AĞAÇLAR

AĞAÇ

 İçerisinde çevrim bulundurmayan bağlı (connected) ve yönsüz graflara ağaç denir.

AĞAÇ

 Bir graf bağlı değil ancak kapalı çevrim içermiyorsa bu grafın her bir parçası birer ağaçtır.

Köklü Ağaç

Graftaki düğümlerden birinin kök olarak belirlendiği ağaçlara köklü ağaç (rooted tree) denir.

Köklü Ağaç Terminolojisi

- Kök (Root);En tepedeki düğüm.
- Yaprak (leaf); Çocuğu olmayan, ağacın en alt seviyesindeki düğümlerdir.
- İç Düğüm; Yaprak olmayan, en az bir çocuğu olan düğümlere iç düğüm denir.
- Ebeveyn- üst öğe (Parent); Bir düğümün, bir kenar ile bağlı olduğu üst düğümüdür.
- Çocuk-alt düğüm (child); Bir düğümün bir kenar ile kendisine bağlı olan tüm alt düğümleri.
- Kardeş (sibling); Aynı üst düğüme bağlı düğümlerdir.
- Ata (Ancestor); Bir düğümün bir yol ile bağlı olduğu ve kendisinden üst seviyede olan düğümler
- Torun (Descendant); Bir düğümün bir yol ile bağlı olduğu ve kendisinden alt seviyede olan düğümler. Bir düğümün atası olduğu tüm düğümler kendisinin torunudur.
- Alt ağaç (sub-graph); Kök olmayan bir a düğümü, torunlarıyla birlikte bir alt ağaçtır. a düğümü de alt ağacın köküdür.

M-Ary Rooted Tree

- Köklü bir ağaçta her bir iç düğümün en fazla m çocuğu var ise buna m-ary tree denir.
- Tüm iç düğümlerin m tane çocuğu varsa buna da full m-ary tree denir.

Sıralı Köklü Ağaç

- Tüm iç düğümlerin çocuklarının sıralı olduğu köklü ağaçlara sıralı köklü ağaç (sıralı rooted tree) denir.
- Bir düğümün sol çocuğunun kökü olduğu at ağaca sol alt ağaç (left sub tree), sağ çocuğunun kökü olduğu alt ağaca sağ alt ağaç (right sub tree) denir.

Ağaçların Özellikleri

n düğüm içeren bir ağacın n-1 tane kenarı vardır.

i tane iç düğüm içeren bir full m-ary ağacında

• toplam düğüm sayısı: n=mi+1

n tane düğüm içeren bir full m-ary ağaçta

- $i c d \ddot{g} \ddot{u} m sayısı = (n-1)/m ve$
- $yaprak\ sayısı = [(m-1)n+1]/m$ ile hesaplanır.

h yüksekliğinde bir m-ary ağaçta;

ullet En fazla m^h adet yaprak olabilir.

Bir v düğümünün seviyesi,

• Kökten v düğümüne kadar olan benzersiz kenar sayısıdır.

Bir köklü ağacın yüksekliği;

• Ağaçta en yüksek seviyeli düğümün seviyesidir.

Ağaçların Özellikleri

- Kök düğümün seviyesi:0
- b, j ve k düğümlerinin seviyesi:1
- En yüksek seviyeli düğüm: h
- h düğümünün seviyesi: 4

Dengeli m-ary Ağaç

 h yüksekliğinde köklü bir m-ary ağacı, tüm yaprakların seviyesi h veya h-1 ise dengeli (balanced) ağaçtır.

- Örnek:
 - Root:
 - a
 - İç düğümler:
 - a,b,c,d,f,h,j,q,t
 - Yapraklar:
 - e,l,m,n,g,o,p,i,s,u,t,r,k
 - j'nin çocukları:
 - q ve r
 - h'nin parentı:
 - C
 - o'nun kardeşleri:
 - p
 - m'nin ataları:
 - f, b, a
 - b'nin torunları:
 - e, f, m, l, n

İkili Arama Ağacı (Binary Search Tree)

İkili Arama ağacı;

- Sıralı bir listede aranan bir elemanın bulunması için kullanılır.
- Her iç düğümün en fazla 2 çocuğu olabilir.
- Her bir düğüm bir anahtar ile etiketlenir.
- Bir düğümün anahtarı sol alt ağaçtaki tüm düğümlerin anahtar değerlerinden büyük, sağ alt ağaçtaki tüm düğümlerin anahtar değerlerinden küçük olacak şekilde düğümlere anahtar atanır.

İkili Arama Ağacı (Binary Search Tree)

- Bir İkili Arama Ağacı Oluştururken;
 - Bir düğüm ile başlanır.
 - Listedeki ilk eleman kökün anahtar değeri olur.
 - Listedeki bir sonraki eleman kökün anahtar değeri ile
 - Aynı ise listede bir sonraki değer geçilir.
 - Büyükse, sağ alt ağaç boyunca yeni düğümün değeri sıradaki düğümün değerinden büyük olduğu sürece bir alt düğüme geçilerek ilerlenir.
 - Küçükse sol alt ağaç boyunca yeni düğümün değeri sıradaki düğümün değerinden küçük olduğu sürece bir alt düğüme geçilir.
 - Bu işlem rekürsif olarak tüm elemanlar uygun yere eklenene kadar devam eder.

İkili Arama Ağacı

 Örnek; Mathematics, physics, geography, zoology, meteorology, geloji, psychology ve chemistry kelimeleri alfabetik sırada olacak şekilde bir ikili arama ağacı oluşturun.

Karar Ağaçları (Decision Tree)

- Bir problemin olası çözümlerine karar vermek için kullanılan köklü bir ağaçtır.
- İç düğümler: Karar,
- Alt öğeler o kararın sonuçları.

Karar Ağaçları (Decision Tree)

 Örneğin; 7 tane bozuk paradan 1 tanesi sahte. Sahte olmayan 6 bozuk paranın ağırlığı eşitken, sahte paranın ağırlığı daha az. Buna göre 7 bozuk paradan hangisinin sahte olduğunu karar ağacıyla modellersek;

Karar Ağaçları (Decision Tree)

• Örneğin; a, b ve c sayılarını sıralamak istiyoruz

Önek Kodları (Prefix Codes)

- Bir alfabedeki tüm harfleri bir bit dizisi ile kodlamak istiyoruz.
- 26 harflik bir alfabe için 5 bit uzunluğunda bit dizileri.
- Ancak birkaç harften oluşan bir bit dizisinin harf karşılıklarını bulmak istediğimizde
 - Örneğin; e:0, a:1 ve t: 01 ile kodlanmış olsun.
 - 0101 bit dizisi eat, tea, tt, eaea kelimelerinden hangisi olduğunu nasıl ayırt edebiliriz?
- Bir alfabedeki tüm harflerin farklı bit dizisi ile kodlamak için
 - Her harfin bit dizinin ilk parçasının birbirinden farklı olacak şekilde kodlanmasına önek kodları (prefix codes) denir.

Önek Kodları (Prefix Codes)

- Yapraklar karakterler.
- Sol çocuk 0 sağ çocuk 1.
- Bir karakterin bit dizisi, kökten ilgili karakterin bulunduğu düğüme kadar ki yoldaki bitlerin arka arkaya yazılması ile elde edilir.
- Örneğin:
 - e=0, a=10, t=110, n=1110 ve s=11111
 - Decode edilecek bit dizimiz:11111011100 olsun
 - Kökten başlanır ve bir yaprağa ulaşana kadar bitlere göre kenarlar boyunca ilerlenir.
 - 1111 s yaprağına geldi ilk karakter:s
 - 10: a yaprağına geldi 2. karakter:a
 - 1110 n yaprağına geldi 3. karakter:n
 - 0 e yaprağına geldi 4. karakter:e
 - Kelime:sane

- Bir önek ağacıdır.
- Bir karakterin frekansı veya olasılığı ne kadar yüksekse o kadar az bitle kodlanır.
- Veri sıkıştırmanın temel algoritmalarındandır.
- Karakterlerin geçme sıklıkları veya olasılıkları bilinmelidir.

• Örnek: Harflerin geçme sıklıkları a:5, b:9, c:12, d:13, e:16 ve f:45 olsun

Min frekanslı 2 karakter: a ve b

Tekrar sıralanır:

c:12, d:13, ab:14, e:16 ve f:45

Tekrar sıralanır: ab:14, e:16, cd:25, f:45

• Örnek: Harflerin geçme sıklıkları a:5, b:9, c:12, d:13, e:16 ve f:45 olsun

Tekrar sıralanır: cd:25, abe:30, f:45

Tekrar sıralanır: f:45, abecd:55

Örnek: Harflerin geçme sıklıkları a:5, b:9, c:12, d:13, e:16 ve f:45 olsun

f:0 c:100 d:101 a:1100 b:1101 e:111

- Her bir karakteri 8 bit ile temsil etseydik;
 - 5+9+12+13+16+45=100 karakter
 - 100*8=800 bit kullanmamız gerekirdi.
 - Bu yöntemle 5*4+9*4+12*3+13*3+16*3+45*1=324 bit ile kodlayabiliriz

Oyun Ağacı

- Ağaçlar, tic-tac-toe, satranç, dama gibi belirli oyunları analiz etmek için de kullanılır.
- Düğümler pozisyonları, kenarlar ise olası hamleleri temsil eder.
- Kök; başlangıç pozisyonu.
- Yapraklar; oyunun son durumları.

Oyun Ağacı

Örnek: Tic-Tac-Toe

ÖRNEK

Tic-Tac-Toe oyununda anlık durumu aşağıdaki gibi ise, oyunun sonraki hamleler için ağacı nasıl olur?

ÖRNEK

- · Aşağıda kodları verilen harfler için bit dizilerini decode edin.
 - a:001, b:0001, r:0000, s:0100, t:011, x:01010, e:1
 - 1. 01110100011→
 - t(011),
 - e(1),
 - s(0100),
 - t(011)
 - 2. 01100101010 →
 - t+00101010,
 - ta+01010
 - tax

ÖRNEK

- Aşağıdaki kelimeleri bir binary ağaca alfabetik sırada yerleştirin.
 - banana, peach, apple, pear, coconut, mango, and papaya

AĞAÇTA DOLAŞMA

- Sıralı köklü ağaçlar genellikle bilgi depolamak için kullanılır.
 - Ağaçtaki verilere erişmek için ağaçta dolanımı sağlayacak prosedürler vardır.
 - Sıralı bir köklü ağacın her köşesini sistematik olarak ziyaret etme prosedürlerine geçiş algoritmaları (traversel algorithms) denir.

Preorder

- · Kök, sol düğüm, sağ düğüm
 - Rekürsif yapıdadır.

Preorder

a, b, e, n, Ο,

d, g, l, m, h,

Inorder

- Sol düğüm, kök, sağ düğüm
- Sol alt ağacı left, root, right sırasıyla rekürsif olarak dolaş
- Kökü ziyaret et
- Sağ alt ağacı left, root, right sırasıyla rekürsif olarak dolaş

Inorder

Postorder

- Sol düğüm, sağ düğüm, kök
- Sol alt ağacı dolaş
- Sağ alt ağacı dolaş
- En son köke git

Postorder

• j, n, o, p, k, e, f, b, c, I, m, g, h, i, d, a

Infix, Prefix Postfix

- Aritmetik ifadelerin ağaçtan okunma düzeni
- Infix; inorder
- Prefix; preorder
- Postfix; post order

Infix, Prefix Postfix

• Infix:

- Inorder: Left, root, right
- $((x+y)^2)+((x-4)/3)$

• Prefix:

- Preorder: Root, left, right
- +^+xy2/-x43

Postfix:

- Postorder: Left, right, root
- xy+2^x4-3/+

TARAMA AĞACI (SPANNING TREE)

- G basit bir graf olmak üzere bir tarama ağacı, G grafının tüm düğümlerini içeren bir alt grafıdır.
 - Bir grafın birden fazla tarama ağacı olabilir.

ASGARI TARAMA AĞACI (MINIMUM SPANNING TREE)

1992 H

Bir G ağırlıklı grafında, kenarların ağırlıkları toplamı minimum olan tarama ağacıdır.

- Her bir düğümün bireysel bir ağaç olduğunu varsayarak başlar.
- Her adımda en az maliyetin olduğu kenarı ekler.
- Bu işlem tüm düğümleri içeren tek bir yol olmasına kadar devam eder.

· ÖRNEK;

B, D	D, T	A, C	C, D	C, B	B, T	A, B	S, A	S, C
2	2	3	3	4	5	6	7	8

Kenarlar ağırlıklarına göre artan sırada sıralanır.

B, D	D, T	A, C	C, D	C, B	B, T	A, B	S, A	S, C
2	2	3	3	4	5	6	7	8

B, D	D, T	A, C	C, D	C, B	В, Т	A, B	S, A	S, C
2	2	3	3	4	5	6	7	8

B, D	D, T	A, C	C, D	C, B	В, Т	A, B	S, A	S, C
						6		

• ÖRNEK;

B, D	D, T	A, C	C, D	C, B	В, Т	A, B	S, A	S, C
						6		

• Elde edilen Min spanning tree maliyet: 2+2+3+3+7=17

- Kruskal'dan farklı olarak her adımda kenar değil düğüm ekler.
- Adımları şöyledir;
 - Rastgele bir başlangıç noktası seçilir.
 - Maliyeti daha az olan düğüme gidilir.
 - Gidilebilecek düğümler listesine artık 2. düğümden gidilebilecek olanlar da eklenmiştir.
 - Tüm düğümler dolaşıldığında algoritma sonlanır.

• ÖRNEK;

Step 0; S={a} V={b,c,d,e,f,g} Seçilebilecek düğümler: {(a,b),(a,c)}


```
Step 2;

S={a,b,d}

V={c,e,f,g}

A={(a,b),(b,d)}

Seçilebilecek düğümler :

{(a,c),(b,e),(d,c),(d,e),(d,f)}
```


Kruskal vs Prim

Prim

Bir düğüm ile başlar

Komşuluk matrisi, binary heap veya fibonacci heap ile gerçeklenebilir

Yoğun (dense) graflarda hızlıdır

Karmaşıklık: $O(E + V \log V)$

Min mesafeli düğümü ekleyebilmek için bir düğüme birden fazla defa uğrayabilir.

Eklenecek bir sonraki düğüm eklenmiş olanlardan biriyle bağlantılıdır.

Kruskal

En az ağırlıklı kenar ile başlar

Ayrık küme kullanır

Sparse graflarda hızlıdır.

Karmaşıklık: O(E log V)

Kenarları sadece bir kere gezer, cycle oluşup oluşmamasına göre ekler veya eklemez

Eklenecek bir sonraki düğüm eklenmiş olanlardan biriyle bağlantılı olabilir de olmayabilir de

