Содержание

Ι	3 семестр. Основы теории групп.	2
1	Основные классы алгебраических систем	2
2	Группа	2
3	Подгруппа	4
4	Отношения эквивалентности и смежные классы и все-все-все	5
5	Циклические группы	9
6	Подстановки	10
7	Прямое произведение	12
8	Справочник.	15
9	Вопросы к коллоквиуму	16

Часть І

3 семестр. Основы теории групп.

1 Основные классы алгебраических систем

Группоид= множество+бинарная операция

Полугруппа= Группоид+свойство ассоциативности ((x*y)*z = x*(y*z))

Моноид = Полугруппа + нейтральный элемент ((e*x = x*e = x); (0 + x = x + 0 = x))

2 Группа

 Γ руппа = Моноид + существование обратного элемента (противоположный)

Свойства групп:

- 1. Единственность нейтрального элемента
- 2. Единственность обратного элемента

3.
$$(x*y)^{-1} = y^{-1}*x^{-1}$$

4.
$$(x^{-1})^n = (x^n)^{-1}, n \in \mathbb{N}$$

5.
$$x^n * x^m = x^{n+m}n, m \in \mathbb{Z}$$

- 6. Уравнение ax=b имеет единственное решение $x=a^{-1}b$ ($xa=b\Rightarrow x=ba^{-1}$)
- 7. $xy = e \Rightarrow y = x^{-1}$

Коммутативная группа = абелева группа (группа, в которой выполняется свойство коммутативности $\forall x, y \in \mathbb{G} \Rightarrow xy = yx$)

Порядок группы ($|\mathbb{G}|$) -число элементов в группе

Порядок элемента $(|x|)=min\{n\in\mathbb{N}:x^n=e\}$ (т.е. минимальная

натуральная степень, в которую нужно возвести элемент, что бы он превратился в "единицу")

3 Подгруппа

 $\mathbb{H} \leq \mathbb{G}$; \mathbb{G} : \mathbb{H} является группой относительно той же операции. (Подмножество \mathbb{H} группы \mathbb{G} называется **подгруппой** этой группы, если оно само является группой относительно той же операции)

Тривиальные подгруппы- это e и \mathbb{G}

Если $\mathbb{H} \leq \mathbb{G}$ и $\mathbb{H} \neq \mathbb{G}$, то будем писать $\mathbb{H} < \mathbb{G}$.

T. о равенстве единичных элементов в группе и подгруппе $H < G \Rightarrow e_H = e_G$

Док-во: $h \in \mathbb{H} \to he_H = h; he_G = h \Rightarrow e_G g^{-1} he_H = h^{-1} h = e_G e_H \Rightarrow e_H = e_G$

Т. о равенстве обратных элементов $H < G, h \in H \Rightarrow h_H^{-1} = h_G^{-1}$ Критерий подгруппы: $\exists H < G$ и $H < G \Leftrightarrow$

$$\begin{cases} H \neq \varnothing \\ x \in H \\ y \in H \end{cases}$$

, то xy = H

 $\exists \check{G}$ -конечная группа

Пусть $H < G \Rightarrow$

$$\begin{cases} H \neq \varnothing \\ x, y \in H, xy \in H \end{cases}$$

 $x\in H\Rightarrow x^k< H, \forall k\in N,$ т.к. $|G|<\infty\Rightarrow El, m: x^l=x^m\Rightarrow x^{l-m}\Rightarrow=e\Rightarrow e\in H$

Если G- коммутативная группа, то xH = Hx, то $G/H = H \setminus G$. Можем ввести операцию в G/H (xH)(yH) = (xy)H

4 Отношения эквивалентности и смежные классы и все-все-все

Отношения на множестве $M \colon T \leq M * M = \{(a,b) : a,b \in M\}$ aTb-если пара $(a,b) \in T$ Примеры:

- 1. $T = \emptyset$
- 2. T = M * M
- 3. $M = R, aTb \Leftrightarrow a \le b$
- 4. $M = R, aTb \Leftrightarrow b = a^2$

T называется **отношением эквивалентности**, если оно удовлетворяет следующим условиям:

- 1. aTa (рефлексивность)
- 2. $aTb \rightarrow bTa$ (симметричность)
- 3. $aTb, bTc \rightarrow aTc$ (транзитивность)

Будем иметь ввиду вместо $aTb=a\sim b,\, T_a=\{b\in M: a\sim b\}$ Теорема:

- 1. $a \in T_a$
- $2. \bigcup_{a \in M} T_a = M$
- 3. $T_a \cap T_b \neq \emptyset \rightarrow T_a = T_b$

Итак: М разбито на непересекающиеся подмножества $M \to M/\sim$ (факторизация)

Пример: $H < Gx \sim y \leftrightarrow x^{-1}y \in H \leftrightarrow \exists h \in H : x^{-1}y = h \leftrightarrow y = xh, h \in H$; таким образом $T_x = \{y : x \sim y\} = \{y : y = xh\} = xH$;

Определение: $xH = \{xh, h \in H\}$

 $T_x = xH o$ левым смежным классом по подгруппе H

Аналогично, если $x \sim y$ ввести по формуле $yx^{-1} \in H \to T_x = Hx$ -правый смежный класс.

$$T_a = \{b : a \sim b\}$$

Если (Z, +) и (nZ, +), то $a \rightarrow a + nZ$

Вместо $a \to a + nZ$ будем писать $[a]_n$ или \bar{a}_n или \bar{a} или(like a pro) a $Z/_\sim = Z/_{nZ} = Z_n$

Кольцо(A, *, +) \bigoplus -коммутативность \bigcirc -дистрибутивность

Бывают кольца коммутативные(ab=ba) и с единицей(ea=ae=a)

Подкольцо-это кольцо относительно тех же операций

Поле-коммутативное ассоциативное кольцо с единицей $e \neq 0$. Кроме

того,
$$\forall x \neq 0 \exists x^{-1} (xx^{-1} = x^{-1}x = e)$$

 $[a]_n + [b]_n = [a+b]_n$ и $[a]_n [b]_n = [ab]_n$

Пара необходимых теорем о отношениях эквивалентности:

1.
$$a \sim a' \\ b \sim b'$$

$$\Rightarrow \begin{cases} [a'+b'] = [a+b] \\ [a'b'] = [ab] \end{cases}$$

$$\Rightarrow a' = a + nl; b' = b + nk$$

$$a' + b' = a + b + n(l+k) \Rightarrow [a'+b'] = [a+b]$$

$$a'b' = ab + n(ak+bl+nlk) \Rightarrow [a'b'] = [ab] \Rightarrow$$

2. H < G.

$$|T_x| = |T_z| = |H|$$

$$\blacktriangleleft xh_1 = xh_2 \to h_1 = h_2 \blacktriangleright$$

$$H < G \quad x \sim y \quad x^{-1}y \in H \leftrightarrow y \in xH(\Pi$$
евый смежный класс)
$$yx^{-1} \in H \leftrightarrow y \in Hx(\Pi$$
равый смежный класс)

Если G-коммутативна, то xH = Hx

Множество левых смежных классов обозначается G/H

Множество правых смежных классов обозначается $H \diagdown G$

$$|G/H| = |H \setminus G|$$
 =индекс подгруппы

Теорема Лагранжа Если $|G|=n<\infty \to |G|$:|H|, что равносильно определению $|G|=|H|\cdot|_{G}\diagup^{H}|$ где группа G-конечная группа

Следствия из теоремы Лагранжа:

1. |G|:|x|

$$\blacktriangleleft x \Rightarrow H = \langle x \rangle, |H| = |x| \blacktriangleright$$

$$2. |H| |G|$$

3.
$$x \in G \to |x| \mid |G|$$

4.
$$|G| = p$$
 — простое число $\to G$ циклическая группа, причем если $g \neq e \to G = < g >$

5.
$$|G| = n$$

 $q \in G \rightarrow q^n = e$

Малая теорема Ферма 6. $a^p \equiv a \pmod{p}$

Функция Эйлера 7. Функция Эйлера $(\phi(n))$ -функция, равная количеству натуральных чисел, меньших и взаимно простых с ним.

Т. Вильсона 8. $(p-1)! + 1 : p \leftrightarrow p$ — простое

Пусть H < G, где $G - \forall$

Пытаемся ввести операцию (xH)(yH) = (xy)H. Когда она корректна?

Когда
$$\begin{cases} x \sim x' \\ y \sim y' \end{cases} \rightarrow xy \sim x'y' \ xy \sim x'y' = xh_1yh_2$$
 $xy = xh_1yh_2h_3 \qquad \Big| \cdot x^{-1}$

$$y = h_1 y h_4$$

$$e = y^{-1}h_1yh_4$$

$$e = y^{-1}h_1yh_4$$
$$y^{-1}h_1y = h_5 \to y^{-1}Hy \le H \quad \forall y \in G(1)$$

$$\text{ If } \mathbf{(1)} \to H \leq yHy^1 \quad \forall y \to H \leq y^{-1}Hy \leftrightarrow \boxed{y^{-1}Hy = H} \quad \forall y \in G(2)$$

$$Hy = yH \quad \forall y \in G(3)$$

 $\overline{H} < G$ называется **нормальной**, если выполнено любое из 3 равносильных условий.

В этом случае пишут $H \triangleleft G$

 $H \triangleleft \to G/H$ -группа относительно (xH)(yH) = xyH

Группа G/H называется фактор-группой группы G по нормальной подгруппе H.

Гомоморфизм $\phi: G_1 \to G_2$ -если $\phi(xy) = \phi(x)\phi(y)$

Мономорфизм = инъективный гоморфизм

Эпиморфизм = сюръективный гомомрфизм.

Эндоморфизм - если $G_1 = G_2$

Автоморфизм - изоморфизм+эндоморфизм

$$Ker\phi = \{x \in G_1 : \phi(x) = e_2\}$$
 $(=\phi^{-1}(e_2))$ -Ядро гомоморфизма $Im\phi = \{z \in G_2; \exists x \in G_1 : \phi(x) = z\} = \{\phi(x), x \in G_1\} = \phi(G_1)$ -Образ

гоморфизма

Свойства гомоморфизма:

1.
$$\phi(e_1) = e_2$$
 или $e_G \to e_H$

2.
$$\phi(x^{-1})=(\phi(x))^{-1}$$
 или $x\to y$ то $x^{-1}\to y^{-1}$

3.
$$|\phi(x)| |x|$$

4.
$$Im\phi < H$$
 $Im\phi = {\phi(x), x \in G}$

5.
$$Ker\phi < G$$
 $Ker\phi = \{\phi^{-1}(e_H)\}\$

6.
$$Ker\phi \triangleleft G$$

7.
$$\phi(x_1) = \phi(x_2) \leftrightarrow x_1 \equiv x_2 \pmod{Ker\phi}$$

8.
$$\phi$$
 — мономорфизм $\leftrightarrow Ker\phi = \{e\}$

9.
$$\phi:G\to H, \psi:H\to K$$
— гоморфизм
 $\to \psi\cdot\phi:G\to K$ — гоморфизм

10.
$$\phi:G\to H$$
 — изомрфизм $\to \phi^{-1}$ — изомрфизм

11.
$$\phi$$
-изоморфизм, то $|\phi(x)| = |x|$

Док-во 6-го св-ва: $x_1, x_2 \in Ker \phi \to x_1 x_2 \in Ker \phi$

$$\phi(x_1) = e$$

$$\phi(x_2) = e$$

$$\phi(x_1x_2) = \phi(x_1)\phi(x_2) = e \cdot e = e$$

5 Циклические группы

Циклическая группа \mathbb{G} -если $\exists a \in \mathbb{G} : \mathbb{G} = \{a^k, k \in \mathbb{Z}\}$ (можно так же сказать, что циклическая подгруппа состоит из всех степеней элемента) Циклическая группа называется **конечной**, если $|\mathbb{G}| < \infty; |\mathbb{G}| = n \Rightarrow \mathbb{G} = \{e, a, a^2, \dots, a^{n-1}\}, a^n = e$

Циклическая группа называется **бесконечной**, если $|\mathbb{G}|=\infty\Rightarrow\mathbb{G}=\{e,a,a^{-1},a^2,a^{-2},\ldots,a^k,a^{-k},\ldots\}$

Необходимые формулы и утверждения о циклических группах:

1.
$$|x^k| = \frac{|x|}{(|x|,k)}$$

2.
$$x^n x^m = x^{n+m}$$
; $(x^n)^m = x^{nm}$; $x^0 = e$ при $n, m \in \mathbb{Z}$

3. $G,x < x >= \{x^n, \text{ где } n \in Z\}$ -циклическая подгруппа группы G

Если
$$|x|=n<\infty\to< x>=\{e,x,x^2,\ldots,x^{n-1}\}$$
 Если $|x|=\infty\to< x>=\{e,x,x^{-1},x^2,x^{-2},\ldots\}$ $< x>_n$, т.е. $|< x>_n|=|x|=n$ $< x>_\infty$ т.е. $|< x>_\infty|=|x|=\infty$ См. семинар для св-в (Кострикин)

G-циклическая группа, если $\exists x \in \mathbb{G} : \mathbb{G} = < x >$ Теоремы о циклических группах:

Теорема. У циклической группы все подгруппы циклические, т.е. G-циклическая группа. $(H < G \Rightarrow H$ -циклическая группа)

Теорема. G-циклическая группа, пусть $|\mathbb{G}| = n$ и $n : k \Rightarrow \exists ! H < G : |H| = k$

Теорема 1 \mathbb{Z}_n -поле \leftrightarrow n-простое

Теорема 2 \mathbb{Z}_n k-обратим в $\mathbb{Z}_n \leftrightarrow n$ и k-взаимно просты $\{(n,k)=1\}$

$$\phi:G_1 o G_2$$
 называется изоморфизмом, если $egin{cases} \phi(gh)=\phi(g)\phi(h) \\ \phi$ -биекция

Tеорема 3 $\exists G = \langle x \rangle, \cdot$

- $Ecnu\ |G| = \infty \Rightarrow G \cong \mathbb{Z}, + (\mathbb{Z} = <1>)(G_1 \cong G_2),$ то группы называются изоморфными.

-
$$Ecnu |G| = n < \infty \Rightarrow G \cong \mathbb{Z}_n, +$$

6 Подстановки

Функция Эйлера $\{\varphi(n)\}$ равна количеству натуральных чисел, меньших чем n и взаимно простых с n.

Теорема Эйлера $a^{\phi(n)} \equiv 1 \pmod{n}$ Свойства $\varphi(n)$:

1.
$$\phi(p) = p - 1, p - \text{простое}$$

2.
$$\phi(p^n) = p^n - p^{n-1}, p$$
 — простое

3.
$$\phi(mn) = \phi(m)\phi(n), \qquad (m, n) = 1$$

 S_n -группа подстановок (так же называют симметричной группой) $x=\{1,2,3,\ldots,n\},\,S_n$ -мн-во биективных функций $\varphi:X o X$ $arphi=\begin{pmatrix}1&2&3&4&\ldots&n\\ arphi(1)&arphi(2)&arphi(3)&arphi(4)&\ldots&arphi(n)\end{pmatrix}$ Примеры: $arphi=\begin{pmatrix}1&2&3&4\\2&4&3&1\end{pmatrix}$

$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ \varphi(1) & \varphi(2) & \varphi(3) & \varphi(4) & \dots & \varphi(n) \end{pmatrix}$$

Примеры:
$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$

$$\varphi(1) = 2, \varphi(2) = 4, \varphi(3) = 3, \varphi(4) = 1$$

$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$

$$(\varphi\phi)(1) = \varphi(\phi(1)) = \varphi(4) = 1$$

$$\varphi^{-1}\varphi = \varphi\varphi^{-1} = e$$

$$e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

$$\varphi^{-1} = \begin{pmatrix} 2 & 4 & 3 & 1 \\ 1 & 2 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 3 \\ 4 & 1 & 3 & 2 \end{pmatrix}$$

$$S_n$$
-группа $|S_n| = n!$

Цикл

$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} = (124)(3) = (3)(124)$$

$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (12)(34) = (34)(12)$$

Независимые циклы-называются такие циклы циклы, у которых числа входят в один цикл, но не входят во второй цикл.

Циклом длины два называется транспозиция.

Теоремы:

- 1. Независимые циклы коммутируют друг с другом (или α , β -независимые циклы $\to \alpha\beta = \beta\alpha$)
- 2. Если $\alpha = (i_1, i_2, \dots, i_k)$ -цикл длины $k \to |\alpha| = k$
- 3. Пусть $\varphi = \alpha_1 \alpha_2 \dots \alpha_n$ произведение независимых циклов. $\alpha_1 = (i_1, i_2, \dots, i_k)$

$$\alpha_2 = (j_1, j_2, \dots, j_l) \rightarrow |\varphi| = \operatorname{HOK}(|\alpha_1|, |\alpha_2|, \dots, |\alpha_m|)$$

Теорема 4 $|G| = HOK(k_1, k_2, \dots, k_m)$

Инверсия ij-если i>j, но i левее j Подстановка $G=\begin{pmatrix} l_1 & l_2 & \dots & l_n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$ называется четной, если сумма инверсий в верхней и нижней строках четная. Иначе- нечетная.

Знак подстановки $sgnG = (-1)^{[l_1 l_2 ... l_n] + [k_1 k_2 ... k_n]}$

G-четная, еслиsgnG = 1

-нечетная, еслиsgnG = -1

$$|\alpha| = k \to sgn\alpha = (-1)^{k-1} \quad (= (-1)^{k+1})$$

 $\alpha = (ij) = \begin{pmatrix} 1 & 2 & \dots & i & \dots & j & \dots & n \\ 1 & 2 & \dots & j & \dots & i & \dots & n \end{pmatrix}$ -нечет

Теорема 5 $G = \alpha_1 \alpha_2 \cdot \dots \cdot \alpha_n$ -произведение независимых циклов. $sgnG = (-1)^{n-m} \quad (= (-1)^{n+m})$

7 Прямое произведение

Определение 1 Прямое произведение групп

 $G_1,G_2,\ldots,G_n-\operatorname{spynnu}(\cdot)$ $G=G_1\times G_2\times\cdots\times G_n=\{(g_1,g_2,\ldots,g_n):g_i\in G_i,i=1,\ldots,n\}$

Введем операцию $(g_1, g_2, \ldots, g_n) \cdot (g'_1, g'_2, \ldots, g'_n) = (g_1 g'_1, g_2, g'_2, \ldots, g_n g'_n)$

Внешнее прямое произведение: $G=G_1\times G_2\times \dots$ (\cdot) $G=G_1\oplus G_2\oplus G_3\oplus \dots \oplus G_n$ (+)

Свойства внешнего прямого произведения:

1. G-группа

2.
$$\tilde{G}_i = \{(e_1, e_2, \dots, e_{i-1}, g_i, e_{i+1}, \dots, e_n) < G\}$$
 $= \{e_1\} \times \{e_2\} \times \dots \times \{e_{i-1}\} \times G_i \times \{e_{i+1}\} \dots \{e_n\}$

3.
$$\tilde{G}_1\cong G_i \quad (\phi_i:G_i\to \tilde{G}_i \ \phi_i(g_i))=(e_1,e_2,\dots,e_{i-1},g_i,e_{i+1},\dots e_n)$$
 — Изоморфизм

4.
$$\tilde{G}_i \triangleleft G$$

5.
$$\forall g \in G \,\exists \tilde{g_1} \in \tilde{G_1}, \ldots, \, \tilde{g_n} \in \tilde{G_n} : g = \tilde{g_1} \tilde{g_2} \tilde{g_3} \ldots \tilde{g_n}$$

6.
$$\forall g \in G \exists ! \tilde{g}_1 \in \tilde{G}_1, \dots, \tilde{g}_n \in \tilde{G}_n : g = \tilde{g}_1 \tilde{g}_2 \tilde{g}_3 \dots \tilde{g}_n$$

7.
$$\tilde{G}_i \cap \tilde{G}_j = \{e\} \quad (i \neq j)$$

8.
$$\tilde{g}_1 \in \tilde{G}_i, \tilde{g}_i \in \tilde{G}_i \to \tilde{g}_i \tilde{g}_i \to \tilde{g}_i \tilde{g}_i$$

9.
$$|G| = |G_1||G_2| \dots |G_n|$$

10.
$$|(g_1, g_2, \dots, g_n)| = HOK(|g_1|, |g_2|, \dots, |g_n|)$$

Теорема 6 $G, G_1, G_2, \ldots, G_n < G$

1.
$$(6 \Rightarrow 5)$$

2.
$$6 \Rightarrow 7$$
, то если $\forall g \in G \exists ! g_1 \in G_1, \ldots, g_n \in G_n : g = g_1 g_2 \ldots g_n \Rightarrow G_i \cap G_j = \{e\} \quad (i \neq j)$
 \lhd От противного. Пусть $g \in G_i \cap G_j \Rightarrow g = ee \ldots g \ldots e \ldots e = ee \ldots e \ldots g \ldots e \Rightarrow g = e \Rightarrow G_i \cap G_j = \{e\} \triangleright$

3.
$$\binom{4}{7}$$
 \Rightarrow 8 т.е. если $G_i \triangleleft G_j$ $G_j \triangleleft G_i, G_i \cap G_j = \{e\} \Rightarrow g_ig_j = g_jg_i (\Leftrightarrow g_ig_jg_i^{-1}g_j^{-1} = e)$

Определение 2 Внутренне прямое произведение:

$$G, G_i, \ldots, G_n < G$$

G — внутренне прямое произведение этих подгрупп, если

1.
$$\forall g \in G \exists ! g_1, \dots, g_n : g = g_1 g_2 \dots g_n$$

2.
$$G_i \triangleleft G_i$$
; $i = 1, ... n$

Теорема G изоморфно $G_1 \times G_2 \times \cdots \times G_n$

(т.е. внутреннее прямое произведние изоморфно внешнему)

$$\triangleleft \phi: G_1 \times \cdots \times G_n \to G$$

$$\phi((g_1, g_2, \dots, g_n)) = g_1 g_2 \dots g_n$$

$$\phi$$
-гомоморфизм $?\phi((g_1\ldots,g_n)(h_1,\ldots,h_n)=\phi(g_1h_1,g_2h_2,\ldots,g_nh_n)=g_1h_1g_2h_2\ldots g_nh_n$

 $\phi\phi((g_1\ldots,g_n)(h_1,\ldots,h_n)=g_1g_2\ldots g_nh_1h_2\ldots h_n$ Сие выражение выходит

из предыдущей строки благодаря свойству 8 ϕ -эпиморфизм. Пусть $g \in G \to \exists g_1, \dots g_n : g = g_1 \dots g_n \to \phi((g_1, \dots, g_n)) = g_1 \dots g_n = g$

 ϕ -мономорфизм $Ker\phi = \{((g_1,\ldots,g_n):g_1g_2\ldots g_n=e)\} \to g_1=g_2=\cdots=g_n=e$

Теорема 7 **
$$\begin{cases} \forall g! = g_1 \dots g_n & (1) \\ g_i g_j = g_j g_i & (2) \end{cases} \Leftrightarrow * \begin{cases} \forall g! = g_1 \dots g_n & (1) \\ G_i \lhd G & (2) \end{cases}$$

г deg_i -элемент i-ой группы, ag_j -элемент j-ой группы

$$\triangleleft \leftarrow (1)* \rightarrow (1)** \rightarrow G_i \cap G_j = \{e\} \qquad G_i \triangleleft G$$

Требуется доказать: $g_ig_j=g_jg_i$, т.е. $g_ig_jg_i^{-1}g_i^{-1}=e$

G-внутреннее прямое произведение, если выполнена (*) (⇔ Выполнена (**)) Примеры:

- 1. $G = \mathbb{Z}, +$ не раскладывается в внутренние прямые суммы $G_n = n\mathbb{Z}$ -других подгупп нет На дом: продумать и записать доказательство. $nm \in n\mathbb{Z} \cap m\mathbb{Z} \to n\mathbb{Z} \cap m\mathbb{Z} \neq \{0\}$
- 2. $G = \mathbb{C}^*$. $G_1 = \mathbb{R}_{>0} = \{x > 0, x \in R\}$ $G_1 - \mathbb{N}_{>0} - \{x > 0, x \in R\}$ $G_2 = U = \mathbb{T} = \{z : |z| = 1\} = \{z = e^{i\phi}\}$ $G = G_1 \times G_2? \quad G\text{-коммутативна}$ $z \in G \rightarrow z = |z|e^{i\phi} \qquad (|z| > 0 \quad e^{i\phi \in U})$ $|z = x_1u_1 = x_2u_2 \rightarrow ?\begin{cases} x_1 = x_2 \\ u_2 = u_2 \end{cases} \qquad x_1x_2^{-1} = u_1^{-1}u_2 \rightarrow \begin{cases} x_1x_2^{-1} = 1 \\ u_1^{-1}u_2 = 1 \end{cases} \rightarrow$

Теорема 8 $(G_1 \times G_2)/G_1 \cong G_2$

 $\phi((g_1g_2)) = g_2$

 ϕ -гомоморфизм ? $\phi((g_1,g_2)(g_1,g_2)) = \phi((g_1g_1,g_2)) = g_2g_2$

 $\phi((g_1, g_2)) \cdot \phi((g_1', g_2')) = g_2 g_2' \rightarrow \phi((g_1, g_2)(g_1', g_2'))$

 $Ker\phi = \{(g_1, g_2) : \phi(g_1, g_2) = e\} \rightarrow Ker\phi = \{(g_1, e)\} = G_1$

 $Im\phi = \{\phi((g_1, g_2))\} = \{g_2\} = G_2 \to G_1 \times G_2/G_1 \cong G_2$

Следствия. Если $G_1 \triangleleft G, G/G_1 \not\cong G_2 \rightarrow G \not\cong G_1 \times G_2$

ACHTUNG $G/G_1 \cong G_2 \not\to G = G_1 \times G_2$

Пример $C_4 = \{e, a, a^2, a^3\}$ $C_2 = \{e, a^2\} \triangleleft C_4$

 $C_4/C_2 = C_2$,но $C_4 \neq C_2 \times C_2$

т. Кэлли \forall конечная группа G, |G| = n изоморфна подгруппе S_n $\triangleleft |G| = n \Rightarrow G = \{g_1, g_2, g_3, \dots, g_n\}$

S(G)-все биектифные функции на множестве $G \to S(G) = S_n \quad \phi: G \to S(G)$

$$S_n$$
 $\phi_g = G \to G$ g -фиксированный элемент $\in G$ $\phi_g(x) = g\lambda \left\{ egin{array}{ll} g_1 & g_2 & \dots & g_n \\ \dots & & & \\ g_ig_1 & g_ig_2 & \dots & g_ig_n \end{array} \right\}$

8 Справочник.

9 Вопросы к коллоквиуму

- 1. Группоид, Полугруппа, Моноид, Группа.
- 2. Свойства групп
- 3. Порядок группы(|G|), Порядок элемента(|x|)
- 4. Циклическая группа, Конечность и Бесконечность циклической группы.
- 5. Необходимые формулы и утверждения о циклической группе
- 6. Теоремы и циклической группе
- 7. Определение подгруппы, теоремы о равенствах единичных элементов и обратных элементов, критерий подгруппы
- 8. Отношение эквивалентности
- 9. Левый и Правый смежные классы и их Эквивалентность
- 10. Теорема Лагранжа
- 11. Следствия из теоремы Лагранжа(в том числе Малая теорема Ферма, функция Эйлера, т. Вильсона)
- 12. Нормальность группы, фактор-группа
- 13. Гомоморфизм, мономорфизм, эпиморфизм, эндоморфизм, автоморфизм, ядро и образ гоморфизма.
- 14. Свойства гомоморфизма
- 15. Внешнее прямое произведение групп
- 16. Свойства внешнего произведения групп
- 17. Внутреннее прямое произведение групп
- 18. Свойства внутреннего произведения групп
- 19. т. Кэли

- 20. Изоморфизм внутренного и внешнего произведений
- 21. Формула Эйлера, т. Эйлера, свойства ф. Эйлера, группа подстановок
- 22. Цикл, независимые циклы, транспозиция
- 23. Теоремы о циклах