Machine Learning para Ciencias Sociales

Unsupervised Learning

Fecha de Entrega: 4 de Marzo (primer día de exposiciones)

Profesor: Pedro Marco Achanccaray Diaz

Cualquier duda o comentario escribir a: Pedro Achanccaray (pachanccarayd@uni.pe)

Principal Component Analysis - PCA

Ejercicio 1.

Generar una base de datos simulada con 60 observaciones y 50 atributos (usar la función *rnorm*() para generar la base de datos):

- a) Realizar PCA en las 60 observaciones.
- b) Graficar las 2 primeras componentes principales
- c) Mostrar el porcentaje de información contenida en cada componente principal
- d) Mostrar el porcentaje acumulado de información.

k-means

Ejercicio 2a.

Dadas las siguientes observaciones:

- a) Graficar las observaciones.
- b) Realizar k-means con k=2.
- c) Graficar las observaciones asignando un color para cada cluster.

Obs.	X_1	X_2
1	1	4
2	1	3
3	0	4

4	5	1
5	6	2
6	4	0

Ejercicio 2b.

Usando la base de datos del Ejemplo 2:

- a) Realizar k-means con k=5 y variar el método para la distancia: euclidean, maximum, manhattan, canberra, pearson, correlation, spearman, kendall.
- b) Comparar los resultados obtenidos usando los diferentes métodos para la distancia.

Hierarchical Clustering

Ejercicio 3.

Usando la base de datos USArrests:

- a) Realizar Hierarchical Clustering con los siguientes tipos de *linkage*: Complete, Single y Average.
- b) Graficar los Dendrogramas para cada tipo de linkage.
- c) Cortar los Dendrogramas a cierta altura para generar 3 clusters.
- d) Mostrar que estados pertenecen a cada cluster.