

"Roles in THÖR-Magni dataset are powerful cues on future motion"

"Deep Learning models leverage roles to enhance the motion predictions"

THÖR-Magni: Comparative Analysis of Deep Learning Models for Role-conditioned Human Motion Prediction

Tiago Rodrigues de Almeida, Andrey Rudenko, Tim Schreiter, Yufei Zhu, Eduardo Gutierrez Maestro, Lucas Morillo-Mendez, Tomasz P. Kucner, Oscar Martinez Mozos, Martin Magnusson, Luigi Palmieri, Kai O. Arras, and Achim J. Lilienthal

Introduction

- THÖR-Magni is a diverse multi-modal dataset of human trajectories
- Roles correspond to <u>various activities</u> or <u>heterogeneous types of</u> <u>agents</u>
- Role-conditioned Trajectory Prediction: aims to infer the future state sequence (Y_i) from the input (X_i) , given the class label (r_i)

Methods

THOR-Magni dataset

Accurate: motion capture recording of social motion **Diverse:** moving alone, groups and performing various tasks Multi-modal: LiDAR point clouds from a moving robot, gaze-tracking data

Deep Learning models

Single Output

nconditiona

Conditional

Contact me

Results

• Class-conditioned prediction methods outperform their class-agnostic counterparts

Methods	Scores	Magni-S2	Magni-S3A	Magni-S3B
LSTM	ADE	0.71±0.05	0.70±0.03	0.73±0.04
	FDE	1.42±0.09	1.41±0.07	1.48±0.08
cLSTM	ADE	0.69±0.05	0.68±0.03	0.72±0.04
	FDE	1.35±0.08	1.35±0.06	1.45±0.07
TFb	ADE	0.72±0.05	0.72±0.03	0.75±0.04
	FDE	1.42±0.09	1.43±0.08	1.50±0.08
cTFb	ADE	0.68±0.06	0.69±0.03	0.73±0.05
	FDE	1.32±0.10	1.37±0.07	1.47±0.07
GAN	ADE	0.68±0.08	0.67±0.04	0.67±0.05
	FDE	1.35±0.15	1.34±0.07	1.36±0.10
	CLL	4.99±0.20	5.24±0.39	5.12±0.33
cGAN	ADE	0.62±0.06	0.62±0.04	0.64±0.04
	FDE	1.23±0.11	1.21±0.10	1.25±0.05
	CLL	4.68±0.28	4.68±0.25	4.92±0.23
VAE	ADE	0.60±0.05	0.62±0.03	0.64±0.04
	FDE	1.19±0.07	1.21±0.08	1.24±0.07
	CLL	4.64±0.27	4.71±0.28	4.95±0.28
cVAE	ADE	0.60±0.04	0.58±0.06	0.63±0.05
	FDE	1.17±0.07	1.15±0.04	1.23±0.08
	CLL	4.51±0.25	4.45±0.28	4.75±0.29

Future work

- Automated class label inference
- Validation in outdoor scenarios
- Transparent and explainable models for class-conditioned motion

Further works on trajectory prediction

- Human motion trajectory prediction: a survey
- CLiFF-LHMP: Using Spatial Dynamics Patterns for Long-Term Human Motion Prediction

Likely, Ligh, and Accurate Context-Free Clusters-based Trajectory Prediction

