Trabajo Práctico Nº 4: Sucesión e Inducción.

Ejercicio 1.

Hallar los 4 primeros términos de las siguientes sucesiones:

(a)
$$a_h = (-1)^h 3^h, h \ge 1$$
.

$$a_1 = (-1)^1 \ 3^1 = -1 * 3 = -3.$$

 $a_2 = (-1)^2 \ 3^2 = 1 * 9 = 9.$
 $a_3 = (-1)^3 \ 3^3 = -1 * 27 = -27.$
 $a_4 = (-1)^4 \ 3^4 = 1 * 81 = 81.$

(b)
$$b_i = 2j + 3^j, j \ge 1$$
.

$$b_1 = 2 * 1 + 3^1 = 2 + 3 = 5.$$

 $b_2 = 2 * 2 + 3^2 = 4 + 9 = 13.$
 $b_3 = 2 * 3 + 3^3 = 6 + 27 = 33.$
 $b_4 = 2 * 4 + 3^4 = 8 + 81 = 89.$

(c)
$$c_t = 2^t - 1$$
, $t \ge 1$.

$$c_1 = 2^1 - 1 = 2 - 1 = 1.$$

 $c_2 = 2^2 - 1 = 4 - 1 = 3.$
 $c_3 = 2^3 - 1 = 8 - 1 = 7.$
 $c_4 = 2^4 - 1 = 16 - 1 = 15.$

(d)
$$d_h = h^2, h \ge 1.$$

$$d_1 = 1^2 = 1.$$

 $d_2 = 2^2 = 4.$
 $d_3 = 3^2 = 9.$
 $d_4 = 4^2 = 16.$

(e)
$$e_1 = 4$$
, $e_k = -3e_{k-1} + 2$, $k \ge 2$.

$$e_1 = 4$$
.
 $e_2 = -3e_1 = -3 * 4 = -12$.
 $e_3 = -3e_2 = -3 (-12) = 36$.

$$e_4 = -3e_3 = -3 * 36 = -108.$$

(f)
$$f_1 = -2$$
, $f_2 = 1$, $f_k = 3f_{k-1} - f_{k-2}$, $k \ge 3$.

$$f_1 = -2$$
.
 $f_2 = 1$.
 $f_3 = 3f_2 - f_1 = 3 * 1 - (-2) = 3 + 2 = 5$.
 $f_4 = 3f_3 - f_2 = 3 * 5 - 1 = 15 - 1 = 14$.

(g)
$$g_h = 4$$
, $h \ge 1$.

$$g_1 = 4.$$

 $g_2 = 4.$
 $g_3 = 4.$
 $g_4 = 4.$

(h) $x_1 = 3$, $x_{k+1} = x_k$ - $tan x_k$, $k \ge 1$, esta sucesión genera aproximaciones del número π .

$$x_1 = 3$$
.
 $x_2 = x_1 - \tan x_1 = 3 - \tan 3 = 2,95$.
 $x_3 = x_2 - \tan x_2 = 2,95 - \tan 2,95 = 2,9$.
 $x_4 = x_3 - \tan x_3 = 2,9 - \tan 2,9 = 2,85$.

Ejercicio 2.

Hallar una definición, explícita o recursiva, para las siguientes sucesiones:

Explícita:

$$a_n = (-1)^{n+1}, n \ge 1.$$

Recursiva:

$$a_1 = 1$$
.

$$a_n^- - a_{n-1}, n \ge 2.$$

Explícita:

$$b_n = n^3, n \ge 1.$$

Explícita:

$$c_n = 4 + (n - 1) * 5, n \ge 1.$$

Recursiva:

$$c_1 = 4$$
.

$$c_n = c_{n-1} + 5, n \ge 2.$$

Explícita:

$$d_n = -3 + (n - 1) * 2, n \ge 1.$$

Recursiva:

$$d_1 = -3$$
.

$$d_n = d_{n-1} + 2, n \ge 2.$$

(e)
$$l, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$$

Explícita:

$$e_n = \frac{1}{n}$$
, $n \ge 1$.

Recursiva:

$$f_1 = 2.$$

 $f_2 = 5.$
 $f_n = f_{n-1} + f_{n-2}, n \ge 3.$

(g)
$$-1$$
, $\frac{1}{2}$, $\frac{-1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, ...

Explícita:

$$g_n = \frac{(-1)^n}{n}, n \ge 1.$$

Explícita:

$$h_n = (n-1) * 5, n \ge 1.$$

Recursiva:

$$h_1 = 0.$$

 $h_n = h_{n-1} + 5, n \ge 2.$

Ejercicio 3.

(a) Dada la sucesión $d_h = \frac{h^2}{h+1}$, $h \ge 1$. Encontrar d_3 , d_5 , d_j y d_{h+1} .

$$d_{3} = \frac{3^{2}}{3+1} = \frac{9}{4}.$$

$$d_{5} = \frac{5^{2}}{5+1} = \frac{25}{6}.$$

$$d_{j} = \frac{j^{2}}{j+1}.$$

$$d_{h+1} = \frac{(h+1)^{2}}{h+1+1} = \frac{(h+1)^{2}}{h+2}.$$

(b) Dada la sucesión $f_1 = -2$, $f_2 = 1$, $f_k = 3f_{k-1} - f_{k-2}$, $k \ge 3$. Encontrar f_t , f_{j+2} , f_{k-3} y f_{h+1} .

$$\begin{split} f_t &= 3f_{t-1} - f_{t-2}. \\ f_{j+2} &= 3f_{j+1} - f_{j}. \\ f_{k-3} &= 3f_{k-4} - f_{k-5}. \\ f_{h+1} &= 3f_h - f_{h-1}. \end{split}$$

Ejercicio 4.

Dar una definición explícita para las siguientes sucesiones:

(a) 4,
$$l$$
, $\frac{1}{4}$, $\frac{1}{16}$, $\frac{1}{64}$, ...

$$a_n = 4 \left(\frac{1}{4}\right)^{n-1}, n \ge 1.$$

$$b_n = 5 + (n - 1) * 10, n \ge 1.$$

(c)
$$\frac{1}{2}$$
, $\frac{1}{5}$, $\frac{1}{10}$, $\frac{1}{17}$, $\frac{1}{26}$, ...

$$c_n = \frac{1}{3n + (-1)^n}, n = 1.$$

$$c_n = \frac{1}{3n + (-1)^{n+1}}, 1 < n \le 3.$$

$$c_n = \frac{1}{3n + 5}, n = 4.$$

$$c_n = \frac{1}{3n + 11}, n = 5.$$

(d) 0, -4, 8, -12, 16, -20, ...

$$d_n = (-1)^{n+1} (n-1) * 4, n \ge 1.$$

Ejercicio 5.

Algunas calculadoras utilizan un algoritmo similar al siguiente para calcular \sqrt{n} , para un número n real positivo:

Sea $x_1 = \frac{n}{2}$, encontrar aproximaciones sucesivas x_2 , x_3 , ... mediante la siguiente fórmula: $x_k = \frac{1}{2} (x_{k-1} + \frac{n}{x_{k-1}})$, $k \ge 2$, hasta obtener la precisión deseada.

Utilizar este método para calcular $\sqrt{5}$ y $\sqrt{18}$ con una precisión de 6 cifras decimales.

(a)
$$\sqrt{5} \cong 2,236068$$
.

$$x_{1} = \frac{5}{2} = 2,5.$$

$$x_{2} = \frac{1}{2} (x_{1} + \frac{5}{x_{1}}) = \frac{1}{2} (\frac{5}{2} + \frac{5}{\frac{5}{2}}) = \frac{1}{2} (\frac{5}{2} + 2) = \frac{1}{2} \frac{9}{2} = \frac{9}{4} = 2,25.$$

$$x_{3} = \frac{1}{2} (x_{2} + \frac{5}{x_{2}}) = \frac{1}{2} (\frac{9}{4} + \frac{5}{\frac{9}{2}}) = \frac{1}{2} (\frac{9}{4} + \frac{20}{9}) = \frac{1}{2} \frac{161}{36} = \frac{161}{72} = 2,236\hat{1}.$$

$$x_{4} = \frac{1}{2} (x_{3} + \frac{5}{x_{3}}) = \frac{1}{2} (\frac{161}{72} + \frac{5}{\frac{161}{72}}) = \frac{1}{2} (\frac{161}{72} + \frac{360}{161}) = \frac{1}{2} \frac{51841}{211592} = \frac{51841}{23184} = 2,236068.$$

(b)
$$\sqrt{18} \cong 4,242641.$$

$$x_{1} = \frac{18}{2} = 9.$$

$$x_{2} = \frac{1}{2} (x_{1} + \frac{5}{x_{1}}) = \frac{1}{2} (9 + \frac{5}{9}) = \frac{1}{2} \frac{86}{9} = \frac{43}{9} = 4, \hat{7}.$$

$$x_{3} = \frac{1}{2} (x_{2} + \frac{5}{x_{2}}) = \frac{1}{2} (\frac{43}{9} + \frac{5}{\frac{43}{9}}) = \frac{1}{2} (\frac{43}{9} + \frac{40}{43}) = \frac{1}{2} \frac{2209}{387} = \frac{2209}{774} = 2,854005.$$

Ejercicio 6.

Analizar si las siguientes sucesiones son geométricas o aritméticas. Dar una definición explícita en todos los casos.

$$a_n = 1 + 0n, n \ge 1.$$

Por lo tanto, es una sucesión aritmética.

$$a_n = (-1)^{n+1}, n \ge 1.$$

Por lo tanto, es una sucesión aritmética.

$$a_n = 1 + (n - 1), n \ge 1.$$

Por lo tanto, es una sucesión aritmética.

$$a_n = 4 + (n - 1), n \ge 1.$$

Por lo tanto, es una sucesión aritmética.

$$a_n = 13 + (n - 1) * 7, n \ge 1.$$

Por lo tanto, es una sucesión aritmética.

(f)
$$8, \frac{2}{3}, \frac{1}{18}, \frac{1}{216}, \dots$$

$$a_n = 8 \left(\frac{1}{12}\right)^{n-1}, n \ge 1.$$

Por lo tanto, es una sucesión geométrica.

(g)
$$a_n = 2n, n \ge 1$$
.

Por lo tanto, es una sucesión aritmética.

(h)
$$a_n = 2^n$$
, $n \ge 1$.

Por lo tanto, es una sucesión geométrica.

(i)
$$10, \frac{19}{2}, 9, \frac{17}{2}, 8, \frac{15}{2}$$
.

$$a_n = 10 \left(\frac{95}{10}\right)^{n-1}, n \ge 1.$$

Por lo tanto, es una sucesión geométrica.

$$a_n = (-1)^{n+1} * 300 \left(\frac{1}{10}\right)^{n-1}, n \ge 1.$$

Por lo tanto, es una sucesión geométrica.

Ejercicio 7.

Analizar si las siguientes sucesiones son geométricas o aritméticas. Dar el primer término y diferencia o primer término y razón según corresponda.

(a)
$$a_n = 7(1 + \frac{3}{7}n) + 2, n \ge 1.$$

$$a_{1} = 7 \left(1 + \frac{3}{7} * 1\right) + 2$$

$$a_{1} = 7 \left(1 + \frac{3}{7}\right) + 2$$

$$a_{1} = 7 \frac{10}{7} + 2$$

$$a_{1} = 10 + 2$$

$$a_{1} = 12.$$

$$a_2 = 7 \left(1 + \frac{3}{7} * 2\right) + 2$$

$$a_2 = 7 \left(1 + \frac{6}{7}\right) + 2$$

$$a_2 = 7 \frac{13}{7} + 2$$

$$a_2 = 13 + 2$$

$$a_2 = 15.$$

$$d= a_2 - a_1$$

 $d= 15 - 12$
 $d= 3$.

Por lo tanto, esta sucesión es aritmética.

(b)
$$b_n = 5 * 2^{n-2}$$
, $n \ge 1$.

$$b_1 = 5 * 2^{1-2}$$

 $b_1 = 5 * 2^{-1}$
 $b_1 = \frac{5}{2}$.

$$b_2 = 5 * 2^{2-2}$$

 $b_2 = 5 * 2^0$
 $b_2 = 5 * 1$
 $b_2 = 5$.

$$r = \frac{b_2}{b_1}$$

$$r = \frac{5}{\frac{5}{2}}$$

$$r = 2.$$

Por lo tanto, esta sucesión es geométrica.

(c)
$$c_n = 3 * 4^{n+1}$$
, $n \ge 1$.

$$c_1 = 3 * 4^{1+1}$$

$$c_1 = 3 * 4^2$$

$$c_1 = 3 * 16$$

$$c_1 = 48.$$

$$c_2 = 3 * 4^{2+1}$$

$$c_2 = 3 * 4^3$$

$$c_2 = 3 * 64$$

$$c_2$$
= 192.

$$r=\frac{c_2}{c_2}$$

$$r = \frac{192}{192}$$

$$r=1$$

Por lo tanto, esta sucesión es geométrica.

(d)
$$d_n = 5 \left(\frac{4}{5} - n\right), n \ge 1.$$

$$d_1 = 5 \left(\frac{4}{5} - 1\right)$$

$$d_1 = 5 \left(\frac{-1}{5}\right)$$

$$d_1 = -1.$$

$$d_1 = 5 \left(\frac{-1}{5} \right)$$

$$d_4 = -1$$

$$d_2 = 5 \left(\frac{4}{5} - 2\right)$$
$$d_2 = 5 \left(\frac{-6}{5}\right)$$

$$d_2 = 5 \left(\frac{-6}{5} \right)$$

$$d_2 = -6$$
.

$$d = d_2 - d_1$$

$$d = d_2 - d_1$$

 $d = -6 - (-1)$

$$d = -6 + 1$$

$$d = -5$$
.

Por lo tanto, esta sucesión es aritmética.

(e)
$$e_n = 2 \left(\frac{1}{3}\right)^n$$
, $n \ge 1$.

$$e_1 = 2 \left(\frac{1}{3}\right)^1$$

 $e_1 = 2 \frac{1}{3}$

$$e_1 = 2\frac{1}{3}$$

$$e_1 = \frac{2}{3}$$
.

$$e_2 = 2 \left(\frac{1}{3}\right)^2$$

$$e_2 = 2\frac{1}{9}$$

$$e_2 = \frac{2}{9}$$
.

$$r = \frac{e_2}{e_1}$$

$$r = \frac{9}{\frac{2}{3}}$$
 $r = \frac{1}{3}$

Por lo tanto, esta sucesión es geométrica.

Ejercicio 8.

El tercer término de una sucesión aritmética es 85 y el decimocuarto es 30, hallar el primer término y la diferencia.

$$\begin{cases} a_3 = a_1 + 2d \iff 85 = a_1 + 2d \\ a_{14} = a_1 + 13d \iff 30 = a_1 + 13d \end{cases}$$

$$85 - 30 = (a_1 + 2d) - (a_1 + 13d)$$

$$55 = a_1 + 2d - a_1 - 13d$$

$$55 = -11d$$

$$d = \frac{55}{-11}$$

$$d = -5.$$

$$a_1 = 85 - 2 (-5) = 85 + 10 = 95.$$

 a_1 = 30 - 13 (-5)= 30 + 65= 95.

Por lo tanto, el primer término y la diferencia son 95 y -5, respectivamente.

Ejercicio 9.

Encontrar tres números f, g y h tales que 320, f, g, h, 20 sean los 5 primeros términos de una sucesión geométrica.

$$a_5 = a_1 r^4$$

$$20 = 320 r^4$$

$$r^4 = \frac{20}{320}$$

$$r^4 = \frac{1}{16}$$

$$r = \sqrt[4]{\frac{1}{16}}$$

$$r = \frac{1}{2}$$

f=
$$a_2$$

f= 320 $(\frac{1}{2})^1$
f= 320 $\frac{1}{2}$
f= 160.

g=
$$a_3$$

g= 320 $(\frac{1}{2})^2$
g= 320 $\frac{1}{4}$
g= 80.

h=
$$a_2$$

h= 320 $(\frac{1}{2})^3$
h= 320 $\frac{1}{8}$
h= 40.

Por lo tanto, los tres números f, g y h son 160, 80, 40, respectivamente.

Ejercicio 10.

Hallar el primer término y la diferencia de una sucesión aritmética sabiendo que la suma del tercer término y el octavo da 75 y la diferencia entre el noveno y el segundo es 49.

$$a_3 + a_8 = 75$$

 $a_1 + 2d + a_1 + 7d = 75$
 $2a_1 + 9d = 75$.

$$a_9 - a_2 = 49$$

 $(a_1 + 8d) - (a_1 + d) = 49$
 $a_1 + 8d - a_1 + d = 49$
 $9d = 49$
 $d = \frac{49}{9}$.

$$2a_{1} + 9 \frac{49}{9} = 75$$

$$2a_{1} + 49 = 75$$

$$2a_{1} = 75 - 49$$

$$2a_{1} = 26$$

$$a_{1} = \frac{26}{2}$$

$$a_{1} = 13$$

Por lo tanto, el primer término y la diferencia son 13 y $\frac{49}{9}$, respectivamente.

Ejercicio 11.

La superficie de un triángulo rectángulo es 54 cm². Hallar la longitud de sus lados sabiendo que están en progresión aritmética. (Idea: Plantear la relación pitagórica del triángulo rectángulo y resolver la ecuación cuadrática para \mathfrak{a}_1 dejando fijo d).

$$S = \frac{a_1 a_2}{2}$$

$$S = \frac{a_1(a_1 + d)}{2}$$

$$54 = \frac{a_1^2 + a_1 d}{2}$$

$$a_1^2 + a_1 d = 54 * 2$$

$$a_1^2 + a_1 d = 108$$

$$a_1^2 + a_1 d - 108 = 0.$$

$$a_1^2 + (a_1 + d)^2 = (a_1 + 2d)^2$$

$$a_1^2 + a_1^2 + 2a_1 d + d^2 = a_1^2 + 4a_1 d + 4d^2$$

$$2a_1^2 + 2a_1 d + d^2 = a_1^2 + 4a_1 d + 4d^2$$

$$2a_1^2 + 2a_1 d + d^2 - a_1^2 - 4a_1 d - 4d^2 = 0$$

$$a_1^2 - 2a_1 d - 3d^2 = 0.$$

$$(\frac{a_1}{d})^2 - 2\frac{a_1}{d} - 3 = 0.$$

$$\frac{a_1}{d} = 3$$

$$a_1 = 3d.$$

$$(3d)^{2} + 3dd - 108 = 0$$

$$9d^{2} + 3d^{2} - 108 = 0$$

$$12d^{2} - 108 = 0$$

$$12d^{2} = 108$$

$$d^{2} = \frac{108}{12}$$

$$d^{2} = 9$$

$$d = \sqrt{9}$$

$$d = 3$$

$$a_1 = 3 * 3$$

 $a_1 = 9$.

Juan Menduiña

$$a_2 = 9 + 3$$

 $a_2 = 12$.

Por lo tanto, la longitud de sus lados es 9 cm y 12 cm, respectivamente.

Ejercicio 12.

Se desea construir una escalera de pared de 16 escalones cuyas longitudes decrecen uniformemente de 50 cm en la base a 30 cm en la parte superior. Encontrar una fórmula para saber cuánto mide el escalón n.

$$a_{16} = a_1 + 15d$$

$$30 = 50 + 15d$$

$$15d = 30 - 50$$

$$15d = -20$$

$$d = \frac{-20}{15}$$

$$d = \frac{-4}{3}$$

$$a_n = a_1 + (n - 1) \left(\frac{-4}{3}\right), n \ge 2.$$

Ejercicio 13.

Hallar el término especificado de la sucesión aritmética a partir de los términos dados:

(a)
$$a_{11}$$
, siendo $a_1 = 2 + \sqrt{2} y a_2 = 3$.

d=
$$a_2 - a_1$$

d= $3 - (2 + \sqrt{2})$
d= $3 - 2 - \sqrt{2}$

$$d=1 - \sqrt{2}$$
.

$$a_{11} = a_1 + 10d$$

 $a_{11} = 2 + \sqrt{2} + 10 (1 - \sqrt{2})$
 $a_{11} = 2 + \sqrt{2} + 10 - 10 \sqrt{2}$
 $a_{11} = 12 - 9 \sqrt{2}$.

(b)
$$a_1$$
, siendo $a_8 = 47 y a_9 = 53$.

$$d = a_9 - a_8$$

 $d = 53 - 47$

$$d=6$$
.

$$a_8 = a_1 + 7d$$

$$47 = a_1 + 7 * 6$$

 $47 = a_1 + 42$

$$a_1 = 47 - 42$$

$$a_1 = 5$$
.

Ejercicio 14.

Encontrar la razón de una sucesión geométrica cuyo primer término es 320 y el séptimo es 5.

$$a_1 = 320$$
.

$$a_7 = a_1 r^6$$

$$5 = 320r^6$$

$$r^6 = \frac{5}{320}$$

$$r^6 = \frac{1}{64}$$

$$a_7 = a_1 r^6$$

$$5 = 320 r^6$$

$$r^6 = \frac{5}{320}$$

$$r^6 = \frac{1}{64}$$

$$r = \sqrt[6]{\frac{1}{64}}$$

$$r = \frac{1}{2}$$

Por lo tanto, la razon es
$$\frac{1}{2}$$
.

Ejercicio 15.

Hallar todos los posibles valores de r para una sucesión geométrica con los términos dados:

(a)
$$a_4 = 3 y a_6 = 9$$
.

$$a_4 = 3$$
 $a_1 r^3 = 3$
 $r^3 = \frac{3}{a_1}$
 $r = (\frac{3}{a_1})^{\frac{1}{3}}$.

$$a_6 = 9$$
 $a_1 r^5 = 9$
 $r^5 = \frac{9}{a_1}$
 $r = (\frac{9}{a_1})^{\frac{1}{5}}$.

$$(\frac{3}{a_1})^{\frac{1}{3}} = (\frac{9}{a_1})^{\frac{1}{5}}$$

$$[(\frac{3}{a_1})^{\frac{1}{3}}]^5 = \frac{9}{a_1}$$

$$(\frac{3}{a_1})^{\frac{5}{3}} = \frac{3^2}{a_1}$$

$$\frac{\frac{5}{3}}{a_1^{\frac{5}{3}}} = \frac{3^2}{a_1}$$

$$\frac{\frac{1}{3}}{a_1} = \frac{\frac{3}{3}}{3^2}$$

$$\frac{a_1^{\frac{5}{3}}}{a_1} = \frac{\frac{5}{3}}{3^2}$$

$$a_1 = (3^{\frac{-1}{3}})^{\frac{3}{2}}$$

$$a_1 = 3^{\frac{-1}{2}}$$

$$r = \left(\frac{3}{\frac{-1}{3}}\right)^{\frac{1}{3}} = \left(3^{\frac{3}{2}}\right)^{\frac{1}{3}} = 3^{\frac{1}{2}}.$$

$$r = \left(\frac{9}{\frac{-1}{3}}\right)^{\frac{1}{5}} = \left(3^{\frac{5}{2}}\right)^{\frac{1}{5}} = 3^{\frac{1}{2}}.$$

(b)
$$a_3 = 4 y a_7 = \frac{1}{4}$$
.

$$a_3 = 4$$
 $a_1 r^2 = 4$
 $r^2 = \frac{4}{a_1}$

$$r = \left(\frac{4}{a_1}\right)^{\frac{1}{2}}$$

$$r = \frac{2}{a_1^{\frac{1}{2}}}.$$

$$a_{7} = \frac{1}{4}$$

$$a_{1}r^{6} = \frac{1}{4}$$

$$r^{6} = \frac{1}{4a_{1}}$$

$$r = (\frac{1}{4a_{1}})^{\frac{1}{6}}$$

$$r = \frac{1}{4^{\frac{1}{6}a_{1}^{\frac{1}{6}}}}$$

$$r = \frac{1}{2^{\frac{1}{3}a_{1}^{\frac{1}{6}}}}$$

$$\frac{\frac{2}{a_{1}^{\frac{1}{2}}} = \frac{1}{a_{1}^{\frac{1}{2}} a_{1}^{\frac{1}{6}}}}{\frac{a_{1}^{\frac{1}{2}}}{a_{1}^{\frac{1}{6}}}} = 2 * 2^{\frac{1}{3}}$$

$$\frac{a_{1}^{\frac{1}{3}}}{a_{1}^{\frac{1}{3}}} = 2^{\frac{4}{3}}$$

$$a_{1} = (2^{\frac{4}{3}})^{3}$$

$$a_{1} = 2^{4}$$

$$a_{1} = 16.$$

$$r = \frac{2}{16^{\frac{1}{2}}} = \frac{2}{4} = \frac{1}{2}.$$

$$r = \frac{1}{16^{\frac{1}{2}} \cdot 16^{\frac{1}{6}}} = \frac{1}{16^{\frac{1}{2}} \cdot 16^{\frac{1}{2}}} = \frac{1}{2}.$$

Ejercicio 16.

La cantidad de bacterias en cierto cultivo es, inicialmente, 500 y el cultivo se duplica todos los días.

(a) Encontrar la cantidad de bacterias en el día 2, día 3 y día 4.

$$a_1 = 500.$$

d= 2.

$$a_2 = a_1 * 2$$

 $a_2 = 500 * 2$

$$a_2 = 1000$$
.

$$a_3 = a_2 * 2$$

$$a_3 = 1000 * 2$$

$$a_3 = 2000$$
.

$$a_4 = a_3 * 2$$

$$a_4 = 2000 * 2$$

$$a_4 = 4000.$$

(b) Dar una fórmula para hallar la población bacteriana en el día n.

$$a_n = a_1 2^{n-1}$$
, $n \ge 2$.

Ejercicio 17.

Habitualmente, se agrega cloro al agua de las piscinas para controlar los microorganismos. Si el nivel de cloro es mayor de 3 ppm (partes por millón), los nadadores sentirán ardor en los ojos e incomodidad en la piel; si el nivel baja a menos de 1 ppm, existe la posibilidad de que el agua tome color verde por la presencia de algas. El cloro debe agregarse al agua a intervalos regulares. Si no se agrega cloro a una piscina en un período de 24 hs, alrededor del 20% del cloro existente se disipará en la atmósfera y el 80% permanecerá en el agua.

(a) Determinar la sucesión a_n que exprese la cantidad de cloro presente después de n días, si la piscina tiene a_1 ppm de cloro al principio y no vuelve a agregarse. Expresar la sucesión en forma recursiva y en forma explícita.

Explícita:

$$a_n = a_1 * 0.8^{n-1}, n \ge 2.$$

Recursiva:

$$a_1$$
.
 $a_n = 0.8a_{n-1}$, $n \ge 2$.

(b) Si al inicio tiene 7 ppm, determinar el primer día en que el nivel de cloro baja de 3 ppm.

$$a_n < 3$$

 $7 * 0.8^{n-1} < 3$
 $0.8^{n-1} < \frac{3}{7}$
 $\ln 0.8^{n-1} < \ln \frac{3}{7}$
 $(n-1) \ln 0.8 < \ln \frac{3}{7}$
 $n-1 > \frac{\ln \frac{3}{7}}{\ln \frac{3}{10}}$
 $n-1 > \frac{-0.85}{-0.22}$
 $n-1 > 3.86$
 $n > 3.86 + 1$
 $n > 4.86$.

Por lo tanto, si al inicio tiene 7ppm, el primer día en que el nivel de cloro baja de 3 ppm es el quinto día.

Ejercicio 18.

Desarrollar las siguientes sumas:

(a)
$$\sum_{k=1}^{7} (2k-4)$$
.

$$\sum_{k=1}^{7} (2k-4) = (2*1-4) + (2*2-4) + (2*3-4) + (2*4-4) + (2*5-4) + (2*6-4) + (2*7-4).$$

(b)
$$\sum_{t=4}^{10} (3^t - t^2)$$
.

$$\sum_{t=4}^{10} (3^t - t^2) = (3^5 - 5^2) + (3^6 - 6^2) + (3^7 - 7^2) + (3^8 - 8^2) + (3^9 - 9^2) + (3^{10} - 10^2).$$

(c)
$$\sum_{h=5}^{14} (2 - \frac{4}{h})$$
.

$$\sum_{h=5}^{14} (2 - \frac{4}{h}) = (2 - \frac{4}{5}) + (2 - \frac{4}{6}) + (2 - \frac{4}{7}) + (2 - \frac{4}{8}) + (2 - \frac{4}{9}) + (2 - \frac{4}{10}) + (2 - \frac{4}{11}) + (2 - \frac{4}{12}) + (2 - \frac{4}{11}) + (2 - \frac{4}{11})$$

Ejercicio 19.

Completar las siguientes igualdades:

(a)
$$\sum_{k=1}^{28} 2k - 4 = \sum_{k=1}^{7} 2k - 4 + \sum_{k=1}^{7} 2k - 4$$
.

$$\sum_{k=1}^{28} 2k - 4 = \sum_{k=1}^{7} 2k - 4 + \sum_{k=8}^{28} 2k - 4$$
.

(b)
$$\sum_{t=4}^{10} (3^t - t^2) = \sum_{t=1}^{10} (3^t - t^2) - \sum_{t=1}^{10} (3^t - t^2)$$
.

$$\sum_{t=4}^{10} (3^t - t^2) = \sum_{t=1}^{10} (3^t - t^2) - \sum_{t=1}^{3} (3^t - t^2).$$

(c)
$$\sum_{h=5}^{14} (2 - \frac{4}{h}) = \sum_{h=5}^{4} (2 - \frac{4}{h}) - \sum_{h=5}^{4} (2 - \frac{4}{h})$$
.

$$\sum_{h=5}^{14} (2 - \frac{4}{h}) = \sum_{h=1}^{14} (2 - \frac{4}{h}) - \sum_{h=1}^{4} (2 - \frac{4}{h}).$$

(d)
$$\sum_{i=4}^{10} 2^i + i = 2^4 + 4 + \sum_{i=4}^{10} 2^i + i$$
.

$$\sum_{i=4}^{10} 2^i + i = 2^4 + 4 + \sum_{i=5}^{10} 2^i + i.$$

(e)
$$\sum_{j=3}^{18} \frac{1+j}{j} = \sum_{i=1}^{1+j} \frac{1+18}{i}$$

$$\sum_{j=3}^{18} \frac{1+j}{j} = \sum_{j=3}^{17} \frac{1+j}{j} + \frac{1+18}{17}.$$

(f)
$$\sum_{j=2}^{45} \frac{4-j}{j+1} = \sum_{j=2}^{44} \frac{4-j}{j+1} + \dots$$

$$\sum_{j=2}^{45} \frac{4-j}{j+1} = \sum_{j=2}^{44} \frac{4-j}{j+1} + \frac{4-45}{45+1}.$$

(g)
$$\sum_{n=3}^{h} \frac{4}{n+1} = \sum_{n=3}^{h-1} \frac{4}{n+1} + \dots$$

$$\sum_{n=3}^{h} \frac{4}{n+1} = \sum_{n=3}^{h-1} \frac{4}{n+1} + \frac{4}{h+1}.$$

(h)
$$\sum_{t=6}^{k} \frac{t}{t+2} = \sum_{t=6}^{k-1} \frac{t}{t+2} + \dots$$

$$\sum_{t=6}^{k} \frac{t}{t+2} = \sum_{t=6}^{k-1} \frac{t}{t+2} + \frac{k}{k+2}.$$

Ejercicio 20.

Escribir las siguientes sumas utilizando la notación sigma:

(a)
$$1 + 4 + 9 + 16 + 25 + \dots + 81$$
.

$$\sum_{i=1}^9 i^2.$$

$$\sum_{i=0}^{6} (-1)^i$$
.

(c)
$$1+2+3+4+5+...+46$$
.

$$\sum_{i=1}^{46} i.$$

(d)
$$4+5+6+7+8+...+34$$
.

$$\textstyle\sum_{i=4}^{34}i.$$

(e)
$$13 + 20 + 27 + 34 + 41 + \dots + [13 + (n-1) * 7]$$
.

$$\sum_{i=1}^{n} 13 + (i-1) * 7.$$

(f)
$$8 + \frac{2}{3} + \frac{1}{18} + \frac{1}{216} + \dots + 8 \left(\frac{1}{12}\right)^{k-1}$$
.

$$\sum_{i=1}^{k} 8(\frac{1}{12})^{k-1}$$
.

(g)
$$2 + 4 + 6 + 8 + \dots + 2t$$
.

$$\textstyle\sum_{i=1}^t 2i.$$

Ejercicio 21.

Dar el resultado de las siguientes sumas:

(a)
$$\sum_{i=1}^4 4i^2 + 5$$
.

$$\begin{split} & \sum_{i=1}^4 4i^2 + 5 = \sum_{i=1}^4 4i^2 + \sum_{i=1}^4 5 \\ & \sum_{i=1}^4 4i^2 + 5 = 4 \sum_{i=1}^4 i^2 + 4 * 5 \\ & \sum_{i=1}^4 4i^2 + 5 = 4 \left(1^2 + 2^2 + 3^2 + 4^2\right) + 20 \\ & \sum_{i=1}^4 4i^2 + 5 = 4 \left(1 + 4 + 9 + 16\right) + 20 \\ & \sum_{i=1}^4 4i^2 + 5 = 4 * 30 + 20 \\ & \sum_{i=1}^4 4i^2 + 5 = 120 + 20 \\ & \sum_{i=1}^4 4i^2 + 5 = 140. \end{split}$$

(b)
$$\sum_{j=3}^{6} \frac{j-1}{j-2}$$
.

$$\sum_{j=3}^{6} \frac{j-1}{j-2} = \frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4}$$
$$\sum_{j=3}^{6} \frac{j-1}{j-2} = \frac{73}{12}.$$

(c)
$$\sum_{k=3}^{8} k(k-1)$$
.

$$\sum_{k=3}^{8} k(k-1) = 3 * 2 + 4 * 3 + 5 * 4 + 6 * 5 + 7 * 6 + 8 * 7$$

$$\sum_{k=3}^{8} k(k-1) = 6 + 12 + 20 + 30 + 42 + 56$$

$$\sum_{k=3}^{8} k(k-1) = 166.$$

(d)
$$\sum_{t=5}^{9} 1 + (-1)^t$$
.

$$\begin{split} & \sum_{t=5}^{9} 1 + (-1)^{t} = \sum_{t=5}^{9} 1 + \sum_{t=5}^{9} (-1)^{t} \\ & \sum_{t=5}^{9} 1 + (-1)^{t} = 5 * 1 + (-1) \\ & \sum_{t=5}^{9} 1 + (-1)^{t} = 5 - 1 \\ & \sum_{t=5}^{9} 1 + (-1)^{t} = 4. \end{split}$$

(e)
$$\sum_{i=1}^{200} 10$$
.

$$\begin{array}{l} \sum_{i=1}^{200} 10 = 200 * 10 \\ \sum_{i=1}^{200} 10 = 2000. \end{array}$$

(f)
$$\sum_{j=8}^{70} 20$$
.

$$\sum_{j=8}^{70} 20 = 63 * 20$$
$$\sum_{j=8}^{70} 20 = 1260.$$

Ejercicio 22.

Calcular las siguientes sumas de dos formas diferentes: a) aplicando la suma de una sucesión aritmética, b) aplicando las propiedades vistas de la sumatoria.

(a)
$$\sum_{i=1}^{30} 4i + 5$$
.

$$\begin{split} & \sum_{i=1}^{30} 4i + 5 = \frac{30[(4*1+5)+(4*30+5)]}{2} \\ & \sum_{i=1}^{30} 4i + 5 = \frac{30[(4+5)+(120+5)]}{2} \\ & \sum_{i=1}^{30} 4i + 5 = \frac{30(9+125)}{2} \\ & \sum_{i=1}^{30} 4i + 5 = \frac{30*134}{2} \\ & \sum_{i=1}^{30} 4i + 5 = \frac{4020}{2} \\ & \sum_{i=1}^{30} 4i + 5 = 2010. \end{split}$$

$$& \sum_{i=1}^{30} 4i + 5 = \sum_{i=1}^{30} 4i + \sum_{i=1}^{30} 5 \\ & \sum_{i=1}^{30} 4i + 5 = 4 \sum_{i=1}^{30} i + 30 * 5 \\ & \sum_{i=1}^{30} 4i + 5 = 4 * 465 + 150 \\ & \sum_{i=1}^{30} 4i + 5 = 1860 + 150 \\ & \sum_{i=1}^{30} 4i + 5 = 2010. \end{split}$$

(b)
$$\sum_{j=1}^{33} -3(j-1) + 2$$
.

$$\begin{split} & \sum_{j=1}^{33} -3(j-1) + 2 = \frac{33\{[-3(1-1)+2]+[-3(33-1)+2]\}}{2} \\ & \sum_{j=1}^{33} -3(j-1) + 2 = \frac{33[(-3*0+2)+(-3*32+2)]}{2} \\ & \sum_{j=1}^{33} -3(j-1) + 2 = \frac{33[(0+2)+(-96+2)]}{2} \\ & \sum_{j=1}^{33} -3(j-1) + 2 = \frac{33[2+(-94)]}{2} \\ & \sum_{j=1}^{33} -3(j-1) + 2 = \frac{33(2-94)}{2} \\ & \sum_{j=1}^{33} -3(j-1) + 2 = \frac{33(-92)}{2} \\ & \sum_{j=1}^{33} -3(j-1) + 2 = \frac{-3036}{2} \\ & \sum_{j=1}^{33} -3(j-1) + 2 = -1518. \end{split}$$

$$\begin{split} & \sum_{j=1}^{33} -3(j-1) + 2 = \sum_{j=1}^{33} -3(j-1) + \sum_{j=1}^{33} 2 \\ & \sum_{j=1}^{33} -3(j-1) + 2 = -3 \sum_{j=1}^{33} j - 1 + 33 * 2 \\ & \sum_{j=1}^{33} -3(j-1) + 2 = -3 \left(\sum_{j=1}^{33} j - \sum_{j=1}^{33} 1 \right) + 66 \\ & \sum_{j=1}^{33} -3(j-1) + 2 = -3 \left(561 - 33 * 1 \right) + 66 \\ & \sum_{j=1}^{33} -3(j-1) + 2 = -3 \left(561 - 33 \right) + 66 \\ & \sum_{j=1}^{33} -3(j-1) + 2 = -3 * 528 + 66 \\ & \sum_{j=1}^{33} -3(j-1) + 2 = -1584 + 66 \\ & \sum_{j=1}^{33} -3(j-1) + 2 = -1518. \end{split}$$

(c)
$$\sum_{k=1}^{45} 4 + 5(k-1)$$
.

$$\begin{split} & \sum_{k=1}^{45} 4 + 5(k-1) = \frac{45\{[4+5(1-1)]+[4+5(45-1)]\}}{2} \\ & \sum_{k=1}^{45} 4 + 5(k-1) = \frac{45[(4+5*0)+(4+5*44)]}{2} \\ & \sum_{k=1}^{45} 4 + 5(k-1) = \frac{45[(4+0)+(4+220)]}{2} \\ & \sum_{k=1}^{45} 4 + 5(k-1) = \frac{45(4+224)}{2} \\ & \sum_{k=1}^{45} 4 + 5(k-1) = \frac{45*228}{2} \\ & \sum_{k=1}^{45} 4 + 5(k-1) = \frac{10260}{2} \\ & \sum_{k=1}^{45} 4 + 5(k-1) = 5130. \end{split}$$

$$& \sum_{k=1}^{45} 4 + 5(k-1) = \frac{10260}{2} \\ & \sum_{k=1}^{45} 4 + 5(k-1) = 180 + 5 \sum_{k=1}^{45} k - 1 \\ & \sum_{k=1}^{45} 4 + 5(k-1) = 180 + 5 \sum_{k=1}^{45} k - \sum_{k=1}^{45} 1 \\ & \sum_{k=1}^{45} 4 + 5(k-1) = 180 + 5 (1035 - 45 * 1) \\ & \sum_{k=1}^{45} 4 + 5(k-1) = 180 + 5 (1035 - 45) \\ & \sum_{k=1}^{45} 4 + 5(k-1) = 180 + 5 * 990 \\ & \sum_{k=1}^{45} 4 + 5(k-1) = 180 + 4950 \\ & \sum_{k=1}^{45} 4 + 5(k-1) = 5130. \end{split}$$

(d)
$$\sum_{t=1}^{h} 3t + 1$$
.

$$\begin{split} & \sum_{t=1}^{h} 3t + 1 = \frac{h[(3*1+1)+(3h+1)]}{2} \\ & \sum_{t=1}^{h} 3t + 1 = \frac{h[(3*1+1)+(3h+1)]}{2} \\ & \sum_{t=1}^{h} 3t + 1 = \frac{h(4+3h+1)}{2} \\ & \sum_{t=1}^{h} 3t + 1 = \frac{h(3h+5)}{2} \\ & \sum_{t=1}^{h} 3t + 1 = \frac{3h^2+5h}{2} \\ & \sum_{t=1}^{h} 3t + 1 = \frac{3}{2}h^2 + \frac{5}{2}h. \\ & \sum_{t=1}^{h} 3t + 1 = \sum_{t=1}^{h} 3t + \sum_{t=1}^{h} 1 \\ & \sum_{t=1}^{h} 3t + 1 = 3\sum_{t=1}^{h} t + h * 1 \\ & \sum_{t=1}^{h} 3t + 1 = 3\frac{h(1+h)}{2} + h \\ & \sum_{t=1}^{h} 3t + 1 = 3\frac{h+h^2}{2} + h \\ & \sum_{t=1}^{h} 3t + 1 = 3\frac{1}{2}h + \frac{1}{2}h^2 + h \end{split}$$

 $\sum_{t=1}^{h} 3t + 1 = \frac{3}{2}h^2 + \frac{5}{2}h.$

Ejercicio 23.

(a) Dada la siguiente sucesión definida en forma recursiva $c_1=3$ y $c_n=4+c_{n-1}$, si $n\geq 2$, calcular $\sum_{k=1}^n c_k$.

$$\sum_{k=1}^{n} c_k = \frac{n(3+4+c_{n-1})}{2}$$
$$\sum_{k=1}^{n} c_k = \frac{n(7+c_{n-1})}{2}$$

(b) Dar el valor de $\sum_{k=10}^{67} c_k$.

$$\begin{split} &\sum_{k=10}^{67} c_k = \sum_{k=1}^{67} c_k - \sum_{k=1}^{9} c_k \\ &\sum_{k=10}^{67} c_k = \frac{67(7 + c_{66})}{2} - \frac{9(7 + c_{8})}{2} \\ &\sum_{k=10}^{67} c_k = \frac{469 + 67c_{66}}{2} - \frac{63 + 9c_{8}}{2} \\ &\sum_{k=10}^{67} c_k = \frac{469 + 67c_{66} - 63 - 9c_{8}}{2} \\ &\sum_{k=10}^{67} c_k = \frac{403 + 67c_{66} - 9c_{8}}{2}. \end{split}$$

Ejercicio 24.

(a) Dada la siguiente sucesión definida por sus primeros términos $s_1 = -1$, $s_2 = 4$, $s_3 = 9$, $s_4 = 14$, ..., calcular $\sum_{j=1}^{t} s_j$.

$$\sum_{j=1}^{t} s_j = \frac{t(-1+5+s_{j-1})}{2}$$
$$\sum_{j=1}^{t} s_j = \frac{t(4+s_{j-1})}{2}.$$

(b) *Dar el valor de* $\sum_{j=21}^{100} 2s_j$.

$$\begin{split} & \sum_{j=21}^{100} s_j = \sum_{j=1}^{100} s_j - \sum_{j=1}^{20} s_j \\ & \sum_{j=21}^{100} s_j = \frac{100(4+s_{99})}{2} - \frac{20(4+s_{19})}{2} \\ & \sum_{j=21}^{100} s_j = 50 \ (4+s_{99}) - 10 \ (4+s_{19}) \\ & \sum_{j=21}^{100} s_j = 200 + 50s_{99} - 40 - 10s_{19} \\ & \sum_{j=21}^{100} s_j = 160 + 50s_{99} - 10s_{19}. \end{split}$$

Ejercicio 25.

Calcular la suma de los 200 primeros números naturales.

$$\begin{split} \sum_{i=1}^{200} i &= \frac{200(1+200)}{2} \\ \sum_{i=1}^{200} i &= 100 * 201 \\ \sum_{i=1}^{200} i &= 20100. \end{split}$$

Ejercicio 26.

Calcular la suma de los 100 primeros números impares.

$$\sum_{i=0}^{99} 2i + 1 = \frac{100(1+199)}{2}$$
$$\sum_{i=0}^{99} 2i + 1 = 50 * 200$$
$$\sum_{i=0}^{99} 2i + 1 = 10000.$$

Ejercicio 27.

Una pila de troncos tiene 24 troncos en la base, 23 en la segunda hilera, 22 en la tercera, y así siguiendo hasta llegar a la capa superior en la que tiene 10 troncos. Encontrar la cantidad total de troncos en la pila.

$$\sum_{i=10}^{24} i = \frac{15(10+24)}{2}$$

$$\sum_{i=10}^{24} i = \frac{15*34}{2}$$

$$\sum_{i=10}^{24} i = \frac{510}{2}$$

$$\sum_{i=10}^{24} i = 255.$$

Por lo tanto, la cantidad total de troncos en la pila es 255.

Ejercicio 28.

Sabiendo que la suma de los 10 primeros términos de una sucesión aritmética es 50 y el primer término es -2. Calcular la diferencia de la sucesión.

$$\begin{split} & \sum_{i=1}^{10} a_i = 50 \\ & \frac{10(-2+a_{10})}{2} = 50 \\ & 5 (-2+a_{10}) = 50 \\ & -10+5a_{10} = 50 \\ & 5a_{10} = 50+10 \\ & 5a_{10} = 60 \\ & a_{10} = \frac{60}{5} \\ & a_{10} = 12. \\ & a_{10} = a_1 + 9d \\ & 9d = a_{10} - a_1 \\ & 9d = 12 - (-2) \\ & 9d = 14 \\ & d = \frac{14}{9}. \end{split}$$

Por lo tanto, la diferencia de la sucesión es $\frac{14}{9}$.

Ejercicio 29.

Pablo sumó todos los números enteros positivos de 4 dígitos, pero se salteó uno. La suma de Pablo es igual a 8499 veces el número que se salteó Pablo. Hallar el número que se salteó Pablo.

$$8499x = \sum_{i=1000}^{9999} i - x$$

$$8499x + x = \sum_{i=1000}^{9999} i$$

$$8500x = \sum_{i=1000}^{9999} i$$

$$8500x = \frac{9000(1000 + 9999)}{2}$$

$$8500x = 4500 * 10999$$

$$8500x = 49495500$$

$$x = \frac{49495500}{8500}$$

$$x = 5823.$$

Por lo tanto, el número que se salteó Pablo es el 5823.

Ejercicio 30.

Un ciclista avanza cuesta abajo a razón de 4 pies el primer segundo. En cada segundo sucesivo, avanza 5 pies más que en el segundo anterior. Si el deportista llega a la parte inferior del cerro en 11 segundos, encontrar la distancia total recorrida.

$$\sum_{i=1}^{11} a_i = \frac{11(4+4+10*5)}{2}$$

$$\sum_{i=1}^{11} a_i = \frac{11(4+4+50)}{2}$$

$$\sum_{i=1}^{11} a_i = \frac{11*58}{2}$$

$$\sum_{i=1}^{11} a_i = \frac{638}{2}$$

$$\sum_{i=1}^{11} a_i = 319.$$

Por lo tanto, la distancia total recorrida es 319 pies.

Ejercicio 31.

Si el primero de octubre ahorro 10 centavos, el 2 de octubre ahorro 20, el 3 de octubre ahorro 30 y así sucesivamente.

(a) ¿Cuánto dinero ahorraré el 31 de octubre?

$$a_{31}$$
= 10 + 30 * 10
 a_{31} = 10 + 300
 a_{31} = 310.

Por lo tanto, el 31 de octubre ahorraré 3,10 pesos.

(b) ¿Cuánto dinero ahorraré en todo el mes de octubre?

$$\sum_{i=1}^{31} a_i = \frac{31(10+310)}{2}$$

$$\sum_{i=1}^{31} a_i = \frac{31*320}{2}$$

$$\sum_{i=1}^{31} a_i = 31 * 160$$

$$\sum_{i=1}^{31} a_i = 4960.$$

Por lo tanto, ahorraré 49,60 pesos en todo el mes de octubre.

Ejercicio 32.

Calcular las siguientes sumas:

(a)
$$\sum_{i=1}^{30} (\frac{1}{2})^{i-1}$$
.

$$\begin{split} & \sum_{i=1}^{30} (\frac{1}{2})^{i-1} = \frac{(\frac{1}{2})^{1-1} [1 - (\frac{1}{2})^{30}]}{1 - \frac{1}{2}} \\ & \sum_{i=1}^{30} (\frac{1}{2})^{i-1} = \frac{(\frac{1}{2})^0 [1 - (\frac{1}{2})^{30}]}{\frac{1}{2}} \\ & \sum_{i=1}^{30} (\frac{1}{2})^{i-1} = \frac{1 [1 - (\frac{1}{2})^{30}]}{\frac{1}{2}} \\ & \sum_{i=1}^{30} (\frac{1}{2})^{i-1} = \frac{1 - (\frac{1}{2})^{30}}{\frac{1}{2}} \\ & \sum_{i=1}^{30} (\frac{1}{2})^{i-1} = 2 \left[1 - (\frac{1}{2})^{30}\right]. \end{split}$$

(b)
$$\sum_{j=1}^{30} (\frac{1}{2})^j$$
.

$$\begin{split} & \sum_{j=1}^{30} (\frac{1}{2})^{j} = \frac{(\frac{1}{2})^{2-1} [1 - (\frac{1}{2})^{30}]}{1 - \frac{1}{2}} \\ & \sum_{j=1}^{30} (\frac{1}{2})^{j} = \frac{(\frac{1}{2})^{1} [1 - (\frac{1}{2})^{30}]}{\frac{1}{2}} \\ & \sum_{j=1}^{30} (\frac{1}{2})^{j} = \frac{\frac{1}{2} [1 - (\frac{1}{2})^{30}]}{\frac{1}{2}} \\ & \sum_{j=1}^{30} (\frac{1}{2})^{j} = 1 - (\frac{1}{2})^{30}. \end{split}$$

(c)
$$\sum_{k=1}^{45} (\frac{1}{2})^{k+1}$$
.

$$\begin{split} & \sum_{k=1}^{45} {\binom{\frac{1}{2}}{k^{1}}}^{k+1} = \frac{{(\frac{1}{2})}^{1+1}[1-{(\frac{1}{2})}^{45}]}{1-\frac{1}{2}} \\ & \sum_{k=1}^{45} {(\frac{1}{2})}^{k+1} = \frac{{(\frac{1}{2})}^{2}[1-{(\frac{1}{2})}^{45}]}{\frac{1}{2}} \\ & \sum_{k=1}^{45} {(\frac{1}{2})}^{k+1} = \frac{1}{2}\left[1-{(\frac{1}{2})}^{45}\right]. \end{split}$$

(d)
$$\sum_{t=1}^{h} 5 * 2^{t-1}$$
.

$$\sum_{t=1}^{h} 5 * 2^{t-1} = \frac{5*2^{1}(1-2^{h})}{1-2}$$

$$\begin{array}{l} \sum_{t=1}^{h} 5 * 2^{t-1} = \frac{5*2(1-2^{h})}{-1} \\ \sum_{t=1}^{h} 5 * 2^{t-1} = -10 \ (1-2^{h}). \end{array}$$

(e)
$$\sum_{k=1}^{m} 4(\frac{1}{3})^{k-1}$$
.

$$\begin{split} & \sum_{k=1}^{m} 4 {\binom{\frac{1}{3}}{3}}^{k-1} = \frac{4*{(\frac{1}{3})}^{1-1}[1-{(\frac{1}{3})}^{m}]}{1-\frac{1}{3}} \\ & \sum_{k=1}^{m} 4 {\binom{\frac{1}{3}}{3}}^{k-1} = \frac{4*{(\frac{1}{3})}^{0}[1-{(\frac{1}{3})}^{m}]}{\frac{2}{3}} \\ & \sum_{k=1}^{m} 4 {(\frac{1}{3})}^{k-1} = \frac{4*1[1-{(\frac{1}{3})}^{m}]}{\frac{2}{3}} \\ & \sum_{k=1}^{m} 4 {(\frac{1}{3})}^{k-1} = \frac{4[1-{(\frac{1}{3})}^{m}]}{\frac{2}{3}} \\ & \sum_{k=1}^{m} 4 {(\frac{1}{3})}^{k-1} = 6 \left[1-{(\frac{1}{3})}^{m}\right]. \end{split}$$

(f)
$$\sum_{t=1}^{h} 2 * 8^t$$
.

$$\sum_{t=1}^{h} 2 * 8^{t} = \frac{2*8^{1}(1-8^{h})}{1-8}$$

$$\sum_{t=1}^{h} 2 * 8^{t} = \frac{2*8(1-8^{h})}{-7}$$

$$\sum_{t=1}^{h} 2 * 8^{t} = \frac{16(1-8^{h})}{-7}$$

$$\sum_{t=1}^{h} 2 * 8^{t} = \frac{-16}{7} (1 - 8^{h}).$$

(g)
$$\sum_{k=8}^{80} 5 * 2^{k-1}$$
.

$$\begin{split} &\sum_{k=8}^{80} 5*2^{k-1} = \frac{5*2^{8-1}(1-2^{73})}{1-2} \\ &\sum_{k=8}^{80} 5*2^{k-1} = \frac{5*2^{7}(1-2^{73})}{-1} \\ &\sum_{k=8}^{80} 5*2^{k-1} = -5*2^{7}(1-2^{73}) \\ &\sum_{k=8}^{80} 5*2^{k-1} = -5*2^{7}+5*2^{80} \\ &\sum_{k=8}^{80} 5*2^{k-1} = -5(2^{7}-2^{80}). \end{split}$$

(h)
$$\sum_{j=14}^{94} 8^j$$
.

$$\sum_{j=14}^{94} 8^{j} = \frac{8^{14}(1-8^{81})}{1-8}$$
$$\sum_{j=14}^{94} 8^{j} = \frac{8^{14}(1-8^{81})}{-7}$$

$$\sum_{j=14}^{94} 8^{j} = \frac{-8^{14}}{7} (1 - 8^{81})$$

$$\sum_{j=14}^{94} 8^{j} = \frac{-8^{14}}{7} + \frac{8^{95}}{7}$$

$$\sum_{j=14}^{94} 8^{j} = \frac{-1}{7} (8^{14} - 8^{95}).$$

Ejercicio 33.

Una pelota de ping pong se lanza desde una altura de 16 mts. En cada rebote, se eleva verticalmente $\frac{1}{4}$ de la altura alcanzada en la caída previa.

(a) ¿A qué altura se elevará en el séptimo rebote?

$$a_7 = 16 \left(\frac{1}{4}\right)^6$$

$$a_7 = 16 \frac{1}{4096}$$

$$a_7 = \frac{1}{256}.$$

Por lo tanto, a la altura que se elevará en el séptimo rebote es $\frac{1}{256}$ mts.

(b) ¿Cuál es la distancia total que la pelota recorrió después de ese tiempo?

$$\sum_{i=1}^{7} a_n = \frac{16[1 - (\frac{1}{4})^7]}{1 - \frac{1}{4}}$$

$$\sum_{i=1}^{7} a_n = \frac{16(1 - \frac{1}{16384})}{\frac{3}{4}}$$

$$\sum_{i=1}^{7} a_n = \frac{16\frac{16383}{16384}}{\frac{3}{4}}$$

$$\sum_{i=1}^{7} a_n = \frac{16\frac{16383}{16384}}{\frac{3}{4}}$$

$$\sum_{i=1}^{7} a_n = \frac{64}{3}$$

$$\sum_{i=1}^{7} a_n = 21, \hat{3}.$$

Por lo tanto, la distancia total que la pelota recorrió después de ese tiempo es 21,3 mts.

Ejercicio 34.

Un mendigo le propuso a un avaro: "... durante este mes, le daré a usted un peso el primer día, dos pesos el segundo día, 3 el tercero y así sucesivamente. A cambio, usted sólo me dará 0,01 pesos el primer día, 0,02 pesos el segundo día, 0,04 pesos el tercero, 0,08 pesos el cuarto y así sucesivamente. El avaro aceptó entusiasmado y convinieron en realizar el pago a fin de mes. ¿Cuánto le deberá cada uno al otro al cabo de ese tiempo?

$$\begin{split} &\sum_{i=1}^{30} m_n = \frac{30(1+1+29*1)}{2} \\ &\sum_{i=1}^{30} m_n = 15 \; (1+1+29) \\ &\sum_{i=1}^{30} m_n = 15 * 31 \\ &\sum_{i=1}^{30} m_n = 465. \\ &\sum_{i=1}^{30} a_n = \frac{30(0,01+0,01+29*0,01)}{2} \\ &\sum_{i=1}^{30} a_n = 15 \; (0,01+0,01+0,29) \\ &\sum_{i=1}^{30} a_n = 15 * 0,31 \\ &\sum_{i=1}^{30} a_n = 4,65. \end{split}$$

Por lo tanto, al cabo de ese tiempo, el mendigo le deberá al avaro 465 pesos, mientras que el avaro le deberá al mendigo 4,65 pesos.

Ejercicio 35.

Encontrar, en cada uno de los siguientes casos, el valor de verdad de P (1), P (2), P (3) y establecer si los números 1, 2 y 3 pertenecen al conjunto de verdad:

(a)
$$P(n)$$
: $2 + 6 + 10 + ... + (4n - 2) = 2n^2$.

$$P(n): \sum_{i=1}^{n} 4i - 2 = 2n^2.$$

$$P(1): \sum_{i=1}^{1} 4i - 2 = 2 * 1^{2}$$

$$P(1): 4 * 1 - 2 = 2 * 1$$

$$P(1): 4 - 2 = 2$$

$$P(1): 2=2.$$

$$P(2): \sum_{i=1}^{2} 4i - 2 = 2 * 2^{2}$$

P (2):
$$\sum_{i=1}^{2} 4i - 2 = 2 * 2^{2}$$

P (2): $4 * 1 - 2 + 4 * 2 - 2 = 2 * 4$

$$P(2): 4 - 2 + 8 - 2 = 8$$

$$P(2): 8=8.$$

$$P(3): \sum_{i=1}^{3} 4i - 2 = 2 * 3^2$$

$$P(3): 4 * 1 - 2 + 4 * 2 - 2 + 4 * 3 - 2 = 2 * 9$$

$$P(3): 4 - 2 + 8 - 2 + 12 - 2 = 18$$

$$P(3): 18 = 18.$$

Por lo tanto, los números 1, 2 y 3 pertenecen al conjunto de verdad.

(b)
$$P(n)$$
: $4 + 8 + 12 + ... + 4n = 2n(n - 1)$.

P (n):
$$\sum_{i=1}^{n} 4i = 2n (n + 1)$$
.

P (1):
$$\sum_{i=1}^{1} 4i = 2 * 1 (1 + 1)$$

P (1): $4 * 1 = 2 * 1 * 2$

$$P(1) \cdot 4 * 1 = 2 * 1 * 2$$

$$P(1): 4=4.$$

P (2):
$$\sum_{i=1}^{2} 4i = 2 * 2 (2 + 1)$$

P (2): $4 * 1 + 4 * 2 = 2 * 2 * 3$

$$P(2): 4 * 1 + 4 * 2 = 2 * 2 * 3$$

$$P(2): 4 + 8 = 12$$

P (3):
$$\sum_{i=1}^{3} 4i = 2 * 3 (3 + 1)$$

P (3):
$$\sum_{i=1}^{3} 4i = 2 * 3 (3 + 1)$$

P (3): $4 * 1 + 4 * 2 + 4 * 3 = 2 * 3 * 4$

$$P(3): 4 + 8 + 12 = 24$$

Por lo tanto, los números 1, 2 y 3 pertenecen al conjunto de verdad.

(c)
$$P(n)$$
: $a^5a^n = a^{5+n}$.

P (n):
$$a^{5+n} = a^{5+n}$$
.

$$P(1): a^{5+1} = a^{5+1}$$

P (1):
$$a^6 = a^6$$
.

P (2):
$$a^{5+2} = a^{5+2}$$

P (2):
$$a^7 = a^7$$
.

P (3):
$$a^{5+3} = a^{5+3}$$

$$P(3)$$
: $a^8 = a^8$.

Por lo tanto, los números 1, 2 y 3 pertenecen al conjunto de verdad.

(d)
$$P(n)$$
: 9^n - 1 es divisible por 4.

P (n):
$$(9^n - 1) \mod 4 = 0$$
.

$$P(1): (9^1 - 1) \mod 4 = 0$$

$$P(1): (9-1) \mod 4 = 0$$

$$P(1)$$
: 8 mod 4= 0

$$P(1): 0=0.$$

$$P(2): (9^2 - 1) \mod 4 = 0$$

$$P(2)$$
: (81 - 1) mod 4= 0

$$P(2)$$
: 80 mod 4= 0

$$P(2): 0=0.$$

$$P(3): (9^3 - 1) \mod 4 = 0$$

$$P(3): (729 - 1) \mod 4 = 0$$

$$P(3)$$
: 728 mod 4= 0

$$P(3): 0=0.$$

Por lo tanto, los números 1, 2 y 3 pertenecen al conjunto de verdad.

(e)
$$P(n)$$
: 4^n - 1 es divisible por 3.

$$P(n): (4^n - 1) \mod 3 = 0.$$

$$P(1): (4^1 - 1) \mod 3 = 0$$

$$P(1): (4-1) \mod 3 = 0$$

$$P(1): 3 \mod 3 = 0$$

$$P(1): 0=0.$$

Juan Menduiña

 $P(2): (4^2 - 1) \mod 3 = 0$

P(2): (16 - 1) mod 3= 0

P(2): 15 mod 3= 0

P(2): 0=0.

P (3): (4³ - 1) mod 3= 0 P (3): (64 - 1) mod 3= 0

P(3): 63 mod 3= 0

P(3): 0=0.

Por lo tanto, los números 1, 2 y 3 pertenecen al conjunto de verdad.

Ejercicio 36.

Dar dos ejemplos de funciones proposicionales que sean teoremas sobre los números naturales.

Ejemplo 1 (Teorema de la suma de los primeros n números naturales):

"Para todo número natural n, la suma de los primeros n números naturales es igual a $\frac{n(n+1)}{2}$ ".

Formalmente, se puede representar como una función proposicional:

P (n):
$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$
.

Ejemplo 2 (Teorema del producto de los primeros n números naturales):

"Para todo número natural n, el producto de los primeros n números naturales es igual a n factorial (n!)".

Formalmente, se puede representar como una función proposicional:

$$Q(n): 1 * 2 * 3 * ... * n= n!.$$

Ejercicio 37.

Dar dos ejemplos de funciones proposicionales que no sean teoremas.

Ejemplo 1:

P (n): "n es un número primo".

Ejemplo 2:

Q (n):
$$n^2 + 2n + 1 = 0$$
.

Ejercicio 38.

Utilizando el principio de inducción matemática, demostrar las siguientes afirmaciones.

(a)
$$2 + 4 + 6 + 8 + ... + 2n = n (n + 1)$$
, para todo n, n natural.

P (n):
$$\sum_{i=1}^{n} 2i = n (n+1)$$
, $\forall n \in \mathbb{N}$.

P (1):
$$\sum_{i=1}^{1} 2i = 1 (1 + 1)$$

P (1): 2 * 1= 1 * 2

$$P(1): 2 * 1 = 1 * 2$$

$$P(1): 2=2.$$

P (n + 1):
$$\sum_{i=1}^{n+1} 2i = \sum_{i=1}^{n} 2i + 2 (n + 1)$$

P (n + 1): $\sum_{i=1}^{n+1} 2i = n (n + 1) + 2 (n + 1)$
P (n + 1): $\sum_{i=1}^{n+1} 2i = (n + 1) (n + 2)$
P (n + 1): $\sum_{i=1}^{n+1} 2i = (n + 1) [(n + 1) + 1]$.

$$P(n+1): \sum_{i=1}^{n+1} 2i = n(n+1) + 2(n+1)$$

$$P(n+1): \sum_{i=1}^{n+1} 2i = (n+1)(n+2)$$

$$P(n+1): \sum_{i=1}^{n+1} 2i = (n+1) [(n+1)+1].$$

Por lo tanto, queda demostrada la afirmación P (n).

(b)
$$\sum_{h=1}^{n} 3h = \frac{3}{2} n (n + 1)$$
, para todo n, n natural.

$$P(n): \sum_{h=1}^{n} 3h = \frac{3}{2} n (n+1), \forall n \in \mathbb{N}.$$

$$P(1): \sum_{h=1}^{1} 3h = \frac{3}{2} * 1 (1+1)$$

$$P(1): 3 * 1 = \frac{3}{2} * 1 * 2$$

$$P(1): 3=3.$$

$$P(n+1)$$
: $\sum_{h=1}^{n+1} 3h = \sum_{h=1}^{n} 3h + 3(n+1)$

P (n + 1):
$$\sum_{h=1}^{n+1} 3h = \sum_{h=1}^{n} 3h + 3 (n + 1)$$

P (n + 1): $\sum_{h=1}^{n+1} 3h = \frac{3}{2} n (n + 1) + 3 (n + 1)$

$$P(n+1): \sum_{h=1}^{n+1} 3h = \frac{3}{2}(n+1)(n+2)$$

$$P(n+1): \sum_{h=1}^{n+1} 3h = \frac{3}{2}(n+1)[(n+1)+1].$$

(c)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
, para todo n, n natural.

$$P(n): \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \forall n \in \mathbb{N}.$$

P (1):
$$\sum_{i=1}^{1} i^2 = \frac{1(1+1)(2*1+1)}{6}$$

P (1):
$$1^2 = \frac{1*2(2+1)}{6}$$

P (1): $1 = \frac{1*2*3}{6}$
P (1): $1 = \frac{6}{6}$

$$P(1): 1 = \frac{1*2*3}{1}$$

$$P(1): 1 = \frac{6}{6}$$

$$P(1): 1 = 1$$

$$P(n+1): \sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2$$

P (n + 1):
$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2$$

P (n + 1): $\sum_{i=1}^{n+1} i^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2$

P (n + 1):
$$\sum_{i=1}^{n+1} i^2 = \frac{n(n+1)(2n+1)+6(n+1)^2}{n(n+1)(2n+1)+6(n+1)^2}$$

$$P(n+1): \sum_{i=1}^{n+1} i^2 = \frac{(n+1)[n(2n+1)+6(n+1)]}{(n+1)!}$$

P (n + 1):
$$\sum_{i=1}^{n+1} i^2 = \frac{(n+1)(2n^2+n+6n+6)}{n+1}$$

P
$$(n+1)$$
: $\sum_{i=1}^{n+1} i^2 = \frac{(n+1)(2n^2+7n+6)}{n+1}$

P (n + 1):
$$\sum_{i=1}^{n+1} i^2 = \frac{(n+1)(n+2)(2n+3)}{n+1}$$

P (n + 1):
$$\sum_{i=1}^{n+1} i^2 = \frac{n(n+1)(2n+1)+6(n+1)^2}{6}$$

P (n + 1): $\sum_{i=1}^{n+1} i^2 = \frac{n(n+1)(2n+1)+6(n+1)^2}{6}$
P (n + 1): $\sum_{i=1}^{n+1} i^2 = \frac{(n+1)[n(2n+1)+6(n+1)]}{6}$
P (n + 1): $\sum_{i=1}^{n+1} i^2 = \frac{(n+1)(2n^2+n+6n+6)}{6}$
P (n + 1): $\sum_{i=1}^{n+1} i^2 = \frac{(n+1)(2n^2+7n+6)}{6}$
P (n + 1): $\sum_{i=1}^{n+1} i^2 = \frac{(n+1)(n+2)(2n+3)}{6}$
P (n + 1): $\sum_{i=1}^{n+1} i^2 = \frac{(n+1)(n+1+1)[2(n+1)+1]}{6}$.

Por lo tanto, queda demostrada la afirmación P (n).

(d)
$$\sum_{j=1}^{n} j^3 = \frac{n^2(n+1)^2}{4}$$
, para todo n, n natural.

$$P(n): \sum_{j=1}^{n} j^3 = \frac{n^2(n+1)^2}{4}, \forall n \in \mathbb{N}.$$

P (1):
$$\sum_{j=1}^{1} j^3 = \frac{1^2 (1+1)^2}{4}$$

P (1): $1^3 = \frac{1*2^2}{4}$
P (1): $1 = \frac{1*4}{4}$
P (1): $1 = \frac{4}{4}$

$$P(1): 1^3 = \frac{1*2^2}{4}$$

$$P(1): 1 = \frac{1*4}{4}$$

$$P(1): 1 = \frac{4}{4}$$

$$P(1): 1=1.$$

P (n + 1):
$$\sum_{j=1}^{n+1} j^3 = \sum_{j=1}^n j^3 + (n+1)^3$$

P (n + 1):
$$\sum_{j=1}^{n+1} j^3 = \sum_{j=1}^{n} j^3 + (n+1)^3$$

P (n + 1): $\sum_{j=1}^{n+1} j^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3$
P (n + 1): $\sum_{j=1}^{n+1} j^3 = \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$
P (n + 1): $\sum_{j=1}^{n+1} j^3 = \frac{(n+1)^2 [n^2 + 4(n+1)]}{4}$
P (n + 1): $\sum_{j=1}^{n+1} j^3 = \frac{(n+1)^2 (n^2 + 4n + 4)}{4}$
P (n + 1): $\sum_{j=1}^{n+1} j^3 = \frac{(n+1)^2 (n+2)^2}{4}$
P (n + 1): $\sum_{j=1}^{n+1} j^3 = \frac{(n+1)^2 (n+1+1)^2}{4}$.

P (n + 1):
$$\sum_{i=1}^{n+1} j^3 = \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$$

P (n + 1):
$$\sum_{i=1}^{n+1} i^3 = \frac{(n+1)^2 [n^2 + 4(n+1)]}{n^2 + 4(n+1)}$$

$$P(n+1): \sum_{i=1}^{n+1} j^3 = \frac{(n+1)^2(n^2+4n+4)}{n^2+4n+4}$$

P (n + 1):
$$\sum_{i=1}^{n+1} j^3 = \frac{(n+1)^2(n+2)^2}{n!}$$

P (n + 1):
$$\sum_{j=1}^{n+1} j^3 = \frac{(n+1)^2(n+1+1)^2}{4}$$

(e) 2n + 1 < 5n, para todo n, n natural.

$$P(n)$$
: $2n + 1 < 5n$, $\forall n \in \mathbb{N}$.

$$P(1): 2 * 1 + 1 < 5 * 1$$

$$P(1): 2+1 < 5$$

$$P(n+1)$$
: $2(n+1) + 1 = 2n + 2 + 1$

$$P(n + 1)$$
: $2(n + 1) + 1 = 2n + 1 + 2$

$$P(n+1)$$
: $2(n+1)+1 < 5n+5$

$$P(n+1)$$
: $2(n+1)+1 < 5(n+1)$.

Por lo tanto, queda demostrada la afirmación P (n).

(f) 9^n - 1 es divisible por 4, para todo n natural.

P (n):
$$(9^n - 1) \mod 4 = 0$$
, ∀ n ∈ N.

$$P(1): (9^1 - 1) \mod 4 = 0$$

$$P(1): (9-1) \mod 4 = 0$$

$$P(1)$$
: 8 mod 4= 0

$$P(1): 0=0.$$

$$P(n+1): (9^{n+1}-1) \mod 4=0$$

$$P(n+1): (9^n * 9 - 1) \mod 4 = 0$$

$$P(n+1)$$
: $[(9^n-1)*9+8] \mod 4=0$

$$P(n + 1): 0 = 0.$$

Por lo tanto, queda demostrada la afirmación P (n).

(g) 7^n - 1 es divisible por 6, para todo n natural.

P (n):
$$(7^n - 1) \mod 6 = 0$$
, ∀ n ∈ N.

$$P(1): (7^1 - 1) \mod 6 = 0$$

$$P(1): (7-1) \mod 6 = 0$$

$$P(1)$$
: 6 mod 6= 0

$$P(1): 0=0.$$

$$P(n+1): (7^{n+1}-1) \mod 6=0$$

$$P(n+1): (7^n * 7 - 1) \mod 6 = 0$$

$$P(n+1): [(7^n-1)*7+6] \mod 6=0$$

$$P(n + 1): 0 = 0.$$

Por lo tanto, queda demostrada la afirmación P (n).

(h)
$$\sum_{h=1}^{n} h * h! = (n+1)! - 1$$
, para todo n, n natural.

$$P(n): \sum_{h=1}^{n} h * h! = (n+1)! - 1, \forall n \in \mathbb{N}.$$

P (1):
$$\sum_{h=1}^{1} h * h! = (1+1)! - 1$$

P (1): 1 * 1!= 2! - 1

$$P(1) \cdot 1 * 1! = 2! - 1$$

$$P(1): 1 * 1 = 2 - 1$$

$$P(1): 1=1.$$

P (n + 1):
$$\sum_{h=1}^{n+1} h * h! = \sum_{h=1}^{n} h * h! + (n+1) (n+1)!$$

P (n + 1): $\sum_{h=1}^{n+1} h * h! = (n+1)! - 1 + (n+1) (n+1)!$
P (n + 1): $\sum_{h=1}^{n+1} h * h! = (n+1)! (n+1+1) - 1$
P (n + 1): $\sum_{h=1}^{n+1} h * h! = (n+1+1)! - 1$.

$$P(n+1): \sum_{h=1}^{n+1} h * h! = (n+1)! - 1 + (n+1)(n+1)!$$

$$P(n+1): \sum_{h=1}^{n+1} h * h! = (n+1)! (n+1+1) - 1$$

$$P(n+1): \sum_{h=1}^{n+1} h * h! = (n+1+1)! - 1.$$

Por lo tanto, queda demostrada la afirmación P (n).

(i)
$$\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$$
, para todo n, n natural.

$$P(n): \sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}, \forall n \in \mathbb{N}.$$

P (1):
$$\sum_{i=1}^{1} i(i+1) = \frac{1(1+1)(1+2)}{3}$$

P (1): 1 (1+1)= $\frac{1*2*3}{3}$

P (1): 1 (1 + 1)=
$$\frac{1*2*3}{2}$$

$$P(1): 1 * 2 = \frac{6}{3}$$

$$P(1): 2=2.$$

$$P(n+1): \sum_{i=1}^{n+1} i(i+1) = \sum_{i=1}^{n} i(i+1) + (n+1)(n+1+1)$$

$$P(n+1): \sum_{i=1}^{n+1} i(i+1) = \frac{n(n+1)(n+2)}{2} + (n+1)(n+2)$$

P (n + 1):
$$\sum_{i=1}^{n+1} i(i+1) = \frac{n(n+1)(n+2)+3(n+1)(n+2)}{n(n+1)(n+2)+3(n+1)(n+2)}$$

$$P(n+1) \cdot \nabla^{n+1} i(i+1) = \frac{(n+1)(n+2)(n+3)}{n+3}$$

P (n + 1):
$$\sum_{i=1}^{n+1} i(i+1) = \frac{(n+1)(n+2)(n+3)}{3}$$

$$\begin{split} & \text{P (n + 1): } \sum_{i=1}^{n+1} i(i+1) = \sum_{i=1}^{n} i(i+1) + (n+1) (n+1+1) \\ & \text{P (n + 1): } \sum_{i=1}^{n+1} i(i+1) = \frac{n(n+1)(n+2)}{3} + (n+1) (n+2) \\ & \text{P (n + 1): } \sum_{i=1}^{n+1} i(i+1) = \frac{n(n+1)(n+2) + 3(n+1)(n+2)}{3} \\ & \text{P (n + 1): } \sum_{i=1}^{n+1} i(i+1) = \frac{(n+1)(n+2)(n+3)}{3} \\ & \text{P (n + 1): } \sum_{i=1}^{n+1} i(i+1) = \frac{(n+1)[(n+1) + 1][(n+1) + 2]}{3}. \end{split}$$

(j)
$$\sum_{h=1}^{n} 8 * 3^{h-1} = 4 (3^n - 1)$$
, para todo n, n natural.

$$P(n): \sum_{h=1}^{n} 8 * 3^{h-1} = 4 (3^n - 1), \forall n \in \mathbb{N}.$$

$$\begin{array}{l} P\ (1): \sum_{h=1}^{1} 8*3^{h-1} = 4\ (3^{1}-1) \\ P\ (1): 8*3^{1-1} = 4\ (3-1) \\ P\ (1): 8*3^{0} = 4*2 \\ P\ (1): 8*1 = 8 \\ P\ (1): 8 = 8. \\ \end{array}$$

$$\begin{array}{l} P\ (n+1): \sum_{h=1}^{n+1} 8*3^{h-1} = \sum_{h=1}^{n} 8*3^{h-1} + 8*3^{n+1-1} \\ P\ (n+1): \sum_{h=1}^{n+1} 8*3^{h-1} = 4\ (3^{n}-1) + 8*3^{n} \\ P\ (n+1): \sum_{h=1}^{n+1} 8*3^{h-1} = 4*3^{n} - 4 + 8*3^{n} \\ P\ (n+1): \sum_{h=1}^{n+1} 8*3^{h-1} = 12*3^{n} - 4 \\ P\ (n+1): \sum_{h=1}^{n+1} 8*3^{h-1} = 4*3*3^{n} - 4 \\ P\ (n+1): \sum_{h=1}^{n+1} 8*3^{h-1} = 4*3^{n+1} - 4 \\ P\ (n+1): \sum_{h=1}^{n+1} 8*3^{h-1} = 4*3^{n+1} - 4 \\ P\ (n+1): \sum_{h=1}^{n+1} 8*3^{h-1} = 4\ (3^{n+1}-1). \end{array}$$

Por lo tanto, queda demostrada la afirmación P (n).

(k)
$$\sum_{h=1}^{n} 6h - 5 = n (3n - 2)$$
, para todo n, n natural.

$$P(n): \sum_{h=1}^{n} 6h - 5 = n (3n - 2), \forall n \in \mathbb{N}.$$

P (1):
$$\sum_{h=1}^{1} 6h - 5 = 1 (3 * 1 - 2)$$

P (1): 6 * 1 - 5 = 1 (3 - 2)

$$P(1): 6 - 5 = 1 * 1$$

$$P(1)$$
: $1=1$.

$$\begin{split} & P \ (n+1) \colon \sum_{h=1}^{n+1} 6h - 5 = \sum_{h=1}^{n} 6h - 5 + 6 \ (n+1) - 5 \\ & P \ (n+1) \colon \sum_{h=1}^{n+1} 6h - 5 = n \ (3n-2) + 6n + 6 - 5 \\ & P \ (n+1) \colon \sum_{h=1}^{n+1} 6h - 5 = 3n^2 - 2n + 6n + 1 \\ & P \ (n+1) \colon \sum_{h=1}^{n+1} 6h - 5 = 3n^2 + 4n + 1 \\ & P \ (n+1) \colon \sum_{h=1}^{n+1} 6h - 5 = (n+1) \ (3n+1) \\ & P \ (n+1) \colon \sum_{h=1}^{n+1} 6h - 5 = (n+1) \ [3 \ (n+1) - 2]. \end{split}$$

Ejercicio 39.

Evaluar sin realizar la suma (no dejar de relacionarlo con el Ejercicio 38).

(a)
$$\sum_{h=10}^{34} 3h$$
.

$$\begin{split} & \sum_{h=10}^{34} 3h = \sum_{h=1}^{34} 3h - \sum_{h=1}^{9} 3h \\ & \sum_{h=10}^{34} 3h = \frac{3}{2} * 34 (34+1) - \frac{3}{2} * 9 (9+1) \\ & \sum_{h=10}^{34} 3h = 3 * 17 * 35 - \frac{3}{2} * 9 * 10 \\ & \sum_{h=10}^{34} 3h = 1785 - 135 \\ & \sum_{h=10}^{34} 3h = 1650. \end{split}$$

(b)
$$\sum_{i=7}^{50} i^2$$
.

$$\begin{split} & \sum_{i=7}^{50} i^2 = \sum_{i=1}^{50} i^2 - \sum_{i=1}^{6} i^2 \\ & \sum_{i=7}^{50} i^2 = \frac{50(50+1)(2*50+1)}{6} - \frac{6(6+1)(2*6+1)}{6} \\ & \sum_{i=7}^{50} i^2 = \frac{50*51(100+1)}{6} - \frac{6*7(12+1)}{6} \\ & \sum_{i=7}^{50} i^2 = \frac{50*51*101}{6} - \frac{6*7*13}{2} \\ & \sum_{i=7}^{50} i^2 = \frac{257550}{6} - 7*13 \\ & \sum_{i=7}^{50} i^2 = 42925 - 91 \\ & \sum_{i=7}^{50} i^2 = 42834. \end{split}$$

(c)
$$\sum_{h=19}^{45} 8 * 3^{h-1}$$
.

$$\begin{array}{l} \sum_{h=19}^{45} 8*3^{h-1} \! = \! \sum_{h=1}^{45} 8*3^{h-1} - \sum_{h=1}^{18} 8*3^{h-1} \\ \sum_{h=19}^{45} 8*3^{h-1} \! = \! 4 \left(3^{45} - 1 \right) - \! 4 \left(3^{18} - 1 \right) \\ \sum_{h=19}^{45} 8*3^{h-1} \! = \! 4*3^{45} - \! 4 - \! 4*3^{18} + \! 4 \\ \sum_{h=19}^{45} 8*3^{h-1} \! = \! 4*3^{45} - \! 4*3^{18} \\ \sum_{h=19}^{45} 8*3^{h-1} \! = \! 4 \left(3^{45} - \! 3^{18} \right). \end{array}$$

(d)
$$\sum_{h=4}^{20} 12h - 10$$
.

$$\begin{split} & \sum_{h=4}^{20} 12h - 10 = \sum_{h=4}^{20} 2(6h - 5) \\ & \sum_{h=4}^{20} 12h - 10 = 2 \sum_{h=4}^{20} 6h - 5 \\ & \sum_{h=4}^{20} 12h - 10 = 2 \left(\sum_{h=1}^{20} 6h - 5 - \sum_{h=1}^{3} 6h - 5 \right) \\ & \sum_{h=4}^{20} 12h - 10 = 2 \left[20 \left(3 * 20 - 2 \right) - 3 \left(3 * 3 - 2 \right) \right] \\ & \sum_{h=4}^{20} 12h - 10 = 2 \left[20 \left(60 - 2 \right) - 3 \left(9 - 2 \right) \right] \\ & \sum_{h=4}^{20} 12h - 10 = 2 \left(20 * 58 - 3 * 7 \right) \end{split}$$

$$\begin{array}{l} \sum_{h=4}^{20} 12h - 10 = 2 \ (1160 - 21) \\ \sum_{h=4}^{20} 12h - 10 = 2 * 1139 \\ \sum_{h=4}^{20} 12h - 10 = 2278. \end{array}$$

(e)
$$\sum_{j=21}^{35} 4j^3$$
.

$$\begin{split} & \sum_{j=21}^{35} 4j^3 = 4 \sum_{j=21}^{35} j^3 \\ & \sum_{j=21}^{35} 4j^3 = 4 \left(\sum_{j=1}^{35} j^3 - \sum_{j=1}^{20} j^3 \right) \\ & \sum_{j=21}^{35} 4j^3 = 4 \left[\frac{35^2 (35+1)^2}{4} - \frac{20^2 (20+1)^2}{4} \right] \\ & \sum_{j=21}^{35} 4j^3 = 4 \left(\frac{35^2 36^2}{4} - \frac{20^2 21^2}{4} \right) \\ & \sum_{j=21}^{35} 4j^3 = 4 \left(\frac{1225*1226}{4} - \frac{400*441}{4} \right) \\ & \sum_{j=21}^{35} 4j^3 = 4 \left(\frac{1501850}{4} - \frac{176400}{4} \right) \\ & \sum_{j=21}^{35} 4j^3 = 4 \frac{1325450}{4} \\ & \sum_{j=21}^{35} 4j^3 = 1325450. \end{split}$$