



# HOW DO HUMANS SLEEP IN SPACE?

WHAT WE KNOW AND WHAT WE NEED TO KNOW BEFORE  
WE GO TO THE MOON AND MARS?

ERIN FLYNN-EVANS PHD MPH  
DIRECTOR, FATIGUE COUNTERMEASURES LABORATORY  
NASA AMES RESEARCH CENTER

Photo credit: [www.nasa.gov](http://www.nasa.gov)

---

Society for Light Treatment and Biological Rhythms Conference  
May 30, 2023  
Lausanne, Switzerland



---

10 NASA Centers





Photo credit: [www.nasa.gov](http://www.nasa.gov)

# What do we do in the Fatigue Countermeasures Laboratory?

SPACEFLIGHT  
RESEARCH



AERONAUTICS  
RESEARCH



LABORATORY  
RESEARCH



Three Research Areas



Photo credit: www.canva.com

# What will I share today?

**Results from new and old studies in space**

## **What is it like to sleep in space?**

- Sleep environment issues

## **How does sleep in space compare to sleep on Earth?**

- Evaluation of sleep duration and circadian misalignment in space

## **Is sleep architecture different in space?**

- Sleep staging comparisons
- Sleep spindle analysis

## **What do we need to know before we travel further?**

- Space vehicle/mission considerations



# What is it like to sleep in space?

Photo credit: [www.nasa.gov](http://www.nasa.gov)



## EXTERNAL CAUSES OF SLEEP DISRUPTION

- Noise
- Temperature
- Poor air quality
- Light pollution
- Insufficient lighting
- Schedule creep
- Stress
- Psychosocial issues

# The Spaceflight Sleep Environment



Photo credit: www.nasa.gov

# Potential for Circadian Misalignment

Inappropriate/Insufficient Light Exposure



Dijk et al. 2001 *AJP RICP*, Nicholson 1972 *Proc Roy Soc Med*

Schedule-induced



The Spaceflight Sleep Environment





**Are there differences  
between sleep on Earth  
and sleep in space?**

Photo credit: [www.nasa.gov](http://www.nasa.gov)

# Houston, we have a **sleep** problem!



Real *et al.*

2016

Spaceflight Actigraphy Study  
Background Methods Results Conclusions



## WE AIMED TO:

**Compare sleep duration  
in space to sleep  
duration on Earth**

**Determine what  
countermeasures  
(if any) astronauts use  
in space**

**Compare sleep duration  
on short duration  
missions to long  
duration missions**

**Assess the influence of  
circadian misalignment  
on sleep outcomes**

Spaceflight Actigraphy Study  
Background **Methods** Results Conclusions



## Evaluation of short and long-duration spaceflight

- Space shuttle (short)
- International Space Station (ISS; long)

### Measures

- Actigraphy
- Sleep logs
  - Medication use

### Circadian phase estimation

- Circadian performance simulation software (CPSS)
  - Estimate of CBTmin
  - Actigraphy/light input
  - Jewett-Kronauer model

### Analysis

- Mixed-effects models



# Spaceflight Actigraphy Study

## Background Methods Results Conclusions





## SHORT DURATION CREW PARTICIPATION

n = 64 Crewmembers (10F)

n = 26 Flights

n = 4,173 Nights of data collection

Mean age: 46.4 +/- 4.5 y

Average inflight nights per crewmember 13.2 +/- 1.7

Note: Crews scheduled for 8.5 h sleep



## LONG DURATION CREW PARTICIPATION

n = 21 Crewmembers (6F)

n = 13 Flights

n = 3,248 Nights of data collection

Mean age: 46.7 +/- 3.9 y

Average inflight nights per crewmember 155 +/- 39

**Spaceflight Actigraphy Study**  
Background Methods **Results** Conclusions



# Sleep duration is shorter in space relative to on Earth



Barger *et al.* 2014 *Lancet Neurology*



Spaceflight Actigraphy Study  
Background Methods **Results** Conclusions



Photo credit: www.nasa.gov



## Hypnotic use

- **78% of participants used hypnotics at least once**
- **Hypnotics used on 52% of all nights in flight**
- **Crew used more than one dose on 18% of nights**

Barger et al. 2014 *Lancet Neurology*



Spaceflight Actigraphy Study  
Background Methods **Results** Conclusions

Photo credit: www.canva.com

# Effect of hypnotic use on sleep outcomes

|                      | Nights with Hypnotics | Nights without Hypnotics |
|----------------------|-----------------------|--------------------------|
| Sleep duration (h)   | 6.0 (0.6)             | 5.8 (0.9)                |
| Latency (m)          | 22 (17)               | 33 (27)                  |
| Alertness            | 66 (16)               | 58 (20)                  |
| Sleep efficiency (%) | 88 (6)                | 87 (7)                   |
| Sleep quality        | 66 (14)               | 58 (20)                  |



Barger et al. 2014 *Lancet Neurology*

Spaceflight Actigraphy Study  
Background Methods **Results** Conclusions



Photo credit: www.nasa.gov

# Circadian Misalignment during 20% of Nights



Spaceflight Actigraphy Study  
Background Methods **Results** Conclusions



# Consequences of Circadian Misalignment

|                      | Aligned   | Misaligned |
|----------------------|-----------|------------|
| Sleep duration (h)   | 6.4 (1.2) | 5.5 (1.2)  |
| Latency (m)          | 10 (15)   | 13 (25)    |
| # wakings            | 1.7 (1.9) | 1.8 (1.8)  |
| Sleep efficiency (%) | 89 (7)    | 90 (7)     |
| Sleep quality        | 67 (18)   | 60 (21)    |

Flynn-Evans *et al.* 2016 *Nature Microgravity*



Spaceflight Actigraphy Study  
Background Methods **Results** Conclusions



Photo credit: www.nasa.gov

## Medication use Increased during Circadian Misalignment

- **Sleep medication reported on 24% of misaligned nights and 11% of aligned nights**
- **Any medication reported on 63% of misaligned nights and 49% of aligned nights**

Spaceflight Actigraphy Study  
Background Methods **Results** Conclusions



Photo credit: www.canva.com



# **Are humans capable of achieving sufficient sleep in space?**

Photo credit: [www.nasa.gov](http://www.nasa.gov)

# Recent changes to spaceflight sleep

## Sleep stations (crew quarters)

- Light and sound attenuation
- Some temperature control
- Airflow
- Privacy

## Scheduling

- Nominal schedule 2130-0600 GMT, "fixed sleep"
- Restrictions on shifting schedules
- Weekends off, "free sleep"

## Fatigue Management Office

- Sleep hygiene training
- Ground-based hypnotic trials



<https://www.nasa.gov/content/catching-sleep-on-a-long-mission-beyond-low-earth-orbit>

## Spaceflight Actigraphy Study 2 Background Methods Results Conclusions



Photo credit: www.nasa.gov

## KEY QUESTIONS:

Are humans capable of averaging more than 6 hours of sleep per night in space when the sleep environment is improved?

How much influence do schedule changes have on sleep duration?

Spaceflight Actigraphy Study 2  
Background **Methods** Results Conclusions



## Measures

- Actigraphy
  - Continuous
  - 2 weeks every 2 months
- Surveys
  - VAS for sleep quality

## Analysis

- Mixed-effects models
- Analyzed until day 200



Spaceflight Actigraphy Study 2  
Background **Methods** Results Conclusions





## CREW PARTICIPATION

n = 19 Crewmembers (7F)

n = 2,137 Nights of data collection

Mean age: 45 +/- 7 y

Average mission duration 208 +/- 49

10 launched from Kazakhstan

9 launched from Florida



## Spaceflight Actigraphy Study 2 Background Methods **Results** Conclusions



Photo credit: [www.nasa.gov](http://www.nasa.gov)

Humans can  
achieve  
recommended  
amounts of  
sleep in space



Spaceflight Actigraphy Study 2  
Background Methods **Results** Conclusions



Humans can  
achieve  
recommended  
amounts of  
sleep in space



Spaceflight Actigraphy Study 2  
Background Methods **Results** Conclusions



Sleep duration is stable over time with appropriate countermeasures



Spaceflight Actigraphy Study 2  
Background Methods **Results** Conclusions



# Changes in Sleep Outcomes

|                      | Preflight | Inflight | Postflight |
|----------------------|-----------|----------|------------|
| Latency (m)          | 11 (9)    | 8 (6)    | 9 (7)      |
| WASO (m)             | 46 (16)   | 30 (8)   | 49 (16)    |
| # wakings            | 29 (9)    | 16 (3)   | 28 (8)     |
| Sleep efficiency (%) | 85 (6)    | 89 (3)   | 84 (6)     |
| Sleep quality        | 27 (14)   | 27 (16)  | 26 (15)    |



Spaceflight Actigraphy Study 2  
Background Methods **Results** Conclusions



Photo credit: www.nasa.gov

Habitual  
sleep  
duration is  
 $>7$  h per night



Spaceflight Actigraphy Study 2  
Background Methods **Results** Conclusions



# Impact of shifting sleep timing



Spaceflight Actigraphy Study 2  
Background Methods **Results** Conclusions





# Evidence of abnormal entrainment?

|                      | Weekdays    | Weekends    |
|----------------------|-------------|-------------|
| Sleep duration       | 7.1 (0.5)   | 7.6 (0.06)  |
| Wake time (hh:mm)    | 6:39 (0:41) | 7:40 (0:59) |
| Latency (m)          | 9 (6)       | 8 (6)       |
| WASO (m)             | 29 (8)      | 32 (9)      |
| Sleep efficiency (%) | 89 (3)      | 89 (3)      |

Spaceflight Actigraphy Study 2  
Background Methods **Results** Conclusions



Photo credit: www.nasa.gov

# Actigraphy Study Conclusions

## HUMANS CAN ACHIEVE RECOMMENDED AMOUNTS OF SLEEP IN SPACE

Appropriate sleep environment  
Stable schedules

## NEED TO UNDERSTAND HOW SLEEP RELATES TO OTHER OUTCOMES

Performance and sleepiness  
• Jones et al. 2022 tie shorter sleep to poorer performance  
Medication use

## OUTSTANDING QUESTIONS

Do astronauts achieve stable phase entrainment with appropriate lighting (Lockley, Brainard)?  
Does sleep architecture change in space?

Spaceflight Actigraphy Study 2  
Background Methods Results **Conclusions**





**Is sleep architecture  
different in space relative  
to on Earth?**

Photo credit: [www.nasa.gov](http://www.nasa.gov)

# Prior studies reported mixed results

## REM

- One study suggested REM increases in space (Frost et al. 1978)
- One found an increase in eye movements during REM in space (Quadens and Green 1984)

## Slow wave sleep

- Two studies found increased SWS in space (Frost et al. 1978, Monk et al. 1998)
- Two studies found decreased SWS in space (Gundel et al. 1997, Dijk et al. 2001)

**Three studies found a redistribution of REM/SWS (Gundel et al. 1993, Gundel et al. 1997, Stoilova et al. 2000)**

\*All small sample sizes

Spaceflight Sleep Architecture  
Background Methods Results Conclusions



# Re-analysis of Two Studies

## Mir

- Data previously collected, but not analyzed
- REM/NREM over long-duration spaceflight

## Space Shuttle (Neurolab)

- Sleep architecture characteristics published previously
- Sleep microarchitecture not previously explored



Spaceflight Sleep Architecture  
Background **Methods** Results Conclusions



# Evaluation of sleep architecture changes during long-duration spaceflight

## Sleep assessed with NightCap (EOG, EMG)

- Assessment of REM/NREM
- Re-analysis of Mir data, N = 5
- Participants spent ~179 days in space
  - Mean age 43.5 (39.3 – 49.6)
  - n = 113 nights preflight, 68 nights inflight, 61 nights post-flight

## Analysis

- Mixed-effects models



NightCap System



Robert Stickgold  
Harvard Medical School



Oliver Piltch  
Harvard College  
Columbia Medical School

## Spaceflight Sleep Architecture Background Methods Results Conclusions

Photo credit: [www.nasa.gov](http://www.nasa.gov)

# Mir Re-analysis

- Fairly stable schedules
  - Large number of nights inflight
  - Individual differences apparent



Photo credit: [www.nasa.gov](http://www.nasa.gov)

## Changes in sleep during spaceflight

- Sleep opportunity was the same on Earth compared to in space



## Spaceflight Sleep Architecture Background Methods **Results** Conclusions

Photo credit: [www.nasa.gov](http://www.nasa.gov)

## Longitudinal changes over time in space

- Sleep opportunity increased during spaceflight
- Sleep latency increased during spaceflight
  - Reduced sleep efficiency over time
- REM recovers to near preflight levels at the expense of NREM
  - Potential for REM homeostasis?



Spaceflight Sleep Architecture  
Background Methods **Results** Conclusions

## Hypothesis: Sleep spindle density and slow wave amplitude in N2/N3 will be decreased in space compared to on Earth

- Data mining of Neurolab missions (Dijk et al. 2001)

*Am J Physiol Regulatory Integrative Comp Physiol*  
281: R1647–R1664, 2001.

Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights

DERK-JAN DIJK,<sup>1</sup> DAVID F. NERI,<sup>1,2</sup> JAMES K. WYATT,<sup>1</sup> JOSEPH M. RONDA,<sup>1</sup> EYMARD RIEL,<sup>1</sup> ANGELA RITZ-DE CECCO,<sup>1</sup> ROD J. HUGHES,<sup>1</sup> ANN R. ELLIOTT,<sup>3</sup> G. KIM PRISK,<sup>3</sup> JOHN B. WEST,<sup>3</sup> AND CHARLES A. CZEISLER<sup>1</sup>

<sup>1</sup>Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; <sup>2</sup>Fatigue Countermeasures Program, National Aeronautics and Space Administration Ames Research Center, Moffett Field 94035; and <sup>3</sup>Department of Medicine, University of California, San Diego, La Jolla, California 92093

Received 23 January 2001; accepted in final form 22 June 2001



Vida Kasanin  
ESA Advanced Concepts Team



Dominik Koller  
ESA Advanced Concepts Team  
Brain Simulation Section at  
Charité - University Hospital  
Berlin

# Spaceflight Sleep Architecture

## Background Methods Results Conclusions

## Standard Polysomnography

- Spindle characteristics (e.g., frequency, density)
  - Slow spindles 9-12 Hz (associated with word-pair retention)
  - Fast spindles 12-15 Hz (associated with motor learning)
- Slow wave characteristics (e.g., amplitude, density)



## Analysis

- Mixed-effects models



Spaceflight Sleep Architecture  
Background **Methods** Results Conclusions



# Fast spindle density increased Slow spindle frequency increased



Koller et al. *Nature Microgravity* 2021

Spaceflight Sleep Architecture  
Background Methods **Results** Conclusions



Photo credit: www.nasa.gov

# Slow wave amplitude decreased during spaceflight



Koller et al. *Nature Microgravity* 2021



Spaceflight Sleep Architecture  
Background Methods **Results** Conclusions



Photo credit: [www.nasa.gov](http://www.nasa.gov)

# Sleep Architecture Conclusions

## **REDUCED SLEEP DURATION IN SPACE**

Associated with a reduction in REM and NREM sleep

Recovery of REM sleep with (long) time

## **SLEEP MICRO-ARCHITECTURE ALTERED IN SPACE**

Increased fast spindle density could relate to learning new motor skills while in space

Reduced slow wave amplitude may reflect changes in the glymphatic system during spaceflight

## **MORE STUDIES NEEDED**

Require studies in environments that are not stressful

Studies in environments that have optimized sleep environment and stable schedules

Spaceflight Sleep Architecture  
Background Methods Results **Conclusions**



# **What else do we need to learn before we go to the Moon and Mars?**



Photo credit: www.canva.com

# From Low-Earth Orbit to the Moon to Mars

INTERNATIONAL  
SPACE STATION



ARTEMIS LUNAR  
EXPEDITIONS



MARS MISSIONS



NASA Spaceflight Missions



Photo credit: [www.nasa.gov](http://www.nasa.gov)



The SPACE STATION is **357 FEET** end to end, one yard shy of the full length of an American football field including the end zones



An international crew of **6 PEOPLE** live and work while traveling at a speed of five miles per second, orbiting Earth about every **90 minutes**.



The space station has an **internal pressurized volume** equal to that of a **Boeing 747**.



Astronauts and cosmonauts have conducted more than **227 SPACEWALKS** (and counting!) for space station construction, **maintenance** and **upgrades** since **December 1998**.



The solar arrays are **240 FEET** long, about the same length as the **world's largest passenger aircraft**, the Airbus A380.



**16 ORBITS SUNRISE SUNSET**

In 24 hours, the space station makes **16 orbits of Earth**, traveling through **16 sunrises and sunsets**.



# International Space Station



Photo credit: [www.nasa.gov](http://www.nasa.gov)



**ARTEMIS III**  
Landing on the Moon in 2024

- 1 LAUNCH SLS and Orion lift off from Kennedy Space Center
- 2 JETTISON ROCKET BOOSTERS Solid rocket boosters separate
- 3 JETTISON LAUNCH ABORT SYSTEM (LAS) The LAS is no longer needed. Orion could safety abort
- 4 CORE STAGE MAIN ENGINE CUT OFF With separation
- 5 ENTER EARTH ORBIT Perform the perigee raise maneuver
- 6 EARTH ORBIT Systems check and solar panel adjustments
- 7 TRANS LUNAR INJECTION BURN Burn lasts for approximately 20 minutes
- 8 ORION OUTBOUND TRANSIT TO MOON Requires several attitude maneuvers
- 9 ORION OUTBOUND POWERED FLYBY
- 10 GATEWAY ORBIT INSERTION BURN Orion enters system and rendezvous to dock to the Gateway
- 11 HUMAN LANDING SYSTEM (HLS) Undocks from Gateway
- 12 HLS ENTERS LOW LUNAR ORBIT Descends to lunar touchdown
- 13 GATEWAY/ORION REMAIN IN LUNAR ORBIT UNTIL SPLASHDOWN During lunar surface mission
- 14 HLS ASCENDS LOW LUNAR ORBIT Then to Gateway Orbit to dock with Gateway
- 15 CREW RETURNS TO ORION Undocks from Gateway and departs Gateway Orbit
- 16 ORION RETURN POWERED FLYBY
- 17 ORION TRANSITS TO EARTH
- 18 ENTRY INTERFACE Enter Earth's atmosphere
- 19 SPLASHDOWN Pacific Ocean landing within range of U.S. Navy recovery ships



**GATEWAY**

Space station orbiting the moon



**HUMAN LANDING SYSTEM**

Lunar lander transporting crews between Gateway and the lunar surface



**SURFACE OPERATIONS**

Lunar base

# Artemis III: Lunar Surface



Photo credit: [www.nasa.gov](http://www.nasa.gov)

# Human Exploration Research Analog (HERA)

## Analog Studies

- What characteristics are associated with resilient performance?
- How well do biomathematical models predict alertness and performance in an operational environment?



Flynn-Evans et al. 2020 *Sci Reports*

How do we prepare for Lunar Missions?



Photo credit: [www.nasa.gov](http://www.nasa.gov)



Photo credit: www.nasa.gov

# Lunar Sleep and Performance Conclusions

## POTENTIAL TOOL FOR DISCRIMINATING RESILIENT FROM NON-RESILIENT

- May help operational personnel identify those at most risk of performance impairment due to chronic sleep loss

## CONSIDERATIONS AND LIMITATIONS

- Additional operational data needed
  - Additional mission scenarios
  - Larger n needed
  - Apply/compare to other cognitive domains-
- Models are reasonable at discriminating resilient and vulnerable overall, but daily/hourly predictions inaccurate
- Approach better at identifying resilient individuals, many "average" individuals included in "non-resilient"

Predicting Performance in HERA  
Background Methods Results **Conclusions**





## Mars Missions





---

How do we prepare for Mars Missions?



# We can shift to Mars time!



Barger *et al.* 2012 SLEEP

Circadian phase shifting studies



Photo credit: [www.nasa.gov](http://www.nasa.gov)

# What else are we studying?



Photo credit: www.canva.com



Photo credit: [www.nasa.gov](http://www.nasa.gov)



Photo credit: [www.nasa.gov](http://www.nasa.gov)



Photo credit: [www.nasa.gov](http://www.nasa.gov)

# Future directions

## ASSESS SLEEP ARCHITECTURE IN A LARGER SAMPLE

- More data needed to confirm spaceflight insomnia and to understand its consequences
- Assess sleep in a quality sleep environment without circadian misalignment
- Quantify impact of sleep quarters

## ASSESS COUNTERMEASURES

- Scheduling interventions to minimize misalignment (Brainard, Lockley)
- Lighting on ISS to mitigate circadian misalignment
  - Assess adaptation to Mars Sol in space

## ASSESS PERFORMANCE INFLIGHT

Is sleep loss associated with poorer performance?





Photo credit: Erin Flynn-Evans

## NASA AMES

Cassie Hilditch PhD  
Patrick Cravalho PhD  
Sean Pradhan PhD  
Lucia Arsintescu  
Nick Bathurst  
Kevin Gregory  
Ravi Chachad  
Crystal Kirkley  
Zach Glaros  
Greg Costedoat  
Nathan Feick  
Lily Wong  
Zac Caddick  
Kenji Kato

# THANK YOU!

## NASA JSC

Lauren Leveton PhD  
Tom Williams PhD  
Sandra Whitmire PhD  
Curtis Kershner  
Marty Bost

## FUNDING

NASA Human Research Program and  
Systemwide Safety Program

[erin.e.flynn-evans@nasa.gov](mailto:erin.e.flynn-evans@nasa.gov)

## HARVARD

Laura Barger PhD  
Charles Czeisler PhD, MD  
Beth Klerman MD, PhD  
Jason Sullivan  
Eymard Riel RPSGT  
Lorcan Walsh  
Conor O'brien  
Sean Benedix  
Scott Beckett