Модификации метода анализа сингулярного спектра для анализа временных рядов: Circulant SSA и Generalized SSA

Погребников Н. В., гр. 21.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д. ф.-м. н., проф. Голяндина Н. Э.

Санкт-Петербург, 2025

Структура презентации

План доклада:

- Введение методы, постановка задачи и цели.
- Критерии сравнения методов
- Сравнение SSA и GSSA
- Сравнение SSA, разложение Фурье и CiSSA
- Итоги и выводы.

Введение

Пусть $\mathsf{X}=(x_1,\ldots,x_N)$ – временной ряд длины $N,\ x_i\in\mathbb{R}$ – наблюдение в момент времени i.

 $X = X_{Trend} + X_{Periodics} + X_{Noise}$, где:

- X_{Trend} тренд, медленно меняющаяся компонента;
- X_{Periodics} сумма периодических компонент;
- X_{Noise} шум, случайная составляющая.

Методы: SSA — метод, позволяющий раскладывать временной ряда в сумму интерпретируемых компонент (Golyandina, Nekrutkin и Zhigljavsky 2001); GSSA — модификация SSA на основе добавления весов (Gu и др. 2024); CiSSA — модификация SSA на основе циркулярной матрицы (Bogalo, Poncela и Senra 2020).

Задача: Описание модификаций в контексте теории **SSA**, сравнение алгоритмов, реализация их на языке R.

Критерии сравнения методов

Пример

$$\mathbf{X}=\mathbf{S}+\mathbf{X}_{\mathrm{Noise}}=\mathbf{S}^{(1)}+\mathbf{S}^{(2)}+\mathbf{X}_{\mathrm{Noise}}=e^{An}\sin{(2\pi\omega_{1}n)}+\cos{(2\pi\omega_{2}n)}+arepsilon_{n}.$$
 ω_{1},ω_{2} – частоты; $\varepsilon_{n}\sim\mathrm{N}(0,\sigma^{2})$ – шум; \mathbf{S} – сигнал.

 $\hat{\mathsf{S}}$ — оценка выделения сигнала методом.

 $\hat{\mathsf{S}}^{(1)},\hat{\mathsf{S}}^{(2)}$ — оценки разделения компонент $\mathsf{S}^{(1)},\mathsf{S}^{(2)}$

Критерии сравнения методов:

- Выделение сигнала;
- Разделимость;
- Постановка задачи (для CiSSA частоты предполагаются известными).

Разделимость

 ${\sf X}_N = {\sf X}_N^{(1)} + {\sf X}_N^{(2)}$. М – метод разделения ряда на компоненты с параметрами Θ . $\hat{\sf X}_N^{(1)}$ – оценка ${\sf X}_N^{(1)}$, восстановленная ${\sf M}$.

Определение 1

Pяды $\mathsf{X}_N^{(1)}$ и $\mathsf{X}_N^{(2)}$ точно разделимы методом M , если существует такое Θ , что $\mathrm{MSE}\left(\mathsf{X}_N^{(1)},\hat{\mathsf{X}}_N^{(1)}\right)=0.$

Определение 2

Ряды ${\sf X}_N^{(1)}$ и ${\sf X}_N^{(2)}$ асимптотически разделимы методом ${\sf M}$, если существует последовательность $\Theta(N)$, $N \to \infty$, что ${\sf MSE}\left({\sf X}_N^{(1)},\hat{\sf X}_N^{(1)}\right) \to 0.$

Метод SSA. Алгоритм

 ${\sf X} = (x_1, \dots, x_N)$ — временной ряд. 1 < L < N — длина окна. **Алгоритм SSA**:

- ① Построение траекторной матрицы: $\mathbf{X} = \mathcal{T}_L(\mathsf{X}) = [\mathsf{X}_1:\ldots:\mathsf{X}_K], \ \mathsf{X}_i = (x_i,\ldots,x_{i+L-1})^T, \ 1 \leq i \leq K, \quad K = N-L+1.$
- ② Сингулярное разложение (SVD) траекторной матрицы.
- Группировка элементарных матриц SVD.
- $oldsymbol{0}$ Восстановление временного ряда по матрицам SVD: $X = \tilde{X}_1 + \cdots + \tilde{X}_m.$

Вложенный вариант SSA. EOSSA

$$\mathsf{X} = \mathsf{S} + \mathsf{X}_{\mathrm{Noise}} = \mathsf{S}^{(1)} + \mathsf{S}^{(2)} + \mathsf{X}_{\mathrm{Noise}}$$

Определение 3 (Golyandina и Shlemov 2015)

Вложенный вариант SSA — двухэтапный метод:

- Задается r. $\tilde{\mathbf{S}}$ сумма первых r слагаемых SVD разложения траекторной матрицы сигнала \mathbf{S} с помощью базового \mathbf{SSA} .
- $oldsymbol{2}$ Применение другого метода к $ilde{\mathbf{S}}$ для улучшения разделимости: $ilde{\mathbf{S}} = ilde{\mathbf{S}}_1 + ilde{\mathbf{S}}_2$.

SSA EOSSA (Golyandina, Dudnik и Shlemov 2023) является вложенным вариантом **SSA**.

Метод GSSA. Алгоритм

$$\mathsf{X}=(x_1,\ldots,x_N)$$
 — временной ряд, параметры L и $lpha\geq 0$. $oldsymbol{w}^{(a)}=(w_1,w_2,\ldots,w_L)=\left(\left|\sin\left(rac{\pi n}{L+1}
ight)
ight|^lpha\right),\quad n=1,2,\ldots,L.$

Шаг 1 алгорима GSSA:

$$\mathbf{X}^{(\alpha)} = \mathcal{T}_{L}^{(\alpha)}(\mathbf{X}) = [\mathbf{X}_{1}^{(\alpha)} : \ldots : \mathbf{X}_{K}^{(\alpha)}], \\ \mathbf{X}_{i}^{(\alpha)} = (w_{1}x_{i-1}, \ldots, w_{L}x_{i+L-2})^{\mathrm{T}}, \ 1 \leq i \leq K.$$

Шаги 2-4: аналогичны SSA.

Замечание 1

При $\alpha=0$, **GSSA** — в точности базовый алгоритм **SSA**.

Замечание 2

 $oldsymbol{w}^{(a)}$ называются степенными синусными весами. Они могут иметь другой вид.

Сравнение SSA и GSSA. Линейные фильтры 1

Определение 4

Пусть $\mathsf{X}=(\dots,x_{-1},x_0,x_1,\dots)$ — бесконечный временной ряд. **Линейный конечный фильтр** — оператор Φ , преобразующий X в $\mathsf{Y}=(\dots,y_{-1},y_0,y_1,\dots)$ по правилу:

$$y_j = \sum_{i=-r_1}^{r_2} h_i x_{j-i}, \quad j \in \mathbb{Z},$$

где r_1+r_2+1 — ширина фильтра, $h_i\in\mathbb{R}$ — коэффициенты.

Пример. При применении фильтра Φ к $x_j = \cos 2\pi \omega j$, получается ряд $y_j = A_\Phi(\omega)\cos (2\pi \omega j + \phi_\Phi(\omega))$. $\phi_\Phi(\omega)$ — фазово-частотная характеристика (ФЧХ). $A_\Phi(\omega)$ — амплитудно-частотная характеристика (АЧХ).

Сравнение SSA и GSSA. Линейные фильтры 2

$$\mathbf{X}=(x_1,\ldots,x_N)$$
, $(\sqrt{\lambda},\,U,\,V)$ — собственная тройка SSA. $U=(u_1,\ldots,u_L)$. $\widetilde{\mathbf{X}}=\mathcal{T}_L\circ\mathcal{H}(\sqrt{\lambda}UV^T)$.

Запись SSA через линейный фильтр для средних точек:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k u_{k+|j|} / L \right) x_{s-j}, \quad L \le s \le K.$$

Аналогичное представление для GSSA:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k^{(\alpha)} u_{k+|j|}^{(\alpha)} w_k / \sum_{i=1}^L w_i \right) x_{s-j}, \quad L \le s \le K.$$

Замечание 1

Представление через линейные фильтры можно получить и для остальных точек ряда.

Сравнение SSA и GSSA. Пример

 ${\sf X}={\sf X}_{\sin}+{\sf X}_{\cos}=\sin\left(rac{2\pi}{12}n
ight)+rac{1}{2}\cos\left(rac{2\pi}{19}n
ight)$. $N=96\cdot 2-1$, L=48. Группировка: для ${\sf X}_{\sin}$ 1-2 SVD, для ${\sf X}_{\cos}$ 3-4 SVD.

АЧХ для суммы фильтров собственных троек синуса

 $\alpha = 0.5$: шире полоса пропускания фильтра, чем при $\alpha = 0$, но нет волнообразного поведения на краях.

Сравнение SSA и GSSA. Пример продолжение

Таким образом, АЧХ фильтра также зависит от точки, для которой этот фильтр построен.

Сравнение SSA и GSSA. Пример продолжение 2

В начальных и конечных значениях ошибки больше.

Вывод. Вложенный вариант SSA + GSSA

Таблица 1: $\mathsf{X}_{\sin} + \mathsf{X}_{\cos} + \varepsilon_n$, $\varepsilon_n \sim \mathrm{N}(0, 0.1^2)$, MSE оценок

Метод/Ошибка	X_{\sin}	X_{\cos}	Χ
SSA	5.68e-03	5.44e-03	7.48e-04
GSSA, $\alpha = 0.5$	1.21e-03	1.25e-03	1.04e-03
SSA + GSSA, $\alpha = 0.5$	1.06e-03	1.12e-03	7.15e-04

Получается вложенный вариант **SSA**.

Метод CiSSA. Алгоритм

 $\mathsf{X} = (x_1, \dots, x_N)$ — временной ряд. 1 < L < N — длина окна. **Алгоритм CiSSA**:

- **1** Построение траекторной матрицы: как в SSA.
- ② l=1:L, $U_l=L^{-1/2}(u_{l,1},\dots,u_{l,L}),\ u_{l,j}=\exp\left(-\mathrm{i}2\pi(j-1)\frac{l-1}{L}\right).$ Элементарное разложение: $\omega_k=\frac{k-1}{L},\ k=1:\lfloor\frac{L+1}{2}\rfloor$

$$egin{aligned} \mathbf{X}_{\omega_k} &= U_k U_k^H \mathbf{X} + U_{L+2-k} U_{L+2-k}^H \mathbf{X}; \ \mathbf{X}_{\omega_{\frac{L}{2}+1}} &= U_{\frac{L}{2}+1} U_{\frac{L}{2}+1}^H \mathbf{X}, \ \text{если} \ L \mod 2 = 0, \end{aligned}$$

Разложение:
$$\mathbf{X} = \sum\limits_{k=1}^d \mathbf{X}_{\omega_k}, \ d = \lfloor \frac{L+1}{2} \rfloor$$
 (или $\frac{L}{2}+1$).

Ответительный по частотам:

$$\bigsqcup_{j=1}^{m} \Omega_j = \bigsqcup_{j=1}^{m} \left[\omega_j^{(l)}, \omega_j^{(r)} \right] = [0, 0.5]. \ \mathbf{X}_{\Omega_j} = \sum_{\omega_k \in \Omega_j} \mathbf{X}_{\omega_k}.$$

Диагональное усреднение: как в SSA.

Метод CiSSA. Особенности

- SSA: базис адаптивный (зависит от X, L, N). CiSSA: базис фиксированный (зависит от L, N).
- ② CiSSA разложения Фурье для K векторов матрицы ${f X}$ с последующим диагональным усреднением слагаемых.
- В CiSSA группировка по диапазонам частот. Алгоритм применим только, когда заранее известны частоты интересующих компонент.

Сравнение SSA, Фурье, CiSSA. Точная разделимость

Фиксируем временной ряд
$${\sf X}={\sf X}_1+{\sf X}_2=$$
 $=A_1\cos(2\pi\omega_1n+\varphi_1)+A_2\cos(2\pi\omega_2n+\varphi_2).$

Метод	Условия точной разделимости			
SSA	$L\omega_1, L\omega_2, K\omega_1, K\omega_2 \in \mathbb{N}, \omega_1 \neq \omega_2, A_1 \neq A_2$			
SSA EOSSA	$\omega_1 eq \omega_2$			
Фурье	$N\omega_1, N\omega_2 \in \mathbb{N}, \omega_1 \neq \omega_2$			
CISSA	$L\omega_1, L\omega_2 \in \mathbb{N}, \omega_1 \neq \omega_2$			

Таким образом, условия на разделение косинусов, слабее у методов CiSSA и Фурье, чем у SSA.

Сравнение SSA, Фурье, CiSSA. Асимптотическая разделимость

Метод	Полиномы	Гармоники	Экспмод. функции
SSA	✓	\checkmark	\checkmark
SSA EOSSA	✓	\checkmark	\checkmark
Фурье	×	\checkmark	X
CiSSA	X	✓	✓

^{✓ —} класс функций асимптотически разделим методом.

Пример 1. Гармоничесикие функции

Пример 1: $X = X_{\sin} + X_{\cos} = A_1 \sin(2\pi\omega_1 n) + A_2 \cos(2\pi\omega_2 n)$. Группировка: $\delta = 1/L$, для X_{\sin} 1-2 SVD или $(\omega_1 \pm 2\delta)$; для X_{\cos} 3-4 SVD или $(\omega_2 \pm 2\delta)$;

Метод	Параметры	$\mathrm{MSE}\left(X_{\mathrm{sin}}\right)$	$\mathrm{MSE}\left(X_{\mathrm{cos}}\right)$	MSE(X)
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 \neq A_2$	6.8e-30	1.5e-29	1.8e-29
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 \neq A_2, r = 4$	8.2e-30	6.5e-30	5.5e-30
Fourier	$N\omega_i \in \mathbb{N}$	3.4e-28	9.8e-29	4.0e-28
CiSSA	$L\omega_i \in \mathbb{N}, A_1 \neq A_2$	1.1e-29	6.5e-30	7.8e-30
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 = A_2$	3.8e-04	3.8e-04	6.0e-29
SSA	$L\omega_i \in \mathbb{N}, \ K\omega_i \notin \mathbb{N}, \ A_1 = A_2$	4.9e-03	3.4e-03	5.9e-29
SSA EOSSA	$L\omega_i \in \mathbb{N}, \ K\omega_i \notin \mathbb{N}, \ A_1 = A_2, \ r = 4$	1.4e-29	2.9e-29	1.1e-29
Fourier	$N\omega_i \notin \mathbb{N}$	7.6e-03	3.3e-03	5.6e-03

По таблице видно, что при нарушении условий точной разделимости, результаты значительно ухудшаются. SSA EOSSA исправляет ситуацию для SSA.

Пример 1. Шум

Пример 1: X =
$$X_{\sin} + X_{\cos} + X_{\mathrm{Noise}} =$$

$$= A_1 \sin(2\pi\omega_1 n) + A_2 \cos(2\pi\omega_2 n) + \varepsilon_n, \ \varepsilon_n \sim \mathrm{N}(0, 0.1^2)$$
 Группировка: $\delta = 1/L$,

для X_{\sin} 1-2 SVD или $(\omega_1\pm2\delta)$; для X_{\cos} 3-4 SVD или $(\omega_2\pm2\delta)$;

Метод	Параметры	$\mathrm{MSE}\left(X_{\sin}\right)$	$\mathrm{MSE}\left(X_{\mathrm{cos}}\right)$	$\mathrm{MSE}\left(X\right)$
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}$	2.7e-04	3.3e-04	6.0e-04
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}$	2.7e-04	3.3e-04	6.0e-04
Fourier	$N\omega_i \in \mathbb{N}$	1.5e-04	2.1e-04	3.6e-04
CiSSA	$L\omega_i \in \mathbb{N}$	1.6e-04	2.8e-04	4.3e-04
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, A_1 = A_2$	2.5e-04	3.3e-04	6.0e-04
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, A_1 = A_2$	4.9e-03	3.4e-03	6.0e-04
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, A_1 = A_2$	2.7e-04	3.4e-04	6.0e-04
Fourier	$N\omega_i \notin \mathbb{N}$	2.6e-02	7.3e-02	9.8e-02

Результаты ухудшились.

Пример 2. Экспоненциально-модулированные функции

Пример 2:

$$\mathsf{X}=\mathsf{X}_{e\cdot\sin}+\mathsf{X}_{e\cdot\cos}=e^{A_1n}\sin(2\pi\omega_1n)+e^{A_2n}\cos(2\pi\omega_2n).$$
 Группировка: $\delta=1/L$,

для X_{\sin} 1-2 SVD или $(\omega_1\pm2\delta)$; для X_{\cos} 3-4 SVD или $(\omega_2\pm2\delta)$;

Метод	Параметры	$MSE(X_{e\cdot sin})$	$\mathrm{MSE}\left(X_{e\cdot\cos}\right)$	$\mathrm{MSE}\left(X\right)$
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}$	5.3e-05	5.3e-05	1.2e-27
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \in \mathbb{N}, r = 4$	3.0e-28	4.4e-28	7.4e-29
Fourier	$N\omega_i \in \mathbb{N}$	6.7e-02	1.4e-02	4.9e-02
CiSSA	$L\omega_i \in \mathbb{N}$	3.8e-03	2.6e-02	1.5e-02
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}$	4.8e-04	4.8e-04	1.1e-27
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, r=4$	2.8e-28	4.2e-28	7.5e-29
Fourier	$N\omega_i \notin \mathbb{N}$	3.7e-02	1.1e-01	1.1e-01

При домножении на экспоненты периодик, все результаты ухудшились кроме SSA EOSSA. Фурье и CiSSA значительно ухудшились в точности разделения.

Пример 2. Шум

Пример 2:
$$\mathbf{X} = \mathbf{X}_{e \cdot \sin} + \mathbf{X}_{e \cdot \cos} + \mathbf{X}_{\text{Noise}} =$$

$$= e^{A_1 n} \sin(2\pi w_1 n) + e^{A_2 n} \cos(2\pi w_2 n) + \varepsilon_n, \ \varepsilon_n \sim \mathbf{N}(0, 0.1^2)$$

Метод	Параметры	$MSE(X_{e \cdot sin})$	$MSE(X_{e \cdot cos})$	$\mathrm{MSE}\left(X\right)$
SSA	$Lw \in \mathbb{N}, Kw \in \mathbb{N}$	3.1e-04	3.6e-04	5.6e-04
SSA EOSSA	$Lw \in \mathbb{N}, Kw \in \mathbb{N}$	2.2e-04	3.4e-04	5.6e-04
Fourier	$Nw \in \mathbb{N}$	1.5e-02	7.2e-02	7.2e-02
CiSSA	$Lw \in \mathbb{N}$	5.2e-03	3.4e-02	3.3e-02
SSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}$	7.7e-04	8.7e-04	5.6e-04
SSA EOSSA	$L\omega_i \in \mathbb{N}, K\omega_i \notin \mathbb{N}, r=4$	5.8e-04	5.6e-04	7 1e-04
Fourier	$N\omega_i \notin \mathbb{N}$	4.2e-02	3.3e-01	3.5e-01

Результаты ухудшились.

Применения CiSSA

Когнитивная нагрузка (Yedukondalu и др. 2025)

- Разложили сигналы ЭЭГ (наборы MAT, STEW) с помощью CiSSA на частотно-временные компоненты для отслеживания мозговой активности.
- Создали новые признаки из компонент.
- Классифицировали когнитивную нагрузку (низкая/высокая или лёгкая/средняя/высокая) с KNN, SVM.

Таяние ледников (Dey и др. 2023)

- Рассматривается таяние ледников. Цель работы отделить долгосрочную тенденцию от сезонных сигналов.
- Применили CiSSA (L=10) к стратиграфии кернов для разделения долгосрочных трендов и сезонных сигналов (пыль, соль).

Сравнение SSA, Фурье, CiSSA. Выводы

По полученным результатам, можно следующие выводы:

- **1** CiSSA показывает себя лучше Фурье;
- На разделение периодических компонент для базового SSA накладываются более строгие ограничения относительно CiSSA. В остальных случаях SSA работает лучше;
- 3 SSA EOSSA исправляет недостатки базового SSA.
- Имеет смысл вложенный вариант с CiSSA.

Последующие действия. FSSA

FSSA – метод разложения функциональных временных рядов, совмещающий подходы функционального PCA, **SSA**.

Вход:

- $\{y_t(s)\}_{t=1}^N$, $y_t(s) \in \mathcal{L}^2([0,1])$.
- ullet Длина окна L, базис.

Сравним с 2d-SSA, MSSA.

Итоги

Результаты данного исследования:

- Выявлены сильные и слабые стороны методов;
- Предложены собственные вложенные модификации;
- Методы реализованы на языке R.

Последующие действия:

- Рассмотрение FSSA;
- Реализация вложенного варианта с CiSSA.

Спасибо за внимание!

Список литературы І

- Bogalo, Juan, Pilar Poncela и Eva Senra (2020). «Circulant singular spectrum analysis: A new automated procedure for signal extraction». B: Signal Processing 177. ISSN: 0165-1684. DOI: 10.1016/j.sigpro.2020.107750. URL: http://www.sciencedirect.com/science/article/pii/S0165168420303264.
- Dey, Rahul и др. (2023). «Application of visual stratigraphy from line-scan images to constrain chronology and melt features of a firn core from coastal Antarctica». В: Journal of Glaciology 69.273, с. 179—190. DOI: 10.1017/jog.2022.59.
- Golyandina, Nina, Pavel Dudnik и Alex Shlemov (2023).
 «Intelligent Identification of Trend Components in Singular Spectrum Analysis». B: Algorithms 16.7, c. 353. DOI: 10.3390/a16070353. URL: https://doi.org/10.3390/a16070353.

Список литературы ||

- Golyandina, Nina, Vladimir Nekrutkin и Anatoly Zhigljavsky (2001). Analysis of Time Series Structure: SSA and Related Techniques. Chapman и Hall/CRC. URL: https://www.academia.edu/34626051/Analysis_of_Time_Series_Structure_-_SSA_and_Related_Techniques.
- Golyandina, Nina u Alex Shlemov (2015). «Variations of singular spectrum analysis for separability improvement: non-orthogonal decompositions of time series». B: Statistics and Its Interface 8.3, c. 277—294. ISSN: 1938-7997. DOI: 10.4310/sii.2015.v8.n3.a3. URL: http://dx.doi.org/10.4310/SII.2015.v8.n3.a3.

Список литературы III

Gu, Jialiang и др. (2024). «Generalized singular spectrum analysis for the decomposition and analysis of non-stationary signals». В: Journal of the Franklin Institute Accepted/In Press. ISSN: 0016-0032. DOI: 10.1016/j.jfranklin.2024.106696. URL:

https://doi.org/10.1016/j.jfranklin.2024.106696.

Yedukondalu, Jammisetty и др. (янв. 2025). «Cognitive load detection through EEG lead wise feature optimization and ensemble classification». В: Scientific Reports 15. DOI: 10.1038/s41598-024-84429-6.