省选模拟试题

ExfJoe

March 7, 2017

竞赛时长: 240min

试题名称	采蘑菇	序列游戏	石子游戏
可执行文件名	mushroom	sequence	stone
输入文件名	mushroom.in	sequence.in	stone.in
输出文件名	mushroom.out	sequence.out	stone.out
时间限制	2s	0.5s	1s
空间限制	256M	256M	256M
测试点数目	10	10	20
测试点分数	10	10	5
是否有 SPJ	否	否	否
是否有部分分	否	否	否
题目类型	传统	传统	传统

- 认真独立完成试题,不与他人交流讨论
- 最终评测在 Win10 下使用 Lemon, 默认栈空间限制为 8M, 不开启 O2 优化
- 试题按英文名称字典序排序

采蘑菇

题目描述

A 君住在魔法森林里,魔法森林可以看做一棵 n 个结点的树,结点从 $1 \sim n$ 编号。树中的每个结点上都生长着蘑菇。蘑菇有许多不同的种类,但同一个结点上的蘑菇都是同一种类,更具体地,i 号结点上生长着种类为 c_i 的蘑菇。

现在 A 君打算出去采蘑菇,但他并不知道哪里的蘑菇更好,因此他选定起点 s 后会等概率随机选择树中的某个结点 t 作为终点,之后从 s 沿着 (s,t) 间的最短路径走到 t. 并且 A 君会采摘途中所经过的所有结点上的蘑菇。

现在 A 君想知道,对于每一个结点 u,假如他从这个结点出发,他最后能采摘到的蘑菇种类数的期望是多少。为了方便,你告诉 A 君答案 $\times n$ 的值即可。

输入格式

第一行一个整数 n 表示结点数。

第二行 n 个整数 c_i 表示每个结点的蘑菇的种类。

接下来 n-1 行每行两个数 u_i, v_i 表示树中的一条边。

输出格式

输出n行每行一个整数,第i行的整数表示起点为结点i时的答案。

样例

	Input	
5	-	
1 2 3 2 3		
1 2		
1 3		
2 4		
2 5		
	Output	
10	•	
9		
12		

约定

9 11

30% 的数据: n < 2000

另有 20% 的数据:给出的第 i 条边为 $\{i, i+1\}$

另有 20% 的数据:蘑菇的种类最多 3 种

100% 的数据: $1 < n < 3 \times 10^5$, $0 < c_i < n$

序列游戏

题目描述

给定一个整数序列,现在你可以对这个序列进行若干次删除操作,每次可以删掉序列中一段连续 子序列,每次删除都会得到一定分数。

每次删除的连续子序列需要符合的条件为:

- 1 序列中相邻两个元素差为 1
- 2 若某元素不为连续子序列的首元素或尾元素,则它不能同时小于相邻的两个元素

例子: (1,2,3,4,3),(1,2),(3,2),(3) 都符合条件;(3,2,1,2,3) 不符合条件。

一次删除操作执行后,所删除的连续子序列的两端将会并在一起成为相邻元素。

若一次操作删除的连续子序列长度为m,则你将会得到 v_m 的分数。

现在对于给定序列,请你求出所能得到的最大总分。

输入格式

第一行一个整数 n,表示序列长度。

第二行 n 个整数 v_i ,表示删除序列长度所对应的分数。

第三行 n 个整数 a_i ,表示初始时的序列。

输出格式

仅一行一个整数表示答案。

样例 1

```
Input

6
-100 5 6 10 0 0
3 1 2 3 4 10

Output

Input

Explanation

3 x 1 2 3 x 4 10 ----> 3 4 10
x 3 4 x 10 ----> 10
5 + 6 = 11
```

约定

10% 的数据: $n \leq 3$

40% 的数据: $n \le 10$

70% 的数据: n < 70

100% 的数据: $1 \le n \le 150$, $|v_i| \le 10^4$, $0 \le a_i \le 10^9$, 相同的 a_i 不超过 7 个

石子游戏

题目描述

Alice 与 Bob 正在一棵满二叉树 (叶结点深度均相同,非叶结点均有两个儿子) 上玩游戏。这棵满二叉树的高度为 k,第 i 层有 2^{i-1} 个结点,因此这棵树共有 2^k-1 个结点,

树上的结点从 $1 \sim 2^k - 1$ 进行编号,1 号点为根结点,并且对于非叶结点 i,它的两个儿子分别为 2i 与 2i + 1.

游戏开始前每个结点上都放有一定数量的石子,i 号点上的石子数量为 a_i .

游戏开始后,Alice 和 Bob 轮流行动,Alice 先手。当前行动的人需要先选择一个树中的结点 u 并且要满足 u 上还有石子。接下来,若 u 是个叶子结点,则他需要彻底移除至少一个 u 上的石子;若 u 是个非叶结点,则他需要移除至少一个 u 上的石子,并将这些石子移动到 u 的其中一个儿子上 (一次操作不能分开移动,必须移动至同一个儿子)。无法操作者即为负。

假设 Alice 和 Bob 都足够聪明,以最优策略玩这个游戏,请你求出 Alice 有多少种第一步的操作方式能够让 Alice 获胜。

输入格式

第一行一个整数 T 表示数据组数。

每组数据第一行一个整数 k 表示树高。

接下来 k 行, 第 i 行 2^{i-1} 个非负整数表示初始时第 i 层结点上的石子数 a_i (按标号顺序给出)。

输出格式

对于每组数据输出一行一个整数表示答案。

样例

```
Input

3
1
1
2
1
0 0
3
1
2 2
4 4 4 4
```

```
0utput _______0

1
0
6
```

约定

30% 的数据: T = 1, $k \le 2$, $a_i \le 5$

60% 的数据: T=5 , $k \le 8$, $a_i \le 10^5$

100% 的数据: T = 10 , $1 \le k \le 16$, $0 \le a_i \le 10^9$