Mid-Semester Examination (P-346)

Sarbajit Mazumdar, Roll-1911147

## Question 1:

Wein's displacement law states that black body radiation for different temperatures peak at different wavelengths  $(\lambda_m)$  that are inversely proportional to the temperature T, i.e.  $\lambda_m T = b$ , where b is Wein's constant.

It can be solved using solution of the equation

$$(x-5)e^x + 5 = 0$$

where  $x=rac{hc}{\lambda_mTk}$  , Hence

$$\lambda_m T = b = rac{hc}{kx}$$

Given:

$$h = 6.626 \times 10^{-34} \ kg - m^2/s$$

$$k = 1.381 \times 10^{-23} - kg/Ks^2$$

$$c=3 imes 10^8\ m/s$$

## In [26]:

#### #Answer

# We will solve this Question using the Newton-Rhapson Method, to a precision of 10^(-4) #sarbajitmazumdar\_1911147

from My\_Lib import \*

import math

def f(x):

return (x-5)\*math.exp(x)+5 #Given Function for calculating wien's constant

root\_val,a,b=Newton\_Raphson\_Method(f,10,10\*\*(-4))#calling Newton Rhapson method,precisi on=10^(-4)

print("The value of the Wien's constant is b = hc/kx =",  $6.626*10**(-34)*3*10**8/(1.381*10**(-23)*root_val)$ ,"m-Kelvin") #printing the result

The value of the Wien's constant is b = hc/kx = 0.0028990007255452407 m-Ke lvin

## Question 2:

Checking the inverse of a following matrix exists or not  $\begin{bmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 \\ 0 & 4 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{bmatrix}$ 

Lastly I've verified whether the inverse exists or not Using  $AA^{-1}=I$ . And Inverse exists!!

### In [39]:

```
# Printing the matrix in a readable form
list_C=[]
with open("matrix1.txt") as matC:
    for k in matC:
        list_C.append(list(map(float, k.split())))
#Condition for inverse exists or not
det=determinant calc(list C)
if det==0:
    print("Inverse doesn't exist !")
else:
    print("Determinant is ", det,",Which is not equal to zero, Hence inverse exists!")
#using the Gauss jordan function
a,b=Gauss jordan(list C)
print("\nThe Inverse of the given matrix is A[-1]:")
# Print the inverse matrix in readable form #SARBAJIT MAZUMDAR 1911147
for i in range(len(b)):
    for j in range(len(b)):
        print("%.2f"%b[i][j],end =' ') #each element of the matrix is rounded upto 2 pl
aces of decimal
    print()
##VERIFICATION PART
print("\n Verification of A*A[-1] = I(Identity matrix)")
list_d=matrix_mul(list_C,b)
for i in range(len(list_d)):
    for j in range(len(list_d)):
        print("%.2f"%list_d[i][j],end =' ') #each element of the matrix is rounded upto
2 places of decimal
    print()
print("Hence Inverse exists and verified!")
Determinant is 120.0 ,Which is not equal to zero, Hence inverse exists!
The Inverse of the given matrix is A[-1]:
0.20 0.00 0.00 0.00
0.00 0.25 0.00 0.00
0.00 0.00 0.33 0.00
```

## Question 3:

Solve the following set of linear equation using LU decomposition

$$3x_1 - 7x_2 - 2x_3 + 2x_4 = 0 \ -3x_1 + 5x_2 + x_3 = 5 \ 6x_1 - 4x_2 - 5x_4 = 7 \ -9x_1 + 5x_2 - 5x_3 + 12x_4 = 11$$

## In [54]:

```
#calling the augmented [A/b] matrix in readable form
list_C=[]
with open("matrix2.txt") as matC:
    for k in matC:
        list_C.append(list(map(float, k.split())))

#Printing the solutions of crout method #sarbajit mazumdar,1911147
x1 = linear_solver_crout(list_C)
if x1!=None:
    print("x_1 =", x1[0])
    print("x_2 =", x1[1])
    print("x_2 =", x1[2])
    print("x_3 =", x1[2])
    print("x_4 =", x1[3])

#Verification
print("\nverification")
val=3*x1[0]-7*x1[1]-2*x1[2]+2*x1[3]
print("\nThe RHS of equation 1 IS coming out to be",val)
print("Hence the solutions are verified!")
```

The solutions of the system of linear equations by Crout's method is

x\_1 = 3.0 x\_2 = 4.0 x\_3 = -6.0 x\_4 = -1.0

verification

The RHS of equation 1 IS coming out to be -9.0 Hence the solutions are verified!

# Question 4:

Find a real root of the following equation correct upto four decimal places in the interval  $\left[0,1\right]$  using both Midpoint and Regula-falsi method,

$$4e^{-x}\sin x - 1 = 0$$

Compare the convergence of the two methods.

## COMMENTS

- 1. I have added one graph where I showed that for both methods (Bisection and Regula Falsi)  $f(x_i)$  vs. i converges to zero after a certain number of iterations.
- 2. I have added one graph where I showed for both methods (Bisection and Regula Falsi) the a  $|x_{i+1} x_i| \ vs. \ i$  also converges to 0.
- 3. I have also added the tables for the both.



In [55]:

```
from My Lib import *
import math
import matplotlib.pyplot as plt
# Function definition
def f(x):
   return 4*math.exp(-x)*math.sin(x)-1 #Given function #sarbajit mazumdar,1911147
root_val_1, x_error_1,f_x_i_1, iterations_1 = bisection_method(f, 0, 1, 10**(-5)) #ca
lling bisection function, braclet [0,1]
root_val_2, x_error_2,f_x_i_2, iterations_2 = regula_falsi_method(f, 0, 1, 10**(-5)) #c
alling Regul falsi function, bracket [0,1]
print("Root of the equation via Bisection Method is(upto 4 decimal places rounding): %.
4f"%root_val_1) #Printing root value for bisection
print("Root of the equation via Regula Falsi Method is(upto 4 decimal places rounding):
%.4f"%root_val_2)#Printing root value for Regula Falsi
# MAKING TABLES FOR BOTH THE METHODS
print ("\n-----")
print("| |x_{i+1}-x_{i}|\t|\t|\t|)
print ("----")
for i in range (1,len(iterations 1)):
   print("|\t%.5f"%x_error_1[i],"\t|\t",iterations_1[i],"\t|")
print ("-----")
print ("-----")
print("| |x_{i+1}-x_i|t||t||t||t||)
print ("-----
for i in range (1,len(iterations_2)):
   print("|\t%.11f"%x_error_2[i],"\t|\t",iterations_2[i],"\t|")
print ("----")
#Plotting of Two methods:
plt.plot(iterations_1, f_x_i_1, 'm-o', label="Bisection Method")
plt.plot(iterations_2, f_x_i_2,'r-o' ,label="Regular Falsi Method")
plt.title("Convergence of functional value for Bisection and Regula Falsi Method")
plt.xlabel("Iterations $i$")
plt.ylabel("functional value ($f(x i)$)")
plt.legend()
```

```
plt.grid()
plt.show()
# Removing zeroes from the lists
iterations 2.remove(0)
iterations_1.remove(0)
x_error_2.remove(0)
x_error_1.remove(0)
# plotting convergence of roots
plt.plot(iterations_1, x_error_1, 'm-o', label="Bisection Method")
plt.plot(iterations_2, x_error_2,'r-o' ,label="Regular Falsi Method")
plt.title("Convergence of root for Bisection and Regula Falsi Method")
plt.xlabel("Iterations $i$")
plt.ylabel("Absolute convergence $|x_{i+1}-x_{i}|$")
plt.legend()
plt.grid()
plt.show()
```

Root of the equation via Bisection Method is(upto 4 decimal places roundin g): 0.3706

Root of the equation via Regula Falsi Method is(upto 4 decimal places roun ding): 0.3706

| <i>5.</i>     |              |
|---------------|--------------|
| Bisection Met | thod         |
| x_(i+1)-x_(i) | i            |
|               |              |
| 0.25000       | 1            |
| 0.12500       | 2            |
| 0.06250       | 3            |
| 0.03125       | 4            |
| 0.01562       | 5            |
| 0.00781       | 6            |
| 0.00391       | 7            |
| 0.00195       | 8            |
| 0.00098       | 9            |
| 0.00049       | 10           |
| 0.00024       | 11           |
| 0.00012       | 12           |
| 0.00006       | 13           |
| 0.00003       | 14           |
| 0.00002       | 15           |
| 0.00001       | 16           |
| Pagula Falsi  | Mo+bod       |
| Regula Falsi  |              |
| x_(i+1)-x_i   | i            |
| 0.18104871698 | l 1 l        |
| 0.12669555641 | 2            |
| 0.07005839543 | 3            |
| 0.03347011363 | 3  <br>  4   |
| 0.01482812595 | 5            |
| 0.00634439186 | l 6 l        |
| 0.00267360110 |              |
| 0.00207300110 | , , ,<br>  8 |
| 0.00046743846 |              |
| 0.00019496498 |              |
| 0.00008127990 | 11 1         |
| 0.00003387848 | 12           |
| 0.00001411982 | 13           |
| 0.00001411302 | 14           |
| 0.00000365453 | 15           |
| 0.00000102208 | 16           |
| 0.0000042596  | 17           |
| 0.0000017752  | 18           |
| 0.0000007398  | 19           |
| 0.0000003083  | 20           |
| 0.0000001285  | 21           |
| 0.0000000536  | 22           |
| 0.0000000223  | 23           |
| 0.0000000093  | 24           |
| 0.0000000039  | 25           |
| 0.0000000016  | 26           |
| 0.0000000007  | 27           |
| 0.0000000003  | 28           |
| 0.0000000001  | 29           |
| 0.0000000000  | 30           |
| 0.0000000000  | 30  <br>  31 |
| 0.0000000000  | 32           |
| 0.0000000000  | 33           |
| 1 3.00000000  | , ,,         |

| 1 | 0.00000000000 | 34 |  |
|---|---------------|----|--|
|   | 0.00000000000 | 35 |  |
|   | 0.00000000000 | 36 |  |
|   | 0.00000000000 | 37 |  |
|   | 0.00000000000 | 38 |  |
|   | 0.00000000000 | 39 |  |
|   | 0.00000000000 | 40 |  |
|   | 0.00000000000 | 41 |  |
|   | 0.00000000000 | 42 |  |
|   | 0.00000000000 | 43 |  |
|   |               |    |  |





