Convergence of Nonconvex Douglas-Rachford Splitting and Nonconvex ADMM

Shuvomoy Das Gupta

Thales Canada - Transportation Solutions

56th Allerton Conference on Communication, Control and Computing, 2018

Outline

Introduction

Review/Background

Characterization of minimizers

Convergence of NC-DRS

NC-ADMM: construction and convergence

Appendix

Introduction 2

What is this talk about?

this talk is about ADMM and Douglas-Rachford splitting for nonconvex problems

- the alternating direction method of multipliers (ADMM)
 - originally designed to solve convex optimization problem
- Douglas-Rachford splitting algorithm
 - ADMM is its special case in a convex setup
- both guaranteed to converge for convex problems

Introduction 3

Motivation

- nonconvex ADMM (NC-ADMM)— a heuristic based on ADMM — has become a popular heuristic to tackle nonconvex problems
- recently, NC-ADMM heuristic has been applied to
 - [Erseghe, 2014] optimal power flow problem,
 [Takapoui et al., 2017] mixed integer quadratic optimization,
 [Iyer et al., 2014] submodular minimization with nonconvex constraints ...
- ► [Diamond *et al.*, 2018] Python package NCVX implements ADMM heuristic (NC-ADMM)
 - extension of CVXPY: used by fortune 500 companies
 - NC-ADMM often produces lower objective values compared with exact solvers within a time limit
- nonconvex Douglas-Rachford splitting (NC-DRS): analogous nonconvex heuristic based on Douglas-Rachford splitting
- not much has been done to improve the theoretical understanding of such heuristics

Summary of the results

NC-DRS

- attacks the original problem directly
- optimal solutions can be characterized via the NC-DRS operator
- if deviation from a convex setup is bounded ⇒ it will converge or oscillate in a compact connected set

NC-ADMM

- works on a modified dual problem, not the original nonconvex problem
- not equivalent to NC-DRS, but there is a relationship between them
- likely to produce a lower objective value

Introduction 5

Problem in consideration

minimize a convex cost function with nonconvex constraint set

$$\begin{array}{ll}
\text{minimize}_x & f(x) \\
\text{subject to} & x \in \mathcal{C}
\end{array} \tag{OPT}$$

- ▶ *f* is closed, proper, and convex
- $ightharpoonup \mathcal{C}$ is compact, but not necessarily convex

Reformulation through indicator function

▶ indicator function of set C:

$$\delta_{\mathcal{C}}(x) = \begin{cases} 0, & \text{if } x \in \mathcal{C} \\ \infty, & \text{if } x \notin \mathcal{C} \end{cases}$$

- \blacktriangleright $\delta_{\mathcal{C}}$ is closed and proper, but not necessarily convex
- we can write

$$\begin{pmatrix} \text{minimize}_x & f(x) \\ \text{subject to} & x \in \mathcal{C} \end{pmatrix} = \text{minimize}_x f(x) + \delta_{\mathcal{C}}(x)$$

NC-ADMM and NC-DRS:

▶ NC-ADMM:

$$x_{n+1} = \mathbf{prox}_{\gamma f} (y_n - z_n)$$

$$y_{n+1} = \tilde{\mathbf{\Pi}}_{\mathcal{C}} (x_{n+1} + z_n)$$

$$z_{n+1} = z_n - y_{n+1} + x_{n+1}$$

NC-DRS:

$$x_{n+1} = \mathbf{prox}_{\gamma f}(z_n)$$

$$y_{n+1} = \tilde{\mathbf{\Pi}}_{\mathcal{C}}(2x_{n+1} - z_n)$$

$$z_{n+1} = z_n + y_{n+1} - x_{n+1}$$

both have same subroutines, but different inputs

Proximal operator of f and projection onto C

- ▶ both NC-DRS and NC-ADMM have same subroutines: first $\mathbf{prox}_{\gamma f}$, then $\tilde{\mathbf{\Pi}}_{\mathcal{C}}$ and finally \sum
- ▶ proximal operator of f evaluated at point x with parameter $\gamma > 0$:

$$\mathbf{prox}_{\gamma f}(x) = \operatorname{argmin}_{y} \left(f(y) + \frac{1}{2\gamma} ||y - x||^{2} \right)$$

- single-valued, continuous
- ightharpoonup projection onto C:

$$\operatorname{\mathbf{prox}}_{\gamma\delta_{\mathcal{C}}}(x) = \mathbf{\Pi}_{\mathcal{C}}(x) = \operatorname{argmin}_{y\in\mathcal{C}}(\|y-x\|^2)$$

- there can be multiple projections
- one such projection is denoted by $\hat{\Pi}_{\mathcal{C}}(\cdot)$

When C is convex

- ▶ *f* is closed, proper, convex
- $ightharpoonup \mathcal{C}$: convex $\Rightarrow x_n, y_n$ converge to an optimal solution for any initial condition
- ightharpoonup but $\mathcal C$ is not necessarily convex in our setup
 - convergence conditions are messy

Introduction 10

Why convergence conditions are messy?

the convergence conditions are messy because:

- ▶ subdifferential operator of $\delta_{\mathcal{C}}$ is *monotone*, but *not maximally monotone*
- $ightharpoonup
 ightharpoonup ilde{\Pi}_{\mathcal{C}}$: is expansive i.e., **not** nonexpansive
- ▶ ⇒ the underlying *reflection operator* is *expansive*

Outline

Introduction

Review/Background

Characterization of minimizers

Convergence of NC-DRS

NC-ADMM: construction and convergence

Monotone and maximally monotone operators

▶ T is monotone if for every $(x,u),(y,v) \in \mathbf{gra}T$

$$\langle x - y \mid u - v \rangle \ge 0$$

➤ T is maximally monotone if graT is not properly contained by any other monotone operator's graph

Subdifferential operator

- ▶ g: closed, proper, but not necessarily convex
- ▶ ∂g : subdifferential of g is monotone, but not maximally monotone

$$\partial g\left(x\right) = \left\{u \in \mathbf{R}^{n} \mid \left(\forall y \in \mathbf{R}^{n}\right) g\left(y\right) \geq g\left(x\right) + \left\langle u \mid y - x\right\rangle\right\}$$

Why convergence conditions are messy?

- our problem: minimize_x $f(x) + \delta_{\mathcal{C}}(x)$
- $ightharpoonup \partial f$: maximally monotone
- $\partial \delta_{\mathcal{C}}$: monotone, but **not** maximally monotone
 - $\Rightarrow \tilde{\Pi}_{\mathcal{C}}$: is expansive (i.e., **not** nonexpansive)

What is a nonexpansive operator?

T : single-valued operator on ${\bf R}^n$

▶ T is nonexpansive on \mathbf{R}^n if for every x,y and u = T(x), v = T(y) we have $\|u - v\| \le \|x - y\|$

Firmly nonexpansive operator

T : single-valued operator on ${f R}^n$

- ▶ T is firmly nonexpansive on \mathbf{R}^n if $(2T I_n)$ is nonexpansive
- a firmly nonexpansive operator is also nonexpansive
- $\mathbf{prox}_{\gamma f}$ is firmly nonexpansive

Operators that are expansive

T is a single-valued operator on \mathbf{R}^n

▶ T is expansive if there exist x,y and u=T(x),v=T(y) such that

 $lackbox ilde{\Pi}_{\mathcal{C}}$ is expansive

Outline

Introduction

Review/Background

Characterization of minimizers

Convergence of NC-DRS

NC-ADMM: construction and convergence

Compact form NC-DRS

► NC-DRS:

$$x_{n+1} = \mathbf{prox}_{\gamma f}(z_n)$$

$$y_{n+1} = \tilde{\mathbf{\Pi}}_{\mathcal{C}}(2x_{n+1} - z_n)$$

$$z_{n+1} = z_n + y_{n+1} - x_{n+1}.$$

ullet $ilde{T}$: nonconvex Douglas-Rachford operator

$$\tilde{T} = \tilde{\mathbf{\Pi}}_{\mathcal{C}} \left(2\mathbf{prox}_{\gamma f} - I_n \right) + I_n - \mathbf{prox}_{\gamma f}.$$

ullet $ilde{R}$: nonconvex reflection operator of $ilde{T}$

$$\tilde{R} = 2\tilde{T} - I_n$$

- ▶ NC-DRS in compact form: $z_{n+1} = \tilde{T}z_n = \frac{1}{2}\left(\tilde{R} + I_n\right)z_n$
- $ilde{\mathbf{\Pi}}_{\mathcal{C}}$: expansive \Rightarrow $ilde{R}$: expansive \Rightarrow root of all convergence issues

Characterization of minimizers

▶ $\operatorname{argmin}(f + \delta_{\mathcal{C}})$ is the set of minimizers of $\min_{x} f(x) + \delta_{\mathcal{C}}(x)$

$$\mathbf{prox}_{\gamma f}(\mathbf{fix}\,\tilde{T}) \subseteq \operatorname{argmin}(f + \delta_{\mathcal{C}})$$

- underlying assumptions:
 - 1. $\mathbf{zer} \left(\partial f + \partial \delta_{\mathcal{C}} \right)$ is nonempty
 - 2. $\mathbf{fix}\,\tilde{T}$ is nonempty
 - 3. $\mathbf{fix}\left\{\left(2\mathbf{\Pi}_{\mathcal{C}}-I_{n}\right)\left(2\mathbf{prox}_{\gamma f}-I_{n}\right)\right\}$ is nonempty

Outline

Introduction

Review/Background

Characterization of minimizers

Convergence of NC-DRS

NC-ADMM: construction and convergence

Setup: expansiveness of \tilde{R}

 $ightharpoonup arepsilon_{xy}^{\tilde{R}}$: expansiveness of \tilde{R} at x,y

$$\varepsilon_{xy}^{\tilde{R}} = \begin{cases} \|\tilde{R}(x) - \tilde{R}(y)\| - \|x - y\|, & \text{if } \|x - y\| < \|\tilde{R}(x) - \tilde{R}(y)\| \\ 0, & \text{else} \end{cases}$$

$$\qquad \qquad \boldsymbol{\sigma}_{xy}^{\tilde{R}} = \sqrt{\varepsilon_{xy}^{\tilde{R}}} \sqrt{\|\tilde{R}(x) - \tilde{R}(y)\| + \|x - y\|}$$

Conditions

• $(z_n)_{n \in \mathbb{N}}$: sequence of vectors generated for some chosen initial point z_0

if the following holds:

▶ there exists a $z \in \mathbf{fix} \tilde{T}$, such that $\sum_{n=0}^{\infty} \left(\sigma_{z_n z}^{\tilde{R}}\right)^2$ is bounded above, and $\|z_0 - z\|^2$ is finite

- define
$$r:=\sqrt{\|z_0-z\|^2+\sum_{n=0}^{\infty}\left(\sigma_{z_nz}^{\tilde{R}}\right)^2}$$

- B(z;r): compact ball with center z and radius r

then...

Convergence results

then one of the following will happen:

- 1. convergence to a point: the sequence $(z_n)_{n \in \mathbb{N}}$ converges to a point $z^* \in B(z;r)$
- 2. cluster points form a continuum: the set of cluster points of $(z_n)_{n\in \mathbb{N}}$ forms a nonempty compact connected set in B(z;r)

if situation 1 occurs and $\varliminf_{n \to \infty} \left(\sigma_{z_n z^\star}^{\tilde{R}}\right)^2 = 0$, then $x_n = \mathbf{prox}_{\gamma f}(z_{n-1})$ converges to an optimal solution

Some comments on convergence

- for convergence total deviation of \tilde{R} from being a nonexpansive operator over the sequence $\{(z_n,z)\}_{n\in {\bf N}}$ is bounded
- depends on the initial point
- ightharpoonup in our case $\mathcal C$ is not necessarily convex
- \blacktriangleright but, if we take $\mathcal C$ to be convex then
 - total deviation of \tilde{R} from being a nonexpansive operator over the sequence $\{(z_n,z)\}_{n\in\mathbf{N}}$ is zero
 - our convergence proof coincides with known convergence results for convex setup

Outline

Introduction

Review/Background

Characterization of minimizers

Convergence of NC-DRS

NC-ADMM: construction and convergence

Constructing NC-ADMM

- ▶ original problem: minimize $x \in C$ f(x)
- ▶ take dual and apply NC-DRS to the dual
- resultant algorithm is relaxed NC-ADMM

$$x_{n+1} = \mathbf{prox}_{\gamma f} (y_n - z_n)$$

$$y_{n+1} = \mathbf{\Pi_{conv}}_{\mathcal{C}} (z_n + x_{n+1})$$

$$z_{n+1} = z_n - y_{n+1} + x_{n+1}$$

▶ relaxed NC-ADMM solves minimize $_{x \in \mathbf{conv}C} f(x)$

Constructing NC-ADMM (continued)

relaxed NC-ADMM

$$x_{n+1} = \mathbf{prox}_{\gamma f} (y_n - z_n)$$

$$y_{n+1} = \mathbf{\Pi_{conv}}_{\mathcal{C}} (z_n + x_{n+1})$$

$$z_{n+1} = z_n - y_{n+1} + x_{n+1}$$

- solves minimize_{$x \in \mathbf{conv} C$} f(x)
- ▶ replace $\Pi_{\operatorname{\mathbf{conv}}\mathcal{C}}$ with $\tilde{\Pi}_{\mathcal{C}}$ to solve $\operatorname{minimize}_{x \in \mathcal{C}} f(x)$
- resultant algorithm is NC-ADMM:

$$x_{n+1} = \mathbf{prox}_{\gamma f} (y_n - z_n)$$

$$y_{n+1} = \tilde{\mathbf{\Pi}}_{\mathcal{C}} (x_{n+1} + z_n)$$

$$z_{n+1} = z_n - y_{n+1} + x_{n+1}$$

Constructing NC-ADMM

If C is convex

if C is convex

- strong duality holds
- ▶ Moreau's decomposition can be applied to $\delta_{\mathcal{C}}$:

$$\mathbf{prox}_{\delta_{\mathcal{C}}} + \mathbf{prox}_{\delta_{\mathcal{C}}^{\star}} = I_n$$

then:

- ▶ no information loss in constructing NC-ADMM from NC-DRS
- NC-ADMM and NC-DRS are equivalent to each other

However...

when \mathcal{C} is nonconvex

- NC-ADMM and NC-DRS are not equivalent
- reasons for the loss of equivalency:
 - 1. strict duality gap
 - 2. $\Pi_{\mathbf{conv}\,\mathcal{C}} \neq \tilde{\Pi}_{\mathcal{C}}$
 - 3. Moreau's decomposition does not hold
- NC-ADMM works on a modified dual, hence produces a lower objective value
- there is no relationship between the minimizers of the original problem and the fixed point set of the NC-ADMM operator

What if?

- is it possible to establish convergence NC-ADMM ignoring NC-DRS?
- our convergence analysis is established for
 - nonempty, compact, but not necessarily convex constraint sets
 - it is equally applicable to the smaller subclass of problems with convex constraint sets
 - in this smaller subclass of convex problems NC-ADMM and NC-DRS have the same convergence properties

Summary

- NC-DRS and NC-ADMM are very similar looking, but very different heuristics
- NC-DRS
 - attacks the original problem directly
 - optimal solutions can be characterized via the NC-DRS operator
 - will converge or oscillate in if its expansiveness of the nonconvex reflection operator is bounded
- ▶ NC-ADMM
 - works on a modified dual problem, not equivalent to NC-DRS
 - likely to produce a lower objective value

Limitations

- strong assumptions in minimizer characterization
- sufficient conditions cannot be checked directly
- numerical experiments to compare the performance of NC-ADMM with NC-DRS
- adaptive step size is not considered

End of talk

▶ if you are working on nonconvex problems using ADMM/DRS, please talk to me!

Thank you!

Questions?

Outline

Introduction

Review/Background

Characterization of minimizers

Convergence of NC-DRS

NC-ADMM: construction and convergence

Appendix

What is a maximally monotone operator?

- set-valued operator T: takes a vector x and outputs a set T(x) in ${\bf R}^n$
 - if $u \in T(x)$ then we say (x, u) is in $\operatorname{\mathbf{gra}} T$
 - $\operatorname{gra} T = \{(x, u) \mid u \in T(x)\}\$
- ▶ T is monotone if for every $(x,u),(y,v) \in \mathbf{gra}T$

$$\langle x - y \mid u - v \rangle \ge 0$$

➤ T is maximally monotone if graT is not properly contained by any other monotone operator's graph

Some comments on convergence

- ▶ total deviation of \tilde{R} from being a nonexpansive operator over the sequence $\{(z_n,z)\}_{n\in \mathbf{N}}$ is bounded
- depends on the initial point
- \triangleright in our case \mathcal{C} is not necessarily convex
- ▶ but, if we take C to be convex then
 - total deviation of \tilde{R} from being a nonexpansive operator over the sequence $\{(z_n,z)\}_{n\in\mathbf{N}}$ is zero
 - our convergence proof coincides with known convergence results for convex setup

What if?

- is it possible to establish convergence NC-ADMM ignoring NC-DRS?
- our convergence analysis is established for
 - nonempty, compact, but not necessarily convex constraint sets
 - it is equally applicable to the smaller subclass of problems with convex constraint sets
 - in this smaller subclass of convex problems NC-ADMM and NC-DRS have the same convergence properties

Proof sketch

- ▶ $(z_n)_{n \in \mathbb{N}}$ stays in the compact set B(z;r)
- \triangleright $(z_n)_{n\in\mathbb{N}}$
 - 1. either converges to a point
 - 2. or its set of cluster points forms a nonempty closed and connected set in B(z;r)
- if situation 1 occurs and $\underline{\lim}_{n\to\infty} \sigma_{z_nz^*}^2 = 0$, then x_n converges to an optimal solution

Diamond, S, Takapoui, R, & Boyd, S. 2018.

A general system for heuristic minimization of convex functions over non-convex sets.

Optimization Methods and Software, 33(1), 165–193.

Erseghe, Tomaso. 2014.
Distributed optimal power flow using ADMM.

IEEE transactions on power systems, 29(5), 2370–2380.

lyer, Rishabh, Jegelka, Stefanie, & Bilmes, Jeff. 2014.
Monotone Closure of Relaxed Constraints in Submodular
Optimization: Connections Between Minimization and
Maximization.

Pages 360–369 of: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence.
UAI'14.

Arlington, Virginia, United States: AUAI Press.

Takapoui, Reza, Moehle, Nicholas, Boyd, Stephen, & Bemporad, Alberto. 2017.

A simple effective heuristic for embedded mixed-integer quadratic programming.

International Journal of Control, 1–11.