Seminář 10: (Ko)limity

Intuice: V minulých seminářích jsme viděli, jak jdou kategoriálně popsat vlastnosti součinů a disjuknktních sjednocení. Díky tomu můžeme tyto koncepty zobecnit do jiných kategorií než jsou množiny. Obecné (ko)limity přidávají podobjekty a kvocienty.

(Zdůrazňuji, že se jedná o intuici, formálně je toto řečeno v rámci Věty 6.) Vzhledem k tomu, že ve druhé části budou důležitější kolimity, tak vše v rozdavku je o nich a limity jsou jen duální :)

Definice 1. Diagram D v kategorii $\mathcal C$ je funktor $D\colon J\to\mathcal C,$ kde J je malá kategorie.

Diagram obsahující dva objekty je to samé co funktor z kategorie $\{\bullet \bullet\}$ (dva objekty a žádné neidentické šipky).

Definice 2. Kokužel nad diagramem $D: J \to \mathcal{C}$ s vrcholem $c \in \mathcal{C}$ je kolekce šipek $(\alpha_j: Dj \to c)_{j \in J}$ taková, že pro každou šipku $f: j \to j' \in J$ platí $\alpha_{j'} \cdot Df = \alpha_j$. Šipky α_j se nazývají nohy kokužele.

Ekvivalentně jde kokužel definovat jako přirozená transformace $D\Rightarrow c$, kde c myslíme funktor, který všechny objekty z pošle na c a všechny šipky na 1_c . Pro snadnější zápis toho budeme využívat pro značení značit kokuželů.

Pro $J = \{x \leftarrow y \rightarrow z\}$ vypadá obecný kokužel s vrcholem c takto (všechny ty trojúhelníky komutují):

Definice 3. Nechť $D: J \to \mathcal{C}$ je diagram, $\alpha: D \Rightarrow c$, $\beta: D \Rightarrow d$ dva kokužely. Pak jejich morfismem rozumíme šipku $f: c \to d$ takovou, že $f\alpha_j = \beta_j$ pro každé j. Kokužely a jejich morfismy tvoří kategorii, iniciální objekt v této kategorii je kolimitou D. Značí se colimD.

Pro $J=\{x\leftarrow y\to z\}$ dostáváme, že pro libovolný kokužel α s vrcholem c existuje právě jedna šipka $g\colon \text{colim}D\to c$ taková, že následjící diagram komutuje:

Příklad 4.

- \bullet Pokud vJnejsou žádné neidentické šipky, tak dostáváme standardní definici koproduktu.
- Kolimita diagramu z prázdné kategorie je iniciální objekt.
- Kolimita diagramu $A \supseteq A \cap B \subseteq B$ je $A \cup B$.
- Nechť \sim je relace ekvivalence na A, pak kolimita diagramu $\sim \rightrightarrows A$ (šipky jsou projekce ze součinu zúžené na \sim) je A/\sim . Obecně kolimita diagramu $A \rightrightarrows B$ se nazývá koekvalizér a platí, že noha kolimitního kokužele z B je vždy epimorfismus (v množinách surjekce).
- Kolimita diagramu $A_0 \subseteq A_1 \subseteq \dots$ je $\bigcup_{i=0}^{\infty} A_i$.

Věta 5. Iniciální objekt je jednoznačně určen až na jediný izomorfismus. Proto i libovolná kolimita je jednoznačně určena až na jediný izomorfismus komutující s kokužely.

Věta 6. Každá kolimita jde vyjádřit jako koekvalizér diagramu, kde obě šipky vedou do koproduktu všech objektů v diagramu.

Vzhledem k poznámce z předchozího příkladu toto znamená, že na kažou kolimitu se můžeme dívat jako na nějaký kvocient disjunktního sjednocení objektů v diagramu, jehož kolimitu počítáme.

Definice 7. Nechť $D: J \to \mathcal{C}$ je diagram, s kolimitou $\alpha: D \Rightarrow \operatorname{colim} D$ a $F: \mathcal{C} \to \mathcal{D}$ je funktor. Pak říkáme, že F zachovává kolimitu D, pokud $F\alpha: FD \Rightarrow F\operatorname{colim} D$ je kolimitní kokužel v \mathcal{D} .

Identita zachovává všechny kolimity, konstantní funktory zachovávají kolimity řetězců $(A_0 \to A_1 \to \ldots)$, zapomínání z monoidů nezachovává skoro žádné kolimity, ale zachovává všechny limity.

Iniciální F-algebry

Věta 8. Nechť \mathcal{C} je kategorie s iniciálním objektem 0 a kolimitami spočetných řetězců a $F \colon \mathcal{C} \to \mathcal{C}$ endofunktor zachovávající kolimity řetězců. Pak existuje iniciální F-algebra.

Náznak důkazu: Stačí spočítat kolimitu $0 \to^! F0 \to^{F!} F^20 \to^{F^2!} \to \dots$

Koprodukty vždy komutují s kolimitami, konstantní funktory i identita zachovávají kolimity řetězců. V množinách navíc konečné součiny komutují s kolimitami. Proto libovolný funktor tvaru

$$X \mapsto \sum_{i \in I} A_i \times X^i$$

zachovává kolimity řetězců. Musí pro něj tedy existovat iniciální F-algebra. Příklady zahrnují seznamy $(X\mapsto 1+A\times X)$ nebo binární stromy $(X\mapsto 1+A\times (X+X))$.