

Homework rules

- Only accept C
- Filename : [student ID]_[hw1]-[question number]
- E.g. 7110012345_hw1-1.c
- Zip all your files and hand in on the iLearning
- Deadline 2021/10/26 23:59
- Please add comments in your code
- If any question, you can contact TA.
- nchuds110@gmail.com
- Do not copy! 0 points for plagiarism!

Question I. (30%)

Preorder conversion:

- 1. Reading the test data from input 1.txt
- 2. Each line contains a string (length ≤ 100)
- 3. Output the preorder of the expression

Other details:

Please refer to the original book for the priority of arithmetic symbols.

If their priority are the same, the left side executes first.

Hint: use stack to do the preorder conversion

The arithmetic symbols used in question I

```
()
* % /
+ -
> < (relational)
& ^ | (bitwise)
```

Example of the input

- Operands include integers, floating-point numbers, letters, all can be negative.
- Uppercase and lowercase letters are different.

- 1002+5*7
- \bullet A|B*(C+D)
- 76.001%12&(C/9)>7*x
- 37*-A>-44*41*25--29&-11^-24<13/-z
- $(-48^2\%-2.4*40)+((x+y)*(W+(5.6*b)))$

Example of the output

- Please output the result in output_1.txt
- For the output, use a space to separate each operator and operand.
- Each line contains a result of one testing data.
- No need to add parentheses when outputting the answer.

- + 1002 * 5 7
- | A * B + C D
- & % 76.001 12 > / C 9 * 7 x
- $^{\wedge}$ & > * 37 -A * * -44 41 25 -29 -11 < -24 / 13 -z
- + $^{\land}$ -48 * $^{\circ}$ 2 -2.4 40 * + x y + W * 5.6 b

Question 2. (30%)

Evolution of cells:

There is a group of cells in a two-dimensional plane, we will use a program to simulate them.

In order to facilitate the simulation, this question uses N*N squares and each of the elements representing a cell.

Each cell has at most eight neighbors (up and down, left and right, top left and bottom left, and top right and bottom right)

Rules of evolution

• Each cell has two states: live or death

• For living cells :

- (1) Among the eight adjacent cells: only one or none of them is live, then the next generation of this cell will die due to loneliness.
- (2) Among the eight adjacent cells: two or three are living cells, then the next generation of this cell will survive.
- (3) Among the eight adjacent cells: four or more are living cells, then the next generation of this cell will die due to congestion.

• For dead cells:

• (1) Only when there are exactly three of the eight adjacent cells are living cells, the next generation of this cell will revive to become a living cell, otherwise it will still a dead cell.

Rules of evolution

$\mathbf{\Omega}$	Λ	$\mathbf{\Omega}$	\cap	$\mathbf{\Omega}$	Λ
U	0	U	U	0	U

$$0 \, 1 \, 1 \rightarrow 0 \, 0 \, 1$$

Input

- Read file (input_2.txt)
- We will use a square array to record the cells.
- The first line contains a integer: How much test data is in the input file.
- The first row of each test data contains two integers N and G.
 - N: indicates the size of the array is N*N. ($N \le 500$)
 - G: indicates how many generations that we will simulate.
- For the next N rows, there are N integers each representing a cell.
 - 0: the cell is dead
 - 1: the cell is live

Example of the input

4 2

Output

- Please output the result in output_2.txt
- Use the sparse matrix to output the answer after g times of evolution.
- Example :
- 4 4 4 (rows, cols, number of non-zero items)
- 0 2 2 (row, col, number of surviving neighbors)
- 0 3 2
- 1 3 3
- 2 2 1

Question 3. (40%)

Over the mountains:

Today, a special force comes to the battlefield. In order to retain their physical strength, they must take the most energy-saving route to reach some tactical locations.

Rules:

- 1. The physical strength will be consumed depends on the height difference between the next step and the current step.
- 2. Eight directions of movement: north, northeast, east, southeast, south, southwest, west, and northwest.
- 3. All destinations must be visited once, and there is no restriction on the order.

Input

- Read the input 3.txt
- The first line contains a integer: How much test data is in the input file.
- The second line contains two integers d and n:

d: how many destinations to be visited $(1 \le d \le 5)$

n: indicates the size of the map. ($5 \le n \le 100$)

- The third line contains two integers x and y indicate the starting point.
- The following d rows are the destination coordinates (d_x, d_y) .
- Then, the next n rows (each row contains n elements) are the map data.

Output

- Find the path with the least consumption.
- On the first line of each result, print the sequence number of each test data.
- Then print the cost (energy consumption).
- Please output the result in output_3.txt

Simple example

Input

1

1 5

0 0

44

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

44444

65655

Output

#1

cost:4