

AD-A158 114

SEARCH AND RETRIEVAL INDEX TO EOS/ESD SYMPOSIUM
PROCEEDINGS - 1979 TO 1984(U) RELIABILITY ANALYSIS
CENTER GRIFFISS AFB NY R E RASH ET AL. 15 APR 85

1/2

UNCLASSIFIED

RAC-TRS-4 F30602-84-C-0162

F/G 9/5

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A158 114

RELIABILITY ANALYSIS CENTER
COMPUTER SIMULATION DIVISION

1980 RELEASE UNDER E.O. 14176

Spring 1980

RELIABILITY ANALYSIS CENTER
COMPUTER SIMULATION DIVISION

22 - 8 13 116

RELIABILITY ANALYSIS CENTER IS A TRADE NAME OF THE ANALYSIS CENTER

149

THE INFORMATION AND DATA CONTAINED HEREIN HAVE BEEN COMPILED FROM GOVERNMENT AND NONGOVERNMENT TECHNICAL REPORTS AND FROM MATERIAL SUPPLIED BY VARIOUS MANUFACTURERS AND ARE INTENDED TO BE USED FOR REFERENCE PURPOSES. NEITHER THE UNITED STATES GOVERNMENT NOR IIT RESEARCH INSTITUTE WARRANT THE ACCURACY OF THIS INFORMATION AND DATA. THE USER IS FURTHER CAUTIONED THAT THE DATA CONTAINED HEREIN MAY NOT BE USED IN LIEU OF OTHER CONTRACTUALLY CITED REFERENCES AND SPECIFICATIONS.

PUBLICATION OF THIS INFORMATION IS NOT AN EXPRESSION OF THE OPINION OF THE UNITED STATES GOVERNMENT OR OF IIT RESEARCH INSTITUTE AS TO THE QUALITY OR DURABILITY OF ANY PRODUCT MENTIONED HEREIN AND ANY USE FOR ADVERTISING OR PROMOTIONAL PURPOSES OF THIS INFORMATION IN CONJUNCTION WITH THE NAME OF THE UNITED STATES GOVERNMENT OR IIT RESEARCH INSTITUTE WITHOUT WRITTEN PERMISSION IS EXPRESSLY PROHIBITED.

Reliability Analysis Center

A DoD Information Analysis Center

Technical Reliability Studies

SEARCH and RETRIEVAL INDEX to EOS/ESD SYMPOSIUM PROCEEDINGS

1979 to 1984

Spring 85

Prepared by:

Donald Rash
Richard Wanner
IIT Research Institute

Under Contract To:

Rome Air Development Center
Griffiss AFB, NY 13441

Ordering No. TRS-4

The Reliability Analysis Center is a DoD Information Analysis Center, operated by IIT Research Institute under contract to the Rome Air Development Center, AFSC.

The Reliability Analysis Center (RAC) is a Department of Defense Information Analysis Center sponsored by the Defense Logistics Agency, managed by the Rome Air Development Center (RADC), and operated at RADC by IIT Research Institute (IITRI). RAC is charged with the collection, analysis and dissemination of reliability information pertaining to parts used in electronic systems. The present scope includes integrated circuits, hybrids, discrete transistors and diodes, microwave devices, optoelectronics, and selected nonelectronic parts employed in military, space and commercial applications.

In addition, a System/Equipment Reliability Corporate Memory (RCM) is also operating under the auspices of the RAC and serves as the focal point for the collection and analysis of all reliability-related information and data on operating and planned military systems and equipment.

Data are collected on a continuous basis from a broad range of sources including testing laboratories, device and equipment manufacturers, government laboratories, and equipment users, both government and nongovernment. Automatic distribution lists, voluntary data submittal, and field failure reporting systems supplement an intensive data solicitation program.

Reliability data documents covering most of the device types mentioned above are available annually from RAC. Also, RAC provides reliability consulting and technical and bibliographic inquiry services which are fully discussed at the end of this document.

**REQUESTS FOR TECHNICAL ASSISTANCE
AND INFORMATION ON AVAILABLE RAC
SERVICES AND PUBLICATIONS MAY BE
DIRECTED TO:**

Charles A. Cox
IITRI/Reliability Analysis Center
RADC/RAC
Griffiss Air Force Base, NY 13441-5700
Telephone: (315)330-4151
Autowon: 587-4151

**ALL OTHER REQUESTS SHOULD BE
DIRECTED TO:**

Rome Air Development Center
RBE/Charles F. Bough
Griffiss Air Force Base, NY 13441-
Telephone: (315)330-4920 5700
Autowon: 587-4920

© 1985, IIT Research Institute
All Rights Reserved

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION <u>Unclassified</u>		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited. Available from RAC or DTIC	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) TRS-4		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Reliability Analysis Center	6b. OFFICE SYMBOL (if applicable) RADC/RAC	7a. NAME OF MONITORING ORGANIZATION RADC/RBE	
6c. ADDRESS (City, State, and ZIP Code) Rome Air Development Center Griffiss AFB, NY 13441-5700		7b. ADDRESS (City, State, and ZIP Code) Griffiss AFB, NY 13441-5700	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION DLA/DTIC	8b. OFFICE SYMBOL (if applicable) DTIC-AI	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER F30602-84-C-0162	
8c. ADDRESS (City, State, and ZIP Code) DTIC, Cameron Station Alexandria, VA 22314-6145		10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. 658025 PROJECT NO. 1.0 TASK NO. WORK UNIT ACCESSION NO.	
11. TITLE (Include Security Classification) Search and Retrieval Index to EOS/ESD Proceedings EOS/ESD 1979-1984			
12. PERSONAL AUTHOR(S) Donald E. Rash, Jr., Richard T. Wanner			
13a. TYPE OF REPORT	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Year, Month, Day) 1985, April 15	15. PAGE COUNT
16. SUPPLEMENTARY NOTATION Hard copies available from Reliability Analysis Center, RADC/RAC, Griffiss AFB, NY 13441-5700 (price \$36). DTIC will provide microfiche copies at the standard microfiche price.			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)	
FIELD 09	GROUP 01	Classification EOS Microcircuit	EMP MNOS CMOS
		ESD/EOS Controls	STTL ASTTL HCMOS
19. ABSTRACT (Continue on reverse if necessary and identify by block number) →This book contains indexes used in searching for information contained in papers produced in Electrical Overstress/Electrostatic Discharge (EOS/ESD) Symposium 1979 to 1984. These indexes are the Alphabetical List of Index Terms, Subject Index, Author Index, Corporate Index, Keywords in Title Index, and Chronological List of Papers Index. These indexes provide a clear, easy-to-read, and concise method of searching for and retrieving the valuable information contained in IRPS Proceedings.			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION	
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE (Include Area Code)	22c. OFFICE SYMBOL

PREFACE

The Reliability Analysis Center is pleased to publish TRS-4, "The Search and Retrieval Index to EOS/ESD Symposium Proceedings From 1979 to 1984." TRS-4 provides quick and efficient access to EOS/ESD-related references.

The EOS/ESD Index makes more accessible present information on failure mechanisms, failure causes, and potential technology problems from electrical overstress/electrostatic discharge. The information from the documents in the Proceedings provides recommendations for circumventing or mitigating potential EOS/ESD problems and also provides references to evaluation and qualification testing. Increased information retrieval capability given by this index avoids duplication of previous studies and unreliable processes.

R. Wanner developed the software support programs, with input assistance from J. Race. D. Rash provided organization, coordination and control of processes under the supervision of W. Turkowski. W. Crowell defined extra EOS/ESD index terms for inclusion into this document. The entire RAC technical staff participated in the indexing of the documents contained in the EOS/ESD Symposium Proceedings.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
<i>\$ 36.00</i>	
By RADC/TMC	
Distribution	
Availability Codes	
Dist	Avail and/or Special
A-1	24

TABLE OF CONTENTS

	<u>Page</u>
1.0 INTRODUCTION.....	1
2.0 IMPLEMENTATION.....	1
3.0 INDEXING RATIONALE.....	1
4.0 ARRANGEMENT.....	2
5.0 SEARCH EXAMPLE.....	4
6.0 CONCLUSION.....	5
SECTION 1: ALPHABETICAL LISTING OF TERMS.....	I-1
SECTION 2: SUBJECT INDEX.....	II-1
SECTION 3: AUTHOR INDEX.....	III-1
SECTION 4: CORPORATE INDEX.....	IV-1
SECTION 5: KEYWORD IN TITLE INDEX.....	V-1
SECTION 6: CHRONOLOGICAL LIST OF PAPERS.....	VI-1
APPENDIX: ADDITIONAL RAC SERVICES.....	A-1

1.0 INTRODUCTION

The RAC developed "The Search and Retrieval Index to EOS/ESD Symposium Proceedings From 1979 to 1984" to provide ready access to current information on EOS/ESD-related topics.

Containing indexes plus users' guide material, this document serves as a reference to aid in the utilization of information concerning all aspects of electrical overstress/electrostatic discharge as presented in the EOS/ESD Symposium Proceedings. This structured index provides a quick and efficient access to references for a given topic. The increased information retrieval capability provided by this index prevents duplication of previous efforts and will help avoid the use of unreliable processes.

The EOS/ESD Symposium Proceedings are available from IIT Research Institute. Orders for EOS/ESD Symposium Proceedings should be directed to: Charles A. Cox, IITRI/Reliability Analysis Center, RADC/RAC, Griffiss Air Force Base, NY 13441-5700. To determine price and availability call (315) 330-4151, Autovon 587-4151.

2.0 IMPLEMENTATION

These indexes were composed by IITRI's Plexus P/60 computer using the UNIX Operating System. The manuscript was printed out on an Anderson Jacobson (Model AJ832) terminal.

3.0 INDEXING RATIONALE

For each paper in the Proceedings, two engineers with relevant expertise in that subject were assigned to independently read and index that article. The terms for these indexes were selected from a list of preselected index terms. The engineers' instructions included selecting those index terms for which the article had relevant information. To maintain flexibility in the index term list, periodic reviews and evaluations add new index terms.

4.0 ARRANGEMENT

This publication is arranged in six selections:

- (1) Alphabetical Listing of Index Terms
- (2) Subject Index
- (3) Author Index
- (4) Corporate Index
- (5) Keyword in Title Index
- (6) Chronological Paper Index

Each entry in each index uses the document accession number for location purposes in the RAC library. The document accession number also provides for traceability purposes to access abstracts which are not computerized.

The Alphabetical List of Index Terms, a 5-page list of terms without citations, serves as a lookup table for the subject index, which it precedes. The alphabetical list of terms identifies the category under which the index term appears by listing first the index term, then the categories for each index term, and then the number of documents for that index term within the category.

<u>Index Term</u>	<u>Categories</u>	<u>Documents</u>
Reliability	Design Considerations Semiconductor Technology	2
Reliability	Systems	5

This format allows the index term to remain generic while the categories narrow the focus to a single area of interest for the Subject Index. Using the Subject Index necessitates scanning these tables first to provide the following useful benefits: the researcher develops a search

strategy by (1) relevant association of subjects contained in the Alphabetical List of Terms with items of interest, (2) minimizing the likelihood of overlooking a highly relevant citation, and (3) constructing a source availability within the EOSs by the number of documents dealing with the item of interest.

The Subject Index alphabetically lists index terms from Section I with citations. The index terms and categories remain in this section except the categories follow the index term on the same line in brackets.

INDEX TERM - CATEGORY

DOCUMENT - SEQUENCE NUMBER	TITLE	YEAR	PAGE
Reliability 18214- 5	[Design Considerations, Semiconductor Technology] Latent ESD Failures	82	[41-48]

The citations include the RAC document accession number, the title of the paper and the paper number. Including the title provides a possibility for selecting the most conveniently appropriate papers and eliminating those not applicable without the necessity of looking up more information elsewhere. Skillful use of this index can lead to deeper insight into EOS/ESD phenomena and perhaps new discoveries from the cross-pollination of related studies.

The Author Index alphabetically lists authors cited in the EOS/ESD Proceedings, whether principal or secondary. For each paper up to three authors were identified as they appeared on the paper.

The Corporate Index alphabetically lists corporations, companies, institutions, and government agencies with whom the authors were affiliated at the time the papers were prepared. Citations in the index include paper number and title. For each paper only the first company that appeared on the paper was cited.

The Keyword in Title Index alphabetically lists selected keywords in the title of the paper. Citations include paper number and title. The use of this index locates papers for which the keyword is a principal topic.

The Chronological List of Papers lists by page and document accession numbers the last paper of the 1984 Proceedings first, then the following papers in descending numerical order until the first paper in the 1979 Proceedings appears as the last entry. Following each document accession number appears the title of the paper, pages, author(s), their corporate affiliation, and an alphabetical list of all the index terms applied to the particular paper. When an index of another section cites a paper, a profile of the paper's content can be deduced from the index terms appearing within the chronological paper list. The categories of the index terms remain the same, except for occasional abbreviations.

.0 SEARCH EXAMPLE

The following example illustrates the use of Section I, Alphabetical List of Terms, and Section II, Subject Index:

Suppose we are interested in studying EOS Models. The possible terms for finding applicable citations, we decide, would be "Models," "Modeling," and "Mathematical Models." Scanning Section I for these terms we find the following terms listed by relevant association:

Reliability Modeling Techniques
Models/Theory/Equations
Mathematical Analysis

When these terms are looked up in the Subject Index (Section II) the following citations are accepted for study:

79	126-132	82	56-61
79	133-139	82	62-70
81	132-138	82	76-81
82	19-33	84	136-143

By examining the index terms of the above list of papers as they appear in Section 6, Chronological List of Papers, an additional number of apparently applicable terms could be selected to obtain additional citations for further related study.

6.0 CONCLUSION

The Reliability Analysis Center published this document to provide a faster and more efficient method of searching for valuable information contained in the EOS/ESD Proceedings. The Reliability Analysis Center intended with this document, as with previous publications, to maintain up-to-date information on electrical overstress/electrostatic discharge implications for advanced technologies and to provide a knowledge base necessary to control EOS/ESD.

EOS/ESD SYMPOSIUM INDEX

<u>TERM-CATEGORY</u>	<u>ENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
TIME [ESD, MATERIALS AND EQUIPMENT, TESTING]				
5-19 AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES				79 [126-132]
IN CONSIDERATIONS [SEMICONDUCTOR TECHNOLOGY]				
15-16 CRITICAL CONSIDERATIONS FOR ESD TESTING				84 [104-111]
12- 1 ESD-HOW OFTEN DOES IT HAPPEN?				83 [1-5]
12-25 USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS				83 [177-180]
12-26 A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES				83 [181-184]
14-17 CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES				82 [124-130]
14-18 ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS				82 [131-135]
17- 2 QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION				81 [9-13]
16-13 SOS PROTECTION: THE DESIGN PROBLEM				80 [81-86]
16-14 LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS				80 [87-94]
16-25 LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR				80 [167-175]
15- 2 CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE				79 [4-6]
15- 6 PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS				79 [27-35]
IN FOR TESTABILITY [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECHNOLOGY]				
72- 7 CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV				83 [37-47]
14-13 TEST METHODS FOR STATIC CONTROL PRODUCTS				82 [94-109]
14-14 METALLOPLASTICS				82 [110-114]
14-15 ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS				82 [115-119]
14-16 DRASIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS				82 [120-123]
14-17 CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES				82 [124-130]
14-22 ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA				82 [157-164]
14-24 CIRCUIT DESIGN FOR EOS/ESD PROTECTION				82 [169-174]
14-25 IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES				82 [175-178]
14-26 ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL				82 [179-184]
14-27 ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS				82 [185-189]
17- 1 A CLOSER LOOK AT THE HUMAN ESD EVENT				81 [1-3]
16-32 AN EVALUATION OF WRIST STRAP PARAMETERS				80 [218-224]
16-33 MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD				80 [225-230]
15-13 FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS				79 [88-96]
15-15 ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS				79 [104-108]
CTOR/SENSOR [OPTOELECTRONIC, SEMICONDUCTOR DEVICE]				
17-33 EOS DAMAGE IN SILICON SOLAR CELLS				81 [209-235]
LOPMENT PROGRAM [SEMICONDUCTOR TECHNOLOGY]				
72- 3 THE PRODUCTION OPERATOR: WEAK LINK OR WARRIOR IN THE ESD BATTLE?				83 [12-16]
72- 5 AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL				83 [21-28]
14-19 BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY				82 [136-141]
14-20 ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)				82 [142-144]
14-21 AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM				82 [145-156]
14-23 UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT				82 [165-168]
17- 4 THE PERFECT "10" - CAN YOU REALLY HAVE ONE?				81 [21-27]
17- 5 THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS				81 [29-33]
17- 6 A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY				81 [34-39]
17- 7 A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT				81 [41-43]
15- 1 AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM				79 [1-3]

EOS/ESD SYMPOSIUM INDEX

<u>TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
ACTIVE ESD PROTECTIVE MATERIAL [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
7- 7 A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT		81	[41-43]
6- 1 PASSIVE STATIC PROTECTION: THEORY AND PRACTICE		80	[1-11]
5- 3 ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS		79	[7-12]
5- 9 THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION		79	[45-54]
5-18 HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION		79	[122-125]
ACTIVE FOAM [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
4-13 TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
6- 1 PASSIVE STATIC PROTECTION: THEORY AND PRACTICE		80	[1-11]
MINATION [MISC. FAILURE PHENOMENA, SEMICONDUCTOR TECHNOLOGY]			
4-18 ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS		82	[131-135]
4-22 ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
OL [EQUIPMENT TYPE/FUNCTION]			
2-11 THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY		83	[67-75]
2-12 MEASURING EFFECTIVENESS OF AIR IONIZERS		83	[76-86]
2-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
[SYSTEMS]			
5- 1 A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN		84	[1-6]
2- 2 ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS		83	[6-11]
4-19 BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY		82	[136-141]
4-23 UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT		82	[165-168]
7- 7 A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT		81	[41-43]
COLLECTION SYS./TECHNIQUES [RELIABILITY MODELS/DATA/ANALYSIS]			
4- 6 A SURVEY OF EOS/ESD DATA SOURCES		82	[49-55]
TIME [ESD, MATERIALS AND EQUIPMENT, TESTING]			
5- 7 A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL		84	[40-44]
5- 8 STATIC-ELECTRIC CHARACTERIZATION OF SEMI-INSULATING MATERIALS		84	[45-49]
5-10 TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER		84	[58-63]
5-11 TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKING MATERIALS		84	[64-77]
5-13 A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES		84	[85-93]
5-15 TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1		84	[97-103]
5-19 SECONDARY DISCHARGE: A NEW JEPARDY AND A NEW TOOL		84	[131-135]
2-11 THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY		83	[67-75]
2-12 MEASURING EFFECTIVENESS OF AIR IONIZERS		83	[76-86]
4-13 TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
4-16 DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS		82	[120-123]
4-17 CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES		82	[124-130]
7- 2 QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION		81	[9-13]
7- 8 AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS		81	[44-48]
7-11 INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS		81	[65-74]
6- 2 THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE		80	[12-16]
6-20 OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN		80	[130-139]
6-24 TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS		80	[161-166]
6-29 FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS		80	[192-205]
5- 4 STATIC CONTROL USING TOPICAL ANTISTATICS		79	[13-21]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
<u>DOCUMENT-SEQUENCE NO.</u>			
CIRCUIT PROTECTION DEVICES [NON-ELECTRONICS]			
17517-14 ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES		81	[90-96]
17517-15 INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS		81	[97-100]
17517-30 LIGHTNING PROTECTION FOR COMPUTER DATA LINES		81	[212-218]
17516- 7 GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES		80	[44-53]
17516-12 PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE		80	[73-80]
17516-13 SOS PROTECTION: THE DESIGN PROBLEM		80	[81-86]
17516-15 ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS		80	[95-103]
17515-26 ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY		79	[183-187]
17515-28 ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS		79	[193-197]
CLEAN ROOM [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
18214-18 ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS		82	[131-135]
COMPONENT [LEVEL OF ASSEMBLY]			
18172- 1 ESD-HOW OFTEN DOES IT HAPPEN?		83	[1-5]
18172-15 CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES		83	[102-107]
18214- 5 LATENT ESD FAILURES		82	[41-48]
17517- 4 THE PERFECT "10" - CAN YOU REALLY HAVE ONE?		81	[21-27]
17517- 5 THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS		81	[29-33]
COMPUTATION [EQUIPMENT TYPE/FUNCTION]			
17517-30 LIGHTNING PROTECTION FOR COMPUTER DATA LINES		81	[212-218]
COMPUTER AIDED DESIGN,(CAD) [DESIGN TOOLS & TECHNIQUES, SEMICONDUCTOR TECHNOLOGY]			
18172- 8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
18172-16 MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA		83	[108-117]
18214- 4 ELECTRICAL OVERSTRESS THRESHOLD TESTING		82	[34-40]
COMPUTERIZED [DATA COLLECTION SYS./TECHNIQUES, RELIABILITY MODELS/DATA/ANALYSIS]			
18172-15 CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES		83	[102-107]
18214-27 ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS		82	[185-189]
17517-20 MODELING OF EOS IN SILICON DEVICES		81	[132-138]
COMPUTERIZED ANALYSIS [DESIGN TOOLS & TECHNIQUES, SEMICONDUCTOR TECHNOLOGY]			
18172- 8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
17515-19 AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES		79	[126-132]
COMPUTERIZED TECH [RELIABILITY MODELING TECHNIQUES, RELIABILITY MODELS/DATA/ANALYSIS]			
18172- 8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
18172- 9 POWER FAILURE MODELING OF INTEGRATED CIRCUITS		83	[56-62]
18214-27 ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS		82	[185-189]
17515-16 DOPING PROFILES AND SECOND BREAKDOWN		79	[109-115]
17515-19 AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES		79	[126-132]
17515-20 MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES		79	[133-139]
CONDUCTIVE ESD PROTECTIVE MATERIAL [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
18305-15 TESTING OF ELECTROSTATIC MATERIALS P.D. STD. 101C, METHOD 4046.1		84	[97-103]
18214-16 DRASIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS		82	[120-123]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
BULK CONDUCTIVE PLASTIC [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]				
18305-12 AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS 17515- 9 THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION			84	[78-84]
			79	[45-54]
CAPACITOR [PASSIVE DEVICE, COMPONENT TYPE]				
18214- 2 ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCETIBILITY OF THIN FILM RESISTORS AND CAPACITORS 17517-25 PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS			82	[13-18]
			81	[174-191]
CCD [FIELD EFFECT,(FET), SEMICONDUCTOR TECHNOLOGY]				
18172-21 THE EFFECT OF ESD ON CCD RELIABILITY			83	[147-153]
CHARACTERIZATION [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECHNOLOGY]				
18214- 9 THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN 18214-17 CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES 17516-23 AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS 17516-27 MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION 17515-14 ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES			82	[71-75]
			82	[124-130]
			80	[154-160]
			80	[184-188]
			79	[97-103]
CHARGE DEVICE MODEL [ESD, DEVICE, TESTING METHODS]				
18305- 1 A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN 18305-19 SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL 18172- 6 ESD BY STATIC INDUCTION 18172-19 ESD SENSITIVITY OF COMPLEX ICS 18172-21 THE EFFECT OF ESD ON CCD RELIABILITY 18214- 1 ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL 18214- 2 ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCETIBILITY OF THIN FILM RESISTORS AND CAPACITORS 17517-10 EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES 17517-34 EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS 17516- 3 ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS			84	[1-6]
			84	[131-135]
			83	[29-36]
			83	[128-133]
			83	[147-153]
			82	[1-12]
			82	[13-18]
			81	[57-64]
			81	[236-241]
			80	[17-22]
CHART/DIAGRAM [REFERENCE DOCUMENT]				
17515-13 FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS			79	[88-96]
CIRCUIT BOARD [NON-ELECTRONICS]				
18305- 4 ESD DAMAGE, DOES IT HAPPEN ON PCB'S? 18305-19 SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL 18305-23 DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS			84	[22-23]
			84	[131-135]
			84	[165-178]
CIRCUIT BREAKER [CIRCUIT PROTECTION DEVICES, NON-ELECTRONICS]				
18214-28 ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS			82	[190-202]
CIRCUIT PROTECTION DEVICES [NON-ELECTRONICS]				
18172-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES 18172-24 METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS 18172-26 A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES 18214-20 ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION) 18214-24 CIRCUIT DESIGN FOR EOS/ESD PROTECTION 17517-13 THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD			83	[87-94]
			83	[168-176]
			83	[181-184]
			82	[142-144]
			82	[169-174]
			81	[85-89]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
AIR IONIZER [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
18305- 2 HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION		84	[7-19]
18305- 6 EFFECTS OF AIR IONS AND ELECTRIC FIELDS ON HEALTH AND PRODUCTIVITY		84	[34-39]
18305- 7 A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL		84	[40-44]
18172-11 THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY		83	[67-75]
18172-12 MEASURING EFFECTIVENESS OF AIR IONIZERS		83	[76-86]
18214-13 TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
17517- 2 QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION		81	[9-13]
17517- 5 THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS		81	[29-33]
17517- 7 A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT		81	[41-43]
17515- 2 CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE		79	[4-6]
ANTISTATIC GARMENTS [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
18214-18 ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS		82	[131-135]
ANTISTATIC IMPREGNATED PLASTIC [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
18172-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
APPLICATION FACTORS [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECHNOLOGY]			
18172-11 THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY		83	[67-75]
18172-12 MEASURING EFFECTIVENESS OF AIR IONIZERS		83	[76-86]
18172-24 METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS		83	[168-176]
18214-18 ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS		82	[131-135]
17517- 4 THE PERFECT "10" - CAN YOU REALLY HAVE ONE?		81	[21-27]
17517-14 ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES		81	[90-96]
17517-15 INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS		81	[97-100]
17515- 4 STATIC CONTROL USING TOPICAL ANTISTATS		79	[13-21]
17515-18 HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION		79	[122-125]
17515-29 STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP		79	[198-204]
ASSEMBLY & EQUIPMENT ESD CLASSIFICATION [ESD, DEVICE, TESTING METHODS]			
18305- 4 ESD DAMAGE, DOES IT HAPPEN ON PCB'S?		84	[22-23]
17516-21 ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS		80	[140-148]
AVAILABILITY [SYSTEMS]			
18214-19 BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY		82	[136-141]
BIPOLAR [COMPONENT TYPE]			
18305-21 AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
17516-10 FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS		80	[59-66]
17516-17 HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS		80	[112-116]
17516-18 SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES		80	[117-121]
17515- 7 MODULE ELECTROSTATIC DISCHARGE SIMULATOR		79	[36-40]
BIPOLAR & FET,(BIFET,BIMOS,ETC) [COMPONENT TYPE]			
17516-18 SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES		80	[117-121]
BOARD [LEVEL OF ASSEMBLY]			
18305- 4 ESD DAMAGE, DOES IT HAPPEN ON PCB'S?		84	[22-23]
17515-30 THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS		79	[205-209]

Section 2:

SUBJECT INDEX

ALPHABETICAL LISTING OF INDEX TERMS

<u>INDEX TERM</u>	<u>CATEGORIES</u>	<u>DOCUMENTS</u>
TEST TECHNIQUES	TESTING TOOLS & TECHNIQUES SEMICONDUCTOR TECHNOLOGY	6
TEST TECHNIQUES FOR REL. ASSESSMENT	SEMICONDUCTOR TECHNOLOGY	28
TESTING TOOLS & TECHNIQUES	SEMICONDUCTOR TECHNOLOGY	21
THEORY OF OPERATION	SEMICONDUCTOR TECHNOLOGY	6
THERMAL	TEST STRESS	4
THERMAL SECONDARY BREAKDOWN	ESD DEVICE FAILURE MODES	8
THERMAL STRESS/STRAIN	MECHANICAL & PHYSICAL FAILURE PHENOMENA SEMICONDUCTOR TECHNOLOGY	1
TOLERANCES	DESIGN CONSIDERATIONS SEMICONDUCTOR TECHNOLOGY	3
TOPICAL ANTISTATS	ESD MATERIALS AND EQUIPMENT PROTECTIVE	5
TRADE-OFFS	DESIGN CONSIDERATIONS SEMICONDUCTOR TECHNOLOGY	4
TRANSIENT SUPPRESSORS	ESD DEVICE PROTECTIVE DEVICES/INPUT PROTECTION	11
TRANSISTOR	DISCRETE SEMICONDUCTOR SEMICONDUCTOR DEVICE	13
TRIOBOELECTRIC CHARGING	ESD EOS/ESD PHYSICS	19
TTL	BIPOLAR COMPONENT TYPE	2
VOLUME RESISTIVITY	ESD MATERIALS AND EQUIPMENT TESTING	1
WEAPONS	EQUIPMENT TYPE/FUNCTION	1
WEIBULL	STATISTICAL ANALYSIS	2
WORKMANSHIP	FAILURE CAUSE FAILURE ANALYSIS SEMICONDUCTOR TECHNOLOGY	1
WRIST STRAP	ESD MATERIALS AND EQUIPMENT PROTECTIVE	6
WUNSCH BELL MODEL	ESD DEVICE TESTING METHODS	13

ALPHABETICAL LISTING OF INDEX TERMS

<u>INDEX TERM</u>	<u>CATEGORIES</u>	<u>DOCUMENTS</u>
QUALITY ASSURANCE	SYSTEMS	8
REFERENCE DOCUMENT		47
REL. STANDARDS	USER OF REL. PREDICTION MODELS	1
RELATIVE HUMIDITY	ESD MATERIALS AND EQUIPMENT PROTECTIVE TECHNIQUES	21
RELIABILITY	DESIGN CONSIDERATIONS SEMICONDUCTOR TECHNOLOGY	2
RELIABILITY	SYSTEMS	5
RELIABILITY MANAGEMENT TECH	USER OF REL. PREDICTION MODELS	1
RELIABILITY MODELING TECHNIQUES	RELIABILITY MODELS/DATA/ANALYSIS	4
RESISTOR	PASSIVE DEVICE COMPONENT TYPE	4
REVERSE BREAKDOWN	ELECTRICAL FAILURE PHENOMENA SEMICONDUCTOR TECHNOLOGY	1
SCREENING	TEST TECHNIQUES FOR REL. ASSESSMENT SEMICONDUCTOR TECHNOLOGY	2
SECONDARY BREAKDOWN	ELECTRICAL FAILURE PHENOMENA SEMICONDUCTOR TECHNOLOGY	15
SEMICONDUCTOR DEVICE		14
SENSITIVE ELECTRONIC DEVICE SYMBOLS	ESD MATERIALS AND EQUIPMENT PROTECTIVE	2
SILICON	SEMICONDUCTOR TECHNOLOGY	1
SPACE	APPLICATION ENVIRONMENT	1
SPECIFICATION/STANDARD	REFERENCE DOCUMENT	5
STATIC CONTROL	ESD MATERIALS AND EQUIPMENT PROTECTIVE TECHNIQUES	20
STATISTICAL ANALYSIS		2
STEP STRESS	TEST TECHNIQUES FOR REL. ASSESSMENT SEMICONDUCTOR TECHNOLOGY	5
SURFACE RESISTIVITY	ESD MATERIALS AND EQUIPMENT TESTING	15
SYSTEM	LEVEL OF ASSEMBLY	3
TEST EQUIPMENT	TESTING TOOLS & TECHNIQUES SEMICONDUCTOR TECHNOLOGY	8
TEST PROGRAM DEVELOPMENT	TESTING TOOLS & TECHNIQUES SEMICONDUCTOR TECHNOLOGY	8
TEST SPECIFICATION	TESTING TOOLS & TECHNIQUES SEMICONDUCTOR TECHNOLOGY	6

ALPHABETICAL LISTING OF INDEX TERMS

<u>INDEX TERM</u>	<u>CATEGORIES</u>	<u>DOCUMENTS</u>
MISC. FAILURE PHENOMENA	SEMICONDUCTOR TECHNOLOGY	2
MISSILE	APPLICATION ENVIRONMENT	1
MNOS	FIELD EFFECT, (FET) SEMICONDUCTOR TECHNOLOGY	1
MODELS/THEORY/EQUATIONS	RELIABILITY MODELING TECHNIQUES RELIABILITY MODELS/DATA/ANALYSIS	6
MOISTURE	TEST STRESS	1
MOSFET	FIELD EFFECT, (FET) SEMICONDUCTOR TECHNOLOGY	2
MOSFET C	FIELD EFFECT, (FET) SEMICONDUCTOR TECHNOLOGY	3
MOSFET N	FIELD EFFECT, (FET) SEMICONDUCTOR TECHNOLOGY	1
NONELECTRONICS		2
NOTICE/BULLETIN	REFERENCE DOCUMENT	1
OPERATIONAL TEST	TEST TECHNIQUES FOR REL. ASSESSMENT SEMICONDUCTOR TECHNOLOGY	2
OVERSTRESS	FAILURE CAUSE FAILURE ANALYSIS SEMICONDUCTOR TECHNOLOGY	45
OXIDATION	CHEMICAL FAILURE PHENOMENA SEMICONDUCTOR TECHNOLOGY	7
PACKAGE	SEMICONDUCTOR TECHNOLOGY	6
PKG BODY MATERIAL	PACKAGE SEMICONDUCTOR TECHNOLOGY	1
PKG ENCAPSULANT	PACKAGE SEMICONDUCTOR TECHNOLOGY	1
PKG LID OR COVER	PACKAGE SEMICONDUCTOR TECHNOLOGY	1
PROCESS CONTROL/SPECIFICATION	FABRICATION PROCESSES & TECHNIQUES SEMICONDUCTOR TECHNOLOGY	6
PROCESS DESIGN	DESIGN CONSIDERATIONS SEMICONDUCTOR TECHNOLOGY	3
PROCESS/WORKMANSHIP INDUCED	MISC. FAILURE PHENOMENA SEMICONDUCTOR TECHNOLOGY	1
PROCUREMENT CONTROLS	USER OF REL. PREDICTION MODELS	3
PROTECTED ESD AREA	ESD MATERIALS AND EQUIPMENT PROTECTIVE	12
PROTECTIVE BAGS	ESD MATERIALS AND EQUIPMENT PROTECTIVE	8
PROTECTIVE WORK BENCH SURFACE	ESD MATERIALS AND EQUIPMENT PROTECTIVE	6

ALPHABETICAL LISTING OF INDEX TERMS

<u>INDEX TERM</u>	<u>CATEGORIES</u>	<u>DOCUMENTS</u>
FMEA/FMECA,(FAILURE MODE EFFECTS)	RELIABILITY MODELING TECHNIQUES RELIABILITY MODELS/DATA/ANALYSIS	1
FUTURE TRENDS	SEMICONDUCTOR TECHNOLOGY	9
GEOMETRIES/LAYOUT	DESIGN CONSIDERATIONS SEMICONDUCTOR TECHNOLOGY	4
GRAPHICAL TECHNIQUES	RELIABILITY MODELING TECHNIQUES RELIABILITY MODELS/DATA/ANALYSIS	1
GROUNDING METHODS	ESD MATERIALS AND EQUIPMENT PROTECTIVE TECHNIQUES	6
GROUNDING STRAPS	ESD MATERIALS AND EQUIPMENT PROTECTIVE	6
GUIDE/PROCEDURE	REFERENCE DOCUMENT	24
HELICOPTOR	APPLICATION ENVIRONMENT	1
HUMAN BODY ESD MODEL	ESD DEVICE TESTING METHODS	21
HUMAN FACTORS	SYSTEMS	3
INDUCTIVE CHARGING	ESD EOS/ESD PHYSICS	3
INPUT PROTECTION	ESD DEVICE PROTECTIVE DEVICES/INPUT PROTECTION	16
JFET	FIELD EFFECT,(FET) SEMICONDUCTOR TECHNOLOGY	1
LATENT ESD FAILURE	ESD DEVICE FAILURE MODES	4
LIFE	TEST TECHNIQUES FOR REL. ASSESSMENT SEMICONDUCTOR TECHNOLOGY	4
LOGISTICS	SYSTEMS	1
MAINTAINABILITY TECHNIQUES	MAINTAINABILITY SYSTEMS	1
MATERIALS	DESIGN CONSIDERATIONS SEMICONDUCTOR TECHNOLOGY	11
MATHEMATICAL ANALYSIS		12
METALLIZATION MELT	ESD DEVICE FAILURE MODES	13
METALLURGICAL FAILURE PHENOMENA	SEMICONDUCTOR TECHNOLOGY	1
MICROCIRCUIT	SEMICONDUCTOR DEVICE	33
MICROWAVE	DISCRETE SEMICONDUCTOR SEMICONDUCTOR DEVICE	1

ALPHABETICAL LISTING OF INDEX TERMS

<u>INDEX TERM</u>	<u>CATEGORIES</u>	<u>DOCUMENTS</u>
ELECTROSTATIC SIMULATOR	ESD DEVICE TESTING METHODS	6
EMC - ELECTROMAGNETIC COMPATIBILITY	ESD EOS/ESD PHYSICS	1
EMI - ELECTROMAGNETIC INTERFACE	ESD EOS/ESD PHYSICS	10
EMP - ELECTROMAGNETIC PULSE	ESD EOS/ESD PHYSICS	17
ENVIRONMENTAL	TEST TECHNIQUES FOR REL. ASSESSMENT SEMICONDUCTOR TECHNOLOGY	2
EOS - ELECTRICAL OVERSTRESS	ESD EOS/ESD PHYSICS	23
EOS/ESD	SEMICONDUCTOR TECHNOLOGY	179
ESD CONTROL PROGRAM	ESD MATERIALS AND EQUIPMENT PROTECTIVE TECHNIQUES	20
ESD PROTECTIVE MATERIAL	ESD MATERIALS AND EQUIPMENT TESTING	20
ESD STD AND HANDBOOK	ESD STANDARDS, HANDBOOKS, MANUALS	21
ESD SUSCEPTIBILITY TESTING	ESD DEVICE TESTING METHODS	80
EVALUATION TEST	TEST TECHNIQUES FOR REL. ASSESSMENT SEMICONDUCTOR TECHNOLOGY	6
FABRICATION EQUIPMENT	FABRICATION PROCESSES & TECHNIQUES SEMICONDUCTOR TECHNOLOGY	2
FABRICATION PROCESSES & TECHNIQUES	SEMICONDUCTOR TECHNOLOGY	10
FAILURE ANALYSIS RESULTS	FAILURE ANALYSIS SEMICONDUCTOR TECHNOLOGY	16
FAILURE ANALYSIS TECHNIQUES	FAILURE ANALYSIS SEMICONDUCTOR TECHNOLOGY	2
FAILURE CAUSE	FAILURE ANALYSIS SEMICONDUCTOR TECHNOLOGY	3
FAILURE CHARACTERIZATION	SEMICONDUCTOR TECHNOLOGY	7
FAILURE INDICATOR	FAILURE ANALYSIS SEMICONDUCTOR TECHNOLOGY	2
FAILURE MODES	FAILURE ANALYSIS SEMICONDUCTOR TECHNOLOGY	8
FIELD EFFECT,(FET)	SEMICONDUCTOR TECHNOLOGY	2
FLOOR SURFACE	ESD MATERIALS AND EQUIPMENT PROTECTIVE	5

ALPHABETICAL LISTING OF INDEX TERMS

<u>INDEX TERM</u>	<u>CATEGORIES</u>	<u>DOCUMENTS</u>
COMPUTERIZED ANALYSIS	DESIGN TOOLS & TECHNIQUES SEMICONDUCTOR TECHNOLOGY	2
COMPUTERIZED TECH	RELIABILITY MODELING TECHNIQUES RELIABILITY MODELS/DATA/ANALYSIS	6
CONDUCTIVE ESD PROTECTIVE MATERIAL	ESD MATERIALS AND EQUIPMENT PROTECTIVE	7
CONDUCTIVE FOAM	ESD MATERIALS AND EQUIPMENT PROTECTIVE	2
CONTAMINATION	MISC. FAILURE PHENOMENA SEMICONDUCTOR TECHNOLOGY	2
CONTROL	EQUIPMENT TYPE/FUNCTION	3
COST	SYSTEMS	5
DATA COLLECTION SYS./TECHNIQUES	RELIABILITY MODELS/DATA/ANALYSIS	1
DECAY TIME	ESD MATERIALS AND EQUIPMENT TESTING	21
DESIGN CONSIDERATIONS	SEMICONDUCTOR TECHNOLOGY	12
DESIGN FOR TESTABILITY	DESIGN CONSIDERATIONS SEMICONDUCTOR TECHNOLOGY	16
DETECTOR/SENSOR	OPTOELECTRONIC SEMICONDUCTOR DEVICE	1
DEVELOPMENT PROGRAM	SEMICONDUCTOR TECHNOLOGY	12
DIELECTRIC BREAKDOWN	ESD DEVICE FAILURE MODES	8
DIGITAL LSI	MICROCIRCUIT SEMICONDUCTOR DEVICE	7
DIODE	DISCRETE SEMICONDUCTOR SEMICONDUCTOR DEVICE	7
DIP TUBE	ESD MATERIALS AND EQUIPMENT PROTECTIVE	3
DISCRETE SEMICONDUCTOR	SEMICONDUCTOR DEVICE	7
ELECTRICAL	TEST STRESS	4
ELECTRICAL FAILURE PHENOMENA	SEMICONDUCTOR TECHNOLOGY	4
ELECTRO-THERMOMIGRATION	ESD DEVICE FAILURE MODES	2
ELECTROSTATIC CHARGE DETECTOR	ESD MATERIALS AND EQUIPMENT PROTECTIVE	7
ELECTROSTATIC SHIELD	ESD EOS/ESD PHYSICS	3

ALPHABETICAL LISTING OF INDEX TERMS

<u>INDEX TERM</u>	<u>CATEGORIES</u>	<u>DOCUMENTS</u>
AIR IONIZER	ESD MATERIALS AND EQUIPMENT PROTECTIVE	10
ANTISTATIC GARMENTS	ESD MATERIALS AND EQUIPMENT PROTECTIVE	1
ANTISTATIC IMPREGNATED PLASTIC	ESD MATERIALS AND EQUIPMENT PROTECTIVE	1
APPLICATION FACTORS	DESIGN CONSIDERATIONS SEMICONDUCTOR TECHNOLOGY	10
ASSEMBLY & EQUIPMENT ESD CLASSIFICATION	ESD DEVICE TESTING METHODS	2
AVAILABILITY	SYSTEMS	1
BIPOLAR	COMPONENT TYPE	5
BIPOLAR & FET,(BIFET,BIMOS,ETC)	COMPONENT TYPE	1
BOARD	LEVEL OF ASSEMBLY	2
BULK CONDUCTIVE PLASTIC	ESD MATERIALS AND EQUIPMENT PROTECTIVE	2
CAPACITOR	PASSIVE DEVICE COMPONENT TYPE	2
CCD	FIELD EFFECT,(FET) SEMICONDUCTOR TECHNOLOGY	1
CHARACTERIZATION	TEST TECHNIQUES FOR REL. ASSESSMENT SEMICONDUCTOR TECHNOLOGY	5
CHARGE DEVICE MODEL	ESD DEVICE TESTING METHODS	10
CHART/DIAGRAM	REFERENCE DOCUMENT	1
CIRCUIT BOARD	NON-ELECTRONICS	3
CIRCUIT BREAKER	CIRCUIT PROTECTION DEVICES NON-ELECTRONICS	1
CIRCUIT PROTECTION DEVICES	NON-ELECTRONICS	15
CLEAN ROOM	ESD MATERIALS AND EQUIPMENT PROTECTIVE	1
COMPONENT	LEVEL OF ASSEMBLY	5
COMPUTATION	EQUIPMENT TYPE/FUNCTION	1
COMPUTER AIDED DESIGN,(CAD)	DESIGN TOOLS & TECHNIQUES SEMICONDUCTOR TECHNOLOGY	3
COMPUTERIZED	DATA COLLECTION SYS./TECHNIQUES RELIABILITY MODELS/DATA/ANALYSIS	3

Section 1:

ALPHABETICAL LISTING OF TERMS

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
<u>DOCUMENT-SEQUENCE NO.</u>			
DEVELOPMENT PROGRAM [SEMICONDUCTOR TECHNOLOGY]			
17515-30 THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS			
DIELECTRIC BREAKDOWN [ESD, DEVICE, FAILURE MODES]		79	[205-209]
18172-26 A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES		83	[181-184]
18172-28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS		83	[198-204]
17517-13 THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD		81	[85-89]
17517-25 PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS		81	[174-191]
17517-28 EOS THRESHOLD DETERMINATION OF ELECTRO-EXPLOSIVE DEVICES		81	[202-207]
17515-15 ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS		79	[104-108]
17515-20 MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES		79	[133-139]
17515-25 THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE		79	[176-182]
DIGITAL LSI [MICROCIRCUIT, SEMICONDUCTOR DEVICE]			
18172-27 ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS		83	[185-197]
17517-18 ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES		81	[114-119]
17517-34 EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS		81	[236-241]
17516-14 LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS		80	[87-94]
17515-8 RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES		79	[41-44]
17515-11 EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION		79	[64-77]
17515-24 SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE		79	[168-175]
DIODE [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]			
18172-15 CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES		83	[102-107]
18172-17 TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE		83	[118-121]
17516-19 EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES		80	[122-129]
17516-20 OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN		80	[130-139]
17515-14 ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES		79	[97-103]
17515-16 DOPING PROFILES AND SECOND BREAKDOWN		79	[109-115]
17515-19 AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES		79	[126-132]
DIP TUBE [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
18214-13 TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
17517-10 EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES		81	[57-64]
17516-3 ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS		80	[17-22]
DISCRETE SEMICONDUCTOR [SEMICONDUCTOR DEVICE]			
17517-19 AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES		81	[120-131]
17517-21 SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES		81	[139-144]
17517-23 EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL		81	[151-166]
17517-31 FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING		81	[219-224]
17517-35 NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE		81	[242-245]
17516-5 TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS		80	[26-34]
17516-6 PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)		80	[35-43]
ELECTRICAL [TEST STRESS]			
18172-9 POWER FAILURE MODELING OF INTEGRATED CIRCUITS		83	[56-62]
18172-24 METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS		83	[168-176]
18214-10 MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA		82	[76-81]
17516-27 MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION		80	[184-188]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
ELECTRICAL FAILURE PHENOMENA [SEMICONDUCTOR TECHNOLOGY]			
18305-17	DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES	84	[112-123]
17516-10	FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS	80	[59-66]
17516-20	OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN	80	[130-139]
17516-22	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80	[149-153]
ELECTRO-THERMOMIGRATION [ESD, DEVICE, FAILURE MODES]			
18305-25	A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS	84	[189-195]
17516-20	OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN	80	[130-139]
ELECTROSTATIC CHARGE DETECTOR [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
18305- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION	84	[7-19]
18305- 3	TEST EQUIPMENT--A SOURCE OF ESD!!	84	[20-21]
18305- 5	ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL	84	[25-33]
18172- 7	CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV	83	[37-47]
18172-10	STATIC SURVEY METERS	83	[63-66]
17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS	81	[65-74]
17516- 4	ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN	80	[23-25]
ELECTROSTATIC SHIELD [ESD, EOS/ESD PHYSICS]			
18214-14	METALLOPLASTICS	82	[110-114]
17517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	81	[75-84]
17515- 9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION	79	[45-54]
ELECTROSTATIC SIMULATOR [ESD, DEVICE, TESTING METHODS]			
18305-16	CRITICAL CONSIDERATIONS FOR ESD TESTING	84	[104-111]
18305-17	DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES	84	[112-123]
18305-20	PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS	84	[136-143]
17516-27	MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION	80	[184-188]
17515- 5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS	79	[22-26]
17515- 7	MODULE ELECTROSTATIC DISCHARGE SIMULATOR	79	[36-40]
EMC - ELECTROMAGNETIC COMPATIBILITY [ESD, EOS/ESD PHYSICS]			
17516-23	AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS	80	[154-160]
EMI - ELECTROMAGNETIC INTERFACE [ESD, EOS/ESD PHYSICS]			
18305- 4	ESD DAMAGE, DOES IT HAPPEN ON PCB'S?	84	[22-23]
18305-16	CRITICAL CONSIDERATIONS FOR ESD TESTING	84	[104-111]
18305-18	EMI CHARACTERISTICS OF ESD IN A SMALL AIR GAP --ARP GOVERNS THE EMI--	84	[124-130]
18172-11	THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY	83	[67-75]
18214- 6	A SURVEY OF EOS/ESD DATA SOURCES	82	[49-55]
18214-14	METALLOPLASTICS	82	[110-114]
17516- 6	PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)	80	[35-43]
17516-23	AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS	80	[154-160]
17516-29	FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS	80	[192-205]
17516-31	STATIC CONTROL SYSTEMS	80	[213-217]
EMP - ELECTROMAGNETIC PULSE [ESD, EOS/ESD PHYSICS]			
18305- 4	ESD DAMAGE, DOES IT HAPPEN ON PCB'S?	84	[22-23]
18305-21	AN EVALUATION OF EOS FAILURE MODELS	84	[144-156]
18172- 9	POWER FAILURE MODELING OF INTEGRATED CIRCUITS	83	[56-62]
18172-16	MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA	83	[108-117]
18214- 6	A SURVEY OF EOS/ESD DATA SOURCES	82	[49-55]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
<u>DOCUMENT-SEQUENCE NO.</u>			
EMP - ELECTROMAGNETIC PULSE [ESD, EOS/ESD PHYSICS]			
18214- 8 AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCT Devices		82	[62-70]
18214-12 SECOND BREAKDOWN IN SWITCHING TRANSISTORS		82	[91-93]
17517-19 AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES		81	[120-131]
17517-21 SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES		81	[139-144]
17517-28 EOS THRESHOLD DETERMINATION OF ELECTRO-EXPLOSIVE DEVICES		81	[202-207]
17516-21 ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS		80	[140-148]
17516-23 AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS		80	[154-160]
17516-27 MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION		80	[184-188]
17515-12 DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE		79	[78-87]
17515-21 SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS		79	[140-146]
17515-23 DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP		79	[158-167]
17515-29 STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP		79	[198-204]
ENVIRONMENTAL [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECHNOLOGY]			
17516- 2 THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE		80	[12-16]
17515- 5 THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS		79	[22-26]
EOS - ELECTRICAL OVERSTRESS [ESD, EOS/ESD PHYSICS]			
18305- 5 ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL		84	[25-33]
18305-20 PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS		84	[136-143]
18305-21 AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
18172- 7 CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV		83	[37-47]
18172-12 MEASURING EFFECTIVENESS OF AIR IONIZERS		83	[76-86]
18172-22 EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?		83	[154-157]
18172-23 INVISIBLE EOS/ESD DAMAGE: HOW TO FIND IT		83	[158-167]
18214- 4 ELECTRICAL OVERSTRESS THRESHOLD TESTING		82	[34-40]
18214- 8 AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCT Devices		82	[62-70]
18214-11 A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES		82	[82-90]
18214-19 BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY		82	[136-141]
17517-19 AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES		81	[120-131]
17517-20 MODELING OF EOS IN SILICON DEVICES		81	[132-138]
17517-23 EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL		81	[151-166]
17517-24 AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS		81	[167-173]
17517-28 EOS THRESHOLD DETERMINATION OF ELECTRO-EXPLOSIVE DEVICES		81	[202-207]
17517-31 FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING		81	[219-224]
17516-22 SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS		80	[149-153]
17516-23 AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS		80	[154-160]
17516-27 MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION		80	[184-188]
17516-30 BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS		80	[206-212]
17515-13 FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS		79	[88-96]
17515-30 THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS		79	[205-209]
EOS/ESD [SEMICONDUCTOR TECHNOLOGY]			
18305- 1 A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN		84	[1-6]
18305- 2 HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION		84	[7-19]
18305- 3 TEST EQUIPMENT--A SOURCE OF ESD!!		84	[20-21]
18305- 4 ESD DAMAGE, DOES IT HAPPEN ON PCB'S?		84	[22-23]
18305- 5 ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL		84	[25-33]
18305- 6 EFFECTS OF AIR IONS AND ELECTRIC FIELDS ON HEALTH AND PRODUCTIVITY		84	[34-39]
18305- 7 A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL		84	[40-44]
18305- 8 STATIC-ELECTRIC CHARACTERIZATION OF SEMI-INSULATING MATERIALS		84	[45-49]
18305- 9 ESTIMATION OF DISCHARGE ENERGY RELEASED FROM CHARGED INSULATOR		84	[50-57]
18305-10 TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER		84	[58-63]
18305-11 TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKAGING MATERIALS		84	[64-77]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
<u>DOCUMENT-SEQUENCE NO.</u>			
EOS/ESD [SEMICONDUCTOR TECHNOLOGY]			
18305-12 AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS		84	[78-84]
18305-13 A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES		84	[85-93]
18305-14 A WRIST STRAP LIFE TEST PROGRAM		84	[94-96]
18305-15 TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1		84	[97-103]
18305-16 CRITICAL CONSIDERATIONS FOR ESD TESTING		84	[104-111]
18305-17 DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES		84	[112-123]
18305-18 EMI CHARACTERISTICS OF ESD IN A SMALL AIR GAP --ARP GOVERNS THE EMI--		84	[124-130]
18305-19 SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL		84	[131-135]
18305-20 PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS		84	[136-143]
18305-21 AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
18305-22 DETERMINATION OF THRESHOLD ENERGIES AND DAMAGE MECHANISMS IN SEMICONDUCTOR DEVICES SUBJECTED TO VOLTAGE TRANSIENTS		84	[157-164]
18305-23 DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS		84	[165-178]
18305-24 DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING		84	[179-188]
18305-25 A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS		84	[189-195]
18305-26 ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS		84	[196-201]
18305-27 A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW		84	[202-209]
18172- 1 ESD-HOW OFTEN DOES IT HAPPEN?		83	[1-5]
18172- 2 ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS		83	[6-11]
18172- 3 THE PRODUCTION OPERATOR: WEAK LINK OR WARRIOR IN THE ESD BATTLE?		83	[12-16]
18172- 4 ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES		83	[17-20]
18172- 5 AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL		83	[21-28]
18172- 6 ESD BY STATIC INDUCTION		83	[29-36]
18172- 7 CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV		83	[37-47]
18172- 8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
18172- 9 POWER FAILURE MODELING OF INTEGRATED CIRCUITS		83	[56-62]
18172-10 STATIC SURVEY METERS		83	[63-66]
18172-11 THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY		83	[67-75]
18172-12 MEASURING EFFECTIVENESS OF AIR IONIZERS		83	[76-86]
18172-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
18172-14 COPLANAR TRIBOELECTRIFICATION OF SELECTED MATERIALS		83	[95-101]
18172-15 CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES		83	[102-107]
18172-16 MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA		83	[108-117]
18172-17 TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE		83	[118-121]
18172-18 SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED		83	[122-127]
18172-19 ESD SENSITIVITY OF COMPLEX ICS		83	[128-133]
18172-20 ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS		83	[134-146]
18172-21 THE EFFECT OF ESD ON CCD RELIABILITY		83	[147-153]
18172-22 EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?		83	[154-157]
18172-23 INVISIBLE EOS/ESD DAMAGE: HOW TO FIND IT		83	[158-167]
18172-24 METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS		83	[168-176]
18172-25 USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS		83	[177-180]
18172-26 A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES		83	[181-184]
18172-27 ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS		83	[185-197]
18172-28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS		83	[198-204]
18214- 1 ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL		82	[1-12]
18214- 2 ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCEPTIBILITY OF THIN FILM RESISTORS AND CAPACITORS		82	[13-18]
18214- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES		82	[19-33]
18214- 4 ELECTRICAL OVERSTRESS THRESHOLD TESTING		82	[34-40]
18214- 5 LATENT ESD FAILURES		82	[41-48]
18214- 6 A SURVEY OF EOS/ESD DATA SOURCES		82	[49-55]
18214- 7 MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS		82	[56-61]
18214- 8 AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCTOR DEVICES		82	[62-70]

EOS/ESD SYMPOSIUM INDEX

INDEX TERM-CATEGORY DOCUMENT-SEQUENCE NO.	TITLE	YEAR	PAGES
EOS/ESD [SEMICONDUCTOR TECHNOLOGY]			
18214- 9	THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN	82	[71-75]
18214-10	MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA	82	[76-81]
18214-11	A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES	82	[82-90]
18214-12	SECOND BREAKDOWN IN SWITCHING TRANSISTORS	82	[91-93]
18214-13	TEST METHODS FOR STATIC CONTROL PRODUCTS	82	[94-109]
18214-14	METALLOPLASTICS	82	[110-114]
18214-15	ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS	82	[115-119]
18214-16	DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS	82	[120-123]
18214-17	CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES	82	[124-130]
18214-18	ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS	82	[131-135]
18214-19	BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY	82	[136-141]
18214-20	ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)	82	[142-144]
18214-21	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM	82	[145-156]
18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA	82	[157-164]
18214-23	UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT	82	[165-168]
18214-24	CIRCUIT DESIGN FOR EOS/ESD PROTECTION	82	[169-174]
18214-25	IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES	82	[175-178]
18214-26	ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL	82	[179-184]
18214-27	ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS	82	[185-189]
18214-28	ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS	82	[190-202]
17517- 1	A CLOSER LOOK AT THE HUMAN ESD EVENT	81	[1-8]
17517- 2	QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION	81	[9-13]
17517- 3	ANALYSIS OF ESD FAILURES	81	[14-20]
17517- 4	THE PERFECT "10" - CAN YOU REALLY HAVE ONE?	81	[21-27]
17517- 5	THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS	81	[29-33]
17517- 6	A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY	81	[34-39]
17517- 7	A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT	81	[41-43]
17517- 8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS	81	[44-48]
17517- 9	CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL	81	[49-56]
17517-10	EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES	81	[57-64]
17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS	81	[65-74]
17517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	81	[75-84]
17517-13	THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD	81	[85-89]
17517-14	ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES	81	[90-96]
17517-15	INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS	81	[97-100]
17517-16	DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE	81	[101-105]
17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS	81	[106-113]
17517-18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
17517-19	AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES	81	[120-131]
17517-20	MODELING OF EOS IN SILICON DEVICES	81	[132-138]
17517-21	SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES	81	[139-144]
17517-22	DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS	81	[145-150]
17517-23	EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL	81	[151-166]
17517-24	AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS	81	[167-173]
17517-25	PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS	81	[174-191]
17517-26	PREDICTION OF THIN-FILM RESISTOR BURNOUT	81	[192-197]
17517-27	BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS	81	[198-201]
17517-28	EOS THRESHOLD DETERMINATION OF ELECTRO-EXPLOSIVE DEVICES	81	[202-207]
17517-29	POTENTIAL ESD HAZARDS ASSOCIATED WITH EXPLOSIVE PRIMERS	81	[208-211]
17517-30	LIGHTNING PROTECTION FOR COMPUTER DATA LINES	81	[212-218]
17517-31	FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING	81	[219-224]
17517-32	TIME-RELATED IMPROVEMENTS OF ELECTRICAL CHARACTERISTICS IN ELECTROSTATICALLY DAMAGED OPERATIONAL AMPLIFIERS	81	[225-228]
17517-33	EOS DAMAGE IN SILICON SOLAR CELLS	81	[209-235]
17517-34	EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS	81	[236-241]
17517-35	NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE	81	[242-245]
17516- 1	PASSIVE STATIC PROTECTION: THEORY AND PRACTICE	80	[1-11]
17516- 2	THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE	80	[12-16]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
EOS/ESD [SEMICONDUCTOR TECHNOLOGY]				
17516- 3	ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS	80 [17-22]		
17516- 4	ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN	80 [23-25]		
17516- 5	TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS	80 [26-34]		
17516- 6	PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)	80 [35-43]		
17516- 7	GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES	80 [44-53]		
17516- 8	IDENTIFICATION OF LATENT ESD FAILURES	80 [54-57]		
17516- 9	STUDY OF EFFECTS OF ELECTRO-STATIC DISCHARGE ON SOLID-STATE DEVICES	80 [58]		
17516-10	FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS	80 [59-66]		
17516-11	ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS	80 [67-72]		
17516-12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE	80 [73-80]		
17516-13	SOS PROTECTION: THE DESIGN PROBLEM	80 [81-86]		
17516-14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS	80 [87-94]		
17516-15	ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS	80 [95-103]		
17516-16	SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	80 [104-111]		
17516-17	HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS	80 [112-116]		
17516-18	SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES	80 [117-121]		
17516-19	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	80 [122-129]		
17516-20	OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN	80 [130-139]		
17516-21	ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS	80 [140-148]		
17516-22	SCLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80 [149-153]		
17516-23	AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS	80 [154-160]		
17516-24	TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS	80 [161-166]		
17516-25	LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR	80 [167-175]		
17516-26	SURGE TESTS ON PLUG-IN TRANSFORMERS	80 [176-183]		
17516-27	MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION	80 [184-188]		
17516-28	AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	80 [189-191]		
17516-29	FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS	80 [192-205]		
17516-30	BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS	80 [206-212]		
17516-31	STATIC CONTROL SYSTEMS	80 [213-217]		
17516-32	AN EVALUATION OF WRIST STRAP PARAMETERS	80 [218-224]		
17516-33	MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD	80 [225-230]		
17515- 1	AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	79 [1-3]		
17515- 2	CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79 [4-6]		
17515- 3	ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS	79 [7-12]		
17515- 4	STATIC CONTROL USING TOPICAL ANTISTATS	79 [13-21]		
17515- 5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS	79 [22-26]		
17515- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	79 [27-35]		
17515- 7	MODULE ELECTROSTATIC DISCHARGE SIMULATOR	79 [36-40]		
17515- 8	RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES	79 [41-44]		
17515- 9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION	79 [45-54]		
17515-10	ELECTRO-STATIC DISCHARGE AND CMOS LOGIC	79 [55-63]		
17515-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION	79 [64-77]		
17515-12	DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE	79 [78-87]		
17515-13	FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS	79 [88-96]		
17515-14	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	79 [97-103]		
17515-15	ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS	79 [104-108]		
17515-16	DOPING PROFILES AND SECOND BREAKDOWN	79 [109-115]		
17515-17	REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	79 [116-121]		
17515-18	HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION	79 [122-125]		
17515-19	AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES	79 [126-132]		
17515-20	MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES	79 [133-139]		
17515-21	SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS	79 [140-146]		

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
EOS/ESD [SEMICONDUCTOR TECHNOLOGY]				
17515-22		MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS	79	[147-157]
17515-23		DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP	79	[158-167]
17515-24		SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE	79	[168-175]
17515-25		THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE	79	[176-182]
17515-26		ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY	79	[183-187]
17515-27		THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79	[188-192]
17515-28		ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS	79	[193-197]
17515-29		STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP	79	[198-204]
17515-30		THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS	79	[205-209]
ESD CONTROL PROGRAM [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]				
18305- 1		A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN	84	[1-6]
18172- 1		ESD-HOW OFTEN DOES IT HAPPEN?	83	[1-5]
18172- 2		ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS	83	[6-11]
18172- 3		THE PRODUCTION OPERATOR: WEAK LINK OR WARRIOR IN THE ESD BATTLE?	83	[12-16]
18172- 5		AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL	83	[21-28]
18214-23		UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT	82	[165-168]
18214-25		IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES	82	[175-178]
18214-26		ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL	82	[179-184]
18214-27		ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS	82	[185-189]
17517- 4		THE PERFECT "10" - CAN YOU REALLY HAVE ONE?	81	[21-27]
17517- 5		THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS	81	[29-33]
17516- 1		PASSIVE STATIC PROTECTION: THEORY AND PRACTICE	80	[1-11]
17516- 2		THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE	80	[12-16]
17516- 4		ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN	80	[23-25]
17516-28		AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	80	[189-191]
17516-29		FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS	80	[192-205]
17515- 1		AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	79	[1-3]
17515- 2		CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79	[4-6]
17515- 6		PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	79	[27-35]
17515-18		HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION	79	[122-125]
ESD PROTECTIVE MATERIAL [ESD, MATERIALS AND EQUIPMENT, TESTING]				
18305- 2		HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION	84	[7-19]
18305- 8		STATIC-ELECTRIC CHARACTERIZATION OF SEMI-INSULATING MATERIALS	84	[45-49]
18305-15		TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1	84	[97-103]
18172- 2		ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS	83	[6-11]
18172- 6		ESD BY STATIC INDUCTION	83	[29-36]
18172-13		PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES	83	[87-94]
18172-14		COPLANAR TRIBOELECTRIFICATION OF SELECTED MATERIALS	83	[95-101]
18214-13		TEST METHODS FOR STATIC CONTROL PRODUCTS	82	[94-109]
18214-15		ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS	82	[115-119]
18214-19		BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY	82	[136-141]
17517- 5		THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS	81	[29-33]
17517- 7		A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT	81	[41-43]
17517- 9		CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL	81	[49-56]
17517-12		SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	81	[75-84]
17516-28		AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	80	[189-191]
17516-29		FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS	80	[192-205]
17515- 2		CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79	[4-6]
17515- 3		ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS	79	[7-12]
17515- 6		PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	79	[27-35]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
<u>DOCUMENT-SEQUENCE NO.</u>			
ESD PROTECTIVE MATERIAL [ESD, MATERIALS AND EQUIPMENT, TESTING]			
17515- 9 THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION		79	[45-54]
ESD STD AND HANDBOOK [ESD, STANDARDS, HANDBOOKS, MANUALS]			
18305- 3 TEST EQUIPMENT--A SOURCE OF ESD!!		84	[20-21]
18305-15 TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1		84	[97-103]
18305-23 DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS		84	[165-178]
18172- 5 AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL		83	[21-28]
18172-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
18172-20 ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS		83	[134-146]
18172-21 THE EFFECT OF ESD ON CCD RELIABILITY		83	[147-153]
18214- 1 ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL		82	[1-12]
18214- 5 LATENT ESD FAILURES		82	[41-48]
18214- 6 A SURVEY OF EOS/ESD DATA SOURCES		82	[49-55]
18214-13 TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
17517- 7 A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT		81	[41-43]
17517- 8 AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS		81	[44-48]
17517-12 SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS		81	[75-84]
17517-19 AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES		81	[120-131]
17517-32 TIME-RELATED IMPROVEMENTS OF ELECTRICAL CHARACTERISTICS IN ELECTROSTATICALLY DAMAGED OPERATIONAL AMPLIFIERS		81	[225-228]
17516- 1 PASSIVE STATIC PROTECTION: THEORY AND PRACTICE		80	[1-11]
17516-23 AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS		80	[154-160]
17515- 6 PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS		79	[27-35]
17515- 8 RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES		79	[41-44]
17515- 9 THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION		79	[45-54]
ESD SUSCEPTIBILITY TESTING [ESD, DEVICE, TESTING METHODS]			
18305-22 DETERMINATION OF THRESHOLD ENERGIES AND DAMAGE MECHANISMS IN SEMICONDUCTOR DEVICES SUBJECTED TO VOLTAGE TRANSIENTS		84	[157-164]
18305-23 DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS		84	[165-178]
18305-24 DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING		84	[179-188]
18305-25 A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS		84	[189-195]
18305-26 ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS		84	[196-201]
18172- 1 ESD-HOW OFTEN DOES IT HAPPEN?		83	[1-5]
18172- 9 POWER FAILURE MODELING OF INTEGRATED CIRCUITS		83	[56-62]
18172-16 MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA		83	[108-117]
18172-18 SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED		83	[122-127]
18172-19 ESD SENSITIVITY OF COMPLEX ICS		83	[128-133]
18172-20 ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS		83	[134-146]
18172-27 ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS		83	[185-197]
18214- 1 ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL		82	[1-12]
18214- 2 ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCEPTIBILITY OF THIN FILM RESISTORS AND CAPACITORS		82	[13-18]
18214- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES		82	[19-33]
18214- 4 ELECTRICAL OVERSTRESS THRESHOLD TESTING		82	[34-40]
18214- 5 LATENT ESD FAILURES		82	[41-48]
18214- 7 MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS		82	[56-61]
18214- 9 THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN		82	[71-75]
18214-10 MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA		82	[76-81]
18214-11 A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES		82	[82-90]
18214-21 AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM		82	[145-156]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
ESD SUSCEPTIBILITY TESTING [ESD, DEVICE, TESTING METHODS]			
18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA	82	[157-164]
18214-25	IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES	82	[175-178]
17517- 3	ANALYSIS OF ESD FAILURES	81	[14-20]
17517- 4	THE PERFECT "10" - CAN YOU REALLY HAVE ONE?	81	[21-27]
17517- 9	CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL	81	[49-56]
17517-13	THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD	81	[85-89]
17517-14	ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES	81	[90-96]
17517-16	DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE	81	[101-105]
17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS	81	[106-113]
17517-18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
17517-19	AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES	81	[120-131]
17517-21	SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES	81	[139-144]
17517-22	DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS	81	[145-150]
17517-23	EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL	81	[151-166]
17517-24	AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS	81	[167-173]
17517-25	PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS	81	[174-191]
17517-26	PREDICTION OF THIN-FILM RESISTOR BURNOUT	81	[192-197]
17517-27	BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS	81	[198-201]
17517-31	FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING	81	[219-224]
17517-32	TIME-RELATED IMPROVEMENTS OF ELECTRICAL CHARACTERISTICS IN ELECTROSTATICALLY DAMAGED OPERATIONAL AMPLIFIERS	81	[225-228]
17517-33	EOS DAMAGE IN SILICON SOLAR CELLS	81	[209-235]
17517-34	EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS	81	[236-241]
17517-35	NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE	81	[242-245]
17516- 3	ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS	80	[17-22]
17516- 9	STUDY OF EFFECTS OF ELECTRO-STATIC DISCHARGE ON SOLID-STATE DEVICES	80	[58]
17516-10	FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS	80	[59-66]
17516-11	ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS	80	[67-72]
17516-12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE	80	[73-80]
17516-14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS	80	[87-94]
17516-15	ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS	80	[95-103]
17516-16	SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	80	[104-111]
17516-17	HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS	80	[112-116]
17516-18	SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES	80	[117-121]
17516-19	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	80	[122-129]
17516-20	OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN	80	[130-139]
17516-21	ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS	80	[140-148]
17516-22	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80	[149-153]
17516-23	AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS	80	[154-160]
17516-27	MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION	80	[184-188]
17515- 5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS	79	[22-26]
17515- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	79	[27-35]
17515- 8	RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES	79	[41-44]
17515- 9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLIFIED MODEL FOR STATIC PROTECTION	79	[45-54]
17515-10	ELECTRO-STATIC DISCHARGE AND CMOS LOGIC	79	[55-63]
17515-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION	79	[64-77]
17515-12	DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE	79	[78-87]
17515-14	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	79	[97-103]
17515-15	ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS	79	[104-108]
17515-16	DOPING PROFILES AND SECOND BREAKDOWN	79	[109-115]
17515-17	REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	79	[116-121]
17515-21	SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS	79	[140-146]
17515-22	MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS	79	[147-157]
17515-23	DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP	79	[158-167]
17515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT ELEVATED TEMPERATURE	79	[168-175]

EOS/ESD SYMPOSIUM INDEX

INDEX TERM-CATEGORY DOCUMENT-SEQUENCE NO.	TITLE	YEAR	PAGES
ESD SUSCEPTIBILITY TESTING [ESD, DEVICE, TESTING METHODS]			
17515-25	THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE	79	[176-182]
17515-27	THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79	[188-192]
17515-29	STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP	79	[198-204]
17515-30	THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS	79	[205-209]
EVALUATION TEST [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECHNOLOGY]			
18172-20	ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]
18214-16	DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS	82	[120-123]
17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS	81	[65-74]
17517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	81	[75-84]
17515-4	STATIC CONTROL USING TOPICAL ANTISTATS	79	[13-21]
17515-16	DOPING PROFILES AND SECOND BREAKDOWN	79	[109-115]
FABRICATION EQUIPMENT [FABRICATION PROCESSES & TECHNIQUES, SEMICONDUCTOR TECHNOLOGY]			
18305- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION	84	[7-19]
17515- 7	MODULE ELECTROSTATIC DISCHARGE SIMULATOR	79	[36-40]
FABRICATION PROCESSES & TECHNIQUES [SEMICONDUCTOR TECHNOLOGY]			
18305- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION	84	[7-19]
18305- 6	EFFECTS OF AIR IONS AND ELECTRIC FIELDS ON HEALTH AND PRODUCTIVITY	84	[34-39]
18172-13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES	83	[87-94]
18214-11	A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES	82	[82-90]
18214-14	METALLOPLASTICS	82	[110-114]
17517-13	THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD	81	[85-89]
17515- 3	ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS	79	[7-12]
17515-12	DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE	79	[78-87]
17515-25	THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE	79	[176-182]
17515-26	ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY	79	[183-187]
FAILURE ANALYSIS RESULTS [FAILURE ANALYSIS, SEMICONDUCTOR TECHNOLOGY]			
18172-19	ESD SENSITIVITY OF COMPLEX ICS	83	[128-133]
18172-20	ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]
18172-21	THE EFFECT OF ESD ON CCD RELIABILITY	83	[147-153]
18172-22	EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?	83	[154-157]
18172-23	INVISIBLE EOS/ESD DAMAGE: HOW TO FIND IT	83	[158-167]
18172-26	A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES	83	[181-184]
18172-27	ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS	83	[185-197]
17517- 3	ANALYSIS OF ESD FAILURES	81	[14-20]
17517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	81	[75-84]
17517-31	FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING	81	[219-224]
17516-11	ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS	80	[67-72]
17516-22	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80	[149-153]
17515-23	DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP	79	[158-167]
17515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT ELEVATED TEMPERATURE	79	[168-175]
17515-29	STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP	79	[198-204]
17515-30	THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS	79	[205-209]
FAILURE ANALYSIS TECHNIQUES [FAILURE ANALYSIS, SEMICONDUCTOR TECHNOLOGY]			
18305-24	DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING	84	[179-188]
17517-22	DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS	81	[145-150]
FAILURE CAUSE [FAILURE ANALYSIS, SEMICONDUCTOR TECHNOLOGY]			
17517-16	DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE	81	[101-105]

EOS/ESD SYMPOSIUM INDEX

<u>DEX TERM-CATEGORY</u>	<u>CUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
ILURE CAUSE [FAILURE ANALYSIS, SEMICONDUCTOR TECHNOLOGY]				
7517-29 POTENTIAL ESD HAZARDS ASSOCIATED WITH EXPLOSIVE PRIMERS 7515-29 STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP			81 79	[208-211] [198-204]
ILURE CHARACTERIZATION [SEMICONDUCTOR TECHNOLOGY]				
8172-16 MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA 8172-27 ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS 8214- 6 A SURVEY OF EOS/ESD DATA SOURCES 7517-21 SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES 7517-24 AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS 7517-28 EOS THRESHOLD DETERMINATION OF ELECTRO-EXPLOSIVE DEVICES 7516-17 HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS			83 83 82 81 81 81 80	[108-117] [185-197] [49-55] [139-144] [167-173] [202-207] [112-116]
ILURE INDICATOR [FAILURE ANALYSIS, SEMICONDUCTOR TECHNOLOGY]				
8172-22 EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE? 8172-23 INVISIBLE EOS/ESD DAMAGE: HOW TO FIND IT			83 83	[154-157] [158-167]
ILURE MODES [FAILURE ANALYSIS, SEMICONDUCTOR TECHNOLOGY]				
18305-24 DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING 18172-26 A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES 18214- 5 LATENT ESD FAILURES 17517-19 AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES 17516- 3 ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS 17516- 8 IDENTIFICATION OF LATENT ESD FAILURES 17515-22 MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS 17515-25 THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE			84 83 82 81 80 80 79 79	[179-188] [181-184] [41-48] [120-131] [17-22] [54-57] [147-157] [176-182]
FIELD EFFECT,(FET) [SEMICONDUCTOR TECHNOLOGY]				
17515- 7 MODULE ELECTROSTATIC DISCHARGE SIMULATOR 17515-22 MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS			79 79	[36-40] [147-157]
LOOR SURFACE [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]				
18172- 4 ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES 18214-17 CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES 18214-21 AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM 17517- 2 QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION 17516- 2 THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE			83 82 82 81 80	[17-20] [124-130] [145-156] [9-13] [12-16]
MEA/FMECA,(FAILURE MODE EFFECTS) [RELIABILITY MODELING TECHNIQUES, RELIABILITY MODELS/DATA/ANALYSIS]				
17515-13 FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS			79	[88-96]
UTURE TRENDS [SEMICONDUCTOR TECHNOLOGY]				
18214-20 ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION) 18214-21 AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM 18214-24 CIRCUIT DESIGN FOR EOS/ESD PROTECTION 18214-25 IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES 18214-27 ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS 17517-18 ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES 17515- 2 CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE 17515- 7 MODULE ELECTROSTATIC DISCHARGE SIMULATOR 17515-28 ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS			82 82 82 82 82 81 79 79 79	[142-144] [145-156] [169-174] [175-178] [185-189] [114-119] [4-6] [36-40] [193-197]

EOS/ESD SYMPOSIUM INDEX

<u>DEX TERM-CATEGORY</u>	<u>CUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
DIMETRIES/LAYOUT [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECHNOLOGY]				
B172-	8	A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS	83	[48-55]
7516-15		ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS	80	[95-103]
7515-26		ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY	79	[183-187]
7515-27		THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79	[188-192]
APHICAL TECHNIQUES [RELIABILITY MODELING TECHNIQUES, RELIABILITY MODELS/DATA/ANALYSIS]				
7515-16		DOPING PROFILES AND SECOND BREAKDOWN	79	[109-115]
OUNDING METHODS [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]				
8305-13		A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES	84	[85-93]
8214-20		ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)	82	[142-144]
8214-28		ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS	82	[190-202]
7516- 1		PASSIVE STATIC PROTECTION: THEORY AND PRACTICE	80	[1-11]
7516-25		LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR	80	[167-175]
7515- 3		ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS	79	[7-12]
OUNDING STRAPS [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]				
18305-14		A WRIST STRAP LIFE TEST PROGRAM	84	[94-96]
17517- 5		THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS	81	[29-33]
17517- 6		A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY	81	[34-39]
17516-29		FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS	80	[192-205]
17516-32		AN EVALUATION OF WRIST STRAP PARAMETERS	80	[218-224]
17515- 2		CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79	[4-6]
UIDE/PROCEDURE [REFERENCE DOCUMENT]				
18172- 2		ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS	83	[6-11]
18172- 4		ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES	83	[17-20]
18172- 5		AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL	83	[21-28]
18172- 9		POWER FAILURE MODELING OF INTEGRATED CIRCUITS	83	[56-62]
18172-13		PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES	83	[87-94]
18172-24		METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS	83	[168-176]
18172-25		USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS	83	[177-180]
18172-26		A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES	83	[181-184]
18172-28		A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS	83	[198-204]
18214-27		ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS	82	[185-189]
17517- 7		A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT	81	[41-43]
17517-10		EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES	81	[57-64]
17517-11		INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS	81	[65-74]
17517-17		SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS	81	[106-113]
17515- 1		AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	79	[1-3]
17515- 2		CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79	[4-6]
17515- 3		ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS	79	[7-12]
17515- 4		STATIC CONTROL USING TOPICAL ANTISTATICS	79	[13-21]
17515-18		HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION	79	[122-125]
17515-19		AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES	79	[126-132]
17515-21		SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS	79	[140-146]
17515-24		SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT ELEVATED TEMPERATURE	79	[168-175]
17515-26		ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY	79	[183-187]

EOS/ESD SYMPOSIUM INDEX

<u>TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
<u>ENT-SEQUENCE NO.</u>			
E/PROCEDURE [REFERENCE DOCUMENT]			
15-30 THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS		79	[205-209]
COPTOR [APPLICATION ENVIRONMENT]			
15-18 HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION		79	[122-125]
N BODY ESD MODEL [ESD, DEVICE, TESTING METHODS]			
05- 1 A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN		84	[1-6]
05- 5 ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL		84	[25-33]
05-16 CRITICAL CONSIDERATIONS FOR ESD TESTING		84	[104-111]
05-17 DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES		84	[112-123]
05-23 DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS		84	[165-178]
05-25 A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS		84	[189-195]
72- 1 ESD-HOW OFTEN DOES IT HAPPEN?		83	[1-5]
72- 8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
72-20 ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND NMOS ICS		83	[134-146]
72-27 ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS		83	[185-197]
14- 2 ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCEPTIBILITY OF THIN FILM RESISTORS AND CAPACITORS		82	[13-18]
14-24 CIRCUIT DESIGN FOR EOS/ESD PROTECTION		82	[169-174]
17- 1 A CLOSER LOOK AT THE HUMAN ESD EVENT		81	[1-8]
17- 9 CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL		81	[49-56]
17-10 EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES		81	[57-64]
17-29 POTENTIAL ESD HAZARDS ASSOCIATED WITH EXPLOSIVE PRIMERS		81	[208-211]
17-32 TIME-RELATED IMPROVEMENTS OF ELECTRICAL CHARACTERISTICS IN ELECTROSTATICALLY DAMAGED OPERATIONAL AMPLIFIERS		81	[225-228]
17-34 EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS		81	[236-241]
16-12 PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE		80	[73-80]
15- 7 MODULE ELECTROSTATIC DISCHARGE SIMULATOR		79	[36-40]
15-15 ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS		79	[104-108]
N FACTORS [SYSTEMS]			
72- 3 THE PRODUCTION OPERATOR: WEAK LINK OR WARRIOR IN THE ESD BATTLE?		83	[12-16]
72- 5 AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL		83	[21-28]
14-21 AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM		82	[145-156]
CTIVE CHARGING [ESD, EOS/ESD PHYSICS]			
05- 9 ESTIMATION OF DISCHARGE ENERGY RELEASED FROM CHARGED INSULATOR		84	[50-57]
72- 6 ESD BY STATIC INDUCTION		83	[29-36]
16-33 MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD		80	[225-230]
T PROTECTION [ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]			
05-27 A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW		84	[202-209]
14-24 CIRCUIT DESIGN FOR EOS/ESD PROTECTION		82	[169-174]
17-13 THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD		81	[85-89]
17-14 ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES		81	[90-96]
17-15 INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS		81	[97-100]
17-18 ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES		81	[114-119]
16- 5 TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS		80	[26-34]
16- 6 PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)		80	[35-43]
16- 7 GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES		80	[44-53]
16- 9 STUDY OF EFFECTS OF ELECTRO-STATIC DISCHARGE ON SOLID-STATE DEVICES		80	[58]
16-13 SOS PROTECTION: THE DESIGN PROBLEM		80	[81-86]
16-15 ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS		80	[95-103]
16-26 SURGE TESTS ON PLUG-IN TRANSFORMERS		80	[176-183]

EOS/ESD SYMPOSIUM INDEX

<u>TERM-CATEGORY</u>	<u>ENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
[PROTECTION [ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]				
15-13 FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS 79 [88-96]				
15-18 HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION 79 [122-125]				
15-26 ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY 79 [183-187]				
[FIELD EFFECT,(FET), SEMICONDUCTOR TECHNOLOGY]				
16-11 ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS 80 [67-72]				
NT ESD FAILURE [ESD, DEVICE, FAILURE MODES]				
72-28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS 83 [198-204]				
14- 5 LATENT ESD FAILURES 82 [41-48]				
16- 8 IDENTIFICATION OF LATENT ESD FAILURES 80 [54-57]				
15-10 ELECTRO-STATIC DISCHARGE AND CMOS LOGIC 79 [55-63]				
[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECHNOLOGY]				
05-13 A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES 84 [85-93]				
72-21 THE EFFECT OF ESD ON CCD RELIABILITY 83 [147-153]				
72-28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS 83 [198-204]				
14- 5 LATENT ESD FAILURES 82 [41-48]				
STICS [SYSTEMS]				
05-11 TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS 84 [64-77] PROPENSITY ON PACKING MATERIALS				
TAINABILITY TECHNIQUES [MAINTAINABILITY, SYSTEMS]				
72- 5 AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE 83 [21-28] (EOS/ESD) CONTROL				
RIALS [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECHNOLOGY]				
72- 4 ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES 83 [17-20]				
72-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES 83 [87-94]				
14-15 ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS 82 [115-119]				
14-16 DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS 82 [120-123]				
14-18 ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS 82 [131-135]				
17- 2 QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION 81 [9-13]				
17- 8 AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS 81 [44-48]				
17-11 INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS 81 [65-74]				
17-12 SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS 81 [75-84]				
16-30 BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS 80 [206-212]				
15- 3 ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS 79 [7-12]				
EMATICAL ANALYSIS				
72-17 TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE 83 [118-121]				
72-18 SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED 83 [122-127]				
14- 7 MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS 82 [56-61]				
14- 8 AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCT Devices 82 [62-70]				
14- 9 THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN 82 [71-75]				
14-10 MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA 82 [76-81]				
17-21 SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES 81 [139-144]				
17-26 PREDICTION OF THIN-FILM RESISTOR BURNOUT 81 [192-197]				

EOS/ESD SYMPOSIUM INDEX

<u>TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
<u>-SEQUENCE NO.</u>			
TRAP [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
12	AN EVALUATION OF WRIST STRAP PARAMETERS	80	[218-224]
2	CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79	[4-6]
BELL MODEL [ESD, DEVICE, TESTING METHODS]			
18	SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED	83	[122-127]
2	ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCEPTIBILITY OF THIN FILM RESISTORS AND CAPACITORS	82	[13-18]
3	LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES	82	[19-33]
8	AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCTOR DEVICES	82	[62-70]
18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
19	AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES	81	[120-131]
20	MODELING OF EOS IN SILICON DEVICES	81	[132-138]
22	DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS	81	[145-150]
35	NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE	81	[242-245]
3	ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS	80	[17-22]
18	SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES	80	[117-121]
22	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80	[149-153]
13	FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS	79	[88-96]

EOS/ESD SYMPOSIUM INDEX

<u>TERM-CATEGORY</u>	<u>T-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
FOR [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]				
10	FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLEAR TRANSISTORS		80	[59-66]
17	HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLEAR TRANSISTORS		80	[112-116]
17	REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS		79	[116-121]
21	SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS		79	[140-146]
25	THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE		79	[176-182]
27	THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLEAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS		79	[188-192]
LECTRIC CHARGING [ESD, EOS/ESD PHYSICS]				
5	ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL		84	[25-33]
10	TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER		84	[58-63]
11	TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKAGING MATERIALS		84	[64-77]
12	AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS		84	[78-84]
15	TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1		84	[97-103]
19	SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL		84	[131-135]
13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
14	COPLANAR TRIBOELECTRIFICATION OF SELECTED MATERIALS		83	[95-101]
13	TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
16	DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS		82	[120-123]
17	CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES		82	[124-130]
22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS		81	[44-48]
10	EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES		81	[57-64]
29	POTENTIAL ESD HAZARDS ASSOCIATED WITH EXPLOSIVE PRIMERS		81	[208-211]
3	ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS		80	[17-22]
4	STATIC CONTROL USING TOPICAL ANTISTATS		79	[13-21]
5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS		79	[22-26]
9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION		79	[45-54]
IPOLAR, COMPONENT TYPE]				
1	ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL		82	[1-12]
9	STUDY OF EFFECTS OF ELECTRO-STATIC DISCHARGE ON SOLID-STATE DEVICES		80	[58]
RESISTIVITY [ESD, MATERIALS AND EQUIPMENT, TESTING]				
11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS		81	[65-74]
[EQUIPMENT TYPE/FUNCTION]				
29	POTENTIAL ESD HAZARDS ASSOCIATED WITH EXPLOSIVE PRIMERS		81	[208-211]
[STATISTICAL ANALYSIS]				
22	DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS		81	[145-150]
10	ELECTRO-STATIC DISCHARGE AND CMOS LOGIC		79	[55-63]
SHIP [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECHNOLOGY]				
4	THE PERFECT "10" - CAN YOU REALLY HAVE ONE?		81	[21-27]
TRAP [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]				
2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION		84	[7-19]
14	A WRIST STRAP LIFE TEST PROGRAM		84	[94-96]
13	TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
21	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM		82	[145-156]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
TERMAL SECONDARY BREAKDOWN [ESD, DEVICE, FAILURE MODES]			
I172-17 TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE		83	[118-121]
I214- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES		82	[19-33]
I214-10 MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA		82	[76-81]
I517-31 FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING		81	[219-224]
I516-18 SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES		80	[117-121]
I516-19 EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES		80	[122-129]
I516-22 SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS		80	[149-153]
I515-17 REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS		79	[116-121]
TERMAL STRESS/STRAIN [MECHANICAL & PHYSICAL FAILURE PHENOMENA, SEMICONDUCTOR TECHNOLOGY]			
I172-17 TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE		83	[118-121]
LERANCES [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECHNOLOGY]			
8305-16 CRITICAL CONSIDERATIONS FOR ESD TESTING		84	[104-111]
8172-12 MEASURING EFFECTIVENESS OF AIR IONIZERS		83	[76-86]
8214-15 ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS		82	[115-119]
PICAL ANTISTATS [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
7517- 8 AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS		81	[44-48]
7517-12 SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS		81	[75-84]
7516-29 FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS		80	[192-205]
7515- 3 ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS		79	[7-12]
7515- 4 STATIC CONTROL USING TOPICAL ANTISTATS		79	[13-21]
ADE-OFFS [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECHNOLOGY]			
8172-10 STATIC SURVEY METERS		83	[63-66]
8172-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
8214-13 TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
7515- 5 THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS		79	[22-26]
ANSIENT SUPPRESSORS [ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]			
8172-24 METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS		83	[168-176]
8172-25 USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS		83	[177-180]
7517-30 LIGHTNING PROTECTION FOR COMPUTER DATA LINES		81	[212-218]
7516- 5 TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS		80	[26-34]
7516- 6 PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)		80	[35-43]
7516- 7 GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES		80	[44-53]
7516-24 TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS		80	[161-166]
7516-25 LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR		80	[167-175]
7516-26 SURGE TESTS ON PLUG-IN TRANSFORMERS		80	[176-183]
7516-30 BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS		80	[206-212]
7515-28 ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS		79	[193-197]
ANSISTOR [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]			
8305-21 AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
8172-16 MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA		83	[108-117]
8214-11 A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES		82	[82-90]
8214-12 SECOND BREAKDOWN IN SWITCHING TRANSISTORS		82	[91-93]
7517-16 DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE		81	[101-105]
7517-22 DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS		81	[145-150]
7516- 9 STUDY OF EFFECTS OF ELECTRO-STATIC DISCHARGE ON SOLID-STATE DEVICES		80	[58]

EOS/ESD SYMPOSIUM INDEX

<u>DEX TERM-CATEGORY</u>	<u>CUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
ST TECHNIQUES FOR REL. ASSESSMENT [SEMICONDUCTOR TECHNOLOGY]				
8214-28		ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS	82	[190-202]
7517-16		DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE	81	[101-105]
7517-18		ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
7517-31		FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING	81	[219-224]
7517-34		EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS	81	[236-241]
7516- 6		PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)	80	[35-43]
7516-10		FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLEAR TRANSISTORS	80	[59-66]
7516-16		SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	80	[104-111]
7516-26		SURGE TESTS ON PLUG-IN TRANSFORMERS	80	[176-183]
7515- 1		AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	79	[1-3]
7515- 4		STATIC CONTROL USING TOPICAL ANTISTATS	79	[13-21]
7515-10		ELECTRO-STATIC DISCHARGE AND CMOS LOGIC	79	[55-63]
7515-12		DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE	79	[78-87]
7515-13		FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS	79	[88-96]
7515-15		ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS	79	[104-108]
7515-17		REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	79	[116-121]
7515-18		HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION	79	[122-125]
7515-23		DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP	79	[158-167]
ESTING TOOLS & TECHNIQUES [SEMICONDUCTOR TECHNOLOGY]				
18305- 7		A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL	84	[40-44]
18305- 9		ESTIMATION OF DISCHARGE ENERGY RELEASED FROM CHARGED INSULATOR	84	[50-57]
18305-13		A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES	84	[85-93]
18305-14		A WRIST STRAP LIFE TEST PROGRAM	84	[94-96]
18305-15		TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1	84	[97-103]
18305-18		EMI CHARACTERISTICS OF ESD IN A SMALL AIR GAP --ARP GOVERNS THE EMI--	84	[124-130]
18172-27		ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS	83	[185-197]
18214- 1		ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL	82	[1-12]
18214- 4		ELECTRICAL OVERSTRESS THRESHOLD TESTING	82	[34-40]
18214- 6		A SURVEY OF EOS/ESD DATA SOURCES	82	[49-55]
18214-17		CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES	82	[124-130]
17517- 1		A CLOSER LOOK AT THE HUMAN ESD EVENT	81	[1-8]
17516- 2		THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE	80	[12-16]
17516- 3		ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS	80	[17-22]
17516- 4		ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN	80	[23-25]
17516- 8		IDENTIFICATION OF LATENT ESD FAILURES	80	[54-57]
17516-24		TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS	80	[161-166]
17515-21		SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS	79	[140-146]
17515-22		MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS	79	[147-157]
17515-26		ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY	79	[183-187]
17515-27		THE PHANTOM Emitter--AN ESD-RESISTANT BIPOLEAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79	[188-192]
THEORY OF OPERATION [SEMICONDUCTOR TECHNOLOGY]				
18172- 6		ESD BY STATIC INDUCTION	83	[29-36]
18172-12		MEASURING EFFECTIVENESS OF AIR IONIZERS	83	[76-86]
18172-14		COPLANAR TRIBOELECTRIFICATION OF SELECTED MATERIALS	83	[95-101]
17517- 1		A CLOSER LOOK AT THE HUMAN ESD EVENT	81	[1-8]
17517- 2		QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION	81	[9-13]
17516- 1		PASSIVE STATIC PROTECTION: THEORY AND PRACTICE	80	[1-11]
HERMAL [TEST STRESS]				
18172-17		TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE	83	[118-121]
18214-10		MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA	82	[76-81]
18214-12		SECOND BREAKDOWN IN SWITCHING TRANSISTORS	82	[91-93]
17516-30		BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS	80	[206-212]

EOS/ESD SYMPOSIUM INDEX

INDEX TERM-CATEGORY DOCUMENT-SEQUENCE NO.	TITLE	YEAR	PAGES
SYSTEM [LEVEL OF ASSEMBLY]			
17516-21 ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS		80	[140-148]
TEST EQUIPMENT [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECHNOLOGY]			
18305- 3 TEST EQUIPMENT--A SOURCE OF ESD!!		84	[20-21]
18305- 5 ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL		84	[25-33]
18172- 2 ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS		83	[6-11]
18172-10 STATIC SURVEY METERS		83	[63-66]
18172-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
18214- 5 LATENT ESD FAILURES		82	[41-48]
17516-31 STATIC CONTROL SYSTEMS		80	[213-217]
17516-32 AN EVALUATION OF WRIST STRAP PARAMETERS		80	[218-224]
TEST PROGRAM DEVELOPMENT [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECHNOLOGY]			
18172- 2 ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS		83	[6-11]
18172- 3 THE PRODUCTION OPERATOR: WEAK LINK OR WARRIOR IN THE ESD BATTLE?		83	[12-16]
18172- 4 ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES		83	[17-20]
18172- 9 POWER FAILURE MODELING OF INTEGRATED CIRCUITS		83	[56-62]
18172-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
18214-26 ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL		82	[179-184]
17517- 8 AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS		81	[44-48]
17515- 7 MODULE ELECTROSTATIC DISCHARGE SIMULATOR		79	[36-40]
TEST SPECIFICATION [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECHNOLOGY]			
18172- 8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
18172-19 ESD SENSITIVITY OF COMPLEX ICS		83	[128-133]
18172-28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS		83	[198-204]
17517-15 INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS		81	[97-100]
17515- 9 THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION		79	[45-54]
17515-26 ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY		79	[183-187]
TEST TECHNIQUES [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECHNOLOGY]			
18305- 5 ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL		84	[25-33]
18172- 1 ESD-HOW OFTEN DOES IT HAPPEN?		83	[1-5]
18172- 7 CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV		83	[37-47]
18172-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
18172-20 ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS		83	[134-146]
17517-14 ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES		81	[90-96]
TEST TECHNIQUES FOR REL. ASSESSMENT [SEMICONDUCTOR TECHNOLOGY]			
18172- 7 CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV		83	[37-47]
18172- 8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
18172-11 THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY		83	[67-75]
18172-12 MEASURING EFFECTIVENESS OF AIR IONIZERS		83	[76-86]
18172-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
18214- 1 ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL		82	[1-12]
18214- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES		82	[19-33]
18214-13 TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
18214-17 CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES		82	[124-130]
18214-22 ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
STATIC CONTROL [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]				
18305- 1	A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN		84	[1-6]
18305- 6	EFFECTS OF AIR IONS AND ELECTRIC FIELDS ON HEALTH AND PRODUCTIVITY		84	[34-39]
18172- 2	ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS		83	[6-11]
18214-18	ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS		82	[131-135]
18214-20	ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)		82	[142-144]
18214-21	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM		82	[145-156]
18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
18214-23	UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT		82	[165-168]
18214-27	ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS		82	[185-189]
17517- 2	QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION		81	[9-13]
17517- 5	THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS		81	[29-33]
17516- 1	PASSIVE STATIC PROTECTION: THEORY AND PRACTICE		80	[1-11]
17516- 5	TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS		80	[26-34]
17516- 7	GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES		80	[44-53]
17516-28	AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM		80	[189-191]
17516-29	FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS		80	[192-205]
17516-31	STATIC CONTROL SYSTEMS		80	[213-217]
17515- 1	AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM		79	[1-3]
17515- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS		79	[27-35]
17515-18	HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION		79	[122-125]
STATISTICAL ANALYSIS				
18172-18	SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED		83	[122-127]
17517-31	FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING		81	[219-224]
STEP STRESS [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECHNOLOGY]				
18305-26	ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS		84	[196-201]
18214- 1	ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL		82	[1-12]
17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS		81	[106-113]
17517-18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES		81	[114-119]
17515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE		79	[168-175]
SURFACE RESISTIVITY [ESD, MATERIALS AND EQUIPMENT, TESTING]				
18305- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION		84	[7-19]
18305- 8	STATIC-ELECTRIC CHARACTERIZATION OF SEMI-INSULATING MATERIALS		84	[45-49]
18305-10	TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER		84	[58-63]
18305-11	TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKAGING MATERIALS		84	[64-77]
18305-13	A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES		84	[85-93]
18305-15	TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1		84	[97-103]
18172-13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
18214-13	TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
18214-15	ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS		82	[115-119]
18214-16	DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS		82	[120-123]
18214-18	ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS		82	[131-135]
17517- 7	A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT		81	[41-43]
17517- 8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS		81	[44-48]
17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS		81	[65-74]
17516- 1	PASSIVE STATIC PROTECTION: THEORY AND PRACTICE		80	[1-11]
SYSTEM [LEVEL OF ASSEMBLY]				
18214-26	ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL		82	[179-184]
18214-28	ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS		82	[190-202]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
<u>DOCUMENT-SEQUENCE NO.</u>			
SECONDARY BREAKDOWN [ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECHNOLOGY]			
18172-16	MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA	83	[108-117]
18172-17	TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE	83	[118-121]
18214- 5	LATENT ESD FAILURES	82	[41-48]
18214- 9	THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN	82	[71-75]
18214-10	MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA	82	[76-81]
18214-12	SECOND BREAKDOWN IN SWITCHING TRANSISTORS	82	[91-93]
17517-23	EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL	81	[151-166]
17516-17	HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLEAR TRANSISTORS	80	[112-116]
17516-19	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	80	[122-129]
17516-20	OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN	80	[130-139]
17515-16	DOPING PROFILES AND SECOND BREAKDOWN	79	[109-115]
17515-17	REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	79	[116-121]
17515-19	AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES	79	[126-132]
17515-30	THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS	79	[205-209]
SEMICONDUCTOR DEVICE			
18172-18	SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED	83	[122-127]
18172-25	USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS	83	[177-180]
18172-28	A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS	83	[198-204]
18214- 3	LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES	82	[19-33]
18214- 8	AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCTOR DEVICES	82	[62-70]
18214-20	ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)	82	[142-144]
18214-21	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM	82	[145-156]
17517- 4	THE PERFECT "10" - CAN YOU REALLY HAVE ONE?	81	[21-27]
17517-10	EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES	81	[57-64]
17517-14	ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES	81	[90-96]
17517-15	INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS	81	[97-100]
17516-23	AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS	80	[154-160]
17515- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	79	[27-35]
17515-20	MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES	79	[133-139]
SENSITIVE ELECTRONIC DEVICE SYMBOLS [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]			
17517- 5	THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS	81	[29-33]
17515- 2	CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79	[4-6]
SILICON [SEMICONDUCTOR TECHNOLOGY]			
17517-20	MODELING OF EOS IN SILICON DEVICES	81	[132-138]
SPACE [APPLICATION ENVIRONMENT]			
17515- 2	CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79	[4-6]
SPECIFICATION/STANDARD [REFERENCE DOCUMENT]			
18172- 5	AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL	83	[21-28]
18172- 8	A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS	83	[48-55]
18214-19	BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY	82	[136-141]
17515- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	79	[27-35]
17515- 9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION	79	[45-54]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
RELATIVE HUMIDITY [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]				
18214-19	BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY		82	[136-141]
18214-20	ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)		82	[142-144]
18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
17517- 2	QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION		81	[9-13]
17517- 6	A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY		81	[34-39]
17517- 8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS		81	[44-48]
17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS		81	[65-74]
17517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS		81	[75-84]
17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS		81	[106-113]
17516- 2	THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE		80	[12-16]
17515- 3	ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS		79	[7-12]
17515- 4	STATIC CONTROL USING TOPICAL ANTISTATS		79	[13-21]
RELIABILITY [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECHNOLOGY]				
18214- 5	LATENT ESD FAILURES		82	[41-48]
17517-18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES		81	[114-119]
RELIABILITY [SYSTEMS]				
18214-13	TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
17517-24	AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS		81	[167-173]
17516-21	ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS		80	[140-148]
17516-23	AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS		80	[154-160]
17516-29	FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS		80	[192-205]
RELIABILITY MANAGEMENT TECH [USER OF REL. PREDICTION MODELS]				
17515- 1	AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM		79	[1-3]
RELIABILITY MODELING TECHNIQUES [RELIABILITY MODELS/DATA/ANALYSIS]				
18172- 8	A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
17517-20	MODELING OF EOS IN SILICON DEVICES		81	[132-138]
17517-23	EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL		81	[151-166]
17517-33	EOS DAMAGE IN SILICON SOLAR CELLS		81	[209-235]
RESISTOR [PASSIVE DEVICE, COMPONENT TYPE]				
18214- 2	ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCEPTIBILITY OF THIN FILM RESISTORS AND CAPACITORS		82	[13-18]
17517-24	AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS		81	[167-173]
17517-26	PREDICTION OF THIN-FILM RESISTOR BURNOUT		81	[192-197]
17517-27	BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS		81	[198-201]
REVERSE BREAKDOWN [ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECHNOLOGY]				
18214- 9	THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN		82	[71-75]
SCREENING [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECHNOLOGY]				
17515- 8	RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES		79	[41-44]
17515-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION		79	[64-77]
SECONDARY BREAKDOWN [ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECHNOLOGY]				
18172-15	CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES		83	[102-107]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
REFERENCE DOCUMENT				
18172-11	THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY	83	[67-75]	
18172-12	MEASURING EFFECTIVENESS OF AIR IONIZERS	83	[76-86]	
18172-14	COPLANAR TRIBOELECTRIFICATION OF SELECTED MATERIALS	83	[95-101]	
18172-17	TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE	83	[118-121]	
18172-20	ESD EVALUATION OF RADIATION-HARDED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]	
18172-21	THE EFFECT OF ESD ON CCD RELIABILITY	83	[147-153]	
18172-22	EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?	83	[154-157]	
18172-23	INVISIBLE EOS/ESD DAMAGE: HOW TO FIND IT	83	[158-167]	
18172-27	ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS	83	[185-197]	
18214-5	LATENT ESD FAILURES	82	[41-48]	
18214-8	AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCT Devices	82	[62-70]	
18214-23	UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT	82	[165-168]	
18214-24	CIRCUIT DESIGN FOR EOS/ESD PROTECTION	82	[169-174]	
18214-28	ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS	82	[190-202]	
17517-3	ANALYSIS OF ESD FAILURES	81	[14-20]	
17517-4	THE PERFECT "10" - CAN YOU REALLY HAVE ONE?	81	[21-27]	
17517-5	THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS	81	[29-33]	
17517-6	A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY	81	[34-39]	
17517-8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS	81	[44-48]	
17517-9	CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL	81	[49-56]	
17517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	81	[75-84]	
17517-13	THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD	81	[85-89]	
17517-14	ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES	81	[90-96]	
17517-15	INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS	81	[97-100]	
17517-16	DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE	81	[101-105]	
17517-19	AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES	81	[120-131]	
17517-24	AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS	81	[167-173]	
17517-25	PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS	81	[174-191]	
17517-26	PREDICTION OF THIN-FILM RESISTOR BURNOUT	81	[192-197]	
17517-27	BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS	81	[198-201]	
17517-29	POTENTIAL ESD HAZARDS ASSOCIATED WITH EXPLOSIVE PRIMERS	81	[208-211]	
17517-30	LIGHTNING PROTECTION FOR COMPUTER DATA LINES	81	[212-218]	
17516-28	AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	80	[189-191]	
17515-5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS	79	[22-26]	
17515-10	ELECTRO-STATIC DISCHARGE AND CMOS LOGIC	79	[55-63]	
17515-14	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	79	[97-103]	
17515-22	MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETs	79	[147-157]	
17515-23	DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP	79	[158-167]	
17515-25	THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE	79	[176-182]	
17515-27	THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79	[188-192]	
17515-28	ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS	79	[193-197]	
REL. STANDARDS [USER OF REL. PREDICTION MODELS]				
17515-6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	79	[27-35]	
RELATIVE HUMIDITY [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]				
18305-10	TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER	84	[58-63]	
18305-16	Critical CONSIDERATIONS FOR ESD TESTING	84	[104-111]	
18305-19	SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL	84	[131-135]	
18172-4	ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES	83	[17-20]	
18172-11	THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY	83	[67-75]	
18172-12	MEASURING EFFECTIVENESS OF AIR IONIZERS	83	[76-86]	
18172-14	COPLANAR TRIBOELECTRIFICATION OF SELECTED MATERIALS	83	[95-101]	
18214-13	TEST METHODS FOR STATIC CONTROL PRODUCTS	82	[94-109]	
18214-18	ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS	82	[131-135]	

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
PROTECTED ESD AREA [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]				
18305- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION		84	[7-19]
18172- 2	ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS		83	[6-11]
18172- 5	AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL		83	[21-28]
18214-19	BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY		82	[136-141]
18214-21	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM		82	[145-156]
17517- 4	THE PERFECT "10" - CAN YOU REALLY HAVE ONE?		81	[21-27]
17517- 5	THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS		81	[29-33]
17517- 6	A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY		81	[34-39]
17516- 1	PASSIVE STATIC PROTECTION: THEORY AND PRACTICE		80	[1-11]
17515- 2	CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE		79	[4-6]
17515- 3	ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS		79	[7-12]
17515- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS		79	[27-35]
PROTECTIVE BAGS [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]				
18305- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION		84	[7-19]
18305-11	TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKAGING MATERIALS		84	[64-77]
18305-12	AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS		84	[78-84]
18172-13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
18214-16	DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS		82	[120-123]
17517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS		81	[75-84]
17516- 1	PASSIVE STATIC PROTECTION: THEORY AND PRACTICE		80	[1-11]
17515- 9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION		79	[45-54]
PROTECTIVE WORK BENCH SURFACE [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]				
18305-13	A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES		84	[85-93]
18305-19	SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL		84	[131-135]
18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
17517- 6	A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY		81	[34-39]
17516- 1	PASSIVE STATIC PROTECTION: THEORY AND PRACTICE		80	[1-11]
17515- 3	ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS		79	[7-12]
QUALITY ASSURANCE [SYSTEMS]				
18305- 1	A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN		84	[1-6]
18305- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION		84	[7-19]
18172- 5	AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL		83	[21-28]
18214-13	TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
18214-18	ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS		82	[131-135]
18214-21	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM		82	[145-156]
17517- 4	THE PERFECT "10" - CAN YOU REALLY HAVE ONE?		81	[21-27]
17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS		81	[65-74]
REFERENCE DOCUMENT				
18172- 1	ESD-HOW OFTEN DOES IT HAPPEN?		83	[1-5]
18172- 2	ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS		83	[6-11]
18172- 3	THE PRODUCTION OPERATOR: WEAK LINK OR WARRIOR IN THE ESD BATTLE?		83	[12-16]
18172- 6	ESD BY STATIC INDUCTION		83	[29-36]
18172- 7	CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV		83	[37-47]
18172-10	STATIC SURVEY METERS		83	[63-66]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
OXIDATION [CHEMICAL FAILURE PHENOMENA, SEMICONDUCTOR TECHNOLOGY]				
18305-24	DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING		84	[179-188]
17517-14	ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES		81	[90-96]
17517-19	AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES		81	[120-131]
17516-12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE		80	[73-80]
17516-14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS		80	[87-94]
17516-15	ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS		80	[95-103]
17516-16	SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY		80	[104-111]
PACKAGE [SEMICONDUCTOR TECHNOLOGY]				
18305-10	TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER		84	[58-63]
18305-18	EMI CHARACTERISTICS OF ESD IN A SMALL AIR GAP --ARP GOVERNS THE EMI--		84	[124-130]
18214-15	ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS		82	[115-119]
17517-10	EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES		81	[57-64]
17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS		81	[65-74]
17517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS		81	[75-84]
PKG BODY MATERIAL [PACKAGE, SEMICONDUCTOR TECHNOLOGY]				
18172-13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES		83	[87-94]
PKG ENCAPSULANT [PACKAGE, SEMICONDUCTOR TECHNOLOGY]				
17515- 5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS		79	[22-26]
PKG LID OR COVER [PACKAGE, SEMICONDUCTOR TECHNOLOGY]				
17516- 3	ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS		80	[17-22]
PROCESS CONTROL/SPECIFICATION [FABRICATION PROCESSES & TECHNIQUES, SEMICONDUCTOR TECHNOLOGY]				
18305- 5	ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL		84	[25-33]
18214-19	BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY		82	[136-141]
18214-20	ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)		82	[142-144]
18214-25	IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES		82	[175-178]
17515- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS		79	[27-35]
17515- 9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION		79	[45-54]
PROCESS DESIGN [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECHNOLOGY]				
18214-14	METALLOPLASTICS		82	[110-114]
17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS		81	[106-113]
17515-28	ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS		79	[193-197]
PROCESS/WORKMANSHIP INDUCED [MISC. FAILURE PHENOMENA, SEMICONDUCTOR TECHNOLOGY]				
18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
PROCUREMENT CONTROLS [USER OF REL. PREDICTION MODELS]				
18214-26	ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL		82	[179-184]
17515- 8	RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES		79	[41-44]
17515-18	HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION		79	[122-125]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
<u>DOCUMENT-SEQUENCE NO.</u>			
NOTICE/BULLETIN [REFERENCE DOCUMENT]			
17515-12 DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE		79	[78-87]
OPERATIONAL TEST [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECHNOLOGY]			
18172-21 THE EFFECT OF ESD ON CCD RELIABILITY		83	[147-153]
18172-28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS		83	[198-204]
OVERSTRESS [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECHNOLOGY]			
18172- 5 AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL		83	[21-28]
18172-22 EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?		83	[154-157]
18172-23 INVISIBLE EOS/ESD DAMAGE: HOW TO FIND IT		83	[158-167]
18172-28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS		83	[198-204]
18214- 2 ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCEPTIBILITY OF THIN FILM RESISTORS AND CAPACITORS		82	[13-18]
18214- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES		82	[19-33]
18214- 4 ELECTRICAL OVERSTRESS THRESHOLD TESTING		82	[34-40]
18214- 5 LATENT ESD FAILURES		82	[41-48]
18214-11 A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES		82	[82-90]
18214-21 AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM		82	[145-156]
18214-22 ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
18214-24 CIRCUIT DESIGN FOR EOS/ESD PROTECTION		82	[169-174]
18214-25 IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES		82	[175-178]
18214-26 ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL		82	[179-184]
17517- 3 ANALYSIS OF ESD FAILURES		81	[14-20]
17517- 4 THE PERFECT "10" - CAN YOU REALLY HAVE ONE?		81	[21-27]
17517- 5 THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS		81	[29-33]
17517-10 EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES		81	[57-64]
17517-13 THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD		81	[85-89]
17517-14 ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES		81	[90-96]
17517-15 INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS		81	[97-100]
17517-17 SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS		81	[106-113]
17517-18 ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES		81	[114-119]
17517-19 AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES		81	[120-131]
17517-25 PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS		81	[174-191]
17517-27 BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS		81	[198-201]
17517-32 TIME-RELATED IMPROVEMENTS OF ELECTRICAL CHARACTERISTICS IN ELECTROSTATICALLY DAMAGED OPERATIONAL AMPLIFIERS		81	[225-228]
17517-33 EOS DAMAGE IN SILICON SOLAR CELLS		81	[209-235]
17517-34 EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS		81	[236-241]
17517-35 NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE		81	[242-245]
17515- 6 PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS		79	[27-35]
17515- 7 MODULE ELECTROSTATIC DISCHARGE SIMULATOR		79	[36-40]
17515- 8 RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES		79	[41-44]
17515-10 ELECTRO-STATIC DISCHARGE AND CMOS LOGIC		79	[55-63]
17515-11 EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION		79	[64-77]
17515-12 DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE		79	[78-87]
17515-13 FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS		79	[88-96]
17515-14 ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES		79	[97-103]
17515-15 ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS		79	[104-108]
17515-20 MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES		79	[133-139]
17515-21 SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS		79	[140-146]
17515-22 MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETs		79	[147-157]
17515-24 SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE		79	[168-175]
17515-27 THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS		79	[188-192]
17515-30 THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS		79	[205-209]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
MICROCIRCUIT [SEMICONDUCTOR DEVICE]				
17516-27 MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION			80	[184-188]
17515-10 ELECTRO-STATIC DISCHARGE AND CMOS LOGIC			79	[55-63]
17515-13 FAILURE ANALYSIS OF MICROCIRCUITS SUBJECT TO ELECTRICAL OVERSTRESS			79	[88-96]
17515-15 ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS			79	[104-108]
17515-23 DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP			79	[158-167]
17515-27 THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS			79	[188-192]
MICROWAVE [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]				
18172-15 CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES			83	[102-107]
MISC. FAILURE PHENOMENA [SEMICONDUCTOR TECHNOLOGY]				
18214-16 DRASIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS			82	[120-123]
18214-18 ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS			82	[131-135]
MISSILE [APPLICATION ENVIRONMENT]				
17517-28 EOS THRESHOLD DETERMINATION OF ELECTRO-EXPLOSIVE DEVICES			81	[202-207]
MNOS [FIELD EFFECT,(FET), SEMICONDUCTOR TECHNOLOGY]				
17516-16 SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY			80	[104-111]
MODELS/THEORY/EQUATIONS [RELIABILITY MODELING TECHNIQUES, RELIABILITY MODELS/DATA/ANALYSIS]				
18305-20 PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS			84	[136-143]
18214- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES			82	[19-33]
18214- 7 MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS			82	[56-61]
18214- 8 AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCTOR DEVICES			82	[62-70]
18214-10 MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA			82	[76-81]
17515-20 MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES			79	[133-139]
MOISTURE [TEST STRESS]				
17516- 2 THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE			80	[12-16]
MOSFET [FIELD EFFECT,(FET), SEMICONDUCTOR TECHNOLOGY]				
18305- 2 HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION			84	[7-19]
17516-13 SOS PROTECTION: THE DESIGN PROBLEM			80	[81-86]
MOSFET C [FIELD EFFECT,(FET), SEMICONDUCTOR TECHNOLOGY]				
18305-21 AN EVALUATION OF EOS FAILURE MODELS			84	[144-156]
18305-25 A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS			84	[189-195]
18305-26 ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS			84	[196-201]
MOSFET N [FIELD EFFECT,(FET), SEMICONDUCTOR TECHNOLOGY]				
18305-22 DETERMINATION OF THRESHOLD ENERGIES AND DAMAGE MECHANISMS IN SEMICONDUCTOR DEVICES SUBJECT TO VOLTAGE TRANSIENTS			84	[157-164]
NONELECTRONICS				
18305- 7 A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL			84	[40-44]
18305-19 SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL			84	[131-135]

EOS/ESD SYMPOSIUM INDEX

<u>INDEX TERM-CATEGORY</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
MATHEMATICAL ANALYSIS				
17517-33	EOS DAMAGE IN SILICON SOLAR CELLS		81	[209-235]
17517-35	NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE		81	[242-245]
17515-19	AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES		79	[126-132]
17515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE		79	[168-175]
METALLIZATION MELT [ESD, DEVICE, FAILURE MODES]				
18305-23	DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS		84	[165-178]
18214- 7	MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS		82	[56-61]
17517-13	THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD		81	[85-89]
17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS		81	[106-113]
17517-19	AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES		81	[120-131]
17517-33	EOS DAMAGE IN SILICON SOLAR CELLS		81	[209-235]
17516- 9	STUDY OF EFFECTS OF ELECTRO-STATIC DISCHARGE ON SOLID-STATE DEVICES		80	[58]
17516-11	ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS		80	[67-72]
17516-22	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS		80	[149-153]
17515-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION		79	[64-77]
17515-14	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES		79	[97-103]
17515-22	MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS		79	[147-157]
17515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE		79	[168-175]
METALLURGICAL FAILURE PHENOMENA [SEMICONDUCTOR TECHNOLOGY]				
18214- 7	MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS		82	[56-61]
MICROCIRCUIT [SEMICONDUCTOR DEVICE]				
18305- 3	TEST EQUIPMENT--A SOURCE OF ESD!!		84	[20-21]
18305- 4	ESD DAMAGE, DOES IT HAPPEN ON PCB'S?		84	[22-23]
18305- 6	EFFECTS OF AIR IONS AND ELECTRIC FIELDS ON HEALTH AND PRODUCTIVITY		84	[34-39]
18305-10	TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER		84	[58-63]
18305-18	EMI CHARACTERISTICS OF ESD IN A SMALL AIR GAP --ARP GOVERNS THE EMI--		84	[124-130]
18305-19	SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL		84	[131-135]
18305-21	AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
18305-22	DETERMINATION OF THRESHOLD ENERGIES AND DAMAGE MECHANISMS IN SEMICONDUCTOR DEVICES SUBJECTED TO VOLTAGE TRANSIENTS		84	[157-164]
18305-23	DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS		84	[165-178]
18305-24	DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING		84	[179-188]
18305-25	A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS		84	[189-195]
18305-26	ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS		84	[196-201]
18172- 9	POWER FAILURE MODELING OF INTEGRATED CIRCUITS		83	[56-62]
18172-19	ESD SENSITIVITY OF COMPLEX ICS		83	[128-133]
18172-20	ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS		83	[134-146]
18172-24	METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS		83	[168-176]
18172-25	USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS		83	[177-180]
18172-26	A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES		83	[181-184]
18214- 1	ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL		82	[1-12]
18214- 7	MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS		82	[56-61]
18214- 8	AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCTOR DEVICES		82	[62-70]
18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
18214-25	IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES		82	[175-178]
17517- 3	ANALYSIS OF ESD FAILURES		81	[14-20]
17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS		81	[106-113]
17516-12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE		80	[73-80]
17516-16	SUPRIISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY		80	[104-111]

Section 3:

AUTHOR INDEX

AUTHOR INDEX

<u>AUTHOR DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
ADAMS,O.E.	18214- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES	82	[19-33]
ALEXANDER,D.R.	17517-18 ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
ANAND,Y.	17515-14 ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	79	[97-103]
ANDERSON,W.E.	18305- 2 HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION 18172-13 PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES 17517-12 SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	84 83 81	[7-19 [87-94] [75-84]
ANTINONE,R.J.	17516-27 MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION	80	[184-188]
ANTONEVICH,J.N.	18172-12 MEASURING EFFECTIVENESS OF AIR IONIZERS	83	[76-86]
ARMENDARIZ,M.G.	17516-16 SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	80	[104-111]
ASH,M.S.	18172-18 SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED 17517-35 NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE	83 81	[122-127] [242-245]
AVERY,L.R.	18172-25 USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS	83	[177-180]
BAKER,R.P.	17516-16 SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	80	[104-111]
BARNUM,J.	17517-33 EOS DAMAGE IN SILICON SOLAR CELLS	81	[209-235]
BARUAH,A.	17515-19 AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES	79	[126-132]
BAUMGARTNER,C.	18305-15 TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1 18305- 5 ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL	84 84	[97-103] [25-33]
BAZARIAN,A.	17516- 7 GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES	80	[44-53]

AUTHOR INDEX

<u>AUTHOR DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
BEALL,J.			
	18172-28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS	83	[198-204]
BERBECO,G.R.			
	18214-17 CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES	82	[124-130]
	17516- 1 PASSIVE STATIC PROTECTION: THEORY AND PRACTICE	80	[1-11]
BERNETT,M.K.			
	18214-15 ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS	82	[115-119]
BERNING,D.W.			
	17515-17 REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	79	[116-121]
BHAR,T.N.			
	17515- 6 PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	79	[27-35]
BLACKBURN,D.L.			
	17515-17 REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	79	[116-121]
BLINDE,D.R.			
	18172-11 THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY	83	[67-75]
	17517- 2 QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION	81	[9-13]
BLITSHTEYN,M.			
	18172-12 MEASURING EFFECTIVENESS OF AIR IONIZERS	83	[76-86]
BLORE,R.A.			
	17515- 8 RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES	79	[41-44]
BOLASNY,R.E.			
	17516-31 STATIC CONTROL SYSTEMS	80	[213-217]
BOSSARD,P.R.			
	18305- 7 A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL	84	[40-44]
	18172- 6 ESD BY STATIC INDUCTION	83	[29-36]
	17517-10 EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES	81	[57-64]
	17516- 3 ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS	80	[17-22]
BOWERS,J.			
	18172-28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS	83	[198-204]
BRANBERG,G.			
	17515-10 ELECTRO-STATIC DISCHARGE AND CMOS LOGIC	79	[55-63]
BRENNAN,T.F.			
	18172-23 INVISIBLE EOS/ESD DAMAGE: HOW TO FIND IT	83	[158-167]

AUTHOR INDEX

AUTHOR <u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
BRIGGS, C.	17515- 3 ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS	79	[7-12]
BUDEN, B. N.	18172- 9 POWER FAILURE MODELING OF INTEGRATED CIRCUITS	83	[56-62]
BUDENSTEIN, P. P.	17516-19 EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	80	[122-129]
	17515-19 AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES	79	[126-132]
BURNETT, E. S.	18214-18 ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS	82	[131-135]
BURROUGHS, J. E.	18214-27 ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS	82	[185-189]
CABAYAN, H. S.	17515-29 STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP	79	[198-204]
CAIDERBANK, J. M.	17516- 2 THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE	80	[12-16]
CALVIN, H.	17517- 1 A CLOSER LOOK AT THE HUMAN ESD EVENT	81	[1-8]
	17516-33 MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD	80	[225-230]
CARLTON, R. M.	18305- 6 EFFECTS OF AIR IONS AND ELECTRIC FIELDS ON HEALTH AND PRODUCTIVITY	84	[34-39]
CASTLE, G. S. P.	17516-11 ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS	80	[67-72]
CHASE, E. W.	18214- 2 ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCETIBILITY OF THIN FILM RESISTORS AND CAPACITORS	82	[13-18]
	17517-34 EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS	81	[236-241]
CHEMELLI, R. G.	18305- 7 A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL	84	[40-44]
	18172- 6 ESD BY STATIC INDUCTION	83	[29-36]
	17517-10 EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES	81	[57-64]
	17516- 3 ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS	80	[17-22]
CHI, K.	18305-27 A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW	84	[202-209]
CLARK, O. M.	17517-30 LIGHTNING PROTECTION FOR COMPUTER DATA LINES	81	[212-218]

AUTHOR INDEX

<u>AUTHOR</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
CLARK, O. M.				
	17515-28	ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS	79	[193-197]
CROCKETT, R. G. M.				
	18305-26	ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS	84	[196-201]
CROUCH, K. E.				
	17516-25	LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR	80	[167-175]
DANGELMAYER, G. T.				
	18305- 1	A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN	84	[1-6]
	18172- 1	ESD-HOW OFTEN DOES IT HAPPEN?	83	[1-5]
DASH, G. R.				
	18305-17	DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES	84	[112-123]
DAVENPORT, D. E.				
	18214-14	METALLOPLASTICS	82	[110-114]
DEADRICK, F. J.				
	17515-29	STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP	79	[198-204]
DECCHIARO, L. F.				
	18305-24	DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING	84	[179-188]
DENSON, W. K.				
	18214- 1	ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL	82	[1-12]
DERMARDEOSIAN, A.				
	17515- 5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS	79	[22-26]
DEY, K. A.				
	18214- 1	ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL	82	[1-12]
DODSON, G. A.				
	17515-27	THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79	[188-192]
DOMINGOS, H.				
	18214-24	CIRCUIT DESIGN FOR EOS/ESD PROTECTION	82	[169-174]
	17516-30	BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS	80	[206-212]
	17515-21	SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS	79	[140-146]
DOWNING, M. H.				
	18172- 2	ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS	83	[6-11]
DREIBELBIS, D. H.				
	18172-22	EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?	83	[154-157]

AUTHOR INDEX

<u>AUTHOR</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
DURGIN,D.L.				
	18214- 6 A SURVEY OF EOS/ESD DATA SOURCES		82	[49-55]
	17517-19 AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES		81	[120-131]
	17516-23 AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS		80	[154-160]
DUVVURY,C.				
	18172-26 A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES		83	[181-184]
ELLIS,E.B.				
	18214-26 ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL		82	[179-184]
ENDERS,J.				
	17517-17 SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS		81	[106-113]
ENLOW,E.W.				
	18172- 9 POWER FAILURE MODELING OF INTEGRATED CIRCUITS		83	[56-62]
	17517-22 DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS		81	[145-150]
	17516-10 FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS		80	[59-66]
ENOCH,R.D.				
	18305-23 DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS		84	[165-178]
	18172- 8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
	18172-27 ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS		83	[185-197]
EUKER,R.				
	18214-20 ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)		82	[142-144]
FEASEY,P.R.				
	18305-25 A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS		84	[189-195]
FELT,F.S.				
	18172-14 COPLANAR TRIBOELECTRIFICATION OF SELECTED MATERIALS		83	[95-101]
FOERSTER,G.				
	18305-20 PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS		84	[136-143]
FORMANEK,V.C.				
	17515-23 DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP		79	[158-167]
FRANK,D.E.				
	17517- 4 THE PERFECT "10" - CAN YOU REALLY HAVE ONE?		81	[21-27]
GIERI,V.A.				
	18172- 9 POWER FAILURE MODELING OF INTEGRATED CIRCUITS		83	[56-62]
GOMPF,R.H.				
	18305-10 TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER		84	[58-63]

AUTHOR INDEX

<u>AUTHOR</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
GRUCHALLA, M.				
	18214-28	ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS	82	[190-202]
GUAY, R.H.				
	17517-27	BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS	81	[198-201]
HALPERIN, S.A.				
	17516-29	FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS	80	[192-205]
	17515- 4	STATIC CONTROL USING TOPICAL ANTISTATS	79	[13-21]
HANSEL, G.E.				
	18172- 3	THE PRODUCTION OPERATOR: WEAK LINK OR WARRIOR IN THE ESD BATTLE?	83	[12-16]
HART, A.R.				
	17516-14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS	80	[87-94]
	17515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE	79	[168-175]
HARTDEGEN, N.				
	18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA	82	[157-164]
HARTMANN, H.C.				
	17517- 8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS	81	[44-48]
HAVERMANN, R.				
	18305-15	TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1	84	[97-103]
HAYS, R.A.				
	18214- 4	ELECTRICAL OVERSTRESS THRESHOLD TESTING	82	[34-40]
	17517-28	EOS THRESHOLD DETERMINATION OF ELECTRO-EXPLOSIVE DEVICES	81	[202-207]
HEAD, G.O.				
	18214-16	DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS	82	[120-123]
	17517-32	TIME-RELATED IMPROVEMENTS OF ELECTRICAL CHARACTERISTICS IN ELECTROSTATICALLY DAMAGED OPERATIONAL AMPLIFIERS	81	[225-228]
	17517- 7	A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT	81	[41-43]
HESS, R.F.				
	17 16-24	TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS	80	[161-166]
HIBBERT, D.R.				
	17516-11	ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS	80	[67-72]
HOHL, A.P.				
	18305-14	A WRIST STRAP LIFE TEST PROGRAM	84	[94-96]
HOLMES, G.C.				
	18305-12	AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS	84	[78-84]

AUTHOR INDEX

AUTHOR DOCUMENT-SEQUENCE NO.	TITLE	YEAR	PAGES
HOLT, V.E.			
18172- 4 ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES		83	[17-20]
HONDA, M.			
18305-18 EMI CHARACTERISTICS OF ESD IN A SMALL AIR GAP --ARP GOVERNS THE EMI--		84	[124-130]
HOPKINS, D.C.			
17516- 6 PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)		80	[35-43]
HORGAN, E.L.			
18214- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES		82	[19-33]
17517-31 FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING		81	[219-224]
17517-23 EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL		81	[151-166]
17516-21 ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS		80	[140-148]
HOWER, P.L.			
17516-17 HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS		80	[112-116]
HUFF, P.J.			
18305-12 AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS		84	[78-84]
HUGHES, J.F.			
18305-26 ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS		84	[196-201]
HULETT, T.V.			
17517-14 ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES		81	[90-96]
HUNTSMAN, J.R.			
18305-11 TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKAGING MATERIALS		84	[64-77]
18214-13 TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-109]
17515- 9 THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION		79	[45-54]
HYATT, H.			
17516-33 MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD		80	[225-230]
HYATT, H.M.			
18305-16 CRITICAL CONSIDERATIONS FOR ESD TESTING		84	[104-111]
17517- 1 A CLOSER LOOK AT THE HUMAN ESD EVENT		81	[1-8]
JENSEN, M.C.			
17517-16 DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE		81	[101-105]
JOHNSON, M.A.			
17517- 8 AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS		81	[44-48]
JOHNSON, R.L.			
18305-12 AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS		84	[78-84]

AUTHOR INDEX

<u>AUTHOR</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
JONASSEN, N.				
	18305- 8	STATIC-ELECTRIC CHARACTERIZATION OF SEMI-INSULATING MATERIALS	84	[45-49]
KARASKIEWICZ, R.J.				
	17517-18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
	17516-10	FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS	80	[59-66]
KAWAMURA, T.				
	18305-18	EMI CHARACTERISTICS OF ESD IN A SMALL AIR GAP --ARP GOVERNS THE EMI--	84	[124-130]
KELAIDIS, M.J.				
	18172- 5	AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL	83	[21-28]
KELLER, J.K.				
	17516-12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE	80	[73-80]
KING, M.W.				
	17515-12	DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE	79	[78-87]
KIRK, W.J.				
	18214-23	UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT	82	[165-168]
KNIGHT, E.R.				
	17516-19	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	80	[122-129]
KOLYER, J.M.				
	18305- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION	84	[7-19]
	18172-13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES	83	[87-94]
	17517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	81	[75-84]
KORN, S.R.				
	18172-24	METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS	83	[168-176]
KRESSLER, D.R.				
	17516-26	SURGE TESTS ON PLUG-IN TRANSFORMERS	80	[176-183]
KUSENEZOV, N.				
	17515-20	MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES	79	[133-139]
KUSNEZOV, N.				
	17517-20	MODELING OF EOS IN SILICON DEVICES	81	[132-138]
LAFFERTY, D.				
	18305-19	SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL	84	[131-135]

AUTHOR INDEX

<u>AUTHOR</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
LANE,C.H.				
	17515- 8	RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES	79	[41-44]
LAVOIE,L.				
	17517- 2	QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION	81	[9-13]
LEE,T.W.				
	18172- 7	CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV	83	[37-47]
LEVINSON,L.M.				
	17516- 5	TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS	80	[26-34]
LIN,T.S.				
	17517-31	FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING	81	[219-224]
LINGOUSKY,J.E.				
	18172- 4	ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES	83	[17-20]
LITTAU,W.R.				
	17517-26	PREDICTION OF THIN-FILM RESISTOR BURNOUT	81	[192-197]
LONBORG,J.O.				
	18172-10	STATIC SURVEY METERS	83	[63-66]
LUCAS,G.H.				
	17517- 6	A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY	81	[34-39]
LUISI,J.A.				
	17516-13	SOS PROTECTION: THE DESIGN PROBLEM	80	[81-86]
LYNCH,J.T.				
	18172-21	THE EFFECT OF ESD ON CCD RELIABILITY	83	[147-153]
MADISON,J.A.				
	17515-30	THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS	79	[205-209]
MADZY,T.M.				
	17515- 7	MODULE ELECTROSTATIC DISCHARGE SIMULATOR	79	[36-40]
MALINARIC,P.				
	17517- 9	CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL	81	[49-56]
MARTIN,L.C.				
	18172-16	MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA	83	[108-117]
	18214-10	MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA	82	[76-81]
	17515-29	STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP	79	[198-204]

AUTHOR INDEX

<u>SENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
I, R. M.			
14-11 A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES		82	[82-90]
EWS, D.			
16-18 SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES		80	[117-121]
JRIN, J.			
17-27 BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS		81	[198-201]
J. E.			
72-24 METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS		83	[168-176]
ULLOUGH, D.T.			
15- 8 RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES		79	[41-44]
AHON, E.J.			
15- 6 PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS		79	[27-35]
EER, R.E.			
17- 6 A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY		81	[34-39]
EER, O.J.			
14- 5 LATENT ESD FAILURES		82	[41-48]
17- 3 ANALYSIS OF ESD FAILURES		81	[14-20]
16-28 AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM		80	[189-191]
15- 1 AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM		79	[1-3]
NALD, A.			
17- 6 A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY		81	[34-39]
RLAND, W.Y.			
17- 5 THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS		81	[29-33]
NNA, A.			
15-24 SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT ELEVATED TEMPERATURE		79	[168-175]
BERG, H.			
17- 1 A CLOSER LOOK AT THE HUMAN ESD EVENT		81	[1-8]
16-33 MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD		80	[225-230]
URN, R.T.			
17-16 DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE		81	[101-105]
HAM, J.R.			
05-13 A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES		84	[85-93]

AUTHOR INDEX

<u>IDENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
,R,R.L.			
15-27 THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS		79	[188-192]
,I,S.			
15-13 FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS		79	[88-96]
,M.G.			
15-15 ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS		79	[104-108]
,S,S.			
16-15 ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS		80	[95-103]
,NEN,C.F.			
72-11 THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY		83	[67-75]
17-29 POTENTIAL ESD HAZARDS ASSOCIATED WITH EXPLOSIVE PRIMERS		81	[208-211]
,P.H.			
72-22 EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?		83	[154-157]
,C.L.			
72- 5 AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL		83	[21-28]
,T.			
15- 6 PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS		79	[27-35]
,S,W.J.			
72-16 MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA		83	[108-117]
14-10 MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA		82	[76-81]
BAY,D.E.			
16- 2 THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE		80	[12-16]
,OLY,R.K.			
17-13 THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD		81	[85-89]
DISE,E.D.			
16- 4 ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN		80	[23-25]
DREK,R.A.			
72-20 ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS		83	[134-146]
E,R.L.			
17-33 EOS DAMAGE IN SILICON SOLAR CELLS		81	[209-235]
ELA,J.			
17- 9 CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL		81	[49-56]

AUTHOR INDEX

<u>I-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
, M.			
6 A SURVEY OF EOS/ESD DATA SOURCES		82	[49-55]
, J.			
21 AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
, J. F.			
11 EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION		79	[64-77]
D, C. J.			
26 ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY		79	[183-187]
, H. R.			
5 TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS		80	[26-34]
S, L. P.			
19 BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY		82	[136-141]
D. G.			
21 AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
11 A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR EMITTER-BASE JUNCTION TRANSIENT-INDUCED FAILURES		82	[82-90]
7 MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS		82	[56-61]
19 AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES		81	[120-131]
, W. M.			
17 TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE		83	[118-121]
12 SECOND BREAKDOWN IN SWITCHING TRANSISTORS		82	[91-93]
. A.			
7 MODULE ELECTROSTATIC DISCHARGE SIMULATOR		79	[36-40]
N, R.			
24 CIRCUIT DESIGN FOR EOS/ESD PROTECTION		82	[169-174]
NO, E.			
22 MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS		79	[147-157]
H.			
15 ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS		82	[115-119]
SON, L.			
27 A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW		84	[202-209]
, L.			
5 THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS		79	[22-26]

AUTHOR INDEX

<u>T-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
,B.C.			
·22 DETERMINATION OF THRESHOLD ENERGIES AND DAMAGE MECHANISMS IN SEMICONDUCTOR DEVICES SUBJECTED TO VOLTAGE TRANSIENTS		84	[157-164]
·			
·28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS		83	[198-204]
,E,R.N.			
·26 A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES		83	[181-184]
,I.H.			
·3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES		82	[19-33]
·23 EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL		81	[151-166]
,ORD,D.H.			
·11 EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION		79	[64-77]
,N.I.			
·13 A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES		84	[85-93]
,J.P.			
·3 TEST EQUIPMENT--A SOURCE OF ESD!!		84	[20-21]
·25 IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES		82	[175-178]
,CER,T.R.			
·18 HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION		79	[122-125]
,J.R.			
·16 SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY		80	[104-111]
·			
·22 ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
,N.			
·23 DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS		84	[165-178]
·8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
·27 ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS		83	[185-197]
,D.K.			
·27 ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS		82	[185-189]
,W.L.			
·21 AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
,R.			
·27 A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW		84	[202-209]

Section 5:

KEYWORD IN TITLE INDEX

CORPORATE INDEX

ON <u>SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
ELECTRIC COMPANY, INC.			
	ESD-HOW OFTEN DOES IT HAPPEN?	83	[1-5]
	THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS	81	[29-33]
USE			
	LATENT ESD FAILURES	82	[41-48]
	ANALYSIS OF ESD FAILURES	81	[14-20]
	HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS	80	[112-116]
	AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	80	[189-191]
	AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	79	[1-3]
	THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS	79	[205-209]

CORPORATE INDEX

<u>RATION</u>	<u>ENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
Y UNIVAC				
4-21 AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM			82	[145-156]
ARD ELECTRIK LORENZ AG				
7-17 SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS			81	[106-113]
AT BUFFALO				
5-21 SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS			79	[140-146]
5-22 MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS			79	[147-157]
IICAL UNIVERSITY OF DENMARK				
15- 8 STATIC-ELECTRIC CHARACTERIZATION OF SEMI-INSULATING MATERIALS			84	[45-49]
IONIX				
16- 9 STUDY OF EFFECTS OF ELECTRO-STATIC DISCHARGE ON SOLID-STATE DEVICES			80	[58]
S INSTRUMENTS (TI)				
12-26 A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES			83	[181-184]
17- 6 A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY			81	[34-39]
S TECH UNIVERSITY				
72-17 TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE			83	[118-121]
14-12 SECOND BREAKDOWN IN SWITCHING TRANSISTORS			82	[91-93]
DR MBA				
14-14 METALLOPLASTICS			82	[110-114]
72-18 SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED			83	[122-127]
14- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES			82	[19-33]
14- 8 AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCTOR DEVICES			82	[62-70]
17-23 EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL			81	[151-166]
17-31 FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING			81	[219-224]
17-35 NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE			81	[242-245]
16-21 ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS			80	[140-148]
AIR FORCE				
05- 4 ESD DAMAGE, DOES IT HAPPEN ON PCB'S?			84	[22-23]
72- 5 AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL			83	[21-28]
14- 4 ELECTRICAL OVERSTRESS THRESHOLD TESTING			82	[34-40]
17-28 EOS THRESHOLD DETERMINATION OF ELECTRO-EXPLOSIVE DEVICES			81	[202-207]
ARMY				
16-18 SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES			80	[117-121]
ERSITY OF SOUTHPHAMPTON				
05-26 ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS			84	[196-201]

CORPORATE INDEX

<u>ORGANIZATION</u>	<u>MENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
SEY				
	72-21	THE EFFECT OF ESD ON CCD RELIABILITY	83	[147-153]
HEON				
	15- 5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS	79	[22-26]
	15-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION	79	[64-77]
	05-14	A WRIST STRAP LIFE TEST PROGRAM	84	[94-96]
	05-20	PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS	84	[136-143]
	72-25	USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS	83	[177-180]
	15-26	ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY	79	[183-187]
ABILITY SCIENCES, INC.				
	15- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	79	[27-35]
WELL				
	105- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION	84	[7-19]
	72-13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES	83	[87-94]
	17-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	81	[75-84]
	17-13	THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD	81	[85-89]
	16-13	SOS PROTECTION: THE DESIGN PROBLEM	80	[81-86]
AIR DEVELOPMENT CENTER (RADC)				
	15- 8	RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES	79	[41-44]
IA LABORATORIES				
	72-20	ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]
	16-10	FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS	80	[59-66]
	16-16	SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	80	[104-111]
	15-25	THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE	79	[176-182]
NTIFIC ENTERPRISES, INC.				
	16-31	STATIC CONTROL SYSTEMS	80	[213-217]
CO COMPANY				
	72-12	MEASURING EFFECTIVENESS OF AIR IONIZERS	83	[76-86]
ILDING FIBRE COMPANY, INC.				
	105-13	A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES	84	[85-93]
RY CORPORATION				
	72-23	INVISIBLE EOS/ESD DAMAGE: HOW TO FIND IT	83	[158-167]
	16-24	TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS	80	[161-166]

CORPORATE INDEX

PORATION UMENT-SEQUENCE NO.	TITLE	YEAR	PAGES
KHEED			
172- 2 ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS		83	[6-11]
517-20 MODELING OF EOS IN SILICON DEVICES		81	[132-138]
517-26 PREDICTION OF THIN-FILM RESISTOR BURNOUT		81	[192-197]
515-20 MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES		79	[133-139]
NAVOX			
305- 3 TEST EQUIPMENT--A SOURCE OF ESD!!		84	[20-21]
214-25 IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES		82	[175-178]
TIN MARIETTA			
172-14 COPLANAR TRIBOELECTRIFICATION OF SELECTED MATERIALS		83	[95-101]
172-19 ESD SENSITIVITY OF COMPLEX ICS		83	[128-133]
172-28 A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS		83	[198-204]
ROWAVE ASSOCIATES, INC.			
'515-14 ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES		79	[97-103]
HISTORY OF LABOUR			
1305- 9 ESTIMATION OF DISCHARGE ENERGY RELEASED FROM CHARGED INSULATOR		84	[50-57]
VISION RESEARCH CORPORATION			
'517-33 EOS DAMAGE IN SILICON SOLAR CELLS		81	[209-235]
'516-22 SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS		80	[149-153]
TEK			
1214-22 ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
'517-15 INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS		81	[97-100]
'516-15 ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS		80	[95-103]
TOROLA			
1172- 3 THE PRODUCTION OPERATOR: WEAK LINK OR WARRIOR IN THE ESD BATTLE?		83	[12-16]
1172- 7 CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV		83	[37-47]
'517-14 ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES		81	[90-96]
'517-16 DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE		81	[101-105]
NATIONAL BUREAU OF STANDARDS (NBS)			
1515-17 REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS		79	[116-121]
NATIONAL RESEARCH LABORATORY (NRL)			
1214-15 ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS		82	[115-119]
SPON UNIVAC KAISHA, LTD.			
1305-18 EMI CHARACTERISTICS OF ESD IN A SMALL AIR GAP --ARP GOVERNS THE EMI--		84	[124-130]
SOUTHERN TELECOM			
'516-11 ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS		80	[67-72]
PACKAGING INDUSTRIES OF CALIFORNIA			
'517- 8 AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS		81	[44-48]

CORPORATE INDEX

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
INTEL			
17516-14 LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS		80	[87-94]
17515-10 ELECTRO-STATIC DISCHARGE AND CMOS LOGIC		79	[55-63]
17515-24 SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE		79	[168-175]
ITT			
17515-13 FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS		79	[88-96]
ONEYWELL			
18172-11 THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY		83	[67-75]
18214-27 ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS		82	[185-189]
17517-2 QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION		81	[9-13]
17517-29 POTENTIAL ESD HAZARDS ASSOCIATED WITH EXPLOSIVE PRIMERS		81	[208-211]
17516-32 AN EVALUATION OF WRIST STRAP PARAMETERS		80	[218-224]
BM CORPORATION			
18172-22 EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?		83	[154-157]
17516-4 ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN		80	[23-25]
17515-7 MODULE ELECTROSTATIC DISCHARGE SIMULATOR		79	[36-40]
IT RESEARCH INSTITUTE			
18214-1 ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL		82	[1-12]
17516-8 IDENTIFICATION OF LATENT ESD FAILURES		80	[54-57]
17515-23 DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP		79	[158-167]
NTEL			
18305-19 SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL		84	[131-135]
ET PROPULSION LABORATORY (JPL)			
18172-10 STATIC SURVEY METERS		83	[63-66]
MAN SCIENCES CORPORATION			
17517-21 SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES		81	[139-144]
WRENCE LIVERMORE NATIONAL LABORATORY			
18172-16 MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA		83	[108-117]
18214-10 MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA		82	[76-81]
17515-29 STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP		79	[198-204]
EAR SIEGLER, INC.			
18214-16 DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS		82	[120-123]
17517-7 A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT		81	[41-43]
17515-32 TIME-RELATED IMPROVEMENTS OF ELECTRICAL CHARACTERISTICS IN ELECTROSTATICALLY DAMAGED OPERATIONAL AMPLIFIERS		81	[225-228]
LIGHTNING TECHNOLOGIES			
17516-25 LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR		80	[167-175]
DODGE			
18305-5 ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL		84	[25-33]
18305-15 TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1		84	[97-103]

CORPORATE INDEX

<u>CORPORATION DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
E-SYSTEMS, INC.			
17516- 2 THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE		80	[12-16]
EG&G WASC, INC.			
18214-28 ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS		82	[190-202]
EPITEK ELECTRONIC, LTD.			
17517-27 BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS		81	[198-201]
ERA TECHNOLOGY, LTD.			
18305-22 DETERMINATION OF THRESHOLD ENERGIES AND DAMAGE MECHANISMS IN SEMICONDUCTOR DEVICES SUBJECTED TO VOLTAGE TRANSIENTS		84	[157-164]
EXPERIMENTAL PHYSICS CORPORATION			
18305-16 CRITICAL CONSIDERATIONS FOR ESD TESTING		84	[104-111]
17517- 1 A CLOSER LOOK AT THE HUMAN ESD EVENT		81	[1-8]
17516-33 MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD		80	[225-230]
GARRETT MANUFACTURING, LTD.			
18214-19 BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY		82	[136-141]
GENERAL ELECTRIC			
18172-24 METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS		83	[168-176]
17517-25 PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS		81	[174-191]
17516- 5 TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS		80	[26-34]
17516- 6 PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)		80	[35-43]
GENERAL INSTRUMENT			
17516- 7 GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES		80	[44-53]
GENERAL SEMICONDUCTOR INDUSTRIES			
17517-30 LIGHTNING PROTECTION FOR COMPUTER DATA LINES		81	[212-218]
17515-28 ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS		79	[193-197]
GOULD			
17515-18 HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION		79	[122-125]
HARRIS			
17515-15 ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS		79	[104-108]
HARRY DIAMOND LAB (HDL)			
18172-15 CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES		83	[102-107]
18214- 9 THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN		82	[71-75]
17516-20 OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN		80	[130-139]
17515-16 DOPING PROFILES AND SECOND BREAKDOWN		79	[109-115]
HEWLETT PACKARD			
18214-20 ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)		82	[142-144]
18214-26 ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL		82	[179-184]

CORPORATE INDEX

<u>CORPORATION DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
BENDIX			
18214-23 UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT		82	[165-168]
BOOZ, ALLEN & HAMILTON			
18305-21 AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
18214- 6 A SURVEY OF EOS/ESD DATA SOURCES		82	[49-55]
18214- 7 MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS		82	[56-61]
18214-11 A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES		82	[82-90]
17517-19 AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES		81	[120-131]
17516-23 AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS		80	[154-160]
BRITISH TELECOM			
18305-12 AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS		84	[78-84]
18305-23 DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS		84	[165-178]
18305-25 A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS		84	[189-195]
18172- 8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
18172-27 ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS		83	[185-197]
CHARLES STARK DRAPER LABORATORIES			
17515- 3 ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS		79	[7-12]
CHARLESWATERS PRODUCT, INC.			
18214-17 CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES		82	[124-130]
17516- 1 PASSIVE STATIC PROTECTION: THEORY AND PRACTICE		80	[1-11]
CHOMERIC, INC.			
17517- 9 CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL		81	[49-56]
CLARKSON COLLEGE			
18214-24 CIRCUIT DESIGN FOR EOS/ESD PROTECTION		82	[169-174]
17516-30 BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS		80	[206-212]
CONSULTANT			
18305-10 TRIOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER		84	[58-63]
17515-12 DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE		79	[78-87]
DASH, STRAUS, & GOODHUE, INC.			
18305-17 DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES		84	[112-123]
DIGITAL EQUIPMENT CORPORATION (DEC)			
18305-27 A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW		84	[202-209]
DOUGLAS AIRCRAFT			
17517- 4 THE PERFECT "10" - CAN YOU REALLY HAVE ONE?		81	[21-27]
DU PONT			
17517-11 INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS		81	[65-74]

CORPORATE INDEX

<u>CORPORATION</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
3M				
	18305-11	TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKING MATERIALS	84	[64-77]
	18214-13	TEST METHODS FOR STATIC CONTROL PRODUCTS	82	[94-109]
	17515- 9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION	79	[45-54]
AEROSPACE CORPORATION				
	17515- 2	CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79	[4-6]
AMERICAN INSTITUTE OF MEDICAL CLIMATOLOGY (AIMC)				
	18305- 6	EFFECTS OF AIR IONS AND ELECTRIC FIELDS ON HEALTH AND PRODUCTIVITY	84	[34-39]
ANALYTICAL CHEMICAL LABORATORY				
	17516-29	FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS	80	[192-205]
	17515- 4	STATIC CONTROL USING TOPICAL ANTISTATS	79	[13-21]
ARATEX				
	18214-18	ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS	82	[131-135]
ATT				
	18305- 1	A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN	84	[1-6]
AUBURN UNIVERSITY				
	17516-19	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	80	[122-129]
	17515-19	AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES	79	[126-132]
BDM CORPORATION				
	18172- 9	POWER FAILURE MODELING OF INTEGRATED CIRCUITS	83	[56-62]
	17517-18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
	17517-22	DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS	81	[145-150]
	17517-24	AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS	81	[167-173]
	17516-27	MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION	80	[184-188]
BELL COMMUNICATIONS RESEARCH, INC.				
	18305- 7	A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL	84	[40-44]
BELL LABORATORIES				
	18305-24	DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING	84	[179-188]
	18172- 4	ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES	83	[17-20]
	18172- 6	ESD BY STATIC INDUCTION	83	[29-36]
	18214- 2	ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCEPTIBILITY OF THIN FILM RESISTORS AND CAPACITORS	82	[13-18]
	17517-10	EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES	81	[57-64]
	17517-34	EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS	81	[236-241]
	17516- 3	ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS	80	[17-22]
	17516-12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE	80	[73-80]
	17516-26	SURGE TESTS ON PLUG-IN TRANSFORMERS	80	[176-183]
	17515-27	THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79	[188-192]

Section 4:

CORPORATE INDEX

AUTHOR INDEX

AUTHOR <u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
WUNSCH, D.C.			
	17517-24 AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS	81	[167-173]
YEE, J.H.			
	18172-16 MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA	83	[108-117]
	18214-10 MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA	82	[76-81]
YENNI, D.M.			
	18214-13 TEST METHODS FOR STATIC CONTROL PRODUCTS	82	[94-109]
	17515- 9 THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION	79	[45-54]
YOUNG, S.Y.			
	18214-22 ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA	82	[157-164]
YOUNG, P.A.			
	17517-18 ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
ZAJAC, H.			
	17516- 9 STUDY OF EFFECTS OF ELECTRO-STATIC DISCHARGE ON SOLID-STATE DEVICES	80	[58]

AUTHOR INDEX

<u>AUTHOR</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
VAN LINT,V.A.J.				
	17516-22	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80	[149-153]
VOLMERANGE,H.				
	18214- 8	AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCT Devices	82	[62-70]
VULIET,W.				
	17517-33	EOS DAMAGE IN SILICON SOLAR CELLS	81	[209-235]
WALKER,R.C.				
	18214- 5	LATENT ESD FAILURES	82	[41-48]
	17516- 8	IDENTIFICATION OF LATENT ESD FAILURES	80	[54-57]
WARD,A.L.				
	18172-15	CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES	83	[102-107]
	18214- 9	THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN	82	[71-75]
	17516-20	OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN	80	[130-139]
	17515-16	DOPING PROFILES AND SECOND BREAKDOWN	79	[109-115]
WATSON,D.E.				
	18305- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION	84	[7-19]
WEBER,D.C.				
	18214-15	ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS	82	[115-119]
WEIGHT,M. E.				
	18214-21	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM	82	[145-156]
WHALEN,J. J.				
	17515-22	MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS	79	[147-157]
	17515-21	SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS	79	[140-146]
WHITE,L.S.				
	18172-26	A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES	83	[181-184]
WHITEHEAD,A.P.				
	18172-21	THE EFFECT OF ESD ON CCD RELIABILITY	83	[147-153]
WILSON,D.				
	18172-19	ESD SENSITIVITY OF COMPLEX ICS	83	[128-133]
WOODHOUSE,J.				
	18305-25	A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS	84	[189-195]
WU,C.				
	17516- 4	ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN	80	[23-25]

AUTHOR INDEX

<u>AUTHOR</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
TEMPLAR, L.C.				
	17517-23	EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL	81	[151-166]
TENG, T.				
	17516-14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS	80	[87-94]
	17515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT ELEVATED TEMPERATURE	79	[168-175]
TENZER, F.D.				
	17517- 8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS	81	[44-48]
THOMAS, R.E.				
	17517-21	SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES	81	[139-144]
THOMAS, R.M.				
	17517-27	BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS	81	[198-201]
THOMPSON, W.H.				
	18305- 4	ESD DAMAGE, DOES IT HAPPEN ON PCB'S?	84	[22-23]
	18172- 5	AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL	83	[21-28]
	18214- 6	A SURVEY OF EOS/ESD DATA SOURCES	82	[49-55]
THORN, M.L.				
	17515-22	MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS	79	[147-157]
TOPOLSKI, A.S.				
	17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS	81	[65-74]
TURNER, T.E.				
	17516-15	ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS	80	[95-103]
TWEET, A.				
	18214-21	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM	82	[145-156]
TWIST, R.E.				
	18214- 5	LATENT ESD FAILURES	82	[41-48]
	17517- 3	ANALYSIS OF ESD FAILURES	81	[14-20]
UETSUKI, T.				
	17515-13	FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS	79	[88-96]
UNGER, B.				
	17517-10	EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES	81	[57-64]
UNGER, B.A.				
	18305- 7	A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL	84	[40-44]
	18172- 6	ESD BY STATIC INDUCTION	83	[29-36]
	17516- 3	ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS	80	[17-22]

AUTHOR INDEX

<u>AUTHOR DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
SKELTON, D.J.			
	18214-12 SECOND BREAKDOWN IN SWITCHING TRANSISTORS	82	[91-93]
SMITH, J.G.			
	18305-26 ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS	84	[196-201]
SMITH, J.S.			
	17517-20 MODELING OF EOS IN SILICON DEVICES	81	[132-138]
	17517-26 PREDICTION OF THIN-FILM RESISTOR BURNOUT	81	[192-197]
	17515-20 MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES	79	[133-139]
SMYTH, J.B.			
	17516-22 SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80	[149-153]
SNYDER, H.Z.			
	17516- 2 THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE	80	[12-16]
SODEN, J.M.			
	18172-20 ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]
	17515-25 THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE	79	[176-182]
SOHL, J.E.			
	17516-32 AN EVALUATION OF WRIST STRAP PARAMETERS	80	[218-224]
STEWART, H.D.			
	18172-20 ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]
STORM, D.C.			
	17515- 2 CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79	[4-6]
STOTTS, L.J.			
	18172-17 TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE	83	[118-121]
STRAND, C.J.			
	18214-21 AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM	82	[145-156]
TABATA, Y.			
	18305- 9 ESTIMATION OF DISCHARGE ENERGY RELEASED FROM CHARGED INSULATOR	84	[50-57]
TASCA, D.M.			
	17517-25 PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS	81	[174-191]
TAYLOR, R.G.			
	18305-25 A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS	84	[189-195]
	18305-23 DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS	84	[165-178]
	18172-27 ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS	84	[185-197]
	17517-15 INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS	81	[97-100]

KEYWORD IN TITLE INDEX

<u>KEYWORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
ANALYSIS				
18305-25	A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS	84 [189-195]		
18172- 2	ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS	83 [6-11]		
18172- 4	ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES	83 [17-20]		
18172-22	EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?	83 [154-157]		
18214-25	IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES	82 [175-178]		
17517- 3	ANALYSIS OF ESD FAILURES	81 [14-20]		
17517- 5	THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS	81 [29-33]		
17517- 8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS	81 [44-48]		
17517-16	DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE	81 [101-105]		
17517-23	EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL	81 [151-166]		
17517-31	FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING	81 [219-224]		
17516-11	ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS	80 [67-72]		
17516-22	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80 [149-153]		
17515-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION	79 [64-77]		
17515-13	FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS	79 [88-96]		
17515-29	STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP	79 [198-204]		
17515-30	THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS	79 [205-209]		
ANTI-STATIC				
18305-12	AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS	84 [78-84]		
ANTISTATIC				
18172-13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES	83 [87-94]		
18214-16	DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS	82 [120-123]		
17517- 8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS	81 [44-48]		
17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS	81 [65-74]		
BAG				
18305-12	AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS	84 [78-84]		
18172-13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES	83 [87-94]		
BARRIER				
17515-14	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	79 [97-103]		
BIPOLAR				
17516-10	FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS	80 [59-66]		
17516-17	HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS	80 [112-116]		
17516-18	SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES	80 [117-121]		
17515-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION	79 [64-77]		
17515-27	THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79 [188-192]		
BOX				
18172-13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES	83 [87-94]		
BREAKDOWN				
18172-15	CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES	83 [102-107]		
18172-16	MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA	83 [108-117]		
18172-17	TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE	83 [118-121]		
18214- 9	THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN'	82 [71-75]		

KEYWORD IN TITLE INDEX

<u>KEYWORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
BREAKDOWN				
	18214-10	MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA	82	[76-81]
	18214-12	SECOND BREAKDOWN IN SWITCHING TRANSISTORS	82	[91-93]
	17516-18	SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES	80	[117-121]
	17516-19	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	80	[122-129]
	17516-20	OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN	80	[130-139]
	17515-16	DOPING PROFILES AND SECOND BREAKDOWN	79	[109-115]
	17515-17	REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	79	[116-121]
	17515-19	AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES	79	[126-132]
BURNOUT				
	18214- 7	MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS	82	[56-61]
	17517-26	PREDICTION OF THIN-FILM RESISTOR BURNOUT	81	[192-197]
	17515-22	MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS	79	[147-157]
CALCULATION				
	18172-15	CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES	83	[102-107]
CAPACITOR				
	18214- 2	ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCEPTIBILITY OF THIN FILM RESISTORS AND CAPACITORS	82	[13-18]
	17517-25	PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS	81	[174-191]
CCD				
	18172-21	THE EFFECT OF ESD ON CCD RELIABILITY	83	[147-153]
CELL				
	17517-33	EOS DAMAGE IN SILICON SOLAR CELLS	81	[209-235]
	17516-22	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80	[149-153]
CHARACTERIZATION				
	18305- 8	STATIC-ELECTRIC CHARACTERIZATION OF SEMI-INSULATING MATERIALS	84	[45-49]
	18214-17	CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES	82	[124-130]
CHIP				
	17517-14	ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES	81	[90-96]
CLEAN				
	18214-18	ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS	82	[131-135]
CMOS				
	18305-27	A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW	84	[202-209]
	18172-20	ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]
	17516-16	SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	80	[104-111]
	17515- 8	RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES	79	[41-44]
	17515-10	ELECTRO-STATIC DISCHARGE AND CMOS LOGIC	79	[55-63]
	17515-25	THE DIELECTRIC STRENGTH OF SIO ₂ IN A CMOS TRANSISTOR STRUCTURE	79	[176-182]
COMPLEX				
	18172-19	ESD SENSITIVITY OF COMPLEX ICS	83	[128-133]

KEYWORD IN TITLE INDEX

<u>KEYWORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
COMPONENT				
18305-20	PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS		84	[136-143]
17517-24	AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS		81	[167-173]
17516-30	BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS		80	[206-212]
CONDUCTIVITY				
18214-16	DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS		82	[120-123]
17515- 3	ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS		79	[7-12]
CONTAMINATION				
18214-18	ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS		82	[131-135]
CONTROL				
18305- 1	A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN		84	[1-6]
18305- 5	ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL		84	[25-33]
18305- 7	A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL		84	[40-44]
18305-13	A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES		84	[85-93]
18172- 2	ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS		83	[6-11]
18172- 5	AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL		83	[21-28]
18214-13	TEST METHODS FOR STATIC CONTROL PRODUCTS		82	[94-1C9]
17517- 5	THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS		81	[29-33]
17517-23	EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL		81	[151-166]
17516- 7	GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES		80	[44-53]
17516-31	STATIC CONTROL SYSTEMS		80	[213-217]
17515- 2	CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE		79	[4-6]
17515- 4	STATIC CONTROL USING TOPICAL ANTISTATS		79	[13-21]
17515- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS		79	[27-35]
COST				
18172- 2	ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS		83	[6-11]
CURRENT				
18214-10	MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA		82	[76-81]
17515-19	AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES		79	[126-132]
DEFECT				
18172-28	A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS		83	[198-204]
DEGRADATION				
18305-23	DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS		84	[165-178]
DESIGN				
18305-17	DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES		84	[112-123]
18305-24	DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING		84	[179-188]
18214-24	CIRCUIT DESIGN FOR EOS/ESD PROTECTION		82	[169-174]
17517-15	INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS		81	[97-100]
17516- 4	ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN		80	[23-25]
17516-13	SOS PROTECTION: THE DESIGN PROBLEM		80	[81-86]
17516-14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS		80	[87-94]

KEYWORD IN TITLE INDEX

<u>KEYWORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
DESIGN				
	17516-18	SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES	80	[117-121]
	17516-25	LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR	80	[167-175]
	17515-27	THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79	[188-192]
DIAGNOSIS				
	17517-16	DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE	81	[101-105]
DIELECTRIC				
	17515-25	THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE	79	[176-182]
DIODE				
	18172-15	CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES	83	[102-107]
	17516-19	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	80	[122-129]
	17515-14	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	79	[97-103]
	17515-19	AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES	79	[126-132]
DYNAMIC				
	17515-12	DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE	79	[78-87]
ELECTRO-THERMAL				
	17516-30	BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS	80	[206-212]
ELECTRONIC				
	17516-21	ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS	80	[140-148]
	17516-24	TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS	80	[161-166]
	17516-30	BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS	80	[206-212]
ELECTROSTATIC				
	18305- 5	ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL	84	[25-33]
	18305- 7	A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL	84	[40-44]
	18305-10	TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER	84	[58-63]
	18305-15	TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1	84	[97-103]
	18172- 4	ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES	83	[17-20]
	18172- 8	A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS	83	[48-55]
	18172-26	A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES	83	[181-184]
	18214- 2	ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCEPTIBILITY OF THIN FILM RESISTORS AND CAPACITORS	82	[13-18]
	18214-21	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM	82	[145-156]
	18214-26	ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL	82	[179-184]
	18214-27	ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS	82	[185-189]
	17517-32	TIME-RELATED IMPROVEMENTS OF ELECTRICAL CHARACTERISTICS IN ELECTROSTATICALLY DAMAGED OPERATIONAL AMPLIFIERS	81	[225-228]
	17517-34	EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS	81	[236-241]
	17516- 2	THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE	80	[12-16]
	17516- 4	ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN	80	[23-25]
	17516-12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE	80	[73-80]
	17516-15	ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS	80	[95-103]

KEYWORD IN TITLE INDEX

<u>KEYWORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
ELECTROSTATIC				
	17515- 2	CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT HARDWARE	79	[4-6]
17515- 3 ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS				
	17515- 5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS	79	[22-26]
	17515- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	79	[27-35]
	17515- 7	MODULE ELECTROSTATIC DISCHARGE SIMULATOR	79	[36-40]
	17515-12	DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE	79	[78-87]
	17515-14	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	79	[97-103]
	17515-18	HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION	79	[122-125]
	17515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE	79	[168-175]
	17515-28	ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS	79	[193-197]
EMP				
	17515-23	DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP	79	[158-167]
	17515-29	STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP	79	[198-204]
EMPIRICAL				
	17517- 5	THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS	81	[29-33]
EPROM				
	17517-34	EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS	81	[236-241]
EQUIPMENT				
	18305- 3	TEST EQUIPMENT--A SOURCE OF ESD!!	84	[20-21]
	18172- 8	A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS	83	[48-55]
	17517- 7	A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT	81	[41-43]
ESD				
	18305- 1	A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN	84	[1-6]
	18305- 3	TEST EQUIPMENT--A SOURCE OF ESD!!	84	[20-21]
	18305- 4	ESD DAMAGE, DOES IT HAPPEN ON PCB'S?	84	[22-23]
	18305-11	TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKAGING MATERIALS	84	[64-77]
	18305-12	AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS	84	[78-84]
	18305-16	CRITICAL CONSIDERATIONS FOR ESD TESTING	84	[104-111]
	18305-17	DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES	84	[112-123]
	18305-18	EMI CHARACTERISTICS OF ESD IN A SMALL AIR GAP --ARP GOVERNS THE EMI--	84	[124-130]
	18305-23	DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS	84	[165-178]
	18305-24	DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING	84	[179-188]
	18305-25	A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS	84	[189-195]
	18305-26	ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS	84	[196-201]
	18305-27	A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW	84	[202-209]
	18172- 1	ESD--HOW OFTEN DOES IT HAPPEN?	83	[1-5]
	18172- 2	ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS	83	[6-11]
	18172- 3	THE PRODUCTION OPERATOR: WEAK LINK OR WARRIOR IN THE ESD BATTLE?	83	[12-16]
	18172- 6	ESD BY STATIC INDUCTION	83	[29-36]
	18172-19	ESD SENSITIVITY OF COMPLEX ICS	83	[128-133]
	18172-20	ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]
	18172-21	THE EFFECT OF ESD ON CCD RELIABILITY	83	[147-153]
	18172-22	EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?	83	[154-157]
	18172-27	ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS	83	[185-197]
	18172-28	A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS	83	[198-204]
	18214- 1	ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL	82	[1-12]

KEYWORD IN TITLE INDEX

<u>KEYWORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
ESD				
	18214- 5 LATENT ESD FAILURES		82	[41-48]
	18214-15 ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS		82	[115-119]
	18214-17 CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES		82	[124-130]
	18214-18 ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS		82	[131-135]
	18214-19 BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY		82	[136-141]
	18214-20 ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)		82	[142-144]
	18214-22 ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA		82	[157-164]
	18214-23 UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT		82	[165-168]
	18214-25 IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES		82	[175-178]
	17517- 1 A CLOSER LOOK AT THE HUMAN ESD EVENT		81	[1-8]
	17517- 2 QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION		81	[9-13]
	17517- 3 ANALYSIS OF ESD FAILURES		81	[14-20]
	17517- 5 THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS		81	[29-33]
	17517- 6 A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY		81	[34-39]
	17517- 7 A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT		81	[41-43]
	17517-12 SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS		81	[75-84]
	17517-17 SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS		81	[106-113]
	17517-29 POTENTIAL ESD HAZARDS ASSOCIATED WITH EXPLOSIVE PRIMERS		81	[208-211]
	17516- 3 ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS		80	[17-22]
	17516- 8 IDENTIFICATION OF LATENT ESD FAILURES		80	[54-57]
	17516-11 ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS		80	[67-72]
	17516-14 LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS		80	[87-94]
	17516-16 SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY		80	[104-111]
	17516-28 AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM		80	[189-191]
	17516-29 FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS		80	[192-205]
	17516-33 MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD		80	[225-230]
	17515- 1 AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM		79	[1-3]
	17515-15 ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS		79	[104-108]
	17515-27 THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS		79	[188-192]
EVALUATION				
	18305-13 A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES		84	[85-93]
	18305-21 AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
	18172-20 ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS		83	[134-146]
	17517- 7 A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT		81	[41-43]
	17517-10 EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES		81	[57-64]
	17517-34 EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS		81	[236-241]
	17516-29 FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS		80	[192-205]
	17516-32 AN EVALUATION OF WRIST STRAP PARAMETERS		80	[218-224]
FAILURE				
	18305-21 AN EVALUATION OF EOS FAILURE MODELS		84	[144-156]
	18305-25 A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS		84	[189-195]
	18172- 9 POWER FAILURE MODELING OF INTEGRATED CIRCUITS		83	[56-62]
	18172-18 SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED		83	[122-127]
	18172-22 EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?		83	[154-157]
	18172-26 A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES		83	[181-184]
	18172-27 ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS		83	[185-197]
	18214- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES		82	[19-33]
	18214- 5 LATENT ESD FAILURES		82	[41-48]
	18214-11 A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES		82	[82-90]
	17517- 3 ANALYSIS OF ESD FAILURES		81	[14-20]

KEYWORD IN TITLE INDEX

<u>KEYWORD DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
FAILURE			
17517-13 THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD		81	[85-89]
17517-21 SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES		81	[139-144]
17517-22 DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS		81	[145-150]
17517-23 EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL		81	[151-166]
17517-31 FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING		81	[219-224]
17517-35 NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE		81	[242-245]
17516- 8 IDENTIFICATION OF LATENT ESD FAILURES		80	[54-57]
17516-10 FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS		80	[59-66]
17516-17 HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS		80	[112-116]
17515-11 EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION		79	[64-77]
17515-13 FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS		79	[88-96]
17515-14 ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES		79	[97-103]
17515-29 STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP		79	[198-204]
17515-30 THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS		79	[205-209]
FIELD			
18305- 2 HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION		84	[7-19]
18305- 6 EFFECTS OF AIR IONS AND ELECTRIC FIELDS ON HEALTH AND PRODUCTIVITY		84	[34-39]
FLOOR			
18172- 4 ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES		83	[17-20]
18214-17 CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES		82	[124-130]
GAS			
17516- 7 GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES		80	[44-53]
17515- 5 THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS		79	[22-26]
GEOMETRY			
17515-26 ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY		79	[183-187]
GOLD			
17515- 8 RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES		79	[41-44]
HCMOS			
18305-26 ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS		84	[196-201]
HUMAN			
18172- 8 A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS		83	[48-55]
17517- 1 A CLOSER LOOK AT THE HUMAN ESD EVENT		81	[1-8]
17516-33 MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD		80	[225-230]
17515-18 HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION		79	[122-125]
HUMIDITY			
18172-11 THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY		83	[67-75]
17517- 2 QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION		81	[9-13]
17516- 2 THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE		80	[12-16]
INDUCED			
17515-30 THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS		79	[205-209]

KEYWORD IN TITLE INDEX

<u>WORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
INPUT				
	18305-27	A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW	84	[202-209]
	17517-15	INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS	81	[97-100]
	17516-15	ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS	80	[95-103]
INSPECTION				
	17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS	81	[65-74]
INSTRUMENTATION				
	18214-28	ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS	82	[190-202]
INSULATOR				
	18305- 9	ESTIMATION OF DISCHARGE ENERGY RELEASED FROM CHARGED INSULATOR	84	[50-57]
INTEGRATED				
	18305-25	A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS	84	[189-195]
	18305-26	ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS	84	[196-201]
	18172- 9	POWER FAILURE MODELING OF INTEGRATED CIRCUITS	83	[56-62]
	18172-24	METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS	83	[168-176]
	18172-25	USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS	83	[177-180]
	18214- 7	MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS	82	[56-61]
	17517-10	EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES	81	[57-64]
	17517-18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
	17516-12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE	80	[73-80]
	17515-15	ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS	79	[104-108]
	17515-23	DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP	79	[158-167]
	17515-27	THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79	[188-192]
INTERFACE				
	17515-23	DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP	79	[158-167]
INVESTIGATION				
	17517-18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
ION				
	18305- 6	EFFECTS OF AIR IONS AND ELECTRIC FIELDS ON HEALTH AND PRODUCTIVITY	84	[34-39]
	18172-12	MEASURING EFFECTIVENESS OF AIR IONIZERS	83	[76-86]
IONIZATION				
	18305- 7	A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL	84	[40-44]
	18172-11	THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY	83	[67-75]
FUNCTION				
	18172-18	SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED	83	[122-127]
	18214-11	A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES	82	[82-90]
	17517-16	DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE	81	[101-105]
	17517-35	NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE	81	[242-245]
	17516-19	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	80	[122-129]

KEYWORD IN TITLE INDEX

<u>WORD DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
FENT			
8172-28	A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS	83	[198-204]
8214- 5	LATENT ESD FAILURES	82	[41-48]
7516- 8	IDENTIFICATION OF LATENT ESD FAILURES	80	[54-57]
FE			
8305-14	A WRIST STRAP LIFE TEST PROGRAM	84	[94-96]
GHTNING			
7517-30	LIGHTNING PROTECTION FOR COMPUTER DATA LINES	81	[212-218]
7516-24	TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS	80	[161-166]
7516-25	LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR	80	[167-175]
I			
8172-27	ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS	83	[185-197]
7516-14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS	80	[87-94]
7515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE	79	[168-175]
MATERIAL			
.8305- 8	STATIC-ELECTRIC CHARACTERIZATION OF SEMI-INSULATING MATERIALS	84	[45-49]
.8305-10	TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER	84	[58-63]
.8305-11	TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKING MATERIALS	84	[64-77]
.8305-13	A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES	84	[85-93]
.8305-15	TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1	84	[97-103]
.8172-14	COPLANAR TRIBOELECTRIFICATION OF SELECTED MATERIALS	83	[95-101]
.8214-15	ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS	82	[115-119]
.7517- 7	A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT	81	[41-43]
.7517- 8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS	81	[44-48]
.7517- 9	CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL	81	[49-56]
.7517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS	81	[65-74]
.7517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	81	[75-84]
.7515- 3	ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS	79	[7-12]
MEASUREMENT			
.8305- 5	ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL	84	[25-33]
.8305-11	TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKING MATERIALS	84	[64-77]
.7516-33	MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD	80	[225-230]
MCHANISM			
.8305-22	DETERMINATION OF THRESHOLD ENERGIES AND DAMAGE MECHANISMS IN SEMICONDUCTOR DEVICES SUBJECTED TO VOLTAGE TRANSIENTS	84	[157-164]
.7516-17	HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS	80	[112-116]
.7515-30	THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS	79	[205-209]
MORIES			
.8172-26	A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES	83	[181-184]
SPET			
.7515-22	MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS	79	[147-157]

KEYWORD IN TITLE INDEX

<u>ORD IDENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
12-24	METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS	83	[168-176]
14-14	METALLOPLASTICS	82	[110-114]
LIZATION			
14- 7	MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS	82	[56-61]
8			
72-10	STATIC SURVEY METERS	83	[63-66]
DD			
05-11	TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKING MATERIALS	84	[64-77]
05-15	TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1	84	[97-103]
05-25	A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS	84	[189-195]
14-13	TEST METHODS FOR STATIC CONTROL PRODUCTS	82	[94-109]
DCIRCUIT			
16-27	MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION	80	[184-188]
15-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION	79	[64-77]
15-13	FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS	79	[88-96]
OWAVE			
72-15	CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES	83	[102-107]
15-22	MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS	79	[147-157]
72-20	ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]
72-26	A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES	83	[181-184]
14-10	MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA	82	[76-81]
TOR			
05-20	PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS	84	[136-143]
16- 4	ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN	80	[23-25]
72-26	A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES	83	[181-184]
14-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA	82	[157-164]
16-12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE	80	[73-80]
15-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE	79	[168-175]
05-23	DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS	84	[165-178]
72-27	ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS	83	[185-197]
17-14	ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES	81	[90-96]

KEYWORD IN TITLE INDEX

<u>RD ENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
7-15	INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS	81	[97-100]
TRESS			
5-20	PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS	84	[136-143]
2- 5	AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL	83	[21-28]
4- 3	LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES	82	[19-33]
4- 4	ELECTRICAL OVERSTRESS THRESHOLD TESTING	82	[34-40]
7-16	DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE	81	[101-105]
7-18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES	81	[114-119]
6-21	ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS	80	[140-148]
6-22	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80	[149-153]
6-23	AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS	80	[154-160]
6-27	MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION	80	[184-188]
6-30	BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS	80	[206-212]
5-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION	79	[64-77]
15-13	FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS	79	[88-96]
15-20	MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES	79	[133-139]
15-21	SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS	79	[140-146]
15-26	ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY	79	[183-187]
E			
72-24	METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS	83	[168-176]
AGING			
17- 9	CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL	81	[49-56]
17-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS	81	[65-74]
17-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	81	[75-84]
METER			
16-32	AN EVALUATION OF WRIST STRAP PARAMETERS	80	[218-224]
IVE			
17-24	AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS	81	[167-173]
16- 1	PASSIVE STATIC PROTECTION: THEORY AND PRACTICE	80	[1-11]
ERN			
16-16	SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	80	[104-111]
OVOLTAIC			
16-25	LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR	80	[167-175]
PIC			
14-16	DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS	82	[120-123]
TER			
14-15	ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS	82	[115-119]

KEYWORD IN TITLE INDEX

<u>I-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
9	POWER FAILURE MODELING OF INTEGRATED CIRCUITS	83	[56-62]
18	SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED	83	[122-127]
15	PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS	81	[174-191]
17	BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS	81	[198-201]
17	REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	79	[116-121]
 ION			
16	PREDICTION OF THIN-FILM RESISTOR BURNOUT	81	[192-197]
 5 ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL			
15	INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS	81	[97-100]
14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS	80	[87-94]
 ION			
10	PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS	84	[136-143]
17	A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW	84	[202-209]
14	METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS	83	[168-176]
15	USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS	83	[177-180]
16	A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES	83	[181-184]
19	BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY	82	[136-141]
11	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM	82	[145-156]
13	UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT	82	[165-168]
14	CIRCUIT DESIGN FOR EOS/ESD PROTECTION	82	[169-174]
9	CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL	81	[49-56]
14	ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES	81	[90-96]
15	INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS	81	[97-100]
10	LIGHTNING PROTECTION FOR COMPUTER DATA LINES	81	[212-218]
1	PASSIVE STATIC PROTECTION: THEORY AND PRACTICE	80	[1-11]
5	TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS	80	[26-34]
6	PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)	80	[35-43]
12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE	80	[73-80]
13	SOS PROTECTION: THE DESIGN PROBLEM	80	[81-86]
14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS	80	[87-94]
15	ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS	80	[95-103]
15	LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR	80	[167-175]
9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION	79	[45-54]
18	HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION	79	[122-125]
18	ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS	79	[193-197]
 15 PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS			
10	OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN	80	[130-139]
11	SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS	79	[140-146]
12	MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS	79	[147-157]
 ION			
10	ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]

KEYWORD IN TITLE INDEX

<u>SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
1			
	ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS	83	[134-146]
	THE EFFECT OF ESD ON CCD RELIABILITY	83	[147-153]
	SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	80	[104-111]
	RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES	79	[41-44]
	ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCETIBILITY OF THIN FILM RESISTORS AND CAPACITORS	82	[13-18]
	PREDICTION OF THIN-FILM RESISTOR BURNOUT	81	[192-197]
	BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS	81	[198-201]
	SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS	79	[140-146]
	A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL	84	[40-44]
	THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY	83	[67-75]
	ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS	82	[131-135]
	THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD	81	[85-89]
	ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL	82	[1-12]
	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	79	[97-103]
	THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN	82	[71-75]
	RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES	79	[41-44]
	AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS	84	[78-84]
	SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL	84	[131-135]
	CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES	83	[102-107]
	MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA	83	[108-117]
	TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE	83	[118-121]
	THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN	82	[71-75]
	MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA	82	[76-81]
	SECOND BREAKDOWN IN SWITCHING TRANSISTORS	82	[91-93]
	SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES	80	[117-121]
	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN	80	[122-129]
	SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES		
	OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN	80	[130-139]
	DOPING PROFILES AND SECOND BREAKDOWN	79	[109-115]
	REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	79	[116-121]
	AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES	79	[126-132]
	THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS	79	[205-209]

KEYWORD IN TITLE INDEX

<u>QUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
	SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS	84 [131-135] 79 [205-209]	
IR			
	TERMINATION OF THRESHOLD ENERGIES AND DAMAGE MECHANISMS IN SEMICONDUCTOR DEVICES SUBJECTED TO VOLTAGE TRANSIENTS	84 [157-164]	
	SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL	83 [122-127]	
	VISITED		
	STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS	83 [198-204]	
	IMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES	82 [19-33]	
	OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES	81 [120-131]	
	SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES	81 [139-144]	
	FATIGUE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING	81 [219-224]	
	NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE	81 [242-245]	
	SD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS	84 [196-201]	
	SD SENSITIVITY OF COMPLEX ICS	83 [128-133]	
	SD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS	83 [185-197]	
	ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS	80 [95-103]	
	IE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE	79 [176-182]	
	CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES	83 [102-107]	
	MODELING OF EOS IN SILICON DEVICES	81 [132-138]	
	DS DAMAGE IN SILICON SOLAR CELLS	81 [209-235]	
	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN	80 [122-129]	
	SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES		
	IE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC PRESSURE TESTS	79 [22-26]	
	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	79 [97-103]	
	A ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES	79 [126-132]	
	MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES	79 [133-139]	
	ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS	79 [193-197]	
	DS DAMAGE IN SILICON SOLAR CELLS	81 [209-235]	
	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS	80 [149-153]	
	IBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER	84 [58-63]	
	CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT hardware	79 [4-6]	
DN			
	ISIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY	82 [136-141]	
	IE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLIFIED MODEL FOR STATIC PROTECTION	79 [45-54]	
	DANGERS OF STATIC CHARGES AND FIELDS AT THE WORK STATION	84 [7-19]	

AD-A158 114

SEARCH AND RETRIEVAL INDEX TO EOS/ESD SYMPOSIUM
PROCEEDINGS - 1979 TO 1984(U) RELIABILITY ANALYSIS
CENTER GRIFFISS AFB NY R E RASH ET AL. 15 APR 85

2/2

UNCLASSIFIED

RAC-TRS-4 F30602-84-C-0162

F/G 9/5

NL

END
FILED
9TH

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

KEYWORD IN TITLE INDEX

<u>KEYWORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
STATIC				
	18305- 8	STATIC-ELECTRIC CHARACTERIZATION OF SEMI-INSULATING MATERIALS	84	[45-49]
	18305-13	A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES	84	[85-93]
	18305-17	DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES	84	[112-123]
	18172- 6	ESD BY STATIC INDUCTION	83	[29-36]
	18172-10	STATIC SURVEY METERS	83	[63-66]
	18214-13	TEST METHODS FOR STATIC CONTROL PRODUCTS	82	[94-109]
	17516- 1	PASSIVE STATIC PROTECTION: THEORY AND PRACTICE	80	[1-11]
	17516-31	STATIC CONTROL SYSTEMS	80	[213-217]
	17515- 4	STATIC CONTROL USING TOPICAL ANTISTATS	79	[13-21]
	17515- 9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION	79	[45-54]
STATION				
	18305- 2	HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION	84	[7-19]
STATISTIC				
	17515-29	STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP	79	[198-204]
STEP				
	17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS	81	[106-113]
STRAP				
	18305-14	A WRIST STRAP LIFE TEST PROGRAM	84	[94-96]
	17516-32	AN EVALUATION OF WRIST STRAP PARAMETERS	80	[218-224]
STRESS				
	17517-21	SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES	81	[139-144]
STRUCTURE				
	18172-25	USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS	83	[177-180]
	17516-14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS	80	[87-94]
	17515-25	THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE	79	[176-182]
SUBSTRATE				
	18305-23	DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS	84	[165-178]
SUPPRESSOR				
	17516- 6	PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)	80	[35-43]
	17515-28	ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS	79	[193-197]
SURFACE				
	18214-17	CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES	82	[124-130]
	17515- 3	ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS	79	[7-12]
SURGE				
	17516- 7	GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES	80	[44-53]
	17516-26	SURGE TESTS ON PLUG-IN TRANSFORMERS	80	[176-183]
SUSCEPTIBILITY				
	18305-24	DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING	84	[179-188]

KEYWORD IN TITLE INDEX

<u>KEYWORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
SUSCEPTIBILITY				
	18214- 1	ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL	82	[1-12]
	17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS	81	[106-113]
	17516-16	SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	80	[104-111]
	17516-19	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	80	[122-129]
	17515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE	79	[168-175]
SWITCH				
	18214-12	SECOND BREAKDOWN IN SWITCHING TRANSISTORS	82	[91-93]
SYSTEM				
	18305- 7	A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL	84	[40-44]
	18172-11	THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY	83	[67-75]
	18214-27	ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS	82	[185-189]
	18214-28	ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS	82	[190-202]
	17516-21	ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS	80	[140-148]
	17516-31	STATIC CONTROL SYSTEMS	80	[213-217]
	17515-29	STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP	79	[198-204]
TECHNIQUE				
	18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA	82	[157-164]
	17516-24	TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS	80	[161-166]
	17515-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS TECHNIQUES FOR FAILURE SITE LOCATION	79	[64-77]
TEMPERATURE				
	18172-17	TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE	83	[118-121]
	17515-24	SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT Elevated TEMPERATURE	79	[168-175]
TEST				
	18305- 3	TEST EQUIPMENT--A SOURCE OF ESD!!	84	[20-21]
	18305-14	A WRIST STRAP LIFE TEST PROGRAM	84	[94-96]
	18172- 7	CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV	83	[37-47]
	18214-13	TEST METHODS FOR STATIC CONTROL PRODUCTS	82	[94-109]
	18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA	82	[157-164]
	17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS	81	[106-113]
	17516-24	TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS	80	[161-166]
	17516-26	SURGE TESTS ON PLUG-IN TRANSFORMERS	80	[176-183]
	17515- 5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS	79	[22-26]
TESTING				
	18305-10	TRIBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER	84	[58-63]
	18305-15	TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1	84	[97-103]
	18305-16	CRITICAL CONSIDERATIONS FOR ESD TESTING	84	[104-111]
	18305-17	DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES	84	[112-123]
	18305-24	DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING	84	[179-188]
	18172- 8	A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS	83	[48-55]
	18172-16	MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA	83	[108-117]
	18214- 1	ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL	82	[1-12]
	18214- 4	ELECTRICAL OVERSTRESS THRESHOLD TESTING	82	[34-40]

KEYWORD IN TITLE INDEX

<u>KEYWORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
TESTING				
	17517-31	FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING	81	[219-224]
	17516-27	MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION	80	[184-188]
THERMAL				
	18214-10	MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA	82	[76-81]
	17517-35	NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE	81	[242-245]
THICK				
	17517-27	BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS	81	[198-201]
THIN				
	18214- 2	ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCEPTIBILITY OF THIN FILM RESISTORS AND CAPACITORS	82	[13-18]
	17517-26	PREDICTION OF THIN-FILM RESISTOR BURNOUT	81	[192-197]
TRANSIENT				
	18305-20	PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS	84	[136-143]
	18305-22	DETERMINATION OF THRESHOLD ENERGIES AND DAMAGE MECHANISMS IN SEMICONDUCTOR DEVICES SUBJECTED TO VOLTAGE TRANSIENTS	84	[157-164]
	18305-23	DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE MICROPROCESSORS	84	[165-178]
	18172-24	METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS	83	[168-176]
	18172-25	USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS	83	[177-180]
	18214-11	A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES	82	[82-90]
	17517- 9	CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL	81	[49-56]
	17516- 5	TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS	80	[26-34]
	17516- 6	PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)	80	[35-43]
	17516- 7	GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES	80	[44-53]
	17516-24	TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS	80	[161-166]
	17516-33	MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD	80	[225-230]
	17515-28	ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS	79	[193-197]
TRANSISTOR				
	18214-11	A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION TRANSIENT-INDUCED FAILURES	82	[82-90]
	18214-12	SECOND BREAKDOWN IN SWITCHING TRANSISTORS	82	[91-93]
	17517-22	DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS	81	[145-150]
	17516-10	FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS	80	[59-66]
	17516-17	HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS	80	[112-116]
	17515-17	REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	79	[116-121]
	17515-21	SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS	79	[140-146]
	17515-25	THE DIELECTRIC STRENGTH OF SiO ₂ IN A CMOS TRANSISTOR STRUCTURE	79	[176-182]
	17515-27	THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS	79	[188-192]
TRIBOELECTRIC				
	18305-11	TRIBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKING MATERIALS	84	[64-77]
	17516- 3	ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS	80	[17-22]
VLSI				
	18305-27	A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW	84	[202-209]

KEYWORD IN TITLE INDEX

<u>KEYWORD</u>	<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>YEAR</u>	<u>PAGES</u>
VLSI				
	17517-13	THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD	81	[85-89]
WRIST				
	18305-14	A WRIST STRAP LIFE TEST PROGRAM	84	[94-96]
	17516-32	AN EVALUATION OF WRIST STRAP PARAMETERS	80	[218-224]
X-BAND				
	17515-14	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	79	[97-103]

Section 6:

CHRONOLOGICAL LIST OF PAPERS

CHRONOLOGICAL LIST OF PAPERS 1984

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18305-27	A CMOS VLSI ESD INPUT PROTECTION DEVICE, DIFIDW	[202-209]
<u>AUTHOR(S)</u>	RICHARDSON,L.	SIMCOE,R.
<u>COMPANY</u>	DIGITAL EQUIPMENT CORPORATION (DEC)	CHI,K.
<u>INDEX TERM</u>		<u>CATEGORIES</u>
EOS/ESD		[SEMICONDUCTOR TECH.]
INPUT PROTECTION		[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]
18305-26	ESD SENSITIVITY AND LATENCY EFFECTS OF SOME HCMOS INTEGRATED CIRCUITS	[196-201]
<u>AUTHOR(S)</u>	CROCKETT,R.G.M.	SMITH,J.C.
<u>COMPANY</u>	UNIVERSITY OF SOUTHAMPTON	HUGHES,J.F.
<u>INDEX TERM</u>		<u>CATEGORIES</u>
EOS/ESD		[SEMICONDUCTOR TECH.]
ESD SUSCEPTIBILITY TESTING		[ESD, DEVICE, TESTING METHODS]
MOSFET C		[FIELD EFFECT,(FET), SEMICONDUCTOR TECH.]
MICROCIRCUIT		[SEMICONDUCTOR DEVICE]
STEP STRESS		[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]
18305-25	A FAILURE ANALYSIS METHODOLOGY FOR REVEALING ESD DAMAGE TO INTEGRATED CIRCUITS	[189-195]
<u>AUTHOR(S)</u>	TAYLOR,R.G.	WOODHOUSE,J.
<u>COMPANY</u>	BRITISH TELECOM	FEASEY,P.R.
<u>INDEX TERM</u>		<u>CATEGORIES</u>
EOS/ESD		[SEMICONDUCTOR TECH.]
ELECTRO-THERMOMIGRATION		[ESD, DEVICE, FAILURE MODES]
HUMAN BODY ESD MODEL		[ESD, DEVICE, TESTING METHODS]
ESD SUSCEPTIBILITY TESTING		[ESD, DEVICE, TESTING METHODS]
MOSFET C		[FIELD EFFECT,(FET), SEMICONDUCTOR TECH.]
MICROCIRCUIT		[SEMICONDUCTOR DEVICE]
18305-24	DEVICE ESD SUSCEPTIBILITY TESTING AND DESIGN HARDENING	[179-188]
<u>AUTHOR(S)</u>	DECHIARO,L.F.	
<u>COMPANY</u>	BELL LABORATORIES	
<u>INDEX TERM</u>		<u>CATEGORIES</u>
OXIDATION		[CHEMICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]
EOS/ESD		[SEMICONDUCTOR TECH.]
ESD SUSCEPTIBILITY TESTING		[ESD, DEVICE, TESTING METHODS]
FAILURE MODES		[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
FAILURE ANALYSIS TECHNIQUES		[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
MICROCIRCUIT		[SEMICONDUCTOR DEVICE]
18305-23	DEGRADATION BY ESD TRANSIENTS OF THE SUBSTRATE BIAS VOLTAGE OF NMOS 8085-TYPE	[165-178]
<u>MICROPROCESSORS</u>		
<u>AUTHOR(S)</u>	SHAW,R.N.	ENOCH,R.D.
<u>COMPANY</u>	BRITISH TELECOM	TAYLOR,R.G.
<u>INDEX TERM</u>		<u>CATEGORIES</u>
CIRCUIT BOARD		[NON-ELECTRONICS]
EOS/ESD		[SEMICONDUCTOR TECH.]
HUMAN BODY ESD MODEL		[ESD, DEVICE, TESTING METHODS]
METALLIZATION MELT		[ESD, DEVICE, FAILURE MODES]
ESD STD AND HANDBOOK		[ESD, STANDARDS, HANDBOOKS, MANUALS]
ESD SUSCEPTIBILITY TESTING		[ESD, DEVICE, TESTING METHODS]
MICROCIRCUIT		[SEMICONDUCTOR DEVICE]

CHRONOLOGICAL LIST OF PAPERS 1984

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18305-22 DETERMINATION OF THRESHOLD ENERGIES AND DAMAGE MECHANISMS IN SEMICONDUCTOR DEVICES SUBJECTED TO VOLTAGE TRANSIENTS	AUTHOR(S) : ROBERTS,B.C. COMPANY : ERA TECHNOLOGY, LTD.	[157-164]
INDEX TERM EOS/ESD ESD SUSCEPTIBILITY TESTING MOSFET N MICROCIRCUIT	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [FIELD EFFECT,(FET), SEMICONDUCTOR TECH.] [SEMICONDUCTOR DEVICE]	
18305-21 AN EVALUATION OF EOS FAILURE MODELS	AUTHOR(S) : PIERCE,D.G. PERILLAT,J. COMPANY : BOOZ, ALLEN & HAMILTON	SHILEY,W.L. [144-156]
INDEX TERM BIPOLAR EOS/ESD EMP - ELECTROMAGNETIC PULSE EOS - ELECTRICAL OVERSTRESS MOSFET C TRANSISTOR MICROCIRCUIT	CATEGORIES [COMPONENT TYPE] [SEMICONDUCTOR TECH.] [ESD, EOS/ESD PHYSICS] [ESD, EOS/ESD PHYSICS] [FIELD EFFECT,(FET), SEMICONDUCTOR TECH.] [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE] [SEMICONDUCTOR DEVICE]	
18305-20 PROTECTION OF COMPONENTS AGAINST ELECTRICAL OVERSTRESS (EOS) AND TRANSIENTS IN MONITORS	AUTHOR(S) : FOERSTER,G. COMPANY : RCA	[136-143]
INDEX TERM EOS/ESD ELECTROSTATIC SIMULATOR EOS - ELECTRICAL OVERSTRESS MODELS/THEORY/EQUATIONS	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, EOS/ESD PHYSICS] [REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]	
18305-19 SECONDARY DISCHARGE: A NEW JEOPARDY AND A NEW TOOL	AUTHOR(S) : LAFFERTY,D. COMPANY : INTEL	[131-135]
INDEX TERM CIRCUIT BOARD EOS/ESD CHARGE DEVICE MODEL DECAY TIME PROTECTIVE WORK BENCH SURFACE RELATIVE HUMIDITY TRIOBOELECTRIC CHARGING NONELECTRONICS MICROCIRCUIT	CATEGORIES [NON-ELECTRONICS] [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, EOS/ESD PHYSICS] [SEMICONDUCTOR DEVICE]	
18305-18 EMI CHARACTERISTICS OF ESD IN A SMALL AIR GAP --ARP GOVERNS THE EMI--	AUTHOR(S) : HONDA,M. KAWAMURA,T. COMPANY : NIPPON UNIVAC KAISHA, LTD.	[124-130]
INDEX TERM EOS/ESD EMI - ELECTROMAGNETIC INTERFACE PACKAGE MICROCIRCUIT TESTING TOOLS & TECHNIQUES	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, EOS/ESD PHYSICS] [SEMICONDUCTOR TECH.] [SEMICONDUCTOR DEVICE] [SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1984

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18305-17	DESIGNING TO AVOID STATIC - ESD TESTING OF DIGITAL DEVICES	[112-123]
<u>AUTHOR(S)</u>	: DASH,G.R.	
<u>COMPANY</u>	: DASH, STRAUS, & GOODHUE, INC.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
ELECTRICAL FAILURE PHENOMENA	[SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ELECTROSTATIC SIMULATOR	[ESD, DEVICE, TESTING METHODS]	
HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]	
18305-16	CRITICAL CONSIDERATIONS FOR ESD TESTING	[104-111]
<u>AUTHOR(S)</u>	: HYATT,H.M.	
<u>COMPANY</u>	: EXPERIMENTAL PHYSICS CORPORATION	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN CONSIDERATIONS	[SEMICONDUCTOR TECH.]	
TOLERANCES	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ELECTROSTATIC SIMULATOR	[ESD, DEVICE, TESTING METHODS]	
HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]	
EMI - ELECTROMAGNETIC INTERFACE	[ESD, EOS/ESD PHYSICS]	
RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
18305-15	TESTING OF ELECTROSTATIC MATERIALS FED. STD. 101C, METHOD 4046.1	[97-103]
<u>AUTHOR(S)</u>	: BAUMGARTNER,G. HAVERMANN,R.	
<u>COMPANY</u>	: LOCKHEED	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
CONDUCTIVE ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]	
SURFACE RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
TRIOBOELECTRIC CHARGING	[ESD, EOS/ESD PHYSICS]	
TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]	
18305-14	A WRIST STRAP LIFE TEST PROGRAM	[94-96]
<u>AUTHOR(S)</u>	: HOHL,A.P.	
<u>COMPANY</u>	: RCA	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
GROUNDING STRAPS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
WRIST STRAP	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]	
18305-13	A MATERIAL EVALUATION PROGRAM FOR DECORATIVE STATIC CONTROL TABLE TOP LAMINATES	[85-93]
<u>AUTHOR(S)</u>	: SAFEER,N.I. MILEHAM,J.R.	
<u>COMPANY</u>	: SPAULDING FIBRE COMPANY, INC.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
GROUNDING METHODS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
PROTECTIVE WORK BENCH SURFACE	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
SURFACE RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
LIFE	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1984

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18305-12	AN EXPERIMENTAL STUDY OF THE ESD SCREENING EFFECTIVENESS OF ANTI-STATIC BAGS AUTHOR(S) : HOLMES,G.C. HUFF,P.J. JOHNSON,R.L. COMPANY : BRITISH TELECOM	[78-84]
INDEX TERM EOS/ESD BULK CONDUCTIVE PLASTIC PROTECTIVE BAGS TRIOBOELECTRIC CHARGING	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, EOS/ESD PHYSICS]	
18305-11	TRIOBOELECTRIC CHARGE: ITS ESD ABILITY AND A MEASUREMENT METHOD FOR ITS PROPENSITY ON PACKING MATERIALS AUTHOR(S) : HUNTSMAN,J.R. COMPANY : 3M	[64-77]
INDEX TERM EOS/ESD DECAY TIME PROTECTIVE BAGS SURFACE RESISTIVITY TRIOBOELECTRIC CHARGING LOGISTICS	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, EOS/ESD PHYSICS] [SYSTEMS]	
18305-10	TRIOBOELECTRIC TESTING FOR ELECTROSTATIC CHARGES ON MATERIALS AT KENNEDY SPACE CENTER AUTHOR(S) : GOMPF,R.H. COMPANY : CONSULTANT	[58-63]
INDEX TERM EOS/ESD DECAY TIME RELATIVE HUMIDITY SURFACE RESISTIVITY TRIOBOELECTRIC CHARGING PACKAGE MICROCIRCUIT	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, EOS/ESD PHYSICS] [SEMICONDUCTOR TECH.] [SEMICONDUCTOR DEVICE]	
18305- 9	ESTIMATION OF DISCHARGE ENERGY RELEASED FROM CHARGED INSULATOR AUTHOR(S) : TABATA,Y. COMPANY : MINISTRY OF LABOUR	[50-57]
INDEX TERM EOS/ESD INDUCTIVE CHARGING TESTING TOOLS & TECHNIQUES	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, EOS/ESD PHYSICS] [SEMICONDUCTOR TECH.]	
18305- 8	STATIC-ELECTRIC CHARACTERIZATION OF SEMI-INSULATING MATERIALS AUTHOR(S) : JONASSEN,N. COMPANY : TECHNICAL UNIVERSITY OF DENMARK	[45-49]
INDEX TERM EOS/ESD DECAY TIME ESD PROTECTIVE MATERIAL SURFACE RESISTIVITY	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, TESTING]	

CHRONOLOGICAL LIST OF PAPERS 1984

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18305- 7	A ROOM IONIZATION SYSTEM FOR ELECTROSTATIC CHARGE AND DUST CONTROL AUTHOR(S) : UNGER,B.A. CHEMELLI,R.G. BOSSARD,P.R. COMPANY : BELL COMMUNICATIONS RESEARCH, INC.	[40-44]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	AIR IONIZER	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]
	IONELECTRONICS	
	TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]
18305- 6	EFFECTS OF AIR IONS AND ELECTRIC FIELDS ON HEALTH AND PRODUCTIVITY AUTHOR(S) : CARLTON,R.M. COMPANY : AMERICAN INSTITUTE OF MEDICAL CLIMATOLOGY (AIMC)	[34-39]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	AIR IONIZER	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
	FABRICATION PROCESSES & TECHNIQUES	[SEMICONDUCTOR TECH.]
	MICROCIRCUIT	[SEMICONDUCTOR DEVICE]
18305- 5	ELECTROSTATIC MEASUREMENT FOR PROCESS CONTROL AUTHOR(S) : BAUMGARTNER,G. COMPANY : LOCKHEED	[25-33]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	ELECTROSTATIC CHARGE DETECTOR	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]
	EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]
	TRIOBOELECTRIC CHARGING	[ESD, EOS/ESD PHYSICS]
	PROCESS CONTROL/SPECIFICATION	[FABRICATION PROCESSES & TECHNIQUES, SEMICONDUCTOR TECH.]
	TEST EQUIPMENT	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]
	TEST TECHNIQUES	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]
18305- 4	ESD DAMAGE, DOES IT HAPPEN ON PCB'S? AUTHOR(S) : THOMPSON,W.H. COMPANY : U.S. AIR FORCE	[22-23]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	BOARD	[LEVEL OF ASSEMBLY]
	CIRCUIT BOARD	[NON-ELECTRONICS]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	ASSEMBLY & EQUIPMENT ESD CLASSIFICATION	[ESD, DEVICE, TESTING METHODS]
	EMI - ELECTROMAGNETIC INTERFACE	[ESD, EOS/ESD PHYSICS]
	EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]
	MICROCIRCUIT	[SEMICONDUCTOR DEVICE]
18305- 3	TEST EQUIPMENT--A SOURCE OF ESD!! AUTHOR(S) : SAUERS,J.P. COMPANY : MAGNAVOX	[20-21]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	ELECTROSTATIC CHARGE DETECTOR	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]
	MICROCIRCUIT	[SEMICONDUCTOR DEVICE]
	TEST EQUIPMENT	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]

CHRONOLOGICAL LIST OF PAPERS 1984

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
8305- 2 HAZARDS OF STATIC CHARGES AND FIELDS AT THE WORK STATION		(7-19)
UTHOR(S) : KOLYER,J.M.	ANDERSON,W.E.	
OMPANY : ROCKWELL	WATSON,D.E.	

<u>INDEX TERM</u>	<u>CATEGORIES</u>
DS/ESD	[SEMICONDUCTOR TECH.]
IR IONIZER	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
LECTROSTATIC CHARGE DETECTOR	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
SD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]
ROTECTED ESD AREA	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
ROTECTIVE BAGS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
JRFACE RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, TESTING]
RIST STRAP	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
FABRICATION PROCESSES & TECHNIQUES	[SEMICONDUCTOR TECH.]
FABRICATION EQUIPMENT	[FABRICATION PROCESSES & TECHNIQES, SEMICONDUCTOR TECH.]
DSFET	[FIELD EFFECT,(FET), SEMICONDUCTOR TECH.]
JALITY ASSURANCE	[SYSTEMS]

8305- 1 A REALISTIC AND SYSTEMATIC ESD CONTROL PLAN	(1-6)
UTHOR(S) : DANGELMAYER,G.T.	
OMPANY : ATT	

<u>INDEX TERM</u>	<u>CATEGORIES</u>
ST	[SYSTEMS]
S/ESD	[SEMICONDUCTOR TECH.]
ARGE DEVICE MODEL	[ESD, DEVICE, TESTING METHODS]
MAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]
D CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
ATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
ALITY ASSURANCE	[SYSTEMS]

CHRONOLOGICAL LIST OF PAPERS 1983

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18172-28	A STUDY OF ESD LATENT DEFECTS IN SEMICONDUCTORS AUTHOR(S) : BEALL,J. COMPANY : MARTIN MARIETTA	ROSSI,M. [198-204]
INDEX TERM EOS/ESD DIELECTRIC BREAKDOWN LATENT ESD FAILURE OVERSTRESS GUIDE/PROCEDURE SEMICONDUCTOR DEVICE LIFE OPERATIONAL TEST TEST SPECIFICATION	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [ESD, DEVICE, FAILURE MODES] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [REFERENCE DOCUMENT] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.] [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
18172-27	ESD SENSITIVITY OF NMOS LSI CIRCUITS AND THEIR FAILURE CHARACTERISTICS AUTHOR(S) : ENOCH,R.D. COMPANY : BRITISH TELECOM	SHAW,R.N. TAYLOR,R.G. [185-197]
INDEX TERM EOS/ESD HUMAN BODY ESD MODEL ESD SUSCEPTIBILITY TESTING FAILURE CHARACTERIZATION FAILURE ANALYSIS RESULTS REFERENCE DOCUMENT DIGITAL LSI TESTING TOOLS & TECHNIQUES	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, DEVICE, TESTING METHODS] [SEMICONDUCTOR TECH.] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [MICROCIRCUIT, SEMICONDUCTOR DEVICE] [SEMICONDUCTOR TECH.]	
18172-26	A SUMMARY OF MOST EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION CIRCUITS FOR MOS MEMORIES AND THEIR OBSERVED FAILURE MODES AUTHOR(S) : DUVVURY,C. COMPANY : TEXAS INSTRUMENTS (TI)	ROUNTREE,R.N. WHITE,L.S. [181-184]
INDEX TERM CIRCUIT PROTECTION DEVICES DESIGN CONSIDERATIONS EOS/ESD DIELECTRIC BREAKDOWN FAILURE MODES FAILURE ANALYSIS RESULTS GUIDE/PROCEDURE MICROCIRCUIT	CATEGORIES [NON-ELECTRONICS] [SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [REFERENCE DOCUMENT] [SEMICONDUCTOR DEVICE]	
18172-25	USING SCR'S AS TRANSIENT PROTECTION STRUCTURES IN INTEGRATED CIRCUITS AUTHOR(S) : AVERY,L.R. COMPANY : RCA	
INDEX TERM DESIGN CONSIDERATIONS EOS/ESD TRANSIENT SUPPRESSORS GUIDE/PROCEDURE SEMICONDUCTOR DEVICE MICROCIRCUIT	CATEGORIES [SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION] [REFERENCE DOCUMENT] [SEMICONDUCTOR DEVICE]	[177-180]

CHRONOLOGICAL LIST OF PAPERS 1982

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
14- 1	ESD SUSCEPTIBILITY TESTING OF ADVANCED SCHOTTKY TTL	[1-12]
HOR(S) : DENSON,W.K.	DEY,K.A.	
PANY : IIT RESEARCH INSTITUTE		
<u>EX TERM</u>	<u>CATEGORIES</u>	
/ESD	[BIPOLAR, COMPONENT TYPE]	
RCE DEVICE MODEL	[SEMICONDUCTOR TECH.]	
STD AND HANDBOOK	[ESD, DEVICE, TESTING METHODS]	
SUSCEPTIBILITY TESTING	[ESD, STANDARDS, HANDBOOKS, MANUALS]	
ROCIRCUIT	[ESD, DEVICE, TESTING METHODS]	
TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR DEVICE]	
P STRESS	[SEMICONDUCTOR TECH.]	
TING TOOLS & TECHNIQUES	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
	[SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1982

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
214- 5 LATENT ESD FAILURES		[41-48]
<u>THOR(S)</u> : MCATEER,O.J. <u>PANY</u> : WESTINGHOUSE	TWIST,R.E. WALKER,R.C.	
<u>DEX TERM</u>	<u>CATEGORIES</u>	
S/ESD SECONDARY BREAKDOWN TEST FAILURE STD AND HANDBOOK SUSCEPTIBILITY TESTING OVERSTRESS FAILURE MODES ERENCE DOCUMENT FE ST EQUIPMENT	[LEVEL OF ASSEMBLY] [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [ESD, STANDARDS, HANDBOOKS, MANUALS] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.] [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
214- 4 ELECTRICAL OVERSTRESS THRESHOLD TESTING		[34-40]
<u>THOR(S)</u> : HAYS,R.A. <u>PANY</u> : U.S. AIR FORCE		
<u>DEX TERM</u>	<u>CATEGORIES</u>	
PUTER AIDED DESIGN,(CAD) S/ESD S - ELECTRICAL OVERSTRESS SUSCEPTIBILITY TESTING OVERSTRESS TING TOOLS & TECHNIQUES	[DESIGN TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, EOS/ESD PHYSICS] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.]	
214- 3 LIMITATIONS IN MODELING ELECTRICAL OVERSTRESS FAILURE IN SEMICONDUCTOR DEVICES		[19-33]
<u>THOR(S)</u> : HORGAN,E.L. <u>PANY</u> : TRW	ADAMS,O.E. ROWAN,W.H.	
<u>DEX TERM</u>	<u>CATEGORIES</u>	
S/ESD SUSCEPTIBILITY TESTING SECONDARY BREAKDOWN NSCH BELL MODEL OVERSTRESS DELS/THEORY/EQUATIONS CONDUCTOR DEVICE ST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, DEVICE, FAILURE MODES] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS] [SEMICONDUCTOR TECH.]	
214- 2 ELECTROSTATIC DISCHARGE (ESD) DAMAGE SUSCETIBILITY OF THIN FILM RESISTORS AND CAPACITORS		[13-18]
<u>THOR(S)</u> : CHASE,E.W. <u>PANY</u> : BELL LABORATORIES		
<u>DEX TERM</u>	<u>CATEGORIES</u>	
S/ESD ARGE DEVICE MODEL MAN BODY ESD MODEL SUSCEPTIBILITY TESTING NSCH BELL MODEL OVERSTRESS PACITOR SISTOR	[SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [PASSIVE DEVICE, COMPONENT TYPE] [PASSIVE DEVICE, COMPONENT TYPE]	

CHRONOLOGICAL LIST OF PAPERS 1982

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18214- 9 THE FORWARD-BIAS CHARACTERISTIC AS A PREDICTOR AND SCREEN OF REVERSE-BIAS SECOND BREAKDOWN	[71-75]	
<u>AUTHOR(S)</u> : WARD,A.L.		
<u>COMPANY</u> : HARRY DIAMOND LAB (HDL)		
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
REVERSE BREAKDOWN	[ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]	
SECONDARY BREAKDOWN	[ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
MATHEMATICAL ANALYSIS		
CHARACTERIZATION	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
18214- 8 AN IMPROVED EOS CONDUCTION MODEL OF SEMICONDUCT DEVICES	[62-70]	
<u>AUTHOR(S)</u> : VOLMERANCE,H.		
<u>COMPANY</u> : TRW		
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]	
EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]	
WUNSCH BELL MODEL	[ESD, DEVICE, TESTING METHODS]	
MATHEMATICAL ANALYSIS		
REFERENCE DOCUMENT		
MODELS/THEORY/EQUATIONS	[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]	
SEMICONDUCTOR DEVICE		
MICROCIRCUIT	[SEMICONDUCTOR DEVICE]	
18214- 7 MODELING METALLIZATION BURNOUT OF INTEGRATED CIRCUITS	[56-61]	
<u>AUTHOR(S)</u> : PIERCE,D.G.		
<u>COMPANY</u> : BOOZ, ALLEN & HAMILTON		
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
METALLIZATION MELT	[ESD, DEVICE, FAILURE MODES]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
MATHEMATICAL ANALYSIS		
METALLURGICAL FAILURE PHENOMENA	[SEMICONDUCTOR TECH.]	
MODELS/THEORY/EQUATIONS	[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]	
MICROCIRCUIT	[SEMICONDUCTOR DEVICE]	
18214- 6 A SURVEY OF EOS/ESD DATA SOURCES	[49-55]	
<u>AUTHOR(S)</u> : DURGIN,D.L. PELZL,R.M.		
<u>COMPANY</u> : BOOZ, ALLEN & HAMILTON	THOMPSON,W.H.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
EMI - ELECTROMAGNETIC INTERFACE	[ESD, EOS/ESD PHYSICS]	
EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]	
ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]	
FAILURE CHARACTERIZATION	[SEMICONDUCTOR TECH.]	
DATA COLLECTION SYS./TECHNIQUES	[REL. MODELS/DATA/ANALYSIS]	
TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1982

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18214-13 TEST METHODS FOR STATIC CONTROL PRODUCTS <u>AUTHOR(S)</u> : HUNTSMAN,J.R. <u>COMPANY</u> : 3M	YENNI,D.M.	[94-109]
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
TRADE-OFFS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
AIR IONIZER	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
CONDUCTIVE FOAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
DIP TUBE	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]	
SURFACE RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
TRIOBOELECTRIC CHARGING	[ESD, EOS/ESD PHYSICS]	
WRIST STRAP	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
QUALITY ASSURANCE	[SYSTEMS]	
RELIABILITY	[SYSTEMS]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
18214-12 SECOND BREAKDOWN IN SWITCHING TRANSISTORS <u>AUTHOR(S)</u> : SKELTON,D.J. <u>COMPANY</u> : TEXAS TECH UNIVERSITY	PORTNOY,W.M.	[91-93]
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
SECONDARY BREAKDOWN	[ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]	
TRANSISTOR	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]	
THERMAL	[TEST STRESS]	
18214-11 A PROBABILISTIC ESTIMATOR FOR BOUNDING TRANSISTOR Emitter-BASE JUNCTION <u>AUTHOR(S)</u> : PIERCE,D.G. <u>COMPANY</u> : BOOZ, ALLEN & HAMILTON	MASON,R.M.	[82-90]
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
FABRICATION PROCESSES & TECHNIQUES	[SEMICONDUCTOR TECH.]	
TRANSISTOR	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]	
18214-10 MODELING OF CURRENT AND THERMAL MODE SECOND BREAKDOWN PHENOMENA <u>AUTHOR(S)</u> : YEE,J.H. <u>COMPANY</u> : LAWRENCE LIVERMORE NATIONAL LABORATORY	ORVIS,W.J. MARTIN,L.C.	[76-81]
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
SECONDARY BREAKDOWN	[ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]	
ELECTRICAL	[TEST STRESS]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
THERMAL SECONDARY BREAKDOWN	[ESD, DEVICE, FAILURE MODES]	
MATHEMATICAL ANALYSIS		
MODELS/THEORY/EQUATIONS	[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]	
THERMAL	[TEST STRESS]	

CHRONOLOGICAL LIST OF PAPERS 1982

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18214-17	CHARACTERIZATION OF ESD SAFE REQUIREMENTS FOR FLOOR SURFACES	[124-130]
<u>AUTHOR(S)</u>	: BERBECO,G.R.	
<u>COMPANY</u>	: CHARLESWATERS PRODUCT, INC.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN CONSIDERATIONS	[SEMICONDUCTOR TECH.]	
DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
FLOOR SURFACE	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
TRIOBOELECTRIC CHARGING	[ESD, EOS/ESD PHYSICS]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
CHARACTERIZATION	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]	
18214-16	DRASTIC LOSSES OF CONDUCTIVITY IN ANTISTATIC PLASTICS	[120-123]
<u>AUTHOR(S)</u>	: HEAD,G.O.	
<u>COMPANY</u>	: LEAR SIEGLER, INC.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
MATERIALS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
CONDUCTIVE ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
PROTECTIVE BAGS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
SURFACE RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
TRIOBOELECTRIC CHARGING	[ESD, EOS/ESD PHYSICS]	
EVALUATION TEST	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
MISC. FAILURE PHENOMENA	[SEMICONDUCTOR TECH.]	
18214-15	ELECTROACTIVE POLYMERS AS ALTERNATE ESD PROTECTIVE MATERIALS	[115-119]
<u>AUTHOR(S)</u>	: BERNETT,M.K. RAVNER,H. WEBER,D.C.	
<u>COMPANY</u>	: NAVAL RESEARCH LABORATORY (NRL)	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
MATERIALS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
TOLERANCES	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
SURFACE RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
PACKAGE	[SEMICONDUCTOR TECH.]	
18214-14	METALLOPLASTICS	[110-114]
<u>AUTHOR(S)</u>	: DAVENPORT,D.E.	
<u>COMPANY</u>	: TRACOR MBA	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
PROCESS DESIGN	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ELECTROSTATIC SHIELD	[ESD, EOS/ESD PHYSICS]	
EMI - ELECTROMAGNETIC INTERFACE	[ESD, EOS/ESD PHYSICS]	
FABRICATION PROCESSES & TECHNIQUES	[SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1982

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18214-20 ESD IN I.C. ASSEMBLY (A BASE LINE SOLUTION)		[142-144]
<u>AUTHOR(S)</u> : EUKER,R. <u>COMPANY</u> : HEWLETT PACKARD		
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
CIRCUIT PROTECTION DEVICES	[NON-ELECTRONICS]	
DEVELOPMENT PROGRAM	[SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
GROUNDING METHODS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
PROCESS CONTROL/SPECIFICATION	[FABRICATION PROCESSES & TECHNIQUES, SEMICONDUCTOR TECH.]	
FUTURE TRENDS	[SEMICONDUCTOR TECH.]	
SEMICONDUCTOR DEVICE		
18214-19 BASIC SPECIFICATION FOR ESD PROTECTION IN INDUSTRY		[136-141]
<u>AUTHOR(S)</u> : PHILLIPS,L.P. <u>COMPANY</u> : GARRETT MANUFACTURING, LTD.		
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
AVAILABILITY	[SYSTEMS]	
COST	[SYSTEMS]	
DEVELOPMENT PROGRAM	[SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]	
PROTECTED ESD AREA	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
PROCESS CONTROL/SPECIFICATION	[FABRICATION PROCESSES & TECHNIQUES, SEMICONDUCTOR TECH.]	
SPECIFICATION/STANDARD	[REFERENCE DOCUMENT]	
18214-18 ESD AND CONTAMINATION FROM CLEAN ROOM GARMENTS - PROBLEMS AND SOLUTIONS		[131-135]
<u>AUTHOR(S)</u> : BURNETT,E.S. <u>COMPANY</u> : ARATEX		
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN CONSIDERATIONS	[SEMICONDUCTOR TECH.]	
APPLICATION FACTORS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
MATERIALS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ANTISTATIC GARMENTS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
CLEAN ROOM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
SURFACE RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
QUALITY ASSURANCE	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
MISC. FAILURE PHENOMENA	[SYSTEMS]	
CONTAMINATION	[SEMICONDUCTOR TECH.]	
	[MISC. FAILURE PHENOMENA, SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1982

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18214-24	CIRCUIT DESIGN FOR EOS/ESD PROTECTION AUTHOR(S) : DOMINGOS,R. COMPANY : CLARKSON COLLEGE	[169-174]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	DESIGN FOR TESTABILITY	[NON-ELECTRONICS] [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.]
	HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]
	INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]
	OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	FUTURE TRENDS	[SEMICONDUCTOR TECH.]
	REFERENCE DOCUMENT	
18214-23	UNIFORM ESD PROTECTION IN A LARGE MULTI-DEPARTMENT ASSEMBLY PLANT AUTHOR(S) : KIRK,W.J. COMPANY : BENDIX	[165-168]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	COST	[SYSTEMS]
	DEVELOPMENT PROGRAM	[SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
	STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
	REFERENCE DOCUMENT	
18214-22	ESD MINIMIZATION TECHNIQUE FOR MOS MANUFACTURING FINAL TEST AREA AUTHOR(S) : YOUN,S.Y. COMPANY : MOSTEK	[157-164]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.]
	EOS/ESD	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	PROTECTIVE WORK BENCH SURFACE	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
	RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
	STATIC CONTROL	[ESD, DEVICE, TESTING METHODS]
	ESD SUSCEPTIBILITY TESTING	[ESD, EOS/ESD PHYSICS]
	TRIOBOELECTRIC CHARGING	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	OVERSTRESS	[SEMICONDUCTOR DEVICE]
	MICROCIRCUIT	[SEMICONDUCTOR TECH.]
	TEST TECHNIQUES FOR REL. ASSESSMENT	[MISC. FAILURE PHENOMENA, SEMICONDUCTOR TECH.]
	CONTAMINATION	[MISC. FAILURE PHENOMENA, SEMICONDUCTOR TECH.]
	PROCESS/WORKMANSHIP INDUCED	
18214-21	AN EFFECTIVE ELECTROSTATIC DISCHARGE PROTECTION PROGRAM AUTHOR(S) : STRAND,C.J. COMPANY : SPERRY UNIVAC	[145-156]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	DEVELOPMENT PROGRAM	[SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.]
	EOS/ESD	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	PROTECTED ESD AREA	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
	STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	FLOOR SURFACE	[ESD, DEVICE, TESTING METHODS]
	ESD SUSCEPTIBILITY TESTING	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	WRIST STRAP	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	OVERSTRESS	[SEMICONDUCTOR TECH.]
	FUTURE TRENDS	[SYSTEMS]
	HUMAN FACTORS	[SYSTEMS]
	QUALITY ASSURANCE	
	SEMICONDUCTOR DEVICE	

CHRONOLOGICAL LIST OF PAPERS 1982

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18214-28	ELECTRICAL GROUNDING IN LARGE INSTRUMENTATION SYSTEMS	[190-202]
<u>AUTHOR(S)</u>	: GRUCHALLA,M.	
<u>COMPANY</u>	: EG&G WASC, INC.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
CIRCUIT BREAKER	[CIRCUIT PROTECTION DEVICES, NON-ELECTRONICS]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
GROUNDING METHODS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
REFERENCE DOCUMENT		
SYSTEM	[LEVEL OF ASSEMBLY]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
18214-27	ELECTROSTATIC DISCHARGE IMMUNITY IN COMPUTER SYSTEMS	[185-189]
<u>AUTHOR(S)</u>	: SHEEHAN,D.K.	
<u>COMPANY</u>	: BURROUGHS,J.E.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
FUTURE TRENDS	[SEMICONDUCTOR TECH.]	
GUIDE/PROCEDURE	[REFERENCE DOCUMENT]	
COMPUTERIZED TECH	[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]	
COMPUTERIZED	[DATA COLLECTION SYS./TECHNIQUES, REL. MODELS/DATA/ANALYSIS]	
18214-26	ELECTROSTATIC DISCHARGE AT THE PRODUCT LEVEL	[179-184]
<u>AUTHOR(S)</u>	: ELLIS,E.B.	
<u>COMPANY</u>	: HEWLETT PACKARD	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
PROCUREMENT CONTROLS	[USER OF REL. PREDICTION MODELS]	
SYSTEM	[LEVEL OF ASSEMBLY]	
TEST PROGRAM DEVELOPMENT	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
18214-25	IN-CIRCUIT ANALYSIS OF ESD DAMAGED DEVICES	[175-178]
<u>AUTHOR(S)</u>	: SAUERS,J.P.	
<u>COMPANY</u>	: MAGNAVOX	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
PROCESS CONTROL/SPECIFICATION	[FABRICATION PROCESSES & TECHNIQUES, SEMICONDUCTOR TECH.]	
FUTURE TRENDS	[SEMICONDUCTOR TECH.]	
MICROCIRCUIT	[SEMICONDUCTOR DEVICE]	

CHRONOLOGICAL LIST OF PAPERS 1983

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18172- 4	ANALYSIS OF ELECTROSTATIC CHARGE PROPENSITY OF FLOOR FINISHES	[17-20]
<u>AUTHOR(S)</u>	LINGOUSKY, J.E.	
<u>COMPANY</u>	HOLT, V.E. BELL LABORATORIES	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
MATERIALS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
FLOOR SURFACE	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
GUIDE/PROCEDURE	[REFERENCE DOCUMENT]	
TEST PROGRAM DEVELOPMENT	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
18172- 3	THE PRODUCTION OPERATOR: WEAK LINK OR WARRIOR IN THE ESD BATTLE?	[12-16]
<u>AUTHOR(S)</u>	HANSEL, G.E.	
<u>COMPANY</u>	MOTOROLA	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DEVELOPMENT PROGRAM	[SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
HUMAN FACTORS	[SYSTEMS]	
REFERENCE DOCUMENT		
TEST PROGRAM DEVELOPMENT	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
18172- 2	ESD CONTROL IMPLEMENTATION AND COST AVOIDANCE ANALYSIS	[6-11]
<u>AUTHOR(S)</u>	DOWNING, M.H.	
<u>COMPANY</u>	LOCKHEED	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
COST	[SYSTEMS]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
PROTECTED ESD AREA	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
REFERENCE DOCUMENT		
GUIDE/PROCEDURE	[REFERENCE DOCUMENT]	
TEST EQUIPMENT	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
TEST PROGRAM DEVELOPMENT	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
18172- 1	ESD-HOW OFTEN DOES IT HAPPEN?	[1-5]
<u>AUTHOR(S)</u>	DANGELMAYER, G.T.	
<u>COMPANY</u>	WESTERN ELECTRIC COMPANY, INC.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
COMPONENT	[LEVEL OF ASSEMBLY]	
DESIGN CONSIDERATIONS	[SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]	
ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
REFERENCE DOCUMENT		
TEST TECHNIQUES	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1983

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18172- 8	A PROGRAMMABLE EQUIPMENT FOR ELECTROSTATIC DISCHARGE TESTING TO HUMAN BODY MODELS	[48-55]
<u>AUTHOR(S)</u>	SHAW,R.N.	
<u>COMPANY</u>	BRITISH TELECOM	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
GEOMETRIES/LAYOUT	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
COMPUTERIZED ANALYSIS	[DESIGN TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
COMPUTER AIDED DESIGN,(CAD)	[DESIGN TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]	
SPECIFICATION/STANDARD	[REFERENCE DOCUMENT]	
RELIABILITY MODELING TECHNIQUES	[REL. MODELS/DATA/ANALYSIS]	
COMPUTERIZED TECH	[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
TEST SPECIFICATION	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
18172- 7	CONSTRUCTION AND APPLICATION OF A TESTER FOR MEASURING EOS/ESD THRESHOLDS TO 15KV	[37-47]
<u>AUTHOR(S)</u>	LEE,T.W.	
<u>COMPANY</u>	MOTOROLA	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ELECTROSTATIC CHARGE DETECTOR	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]	
REFERENCE DOCUMENT		
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
TEST TECHNIQUES	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
18172- 6	ESD BY STATIC INDUCTION	[29-36]
<u>AUTHOR(S)</u>	CHEMELLI,R.G.	
<u>COMPANY</u>	BELL LABORATORIES	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
CHARGE DEVICE MODEL	[ESD, DEVICE, TESTING METHODS]	
INDUCTIVE CHARGING	[ESD, EOS/ESD PHYSICS]	
ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
REFERENCE DOCUMENT		
THEORY OF OPERATION	[SEMICONDUCTOR TECH.]	
18172- 5	AIR FORCE MAINTENANCE PROGRAM FOR ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE (EOS/ESD) CONTROL	[21-28]
<u>AUTHOR(S)</u>	THOMPSON,W.H.	
<u>COMPANY</u>	U.S. AIR FORCE	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DEVELOPMENT PROGRAM	[SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
PROTECTED ESD AREA	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
HUMAN FACTORS	[SYSTEMS]	
QUALITY ASSURANCE	[SYSTEMS]	
GUIDE/PROCEDURE	[REFERENCE DOCUMENT]	
SPECIFICATION/STANDARD	[REFERENCE DOCUMENT]	
MAINTAINABILITY TECHNIQUES	[MAINTAINABILITY, SYSTEMS]	

CHRONOLOGICAL LIST OF PAPERS 1983

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18172-12	MEASURING EFFECTIVENESS OF AIR IONIZERS AUTHOR(S) : ANTONEVICH,J.N. COMPANY : SIMCO COMPANY	[76-86]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
CONTROL		[EQUIPMENT TYPE/FUNCTION]
APPLICATION FACTORS		[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]
TOLERANCES		[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]
EOS/ESD		[SEMICONDUCTOR TECH.]
AIR IONIZER		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
DECAY TIME		[ESD, MATERIALS AND EQUIPMENT, TESTING]
EOS - ELECTRICAL OVERSTRESS		[ESD, EOS/ESD PHYSICS]
RELATIVE HUMIDITY		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
REFERENCE DOCUMENT		
TEST TECHNIQUES FOR REL. ASSESSMENT		[SEMICONDUCTOR TECH.]
THEORY OF OPERATION		[SEMICONDUCTOR TECH.]
18172-11	THE ROOM AIR IONIZATION SYSTEM, A BETTER ALTERNATIVE THAN 40% RELATIVE HUMIDITY AUTHOR(S) : MYKKANEN,C.F. COMPANY : HONEYWELL	[67-75]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
CONTROL		[EQUIPMENT TYPE/FUNCTION]
APPLICATION FACTORS		[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]
EOS/ESD		[SEMICONDUCTOR TECH.]
AIR IONIZER		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
DECAY TIME		[ESD, MATERIALS AND EQUIPMENT, TESTING]
EMI - ELECTROMAGNETIC INTERFACE		[ESD, EOS/ESD PHYSICS]
RELATIVE HUMIDITY		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
REFERENCE DOCUMENT		
TEST TECHNIQUES FOR REL. ASSESSMENT		[SEMICONDUCTOR TECH.]
18172-10	STATIC SURVEY METERS AUTHOR(S) : LONBORG,J.O. COMPANY : JET PROPULSION LABORATORY (JPL)	[63-66]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
TRADE-OFFS		[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]
EOS/ESD		[SEMICONDUCTOR TECH.]
ELECTROSTATIC CHARGE DETECTOR		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
REFERENCE DOCUMENT		
TEST EQUIPMENT		[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]
18172- 9	POWER FAILURE MODELING OF INTEGRATED CIRCUITS AUTHOR(S) : ENLOW,E.W. COMPANY : BDM CORPORATION	[56-62]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
ELECTRICAL		[TEST STRESS]
EOS/ESD		[SEMICONDUCTOR TECH.]
EMP - ELECTROMAGNETIC PULSE		[ESD, EOS/ESD PHYSICS]
ESD SUSCEPTIBILITY TESTING		[ESD, DEVICE, TESTING METHODS]
GUIDE/PROCEDURE		[REFERENCE DOCUMENT]
COMPUTERIZED TECH		[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]
MICROCIRCUIT		[SEMICONDUCTOR DEVICE]
TEST PROGRAM DEVELOPMENT		[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]

CHRONOLOGICAL LIST OF PAPERS 1983

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18172-16	MODELING AND TESTING FOR SECOND BREAKDOWN PHENOMENA <u>AUTHOR(S)</u> : ORVIS,W.J. MARTIN,L.C. YEE,J.H. <u>COMPANY</u> : LAWRENCE LIVERMORE NATIONAL LABORATORY	[108-117]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	COMPUTER AIDED DESIGN,(CAD) SECONDARY BREAKDOWN EOS/ESD EMP - ELECTROMAGNETIC PULSE ESD SUSCEPTIBILITY TESTING FAILURE CHARACTERIZATION TRANSISTOR	[DESIGN TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.] [ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, EOS/ESD PHYSICS] [ESD, DEVICE, TESTING METHODS] [SEMICONDUCTOR TECH.] [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]
18172-15	CALCULATIONS OF SECOND BREAKDOWN IN SILICON DIODES AT MICROWAVE FREQUENCIES <u>AUTHOR(S)</u> : WARD,A.L. <u>COMPANY</u> : HARRY DIAMOND LAB (HDL)	[102-107]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	COMPONENT SECONDARY BREAKDOWN EOS/ESD COMPUTERIZED DIODE MICROWAVE	[LEVEL OF ASSEMBLY] [ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [DATA COLLECTION SYS./TECHNIQUES, REL. MODELS/DATA/ANALYSIS] [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE] [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]
18172-14	COPLANAR TRIBOELECTRIFICATION OF SELECTED MATERIALS <u>AUTHOR(S)</u> : FELT,F.S. <u>COMPANY</u> : MARTIN MARIETTA	[95-101]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD ESD PROTECTIVE MATERIAL RELATIVE HUMIDITY TRIOBOELECTRIC CHARGING REFERENCE DOCUMENT THEORY OF OPERATION	[SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, EOS/ESD PHYSICS] [SEMICONDUCTOR TECH.]
18172-13	PERMANENCE OF THE ANTISTATIC PROPERTY OF COMMERCIAL ANTISTATIC BAGS AND TOTE BOXES <u>AUTHOR(S)</u> : KOLYER,J.M. <u>COMPANY</u> : ROCKWELL	[87-94]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	CIRCUIT PROTECTION DEVICES CONTROL MATERIALS TRADE-OFFS EOS/ESD ANTISTATIC IMPREGNATED PLASTIC ESD PROTECTIVE MATERIAL PROTECTIVE BAGS ESD STD AND HANDBOOK SURFACE RESISTIVITY TRIOBOELECTRIC CHARGING FABRICATION PROCESSES & TECHNIQUES PKG BODY MATERIAL GUIDE/PROCEDURE TEST TECHNIQUES FOR REL. ASSESSMENT TEST EQUIPMENT TEST PROGRAM DEVELOPMENT TEST TECHNIQUES	[NON-ELECTRONICS] [EQUIPMENT TYPE/FUNCTION] [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, STANDARDS, HANDBOOKS, MANUALS] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, EOS/ESD PHYSICS] [SEMICONDUCTOR TECH.] [PACKAGE, SEMICONDUCTOR TECH.] [REFERENCE DOCUMENT] [SEMICONDUCTOR TECH.] [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.] [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.] [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]

CHRONOLOGICAL LIST OF PAPERS 1983

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18172-20 ESD EVALUATION OF RADIATION-HARDENED, HIGH RELIABILITY CMOS AND MNOS ICS <u>AUTHOR(S)</u> : SODEN,J.M. STEWART,H.D. PASTOREK,R.A. <u>COMPANY</u> : SANDIA LABORATORIES		[134-146]
<u>INDEX TERM</u> EOS/ESD HUMAN BODY ESD MODEL ESD STD AND HANDBOOK ESD SUSCEPTIBILITY TESTING FAILURE ANALYSIS RESULTS REFERENCE DOCUMENT MICROCIRCUIT EVALUATION TEST TEST TECHNIQUES	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, STANDARDS, HANDBOOKS, MANUALS] [ESD, DEVICE, TESTING METHODS] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR DEVICE] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.] [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
18172-19 ESD SENSITIVITY OF COMPLEX ICS <u>AUTHOR(S)</u> : WILSON,D. <u>COMPANY</u> : MARTIN MARIETTA		[128-133]
<u>INDEX TERM</u> EOS/ESD CHARGE DEVICE MODEL ESD SUSCEPTIBILITY TESTING FAILURE ANALYSIS RESULTS MICROCIRCUIT TEST SPECIFICATION	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, DEVICE, TESTING METHODS] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR DEVICE] [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
18172-18 SEMICONDUCTOR JUNCTION NON-LINEAR FAILURE POWER THRESHOLDS: WUNSCH-BELL REVISITED <u>AUTHOR(S)</u> : ASH,M.S. <u>COMPANY</u> : TRW		[122-127]
<u>INDEX TERM</u> EOS/ESD ESD SUSCEPTIBILITY TESTING WUNSCH BELL MODEL MATHEMATICAL ANALYSIS SEMICONDUCTOR DEVICE STATISTICAL ANALYSIS	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, DEVICE, TESTING METHODS]	
18172-17 TEMPERATURE AT SECOND BREAKDOWN AT A WELL-DEFINED SITE <u>AUTHOR(S)</u> : STOTTS,L.J. PORTNOY,W.M. <u>COMPANY</u> : TEXAS TECH UNIVERSITY		[118-121]
<u>INDEX TERM</u> SECONDARY BREAKDOWN EOS/ESD THERMAL SECONDARY BREAKDOWN MATHEMATICAL ANALYSIS THERMAL STRESS/STRAIN REFERENCE DOCUMENT DIODE THERMAL	<u>CATEGORIES</u> [ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [MECHANICAL & PHYSICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE] [TEST STRESS]	

CHRONOLOGICAL LIST OF PAPERS 1983

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
18172-24	METAL OXIDE VARISTORS FOR TRANSIENT PROTECTION OF 3 TO 5-VOLT INTEGRATED CIRCUITS AUTHOR(S) : MAY,J.E. COMPANY : GENERAL ELECTRIC	KORN,S.R. [168-176]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	CIRCUIT PROTECTION DEVICES APPLICATION FACTORS ELECTRICAL EOS/ESD TRANSIENT SUPPRESSORS GUIDE/PROCEDURE MICROCIRCUIT	[NON-ELECTRONICS] [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [TEST STRESS] [SEMICONDUCTOR TECH.] [ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION] [REFERENCE DOCUMENT] [SEMICONDUCTOR DEVICE]
18172-23	INVISIBLE EOS/ESD DAMAGE: HOW TO FIND IT	[158-167]
	AUTHOR(S) : BRENNAN,T.F. COMPANY : SPERRY CORPORATION	
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD EOS - ELECTRICAL OVERSTRESS OVERSTRESS FAILURE INDICATOR FAILURE ANALYSIS RESULTS REFERENCE DOCUMENT	[SEMICONDUCTOR TECH.] [ESD, EOS/ESD PHYSICS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
18172-22	EOS OR ESD: CAN FAILURE ANALYSIS TELL THE DIFFERENCE?	[154-157]
	AUTHOR(S) : NOEL,P.H. COMPANY : IBM CORPORATION	DREIBELBIS,D.H.
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD EOS - ELECTRICAL OVERSTRESS OVERSTRESS FAILURE INDICATOR FAILURE ANALYSIS RESULTS REFERENCE DOCUMENT	[SEMICONDUCTOR TECH.] [ESD, EOS/ESD PHYSICS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
18172-21	THE EFFECT OF ESD ON CCD RELIABILITY	[147-153]
	AUTHOR(S) : WHITEHEAD,A.P. COMPANY : PLESSEY	LYNCH,J.T.
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD CHARGE DEVICE MODEL ESD STD AND HANDBOOK FAILURE ANALYSIS RESULTS CCD REFERENCE DOCUMENT LIFE OPERATIONAL TEST	[SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, STANDARDS, HANDBOOKS, MANUALS] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FIELD EFFECT,(FET), SEMICONDUCTOR TECH.] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]

CHRONOLOGICAL LIST OF PAPERS 1981

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17517-35	NON-LINEAR KINETICS OF SEMICONDUCTOR JUNCTION THERMAL FAILURE	[242-245]
<u>AUTHOR(S)</u>	: ASH,M.S.	
<u>COMPANY</u>	: TRW	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
WUNSCH BELL MODEL	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
MATHEMATICAL ANALYSIS		
DISCRETE SEMICONDUCTOR	[SEMICONDUCTOR DEVICE]	
17517-34	EVALUATION OF ELECTROSTATIC DISCHARGE TO 16K EPROMS	[236-241]
<u>AUTHOR(S)</u>	: CHASE,E.W.	
<u>COMPANY</u>	: BELL LABORATORIES	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
CHARGE DEVICE MODEL	[ESD, DEVICE, TESTING METHODS]	
HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
DIGITAL LSI	[MICROCIRCUIT, SEMICONDUCTOR DEVICE]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
17517-33	EOS DAMAGE IN SILICON SOLAR CELLS	[209-235]
<u>AUTHOR(S)</u>	: PEASE,R.L. BARNUM,J.	
<u>COMPANY</u>	: MISSION RESEARCH CORPORATION VULIET,W.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
METALLIZATION MELT	[ESD, DEVICE, FAILURE MODES]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
MATHEMATICAL ANALYSIS		
RELIABILITY MODELING TECHNIQUES	[REL. MODELS/DATA/ANALYSIS]	
DETECTOR/SENSOR	[OPTOELECTRONIC, SEMICONDUCTOR DEVICE]	
17517-32	TIME-RELATED IMPROVEMENTS OF ELECTRICAL CHARACTERISTICS IN ELECTROSTATICALLY DAMAGED OPERATIONAL AMPLIFIERS	[225-228]
<u>AUTHOR(S)</u>	: HEAD,G.O.	
<u>COMPANY</u>	: LEAR SIEGLER, INC.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]	
ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1981

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17517-31 FAILURE ANALYSIS OF SEMICONDUCTOR DEVICES IN EOS/ESD TESTING <u>AUTHOR(S)</u> : LIN,T.S. <u>COMPANY</u> : TRW		[219-224]
<u>INDEX TERM</u> EOS/ESD EOS - ELECTRICAL OVERSTRESS ESD SUSCEPTIBILITY TESTING THERMAL SECONDARY BREAKDOWN FAILURE ANALYSIS RESULTS DISCRETE SEMICONDUCTOR STATISTICAL ANALYSIS TEST TECHNIQUES FOR REL. ASSESSMENT	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, EOS/ESD PHYSICS] [ESD, DEVICE, TESTING METHODS] [ESD, DEVICE, FAILURE MODES] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR DEVICE] [SEMICONDUCTOR TECH.]	
17517-30 LIGHTNING PROTECTION FOR COMPUTER DATA LINES <u>AUTHOR(S)</u> : CLARK,O.M. <u>COMPANY</u> : GENERAL SEMICONDUCTOR INDUSTRIES		[212-218]
<u>INDEX TERM</u> CIRCUIT PROTECTION DEVICES COMPUTATION EOS/ESD TRANSIENT SUPPRESSORS REFERENCE DOCUMENT	<u>CATEGORIES</u> [NON-ELECTRONICS] [EQUIPMENT TYPE/FUNCTION] [SEMICONDUCTOR TECH.] [ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
17517-29 POTENTIAL ESD HAZARDS ASSOCIATED WITH EXPLOSIVE PRIMERS <u>AUTHOR(S)</u> : MYKKANEN,C.F. <u>COMPANY</u> : HONEYWELL		[208-211]
<u>INDEX TERM</u> EOS/ESD HUMAN BODY ESD MODEL TRIOBOELECTRIC CHARGING FAILURE CAUSE REFERENCE DOCUMENT WEAPONS	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, EOS/ESD PHYSICS] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [EQUIPMENT TYPE/FUNCTION]	
17517-28 EOS THRESHOLD DETERMINATION OF ELECTRO-EXPLOSIVE DEVICES <u>AUTHOR(S)</u> : HAYS,R.A. <u>COMPANY</u> : U.S. AIR FORCE		[202-207]
<u>INDEX TERM</u> EOS/ESD DIELECTRIC BREAKDOWN EMP - ELECTROMAGNETIC PULSE EOS - ELECTRICAL OVERSTRESS FAILURE CHARACTERIZATION MISSILE	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [ESD, EOS/ESD PHYSICS] [ESD, EOS/ESD PHYSICS] [SEMICONDUCTOR TECH.] [APPLICATION ENVIRONMENT]	
17517-27 BEHAVIOR OF THICK-FILM POWER RESISTORS SUBJECTED TO LARGE MOMENTARY OVERLOADS <u>AUTHOR(S)</u> : MATHURIN,J. THOMAS,R.M. GUAY,R.H. <u>COMPANY</u> : EPITEK ELECTRONIC, LTD.		[198-201]
<u>INDEX TERM</u> EOS/ESD ESD SUSCEPTIBILITY TESTING OVERSTRESS RESISTOR REFERENCE DOCUMENT	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [PASSIVE DEVICE, COMPONENT TYPE]	

CHRONOLOGICAL LIST OF PAPERS 1981

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17517-26	PREDICTION OF THIN-FILM RESISTOR BURNOUT <u>AUTHOR(S)</u> : SMITH,J.S. LITTAU,W.R. <u>COMPANY</u> : LOCKHEED	[192-197]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	MATHEMATICAL ANALYSIS	
	RESISTOR	[PASSIVE DEVICE, COMPONENT TYPE]
	REFERENCE DOCUMENT	
17517-25	PULSE POWER RESPONSE AND DAMAGE CHARACTERISTICS OF CAPACITORS <u>AUTHOR(S)</u> : TASCA,D.M. <u>COMPANY</u> : GENERAL ELECTRIC	[174-191]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	DIELECTRIC BREAKDOWN	[ESD, DEVICE, FAILURE MODES]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	CAPACITOR	[PASSIVE DEVICE, COMPONENT TYPE]
	REFERENCE DOCUMENT	
17517-24	AN OVERVIEW OF EOS EFFECTS ON PASSIVE COMPONENTS <u>AUTHOR(S)</u> : WUNSCH,D.C. <u>COMPANY</u> : BDM CORPORATION	[167-173]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	FAILURE CHARACTERIZATION	[SEMICONDUCTOR TECH.]
	RESISTOR	[PASSIVE DEVICE, COMPONENT TYPE]
	RELIABILITY	[SYSTEMS]
	REFERENCE DOCUMENT	
17517-23	EOS/ESD FAILURE THRESHOLD ANALYSIS ERRORS, THEIR SOURCE, SIZE AND CONTROL <u>AUTHOR(S)</u> : HORGAN,E.L. TEMPLAR,L.C. ROWAN,W.H. <u>COMPANY</u> : TRW	[151-166]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	SECONDARY BREAKDOWN	[ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	RELIABILITY MODELING TECHNIQUES	[REL. MODELS/DATA/ANALYSIS]
	DISCRETE SEMICONDUCTOR	[SEMICONDUCTOR DEVICE]
17517-22	DETERMINING AN Emitter-BASE FAILURE THRESHOLD DISTRIBUTION OF NPN TRANSISTORS <u>AUTHOR(S)</u> : ENLOW,E.W. <u>COMPANY</u> : BDM CORPORATION	[145-150]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	WUNSCH BELL MODEL	[ESD, DEVICE, TESTING METHODS]
	FAILURE ANALYSIS TECHNIQUES	[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	TRANSISTOR	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]
	WEIBULL	[STATISTICAL ANALYSIS]

CHRONOLOGICAL LIST OF PAPERS 1981

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17517-21	SEMICONDUCTOR DEVICE FAILURE CRITERIA FOR SINUSOIDAL STRESSES AUTHOR(S) : THOMAS,R.E. COMPANY : KAMAN SCIENCES CORPORATION	[139-144]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	FAILURE CHARACTERIZATION	[SEMICONDUCTOR TECH.]
	MATHEMATICAL ANALYSIS	
	DISCRETE SEMICONDUCTOR	[SEMICONDUCTOR DEVICE]
17517-20	MODELING OF EOS IN SILICON DEVICES AUTHOR(S) : KUSNEZOV,N. COMPANY : LOCKHEED	[132-138]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]
	WUNSCH BELL MODEL	[ESD, DEVICE, TESTING METHODS]
	RELIABILITY MODELING TECHNIQUES	[REL. MODELS/DATA/ANALYSIS]
	COMPUTERIZED	[DATA COLLECTION SYS./TECHNIQUES, REL. MODELS/DATA/ANALYSIS]
	SILICON	[SEMICONDUCTOR TECH.]
17517-19	AN OVERVIEW OF EOS EFFECTS ON SEMICONDUCTOR DEVICES AUTHOR(S) : PIERCE,D.G. COMPANY : BOOZ, ALLEN & HAMILTON	[120-131]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	OXIDATION	[CHEMICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	METALLIZATION MELT	[ESD, DEVICE, FAILURE MODES]
	EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]
	EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]
	ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	WUNSCH BELL MODEL	[ESD, DEVICE, TESTING METHODS]
	OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	FAILURE MODES	[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	REFERENCE DOCUMENT	
	DISCRETE SEMICONDUCTOR	[SEMICONDUCTOR DEVICE]
17517-18	ELECTRICAL OVERSTRESS INVESTIGATIONS IN MODERN INTEGRATED CIRCUIT TECHNOLOGIES AUTHOR(S) : KARASKIEWICZ,R.J. COMPANY : BDM CORPORATION	[114-119]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	RELIABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	WUNSCH BELL MODEL	[ESD, DEVICE, TESTING METHODS]
	OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	FUTURE TRENDS	[SEMICONDUCTOR TECH.]
	DIGITAL LSI	[MICROCIRCUIT, SEMICONDUCTOR DEVICE]
	TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]
	STEP STRESS	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]

CHRONOLOGICAL LIST OF PAPERS 1981

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17517-17	SUSCEPTIBILITY OF ICS IN ESD STEP-STRESS TESTS	[106-113]
<u>AUTHOR(S)</u>	: ENDERS,J.	
<u>COMPANY</u>	: STANDARD ELECTRIK LORENZ AG	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
PROCESS DESIGN	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
METALLIZATION MELT	[ESD, DEVICE, FAILURE MODES]	
RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
GUIDE/PROCEDURE	[REFERENCE DOCUMENT]	
MICROCIRCUIT	[SEMICONDUCTOR DEVICE]	
STEP STRESS	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
17517-16	DIAGNOSIS AND ANALYSIS OF Emitter-BASE JUNCTION OVERSTRESS DAMAGE	[101-105]
<u>AUTHOR(S)</u>	: JENSEN,M.C.	
	MILBURN,R.T.	
<u>COMPANY</u>	: MOTOROLA	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
FAILURE CAUSE	[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
REFERENCE DOCUMENT		
TRANSISTOR	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
17517-15	INPUT PROTECTION DESIGN FOR THE 3-MICRON NMOS PROCESS	[97-100]
<u>AUTHOR(S)</u>	: TAYLOR,R.G.	
<u>COMPANY</u>	: MOSTEK	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
CIRCUIT PROTECTION DEVICES	[NON-ELECTRONICS]	
APPLICATION FACTORS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
REFERENCE DOCUMENT		
SEMICONDUCTOR DEVICE		
TEST SPECIFICATION	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
17517-14	ON CHIP PROTECTION OF HIGH DENSITY NMOS DEVICES	[90-96]
<u>AUTHOR(S)</u>	: HULETT,T.V.	
<u>COMPANY</u>	: MOTOROLA	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
CIRCUIT PROTECTION DEVICES	[NON-ELECTRONICS]	
OXIDATION	[CHEMICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]	
APPLICATION FACTORS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
REFERENCE DOCUMENT		
SEMICONDUCTOR DEVICE		
TEST TECHNIQUES	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1981

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17517-13	THE EFFECTS OF VLSI SCALING ON EOS/ESD FAILURE THRESHOLD	[85-89]
<u>AUTHOR(S)</u>	: PANCHOLY,R.K.	
<u>COMPANY</u>	: ROCKWELL	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
CIRCUIT PROTECTION DEVICES	[NON-ELECTRONICS]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
DIELECTRIC BREAKDOWN	[ESD, DEVICE, FAILURE MODES]	
INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
METALLIZATION MELT	[ESD, DEVICE, FAILURE MODES]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
FABRICATION PROCESSES & TECHNIQUES	[SEMICONDUCTOR TECH.]	
REFERENCE DOCUMENT		
17517-12	SELECTION OF PACKAGING MATERIALS FOR ESD SENSITIVE ITEMS	[75-84]
<u>AUTHOR(S)</u>	: KOLYER,J.M.	
<u>COMPANY</u>	: ANDERSON,W.E.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
MATERIALS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ELECTROSTATIC SHIELD	[ESD, EOS/ESD PHYSICS]	
ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
PROTECTIVE BAGS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]	
TOPICAL ANTISTATS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
FAILURE ANALYSIS RESULTS	[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
PACKAGE	[SEMICONDUCTOR TECH.]	
REFERENCE DOCUMENT		
EVALUATION TEST	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
17517-11	INCOMING INSPECTION OF ANTISTATIC PACKAGING MATERIALS	[65-74]
<u>AUTHOR(S)</u>	: TOPOLSKI,A.S.	
<u>COMPANY</u>	: DU PONT	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
MATERIALS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
ELECTROSTATIC CHARGE DETECTOR	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
SURFACE RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
VOLUME RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
PACKAGE	[SEMICONDUCTOR TECH.]	
QUALITY ASSURANCE	[SYSTEMS]	
GUIDE/PROCEDURE	[REFERENCE DOCUMENT]	
EVALUATION TEST	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1981

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17517-10	EVALUATION OF INTEGRATED CIRCUIT SHIPPING TUBES AUTHOR(S) : UNGER, B. COMPANY : BELL LABORATORIES	BOSSARD, P.R. [57-64]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	CHARGE DEVICE MODEL	[ESD, DEVICE, TESTING METHODS]
	DIP TUBE	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]
	TRIOBOELECTRIC CHARGING	[ESD, EOS/ESD PHYSICS]
	OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	PACKAGE	[SEMICONDUCTOR TECH.]
	GUIDE/PROCEDURE	[REFERENCE DOCUMENT]
	SEMICONDUCTOR DEVICE	
17517- 9	CHO-TRAP, A NOVEL VOLTAGE TRANSIENT PROTECTION PACKAGING MATERIAL AUTHOR(S) : PEDULLA, J. COMPANY : CHOMERIC, INC.	MALINARI, P. [49-56]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]
	ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	REFERENCE DOCUMENT	
17517- 8	AN ANALYSIS OF ANTISTATIC CUSHIONING MATERIALS AUTHOR(S) : TENZER, F.D. COMPANY : PACKAGING INDUSTRIES OF CALIFORNIA	HARTMANN, H.C. JOHNSON, M.A. [44-48]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	MATERIALS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]
	RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
	ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]
	SURFACE RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, TESTING]
	TOPICAL ANTISTATS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	TRIOBOELECTRIC CHARGING	[ESD, EOS/ESD PHYSICS]
	REFERENCE DOCUMENT	
	TEST PROGRAM DEVELOPMENT	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]
17517- 7	A LOW-COST PROGRAM FOR EVALUATION OF ESD PROTECTIVE MATERIALS AND EQUIPMENT AUTHOR(S) : HEAD, G.O. COMPANY : LEAR SIEGLER, INC.	[41-43]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	COST	[SYSTEMS]
	DEVELOPMENT PROGRAM	[SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	AIR IONIZER	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	CONDUCTIVE ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]
	ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]
	SURFACE RESISTIVITY	[ESD, MATERIALS AND EQUIPMENT, TESTING]
	GUIDE/PROCEDURE	[REFERENCE DOCUMENT]

CHRONOLOGICAL LIST OF PAPERS 1981

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17517- 6	A PRAGMATIC APPROACH TO ESD PROBLEM SOLVING IN THE MANUFACTURING ENVIRONMENT A CASE HISTORY	[34-39]
<u>AUTHOR(S)</u>	MCALEER,R.E.	LUCAS,G.H.
<u>COMPANY</u>	TEXAS INSTRUMENTS (TI)	MCDONALD,A.
<u>INDEX TERM</u>		<u>CATEGORIES</u>
DEVELOPMENT PROGRAM		[SEMICONDUCTOR TECH.]
EOS/ESD		[SEMICONDUCTOR TECH.]
GROUNDING STRAPS		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
PROTECTED ESD AREA		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
PROTECTIVE WORK BENCH SURFACE		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
RELATIVE HUMIDITY		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
REFERENCE DOCUMENT		
17517- 5	THE ECONOMIC BENEFITS OF AN EFFECTIVE ESD AWARENESS AND CONTROL PROGRAM - AN EMPIRICAL ANALYSIS	[29-33]
<u>AUTHOR(S)</u>	MCFARLAND,W.Y.	
<u>COMPANY</u>	WESTERN ELECTRIC COMPANY, INC.	
<u>INDEX TERM</u>		<u>CATEGORIES</u>
COMPONENT		[LEVEL OF ASSEMBLY]
DEVELOPMENT PROGRAM		[SEMICONDUCTOR TECH.]
EOS/ESD		[SEMICONDUCTOR TECH.]
AIR IONIZER		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
GROUNDING STRAPS		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
ESD PROTECTIVE MATERIAL		[ESD, MATERIALS AND EQUIPMENT, TESTING]
ESD CONTROL PROGRAM		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
PROTECTED ESD AREA		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
STATIC CONTROL		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
SENSITIVE ELECTRONIC DEVICE SYMBOLS		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
OVERSTRESS		[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
REFERENCE DOCUMENT		
17517- 4	THE PERFECT "10" - CAN YOU REALLY HAVE ONE?	[21-27]
<u>QTHOR(S)</u>	FRANK,D.E.	
<u>COMPANY</u>	DOUGLAS AIRCRAFT	
<u>INDEX TERM</u>		<u>CATEGORIES</u>
COMPONENT		[LEVEL OF ASSEMBLY]
APPLICATION FACTORS		[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]
DEVELOPMENT PROGRAM		[SEMICONDUCTOR TECH.]
EOS/ESD		[SEMICONDUCTOR TECH.]
ESD CONTROL PROGRAM		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
PROTECTED ESD AREA		[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
ESD SUSCEPTIBILITY TESTING		[ESD, DEVICE, TESTING METHODS]
OVERSTRESS		[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
WORKMANSHIP		[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
QUALITY ASSURANCE		[SYSTEMS]
REFERENCE DOCUMENT		
SEMICONDUCTOR DEVICE		

CHRONOLOGICAL LIST OF PAPERS 1981

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17517- 3 ANALYSIS OF ESD FAILURES <u>AUTHOR(S)</u> : MCATEER,O.J. <u>COMPANY</u> : WESTINGHOUSE	TWIST,R.E.	[14-20]
<u>INDEX TERM</u> EOS/ESD ESD SUSCEPTIBILITY TESTING OVERSTRESS FAILURE ANALYSIS RESULTS REFERENCE DOCUMENT MICROCIRCUIT	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR DEVICE]	
17517- 2 QUANTITATIVE EFFECTS OF RELATIVE & ABSOLUTE HUMIDITY ON ESD GENERATION/ SUPPRESSION <u>AUTHOR(S)</u> : BLINDE,D.R. <u>COMPANY</u> : HONEYWELL	LAVOIE,L.	[9-13]
<u>INDEX TERM</u> DESIGN CONSIDERATIONS MATERIALS EOS/ESD AIR IONIZER DECAY TIME RELATIVE HUMIDITY STATIC CONTROL FLOOR SURFACE THEORY OF OPERATION	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [SEMICONDUCTOR TECH.]	
17517- 1 A CLOSER LOOK AT THE HUMAN ESD EVENT <u>AUTHOR(S)</u> : HYATT,H.M. <u>COMPANY</u> : EXPERIMENTAL PHYSICS CORPORATION	CALVIN,H. MELLBERG,H.	[1-8]
<u>INDEX TERM</u> DESIGN FOR TESTABILITY EOS/ESD HUMAN BODY ESD MODEL THEORY OF OPERATION TESTING TOOLS & TECHNIQUES	<u>CATEGORIES</u> [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1980

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17516-33	MEASUREMENT OF FAST TRANSIENTS AND APPLICATION TO HUMAN ESD AUTHOR(S) : CALVIN,H. HYATT,H. MELLBERG,H. COMPANY : EXPERIMENTAL PHYSICS CORPORATION	[225-230]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	INDUCTIVE CHARGING	[ESD, EOS/ESD PHYSICS]
17516-32	AN EVALUATION OF WRIST STRAP PARAMETERS AUTHOR(S) : SOHL,J.E. COMPANY : HONEYWELL	[218-224]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	GROUNDING STRAPS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	WRIST STRAP	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	TEST EQUIPMENT	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]
17516-31	STATIC CONTROL SYSTEMS AUTHOR(S) : BOLASNY,R.E. COMPANY : SCIENTIFIC ENTERPRISES, INC.	[213-217]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	EMI - ELECTROMAGNETIC INTERFACE	[ESD, EOS/ESD PHYSICS]
	STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
	TEST EQUIPMENT	[TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]
17516-30	BASIC CONSIDERATIONS IN ELECTRO-THERMAL OVERSTRESS IN ELECTRONIC COMPONENTS AUTHOR(S) : DOMINGOS,H. COMPANY : CLARKSON COLLEGE	[206-212]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	MATERIALS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]
	TRANSIENT SUPPRESSORS	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]
	THERMAL	[TEST STRESS]
17516-29	FACILITY EVALUATION: ISOLATING ENVIRONMENTAL ESD PROBLEMS AUTHOR(S) : HALPERIN,S.A. COMPANY : ANALYTICAL CHEMICAL LABORATORY	[192-205]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]
	GROUNDING STRAPS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]
	EMI - ELECTROMAGNETIC INTERFACE	[ESD, EOS/ESD PHYSICS]
	ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
	STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]
	TOPICAL ANTISTATS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]
	RELIABILITY	[SYSTEMS]

CHRONOLOGICAL LIST OF PAPERS 1980

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
7516-28	AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	[189-191]
<u>AUTHOR(S)</u>	: MCATEER,O.J.	
<u>COMPANY</u>	: WESTINGHOUSE	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
REFERENCE DOCUMENT		
17516-27	MICROCIRCUIT ELECTRICAL OVERSTRESS TOLERANCE TESTING AND QUALIFICATION	[184-188]
<u>AUTHOR(S)</u>	: ANTINONE,R.J.	
<u>COMPANY</u>	: BDM CORPORATION	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
ELECTRICAL	[TEST STRESS]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ELECTROSTATIC SIMULATOR	[ESD, DEVICE, TESTING METHODS]	
EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]	
EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
MICROCIRCUIT	[SEMICONDUCTOR DEVICE]	
CHARACTERIZATION	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
17516-26	SURGE TESTS ON PLUG-IN TRANSFORMERS	[176-183]
<u>AUTHOR(S)</u>	: KRESSLER,D.R.	
<u>COMPANY</u>	: BELL LABORATORIES	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
TRANSIENT SUPPRESSORS	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
17516-25	LIGHTNING PROTECTION DESIGN FOR A PHOTOVOLTAIC CONCENTRATOR	[167-175]
<u>AUTHOR(S)</u>	: CROUCH,K.E.	
<u>COMPANY</u>	: LIGHTNING TECHNOLOGIES	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN CONSIDERATIONS	[SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
GROUNDING METHODS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
TRANSIENT SUPPRESSORS	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
17516-24	TEST WAVEFORMS AND TECHNIQUES TO ASSESS THE THREAT TO ELECTRONIC DEVICES OF LIGHTNING-INDUCED TRANSIENTS	[161-166]
<u>AUTHOR(S)</u>	: HESS,R.F.	
<u>COMPANY</u>	: SPERRY CORPORATION	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
TRANSIENT SUPPRESSORS	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1980

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
7516-23	AN OVERVIEW OF THE SOURCES AND EFFECTS OF ELECTRICAL OVERSTRESS UTHOR(S) : DURGIN,D.L. OMPANY : BOOZ, ALLEN & HAMILTON	[154-160]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	EMC - ELECTROMAGNETIC COMPATIBILITY	[ESD, EOS/ESD PHYSICS]
	EMI - ELECTROMAGNETIC INTERFACE	[ESD, EOS/ESD PHYSICS]
	EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]
	EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]
	ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	RELIABILITY	[SYSTEMS]
	SEMICONDUCTOR DEVICE	
	CHARACTERIZATION	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]
7516-22	SOLAR CELL ELECTRICAL OVERSTRESS ANALYSIS UTHOR(S) : SMYTH,J.B. VAN LINT,V.A.J. OMPANY : MISSION RESEARCH CORPORATION	[149-153]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	ELECTRICAL FAILURE PHENOMENA	[SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	METALLIZATION MELT	[ESD, DEVICE, FAILURE MODES]
	EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	HERMAL SECONDARY BREAKDOWN	[ESD, DEVICE, FAILURE MODES]
	JUNSCHE BELL MODEL	[ESD, DEVICE, TESTING METHODS]
	FAILURE ANALYSIS RESULTS	[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
7516-21	ASSESSING ELECTRICAL OVERSTRESS EFFECTS ON ELECTRONIC SYSTEMS UTHOR(S) : HORGAN,E.L. OMPANY : TRW	[140-148]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	ASSEMBLY & EQUIPMENT ESD CLASSIFICATION	[ESD, DEVICE, TESTING METHODS]
	EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	RELIABILITY	[SYSTEMS]
	SYSTEM	[LEVEL OF ASSEMBLY]
7516-20	OSCILLATING VOLTAGE PULSES AND SECOND BREAKDOWN UTHOR(S) : WARD,A.L. OMPANY : HARRY DIAMOND LAB (HDL)	[130-139]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	ELECTRICAL FAILURE PHENOMENA	[SEMICONDUCTOR TECH.]
	SECONDARY BREAKDOWN	[ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]
	ELECTRO-THERMOMIGRATION	[ESD, DEVICE, FAILURE MODES]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	DIODE	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]

CHRONOLOGICAL LIST OF PAPERS 1980

<u>UMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
16-19	EFFECT OF JUNCTION SPIKES AND DOPING LEVEL ON THE SECOND BREAKDOWN SUSCEPTIBILITY OF SILICON-ON-SAPPHIRE DIODES	[122-129]
HOR(S) : KNIGHT,E.R. PANY : AUBURN UNIVERSITY	BUDENSTEIN,P.P.	
DEX TERM ONDARY BREAKDOWN /ESD SUSCEPTIBILITY TESTING RMAL SECONDARY BREAKDOWN DE	CATEGORIES [ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, DEVICE, FAILURE MODES] [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]	
16-18	SOME DESIGN CRITERIA FOR AVOIDING SECOND BREAKDOWN IN BIPOLAR DEVICES	[117-121]
HOR(S) : MATHEWS,D. PANY : U.S. ARMY		
DEX TERM POLAR & FET,(BIFET,BIMOS,ETC) OLAR /ESD SUSCEPTIBILITY TESTING RMAL SECONDARY BREAKDOWN NSCH BELL MODEL	CATEGORIES [COMPONENT TYPE] [COMPONENT TYPE] [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, DEVICE, FAILURE MODES] [ESD, DEVICE, TESTING METHODS]	
516-17	HIGH-FIELD PHENOMENA AND FAILURE MECHANISMS IN BIPOLAR TRANSISTORS	[112-116]
HOR(S) : HOWER,P.L. PANY : WESTINGHOUSE		
DEX TERM POLAR ONDARY BREAKDOWN /ESD SUSCEPTIBILITY TESTING ILURE CHARACTERIZATION ANSISTOR	CATEGORIES [COMPONENT TYPE] [ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [SEMICONDUCTOR TECH.] [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]	
516-16	SURPRISING PATTERNS OF CMOS SUSCEPTIBILITY TO ESD AND IMPLICATIONS ON LONG-TERM RELIABILITY	[104-111]
HOR(S) : SCHWANK,J.R. PANY : SANDIA LABORATORIES	BAKER,R.P. ARMENDARIZ,M.G.	
DEX TERM IDATION /ESD SUSCEPTIBILITY TESTING DS CROCCIRCUIT ST TECHNIQUES FOR REL. ASSESSMENT	CATEGORIES [CHEMICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [FIELD EFFECT,(FET), SEMICONDUCTOR TECH.] [SEMICONDUCTOR DEVICE] [SEMICONDUCTOR TECH.]	
516-15	ELECTROSTATIC SENSITIVITY OF VARIOUS INPUT PROTECTION NETWORKS	[95-103]
HOR(S) : TURNER,T.E. PANY : MOSTEK	MORRIS,S.	
DEX TERM CIRCUIT PROTECTION DEVICES IDATION OMETRIES/LAYOUT /ESD PUT PROTECTION SUSCEPTIBILITY TESTING	CATEGORIES [NON-ELECTRONICS] [CHEMICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION] [ESD, DEVICE, TESTING METHODS]	

CHRONOLOGICAL LIST OF PAPERS 1980

<u>UMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
16-14	LSI DESIGN CONSIDERATIONS FOR ESD PROTECTION STRUCTURES RELATED TO PROCESS AND LAYOUT VARIATIONS HOR(S) : HART,A.R. PANY : HEWLETT PACKARD	[87-94]
	<u>EX TERM</u> DATION IGN CONSIDERATIONS /ESD SUSCEPTIBILITY TESTING ITAL LSI	<u>CATEGORIES</u> [CHEMICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [MICROCIRCUIT, SEMICONDUCTOR DEVICE]
16-13	SOS PROTECTION: THE DESIGN PROBLEM HOR(S) : LUISI,J.A. PANY : ROCKWELL	[81-86]
	<u>EX TERM</u> CUT PROTECTION DEVICES IGN CONSIDERATIONS /ESD UT PROTECTION FET	<u>CATEGORIES</u> [NON-ELECTRONICS] [SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION] [FIELD EFFECT,(FET), SEMICONDUCTOR TECH.]
16-12	PROTECTION OF MOS INTEGRATED CIRCUITS FROM DESTRUCTION BY ELECTROSTATIC DISCHARGE HOR(S) : KELLER,J.K. PANY : BELL LABORATORIES	[73-80]
	<u>EX TERM</u> CIRCUIT PROTECTION DEVICES DATION /ESD IAN BODY ESD MODEL SUSCEPTIBILITY TESTING ROCIRCUIT	<u>CATEGORIES</u> [NON-ELECTRONICS] [CHEMICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, DEVICE, TESTING METHODS] [SEMICONDUCTOR DEVICE]
16-11	ANALYSIS OF ESD DAMAGE IN JFET PREAMPLIFIERS HOR(S) : CASTLE,G.S.P. PANY : NORTHERN TELECOM	[67-72]
	<u>EX TERM</u> /ESD ALLIZATION MELT SUSCEPTIBILITY TESTING TURE ANALYSIS RESULTS CT	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [ESD, DEVICE, TESTING METHODS] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FIELD EFFECT,(FET), SEMICONDUCTOR TECH.]
16-10	FAILURE THRESHOLD DISTRIBUTIONS IN BIPOLAR TRANSISTORS HOR(S) : ENLOV,E.W. PANY : SANDIA LABORATORIES	[59-66]
	<u>EX TERM</u> BOLAR ELECTRICAL FAILURE PHENOMENA /ESD SUSCEPTIBILITY TESTING NSISTOR T TECHNIQUES FOR REL. ASSESSMENT	<u>CATEGORIES</u> [COMPONENT TYPE] [SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE] [SEMICONDUCTOR TECH.]

CHRONOLOGICAL LIST OF PAPERS 1980

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17516- 9	STUDY OF EFFECTS OF ELECTRO-STATIC DISCHARGE ON SOLID-STATE DEVICES	[58]
<u>AUTHOR(S)</u>	: ZAJAC,H.	
<u>COMPANY</u>	: TEKTRONIX	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
TTL	[BIPOLAR, COMPONENT TYPE]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
METALLIZATION MELT	[ESD, DEVICE, FAILURE MODES]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
TRANSISTOR	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]	
17516- 8	IDENTIFICATION OF LATENT ESD FAILURES	[54-57]
<u>AUTHOR(S)</u>	: WALKER,R.C.	
<u>COMPANY</u>	: IIT RESEARCH INSTITUTE	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
LATENT ESD FAILURE	[ESD, DEVICE, FAILURE MODES]	
FAILURE MODES	[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]	
17516- 7	GAS TUBE SURGE ARRESTERS FOR CONTROL OF TRANSIENT VOLTAGES	[44-53]
<u>AUTHOR(S)</u>	: BAZARIAN,A.	
<u>COMPANY</u>	: GENERAL INSTRUMENT	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
CIRCUIT PROTECTION DEVICES	[NON-ELECTRONICS]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
TRANSIENT SUPPRESSORS	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
17516- 6	PROTECTION LEVEL COMPARISONS FOR VOLTAGE TRANSIENT SUPPRESSORS (120 V, AC TYPE)	[35-43]
<u>AUTHOR(S)</u>	: HOPKINS,D.C.	
<u>COMPANY</u>	: GENERAL ELECTRIC	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
EMI - ELECTROMAGNETIC INTERFACE	[ESD, ECS/ESD PHYSICS]	
TRANSIENT SUPPRESSORS	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
DISCRETE SEMICONDUCTOR	[SEMICONDUCTOR DEVICE]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
17516- 5	TRANSIENT PROTECTION WITH ZNO VARISTORS: TECHNICAL CONSIDERATIONS	[26-34]
<u>AUTHOR(S)</u>	: PHILIPP,H.R.	
<u>COMPANY</u>	: GENERAL ELECTRIC	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
EOS/ESD	[SEMICONDUCTOR TECH.]	
INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
TRANSIENT SUPPRESSORS	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
DISCRETE SEMICONDUCTOR	[SEMICONDUCTOR DEVICE]	

CHRONOLOGICAL LIST OF PAPERS 1980

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17516- 4	ELECTROSTATIC DISCHARGE (ESD) MONITOR DESIGN AUTHOR(S) : WU,C. COMPANY : IBM CORPORATION	[23-25]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD ELECTROSTATIC CHARGE DETECTOR ESD CONTROL PROGRAM TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [SEMICONDUCTOR TECH.]
17516- 3	ESD DAMAGE FROM TRIBOELECTRICALLY CHARGED IC PINS AUTHOR(S) : BOSSARD,P.R. COMPANY : BELL LABORATORIES	[17-22]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD CHARGE DEVICE MODEL DIP TUBE ESD SUSCEPTIBILITY TESTING TRIBOELECTRIC CHARGING WUNSCH BELL MODEL FAILURE MODES PKG LID OR COVER TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, DEVICE, TESTING METHODS] [ESD, EOS/ESD PHYSICS] [ESD, DEVICE, TESTING METHODS] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [PACKAGE, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.]
17516- 2	THE EFFECTS OF HIGH HUMIDITY ENVIRONMENTS ON ELECTROSTATIC GENERATION AND DISCHARGE AUTHOR(S) : CAIDERBANK,J.M. COMPANY : E-SYSTEMS, INC.	[12-16]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD DECAY TIME ESD CONTROL PROGRAM RELATIVE HUMIDITY FLOOR SURFACE MOISTURE ENVIRONMENTAL TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [TEST STRESS] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.]
17516- 1	PASSIVE STATIC PROTECTION: THEORY AND PRACTICE AUTHOR(S) : BERBECO,G.R. COMPANY : CHARLESWATERS PRODUCT, INC.	[1-11]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD CONDUCTIVE FOAM CONDUCTIVE ESD PROTECTIVE MATERIAL GROUNDING METHODS ESD CONTROL PROGRAM PROTECTED ESD AREA PROTECTIVE BAGS PROTECTIVE WORK BENCH SURFACE STATIC CONTROL ESD STD AND HANDBOOK SURFACE RESISTIVITY THEORY OF OPERATION	[SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [SEMICONDUCTOR TECH.]

CHRONOLOGICAL LIST OF PAPERS 1979

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17515-30 THE ANALYSIS AND ELIMINATION OF EOS INDUCED SECONDARY FAILURE MECHANISMS <u>AUTHOR(S)</u> : MADISON,J.A. <u>COMPANY</u> : WESTINGHOUSE		[205-209]
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
BOARD	[LEVEL OF ASSEMBLY]	
DEVELOPMENT PROGRAM	[SEMICONDUCTOR TECH.]	
SECONDARY BREAKDOWN	[ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
EOS - ELECTRICAL OVERSTRESS	[ESD, EOS/ESD PHYSICS]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
FAILURE ANALYSIS RESULTS	[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
GUIDE/PROCEDURE	[REFERENCE DOCUMENT]	
17515-29 STATISTICAL FAILURE ANALYSIS OF MILITARY SYSTEMS FOR HIGH-ALTITUDE EMP <u>AUTHOR(S)</u> : CABAYAN,H.S. DEADRICK,F.J. MARTIN,L.C. <u>COMPANY</u> : LAWRENCE LIVERMORE NATIONAL LABORATORY		[198-204]
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
APPLICATION FACTORS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
FAILURE CAUSE	[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
FAILURE ANALYSIS RESULTS	[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
17515-28 ELECTROSTATIC DISCHARGE PROTECTION USING SILICON TRANSIENT SUPPRESSORS <u>AUTHOR(S)</u> : CLARK,O.M. <u>COMPANY</u> : GENERAL SEMICONDUCTOR INDUSTRIES		[193-197]
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
CIRCUIT PROTECTION DEVICES	[NON-ELECTRONICS]	
PROCESS DESIGN	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
TRANSIENT SUPPRESSORS	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
FUTURE TRENDS	[SEMICONDUCTOR TECH.]	
REFERENCE DOCUMENT		
17515-27 THE PHANTOM Emitter-AN ESD-RESISTANT BIPOLE TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS <u>AUTHOR(S)</u> : MINEAR,R.L. DODSON,G.A. <u>COMPANY</u> : BELL LABORATORIES		[188-192]
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
GEOMETRIES/LAYOUT	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
REFERENCE DOCUMENT		
TRANSISTOR	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]	
MICROCIRCUIT	[SEMICONDUCTOR DEVICE]	
TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1979

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17515-26 ELECTRICAL OVERSTRESS VERSUS DEVICE GEOMETRY <u>AUTHOR(S)</u> : PETRIZIO,C.J. <u>COMPANY</u> : RCA		[183-187]
<u>INDEX TERM</u> CIRCUIT PROTECTION DEVICES GEOMETRIES/LAYOUT EOS/ESD INPUT PROTECTION FABRICATION PROCESSES & TECHNIQUES GUIDE/PROCEDURE TESTING TOOLS & TECHNIQUES TEST SPECIFICATION	<u>CATEGORIES</u> [NON-ELECTRONICS] [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION] [SEMICONDUCTOR TECH.] [REFERENCE DOCUMENT] [SEMICONDUCTOR TECH.] [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
17515-25 THE DIELECTRIC STRENGTH OF SIO2 IN A CMOS TRANSISTOR STRUCTURE <u>AUTHOR(S)</u> : SODEN,J.M. <u>COMPANY</u> : SANDIA LABORATORIES		[176-182]
<u>INDEX TERM</u> EOS/ESD DIELECTRIC BREAKDOWN ESD SUSCEPTIBILITY TESTING FAILURE MODES FABRICATION PROCESSES & TECHNIQUES REFERENCE DOCUMENT TRANSISTOR	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [ESD, DEVICE, TESTING METHODS] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]	
17515-24 SUSCEPTIBILITY OF LSI MOS TO ELECTROSTATIC DISCHARGE AT ELEVATED TEMPERATURE <u>AUTHOR(S)</u> : TENG,T. <u>COMPANY</u> : HEWLETT PACKARD	HART,A.R. MCKENNA,A.	[168-175]
<u>INDEX TERM</u> EOS/ESD METALLIZATION MELT ESD SUSCEPTIBILITY TESTING OVERSTRESS FAILURE ANALYSIS RESULTS MATHEMATICAL ANALYSIS GUIDE/PROCEDURE DIGITAL LSI STEP STRESS	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [REFERENCE DOCUMENT] [MICROCIRCUIT, SEMICONDUCTOR DEVICE] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
17515-23 DAMAGE RESPONSE OF SELECTED INTERFACE INTEGRATED CIRCUITS TO A SIMULATED EMP <u>AUTHOR(S)</u> : FORMANEK,V.C. <u>COMPANY</u> : IIT RESEARCH INSTITUTE		[158-167]
<u>INDEX TERM</u> EOS/ESD EMP - ELECTROMAGNETIC PULSE ESD SUSCEPTIBILITY TESTING FAILURE ANALYSIS RESULTS REFERENCE DOCUMENT MICROCIRCUIT TEST TECHNIQUES FOR REL. ASSESSMENT	<u>CATEGORIES</u> [SEMICONDUCTOR TECH.] [ESD, EOS/ESD PHYSICS] [ESD, DEVICE, TESTING METHODS] [FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR DEVICE] [SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1979

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17515-22	MICROWAVE NANOSECOND PULSE BURNOUT PROPERTIES OF ONE MICRON MESFETS AUTHOR(S) : WHALEN,J.J. THORN,M.L. RASTEFANO,E. COMPANY : SUNY AT BUFFALO	[147-157]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	METALLIZATION MELT	[ESD, DEVICE, FAILURE MODES]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	FAILURE MODES	[FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	FIELD EFFECT,(FET)	[SEMICONDUCTOR TECH.]
	REFERENCE DOCUMENT	
	TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]
17515-21	SQUARE PULSE AND RF PULSE OVERSTRESSING OF UHF TRANSISTORS AUTHOR(S) : WHALEN,J.J. DOMINGOS,H. COMPANY : SUNY AT BUFFALO	[140-146]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	EMP - ELECTROMAGNETIC PULSE	[ESD, EOS/ESD PHYSICS]
	ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]
	OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	GUIDE/PROCEDURE	[REFERENCE DOCUMENT]
	TRANSISTOR	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]
	TESTING TOOLS & TECHNIQUES	[SEMICONDUCTOR TECH.]
17515-20	MODELING OF ELECTRICAL OVERSTRESS IN SILICON DEVICES AUTHOR(S) : KUSENEZOV,N. SMITH,J.S. COMPANY : LOCKHEED	[133-139]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	EOS/ESD	[SEMICONDUCTOR TECH.]
	DIELECTRIC BREAKDOWN	[ESD, DEVICE, FAILURE MODES]
	OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]
	COMPUTERIZED TECH	[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]
	MODELS/THEORY/EQUATIONS	[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]
	SEMICONDUCTOR DEVICE	
17515-19	AN ELECTROTHERMAL MODEL FOR CURRENT FILAMENTATION IN SECOND BREAKDOWN OF SILICON-ON-SAPPHIRE DIODES AUTHOR(S) : BARUAH,A. BUDENSTEIN,P.P. COMPANY : AUBURN UNIVERSITY	[126-132]
	<u>INDEX TERM</u>	<u>CATEGORIES</u>
	COMPUTERIZED ANALYSIS	[DESIGN TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]
	SECONDARY BREAKDOWN	[ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]
	EOS/ESD	[SEMICONDUCTOR TECH.]
	DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]
	MATHEMATICAL ANALYSIS	
	GUIDE/PROCEDURE	[REFERENCE DOCUMENT]
	COMPUTERIZED TECH	[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]
	DIODE	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]

CHRONOLOGICAL LIST OF PAPERS 1979

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17515-18	HUMAN FACTORS IN ELECTROSTATIC DISCHARGE PROTECTION	[122-125]
<u>AUTHOR(S)</u>	: SCHNETKER,T.R.	
<u>COMPANY</u>	: GOULD	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
APPLICATION FACTORS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
CONDUCTIVE ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
INPUT PROTECTION	[ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION]	
ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
HELICOPTOR	[APPLICATION ENVIRONMENT]	
GUIDE/PROCEDURE	[REFERENCE DOCUMENT]	
PROCUREMENT CONTROLS	[USER OF REL. PREDICTION MODELS]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
17515-17	REVERSE-BIAS SECOND BREAKDOWN IN POWER TRANSISTORS	[116-121]
<u>AUTHOR(S)</u>	: BLACKBURN,D.L. BERNING,D.W.	
<u>COMPANY</u>	: NATIONAL BUREAU OF STANDARDS (NBS)	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
SECONDARY BREAKDOWN	[ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
THERMAL SECONDARY BREAKDOWN	[ESD, DEVICE, FAILURE MODES]	
TRANSISTOR	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
17515-16	DOPING PROFILES AND SECOND. BREAKDOWN	[109-115]
<u>AUTHOR(S)</u>	: WARD,A.L.	
<u>COMPANY</u>	: HARRY DIAMOND LAB (HDL)	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
SECONDARY BREAKDOWN	[ELECTRICAL FAILURE PHENOMENA, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
COMPUTERIZED TECH	[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]	
GRAPHICAL TECHNIQUES	[REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS]	
DIODE	[DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE]	
EVALUATION TEST	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
17515-15	ESD SUSCEPTIBILITIES OF HIGH PERFORMANCE ANALOG INTEGRATED CIRCUITS	[104-108]
<u>AUTHOR(S)</u>	: MOON,M.G.	
<u>COMPANY</u>	: HARRIS	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN FOR TESTABILITY	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
DIELECTRIC BREAKDOWN	[ESD, DEVICE, FAILURE MODES]	
HUMAN BODY ESD MODEL	[ESD, DEVICE, TESTING METHODS]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
MICROCIRCUIT	[SEMICONDUCTOR DEVICE]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1979

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17515-14	ELECTROSTATIC FAILURE OF X-BAND SILICON SCHOTTKY BARRIER DIODES	[97-103]
<u>AUTHOR(S)</u> : ANAND,Y. <u>COMPANY</u> : MICROWAVE ASSOCIATES, INC.		
(J) EOS/ESD METALLIZATION MELT ESD SUSCEPTIBILITY TESTING OVERSTRESS REFERENCE DOCUMENT DIODE CHARACTERIZATION	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [DISCRETE SEMICONDUCTOR, SEMICONDUCTOR DEVICE] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
17515-13	FAILURE ANALYSIS OF MICROCIRCUITS SUBJECTED TO ELECTRICAL OVERSTRESS	[88-96]
<u>AUTHOR(S)</u> : UETSUKI,T. <u>COMPANY</u> : HITACHI	MITANI,S.	
<u>INDEX TERM</u> DESIGN FOR TESTABILITY EOS/ESD INPUT PROTECTION EOS - ELECTRICAL OVERSTRESS WUNSCH BELL MODEL OVERSTRESS CHART/DIAGRAM FMEA/FMECA,(FAILURE MODE EFFECTS) MICROCIRCUIT TEST TECHNIQUES FOR REL. ASSESSMENT	CATEGORIES [DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [ESD, DEVICE, PROTECTIVE DEVICES/INPUT PROTECTION] [ESD, EOS/ESD PHYSICS] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [REFERENCE DOCUMENT] [REL. MODELING TECHNIQUES, REL. MODELS/DATA/ANALYSIS] [SEMICONDUCTOR DEVICE] [SEMICONDUCTOR TECH.]	
17515-12	DYNAMIC WAVEFORM CHARACTERISTICS OF PERSONNEL ELECTROSTATIC DISCHARGE	[78-87]
<u>AUTHOR(S)</u> : KING,M.W. <u>COMPANY</u> : CONSULTANT		
<u>INDEX TERM</u> EOS/ESD EMP - ELECTROMAGNETIC PULSE ESD SUSCEPTIBILITY TESTING OVERSTRESS FABRICATION PROCESSES & TECHNIQUES NOTICE/BULLETIN TEST TECHNIQUES FOR REL. ASSESSMENT	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, EOS/ESD PHYSICS] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [REFERENCE DOCUMENT] [SEMICONDUCTOR TECH.]	
17515-11	EFFECTS OF ELECTRICAL OVERSTRESS ON DIGITAL BIPOLAR MICROCIRCUITS AND ANALYSIS	[64-77]
<u>TECHNIQUES FOR FAILURE SITE LOCATION</u> <u>AUTHOR(S)</u> : RUTHERFORD,D.H. <u>COMPANY</u> : RAYTHEON	PERKINS,J.F.	
<u>INDEX TERM</u> EOS/ESD METALLIZATION MELT ESD SUSCEPTIBILITY TESTING OVERSTRESS DIGITAL LSI SCREENING	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [MICROCIRCUIT, SEMICONDUCTOR DEVICE] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1979

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17515-10	ELECTRO-STATIC DISCHARGE AND CMOS LOGIC	[55-63]
AUTHOR(S) : BRANBERG,G. COMPANY : HEWLETT PACKARD		
INDEX TERM EOS/ESD LATENT ESD FAILURE ESD SUSCEPTIBILITY TESTING OVERSTRESS REFERENCE DOCUMENT MICROCIRCUIT WEIBULL TEST TECHNIQUES FOR REL. ASSESSMENT	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, DEVICE, FAILURE MODES] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR DEVICE] [STATISTICAL ANALYSIS] [SEMICONDUCTOR TECH.]	
17515- 9	THE DEFICIENCIES IN MILITARY SPECIFICATION MIL-B-81705: CONSIDERATIONS AND A SIMPLE MODEL FOR STATIC PROTECTION	[45-54]
AUTHOR(S) : YENNI,D.M. COMPANY : 3M	HUNTSMAN,J.R.	
INDEX TERM EOS/ESD BULK CONDUCTIVE PLASTIC CONDUCTIVE ESD PROTECTIVE MATERIAL ELECTROSTATIC SHIELD ESD PROTECTIVE MATERIAL PROTECTIVE BAGS ESD STD AND HANDBOOK ESD SUSCEPTIBILITY TESTING TRIOBOELECTRIC CHARGING PROCESS CONTROL/SPECIFICATION SPECIFICATION/STANDARD TEST SPECIFICATION	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, EOS/ESD PHYSICS] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, STANDARDS, HANDBOOKS, MANUALS] [ESD, DEVICE, TESTING METHODS] [ESD, EOS/ESD PHYSICS] [FABRICATION PROCESSES & TECHNIQUES, SEMICONDUCTOR TECH.] [REFERENCE DOCUMENT] [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	
17515- 8	RELIABILITY OF EOS SCREENED GOLD DOPED 4002 CMOS DEVICES	[41-44]
AUTHOR(S) : MC CULLOUGH,D.T. COMPANY : ROME AIR DEVELOPMENT CENTER (RADe)	LANE,C.H. BLORE,R.A.	
INDEX TERM EOS/ESD ESD STD AND HANDBOOK ESD SUSCEPTIBILITY TESTING OVERSTRESS PROCUREMENT CONTROLS DIGITAL LSI SCREENING	CATEGORIES [SEMICONDUCTOR TECH.] [ESD, STANDARDS, HANDBOOKS, MANUALS] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [USER OF REL. PREDICTION MODELS] [MICROCIRCUIT, SEMICONDUCTOR DEVICE] [TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
17515- 7	MODULE ELECTROSTATIC DISCHARGE SIMULATOR	[36-40]
AUTHOR(S) : MADZY,T.M. COMPANY : IBM CORPORATION	PRICE,L.A.	
INDEX TERM BIPOLAR EOS/ESD ELECTROSTATIC SIMULATOR HUMAN BODY ESD MODEL OVERSTRESS FABRICATION EQUIPMENT FIELD EFFECT,(FET) FUTURE TRENDS TEST PROGRAM DEVELOPMENT	CATEGORIES [COMPONENT TYPE] [SEMICONDUCTOR TECH.] [ESD, DEVICE, TESTING METHODS] [ESD, DEVICE, TESTING METHODS] [FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.] [FABRICATION PROCESSES & TECHNIQUES, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.] [TESTING TOOLS & TECHNIQUES, SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1979

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17515- 6	PROPOSED MIL-STD AND MIL-HDBK FOR AN ELECTROSTATIC DISCHARGE CONTROL PROGRAM - BACKGROUND AND STATUS	[27-35]
AUTHOR(S)	: MC MAHON,E.J. BHAR,T.N.	OISHI,T.
COMPANY	: RELIABILITY SCIENCES, INC.	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN CONSIDERATIONS	[SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ESD PROTECTIVE MATERIAL	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
ESD CONTROL PROGRAM	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
PROTECTED ESD AREA	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
STATIC CONTROL	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
ESD STD AND HANDBOOK	[ESD, STANDARDS, HANDBOOKS, MANUALS]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
OVERSTRESS	[FAILURE CAUSE, FAILURE ANALYSIS, SEMICONDUCTOR TECH.]	
PROCESS CONTROL/SPECIFICATION	[FABRICATION PROCESSES & TECHNIQUES, SEMICONDUCTOR TECH.]	
SPECIFICATION/STANDARD	[REFERENCE DOCUMENT]	
REL. STANDARDS	[USER OF REL. PREDICTION MODELS]	
SEMICONDUCTOR DEVICE		
17515- 5	THE GENERATION OF ELECTROSTATIC CHARGES IN SILICONE ENCAPSULANTS DURING CYCLIC GASEOUS PRESSURE TESTS	[22-26]
AUTHOR(S)	: DERMARDEROSIAN,A. RIDEOUT,L.	
COMPANY	: RAYTHEON	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
TRADE-OFFS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
ELECTROSTATIC SIMULATOR	[ESD, DEVICE, TESTING METHODS]	
ESD SUSCEPTIBILITY TESTING	[ESD, DEVICE, TESTING METHODS]	
TRIOBOELECTRIC CHARGING	[ESD, EOS/ESD PHYSICS]	
PKG ENCAPSULANT	[PACKAGE, SEMICONDUCTOR TECH.]	
REFERENCE DOCUMENT		
ENVIRONMENTAL	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	
17515- 4	STATIC CONTROL USING TOPICAL ANTISTATS	[13-21]
AUTHOR(S)	: HALPERIN,S.A.	
COMPANY	: ANALYTICAL CHEMICAL LABORATORY	
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
APPLICATION FACTORS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.]	
EOS/ESD	[SEMICONDUCTOR TECH.]	
DECAY TIME	[ESD, MATERIALS AND EQUIPMENT, TESTING]	
RELATIVE HUMIDITY	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES]	
TOPICAL ANTISTATS	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE]	
TRIOBOELECTRIC CHARGING	[ESD, EOS/ESD PHYSICS]	
GUIDE/PROCEDURE	[REFERENCE DOCUMENT]	
TEST TECHNIQUES FOR REL. ASSESSMENT	[SEMICONDUCTOR TECH.]	
EVALUATION TEST	[TEST TECHNIQUES FOR REL. ASSESSMENT, SEMICONDUCTOR TECH.]	

CHRONOLOGICAL LIST OF PAPERS 1979

<u>DOCUMENT-SEQUENCE NO.</u>	<u>TITLE</u>	<u>PAGES</u>
17515- 3	ELECTROSTATIC CONDUCTIVITY CHARACTERISTICS OF WORKBENCH-TOP SURFACE MATERIALS	[7-12]
<u>AUTHOR(S)</u> : BRIGGS,C. <u>COMPANY</u> : CHARLES STARK DRAPER LABORATORIES		
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
MATERIALS	[DESIGN CONSIDERATIONS, SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.]	
EOS/ESD	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [SEMICONDUCTOR TECH.] [REFERENCE DOCUMENT]	
CONDUCTIVE ESD PROTECTIVE MATERIAL		
GROUNDING METHODS		
ESD PROTECTIVE MATERIAL		
PROTECTED ESD AREA		
PROTECTIVE WORK BENCH SURFACE		
RELATIVE HUMIDITY		
TOPICAL ANTISTATS		
FABRICATION PROCESSES & TECHNIQUES		
GUIDE/PROCEDURE		
17515- 2	CONTROLLING ELECTROSTATIC PROBLEMS IN THE FABRICATION AND HANDLING OF SPACECRAFT	[4-6]
<u>HARDWARE</u>		
<u>AUTHOR(S)</u> : STORM,D.C. <u>COMPANY</u> : AEROSPACE CORPORATION		
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DESIGN CONSIDERATIONS	[SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.]	
EOS/ESD	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, TESTING] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE] [SEMICONDUCTOR TECH.] [REFERENCE DOCUMENT] [APPLICATION ENVIRONMENT]	
AIR IONIZER		
GROUNDING STRAPS		
ESD PROTECTIVE MATERIAL		
ESD CONTROL PROGRAM		
PROTECTED ESD AREA		
SENSITIVE ELECTRONIC DEVICE SYMBOLS		
WRIST STRAP		
FUTURE TRENDS		
GUIDE/PROCEDURE		
SPACE		
17515- 1	AN EFFECTIVE ESD AWARENESS TRAINING PROGRAM	[1-3]
<u>AUTHOR(S)</u> : MCATEER,O.J. <u>COMPANY</u> : WESTINGHOUSE		
<u>INDEX TERM</u>	<u>CATEGORIES</u>	
DEVELOPMENT PROGRAM	[SEMICONDUCTOR TECH.] [SEMICONDUCTOR TECH.]	
EOS/ESD	[ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [ESD, MATERIALS AND EQUIPMENT, PROTECTIVE TECHNIQUES] [REFERENCE DOCUMENT] [USER OF REL. PREDICTION MODELS] [SEMICONDUCTOR TECH.]	
ESD CONTROL PROGRAM		
STATIC CONTROL		
GUIDE/PROCEDURE		
RELIABILITY MANAGEMENT TECH		
TEST TECHNIQUES FOR REL. ASSESSMENT		

ADDITIONAL RAC SERVICES

ADDITIONAL RAC SERVICES

Search Services

Retrospective Searches are conducted at a flat fee of \$150 per search. If no references are identified, a \$50 service charge will be made in lieu of the above. For best results, please call or write for assistance in formulating your search question. An extra charge, based on engineering time and costs, will be made for evaluating, extracting or summarizing information from the cited references.

Consulting Services

Consulting Service fees are determined by the costs incurred in the conduct of the designed work, including staff time and overhead, materials and other expenses. Work will be initiated upon receipt of a signed purchase order. We will be pleased to prepare firm cost proposals.

Full Service Participating Plans

Three plans are offered to both government and industry

	Domestic	Non-U.S.
Participating Member (PM)	\$1540	\$1600*
Limited Participating Member (LPM)	940	1000*
Participating Associate (PA)	340	400*

*For air mail shipment to points outside North and Central America, add \$85.

Services provided to a Participant in either plan are:

- Automatic receipt of one (1) copy of each RAC publication issued over twelve months.
- Availability of additional copies of each of the above publications at 20% off list price.
- Discount on registration fees for RAC sponsored training courses, seminars, workshops, etc.

In addition, the Participating Member may access RAC resources as needed without issuing purchase orders. Up to 50 man-hours of professional consultation are authorized for a PM, up to 25 man-hours for an LPM.

Blanket Purchase Order

The Blanket Purchase Order option enables you to write a single Purchase Order for a stipulated maximum dollar amount (depending on your needs) and active time duration (a one-year period is suggested), but you pay only for services rendered or documents purchased.

Military Agencies: Blanket Purchase Agreement, DD Form 1155, may be useful for ordering RAC reports and/or services. Please stipulate maximum dollar amount authorized and cutoff date on your order. Also specify services (e.g., publications, search services, etc.) to be provided. Identify vendor as IIT Research Institute (Reliability Analysis Center).

Ordering Information

Place orders or obtain additional information directly from the Reliability Analysis Center. Clearly specify the publications and services desired. Except for blanket purchase orders, prepayment is required. All foreign orders must be accompanied by a check drawn on a U.S. bank. Please make checks payable to IITRI/RAC.

SERVICE FEE SCHEDULE AND ORDERING INFORMATION
December 1984

Price Per Copy

Component Reliability Databooks

			Issue Date	Domestic	Foreign
()	MDR-14	Hybrid Circuit Data	Mar. 1980	\$60.00	\$70.00*
()	MDR-15	Digital Evaluation and Generic Failure Analysis Data - Vols. I and II	Aug. 1980	60.00	70.00**
()	MDR-18	Memory/LSI Data Complete Set: \$310	Feb. 1982	60.00	70.00**
()	MDR-19	Digital SSI/MSI Data (\$360 non-U.S.)	Feb. 1984	60.00	70.00**
()	MDR-20	Linear/Interface Data	Jun. 1984	60.00	70.00**
()	DSR-3	Transistor/Diode Data	Jan. 1980	60.00	70.00**
()	NPRD-2	Nonelectronic Parts Reliability Data	Aug. 1981	60.00	70.00*
()	VZAP-1	Electrostatic Discharge Susceptibility Data	Apr. 1983	95.00	105.00**

Equipment Databooks

()	EERD-1	Electronic Equipment Reliability Data	Oct. 1980	60.00	70.00**
()	EEMD-1	Electronic Equipment Maintainability Data	Oct. 1980	60.00	70.00*

Handbooks

()	RDH-376	Reliability Design Handbook	Mar. 1976	36.00	46.00**
()	MFAT-1	Microelectronics Failure Analysis Techniques Procedural Guide	July 1981	125.00	135.00***

Technical Reliability Studies

()	TRS-1	Microcircuit Screening Effectiveness	36.00	46.00*
()	TRS-2	Search and Retrieval Index to IRPS Proceedings-1968 to 1976	24.00	34.00**
()	TRS-2A	Search and Retrieval Index to IRPS Proceedings-1979 to 1984	24.00	34.00**
()	TRS-3A	EOS/ESD Technology Abstracts	36.00	46.00*
()	SOAR-1	ESD Protective Materials and Equipment: A Critical Review	36.00	46.00*
()	SOAR-2	Practical Statistical Analysis for the Reliability Engineer	36.00	46.00*
()	SOAR-3	IC Quality Grades: Impact on System Reliability and Life Cycle Costs	46.00	56.00*

Electrical Overstress/Electrostatic Discharge Symposium Proceedings

()	EOS-1	1979 Proceedings	24.00	34.00*
()	EOS-2	1980 Proceedings Complete Set of Past Proceedings: \$105	24.00	34.00*
()	EOS-3	1981 Proceedings (\$145 non-U.S.)	24.00	34.00*
()	EOS-4	1982 Proceedings	24.00	34.00*
()	EOS-5	1983 Proceedings	24.00	34.00*
()	EOS-6	1984 Proceedings	24.00	34.00*

VIDEO TAPE - "Hazards of Static Electricity"****

()	3/4" V-matic		24.00	34.00*
()	1/2" VHS	{ Twenty-six minutes in length	105.00	115.00**
()	Beta I or II			

*For air mail shipment to points outside North and Central America, add \$10.00 per item

**For air mail shipment to points outside North and Central America, add \$15.00 per item

***For air mail shipment to points outside North and Central America, add \$35.00 per item

Quantity Purchase Discounts - Discounts (on multiple copies of a single title ordered at one time) are:
****VIDEO TAPES - (not included)

Quantity	Discount	Quantity	Discount
1-2	list	10-19	30% off list
3-6	15% off list	20-49	40% off list
7-9	20% off list	50-99	50% off list
		100 or more	negotiable

ORDER FORM

Please send me the documents checked above.

Enclosed find \$ _____

Name/Title _____

Send order and check to:

Organization _____

Reliability Analysis Center
RADC/RAC
Dept. A
Griffiss AFB, NY 13441

Address _____

City/State _____ Zip _____

Phone: 315/330-4151 Autoven: 587-4151

Prepayment of orders is required. Please make checks payable to ITRI/RAC. Foreign orders must be accompanied by check drawn on a U.S. bank.

The Reliability Analysis Center is a DoD Information Analysis Center operated by
IT Research Institute, Chicago, IL

A-2

END

FILMED

9-85

DTIC