### Equivalent Potential Temperature

Al Cooper

RAF Algorithm Review

01/25/2011

#### Rossby Form

•  $L_v$  and  $c_{pd}$  are kept constant.

$$\Theta_p^{[Rossby]} = \Theta_d \exp\left\{\frac{L_V r}{c_{pd} T}\right\}$$

#### Rossby Form

- $L_v$  and  $c_{pd}$  are kept constant.
- Basis for thermodynamic diagrams

$$\Theta_p^{[Rossby]} = \Theta_d \exp\left\{\frac{L_v r}{c_{pd} T}\right\}$$



#### Rossby Form

- $L_v$  and  $c_{pd}$  are kept constant.
- Basis for thermodynamic diagrams

#### Revised Forms Like Bolton

 Take into account the temperature dependence of L<sub>V</sub> and c<sub>pd</sub>

$$\Theta_p^{[Rossby]} = \Theta_d \exp\left\{\frac{L_v r}{c_{pd} T}\right\}$$

Davies-Jones (2009):

$$\Theta_{E}^{*} = \Theta e^{\left\{\frac{[L_{0}^{*} - L_{1}^{*}(T_{L} - T_{0})]r + \kappa_{2}r^{2}}{c_{pd}T_{L}}\right\}}$$

where  $L_0^*$ ,  $L_1^*$ , and  $K_2$  are coefficients that are adjusted to minimize errors.



#### Rossby Form

- $L_v$  and  $c_{pd}$  are kept constant.
- Basis for thermodynamic diagrams

#### Revised Forms Like Bolton

- Take into account the temperature dependence of L<sub>V</sub> and c<sub>pd</sub>
- Often adjust L<sub>v</sub> to minimize errors

$$\Theta_p^{[Rossby]} = \Theta_d \exp\left\{\frac{L_v r}{c_{pd} T}\right\}$$

Davies-Jones (2009):

$$\Theta_E^* = \Theta e^{\left\{\frac{[L_0^* - L_1^*(T_L - T_0)]r + K_2 r^2}{c_{pd} T_L}\right\}}$$

where  $L_0^*$ ,  $L_1^*$ , and  $K_2$  are coefficients that are adjusted to minimize errors.



#### Rossby Form

- L<sub>V</sub> and c<sub>pd</sub> are kept constant.
- Basis for thermodynamic diagrams

#### Revised Forms Like Bolton

- Take into account the temperature dependence of L<sub>V</sub> and c<sub>pd</sub>
- Often adjust L<sub>ν</sub> to minimize errors
- New: Davies-Jones, 2009

$$\Theta_p^{[Rossby]} = \Theta_d \exp\left\{\frac{L_v r}{c_{pd} T}\right\}$$

Davies-Jones (2009):

$$\Theta_E^* = \Theta e^{\left\{\frac{[L_0^* - L_1^*(T_L - T_0)]r + K_2 r^2}{c_{pd} T_L}\right\}}$$

where  $L_0^*$ ,  $L_1^*$ , and  $K_2$  are coefficients that are adjusted to minimize errors.



```
Wet vs Dry
```

#### Wet vs Dry

• wet-equivalent: carry all water with parcel  $(\Theta_q)$ 

#### Wet vs Dry

• wet-equivalent: carry all water with parcel  $(\Theta_q)$ 

# AMS Glossary: Equivalent Potential Temperature

"A thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process. "

#### Wet vs Dry

- wet-equivalent: carry all water with parcel  $(\Theta_q)$
- pseudo-adiabatic equivalent: all water is removed as it condenses

# AMS Glossary: Equivalent Potential Temperature

"A thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process."

#### Wet vs Dry

- wet-equivalent: carry all water with parcel  $(\Theta_q)$
- pseudo-adiabatic equivalent: all water is removed as it condenses

#### "Pseudo-adiabatic"

- Preferred terminology for all water removed when condensed
- Equivalent to neglecting the specific heat of liquid

# AMS Glossary: Equivalent Potential Temperature

"A thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process. "

#### Wet vs Dry

- wet-equivalent: carry all water with parcel  $(\Theta_q)$
- pseudo-adiabatic equivalent: all water is removed as it condenses

#### "Pseudo-adiabatic"

- Preferred terminology for all water removed when condensed
- Equivalent to neglecting the specific heat of liquid water

# AMS Glossary: Equivalent Potential Temperature

"A thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process. "

#### Wet vs Dry

- wet-equivalent: carry all water with parcel  $(\Theta_q)$
- pseudo-adiabatic equivalent: all water is removed as it condenses

#### "Pseudo-adiabatic"

- Preferred terminology for all water removed when condensed
- Equivalent to neglecting the specific heat of liquid water

# AMS Glossary: Equivalent Potential Temperature

"A thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process."

#### Usage Here:

- pseudo-adiabatic equivalent
- $\Theta_p$  instead of  $\Theta_e$
- $\bullet$   $\Theta_a$  for wet-equivalent

)90

#### Wet vs Dry

- wet-equivalent: carry all water with parcel  $(\Theta_q)$
- pseudo-adiabatic equivalent: all water is removed as it condenses

#### "Pseudo-adiabatic"

- Preferred terminology for all water removed when condensed
- Equivalent to neglecting the specific heat of liquid water

# AMS Glossary: Equivalent Potential Temperature

"A thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process."

#### Usage Here:

- pseudo-adiabatic equivalent
- $\bullet$   $\Theta_p$  instead of  $\Theta_e$
- $\bullet$   $\Theta_q$  for wet-equivalent

#### Wet vs Dry

- wet-equivalent: carry all water with parcel  $(\Theta_q)$
- pseudo-adiabatic equivalent: all water is removed as it condenses

#### "Pseudo-adiabatic"

- Preferred terminology for all water removed when condensed
- Equivalent to neglecting the specific heat of liquid water

# AMS Glossary: Equivalent Potential Temperature

"A thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process."

#### Usage Here:

- pseudo-adiabatic equivalent
- $\Theta_p$  instead of  $\Theta_e$
- ullet  $\Theta_q$  for wet-equivalent

#### Wet vs Dry

- wet-equivalent: carry all water with parcel  $(\Theta_q)$
- pseudo-adiabatic equivalent: all water is removed as it condenses

#### "Pseudo-adiabatic"

- Preferred terminology for all water removed when condensed
- Equivalent to neglecting the specific heat of liquid water

# AMS Glossary: Equivalent Potential Temperature

"A thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process."

#### Usage Here:

- pseudo-adiabatic equivalent
- $\bullet$   $\Theta_p$  instead of  $\Theta_e$
- $\bullet$   $\Theta_a$  for wet-equivalent

$$\Theta_{q} = T \left(\frac{p_{0}}{p_{d}}\right)^{R_{d}/c_{pt}} \exp\left(\frac{L_{v}r}{c_{pt}T}\right)$$
 (1)

- Quantities in red vary with temperature.
- Equation (1) is a straightforward definition if  $L_v$  and  $c_{pd}$  (entering  $c_{pt} = c_{pd} + r_t c_w$ ) are taken at the level of the LCL

$$\Theta_{q} = T \left(\frac{p_{0}}{p_{d}}\right)^{R_{d}/c_{pt}} \exp\left(\frac{L_{v}r}{c_{pt}T}\right)$$
 (1)

- Quantities in red vary with temperature.
- Equation (1) is a straightforward definition if  $L_v$  and  $c_{pd}$  (entering  $c_{pt} = c_{pd} + r_t c_w$ ) are taken at the level of the LCL

$$\Theta_{q} = T \left(\frac{p_{0}}{p_{d}}\right)^{R_{d}/c_{pt}} \exp\left(\frac{L_{v}r}{c_{pt}T}\right)$$
 (1)

• Bolton: If  $\Theta_D$  is the dry-air potential temperature at the LCL, e the vapor pressure in mb,  $T_K$  the air temperature in kelvin,  $T_L$  the temperature at the LCL in kelvin and r the mixing ratio

$$T_L = \frac{2840}{3.5 \ln T_K - \ln e - 4.805} + 55$$

$$\Theta_p^{Bolton} = \Theta_D \exp\left\{ \left( \frac{3.376}{T_L} - 0.00254 \right) r (1 + 0.81 \times 10^{-3} r) \right\}$$

$$\Theta_{q} = T \left( \frac{p_{0}}{p_{d}} \right)^{R_{d}/c_{pt}} \exp \left( \frac{L_{v}r}{c_{pt}T} \right)$$
 (1)

$$\frac{dT}{dp_d} = \frac{TR_d + \frac{L_v r}{p_d}}{\left[ \left( c_{pd} + r_t c_w \right) + \frac{T\varepsilon}{p_d} \left( \frac{\partial \left( \frac{L_v e_s(T)}{T} \right)}{\partial T} \right)_{p_d} \right]^{-1}$$
(2)

## Reasons For Proposing Changes

Bolton offered a second formula in his 1980 paper that is more accurate.

## Reasons For Proposing Changes

- Bolton offered a second formula in his 1980 paper that is more accurate.
- ② Davies-Jones repeated the analysis and obtained still better fit coefficients investigated over a wider numerical range.

## Reasons For Proposing Changes

- Bolton offered a second formula in his 1980 paper that is more accurate.
- ② Davies-Jones repeated the analysis and obtained still better fit coefficients investigated over a wider numerical range.
- If we change to the Davies-Jones formula, it may be useful to change the variable name to "pseudo-adiabatic equivalent potential temperature" at the same time to remove the conflict with the AMS definition.

Do revised vapor-pressure equations matter?

- O Do revised vapor-pressure equations matter?
  - Davies-Jones (2009) still uses an approximate formula instead of a more accurate representation of  $e_s(T)$ .

- O Do revised vapor-pressure equations matter?
  - Davies-Jones (2009) still uses an approximate formula instead of a more accurate representation of  $e_s(T)$ .
  - Expect small effect because differences are at low temperature where vapor pressure is low.

- On revised vapor-pressure equations matter?
  - Davies-Jones (2009) still uses an approximate formula instead of a more accurate representation of  $e_s(T)$ .
  - Expect small effect because differences are at low temperature where vapor pressure is low.
- What is the effect of including the temperature dependence of the specific heats, especially for supercooled water?

- On revised vapor-pressure equations matter?
  - Davies-Jones (2009) still uses an approximate formula instead of a more accurate representation of  $e_s(T)$ .
  - Expect small effect because differences are at low temperature where vapor pressure is low.
- What is the effect of including the temperature dependence of the specific heats, especially for supercooled water?
  - Neglected in previous studies, although Murphy and Koop show that variation in  $c_w$  is particularly significant.

- On revised vapor-pressure equations matter?
  - Davies-Jones (2009) still uses an approximate formula instead of a more accurate representation of  $e_s(T)$ .
  - Expect small effect because differences are at low temperature where vapor pressure is low.
- What is the effect of including the temperature dependence of the specific heats, especially for supercooled water?
  - Neglected in previous studies, although Murphy and Koop show that variation in  $c_w$  is particularly significant.
  - Applies to both  $\Theta_p$  and  $\Theta_q$ .

- On revised vapor-pressure equations matter?
  - Davies-Jones (2009) still uses an approximate formula instead of a more accurate representation of  $e_s(T)$ .
  - Expect small effect because differences are at low temperature where vapor pressure is low.
- What is the effect of including the temperature dependence of the specific heats, especially for supercooled water?
  - Neglected in previous studies, although Murphy and Koop show that variation in  $c_w$  is particularly significant.
  - Applies to both  $\Theta_p$  and  $\Theta_q$ .
- How accurate is the Bolton formula for the temperature at the LCL?

- On revised vapor-pressure equations matter?
  - Davies-Jones (2009) still uses an approximate formula instead of a more accurate representation of  $e_s(T)$ .
  - Expect small effect because differences are at low temperature where vapor pressure is low.
- What is the effect of including the temperature dependence of the specific heats, especially for supercooled water?
  - Neglected in previous studies, although Murphy and Koop show that variation in  $c_w$  is particularly significant.
  - Applies to both  $\Theta_p$  and  $\Theta_q$ .
- How accurate is the Bolton formula for the temperature at the LCL?
  - How much error is introduced?



- O Do revised vapor-pressure equations matter?
  - Davies-Jones (2009) still uses an approximate formula instead of a more accurate representation of  $e_s(T)$ .
  - Expect small effect because differences are at low temperature where vapor pressure is low.
- What is the effect of including the temperature dependence of the specific heats, especially for supercooled water?
  - Neglected in previous studies, although Murphy and Koop show that variation in  $c_w$  is particularly significant.
  - Applies to both  $\Theta_p$  and  $\Theta_q$ .
- How accurate is the Bolton formula for the temperature at the LCL?
  - How much error is introduced?
  - Do we need to use a numerical solution to obtain better accuracy?

 For all three questions, the approach was to compare solutions from equations to numerical solutions

- For all three questions, the approach was to compare solutions from equations to numerical solutions
  - Include new vapor pressure formulas

- For all three questions, the approach was to compare solutions from equations to numerical solutions
  - Include new vapor pressure formulas
  - Allow specific heats and the latent heat of vaporization to vary with temperature

- For all three questions, the approach was to compare solutions from equations to numerical solutions
  - Include new vapor pressure formulas
  - Allow specific heats and the latent heat of vaporization to vary with temperature
- Example: Adiabatic motion from in initial point with  $(T_1, p_1)$  to a new point with  $(T_2, p_2)$ : Given  $\{T_1, p_1, p_2\}$ , find  $T_2$  two ways:

# The Approaches Used

- For all three questions, the approach was to compare solutions from equations to numerical solutions
  - Include new vapor pressure formulas
  - Allow specific heats and the latent heat of vaporization to vary with temperature
- Example: Adiabatic motion from in initial point with  $(T_1, p_1)$  to a new point with  $(T_2, p_2)$ : Given  $\{T_1, p_1, p_2\}$ , find  $T_2$  two ways:
  - Integrate the exact equation for  $dT/dp_d$  from point 1 to point 2 to find  $T_2$ .

# The Approaches Used

- For all three questions, the approach was to compare solutions from equations to numerical solutions
  - Include new vapor pressure formulas
  - Allow specific heats and the latent heat of vaporization to vary with temperature
- Example: Adiabatic motion from in initial point with  $(T_1, p_1)$  to a new point with  $(T_2, p_2)$ : Given  $\{T_1, p_1, p_2\}$ , find  $T_2$  two ways:
  - ① Integrate the exact equation for  $dT/dp_d$  from point 1 to point 2 to find  $T_2$ .
  - 2 Evaluate the equation for potential temperature at point 1, then invert it at point 2 to find  $T_2$ .



### Method 1: Integration

• Initialize: at  $\{p_1, T_1\}$ 

Method 2: Inversion

### Method 1: Integration

- Initialize: at  $\{p_1, T_1\}$
- **2** Each  $\Delta p$ , calculate  $\Delta T = \frac{dT}{dp_d} \Delta p_d$  from (3)

$$\frac{dT}{dp_d} = \left(\frac{TR_d + L_v r}{p_d}\right] / \left[\left(c_{pd} + r_t c_w\right) + \frac{T\varepsilon}{P_d} \left(\frac{\partial \left(\frac{L_v e_s(T)}{T}\right)}{\partial T}\right)_{p_d}\right] \tag{3}$$

#### Method 2: Inversion

### Method 1: Integration

- Initialize: at  $\{p_1, T_1\}$
- ② Each  $\Delta p$ , calculate  $\Delta T = \frac{dT}{dp_d} \Delta p_d$  from (3)
- **3** At  $\{p_2, T_2\}$ , find  $T_2$ .

#### Method 2: Inversion

$$\frac{dT}{dp_d} = \left(\frac{TR_d + L_v r}{p_d}\right] / \left[\left(c_{pd} + r_t c_w\right) + \frac{T\varepsilon}{P_d} \left(\frac{\partial \left(\frac{L_v e_s(T)}{T}\right)}{\partial T}\right)_{p_d}\right] \tag{3}$$

### Method 1: Integration

### Method 2: Inversion

• Evaluate Davies-Jones  $\Theta_p$  at  $\{p_1, T_1\}$  from (4)

$$\Theta_{p}^{[DJ]} = \Theta_{DL} e^{\left\{ \frac{(L_{0}^{*} - L_{1}^{*}(T_{L} - T_{0}) + K_{2}r)r}{c_{pd}T_{L}} \right\}}$$
(4)

$$\Theta_{DL} = T \left(\frac{p_0}{p - e}\right)^{2/7} \left(\frac{T}{T_L}\right)^{0.28 \times 10^{-3} r}$$

### Method 1: Integration

#### Method 2: Inversion

- Evaluate Davies-Jones  $\Theta_p$  at  $\{p_1, T_1\}$  from (4)
- ② Set p in (4) to  $p_2$

$$\Theta_{p}^{[DJ]} = \Theta_{DL} e^{\left\{ \frac{(L_{0}^{*} - L_{1}^{*}(T_{L} - T_{0}) + K_{2}r)r}{c_{pd}T_{L}} \right\}}$$
(4)

$$\Theta_{DL} = T \left( \frac{p_0}{p - e} \right)^{2/7} \left( \frac{T}{T_L} \right)^{0.28 \times 10^{-3} r}$$

for iteration:

$$T_2' = \Theta_p^{[DJ]}(T_1, p_1) \left( \frac{T_2}{\Theta_p^{[DF]}(T_2, p_2)} \right)$$

### Method 1: Integration

#### Method 2: Inversion

- Evaluate Davies-Jones  $\Theta_p$  at  $\{p_1, T_1\}$  from (4)
- ② Set p in (4) to  $p_2$
- With  $\{\Theta_p, p_2\}$  fixed, iterate to find  $T_2$

$$\Theta_{p}^{[DJ]} = \Theta_{DL} e^{\left\{ \frac{(L_{0}^{*} - L_{1}^{*}(T_{L} - T_{0}) + K_{2}r)r}{c_{pd}T_{L}} \right\}}$$
(4)

$$\Theta_{DL} = T \left(\frac{p_0}{p - e}\right)^{2/7} \left(\frac{T}{T_L}\right)^{0.28 \times 10^{-3} r}$$

for iteration:

$$T_2' = \Theta_p^{[DJ]}(T_1, p_1) \left( \frac{T_2}{\Theta_p^{[DF]}(T_2, p_2)} \right)$$

### Results

Primed quantities result from numerical integration; unprimed from formula evaluation

| T [°C] | p [hPa] | final p <sub>2</sub> [hPa] | $T_q[K]$ | $T'_q[K]$ | $T_p[K]$ | $T_p'[K]$ |
|--------|---------|----------------------------|----------|-----------|----------|-----------|
| 25     | 850     | 100                        | 206.50   | 207.69    | 200.73   | 200.76    |
| 15     | 750     | 100                        | 189.34   | 189.73    | 185.39   | 185.42    |
| 10     | 750     | 100                        | 178.69   | 178.71    | 175.66   | 175.69    |
| 0      | 700     | 100                        | 167.05   | 166.90    | 165.39   | 165.41    |
| -10    | 600     | 100                        | 163.54   | 163.44    | 162.68   | 162.70    |
| 25     | 850     | 300                        | 222.59   | 222.69    | 222.27   | 222.29    |
| 10     | 750     | 300                        | 239.43   | 239.46    | 238.52   | 238.51    |
| 0      | 700     | 300                        | 226.46   | 226.59    | 225.82   | 225.84    |

Example: 1.19 K error in  $\Theta_q$ , 0.03 K in  $\Theta_p$ 

### Results

Primed quantities result from numerical integration; unprimed from formula evaluation

| T [°C] | p [hPa] | final $p_2$ [hPa] | $T_q[K]$ | $T'_q[K]$ | $T_p[K]$ | $T_p'[K]$ |
|--------|---------|-------------------|----------|-----------|----------|-----------|
| 25     | 850     | 100               | 206.50   | 207.69    | 200.73   | 200.76    |
| 15     | 750     | 100               | 189.34   | 189.73    | 185.39   | 185.42    |
| 10     | 750     | 100               | 178.69   | 178.71    | 175.66   | 175.69    |
| 0      | 700     | 100               | 167.05   | 166.90    | 165.39   | 165.41    |
| -10    | 600     | 100               | 163.54   | 163.44    | 162.68   | 162.70    |
| 25     | 850     | 300               | 222.59   | 222.69    | 222.27   | 222.29    |
| 10     | 750     | 300               | 239.43   | 239.46    | 238.52   | 238.51    |
| 0      | 700     | 300               | 226.46   | 226.59    | 225.82   | 225.84    |

Largest error in  $\Theta_p$ : 0.03 K



### Results

Primed quantities result from numerical integration; unprimed from formula evaluation

| T [°C] | p [hPa] | final p <sub>2</sub> [hPa] | $T_q[K]$ | $T'_q[K]$ | $T_p[K]$ | $T_p'[K]$ |
|--------|---------|----------------------------|----------|-----------|----------|-----------|
| 25     | 850     | 100                        | 206.50   | 207.69    | 200.73   | 200.76    |
| 15     | 750     | 100                        | 189.34   | 189.73    | 185.39   | 185.42    |
| 10     | 750     | 100                        | 178.69   | 178.71    | 175.66   | 175.69    |
| 0      | 700     | 100                        | 167.05   | 166.90    | 165.39   | 165.41    |
| -10    | 600     | 100                        | 163.54   | 163.44    | 162.68   | 162.70    |
| 25     | 850     | 300                        | 222.59   | 222.69    | 222.27   | 222.29    |
| 10     | 750     | 300                        | 239.43   | 239.46    | 238.52   | 238.51    |
| 0      | 700     | 300                        | 226.46   | 226.59    | 225.82   | 225.84    |

Error in  $\Theta_q$  larger when extended to low pressure

O Do revised vapor-pressure equations matter?

- O Do revised vapor-pressure equations matter?
  - NO: Have used Murphy-Koop for numerical integration but Davies-Jones equation based on an old formula for iterative solutions, and found good agreement for  $\Theta_p$ . For  $\Theta_q$ , differences seen were not caused by differences in vapor-pressure formulas used.

- O Do revised vapor-pressure equations matter?
  - NO: Have used Murphy-Koop for numerical integration but Davies-Jones equation based on an old formula for iterative solutions, and found good agreement for  $\Theta_p$ . For  $\Theta_q$ , differences seen were not caused by differences in vapor-pressure formulas used.
- What is the effect of including the temperature dependence of the specific heats, especially for supercooled water?

- O Do revised vapor-pressure equations matter?
  - NO: Have used Murphy-Koop for numerical integration but Davies-Jones equation based on an old formula for iterative solutions, and found good agreement for  $\Theta_p$ . For  $\Theta_q$ , differences seen were not caused by differences in vapor-pressure formulas used.
- What is the effect of including the temperature dependence of the specific heats, especially for supercooled water?
  - NEGLIGIBLE FOR  $\Theta_p$ : Differences were typically smaller than 0.03 K for a range spanning typical conditions likely to be encountered in research flights.

- O Do revised vapor-pressure equations matter?
  - NO: Have used Murphy-Koop for numerical integration but Davies-Jones equation based on an old formula for iterative solutions, and found good agreement for  $\Theta_p$ . For  $\Theta_q$ , differences seen were not caused by differences in vapor-pressure formulas used.
- What is the effect of including the temperature dependence of the specific heats, especially for supercooled water?
  - NEGLIGIBLE FOR  $\Theta_p$ : Differences were typically smaller than 0.03 K for a range spanning typical conditions likely to be encountered in research flights.
  - POTENTIALLY WORTH ATTENTION FOR  $\Theta_q$ : Differences can exceed 1K but are more typically 0.1 K.

 How accurate is the Bolton formula for the temperature at the LCL?

- How accurate is the Bolton formula for the temperature at the LCL?
  - How much error is introduced?

- How accurate is the Bolton formula for the temperature at the LCL?
  - How much error is introduced?
  - Do we need to use a numerical solution to obtain better accuracy?

- How accurate is the Bolton formula for the temperature at the ICL?
  - How much error is introduced?
  - Do we need to use a numerical solution to obtain better accuracy?

FORMULA IS GOOD: Numerical tests showed that results were within about 0.05 K and in most cases were better than this limit, suggesting that little error is introduced by using the Bolton formula.

### Recommendations

1. Change to (6.5) of Davies-Jones (2009), and change the variable name to "pseudo-adiabatic equivalent potential temperature". Continue to use (21) of Bolton (1980) to determine the saturation temperature  $T_L$ .

$$\begin{split} \Theta_p^{[DJ]} &= \Theta_{DL} \exp \left\{ \frac{\left( L_0^* - L_1^* (T_L - T_0) + K_2 r \right) r}{c_{pd} T_L} \right\} \\ \Theta_{DL} &= T_k \left( \frac{1000}{p_d} \right)^{0.2854} \left( \frac{T_K}{T_L} \right)^{0.28 \times 10^{-3} r} \\ T_L &= \frac{2840}{3.5 \ln T_K - \ln e - 4.805} + 55 \end{split}$$

## Recommendations

2. Add a new variable "wet-equivalent potential temperature" and use the standard equation for its evaluation. .

$$\Theta_q = T \left(\frac{p_0}{p_d}\right)^{R_d/c_{pt}} \exp\left(\frac{L_v r}{c_{pt} T}\right)$$

where  $c_{pt} = c_{pd} + r_t c_w$  and  $r_{tot}$  is the total water mixing ratio,  $r_{tot} = r + r_w$  where  $r_w = \chi/\rho_d$  with  $\chi$  the liquid water content and  $\rho_d$  the density of dry air:  $\rho_d = (p-e)/(R_d T)$ .