PSPACE

Definition: PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine. Formally,

$$PSPACE = \bigcup_{k} SPACE(n^k)$$
, with $k > 0$.

We define $NPSPACE = \bigcup_k NSPACE(n^k)$, for k > 0. But from Savitch's theorem it follows that

$$NPSPACE = \bigcup_{k} NSPACE(n^{k}) = \bigcup_{k} SPACE(n^{k+2}) = \bigcup_{k} SPACE(n^{k}) = PSPACE.$$

A Hierarchy of Complexity

We can now construct a hierarchy of complexity classes.

Observe that $P \subseteq PSPACE$. To see this let a machine execute in $t(n) \ge n$ polynomial time. But this implies that the machine can use at most t(n) polynomial space (one cell per computation step).

In a similar argument we have $NP \subseteq NPSPACE$ and from the argument above $NP \subseteq PSPACE$.

We already know that $P \subseteq NP$.

Finally, if we have a $f(n) \ge n$ polynomial space machine it can be shown that this machine runs in $2^{O(f(n))}$ exponential time. Thus, $PSPACE \subseteq EXPTIME$.

 $P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$.

^aIt is believed that all the set containments are proper.

A Hierarchy of Complexity

