Измерение коэффициента поверхностного натяжения жидкости. (2.5.1)

Зайнуллин Амир Б05-206

28 апреля 2023 г.

1 Аннотация

Цель работы: 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

В работе используются: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы; микроскоп.

2 Теоретические сведения

Из-за поверхностного натяжения возникают разные давления с разных сторон искривленной поверхности жидкости:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r}$$
 (формула Лапласа) (1)

 σ - коэффицент поверхностного натяжения, r - радиус кривизны поверхности.

3 Экспериментальная установка и методика измерений

Тестовая жидкость (этиловый спирт) наливается в сосуд, через пробку в него входит полая металлическа игла. При создании достаточно разреженного воздуха в колбе пузырьки воздуха начинают пробулькивать, поверхностное натяжение измеряется по величине разряжения. Разряжение создается с помощью аспиратора, разность давлений измеряется спиртовым микроманометром.

Для стабилизации температуры через рубашку колбы с исследуемой жидкостью прогоняется вода из термостата. Из-за большой теплопроводности трубки температура в разных частях трубки заметно различна и ввиду теплового расширения поднимается уровень жидкости при изменении температуры. Поэтому при температурном измерениии кончик иглы опускают до самого дна сосуда, тогда:

$$\Delta P = P - \rho q h \tag{2}$$

 ρ - плотность жидкости, h - высота погружения иглы.

Рис. 1: Схема установки

Методика измерений

- 1. Измерим диаметр иглы.
- 2. Определим поправку при измерении давления для погруженной в воду иглы. Утопим иглу до предела. Измерим h2. Измерьте максимальное давление в пузырьках. По разности давлений определим глубину погружения.
- 3. Снимем температурную зависимость $\sigma(T)$ дистиллированной воды. Проводить измерение температурной зависимости рекомендуется в диапазоне 20 60 градусов. Для установления температуры жидкости будем ждать пару минут.

4 Результаты измерений и обработка данных

Измерение диаметра иглы

Измерим максимальное давление при пробулькивании пузырьков воздуха через спирт.

Nº	Р, дел	$P, \Pi a$
1	42	82,404
2	43	84,366
3	42	82,404
4	42	82,404
5	42	82,404

Таблица 1: Измерения в спирте

$P_{\rm cp}$,	Па	Р _{сл} , Па	$P_{\text{сист}}$, Па	σ_P , Π a	ε_P
82.	,8	0,4	2,0	2,0	0,02

Таблица 2: Результаты

По формуле найдем диаметр иглы:

$$d = \frac{4\sigma_{\rm c}}{P_{\rm makc}} = (1.10 \pm 0.03) \text{ mm}. \tag{3}$$

Результат полученный под микроскопом: $D = (1.15 \pm 0.05)$ мм, это означает, что диаметр найденный экспериментально достаточно точен.

4.1 Определения поправки при измерении давления для погруженной в воду иглы

Перенесём предварительно промытую и просушенную от спирта иглу в колбу с дистиллированной водой. Измерим максимальное давление P_1 при пробулькивании пузырьков, когда игла лишь касается поверхности воды. Измерите расстояние между верхним концом иглы и любой неподвижной часть прибора h_1 .

Утопим иглу в воду. Измерим h_2 . Также измерим максимальное давление в пузырьках P_2 . Полученные результаты заносим в таблицу.

№	дел	Р, Па
1	126	247,2
2	126	247,2
3	125	245,3
4	126	247,2
5	125	245,3
6	126	247,2

$P_{\rm cp}, \Pi a$	$\sigma_P^{\text{случ}}$, Па	$σ_P^{\text{сист}}$, Πа	$\sigma_P, \Pi a$	ε_P	h_1 , MM
246,56	0,41	1,96	2,01	0,01	21

Таблица 3: Результаты измерений P_1

$N_{\overline{0}}$	дел	Р, Па
1	192	376,70
2	191	374,74
3	191	374,74
4	192	376,70
5	192	376,70
6	192	376,70

$P_{\rm cp}, \Pi a$	$σ_P^{\text{случ}}$, Πа	$\sigma_P^{\text{сист}}, \Pi a$	$\sigma_P, \Pi a$	$arepsilon_P$	h_1 , MM
376,05	0,41	1,96	2,01	0,01	8

Таблица 4: Результаты измерений P_2

Также вычисляем погрешность:

$$\sigma_{\Delta P} = \sqrt{\sigma_{P_1}^2 + \sigma_{P_2}^2} \approx 2.8 \text{ \Pia.} \tag{4}$$

Таким образом, получаем

$$\Delta P = (129.5 \pm 2.8) \,\,\Pi a$$
 (5)

По полученному значению ΔP можем рассчитать Δh по следующей формуле:

$$\Delta h = \frac{\Delta P}{\rho a} \approx 13.2 \text{ MM},$$

где $\rho = 1000~{\rm kr/m^3}$ – плотность воды и $g = 9.81~{\rm m/c^2}$ – ускорение свободного падения.

При этом погрешность нашего измерения равна

$$\sigma_{\Delta h} = \Delta h \cdot \varepsilon_{\Delta P} \approx 0.3 \text{ mm}.$$

Таким образом, получаем $\Delta h = (13.2 \pm 0.3)$ мм

Заметим, что полученный результат в пределах погрешности совпадает с результатом, полученном прямым измерением $\Delta h' = (13 \pm 0.71)$ мм.

Значит, в ходе дальнейших измерений мы будем делать поправку $\Delta P = (129.5 \pm 2.8)$ Па на добавочное давление со стороны столба жидкости.

Измерение температурной зависимости коэффициента поверхностного натяжения

Снимем температурную зависимость $\sigma(T)$ дистиллированной воды. Для этого включим термостат и подождём, пока нужная нам температура не стабилизируется. После этого проведём измерение давления. Для уменьшения погрешности опыта замер давления при фиксированной температуре проведём несколько раз. Результаты измерений занесём в таблицу

T, K	P', дел	P' , Π a	$\langle P' \rangle$, Πa	$\sigma_P^{\text{случ}}$, Па	$\sigma_P^{\text{сист}}$, Па	$\sigma_{P'}, \Pi a$	P , Πa	σ_P , Π a	ε_P
	192	376,7							
	192	376,7							
298	193	378,7	377,1	0,4	2,0	2,0	247,6	3,4	0,01
	192	376,7							
	192	376,7							

T, K	P', дел	P' , Π a	$\langle P' \rangle$, Πa	$\sigma_P^{\text{случ}}$, Па	$σ_P^{\text{сист}}$, Πα	$\sigma_{P'}, \Pi a$	P , Π a	σ_P , Π a	ε_P
	192	376,7							
	192	376,7							
303	192	376,7	376,7	0,0	2,0	2,0	247,2	3,4	0,01
	192	376,7							
	192	376,7							

T, K	P', дел	<i>P</i> ′, Па	$\langle P' \rangle$, Πa	$\sigma_P^{\text{случ}}$, Па	$\sigma_P^{\text{сист}}$, Па	$\sigma_{P'}, \Pi a$	P , Π a	σ_P , Π a	ε_P
	191	374,7							
	190	372,8							
308	190	372,8	373,2	0,4	2,0	2,0	243,7	3,4	0,01
	190	372,8							
	190	372,8							

T, K	<i>P</i> ′, дел	P' , Πa	$\langle P' \rangle$, Πa	$\sigma_P^{\text{случ}}$, Па	$\sigma_P^{\text{сист}}$, Па	$\sigma_{P'}, \Pi a$	Р, Па	σ_P , Π a	ε_P
	189	370,8							
	189	370,8							
313	188	368,9	370,4	0,4	2,0	2,0	240,9	3,4	0,01
	189	370,8							
	189	370,8							

T, K	P', дел	P' , Π a	$\langle P' \rangle$, Πa	$\sigma_P^{\text{случ}}$, Па	$\sigma_P^{\text{сист}}$, Па	$\sigma_{P'}, \Pi a$	P , Π a	σ_P , Π a	ε_P
	187	366,9							
	187	366,9							
318	188	368,9	367,7	0,5	2,0	2,0	238,2	$3,\!5$	0,01
	187	366,9							
	188	368,9							

T, K	P', дел	<i>P</i> ′, Па	$\langle P' \rangle$, Πa	$\sigma_P^{\text{случ}}$, Па	$\sigma_P^{\text{сист}}$, Па	$\sigma_{P'}, \Pi a$	Р, Па	σ_P , Π a	ε_P
	186	364,9							
	186	364,9							
323	186	364,9	365,3	0,4	2,0	2,0	235,8	3,4	0,01
	187	366,9							
	186	364,9							

T, K	P', дел	P' , Πa	$\langle P' \rangle$, Πa	$\sigma_P^{\text{случ}}, \Pi \text{a}$	$σ_P^{\text{сист}}$, Πα	$\sigma_{P'}, \Pi a$	Р, Па	σ_P , Π a	ε_P
	185	363,0							
	185	363,0							
328	185	363,0	362,6	0,4	2,0	2,0	233,1	3,4	0,01
	184	361,0							
	185	363,0							

T, K	P', дел	P' , Π a	$\langle P' \rangle$, Πa	$\sigma_P^{\text{случ}}$, Па	$\sigma_P^{\text{сист}}$, Па	$\sigma_{P'}, \Pi a$	Р, Па	σ_P , Π a	ε_P
	184	361,0							
	183	359,0							
333	184	361,0	360,2	0,5	2,0	2,0	230,7	3,5	0,01
	184	361,0							
	183	359,0							

Таблица 5: Результаты измерений

Также учитываем поправку к измеренному давлению, которая была вычислена в формуле (5). Полученные результаты также заносим в таблицу.

По полученным данным вычислим коэффициент поверхностного натяжения для каждой из температур по формуле

$$\sigma = \frac{Pd}{4},\tag{6}$$

где d – диаметр иглы. Погрешность такого результата вычисляется по следующей формуле:

$$\sigma_{\sigma} = \sigma \sqrt{\varepsilon_P^2 + \varepsilon_d^2}. (7)$$

Полученные результаты заносим в таблицу.

			,	,
$N_{\overline{0}}$	T, K	σ_T, K	σ , м $H/м$	σ_{σ} , мH/м
1	298,0	0,2	68,1	1,8
2	303,0	0,2	68,0	1,8
3	308,0	0,2	67,0	1,7
4	313,0	0,2	66,3	1,7
5	318,0	0,2	65,5	1,7
6	323,0	0,2	64,9	1,7
7	328,0	0,2	64,1	1,7

Таблица 6: Полученные результаты вычислений

Строим на графике полученную зависимость и считаем коэффицент наклона графика по MHK.

Рис. 2: Зависимость $\sigma(T)$

$$k = \frac{d\sigma}{dT} = (-0.140 \pm 0.007) \frac{\text{MH}}{\text{M} \cdot \text{K}}$$

Построим также зависимость теплоты образования единицы поверхности жидкости от температуры $q(T)=-T\frac{d\sigma}{dT}$ и поверхностной энергии единицы площади от температуры $\frac{U}{F}=\left(\sigma-T\frac{d\sigma}{dT}\right)$

Nº	<i>T</i> , K	q, м H /м	σ_q м $H/$ м	$\frac{U}{F}$, мH/м	$\sigma_{\frac{U}{F}}, \mathrm{MH/M}$
1	298	41,7	2,1	109,8	3,8
2	303	42,4	2,1	110,4	3,9
3	308	43,1	2,2	110,1	3,9
4	313	43,8	2,2	110,1	3,9
5	318	44,5	2,2	110,0	3,9
6	323	45,2	2,3	110,1	4,0
7	328	45,9	2,3	110,0	4,0

Таблица 7: Данные для графиков

5 Выводы

- 1. В ходе работы был измерен диаметр иглы двумя способами. Первый способ при помощи известного коэффициента поверхностного натяжения спирта. Полученный результат сходится с хорошей точностью со вторым способом измерением диаметра микроскопом.
- 2. Было определено добавочное давление, создаваемое жидкостью при опускании иглы на некоторую высоту. Данная величина так же сходится с прямым измерением высоты. Полученная поправка была использована в основной части работы. Игла была погружена в основной части работы для увеличения точности измерений.
- 3. Был экспериментально получен коэффицент поверхностного натяжения воды для 7 различных температур в диапазоне 25-60 градусов. Мы выяснили, что коэффицент поверхностного натяжения зависит от температуры прямо пропорционально. Данные хорошо ложились на линейную зависимость, несмотря на большие кресты погрешности.
- 4. Табличное значение коэффициента поверхностного натяжения дистиллированной воды при 20 градусах равен 72 мH/м. Что почти сходится с нашим полученным результатом. Значит данная лабораторная работа обладает хорошей точностью.
- 5. Полученные результаты дают основание полагать, что теоретические данные довольно точно описывают наблюдаемые зависимости.
- 6. С помощью графиков убедились, что зависимость теплоты образования единицы поверхности жидкости от температуры линейна. А поверхностная энергия единицы площади от температуры **не зависит**.