Ultra Low Energy, Low Cost Industrial Nanomembrane Manufacturing for Desalination, Water Purification, and Remediation

DE-SC0013182 Covalent LLC Project Period 2015-2017

PI: Martin Edelstein, Ph.D., Covalent, LLC Presenter: Gayle Pergamit, Covalent, LLC

U.S. DOE Advanced Manufacturing Office
Program Review Meeting
Washington, D.C.
June 14-15, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Objectives

Program Objective:

Develop and demonstrate atomically precise nanomembranes and nanomembrane/substrate composites that will:

- 1. Reduce energy requirements for Water Purification by up to 99% and Desalination by 66%
- 2. Reduce Water Purification and Desalination costs by >50%
- 3. Demonstrate scalability from Single User to Municipal Scale

Project DE-SC00013182 Objective:

Demonstrate Scalable Manufacturing of atomically precise nanofilms and nanomembranes for use in Water Purification and Desalination

Objectives

THE PROBLEMS

- Scarcity of fresh, pure water
- Aquifer depletion
- Water pollution
- Changing rainfall patterns, drought
- Rising population, increased demand

THE DIFFICULTIES

- Expense and energy burden of removing salts and trace toxic impurities from water
- Energy cost of water transport

THE SOLUTION

- Atomically precise membranes to lower cost of removing impurities
- One atomic-layer thin membranes. Gravity feed to lower energy cost of separations
- Cost-effective distributed systems to lower energy used moving water

Technical Innovations

Standard Membranes

Low precision, 5-10 micron thick

Covalent Nanomembranes

Atomically precise, .0005 micron thick membranes

Atomic Precision
Enables
Biomimicry

Mimic water transport in the cell

Conventional Membrane 7~8µm thick

Technical Approach: Atomically Precise Materials Provide Unprecedented Filtration Specificity

Computer Prediction

Actual Performance

Actual Performance

	Solute	Radius of Solute	Radius of solute w/H ₂ 0 (#'s in parentheses denote 2nd hydration shell)	PORE 1 Radius = 3.9 Å	PORE 2 Radius = 3.3 Å	
	Urea marker- Li ⁺	0.6	2.0 (5.6)	Yes	No	\
	Sodium - Na ⁺	1.0	2.2	Yes	Yes]
	Potassium - K	1.3	2.7	Yes	Yes	1
	Calcium - Ca ²⁺	1.0	2.7	Yes	Yes	1
_	$\mathrm{Mg}^{2^{+}}$	0.7	2.8 (5.5)	Yes	No	1
	NH_4^+	1.9	2.9	Yes	Yes	1
	Cs ⁺	1.7	3	Yes	Yes	1
	MeNH ₃ ⁺	2	3	Yes	Yes	4
	EtNH ₃ ⁺	2.6	3.6	Yes	No	1
	NMe_4^+	2.6	3.6	Yes	No	
	Aminoguanidine	3.1	4.1	Yes	No	
	Choline	3.8	4.8	Yes	No	
	NEt ₄ ⁺	3.9	4.4	No	No	
	Glucosamine	4.2	5.2	No	No	
	NPr_4^+	-	-	No	-	

Pore 2 was built for urea exclusion while allowing earth salt passage, and defeating larger contaminants.

Note precise cutoffs, not rejection ratios

Pores have "personality" and membranes can be "tuned" by using pores that, for example, prefer one earth salt over another.

Earth

salts

2046

Laboratory performance matches computer prediction

Copyright 2016

Technical Approach

New Approach to Membranes

Chemical building blocks self-assemble into nanomembranes

Atomic Precision

Smooth surfaces minimize fouling

Cost Aspects

Standard, low pharmaceutical-like manufacturing costs

Technical Approach

How to Build an Atomically-Precise Membrane

- 1. Synthesize precise, selfassembling building blocks
- 2. Self-assemble the building blocks into a nanofilm
- 3. Permanently attach the building blocks to each other to form a nanomembrane.
- 4. Attach the nanomembrane to a porous substrate.
- 5. Attach a protective layer to the nanomembrane surface
- Move from manual fabrication to automated Manufacturing. Methodology proved at lab scale, DOE Phase 1

Participants

Covalent LLC – Membrane Manufacturing

Agua Via Ltd – End User Relationships, Marketing and Sales

Technical Approach

DE-SC00013182 MANUFACTURING

- 1. Synthesize
 Building Blocks
 (Completed)
- 2. Self-assemble
 Building Blocks
 (Completed)
- 3. Scale-up (DOE funding)

Technical Approach & Execution Attributes

TECHNICAL RISKS AND UNKNOWNS

No apparent defects at micron resolution are observable. What if there are sub-micron defects?

Mitigation: Methodology for curing sub-micron defects planned for Q2 2017

EXECUTION ATTRIBUTES

Former CEOs of 1st and 2nd largest US water companies, American Water and American States Water

World's top desalination technical talent, Former Head of Thames R&D

Former US Secretary of State George Shultz, who also built out Middle East desalination as Bechtel CEO

Leading engineering/ installation team: Toshiba/UEM. International scope Largest US water company on Advisory Board, American Water . Represented by VP, Chief Environmental Officer

1st customer: world's largest water bank. Providing same volume as \$1B largest desalination plant in Western Hemisphere

Customers in process: more California water districts, leading direct-to-consumer water sales partner with international presence US, Europe, India, China, South East Asia, Africa

Transition and Deployment

FIRST END USER CUSTOMER

- SEMITROPIC: world's largest water banking system
- CALIFORNIA CENTRAL VALLEY: drought, groundwater depletion.
- FIRST COMMITMENT: 40M Gallons per day from contaminated wells.
- DISTRIBUTED SYSTEMS: multiple wellhead installations (~20) Wells average 1.5 to 2Million Gallons Per Day.

- BENEFITS: Energy reduction. Highest purity water no matter how contaminated. Smallest footprint. Significantly increase California's agricultural water at low cost.
- WHEN: Wellhead deployment complete 36 months after financing
- WHAT: Producing
 Agricultural (Ag) water
 from high TDS
 feedstocks, e.g., chloride,
 arsenic, boron, nitrate

Water Banking at Semitropic

Source: Semitropic

Transition and Deployment

- Semitropic has critical role in California water supply, serving major Northern and Southern California water districts.
 Metropolitan (Los Angeles area), San Diego, Alameda County, Santa Clara Valley (Silicon Valley)
- Cutting edge water/energy practices
- Global model for best practices

Banking Partners and Allocation Of 1.65 Million Acre-Feet of Total Storage Capacity

Source: Semitropic

Measures of Success: Water Delivery to Agriculture

- Lower energy for water purification
- Affordable water for agriculture
- Distributed
 systems mean
 lower energy use
 for water
 transport
- Increase in crop yield
- Less toxic
 substances in
 crops, e.g., arsenic

	Carlsbad	Orange County	Covalent at Semitropic
	Seawater	Brackish 1,000 TDS	Brackish 1-3,000 TDS
Gallons per day	50M	86M	40.18M
Gallons per year	18.3B	31.4B	14.67B
Acre feet per day	153.4	263.9	123.3
Acre feet per year	55,991	96,324	45,000

Transition and Deployment Roadmap

- Serve the problems and pain points caused by drought, groundwater crisis, high contaminant loads, tight economics
- First, California Central
 Valley water districts
- California agricultural (ag) water
- Use ag water wells to achieve California potable water certifications
- Next, potable water to high poverty, rural Central Valley, Calif.
- Then, international deployment to India

Source: data from NASA; map by qz.com Quartz

Project Management and Budget COVALENT

PROJECT DURATION

Phase 1: 2/15-11/15

Phase 2: 4/16-4/18

PROJECT BUDGET

DOE Phase 1 (PH 1)	\$100,000	
DOE Phase 2 (PH 2)	\$1,000,000	
Total	\$1,100,000	

PROGRAM TASKS

Completed

- 1 Designed porous building block
- 2 Demonstrated building block solute specificity
- 3 Demonstrated building block self assembly
- 4 Demonstrated nanofilm formation with building blocks
- 5 Demonstrated nanomembrane formation with building blocks
- 6 Demonstrated composite building block/substrate compatibility

Work in progress - DOE support

- 7 Demonstrate scalable manufacturing
- 8 Lab demonstration of prototype membrane
- 9 Lab demonstration of prototype membrane cartridge
- **10** Field demonstration of prototype cartridge

		Project Milestones
PH 1	٧	Q2 Design nanofilm contact surface
	٧	Q3 Build nanofilm contact surface
	٧	Q4 Test nanofilm contact surface
PH 2		Q6-7 Design multiple nanofilm forming breadboard
		Q8-9 Build multiple nanofilm forming breadboard 0.1% scale
		Q10-11 Build multiple nanofilm forming breadboard 25% scale
		Q12-13 Build multiple nanofilm forming prototype 100% scale

Results and Accomplishments

COMPLETED BEFORE DOE PHASE 1

Membranes individually built

Manual fabrication – time intensive, high level of skill required to control complex parameters, slow

But, reliable, reproducible, high quality product

CHALLENGES

Novel manufacturing technique needed

Can control be achieved of surface chemistries, varied ambient conditions across a multi-nanomembrane manufacturing system?

Critics say a low cost manufacturing system is impossible and costs will be in the \$Billions

ACCOMPLISHMENTS

Proof-of-manufacturing concept validated

Low cost, multinanomembrane manufacturing system built at small scale

Nanofilm/manufacturing materials shown to be compatible with full scale manufacturing

Ellipsometric edge study of manually fabricated nanomembrane