CENG 551 Probability and Stochastic Processes for Engineers

Week # 8
Random Variables: Poisson RV's

Dr. Deniz Ozdemir Deniz.ozdemir@yasar.edu.tr Web: dozdemir.yasar.edu.tr

Plan for the Session

- Poisson Random Variables
- Continuous Random Variables
 - Multiple random variables
 - Conditioning
 - Independence

Poisson Distribution

- The probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event.
 - Number of misprints in a page/book
 - Number of customers do shopping from 7/11 on a given day
 - Number of tacos sold in a particular taqueria each day
 - Number of wrong numbers that are dialed in a day
- If the expected number of occurrences in this interval is λ , then the probability that there are exactly k occurrences (k = 0, 1, 2, ...) is equal to

$$P(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

11/13/2012

PMF 0.4 0.3 0.2 0.1 0.0 0.

Properties of Poisson Distribution (λ)

• PMF: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$

- Expectation:
 - E[X] =
 - $E[X^2] =$
- Variance:
 - $E(X^2) (E[X])^2 =$

3/2012

Law of Small Numbers (rare events)

 The events being counted are actually the outcomes of discrete trials, and would more precisely be modelled using the binomial distribution.

- Binomial(n, λ/n) \rightarrow Poisson (λ) as $n \rightarrow \infty$.
- This provides a means by which to approximate random variables using the Poisson distribution rather than the morecumbersome binomial distribution.
- This limit is sometimes known as the law of rare events, since each of the individual Bernoulli events rarely triggers.
 - the total count of success events in a Poisson process need not be rare if the parameter λ is not small.
 - i.e., the number of telephone calls to a busy switchboard in one hour follows a Poisson distribution with the events appearing frequent to the operator, but they are rare from the point of the average member of the population who is very unlikely to make a call to that switchboard in that hour.

11/13/2012 6

Example: Poisson Distribution

 Suppose that the probability that an item produced by a certain machine will be defective is 0.1. What is the probability that a sample of 10 items will contain at most 1 defective item?

P(0 defected item) + P (1 defected item)

Binomial Solution: $\binom{10}{0} 1^0.9^{10} + \binom{10}{0} 1^1.9^9 = 0.7361$

Poisson Approximation: $e^{-1} \frac{\lambda^0}{0!} + e^{-1} \frac{\lambda^1}{1!} \approx 0.7358$

2012

Birthday Problem

 At a gathering of s randomly chosen students what is the probability that at least 2 will have the same birthday?

P(at least 2 have same birthday)=1-P(all *s* students have different birthdays).

Assume 365 days in a year. Think of students' birthdays as a sample of these 365 days.

The total number of possible outcomes is:

N=365^s (ordered, with replacement)

The number of ways that *s* students can have different birthdays is

M=364!/(365-s)! (ordered, without replacement)

P(all *s* students have different birthdays) =

For s = 20, P(all s students have different birthdays) = 0.58856

3/2012

Birthday Problem: Poisson Approximation

 At a gathering of n randomly chosen students what is the probability that at least 2 will have the same birthday?

Suppose we have a trial of all pairs of individuals i and j (i≠j)

Trial (i, j) is success if i and j have same birthday

 E_{ii} : Event that i and j have same birthday, $P(E_{ii}) = 1/365$

Total number of trials $\binom{n}{2} = \frac{n(n-1)}{2}$

Approximate $\lambda = np = n(n-1)/730$

P(all *n* students have different birthdays)
= P(0 success) =
$$P(X = 0) = e^{-n(n-1)/730} \frac{\lambda^0}{0!}$$

For n = 20, P(0 success) = $e^{-380/730} \approx 0.5942$

For n = 20, P(all s students have different birthdays) = 0.58856

Continuous Random Variables

Continuous Random Variables (PDF)

$$\mathbf{P}(a \le X \le b) = \int_a^b f_X(x) dx$$

$$\mathbf{P}(x \leq X \leq x + \delta) pprox f_X(x) \cdot \delta$$
 Probability density function

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

Means and Variance

• Analogous to discrete version:

$$E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$$

$$var(X) = \sigma_X^2$$
$$= \int_{-\infty}^{\infty} (x - E[X])^2 \cdot f_X(x) dx$$

Example: Uniform distribution

• PDF: $f_X(x) = \frac{1}{b-a}$ $a \le x \le b^{-\frac{1}{2}(x)}$

• Expectation:

•
$$E[X] = \frac{a+b}{2}$$

• Variance:

•
$$E(X - E[X])^2 =$$

$$\int_{a}^{b} \left(x - \frac{a+b}{2} \right)^{2} \frac{1}{b-a} dx = \frac{(b-a)^{2}}{12}$$

Cumulative Distribution Function

• CDF:
$$F_X(x) = \mathbf{P}(X \le x) = \int_{-\infty}^x f_X(t) dt$$

• Uniform Distribution

Cumulative Distribution Function

• CDF for discrete functions:

$$F_X(x) = \mathbf{P}(X \le x) = \sum_{k \le x} p_X(k)$$

• Example:

15

Standard Gaussian (Normal) PDF

• Standard Normal: N(0, 1)

• PDF:
$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

• Expectation: E[X] = 0

• Variance: Var(X)=1

General Gaussian (Normal) PDF

General Normal: $N(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2}\sigma^2$$

11/13/2012

47

Calculating Normal Probabilities

- No closed form available for CDF.
 - But, there are tables (for standard normal).
- If $X \sim N(\mu, \sigma^2)$ then

N(0, 1)

• So if
$$X \sim N(2, 16)$$
 then $P(X \le 3) = P(X \le 3) = P((X-2)/4 \le (3-2)/4)$
= $P(Z \le 0.25) =$

11/13/2012

Joint PDF $f_{X,Y}(x, y)$

$$p_{X,Y}(x,y) = \mathbf{P}(X = x \text{ and } Y = y)$$
 $f_{X,Y}(x,y)$

- $P(A) = \iint_A f_{X,Y}(x,y) dx dy$
- Interpretation $P(x \le X \le x + \delta, y \le Y \le y + \delta) \approx f_{X,Y}(x,y) \cdot \delta^2$
- Expectation

$$\mathbf{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$$

11/13/2012

22

Joint PDF $f_{X,Y}(x, y)$ II

$$\mathbf{P}(A) = \iint_A f_{X,Y}(x,y) dx dy$$

• From the joint to the marginal:

$$f_X(x) \cdot \delta \approx \mathbf{P}(x \le X \le x + \delta) =$$

$$\int_{-\infty}^{\infty} \int_{x}^{x+\delta} f_{X,Y}(t,y) dt dy \approx \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy \cdot \delta$$

• X and Y are called independent iff:

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

11/13/2013

Joint PMF: Independence

 $p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

 Random variables X, Y and Z are independent if (for all x, y and z):

$$p_{X,Y,Z}(x,y,z) = p_X(x) \cdot p_Y(y) \cdot p_Z(z)$$

U

11/13/2012

Modelos Probabilistas Aplicados

24

Conditioning

- Recall, again: $P(x \le X \le x + \delta) \approx f_X(x) \cdot \delta$
- By analogy: $P(x \le X \le x + \delta | Y \approx y) \approx f_{X|Y}(x|y) \cdot \delta$
- Thus, the definition: $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$
- Conditioning is a "section" of the joint PDF, normalized.
- Independence gives: $f_{X|Y}(x|y) = f_X(x)$

11/13/201

king

Example: Stick-Breaking

- Break a stick of length ℓ twice:
 - X: first break point, chosen uniformly between 0 and ℓ.
 - Y: second break point, chosen (given X=x) uniformly from 0 to x.

11/13/2013

Example: Stick-Breaking: *Joint PDF*

• Joint PDF: $f_{X, Y}(x, y) = f_X(x) \cdot f_{Y|X}(y|x)$ $= \frac{1}{\ell x} \qquad 0 \le y < x \le \ell$

11/13/2012

Example: Stick-Breaking: Marginal PDF

$$f_X(x)$$
 $f_{Y|X}(y|x)$
 $f_{Y|X}(y|x)$

$$\bullet \text{ M-PDF: } f_Y(y) = \int f_{X,Y}(x,y) \, dx \\ = \int_y^\ell \frac{1}{\ell x} \, dx = \frac{1}{\ell} \log \frac{\ell}{y}, \qquad 0 \leq y \leq \ell$$

Example: Stick-Breaking: Expectation

- Conditional Expectation of *Y*, given *X*=*x*:
 - $\mathbf{E}[Y|X=x] = \int y f_{Y|X}(y \mid X=x) dy = \frac{x}{2}$
- Expectation of Y:
 - $\mathbf{E}[Y] =$

Example: Stick-Breaking: Expectation

$$\begin{array}{c}
f_X(x) \\
\downarrow \\
\ell
\end{array}$$

$$\mathbf{E}[Y] = \int_0^\ell y f_Y(y) \, dy = \int_0^\ell y \frac{1}{\ell} \log \frac{\ell}{y} \, dy = \frac{\ell}{4}$$

$$\mathbf{E}[Y] = \int_0^\ell y f_Y(y) \, dy = \int_0^\ell y \frac{1}{\ell} \log \frac{\ell}{y} \, dy = \frac{\ell}{4}$$

Example: Stick-Breaking: Conditional PDF

$$\bullet \ f_{X/Y}(x \ / Y = y) =$$

Example: Stick-Breaking: Conditioning "slices" the joint PDF

- Recall the joint PDF: $f_{X,Y}(x,y) = \left\{ egin{array}{ll} \frac{1}{\ell x} & 0 \leq y < x \leq \ell \\ 0 & \text{otherwise.} \end{array} \right.$
- Pictorially:

Example 2: Buffon's Needle

- Parallel lines at distance d
- Needle of length ℓ (assume $\ell < d$)
- Find **P**(needle intersects one of the lines).

- Midpoint-nearest line distance: *X*∈ [0. *d*/2]
- Needle-lines acute angle: $\Theta \in [0, \pi/2]$

11/13/201

• Model: X, ⊕ uniform and independent

$$f_{X,\Theta}(x,\theta) = f_X(x) \cdot f_{\Theta}(\theta)$$
$$= \frac{2}{d} \cdot \frac{2}{\pi} \quad 0 \le x \le d/2, \ 0 \le \theta \le \pi/2$$

• When does the needle intersect a line?

$$\text{If } X \leq \frac{\ell}{2} \sin \Theta$$

11/13/2012

. .

Example 2: Buffon's Needle

$$\mathbf{P}\left(X \le \frac{\ell}{2}\sin\Theta\right) = \int \int_{x \le \frac{\ell}{2}\sin\theta} f_X(x) f_{\Theta}(\theta) \, dx \, d\theta$$
$$= \frac{4}{\pi d} \int_0^{\pi/2} \int_0^{(\ell/2)\sin\theta} \, dx \, d\theta$$
$$= \frac{4}{\pi d} \int_0^{\pi/2} \frac{\ell}{2}\sin\theta \, d\theta = \frac{2\ell}{\pi d}$$

11/13/201

Next Time..

MIDTERM

On Nov. 27 - Tuesday

- More on continuous r.v.s
- Derived distributions

11/13/2012