2017 Fall - Math 355 - Homework 8

Due: Friday, October 27 in class.¹

Unless specified otherwise, you must always show your work and justify your answers.

(1) Work out the following.

(a)
$$\begin{pmatrix} 1 & 0 & -1 \\ 2 & -2 & 3 \\ -3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ -3 \\ 4 \end{pmatrix}$$

(b) $\begin{pmatrix} 1 & 0 & -1 \\ 2 & -2 & 3 \\ -3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 & -1 & 0 \\ -1 & -3 & 1 \\ -1 & 0 & -1 \end{pmatrix}$

(2) Let

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

what is A^{-1} ? Verify that $AA^{-1} = I = A^{-1}A$.

- (3) Let $f: V \to W$ be a linear map. Does the number of zeros in $A = \operatorname{Rep}_{\mathbb{B},\mathbb{D}}$ depend on the bases \mathbb{B}, \mathbb{D} ? Why, why not?
- (4) Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be the identity. Let \mathbb{B} be the standard basis and let \mathbb{D} be (2) (-1) (2)

the ordered basis
$$\begin{pmatrix} 2\\3\\2 \end{pmatrix}$$
, $\begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 2\\0\\1 \end{pmatrix}$.

- (a) Write down the matrix $\operatorname{Rep}_{\mathbb{B},\mathbb{D}} f$.
- (b) Using the previous point, write down the following vectors as a linear combination of elements of \mathbb{D} .

(i)
$$\begin{pmatrix} -1 \\ 1 \\ 0 \\ 3 \end{pmatrix}$$
(ii)
$$\begin{pmatrix} 3 \\ -1 \\ 1 \\ 6 \\ 3 \\ 2 \end{pmatrix}$$
(iii)
$$\begin{pmatrix} 6 \\ 3 \\ 2 \\ 3 \end{pmatrix}$$

- (5) Let $f: V \to W$ be a linear map. Suppose dim $V = \dim W$.
 - (a) Show that f is an isomorphism if and only if $\ker f = 0$.
 - (b) Is this still true if $\dim V \neq \dim W$? Why/Why not?
 - (c) Show that f is an isomorphism if and only if Im f = W.
 - (d) Is this still true if $\dim V \neq \dim W$? Why/Why not?

 $^{^1{\}rm This}$ file was last updated at 09:09 on Sunday $22^{\rm nd}$ October, 2017.