Spojitost funkcí

Spojitost znamená, že graf funkce nemá skoky ani díry. Intuitivně lze říci, že graf spojité funkce lze nakreslit jedním tahem. Funkce může být spojitá také pouze **zleva** nebo **zprava**.

Spojitost na intervalu

Říkáme, že funkce f je **spojitá na intervalu**, pokud je spojitá ve všech vnitřních bodech intervalu a dále případně jednostranně spojitá v krajních bodech uzavřeného intervalu (zprava na levém kraji a zleva na pravém). Ukážeme si to na příkladech. Nejprve platí:

Každá elementární funkce je spojitá na svém definičním oboru.

Funkce	Spojitost
Konstantní $f(x) = a$	Spojitá na R
Lineární $f(x) = ax + b$	Spojitá na R
Kvadratická $f(x) = ax^2 + bx + c$	Spojitá na R
Mocninná $f(x) = x^n, n \in \mathbb{N}$	Spojitá na R
Mocninná $f(x) = x^{-n}, n \in \mathbb{N}$	Spojitá na $\mathbb{R}\setminus\{0\}$
Exponenciální $f(x) = a^x, \ a > 0, \ a \neq 1$	Spojitá na R
Logaritmická $f(x) = \log_a x, \ a > 0, \ a \neq 1$	Spojitá na $(0,\infty)$
Sinus $f(x) = \sin x$	Spojitá na R
Kosinus $f(x) = \cos x$	Spojitá na R
Kosinus $f(x) = \cos x$ Tangens $f(x) = \operatorname{tg} x = \frac{\sin x}{\cos x}$ Kotangang $f(x) = \cot x = \frac{1}{\cos x}$	Spojitá na $\mathbb{R} \setminus \left\{ \frac{(2k+1)\pi}{2} \mid k \in \mathbb{Z} \right\}$
Kotangens $f(x) = \cot x = \frac{\cos x}{\sin x}$	Spojitá na $\mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$
Arkus sinus $f(x) = \arcsin x$	Spojitá na $[-1,1]$
Arkus kosinus $f(x) = \arccos x$	Spojitá na $[-1,1]$
Arkus tangens $f(x) = \operatorname{arctg} x$	Spojitá na R
Arkus kotangens $f(x) = \operatorname{arccotg} x$	Spojitá na R

Příklad:

$$f(x) = \begin{cases} 1, & x \le 0 \implies \text{ spojitost pro } x \in (-\infty, 0] \\ 3, & x > 0 \implies \text{ spojitost pro } x \in (0, \infty) \end{cases}$$

Funkce je tedy v bodě x = 0 spojitá zleva, ale není spojitá zprava ani spojitá.

Příklad:

$$\operatorname{sgn}(x) = \begin{cases} -1, & x < 0 & \Rightarrow & \operatorname{spojitost pro } x \in (-\infty, 0) \\ 0, & x = 0 \\ 1, & x > 0 & \Rightarrow & \operatorname{spojitost pro } x \in (0, \infty) \end{cases}$$

V bodě x = 0 funkce není spojitá, protože zleva je tam skok z -1 do 0, zatímco zprava naopak z 1 do 0. A není tam spojitá zleva ani zprava.

Příklad: Funkce $f(x) = \frac{1}{x}$ není spojitá v bodě x = 0 ani jednostranně, protože v tom bodě ani není definována.

Příklad: Funkce $\ln x$ je spojitá na intervalu $(0, \infty)$. Funkce \sqrt{x} je spojitá na intervalu $[0, \infty)$ - tedy v bodě x = 0 zprava.

Vlastnosti spojitých funkcí

- Funkce |f(x)| je spojitá v každém bodě, kde je spojitá f(x).
- Pokud jsou f(x) a g(x) spojité v bodě x_0 , pak i:
 - $-f(x)+g(x), f(x)-g(x), f(x)\cdot g(x)$ jsou spojité v bodě x_0 ,
 - a pokud $g(x_0) \neq 0$, pak i $\frac{f(x)}{g(x)}$ je spojitá v bodě x_0 .
- Pokud je f spojitá v bodě x_0 a g spojitá v bodě $f(x_0)$, pak složená funkce g(f(x)) je spojitá v bodě x_0 .

Příklad: Funkce $f(x) = \sqrt{1 + \sin x}$ je spojitá na \mathbb{R} , protože složením spojitých funkcí $\sin x$, posunutí +1 a druhé odmocniny \sqrt{x} vzniká funkce spojitá.

Příklad: Funkce

$$f(x) = \left| \frac{x^2 - 4}{x - 2} \right| = \left| \frac{(x - 2)(x + 2)}{x - 2} \right|$$

je spojitá na svém definičním oboru $\mathbb{R} \setminus \{2\}$. Po zkrácení může být spojitě dodefinována i v bodě x=2, protože f(x)=|x+2| pro $x\neq 2$ a tedy v bodě x=2 ji můžeme dodefinovat upravenou funkční hodnotou f(2)=|2+2|=4.

Limita funkce

Limita funkce popisuje, k jaké hodnotě se funkční hodnoty f(x) blíží, když se x blíží k danému limitnímu bodu (například k x=0). Přitom nás nezajímá funkční hodnota v limitním bodě, ale chování funkce v jeho okolí.

Jednostranné limity:

- $\lim_{x \to a^{-}} f(x)$ k limitnímu bodu se blížíme zleva (pro x < a),
- $\lim_{x\to a^+} f(x)$ k limitnímu bodu se blížíme zprava (pro x>a).

Limita $\lim_{x\to a} f(x)$ existuje právě tehdy, když existují obě jednostranné limity a jsou si rovny.

Příklad:

$$f(x) = \begin{cases} 1, & x \le 0, & \Rightarrow & \lim_{x \to 0^-} f(x) = 1 \\ 3, & x > 0, & \Rightarrow & \lim_{x \to 0^+} f(x) = 3 \end{cases} \Rightarrow \lim_{x \to 0} f(x) \text{ neexistuje.}$$

Příklad:

$$\operatorname{sgn}(x) = \begin{cases} -1, & x < 0, & \Rightarrow & \lim_{x \to 0^{-}} \operatorname{sgn}(x) = -1 \\ 0, & x = 0 \\ 1, & x > 0, & \Rightarrow & \lim_{x \to 0^{+}} \operatorname{sgn}(x) = 1 \end{cases} \Rightarrow \lim_{x \to 0} \operatorname{sgn}(x) \text{ neexistuje.}$$

Příklad:

$$\lim_{x \to 0} f(x) = \frac{1}{x}$$

Funkce není definována v bodě x = 0, ale můžeme spočítat jednostranné limity:

$$\lim_{x \to 0^+} \frac{1}{x} \stackrel{\text{typ } \frac{1}{0}}{=} + \infty \qquad \text{a} \qquad \lim_{x \to 0^-} \frac{1}{x} \stackrel{\text{typ } \frac{1}{0}}{=} - \infty$$

Limita v bodě x = 0 neexistuje, protože jednostranné limity jsou různé.

Limitu v plus a mínus nekonečnu můžeme počítat také pomocí substituce $x = \frac{1}{y}$:

$$\lim_{x\to\infty}f(x)=A\quad\Leftrightarrow\quad \lim_{y\to\mathbf{0}^+}f\left(\frac{1}{y}\right)=A\quad \text{ a }\quad \lim_{x\to-\infty}f(x)=A\quad\Leftrightarrow\quad \lim_{y\to\mathbf{0}^-}f\left(\frac{1}{y}\right)=A.$$

Příklad: Uvažuj funkci $f(x) = \frac{1}{x}$. Pomocí substituce $x = \frac{1}{y}$ nebo-li $y = \frac{1}{x}$ dostaneme:

$$\lim_{x\to\infty}\frac{1}{x}=\lim_{y\to0^+}y=0 \qquad \text{ a} \qquad \lim_{x\to-\infty}\frac{1}{x}=\lim_{y\to0^-}y=0.$$

Limita spojité funkce

Pokud je funkce f(x) spojitá v bodě x = a, pak: $\lim_{x\to a} f(x) = f(a)$. Toto pravidlo nám umožňuje v mnoha případech spočítat limitu jednoduše dosazením.

Příklad: Funkce $f(x) = \sqrt{1 + \sin x}$ je spojitá na \mathbb{R} a například:

$$\lim_{x \to 0} \sqrt{1 + \sin x} = \sqrt{1 + \sin 0} = \sqrt{1} = 1$$

Příklad:

$$f(x) = \left| \frac{x^2 - 4}{x - 2} \right|$$

V bodě x = 2 není funkce definována. Pro výpočet limity ale rozhoduje chování funkce v okolí tohoto bodu. Pokud lze výraz upravit, často to pomůže:

$$f(x) = \left| \frac{(x-2)(x+2)}{x-2} \right| = |x+2|$$
 pro $x \neq 2$

Tedy:

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} |x + 2| = |2 + 2| = 4$$

Funkce tedy má limitu v bodě x = 2, i když tam není definovaná. Pokud ji v tomto bodě definujeme jako 4, získáme funkci spojitou na celém \mathbb{R} .

Příklad: Výraz $f(x) = \frac{\sqrt{1+x}-1}{x}$ není možné v bodě x=0 jednoduše vyčíslit, protože vzniká nedefinovaný výraz $\frac{0}{0}$. **Rozšíříme** zlomek, abychom se zbavili odmocniny:

$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} = \lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} = \lim_{x \to 0} \frac{(1+x)-1}{x\sqrt{1+x}+1} = \lim_{x \to 0} \frac{1}{\sqrt{1+x}+1} = \frac{1}{2}$$

Aritmetika limit funkcí

Pokud $\lim_{x\to a} f(x) = A$ a $\lim_{x\to a} g(x) = B$, kde $A, B \in \mathbb{R} \cup \{\pm \infty\}$. Pokud mají výrazy na pravých stranách smysl, pak platí:

$$\begin{split} &\lim_{x\to a}(f(x)+g(x))=A+B,\\ &\lim_{x\to a}(f(x)-g(x))=A-B,\\ &\lim_{x\to a}(f(x)\cdot g(x))=A\cdot B,\\ &\lim_{x\to a}\left(\frac{f(x)}{g(x)}\right)=\frac{A}{B},\quad \text{pokud }B\neq 0. \end{split}$$

Pozor na nedefinované výrazy jako $\infty - \infty$, $\frac{\infty}{\infty}$, $0 \cdot \infty$ a podobné, které je třeba řešit jinými metodami (např. úpravou výrazu).