro to Combinational Logic and Circuits
- Sum of Products vs Product of Sums
- Boolean Algebra



### **Boolean Algebra**

Two equivalent expression for the same logical formula:

$$F(X,Y,Z) = (X + Y + \overline{Z})(X + \overline{Y} + Z)(\overline{X} + Y + Z)(\overline{X} + \overline{Y} + \overline{Z})$$

$$F(X,Y,Z) = \overline{X} \cdot \overline{Y} \cdot \overline{Z} + \overline{X} \cdot Y \cdot Z + X \cdot \overline{Y} \cdot Z + X \cdot Y \cdot \overline{Z}$$

Which is simpler?

Is there another equivalent expression that is simpler than either?

We will use **Boolean algebra** and **Karnaugh maps** to produce the simplest equivalent expression that can then be turned into circuitry.



### **Axioms of Boolean Algebra**

|    | Axiom                       |     | Dual axiom          | Name         |
|----|-----------------------------|-----|---------------------|--------------|
| A1 | $B = 0 if B \neq 1$         | A1' | $B = 1 if B \neq 0$ | Binary field |
| A2 | $\overline{0} = 1$          | A2' | $\overline{1} = 0$  | NOT          |
| A3 | $0 \cdot 0 = 0$             | A3' | 1 + 1 = 1           | AND/OR       |
| A4 | $1 \cdot 1 = 1$             | A4' | 0 + 0 = 0           | AND/OR       |
| A5 | $0 \cdot 1 = 1 \cdot 0 = 0$ | A5' | 1 + 0 = 0 + 1 = 1   | AND/OR       |

Axioms cannot be proven – they are defined or assumed. Each axiom has a dual obtained by interchanging AND and OR, and 0 and 1.



#### Theorems of one variable

|    | Theorem                    |                               |     | Dual theorem           | Name         |
|----|----------------------------|-------------------------------|-----|------------------------|--------------|
| T1 | $B \cdot 1 = B$            |                               | T1' | B+0 = B                | Identity     |
| T2 | $B \cdot 0 = 0$            |                               | T2' | B+1 = 1                | Null element |
| T3 | $B \cdot B = B$            |                               | T3' | B + B = B              | Idempotency  |
| T4 |                            | $\overline{\overline{B}} = B$ |     |                        | Involution   |
| T5 | $B \cdot \overline{B} = 0$ |                               | T5′ | $B + \overline{B} = 1$ | Complements  |

Theorems can be proved by applying the axioms and checking cases



#### Theorems of several variables

|      | Theorem                                                                                             | Dual                               | Name           |  |  |
|------|-----------------------------------------------------------------------------------------------------|------------------------------------|----------------|--|--|
| T6   | $B \bullet C = C \bullet B$                                                                         | B+C=C+B                            | Commutativity  |  |  |
| T7   | (B•C)•D= B•(C•D)                                                                                    | (B+C)+D=B+(C+D)                    | Associativity  |  |  |
| T8   | $B \bullet (C+D) = B \bullet C+B \bullet D$                                                         | $(B+C)\bullet(B+D)=B+(C\bullet D)$ | Distributivity |  |  |
| T9   | $B \bullet (B+C) = B$                                                                               | $B+(B \bullet C) = B$              | Covering       |  |  |
| T10  | $B \cdot C + B \cdot \overline{C} = B$                                                              | $(B+C)\cdot (B+\overline{C}) = B$  | Combining      |  |  |
| T11  | $B \cdot C + \overline{B} \cdot D + C \cdot D = B \cdot$                                            | $C + \overline{B} \cdot D$         | Consensus      |  |  |
| T11' | $(B+C)\cdot (\overline{B}+D)\cdot (C+D) = (B+C)\cdot (\overline{B}+D)$                              |                                    |                |  |  |
| T12  | $\overline{B_0 \cdot B_1 \cdot B_2 \dots} = \overline{B_0} + \overline{B_1}$                        | De Morgan's                        |                |  |  |
| T12′ | $\overline{B_0 + B_1 + B_2 \dots} = \overline{B_0} \cdot \overline{B_1} \cdot \overline{B_2} \dots$ |                                    |                |  |  |

# **DeMorgan's Theorem**

Proof of two variable case:

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

#### Proof:

| A | В | $A \cdot B$ | $\overline{A \cdot B}$ | $\overline{A}$ | $\overline{B}$ | $\overline{A} + \overline{B}$ |
|---|---|-------------|------------------------|----------------|----------------|-------------------------------|
| 0 | 0 | 0           | 1                      | 1              | 1              | 1                             |
| 0 | 1 | 0           | 1                      | 1              | 0              | 1                             |
| 1 | 0 | 0           | 1                      | 0              | 1              | 1                             |
| 1 | 1 | 1           | 0                      | 0              | 0              | 0                             |



#### Theorems of several variables

| Theorem Dual | Name |
|--------------|------|
|--------------|------|

#### **Key principle for simplification:**

use T10 and T11 to remove variables or terms use others to rearrange so that T10 or T11 can be applied

T10 B. 
$$C+B$$
.  $\overline{C} = B$   $(B+C)$ .  $(B+C) = B$  Combining

T11 B. 
$$C + \overline{B} \cdot D + C \cdot D = B \cdot C + \overline{B} \cdot D$$
 Consensus

T11' 
$$(B+C) \cdot (\overline{B}+D) \cdot (C+D) = (B+C) \cdot (\overline{B}+D)$$

General form of T10: for any implicant (i.e., product or sum) P and variable A,  $PA+P\overline{A}=P$ 

# **Example**

Draw the circuit corresponding to this truth table.

- 1. Sum of products form
- 2. Simplification using Boolean Algebra

Sum of products: 
$$Y = \overline{A} B \overline{C} + \overline{A} B C + A B \overline{C}$$

Now minimise this equation: 
$$Y = \overline{A} B (\overline{C} + C) + A B \overline{C}$$

$$Y = \overline{A} B + A B \overline{C}$$





# **Example**

A B C Y
0 0 0 0

Draw the circuit corresponding to this truth table.

0 0 1 0

1. Sum of products form

0 1 0 1

2. Simplification using Boolean Algebra

Sum of products: 
$$Y = \overline{A} B \overline{C} + \overline{A} B C + \overline{A} B \overline{C} + A B \overline{C}$$

Now minimise this equation: 
$$Y = \overline{A} B (\overline{C} + C) + (A + \overline{A}) B \overline{C}$$

$$Y = \overline{A} B + B \overline{C}$$



# **Example**

$$Y = \overline{A} B + B \overline{C}$$



The simplified expression gives the same logical output with much less hardware.



# Summary

- Functionally Complete Sets
- Combinational Logic and Circuits
- Sum of Products and Product of Sums
- Boolean Algebra

