Методика нагрузочного тестирования Advantage Online Shopping Версия документа 0.1

Содержание

Содержание	2
Введение	3
Цели нагрузочного тестирования	4
Ограничения и риски тестирования	
Профиль нагрузки	6
Стратегия тестирования	8
Схема стенда	10
Подача нагрузки	11
Мониторинг	

Введение

В настоящем документе описаны и определены стратегия и принципы нагрузочного тестирования системы Advantage Online Shopping.

Методика нагрузочного тестирования разрабатывается для решения следующих задач:

- Определить содержание работ.
- Определить имеющиеся ограничения, порядок выполнения тестов и обработки результатов.

Цели нагрузочного тестирования

Целями нагрузочного тестирования сайта Advantage Online Shopping являются:

- 1. Найти максимальную производительность сайта.
- 2. Проверить стабильность сайта.
- 3. Выявить факторы, ограничивающие процесс НТ.

Для достижения целей нагрузочного тестирования необходимо выполнить следующие задачи:

- 1. Разработать методику нагрузочного тестирования, описывающую стратегию и подходы к проведению тестирования.
- 2. Настроить стенд для удаленного тестирования с использованием публичного домена.
- 3. Разработать профиль нагрузки на систему.
- 4. Создать тестовые сценарии для генерации нагрузки.
- 5. Провести тесты максимальной производительности и стабильности.
- 6. Собрать данные для анализа производительности и составить отчет.

Ограничения и риски тестирования

Ограничения тестирования:

- 1. Тестируемый сайт доступен только через публичный домен.
- 2. Нет доступа к инфраструктуре хоста, включая серверы и базу данных.
- 3. Все данные о производительности основываются на внешних метриках (время отклика, успешность операций).

Риски:

- 1. Ограничение времени тестирования (1,5 часа) может привести к недостаточной глубине анализа.
- 2. Использование только внешних метрик (время отклика, успешность операций) может не показать причин деградации.
- 3. Создание значительной нагрузки на сайт может нарушить его работу для реальных пользователей.

Профиль нагрузки

Анализ системы и выделение сценариев

На основе анализа логики работы системы и предполагаемого пользовательского поведения были выделены четыре ключевых сценария:

- Авторизация.
- Поиск товара без оформления покупки.
- Покупка товара.
- Регистрация новых пользователей.

Эти сценарии отражают основные функции системы, используемые различными типами пользователей.

Доля нагрузки определена на основе предполагаемой частоты выполнения операций:

- **Авторизация**: часто выполняемая операция, но с минимальной нагрузкой на систему.
- Поиск товара без покупки: основной сценарий использования.
- **Покупка товара**: наиболее ресурсозатратный сценарий, учитывая множество шагов.
- **Регистрация новых пользователей**: выполняется редко, но важно для бизнес-целей.

Виртуальные пользователи распределены пропорционально долям нагрузки.

Были разработаны соответствующие скрипты в LoadRunner. Каждый скрипт выполняет последовательность действий, представляющих отдельный сценарий:

- Авторизация: переход на главную, логин, логаут.
- **Поиск товара без покупки**: переход на главную, логин, переход в категорию товаров, логаут.
- **Покупка товара**: переход на главную, логин, выбор категории, выбор товара, добавление в корзину, оформление покупки, оплата, логаут.
- **Регистрация новых пользователей**: переход на главную, переход на страницу регистрации, ввод данных.

Профиль нагрузки был разработан на основе предположений о реальном использовании системы.

Таблица 1. Профиль нагрузки.

Сценарий	Доля нагрузки	Виртуальные пользователи (VU)	Операции/час
Авторизация	20%	2	50
Поиск товара без покупки	30%	3	85
Покупка товара	40%	4	120
Регистрация новых пользователей	10%	1	26

Таблица 2. Распределение запросов в профиле.

Название запроса	Интенсивность по статистике запросов / час
Переход на главную	280
Логин	255
Переход в категорию товаров	205
Выбор товара	120
Оплата	120
Логаут	195
Переход на страницу регистрации	26
Ввод данных пользователя	26
Итого	1227

Стратегия тестирования

План тестирования

1. Тест поиска максимальной производительности (50 минут):

• Определение максимальной нагрузки, при которой система сохраняет стабильность работы.

2. Тест стабильности (30 минут):

 Проверка работы системы на уровне 70-80% от найденной максимальной производительности.

Тест 1: Поиск максимальной производительности

Цель

Определить максимальное количество пользователей, которое может обслуживать система при сохранении стабильного времени отклика и минимального уровня ошибок.

Шаги

1. Начальные параметры:

- Начать тест с 10 виртуальных пользователей (VU).
- Запустить сценарии: авторизация, поиск товаров, покупка, регистрация.

2. Увеличение нагрузки:

- Каждые 5 минут увеличивать нагрузку на 10 VU.
- Максимум пользователей: 50 VU (ограничение тестового стенда).

3. Сбор данных:

- о Фиксировать:
 - Время отклика операций.
 - Уровень ошибок (HTTP 500, 404 и т.п.).

4. Критерии завершения:

- Время отклика превышает 5 секунд для 90% операций.
- Уровень ошибок > 2%.
- Число успешных операций перестает расти при увеличении нагрузки.

5. Результат:

• Определить максимальное количество пользователей (VU), при котором система остается стабильной.

Тест 2: Проверка стабильности

Цель

Проверить стабильность работы системы при длительной нагрузке на уровне 70-80% от максимальной производительности, найденной в тесте поиска.

Шаги

1. Настройка нагрузки:

- Задать нагрузку: 70-80% от максимума, определенного в предыдущем тесте.
- Распределить пользователей по сценариям:
 - 40% поиск товаров.
 - 30% покупка.
 - 20% авторизация.
 - 10% регистрация.

2. Выполнение теста:

- Длительность: 30 минут.
- Поддерживать фиксированное количество виртуальных пользователей.

3. Сбор данных:

- Мониторить:
 - Время отклика.
 - Уровень ошибок.
 - Утилизацию ресурсов.

4. Критерии завершения:

- Время отклика остается стабильным и не превышает 5 секунд.
- \circ Уровень ошибок ≤ 2%.
- Система остается доступной в течение всего теста.

Схема стенда

Описание стенда

- LoadRunner: используется для генерации нагрузки и сбора метрик.
- Тестируемый сайт: доступен через публичный домен.
- Мониторинг: встроенные возможности LoadRunner.

Визуальная схема

- 1. Генератор нагрузки (LoadRunner) \rightarrow HTTP/HTTPS запросы \rightarrow Тестируемый сайт.
- 2. Сбор данных о производительности и отклике происходит на стороне LoadRunner.

Подача нагрузки

Описание процесса подачи нагрузки

1. Hастройка LoadRunner:

- Для каждого сценария (авторизация, поиск, покупка, регистрация)
 создаются отдельные скрипты.
- Включается Think Time для эмуляции реального поведения пользователей.

2. Поиск максимальной производительности:

- Плавное увеличение нагрузки каждые 5 минут.
- Фиксация данных после каждого этапа увеличения нагрузки.

3. Тест стабильности:

- Установить фиксированное количество пользователей (70-80% от максимального).
- Выполнять сценарии с заранее заданным распределением нагрузки.

4. Сбор данных:

- LoadRunner собирает метрики:
 - Время отклика (Response Time).
 - Уровень ошибок (Errors).
 - Количество операций в секунду (Transactions per Second).

Мониторинг

Собираемые метрики:

- Время отклика (Response Time):
 - Среднее, минимальное и максимальное время отклика для каждой операции.
- Ошибки (Errors):
 - Количество ошибок по каждому типу (НТТР 500, 404 и т.д.).
- Количество успешных операций (Passed Transactions):
 - Общее число успешных транзакций.
- Производительность (Transactions per Second):
 - о Количество операций, выполняемых в секунду.

Инструменты мониторинга в LoadRunner:

- Analysis:
 - Используется для построения графиков времени отклика, интенсивности операций и ошибок.