Cryptography: notes

Niccolò Simonato

October 17, 2022

Contents

1	Effic	Efficient implementations of elementary operations and elements of Num-					
	ber Theory -						
	1.1	Notat	ion	2			
	1.2	Classi	fication of the algorithms' complexity	2			
	1.3	Basic	bit operations	3			
		1.3.1	Sum of 3 bits - 3-bit-sum	3			
		1.3.2	Summation of 2 numbers	3			
		1.3.3	Summation of n numbers	3			
		1.3.4	Product of 2 numbers	3			
		1.3.5	Division of 2 numbers	4			
		1.3.6	Production of n numbers	4			
	1.4	Optin	nizations of more complex operations	5			
		1.4.1	Powers & Modular Powers	5			
		1.4.2	Finding the <i>b</i> -expansion of $n(n_b)$	7			
		1.4.3	How to use Bezout formula to compute modular inverses	8			
	1.5	Remir	nders of Modular Arithmetic	8			
		1.5.1	Little Fermat's Theorem	8			
		1.5.2	Euler-Fermat's Theorem	8			
		1.5.3	Bézout's identity	8			
	1.6	Heofu	•	o			

Chapter 1

Efficient implementations of elementary operations and elements of Number Theory

1.1 Notation

- Let *b* be a numeric base.
- Let n be a number in N.
- Length of a number: $l_b(n)$, k. It's equal to log(n).
- (*a*, *b*) is the Maximum Common Divisor of *a*, *b*.
- Let $n \in \mathbb{N}$: $n = (d_{k-1}, d_{k-2}, \dots, d_1, d_0)^1$.
- $\varphi(n)$: the number of elements a in [1, n] such that (a, n) = 1.
- \equiv_p is the equivalence in base p. Ex.: $5 \equiv_3 = 5 \mod 3 = 2$.
- Let $\mathbb{Z}_n[X]$ be the set of polynomials in X with coefficients in Z_n .

1.2 Classification of the algorithms' complexity

In order to better identify the classes of complexity of the algorithms, the following 3 classes are defined:

• Polynomial time: $O(log^{\alpha}(n))$ bit operations, where $\alpha > 0$.

 $^{^{1}}d_{k-1}\neq 0$

- Exponential time: $O(exp(c \cdot log(n)))$ bit operations, where c > 0.
- Sub-exponential time: $O(exp(c \cdot log(n))^{\alpha})$ bit operations, where $c > 0, \alpha \in]0,1[$.

•

1.3 Basic bit operations

1.3.1 Sum of 3 bits - 3-bit-sum

Given n_1 , n_2 their sum produces $n_1 + n_2$ and their carry. Since n_1 , $n_2 \in [0, 1]$, then this operation can be done in O(1).

1.3.2 Summation of 2 numbers

Given n_1 , n_2 their sum produces $n_1 + n_2$. Since the sum is computed bit by bit, the 3-bit-sum is performed $max\{lenght(n_1), length(n_2)\}$ times. Each time the carry on of the previous sum is added to the two digits.

This operation has then complexity $O(max\{lenght(n_1), length(n_2)\}) = O(max\{log(n_1), log(n_2)\})$

1.3.3 Summation of n numbers

The summation of n numbers is simply the sum of two numbers, but performed n-1 times

Let's assume that $\forall i \in [1, n] : M \ge a_i$.

The complexity of this operation is then $O((n-1) \cdot log(M)) = O(n)$.

1.3.4 Product of 2 numbers

If we consider the classic implementation of the binary multiplication, that is just a sequence of summations.

- The number of summations to execute is equal to the length of the smallest number, O(log(n)).
- The maximum cost of a single summation is O(log(m)).
- Then, $T(m \cdot n) = O(log(m) \cdot log(n))$, but, if we consider the worst case², that becomes $O(log^2(m))$.

²two numbers that are equally large

1.3.5 Division of 2 numbers

Let's consider the division of two numbers m, n. This operations consists in finding two numbers q, r such that $m = q \cdot n + r$.

This is achieved by performing a succession of subtractions, until the ending condition $0 \le r < n$ is reached.

- Let's consider that the number of steps of this algorithm is O(log(q)).
- Moreover, $q \le m$: #steps = O(log(m)).
- It's assumed that the cost of the single subtraction is O(log(n)).
- Then, $T(\frac{m}{n}) = O(log(n) \cdot log(m))$.

1.3.6 Production of n numbers

Let's assume that $j \in [1, s+1]$ and $M = max(m_j)$.

The cost of the operation $\prod_{j=1}^{s+1} m_j$ is then $O(s^2 \cdot log^2(M))$. This will now be considered our inductive hypothesis.

Proof by induction, on *s*:

- (1) Base case: $T(m_1 \cdot m_2) = O(log(m_1) \cdot log(m_2)) = O(k_1 \cdot k_2) \le c \cdot k_M^2$.
- (2) Base case: $T(m_1 \cdot m_2 \cdot m_3) = T(m_1 \cdot m_2) + T((m_1 \cdot m_2) \cdot m_3)$ $\leq c \cdot k_M^2 + c \cdot k_{m_1 \cdot m_2} + k_{m_3}$ $\leq c \cdot k_M^2 + c \cdot k_{M^2} + k_M$
- Inductive step: we assume the inductive hypothesis to be true up to s. Then, $T(\prod_{j=1}^{s+1} m_j) = T([\prod_{j=1}^s m_j] \cdot m_{s+1})$

$$\leq c \cdot \sum_{j=1}^{s} (j \cdot k_{M}^{2})$$

$$= c \cdot k_{M}^{2} \cdot \frac{s \cdot (s-1)}{2}$$

$$= O(k_{M}^{2} \cdot s^{2})$$

$$= O(s^{2} \cdot log^{2}(M))$$

Applications

- An analogous dimonstration can be used to prove that $T(\prod_{j=1}^{s+1} m_j \mod n) = O(s \cdot log^2(M))$
- This proof can be used to show that $T(m!) = O(m \cdot log^2(m))$.

1.4 Optimizations of more complex operations

1.4.1 Powers & Modular Powers

Let's consider what follows: $a^n = a \cdot a \cdot a \cdot \cdots \cdot a$, where a is repeated n times.

Trivial implementation

The most trivial implementation would consists in computing the product $\prod_{j=1}^n a$. This would imply a cost of $O(n^2 \cdot log^2(a))$).

What follows is a suggestion that could improve the cost of this operation.

Square & Multiply method for scalars, modular powers

Each number in \mathbb{Z} can be represented in a binary notation.

```
Let's consider n = (b_{k-1}, b_{k-2}, ..., b_0) = \sum_{i=0}^{k-1} b_i \cdot 2^i.
```

It is clear that we can spare a lot of computational resources by just calculating the powers of 2 and summing the ones that have $b_i = 1$. The following algorithm explains the procedure in detail. Let's compute the complexity of this algorithm:

Algorithm 1: The Square & Multiply Method

```
1 P \leftarrow 1;

2 M \leftarrow m;

3 A \leftarrow a \mod n;

4 while M > 0 do

5 | q \leftarrow \lfloor \frac{M}{2} \rfloor;

6 | r \leftarrow M - s \cdot q;

7 | if r = 1 then

8 | P \leftarrow P \cdot A \mod n;

9 | end

10 | A \leftarrow A^2 \mod n;

11 | M \leftarrow q;

12 end

13 return P
```

- All of the assignments $X \leftarrow Y$ are implemented in O(log(Y)).
- The cost of 3 is $O(log(a) \cdot log(n))$, because it ensures that $A \le n$.
- Instructions 5 and 6 can be executed in O(log(m)).

- Instrucion 8 can be executed in $O(log^2(n))$.
- The cost of 10 is $O(log^2(n))$, because it ensures that $A \le n$.
- The loop is executed log(m) times.
- The total cost of this algorithm is then $O(log(n) \cdot log(a) + log(m) \cdot (log^2(n) + log(m)))$

$$= O(log^2(m) + log(m) \cdot log(n)).$$

This algorithm can be easily converted for the computation of non-modular powers by applying the following changes:

- $1 A \leftarrow a \mod n \Longrightarrow A \leftarrow a;$
- $_{2}P \leftarrow P \cdot A \mod n \Longrightarrow P \leftarrow P \cdot A;$
- $A \leftarrow A^2 \mod n \Longrightarrow A \leftarrow A^2$;

Square & Multiply method for polynomials

Let's consider $\Re = \frac{\mathbb{Z}_n[x]}{x^r-1}$. The modular powers of the elements in this set can be computed by using a variation of the Square & Multiply method.

- Assume that $f, g \in \Re$.
- Let $h(x) = f(x) \cdot g(x) = \sum_{j=0}^{2r-2} h_j \cdot x^j$.
- Where $h(j) = (\sum_{i=0}^{j} f_i \cdot g_{j-i} \mod n) \mod n$.
- Then, $T(h_j) = O(j \cdot log^2(n))$.
- Then, $T(h(x)) = O(\sum_{j=0}^{log^2(n)}) = O(r^2 \cdot log^2(n)).$

This result will be useful in the following computations. Let's now consider $\frac{h(x)}{x^r-1}$.

- When j > r 1, $h_j \cdot x^j$ does not take any part in the computations.
- When j = r, then, $\frac{h_r \cdot x^r}{x^r 1} = h_r + \frac{h_r}{x^r 1}$ Or, in other words: $h_r \cdot x^r \equiv_{x^r - 1} h_r$.
- In the other cases: $h_{r+i} \cdot x^{r+i} \equiv_{x^r-1} h_{r-i} \cdot x^{r-i}$ for $1 \le i \le r-2$.

Then,
$$h(x) \equiv_{(n,x^r-1)} f(x) \cdot g(x) \equiv [\sum_{i=0}^{r-2} ((h_j + h_{r+j}) \mod n) \cdot x^j] + h_{r-1} \cdot x^{r-1}.$$

Therefore, $T(h(x) \mod (n, x^r - 1)) = O(r^2 \cdot log^2(n))$.

Finally, we can analyze the complexity of the computation of the modular power h(x)elevated to n.

In order to optimize the use of the computational resources, we can use a variation of the Square & Multiply method (See 1); although, this time, the computation of the partial products will be conducted by using the previously explained procedure (See 3).

The cost of this method would then be $T(\#Loops \cdot (h(x) \bmod (n, x^r - 1))) =$ $O(log(n) \cdot r^2 \cdot log(n)) = O(r^2 \cdot log^3(n)).$

Finding the *b*-expansion of $n(n_b)$

Let's consider the cost in bit operations of the conversion of a number n to a new base b.

The algorithm used will be the classical: a succession of divisions by *b*.

- Let's consider $r_i \in \{0, 1, ..., b-1\}$.
- Let $n_b = (r_{k+1}, r_k, \dots, r_1, r_0)$.
- Then:

-
$$n = q_0 \cdot b + r_0$$

- $q_0 = q_1 \cdot b + r_1$
- ...
- $q_k = 0 \cdot b + q_k$

- Consider then that $q_k = r_{k+1}$
- And that $b^{k+2} > n > b^{k+1} \to (k+2) \cdot log(b) \le log(n) \le (k+1) \cdot log(b)$.
- $\therefore k = O(\frac{log(n)}{log(b)}).$

We can now proceed with the computation of the cost of this operation:
$$T(n_b) = T(\#Divisions \cdot q_i \bmod b) = O(\frac{log(n)}{log(b)} \cdot log(n) \cdot log(b)) = O(log^2(n))$$

1.4.3 How to use Bezout formula to compute modular inverses

An efficient way of computing the modular inverse of a given number a with in the ring \mathbb{Z}_m uses the corollary of the *Bezout identity* and the *Extended Euclidean Algorithm*.

That is, given $a \cdot x \equiv_m 1$, we want to compute x.

Extended Euclidean Algorithm, given a, m computes the gcd(a, m) and also returns the coefficients x, y for which ax + my = 1.

At this point, the modular inverse of a in \mathbb{Z}_m is x:

- Let's consider that $ax + my \equiv_m 1$;
- Since $my \equiv_m 0$, then $ax \equiv_m 1$;
- $\bullet \ \, : x is the modular inverse of a in Z_m for its definition.$

1.5 Reminders of Modular Arithmetic

1.5.1 Little Fermat's Theorem

- Let *p* be a prime number.
- Then, $a^{p-1} \equiv_p 1$.

1.5.2 Euler-Fermat's Theorem

- Let $n \in \mathbb{Z}$ be a number.
- Then, $a^{\varphi(n)} \equiv_n 1$.

1.5.3 Bézout's identity

- Let *a* and *b* be integers with greatest common divisor *d*.
- Then there exist integers x and y such that ax + by = d.
- Moreover, the integers of the form az + bt are exactly the multiples of d.

1.6 Useful Facts

The GMP library is a free library for arbitrary precision arithmetic. It implements all the basic arithmetic operations with the maximum efficency possible.

List of Algorithms

1 The Square & Multiply Method		5
--------------------------------	--	---