## Selected exercises 02



(a) 
$$\sqrt{7}$$

(c) 
$$2 + \sqrt[3]{5}$$

(e) 
$$\sqrt{2} + 1$$
 (g)  $3 - \sqrt{2}$   
(f)  $4 - \sqrt{7}$  (h)  $3 - \sqrt{3}$ 

(g) 
$$3 - \sqrt{2}$$

(b) 
$$\sqrt[3]{11}$$

(d) 
$$\sqrt[4]{8}$$

(f) 
$$4 - \sqrt{7}$$

(f) 
$$4 - \sqrt{7}$$
 (h)  $3 - \sqrt{3}$ 

2. Prove that the following are not rational numbers

(a) 
$$\sqrt{7}$$

(b) 
$$\sqrt{3}$$

(c) 
$$\sqrt{2} + \sqrt{17}$$
 (d)  $\sqrt{3} + \sqrt{13}$ 

(d) 
$$\sqrt{3} + \sqrt{13}$$

- 3. Prove that the square root of a positive integer is either an integer or an irrational.
- 4. Decide if following sets are bounded from above/below.

(a) 
$$S = \{1, 2, 3\}$$

$$\begin{array}{lll} \text{(a)} & S = \{1,2,3\} & \text{(c)} & S = \{0\} \cup \{x \mid x > 0\} & \text{(e)} & S = \{x^3 \mid x \in \mathbb{Z}\} \\ \text{(b)} & S = \{x \mid x \geq 5\} & \text{(d)} & S = \{x^2 \mid x < -2\} & \text{(f)} & S = \{x^2 - x \mid x \geq 1\} \end{array}$$

(e) 
$$S = \{x^3 \mid x \in \mathbb{Z}\}$$

(b) 
$$S = \{x \mid x \ge 5\}$$

(d) 
$$S = \{x^2 \mid x < -2\}$$

(f) 
$$S = \{x^2 - x \mid x > 1\}$$

- 5. Let  $F = \{a b\sqrt{5} \mid a, b \in \mathbb{Q}\}$ . Prove that F is a field. (*Hint*: use that  $\mathbb{R}$  is a field.)
- 6. Let  $n \in \mathbb{N}$ , n > 0. Prove that  $\sqrt{n + \sqrt{n}}$  is irrational.
- 7. Prove that the set of remainders modulo 5 is a field.