

BERT

(Bi-Directional Encoder Representations from Transformer)

A Short Introduction

By Tariq Jamil PGD-DS (BII)

Traditional Approach / LSTM

Seq2Seq shortcomings

Variable-length sentences + fixed-length memory =

As sequence size increases, model performance decreases

Seq2Seq Models Comparison

Transformer | Block Diagram

Transformers | Traditional Approach

Transformers | with Self Attention

Understanding - Self Attention

Self Attention

Process Flow

Attention - components

Queries, Keys, Values

Similarity Score

Example - Why need self attention

"The animal didn't cross the street because it was too tired"

Visualization

Decoding time step: 1 2 3 4 5 6

OUTPUT

http://jalammar.github.io/im

Visualization

Decoding time step: 1 2 3 4 5 6 OUTPUT

http://jalammar.github.io/image

BERT | A Transformer with Attention and bidirection Training

- A multi layer bidirectional transformer
- Positional embeddings
- BERT_base:

12 layers (12 transformer blocks)

12 attentions heads

110 million parameters

BERT | Architecture

Bidirectional Encoder Representations from Transformers (BERT)

You will now learn about the BERT architecture and understand how the pre-training works.

Makes use of transfer learning/pre-training:

BERT | Training

- Choose 15% of the tokens at random: mask them 80% of the time, replace them with a random token 10% of the time, or keep as is 10% of the time.
- There could be multiple masked spans in a sentence

Next sentence prediction is also used when pre-training.

BERT | Training

We will first start by visualizing the input.

The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

The input embeddings: you have a CLS token to indicate the beginning of the sentence and a sep to indicate the end of the sentence

The segment embeddings: allows you to indicate whether it is sentence a or b.

Positional embeddings: allows you to indicate the word's position in the sentence.

BERT | Training

- [CLS]: a special classification symbol added in front of every input
- [SEP]: a special separator token

The C token in the image above could be used for classification purposes. The unlabeled sentence A/B pair will depend on what you are trying to predict, it could range from question answering to sentiment. (in which case the second sentence could be just empty). The BERT objective is defined as follows:

BERT | Use Cases

Language Models | General

ELMo, GPT, BERT, T5

Around 2:50, Younes incorrectly mentions that ELMo is uni-directional. Please note, ELMo is bi-directional.

GPT

OpenAl Transformer

- 1. Pre-train a Transformer's decoder for language modeling
- 2. Train it on, for example, a sentence classification task

Hugging Face | A BERT & Transformers- Echo System

Hugging Face | Using Transformers

Model Checkpoints

Model Checkpoints: More than 15 thousand (and increasing)	Model	Dataset	Name in 😣
	DistilBERT	Stanford Question Answering Dataset (SQuAD)	distilbert-base-cased- distilled-squad
Upload the architecture and weights with 1 line of code!	BERT	Wikipedia and Book Corpus	bert-base-cased

Hugging Face | Code Example

 C4_W3_1_Question_Answering_with_BERT_and_HuggingFace_Pytor ch_tydiqa.ipynb - Colaboratory

https://colab.research.google.com/drive/104LvdhHw6Zx7Kd43HK-p5a1rtsHUEia5#scrollTo=oDG5fgap-N7I

GPT3, and ChatGPT

 GPT3 - is a Language Model which may be used in variety of Language agnostic applications

 ChatGPT - is a specifically designed for conversational Langauge Applications.

GPT-3

Output:

GPT3

GPT3

GPT - Fine Tuning

