UNIVERSITY OF MIAMI

Department of Electrical and Computer Engineering ECE 203

Name:	
Section:	
Date:	

EXPERIMENT 1

VOLTAGE DIVISION

PURPOSE: The purpose of this lab is to introduce a new student to the basics of electric measurements through the use of a simple voltage divider circuit.

Equipment

- 1 Variable resistance box
- 1 Digital voltmeter (DVM)
- 1 D.C. power supply
- 1 Function generator
- 1 Oscilloscope

Preliminary Work

Fig. 1.1 shows a voltage divider circuit. For this circuit find:

- a) The current I in terms of V_s, R₁, and R_L;
- b) The voltage across R_L;
- c) The DC power delivered to R_L, and
- d) The power supplied by the source.
- e) Request the instructor's help to gather information in order to answer discussion item (d).

I. <u>D.C.</u> Measurements:

a) Set up the circuit shown in Fig. 1.1. Measure and record the actual value of R₁.

Figure 1.1 Simple voltage divider circuit with DVM probes shown.

- b) Set the dc power supply to 5 V. Measure the voltages across R₁ and R_L using the DVM as shown in Fig. 1.1 (Set the DVM to measure DC). Vary the R_L to the values given in Table 1.1; measure the voltages at each point. Enter all the values in the table under the column labeled "MEASURED".
- c) Calculate the voltages across the resistors R_1 and R_L for all values of R_L shown in Table 1.1 using the formulas from your preliminary work. Enter the voltages in the table under the column labeled "CALCULATED". Compare V_{R_L} against the measured value by calculating the percentage error. Remember that the percentage error can be found from

$$\% Error = \left| \frac{Calculated \ value - Measured \ value}{Calculated \ value} \right| x \ 100\%.$$

Show a set of calculations for V_{R_1} , V_{R_2} , and %Error on V_{R_L} in detail.

	Measured		Calculated		
$R_{L}(K\Omega)$	V _{R1} (V)	V _{RL} (V)	V _{R1} (V)	V _{RL} (V)	% Error (V _{RL})
1					
5					
10					
15					
20					
40					

Measured value of $V_s = V$

Table 1.1 Measured and calculated dc voltages using DVM

d) Repeat parts (a) - (c) but use the oscilloscope instead of the DVM (see Fig. 1.2). Record your values in Table 1.2. Measure and record the actual value of R_1 . Note that the measurement has to be taken as V_{R1} =VS- V_{RL} .

Figure 1.2 Simple voltage divider circuit with oscilloscope probes shown.

	Measured		Calculated		
$R_L(K\Omega)$	V _{R1} (V)	V _{RL} (V)	V _{R1} (V)	V _{RL} (V)	% Error (V _{RL})
1					
5					
10					
15					
20					
40					

Measured value of
$$V_s =$$
_____ V

Table 1.2 Measured and calculated dc voltages using oscilloscope.

II. AC Measurements:

a) *DVM measurements:* Replace the dc power supply in Fig. 1.1 with the frequency (function) generator. Adjust the voltage to 5 V_{p-p} at 1 kHz. Repeat parts (a) - (c) of the dc measurements. Tabulate your data in Table 1.3. Note that the DVM should be in AC mode in order to measure AC rms. values.

	Measured		Calculated		
R _L (KΩ)	V _{R1} (V)	V _{RL} (V)	V _{R1} (V)	V _{RL} (V)	% Error (V _{RL})
1					
5					
10					
15					
20					
40					

Measured value of
$$V_s =$$
_____ V_{rms}

Table 1.3 Measured and calculated rms. AC voltages using DVM.

b) *Oscilloscope measurements:* Repeat part (a) of the ac measurements using the oscilloscope. Tabulate your data in Table 1.4.

	Measured		Calculated		
$R_L(K\Omega)$	V _{R1} (V)	V _{RL} (V)	V _{R1} (V)	V _{RL} (V)	% Error (V _{RL})
1					
5					
10					
15					
20					
40					

Measured value of
$$V_s =$$
______V_{p-p}

Table 1.4 Measured and calculated peak-to-peak AC voltages using oscilloscope.

Discussion of Results

- a) Comment on the benefits of using either the DVM or the SCOPE for particular situations.
- b) Find the current in the circuit of Fig. 1.1 when $R_L = 50 \text{ k}\Omega$.
- c) In the circuit of Fig. 1.3 R₁ is fixed. Derive the condition under which maximum power will be delivered to R₂. Why?

Figure 1.3 Simple voltage divider circuit.

- d) Prepare a table indicating the possible measurements that can be carried out using each equipment you used during the experiment.
- e) Write a conclusion.