Research project meeting summary: Trajectory Module for Launcher MDAO

Jorge L. Valderrama 1 Dr. Annafederica Urbano 2 Dr. Mathieu Balesdent 3 Dr. Loïc Brevault 4

 $^1 \rm ISAE\text{-}SUPAERO,\, MSc.$ in Aerospace Engineering $^2 \rm ISAE\text{-}SUPAERO,\, DCAS$ $^3 \rm ONERA,\, DTIS$ $^4 \rm ONERA,\, DTIS$

December 9, 2020

Plan:

- Review of previous work
 - Propulsion checks
 - These are the optimization results for a 11 ton 400 km mission
- 2 Key points discussed
 - Models to be used from LAST
- 3 Future actions

This is how I'm modeling the propulsion module. Given O/F, P_c, P_e, P_a and T at vacuum compute:

- From O/F and P_c: Use Rocket CEA to obtain γ_t , T_c and M_c
- From γ_t , T_c and M_c : $c^* = \eta_{c^*} * \frac{\sqrt{\gamma_t R T_c}}{\gamma_t (\frac{2}{\gamma_t + 1})^{\frac{\gamma_t + 1}{(\gamma_t 1)2}}}$

$$\begin{aligned} & \text{ From } \gamma_t, \, \epsilon, \, P_c, \, P_e \text{ and } P_a = 0; \\ & C_f = \eta_{c_f} \sqrt{\frac{2\gamma_t^2}{\gamma_t - 1} * \frac{2}{\gamma_t + 1} \frac{\gamma_t + 1}{\gamma_t - 1}} * \left(1 - \left(\frac{P_e}{P_c}\right)^{\frac{\gamma_t - 1}{\gamma_t}}\right) + \frac{\eta_{c_f} \epsilon}{P_c} * (P_e - P_a) \end{aligned}$$

Propulsion checks

- \bullet From c^{\star} and C_f : $I_{sp} = \frac{c^{\star}}{g_0}$
- **6** From $I_{\rm sp}$ and T: $\dot{m} = \frac{T}{I_{\rm sp}g_0}$
- **7** From \dot{m} , P_c and c^* : $A_t = \frac{c^* \dot{m}}{P_c}$
- **8** From A_t and ϵ : $A_e = A_t \epsilon$

Optimizati			
Design parameters:			
besign parameters: Design parameters marked with (***) are	close to their	hounds on viola	ata tham
Name		value	upper
··			
lift_off.t_duration	1.0	7.5705	100.0
pitch_over_linear.t_duration (***)	1.0	1.0	100.0
pitch over exponential.t duration (***)	1.0	1.0	100.0
gravity turn.t duration	1.0	128.36	200.0
xi	-1.0	-0.2148	1.0
delta theta pitch over	0.0175	0.0905	0.1396
delta theta exoatmos	-1.0472	-0.2116	1.0472
theta_f	-1.0472	0.0492	1.0472
phase duration a dp (***)	1.0	1.0	500.0
phase duration b dp	1.0	51.5159	500.0
phase duration c dp	1.0	256.4655	500.0
P c stage 2 (***)	6000000.0	10000000.0	10000000.0
P e stage 2	0.0	1303.9381	10000.0
o f stage 2	1.2	2.3589	5.4
TW b	0.1	0.834	2.0
mp 2	10000.0	44619.5343	200000.0
max n f 2	1.0	7.0864	10.0
P c stage 1 (***)	6000000.0	10000000.0	10000000.0
P_e_stage_1	40530.0	43018.1172	200000.0
of stage 1	1.2	2.3017	5.4
TW a	0.1	1.7209	2.0
mp_1	100000.0	222362.894	600000.0
max n f 1	1.0	7.0864	10.0

Constraints: Name	lower	value	upper 6380135.0	
lift off.final value:r	6378285.0	6378285.0		
gravity turn.final value:q dvn	-1e+21	1000.0	1000.0	
exoatmos b.final value:q heat	-1e+21	1135.0	1135.0	
exoatmos c.final value:ra	6778135.0	6778135.0	6798135.0	
exoatmos c.final value:rp	6523135.0	6523135.0	1e+21	
propulsion stage 2.nozzleExitArea.Ae	0.1	8.5	8.5	
nozzleExitArea.Ae	0.01	0.67	0.67	
Jettison.residual ms 1	0.0	-0.0	1e+30	
Jettison.residual mplf	0.0	0.0	1e+30	
Jettison.residual m final	0.0	-0.0	1e+30	
Propellants.residual mp 1	0.0	-0.0	1e+30	
Propellants.residual mp 2	0.0	-0.0	1e+30	
LoadFactor.residual max n f 1	0.0	-0.0	1e+30	
LoadFactor.residual_max_n_f_2	0.0	-0.0	1e+30	


```
Vehicle paramaters
Payload mass (kg):
                                        11000.0
Fairing mass (kg):
                                        1900.0
First stage:
   Structural mass (kg):
                                        11159.87
   Propellants mass (kg):
                                        222362.89
   Structural coef ():
                                        0.05
   Thrust (N):
                                        4950140.8
   Isp (opt) (s):
                                        315.38
   S (m^2):
                                        37.5
   Ae t (m^2):
                                        6.03
Second stage:
   Structural mass (kg):
                                        2272.7
   Propellants mass (kg):
                                        44619.53
   Structural coef ():
                                        0.05
   Thrust (N):
                                        489000.48
   Isp (opt) (s):
                                        346.45
   S (m^2):
                                        37.5
   Ae t (m^2):
                                        8.5
First stage flight with fairing:
    Tw ratio ():
                                        1.72
Second stage flight with fairing:
   Tw ratio ():
                                        0.83
Objective:
                                        value
Initial mass (ton):
                                        293.315
Initial guess:
                                        initial guess/F9 11Ton 400km.db
Performance:
Message:
                                        Optimization terminated successfully.
Number of iterations:
Number of gradient evaluations:
Number of function evaluations:
Optimization time (s):
                                        4.8
```


I did a comparison of the values of I_{sp} obtained with my propulsion module and Rocket CEA using the Frozen settings. I used $\eta_{c\star} = \eta_{C_f} = 1$

			Propulsion Model	Rocket CEA
Inputs		$\gamma_{ m t}$	1.2182	1.2182
$\frac{\text{Inputs}}{\text{P}_{\text{c}}(\text{MPa})}$	10	$t_{c}(K)$	3619.44	3619.42
$P_{e}(kPa)$	40.53	$m_{\rm c}({ m g/mol})$	22.435	22.434
O/F 2.3069	$c^{\star}(m/s)$	1776.2	1776.9	
	2.3009	ϵ	22.664	21.396
		$I_{\mathrm{sp}_{\mathrm{vac}}}(\mathrm{s})$	329.15	326.39

There's an error of around 1% on the value of $I_{\rm sp}$ and I think it comes from an error on the calculation of ϵ . For ϵ I double checked my equations and I don't know what could be causing this error.

Key points discussed

This is the xdsm from LAST mass module. There's also a coded version for an expendable launcher, it ignores grid fins and landing legs.

Key points discussed

I don't think is a good idea to plug the whole module because of the feedback loop. I would try an AAO approach instead. There's also a different approach to the definition of mass of propellants. I'm thinking on taking individual modules, implementing the "engine", "propellants feeding systems" and "additional mass" first.

Future actions

Work more on the refinement of the structural module.