## Linear Algebra I Problem Set 1: Matrix Operations

Dr Nicholas Sedlmayr

Friday January 15th 2016

Due: In class, January 22nd 2016

1. Calculate the rank of the following matrices by converting them to echelon form (4)

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 2 \\ 3 & 8 & -6 & 7 & 2 \\ 7 & -6 & 5 & 4 & 4 \\ 1 & 2 & 1 & -1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 & 4 \\ 2 & 1 & 0 & 3 \\ 1 & -1 & 1 & 1 \\ 1 & 2 & 1 & 1 \end{pmatrix}$$

2. Calculate the inverses of the following square matrices (4)

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 8 & 6 & 7 \\ 7 & 6 & 5 & 4 \\ 1 & 2 & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 & 4 \\ 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 \end{pmatrix}$$

3. Write down the  $5\times 5$  matrices which correspond to the following elementary row operations: (2)

• 
$$\rho_2 := \rho_2 - 3\rho_4$$

• 
$$\operatorname{swap}(\rho_2, \rho_5)$$

4. Prove that for a square matrix **A** with an inverse **B** such that  $\mathbf{AB} = \mathbb{I}$  that there is a matrix **C** satisfying  $\mathbf{CA} = \mathbb{I}$  and that the inverse of **A** is unique. (10)

(a) For any  $n \times n$  row operation matrix **R** show directly that it has an inverse  $\mathbf{RS} = \mathbf{SR} = \mathbb{I}$ .

(b) Show for a matrix **R** composed of many elementary row operations  $\mathbf{R} = \mathbf{R}_1 \mathbf{R}_2 \dots \mathbf{R}_n$  that it does not have a row entirely made of zeros. (*Tip: This follows from* (a).)

(c) Prove that if  $\mathbf{AB} = \mathbb{I}$  for square matrices  $\mathbf{A}$  and  $\mathbf{B}$  then there exists a matrix  $\mathbf{C}$  satisfying  $\mathbf{CA} = \mathbb{I}$ . (Tip: By considering the matrix  $\mathbf{RA}$  which is in echelon form and  $\mathbf{AB} = \mathbb{I}$  show that  $\mathrm{rk} \, \mathbf{A} = n$ . We have seen in the class that if an  $n \times n$  matrix has rank n it has a left inverse.)

(d) Prove that  $\mathbf{B} = \mathbf{C}$  and therefore the inverse of  $\mathbf{A}$  is unique.

Total available marks: 20