异步串口通信电缆制作实验

同济大学软件学院

串口通信简介

串口通讯(Serial Communication)是一种设备间非常常用的串行通讯方式,因为它简单便捷,因此大部分电子设备都支持该通讯方式,在调试设备时也经常使用该通讯方式输出调试信息。

在计算机科学里,大部分复杂的问题都可以通过分层来简化。如芯片被分为内核层和片上外设。一般软件标准库则是在寄存器与用户代码之间的软件层。

串口通信简介

对于通讯协议,我们也以分层的方式来理解,最基本的是把它分为物理层和协议层。物理层规定通讯系统中具有机械、电子功能部分的特性,确保原始数据在物理媒体的传输。

协议层主要规定通讯逻辑,统一收发双方的数据打包、解包标准。简单来说物理层规定我们用嘴巴还是用肢体来交流,协议层则规定我们用中文还是英文来交流。

串口通信标准

1.示意结构

2.RS-232-C 与TTL 5V

通讯标准	电平标准(发送端)		
5V TTL	逻辑 1: 2.4V-5V 逻辑 0: 0~0.5V		
RS-232	逻辑 1: -15V~-3V 逻辑 0: +3V~+15V		

串口通信标准

3. 电平对比

1.PC端连接端子 及串口线

COM口即DB9接口

串口线

2.连接端子公头母头

其中接线口以针式引出信号线的称为公头,以孔式引出信号线的称为母头。在计算机中一般引出公头接口,使用上图中的串口线即可把它与计算机连接起来。?!通讯时,串口线中传输的信号就是使用前面讲解的RS-232标准调制的。

3.DB连接端子---"D"型连接器

串口

连接

4.引脚 信号

序号	名称	符号	数据方向	说明
1	载波检测	DCD	DTE→DCE	Data Carrier Detect,数据载波检测,用于DTE 告知对方,本机是否收到对方的载波信号
2	接收数据	RXD	DTE←DCE	Receive Data,数据接收信号,即输入。
3	发送数据	TXD	DTE→DCE	Transmit Data,数据发送信号,即输出。两个设备之间的 TXD 与 RXD 应交叉相连
4	数据终端 (DTE) 就 绪	DTR	DTE→DCE	Data Terminal Ready,数据终端就绪,用于DTE 向对方告知本机是否已准备好
5	信号地	GND	•	地线,两个通讯设备之间的地电位可能不一 样,这会影响收发双方的电平信号,所以两 个串口设备之间必须要使用地线连接,即共 地。
6	数据设备 (DCE) 就 绪	DSR	DTE←DCE	Data Set Ready,数据发送就绪,用于 DCE 告知对方本机是否处于待命状态
7	请求发送	RTS	DTE→DCE	Request To Send,请求发送, DTE 请求 DCE 本设备向 DCE 端发送数据
8	允许发送	CTS	DTE←DCE	Clear To Send, 允许发送, DCE 回应对方的 RTS 发送请求, 告知对方是否可以发送数据
9	响铃指示	RI	DTE←DCE	Ring Indicator,响铃指示,表示 DCE 端与线路已接通

5.连接方式交叉和直通

DB9直通线与23交叉线两头接线顺序区别如下:				
DB9直通线	DB9 23交叉线			
一头 另一头	一头 另一头			
1 1	1 ——— 1			
2 ——— 2	$2 \sim 2$			
3 — 3	$3 \longrightarrow 3$			
4 ——— 4	4 — 4			
5 — 5	5 — 5			
6 — 6	6 — 6			
7 — 7	7 — 7			
8 ——— 8	8 ——— 8			
9 —— 9	9 —— 9			

1.串口通讯的数据包由发送设备通过自身的TXD接口传输到接收设备的RXD接口。在串口通讯的协议层中,规定了数据包的内容,它由启始位、主体数据、校验位以及停止位组成,通讯双方的数据包格式要约定一致才能正常收发数据,其组成见图:

2.波特率

本实验讲解的是串口异步通讯,异步通讯中由于没有时钟信号(如前面讲解的DB9接口中是没有时钟信号的),所以两个通讯设备之间需要约定好波特率,即每个码元的长度,以便对信号进行解码,上图中用虚线分开的每一格就是代表一个码元。常见的波特率为4800、9600、115200等。

3. 通讯的起始和停止信号

串口通讯的一个数据包从起始信号开始, 直到停止信号结束。数据包的起始信号由一 个逻辑O的数据位表示,而数据包的停止信 号可由O.5、1、1.5或2个逻辑1的数据位表 示,只要双方约定一致即可。

4. 有效数据

在数据包的起始位之后紧接着的就是要 传输的主体数据内容,也称为有效数据,有 效数据的长度常被约定为5、6、7或8位长。

5.数据校验

在有效数据之后,有一个可选的数据校验位。由于数据通信相对更容易受到外部干扰导致传输数据出现偏差,可以在传输过程加上校验位来解决这个问题。校验方法有奇校验(odd)、偶校验(even)、O校验(space)、1校验(mark)以及无校验(noparity)。

6.数据奇偶校验

奇校验要求有效数据和校验位中"1"的个数为奇数,比如一个8位长的有效数据为:01101001,此时总共有4个"1",为达到奇校验效果,校验位为"1",最后传输的数据将是8位的有效数据加上1位的校验位总共9位。

偶校验与奇校验要求刚好相反,要求帧数据和校验位中"1"的个数为偶数,比如数据帧:11001010,此时数据帧"1"的个数为4个,所以偶校验位为"0"。0校验是不管有效数据中的内容是什么,校验位总为"0",1校验是校验位总为"1"。

实验内容

- 1.观测计算机连接端口,尤其DB连接器;
- 2.查看串口连接线端子(公母头)及引脚编号对照前面信号定义;
 - 3.思考串口通信过程。
- 4.本实验是制作串口电缆(由于实验条件所限:缺乏焊接设备,端子部件等),在条件许可下可以拆解串口连接线的连接端子观测。

问题讨论分析

- 1.直通连接和交叉连接不同;
- 2.两台PC连接需要直通连接线还是交叉连接线?
- 3. 串口连接至少需要几根线?
- 4.两个串口交叉线,每根串口线端子是一公一母,如需一根直通线,如何制作?

