Teoria Analisi 1

February 7, 2025

Contents

1	Teorema del differenziale (Lagrange - Rolle generalizzato) - Solo enunciato	2
	Teorema dell'unicità del limite 2.1 Enunciato	
	Teorema fondamentale del calcolo integrale (TFCI) 3.1 Enunciato	

Teorema del differenziale (Lagrange - Rolle generalizzato) - Solo 1 enunciato

 $2.2\text{em} f: I \subset \mathbb{R}, I \text{ intervallo}, x_0 \in I, x_0 \text{ interno ad } I, f \text{ derivabile in } x_0.$ Allora: \exists w: $I \to \mathbb{R}$ t.c. w è continua in x_0 , $w(x_0) = 0$ e

$$f(x_0) + f'(x_0)(x - x_0) + w(x)(x - x_0)$$

dove: $f(x_0) + f'(x_0)(x - x_0)$ è la tangente $w(x)(x-x_0)$ è l'errore causato da alcuni fattori, lo possiamo trascurare.

2 Teorema dell'unicità del limite

2.1Enunciato

 $f:A\subset\mathbb{R}\to\mathbb{R},\,x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Se:

1. $\lim_{x\to x_0} f(x) = l_1 \in \widetilde{\mathbb{R}}$

2. $\lim_{x\to x_0} f(x) = l_2 \in \widetilde{\mathbb{R}}$

Allora: $l_1 = l_2$

2.2Dimostrazione

ip1) $\forall V l_1$ intorno di $l_1 \exists U x_0$ intorno di x_0 t.c. $f(x) \in \forall l_1$ per ogni $x \in (U x_0 \cap A) - \{0\}$

ip2) $\forall V l_2$ intorno di $l_2 \exists U' x_0$ intorno di x_0 t.c. $f(x) \in \forall l_2$ per ogni $x \in (U' x_0 \cap A) - \{0\}$

Per contraddizione: $l_1 \neq l_2$

Allora $\exists V l_1, V l_2$ intorni di l_1 e l_2 (rispettivamente) tali che: $V l_1 \bigcup V l_2 \neq \emptyset$

 $Wx_0 = \bigcup U'x_0$ è un intorno di x_0

Sia $x \in (Wx_0 \bigcup A) - \{x_0\} \neq \emptyset$ (perché x_0 è di accumulazione)

$$\Rightarrow \begin{cases} f(x) \in Vl_1 \text{ (Per definizione di limite 1)} \\ f(x) \in Vl_2 \text{ (Per definizione di limite 2)} \end{cases}$$

$$\Rightarrow f(x) \in Vl_1 \cap Vl_2 \neq \emptyset \Rightarrow \mathbf{l_1} = \mathbf{l_2}.$$
 Contraddizione

Teorema fondamentale del calcolo integrale (TFCI) 3

Enunciato 3.1

 $[a, b] \subset \mathbb{R}$, a < b. f R-integrale su [a, b].

 $\exists x_1 \in [a, b]$ t.c. f sia continua in x_1 . Fissato $x_0 \in [a, b]$ e presa $F(x) = \int_{x_0}^x f(t)dt$, si ha che F è derivabile in x_1 e $F'(x_1) = f(x_1)$

3.2 Dimostrazione

$$0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right|, \quad x \ne x_1$$
$$= \left| \frac{\int_{x_0}^x f(t)dt - \int_{x_0}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

Dim:

$$0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right|, \quad x \ne x_1$$

$$= \left| \frac{\int_{x_1}^x f(t)dt - \int_{x_1}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

$$= \left| \frac{\int_{x_1}^x f(t)dt + \int_{x_1}^{x_1} f(t)dt - \int_{x_1}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

$$= \left| \frac{\int_{x_1}^x f(t)dt - f(x_1)(x - x_1)}{x - x_1} \right|$$

$$= \left| \frac{\int_{x_1}^x (f(t) - f(x_1))dt}{x - x_1} \right|$$

$$\le \frac{1}{x - x_1} \int_{x_1}^x |f(t) - f(x_1)|dt$$

Dove abbiamo usato la disuguaglianza integrale.

Nota: Nel passaggio evidenziato in giallo, c è una costante.

Ma f è continua in $x_1 \iff$

$$\forall \epsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \text{t.c.} \ |f(t) - f(x_1)| < \epsilon \ \forall t/0 < |t - x_1| < \delta_{\varepsilon} \ t \in [a, b]$$

Osservo che $t \in [x_1, x]$ (oppure $t \in [x, x_1]$, dipende come abbiamo disposto $x \in x_1$)

Implica che $|t - x_1| \le |x - x_1|$

Sia allora $x \in [a, b]/|x - x_1| < \delta_{\varepsilon}$. Con questo forziamo le due varibli a stare vicine fra loro

Allora
$$0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \frac{1}{|x - x_1|} \left| \int_{x_1}^x \epsilon dt \right| = \epsilon \frac{|x - x_1|}{|x - x_1|} = \epsilon$$

Quindi
$$|t - x_1| \le |x - x_1| < \delta_{\varepsilon}$$
 e $|f(t) - f(x_1)| < \epsilon$
Allora $0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \frac{1}{|x - x_1|} \left| \int_{x_1}^x \epsilon dt \right| = \epsilon \frac{|x - x_1|}{|x - x_1|} = \epsilon$
Ossia: $\forall \epsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \text{t.c.} \ \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \epsilon \ \forall x \ \text{t.c.} \ 0 < |x - x_1| < \delta_{\varepsilon}, \ x \in [a, b]$

Cioè: $\lim_{x_1} \frac{F(x) - F(x_1)}{x - x_1}$ esiste e vale $f(x_1)$.

Quindi:
$$\mathbf{F}'(\mathbf{x}_1) = \mathbf{f}(\mathbf{x}_1)$$