

NFL Health and Safety Helmet Assignment & Collision Detection

Niko Hildenbrand, Arnaud Harmange

Background

- The repeated exposure of the human brain to traumatic impacts is shown to significantly increase the likelihood that an individual will develop CTE, Alzheimer's or even dementia.
- In a recent study, the brains of 111 former NFL players were examined, and 110 of those were diagnosed with CTE.
- The goal of this project is to create a preventive analytic algorithm that can aid in the prevention of concussions and potential CTE in players in contact sports such as football.
- This is done through the automatic tracking of helmets and the players to whom they belong to, along with the detection of impacts in a specific game clip

Methods

- Employed DeepSort which is a machine learning model for tracking and assigning IDs
 - Computed bounding boxes using YOLO v5
 - Uses sorting and the identification model to link bounding boxes and tracks
- Parameters to tuning DeepSort to receive better accuracy in video output
 - o MAX_DIST: Threshold to determine similarity in ID model
 - o MIN_CONFIDENCE: Minimum confidence algorithm has in prediction
 - o MAX_IOU_DISTANCE: How much boxes should overlap to determine ID
 - o MAX_AGE: Number of frames unallocated tracks will be deleted after
 - o N_INIT: Number of frames newly allocated tracks will be activated after
 - o NN_BUDGET: Previous number of frames to retain for each track

Concussions in the NFL by year Preseason and regular season 275 281 243 214 224 214 224 2012 2013 2014 2015 2016 2017 2018 2019 Source: NFL

video_frame	label	left	width	top	height
57992_000301_Sideline_1	V49	346	22	286	28
57992 000301 Sideline 1	H83	879	24	250	24
57992_000301_Sideline_1	H32	838	24	355	27
57992_000301_Sideline_1	H82	790	18	186	25
57992_000301_Sideline_1	V53	776	21	272	21
57992_000301_Sideline_1	H68	737	20	254	26
57992_000301_Sideline_1	V97	716	22	290	24
57992_000301_Sideline_1	H65	683	18	288	18
57992_000301_Sideline_1	V90	669	21	319	22
57992_000301_Sideline_1	H60	664	22	284	26
57992_000301_Sideline_1	H28	1001	24	345	24

Results

- A video output with the tracking of player helmets and collisions, for a set of trained NFL video clips.
 - Green boxes signify correct matching of helmet and player number
 - White boxes signify incorrect matching of helmet and player number
 - Yellow boxes signify previously confirmed collisions
 - Red boxes signify detection of collision by our algorithm
- CSV file displaying coordinates of detected boxes to specific players
- Final output of total number of detected collisions in video clip

Further Applications

- Future applications can be used for both diagnosis and prevention to better improve the lives of not only football players, but other contact sports
- Apply this technology to concussion prone sports or activities (i.e. ice hockey or lacrosse)
- Use this machine learning model to analyze an entire game as opposed to only limitedly timed clips
- Create a web application to allow users to input video and receive a visual output of helmet detection and impact detection
 - The NFL can begin developing this to allow first team access, then sell proprietary use
- Use model to begin detecting impacts in real time to better predict and diagnosis brain injuries
 - Can be used mid competition to not only review play, but if algorithm detects major collision
 - Parameters can be changed depending on sport to signify what an impact is

Collision Comparison Video

Project Github

Endzone Collision Video

