Discrete Math-2021 Fall-Quiz-1

Name:

Problem 1. (10 Points) Determine if each of the following propositional formulas is tautology, contradiction or satisfiable.

1.
$$(\neg(P \leftrightarrow Q) \rightarrow ((P \land \neg Q) \lor (\neg P \land Q)))$$
 (tautology / contradiction / satisfiable)
2. $(P \land \neg(Q \rightarrow P)) \land (R \land Q) \lor R$ (tautology / contradiction / satisfiable)
3. $P \rightarrow (Q \rightarrow P)$ (tautology / contradiction / satisfiable)
4. $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$ (tautology / contradiction / satisfiable)
5. $\neg(Q \rightarrow R) \land R$ (tautology / contradiction / satisfiable)

Answer: 1. tautology, 2. satisfiable, 3. tautology, 4. tautology, 5. contradiction.

Problem 2. (10 Points) Write down formula α in both CNF and DNF based on the following truth table.

P	Q	R	α
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Answer:

CNF

$$(P \lor Q \lor \neg R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

CNF

$$(P \lor Q \lor \neg R) \land (\neg Q \lor R) \land (\neg P \lor Q)$$

CNF

$$(Q \lor \neg P) \land (Q \lor \neg R) \land (R \lor \neg P) \land (R \lor \neg Q)$$

DNF

$$(\neg P \land \neg Q \land \neg R) \lor (\neg P \land Q \land R) \lor (P \land Q \land R)$$

 \mathbf{DNF}

$$(\neg P \wedge \neg Q \wedge \neg R) \vee (Q \wedge R)$$

Problem 3. (10 Points) Write the following formula in CNF

$$P \to ((Q \land R) \land (P \lor (\neg Q \land \neg R)))$$

Answer:
$$(\neg P \lor Q) \land (\neg P \lor R)$$
 or $(\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R)$

Problem 4. (10 Points) Prove the following inference

$$(P \land W) \rightarrow (R \lor S)$$
, $Q \rightarrow (U \land W)$, $U \rightarrow P$, $\neg S \vdash Q \rightarrow R$

Answer:

- 1. Q
- 2. $Q \to (U \land W)$
- 3. $U \wedge W$
- 4. *U*
- 5. $U \rightarrow P$
- 6. P
- 7. W
- 8. $P \wedge W$
- 9. $(P \wedge W) \rightarrow (R \vee S)$
- 10. $R \vee S$
- 11. $\neg S$
- 12. R

Problem 5. (10 Points)

Let P(x) be "x is a student", Q(x) be "x is a course", L(x,y) be "x likes y" and E(x,y) be "x = y". Formalize each of the following sentences by predicate formula.

1. 有些学生喜欢所有课程.

right:
$$(\exists x)(P(x) \land (\forall y)(Q(y) \rightarrow L(x,y)))$$

wrong: $(\exists x)(\forall y)((P(x) \land Q(y)) \rightarrow L(x,y))$

2. 每个学生都有不喜欢的课程.

right:
$$(\forall x)(P(x) \to (\exists y)(Q(y) \land \neg L(x,y)))$$

wrong: $(\forall x)(\exists y)((P(x) \land Q(y)) \to \neg L(x,y))$

3. 每个学生只喜欢一门课程.

right:
$$(\forall x)(P(x) \to (\exists y)(Q(y) \land L(x,y) \land (\forall z)((Q(z) \land L(x,z)) \to E(y,z))))$$

wrong: $(\forall x)(\exists y)((P(x) \land Q(y) \to L(x,y)) \land (\forall z)(Q(z) \land L(x,z) \to E(z,y)))$

4. 有些课程只有一个学生喜欢.

right:
$$(\exists x)(Q(x) \land (\exists y)(P(y) \land L(y,x) \land (\forall z)((P(z) \land L(z,x)) \rightarrow E(y,z))))$$

wrong: $(\exists x)(\exists y)((P(x) \land Q(y)) \rightarrow L(y,x)) \land (\forall z)((P(z) \land L(z,x)) \rightarrow E(y,z))))$

Problem 6. 附加题 (5 Points)

Put the correct relation in "(?)"

1.
$$(\exists x)(\forall y)(\forall z)P(x,y,z)$$
 (?) $(\forall y)(\exists x)(\exists z)P(x,y,z)$ (\$\Rightarrow\$ / \$\Forall P(x,y,z)\$

2.
$$(\exists x)(\forall y)(\forall z)P(x,y,z)$$
 (?) $(\exists y)(\forall x)(\exists z)P(x,y,z)$ (\$\Rightarrow\$ / \$\Forall P(x,y,z)\$

3.
$$(\exists x)(\forall y)(\forall z)P(x,y,z)$$
 (?) $(\forall z)(\exists y)(\forall x)P(x,y,z)$ (\$\Rightarrow\$ / \$\Forestimes / \$\Forestarrow / \$\Forestimes / \$\F

4.
$$(\forall x)(\exists y)(\forall z)P(x,y,z)$$
 (?) $(\forall z)(\exists y)(\forall x)P(x,y,z)$ (\$\Rightarrow\$ / \Rightarrow\$ None)

5.
$$(\exists y)(\forall x)(\exists z)P(x,y,z)$$
 (?) $(\exists z)(\exists y)(\forall x)P(x,y,z)$ (\$\Rightarrow\$ / \$\Forestimes / \$\Forestarrow / \$\Forestimes / \$\F

Answer:1. \Rightarrow , 2. None, 3. None, 4. None, 5. \Leftarrow .