Deep Learning for the Sciences

Escaping the black box

This is deep learning

Solve anything, with big data, big models, and big compute

"Normal" users dispose of none of these.

Could DL be conceptualized differently?

Yes!

- Let domain-/task-derived principles guide choice of architecture (Geometric Deep Learning)
- Make use of pre-existing, subject-specific domain knowledge

Geometric Deep Learning (GDL)

Neural network design is subject to constraints derived from the domain and the task:

- Symmetries correspond to conserved quantities
 - Invariances
 - Equivariances
- Scale separation (coarse-graining)

High-level intro: Beyond alchemy: A first look at geometric deep learning

GDL: Why it matters

- Standard DL algorithms/architectures do not satisfy constraints inherent in many tasks. E.g., convolution is not rotation-equivariant.
- Practical GDL research builds tools to handle these tasks.
- Such tasks are everywhere:
 - Medicine (MRI ...)
 - Earth sciences (the Earth is not flat ...)
 - Computer vision (need deformation, and other non-linear transformations)

Field-specific domain knowledge

- Ranges from foundational (Newton's second law) to very concrete (pressure increases with depth).
- Commonly incorporated by
 - Custom loss functions / regularizations
 - Custom layers / architectures
 - Stochasticity
 - Custom operators acting in the spectral domain

Field-specific domain knowledge: Why it matters

[Answering the rhetorical question anyway.]

- Reliability
- Explainability
- Trust
- Why waste resources to learn what we know?

Example 1: Geometric Deep Learning

TBD

Example 1: Field-specific domain knowledge

TBD