95-293721/39

A89 E19 G03 L03

BADI 94.02.19 *DE 4405316-A1

BASFA 94.Q2.19 94DE-4405316 (95.08.24) C07C 69/773, 69/54, 69/88, 69/92, C07D 239/24, 319/06, C08F 20/10, C09J 4/00, C09K 19/06, 19/38, 19/56,

New polymerisable liq. crystalline cpds. - comprise mesogenic gps. with 2^{γ} polymerisable gps., e.g. vinyl, styryl etc., linked via spacer gps. and other linking gps., e.g. ester

C95-132216 Addnl. Data:

DELAVIER P, ETZBACH K, SCHMIDT A J, MEYER F, SIEMENSMEYER K

Liq. crystalline (LC) cpds. of formula

Z-Y-A-Y-M-Y-A-Y-Z (1)

are new.

Z = polymerisable gp.; Y = direct bond, O, S, COO, OCO, CONR or NRCO;

A = spacer gp.;

M = a mesogenic gp. of formula -Phe-B-Phe-, gp. (i), gp. (ii)

44, 7-D12, 10-A3, 10-A(4-B, 9-A2A, 12-L3B) A15, 10-A16A, 10-A20A, 10-D1C, 10-D3, 10-E4A, 10-E4C, 10-G1, 10-G2A1, 10-G2A2, 10-H1, 10-H3C2, 10-J2A1, 10-J2B3) G(3-B2D, 4-B) L(3-D1D1, 3-G5A)

or -Cyc-B-Cyc- (with Phe = 1,4-phenylene; Cyc = 1,4-cyclohexylene);

 \mathbf{B} COO, OCO, CH2O, OCH2, COS, SCO, gp. (iii), gp. (iv),

CH=CH, OCH2-Ar-CH2O, CH2O-Ar-OCH2, OCH2-Ar-O-CH2, CH2O-Ar-CH2Ó, OOC-Ar' -COÓ, OOC-Ar"-COÓ, COO-Ar-COO, ÓOC-

DE 4405316-A+

-OCO, -N=N-, N(O)=N-, CH₂O-Ar-, -Ar-OCH₂-, Gp. (v)-(x),

 $C(O)O-Ar-OCH_2$, $CH_2O-Ar-COO$, $CH_2O-Ar-OCO$, $C(O))-Ar-OCH_2$, OC(O)-Ar-OCH₂, OC(O)-Ar-, -Ar-COO, C(O)O-Ar- or p-Phe-OCO-(with Ar = 1,4-phenylene substd. with R_1 and R_2 ;

 Ar_1 = dimethyl-1,4-phenylene; Ar'' = 1.4-phenylene substd. with R_3 and R_4);

R = H or 1-4C alkyl,

R₁, R₂ = H, 1-15C alkyl, alkoxy, alkoxycarbonyl, monoalkylaminocarbonyl, alkylcarbonyl, alkylcarbonyloxy or alkylcarbonylamino, formyl, F, Cl, Br, CN, OH or nitro;

DE 4405316-A+/1

95-293721/39

 $R_3 = 2-15C$ alkyl, or other gps. as for R_1/R_2 from alkoxy onwards; $R_4 = as for R_1;$

n = 2, 3 or 4.

MORE SPECIFICALLY

 $Z = CH_2 = CH_2 - CH_2 = CMe$ -, $CH_2 = CH = C(CI)$ - or $CH_2 = CH$ -Phe-; Y = O, COO or OCO;

A = 2-20C alkylene, opt. with 3 or 4 C atoms replaced by ether O;

M = -Phe-B-Phe-; B = as above, except COS, SCO, (iii), (iv), CH=CH, OOC-Ar'-COO,

OOC-Ar"=COO, N=N and N(O)=N;

R₁, R₂ = H, Me, Et, 8-15C alkyl, OMe, OEt, 8-15C alkoxy. methoxycarbonyl, 8-15C alkoxycarbonyl, formyl, acetyl, 8-15C alkylcarbonyl, F, Cl, Br, CN, acetoxy, 8-15C alkylcarbonyloxy, OH or nitro, pref. any of these gps. except 8-15C gps.; n = 2, 3 or 4.

Used as orientation layers for LC materials, as photocrosslinkable adhesives, monomers for the prodn. of LC polymers, base materials

for the prodn. of chirally dopable polymerisable LC systems, polymerisable matrix monomers for polymer-dispersed displays, or base materials for polymerisable LC materials for the prodn. of optical components, and also for the prodn. of cholesteric LC dyes (claimed).

ADVANTAGE

Provides new, polymerisable nematic LC materials with a wide nematic phase range and clear points below 120 deg.C, which can be processed at below 120 deg.C. These cpds. can be polymerised to give highly crosslinked polymers with a "frozen-in" LC phase structure.

EXAMPLE

A mixt. of 5 g 2,5-bis-(4-hydroxybenzylidene) cyclopentanone, 5.1 g 6-chlorohexanol, 5.2 g K₂CO₃, 0.5 g KI and 50 ml DMF was heated for 5 hrs. at 100 deg.C, and then worked up by filtration, washing with DMF and water, and drying to give 7 g 2,5-bis-(4-(omega-hydroxyhexyloxy) hydroxybenzylidene) cyclopentanone, m.pt. 192-194 deg.C (cpd. II).

A mixt. of 7 g (II), 11 g acrylic acid, 1 g p-toluene-sulphonic

DE 4405316-A+/2

acid, 0.1 hydroquinone and 100 ml 1, 1 hechloroethane was creft each content of 6 hrs. with sepn. of water, then the cooled mixt. was lireated with 100 ml water, and the organic phase was sepd. and worked up by evapn., chromatography on silica gel 60 (with tohiene/EiOAc 8/2 as eluent) and recrystallisation from ethanol, to give 3.8 g 2,5-bis-(4-(omega-acryloxy-hexyloxy) hydroxybenzylidene) cyclopentanone (I) (m.pt. 115-120 deg.C). (KB) (38pp1712DwgNo.0/0)

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C09K 19/30, 19/20, 19/34, C07D 239/26, 239/34, C07C 69/54, 69/90

(11) Internationale Veröffentlichungsnummer: WO 95/22586

(43) Internationales Veröffentlichungsdatum:

24. August 1995 (24.08.95)

(21) Internationales Aktenzeichen:

PCT/EP95/00422

A1

(22) Internationales Anmeldedatum: 7. Februar 1995 (07.02.95)

(30) Prioritätsdaten: P 44 05 316.9

19. Februar 1994 (19.02.94)

DE

(81) Bestimmungsstaaten: BR, CA, CN, JP, KR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): DELAVIER, Paul [DE/DE]; Mundenheimer Strasse 148, D-67061 Ludwigshafen (DE). ETZBACH, Karl-Heinz [DE/DE]; Jean-Ganss-Strasse 46, D-67227 Frankenthal (DE). SCHMIDT, Andreas, Johann [DE/DE]; Franz-Liszt-Strasse 20c, D-67251 Freinsheim (DE). MEYER, Frank [DE/DE]; Karlstrasse 13, D-67063 Ludwigshafen (DE). SIEMENSMEYER, Karl [DE/DE]; Erich-Heckel-Strasse 1, D-67227 Frankenthal (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).
- (54) Title: NEW POLYMERISABLE LIQUID CRYSTAL COMPOUNDS
- (54) Bezeichnung: NEUE POLYMERISIERBARE FLÜSSIGKRISTALLINE VERBINDUNGEN
- (57) Abstract

Liquid crystal compounds have the general formula (I) Z-Y-A-Y-M-Y-A-Y-Z, in which the residues Z represent independently from each other a polymerisable group, the residues Y represent independently from each other a direct bond, O, S, COO, OCO, CONR or N(R)CO, the residues A represent independently from each other a spacer and M represents a mesogenic group. These compounds are for example useful for producing dyes in the form of cholesteric liquid crystals.

(57) Zusammenfassung

Die Erfindung betrifft flüssigkristalline Verbindungen der allgemeinen Formel (I) Z-Y-A-Y-M-Y-A-Y-Z, in der die Reste Z unabhängig voneinander eine polymerisierbare Gruppe, die Reste Y unabhängig voneinander eine direkte Bindung, O, S, COO, OCO, CONR oder N(R)CO, die Reste A unabhängig voneinander ein Spacer und M eine mesogene Gruppe bedeuten. Die erfindungsgemäßen Verbindungen eignen sich beispielsweise zur Herstellung von cholesterisch flüssigkristallin geordneten Farbmitteln.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
ΑU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	Œ	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumānien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	Tj	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

Neue polymerisierbare flüssigkristalline Verbindungen

Beschreibung

5

Wie für formanisotrope Medien bekannt, können beim Erwärmen flüssigkristalline Phasen, sogenannte Mesophasen, auftreten. Die einzelnen Phasen unterscheiden sich durch die räumliche Anordnung der Molekülschwerpunkte einerseits sowie durch die Molekülanord-

- 10 nung hinsichtlich der Längsachsen andererseits (G.W. Gray, P.A. Winsor, Liquid Crystals and Plastic Crystals, Ellis Horwood Limited, Chichester 1974). Die nematisch flüssigkristalline Phase zeichnet sich dadurch aus, daß lediglich eine Orientierungsfernordnung durch Parallellagerung der Moleküllängsachsen existiert.
- 15 Unter der Voraussetzung, daß die die nematische Phase aufbauenden Moleküle chiral sind, entsteht eine sogenannte cholesterische Phase, bei der die Längsachsen der Moleküle eine zu ihnen senkrechte, helixartige Überstruktur ausbilden (H. Baessler, Festkörperprobleme XI, 1971). Der chirale Molekülteil kann sowohl
- 20 im flüssigkristallinen Molekül selbst vorhanden sein als auch als Dotierstoff zur nematischen Phase gegeben werden, wobei die cholesterische Phase induziert wird. Dieses Phänomen wurde zuerst an Cholesterolderivaten untersucht (z.B. H. Baessler, M.M. Labes, J. Chem. Phys., <u>52</u>, 631 (1970); H. Baessler, T.M. Laronge,
- 25 M.M. Labes, J. Chem. Phys., 51 799 (1969); H. Finkelmann,
 H. Stegemeyer, Z. Naturforschg. 28a, 799 (1973); H. Stegemeyer,
 K.J. Mainusch, Naturwiss., 58, 599 (1971), H. Finkelmann,
 H. Stegemeyer, Ber. Bunsenges. Phys. Chem. 78, 869 (1974)).
- 30 Die cholesterische Phase hat bemerkenswerte optische Eigenschaften: eine hohe optische Rotation sowie einen ausgeprägten Circulardichroismus, der durch Selektivreflexion von zirkular polarisiertem Licht innerhalb der cholesterischen Schicht entsteht. Die je nach Blickwinkel unterschiedlich erscheinenden
- 35 Farben sind abhängig von der Ganghöhe der helixartigen Überstruktur, die ihrerseits vom Verdrillungsvermögen der chiralen Komponente abhängt. Dabei kann insbesondere durch Änderung der Konzentration eines chiralen Dotierstoffes die Ganghöhe und damit der Wellenlängenbereich des selektiv reflektierten Lichtes einer
- 40 cholesterischen Schicht variiert werden. Solche cholesterischen Systeme bieten für eine praktische Anwendung interessante Möglichkeiten. So kann durch Einbau chiraler Molekülteile in mesogene Acrylsäureester und Orientierung in der cholesterischen Phase, z.B. nach der Photovernetzung, ein stabiles, farbiges
- 45 Netzwerk hergestellt werden, dessen Konzentration an chiraler Komponente dann aber nicht mehr verändert werden kann (G. Galli, M. Laus, A. Angelon, Makromol. Chemie, <u>187</u>, 289 (1986)). Durch

2

Zumischen von nichtvernetzbaren chiralen Verbindungen zu nematischen Acrylsäureestern kann durch Photovernetzung ein farbiges Polymer hergestellt werden, welches noch hohe Anteile löslicher Komponenten enthält (I. Heyndricks, D.J. Broer, Mol. Cryst. Liq.

- 5 Cryst. 203, 113 (1991)). Weiterhin kann durch statistische Hydrosilylierung von Gemischen aus Cholesterolderivaten und acrylathaltigen Mesogenen mit definierten zyklischen Siloxanen und anschließende Photopolymerisation ein cholesterisches Netzwerk gewonnen werden, bei dem die chirale Komponente einen Anteil von
- 10 bis zu 50 % an dem eingesetzten Material haben kann; diese Polymerisate enthalten jedoch noch deutliche Mengen löslicher Anteile (F.H. Kreuzer, R. Maurer, Ch. Müller-Rees, J. Stohrer, Vortrag Nr. 7, 22. Freiburger Arbeitstagung Flüssigkristalle, Freiburg, 1993).

15

In der Anmeldung DE-OS-35 35 547 wird ein Verfahren beschrieben, bei dem eine Mischung cholesterolhaltiger Monoacrylate über eine Photovernetzung zu cholesterischen Schichten verarbeitet werden kann. Allerdings beträgt der Gesamtanteil der chiralen Komponente

- 20 in der Mischung ca. 94 %. Als reines Seitenkettenpolymer ist ein solches Material zwar mechanisch nicht sehr stabil, eine Erhöhung der Stabilität kann aber durch hochvernetzende Verdünnungsmittel erreicht werden.
- 25 Neben oben beschriebenen nematischen und cholesterischen Netzwerken sind auch smektische Netzwerke bekannt, welche insbesondere durch Photopolymerisation/Photovernetzung von smektisch flüssigkristallinen Materialien in der smektisch flüssigkristallinen Phase hergestellt werden. Die hierfür verwendeten
- 30 Materialien sind in der Regel symmetrische, flüssigkristalline Bisacrylate, wie sie z.B. D.J. Broer und R.A.M. Hikmet, Makromol. Chem., 190, 3201-3215 (1989) beschrieben haben. Diese Materialien weisen aber sehr hohe Klärtemperaturen von > 120°C auf, so daß die Gefahr einer thermischen Polymerisation gegeben ist. Durch
- 35 Zumischen chiraler Materialien können beim Vorliegen einer S_c -Phase piezoelektrische Eigenschaften erzielt werden (R.A.M. Hikmet, Macromolecules 25, S. 5759, 1992).
- Aufgabe der vorliegenden Erfindung war die Herstellung neuer 40 polymerisierbarer nematisch flüssigkristalliner Materialien, die allein oder in Mischungen mit anderen polymerisierbaren nematischen Flüssigkristallen breite nematische Phasenbereiche und Klärtemperaturen unterhalb 120°C aufweisen und die unterhalb von 120°C verarbeitet werden können.

3

Diese Aufgabe wird erfindungsgemäß durch die flüssigkristallinen Verbindungen der allgemeinen Formel I

$$Z-Y-A-Y-M-Y-A-Y-Z$$
 I,

5

gelöst, in der die Reste

Z unabhängig voneinander eine polymerisierbare Gruppe, die Reste

10

- Y unabhängig voneinander eine direkte Bindung, O, S, COO, OCO, CONR oder N(R)CO, die Reste
- A unabhängig voneinander ein Spacer und 15

M eine mesogene Gruppe der Formel

oder
$$H$$
 B H sind, wobei

25

B COO, OCO, CH_2O , OCH_2 ,

35

40

5

- R Wasserstoff oder C₁- bis C₄-Alkyl, die Reste
- R¹ und R² unabhängig Wasserstoff, C₁- bis C₁5-Alkyl, C₁- bis C₁5-Alkoxy, C₁- bis C₁5-Alkoxycarbonyl, C₁- bis C₁5-Monoalkylaminocarbonyl, Formyl, C₁- bis C₁5-Alkylcarbonyl, Fluor, Chlor, Brom, Cyan, C₁- bis C₁5-Alkylcarbonyloxy, C₁- bis C₁5-Alkylcarbonylamino, Hydroxy oder Nitro,
- R³ C₂- bis C₁₅-Alkyl, C₁- bis C₁₅-Alkoxy, C₁- bis C₁₅-Alkoxycarbonyl, C₁- bis C₁₅-Monoalkylaminocarbonyl, Formyl,
 C₁- bis C₁₅-Alkylcarbonyl, Fluor, Chlor, Brom, Cyan,
 C₁- bis C₁₅-Alkylcarbonyloxy, C₁- bis C₁₅-Alkylcarbonylamino,
 Hydroxy oder Nitro,

15 R4 ein Rest R1 und

n 2, 3 oder 4 sind.

Bevorzugte Gruppen Z sind solche, die durch einen photochemi20 schen Initiierungsschritt polymerisiert werden können, also insbesondere Gruppen der Struktur: CH₂=CH-, CH₂=CCl, CH₂=C(CH₃)- oder
4-Vinylphenylyl. Bevorzugt sind CH₂=CH-, CH₂=CCl- und CH₂=C(CH₃)-,
wobei CH₂=CH- und CH₂=C(CH₃)- besonders bevorzugt sind.

25 Für Y sind neben einer direkten Bindung insbesondere Ether- und Estergruppen zu nennen.

Als Spacer A können alle für diesen Zweck bekannten Gruppen verwendet werden. Üblicherweise sind die Spacer über Ester
30 oder Ethergruppen oder eine direkte Bindung mit Z verknüpft.
Die Spacer enthalten in der Regel 0 bis 30, vorzugsweise 0 bis 12 C-Atome und können in der Kette z.B. durch O, S, NH oder NCH3 unterbrochen unterbrochen sein. Als Substituenten für die Spacerkette kommen dabei noch Fluor, Chlor, Brom, Cyan, Methyl oder

35 Ethyl in Betracht. Repräsentative Spacer sind beispielsweise (CH₂)_p, (CH₂CH₂O)_qCH₂CH₂, CH₂CH₂SCH₂CH₂, CH₂CH₂NHCH₂CH₂,

wobei q 1 bis 3 und und p 1 bis 12 sind.

40

Die Substituenten R¹ und R² oder R³ und R⁴ in den Resten B können 45 Wasserstoff oder die angegebenen Reste sein. Bevorzugt sind solche Reste, die die Ausbildung von smektischen Phasen unterdrücken und die von nematischen Phasen fördern. Vorzugsweise ist

6

einer der R-Reste Wasserstoff. Von den genannten Substituenten sind Chlor, Brom, Cyan, Fluor, Hydroxy, Methyl, Ethyl, Methoxy, Ethoxy, Methoxycarbonyl, Formyl, Acetyl und Acetoxy sowie längerkettige mit > 8 C-Atomen bevorzugt.

5

Die Herstellung der Verbindungen der Formel I erfolgt nach an sich bekannten Methoden. Einzelheiten zur Herstellung können den Beispielen entnommen werden, in denen sich Angaben über Teile und Prozente, sofern nicht anders vermerkt, auf das Gewicht beziehen.

- 10 Die Verbindungen der Formel I sind flüssigkristallin und können in Abhängigkeit von der Struktur smektische oder nematische Phasen ausbilden. Sie sind für alle Zwecke geeignet, bei denen man üblicherweise flüssigkristalline Verbindungen verwendet.
- 15 Die erfindungsgemäßen Verbindungen weisen allein, in Mischungen untereinander oder gemischt mit anderen flüssigkristallinen Verbindungen Phasenstrukturen wie niedermolekulare Flüssigkeiten auf, lassen sich jedoch durch radikalische oder ionische Polymerisationsverfahren, welche durch eine photochemische Reaktion
- 20 gestartet werden können, in hochvernetzte Polymere mit eingefrorener flüssigkristalliner Ordnungsstruktur überführen.

Zur Einstellung gewünschter Eigenschaften kann es zweckmäßig sein, Mischungen von Verbindungen der Formel I oder Mischungen 25 mit anderen Flüssigkeiten zu verwenden, wobei diese Mischungen in situ oder durch mechanisches Mischen hergestellt werden können.

Die erfindungsgemäßen Verbindungen eignen sich insbesondere als Orientierungsschichten für flüssigkristalline Materialien, als 30 photovernetzbare Kleber, als Monomere zur Herstellung flüssigkristalliner Netzwerke, als Basismaterial zur Herstellung von chiral dotierbaren polymerisierbaren Flüssigkristallsystemen, als polymerisierbare Matrixmonomere für polymer dispergierte Displays oder als Basismaterial für polymerisierbare, flüssigkristalline 35 Materialien für optische Bauelemente, wie Polarisatoren, Verzögerungsplatten oder Linsen.

Beispiele

40 Die Schmelztemperaturen wurden polarisationsmikroskopisch aufgenommen. Die Temperaturkontrolle erfolgte in einem Mettler Mikroskopheiztisch FP80/82.

Beispiel 1

Herstellung von 2,5-Bis- $(4-(\omega-acryloxyhexyloxy)-hydroxy-benzyliden)-cyclopentanon$

5

15

a) 2,5-Bis-(4-hydroxybenzyliden)-cyclopentanon

2,5-Bis-(4-hydroxybenzyliden)-cyclopentanon wurde nach Gangadhara und Kaushal Kischare, Macromolecules, <u>26</u>, 2995 (1993) hergestellt.

b) 2,5-Bis-(4-(ω-hydroxyhexyloxy)-hydroxybenzyliden)-cyclopentanon

Eine Mischung aus 5 g 2,5-Bis-(4-hydroxybenzyliden)-cyclopentanon, 5,1 g 6-Chlorhexanol, 5,2 g Kaliumcarbonat, 0,5 g
Kaliumiodid und 50 ml Dimethylformamid wurde unter Rühren 5 h
auf 100°C erhitzt. Nach Abkühlen auf Raumtemperatur wurde der
entstandene Niederschlag abfiltriert, mit wenig Dimethylformamid und dann mit Wasser gewaschen und getrocknet. Man
erhielt 7 g der obigen Verbindung. Schmp. 192-194°C.

c) 2,5-Bis(4-(ω-acryloxyhexyloxy)-hydroxybenzyliden)-cyclopentanon

7 g 2,5-Bis-(4-(ω-hydroxylhexyloxy)-hydroxybenzyliden)-cyclopentanon, 11 g Acrylsäure, 1 g Paratoluolsulfonsäure, 0,1 g Hydrochinon und 100 ml 1,1,1-Trichlorethan wurden 6 h unter Rückfluß am Wasserabscheider erhitzt. Nach dem Abkühlen auf Raumtemperatur wurden 100 ml Wasser zugegeben, die organische Phase abgetrennt, mit Wasser gewaschen und getrocknet. Das Lösungsmittel wurde im Vakuum abgezogen und der Rückstand chromatographiert (MN Kieselgel 60, 0,05-0,2 mm, Elutions-

8

mittel: Toluol/Essigester im Verhältnis 8/2). Nach abschließender Umkristallisation aus Ethanol erhielt man 3,8 g obiger Verbindung. Schmp. 125-120°C.

5 Beispiel 2

15

30

Herstellung von 2,5-Bis($4-(\omega-acryloxyhexyloxy)-hydroxy-benzyliden$)-cyclohexanon

10 a) 2,5-Bis-(4-hydroxybenzyliden)-cyclohexanon

2,5-Bis-(4-hydroxybenzyliden)-cyclopentanon wurde nach Gangadhara und Kaushal Kischare, Macromolecules, <u>26</u>, 2995 (1993) hergestellt.

b) 2,5-Bis-(4-(ω-hydroxyhexyloxy)-hydroxybenzyliden)-cyclopentanon

Die Verbindung wurde analog Beispiel 1.b) unter Einsatz von 5,2 g 2,5-Bis-(4-hydroxybenzyliden)-cyclohexanon hergestellt. Man erhielt 5,8 g obiger Verbindung. Schmp. 131-132°C.

c) 2,5-Bis-(4-(ω-acryloxyhexyloxy)-hydroxybenzyliden)-cyclohexanon

Die Verbindung wurde analog Beispiel 1.c) aus 5,9 g
2,5-Bis-(4-(ω-hydroxyhexyloxy)-hydroxybenzyliden)-cyclopentanon hergestellt. Nach Chromatographie und Umkristallisation unter oben angegebenen Bedingungen wurden 2,9 g obiger
Verbindung erhalten. Schmp. 68-71°C.

9

Beispiel 3

Herstellung von 2,5-Bis-(4-(ω-acryloxyhexyloxy)-hydroxybenzyl)-cyclohexanon

5

2,5-Bis-(4-hydroxybenzyl)-cyclohexanon a)

Eine Mischung von 6,1 g 2,5-Bis-(4-hydroxybenzyliden)cyclohexanon und 100 ml Ethanol wurde mit 0,5 g einer wäßrigen Raney-Nickel-Suspension versetzt und unter Rühren bei Raumtemperatur und Normaldruck 2 h mit Wasserstoff hydriert. Anschließend wurde die Suspension abfiltriert, das Filtrat im Vakuum zur Trockne eingeengt und der verbliebene Rückstand über Kieselgel (MN-Kieselgel 60, 0,05-0,2 mm) chromato-20 graphiert. Als Elutionsmittel wurde eine 1:1-Mischung aus Toluol und Essigester verwendet. Nach Chromatographie und anschließender Umkristallisation aus Toluol wurden 2,0 g der obigen Verbindung erhalten. NMR, IR und Elementaranalyse waren im Einklang mit der Struktur. Schmp. 181-182°C.

25

15

2,5-Bis(4-(\omega-hydroxyhexyloxy)-hydroxybenzyl)-cyclohexanon

Die Verbindung wurde analog Beispiel 1.b) unter Einsatz von 5,3 g 2,5-Bis-(4-(ω-hydroxybenzyl)-hydroxybenzyl)-cyclo-35 hexanon hergestellt. Nach Abkühlen der Reaktionsmischung auf Raumtemperatur wurden 100 ml Wasser zugesetzt, das ausgefallene Produkt isoliert, mit Wasser gewaschen und getrocknet. Nach Umkristallisation aus Toluol erhielt man 4,9 g obiger Verbindung. Schmp. 131-133°C.

c) 2,5-Bis-(4-(ω-acryloxyhexyloxy)-hydroxybenzyl)-cyclohexanon

Analog Beispiel 1.c) wurden unter Einsatz von 4,9 g

2,5-Bis-(4-(\omega-hydroxyhexyloxy)-hydroxybenzyl)-cyclohexanon
nach Chromatographie und Umkristallisation 4,1 g obiger Verbindung erhalten. NMR, IR und MS stimmten mit der Struktur
überein.

15 Beispiel 4

35

Herstellung von Bis-benzoesäure-4,4'-(1,4-phenylenbis-(methylen-oxy))-di- ω -acryloxyhexylester

20 a) Bis-benzoesäure-4,4'-(1,4-phenylenbis-(methylenoxy))-diethylester

Eine Mischung aus 5,3 g p-Xylylendichlorid, 10,6 g 4-Hydroxy-benzoesäureethylester, 9,1 g Kaliumcarbonat, 1 g Kaliumiodid und 50 ml Dimethylformamid wurde 3 h unter Rückfluß auf 80°C erhitzt. Nach dem Abkühlen auf Raumtemperatur wurde das ausgefallene Produkt isoliert, mit Dimethylformamid und dann mit Wasser gewaschen und getrocknet. Man erhielt 10,0 g der obigen Verbindung. Schmp. 143-144°C.

b) Bis-benzoesäure-4,4'-(1,4-phenylenbis-(methylenoxy))-di- ω -hydroxyhexylester

Ein Gemisch aus 9,8 g Bis-benzoesäure-4,4'-(1,4-phenylen-45 bis-(methylenoxy))-diethylester, 1 g Tetrabutylorthotitanat und 50 g 1,6-Hexandiol wurde 10 h unter Rühren auf 150°C erhitzt. Anschließend wurde die Reaktionslösung auf 60°C

abgekühlt und in 200 ml Wasser gegeben. Der ausgefallene Feststoff wurde isoliert, mit Wasser gewaschen und getrocknet. Nach Umkristallisation aus Toluol erhielt man 9,9 g obiger Verbindung. Schmp. 109-113°C.

c) Bis-benzoesäure-4,4'-(1,4-phenylenbis-(methylenoxy))-di- ω -acryloxyhexylester

$$O = (CH_2)_{6} = O$$

Die Verbindung wurde analog Beispiel 1.c) aus 9,9 g Bisbenzoesäure-4,4'-(1,4-phenylenbis(methylenoxy))-di-ω-hydroxy-hexylester hergestellt. Man erhielt nach Chromatographie und Umkristallisation unter den oben angegebenen Bedingungen 3,8 g obiger Verbindung. Schmp. 69-70°C.

. 30

Analog Beispiel 1 bis 4 wurden folgende Verbindungen erhalten:

		12		
1 Struktur	$0 \longrightarrow 0 \longrightarrow (CH_2) * -0 \longrightarrow 0 $	C1 O-0-(CH2) 11-0-C0-(O)-0-(O)-C0-(CH2) 11-0-	CH ₃ CH ₂) 6-0-(CH ₂) 6-0-(CH ₂) 6-0 (CH ₂) 6-0	° (CH ₂) 2-0-(CH
Beispiel	r.	9	7	80

		 	1:	· · · · · · · · · · · · · · · · · · ·	
Struktur	° (CH2) 2 ° (O) (CH2) 2 0 ° (C	° (CH ₂) ₄ ° (O) (CH ₂) ₄ ·	0 -0 -(CH ₂),4-0 -(O) -0 -(O) -0 -(CH ₂),4-0 -(O	OMe O— (CH2) 8—0—(O)—0—(O)—0—(CH2) 8—0 —	OMe 0—(CH ₂) ₈ —0—(O)—0—(O)—0—(CH ₂) ₈ —0—(O)—0—(CH ₂) ₈ —0—(O)
Beispiel	6	10	11	12	13

Beispiel 18

25

Herstellung von 4-(8'-Acryloxy-octyloxy)-phenylbenzoesäure-5 [4'-(6"-acryloxyhexyloxy)-phenyl-1"-oxyl]-ester

a) 4-[8'-Tetrahydroxyranyl-2-oxy)-1-oxyoctyl]-1'-biphenylcarbon-säureethylester

- Ein Gemisch aus 48,4 g 4-Hydroxy-4'-biphenylcarbonsäureethylester, 52,2 g 1-Chlor-8-(tetrahydropyranyl-2-oxy)-octan, 27,6 g K₂CO₃ und 3,0 g KJ in 300 ml DMF wurde 24 h bei 100°C gerührt. Nach Abkühlen auf Raumtemperatur wurde das ausgefallene Produkt isoliert, mit DMF und H₂O gewaschen und dann getrocknet. Man erhielt 61,5 g der obigen Verbindung. NMR, IR und MS stimmten mit der Struktur überein.
 - b) 4-[8'-Tetrahydropyranyl-2-oxy)-1-oxyoctyl]-1'-biphenylcarbon-saure

Ein Gemisch aus 30,5 g 4-[8'-Tetrahydropyranyl-2-oxy)-1-oxyoctanyl]-1'-biphenylcarbonsäureethylester und 4,2 g KOH in 100 ml Ethanol wurde 3 h bei 80°C gerührt. Die Reaktionsmischung wurde auf Eis gegeben und mit Eisessig neutralisiert. Nach Isolierung und Trocknung erhielt man 26,3 g der obigen Verbindung. NMR, IR und MS stimmten mit der Struktur überein.

c) 4-[6'-(Tetrahydropyranyl-2-oxy)-1-oxyhexyl]-phenol

Eine Mischung aus 20,5 g Hydrochinon, 8,19 g 1-Chlor-6-(tetrahydropyranyl-2-oxy)-hexan, 6,9 g K₂CO₃ und 1,5 g KJ in 150 ml DMF wurde 16 h bei 90°C gerührt. Nach Abkühlen auf Raumtemperatur wurde die Reaktionsmischung auf Wasser gegeben

16

und der ausgefallene Niederschlag aus Ethanol umkristallisiert. Man erhielt 7,8 g der obigen Verbindung. NMR, IR und MS stimmten mit der Struktur überein.

5 d) 4-(8'-Hydroxy-octyloxy)-phenylbenzoesäure-[4'-(6"-hydroxy-hexyloxy)-phenyl-1"-oxy]-ester

15,0 g 4-[8'-Tetrahydropyranyl-2-oxy)-1-oxyoctyl]-1'biphenylcarbonsaure und 10,5 g 4-[6'-Tetrahydropyranyl-2oxy)-1-oxyhexyl]-phenol wurden in 200 ml CH2Cl2 gelöst und mit 15 500 mg Dimethylaminopyridin versetzt. Bei 0-5°C wurden dann 8,3 g Dicyclohexylcarbodiimid, gelöst in 30 ml CH₂Cl₂ zugegeben, und die Reaktionsmischung wurde 24 h bei Raumtemperatur gerührt. Der Harnstoff wurde abgesaugt und das Filtrat einge-20 engt. Der Rückstand wurde in 200 ml Ethanol aufgenommen und mit 2 ml konzentrierter HCI-Lösung versetzt. Nach 3 h Rühren bei Raumtemperatur wurde die Reaktionsmischung auf Wasser gegeben, mit CH2Cl2 extrahiert und die organische Phase mit gesättigter KHCO3-Lösung und Wasser gewaschen. Nach Abziehen des Lösungsmittels wurde der Rückstand an Kieselgel (Toluol/ 25 Essigester 5:1) gereinigt und ergab 12,1 g der obigen Verbindung. NMR, IR und MS stimmten mit der Struktur überein.

e) 4-(8'-Acryloxyoctyloxy)-phenylbenzoesäure-[4'-(6"-acryloxy-30 hexyloxy)-phenyl-1"-oxy]-ester

Die obige Verbindung wurde analog Beispiel 1.c) unter Einsatz von 5,7 g 4-(8'-Hydroxy-octyloxy)-phenylbenzoesäure-[4'-(6"-acryloxyhexyloxy)-phenyl-1"-oxy]-ester erhalten. Nach Chromatographie analog Beispiel 18.d) und Umkristallisation aus Ethanol wurden 2,6 g obiger Verbindung erhalten. NMR, IR und MS stimmten mit der Struktur überein.

17

Struktur Beispiel 20 19 21 22

Analog Beispiel 18 wurden die folgenden Verbindungen hergestellt:

· Committee

	Struktur	
	° (CH ₂) 2-0-(CH ₂) 2-0-(CH ₂) 6-(CH ₂) 6-	
	° (CH ₂) 8-0-(C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	0 (CH2) 6 (CH2) 6 (CH2) 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18
	$\begin{pmatrix} cH_3 \\ O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} & O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} & O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} & O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} & O \end{pmatrix} & O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} & O \end{pmatrix} & O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} & O \end{pmatrix} & O \end{pmatrix} \begin{pmatrix} O \end{pmatrix} & O \rangle & O$	
1	° CH ₂) 2-0-(CH ₂	

10 1 F. C. + 11 12 - 11 14

_			19		
Struktur	0 0 (CH ₂) 3 0		C1 O (CH ₁) 8-0-(CH ₂) 2-0-(CH ₂) 2-0-	0 (CH ₂) 6-0 (CH ₂) 6-0 (CH ₂) 4-0 0	$\begin{array}{c} CH_3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Beispiel	29	30	31	32	33

			20		
Stru	$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	CH ₃ 0-(CH ₂) 6-0-(CH ₂) 6-	$\begin{array}{c} CH_{3} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} CH_3 & H_3C & CH_3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} CH_3 & H_3C \\ O \\ O \\ O \end{array} $ $\begin{array}{c} CH_3 \\ O \\ O \\ O \end{array}$ $\begin{array}{c} CH_3 \\ O \\ O \\ O \end{array}$
Beispiel	34	35	36	37	38

			21		 ,
Struktur	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} $	$\begin{pmatrix} cH_3 & c1 \\ 0 & (CH_2) & 0 \end{pmatrix} \begin{pmatrix} 0 & CH_3 & C1 \\ 0 & CH_2 \end{pmatrix} \begin{pmatrix} 0 & CH$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Beispiel	39	40	41	42	43

O—(CH ₂) _β —
——————————————————————————————————————
—————————————————————————————————————
()- o(CH ₂) 8(
C (CH ₂) 11—0.

Analog Beispiel 4 und 18 wurden weiterhin folgende Verbindungen synthetisiert:

Beispiel	Struktur
49	0 (CH ₂) 6-0-(CH ₂) 6-0-(CH ₂) 4-0
20	CH2) 8—0———————————————————————————————————
21	22 (CH ₂) ₈ -0-(CH ₂) ₈ -0-(CH ₂) ₆ -0-(C
52	$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$
53	CH2) 6-0-(CH2) 6-0-(CH2) 6-0-(CH2) 6-0

Doi anial	Struktur
	CH ₂) ₈ -0-(CH ₂) ₁ -0-(CH
1	CH2) 6-CH2 CH2 CH2 CH2 CH2 CH2 CH2) c-CH2 CH2) 2-O

PCT/EP95/00422

Beispiel 56

Herstellung von 2-(8'-Acryloxyoctylphenyl)-5-(8'-acryloxy)-octyl-5 pyrimidin

a) 2-(4-Hydroxyphenyl)-5-(8'-hydroxy)-octylpyrimidin

10
$$HO \longrightarrow N \longrightarrow (CH_2)_8 \longrightarrow OH$$

135 g (1,85 mol) DMF wurden unter Eiskühlung mit 137,7 ml (1,5 mol) POCl3 versetzt und anschließend 15 min bei Raum-15 temperatur gerührt. Nun wurden 294,4 g (1 mol) 8-Benzyloxyoctanaldimethylacetal in 500 ml DMF gelöst zugetropft. Nach beendeter Zugabe wurde ca. 3 h weitergerührt. Anschließend gab man 262,5 g (1 mol) 4-Benzyloxybenzamidin zu und rührte ca. 1 h nach. Dann wurden langsam 1,1 Liter Triethylamin 20 zugegeben, wobei die Temperatur auf ca. 70°C anstieg. Es wurden weitere 700 ml DMF zugefügt und anschließend das Triethylamin unter Normaldruck abdestilliert. Der Rückstand wurde auf ca. 6 Liter Eiswasser gegeben. Das ausgefallene, mit K₂CO₃ gewaschene Produkt wurde aus 2,5 Liter .../Butanol 25 umkristallisiert, in 1 Liter Essigester gelöst und unter Zusatz von 10 g PD/C (10 %) unter Normaldruck bis zum Stillstand der H2-Aufnahme hydriert. Es wurde dann vom Katalysator abgesaugt und eingedampft. Der Eindampfrückstand wurde im Vakuum bei 50°C getrocknet. Die Ausbeute betrug 110,5 g der 30 obigen Verbindung. NMR, IR und MS stimmten mit der Struktur überein.

b) 2-(8'-Hydroxyoctylphenyl)-5-(8'-hydroxy)-octyl-pyrimidin

HO —
$$(CH_2)_8$$
 — O — $(CH_2)_8$ — OH

Analog der Vorschrift zur Herstellung von Beispiel 1.b)

40 wurden 25 g 2-(4-Hydroxyphenyl)-5-(8'-hydroxy)-octylpyrimidin eingesetzt. Die Reaktionsmischung wurde auf 1 Liter Eiswasser gegeben, das ausgefallene Produkt abgesaugt, mit H₂O gewaschen und nach der Trocknung im Vakuum aus Cyclohexan umkristallisiert. Die Ausbeute betrug 15,7 g der obigen

45 Verbindung. NMR, IR und MS stimmten mit der Struktur überein.

c) 2-(8'-Acryloxyoctylphenyl)-5-(8'-acryloxy)-octylpyrimidin

Analog der Vorschrift zur Herstellung der Verbindung Beispiel 1.c) wurden 10,2 g 2-(8'-Hydroxyoctylphenyl)-5-(8'-hydroxy)octyl-pyrimidin eingesetzt. Es konnten 9,8 g des obigen Produktes nach Umkristallisation aus Cyclohexanon erhalten werden. NMR, IR und MS stimmten mit der Struktur überein.

Analog Beispiel 56 wurden Beispiele 57 bis 89 hergestellt:

			27	
Struktur	$\bigcup_{N} (CH_2)_6 - O - \left(\bigcirc \right) - \left(CH_2 \right)_6 - O - \left(\bigcirc \right)$		$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Beispiel	57	28	59	09

Beispiel	Struktur
61	$ \begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
62	$\begin{bmatrix} c_1 \\ 0 \\ - c_1 \end{bmatrix} = 0 - (CH_2)_{11} - 0 - (CH_2)_{11} - 0 - \begin{bmatrix} c_1 \\ - c_1 \end{bmatrix}$
63	$\begin{bmatrix} c_1 \\ 0 \\ 0 \end{bmatrix} = 0 - (CH_2)_8 - 0 - \left(\frac{C_1}{N} \right) \left(\frac{O}{N} \right) - \left(\frac{O}{N} \right) = 0$
64	$\begin{bmatrix} c_1 \\ 0 \\ 1 \end{bmatrix} = 0 - (CH_2)_8 - 0 - (CH_2)_4 - 0 - \begin{bmatrix} c_1 \\ 0 \\ 1 \end{bmatrix} = 0$

	 	29		<u> </u>
Struktur		$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c} O - (CH_2)_6 - O - \left(\begin{array}{c} N \\ \end{array} \right) - O - (CH_2)_8 - O \\ O \end{array} $	
Beispiel	99	<i>L</i> 9	. 89	69

Beispiel 70

Bis-benzoesäure-4,4'-(1,4-phenylenbis-(methylenoxy))-di-w-vinyloxyhexylester

fluß erhitzt. Dann werden 30 g K₂CO₃ hinzugefügt und der Überschuß an Ethylvinylether wird im Dampfbad (s. Bsp. 4b) und 0,04 mol Hg (OAc)2 in 4 l frisch destilliertem Ethylvinylether wird 20 h unter Rückabdestilliert. Der Rückstand wird filtriert und das K_2CO_3 mit Toluol gewaschen. Filtrat und Wasch-Eine Lösung von 0,84 mol Bisbenzoesäure-4,4'(1,4-phenylenbis(methylenoxy))-di-w-hydroxyhexylester flüssigkeit werden eingeengt und ergeben 0,75 mol obiger Verbindung.

Analog wurden die Verbindungen der folgenden Beispiele hergestellt.

	$\begin{array}{c} c1 \\ c1$
71	72

Beispiel 75

4-(8'-Vinyloxyoctoxy)-phenylcarbonsåure-[4'-(6''-vinyloxyhexoxy)-phenyl-1''-oxy)-ester

Die obige Verbindung wurde analog Beispiel 70 unter Einsatz von 0,1 mol 4-(8'-Hydroxy-octoxy)-phenylbenzoesâure-[4'-(6''-vinyloxyhexoxy)-phenyl-1''-oxy]-ester durch Umsetzung mit Ethylvinylether hergestellt. Nach dem Abdestillieren des Lösungsmittels und Umkristallisation aus iso-Propanol wurden 0,08 mol der obigen Verbindung erhalten. NMR, IR und US stimmten mit der Struktur überein.

Analog wurden die folgenden Verbindungen hergestellt:

			32		
~o — (CH ₂) 6 — o — O → O → O → O — (CH ₂) 4 — o —	~o — (CH ₂) 8 — o — (O) — (O) — 0 — (CH ₂) 4 — o — (CH ₂)	0 - (CH ₂) 6 - 0 - (O) - (O) - (CH ₂) 4 - 0 - (CH ₂) 4 - (CH ₂	~o − (CH ₂) ₈ − o − (O) − (O) − o − (CH ₂) ₆ − o − o − (CH ₂) ₆ − o − o − (CH ₂) ₆ − o − o − (CH ₂) ₆ − o − o − o − o − o − o − o − o − o −	C1 CH2) 11 — 0 — (O) — (O) — 0 — (CH2) 6 — 0 — (CH2) 6 — 0 — 0	
76	7.7	78	79	80	81

Beispiel 82

2-(4-w-Vinyloxyoctoxyphenyl-)-5-(w-vinyloxy)-octylpyrimidin

$$\sim$$
 0 - (CH₂) 8 - 0 - (O) - (CH₂) 9 - 0 - \sim

Analog der Vorschrift zur Herstellung der Verbindung aus Beispiel 70 wurden 0,36 mol 2-(@-Hydroxyoct-Umkristallisation aus Cyclohexanon erhalten werden. NMR, IR und US stimmen mit der Struktur überein. oxyphenyl)-5-(w-hydroxy)-octylpyrimidin eingesetzt. Es konnten 0,24 mol des obigen Produktes nach

			34	·	
$\sim 0 - (CH_2)_6 - 0 - \left(\bigcirc \right) - \left(\frac{N}{N} \right) - (CH_2)_6 - 0 - \left(\frac{N}{N} \right)$	$\sim 0 - (CH_2)_8 - 0 - \left(\bigcirc \right) - \left(\bigcirc \right)_4 - 0 - 0 - 0 - \left(\bigcirc \right)_4 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - $	$N = 0 - (CH_2)_9 - 0 - (CH_2)_4 - 0 $			
86	87	88	68	06	91

35

Patentansprüche

Flüssigkristalline Verbindungen der allgemeinen Formel I

Z—Y—A—Y—M—Y—A—Y—Z

in der die Reste

- 10 Z unabhängig voneinander eine polymerisierbare Gruppe, die Reste
 - Y unabhängig voneinander eine direkte Bindung, O, S, COO, OCO, CONR oder N(R)CO, die Reste
 - A unabhängig voneinander ein Spacer und
 - M eine mesogene Gruppe der Formel

B COO, OCO, CH₂O, OCH₂,

35

15

$$CH = CH , OCH_{2} \longrightarrow \begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \\ R^{1} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{2} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \\ R^{2} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ CH_{2}O \\ R^{2} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ CH_{2}O \\ R^{2} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ CH_{2}O \\ R^{2} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ CH_{2}O \\ R^{2} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ R^{2} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ R^{2} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ R^{2} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{1} \\ CH_{2}O \longrightarrow \begin{array}{c} R^{2} \\ CH_{2}O \longrightarrow \begin{array}{c}$$

37

R Wasserstoff oder C_1 - bis C_4 -Alkyl, die Reste

- R¹ und R² unabhängig Wasserstoff, C₁- bis C₁₅-Alkyl, C₁- bis C₁₅-Alkoxy, C₁- bis C₁₅-Alkoxycarbonyl, C₁- bis C₁₅-Monoalkylaminocarbonyl, Formyl, C₁- bis C₁₅-Alkylcarbonyl, Fluor, Chlor, Brom, Cyan, C₁- bis C₁₅-Alkylcarbonyloxy, C₁- bis C₁₅-Alkylcarbonylamino, Hydroxy oder Nitro,
- 10 R3 C₂- bis C₁₅-Alkyl, C₁- bis C₁₅-Alkoxy, C₁- bis C₁₅-Alkoxy-carbonyl, C₁- bis C₁₅-Monoalkylaminocarbonyl, Formyl, C₁- bis C₁₅-Alkylcarbonyl, Fluor, Chlor, Brom, Cyan, C₁- bis C₁₅-Alkylcarbonyloxy, C₁- bis C₁₅-Alkylcarbonyl-amino, Hydroxy oder Nitro,

 \mathbb{R}^4 ein Rest \mathbb{R}^1 und

n 2, 3 oder 4 sind.

- 20 2. Verbindungen der Formel gemäß Anspruch 1, bei denen
 - Z ein Rest der Formel

30

5

15

- 3. Verbindungen der Formel gemäß Anspruch 1, bei denen die Reste
 - Y unabhängig voneinander eine direkte Bindung, O, COO oder OCO sind.

38

- 4. Verbindungen der Formel gemäß Anspruch 1, bei denen die Reste
 - A unabhängig voneinander gegebenenfalls durch Ethersauerstoff unterbrochenes C_2 bis C_{20} -Alkylen sind, wobei die Sauerstoffatome in der Kette dritte oder vierte C-Atome ersetzen können.
- 5. Verbindungen der Formel gemäß Anspruch 1, bei denen
- 10 M ein Rest der Formel

5

40

$$B$$
 $-$ ist.

156. Verbindungen gemäß Anspruch 5, bei denen

B COO, OCO, CH₂O, OCH₂, CH=CH,

OCH₂

$$\xrightarrow{R^1}$$
 CH_2O , H_2CO
 $\xrightarrow{R^1}$
 CH_2O , H_2CO
 $\xrightarrow{R^2}$
 CH_2O , H_2CO

 $OCH_2 \xrightarrow{\mathbb{R}^1} OCH_2, \quad OCH_2 \xrightarrow{\mathbb{R}^1} COO, \quad OOC \xrightarrow{\mathbb{R}^1} OC \xrightarrow{\mathbb{R}^2} OC \xrightarrow{\mathbb$

$$-CH \xrightarrow{(CH_2)_n} CH - , -CH \xrightarrow{R_3C} CH - ,$$

$$-CH_2$$
 CH_2
 CH_2

39

wobei \mathbb{R}^1 , \mathbb{R}^2 und n die für Anspruch 1 angegebene Bedeutung haben.

- 7. Verbindungen gemäß Anspruch 6, bei denen
- und R² unabhängig voneinander Wasserstoff, Methyl, Ethyl,

 C₈- bis C₁₅-Alkyl, Methoxy, Ethoxy, C₈- bis C₁₅-Alkoxy,

 Methoxycarbonyl, C₈- bis C₁₅-Alkoxycarbonyl, Formyl,

 Acetyl, C₈- bis C₁₅-Alkylcarbonyl, Fluor, Chlor, Brom,

 Cyan, Acetoxy, C₈- bis C₁₅-Alkylcarbonyloxy, Hydroxy oder

 Nitro und
- n 2, 3 oder 4 sind.

40

- 8. Verbindungen gemäß Anspruch 7, bei denen
 - R¹ und R² unabhängig voneinander Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy, Methoxycarbonyl, Formyl, Acetyl, Fluor, Chlor, Brom, Cyan, Acetoxy, Hydroxy oder Nitro und
 - n 2, 3 oder 4 sind.
- 9. Verwendung der Verbindungen gemäß Anspruch 1 als Orientierungsschichten für flüssigkristalline Materialien, als photovernetzbare Kleber, als Monomere zur Herstellung von flüssigkristallinen Polymeren, als Basismaterial zur Herstellung von chiral dotierbaren polymerisierbaren Flüssigkristallsystemen, als polymerisierbare Matrixmonomere für polymer-dispergierte Displays oder als Basismaterial für polymerisierbare flüssigkristalline Materialien zur Herstellung optischer Bauelemente.
- 10. Verwendung der Verbindungen gemäß Anspruch 1 zur Herstellung von cholesterisch flüssigkristallin geordneten Farbmitteln.

25

5

30

35

INTERNATIONAL SEARCH REPORT

Intern. .ial Application No PCT/FD 95/00422

		I PC	1/EP 95/00422
IPC 6	FICATION OF SUBJECT MATTER C09K19/30 C09K19/20 C09K C07C69/54 C07C69/90	(19/34 C07D239/26	C07D239/34
According to	International Patent Classification (IPC) or to both national	al classification and IPC	
	SEARCHED		
Minimum do	cumentation searched (classification system followed by di	assification symbols)	
Documentati	on searched other than minimum documentation to the exte	nt that such documents are included i	n the fields searched
Electronic da	ata base consulted during the international search (name of	data base and, where practical, search	terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate,	of the relevant passages	Relevant to claim No.
X	WO,A,93 22397 (MERCK PATENT) 1993	11 November	1-9
	see page 46, line 27 - page 5 see page 59, line 1 - page 63 see claim 8; example 4	52, line 3 1, line 18	
x	EP,A,O 501 563 (N.V.PHILIPS GLOEILAMPENFABRIKEN) 2 Septer see figures 4-7	nber 1992	1-8
x	US,A,3 383 360 (S.A. HARRISON see the whole document	N) 14 May 1968	3-8
		-/	
		-/	
	•		
X Furt	her documents are listed in the continuation of box C.	X Patent family memb	ers are listed in annex.
* Special ca	tegories of cited documents:	T later document published	after the international filing date .
'A' docum	ent defining the general state of the art which is not tered to be of particular relevance	or priority date and not cited to understand the p	in conflict with the application but principle or theory underlying the
l .	document but published on or after the international	invention "X" document of particular r	relevance; the claimed invention
"L" docum	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered no involve an inventive step	ovel or cannot be considered to p when the document is taken alone
citatio	no or other special reason (as specified) tent referring to an oral disclosure, use, exhibition or	cannot be considered to	relevance; the claimed invention involve an inventive step when the
other	means		with one or more other such docu- n being obvious to a person skilled
later ti	ent published prior to the international filing date but han the priority date claimed	'&' document member of the	e same patent family
Date of the	actual completion of the international search	Date of mailing of the in	nternational search report
2	9 May 1995	06/0	06/95
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
ĺ	NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016	Puetz, C	

Form PCT/ISA/210 (second sheet) (July 1992)

1

Intern. nal Application No
PCT/EP 95/00422

		PCT/EP 95/00422		
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.				
	cases of security with indicators where appropriate, or the relevant passages	Relevant to claim No.		
Ρ,Χ	POLYMER BULLETIN, vol. 32,no. 5/6, May 1994 HEIDELBERG DE, pages 529-536, B.KOSCIELNY ET AL. 'synthesis and characterization of glycidyl ethers modified by mesogenic units' see the whole document	1,3-9		
P,X	WO,A,94 08268 (MERCK PATENT) 14 April 1994 see the whole document	1-9		
A	EP,A,O 261 712 (N.V. PHILLIPS GLOEILAMPENFABRIEKEN) 30 March 1988 see the whole document	1-9		
A	EP,A,O 423 880 (N.V. PHILIPS GLOEILAMPENFABRIEKEN) 24 April 1991 see the whole document	1-9		
	DATABASE WPI Week 9408 Derwent Publications Ltd., London, GB; AN 94-062029 & JP,A,06 016 616 (CANON) see abstract	1-9		
	·			
	,			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

. 1

INTERNATIONAL SEARCH REPORT

Interi anal Application No PCT/EP 95/00422

Patent document cited in search report	Publication date	Patent family member(s)		Publication date 13-04-94 08-09-94	
WO-A-9322397	11-11-93	EP-A- 0591508 JP-T- 6507987			
EP-A-501563	02-09-92	NL-A- JP-A- US-A-	9100336 5061022 5257127	16-09-92 12-03-93 26-10-93	
US-A-3383360	14-05-68	NONE			
WO-A-9408268	14-04-94	EP-A- JP-T-	0615630 7501850	21-09-94 23-02-95	
EP-A-261712	30-03-88	JP-A- US-A-	63064029 4892392	22-03-88 09-01-90	
EP-A-423880	24-04-91	DE-D- JP-A-	69017347 3192311	06-04-95 22-08-91	

INTERNATIONALER RECHERCHENBERICHT

Inten. nales Aktenzeichen PCT/EP 95/00422

A. KLASSI	FIZIERUNG DES AN	MELDUNGSGEGENS	TANDES		
IPK 6	CO9K19/30	C09K19/20	C09K19/34	C07D239/26	C07D239/3
	C07C69/54	C07C69/90			

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

و

Recherchierter Mindestprüßtoff (Klassifikationssystem und Klassifikationssymbole) **C09K** IPK 6

Recherchierte aber nicht zum Mindestprüßtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
x	WO,A,93 22397 (MERCK PATENT) 11.November 1993 siehe Seite 46, Zeile 27 - Seite 52, Zeile	1-9
	siehe Seite 59, Zeile 1 - Seite 61, Zeile 18 siehe Anspruch 8; Beispiel 4	
X	EP,A,O 501 563 (N.V.PHILIPS GLOEILAMPENFABRIKEN) 2.September 1992 siehe Abbildungen 4-7	1-8
X	US,A,3 383 360 (S.A. HARRISON) 14.Mai 1968 siehe das ganze Dokument	3-8
	-/	

X	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
---	---

Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen
- Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweischast erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie
- Ausgertung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Priontätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentsamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts 06/06/95

Name und Postanschrift der Internationale Recherchenbehörde

Europäisches Patentami, P.B. 5818 Patentlaan 2 NL - 2280 HV Ripswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

Puetz, C

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

29.Mai 1995

Interná ales Aktenzeichen
PCT/EP 95/00422

		PCT/EP 9	5/00422	
C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kom	menden Teile	Betr. Anspruch Nr.	
Ρ,Χ	POLYMER BULLETIN, Bd. 32,Nr. 5/6, Mai 1994 HEIDELBERG DE, Seiten 529-536, B.KOSCIELNY ET AL. 'synthesis and characterization of glycidyl ethers modified by mesogenic units' siehe das ganze Dokument		1,3-9	
P,X	WO,A,94 08268 (MERCK PATENT) 14.April 1994 siehe das ganze Dokument		1-9	
A	EP,A,O 261 712 (N.V. PHILLIPS GLOEILAMPENFABRIEKEN) 30.März 1988 siehe das ganze Dokument		1-9	
A	EP,A,O 423 880 (N.V. PHILIPS GLOEILAMPENFABRIEKEN) 24.April 1991 siehe das ganze Dokument		1-9	
A	DATABASE WPI Week 9408 Derwent Publications Ltd., London, GB; AN 94-062029 & JP,A,06 016 616 (CANON) siehe Zusammenfassung		1-9	

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

Inten. .nales Aktenzeichen
PCT/EP 95/00422

Im Recherchenbericht ingeführtes Patentdokument	Datum der Veröffentlichung		i(cr) der familie	Datum der Veröffentlichung
WO-A-9322397	11-11-93	EP-A- JP-T-	0591508 6507987	13-04-94 08-09-94
EP-A-501563	02-09-92	NL-A- JP-A- US-A-	9100336 5061022 5257127	16-09-92 12-03-93 26-10-93
US-A-3383360	14-05-68	KEINE		• • • • • • • • • • • • • • • • • • •
WO-A-9408268	14-04-94	EP-A- JP-T-	0615630 7501850	21-09-94 23-02-95
EP-A-261712	30-03-88	JP-A- US-A-	63064029 4892392	22-03-88 09-01-90
EP-A-423880	24-04-91	DE-D- JP-A-	69017347 3192311	06-04-95 22-08-91

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.