Chapter 4 Top-Down Parsing

2022 Spring&Summer

Outline

- Top-down parsing
- Recursive-descent parsing
- LL(k) grammars
- Transforming a grammar into LL form

4.3 FIRST AND FOLLOW SETS

- The LL(1) parsing algorithm is based on the LL(1) parsing table.
- The LL(1) parsing table construction algorithm involves the First and Follow sets.

Definition:

Let X be a grammar symbol (a terminal or non-terminal) or ε . Then First(X) is a set of terminals or ε , which is defined as follows:

- 1. If X is a terminal or ε , then First(X) = {X};
- 2. If X is a non-terminal, then for each production choice

$$X \rightarrow X_1 X_2 \dots X_n$$
, First(X) contains First(X_1)-{ ε }.

Let $\alpha = X_1 X_2 ... X_n$ be a string of terminals and non-terminals,. First(α) is defined as follows:

- 1.First(α) contains First(X_1)-{ ε };
- 2.For each i=2,...,n, if for all k=1,...,i-1, First(X_k) contains ε , then First(α) constains First(X_k)-{ ε }.
- 3. If all the set $First(X_I)$.. $First(X_n)$ contain ε , the $First(\alpha)$ contains ε .

```
Algorithm for computing First(A) for all non-terminal A:
       for all non-terminal A do First(A):={ };
       while there are changes to any First(A) do
           for each production choice A \rightarrow X_1 X_2 ... X_n do
              k:=1; Continue:=true;
              while Continue= true and k<=n do
                   add First(X_k)-\{\varepsilon\} to First(A);
                   if \varepsilon is not in First(X_k) then Continue:= false;
                   k := k+1:
               if Continue = true then addsto First(A);
```

Simplified algorithm in the absence of ε -production.

for all non-terminal A do $First(A) := \{ \};$ while there are changes to any First(A) do for each production choice $A \rightarrow X_1 X_2 ... X_n$ do add $First(X_1)$ to First(A);

•Definition:

A non-terminal A is *nullable* if there exists a derivation $A = > *_{\mathcal{E}}$.

•Theorem:

A non-terminal A is *nullable* if and only if First(A) contains ε .

• Grammar for statement sequences:

```
stmt-sequence \rightarrowstmt stmt-seq'

stmt-seq' \rightarrow; stmt-sequence |\varepsilon|

stmt\rightarrows
```

List the production choices individually:

```
stmt-sequence \rightarrowstmt stmt-seq'

stmt-seq' \rightarrow; stmt-sequence

stmt-seq' \rightarrow \varepsilon

stmt-s
```

• The First sets are as follows:

```
First(stmt-sequence)={s}
First(stmt-seq')={;, ε}
First(stmt)={s}
```

• Definition:

Given a non-terminal A, the set Follow(A) is defined as follows.

- 1. if A is the start symbol, the \$ is in the Follow(A).
- 2. if there is a production $B \rightarrow \alpha A \gamma$, then $First(\gamma) \{\varepsilon\}$ is in Follow(A).
- 3. if there is a production $B \rightarrow \alpha A \gamma$, such that ε in First(γ), then Follow(A) contains Follow(B).

- Note:
 - 1. The symbol \$\mathcal{S}\$ is used to mark the end of the input.
 - 2. The empty "pseudotoken" ε is never an element of a follow set.
 - 3. Follow sets are defined only for non-terminal.

- Follow sets work "on the right" in production
- First sets work "on the left" in the production.
- Given a grammar rule $A \to \alpha B$, Follow(B) will contain Follow(A), the opposite of the situation for first sets, if $A \to B \alpha$, First(A) contains First(B), except possibly for ε .

Algorithm for the computation of follow sets: follow(start-symbol):={\$}; for all non-terminals $A \neq$ start-symbol do follow(A):={ }; while there changes to any follow sets do for each production $A \rightarrow X_1 X_2 ... X_n$ do for each X_i that is a non-terminal do add First $(X_{i+1}X_{i+2}...X_n) - \{\varepsilon\}$ to Follow (X_i) if ε is in First $(X_{i+1}X_{i+2}...X_n)$ then add Follow(A) to Follow(X_i)

- Nullable
 - Only S' is nullable
- FIRST
 - $-FIRST(ES') = \{num, (\}$
 - $-FIRST(+S) = \{+\}$
 - $-FIRST(num) = \{num\}$
 - $-FIRST((S)) = \{(\}, FIRST(S') = \{+, \epsilon\}$

 $S \rightarrow ES'$

 $S' \rightarrow \varepsilon \mid +S$

 $E \rightarrow \mathbf{num} \mid (S)$

- $-FIRST(S) = \{num, (\},$
- FOLLOW
 - $-FOLLOW(S) = \{ \}$
 - $-FOLLOW(S') = \{ \}, \}$
 - $-FOLLOW(E) = \{ +,), \$ \}$

• Example:

```
stmt-sequence \rightarrowstmt stmt-seq'

stmt-seq' \rightarrow; stmt-sequence

stmt-seq' \rightarrow \varepsilon

stmt-s
```

The First sets:

```
First(stmt)={s}
First(stmt-seq')={;, ε}
the Follow sets:
Follow(stmt-sequence)={$}
Follow(stmt)={;, $}
Follow(stmt-seq')={$}
```

 $First(stmt-sequence) = \{s\}$

Example: the simple expression grammar.

- (1) $exp \rightarrow exp$ addop term (2) $exp \rightarrow term$

(3) $addop \rightarrow +$

- (4) addop \rightarrow -
- (5) $term \rightarrow term \ mulop \ factor$
- (6) $term \rightarrow factor$

(7) $mulop \rightarrow *$

(8) factor \rightarrow (exp)

(9) $factor \rightarrow number$

The First sets:

First(exp)={(,number}

First(term)={(,number}

First(factor)={(,number}

 $First(addop) = \{+, -\}$

First(mulop)={*}

The Follow sets:

Follow (exp)= $\{ \$,+,-, \}$

Follow (addop)={(,number}

Follow (term)= $\{\$,+,-,*,\}$

Follow (mulop)={(,number}

Follow (factor)= $\{\$,+,-,*,\}$

```
Example:
                 The simplified grammar of if-statements:
(1) statement \rightarrow if-stmt
(2) statement \rightarrow other
(3) if-stmt \rightarrow if (exp) statement else-part
(4) else-part \rightarrow else statement
(5) else-part \rightarrow \varepsilon
                                        The First sets:
(6) exp \rightarrow 0
                                            First(statement)={if,other},
(7) exp \rightarrow 1
                                            First(if-stmt)={if}
                                            First(else-part)=\{else, \varepsilon\},
                                            First(exp) = \{0,1\}
the Follow sets:
  Follow(statement)={$,else},
  Follow(if-stmt)={$,else}
  Follow(else-part)={$,else},Follow(exp)={)}
```

The table-constructing rules:

- If $A \rightarrow \alpha$ is a production choice, and there is a derivation $\alpha = > *a\beta$, where a is a token, then add $A \rightarrow \alpha$ to the table entry M[A,a];
- If $A \rightarrow \alpha$ is a production choice, and there are derivations $\alpha => *\varepsilon$ and S=>\beta Aa\gamma$, where S is the start symbol and a is a token (or \$), then add $A \rightarrow \alpha$ to the table entry M[A,a];

The following algorithmic construction of the LL(1) parsing table:

Repeat the following two steps for each non-terminal A and production choice $A \rightarrow \alpha$.

- 1. For each token a in $First(\alpha)$, add $A \rightarrow \alpha$ to the entry M[A,a].
- 2. If ε is in First(α), for each element a of Follow(A) (a token or \$), add $A \rightarrow \alpha$ to M[A,a].

• Theorem:

A grammar in BNF is LL(1) if the following conditions are satisfied.

- 1. For every production $A \rightarrow \alpha_1 | \alpha_2 | ... | \alpha_n$, First $(\alpha_i) \cap$ First (α_j) is empty for all i and j, $1 \leq i, j \leq n$, $i \neq j$.
- 2. For every non-terminal A such that First(A) contains ε , First(A) \cap Follow(A) is empty.

Algorithm for automatically generating a predictive parse table from a grammar

FIRST(E) = {num,(}
FIRST(S') = {+,
$$\varepsilon$$
}
FIRST(S) = {num,(},

•Example: The simple expression grammar.

```
exp \rightarrow term \ exp'

addop \rightarrow + \mid -

term' \rightarrow mulop \ factor \ term' \mid \varepsilon

factor \rightarrow (exp) \ | number
```

```
exp' \rightarrow addop \ term \ exp' | \varepsilon

term \rightarrow factor \ term'

mulop \rightarrow *
```

First Sets

```
First(exp) = { (,number}

First(exp') = { +,-,\epsilon }

First(term)= {(,number}

First(term') = { *, \epsilon }

First(factor)= {(,number)}

First(addop)={ +,-}

First(mulop)={ *}
```

Follow Sets

```
Follow(exp) = {$, )}
Follow (exp') = {$, )}
Follow (term) = {$,+,-,}
Follow (term') = {$,+,-,}
Follow (factor) = {$,+,-,*,}
Follow (addop) = { (,number }
Follow (mulop) = { (,number }
```

M[N,T]	(number)	+	-	×	\$
exp	$\begin{array}{c} exp \rightarrow \\ term \\ exp' \end{array}$	$exp \rightarrow term \ exp'$					
exp'			$exp' \rightarrow \varepsilon$	exp' → addop term exp'	exp'→ addop term exp'		$exp' \rightarrow \varepsilon$
addop				addop→+	addop→-		
term	term→ factor term'	term→ factor term'					
term'			term'→ E	$term' \rightarrow \varepsilon$	$term' \rightarrow \varepsilon$	term' → mulop factor term'	$term' \rightarrow \mathcal{E}$
mulop						mulop→*	
factor	factor→ (exp)	factor→ number					

•Example: The simplified grammar of if-statements

M[N,T]	if	other	else	0	1	\$
statement	statement → if-stmt	Statement → other				
if-stmt	if-stmt → if (exp) statement else-part					
else-part			else-part → else statement else-part →ε			else-part →ε
exp				Exp →0	Exp →1	24

• Example: Consider the following grammar with left factoring applied.

```
(1) stmt-sequence \rightarrow stmt stmt-seq'
(2) stmt-seq' \rightarrow; stmt-sequence \mid \varepsilon

First sets:

First(stmt-sequence)={s}

First(stmt)={s}

First(stmt)={s}

First(stmt-seq')={;, $}

Follow(stmt-seq')={$}
```

M[N,T]	S	· ,	\$
stmt-sequence	stmt-sequence→ stmt stmt-seq'		
stmt	stmt→s		
stmt-seq'		stmt-seq'→ stmt-sequence	stmt-seq'→ε

• Different levels of response to errors.

Give a meaningful error message;

Determine as closely as possible the location where that error has occurred.

Some form of error correction; (error repair)

The parser attempts to infer a correct program from the incorrect one given.

•Most of the techniques for error recovery are ad hoc, and general principles are hard to come by.

- •Some important considerations that apply are the following:
 - (1) To determine that an error has occurred as soon as possible.
 - (2) After an error has occurred pick a likely place to resume the parse try to parse as much of the code as possible
 - (3) To avoid the error cascade problem.
 - (4) To avoid infinite loops on error.

Some goals conflict with each other, so that a compiler writer is forced to make trade-offs during the construction of an error handler.

•Panic mode:

A standard form of *error recovery* in recursive-decent parsers The error handler will consume a possibly large number of tokens in an attempt to find a place to resume parsing;

- The basic mechanism of panic mode:
 - A set of *synchronizing tokens* are provided to each recursive procedure;
 - If an error is encountered, the parser scans ahead, throwing away tokens until one of the synchronized tokens is seen in the input, and then parsing is resumed.

- The important decisions to be made in this error recovery method:
 - (1) What tokens to add to the synchronizing set at each point in the parse?

Follow sets are important candidates

- (2) First sets:
- > Prevent the error handler from skipping important tokens that begin major new constructs
- Detect errors early in the parse.

```
• check-input procedure: performs the early look-ahead checking
       procedure checkinput(Firstset, Followset)
       begin
               if not (token in firstset) then
                      error;
                      scanto(firstset Ufollowset)
               end if;
       end
 scanto procedure:
       procedure scanto(synchset)
       begin
               while not (token in synchset U(\$)) do
                      gettoken;
       end scanto
```

```
procedure exp(synchset)
begin
    checkinput({(,number},synchset}
    if not (token in synchset) then
          term(synchset);
          while token=+ or token=- do
                  match(token);
                  term(synchset);
          end while
        checkinput(synchset,{(,number});
    end if;
end exp;
```

```
procedure factor(synchset);
   begin
      checkinput({(,number},synchset};
      if not (token in synchset) then
          case token of
              (: match(();
                  exp({ )});
                  match());
              number:
                  match(number);
              else error;
           end case;
           checkinput(synchset, { (,number });
       end if;
    end factor;
```

- •Note: *checkinput* is called twice in each procedure
 - (1) once to verify that a token in the *First set* in the next token in the input;
 - (2) a second time to verify that a token in the *Follow set* is the next token on exit.
- This form of panic mode will generate reasonable errors.

For example, (2+-3)*4-+5 will generate exactly two error messages,

- (1) one at the first minus sign, and
- (2) one at the second plus sign.

• Note:

- In general, *synchset* is to be passed down in the recursive calls, with new synchronizing tokens added as appropriate.
- As an exception, in the case of *factor*, *exp* is called with right parenthesis only as its follow set (*synchset* is discarded)
- The kind of ad hoc analysis accompanies *panic mode* error recovery.

- •Panic mode error recovery can be implemented in LL(1) parsers
 - A new stack is required to keep the *synchset* parameters;
 - A call to *checkinput* must be scheduled by the algorithm before each generate action of the algorithm;
- The primary error situation occurs
 - The current input token is not in First(A) (or Follow(A), if ε is in First(A)), A is the non-terminal at the top of the stack.

•An alternative to the use of an extra stack is:

Build the sets of *synchronizing tokens* directly into the LL(1) parsing table, together with the corresponding actions that *checkinput* would take.

- Given a non-ternimal A at the top of the stack and an input token that is not in First(A) (or Follow(A), if ε is in First(A)), there are three possible alternative:
 - 1. Pop A from the stack.
 - 2. Successively pop tokens from the input until a token is seen for which we can restart the parse.
 - 3. Push a new non-terminal onto the stack.

- Alternative 1 (Pop) if the current input token is \$ or is in Follow(A);
- Alternative 2 (scan)
 if the current input token is not \$ and is not in First(A)UFollow(A)
- Option 3 (Push a new non-terminal) occasionally useful in special situation.

Homework of Chapter 4

4.8

```
Consider the grammar

lexp→atom|list

atom→number|identifier

list→(lexp-seq)

lexp-seq→lexp-seq lexp|lexp
```

- (1) Remove the left recursion.
- (2) Construct First and Follow sets for the nonterminals of the resulting gram mar.
- (3) Show that the resulting grammar is LL(1).
- (4) Construct the LL(1) parsing table for the resulting grammar.
- (5) Show the actions of the corresponding LL(1) parser, given the input string (a (b (2)) (c)).

Homework of Chapter 4

4.12 Questions:

- (1) Can an LL(1) grammar be ambiguous? Why or why not?
- (2) Can an ambiguous grammar be LL(1)? Why or why not?
- (3) Must an unambiguous grammar be LL(1)? Why or why not?