ECOLOGY OF A NEW ENGLAND SALT MARSH¹

SCOTT W. NIXON AND CANDACE A. OVIATT Graduate School of Oceanography

University of Rhode Island, Kingston, Rhode Island 02881

TABLE OF CONTENTS

Abstract 46	General characteristics 471
Introduction 46	Tidal patterns 473
Bissel Cove 46	Diurnal curves and system metabolism 473
Methods 46	Plankton 475
Production and metabolism 46	Benthic plants
Marsh grass production 46	Sediments
Animal respiration 46	Infauna and epifauna
Plankton metabolism 46	66 Grass shrimp 481
Benthic plant metabolism 46	66 Fish
Sediment respiration 46	57 Birds 488
Total system metabolism of the embayment 46	COMMUNITY ENERGY FLOW
Population estimates 46	68 A SIMULATION MODEL OF DIURNAL
Animals in the emergent marsh 46	Dissolved Oxygen 492
Plankton in the embayment 46	Dissolved oxygen models 492
Benthic plants and sediments 46	The Bissel Cove model 492
Infauna and epifauna 46	Simulation and verification 494
Grass shrimp 46	Effect of the tide
Fish 46	Simulation of sewage input 495
The Emergent Marsh 47	Simulated temperature increases 495
Grass and detritus 47	70 Acknowledgments 496
Animals	71 Literature Cited
THE TIDAL EMBAYMENT47	71

ABSTRACT

Measurements of the abundance of major populations, their metabolism, and the seasonal patterns of total system metabolism throughout a year were used to develop energy-flow diagrams for a New England salt-marsh embayment. The annual ecological energy budget for the embayment indicates that consumption exceeds production, so that the system must depend on inputs of organic detritus from marsh grasses. Gross production ranged from almost zero in winter to about 5 g O₂ m⁻² day⁻¹ in summer. Respiration values were similar, but slightly higher, with the maximum difference observed in fall. Populations of shrimp and fish were largest in fall, with a much smaller peak in spring. Few animals were present in the embayment from May to July, but fall populations of shrimp ranged from 250 to 800 m⁻² and fish averaged over 10 m⁻². Birds were most abundant in winter and spring. In spite of high numbers, no evidence was found that the marsh embayment exported large amounts of shrimp or fish to the estuary. Production of aboveground emergent grasses on the marsh equaled 840 g m⁻² for tall *Spartina alterniflora*, 432 g m⁻² for short *S. alterniflora*, and 430 g m⁻² for *S. patens*. These values are similar to those for New York marshes, but substantially lower than the southern marsh types. The efficiency of production of marsh grasses in the New England marsh was lower than reported for southern areas.

A simulation model based on the laboratory and field metabolism and biomass measurements of parts of the embayment system was developed to predict diurnal patterns of dissolved oxygen in the marsh. The model was verified with field measurements of diurnal oxygen curves. The model indicated the importance of the timing of high tides in determining oxygen levels and was used to explore simulated additions of sewage BOD and increases in temperature.

Key words: New England, salt marsh, ecosystem, embayment, oxygen, model, Spartina, Palaemonetes, Fundulus, detritus, production, energy

¹ Received August 29, 1972; accepted March 15, 1973.