滤子

滤子

本小节中一切 **Def.** # 特指偏序集上的定义.

我们在介绍完备化时曾引入滤子, 滤子基, 收敛性等概念:

Def. 称 $\mathcal{P}(X)$ 中非空子集 \mathscr{F} 为滤子 (filter), 若且仅若

- $\forall A, B \in \mathcal{F}$, 总有 $A \cap B \in \mathcal{F}$ (下封闭性),
- $\forall A \in \mathcal{F}$, 总有 $\{U \in \mathcal{P}(X) \mid A \subset U\} \subset \mathcal{F}$ (上封闭性),
- $\emptyset \notin \mathscr{F}$ (蕴含 $\mathscr{F} \neq \mathcal{P}(X)$, 一本将 $\mathscr{F} = \emptyset$ 定义为平凡滤子).

 $\mathbf{Def.}^{\#}$ 更一般地, 称 $\mathscr{F} \subset P$ 为偏序集 (P, \leq) 上的滤子若且仅若

- (*) $\forall x,y \in \mathscr{F}$, 总存在 $z \in \mathscr{F}$ 使得 $(z \leq x) \land (z \leq y)$,
- $\forall x \in \mathscr{F}, \forall y \in P, x \leq y \ni \exists y \in \mathscr{F},$
- 罗菲空.

*: 部分组合学人士将不含该条者定义为序滤子 (order filter).

更多滤子

主滤子: $\uparrow \{x_0\} := \{A \mid x_0 \in A \subset X\}$, 前文已介绍.

集合生成的滤子: $\uparrow A_0 := \{B \mid A_0 \subset B \subset X\}.$

基本滤子 (elementary filter): $\{x_n\}_{n\geq 1}\subset X$ 为序列, 定义

$$\mathscr{F} = \{A \mid |A^c \cap \{x_n\}_{n \ge 1}| < \omega\}.$$

Fréchet 滤子: 无穷集合的余有限拓扑(非平凡开集为一切有限集合的补集), 故另称余有限滤子.

x-邻域滤子: 由 $x \in X$ 的所有邻域构成滤子.

尾巴滤子: 序列 $\{x_n\}_{n\geq 1}$ 的余有限拓扑.

滤子的简单性质

Def. 称 \mathscr{F} 为 X 中的主滤子 (principle filter) 若且仅若 \mathscr{F} 为包含某一 $x\in X$ 的最小滤子, 即由单一元 生成的滤子, 记作 $\uparrow x$.

Def. # 同理, 称 \mathscr{F} 为偏序集 (P, \leq) 中的主滤子若且仅若 \mathscr{F} 为包含某一 $x \in P$ 的最小滤子.

 $\mathbf{Def.}\,\mathscr{B}\subset\mathcal{P}(X)$ 为 X 的滤子基 (basis of a filter) 若且仅若

- ∅ ∉ ℬ,
- $\forall A, B \in \mathcal{B}$, 总存在 $C \in \mathcal{B}$ 使得 $C \subset A \cap B$.

Def. 称滤子 \mathscr{F} 收敛至 x, 若且仅若 $x \in X$ 的任意邻域包含 \mathscr{F} 中的某一元素. 记作 $\mathscr{F} \to x$.

滤子不收敛的例子: $X=\mathbb{Z}_{>0}, \mathcal{B}:=\{k\mathbb{Z}_{>0}\mid k\in\mathbb{Z}_{>0}\}$. 其生成的滤子 \mathcal{F} 中所包含的元素为一切包含 "正比例无穷等差数列" 之集.

非 Haussdorff 空间的滤子或收敛至多个点, i.e, $\mathscr{F} \to x_1, x_2, \ldots$

Ex1. 给出偏序集上的滤子基与收敛性之定义.

Prop. I 为指标集, $\{\mathscr{F}_i\}_{i\in I}$ 均为滤子, 则 $\cap_{i\in I}\mathscr{F}_i$ 为粗于每一 \mathscr{F}_i 的最细滤子.

Def. 称 \mathscr{F} 为 X 上的素滤子, 若且仅若当滤子 \mathscr{F}_1 与 \mathscr{F}_2 生成 \mathscr{F} 时必有 $(\mathscr{F}_1 = \mathscr{F}) \lor (\mathscr{F}_2 = \mathscr{F})$.

Def. 称 \mathscr{S} 为 X 上的极大滤子若且仅若不存在包含 \mathscr{S} 的滤子 \mathscr{S}' . 即 $\forall x \in X$ 与 \mathscr{S} 生成的滤子只能 为平凡滤子 P.

例如以 $(\mathcal{P}(\{1,2,3,4\}), \subset)$ 为例, $\uparrow \{1\}$ 为主滤子且为极大滤子, $\{1,4\}$ 为主滤子但非极大滤子.

Prop. 存在 (比某一给定 \mathcal{F}_0 细的) 极大滤子.

Proof. 考虑比滤子 \mathscr{F}_0 更细滤子构成的偏序 (P, \subset) . 记 $C = \{\mathscr{F}_i\}_{i \in I}$ 为 P 中的某条链, 记 $H = \bigcup \{\mathscr{F}_i\}_{i \in I}$. 注意到 H 为链 C 之上界, 其本身也为滤子 (**Ex2.**). 是以 H 为极大滤子.

同理可证明环极大理想之存在性, 读者将在学习近世代数时有所感悟.

Prop. 对于极大滤子, 以下叙述等价:

- 1. 多 为极大滤子,
- 2. $\forall A, B \subset X, A \cup B \in \mathcal{F}$ 推出 $A \in \mathcal{F}$ 或 $B \in \mathcal{F}$.
- 3. $\forall A \subset X$, $\{A, A^c\} \cap \mathscr{F} \neq \emptyset$.

 $Proof.\ 1 \implies 2$: 若 $A \cup B \in \mathscr{F}$ 且 $A, B \notin \mathscr{F}$, 则可做出更细的滤子

$$\mathscr{F}\subset \mathscr{F}':=\{C\subset X\mid A\cup C\in \mathscr{F}\}.$$

 $2 \implies 3$: 显然 $A \cap A^c = X \in \mathscr{F}$.

 $3 \implies 1$: 不妨设 \mathscr{F}' 为细于 \mathscr{F} 的滤子. 则任选 $\forall A \in \mathscr{F}'$, A 与 \mathscr{F} 中元素交非空, 从而 $A^c \notin \mathscr{F}$. 因此 $A \in \mathscr{F}$, 即 $\mathscr{F} = \mathscr{F}'$.

Prop. \mathscr{F} 为 X 上滤子, 则 $\mathscr{F} = \cap \{\mathscr{U} \mid \mathscr{F} \subset \mathscr{U}, \mathscr{U} \text{ is an ultrafilter.}\}.$

Prop. \mathscr{U} 为 X 上极大滤子, $\{A_i\}_{i=1}^N \subset \mathcal{P}(X)$ 使得 $\bigcup_{i=1}^N A_i \in \mathscr{U}$, 则存在一个 $A_i \in \mathscr{U}$.

Proof. 若 $\forall i, A_i \notin \mathcal{U}$, 则 $A_i^c \in \mathcal{U}$. 从而 $\bigcap_{i=1}^N A_i^c = (\bigcup_{i=1}^N A_i)^c \in \mathcal{U}$, 与 $\bigcup_{i=1}^N A_i \in \mathcal{U}$ 矛盾!

Prop. \mathscr{U} 为极大滤子, 若 $A \subset X$ 与 \mathscr{U} 中所有元素均有无空的交, 则 $A \in \mathscr{U}$.

Proof. 不妨设 $A \notin \mathcal{U}$, 则 $\mathcal{B} := \{B \cap A \mid B \in \mathcal{U}\}$ 为某一滤子 \mathcal{F} 的滤子基. 显然 \mathcal{F} 细于 \mathcal{U} , 从而只能有 $\mathcal{U} = \mathcal{F}$. 由于 $A \in \mathcal{F}$, 故 $A \in \mathcal{U}$.

Ex3. $f \in Y^X$, \mathscr{U} 为 X 上极大滤子, 则 $f(\mathscr{U})$ 为 f(X) 上极大滤子.

连续与依序列连续不等价: 引入滤子的原因

以下例子务必记忆.

Ex4. 以下给出一种由 $X\setminus\{x_0\}$ 上离散拓扑构造 X 中拓扑之方式. X 为不可数集, 给定 $x_0\in X$, $(X\setminus\{x_0\},\eta)$ 为离散拓扑. 定义 X 中拓扑

$$\tau := \eta \cup \{A \cup \{x_0\} \mid A \in \eta, |A^c| \le \omega\}.$$

按步骤证明:

- (1) (X,τ) 为拓扑空间,并给出一种精细度严格介于 (X,τ) 与离散拓扑间的拓扑.
- (2) 证明 $x_0\in\overline{\{x_0\}^c}$. 回顾极限点之定义 ($x_n\stackrel{\tau}{\to}x$ 当且仅当 x 的任意开集均包含 x_n 中某项之后的所有项), 此时是否存在 $\{x_n\}_{n\geq 1}\in\{x_0\}^c$ 使得 $x_n\stackrel{\tau}{\to}x_0$?
- (3) 证明 (X,τ) 与 $(X,2^X)$ 拥有相同的收敛序列, 但拓扑结构截然不同. 考虑嵌入映射 $i:(X,\tau)\to (X,2^X)$, 从而**依序列连续无法推出映射连续!** (Sequences do not characterise the continuity!)

职是之故,通常的序列收敛仅为连续性的弱形式.显然存在部分优化思路:例如利用一般的序结构代替序列,使之将 "可数极限" 拓宽至 "最小元",且将 "任意序列" 之表述一并纳入. 滤子正是此种改良的自然成果.

Prop. 对度量空间而言, 紧致集与列紧集等价. 以上例子给出一类不可度量化的空间.

Question. Sequences do not characterise the compactness neither!

We shall discuss Stone-Čech compactification later.

紧致性

Thm. (X,τ) 为拓扑空间, 有以下等价叙述:

- $1.(X,\tau)$ 为紧拓扑空间,
- 2. X 上一切极大滤子收敛,
- 3. \cap { $\overline{A} \mid A \in \mathscr{F}$ } ≠ \emptyset , \mathscr{F} 为任意给定的滤子.

 $Proof.\ 1 \implies 2$: 反之,若存在不收敛的极大滤子 \mathscr{U} ,则 $\forall x \in X$,存在开集 $(x \in)V_x \notin \mathscr{U}$.取开覆盖 $\{V_x\}_{x \in X}$ 的任意有限子覆盖 $\{V_i\}_{i=1}^N$,则 $V_i^c \in \mathscr{U}$,故 $(\cup_{i=1}^N V_i)^c \in \mathscr{F}$.由于 $\emptyset \notin \mathscr{U}$,该有限子覆盖不为全空间.

 $2 \implies 3$: 任给滤子 \mathscr{F} , 记 \mathscr{U} 为包含 \mathscr{F} 的极大滤子, 取 x 为某一由 \mathscr{U} 收敛到的点. $\forall A \in \mathscr{F} \subset \mathscr{U}$, $\forall V_x$, 总有 $V_x \cap A \neq \emptyset$, 故 $x \in \overline{A}$.

 $3 \implies 1$: 反之,设 (X,τ) 非紧,则存在不含有限子覆盖的开覆盖 $\{O_i\}_{i\in I} = X$. 构造滤子基 $\mathscr{B} := \{\cap_{i\in\Lambda} O_i^c \mid n\geq 1, \Lambda\subset O, |\Lambda|<\omega\}$,对应的滤子 $\mathscr F$ 满足 $\cap \{\overline{A}\mid A\in\mathscr F\}\subset (\cup_{i\in I}O_i)^c=\emptyset$,与 3 矛盾.

Thm. (Short proof of Тихонов's theorem via theory of filters) An arbitrary product of compact spaces is compact in the product topology.

Proof. Let $(X_i)_{i\in I}$ be the set of compact spaces, we shall prove that each ultrafilter $\mathscr U$ in $\prod_{i\in I} X_i$ converges to at least one point. Since (surjection perseves the ultrafilters) $\pi_i(\mathscr U)$ is an ultrafilter in X_i converging to at least one point $x_i\in X_i$, we claim that $\mathscr U$ converges to $\prod_{i\in I} x_i$. Indeed, each neighbourhood of $\prod_{i\in I} x_i$ contains some elements in $\mathscr F$.

Ex5. Complete the proof. The claim seems too trivial, virtually.