Hoofdstuk 11

Essential University Physics

Richard Wolfson 2nd Edition

Rotatie Vektoren en Impulsmoment

Rotational Vectors and Angular Momentum

© Johan D'heer

11.1 Rotatievektoren

 Rotatiebeweging en rotatiegrootheden analoog met translatie-beweging en –grootheden

Translatie	Rotatie	
snelheid	hoeksnelheid	
versnelling	hoekversnelling	
kracht	krachtmoment	
impuls	impulsmoment	
Valdanas	Valta ran 2	
Vektoren	Vektoren?	

© Johan D'hee

Richting van de Hoeksnelheid

- De richting van de hoeksnelheidsvektor is de rotatieas, de zin wordt gegeven door de rechterhandregel.
 - Plooi de vingers van je rechterhand in de richting van de rotatie, en je duim wijst in de richting van de hoeksnelheidsvektor \(\vec{\pi}\).

© Johan D'hee

Richting van de Hoekversnelling

• De hoekversnelling heeft dezelfde richting als de richting van de verandering van de hoeksnelheid $\Delta \vec{\omega}$:

$$\vec{\alpha} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\omega}}{\Delta t} = \frac{d\vec{\omega}}{dt}$$

- $\Delta \vec{\omega}$ dezelfde zin en richting als $\vec{\omega}$: hoeksnelheid neemt toe.
- $\Delta \vec{\omega}$ tegengestelde zin en dezelfde richting als $\vec{\omega}$: hoeksnelheid neemt af.
- $\Delta \vec{\omega}$ een andere richting als $\vec{\omega}$: hoeksnelheid verandert van richting en eventueel van grootte.

© Johan D'heei

- · Het krachtmoment staat loodrecht op:
 - de kracht en
 - de verplaatsing vanaf de rotatieas naar het punt waar de kracht werkt op het voorwerp.
- De grootte van het krachtmoment is τ = rFsinθ
- De zin wordt gegeven door de rechterhandregel.

 $\vec{\tau} = \vec{r} \times \vec{F}$

Johan D'hee

Het Vektorieel Produkt

• Het vektorieel produkt van twee vektoren \vec{A} en \vec{B} is een vektor \vec{C} met grootte $C = AB\sin\theta$ en een richting en zin gegeven door de rechterhand regel:

· Enkele eigenschappen van het vektorieel produkt:

$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$
$$\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$

© Johan D'heer

Start with the vectors tail to Curl your fingers in a direction that rotates the first vector (\vec{r}) onto the second (\vec{F}) .

Then your thumb points $\vec{\tau}$ (out of page) in the direction of $\vec{\tau} = \vec{r} \times \vec{F}$.

Het Vektorieel Produkt

Zoek het passend krachtmoment bij (a), (b), (c) en (d)

11.3 Impulsmoment (Angular Momentum)

• Voor een puntmassa wordt het impulsmoment \vec{L} gegeven door het vektorprodukt van de plaatsvektor van het deeltje (vanaf de rotatieas) en de impulsvektor van het deeltje:

 $\vec{L} = \vec{r} \times \vec{p}$

Bvb.: een puntmassa die een cirkelvormige baan beschrijft:
 L loodrecht op het vlak van de cirkel en L = mvr

Johan D'heer

Impulsmoment (Angular Momentum)

Bijzonder geval:
 Een symmetrisch voorwerp dat roteert rond een as door het massamiddelpunt

$$\vec{L} = I\vec{\omega}$$
 (cfr : $\vec{p} = m\vec{v}$)

© Johan D'heer

11

2^{de} Wet van Newton en Impulsmoment

 In termen van impulsmoment wordt de tweede wet van Newton voor rotaties:

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$
 (cfr: $\vec{F}_{net} = \frac{d\vec{p}}{dt}$)

- Het impulsmoment van een systeem verandert enkel als er een netto krachtmoment ≠ 0 werkt op het systeem.
- Is het netto krachtmoment nul, dan is het impulsmoment constant.
- Voor een symmetrisch lichaam dat roteert rond een vaste as:

$$\vec{\tau} = \frac{d(\vec{l\omega})}{dt}$$

© Johan D'heer

2^{de} Wet van Newton en Impulsmoment

 Veranderingen van het traagheidsmoment leiden tot veranderingen van hoeksnelheid als het netto-krachtmoment nul is.

 $\vec{L} = I\vec{\omega} = c^{te}$ als $\vec{\tau}_{net} = 0$

Het impulsmoment voor de schaatster is constant, dus zal haar hoeksnelheid toenemen waneer ze haar traagheidsmoment verkleint.

O Johan D'heer

Conceptvraag

- In welke geval(len) verandert het impulsmoment van een systeem niet?
- A) de totale kinetische energie is constant.
- B) er werkt geen netto externe kracht op het systeem.
- C) de impuls en de energie veranderen niet.
- D) er werkt geen krachtmoment op het systeem.

O Johan D'heer

Conceptvraag

• Een bal botst tegen een metalen staat en blijft aan de staaf kleven (zie figuur).

● →

Tijdens deze botsing

- A) verandert het impulsmoment van bal+staaf t.o.v. de ophanghaak niet omdat enkel de zwaartekracht op het systeem werkt.
- B) verandert het impulsmoment van bal+staaf t.o.v. de ophanghaak wel omdat de haak een externe kracht uitoefent op de staaf.
- C) verandert het impulsmoment van bal+staaf t.o.v. de ophanghaak niet omdat noch de haak, noch de zwaartekracht een krachtmoment t.o.v. de haak uitoefenen op het systeem.
- D) veranderen het impulsmoment en de kinetische energie van het systeem niet.
- E) veranderen de impuls en het impulsmoment van het systeem niet.

© Johan D'heer

15

11.4 Behoud van Impulsmoment

http://www.youtube.com/watch?v=UZIW1a63KZs

http://www.youtube.com/watch?v=ty9QSiVC2g0

	Nederlands	Engels
$\vec{J} = \vec{F} dt$	stoot	impulse
$\vec{p} = m\vec{v}$	impuls	(linear) momentum
$\vec{L} = r \times \vec{p}$	impulsmoment	angular momentum
$\vec{ au} = \vec{r} imes \vec{F}$	krachtmoment	torque

© Johan D'heer

11.4 Behoud van Impulsmoment

- *Initiëel*: totale impulsmoment = impulsmoment van wiel.
- Wiel omdraaien → impulsmoment draait om.

O Johan D'heer

Gevolg: tafel begint in tegenovergestelde zin te draaien, zó dat impulsmoment tafel + impulsmoment wiel = oorspronkelijk impulsmoment wiel.

The student stands on a She flips the spinning stationary turntable holding a wheel, reversing its angular wheel that spins counterclockwise; momentum. The total angular momentum is conserved, so the wheel's angular momentum turntable and student (ts) must points upward rotate the other way.

11.5 Precessie

- Precessie is een drie-dimensionaal verschijnsel dat soms optreedt bij rotatiebeweging.
 - Precessie treedt op wanneer een krachtmoment, werkend op een roterend voorwerp, de richting maar niet de grootte van het impulsmoment verandert.
 - Als gevolg hiervan voert de rotatieas een cirkelvormige beweging uit (= precessie):

Samenvatting

- Rotatie grootheden zijn vektoren waarvan de richting geassocieerd wordt met de richting van de rotatie-as.
 - Concreet: de richting wordt gegeven door de rechterhand regel.
 - Het vektorprodukt geeft een compacte voorstelling voor krachtmoment en impulsmoment.

- Impulsmoment is het rotatie analoog van impuls:

 $\vec{L} = \vec{r} \times \vec{p}$; symmetrische voorwerpen, $\vec{L} = I\vec{\omega}$.

 Is er geen extern krachtmoment, dan is het impulsmoment van een systeem constant.

D Johan D'heer

Linear Quantity or Equation	Angular Quantity or Equation	Relation Between Linear and Angular Quantities
Position x	Angular position θ	
Speed $v = dx/dt$	Angular speed $\omega = d\theta/dt$	$v = \omega r$
Acceleration a	Angular acceleration α	$a_t = \alpha r$
Mass m	Rotational inertia I	$I=\int r^2dm$
Force F	Torque $ au$	$\tau = rF\sin\theta$
Kinetic energy $K_{\text{trans}} = \frac{1}{2}mv^2$	Kinetic energy $K_{\rm rot} = \frac{1}{2}I\omega^2$	
Newton's second law (constant	mass or rotational inertia):	
F = ma	au = I lpha	
$ec{ ho}=mec{ m v}$	$\vec{L} = I\vec{\omega}$	$\vec{L} = \vec{r} \times \vec{p}$
$\vec{F}_{net} = \frac{d\vec{p}}{dt}$	$\vec{ au} = \frac{d\vec{L}}{dt}$	$\vec{\tau} = \vec{r} \times \vec{F}$
$\vec{p} = m \ \vec{v} = cte$	$\vec{L} = I \overrightarrow{\omega} = c^{te}$	