ex1

March 31, 2025

1 Exercise 1

Make the required imports by the notebook

```
[2]: import numpy as np
import matplotlib.pyplot as plt
from astropy.io import fits
from astropy.table import Table
from astropy import units as u
plt.ion()
```

[2]: <contextlib.ExitStack at 0x1d6d7b290d0>

Create a list with randomly chosen numbers and calculate their mean value using the numpy package.

```
[3]: a = [23, 56, 2, 4, 3]
b= np.mean(a)
print(b)
```

17.6

Read the hst_results_nd.fits file using astropy and print its columns

```
[4]: t = Table.read("./data/hst_results_nd.fits")

for c in t.columns:
    print(c)
```

```
Name
RA
DEC
HST_WFC3_F225W
HST_WFC3_F275W
HST_WFC3_F336W
HST_WFC3_F475W
HST_WFC3_F814W
HST_WFC3_F110W
HST_WFC3_F160W
```

Av_Best

 Av_Exp

Av_p16

 Av_p50

Av_p84

Rv_Best

Rv_Exp

Rv_p16

Rv_p50

Rv_p84

Rv_A_Best

Rv_A_Exp

Rv_A_p16

 Rv_A_p50

 Rv_A_p84

 f_A_Best

f_A_Exp

f_A_p16

f_A_p50

f_A_p84

 ${\tt distance_Best}$

distance_Exp

distance_p16

distance_p50

 $distance_p84$

radius_Best

radius_Exp

radius_p16

radius_p50

radius_p84

logL_Best

logL_Exp

logL_p16

logL_p50

logL_p84

logg_Best

logg_Exp

logg_p16

logg_p50

logg_p84

mbolmag_Best

mbolmag_Exp

mbolmag_p16

 $mbolmag_p50$

 $mbolmag_p84$

logA_Best

logA_Exp

logA_p16

```
logA_p50
```

- logA_p84
- logT_Best
- logT_Exp
- logT_p16
- logT_p50
- logT_p84
- 10g1_p04
- M_ini_Best
- $M_{ini}Exp$
- M_ini_p16
- M_{ini_p50}
- M_ini_p84
- M_act_Best
- M_act_Exp
- M_act_p16
- M_act_p50
- "_act_poo
- M_act_p84
- Z_Best
- Z_Exp
- Z_p16
- Z_p50
- Z_p84
- logHST_WFC3_F225W_nd_Best
- logHST_WFC3_F225W_nd_Exp
- logHST_WFC3_F225W_nd_p16
- logHST_WFC3_F225W_nd_p50
- logHST_WFC3_F225W_nd_p84
- logHST_WFC3_F275W_nd_Best
- logHST_WFC3_F275W_nd_Exp
- logHST_WFC3_F275W_nd_p16
- logHST_WFC3_F275W_nd_p50
- logHST_WFC3_F275W_nd_p84
- logHST_WFC3_F336W_nd_Best
- logHST_WFC3_F336W_nd_Exp
- logHST WFC3 F336W nd p16
- logHST_WFC3_F336W_nd_p50
- logHST_WFC3_F336W_nd_p84
- logHST_WFC3_F475W_nd_Best
- logHST_WFC3_F475W_nd_Exp
- TOBUDI_WI OO_I I/OW_HG_LIXP
- logHST_WFC3_F475W_nd_p16 logHST_WFC3_F475W_nd_p50
- logHST_WFC3_F475W_nd_p84
- logHST_WFC3_F814W_nd_Best
- logHST WFC3_F814W_nd_Exp
- logHST_WFC3_F814W_nd_p16
- logHST_WFC3_F814W_nd_p50
- logHST_WFC3_F814W_nd_p84
- logHST_WFC3_F110W_nd_Best

```
logHST_WFC3_F110W_nd_Exp
logHST_WFC3_F110W_nd_p16
logHST_WFC3_F110W_nd_p50
logHST_WFC3_F110W_nd_p84
logHST WFC3 F160W nd Best
logHST_WFC3_F160W_nd_Exp
logHST WFC3 F160W nd p16
logHST_WFC3_F160W_nd_p50
logHST_WFC3_F160W_nd_p84
logGALEX_FUV_nd_Best
logGALEX_FUV_nd_Exp
logGALEX_FUV_nd_p16
logGALEX_FUV_nd_p50
logGALEX_FUV_nd_p84
logF_QION228_nd_Best
logF_QION228_nd_Exp
logF_QION228_nd_p16
logF_QION228_nd_p50
logF_QION228_nd_p84
logHST WFC3 F225W wd Best
logHST WFC3 F225W wd Exp
logHST WFC3 F225W wd p16
logHST_WFC3_F225W_wd_p50
logHST_WFC3_F225W_wd_p84
logHST_WFC3_F275W_wd_Best
logHST_WFC3_F275W_wd_Exp
logHST_WFC3_F275W_wd_p16
logHST_WFC3_F275W_wd_p50
logHST_WFC3_F275W_wd_p84
logHST_WFC3_F336W_wd_Best
logHST_WFC3_F336W_wd_Exp
logHST_WFC3_F336W_wd_p16
logHST_WFC3_F336W_wd_p50
logHST_WFC3_F336W_wd_p84
logHST WFC3 F475W wd Best
logHST_WFC3_F475W_wd_Exp
logHST WFC3 F475W wd p16
logHST_WFC3_F475W_wd_p50
logHST_WFC3_F475W_wd_p84
logHST_WFC3_F814W_wd_Best
logHST_WFC3_F814W_wd_Exp
logHST_WFC3_F814W_wd_p16
logHST_WFC3_F814W_wd_p50
logHST_WFC3_F814W_wd_p84
logHST_WFC3_F110W_wd_Best
logHST_WFC3_F110W_wd_Exp
logHST_WFC3_F110W_wd_p16
logHST_WFC3_F110W_wd_p50
```

```
logHST_WFC3_F110W_wd_p84
logHST_WFC3_F160W_wd_Best
logHST_WFC3_F160W_wd_Exp
logHST_WFC3_F160W_wd_p16
logHST WFC3 F160W wd p50
logHST_WFC3_F160W_wd_p84
logGALEX FUV wd Best
logGALEX_FUV_wd_Exp
logGALEX FUV wd p16
logGALEX_FUV_wd_p50
logGALEX_FUV_wd_p84
logF_QION228_wd_Best
logF_QION228_wd_Exp
logF_QION228_wd_p16
logF_QION228_wd_p50
logF_QION228_wd_p84
symlogHST_WFC3_F225W_wd_bias_Best
symlogHST_WFC3_F225W_wd_bias_Exp
symlogHST_WFC3_F225W_wd_bias_p16
symlogHST WFC3 F225W wd bias p50
symlogHST WFC3 F225W wd bias p84
symlogHST WFC3 F275W wd bias Best
symlogHST_WFC3_F275W_wd_bias_Exp
symlogHST_WFC3_F275W_wd_bias_p16
symlogHST_WFC3_F275W_wd_bias_p50
symlogHST_WFC3_F275W_wd_bias_p84
symlogHST_WFC3_F336W_wd_bias_Best
symlogHST_WFC3_F336W_wd_bias_Exp
symlogHST_WFC3_F336W_wd_bias_p16
symlogHST_WFC3_F336W_wd_bias_p50
symlogHST_WFC3_F336W_wd_bias_p84
symlogHST_WFC3_F475W_wd_bias_Best
symlogHST_WFC3_F475W_wd_bias_Exp
symlogHST_WFC3_F475W_wd_bias_p16
symlogHST WFC3 F475W wd bias p50
symlogHST WFC3 F475W wd bias p84
symlogHST WFC3 F814W wd bias Best
symlogHST_WFC3_F814W_wd_bias_Exp
symlogHST_WFC3_F814W_wd_bias_p16
symlogHST_WFC3_F814W_wd_bias_p50
symlogHST_WFC3_F814W_wd_bias_p84
symlogHST_WFC3_F110W_wd_bias_Best
symlogHST_WFC3_F110W_wd_bias_Exp
symlogHST_WFC3_F110W_wd_bias_p16
symlogHST_WFC3_F110W_wd_bias_p50
symlogHST_WFC3_F110W_wd_bias_p84
symlogHST_WFC3_F160W_wd_bias_Best
symlogHST_WFC3_F160W_wd_bias_Exp
```

symlogHST_WFC3_F160W_wd_bias_p16
symlogHST_WFC3_F160W_wd_bias_p50
symlogHST_WFC3_F160W_wd_bias_p84

chi2min

Pmax

Pmax_indx

total_log_norm

best_gridsub_tag

reorder_tag

Х

Y

F110W_RATE

F110W_RATERR

F110W_VEGA

F110W_STD

F110W_ERR

F110W_CHI

F110W_SNR

F110W_SHARP

F110W_ROUND

F110W_CROWD

F110W_FLAG

F160W_RATE

F160W_RATERR

F160W_VEGA

F160W_STD

F160W_ERR

F160W_CHI

F160W_SNR

F160W_SHARP

F160W_ROUND

F160W_CROWD

F160W_FLAG

F225W_RATE

F225W RATERR

F225W_VEGA

F225W STD

F225W_ERR

F225W_CHI

F225W_SNR

F225W_SHARP

F225W_ROUND

F225W_CROWD

F225W_FLAG

F275W_RATE

F275W_RATERR

F275W_VEGA

F275W_STD

```
F275W_ERR
F275W_CHI
F275W_SNR
F275W_SHARP
F275W_ROUND
F275W_CROWD
F275W_FLAG
F336W_RATE
F336W_RATERR
F336W_VEGA
F336W_STD
F336W_ERR
F336W_CHI
F336W_SNR
F336W_SHARP
F336W_ROUND
F336W_CROWD
F336W_FLAG
F475W_RATE
F475W_RATERR
F475W_VEGA
F475W_STD
F475W_ERR
F475W_CHI
F475W_SNR
F475W_SHARP
F475W_ROUND
F475W_CROWD
F475W_FLAG
F814W_RATE
F814W_RATERR
F814W_VEGA
F814W_STD
F814W_ERR
F814W_CHI
F814W_SNR
F814W_SHARP
F814W_ROUND
F814W_CROWD
F814W_FLAG
HST_WFC3_F336W_MD
reliable
```

Select columns from the fits file and store them in the corresponding variables.

```
[5]: ra = t["RA"]
dec = t["DEC"]
av = t["Av_p50"]
```

```
age = t["logA_p50"]
mass = t["M_ini_p50"]
temp = t["logT_p50"]
f475w = t["F475W_VEGA"]
f814w = t["F814W_VEGA"]
#t[0].colnames
```

Select **young_stars** to be the stars with age less than 8.5 and **old_stars** to be the stars with age greater than 10.

Print the size of the two lists of stars.

Plot all stars, **young_stars** and **old_stars**, where on the x axis is the difference between the filter 475 and filter 814 (color index) normalized with Vega and on the y axis is the filter 475 normalized with Vega (luminosity in the given filter).

Add a legend.

Save the file to cmd_by_age.pdf

44 170

Plot the dust extinction in the square using the RA and DEC coordinates.

For this purpose use scatter plot with a colorbar next to the plot.

Save the file in $lmc_av_spatial.pdf$

```
[7]: plt.figure()
# A(V) max = 5, -> limit to 1.5
cb = plt.scatter(ra, dec, c=av, marker='.', cmap='magma', vmin=0, vmax=1.5)
plt.colorbar(cb, label='A(V) [mag]')
plt.xlabel("RA", fontsize=14)
plt.ylabel("DEC", fontsize=14)
plt.savefig("./dist/lmc_av_spatial.pdf")
```


Store the predicted distance in the variable ${f dist}$

```
[9]: dist=t["distance_p50"]
```

Create a histogram of the distances to the stars in kpc. Use 25 bins for the histogram.

Set the appropriate labels on the x and y axes.

Calculate the mean distance, again in kpc, and plot it as vertical line atop of the histogram.

Save the figure to lmc_dist_hist.pdf

```
plt.figure()
  plt.hist(dist/1000, bins=25)
  plt.xlabel("Distance [kpc]", fontsize=14)
  plt.ylabel("N")
  d_mean = np.mean(dist/1000)
  print(d_mean)
  plt.axvline(d_mean, color='gray', ls='--', lw=1)
  plt.text(58, 270, '%s' % np.around(d_mean, decimals=2))
  plt.savefig("./images/lmc_dist_hist.pdf")
```

49.806221103883765

Read an astropy table with the data from Scylla survey into the variable cat.

```
[13]: f = "./data/hlsp_scylla_hst_wfc3_lmc-04_multi_v1_st.fits"
cat = Table.read(f)
```

Select the 475 and 814 wavelength fluxes normalized to Vega.

```
[14]: #t[0].colnames
f475 = cat["F475W_VEGA"]
f814 = cat["F814W_VEGA"]
```

Create a Herzprung-Russel diagram by plotting on the x-axis the color index between f475 - f814 and on the y-axis the flux in f475.

Use blue color, no line style and smaller markers on the plot.

Set the limits ti be between $x \in [-3, 6]$ and $y \in [30, 17]$.

Note that the y-axis is reversed.

Set the corresponding lables on x and y axes and the title of the figure.

Save the figure to cmd_lmc4.png

```
[15]: col = f475 - f814
    mag = f475
    n = len(f475)
# TODO: make a correction of n

plt.figure()
plt.plot(col, mag, ',b', ls='', label='N = %s' % n)
plt.legend()
plt.xlim(-3,6)
plt.ylim(30, 17)
plt.xlabel('F475W - F814W')
plt.ylabel('F475W')
plt.title('%s' % f)
plt.savefig("./images/cmd_lmc4.png")
```

./data/hlsp_scylla_hst_wfc3_lmc-04_multi_v1_st.fits


```
[]:
```